Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting

Authors: Bing Yu^{* 1}, Haoteng Yin^{* 2, 3}, Zhanxing Zhu^{† 3, 4}

Publication: IJCIA-18

Presentation: Jie Zhang

¹ School of Mathematical Sciences, Peking University, Beijing, China

² Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China

³ Center for Data Science, Peking University, Beijing, China

⁴ Beijing Institute of Big Data Research (BIBDR), Beijing, China

^{*} Equal contributions

[†] Corresponding author

Outline

- Introduction
- Preliminary
- Proposed Model
- Experiments
- Conclusion and Future Work
- Related Works

Introduction

- Traffic forecast is generally classified into two scales: short-term (5 ~ 30 mins), medium and long term (over 30 mins).
- Studies on mid-and-long term traffic prediction can be divided into dynamical modeling and data-driven methods.
- Classic statistical and machine learning models are two major representatives of data-driven methods.

- Some researchers use convolutional neural network (CNN) to capture adjacent relations among the traffic network, along with employing recurrent neural network (RNN) on time axis.
- However, the normal convolutional operation applied restricts the model to only process grid structures (e.g. images).
- RNN-based networks (including LSTM) are widely known to be difficult to train and computationally heavy.

- To fully utilize spatial information, we model the traffic network by a general graph instead of treating it separately (e.g. grids or segments).
- To handle the inherent deficiencies of recurrent networks, we employ a fully convolutional structure on time axis.
- We propose the spatio-temporal graph convolutional networks for traffic forecasting tasks.

Preliminary

Figure 1: Graph-structured traffic data

- At the *t*th time step,
- in the undirected graph $G_t = (V_t, E, W)$,
 - V_t is a finite set of vertices, corresponding to the observations from n monitor stations in a traffic network;
 - E is a set of edges;
 - $W \in \mathbb{R}^{n \times n}$ denotes the weighted adjacency matrix.

Traffic Prediction on Road Graphs

• Predicting the most likely traffic measurements in the next H time steps given the previous M traffic observations as,

•
$$\hat{v}_{t+1}, \dots, \hat{v}_{t+H} = argmax_{v_{t+1}, \dots, v_{t+H}} log P(v_{t+1}, \dots, v_{t+H} | v_{t-M+1}, \dots, v_t)$$

• where $v_t \in \mathbb{R}^n$ is an observation vector of n road segments at time step t, each element of which records historical observation for a single road segment.

Proposed Model

Network Architecture

- STGCN consists of two spatio-temporal convolutional blocks and a fully-connected output layer in the end.
- Each ST-Conv block contains two temporal gated convolution layers and one spatial graph convolution layer in the middle.
- The residual connection and bottleneck strategy are applied inside each block.

Figure 2: Architecture of spatio-temporal graph convolutional networks

Temporal Gated Convolution layer

- A temporal gated convolution layer contains
 - a Gated Linear Unit (GLU)
 - and two Temporal Convolution Networks (TCN) with Causal Convolution

Gated Linear Units (GLU)

- GLU was proposed in Language Modeling with Gated Convolution Networks
- The hidden layer defined as $h(X) = (X \circ W + b) \otimes \sigma(X \circ V + c)$

Gated Linear Units (GLU)

- When convolving inputs, we take care that h_i does not contain information from future words.
- We address this by shifting the convolutional inputs to prevent the kernels from seeing future context.
- Specifically, we zero-pad the beginning of the sequence with k-1 elements, assuming the first input element is the beginning of sequence marker which we do not predict and k is the width of the kernel.

TCN with Causal Convolution

• The prediction $p(x_{t+1} | x_1, \ldots, x_t)$ emitted by the model at timestep t cannot depend on any of the future timesteps $x_{t+1}, x_{t+2}, \ldots, x_{T^*}$

- For 1-D data can more easily implement this by shifting the output of a normal convolution by a few timesteps.
- At training time, the conditional predictions for all timesteps can be made in parallel.

