On the reference predictive approach for covariate selection

ISBA Regional Meeting & International Workshop/Conference on Bayesian Theory and Applications, Varanasi, India, 2013

Aki Vehtari

Aki.Vehtari@aalto.fi

with Janne Ojanen

Department of Biomedical Engineering and Computational Science (BECS)

Aalto University

Outline

- Rich models and model selection
- Assessing predictive performance of models
- Bayesian predictive methods
- Selection induced bias
- Reference predictive approaches
- Comparison

- Assume a model rich enough capturing lot of uncertainties
 - e.g. Bayesian model average (BMA) or non-parametric
 - model criticism and predictive assessment done
 - ightarrow if we are happy with the model, no need for model selection

- Assume a model rich enough capturing lot of uncertainties
 - e.g. Bayesian model average (BMA) or non-parametric
 - model criticism and predictive assessment done
 - ightarrow if we are happy with the model, no need for model selection
 - Box: "All models are wrong, but some are useful"

- Assume a model rich enough capturing lot of uncertainties
 - e.g. Bayesian model average (BMA) or non-parametric
 - model criticism and predictive assessment done
 - ightarrow if we are happy with the model, no need for model selection
 - Box: "All models are wrong, but some are useful"
 - there are known unknowns and unknown unknowns

- Assume a model rich enough capturing lot of uncertainties
 - e.g. Bayesian model average (BMA) or non-parametric
 - model criticism and predictive assessment done
 - ightarrow if we are happy with the model, no need for model selection
 - Box: "All models are wrong, but some are useful"
 - there are known unknowns and unknown unknowns
- Model selection
 - what if some smaller (or more sparse) or parametric model is practically as good?
 - which uncertainties can be ignored?
 - → reduced measurement cost, simpler to explain

- Goodnes of the model is evaluated by its predictive performance
- Select a simpler model whose predictive performance is similar to the rich model

Predictive model

- $p(\tilde{y}|\tilde{x}, D, M_k)$ is the posterior predictive distribution
 - $p(\tilde{y}|\tilde{x}, D, M_k) = \int p(\tilde{y}|\tilde{x}, \theta, M_k)p(\theta|D, \tilde{x}, M_k)d\theta$
 - \tilde{y} is a future observation
 - \tilde{x} is a future random or controlled covariate value
 - $D = \{(x^{(i)}, y^{(i)}); i = 1, 2, ..., n\}$
 - M_k is a model
 - θ denotes parameters

Predictive performance

- Future outcome \tilde{y} is unknown (ignoring \tilde{x} in this slide)
- With a known true distribution $p_t(\tilde{y})$, the expected utility would be

$$ar{u}(a) = \int p_t(\tilde{y}) u(a; \tilde{y}) d\tilde{y}$$

where u is utility and a is action (in our case, a prediction)

Predictive performance

- Future outcome \tilde{y} is unknown (ignoring \tilde{x} in this slide)
- With a known true distribution $p_t(\tilde{y})$, the expected utility would be

$$ar{u}(a) = \int p_t(\tilde{y}) u(a; \tilde{y}) d\tilde{y}$$

where u is utility and a is action (in our case, a prediction)

Bayes generalization utility

$$BU_g = \int p_t(\tilde{y}) \log p(\tilde{y}|D, M_k) d\tilde{y}$$

where $a = p(\cdot|D, M_k)$ and $u(a; \tilde{y}) = \log(a(\tilde{y}))$

- a is to report the whole predictive distribution
- utility is the log-density evaluated at \tilde{y}

Bayesian predictive methods

Many ways to approximate

$$BU_g = \int p_t(\tilde{y}) \log p(\tilde{y}|D, M_k) d\tilde{y}$$

for example

- Bayesian cross-validation
- reference predictive methods

Bayesian predictive methods

Many ways to approximate

$$BU_g = \int \rho_t(\tilde{y}) \log \rho(\tilde{y}|D, M_k) d\tilde{y}$$

for example

- Bayesian cross-validation
- reference predictive methods
- Many other Bayesian predictive methods estimating something else, e.g.,
 - DIC
 - *L*-criterion, posterior predictive criterion
 - projection methods

Aki Vehtari and Janne Ojanen (2012). A survey of Bayesian predictive methods for model assessment, selection and comparison. In Statistics Surveys, 6:142-228.

