Package 'arcgisbinding'

January 25, 2018

Version 1.0.1.228
Date 2018-01-25
Title Bindings for ArcGIS
Author Esri
Maintainer Esri <r_bridge@esri.com></r_bridge@esri.com>
NeedsCompilation no
Description This package provides classes for loading, converting and exporting ArcGIS datasets and layers in R.
Depends R (>= 3.2.2)
Imports methods
Suggests sp, sf, raster
License Apache License 2.0
<pre>URL http://esri.com</pre>
OS_type windows
Encoding UTF-8
Archs i386, x64
RoxygenNote 5.0.1
R topics documented:
arc.check_product 2 arc.data2sf 3 arc.data2sp 3 arc.dataset-class 4 arc.datasetraster-class 5 arc.delete 5 arc.env 6 arc.fromP4ToWkt 7 arc.metadata 8 arc.open 9 arc.progress_label 10

2 arc.check_product

Index		24
	resampletypes	. 23
	pixeltypes	
	names	. 22
	dplyr	. 22
	dim	. 2
	as.raster	. 2
	arcgisbinding	. 20
	arc.write	. 19
	arc.sp2data	. 18
	arc.shapeinfo	. 1
	arc.shape2sp	. 1
	arc.shape2sf	. 10
	arc.shape-class	. 10
	arc.shape	
	arc.select	
	arc.raster-class	
	arc.raster	
	arc.progress_pos	

arc.check_product

ArcGIS product and license information

Description

Initialize connection to ArcGIS. Any script running directly from R (i.e. without being called from a Geoprocessing script) should first call arc.check_product to create a connection with ArcGIS. Provides installation details on the version of ArcGIS installed that arcgisbinding is communicating with.

Usage

arc.check_product()

Details

Returned details include:

- Product: ArcGIS Desktop (i.e. ArcMap), or ArcGIS Pro. The name of the product connected.
- License level: Basic, Standard, or Advanced are the three licensing levels available. Each
 provides progressively more functionality within the software. See the "Desktop Functionality
 Matrix" link for details.
- Build number: The build number of the release being used. Useful in debugging and when creating error reports.
- DLL: The dynamic linked library (DLL) in use allowing ArcGIS to communicate with R.

References

ArcGIS Desktop Functionality Matrix

arc.data2sf 3

Note

Additional license levels are available on ArcGIS Desktop: Server, EngineGeoDB, and Engine. These license levels are currently unsupported by this package.

Examples

```
info <- arc.check_product()
info$license # ArcGIS license level
info$version # ArcGIS build number
info$app # product name
info$dll # binding DLL in use</pre>
```

arc.data2sf

Convert an arc.dataframe object to an sf Simple Feature object

Description

Convert an ArcGIS data.frame to the equivalent sf object type. The output types that can be generated: POINT, MULTIPOINT, POLYGON, MULTIPOLYGON, LINESTRING, MULTILINESTRING.

Usage

```
arc.data2sf(x)
```

Arguments

х

data.frame result of arc.select

Examples

```
require(sf)
d <- arc.select(arc.open(system.file("extdata", "ca_ozone_pts.shp", package="arcgisbinding")), 'ozone')
x <- arc.data2sf(d)
## Not run: plot(x)</pre>
```

arc.data2sp

Convert an arc.dataframe or arc.raster object to an sp Spatial-DataFrame object

Description

Convert an ArcGIS data.frame to the equivalent sp data frame type. The output types that can be generated: SpatialPointsDataFrame, SpatialLinesDataFrame, or SpatialPolygonsDataFrame. Convert an arc.raster object to a SpatialGridDataFrame object.

Usage

```
arc.data2sp(x)
```

4 arc.dataset-class

Arguments

Х

data.frame result of arc.select or arc.raster

Examples

```
require(sp)
d <- arc.select(arc.open(system.file("extdata", "ca_ozone_pts.shp", package="arcgisbinding")), 'ozone')
sp.df <- arc.data2sp(d)
## Not run: spplot(sp.df)</pre>
```

arc.dataset-class

Class "arc.dataset"

Description

```
arc.dataset S4 class
```

Details

The dataset_type slot possible values are described in the referenced "dataset properties – data type" documentation. For feature datasets, extent contains four double values: (xmin, ymin, xmax, ymax). The fields slot includes the details of the ArcGIS data types of the relevant fields, which include data types not directly representable in R.

