

TEST REPORT

Product : L400, S400, S500, TS-400, IP400

Trade mark : AIPTEK/iBeamBLOCK/hp

Model/Type reference : L400 PAD

Serial Number : N/A

Report Number : EED32100318002

FCC ID : 2AHTC-IBBL4

Date of Issue : Jul. 14, 2017

Test Standards : 47 CFR Part 15Subpart C

Test result : PASS

Prepared for:

Global Aiptek Corporation 5F, No. 550, Xianzheng 2nd Rd., Zhubei City, Hsinchu County, Taiwan

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested By:

Tom-chen

Compiled by:

Kevin lan(Project Engineer)

Reviewed by:

Tom chen (Test Project)

Sheek,

Kevin yang (Reviewer)

Reim Jong

Sheek Luo (Lab supervisor)

Date:

Jul. 14, 2017

Check No.:2402615206

Page 2 of 37

2 Version

Version No. Date		rsion No. Date Description		
00	Jul. 14, 2017		Original	
	200	100	Z*S	/5
((%)	(812)	(6/2)

Report No. : EED32I00318002 Page 3 of 37

3 Test Summary

o rest Summary	7.0		
Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013/ KDB 558074 D01v04	PASS
6dB Occupied Bandwidth	47 CFR Part 15Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013/ KDB 558074 D01v04	PASS
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013/ KDB 558074 D01v04	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013/ KDB 558074 D01v04	PASS
RF Conducted Spurious Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013/ KDB 558074 D01v04	PASS
Radiated Spurious Emissions	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

The tested sample(s) and the sample information are provided by the client.

4 Content

7.40	V / 3					
1 COVER PAG	GE			••••••		1
2 VERSION		•••••	•••••	•••••	•••••	2
3 TEST SUM	MARY	•••••	•••••	•••••	•••••	3
4 CONTENT			•••••		•••••	4
TEST REQU	JIREMENT		•••••		•••••	5
5 1 TEST SE	TUP					5
	Conducted test setup					
	Radiated Emissions te					
	Conducted Emissions					
	NVIRONMENT					
5.3 TEST Co	ONDITION					6
6 GENERAL I	NFORMATION	•••••	•••••		•••••	7
	INFORMATION					
	L DESCRIPTION OF EUT.					
	CT SPECIFICATION SUBJECT					
	PTION OF SUPPORT UNIT					
	OCATION					
	ON FROM STANDARDS					
	MALITIES FROM STANDARI					
	INFORMATION REQUESTE					
	REMENT UNCERTAINTY (9					
7 EQUIPMEN	T LIST	••••••		•••••	•••••	10
	HNICAL REQUIREME					
Appendix	x A): 6dB Occupied Bar	ndwidth		/15		13
	x B): Conducted Peak C					
	x C): Band-edge for RF					
	x D): RF Conducted Sp					
Appendix	x E): Power Spectral De	ensity				21
	x F): Antenna Requirem					
	x G): AC Power Line Co					
	x H): Restricted bands a					
Appendix	x I) Radiated Spurious E	Emissions				30
PHOTOGRAP	HS OF TEST SETUP		•••••	•••••	•••••	35
PHOTOGRAP	HS OF EUT CONSTRU	JCTIONAL DETAIL	S		•••••	37

Report No.: EED32I00318002 Page 5 of 37

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Figure 3. Above 1GHz

5.1.3 For Conducted Emissions test setup Conducted Emissions setup

5.2 Test Environment

Operating Environment:		
Temperature:	25.0 °C	
Humidity:	53 % RH	250-0
Atmospheric Pressure:	1010mbar	

5.3 Test Condition

Test channel:

Test Mode	Tx/Rx	RF Channel			
1 est Mode	TA/NX	Low(L)	Middle(M)	High(H)	
05014	0.4001411 0.400.1411	Channel 1	Channel 20	Channel 40	
GFSK	2402MHz ~2480 MHz	2402MHz	2440MHz	2480MHz	
Transmitting mode:	Keep the EUT in transmitting mod rate.	e with all kind of m	odulation and a	all kind of data	

