PREDICTING THE PRICES OF LAPTOPS -Vision team-

INTRODUCTION

We make a project for Predicting prices of laptops, The problem statement is that if any user wants to buy a laptop, then our project should be compatible to provide a tentative price of laptop according to the user configurations. The field of the data set is computer Science and Business. It looks like a simple project or just developing a model, but the dataset we have is noisy and needs lots of feature engineering, and preprocessing. It is good that there are no NULL values. And we need little changes in some column to convert them to numeric by removing the unit written after value. So, we will perform data cleaning here to get the correct types of columns.

Database Columns:

- 1 Company- String -Laptop Manufacturer
- 2 Product -String -Brand and Model
- 3 TypeName -String -Type (Notebook, Ultrabook, Gaming, etc.)
- 4 Inches -Numeric- Screen Size
- 5 ScreenResolution -String- Screen Resolution
- 6 Cpu- String -Central Processing Unit (CPU)
- 7 Ram -String- Laptop RAM
- 8 Memory -String- Hard Disk / SSD Memory
- 9 GPU -String- Graphics Processing Units (GPU)
- 10 OpSys -String- Operating System
- 11 Weight -String- Laptop Weight
- 12 Price euros -Numeric- Price (Euro)

DATA VISUALIZATION Univariate Feature Visualization

PREPROCESSING AND PREPARING DATA FOR MODELING

We preprocessed data using Jupyter Notebook throw the following steps:

- 1. Drop laptop ID column because no need in this model after extracting useful data.
- 2. Delete GB symbol from RAM column to change their data type.
- 3. Delete kg symbol from Weight column to change their data.

4. change data type of RAM and Weight columns to integer and float to handle it correctly.

- 5. Add new column CPU speed extracting from column CPU.
- 6. Remove GHz from CPU speed and change datatype to float.
- 7. Add new column CPU_type extracting from column CPU and ordering from 1 to 4 in ascending order.

- 8. Drop CPU column after because no need in this model after extracting useful data.
- 9. Add new column Touch_screen extracting from column ScreenResolution, and change the data type to integer.
- 10. Add new column HD_type extracting from column ScreenResolution, change the data type to integer.

1 2 3 Nan	1 843 2 430 3 30 Name: HD_type, dtype: int64														
	Company	Product	TypeName	Inches	ScreenResolution	Ram	Memory	Gpu	OpSys	Weight	Price_euros	cpu_speed	Cpu_type	Touch_screen	HD_type
0	Apple	MacBook Pro	Ultrabook	13.3	IPS Panel Retina Display 2560x1600	8	128GB SSD	Intel Iris Plus Graphics 640	macOS	1.37	1339.69	2.3	2	0	2
1	Apple	Macbook Air	Ultrabook	13.3	1440x900	8	128GB Flash Storage	Intel HD Graphics 6000	macOS	1.34	898.94	1.8	2	0	2

11. Add new column Resolution type extracting from column ScreenResolution.

1920x1	080	41			
1366x7	68 3	808			
3840x2	160	43			
3200x1	800	27			
2560x1	440	23			
1600x9	00	23			
2560x1	600	6			
2304x1	440	6			
2256x1	504	6			
1920x1	200	5			
1440x9	00	4			
2880x1	800	4			
2400x1	600	4			
2160x1	440	2			
2736x1	824	1			
Name:	Resoluti	.on_t	type,	dtype:	int64

12. Add new column IPS extracting from column ScreenResolution.

Ram	Memory	Gpu	OpSys	Weight	Price_euros	cpu_speed	Cpu_type	Touch_screen	HD_type	Resolution_type	IPS
8	128GB SSD	Intel Iris Plus Graphics 640	macOS	1.37	1339.69	2.3	2	0	2	2560x1600	1
8	128GB Flash Storage	Intel HD Graphics 6000	macOS	1.34	898.94	1.8	2	0	2	1440x900	0

- 13. Drop ScreenResolution column because no need in this model after extracting useful data.
- 14. Add new column Memory_type extracting from column Memory, and change data type to integer.

```
1 843
2 375
3 75
4 10
Name: Memory_type, dtype: int64
```

15. Drop Memory column because no need in this model after extracting useful data.

16. Add new column OpSys extracting from column Op_Sys, change data type to integer.

```
1 1125
2 95
3 62
4 21
Name: Op_Sys, dtype: int64
```

- 17. Drop OpSys column because no need in this model after extracting useful data.
- 18. Convert all categorical columns to one hot encoding.

```
['Company', 'Gpu', 'Product', 'Resolution_type', 'TypeName']
```

- 19. Remove the nan row.
- 20. Divide data to input x and output y
- 21. Data scaling, and convert y to categorical values