Slots

```
path file path or layer name
dataset_type dataset type
extent spatial extent of the dataset
fields list of field names
shapeinfo geometry information (see arc.shapeinfo)
```

References

1. ArcGIS Help: Dataset properties – dataset type

Methods

arc.select names

arc.datasetraster-class 5

```
arc.datasetraster-class
```

Class "arc.datasetraster"

Description

```
arc.datasetraster S4 class
```

Details

TODO

Slots

```
.info internal
sr spatial reference
extent spatial extent of the dataset
pixel_type The pixel type of the referenced raster dataset. (pixel_type)
compression_type The compression type
nrow return the number of rows
ncol return the number of rows
bands return rasterdataset bands information
```

Methods

arc.raster

dim

names

See Also

arc.open

arc.delete

delete dataset

Description

delete dataset

Arguments

Χ

arc.dataset

6 arc.env

arc.env

Get geoprocessing environment settings

Description

Geoprocessing environment settings are additional parameters that affect a tool's results. Unlike parameters, they are not directly input as values. Instead, they are values configured in a separate dialog box, and then and interrogated and used by the script when run.

Usage

```
arc.env()
```

Details

The geoprocessing environment can control a variety of attributes relating to where data is stored, the extent and projection of analysis outputs, tolerances of output values, and parallel processing, among other attributes. Commonly used environment settings include workspace, which controls the default location for geoprocessing tool inputs and outputs. See the topics listed under "References" for details on the full range of environment settings that Geoprocessing scripts can utilize.

References

- ArcGIS Help: What is a geoprocessing environment setting?
- ArcGIS Help: Setting geoprocessing environments

Note

- This function is only available from within an ArcGIS session. Usually, it is used to get local Geoprocessing tool environment settings within the executing tool.
- This function can only read current geoprocessing settings. Settings, such as the current workspace, must be configured in the calling Geoprocessing script, not within the body of the R script.

```
## Not run:
  tool_exec <- function(in_para, out_params)
  {
    env = arc.env()
    wkspath <- env$workspace
    ...
    return(out_params)
  }
## End(Not run)</pre>
```

arc.fromP4ToWkt 7

arc.fromP4ToWkt	Convert PROJ.4 Coordinate Reference System string to Well-known Text.
	Text.

Description

The arc.fromP4ToWkt command converts a PROJ.4 coordinate reference system (CRS) string to a well-known text (WKT) representation. Well-known text is used by ArcGIS and other applications to robustly describe a coordinate reference system. Converts PROJ.4 stings which include either the '+proj' fully specified projection parameter, or the '+init' form that takes well-known IDs (WKIDs), such as EPSG codes, as input.

Arguments

```
proj4 PROJ.4 projection string
```

Details

The produced WKT is equivalent to the ArcPy spatial reference exported string: arcpy.Describe(layer).SpatialReference.exportToString()

References

- 1. OGC specification 12-063r5
- 2. ArcGIS Help: What are map projections?

Note

The '+init' method currently only works with ArcGIS Pro.

See Also

```
arc.fromWktToP4
```

```
arc.fromP4ToWkt("+proj=eqc") # Equirectangular
arc.fromP4ToWkt("+proj=latlong +datum=wgs84") # WGS 1984 geographic
arc.fromP4ToWkt("+init=epsg:2806") # initalize based on EPSG code
```

8 arc.metadata

arc.fromWktToP4

Convert a Well-known Text Coordinate Reference System into a PROJ.4 string.

Description

Convert a well-known text (WKT) coordinate reference system (CRS) string to a PROJ.4 representation. PROJ.4 strings were created as a convenient way to pass CRS information to the command-line PROJ.4 utilities, and have an expressive format. Alternatively, can accept a well-known ID (WKID), a numeric value that ArcGIS uses to specify projections. See the 'Using spatial references' resource for lookup tables which map between WKIDs and given projection names.

Arguments

wkt

WKT projection string, or a WKID integer

References

- 1. ArcGIS REST API: Using spatial references
- 2. OGC specification 12-063r5
- 3. ArcGIS Help: What are map projections?

See Also

```
arc.fromP4ToWkt
```

Examples

arc.metadata

Get metadata

Description

Get metadata

Usage

```
arc.metadata(object)
```

Arguments

object

arc.dataset-class object

arc.open 9

arc.open

Open dataset, table, or layer

Description

Open ArcGIS datasets, tables, rasters and layers. Returns a new arc.dataset-class object which contains details on both the spatial information and attribute information (data frame) contained within the dataset.

