Inhaltsverzeichnis

	$0.1 \\ 0.2$	_	æit in einer Dimension							
1	D:#									5
_	Differentialrechnung in höheren Dimensionen 1.1 Topologie									
	1.1	1.1.1	Korollar							
		1.1.1	Konvention							
		1.1.2	Definition der ε -Umgebung							
		1.1.3 $1.1.4$	Topologische Grundbegriffe							
		1.1.4 $1.1.5$	Definition von offen und abgeschlossen							
		1.1.6	Beispiele							
		1.1.7	Satz							
		1.1.7	Satz							
		1.1.9	Satz							
		1.1.10								
	1.2									
	1.2	1.2.1	Definition von Konvergenz und Beschränktheit							
		1.2.2	Bemerkung							
		1.2.3	Satz von Bolzano Weierstraß							
		1.2.4	Abschließende Bemerkungen							
	1.3		Ionsgrenzwerte und Stetigkeit							
	1.0	1.3.1	Definition							
		1.3.2	Definition Grenzwert/Limes							
		1.3.3	Bemerkung							_
		1.3.4	Beispiel							_
		1.3.5	Lemma Folgenkriterium							
		1.3.6	Satz zu Grenzwerte verketteter Funktionen							
		1.3.7	Beispiel							
		1.3.8	Definition der Stetigkeit							
		1.3.9	Bemerkung							
	1.4	Partie	lle Ableitungen, Richtungsableitungen							
		1.4.1	Definition der partiellen Ableitung							
		1.4.2	Beispiel							
		1.4.3	Definition der Richtungsableitung							
	1.5	Total 1	Differenzierbarkeit							
		1.5.1	Definition der totalen Differenzierbarkeit							
		1.5.2	Beispiele							12
		1.5.3	Satz							
		154	Satz							13

Einführung

Stetigkeit in einer Dimension 0.1

f ist stetig in x_0 $\Leftrightarrow \quad \lim_{x \to x_0} f(x) = f(x_0)$

$$\Leftrightarrow \forall (x_n) \text{ mit } \lim_{n \to \infty} x_n = x_0 \text{ gilt } \lim_{n \to \infty} f(x_n) = f(x_0)$$

 $\Leftrightarrow \forall \varepsilon > 0 \quad \exists \delta \quad \text{mit} \quad |f(x) - f(x_0)| < \varepsilon \quad \forall x \in (x_0 - \delta, x_0 + \delta)$

Bemerkung: Der Grenzwert von Funktionen ist über den Grenzwert von Folgen definiert und kann auch nur so überprüft werden.

0.2Zwei Sonderfälle

Skalarfeld

Sei $f: \mathbb{R}^2 \to \mathbb{R}$

Visualisierung durch Höhenlinien: $H_c := \{x \in \mathbb{R}^n : f(x) = c\}$ Beispiel: $f(x,y) = x^2 + y^2$

Vektorfeld

Sei $f: \mathbb{R}^2 \to \mathbb{R}^2$

Sei
$$f: \mathbb{R}^2 \to \mathbb{R}^2$$

Beispiel: $f(x,y) = \begin{pmatrix} x \\ y \end{pmatrix}$

Kapitel 1

Differentialrechnung in höheren Dimensionen

1.1 Topologie

Skalarprodukt

Definition: $\langle x, y \rangle := x^{\top} y = \sum_{k=1}^{n} x_k y_k$ für $x, y \in \mathbb{R}^n$

Euklidische Norm

Definition:
$$||x||_2 := \sqrt{\langle x, x \rangle} = \sqrt{\sum_{k=1}^n x_k^2}$$

1.1.1 Korollar

Sei
$$x \in \mathbb{R}^n$$
 mit $x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$

1.

$$\max_{1\leqslant k\leqslant n}|x_k|\leqslant \|x\|\leqslant \sqrt{n}\max_{1\leqslant k\leqslant n}|x_k|$$

2. Cauchy-Schwarz-Ungleichung:

$$\forall x, y \in \mathbb{R}^n : |\langle x, y \rangle| \leqslant ||x|| \cdot ||y||$$

