Direct Methods for Special Linear Systems

LDL Decomposition for Symmetric Matrices

If A is symmetric, then the LDM decomposition may be reduced to

$$\mathbf{A} = \mathbf{L}\mathbf{D}\mathbf{L}^T$$
.

Theorem 5. If $A = LDM^T$ is the LDM decomposition of a nonsingular symmetric A, then L = M.

Solving LDL:

• recall that in the previous LDM decomposition, the key is to find the unknown

$$\mathbf{v} = \mathbf{D}\mathbf{M}^T \mathbf{e}_j$$

by solving $\mathbf{A}_{1:j,j} = \mathbf{L}_{1:j,1:j} \mathbf{v}_{1:j}$ via forward substitution.

- ullet Finding ${f v}$ is much easier and there is no need to run forward substitution.
 - (exploit the symmetry property) since $\mathbf{M}=\mathbf{L}$,

$$v_i = d_i \ell_{ji}$$
.

All the elements, except for v_j , are known.

$$- a_{jj} = \mathbf{L}_{j,1:j} \mathbf{v}_{1:j} = \mathbf{L}_{j,1:j-1} \mathbf{v}_{1:j-1} + v_j = \mathbf{L}_{j,1:j-1} \mathbf{D}_{1:j-1,1:j-1} \mathbf{L}_{j,1:j-1}^T + v_j$$

An LDL Decomposition Code

```
function [L,D] = my_ldl(A)
n = size(A,1);
L= eye(n); d= zeros(n,1); M = eye(n);
v = zeros(n,1);
for j=1:n,
     v(1:j) = for_subs(L(1:j,1:j),A(1:j,j));
     v(1:j-1) = L(j,1:j-1)'.*d(1:j-1); % replace for_subs.
     v(j) = A(j,j) - L(j,1:j-1)*v(1:j-1); % replace for_subs.
     d(j) = v(j);
     for i=1:j-1,
         M(j,i) = v(i)/d(i);
     end:
     L(j+1:n,j) = (A(j+1:n,j)-L(j+1:n,1:j-1)*v(1:j-1))/v(j);
end;
D= diag(d);
```

- complexity: $\mathcal{O}(n^3/3)$, half of LU or LDM
- LDL is used to solve symmetric linear systems

Cholesky Factorization for PD Matrices

ullet a matrix $\mathbf{A} \in \mathbb{S}^n$ is said to be positive semidefinite (PSD) if

$$\mathbf{x}^T \mathbf{A} \mathbf{x} \geq 0$$
, for all $\mathbf{x} \in \mathbb{R}^n$;

and positive definite (PD) if

$$\mathbf{x}^T \mathbf{A} \mathbf{x} > 0$$
, for all $\mathbf{x} \in \mathbb{R}^n$ with $\mathbf{x} \neq \mathbf{0}$

Cholesky factorization: given a PD $\mathbf{A} \in \mathbb{S}^n$, factorize \mathbf{A} as

$$\mathbf{A} = \mathbf{G}\mathbf{G}^T$$
,

where $G \in \mathbb{R}^{n \times n}$ is lower triangular with positive diagonal elements and is called the Cholesky factor of A.

- ullet the factorization is also written as $\mathbf{A}=\mathbf{R}^T\mathbf{R}$ with upper triangular $\mathbf{R}\in\mathbb{R}^{n\times n}$
- we only discuss symmetric PD matrices here

Cholesky Factorization for PD Matrices

Theorem 6. If $\mathbf{A} \in \mathbb{S}^n$ is PD, then there exists a unique lower triangular $\mathbf{G} \in \mathbb{R}^{n \times n}$ with positive diagonal elements such that $\mathbf{A} = \mathbf{G}\mathbf{G}^T$.

• idea: if A is symmetric and PD, then its LDL decomposition

$$\mathbf{A} = \mathbf{L}\mathbf{D}\mathbf{L}^T$$

has $d_i > 0$ for all i = 1, ..., n (as an exercise, verify this). Putting $\mathbf{G} = \mathbf{L}\mathbf{D}^{\frac{1}{2}}$ where $\mathbf{D}^{\frac{1}{2}} = \mathrm{Diag}(d_1^{\frac{1}{2}}, ..., d_n^{\frac{1}{2}})$ yields the Cholesky factorization.

Solving Cholesky factorization:

(exploit the symmetry) the key is to find the unknown

$$\mathbf{v} = \mathbf{G}^T \mathbf{e}_j$$
 or $v_i = g_{ji}$.

All the elements, except for v_j , are known.

