Modeling Active Fluctuations in Living Matter

Étienne Fodor¹, Wylie W. Ahmed², Timo Betz², Matthias Bussonnier², Nir S. Gov³, Ming Guo⁴, Vishwajeet Mehandia⁵, Daniel Riveline⁵, Paolo Visco¹, David A. Weitz⁴, Frédéric van Wijland¹

- Laboratoire Matière et Systèmes Complexes, Université Paris Diderot
- 2. Laboratoire Physico-Chimie Curie, Institut Curie
- 3. Department of Chemical Physics, Weizmann Institute of Science
- School of Engineering and Applied Sciences, Harvard University
- 5. Laboratoire de Physique Cellulaire, Université de Strasbourg

Statistical challenges in Single-Particle Tracking

Is it possible to extract information about molecular motor activity?

Propose a model for the tracers' dynamics

Outline

Activity driven fluctuations in living cells

Ming Guo, David A. Weitz

Outline

Activity driven fluctuations in living cells Ming Guo, David A. Weitz

Modeling tracer's dynamics

Outline

Activity driven fluctuations in living cells Ming Guo, David A. Weitz

- Modeling tracer's dynamics
- Characterizing active force

Experimental results

Equation of motion

Equation of motion

Tracer's dynamics

$$m \frac{\mathrm{d}^2 \mathbf{r}}{\mathrm{d}t^2} = -\nabla U + \mathbf{F}_{\mathsf{s}} + \mathbf{F}_{\mathsf{th}}$$

Harmonic potential: $U = \frac{k}{2}(\mathbf{r} - \mathbf{r_0})^2$

Stokes force: $\mathbf{F}_{\mathrm{S}} = -\gamma \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t}$

Gaussian white noise: Fth

Equation of motion

Tracer's dynamics

$$rac{\mathsf{d}\mathbf{r}}{\mathsf{d}t} = -rac{1}{ au_\mathsf{d}}(\mathbf{r}-\mathbf{r_0}) + \sqrt{2D_\mathsf{T}}oldsymbol{\xi}$$

Equation of motion

Tracer's dynamics

$$rac{\mathrm{d}\mathbf{r}}{\mathrm{d}t} = -rac{1}{ au_\mathrm{d}}(\mathbf{r}-\mathbf{r_0}) + \sqrt{2D_\mathrm{T}}\boldsymbol{\xi} \; , \qquad rac{\mathrm{d}\mathbf{r_0}}{\mathrm{d}t} = \mathbf{v}_\mathrm{d}$$

Active motion of local minimum

Active burst's statistics

Active burst's statistics

Active burst's statistics

2-time correlation function

$$\langle v_{\mathrm{A}}(t)v_{\mathrm{A}}(0)
angle = rac{D_{\mathrm{A}}}{ au}\mathrm{e}^{-|t|/ au} \ , \quad D_{\mathrm{A}} = rac{(v au)^2}{3(au+ au_0)}$$

Tracer's statistics

 ${\color{red} \textbf{Short time}} \quad \textbf{Diffusion} \, + \, \textbf{Confinement}$

 $\mathsf{MSD} \sim 2D_\mathsf{T} t$

Large time Free diffusion MSD $\sim 2D_{\Delta}t$

Fitting experimental results

Microscopic features

Typical time of activity

Untreated: $au=0.16\pm0.03$ s, Bleb. treated: $au=0.39\pm0.09$ s

Amplitude of active fluctuations

Untreated: $D_A \simeq 2.8 \cdot 10^{-3} D_T$, Bleb. treated: $D_A \simeq 9.0 \cdot 10^{-4} D_T$

Nonequilibrium properties

Fluctuation dissipation

$$\chi''(\omega) = \frac{\omega C(\omega)}{2k_{\rm B}T}$$

Nonequilibrium properties

Fluctuation dissipation

$$\chi''(\omega) = \frac{\omega C(\omega)}{2k_{\rm B}T}$$

$$\mathsf{FDT\text{-}ratio} = \frac{\omega \, \mathit{C}(\omega)}{2\chi''(\omega) \mathit{k}_{\scriptscriptstyle B} \mathit{T}}$$

Active force spectrum

Spectrum of stochastic forces

$$S_{\mathsf{tot}}(\omega) = \frac{C(\omega)}{|\chi(\omega)|^2}$$

Active force spectrum

Spectrum of stochastic forces

$$S_{\mathsf{tot}}(\omega) = \frac{C(\omega)}{|\chi(\omega)|^2}$$

Tracer's dynamics

$$\gamma \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t} = -k\mathbf{r} + \mathbf{F}_{\mathsf{th}} + \underbrace{\mathbf{F}_{\mathsf{A}}}_{k\mathbf{r_0}} \quad o \quad S_{\mathsf{tot}} = S_{\mathsf{th}} + S_{\mathsf{A}}$$

Active force spectrum

Spectrum of stochastic forces

$$S_{\mathsf{tot}}(\omega) = \frac{C(\omega)}{|\chi(\omega)|^2}$$

Tracer's dynamics

$$\gamma \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t} = -k\mathbf{r} + \mathbf{F}_{\mathsf{th}} + \mathbf{F}_{\mathsf{A}} \quad \rightarrow \quad \underbrace{S_{\mathsf{tot}} = S_{\mathsf{th}}}_{\mathsf{ATP} \ \mathsf{depleted}} + \mathbf{F}_{\mathsf{A}}$$

Active force spectrum

$$S_{A}(\omega) = \left(\frac{k}{\omega}\right)^{2} \frac{2D_{A}}{1 + (\omega \tau)^{2}}$$

Probability distribution function of displacement

Probability distribution function of displacement

Numerical simulations ightarrow Duty ratio: $p_{
m on} = rac{ au}{ au + au_0}$

Microscopic features

- Untreated: $p_{\rm on} \simeq 6$ %, $\tau_0 \simeq 2.5$ s
- ullet Blebbistatin treated: $p_{
 m on} \simeq 15$ %, $au_0 \simeq 2.8$ s

Conclusion

New model tracer's dynamics

Two driving forces

- Passive, purely thermal, equilibrium
- 2 Active, out-of-equilibrium

Quantify active features $\{\tau, \tau_0, D_A\}$

Check consistency with other measurements

- Active force spectrum
- Tracers' distribution

Nonequilibrium mechanics in living oocytes

Wylie W. Ahmed, Timo Betz, Matthias Bussonnier

Complex modulus: $G^*(\omega) = G_0 (1 + (i\omega \tau_\alpha)^\alpha), \ \alpha \simeq 0.6$

Nonequilibrium mechanics in living oocytes

Wylie W. Ahmed, Timo Betz, Matthias Bussonnier

Fluctuation dissipation

$$\chi''(\omega) = \frac{\omega C(\omega)}{2k_{\rm B}T}$$

$$T_A = 5.5T$$
 $T_A = 5T$
 $T_A = 3.8T$

Epithelial tissues as fluctuating active foams

Vishwajeet Mehandia, Daniel Riveline

Fluctuations of tricellular junctions