Arguments

path

file path or layer name

Value

An arc.dataset object

Supported Formats

- Feature Class: A collection of geographic features with the same geometry type (i.e. point, line, polygon) and the same spatial reference, combined with an attribute table. Feature classes can be stored in a variety of formats, including: files (e.g. Shapefiles), Geodatabases, components of feature datasets, and as coverages. All of these types can be accessed using the full path of the relevant feature class (see note below on how to specify path names).
- Layer: A layer references a feature layer, but also includes additional information necessary to symbolize and label a dataset appropriately. arc.open supports active layers in the current ArcGIS session, which can be addressed simply by referencing the layer name as it is displayed within the application. Instead of referencing file layers on disk (i.e. .lyr and .lyrx files), the direct reference to the actual dataset should be used.
- Table: Tables are effectively the same as data frames, containing a collection of records (or observations) organized in rows, with columns storing different variables (or fields). Feature classes similarly contain a table, but include the additional information about geometries lacking in a standalone table. When a standalone table is queries for its spatial information, e.g. arc.shape(table), it will return NULL. Table data types include formats such as text files, Excel spreadsheets, dBASE tables, and INFO tables.
- rasters: A raster dataset TODO

References

- What is the difference between a shapefile and a layer file?
- ArcGIS Help: What is a layer?
- ArcGIS Help: What are tables and attribute information?

Note

Paths must be properly quoted for the Windows platform. There are two styles of paths that work within R on Windows:

- Doubled backslashes, such as: C:\\Workspace\\archive.gdb\\feature_class.
- Forward-slashes such as: C:/Workspace/archive.gdb/feature_class.

10 arc.progress_label

Network paths can be accessed with a leading \\\host\share or //host/share path. To access tables and data within a Feature Dataset, reference the full path to the dataset, which follows the structure: <directory>/<Geodatabase Name>/<feature dataset name>/<dataset name>. So for a table called table1 located in a feature dataset fdataset within a Geodatabase called data.gdb, the full path might be: C:/Workspace/data.gdb/fdataset/table1

See Also

```
arc.dataset-class
arc.datasetraster-class
```

Examples

arc.progress_label

Set progressor label for Geoprocessing dialog box

Description

Geoprocessing tools have a progressor, which includes both a progress label and a progress bar. The default progressor continuously moves back and forth to indicate the script is running. Using arc.progress_label and arc.progress_pos allows fine control over the script progress. Updating the progressor isn't necessary, but is useful in situations where solely outputting messages to the dialog is insufficient to communicate script progress.

Usage

```
arc.progress_label(label)
```

Arguments

label

Progress Label

Details

Using arc.progress_label allows control over the label that is displayed at the top of the running script. For example, it might be used to display the current step of the analysis taking place.

References

Understanding the progressor in script tools

arc.progress_pos 11

Note

- Currently only functions in ArcGIS Pro, and has no effect in ArcGIS Desktop.
- This function is only available from within an ArcGIS session, and has no effect when run from the command line or in background geoprocessing.

See Also

```
arc.progress_pos, "Progress Messages" example Geoprocessing script
```

Examples

```
## Not run:
arc.progress_label("Calculating bootstrap samples...")
## End(Not run)
```

arc.progress_pos

Set progressor position for Geoprocessing dialog box

Description

Geoprocessing tools have a progressor, which includes both a progress label and a progress bar. The default progressor continuously moves back and forth to indicate the script is running. Using arc.progress_label and arc.progress_pos allow fine control over the script progress. Updating the progressor isn't necessary, but is useful in situations where solely outputting messages to the dialog is insufficient to communicate script progress.

Usage

```
arc.progress_pos(pos = -1)
```

Arguments

pos

Progress position (in percent)

Details

Using arc.progress_pos allows control over the progressor position displayed at the top of the running script. The position is an integer percentage, 0 to 100, that the progress bar should be set to, with 100 indicating the script has completed (100%).

Setting the position to -1 resets the progressor to the default progressor, which continuously moves to indicate the script is running.

References

Understanding the progressor in script tools

Note

- Currently only functions in ArcGIS Pro, and has no effect in ArcGIS Desktop.
- This function is only available from within an ArcGIS session, and has no effect when run from the command line or in background geoprocessing.

