

Universidade de Aveiro

DEPARTAMENTO DE ELECTRÓNICA, TELECOMUNICAÇÕES E INFORMÁTICA

47064- DESEMPENHO E DIMENSIONAMENTO DE REDES

Network Simulation

8240 - MESTRADO INTEGRADO EM ENGENHARIA DE COMPUTADORES E TELEMÁTICA

António Rafael da Costa Ferreira NMec: 67405 Rodrigo Lopes da Cunha NMec: 67800

Docentes: Paulo Salvador, Susana Sargento

> Maio de 2016 2015-2016

Conteúdos

1	Virtua	l-Circuit Switched Network	2
	1.1	Exercício 1 e 2	2
	1.2	Exercício 3	5
2	Packet	Switched Network - Single-queue simulation	7
	2.1	Exercício 4 e 5	7
	2.2	Exercício 6 e 7	9
	2.3	Exercício 8	10
3	Packet	Switched Network - Multi-queue simulation	12
	3.1	Exercício 9 e 10	12
	3.2	Exercício 11	14
	3.3	Exercício 12	15
4	Multi-	queue simulation with routing	17
	4.1	Exercício 13	17
	4.2	Exercício 14	19

1 Virtual-Circuit Switched Network

1.1 Exercício 1 e 2

Nestes primeiros exercícios era pedido que se obtivesse os valores de probabilidade de bloqueio e de carga média do link, tanto de forma simulada como teórica, para vários valores de λ (média de pedidos de chamadas por minuto), $1/\mu$ (média da duração de cada chamada, em minutos), onde cada circuito virtual (VC), requer uma largura de banda de 2 Mbits/sec e o link pode tomar vários valores de largura de banda.

Foram obtidos os seguintes resultados para cada valor de largura de banda do link:

Figura 1: Probabilidade de bloqueio e carga média do link com 16 Mbits/sec

Figura 2: Probabilidade de bloqueio e carga média do link com 24 Mbits/sec

Figura 3: Probabilidade de bloqueio e carga média do link com 32 Mbits/sec

Nos três casos, é possível observar-se o valor simulado (linha contínua) e

o valor teórico (linha picotada), para os vários tempos médios de duração de uma chamada.

Através da figura 1, onde a largura de banda do link é de 16 Mbits/seg é possível ver que a probabilidade de bloqueio é muito maior, comparando com a figura 3, onde a largura de banda é o dobro, 32 Mbits/sec. Como existe mais largura de banda no link, para um mesmo número de pedidos de chamadas, estas bloqueiam em menos quantidade, pois é possível processar um maior número de pedidos.

Em todos os gráficos, é possível observar-se que à medida que a taxa de chamadas vai aumentando, a probabilidade de bloqueio e a ocupação média do link também vão aumentar, pois são mais pedidos para processar.

Relativamente à duração das chamadas, quando esta aumenta, a probabilidade de bloqueio e a ocupação média do link também vão aumentar, pois as chamadas ocuparão por mais tempo o link, com a mesma taxa de pedidos.

1.2 Exercício 3

Neste terceiro exercício, as chamadas passaram a ser de dois tipos, um standard e um special. As chamadas standard requerem uma largura de banda de 2 Mbits/sec e as special requerem uma largura de banda de 4 Mbits/sec. Neste caso, os nós possuem ainda uma quantidade de Mbit/s reservados para os pedidos especiais. Foram obtidos os resultados da simulação para vários valores de λ standard e special, $1/\mu$, largura de banda do link e largura de banda reservada.

Obtiveram-se os seguintes resultados, através da execução de 3 amostras:

Figura 4: Probabilidade de bloqueio dos pedidos standard e special e ocupação média do link com 16 Mbits/sec

Figura 5: Probabilidade de bloqueio dos pedidos standard e special e ocupação média do link com 24 Mbits/sec

Figura 6: Probabilidade de bloqueio dos pedidos standard e special e ocupação média do link com 32 Mbits/sec

Observando os gráficos acima, é possível observar-se que quanto maior for a capacidade do link, os pedidos standard, começam a bloquear menos vezes. É possível verificar que quanto maior o valor de largura de banda reservada, melhores serão os pedidos special, e pior os standard.

Na figura 4, o link possuí uma largura de banda de 16 Mbits/sec, e a largura de banda reservada, sendo 16 Mbits/sec, faz com que os pedidos standard bloqueiem 100% das vezes, pois toda a largura de banda existente está disponível apenas para os pedidos special.

Nas figuras 5 e 6, o valor da largura de banda do link vai aumentado. Com isto, a probabilidade de bloqueio dos pedidos standard vai diminuindo. A maior diminuição verifica-se quando a duração dos pedidos é a mais curta, linha azul, isto porque, tal como se verificou no primeiro exercício quanto mais baixa for a duração do pedido, menor será a probabilidade de bloqueio.

