

Schletter, Inc.		25° Tilt w/ Seismic Design
HCV	Standard PVMax Racking System	
	Representative Calculations - ASCE 7-10	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2 Module Tilt = 25°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-10 Chapter 26-31, Wind Loads
- ASCE 7-10 Chapter 7, Snow Loads
- ASCE 7-10 Chapter 2, Combination of Loads
- International Building Code, IBC, 2012, 2015
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
g _{MIN} =	1.75 psf

Self-weight of the PV modules.

2.2 Snow Loads

Ground Snow Load, $P_g =$	30.00 psf	
Sloped Roof Snow Load, $P_s =$	18.56 psf	(ASCE 7-10, Eq. 7.4-1)
$I_s =$	1.00	
$C_s =$	0.82	
$C_e =$	0.90	

1.20

 $C_t =$

2.3 Wind Loads

Design Wind Speed, V =	150 mph	Exposure Category = C
Height <	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 35.33$ psf Including the gust factor, G=0.85. (ASCE 7-10, Eq. 27.3-1)

Pressure Coefficients

Cf+ _{TOP}	=	1.100 (Draggura)	
Cf+ BOTTOM	=	1.100 1.700 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP, OUTER PURLIN	=	-2.500	located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-1.900 (Suction)	applied away from the surface.
Cf- BOTTOM	=	-1.000	applied and nomino carract.

2.4 Seismic Loads

S _S =	2.50	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S_s of 1.5
$S_{DS} =$	1.67	$C_S = 0.8$	may be used to calculate the base shear, C_s , of
$S_1 =$	1.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	1.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S_{ds} of 1.0 was used to
$T_a =$	0.06	$C_{d} = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.5W 1.2D + 1.0W + 0.5S 0.9D + 1.0W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 0.6W 1.0D + 0.75L + 0.45W + 0.75S 0.6D + 0.6W ^M (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E ^O 1.1785D + 0.65625E + 0.75S ^O 0.362D + 0.875E ^O

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	Location	Diagonal Struts	Location	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	Location			
M4	Outer			
M8	Inner			
M12	Outer			

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4. MEMBER DESIGN CALCULATIONS

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	<u>Front</u>	Rear	
Tensile Load =	<u>818.14</u>	<u>7323.45</u>	k
Compressive Load =	4010.24	<u>5531.69</u>	k
Lateral Load =	<u>337.43</u>	3923.85	k
Moment (Weak Axis) =	0.66	0.28	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC table 1806.2 (2012, 2015).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (3) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 177771.8 in-lbs Resisting Force Required = 2693.51 lbs A minimum 132in long x 37in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 4489.19 lbs to resist overturning. Minimum Width = <u>37 in</u> in Weight Provided = 7376.88 lbs Sliding Force = 905.19 lbs Use a 132in long x 37in wide x 18in tall Friction = 0.4 Weight Required = 2262.96 lbs ballast foundation to resist sliding. Resisting Weight = 7376.88 lbs Friction is OK. Additional Weight Required = Cohesion Sliding Force = 905.19 lbs Cohesion = 130 psf Use a 132in long x 37in wide x 18in tall 33.92 ft² Area = ballast foundation. Cohesion is OK. Resisting = 3688.44 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs 200 psf/ft Lateral Bearing Pressure = Required Depth = 0.00 ft Shear key is not required. 2500 psi f'c = Length = 8 in

		Ballast	Width	
	<u>37 in</u>	38 in	39 in	<u>40 in</u>
$P_{ftg} = (145 \text{ pcf})(11 \text{ ft})(1.5 \text{ ft})(3.08 \text{ ft}) =$	7377 lbs	7576 lbs	7776 lbs	7975 lbs

ASD LC	1.0D + 1.0S			1.0D+	1.0D + 0.6W			1.0D + 0.75L + 0.45W + 0.75S			0.6D + 0.6W					
Width	37 in	38 in	39 in	40 in	37 in	38 in	39 in	40 in	37 in	38 in	39 in	40 in	37 in	38 in	39 in	40 in
FA	1283 lbs	1283 lbs	1283 lbs	1283 lbs	1595 lbs	1595 lbs	1595 lbs	1595 lbs	2039 lbs	2039 lbs	2039 lbs	2039 lbs	-368 lbs	-368 lbs	-368 lbs	-368 lbs
FB	1270 lbs	1270 lbs	1270 lbs	1270 lbs	2308 lbs	2308 lbs	2308 lbs	2308 lbs	2566 lbs	2566 lbs	2566 lbs	2566 lbs	-3372 lbs	-3372 lbs	-3372 lbs	-3372 lbs
F _V	169 lbs	169 lbs	169 lbs	169 lbs	1622 lbs	1622 lbs	1622 lbs	1622 lbs	1329 lbs	1329 lbs	1329 lbs	1329 lbs	-1810 lbs	-1810 lbs	-1810 lbs	-1810 lbs
P _{total}	9930 lbs	10130 lbs	10329 lbs	10528 lbs	11281 lbs	11480 lbs	11680 lbs	11879 lbs	11981 lbs	12181 lbs	12380 lbs	12580 lbs	686 lbs	806 lbs	925 lbs	1045 lbs
M	3408 lbs-ft	3408 lbs-ft	3408 lbs-ft	3408 lbs-ft	4598 lbs-ft	4598 lbs-ft	4598 lbs-ft	4598 lbs-ft	5685 lbs-ft	5685 lbs-ft	5685 lbs-ft	5685 lbs-ft	3627 lbs-ft	3627 lbs-ft	3627 lbs-ft	3627 lbs-ft
е	0.34 ft	0.34 ft	0.33 ft	0.32 ft	0.41 ft	0.40 ft	0.39 ft	0.39 ft	0.47 ft	0.47 ft	0.46 ft	0.45 ft	5.29 ft	4.50 ft	3.92 ft	3.47 ft
L/6	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft							
f _{min}	238.0 psf	237.4 psf	236.9 psf	236.4 psf	258.7 psf	257.6 psf	256.5 psf	255.6 psf	261.8 psf	260.7 psf	259.6 psf	258.5 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	347.6 psf	344.2 psf	340.9 psf	337.8 psf	406.5 psf	401.6 psf	396.9 psf	392.4 psf	444.7 psf	438.7 psf	433.0 psf	427.7 psf	696.2 psf	169.9 psf	120.1 psf	103.0 psf

Maximum Bearing Pressure = 696 psf Allowable Bearing Pressure = 1500 psf Use a 132in long x 37in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Bearing Pressure

Seismic Design

Overturning Check

 $M_0 = 2686.5 \text{ ft-lbs}$

Resisting Force Required = 1742.62 lbs S.F. = 1.67

Weight Required = 2904.37 lbs Minimum Width = 37 in in Weight Provided = 7376.88 lbs A minimum 132in long x 37in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1	.238D + 0.875	iΕ	1.1785	D+0.65625E	+ 0.75S	0.362D + 0.875E			
Width		37 in			37 in		37 in			
Support	Outer	Inner	Outer	Outer	er Inner Outer		Outer	Inner	Outer	
F _Y	267 lbs	590 lbs	195 lbs	770 lbs	2120 lbs	715 lbs	103 lbs	173 lbs	32 lbs	
F _V	199 lbs	195 lbs	201 lbs	147 lbs	143 lbs	156 lbs	199 lbs	196 lbs	200 lbs	
P _{total}	9399 lbs	9723 lbs	9328 lbs	9464 lbs	10813 lbs	9409 lbs	2774 lbs	2843 lbs	2702 lbs	
М	778 lbs-ft	768 lbs-ft	786 lbs-ft	582 lbs-ft	581 lbs-ft	612 lbs-ft	777 lbs-ft	767 lbs-ft	779 lbs-ft	
е	0.08 ft	0.08 ft	0.08 ft	0.06 ft	0.05 ft	0.07 ft	0.28 ft	0.27 ft	0.29 ft	
L/6	0.51 ft	0.51 ft	0.51 ft	0.51 ft	0.51 ft	0.51 ft	0.51 ft	0.51 ft	0.51 ft	
f _{min}	232.5 psf	242.6 psf	229.9 psf	245.7 psf	285.5 psf	242.3 psf	37.2 psf	39.8 psf	35.0 psf	
f _{max}	321.8 psf	330.8 psf	320.1 psf	312.4 psf	352.2 psf	312.5 psf	126.3 psf	127.8 psf	124.4 psf	

Maximum Bearing Pressure = 352 psf Allowable Bearing Pressure = 1500 psf

Use a 132in long x 37in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 132in long x 37in wide x 18in tall ballast foundation and fiber reinforcing with (3) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut		Rear Strut	
Maximum Axial Load =	3.085 k	Maximum Axial Load =	4.956 k
M12 Bolt Capacity =	12.808 k	M12 Bolt Capacity =	12.808 k
Strut Bearing Capacity =	7.421 k	Strut Bearing Capacity =	7.421 k
Utilization =	<u>42%</u>	Utilization =	<u>67%</u>
Diagonal Strut			
Maximum Axial Load =	2.607 k		
M12 Bolt Shear Capacity =	12.808 k	Bolt and bearing capacities are accounting for	or double shear.
Strut Bearing Capacity =	7.421 k	(ASCE 8-02, Eq. 5.3.4-1)	
Utilization =	<u>35%</u>		
		Struts under compression are transfer from the girder. Single	

Struts under compression are shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

 $\begin{array}{ccc} \text{Mean Height, h}_{\text{sx}} = & 46.89 \text{ in} \\ \text{Allowable Story Drift for All Other} \\ \text{Structures, } \Delta = \{ & 0.020 h_{\text{sx}} \\ 0.938 \text{ in} \\ \text{Max Drift, } \Delta_{\text{MAX}} = & 0.551 \text{ in} \\ & 0.551 \leq 0.938, \text{ OK.} \end{array}$

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$L_b = 111 \text{ in}$$

$$J = 0.432$$

$$307.078$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$$

$$S1 = \left(\frac{\theta_b}{1.6Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)}}]$$

$$\phi F_1 = 27.6 \text{ ksi}$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$51 = 12.2$$
 $k \cdot Rn$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

3.4.16.1

Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = -1410$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.18

$$h/t = 37.0588$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$\phi F_L = \phi b[Bbr-mDbr*h/t]$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 25.1 \text{ ksi}$$

$$lx = 897074 \text{ mm}^4$$

2.155 in⁴

$$Sx = 1.335 \text{ in}^3$$

$$M_{max}St = 2.788 \text{ k-ft}$$

Weak Axis:

3.4.14

$$L_b = 111$$
 $J = 0.432$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_1 = 28.8$$

3.4.16

$$b/t = 37.0588$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 23.1 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} \, 1.3Fcy}{mDbr}$$

$$m = 0.65$$

$$C_0 = 45.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = \frac{1}{mDbr}$$

$$S2 = \frac{77.5}{mDbr}$$

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k=$$
 23.1 ksi

$$ly = 446476 \text{ mm}^4$$

$$x = 45.5 \text{ mm}$$

$$Sy = 0.599 \text{ in}^3$$

Compression

3.4.9

$$b/t = 32.195 \\ S1 = 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = \phi c [Bp-1.6Dp*b/t] \\ \phi F_L = 25.1 \text{ ksi} \\ \\ b/t = 37.0588 \\ S1 = 12.21 \\ S2 = 32.70 \\ \phi F_L = (\phi c k 2^* \sqrt{(BpE))/(1.6b/t)} \\ \\$$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$
 $\phi F_L = 21.94 \text{ ksi}$
 $\phi F_L = 1.94 \text{ ksi}$

 $\phi F_L = 21.9 \text{ ksi}$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Strong Axis: Weak Axis: 3.4.14 3.4.14 88.9 in 88.9 $L_b =$ J= 1.08 J= 1.08 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_1 = 29.4 \text{ ksi}$ $\phi F_1 = 29.2$

3.4.16

3.4.16 b/t = 16.2 b/t = 7.4
$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2 S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\varphi F_L = 31.6 \text{ ksi}$$
3.4.16 b/t = 7.4
$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Use

$$Rb/t = 18.1$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.000}\right)$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = \phi b[Bt-Dt^*\sqrt{(Rb/t)}]$$

31.1 ksi

3.4.16.1

N/A for Weak Direction

3.4.18

 $\phi F_L =$

h/t = 7.4

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 35.2$$

$$m = 0.68$$

$$C_0 = 41.067$$

$$Cc = 43.717$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 73.8$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\begin{array}{lll} \phi F_L = & 43.2 \text{ ksi} \\ \\ \phi F_L St = & 29.4 \text{ ksi} \\ \\ Ix = & 984962 \text{ mm}^4 \\ & 2.366 \text{ in}^4 \\ \\ y = & 43.717 \text{ mm} \\ \\ Sx = & 1.375 \text{ in}^3 \\ \\ M_{max} St = & 3.363 \text{ k-ft} \end{array}$$

3.4.18

3.4.18

$$h/t = 16.2$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40$$

$$Cc = 40$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L W k = & 33.3 \text{ ksi} \\ ly = & 923544 \text{ mm}^4 \\ & 2.219 \text{ in}^4 \\ x = & 40 \text{ mm} \\ Sy = & 1.409 \text{ in}^3 \\ M_{max} W k = & 3.904 \text{ k-ft} \end{array}$$

Compression

3.4.9

b/t =12.21 (See 3.4.16 above for formula) S2 = 32.70 (See 3.4.16 above for formula) $\phi F_L = \phi c[Bp-1.6Dp*b/t]$ $\phi F_L =$ 31.6 ksi b/t =7.4 S1 = 12.21 32.70 S2 = $\phi F_L = \phi y F c y$ $\phi F_L =$ 33.3 ksi

3.4.10

Rb/t = 18.1

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_h} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi c[Bt-Dt^*\sqrt{(Rb/t)}]$
 $\phi F_L = 31.09 \text{ ksi}$
 $\phi F_L = 31.09 \text{ ksi}$
 $\phi F_L = 1215.13 \text{ mm}^2$

1.88 in² 58.55 kips

 $P_{max} =$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_{b} = 24.8 \text{ in}$$

$$J = 0.942$$

$$38.7028$$

$$\left(Bc - \frac{\theta_{y}}{2}Fcy\right)^{2}$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$c_2 = \left(\frac{C_c}{C_c}\right)^2$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

S2 = 1701.56

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))]}$$

$$\phi F_L = 31.4 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_b = 24.8$$
 $J = 0.942$
 38.7028

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc\text{-}1.6Dc\text{*}\sqrt{((LbSc)/(Cb\text{*}\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 31.4$$

3.4.16

$$b/t = 24.5$$

$$Bp - \frac{\theta_y}{\theta_x} Fcy$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$S2 = 1.0Dp$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 B p}{1.6 D p}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_1 = 28.2 \text{ ksi}$$

3.4.16.1

Rb/t =
$$\frac{\text{Not Used}}{0.0}$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = \begin{pmatrix} 1.6Dt & 1.1 \end{pmatrix}$$

$$S2 = C_t$$

$$\phi F_1 = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$
 $k \cdot Rhr$

 $C_0 =$

$$S2 = \frac{k_1 Bbr}{mDbr}$$
$$S2 = 77.3$$

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$
 $lx = 279836 \text{ mm}^4$

$$Sx = 0.621 \text{ in}^3$$

$$M_{max}St = 1.460 \text{ k-ft}$$

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$m = 0.65$$
 $C_0 = 27.5$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$φF_L$$
= 1.3 $φyFcy$
 $φF_L$ = 43.2 ksi

$$\phi F_L W k = 28.2 \text{ ksi}$$

$$ly = 279836 \text{ mm}^4$$

$$x = 27.5 \text{ mm}$$

$$Sy = 0.621 \text{ in}^3$$

SCHLETTER

Compression

3.4.7
$$\lambda = 0.57371$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.87952$$

$$\varphi F_L = \varphi cc(Bc-Dc^*\lambda)$$

$$\varphi F_L = 28.0279 \text{ ksi}$$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \end{array}$$

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 28.03 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{max} = 28.85 \text{ kips}$$

0.0

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

$Strut = \underline{55x55}$

Strong Axis: Weak Axis: 3.4.14 3.4.14 $L_b =$ 86.60 in 86.6 0.942 0.942 J= J = 135.148 135.148 $S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$ S1 = 0.51461S1 = 0.51461 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$ $\phi F_L =$ 29.6 ksi $\phi F_1 =$ 29.6

SCHLETTER

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used Rb/t = 0.0

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

 $S1 = 1.1$
 $S2 = C_t$
 $S2 = 141.0$
 $\phi F_L = 1.17 \phi y Fcy$
 $\phi F_L = 38.9 \text{ ksi}$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

3.4.18

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L St = & 28.2 \text{ ksi} \\ \text{lx} = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ \text{y} = & 27.5 \text{ mm} \\ \text{Sx} = & 0.621 \text{ in}^3 \\ \text{M}_{\text{max}} St = & 1.460 \text{ k-ft} \end{array}$$

$$\begin{array}{lll} \phi F_L W k = & 28.2 \text{ ksi} \\ y = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ x = & 27.5 \text{ mm} \\ \text{Sy} = & 0.621 \text{ in}^3 \\ M_{\text{max}} W k = & 1.460 \text{ k-ft} \end{array}$$

Compression

3.4.7

$$\lambda = 2.00335$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi cc = 0.86047$$

$$\phi F_L = (\phi cc Fcy)/(\lambda^2)$$

$$\phi F_L = 7.50396 \text{ ksi}$$

3.4.9

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$S2 = 32.70$$

 $\phi F_L = \phi c[Bp-1.6Dp*b/t]$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^{\frac{1}{2}}$$

$$S1 = 6.87$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.50 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

1.03 in²

$$P_{max} = 7.72 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_b = 63.42 \text{ in}$$
 $J = 0.942$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\varphi F_L = \varphi b[Bc-1.6Dc*\sqrt{(LbSc)/(Cb*\sqrt{(lyJ)/2))}}$$

$$\phi F_L = 30.2 \text{ ksi}$$

Weak Axis:

$$L_b = 63.42$$
 $J = 0.942$

$$S1 = \left(\frac{\theta_b}{1.6Dc} \right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_{L} = 30.2$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S2 = \frac{k_1 Bp}{1.6 Dp}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{6b}\right)^2$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

 $\phi F_L = 1.3 \phi y F c y$

$$\begin{array}{lll} \phi F_L = & 43.2 \text{ ksi} \\ \\ \phi F_L St = & 28.2 \text{ ksi} \\ \\ lx = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ \\ y = & 27.5 \text{ mm} \\ \\ Sx = & 0.621 \text{ in}^3 \\ \\ M_{max} St = & 1.460 \text{ k-ft} \end{array}$$

