Probabilistic Models and Optimization Algorithms for Personalized Medicine

Mike Hughes

joint work with

Assistant Professor of Computer Science

Finale Doshi-Velez (Harvard)

Erik Sudderth & Gabe Hope (UC Irvine)

Tom McCoy, M.D. and Roy Perlis, M.D. (MGH)

Marzyeh Ghassemi (Toronto), Mike Wu (Stanford)

slides / papers / code www.michaelchughes.com

My Research Mission:

Reliable Training of Interpretable Models for Complex Data

Inference Algorithms for Probabilistic Models:

Adapt Model Size to Data (Bayesian Nonparametrics)

Dirichlet process mixtures

Hughes & Sudderth NeurIPS 2013

Topic models of news articles Hughes, Kim & Sudderth AISTATS 2015

HMMs for epigenomics

Hughes, Stephenson, & Sudderth NeurIPS 2015

BNPy open-source software | pip install bnpy | github.com/bnpy/bnpy

Explainable AI:

Optimize Deep NNs for Interpretability

Find alternate explanations

Ross, Hughes, Doshi-Velez IJCAI 2017

Find tree-like neural nets

Wu, Hughes, Parbhoo, et al. AAAI 2018

Applications: Personalized Treatments in Medicine

Ghassemi, Wu, Hughes, et al. AMIA CRI 2017 Predict interventions in ICU

Discovering subtypes and treatments for depression

Hughes et al. (AISTATS 2018) **Hughes** et al. (in prep. for JAMA Psychiatry)

Problem: When will ICU patient need intervention?

Ghassemi, Wu, **Hughes**, et al. AMIA CRI 2017

Interventions:

- · Ventilators to assist breathing
- blood pressure drugs

Early prediction helps: prepare patient plan staffing

try less aggressive options early

Cohort from MIMIC-III dataset

mimic.physionet.org

36,050 patients

(Johnson et al. Sci. Data 2016)

- from Beth-Israel Deaconess in Boston 2001-2012
- kept all adults with record within 6-360 hours

Intervention	Training Num Positive	Training Num Control	Heldout Num Positive	Heldout Num Control
Vasopressor	6987	21865	1737	5461
Red blood cell transfusion	19171	9681	4776	2422
Fresh frozen plasma transfusion	2759	26093	620	6578
Platelet transfusion	27818	1034	6944	254
Mechanical Ventilation	13710	15142	3393	3805

Observed data

- 7 nurse-validated vital signs (hourly) heart rate, blood pressure, temp., SpO2, ...
- 11 lab measurements (much less than hourly)

Challenge: how to build models that effectively handle irregular data arrival times

Probabilistic time-series model

Probabilistic time-series model

Goal: Summaries of Health

ICU signals from many patients

Health state trajectories

Autoregressive time-series model

Hidden **Patient State Observed Vitals**

$$x_t | z_t = k \sim \mathcal{N}(A_k x_{t-1} + \mu_k, \Sigma_k)$$

autoregressive Gaussian allows modeling trajectories/trends in vitals

Task: predict need in advance

Vasopressor prediction: 1 hr ahead

Medical Data is Exciting

Good models can improve

- personalized treatments for patients
- scientific knowledge about disease
 - subtypes
 - co-occurring conditions

Medical Data is Challenging

Challenges

- how to interpret and trust model?
- labeled data hard to get, lots of unlabeled data
- causality

How Can ML Help Psychiatrists?

Prof. Finale Doshi-Velez Prof. Erik Sudderth

Roy Perlis, MD

Tom McCoy, MD

MASSACHUSETTS GENERAL HOSPITAL

Gabe Hope

PSYCHIATRY

How to optimize?

$$\max_{\phi,\eta} \lambda \log p(y|x,\phi,\eta) + \log p(x|\phi)$$

Credit:
Jeremy Watt

Optimize via stochastic gradient descent

- Write objective as Python code
- Automatic gradients from Tensorflow

Compare to Human Doctors

- Evaluation with retrospective data is challenging
- Reasonable attempt:

TOP-3 Accuracy

Given 3 guesses to recommend antidepressants for each patient, what fraction of patients have guess match at least 1 drug on stable list.

	1st visit	•••	3 rd visit
human doctors (observed practice)	87% (+/- 2)		40% (+/- 7)
always give most common drugs	54% (+/- 3)		35% (+/- 7)
our method	58% (+/-2)		46% (+/-7)

Future: Time-Series Models to combine data from data

- Mixture models
- Topic models
- Hidden Markov models
- Network models (MMSB)

- PCA or factor analysis
- Non-negative matrix factorization
 - Probabilistic encoder/decoder (VAE)

 Disease progression over time

Models of many data sources