Com o aumento da largura de banda do link, os pedidos especiais também terão menor probabilidade de bloqueio, tal como se verificou no exercício 1.

Para este exercício foram criados dois geradores de pedidos, um para pedidos standard, e outro para pedidos special.

2 Packet Switched Network - Single-queue simulation

2.1 Exercício 4 e 5

Nestes exercícios, a ideia passa pela simulação de routers. Tal como mostra a figura acima, agora existe uma fila de espera à entrada do node que depende da velocidade de comutação do router, e uma de saída, que vai depender do processamento do link. Caso chegue um pacote e a fila estiver cheia, este é perdido, caso contrário, ficará à espera havendo atraso. À saída do router o tempo de saída do mesmo, vai depender do tamanho do pacote.

Neste exemplo, o Node 1 é um router, com uma velocidade de processamento muito elevada, conectado a um link de 2 Mbits/sec. Para a fila de espera de entrada do Node, considerou-se um tamanho infinito. Para a fila de espera de saída, são utilizados vários valores (64, 96, 128, 10000), para vários testes.

O tamanho dos pacotes, segue uma distribuição exponencial com probabilidade de 50% para 64 bytes e 50% para 1500 bytes.

O tempo entre o envio de pacotes, segue também uma distribuição exponencial com média $1/\lambda$, onde o valor de λ pode tomar diferentes valores (150, 300, 450).

Nestes exercícios, para além do cálculo da percentagem de pacotes perdidos, atraso médio dos pacotes e largura de banda transmitida, era pedido também que se calculasse o atraso através das seguintes fórmulas, para comparar com o valor simulado:

- M/M/1, uma fórmula mais viável quando os pacotes são praticamente todos do mesmo tamanho, dando apenas bons resultados, quando existem poucos pacotes.
- M/D/1, apenas depende do número de pacotes e não do tamanho dos mesmo. Funciona apenas bem à entrada, contudo à saída não, pois nada é determinístico à saída.

- M/G/1 (geral), as fórmulas neste caso, dependem da média e da variância do serviço. Funciona melhor quando as coisas já não são tão exponenciais.
- M/M/1/K, quando a fila de espera é limitada, utiliza-se estas fórmulas, para obter a probabilidade de perda do pacote.

Na tabela seguinte, é possível verificar-se os valores que se obtiveram no final dos testes. Nestes testes o tempo de simulação foi de 30 e para as filas de espera de 10000, foi de 500, de forma a conseguir-se encher estas filas e obter-se valores pretendidos. Foram simuladas 3 amostras, obtendo-se os seguintes valores:

lambda	queueSize	Loss probability	Average delay	Transmitted bandwidth	M/M/1	M/D/1	M/G/1	M/M/1/K	M/M/1/K%
150	64	0.02252	0.00545	114028.8	0.00589	0.00451	0.00385	0.00589	0
150	96	0	0.00553	116283.73333	0.00589	0.00451	0.00385	0.00589	0
150	128	0.03356	0.00567	115715.73333	0.00589	0.00451	0.00385	0.00589	0
150	10000	0.00333	0.00563	117320.584	0.00589	0.00451	0.00385	0.00589	0
300	64	0.05506	0.04444	236680	0.05078	0.02695	0.00329	0.0473	0.10701
300	96	0.23815	0.04378	232942.2	0.05078	0.02695	0.00329	0.05011	0.0138
300	128	0.06061	0.04398	237527.73333	0.05078	0.02695	0.00329	0.05066	0.0018
300	10000	0.01529	0.04662	234915.284	0.05078	0.02695	0.00329	0.05078	0
450	64	29.26271	0.19105	249873.8	-0.00767	-0.00227	0.00147	0.19252	28.95709
450	96	28.7556	0.28939	249918.8	-0.00767	-0.00227	0.00147	0.29261	28.95709
450	128	29.42856	0.38974	249927.53333	-0.00767	-0.00227	0.00147	0.39271	28.95709
450	10000	29.0788	27.86529	249995.904	-0.00767	-0.00227	0.00147	31.27233	28.95709

Tabela 1: Valores teóricos e simulados do atraso e da probabilidade de perda de pacotes ¹

Este primeiro caso, os pacotes são perdidos à saída do router, pelo que a fórmulas M/M/1 e M/M/1/K, são as que se aproximam mais dos valores reais. Pode-se verificar que a fórmula de M/M/1 para poucos pacotes, tal como descrito acima, funciona melhor. Neste caso, para um valor λ de 150 ou 300, esta fórmula funciona bem, mas para um valor mais elevado, como 450, esta fórmula falha. Esta falha é observada, pelo valor negativo que se obtém. A fórmula M/M/1/K, funciona sempre para qualquer tipo de valores.

Sendo os pacotes perdidos à saída, a fórmula M/D/1, falha para valores elevados de λ , e também não é muito precisa para os outros valores, tal como descrito acima, esta fórmula funciona melhor à entrada do router.