3.4.18

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 28.2 \text{ ksi}$$

$ly = 279836 \text{ mm}^4$ 0.672 in⁴ 27.5 mm x =Sy = 0.621 in³ $M_{max}Wk =$ 1.460 k-ft

Compression

3.4.7

$$\begin{array}{lll} \lambda = & 1.46712 \\ r = & 0.81 \text{ in} \\ S1^* = & \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ S2^* = & \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ \phi cc = & 0.7854 \\ \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ \phi F_L = & 12.7711 \text{ ksi} \end{array}$$

3.4.9

24.5 b/t =S1 = 12.21 (See 3.4.16 above for formula) 32.70 (See 3.4.16 above for formula) $\phi F_L = \phi c[Bp-1.6Dp*b/t]$ $\phi F_1 =$ 28.2 ksi b/t =24.5 S1 = 12.21 S2 = 32.70 $\phi F_L = \phi c[Bp-1.6Dp*b/t]$ $\phi F_L = 28.2 \text{ ksi}$

3.4.10

$$\begin{aligned} \text{Rb/t} &= & 0.0 \\ S1 &= \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2 \\ \text{S1} &= & 6.87 \\ \text{S2} &= & 131.3 \\ \text{ϕF}_L &= & \text{ϕF$Cy} \\ \text{$\phi$F}_L &= & 33.25 \text{ ksi} \\ \text{ϕF}_L &= & 12.77 \text{ ksi} \\ \text{A} &= & 663.99 \text{ mm}^2 \\ & & 1.03 \text{ in}^2 \\ \text{P}_{\text{max}} &= & 13.14 \text{ kips} \end{aligned}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:__

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me.	.Surface(
1	Dead Load, Max	DĽ	•	-1				4	,	, I
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL			.8			8		

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M14	Υ	-8.366	-8.366	0	0
3	M15	Υ	-8.366	-8.366	0	0
4	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M14	Υ	-4.45	-4.45	0	0
3	M15	Υ	-4.45	-4.45	0	0
4	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3 : Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-46.9	-46.9	0	0
2	M14	Υ	-46.9	-46.9	0	0
3	M15	Υ	-46.9	-46.9	0	0
4	M16	Υ	-46.9	-46.9	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-108.369	-108.369	0	0
2	M14	٧	-108.369	-108.369	0	0
3	M15	V	-167.479	-167.479	0	0
4	M16	V	-167.479	-167.479	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	246.293	246.293	0	0 -
2	M14	V	187.183	187.183	0	0
3	M15	V	98.517	98.517	0	0
4	M16	У	98.517	98.517	0	0

Member Distributed Loads (BLC 6 : Seismic - Lateral)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Ζ	6.693	6.693	0	0
2	M14	Z	6.693	6.693	0	0
3	M15	Z	6.693	6.693	0	0
4	M16	Z	6.693	6.693	0	0
5	M13	Z	0	0	0	0
6	M14	Z	0	0	0	0
7	M15	Z	0	0	0	0
8	M16	Z	0	0	0	0

Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:___

Load Combinations

	Description			S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	B	Fa
1	LRFD 1.2D + 1.6S + 0.5W				1	1.2	3	1.6	4	.5														
2	LRFD 1.2D + 1.0W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1														
3	LRFD 0.9D + 1.0W	Yes	Υ		2	.9					5	1												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 0.6W	Yes	Υ		1	1			4	.6														
11	ASD 1.0D + 0.75L + 0.45W + 0	Yes	Υ		1	1	3	.75	4	.45														
12	ASD 0.6D + 0.6W	Yes	Υ		2	.6					5	.6												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65.	Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	777.383	2	1317.062	2	.629	1	.003	1	0	1	0	1
2		min	-955.284	3	-1734.511	3	-42.186	5	217	4	0	1	0	1
3	N7	max	.032	9	1126.81	1	519	12	001	12	0	1	0	1
4		min	228	2	-167.852	3	-259.562	4	509	4	0	1	0	1
5	N15	max	.026	9	3084.802	1	0	11	0	11	0	1	0	1
6		min	-2.529	2	-629.339	3	-248.784	4	494	4	0	1	0	1
7	N16	max	2761.618	2	4255.144	2	0	3	0	3	0	1	0	1
8		min	-3018.345	3	-5633.423	3	-42.104	5	219	4	0	1	0	1
9	N23	max	.036	14	1126.81	1_	9.058	1	.018	1	0	1	0	1
10		min	228	2	-167.852	3	-252.944	4	499	4	0	1	0	1
11	N24	max	777.383	2	1317.062	2	045	12	0	12	0	1	0	1
12		min	-955.284	3	-1734.511	3	-42.756	5	219	4	0	1	0	1
13	Totals:	max	4313.401	2	12005.266	2	0	11						
14		min	-4929.603	3	-10067.488	3	-883.887	5						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	v Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M13	1	max	91.197	1	479.763	2	-7.663	12	0	3	.217	1	0	4
2			min	5.537	12	-838.114	3	-162.45	1	015	2	.013	12	0	3
3		2	max	91.197	1	335.508	2	-6.111	12	0	3	.101	4	.734	3
4			min	5.537	12	-589.971	3	-124.711	1	015	2	.006	10	419	2
5		3	max	91.197	1	191.253	2	-4.559	12	0	3	.055	5	1.213	3
6			min	5.537	12	-341.828	3	-86.972	1	015	2	039	1	69	2
7		4	max	91.197	1	46.998	2	-3.008	12	0	3	.029	5	1.437	3
8			min	5.537	12	-93.685	3	-49.233	1	015	2	109	1	812	2
9		5	max	91.197	1	154.458	3	661	10	0	3	.006	5	1.405	3
10			min	5.537	12	-97.257	2	-24.683	4	015	2	14	1	786	2
11		6	max	91.197	1	402.6	3	26.244	1	0	3	006	12	1.119	3
12			min	2.519	15	-241.513	2	-19.271	5	015	2	133	1	612	2
13		7	max	91.197	1	650.743	3	63.983	1	0	3	005	12	.578	3
14			min	-6.564	5	-385.768	2	-16.871	5	015	2	086	1	29	2
15		8	max	91.197	1	898.886	3	101.722	1	0	3	.002	2	.181	2
16			min	-17.114	5	-530.023	2	-14.47	5	015	2	051	4	219	3
17		9	max	91.197	1	1147.029	3	139.461	1	0	3	.123	1	.8	2
18			min	-27.665	5	-674.278	2	-12.069	5	015	2	064	5	-1.27	3

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]							LC	z-z Mome	
19		10	max	91.197	1	1395.172	3	177.2	1	.015	2	.286	1	1.567	2
20			min	5.537	12	-818.533	2	-106.082	14	0	12	.007	12	-2.576	3
21		11	max	91.197	1_	674.278	2	-4.751	12	.015	2	.123	1	.8	2
22			min	5.537	12	-1147.029	3	-139.461	1	0	3	.001	12	-1.27	3
23		12	max	91.197	1	530.023	2	-3.199	12	.015	2	.05	4	.181	2
24			min	5.537	12	-898.886	3	-101.722	1	0	3	005	3	219	3
25		13	max	91.197	1	385.768	2	-1.648	12	.015	2	.023	5	.578	3
26			min	5.537	12		3	-63.983	1	0	3	086	1	29	2
27		14	max	91.197	1	241.513	2	.014	3	.015	2	0	15	1.119	3
28			min	5.021	15	-402.6	3	-28.518	4	0	3	133	1	612	2
29		15	max	91.197	1	97.257	2	11.494	1	.015	2	005	12	1.405	3
30			min	-2.909	5	-154.458	3	-20.134	5	0	3	14	1	786	2
31		16	max	91.197	1	93.685	3	49.233	1	.015	2	003	12	1.437	3
32			min	-13.459	5	-46.998	2	-17.733	5	0	3	109	1	812	2
33		17	max	91.197	1	341.828	3	86.972	1	.015	2	.001	3	1.213	3
34			min	-24.009	5	-191.253	2	-15.332	5	0	3	069	4	69	2
35		18	max	91.197	1	589.971	3	124.711	1	.015	2	.07	1	.734	3
36			min	-34.56	5	-335.508	2	-12.931	5	0	3	074	5	419	2
37		19	max	91.197	1	838.114	3	162.45	1	.015	2	.217	1	0	2
38			min	-45.11	5	-479.763	2	-10.531	5	0	3	086	5	0	3
39	M14	1	max	52.235	4	517.896	2	-7.878	12	.011	3	.25	1	0	1
40			min	2.385	12	-655.48	3	-167.818	1	013	2	.015	12	0	3
41		2	max	44.434	1	373.641	2	-6.326	12	.011	3	.147	4	.577	3
42			min	2.385	12	-468.089	3	-130.079	1	013	2	.007	12	458	2
43		3	max	44.434	1	229.386	2	-4.775	12	.011	3	.082	5	.962	3
44			min	2.385	12	-280.698	3	-92.341	1	013	2	017	1	768	2
45		4	max		1	85.131	2	-3.223	12	.011	3	.045	5	1.154	3
46			min	2.385	12		3	-54.602	1	013	2	092	1	93	2
47		5	max	44.434	1	94.084	3	-1.255	10	.011	3	.009	5	1.154	3
48			min	.117	15	-59.125	2	-37.503	4	013	2	129	1	943	2
49		6	max	44.434	1	281.475	3	20.876	1	.011	3	006	12	.961	3
50			min	-10.327	5	-203.38	2	-30.705	5	013	2	127	1	808	2
51		7	max	44.434	1	468.866	3	58.615	1	.011	3	005	12	.575	3
52			min	-20.878	5	-347.635	2	-28.304	5	013	2	086	1	525	2
53		8	max	44.434	1	656.257	3	96.353	1	.011	3	0	10	001	15
54			min	-31.428	5	-491.89	2	-25.903	5	013	2	085	4	094	2
55		9	max		1	843.648	3	134.092	1	.011	3	.112	1	.486	2
56			min	-41.979	5	-636.145		-23.502	5	013	2	107	5	774	3
57		10	max	67.782	4	1031.039	3	171.831	1	.013	2	.269	1	1.214	2
58			min	2.385	12	-780.4	2	-109.001	14	011	3	.007	12	-1.737	3
59		11		57.231		636.145	2	-4.536	12	.013	2	.147	4	.486	2
60			min	2.385	12	-843.648		-134.092		011	3	0	3	774	3
61		12	max		4	491.89	2	-2.984	12	.013	2	.08	5	001	15
62		12	min	2.385	12	-656.257	3	-96.353	1	011	3	007	1	094	2
63		13		44.434	1	347.635	2	-1.432	12	.013	2	.043	5	.575	3
64		10	min	2.385	12	-468.866	3	-58.615	1	011	3	086	1	525	2
65		14	max		1	203.38	2	.336	3	.013	2	.007	5	.961	3
66			min	2.385	12	-281.475	3	-38.294	4	011	3	127	1	808	2
67		15			1	59.125	2	16.863	1	.013	2	005	12	1.154	3
68		13	min	2.385	12	-94.084	3	-30.883	5	011	3	005 129	1	943	2
69		16	max		1	93.307	3	54.602	1	.013	2	129 002	12	1.154	3
70		10	min	-5.409	5	-85.131	2	-28.482	5	011	3	002 092	1	93	2
71		17						92.341		.013	2	.003	3	- <u>93</u> .962	3
72		17	max		1	280.698	3		1						
		10	min	-15.959	5	-229.386	2	<u>-26.081</u>	5	011	3	089	4	768 	2
73		ΙŎ	max		1	468.089	3	130.079	1	.013	2	.097	1 5	.577	3
74		10	min	-26.509	5	-373.641	2	-23.681	5	011	3	11	5	4 <u>58</u>	2
75		19	max	44.434	1	655.48	3	167.818	1	.013	2	.25	1	00	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	
76			min	-37.06	5	-517.896	2	-21.28	5	011	3	133	5	0	3
77	M15	1	max	78.384	5	722.976	2	-7.803	12	.013	2	.271	4	0	2
78			min	-46.488	1	-348.256	3	-167.808	1	009	3	.014	12	0	3
79		2	max	67.833	5	517.969	2	-6.251	12	.013	2	.183	4	.308	3
80			min	-46.488	1	-251.994	3	-130.069	1	009	3	.007	12	638	2
81		3	max	57.283	5	312.962	2	-4.7	12	.013	2	.109	5	.518	3
82			min	-46.488	1	-155.732	3	-92.33	1	009	3	017	1	-1.065	2
83		4	max	46.732	5	107.955	2	-3.148	12	.013	2	.061	5	.629	3
84			min	-46.488	1	-59.47	3	-58.193	4	009	3	093	1	-1.281	2
85		5	max	36.182	5	36.792	3	-1.29	10	.013	2	.015	5	.64	3
86			min	-46.488	1	-97.052	2	-47.517	4	009	3	129	1	-1.287	2
87		6	max	25.632	5	133.054	3	20.886	1	.013	2	006	12	.553	3
88			min	-46.488	1	-302.06	2	-40.692	5	009	3	127	1	-1.082	2
89		7	max	15.081	5	229.316	3	58.625	1	.013	2	005	12	.367	3
90			min	-46.488	1	-507.067	2	-38.291	5	009	3	088	4	666	2
91		8	max	4.531	5	325.578	3	96.364	1	.013	2	0	10	.082	3
92			min	-46.488	1	-712.074	2	-35.89	5	009	3	11	4	047	1
93		9	max	-2.918	12	421.84	3	134.102	1	.013	2	.112	1	.798	2
94			min	-46.488	1	-917.081	2	-33.489	5	009	3	142	5	303	3
95		10	max	-2.918	12	518.102	3	171.841	1	.009	3	.27	4	1.846	2
96			min	-46.488	1	-1122.088	2	-114.103	14	013	2	.007	12	786	3
97		11	max	071	15	917.081	2	-4.611	12	.009	3	.182	4	.798	2
98			min	-46.488	1	-421.84	3	-134.102		013	2	.001	12	303	3
99		12	max	-2.918	12	712.074	2	-3.059	12	.009	3	.105	5	.082	3
100			min	-46.488	1	-325.578	3	-96.364	1	013	2	007	1	047	1
101		13	max	-2.918	12	507.067	2	-1.507	12	.009	3	.057	5	.367	3
102		1.0	min	-46.488	1	-229.316	3	-59.007	4	013	2	086	1	666	2
103		14	max	-2.918	12	302.06	2	.211	3	.009	3	.011	5	.553	3
104			min	-46.488	1	-133.054	3	-48.33	4	013	2	127	1	-1.082	2
105		15	max	-2.918	12	97.052	2	16.853	1	.009	3	005	12	.64	3
106		10	min	-53.395	4	-36.792	3	-40.873	5	013	2	129	1	-1.287	2
107		16	max	-2.918	12	59.47	3	54.592	1	.009	3	002	12	.629	3
108		10	min	-63.945	4	-107.955	2	-38.472	5	013	2	094	4	-1.281	2
109		17	max	-2.918	12	155.732	3	92.33	1	.009	3	.003	3	.518	3
110		1 ' '	min	-74.496	4	-312.962	2	-36.071	5	013	2	116	4	-1.065	2
111		18	max	-2.918	12	251.994	3	130.069	1	.009	3	.097	1	.308	3
112		10	min	-85.046	4	-517.969	2	-33.671	5	013	2	147	5	638	2
113		19	max	-2.918	12	348.256	3	167.808	1	.009	3	.25	1	0	2
114		15	min	-95.596	4	-722.976	2	-31.27	5	013	2	18	5	0	5
115	M16	1	max	76.697	5	686.209	2	-7.41	12	.011	2	.219	1	0	2
116	IVITO			-97.572				-162.736		013	3	.012	12		3
117		2	max		5	481.202	2	-5.858	12	.011	2	.137	4	.278	3
118			min	-97.572	1	-222.25	3	-124.997	1	013	3	.005	12	6	2
119		3	max		5	276.195	2	-4.307	12	.011	2	.081	5	.457	3
120		-	min	-97.572	1	-125.988	3	-87.258	1	013	3	038	1	989	2
121		4	max	45.046	5	71.188	2	-2.755	12	.011	2	.045	5	.537	3
122		1	min	-97.572	1	-29.726	3	-49.519	1	013	3	108	1	-1.168	2
123		5			5	66.536	3	821	10	.013	2	.012	5	.518	3
124		- 5	max		_								1		2
125		G	min	-97.572	1 5	-133.819	2	-34.358	4	013 .011	3	14 006	12	-1.135 .4	
126		6	max	23.945 -97.572	<u>5</u>	162.798 -338.826	3	25.958 -28.827	5	013	3	006 133	1	893	2
127		7	min		_		2								
		/	max		5	259.06	3	63.697	1	.011	2	005	12	.183 439	3
128		0	min	-97.572	1	-543.833	2	-26.427	5	013	3	086	1		2
129		8	max	2.845	5	355.322	3	101.436	1	.011	2	.001	2	.225	2
130		0	min	-97.572 5.071	1 1 5	-748.841	2	-24.026	5	013	3	075	4	132	3
131		9	max	-5.071	15	451.584	3	139.175	1	.011	2	.122	1	1.1	2
132			min	-97.572	1	-953.848	2	-21.625	5	013	3	097	5	547	3

