ПРАКТИЧЕСКОЕ ЗАНЯТИЕ №3

Memod Гаусса - метод последовательного исключения неизвестных – относится к группе *точных методов*, и если бы отсутствовала погрешность вычислений, можно было бы получить точное решение.

При ручных расчётах вычисления целесообразно вести в таблице, содержащей столбец контроля. Ниже представлен общий вариант такой таблицы для решения системы линейных уравнений 4-го порядка.

Прямой ход:

	л лод.				
x_1	$\overline{x_2}$	x_3	x_4	Свободные	Столбец
			'	члены	контроля
a_{11}	<i>a</i> ₁₂	<i>a</i> ₁₃	<i>a</i> ₁₄	a_{15}	$a_{16} = \sum_{1}^{5} a_{1i}$
a_{21}	<i>a</i> ₂₂	$a_{23}^{}$	$a_{24}^{}$	a_{25}	$a_{26} = \sum_{1}^{5} a_{2i}$
a_{31}	<i>a</i> ₃₂	a_{33}	<i>a</i> ₃₄	a_{35}	$a_{36} = \sum_{1}^{5} a_{3i}$
a_{41}	<i>a</i> ₄₂	a_{43}			$a_{46} = \sum_{1}^{5} a_{4i}$
1	<i>b</i> ₁₂	<i>b</i> ₁₃	$b_{14}^{}$	<i>b</i> ₁₅	$b_{16} = \sum_{2}^{5} b_{1i} + 1$
	$a_{22}^{(1)}$	$a_{23}^{(1)}$	$a_{24}^{(1)}$	$a_{25}^{(1)}$	$a_{26}^{(1)} = \sum_{2}^{5} a_{2i}^{(1)}$
	$a_{32}^{(1)}$	$a_{33}^{(1)}$	$a_{34}^{(1)}$	$a_{35}^{(1)}$	$a_{36}^{(1)} = \sum_{2}^{5} a_{3i}^{(1)}$
	$a_{42}^{(1)}$	$a_{43}^{(1)}$	$a_{44}^{(1)}$	$a_{45}^{(1)}$	$a_{46}^{(1)} = \sum_{2}^{5} a_{4i}^{(1)}$
	1	$b_{23}^{(1)}$	$b_{24}^{(1)}$	$b_{25}^{(1)}$	$b_{26}^{(1)} = \frac{5}{3}b_{2i}^{(1)} + 1$

x_1	x_2	x_3	x_4	Свободные	Столбец
	_			члены	контроля
		$a_{33}^{(2)}$	$a_{34}^{(2)}$	$a_{35}^{(2)}$	$a_{36}^{(2)} = \sum_{3}^{5} a_{3i}^{(2)}$
		$a_{43}^{(2)}$	$a_{44}^{(2)}$	$a_{45}^{(2)}$	$a_{36}^{(2)} = \sum_{3}^{5} a_{3i}^{(2)}$ $a_{46}^{(2)} = \sum_{3}^{5} a_{4i}^{(2)}$
		1	$b_{34}^{(2)}$	$b_{35}^{(2)}$	$b_{36}^{(2)} = b_{34}^{(2)} + b_{35}^{(2)} + 1$
			$a_{44}^{(3)}$	$a_{45}^{(3)}$	$a_{46}^{(3)} = a_{44}^{(3)} + a_{45}^{(3)}$
			1	$\frac{a_{45}^{(3)}}{a_{44}^{(3)}} = x_4$	$\frac{a_{46}^{(3)}}{a_{44}^{(3)}} = \overline{x_4}$

Обратный ход:

$x_{4}^{}=a_{\scriptscriptstyle 45}^{\scriptscriptstyle (3)}\ /\ a_{\scriptscriptstyle 44}^{\scriptscriptstyle (3)}$	$\bar{x}_4 = x_4 + 1$
$x_3 = b_{35}^{(2)} - b_{34}^{(2)} x_4$	$-\frac{1}{x_3} = x_3 + 1$
$x_2 = b_{25}^{(1)} - b_{24}^{(1)} x_4 - b_{23}^{(1)} x_3$	$-\frac{1}{x_2} = x_2 + 1$
$x_1 = b_{15} - b_{14}x_4 - b_{13}x_3 - b_{12}x_2$	
	$x_1 = x_1 + 1$

Пример 1. Методом Гаусса решить систему уравнений 4-го порядка:

$$\begin{cases} 2x_1 + x_3 + 4x_4 = 9 \\ x_1 + 2x_2 - x_3 + x_4 = 8 \\ 2x_1 + x_2 + x_3 + x_4 = 5 \\ x_1 - x_2 + 2x_3 + x_4 = -1 \end{cases}$$

Вычисления следует вести в таблице со столбцом контроля, образец которой приведён выше.

X_1	x_2	x_3	X_4	Свободные	Столбец
	_	3	'	члены	контроля
<u>2</u>	0	1	4	9	16
1	2	-1	1	8	11
2	1	1	1	5	10
1	-1	2	1	-1	2
1	0	0,5	2	4,5	8
	<u>2</u>	-1,5	-1	3,5	3
	1	0	-3	-4	-6
	-1	1,5	-1	-5,5	-6
	1	-0,75	-0,5	1,75	1,5
		<u>0,75</u>	-2,5	-5,75	-7,5
		0,75	-1,5	-3,75	-4,5
		1	-3,33	-7,67	-10
			1	2	3
				$x_{4} = 2$	$\bar{x}_4 = 3$
				$x_3 = -1$	$\bar{x}_3 = 0$
				$\begin{vmatrix} x_3 = -1 \\ x_2 = 2 \\ x_1 = 1 \end{vmatrix}$	$\bar{x}_2 = 3$
				$x_1 = 1$	$\bar{x}_1 = 2$

Пример 2. Найти корни линейной системы уравнений 3-го порядка:

$$\begin{cases} 6x_1 - x_2 - x_3 = 11,33 \\ -x_1 + 6x_2 - x_3 = 32 \\ -x_1 - x_2 + 6x_3 = 42 \end{cases}$$

Составляется аналогичная таблица для определения значений трёх неизвестных корней системы уравнений.

X_1	x_2	x_3	Свободные	Столбец
1	2	3	члены	контроля
6	-1	-1	11,33	15,33
-1	6	-1	32	36
-1	-1	6	42	46
1	-,167	-0,167	1,89	2,56
	5,83	-1,17	33,9	38,6
	-1,17	5,83	43,9	48,6
	1	-0,20	5,80	6,60
		5,60	50,7	56,3
		1	9,05	10,05
			$x_3 = 9.05$	$\bar{x}_3 = 10,5$
			$x_2 = 5,80 + 0,2 \cdot 9,05 = 7,62$	$\bar{x}_2 = 8.62$
			$x_1 = 1,89 + 0,167 \cdot (9,05 + 7,62) = 4,67$	$\bar{x}_1 = 5,67$

Эти приближённые значения корней можно подставить в исходную систему уравнений и вычислить *невязки* - $\mathcal{E}_1, \mathcal{E}_2, \mathcal{E}_3$, являющиеся разностями между правой и левой частями каждого уравнения системы при подстановке в левую часть найденных корней. Затем подставляются в качестве свободных членов системы невязки и получают *поправки* корней - $\delta_1, \delta_2, \delta_3$:

$$\varepsilon_1 = 0.02$$
 $\delta_1 = -0.0039$
 $x_1^{(1)} = 4.6661$
 $\varepsilon_2 = 0$
 $\Rightarrow \delta_2 = -0.0011$
 $\Rightarrow x_2^{(1)} = 7.6189$
 $\varepsilon_3 = -0.0025$
 $x_3^{(1)} = 9.0475$