Hemoglobin Evolution In Hemodialysis Patients Longitudinal Data Analysis Project 1

Trang Tu - Luong Vuong - Neamin Berhe - Thanh Chuong Cao

Study objectives

To investigate:

- The evolution of hemoglobin (Hgb) over time in hemodialysis patients
- How this evolution is influenced by EPO dose, iron deficiency status, age, and sex

Dataset

- Longitudinal data of 3823 hemodialysis patients over six months:
 - Monthly Hgb concentrations
 - Monthly Erythropoietin (EPO): EPO for the next month was decided by the Hgb level of the current month
 - Iron deficiency status at each month
 - Background data: age and sex
- Unbalanced data: not all patients were follow the whole six months

Exploratory Data Analyses

- Individual-specific profiles
- Graphical methods to explore mean structure, variance structure and correlation structure
- ullet Test linear and quadratic relationship of each patient' Hgb levels and time: R^2_{meta}

Summary statistics

- Analysis of each time point: comparison about hemoglobin levels between female and male group at each time point
- Analysis of increment: subject-specific changes of hemoglobin from baseline (y_{i1}) to the last observation (y_{in_i}) : $y_{in_i} y_{i1}$
- Area under the curve:

$$AUC_i = (t_{i2} - t_{i1})X(y_{i1} + y_{i2})/2 + (t_{i3} - t_{i2})X(y_{i2} + y_{i3})/2 + \dots$$

Multivariate model

• Initial model, with unstructured covariance:

$$\begin{split} Y_{ij} &= \beta_0 + \beta_1 \operatorname{age}_i + \beta_2 \operatorname{sex}_i + \beta_3 \operatorname{iron}_{ij} + \beta_4 \operatorname{dose}_{ij} + \beta_5 \operatorname{month}_j + \beta_6 \operatorname{month}_j^2 \\ &+ \beta_7 (\operatorname{dose}_{ij} \times \operatorname{age}_i) + \beta_8 (\operatorname{dose}_{ij} \times \operatorname{sex}_i) + \beta_9 (\operatorname{dose}_{ij} \times \operatorname{iron}_{ij}) + \beta_{10} (\operatorname{dose}_{ij} \times \operatorname{month}_j \times \beta_{11} (\operatorname{month}_j \times \operatorname{age}_i) + \beta_{12} (\operatorname{month}_j \times \operatorname{sex}_i) + \beta_{13} (\operatorname{month}_j \times \operatorname{iron}_{ij}) + \epsilon_{ij} \end{split}$$

- Reduce mean structure: F-test
- Compare different covariance structures using LR test: unstructured type, simple type, compound symmetry type, banded type, first-order autoregressive type and Toeplitz type

Two-stage analysis model

Stage 1: Linear regression model for each subject separately

Linear effect of time Hgb levels:

$$Y_{ij} = \beta_{1i} + \beta_{2i}t_{ij} + \epsilon_{ij}, \quad j = 0, \dots, 5$$

Stage 2: Explain variability in the subject-specific regression coefficients using known covariates

$$\beta_{1i} = \beta_0^{(1)} + \beta_{\text{Age}}^{(1)} \cdot \text{Age}_i + b_{1i}$$

$$\beta_{2i} = \beta_0^{(2)} + \beta_{\text{Age}}^{(2)} \cdot \text{Age}_i + b_{2i}$$
(2)

• b_{1i} , b_{2i} are independent and $\sim N(0,D)$

Linear mixed model

Four-stage model building process:

Step 1: elaborated LMM

$$Y_{i}=\beta_{0}+\beta_{1}Age_{i}+\beta_{2}Sex_{i}+\beta_{3}Dose_{ij}+\beta_{4}Iron_{ij}+\beta_{5}t_{ij}+\\ (\beta_{6}Age_{i}+\beta_{7}Sex_{i}+\beta_{7}Dose_{ij}+\beta_{8}Iron_{ij})t_{ij}+(\beta_{9}Age_{i}+\beta_{10}Sex_{i}+\beta_{11}Iron_{ij})Dose_{ij}+\\ b_{1i}+b_{2j}t_{ij}+\epsilon_{ij}$$
 (3)

Step 2: Test serial correlation function in residual covariance structure using REML log-likelihood

