Data Structures and Algorithms

Lab 9 Graph representation

Today's Objectives

- Graph
- Planar graph
- Graph representations
 - Edge List Structure
 - Adjacency List Structure
 - Adjacency Matrix Structure
- Programming exercises

Graph data structure

definition:

- A graph data structure is a collection of nodes that have data and are connected to other nodes.
- On facebook, everything is a node. That includes User, Photo, Album, Event, Group, Page, Comment, Story, Video, Link, Note...anything that has data is a node.
- ➤ Every relationship is an edge from one node to another. Whether you post a photo, join a group, like a page, etc., a new edge is created for that relationship.
- \rightarrow More precisely, a graph is a data structure (V, E) that consists of
 - A collection of vertices V
 - A collection of edges E, represented as ordered pairs of vertices (u,v)

Graph basic operations:

- insertVertex (o): insert a vertex storing element o
- insertEdge (v, u, o): insert an edge (v, u) storing element o
- removeVertex (v): remove vertex v (and its incident edges)
- removeEdge (e): remove edge e
- incidentEdges (v): edges incident to v

- areAdjacent (v, u): true v and u are adjacent vertices
- **degree (v):** number of incident edges to v
- endVertices (o): an array of the two end vertices of edge e
- opposite (v, e): the vertex opposite of vertex v on edge e

Graph types

- Directed/Undirected
- Cyclic/Acyclic
- Complete
- Weighted
- Sparse/Dense
- Planar

Graph types

- Directed/Undirected: An edge (u,v) doesn't necessarily mean that there is an edge (v, u) as well. The edges in such a graph are represented by arrows to show the direction of the edge.
- Cyclic: A path that starts and ends at the same vertex
- Complete A graph in which every vertex is directly connected to every other vertex
- Weighted: a graph in which each edge carries a value (weight)
- Sparse/Dense: There are maximum n(n-1)/2 total pair of vertices(edges) in an undirected graph of n vertices.

Planar graph

When a connected graph can be drawn without any edges crossing

Planar graph: Euler's formula

- A planar graph divides the plane into regions called faces. A face is defined to be an area of the plane that is bounded by edges and cannot be further subdivided (including the outer, infinitely large region),
- A planar graph divides the plans into one or more faces, one of them will be infinite.
- Euler's formula for planar graphs:

$$v - e + f = 2$$

Planar graph: Euler's formula

Euler's formula can also be proved as follows:

if the graph isn't a tree, then remove an edge which completes a cycle. This lowers both e and f by one, leaving v - e + f constant. Repeat until the remaining graph is a tree; trees have v = e + 1 and f = 1, yielding v - e + f = 2, i. e., the Euler characteristic is 2.

$$v - e + f = 2$$

Graph representations

- Edge List Structure
- Adjacency List Structure
- Adjacency Matrix Structure

Edge List Structure

- a graph G = (V, E) where:
 - Vertex List: stores vertices
 - Edge List: stores edges

We can use singly linked lists to store vertices and edges

Edge List Structure

- Stores the vertices and the edges into unsorted sequences
- What is the time complexity of **incidentEdge(v)**?

Adjacency List Structure

• Extends the edge list structure by adding incidence containers to each vertex

Adjacency Matrix Structure

Augments the edge list structure with a matrix where each row and

column corresponds to a vertex

BOS	DFW	JFK	LAX	MIA	ORD	SFO
0	1	2	3	4	5	6

	0	1	2	3	4	5	6
0	Ø	Ø	NW 35	Ø	DL 247	Ø	Ø
1	Ø	Ø	Ø	AA 49	Ø	DL 335	Ø
2	Ø	AA 1387	Ø	Ø	AA 903	Ø	TW 45
3	Ø	Ø	Ø	Ø	Ø	UA 120	Ø
4	Ø	AA 523	Ø	AA 411	Ø	Ø	Ø
5	Ø	UA 877	Ø	Ø	Ø	Ø	Ø
6	Ø	Ø	Ø	Ø	Ø	Ø	Ø

Adjacency List Structure

- An adjacency list represents a graph as an array of linked lists.
- The index of the array represents a vertex and each element in its linked list represents the other vertices that form an edge with the vertex.
- We can either use *HashMaps* and *LinkedLists* to implement graph using adjacency list.

Adjacency Matrix Structure

- An adjacency matrix is a 2D array of V x V vertices. Each row and column represent a vertex.
- If the value of any element a[i][j] is 1, it represents that there is an edge connecting vertex i and vertex j.

Graph representations

 n vertices, m edges no parallel edges no self-loops 	Edge List	Adjacency List	Adjacency Matrix
Space	n+m	n + m	n ²
incidentEdges(v)	m	$\deg(v)$	n
areAdjacent (v, w)	m	$\min(\deg(v), \deg(w))$	1
insertVertex(o)	1	1	n^2
insertEdge(v, w, o)	1	1	1
removeVertex(v)	m	deg(v)	n ²
removeEdge(e)	1	1	1

Coding exercise

 Implement an Adjacency List graph which will represent the friendship relationship below

See You next week!