6 General Information

6.1 Client Information

Applicant:	Global Aiptek Corporation		
Address of Applicant:	5F, No. 550, Xianzheng 2nd Rd., Zhubei City, Hsinchu County, Taiwan		
Manufacturer:	Global Aiptek Corporation		
Address of Manufacturer:	5F, No. 550, Xianzheng 2nd Rd., Zhubei City, Hsinchu County, Taiwan		
Factory:	Shenzhen ACT Industrial Co., Ltd		
Address of Factory:	1~8F, No. 5 Building, Beishan Industrial Park, No. 146 Beishan Avenue, Yantian District, Shenzhen City		

6.2 General Description of EUT

Product Name:	L400, S400, S500, TS-400, IP400	(6,0)	
Model No.(EUT):	L400 PAD		
Trade mark:	AIPTEK/iBeamBLOCK/hp		
EUT Supports Radios application:	WIFI 2.4GHz 802.11b/g/n(HT20), BT4.0 Dual mode		(3)
AC adapter:	MODEL: DSA-42PFB-12 1 120350; Input: 100-240V~50/60Hz, 1.2A; Output: 12V==-3.5A		0
Sample Received Date:	Dec. 16, 2016		
Sample tested Date:	Dec. 16, 2016 to Jun. 23, 2017	(0)	

6.3 Product Specification subjective to this standard

Operation Frequency:	2402MHz~2480MHz		130
Bluetooth Version:	4.0	(45)	(6)
Modulation Technique:	DSSS		
Modulation Type:	GFSK		
Number of Channel:	40	Z'5	
Sample Type:	mobile production	(S))
Test Power Grade:	N/A		/
Test Software of EUT:	N/A		
Antenna Type and Gain:	PIFA Antenna and -4.5dBi	-0-	-05
Test Voltage:	AC 120V/60Hz	(49)	(4)

Report No. : EED32I00318002 Page 8 of 37

				100		705	_
Operation F	requency eac	h of channe	l	(2)		(25))
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

6.4 Description of Support Units

The EUT has been tested with associated equipment below.

Associate	ed equipment name	Manufacture	model	Supplied by
AE1	Projector	Global Aiptek Corporation	L400	Client
AE2	Mobile Power	Global Aiptek Corporation	PB-TS02	Client

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China 518101

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted.

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

None.

6.8 Other Information Requested by the Customer

None.

Report No. : EED32I00318002 Page 9 of 37

6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item Measurement Uncerta			
1	Radio Frequency	7.9 x 10 ⁻⁸		
2	DE nower conducted	0.31dB (30MHz-1GHz)		
2	RF power, conducted	0.57dB (1GHz-18GHz)		
3	Dedicted Spurious emission test	4.5dB (30MHz-1GHz)		
3	Radiated Spurious emission test	4.8dB (1GHz-12.75GHz)		
4	Conduction emission	3.6dB (9kHz to 150kHz)		
4	Conduction emission	3.2dB (150kHz to 30MHz)		
5	Temperature test	0.64°C		
6	Humidity test	2.8%		
7	DC power voltages	0.025%		

7 Equipment List

		RF test	system			
Equipment	Manufacturer	anufacturer Model No. Serial Number		Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
Signal Generator	Keysight	E8257D	MY53401106	03-14-2017	03-13-2018	
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-14-2017	03-13-2018	
Signal Generator	Keysight	N5182B	MY53051549	03-14-2017	03-13-2018	
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002	TTF20120439	01-11-2017	01-10-2018	
High-pass filter	MICRO- TRONICS	SPA-F-63029-4	003	01-11-2017	01-10-2018	
DC Power	Keysight	E3642A	MY54436035	03-14-2017	03-13-2018	
power meter & power sensor	R&S	OSP120	101374	03-14-2017	03-13-2018	
RF control unit	JS Tonscend	JS0806-2	158060006	03-14-2017	03-13-2018	

Conducted disturbance Test										
pment Manufacturer Model No. Serial Number			Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)						
R&S	ESCI	100009	06-14-2017	06-13-2018						
TAYLOR 1451 19		1905	05-08-2017	05-07-2018						
R&S	ENV216	100098	06-13-2017	06-12-2018						
schwarzbeck	NNLK8121	8121-529	06-13-2017	06-12-2018						
R&S	EZ17	100106	06-13-2017	06-12-2018						
TESEQ GmbH	ISN T800	30297	02-23-2017	02-22-2018						
	Manufacturer R&S TAYLOR R&S schwarzbeck R&S	ManufacturerModel No.R&SESCITAYLOR1451R&SENV216schwarzbeckNNLK8121R&SEZ17	Manufacturer Model No. Serial Number R&S ESCI 100009 TAYLOR 1451 1905 R&S ENV216 100098 schwarzbeck NNLK8121 8121-529 R&S EZ17 100106	Manufacturer Model No. Serial Number Cal. date (mm-dd-yyyy) R&S ESCI 100009 06-14-2017 TAYLOR 1451 1905 05-08-2017 R&S ENV216 100098 06-13-2017 schwarzbeck NNLK8121 8121-529 06-13-2017 R&S EZ17 100106 06-13-2017						