M-open,-closed,-completed

- Following Bernardo & Smith (1994), there are three different approaches for dealing with the unknown p_t
 - \mathcal{M} -open
 - M-closed
 - \mathcal{M} -completed

\mathcal{M} -open

- Explicit specification of p_t(ỹ) is avoided by re-using the observed data D as a pseudo Monte Carlo samples from the distribution of future data
- For example, Bayes leave-one-out cross-validation

LOO =
$$\frac{1}{n} \sum_{i=1}^{n} \log p(y_i | x_i, D_{-i}, M_k)$$

Cross-validation

Bayes leave-one-out cross-validation

LOO =
$$\frac{1}{n} \sum_{i=1}^{n} \log p(y_i | x_i, D_{-i}, M_k)$$

- different part of the data is used to update the posterior and assess the performance
- almost unbiased estimate for a single model

$$\mathsf{E}[\mathsf{LOO}(n)] = \mathsf{E}[BU_g(n-1)]$$

expectation is taken over all the possible training sets

- Selection induced bias in LOO-CV
 - same data is used to assess the performance and make the selection
 - the selected model fits more to the data
 - the LOO-CV estimate for the selected model is biased
 - recognised already, e.g., by Stone (1974)

- Selection induced bias in LOO-CV
 - same data is used to assess the performance and make the selection
 - the selected model fits more to the data
 - the LOO-CV estimate for the selected model is biased
 - recognised already, e.g., by Stone (1974)
- Same holds for many other methods, e.g., DIC/WAIC

- Selection induced bias in LOO-CV
 - same data is used to assess the performance and make the selection
 - the selected model fits more to the data
 - the LOO-CV estimate for the selected model is biased
 - recognised already, e.g., by Stone (1974)
- Same holds for many other methods, e.g., DIC/WAIC
- Performance of the selection process itself can be assessed using two level cross-validation, but it does not help choosing better models

- Selection induced bias in LOO-CV
 - same data is used to assess the performance and make the selection
 - the selected model fits more to the data
 - the LOO-CV estimate for the selected model is biased
 - recognised already, e.g., by Stone (1974)
- Same holds for many other methods, e.g., DIC/WAIC
- Performance of the selection process itself can be assessed using two level cross-validation, but it does not help choosing better models
- Bigger problem if there is a large number of models as in covariate selection

• Explicit model for $p_t(\tilde{y})$

- Explicit model for $p_t(\tilde{y})$
- M-closed
 - possible to enumerate all possible model candidates $\{M_k\}_{k=1}^K$
 - belief that one of the candidate models is "true"
 - set a prior distribution $p(M_k)$ and compute $p_{\text{BMA}}(\tilde{y}|D)$

- Explicit model for $p_t(\tilde{y})$
- M-closed
 - possible to enumerate all possible model candidates $\{M_k\}_{k=1}^K$
 - belief that one of the candidate models is "true"
 - set a prior distribution $p(M_k)$ and compute $p_{\text{BMA}}(\tilde{y}|D)$
- M-completed
 - suitable when \mathcal{M} -closed can not be assumed
 - rich enough model M_{*} whose predictions are considered to best reflect the uncertainty in the prediction task

- Actual belief model M_{*}
 - a rich enough model, describing well the knowledge about the modeling problem and capturing the essential prior uncertainties
 - could be, for example
 - encompassing model
 - Bayesian model averaging model
 - flexible non-parametric model

