VERİ İLETİŞİM SİSTEMLERİ

Sinyal Kodlama Teknikleri

6. Ders

Yrd. Doç. Dr. İlhami M. ORAK

Sinyal Kodlama Teknikleri

Kendi ana dili olanlar bile bu tuhaf dili iyi bir şekilde kullanmakta zorlanıyor.

—The Golden Bough, Sir James George Frazer

Sinyal Kodlama Teknikleri

Figure 5.1 Encoding and Modulation Techniques

Veri ve Sinyal

- Dijital veri, Dijital sinyaller: dijital verinin dijital olarak kodlanmasının en basit hali
- Dijital veri, analog sinyal: Modem Dijital veriyi analog sinyale dönüştürür. Bu şekilde analog hattı üzerinden iletilebilir.
- Analog veri, Dijital sinyaller: Ses ve video gibi analog veriler dijital olarak iletilmek için dijital hale getirilir.
- Analog veri, analog sinyaller: Analog veri taşıyıcı frekansa modüle edilerek farklı bir frekans bandındaki analog sinyale dönüştürülür ve analog olarak iletilir.

Dijital Veri, Dijital Sinyal

Dijital sinyal

- Ayrık, sürekli olmayan voltaj "puls"lerinden oluşur
- Her bir puls bir sinyal elemanını oluşturur.
- Binary (ikili) veri sinyal elemanlarına kodlanır.

Terminoloji

- Tek kutuplu (Unipolar)
 - Bütün sinyal elemanları aynı işarete sahip
- Kutuplu (Polar)
 - Bir seviye pozitif diğer seviye negatif gerilimle ifade edilir.
- Veri Hızı (veri rate)
 - Bir saniyede iletilen veri miktarı (R)
- Bir bitin iletim süresi
 - Vericinin bir biti gönderme süresi (1/R)
- Modülasyon Hızı
 - Sinyal seviyelerinin değişme hızı (baud)
- İşaret (mark)
 - Binary 1
- Boşluk (space)
 - Binary 0

Sinyalleri Yorumlama

- Bilinmesi gerekenler
 - Bitlerin zamanı: Başlangıç ve bitiş zamanları
 - Sinyal seviyeleri: 0 ve 1 hangi gerilim seviyesi ile temsil edilmektedir.
- Sinyal yorumlamasını etkileyen faktörler
 - Sinyal/Gürültü oranı (SNR) azaldıkça hatalı bit oranı (BER) artar
 - Veri hızı arttıkça hatalı bit oranı da artar
 - Bant genişliği veri hızında artış olmasına imkan sağlar
 - Kodlama teknikleri: veri bitlerinin sinyallere eşleştirilmesidir.

Kodlama Teknikleri İle İlgili Kavramlar

- Sinyal Spektrumu
 - O Yüksek frekansların olmaması bant genişliğini düşürür.
 - DC parçacığın olmaması halinde transformatör ile AC sinyali olşturulması sağlanır
 - Bant benişliğinin ortalarındaki enerji seviyelerine odaklanılmalı
- Saatle denetim (clocking)
 - Verici ve alıcının senkronize olmasını sağlar
 - Harici bir saat veya sinyal mekanizması ile sağlanır
- Hata sezme (error detection)
 - Sinyal kodlama ile yapılailir
- Sinyal karışımı ve gürültüden etkilenmeme
 - Bazı kodlar diğerlerin göre daha iyi performans gösterebilir
- Maliyet ve karmaşıklık (cost and complexity)
 - Yüksek sinyal hızı -> yüksek maliyet

Kodlama Teknikleri

Sinval Kodlama Teknikleri

- Veri Iletisim-Sistemleri -Ders (

Sıfır Seviyesine Dönmeme Nonreturn to Zero-Level (NRZ-L)

- 0 ve 1 bitleri için iki farklı gerilim seviyesi
- Bir bit iletilirken gerilim seviyesi sabit kalır
 - Sıfır volt seviyesine dönmez
 - Gerilimin olmaması "0", sabit bir pozitif gerilim de "1" i temsil edebilir.
 - Çoğunlukla negatif gerilim bir biti, pozitif gerilim de diğer biti temsil etmekte kullanılır.
- NRZ-L genellikle terminallerin dijital veriyi almasında göndermesinde kullanılır.

