Linear Algebra

Cody Vig

January 2022

Preliminary Assessment

- 1. (a) Is the set of polynomials of degree $n \in \mathbb{Z}_{\geq 0}$ over a field \mathbb{F} a vector space? If it is, prove it. If it is not, state which axioms are not satisfied and provide counterexamples. Solution. No, the set of polynomials of degree $n \in \mathbb{Z}$ over a field \mathbb{F} is not a vector space. The set is not closed. For example, x^2 and $-x^2$ are in $P_2(\mathbb{R})$ but $x^2 + (-x^2) = 0$ is not.
 - (b) Prove that the set of polynomials of degree at most n is a vector space. You may assume that the set of continuous functions $\mathscr{C}(\mathbb{F})$ in \mathbb{F} is a vector space. Why is this helpful? Solution. Since $P_n(\mathbb{R}) \subseteq \mathscr{C}(\mathbb{F})$, it is sufficient to prove that $P_n(\mathbb{R})$ is nonempty and closed under addition and scalar multiplication. Since the identity function $\mathrm{id}_{\mathscr{C}(\mathbb{F})}$ can be regarded as a polynomial of degree 0, $\mathrm{id}_{\mathscr{C}(\mathbb{F})} \in P_n(\mathbb{F})$ for any n and so $\mathrm{id}_{\mathscr{C}(\mathbb{F})}$ is nonempty. Let p and q be in $P_n(\mathbb{F})$ and c be in \mathbb{F} . Then we can write

$$p(t) := \sum_{i=0}^{n} a_i t^i$$
 ; $q(t) := \sum_{i=0}^{n} b_i t^i$

where the a_i and b_i are elements of \mathbb{F} , then

$$[p+q](t) = \sum_{i=0}^{n} (a_i + b_i)t^i$$
 ; $[cp](t) = \sum_{i=0}^{n} (ca_i)t^i$

Hence p+q and cp are also elements of $P_n(\mathbb{F})$. Hence $P_n(\mathbb{F})$ is closed under addition and scalar multiplication and so $P_n(\mathbb{F})$ is indeed a vector space.

In what follows, let $P_2(\mathbb{R})$ be the vector space of polynomials of degree at most 2 and \mathbb{V} denote the subset of $P_2(\mathbb{R})$ such that:

$$\int_0^1 p(t) \, \mathrm{d}t = 0.$$

(c) Prove that \mathbb{V} is a subspace of $P_2(\mathbb{R})$.

Solution. Since $0 \in P_2(\mathbb{R})$ and $\int_0^1 0 \, dt = 0$, we have $0 \in \mathbb{V}$ and so \mathbb{V} is nonempty. Suppose p and q are elements of bV and c is real. Then $\int_0^1 p(t) \, dt = 0 \int_0^1 q(t) \, dt$, and so

$$\int_0^1 (p(t) + q(t)) dt = \int_0^1 p(t) dt + \int_0^1 q(t) dt = 0 + 0 = 0$$

and

$$\int_0^1 cp(t) dt = c \int_0^1 p(t) dt = c \cdot 0 = 0.$$

Hence p+q and cp are also elements of \mathbb{V} . This proves that \mathbb{V} is closed under addition and multiplication, and so \mathbb{V} is indeed a vector space.

1

(d) Construct a basis for \mathbb{V} and prove it is indeed a basis. What is the dimension of \mathbb{V} ? Solution. Any element p of $P_2(\mathbb{R})$ can be written as $p(t) = a_0 + a_1t + a_2t^2$. If p is in \mathbb{V} , then

$$0 = \int_0^1 p(t) dt = \int_0^1 \left(a_0 + a_1 t + a_2 t^2 \right) dt = a_0 + \frac{1}{2} a_1 + \frac{1}{3} a_2.$$

Hence if p is in \mathbb{V} , we may write $a_0 = -\frac{1}{2}a_1 - \frac{1}{3}a_2$, and so

$$p(t) = a_0 + a_1 t + a_2 t^2 + \left(-\frac{1}{2}a_1 - \frac{1}{3}a_2\right) + a_1 t + a_2 t^2 = \frac{a_1}{2}(2t - 1) + \frac{a_2}{3}(3t^2 - 1).$$

Recall that a basis for a vector space is any set which is linearly independent and which spans the vector space. By construction, $\beta := \{2t-1, 3t^2-1\}$ spans \mathbb{V} , so we need only verify that β is linearly independent. But since $(2t-1) \neq c(3t^2-1)$ for any real c, the vectors are indeed linearly independent. Hence β is a basis for \mathbb{V} , and so dim $\mathbb{V} = |\beta| = 2$.

