A Cognitive Modeling Analysis of Risk in Sequential Choice Tasks

Maime Guan* Ryan Stokes * Joachim Vandekerckhove* Michael D. Lee*†

Abstract

There are many ways to measure how people manage the risk when they make decisions. A standard approach is to measure risk propensity using self-report questionnaires. An alternative approach is to use decision-making tasks that require people to manage risk and uncertainty in making decisions, and apply cognitive models of task behavior to infer people's risk propensity. We consider three commonly used questionnaires: the Risk Propensity Scale, the Risk Taking Index, and the Domain Specific Risk Taking Scale. We also consider four widely-studied cognitive tasks: the Balloon Analogue Risk Task, the preferential choice gambling task, the optimal stopping problem, and the bandit problem. Although these questionnaires and decision-making tasks have been studied extensively in isolation, there has been less research comparing how they measure risk, especially when cognitive models are used to infer parameters corresponding to risk from basic behavioral performance. We report the results of a within-participants experiment using 56 Amazon Mechanical Turk participants, which includes applying cognitive models to each of the decision-making tasks. Overall results, based on Bayesian inferences about the correlations between the risk measures, show that people's risk propensity is generally consistent within different conditions for each of the decision-making tasks. There is, however, less evidence that the way people manage risk generalizes across the tasks, or that it corresponds to the measures provides by the questionnaires. Our results show that even when cognitive models are used to infer latent parameters that represent risk propensity in task-specific context, those propensities do not generalize across tasks. This finding adds evidence to the conclusion that risk is not a unitary psychological construct.

Keywords: risky decision making, sequential choice tasks, optimal stopping problems, bandit problems, Balloon Analogue Risk Task

1 Introduction

From financial investments to choosing dating partners, people regularly encounter risky decision-making situations. We are constantly evaluating the potential gains and losses, and the probabilities of each occurring. An individual's intrinsic tendency to be risk seeking, known as their *risk propensity*, has been argued to be a meaningful latent construct that can be interpreted as a dominant influence on people's behavior in risky situations (Sitkin & Weingart, 1995; Stewart Jr & Roth, 2001; Dunlop & Romer, 2010; Mishra et al., 2010; Lejuez et al., 2004).

There are many ways to assess risk propensity. One important approach relies on self-report questionnaires, usually in the form of responses to questions using Likert-type scales. A different approach uses decision-making tasks, and applies cognitive models of the decision-making process to infer latent psychological parameters that represent risk propensities. In the model-based approach, risk is implicitly inferred from its influence on observed task behavior. Potentially, the model-based approach offers an opportunity to measure an individual's risk in a way that is less open to manipulation. Risk is inferred from behavior on a task with clear goals and reward structures, rather than from self-reported behavior or

†Email: mdlee@uci.edu.

introspection.

If an individual has a fundamental propensity to take risks, this trait should be reflected in both people's answer questions about how they manage risk and how they behave in decision-making tasks that require them to manage risk. Accordingly, there is a body of research that examines the relationship between risk questionnaires and decision-making tasks that aim to measure risk (e.g., Szrek et al., 2012). Usually, however, the decision-making tasks are ones that produce simple behavioral measures of risk propensity. There has been less research applying cognitive models to individual behavior in the decision-making tasks, and using them to infer latent parameters that correspond to risk propensity. The goal of this article is to examine the relationship between the measures of risk provided by a number of widely-used questionnaires and model-based measures of risk based on people's behavior in decision-making tasks.

The questionnaires we consider are the Risk Propensity Scale (RPS: Meertens & Lion, 2008), the Risk Taking Index (RTI: Nicholson et al., 2005), and the Domain Specific Risk Taking scale (DOSPERT: Blais & Weber, 2006). These three questionnaires have been used in a variety of contexts and have been found to be reliable in measuring people's risk propensity (Harrison et al., 2005).

The decision-making tasks we consider are the Balloon Analogue Risk Task (Lejuez et al., 2002, 2003a), the prefer-

 $^{{\}rm *Department\ of\ Cognitive\ Sciences,\ University\ of\ California,\ Irvine}$

ential choice gambling task (De Martino et al., 2006; Russo & Dosher, 1983; Rieskamp et al., 2006), the optimal stopping problem (Goldstein et al., 2020; Guan et al., 2015; Guan & Lee, 2018; Lee, 2006; Seale & Rapoport, 2000), and the bandit problem (Lee et al., 2011; Steyvers et al., 2009; Zhang & Lee, 2010b). All four of these decision-making tasks involve risk and uncertainty, and have corresponding cognitive models with parameters that can be interpreted as measuring some form of risk propensity.

The structure of this article is as follows: In the next section, we provide an overview of the within-participants experiment involving all of the questionnaires and decisionmaking tasks. We then present analyses of each of the decision-making tasks separately, describing the experimental procedure and conditions, providing basic empirical results, and describing and applying a cognitive model that makes inferences about risk propensity. Once all four decision-making tasks have been examined, we present results for the questionnaires. Finally, we bring the results together, by presenting first a correlation analysis and then a cognitive latent variable analysis that compare all of the measures of risk propensity. We conclude by discussing the implications of our findings for understanding whether and how risk propensity varies across individuals and generalizes across different tasks and contexts.

2 Overview of Experiment

2.1 Participants

A total of 56 participants were recruited through Amazon Mechanical Turk. Each participant was paid USD\$8.00 for completing the experiment. All participants confirmed their agreement with an informed consent form before beginning the experiment. There were 37 male participants and 19 female participants, with ages ranging from 20 to 61 (M = 36.4 years, SD = 11.6 years).

2.2 Procedure

Each of the cognitive tasks took about 20–30 minutes to complete. The RPS and RTI took about 5 minutes each, while the DOSPERT took about 10–15 minutes. Each participant completed all of the questionnaires and decision-making tasks. Because the entire experiment took about two hours to complete, the experiment was split into two parts of about one hour each. Each part included two decision-making tasks and either the RPS and RTI or the DOSPERT. The RPS and RTI were completed in the same part because these two questionnaires are much shorter than the DOSPERT. The order of questionnaires and decision-making tasks was randomized across participants.

Upon completing Part 1 of the experiment, each participant was given a unique code. This code allowed them to

complete Part 2 and receive compensation. All participants who completed Part 1 returned and completed Part 2. Participants were also encouraged to take a break between Part 1 and Part 2, subject to the requirement that they complete both parts within six days.

3 Balloon Analogue Risk Task

The Balloon Analogue Risk Task (BART: Lejuez et al., 2002) is a well-established and widely-used decision-making task for measuring risk propensity (Lejuez et al., 2003a; Lighthall et al., 2009; Rao et al., 2008; Aklin et al., 2005). In the BART, the level of inflation of a balloon corresponds to monetary value. People are repeatedly given the choice either to bank the current value of the balloon, or to take a risk and pump the balloon to add some small amount of air and corresponding monetary value to the balloon. There is some probability the balloon will burst each time it is pumped, in which case the value of the balloon is lost. A BART problem involves a sequence of these choices, and finishes when either the value is banked or the balloon bursts.

Individual risk propensity is most often quantified by the mean number of pumps made across problems, excluding those problems where the balloon burst (Schmitz et al., 2016). An individual who is risk seeking is likely to pump the balloon more times across problems than an individual who is risk averse. The mean number of pumps has been shown to correlate with risk taking behaviors such as smoking, alcohol and drug abuse, and financial decision making (Hopko et al., 2006; Kathleen Holmes et al., 2009; Lejuez et al., 2003a, 2002; Schonberg et al., 2011), as well as psychological traits such as impulsivity, anxiety, and psychopathy (Hunt et al., 2005; Lauriola et al., 2014).

3.1 Method

Participants completed two BART conditions, differing in the probability of the balloon bursting at each trial. These probabilities were p=0.1 and p=0.2. Participants were told at the beginning of the task that they will be pumping balloons from two different bags of balloons, and that balloons from the same bag have the same probability of bursting. However, they were not told the probabilities of bursting. All participants completed the same 50 problems within each of the two conditions, while the order of problems within each condition was randomized across participants.

Participants were instructed to maximize their monetary reward over all 50 problems. At the beginning of the experiment, they received a virtual bank with \$0 and a balloon that was worth \$1 is shown on the screen. At the bottom of the screen, there was a "pump" button and a "bank" button. With each pump, the balloon's worth increased by \$1.

3.2 Two-Parameter BART Model

Wallsten et al. (2005) pioneered the development of cognitive models for the BART that are capable of inferring latent parameters measuring risk propensity. Their modeling approach has been further developed by Pleskac (2008) and Zhou et al. (2019). We use the two-parameter BART model developed by Van Ravenzwaaij et al. (2011) as a simplification of the one of the original Wallsten et al. (2005) models. The two-parameter model assumes that a decision maker believes that there is a single constant probability that a pump will make a balloon burst, p^{belief} , which is fixed over all problems. It also assumes that they decide on a number of pumps prior to the first pump in a problem, and does not adjust this number during pumping. This number of pumps that the participant considers to be optimal, denoted by ω , depends on their propensity for risk taking, γ^+ , and their belief about the bursting probability of the balloon when it is pumped. It is defined as

$$\omega = \frac{-\gamma^+}{\ln\left(1 - p^{\text{belief}}\right)},$$

where $\gamma^+ \geq 0$.

In the two-parameter BART model, the probability that the participant will pump on the kth trial on a particular problem, p_k^{pump} depends on both ω and a behavioral consistency parameter β , in terms of a logistic function

$$p_k^{\text{pump}} = \frac{1}{1 + \exp(\beta (k - \omega))},$$

with $\beta \geq 0$. This logistic relationship means that relatively higher values for β correspond to more consistency in decision making. If $\beta = 0$ then $p_k^{\text{pump}} = 0.5$, and the participant's decision to pump or bank is random. As $\beta \to \infty$, the participant's behavior becomes completely determined by whether or not the number of pumps k is greater than ω .

Our implementation of the two-parameter BART model adds a censoring function to the probability of pumping on a given trial. This means that the probability of pumping on a trial within a problem also depends on whether the current trial exceeds the trial b_j at which the balloon bursts,

$$p_{j,k}^{\text{pump}} = \begin{cases} 1/(1 + \exp \beta (k - \omega)) & \text{if } k < b_j \\ 0 & \text{if } k \ge b_j. \end{cases}$$

The probability of the observed data, $p(D|\gamma^+,\beta)$ for all j problems and all pumps within each problem $n_{(j)}$, depends on whether the jth problem resulted in a bank $(d_j = 1)$ or a balloon burst $(d_j = 0)$. The likelihood function that connects the two parameters to the data is

$$p(D \mid \gamma^+, \beta) = \prod_{j=1}^{J} \prod_{i=1}^{K_{(j)}} p_{ji}^{\text{pump}} \left(1 - p_{j, k_{(j)}+1}^{\text{pump}}\right)^{d_j}$$

where $d_k = 1$ if the participant banked on trial k, and $d_k = 0$ if the balloon burst. This likelihood is the product of all probabilities that the participant will pump times one minus this probability on those problems where the participant banked. Finally, priors are placed on the risk and consistency parameters for each participant, so that $\gamma^+, \beta \sim \text{uniform}(0, 10)$.

