Ali Cheraghian

☑ ali.cheraghian@data61.csiro.au☑ alichr64@gmail.com

Mobile: +(61) 0473-326659

https://www.linkedin.com/in/ali-cheraghian/

Biography

Research scientist specializing in vision-language reasoning, foundation models, generative AI, and 3D vision (scene understanding, generation), with several publications in top-tier venues (CVPR, ICCV, ECCV). Developed scalable methodologies, including prompt learning, knowledge distillation, and incremental learning, to enhance adaptable AI systems. Collaborate with industry partners to translate cutting-edge research into real-world solutions. Supervise Master's and PhD students on projects in domain adaptation, generative models, and video understanding, emphasizing interdisciplinary research and responsible AI. Dedicated to fostering inclusive, student-centered mentorship that equips graduates for leadership roles in academia and industry.

Employment

2020 - Current

■ Research Scientist

Data61, CSIRO, Australia.

Job Description:

- Directed cross-functional AI, ML, and CV teams, managing hiring, mentoring, and resource allocation to deliver industry solutions.
- Led AI/ML projects solving real-world problems with cutting-edge technologies.
- Engineered and deployed scalable AI solutions using MLOps and integrating pipelines with cloud services like AWS.
- Designed end-to-end AI solutions using PyTorch, TensorFlow, and Scikit-learn.
- Led research-to-industry projects involving technology transfer and IP generation.
- Delivered GenAI solutions, developing applications with generative AI and LLMs.
- Collaborated with stakeholders to align AI solutions with business goals.
- Supervised PhD and Master's students.
- Published and presented at top-tier conferences, building networks with industry experts.
- Supported technical engagements by demonstrating AI leadership.

Selected Projects:

Generative AI: Led the development of a scene understanding model using diffusion models, achieving high accuracy and robustness against noisy data.

Video Understanding: Developed a real-time anomaly detection system for farm animals to monitor distress and injury, improving animal welfare.

Multimodal AI: Led the *Interpretations and Predictions* work package, developing vision-language models for internal and external initiatives.

Radar-Camera Fusion for Traffic Control: Led the development of a radar-camera fusion system for real-time lane detection, vehicle tracking, and hazard warnings on NVIDIA Jetson Nano. **Pest Monitoring:** Developed a real-time fruit pest detection system using advanced object detection and tracking for industrial applications.

Face Recognition: Developed a face recognition system for industrial applications, deployed on edge devices for real-time processing.

Real-Time Atmospheric Correction for Satellite Imagery: Designed an AI-driven model for atmospheric correction of satellite imagery, deployed on edge devices for real-time processing. **Underwater Monitoring:** Developed object detection algorithms for underwater monitoring, ensuring reliable tracking in challenging conditions.

Employment

2016 - 2020

■ Graduate Researcher

Data61, CSIRO, Australia.

Job Description:

- · Conducted cutting-edge research in AI and machine learning.
- Developed and implemented machine learning algorithms for various applications, including 3D scene understanding, few-shot learning, and incremental learning.
- Assisted in the design and execution of experiments, data collection, and analysis.
- Contributed to the development of scalable AI solutions and their integration into real-world applications across multiple domains.
- Published research findings in peer-reviewed journals and conferences, contributing to the scientific community's understanding of AI and machine learning techniques.
- Assisted in the preparation of technical reports, presentations, and project documentation for internal and external stakeholders.

Selected Projects:

Scene Understanding: Spearheaded innovative approaches in computer vision, focusing on object classification and addressing key challenges in object recognition.

Incremental Learning: Developed advanced methodologies for knowledge distillation, improving classification accuracy in incremental learning settings.

Transductive Learning: Introduced novel techniques like semantic-guided and transductive methods to enhance object recognition performance.

3D Point Cloud Analysis: Explored innovative deep learning architectures tailored for 3D point cloud analysis, advancing the field of computer vision.

Education

2016 – 2020

Ph.D., Engineering and Computer Science Australian National University (ANU)

Thesis title: Exploring 3D Data and Beyond in a Low Data Regime.

Supervisors: Dr. Lars Petersson, Dr. Dylan Campbell, and Dr. Mehrtash Harandi.

