
Sequence Listing was accepted.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: Durreshwar Anjum

Timestamp: [year=2009; month=2; day=3; hr=13; min=58; sec=53; ms=90;]

Validated By CRFValidator v 1.0.3

Application No: 10551508 Version No: 2.0

Input Set:

Output Set:

Started: 2009-01-20 11:32:51.220 **Finished:** 2009-01-20 11:32:52.960

Elapsed: 0 hr(s) 0 min(s) 1 sec(s) 740 ms

Total Warnings: 18
Total Errors: 0

No. of SeqIDs Defined: 18

Actual SeqID Count: 18

Error code		Error Description
W	213	Artificial or Unknown found in <213> in SEQ ID (1)
W	213	Artificial or Unknown found in <213> in SEQ ID (2)
W	402	Undefined organism found in <213> in SEQ ID (3)
W	402	Undefined organism found in <213> in SEQ ID (4)
W	402	Undefined organism found in <213> in SEQ ID (5)
W	402	Undefined organism found in <213> in SEQ ID (6)
W	402	Undefined organism found in <213> in SEQ ID (7)
W	402	Undefined organism found in <213> in SEQ ID (8)
W	402	Undefined organism found in <213> in SEQ ID (9)
W	402	Undefined organism found in <213> in SEQ ID (10)
W	402	Undefined organism found in <213> in SEQ ID (11)
W	402	Undefined organism found in <213> in SEQ ID (12)
W	402	Undefined organism found in <213> in SEQ ID (13)
W	402	Undefined organism found in <213> in SEQ ID (14)
W	402	Undefined organism found in <213> in SEQ ID (15)
W	402	Undefined organism found in <213> in SEQ ID (16)
W	213	Artificial or Unknown found in <213> in SEQ ID (17)
W	213	Artificial or Unknown found in <213> in SEQ ID (18)

SEQUENCE LISTING

<210>

3

<211> 1454

```
<110>
         KIM, Young Tae
         LEE, Jae Hyung
<120>
         Gene involved in the biosynthesis of carotenoid and marine % \left( 1\right) =\left( 1\right) \left( 1\right) 
         microorganism, paracoccus haeundaesis, producing the
         carotenoid
         428.1056
<130>
<140> 10551508
<141> 2009-01-20
       PCT/KR2004/000752
<150>
<151>
         2003-03-31
<150>
         KR2003-20222
         2003-03-31
<151>
<150>
       KR2003-20023
<151>
         2003-03-31
<160>
         18
<170>
         KopatentIn 1.71
<210>
         1
<211>
         21
       DNA
<212>
<213>
       Artificial Sequence
<220>
<223>
        forward primer for Paracoccus haeundaesis 16S rDNA
<400>
         1
cataagtaat tatggttttg t
                                                                         21
<210>
      2
<211>
      18
<212>
       DNA
<213>
      Artificial Sequence
<220>
       reverse primer for Paracoccus haeundaesis 16S rDNA
<223>
<400>
cgcttcctta gaaaggag
                                                                         18
```

