Lista de Exercícios P1

Prof. Maurício Acconcia Dias

Questão 1 — Faça o projeto dos sistemas abaixo no nível de detalhamento que se sentir confortável e, em seguida, discuta as questões de segurança em hardware, tolerância à falhas, quais são os problemas e como seria possível solucioná-los

- a) Sistema de controle de voo autônomo de um drone
- b) Sistema de freio de um veículo autônomo
- c) Sistema de controle de braço robótico em ambiente industrial
- d) Sistema de controle de uma casa inteligente
- e) Aspirador robótico
- f) Drone de guerra responsável por acertar alvos remotamente

Para esta questão foi selecionado o Aspirador Robótico, podemos ter acesso a primeira parte das informações por esse link http://monografias.poli.ufrj.br/monografias/monopoli10012128.pdf
Para este projeto é adotado o Arduíno como hardware controlador.

Figura 1: Blocos de funcionamento do Arduíno.

Figura 2: Arquitetura do Arduíno.

Devido a complexidade do projeto devemos adotar sensores e atuadores, sensores tais como de presença, chaves de fim de curso, sensores capacitivos, sensores indutivos, ultrassônicos e sensores óticos.

Os fatores que definem qual a escolha dos sensores seriam: o tipo de material a ser detectado, distância sensor, histerese, fatores ambientais e condições de instalação e objetivo de detecção.

Para os atuadores adotamos os motores de passo e motor elétrico do aspirador de pó.

A partir dos detalhes previamente definidos, resta a preparação do projeto.

24	Abraçadeira	2	Alumínio - Ø71mm x 140mm
23	Duto Retangular	1	Duto Sanfonado Comercial-35x14mm
22	Separador Ciclone	1	Poliestileno - Ø 70mm x 280mm
21	Duto Circular	1	Duto Sanfonado Comercial - Ø35mm
20	Placa Arduino	1	Arduino Uno Comercial
19	Coletor	1	Poliestileno - 60mm x 60mm
18	Bocal Sucção	1	Poliestileno - Ø175mm
17	Motor de Passo	2	Motor Kalatec KTC-HT23-397
16	Cantoneira Esquerda	2	Alumínio - 56,5 x 56,5 x 1mm
15	Parafuso M5	8	Rosca Métrica M5 x comp. 25mm
14	Parafuso M5	4	Rosca Métrica M5 x comp. 30mm
13	Roda Castor	1	Poliuretano e Alumínio - Ø30mn
12	Porca M5	20	Rosca Métrica M5 x 10mm
-11	Parafuso M2	4	Rosca Métrica M2 x comp. 25mm
10	Chassi	1	Poletileno HMW - Ø400mm
9	Cantoneira Direita	2	Alumínio - 56,5 x 56,5 x 1 mm
8	Roda Padrão	2	Poliuretano -Diâmetro Externo 126mm
7	Pneu	2	Borracha - Diâmetro Interno 126mm
6	Parafuso M2	2	Rosca Métrica M5 x comp. 25mm
5	Protoboard	8	Dimensões Comerciais 165x57x10mm
4	Bomba Elétrica	1	Bomba Electrolux Modelo TF1S
3	Parafuso M2	1	Rosca Métrica M2 X comp. 15mm
2	Sensor Ultrassônico HC-SR04	2	Sensor HC-SR04 - 45mm x 20mm
1	Tampa	1	Polietileno HMW - Ø400 mm

