CSCI 3753 Operating Systems Spring 2016

William Mortl, MS & Rick Han, PhD Department of Computer Science University of Colorado at Boulder

What is an Operating System?

- Name some OSs:
 - Windows, Linux, Mac OS X,
 Google Android, ...
 - >500 at http://www.operatingsystem.org/betriebssystem/_englis h/os-liste.htm
 - >600 versions of Linux! i.e. over
 600 distributions of Linux.
- What is common across these OSs?

Applications

Operating System

Hardware

 An operating system is a layer of software between applications and hardware that provides useful services to applications

OS Historical Timeline

- 1930s/40s electronic digital computers arise (ENIAC 1946 is 1st general-purpose programmable digital computer)
- 1950s 1st OSs begin to emerge
- 1961 MIT's CTSS is the first time-sharing system
- 1966 IBM System/360 mainframe OS
- 1969 UNIX for mainframes and minicomputers
- 1981 MS-DOS OS for personal computers
- 1982 4.2 BSD Unix with TCP/IP networking
- 1984 Mac OS with windowing GUI
- 1991 Linux open source OS for PC
- Late 1990s/early 2000s virtual machines arise like VMWare, Xen,

...

• 2007 – iOS for iPhone

Global market share held by operating systems Desktop PCs from January 2012 to December 2015

Source: © Statista 2016 Additional Information:

Worldwide

Windows approximately 86%

UNIX OS Family Tree

What is an Operating System? (2)

- Name some types of applications
 - Web browers, video players, games, Office apps, ...

- Name different kinds of Input/Output (I/O) devices
 - Mouse, keyboard, display, disk, ...

Other devices include: wired network card, WiFi, camera, microphone, audio output, keyboard, DVD/CD, USB, etc.

What is an Operating System? (3)

- An operating system is a layer of software between many applications and diverse hardware that
 - 1. Provides a hardware abstraction so an application doesn't have to know the details about the hardware.
 - So an application saving a file to disk doesn't have to know how the disk operates

Other devices not shown

What is an Operating System? (4)

- 2. Arbitrates access to resources among multiple applications:
 - Sharing of resources
- 3. Provides Protection:
 - Isolation protects app's from each other
 - Isolation also to protect the OS from applications
 - Isolation to limit resource consumption by any one app

Other devices not shown

Operating System Components

- A typical operating system consists of multiple components
 - A process manager
 with a scheduler,
 thread management,
 and atomic
 synchronization
 - Memory management (virtual memory) system
 - file system
 - device management

Not pictured above in the OS: the network stack manager, etc.

Operating System Hierarchy

 OS components may be built on top of other OS components

- The file system is usually built on top of the device manager
 - File system supports high level abstraction/concept of files
 - Device manager handles low level interaction with devices

Not pictured above in the OS: the network stack manager, etc.

ABI

- <u>ABI</u> Application Binary Interface
 - Interface between a compiled executable and the operating system which loads it
 - Size, layout, and bit alignment of data types
 - Calling convention (how values are passed and returned, what register)
 - How an application makes system calls to the operating system
 - This is why applications compiled for Mac OSX will not run on Linux

API

- API Application Programming Interface
 - Libraries, protocols, tools, functions, and objects for building programs and applications
 - Operating systems export an API, as do various add on libraries and toolkits (databases, hardware devices, etc.)
 - An API can be web based via web service calls, track a package on UPS:

https://www.ups.com/content/us/en/tracking/tools/index.html?WT.svl

Are System Libraries/Tools part of an

What's in an OS? Monolithic vs Microkernel OS Architectures

- Linux has a monolithic kernel
 - The kernel is highly complex and contains many components
- Mach OS has a microkernel

niversity of Colorado **Boulder**

- The kernel has minimal functionality, perhaps only virtual memory, scheduler, and IPC message passing
 - All other components are viewed as outside the OS, and communicate via message passing.
- Advantage: bug in a component doesn't crash whole kernel, arguably easier to manage
- Disadvantage: message passing was slow
- Mac OSX is a hybrid of Mach and BSD Unix

Distributed Operating Systems

- Example 2:
 - App1 is a distributed client server app, e.g. App1 on left is Web browser, App1 on right is Web server

- Example 1: Distributed
 File System
 - OS addsTCP/IPNetworkStack
 - Device driver support for networking cards
 - Files can now be written/read remotely

Outline of the OS course

- Hardware support, user/supervisor mode, system calls, trap table, device I/O, interrupts, DMA, mem-mapped I/O
- 2. Processes, threads, scheduling, synchronization, deadlock
- 3. Memory management, paging, virtual memory
- 4. File system design, allocation, networked file systems
- 5. Security: authorization, access control
- 6. Networked OSs: distributed file systems
- 7. Virtual machines
- 8. Network programming APIs
- 9. Windows / Mac OSX / iOS / Android Architecture (time permitting)

Operating System Trends

- Hardware has evolved quickly OS must adjust
 - Moore's Law roughly applies to CPU speed and/or memory size: doubles every 18 months => exponential!
 - Enables complex modern operating systems like Linux, Windows, UNIX, OS X

Storage Evolution:

Punch card stores code 1950s-80s

Tape Drive 1950s-80s

Disk Drive 1960s-2000s

??

Flash Drive already at 32 GB @ \$16=> OS disk scheduling obsolete??

But Moore's Law doesn't apply to disk access speed or to battery life

Operating System Trends

- Diversification of OS's to many different target environments
 - Energy-efficient cell phone OSs scaling down
 - iPhone's iOS, Google's Android, ...
 - Multi-processor OSs scaling up
 - Adapting Linux and Windows to multiple cores. Massively parallel supercomputers.
 - Real-Time OS for Embedded and Multimedia Systems
 - VXWorks, robotic OSs, ...

Operating System Trends

- Virtualization Virtual Machines (VMs)
 - Running a Windows VM inside a Linux OS, and vice versa.
 - More layers of abstraction
- Cloud computing rents VMs on racks of PCs at a massive scale
 Google Data Center in The Dalles, Oregon

Size of footballs

Cloud Computing

