

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/791,202	03/02/2004	Charles J. Stancil	200314559-1	1999
22879	7590	11/05/2008	EXAMINER	
HEWLETT PACKARD COMPANY P O BOX 272400, 3404 E. HARMONY ROAD INTELLECTUAL PROPERTY ADMINISTRATION FORT COLLINS, CO 80527-2400				ABRISHAMKAR, KAVEH
ART UNIT		PAPER NUMBER		
2431				
			NOTIFICATION DATE	DELIVERY MODE
			11/05/2008	ELECTRONIC

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Notice of the Office communication was sent electronically on above-indicated "Notification Date" to the following e-mail address(es):

JERRY.SHORMA@HP.COM
mkraft@hp.com
ipa.mail@hp.com

Office Action Summary	Application No.	Applicant(s)	
	10/791,202	STANCIL, CHARLES J.	
	Examiner	Art Unit	
	KAVEH ABRISHAMKAR	2431	

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --

Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS, WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

Status

1) Responsive to communication(s) filed on 29 July 2008.

2a) This action is **FINAL**. 2b) This action is non-final.

3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

4) Claim(s) 1,3-5,8-18 and 20 is/are pending in the application.

4a) Of the above claim(s) _____ is/are withdrawn from consideration.

5) Claim(s) _____ is/are allowed.

6) Claim(s) 1,3-5,8-18 and 20 is/are rejected.

7) Claim(s) _____ is/are objected to.

8) Claim(s) _____ are subject to restriction and/or election requirement.

Application Papers

9) The specification is objected to by the Examiner.

10) The drawing(s) filed on _____ is/are: a) accepted or b) objected to by the Examiner.
Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).
Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).

11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).

a) All b) Some * c) None of:

1. Certified copies of the priority documents have been received.
2. Certified copies of the priority documents have been received in Application No. _____.
3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

1) <input checked="" type="checkbox"/> Notice of References Cited (PTO-892)	4) <input type="checkbox"/> Interview Summary (PTO-413)
2) <input type="checkbox"/> Notice of Draftsperson's Patent Drawing Review (PTO-948)	Paper No(s)/Mail Date. _____ .
3) <input type="checkbox"/> Information Disclosure Statement(s) (PTO/SB/08)	5) <input type="checkbox"/> Notice of Informal Patent Application
Paper No(s)/Mail Date _____ .	6) <input type="checkbox"/> Other: _____ .

DETAILED ACTION

1. This action is in response to the communication filed on July 29, 2008. Claims 1, 3-5, 8-18, and 20. No claims were cancelled or added per the received amendment.
2. Claims 1, 3-5, 8-18, and 20 are currently pending consideration.

Response to Arguments

3. Applicant's arguments with respect to claims 1, 3-5, 8-18, and 20 have been considered but are moot in view of the new ground(s) of rejection.

Claim Rejections - 35 USC § 103

The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negated by the manner in which the invention was made.

4. Claims 1,2,4-9,11-15,17,19-23,25, and 27-28 are rejected under 35 U.S.C. 103(a) as being unpatentable over Stancil et al. (U.S. Patent 6,065,081) in view of Bolian et al. (U.S. Patent 6,968,466) further in view of Mooney et al. (U.S. Patent 5,515,44) in further in view of Yamamoto et al. (U.S. Patent Pub. No. US 2005/0077355 A1).

Regarding claim 1, Stancil discloses:

A computer comprising:

an interface (column 5, lines 10-13: “*the user is given the opportunity to enter an administrator password*”) configured to receive via an authorization from an administrator device (column 5, lines 13-16: *if password is entered correctly, the administrator may disable or enable slots*) the computer to use a modem card that facilitates connectivity between the computer and the other devices (column 5, lines 17-27), *wherein the slots are disabled or enabled, disabling or enabling the devices connected to those slots* (column 2, lines 63-64).

