MC558 — Análise de Algoritmos II

Cid C. de Souza Cândida N. da Silva Orlando Lee

16 de junho de 2023

Antes de mais nada...

- Uma versão anterior deste conjunto de slides foi preparada por Cid Carvalho de Souza e Cândida Nunes da Silva para uma instância anterior desta disciplina.
- O que vocês tem em mãos é uma versão modificada preparada para atender a meus gostos.
- Nunca é demais enfatizar que o material é apenas um guia e não deve ser usado como única fonte de estudo. Para isso consultem a bibliografia (em especial o CLR ou CLRS).

Orlando Lee

Agradecimentos (Cid e Cândida)

- Várias pessoas contribuíram direta ou indiretamente com a preparação deste material.
- Algumas destas pessoas cederam gentilmente seus arquivos digitais enquanto outras cederam gentilmente o seu tempo fazendo correções e dando sugestões.
- Uma lista destes "colaboradores" (em ordem alfabética) é dada abaixo:
 - Célia Picinin de Mello
 - ▶ José Coelho de Pina
 - Orlando Lee
 - ▶ Paulo Feofiloff
 - ▶ Pedro Rezende
 - Ricardo Dahab
 - Zanoni Dias

Estrutura de parênteses

Corolário. (Intervalos encaixantes para descendentes)

Um vértice v é um descendente próprio de u na Floresta de BP se, e somente se, d[u] < d[v] < f[v] < f[u].

Equivalentemente, v é um descendente próprio de u se, e somente se, [d[v], f[v]] está contido em [d[u], f[u]].

Teorema do Caminho Branco

Teorema. (Teorema do Caminho Branco)

Em uma Floresta de BP, um vértice v é descendente de u se, e somente se, no instante d[u] (quando u foi descoberto), existia um caminho de u a v formado apenas por vértices brancos (com exceção de u).

Componentes fortemente conexos (CFC)

- Uma aplicação clássica de busca em profundidade:
 decompor um grafo orientado em seus componentes fortemente conexos.
- Muitos algoritmos em grafos começam com tal decomposição.
- O algoritmo opera separadamente em cada componente fortemente conexo.
- As soluções são combinadas de alguma forma.

Grafo fortemente conexo

Um grafo orientado G = (V, E) é fortemente conexo se para todo par de vértices u, v de G, existe um caminho orientado de u a v.

Grafo fortemente conexo

Nem todo grafo orientado é fortemente conexo.

Componentes fortemente conexos

Um componente fortemente conexo de um grafo orientado G = (V, E) é um subconjunto de vértices $C \subseteq V$ tal que:

- o subgrafo induzido por C é fortemente conexo e
- 2 C é maximal com respeito à propriedade (1).

Componentes fortemente conexos

Um grafo orientado e seus componentes fortemente conexos.

Problema: dado um grafo G, determinar seus componentes fortemente conexos.

Grafo Componente

Para entender melhor o algoritmo que veremos, considere o grafo componente G^{CFC} obtido a partir de G contraindo-se seus componentes fortemente conexos.

Mais precisamente, cada vértice de G^{CFC} corresponde a um componente fortemente conexo de G e existe uma aresta (C, C') em G^{CFC} se existem $u \in C$ e $v \in C'$ tais que $(u, v) \in E[G]$.

O grafo G^{CFC} é **acíclico**. (Por quê?)

Grafo Componente

O grafo G^{CFC} é **acíclico**. (Por quê?)

Se G^{CFC} contivesse um ciclo, então alguma componente fortemente conexa estaria contida propriamente em um subgrafo fortemente conexo de G, uma contradição.

Grafo Componente

Considere uma busca em profundidade sobre G e seja u o último vértice a ser **finalizado**. O vértice u tem que pertencer a um componente fortemente conexo de G que corresponde a uma fonte de G^{CFC} . (Por quê?)

Grafo Componente

Considere uma busca em profundidade sobre G e seja u o **último** vértice a ser **finalizado**. O vértice u tem que pertencer a um componente fortemente conexo de G que corresponde a uma fonte de G^{CFC} .

Suponha que a componente fortemente conexa C que contém u não seja uma "fonte". Então algum vértice v de outra componente f.c. C' é adjacente a algum vértice de C. No instante d[u], v já foi finalizado pela escolha de u. Mas isto significa que u deveria ter sido finalizado antes de v (Lema 22.14 CLRS – veremos daqui a pouco), uma contradição.

Grafo transposto

Seja G = (V, E) um grafo orientado.

O grafo transposto de G é o grafo $G^T = (V^T, E^T)$ tal que

- $V^T = V e$
- $E^T = \{(u, v) : (v, u) \in E\}.$

Ou seja, G^T é obtido a partir de G invertendo as orientações das arestas.

Dada uma representação de listas de adjacências de G é possível obter a representação de listas de adjacências de G^T em tempo $\Theta(V + E)$.

Grafo transposto

Um grafo orientado e o grafo transposto. Note que eles têm os mesmos componentes fortemente conexos.

Se começarmos uma nova busca em profundidade, mas agora começando no vértice u que foi **finalizado** mais tarde (na primeira busca), ela encontrará o componente fortemente conexo que contém u (os vértices da primeira árvore encontrada.)