Figure 3: Visualization of a stack of causal convolutional layers

Gated CNNs for Extracting Temporal Features

- The temporal convolutional layer contains a 1-D causal convolution with a width- K_t kernel followed by GLU as a non-linearity.
- For each node in graph G, the temporal convolution explores K_t neighbors of input elements without padding which leading to shorten the length of sequences by $K_t 1$ each time.
- Thus, input of temporal convolution for each node can be regarded as a length-M sequence with C_i channels as $Y \in R^{M \times C_i}$.
- The convolution kernel $\Gamma \in R^{K_t \times C_t \times 2C_o}$ is designed to map the input Y to a single output element $[P\ Q] \in R^{(M-K_t+1)\times(2C_o)}$ $(P,\ Q)$ is spilt in half with the same size of channels).
- The temporal gated convolution can be defined as $\Gamma \star_T Y = P \circ \sigma(Q) \in R^{(M-K_t+1) \times C_o}$

Convolution on Graphs

- Spatial methods: define convolution in the spatial domain (vertex domain)
 - Convolution is defined as a weighted average function over all vertices located in the neighborhood of target vertex
 - The main challenge is that the size of neighborhood varies remarkably across nodes, e.g., power-law degree distribution
 - E.g., GraphSAGE
- Spectral methods: define convolution in the spectral domain
 - Convolution is defined via graph Fourier transform and convolution theorem
 - The main challenge is that convolution filter defined in spectral domain is not localized in vertex domain
 - E.g., GCN

Graph Convolution Layer

- Graph Convolutional Network
 - Spectral Convolution Neural Networks (2014)
 - Chebyshev Polynomials Approximation by ChebyNet (2016)
 - Graph Convolution Networks (2017)

Define Convolution

- Let f and g be two functions with convolution f * g.
- Let F denotes the Fourier transform operator, then $F\{f\}$ and $F\{g\}$ are the Fourier transform of f and g, respectively.
- And by applying the inverse Fourier transform F^{-1} , then
 - $f * g = F^{-1}{F{f} * F{g}}$ and $f \cdot g = F^{-1}{F{f} \cdot F{g}}$

Laplacian matrix

• Combinatorial Laplacian $L_{com} = D - A \in \mathbb{R}^{n \times n},$

• where
$$D \in \mathbb{R}^{n \times n}$$
 is the diagonal degree matrix with $D_{ii} = \sum_{i} A_{ij}$,

Symmetric Normalized Laplacian matrix:

$$L_{sym} = D^{-\frac{1}{2}}LD^{-\frac{1}{2}} = I_n - D^{-\frac{1}{2}}AD^{-\frac{1}{2}},$$

• where I_n is the identity matrix.

Labelled graph	Degree matrix			Adjacency matrix									
	$\int 2$	0	0	0	0	0 \	1	0	1	0	0	1	0 \
$\binom{6}{2}$	0	3	0	0	0	0		1	0	1	0	1	0
(4)	0	0	2	0	0	0	1	0	1	0	1	0	0
	0	0	0	3	0	0	1	0	0	1	0	1	1
(3)- (2)	0	0	0	0	3	0	1	1	1	0	1	0	0
	0 /	0	0	0	0	1/	/	0	0	0	1	0	0/

Spectral decomposition of Laplacian matrix

- $L = U \Lambda U^{-1} = U \Lambda U^T$,
 - where $\Lambda = diag([\lambda_0, \dots, \lambda_{n-1}]) \in \mathbb{R}^{n \times n}$
 - $U = [u_0, \dots, u_{n-1}] \in \mathbb{R}^{n \times n}$ is the Fourier basis

Graph Fourier Transform and Graph Fourier Inverse Transform

• The graph Fourier transform of a signal $x \in \mathbb{R}^n$ is defined as

•
$$\hat{x} = U^{\mathrm{T}}x$$

The graph Fourier inverse transform is defined as

•
$$x = U\hat{x}$$

Define convolution in spectral domain

• Given a signal x as input and the other signal y as a filter, graph convolution \star_G could be defined as

•
$$x \star_G y = U((U^T x) \odot (U^T y))$$

Spectral filtering of graph signals

• A signal x is filtered by g_{θ} as

•
$$g_{\theta}(L)x = g_{\theta}(U\Lambda U^{\mathsf{T}})x = Ug_{\theta}(\Lambda)U^{\mathsf{T}}x$$

- A non-parametric filter, i.e. a filter whose parameters are all free, would be defined as
 - $g_{\theta}(\Lambda) = diag(\theta)$
 - where the parameter $\theta \in \mathbb{R}^n$ is a vector of Fourier coefficients

