LINEAR CLASSIFIER LEARNING PERCEPTRON

Chih-Chung Hsu (許志仲)

Assistant Professor ACVLab, Institute of Data Science National Cheng Kung University

Outline

- Introduction to Machine Learning
- Supervised learning
 - Nearest neighbor classifier
 - Decision tree
 - Linear classifier
 - Support vector machine
 - Bayer classifier
 - Two-dim data
 - Multivariant data
 - Ensemble and boosting
- Feature selection
 - PCA and LDA
- Unsupervised learning
 - K-means
 - EM-algorithm
 - Affinity-propagation

Outline

- Introduction to Machine Learning
- Supervised learning
 - Nearest neighbor classifier
 - Decision tree
 - Linear classifier
 - Support vector machine
 - Bayer classifier
 - Two-dim data
 - Multivariant data
 - Ensemble and boosting
- Feature selection
 - PCA and LDA
- Unsupervised learning
 - K-means
 - EM-algorithm
 - Affinity-propagation

Machine learning models

- Some machine learning approaches make strong assumptions about the data
 - If the assumptions are true this can often lead to better performance
 - If the assumptions aren't true, they can fail miserably
- Other approaches don't make many assumptions about the data
 - This can allow us to learn from more varied data
 - But, they are more prone to overfitting
 - and generally require more training data

Actual model

Model assumptions

- If you don't have strong assumptions about the model, it can take you a longer to learn
- Assume now that our model of the blue class is two circles

Actual model

Make sure your assumption is correct

Machine learning models

• What were the model assumptions (if any) that k-NN and decision trees make about the data?

• Are there data sets that could never be learned correctly by either?

k-NN model

Bias

- The "bias" of a model is how strong the model assumptions are.
 - low-bias classifiers make minimal assumptions about the data (k-NN and DT are generally considered low bias)
 - high-bias classifiers make strong assumptions about the data

Linear models

- A strong high-bias assumption is linear separability:
 - in 2 dimensions, can separate classes by a line
 - in higher dimensions, need hyperplanes
- A linear model is a model that assumes the data is linearly separable

$$0 = w_1 f_1 + w_2 f_2$$

$$0 = w_1 f_1 + w_2 f_2$$

$$0 = 1f_1 + 2f_2$$

$$-2 \qquad 1 \qquad 0.5$$

$$0 \qquad 0 \qquad 1 \qquad -0.5$$

$$2 \qquad -1$$

$$0 = w_1 f_1 + w_2 f_2$$

$$0 = 1f_1 + 2f_2$$

$$-2 \qquad 1 \qquad 0.5$$

$$0 \qquad 0 \qquad 1 \qquad -0.5$$

$$2 \qquad -1$$

Any pair of values (w_1, w_2) defines a line through the origin:

$$0 = w_1 f_1 + w_2 f_2$$

$$0 = 1f_1 + 2f_2$$

w=(1,2)

We can also view it as the line perpendicular to the *weight vector*

Mathematically, how can we classify points based on a line?

$$0 = 1f_1 + 2f_2$$

Mathematically, how can we classify points based on a line?

The sign indicates which side of the line

Any pair of values (w_1, w_2) defines a line through the origin:

$$0 = w_1 f_1 + w_2 f_2$$

$$0 = 1f_1 + 2f_2$$

How do we move the line off of the origin?

$$-1 = 1f_1 + 2f_2$$
 -2
 -1
 0
 1

Linear models

- A linear model in n-dimensional space (i.e. n features) is define by n+1 weights:
- In two dimensions, a line:
- In three dimensions, a plane: $0 = w_1 f_1 + w_2 f_2 + b \quad \text{(where b = -a)}$
- In n-dimensions, a hyperplane

$$0 = w_1 f_1 + w_2 f_2 + w_3 f_3 + b$$

$$0 = b + \sum_{i=1}^{n} w_i f_i$$

Classifying with a linear model

■ We can classify with a linear model by checking the sign:

$$f_1, f_2, ..., f_n$$

$$b + \sum_{i=1}^n w_i f_i > 0 \text{ Positive example}$$

$$b + \sum_{i=1}^n w_i f_i < 0 \text{ Negative example}$$

Learning a linear model

- Geometrically, we know what a linear model represents
- Given a linear model (i.e. a set of weights and b) we can classify examples

How do we learn a linear model?