• (exploit the positive-definiteness property)

$$a_{jj} = \mathbf{G}_{j,1:j} \mathbf{v}_{1:j} = \mathbf{G}_{j,1:j-1} \mathbf{v}_{1:j-1} + g_{jj} v_j = \mathbf{G}_{j,1:j-1} \mathbf{G}_{j,1:j-1}^T + g_{jj}^2$$
$$= \mathbf{v}_{1:j-1}^T \mathbf{v}_{1:j-1} + (v_j)^2$$

A Cholesky Factorization Code

```
function [G]= my_Cholesky(A)
n= size(A,1);
G= zeros(n,n);
v= zeros(n,1);
for j=1:n,
     v(1:j-1)= G(j,1:j-1);
     v(j)= sqrt(A(j,j)- v(1:j-1)'*v(1:j-1));
     G(j,j)= v(j);
     G(j+1:n,j)= (A(j+1:n,j)-G(j+1:n,1:j-1)*v(1:j-1))/v(j);
end;
```

- computing procedure is similar to LDL
- ullet can be computed in $\mathcal{O}(n^3/3)$, no pivoting required, numerically very stable
- Cholesky decomposition is used to solve PD linear systems

Pivoted Cholesky Factorization

Pivoted Cholesky factorization: given a PSD $\mathbf{A} \in \mathbb{S}^n$, factorize \mathbf{A} as

$$\mathbf{P}^T \mathbf{A} \mathbf{P} = \mathbf{G} \mathbf{G}^T,$$

where \mathbf{P} is a permutation matrix, and

$$\mathbf{G} = egin{bmatrix} \mathbf{G}_1 \ \mathbf{G}_2 \end{bmatrix} \in \mathbb{R}^{n imes r}$$

with leading submatrix $G_1 \in \mathbb{R}^{r \times r}$ being lower triangular with positive diagonal.

• r_{ii} can be chosen to satisfy $r_{11} \geq r_{22} \geq \cdots \geq r_{rr} > 0$

• $\operatorname{rank}(\mathbf{A}) = \operatorname{rank}(\mathbf{G}) = \operatorname{rank}(\mathbf{G}_1) = r$

LU Decomposition for Band Matrices

For a banded matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$,

- lower bandwidth p if $a_{ij} = 0$ whenever i > j + p
- upper bandwidth q if $a_{ij} = 0$ whenever j > i + q

Theorem 7. Suppose $A \in \mathbb{R}^{n \times n}$ has an LU factorization A = LU. If A has lower bandwidth p and upper bandwidth q, then L has lower bandwidth p and U has upper bandwidth q.

Proof: cf. Theorem 4.3.1 in [Golub-van-Loan'13] for details

- L inheritates the lower bandwidth of A
- U inheritates the upper bandwidth of A

Banded LU factorization with partial pivoting: the upper bandwidth of ${\bf U}$ is p+q cf. Theorem 4.3.2 in [Golub-van-Loan'13] for details

Iterative Methods for Linear Systems

Iterative Methods for Linear Systems

- such iterative methods are a.k.a. indirect methods
- solving linear systems via LU requires $\mathcal{O}(n^3)$
- $\mathcal{O}(n^3)$ is too much for large-scale linear systems
- the motivation behind iterative methods is to seek less expensive ways to find an (approximate) linear system solution
- note: see also the ideas of handling large-scale LS problems forthcoming in LS
 Topic, which is relevant to the context here

The Key Insight of Iterative Methods

- assume $a_{ii} \neq 0$ for all i
- observe

$$\mathbf{b} = \mathbf{A}\mathbf{x} \iff b_i = a_{ii}x_i + \sum_{j \neq i} a_{ij}x_j, \quad i = 1, \dots, n$$

$$\iff x_i = \left(b_i - \sum_{j \neq i} a_{ij}x_j\right) / a_{ii}, \quad i = 1, \dots, n$$

$$(\dagger)$$

• idea: find an x that fulfils the equations in (†)

Jacobi Iterations

```
input: a starting point \mathbf{x}^{(0)} for k=0,1,2,\ldots par_for i=1,2,\ldots,n x_i^{(k+1)}=\left(b_i-\sum_{j\neq i}a_{ij}x_j^{(k)}\right)/a_{ii} end end
```