Ters Çevrilmiş Sıfıra Dönmeme Nonreturn to Zero Inverted (NRZI)

- NRZ'nin bir varyasyonu
- Bit iletim süresince gerilim seviyesi sabit
- Veri bit iletim zamanı başındaki sinyal değişikliğinin olup olmaması ile kodlama gerçekleşir
 - OBİnary 1: Sinyal değişikliği olması (alçaktan yükseğe veya yüksekten alaçağa) ile kodlanır. Bir önceki sinyal ters çevrilir.
 - Binary 0: Geçiş olmaması ile kodlanır. Bir önceki sinyal aynı kalır
- Diferansiyel kodlama tipidir.
 - Veri sinyal seviyeleri ile değil sinyal elemanlarının geçişi ile belirlenmekte
 - Gürültü durumlarında hatayı tespit etmek NRZ-L'ye göre daha güvenilir.more reliable detection of transition rather than level
 - Sinyal kutuplarının algılanması kolaylıkla saklanabilir

NRZ Avantaj ve Dezavantajlari

- Avantajları
 - Kodlama tekniği kolay
 - Etkin bant genişliği kullanımı
- Dezavantajları
 - DC parçasının olması
 - Senkronizayon özelliğine sahip olmaması
 - ▼ Uzun süreli 0 veya 1 biti gönderiminde verici ile alıcı arasındaki zaman denetimi farkında senkronizasyon kaybolacaktır.
- Dijital manyetik kayıtlarda kullanılır
 - Düşük frekans özelliği
 - Basit olması
- Kısıtlarından dolayı sinyal iletiminde kullanılmaz

Çok Seviyeli İki Kutuplu AMI (Multilevel Binary Bipolar-AMI)

- İkiden fazla sinyal seviyesi kullanılır
- Bipolar-AMI
 - o "0" sinyalin olmaması ile temsil edilir
 - o "1" pozitif veya negatif pulse ile temsil edilir.
 - "1" puls leri her bir seferinde kutup değiştirir.
 - Uzun süreli arka arkaya "1" verilerinde senkronizasyon kaybolmaz.
 - OUzun süreli arka arkaya "0" olması durumunda senkronizasyon kaybı sözkonusu
 - O Pozitif-negatif geçişlerinen dolayı net bir DC parçası söz konusu değil
 - NRZ'ye göre düşük bant genişliği
 - Pulse değişimi basit bir hata sezme mekanizması sağlar.
 - ▼ İlave pulse veya pulse kaybı hatanın sezilmesini zorlaştırır.

Çok Seviyeli Pseudoternary Multilevel Binary Pseudoternary

- Bipolar-AMI'den farklı olarak sinyaller "0" ve "1" için yer değiştirilmiştir.
- "1" sinyalin olmaması ile temsil edilir.
- "0" sinyalin pozitif ve negatif dönüşümü ile temsil edilir.
- Bipolar-AMI'ye göre bir avantaj veya dezavanatajı yoktur.
- Her biri bazı uygulamalarda kullanılır

Çok Seviyeli Kodlama Teknikleri Değerlendirme

- Uzun süreli "0" veya "1" durumunda senkronizasyon
 - İlave bitler eklenebilir, ISDN'de kullanılır
 - ▼ Yüksek veri hızında pahalı çözüm
 - Veriyi değiştirme işlemi (scramble)
- NRZ kadar verimli değil
 - OHer bir sinyal elemanı sadece bir biti temsil eder.
 - ➤ Alıcı 3 farklı seviyeyi (+A, -A, 0) ayırt etmek zorunda.
 - ▼ NRZ'de iki farklı seviye algılanır
 - \bigcirc 3 Seviyeli sistem ile $\log_2 3 = 1.58$ bit temsil edilebilir.
 - 3 Seviyeden dolayı iki seviyeli sistemle aynı hata oranı için3dB daha fazla sinyal gücü gerekir.

