群论第二章作业

董建宇 202328000807038

1. 设 H_1 和 H_2 是群 G 的两个子群, 证明 H_1 和 H_2 的公共元素的集合也构成群 G 的子群。

据题意,显然有 $H_1 \cap H_2 \subseteq G$ 。

恒元: 因为 H_1 与 H_2 是群 G 的子群,则 H_1 与 H_2 都包含恒元 E,则 H_1 和 H_2 的公 共元素也包含恒元 E。

结合律: 因为 H_1 和 H_2 的公共元素的集合为群 G 的子集,则结合律自然满足。

封闭性: 考虑任意两个 H_1 和 H_2 的公共元素 α 和 β , 因为 H_1 和 H_2 是群 G 的两个子群,子群满足封闭性,即:

$$\alpha\beta \in H_1, \quad \alpha\beta \in H_2.$$

则有:

$$\alpha\beta \in H_1 \cap H_2$$
.

即 H_1 和 H_2 的公共元素的集合满足封闭性。

逆元: 考虑任意一个 H_1 和 H_2 的公共元素 α , 在子群 H_1 和 H_2 中存在 α 的逆元 α_1^{-1} 和 α_2^{-1} 。由于逆元具有唯一性,则 $\alpha_1^{-1}=\alpha_2^{-1}=\alpha^{-1}\in H_1\cap H_2$,即任意一个 H_1 和 H_2 的公共元素 α ,都存在逆元 $\alpha^{-1}\in H_1\cap H_2$ 。

综上所述, H_1 和 H_2 的公共元素的集合也构成群 G 的子群。

2. 证明: 除恒元外, 每个元素的阶都是 2 的群一定是阿贝尔群。

考虑任意两个除恒元外的元素 a 和 b, 有:

$$a^2 = E$$
, $b^2 = E$, $(ab)^2 = abab = E$.

则有:

$$aabb = E^2 = E = abab.$$

两侧同时左乘 a^{-1} , 右乘 b^{-1} , 则得到:

$$ab = ba$$
.

即任意两个除恒元外的元素可逆,即除恒元外,每个元素的阶都是2的群一定是阿贝尔群。

3. 泡利矩阵定义如下:

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix},$$

$$\sigma_a\sigma_b=\delta_{ab}I+i\sum_{d=1}^3arepsilon_{abd}\sigma_d$$
 for $\sigma_a^2=I,$ $\sigma_1\sigma_2=i\sigma_3.$

其中 ε_{abd} 是三阶完全反对称张量。证明由 σ_1 和 σ_2 的所有可能乘积和幂次的集合构成群,列出此群的乘法表,指出此群的阶数,各元素的阶数,群所包含的类和不变子群,不变子群的商群与什么群同构,建立同构关系,证明此群和正方形对称群 D_4 同构。

可以计算, σ_1 和 σ_2 的所有可能乘积和幂次的集合为:

$$\{\sigma_1, -\sigma_1, \sigma_2, -\sigma_2, i\sigma_3, -i\sigma_3, I, -I\}.$$

可以计算乘法表如下:

	I	-I	σ_1	$-\sigma_1$	σ_2	$-\sigma_2$	$i\sigma_3$	$-i\sigma_3$
I	I	-I	σ_1	$-\sigma_1$	σ_2	$-\sigma_2$	$i\sigma_3$	$-i\sigma_3$
-I	-I	I	$-\sigma_1$	σ_1	$-\sigma_2$	σ_2	$-i\sigma_3$	$i\sigma_3$
σ_1	σ_1	$-\sigma_1$	I	-I	$i\sigma_3$	$-i\sigma_3$	σ_2	$-\sigma_2$
$-\sigma_1$	$-\sigma_1$	σ_1	-I	I	$-i\sigma_3$	$i\sigma_3$	$-\sigma_2$	σ_2
σ_2	σ_2	$-\sigma_2$	$-i\sigma_3$	$i\sigma_3$	I	-I	$-\sigma_1$	σ_1
$-\sigma_2$	$-\sigma_2$	σ_2	$i\sigma_3$	$-i\sigma_3$	-I	I	σ_1	$-\sigma_1$
$i\sigma_3$	$i\sigma_3$	$-i\sigma_3$	$-\sigma_2$	σ_2	σ_1	$-\sigma_1$	-I	I
$-i\sigma_3$	$-i\sigma_3$	$i\sigma_3$	σ_2	$i\sigma_2$	$-\sigma_1$	σ_1	I	-I