- complexity per iteration: $\mathcal{O}(n^2)$ for dense **A**, $\mathcal{O}(\operatorname{nnz}(\mathbf{A}))$ for sparse **A**
- the Jacobi update step can be computed in a parallel or distributed fashion
 - same idea appeared in distributed power control in 2G or 3G wireless networks
- a natural idea, heuristic at first glance
- does the Jacobi iterations converge to the linear system solution?
 - it does not, in general
 - it does if the diagonal elements a_{ii} 's are "dominant" compared to the off-diagonal elements; see Theorem 11.2.2 in [Golub-van-Loan'13] for details

Gauss-Seidel (G-S) Iterations

```
input: a starting point \mathbf{x}^{(0)} for k=0,1,2,\ldots for i=1,2,\ldots,n x_i^{(k+1)}=\left(b_i-\sum_{j=1}^{i-1}a_{ij}x_j^{(k+1)}-\sum_{j=i+1}^na_{ij}x_j^{(k)}\right)/a_{ii} end end
```

- use the most recently available x to perform update
- sequential, cannot be computed in a distributed or parallel manner
- coordinatewise minimization, a special case of coordinate descent (CD) method
- guaranteed to converge to the linear system solution if
 - **A** has diagonally dominant characteristics (similar to the Jacobi iterations)
 - A is symmetric PD; see Theorem 11.2.3 in [Golub-van-Loan'13]

Minimization Methods

• Let $A \in \mathbb{R}^{n \times n}$ be a symmetric and positive definite matrix. In this case, solving the linear system Ax = b is equivalent to

$$\min_{\mathbf{x}} \quad f(\mathbf{x}) = \frac{1}{2} \mathbf{x}^T \mathbf{A} \mathbf{x} - \mathbf{b}^T \mathbf{x} + c,$$

for an arbitrary scalar constant $c \in \mathbb{R}$.

• many minimization methods: gradient descent, steepest descent, conjugate gradient descent, preconditioned conjugate gradients, ADMM, etc.

Other Topics on Linear Systems

Consistent and Inconsistent Systems

In algebra, a linear or nonlinear system of equations is called consistent if it possesses at least one solution. If there are no solutions, the system is called inconsistent.

Problem: Given $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$,

find
$$\mathbf{x} \in \mathbb{R}^n$$

s.t.
$$Ax = b$$
.

• the linear system is consistent if and only if

$$\mathbf{b} \in \mathcal{R}(\mathbf{A})$$

- under-determined when m < n: either infinitely many solutions or no solutions
- ullet well-determined or exactly determined when m=n: unique, infinitely many, or no solutions
- \bullet over-determined when m>n: unique, infinitely many, or no solutions

Solution of Linear Systems

Let A be m-by-n and rank(A) = r < n. Then there is an n - r dimensional set of vectors \mathbf{x} that satisfy $A\mathbf{x} = \mathbf{b}$.

Proof. Let Az = 0. Then if x satisfies Ax = b, so does x + z.

Underdetermined Systems

Problem: If $\mathbf{A} \in \mathbb{R}^{m \times n}$ with m < n, $\operatorname{rank}(\mathbf{A}) = m$, and $\mathbf{b} \in \mathbb{R}^m$, find $\mathbf{x} \in \mathbb{R}^n$ s.t. $\mathbf{A}\mathbf{x} = \mathbf{b}$.

- ullet it is always true that $\mathbf{b} \in \mathcal{R}(\mathbf{A})$
- an underdetermined linear system has infinite number of solutions given by

$$\mathbf{x} = \mathbf{x}_p + \mathbf{x}_0 = \mathbf{x}_p + \mathbf{F}\mathbf{v}$$
 with $\mathbf{v} \in \mathbb{R}^{n-m}$,

where $\mathbf{x}_p \in \mathcal{R}(\mathbf{A}^T)$ is (any) particular solution and special solutions $\mathbf{x}_0 \in \mathcal{N}(\mathbf{A})$ with columns of $\mathbf{F} \in \mathbb{R}^{n \times (n-m)}$ spans $\mathcal{N}(\mathbf{A})$.

- ullet several numerical methods for computing ${f F}$ (rectangular LU decomposition, QR factorization (cf. QR Topic), ...)
- ullet solution to smallest ℓ_2 norm: $\mathbf{x}_0 = \mathbf{0}$, i.e., $\mathbf{v} = \mathbf{0}$, cf. SVD Topic
- solution to smallest ℓ_0 "norm": can we find a sparsest solution \mathbf{x} ? cf. Compressive Sensing Topic

Underdetermined Systems

Note: there is a counterpart mapping from the right to left corresponding to A^T .