Manchester Kodlama

- Çift fazlı kodlama tekniği
- Her bir bitin ortasında seviye geçişi gerçekleşir.
- Geçiş işlemi hem veriyi temsil eder hem de saat denetimini gerçekleştirir.
- Alçaktan yükseğe geçiş "1" i temsil eder
- Yüksekten alçağa geçiş "0"ı temsil eder
- IEEE 802.3 (Éthernet) standardı olarak LAN'da coaxial ve bükümlü kablolar için kullanılır.

Diferansiyel Manchester Kodlama

- Bit ortasındaki geçiş sadece saat denetimi için kullanılır.
- Bit periyodu başındaki seviye geçişi "0" ı temsil eder
- Bit periyodu başında geçiş olmaması "1" i temsil eder
 - Diferansiyel kodlama tekniğidir
- IEEE 802.5 standardı olarak STP kablolarla token ring tipi LAN'da kullanılır.

İki Fazlı Kodlamanın Avantaj ve Dezavantajları

- Dezavantajlar
 - OBit süresince en az bir kez geçiş olmaktadır.
 - Maksimum modulasyon hızı NRZ'nin iki katı.
 - rDaha fazla bant genişliği gerkeir
- Avantajlar
 - Bit ortalarındaki geçişle senkronizasyon sağlanır (kendinden saat denetimi)
 - DC parçası bulunmamaktadır
 - Hata sezme imkanı
 - Geçiş olmaması hata tespitine yardım eder
 - Gürültünün sinyal geçişi olması hatanın anlaşılmasını imkansız kılar.

Modülasyon Hızı

- Bit süresi
 - \circ T_b
 - 1 μsec
- Veri Hızı
 - $O 1/T_b$
 - 1 Mbps (örnek için)
- Modülasyon Hızı
 - Sinyal elemanının oluşturulma hızı
 - Manchester kodlamada bit süresinin yarısı (2/T_b)
 - 2 Mbaud (örnek için)

Değiştirme (Scrambling)

- Değiştirme işlemi ile ardışıl olarak sabit gerilim oluşmaması sağlanır
- Değiştirme işlemi şu özellikler sahip olmalıdır
 - Senkronizasyon için yeterli sayıda geçiş
 - Orijinal sinyalin verici ve alıcıda doğru algılanması
 - Orijinal veri uzunluğunun korunması
- Tasarım Hedefleri
 - DC parçanın olmaması
 - Uzun süreli sıfır seviyeli işaret sinyalinin bulunmaması
 - Veri hızında düşme olmaması
 - Hata sezme özelliğinin sağlanması

B8ZS and HDB3

B8ZS and HDB3

- B8ZS (Çift kutuplu 8 sıfır değişimli)
 - Arka arkaya 8 adet sıfır varsa ve önceki gerilim seviyesi pozitifse değiştirme:
 - × 000+-0-+
 - Arka arkaya 8 adet sıfır varsa ve önceki gerilim seviyesi negatifse değiştirme:
 - × 000-+0+-
 - Genel İfade: 000VB0BV (
 - V: Önceki gerilim seviyesinin aynı, B: Önceki gerilim seviyesinin tersi
- HDB3 (Yüksek yoğunluklu çift kutuplu 3 sıfırlı değişim)
 - Son değişimden sonra "0" dan farklı pulse sayısı tek ise değiştirme:
 - × 000V
 - Son değişimden sonra "0" dan farklı pulse sayısı tek ise değiştirme:
 - **■** B00V

B8ZS and HDB3

Avantajları

- Arka arkaya çok sayıda "0" oluşmasını engeller
- Değişimle oluşan sinyalin, gürültü ve diğer etkenlerle oluşturma ihtimali çok zayıf
- Senkronizasyon işlemi sağlar
- DC parçası bulunmamaktadır
- Enerji belirli bir frekans etrafında yoğunlaşır (veri hızının yarısı)
- Yüksek veri hızı iletimi
- Uzun mesafeli veri iletimi