The γ^+ parameter provides a measure of risk propensity, since it controls the number of pumps attempted. Larger values of γ^+ correspond to more pumps and greater risk seeking. Smaller values of γ^+ correspond to fewer pumps, and more risk-averse behavior.

We implemented the two-parameter model model, and all of the other cognitive models considered in this article, as graphical models using JAGS (Plummer, 2003). JAGS is software that facilitates MCMC-based computational Bayesian inference (Lee & Wagenmakers, 2013). All of our modeling results are based on four chains of 1,000 samples each, collected after 2,000 discarded burn-in samples. The chains were verified for convergence using visual inspection and the standard \hat{R} statistic (Brooks & Gelman, 1997).

3.3 Modeling Results

For all of the cognitive modeling in this article, we apply the model to the data in three steps. First, we define task-specific contaminant models, identifying those participants who did not understand the task, or did not complete it in a motivated way. These contaminant participants are removed from the subsequent analysis. Secondly, we examine the descriptive adequacy of the model for the remaining participants, using the standard Bayesian approach of posterior-predictive checking (Gelman et al., 2004). Finally, we report the inferences for the model parameters, usually starting with a few illustrative participants who demonstrate the range of interpretable individual differences, before showing the inferences for all non-contaminant participants.

3.3.1 Removing Contaminants

We developed two contaminant models for BART behavior. The first was based on a cutoff for the β consistency parameter. If a participant's behavior was extremely inconsistent across the problems they completed, they were considered contaminants. We used a cutoff of 0.2, which removed 11 participants. The second contaminant model was developed to capture behavior motivated by wanting to finish the experiment as quickly as possible. If a participant banked on all of the problems they were also considered contaminants. Three participants were associated with this form of contaminant behavior. Thus, overall, a total of 14 contaminant participants were removed, and a total of 42 participants were used in the modeling analysis.

3.3.2 Descriptive Adequacy

Figure 1 summarizes a posterior predictive check of the descriptive adequacy of the two-parameter BART model. The distributions of the number of pumps are shown in as gray boxes, with areas proportional to the posterior predictive mass. The observed data are shown to the left, with dots representing the median number of pumps, thicker solid lines representing the 0.25 and 0.75 quantiles, and thinner lines spanning the minimum and maximum observed number of pumps. The posterior predictive distributions generally match the observed data, suggesting that the model provides a reasonable account of people's behavior.

3.3.3 Inferred Risk Propensity and Consistency

Figure 2 shows the inferred γ^+ and β parameter values for four representative participants, together a summary of their observed behavior. Each panel shows the distribution of the number of pumps that the participant made, excluding problems on which the balloon burst. The left column shows the condition with p=0.1 and the right column shows the condition with p=0.2.

Participant 1 can be seen to be consistently risk seeking. They tend consistently to pump a relatively large number of times in both conditions. This pattern of behavior is captured by their risk and consistency parameters, with relatively high values of γ^+ and β parameter values. Participant 2 is also risk seeking, in the sense that they generally pump a relatively large number of times across both conditions, but they do so less consistently. The number of times they pump in both conditions varies widely from 3 to more than 15 pumps. This behavior is quantified by their inferred parameter values, with relatively high values of γ^+ but relatively low values of β . Participant 3 is consistently risk averse. They pump a relatively small number of times across both conditions and are very consistent in doing so. This is reflected in a relatively low γ^+ and high β parameter values. Participant 4 is also risk averse, but is more inconsistent than Participant 3. This is captured with relatively low values of both γ^+ and β parameter values.

Figure 3 shows the joint and marginal distributions of the posterior expectations of γ^+ and β for all participants and for both conditions. The four representative participants shown from Figure 2 are labeled. It is evident that there is a wide range of individual differences in both risk propensity and consistency parameters. There appears to be a negative and nonlinear relationship between the two parameters in both conditions. Participants with relatively high values of γ^+ also tend to have low values of β , and vice versa. Participants near the origin have low values of both γ^+ and β , and are consequently both risk averse and inconsistent. However, as participants move from the origin closer to the lower-right corner, they become more risk seeking but continue to lack consistency. As participants move further away from

the origin and closer to the top-left corner, they become consistently risk averse.

4 Gambling Task

Perhaps the most common task for studying decision-making under risk and uncertainty involves people choosing between pairs of gambles (De Martino et al., 2006; Russo & Dosher, 1983; Rieskamp, 2008). Each gamble is defined in terms of the probabilities of different monetary outcomes, and people are asked to choose the gamble they prefer. For example, a person might be asked to choose between Gamble A, which leads to \$50 with probability 0.6 and -\$50 with probability 0.4, and Gamble B, which leads to \$100 with probability 0.65 and -\$100 with probability 0.35.

4.1 Method

Participants completed two gambling tasks conditions. One condition was framed in terms of gains and the other was framed in terms of losses. In the gain condition, participants were instructed to maximize their monetary reward over the entire set of problems. In the loss condition participants were instructed to minimize their monetary losses. All of the participants completed the same 40 problems in each condition, but the order of problems within each condition was randomized across participants.

The pairs of gambles were presented as pie charts labeled with their respective payouts and probabilities. A screenshot of the experimental interface is provided in the supplementary materials. Participants chose between gambles by clicking the corresponding pie chart. The expected values of the outcomes were not provided to the participants and no feedback was given.

4.2 Cumulative Prospect Theory Model

Important cognitive models of how people choose between gambles include regret theory (Loomes & Sugden, 1982), decision-field theory (Busemeyer & Townsend, 1993), the priority heuristic (Brandstätter et al., 2006), anticipated utility theory (Quiggin, 1982), and prospect theory (Kahneman & Tversky, 1979; Tversky & Kahneman, 1981). All of these models extend the standard economic account of choice as maximizing expected utility (von Neumann & Morgenstern, 1947) and attempt to provide an account in terms of cognitive processes and and parameters.

We use cumulative prospect theory (CPT), which makes a set of assumptions about how people subjectively weight the value of outcomes and probabilities. CPT assumes that the outcomes of risky alternatives are evaluated relative to a reference point, so that outcomes can be framed in terms of losses and gains. In particular, it is assumed that the same

FIGURE 1: Posterior predictive distributions of the number of pumps for each participant in the each condition, sorted by the mean number of pumps per participant in the p=0.1 condition. The top panel shows corresponds to the condition with bursting probability p=0.1, and the bottom panel corresponds to the condition with bursting probability p=0.2. The posterior predictive distributions are shown as gray boxes of varying area. The minimum and maximum, as well as the 0.25 and 0.75 quantiles, and the median of the behavioral data are shown to the immediate left in blue for the p=0.1 condition and red for the p=0.2 condition.

absolute value of a loss has a larger impact on the decision than a gain, consistent with the phenomenon of loss aversion (Kahneman & Tversky, 1979). In addition, prospect theory assumes that people subjectively represent probabilities, typically overestimating small probabilities and underestimate large probabilities.

We use a variant of the CPT model developed and implemented by Nilsson et al. (2011). In this model, the expected utility of an alternative O is defined as

$$EU\left(O\right) =\sum_{i}p_{i}u\left(x_{i}\right) ,$$

where $u(\cdot)$ defines the subjective utility of x_i .

This subjective utility is weighted by the probability p_i that the ith outcome occurs. According to the CPT model, if alternative O has two possible outcomes, then the subjective value V of O is defined as

$$V\left(O\right) = \sum_{i} \pi\left(p_{i}\right) v\left(x_{i}\right),$$

where $\pi\left(\cdot\right)$ is a weighting function of the objective probabilities and $v\left(\cdot\right)$ is a function defining the subjective value of the ith outcome. The probability weighting function and the value function differ for gains and losses. The subjective value of payoff x is defined as

$$v(x) = \begin{cases} x^{\alpha} & \text{if } x \ge 0 \\ -\lambda (-x)^{\alpha} & \text{if } x < 0, \end{cases}$$

where $0 < \alpha < 1$ is a parameter that controls the curvature of the value function. Nilsson et al. (2011) used different value

functions for gains and losses. We use a simplification of the model in which the shape of the value function, determined by α , is the same for gains and losses. If $\lambda > 1$, losses carry more weight than gains, corresponding to the theoretical assumption of loss aversion. The larger the value of λ , the greater the relative emphasis given to losses. When $0 < \lambda < 1$, in contrast, gains have more impact on the decision than losses. Although prospect theory expects loss aversion, we used a prior $\lambda \sim \text{uniform}(0,10)$ that tests this assumption.

The CPT model generates subjective probabilities by a weighting function which, for two possible outcomes, is defined as

$$\pi(p_i) = \frac{p_i^c}{(p_i^c + (1 - p_i^c)^c)^{1/c}},$$

where $c = \gamma$ for gains and $c = \delta$ for losses. The parameter 0 < c < 1 determines the inverse S-shape transformation of the weighting function.

Finally, our CPT model allows for probabilistic decision making by assuming a choice rule in which choice probabilities are monotonic function of the differences of the subjective values of the gambles. Specifically, the exponential Luce choice rule, rewritten as a logistic choice rule, assumes that the probability of choosing Gamble A over Gamble B is

$$\theta_{A,B} = \frac{1}{1 + \exp \phi \left(V\left(B\right) - V\left(A\right)\right)}.$$

The parameter ϕ can be interpreted as a measure of the consistency of choice behavior. When $\phi = 0$, the probabil-

Figure 2: Observed behavior and inferred parameter values for four representative participants. The left column corresponds to the condition with bursting probability p=0.1, and the right column corresponds to the condition with bursting probability p=0.2. The distributions show the number of pumps each participant made before banking, excluding problems where the balloon burst. The inferred values of γ^+ , β , and ω are also shown.

Figure 3: Joint and marginal distributions of β and γ^+ posterior expectations across the two conditions for each participant. The four representative participants shown from Figure 2 are labeled.

ity of choosing Gamble A over Gamble B becomes $\frac{1}{2}$, and choice behavior is random. As ϕ increases, choice behavior

becomes increasingly determined by the difference in subjective value between Gamble A and Gamble B. As $\phi \to \infty$,

Figure 4: Inferred subjective value function curves and probability weighting function curves for representative participants. The three participants in the left panel span the range of inferred individual differences in α and λ . The three participants in the right panel span the range of inferred individual differences in γ and δ .

choices becomes increasingly consistent in the underlying preference, until in the limit they always chose the preferred gamble.

We used independent priors for all five parameters for each participant. Besides the prior $\lambda \sim \text{uniform}(0, 10)$ already mentioned, the remaining parameters have priors $\alpha \sim \text{uniform}(0, 1)$, $\gamma \sim \text{uniform}(0, 1)$, $\delta \sim \text{uniform}(0, 1)$, and $\phi \sim \text{gamma}(2, 1)$. Note that the final prior on the response consistency gives the highest density to $\phi = 1$, which corresponds to probability matching, while also allowing for more random or more deterministic behavior.

To measure risk propensity using the CPT model, we focus on the loss aversion parameter λ . The motivation for this focus is that an individual who exhibits strong loss aversion can be interpreted as being risk averse, since their preference will be for gambles that avoid the possibility of a large loss. For the inference about loss aversion to be meaningful, there must be some level of behavior consistency, and so we place a secondary focus on the ϕ parameter. We acknowledge that there are other ways in which the CPT model could be interpreted in terms of risk propensity. For example, if the probability weighting function infers that an individual perceives probabilities in extreme ways, significantly underestimating small probabilities and overestimating large probabilities, this could be seen as supporting a risky perception of the gambles. Alternatively, a lack of consistency in decision-making corresponds to a form of risk-seeking, but is more in line with erratic behavior than the underlying risk propensity trait we aim to measure.

