Recap Elektrizität Spannung, Strom, Widerstand Ohmsches Gesetz Leistung Sicherheitsregeln Stromkreise Schaltpläne Grundschaltungen Schlussfolgerung

Recap

Elektrizität ist...

- überall
- unsichtbar
- unausweichbar
- unverständlich

Elektrizität ist der Fluss von elektrischer Ladung.

Elektrostatische Kraft

Elektronen bewegen

Statische Elektrizität

Strom

Strom

Wahr + Falsch

Wahr + Falsch

Erste Schlussfolgerung

AC (Wechselspannung)
DC (Gleichspannung)

Elektrische Spannung

Elektrische Spannung

I (Formelzeichen) A (Einheitenzeichen, Ampere)

Elektrische Stromstärke

Elektrische Stromstärke

Elektrische Stromstärke

R (Formelzeichen)
Ω (Einheitenzeichen, Ohm)

Resistance

Less resistance

More resistance

Widerstand

Zusammenhang zwischen Strom, Spannung und Widerstand U = R × I

U (Spannung) = R (Widerstand) * I (Stromstärke)

I (Stromstärke) = U (Spannung) / R (Widerstand)

R (Widerstand) = U (Spannung) / I (Stromstärke)

Wie hoch ist der Strom?

Batterie: $3 \times 1,5V = 4,5V$ Glühlampe: 15Ω (Ohm)

 $U = R \times I$ $\rightarrow I = U / R$

 $I = 4,5V / 15 \Omega$ I = 0,3A Taster

P (Formelzeichen) W (Einheitenzeichen, Watt)

$$P = U \times I$$

Wie groß ist die Leistung?

Batterie: 3 × 1,5V = 4,5V

Strom: 0,3A

Elektrische Leistung

 $P = U \times I$

 $P = 4,5V \times 0,3A$

P = 1,35W

Taster

Ohmsches Gesetz

Ströme größer als 30mA sind gefährlich Ströme größer als 50mA sind lebensgefährlich

Wechselspannung größer als 50V: Lebensgefährlich Gleichspannung größer als 120V: Lebensgefährlich

Sicherheitsregeln

Arbeiten mit Spannungen von 0-12V
Kein Arbeiten unter Spannung
Verwenden zertifizierter Spannungsversorgungen
Bei höheren Spannungen einen Experten fragen
Bei Unsicherheit lieber zweimal fragen

Schaltpläne

Schematische Schaltpläne

Schaltpläne

Spannungsquellen

Widerstände

Schalter / Taster

LED

Motoren

Potentiometer

Spulen

Kondensatoren

Schaltpläne

Basisschaltung

Widerstände addieren sich Strom ist in der Reihenschaltung überall gleich Anfällig für Unterbrechungen im Stromkreis Spannungen an den Elementen addieren sich

Gesamtwiderstand ist kleiner als der größte Einzelwiderstand Spannung ist in der Parallelschaltung überall gleich Ausfallsicherer als die Reihenschaltung Ströme an den Elemente addieren sich

Widerstände in Parallelschaltung

R2

Widerstände in Parallelschaltung

Widerstände in Parallelschaltung

Zwischen zwei Punkten in einem Schaltkreis liegt eine Spannung an.

Zwischen zwei elektronisch verbunden Punkten fließt ein Strom.

Der Fluß des Stroms hängt von der anliegenden Spannung und dem Widerstand ab.

Seriell geschaltete Bauteile addieren ihren Widerstand. Parallel geschaltete Bauteilen teilen den Strom entsprechen ihrem Widerstand auf.

Schlußfolgerung

- https://www.elektronik-kompendium.de https://de.rs-online.com/web https://www.digikey.de
- https://www.elektronik-labor.de/index.html https://www.instructables.com