Modelos de computación

- 1.- Dados los alfabetos $A = \{0,1,2,3\}$ y $B = \{0,1\}$ y el homomorfismo f de A^* a B^* dado por: f(0)=00, f(1)=01, f(2)=10, f(3)=11. Resolver las siguientes cuestiones:
- a. Sea L_1 el conjunto de palabras de B* tales que no comienzan con la subcadena 10. Construir un autómata finito determinista que acepte $f_{-1}(L_1)$.

b. Construir un autómata finito determinista que acepte el lenguaje $L_2 = \{uu_{-1} / u \in B^*\}$.

 \forall n \in N1 \exists w \in L2 con $|w| \le n$, $w = 0^n 1^n 1^n 0^n$ con |w| = 4N >= N. Para toda descomposición de w = xyz con |y| >= 1 y |xy| <= n ...

- a) $X = 0^r$
- b) $Y = 0^s, S = 1$
- c) $Z = 0^n-r-s 1^n 1^n 0^n$

∃i con x y^i z podemos tomar el siguiente caso:

$$-i = 2 \rightarrow x y^2 z = 0^r 0^s 0^s 0^n-r-s 1^n 1^n 0^n = 0^n+s 1^n 1^n 0^n no pertenece a L2$$

No es un lenguaje regular y no podemos crear un autómata finito para este caso.

c. Sea L_3 el conjunto de palabras de A* definido como $L_3 = \{0k3k / 1 \le k \le 20\}$. Construir una expresión regular que represente a $f(L_3)$.

L3 \in A* tiene la siguiente expresión regular: 0 (E + (0 (E + (0 (... 20 veces ...) 3)) 3)) 3. f(L3) sería el siguiente = 00 (E + (00 (E + (00 (... 20 veces ...) 11)) 11)) 11.

- 2.- Sea L_4 el conjunto de palabras de B* que contienen la subcadena 11. Sea L_5 el conjunto de las palabras de B* de longitud múltiplo de tres. Construir el AFD minimal que acepte el lenguaje $L_4 \cap L_5$.
- Palabras que contienen la subcadena 11:

- Palabras de longitud múltiplo de 3:

- L4 ∩ L5:

3.- Calcular el AFD Minimal que acepte el mismo lenguaje que el siguiente AFD. Utilizar el algoritmo de minimización visto en clase.

- 1) Eliminamos estados inaccesibles: en este caso será el estado q2
- 2) Resultado:

3) Ejecutamos el algoritmo:

	Q5	Q4	Q3	Q1
Q0	Х	Х	Х	Х
Q1	Х	Х	(q1,q3) X	
Q3	Х			
Q4	Х			

	0	1
Q0	Q1	Q0
Q4	Q4	Q5

	0	1
Q0	Q1	Q0
Q3	Q4	Q5

	0	1
Q0	Q1	Q0
Q1	Q3	Q0

	0	1
Q1	Q3	Q0
Q4	Q4	Q5

	0	1
Q0	Q1	Q0
Q3	Q4	Q5

	0	1
Q3	Q4	Q5
Q4	Q4	Q5

- 1) Eliminamos estados inaccesibles: ninguno.
- 2) Ejecutamos el algoritmo:

	Q8	Q7	Q6	Q5	Q4	Q3	Q2	Q1
Q0	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ
Q1	Χ	Χ	Χ	Χ	Χ	Χ	Χ	
Q2	(q1,q7) (q1,q5) X	Χ	X	Χ	Χ			
Q3	Х	Х	X	Χ	Χ			
Q4	Χ	Χ	(q1,q7)(q1,q5) X	Χ				
Q5	Х		Х					
Q6	Χ	Χ						
Q7	Χ							

Q5 == Q7 & Q2 == Q3

	0	1
Q0	Q4	Q1
Q7	Q6	Q8

	0	1
Q0	Q4	Q0
Q6	Q4	Q7

	0	1
Q0	Q4	Q0
Q5	Q6	Q8

	0	1
Q0	Q4	Q0
Q4	Q6	Q5

	0	1
Q0	Q4	Q0
Q1	Q4	Q2

	0	1
Q1	Q4	Q2
Q6	Q4	Q7

	0	1
Q1	Q4	Q2
Q5	Q6	Q8

	0	1
Q1	Q4	Q2
Q4	Q6	Q5

	0	1
Q2	Q2	Q3
Q8	Q6	Q8

	0	1
Q2	Q2	Q3
Q3	Q2	Q3

	0	1
Q3	Q2	Q3
Q8	Q6	Q8

	0	1
Q4	Q6	Q5
Q7	Q6	Q8

	0	1
Q4	Q6	Q5
Q5	Q6	Q8

	0	1
Q5	Q6	Q8
Q7	Q6	Q8

	0	1
Q5	Q6	Q8
Q6	Q4	Q7

	0	1
Q6	Q4	Q7
Q7	Q6	Q8

