Intelligent Data Analysis 2020

Lecture 2 Statistical Analysis of Texts

Martin Russell

Objectives

- Understand different approaches to text-based IR
 - Explicit knowledge vs data
- "Bundles of words" approaches
- Introduction to zipf.c
- Statistical analysis of word occurrence in text
- Zipf's Law
- Examples

Example Text

"There was no possibility of taking a walk that day. We had been wandering, indeed, in the leafless shrubbery an hour in the morning; but since dinner (Mrs. Reed, when there was no company, dined early) the cold winter wind had brought with it clouds so sombre, and a rain so penetrating, that further out-door exercise was now out of the question."

keywords

Charlotte Brontë, "Jane Eyre", first paragraph

Jane Eyre extract

- What is it about?
- How do you know?
- What is your 'strategy' for understanding what a text is about?
- What are the component topics?
 - Exercise (walk, wandering, exercise)
 - Gardens (shrubbery)
 - Weather (cold, winter, wind, clouds, rain)

Structure in text

- Words
 - Keywords (some words are more important than others)
 - Cold, Walk and Shrubbery are important
 - There, and and that are not
- Sentences (Grammar / Syntax)
 - Word sequence structure helps us to understand and to remove ambiguity
 - 'Parts of speech'
 - The lead miner lived in Cornwall
 - Keep that dog on a lead!
 - He won the lead role in the new film

poles

Example

The lead miner lived in Cornwall Noun Phrase: Verb Phrase: The lead miner Lived in Cornwall Determiner: Noun Phrase: Preposition Phrase: *Verb:* The lead miner in Cornwall lived Prep: *Noun:* 1n Cornwall

BIRMINGHAM

Knowledge vs. Data (1)

- Knowledge (Rationalism):
 - Try to copy human language processing
- Two questions:
 - Do we understand sufficiently well how we do it?
 - Is our knowledge 'computationally useful'? I.e. is our knowledge sufficiently 'solid' to support algorithms and computer programs?
- These are topics in Natural Language Processing (NLP) and Computational Linguistics

Available knowledge

- Word inventories
 - Electronic dictionaries
- Word forms (noun, verb etc)
 - Available in electronic dictionaries
- Word meanings
 - Expressed in terms of predicate logic (properties)
- Grammar / syntax
 - Grammatical rules
- Parsers
 - Apply grammatical rules to a word sequence to determine if it is grammatical and, if so, its grammatical structure

Natural Language Processing

- Use word sense and meaning plus grammatical structure to infer 'meaning'
- Several problems
 - Grammar may be too accommodating accept nongrammatical sentences
 - Grammar may be too restrictive reject valid sentences
 - The number of interpretations of a simple sentence may be huge ("I saw the man on the hill with the telescope")
- Language is dynamic and changing

Knowledge vs. Data (2)

- Data (Empiricism, "Big Data")
 - Use large corpora of text instead of human knowledge
 - Use machine-learning to identify important structure and relationships
 - Quantify the problem
 - Rely on quantities which can be measured from these large corpora, rather than human opinion

For example:

- For each word w define a number U(w) which indicates how useful w is for Information Retrieval
- Invent algorithms to find the most useful words
- Invent measures of the similarity between queries and texts

Knowledge vs Data

- Need sophisticated computationally useful models of language and semantics to infer meaning
- Rational approaches accommodate complex structure but may be fragile and hard to generalise
 - "She ran, waving her hand in the air, across the bridge"
- Machine Learning (ML) is conceptually simpler, models are potentially huge, trained automatically
- NLP currently outperformed in most applications by ML – "Deep Learning", "Deep Neural Networks" (e.g: Amazon Echo/Alexa, etc)
- Bundles of Words approach to language processing

'Bundles of Words'

There was no possibility of taking a walk that day. We had been wandering, indeed, in the leafless shrubbery an hour in the morning; but since dinner (Mrs. Reed, when there was no company, dined early) the cold winter wind had brought with it clouds so sombre, and a rain so penetrating, that further outdoor exercise was now out of the question

the 4 was 3 a 2 had 2 no 2 of 2 that 2 there 2 an 1 and 1 been 1 brought 1 but 1 clouds 1 cold 1 company 1 day 1 dined 1 dinner 1

early 1 exercise 1 further 1 hour 1 indeed 1 leafless 1 morning 1 mrs 1 now 1 out 1 out-door 1 penetrating 1 possibility 1 question 1 rain 1 reed 1 shrubbery 1 since 1 sombre 1 taking 1

walk 1
wandering 1
we 1
when 1
wind 1
winter 1
with 1

What is a word?