- Actual belief model M_{*}
 - a rich enough model, describing well the knowledge about the modeling problem and capturing the essential prior uncertainties
 - could be, for example
 - encompassing model
 - Bayesian model averaging model
 - flexible non-parametric model
 - the predictive distribution of the actual belief model $p(\tilde{y}|\tilde{x}, D, M_*)$ is a quantitatively coherent representation of our subjective beliefs about the unobserved future data

Reference model and reference predictive approach

- Reference model
 - a model used to asses the predictive performance of other models
 - natural choice is the actual belief model M_{*}

Reference model and reference predictive approach

- Reference model
 - a model used to asses the predictive performance of other models
 - natural choice is the actual belief model M_{*}
- Reference predictive approach
 - predictive model assessment using a reference model

Unknown \tilde{x}

- \mathcal{M} -open for both $p(\tilde{y}|\tilde{x})$ and $p(\tilde{x})$
- Reference model for both $p(\tilde{y}|\tilde{x})$ and $p(\tilde{x})$
- Reference model for $p(\tilde{y}|\tilde{x})$ and \mathcal{M} -open for $p(\tilde{x})$

see our survey for discussion about fixed and deterministic x

- Reference model for both $p(\tilde{y}|\tilde{x}, D, M_*)$ and $p(\tilde{x}|D, M_*)$
 - good model for \tilde{x} may often be difficult to construct

- Reference model for both $p(\tilde{y}|\tilde{x}, D, M_*)$ and $p(\tilde{x}|D, M_*)$
 - good model for \tilde{x} may often be difficult to construct
- Lindley (1968)
 - use of linear Gaussian model for y|x and squared error cost function made computations simpler
 - only first moments of x were needed

• Reference model for $p(\tilde{y}|\tilde{x})$ and simple \mathcal{M} -open for $p(\tilde{x})$

$$\bar{u} \approx \bar{u}_*(M_k) = \frac{1}{n} \sum_{i=1}^n \int \log p(\tilde{y}|\dot{x}_i, D, M_k) p(\tilde{y}|\dot{x}_i, D, M_*) d\tilde{y}$$

• Reference model for $p(\tilde{y}|\tilde{x})$ and simple \mathcal{M} -open for $p(\tilde{x})$

$$\bar{u} \approx \bar{u}_*(M_k) = \frac{1}{n} \sum_{i=1}^n \int \log p(\tilde{y}|\dot{x}_i, D, M_k) p(\tilde{y}|\dot{x}_i, D, M_*) d\tilde{y}$$

 San Martini & Spezzaferri (1984) used BMA model as the reference model

• Reference model for $p(\tilde{y}|\tilde{x})$ and CV for $p(\tilde{x})$

$$ar{u} pprox ar{u}_*(M_k) = rac{1}{n} \sum_{i=1}^n \int \log p(\tilde{y}|x_i, D_{-i}, M_k) p(\tilde{y}|x_i, D_{-i}, M_*) d\tilde{y}$$

 better assessment of the out-of-sample predictive performance

 Reference predictive model selection using log-score corresponds to minimizing the KL-divergence from the reference predictive distr. to the submodel predictive distr.

- Reference predictive model selection using log-score corresponds to minimizing the KL-divergence from the reference predictive distr. to the submodel predictive distr.
 - divergence is minimized by the reference model itself
 - requires additional cost term or calibration of acceptable divergence from the reference

- Reference predictive model selection using log-score corresponds to minimizing the KL-divergence from the reference predictive distr. to the submodel predictive distr.
 - divergence is minimized by the reference model itself
 - requires additional cost term or calibration of acceptable divergence from the reference
 - no selection induced bias, since data has been used only once to create the reference model, and selection process fits towards the reference model
 - bias depends on the reference model and is generally unknown