4.3 Modeling Results

4.3.1 Removing Contaminants

We used a simple guessing model of contamination that assumes the probability that any participant will choose Gamble A over Gamble B is $\theta_{A,B} = \frac{1}{2}$. This guessing model was compared to the CPT model using Bayes factors, approximated by a latent-mixture procedure based on modelindicator variables (Zeigenfuse & Lee, 2010). A total of 22 of the participants had Bayes factors favoring the guessing model, and were removed from the remainder of the analysis.

4.3.2 Descriptive Adequacy

We checked the descriptive adequacy of the CPT model using the mode of the posterior predictive distribution for each participant on each problem. This measure of the choice described by the model agreed with 77% of the decisions that participants made. Given that the chance level of agreement for choosing between two gambles is 50%, we interpret these results as suggesting that the CPT model provides a reasonable account of people's behavior in the gambling task.

4.3.3 Inferred Subjective Value Functions

We found large individual differences in the subjective value functions and probability weighting functions that participants were inferred to use. Figure 4 shows the inferred subjective value functions and probability weighting functions for a set of representative participants. In the left panel the first participant, shown by the dotted line, has a relatively high value of λ but a low value of α . Consequently, their subjective value curve significantly undervalues the magnitude of both gains and losses, but still shows loss aversion in the sense that the magnitude of losses weigh more than

Figure 5: The joint and marginal distributions of the posterior expectations of the λ risk aversion and ϕ consistency parameters over all participants. The representative participants from the left panel of Figure 4 are labeled.

gains. The second participant, shown by the dashed line, has a relatively high value of both α and λ . This participant's subjective value curve also undervalues the magnitude of both gains and losses, but shows strong loss aversion. The subjective magnitude of losses are much larger than gains. The third participant, shown by the solid line, has a relatively high value of α but λ is close to one. Consequently, the effect of undervaluing the magnitude of both gains and losses are weakest compared to the other two participants. This effect is the same for both gains and losses because λ is close to one.

In the right panel of Figure 4, the first participant, shown by the dotted line, has relatively lower values of both γ and δ . Consequently, their weighting functions for both conditions overestimate smaller probabilities and underestimate larger probabilities. The second participant, shown by the dashed line, has relatively high values of both γ and δ . Their probability weighting functions are extremely close to the diagonal, which corresponds to well calibrated probability weighting. The third participant, shown by the solid line, has a relatively low value of γ but high value of δ . This participant significantly underestimates small probabilities and overestimates larger probabilities.

Figure 5 shows the joint and marginal distributions of the posterior expectations of the loss aversion parameter λ as a measure of risk propensity, and the consistency parameter ϕ , over all participants. The representative participants from the left panel of Figure 4 are labeled. It is clear from Figure 5 that there is a range of inferred individual differences in both loss aversion and consistency. About one-third of the participants exhibit the opposite of loss aversion, with λ values below 1. About one-third of the participants exhibit

relatively strong loss aversion with values of λ values over 1.5. All of the ϕ consistency parameters are inferred to be well above 0, as expected given the removal of guessing contaminants, but many are less consistent than probability matching.

5 Optimal Stopping Problems

5.1 Theoretical Background

Optimal stopping problems are sequential decision-making tasks in which people must choose the best option from a sequence, under the constraint that an option can only be chosen when it is presented (Ferguson, 1989; Gilbert & Mosteller, 1966). These problems are sometimes (loosely) called secretary problems, based on the analogy of interviewing a sequence of candidates for a job with the requirement offers must be made immediately after an interview has finished, and before the next candidate is evaluated.

People's behavior on optimal stopping problems has been widely studied in a variety of contexts, using a number of different versions of the task (Bearden et al., 2006; Christian & Griffiths, 2016; Kogut, 1990; Lee, 2006; Seale & Rapoport, 1997, 2000). Some studies have used the classic rank-order version of the problem, in which only the rank of the current option relative to the options already seen is presented (Seale & Rapoport, 1997, 2000; Bearden et al., 2006). Other studies have used the full-information version of the task, in which the values of the alternatives are presented (Goldstein et al., 2020; Lee, 2006; Guan et al., 2014, 2015; Shu, 2008). For both of these versions there is a known optimal solution process to which people's performance can be compared (Ferguson, 1989; Gilbert & Mosteller, 1966).

We use the full-information version of the problem, for which the optimal solution is to choose the first number that is both currently maximal and above a threshold that depends upon the position in the sequence. The values of the optimal thresholds depend on two properties of the problem. One is the number of options in the sequence, known as the length of the problem. Intuitively, the more options a problem has, the higher thresholds should be, especially early in the sequence. The second property is the distribution from which values of the options are chosen, known as the environmental distribution. Intuitively, distributions that generate many large values require setting high thresholds, while distributions that generate many small values require setting low thresholds.

5.2 Method

Participants completed four types of optimal stopping problems, made up of combining problem lengths of four and eight with environmental distributions we call neutral and plentiful. In the neutral environment, values were generated from the uniform (0,100) distribution. In the plentiful environment, values were generated by scaling values drawn from the beta (4,2) distribution scaled to the range from 0 to 100. All participants completed the same 40 problems within each condition, and the order of problems within each condition was randomized across participants.

To complete each problem, participants were instructed to pick the heaviest cartoon cat out of a sequence of cartoon cats sitting on scales, with their weight in pounds, ranging from 0 to 100, written on the scale. A screenshot of the interface is provided in the supplementary material. Participants were told the length of the sequence, that a value could only be chosen when it is presented, that any value that was not the maximum was incorrect, and that the last value must be chosen if no values were chosen beforehand. Participants indicated whether or not they chose each presented value by pressing either a "select" or a "pass" button. The values that participants rejected in a sequence were not shown once the next value in the sequence was displayed. The values in the sequence after the one the participant chose were never presented. After each problem, participants were provided with feedback indicating whether or not they chose the option with the maximum value.

5.3 Bias-From-Optimal Model

Previous work modeling decision making in optimal stopping problems has found evidence that people use a series of thresholds to make decisions, and that there are large individual differences in thresholds (Goldstein et al., 2020; Guan et al., 2014; Guan & Lee, 2018; Lee, 2006). A surprising but reliable finding is that, beyond the initial few problems in an environment (Goldstein et al., 2020), there is relatively little learning or adjustment of thresholds (Baumann et al., 2018; Campbell & Lee, 2006; Guan et al., 2014; Lee, 2006). This justifies modeling an individual's decisions in terms of the same set of thresholds being applied to all of the problems.

We use the previously-developed Bias-From-Optimal (BFO) model to characterize the thresholds people use. (Guan et al., 2015). The BFO model represents the thresholds an individual uses in terms of how strongly they deviate from the optimal thresholds for the problem length and environmental distribution. We denote the optimal thresholds as $\tilde{\tau}_1, \ldots, \tilde{\tau}_m$ for a problem of length m (Gilbert & Mosteller, 1966, Table 2). Naturally, the last threshold in the sequence must be 0 since the last value must be chosen. The ith participant's thresholds depend on a parameter $\beta_i^m \sim \text{Gaussian}(0,1)$ that determines how far above or below their threshold is from optimal, and a parameter $\gamma_i^m \sim \text{Gaussian}(0,1)$ that determines how much their bias increases or decreases as the sequence progresses. Formally, under the BFO model, the ith participant's kth threshold in

FIGURE 6: The thresholds produced by the bias-from-optimal threshold model under different parameterizations of β and γ . The optimal threshold, corresponding to $\beta=\gamma=0$, is also shown.

a problem of length m is

$$\tau_{ik}^m = 100 \times \Phi\left(\Phi^{-1}\left(\frac{\tilde{\tau}_k^m}{100}\right) + \beta_i^m + \frac{k}{m}\gamma_i^m\right)$$

for the first m-1 positions, and $\tau_{im}^m=0$ for the last. The link functions $\Phi\left(\cdot\right)$ and $\Phi^{-1}\left(\cdot\right)$ are the Gaussian cumulative distribution and inverse cumulative distribution functions, respectively.

According to the BFO model, the probability that the *i*th participant will choose the value they are presented in the *k*th position on their *j*th problem is

$$\theta_{ijk}^{m} = \begin{cases} \alpha_{i}^{m} & \text{if } v_{ijk}^{m} > \tau_{ik}^{m} \text{ and } v_{ijk}^{m} = \max\left\{v_{ij1}^{m}, \dots, v_{ijk}^{m}\right\} \\ \frac{1 - \alpha_{i}^{m}}{m} & \text{otherwise} \end{cases}$$

for the first m positions and

$$\theta_{ijm}^m = 1 - \sum_{k=1}^{m-1} \theta_{ijk}^m$$

for the last position. The parameter $\alpha_i^m \sim \text{uniform}(0,1)$ is the individual-level accuracy of execution that corresponds to how often the deterministic threshold model is followed (Guan et al., 2014; Rieskamp & Otto, 2006).

Figure 6 shows how the shape of threshold functions changes with different values of β and γ , as compared to the optimal decision threshold for a problem of length eight in the neutral environment. The optimal threshold corresponds to the case with $\beta=0$ and $\gamma=0$, and is shown in bold. The β parameter represents a shifting bias from this optimal curve, with positive values resulting in thresholds that are above optimal, and negative values resulting in thresholds

that are below optimal. The γ parameter represents how quickly thresholds are reduced throughout the problem sequence, relative to the optimal rate of reduction. Positive values of γ produce thresholds that drop too slowly, while negative values of γ produce thresholds that drop too quickly. Priors are placed on the two risk parameters and consistency parameter for each participant so that γ , β ~ Gaussian(0, 1) and α ~ uniform(0, 1).

Our decision to use the BFO model was based on the direct interpretability of its parameters in terms of risk propensity. It is an unrealistic model of the cognitive processes involved in optimal stopping problem decisions, because it assumes perfect knowledge of the optimal thresholds, which are difficult to derive and compute. Alternative models based on fixed and linearly decreasing thresholds provide more realistic cognitive processing accounts (Baumann et al., in press; Goldstein et al., 2020; Lee, 2006; Lee & Courey, in press). The BFO model is better interpreted as a measurement model, with the β and γ parameters quantifying how a set of thresholds are more or less risky than optimal.

One interpretation is that higher thresholds that require higher values represent risk-seeking and lower thresholds represent risk aversion. Larger values β increase thresholds, and larger values of γ maintain higher thresholds for longer. Under this interpretation larger values of β and γ correspond to greater risk propensity. In contrast, smaller values of β and γ both lead to lower thresholds over the course of the sequence, and correspond to lower risk propensity.

5.4 Modeling Results

Before applying the BFO model, we checked that there was no clear evidence of learning or adaptation. As discussed above, this is a basic empirical pre-condition for the application of threshold models. Figure 7 shows the performance of participants, measured by the proportion of problems for which they correctly chose the maximum. The problems were split into four blocks of 10 problems each. In the two length-four conditions mean performance is between about 0.5 and 0.6. In the two length-eight conditions mean performance is between about 0.3 and 0.5. Participant performance is better in the shorter problems, but there do not appear to be large differences in performance between the neutral and plentiful environments. Critically, these results do not suggest there is any significant learning or adaptation.