Step 3: Reduce random effect structure using Likelihood ratio test

Step 4: Reduce mean structure using F-test

 Compare model from step 3 with models removing interaction effects one by one, using F-test

Results

Exploratory Data Analysis

Individual profiles
 There exists both within-subject
 and between-subject variability
 in Hgb levels over time

Results

Exploratory Data Analysis

Mean structure

Variance structure

Covariance structure

Results

Summary statistics

• Analysis of increments:

Multivariate model

Finding parsimonous mean structure

• Reduce each term and perform F-test against the full model:

Reduction	DF	F-value	Pr > F
$month^2$	1	1.14	0.28
dose*sex, dose*age and dose*iron	3	1.63	0.18
month*age and month*sex	5	1.95	0.08
month*iron	6	2.71	0.01
month*dose	6	6.73	< 0.001

Multivariate model

Finding appropriate covariance structure

Covariance structure	Prameters	-2 Log Likelihood	G^2	df	p-value
Unstructured	21	27693.1			
Simple	1	32007.9	4314.8	20	< 0.001
Compound symmetry	2	28358.7	665.6	19	< 0.001
Banded	21	28948.1	1255.0	0	< 0.001
First-order autoregres-sive	2	27755.5	62.4	19	<0.001
Toeplitz	6	27735.8	42.7	15	0.002

Multivariate model

Final model: unstructured covariance structure

Effect estimates:

Effect	Estimate	Standard Error	p-value
Intercept	10.61	0.09	< 0.001
Age	0.003	0.001	0.03
Male	0.10	0.04	0.008
Iron deficiency	0.17	0.03	< 0.001
EPO dose	0.0005	0.001	0.006
Month	-0.04	0.01	0.01
Dose*month	0.0005	0.0001	< 0.001
Iron deficiency*month	-0.05	0.02	0.01

Two-stage analysis

Stage-1 analysis

• Subject-specific linear regression model for patients with at least 2 measurements

Variable	N	Mean	Std Dev	Minimum	Maximum
Intercept	2933	10.92	1.36	4.45	18.77
month	2933	0.03	0.69	-5.00	7.10

Two-stage analysis

Stage-2 analysis

• Effect of age on the intercept:

Variable	Parameter Estimate	Standard Error	T Value	P-value
Intercept	10.61	0.108	98.53	<0.0001
AGE	0.005	0.002	2.97	0.003

Two-stage analysis

Stage-2 analysis

• Effect of age on the slope:

Variable	Parameter Estimate	Standard Error	T Value	P-value
Intercept	0.157	0.0553	2.83	0.005
AGE	-0.002	0.0009	-2.17	0.030

Linear mixed model

Mean structure was identical to the multivariate model

	LMM Estimate		Multivariate	
Effect	(SE)	P-value	Estimate (SE)	P-value
Intercept	10.62 (0.1)	< 0.0001	10.61 (0.1)	< 0.0001
EPO dose	0.0005 (0.0002)	0.005	0.0005 (0.0002)	0.006
Age	0.0027 (0.001)	0.04	0.0028 (0.001)	0.03
Male	0.10 (0.04)	0.01	0.10 (0.04)	0.008
ron deficiency	0.17 (0.03)	< 0.0001	0.17 (0.03)	< 0.0001
/lonth	-0.028 (0.02)	0.07	-0.038 (0.02)	0.02
PO dose *	0.0005 (0.0001)	< 0.0001	0.0006 (0.0001)	< 0.0001
nonth				
ron deficiency	-0.043 (0.02)	0.02	-0.047 (0.02)	0.01
k month	. ,		` ,	

Linear mixed model

Variance components

Effect	Parameter	Estimate (SE)
Covariance of b_i		
$var(b_{1i})$	d_{11}	0.69 (0.056)
Measurement error variance		
$var(\epsilon_{(1)ij})$	σ^2	0.29 (0.016)
Gaussian serial correlation		
$var(\epsilon_{(2)ij})$	$ au^2$	1.9 (0.13)

Linear mixed model vs two-stage model

• Random slope against random intercept:

Conclusions

- The mean Hgb concentration decreases over time
- Higher EPO dose »> higher Hgb over time
- Iron-deficient patients »> higher baseline Hgb, Hgb decreases over time
- Higher EPO dose »> higher baseline Hgb
- Older patients and male patients »> higher baseline Hgb
- Linear mixed model vs multivariate model

Thank you for your attention!