Week 8

???

8.1 ???

2/20: • Relation of reactivity to chemical structure.

- Polar effects: Alternation.
- Enhanced reactivities are observed between certain pairs of monomers on account of subtle radical monomer interactions, which can lead to alternating tendency in such polymerizations.
- This is observed between copolymerization of electron rich and electron poor double bonds.
 - Example: Styrene (electron-rich) and maleic anhydride (electron-poor).
- Reactivity ratios.
 - Many ways to visually represent these, such as **reactivity triangles**.
 - Shows that as you get greater difference between electron rich and electro poor, r_1r_2 approaches 0.
- Reactivity ratios summary.
 - A great visual description of everything discussed last time.
 - Very concise, too!
 - Emphasis: "Random" and "statistical" are *not* interchangeable!
- Composition drift.
 - The copolymerization equtions give the instantaneous copolymer composition.
 - However, in all copolymerizations except azeotropic copolymerizations, the comonomer feed changes in composition as one of the monomers gets incorporated preferentially into the polymer.
 This leads to a drift in monomer composition to the less reactive monomer.
 - There's a kind of hexagonal (view it three-dimensionally!) chart that summarizes all this.
- Azeotropic (copolymerization): The formation of a copolymer for which the overall composition of copolymer monomeric units equal to the composition of the feed.
- Summary.
 - The key parameters in copolymerization are the reactivity ratios, which influence the relative rates at which a given radical will add to the same monomer vs. a comonomer.
 - The copolymerization equation relates the mole fraction of monomers in the polymer to the composition of the feedstock via the reactivity ratios.

- Different classes of behavior may be assigned based on the product of the reactivity ratios...
- Statistical considerations give predictions for the average sequence length and sequence length distributions in a copolymer on the basis of reactivity ratios and feedstock composition.
- That's it for the last topic.
- Now it's onto step-growth polymerizations.
- Step-growth polymerizations: An introduction.
 - This is a review of the intro slides.
 - The invention of step polymerization is often credited to Wallace Hume Carothers and Julian Hill.
 - They prepared polyesters from propylene glycol and hexadecanedioic acid to make artificial silk fibers (1929 at DuPont).
 - Conclusions.
 - Difficult to produce high molecular weight polymers.
 - M_n initially limited to 1500-4000; acid catalyst increases M_n .
 - Equilibrium reaction; remove water to increase M_n to 12,000.
 - Conclude that...
 - "Atractive appearance" is a direct quote old chemists were very descriptive!.
 - ..
 - From a JACS paper in 1929.
- Some commercial step-growth polymers.
 - Polyester, nylon, Kevlar, polyurethane, etc.
- Step-growth polymerization: Introduction.
 - Di-acids and di-amides.
 - In many step-growth reactions, a low-molecular weight byproduct (X) is prouduced.
 - Because the reactions are equilibriums, the byproduct must be removed to shift the equilibrium
 to the product side and create high-molecular weight products.
 - Since the byproduct is often removed by condensation $(H_2O, MeOH, ...)$, the reaction is termed **polycondensation**.
 - Thus, for historical reasons, the terms step-growth polymerization and polycondensation are often used synonomously, althoughthis is not always correct.
 - Important exception: Urethanes do not produce any condensation product.
- Step-growth polymerization: General mechanism.
 - Mechanism: Oligomers combine.
 - Rapid disappearance of monomer species.
 - Makes these harder to track by NMR.
 - Reactivity of functional groups is independent of chain length.
 - Molecular weight increases slowly.
 - No initiator (although catalyst can help kinetics).
 - This makes the kinetics a bit easier actually.
 - Chain ends are still active.
- Molecular weight.