5.4.1 Removing Contaminants

We developed two contaminant models for the optimal stopping task. The first assumes that people simply picked the first option in the sequence repeatedly across all problems, regardless of its value. The second assumes that people choose randomly, so that the probability any option in the sequence is chosen is 1/m. The latent-mixture analysis iden-

FIGURE 7: Mean proportion correct over all participants on successive blocks of 10 problems for the four different optimal stopping conditions.

tified three contaminant participants based on the first contaminant model, and these were removed from subsequent analysis. No additional contaminant participants were identified by the second model.

5.4.2 Descriptive Adequacy

As a posterior predictive check, we took the mode of the posterior predictive distribution for each participant on each problem as the decision the model expects. By this measure, the BFO model successfully described about 77% of the decisions that participants made. Given that the base rate or chance level of agreement is 25% for length-four problems and 12.5% for length-eight problems, we interpret these results as evidence that the model provides a reasonable account of people's behavior.

5.4.3 Inferred Thresholds

Figure 8 shows the marginal posterior expectations for all the inferred thresholds under all four conditions for all of the participants. The optimal decision threshold in each condition is also shown as a solid black line. It is clear that participants are generally sensitive to both length of the problem and the environmental distribution from which values are drawn. The thresholds in the plentiful environment conditions are relatively higher than the thresholds in the neutral environment conditions. The thresholds in the length-eight conditions remain higher longer into the sequence than the thresholds in the length-four conditions. Interestingly, it appears that participants in the length-eight conditions tend to use thresholds that are lower than optimal in both environments, and especially so in the plentiful environment.

FIGURE 8: The inferred thresholds for all participants in the four optimal stopping conditions. The top-left panel shows the inferred thresholds in the neutral environment with length four, the top-right panel shows the thresholds in the plentiful environment with length four, the bottom-left panel shows the inferred thresholds in the environment with length eight, and the bottom-right panel shows the inferred thresholds in the plentiful environment with length eight. Two representative participants are shown by the dashed and dotted lines.

It is also clear that there are individual differences in thresholds in all four conditions. Two participants are highlighted by dotted and dashed lines in Figure 8, showing their inferred thresholds in all four conditions. These participants were chosen because they show very different patterns of risk propensity in terms of their thresholds. The participant represented by the dotted lines can be seen to be risk seeking, because their thresholds for all four conditions are much higher than optimal. The participant starts their threshold high and maintains it at a high level as the sequence progresses. This risk-seeking behavior is quantified by their β and γ parameter values, which are both positive with relatively large magnitudes. Conversely, the participant represented by the dashed lines can be seen to be risk averse, because their thresholds are much lower than optimal in all four conditions. The participant starts their threshold low and lowers it quickly as the sequence progresses. This risk-averse behavior is also quantified by their β and γ parameter values, which are both negative with relatively large magnitudes.

Figure 9 summarizes the individual differences across all participants for all four conditions. The posterior expectations of the β and γ risk parameters are shown jointly in the scatter-plot in the center panel, and their marginal distributions are shown as histograms on the bottom and left

margins. The two participants highlighted in Figure 8 are labeled in the joint distribution. The dotted lines represent where β and γ are equal to 0. Where the dotted lines meet in the center represents the optimal threshold. It is clear that there is a wide range of both quantitative and qualitative individual differences in risk propensity, because all four quadrants around optimality are populated.

6 Bandit Problems

6.1 Theoretical Background

Bandit problems are widely used to study human decision making under risk and uncertainty (Banks et al., 1997; Daw et al., 2006; Meyer & Shi, 1995; Lee et al., 2011). In bandit problems, people must choose repeatedly between a set of alternatives. Each alternative has a fixed reward rate that is unknown to the decision maker, and each time it is chosen this probability is used to generate either a reward or a failure. The goal is to maximize the total number of rewards over the sequence of decisions. Bandit problems are psychologically interesting because they require that the exploration of new good alternatives be balanced with the exploitation of good existing alternatives (Mehlhorn et al., 2015). People

Figure 9: The joint and marginal distributions of the posterior expectations of the β and γ parameters, across the four conditions for all of the participants. The risk-seeking Participant 1 and risk-averse Participant 2 from Figure 8 are labeled.

generally start by exploring the different alternatives available before shifting to exploit the alternative with the highest reward rate.

Bandit problems can differ in terms of how how many alternatives are available. They can also differ in terms of how many decisions are made within a problem. In infinite-horizon bandit problems the total number of decisions to be made not know in advance, but there is some probability that the problem stops after any decision. In finite-horizon bandit problems the total number of decisions to be made within a problem is fixed and known in advance. This corresponds to the length of a problem. Bandit problems can also differ in terms of the distributions of reward rates that underlie each alternative. This distribution corresponds to the environment for the problem.

6.2 Method

Participants completed four types of finite-horizon bandit problems, all involving two alternatives. The four conditions combined problem lengths of eight and 16 with neutral and plentiful environmental distributions. In the neutral environment, reward probabilities were generated from the uniform (0,1) distribution. In the plentiful environment, reward probabilities were generated from the beta (4,2) distribution. Consequently, the plentiful environments contained alternatives that had relatively higher reward rates. All participants completed 40 problems within each condition and the order of problems within each condition was randomized across participants.

Participants were instructed to maximize their number of rewards by pulling the arms of two cartoon slot machines. A screenshot of the interface is provided in the supplementary material. Before beginning each condition, participants were informed that the reward probabilities for each machine were different for each problem in the block, but the same for all pulls within a problem. They were also told how many pulls were required for each problem. They were not, however, told the underlying distribution of the reward probabilities.

Participants made their selection for each pull by clicking a

"pull" button under one or the other of the two slot machines. The reward or failure outcome was then provided, in the form of a green or red bar. If a pull resulted in a reward, a green bar was added to the left side of the chosen slot machine. If a pull resulted in a failure, a red bar was added to the left side of the chosen slot machine. Thus, the bars showed the cumulative pattern of reward and failure over the course of the problem, and the total reward points earned on the current problem was also shown at the top of the screen. A problem was completed once the participant completed all of the pulls.

6.3 Extended Win-Stay Lose-Shift Model

There are many different models of human decision making on bandit problems, including the ϵ -greedy, ϵ -decreasing and the τ -first model (Sutton & Barto, 1998). We use a variant of perhaps the simplest and most widely used model, known as win-stay lose-shift (WSLS: Robbins, 1952; Sutton & Barto, 1998). In its deterministic form, this model assumes that people stay with the most recently-chosen alternative if it provides a reward, but shift to another alternative if it does not. In the standard stochastic version of the WSLS strategy, there is a probability γ of following this rule for every decision.

In our extended WSLS model there is a probability γ_w of staying after a reward and a potentially different probability γ_l of shifting after a failure. This WSLS model allows there to be a psychological difference between reacting to reward and failure in the decision-making process. This model has been found to account well for people's behavior (Lee et al., 2011; Zhang & Lee, 2010a).

The extended WSLS model does not require memory of previous actions and outcomes beyond the immediately preceding trial. It is also insensitive to whether the horizon is an infinite or a finite. Despite this simplicity, it provides a measure of risk propensity. A person who is risk seeking is likely to shift to another alternative with a high probability following a failure, in order to explore the other available options. In contrast, a person who is risk averse is likely to shift to another alternative with a relatively lower probability following a failure.

Formally, the extended WSLS model assumes the probability of choosing the ath alternative on the kth trial in the jth problem is

$$\theta_{jk}^{a} = \begin{cases} 1/2 & \text{if } k = 1\\ \gamma_{w} & \text{if chose } a \text{ and } r_{k-1} = 1\\ 1 - \gamma_{l} & \text{if chose } a \text{ and } r_{k-1} = 0\\ 1 - \gamma_{w} & \text{if not chose } a \text{ and } r_{k-1} = 1\\ \gamma_{l} & \text{if not chose } a \text{ and } r_{k-1} = 0, \end{cases}$$

where $r_{k-1} = 1$ if the previously selected alternative resulted in a reward, and $r_{k-1} = 0$ if the previously selected alternative

resulted in a failure. The observed rewards and failures on each trial r_k are generated by $r_k \sim \text{Bernoulli}(p_i)$, where p_1 and p_2 are the reward rates for the two alternatives. These reward rates are generated from either the neutral or plentiful environment. Finally, priors are placed on both probabilities, so that γ_w , $\gamma_l \sim \text{uniform}(0,1)$.

6.4 Modeling Results

6.4.1 Removing Contaminants

We used a guessing contaminant model, under which the probability that a participant chooses the ath alternative on the kth trial in the jth problem is $\theta_{jk}^a = \frac{1}{2}$. This means that on every trial within a problem, the participant chooses to pull a slot machine at random. The guessing model was compared to the extended WSLS model using Bayes factors, again estimated using a latent-mixture procedure based on model-indicator variables. There was overwhelming evidence for the extended WSLS model over the guessing model for all of the participants. Consequently, no contaminant participants were removed, and the modeling analysis used all 56 participants.

6.4.2 Descriptive Adequacy

As a posterior predictive check, the mode of the posterior predictive distribution for each participant on each problem was used as the decision that the model expected to have been made. The extended WSLS model was able to describe 84% of the decisions that the participants made. Given that the chance level of agreement for selecting either of the two alternatives is 50% on each trial within all problems, we interpret this result as showing that the extended WSLS model provides a good account of people's behavior.

6.4.3 Inferred Win-Stay Lose-Shift Probabilities

Figure 10 shows the numbers of switches following rewards and failures across positions for four representative participants. These participants were chosen because they span the range of inferred individual differences. The left panels show the length-eight conditions while the right panels show the length-16 conditions. The numbers of switches following failure are shown in blue for the neutral condition, and in green for the plentiful condition, while the numbers of switches following reward are shown in gray. In all four conditions, Participant 1 switches relatively often after a failure but rarely after a reward. Participant 2 almost never switches, either following a reward or a failure. Participant 3 switches relatively more often following failure than Participant 2, but also switches sometimes following a reward. Participant 4 has a switches moderately often following both reward and failure for early decisions in the sequence, but switches less often as the sequence progresses.

FIGURE 10: The number of switches following reward versus failure for four representative participants in each of the four conditions. The left panels show the length-eight conditions while the right panels show the length-16 conditions. The numbers of switches following failure are shown in blue for the neutral condition, and in green for the plentiful condition. The numbers of switches following reward are shown in gray.

Figure 11 shows the joint and marginal distributions of the posterior means of the γ^w and γ^l for each participant, for all four conditions. The four representative participants from Figure 10 are labeled. It is clear that the γ^w and γ^l parameters capture the consistent differences in their behavior observed in Figure 10. For example, Participant 1, who almost always stays after a reward and shifts after a failure, is consistently in the top right of the scatter plot, corresponding to high values of both the γ^w and γ^l parameters. In contrast, Participant 2, who rarely switches, is consistently located in the bottom right of the scatter plot, corresponding to a high value of the γ^w parameter and a small value of the γ^l parameter.