从乘法表中容易看出,该集合满足封闭性与结合律,且存在恒元 I,且每一个元素存在唯一逆元,即该集合构成群。

群阶数为8。

其中 I 的阶数为 1; -I, σ_1 , $-\sigma_1$, σ_2 , $-\sigma_2$ 的阶数为 2; $i\sigma_3$, $-i\sigma_3$ 的阶数为 4。 群包含的类为:

$$\{I\}; \{-I\}; \{\sigma_1, -\sigma_1\}; \{\sigma_2, -\sigma_2\}; \{i\sigma_3, -i\sigma_3\}$$

不变子群为:

$$\{I, -I\}; \{I, -I, \sigma_1, -\sigma_1\}; \{I, -I, \sigma_2, -\sigma_2\}; \{I, -I, i\sigma_3, -i\sigma_3\}.$$

第一个不变子群的商群同构与四阶反演群 V_4 。 映射关系为 $\{I, -I\} \to E$; $\{\sigma_1, -\sigma_1\} \to A$; $\{\sigma_2, -\sigma_2\} \to B$; $\{i\sigma_3, -i\sigma_3\} \to C = AB = BA$.

后三个不变子群的商群为二阶群,同构与 C_2 群。映射关系为不变子群映射到恒元 E, 陪集映射到二阶群非恒元元素 A。

D4 群元素与题中群元素对应关系如下:

G	I	$i\sigma_3$	-I	$-i\sigma_3$	σ_1	$-\sigma_2$	$-\sigma_1$	σ_2
D_4	E	T	T^2	T^3	S_1	S_2	S_3	S_4

4. 准确到同构,证明九阶群 G 只有两种:循环群 C_9 和直乘群。

在九阶群中,除恒元外群元素的阶只能为3或9。

- 1. 若至少存在 1 个元素的阶为 9,那么根据群乘法的封闭性,可知群 G 为九阶循环群 C_9 。
- 2. 若群 G 中不存在阶为 9 的群元素,且至少存在一个阶为 3 的元素记作 R,构成 3 阶循环群 $C_3 = \{E, R, R^2\}$ 。 考虑其有陪集 $C_3A = \{A, B, C\}$,其中 A 为群 G 中元素,且 $A \neq E, A \neq R, A \neq R^2$ 。 $B = RA, C = R^2A$ 。因为 A, B, C 均为 3 阶群元,则有 A^2, B^2, C^2 既不能等于 E, R, R^2 也不能等于 A, B, C。即群 G 的群元素可以写为:

$$G = \{E, R, R^2, A, B, C, A^2, B^2, C^2\}.$$

注意到 $BA = RA^2 \neq A^2 \neq B^2$,则有 $BA = RA^2 = C^2 = R^2AR^2A$ 。两侧左乘 R^{-1} ,右 乘 $A^{-1}R$ 可得:

$$AR = RA$$
.

则有 $B^2 = RARA = R^2A^2$, 综上, 群 G 可以写为:

$$G = \{E, R, R^2, A, RA, R^2A, A^2, R^2A^2, RA^2\} = \{E, R, R^2\} \otimes \{E, A, A^2\}.$$

综上所述, 九阶群 G 只有两种: 循环群 C_9 和直乘群。

5. 设有限群 G 的阶为 g, C_a 是群 G 的一个类,含 n(a) 个元素, S_j 和 S_k 是类 C_a 中任意两个元素,证明群 G 中满足 $S_j = PS_kP^{-1}$ 的元素 P 的数目等于 m(a) = g/n(a)。