Stancil does not explicitly disclose a network interface or receiving authorization via a network from a remote network administrator device. Bolian discloses a blade power management system wherein each blade can be individually and remotely powered on or off (Bolian: column 3, lines 17-23). The server blade is a card, and Bolian provides a system for remotely powering down the card slot. It would have been obvious to modify the system of Stancil to incorporate the remote power control system of Bolian in order to remotely control the power supply to the card slots (Bolian: column 2, lines 15-18).

Stancil-Bolian does not explicitly disclose a card detector configured to detect the presence of the connection device and a card power switch configured to receive an authorization signal when the processing system is authorized to couple to the connection device and configured to apply power to the connection device only when

the authorization signal is present and when the card detector detects the presence of the connection device. Stancil also does not explicitly state that no user input is used to determining if power should be supplied to the connection device. Mooney discloses a system that controls access to peripheral devices by using a system administrator card to authorize other user cards (Mooney: column 2, lines 9-15). If the user card is authorized, a power control circuit (card power switch) is used by the CPU to turn on power to computer peripherals (connection devices) that the user has been authorized to use (Mooney: column 2, lines 5-8). The CPU and the program logic device (PLD) (card detector) detect and control the peripherals within the computer and turn on/off power to the detected peripherals using the power control circuit (Mooney: column 4, lines 20-26). As mentioned earlier, the power control circuit (card power switch) only supplies power to the connection device it is authorized (authorization signal is present) and when there is a peripheral that is connected according to the CPU and the PLD (card detector) (Mooney: column 6, lines 4-6). Stancil and Mooney are analogous arts because they both provide methods of disabling peripheral devices connected to a computer system if authorized by a system administrator. Mooney uses an authorization procedure using a card and a card reader, and then supplies power to the peripherals only if the user is authorized (Mooney: column 2, lines 5-8). This authorization system of Mooney could be implemented in the system of Stancil to automatically disable (not supply power to) the peripherals which are not authorized. The power control circuit of Mooney could be connected between the ASIC (analogous to the PLD of Mooney) and the ISA/PCI clots (Stancil: Figure 2) to allow/disallow the

power to be supplied to the peripherals based on the authorization signal. Mooney also teaches that no input from a user is used to determine whether power is to be supplied to the connection device. Mooney states that "the user's responses are saved and compared to the correct answers stored on the card, and if the responses match the correct answers, a power control circuit is used by the CPU to turn on power to the computer peripherals the user has been authorized to use" (Mooney: column 2, lines 4-8). Though based on a user previous responses, the act of supplying power to the peripheral is done automatically based off the card with no user input to the system. It would have been obvious to one of ordinary skill in the art at the time of invention to use the card power switch to supply power only if an authorization signal is received as disclosed by Mooney in the system of Stancil "to prevent the unauthorized use of a computer system which is not subject to bypass while still maintaining the portability and flexibility of the computer system" (Mooney: column 1, lines 48-52).

Stancil, Bolian and Mooney do not explicitly disclose that the card is a modem card. Yamamoto discloses a card recognition system which can include a modem card (Yamamoto: paragraph 033). Yamamoto is an analogous art to both Stancil and Mooney in that it involves detecting the presence of a card. It would have been obvious to allow the detection of a modem card, because in Stancil, the slots are powered off (Stancil: column 2, lines 63-64), which is independent of the type of card, and some computer systems need a dial-up connection, where a modem card is necessary. Therefore, it would have been obvious to use the modem card of Yamamoto in the system of Stancil-Mooney to support dial-up connections.

Claim 4 is rejected as applied above in rejecting claim 2. Furthermore, Stancil discloses:

The computer of claim 1, wherein the modem card connects to the computer with a Peripheral Component Interconnect (PCI) Express connection (column 1, lines 51-53), *wherein the add-in card slots can be PCI or ISA.*

Claim 5 is rejected as applied above in rejecting claim 2. Furthermore, Stancil discloses:

The computer of claim 1, wherein the modem card connects to the computer with an Industry Standard Architecture (ISA) connection (column 1, lines 51-53), *wherein the add-in card slots can be PCI or ISA.*

