

Evaluating the performance of an evolutionary masked language model of mammalian 3'UTRs

Anas Shahzad, Lukas Groß, Nicole Martin

Supervisors: Dr. Matthias Heinig, Dr. Sergey Vilov

Technical University Munich

Lehrstuhl Computational Molecular Medicine



# 3'UTR Region



#### UTR = Untranslated Region



# RNA Binding Proteins (RBPs)







## **Previous Work**



### Species-aware DNA language modeling

Dennis Gankin\*<sup>1</sup>, Alexander Karollus\*<sup>1</sup>, Martin Grosshauser<sup>1</sup>, Kristian Klemon<sup>1</sup>, Johannes Hingerl<sup>1</sup>, Julien Gagneur<sup>1,2,3,4,5</sup>

#### Modelling of 3'UTR of fungal genomes

- Species-aware MLM
- Species-agnostic MLM
- DNABERT
- Dinucleotide
- 11-mer

### Species-aware Masked Language Model (MLM)



→ Species-aware MLM performed the best

## Goal of this Project



### Continuation of "Species-aware DNA language modelling"

- 1) Applied these models to human data
  - Species-aware MLM
  - Species-agnostic MLM
  - Dinucleotide
  - 11-mer

Trained on 3'UTR sequences of 240 different mammalian species

- → Homo sapiens as a holdout set
- 2) Explain performance of species-aware MLM
  - Aligned against the homo sapiens genome → Evolutionary information (conservation)
  - Compare and investigate performance on specific motifs

# Compare Motif Reconstruction Ability Across Different Models for Selected RBPs





## Test MLMs Reconstruction Ability against Random Motifs TIIII





# Compare Entropy against Performance of species-aware MLM





# Compare Conservation Score against Performance of species-aware MLM





# Compare Conservation Score against Performance of PABPN1L for the species-aware MLM





# Compare Conservation Score against Performance of species-aware MLM





## Conclusion



#### Comparison of models:

- MLMs perform similar to 11-mer
- MLMs and 11-mer outperform dinucleotide model

#### Deep dive into species-aware MLM:

- Entropy correlates negatively to target probability
- No correlation between conservation score and target probability
- → Evolutionary independence of model's predictions

#### Outlook:

Further investigation: How does the model come to its predictions?



## Special thanks to:

- Prof. Dr. Julien Gagneur
- Dennis Gankin, Alexander Karollus
- Dr. Matthias Heinig and Dr. Sergey Vilov
- Anna Chernysheva



# Questions?

## Resources:



- Colomé-Tatché, M., J. Gagneur, M. Heinig, and A. Marsico (2023). Lecture script for Machine Learning for Regulatory Genomics (IN2393)
- Hong, D. and S. Jeong (2023). "3'UTR diversity: expanding repertoire of RNA alterations in human mRNAs". In: Molecules and Cells 46.1, pp. 48–56
- Hentze, M. W., A. Castello, T. Schwarzl, and T. Preiss (2018). "A brave new world of RNA-binding proteins". In: Nature reviews Molecular cell biology 19.5, pp. 327–341.
- Gankin, D., A. Karollus, M. Grosshauser, K. Klemon, J. Hingerl, and J. Gagneur (2023). "Species-aware DNA language modeling". In: bioRxiv, pp. 2023–01
- Stelzer, G., N. Rosen, I. Plaschkes, S. Zimmerman, M. Twik, S. Fishilevich, T. I. Stein, R. Nudel,
   I. Lieder, Y. Mazor, et al. (2016). "The GeneCards suite: from gene data mining to disease genome sequence analyses". In: Current protocols in bioinformatics 54.1, pp. 1–30
- Dominguez, D., P. Freese, M. S. Alexis, A. Su, M. Hochman, T. Palden, C. Bazile, N. J. Lambert, E. L. Van Nostrand, G. A. Pratt, et al. (2018). "Sequence, structure, and context preferences of human RNA binding proteins". In: Molecular cell 70.5, pp. 854–867



## Biological Background





| Protein | Top 5-mer motif |
|---------|-----------------|
| EWSR1   | GGGGG           |
| FUS     | GGGGG           |
| TAF15   | GGGGG           |
| HNRNPL  | ACACA           |
| PABPN1L | AAAAA           |
| TRA2A   | GAAGA           |
| HNRNPL  | ACACA           |
| PABPN1L | AAAAA           |
| TRA2A   | GAAGA           |
| PCBP2   | CCCCC           |
| RBFOX2  | GCATG           |
| TARDBP  | GTATG           |
| HNRNPC  | TTTTT           |
| TIA1    | TTTTT           |
| PTBP3   | TTTCT           |
| CELF1   | TATGT           |
| FUBP3   | TATAT           |
| KHSRP   | TGTAT           |
| PUM1    | TGTAT           |
| KHDRBS2 | ATAAA           |
|         |                 |



| Motif  | Alphabet sequence | Description Stelzer et al. 2016                        |
|--------|-------------------|--------------------------------------------------------|
| RBM22  | TCCGG             | The encoded protein may play a role in cell divi-      |
|        |                   | sion and may be involved in pre-mRNA splicing.         |
|        |                   | GeneCards: RBM22 Gene 2023                             |
| RBM4   | GCGTA             | Enables RNA binding activity and cyclin binding        |
|        |                   | activity. GeneCards: RBM4 Gene 2023                    |
| EIF4G2 | GGTCG             | Appears to play a role in the switch from cap-         |
|        |                   | dependent to IRES-mediated translation during mito-    |
|        |                   | sis, apoptosis and viral infection. GeneCards: EIF4G2  |
|        |                   | Gene 2023                                              |
| RBM4B  | ACGCG             | Enables RNA binding activity. Predicted to be in-      |
|        |                   | volved in entrainment of circadian clock by photope-   |
|        |                   | riod; mRNA splicing, via spliceosome; and regulation   |
|        |                   | of gene expression. GeneCards: RBM4B Gene 2023         |
| RBM45  | ACGCG             | This gene encodes a member of the RNA recognition      |
|        |                   | motif (RRM)-type RNA-binding family of proteins.       |
|        |                   | This protein has been localized to inclusion bodies in |
|        |                   | the brain and spinal cord of amyotrophic lateral scle- |
|        |                   | rosis and Alzheimer's patients. GeneCards: RBM45       |
|        |                   | Gene 2023                                              |