2. Let $P_n(\mathbb{F})$ be the vector space of polynomials of degree at most n with coefficients in a field \mathbb{F} . Define the transformation $T: P_3(\mathbb{R}) \to P_2(\mathbb{R})$ by

$$T(p(t)) = 2p'(t) - 3p''(t).$$

(a) Prove that T is a linear transformation.

Solution. It is sufficient to show that for any p and q in $P_3(\mathbb{R})$ and a in \mathbb{R} that

$$T(ap+q) = aT(p) + T(q).$$

We have

$$T(ap+q) = 2(ap(t)+q(t))' - 3(ap(t)+q(t))'' = 2ap'(t) + 2q'(t) - 3ap''(t) - 3q''(t)$$
$$= a[2p'(t) - 3p''(t)] + [2q'(t) - 3q''(t)] = aT(p) + T(q),$$

hence T is indeed linear.

(b) Find a basis for the nullspace of T.

Solution. If $p(t) := a + bt + ct^2 + dt^3$ in an element of the nullspace of T, then we have

$$0 = T(p) = 2[b + 2ct + 3dt^{2}] + 3[2c + 6dt] = (2b + 6c) + (4c + 18d)t + (6d)t^{2}$$

Hence d=c=b=0. The constant term a need not be specified, so every term in the nullspace of T has the form p(t)=a for some real a. Hence $N(T)=\mathrm{span}\{1\}$ and so a basis for the nullspace of T is $\{1\}$.

(c) Given the bases $\beta := \{1, t, t^2, t^3\}$ and $\gamma := \{1, t-1, t^2-1\}$ for $P_3(\mathbb{R})$ and $P_2(\mathbb{R})$ respectively, determine the matrix $[T]^{\gamma}_{\beta}$ which represents T. That is, if v is a vector in $P_3(\mathbb{R})$, w = T(v), and $[v]_{\beta}$ represents the coordinates of v in the β -basis, find the matrix $[T]^{\gamma}_{\beta}$ for which $[w]_{\gamma} = [T]^{\gamma}_{\beta}[v]_{\beta}$.

Solution. Recall that the i'th column of $[T]^{\gamma}_{\beta}$ is just $[T(\beta_i)]_{\gamma}$. We have

$$T(\beta_1) = T(1) = 0$$
 $\Longrightarrow [T(\beta_1)]_{\gamma} = (0, 0, 0)^{\top}$
 $T(\beta_2) = T(t) = 2$ $\Longrightarrow [T(\beta_2)]_{\gamma} = (2, 0, 0)^{\top}$
 $T(\beta_3) = T(t^2) = 4t - 6$ $\Longrightarrow [T(\beta_3)]_{\gamma} = (-1, 4, 0)^{\top}$

$$T(\beta_4) = T(t^3) = 6t^2 - 18t \implies [T(\beta_4)]_{\gamma} = (-12, -18, 6)^{\top}.$$

So,

$$[T]_{\beta}^{\gamma} = \begin{pmatrix} 0 & 2 & -2 & -12 \\ 0 & 0 & 4 & -18 \\ 0 & 0 & 0 & 6 \end{pmatrix}$$

is the matrix which represents the transformation.

- 3. Let $\beta := \{(1,1), (1,-1)\}$ and $\beta' := \{(2,4), (3,1)\}.$
 - (a) Verify that β and β' are bases for \mathbb{R}^2 . Solution. Since dim $\mathbb{R}^2 = 2$, we need only show the sets are linearly independent. Since each set only has two elements, the are (each) linearly independent if and only if neither vector is a multiple of the other. Since $(1,1) \neq c(1,-1)$ for any real c, β is linearly independent and hence a basis for \mathbb{R}^2 . Similarly, $(2,4) \neq c(3,1)$ for any real c, so β' is linearly independent and hence is a basis for \mathbb{R}^2 .
 - (b) Construct the matrix Q which changes β' -coordinates to β -coordinates. That is, if $v \in \mathbb{R}^2$ and $[v]_{\beta}$ represents the coordinates of v in the β -basis, determine the matrix Q such that $[v]_{\beta} = Q[v]_{\beta'}$.

Solution. Recall that to form the change-of-basis matrix from β' to β , we need to write the elements of the β' basis in terms of the β basis. The reader can verify that

$$(2,4) = 3(1,1) - 1(1,-1)$$

 $(3,1) = 2(1,1) + 1(1,-1)$.

