| Universität Leipzig<br>Institut für Informatik<br>Bioinformatik/IZBI | Algorithmen und Datenstrukturen II<br>SoSe 2024 – Freiwillige Serie 3 |            |       |
|----------------------------------------------------------------------|-----------------------------------------------------------------------|------------|-------|
| P.F. Stadler, T. Gatter                                              | Ausgabe am                                                            | Lösung am  | Seite |
|                                                                      | 16.04.2024                                                            | 23.04.2024 | 1/5   |

# Algorithmen und Datenstrukturen II SoSe 2024 – Serie 3

## 1 Starke Zusammenhangskomponenten

Der gerichtete Graph G sei durch die folgende Kantenliste definiert.

- a) Benutzen sie den Tarjan-Algorithmus (wie in der Vorlesung beschrieben) beginnend beim Knoten 1, um die starken Zusammenhangskomponenten von G zu berechnen. In der FOR EACH-Schleife innerhalb von Tarjan-visit werden die Kindknoten u des aktuellen Knotens v in aufsteigender Reihenfolge der Indizes bearbeitet. Geben sie in der Reihenfolge der Abarbeitung des Algorithmus an:
  - jeweils nach Beendigung der FOR EACH Schleife: v, in[v] und 1[v]
  - die jeweiligen Ausgaben der starken Zusammenhangskomponenten.

#### Lösung:

```
in[v]
              1[v]
                      Ausgabe
v
5
        5
4
        4
                 4
                     st. Zshk: 5,4
6
        6
                 6
                     st. Zshk: 6
3
        3
                 1
2
        2
                 1
1
        1
                 1
                     st. Zshk: 3, 2, 1
```

b) Zeichnen sie G und dessen Komponentengraphen  $G^*$ . Benennen sie dabei die starken Zusammenhangskomponenten von G mit  $a, b, \ldots$ , in der Reihenfolge, in der sie vom Tarjan-Algorithmus im vorigen Aufgabenteil ausgegeben werden.

| Universität Leipzig<br>Institut für Informatik<br>Bioinformatik/IZBI | Algorithmen und Datenstrukturen II<br>SoSe 2024 – Freiwillige Serie 3 |                         |           |
|----------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------|-----------|
| P.F. Stadler, T. Gatter                                              | Ausgabe am<br>16.04.2024                                              | Lösung am<br>23.04.2024 | Seite 2/5 |



## 2 Mengensysteme

a) Gegeben sind die Menge  $E = \{a, b, c, d\}$  und die folgenden Mengen von Mengen:

$$\mathcal{M}_{1} = \{ \emptyset, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{c, d\} \} \}$$

$$\mathcal{M}_{2} = \{ \emptyset, \{a\}, \{b, e\}, \{c\}, \{d\}, \{a, d, e\} \} \}$$

$$\mathcal{M}_{3} = \{ \emptyset, \{a\}, \{b\}, \{d\}, \{a, b\}, \{a, d\} \} \}$$

$$\mathcal{M}_{4} = \{ \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\} \} \}$$

$$\mathcal{M}_{5} = \{ \emptyset, \{a\}, \{b\}, \{c\}, \{d\}, \{a, c\}, \{a, d\} \} \}$$

Geben Sie für jedes  $i \in \{1, 2, 3, 4, 5\}$  an, ob  $(E, \mathcal{M}_i)$  ein Mengensystem, ein Unabhängigkeitssystem, ein Matroid ist. Fassen Sie Ihr Ergebnis in Form einer Tabelle mit Einträgen ja/nein zusammen, wobei jedes i eine Spalte und jede der drei Eigenschaften eine Zeile bekommt. Begründen Sie kurz wenn die Eigenschaft nicht gilt (also ein nein eingetragen wird).