24	Abraçadeira	2	Alumínio - Ø71mm x 140mm x 1mm
23	Duto Retangular	1	Duto Retângular Sanfonado - 35x14mm
22	Separador Cliclônico	1	Poliestileno - Ø 70mm x comp.280mm
21	Duto Circular	1	Duto Sanfonado Comercial - Ø35mm
20	Placa Arduino	1	Arduino Uno Comercial
19	Coletor	1	Poliestileno - 60mm x 60mm
18	Bocal Sucção	1	Poliestileno - Ø175mm
17	Motor de Passo	2	Modelo Comercial Kalatec KTC-HT23-397
16	Cantoneira Esquerda	2	Alumínio - 56,5mm x 56,5mm
15	Parafuso M5	8	Rosca Métrica M5 x comp. 25mm
14	Parafuso M5	4	Rosca Métrica M5 x comp.30mm
13	Roda Castor	1	Poliuretano e Alumínio - Ø30mm
12	Porca M5	20	Rosca Métrica M5
11	Parafuso M2	4	Rosca Métrica M2 x comp.25mm
10	Chassi	1	Polietileno HMW - Ø400mm
9	Cantoneira Direita	2	Alumínio - 56,5mm x 56,5mm
8	Roda padrão	2	Poliuretano Diâmetro Externo 126mm
7	Pneu	2	Borracha Diâmetro Interno 126mm
6	ParafusoM2	2	Rosca Métrica M5 x comp.25mm
5	Protoboard	8	Dimensões Comerciais 165x57x10mm
4	Bomba Elétrica	1	Bomba Electrolux Modelo TF1S
3	Parafuso M2	1	Rosca Métrica M2 x comp.15mm
2	Sensor Ultrassônico HC-SR04	2	Sensor HC-SR04 - 45mm x 20mm
1	Tampa	1	Polietileno HMW- Ø400mm
Peça	Denominação e Observações	Quant.	Material e Dimensões

hackers-acesso-a-camara-dentro-de-casa/

Descrição dos componentes do robô.

Item	Descrição	Item	Descrição
1	Tampa	13	Porca M3
2	Sensor Ultrassom	14	Parafuso M5
3	Parafuso M2	15	Cantoneira
4	Bomba de Ar	16	Motor de passo
5	Protoboard	17	Porca MS
6	Parafuso M5	18	Placa Arduino
7	Pneu	19	Bocal de sucção
8	Roda Padrão	20	Duto Circular
9	Coletor de poeira	21	Ciclone
10	Chassi	22	Duto Retângular
11	Parafuso M3	23	Abraçadeira de Alumínio
12	Roda Castor	- 3	

Em termos de questões de segurança do hardware podemos identificar que pode acabar dando acesso a casa para os hackers, pois em alguns modelos modernos desse tipo de robô aspirador tem conexão com câmera, a mesma câmera que transmite para o celular, videos não cifrados ou criptografados, e não somente isso, quando se pensa emIOT e o robô aspirador se liga a casa através disso, pode gerar um backdoor que daria acesso a um hacker a tudo que se tem na casa e se controla via wireless. Essas e outras são algumas das falhas que podemos notar. Fonte: <a href="https://pplware.sapo.pt/informacao/falhas-de-seguranca-num-robo-aspirador-pode-dar-aos-num-robo-aspirador-pode-dar-aos-num-robo-aspirador-pode-dar-aos-num-robo-aspirador-pode-dar-aos-

No quesito de tolerância a falhas, podemos contornar os problemas acima citados, adotando maior segurança ao sistema, como transmissões de video criptografadas com protocolo de segurança mais amplo e preciso, a fim de evitar invasões indesejadas no sistema e abrir uma

porta para o IOT da residência ou local de trabalho do robô, outra coisa que podemos fazer a fim de evitar futuros problemas, é adotar projetos mais consistentes, ou estruturas de hardware dedicados como o caso do SoC, já que o arduíno poderia ser considerado frágil ao sistema, e por fim, devemos adotar rigorosos testes, para prover segurança tanto a nível de software quanto hardware, para evitar as falhas a seguir detalhadas.