- What is a polymer?
 - Controversial question.
 - Rowan says when you get above the entanglement rate.
- Practical consideration.
 - Only polyners with M_n of $> 10000 \,\mathrm{g} \,\mathrm{mol}^{-1}$ have useful mechanical properties.
 - Note: Electronic polymers may be useful at lower M_n .
- Structural unit = monomer unit = residue, e.g., a diol or diacid..
- Repeat unit: A segment of one or more structural units that repeats along the polymer chain.
- The number-averaged ...
- Number average degree of polymerization.
 - Can be simply defined as the total number of molecules originally present in the system N_0 divided by the total number of molecules in the system after the polymerization N.
 - If [M] is the concentration of molecules, then

$$\overline{X}_n = \frac{N_0}{N} = \frac{[\mathbf{M}]_0}{[\mathbf{M}]}$$

- $-X_n$ can also be related to the concentration of one of the functional groups [M] present after a fraction p has been reacted, where [M]₀ is the initial concentration of one of the functional group.
- A bit more stuff gets you back to Carothers Equation, proposed by Carothers in 1936.

$$\overline{X}_n = \frac{1}{1 - p}$$

- This emphasizes the need for nearly quantitative chemistry once again (i.e., chemistry for which $p \to 1$).
- Number-average molecular weight.
 - Defined as the total weight of a polymer sample divided by the total number of moles in it.
 - Given by

$$\overline{M}_n = \frac{\sum N_x M_x}{\sum N_x} = M_0 \overline{X}_n + M_{\text{eg}} = \frac{M_0}{1 - p} + M_{\text{eg}}$$

- It is important to note for type AA + BB polymerizations, the repeat units contain bits of both monomers. Therefore, M_0 is the **mean molecular weight** of the two structural units (see below)...
- What is the impact of the Carothers equation?
 - Step-growth polymerization is challenging.
 - If your chemistry isn't perfect and your reaction isn't driving you to high conversions, it's not going to work.
- Molecular weight and stoichiometric.
 - The reactant ratio r (not to be confused with the reactivity ratio; horrible choice of notation).
 - For non-stoichiometric monomer ratios, the **reactant ratio** r is introduced.

$$r = \frac{N_{\rm A}}{N_{\rm B}}$$

■ Note that $r \leq 1$.

Week 8 (???)

- N_A , N_B are the numbers of functional groups A and B initially present.
- The total number N_0 of molecules initially present becomes

$$N_0 = \frac{N_{\rm A} + N_{\rm B}}{2} = \dots$$

– ...

- We get to

$$\overline{X}_n = \frac{1+r}{1+r-2rp}$$

- Table.
- Chart.
- Molecular weight control.

– ..

- Since in step polymerization, DP (degree of polymerization) is a function of reaction time, it can
 in principle be controlled by the latter (i.e., the reaction can be quenched once the desired molecular weight is obtained).
- Molecular weight and stoichiometric.
 - Case of an AA/BB polymerization.
 - Monomer BB is used in excess.
 - End cappers case.
 - **...**
 - Here, we have

$$r = \frac{N_{\rm A}}{N_{\rm B} + 2N_{\rm B}'}$$

- Type 3: For an A-B monomer, the r is automatically 1.
- Molecular weight distribution.
 - Most probable dispersity is 2.
 - Breadth of molecular weight distribution.
 - We also have the weight-averaged degree of polymerization.
- General considerations on step-growth polymerization chemistry.
 - High degree of polymerization only at high conversions.
- Basic chemistry of carboxylic acid derivatives.
 - Functional group and type of polymer.
 - To polymerize these guys, all we need is OChem II.
 - We heat the monomers to 200 °C under vacuum and just drive off the water.
 - This is super easy to do at large scale.
 - This is why nylon is produced commercially: We can just heat it up really hot and in bulk batches.
 - Polycarbonates: Alcohol plus phosgene.
 - Polyurethanes: Alcohol plus isocyanate.
 - We can utilize all of these chemistries!

8.2 ???

- 2/22: Final is 3/5, 10-12 in this room.
 - Last time, we started talking about chain-growth polymerizations. What do we remember?
 - You want your stoichiometry to be as close to one as possible.
 - We want things to be nearly quantitative.
 - Works well in large batch.
 - Sometimes we need a catalyst; initiators aren't needed, though.
 - We need to drive the polymerizations by removing the condensation product.
 - Most recyclable commercial plastic right now is PET (polyethylenetethalate).
 - We can chemically recycle this since it has an ester backbone. (vs. mechanical recycling)
 - This is fairly new...
 - Basic chemistry of carboxylic acid derivatives.
 - This mechanism is similar for polyester, polyamide, polyimide, etc.
 - An acid-catalyzed process adds an acid to the carbonyl. This makes the carbon even more electrophylic. We get to the tetrahedral intermediate, and then electrons kick down and kick out hydroxide/water.
 - Every step is completely reversible and we have to account for this when we think about the kinetics.
 - Removing the water uses Le Châtelier's Principle to drive the equilibrium to the right.
 - The rate-limiting step is the alcohol/amine reacting with the activated acid (k_3) .
 - Kinetics of the polyesterification of diacid and diol.
 - Equal reactivity of the functional groups on each end of the monomer.
 - The reactivity of the FGs is largely independent of chain length.
 - Reaction state can be monitored by looking at how many intact end groups you have left.
 - The rate of reaction is expressed in terms of the concentrations of the reacting FGs.
 - The rate of polyesterification:

