Homework 6

Max marks: 50 marks

Due on Oct 25th, 2021, 9 AM, before class.

Problem 1 Show how the function $f(w_1, w_2, w_3) = \sum m(0, 2, 3, 4, 5, 7)$ can be implemented using a 3-to-8 binary decoder and an OR gate. [1, Prob 4.1] (10 marks)

Problem 2 Consider the function $f = \bar{w}_2\bar{w}_3 + w_1w_2$. Derive a circuit for f that uses only one 2-to-1 multiplexer and no other gates (assuming inputs are available in both uncomplemented and complemented form). [1, Prob 4.4](10 marks)

Problem 3 Figure 1 shows the notation for a BCD to 7-segment display and Table 1 shows the corresponding truth table. The inputs corresponding to the missing rows in the truth table should be considered as don't care.

- 1. implement segment "a" using an 8:1 mux and no other logic gate, (10 marks)
- 2. implement segment "a" using a 4:1 mux and one other gate, (10 marks)
- 3. implement segment "f" with 4:1 mux and no other logic gate. Assume inputs are available in both uncomplemented and complemented form. (Hint: There are (\frac{4}{C_2} = 6) possible pairs of control inputs: (w_3, w_2), (w_2, w_1), (w_1, w_0), (w_0, w_3), (w_0, w_2), (w_1, w_3). There are 6 don't care conditions. With two control inputs of the multiplexer and one input allowed, you can represent an expression with upto 4-SOP-terms of size three-literals or less.) (10 marks)

References

[1] S. Brown and Z. Vranesic. Fundamentals of Digital Logic with Verilog Design: Third Edition. McGraw-Hill Higher Education, 2013.

Figure 1: Seven segment display and BCD-to-7-segment display converter. When a=1 the corresponding segment of the display lights up. To display the number 8, you will turn on all the seven segments, while to display 1, you will turn on b=1, c=1 and turn off =0 the rest. The full truth-table for the seven-segment display is shown in Table 1.

Row	w_3	w_2	w_1	w_0	a	b	c	d	e	f	g
0	0	0	0	0	1	1	1	1	1	1	0
1	0	0	0	1	0	1	1	0	0	0	0
2	0	0	1	0	1	1	0	1	1	0	1
3	0	0	1	1	1	1	1	1	0	0	1
4	0	1	0	0	0	1	1	0	0	1	1
5	0	1	0	1	1	0	1	1	0	1	1
6	0	1	1	0	1	0	1	1	1	1	1
7	0	1	1	1	1	1	1	0	0	0	0
8	1	0	0	0	1	1	1	1	1	1	1
9	1	0	0	1	1	1	1	1	0	1	1

Table 1: Truth table for BCD to seven-segment display as shown in Figure 1. The missing combinations of inputs should be considered as dont care.