University of Malta Department of Communications and Computer Engineering

Lab #3: Feature Detection

Course: Computer Vision (CCE5205) – Lecturer: Dr. Reuben Farrugia

The aim of this laboratory session is to detect discriminative key-points. In this lab session you will implement the Harris Corner Detection [1] algorithm and test it on real-world images. Download the Data/ folder from the VLE. This folder contains three files: i) chessboard.jpg is the image that will be used in the first part of the experiment, ii) image010.jpg and image012.jpg that will be used in the final evaluation.

Question 1: Use the opency library to read the image and display it using the matlibplot library.

Figure 1: Chessboard image that will be used in this experiment

Question 2: Use the opency library to derive the image gradients I_x and I_y ¹. See Fig.2 as an example.

Question 3: Use the image gradients to derive I_{xx} , I_{yy} and I_{xy} . See Fig. 3 as an example.

Question 4: Derive the corner heat map matrix R using the np.linalg.eigvals() function to derive the eigenvalues of the structure tensors.

Question 5: Derive an algorithm that will detect a key-points from the matrix **R**.

Question 6: Use the developed Harris Corner Detection algorithm to detect key-points from image010.jpg and image012.jpg. Comment on the accuracy of the result.

¹The sobel operator is a kernel that is generally adopted to derive the image gradients.

Figure 2: Image gradients.

Figure 4: The heat-map of the matrix **R** and the resulting key-points.

Figure 5: Key-points detected on two landscape images.

References

[1] C. Harris and M. Stephens, "A combined corner and edge detector," in *Proceedings* of the 4th Alvey Vision Conference, pp. 147–151, 1988.