Claim 8 is rejected as applied above in rejecting claim 7. Furthermore, Stancil teaches:
a memory configured to store the authorization from the network administrator device (column 5, lines 17-20), *wherein the slots are disabled/enabled according to the configuration stored in the non-volatile memory;*

Stancil does not explicitly teach a processor configured to retrieve the authorization from the memory and further configured to cause the authorization signal to be communicated to the card power switch. Mooney teaches a microprocessor compares the user response to a response stored on a card (memory) and returns a compare

Art Unit: 2431

status to the CPU (processor) (column 5, lines 57-61) and turns on/off the power to the peripherals by way of an authorization signal sent to through the CPU and the PLD to the peripherals (column 4, lines 23-28). Stancil and Mooney are analogous arts because they both provide methods of disabling peripheral devices connected to a computer system if authorized by a system administrator. Mooney uses an authorization procedure using a card and a card reader, and then supplies power to the peripherals only if the user is authorized (Mooney: column 2, lines 5-8). This authorization system of Mooney could be implemented in the system of Stancil to automatically disable (not supply power to) the peripherals which are not authorized. The power control circuit of Mooney could be connected between the ASIC (analogous to the PLD of Mooney) and the ISA/PCI clots (Stancil: Figure 2) to allow/disallow the power to be supplied to the peripherals based on the authorization signal. It would have been obvious to one of ordinary skill in the art at the time of invention to use the card power switch to supply power only if an authorization signal is received as disclosed by Mooney in the system of Stancil "to prevent the unauthorized use of a computer system which is not subject to bypass while still maintaining the portability and flexibility of the computer system" (Mooney: column 1, lines 48-52).

Claim 9 is rejected as applied above in rejecting claim 1. Furthermore, Stancil discloses:

The computer of claim 1, wherein the card slot is configured to receive two different types of modem cards (column 2, lines 63-64), where the slot is independent of the type of modem card and therefore, can be any type of modem card.

Claim 11 is rejected as applied above in rejecting claim 9. Furthermore, Stancil discloses:

The system of claim 9, further comprising:

a signal generator configured to generate the authorization signal (column 4, lines 51-61), *wherein an administrator disables/enables a slot which generates a disable or enable signal;*

a logical OR gate (column 4, lines 51-54: “logical OR”) comprising:

a first input coupled to the signal generator (Figure 4, column 4 lines 53-61),
wherein an signal is input to the OR gate.

Stancil does not explicitly disclose a card detector configured to detect the presence of the connection device and a card power switch configured to receive an authorization signal when the processing system is authorized to couple to the connection device and configured to apply power to the connection device only when the authorization signal is present and when the card detector detects the presence of the connection device. Stancil also does not explicitly state that no user input is used to determining if power should be supplied to the connection device. Mooney discloses a system that controls access to peripheral devices by using a system administrator card

to authorize other user cards (Mooney: column 2, lines 9-15). If the user card is authorized, a power control circuit (card power switch) is used by the CPU to turn on power to computer peripherals (connection devices) that the user has been authorized to use (Mooney: column 2, lines 5-8). The CPU and the program logic device (PLD) (card detector) detect and control the peripherals within the computer and turn on/off power to the detected peripherals using the power control circuit (Mooney: column 4, lines 20-26). As mentioned earlier, the power control circuit (card power switch) only supplies power to the connection device it is authorized (authorization signal is present) and when there is a peripheral that is connected according to the CPU and the PLD (card detector) (Mooney: column 6, lines 4-6). Stancil and Mooney are analogous arts because they both provide methods of disabling peripheral devices connected to a computer system if authorized by a system administrator. Mooney uses an authorization procedure using a card and a card reader, and then supplies power to the peripherals only if the user is authorized (Mooney: column 2, lines 5-8). This authorization system of Mooney could be implemented in the system of Stancil to automatically disable (not supply power to) the peripherals which are not authorized. The power control circuit of Mooney could be connected between the ASIC (analogous to the PLD of Mooney) and the ISA/PCI slots (Stancil: Figure 2) to allow/disallow the power to be supplied to the peripherals based on the authorization signal. Mooney also teaches that no input from a user is used to determine whether power is to be supplied to the connection device. Mooney states that "the user's responses are saved and compared to the correct answers stored on the card, and if the responses match the

