Dynamic Event Tree Analysis Through RAVEN

A. Alfonsi*, C. Rabiti*, D. Mandelli*, J.J. Cogliati*, R.A. Kinoshita*, A. Naviglio[†]

* Idaho National Laboratory
2525 Fremont Avenue, Idaho Falls, ID 83415
{andrea.alfonsi, cristian.rabiti, diego.mandelli, joshua.cogliati, robert.kinoshita}@inl.gov

[†] Università di Roma "La Sapienza", Dipartimento Ingegneria Energetica e Nucleare Via Eudossiana, 18, 00184, Rome, Italy antonio.naviglio@uniroma1.it

ABSTRACT

Conventional Event-Tree (ET) based methodologies are extensively used as tools to perform reliability and safety assessment of complex and critical engineering systems. One of the disadvantages of these methods is that timing/sequencing of events and system dynamics is not explicitly accounted for in the analysis. In order to overcome these limitations several techniques, also know as **D**ynamic **P**robabilistic Risk Assessment (D-PRA), have been developed. Monte-Carlo (MC) and Dynamic Event Tree (DET) are two of the most widely used D-PRA methodologies to perform safety assessment of Nuclear Power Plants (NPP). In the past two years, the Idaho National Laboratory (INL) has developed its own tool to perform Dynamic PRA: RAVEN (Reactor Analysis and Virtual control ENvironment). RAVEN has been designed in a high modular and pluggable way in order to enable easy integration of different programming languages (i.e., C++, Python) and coupling with other application including the ones based on the MOOSE framework, developed by INL as well. RAVEN performs two main tasks: 1) control logic driver for the new Thermo-Hydraulic code RELAP-7 and 2) post-processing tool. In the first task, RAVEN acts as a deterministic controller in which the set of control logic laws (user defined) monitors the RELAP-7 simulation and controls the activation of specific systems. Moreover, RAVEN also models stochastic events, such as components failures, and performs uncertainty quantification. Such stochastic modeling is employed by using both MC and DET algorithms. In the second task, RAVEN processes the large amount of data generated by RELAP-7 using data-mining based algorithms. This paper focuses on the first task and shows how it is possible to perform the analysis of dynamic stochastic systems using the newly developed RAVEN DET capability. As an example, the Dynamic PRA analysis, using Dynamic Event Tree, of a simplified pressurized water reactor for a Station Black-Out scenario is presented.

Key Words: Reactor Simulation, Probabilistic Risk Assessment, PRA, Dynamic Event Tree, RELAP-7

1. INTRODUCTION

RAVEN (Reactor Analysis and Virtual control ENviroment) [1,2] is a software tool that acts as the control logic driver for the newly developed Thermal-Hydraulic code RELAP-7 (Reactor Excursion and Leak Analysis Program). The goal of this paper is to highlight the newly developed Dynamic Event Tree module embedded in the code and its utilization in conjunction with RELAP-7. RAVEN is a multi-purpose Probabilistic Risk Assessment (PRA) software framework that allows dispatching different functionalities. It is designed to derive and actuate the control logic required to simulate the plant control system and operator actions (guided procedures) and to perform both Monte-Carlo sampling of random distributed events and Event Tree based analysis. In order to facilitate the input/output handling, a Graphical User Interface (GUI) and a post-processing data mining module, based on dimensionality and cardinality reduction, are available. This paper wants to provide an overview of the DET structure, highlighting the mathematical framework

from which its structure is derived, the main conceptual decisions have been taken and its software layout. In addiction it will be shown a **S**tation **B**lack **O**ut (SBO) Dynamic Event Tree based analysis of a simplified **P**ressurized **W**ater **R**eactor (PWR) model.

2. RAVEN OVERVIEW

2.1. Mathematical Framework

Let be $\bar{\theta}(t)$ a vector describing the plant status in the phase space; the dynamic of the plant, including the control system, can be summarized by the following equation:

$$\frac{\partial \bar{\theta}}{\partial t} = \bar{H}(\theta(t), t) \tag{1}$$

In the above equation it is assumed the time differentiability in the phase space. Performing an arbitrary decomposition of the phase space, the following statement is obtained:

$$\bar{\theta} = \begin{pmatrix} \bar{x} \\ \bar{v} \end{pmatrix} \tag{2}$$

The decomposition is made in such a way that \bar{x} represents the unknowns solved by RELAP-7, while \bar{v} are the variables directly controlled by the control system (i.e., RAVEN). Equation 1 can now be rewritten as follows:

$$\begin{cases} \frac{\partial \bar{x}}{\partial t} = \bar{F}(\bar{x}, \bar{v}, t) \\ \frac{\partial \bar{v}}{\partial t} = \bar{V}(\bar{x}, \bar{v}, t) \end{cases}$$
(3)

It is possible to note that the function $\bar{V}(\bar{x}, \bar{v}, t)$ representing the control system, does not depend on the knowledge of the complete status of the system but on a restricted subset (i.e. control variables) \bar{C} :

$$\begin{cases} \frac{\partial \bar{x}}{\partial t} = \bar{F}(\bar{x}, \bar{v}, t) \\ \bar{C} = \bar{G}(\bar{x}, t) \\ \frac{\partial \bar{v}}{\partial t} = \bar{V}(\bar{x}, \bar{v}, t) \end{cases}$$
(4)

The system of equations in Eq. 4 is fully coupled and has commonly been solved by an operator splitting approach. The reasons for this choice are several:

- Control system reacts with an intrinsic delay
- The reaction of the control system might move the system between two different discrete states and therefore numerical errors will be always of first order unless the discontinuity is treated explicitly.