- Tokens ≡ things separated by white space
- Hyphenation
 - Database ≡ Data-base?
- Case
 - "the bath shop" vs "the Bath shop"
 - "the brown house" vs "the Brown house"
- Morphology
 - retrieval, retrieve, retrieved, retrieving,...
- Punctuation
 - The 'honest' politician vs the honest politician

Some arbitrary choices...

- Tokens ≡ things separated by white space
- Ignore case:
 - London ≡ london
 - BBC \equiv bbc
- Ignore non-alphanumerics at start and end of token:
 - 'honest' \equiv honest. \equiv honest! \equiv "honest \equiv honest

Analysis of Word Frequency

- zipf.c
 - ANSII C program for simple analysis of texts
 - Finds the set of different tokens in the text
 - Counts how many times each word occurs
 - Orders words according to the number of times they occur in the text (their rank)
 - Prints out the result, and
 - Stores results in a file results

Compilation of "Data Mining" C code

- Simple ANSII C
- OS independent should work on any platform with any ANSII-compliant C compiler
- Download from course website
- Compile using MS Visual Studio .NET command line
- cl zipf.c

Statistical Analysis of Frequency

- Complete novels available online:
 - http:/www.literature.org
- Start with "Jane Eyre",
 Charlotte Brontë, 1847
- Penguin Edition 489 pages
- 1,039 KBytes

Top 10 words in Jane Eyre

Top 10		101-110		7861-7870	
the	7638	can	218	abate	1
i	6536	about	217	abbot's	
and	6335	looked	216	1	
to	5028	think	213	abigail	1
of	4299	seemed	209	abilities	1
a	4294	day	206	abodewheth	er 1
in	2717	any	204	abodes	1
you	2709	own	203	abominable	1
was	2495	much	200	abrid	1
it	2219	come	199	abruptness	1
				absences	1

Different words 15,827, Total words 184,640

UNIVERSITY^{OF} BIRMINGHAM

Word frequency plot for Jane Eyre

Zipf's Law

- George Kingsley Zipf (1902-1950)
 - For each word w, let F(w) be the number of times w
 occurs in the corpus
 - Sort the words according to frequency
 - The word's rank-frequency distribution will be fitted closely by the function:

$$F(r) = \frac{C}{r^{\alpha}}$$
, where $\alpha \approx 1$, $C \approx 0.1$

Zipf's Law

total = 184.640 % < boccurs? tocol = 16.824 $fin = \frac{0.1}{r} \quad fir) = \frac{10}{184640} = \frac{0.1}{r} \quad r = 1846.4$ Actual statistics from "Jane Eyre" $\frac{13990}{15824} = 88\%$

Zipf's law

Frequency

UNIVERSITYOF BIRMINGHAM

Zipf's Law (logarithm form)

$$F(r) = \frac{C}{r^{\alpha}}$$
, where $\alpha \approx 1$, $C \approx 0.1$

Therefore,

$$\log(F(r)) = \log(C) - \alpha \log(r)$$

- On a log-log scale, Zipf's Law predicts a straight-line relationship between log-rank and log-frequency, where α is the slope of the line and C is the intersection with the vertical axis
- This provides a way to estimate C and α

Zipf's Law (logarithm form)

Zipf's Law ——— Actual statistics from "Jane Eyre" ◆

Word Frequency Plot: Alice in Wonderland

Different words 2,787, Total words 26,395 per: $\frac{1}{2} = \frac{10}{2} = \frac{10}{2} = \frac{264}{2787 - 26}$ Intelligent Data Analysis 2020 - Lecture 2

Log-log plot - Alice in Wonderland

Zipf - Pride and Prejudice

Zipf vs "Journey to the West"

Hong Guo

Some non-text examples

- Mathematics Today, vol. 47, no. 5, October 2011
- "Urban maths Zipf's Law"
 - Populations of the countries of the world
 - UK new car sales 2010
 - Counts of first digit from 1,836 equity prices quoted in The Times

Zipf's Law

- Why does it hold?
- Is it relevant to Information Retrieval?

Why does Zipf's Law work?

- Zipf's law appears to reflect a number of factors:
 - The requirements of humans to communicate
 - Use as little effort as possible to successfully communicate a message
 - Basic combinatorics
 - The requirement of grammar for simple 'glue' words
 - Author and topic vocabularies

'Resolving Power' of words

Homework

- Calculate α and C for the PayPal UserAgreement
 - Download the PayPal user agreement
 - Download zipf.c from the course website
 - Compile it under your favourite OS (see hints in comments at top of source)
 - Plot the result on a log-log scale using Excel
 - Find the best straight-line fit