Homework 3

Tom O'Leary-Roseberry

October 19, 2017

3.

Lemma 1. Let m be the quadratic function defined by

$$m(p) = g^T p + \frac{1}{2} p^T B p$$

where B is any symmetric matrix. Then the following statements are true.

- (a) m attains a minimum if and only if B is positive semidefinite and g is in the range of B If B is positive semidefinite, then every p satisfying Bp = -g is a global minimizer of m
- (b) m has a unique minimizer if and only if B is positive definite.

Proof. (a)

 \Leftarrow Since g is in the range of B, there is a p with Bp = -g. For all $w \in \mathbb{R}^n$ we have

$$m(p+w) = g^{T}(p+w) + \frac{1}{2}(p+w)^{T}B(p+w)$$

$$= (g^{T} + \frac{1}{2}p^{T}Bp) + g^{T}w + (Bp)^{T}w + \frac{1}{2}w^{T}Bw$$

$$= m(p) + \frac{1}{2}w^{T}Bw + (Bp+g)^{T}w$$

$$\geq m(p)$$
(1)

since B is positive semidefinite. Hence p is a minimizer of m

 \Rightarrow Let p be a minimizer of m, Since $\nabla m(p) = Bp + g = 0$, we have that g is in the range of B. Also we have that $\nabla^2 m(p) = B$ is positive semidefinite, giving the result.

(b)

- \Leftarrow Same as above except now we note that $w^T B w > 0$ whenever $w \neq 0$
- \Rightarrow If B is not positive definite, there is a vector $w \neq 0$ such that Bw = 0 hence from the above result we have that m(p + w) = m(p) so the minimizer is not unique, giving a contradiction.

Theorem 1. The vector p^* is a global solution of the trust region problem

$$\min_{p} m(p) = f + g^{T} p + \frac{1}{2} p^{T} B p \text{ s.t. } ||p||_{A} \leq d$$

if and only if p^* is feasible and there is a scalar $\lambda \geq 0$ such that the following conditions are satisfied:

$$(B + \lambda A)^* p = -g \tag{2a}$$

$$\lambda(d - \|p^*\|_A) = 0 \tag{2b}$$

$$(B + \lambda A)$$
 is positive semidefinite (2c)

Proof. Assume first that there is a $\lambda \ge 0$ such that the conditions (2) are met.

The Lemma above implies that p^* is a global minimum of the quadratic function

$$\hat{m}(p) = g^T p + \frac{1}{2} p^T (B + \lambda A) p = m(p) + \frac{\lambda}{2} p^T A p$$

Since $\hat{m}(p) \ge \hat{m}(p^*)$ we have:

$$m(p) \ge m(p^*) + \frac{\lambda}{2}((p^*)^T A p^* - p^T A p)$$
 (3)

Because $\lambda(d-\|p^*\|_A)=0$ and therefore $\lambda(d^2-\|p^*\|_A^2)=0$ we have

$$m(p) \ge m(p^*) + \frac{\lambda}{2}(d^2 - p^T A p)$$

Hence from $\lambda \geq 0$ we have that $m(p) \geq m(p^*)$ for all p with $||p||_A \leq d$, therefore p^* is a global minimizer. For the converse assume that p^* is a global minimizer of m(p) and show that there is a $\lambda \geq 0$ that satisfies the conditions (2).

In the case that $||p||_A < d$, p^* is an unconstrained minimizer of m and so

$$\nabla m(p^*) = Bp^* + g = 0,$$
 $\nabla^2 m(p) = B$ is positive semidefinite

and so all the properties hold for $\lambda = 0$

Assume for the remainder of the proof that $||p^*||_A = d$, then (2b) is immediately satisfied and p^* also solves the constrained problem

$$\min m(p)$$
 subject to $||p||_A = d$

By applying optimality conditions for constrained optimization to this problem, we find that ther eis a λ such that the Lagrangian function defined by

$$\mathcal{L}(p,\lambda) = m(p) + \frac{\lambda}{2}(p^T A p - d^2)$$

has a stationary point at p^* . By setting $\nabla_p \mathcal{L}(p^*, \lambda) = 0$, we obtain

$$Bp^* + g + \lambda Ap^* = 0$$
 $\Rightarrow (B - \lambda AI)p^* = -g$

so that (2a) holds. Since $m(p) \ge m(p^*)$ for any p with $p^T A p = (p^*)^T A p^* = d^2$, we have for such vectors p that

$$m(p) \geqslant m(p^*) + \frac{\lambda}{2}((p^*)^T A p^* - p^T A p)$$

If we substitute the above expression for g, we obtain after some rearranging that

$$\frac{1}{2}(p-p^*)^T(B+\lambda AI)(p-p^*) \geqslant 0$$

Since the set of directions:

$$\left\{w: w = \pm \frac{p - p^*}{\|p - p^*\|} \text{ for some } p \text{ with } \|p\|_A = d\right\}$$

is dense on the unit sphere, this suffices to prove (2c).

It remains to show that $\lambda \geq 0$. Because (2a) and (2c) are satisfied by p^* , we have from the Lemma that p^* minimizes m, so (3) holds. Suppose that there rare only negative directions of λ that satisfy (2a) and (2c). Then we have from (3) that $m(p) \geq m(p^*)$ whenever $\|p\|_A \geq \|p^*\|_A = d$. Since we already know that p^* minimizes m for $\|p\|_A leq d$ it follows that m is in fact a global unconstrained minimizer of m. From the lemma it follows that Bp = -g and B is positive semidefinite. Therefore the conditions (2a) and (2c) are satisfied by $\lambda = 0$ which contradicts our assumption that only negative values of λ can satisfy the conditions. We conclude that $\lambda \geq 0$ completing the proof.