12 arc.raster

See Also

```
arc.progress_label, "Progress Messages" example Geoprocessing script
```

Examples

```
## Not run:
arc.progress_pos(55)
## End(Not run)
```

arc.raster

Create arc.raster object

Description

Create arc.raster object

Usage

```
arc.raster(object, bands, ...)
## S4 method for signature 'arc.datasetraster'
arc.raster(object, bands, ...)
## S4 method for signature '`NULL`'
arc.raster(object, path, dim, nrow, ncol, nband, extent,
    origin_x, origin_y, cellsize_x, cellsize_y, pixel_type, nodata, sr, ...)
```

Arguments

object arc.datasetraster-class object.

bands integer vector of bands (default: all bands).

... optional additional arguments such as nrow, ncol, extent, pixel_type, resample_type

to be passed to the method.

Value

```
arc.raster returns a raster object (type of arc.raster-class).
```

```
## create and resample raster
r.file <- system.file("pictures", "cea.tif", package="rgdal")
r <- arc.raster(arc.open(r.file), nrow=200, ncol=200, resample_type="CubicConvolution")
r
stopifnot(r$nrow == 200)</pre>
```

arc.raster-class 13

arc.raster-class

Reference Class "arc.raster"

Description

TODO

Fields

```
sr Get or set Spacial Reference
extent Get or set extent. Uset it to read portion of raster.
nrow Get or set number of row.
ncol Get or set number of column.
cellsize Get pixel size.
pixel_type Get or set pixel type.
pixel_depth Get pixel depth
nodata Get or set nodata value
resample_type Get or set resampling type.
colormap Get or set color map table. Return is a vector of 256 colors in the RGB format.
bands Get raster band information
```

Methods

names

dim

arc.write

```
$save_as(path, opt)
$commit(opt) End writing. opt - aditional parameter (default: build-stats)
$pixel_block(ul_x, ul_y, nrow, ncol, bands) Read pixel values. ul_x, ul_y - upper left
    corner in pixels nrow, ncol - size in pixels
\ write_pixel_block(values, ul_x, ul_y, ncol, nrow) Write pixel values.
$attribute_table() Query raster attribute table
```

```
## read 5x5 pixel block with 10,10 offset
r.file <- system.file("pictures", "cea.tif", package="rgdal")</pre>
r <- arc.raster(arc.open(r.file))</pre>
v \leftarrow rpixel_block(ul_x = 10L, ul_y = 10L, nrow = 5L, ncol= 5L)
stopifnot(length(v) == 25)
## process big raster
r2 = arc.raster(NULL, path=tempfile("r2", fileext=".img"),
                dim=dim(r), pixel_type=r$pixel_type, nodata=r$nodata,
                 extent=r$extent,sr=r$sr)
for (i in 1L:r$nrow)
```

14 arc.select

```
v <- r$pixel_block(ul_y = i - 1L, nrow = 1L)
  r2$write_pixel_block(v * 1.5, ul_y = i - 1L, nrow = 1L, ncol = r$ncol)
}
r2$commit()

## resample raster
r <- arc.raster(arc.open(r.file), nrow=200L, ncol=200L, resample_type="BilinearGaussBlur")

## save to a different format
r$save_as(tempfile("new_raster", fileext=".img"))

## get and compare all pixel values
r.file <- system.file("pictures", "logo.jpg", package="rgdal")
rx <- raster::brick(r.file)
r <- arc.raster(arc.open(r.file))
stopifnot(all(raster::values(rx) == r$pixel_block()))</pre>
```

arc.select

Load dataset to data.frame

Description

Load dataset to a standard data frame.

Usage

```
arc.select(object, fields, where_clause, selected, sr, ...)
## S4 method for signature 'arc.table'
arc.select(object, fields, where_clause, selected, sr,
...)
```

Arguments

object arc.dataset-class object

fields string, or list of strings, containing fields to include (default: all)

where_clause SQL where clause

selected use only selected records (if any) when dataset is a layer or standalone table

sr transform geometry to Spatial Reference (default: object@sr)

... Additional arguements (currently ignored)

Value

```
arc.select returns a data.frame object (type of arc.data).
```

Note

If dataset includes the arc.feature attribute, the "shape" of class arc.shape-class will be attached to the resulting data.frame object.