(data with labels)

NEGATIVE

NEGATIVE

POSITIVE

NEGATIVE

POSITIVE

POSITIVE

NEGATIVE

POSITIVE

A method to the madness

- blue = positive
- yellow triangles = positive
- all others negative

How is this learning setup different than the learning we' ve done before?

When might this arise?

What does this model currently say?

$$w = (1,0)$$

$$0 = w_1 f_1 + w_2 f_2$$

Is our current guess: right or wrong?

$$w = (1,0)$$

$$0 = w_1 f_1 + w_2 f_2$$

$$1*f_1+0*f_2=$$

$$1*-1+0*1 \neq -1$$

(-1,1)

predicts negative, wrong

How should we update the model?

$$w = (1,0)$$

$$0 = w_1 f_1 + w_2 f_2$$

$$1*f_1+0*f_2=$$

$$1*-1+0*1 \neq -1$$

$$w_1$$
 w_2 (-1, 1, positive)
$$1*f_1+0*f_2=$$

$$1*-1+0*1=-1$$
We' d like this value to be positive since it' s a positive value

Which of these contributed to the mistake?

How should we change the weights?

contributed in the wrong direction

could have contributed (positive feature), but didn't

decrease

increase

$$0 -> 1$$

$$0 = w_1 f_1 + w_2 f_2$$

Graphically, this also makes sense! **♦**

$$w = (0,1)$$

$$0 = w_1 f_1 + w_2 f_2$$

Is our current guess: right or wrong?

$$w = (0,1)$$

$$0 = w_1 f_1 + w_2 f_2$$

$$0*f_1+1*f_2= \\ 0*1+1*-1 = -1$$

 $f_1 \leftarrow +$ (1,-1)

predicts negative, correct

How should we update the model?

$$w = (0,1)$$

$$0 = w_1 f_1 + w_2 f_2$$

$$0*f_1+1*f_2 = 0*1+1*-1 \neq -1$$

Already correct... don' t change it!

$$w = (0,1)$$

$$0 = w_1 f_1 + w_2 f_2$$

Is our current guess: + (-1,-1)+ right or wrong?

$$w = (0,1)$$

$$0 = w_1 f_1 + w_2 f_2$$

$$0*f_1+1*f_2 = 0*-1+1*-1 = -1$$

predicts negative, wrong

w = (0,1)

How should we update the model?

$$0 = w_1 f_1 + w_2 f_2$$

$$W_1$$
 W_2 (-1, -1, positive)
$$0*f_1+1*f_2=$$

$$0*-1+1*-1=-1$$
We' d like this value to be positive since it' s a positive value

Which of these contributed to the mistake?

but could have

$$w_1$$
 w_2 (-1, -1, positive)
$$0*f_1+1*f_2=$$
 We' d like this value to be positive since it's a positive value
$$0*-1+1*-1=-1$$
 didn't contribute, contributed in the wrong

How should we change the weights?

direction

 $0 \to -1$

1 -> 0

f_1 , f_2 , label

-1,-1, positive -1, 1, positive 1, 1, negative 1,-1, negative

How to formula it?

Define a cost function

$$MSE = \frac{1}{N} \sum_{i=1}^{N} ||p - y||$$

- where p = predicted and y = label
- Where we know that $p = w^T F$

$$w^* = argmin \frac{1}{N} \sum_{i=1}^{N} \left| |w^T F - y| \right|$$

Linear models

- A linear model in n-dimensional space (i.e. n features) is define by n+1 weights:
- In two dimensions, a line:

$$0 = w_1 f_1 + w_2 f_2 + b$$
 (where b = -a)

■ In three dimensions, a plane:

$$0 = w_1 f_1 + w_2 f_2 + w_3 f_3 + b$$

■ In n-dimensions, a hyperplane

$$0 = b + \sum_{i=1}^{n} w_i f_i$$

Perceptron learning algorithm

- repeat until convergence (or for some # of iterations):
- for each training example $(f_1, f_2, ..., f_n, label)$:
- check if it's correct based on the current model $w_i f_i$

```
if <u>not correct</u>, update all the weights:
     if label positive and feature positive:
          increase weight (increase weight = predict more positive)
     if label positive and feature negative:
          decrease weight (decrease weight = predict more positive)
     if label negative and feature positive:
          decrease weight (decrease weight = predict more negative)
     if label negative and negative weight:
          increase weight (increase weight = predict more negative)
```


