

Designing Phase I Single Agent Dose-Escalation Studies

Lecture 4: Model-assisted dose-escalation designs

Pavel Mozgunov & Thomas Jaki

MRC Biostatistics Unit September 26, 2023

Motivation

- Model-based designs balance accuracy/safety trade-off, but...
- There is argument that they can be a "black box" for clinicians;
- And they might be time-consuming to set up.

Propose solution: model-assisted design.

- Up-and-down rules;
- Based on the statistical estimates of the toxicity risk at the current dose;
- Doses are modelled independently → quick to evaluate;
- All escalation/de-escalation decision could be summarised in one table;

Model-Based Designs: general principles

- Use a set of decision rules based on the DLT probability estimated from a simple Bayesian model
- Use toxicity data of the most recently used dose level and does not borrow information from other dose levels
- Escalation/de-escalation rules imply the assumption of a monotonic ordering;

Modified Toxicity Probability Interval (mTPI)

- Equivalence interval $(TTL \epsilon_1, TTL + \epsilon_2), \epsilon_1, \epsilon_2 \ge 0$ covers the range of acceptable deviations from TTL.
- It divides the unit interval into three subintervals
 - \triangleright [0, $TTL \epsilon_1$) [underdosing]
 - ▶ $[TTL \epsilon_1, TTL + \epsilon_2]$ [target]
 - $(TTL + \epsilon_2, 1]$ [overdosing]
- Using vague priors on each toxicity risk and observing the patients on the current cohort, the posterior is updated;
- Decision are based on the unit probability mass (UPM) ratio of the probability and length of the interval.
 - ▶ UPM for $[0, TTL \epsilon_1)$ is highest \rightarrow escalate;
 - ▶ UPM for $[TTL \epsilon_1, TTL + \epsilon_2]$ is highest \rightarrow stay;
 - ▶ UPM for $(TTL + \epsilon_2, 1]$ is highest \rightarrow de-escalate.

Bayesian Optimal Interval (BOIN)

- Estimates the probability of toxicity at dose d_j using $\hat{p}_j = y_j/n_j$;
- ϕ_1 is the highest toxicity probability deemed subtherapeutic;
- ϕ_2 is the lowest toxicity probability deemed overly toxic;
- Escalation process is defined by (λ_e, λ_d) chosen to minimise the chance of incorrect escalation/de-escalation

$$\lambda_{\theta} = \frac{\log\left(\frac{1-\phi_1}{1-TTL}\right)}{\log\left(\frac{\phi(1-\phi_1)}{\phi_1(1-TTL)}\right)} \text{ and } \lambda_{d} = \frac{\log\left(\frac{1-TTL}{1-\phi_2}\right)}{\log\left(\frac{\phi_2(1-TTL)}{\phi(1-\phi_2)}\right)}$$

- ▶ If $\hat{p}_i \leq \lambda_e \rightarrow \text{escalate}$
- ▶ If $\hat{p_i} \ge \lambda_d \rightarrow$ de-escalate
- ▶ If $\lambda_e < \hat{p}_i < \lambda_d \rightarrow \text{stay}$
- At the end, estimates p_i are calculated via isotonic regression.

Bayesian Optimal Interval (BOIN)

Bayesian Optimal Interval (BOIN)

Table 1. Dose escalation and de-escalation boundaries

	Target toxicity rate for the MTD											
Boundary	0.1	0.15	0.2	0.25	0.3	0.35	0.4					
λ _e (escalation)	0.078	0.118	0.157	0.197	0.236	0.276	0.316					
λ _d (de-escalation)	0.119	0.179	0.238	0.298	0.358	0.419	0.479					

Table 2. Dose escalation and de-escalation boundaries for target toxicity rate = 30%

		The number of patients treated at the current dose																
Action	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Escalate if no. of DLTs ≤	0	0	0	0	- 1	1	1	1	2	2	2	2	3	3	3	3	4	4
De-escalate if no. of DLTs ≥	1	1	2	2	2	3	3	3	4	4	4	5	5	6	6	6	7	7

Benefits

- Result in good accuracy (slightly lower than the CRM), and good safety.
- Extended to various setting (dual endpoints, combinations);
- Quick to evaluate;
- Easy to use;

Drawbacks

- Doses are modelled independently;
- High chance (≥ 75%) of incoherent recommendations;
- Cannot accommodate changes in the setting;
- The "intuitive" interval might be suboptimal (a challenge to convince HAs);
- Dose-skipping/backfill are not particularly meaningful;
- Overruling of recommendations can make the design completely redundant

Challenges: Example

	Number of patients treated									
	3	6	9	12	15	18	21	24	27	30
Escalate if number of DLT <=	0	1	2	2	3	4	5	5	6	7
De-escalate if number of DLT $>=$	2	3	4	5	6	7	8	9	10	11
Eliminate if number of DLT $>=$	3	4	5	7	8	9	10	11	12	14

- Doses: 1mg, 2mg, 3mg, 4mg, 5mg;
- Start at 2mg, 0/3 DLTs but the team decides to stay (sub-DLT);
- 1/3 DLTs, the design recommends escalating → overrule;
- ullet 1/3 DLTs, the design recommends escalating o overrule

Would your judgement on the escalation be different if there were 2/10 on 1 mg, or 0/10 at 1 mg?

