IGL without sharps

Leonardo Pacheco *Institute of Science Tokyo*

(j.w.w. Juan P. Aguilera)

17 December 2024 Available at: leonardopacheco.xyz/slides/prooftheory2024.pdf INTRODUCTION

INTUITIONISTIC GÖDEL-LÖB LOGIC

- ▶ GL: $\Box(\Box P \to P) \to \Box P$
- ▶ iGL: GL on an intuitionistic base, only boxes See [3] for more on iGL.
- ▶ IGL: GL on an intuitionistic base, boxes and diamonds First developed by Das, van der Giessen and Marin [2]

IGL

INTRODUCTION 000

Das, van der Giessen, and Marin proved:

INTRODUCTION 000

We prove completeness with less determinacy:

$$\begin{split} \operatorname{id} & \overline{\mathbf{R}, \Gamma, x : P \vdash \Delta, x : P} \\ \operatorname{tr} & \frac{\mathbf{R}, xRy, yRz, xRz, \Gamma \vdash \Delta}{\mathbf{R}, xRy, yRz, \Gamma \vdash \Delta} \\ & \wedge 1 \frac{\mathbf{R}, \Gamma, x : A \land B, x : A, x : B \vdash \Delta}{\mathbf{R}, \Gamma, x : A \land B \vdash \Delta} \\ & \rightarrow 1 \frac{\mathbf{R}, \Gamma, x : A \rightarrow B \vdash \Delta, x : A}{\mathbf{R}, \Gamma, x : A \rightarrow B, x : B \vdash \Delta} \end{split}$$

SOME RULES OF cmℓIGL — II

SOME RULES OF cmℓIGL — III

Non-invertible rules:

$$\rightarrow$$
r $\frac{\mathbf{R}, \Gamma, x : A \vdash x : B}{\mathbf{R}, \Gamma \vdash \Delta, x : A \rightarrow B}$

$$\Box \mathbf{r} \frac{\mathbf{R}, xRy, \Gamma \vdash y : A}{\mathbf{R}, \Gamma \vdash \Delta, x : \Box A}$$
 (*y* is fresh)

LOOPS

Loop v_S from $\mathbf{R}, \Gamma \vdash \Delta$ to $\mathbf{R}', \Gamma' \vdash \Delta'$:

- ▶ if $x : \varphi \in \Gamma'$ then $v_S(x) : \varphi \in \Gamma$;
- if $x : \varphi \in \Delta'$ then $v_S(x) : \varphi \in \Delta$;
- ightharpoonup if xR'y then $v_S(x)Rv_S(y)$;
- ► for each x in \mathbf{R}' , v(x) = x or xRv(x)
- ▶ if there is $x \in Var(R')$ such that $xRv_S(x) \in \mathbf{R}$.

IGL PROVES $\Box(\Box P \rightarrow P) \rightarrow \Box P$

$$l(S) = S' \text{ and } v_S(x) = x, v_S(y) = z.$$

PREDICATE KRIPKE FRAMES

Tuple $M = \langle W, \preceq, \{D_w\}_{w \in W}, \{Pr_w\}_{w \in W}, \{R_w\}_{w \in W} \rangle$ such that:

- 1. W is a non-empty set of possible worlds;
- 2. the intuitionistic relation \leq is a partial order on W;
- 3. $\{D_w\}_{w\in W}$ is a family of domains $D_w\subseteq Var$;
- 4. $\{Pr_w\}_{w\in W}$ is a family of mappings $Pr_w: \text{Prop} \to \mathcal{P}(D_w)$;
- 5. $\{R_w\}_{w\in W}$ is a family of modal relations $R_w\subseteq D_w\times D_w$;
- 6. all relations are monotone in \leq , i.e., if $w \leq w'$, then we have $D_w \subseteq D_{w'}$, $Pr_w \subseteq Pr_{w'}$, and $R_w \subseteq R_{w'}$.

PREDICATE IGL FRAMES

Define

- \blacktriangleright $(w,d) \leq_M (w',d')$ if $w \leq w'$ and d=d';
- \blacktriangleright $(w,d)R_M(w',d')$ if w=w' and dR_wd' ;

where $d \in D_w$ and $d' \in D_{w'}$.

M is a \mathcal{P} IGL-model if the following conditions hold:

1. $M = \langle W, \preceq, \{D_w\}_{w \in W}, \{Pr_w\}_{w \in W}, \{R_w\}_{w \in W} \rangle$ is a Kripke structure:

SEMANTICS

- 2. for all $w \in W$, R_w is transitive; and
- 3. the composition $\prec_M \circ R_M$ is reverse well-founded.