Dijital Verinin Analog Sinyalle İletimi

- Telefon hatlarından haberleşmelerde
 - Frekans aralığı: 300Hz 3400Hz arası
 - Modem (modulator-demodulator) ile dijital sinyallerin analog sinyale ve analog sinyalin dijital sinyale dönüştürülmesi sağlanır.
- Modülasyon
 - Taşıyıcı (carrier) sinyalin üç özelliğinden bir ya da birkaçını kullanılmasıdır.
- Kodlama teknikleri
 - Genlik Öteleme (Amplitude shift keying ASK)
 - Frekans Öteleme (Frequency shift keying FSK)
 - Faz Öteleme (Phase shift keying PK)

Modülasyon Teknikleri

Genlik Öteleme - ASK

- 0/1 bitlerini farklı genliklerle kodlanır
 - Çoğunlukla bu bitlerden biri sıfır genlikle kodlanır
- Ani genlik değişimlerinden çabuk etkilenmektedir
- Verimsiz bir modülasyon yöntemidir
- Kullanım alanları
 - 1200bps a kadar ses iletim hatlarında
 - Fiber hatlarda yüksek hızlarda iletim
 - o İşık pulsleri bir sinyal elemanı, olmaması diğer sinyal elemanı

Genlik Öteleme

- ASK
 - $S(t) = \{A \cos(2\pi f_c t) ; binary 1 \}$ 0 ; binary 0
- A: Genlik
- f_c:Taşıyıcı frekans

İkili Frekans Öteleme Binary Frequency Shift Keying (BFSK)

- En yaygın FSK tipi ikili frekans ötelemedir (BFSK)
- "0/1" bitleri taşıyıcı sinyal frekansına yakın farklı iki frekansla temsil edilir
- ASK ya göre hatalardan daha az etkilenme ktdir
- Kullanım alanları
 - 1200bps a kadar ses iletim hatlarında
 - Yüksek radyo frekanslarında iletişimde (3-30 MHz)
 - Coaxial kablo ile LAN'de daha yüksek frekansla iletişim

Binary Frequency Shift Keying

- BFSK
 - $S(t) = \{A \cos(2\pi f_1 t)\}$; binary 1 $A \cos(2\pi f_2 t)$; binary 0
- f₁, f₂ taşıyıcı frekansdan ofset

Figure 5.8 Full-Duplex FSK Transmission on a Voice-Grade Line

Çoklu FSK

- Her bir sinyal elemanı birden fazla biti temsil eder
- İkiden fazla frekans kullanılır
- Daha fazla bant genişliği
- Hatalara daha açık
- MFSK
 - $S(t) = A cos(2\pi f_i t)$; $1 \le i \le M$ $f_i = f_c + (2i-1-M) f_d$

Çoklu FSK (Example)

• $f_c = 250 \text{ KHz}$, $f_d = 25 \text{ KHz}$ ve M=8 (L=3 bit)

```
f_1 = 75 \text{ Khz } (000) f_2 = 125 \text{ Khz } (001)

f_3 = 175 \text{ Khz } (010) f_4 = 225 \text{ Khz } (011)

f_5 = 275 \text{ Khz } (100) f_6 = 325 \text{ Khz } (101)

f_7 = 375 \text{ Khz } (110) f_8 = 425 \text{ Khz } (111)
```

Bu yöntemin destekleyeceği veri hızı R=1/T =2Lfd = 150 kbps

Çoklu FSK (Örnek)

	01	11	00	11	11	01	10	00	00	11
f _c +3f _d										
f_c+f_d										
f _c -f _d										
f _c -3f _d										

$$2f_d = 1/T_s$$
$$T_s = LT$$

Aralık için gereken minimum frekans:

$$2f_d = 1/T_s$$

Modülatörün ihtiyaç duyduğu bant genişliği

$$W_d = 2Mf_d = M/T_s$$

$$M=2^L$$

Faz Öteleme (PSK)

- Dijitler taşıyıcı sinyalin fazı ötelenerek elde edilir
- Binary PSK (BPSK)
 - İki faz iki dijiti temsil eder
- BPSK

```
S(t) = \{A\cos(2\pi f_c t) ; binary 1 \} A\cos(2\pi f_c t + \pi) = -A\cos(2\pi f_c t) ; binary 0
```