- Reference predictive model selection using log-score corresponds to minimizing the KL-divergence from the reference predictive distr. to the submodel predictive distr.
 - divergence is minimized by the reference model itself
 - requires additional cost term or calibration of acceptable divergence from the reference
 - no selection induced bias, since data has been used only once to create the reference model, and selection process fits towards the reference model
 - bias depends on the reference model and is generally unknown
 - variance is reduced as model is used for $p(\tilde{y})$ instead of n pseudo Monte carlo samples
 - reduced variance helps discriminating good models from the others

Toy data with n = 20, 200 replications

$$\begin{split} z_1, z_2, z_3, z_4 &\sim \mathsf{U}(-1.73, 1.73) \\ x_{1,2,3,4} &\sim \mathsf{N}(z_1, .5^2) \\ x_{5,6,7,8} &\sim \mathsf{N}(z_2, .5^2) \\ x_{9,10,11,12} &\sim \mathsf{N}(z_3, .5^2) \\ x_{13,14,15,16} &\sim \mathsf{N}(z_4, .5^2) \\ y &= z_1 + .5z_2 + .25z_3 + \epsilon \\ \epsilon &\sim t_4(0, 0.5^2), \end{split}$$

that is, x's are noisy observations of z so that there are four groups of correlated covariates and four of the covariates have no effect on y

Model

$$\begin{split} \widetilde{\mathbf{y}} &= \sum_{j=1}^{16} \gamma_j \alpha_j \mathbf{x}_j + \mathbf{e} \\ \alpha_j &\sim \mathsf{N}(\mathbf{0}, \sigma_{lpha}^2) \\ \sigma_{lpha} &\sim \mathsf{Inv-}\chi^2(\mathbf{0}.5, \mathbf{0}.5^2) \\ \mathbf{e}_i &\sim \mathsf{N}(\mathbf{0}, \sigma_{\mathbf{e}_i}^2) \\ \sigma_{\mathbf{e}_i} &\sim \mathsf{Inv-}\chi^2(\nu, \sigma_{\mathbf{e}}^2), \end{split}$$

where $\gamma_j=1$ if covariate is included in the model and otherwise $\gamma_j=0$

The reference model is the full BMA model

Methods compared

- reference predictive for y|x (1% inform. loss)
- reference predictive for y|x + CV for x (1% inform. loss)
- LOO-CV
- DIC (Spiegelhalter et al, 2002)
- posterior predictive loss = GG (Gelfand & Ghosh, 1998)
- cross-validation predictive loss = MSP (Marriot et al, 2001)
- most probable model, i.e. Bayes factor
- median probability model (Barbieri & Berger, 2004)

Extended toy data with additional 84 irrelevant covariates

Conclusions

- Selection induced bias is a problem when there are many models (e.g. in covariate selection)
- Reference predictive approach with CV for x avoids selection induced bias

To be continued...

- Projection methods
- Gibbs utility
- Joint predictions
- Computational issues

See also

Aki Vehtari and Janne Ojanen (2012). A survey of Bayesian predictive methods for model assessment, selection and comparison. In Statistics Surveys, 6:142-228.

Part 2: projection methods

Sheffield, 6th November 2013

- In projection predictive model selection the optimal prediction â_k under a candidate model M_k is the M_{*}-optimal prediction over A_k, which is a set of possible predictions restricted by the model structure M_k
- The optimal prediction \hat{a}_k is obtained by maximizing the expected utility

$$\hat{a}_k = \arg\max_{a_k \in \mathcal{A}_k} \int u(M_k, a_k, \tilde{y}) p(\tilde{y}|D, M_*) d\tilde{y}$$

- In projection predictive model selection the optimal prediction \hat{a}_k under a candidate model M_k is the M_* -optimal prediction over \mathcal{A}_k , which is a set of possible predictions restricted by the model structure M_k
- The optimal prediction \hat{a}_k is obtained by maximizing the expected utility

$$\hat{a}_k = \arg\max_{a_k \in \mathcal{A}_k} \int u(M_k, a_k, \tilde{y}) p(\tilde{y}|D, M_*) d\tilde{y}$$