correct answers, a power control circuit is used by the CPU to turn on power to the computer peripherals the user has been authorized to use" (Mooney: column 2, lines 4-8). Though based on a user previous responses, the act of supplying power to the peripheral is done automatically based off the card with no user input to the system. It would have been obvious to one of ordinary skill in the art at the time of invention to use the card power switch to supply power only if an authorization signal is received as disclosed by Mooney in the system of Stancil "to prevent the unauthorized use of a computer system which is not subject to bypass while still maintaining the portability and flexibility of the computer system" (Mooney: column 1, lines 48-52).

Claim 12 is rejected as applied above in rejecting claim 1. Stancil does not explicitly a violation detector configured to detect presence of the connection device and further configured to communicate a violation signal to the network administrator device when the connection device is not authorized to be communicatively coupled to the processing system. Mooney teaches a violation detector which communicates a violation signal to the network administrator when the connection device is not authorized to be communicatively coupled to the processing system (Mooney: column 5, lines 57-65). Mooney teaches that a microprocessor (violation detector) compares user input to a response stored in memory (column 5, lines 57-60) and returns a compare status to CPU (column 5, line 60). This result could be one of a matching response or a non-matching response (violation signal) (column 5, lines 61-64). Mooney uses this violation detector in order to alert the system administrator in case the

system administrator wants to take corrective action (column 6, lines 1-3). . It would have been obvious to one of ordinary skill in the art at the time of invention to use the violation detector as disclosed by Mooney in the system of Stancil “to prevent the unauthorized use of a computer system which is not subject to bypass while still maintaining the portability and flexibility of the computer system” (Mooney: column 1, lines 48-52).

Regarding claim 13, Stancil discloses:

A method for controlling use of a modem card, the method comprising:
a computer detecting the presence of the card when the card has been inserted into the card slot of the computer (column 3, lines 23-25), *wherein the ASIC is able to disable/enable slots which it detects.*

Stancil does not explicitly disclose a network interface or receiving authorization via a network from a remote network administrator device. Bolian discloses a blade power management system wherein each blade can be individually and remotely powered on or off (Bolian: column 3, lines 17-23). The server blade is a card, and Bolian provides a system for remotely powering down the card slot. It would have been obvious to modify the system of Stancil to incorporate the remote power control system of Bolian in order to remotely control the power supply to the card slots (Bolian: column 2, lines 15-18).

Stancil-Bolian does not explicitly disclose determining if the connection device is authorized to be communicatively coupled to the processing system and providing power to the connection device when it is authorized and not providing power to the connection device if the connection device is not authorized. Mooney discloses a system that controls access to peripheral devices by using a system administrator card to authorize other user cards (Mooney: column 2, lines 9-15). If the user card is authorized, a power control circuit (card power switch) is used by the CPU to turn on power to computer peripherals (connection devices) that the user has been authorized to use (Mooney: column 2, lines 5-8). The CPU and the program logic device (PLD) (card detector) detect and control the peripherals within the computer and turn on/off power to the detected peripherals using the power control circuit (Mooney: column 4, lines 20-26). As mentioned earlier, the power control circuit (card power switch) only supplies power to the connection device it is authorized (authorization signal is present) and when there is a peripheral that is connected according to the CPU and the PLD (card detector) (Mooney: column 6, lines 4-6). Stancil and Mooney are analogous arts because they both provide methods of disabling peripheral devices connected to a computer system if authorized by a system administrator. Mooney uses an authorization procedure using a card and a card reader, and then supplies power to the peripherals only if the user is authorized (Mooney: column 2, lines 5-8). This authorization system of Mooney could be implemented in the system of Stancil to automatically disable (not supply power to) the peripherals which are not authorized. The power control circuit of Mooney could be connected between the ASIC (analogous

to the PLD of Mooney) and the ISA/PCI slots (Stancil: Figure 2) to allow/disallow the power to be supplied to the peripherals based on the authorization signal. It would have been obvious to one of ordinary skill in the art at the time of invention to use the card power switch to supply power only if an authorization signal is received as disclosed by Mooney in the system of Stancil “to prevent the unauthorized use of a computer system which is not subject to bypass while still maintaining the portability and flexibility of the computer system” (Mooney: column 1, lines 48-52).

