Estimação de parâmetros

ESTIMAÇÃO

- ESTIMAÇÃO PONTUAL
- ESTIMAÇÃO POR INTERVALOS

Objetivo da estimação pontual

Consiste em tentar encontrar a "estatística", cujo valor numérico, obtido através dos dados da amostra, esteja próximo do parâmetro da população, que é constante mas desconhecido.

 $\theta \, o \, \mathrm{parâmetro} \, \mathrm{da} \, \mathrm{população}$

 $\hat{\theta} \rightarrow \text{estimdor pontual para } \theta$

Prof^a Ana Cristina Braga, DPS

PROPRIEDADES DE UM ESTIMADOR

- TENDÊNCIA NULA (NÃO TENDENCIOSO, CENTRADO, NÃO ENVIESADO)
- MÉDIA QUADRÁTICA DO ERRO MÍNIMA
- EFICIENTE
- CONSISTENTE
- SUFICIENTE
- ROBUSTO

Prof^a Ana Cristina Braga, DPS

3

TENDÊNCIA $t_T(\theta)$

$$t_T(\theta) = E[T] - \theta$$

Diz-se que uma estatística T é um estimador não tendenciosos (ou centrado) em relação ao parâmetro θ , se e só se:

$$t_T(\theta) = 0 \Leftrightarrow E[T] = \theta$$

Prof^a Ana Cristina Braga, DPS

Exemplo:

 $X \sim Bin(n,\pi)$. Mostrar que $\frac{X}{n}$ é um estimador não tendencioso de π .

Resolução:

$$E[X] = n.\pi$$

$$E\left[\frac{X}{n}\right] = \frac{1}{n}E[X] = \frac{1}{n}.n.\pi = \pi$$

 $T = \frac{X}{n}$ é um estimador não tendencioso para π

Prof^a Ana Cristina Braga, DPS

E

Exemplo:

Se $X_1, X_2, \cdots X_n$ constituem uma amostra aleatória duma população dada por

$$f(x) = \begin{cases} e^{-(x-\theta)} & x > \theta \\ 0 & \text{outros valores} \end{cases}$$

Mostre que $T=\overline{X}$ é um estimador tendencioso de θ . RESOLUÇÃO:

$$T = \frac{\sum_{i=1}^{n} X_i}{n} \Rightarrow E[T] = E\left[\frac{\sum_{i=1}^{n} X_i}{n}\right] = \frac{1}{n} \cdot E\left[\sum_{i=1}^{n} X_i\right] = \frac{1}{n} \cdot \sum_{i=1}^{n} E[X_i] = E[X_i]$$

$$\mu = E[X_i] = \int_{\theta}^{+\infty} x \cdot f(x) dx = \int_{\theta}^{+\infty} x \cdot e^{-(x-\theta)} dx = \left[-x \cdot e^{-(x-\theta)}\right]_{\theta}^{+\infty} - \int_{\theta}^{+\infty} -e^{-(x-\theta)} dx = 1 + \theta$$

$$E[T] = E[X_i] = 1 + \epsilon$$

$$t_T(\theta) = E[T] - \theta \Leftrightarrow t_T(\theta) = 1 \neq 0 \Rightarrow T \text{ \'e um estimador tendencioso para } \theta.$$

SE SE CONSIDERAR $T'=\overline{X}-1$ ENTÃO T' É NÃO TENDENCIOSO, POIS $E[T']=E\left[\overline{X}\right]-1=\theta$. Profa Ana Cristina Braga, DPS

MÉDIA QUADRÁTICA DO ERRO (MQE)

A medida, do desempenho de um estimador, mais utilizada é a média quadrática do erro, definida por:

$$MQE = E\left[\left(T - \theta\right)^{2}\right]$$

$$E\left[\left(T - \theta\right)^{2}\right] = var\left[T\right] + \underbrace{\left(E\left[T\right] - \theta\right)^{2}}_{t_{T}(\theta)}$$

QUANDO O ESTIMADOR É NÃO TENDENCIOSO A MQE RESUME-SE À VARIÂNCIA DO ESTIMADOR.

UM "BOM" ESTIMADOR CORRESPONDE ÀQUELE QUE POSSUIR MENOR MQE.

Prof^a Ana Cristina Braga, DPS

7

EFICIÊNCIA

Se T_1 e T_2 são dois estimadores não tendenciosos do parâmetro θ duma população e se $\mathrm{var}\big[T_1\big] < \mathrm{var}\big[T_2\big]$, diz-se que T_1 é relativamente mais eficiente que T_2 .

$$ef(T_1, T_2) = \frac{\text{var}[T_1]}{\text{var}[T_2]}$$

Se T é um estimador tendencioso dum dado parâmetro θ , as comparações devem ser feitas com base na média quadrática do erro.

$$ef(T_1, T_2) = \frac{MQE[T_1]}{MQE[T_2]}$$

Prof^a Ana Cristina Braga, DPS

CONSISTÊNCIA

A estatística T é um estimador consistente do parâmetro $\,\theta\,$ se e só se para cada $\,c>0\,$.

$$\lim_{n\to\infty} P(|T-\theta| < c) = 1$$

De notar que a consistência é uma propriedade assimptótica. Se T é um estimador não tendencioso do parâmetro θ e $\mathrm{var}[T] \to 0$ à medida que $n \to \infty$, então T é um estimador consistente de θ .

O estimador é **consistente** quando suas estimativas se aproximam do valor verdadeiro que se quer estimar, à medida que a amostra cresce.

Profa Ana Cristina Braga, DPS

9

SUFICIÊNCIA

Um estimador é suficiente se toda a informação na amostra relevante para a estimação de θ , isto é, se todo o conhecimento acerca de θ que pode ser ganho a partir dos valores individuais e da sua ordem, pode também ser ganho pelo valor de T por si só.

A estatística T é um estimador suficiente do parâmetro θ se e só se para cada valor de T a probabilidade condicional da amostra aleatória $X_1, X_2, \cdots X_n$ dado T=t é independente de θ .

Prof^a Ana Cristina Braga, DPS

Estimadores Pontuais: Propriedades

Não Tendenciosos $t_T(\theta) = 0 \Leftrightarrow E[T] = \theta$

Prof^a Ana Cristina Braga, DPS

11

VARIÂNCIA MÍNIMA

Prof^a Ana Cristina Braga, DPS

TIPOS DE ERROS

Como as unidades de uma população variam, na estimação, deve-se ter em conta essas variações e calcular o possível erro cometido.

Erros Sistemáticos: Todas as medidas x_1 , x_2 , ..., x_n da amostra diferem do valor verdadeiro μ por uma quantidade (ou sentido) constante, δ .

Erros Aleatórios ou Estatísticos: Todas as medidas $x_1, x_2, ..., x_n$ da amostra se distribuem de maneira aleatória em torno do valor verdadeiro μ .

Prof^a Ana Cristina Braga, DPS

PRECISÃO vs EXATIDÃO

Na prática, não vemos o alvo ...

- ROBUSTO

Prof^a Ana Cristina Braga, DPS