

COHEN CHAP 4. STANDARD & NORMAL

For EDUC/PSY 6600

EXPLORING QUANTITATIVE DATA

We now have a kit of graphical and numerical tools for describing distributions. We also have a strategy for exploring data on a single quantitative variable. Now, we'll add one more step to the strategy.

Exploring Quantitative Data

- 1. Always plot your data: make a graph.
- 2. Look for the overall pattern (shape, center, and spread) and for striking departures such as outliers.
- 3. Calculate a numerical summary to briefly describe center and spread.
- 4. Sometimes the overall pattern of a large number of observations is so regular that we can describe it by a smooth curve.

DENSITY CURVES & NORMAL DISTRIBUTIONS

Heights (inches)

Mean = 66.3 inches

Median = 66 inches

GPA

Mean = 3.25

Median = 3.3

Number of Tattoos

Mean = .23

Median = 0

DENSITY CURVES & NORMAL DISTRIBUTIONS

A **density curve** is a curve that:

- is always on or above the horizontal axis
- has an area of exactly 1 underneath it

A density curve describes the overall pattern of a distribution. The area under the curve and above any range of values on the horizontal axis is the proportion of all observations that fall in that range.

NORMAL DISTRIBUTION

Many dependent variables are assumed normally distributed

- Use statistical procedures where data are assumed normally distributed
 - Correlation, regression, t-tests, and ANOVA

Gaussian distribution

Karl Gauss

The 68-95-99.7 Rule

In the Normal distribution with mean μ and standard deviation σ :

- Approximately **68%** of the observations fall within σ of μ .
- Approximately **95%** of the observations fall within 2σ of μ .
- Approximately **99.7%** of the observations fall within 3σ of μ .

NORMAL DISTRIBUTIONS

Each μ and σ combination produces differently shaped normal distribution

- Family of distributions
- Probability generating function for normal distribution:

$$f(X) = \frac{1}{\sigma \sqrt{2\pi}} (e)^{-(X-\mu)^2/2\sigma^2}$$

If we know μ and σ for given variable in given population we can, for given value of X, compute the density (frequency) of that value and thus determine its probability

No matter the exact shape, the properties in terms of area under the curve per SD unit are the same!

DENSITY CURVES & NORMAL DISTRIBUTIONS

How can you tell if the data is normally distributed? A Q-Q plot!

Normally distributed data will have all a Q-Q plots with the dots all in a straight line

Z-SCORES

So to convert a value to a Standard Score ("z-score"):

- first subtract the mean,
- then divide by the Standard Deviation

And doing that is called "Standardizing":

z-scores are in SD units

Represent SD distances

away from M (= 0)z-score = $-0.50 \rightarrow ___SD ____M$

Can compare z-scores from 2 or more variables originally measured in differing units

Standardizing does **NOT** "normalize" data

EXAMPLE: DRAW A PICTURE

95% of students at school are between 1.1m and 1.7m tall

Assuming this data is **normally distributed** can you calculate the <u>mean</u> and <u>standard deviation</u>?

0.95

1.1

1.25

1.4

1.55

EXAMPLE: CALCULATE Z-SCORE

You have a friend who is 1.85m tall

How far is 1.85 from the mean?

How many standard deviations is that?

USING Z-SCORES IN THE TABLE

Statistical texts: z or standard normal distribution table

- Only $\frac{1}{2}$ distribution presented in table (symmetrical)
- Add negative sign for z-scores below M

z-scores used to determine area under curve

- Between given z-score and M (0)
- Between given z-score and tail of distribution
- Between 2 z-scores

EXAMPLES: STANDARDIZING SCORES

Assume: School's population of student's heights have M (μ) = 1.4 m & SD (σ) = 0.15 m

1. The z-score for student 1.63 m tall = _____

2. Height of student with a z-score of -2.65 = _____

3. The PR of a student that is 1.51 m tall = _____

4. The 90th percentile for student heights = ______

EXAMPLES: FINDING PROBABILITIES

Assume: School's population of student's heights have M (μ) = 1.4 m & SD (σ) = 0.15 m

Probability a randomly chosen student is...

more than 1.63 m tall	less than 1.2 m tall	between 1.2 & 1.63 m tall			

EXAMPLES: USING PERCENTILES

Assume: School's population of student's heights have M (μ) = 1.4 m & SD (σ) = 0.15 m

What is the **Percentile Rank (PR)** for a student with a height of 1.7 m?