| Universität Leipzig<br>Institut für Informatik<br>Bioinformatik/IZBI | Algorithmen und Datenstrukturen II<br>SoSe 2024 – Freiwillige Serie 3 |                         |           |
|----------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------|-----------|
| P.F. Stadler, T. Gatter                                              | Ausgabe am<br>16.04.2024                                              | Lösung am<br>23.04.2024 | Seite 3/5 |

| i                                                                                                                                | 1                          | 2                 | 3          | 4                            | 5                 |                                     |
|----------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------|------------|------------------------------|-------------------|-------------------------------------|
| Mengensystem                                                                                                                     | ja                         | $nein^2$          | ja         | ja                           | ja                | -                                   |
| Unabh.System                                                                                                                     | ja                         | $\mathrm{nein}^3$ | $_{ m ja}$ | $ m nein^5$                  | ja                |                                     |
| Matroid                                                                                                                          | nein <sup>1</sup>          | $\mathrm{nein}^4$ | ja         | $ m nein^6$                  | $\mathrm{nein}^7$ |                                     |
| $  1   \{a, b\} >   \{c\} ;$                                                                                                     | $\{a,b\}\setminus \{a,b\}$ | $\{c\} = \{c\}$   | a, b       | $\rightarrow \nexists x \in$ | $\{a,b\}$ s       | so dass gilt $x \cup \{c\} \in M_1$ |
| $e \notin E$                                                                                                                     |                            |                   |            |                              |                   |                                     |
| <sup>3</sup> kein Mengensys                                                                                                      | $_{ m tem}$                |                   |            |                              |                   |                                     |
| <sup>4</sup> kein Unabh.System                                                                                                   |                            |                   |            |                              |                   |                                     |
| $^{5}$ $\emptyset  otin \mathcal{M}_{4}$                                                                                         |                            |                   |            |                              |                   |                                     |
| <sup>6</sup> kein Unabh.System                                                                                                   |                            |                   |            |                              |                   |                                     |
| $ ^7 \{a,d\} >  \{b\} ; \{a,d\} \setminus \{b\} = \{a,d\} \to \nexists x \in \{a,d\} \text{ so dass gilt } x \cup \{b\} \in M_1$ |                            |                   |            |                              |                   |                                     |
|                                                                                                                                  |                            |                   |            |                              |                   |                                     |

b) Geben Sie für die Fälle aus (a), in denen ein Unabhängigkeitssystem, aber kein Matroid vorliegt, eine Gewichtsfunktion an, bei der der kanonische Greedy-Algorithmus aus der Vorlesung keine optimale Lösung findet. Die Gewichtsfunktion soll nur Werte in  $\{1,2,3,4\}$  annehmen.

## Lösung:

Fälle 1 und 5. Es gibt mehrere korrekte Lösungen, aber es geht immer so:

- 1) von den beiden 2-er Mengen ist die, die das Element mit höchstem Gewicht enthält, schlechter als die andere.
- 5) Menge {b} hat höchstes Element-Gewicht, aber eine der 2-er Mengen ist besser

## 3 Auftragsplanungsmatroid

a Ermitteln Sie für das folgende Autragsproblem die optimale Lösung mittels des in den Vorlesungsfolien beschriebenen Kanonischen Greedy-Algorithmus.

Der Zeitbedarf für jeden Auftrag beträgt einen Tag. Die folgende Tabelle fasst die Aufträge, deren Gewinn und den Abgabetermin zusammen.

| Universität Leipzig<br>Institut für Informatik<br>Bioinformatik/IZBI | Algorithmen und Datenstrukturen II<br>SoSe 2024 – Freiwillige Serie 3 |                         |           |
|----------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------|-----------|
| P.F. Stadler, T. Gatter                                              | Ausgabe am<br>16.04.2024                                              | Lösung am<br>23.04.2024 | Seite 4/5 |