Overall, it is clear that there is a range of individual differences in both win-stay and lose-shift probabilities, and that there is a negative relationship between the two parameters. Participants who tend to stay following a reward also tend to stay following a failure. Participants who shift relatively more even after a reward also tend to explore the other alternative after a failure.

7 Questionnaires

Participants completed three questionnaires: the Risk Propensity Scale (Meertens & Lion, 2008), the Risk Taking Index (Nicholson et al., 2005), and the Domain Specific Risk Taking scale Blais & Weber (2006). The questions involved in these instruments are provided in the supplementary materials.

7.1 Risk Propensity Scale

The Risk Propensity Scale (RPS) was designed to be a short and easily administered test for measuring general risk-taking tendencies. The RPS originally consisted of only nine items, from which two items were later removed. The version of the RPS we used consists of the seven remaining items. All of the items involve statements that are rated on a nine-point scale ranging from "totally disagree" to "totally agree," except for the last item, which involves a nine-point rating from "risk avoider" to "risk seeker." Items 1, 2, 3, and 5 were reverse-scored so that high scores represented high risk propensity. Meertens & Lion (2008) reported an internal reliability coefficient measured by Cronbach's α of .77.

Figure 11: Joint and marginal distributions of the means of the γ^w and γ^l posterior expectations across the four conditions for each participant. The four representative participants shown from Figure 10 are labeled.

Participants indicated their selection by checking the appropriate box under each number. To obtain an overall RPS score for each participant, the mean of the seven items was taken. The left panel of Figure 12 shows the distribution of RPS scores across all 56 participants. The RPS scores are right-skewed ranging from 1 to 8.14, with M=3.61 and SD=1.86. These results are different from Meertens & Lion (2008), who reported a mean score of 4.63 and standard deviation of 1.23. The Cronbach's α observed in this sample of 56 participants was 0.90.

7.1.1 Risk Taking Index

The Risk Taking Index (RTI) assesses overall risk propensity in six domains: recreation, health, career, finance, safety, and social. There is only one item for each of the six domains, but each item in answered twice: once for current attitudes, and once for past attitudes. All of the answers are given using a five-point Likert scale ranging from "strongly disagree" to "strongly agree."

Participants indicated their selection by checking the ap-

propriate box under each number. To obtain an overall RTI score for each participant, the sum of each domain's response was taken across the current and past contexts. Then, the sum of each domain was taken as the overall RTI score. Therefore, RTI scores can potentially range from 12 to 60, where higher scores indicate higher risk propensity. Nicholson et al. (2005) reported high internal consistency for the general risk propensity scale with a Cronbach's α of 0.80. The left panel of Figure 12 shows the distribution of RTI scores across all 56 participants. The RTI scores are possibly bi-modal and range from 12 to 42. There is a large group of participants with a peak around 20 and a smaller group of participants with a peak around 35. These results are similar to Nicholson et al. (2005); the original study reported a mean score of 27.54 and standard deviation of 7.65. The Cronbach's α observed in this sample of 56 participants was

FIGURE 12: The distributions of questionnaire-based measures of risk. The left panel shows the joint and marginal distributions of RPS and RTI scores. The right panel shows the joint and marginal distributions of the DOSPERT risk taking and risk perception scores.

7.2 Domain Specific Risk Taking Scale

The Domain Specific Risk Taking scale (DOSPERT) was originally developed by Weber et al. (2002) and later revised by Blais & Weber (2006) to be shorter and more broadly applicable. The original version was revised from 40 items down to 30 items, evaluating risky behavioral intentions originating from five domains: ethical, financial, health/safety, social, and recreational risks. Each domain involves six items.

The DOSPERT differs from the RPS and RTI in that it attempts to distinguish people's tendency to be risk seeking from people's perception of risk. Blais & Weber (2006) found a negative relationship between the two; people who tend to engage in more risk seeking behavior also tend to perceive situations as less risky, and vice versa. Therefore, the DOSPERT is split into two assessments, separating risk taking from risk perception. Participants rated each of the 30 statements in terms of self-reported likelihood of engaging in risky behaviors to measure risk taking, and in terms of their gut-level assessment of the riskiness of these behaviors to measure risk perception. In the risk-taking assessment, a seven-point rating scale was used, ranging from "extremely unlikely" to "extremely likely." In the risk-perception assessment, a seven-point rating scale was used ranging from "not at all risky" to "extremely risky".

Participants indicated their selection by checking the appropriate box under each number. Ratings are summed across all items of each domain to obtain five sub-scale scores for risk taking and five sub-scale scores for risk perception. The overall DOSPERT risk taking score is the mean of each sub-scale score for the risk taking assessment. Similarly, the overall DOSPERT risk perception score is the mean of each sub-scale score for the risk perception assessment. There-

fore, each of the scores can potentially range from 6 to 42, where higher scores indicate higher risk propensity. Blais & Weber (2006) reported Cronbach's α 's ranging from 0.71 to 0.86 for the risk-taking scores, and Cronbach's α 's ranging from 0.74 to 0.83 for the risk-perception scores.

The right panel of Figure 12 shows the relationship between the risking taking and risk perception scores from the DOSPERT across all 56 participants, along with the marginal distributions of each. The risk taking scores also appear to be slightly bi-modal, with a large group of participants centered around about 16–18 and then a smaller group near 30. Risk perception scores are unimodal and centered around 27. These results are consistent with the findings from Blais & Weber (2006), in the sense that there is a negative relationship between risk taking and risk perception scores (r = -0.22). The Cronbach's α observed in this sample of 56 participants was 0.92 for the overall risk-taking score, and 0.92 for the overall risk-perception score.

8 Correlation Analysis

Our motivating goal is to measure the risk propensity of individuals using cognitive modeling analyses of decision-making tasks. Each of the models for the four decision-making tasks have at least one parameter that relates to risk propensity, and at least one parameter that relates to the consistency of behavior. In this section, we examine the relationship between the risk propensity and consistency parameters within and across tasks, using a Bayesian approach to estimating correlations.

Before looking at the correlations of model parameters across tasks, the raw performance of participants within and across each cognitive task was compared. Performance on

FIGURE 13: Pearson's correlations of performance across each condition in all of the decision-making tasks. Blue circles represent positive correlation, while red circles represent negative correlations. The areas of the circles correspond to the magnitudes of the correlations.

the optimal stopping problem was computed as the proportion of problems where the participant correctly chose the maximum. Performance in the bandit task was computed as the average proportion of trials that resulted in reward. Performance in the BART was computed as the average dollar amount collected on each problem. Performance in the gambling task was computed as the proportion of problems for which the participant chose the gamble with the maximum expected utility.

Figure 13 shows the correlations of participant performance across each condition for all of the decision-making tasks. The area of the circles represent the magnitude of Pearson's correlation r, with blue circles representing positive correlations and red circles representing negative correlations. These empirical results suggest that participant performance is highly correlated within tasks, but that it is less strongly correlated across tasks.

8.1 Cognitive Task Overview

Table 1 provides an overview of the four decision-making tasks, models, and relevant parameters. The optimal stopping task has eight risk parameters, $\beta_{1:4}$ and $\gamma_{1:4}$, and four consistency parameters, $\alpha_{1:4}$. The bandit task has four risk parameters, $\gamma_{1:4}^l$, and four consistency parameters, $\gamma_{1:4}^w$. The BART has two risk parameters, $\gamma_{1:2}^+$, and two consistency parameters, $\beta_{1:2}$. The gambling task has one risk parameter,

 λ , and one consistency parameter, ϕ . In total, there are 26 relevant parameters from the decision-making tasks to be compared within and across tasks for each individual.

8.2 Estimating Correlations with Uncertainty

The correlations between each risk and consistency parameter from all four decision-making tasks were estimated, using a Bayesian approach, based on Lee & Wagenmakers (2013, Chap. 5). A key feature of this approach is that it incorporates uncertainty in the inferences of the parameters themselves (Matzke et al., 2017). That is, we do not use point estimates of the various risk and consistency parameters, but instead acknowledge that participant's behavior is consistent with a range of possible values, given the limited behavioral data. Our inferences about the correlations between parameters are thus sensitive to the precision with which their values are determined from the cognitive models and decision-making tasks we used.

Formally, the correlation model assumes that the observed data for each participant are the parameter estimates of, say, a risk propensity and a consistency parameter, denoted by $x_i = (x_{i1}, x_{i2})$. However, these observations are now sampled from a Gaussian distribution, centered on some latent true risk propensity and consistency of that individual $y_i = (y_{i1}, y_{i2})$:

$$x_{ij} \sim \text{Gaussian}(y_{ij}, \lambda_j^e),$$

where the precision of the measurements is captured by $\lambda^e = (\lambda_1^e, \lambda_2^e)$. The precisions are estimated from the marginal posterior distributions from the inferences of the decision-making models. The latent true values of these cognitive measures, y_i , are then modeled as a draw from a multivariate Gaussian distribution

$$\mathbf{y}_i \sim \text{Gaussian}\left(\left(\mu_1, \mu_2\right), \begin{bmatrix} \sigma_1^2 & r\sigma_1\sigma_2 \\ r\sigma_1\sigma_2 & \sigma_2^2 \end{bmatrix}^{-1}\right).$$

The Bayesian correlation model used the following priors on r, σ_1 , σ_2 , μ_1 , and μ_2 :

The correlation analysis was implemented as a Bayesian graphical model in JAGS. Finally, as part of the Bayesian correlation analysis, we considered the possibility that there is no correlation. For each pairwise comparison, we used

Task	Conditions	Model	Risk parameter(s)	Consistency parameter
Optimal Stopping	4	BFO	$\beta_1,\ldots,\beta_4,\gamma_1,\ldots,\gamma_4$	α_1,\ldots,α_4
BART	2	2-parameter	γ_1^+,γ_2^+	eta_1,eta_2
Bandit	4	e-WSLS	${\gamma}_1^l,\dots,{\gamma}_4^l$	$\gamma_1^w,\ldots,\gamma_4^w$
Gambling	2	CPT	λ	ϕ

Table 1: Overview of tasks and parameters.

the Savage-Dickey method (Wetzels et al., 2010) to estimate Bayes factors to compare the model that assumes no correlation against the model that assumes correlation.

8.3 Correlation Results

Combining the scores from the three questionnaires to the parameters from the four decision-making tasks gives a total of 30 risk and consistency measures to be compared, which leads to 435 pairwise correlations. Figure 14 shows the results for all of these correlations. The areas of the circles correspond to the magnitudes of the correlations, given by the posterior expectation of r. Once again, blue circles indicate that a correlation is positive, while red circles indicate that a correlation is negative. The empty cells correspond to those comparisons where the log Bayes factor was negative, showing evidence for there being no correlation. The dashed lines divide the grid into the three questionnaire and four decision-making tasks.

It is evident that there are positive correlations between the same parameters within tasks. For example, all of the consistency parameters across conditions from optimal stopping are highly correlated, as are the risk parameters within the BART. This is clear from the triangles of blue circles along the diagonal. The positive correlations across conditions within the same task are expected, given the stability we observed in representative participants across conditions in the decision-making task analyses. Furthermore, the RTI, RPS, and DOSPERT RT are also positively correlated with each other, replicating previous findings.