	3M	Semi/full-anech	oic Chamber				
Equipment	Equipment Manufacturer		ipment Manufacturer Model No. Serial Number		Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
3M Chamber & Accessory Equipment	TDK	SAC-3	TTE20130797	06-05-2016	06-05-2019		
TRILOG Broadband Antenna	SCHWARZBEC K	VULB9163	9163-484	05-23-2017	05-22-2018		
Microwave Preamplifier	Agilent	8449B	3008A02425	02-16-2017	02-15-2018		
Horn Antenna	ETS-LINDGREN	3117	00057407	07-20-2015	07-18-2018		
Loop Antenna	ETS	6502	00071730	07-30-2015	07-28-2017		
Microwave Preamplifier	A.H.SYSTEMS	PAP-1840-60	6041.6042	06-30-2015	06-28-2018		
Horn Antenna	A.H.SYSTEMS	SAS-574 374	374	06-30-2015	06-28-2018		
Spectrum Analyzer	R&S	FSP40	100416	06-13-2017	06-12-2018		
Receiver	R&S	ESCI	100435	06-14-2017	06-13-2018		
LISN	schwarzbeck	NNBM8125	81251547	06-13-2017	06-12-2018		
LISN	schwarzbeck	NNBM8125	81251548	06-13-2017	06-12-2018		
Signal Generator	Agilent	E4438C	MY45095744	03-14-2017	03-13-2018		
Signal Generator	Keysight	E8257D	MY53401106	03-14-2017	03-13-2018		
Temperature/ Humidity Indicator	TAYLOR	1451	1905	05-08-2017	05-07-2018		
Cable line	Fulai(7M)	SF106	5219/6A	01-11-2017	01-10-2018		
Cable line	Fulai(6M)	SF106	5220/6A	01-11-2017	01-10-2018		
Cable line	Fulai(3M)	SF106	5216/6A	01-11-2017	01-10-2018		
Cable line	Fulai(3M)	SF106	5217/6A	01-11-2017	01-10-2018		
Communication test set	R&S	CMW500	152394	03-14-2017	03-13-2018		
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002	TTF20120439	01-11-2017	01-10-2018		
High-pass filter	MICRO- TRONICS	SPA-F-63029-4	003	01-11-2017	01-10-2018		
band rejection filter	Sinoscite	FL5CX01CA09 CL12-0395-001	TTF20120434	01-11-2017	01-10-2018		
band rejection filter	Sinoscite	FL5CX01CA08 CL12-0393-001	TTF20120435	01-11-2017	01-10-2018		
band rejection filter	Sinoscite	FL5CX02CA04 CL12-0396-002	TTF20120436	01-11-2017	01-10-2018		
band rejection filter	Sinoscite	FL5CX02CA03 CL12-0394-001	TTF20120437	01-11-2017	01-10-2018		

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10/KDB 558074	6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (b)(3)	ANSI C63.10/KDB 558074	Conducted Peak Output Power	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10/KDB 558074	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10/KDB 558074	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10/KDB 558074	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	K ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)

Appendix A): 6dB Occupied Bandwidth

Test Result

	Mode	Channel	6dB Bandwidth [MHz]	99% OBW[MHz]	Verdict	Remark
1	BLE	LCH	0.7062	1.0837	PASS	13
Ş	BLE	MCH	0.7114	1.0849	PASS	Peak
+	BLE	нсн	0.6948	1.0863	PASS	detector

Test Graphs

Page 14 of 37

Page 15 of 37 Report No.: EED32I00318002

Appendix B): Conducted Peak Output Power

Test Result

Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	2.749	PASS
BLE	MCH	4.896	PASS
BLE	HCH	4.227	PASS