What height correspond to the 15 percentile in student height?

OTHER NORMAL DISTRIBUTIONS

Which one? Convention and tradition

Name & formula	μ	σ
SAT		
T		
IQ: Standford-Binet		
IQ: Wechsler		

EXAMPLES: CONVERT SCORES

1.
$$Z = -0.2$$
 \rightarrow _____ SAT score

2. SAT = 520
$$\rightarrow$$
 ____ z score

3.
$$Z = 1.3$$
 \rightarrow _____ T score

4. T-score =
$$38 \rightarrow$$
____ z score

5.
$$Z = -3.1$$
 \rightarrow _____ W-IQ score

6. W-IQ = 127
$$\rightarrow$$
 ____ z score

PARAMETERS & STATISTICS

Population

"parameters"

N = size

u = mean

 $\sigma^2 = \text{variance}$

 σ = standard deviation

<u>Sample</u>

"statistics"

n = size

 $\bar{x} = \text{mean}$

 $s^2 = variance$

s = standard deviation

EXAMPLE: SLEEP

Implies for the entire population

A recent survey describes the distribution of total sleep time among college students as approximately

Normal with a mean of 7.02 hours and standard deviation of 1.15 hours.

Select a college student at random and obtain his or her sleep time. The result is a random variable X. Prior to the random sampling, we don't know the sleep time of the chosen college student, but we do know that in repeated sampling X will have the same N(7.02, 1.15) distribution that describes the pattern of sleep time in the entire population. We call N(7.02, 1.15) the population distribution.

N (____, ___) means the distribution is NORMALLY distributed, with MEAN ___ and STANDARD DEVIATION ___

STATISTICAL ESTIMATION

The process of **statistical inference** involves using information **from a sample** to draw conclusions about a wider population.

Different random samples yield different statistics. We need to be able to describe the sampling distribution of possible statistic values in order to perform statistical inference.

We can think of a statistic as a random variable because it takes numerical values that describe the

outcomes of the random sampling process.

Collect data from a representative **Sample**...

Make an **Inference** about the **Population**.

SAMPLING DISTRIBUTION

The <u>law of large numbers</u> assures us that if we measure **enough** subjects, the statistic x-bar will eventually get **very close to** the unknown parameter μ .

If we took every one of the possible samples of a certain size, calculated the sample mean for each, and graphed all of those values, we'd have a sampling distribution.

"Population Distribution" (raw data)

Shows ALL values for all Individuals in the population

"Sampling Distribution"

Shows all values taken by the statistic, in all possible samples of the same size

SAMPLING DISTRIBUTION FOR THE MEAN

Mean of a sampling distribution of a sample mean: just as likely to be above or below μ , even if the distribution of the **raw data** is skewed.

<u>Standard deviation</u> of a sampling distribution of a sample mean: is *smaller* than the standard deviation of the population by a factor of \sqrt{n} .

→ Averages are less variable than individual observations!

Note: These facts about the mean and standard deviation of \bar{x} are true no matter what shape the population distribution has.

EXAMPLE: BANK CALLS

(a) The distribution of lengths of <u>all</u> customer service calls received by a bank in a month.

(b) The distribution of the **sample** means x-bar for 500 random samples of **size 80** from this population. The scales and histogram classes are exactly the same in both panels

(b)

SAMPLING DISTRIBUTION FOR THE MEAN

What if the population distribution was NORMAL?

IF individual observations have the $N(\mu,\sigma)$ distribution

THEN

the sample mean of an SRS of size n has the $N(\mu, \sigma/\sqrt{n})$ distribution

What if the population distribution is NOT normal, or even discrete?

Draw an SRS of size n from any population with mean μ and finite standard deviation σ . The **central limit theorem (CLT)** says that when n is large, the sampling distribution of the sample mean \bar{x} is approximately Normal:

$$\overline{x}$$
 is approximately $N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$

"SE" Standard error

SE for mean
= SD divided
by square
root of the
sample size

(

Right-skewed

600

Call lengths (seconds)

(a)

800

1000

10

5

200

400

EXAMPLE: BANK CALLS X-bar = AVERAGE for 80 X = Raw data for ALL calls45 45 40 40 Percent of all means Percent of calls 35 · 35 30 . 30 -25 20 · 20 -More normal 15 15 -

1200

The standard deviation of the population of service call lengths is $\sigma_x = 184.81$ sec. The length of a single call will often be far from the population mean. What is the standard deviation for a SRS sample of 80 calls?