<212> DNA

<213> Paracoccus haeundaesis

<400> caacttgaga gtttgatcct ggctcagaac gaacgctggc ggcaggctta acacatgcaa 60 gtcgagcgag accttcgggt ctagcggcgg acgggtgagt aacgcgtggg aacgtgccct 120 tctctacgga atagccccgg gaaactggga gtaataccgt atacgccctt tgggggaaag 180 atttatcgga gaaggatcgg cccgcgttgg attaggtagt tggtggggta atggcccacc 240 aagccgacga tccatagctg gtttgagagg atgatcagcc acactgggac tgagacacgg 300 360 cccaqactcc tacqqqaqqc aqcaqtqqqq aatcttaqac aatqqqqqca accctqatct agccatgccg cgtgagtgat gaaggcctta gggttgtaaa gctctttcag ctgggaagat 420 aatgacggta ccagcagaag aagccccggc taactccgtg ccagcagccg cggtaatacg 480 gagggggcta gcgttgttcg gaattactgg gcgtaaagcg cacgtgggcg gactggaaag 540 600 tcagaggtga aatcccaggg ctcaaccttg gaactgcctt tgaaactatc agtctggagt tcgagagagg tgagtggaat tccgagtgta gaggtgaaat tcgtagatat tcggaggaac accagtggcg aaggcggctc actggctcga tactgacgct gaggtgcgaa agcgtgggga 720 gcaaacagga ttagataccc tggtagtcca cgccgtaaac gatgaatgcc agacgtcggc 780 840 aagcatgctt gtcggtgtca cacctaacgg attaagcatt ccgcctgggg agtacggtcg 900 caagattaaa actcaaagga attgacgggg gcccgcacaa gcggtggagc atgtggttta attcqaaqca acqcqcaqaa ccttaccaac ccttqacatq qcaqqaccqc tqqaqaqatt 960 cagetttete gtaagagace tgeacacagg tgetgeatgg etgtegteag etegtgtegt 1020 gagatgttcg gttaagtccg gcaacgagcg caacccacgt ccctagttgc cagcattcag 1080 ttgggcactc tatggaaact gccgatgata agtcggagga aggtgtggat gacgtcaagt 1200 teteatggee ettaegggtt gggetaeaea egtgetaeaa tggtggtgae agtgggttaa tccccaaaag ccatctcagt tcggattgtc ctctgcaact cgagggcatg aagttggaat 1260 cgctagtaat cgcggaacag catgccgcgg tgaatacgtt cccgggcctt gtacacaccg cccgtcacac catgggagtt ggttctaccc gacgacgctg cgctaacctt cggggggcag 1380 1440 gcggccacgg taggatcagc gactggggtg aagtcgtaac aaggtagccg taggggaacc tgcggctgga tcac 1454

<210> 4 <211> 6223 <212> DNA

<213> Paracoccus haeundaesis

<220>

<223> crt gene

<400>

gttccacgac tggggcatcc ccacgaccgc gtcgctgcgc gccatcgcgc cgatgatggg 60 gccggaccgg gttctggtcg ggtcgggcgg ggtgcgtcac gggctggacg ccgcgcgggc catcegecte ggegeggace tegtggggea ggeggeeege gegetgeeeg eegegegeea 180 cagegeegag geeetgteeg ateacetgte egaegtegtg acceagetge geategegat 240 300 360 gccgggtggc caatggtcgc aagcaacggg gatggaaacc ggcgatgcgg gactgtagtc tgcgcggatc gccggtccgg gggacaagat gagcgcacat gccctgccca aggcagatct 420 gaccgccacc agectgatcg tetegggegg catcategee gegtggetgg ceetgeatgt 480 gcatgcgctg tggtttctgg acgcggcggc gcatcccatc ctggcgatcg cgaatttcct 540 ggggctgacc tggctgtcgg tcggtctgtt cttcatcgcg catgacgcga tgcacgggtc ggtcgtgccg gggcgtccgc gcggcaatgc ggcgatgggc cagctggtcc tgtggctgta 660 tgccggattt tcgtggcgca agatgatcgt caagcacatg gcccatcacc gccataccgg 720 aaccgacgac gaccccgatt tcgaccatgg cggcccggtc cgctggtacg cgcgcttcat 780 eggeaectat tteggetgge gegagggget getgetgeee gteategtga eggtetatge 840 gctgatcctg ggggatcgct ggatgtacgt ggtcttctgg ccgctgccgt cgatcctggc gtcgatccag ctgttcgtgt tcggcacctg gctgccgcac cgccccggcc acgacgcgtt 960 1020 cccggaccgc cataatgcgc ggtcgtcgcg gatcagcgac cccgtgtcgc tgctgacctg ctttcacttt ggtggttatc atcacgaaca ccacctgcac ccgacggtgc cttggtggcg 1080 cctgcccagc acccgcacca agggggacac cgcatgacca atttcctgat cgtcgtcgcc 1140 acceptgctgg tgatggagtt gacggcctat tccgtccacc gttggatcat gcacggcccc ctgggctggg gctggcacaa gtcccaccac gaggaacacg accacgcgct ggaaaagaac 1260 gacctgtacg gcctggtctt tgcggtgatc gccacggtgc tgttcacggt gggctggatc 1320 tgggcgccgg tcctgtggtg gatcgctttg ggcatgaccg tctatgggct gatctatttc 1380 gtcctgcatg acgggctggt tcatcagcgc tggccgttcc gctatatccc gcgcaagggc 1440 tatgcccgcc gcctgtatca ggcccaccgc ctgcaccacg cggtcgaggg acgcgaccat 1500