Begründung (nicht Beweis!) durch alternative Definition: $\langle x,y\rangle = \|x\|\cdot\|y\|\underbrace{\cos\alpha}_{\leqslant 1}$

Dabei ist α der Winkel der zwischen x und y eingeschlossen wird. Daraus folgt:

$$|\langle x,y\rangle|=\|x\|\cdot\|y\|\Leftrightarrow x,y$$
 sind lin. unabhängig : $x=\lambda y$ oder $y=\lambda x$ für $\lambda\in\mathbb{R}$

- 3. $\|\cdot\|$ ist eine Norm. Eine Norm hat folgende Eigenschaften:
 - (i) $||x|| \ge 0$ und $||x|| = 0 \Leftrightarrow x = 0$
 - (ii) $\|\lambda x\| = |\lambda| \cdot \|x\|$
 - (iii) $||x + y|| \le ||x|| + ||y||$ Dreiecksungleichung

1.1.2 Konvention

Für $A \subset \mathbb{R}^n$ gilt für das Komplement $A^c = \mathbb{R}^n \setminus A$

1.1.3 Definition der ε -Umgebung

Sei $x_0 \in \mathbb{R}^n$ und $\varepsilon > 0$, dann gilt für die ε -Umgebung $U_{\varepsilon}(x_0)$ von x_0 :

$$U_{\varepsilon}(x_0) := \{ x \in \mathbb{R}^n : ||x - x_0|| < \varepsilon \}$$

Bemerkung: Die punktierte ε -Umgebung ist definiert als: $\dot{U}_{\varepsilon} = U_{\varepsilon}(a) \setminus \{a\}$

1.1.4 Topologische Grundbegriffe

Sei $A \subset \mathbb{R}^n$, dann heißt ein Punkt $x_0 \in \mathbb{R}^n$

- (i) ein **innerer Punkt**, wenn gilt $\exists \ \varepsilon > 0$ mit $U_{\varepsilon}(x_0) \subset A$ Menge aller inneren Punkte: $\mathring{A} = \{x \in \mathbb{R}^n : \exists \ \varepsilon > 0 \text{ mit } U_{\varepsilon}(x) \subset A\}$
- (ii) ein **Berührungspunkt**, wenn $\forall \varepsilon > 0$ gilt $U_{\varepsilon}(x_0) \cap A \neq \emptyset$ abgeschlossene Hülle: $\overline{A} = \{x \in \mathbb{R}^n : \forall \varepsilon > 0 \text{ gilt } U_{\varepsilon}(x_0) \neq \emptyset\}$
- (iii) ein **Häufungspunkt**, wenn $\forall \varepsilon > 0$ gilt $(U_{\varepsilon}(x_0) \setminus \{x_0\}) \cap A \neq \emptyset$ Die Menge aller Häufungspunkte wird mit A' bezeichnet.
- (iv) ein **Randpunkt**, wenn $\forall \varepsilon > 0$ gilt $U_{\varepsilon}(x_0) \cap A \neq \emptyset$ und $U_{\varepsilon}(x_0) \cap A^c \neq \emptyset$ Menge aller Randpunkte oder auch **Rand** von A wird mit ∂A bezeichnet.

Korollar

- (i) $\mathring{A} \subset A$
- (ii) $\mathring{A} \subset \overline{A}$
- (iii) $\partial A \subset \overline{A}$
- (iv) $\overline{A} = \mathring{A} \cup \partial A$
- (v) $\overline{A} = A \cup \partial A$ (schwächere Aussage als (iv))

1.1.5 Definition von offen und abgeschlossen

Eine Menge $A \subset \mathbb{R}^n$ heißt

- (i) **offen**, wenn $A = \mathring{A}$ gilt (A besteht nur aus inneren Punkten)
- (ii) **abgeschlossen**, wenn $\partial A \subset A$ gilt (wenn der Rand in der Menge enthalten ist)

1.1.6 Beispiele

- 1. Jede ε -Umgebung $U_{\varepsilon}(x_0 \in \mathbb{R}^n)$ ist offen
- 2. Sei $I \subset \mathbb{R}$, dann gilt
 - (i) I ist offen, wenn I=(a,b) mit $-\infty \leqslant a \leqslant b \leqslant \infty$ für a=b gilt $I=\varnothing$ mit I offen und für $a=-\infty, b=\infty$ ist I auch offen