10 -

5.

400

600

Mean length of 80 calls (seconds)

(b)

200

800

1000

1200

If we choose an SRS of 20 calls, the standard deviation of their mean length is...

THE CENTRAL LIMIT THEOREM

EXAMPLES: FINDING PROBABILITIES

Assume: School's population of student's heights have M (μ) = 1.4 m & SD (σ) = 0.15 m

Probability the height of <u>a</u> randomly chosen <u>student</u> is... Probability the <u>MEAN</u> of a randomly chosen <u>GROUP of 16</u> students is...

more than 1.63 m tall more than 1.63 m tall

EXAMPLE: CANCER DATASET

GET FILE= 'C:\Users\A00315273\Box Sync\Teaching\Educ6600\Dataset (Cancer.sav'. DATASET NAME DataSet1 WINDOW=FRONT. VARIABLE LABELS ID "Patient identification number" TRT "Treatment Group" AGE "Patient's Incoming Age" WEIGHIN "Patient's Incoming Weight in pounds" STAGE "Patient's Stage of Cancer". VALUE LABELS TRT 0 "control" 1 "aleo treatment". RECODE TRT AGE WEIGHIN STAGE TOTALCIN TOTALCW2 TOTALCW4 TOTALCW6 (SYSMIS = 999).EXECUTE. VIVALUE LABELS 0 "control" 1 "aleo treatment" 999 "missing"/ AGE WEIGHIN STAGE TOTALCIN TOTALCW2 TOTALCW4 TOTALCW6

Available on Canvas
Save to your computer
Edit the path to match

MISSING VALUES

999 "missing".

TRT AGE WEIGHIN STAGE TOTALCIN TOTALCW2 TOTALCW4 TOTALCW6 (999).

SPSS: CREATE A Z-SCORE VARIABLE

* first find M and SD.

FREQUENCIES AGE
/FORMAT NOTABLE
/STATISTICS MEAN STDDEV.

AGE Patient's Incoming Age N Valid 25 Missing 0 Mean 59.64 Std. Deviation 12.932

* then create the new variable.

COMPUTE zAGE = (AGE - 59.64) / 12.932. **EXECUTE**.

* Check to see if it looks ok.

FREQUENCIES AGE ZAGE
/FORMAT NOTABLE
/STATISTICS MEAN STDDEV.

Statistics

			AGE Patient's Incoming Age	zAGE
Γ	Ν	Valid	25	25
ı		Missing	0	0
١	Mean		59.64	.0000
L	Std. Deviation		12.932	1.00001

	ID	TRT	AGE	VEIGHIN	STAGE	TOTAL	TOTALCW2	TOTALCW4	TOTALCW6	zAGE
4	6	0	60	137	4	7	9	17	19	.03
5	9	0	61	180	1	6	7	9	3	.11
6	11	0	59	176	2	6	7	16	13	05
7	12	1	56	227	4	6	10	11	9	28
8	14	1	42	163	1	4	6	8	7	-1.36
9	15	0	69	168	1	6	6	6	11	.72
10	16	1	44	261	2	6	11	11	14	-1.21
11	21	0	67	186	1	6	11	11	10	.57
12	22	1	27	225	1	6	7	6	6	-2.52
13	24	1	68	226	4	12	11	12	9	.65
14	26	0	56	158	3	6	11	15	15	28
15	31	0	61	213	1	6	9	6	8	.11
16	34	1	77	164	2	5	7	13	12	1.34
17	35	0	51	189	1	6	4	8	7	67
18	37	1	86	140	1	6	7	7	7	2.04
19	39	0	46	149	4	7	8	11	11	-1.05
20	41	0	65	157	1	6	6	9	6	.41
21	42	1	73	182	0	8	11	16	999	1.03
22	44	1	67	187	1	5	7	7	7	.57
	45	0	67	186	1	8	8	9	10	.57
	50	1	60	164	2	6	8	16	999	.03
zAGE	58	1	54	173	4	7	8	10	8	44

SPSS: TRANSFORMING VARIABLES

* This is useful <u>IF</u> you have a variable that is <u>POSITIVELY SKEWED</u>, since the methods we will learn all require your variables are <u>NORMALLY</u> distributed.

```
* one version is a square root.

COMPUTE sqrt_AGE = SQRT(AGE).

* another option is the (natural) logrithm.

COMPUTE ln_AGE = In(AGE).

EXECUTE.
```