Question 1.

Since D is invertible, we can multiply both sides by D^{-1}

$$(B-C)D = 0$$

$$(B-C)DD^{-1} = 0D^{-1}$$

$$(B-C)I = 0$$

$$B-C = 0$$

$$B=C$$
(1)

Q.E.D.

Question 2.

Via Theorem 6 (page 107):

$$C = AB$$

$$CB^{-1} = ABB^{-1}$$

$$CB^{-1} = AI$$

$$CB^{-1} = A$$
(2)

Question 3.

$$A = PBP^{-1}$$

$$P^{-1}A = IBP$$

$$P^{-1}AP = BI$$

$$P^{-1}AP = B$$
(3)

Question 4.

If
$$A=\begin{bmatrix}a&b\\c&d\end{bmatrix}$$
,
$$\text{Then, }A^{-1}=\frac{1}{ad-bc}\begin{bmatrix}d&-b\\-c&a\end{bmatrix}$$
 Hence, as long as ad - bc $\neq 0$, then we can see that:

$$\mathbf{A}A^{-1} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \ \frac{1}{ad-bc} \ \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \frac{1}{ad-bc} \ \begin{bmatrix} ad-bc & 0 \\ 0 & ad-bc \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

In addition, we can see that:

$$A^{-1}A = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \frac{1}{ad-bc} \begin{bmatrix} ad-bc & 0 \\ 0 & ad-bc \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Since both of those equal each other that means that the formula for A^{-1} works

Question 5.

 $Ax = I_2$

$$\begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix} x = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \\ e & f \\ g & h \end{bmatrix} = \begin{bmatrix} a+c+e & b+d+f \\ c+e+g & d+f+h \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Hence, we can derive the following system of linear equations:

$$\begin{bmatrix} a & c & e & 1 \\ b & d & f & 0 \\ c & e & g & 0 \\ d & f & h & 1 \end{bmatrix}$$
 Therefore, we can construct the answer by making everything in the middle rows 0

by the exception of the two values that aren't in the middle two rows (a h). Hence, we'll set these two values to 1 like so:

$$b=c=d=e=f=g=h=0$$

$$a=h=1$$

This gives us the answer of
$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix} = I$$

And to answer part 2:

No, because the columns of A are linearly dependent. Hence, for some x, Ax = 0 which means that for that x, CAx = 0

Question 6.

The matrix A was made by combining the matrix given in the problem and the second and third

columns of the identity matrix $\begin{pmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}$

This tells us the last 2 columns of A^{-1} are: $\begin{vmatrix} 1.5 & -4.5 \\ -72.17 & 219.5 \\ 22.6 & -69 \end{vmatrix}$

Question 7.

No , according to Invertible Matrix theorem (Theorem 8), this is not possible.

Question 8.

We can say that Hx = 0 will have a non-trivial solution because according to theorem 8, if one of the conditions is false (g in this case), then so will all the other conditions in the theorem.

Question 9.

Yes again, by theorem 8. Since condition d. is met on the Theorem (Lx = 0 has only the trivial solution), then all the conditions in the theorem are true, including the columns of n spanning \mathbb{R}^n

Question 10.

Since at the beginning of the problems it is stated that "unless otherwise specified, assume that all matrices in these exercises are n x n" (a.k.a. they're all square), then we know that the matrix A must be a square matrix, and by extension A^2 is also a square matrix.

In addition, we know that A is invertible due to its columns being independent (Theorem 8 tells us this), so A^2 must also be invertible.

Therefore, since A^2 is invertible and a square matrix, then A^2 must also span \mathbb{R}^n .

Question 11.

a.):

$$A = \begin{bmatrix} .5 & .25 & .25 \\ .25 & .5 & .25 \\ .25 & .25 & .5 \end{bmatrix}$$

b.):

$$x_{1} = Ax_{0} = \begin{bmatrix} .5 & .25 & .25 \\ .25 & .5 & .25 \\ .25 & .25 & .5 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} .5 \\ .25 \\ .25 \end{bmatrix}$$

$$x_{2} = Ax_{1} = \begin{bmatrix} .5 & .25 & .25 \\ .25 & .5 & .25 \\ .25 & .25 & .5 \end{bmatrix} \begin{bmatrix} .5 \\ .25 \\ .25 \end{bmatrix} = \begin{bmatrix} .375 \\ .3125 \\ .3125 \end{bmatrix}$$

