Linear Algebra

주재걸 고려대학교 컴퓨터학과

Diagonalization

• We want to change a given square matrix $A \in \mathbb{R}^{n \times n}$ into a diagonal matrix via the following form:

$$D = V^{-1}AV$$

where $V \in \mathbb{R}^{n \times n}$ is an invertible matrix and $D \in \mathbb{R}^{n \times n}$ is a diagonal matrix. This is called a diagonalization of A.

• It is not always possible to diagonalize A. For A to be diagonalizable, an invertible V should exist such that $V^{-1}AV$ becomes a diagonal matrix.

Finding V and D

- How can we find an invertible P and the resulting diagonal matrix $D = V^{-1}AV$?
- $D = V^{-1}AV \Longrightarrow VD = AV$
- Let us represent the following:
- $V = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_n \end{bmatrix}$ where \mathbf{v}_i 's are column vectors of V• $D = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \lambda_n \end{bmatrix}$

Finding V and D

•
$$AV = A[\mathbf{v}_1 \quad \mathbf{v}_2 \quad \cdots \quad \mathbf{v}_n] = [A\mathbf{v}_1 \quad A\mathbf{v}_2 \quad \cdots \quad A\mathbf{v}_n]$$

• $VD = [\mathbf{v}_1 \quad \mathbf{v}_2 \quad \cdots \quad \mathbf{v}_n] \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \lambda_n \end{bmatrix}$
= $[\lambda_1 \mathbf{v}_1 \quad \lambda_2 \mathbf{v}_2 \quad \cdots \quad \lambda_n \mathbf{v}_n]$
• $AV = VD \Leftrightarrow [A\mathbf{v}_1 \quad A\mathbf{v}_2 \quad \cdots \quad A\mathbf{v}_n] = [\lambda_1 \mathbf{v}_1 \quad \lambda_2 \mathbf{v}_2 \quad \cdots \quad \lambda_n \mathbf{v}_n]$

Fi

Finding V and D

Equating columns, we obtain

$$A\mathbf{v}_1 = \lambda_1 \mathbf{v}_1, A\mathbf{v}_2 = \lambda_2 \mathbf{v}_2, \dots, A\mathbf{v}_n = \lambda_n \mathbf{v}_n$$

- Thus, \mathbf{v}_1 , \mathbf{v}_2 , ..., \mathbf{v}_n should be eigenvectors and λ_1 , λ_2 , ..., λ_n should be eigenvalues.
- Then, For $VD = AV \Longrightarrow D = V^{-1}AV$ to be true, V should invertible.
- In this case, the resulting diagonal matrix *D* has eigenvalues as diagonal entries.

Diagonalizable Matrix

- For V to be invertible, V should be a square matrix in $\mathbb{R}^{n\times n}$, and V should have n linearly independent columns.
- Recall columns of V are eigenvectors.
 Hence, A should have n linearly independent eigenvectors.
- It is not always the case, but if it is, A is diagonalizable.

Eigendecomposition

• If A is diagonalizable, we can write $D = V^{-1}AV$.

- We can also write $A = VDV^{-1}$. which we call eigendecomposition of A.
- A being diagonalizable is equivalent to A having eigendecomposition.

Linear Transformation via Eigendecomposition

• Suppose A is diagonalizable, thus having eigendecomposition

$$A = VDV^{-1}$$

- Consider the linear transformation $T(\mathbf{x}) = A\mathbf{x}$.
- $T(\mathbf{x}) = A\mathbf{x} = VDV^{-1}\mathbf{x} = V(D(V^{-1}\mathbf{x})).$

Change of Basis

- Suppose $A\mathbf{v}_1 = -1\mathbf{v}_1$ and $A\mathbf{v}_2 = 2\mathbf{v}_2$.
- $T(\mathbf{x}) = A\mathbf{x} = VDV^{-1}\mathbf{x} = V(D(V^{-1}\mathbf{x}))$
- Let $y = V^{-1}x$. Then, Vy = x
- y is a new coordinate of x with respect to a new basis of eigenvectors {v₁, v₂}.

$$\mathbf{x} = \begin{bmatrix} 4 \\ 3 \end{bmatrix} = 4 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 3 \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 4 \\ 3 \end{bmatrix} = P\mathbf{y} = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = 2\mathbf{v}_1 + 1\mathbf{v}_2 \Longrightarrow \mathbf{y} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

Element-wise Scaling

- $T(\mathbf{x}) = V(D(V^{-1}\mathbf{x})) = V(D\mathbf{y})$
- Let z = Dy. This computation is a simple Element-wise scaling of y.

• **Example**: Suppose
$$D = \begin{bmatrix} -1 & 0 \\ 0 & 2 \end{bmatrix}$$
. Then

$$\mathbf{z} = \mathbf{D}\mathbf{y} = \begin{bmatrix} -1 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} (-1) \times 2 \\ 2 \times 1 \end{bmatrix} = \begin{bmatrix} -2 \\ 2 \end{bmatrix}$$

Dimension-wise Scaling

Back to Original Basis

- $T(\mathbf{x}) = V(\mathbf{D}\mathbf{y}) = V\mathbf{z}$
- z is still a coordinate based on the new basis $\{v_1, v_2\}$.
- Vz converts z to another coordinates based on the original standard basis.
- That is, Vz is a linear combination of \mathbf{v}_1 and \mathbf{v}_2 using the coefficient vector z.
- That is,

$$V_{\mathbf{Z}} = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = \mathbf{v}_1 z_1 + \mathbf{v}_2 z_2$$

•
$$T(\mathbf{x}) = V\mathbf{z} = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 \end{bmatrix} \begin{bmatrix} -2 \\ 2 \end{bmatrix}$$

$$= -2\mathbf{v}_1 + 2\mathbf{v}_2$$

$$= -2\begin{bmatrix} 3 \\ 1 \end{bmatrix} + 2\begin{bmatrix} -2 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} -10 \\ 0 \end{bmatrix}$$

Overview of Transformation using Eigendecomposition

L

Linear Transformation via A^k

- Now, consider recursive transformation $A \times A \times \cdots \times A\mathbf{x} = A^k\mathbf{x}$.
- If A is diagonalizable, A has eigendecomposition

$$A = VDV^{-1}$$

- $A^k = (VDV^{-1})(VDV^{-1}) \cdots (VDV^{-1}) = VD^kV^{-1}$
- D^k is simply computed as

$$D^{k} = \begin{bmatrix} \lambda_{1}^{k} & 0 & \cdots & 0 \\ 0 & \lambda_{2}^{k} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \lambda_{n}^{k} \end{bmatrix}$$

Linear Transformation via A^k

- $A^k \mathbf{x} = V D^k V^{-1} \mathbf{x}$ can be computed in the similar manner to the previous example.
- It is much faster to compute $V\left(D^k(V^{-1}\mathbf{x})\right)$ than to compute $A^k\mathbf{x}$.

Further Study

- Determining whether a matrix $A \in \mathbb{R}^{n \times n}$ diagonalizable.
 - · Geometric multiplicity should be equal to algebraic multiplicity.
 - As a special case, A has n distinct eigenvalues, A is diagonalizable.
 - Lay Ch5.3
- Solving $(A \lambda I)\mathbf{x} = \mathbf{0}$ for a given eigenvalue λ
 - Lay Ch1.5