2009 - 2011

M.Sc., Electrical Engineering Amirkabir University of Technology (Tehran Polytechnic)

Thesis title: 3D Face Recognition robust to Pose Variation.

Supervisor: Dr. Karim Faez.

2005 – 2008

B.Sc., Electrical Engineering Shiraz University of Technology (Shiraz Polytechnic)

Thesis title: Microcontroller-Based Electronic Calendar System.

Supervisor: Dr. Mohammad Sadegh Hadaegh.

Teaching/Supervisory Experience

Teaching

■ Honorary Lecturor at The Crown Institute of Higher Education. Teaching Cloud Computing course.

Supervisor

Honorary Supervisor at The Australian National University. Supervising one PhD student and one Master's student, focusing on knowledge distillation and test-time learning.

Mentor

Mentoring a research scientist at CSIRO on domain adaptation for underwater signal monitoring.

2020 - 2020

Computer Vision, Australian National University (ANU) ENGN 4528 & ENGN 6528 courses with Prof. Hongdong Li.

2016 – 2020

Digital Systems and Microprocessors, Australian National University (ANU)

ENGN 3213 & ENGN 6213 with Dr. Nicolo Malagutti.

Skills

Languages Strong reading, writing and speaking competencies for English.

Coding Python, C/C++, LaTeX, Matlab, Verilog

AI/ML PyTorch, Caffe, TensorFlow, Keras, scikit-learn, XGBoost, OpenCV

ML Models Yolo, Stable Diffusion, CLIP, BLIP, Flamingo, ViT-G, ViT-22B, GPT, BERT, T5, LLaMA, PaLM, SAM

Dev Git, Docker, Kubernetes

Cloud AWS, Google Cloud Platform, Microsoft Azure

LLMs Prompt learning, prompt engineering, in-context learning, instruct learning

OS Linux, Windows, Mac, Embedded/RPI

Research Publications

Journal Articles

- S. Ahmadi, A. Cheraghian, T. F. Chowdhury, M. Saberi, and S. Rahman, "3d scene generation for zero-shot learning using chatgpt guided language prompts," *Computer Vision and Image Understanding*, vol. 249, p. 104 211, 2024, ISSN: 1077-3142.
- **A. Cheraghian**, S. Rahman, T. F. Chowdhury, D. Campbell, and L. Petersson, "Zero-shot learning on 3d point cloud objects and beyond," *Int. J. Comput. Vision*, vol. 130, no. 10, pp. 2364–2384, Oct. 2022.
- A. Cheraghian et al., "Exploring 3d data and beyond in a low data regim," 2020.
- F. Hajati, A. Cheraghian, S. Gheisari, Y. Gao, and A. S. Mian, "Surface geodesic pattern for 3d deformable texture matching," *Pattern Recognition*, vol. 62, pp. 21–32, 2017.

