Química Grandezas: Unidades

Prof. Diego J. Raposo UPE – Poli 2025.1

Outras unidades

- Todas as outras unidades usadas podem ser convertidas às unidades fundamentais, ou são elas mesmas combinações dessas unidades:
- Outras unidades ainda aceitas pelo SI são minutos (min), horas (h), dias (d), graus Celsius (°C), litro (L), etc;
- Unidades como m/s, para velocidade, ou A s (chamada de Coulomb, unidade de carga), são unidades derivadas.
 Outras frequentemente usadas na Química, como angstrons ou u ('uma', unidades atômicas), será abordada posteriormente.

Unidades do SI

 As unidades de grandezas físicas são padronizadas pelo Sistema Internacional (SI), e as unidades fundamentais são:

Kilograma (kg): unidade de massa

Metro (m): unidade de comprimento

Kelvin (K): unidade de temperatura

Segundos (s): unidade de tempo

Candela (cd): unidade de intensidade luminosa

Ampère (A): unidade de corrente elétrica

Outras unidades e prefixos

- É comum usar prefixos para diminuir o tamanho da representação numérica da grandeza se escrita em notação científica.
- Por exemplo: 0,000000008 m → 8 · 10⁻⁹ m, por exemplo. Tal notação pode ser ainda mais reduzida se substituirmos 10^x por uma letra, tal como 'k' em 'kg' (quilo) representa '10³ g'. Ou seja, ao invés de mencionar 1000 kg (1000 quilogramas), podemos mencionar 1 kg (1 quilograma);
- O prefixo para 10⁻⁹ é 'n'(nano), logo 8 nm ('8 nanômetros') é uma forma simplificada de 8 · 10⁻⁹ m.
 Os prefixos segundo o SI são apresentados ao lado.

Fator	Prefixo	Símbolo	Fator	Prefixo	Símbolo
10^{-1}	deci	d	10^{1}	deca	da
10^{-2}	centi	c	10^{2}	hecto	h
10^{-3}	mili	$^{\mathrm{m}}$	10^{3}	quilo	k
10^{-6}	micro	μ	10^{6}	mega	\mathbf{M}
10^{-9}	nano	n	10^{9}	giga	G
10^{-12}	pico	p	10^{12}	tera	T
10^{-15}	femto	f	10^{15}	peta	P
10^{-18}	atto	a	10^{18}	exa	\mathbf{E}
10^{-21}	zepto	\mathbf{z}	10^{21}	zeta	\mathbf{Z}
10^{-24}	yocto	y	10^{24}	yotta	Y

Conversão de unidades

- Algo muito relevante sobre unidades, fundamental para cálculos em química, é a análise dimensional, ou conversão de unidades.
- Ela é feita para converter uma unidade de uma grandeza em outra unidade, por exemplo, metros e centímetros. Digamos que se deseje converter 15 m em centímetros:

$$15 \,\mathrm{m} \longrightarrow ? \,\mathrm{cm}$$

 Para isso, multiplicamos o número na unidade inicial (m) por um fator de conversão. Neste caso, ele expressa a relação entre metro e centímetro:

$$1 \, \text{m} = 10^2 \, \text{cm}$$

Essa equação pode ser rearranjada de duas formas:

$$\frac{1 \text{ m}}{10^2 \text{ cm}} = 1 \text{ ou } \frac{10^2 \text{ cm}}{1 \text{ m}} = 1$$

Conversão de unidades

- · Podemos encadear várias conversões em uma mesma linha, apenas tomando cuidado de seguir a regra.
- Por exemplo, desejamos saber quantos quilômetros por hora é a velocidade da luz, sabendo que 3 · 10⁸ m/s é o valor aproximado dessa velocidade. Reconhecendo as relações de conversão 1 km = 1 · 10³ m e 1 h = 3600 s, e fazendo duas multiplicações por 1:

$$3 \cdot 10^8 \xrightarrow{\text{s.s.}} \cdot \left(\frac{1 \text{ km}}{10^3 \text{ m.s.}}\right) \cdot \left(\frac{3600 \text{ s.s.}}{1 \text{ h}}\right) = 10, 8 \cdot 10^8 \ \frac{\text{km}}{\text{h}} = 1,08 \cdot 10^9 \ \frac{\text{km}}{\text{h}} \cong 1 \cdot 10^9 \ \frac{\text{km}}{\text{h}}$$

- Conversões também podem ser feitas com potências das relações de conversão, pois como equivalem a
 1, seu cubo, por exemplo, também equivale a 1: 1³ = 1.
- Desta forma podemos converter 1 L em m³ se considerarmos que 1 = 1 dm³ e que 1 m = 10 dm:

$$1 \cancel{L} \cdot \left(\frac{1 \cancel{dm^3}}{1 \cancel{L}}\right) \cdot \left(\frac{1 \cancel{m}}{10 \cancel{dm}}\right)^3 = 10^{-3} \cancel{m^3}$$

Conversão de unidades

Podemos usar uma ou outra para converter centímetros em metros ou vice-versa. Desejamos saber quantos metros (unidade inicial) há em 15 cm (unidade final). Para tanto, multiplicamos 15 cm por um dos dois fatores (que, como vimos, equivalem a 1): aquele que permite cancelar a unidade inicial, mantendo a final.

$$15 \text{ cm} \cdot \left(\frac{1 \text{ m}}{10^2 \text{ cm}}\right) = 15 \cdot 10^{-2} \text{ m}$$

Assim, de uma maneira geral:

$$grandeza[unidade\ final] = grandeza[unidade\ inicial] \cdot fator \left[\frac{unidade\ final}{unidade\ inicial} \right]$$

 Por exemplo, se desejamos converter 0,5 m em centímetros, usamos o fator de modo que as unidades iniciais se cancelem novamente:

$$0.5 \, \text{m} \cdot \left(\frac{10^2 \, \text{cm}}{1 \, \text{m}}\right) = 50 \, \text{cm}$$

Exercícios

- 1) Determine a Um conjunto comum de unidades em inglês para expressar velocidade é milhas/hora. A unidade do SI para velocidade é . .
 - a) km/h
 - b) km/s
 - **c)** m/h
 - **d)** m/s
 - e) cm/s.

Exercícios

- **2)** 45 m/s = ____ km/h
 - **a)** 2,7
 - **b)** 0,045
 - **c)** 1,6 · 10²
 - **d)** 2,7 · 10³
 - **e)** 1,6 · 10⁵

Bons estudos!

Exercícios

- **3)** Um lado de um cubo mede 1,55 m. O volume desse cubo é cm³.
 - **a)** 2,40 · 10⁴
 - **b)** 3,72 · 10⁶
 - **c)** 2,40
 - **d)** 3,72
 - **e)** 155