Test Graphs

Page 16 of 37

Report No.: EED32I00318002 Page 17 of 37

Appendix C): Band-edge for RF Conducted Emissions

Result Table

Mod	le Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict	
BLI	E LCH	2.307	-60.514	-17.69	PASS	
BLI	Е НСН	3.709	-46.400	-16.29	PASS	

Test Graphs

Appendix D): RF Conducted Spurious Emissions

Result Table

Mode	Channel	Pref [dBm]	Pref [dBm] Puw[dBm]			
BLE	LCH	2.102	<limit< td=""><td>PASS</td></limit<>	PASS		
BLE	MCH	4.25	<limit< td=""><td>PASS</td></limit<>	PASS		
BLE	нсн	3.553	<limit< td=""><td>PASS</td></limit<>	PASS		

Test Graphs

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0755-33681700 \\$

Report No. : EED32I00318002 Page 19 of 37

Puw/BLE/H CH

Report No.: EED32I00318002

Appendix E): Power Spectral Density

Result Table

Mode	Channel	Channel PSD [dBm/3kHz]		Verdict
BLE	LCH	-11.194	8	PASS
BLE	MCH	-8.981	8	PASS
BLE	НСН	-9.901	8	PASS

Test Graphs

Report No. : EED32I00318002 Page 23 of 37

Appendix F): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna car be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the inner shell and no consideration of replacement. The best case gain of the antenna is -4.5dBi.

Appendix G): AC Power Line Conducted Emission

Test Procedure:	Test frequency range :150KHz-30MHz
rest Procedure:	Test frequency range :150KHz-30MF

- 1)The mains terminal disturbance voltage test was conducted in a shielded room.
- 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50\Omega/50\mu\text{H} + 5\Omega$ linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
- 3)The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,
- 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.
- 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

Limit:

Fragues ou ronge (MIII-)	Limit (dBµV)				
Frequency range (MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

^{*} The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

NOTE: The lower limit is applicable at the transition frequency

Page 25 of 37

No.	Freq.		ding_Le dBu∀)	vel	Correct Factor	M	leasurem (dBuV)		Lin (dBı			rgin dB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1500	47.15	41.21	23.60	9.77	56.92	50.98	33.37	65.99	55.99	-15.01	-22.62	Р	
2	0.1700	45.32	37.03	16.47	9.74	55.06	46.77	26.21	64.96	54.96	-18.19	-28.75	Р	
3	0.6780	34.29	30.25	15.43	9.75	44.04	40.00	25.18	56.00	46.00	-16.00	-20.82	Р	
4	1.1220	34.20	28.56	13.54	9.63	43.83	38.19	23.17	56.00	46.00	-17.81	-22.83	Р	
5	1.6740	33.02	26.47	15.35	9.69	42.71	36.16	25.04	56.00	46.00	-19.84	-20.96	Р	
6	20.3260	33.42	26.37	17.98	10.16	43.58	36.53	28.14	60.00	50.00	-23.47	-21.86	Р	

No.	Freq.		ding_Le dBuV)	vel	Correct Factor	M	leasuren (dBuV)		Lin (dBı			rgin dB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1580	46.94	39.05	19.49	9.76	56.70	48.81	29.25	65.56	55.56	-16.75	-26.31	Р	
2	0.1722	46.78	37.64	16.73	9.74	56.52	47.38	26.47	64.85	54.85	-17.47	-28.38	Р	
3	0.2060	40.81	35.43	13.30	9.71	50.52	45.14	23.01	63.36	53.36	-18.22	-30.35	Р	
4	0.3899	35.04	30.69	19.49	9.75	44.79	40.44	29.24	58.06	48.06	-17.62	-18.82	Р	
5	0.8860	34.10	29.59	14.11	9.75	43.85	39.34	23.86	56.00	46.00	-16.66	-22.14	Р	
6	21.1980	33.50	26.22	18.18	10.16	43.66	36.38	28.34	60.00	50.00	-23.62	-21.66	Р	

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Appendix H): Restricted bands around fundamental frequency (Radiated)

