Atividade 6 - Algoritmo de Otimização por Nuvem de Partículas (PSO) para Minimizar a Função Ackley

Vítor Oliveira Amorim

19 de junho de 2025

Introdução

Nesta atividade, foi implementado um algoritmo de otimização por Otimização por Nuvem de Partículas (PSO), também conhecido como Particle Swarm Otimization, para minimizar o valor da função Ackley.

Versões Implementadas

Foi implementado o algoritmo de Otimização por Nuvem de Partículas (PSO) com as seguintes topologias:

- 1. Clique: onde o melhor global é aplicado e todas as partículas levam em conta o mesmo G_{best} ;
- 2. **Grade**: onde cada partícula possui somente 4 vizinhos. Sendo eles os adjacentes verticalmente e os adjacentes horizontalmente.

Avaliação dos Resultados Obtidos

A análise dos resultados foi baseada em três conjuntos de dados gerados por meio da execução do algoritmo:

- Tabelas da evolução do *fitness* dos indivíduos ao longo das gerações, considerando o melhor conjunto de parâmetros, encontrado por meio da execução do teste fatorial;
- Tabelas de teste fatorial para encontrar a melhor combinação de parâmetros para cada versão do algoritmo.

Teste Fatorial

Para a execução do algoritmo, foi adotado um conjunto de parâmetros obtido por meio da execução de um experimento fatorial, conforme detalhado abaixo:

	Coroções	Tamanho	Dimensões	Fator	Fator	Fator de
Gera	Gerações	da População		cognitivo	social	diversificação
	200	225	2	0.25	0.75	0.7

Essa combinação de parâmetros se mostrou eficiente para ambas as topologias implementadas.

Avaliação do Comportamento do Algoritmo e seus Resultados

A fim de realizar uma análise mais aprofundada do comportamento do algoritmo, foram produzidos os seguintes conjuntos de dados:

- Gráficos da evolução do fitness das partículas ao longo das gerações:
 - 1. Gráfico 1: Topologia de clique;
 - 2. Gráfico 2: Topologia de grade.
- GIFs da mudança de posição das partículas da população ao longo das gerações:
 - 1. GIF 1: Topologia de clique;
 - 2. GIF 2: Topologia de grade.

Evolução dos Fitness das Partículas ao Longo das Gerações

Figura 1: Comportamento do fitness das partículas ao longo das gerações para a topologia de clique

Figura 2: Comportamento do fitness das partículas ao longo das gerações para a topologia de clique

A análise dos Gráficos 1 e 2 revela o ótimo desempenho do algoritmo de **Otimização por Nuvem de Partículas (PSO)** na minimização da função *Ackley*. Observa-se que o algoritmo demonstra uma convergência muito rápida para o mínimo absoluto da função (0), precisando apenas de poucas gerações para isso, como reforçam as informações obtidas através da tabela de teste fatorial.

Um ponto crucial a ser destacado é a capacidade do PSO de escapar de mínimos locais, visto que a função de *Ackley* conta com inúmeros mínimos locais, mas isso não foi o bastante para impedir que o algoritmo encontrasse o mínimo absoluto da função.

Adicionalmente, a análise da média e do desvio padrão dos indivíduos indica que a grande maioria das partículas apresentou resultados satisfatórios. Porém, as partículas com pior solução se distanciaram bastante da média e da partícula de melhor solução.

A proximidade da média das soluções em relação à melhor solução reforça a eficácia do algoritmo em encontrar bons resultados. Complementarmente, o baixo valor do desvio padrão destaca a estabilidade e a consistência das soluções geradas, indicando que as formigas convergem para um conjunto de soluções de alta qualidade.

Por fim, a diferença do comportamento entre as diferentes topologias foi praticamente imperceptível. Contudo, a topologia de *grid* apresentou desvio padrão levemente maior e média levemente menor. Isso pode indicar que a vizinhança menor da topologia de *grid* pode ter provocado maior diversidade entre os indivíduos da população.

Mudança de Posição das Partículas ao Longo das Gerações

A análise dos GIFs disponibilizados na pasta data/gifs na raiz do projeto ilustra de forma eficaz a dinâmica de busca de um algoritmo de **Otimização por Nuvem de Partículas** pelo valor que otimize a função objetivo, que, no caso, foi a minimização da função de Ackley.

A observação mais proeminente é a rápida convergência das partículas para o mínimo global da função. Isso é mais um indicativo da eficiência do algoritmo de PSO em orientar as partículas a explorar o espaço de busca.

O comparativo entre as topologias de **clique** e **grid** revela que a topologia de **clique** converge mais rapidamente para o melhor mínimo encontrado por qualquer partícula do enxame (*global best*), enquanto a topologia de **grid** converge de forma levemente mais lenta, uma vez que cada partícula tem acesso somente à melhor solução encontrada por partículas adjacentes.

A escolha da topologia de comunicação das partículas é algo crucial e depende das características da função objetivo. Para problemas onde a velocidade de convergência é primordial e o risco de ficar preso em mínimos locais é menor, a topologia de **clique** é comprovadamente eficaz. Por outro lado, a topologia de **grid** pode ser preferível em cenários onde uma exploração mais distribuída e a prevenção de convergência prematura são importantes, mesmo que signifique uma convergência ligeiramente mais lenta.

Em resumo, os *GIFs* forneceram informações visuais importantes do comportamento das partículas do algoritmo de PSO se movem ao longo das gerações e colaboram para encontrar o valor que otimiza a função objetivo, destacando o impacto significativo da topologia da rede de comunicação na eficiência do algoritmo.

Conclusão

Em suma, a análise dos resultados sugere que o algoritmo de **Otimização por Nuvem de Partículas (PSO)** demonstra um desempenho muito bom em problemas de otimização de variáveis contínuas e a escolha da topologia de comunicação do algoritmo é fundamental a depender das características da função objetivo escolhida.