

ENSACO 250 POWDER

a product of M.M.M. Carbon

ا مرمداد

Carbon black

TECHNICAL BULLETIN

Applications

Plastics "
Silicon Rubber
Paints

General characteristics

Formula: Carbon

Appearance: fine black powder

CAS nº: 1333-86-47

Standard packaging

7.5 kg bags 44 bags on one patiet

Typical data

	Average Particle Size determined by TEM	nm	40_<
	Nitrogen Surface Area ASIM D-3037	m²/g	62.)
	DBP Absorption (") ASIM D-2414	ml/100g	290
	24M4 DBP Absorption (*) AJIM 0-3493	wN1‱	110
ł	Density (in the bag)	Kg/m³	200
	Ash Content ASIM D-1506	%	0.01
1	Heating loss ASTM D-1509	%	0.10
	Volatiles Content (1854) to 9004(C)	%	0.15
3	Sieve Residue 325 mesh sieve and on 500 g DIN 53 580	ppm .	2 · · .
	·		

(*) DBP Absorption determined by an Absorptometer equipped with a very soft, special spring and a caption black weight of 10g.

0.01

CARBON

Sulfur content

- Hoodquarters, marketing & sales

MMM s.a.

Av. Louise 534, 8te 7 - 1050 Brussets - Belgium TeL : (33-2) 627, 55°11 - Fex : (32-2) 627, 53, 93 - Tx : 21689 b Pont

MMM Carbon

Appeldonistront, 173, 2830 Wilebroek - Belgium Jel.; (32-3),886 71,81, Fox: (32-3),886,42,73 All intermedian, recommendations and suppositions oppositing in this business. Concerning the use of our products are based upon tests and data believed to be socialize, however, it is the user's responsibility to desemble the suddishy for his own are of the products described hereby. Since the occludium by others is beyond our context, no guerrantee, expressed or injoined, is made by MAMA Control or shaked Recording the effects of such use or the sessits to be-obstance on described Recording the effects of such use or the sessits to be-obstance or described. Recording the effects of such use or the sessits to be-obstance or described when the session of the session of the session of the session of the described or complete since and discontinuous many to be reconstruct or described when porticular or escriptional genetitions or circumstances said or becomes of applicable lose or government regulations, Nothing heads considered is to be constance to eventicate or one encommendation to individe one position.

US 6,627,693 B1

5

Property	ACTD4 Research	
	·	
Tint	D-3765	
OBP	D-2414	
N ₂ SA	D-3037	
		I ₂ No. D-1510 CTAB D-3765 Tint D-3265 DBP D-2414

Table 1 sets forth the analytical properties of the carbon blacks of compounds 1-9. Compounds 2-9 contain furnace carbon blacks of the present invention. Compound 1 contains a conventional furnace carbon black control.

	TABLE 1								
	1 N650	2 A	,3 B	4 C:	5 D	6 E	7 F	8 G	9
[NO	36	82	121	258	258	258	356	125	150
DBP	122	102	114	117	105	64	133	60	143
Tint	56	103	115	148	153	151	141	138	146
CTAB	38	82	111	167	211	240	251	125	150
N ₂ SA	38	83	119	200	220	230	367	125	150

1 = STERLING VH; 2 = VULCAN 3; 3 = VULCAN 6; 4 = BP200; 5 = BP800; 6 = BP900; 7 = CRX1449; 8 = REGAL 660; and 9 = CRX1444, all tradenames of Cabot Corporation.

The effectiveness and advantages of the present invention will be further illustrated by the rubber compositions set of forth in compounds 1-9. Table 2 sets forth the formulations of compounds 1-9. In preparing the rubber compositions, the method of mixing the components comprising the rubber composition is not critical. Any conventional method of mixing may be employed. In the present case, the mixing was performed in a Banbury mixer (1575 cc volume) utilizing the following procedure:

	STAGE 1:		
	"BR" Banbury, 77RPM, 32° C. Water, 40PSI Ram		
0,	Load NR, BR		
30"	Load Black, Zinc Oxide, Stearic Acid, TMQ, 6PPD, Wax		
280° F.	Sweep, Add oil, increase RPM to 115		
300° F.	Dump, Sheet off on mill		

STAGE 2

On 49° C. Mill:

Add MB to mill and band; Add TBBS and sulfur; $\delta \times 6$ Milling

TABLE 2

Ingredient	PHR
Natural Rubber	40
BR	60
Carbon Black	*as indicated
Naphthenic Oil	*as indicated
Zinc Oxide	5
Stearic Acid	2
TMQ	1.5
6 PPD	1.5

TABLE 2-continued

 Ingredient	PHR	
 Wax	1.5	
TBBS	1.5	
Sulfur	1.2	5

The following test procedures were used to evaluate the physical properties of the rubber compositions of compounds 1-9:

15	Modulus, tensile, and clongation at break	D-412
	Flex Patigue-Cut Growth	MERL Mk IV, Sinusoidal mode, tested at 43° C.
	Abrasion Resistance Rebound	Akron Angle Abrader, 20° angle D-1054
20	Gloss Jetness	BYK-Gardner Micro TKI Gloss Meter (funter Labecan 6000, 10°, D65 CIELAB Color Space

Most importantly, gloss was measured on tensile slabs not subjected to water using a BYK-Gardner Micro TKI Gloss meter under light reflecting at a 60° angle. Jetness was measured by the Hunter Labscan 6000, 10 degree, D65 CIELAB Color Space, measuring each compound versus a control sample containing N650 at 55 phr. Each compound was scanned for jetness (L*) five times, and the average reported.

Flex Fatigue-Cut growth was tested using a MERLMk IV Crack Growth Fatigue Machine under simusoidal mode at 43° C. +-3° C. with various strains to give varying tearing energies. The test piece is a vulcanized strip of rubber containing a man made incision.

Table 3 sets forth the physical properties of the rubber compositions of selected compounds. The results show that the rubber compositions containing carbon black D, under the present invention, exhibit higher gloss and lower jetness as compared with rubber compositions of compound 1 utilizing the control furnace black ASTM N650. The Table 3 data further shows that the rubber compositions of the present invention may contain lower loadings of carbon black when compared to the compositions utilizing the control ASTM N650 carbon black. The results also indicate that rubber compositions prepared with the furnace carbon blacks of the present invention exhibit critical physical 50 properties such as flex fatigue (crack growth) comparable with those possessed by the compositions containing the control carbon black, N650. The results further indicate that the compositions containing the carbon blacks of the present invention show comparable results in critical properties such as tensile strength and advantages in abrasion resistance. These failure properties can be of particular advantage in nubber articles which come into contact with abrasive or sharp surfaces, such as tire sidewalls. The Figure shows tearing energy versus cut growth, demonstrating the advan-60 tage in flex fatigue at all tearing energies for the rubber compositions of the present invention when compared to the control, N650. Last, it is noted that the rubber compositions containing the carbon blacks of the present invention exhibit higher hysteresis (lower rebound), but lower loadings of the 65 carbon blacks of the present invention minimize this apparent deficiency while maintaining a very high level of reinforcement.