If $M = \langle W, \preceq, \{D_w\}_{w \in W}, \{Pr_w\}_{w \in W}, \{R_w\}_{w \in W} \rangle$, then

- \blacktriangleright $M, w \models x : P \text{ iff } x \in Pr_w(P).$
- \blacktriangleright $M, w \not\models x : \bot$.
- $ightharpoonup M, w \models x : A \land B \text{ iff } M, w \models x : A \text{ and } M, w \models x : B.$
- \blacktriangleright $M, w \models x : A \lor B \text{ iff } M, w \models x : A \text{ or } M, w \models x : B.$
- \blacktriangleright $M, w \models x : A \rightarrow B$ iff for all $w' \succeq w$, if $M, w' \models x : A$ then $M, w' \models x : B.$

SEMANTICS

- \blacktriangleright $M, w \models x : \Box A$ iff, for all $w' \succeq w$ and for all $y \in D_{w'}$, if $xR_{w'}y$ then $M, w' \models y : A$.
- $ightharpoonup M, w \models x : \Diamond A \text{ iff there is } y \in D_w \text{ such that } xR_w y \text{ and }$ $M, w \models y : A.$

IGL DOES NOT PROVE $\Diamond P \rightarrow \Diamond (P \land \neg \Diamond P)$

$$\operatorname{id}_{\wedge r} \frac{ \operatorname{tr} \frac{xRy, yRz, xRz, x: \Diamond P, y: \Diamond P, y: P, z: P \vdash y: \bot(*)}{\Diamond 1} \frac{xRy, yRz, x: \Diamond P, y: \Diamond P, y: P, z: P \vdash y: \bot}{xRy, x: \Diamond P, y: \Diamond P, y: P \vdash y: \bot} \frac{(*)}{xRy, x: \Diamond P, y: \Diamond P, y: P \vdash y: \bot} \frac{(*)}{xRy, x: \Diamond P, y: \partial P, y: P \vdash y: \bot} \frac{(*)}{xRy, x: \Diamond P, y: P \vdash x: \Diamond (P \land \neg \Diamond P), y: \neg \Diamond P} \frac{(*)}{xRy, x: \Diamond P, y: P \vdash x: \Diamond (P \land \neg \Diamond P)} \frac{(*)}{xRy, x: \Diamond P, y: P \vdash x: \Diamond (P \land \neg \Diamond P)} \frac{(*)}{xRy, x: \Diamond P, y: P \vdash x: \Diamond (P \land \neg \Diamond P)} \frac{(*)}{xRy, x: \Diamond P, y: P \vdash x: \Diamond (P \land \neg \Diamond P)} \frac{(*)}{xRy, x: \Diamond P, y: P \vdash x: \Diamond (P \land \neg \Diamond P)} \frac{(*)}{xRy, x: \Diamond P, y: P \vdash x: \Diamond (P \land \neg \Diamond P)} \frac{(*)}{xRy, x: \Diamond P, y: P \vdash x: \Diamond (P \land \neg \Diamond P)} \frac{(*)}{xRy, x: \Diamond P, y: P \vdash x: \Diamond (P \land \neg \Diamond P)} \frac{(*)}{xRy, x: \Diamond P, y: P \vdash x: \Diamond (P \land \neg \Diamond P)} \frac{(*)}{xRy, x: \Diamond P, y: P \vdash x: \Diamond (P \land \neg \Diamond P)} \frac{(*)}{xRy, x: \Diamond P, y: P \vdash x: \Diamond (P \land \neg \Diamond P)} \frac{(*)}{xRy, x: \Diamond P, y: P \vdash x: \Diamond (P \land \neg \Diamond P)} \frac{(*)}{xRy, x: \Diamond P, y: P \vdash x: \Diamond (P \land \neg \Diamond P)} \frac{(*)}{xRy, x: \Diamond P, y: P \vdash x: \Diamond (P \land \neg \Diamond P)} \frac{(*)}{xRy, x: \Diamond P, y: P \vdash x: \Diamond (P \land \neg \Diamond P)} \frac{(*)}{xRy, x: \Diamond P, y: P \vdash x: \Diamond (P \land \neg \Diamond P)} \frac{(*)}{xRy, x: \Diamond P, y: P \vdash x: \Diamond (P \land \neg \Diamond P)} \frac{(*)}{xRy, x: \Diamond P, y: P \vdash x: \Diamond (P \land \neg \Diamond P)} \frac{(*)}{xRy, x: \Diamond P, y: P \vdash x: \Diamond (P \land \neg \Diamond P)} \frac{(*)}{xRy, x: \Diamond P, y: P \vdash x: \Diamond (P \land \neg \Diamond P)} \frac{(*)}{xRy, x: \Diamond P, y: P \vdash x: \Diamond (P \land \neg \Diamond P)} \frac{(*)}{xRy, x: \Diamond P, y: P \vdash x: \Diamond (P \land \neg \Diamond P)} \frac{(*)}{xRy, x: \Diamond P, y: P \vdash x: \Diamond (P \land \neg \Diamond P)} \frac{(*)}{xRy, x: \Diamond P, y: P \vdash x: \Diamond (P \land \neg \Diamond P)} \frac{(*)}{xRy, x: \Diamond P, y: P \vdash x: \Diamond (P \land \neg \Diamond P)} \frac{(*)}{xRy, x: \Diamond P, y: P \vdash x: \Diamond (P \land \neg \Diamond P)} \frac{(*)}{xRy, x: \Diamond P, y: P \vdash x: \Diamond (P \land \neg \Diamond P)} \frac{(*)}{xRy, x: \Diamond P, y: P \vdash x: \Diamond (P \land \neg \Diamond P)} \frac{(*)}{xRy, x: \Diamond P, y: P \vdash x: \Diamond (P \land \neg \Diamond P)} \frac{(*)}{xRy, x: \Diamond P, y: P \vdash x: \Diamond P, y: P, y: P \vdash x: \Diamond P, y: P, y:$$