Stancil, Bolian and Mooney do not explicitly disclose that the card is a modem card. Yamamoto discloses a card recognition system which can include a modem card (Yamamoto: paragraph 033). Yamamoto is an analogous art to both Stancil and Mooney in that it involves detecting the presence of a card. It would have been obvious to allow the detection of a modem card, because in Stancil, the slots are powered off (Stancil: column 2, lines 63-64), which is independent of the type of card, and some computer systems need a dial-up connection, where a modem card is necessary. Therefore, it would have been obvious to use the modem card of Yamamoto in the system of Stancil-Mooney to support dial-up connections.

Claim 14 is rejected as applied above in rejecting claim 13. Furthermore, Stancil does not explicitly disclose receiving an authorization from the remote administrator device via a network. Bolian discloses a blade power management system wherein each blade can be individually and remotely powered on or off (Bolian: column 3, lines 17-23). The server blade is a card, and Bolian provides a system for remotely powering down the

card slot. It would have been obvious to modify the system of Stancil to incorporate the remote power control system of Bolian in order to remotely control the power supply to the card slots (Bolian: column 2, lines 15-18).

Claim 15 is rejected as applied above in rejecting claim 13. Stancil does not explicitly teach generating an authorization signal when the connection device is authorized to be communicatively coupled and communicating the authorization signal to a card power switch such that the card power switch provides power to the connection device. The system of Stancil-Mooney, as described in rejecting claim 1, teaches a connection to the card detector such that the card detector communicates the authorization signal to the card power switch. The Stancil-Mooney system contains a CPU and a program logic device (PLD) (card detector) to detect and control the peripherals within the computer and turn on/off power to the detected peripherals using the power control circuit (Mooney: column 4, lines 20-26). This configuration sends the authorization signal from the CPU to the PLD/ASIC (card detector) and to the card power switch. Therefore, the system of Stancil-Mooney does teach communicating the authorization signal to the card power switch through the card detector. It would have been obvious to one of ordinary skill in the art at the time of invention to use the card power switch to supply power only if an authorization signal is received as disclosed by Mooney in the system of Stancil "to prevent the unauthorized use of a computer system which is not subject to bypass while still maintaining the portability and flexibility of the computer system" (Mooney: column 1, lines 48-52).

Claim 17 is rejected as applied above in rejecting claim 13. Furthermore, Stancil discloses:

The method of claim 13, further comprising:

the computer detecting presence of a second type of modem card inserted into the card slot (column 3, lines 23-25), *wherein the ASIC is able to disable/enable slots which it detects and can be one of many different devices (column 1, lines 13-15)*.

Stancil does not explicitly disclose determining if the second type of connection device is authorized to be communicatively coupled to the processing system and providing power to the second type of connection device when it is authorized and not providing power to the second type of connection device if the second type of connection device is not authorized. Mooney discloses a system that controls access to peripheral devices (can be either first or second type) by using a system administrator card to authorize other user cards (Mooney: column 2, lines 9-15). If the user card is authorized, a power control circuit (card power switch) is used by the CPU to turn on power to computer peripherals (connection devices) that the user has been authorized to use (Mooney: column 2, lines 5-8). The CPU and the program logic device (PLD) (card detector) detect and control the peripherals within the computer and turn on/off power to the detected peripherals using the power control circuit (Mooney: column 4, lines 20-26). As mentioned earlier, the power control circuit (card power switch) only supplies power to the connection device it is authorized (authorization signal is present)