Thus, RAVEN is using this approach to solve Eq. 4 which becomes:

$$\begin{cases} \frac{\partial \bar{x}}{\partial t} = \bar{F}(\bar{x}, \bar{v}_{t_{i-1}}, t) \\ \bar{C} = \bar{G}(\bar{x}, t) & t_{i-1} \le t \le t_i = t_{i-1} + \Delta t_i \\ \frac{\partial \bar{v}}{\partial t} = \bar{V}(\bar{x}, \bar{v}_{t_{i-1}}, t) \end{cases}$$
(5)

Even if all information needed is contained in \bar{x} and \bar{v} , it is not a practical and efficient way to implement the control system. Hence, a system of auxiliary variables has been introduced. The auxiliary variables are those that in statistical analysis are artificially added, when possible, to non-Markovian systems into the space phase to obtain a Markovian behavior back, so that only the information of the previous time step is needed to determine the future status of the system. Thus, the introduction of the auxiliary system into the mathematical framework leads to the following formulation of the Eq. 5:

$$\begin{cases}
\frac{\partial \bar{x}}{\partial t} = \bar{F}(\bar{x}, \bar{v}_{t_{i-1}}, t) \\
\bar{C} = \bar{G}(\bar{x}, t) & t_{i-1} \leq t \leq t_i = t_{i-1} + \Delta t_i \\
\frac{\partial \bar{a}}{\partial t} = \bar{A}(\bar{x}, \bar{C}, \bar{a}_{t_{i-1}}, \bar{v}_{t_{i-1}}, t) \\
\frac{\partial \bar{v}}{\partial t} = \bar{V}(\bar{x}, \bar{C}, \bar{v}_{t_{i-1}}, \bar{a}, t)
\end{cases} (6)$$

2.2. Software Overview

RAVEN, is plugged with the software environment MOOSE [3]. MOOSE is a computer simulation framework, developed at Idaho National Laboratory (INL), that simplifies the process for predicting the behavior of complex systems and developing non-linear, multi-physics simulation tools. Other than providing the algorithms for the solution of the differential equation, MOOSE also provides all the manipulation tools for the C++ classes containing the solution vector. This framework has been used to construct and develop the Thermal-Hydraulic code RELAP-7, giving an enormous flexibility in the coupling procedure with RAVEN. RELAP-7 is the next generation nuclear reactor system safety analysis. It will become the main reactor systems simulation toolkit for RISMC (Risk Informed Safety Margin Characterization) [4] project and the next generation tool in the RELAP reactor safety/systems analysis application series. RAVEN has been developed in a high modular and pluggable way in order to enable easy integration of different programming languages (i.e., C++, Python) and coupling with other applications including the ones based on MOOSE. The code consists of four main modules:

- RAVEN/RELAP-7 interface
- Python Control Logic
- External Python Manager
- Graphical User Interface

The RAVEN/RELAP-7 interface, coded in C++, is the container of all the tools needed to interact with RELAP-7/MOOSE. It has been designed in order to be general and pluggable with different solvers simultaneously in order to allow an easier and faster development of the control logic/PRA capabilities for multi-physics applications. The interface provides all the capabilities to generate the monitored quantities and accordingly modify the controlled parameters in the RELAP-7/MOOSE calculation.

The control logic module is used to drive a RAVEN/RELAP-7 calculation. Up to now it is implemented by the user via Python scripting. The reason of this choice is to try to preserve generality of the approach in the initial phases of the project so that further specialization is possible and inexpensive. The implementation of the control logic via Python is rather convenient and flexible. The user only needs to know few Python syntax rules in order to build an input. Although this extreme simplicity, it will be part of the GUI task to automatize the construction of the control logic scripting in order to minimize user effort.

The core of PRA analysis is contained in an external driver/manager. It consists in a Python framework that contains the capabilities and interfaces to drive a PRA analysis. Its basic infrastructure in connection with

the Dynamic Event Tree module will be discussed in section 4.1

As previously mentioned, a Graphical User Interface (GUI) is not required to run RAVEN, but it represents an added value to the whole code. The GUI is compatible with all the capabilities actually present in RAVEN. Its development is performed using QtPy, which is a Python interface for a C++ based library (C++) for GUI implementation. The GUI is based on a software named Peacock, which is a GUI interface for MOOSE based application and, in its base implementation, is only able to assist the user in the creation of the input. In order to make it fit all the RAVEN needs, the GUI has been specialized and is in continuous evolution.

