

Shenzhen CTL Testing Technology Co., Ltd.

FCC PART 15 SUBPART C TEST REPORT

Report Reference No..... CTL1906131022-WF

Compiled by

(position+printed name+signature)..:

Name of the organization performing

the tests

(position+printed name+signature)..:

Approved by

(position+printed name+signature)..:

Happy Guo

(File administrators)

Nice Nong (Test Engineer)

> Ivan Xie (Manager)

Applicant's name..... Shenzhen Powerqi Technology Co., Ltd.

2nd Floor, A4 Building, Block A, Fangxing Science & Tech. Park, Address:

Longgang District, Shenzhen, China

Testing Laboratory Name Shenzhen CTL Testing Technology Co., Ltd.

Floor 1-A, Baisha Technology Park, No. 3011, Shahexi Road, Address:

Nanshan, Shenzhen 518055 China.

Test specification:

Standard FCC Part 15C Master TRF.....: Dated 2011-01

15W Fast Wireless Charger Test item description:

2AFP2-FC16C FCC ID.....

Trade Mark POWERQI FC16C Model/Type reference.....:

Transmit Frequency...... 115~205KHz Antenna type Loop antenna

Date of receipt of test item Jun. 20, 2019 Date of sampling...... Jun. 20, 2019

Data of Issue Jul. 09, 2019

Result..... Pass

Shenzhen CTL Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTL Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTL Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

TEST REPORT

Test Report No. :	CTL1906131022-WF	Jul. 09, 2019		
	C1L1906131022-WF	Date of issue		

Equipment under Test : 15W Fast Wireless Charger

Type / Model(s) : FC16C

Applicant : Shenzhen Powerqi Technology Co., Ltd.

Address : 2nd Floor, A4 Building, Block A, Fangxing Science & Tech. Park,

Longgang District, Shenzhen, China

Manufacturer : Shenzhen Powerqi Technology Co., Ltd.

Address : 2nd Floor, A4 Building, Block A, Fangxing Science & Tech. Park,

Longgang District, Shenzhen, China

Test Result	
according to the standards on	Positive
page 4:	

The test results presented in this report relate only to the object tested.

This report shall not be reproduced, except in full, without the written approval of the issuing testing laboratory.

Contents

	FCC PART 15 SUBPART C TEST REPORT	1
<u>1.</u>	TEST STANDARDS	4
<u>2.</u>	SUMMARY	5
2.1.	General Remarks	5
2.2.	Equipment Under Test	5
2.3.	Short description of the Equipment under Test (EUT)	5
2.4.	EUT operation mode	5
2.5.	EUT configuration	5
2.6.	Related Submittal(s) / Grant (s)	5
2.7.	Modifications	5
Summa	ary of Test Results	6
<u>3.</u>	TEST ENVIRONMENT	7
3.1.	Address of the test laboratory	7
3.2.	Test Facility	7
3.3.	Environmental conditions	7
3.4.	Statement of the measurement uncertainty	7
3.5.	Equipments Used during the Test	8
<u>4 .</u>	TEST CONDITIONS AND RESULTS	9
4.1.	AC Power Conducted Emission	9
4.2.	Radiated Emission	12
4.3.	20dB Bandwidth/99% Bandwidth	17
<u>5.</u>	TEST SETUP PHOTOS OF THE EUT	18
<u></u>		
6.	EXTERNAL AND INTERNAL PHOTOS OF THE EUT	19
<u></u>	<u></u>	

1. TEST STANDARDS

The tests were performed according to following standards:

FCC Rules Part 15.207,15.209, 15.215(c)

ANSI C63.10-2013

2. SUMMARY

2.1. General Remarks

Date of receipt of test sample	:	Jun. 20, 2019
Testing commenced on	:	Jun. 20, 2019
		The same of the sa
Testing concluded on	:	Jul. 02, 2019

2.2. Equipment Under Test

Power supply system utilised

Power supply voltage	:	0	120V / 60 Hz	0	115V / 60Hz
i)		0	12 V DC	0	24 V DC
		•	Other (specified in blank bel	ow	

DC 5V from USB

2.3. Short description of the Equipment under Test (EUT)

A Wireless Charging Pad work frequency range 115-205 KHz. For more details, refer to the user's manual of the EUT.