The resulting maximized expected utility is given by

$$\bar{u}(M_k, \hat{a}_k) = \int u(M_k, \hat{a}_k, \tilde{y}) p(\tilde{y}|D, M_*) d\tilde{y}$$

- The key component in the projection predictive approach is the definition of A_k
- For example, in probabilistic prediction the space \mathcal{A}_k can be restricted to parametric probability distributions $\{p(\tilde{y}|\theta_k,M_k):\theta_k\in\Theta_k\}$, so that selecting the optimal prediction $\hat{a}(\tilde{y})$ becomes equal to selecting the optimal point estimate $\hat{\theta}$
- A major difference to the reference predictive approach is the possibility to avoid defining priors $p(\theta_k|M_k)$ for the candidate models M_k by treating the parameters of the candidate model as decision variables.

• Given a logarithmic utility function the optimal prediction $\hat{a}_k(\tilde{y})$ for the model M_k is determined by maximizing the expected utility

$$\bar{u}(M_k, a_k) = \int \log a_k(\tilde{y}) p(\tilde{y}|D, M_*) d\tilde{y}$$

• The maximization is performed over the set of parametric models defined by M_k so that $a_k(\tilde{y}) \in \mathcal{A}_k = \{p(\tilde{y}|\theta_k, M_k) : \theta_k \in \Theta_k\}$

• Given a logarithmic utility function the optimal prediction $\hat{a}_k(\tilde{y})$ for the model M_k is determined by maximizing the expected utility

$$\bar{u}(M_k, a_k) = \int \log a_k(\tilde{y}) p(\tilde{y}|D, M_*) d\tilde{y}$$

- The maximization is performed over the set of parametric models defined by M_k so that a_k(ỹ) ∈ A_k = {p(ỹ|θ_k, M_k) : θ_k ∈ Θ_k}
- The maximization can be written equivalently in terms of the parameter as

$$\hat{\theta}_k = \arg\max_{\theta_k \in \Theta_k} \int \log p(\tilde{y}|\theta_k, M_k) p(\tilde{y}|D, M_*) d\tilde{y}.$$

 The maximization can be written equivalently in terms of the parameter as

$$\hat{\theta}_k = \arg\max_{\theta_k \in \Theta_k} \int \log p(\tilde{y}|\theta_k, M_k) p(\tilde{y}|D, M_*) d\tilde{y}.$$

• Given the optimal prediction $\hat{a}_k(\tilde{y}) = p(\tilde{y}|\hat{\theta}_k, M_k)$ the expected utility for the model M_k is

$$\bar{u}(M_k,\hat{\theta}_k) = \int \log p(\tilde{y}|\hat{\theta}_k,M_k)p(\tilde{y}|D,M_*)d\tilde{y}$$

 The maximization can be written equivalently in terms of the parameter as

$$\hat{\theta}_k = \arg\max_{\theta_k \in \Theta_k} \int \log p(\tilde{y}|\theta_k, M_k) p(\tilde{y}|D, M_*) d\tilde{y}.$$

• Given the optimal prediction $\hat{a}_k(\tilde{y}) = p(\tilde{y}|\hat{\theta}_k, M_k)$ the expected utility for the model M_k is

$$\bar{u}(M_k,\hat{\theta}_k) = \int \log p(\tilde{y}|\hat{\theta}_k,M_k)p(\tilde{y}|D,M_*)d\tilde{y}$$

• In other words, the point estimate $\hat{\theta}_k$ is such that the parametric distribution $p(\tilde{y}|\hat{\theta}_k,M_k)$ is as close as possible to the posterior predictive distribution of the actual belief model in the KL divergence sense