Problemas que podemos anotar analisando casos anteriores, é por conta da bateria, pois no modelo Roomba, ela pode apresentar falhas, afim de evitar isso deve se manter a limpeza no robô em dia, certificar que não há mal contato na bateria, e se necessário realizar reset para recobrar o funcionamento do mesmo, algo útil ainda sobre o Roomba é que o mesmo tem uma série de luzes que indicam seu funcionamento, onde através delas podemos verificar falhas e adotar medidas reparativas se necessárias.

https://www.cin.ufpe.br/~jvob/introducao.html

http://www.inf.ufrgs.br/~taisy/disciplinas/textos/ConceitosDependabilidade.PDF

https://www.bateriasrobot.com/pt/content/19-bateria-do-roomba-soluo-de-problemas

https://suporte.irobot.pt/app/answers/detail/a id/12667/related/1?cc=pt

Questão 2 – Defina o que é um System on Chip (SoC) e discuta sua posição no mercado atual de fabricação de chips.

Questão 3 – Foram apresentadas questões importantes sobre o projeto de chips. Discuta as que achou mais relevante, seu impacto no hardware final e como assegurar que cada um dos requisitos seja cumprido.

Questão 4 — Considerando as possibilidades atuais, sem contar as dificuldades que poderiam surgir, você diria que fabricar um chip é a melhor solução para o desenvolvimento de hardware sempre? Justifique sua resposta.

Q2: https://canaltech.com.br/hardware/O-que-e-um-SoC/
https://canaltech.com.br/hardware/O-que-e-um-SoC/
https://canaltech.com.br/hardware/O-que-e-um-SoC/
https://canaltech.com.br/hardware/O-que-e-um-SoC/
https://canaltech.com.br/hardware/O-que-e-um-SoC/
https://canaltech.com.herware/News/home/20191022005931/en/System-on-Chip-SoC-Market-2019-2023-Evolving-Opportunities-with-Apple-Inc.-and-Huawei-Technologies-Co.-Ltd.-Technavio">https://canaltech.com/news/home/20191022005931/en/System-on-Chip-SoC-Market-2019-2023-Evolving-Opportunities-with-Apple-Inc.-and-Huawei-Technologies-Co.-Ltd.-Technavio
Aevolução das técnicas de fabricação permitiu que os componentes se tornassem tão pequenos que agora um único chip é capaz de conter processador, memória e até placa de vídeo, recebendo uma classificação especial conhecida como SoC (System on a Chip - Sistema em um chip).

Antes restritos a grandes centros de automação devido ao seu baixíssimo consumo de energia, custo e boa performance, os SoCs começaram a fazer parte de nosso dia a dia com o aumento das vendas de smartphones e tablets, e atualmente é possível encontrar até computadores completos do tamanho de um pequeno bloco de notas equipados com eles.

De acordo com projeções internacionais, pode-se dizer que é previsto que até 2023 haja um crescimento de pelo menos 25 bilhões de dólares na área, o mercado gira em torno da adoção do

crescimento do SoC em robóticas, e também é previsto seu crescimento por conta do 5G, podemos citar industrias automotivas, de saúde e industrias eletrônicas como os maiores empregadores do sistema SoC, SoC's provém interfaces de rede, sistemas operacionais, e framework de machine learning, esses sendo essenciais quando se trata de automação e robótica.

As 5 principais companhias no ramo a utilizar essa tecnologia se enquadram, Apple Inc, Huawei, Media Tek, Qualcomm e Samsung electronics.

Q3: Verificar aula talvez???

Q4: Levando em conta o mercado atual, pode-se dizer que nem sempre é viável a fabricação do chip, pois devemos levar em conta seu custo final, e a forma que ele será empregado, mas se desconsiderarmos as dificuldades que se encontram e os problemas, o chip é sim a melhor solução, pois cada vez mais nos aproximamos de um tamanho mais e mais reduzido, capaz de processar e ser útil para utilização em larga escala, mas há de se pensar que podemos ter tecnologias futuras que nos arremetam a nanotecnologia e quem sabe até opções mais interessantes que não dependam de hardware in loco, onde podemos ter um entreposto que execute e lide com suas dificuldades.

Mas voltando a questão central, tudo vai depender do projeto em que se vai aplicar o chip, entende-se ser viável por sua capacidade, e por ser flexível.