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC_	z-z Mome	LC
133		10	max	-5.478	12	547.846	3	176.913	1	.013	3	.284	1	2.186	2
134			min	-97.572	1	-1158.855	2	-110.897	14	011	2	.008	12	-1.061	3
135		11	max	-3.042	15	953.848	2	-5.004	12	.013	3	.14	4	1.1	2
136			min	-97.572	1	-451.584	3	-139.175	1	011	2	.002	12	547	3
137		12	max	-5.478	12	748.841	2	-3.452	12	.013	3	.073	4	.225	2
138			min	-97.572	1	-355.322	3	-101.436	1	011	2	003	3	132	3
139		13	max		12	543.833	2	-1.9	12	.013	3	.036	5	.183	3
140			min	-97.572	1	-259.06	3	-63.697	1	011	2	086	1	439	2
141		14	max		12	338.826	2	349	12	.013	3	.002	5		3
142		17		-97.572	1	-162.798	3	-38.103	4	011	2	133	1	893	2
		15	min		•								_		
143		15	max		12	133.819	2	11.781	1_	.013	3	006	12	.518	3
144			min		1_	-66.536	3	-29.674	5_	011	2	14	1	<u>-1.135</u>	2
145		16	max		12	29.726	3	49.519	_1_	.013	3	003	12	.537	3
146			min	-97.572	<u>1</u>	-71.188	2	-27.274	5	011	2	108	1	-1.168	2
147		17	max		12	125.988	3	87.258	<u>1</u>	.013	3	0	3	.457	3
148			min	-97.572	1_	-276.195	2	-24.873	5	011	2	095	4	989	2
149		18	max	-5.478	12	222.25	3	124.997	1	.013	3	.071	1	.278	3
150			min	-101.044	4	-481.202	2	-22.472	5	011	2	11	5	6	2
151		19	max		12	318.512	3	162.736	1	.013	3	.219	1	0	2
152				-111.594	4	-686.209	2	-20.071	5	011	2	132	5	0	5
153	M2	1		1120.578	2	1.96	4	.589	1	0	3	0	3	0	1
154	IVIZ			-1525.202	3	.477	15	-39.712	4	0	4	0	2	0	1
		2	_								3	0	1		_
155		2		1121.006	2	1.903	4	.589	1	0				0	15
156				-1524.881	3_	.464	15	-40.085	4_	0	4	012	4	0	4
157		3		1121.435	2	1.846	4	.589	_1_	0	3	0	1	0	15
158			_	-1524.559	3	.451	15	-40.459	4	0	4	023	4	001	4
159		4		1121.863	2	1.789	4	.589	_1_	0	3	0	1	0	15
160			min	-1524.238	3	.437	15	-40.832	4	0	4	035	4	002	4
161		5	max	1122.292	2	1.732	4	.589	1	0	3	0	1	0	15
162			min	-1523.917	3	.424	15	-41.205	4	0	4	047	4	002	4
163		6		1122.72	2	1.676	4	.589	1	0	3	0	1	0	15
164			min		3	.407	12	-41.578	4	0	4	059	4	003	4
165		7		1123.149	2	1.619	4	.589	1	0	3	.001	1	0	15
166				-1523.274	3	.385	12	-41.952	4	0	4	071	4	003	4
167		8		1123.577	2	1.562	4	.589	1	0	3	.001	1	<u>003</u>	15
168		0		-1522.953	3	.363	12	-42.325	4	0	4	083	4	004	4
					_						_		_		
169		9		1124.006	2	1.505	4	.589	1_	0	3	.001	1	0	15
170				-1522.631	3	.341	12	-42.698	4_	0	4	096	4	004	4
171		10		1124.434	2	1.449	4	.589	_1_	0	3	.002	1	001	15
172				-1522.31	3	.319	12	-43.072	4	0	4	108	4	004	4
173		11		1124.863	2	1.392	4	.589	_1_	0	3	.002	1	001	12
174			min	-1521.989	3	.297	12	-43.445	4	0	4	121	4	005	4
175		12	max	1125.291	2	1.335	4	.589	1	0	3	.002	1	001	12
176			min	-1521.667	3	.275	12	-43.818	4	0	4	133	4	005	4
177		13		1125.72	2	1.278	4	.589	1	0	3	.002	1	001	12
178				-1521.346	3	.253	12	-44.192	4	0	4	146	4	006	4
179		14		1126.148	2	1.221	4	.589	1	0	3	.002	1	001	12
		17		-1521.024			12	-44.565	4	0	4			006	4
180		15			3	.23						159	4		
181		15		1126.577	2	1.165	4	.589	1	0	3	.002	1	001	12
182		40		-1520.703	3	.208	12	<u>-44.938</u>	4_	0	4	172	4	006	4
183		16		1127.005	2	1.118	2	.589	_1_	0	3	.003	1	002	12
184			_	-1520.382	3	.186	12	-45.312	4	0	4	185	4	007	4
185		17		1127.434	2	1.074	2	.589	_1_	0	3	.003	1	002	12
186				-1520.06	3	.164	12	-45.685	4	0	4	198	4	007	4
187		18		1127.862	2	1.03	2	.589	1	0	3	.003	1	002	12
188				-1519.739	3	.142	12	-46.058	4	0	4	212	4	007	4
189		19	_	1128.291	2	.985	2	.589	1	0	3	.003	1	002	12

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
190			min	-1519.418	3	.12	12	-46.432	4	0	4	225	4	008	4
191	M3	1	max	688.739	2	7.909	4	3.285	4	0	3	0	1	.008	4
192			min	-829.601	3	1.871	15	.008	12	0	4	024	4	.002	12
193		2	max	688.568	2	7.142	4	3.824	4	0	3	0	1	.005	2
194			min	-829.729	3	1.69	15	.008	12	0	4	023	4	0	12
195		3	max	688.398	2	6.374	4	4.363	4	0	3	0	1	.002	2
196			min	-829.856	3	1.51	15	.008	12	0	4	021	4	0	3
197		4	max		2	5.607	4	4.902	4	0	3	0	1	0	2
198			min	-829.984	3	1.33	15	.008	12	0	4	019	4	002	3
199		5	max	688.057	2	4.84	4	5.44	4	0	3	0	1	0	15
200		<u> </u>	min	-830.112	3	1.149	15	.008	12	0	4	017	4	003	3
201		6	max		2	4.073	4	5.979	4	0	3	0	1	001	15
202		<u> </u>	min	-830.24	3	.969	15	.008	12	0	4	014	5	005	6
203		7	max	687.717	2	3.305	4	6.518	4	0	3	0	1	003 001	15
204			_	-830.368	3		15	.008	12	0	4	012	5	007	6
205		8	min		2	.789 2.538	4	7.057	4	0	3		1	007	15
		-	max									0			
206			min	-830.495	3	.608	15	.008	12	0	4	009	5	008	6
207		9	max		2	1.771	4	7.595	4	0	3	0	1	002	15
208		4.0	min	-830.623	3	.428	15	.008	12	0	4	006	5	009	6
209		10	max	687.206	2	1.004	4	8.134	4	0	3	0	1	002	15
210			min	-830.751	3	.221	12	.008	12	0	4	003	5	009	6
211		11	max		2	.361	2	8.673	4	0	3	.001	4	002	15
212			min	-830.879	3	144	3	.008	12	0	4	0	12	009	6
213		12	max	686.865	2	113	15	9.212	4	0	3	.005	4	002	15
214			min	-831.006	3	592	3	.008	12	0	4	0	12	009	6
215		13	max		2	293	15	9.75	4	0	3	.009	4	002	15
216			min	-831.134	3	-1.299	6	.008	12	0	4	0	12	009	6
217		14	max		2	474	15	10.289	4	0	3	.013	4	002	15
218			min	-831.262	3	-2.066	6	.008	12	0	4	0	12	008	6
219		15	max	686.354	2	654	15	10.828	4	0	3	.017	4	002	15
220			min	-831.39	3	-2.833	6	.008	12	0	4	0	12	007	6
221		16	max	686.183	2	834	15	11.367	4	0	3	.022	4	001	15
222			min	-831.517	3	-3.601	6	.008	12	0	4	0	12	006	6
223		17	max	686.013	2	-1.015	15	11.905	4	0	3	.027	4	001	15
224			min	-831.645	3	-4.368	6	.008	12	0	4	0	12	004	6
225		18	max		2	-1.195	15	12.444	4	0	3	.032	4	0	15
226			min	-831.773	3	-5.135	6	.008	12	0	4	0	12	002	6
227		19	max		2	-1.376	15	12.983	4	0	3	.037	4	0	1
228		1	min	-831.901	3	-5.902	6	.008	12	0	4	0	12	0	1
229	M4	1			1	0	1	518	12	0	1	.027	4	0	1
230				-170.151		0	1	-258.075		0	1	0	12	0	1
231		2		1123.914		0	1	518	12	0	1	0	3	0	1
232				-170.024		0	1	-258.223		0	1	003	4	0	1
233		3		1124.085		0	1	518	12	0	1	0	12	0	1
234		Ť		-169.896		0	1	-258.371		0	1	032	4	0	1
235		4		1124.255	1	0	1	518	12	0	1	0	12	0	1
236		7		-169.768		0	1	-258.518		0	1	062	4	0	1
237		5		1124.425		0	1	518	12	0	1	002	12	0	1
		5			3		1				1		4		1
238		G		-169.64	•	0	•	-258.666		0		092	12	0	
239		6		1124.596		0	1	518	12	0	1	121		0	1
240		7		-169.513		0	1	-258.814		0	1	121	4	0	1
241		7		1124.766		0	1	518	12	0	1	0	12	0	1
242				-169.385		0	1_	-258.961		0	1	1 <u>5</u> 1	4	0	1
243		8		1124.937	1	0	1	518	12	0	1	0	12	0	1
244				-169.257		0	1	-259.109		0	1	181	4	0	1
245		9		1125.107	1	0	1	518	12	0	1	0	12	0	1
246			min	-169.129	3	0	1	-259.257	4	0	1	211	4	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

0.47	Member	Sec		Axial[lb]						Torque[k-ft]		1 -			
247		10		1125.277	1_	0	1	518	12	0	1	0	12	0	1
248		4.4		-169.002	3	0	1_	-259.404	4	0	<u>1</u> 1	24	4	0	1
249 250		11		1125.448 -168.874	<u>1</u> 3	0	1	518 -259.552	12 4	0	1	27	12 4	0	1
251		12		1125.618	<u>ა</u> 1	0	1	518	12	0	1	0	12	0	1
252		12		-168.746	3	0	1	-259.699	4	0	1	3	4	0	1
253		13		1125.788	1	0	1	518	12	0	1	0	12	0	1
254		10		-168.618	3	0	1	-259.847	4	0	1	33	4	0	1
255		14		1125.959	1	0	1	518	12	0	1	0	12	0	1
256				-168.491	3	0	1	-259.995	4	0	1	36	4	0	1
257		15		1126.129	1	0	1	518	12	0	1	0	12	0	1
258				-168.363	3	0	1	-260.142	4	0	1	39	4	0	1
259		16	max	1126.299	1	0	1	518	12	0	1	0	12	0	1
260			min	-168.235	3	0	1	-260.29	4	0	1	419	4	0	1
261		17	max	1126.47	1	0	1	518	12	0	1	0	12	0	1
262			min	-168.107	3	0	1	-260.438	4	0	1	449	4	0	1
263		18		1126.64	_1_	0	1	518	12	0	_1_	0	12	0	1
264				-167.979	3	0	1	-260.585	4	0	1_	479	4	0	1
265		19		1126.81	1_	0	1	518	12	0	1	001	12	0	1
266				-167.852	3	0	1	-260.733	4	0	1_	509	4	0	1
267	<u>M6</u>	1	max	3577.414	2	2.485	2	0	1_	0	_1_	0	4	0	1
268			min	-4955.78	3	108	3	-40.111	4	0	4	0	1	0	1
269		2		3577.842	2	2.441	2	0	1	0	1	0	1	0	3
270				-4955.458	3	141	3	-40.484	4	0	4	012	4	0	2
271		3	max		2	2.397	2	0	1	0	1	0	1	0	3
272			min	-4955.137	3	174	3	-40.857	4	0	4	024	4	001	2
273		4		3578.699	2	2.352	2	0	1	0	1	0	1	0	3
274		-		-4954.816	3	207	3	-41.231	4	0	4_	035	4	002	2
275		5		3579.127 -4954.494	2	2.308	2	0	1	0	1_1	0	1	0	3
276 277		6	min	3579.556	<u>3</u> 2	24 2.264	2	-41.604 0	<u>4</u> 1	0	<u>4</u> 1	047 0	1	003 0	3
278		0	min	-4954.173	3	274	3	-41.977	4	0	4	06	4	003	2
279		7		3579.984	2	2.22	2	0	1	0	1	0	1	003 0	3
280				-4953.852	3	307	3	-42.351	4	0	4	072	4	004	2
281		8		3580.413	2	2.175	2	0	1	0	1	0	1	0	3
282				-4953.53	3	34	3	-42.724	4	0	4	084	4	005	2
283		9	_	3580.841	2	2.131	2	0	1	0	1	0	1	0	3
284				-4953.209	3	373	3	-43.097	4	0	4	097	4	005	2
285		10		3581.27	2	2.087	2	0	1	0	1	0	1	0	3
286			min	-4952.888	3	406	3	-43.471	4	0	4	109	4	006	2
287		11		3581.698	2	2.043	2	0	1	0	1	0	1	0	3
288			min	-4952.566	3	439	3	-43.844	4	0	4	122	4	007	2
289		12		3582.127	2	1.998	2	0	1	0	1	0	1	0	3
290				-4952.245	3	473	3	-44.217	4	0	4	135	4	007	2
291		13		3582.555	2	1.954	2	0	1	0	1	0	1	.001	3
292			_	-4951.923	3	506	3	-44.591	4	0	4	148	4	008	2
293		14		3582.984	2	1.91	2	0	1	0	1	0	1	.001	3
294				-4951.602	3	539	3	-44.964	4	0	4	161	4	008	2
295		15		3583.412	2	1.866	2	0	1	0	1	0	1	.001	3
296				-4951.281	3	572	3	-45.337	4	0	4	174	4	009	2
297		16		3583.841	2	1.821	2	0	1	0	1	0	1	.002	3
298			min	-4950.959	3	605	3	-45.711	4	0	4	187	4	009	2
299		17		3584.269	2	1.777	2	0	1	0	1	0	1	.002	3
300				-4950.638	3_	639	3	-46.084	4	0	4	2	4	01	2
301		18		3584.698	2	1.733	2	0	1	0	1	0	1	.002	3
302		40	_	-4950.317	3	672	3	-46.457	4	0	4	214	4	01	2
303		19	max	3585.126	2	1.689	2	0	_1_	0	_1_	0	_ 1	.002	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]				Torque[k-ft]				z-z Mome	LC
304			min	-4949.995	3	705	3	-46.831	4	0	4	227	4	011	2
305	M7	1		2490.456	2	7.915	6	3.081	4	0	1	0	1	.011	2
306		_	min	-2604.65	3	1.858	15	0	1	0	4	024	4	002	3
307		2		2490.286	2	7.148	6	3.619	4	0	1	0	1	.008	2
308			min	-2604.778	3	1.678	15	0	1	0	4	023	4	004	3
309		3		2490.115	2	6.381	6	4.158	4	0	1	0	1	.006	2
310			min	-2604.906	3	1.497	15	0	1	0	4	021	4	005	3
311		4		2489.945	2	5.613	6	4.697	4	0	1	0	1	.003	2
312			min	-2605.033	3	1.317	15	0	1	0	4	019	4	006	3
313		5		2489.775	2	4.846	6	5.236	4	0	1	0	1	.001	2
314			min	-2605.161	3	1.137	15	0	1	0	4	017	4	007	3
315		6		2489.604	2	4.079	6	5.774	4	0	1_	0	1	0	2
316			min	-2605.289	3	.956	15	0	1	0	4	015	4	008	3
317		7		2489.434	2	3.312	6	6.313	4	0	_1_	0	1	002	15
318			min	-2605.417	3	.766	12	0	1	0	4	012	4	008	3
319		8	max	2489.263	2	2.642	2	6.852	4	0	_1_	0	1	002	15
320			min	-2605.544	3	.467	12	0	1	0	4	01	4	009	3
321		9	max	2489.093	2	2.044	2	7.391	4	0	1	0	1	002	15
322			min	-2605.672	3	.167	3	0	1	0	4	007	4	009	3
323		10	max	2488.923	2	1.446	2	7.929	4	0	1	0	1	002	15
324			min	-2605.8	3	282	3	0	1	0	4	004	5	009	4
325		11	max	2488.752	2	.848	2	8.468	4	0	1	0	1	002	15
326			min	-2605.928	3	73	3	0	1	0	4	0	5	009	4
327		12	max	2488.582	2	.25	2	9.007	4	0	1	.004	4	002	15
328			min	-2606.055	3	-1.178	3	0	1	0	4	0	1	009	4
329		13	max	2488.412	2	306	15	9.546	4	0	1	.007	4	002	15
330			min	-2606.183	3	-1.627	3	0	1	0	4	0	1	009	4
331		14	max	2488.241	2	486	15	10.084	4	0	1	.012	4	002	15
332			min	-2606.311	3	-2.075	3	0	1	0	4	0	1	008	4
333		15	max	2488.071	2	667	15	10.623	4	0	1	.016	4	002	15
334			min	-2606.439	3	-2.826	4	0	1	0	4	0	1	007	4
335		16	max	2487.901	2	847	15	11.162	4	0	1	.02	4	001	15
336			min	-2606.566	3	-3.593	4	0	1	0	4	0	1	006	4
337		17	max	2487.73	2	-1.027	15	11.701	4	0	1	.025	4	001	15
338			min	-2606.694	3	-4.361	4	0	1	0	4	0	1	004	4
339		18	max	2487.56	2	-1.208	15	12.239	4	0	1	.03	4	0	15
340			min	-2606.822	3	-5.128	4	0	1	0	4	0	1	002	4
341		19	max	2487.39	2	-1.388	15	12.778	4	0	1	.036	4	0	1
342			min	-2606.95	3	-5.895	4	0	1	0	4	0	1	0	1
343	M8	1		3081.735	1	0	1	0	1	0	1	.026	4	0	1
344				-631.639	3	0	1	-250.343	4	0	1	0	1	0	1
345		2		3081.906		0	1	0	1	0	1	0	1	0	1
346			min		3	0	1	-250.491	4	0	1	003	4	0	1
347		3		3082.076	1	0	1	0	1	0	1	0	1	0	1
348				-631.384		0	1	-250.639	4	0	1	032	4	0	1
349		4		3082.246		0	1	0	1	0	1	0	1	0	1
350				-631.256		0	1	-250.786	4	0	1	061	4	0	1
351		5		3082.417	1	0	1	0	1	0	1	0	1	0	1
352				-631.128		0	1	-250.934		0	1	089	4	0	1
353		6		3082.587	1	0	1	0	1	0	1	0	1	0	1
354			min		3	0	1	-251.082		0	1	118	4	0	1
355		7		3082.758	1	0	1	0	1	0	1	0	1	0	1
356			min			0	1	-251.229		0	1	147	4	0	1
357		8		3082.928		0	1	0	1	0	1	0	1	0	1
358		0		-630.745		0	1	-251.377	4	0	1	176	4	0	1
359		9					1	0	1		1	176 0	1		1
		9		3083.098		0	1			0	1			0	1
360			[11111]	-630.617	3	0		-251.524	4	0		205	4	0	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