There also appear to be some negative correlations between different parameters within tasks. For example, the γ^w and γ^l parameters in the bandit task are negatively correlated with each other, and the risk and consistency parameters in the BART are also negatively correlated. As we noted in the task-specific analyses, there is some trade-off between parameters for some of these tasks, There appears, however, to be less evidence for systematic correlations across tasks.

Figure 15 provides a different presentation of the correlation analysis that focuses on the comparisons for which there is evidence for non-zero correlations. Only pairs of parameters or measures with log Bayes factors were greater than 6 in favor of the alternative model are considered. The cutoff of 6 is used because it is a standard boundary corresponding to the verbal label of "strong" evidence (Kass & Raftery, 1995,

p. 777). The left panel shows the 95% Bayesian credible intervals of r for each comparison. The right panel shows the log Bayes factors for the corresponding comparisons. The strong positive positive correlations between the same cognitive parameters across different conditions within tasks are clear, as are the trade-offs between different parameters within tasks, shown by the strong negative correlations.

9 Cognitive Latent Variable Analysis

The correlation analysis is one way to test the idea that there is a general risk factor underlying the cognitive parameters that control people's risk propensity on the cognitive tasks, and is also measured by the questionnaires. As a second approach to testing the same idea, we explored the factorial structure of the tasks using a cognitive latent variable model analysis (CLVM: Vandekerckhove, 2014; Pe et al., 2013). CLVMs are a broad category of models that involves a latent variable structure built on top of cognitive process models and other measures of behavior, to allow inference of latent variables that have higher-order cognitive interpretations.

A CLVM is defined by a loadings matrix, which has columns corresponding to latent dimensions or factors, and rows corresponding to cognitive parameters or other behavioral measures. The values in these matrices, corresponding to factor-parameter pairings, may be set to assume there is no association, assume there is an association, or allow for the possibility there is some level of association to be inferred. These assumptions formalize different models of the factor structure underlying the relationships between the cognitive model parameters and questionnaire measures. We consider eight CLVMs. Three of these models capture what we believe are sensible theoretical positions, and three are based on the data and are exploratory in nature. The remaining two models are "bookend" models, which serve as reference points for assessing the merit of the substantive models based on theory and data Lee et al. (2019).

9.1 Theory-based models

The first theoretical model is the "general risk" model. It has one latent factor for each cognitive model parameter, and combines their independent replication across experimental conditions. For example, with respect to the opti-

Figure 14: Correlation matrix of the risk and consistency parameters. Blue circles represent positive correlations, while red circles represent negative correlations. The areas of the circles correspond to the absolute values of the posterior expectation of the correlation r. Empty boxes indicate that the log Bayes factor was negative, in favor of the null model that there is no correlation. The parameters within tasks are boxed out by the dashed gray lines. OS α represents consistency in the optimal stopping problem and OS β and γ represent risk in the optimal stopping problem. Bandit γ^w represents consistency in the bandit task and Bandit γ^l represents risk. Bart γ^+ represents risk in the BART task and Bart β represents consistency. Gamble ϕ represents consistency and Gamble λ represents risk.

mal stopping model, there is one factor for all four of the α error-of-execution parameters applied to the four experimental conditions, one factor for all of the β bias parameters, and one factor for all of the γ decrease parameter. The same separation and grouping of parameter applies to the other cognitive models. In addition, the general risk model has a general factor that all parameters share and is assumed to correlate with the risk surveys. The theoretical motivation for this model is based on the possibility that there is a general factor, which can be conceived as a risk propensity equivalent to the general intelligence factor "g" from cognitive abilities and psychometric testing Deary (2020). The general risk model emphasizes this general factor, while also allowing for the uniqueness of the cognitive tasks.

The left panel of Figure 16 details the structure of the general risk model. Rows represent the cognitive model pa-

rameters and questionnaire measures and columns represent the assumed factors. The dark blue squares indicate that a parameter or measure is assumed to load on a factor. The light yellow squares indicate that some level of association is possible. Empty squares assume a lack of association. Thus, the first factor has dark blue squares for the questionnaire measures, since these are assumed to index general risk, and light yellow squares for the cognitive parameters, allowing for the possibility they may also index risk. The remainder of the model structure loads each cognitive parameter in each task on a separate factor.

The second theoretical model is the "two-factor" model. It is a simpler model, with only two latent factors. The middle panel of Figure 16 details the structure of this model. One factor corresponds to risk propensity and the other corresponds to behavioral consistency. The risk propensity factor

Figure 15: 95% Bayesian credible intervals and log Bayes factors for Pearson's correlation coefficient r. Out of the 435 pairs of correlations, only the 41 correlations where log BFs were greater than 6 in favor of the alternative nonzero correlation model are shown here. The pairwise comparisons between parameters are sorted in descending order from highest to lowest log Bayes factor.

loads on the specific cognitive model parameters we interpret as controlling risk propensity in the tasks. These are the β bias and γ decrease parameters in the optimal stopping model, the γ^l lose-shift parameters in the extended-WSLS model, the γ risk propensity parameter in the BART model, and the λ loss aversion parameter in the cumulative prospect theory model. It also loads on the risk measures produced by the four questionnaires. The behavioral consistency factor loads on the other cognitive model parameters, which control the error of execution and response determinism within the models.

The third theoretical model is the "three-factor" model, and is detailed in the right panel of Figure 16. The three-factor model is an extension of two-factor model that loads

the four questionnaire measures on a separate third factor, rather than on the risk propensity factor. This model was included to test the possibility of a difference between behavioral risk taking, as potentially expressed in the cognitive tasks, and self-reported risk taking, as measured by the questionnaires.

9.2 Exploratory models

The exploratory models were constructed based on inspection of the correlation analyses presented in Figure 14. We measure the performance of these models relative to two bookend models. The first bookend is the "unitary" model, which has a single latent factor for all cognitive model pa-

Figure 16: The factor loadings structure for the general risk (left panel), two-factor (middle panel), and three-factor (right panel) theory-based CLVMs. In each panel, rows correspond to cognitive model parameters and questionnaire measures, and columns correspond to model factors. Dark blue squares indicate an assumed associated between a factor and a parameter or measure. Light yellow squares indicate a possible association, to be estimated. Empty squares indicate an assumed lack of association.

rameters and questionnaire measures. It is a very simple CLVM account of the data that provides a lower bound on the goodness-of-fit that can be achieved. The other bookend is the "saturated model", which has one latent factor for each of the 30 cognitive model parameters and questionnaire measures. It is the most complicated CVLM account of the data. It provides an upper bound on the goodness-of-fit. The role of bookend models is to provide comparison points for substantively interesting models. A useful substantive model should outperform both bookends in terms of a model evaluation measure that balances goodness-of-fit and complexity. We use the Deviance Information Criterion (DIC: Spiegelhalter et al., 2002, 2014), which has theoretical limitations, but provides a useful practical measurement for a coarse-grained assessment of competing models.

The first exploratory model we found is the "questionnaires only" model. It simplifies the saturated model by assuming that a single latent factor underlies all four questionnaire measures, but that the cognitive model parameters continue to have their own factors. The second exploratory model is the "BART β " model. It simplifies the saturated model by assuming that a single latent factor underlies the two Bart β parameters. Finally, the "questionnaires and BART β " model combines the constraints of the first two exploratory models, so that a single factor underlies all of the four questionnaires and the BART β parameters.

9.3 CVLM results

Table 2 summarizes the results of the CLVM analysis. According to the DIC measure, none of the theory-based models performed well. The exploratory models lead to slight improvements. We could not find any other CLVM that improved on the unitary and saturated bookend models. These results are largely consistent with the results of the correlational analysis above: There is not much evidence for a jointly explanatory underlying structure between the cognitive tasks. Even within tasks, the CLVM analysis provides evidence for models with multiple underlying dimensions per task. Perhaps the most interesting exploratory finding

Model	Factors	DIC	ΔDIC
General Risk	10	62, 221	62,859
Two-factor	2	170, 725	171, 363
Three-factor	3	170,737	171, 375
One-factor	1	220,896	221,534
Saturated	30	-588	50
Surveys only	27	-600	38
BART β	29	-611	27
Surveys, BART β	26	-618	0

Table 2: Results of the CLVM analysis. DIC = deviance information criterion. Δ DIC measures difference in DIC to the best-performed "Surveys, BART β " model.

from the CLVM analysis is that it is the BART task, and its associated cognitive model parameter measuring behavioral consistency, that most closely aligns with the measure of risk produced by the questionnaires.

10 Discussion

The goal of this article was to explore the psychological construct of risk propensity in the context of cognitive tasks and the inferred latent parameters of cognitive models that are can be interpreted as the psychological variables that control risk seeking and risk avoiding behavior. We compared these measures of risk across four sequential decision-making tasks and measures obtained from more traditional questionnaires based on self-report. In each of the independent analyses of the four decision-making tasks, we used a cognitive model that provided an adequate account of people's behavior. The inferred parameters of the cognitive models have natural interpretations as measures of risk propensity and decisionmaking consistency, and appear to capture stable individual differences across conditions within each task. The measures found using the questionnaires were generally consistent with previous studies, with similar means and standard deviations.

If risk propensity is a stable psychological construct that can be measured by these decision-making tasks, then the risk parameters and questionnaires are expected to correlate across tasks. The correlation analysis, however, failed to find evidence for any systematic relationships consistent with stable underlying risk propensity or consistency traits in individuals. A complementary analysis based on cognitive latent variable modeling reached the same conclusion. The data provided no evidence for any model that incorporated an interpretable general risk factor that spanned the four cognitive tasks. There was some evidence for a relationship between cognitive models of risk propensity in the

BART and the RPS, RTI, and DOSPERT scale measures. Of the four cognitive tasks we considered, the BART has been the most widely used as a psychometric instrument for measuring risk propensity (e.g. Taşkın & Gökçay, 2015; White et al., 2008), including examining its correlation with questionnaire measures (e.g. Asher & Meyer, 2019; Courtney et al., 2012), and as a predictor of real-world risk-taking behavior Lejuez et al. (2003b, 2007).

Overall, however, our results do not find evidence for a common underlying risk trait, despite the use of cognitive models to make inferences about latent parameters, rather than relying on simple behavioral measures. Similar findings of weak relationships between measures from behavioral tasks and questionnaires has been found in psychological research on individual differences in other domains such as the description-experience gap (Radulescu et al., 2020), self-regulation (Eisenberg et al., 2018), intelligence (Friedman et al., 2006), and theory of mind (Warnell & Redcay, in press),

10.1 Limitations and Future Directions

An obvious limitation of this study is the relatively small sample size, and the limited extent of testing for each of the decision-making tasks. Generally, studies focusing on individual differences use larger sample sizes, typically over 100 participants, with some studies recruiting many more than that (Eisenberg et al., 2018). Furthermore, our experiments used relatively few conditions or trials compared to previous literature, at least for some of the tasks. For example, we had participants complete two conditions of 40 problems in the gambling task, which is many fewer than the original experiment (Nilsson et al., 2011). Countering this concern, however, are our results showing strong within-task correlations, and interpretable consistency in the key parameters for representative participants across task conditions. These results show that our experiments were well enough designed, had enough participants, and with sufficiently motivated participants, to produce meaningful results at the level of the individual decision-making tasks.