Conference Proceedings

- R. Dastmalchi, A. An, **A. Cheraghian**, S. Ramasinghe, and S. Rahman, "Online 3d test-time adaptation via diffusion process," in *Proceedings of the Winter Conference on Applications of Computer Vision (WACV)*, 2025.
- S. Ahmadi, **A. Cheraghian**, M. Saberi, *et al.*, "Foundation model-powered 3d few-shot class incremental learning via training-free adaptor," in *16th Asian Conference on Computer Vision (ACCV)*, 2024.
- H. Y. Bae, M. Saberi, A. Cheraghian, et al., "Enhancing glaucoma diagnosis through vision-language models and large language model descriptions," in *Proceedings of the Digital Image Computing: Techniques and Applications* (DICTA), 2024.
- 4 A. Biswas, M. Hossain, A. Cheraghian, et al., "3d point cloud network pruning: When some weights do not matter," in *Proceedings of the British Machine Vision Conference (BMVC)*, 2024.
- **A. Cheraghian**, Z. Hayder, S. Ramasinghe, et al., "Canonical shape projection is all you need for 3d few-shot class incremental learning," in European Conference on Computer Vision (ECCV), 2024.
- **A. Cheraghian**, S. Rahman, D. Campbell, and L. Petersson, "Mitigating the hubness problem for zero-shot learning of 3d objects," in *Proceedings of the British Machine Vision Conference (BMVC)*, 2024.
- Y. Wang, **A. Cheraghian**, Z. Hayder, et al., "Backpropagation-free network for 3d test-time adaptation," in Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), 2024.
- Y. Wang, J. Hong, **A. Cheraghian**, et al., "Continual test-time domain adaptation via dynamic sample selection," in *Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)*, Jan. 2024.
- 9 M. Zhang, A. Cheraghian, Y. Qin, D. J. Benn, T. A. Rollan, and N. Habili, "Efficient atmospheric correction for onboard processing using knowledge distillation and model compression," in *Proceedings of the Digital Image Computing: Techniques and Applications (DICTA)*, 2024.
- F. H. Shubho, T. F. Chowdhury, **A. Cheraghian**, M. Saberi, N. Mohammed, and S. Rahman, "Chatgpt-guided semantics for zero-shot learning," in *International Conference on Digital Image Computing: Techniques and Applications (DICTA)*, 2023.
- T. Chowdhury, **A. Cheraghian**, S. Ramasinghe, S. Ahmadi, M. Saberi, and S. Rahman, "Few-shot class-incremental learning for 3d point cloud objects," in *European Conference on Computer Vision (ECCV)*, 2022.

- M. Nasiri, A. Cheraghian, T. F. Chowdhury, S. Ahmadi, M. Saberi, and S. Rahman, "Prompt-guided scene generation for 3d zero-shot learning," in *International Conference on Digital Image Computing: Techniques and Applications (DICTA)*, 2022, pp. 1–8.
- **A. Cheraghian**, S. Rahman, P. Fang, S. K. Roy, L. Petersson, and M. Harandi, "Semantic-aware knowledge distillation for few-shot class-incremental learning," in *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, Jun. 2021, pp. 2534–2543.
- **A.** Cheraghian, S. Rahman, S. Ramasinghe, et al., "Synthesized feature based few-shot class-incremental learning on a mixture of subspaces," in *Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)*, 2021.
- T. Chowdhury, M. Jalisha, **A. Cheraghian**, and S. Rahman, "Learning without forgetting for 3d point cloud objects," in *Advances in Computational Intelligence*, I. Rojas, G. Joya, and A. Català, Eds., 2021.
- **A. Cheraghian**, S. Rahman, D. Campbell, and L. Petersson, "Transductive zero-shot learning for 3d point cloud classification," in *Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)*, 2020.
- A. Cheraghian and L. Petersson, "3dcapsule: Extending the capsule architecture to classify 3d point clouds," in 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), 2019.
- **A. Cheraghian**, S. Rahman, and L. Petersson, "Zero-shot learning of 3d point cloud objects," in 2019 16th International Conference on Machine Vision Applications (MVA), 2019.

Preprints

- A. A. Akl, A. Khamis, Z. Wang, **A. Cheraghian**, S. Khalifa, and K. Wang, *Task progressive curriculum learning: An efficient approach for robust visual question answering*, Submitted to IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2025.
- H. Dastmalchi, A. An, and A. Cheraghian, Etta: Efficient test-time adaptation for vision-language models through dynamic embedding updates, Submitted to IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2025.
- Z. Hayder, **A. Cheraghian**, L. Petersson, and M. Harandi, *Multi-objective optimisation for knowledge distillation*, Submitted to IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2025.

Miscellaneous Experience

Awards and Achievements

DICTA Best paper runner-up award,
Prompt-guided scene generation for 3d zero-shot learning.

2016 – 2020 Merit Award, Data61 fellowship.

References

Dr. Mehrtash Harandi

Department of Electrical and Computer Systems Engineering Monash University, Melbourne, Australia *Email:* mehrtash.harandi@monash.edu

Dr. Dylan Campbell

School of Computing Australian National University, Canberra, Australia Email: dylan.campbell@anu.edu.au

Dr. Lars Petersson

Data61, CSIRO, Canberra, Australia *Email:* Lars.Petersson@data61.csiro.au