361	004	Member	Sec		Axial[lb]						Torque[k-ft]		1 -	LC	_	
11 max 3084,439 1			10						_	_		<u> </u>	_	1		_
386			4.4	_										_		_
366			11					_		_	_			<u> </u>	_	_
1966			40								-	•		_	-	
13 max 3083.78 1			12									<u> </u>				-
1868			12					•			_		_	_	_	-
369			13				_								_	_
370			1.1								-			_		
371			14						•				_			
372			15								_					
373			10									<u> </u>			_	_
374			16	_												_
375			10					_	•		_			<u> </u>	_	_
376			17					•			-			_		
377			17									<u> </u>	_	_		-
378			1Ω					•			_	•		_	_	-
379			10				_	_			_				_	_
380			10			_					_			_		
381 M10			19										_	_		_
382		M10	1					•			_			_		
383		IVITO										<u> </u>			_	
384			2													_
385																
386			2								-			_	-	
387				-												
388			1							_	_			_		
389			_												_	
390			5								_					
391													_		_	
392			6								_			_		
393												<u> </u>			_	
394			7													_
395			-								_				_	
396			8	_							-					
397													_			
398			q							_	_			_		
399															_	
400 min -1522.31 3 .307 15 -43.408 4 0 5 109 4 004 6 401 11 max 1124.863 2 1.339 2 032 12 0 1 0 12 001 15 402 min -1521.989 3 .294 15 -43.782 4 0 5 122 4 005 6 403 12 max 1125.291 2 1.295 2 032 12 0 1 0 12 001 15 404 min -1521.667 3 .275 12 -44.155 4 0 5 134 4 005 6 405 13 max 1125.72 2 1.251 2 032 12 0 1 0 12 001 15 406 min -1521.346 3 <td< td=""><td></td><td></td><td>10</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td>_</td><td></td><td></td></td<>			10								-			_		
401 11 max 1124.863 2 1.339 2 032 12 0 1 0 12 001 15 402 min -1521.989 3 .294 15 -43.782 4 0 5 122 4 005 6 403 12 max 1125.291 2 1.295 2 032 12 0 1 0 12 001 15 404 min -1521.667 3 .275 12 -44.155 4 0 5 134 4 005 6 405 13 max 1125.72 2 1.251 2 032 12 0 1 0 12 001 15 406 min -1521.346 3 .253 12 -44.528 4 0 5 147 4 005 6 407 14 max 1126.148 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																
402 min -1521.989 3 .294 15 -43.782 4 0 5 122 4 005 6 403 12 max 1125.291 2 1.295 2 032 12 0 1 0 12 001 15 404 min -1521.667 3 .275 12 -44.155 4 0 5 134 4 005 6 405 13 max 1125.72 2 1.251 2 032 12 0 1 0 12 001 15 406 min -1521.346 3 .253 12 -44.528 4 0 5 147 4 005 6 407 14 max 1126.148 2 1.207 2 032 12 0 1 0 12 001 15 408 min -1521.024 3 <t< td=""><td></td><td></td><td>11</td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td>_</td><td></td><td></td><td></td><td></td><td></td></t<>			11							_	_					
403 12 max 1125.291 2 1.295 2 032 12 0 1 0 12 001 15 404 min -1521.667 3 .275 12 -44.155 4 0 5 134 4 005 6 405 13 max 1125.72 2 1.251 2 032 12 0 1 0 12 001 15 406 min -1521.346 3 .253 12 -44.528 4 0 5 147 4 005 6 407 14 max 1126.148 2 1.207 2 032 12 0 1 0 12 001 15 408 min -1521.024 3 .23 12 -44.902 4 0 5 16 4 006 6 409 15 max 1126.577																
404 min -1521.667 3 .275 12 -44.155 4 0 5 134 4 005 6 405 13 max 1125.72 2 1.251 2 032 12 0 1 0 12 001 15 406 min -1521.346 3 .253 12 -44.528 4 0 5 147 4 005 6 407 14 max 1126.148 2 1.207 2 032 12 0 1 0 12 001 15 408 min -1521.024 3 .23 12 -44.902 4 0 5 16 4 006 6 409 15 max 1126.577 2 1.162 2 032 12 0 1 0 12 001 15 410 min -1520.703 3			12													
405 13 max 1125.72 2 1.251 2 032 12 0 1 0 12 001 15 406 min -1521.346 3 .253 12 -44.528 4 0 5 147 4 005 6 407 14 max 1126.148 2 1.207 2 032 12 0 1 0 12 001 15 408 min -1521.024 3 .23 12 -44.902 4 0 5 16 4 006 6 409 15 max 1126.577 2 1.162 2 032 12 0 1 0 12 001 15 410 min -1520.703 3 .208 12 -45.275 4 0 5 173 4 006 6 411 16 max 1127.005																
406 min -1521.346 3 .253 12 -44.528 4 0 5 147 4 005 6 407 14 max 1126.148 2 1.207 2 032 12 0 1 0 12 001 15 408 min -1521.024 3 .23 12 -44.902 4 0 5 16 4 006 6 409 15 max 1126.577 2 1.162 2 032 12 0 1 0 12 001 15 410 min -1520.703 3 .208 12 -45.275 4 0 5 173 4 006 6 411 16 max 1127.005 2 1.118 2 032 12 0 1 0 12 001 15 412 min -1520.382 3 <td< td=""><td></td><td></td><td>13</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>			13													
407 14 max 1126.148 2 1.207 2 032 12 0 1 0 12 001 15 408 min -1521.024 3 .23 12 -44.902 4 0 5 16 4 006 6 409 15 max 1126.577 2 1.162 2 032 12 0 1 0 12 001 15 410 min -1520.703 3 .208 12 -45.275 4 0 5 173 4 006 6 411 16 max 1127.005 2 1.118 2 032 12 0 1 0 12 001 15 412 min -1520.382 3 .186 12 -45.648 4 0 5 187 4 006 6 413 17 max 1127.434 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td>_</td></td<>														-		_
408 min -1521.024 3 .23 12 -44.902 4 0 5 16 4 006 6 409 15 max 1126.577 2 1.162 2 032 12 0 1 0 12 001 15 410 min -1520.703 3 .208 12 -45.275 4 0 5 173 4 006 6 411 16 max 1127.005 2 1.118 2 032 12 0 1 0 12 001 15 412 min -1520.382 3 .186 12 -45.648 4 0 5 187 4 006 6 413 17 max 1127.434 2 1.074 2 032 12 0 1 0 12 001 15 414 min -1520.06 3			14	_												
409 15 max 1126.577 2 1.162 2 032 12 0 1 0 12 001 15 410 min -1520.703 3 .208 12 -45.275 4 0 5 173 4 006 6 411 16 max 1127.005 2 1.118 2 032 12 0 1 0 12 001 15 412 min -1520.382 3 .186 12 -45.648 4 0 5 187 4 006 6 413 17 max 1127.434 2 1.074 2 032 12 0 1 0 12 001 15 414 min -1520.06 3 .164 12 -46.022 4 0 5 2 4 007 6 415 18 max 1127.862 2 1.03 2 032 12 0 1 0 12 002																
410 min -1520.703 3 .208 12 -45.275 4 0 5 173 4 006 6 411 16 max 1127.005 2 1.118 2 032 12 0 1 0 12 001 15 412 min -1520.382 3 .186 12 -45.648 4 0 5 187 4 006 6 413 17 max 1127.434 2 1.074 2 032 12 0 1 0 12 001 15 414 min -1520.06 3 .164 12 -46.022 4 0 5 2 4 007 6 415 18 max 1127.862 2 1.03 2 032 12 0 1 0 12 002 15 416 min -1519.739 3 .			15			_								_		
411 16 max 1127.005 2 1.118 2 032 12 0 1 0 12 001 15 412 min -1520.382 3 .186 12 -45.648 4 0 5 187 4 006 6 413 17 max 1127.434 2 1.074 2 032 12 0 1 0 12 001 15 414 min -1520.06 3 .164 12 -46.022 4 0 5 2 4 007 6 415 18 max 1127.862 2 1.03 2 032 12 0 1 0 12 002 15 416 min -1519.739 3 .142 12 -46.395 4 0 5 213 4 007 2			ľ													
412 min -1520.382 3 .186 12 -45.648 4 0 5 187 4 006 6 413 17 max 1127.434 2 1.074 2 032 12 0 1 0 12 001 15 414 min -1520.06 3 .164 12 -46.022 4 0 5 2 4 007 6 415 18 max 1127.862 2 1.03 2 032 12 0 1 0 12 002 15 416 min -1519.739 3 .142 12 -46.395 4 0 5 213 4 007 2			16													
413 17 max 1127.434 2 1.074 2 032 12 0 1 0 12 001 15 414 min -1520.06 3 .164 12 -46.022 4 0 5 2 4 007 6 415 18 max 1127.862 2 1.03 2 032 12 0 1 0 12 002 15 416 min -1519.739 3 .142 12 -46.395 4 0 5 213 4 007 2			l · Č													
414 min -1520.06 3 .164 12 -46.022 4 0 5 2 4 007 6 415 18 max 1127.862 2 1.03 2 032 12 0 1 0 12 002 15 416 min -1519.739 3 .142 12 -46.395 4 0 5 213 4 007 2			17													
415 18 max 1127.862 2 1.03 2 032 12 0 1 0 12 002 15 416 min -1519.739 3 .142 12 -46.395 4 0 5 213 4 007 2																
416 min -1519.739 3 .142 12 -46.395 4 0 5213 4007 2			18								_					
														-		
			19	_			.985		032							_

Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
418			min	-1519.418	3	.12	12	-46.768	4	0	5	227	4	007	2
419	M11	1	max	688.739	2	7.858	6	3.204	4	0	1	0	12	.007	2
420			min	-829.601	3	1.836	15	144	1	0	4	024	4	.002	15
421		2	max	688.568	2	7.09	6	3.742	4	0	1	0	12	.005	2
422				-829.729	3	1.656	15	144	1	0	4	023	4	0	12
423		3	max	688.398	2	6.323	6	4.281	4	0	1	0	12	.002	2
424			min		3	1.475	15	144	1	0	4	021	4	0	3
425		4		688.228	2	5.556	6	4.82	4	0	1	0	12	0	2
426			min	-829.984	3	1.295	15	144	1	0	4	019	4	002	3
427		5	max	688.057	2	4.789	6	5.359	4	0	1	0	12	0	15
428			min	-830.112	3	1.115	15	144	1	0	4	017	4	003	3
429		6	max		2	4.021	6	5.897	4	0	1	0	12	001	15
430			min	-830.24	3	.934	15	144	1	0	4	015	4	005	4
431		7	max	687.717	2	3.254	6	6.436	4	0	1	0	12	002	15
432				-830.368	3	.754	15	144	1	0	4	012	4	002	4
433		8		687.546	2	2.487	6	6.975	4	0	1	0	12	007	15
434		0	max	-830.495	3	.574	15	144	1	0	4	009	4	002	
		9			2	1.72		7.513			1		12	002	4
435		9	max				6		4	0		0			15
436		40	min	-830.623	3	.393	15	144	1	0	4	006	4	009	4
437		10	max	687.206	2	.959	2	8.052	4	0	1	0	12	002	15
438		4.4	min	-830.751	3	.213	15	144	1	0	4	003	4	009	4
439		11	max		2	.361	2	8.591	4	0	1_	0	5	002	15
440		1.0		-830.879	3_	144	3	144	1	0	4	0	1	01	4
441		12	max	686.865	2	148	15	9.13	4	0	1	.004	5	002	15
442				-831.006	3_	592	3	144	1	0	4	0	1	01	4
443		13	max	686.695	2	328	15	9.668	4	0	1	.008	5	002	15
444			min		3	-1.35	4	144	1	0	4	001	1	009	4
445		14		686.524	2	508	15	10.207	4	0	1	.012	5	002	15
446			min	-831.262	3	-2.117	4	144	1	0	4	001	1	008	4
447		15	max	686.354	2	689	15	10.746	4	0	1	.017	4	002	15
448			min	-831.39	3	-2.885	4	144	1	0	4	001	1	007	4
449		16	max	686.183	2	869	15	11.285	4	0	1	.021	4	001	15
450			min	-831.517	3	-3.652	4	144	1	0	4	001	1	006	4
451		17	max	686.013	2	-1.049	15	11.823	4	0	1	.026	4	001	15
452			min	-831.645	3	-4.419	4	144	1	0	4	001	1	004	4
453		18	max	685.843	2	-1.23	15	12.362	4	0	1	.031	4	0	15
454			min	-831.773	3	-5.186	4	144	1	0	4	001	1	002	4
455		19	max	685.672	2	-1.41	15	12.901	4	0	1	.037	4	0	1
456			min	-831.901	3	-5.953	4	144	1	0	4	001	1	0	1
457	M12	1	max	1123.744	1	0	1	9.365	1	0	1	.026	4	0	1
458			min	-170.151	3	0	1	-252.714	4	0	1	001	1	0	1
459		2		1123.914	1	0	1	9.365	1	0	1	0	1	0	1
460				-170.024	3	0	1	-252.862	_	0	1	003	4	0	1
461		3		1124.085	1	0	1	9.365	1	0	1	.001	1	0	1
462				-169.896	3	0	1	-253.01	4	0	1	032	4	0	1
463		4		1124.255	1	0	1	9.365	1	0	1	.002	1	0	1
464				-169.768	3	0	1	-253.157	4	0	1	061	4	0	1
465		5		1124.425	1	0	1	9.365	1	0	1	.003	1	0	1
466				-169.64	3	0	1	-253.305		0	1	09	4	0	1
467		6		1124.596	<u></u>	0	1	9.365	1	0	1	.004	1	0	1
468		0		-169.513	3	0	1	-253.452	4	0	1	119	4	0	1
469		7		1124.766	<u> </u>	0	1	9.365	1	0	1	.005	1	0	1
470				-169.385	3	0	1	-253.6	4	0	1	148	4	0	1
		0					1				1				_
471		8		1124.937	1	0		9.365	1	0	_	.007	1	0	1
472		_		-169.257	3_	0	1	-253.748		0	1	177	4	0	1
473		9		1125.107	1	0	1	9.365	1	0	1	.008	1	0	1
474			mın	-169.129	<u>3</u>	0	1	-253.895	4	0	1	206	4	0	1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
475		10	max	1125.277	1	0	1	9.365	1	0	1	.009	1	0	1
476			min	-169.002	3	0	1	-254.043	4	0	1	235	4	0	1
477		11	max	1125.448	1	0	1	9.365	1	0	1	.01	1	0	1
478			min	-168.874	3	0	1	-254.191	4	0	1	265	4	0	1
479		12		1125.618	1	0	1	9.365	1	0	1	.011	1	0	1
480			min	-168.746	3	0	1	-254.338	4	0	1	294	4	0	1
481		13	max	1125.788	1	0	1	9.365	1	0	1	.012	1	0	1
482			min	-168.618	3	0	1	-254.486	4	0	1	323	4	0	1
483		14	max	1125.959	1	0	1	9.365	1	0	1	.013	1	0	1
484			min	-168.491	3	0	1	-254.633	4	0	1	352	4	0	1
485		15		1126.129	1	0	1	9.365	1	0	1	.014	1	0	1
486			min	-168.363	3	0	1	-254.781	4	0	1	382	4	0	1
487		16	max	1126.299	1	0	1	9.365	1	0	1	.015	1	0	1
488			min	-168.235	3	0	1	-254.929	4	0	1	411	4	0	1
489		17	max	1126.47	1	0	1	9.365	1	0	1	.016	1	0	1
490			min	-168.107	3	0	1	-255.076	4	0	1	44	4	0	1
491		18		1126.64	1	0	1	9.365	1	0	1	.017	1	0	1
492			min	-167.979	3	0	1	-255.224	4	0	1	469	4	0	1
493		19	max	1126.81	1	0	1	9.365	1	0	1	.018	1	0	1
494			min	-167.852	3	0	1	-255.372	4	0	1	499	4	0	1
495	M1	1	max	162.456	1	838.081	3	45.084	5	0	2	.217	1	0	3
496			min	-10.531	5	-479.119	2	-91.095	1	0	3	086	5	015	2
497		2	max	163.061	1	837.107	3	46.325	5	0	2	.169	1	.238	2
498			min	-10.248	5	-480.417	2	-91.095	1	0	3	062	5	442	3
499		3	max	512.138	3	573.668	2	8.699	5	0	3	.121	1	.479	2
500			min	-298.936	2	-608.598	3	-90.688	1	0	2	038	5	866	3
501		4	max		3	572.37	2	9.941	5	0	3	.073	1	.18	1
502			min	-298.331	2	-609.572	3	-90.688	1	0	2	033	5	545	3
503		5	max		3	571.072	2	11.182	5	0	3	.026	1	003	15
504			min	-297.725	2	-610.545	3	-90.688	1	0	2	028	5	223	3
505		6	max		3	569.773	2	12.424	5	0	3	001	12	.1	3
506			min	-297.12	2	-611.519	3	-90.688	1	0	2	026	4	426	2
507		7	max		3	568.475	2	13.665	5	0	3	004	12	.422	3
508			min	-296.514	2	-612.493	3	-90.688	1	0	2	07	1	727	2
509		8	max	514.409	3	567.177	2	14.907	5	0	3	005	15	.746	3
510			min	-295.909	2	-613.466	3	-90.688	1	0	2	118	1	-1.026	2
511		9	max		3	51.419	2	53.116	5	0	9	.07	1	.872	3
512			min	-228.102	2	.392	15	-135.16	1	0	3	12	5	-1.174	2
513		10	max	527.29	3	50.12	2	54.358	5	0	9	0	10	.848	3
514			min	-227.497	2	0	5	-135.16	1	0	3	092	4	-1.201	2
515		11		527.744		48.822	2	55.599	5	0	9	004	12	.826	3
516				-226.891	2	-1.62	4	-135.16	1	0	3	079	4	-1.227	2
517		12		540.048	3	394.219	3	141.375	5	0	2	.117	1	.72	3
518				-159.039	2	-673.786	2	-88.707	1	0	3	195	5	-1.088	2
519		13		540.502	3	393.245	3	142.616	5	0	2	.07	1	.512	3
520				-158.433	2	-675.085	2	-88.707	1	0	3	12	5	732	2
521		14		540.956	3	392.272	3	143.858	5	0	2	.023	1	.305	3
522				-157.828		-676.383	2	-88.707	1	0	3	045	5	375	2
523		15		541.41	3	391.298	3	145.099	5	0	2	.031	5	.098	3
524			min		2	-677.681	2	-88.707	1	0	3	024	1	04	1
525		16		541.864	3	390.324	3	146.341	5	0	2	.108	5	.34	2
526				-156.617	2	-678.979	2	-88.707	1	0	3	071	1	108	3
527		17		542.318	3	389.351	3	147.582	5	0	2	.186	5	.698	2
528				-156.012	2	-680.277	2	-88.707	1	0	3	117	1	314	3
529		18			5	688.067	2	-5.478	12	0	5	.18	5	.351	2
530		0	min		1	-317.614	3	-112.9	4	0	2	167	1	155	3
531		19		20.071	5	686.768	2	-5.478	12	0	5	.132	5	.013	3
UUI		10	παλ	20.011	<u> </u>	300.700		U.∓1 U	14			.102		.010	

