Recursion Time Compresity

Factorial

int-fact (intri) T(n)

int ans: sp#n;

3

Recurrence Relation

T(2) = T(1)+1
T(1) = 1

$$T(m)+T(m-1)+T(m-2)$$
.... $T(n)=T(m-1)+1+T(m-2)+1+T(m-3)+1...T(n)+1+$

Shortcest: Snyle Ree Call

J'ibmacci

First
$$f(n)$$
 $f(n)$ f

$$T(n) = 1 + 2 + 2^{2} + \cdots \qquad 2^{n-2} + 2^{n-1}$$

$$T(n) = \left(\frac{x^{n} - 1}{2 - 1}\right)$$

$$T(n) = 2^{n} - 1 = O(2^{n})$$

$$2^{\frac{1}{2}} = 2^{\frac{1}{2}} \cdot 2^{\frac{1}{2}} \cdot 2$$

$$2^{\frac{1}{2}} = 2 \cdot 2^{\frac{1}{2}} \cdot 2$$

$$2^{\frac{1}{2}} = 2 \cdot 2^{\frac{1}{2}} \cdot 2$$

$$2^{\frac{1}{2}} = 2^{\frac{1}{2}} \cdot 2$$

$$2^{\frac{1}{2}} = 2 \cdot 2^{\frac{1}{2}} \cdot 2$$

$$2^{\frac{1}{2}} = 2 \cdot 2^{\frac{1}{2}} \cdot 2$$

$$2^{\frac{1}{2}} = 2 \cdot 2^{\frac{1}{2}} \cdot 2$$

$$7^{\frac{1}{2}} = 7^{\frac{1}{2}} + 7^{\frac{1}{2}} \cdot 2$$

$$7^{\frac{1}{2}} = 7^{\frac{1}{2$$

$$T(m) = T(\frac{\pi}{2}) + 1$$

$$T(\frac{\pi}{2}) = T(\frac{\pi}{4}) + 1$$

$$T(\frac{\pi}{2}) = T(\frac{\pi}{2}) + 1$$

Program = TC?

Mure Pletton

Constraint: OSM Clos ?

Bubble Sort:
$$m^2$$

Army: $m = 10^5$

Instructor: C_K : $(10^5)^2 = 10^{10}$

1 GH2 $\sqrt{10^9}$ in 1 sec

1 ins $\rightarrow \frac{1}{10^9}$ sec $\sqrt{10^9}$ s

Input Size	Conplex Pro
m <u></u> 510	ml 5n
M (100	m ⁴
m < 400	m ³
M & 2000	m²lopn
m < 104	m ²
WFIDE	mlogs
m < 128	m
8 013 M	logn

 $1 < \log \log n < \log n < \log n < n < n \log n < n^2 < n^2 \log n < m^2 < n^2 \log n < n^2 < n^$

Inc order of TC