自

北京科技大学 2019 -- 2020 学年 第 2 学期

<u>计算机体系结构</u>试卷(A)

	院(系)		班组	及		学号_		姓	名		
题号	_	二	三	四	五.	六	七	八	九	+	卷面 总成绩
得分											
得分	_ _ 一、填	真空题	(每空	1分,	共 20)分)					
1、不	同系列的	为计算;	机之间	,实现	可移村	直的途	径有采	用统-	一的高	级语言	、模拟
和		0									
2、常	见的计算	京机系统	统结构	分类法	去包括_		分	类法、		分	类法两
种。											
3、对	指令集的	为基本:	要求是	完整性	ŧ、		_、高	效率和	1	o	
4、流	水线中最	慢慢的-	一段称	为流力	、线的_		o				
5、指	令之间的	的名相:	关有_		相关	た和		_相关。	o		
6、要	扩充 Tom	nasu1o	算法以	以支持	前瞻执	1.行,言	需将该	算法中	"的""	写结果	"段分
为	和	1	P	两段。							
7、动	态分支预	页测的	依据是	从转秒	多指令	过去的	行为来	天预测:	它将来	的行为	句,即根
据近其	期转移是	否成功	7的		_记录,	,来预	测下-	一次转	移的方	向。	
8、开	发指令级	及并行 ₁	的方法	主要有	可两类:	: 基于			动态	开发方	法和基
于	的	的静态:	开发方	法。							

9、	计算机系统的	存储层次要解决的四个	问题是、查打	戈方法、
		o		
10,	通道分为	、选择通道、	三种类型。	
11,	假设某系统身	具有二级 Cache 缓存,在	2000次访存中,第一组	及 Cache 失效
50	次,第二级 Ca	che 失效 10 次。试问:在	这种情况下,该系统的	第二级 Cache
局音	邻失效率是	和全局失效率是	<u>=</u> o	

二、(共10分)比较 CISC 和 RISC 处理机的指令系统结构在指令格 式、寻址方式和 CPI 等方面的不同。

得 分 三、(共10分)假定某种计算机体系结构中有四种指令类型:加法 指令、乘法指令、存储器运算指令以及转移指令。下表中分别给出 了某程序中的以下数据:属于每种指令类型的指令数、执行每种指令类型所 需要的周期数、为每种指令类型使用相应改进措施(每种改进措施仅影响该 指令类型)后的加速比。

指令类型	指令数	执行时间	加速比
加法	1000万	2 个周期	2.0
乘法	3000万	20 个周期	1.3
存储器	3500万	10 个周期	3. 0
转移	1500万	4个周期	4.0

- 1、请问计算机系统设计中经常使用的定量原理是什么? (小计4分)
- 2、请按照每种指令类型对该系统总体性能的影响程度进行排序。(小计4分)
- 3、四类操作均改进后,整个应用程序能获得的加速比是多少? (小计2分)

弊

得 分

四、(共15分)现有一条静态多功能流水线由5段(S1、S2、S3、 S4、S5)组成。其中,S1、S3、S4、S5组成加法流水线,S1、S2、

S5 组成乘法流水线。S3 的时间为 $2\Delta t$, 其余各段的时间均为 Δt 。设该流水线 的输出结果可以直接返回输入端或暂存于相应的流水寄存器中。现要在该流 水线上计算 $\sum_{i=1}^{4}(x_iy_iz_i)$ 。

- 1、请简述流水线技术的特点并画出该流水线的时空图。(小计5分)
- 2、计算该流水线实际的吞吐率、加速比和效率。(小计5分)
- 3、请解释该流水线效率不高的原因并阐述提高该流水线效率的方法。(小计 5分)

五、(共10分)下表显示了给定时刻的保留站、load缓冲器以及寄 存器状态表中的内容。标志 Add1 表示是第一个加法功能部件, Mult1 表示是第一个乘法功能部件,其余依次类推。

- 1、请说明保留站的作用是什么? (小计2分)
- 2、在Tomasulo 算法中,寄存器换名用来解决什么问题?寄存器换名是通过 什么完成的? (小计4分)
- 3、对于下述指令序列, 当第一条指令完成并写入结果时, 请把 Tomasulo 算 法所用的各信息表中的内容补充完整。(小计4分)

指令	指令执行状态			
	流出	执行	写结果	
L. D F4, 34 (R2)	√	√	√	

L. D F2, 20 (R3)	√	√	
ADD. D F0, F2 F4	√		
MUL. D F6, F4 F0	√		
SUB. D F8, F2 F0	√		
DIV. D F10, F6 F0	√		
ADD. D F2, F10 F0	√		

指令	保留站内容							
	Busy	0p	Vj	Vk	Qj	Qk	A	
Load1	no							
Load2	yes	L. D					20+Regs[R3]	
Add1	yes	ADD. D		Mem[34+Regs[R2]]	Load2			
Add2	yes	SUB. D			Load2	Add1		
Add3	yes	ADD. D			Mult2	Add1		
Mult1	yes	MUL. D	Mem[34+ Regs[R2]]		hut	Add1		
Mult2	yes	DIV. D				Add1		

	寄存器状	寄存器状态						
	F0	F2,	F4	F6	F8	F10		
Qi	Add1	Addy		Mult1	Add2	Mult2		

六、(共10分)假定有多个加法器,不存在加法器的资源冲突。有3条连续指令组成的程序代码如下:

- I1 ADD R2, R6, R4 ; R2 <- (R6)+(R4)
- 12 ADD R1, R2, R3 ; R1 <- (R2)+(R3)
- 13 SUB R3 R4, R5 ; R3 <- (R4)-(R5)
- 1、分析程序代码段中的数据相关。(小计6分)
- 2、采用何种硬件技术可解决这些数据相关?请详细加以说明。(小计4分)

弊

得分 七、(共10分)

1、假设一台计算机的 I/O 处理时间占响应时间的 20%, 当 I/O 性能保持不变, 而对 CPU 的性能分别提高 10 倍和 100 倍时,该计算机系统的总体性能会发生什么样的变化? (小计 4 分)

- 2、八台外设 D_1 、 D_2 、 D_3 、 D_4 、 D_5 、 D_6 、 D_7 、 D_8 的数据传输速率(KBps)分别为 100、60、50、40、30、25、20、20。现设计一种字节多路通道,该通道可实 现设备选择时间 $T_s = 3\mu s$,传送一个字节数据所需的时间 $T_D = 2\mu s$ 。
 - (1) 该通道的最大流量是多少? (小计2分)
- (2)在该通道同时连接外设数目最多的条件下,使得该通道的实际流量最大,则应该选择哪些外设同时连接到该通道上? (小计4分)

得 分

八、(共15分)给定以下的假设,

- ——— (1) 理想 Cache 情况下的 CPI 为 2.0, 时钟周期为 2 ns, 平均每条指令访存 1.4 次。
 - (2) 两者 Cache 容量均为 128 KB, 块大小都是 32 字节。
 - (3) 组相联 Cache 中的多路选择器使 CPU 的时钟周期增加了 10%。
 - (4) 这两种 Cache 的失效开销都是 80 ns。
 - (5) 命中时间为1个时钟周期。
- (6) 128 KB 直接映象 Cache 的失效率为 1.0%, 128 KB 两路组相联 Cache 的失效率为 0.7%。

 2×1+/10~×80

 2×W+ 4)、×80
- 1、请计算直接映像 Cache 和两路组相联 Cache 的平均访问时间以及 CPU 的性能 (小计 10 分)。 3CX $(2 + 14 \times 1^{\circ})$ 。 *80)
- 2、由计算结果能得出什么结论? (小计5分)