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC_
532			min	-162.731	1	-318.588	3	-111.659	4	0	2	219	1	011	2
533	M5	1	max	354.387	1	2790.261	3	88.11	5	0	1	0	1	.031	2
534			min	12.607	12	-1633.399	2	0	1	0	4	189	4	0	3
535		2	max	354.992	1	2789.287	3	89.352	5	0	1	0	1	.893	2
536			min	12.909	12	-1634.697	2	0	1	0	4	142	4	-1.472	3
537		3	max	1638.355	3	1711.082	2	54.392	4	0	4	0	1	1.716	2
538			min	-1022.939	2	-1928.797	3	0	1	0	1	095	4	-2.887	3
539		4	max	1638.809	3	1709.783	2	55.634	4	0	4	0	1	.813	2
540			min	-1022.333	2	-1929.77	3	0	1	0	1	066	4	-1.869	3
541		5	max	1639.263	3	1708.485	2	56.875	4	0	4	0	1	.012	9
542			min	-1021.728	2	-1930.744	3	0	1	0	1	037	4	85	3
543		6	max	1639.717	3	1707.187	2	58.117	4	0	4	0	1	.169	3
544			min	-1021.123	2	-1931.718	3	0	1	0	1	007	5	99	2
545		7	max	1640.171	3	1705.889	2	59.358	4	0	4	.025	4	1.189	3
546			min	-1020.517	2	-1932.692	3	0	1	0	1	0	1	-1.89	2
547		8	max	1640.625	3	1704.591	2	60.6	4	0	4	.056	4	2.209	3
548			min	-1019.912	2	-1933.665	3	0	1	0	1	0	1	-2.79	2
549		9	max	1659.029	3	172.387	2	172.672	4	0	1	0	1	2.543	3
550			min		2	.392	15	0	1	0	1	175	4	-3.178	2
551		10	max	1659.483	3	171.089	2	173.913	4	0	1	0	1	2.46	3
552			min	-877.159	2	0	15	0	1	0	1	084	4	-3.269	2
553		11	max	1659.937	3	169.791	2	175.154	4	0	1	.009	4	2.376	3
554			min	-876.554	2	-1.486	6	0	1	0	1	0	1	-3.359	2
555		12	max	1678.588	3	1230.305	3	202.715	4	0	1	0	1	2.086	3
556			min	-734.498	2	-2053.714	2	0	1	0	4	283	4	-3.007	2
557		13		1679.042	3	1229.331	3	203.956	4	0	1	0	1	1.437	3
558			min	-733.892	2	-2055.012	2	0	1	0	4	176	4	-1.923	2
559		14		1679.496	3	1228.357	3	205.197	4	0	1	0	1	.788	3
560			min	-733.287	2	-2056.31	2	0	1	0	4	068	4	838	2
561		15	max		3	1227.384	3	206.439	4	0	1	.041	4	.247	2
562			min	-732.681	2	-2057.608	2	0	1	0	4	0	1	003	13
563		16	_	1680.404	3	1226.41	3	207.68	4	0	1	.15	4	1.334	2
564			min	-732.076	2	-2058.907	2	0	1	0	4	0	1	507	3
565		17		1680.858	3	1225.436	3	208.922	4	0	1	.26	4	2.42	2
566			min	-731.471	2	-2060.205	2	0	1	0	4	0	1	-1.154	3
567		18	max		12	2322	2	0	1	0	4	.287	4	1.247	2
568			min	-354.442	1	-1095.114	3	-25.29	5	0	1	0	1	604	3
569		19	max	-13.11	12	2320.702	2	0	1	0	4	.275	4	.023	2
570		1	min	-353.837	1	-1096.088	3	-24.049	5	0	1	0	1	026	3
571	M9	1	max	162.456	1	838.081	3	91.095	1	0	3	013	12	0	3
572						-479.119		5.537	12		4	217	1	015	2
573		2		163.061	1	837.107	3	91.095	1	0	3	01	12	.238	2
574			min	7.965	12	-480.417	2	5.537	12	0	4	169	1	442	3
575		3	+	512.138	3	573.668	2	90.688	1	0	2	007	12	.479	2
576			min	-298.936	2	-608.598	3	5.503	12	0	3	121	1	866	3
577		4		512.592	3	572.37	2	90.688	1	0	2	005	12	.18	1
578			min		2	-609.572	3	5.503	12	0	3	073	1	545	3
579		5		513.046	3	571.072	2	90.688	1	0	2	002	12	003	15
580		Ĭ		-297.725	2	-610.545	3	5.503	12	0	3	037	4	223	3
581		6	max		3	569.773	2	90.688	1	0	2	.022	1	.1	3
582			min		2	-611.519	3	5.503	12	0	3	018	5	426	2
583		7		513.955	3	568.475	2	90.688	1	0	2	.07	1	.422	3
584				-296.514	2	-612.493	3	5.503	12	0	3	005	5	727	2
585		8		514.409	3	567.177	2	90.688	1	0	2	.118	1	.746	3
586			min	-295.909	2	-613.466	3	5.503	12	0	3	.005	15	-1.026	2
587		9		526.836	3	51.419	2	135.16	1	0	3	004	12	.872	3
588		9		-228.102	2	.399	15	7.883	12	0	9	146	4	-1.174	2
J00			1111111	-220.102		.533	10	7.003	12	U	J	140	4	-1.174	

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
589		10	max	527.29	3	50.12	2	135.16	1	0	3	0	1	.848	3
590			min	-227.497	2	.007	15	7.883	12	0	9	092	4	-1.201	2
591		11	max	527.744	3	48.822	2	135.16	1	0	3	.072	1	.826	3
592			min	-226.891	2	-1.57	6	7.883	12	0	9	054	5	-1.227	2
593		12	max	540.048	3	394.219	3	174.277	4	0	3	007	12	.72	3
594			min	-159.039	2	-673.786	2	4.969	12	0	2	238	4	-1.088	2
595		13	max	540.502	3	393.245	3	175.518	4	0	3	004	12	.512	3
596			min	-158.433	2	-675.085	2	4.969	12	0	2	146	4	732	2
597		14	max	540.956	3	392.272	3	176.76	4	0	3	001	12	.305	3
598			min	-157.828	2	-676.383	2	4.969	12	0	2	053	4	375	2
599		15	max	541.41	3	391.298	3	178.001	4	0	3	.04	4	.098	3
600			min	-157.223	2	-677.681	2	4.969	12	0	2	.001	12	04	1
601		16	max	541.864	3	390.324	3	179.243	4	0	3	.135	4	.34	2
602			min	-156.617	2	-678.979	2	4.969	12	0	2	.004	12	108	3
603		17	max	542.318	3	389.351	3	180.484	4	0	3	.23	4	.698	2
604			min	-156.012	2	-680.277	2	4.969	12	0	2	.006	12	314	3
605		18	max	-7.713	12	688.067	2	97.672	1	0	2	.241	4	.351	2
606			min	-163.336	1	-317.614	3	-78.093	5	0	3	.009	12	155	3
607		19	max	-7.411	12	686.768	2	97.672	1	0	2	.219	1	.013	3
608			min	-162.731	1	-318.588	3	-76.852	5	0	3	.012	12	011	2

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M13	1	max	0	1	.123	2	.009	3 1.015e-2	2	NC	1_	NC	1
2			min	573	4	021	3	005	2 -1.904e-3	3	NC	1	NC	1
3		2	max	0	1	.294	3	.03	1 1.155e-2	2	NC	5	NC	2
4			min	573	4	045	1	016	5 -1.893e-3	3	704.744	3	7533.851	1
5		3	max	0	1	.549	3	.072	1 1.295e-2	2	NC	5	NC	3
6			min	573	4	163	1	02	5 -1.883e-3	3	389.281	3	3116.082	1
7		4	max	0	1	.705	3	.107	1 1.435e-2	2	NC	5	NC	3
8			min	573	4	228	1	014	5 -1.872e-3	3	305.919	3	2074.635	
9		5	max	0	1	.742	3	.125	1 1.575e-2	2	NC	5	NC	3
10			min	573	4	23	1	003	5 -1.862e-3	3	291.167	3	1776.452	1
11		6	max	0	1	.662	3	.12	1 1.716e-2	2	NC	5	NC	3
12			min	573	4	169	1	.005	10 -1.851e-3	3	324.94	3	1851.986	
13		7	max	0	1	.491	3	.093	1 1.856e-2	2	NC	5	NC	3
14			min	573	4	061	1	.001	10 -1.841e-3	3	433.649	3	2387.28	1
15		8	max	0	1	.273	3	.053	1 1.996e-2	2	NC	4	NC	2
16			min	573	4	.002	15	004	10 -1.83e-3	3	755.044	3	4257.575	1
17		9	max	0	1	.221	2	.029	3 2.136e-2	2	NC	4	NC	1
18			min	573	4	.005	15	011	2 -1.82e-3	3	2271.932	2	NC	1
19		10	max	0	1	.276	2	.028	3 2.276e-2	2	NC	3	NC	1
20			min	573	4	014	3	019	2 -1.809e-3	3	1454.894	2	NC	1
21		11	max	0	12	.221	2	.029	3 2.136e-2	2	NC	4	NC	1
22			min	573	4	.004	15	013	5 -1.82e-3	3	2271.932	2	NC	1
23		12	max	0	12	.273	3	.053	1 1.996e-2	2	NC	4	NC	2
24			min	573	4	.002	15	013	5 -1.83e-3	3	755.044	3	4257.575	1
25		13	max	0	12	.491	3	.093	1 1.856e-2	2	NC	5	NC	3
26			min	573	4	061	1	004	5 -1.841e-3	3	433.649	3	2387.28	1
27		14	max	0	12	.662	3	.12	1 1.716e-2	2	NC	5	NC	3
28			min	573	4	169	1	.005	15 -1.851e-3	3	324.94	3	1851.986	1
29		15	max	0	12	.742	3	.125	1 1.575e-2	2	NC	5	NC	3
30			min	573	4	23	1	.007	10 -1.862e-3	3	291.167	3	1776.452	1
31		16	max	0	12	.705	3	.107	1 1.435e-2	2	NC	5	NC	3
32			min	573	4	228	1	.006	10 -1.872e-3	3	305.919	3	2074.635	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

22	Member	Sec 17	m 0 1	x [in]	LC	y [in]	LC 3	z [in]	LC 1	x Rotate [r					
33		11/	max	0 573	4	.549 163	1	.072 .003		1.295e-2 -1.883e-3	3	NC 389.281	<u>5</u> 3	NC 3116.082	3
35		18	max	- <u>373</u> 0	12	<u>163</u> .294	3	.003	1	1.155e-2	2	NC	<u>5</u>	NC	2
36		10	min	573	4	045	1	0		-1.893e-3	3	704.744	3	7533.851	1
37		19	max	573 0	12	.123	2	.009	3	1.015e-2	2	NC	<u> </u>	NC	1
38		19	min	573	4	021	3	005	2	-1.904e-3	3	NC NC	1	NC NC	1
39	M14	1	max	575 0	1	.26	3	.003	3	5.946e-3	2	NC	1	NC	1
40	IVI 14		min	436	4	393	2	005	2	-4.637e-3	3	NC	1	NC	1
41		2	max	<u>430</u> 0	1	<u>393 </u>	3	.02	1	7.081e-3	2	NC	5	NC	1
42			min	436	4	683	2	024	5	-5.613e-3	3	701.796		8733.234	
43		3	max	<u>430</u> 0	1	.846	3	.057	1	8.217e-3	2	NC	5	NC	2
44		3	min	436	4	935	2	029	5	-6.589e-3	3	379.092	3	3937.074	
45		4		430 0	1	1.036	3	.029	1	9.352e-3	2	NC	<u> </u>	NC	3
		4	max		4		2	02	5		3	286.238	3	2446.673	
46		-	min	<u>436</u>	1	<u>-1.124</u>				-7.565e-3	_				
47 48		5	max min	0 436	4	1.131 -1.236	2	.111 003	5	1.049e-2	3	NC 255.134	<u>15</u> 3	NC 2017.239	3
		6			1	1.13	3			-8.541e-3		NC	<u>၁</u> 15	NC	3
49 50		6	max	0 436	4	-1.13 -1.271	2	.109 .005	1	1.162e-2 -9.517e-3	2	252.971	2	2052.718	
		7	min				3				3			NC	3
51			max	<u> </u>	1	1.05		.086	1	1.276e-2	2	NC	15		1
52		0	min	<u>436</u>	1	<u>-1.238</u>	2	.001 .049		-1.049e-2	3	262.715 NC	<u>2</u>	2600.247 NC	2
53		8	max	0	4	.923	2		1	1.389e-2	2	288.498	<u>15</u>		2
54			min	<u>436</u>	1	<u>-1.162</u>		004		-1.147e-2	3	288.498 NC	<u>2</u> 5	4566.657 NC	1
55		9	max	0		.797	3	.032	2	1.503e-2	2				
56		10	min	436	4	<u>-1.08</u>	2	01		-1.244e-2	3	323.06	2	6948.086	
57		10	max	0	1	.738	3	.025	3	1.616e-2 -1.342e-2	2	NC 242.242	<u>5</u> 2	NC NC	1
58		44	min	<u>436</u>	4	<u>-1.04</u>	2	018	2		3	343.313		NC NC	•
59		11	max	0	12	.797	3	.026	3	1.503e-2	2	NC 222.00	5	NC 0000 C40	1
60		40	min	436	4	-1.08	2	024		-1.244e-2	3	323.06	2	9296.648	
61		12	max	0	12	.923	3	.049	1	1.389e-2	2	NC 200,400	<u>15</u>	NC 4FCC CF7	2
62		12	min	<u>436</u>	4	<u>-1.162</u>	2	027	5	-1.147e-2	3	288.498	<u>2</u>	4566.657	2
63		13	max	0	12	1.05	3	.086	1	1.276e-2	2	NC	<u>15</u>	NC	3
64		4.4	min	<u>436</u>	4	-1.238	2	017	5	-1.049e-2	3	262.715	2	2600.247	1
65		14	max	0	12	1.13	3	.109	1	1.162e-2	2	NC 252.074	<u>15</u>	NC 740	3
66		4.5	min	436	4	-1.271	2	0	15	-9.517e-3	3	252.971	2	2052.718	
67		15	max	0	12	1.131	3	.111	1	1.049e-2	2	NC OFF 424	<u>15</u>	NC	3
68		10	min	436	4	-1.236	2	.006	10	-8.541e-3	3	255.134	3	2017.239	
69		16	max	0	12	1.036 -1.124	3	.091	1	9.352e-3	2	NC 200 220	<u>15</u>	NC	3
70		47	min	436	4		2	.005		-7.565e-3	3	286.238	3	2446.673	
71		17	max	0	12	.846	3	.057	1	8.217e-3	2	NC 270,000	5	NC	2
72 73		10	min	<u>436</u>	12	<u>935</u>	3	.002		-6.589e-3	3	379.092	<u>3</u> 5	3937.074	1
		10	max	436		.577	2	.033	1	7.081e-3		NC 704 706		NC	1
74		10	min		12	<u>683</u>		001	10	-5.613e-3	3	701.796	3	6736.677	1
75		19	max	0		.26	3	.008	3	5.946e-3	2	NC NC	1	NC NC	
76	NAAE	4	min	436	4	393	2	005	2	-4.637e-3	3	NC NC	1_1	NC NC	1
77 78	M15	1	max min	0 359	12	.266 392	2	.008 004	2	3.935e-3 -6.184e-3	2	NC NC	<u>1</u> 1	NC NC	1
79		2	max	_ 359 0	12	<u>392</u> .469	3	.02	1	4.767e-3	3	NC NC	<u> </u>	NC NC	1
80				359	4	759	2	033	5	-7.37e-3	2	605.722	2	6534.299	
		2	min		12		3					NC			
81 82		3	max	0 359	4	.646 -1.073	2	.057	1	5.599e-3 -8.555e-3	2	325.978	<u>5</u> 2	NC 3924.021	2
83		4	min	_ 359 0	12	<u>-1.073 </u>	3	04 .092	1	6.432e-3	3	NC	15	NC	3
84		+	max	359	4	-1.3	2	029	5	-9.741e-3	2	244.555	2	2439.814	
85		5		_ 359 _ 0	12	<u>-1.3</u> .864	3	029 .111	1	7.264e-3	3	NC	15	NC	3
86		<u></u>	max	359	4	-1.421	2	007	5	-1.093e-2	2	215.825	2	2011.619	
87		6			12	.893	3		1		3	NC	15	NC	3
88		6	max min	0 359	4	<u>.893</u> -1.435	2	.109 .005	10	8.096e-3 -1.211e-2	2	212.834	2	2046.165	
89		7		_ 359 0	12	<u>-1.435</u> .878	3	.005	1	8.928e-3	3	NC	15	NC	3
LOS		/	max	U	12	.070	_ <u> </u>	.000		0.3206-3	ა	INC	ıυ	INC	<u> </u>