arc.shape 15

See Also

```
arc.open
```

Examples

arc.shape

Get arc.shape object

Description

```
Get arc.shape-class from arc.data
```

Arguments

df

arc.dataframe

See Also

```
arc.select
```

16 arc.shape2sf

arc.shape-class

Class "arc.shape"

Description

```
arc. shape is geometry collection
```

Note

arc.shape is attached to an ArcGIS data.frame as the attribute "shape". Each element corresponds to one record in the input data frame. Points are presented as an array of lists, with each list containing (x, y, Z, M), where

Examples

arc.shape2sf

Convert Esri shape to sfc simple feature geometry

Description

 $Convert\,arc.\,shape-class\,to\,sfc\,simple\,feature\,geometry:\,POINT,\,MULTIPOINT,\,POLYGON,\,MULTIPOLYGON,\,LINESTRING,\,MULTILINESTRING.$

Usage

```
arc.shape2sf(shape)
```

Arguments

shape

arc.shape-class

See Also

```
arc.shape
```

arc.shape2sp 17

Examples

```
require(sp)
d <- arc.select(arc.open(system.file("extdata", "ca_ozone_pts.shp", package="arcgisbinding")), 'ozone')
x <- arc.shape2sp(arc.shape(d))
## Not run: plot(x)</pre>
```

arc.shape2sp

Convert Esri shape to sp spatial geometry

Description

Convertarc.shape-class to sp spatial geometry: SpatialPoints, SpatialLines, or SpatialPolygons.

Usage

```
arc.shape2sp(shape, wkt)
```

Arguments

shape arc.shape-class
wkt WKT spatial reference

See Also

arc.shape

Examples

```
require(sp)
d <- arc.select(arc.open(system.file("extdata", "ca_ozone_pts.shp", package="arcgisbinding")), 'ozone')
x <- arc.shape2sp(arc.shape(d))
## Not run: plot(x)</pre>
```

arc.shapeinfo

Shape Information

Description

arc.shapeinfo provides details on what type of geometry is stored within the dataset, and the spatial reference of the geometry. The well-known text, WKT, allows interoperable transfer of the spatial reference system (CRS) between environments. The WKID is a numeric value that ArcGIS uses to precisely specify a projection.

Arguments

object arc.dataset-class object

18 arc.sp2data

Slots

```
type geometry type: "Point", "Polyline", or "Polygon"
hasZ TRUE if geometry includes Z-values
hasM TRUE if geometry includes M-values
WKT well-known text representation of the shape's spatial reference
WKID well-known ID of the shape's spatial reference
```

References

- 1. ArcGIS REST API: Using spatial references
- 2. Spatial reference lookup

See Also

```
arc.dataset-class arc.shape-class
```

Examples

arc.sp2data

deprecated Convert a sp SpatialDataFrame object to an arc.dataframe object

Description

 $deprecated\ Convert\ sp\ Spatial Points Data Frame,\ Spatial Polygons Data Frame,\ and\ Spatial Lines Data Frame objects\ to\ an\ Arc GIS-compatible\ data.\ frame.$

Arguments

sp.df

Spatial Points Data Frame, Spatial Polygons Data Frame, or Spatial Lines Data Frame

See Also

```
arc.data2sp
```

arc.write

arc.write	Write dataset, raster, feature, table or layer

Description

Export a data. frame object to an ArcGIS dataset. If the data frame includes a spatial attribute, this function writes a feature dataset. If no spatial attribute is found, a table is instead written.

Export a arc.raster, raster::RasterLayer or raster::RasterBrick object to an ArcGIS raster dataset.

Arguments

path	full output path
data	input source. Accepts data.frame, spatial data.frame, SpatialPointsDataFrame, SpatialLinesDataFrame, and SpatialPolygonsDataFrame, arc.raster, raster::RasterLayer
	raster::RasterBrick objects. Optional parameters
	• coords list containing geometry. Accepts Spatial objects. Put field names

- if data is data.frame and consists coordinates.
- ${\tt shape_info}$ required argument if data has no spatial attribute
- overwrite overwrite existing dataset. default = FALSE.

Details

Supports a variety of output formats. Below are pairs of example paths and the resulting data types:

- C:/place.gdb/fc: File Geodatabase Feature Class
- C:/place.gdb/fdataset/fc: File Geodatabase Feature Dataset
- in_memory\logreg: In-memory workspace (must be run in ArcGIS Session)
- C:/place.shp: Esri Shapefile
- C:/place.dbf: Table
- C:/place.gdb/raster: File Geodatabase Raster when data parameter is arc.raster or Raster* object
- C:/image.img: ERDAS Imaging
- C:/image.tif: Geo TIFF

References

- What is the difference between a shapefile and a layer file?
- ArcGIS Help: What is a layer?