and when there is a peripheral that is connected according to the CPU and the PLD (card detector) (Mooney: column 6, lines 4-6). Stancil and Mooney are analogous arts because they both provide methods of disabling peripheral devices connected to a computer system if authorized by a system administrator. Mooney uses an authorization procedure using a card and a card reader, and then supplies power to the peripherals only if the user is authorized (Mooney: column 2, lines 5-8). This authorization system of Mooney could be implemented in the system of Stancil to automatically disable (not supply power to) the peripherals which are not authorized. The power control circuit of Mooney could be connected between the ASIC (analogous to the PLD of Mooney) and the ISA/PCI slots (Stancil: Figure 2) to allow/disallow the power to be supplied to the peripherals based on the authorization signal. It would have been obvious to one of ordinary skill in the art at the time of invention to use the card power switch to supply power only if an authorization signal is received as disclosed by Mooney in the system of Stancil "to prevent the unauthorized use of a computer system which is not subject to bypass while still maintaining the portability and flexibility of the computer system" (Mooney: column 1, lines 48-52).

Stancil and Mooney do not explicitly disclose that the card is a modem card. Yamamoto discloses a card recognition system which can include a modem card (Yamamoto: paragraph 033). Yamamoto is an analogous art to both Stancil and Mooney in that it involves detecting the presence of a card. It would have been obvious to allow the detection of a modem card, because in Stancil, the slots are powered off (Stancil: column 2, lines 63-64), which is independent of the type of card, and some computer

systems need a dial-up connection, where a modem card is necessary. Therefore, it would have been obvious to use the modem card of Yamamoto in the system of Stancil-Mooney to support dial-up connections.

Claim 20 is rejected as applied above in rejecting claim 13. Stancil does not explicitly a violation detector configured to detect presence of the connection device and further configured to communicate a violation signal to the network administrator device when the connection device is not authorized to be communicatively coupled to the processing system. Mooney teaches a violation detector which communicates a violation signal to the network administrator when the connection device is not authorized to be communicatively coupled to the processing system (Mooney: column 5, lines 57-65). Mooney teaches that a microprocessor (violation detector) compares user input to a response stored in memory (column 5, lines 57-60) and returns a compare status to CPU (column 5, line 60). This result could be one of a matching response or a non-matching response (violation signal) (column 5, lines 61-64). Mooney uses this violation detector in order to alert the system administrator in case the system administrator wants to take corrective action (column 6, lines 1-3). . It would have been obvious to one of ordinary skill in the art at the time of invention to use the violation detector as disclosed by Mooney in the system of Stancil "to prevent the unauthorized use of a computer system which is not subject to bypass while still maintaining the portability and flexibility of the computer system" (Mooney: column 1, lines 48-52).

5. Claims 3, 10, 16, 18, 24, and 26 are rejected under 35 U.S.C. 103(a) as being unpatentable over Stancil et al. (U.S. Patent 6,065,081) in view of Bolian et al. (U.S. Patent 6,968,466) further in view of Mooney et al. (U.S. Patent 5,515,44) in further in view of Yamamoto et al. (U.S. Patent Publication No. US 2005/0077355 A1) in further in view of Morrow (U.S. Patent Pub. No. US 2004/0156151).

Claim 3 is rejected as applied above in rejecting claim 2. Stancil and Mooney do not explicitly disclose that the I/O connection comprises a Universal Serial Bus (USB) connection. Stancil discloses a system and method for disabling add-in card slots (e.g. PCI or ISA) in a computer system (column 1, lines 51-53), but does not explicitly mention the use of a USB connection. Morrow discloses a system of detecting and powering a USB PC card (paragraph 10: lines 1-4). Morrow is analogous to Stancil and Morrow as all three deal with providing power/enabling PC cards. Morrow uses the USB as the preferred embodiment for the invention because USB is the “most popular of these serial bus technologies” (Morrow: paragraph 0007: lines 1-4) and it can provide “400+ million bits per second throughput” (Morrow: paragraph 007: lines 5-6). The system of Stancil-Mooney could be modified to support USB cards, as the power would still be provided by way of a card power switch (as disclosed in Mooney and Morrow) and connection to the card slot would remain the same. It would have been obvious to one of ordinary skill in the art at the time of invention to modify the system of Stancil-Mooney to support the USB connection as disclosed by Morrow, because USB

is the “most popular of these serial bus technologies” (Morrow: paragraph 0007: lines 1-4) and it can provide “400+ million bits per second throughput” (Morrow: paragraph 007: lines 5-6).