Let positive label = 1 and negative label = -1

label * f_i

```
if not correct, update all the weights:
     if label positive and feature positive:
          increase weight (increase weight = predict more positive)
     if label positive and feature negative:
                                                                          1*-1=-1
         decrease weight (decrease weight = predict more positive)
     if label negative and feature positive:
                                                                          -1*1=-1
          decrease weight (decrease weight = predict more negative)
     if label negative and negative weight:
          increase weight (increase weight = predict more negative)
```


Perceptron learning algorithm

```
repeat until convergence (or for some # of iterations):
  for each training example (f_1, f_2, ..., f_n, label):
    check if it's correct based on the current model
    if not correct, update all the weights:
      for each w_i:
         w_i = w_i + f_i * label
      b = b + label
```

How do we check if it's correct?

Perceptron learning algorithm

repeat until convergence (or for some # of iterations): for each training example $(f_1, f_2, ..., f_n, label)$:

$$prediction = b + \sum_{i=1}^{n} w_{i} f_{i}$$
 if $prediction * label \le 0$: // they don't agree for each w_{i} :
$$w_{i} = w_{i} + f_{i} * label$$

$$b = b + label$$

Think about: why b is updated by adding label directly?

$$prediction = \sum_{i=1}^{n} w_i f_i$$
 if $prediction * label \le 0$: // they don't agree for each w_i :
$$w_i = w_i + f_i * label$$

- Repeat until convergence
- Keep track of w_1 , w_2 as they change
- Redraw the line after each step

$$w = (1, 0)$$

$$\begin{aligned} \textit{prediction} &= \sum_{i=1}^n w_i f_i \\ \text{if } \textit{prediction} * \textit{label} \leq 0 \text{: } \textit{//} \text{ they don't agree} \\ \text{for each } w_i \text{:} \\ w_i &= w_i + f_i * \textit{label} \end{aligned}$$

$$w = (0, -1)$$

$$\begin{aligned} & \textit{prediction} = \sum_{i=1}^n w_i f_i \\ & \text{if } \textit{prediction} * \textit{label} \leq 0 \text{: } \textit{//} \text{ they don't agree} \\ & \text{for each } w_i \text{:} \end{aligned}$$

$$w_i = w_i + f_i * label$$

$$w = (-1, 0)$$

$$\begin{aligned} \textit{prediction} &= \sum_{i=1}^n w_i f_i \\ \text{if } \textit{prediction} * \textit{label} \leq 0 \text{: } \textit{//} \text{ they don't agree} \\ \text{for each } w_i \text{:} \\ w_i &= w_i + f_i * \textit{label} \end{aligned}$$

$$w = (-.5, -1)$$

repeat until convergence (or for some # of iterations): for each training example $(f_1, f_2, ..., f_n, label)$:

$$prediction = \sum_{i=1}^{n} w_i f_i$$

if $prediction * label \le 0$: // they don't agree for each w_i :

$$w_i = w_i + f_i * label$$

$$w = (-1.5, 0)$$

$$\begin{aligned} \textit{prediction} &= \sum_{i=1}^n w_i f_i \\ \textit{if } \textit{prediction} * \textit{label} \leq 0 \texttt{:} \textit{ // they don't agree} \\ \textit{for each } w_i \texttt{:} \\ w_i &= w_i + f_i * \textit{label} \end{aligned}$$

$$w = (-1, -1)$$

repeat until convergence (or for some # of iterations): for each training example $(f_1, f_2, ..., f_n, label)$:

$$prediction = \sum_{i=1}^{n} w_i f_i$$

if $prediction * label \le 0$: // they don't agree for each w_i :

$$w_i = w_i + f_i * label$$

$$w = (-2, 0)$$

repeat until convergence (or for some # of iterations): for each training example $(f_1, f_2, ..., f_n, label)$:

$$prediction = \sum_{i=1}^{n} w_i f_i$$

if $prediction * label \le 0$: // they don't agree for each w_i :

$$w_i = w_i + f_i * label$$

$$w = (-1.5, -1)$$

Which line will it find?

Which line will it find?

Only guaranteed to find *some* line that separates the data

Convergence

repeat until convergence (or for some # of iterations): for each training example ($f_1, f_2, ..., f_n$, label):

$$prediction = b + \sum_{i=1}^{n} w_{i} f_{i}$$
 if $prediction * label \le 0$: // they don't agree for each w_{i} :
$$w_{i} = w_{i} + f_{i} * label$$

$$b = b + label$$

Why do we also have the "some # iterations" check?