tgcgtcagct	tcggcttcat	ctatgcgccg	ccggtcgaca	agctgaagca	ggacctgaag	1560
acgtcgggcg	tgctgcgggc	cgaggcgcag	gagcgcacgt	gacccatgac	gtgctgctgg	1620
caggggcggg	ccttgcgaac	gggctgatcg	ccctggcgct	gegegeggeg	cggcccgacc	1680
tgcgggtgct	gctgctggat	catgcggcgg	gaccgtcaga	cggccatacc	tggtcctgcc	1740
acgaccccga	tctgtcgccg	cactggctgg	cgcggctgaa	gcccctgcgc	cgcgccaact	1800
ggcccgacca	ggaggtgcgc	tttccccgcc	atgcccggcg	gctggccacc	ggttacgggt	1860
cgctggacgg	ggcggcgctg	gcggatgcgg	tggcccggtc	gggcgccgag	atccgctgga	1920
acagcgacat	cgccctgctg	gatgaacagg	gggcgacgct	gteetgegge	acccggatcg	1980
aggcgggcgc	ggtcctggac	gggcgcggcg	cgcagccgtc	gcggcatctg	accgtgggtt	2040
tccagaaatt	cgtgggcgtc	gagatcgaga	ccgactgccc	ccacggcgtg	ccccgcccga	2100
tgatcatgga	cgcgaccgtc	acccagcagg	acgggtaccg	attcatctat	ctgctgccct	2160
tctctccgac	gcgcatcctg	atcgaggaca	ctcgctattc	cgatggcggc	aatctggacg	2220
acgacgcgct	ggcggcggcg	tcccacgact	atgcccgcca	gcagggctgg	accggggccg	2280
aggteeggeg	cgaacgcggc	atcctgccca	ttgcgctggc	ccatgacgcg	gegggettet	2340
gggccgatca	cgcggagggg	cctgttcccg	tgggactgcg	cgcggggttc	tttcacccgg	2400
tcaccggcta	ttcgctgccc	tatgcggcgc	aggtggcgga	cgtggtggcg	ggcctgtccg	2460
ggccgcccgg	caccgacgcg	ctgcgcggcg	ccatccgcga	ttacgcgatc	gaccgggcac	2520
gccgtgaccg	ctttctgcgc	ctgctgaacc	ggatgctgtt	ccgcggctgc	gcgcccgacc	2580
ggcgctatac	cctgctgcag	cggttctacc	gcatgccgca	tggactgatc	gaacggttct	2640
atgccggccg	gctgagcgtg	gcggatcagc	tgcgcatcgt	gaccggcaag	cctcccattc	2700
cccttggcac	ggccatccgc	tgcctgcccg	aacgtcccct	gctgaaggaa	aacgcatgaa	2760
cgcccattcg	cccgcggcca	agaccgccat	cgtgatcggc	gcaggctttg	gcgggctggc	2820
cctggccatc	cgcctgcagt	ccgcgggcat	cgccaccacc	ctggtcgagg	cccgggacaa	2880
gcccggcggg	cgcgcctatg	tctggcacga	tcagggccat	gtcttcgacg	cgggcccgac	2940
cgtcatcacc	gaccccgatg	cgctcaagga	gctgtgggcg	ctgaccgggc	aggacatggc	3000
gcgcgacgtg	acgctgatgc	cggtgtcgcc	cttctatcga	ctgatgtggc	cgggcgggaa	3060
ggtcttcgat	tacgtgaacg	aggccgatca	gctggagcgc	cagatcgccc	agttcaaccc	3120
ggacgacctg	gaaggatacc	gccgcttccg	tgattacgcg	gaggaggtgt	atcaggaggg	3180
ctacgtcaag	ctgggcaccg	tgcccttcct	caagctgggc	cagatgctca	aggccgcgcc	3240