1.1. TOPOLOGIE 7

(ii)
$$I$$
 ist abgeschlossen, wenn $I=[a,b]$ mit $a,b\in\mathbb{R}$ oder $I=(-\infty,b]$ oder $I=[a,\infty)$ oder $I=(-\infty,\infty)=\mathbb{R}$

(die reellen Zahlen sind offen und abgeschlossen zugleich)

1.1.7 Satz

für $A \subset \mathbb{R}^n$ sind folgenden Aussagen äquivalent:

- (i) A ist abgeschlossen $A = \overline{A}$
- (ii) A enthält alle Häufungspunkte, $A' \subset A$
- (iii) A enthält alle Randpunkte, $\partial A \subset A$
- (iv) A^c ist offen

1.1.8 Satz

- (i) \varnothing und \mathbb{R}^n sind offen.
- (ii) Die Vereinigung beliebig vieler offene Mengen ist offen:

$$\bigcup_{j \in J} (O_j \text{ offen}) = O \text{ offen}$$

(iii) Der Durchschnitt endlich vieler offener Mengen ist offen:

$$\bigcap_{j=1}^{n} (O_j \text{ offen}) = O \text{ offen}$$

Bemerkung: Für unendlich viele offene Mengen gilt dies nicht immer:

$$\bigcap_{k=1}^{\infty} \left(-\frac{1}{k}, \frac{1}{k} \right) = (-1, 1) \cap \left(-\frac{1}{2}, \frac{1}{2} \right) \cap \left(-\frac{1}{3}, \frac{1}{3} \right) \cap \dots = \{0\} \text{ abgeschlossen}$$

1.1.9 Satz

- (i) \varnothing und \mathbb{R}^n sind abgeschlossen.
- (ii) Der Durchschnitt beliebig vieler abgeschlossener Mengen ist abgeschlossen:

$$\bigcap_{j \in J} (A_j \text{ abgeschlossen}) = A \text{ abgeschlossen}$$

(iii) Die Vereinigung endlich vieler abgeschlossenen Mengen ist abgeschlossen:

$$\bigcup_{j=1}^{n} (A_j \text{ abgeschlossen}) = A \text{ abgeschlossen}$$

Bemerkung: Für unendlich viele abgeschlossene Mengen gilt dies nicht immer:

$$\bigcup_{n=1}^{\infty} \left[-1 + \frac{1}{n}, 1 - \frac{1}{n} \right] = \{0\} \cup \left[-\frac{1}{2}, \frac{1}{2} \right] \cup \left[-\frac{2}{3}, \frac{2}{3} \right] \cup \dots = (-1, 1) \text{ offen }$$

1.1.10 Definition von beschränkt und kompakt

Eine Menge $A \subset \mathbb{R}^n$ heißt:

- (i) **beschränkt** wenn $\exists c > 0 \text{ mit } ||x|| < c \quad \forall x \in A$
- (ii) kompakt, wenn A abgeschlossen und beschränkt ist.

1.2 Folgen

1.2.1 Definition von Konvergenz und Beschränktheit

Eine Folge $(a_k)_{k=1}^{\infty}$ heißt

(i) konvergent, wenn gilt

$$\exists a \in \mathbb{R}^n \quad \text{mit} \quad \forall \varepsilon > 0 \quad \exists N(\varepsilon) : \quad ||a_k - a|| \quad \forall k \geqslant N(\varepsilon)$$

Dann ist a der Grenzwert der Folge:

$$a = \lim_{k \to \infty} a_k$$
 oder $a_k \stackrel{k \to \infty}{\to} a$

(ii) **beschränkt**, wenn $\exists c > 0$ mit $||a_k|| < c \quad \forall k$

1.2.2 Bemerkung

Wenn eine Folge
$$(a_k) = \begin{pmatrix} a_1^{(k)} \\ \vdots \\ a_n^{(k)} \end{pmatrix} \in \mathbb{R}^n$$
 konvergiert, so gilt