See Also

```
arc.dataset-class, arc.open, arc.raster
```

20 arcgisbinding

Examples

```
## write as a shapefile
fc <- arc.open(system.file("extdata", "ca_ozone_pts.shp", package="arcgisbinding"))</pre>
d <- arc.select(fc, 'ozone')</pre>
d[1,] <- 0.6
arc.write(tempfile("ca_new", fileext=".shp"), d)
## create and write to a new file geodatabase
fgdb_path <- file.path(tempdir(), "data.gdb")</pre>
data(meuse, package="sp")
## create feature dataset 'meuse'
arc.write(file.path(fgdb\_path, "meuse \ \ coords = c("x", "y", "elev"), \ shape\_info=list(type=1), \
data(meuse.riv, package="sp")
riv <- sp::SpatialPolygons(list(sp::Polygons(list(sp::Polygon(meuse.riv")))</pre>
## write only geometry
arc.write(file.path(fgdb_path, "meuse\\riv"), coords=riv)
## write as table
arc.write(file.path(fgdb_path, "tlb"), data=list('f1'=c(23,45), 'f2'=c('hello', 'bob')))
## from scratch as feature class
arc.write(file.path(fgdb\_path,\ "fc\_pts"),\ data=list('data'=rnorm(100)),\\
                         coords=list(x=runif(100,min=0,max=10),y=runif(100,min=0,max=10)),
                         shape_info=list(type='Point'))
## write Raster
# make SpatialPixelsDataFrame
data(meuse.grid, package="sp")
sp::coordinates(meuse.grid) = c("x", "y")
sp::gridded(meuse.grid) <- TRUE</pre>
meuse.grid@proj4string=sp::CRS(arc.fromWktToP4(28992))
arc.write(file.path(fgdb_path, "meuse_grid"), meuse.grid)
## write using a RasterLayer object
r <- raster::raster(ncol=10, nrow=10)</pre>
raster::values(r) <- runif(raster::ncell(r))</pre>
arc.write(file.path(fgdb_path, "raster"), r)
```

arcgisbinding

Bindings for ArcGIS

Description

This package provides classes for loading, converting and exporting ArcGIS datasets and layers in R.

Introduction

For a complete list of exported functions, use library(help = "arcgisbinding").

as.raster 21

References

- sp package
- CRAN Task View: Analysis of Spatial Data

as.raster

Create RasterLayer or RasterBrick (raster package)

Description

Create Rraster* object from arc.raster TODO

Arguments

```
x arc.raster-class object
... TODO
```

Value

RasterLayer or RasterBrick

Examples

```
## convert arc.raster to Rasterlayer object
r.file <- system.file("pictures", "logo.jpg", package="rgdal")
r <- arc.raster(arc.open(r.file))
rx <- as.raster(r)</pre>
```

dim

Dimensions of an object

Description

Get or set raster dimention

Arguments

Χ

object arc.raster-class or arc.datasetraster-class object

Value

```
integer vector of c(nrow, ncol, nband) dim,arc.raster-method
```

22 pixeltypes

dplyr

dplyr support

Description

dplyr methods for arc.data objects: filter, arrange, mutate, select, group_by

Usage

```
filter.arc.data(.data, ..., .dots)
arrange.arc.data(.data, ..., .dots)
mutate.arc.data(.data, ..., .dots)
group_by.arc.data(.data, ..., add)
ungroup.arc.data(x, ...)
```

names

Get names

Description

Return names of columns when x is arc.table-class. Return band names when x is arc.raster-class or arc.datasetraster-class.