cgcgctgatg	aagctggagg	cctataagtc	cgtccatgcc	aaggtcgcga	ccttcatcaa	3300
ggacccctat	ctgcggcagg	cgttttcgta	tcacacgctg	ctggtgggcg	ggaatccctt	3360
ctcgaccagc	tcgatctatg	cgctgatcca	cgcgctggag	cggcgcggcg	gggtctggtt	3420
cgccaagggc	ggcaccaacc	agctggtcgc	gggcatggtc	gcgctgttcg	aacggcttgg	3480
cggccagatg	atgctgaacg	ccaaggtcgc	ccggatcgag	accgagggcg	cgcggaccac	3540
gggcgtcacc	ctggcggacg	ggcggtcttt	aagggccgac	atggtcgcca	gcaacggcga	3600
cgtcatgcac	aactatcgcg	acctgctggg	ccacacggcc	cgcgggcaga	gccgcgcgaa	3660
atcgctggac	cgcaagcgct	ggtccatgtc	gttgttcgtg	ctgcatttcg	gtctgcgcga	3720
ggcgcccaag	gacatcgcgc	atcacaccat	cctgttcggc	ccccgctaca	gggagctggt	3780
caacgagatc	ttcaagggcc	cgaagctggc	cgaggatttc	tcgctgtacc	tgcattcgcc	3840
ctgcacgacc	gatccggaca	tggcgcctcc	gggcatgtcc	acgcattacg	tgctggcccc	3900
cgtgccgcat	ctgggccgcg	ccgagatcga	ttgggcggtc	gaggggccgc	gctatgccga	3960
ccgcatcctg	gcgtccctgg	aggagcggct	gatecegaae	ctgcgcgcca	acctgaccac	4020
gacgcgcatc	ttcacgcccg	ccgatttcgc	cagcgaactg	aacgcccatc	acggcagcgc	4080
cttctcggtc	gagccgatcc	tgacgcaatc	cgcgtggttc	cggccgcaca	accgcgacaa	4140
gacgatccgc	aacttctatc	tggtcggcgc	gggcacccat	ccgggcgcgg	gcattccggg	4200
cgtcgtgggc	tcggccaagg	ccacggccca	ggtgatgctg	tccgacctgg	cgggcgcatg	4260
agcgatctgg	tcctgacctc	gaccgaggcg	atcacccaag	ggtcgcaaag	ctttgccacg	4320
gcggccaagc	tgatgccgcc	gggcatccgc	gacgacacgg	tgatgctcta	tgcctggtgc	4380
cgccacgcgg	atgacgtgat	cgacggtcag	gccctgggca	gccgccccga	ggcggtgaac	4440
gacccgcagg	cgcggctgga	cggcctgcgc	gtcgacacgc	tggcggccct	gcagggcgac	4500
ggtccggtga	ccccgccctt	tgccgcgctg	cgcgcggtgg	cgcggcggca	tgatttcccg	4560
caggcctggc	ccatggacct	gatcgaaggc	ttcgcgatgg	atgtcgaggc	gegegaetat	4620
cgcacgctgg	atgacgtgct	ggaatattcc	tatcacgtcg	caggcatcgt	cggcgtgatg	4680
atggcccgcg	tgatgggcgt	gcgcgacgat	cctgtcctgg	accgcgcctg	cgacctgggg	4740
ctggcgttcc	agctgaccaa	catcgcgcgc	gacgtgatcg	acgatgcgcg	catcgggcgg	4800
tgctatctgc	cgggggactg	gctggaccag	gegggegege	ggatcgacgg	gccggtgccg	4860
tcgccggagc	tgtacacagt	gatecteegg	ctgttggatg	aggcggaacc	ctattacgcg	4920

