

Smart Mobile PlatformDecision Theory

Prof. Joongheon Kim Korea University, School of Electrical Engineering https://joongheon.github.io joongheon@korea.ac.kr

Outline

- Decision Theory Family
 - Game Theory
 - Stable Marriage
 - Decision Tree: ID3

Game Theory: Pure Strategy Game

• [Example] During the 8PM to 9PM, two TV broadcast service providers (e.g., MBC and KBS) compete for an audience of 100 viewers. The networks announce their schedule ahead of time and do not know of each other's decision until the show time. Based on that a certain number of people will tune to MBC while the rest will watch KBS. The market research revealed the following expected number of viewers of MBC.

MBC (KBS) Payoff Matrix

			KBS	
		Movie	Opera	Comedy
МВС	Movie	35 (65)	15 (85)	60 (40)
	Opera	45 (55)	58 (42)	50 (50)
	Comedy	38 (62)	14 (86)	70 (30)

Game Theory: Pure Strategy Game

• [Example] During the 8PM to 9PM, two TV broadcast service providers (e.g., MBC and KBS) compete for an audience of 100 viewers. The networks announce their schedule ahead of time and do not know of each other's decision until the show time. Based on that a certain number of people will tune to MBC while the rest will watch KBS. The market research revealed the following expected number of viewers of MBC.

MBC (KBS) Payoff Matrix

			KBS	
		Movie	Opera	Comedy
МВС	Movie	35 (65)	15 (85)	60 (40)
	Opera	45 (55)	58 (42)	50 (50)
	Comedy	38 (62)	14 (86)	70 (30)

• [Example] Player 1 draws a card from a card deck (and hides it from the other player). Then he decides to either pass in which case he discards the card and pays \$1 to Player 2, or he will bet in which case it is 2nd player's turn. Player 2 can either fold in which case she pays \$1 to Player 1, or she will call and the card is revealed. If the revealed card is HIGH (10, Jack, Queen, King, Ace), then Player 2 pays \$2 to Player 1. Otherwise, the card is LOW (2 through 9) and Player 1 pays \$2 to Player 2. Now, let's analyze the possible strategies for Player 1. Given the card, the card can be either HIGH or LOW. Based on that the player can either pass or bet. So there are 4 possible strategies: pass on both HIGH and LOW (PP), pass on HIGH and bet on LOW (PB), bet on HIGH and pass on LOW (BP), and bet on both HIGH and LOW (BB). Player 2 can either Call or Fold.

Player 1 Payoff Matrix		Play	er 2
		Call	Fold
Player	PP	-1	-1
1	PB	-21/13	3/13
	BP	2/13	-3/13
	BB	-6/13	1

	Player 1 Payoff Matrix		Play	er 2
	-			Fold
	Player	PP	-1	-1
wit	er 1 is always passing: g h the probability of 1 ((HIGH and LOW)	-21/13	3/13
	Finally, (-1)*1=-1		2/13	-3/13
		BB	-6/13	1

	Player 1 Payoff Matrix		Play	er 2
			Call	Fold
	Player	PP	-1	-1
	1	PB	-21/13	3/13
pro	Player 1 is passing with HIGH: getting -1 profit with the probability of 5/13 Player 1 is betting with LOW and Player 2 is		2/13	-3/13
calli pro	calling: getting with LOW and Player 2 is calling: getting -2 profit with the probability of 8/13 Finally, (-1)*(5/13)+(-2)*(8/13) = -21/13		-6/13	1

	Player 1 Payoff Matrix			Play	ver 2
	-			Call	Fold
	Player	PP		-1	-1
	1	1 PB		-21/13	3/13
ro	layer 1 is passing with HIGH: getting -1 rofit with the probability of 5/13 layer 1 is betting with LOW and Player 2 is			2/13	-3/13
oldi of 8	olding: getting 1 profit with the probability f 8/13 (nally, $(-1)*(5/13)+(1)*(8/13)=3/13$			-6/13	1

	Player 1 Payoff Matrix		Pla	yer 2
. Dlay	-	Land Dlayer 2 is	Call	Fold
calli of 5	Player 1 is betting with HIGH and Player 2 is alling: getting 2 profit with the probability of 5/13 Player 1 is folding with LOW: getting -1 profit		-1	-1
wit	h the probability of 8/ ally, (2)*(5/13)+(-1)*(8/1	13	-21/13	3/13
		BP	2/13	-3/13
		BB	-6/13	1

	Player 1 Payoff Matrix		Play	er 2
			Call	Fold
fold of 5	Player 1 is betting with HIGH and Player 2 is folding: getting 1 profit with the probability of 5/13 Player 1 is folding with LOW: getting -1 profit		-1	-1
wit	h the probability of 8/ally, $(1)*(5/13)+(-1)*(8/13)$	13	-21/13	3/13
		BP	2/13	-3/13
		BB	-6/13	1