Faz Öteleme (PSK)

- Diferansiyel PSK (DPSK)
 - Faz referans sinyale göre değil bir önceki iletime göre ötelenir

Dördül PSK Quadrature PSK

- Her bir sinyal elemanın birden fazla biti tanımlaması ile bant genişliği daha verimli kullanılmış olur
 - Her sinyal $\pi/2$ (90°) faz öteleme ile elde edilir
 - Her sinyal elemanı 2 biti temsil eder
 - işlem Şekli
 - Veriler ikiye ayrılır
 - Taşıyıcı üzerine modülasyonu yapılır
 - Taşıyıcı fazı 90° ötelenir
- 8 faz açısı ve birden fazla genlikle kullanılabilir
 - 9600bps modem 12 açı (4 tanesi 2 genlik değerine sahip)

QPSK ve OQPSK Modülatörleri

OQPSK: Ofsetli (ortogonal) QSPK

Dijital den Analoga Modülasyon Tekniklerinin Performansı

- Bant genişliği
 - ASK/PSK bant genişliği bit hızına ilişkilidir
 - Çok seviyeli PSK ile önemli bir iyileşme sağlanır
- Gürültü halinde
 - Bit hatası oranı ASK ve FSK'ya göre PSK ve QPSK de 3dB üstün
 - MFSK ve MPSK da bant genişliği ve hata performansı arasında arasında bir orta nokta söz konusudur.

Dördül Genlik Modülasyonu (Quadrature Amplitude Modulation – QAM)

- QAM (asymmetric Dijital subscriber line ADSL) ve bazı kablosuz iletişimde kullanılır
- Bu teknik ASK ve PSK nın bileşiminden oluşur.
- QPSK'nın mantıksal olarak genişletilmiş hali olarak kabul edilebilir.
- İki sinyalin aynı taşıyıcı frekans üzerinde aynı anda iletilmesi özelliğini kullanır
 - O Aynı taşıyıcı sinyal ve 90° ötelenmiş halini kullanır
 - OHer bir taşıyıcı ASK modülasyonuna sahiptir
 - Aynı iletim ortamında iki farklı sinyal taşınır
 - Alıcı, sinyali demodülasyon sonrası birleşytirerek orijinal binary veriyi oluşturur.

QAM Modülatör

Sinyal Kodlama Teknikleri

Veri Iletisim Sistemleri - Ders

Analog Verinin Dijital Sinyalle İletimi

- Dijitalleştirme ile analog veri dijital veriye dönüştürülür. Sonrasında:
 - ODijital veri NRZ-L ile gönderilebilir.
 - NRZ-L'den farklı bir teknikle kodlanarak dijital sinyal olarak gönderilebilir
 - ODijital veri analog sinyale dönüştürülerek iletilebir.
- Analog verinin dijital hale dönüştürülmesini ve iletim sonrası tekrardan dijital halden analog veriye dönüştürülmesi codec (coder-decoder) ile gerçekleştirilir.
- Codec çeşitleri
 - opulse code modulation
 - delta modulation

Analog Verilerin Dijitalleştirilmesi

Pulse Code Modulation (PCM)

- Örnekleme Teoremi
 - "Eğer sinyal düzenli aralıklarla sinyal frekansının iki katında öreneklenirse, örnekler orijinal sinyale ait tüm bilgileri içerir"
 - Örnek: 4000Hz ses verisi, saniyede 8000 örnekle örneklenmelidir.
- Alınan örnekler analog örneklerdir
 - Pulse Amplitude Modulation (PAM)
- Her birine bir dijital değer atanır
 - 4 bit ile Veri Hızı = 8000*4 = 32 kbps

PCM Example

Pulse Code Modulation (PCM)

- Band genişliği B olan sinyal için
- 2B örnekleme yapılır
- Ornekleme periyodu, $T_s = 1/2B \text{ sn}$
- Her bir PAM örneği 16 farklı seviyeden biri ile gösterilir.
- Her bir örnek 4bitlik kod ile temsil edilir.
- Seviye sayısı arttırılması sinyalin orijinaline yaklaşmasını sağlar
 - Örneğin 8 bit örnekleme ile 256 seviye elde edilir.
 - Veri hızı= 8000 örnek X 8 bit = 64 kbps