(Radiated)	(6)	(6,4)			GT.	
Receiver Setup:	Frequency	Detector RBW		VBW Remark		
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	(
	N 4011	Peak	1MHz	3MHz	Peak	-05
	Above 1GHz	Peak	1MHz	10Hz	Average	(65)
Test Procedure:	Below 1GHz test procedu a. The EUT was placed of at a 3 meter semi-aned determine the position b. The EUT was set 3 meters was mounted on the total control of the antenna height is a determine the maximum polarizations of the antenna was turned was turned from 0 degree. The test-receiver systems	re as below: In the top of a rotal choic camber. The of the highest raditers away from the pof a variable-heavaried from one man value of the fielenna are set to maission, the EUT varies to 360 degreem was set to Pea	ating table e table was diation. The interfere eight anten neter to found attempts arranged meter to dees to find the store of the stor	0.8 meters rotated 3 ence-receina tower. In a tower. Both hor reasurement of the meters at the maxim	rs above the 360 degrees ving antenna above the grizontal and vent. worst case along the rotate and the rotate and reading.	to a, whice ound to vertical and the able
	Bandwidth with Maxim f. Place a marker at the effrequency to show com	end of the restricted policy and the restric	asure any	emissions	s in the restri	
	f. Place a marker at the	end of the restricted pliance. Also mean analyzer plot. In the channel were as below: The is the test site, ber change form and table west channel, the ments are performed found the X axis and table and table and table the channel and table the channel and table and table and table and table and table the x axis are performed found the X axis are performed found the X axis and table and table table.	change from table 0.8 r is 1.5 meters are Highest med in X, Ys positionir	emissions or each poor semi- neter to 1 er). channel /, Z axis p	Anechoic Ch.5 meter(Aboositioning for tis worse car	dulation nambe ove
_imit:	f. Place a marker at the efrequency to show combands. Save the spectron for lowest and highest Above 1GHz test procedures. Different between above to fully Anechoic Chamman 18GHz the distance is h. Test the EUT in the low. The radiation measure Transmitting mode, and	end of the restricted pliance. Also mean analyzer plot. In the channel were as below: The is the test site, ber change form and table west channel, the ments are performed found the X axis and table and table and table the channel and table the channel and table and table and table and table and table the x axis are performed found the X axis are performed found the X axis and table and table table.	change from table 0.8 resis 1.5 meters med in X, Yes positioning encies mea	emissions or each poor semi-meter to 1 er). channel Y, Z axis pong which it asured wa	Anechoic Ch.5 meter(Aboositioning for tis worse car	dulation nambe ove
imit:	f. Place a marker at the efrequency to show combands. Save the spectron for lowest and highest Above 1GHz test procedure. G. Different between above to fully Anechoic Chamman 18GHz the distance is h. Test the EUT in the lower in the radiation measure. Transmitting mode, and j. Repeat above procedure.	end of the restricted pliance. Also measure analyzer plot. In the channel were as below: The is the test site, above the change form and table to the channel, the ments are performed found the X axisting until all frequents.	change from table 0.8 resis 1.5 meters med in X, Yes positioning encies mea	om Semi- neter to 1 er). channel Y, Z axis p ng which it asured wa	Anechoic Ch.5 meter(Aboositioning for is worse cases complete.	dulation nambe ove
imit:	f. Place a marker at the ending frequency to show combands. Save the spectra for lowest and highest. Above 1GHz test procedured. G. Different between above to fully Anechoic Chamman 18GHz the distance is how in the left. The radiation measure the Transmitting mode, and its requency. Frequency	end of the restricted pliance. Also measure analyzer plotechannel are as below: The re is the test site, ber change form 1 meter and table west channel, the ments are performed found the X axis res until all frequential (dBµV/m).	change from table 0.8 resis 1.5 meters med in X, Yes positioning encies mea	emissions or each poor each poor semi-meter to 1 er). channel Y, Z axis pag which it asured wa Rer Quasi-pe	Anechoic Cr.5 meter(Abecositioning for its worse cases complete.	dulation nambe ove
imit:	f. Place a marker at the efrequency to show combands. Save the spectron for lowest and highest Above 1GHz test procedured. g. Different between above to fully Anechoic Chamman 18GHz the distance is how in the EUT in the low in the radiation measure Transmitting mode, and in the reduced in the Repeat above procedured. Frequency 30MHz-88MHz	end of the restricted pliance. Also measure analyzer plot. In the channel were as below: The as below: The as below: The is the test site, ber change form and table west channel, the ments are performed found the X axis the channel all frequences until all frequences. Limit (dBµV/m 40.0)	change from table 0.8 resis 1.5 meters med in X, Yes positioning encies mea	emissions or each poor each poor semi-meter to 1 er). channel Y, Z axis poor gwhich it asured wared wared wared wared Quasi-pe	Anechoic Ch.5 meter(About 15 worse care as complete.	dulation nambe ove
Limit:	f. Place a marker at the ending frequency to show combands. Save the spectron for lowest and highest Above 1GHz test procedured. g. Different between above to fully Anechoic Chamman 18GHz the distance is how in the low in the radiation measure and the radiation measure and the requency are requency and the requency and the requency and the requency are requency and the requency and the requency and the requency are requency are requency and the requency are requency and the requency are requency are requency and the requency are requency are requency are requency.	end of the restricted pliance. Also measure analyzer plots channel are as below: are is the test site, ber change form 1 meter and table lowest channel, the ments are performed found the X axis res until all frequences. Limit (dBµV/m 40.0 43.5	change from table 0.8 resis 1.5 meters med in X, Yes positioning encies mea	om Semi- meter to 1 er). channel r, Z axis p ng which it asured wa Rer Quasi-pe Quasi-pe	Anechoic Ch.5 meter(Abecositioning for tis worse cases complete.	dulation nambe ove
imit:	f. Place a marker at the efrequency to show combands. Save the spectron for lowest and highest Above 1GHz test procedured. g. Different between above to fully Anechoic Chammand 18GHz the distance is how in the EUT in the low in the radiation measure that Transmitting mode, and in the procedure in the second	end of the restricted pliance. Also mean analyzer plot. In the channel were as below: The as below: The as below: The is the test site, above thange form the test and table to the channel are performed found the X axis the channel all freques the	change from table 0.8 resis 1.5 meters med in X, Yes positioning encies mea	emissions or each poor each each each each each each each each	Anechoic Ch.5 meter(Above sitioning for the second	dulation nambe ove