Serial number: Prototype

2.4. EUT operation mode

The EUT has been tested under typical operating condition. The Applicant provides communication tools software to control the EUT for staying in continuous transmitting mode for testing.

2.5. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

O - supplied by the manufacturer

supplied by the lab

o USB Cable Manufacturer: Shenzhen Powerqi Technology Co., Ltd.

Length.: 1.8m

Notebook PC
Manufacturer: DELL

Model: PP18L

Mobile phone
 Manufacturer: Apple

Model: iphone 8 Plus

2.6. Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for **FCC ID: 2AFP2-FC16C** fileing to comply with FCC Part 15, Subpart C Rules.

2.7. Modifications

No modifications were implemented to meet testing criteria.

Summary of Test Results

The EUT is night light with wireless charger, The test summary of the EUT listed as below:

	Test Standards	Test Result
Electric Field Radiated Emissions	FCC Part 15 C (Section15.209)	PASS
20dB Bandwidth/99% Bandwidth	FCC Part 15 C (Section15.215(c))	PASS
Conducted Emissions	FCC Part 15 C (Section15.207)	PASS

Remark: The measurement uncertainty is not included in the test result.

3. TEST ENVIRONMENT

3.1. Address of the test laboratory

Shenzhen CTL Testing Technology Co., Ltd. Floor 1-A, Baisha Technology Park, No. 3011, Shahexi Road, Nanshan, Shenzhen 518055 China

There is one 3m semi-anechoic chamber and two line conducted labs for final test. The Test Sites meet the requirements in documents ANSI C63.4 and CISPR 32/EN 55032 requirements.

3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L7497

Shenzhen CTL Testing Technology Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No. 4343.01

Shenzhen CTL Testing Technology Co., Ltd, EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

IC Registration No.: 9518B

CAB identifier: CN0041

The 3m alternate test site of Shenzhen CTL Testing Technology Co., Ltd. EMC Laboratory has been registered by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements with Registration No.: 9518B on Jan. 22, 2019.

FCC-Registration No.: 399832

Designation No.: CN1216

Shenzhen CTL Testing Technology Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 399832, December 08, 2017.

3.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature: 15-35 ° C

Humidity: 30-60 %

Atmospheric pressure: 950-1050mbar

3.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen CTL Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested

may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for CTL laboratory is reported:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.10dB	(1)
Radiated Emission	Above 1GHz	4.32dB	(1)
Conducted Disturbance	0.15~30MHz	3.20dB	(1)

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.5. Equipments Used during the Test

Test Equipment	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Due Date
LISN	R&S	ENV216	3560.6550.12	2019/05/24	2020/05/23
LISN	R&S	ESH2-Z5	860014/010	2019/05/24	2020/05/23
Bilog Antenna	Sunol Sciences Corp.	JB1	A061713	2019/05/24	2020/05/23
EMI Test Receiver	R&S	ESCI	1166.5950.03	2019/05/24	2020/05/23
Spectrum Analyzer	Agilent	E4407B	MY41440676	2019/05/24	2020/05/23
Spectrum Analyzer	Agilent	N9020	US46220290	2019/05/24	2020/05/23
Controller	EM Electronics	EM 1000	060859	2019/05/24	2020/05/23
Horn Antenna	Sunol Sciences Corp.	DRH-118	A062013	2019/05/24	2020/05/23
Active Loop Antenna	Da Ze	ZN30900A	/	2019/05/24	2020/05/23
Amplifier	Agilent	8449B	3008A02306	2019/05/24	2020/05/23
Amplifier	Agilent	8447D	2944A10176	2019/05/24	2020/05/23
Temperature/Humidi ty Meter	Gangxing	CTH-608	02	2019/05/24	2020/05/23
High-Pass Filter	micro-tranics	HPM50108	G174	2019/05/24	2020/05/23
High-Pass Filter	micro-tranics	HPM50111	G142	2019/05/24	2020/05/23
Coaxial Cables	HUBER+SUHNE R	SUCOFLEX 104PEA-10M	10m	2019/05/24	2020/05/23
Coaxial Cables	HUBER+SUHNE R	SUCOFLEX 104PEA-3M	3m	2019/05/24	2020/05/23
Coaxial Cables	HUBER+SUHNE R	SUCOFLEX 104PEA-3M	3m	2019/05/24	2020/05/23
RF Cable	Megalon	RF-A303	N/A	2019/05/24	2020/05/23

