Fuel Economy Analysis

This demo is an example of performing data mining on historical fuel economy data. We have data from various cars built from year 2000 up to 2012.

Import Data into Table

Import from Excel using modified auto-generated function from Import Tool

carData = importYearXLS(2007);

Visualize

Plot MPG versus Rated Horsepower

createMPGFigure(carData.RatedHP, carData.MPG);

Examine Grouping Effects of Categorical Data

In order to extract all "cars":

```
carIDs = carData.Car_Truck == "car";
```

In order to extract "city" data for "trucks":

```
city_truckIDs = (carData.City_Highway == "city" & carData.Car_Truck == "truck");
```

City versus Highway

```
cityIDs = carData.City_Highway == "city";
highwayIDs = carData.City_Highway == "highway";
```

Grouped Visualizations

Scatter plot by group.

```
figure
gscatter(carData.RatedHP, carData.MPG, ...
{carData.Car_Truck, carData.City_Highway}, ...
```

'', '.', 10, 'on', 'Rated Horsepower', 'MPG')

Extract Data for Curve Fitting

Create these variables for Curve Fitting App

```
RatedHPCity = carData.RatedHP(cityIDs);
MPGCity = carData.MPG(cityIDs);

% Use the App to develop a curve fit.
```

Curve Fitting

Equation:

$$MPG = b_1 + \frac{b_2}{RatedHP}$$

We can solve this using the Curve Fitting Tool

cftool(carData.RatedHP, carData.MPG)

The following is a modified version of the auto-generated m-file from cftool.

Plot Data and Model

The result from the Curve Fitting Toolbox has a plot method for displaying the result graphically. We can choose to display the prediction bounds for the fit.

```
figure
hh = plot(cf, 'r', carData.RatedHP, carData.MPG, 'predobs', 0.95);
hh(2).LineWidth = 2;
for ii = [3 4]
    hh(ii).LineStyle = '-';
    hh(ii).Color = [0 0.5 0];
end
```


Plot of Data and Model (for different groups)

We will apply the similar modeling technique to the data for different combinations of groups (Car-Truck and City-Highway)

Model different combinations:

```
[mdl,gof] = modelMPG(carData, 'car', 'city')
```

```
mdl =
    Linear model:
    mdl(x) = a + b*1/x
    Coefficients (with 95% confidence bounds):
    a = 10.12 (9.528, 10.72)
    b = 2663 (2546, 2779)

gof = struct with fields:
    sse: 5.6906e+03
    rsquare: 0.7496
        dfe: 670
    adjrsquare: 0.7493
        rmse: 2.9143
```


[mdl,gof] = modelMPG(carData, 'car', 'highway')

```
mdl =
    Linear model:
    mdl(x) = a + b*1/x
    Coefficients (with 95% confidence bounds):
    a = 21.33 (20.58, 22.09)
    b = 3005 (2857, 3153)

gof = struct with fields:
        sse: 8.8948e+03
        rsquare: 0.7033
        dfe: 669
    adjrsquare: 0.7028
        rmse: 3.6463
```


[mdl,gof] = modelMPG(carData, 'truck', 'city')

```
mdl =
    Linear model:
    mdl(x) = a + b*1/x
    Coefficients (with 95% confidence bounds):
    a = 8.473 (7.579, 9.368)
    b = 2314 (2115, 2514)

gof = struct with fields:
    sse: 5.4782e+03
    rsquare: 0.4540
        dfe: 625
    adjrsquare: 0.4531
    rmse: 2.9606
```


[mdl,gof] = modelMPG(carData, 'truck', 'highway')

```
mdl =
    Linear model:
    mdl(x) = a + b*1/x
    Coefficients (with 95% confidence bounds):
    a = 16.26 (15.11, 17.42)
    b = 2589 (2332, 2846)

gof = struct with fields:
        sse: 9.0679e+03
        rsquare: 0.3857
        dfe: 623
    adjrsquare: 0.3847
        rmse: 3.8151
```


Copyright 2017 The MathWorks, Inc.