(i) \Leftrightarrow jede Komponente $\left(a_1^{(k)}\right),...,\left(a_n^{(k)}\right)$ konvergiert:

$$\lim_{k \to \infty} a_k = a \quad \Leftrightarrow \quad \lim_{k \to \infty} a_i^{(k)} = a_i \quad \text{für } i = 1, ..., n$$

(ii) \Leftrightarrow (a_k) erfüllt das Cauchy-Kriterium:

$$\forall \varepsilon > 0 \quad \exists N(\varepsilon) : \quad ||a_k - a_l|| < \varepsilon \quad \forall k, l \geqslant N(\varepsilon)$$

- (iii) \Leftrightarrow jede Teilfolge von (a_k) konvergiert gegen $a: a_{l_k} \overset{k \to \infty}{\to} a$ für $l_1 \geqslant 1, l_2 \geqslant 2, \dots$
- (iv) der Grenzwert a ist eindeutig.

1.2.3 Satz von Bolzano Weierstraß

Jede beschränkte Folge im \mathbb{R}^n besitzt einen konvergente Teilfolge.

Beispiel: Sei
$$(a_k) = \begin{pmatrix} (x_k) \\ (y_k) \end{pmatrix}$$
 eine beschränkte Folge im \mathbb{R}^2 $\Rightarrow (x_k), (y_k)$ sind beschränkte Folgen Satz von Bolzano Wierstraß $\exists (x_k), (y_k)$ sind konvergent

1.2.4 Abschließende Bemerkungen

(i) Grenzwert Rechenregeln können aus dem $\mathbb R$ für $\mathbb R^n$ übernommen werden.

$$z.b. \ a_k \overset{k \to \infty}{\to} a, \quad b_k \overset{k \to \infty}{\to} b \quad \Rightarrow \quad a_k^\top b_k \overset{k \to \infty}{\to} a^\top b$$

- (ii) Es gibt viele Zusammenhänge zwischen den Eigenschaften von Folgen und den topologischen Eigenschaften von Mengen.
 - z.b. Sei $A\subset\mathbb{R}^n$ und $a\in\mathbb{R}^n$ ein Häufungspunkt

$$\Leftrightarrow \exists (a_k)_{k=1}^{\infty} \text{ mit } a_k \in A \setminus \{a\} \, \forall \, k \quad \text{ und } \quad a_k \stackrel{k \to \infty}{\to} a$$

1.3 Funktionsgrenzwerte und Stetigkeit

1.3.1 Definition

Eine Funktion $f:A\subset\mathbb{R}^n\to\mathbb{R}^m$ nennt man eine Funktion mit n-Veränderlichen.

$$f(x_1, ..., x_n) = f\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}) = \begin{pmatrix} f_1(x_1, ..., x_n) \\ \vdots \\ f_m(x_1, ..., x_n) \end{pmatrix} \quad \text{mit} \quad f_1, ..., f_m : \mathbb{R}^n \to \mathbb{R}$$

1.3.2 Definition Grenzwert/Limes

Sei $f:A\subset\mathbb{R}^n\to\mathbb{R}^m$ und $a\in\overline{A}$. Ein $b\in\mathbb{R}^m$ heißt Grenzwert von f für $x\to a$, wenn gilt:

$$\forall \varepsilon > 0 \quad \exists \ \delta(\varepsilon) > 0 : \quad ||f(x) - b|| < \varepsilon \quad \forall \ x \in \dot{U}_{\delta(\varepsilon)}(a) \cap A$$

Bemerkung: Die Funktion f muss in a nicht stetig sein, so kann z.b. gelten: $\lim_{x\to a} f(x) = b \neq f(a)$

1.3.3 Bemerkung

Sei $f:A\subset\mathbb{R}^n\to\mathbb{R}^m, a\in\overline{A}, b\in\mathbb{R}^m$ dann sind folgende Aussagen äquivalent:

- (i) $f(x) \stackrel{x \to a}{b}$
- (ii) $||f(x) b|| \stackrel{x \to a}{0} \in \mathbb{R}^1$ (Eine Norm bildet immer auf ein Skalar ab)
- (iii) $f_1(x) \stackrel{x \to a}{\to} b_1, ..., f_m(x) \stackrel{x \to a}{\to} b_m$