$$R_p = -\frac{\mathrm{d[R-COOH]}}{\mathrm{d}t} = \dots$$

- ..

 $- [R-C(OH)_2^+]$ is difficult to measure. However,

$$K = \frac{[R - C(OH)_2^+]}{[R - COOH][HA]}$$

- Therefore,

$$R_p = \dots$$

- Now we can also have a self-catalyzed polymerization.
 - In the absence of additional strong acid, R-COOH assumes the role of HA.
- Thus, here,

$$R_p = -\frac{\mathrm{d}[R - COOH]}{\mathrm{d}t} = k[R - COOH]^2[R - OH]$$

- The experimentally determined rate constant k in this equation equals Kk_3 .
- This is a third-order reaction.

Week 8 (???)

- ...

In terms of the extent or fraction of conversion

$$p = \frac{[\mathbf{M}]_0 - [\mathbf{M}]}{[\mathbf{M}]_0}$$

we have that

$$2kt = \frac{1}{[M]^2} - \frac{1}{[M]_0^2}$$

...

- Accessibility of functional groups.
 - To yield a high-MW polymer, the polymer must not precipitate from the polymerization mixture before the desired molecular weight is reached.
 - Often tricky due to the limited choice of solvents that dissolve the polymer and are compatible
 with the reaction conditions.
 - In xylene, the polymer precipitats at once.
 - In nitrobenzene, the polymer precipitates after 30 min.
 - In DMSO, the polymer is directly soluble.
- Equilibrium considerations.
 - Most step polymerizations involve equilibrium reactions. Thus, it is important to elucidate how
 the equilibrium affects the extent of conversion. Compare closed system with open system.
- Equilibrium conditions (closed).
 - The polymer and condensation products build up until the rate of the reverse reaction (depolymerization) equals that of the forward.
 - The equilibrium constant equals

$$K = \frac{p^2}{(1-p)^2}$$

- It follows that

$$p = \frac{\sqrt{K}}{1 + \sqrt{K}}$$

- This tells you that your equilibrium constant basically has to be in the hundreds of thousands or millions to get anything resembling polymer.
- Esterification equilibrium constant is somewhere between 1 and 10, so it definitely has to be driven.
 - Amides are 100-1000.
 - \blacksquare In a closed system, you'll never defeat the laws of thermodynamics.
- We get

$$\overline{X}_n = 1 + K^{1/2}$$

- Equilibrium conditions (open).
 - High MWT polymers require an open, driven system: At least one of the products of the forward reaction must be removed to drive the equilibrium towards high molecular weights.
 - Remove volatile, low-molecular weight byproducts such as water, methanol, etc. with temperature, reduced pressure, and purging with an inert gas (e.g., nitrogen or argon).
 - HCl can be removed by adding a base to neutralize the acid once created.

- Sometimes the product is eliminated from the reaction because it precipitates.
- You can get diffusion control as viscocity skyrockets; this is how you get bubbles in your polymer.
- We get

$$\overline{X}_n = \left(\frac{K[\mathbf{M}]_0}{[\mathbf{H}_2\mathbf{O}]}\right)^{1/2}$$