Report No.: EED32I00318002 Page 28 of 37

Test plot as follows:

Worse case mode:	GFSK		(67)
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak

Worse case mode:	GFSK					
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Peak			

Report No.: EED32I00318002 Page 29 of 37

Worse case mode:	GFSK	(-11)	
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak

Worse case mode:	GFSK			
Frequency: 2483 5MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak	

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Appendix I) Radiated Spurious Emissions

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
\	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
/	0.110MHz-0.490MHz	/IHz Peak 10kl		30kHz	Peak	
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
(6,0)	Above 4011-	Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	

Test Procedure:

Below 1GHz test procedure as below:

- The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported

Above 1GHz test procedure as below:

- Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
- Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.

Repeat above procedures until all frequencies measured was complete.

Limit:	Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)	
	0.009MHz-0.490MHz	2400/F(kHz)	-	36-	300	
	0.490MHz-1.705MHz	24000/F(kHz)	-	(4)	30	
/	1.705MHz-30MHz	30	-	0	30	

0.009MHZ-0.490MHZ	2400/F(KHZ)	-		300
0.490MHz-1.705MHz	24000/F(kHz)	-		30
1.705MHz-30MHz	30	-	(O.)	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

30MHz~1GHz (QP)		
Test mode:	Transmitting	Vertical

		Ant	Cable	Read		Limit	Over		
	Freq	Factor	Loss	Level	Level	Line	Limit	Pol/Phase	Remark
	•								
-	MHz	dB/m	- AB	dRuV	dRuV/m	dRuV/m	dB		
	11112	ub/III	ub	ubuv	ubuv/iii	ubuv/iii	ub		
1	42.451	12.64	0.07	15.51	28.22	40.00	-11.78	Vertical	
2	131.758	8.86	0.60	19.79	29.25	43.50	-14.25	Vertical	
3	247.682	11.96	1.33	25.49	38.78	46.00	-7.22	Vertical	
4	444.851	16.22	1.46	23.84	41.52	46.00	-4.48	Vertical	
5	595.133	18.82	1.80	21.20	41.82	46.00	-4.18	Vertical	
6 pp								Vertical	
O PP	015.500	20.57	2.40	15.00	72.31	40.00	5.45	ACI CICGI	