Model Name

: Schletter, Inc. : HCV

псу

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

00	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r					
90			min	<u>359</u>	4	<u>-1.36</u>	2	.002	10 -1.33e-2	2	229.258	2	2588.919	1
91		8	max	0	12	.832	3	.057	4 9.76e-3	3		<u>15</u>	NC	2
92		_	min	<u>359</u>	4	<u>-1.231</u>	2	003	10 -1.448e-2		264.512	2	3853.372	4
93		9	max	0	12	.779	3	.039	4 1.059e-2	3	NC	5	NC FCO4 700	1_1
94		10	min	<u>359</u>	1	-1.101	2	009	2 -1.567e-2	2	313.378	<u>2</u> 5	5621.733 NC	4
95		10	max	0 359	4	.753	3	.023	3 1.142e-2 2 -1.685e-2	3	NC 343.706		NC NC	1
96		11	min		1	<u>-1.038</u>	3	017		3	NC	5	NC NC	
97		11	max	<u>0</u>	4	.779	2	.024	3 1.059e-2 5 -1.567e-2	_	313.378	2		1
98		12	min	359	1	<u>-1.101</u>		031					7057.726 NC	5
99		12	max	0 359	4	.832 -1.231	3	.05 037	1 9.76e-3 5 -1.448e-2	2	264.512	<u>15</u> 2	4530.235	1
101		13	min	<u>359</u> 0	1	.878	3	.086	1 8.928e-3	3		15	NC	3
		13	max		4			024	5 -1.33e-2	2	229.258	2	2588.919	
102		1.1	min	359	1	<u>-1.36</u>	2							1
103		14	max	<u> </u>		.893	3	.109	1 8.096e-3 5 -1.211e-2	3		<u>15</u>	NC 2046 465	3
104		15	min	<u>359</u> 0	1	<u>-1.435</u> .864	3	002 .111	5 -1.211e-2 1 7.264e-3	3	212.834 NC	15	2046.165 NC	3
106		10	max	359	4	-1.421	2	.007	10 -1.093e-2	2	215.825	2	2011.619	1
107		16	min	<u>359</u> 0	1	.781	3	.007	1 6.432e-3	3		15	NC	3
107		10	max	359	4	-1.3	2	.006	10 -9.741e-3		244.555	2	2439.814	1
		17	min		1		3				NC		NC	1
109		17	max	0 359	4	<u>.646</u> -1.073	2	.062 .003	4 5.599e-3 10 -8.555e-3	2	325.978	<u>5</u>	3585.303	4
111		18	max	_ 359 _0	1	.469	3	.003	4 4.767e-3	3	NC	5	NC	1
112		10	min	359	4	759	2	0	10 -7.37e-3	2	605.722	2	5337.976	4
113		19			1	.266	3	.008			NC	1		1
		19	max	<u> </u>						3	NC NC	1	NC NC	1
114	M16	1	min	<u>359</u> 0	12	<u>392</u> .11	2	004 .007		2	NC NC	1	NC NC	1
116	IVITO		max	137	4	089	3	00 <i>1</i>		2	NC NC	1	NC NC	1
		2	min		12	069 .01	3				NC NC	5	NC NC	2
117			max	<u> </u>			2	.03	1 8.286e-3 5 -9.538e-3	2		2		4
118		2	min	137	4	129		025			930.239		7574.661 NC	
119 120		3	max	0 137	12	.087 319	3	.072 031	1 9.467e-3 5 -1.056e-2	2	NC 518.109	<u>5</u>	3121.041	3
121		4	min	<u>137</u> 0	12	.126	3	.108	1 1.065e-2	3	NC	5	NC	3
122		4	max	137	4	427	2	024	5 -1.157e-2		413.505	2	2072.946	1
123		5	min	<u>137</u> 0	12	<u>427</u> .121	3	.126	1 1.183e-2	3	NC	5	NC	3
124		5	max	137	4	439	2	009	5 -1.259e-2	2	404.475	2	1770.886	1
125		6		<u>137</u> 0	12	.073	3	<u>009</u> .121	1 1.301e-2	3	NC	5	NC	3
126		-	max	137	4	357	2	.005	15 -1.361e-2	2	475.233	2	1840.408	1
127		7		<u>137</u> 0	12	001	15	.005	1 1.419e-2	3	NC	5	NC	3
128		+-	max	137	4	202	2	.003	10 -1.463e-2		711.378	2	2358.833	1
129		8	max	<u>137</u> 0	12	.022	9	.054	1 1.537e-2	3	NC	3	NC	2
130		- 0	min	137	4		3	002	10 -1.565e-2				4142.731	1
131		9	max	0	12	.16	1	.028	4 1.655e-2	3	NC	4	NC	1
132		1	min	137	4	188	3	007	2 -1.667e-2		2245.316	3	7943.704	4
133		10	max	0	1	.234	2	.02	3 1.773e-2	3	NC	4	NC	1
134		10	min	137	4	225	3	015	2 -1.769e-2		1631.091	3	NC	1
135		11	max	0	1	.16	1	.021	3 1.655e-2	3	NC	4	NC	1
136			min	137	4	188	3	02	5 -1.667e-2	2	2245.316	3	NC	1
137		12	max	0	1	.022	9	.054	1 1.537e-2	3	NC	3	NC	2
138		12	min	137	4	104	3	021	5 -1.565e-2		1824.512	2	4142.731	1
139		13		0	1	001	15	.095	1 1.419e-2	3	NC	5	NC	3
140		13	max	137	4	202	2	01	5 -1.463e-2		711.378	2	2358.833	1
141		1/	max	<u>137</u> 0	1	.073	3	.121	1 1.301e-2	3	NC	5	NC	3
142		14	min	137	4	357	2	.005	15 -1.361e-2		475.233	2	1840.408	1
143		15	max	<u>137</u> 0	1	<u>357</u> .121	3	.005 .126	1 1.183e-2	3	NC	5	NC	3
144		10	min	137	4	439	2	.009	10 -1.259e-2		404.475	2	1770.886	1
144		16	1 1	137 0	1	<u>439</u> .126	3	.009 .108	1 1.065e-2	3	NC	5	NC	3
146		10	max	137	4	427	2	.008	10 -1.157e-2		413.505	2	2072.946	
140			1111111	IS <i>I</i>	4	421		.000	10 -1.1376-2		413.303		2012.940	

Model Name

Schletter, Inc.HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r		(n) L/y Ratio			
147		17	max	0	1	.087	3	.072	1	9.467e-3	3	NC	5	NC	3
148			min	137	4	319	2	.004	10	-1.056e-2	2	518.109	2	3121.041	1
149		18	max	0	1	.01	3	.037	4	8.286e-3	3	NC	5	NC	2
150			min	137	4	129	2	0	10	-9.538e-3	2	930.239	2	5987.046	4
151		19	max	0	1	.11	2	.007	3	7.106e-3	3	NC	1	NC	1
152			min	137	4	089	3	004	2	-8.519e-3	2	NC	1	NC	1
153	M2	1	max	.007	2	.008	2	.007	1	1.419e-3	5	NC	1	NC	2
154	1712		min	009	3	013	3	539	4	-1.91e-4	1	8159.743	2	116.379	4
155		2		.006	2	.007	2	.006	1	1.5e-3	5	NC	1	NC	2
156			max		3		3		4	-1.793e-4	1	9323.598	2	126.692	
		2	min	009		012		495	_		•				4
157		3	max	.006	2	.006	2	.006	1	1.581e-3	5_	NC	1	NC 400,005	1
158			min	008	3	012	3	451	4	-1.675e-4	_1_	NC	_1_	138.935	4
159		4	max	.006	2	.005	2	.005	1	1.661e-3	_5_	NC	_1_	NC	1
160			min	008	3	011	3	408	4	-1.558e-4	<u> 1</u>	NC	1_	153.607	4
161		5	max	.005	2	.004	2	.005	1	1.742e-3	5_	NC	_1_	NC	1
162			min	007	3	011	3	366	4	-1.44e-4	1	NC	1	171.39	4
163		6	max	.005	2	.003	2	.004	1	1.822e-3	5	NC	1_	NC	1
164			min	007	3	01	3	325	4	-1.323e-4	1	NC	1	193.226	4
165		7	max	.005	2	.002	2	.004	1	1.903e-3	5	NC	1	NC	1
166			min	006	3	01	3	285	4	-1.205e-4	1	NC	1	220.448	4
167		8	max	.004	2	.002	2	.003	1	1.983e-3	5	NC	1	NC	1
168			min	006	3	009	3	246	4	-1.088e-4	1	NC	1	255.001	4
169		9	max	.004	2	0	2	.003	1	2.064e-3	5	NC	1	NC	1
170		1	min	005	3	008	3	209	4	-9.7e-5	1	NC	1	299.805	4
171		10	max	.003	2	008	2	.002	1	2.148e-3	4	NC	1	NC	1
172		10	min	005	3	008	3	175	4	-8.524e-5	1	NC NC	1	359.412	4
		4.4											•		
173		11	max	.003	2	0	2	.002	1	2.233e-3	4_	NC	1	NC 444.050	1
174		1.0	min	004	3	007	3	142	4	-7.349e-5	_1_	NC	1_	441.252	4
175		12	max	.003	2	0	2	.001	1	2.317e-3	_4_	NC	_1_	NC	1
176			min	004	3	006	3	112	4	-6.173e-5	_1_	NC	1_	558.136	4
177		13	max	.002	2	00	15	.001	1	2.402e-3	_4_	NC	_1_	NC	1
178			min	003	3	005	3	085	4	-4.998e-5	1	NC	1	733.745	4
179		14	max	.002	2	0	15	0	1	2.487e-3	4	NC	1	NC	1
180			min	003	3	005	3	062	4	-3.822e-5	1	NC	1	1016.003	4
181		15	max	.002	2	0	15	0	1	2.571e-3	4	NC	1	NC	1
182			min	002	3	004	3	041	4	-2.647e-5	1	NC	1	1514.618	4
183		16	max	.001	2	0	15	0	1	2.656e-3	4	NC	1	NC	1
184			min	002	3	003	3	025	4	-1.471e-5	1	NC	1	2529.839	4
185		17	max	0	2	0	15	0	1	2.74e-3	4	NC	1	NC	1
186		1 '	min	001	3	002	3	012	4	-2.955e-6	1	NC	1	5157.379	
187		18	max	0	2	0	15	0	1	2.825e-3	4	NC	1	NC	1
		10		_	3		3	004		1.697e-7		NC	1	NC	1
188		10	min	0		001			4		<u>12</u>		1	NC NC	
189		19	max	0	1	0	1	0	1	2.909e-3	4	NC NC			1
190	1.40		min	0	1	0	1	0	1	9.073e-7	12	NC	1_	NC	1
191	<u>M3</u>	1_	max	0	1	0	1	0	1	-3.234e-7	12	NC	1	NC	1
192			min	0	1	0	1	0	1	-7.107e-4	4	NC	1_	NC	1
193		2	max	0	3	00	15	.014	4	1.348e-5	_1_	NC	_1_	NC	1
194			min	0	2	002	6	0	12	-9.573e-5	5	NC	1_	NC	1
195		3	max	0	3	0	15	.027	4	5.247e-4	4	NC	1_	NC	1
196			min	0	2	003	6	0	12	1.87e-6	12	NC	1	NC	1
197		4	max	.001	3	001	15	.038	4	1.142e-3	4	NC	1	NC	1
198			min	0	2	005	6	0	12	2.967e-6	12	NC	1	NC	1
199		5	max	.002	3	002	15	.049	4	1.76e-3	4	NC	1	NC	1
200		Ť	min	001	2	007	6	0	12	4.064e-6	12	NC	1	NC	1
201		6	max	.002	3	007	15	.06	4	2.378e-3	4	NC	1	NC	1
202			min	002	2	002	6	<u>.00</u>	12	5.161e-6	12	NC NC	1	NC	1
203		7			3	009 002	15	.069	4	2.995e-3		NC NC	1	NC NC	1
LZU3		/	max	.002	_ ა	002	10	.009	4	2.9906-3	4	INC		INC	

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio			
204			min	002	2	01	6	0	12	6.258e-6	12	8751.531	6	NC	1
205		8	max	.003	3	003	15	.078	4	3.613e-3	4_	NC	_1_	NC	1
206			min	002	2	012	6	0	12	7.354e-6	12	7847.621	6	NC	1
207		9	max	.003	3	003	15	.087	4	4.231e-3	4	NC	2	NC	1
208			min	003	2	012	6	0	12	8.451e-6	12	7312.078	6	NC	1
209		10	max	.004	3	003	15	.095	4	4.848e-3	4	NC	2	NC	1
210			min	003	2	013	6	0	12	9.548e-6	12		6	NC	1
211		11	max	.004	3	003	15	.104	4	5.466e-3	4	NC	2	NC	1
212			min	003	2	013	6	0	12	1.064e-5	12	7026.859	6	NC	1
213		12	max	.004	3	003	15	.112	4	6.084e-3	4	NC	2	NC	1
214			min	004	2	013	6	0	12	1.174e-5	12	7240.449	6	NC	1
215		13	max	.005	3	003	15	.121	4	6.701e-3	4	NC	1_	NC	1
216			min	004	2	012	6	0	12	1.284e-5	12	7736.726	6	NC	1
217		14	max	.005	3	002	15	.13	4	7.319e-3	4	NC	1	NC	1
218			min	004	2	011	6	0	12	1.394e-5	12	8626.411	6	NC	1
219		15	max	.006	3	002	15	.139	4	7.937e-3	4	NC	1	NC	1
220			min	005	2	009	6	0	12	1.503e-5	12	NC	1	NC	1
221		16	max	.006	3	001	15	.15	4	8.554e-3	4	NC	1	NC	1
222			min	005	2	007	6	0	12	1.613e-5	12	NC	1	NC	1
223		17	max	.006	3	0	15	.161	4	9.172e-3	4	NC	1	NC	1
224			min	005	2	006	1	0	12	1.723e-5	12	NC	1	NC	1
225		18	max	.007	3	0	15	.173	4	9.79e-3	4	NC	1	NC	1
226			min	006	2	004	1	0	12	1.832e-5	12	NC	1	NC	1
227		19	max	.007	3	0	5	.187	4	1.041e-2	4	NC	1	NC	1
228			min	006	2	002	1	0	12	1.942e-5	12	NC	1	NC	1
229	M4	1	max	.003	1	.006	2	0	12	5.423e-5	1	NC	1	NC	3
230			min	0	3	007	3	187	4	-4.275e-5	5	NC	1	132.407	4
231		2	max	.003	1	.005	2	0	12	5.423e-5	1	NC	1	NC	2
232			min	0	3	007	3	172	4	-4.275e-5	5	NC	1	143.95	4
233		3	max	.002	1	.005	2	0	12	5.423e-5	1	NC	1	NC	2
234			min	0	3	007	3	157	4	-4.275e-5	5	NC	1	157.688	4
235		4	max	.002	1	.005	2	0	12	5.423e-5	1_	NC	1	NC	2
236			min	0	3	006	3	142	4	-4.275e-5	5	NC	1	174.192	4
237		5	max	.002	1	.004	2	0	12	5.423e-5	1	NC	1	NC	2
238			min	0	3	006	3	128	4	-4.275e-5	5	NC	1	194.236	4
239		6	max	.002	1	.004	2	0	12	5.423e-5	1	NC	1	NC	2
240			min	0	3	005	3	113	4	-4.275e-5	5	NC	1	218.895	4
241		7	max	.002	1	.004	2	0	12	5.423e-5	1	NC	1	NC	2
242			min	0	3	005	3	099	4	-4.275e-5	5	NC	1	249.694	4
243		8	max	.002	1	.003	2	0	12	5.423e-5	1	NC	1	NC	2
244			min	0	3	005	3	086	4	-4.275e-5	5	NC	1	288.856	4
245		9	max	.001	1	.003	2	0	12	5.423e-5	1_	NC	1	NC	2
246			min	0	3	004	3	073	4	-4.275e-5	5	NC	1	339.729	4
247		10	max	.001	1	.003	2	0	12	5.423e-5	1	NC	1	NC	1
248			min	0	3	004	3	061	4	-4.275e-5	5	NC	1	407.547	4
249		11	max	.001	1	.002	2	0	12	5.423e-5	1	NC	1	NC	1
250			min	0	3	003	3	05	4	-4.275e-5	5	NC	1	500.87	4
251		12	max	.001	1	.002	2	0	12	5.423e-5	1	NC	1	NC	1
252			min	0	3	003	3	039	4	-4.275e-5	5	NC	1	634.505	4
253		13	max	0	1	.002	2	0	12	5.423e-5	1	NC	1	NC	1
254			min	0	3	002	3	03	4	-4.275e-5	5	NC	1	835.931	4
255		14	max	0	1	.002	2	0	12	5.423e-5	1	NC	1	NC	1
256			min	0	3	002	3	021	4	-4.275e-5	5	NC	1	1161.048	4
257		15	max	0	1	.001	2	0	12	5.423e-5	1	NC	1	NC	1
258			min	0	3	002	3	014	4	-4.275e-5	5	NC	1	1738.695	
259		16	max	0	1	0	2	0	12	5.423e-5	1	NC	1	NC	1
260			min	0	3	001	3	008	4	-4.275e-5	5	NC	1	2924.97	4