Zusätzlich gilt das Cauchy-Kriterium:

$$\lim_{x \to a} f(x) = b \quad \Leftrightarrow \quad \forall \ \varepsilon > 0 \ \exists \ \delta(\varepsilon) > 0 : \quad \|f(x), f(y)\| < \varepsilon \quad \forall \ x, y \in \dot{U}_{\delta(\varepsilon)}(a) \cap A$$

1.3.4 Beispiel

Sei
$$f(x,y) = \frac{xy}{x^2 + y^2}$$

$$a_k = \begin{pmatrix} x_k \\ y_k \end{pmatrix} = \begin{pmatrix} \frac{1}{k} \\ \frac{1}{k} \end{pmatrix}, \quad f(a_k) = \frac{\frac{1}{k^2}}{\frac{1}{k^2} + \frac{1}{k^2}} = \frac{1}{2} \quad \forall \ k$$

$$b_k = \begin{pmatrix} x_k \\ 0 \end{pmatrix} \text{ mit } x_k \stackrel{k \to \infty}{\to} 0, \quad f(b_k) = \frac{0}{x_1^2} \quad \forall \ k$$

Da
$$\lim_{k\to\infty} f(a_k) = \frac{1}{2} \neq 0 = \lim_{k\to\infty} f(b_k)$$
 kann der Grenzwert nicht existieren.

1.3.5 Lemma Folgenkriterium

Sei $f: A \subset \mathbb{R}^n \to \mathbb{R}^m, a \in \overline{A}$

$$\exists b \in \mathbb{R}^m \text{ mit } \lim_{x \to a} f(x) = b \\ \text{der Grenzwert } b \text{ existiert}$$
 \Leftrightarrow $jede \text{ Folge } (x_k)_{k=1}^{\infty} \subset A \text{ mit } x_k \neq a \; \forall \; k \text{ und } x_k \overset{k \to \infty}{\to} a \\ \Rightarrow f(x_k) \overset{k \to \infty}{\to} b$ $jede \text{ beliebige Folge konvergiert gegen } b$

1.3.6 Satz zu Grenzwerte verketteter Funktionen

Sei
$$A\subset\mathbb{R}^n, B\subset\mathbb{R}^m, a\in\overline{A}, f:A\to B, g:\overline{B}\to\mathbb{R}^l$$

$$\exists \ b \in \overline{B} \ \mathrm{mit} \ \lim_{x \to a} f(x) = b, \quad \exists \ c \in \mathbb{R}^l \ \mathrm{mit} \ \lim_{y \to b} g(y) = c \quad \Rightarrow \quad \lim_{x \to a} \underbrace{g\left(f(x)\right)}_{\left(g \circ f\right)(x)} = \lim_{y \to b} g(y) = c$$

1.3.7 Beispiel

Sei
$$f(x,y) = e^{-x^2+y^2} = \exp(g(x,y))$$
 mit $g(x,y) = x^2 + y^2$, dabei gilt:

$$\lim_{(x,y)^{\top} \to (0,0)^{\top}} g(x,y) = \lim_{(x,y)^{\top} \to (0,0)^{\top}} x^2 + y^2 = 0 \quad \Rightarrow \quad \lim_{z \to 0} f(z) = \lim_{z \to 0} e^z = 1$$

1.3.8 Definition der Stetigkeit

Sei $f: A \subset \mathbb{R}^n \to Rm$

(i) f ist **stetig** in $a \in A$ wenn gilt:

$$\forall \ \varepsilon > 0 \ \exists \delta(\varepsilon) : \quad \|f(x) - f(a)\| < \varepsilon \quad \forall \ x \in U_{\delta(\varepsilon)}(a) \cap A$$

Bemerkung: Es wird $\lim_{x\to a} f(x) = f(a)$ gefordert.

Diese Definition unterscheidet sich in der nicht punktierten ε -Umgebung und es gilt f(a) anstatt b.

(ii) f ist stetig auf A, wenn f in jedem Punkt $a \in A$ stetig ist.