Report No. : EED32I00318002 Page 32 of 37

Transmitter Emission above 1GHz

Worse case mode:		: GFSK		Test channel:		Lowest	Remark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1333.284	30.53	2.66	44.20	57.25	46.24	74.00	-27.76	Pass	Н
1706.700	31.24	3.01	43.77	56.04	46.52	74.00	-27.48	Pass	ЭН
4804.000	34.69	5.11	44.60	44.81	40.01	74.00	-33.99	Pass	Н
6315.233	36.07	7.11	44.53	46.80	45.45	74.00	-28.55	Pass	Н
7206.000	36.42	6.66	44.77	44.11	42.42	74.00	-31.58	Pass	Н
9608.000	37.88	7.73	45.58	43.88	43.91	74.00	-30.09	Pass	Н
1483.727	30.84	2.81	44.02	56.42	46.05	74.00	-27.95	Pass	V
3738.129	32.99	5.48	44.62	47.72	41.57	74.00	-32.43	Pass	V
4804.000	34.69	5.11	44.60	46.71	41.91	74.00	-32.09	Pass	V
5880.782	35.81	7.17	44.51	47.86	46.33	74.00	-27.67	Pass	V
7206.000	36.42	6.66	44.77	45.63	43.94	74.00	-30.06	Pass	V
9608.000	37.88	7.73	45.58	49.17	49.20	74.00	-24.80	Pass	V

Worse case mode:		GFSK		Test channel:		Middle	Remark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1483.727	30.84	2.81	44.02	57.12	46.75	74.00	-27.25	Pass	/° #
4278.055	33.49	5.32	44.60	45.82	40.03	74.00	-33.97	Pass	(NH)
4880.000	34.85	5.08	44.60	43.67	39.00	74.00	-35.00	Pass	Н
6283.164	36.05	7.14	44.53	45.35	44.01	74.00	-29.99	Pass	Н
7320.000	36.43	6.77	44.87	43.67	42.00	74.00	-32.00	Pass	Н
9760.000	38.05	7.60	45.55	42.40	42.50	74.00	-31.50	Pass	Н
1483.727	30.84	2.81	44.02	56.29	45.92	74.00	-28.08	Pass	V
3757.208	32.97	5.48	44.62	47.86	41.69	74.00	-32.31	Pass	V
4880.000	34.85	5.08	44.60	43.98	39.31	74.00	-34.69	Pass	V
6283.164	36.05	7.14	44.53	46.85	45.51	74.00	-28.49	Pass	V
7320.000	36.43	6.77	44.87	44.53	42.86	74.00	-31.14	Pass	V
9760.000	38.05	7.60	45.55	43.25	43.35	74.00	-30.65	Pass	V

Page 34 of 37

					- 21 0 74		200			
Worse case mode:		GFSK		Test channel:		Highest	Remark: Peak			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis	
1514.252	30.90	2.84	43.98	47.08	36.84	74.00	-37.16	Pass	~ H	
4117.785	33.10	5.39	44.60	45.53	39.42	74.00	-34.58	Pass	(H)	
4960.000	35.02	5.05	44.60	43.07	38.54	74.00	-35.46	Pass	H	
6561.030	36.19	6.87	44.56	45.37	43.87	74.00	-30.13	Pass	Н	
7440.000	36.45	6.88	44.97	43.83	42.19	74.00	-31.81	Pass	Н	
9920.000	38.22	7.47	45.52	43.85	44.02	74.00	-29.98	Pass	Н	
1706.700	31.24	3.01	43.77	54.39	44.87	74.00	-29.13	Pass	V	
3883.622	32.88	5.46	44.61	47.42	41.15	74.00	-32.85	Pass	V	
4960.000	35.02	5.05	44.60	42.26	37.73	74.00	-36.27	Pass	V	
6203.700	36.01	7.22	44.52	46.06	44.77	74.00	-29.23	Pass	V	
7440.000	36.45	6.88	44.97	43.13	41.49	74.00	-32.51	Pass	V	
9920.000	38.22	7.47	45.52	43.35	43.52	74.00	-30.48	Pass	V	

Note

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

Report No.: EED32I00318002 Page 35 of 37

PHOTOGRAPHS OF TEST SETUP

Test model No.: L400 PAD

Radiated spurious emission Test Setup-1(Below 1GHz)

Radiated spurious emission Test Setup-2(Above 1GHz)

Report No. : EED32I00318002 Page 36 of 37

Radiated spurious emission Test Setup-3(9KHz-30MHz)

Conducted Emissions Test Setup

Report No.: EED32I00318002 Page 37 of 37

PHOTOGRAPHS OF EUT Constructional Details

Refer to Report No. EED32I00318001 for EUT external and internal photos.

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