Hence, the probability that the lab animal will eat food 2 on the second trial will be .3125 (31.25%)

Question 12.

a.):

$$A = \begin{bmatrix} \begin{bmatrix} .6 & .4 & .4 \\ .3 & .3 & .5 \\ .1 & .3 & .1 \end{bmatrix}$$

b.):

$$x_1 = Ax_0 = \begin{bmatrix} .6 & .4 & .4 \\ .3 & .3 & .5 \\ .1 & .3 & .1 \end{bmatrix} \begin{bmatrix} .5 \\ .5 \\ 0 \end{bmatrix} = \begin{bmatrix} .5 \\ .3 \\ .2 \end{bmatrix}$$

Hence, the probability of bad weather tomorrow will be .2 (20%)

c.):

$$x_{1} = Ax_{0} = \begin{bmatrix} .6 & .4 & .4 \\ .3 & .3 & .5 \\ .1 & .3 & .1 \end{bmatrix} \begin{bmatrix} 0 \\ .4 \\ .6 \end{bmatrix} = \begin{bmatrix} .4 \\ .42 \\ .18 \end{bmatrix}$$

$$x_{2} = Ax_{1} = \begin{bmatrix} .6 & .4 & .4 \\ .3 & .3 & .5 \\ .1 & .3 & .1 \end{bmatrix} \begin{bmatrix} .4 \\ .42 \\ .18 \end{bmatrix} = \begin{bmatrix} .480 \\ .336 \\ .184 \end{bmatrix}$$

Hence, the probability of good weather on Wednesday will be .480 (48%)

Question 13.

[No], P is not a regular stochastic matrix since regardless of how many times you multiply P times itself, it will always have a zero on the bottom left of the matrix.

Question 14.

To find the steady-state vector, we need to find q such that Pq = q, as according to the definition before Example 4 in the same lesson.

To do this we can use the formula of (P-I)x = 0 which is given to us in example 5 on this same lesson.

$$\begin{aligned} &(\text{P-I})\mathbf{x} = 0 \\ &(\begin{bmatrix} .5 & .25 & .25 \\ .25 & .5 & .25 \\ .25 & .25 & .5 \end{bmatrix} - \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}) \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \\ &(\begin{bmatrix} -.5 & .25 & .25 \\ .25 & -.5 & .25 \\ .25 & .25 & -.5 \end{bmatrix}) \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \end{aligned}$$

We can then row-reduce the matrix on the left an apply it to the x vector like so: (Note the during the reduction, the matrix was multiplied by 4 to end up with whole numbers.)

$$\begin{bmatrix} -.5 & .25 & .25 \\ .25 & -.5 & .25 \\ .25 & .25 & -.5 \end{bmatrix} \xrightarrow{Reduction} \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 & -x_3 = 0 \\ x_2 & -x_3 = 0 \end{bmatrix}$$

Then, let us choose the solution space of $\begin{bmatrix} 1\\1\\1 \end{bmatrix}$ for the sake of simplicity.

Afterwards, we'll divide them by their sum (3) to get:

$$X_1 = \frac{1}{3} X_2 = \frac{1}{3} X_3 = \frac{1}{3}$$

This means that the animal will prefer all three foods equally after many trials

Question 15.

```
Python 3.7.3 (default, Apr 24 2019, 15:29:51) [MSC v.1915 64 bit (AMD64)]
Type "copyright", "credits" or "license" for more information.
IPython 7.6.1 -- An enhanced Interactive Python.
>>> runfile('C:/Users/Carlos/Desktop/Class Notes/hw2GESolutions.py', wdir='C:/Users/Carlos/
Desktop/Class Notes')
>>> P = np.array([[.9,.01,.09],[.01,.90,.01],[.09,.09,.90]])
>>> I=np.array([[1,0,0],[0,1,0],[0,0,1]])
>>> A=P-I
>>> backsubstitution(forwardElimination(A))
array([[ 1.
                      0.
                                , -0.91919192],
       [-0.
                                , -0.19191919],
                     0.
       [ 0.
                                , 0.
                                              ]])
>>> A=backsubstitution(forwardElimination(A))
>>> summation = .91919192+.19191919+1
>>> q=np.array([[.91919192/summation],[.19191919/summation]],[1/summation]])
>>> print(q)
[[0.4354067]
 [0.09090909]
 [0.47368421]]
```

Hence, the amount of cars rented or ready from the downtown location on a typical day will be $(.090909*2000) = \boxed{182 \text{ cars}}$