Handling non-separable data

If we ran the algorithm on this it would never converge!

Convergence

repeat until convergence (or for some # of iterations): for each training example $(f_1, f_2, ..., f_n, label)$:

$$prediction = b + \sum_{i=1}^{n} w_i f_i$$

if $prediction * label \le 0$: // they don't agree

for each w_i :

$$w_i = w_i + f_i * label$$

$$b = b + label$$

Also helps avoid overfitting! (This is harder to see in 2-D examples, though)

What order should we traverse the examples? Does it matter?

Order matters

What would be a good/bad order?

Solution?

Ordering

repeat until convergence (or for some # of iterations): randomize order or training examples for each training example $(f_1, f_2, ..., f_n, label)$:

$$prediction = b + \sum_{i=1}^{n} w_{i} f_{i}$$
 if $prediction * label \le 0$: // they don't agree for each w_{i} :
$$w_{i} = w_{i} + f_{i} * label$$

$$b = b + label$$

Improvements

What will happen when we examine this example?

Improvements

Does this make sense? What if we had previously gone through ALL of the other examples correctly?

Improvements

Maybe just move it slightly in the direction of correction

Learning rate: Move slightly

repeat until convergence (or for some # of iterations): randomize order or training examples for each training example $(f_1, f_2, ..., f_n, label)$:

$$prediction = b + \sum_{i=1}^{n} w_{i} f_{i}$$
 if $prediction * label \le 0$: // they don't agree for each w_{i} :
$$w_{i} = w_{i} + lr * (f_{i} * label)$$

$$b = b + label$$

Training

- every time a mistake is made on an example:
 - store the weights (i.e. before changing for current example)
 - store the number of examples that set of weights got correct

Classify

- calculate the prediction from ALL saved weights
- multiply each prediction by the number it got correct (i.e a weighted vote) and take the sum over all predictions
- said another way: pick whichever prediction has the most votes

Training every time a mistake is made on an example:

- store the weights
- store the number of examples that set of weights got correct

1

Voted perceptron learning

- Works much better in practice
- Avoids overfitting, though it can still happen
- Avoids big changes in the result by examples examined at the end of training

Voted perceptron learning

Training

- every time a mistake is made on an example:
 - store the weights (i.e. before changing for current example)
 - store the number of examples that set of weights got correct

Classify

- calculate the prediction from ALL saved weights
- multiply each prediction by the number it got correct (i.e a weighted vote) and take the sum over all predictions
- said another way: pick whichever prediction has the most votes

Any issues/concerns?

Voted perceptron learning

- Training
- every time a mistake is made on an example:
 - store the weights (i.e. before changing for current example)
 - store the number of examples that set of weights got correct
- Classify
 - calculate the prediction from ALL saved weights
 - multiply each prediction by the number it got correct (i.e a weighted vote) and take the sum over all predictions
 - said another way: pick whichever prediction has the most votes
 - 1. Can require a lot of storage
 - 2. Classifying becomes very, very expensive

Average perceptron

Vote

$$w_1^1, w_2^1, ..., w_n^1, b^1$$

1
$$w_1^2, w_2^2, ..., w_n^2, b^2$$

$$\overline{w_i} = \frac{3w_i^1 + 1w_i^2 + 5w_i^3 + 1w_i^4}{10}$$

$$w_1^3, w_2^3, ..., w_n^3, b^3$$

The final weights are the weighted average of the previous weights

$$w_1^4, w_2^4, ..., w_n^4, b^4$$

How does this help us?

Average perceptron

Vote

$$w_1^1, w_2^1, ..., w_n^1, b^1$$

1
$$w_1^2, w_2^2, ..., w_n^2, b^2$$

$$\overline{w_i} = \frac{3w_i^1 + 1w_i^2 + 5w_i^3 + 1w_i^4}{10}$$

The final weights are the weighted average of the previous weights

$$1 \qquad w_1^4, w_2^4, ..., w_n^4, b^4$$

 $w_1^4, w_2^4, ..., w_n^4, b^4$ Can just keep a running average!

Perceptron learning algorithm

repeat until convergence (or for some # of iterations): for each training example $(f_1, f_2, ..., f_n, label)$:

$$prediction = b + \sum_{i=1}^{n} w_{i} f_{i}$$
 if $prediction * label \le 0$: // they don't agree for each w_{i} :
$$w_{i} = w_{i} + f_{i} * label$$

$$b = b + label$$

Why is it called the "perceptron" learning algorithm if what it learns is a line? Why not "line learning" algorithm?