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

004	Member	Sec		x [in]	LC	y [in]	LC	z [in]			LC	(n) L/y Ratio	LC		
261		17	max	0	1	0	2	0	12	5.423e-5	1_	NC	1_	NC 2222 25	1
262		10	min	0	3	0	3	004	4	-4.275e-5	5	NC	1_	6039.85	4
263		18	max	0	1	0	2	0	12	5.423e-5	_1_	NC	1_	NC	1
264			min	0	3	0	3	001	4	-4.275e-5	5	NC	1_	NC	1
265		19	max	0	1	00	1	0	1	5.423e-5	_1_	NC	_1_	NC	1_
266			min	0	1	0	1	0	1	-4.275e-5	5	NC	<u> 1</u>	NC	1
267	<u>M6</u>	1	max	.022	2	.028	2	0	1	1.493e-3	_4_	NC	4_	NC	1
268			min	03	3	04	3	544	4	0	1_	1563.548	3	115.33	4
269		2	max	.02	2	.026	2	0	1	1.572e-3	_4_	NC	4_	NC	1
270			min	028	3	038	3	5	4	0	1_	1659.316	3	125.553	4
271		3	max	.019	2	.024	2	0	1	1.651e-3	4	NC	4	NC	1
272			min	027	3	035	3	456	4	0	<u>1</u>	1767.541	3	137.687	4
273		4	max	.018	2	.021	2	00	1	1.729e-3	_4_	NC	_4_	NC	1
274			min	025	3	033	3	412	4	0	1_	1890.767	3	152.231	4
275		5	max	.017	2	.019	2	0	1	1.808e-3	4	NC	4	NC	1
276			min	023	3	031	3	369	4	0	1_	2032.267	3	169.858	4
277		6	max	.016	2	.017	2	0	1	1.887e-3	4	NC	4	NC	1
278			min	022	3	029	3	328	4	0	<u>1</u>	2196.324	3	191.503	4
279		7	max	.014	2	.015	2	0	1	1.965e-3	4	NC	4	NC	1
280			min	02	3	026	3	287	4	0	1_	2388.65	3	218.49	4
281		8	max	.013	2	.013	2	0	1	2.044e-3	_4_	NC	_1_	NC	1
282			min	018	3	024	3	248	4	0	_1_	2617.04	3	252.744	4
283		9	max	.012	2	.011	2	00	1	2.123e-3	_4_	NC	_1_	NC	1
284			min	017	3	022	3	211	4	0	1	2892.414	3	297.162	4
285		10	max	.011	2	.009	2	0	1	2.201e-3	4_	NC	_1_	NC	1
286			min	015	3	019	3	176	4	0	1_	3230.55	3	356.26	4
287		11	max	.01	2	.007	2	00	1	2.28e-3	4	NC	_1_	NC	1
288			min	013	3	017	3	143	4	0	1_	3655.125	3	437.408	4
289		12	max	.008	2	.006	2	0	1	2.359e-3	4	NC	1_	NC	1
290			min	012	3	015	3	113	4	0	1_	4203.357	3	553.312	4
291		13	max	.007	2	.004	2	0	1	2.437e-3	_4_	NC	_1_	NC	1
292			min	01	3	013	3	086	4	0	1_	4937.293	3	727.465	4
293		14	max	.006	2	.003	2	0	1	2.516e-3	_4_	NC	_1_	NC	1
294			min	008	3	011	3	062	4	0	1	5968.64	3	1007.425	4
295		15	max	.005	2	.002	2	0	1	2.595e-3	4	NC	_1_	NC	1
296			min	007	3	008	3	042	4	0	1_	7520.84	3	1502.074	4
297		16	max	.004	2	.001	2	0	1	2.673e-3	_4_	NC	_1_	NC	1
298			min	005	3	006	3	025	4	0	1_	NC	1_	2509.506	4
299		17	max	.002	2	0	2	0	1	2.752e-3	4	NC	1_	NC	1
300			min	003	3	004	3	012	4	0	1_	NC	1_	5118.136	4
301		18		.001	2	0	2	0	1	2.831e-3	_4_	NC	_1_	NC	1_
302			min	002	3	002	3	004	4	0	1_	NC	1_	NC	1
303		19	max	0	1	0	1	0	1	2.909e-3	_4_	NC	_1_	NC	1
304			min	0	1	0	1	0	1	0	1	NC	1_	NC	1
305	M7	1	max	0	1	0	1	0	1	0	_1_	NC	_1_	NC	1
306			min	0	1	0	1	0	1	-7.098e-4	4	NC	1_	NC	1
307		2	max	.001	3	0	2	.014	4	0	1	NC	1	NC	1_
308			min	001	2	003	3	0	1	-1.071e-4	4	NC	1_	NC	1
309		3	max	.003	3	0	2	.027	4	4.956e-4	4	NC	1_	NC	1
310			min	002	2	006	3	0	1	0	1	NC	1_	NC	1
311		4	max	.004	3	001	2	.038	4	1.098e-3	4	NC	1_	NC	1
312			min	004	2	008	3	0	1	0	1	NC	1	NC	1
313		5	max	.005	3	002	15	.049	4	1.701e-3	4	NC	_1_	NC	1
314			min	005	2	01	3	0	1	0	1	NC	1_	NC	1
315		6	max	.006	3	002	15	.059	4	2.304e-3	4	NC	1_	NC	1
316			min	006	2	012	3	0	1	0	1_	8497.057	3	NC	1
317		7	max	.008	3	003	15	.069	4	2.906e-3	4	NC	1_	NC	1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio			
318			min	007	2	014	3	0	1	0	1_	7597.911	3	NC	1
319		8	max	.009	3	003	15	.078	4	3.509e-3	4	NC	<u>1</u>	NC	1
320			min	008	2	015	3	0	1	0	1	7067.233	3	NC	1
321		9	max	.01	3	003	15	.086	4	4.112e-3	4	NC	1_	NC	1
322			min	01	2	015	3	0	1	0	1	6795.21	3	NC	1
323		10	max	.011	3	003	15	.095	4	4.714e-3	4	NC	1	NC	1
324			min	011	2	016	3	0	1	0	1	6732.777	3	NC	1
325		11	max	.013	3	003	15	.103	4	5.317e-3	4	NC	1	NC	1
326			min	012	2	016	3	0	1	0	1	6867.947	3	NC	1
327		12	max	.014	3	003	15	.111	4	5.92e-3	4	NC	1	NC	1
328			min	013	2	016	3	0	1	0	1	7220.328	3	NC	1
329		13	max	.015	3	003	15	.119	4	6.523e-3	4	NC	1_	NC	1
330			min	014	2	015	3	0	1	0	1	7762.565	4	NC	1
331		14	max	.016	3	003	15	.127	4	7.125e-3	4	NC	1	NC	1
332			min	016	2	014	3	0	1	0	1	8654.2	4	NC	1
333		15	max	.018	3	002	15	.136	4	7.728e-3	4	NC	1	NC	1
334			min	017	2	012	3	0	1	0	1	NC	1	NC	1
335		16	max	.019	3	002	15	.146	4	8.331e-3	4	NC	1	NC	1
336			min	018	2	011	3	0	1	0	1	NC	1	NC	1
337		17	max	.02	3	001	15	.157	4	8.933e-3	4	NC	1	NC	1
338			min	019	2	009	3	0	1	0	1	NC	1	NC	1
339		18	max	.021	3	0	15	.169	4	9.536e-3	4	NC	1	NC	1
340			min	02	2	007	3	0	1	0	1	NC	1	NC	1
341		19	max	.023	3	0	15	.182	4	1.014e-2	4	NC	1	NC	1
342			min	022	2	005	3	0	1	0	1	NC	1	NC	1
343	M8	1	max	.007	1	.02	2	0	1	0	1	NC	1	NC	1
344			min	002	3	023	3	182	4	-1.086e-4	4	NC	1	136.284	4
345		2	max	.007	1	.019	2	0	1	0	1	NC	1	NC	1
346			min	001	3	022	3	167	4	-1.086e-4	4	NC	1	148.171	4
347		3	max	.007	1	.018	2	0	1	0	1	NC	1	NC	1
348			min	001	3	021	3	153	4	-1.086e-4	4	NC	1	162.318	4
349		4	max	.006	1	.017	2	0	1	0	1	NC	1	NC	1
350			min	001	3	019	3	138	4	-1.086e-4	4	NC	1	179.313	4
351		5	max	.006	1	.016	2	0	1	0	1	NC	1	NC	1
352			min	001	3	018	3	124	4	-1.086e-4	4	NC	1	199.953	4
353		6	max	.005	1	.015	2	0	1	0	1	NC	1	NC	1
354			min	001	3	017	3	11	4	-1.086e-4	4	NC	1	225.345	4
355		7	max	.005	1	.014	2	0	1	0	1	NC	1	NC	1
356			min	001	3	015	3	096	4	-1.086e-4	4	NC	1	257.059	4
357		8	max	.004	1	.012	2	0	1	0	1	NC	1	NC	1
358			min	0	3	014	3	083	4	-1.086e-4	4	NC	1	297.385	4
359		9	max	.004	1	.011	2	0	1	0	1	NC	1	NC	1
360			min	0	3	013	3	071	4	-1.086e-4	4	NC	1	349.77	4
361		10	max	.004	1	.01	2	0	1	0	1	NC	1	NC	1
362		1.0	min	0	3	012	3	059	4	-1.086e-4	4	NC	1	419.604	4
363		11	max	.003	1	.009	2	0	1	0	1	NC	1	NC	1
364			min	0	3	01	3	048	4	-1.086e-4	4	NC	1	515.7	4
365		12	max	.003	1	.008	2	0	1	0	1	NC	1	NC	1
366		12	min	0	3	009	3	038	4	-1.086e-4	4	NC	1	653.307	4
367		13	max	.002	1	.007	2	<u>.050</u>	1	0	1	NC	1	NC	1
368		10	min	0	3	008	3	029	4	-1.086e-4	4	NC	1	860.722	4
369		14	max	.002	1	.006	2	0	1	0	1	NC	1	NC	1
370		17	min	0	3	006	3	021	4	-1.086e-4	4	NC	1	1195.509	_
371		15	max	.002	1	.005	2	0	1	0	1	NC	1	NC	1
372		13	min	0	3	005	3	014	4	-1.086e-4	4	NC	1	1790.342	
373		16	max	.001	1	.003	2	014 0	1	0	1	NC NC	1	NC	1
374		10	min	0	3	004	3	008	4	-1.086e-4	4	NC	1	3011.928	
314			111111	U	J	004	J	000	4	-1.000 0-4	4	INC		3011.920	-+

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

075	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r	LC		LC		
375		17	max	0	1	.002	2	0	1	0	1_	NC	1	NC 0040.50	1
376		10	min	0	3	003	3	004	4	-1.086e-4	4	NC	1_	6219.59	4
377		18	max	0	1	.001	2	0	1	0	1	NC NC	1	NC NC	1
378		10	min	0	3	001	3	001	4	-1.086e-4	4	NC NC	1_	NC NC	1
379		19	max	0	1	0	1	0	1	0	1_	NC	1	NC NC	1
380	1440	-	min	0	1	0	1	0	1	-1.086e-4	4_	NC	1_	NC NC	1
381	M10	1	max	.007	2	.008	2	0	12	1.496e-3	4	NC	1_	NC 445.544	2
382			min	009	3	013	3	<u>543</u>	4	1.237e-5		8159.743	2	115.511	4
383		2	max	.006	2	.007	2	0	12	1.574e-3	4	NC	1_	NC 405.740	2
384			min	009	3	012	3	<u>499</u>	4	1.163e-5	12	9323.598	2	125.749	4
385		3	max	.006	2	.006	2	0	12	1.652e-3	4	NC	1	NC 407.000	1
386		+ -	min	008	3	012	3	4 <u>55</u>	4	1.089e-5	12	NC	1_	137.903	4
387		4	max	.006	2	.005	2	0	12	1.73e-3	4	NC NC	1	NC 450.47	1
388		-	min	008	3	011	3	411	4	1.016e-5	12	NC	1_	152.47	4
389		5	max	.005	2	.004	2	0	12	1.808e-3	4	NC	1	NC 470.405	1
390			min	007	3	011	3	369	4	9.419e-6	12	NC	1_	170.125	4
391		6	max	.005	2	.003	2	0	12	1.886e-3	4	NC	1	NC 404 005	1
392		+ -	min	007	3	01	3	327	4	8.682e-6	12	NC NC	1_	191.805	4
393		7	max	.005	2	.002	2	0	12	1.963e-3	4	NC NC	1	NC 040.005	1
394			min	006	3	01	3	287	4	7.944e-6	12	NC	1_	218.835	4
395		8	max	.004	2	.002	2	0	12	2.041e-3	4	NC	1	NC 050.445	1
396			min	006	3	009	3	248	4	7.207e-6	12	NC	1_	253.145	4
397		9	max	.004	2	0	2	0	12	2.119e-3	4	NC	1	NC	1
398		4.0	min	005	3	008	3	211	4	6.469e-6	12	NC	1_	297.635	4
399		10	max	.003	2	0	2	0	12	2.197e-3	4	NC	1	NC	1
400		1.4	min	005	3	008	3	<u>176</u>	4	5.731e-6	12	NC	1_	356.831	4
401		11	max	.003	2	0	2	0	12	2.275e-3	4	NC	1	NC 100 110	1
402		10	min	004	3	007	3	<u>143</u>	4	4.994e-6	12	NC	1_	438.112	4
403		12	max	.003	2	0	2	0	12	2.353e-3	4_	NC	1_	NC	1
404		10	min	004	3	006	3	113	4	4.256e-6	12	NC	1_	554.211	4
405		13	max	.002	2	0	2	0	12	2.431e-3	4	NC	1	NC 700,000	1
406		4.4	min	003	3	005	3	086	4	3.518e-6	12	NC	1_	728.662	4
407		14	max	.002	2	001	15	0	12	2.508e-3	4	NC NC	1	NC 4000 400	1
408		4.5	min	003	3	005	3	062	4	2.781e-6	12	NC	1_	1009.108	
409		15	max	.002	2	0	15	0	12	2.586e-3	4	NC	1	NC 4504.044	1
410		10	min	002	3	004	3	042	4	2.043e-6	12	NC	1_	1504.644	4
411		16	max	.001	2	0	15	0	12	2.664e-3	4	NC	1	NC	1
412		4.7	min	002	3	003	3	025	4	1.299e-6	10	NC	1_	2513.961	4
413		17	max	0	2	0	15	0	12	2.742e-3	4	NC	1_	NC 5407.040	1
414		40	min	001	3	002	3	012	4	1.311e-7	10	NC NC	1_	5127.812	4
415		18		0	2	0	15	0	12		4	NC	1	NC NC	1
416		40	min	0	3	001	4	004	4	-8.8e-6	1_	NC NC	1_	NC NC	1
417		19	max	0	1	0	1	0	1	2.898e-3	4_	NC NC	1_	NC NC	1
418	Maa	4	min	0	1	0	1	0	1	-2.055e-5	1_	NC NC	1_	NC NC	1
419	M11	1	max	0	1	0	1	0	1	6.9e-6	1_4	NC NC	1	NC NC	1
420			min	0	1	0	1	0	1	-7.067e-4	4	NC NC	1_	NC NC	1
421		2	max	0	3	0	15	.014	4	-7.734e-7	<u>12</u>	NC	1_	NC NC	1
422		_	min	0	2	002	4	0	1	-1.007e-4	4_	NC NC	1_	NC NC	1
423		3	max	0	3	0	15	.026	4	5.053e-4	4	NC NC	1	NC NC	1
424		-	min	0	2	004	4	0	1	-3.386e-5	1_	NC NC	1_	NC NC	1
425		4	max	.001	3	001	15	.038	4	1.111e-3	4	NC	1	NC NC	1
426		_	min	0	2	006	4	0	1	-5.425e-5	1_	NC NC	1_	NC NC	1
427		5	max	.002	3	002	15	.049	4	1.717e-3	4_	NC	1	NC NC	1
428		_	min	001	2	008	4	0	1	-7.463e-5	1_	NC	1_	NC NC	1
429		6	max	.002	3	002	15	.059	4	2.323e-3	4_	NC OOFG FOA	1_	NC NC	1
430		-	min	002	2	01	4	0	1	-9.501e-5	1_	9856.524	4	NC NC	1
431		7	max	.002	3	003	15	.069	4	2.929e-3	_4_	NC	<u>1</u>	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC		LC
432			min	002	2	011	4	0	1	-1.154e-4	1	8467.653	4	NC	1
433		8	max	.003	3	003	15	.078	4	3.535e-3	4	NC	_1_	NC	1
434			min	002	2	012	4	001	1	-1.358e-4	1_	7611.082	4	NC	1
435		9	max	.003	3	003	15	.086	4	4.141e-3	4	NC	2	NC	1
436		10	min	003	2	<u>013</u>	4	001	1	-1.562e-4	1_	7105.671	4_	NC	1
437		10	max	.004	3	003	15	.094	4	4.747e-3	4	NC	2	NC	1
438		4.4	min	003	2	014	4	002	1	-1.765e-4	1_	6863.611	4_	NC	1
439		11	max	.004	3	003	15	.103	4	5.353e-3	4_	NC CO 40 C4C	2	NC	1
440		40	min	003	2	014	4	002	1	-1.969e-4	1_	6849.316	4_	NC NC	1
441		12	max	.004 004	3	003 014	15	.111 003	1	5.959e-3 -2.173e-4	<u>4</u> 1	NC 7065.791	<u>2</u> 4	NC NC	1
443		13	min max	.005	3	003	15	.119	4	6.565e-3	4	NC	1	NC NC	1
444		13	min	004	2	003 013	4	003	1	-2.377e-4	1	7557.537	4	NC	1
445		14	max	.005	3	003	15	.128	4	7.171e-3	4	NC	1	NC	1
446		14	min	004	2	012	4	003	1	-2.581e-4	1	8433.521	4	NC	1
447		15	max	.006	3	003	15	.137	4	7.777e-3	4	NC	1	NC	1
448		10	min	005	2	01	4	004	1	-2.785e-4	1	9934.881	4	NC	1
449		16	max	.006	3	002	15	.147	4	8.383e-3	4	NC	1	NC	1
450		-10	min	005	2	008	4	005	1	-2.988e-4	1	NC	1	NC	1
451		17	max	.006	3	002	15	.158	4	8.989e-3	4	NC	1	NC	1
452			min	005	2	006	4	005	1	-3.192e-4	1	NC	1	NC	1
453		18	max	.007	3	001	15	.17	4	9.595e-3	4	NC	1	NC	1
454			min	006	2	004	1	006	1	-3.396e-4	1	NC	1	NC	1
455		19	max	.007	3	0	10	.183	4	1.02e-2	4	NC	1	NC	1
456			min	006	2	002	1	007	1	-3.6e-4	1	NC	1	NC	1
457	M12	1	max	.003	1	.006	2	.007	1	-3.289e-6	12	NC	1	NC	3
458			min	0	3	007	3	183	4	-5.983e-5	4	NC	1	135.197	4
459		2	max	.003	1	.005	2	.006	1	-3.289e-6	12	NC	1_	NC	2
460			min	0	3	007	3	169	4	-5.983e-5	4	NC	1	146.983	4
461		3	max	.002	1	.005	2	.006	1	-3.289e-6	12	NC	_1_	NC	2
462			min	0	3	007	3	154	4	-5.983e-5	4_	NC	1_	161.011	4
463		4	max	.002	1	.005	2	.005	1	-3.289e-6	12	NC	_1_	NC	2
464			min	0	3	006	3	<u>139</u>	4	-5.983e-5	4_	NC	_1_	177.863	4
465		5	max	.002	1	.004	2	.005	1	-3.289e-6	12	NC	_1_	NC	2
466			min	0	3	006	3	125	4	-5.983e-5	4	NC NC	1_	198.329	4
467		6	max	.002	1	.004	2	.004	1	-3.289e-6	12	NC	1_	NC	2
468		7	min	0	3	005	3	111	4	-5.983e-5	4	NC NC	1_	223.508	4
469		7	max	.002	1	.004	2	.004	1	-3.289e-6	12	NC NC	1	NC 254.050	2
470		0	min	0	3	005	3	097	4	-5.983e-5	4	NC NC	1	254.956	4
471 472		8	max min	.002 0	3	.003 005	3	.003 084	1	-3.289e-6 -5.983e-5	12	NC NC	1	NC 294.943	2
473		9		.001	1	.003	2	.003	1	-3.289e-6		NC NC	1	NC	2
474		3	max min	.001	3	003	3	072	4	-5.983e-5		NC NC	1	346.888	4
475		10	max	.001	1	.003	2	.002	1	-3.289e-6		NC	1	NC	1
476		10	min	0	3	004	3	06	4	-5.983e-5	4	NC	1	416.135	4
477		11	max	.001	1	.002	2	.002	1	-3.289e-6	12	NC	1	NC	1
478			min	0	3	003	3	048	4	-5.983e-5	4	NC	1	511.424	4
479		12	max	.001	1	.002	2	.001	1	-3.289e-6		NC	1	NC	1
480		12	min	0	3	003	3	038	4	-5.983e-5	4	NC	1	647.874	4
481		13	max	0	1	.002	2	.001	1	-3.289e-6	12	NC	1	NC	1
482		'	min	0	3	002	3	029	4	-5.983e-5	4	NC	1	853.544	4
483		14	max	0	1	.002	2	0	1	-3.289e-6		NC	1	NC	1
484			min	0	3	002	3	021	4	-5.983e-5	4	NC	1	1185.51	4
485		15	max	0	1	.001	2	0	1	-3.289e-6		NC	1	NC	1
486			min	0	3	002	3	014	4	-5.983e-5	4	NC	1	1775.327	4
487		16	max	0	1	0	2	0	1	-3.289e-6		NC	1	NC	1
488					3		3								