A more likely reason for our failure to find strong betweentask relationships involves the differences between the tasks. While all of the decision-making tasks we used were sequential decision-making tasks involving risk and uncertainty, there are major differences between them. There is enormous room for debating exactly whether and how the tasks and questionnaires measures risk propensity (e.g. De Groot & Thurik, 2018), and even more scope for debating whether and how the cognitive model parameters relate to the relevant psychological concepts. As such, there is no clear consensus that either the tasks or the cognitive models we used capture risk propensity and consistency in the same way, or capture it at all. What we did is choose tasks we think depend on risk seeking and avoidance in some way, and provide a rationale for the interpretations of the cognitive modeling parameters in terms of risk propensity.

A finer-grained version of this general issue is that the different cognitive tasks provide information about risk and uncertainty in different ways, and these differences could affect the way any latent risk construct is able to be inferred. The optimal stopping problem involves holding out until a desirable option comes along, but the value of each option is presented to the decision maker explicitly. The preferential choice gambling task requires people to make judgments based on both the value of each option and probabilities associated with those values, without explicitly stating the expected reward from each gamble. The bandit problem gives feedback after each decision is made, explicitly showing the number of rewards and failures. Meanwhile, the BART only provides feedback when a balloon bursts, and by keeping track of the total banked amount over problems. These nuances suggest that each of the decision-making tasks require related but different cognitive processes. It is thus entirely plausible that risk seeking or avoidance in the optimal stopping problem does not translate directly to loss aversion in the gambling task. Similarly, the tendency to pump a balloon more with the risk of losing it all in the BART might not be psychologically equivalent to balancing exploration and exploitation in a bandit task.

A third limitation of our study reflects the limitations of the specific cognitive models we used, and the details of how they were applied to the behavioral data. There are many other possible accounts of the BART, gambling behavior, optimal stopping, and bandit problem decision making, including existing and successful alternative cognitive models. We referenced a number of alternative models for each task before we presented the model we used. While our models provide reasonable starting points, there are clearly many alternative models that could be explored. Similarly, we made practical choices about contaminant behavior that could be extended or improved. Perhaps most importantly, we did not attempt to use common-cause models that capture the consistency of individuals across conditions for the same decision-making task (Lee, 2018). This has previously been done successfully for the specific BFO model of optimal stopping (Guan et al., 2015), and could likely be done for the other models we used. Indeed, the consistency of withinparticipant parameters across conditions for the same tasks makes this an obvious next step. Common-cause modeling could easily be implemented hierarchically in the graphical modeling framework we used, and would have the advantage of reducing the number of risk and consistency parameters to one per task, rather than one per condition. The parameters should also be more precisely measured, because they would be based on the entirety of each participant's behavior in a task. On the other hand, we would expect this commonality to emerge from the cognitive latent varible modeling we conducted, and so it is also very possible that there simply is no evidence for the common construct in our data and modeling analysis.

10.2 Conclusion

We used cognitive models to analyze four sequential decision-making tasks that are sensitive to people's propensity for risk. We found stable individual differences within tasks for model parameters corresponding to the psychological variables of risk and consistency. However, we found little evidence for commonality or stability when we compared conceptually similar parameter across the tasks. In addition, we found little evidence for any meaningful relationships between the model-based measures of risk and standard widely-used questionnaires for measuring risk propensity based on self-report. Our results contribute to the discussion about how cognitive process models of sequential decision-making tasks can be used to measure risk, and whether risk propensity is a stable psychological construct that can be measured by cognitive behavioral tasks.

Acknowledgements

A github repository including supplementary material, code, and data, is available at https://github.com/maimeguan/RiskProject. MG acknowledges support from the National Science Foundation Graduate Research Fellowship Program (DGE-1321846). JV was partially supported by grants #1230118 and #1534472 from the National Science Foundation's Methods, Measurement, and Statistics panel.

References

Aklin, W. M., Lejuez, C., Zvolensky, M. J., Kahler, C. W., & Gwadz, M. (2005). Evaluation of behavioral measures of risk taking propensity with inner city adolescents. *Behaviour Research and Therapy*, 43, 215–228.

Asher, N. B. & Meyer, J. (2019). Three Dimensions of User Risk-Taking: Individual Differences in the TriRB. In *Proceedings of the Human Factors and Ergonomics Society Annual Meeting*, volume 63 (pp. 267–271).: SAGE Publications Sage CA: Los Angeles, CA.

Banks, J., Olson, M., & Porter, D. (1997). An experimental analysis of the bandit problem. *Economic Theory*, *10*, 55–77.

Baumann, C., Gershman, S. J., Singmann, H., & von Helversen, B. (in press). A linear threshold model for optimal stopping behavior. *Proceedings of the National Academy of Science*.

- Baumann, C., Singmann, H., Kaxiras, V. E., Gershman, S.,
 & von Helversen, B. (2018). Explaining Human Decision
 Making in Optimal Stopping Tasks. In C. Kalish, M. Rau,
 J. Zhu, & T. T. Rogers (Eds.), Proceedings of the 40th
 Annual Conference of the Cognitive Science Society (pp. 1341–1346). Austin, TX: Cognitive Science Society.
- Bearden, J. N., Rapoport, A., & Murphy, R. O. (2006). Sequential observation and selection with rank-dependent payoffs: An experimental study. *Management Science*, *52*, 1437–1449.
- Blais, A.-R. & Weber, E. U. (2006). A domain-specific risk-taking (DOSPERT) scale for adult populations. *Judgment and Decision Making*, *1*, 33–47.
- Brandstätter, E., Gigerenzer, G., & Hertwig, R. (2006). The priority heuristic: Making choices without trade-offs. *Psychological Review*, *113*, 409–432.
- Brooks, S. P. & Gelman, A. (1997). General methods for monitoring convergence of iterative simulations. *Journal* of Computational and Graphical Statistics, 7, 434–455.
- Busemeyer, J. R. & Townsend, J. T. (1993). Decision field theory: A dynamic-cognitive approach to decision making in an uncertain environment. *Psychological Review*, *100*, 432–459.
- Campbell, J. & Lee, M. D. (2006). The Effect of Feedback and Financial Reward on Human Performance Solving 'Secretary' Problems. In R. Sun (Ed.), *Proceedings of the 28th Annual Conference of the Cognitive Science Society* (pp. 1068–1073). Mahwah, NJ: Erlbaum.
- Christian, B. & Griffiths, T. (2016). *Algorithms to live by: The computer science of human decisions*. New York, NY: Henry Holt and Co.
- Courtney, K. E., et al. (2012). The relationship between measures of impulsivity and alcohol misuse: an integrative structural equation modeling approach. *Alcoholism: Clinical and Experimental Research*, *36*, 923–931.
- Daw, N. D., O'doherty, J. P., Dayan, P., Seymour, B., & Dolan, R. J. (2006). Cortical substrates for exploratory decisions in humans. *Nature*, 441, 876–879.
- De Groot, K. & Thurik, R. (2018). Disentangling risk and uncertainty: When risk-taking measures are not about risk. *Frontiers in Psychology*, *9*, 2194.
- De Martino, B., Kumaran, D., Seymour, B., & Dolan, R. J. (2006). Frames, biases, and rational decision-making in the human brain. *Science*, *313*, 684–687.
- Deary, I. J. (2020). *Intelligence: A very short introduction*. Oxford: Oxford University Press.

- Dunlop, S. M. & Romer, D. (2010). Adolescent and young adult crash risk: Sensation seeking, substance use propensity and substance use behaviors. *Journal of Adolescent Health*, 46, 90–92.
- Eisenberg, I. W., Bissett, P. G., Enkavi, A. Z., Li, J., MacKinnon, D., Marsch, L., & Poldrack, R. (2018). Uncovering mental structure through data-driven ontology discovery. *PsyArXiv*, (pp. 1–10).
- Ferguson, T. S. (1989). Who solved the secretary problem? *Statistical Science*, *4*, 282–296.
- Friedman, N. P., Miyake, A., Corley, R. P., Young, S. E., DeFries, J. C., & Hewitt, J. K. (2006). Not all executive functions are related to intelligence. *Psychological Science*, 17, 172–179.
- Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (2004). *Bayesian Data Analysis*. Boca Raton, FL: Chapman & Hall/CRC, second edition.
- Gilbert, J. P. & Mosteller, F. (1966). Recognizing the maximum of a sequence. *American Statistical Association Journal*, 61, 35–73.
- Goldstein, D. G., McAfee, R. P., Suri, S., & Wright, J. R. (2020). Learning when to stop searching. *Management Science*, 66, 1375–1394.
- Guan, M. & Lee, M. D. (2018). The effect of goals and environments on human performance in optimal stopping problems. *Decision*, *5*(4), 339–361.
- Guan, M., Lee, M. D., & Silva, A. (2014). Threshold models of human decision making on optimal stopping problems in different environments. In P. Bello, M. Mcshane, & B. Scassellati (Eds.), *Proceedings of the 36th annual meeting of the cognitive science society. Austin, TX: Cognitive Science Society* (pp. 553–558).
- Guan, M., Lee, M. D., & Vandekerckhove, J. (2015). A Hierarchical Cognitive Threshold Model of Human Decision Making on Different Length Optimal Stopping Problems. In Proceedings of the 37th annual meeting of the cognitive science society. Austin, TX: Cognitive Science Society.
- Harrison, J. D., Young, J. M., Butow, P., Salkeld, G., & Solomon, M. J. (2005). Is it worth the risk? A systematic review of instruments that measure risk propensity for use in the health setting. *Social Science & Medicine*, 60, 1385–1396.
- Hopko, D. R., Lejuez, C., Daughters, S. B., Aklin, W. M., Osborne, A., Simmons, B. L., & Strong, D. R. (2006). Construct validity of the balloon analogue risk task (BART): Relationship with MDMA use by inner-city drug users in residential treatment. *Journal of Psychopathology and Behavioral Assessment*, 28, 95–101.

- Hunt, M. K., Hopko, D. R., Bare, R., Lejuez, C., & Robinson, E. (2005). Construct validity of the balloon analog risk task (BART) associations with psychopathy and impulsivity. *Assessment*, 12, 416–428.
- Kahneman, D. & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. *Econometrica*, *XLVII*, 263–291.
- Kass, R. E. & Raftery, A. E. (1995). Bayes factors. *Journal of the American Statistical Association*, 90, 377–395.
- Kathleen Holmes, M., et al. (2009). Conceptualizing impulsivity and risk taking in bipolar disorder: importance of history of alcohol abuse. *Bipolar disorders*, 11, 33–40.
- Kogut, C. A. (1990). Consumer search behavior and sunk costs. *Journal of Economic Behavior and Organization*, 14, 381–392.
- Lauriola, M., Panno, A., Levin, I. P., & Lejuez, C. W. (2014). Individual differences in risky decision making: A metaanalysis of sensation seeking and impulsivity with the balloon analogue risk task. *Journal of Behavioral Decision Making*, 27, 20–36.
- Lee, M. D. (2006). A hierarchical Bayesian model of human decision-making on an optimal stopping problem. *Cognitive Science*, *30*, 555–580.
- Lee, M. D. (2018). Bayesian methods in cognitive modeling. In J. Wixted & E.-J. Wagenmakers (Eds.), *The Stevens' Handbook of Experimental Psychology and Cognitive Neuroscience. Volume 5: Methodology* chapter 2, (pp. 37–84). John Wiley & Sons, fourth edition.
- Lee, M. D. & Courey, K. A. (in press). Modeling optimal stopping in changing environments: A case study in mate selection. *Computational Brain & Behavior*.
- Lee, M. D., et al. (2019). Robust modeling in cognitive science. *Computational Brain & Behavior*, 2, 141–153.
- Lee, M. D. & Wagenmakers, E.-J. (2013). *Bayesian cognitive modeling: A practical course*. Cambridge, UK: Cambridge University Press.
- Lee, M. D., Zhang, S., Munro, M. N., & Steyvers, M. (2011). Psychological models of human and optimal performance on bandit problems. *Cognitive Systems Research*, *12*, 164–174.
- Lejuez, C., Aklin, W., Daughters, S., Zvolensky, M., Kahler, C., & Gwadz, M. (2007). Reliability and validity of the youth version of the Balloon Analogue Risk Task (BART-Y) in the assessment of risk-taking behavior among innercity adolescents. *Journal of Clinical Child and Adolescent Psychology*, 36, 106–111.