Arguments

Х

object

Value

string vector

pixeltypes

Pixel types

Description

The pixel type of the referenced raster dataset.

resampletypes 23

The types are

- "U1" 1 bit
- "U2" 2 bits
- "U4" 4 bits
- "U8" Unsigned 8 bit integers
- "S8" 8 bit integers
- "U16" Unsigned 16 bit integers
- "S16" 16 bit integers
- "U32" Unsigned 32 bit integers
- "S32" 32 bit integers
- "F32" Single precision floating point
- "F64" Double precision floating point

resample types

Resample types

Description

Resample types

Supported

- "NearestNeighbor" Nearest neighbor assignment. This is the default
- "BilinearInterpolation" Bilinear interpolation
- "CubicConvolution" Cubic convolution
- "Majority" TODO
- "BilinearInterpolationPlus" TODO
- "BilinearGaussBlur" TODO
- "BilinearGaussBlurPlus" TODO
- "Average" TODO
- "Minimum" TODO
- "Average" TODO
- "VectorAverage" TODO

Index

*Topic SpatialReference	arc.write, 19
arc.shapeinfo, 17	[,arc.shape-method(arc.shape-class), 16
*Topic classes	
arc.dataset-class,4	arc (arcgisbinding), 20
arc.shape-class, 16	$arc.check_product, 2$
*Topic convert	arc.container-class
arc.sp2data, 18	(arc.dataset-class),4
*Topic datasets	arc.data2sf, 3
arc.open, 9	arc.data2sp, 3, <i>18</i>
arc.select, 14	arc.dataset-class, 4, <i>8</i> , <i>14</i> , <i>17</i>
arc.write, 19	arc.datasetraster-class, 5, 12, 21, 22
*Topic dataset	arc.delete,5
arc.dataset-class,4	arc.env, 6
arc.datasetraster-class, 5	arc.feature-class(arc.dataset-class), 4
*Topic feature	arc.fromP4ToWkt, 7, 8
arc.open, 9	arc.fromWktToP4, 7, 8
arc.select, 14	arc.metadata, 8
*Topic geometry	arc.metadata,arc.container-method
arc.shape-class, 16	(arc.dataset-class), 4
arc.shapeinfo, 17	arc.metadata,arc.dataset-method
*Topic layer	(arc.dataset-class), 4
arc.open, 9	arc.open, 5, 9, 15, 19
*Topic open	arc.progress_label, 10, 10, 11, 12
arc.datasetraster-class, 5	arc.progress_pos, 10, 11, 11
arc.open, 9	arc.raster, 5, 12, 19
arc.select, 14	arc.raster, arc.datasetraster-method
arc.write, 19	(arc.raster), 12
*Topic rasterdataset	arc.raster, NULL-method (arc.raster), 12
arc.datasetraster-class, 5	arc.raster-class, 12, 13, 21, 22
*Topic raster	arc.select, 3, 4, 14, 15 arc.select, arc.table-method
arc.datasetraster-class, 5	(arc.select), 14
arc.open, 9	arc.shape, 15, 16, 17
*Topic select	arc.shape-class, 16
arc.select, 14	arc.shape2sf, 16
*Topic shape	arc.shape2sp, 17
arc.shape-class, 16	arc.shapeinfo, 4, 17
arc.shapeinfo, 17	arc.shapeinfo,arc.shape-method
*Topic sp	(arc.shape-class), 16
arc.sp2data, 18	arc.sp2data, 18
*Topic table	arc.table-class, 22
arc.open, 9	arc.table-class (arc.dataset-class), 4
arc.select, 14	arc.write, <i>13</i> , 19
*Topic write	arcgisbinding, 20
-	_

INDEX 25

```
arcgisbinding-package (arcgisbinding),
arrange.arc.data(dplyr), 22
as.raster, 21
as.raster,arc.raster-method
        (arc.raster-class), 13
dim, 5, 13, 21
dim,arc.datasetraster-method
        (arc.datasetraster-class), 5
dim,arc.raster-method
        (arc.raster-class), 13
dim<-,arc.raster-method</pre>
        (arc.raster-class), 13
dplyr, 22
filter.arc.data(dplyr), 22
group_by.arc.data(dplyr), 22
mutate.arc.data(dplyr), 22
names, 4, 5, 13, 22
names, arc.datasetraster-method
        (arc.datasetraster-class), 5
names, arc. raster-method
        (arc.raster-class), 13
names, arc.table-method
        (arc.dataset-class), 4
pixel_type, 5, 13
pixeltypes, 22
pixeltypes-package (pixeltypes), 22
resample_type, 13
resampletypes, 23
resampletypes-package (resampletypes),
        23
show, arc. dataset-method
        (arc.dataset-class), 4
show, arc. feature-method
        (arc.dataset-class), 4
show,arc.shape-method
        (arc.shape-class), 16
show,arc.table-method
        (arc.dataset-class), 4
ungroup.arc.data(dplyr), 22
```