Claim 10 is rejected as applied above in rejecting claim 9. The system of Stancil and Mooney does not explicitly teach that the card power switch provides a first power that is unique to power requirements of the connection device and a second power that is unique to the power requirements of the second device. Morrow discloses a card power switch which includes a card sense block that detects type of PC card is being installed in a slot and provides the correct voltage depending on the type of card (Morrow: paragraph 0059: lines 1-9). Morrow is analogous to Stancil and Morrow as all three deal with providing power/enabling PC cards. Morrow uses the power sensing block so that the controller “enables the appropriate electrical interface to the card, and communicates via electrical control signals to the PC Card Power Switch indicating the voltage requirements of the card” (Morrow: paragraph 0004, lines 6-12). The card sensing block could be incorporated into the card power switch (Mooney: Figure 2, item 119) of Stancil-Mooney so that the correct voltage can be detected. Therefore, it would have been obvious to one of ordinary skill in the art at the time of invention to use the card sensing block of Morrow, so that the correct voltage could be provided to the card, depending on the type of card (Morrow: paragraph 0004, lines 6-12).

Claim 16 is rejected as applied above in rejecting claim 13. The system of Stancil and Mooney does not explicitly teach that the card power switch provides power that is unique to the power requirements of the connection device. Morrow discloses a card power switch which includes a card sense block that detects type of PC card is being installed in a slot and provides the correct voltage depending on the type of card (Morrow: paragraph 0059: lines 1-9). Morrow is analogous to Stancil and Morrow as all three deal with providing power/enabling PC cards. Morrow uses the power sensing block so that the controller “enables the appropriate electrical interface to the card, and communicates via electrical control signals to the PC Card Power Switch indicating the voltage requirements of the card” (Morrow: paragraph 0004, lines 6-12). The card sensing block could be incorporated into the card power switch (Mooney: Figure 2, item 119) of Stancil-Mooney so that the correct voltage can be detected. Therefore, it would have been obvious to one of ordinary skill in the art at the time of invention to use the card sensing block of Morrow, so that the correct voltage could be provided to the card, depending on the type of card (Morrow: paragraph 0004, lines 6-12).

Claim 18 is rejected as applied above in rejecting claim 17. The system of Stancil and Mooney does not explicitly teach that the card power switch provides power that is unique to the power requirements of the second type of connection device. Morrow discloses a card power switch which includes a card sense block that detects type of PC card is being installed in a slot and provides the correct voltage depending on the

type of card (Morrow: paragraph 0059: lines 1-9). Morrow is analogous to Stancil and Morrow as all three deal with providing power/enabling PC cards. Morrow uses the power sensing block so that the controller “enables the appropriate electrical interface to the card, and communicates via electrical control signals to the PC Card Power Switch indicating the voltage requirements of the card” (Morrow: paragraph 0004, lines 6-12). The card sensing block could be incorporated into the card power switch (Mooney: Figure 2, item 119) of Stancil-Mooney so that the correct voltage can be detected. Therefore, it would have been obvious to one of ordinary skill in the art at the time of invention to use the card sensing block of Morrow, so that the correct voltage could be provided to the card, depending on the type of card (Morrow: paragraph 0004, lines 6-12).

Conclusion

Any inquiry concerning this communication or earlier communications from the examiner should be directed to KAVEH ABRISHAMKAR whose telephone number is (571)272-3786. The examiner can normally be reached on Monday thru Friday 8-5.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Ayaz Sheikh can be reached on 571-272-3795. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see <http://pair-direct.uspto.gov>. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

/Kaveh Abrishamkar/
Examiner, Art Unit 2431

/K. A./
10/25/2008
Examiner, Art Unit 2431