Shortcomings of Spectral CNN

- Requiring eigen-decomposition of Laplacian matrix
 - Eigenvectors are explicitly used in convolution
- High computational cost
 - Multiplication with graph Fourier basis U is $O(n^2)$
- Not localized in vertex domain

Polynomial parametrization for localized filters

Let
$$g_{\theta}(\Lambda) pprox \sum_{k=0}^{K-1} \theta_k \Lambda^k$$
, then

•
$$g_{\theta} \star_{G} x \approx U \sum_{k=0}^{K-1} \theta_{k} \Lambda^{k} U^{\mathsf{T}} x = \sum_{k=0}^{K-1} \theta_{k} U \Lambda^{k} U^{\mathsf{T}} x = \sum_{k=0}^{K-1} \theta_{k} L^{k} x$$

• Time complexity is still $O(n^2)$ because of the multiplication with the graph Fourier basis U.

Polynomial parametrization for localized filters

• The Chebyshev polynomials of the first kind are recursively defined as

•
$$T_k(x) = 2xT_{k-1}(x) - T_{k-2}(x)$$

- $T_0(x) = 1$
- $T_1(x) = x$
- $T_k(x) = cos(k \cdot arccos(x))$
- $g_{\theta}(\Lambda)$ can be well-approximated by a truncated expansion in terms of order K:

$$g_{\theta}(\Lambda) \approx \sum_{K=0}^{K-1} \theta_k T_k(\widetilde{\Lambda})$$

- where the parameter $\theta \in R^K$ is a vector of Chebyshev coefficients
- and $T_k(\widetilde{\Lambda}) \in R^{n \times n}$ is the Chebyshev polynomial of order k evaluated at $\widetilde{\Lambda} = \frac{2\Lambda}{\lambda_{max}} I_n$,
- a diagonal matrix of scaled eigenvalues that lie in [-1, 1] because of the $arccos(\cdot)$ function.

Polynomial parametrization for localized filters

• The filtering operation can then be written as

$$g_{\theta}(L)x \approx \sum_{k=0}^{K-1} \theta_k T_k(\widetilde{L})x$$

with scaled Laplacian
$$\widetilde{L} = \frac{2L}{\lambda_{max}} - I_n$$
.

Strengths of Chebyshev Polynomials Approximation by ChebyNet

- Eigen-decomposition is not required
- Computational cost is $O(K|E|) \ll O(n^2)$

Graph Convolution Networks

• In this linear formulation of a GCN, we further approximate $\lambda_{max} \approx 2$.

Under these approximations
$$g_{\theta}(L)x = \sum_{k=0}^{K-1} \theta_k T_k(\widetilde{L})x$$
 simplifies to:

•
$$g_{\theta} \star_{G} x \approx \theta_{0}x + \theta_{1}(L - I_{n})x = \theta_{0}x - \theta_{1}(D^{-\frac{1}{2}}AD^{-\frac{1}{2}})x$$

• with two free parameters θ_0 and θ_1 . The filter parameters can be shared over the whole graph. Successive application of filters of this form then effectively convolve the K^{th} -order neighborhood of a node, where K is the number of successive filtering operations or convolutional layers in the neural network model.

Graph Convolution Networks

- Let $\theta = \theta_0 = -\theta_1$,
- then $g_{\theta} \star_{G} x \approx \theta (I_{n} + D^{-\frac{1}{2}}AD^{-\frac{1}{2}})x$,
- To alleviate the gradient exploding or vanishing issue, we introduce the renormalization trick:

$$I_n + D^{-\frac{1}{2}}AD^{-\frac{1}{2}} \to \widetilde{D}^{-\frac{1}{2}}\widetilde{A}\widetilde{D}^{-\frac{1}{2}}, \text{ with } \widetilde{A} = A + I_n \text{ and } \widetilde{D}_{ii} = \sum_j \widetilde{A}_{ij}$$

- Finally, let $\hat{L} = \widetilde{D}^{-\frac{1}{2}} \widetilde{A} \widetilde{D}^{-\frac{1}{2}}$
 - $g_{\theta} \star_G x \approx \theta \hat{L} x$