teggegeggg	tgggtctggc	ggatctgcca	ccgcgctgcg	cctggtccat	cgccgccgcg	4980
ctacggatct	atcgcgccat	cgggctgcgc	atccgcaaga	gcgggccgca	ggcctatcgc	5040
cagcggatca	gcacgtccaa	ggctgccaag	atcggcctgc	tgggcgtcgg	gggctgggat	5100
gtcgcgcgat	cacgcctgcc	gggggcgggc	gtgtcgcggc	agggcctctg	gacccggccg	5160
catcacgtct	aggcgcgcgc	ggcgtagggc	agaacccgtt	ccagcagggc	cgcgatttcc	5220
ggagcctgaa	ggcgcttgct	gcgcagcatc	gcgtccagtt	gggcgcggct	ggcctcgtaa	5280
tgacgggaca	cgttctgcag	gtctgacacg	gccagaaggc	cdcdccdcdd	gccgggggcc	5340
geggeatege	gaccggtatc	cttgccaagc	gccgcctggt	cgcccacgac	gtccagcagg	5400
tegteatagg	actggaacac	gcggcccagc	tgacggccaa	agtcgatcat	ctgggtctgc	5460
tecteggegt	cgaactcctt	gatcacggcc	agcatctcca	gcccggcgat	gaacagcacg	5520
ccggtcttca	ggtcctgttc	ctgttcgacc	cccgcgccgt	tcttggccgc	gtgcaggtcc	5580
aggteetgge	cggcgcacag	gccctgcggc	cccagggacc	gcgacaggat	ccgcaccagc	5640
tgcgcccgca	ccgtgcccga	cgcgccgcgc	gcaccggcca	gcagggccat	tgcctcggtg	5700
atcagggcga	tgccgcccag	cacggcacgg	ctttcgccat	gcgccacatg	ggtcgcgggc	5760
cggccgcggc	gcagcccggc	atcgtccatg	cagggcaggt	cgtcgaagat	cagcgatgcg	5820
gcatgcacca	tctcgaccgc	gcaggcggcg	tcgacgatcg	tgtcgcagac	cccgcccgag	5880
geetetgeeg	caagcagcat	cagcatgccg	cggaaccgcc	tgcccgacga	cagegegeea	5940
tggctcatgg	ccgcgccgag	cggctgcgac	acggcaccga	atccctgggc	gatctcctca	6000
agtctggtct	gcagaagggt	ggcgtggatc	gggttgacgt	ctcgtctcat	cagtgccttc	6060
gcgcttgggt	tctgacctgg	cgggaaggtc	aggccggggc	ggcaccccgt	gacccgtcat	6120
ccaccgtcaa	cagtccccat	gttggaacgg	ttcacgcccg	attgcgagcc	ttttcgacgg	6180
cgacgcgggg	tcgcgcggca	atttgtccaa	caaggtcagt	gga		6223

<210> 5

atgagegeac atgeeetgee caaggeagat etgaeegea eeageetgat egteteggge 60 ggeateateg eegegtgget ggeeetgeat gtgeatgege tgtggtttet ggaegeggeg 120

<211> 729

<212> DNA

<213> Paracoccus haeundaesis

<220>

<223> crtW gene

<400> 5

gcgcatccca	tcctggcgat	cgcgaatttc	ctggggctga	cctggctgtc	ggtcggtctg	180
ttcttcatcg	cgcatgacgc	gatgcacggg	teggtegtge	cggggcgtcc	gcgcggcaat	240
gcggcgatgg	gccagctggt	cctgtggctg	tatgccggat	tttcgtggcg	caagatgatc	300
gtcaagcaca	tggcccatca	ccgccatacc	ggaaccgacg	acgaccccga	tttcgaccat	360
ggcggcccgg	tccgctggta	cgcgcgcttc	atcggcacct	atttcggctg	gcgcgagggg	420
ctgctgctgc	ccgtcatcgt	gacggtctat	gcgctgatcc	tgggggatcg	ctggatgtac	480
gtggtcttct	ggccgctgcc	gtcgatcctg	gcgtcgatcc	agctgttcgt	gttcggcacc	540
tggctgccgc	accgccccgg	ccacgacgcg	ttcccggacc	gccataatgc	gcggtcgtcg	600
cggatcagcg	accccgtgtc	gctgctgacc	tgctttcact	ttggtggtta	tcatcacgaa	660
caccacctgc	acccgacggt	gccttggtgg	cgcctgccca	gcacccgcac	caagggggac	720
accgcatga						729