- Thus, even with a crappy K, we can get high molecular weight with water removal.
- We don't need to remove all of the water.
- There are engineering approaches to removing water and preventing bubbles, such as thing sheets and curing, running the system in an emulsion to aid SA:Volume ratio, etc. It doesn't all have to be in a big vat!
- Polymerization vs. cyclization.
 - A polymer can react intramolecularly and close up into a ring.
 - In most any chain-growth polymerization, you will get some competitive ring formation.
 - You do have to pay an entropy penalty to bring the two chain ends close together, but it will still happen in some equilibrium.
 - Ring formation is usually undesired.
 - Whether for a particular system ring-formation is competitive with lienar polymerization depends on both thermodynamics and kinetic considerations.
 - We don't often form small rings; if you're designing a polymerization and you know that six-membered rings could form, that's not one you'd choose to run because you'll just be fighting against that the entire time.
- Kinetics of cyclization.
 - Kinetic feasibility.
 - The kinetic feasibility of ring formation depends on the probability of two groups of the reactant molecule to approach each other to react.
 - As the potential ring size increases, the molecule...
 - Kinetic feasibility decreases with ring size.
 - You need a good solvent that swells the chain and makes it stretch out rather than bunch.
- Tendency of cyclization.
 - The easiest ring to form kinetically is three. It's terrible thermodynamically, but it's kinetically great.
 - Thus, we've got a balance.
 - The effect of cyclization is also counterbalanced by the concentration factor; high concentration = fewer cycles; low concentration = more cycles.
 - Many commercial processes remove low molecular cyclics by estraction or devolatization or boiling them off at really high temperatures.
 - Early in the chart, it's kinetically feasible.
 - Later on, ring strain is no longer a problem and we're entirely in the realm of kinetics.
- Interchange reactions.
 - Some polymers (polyesters, polyamides, etc.) can under appropriate conditions...
- Step-growth copolymers.

- Homopolymers are easy.
- Copolymers; we can get different values for the numbers of polymers.
- Alternatign copolymers vs. statistical and random copolymers.
- Step-growth copolymer synthesis.
 - Overall copolymer composition is usually the same as the feed ratio as the reaction will need to be taken to 100%.
 - Random copolymers are common as usually the reactivity of the functional groups in the different monomers of the same size.
- So that's all the chemistry.
- Now, we'll talk about some specific polymers.
- PET.
 - Poly(ethylene terephthalate).
 - Anything that says polyethylene on our clothes.
 - Coke bottles.
 - The most important commercial polymer.
 - Aka Mylar, Dacron, Terylene.
 - Melting point at 255 °C.
 - Glassy transition temperature at 80 °C.
 - Optically clear.
 - Potentially high crystallinity.
 - High density.
 - Cheap.
 - Good mechanical properties.
 - Good chemical resistance (labile in strong acids and bases).
 - Low dye-ability.
 - Fibers.
 - $M_n > 15\,000$.
 - \blacksquare Melt-spinning, etc.
 - Use in apparel, curtians, upholstery, fishing lines, ...
 - Films.
 - Use in: Audio and video tapes, floppy disks, capacitors.
 - Bottles.
 - $M_n > 25\,000$.
 - Solid-state post condensation.
 - Low crystallinity pre-form; stretch blow molding.
 - These are not the ones that leach into water; it's the polycarbonates, such as BPA.
- PET synthsis.
 - Ester-interchange route.
 - First stage.
 - A mixture of dimethyl terephthalate and excess ethylene glycol (as solvent) are heated. Methanol is released as a vapor.

- Second stage.
 - Much hotter, lower pressure. Ethylene glycol comes off now and the polymer grows.
- Second step.
 - Antimony (Sb) centered polycondensation catalyst.
 - This catalyst is the reason we can get clear Sprite bottles now.
 - The reason we used to have green Sprite bottles is that the PET would be yellow with the old catalyst and then they would add a blue dye because no one wants to be drinking out of a pee-colored bottle.
 - Then the chemistry evolved and now we can make clear bottles.
- Polyester side reactions.
 - Ethylene glycol can self-react, releasing water, to form di-ethylene glycol.
 - We can also get dehydration.
 - The reason that polymers start to get brown at higher temperatures is that there's some degradation reactions forming UV chromophores; pure, it should be clear, white, or colorless.
- Other polyesters.
 - PETG.
 - Aliphatic polyesters.
 - Not usually as useful.
 - Used as plasticizers for PVC.
 - Diols can be used as building blocks for polyurethane.
 - Poly(lactic acid) is the only commercial scale polymer made from biological sources.
 - Liquid crystalline polymers...
- We'll start next class with BPA.