Experiment Results

	BJER4(15/30/45 min)						
Model	MAE	MAPE (%)	RMSE				
HA	5.21	14.64	7.56				
LSVR	4.24/ 5.23/ 6.12	10.11/ 12.70/ 14.95	5.91/7.27/8.81				
ARIMA	5.99/ 6.27/ 6.70	15.42/ 16.36/ 17.67	8.19/8.38/8.72				
FNN	4.30/ 5.33/ 6.14	10.68/ 13.48/ 15.82	5.86/ 7.31/ 8.58				
FC-LSTM	4.24/ 4.74/ 5.22	10.78/ 12.17/ 13.60	5.71/6.62/7.44				
GCGRU	3.84/ 4.62/ 5.32	9.31/11.41/13.30	5.22/6.35/7.58				
STGCN(Cheb)	3.78/4.45/5.03	9.11/10.80/12.27	5.20/6.20/7.21				
STGCN(1st)	3.83/ 4.51/ 5.10	9.28/ 11.19/ 12.79	5.29/6.39/7.39				

Experiment Results

Model	PeN	ISD7(M) (15/30/45 r	min)	PeMSD7(L) (15/ 30/ 45 min)					
	MAE	MAPE(%)	RMSE	MAE	MAPE(%)	RMSE			
HA	4.01	10.61	7.20	4.60	12.50	8.05			
LSVR	2.50/ 3.63/ 4.54	5.81/ 8.88/ 11.50	4.55/ 6.67/ 8.28	2.69/ 3.85/ 4.79	6.27/ 9.48/ 12.42	4.88/ 7.10/ 8.72			
ARIMA	5.55/ 5.86/ 6.72	12.92/ 13.94/ 15.20	9.00/ 9.13/ 9.38	5.50/ 5.87/ 6.30	12.30/ 13.54/ 14.85	8.63/ 8.96/ 9.39			
FNN	2.74/ 4.02/ 5.04	6.38/ 9.72/ 12.38	4.75/ 6.98/ 8.58	2.74/ 3.92/ 4.78	7.11/ 10.89/ 13.56	4.87/ 7.02/ 8.46			
FC-LSTM	3.57/ 3.94/ 4.16	8.60/ 9.55/ 10.10	6.20/ 7.03/ 7.51	4.38/ 4.51/ 4.66	11.10/ 11.41/ 11.69	7.68/ 7.94/ 8.20			
GCGRU	2.37/ 3.31/ 4.01	5.54/ 8.06/ 9.99	4.21/ 5.96/ 7.13	2.48/ 3.43/ 4.12 *	5.76/ 8.45/ 10.51 *	4.40/ 6.25/ 7.49 *			
STGCN(Cheb)	2.25/ 3.03/ 3.57	5.26/ 7.33/ 8.69	4.04/ 5.70/ 6.77	2.37/ 3.27/ 3.97	5.56/ 7.98/ 9.73	4.32/ 6.21/ 7.45			
STGCN(1st)	2.26/ 3.09/ 3.79	5.24 / 7.39/ 9.12	4.07/ 5.77/ 7.03	2.40/ 3.31/ 4.01	5.63/ 8.21/ 10.12	4.38/ 6.43/ 7.81			

For PeMSD7(L), GCGRU has to use the half of batch size since its GPU consumption exceeded the memory capacity of a single card (results marked as "*" in Table 2)

Experiment Results

Table 3: Time consumptions of training on the dataset PeMSD7.

Dataset	Time Consumption (s)						
	STGCN(Cheb)	STGCN(1st)	GCGRU				
PeMSD7(M)	272.34	271.18	3834.54				
PeMSD7(L)	1926.81	1554.37	19511.92				

Figure 8: Speed prediction in morning peak and evening rush hours of the PeMSD 7.

Figure 9: Test RMSE versus the training time (left); Test MAE versus the number of training epochs (right). (PeMSD 7 (M))

Conclusion and Future Work

- We propose a novel deep learning framework STGCN for traffic prediction, integrating graph convolution and gated temporal convolution through spatio-temporal convolutional blocks.
- Experiments show that our model achieves faster training, easier convergences, and fewer parameters with flexibility and scalability.
- This framework can be applied into more general spatio-temporal structured sequence forecasting scenarios
- In the future, we will further optimize the network structure and parameter settings.