A fórmula M/G/1, não falha, contudo os valores fogem muito do pretendido, pois são valores exponenciais.

¹Todos os valores das tabelas são uma média de várias amostras

2.2 Exercício 6 e 7

Nestes exercícios, a perda de pacotes agora ocorre na entrada do router. Para isso, assumiu-se uma fila de espera finita à entrada que pode tomar vários valores (64, 96, 128, 10000) e uma fila infinita à saída. Neste caso a velocidade do link não terá qualquer influência, pois este é muito rápido, 10 Gbits/sec. No entanto, o router tem uma velocidade de processamento lenta, de 350 pacotes/sec.

O tamanho dos pacotes e o tempo entre dois pacotes são os mesmos do exercício anterior.

Foi então pedido que se efetuassem os mesmos cálculos e os mesmos testes para comparação dos valores simulados com os valores teóricos. Utilizou-se os mesmos tempos de simulação do exercício anterior e o mesmo número de simulações. A tabela seguinte mostra os resultados obtidos:

lambda	queueSize	Loss probability	Average delay	Transmitted bandwidth	M/M/1	M/D/1	M/G/1	M/M/1/K	M/M/1/K%
150	64	0	0.0039	117129.46667	0.005	0.00393	0.00321	0.005	0
150	96	0	0.00391	115831.4	0.005	0.00393	0.00321	0.005	0
150	128	0.01067	0.00399	119278.93333	0.005	0.00393	0.00321	0.005	0
150	10000	0.00134	0.00394	117086.284	0.005	0.00393	0.00321	0.005	0
300	64	0.12112	0.01209	233961.66667	0.02	0.01143	0.00303	0.01999	0.00074
300	96	0.06705	0.01095	232275.6	0.02	0.01143	0.00303	0.02	0.00001
300	128	0.0111	0.01179	233451.53333	0.02	0.01143	0.00303	0.02	0
300	10000	0.00266	0.01134	234246.852	0.02	0.01143	0.00303	0.02	0
450	64	22.56702	0.178	271494.93333	-0.01	-0.00357	0.00233	0.17286	22.22222
450	96	22.79043	0.26636	272059.73333	-0.01	-0.00357	0.00233	0.26429	22.22222
450	128	22.31655	0.35297	272260.8	-0.01	-0.00357	0.00233	0.35571	22.22222
450	10000	22.29851	24.90259	274311.352	-0.01	-0.00357	0.00233	28.56143	22.22222

Tabela 2: Valores teóricos e simulados do atraso e da probabilidade de perda de pacotes ²

Olhando para a tabela, verifica-se que a fórmula de M/M/1, neste caso, que a fila de espera se encontra à entrada do router, não funciona como no exemplo anterior, fugindo bastante dos valores desejados.

Como também já foi referido, a fórmula $\rm M/D/1$ funciona melhor à entrada do router, como neste caso. Com isto, é possível verificar que os valores são

²Todos os valores das tabelas são uma média de várias amostras

bastante próximos dos desejados para valores de λ mais pequenos, tal como a fórmula M/M/1, no exemplo anterior.

A fórmula de M/G/1, funciona bem para um valor de λ mais pequeno como é o caso de 150, mas para os outros valores, 300 e 450, começa a ficar longe dos resultados desejados.

Neste caso, é possível verificar que mais uma vez, a fórmula de M/M/1/K é a mais eficiente, tanto a nível de percentagem de pacotes perdidos, como de atraso. Para qualquer valor de λ , esta fórmula aproxima-se sempre do valor pretendido.

2.3 Exercício 8

Geração dos pacotes

Para gerar os pacotes, usou-se a amostra gerada no guia anterior para os ON/OFF. A amostra que foi criada, foi criada representando número de bytes.

Sendo assim, iterou-se sobre a lista que representa a amostra e cada entrada da lista corresponde ao número de bytes por segundo enviados. Como pretendemos que o número seja em número de pacotes e não em número de bytes, dividiu-se, cada entrada da lista ou por 64 ou por 1500 com probabilidades iguais, 50-50.

Depois, para saber o instante de saída de cada pacote, dividiu-se um segundo pelo número de pacotes enviados.

Quando o número de pacotes enviados é igual a zero, e existe um intervalo de pacotes enviados igual a zero, soma-se ao anterior.

O lambda corresponde à media de pacotes recebidos por segundo.

O código python com o raciocínio descrito está no ficheiro: extra8_generate.py.

Modificação do pkt Sender

Adicionou-se ao pkt_sender um argumento: "list_pkts" que corresponde à lista com o número de pacotes e os seus respetivos intervalos.

```
def __init__(self, env, id, dst, list_pkts):
```

Depois é efetuada uma iteração sobre a lista e para cada entrada da lista, se o "number of packets" for igual a 0, não será enviado nenhum pacote:

```
time = pkt_l["time"]
simtime += time

yield self.env.timeout(time)
```

Caso seja diferente, iremos enviar um pacote, com 64 ou 1500 bytes com probabilidade de 50-50.

