Spectral Expansion for Stationary Kernels

BY STEPHEN ANDREW CROWLEY
December 10, 2024

Theorem 1. [Spectral Expansion of Stationary Kernels] Let K(t, s) be a continuous, positive definite, stationary kernel with spectral measure μ . Assume:

- 1. μ has all finite moments: $\int_{-\infty}^{\infty} |\omega|^n d\mu(\omega) < \infty$ for all $n \ge 0$
- 2. μ satisfies Carleman's condition: $\sum_{n=1}^{\infty} (\mu_{2n})^{-1/(2n)} = \infty$ where $\mu_n = \int_{-\infty}^{\infty} \omega^n d\mu(\omega)$

Then the expansion

$$\sum_{n=0}^{N} \langle K(\cdot, s), \psi_n \rangle \psi_n(t)$$

where $\{\psi_n\}$ are constructed via Gram-Schmidt orthonormalization of $\{f_n\}$, converges uniformly to K(t,s) as $N \to \infty$.

Lemma 2. [Moment Problem Uniqueness] Under the Carleman condition, the measure μ is uniquely determined by its moments, and polynomials are dense in $L^2(d\mu)$.

Proof. The Carleman condition ensures that the moment problem is determinate. By the Riesz-Haviland theorem, this implies polynomial density in $L^2(d\mu)$.

We proceed through several steps:

Step 1: Spectral Representation

By Bochner's theorem:

$$K(t-s) = \int_{-\infty}^{\infty} e^{i\omega(t-s)} d\mu(\omega)$$

Step 2: Regularization

For M > 0, define the truncated kernel:

$$K_M(t-s) = \int_{-M}^{M} e^{i\omega(t-s)} d\mu(\omega)$$

Lemma 3. [Truncation Convergence] $||K - K_M||_{\infty} \to 0$ as $M \to \infty$, and K_M is positive definite for each M.

Proof. The convergence follows from dominated convergence, while positive definiteness follows from the fact that K_M is a Fourier transform of a positive measure.

Step 3: Polynomial Approximation

Lemma 4. [L² Density] Let $\{p_n\}$ be orthogonal polynomials with respect to $\mu|_{[-M,M]}$. Then:

$$e^{i\omega t}\chi_{[-M,M]}(\omega) = \sum_{n=0}^{\infty} c_n^M(t) p_n(\omega)$$

in $L^2(d\mu)$, where

$$c_n^M(t) = \frac{\int_{-M}^{M} e^{i\omega t} p_n(\omega) d\mu(\omega)}{\|p_n\|_{L^2(d\mu)}^2}$$

with error bound

$$\left| e^{i\omega t} \chi_{[-M,M]} - \sum_{n=0}^{N} c_n^M(t) p_n \right|_{L^2(du)} \le C_M(t) \sqrt{\sum_{n>N} \frac{1}{\mu_{2n}}}$$

Step 4: RKHS Structure

Define $f_n^M = \mathcal{F}[p_n \chi_{[-M,M]}]$. Then:

Lemma 5. [RKHS Completeness] The set $\{f_n^M\}_{n=0}^{\infty}$ is complete in \mathcal{H}_{K_M} with:

$$||f_n^M||_{\mathcal{H}_{K_M}}^2 = \int_{-M}^M |p_n(\omega)|^2 d\mu(\omega)$$

Moreover, for any $f \in \mathcal{H}_{K_M}$:

$$f(t) = \sum_{n=0}^{\infty} \langle f, f_n^M \rangle_{\mathcal{H}_{K_M}} f_n^M(t)$$

Step 5: RKHS Convergence

Let $\{\psi_n^M\}$ be obtained by Gram-Schmidt orthonormalization of $\{f_n^M\}$.

Lemma 6. [RKHS Expansion] For fixed M:

$$|K_M(\cdot,s) - \sum_{n=0}^N \langle K_M(\cdot,s), \psi_n^M \rangle \psi_n^M \bigg|_{\mathcal{H}_{K_M}} \le$$

$$\sqrt{\mu([-M,M]) - \sum_{n=0}^{N} \|p_n\|_{L^2(d\mu)}^2}$$

Step 6: Stability Analysis

Lemma 7. [Gram-Schmidt Stability] For fixed N, as $M \to \infty$:

$$\|\psi_n^M - \psi_n\|_{\mathcal{H}_K} \to 0 \text{ uniformly for } n \leq N$$

where $\{\psi_n\}$ are the limit functions.

Proof. This follows from the stability of Gram-Schmidt under perturbation, using the fact that $||f_n^M - f_n||_{\mathcal{H}_K} \to 0$ as $M \to \infty$.

Step 7: Uniform Convergence

By the reproducing property and previous lemmas:

$$\sup_{t,s} \left| K(t,s) - \sum_{n=0}^{N} \langle K(\cdot,s), \psi_n \rangle \psi_n(t) \right| \le$$

$$C\sqrt{\mu(\mathbb{R}) - \sum_{n=0}^{N} \|p_n\|_{L^2(d\mu)}^2}$$

The double limit

$$\lim_{M \to \infty} \lim_{N \to \infty} \sum_{n=0}^{N} \langle K_M(\cdot, s), \psi_n^M \rangle \psi_n^M(t) = K(t, s)$$

converges uniformly by the stability lemma and error bounds.

Corollary 8. The convergence rate depends explicitly on the decay of the moments μ_{2n} .