3. THE DYNAMIC EVEN TREE METHODOLOGY

In technological complex systems, as nuclear power plants, an accident scenario begins with an initiating event and, through the interaction of dynamics and stochastics, evolves over time. This mutual action leads to the production of infinitely many different scenarios, that define a continuous dynamic event tree with infinite branches. At each time point, the stochastic variability of the accident outcomes is determined by a multi-variate probability distribution. The PRA analysis needs an approximation to this distribution for selected consequence variables. A way to achieve this goal is an Event Tree approach. In dynamic PRA analysis, Conventional Event Tree (ET) sequences are run simultaneously starting from a single initiating event. The branchings occur at user specified times and/or when an action is required by the operator and/or the system, creating a deterministic sequence of events based on the time of their occurrence.

Figure 1: Dynamic Event Tree Conceptual Scheme.

One of the disadvantages of this method is that timing/sequencing of events and system dynamics is not explicitly accounted for in the analysis. In order to overcome these limitations a "dynamic" approach is needed. The Dynamic Event Tree (DET) technique brings several advantages, among which the fact that it simulates probabilistic system evolution in a way that is consistent with the severe accident model. This leads to a more realistic and mechanistically consistent analysis of the system taken in consideration. The dynamic PRA, in general, and the Dynamic Event Tree methodologies, in particular, are designed to take the timing of events explicitly into account which can become very important especially when uncertainties in complex phenomena are considered. Hence, the main idea of this methodology is to let a system code (i.e. RELAP-7) determine the pathway of an accident scenario within a probabilistic "environment".

Figure 1 schematically shows the DET logic. As already mentioned, the accident sequence starts with an

initiating event. Based on an user defined branching logic, driven by Probabilistic Distribution Functions (PDFs), an event occurs at a certain time t=T. The simulation spoons n different branches. In each of them, the branching event determines a different consequence (carrying on associated probabilities). Each sequence continues until another event occurs and a new set of branching is spooned. The simulation ends when an exit condition or a maximum mission time is reached.

4. RAVEN APPROACHING DYNAMIC METHODOLOGIES: ANDREA MODULE

RAVEN is now able to perform Dynamic Event Tree analysis through the newly developed module "ANalysis of Dynamic REactor Accident evolution" (ANDREA), that has been included in the RAVEN external Python manager. Following the philosophy of the DET approach, this module lets RELAP-7 find the path of an accident sequence, in a probabilistic point of view. When the system achieves certain conditions that would lead to alternative accident ways (i.e. an event occurs), a sampler generates a new set of branches (new possible scenarios), associating for each a conditional probability. As easily understandable, in complex cases, the number of branches may become extremely big. In order to avoid unacceptable growth of problem due by an excessive number of branches, the user needs to specify an exit logic (termination laws), for example maximum mission time, rules based on the simulator physic model (i.e. Maximum temperature of the fuel cladding, etc.), and/or probabilistic thresholds. In other similar codes, one of the most common termination law is a probability cut-off: a branch execution is truncated when its probability falls below a given limit. No countermeasures are generally taken to conserve the global probability. This approach may introduce a big impact on the probability of key events, if the user defined limit is not small enough that the influence on the final branch probability is not negligible. In order to avoid these issues and preserve the probability conservation, the user can not directly input a branching probability cut-off.

As can be inferred from the previous dissertation, the package is aimed to provide capabilities to:

- explore possible pathways through which the system can evolve
- quantify the probability of these scenarios

These main tasks are accomplished based on user specified branching and termination rules, model of the system in RELAP-7, probability assignment rules to accident sequences (either by inputed values or/and by distribution functions). Regarding the branching rules,

4.1. Computational Infrastructure

5. SOFTWARE LAYOUT AND CALCULATION FLOW

to add

6. DEMO FOR A PWR PRA ANALYSIS

to add

6.1. Station Black Out (SBO) analysis

to add

6.2. Results

to add

7 CONCLUSIONS AND FUTURE WORK

to add

ACKNOWLEDGMENT

This work is supported by the U.S. Department of Energy, under DOE Idaho Operations Office Contract DE-AC07-05ID14517. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes.

REFERENCES

- [1] C. Rabiti, A. Alfonsi, J. Cogliati, D. Mandelli, and R. Kinoshita, "Reactor analysis and virtual control environment (raven) fy12 report," Tech. Rep. INL/EXT-12-27351, Idaho National Laboratory (INL), 2012.
- [2] C. Rabiti, A. Alfonsi, D. Mandelli, J. Cogliati, and R. Martineau, "Raven as control logic and probabilistic risk assessment driver for relap-7," in *Proceeding of American Nuclear Society (ANS), San Diego (CA)*, vol. 107, pp. 333–335, 2012.
- [3] D. Gaston, G. Hansen, S. Kadioglu, D. A. Knoll, C. Newman, H. Park, C. Permann, and W. Taitano, "Parallel multiphysics algorithms and software for computational nuclear engineering," *Journal of Physics: Conference Series*, vol. 180, no. 1, p. 012012, 2009.
- [4] D. Mandelli and C. Smith, "Integrating safety assessment methods using the risk informed safety margins characterization (rismc) approach," in *Proceeding of American Nuclear Society (ANS), San Diego (CA)*, vol. 107, pp. 883–885, 2012.