1.3.9 Bemerkung

- (i) Kompositionen stetiger Funktionen sind wieder stetig: f, g stetig $\Rightarrow f + g, f g, ...$ stetig
- (ii) Das Folgenkriterium überträgt sich: Sei $(a_k)_{k=1}^{\infty}$ eine Folge in A mit $\lim_{k\to\infty} a_k = a \quad \Leftrightarrow \quad \lim_{k\to\infty} f(a_k) = f(a)$
- (iii) Ist A kompakt, dann nimmt eine stetige Funktion $f:A\to\mathbb{R}$ immer ein Maximum und Minimum an:

$$\exists x_m, x_M \in A \text{ mit } f(x_m) = \min_{x \in A} f(x), f(x_M) = \max_{x \in A} f(x)$$

1.4 Partielle Ableitungen, Richtungsableitungen

1.4.1 Definition der partiellen Ableitung

Die Funktion $f: A \subset \mathbb{R}^n \to \mathbb{R}^m$ heißt **partielle differenzierbar** in $a \in A$ nach der k-ten Variable x_k mit $k \in \{1, ..., n\}$ wenn der folgender Grenzwert existiert:

$$\frac{\partial}{\partial x_k} f(a) = f_{x_k}(a) = \lim_{h \to 0} \frac{f(a + h \cdot e_k) - f(a)}{h}$$

Existieren alle partielle Ableitungen $f_{x_1}(a), ..., f_{x_n}(a)$, dann ist der **Gradient** von f wie folgt definiert:

$$\nabla f(a) = \begin{pmatrix} f_{x_1}(a) \\ \vdots \\ f_{x_n}(a) \end{pmatrix}$$

und die Funktion f heißt mindestens einmal partielle differenzierbar. Sind die partiellen Ableitungen $f_{x_1}(a), ..., f_{x_n}(a)$ zudem stetig, so heißt f einmal stetig differenzierbar: $f \in C^1(A, \mathbb{R}^m)$ oder kurz $f \in C^1(A)$.

1.4.2 Beispiel

Sei $f(x, y, z) = x^2 - xy + 3z$

$$\frac{\partial}{\partial x} f(x, y, z) = \lim_{h \to 0} \frac{f(x+h, y, z) - f(x, y, z)}{h}$$

$$= \lim_{h \to 0} \frac{(x+h)^2 - (x+h)y + 3z - (x^2 - xy + 3z)}{h}$$

$$= \lim_{h \to 0} \frac{(x+h)^2 - x^2}{h} - \frac{(x+h)y - xy}{h} + \frac{3z - 3z}{h}$$

$$= \left(\frac{d}{dx}x^2\right) - \left(\frac{d}{dx}x\right)y + \left(\frac{d}{dx}0\right)z$$

$$= 2x - y + 0$$

$$\Rightarrow \nabla f(x, y, z) = \begin{pmatrix} 2x - y \\ -x \\ 3 \end{pmatrix}$$

1.4.3 Definition der Richtungsableitung

Sei $a, r \in \mathbb{R}^n$ mit ||r|| = 1 (normiert), $f : \mathbb{R}^n \to \mathbb{R}^m$, dann heißt der folgende Grenzwert die Richtungsableitung von f bei a in Richtung r:

$$\frac{\partial}{\partial r}f(a) = f_r(a) = \lim_{h \to 0} \frac{f(a+h \cdot r) - f(a)}{h}$$

Bemerkung

- (i) Ist $r = e_k$, dann erhalten wir gerade eine partielle Ableitung.
- (ii) Es gibt Funktionen die in a in jede Richtung differenzierbar sind, aber in a nicht stetig sind!

1.5 Total Differenzierbarkeit

Idee: Differenzierbare Funktionen sind lokal im Punkt x_0 linear approximierbar:

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \underbrace{r(x)||x - x_0||}_{\tilde{r}(x)}$$

Dabei muss der Fehler $\tilde{r}(x) = r(x)||x - x_0||$ schneller gegen Null gehen als x gegen x_0 also muss $\tilde{r}(x) = o(x - x_0)$ gelten (Landau-Notation: klein-oh).