The calibration interval was one year

4. TEST CONDITIONS AND RESULTS

4.1. AC Power Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2013
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013
- 4 The EUT received DC5V power from USB port of PC, PC received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

 Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9kHz.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

- Francisco - Fran	Maximum RF Line Voltage (dBμV)						
Frequency (MHz)	CLAS	SS A	CLASS B				
(11112)	Q.P.	Ave.	Q.P.	Ave.			
0.15 - 0.50	79	66	66-56*	56-46*			
0.50 - 5.00	73	60	56	46			
5.00 - 30.0	73	60	60	50			

^{*} Decreasing linearly with the logarithm of the frequency

TEST RESULTS

SCAN TABLE: "Voltage (9K-30M)FIN" Short Description: 150K-30M

150K-30M Voltage

MEASUREMENT RESULT: "CTL190621614_fin"

20	019-6-21 09 :	59??						
	Frequency	Level	Transd	Limit	Margin	Detector	Line	PE
	\mathtt{MHz}	dΒμV	dB	dΒμV	dB			
	0.154000	52.40	11.2	66	13.4	QP	L1	GND
	0.166000	44.20	11.2	65	21.0	QP	L1	GND
	0.190000	44.60	11.2	64	19.4	QP	L1	GND
	0.410000	26.60	11.2	58	31.0	QP	L1	GND
	0.474000	35.20	11.2	56	21.2	QP	L1	GND
	29.984000	38.00	11.7	60	22.0	QP	L1	GND

MEASUREMENT RESULT: "CTL190621614 fin2"

20	19-6-21 09: Frequency MHz	59?? Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
	28.934000 29.198000 29.462000 29.726000 29.852000	31.40 34.50 35.00 32.80 34.20	11.7 11.7 11.7 11.7	50 50 50 50	18.6 15.5 15.0 17.2 15.8	AV AV AV AV	L1 L1 L1 L1	GND GND GND GND GND
	29.984000	37.00	11.7	50	13.8	AV AV	L1	GND

SCAN TABLE: "Voltage (9K-30M)FIN"
Short Description: 150K-30M Voltage

MEASUREMENT RESULT: "CTL190621613_fin"

2019-6-21 0	9:55??						
Frequency	Level	Transd	Limit	Margin	Detector	Line	PΕ
MHz	dΒμV	dB	dΒμV	dB			
0.178000	45.20	11.2	65	19.4	QP	N	GND
0.182000	44.30	11.2	64	20.1	QP	N	GND
0.186000	42.50	11.2	64	21.7	QP	N	GND
20.216000	36.30	11.5	60	23.7	QP	N	GND
20.384000	37.60	11.5	60	22.4	QP	N	GND
20.642000	36.10	11.5	60	23.9	QP	N	GND

MEASUREMENT RESULT: "CTL190621613 fin2"

20	19-6-21 09: Frequency MHz	55?? Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
	17.708000	21.80	11.3	50	28.2	AV	N	GND
	28.928000	12.80	11.7	50	37.2	AV	N	GND
	29.186000	12.70	11.7	50	37.3	AV	N	GND
	29.450000	12.70	11.7	50	37.3	AV	N	GND
	29.708000	12.70	11.7	50	37.3	AV	N	GND
	29.966000	12.00	11.7	50	38.0	AV	N	GND