	Player 1 Payoff Matrix	-		er 2
	,			Fold
	Player	PP	-1	-1
get 5/1	ver 1 is always betting an ting 2 profit with the place (HIGH) and -2 profit behility of 8/13 (LOW)	probability of t with the	-21/13	3/13
•	Finally, (2)*(5/13)+(-2)*(8/13) = -6/13		2/13	-3/13
		BB	-6/13	1

	Player 1 Payoff Matrix	Player 1 Payoff Matrix		er 2
	•			Fold
	Player	PP	-1	-1
get (HI	ver 1 is always betting an ting 1 profit with the GH and LOW)	,	-21/13	3/13
• Fina	• Finally, 1*1=1		2/13	-3/13
		BB	-6/13	1

Player 1 Payoff Matrix (Reduced Form)		Play	er 2
		Call	Fold
Player	BP	2/13	-3/13
1	BB	-6/13	1

Player 1 Payoff Matrix (R	educed Form)	Player 2 is doing Call and Fold with the probabilities of y_1 and y_2 , respectively	
		Call	Fold
Player 1 is doing BP and BB with	BP	2/13	-3/13
the probabilities of x_1 and x_2 , respectively		-6/13	1

- Linear Programming Formulation
 - Maximizing the profit of Player 1

maximize

7

subject to

$$\frac{2}{12}x_1 - \frac{6}{12}x_2 \ge z$$

$$-\frac{3}{13}x_1 + x_2 \ge z$$

$x_1 + x_2 =$	1
$x_1 \ge 0$	
$x_2 \ge 0$	

		Play	er 2
		Call	Fold
Player 1	BP	2/13	-3/13
	BB	-6/13	1

Expected Profit if Player 2 is doing Call

Expected Profit if Player 2 is doing Fold

- Linear Programming Formulation
 - Minimizing the loss of Player 2

minimize

u

subject to

$$\frac{2}{13}y_1 - \frac{3}{13}y_2 \le w$$

$$-\frac{\sigma}{13}y_1 + y_2 \le$$

$$y_1 + y_2 = 1$$
$$y_1 \ge 0$$
$$y_2 \ge 0$$

		Play	er 2
		Call	Fold
Player 1	BP	2/13	-3/13
	BB	-6/13	1

Expected Loss if Player 1 is doing BP

Expected Loss if Player 1 is doing BB

Outline

- Decision Theory Family
 - Game Theory
 - Stable Marriage
 - Decision Tree: ID3

Stable Marriage Example

Stable Marriage Problem: Setting and Definitions

- General Setting
 - N men and N women; Each man (woman) has a preference list (ordering woman (man))
- Definition
 - **Matching:** A pairing of each of the N men with a woman (i, p(i)) denotes man i paired with woman p(i).
 - **Unstable Matching:** There exist pairs (i, p(i)) and (j, p(j)); i prefers p(j) to p(i); and p(j) prefer i to j.
 - Stable Matching: A matching that is not unstable.

Stable Marriage Problem: Example 1

Stable Marriage Problem: Gale-Shapley Algorithm (GSA)

A	1234
В	2143
C	3241
D	3 4 2 1

1	ACDB
2	CDAB
3	BADC
4	ABCD

GSA Procedure

- 1. (A 1)
- 2. (A 1)(B 2)
- 3. (A 1)(B 2)(C 3)
- 4. 3 prefers D over C, i.e., (A 1)(B 2)(D 3)
- 5. C's next preference is "2".2 prefers C over B, i.e., (A 1)(C 2)(D 3)
- 6. B's next preference is "1". The a does not want to switch.
- 7. B's next preference is "4"; and the "4" is free., i.e., (A 1)(C 2)(D 3)(B 4)

Stable Marriage Problem: Internet Router Design with Virtual Queues

Head of Line Blocking

Stable Marriage Problem: Internet Router Design with Virtual Queues

Head of Line Blocking

Virtual Queues

Stable Marriage Problem: Internet Router Design with Virtual Queues

Outline

- Decision Theory Family
 - Game Theory
 - Stable Marriage
 - Decision Tree: ID3

- How to construct decision trees?
- Example-based Explanation

Day	Outlook	Temperature	Humidity	Wind	Playball
D1	sunny	hot	high	weak	no
D2	sunny	hot	high	strong	no
D3	overcast	hot	high	weak	yes
D4	rain	mild	high	weak	yes
D5	rain	cool	normal	weak	yes
D6	rain	cool	normal	strong	no
D7	overcast	cool	normal	weak	yes
D8	sunny	mild	high	weak	no
D9	sunny	cool	normal	weak	yes
D10	rain	mild	normal	strong	yes
D11	sunny	mild	normal	strong	yes
D12	overcast	mild	high	strong	yes
D13	overcast	hot	normal	weak	yes
D14	rain	mild	high	strong	no