<210> 6

<211> 242

<212> PRT

<213> Paracoccus haeundaesis

<220>

<223> crtW amino acid

<400> 6

Met Ser Ala His Ala Leu Pro Lys Ala Asp Leu Thr Ala Thr Ser Leu 1 5 10 15

Ile Val Ser Gly Gly Ile Ile Ala Ala Trp Leu Ala Leu His Val His $20 \hspace{1.5cm} 25 \hspace{1.5cm} 30$

Ala Leu Trp Phe Leu Asp Ala Ala Ala His Pro Ile Leu Ala Ile Ala 35 40 45

Asn Phe Leu Gly Leu Thr Trp Leu Ser Val Gly Leu Phe Phe Ile Ala 50 55 60

His Asp Ala Met His Gly Ser Val Val Pro Gly Arg Pro Arg Gly Asn 65 70 75 80

Ala Ala Met Gly Gln Leu Val Leu Trp Leu Tyr Ala Gly Phe Ser Trp 85 90 95

Arg Lys Met Ile Val Lys His Met Ala His His Arg His Thr Gly Thr 100 105 110

Asp Asp Asp Pro Asp Phe Asp His Gly Gly Pro Val Arg Trp Tyr Ala 115 120 125

Arg Phe 1	Ile Gly Thr	Tyr Phe	Gly Trp	Arg Glu	Gly Leu L	eu Leu Pro	
Val Ile V	Val Thr Val	Tyr Ala 150	Leu Ile	Leu Gly 155	Asp Arg T	rp Met Tyr 160	
Val Val I	Phe Trp Pro 165		Ser Ile	Leu Ala 170	Ser Ile G	ln Leu Phe 175	
Val Phe (Gly Thr Trp 180	Leu Pro	His Arg 185	Pro Gly	_	la Phe Pro 90	
	His Asn Ala 195	Arg Ser	Ser Arg 200	Ile Ser	Asp Pro V 205	al Ser Leu	
Leu Thr (Cys Phe His	Phe Gly 215	Gly Tyr	His His	Glu His H 220	is Leu His	
Pro Thr V	Val Pro Trp	Trp Arg	Leu Pro	Ser Thr 235	Arg Thr L	ys Gly Asp 240	
Thr Ala							
<210> <211> <212> <213> <223> <223> c1	7 489 DNA Paracoccus rtZ gene	haeundae	esis				
<400> atgaccaat	7 tt teetgate	gt cgtcgc	ccacc gt	gctggtga	tggagttga	c ggcctattcc	60
gtccaccgt	tt ggatcatg	ca cggccc	catty gg	ctggggct	ggcacaagt	c ccaccacgag	120
gaacacga	cc acgcgctg	ga aaagaa	acgac ct	gtacggcc	tggtctttg	c ggtgatcgcc	180
acggtgct	gt tcacggtg	gg ctggat	ctgg gc	geeggtee	tgtggtgga	t cgctttgggc	240
atgaccgto	ct atgggctg	at ctattt	egte et	gcatgacg	ggctggttc	a tcagcgctgg	300
ccgttccg	ct atatcccg	cg caaggo	gctat gc	ccgccgcc	tgtatcagg	c ccaccgcctg	360
caccacgc	gg tcgaggga	cg cgacca	attgc gt	cagetteg	gcttcatct	a tgcgccgccg	420
gtcgacaaq	gc tgaagcag	ga cctgaa	agacg tc	gggegtge	tgcgggccg	a ggcgcaggag	480
cgcacgtga	a						489
<210> <211> <212> <213>	8 162 PRT Paracoccus	haeundae	esis				

```
<220>
```