4.2. Radiated Emission

TEST CONFIGURATION

Radiated Emission Test Set-Up Frequency range 9KHz – 30MHz

Frequency range 30MHz - 1000MHz

TEST PROCEDURE

- 1 The EUT was placed on a turn table which is 0.8m above ground plane.
- 2 Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360°C to acquire the highest emissions from EUT
- 3 And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4 Repeat above procedures until all frequency measurements have been completed.

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$FS = RA + AF + CL - AG$$

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

For example

	Frequency	FS	RA	AF	CL	AG	Transd
	(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)	(dB)
ĺ	300.00	40	58.1	12.2	1.6	31.90	-18.1

Transd=AF +CL-AG

RADIATION LIMIT

Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

9k~30MHz:

Frequency Range (MHz)	E-field Strength Limit @ 30m	E-field Strength Limit @ 3m		
Frequency Range (MHZ)	(mV/m)	(dBµV/m)		
0.009-0.490	2400/F(kHz)	129-94		
0.490-1.705	24000/F(kHz)	74-63		
1.705-30	30	70		

Note: Where the limits have been defined at one distance, and a signal level measured at another, the limits have been extrapolated using the following formula:

Extrapolation(dB) = $40\log_{10}$ (Measurement Distance/Specification Distance)

Note:

- (1) The tighter limit shall apply at the edge between two frequency bands.
- (2) dBuV/m = 20*log(uV/m)

30M~1GHz:

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (μV/m)
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

- (1) The tighter limit shall apply at the edge between two frequency bands.
- (2) Distance refers to the distance in meters between the test instrument antenna and the closest point of any part of the E.U.T.

TEST RESULTS

WORST-CASE RADIATED EMISSION BELOW 30 MHz

Frequency	Reading	Polar	Antenna Factor	Cable Loss	Emission Levels	Limits at 3m	Detector Mode
(MHz)	(dBµV/m)	Loop	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	
0.134(F)	47.95	Loop	23.64	0.01	71.60	105.06	PK
0.134(F)	44.13	Loop	23.64	0.01	67.78	85.06	AV
0.110	33.87	Loop	23.55	0.01	57.43	106.78	PK
0.110	30.62	Loop	23.55	0.01	54.18	86.78	AV
0.495	34.79	Loop	25.07	-0.17	59.69	73.71	QP
1.167	34.95	Loop	27.12	-0.25	61.82	66.26	QP
2.133	33.91	Loop	23.91	-0.24	57.58	69.54	QP

- Remark: 1. Data of measurement within this frequency range shown " -" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
 - 2. The test limit distance is 3m limit.
 - 3. PK means Peak Value, QP means Quasi Peak Value, AV means Average Value.
 - 4. F means Fundamental Frequency.

Radiated Emission Test Data 30-1000MHz:

SWEEP TABLE: "test (30M-1G)" Short Description: Fi

Short Description: Field Strength
Start Stop Detector Meas. IF Transducer
Frequency Frequency Time Bandw.
30.0 MHz 1.0 GHz MaxPeak 300.0 ms 120 kHz VULB9168

MEASUREMENT RESULT: "CTL190620507_red"

2019-6-20 9:4	17							
Frequency MHz	Level dB礦/m	Transd dB	Limit dB礦/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
365.620000	36.20	15.6	46.0	9.8		0.0	0.00	HORIZONTAL
433.520000	33.60	17.1	46.0	12.4		0.0	0.00	HORIZONTAL
499.480000	37.60	18.2	46.0	8.4		0.0	0.00	HORIZONTAL
565.440000	34.50	19.4	46.0	11.5		0.0	0.00	HORIZONTAL
633.340000	33.50	20.7	46.0	12.5		0.0	0.00	HORIZONTAL
864 200000	34.70	23.3	46.0	11.3		0.0	0.00	HORTZONTAL