Neural Networks

Possible threshold functions

hard threshold:

if *in* (the sum of weights) >= *threshold* 1, 0 otherwise

Sigmoid

$$g(x) = \frac{1}{1 + e^{-ax}}$$

Performance Evaluation

Precision	$\frac{\mathrm{TP}}{\mathrm{TP}+\mathrm{FP}}$
Accuracy	$\frac{\text{TP+TN}}{\text{TP+TN+FP+FN}}$

Element of Neural Network

Neuron $f: \mathbb{R}^K \to \mathbb{R}$

Neural Network

Deep means many hidden layers

Activation function

Weight/Bias

Weight/Bias (cont.)

$$f: \mathbb{R}^2 \to \mathbb{R}^2 \qquad f\left(\begin{bmatrix} 1 \\ -1 \end{bmatrix}\right) = \begin{bmatrix} 0.62 \\ 0.83 \end{bmatrix} \quad f\left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}\right) = \begin{bmatrix} 0.51 \\ 0.85 \end{bmatrix}$$

Different parameters define different function

Matrix Operation

How to form the Weight/Bias

How to form the Weight/Bias

$$y = f(x)$$

Using parallel computing techniques to speed up matrix operation

Summary

- We have learned
 - From simple "linear classifier" to "perceptron"
 - Adding the "nonlinear" operation to perceptron becomes neural network
 - Deep learning!!
- All about
 - How to update weights
 - How good weights are
 - What the most efficient/effective way

Softmax Layer

- Softmax layer as the output layer
 - Softmax will be used on the final output
 - Sum of all softmax outputs is 1

Ordinary Layer

$$z_1 \longrightarrow \sigma \longrightarrow y_1 = \sigma(z_1)$$

$$z_2 \longrightarrow \sigma \longrightarrow y_2 = \sigma(z_2)$$

$$z_3 \longrightarrow \sigma \longrightarrow y_3 = \sigma(z_3)$$

In general, the output of network can be any value.

May not be easy to interpret

Softmax Layer

Softmax layer as the output layer

Softmax Layer

Probability.

■
$$1 > y_i > 0$$

$$\blacksquare \sum_i y_i = 1$$

Learning Parameters

An Example

- Preparing training data: images and their labels
 - Training samples & their labels

Using the training data to find the network parameters.

Cost function (Answer is different from predicted)

Cost can be Euclidean distance or cross entropy of the network output and target

Define the Total Cost Function!

Total
Cost:
$$C(\theta) = \sum_{r=1}^{R} L^{r}(\theta)$$

How bad the network parameters θ is on this task

NN parameters θ^* will be updated by the iterative learning

Gradient Descent: A way to learn parameters

Assumed 2-dim W

$$\theta = \{w_1, w_2\}$$

Randomly pick a starting point θ^0

Compute the negative gradient at

$$\stackrel{\theta^0}{-} - \nabla C(\theta^0)$$

Times the learning rate η

Gradient Descent: A way to learn parameters

Randomly pick a starting point θ^0

Compute the negative gradient at θ^0

$$-\nabla C(\theta^0)$$

Times the learning rate η

$$-\eta \nabla C(\theta^0)$$

Mini-batch Gradient Descent

Mini-batch

- Randomly initialize θ^0
- Pick the 1st batch

$$C = L^1 + L^{31} + \cdots$$

$$\theta^1 \leftarrow \theta^0 - \eta \nabla C(\theta^0)$$

➤ Pick the 2nd batch

$$C = L^2 + L^{16} + \cdots$$

$$\theta^2 \leftarrow \theta^1 - \eta \nabla C(\theta^1)$$
:

Cost will be different for different mini-batch

Mini-batch Advantages

Mini-batch

Mini-batch

- \triangleright Randomly initialize θ^0
- Pick the 1st batch

$$C = C^1 + C^{31} + \cdots$$

$$\theta^1 \leftarrow \theta^0 - \eta \nabla C(\theta^0)$$

➤ Pick the 2nd batch

$$C = C^2 + C^{16} + \cdots$$

$$\theta^2 \leftarrow \theta^1 - \eta \nabla C(\theta^1)$$

•

Until all mini-batches have been picked

one epoch

Repeat the above process

Faster