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

489	Member	Sec 17	max	x [in]	LC 1	y [in] 0	LC 2	z [in]	LC 1	x Rotate [r	LC 12	(n) L/y Ratio	LC 1	(n) L/z Ratio	LC 1
490		11/	min	0	3	0	3	004	4	-5.983e-5	4	NC	1	6167.092	
491		18	max	0	1	0	2	0	1	-3.289e-6	12	NC	1	NC	1
492		10	min	0	3	0	3	001	4	-5.983e-5	4	NC	1	NC	1
493		19	max	0	1	0	1	0	1	-3.289e-6	12	NC	1	NC	1
494		13	min	0	1	0	1	0	1	-5.983e-5	4	NC	1	NC	1
495	M1	1	max	.009	3	.123	2	.573	4	1.33e-2	2	NC	1	NC	1
496	IVII		min	005	2	021	3	0	12	-2.65e-2	3	NC	1	NC	1
497		2	max	.009	3	.059	2	.556	4	7.324e-3	4	NC	4	NC	1
498			min	005	2	008	3	005	1	-1.311e-2	3	1786.617	2	NC	1
499		3	max	.009	3	.014	3	.539	4	1.232e-2	4	NC	5	NC	1
500		T .	min	005	2	011	2	007	1	-1.332e-4	3	861.096	2	7435.759	
501		4	max	.009	3	.051	3	.521	4	1.07e-2	4	NC	5	NC	1
502			min	005	2	089	2	007	1	-4.998e-3	3	543.603	2	5308.518	
503		5	max	.009	3	<u>009</u>	3	.502	4	9.091e-3	4	NC	5	NC	1
504			min	005	2	17	2	005	1	-9.862e-3	3	392.342	2	4236.637	5
505		6	max	.008	3	.153	3	.483	4	1.339e-2	2	NC	15	NC	1
506			min	005	2	249	2	002	1	-1.473e-2	3	309.015	2	3590.376	
507		7	max	.008	3	.204	3	.464	4	1.785e-2	2	NC	15	NC	1
508		- '	min	005	2	32	2	0	3	-1.959e-2	3	259.829	2	3140.165	
509		8	max	.008	3	.247	3	.444	4	2.231e-2	2	9614.156	15	NC	1
510			min	005	2	376	2	0	12	-2.446e-2	3	230.736	2	2811.113	
511		9	max	.008	3	.275	3	.423	4	2.53e-2	2	8989.063	15	NC	1
512		1 3	min	004	2	411	2	0	1	-2.46e-2	3	215.592	2	2602.793	
513		10	max	.008	3	.285	3	.4	4	2.731e-2	2	8798.514	15	NC	1
514		10	min	004	2	423	2	<u>4</u> 0	12	-2.161e-2	3	211.147	2	2538.516	
515		11	max	.008	3	.278	3	.375	4	2.933e-2	2	8988.721	15	NC	1
516			min	004	2	411	2	<u>.375</u>	12	-1.862e-2	3	216.302	2	2589.024	
517		12		.007	3	.255	3	.348	4	2.83e-2	2	9613.372	15	NC	1
518		12	max	00 <i>1</i>	2	374	2	<u>340</u>	1	-1.558e-2	3	232.895	2	2765.489	
519		13	min max	.004	3	<u>374</u> .217	3	.318	4	2.27e-2	2	NC	15	NC	1
520		13	min	004	2	316	2	<u></u> 0	1	-1.248e-2	3	265.078	2	3237.771	4
521		14	max	.007	3	.169	3	.285	4	1.709e-2	2	NC	15	NC	1
522		14	min	004	2	242	2	<u>.285</u> 0	12	-9.366e-3	3	320.217	2	4235.202	4
523		15	max	.007	3	.115	3	.252	4	1.149e-2	2	NC	5	NC	1
524		13	min	004	2	162	2	0	12	-6.257e-3	3	415.365	2	6416.509	
525		16	max	.007	3	.059	3	.219	4	8.622e-3	4	NC	5	NC	1
526		10	min	004	2	08	2	0	12	-3.148e-3	3	592.077	2	NC	1
527		17		.007	3	.005	3	.188	4	9.762e-3	4	NC	5	NC	1
528		17	max min	004	2	006	2	0	12	-3.925e-5	3	970.854	2	NC	1
529		1Ω	max	.007	3	.055	2	.161		1.003e-2	2	NC	4	NC NC	1
530		10	min	004	2	044	3	0	12	-4.14e-3	3	2065.832	2	NC	1
531		19	max	.007	3	.11	2	.137	4	2.014e-2	2	NC	1	NC	1
532		19	min	004	2	089	3	0	1	-8.409e-3	3	NC	1	NC	1
533	M5	1	max	.028	3	.276	2	.573	4	0	1	NC	1	NC	1
534	IVIO		min	019	2	014	3	<u>.575</u> 0	1	-4.963e-6	4	NC	1	NC	1
535		2	max	.028	3	.13	2	.56	4	6.318e-3	4	NC	5	NC	1
536			min	019	2	0	3	0	1	0.310e-3	1	794.017	2	NC	1
537		3	max	.028	3	.043	3	.543	4	1.244e-2	4	NC	5	NC	1
538		3	min	02	2	034	2	<u>.545</u>	1	0	1	373.681	2	6068.187	4
539		4		.028	3	<u>034</u> .14	3	.525	4	1.014e-2	4	NC	15	NC	1
540		4	max	026 019	2	229	2	<u>525</u> 0	1	0	1	228.806	2	4639.897	4
541			min	019 .027	3	<u>229</u> .275	3	.505	4	7.833e-3	4		15	NC	1
541		5	max min	019	2	<u>.275</u> 441	2	<u>.505</u>	1	7.833e-3 0	<u>4</u> 1	7609.408	2	3941.111	4
543		6		019 .026	3	441 .427	3		4	5.528e-3		161.093	15	NC	1
544		6	max	026 019	2	651	2	<u>485</u> 0	1	0.5286-3	<u>4</u> 1	5855.485 124.547	2	3508.273	
545		7	min	.026	3	651 .575	3	<u> </u>	4	3.222e-3	4	4843.21	15	NC	1
545		/	max	.020	⊥ ວ	.575	_⊥ ວ	.404	4	J.ZZZE-3	4	4043.21	ıυ	INC	<u> </u>

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC		
546			min	018	2	841	2	0	1	0	1_	103.335	2	3173.143	4
547		8	max	.025	3	.7	3	.444	4	9.169e-4	4_	4254.895	<u>15</u>	NC	1
548			min	018	2	993	2	0	1	0	1	90.958	2	2858.049	4
549		9	max	.025	3	.78	3	.423	4	0	1_	3953.299	15	NC	1
550			min	018	2	-1.09	2	0	1	-3.386e-6	5	84.596	2	2597.966	4
551		10	max	.024	3	.809	3	.4	4	0	1_	3862.454	15	NC	1
552			min	017	2	-1.122	2	0	1	-3.268e-6	5	82.733	2	2556.015	4
553		11	max	.024	3	.789	3	.375	4	0	1	3953.434	15	NC	1
554			min	017	2	-1.09	2	0	1	-3.15e-6	5	84.887	2	2619.025	4
555		12	max	.023	3	.721	3	.349	4	6.953e-4	4	4255.211	15	NC	1
556			min	017	2	989	2	0	1	0	1	91.915	2	2716.729	4
557		13	max	.023	3	.611	3	.318	4	2.444e-3	4	4843.848	15	NC	1
558			min	016	2	829	2	0	1	0	1	105.818	2	3181.638	4
559		14	max	.022	3	.472	3	.284	4	4.193e-3	4	5856.723	15	NC	1
560			min	016	2	63	2	0	1	0	1	130.145	2	4397.122	4
561		15	max	.021	3	.318	3	.249	4	5.943e-3	4	7611.842	15	NC	1
562			min	016	2	414	2	0	1	0	1	173.296	2	7825.86	4
563		16	max	.021	3	.161	3	.214	4	7.692e-3	4	NC	15	NC	1
564			min	016	2	203	2	0	1	0	1	256.378	2	NC	1
565		17	max	.02	3	.014	3	.183	4	9.441e-3	4	NC	5	NC	1
566			min	015	2	019	2	0	1	0	1	441.614	2	NC	1
567		18	max	.02	3	.12	2	.157	4	4.794e-3	4	NC	5	NC	1
568			min	015	2	111	3	0	1	0	1	978.055	2	NC	1
569		19	max	.02	3	.234	2	.137	4	0	1	NC	1	NC	1
570			min	015	2	225	3	0	1	-2.751e-6	4	NC	1	NC	1
571	M9	1	max	.009	3	.123	2	.573	4	2.65e-2	3	NC	1	NC	1
572			min	005	2	021	3	0	1	-1.33e-2	2	NC	1	NC	1
573		2	max	.009	3	.059	2	.559	4	1.311e-2	3	NC	4	NC	1
574			min	005	2	008	3	0	12	-6.528e-3	2	1786.617	2	NC	1
575		3	max	.009	3	.014	3	.543	4	1.241e-2	4	NC	5	NC	1
576			min	005	2	011	2	0	12	-3.222e-5	10	861.096	2	6270.982	4
577		4	max	.009	3	.051	3	.524	4	9.783e-3	5	NC	5	NC	1
578			min	005	2	089	2	0	12	-4.474e-3	2	543.603	2	4720.348	4
579		5	max	.009	3	.1	3	.505	4	9.862e-3	3	NC	5	NC	1
580			min	005	2	17	2	0	12	-8.932e-3	2	392.342	2	3952.826	4
581		6	max	.008	3	.153	3	.485	4	1.473e-2	3	NC	15	NC	1
582			min	005	2	249	2	0	12	-1.339e-2	2	309.015	2	3482.113	4
583		7	max	.008	3	.204	3	.464	4	1.959e-2	3	NC	15	NC	1
584			min	005	2	32	2	0	1	-1.785e-2	2	259.829	2	3136.171	4
585		8	max	.008	3	.247	3	.444	4	2.446e-2	3	9593.687	15	NC	1
586			min	005	2	376	2	0	1	-2.231e-2		230.736	2	2836.345	
587		9	max	.008	3	.275	3	.423	4	2.46e-2	3	8970.154	15	NC	1
588			min	004	2	411	2	0	12	-2.53e-2	2	215.592	2	2595.537	_
589		10	max	.008	3	.285	3	<u>.4</u>	4	2.161e-2	3	8780.056	15	NC	1
590		10	min	004	2	423	2	0	1	-2.731e-2	2	211.147	2	2539.658	
591		11	max	.008	3	.278	3	.375	4	1.862e-2	3	8969.803	15	NC	1
592		+ ' '	min	004	2	411	2	0	1	-2.933e-2	2	216.302	2	2598.055	_
593		12	max	.007	3	.255	3	.348	4	1.558e-2	3	9592.997	15	NC	1
594		12	min	004	2	374	2	0	12	-2.83e-2	2	232.895	2	2741.543	4
595		13	max	.007	3	.217	3	.318	4	1.248e-2	3	NC	15	NC	1
596		13	min	004	2	316	2	<u></u> 0	12	-2.27e-2	2	265.078	2	3237.767	4
597		14	max	.007	3	.169	3	.284	4	9.366e-3	3	NC	15	NC	1
598		14	min	004	2	242	2	002	1	-1.709e-2		320.217	2	4371.128	_
		15				<u>242</u> .115			· ·		2	NC		NC	
599		15	max	.007	3		3	.249	1	6.257e-3	3		5		1
600		10	min	004		162	2	004	_	-1.149e-2	2	415.365	2	7084.821	5
601		16	max	.007	3	.059	3	.215	4	7.572e-3	5	NC 502.077	5	NC NC	1
602			min	004	2	08	2	006	1	-5.881e-3	2	592.077	2	NC	1

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	o LC
603		17	max	.007	3	.005	3	.184	4	9.517e-3	4	NC	5	NC NC	1
604			min	004	2	006	2	007	1	-4.816e-4	1	970.854	2	NC	1
605		18	max	.007	3	.055	2	.158	4	4.575e-3	5	NC	4	NC	1
606			min	004	2	044	3	005	1	-1.003e-2	2	2065.832	2	NC	1
607		19	max	.007	3	.11	2	.137	4	8.409e-3	3	NC	1	NC	1
608			min	004	2	089	3	0	12	-2.014e-2	2	NC	1	NC	1

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14	-42 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	42 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1723.0	23.0	593.0	593.4	
Sum	1723 0	23.0	593.0	593 4	

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1723

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'vx (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'_c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_N$	$_{lc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec.	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247 75	0.967	1.00	1 000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

$ au_{k,cr}$ (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)			
1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N_{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,i}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a)			
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ extsf{p}, extsf{Na}}$	N _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	4/5		
Project:	Standard PVMax - Worst Case, 14-42 Inch Width				
Address:					
Phone:					
E-mail:					

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

$V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq.	. D-24)
--	---------

le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cby} = \phi (A_1)$	$_{ m Vc}$ / $A_{ m Vco}$) $\Psi_{ m ed,V}$ $\Psi_{ m c}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

l _e (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	vc / A vco) Ψed, v Ψc,	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

I _e (in)	d _a (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) $\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\varPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

	u)	(-4)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)	
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \mathcal{Y}_{ed,Na} \mathcal{Y}_{p,Na} N_{a0}; k_{cp} (A_{Nc}/A_{Nco}) \mathcal{Y}_{ed,N} \mathcal{Y}_{c,N} \mathcal{Y}_{c,N} \mathcal{Y}_{cp,NNb}| \text{ (Eq. D-30a)}$

Kcp	A _{Na} (In²)	A _{Na0} (In²)	$arPsi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	Na0 (ID)	Na (ID)			
2.0	109.66	109.66	1.000	1.000	9755	9755			
4 (:-2)	A (:2)	177	177	177	A / /II- \	A / /II- \	,		
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	N_{cb} (lb)	ϕ	ϕV_{cp} (lb)	
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298	

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1723	6071	0.28	Pass
Concrete breakout	1723	5710	0.30	Pass
Adhesive	1723	5365	0.32	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	593	3156	0.19	Pass (Governs)
T Concrete breakout y+	593	3934	0.15	Pass
T Concrete breakout x+	23	3018	0.01	Pass
Concrete breakout y+	23	8508	0.00	Pass
Concrete breakout x+	593	6875	0.09	Pass
Concrete breakout, combined	-	-	0.15	Pass
Pryout	593	12298	0.05	Pass
Interaction check Nu	a/φNn Vua/φVn	Combined Rat	o Permissible	Status
Sec. D.7.1 0.3	32 0.00	32.1 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 37-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 cac (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2 Load combination: not set

Seismic design: No Anchors subjected to sustained tension: No Apply entire shear load at front row: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 37	-42 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 37	-42 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2915.5	1524.0	0.0	1524.0
2	2915.5	1524.0	0.0	1524.0
Sum	5831.0	3048.0	0.0	3048.0

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 5831 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}}^{1.5}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_N$	lc / A _{Nco}) Ψ _{ec,N} Ψ _{ea}	$_{I,N}\Psi_{c,N}\Psi_{cp,N}N_b$ (Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{\sf ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
408 24	324 00	1 000	1 000	1.00	1 000	12492	0.65	10231

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

τ _{k,cr} (psi)	f _{short-term}	K _{sat}	τ _{k,cr} (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_N$	a / A_{Na0}) $\Psi_{\sf ed,Na}$ $\Psi_{\sf g}$	$_{ extstyle I,Na}arPsi_{ extstyle ec,Na}arPsi_{ extstyle p,Na} \Lambda$	I _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{\sf ec,Na}$	$\mathscr{\Psi}_{ extsf{ extsf{p}}, extsf{Na}}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 37-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/d$	$_{a})^{0.2}\sqrt{d_{a}}\lambda\sqrt{f'_{c}}c_{a1}^{1.5}$	° (Eq. D-24)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	12.00	15593			
$\phi V_{cbgx} = \phi (A$	Vc / Avco) Yec, v Ye	$_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{bx}$	(Sec. D.4.1 & Ed	դ. D-22)				
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec,V}$	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbgx} (Ib)
666.00	648.00	1.000	0.969	1.000	1.000	15593	0.70	10875

Shear parallel to edge in x-direction:

$V_{by} = 7(I_e/d$	$_{a})^{0.2}\sqrt{d_{a}\lambda}\sqrt{f'_{c}c_{a1}}^{1.}$	⁵ (Eq. D-24)					
I _e (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	16.16	24369		
$\phi V_{cbx} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V} \Psi_{h,V} V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
872.64	1175.16	1.000	1.000	1.000	24369	0.70	25334

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{cpg} = \phi \text{mi}$	n kcpNag; kcpN	$ c_{bg} = \phi \min k_{cp} $	(ANa/ANa0)Ψe	$_{d,Na} arPsi_{g,Na} arPsi_{ec,Na} arP$	Ψ _{p,Na} Na0 ; kcp(A	Nc / A Nco) Ψ ec,N Ψ	$\mathscr{C}_{ed,N}\mathscr{V}_{cp,N}\mathscr{N}_{b}$	(Eq. D-30b)
<i>k</i> _{cp}	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\varPsi_{g,Na}$	$\Psi_{\sf ec,Na}$	$\varPsi_{ ho,Na}$	N _{a0} (lb)	N _a (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
Anc (in²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ
408.24	324.00	1.000	1.000	1.000	1.000	12492	15740	0.70

φV_{cpg} (lb) 20601

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2916	6071	0.48	Pass
Concrete breakout	5831	10231	0.57	Pass
Adhesive	5831	8093	0.72	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1524	3156	0.48	Pass (Governs)
T Concrete breakout x+	3048	10875	0.28	Pass
Concrete breakout y-	1524	25334	0.06	Pass
Pryout	3048	20601	0.15	Pass
Interaction check Nua	/φNn Vua/φVn	Combined Rati	o Permissible	Status

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 37-42 Inch Width				
Address:					
Phone:					
E-mail:					

Sec. D.7.3 0.72 0.48 120.3 % 1.2 Pa	3C. D.7.3	0.72	0.48	120.3 %	1.2	Pas
-------------------------------------	-----------	------	------	---------	-----	-----

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.