#305 1 of 26

University of Toronto Faculty of Applied Science and Engineering

	1	<u>!</u>	<u> </u>	1	L	l	I	<u> </u>	<u> </u>	L	<u> </u>	<u> </u>	<u> </u>	1	1	1
Last	name	2														
	T	<u> </u>	1	· · · · ·			Ι	1	Τ			1	<u> </u>	<u> </u>	ł	Τ
		·		•	<u> </u>				•	1						•
Stud	ent r	numbei	c													
	T	<u> </u>	<u> </u>	ı	T	Ĭ	Γ	1	<u> </u>	Γ	Γ	T	l	1	T	T
						1			1					1	1	1

Final Exam December 2019

No calculators or aids
There are 12 questions, each question is worth 10 marks

Examiners: P.C. Stangeby and J.W. Davis

#305 2 of 26

#305 3 of 26

- 1) Evaluate the following limits:
 - a) $\lim_{x\to 0}(\csc x-\cot x)$
 - $\lim_{x \to 0} (1 2x)^{1/x}$ b)
 - $\lim_{x\to 0}\frac{\sin^{-1}x}{x}$ c)

DDDAE43F-081F-44CA-ACA1-96A88A34A0E2

esc194-exam-2019

#305 4 of 26

#305 5 of 26

2) Find the derivative of: $3x^3$, cos(3x), $ln(x^{1/2})$, e^{-x^2} , 3^{x^2} .

#305 6 of 26

#305 7 of 26

3) Find the anti-derivative of: $3x^3$, cos(3x), xe^{-x^2} , $(9+x^2)^{-1}$, 3^x .

#305 8 of 26

#305 9 of 26

4) At noon, ship A is 150 km west of ship B. Ship A is sailing east at 35 km/hr and ship B is sailing north at 25 km/hr. How fast is the distance between the ships changing at 4:00 pm?

#305 10 of 26

#305 11 of 26

- 5) a) Find functions f and g such that each function is continuous at x = 0, but the composite function, $f \circ g$, is not continuous at 0.
 - b) What value of b maximizes the integral: $\int_{-1}^{b} x^2(3-x) dx$, b > -1?

23757462-2F5D-49B1-9C49-65663C27CAE6

esc194-exam-2019

#305 12 of 26

#305 13 of 26

6) A wedge is cut out of a circular cylinder of radius 4 by two planes. One plane is perpendicular to the axis of the cylinder. The other intersects the first at an angle of 30° along a diameter of the cylinder. Find the volume of the wedge.

#305 14 of 26

#305 15 of 26

- 7) a) [7 marks] Provide a $\delta \varepsilon$ proof that $\lim_{x \to 3} x^2 = 9$.
 - b) [3 marks] Given $f(x) = x^2$, c = 3, $\varepsilon = 7$, what is the largest δ that will ensure that when $0 < |x c| < \delta$ then $|f(x) f(c)| < \varepsilon$? Is there a smallest δ ?

#305 16 of 26

#305

17 of 26

- 8) Find the solution of the differential equation that satisfies the given initial condition:
 - a) y'tanx = a + y, $y(\frac{\pi}{3}) = a$, $0 < x < \frac{\pi}{2}$ b) $(x^2 + 1)y' + 3x(y 1) = 0$ y(0) = 2

B71ECF5D-8952-4FE0-B341-DF153EF4AACF

esc194-exam-2019

#305 18 of 26

#305 19 of 26

9) Use the method of undetermined coefficients to find the general solution to the 2nd order DE: $y'' - 3y' + 2y = coshx = \frac{1}{2}(e^x + e^{-x})$

$$y'' - 3y' + 2y = coshx = \frac{1}{2}(e^x + e^{-x})$$

96691573-2770-4BF5-929D-8E294278AE23

esc194-exam-2019

#305 20 of 26

#305 21 of 26

10) Suppose f'(x) < 0 < f''(x) for x < a and f'(x) > 0 > f''(x) for x > a. Prove that f is not differentiable at a.

Hint: Assume that f is differentiable at a, and apply the Mean Value Theorem.

8525AFDE-6EC7-4425-A358-F4F7DBE46DA1

esc194-exam-2019

#305 22 of 26

#305 23 of 26

- 11) a) Prove that $e^{\pi} > \pi^e$ by first finding the maximum value of $f(x) = \frac{\ln x}{x}$. b) Sketch a graph of $f(t) = e^t$ on an arbitrary interval [a, b]. Use the graph and compare areas of regions to prove that: $e^{(a+b)/2} < \frac{e^b - e^a}{b-a}$.

A37A0651-E5B1-4954-BCF5-2F3A164E6B5A

esc194-exam-2019

#305 24 of 26

#305 25 of 26

- 12) Directly calculate the limit of a Riemann sum to evaluate the area of the region between $f(x) = \sqrt{x}$, $x \in [0,2]$ and the x-axis.
 - Hint 1: Use the non-uniform partition: $x_i = i^2 \frac{2}{n^2}$

Hint 2:
$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

 $\verb|esc194-exam-2019|$

#305 26 of 26