| Auftrag $x$ | Gewinn w(x) | Termin d(x) |
|-------------|-------------|-------------|
| a           | 12          | 1           |
| b           | 6           | 2           |
| c           | 4           | 2           |
| d           | 3           | 3           |
| e           | 9           | 2           |
| f           | 2           | 1           |

```
Aufträge sortiert nach w, notiert in der form (x, [d(x), w(x)]) (a, [1, 12]), (e, [2, 9]), (b, [2, 6]), (c, [2, 4]), (d, [1, 3]), (f, [1, 2]). Greedy-Aufbau von A A = \emptyset A = \{(a, [1, 12])\} ... ist A \in \mathcal{M}? ... ja! A = \{(a, [1, 12]), (e, [2, 9])\} ... ist A \in \mathcal{M}? ... ja! A = \{(a, [1, 12]), (e, [2, 9]), (b, [2, 6])\} ... ist A \in \mathcal{M}? ... NEIN! A = \{(a, [1, 12]), (e, [2, 9])\} behalten A = \{(a, [1, 12]), (e, [2, 9])\} behalten A = \{(a, [1, 12]), (e, [2, 9])\} behalten A = \{(a, [1, 12]), (e, [2, 9]), (d, [3, 3])\} ... ist A \in \mathcal{M}? ... NEIN! A = \{(a, [1, 12]), (e, [2, 9]), (d, [3, 3])\} ... ist A \in \mathcal{M}? ... pa! A = \{(a, [1, 12]), (e, [2, 9]), (d, [3, 3])\} mit einem Gesamtgewinn von 24
```

b) Zeigen Sie, dass im Auftragsplanungsproblem – für beliebige Auftragsmengen E und Fristen d – das Mengensystem  $(E, \mathcal{M})$  ein Matroid ist.

**Hinweis:** Verwenden sie dazu, dass (laut Vorlesung) im Auftragsproblem eine Auftragsmenge A zulässig ist (d.h. in  $\mathcal{M}$  enthalten ist) genau dann wenn

$$\forall s \in \mathbb{N} : |\{y \in A : d(y) \le s\}| \le s. \tag{*}$$

(bzw. ausformuliert: "eine Auftragsmenge ist zulässig, genau dann wenn sie (für jede beliebige Anzahl von Tagen s) höchstens s Aufträge enthält, die alle nach spätestens s Tagen fertig sein müssen.")

| Universität Leipzig<br>Institut für Informatik<br>Bioinformatik/IZBI | Algorithmen und Datenstrukturen II<br>SoSe 2024 – Freiwillige Serie 3 |                         |           |
|----------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------|-----------|
| P.F. Stadler, T. Gatter                                              | Ausgabe am<br>16.04.2024                                              | Lösung am<br>23.04.2024 | Seite 5/5 |

Der Beweis besteht aus zwei Teilen:

a) Unabhängigkeitssystem.  $\emptyset \in \mathcal{M}$ , denn  $\forall s \in \mathbb{N} : |\{y \in \emptyset : d(y) \leq s\}| = 0$ . Abgeschlossenheit von  $\mathcal{M}$  unter Teilmengenbildung: Sei  $A \in \mathcal{M}$  und  $B \subseteq A$ . Dann ist

$$|\{y \in B : d(y) \le s\}| \le |\{y \in A : d(y) \le s\}| \le s$$

und deshalb  $B \in \mathcal{M}$ .

b) Austauscheigenschaft von  $\mathcal{M}$ . Seien  $A, B \in \mathcal{M}$  mit |B| < |A|.

Es gibt einen kleinsten Tag r, ab dem A mehr Aufträge y als B enthält, die zu diesem Stichtag fertig sein müssen (also Aufträge y mit  $d(y) \leq r$ ). Inbesondere gilt dann, dass A mehr Aufträge y enthält, die genau eine Frist von r Tagen haben (d(y) = r).

Damit gibt es einen Auftrag  $x \in A \setminus B$  mit d(x) = r. Wir zeigen  $B \cup \{x\}$  ist in  $\mathcal{M}$ , d.h. (\*) gilt für beliebige  $s \in \mathbb{N}$ . (Definiere  $N_s(A) := |\{y \in A : d(y) \leq s\}|$ ).

Falls s < d(x), so

$$N_s(B \cup \{x\}) = N_s(B) \le s$$
.

Falls  $s \ge d(x) = r$ , gilt

$$N_s(B \cup \{x\}) = N_s(B) + 1.$$

Nach Wahl von r gilt  $N_s(B) < N_s(A)$ , also

$$N_s(B) + 1 \le N_s(A) \le s$$
.