SEMANTICS

0000

INTRODUCTION

$\mathsf{cm}\ell\mathsf{IGL} \vdash \varphi \mathsf{IMPLIES} \, \mathcal{P}\mathsf{IGL} \models \varphi$

Lemma

 $\mathsf{cm}\ell\mathsf{IGL} \vdash \varphi \text{ implies } m\ell\mathsf{IGL} \vdash \varphi.$

Proof.

Unfold the cyclic proof of φ into a non-wellfounded proof.

Lemma

 $m\ell \mathsf{IGL} \vdash \varphi \text{ implies } \mathcal{P} \mathsf{IGL} \models \varphi.$

Proof.

Follows from Das, van der Giessen and Marin's paper.

Given a sequent $\mathbf{R}, \Gamma \vdash \Delta$, we define a game:

- ► Two players: Prover and Denier.
- ▶ Start on the sequent $\mathbf{R}, \Gamma \vdash \Delta$.
- ▶ When discussing a sequent *S*, Prover has two choices:
 - ▶ Pick an inference rule

$$\frac{S_1 \cdots S_n}{S}$$

- and then Denier picks some S_i .
- ▶ Draw a progressing loop from *S* to a previous sequent.
- ► Infinite plays are won by Denier.

Lemma

If Prover wins this game, then $\mathbf{R}, \Gamma \vdash \Delta \in \mathsf{cm}\ell\mathsf{IGL}$.

Suppose $\mathbf{R}, \Gamma \vdash \Delta$ is not provable and let τ be a winning strategy for Denier.

We build a tree *T* as follows:

- ▶ The root is $\mathbf{R}, \Gamma \vdash \Delta$.
- ► If *S* is non-saturated, let

$$\frac{S_1 \cdots S_n}{S}$$
,

be an inference saturating S. Add above S the sequent S_i picked by τ .

► If *S* is saturated, add above *S* all the premises of the applicable non-invertible rules.

Lemma

If S_0 is a non-saturated sequent in T, there is no path starting in S_0 where all sequents are non-saturated.

THE COUNTERMODEL

Let $M = \langle W, \preceq, \{D_S\}_{S \in S}, \{Pr_S\}_{S \in S}, \{R_S\}_{S \in W} \rangle$ be defined as follows:

- ▶ *W* is the set of saturated sequents of *T*.
- $ightharpoonup \leq$ is the tree ordering of T.
- \triangleright D_{vv} is the set of variables occurring in w.
- $ightharpoonup Pr_S(P)$ is the set of variables labeling P in Γ_S .
- $ightharpoonup xR_Sy$ iff it occurs in **R**.

Lemma

M is an PIGL-model.

TRUTH LEMMA

Lemma

For all sequents $w \in W$,

- \blacktriangleright if $x:\varphi\in\Gamma_w$ then $M,w\models x:\varphi$; and
- if $x : \varphi \in \Delta_w$ then $M, w \not\models x : \varphi$.

Lemma

Suppose **R**, $\Gamma \vdash \Delta$ is not provable, then the constructed model does *not validate* $\mathbf{R}, \Gamma \vdash \Delta$.

RESULTS

Theorem

 Σ^0_1 -Det proves the Kripke completeness of IGL.

Theorem

IGL is recursively enumerable.

OPEN QUESTIONS

Question

Is IGL recursive?

Question

Does IGL have the finite model property?

Question

Does IGL have a finite Hilbert-style axiomatization?

REFERENCES

- [1] Aguilera, Pacheco, "IGL without sharps", preprint soonTM.
- [2] Das, van der Giessen, Marin, "Intuitionistic Gödel-Löb logic, à la Simpson: labelled systems and birelational semantics", 2024.
- [3] Van der Giessen, "Uniform Interpolation and Admissible Rules: Proof-theoretic investigations into (intuitionistic) modal logics", 2022.