O código python com o raciocínio descrito está no ficheiro: extra8.py. Análise dos resultados

Os resultados obtidos para ambos os Nodes simulados foram os seguintes:

lambda	queueSize	Loss probability	Average delay	Transmitted bandwidth	M/M/1	M/D/1	M/G/1	M/M/1/K	M/M/1/K%
275	64	85.82314	0.14296	30580.01333	0.02237	0.01275	0.00347	0.02236	0.00091
275	96	84.90369	0.20026	16297.18667	0.02237	0.01275	0.00347	0.02237	0.00001
275	128	84.05209	0.25237	17164.36667	0.02237	0.01275	0.00347	0.02237	0
275	10000	13.61478	14.94243	92469.32	0.02237	0.01275	0.00347	0.02237	0

Tabela 3: Valores teóricos e simulados do atraso e da probabilidade de perda de pacotes no Node 1

lambda	queueSize	Loss probability	Average delay	Transmitted bandwidth	M/M/1	M/D/1	M/G/1	$\mathrm{M}/\mathrm{M}/\mathrm{1}/\mathrm{K}$	M/M/1/K%
275	64	84.90248	0.12804	32245.16	0.01333	0.0081	0.0031	0.01333	0
275	96	84.03998	0.18	34316.50667	0.01333	0.0081	0.0031	0.01333	0
275	128	83.26469	0.22815	36109.22667	0.01333	0.0081	0.0031	0.01333	0
275	10000	12.24712	13.52609	188444	0.01333	0.0081	0.0031	0.01333	0

Tabela 4: Valores teóricos e simulados do atraso e da probabilidade de perda de pacotes no Node 2

Neste exercício, deixou-se de ter um conjunto de λ e passou-se a ter um único valor de λ , neste caso 275, número total de pacotes a dividir pelo tempo de simulação.

Através das tabelas acima, verifica-se que os valores teóricos são muito diferentes dos valores reais, pois estes valores estão longe de ser uma distribuição exponencial, pelo que se pode concluir que as fórmulas utilizadas, falham para tráfego realista.

3 Packet Switched Network - Multi-queue simulation

3.1 Exercício 9 e 10

Assumindo agora que a rede possui dois routers (Node 1 e Node 2), com uma velocidade de processamento bastante elevada e ligados a links de 2 Mbits/sec. Ambos possuem na sua saída filas de espera finitas que podem tomar diferentes valores (64, 96, 128, 10000) e na sua entrada assume-se que as filas de espera são infinitas. Este caso é mais adequado a um cenário de operador.

Utilizando os mesmos valores de λ utilizados anteriormente (150, 300, 450) foi pedido que se calculasse utilizando a aproximação de Kleinrock, o atraso médio de um pacote e a sua probabilidade de perda.

O atraso total do sistema é calculado através da soma de todos os atrasos em todas as filas de espera.

Em todas as filas de espera é necessário calcular o λ . Existe ainda γ , que consiste em tudo o que está a entrar na rede, pelo que se soma todos os atrasos com a seguinte fórmula:

$$W = \frac{1}{\gamma} \times \left[\frac{\lambda_1}{(\mu - \lambda_1)} + \frac{\lambda_2}{(\mu - \lambda_2)} \right]$$

Sendo que assumindo que $\lambda_1 = \lambda_2 = \lambda = \gamma$, temos que:

$$W = \frac{2}{(\mu - \lambda)}$$

Utilizando esta fórmula, os resultados simulados e teóricos obtidos, num conjunto de 3 simulações, com um tempo de simulação de 500 para a fila de espera de tamanho 10000 e 30 para as restantes filas de espera, foram os apresentados na tabela seguinte:

lambda	queueSize	Loss Probability	Average Delay	Transmitted bandwidth	Wk
150	64	0.0111	0.01026	115840.66667	0.01179
150	96	0.09048	0.01021	114507.2	0.01179
150	128	0.06658	0.01053	120261.73333	0.01179
150	10000	0.002	0.01047	117425.848	0.01179
300	64	0.29014	0.04365	230875.46667	0.10156
300	96	0.22997	0.04345	230808.86667	0.10156
300	128	0.36015	0.06956	235875.2	0.10156
300	10000	0.01232	0.05448	234914.136	0.10156
450	64	29.88578	0.20224	249782.33333	-0.01535
450	96	29.2007	0.29619	249801.13333	-0.01535
450	128	28.68136	0.38949	249821.06667	-0.01535
450	10000	29.18195	27.96119	249992.316	-0.01535

Tabela 5: Valores teóricos e simulados do atraso e da probabilidade de perda de pacotes utilizando a aproximação de Kleinrock ³

Através da tabela acima, observa-se que a aproximação de Kleinrock, para calcular o atraso do sistema, funciona bem para valores baixos de λ , como 150, sendo que quando este valor aumenta, começa a fugir do resultado pretendido, até que numa quantidade de 450 pacotes/s, deixa mesmo de ser uma opção viável, pois a fórmula falha. Uma solução para prevenir esta falha, seria aumentar a largura de banda dos links, de forma a que a aproximação não desse valores negativos.