PCM Blok Diyagramı

Lineer Olmayan Kodlama

Lineer Olmayan Kodlama

- Her bir seviyenin eşit aralıkta olmadığı bir tekniktir
- Eşit aralık alınması sinyal seviyesini dikkate almaz.
- Düşük genlikli değerler daha fazla bozulmaya maruz kalır
- Yöntem
 - Düşük genlikler için daha fazla sayısal seviye
 - Yüksek genlikler için daha az sayısal seviye
- Daha iyi PCM SNR oranı
- Ses sinyalleri için 24-30 dB iyileştirme

Sıkıştırma – Genişletme Companding

- Girişte sinyalin yoğun olduğu kısımlarını zayıf sinyale daha fazla kazanç ayırarak sıkıştırma yapar.
- Çıkışta da tam tersi işlem gerçekleştirilir.
- Eşit seviye genişliği
- Alçak sinyal seviyelerinde daha çok seviye kullanılır.

Delta Modulation

- Analog giriş merdiven fonksiyonu ile yaklaşık olarak gösterilir
 - Her bir örnekleme zamanında (δ) seviye yükselir ya da alçalır
- Binary özelliktedir
 - Fonksiyon her bir örneklemede ya yükselir ya da düşer
 - Bu şekilde he bir örnekleme bir bit olarak kodlanabilir
 - Yükselme:1, Düşme: 0
- Analog sinyalin genliği merdiven şeklinde benzetilen sinyal değerinin üzerinde ise merdiven sinyali yükseltilir değilse düşürülür.

Örnek Delta Modulation

Delta Modulation Operasyonu

PCM - Delta Modülasyon Karşılaştırması

- DM, PCM'e göre daha basit
- DM, daha kötü SNR özelliğindedir.
- Bant genişliği
 - PCM ile iyi bir ses kalitesi için
 - 128 seviye (7 bit) ve ses band genişliği: 4khz
 - ▼ Veri hızı: 8000 x 7 = 56kbps
 - Nyquist kriterine göre dijital sinyalin ihtiyaç duyduğu bant genişliği = veri hızı/2 = 28 kHz olmalı
- Veri sıkıştırma ile bu fark azaltılabilir
- Bu band genişliğindeki farka rağmen dijital sinyal iletimine yönelim artmakta. Sebepleri:
 - Repeater kullanımı ile amplifier larda oluşan gürültü artışı engellenir
 - TDM (time division multiplexing) gürültü açısından FDM (frequency division multiplexing) 'e göre daha avantajlı
 - Dijital sinyallerin anahtarlanması daha etkili
- PCM tekniği DM'e tercih edilmekedir.

Analog Verinin Analog Sinyalle İletimi

- Analog veri taşıyıcı sinyalle modülasyona tabi tutulur
- Analog sinyaller niçin modüle edilir?
 - Yüksek frekanslar daha etkii veri iletimi sağlayabilir
 - Frekans bölerek çoklama (frequency division multiplexing -FDM) imkanı sağlar
- Modülasyon tipleri
 - Amplitude (AM)
 - Frequency (FM)
 - Phase (PM)

Analog Modülasyon Teknikleri

- Amplitude Modulation (Genlik Modülasyonu)
 - O Giriş sinyali, taşıyıcı sinyal f_c ile çarpılır.
- Frequency Modulation (Frekans Modülasyonu)
- Phase Modulation (Faz Modülasyonu)

Özet

- Sinyal Kodlama Teknikleri
 - Dijital verinin dijital sinyalle iletimi
 - Analog verinin dijital sinyalle iletimi
 - Dijital verinin analog sinyalle iletimi
 - Analog verinin analog sinyalle iletimi

-Sinval Kodlama-Teknikleri-

Kaynakça

 Data and Computer Communications (Chapter 5), Eighth Edition by William Stallings