Hacon-Mckernan-Xu's canonical bundle formulaSummer 2025Note 8 - 06, 06, 2025 (draft version)Yi Li

The aim of this note is to prove the following Hacon-Mckernan-Xu's subadjunction theorem and show varies applications. The major references are [Bir19] and [HMX14].

Theorem 1 ([HMX14, Theorem 4.2]). Assume the following condition holds:

- (1) Let (X, B) be a projective klt pair;
- (2) $G \subset X$ is a subvariety with normalisation F, (we want to do subadjunction on this F),
- (3) X is \mathbb{Q} -factorial near the generic point of G,
- (4) $\Delta \geq 0$ is an \mathbb{R} -Cartier divisor on X; and $(X, B + \Delta)$ is lc near the generic point of G, (the LC condition allow us to find some DLT model near G),
- (5) there is a unique non-klt place of this pair whose centre is G.
- (6) Let $d \in \mathbb{N}$, and let Φ be a subset of [0,1] that contains 1, and dim X = d and $B \in \Phi$.

We then use MMP arguement (see more detail below) find some DLT model $\psi: Y \to X$, such that there exists unique component S with coefficient 1, and a contraction $h: S \to F$. We then apply the canonical bundle formula

$$K_S + \Xi_S \sim_{\mathbb{R}} h^*(K_F + \Theta_F + P_F),$$

where Ξ_S is some axillary boundary divisor (which will be contruced below) and Θ_F is the discriminant divisor and P_F is the moduli divisor in the canonical bundle formula.

Then Hacon-Mckernan-Xu subadjunction theorem says that:

- (a) (coefficient control on discriminant part) The coefficient of the discriminant divisor Θ_F belong to $\Psi := \{a \mid 1 a \in LCT_{d-1}(D(\Phi))\} \cup \{1\}$, thus only depends on B not Δ .
- (b) (positivity on moduli part) P_F is pseudo-effective.

Contents

1	Pro	of of Hacon-Mckernan-Xu's subadjunction	2
	1.1	Step 0. Construction of the DLT model	2
	1.2	Step 1. Construction of the axillary divisor Ξ_S	2
	1.3	Step 2. Proof of the coefficient of discriminant part Θ_F lies in the DCC set Ψ	2
	1.4	Step 3. Proof of the pseudo-effectiveness of the moduli part P_F	2
	1.5	subadjunction for ϵ -LC	2
$oldsymbol{2}$	Apr	plications of Hacon-Mckernan-Xu's subadjunction	2

1 Proof of Hacon-Mckernan-Xu's subadjunction

- 1.1 Step 0. Construction of the DLT model
- 1.2 Step 1. Construction of the axillary divisor Ξ_S
- 1.3 Step 2. Proof of the coefficient of discriminant part Θ_F lies in the DCC set Ψ
- 1.4 Step 3. Proof of the pseudo-effectiveness of the moduli part P_F
- 1.5 subadjunction for ϵ -LC

2 Applications of Hacon-Mckernan-Xu's subadjunction

References

- [Bir19] Caucher Birkar, Anti-pluricanonical systems on fano varieties, Annals of Mathematics 190 (2019), no. 2, 345–463.
- [HMX14] Christopher D. Hacon, James McKernan, and Chenyang Xu, ACC for log canonical thresholds, Ann. of Math. (2) **180** (2014), no. 2, 523–571. MR 3224718