 $^{^3\}mathrm{Todos}$ os valores das tabelas são uma média de várias amostras

3.2 Exercício 11

Neste exercício, o objetivo era a comparação dos valores simulados e teóricos do atraso, utilizando uma aproximação de Kleinrock.

Nesta situação, e como se pode ver na imagem acima, existem dois nodes lentos, só interessando assim, as filas de espera de entrada, pois o link é bastante rápido, com 10 Gbits/s de largura de banda. A velocidade de processamento dos nodes é de 350 pacotes. Este cenário é o mais frequente em empresas.

Com isto obtiveram-se os seguintes valores, utilizando os mesmos critérios (tempo de simulação e simulações efetuadas) das simulações anteriores:

lambda	queueSize	Loss Probability	Average Delay	Transmitted bandwidth	Wk
150	64	0.01101	0.00673	117924.53333	0.01
150	96	0.02255	0.00675	114169.66667	0.01
150	128	0	0.00674	115667.4	0.01
150	10000	0.00133	0.00678	117166.072	0.01
300	64	0.04449	0.01408	232950.93333	0.04
300	96	0.09951	0.01362	237435.86667	0.04
300	128	0.09956	0.01463	236368	0.04
300	10000	0.00468	0.014	233576.692	0.04
450	64	22.3342	0.18101	272711.26667	-0.02
450	96	21.87301	0.26995	273241	-0.02
450	128	21.2317	0.35386	269315.93333	-0.02
450	10000	22.3274	24.90107	273435.2	-0.02

Tabela 6: Valores teóricos e simulados do atraso e da probabilidade de perda de pacotes utilizando a aproximação de Kleinrock 4

Como agora o valor de μ é igual ao valor do routing speed, 350, então para todas as filas de espera, o valor de Wk é igual para cada λ . Quando o valor de λ é mais pequeno, o atraso obtido teoricamente aproxima-se do valor simulado. Tal como nos caso anterior quando maior o valor de λ , mais probabilidade tem a fórmula de falhar.

 $^{^4}$ Todos os valores das tabelas são uma média de várias amostras

3.3 Exercício 12

Neste exercício, voltou-se a utilizar apenas um router (Node 1), onde a sua velocidade de processamento é de 300 pacotes/s e possui duas filas de espera, entrada e saída, finitas, ambas com a mesma capacidade (64, 96, 128, 10000). Este nó está ainda conectado a um link com velocidade de 2 Mbits/sec.

Foi pedido que através da aproximação de Kleinrock, se comparassem os valores de atraso simulados com os valores teóricos, oriundos desta aproximação. Obtiveram-se os seguintes resultados, utilizando os mesmos tempos de simulação e o mesmo número de simulações efetuadas nos exercícios anteriores:

lambda	queueSize	Loss Probability	Average Delay	Transmitted bandwidth	Wk
150	64	0.01118	0.00986	117543.4	0.01179
150	96	0.03317	0.0099	117739.33333	0.01179
150	128	0.01115	0.00984	116991	0.01179
150	10000	0.00067	0.00987	117620.648	0.01179
300	64	1.37433	0.13872	233642.73333	0.10156
300	96	0.41959	0.11477	230754.73333	0.10156
300	128	0.78062	0.16925	230433.4	0.10156
300	10000	0.12461	0.74235	234200.228	0.10156
450	64	33.16216	0.23206	234946.2	-0.01535
450	96	33.29091	0.33406	233296.93333	-0.01535
450	128	33.08208	0.43899	234862.66667	-0.01535
450	10000	33.52031	29.98766	234454.452	-0.01535

Tabela 7: Valores teóricos e simulados do atraso e da probabilidade de perda de pacotes utilizando a aproximação de Kleinrock 5

Como o cálculo deste atraso é feito através da fórmula apresentada acima, os valores teóricos vão ser iguais, pelo que os valores de λ e μ são iguais. Contudo nesta situação, para além de se aproximar dos valores simulados

⁵Todos os valores das tabelas são uma média de várias amostras

com um λ de 150, também se aproxima ligeiramente dos valores simulados com um λ de 300. Contudo, continua a falhar no caso dos 450 pacotes/s, isto porque agora a capacidade de processamento do router interessa, e é de 300 pacotes/s, pelo que valores acima disso, como o caso de 450, já faz com que haja uma perda de pacotes maior.

