Pipeline Inspection Analytics

Learning from weak signals to predict the degradation risk level

Report by L. Querella, PhD, MSc, Data Scientist, Mar 2021

<u>Author</u>: Laurent Querella, PhD, MSc

Senior Data Scientist (freelance) at TotalEnergies

Note: The details of this work were presented in applied mathematics conference at

TotalEnergies and at two other international conferences (Paris, Frankfurt)

<u>Disclaimer</u>: Confidential information are not included in this report

<u>Version</u>: Mar 2021

Table of Contents

1		Abst	ract .		3
2		Intro	duct	ion	4
	2.	1	Cont	ext	4
	2.	2	Obje	ectives	7
	2.	3	Insp	ection data – Techniques	8
3		Chal	lenge	es	10
4		Data	scie	nce approach	11
	4.	1	Audi	t and descriptive statistics	11
	4.	2	Data	fusion	12
	4.	3	Data	enrichment	13
	4.	4	Geo	spatial visualisation of results	15
	4.	5	Mac	hine learning modelling	16
		4.5.1	L	Segments and singular tubes	16
		4.5.2	2	Unsupervised learning	16
		4.5.3	3	Classification of anomaly types	18
		4.5.4	1	Predictive model of the corrosion rate	19
	4.	6	Degr	radation risk level model	19
		4.6.1	L	Likelihood of leak occurrence	20
		4.6.2	2	Baseline weights	20
		4.6.3	3	Computation of risk level	22
		4.6.4	1	Domain expert analysis	23
	4.	7	Key :	Success Factors	24
5		Deci	sion-	support tool for inspection	25

1 Abstract

Inline inspection and external inspection of oil and gas pipelines are crucial to detect various types of anomalies and degradation which can possibly yield failures with hazardous consequences, economic losses, and irreversible human and environmental damage. So far it is not possible to predict when and where a failure would occur.

Most of the existing models consider only a limited number of factors such as corrosion or fatigue wear and only a few attempts toward a comprehensive modeling of pipeline condition have been made in the past decade.

We tackle this problem with the data science methodology and tools applied to a major French oil pipeline. More specifically,

- We first perform a geospatial and temporal data fusion of relevant heterogeneous sources (pipe tally, inspection, weather, environment, ...) yielding a multidimensional view of the pipeline hosted in a geographical information system.
- Then, we develop machine learning models to classify anomaly types and predict the degradation risk level at each pipeline segment or at singular tubes.

The outcome will help the pipeline stakeholders (inspection and operators) to prioritize their inspection efforts by highlighting significant likelihood of failure stemming from the correlation of weak signals that would otherwise remain unnoticed.

2 Introduction

2.1 Context

Industry reports
2.10⁻⁴ significant leak per km/year
due to corrosion

INSPECTION

 3rd party inline inspection reports missed anomalies

ANOMALIES

 Small undetected anomalies/defects can cause major impacting events

HAZARDS

- SafetyFinancial
- Environmental
- Reputation

2.2 Objectives

2.3 Inspection data – Techniques

INSPECTION & DETECTION OF ANOMALIES

ANOMALIES

Anomalies detected on the PLIF pipeline are mainly linked to

Deformation

Undetected → damage to coating / corrosion / cracks / ...

► Thickness (corrosion)

Crack

INSPECTIONS

- External inspection
 - Above ground survey (walkers, airplanes)
 - Work permits
 - Leak of electrical flow...
- Internal inspection
 - PIG (Pipeline Intelligent Gauge ?) with three kinds of scrapers/crawler-based robotic tools:

Geometry tool

UT Thickness measurement tool

UT Crack detection tool

3 Challenges

- 4 Data science approach
- 4.1 Audit and descriptive statistics Inline inspection

Uncover patterns & correlations – Outliers

Evolution of individual anomalies and analysis with domain experts.

4.2 Data fusion

4.3 Data enrichment

How to combine data from multiple sources to get a multi-dimensional inspection view?

Highly heterogeneous data

Geospatial & Temporal data fusion

GEOSPATIAL DATA FUSION

+ Data enrichment

Geospatial merge of heterogeneous data

Pipe Tally + GIS + Inspection (Pig, DCVG, PC)

- + geographic data (roads, waterways, ...)
- + weather conditions (local stations)
- + soil condition (clay, sand, ...)
- + pressure

+ Feature engineering

Density and evolution of anomalies

Short- and long-term corrosion rates – Dent – Cathodic protection – Coating defects - ...

Result = input dataset for machine learning modeling

Pipeline/Tube characteristics + Inspection data + Environment data

4.4 Geospatial visualisation of results

4.5 Machine learning modelling

4.5.1 Segments and singular tubes

Definition of granularity for the degradation risk level

Focus on segment

Homogeneous segmentation based on statistical clustering combined with domain expert knowledge or arbitrary split every 100m

Focus on singular point

Tube with at least one "crossing" of influencing environmental element (river, electric line, railways, ...) ~20% tubes

4.5.2 Unsupervised learning

Unsupervised learning – Clustering tubes in homogeneous families (*segments*)

Inspection data – Unsupervised learning

Exploratory

PCA - t-SNE

Segment

Homogeneous segmentation based either on

• dynamic cut

statistical clustering combined with domain expert knowledge

→ segment as extra tube attribute

4.5.3 Classification of anomaly types

Classify anomaly types reported by ILI

Multi-class classification on 2013 campaign

Extreme gradient boosting (trees) - xgboost

Almost perfect classification of anomaly types

- → Consistency of anomaly reporting (ILI owner) based on interpreted data above reporting threshold
- → Possible improvement (real added value): classification model based on raw ILI data
 - → challenging the results of ILI reports

Influencing factors

Tube/anomaly characteristics (thickness, radial position, ...)

No external variables

4.5.4 Predictive model of the corrosion rate

4.6 Degradation risk level model

Data-driven + Domain expertise + Heuristics

4.6.1 Likelihood of leak occurrence

4.6.2 Baseline weights

4.6.3 Computation of risk level

4.6.4 Domain expert analysis

Example of risk factors:

- Metal loss defects
- Weaker cathodic protection
- Singular tube
- gaine/pipe contact

The result details are confidential and can't be disclosed in this report.

4.7 Key Success Factors

5 Decision-support tool for inspection