Transducer

SWEEP TABLE: "test (30M-1G)"
Short Description: Fi Field Strength Stop Start Detector Meas. IF

Frequency Frequency Time Bandw. 30.0 MHz 1.0 GHz MaxPeak 300.0 ms 120 kHz VULB9168

MEASUREMENT RESULT: "CTL190620505_red"

2019-6-20 9:	.UJ	т9−6.	-zu	9 :	45
--------------	-----	-------	-----	-----	----

9:45								
ICV .	Level	Transd	Limit	Margin	Det.	Heiaht	Azimuth	Polarization
-				_		_		
1112 Q.	D'H)與 / III	аь	CLD MA / III	aь		CIII	aeg	
100	32.90	14.8	40.0	7.1		0.0	0.00	VERTICAL
100	26.80	10.3	40.0	13.2		0.0	0.00	VERTICAL
inn	3/1 60	15 2	13 5	8 0		0.0	0 00	VERTICAL
				· · ·				
100 :	31.00	14.7	43.5	12.5		0.0	0.00	VERTICAL
100	31.30	18.2	46.0	14.7		0.0	0.00	VERTICAL
00	36.40	20.7	46.0	9.6		0.0	0.00	VERTICAL
	ncy MHz di 000 000 000	ncy Level dHz dB礦/m 000 32.90 000 26.80 000 34.60 000 31.00 000 31.30	ncy Level dB礦/m Transd dB 000 32.90 14.8 000 26.80 10.3 000 34.60 15.2 000 31.00 14.7 000 31.30 18.2	ncy Level dB礦/m Transd dB dB礦/m 000 32.90 14.8 40.0 000 26.80 10.3 40.0 000 34.60 15.2 43.5 000 31.00 14.7 43.5 000 31.30 18.2 46.0	ncy Level Transd Limit Margin MHZ dB礦/m dB dB礦/m dB 000 32.90 14.8 40.0 7.1 000 26.80 10.3 40.0 13.2 000 34.60 15.2 43.5 8.9 000 31.00 14.7 43.5 12.5 000 31.30 18.2 46.0 14.7	ncy Level Transd Limit Margin Det. MHz dB礦/m dB dB礦/m dB 000 32.90 14.8 40.0 7.1 000 26.80 10.3 40.0 13.2 000 34.60 15.2 43.5 8.9 000 31.00 14.7 43.5 12.5 000 31.30 18.2 46.0 14.7	ncy Level dB礦/m Transd dB dB礦/m Limit dB dB dB dB Margin dB Det. Height dB dB dB dB 000 32.90 14.8 40.0 7.1 0.0 000 26.80 10.3 40.0 13.2 0.0 000 34.60 15.2 43.5 8.9 0.0 000 31.00 14.7 43.5 12.5 0.0 000 31.30 18.2 46.0 14.7 0.0	ncy Level Transd dB礦/m Limit dB礦/m Margin dB Det. Height cm Azimuth cm 000 32.90 14.8 40.0 7.1 0.0 0.00 000 26.80 10.3 40.0 13.2 0.0 0.00 000 34.60 15.2 43.5 8.9 0.0 0.00 000 31.00 14.7 43.5 12.5 0.0 0.00 000 31.30 18.2 46.0 14.7 0.0 0.00

4.3. 20dB Bandwidth/99% Bandwidth

TEST CONFIGURATION

TEST PROCEDURE

The bandwidth of the fundamental frequency was measured by spectrum analyzer with 10Hz RBW and 30Hz VBW. The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

LIMIT

The 20dB bandwidth shall be less than 80% of the permitted frequency band.

TEST RESULTS

TX: 134 KHz

Result: 2.745kHz

5. Test Setup Photos of the EUT

6. External and Internal Photos of the EUT

Loop Antenna

.....End of Report.....