VE216 Lecture 8

Convolution

Convolution

Hoping to represent a system by a single signal, while the input is more complicated.

Superposition

Breaking input into additive parts and sum the responses to the parts.

It is easy if system is linear and time-invariant (LTI).

Linear

and the system is linear if
$$\alpha x_1[n] + \beta x_2[n]$$
 system $\rightarrow \alpha y_1[n] + \beta y_2[n]$

for all α , β .

Time-Invariance

Given
$$x[n] \longrightarrow \text{system} \longrightarrow y[n]$$

and the system is time invariant if
$$x[n-n_0]$$
 — system $y[n-n_0]$

for all n_0 .

Structure of Superposition

$$egin{aligned} \delta[n] & o h[n] \ \delta[n-k] & o h[n-k] \ x[k]\delta[n-k] & o x[k]h[n-k] \end{aligned} \ x[n] = \sum_{k=-\infty}^{+\infty} x[k]\delta[n-k] & o y[n] = \sum_{k=-\infty}^{+\infty} x[k]h[n-k] \end{aligned}$$

Convolution Notation

$$x[n] o ext{LTI System} o y[n]$$

$$y[n] = \sum_{k=-\infty}^{+\infty} x[k]h[n-k] = (x*h)[n]$$

DT Convolution Remark

Actually, unit sample response h[n] is a complete description of an LTI system.

CT Convolution

Similar form:
$$x(t) o \int_{-\infty}^\infty x(au) \delta(t- au) d au \ y(t) o \int_{-\infty}^\infty x(au) h(t- au) d au$$

Convolution Summary

DT:
$$y[n] = \sum_{k=-\infty}^{+\infty} x[k]h[n-k] = (x*h)[n]$$

CT:
$$y(t) = \int_{-\infty}^{\infty} x(au) h(t- au) d au = (x*h)(t)$$

Summary

The impulse response is a complete description of a linear, time-invariant (LTI) system.

One can find the output of such a system by **convolving the input signal with the impulse response**.