- Lejuez, C., Aklin, W. M., Jones, H. A., Richards, J. B., Strong, D. R., Kahler, C. W., & Read, J. P. (2003a). The balloon analogue risk task (BART) differentiates smokers and nonsmokers. *Experimental and Clinical Psychophar-macology*, 11, 26–33.
- Lejuez, C., Simmons, B. L., Aklin, W. M., Daughters, S. B., & Dvir, S. (2004). Risk-taking propensity and risky sexual behavior of individuals in residential substance use treatment. *Addictive Behaviors*, 29, 1643–1647.
- Lejuez, C. W., Aklin, W. M., Zvolensky, M. J., & Pedulla, C. M. (2003b). Evaluation of the Balloon Analogue Risk Task (BART) as a predictor of adolescent real-world risktaking behaviours. *Journal of adolescence*, 26, 475–479.
- Lejuez, C. W., et al. (2002). Evaluation of a behavioral measure of risk taking: The Balloon Analogue Risk Task (BART). *Journal of Experimental Psychology: Applied*, 8, 75–84.
- Lighthall, N. R., Mather, M., & Gorlick, M. A. (2009). Acute stress increases sex differences in risk seeking in the balloon analogue risk task. *PLoS ONE*, *4*, e6002.
- Loomes, G. & Sugden, R. (1982). Regret theory: An alternative theory of rational choice under uncertainty. *The Economic Journal*, 92, 805–824.
- Matzke, D., Ly, A., Selker, R., Weeda, W. D., Scheibehenne, B., Lee, M. D., & Wagenmakers, E.-J. (2017). Bayesian inference for correlations in the presence of measurement error and estimation uncertainty. *Collabra: Psychology*, *3*, 25, https://doi.org/10.1525/collabra.78.
- Meertens, R. M. & Lion, R. (2008). Measuring an individual's tendency to take risks: The risk propensity scale 1. *Journal of Applied Social Psychology*, *38*, 1506–1520.
- Mehlhorn, K., et al. (2015). Unpacking the exploration—exploitation tradeoff: A synthesis of human and animal literatures. *Decision*, 2, 191.
- Meyer, R. J. & Shi, Y. (1995). Sequential choice under ambiguity: Intuitive solutions to the armed-bandit problem. *Management Science*, *41*, 817–834.
- Mishra, S., Lalumière, M. L., & Williams, R. J. (2010). Gambling as a form of risk-taking: Individual differences in personality, risk-accepting attitudes, and behavioral preferences for risk. *Personality and Individual Differences*, 49, 616–621.
- Nicholson, N., Soane, E., Fenton-O'Creevy, M., & Willman,P. (2005). Personality and domain-specific risk taking.Journal of Risk Research, 8, 157–176.

- Nilsson, H., Rieskamp, J., & Wagenmakers, E.-J. (2011). Hierarchical Bayesian parameter estimation for cumulative prospect theory. *Journal of Mathematical Psychology*, 55, 84–93.
- Pe, M., Vandekerckhove, J., & Kuppens, P. (2013). A diffusion model account of the relationship between the emotional flanker task and depression and rumination. *Emotion*, *13*, 739–747.
- Pleskac, T. J. (2008). Decision making and learning while taking sequential risks. *Journal of Experimental Psychology: Learning, Memory, and Cognition*, 34, 167.
- Plummer, M. (2003). JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. In K. Hornik, F. Leisch, & A. Zeileis (Eds.), *Proceedings of* the 3rd International Workshop on Distributed Statistical Computing. Vienna, Austria.
- Quiggin, J. (1982). A theory of anticipated utility. *Journal of Economic Behavior & Organization*, *3*, 323–343.
- Radulescu, A., Holmes, K., & Niv, Y. (2020). On the convergent validity of risk sensitivity measures.
- Rao, H., Korczykowski, M., Pluta, J., Hoang, A., & Detre, J. A. (2008). Neural correlates of voluntary and involuntary risk taking in the human brain: An fMRI study of the Balloon Analog Risk Task (BART). *Neuroimage*, 42, 902–910.
- Rieskamp, J. (2008). The probabilistic nature of preferential choice. *Journal of Experimental Psychology: Learning, Memory, and Cognition*, 34, 1446–1465.
- Rieskamp, J., Busemeyer, J. R., & Mellers, B. A. (2006). Extending the bounds of rationality: Evidence and theories of preferential choice. *Journal of Economic Literature*, 44, 631–661.
- Rieskamp, J. & Otto, P. (2006). SSL: A theory of how people learn to select strategies. *Journal of Experimental Psychology: General*, 135, 207–236.
- Robbins, H. (1952). Some aspects of the sequential design of experiments. *Bulletin of the American Mathematical Society*, 58, 527–535.
- Russo, J. E. & Dosher, B. A. (1983). Strategies for multiattribute binary choice. *Journal of Experimental Psychology: Learning, Memory, and Cognition*, 9, 676–696.
- Schmitz, F., Manske, K., Preckel, F., & Wilhelm, O. (2016). The multiple faces of risk-taking: Scoring alternatives for the balloon-analogue risk task. *European Journal of Psychological Assessment*, 32, 17.

- Schonberg, T., Fox, C. R., & Poldrack, R. A. (2011). Mind the gap: bridging economic and naturalistic risk-taking with cognitive neuroscience. *Trends in Cognitive Sciences*, *15*, 11–19.
- Seale, D. A. & Rapoport, A. (1997). Sequential decision making with relative ranks: An experimental investigation of the "Secretary Problem". *Organizational Behavior and Human Decision Processes*, 69, 221–236.
- Seale, D. A. & Rapoport, A. (2000). Optimal stopping behavior with relative ranks. *Journal of Behavioral Decision Making*, 13, 391–411.
- Shu, S. B. (2008). Future-biased search: The quest for the ideal. *Journal of Behavioral Decision Making*, 21, 352–377.
- Sitkin, S. B. & Weingart, L. R. (1995). Determinants of risky decision-making behavior: A test of the mediating role of risk perceptions and propensity. *Academy of Management Journal*, *38*, 1573–1592.
- Spiegelhalter, D. J., Best, N. G., Carlin, B., & van der Linde, A. (2002). Bayesian Measures of Model Complexity and Fit (with Discussion). *Journal of the Royal Statistical Society*, 64, 583–640.
- Spiegelhalter, D. J., Best, N. G., Carlin, B. P., & Linde, A. (2014). The deviance information criterion: 12 years on. *Journal of the Royal Statistical Society: Series B* (Statistical Methodology), 76, 485–493.
- Stewart Jr, W. H. & Roth, P. L. (2001). Risk propensity differences between entrepreneurs and managers: A meta-analytic review. *Journal of Applied Psychology*, 86, 145–153.
- Steyvers, M., Lee, M. D., & Wagenmakers, E.-J. (2009). A Bayesian analysis of human decision-making on bandit problems. *Journal of Mathematical Psychology*, *53*, 168–179.
- Sutton, R. S. & Barto, A. G. (1998). *Reinforcement learning: An introduction*. Cambridge, MA: The MIT press.
- Szrek, H., Chao, L.-W., Ramlagan, S., & Peltzer, K. (2012). Predicting (un) healthy behavior: A comparison of risk-taking propensity measures. *Judgment and decision making*, 7, 716.
- Taşkın, K. & Gökçay, D. (2015). Investigation of risk taking behavior and outcomes in decision making with modified BART (m-BART). In 2015 International Conference on Affective Computing and Intelligent Interaction (ACII) (pp. 302–307).: IEEE.

- Tversky, A. & Kahneman, D. (1981). The framing of decisions and the psychology of choice. *Science*, 211, 453–458.
- Van Ravenzwaaij, D., Dutilh, G., & Wagenmakers, E.-J. (2011). Cognitive model decomposition of the BART: Assessment and application. *Journal of Mathematical Psychology*, 55, 94–105.
- Vandekerckhove, J. (2014). A cognitive latent variable model for the simultaneous analysis of behavioral and personality data. *Journal of Mathematical Psychology*, 60, 58–71.
- von Neumann, J. & Morgenstern, O. (1947). *Theory of games and economic behavior, 2nd rev.* Princeton, NJ: Princeton University Press.
- Wallsten, T. S., Pleskac, T. J., & Lejuez, C. W. (2005). Modeling behavior in a clinically diagnostic sequential risk-taking task. *Psychological Review*, *112*, 862–880.
- Warnell, K. R. & Redcay, E. (in press). Minimal coherence among varied theory of mind measures in childhood and adulthood. *Cognition*, 191.
- Weber, E. U., Blais, A.-R., & Betz, N. E. (2002). A domain-specific risk-attitude scale: Measuring risk perceptions and risk behaviors. *Journal of Behavioral Decision Making*, 15, 263–290.
- Wetzels, R., Grasman, R. P. P. P., & Wagenmakers, E. (2010). An encompassing prior generalization of the Savage-Dickey density ratio test. *Computational Statistics* and Data Analysis, 54, 2094–2102.
- White, T. L., Lejuez, C. W., & de Wit, H. (2008). Testretest characteristics of the Balloon Analogue Risk Task (BART). *Experimental and clinical psychopharmacology*, 16, 565.
- Zeigenfuse, M. D. & Lee, M. D. (2010). A general latent assignment approach for modeling psychological contaminants. *Journal of Mathematical Psychology*, *54*, 352–362.
- Zhang, S. & Lee, M. D. (2010a). Cognitive models and the wisdom of crowds: A case study using the bandit problem. In R. Catrambone & S. Ohlsson (Eds.), *Proceedings of the 32nd Annual Conference of the Cognitive Science Society* (pp. 1118–1123). Austin, TX: Cognitive Science Society.
- Zhang, S. & Lee, M. D. (2010b). Optimal experimental design for a class of bandit problems. *Journal of Mathematical Psychology*, *54*, 499–508.
- Zhou, R., Myung, J., & Pitt, M. (2019). Hierarchical Bayesian models of choice decisions in sequential risk-taking tasks. In *Proceedings of the 52nd Annual Meeting of the Society for Mathematical Psychology* (pp. 16).