A tárgy címe: ANALÍZIS 2 A-B-C (2+2).

Tematikai összefoglalás: speciális elemi függvények (exponenciális-, logaritmus-, hatványfüggvény). Egyváltozós valós függvények differenciálhatósága. Geometriai, fizikai interpretáció. Műveletek differenciálható függvényekkel. Az összetetett, ill. az inverz függvény deriváltja. Középérték tételek. Differenciálható függvények vizsgálata: monotonitás, szélsőérték. L'Hospital-tétel. Többször differenciálható függvények. Hatványsor öszegfüggvényének a deriváltjai. Taylor-sor, Taylor-polinom. Konvex, konkáv függvények, kapcsolat a deriválttal. Inflexió. Primitív függvény, határozatlan integrál. Integrálási szabályok. A Riemann-integrál definíciója. Műveletek integrálható függvényekkel. Az integrál intervallum szerinti additivitása. Középérték tétel. Folytonos, ill. monoton függvény integrálható. Az integrálfüggvény és tulajdonságai. Newton-Leibniz-formula. A parciális és a helyettesítéses integrálás szabálya. Improprius integrálok. Az integrálszámítás alkalmazásai.

Az egyes előadások tematikája:

1. előadás

Az exponenciális függvény értelmezése, multiplikativitása. Az exp: $\mathbf{R} \to \mathbf{R}$ szigorúan monoton növekedő és szürjektiv. A logaritmusfüggvény értelmezése, tulajdonságai. A hatvány fogalma.

2. előadás

A derivált fogalmának az előkészítése: érintő, pillanatnyi sebesség. A belső pont fogalma. A differenciahányados függvény. Az $\mathbf{R} \to \mathbf{R}$ függvények differenciálhatósága. Példák. A definíció átfogalmazása. A deriváltfüggvény definíciója. A differenciálhatóság és a folytonosság kapcsolata. Lokális szélsőértékre vonatkozó elsőrendű szükséges feltétel.

3. előadás

Műveletek differenciálható függvényekkel: összeadás, szorzás, osztás, kompozíció. Az inverz függvény deriváltja. Hatványsor összegfüggvényének a deriválása. Példák: az exponenciális-, a logaritmus- és a hatványfüggvény deriválása.

4. előadás

Rolle-tétel és következményei: Lagrange- és Cauchy-féle középérték tétel. Nyílt intervallumon differenciálható függvények monotonitásának a jellemzése a derivált segítségével. Kiterjesztés zárt intervallumra. L'Hospital-tétel.

5. előadás

Többször differenciálható függvények. Hatványsor összegfüggvényének magasabb rendű deriváltjai. *Taylor*-sor, ill. polinom, *Taylor*-formula *Lagrange*-féle maradékkal. Elégséges feltétel a *Taylor*-sor konvergenciájára.

6. előadás

Konvex, konkáv függvények. Jellemzésük a differenciahányados függvények monotonitásával, az első derivált monotonitásával, ill. a második derivált előjelével. A konvexitás, konkávitás jellemzése az érintőkkel. A jelváltás fogalma, differenciálható függvények lokális szélsőértékére vonatkozó első, ill. másodrendű elégséges feltétel.

7. előadás

Az inflexió fogalma. Jellemzése az első derivált szélsőértékével, ill. a második-harmadik derivált viselkedésével. Az $f^{(i)}(a)=0$ $(i=1,...,n), f^{(n+1)}(a)\neq 0$ eset vizsgálata. Függvényvizsgálat. Példa.

8. előadás

Határozatlan integrál, primitív függvény. Az $\int f$ halmaz szerkezete. Integrálási szabályok: linearitás, parciális integrálás, helyettesítéses integrálás határozatlan integrálra.

9. előadás

Az $f(x) := x^2 \quad (x \in [0,1])$ függvény grafikonja alatti terület. Kompakt intervallum felosztásai. Alsó-felső összegek. A felosztás finomítása, az alsó-felső összegek monotonitása, ill. korlátossága. A Parboux-féle alsó-felső integrál. A Parboux-fele alsó-felső integrál. A Parboux-fele alsó-felső integrál. A Parboux-integrál fogalma. A Parboux-integrálhatóság jellemzése az oszcillációs összegekkel.

10. előadás

Integrálható függvények összegének az integrálja. Integrálható függvények szorzata, ill. hányadosa (bizonyos feltétel mellett) integrálható. A *Riemann*-integrál intervallum szerinti additivitása. A rendezés és az integrál kapcsolata. Középérték tétel.

11. előadás

Folytonos, ill. monoton függvény integrálható. Integrálható függvény véges sok helyen való megváltoztatása. Szakaszonként folytonos és szakaszonként monoton függvények. Az integrálfüggvény fogalma, folytonossága, deriválhatósága. A Newton-Leibniz-formula.

12. előadás

A parciális és a helyettesítéses integrálás szabálya *Riemann*-integrálra. Az improprius integrál fogalma. Függvény grafikonja alatti terület, forgástest térfogata.

13. előadás

Függvény grafikonjának az ívhossza. Forgástest felszíne. Paraméteresen adott görbe ívhossza.