对于给定的元素 $S_j \in C_\alpha$,设群 G 中所有与 S_j 对易的元素 R 的数目为 $m(\alpha)$ 。可以证明,元素 R 组成的集合 H 构成群 G 的子群。首先,若 R 和 R' 都与 S_j 对易,显然有 RR' 与 S_j 对易,即满足乘法**封闭性**。**结合律**显然满足。**恒元** E 显然与 S_j 对易。R 的**逆元** R^{-1} 也与 S_i 对易。即 H 为群 G 的子群。

考虑群 G 中不属于子群 H 的元素 T, 且满足

$$TS_jT^{-1} = S_i \in C_\alpha.$$

则子群 H 的左陪集 TH 中任意元素 TR 满足

$$TRS_j R^{-1} T^{-1} = TS_j T^{-1} = S_i.$$

则满足 $PS_iP^{-1} = S_i$ 的元素 P, 有:

$$(P^{-1}T)S_j(P^{-1}T)^{-1} = P^{-1}S_iP = S_j.$$

则有 $P^{-1}T \in H$, 即 P 属于左陪集 TH 中。因此子群 H 的左陪集 TH 与 S_j 的共轭元素 S_i 具有一一对应关系,即子群 H 的指数等于 S_j 所属类 C_α 中元素数目,即

$$n(\alpha) = \frac{g}{m(\alpha)}.$$

即有:

$$m(\alpha) = \frac{g}{n(\alpha)}.$$

- 6. 以 T 群的子群 $C_3=\{E,\ R_1,\ R_1^2\}$ 为基础,将 C_3 群的乘法表扩充,计算 T 群的乘法表。
 - (1) 选取 T_x^2 , T_y^2 , T_z^2 做左陪集, 第一行 $T_x^2C_3$ 、第二行 $T_y^2C_3$ 、第三行 $T_z^2C_3$;
 - (2) 右陪集由左陪集取逆元得到,第四行 $C_3T_x^2$ 、第五行 $C_3T_y^2$ 、第六行 $C_3T_z^2$;

$$(T_x^2 C_3)^{-1} = C_3^{-1} T_x^{2-1} = C_3 T_x^2;$$

$$(T_y^2 C_3)^{-1} = C_3^{-1} T_y^{2-1} = C_3 T_y^2;$$

$$(T_z^2 C_3)^{-1} = C_3^{-1} T_z^{2-1} = C_3 T_z^2.$$

(3) 左陪集分别右乘 T_x^2 , T_y^2 , T_z^2 得到第七至十五行。

左乘	E	R_1	R_1^2	右乘
$\begin{array}{ c c }\hline T_x^2\\ T_y^2\\ \hline T_z^2\\ \end{array}$	T_x^2	R_4	R_3^2	
T_y^2	T_x^2 T_y^2 T_z^2 T_x^2 T_y^2 T_z^2 E	R_3	R_2^2	
T_z^2	T_z^2	R_2	R_4^2	
	T_x^2	R_3	R_4^2	T_x^2
	T_y^2	R_2	R_3^2	$ \begin{array}{c c} T_x^2 \\ T_y^2 \\ T_z^2 \\ T_x^2 \end{array} $
	T_z^2	R_4	R_2^2	T_z^2
T_x^2	E	R_2	R_2^2	T_x^2
T_x^2	T_z^2	R_3	R_1^2	T_y^2
T_x^2	T_z^2 T_y^2 T_z^2	R_1	R_4^2	T_z^2
T_y^2	T_z^2	R_1	R_3^2	T_x^2
T_y^2	E	R_4	R_4^2	T_y^2
T_y^2	T_x^2	R_2	R_1^2	T_z^2
$ \begin{array}{c c} T_{x}^{2} \\ \hline T_{x}^{2} \\ \hline T_{y}^{2} \\ \hline T_{y}^{2} \\ \hline T_{y}^{2} \\ \hline T_{z}^{2} \\ \hline T_{z}^{2} \\ \end{array} $	T_x^2 T_y^2 T_x^2	R_4	R_1^2	T_x^2
T_z^2	T_x^2	R_1	R_2^2	$egin{array}{c} T_y^2 \\ T_z^2 \\ T_x^2 \\ T_y^2 \\ T_z^2 \\ T_y^2 \\ T_z^2 \\ T_z^2 \end{array}$
T_z^2	E	R_3	R_3^2	T_z^2