<223> crtZ amino acid

<400> 8

Met Thr Asn Phe Leu Ile Val Val Ala Thr Val Leu Val Met Glu Leu 1 5 10 15

Thr Ala Tyr Ser Val His Arg Trp Ile Met His Gly Pro Leu Gly Trp
20 25 30

Gly Trp His Lys Ser His His Glu Glu His Asp His Ala Leu Glu Lys 35 40 45

Asn Asp Leu Tyr Gly Leu Val Phe Ala Val Ile Ala Thr Val Leu Phe 50 55 60

Thr Val Gly Trp Ile Trp Ala Pro Val Leu Trp Trp Ile Ala Leu Gly 65 70 75 80

Met Thr Val Tyr Gly Leu Ile Tyr Phe Val Leu His Asp Gly Leu Val 85 90 95

His Gln Arg Trp Pro Phe Arg Tyr Ile Pro Arg Lys Gly Tyr Ala Arg 100 105 110

Arg Leu Tyr Gln Ala His Arg Leu His His Ala Val Glu Gly Arg Asp 115 120 125

His Cys Val Ser Phe Gly Phe Ile Tyr Ala Pro Pro Val Asp Lys Leu 130 135 140

Lys Gln Asp Leu Lys Thr Ser Gly Val Leu Arg Ala Glu Ala Gln Glu
145 150 155 160

Arg Thr

<210> 9

<211> 1161

<212> DNA

<213> Paracoccus haeundaesis

<220>

<223> crtY gene

<400> 9

gtgacccatg acgtgctgct ggcaggggcg ggccttgcga acgggctgat cgccctggcg 60
ctgcgcgcgg cgcggcccga cctgcgggtg ctgctgctgg atcatgcggc gggaccgtca 120
gacggccata cctggtcctg ccacgacccc gatctgtcgc cgcactggct ggcgcggctg 180
aagcccctgc gccgcgcaa ctggcccgac caggaggtgc gctttccccg ccatgcccgg 240
cggctggcca ccggttacgg gtcgctggac ggggcggcg tggcggatgc ggtggcccgg 300

tegggegeeg	agatccgctg	gaacagcgac	atcgccctgc	tggatgaaca	gggggcgacg	360
ctgtcctgcg	gcacccggat	cgaggcgggc	geggteetgg	acgggcgcgg	cgcgcagccg	420
tcgcggcatc	tgaccgtggg	tttccagaaa	ttcgtgggcg	tcgagatcga	gaccgactgc	480
ccccacggcg	tgccccgccc	gatgatcatg	gacgcgaccg	tcacccagca	ggacgggtac	540
cgattcatct	atctgctgcc	cttctctccg	acgcgcatcc	tgatcgagga	cactcgctat	600
tccgatggcg	gcaatctgga	cgacgacgcg	ctggcggcgg	cgtcccacga	ctatgcccgc	660
cagcagggct	ggaccggggc	cgaggtccgg	cgcgaacgcg	gcatcctgcc	cattgcgctg	720
gcccatgacg	cggcgggctt	ctgggccgat	cacgcggagg	ggcctgttcc	cgtgggactg	780
cgcgcggggt	tctttcaccc	ggtcaccggc	tattcgctgc	cctatgcggc	gcaggtggcg	840
gacgtggtgg	cgggcctgtc	cgggccgccc	ggcaccgacg	cgctgcgcgg	cgccatccgc	900
gattacgcga	tegaceggge	acgccgtgac	cgctttctgc	gcctgctgaa	ccggatgctg	960
ttccgcggct	gegegeeega	ccggcgctat	accctgctgc	ageggtteta	ccgcatgccg	1020
catggactga	tcgaacggtt	ctatgccggc	cggctgagcg	tggcggatca	gctgcgcatc	1080
gtgaccggca	agcctcccat	tccccttggc	acggccatcc	gctgcctgcc	cgaacgtccc	1140
ctgctgaagg	aaaacgcatg	a				1161

<210> 10

<211> 386

<212> PRT

<213> Paracoccus haeundaesis

<220>

<223> crtY amino acid

<400> 10

Val Thr His Asp Val Leu Leu Ala Gly Ala Gly Leu Ala Asn Gly L