Hence:

$$Q = \begin{pmatrix} 3 & -1 \\ 2 & 1 \end{pmatrix}$$

is the matrix which maps β' -coordinates to β -coordinates.

4. Let $M_n(\mathbb{F})$ denote the vector space of $n \times n$ matrices over a field \mathbb{F} and define $T: P_2(\mathbb{R}) \to M_2(\mathbb{R})$ by

$$T(f(x)) = \begin{pmatrix} f(1) - f(2) & 0 \\ 0 & f(0) \end{pmatrix}.$$

Find a basis for the range R(T) of T and a basis for the nullspace N(T) of T. Verify that $\dim R(T) + \dim N(T) = 3 = \dim P_2(\mathbb{R})$.

Solution. To find the range, it is sufficient to compute $T(\beta_i)$ for each β_i in a given basis $\beta \subset P_2(\mathbb{R})$ and determine its span. Let $\beta = \{1, t, t^2\}$ be the standard basis for $P_2(\mathbb{R})$. Then

$$T(1) = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \quad ; \quad T(t) = \begin{pmatrix} -1 & 0 \\ 0 & 0 \end{pmatrix} \quad ; \quad T(t^2) = \begin{pmatrix} -3 & 0 \\ 0 & 0 \end{pmatrix}.$$

Hence the span is

$$\operatorname{span}\{T(1), T(t), T(t^2)\} = \operatorname{span}\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\},\,$$

the generators of which can be taken as a basis for R(T). To determine a basis for N(T), we suppose $p(t) = a + bt + ct^2$ is an element of N(T) and determine conditions on a, b, and c. Indeed,

$$0 = T(p(t)) = \begin{pmatrix} -b - 3c & 0\\ 0 & a \end{pmatrix}.$$

For equality to hold, we require a = 0 and b = -3c. Hence, if $p(t) = a + bt + ct^2$ is an element of N(T), then

$$p(t) = (-3c)t + ct^2 = c(t^2 - 3t).$$

Thus $N(T) = \operatorname{span}\{t^2 - 3t\}$ and so a basis for N(T) is $\{t^2 - 3t\}$. Note that $\dim R(T) + \dim N(T) = 2 + 1 = 3 = \dim P_2(\mathbb{R})$, as expected.

5. Define the following matrix.

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 2 \end{pmatrix}.$$

Determine the eigenvalues of A. Use these eigenvalues to write $A = PDP^{-1}$ where D is a diagonal matrix and P is nonsingular.

Solution. The eigenvalues of A are just the roots λ of the characteristic polynomial $f_A(t) := \det(A - t\mathbb{I})$, where in this case \mathbb{I} is the 3×3 identity. We have

$$f_A(t) = \begin{vmatrix} 1 - t & 1 & 1 \\ 0 & 1 - t & 0 \\ 0 & 1 & 2 - t \end{vmatrix} = (1 - t)^2 (2 - t),$$

and so the eigenvalues are $\lambda_1 = 1$ (with algebraic multiplicity 2) and $\lambda_2 = 2$ (with algebraic multiplicity 1). We next construct a set of eigenvectors of A. For simplicity, we start with $\lambda_2 = 2$. An associated eigenvector is a nonzero vector $v_2 = (x_2, y_2, z_2)^{\top}$ such that $(A - \lambda_2 \mathbb{I})v_2 = 0$; that is,

$$\begin{pmatrix} -1 & 1 & 1 \\ 0 & -1 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

The second and third rows require $y_2 = 0$, and so the first requires $x_2 = z_2$. Setting $x_2 = 1$, we get an eigenvector of the form $v_2 = (1, 0, 1)^{\top}$. Moving to $\lambda_1 = 1$, the associated eigenvectors are of the form $v_1 = (x_1, y_1, z_1)^{\top} \neq 0$ such that $(A - \lambda_1 \mathbb{I})v_1 = 0$; that is,

$$\begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

There are two degrees of freedom here, since the first and third rows require $x_2 = -x_3$ and the second requires nothing of x_1 . Setting $x_1 = \alpha$ and $x_2 = \beta$ for arbitrary real α and β , we find that the λ_1 -eigenspace of A is the set of all vectors of the form $\alpha(1,0,0)^{\top} + \beta(0,1,-1)^{\top}$, i.e., that the eigenspace has a basis $\{(1,0,0)^{\top}, (0,1,-1)^{\top}\}$. Hence λ_1 has geometric multiplicity 2. Since the algebraic multiplicity of λ_1 equals the geometric multiplicity of λ_1 , A is indeed diagonalizable, and we have

$$A = \underbrace{\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix}}_{P} \underbrace{\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}}_{D} \underbrace{\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix}^{-1}}_{P}$$

which is the decomposition we wanted.