4 Multi-queue simulation with routing

4.1 Exercício 13

Neste últimos exercícios era pretendido que se simulasse o transporte de pacotes de duas redes diferentes para a Internet. Como se pode ver na imagem acima, vão existir 6 filas de espera, antes e depois de cada router, pelo que será necessário calcular a soma de todos os atrasos. 6 filas de espera, e é necessário somar os atrasos

Neste caso, todos os links terão uma largura de banda de banda de 10 Mbits/sec, e a velocidade de processamento do router pode tomar vários valores (500, 750, 1000). Tanto a LAN A, como a LAN B, podem tomar vários valores de λ , 150, 300, 450, 600, no entanto para este guia, utilizaramse os valores de 150 e 600. O tamanho das filas de espera pode também tomar vários valores, 64, 96, 128, 192, 256, sendo que apenas se utilizou 64 e 256.

Os resultados obtidos foram os seguintes, com um tempo de simulação de 200 e efetuaram-se 3 simulações:

Através da tabela apresentada acima, é possível observar-se que quando ambas as LAN's enviam pacotes com uma taxa de 150 pacotes por segundo, não existe perda de pacotes, qualquer que seja o valor de R, routing speed.

Quando, por exemplo uma das LAN's envia 600 pacotes por segundo, podemos verificar que um routing speed de 500 já não é suficiente, pelo que existe uma perda de pacotes elevada, cerca de 33%. Se o valor de routing speed for 750, a perda é praticamente 0.

Quando ambas as LAN's enviam 600 pacotes por segundo, em todos os casos de routing speed estudados, existem perdas, sendo que com menor percentagem quando o routing speed é 1000.

Em relação ao atraso, verifica-se que a aproximação de Kleinrock falha sempre que existem perdas, ou fica longe do valor pretendido. Quando as

⁶Todos os valores das tabelas são uma média de várias amostras

lambdaAI	lambdaBI	queueSize	R	В	Loss Probability nodes	Loss Probability links	Loss Probability	Average Delay	Transmitted bandwidth	Wk
150	150	64	500	10000000	0	0	0	0.00982	233827.82	0.01509
150	150	64	750	10000000	0	0	0	0.00663	233577.3	0.00834
150	150	64	1000	10000000	0	0	0	0.0054	233979.32	0.00626
150	150	256	500	10000000	0	0	0	0.00977	232979.78	0.01509
150	150	256	750	10000000	0	0	0	0.00662	232961.94	0.00834
150	150	256	1000	10000000	0	0	0	0.0054	233344.6	0.00626
150	600	64	500	10000000	33.35175	0	33.35175	0.24613	361545.4	-0.01213
150	600	64	750	10000000	0.80478	0	0.80478	0.05317	583628.86	0.00896
150	600	64	1000	10000000	0	0	0	0.00745	587890.16	0.01353
150	600	256	500	10000000	32.85452	0	32.85452	0.97383	360799.32	-0.01213
150	600	256	750	10000000	0.30115	0	0.30115	0.19829	585577.56	0.00896
150	600	256	1000	10000000	0	0	0	0.00746	587321.62	0.01353
600	150	64	500	10000000	33.51197	0	33.51197	0.23854	451030.38	-0.01213
600	150	64	750	10000000	0.56011	0	0.56011	0.0491	582928.5	0.00896
600	150	64	1000	10000000	0	0	0	0.00745	586636.96	0.01353
600	150	256	500	10000000	32.92378	0	32.92378	0.92027	456723.48	-0.01213
600	150	256	750	10000000	0.20351	0	0.20351	0.20534	584107.84	0.00896
600	150	256	1000	10000000	0	0	0	0.00746	587001.24	0.01353
600	600	64	500	10000000	58.27027	0	58.27027	0.25779	300473.28	-0.00684
600	600	64	750	10000000	37.59938	0	37.59938	0.09361	679479.08	0.00824
600	600	64	1000	10000000	16.5951	0	16.5951	0.07278	844541.46	-0.00148
600	600	256	500	10000000	58.01832	0	58.01832	1.02029	390560.74	-0.00684
600	600	256	750	10000000	37.47508	0	37.47508	0.34891	679716.34	0.00824
600	600	256	1000	10000000	16.69364	0	16.69364	0.26385	844699.74	-0.00148

Tabela 8: Valores teóricos e simulados do atraso e da probabilidade de perda de pacotes utilizando a aproximação de Kleinrock ⁶

perdas não existem, esta aproximação aproxima-se bastante do resultado pretendido.

Esta aproximação calculou-se através da seguinte fórmula:

$$Wk = \left(\frac{\lambda_{AI}}{\mu_R - \lambda_{AI}}\right) + \left(\frac{\lambda_{AI}}{\mu_L - \lambda_{AI}}\right) + \left(\frac{\lambda_{BI}}{\mu_R - \lambda_{BI}}\right) + \left(\frac{\lambda_{BI}}{\mu_L - \lambda_{BI}}\right) + 2 \times \left(\frac{\lambda_{ABI}}{\mu_L - \lambda_{ABI}}\right)$$

Onde, λ_{AI} e λ_{BI} , correspondem à quantidade de pacotes por segundo de cada LAN. A soma destes dois corresponde a λ_{ABI} . Na fórmula acima podese verificar que a primeira fração diz respeito ao atraso no Node 1, a segunda ao atraso no Link 1-3, a terceira ao atraso Node 2, a quarta ao atraso Link 2-3, a quinta aos atrasos nos Nodes 3 e 4 e a sexta aos atrasos nos links 3-4 e 4-I.