Solving Underdetermined Systems via Rectangular LU

A rectangular LU decomposition of A is

$$\mathbf{A} = \mathbf{L} \big[\mathbf{U}_1 \ \mathbf{U}_2 \big]$$

where $\mathbf{L} \in \mathbb{R}^{m \times m}$ is unit lower triangular, $\mathbf{U}_1 \in \mathbb{R}^{m \times m}$ is nonsingular and uppertriangular, and $\mathbf{U}_2 \in \mathbb{R}^{m \times (n-m)}$.

note

$$\mathbf{A}\mathbf{x} = \mathbf{L}ig[\mathbf{U}_1 \ \mathbf{U}_2ig]egin{bmatrix} \mathbf{x}_1 \ \mathbf{x}_2 \end{bmatrix} = \mathbf{L}(\mathbf{U}_1\mathbf{x}_1 + \mathbf{U}_2\mathbf{x}_2) = \mathbf{b}$$

which can be solved by first solving $\mathbf{L}\mathbf{z} = \mathbf{b}$ and then solving $\mathbf{U}_1\mathbf{x}_1 = \mathbf{z} - \mathbf{U}_2\mathbf{x}_2$ given a specific $\mathbf{x}_2 \in \mathbb{R}^{n-m}$, we have $\mathbf{x}_1 = \mathbf{U}_1^{-1}\mathbf{L}^{-1}\mathbf{b} - \mathbf{U}_1^{-1}\mathbf{U}_2\mathbf{x}_2$. Then,

$$\mathbf{x} = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{U}_1^{-1} \mathbf{L}^{-1} \mathbf{b} - \mathbf{U}_1^{-1} \mathbf{U}_2 \mathbf{x}_2 \\ \mathbf{x}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{U}_1^{-1} \mathbf{L}^{-1} \mathbf{b} \\ \mathbf{0} \end{bmatrix} + \begin{bmatrix} -\mathbf{U}_1^{-1} \mathbf{U}_2 \\ \mathbf{I} \end{bmatrix} \mathbf{x}_2$$

ullet So, one solution is to set $\mathbf{x}_p = egin{bmatrix} \mathbf{U}_1^{-1}\mathbf{L}^{-1}\mathbf{b} \\ \mathbf{0} \end{bmatrix}$, $\mathbf{F} = egin{bmatrix} -\mathbf{U}_1^{-1}\mathbf{U}_2 \\ \mathbf{I} \end{bmatrix}$, and $\mathbf{v} = \mathbf{x}_2$.

What if $\mathbf{b} \notin \mathcal{R}(\mathbf{A})$?

When $\mathbf{b} \notin \mathcal{R}(\mathbf{A})$, we can find an \mathbf{x} such that $\mathbf{A}\mathbf{x}$ is closer to \mathbf{b} via

$$\min_{\mathbf{x} \in \mathbb{R}^n} \ \rho(\mathbf{b} - \mathbf{A}\mathbf{x}) \tag{LS}$$

where $\rho: \mathbb{R}^m \to \mathbb{R}$ denotes a distance function.

- ℓ_2 norm: least squares (LS) problem (cf. Least Squares Topic)
- ℓ_1 norm: least absolute deviations (LAD)
- divergence measures
- other loss functions...

Sensitivity Analysis of Linear Systems

Scenario:

- let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be nonsingular, and $\mathbf{b} \in \mathbb{R}^n$. Let \mathbf{x} be the solution to

$$\mathbf{A}\mathbf{x} = \mathbf{b}$$
.

– consider a perturbed version of the above system: $\hat{\mathbf{A}} = \mathbf{A} + \Delta \mathbf{A}, \hat{\mathbf{b}} = \mathbf{b} + \Delta \mathbf{b}$, where $\Delta \mathbf{A}$ and $\Delta \mathbf{b}$ are errors. Let $\hat{\mathbf{x}}$ be a solution to the perturbed system

$$\hat{\mathbf{A}}\hat{\mathbf{x}} = \hat{\mathbf{b}}.$$

- ullet Problem: analyze how the solution error $\|\hat{\mathbf{x}} \mathbf{x}\|_2$ scales with $\Delta \mathbf{A}$ and $\Delta \mathbf{b}$
- ullet remark: $\Delta {f A}$ and $\Delta {f b}$ may be floating point errors, measurement errors, etc.
- forthcoming in SVD Topic.

References

[Golub-van-Loan'13] G. H. Golub and C. F. Van Loan, *Matrix Computations*, 4th edition, JHU Press, 2013.

[Horn-Johnson'12] Roger A. Horn and Charles R. Johnson, *Matrix Analysis*, 2nd edition, Cambridge University Press, 2012.