 The M_{*}-optimal prediction is determined by maximizing the expected utility

$$\bar{u}(M_k, a_k) = \int \log a_k(\tilde{y}) p(\tilde{y}|D, M_*) d\tilde{y},$$

where $a_k(\tilde{y}) \in \mathcal{A}_k$

- The definition $\mathcal{A}_k = \left\{ \int p(\tilde{y}|\theta_k, M_k) q(\theta_k) d\theta_k : q \in \mathcal{Q} \right\}$ requires specifying a set of posterior projections $q(\theta_k)$ belonging to a suitable restricted family of probability distributions \mathcal{Q}
- ullet For example, ${\cal Q}$ could consist of Gaussian distributions

• The expected utility maximization can be written in terms of $q(\theta_k)$, so that the optimal posterior projection is given by

$$\hat{q}(\theta_k) = \arg\max_{q(\theta_k) \in \mathcal{Q}} \int \log \left(\int p(\tilde{y}|\theta_k, M_k) q(\theta_k) d\theta_k \right) p(\tilde{y}|D, M_*) d\tilde{y}$$

the corresponding maximized expected utility is defined as

$$\bar{u}(M_k, \hat{q}) = \int \log \left(\int p(\tilde{y}|\theta_k, M_k) \hat{q}(\theta_k) d\theta_k \right) p(\tilde{y}|D, M_*) d\tilde{y},$$

where $\hat{a}_k(\tilde{y}) = \int p(\tilde{y}|\theta_k, M_k) \hat{q}(\theta_k) d\theta_k$ is the optimal prediction

- The M_* -optimal posterior projection $\hat{q}(\theta_k)$ is not an approximation for the posterior distribution $p(\theta_k|D,M_k)$ of the model M_k .
- Instead, ĝ(θ_k) contains properties that are important in producing a prediction approximating the properties of the predictive distribution of the actual belief model.

- The M_* -optimal posterior projection $\hat{q}(\theta_k)$ is not an approximation for the posterior distribution $p(\theta_k|D,M_k)$ of the model M_k .
- Instead, $\hat{q}(\theta_k)$ contains properties that are important in producing a prediction approximating the properties of the predictive distribution of the actual belief model.
- For example, in input variable selection the prediction $\hat{a}_k(\tilde{y})$ may contain information about input variables included in the structure of M_* but not M_k ; the standard Bayesian treatment of the model M_k would disregard all information about variables not included in the model M_k .

- Maximization with respect to the posterior projection $q(\theta_k)$ is not trivial, and we are not aware of any successful applications of this principle.
- See Vehtari & Ojanen (2012) for additional discussion.

- Instead of predictive distribution $p(\tilde{y}|\cdot)$ consider simpler predictive distribution $p(\tilde{f}|\cdot)$
 - joint predictive approach possible as $p(f|\cdot)$ is a multivariate Gaussian

- Instead of predictive distribution $p(\tilde{y}|\cdot)$ consider simpler predictive distribution $p(\tilde{f}|\cdot)$
 - joint predictive approach possible as $p(f|\cdot)$ is a multivariate Gaussian
- SVI-GP can be considered as a projection, where the model M_k is constrained to have a finite number of inducing points

- Instead of predictive distribution $p(\tilde{y}|\cdot)$ consider simpler predictive distribution $p(\tilde{f}|\cdot)$
 - joint predictive approach possible as $p(f|\cdot)$ is a multivariate Gaussian
- SVI-GP can be considered as a projection, where the model M_k is constrained to have a finite number of inducing points
- SVI-GP for covariate selection: constraint Z to live in a subspace of space where X live

- Instead of predictive distribution $p(\tilde{y}|\cdot)$ consider simpler predictive distribution $p(\tilde{f}|\cdot)$
 - joint predictive approach possible as $p(f|\cdot)$ is a multivariate Gaussian
- SVI-GP can be considered as a projection, where the model M_k is constrained to have a finite number of inducing points
- SVI-GP for covariate selection: constraint Z to live in a subspace of space where X live
- I guess that you would get similar results to what I showed above, but even better
 - the uncertainty related to the removed covariates is included in the projection

To be continued...

• Experiments to be done