Example)

	•				
Day	Outlook	Temperature	Humidity	Wind	Playball
D1	sunny	hot	high	weak	no
D2	sunny	hot	high	strong	no
D3	overcast	hot	high	weak	yes
D4	rain	mild	high	weak	yes
D5	rain	cool	normal	weak	yes
D6	rain	cool	normal	strong	no
D7	overcast	cool	normal	weak	yes
D8	sunny	mild	high	weak	no
D9	sunny	cool	normal	weak	yes
D10	rain	mild	normal	strong	yes
D11	sunny	mild	normal	strong	yes
D12	overcast	mild	high	strong	yes
D13	overcast	hot	normal	weak	yes
D14	rain	mild	high	strong	no

Index Values for Individual Attributes

- Outlook = {sunny, overcast, rain}
- Temperature = {hot, mild, cool}
- Humidity = {high, normal}
- Wind = {weak, strong}

$$D = [9 \text{ Yes, 5 No}], \text{ i.e.,}$$

The overall Entropy can be calculated as follows:
Entropy(D **)** = $(-P_{yes} log_2 P_{yes}) + (-P_{no} log_2 P_{no})$
where $P_{yes} = \frac{9}{14}$ and $P_{no} = \frac{5}{14}$

Example)

Day	Outlook	Temperature	Humidity	Wind	Playball
D1	sunny	hot	high	weak	no
D2	sunny	hot	high	strong	no
D3	overcast	hot	high	weak	yes
D4	rain	mild	high	weak	yes
D5	rain	cool	normal	weak	yes
D6	rain	cool	normal	strong	no
D7	overcast	cool	normal	weak	yes
D8	sunny	mild	high	weak	no
D9	sunny	cool	normal	weak	yes
D10	rain	mild	normal	strong	yes
D11	sunny	mild	normal	strong	yes
D12	overcast	mild	high	strong	yes
D13	overcast	hot	normal	weak	yes
D14	rain	mild	high	strong	no

Find Entropy for Attribute "Wind"

- Set $D_{Wind.weak} = [6 \text{ Yes, 2 No}]$
- Set $D_{Wind.strong} = [3 \text{ Yes, 3 No}]$
- Calculate Entropies for $D_{Wind,weak}$ and $D_{Wind,strong}$
- Calculate **Gain(***D***,** Wind) as follows:

$$-\frac{\frac{|D_{Wind,weak}|}{|D|}}{|D|} \textbf{Entropy}(D_{Wind,weak})$$

$$-\frac{\frac{|D_{Wind,strong}|}{|D|}}{|D|} \textbf{Entropy}(D_{Wind,strong})$$

$$-rac{|D_{Wind,strong}|}{|D|}$$
Entropy($D_{Wind,strong}$)

Find Entropies for the other Attributes

Pick the Max Gain Attribute: "Outlook"

Example)

Day	Outlook	Temperature	Humidity	Wind	Playball
D1	sunny	hot	high	weak	no
D2	sunny	hot	high	strong	no
D3	overcast	hot	high	weak	yes
D4	rain	mild	high	weak	yes
D5	rain	cool	normal	weak	yes
D6	rain	cool	normal	strong	no
D7	overcast	cool	normal	weak	yes
D8	sunny	mild	high	weak	no
D9	sunny	cool	normal	weak	yes
D10	rain	mild	normal	strong	yes
D11	sunny	mild	normal	strong	yes
D12	overcast	mild	high	strong	yes
D13	overcast	hot	normal	weak	yes
D14	rain	mild	high	strong	no

For sunny,

- $D_{sunny} = \{D1, D2, D8, D9, D11\}$
- Calculate $Gain(D_{sunny}, Humidity) = 0.970$ $Gain(D_{sunny}, Temperature) = 0.570$ $Gain(D_{sunny}, Wind) = 0.019$

Pick the Max Gain Attribute, i.e., Humidity

• Example)

Day	Outlook	Temperature	Humidity	Wind	Playball
D1	sunny	hot	high	weak	no
D2	sunny	hot	high	strong	no
D3	overcast	hot	high	weak	yes
D4	rain	mild	high	weak	yes
D5	rain	cool	normal	weak	yes
D6	rain	cool	normal	strong	no
D7	overcast	cool	normal	weak	yes
D8	sunny	mild	high	weak	no
D9	sunny	cool	normal	weak	yes
D10	rain	mild	normal	strong	yes
D11	sunny	mild	normal	strong	yes
D12	overcast	mild	high	strong	yes
D13	overcast	hot	normal	weak	yes
D14	rain	mild	high	strong	no

Iterate this procedure.

Final Form