1.5.1 Definition der totalen Differenzierbarkeit

Sei $f: A \subset \mathbb{R}^n \to \mathbb{R}^m, A$ offen, $a \in A$

(i) Die Funktion f nennt man **total differenzierbar** bei a, wenn eine Matrix $A \in \mathbb{R}^{m \times n}$ existiert, mit der sich die Funktion f in einer ε -Umgebung um a mittels einer Hyperebene approximieren lässt:

$$f(x) = f(a) + A(x - a) + r(x)||x - a||$$

Dann nennt man die Matrix $A = f'(a) = \frac{\partial}{\partial x} f(a)$ die total Ableitung von f in a.

(ii) Ist $f = \begin{pmatrix} f_1 \\ \vdots \\ f_m \end{pmatrix}$ partiell diff'bar, so nennt man die Ableitung **Jacobi-Matrix**:

$$f'(a) = \frac{\partial}{\partial x} f(a) = J_f(a) = \begin{pmatrix} \frac{\partial}{\partial x_1} f_1(a) & \dots & \frac{\partial}{\partial x_n} f_1(a) \\ \vdots & & \vdots \\ \frac{\partial}{\partial x_1} f_m(a) & \dots & \frac{\partial}{\partial x_n} f_m(a) \end{pmatrix} \in \mathbb{R}^{m \times n}$$

Bemerkung: Es gilt: $\exists f'(a) \Rightarrow f'(a) = J_f(a)$, nicht aber die Gegenrichtung! Es kann also sein, dass die Jacobi-Matrix J_f existiert die Funktion aber nicht total diff'bar ist.

1.5.2 Beispiele

(i)

$$f(r,\varphi) = r \cdot \begin{pmatrix} \cos \varphi \\ \sin \varphi \end{pmatrix} \quad \Rightarrow \quad J_f = \begin{pmatrix} \cos \varphi & -r \sin \varphi \\ \sin \varphi & r \cos \varphi \end{pmatrix}$$

(ii)
$$f(x) = a + b^{\top}(x - x_0), \quad f : \mathbb{R}^n \to \mathbb{R}, \quad a \in \mathbb{R}, \quad b, x_0 \in \mathbb{R}^n$$

 $\Rightarrow \quad f(x_0) = a, \quad f'(x_0) = b^{\top}$

(iii)
$$f(x) = a + A(x - x_0), \quad f: \mathbb{R}^n \to \mathbb{R}^m, \quad a \in \mathbb{R}^m, \quad A \in \mathbb{R}^{m \times n}, \quad x_0 \in \mathbb{R}^n$$

 $\Rightarrow \quad f(x_0) = a, \quad f'(x_0) = A$

Bemerkung: Beispiel (ii) und (iii) sind lineare Funktionen.

1.5.3 Satz

Ist $f:A\subset\mathbb{R}^n\to\mathbb{R}^m$ in jedem Punkt $a\in A$ total differenzierbar, so ist f stetig in A. Beweis:

$$f(x) = \underbrace{f(a)}_{\stackrel{x \to a}{\to} f(a)} + \underbrace{A\underbrace{(x-a)}_{\stackrel{x \to a}{\to} 0 \in \mathbb{R}^n}}_{\stackrel{x \to a}{\to} 0 \in \mathbb{R}^n} + \underbrace{\underbrace{r(x)}_{\stackrel{x \to a}{\to} 0 \in \mathbb{R}^m}}_{\stackrel{x \to a}{\to} 0 \in \mathbb{R}} \qquad \text{mit } r(x) \stackrel{x \to a}{\to} 0$$

$$\lim_{x \to a} f(x) = f(a) \quad \Box$$

1.5.4 Satz

Sei
$$f: A \subset \mathbb{R}^n \to \mathbb{R}^m, a \in A$$

- a. Ist f total differenzierbar in a, so gilt
 - (i) $f'(a) = J_f(a)$
 - (ii) f ist in jede Richtung r differenzierbar mit: $\frac{\partial}{\partial r}f(a) = J_f(a) \cdot r$
- b. Existieren in a alle partiellen Ableitungen (also alle Komponenten der Jacobi-Matrix) und diese stetig sind \Rightarrow f ist in a total differenzierbar.