The database after prepared:

index	Company	Product	TypeName	Inches	Ram	Gpu	Weight	cpu_speed	Cpu_type	Touch_screen	HD_type	Resolution_type	IPS	Memory_type	Op_Sys
0	1	300	4	13.3	8	58	1.37	2.3	2	0	2	10	1	1	4
1	1	301	4	13.3	8	51	1.34	1.8	2	0	2	1	0	3	4
2	7	50	3	15.6	8	53	1.86	2.5	2	0	1	3	0	1	2
3	1	300	4	15.4	16	9	1.83	2.7	1	0	2	12	1	1	4
4	1	300	4	13.3	8	59	1.37	3.1	2	0	2	10	1	1	4
	0 1 2 3 4	0 1 1 1 2 7 3 1 4 1	0 1 300 1 1 301 2 7 50 3 1 300 4 1 300	0 1 300 4 1 1 301 4 2 7 50 3 3 1 300 4 4 1 300 4	0 1 300 4 13.3 1 1 301 4 13.3 2 7 50 3 15.6 3 1 300 4 15.4 4 1 300 4 13.3	0 1 300 4 13.3 8 1 1 301 4 13.3 8 2 7 50 3 15.6 8 3 1 300 4 15.4 16 4 1 300 4 13.3 8	0 1 300 4 13.3 8 58 1 1 301 4 13.3 8 51 2 7 50 3 15.6 8 53 3 1 300 4 15.4 16 9 4 1 300 4 13.3 8 59	0 1 300 4 13.3 8 58 1.37 1 1 301 4 13.3 8 51 1.34 2 7 50 3 15.6 8 53 1.86 3 1 300 4 15.4 16 9 1.83 4 1 300 4 13.3 8 59 1.37	0 1 300 4 13.3 8 58 1.37 2.3 1 1 301 4 13.3 8 51 1.34 1.8 2 7 50 3 15.6 8 53 1.86 2.5 3 1 300 4 15.4 16 9 1.83 2.7 4 1 300 4 13.3 8 59 1.37 3.1	0 1 300 4 13.3 8 58 1.37 2.3 2 1 1 301 4 13.3 8 51 1.34 1.8 2 2 7 50 3 15.6 8 53 1.86 2.5 2 3 1 300 4 15.4 16 9 1.83 2.7 1 4 1 300 4 13.3 8 59 1.37 3.1 2	0 1 300 4 13.3 8 58 1.37 2.3 2 0 1 1 301 4 13.3 8 51 1.34 1.8 2 0 2 7 50 3 15.6 8 53 1.86 2.5 2 0 3 1 300 4 15.4 16 9 1.83 2.7 1 0 4 1 300 4 13.3 8 59 1.37 3.1 2 0	0 1 300 4 13.3 8 58 1.37 2.3 2 0 2 1 1 301 4 13.3 8 51 1.34 1.8 2 0 2 2 7 50 3 15.6 8 53 1.86 2.5 2 0 1 3 1 300 4 15.4 16 9 1.83 2.7 1 0 2 4 1 300 4 13.3 8 59 1.37 3.1 2 0 2	0 1 300 4 13.3 8 58 1.37 2.3 2 0 2 10 1 1 301 4 13.3 8 51 1.34 1.8 2 0 2 1 2 7 50 3 15.6 8 53 1.86 2.5 2 0 1 3 3 1 300 4 15.4 16 9 1.83 2.7 1 0 2 12 4 1 300 4 13.3 8 59 1.37 3.1 2 0 2 10	0 1 300 4 13.3 8 58 1.37 2.3 2 0 2 10 1 1 1 301 4 13.3 8 51 1.34 1.8 2 0 2 1 0 2 7 50 3 15.6 8 53 1.86 2.5 2 0 1 3 0 3 1 300 4 15.4 16 9 1.83 2.7 1 0 2 12 1 4 1 300 4 13.3 8 59 1.37 3.1 2 0 2 10 1	1 1 301 4 13.3 8 51 1.34 1.8 2 0 2 1 0 3 2 7 50 3 15.6 8 53 1.86 2.5 2 0 1 3 0 1 3 1 300 4 15.4 16 9 1.83 2.7 1 0 2 12 1 1 4 1 300 4 13.3 8 59 1.37 3.1 2 0 2 10 1 1

PIPELINE PREDICTING PRICES OF LAPTOPS

Modelling

At a time we do not know which is the best regressor we tried some important algorithms as following:

- LogisticRegression model
- KNeighborsRegressor model
- DecisionTreeRegressor model
- SVR model
- XGBRegressor model

Split in train and test test

```
#Splitting features/target and train/test data
x_train,x_test,y_train,y_test = train_test_split(x_scaled,y_transformed,test_size=.30 ,random_state=2,shuffle=True)
```

Implement Pipeline

Fit the Pipelines

```
# Fit the pipelines
for pipe in pipelines:
    pipe.fit(x_train, y_train)
```

Model evaluation

print('Regressor with best accuracy:{}'.format(pipe_dict[best_classifier

Regressor with best accuracy: KNeighborsRegressor