随后可以进行如下操作:

- (1) 则我们可以把T 群乘法表分成四行四列16 个小方块, C_3 的乘法表在第一行第一列;
- (2) 陪集表中第一、二、三行的元素分别替换子群乘法表中的元素,填在第一列的第二、三、四小方块;
- (3) 陪集表中第四、五、六行的元素分别替换子群乘法表中的元素,填在第一行的第二、三、四小方块;
- (4) 陪集表中第七、八、九行的元素分别替换子群乘法表中的元素,填在第二行的第二、 三、四小方块;
- (5) 陪集表中第十、十一、十二行的元素分别替换子群乘法表中的元素,填在第三行的第二、三、四小方块;

(6) 陪集表中第十三、十四、十五行的元素分别替换子群乘法表中的元素,填在第四行的第二、三、四小方块。

	C_3	$C_3T_x^2$	$C_3T_y^2$	$C_3T_z^2$
C_3	C_3	$C_3T_x^2$	$C_3T_y^2$	$C_3T_z^2$
$T_x^2C_3$	$T_x^2C_3$	$T_x^2 C_3 T_x^2$	$T_x^2 C_3 T_y^2$	$T_x^2 C_3 T_z^2$
$T_y^2C_3$	$T_y^2C_3$	$T_y^2 C_3 T_x^2$	$T_y^2 C_3 T_y^2$	$T_y^2 C_3 T_z^2$
$T_z^2C_3$	$T_z^2C_3$	$T_z^2 C_3 T_x^2$	$T_z^2 C_3 T_y^2$	$T_z^2 C_3 T_z^2$

则可以写出 T 群乘法表如下:

	E	R_1	R_1^2	T_x^2	R_3	R_4^2	T_u^2	R_2	R_3^2	T_z^2	R_4	R_2^2
E	E	R_1	R_1^2	T_x^2	R_3		T_y^2	R_2	R_3^2	T_z^2	R_4	R_2^2
R_1	R_1	R_1^2	E	R_3	R_4^2	T_x^2	R_2	R_3^2	T_y^2	R_4	R_2^2	T_z^2
R_1^2	R_1^2	E	R_1	R_4^2	T_x^2	R_3	R_3^2	T_y^2	R_2	R_2^2	T_z^2	R_4
T_x^2	T_x^2	R_4	R_3^2	E	R_2	R_2^2	T_z^2	R_3	R_1^2	T_y^2	R_1	R_4^2
R_4	R_4	R_3^2	T_x^2	R_2	R_2^2	E	R_3	R_1^2	T_z^2	R_1	R_4^2	T_y^2
R_3^2	R_3^2	T_x^2	R_4	R_2^2	E	R_2	R_1^2	T_z^2	R_3	R_4^2	T_y^2	R_1
T_y^2	T_y^2	R_3	R_{2}^{2}	T_z^2	R_1	R_3^2	E	R_4	R_4^2	T_x^2	R_2	R_1^2
R_3	R_3	R_2^2	T_y^2	R_1	R_3^2	T_z^2	R_4	R_4^2	E	R_2	R_1^2	T_x^2
R_2^2	R_2^2	T_y^2	R_3	R_3^2	T_z^2	R_1	R_4^2	E	R_4	R_1^2	T_x^2	R_2
T_z^2	T_z^2	R_2	R_4^2	T_y^2	R_4	R_1^2	T_x^2	R_1	R_{2}^{2}	$\mid E \mid$	R_3	R_3^2
R_2	R_2	R_4^2	T_z^2	R_4	R_1^2	T_y^2	R_1	R_{2}^{2}	T_x^2	R_3	R_3^2	E
R_4^2	R_4^2	T_z^2	R_2	R_1^2	T_y^2	R_4	R_2^2	T_x^2	R_1	R_3^2	E	R_3

7. 群 G 由 12 个元素组成,它的乘法表如下:

	$\mid E \mid$	A	В	С	D	F	Ι	J	K	L	Μ	N
Е	Е	A	В	С	D	F	Ι	J	K	L	Μ	N
A	A	\mathbf{E}	F	I	J	В	С	D	Μ	N	K	L
В	В	F	A	K	L	\mathbf{E}	Μ	N	Ι	J	С	D
С	С	Ι	L	A	K	N	E	Μ	J	F	D	В
D	D	J	K	L	A	Μ	N	E	F	Ι	В	\mathbf{C}
F	F	В	\mathbf{E}	Μ	N	A	K	L	С	D	Ι	J
Ι	I	С	N	Ε	М	L	A	K	D	В	J	F
J	J	D	Μ	N	E	K	L	A	В	\mathbf{C}	F	I
K	K	Μ	J	F	I	D	В	\mathbf{C}	N	\mathbf{E}	L	A
L	L	N	Ι	J	F	С	D	В	Ε	Μ	A	K
Μ	M	K	D	В	С	J	F	Ι	L	Α	N	\mathbf{E}
N	N	L	С	D	В	Ι	J	F	A	K	Ε	M

- (1) 找出群 G 各元素的逆元;
- (2) 指出哪些元素可与群中任意元素乘积对易;
- (3) 列出各元素的周期和阶;
- (4) 找出群 G 各类包含的元素;
- (5) 找出群 G 包含哪些不变子群,列出他们的陪集,并指出他们的商群与什么群同构;
- (6) 判断群 G 是否与正四面体对称群 T 或与正六边形对称群 D_6 同构。
- (1) 群 G 各元素及其逆元如下:

$R \in G$	E	A	В	С	D	F	Ι	J	K	L	Μ	N
R^{-1}	Е	A	F	I	J	В	С	D	L	K	N	M

- (2) 群中 E, A 两个元素可与任意元素乘积对易。
- (3) 群元素 E 周期为 $\{E\}$, 阶为 1;

群元素 A 周期为 $\{A, A^2 = E\}$, 阶为 2;

群元素 B 周期为 $\{B, B^2 = A, B^3 = F, B^4 = E\}$, 阶为 4;

群元素 C 周期为 $\{C, C^2 = A, C^3 = I, C^4 = E\}$, 阶为 4;

群元素 D 周期为 $\{D, D^2 = A, D^3 = J, D^4 = E\}$, 阶为 4;

群元素 F 周期为 $\{F, F^2 = A, F^3 = B, F^4 = E\}$, 阶为 4;

群元素 I 周期为 $\{I, I^2 = A, I^3 = C, I^4 = E\}$, 阶为 4;

群元素 J 周期为 $\{J, J^2 = A, J^3 = D, J^4 = E\}$, 阶为 4;

群元素 K 周期为 $\{K, K^2 = N, K^3 = A, K^4 = M, K^5 = L, K^6 = E\}$, 阶为 6;

群元素 L 周期为 $\{L, L^2 = M, L^3 = A, L^4 = N, L^5 = K, L^6 = E\}$, 阶为 6; 群元素 M 周期为 $\{M, M^2 = N, M^3 = E\}$, 阶为 3; 群元素 N 周期为 $\{N, N^2 = M, N^3 = E\}$, 阶为 3。

(4) 恒元自成一类 $\{E\}$; 群元素 A 自成一类 $\{A\}$, 利用乘法表可以得到群 G 的共轭类为:

$${E}, {A}, {B, C, D}, {F, I, J}, {K, L}, {M, N}.$$

- (5) 不变子群 $\{E,A\}$, 陪集 $\{B,F\}$, $\{C,I\}$, $\{D,J\}$, $\{K,M\}$, $\{L,N\}$, 其商群同构与 D_3 群。
 - 不变子群 $\{E, M, N\}$, 陪集 $\{A, K, L\}$, $\{B, C, D\}$, $\{F, I, J\}$, 其商群同构与 C_4 群。 不变子群 $\{E, A, K, L, M, N\}$, 陪集 $\{B, C, D, F, I, J\}$, 其商群同构与 C_2 群。
- (6) T 群不包含阶数为 6 的元素,则群 G 与群 T 不同构。 D_6 群不包含阶数为 4 的元素,则群 G 与群 T 不同构。