Note-se ainda que não existem perdas nos links, pois estes têm uma largura de banda bastante elevada, que não causará problemas de perdas de pacotes para estes valores, sendo então necessário ajustar o routing speed, consoante as perdas e os pacotes enviados por cada LAN.

4.2 Exercício 14

Neste último exercício pretende-se agora simular o exercício anterior, mas desta vez com tráfego nos dois sentidos, como mostra a imagem acima.

Existem agora quatro tipos de λ , um para o tráfego que vai da LAN A para a Internet, outro da LAN B para a Internet, e os outros dois da Internet para as LAN's A e B. Foram apenas testados alguns valores, sendo para o tráfego de A para a Internet e da Internet para B utilizou-se 150 e 600. No tráfego da LAN B para a Internet utilizou-se 150 pacotes por segundo e no da Internet para a LAN A, utilizou-se 450. Os valores foram escolhidos de forma a se poder ter vários tipos de amostras diferentes.

No tamanho das filas de espera foram utilizados os mesmos valores do exercício anterior, 64 e 128.

Por último o routing speed e os links podem tomar também os mesmos valores do exercício anterior, 500, 750, 1000 nos routers e 10 Mbits/sec nos links.

Depois de simulado nas mesmas condições do exercício anterior, obtiveramse os seguintes resultados:

lambdaAl		lambdaIA	lamdbaIB	queneSize		R		Loss Probability links	Loss Probability	Average Delay ABI	Average Delay IA	Average Delay IB	Transmitted bandwidth ABI	Transmitted bandwidth IA	Transmitted bandwidth IB		WkIA	WkIB
150	150	450	150	64	100000000		50.33681	0	50.33681	0.26196	0.26221	0.26121	136038.92	209406.18	70317.12		-0.01019	
150	150	450	150	64	10000000		19.89152	0	19.89152	0.16903	0.16915	0.16874	193003.4	292033.42	98043.16			
150	150	450	150	64	10000000			0	0	0.01188	0.01195	0.01154	234597.2	353922.36	116578.96			
150	150	450	150	128	10000000		50.34569	0	50.34569	0.51662	0.51725	0.51634	136382	210202.24	69967.88		-0.01019	
150	150	450	150	128	100000000		20.40299	0	20.40299	0.3382	0.33951	0.33873	163103.46	313569.02	102153.64			-0.01143
150	150	450	150	128	100000000			0	0	0.01201	0.01205	0.01177	233225.9	351512.16	118515.4			
150	150	450	600	64		500	68.86081	0	68.86081	0.26375	0.26291	0.26328	96839.9	136728.82	181109.86			
150	150	450	600	64	100000000		50.1679	0	50.1679	0.17415	0.17515	0.17536	60020.2	223501.38	302346.2		0.00209	
150	150	450	600	64	100000000			0	29.5911	0.12986	0.12944	0.12957	194264.96	258172.5	344580.34		-0.00207	
150	150	450	600	128	100000000		66.64566	0	66.64566	0.51748	0.51817	0.51874	36064.9	108654.66	146795.44			
150	150	450	600	128	100000000		50.84066	0	50.84066	0.34399	0.3452	0.34532	75700.36	216002.56	286744.34		0.00209	
150	150	450	600	128	100000000			0	31.82792	0.25694	0.25722	0.25737	147973	258912.8	348467.82			
600	150	450	150	64	100000000		74.20734	0	74.20734	0.35814	0.38697	0.26215	104935.18	73365.22	28387.62		-0.00141	
600	150	450	150	64	100000000		49.68963	0	49.68963	0.21033	0.22679	0.17412	491713.02	133301.62	45330		-0.00353	
600	150	450	150	64	10000000	1000	31.99804	0	31.99804	0.13317	0.13402	0.12951	424488.96	256770.1	86573.1			
600	150	450	150	128	100000000		76.6031	0	76.6031	0.71806	0.77081	0.51775	140712.56	114448.36	43204.78			
600	150	450	150	128	100000000		52.50524	0	52.50524	0.47249	0.51126	0.34368	219673.08	270427.16	98557.9	-0.00226	-0.00353	
600	150	450	150	128	10000000			0	32.06684	0.26135	0.26234	0.25726	422491.92	258191.26	85348.28			
600	150	450	600	64	10000000		79.66835	0	79.66835	0.36033	0.38739	0.26384	220319.6	66360.78	144073.14		0.00025	-0.00086
600	150	450	600	64	10000000		70.69482	0	70.69482	0.22593	0.23897	0.17464	126897.84	74710.62	102914.34			0.00106
600	150	450	600	64	100000000			0	55.3634	0.13291	0.1334	0.13162	255797.56	187494.38	249237.76		-0.0085	0.00275
600	150	450	600	128	100000000		79.58856	0	79.58856	0.67239	0.77029	0.51877	67990.2	46567.02	103916.74		0.00025	-0.00086
600	150	450	600	128	100000000		67.0717	0	67.0717	0.47176	0.50473	0.34639	110777.72	185365.8	257259.56		-0.00076	
600	150	450	600	128	100000000	1000	56.31989	0	56.31989	0.26047	0.26055	0.25921	337029.38	163203.22	216796.3	-0.0144	-0.0085	0.00275

