

NCKU Programming Contest Training Course 2013/07/21

Pin-chieh Huang (free999)

Pinchieh.huang@gmail.com

Department of Computer Science and Information Engineering National Cheng Kung University Tainan, Taiwan

Outline

Line Intersection

Intersection

Direction

- Problem: Is vector $pi \rightarrow pj$ clockwise from vector $pi \rightarrow pk$
- How to solve it efficiently?

$$p_1 \times p_2 = \det \begin{vmatrix} x_1 & x_2 \\ y_1 & y_2 \end{vmatrix} = x_1 y_2 - x_2 y_1 = |p_1| |p_2| \sin \theta$$

• $P1 \times P2 > 0$

$$\sin \theta > 0$$
P2
 θ
P1

• P1 X P2 < 0

 $\sin \theta < 0$

• The cross products of PP to PP can be represented as:

$$- (P_1 - P_0)X(P_2 - P_0) = (x_1 - x_0)(y_2 - y_0) - (x_2 - x_0)(y_1 - y_0)$$

$$(P_1 - P_0)X(P_2 - P_0) > 0$$

$$(P_1 - P_0)X(P_2 - P_0) < 0$$

$$(P1-P0)X(P2-P0)=(x1-x0)(y2-y0)-(x2-x0)(y1-y0)=4*4-2*2=12$$

 $\overline{P_0P_2}$ is counterclockwise from $\overline{P_0P_1}$

• If we traverse from p1 to p2 and then p3, should we make a turn left or turn right at point p2?

Judge it by cross product

- Cross product d of p1p2 to p1p3:
 - d > 0; Counterclockwise: left turn
 - d < 0; Clockwise: right turn</p>

$$(P2-P1)X(P3-P1)=(x1-x0)(y2-y0)-(x2-x0)(y1-y0)$$

= $4*4-2*2=12>0$

 P_1P_3 在 P_1P_2 逆時針方向

: Left turn

- Line/Segment intersection problem
 - Is the segment p1p2 crossing with segment p3p4?

- Two situation
 - (1) Proper: the ending point of the segment cannot be the intersected point
 - (2) Non-proper: intersected iff any intersection

• Example

acm International Collegiate Programming Contest

Cross Product

NCKU CSIE Programming Contest Training Course

acm International Collegiate Programming Contest

Cross Product

NCKU CSIE Programming Contest Training Course

We should change the based line and judge it again...

$$(\overrightarrow{P_3P_2} \times \overrightarrow{P_3P_4}) \cdot (\overrightarrow{P_3P_1} \times \overrightarrow{P_3P_4}) > 0$$

False

• Example

acm International Collegiate Programming Contest

Cross Product

- Until now, we have solved the proper intersection problem...
- What about the non-proper (general) situation?

Cross product = 0

$$(\overrightarrow{P_3P_2} \times \overrightarrow{P_3P_4}) \cdot (\overrightarrow{P_3P_2} \times \overrightarrow{P_3P_4}) = 0$$

• Example

On-Segment(p_i , p_j , p_k)

- 1 if $\min(x_i, x_j) \le x_k \le \max(x_i, x_j)$ and $\min(y_i, y_i) \le y_k \le \max(y_i, y_i)$
- 2 then return TRUE
- 3 else return FALSE

$$X:5 \le 7 \le 10$$

$$Y: 5 \le 7 \le 5$$
 TRUE

acm International Collegiate Programming Contest

Cross Product

Segments-Intersect(p_1 , p_2 , p_3 , p_4)

- 1 $d_1 \leftarrow (p_1 p_3) \times (p_4 p_3)$
- 2 $d_2 \leftarrow (p_2 p_3) \times (p_4 p_3)$
- 3 $d_3 \leftarrow (p_3 p_1) \times (p_2 p_1)$
- 4 $d_4 \leftarrow (p_4 p_1) \times (p_2 p_1)$

Straddle each other

- 5 if $d_1d_2 < 0$ and $d_3d_4 < 0$ then return TRUE
- 6 if $d_1=0$ and On-Segment(p_3 , p_4 , p_1) then return TRUE
- 7 | if d_2 =0 and On-Segment(p_3 , p_4 , p_2) then return TRUE
- 8 | if d_3 =0 and On-Segment(p_1 , p_2 , p_3) then return TRUE
- 9 if d_4 =0 and On-Segment(p_1 , p_2 , p_4) then return TRUE
- 10 return FALSE

Judge if one of the ending point in a line is on the other line

• Example

POJ 1269

POJ 2653

Homework

PKU: 2318 PKU: 2826	UVa
---------------------	-----

PKU: 2398	PKU: 1039	152
	1110.1007	

PKU: 3304	10514
-----------	-------

PKU: 1556	191
1110.1330	— ·

PKU: 1066	378
1110.1000	

99