Algoritmo

COMPONENTES-FORTEMENTE-CONEXOS(G)

- 1 Execute DFS(G) para obter f[v] para $v \in V$.
- 2 Execute DFS(G^T) considerando os vértices em ordem decrescente de f[v] (da primeira busca).
- 3 Devolva os conjuntos de vértices de cada árvore da Floresta de Busca em Profundidade obtida.

Veremos que os conjuntos devolvidos são exatamente os componentes fortemente conexos de G.

Exemplo CLRS

Exemplo CLRS

1 Execute DFS(G) para obter f[v] para $v \in V$.

Exemplo CLRS

- 2 Execute DFS(G^T) considerando os vértices em ordem decrescente de f[v] (da primeira busca).
- 3 Devolva os conjuntos de vértices de cada árvore da Floresta de Busca em Profundidade obtida.

Sejam C e C' dois componentes fortemente conexos de G.

Sejam $u, v \in C$ e $u', v' \in C'$.

Suponha que existe um caminho $u \rightsquigarrow u'$ em G.

Então **não existe** um caminho $v' \rightsquigarrow v$ em G.

Daqui pra frente d, f referem-se à busca em profundidade em G feita no Passo 1 do algoritmo.

Para todo subconjunto U de vértices sejam

$$d(U) := \min_{u \in U} \{d[u]\}$$
 e $f(U) := \max_{u \in U} \{f[u]\}.$

Ou seja,

d(U) é o instante em que o primeiro vértice de U foi descoberto e f(U) é o instante em que o último vértice de U foi finalizado.

Sejam C e C' dois componentes f.c. de G.

Suponha que existe (u, v) em E onde $u \in C$ e $v \in C'$.

Então f(C) > f(C').

Sejam C e C' dois componentes f.c. de G. Suponha que existe (u, v) em E onde $u \in C$ e $v \in C'$. Então f(C) > f(C').

Prova:

Caso 1: d(C) < d(C'). Seja x o primeiro vértice de C que foi descoberto. Logo d[x] = d(C). No instante d[x], existe um caminho branco de de x a todo vértice de $C \cup C'$. Então todos os vértices de $C \cup C'$ são descendentes de x e portanto, f(C') < f[x] = f(C).

Sejam C e C' dois componentes f.c. de G. Suponha que existe (u, v) em E onde $u \in C$ e $v \in C'$. Então f(C) > f(C').

Caso 2: d(C) > d(C'). O primeiro vértice de $C \cup C'$ a ser descoberto pertence a C'. Logo, todos os vértices de C' serão finalizados antes de qualquer vértice de C ser descoberto. Isso mostra que f(C) > f(C').


```
Sejam C e C' dois componentes f.c. de G.
Suponha que existe (u, v) em E onde u \in C e v \in C'.
Então f(C) > f(C').
```

- Se ordenarmos os vértices de G^{CFC} (i.e., componentes f.c. de G) em ordem decrescente do valor f(C), obtemos uma ordenação topológica de G^{CFC} !
- Intuitivamente, na execução de DFS(G^T), quando DFS começa a construir uma nova árvore, ele escolhe como raiz um vértice de um componente f.c. que é uma fonte do grafo obtido de G^{CFC} removendo-se os componentes descobertos anteriormente.

```
Sejam C e C' dois componentes f.c. de G.
Suponha que existe (u, v) em E onde u \in C e v \in C'.
Então f(C) > f(C').
```

Sejam C e C' dois componentes f.c. de G^T . Suponha que existe (u, v) em E^T onde $u \in C$ e $v \in C'$. Então f(C) < f(C').

Segue do fato de que G e G^T têm os mesmos componentes fortemente conexos e do Lema 22.14.

COMPONENTES-FORTEMENTE-CONEXOS(G)

- 1 Execute DFS(G) para obter f[v] para $v \in V$.
- 2 Execute DFS(G^T) considerando os vértices em ordem decrescente de f[v].
- 3 Devolva os conjuntos de vértices de cada árvore da Floresta de Busca em Profundidade obtida.

O algoritmo COMPONENTES-FORTEMENTE-CONEXOS determina os componentes fortemente conexos de G em tempo O(V + E).

Prova: (CLRS)

Vamos provar por **indução** no número k de árvores produzidas na linha 3 que os conjuntos de vértices de cada árvore são componentes fortemente conexos.

Base: k = 0 (trivial)

Hipótese de indução: as primeiras k árvores produzidas na linha 3 são componentes fortemente conexos.

Passo de indução: considere a (k+1)-ésima árvore produzida pelo algoritmo. Vamos mostrar que seu conjunto de vértices é um componente fortemente conexo.

Seja u a raiz desta árvore e seja C o componente fortemente conexo ao qual u pertence.

Pela escolha do algoritmo, f[u] = f(C) > f(C') para qualquer outro componente fortemente conexo C' que consiste de vértices ainda não visitados em DFS(G^T).

No instante em que a busca começa em u, todos os vértices de C são brancos. Assim, todos os vértices de C tornam-se descendentes de u na árvore de busca de C.

Pelo Corolário 22.15, qualquer aresta que sai de ${\it C}$ só pode entrar em uma das ${\it k}$ componentes fortemente conexas já visitadas.

Logo, apenas os vértices de C estão na árvore de busca em profundidade de G^T com raiz u.