Tabela 9: Valores teóricos e simulados do atraso e da probabilidade de perda de pacotes utilizando a aproximação de Kleinrock ⁷

Analisando agora os resultados obtidos e mostrados na tabela acima, é possível verificar que apenas não há perdas de pacotes num único caso,

⁷Todos os valores das tabelas são uma média de várias amostras

quando o routing speed é 1000 pacotes por segundo e a soma dos pacotes num nó nos dois sentidos não ultrapassa esse valor que é o caso em que os valores de λ são, 150 no sentido LAN A - Internet, 150 no sentido LAN B - Internet, 450 no sentido Internet - LAN A e 150 no sentido Internet - LAN B.

Note-se ainda que tal como se verificou anteriormente, o cálculo do atraso recorrendo à aproximação de Kleinrock, apenas não falha nos casos onde não há perdas de pacotes.

Mais uma vez se verifica que não existe perdas de pacotes nos Links, pois estes têm uma largura de banda suficiente para que não se perca nada. Verifica-se ainda que a probabilidade de perdas vai aumentando consoante os valores de λ , pacotes por segundo, vão aumentando, o que é normal dado os valores de routing speed utilizados, para que os Nodes suportassem, este aumento de pacotes por segundo, seria necessário melhorar o processamento dos routers. Esta solução é válida pois se pode verificar a mesma através da comparação da perda de pacotes para routing speed diferentes.

As fórmulas utilizadas para o cálculo dos atrasos com a aproximação de Kleinrock foram as seguintes:

$$\begin{aligned} WkABI &= \left(\frac{\lambda_{AI}}{\mu_R - \lambda_{AI} - \lambda_{IA}}\right) + \left(\frac{\lambda_{AI}}{\mu_L - \lambda_{AI}}\right) + \left(\frac{\lambda_{BI}}{\mu_R - \lambda_{BI} - \lambda_{IB}}\right) + \left(\frac{\lambda_{BI}}{\mu_L - \lambda_{BI}}\right) \\ &+ 2 \times \left(\frac{\lambda_{ABI}}{\mu_R - \lambda_{ABI} - \lambda_{IBA}}\right) + 2 \times \left(\frac{\lambda_{ABI}}{\mu_L - \lambda_{ABI}}\right) \\ WkIA &= 2 \times \left(\frac{\lambda_{IBA}}{\mu_R - \lambda_{IBA} - \lambda_{ABI}}\right) + \left(\frac{\lambda_{IBA}}{\mu_L - \lambda_{IBA}}\right) + 2 \times \left(\frac{\lambda_{IA}}{\mu_L - \lambda_{IA}}\right) + \\ \left(\frac{\lambda_{IA}}{\mu_R - \lambda_{IA} - \lambda_{AI}}\right) \\ WkIB &= 2 \times \left(\frac{\lambda_{IBA}}{\mu_R - \lambda_{IBA} - \lambda_{ABI}}\right) + \left(\frac{\lambda_{IBA}}{\mu_L - \lambda_{IBA}}\right) + 2 \times \left(\frac{\lambda_{IB}}{\mu_L - \lambda_{IB}}\right) + \\ \left(\frac{\lambda_{IB}}{\mu_R - \lambda_{IB} - \lambda_{BI}}\right) \end{aligned}$$

A primeira fórmula, calcula o atraso existente, desde as LAN's A e B para a Internet. A única diferença em relação à fórmula utilizada no exercício 13 é que agora no cálculo dos atrasos nos Nodes, tem de se ter em consideração

o valor de λ que passa no Node no sentido da Internet, e o valor λ que passa no sentido das LAN's A e B. Nesta primeira fórmula, calcula-se o atraso nos Nodes, tendo agora em conta o fluxo de pacotes nos dois sentidos e calcula-se ainda os atrasos nos Links.

A segunda fórmula, corresponde ao atraso existente no fluxo de pacotes desde a Internet para a LAN A. Nos Nodes, continua-se a calcular o atraso tendo em conta os dois sentidos e nos Links calcula-se o atraso normal, pois cada Link é unidirecional.

A terceira e última fórmula é semelhante à anterior, sendo esta referente ao tráfego que vai desde a Internet para a LAN B.