```
import the necessary libraries.

import matplotlib.pyplot as plt
%matplotlib inline
import numpy as np
import seaborn as sns
```

The Iris Dataset: https://en.wikipedia.org/wiki/Iris_flower_data_set

This dataset consists of data collected on 150 Iris flowers, 50 from each of three types: Setosa, Versicolour, and Virginica. For each flower in the dataset we have its Iris type, its petal and sepal length and width. The goal of this assignment is to create a model that learns the type of Iris based on its petal and sepal length and width.

```
In [2]: # Import the Iris dataset from the sklearn library.
                   # The organisation of the data in the sklearn library is described at https://scikit-learn.org/stable/auto_exam
                   from sklearn.datasets import load_iris
                   iris_dataset = load_iris()
                   #Check the "keys" (column names) of the dataset
                   print("Components of the Iris dataset:\n", iris_dataset.keys())
                  Components of the Iris dataset:
                   dict_keys(['data', 'target', 'frame', 'target_names', 'DESCR', 'feature_names', 'filename', 'data_module'])
In [3]: # Check the component "data"
                   print('The type of the feature "data" is',type(iris_dataset['data']))
                   print('The shape of the "data" is',iris_dataset['data'].shape)
                   print("Check the first five rows of data:\n", iris_dataset['data'][:5])
                 The type of the feature "data" is <class 'numpy.ndarray'> The shape of the "data" is (150, 4)
                  Check the first five rows of data:
                     [[5.1 3.5 1.4 0.2]
                     [4.9 3. 1.4 0.2]
[4.7 3.2 1.3 0.2]
                     [4.6 3.1 1.5 0.2]
                    [5. 3.6 1.4 0.2]]
In [4]: # Check the component "target"
                   print('The type of feature "target" is',type(iris_dataset['target']))
                   print('The shape of the "target" is',iris_dataset['target'].shape)
print('Check the first five targets:', iris_dataset['target'][:5])
                   print('Check the distinct values of "target":', np.unique(iris_dataset['target']))
                 The type of feature "target" is <class 'numpy.ndarray'>
The shape of the "target" is (150,)
Check the first five targets: [0 0 0 0 0]
Check the distinct values of "target": [0 1 2]
                We conclude that "target" is a vector with 150 entries, one for each of the corresponding rows in "data". There is a numerical
                (categorical) encoding for the type of Iris of the flower described in that data point.
In [5]: # Check the component "target_names"
                   print('The type of feature "target_names" is',type(iris_dataset['target_names']))
                   print('The shape of the "target_names" is',iris_dataset['target_names'].shape)
print('Check the values of "target_names":', iris_dataset['target_names'])
                  The type of feature "target_names" is <class 'numpy.ndarray'>
                 The shape of the "target_names" is (3,)
Check the values of "target_names": ['setosa' 'versicolor' 'virginica']
In [6]: # Check the component "feature_names"
                   print('The type of feature "feature_names" is',type(iris_dataset['feature_names']))
                   print('Check the values of "feature_names":', iris_dataset['feature_names'])
                 The type of feature "feature_names" is <class 'list'> Check the values of "feature_names": ['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)', 'petal length (cm)', 'pe
                  h (cm)']
```

Data exploration

Visualization code adapted from: https://www.kaggle.com/code/kostasmar/exploring-the-iris-data-set-scikit-learn

```
In [7]:
# Just for visualisation purposes we will use the Iris type names, rather than their numerical encoding
iris_dataset_target_n = iris_dataset['target'].astype(str)
for i in range(3):
    iris_dataset_target_n[iris_dataset_target_n == str(i)] = iris_dataset['target_names'][i]
# The plotting function: a violin plot of the data, one feature at a time, grouped by the Iris type
```

```
def plot_violin(feature, plot_location):
    ax = plt.subplot(2,2,plot_location)
    ax.set(title='Data distribution:'+iris_dataset['feature_names'][feature])
    sns.violinplot(
        #x=iris_dataset['target'],
        x=iris_dataset_target_n,
        y=iris_dataset['data'][:,feature],
        palette = sns.color_palette('tab10', n_colors=3),
        hue = iris_dataset_target_n,
# Plot the violin plots, for each of the 4 features
plt.figure(figsize=(17,12))
plot_location = 1
for feature in range(4):
    plot_violin(feature, plot_location)
    plot_location += 1
```


We conclude, especially based on the lower 2 plots, that the 3 classes can be differentiated from each other. So machine learning has a good chance of succeeding on this dataset.

0.5

0.0

Prepare for the machine learning phase: split the data into train/validation/test 60/20/20

versicolor

```
In [8]:
         # Reset the seed of the random number generator, for reproducibility purposes
         np.random.seed(2023)
In [9]:
         # First split the data into 20% for the testing data and 80% for the training and validation.
         # The data is split in a stratified fashion:
                the three classes contribute proportionally to the train and the test datasets
         from sklearn.model_selection import train_test_split
         X_train_valid, X_test, y_train_valid, y_test = train_test_split(
             iris_dataset['data'],
             iris_dataset['target'],
             test_size=0.20,
             shuffle=True,
             random_state=100,
             stratify=iris_dataset['target']
```

In [10]: # Check the split

```
print("X_train_valid shape:", X_train_valid.shape)
print("y_train_valid shape:", y_train_valid.shape)
print("X_test shape:", X_test.shape)
print("y_test shape:", y_test.shape)
X_train_valid_shape: (120_4)
```

```
X_train_valid shape: (120, 4)
y_train_valid shape: (120,)
X_test shape: (30, 4)
y_test shape: (30,)
```

Data very often should be normalised and/or scaled to help the learning of the model. This is the right place to normalise/scale the train data, after the split is done, to avoid any data leakage. The exact same normalisation/scaling must be applied separately to the validation and to the test data.

In our case, we scale each of the features to the [0, 1] range. Other choices may also work fine.

```
In [11]:
    from sklearn.preprocessing import MinMaxScaler
    min_max_scaler = MinMaxScaler()
    min_max_scaler = min_max_scaler.fit(X_train)
    X_train = min_max_scaler.transform(X_train)
```

Train your first model: decision tree

A decision tree is a simple machine learning model that aims to classify datapoints through a series of "decisions". The yes/no outcome of each decision can be seen as a binary tree, and more decisions can be taken further down on the tree. We only use on this dataset a decision tree of depth at most 2, in other words we aim to classify the Irises through two consequetive questions/decision on their feature.

Decision trees will be discussed in details later in the course.

Evaluating the Model

We conclude that the model has an excellent performance on the training dataset with 98% accuracy. Let's check its performance on the validation dataset.