6. Suppose $\{v_1, \ldots, v_n\}$ is an orthogonal set of vectors. Let $\|\cdot\|$ denote the norm generated by the inner product $\langle\cdot,\cdot\rangle$. Prove

$$\left\| \sum_{i=1}^{n} a_i v_i \right\|^2 = \sum_{i=1}^{n} |a_i|^2 \|v_i\|^2,$$

where a_1, \ldots, a_n are scalars.

Solution. For any vector v in an inner product space, recall $||v||^2 = \langle v, v \rangle$. Using the linearity in the right argument and conjugate linearity in the left, we have

$$\left\| \sum_{i=1}^{n} a_i v_i \right\|^2 = \left\langle \sum_{i=1}^{n} a_i v_i, \sum_{j=1}^{n} a_j v_j \right\rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} a_i^* a_j \langle v_i, v_j \rangle.$$

If $\{v_1,\ldots,v_n\}$ is an orthogonal set, then $\langle v_i,v_j\rangle=0$ whenever $i\neq j$. Hence, we have

$$\left\| \sum_{i=1}^{n} a_i v_i \right\|^2 = \sum_{i=1}^{n} \sum_{i=1}^{n} a_i^* a_j \langle v_i, v_j \rangle = \sum_{i=1}^{n} a_i^* a_i \langle v_i, v_i \rangle = \sum_{i=1}^{n} |a_i|^2 \|v_i\|^2,$$

which completes the proof.

7. Let \mathbb{V} be a finite-dimensional inner product space over \mathbb{C} and suppose $T: \mathbb{V} \to \mathbb{V}$ is linear. Then there exists a unique linear transformation $T^*: \mathbb{V} \to \mathbb{V}$ (called the *adjoint* of T) such that $\langle T(v), w \rangle = \langle v, T^*(w) \rangle$ for all v, w in \mathbb{V} . Using only the definition above and the axioms of an inner product, show that if $T = T^*$, then the eigenvalues of T are real.

Solution. Suppose v is an eigenvector of T, i.e., suppose that there exists a $\lambda \in \mathbb{C}$ such that $T(v) = \lambda v$. Note that since v is an eigenvector, $v \neq 0$. Then

$$\lambda \langle v, v \rangle = \langle v, \lambda v \rangle = \langle v, T(v) \rangle = \langle T(v), v \rangle = \langle \lambda v, v \rangle = \lambda^* \langle v, v \rangle.$$

Hence $(\lambda - \lambda^*)\langle v, v \rangle = 0$. Since $v \neq 0$, $\langle v, v \rangle \neq 0$; hence $\lambda = \lambda^*$, i.e., λ is real.

8. Consider the vector space $\mathbb{V} := \{p(t) = a + bt^2 \mid a, b \in \mathbb{R}\}$. Let ω_1 and ω_2 be linear functionals on \mathbb{V} such that $\omega_1\{p(t)\} = p(1)$ and $\omega_2\{p(t)\} = p(2)$. Find the basis for \mathbb{V} for which $\{\omega_1, \omega_2\}$ is the dual basis.

Solution. Suppose the basis for which $\{\omega_1, \omega_2\}$ is dual is $\{v_1, v_2\}$. Then by definition, we have $\omega_i\{v_j\} = \delta_{ij}$, the Kronecker delta. Given the structure of \mathbb{V} , we know $v_j = a_j + b_j t^2$ for as-yet unknown constants a_j and b_j , j = 1, 2. This gives us four equations:

$$\omega_1\{v_1\} = v_1(1) = a_1 + b_1 = \delta_{11} = 1$$
 $\omega_1\{v_2\} = v_2(1) = a_2 + b_2 = \delta_{21} = 0$ $\omega_2\{v_1\} = v_1(2) = a_1 + 4b_1 = \delta_{12} = 0$ $\omega_2\{v_2\} = v_2(2) = a_2 + 4b_2 = \delta_{22} = 1$

Going through the algebra, one finds that

$$\{v_1, v_2\} = \left\{\frac{4}{3} - \frac{1}{3}t^2, -\frac{1}{3} + \frac{1}{3}t^2\right\}$$

is the basis for \mathbb{V} to which $\{\omega_1, \omega_2\}$ is dual.