Circuitos Sequenciais

- Saída não depende apenas das entradas actuais mas também do passado destas.
- "Estado" engloba toda a informação necessária acerca do passado para prever a saída actual tendo em conta as entradas actuais.
 - Variáveis de Estado, um ou mais bits de informação.

Descrição Circuitos Sequenciais

- Tabela de Estados
 - Para cada estado actual, especifica-se o próximo estado em função das entradas actuais.
 - Para cada estado actual, especificam-se saídas em função das entradas actuais

- Diagrama de Estados
 - Versão Gráfica da Tabela de Estados

Estrutura duma Máquina de Estados

Figure 7–32 Clocked synchronous state-machine structure (Mealy machine).

Figure 7-33 Clocked synchronous state-machine structure (Moore machine).

Sistemas Digitais 8ª aula 3-19

Sinais de Relógio

- Muito importante nos circuitos sequenciais
 - Variáveis de Estado mudam na transição do sinal de relógio (transição negativa e positiva).

Elemento Bi-estável

- Circuito sequencial mais simples
- Dois Estados
 - Uma variável de estado, por exemplo: Q

Elementos Bi-estáveis

Como controlá-los?

Latch S-R

S	R	Q	QN
0	0	last Q	last QN
0	1	0	1
1	0	1	0
1	1	0	0

Funcionamento Latch S-R

Param. Temporais Latch S-R

- Tempo de atraso de propagação.
- Largura mínima de pulso.

Símbolos da Latch S-R

Latch S-R com NANDs

S_L	R_L	Q	QN
0	0	1	1
0	1	1	0
1	0	0	1
1	1	last Q	last QN

Sistemas Digitais

Latch S-R com "Enable"

Sistemas Digitais 8ª aula 11-19

Latch tipo D

С	D	Q	QN
1	0	0	1
1	1	1	0
0	X	last Q	last QN

Sistemas Digitais

Param. Temporais Latch tipo D

- Atraso de Propagação (de C ou D)
- Tempo de "Setup" (D antes da transição de C)
- Tempo de "Hold" (D após transição de C)

"Edge-triggered" D flip-flop

Param. Temp. "Edge-triggered" D flip-flop

- Atraso de Propagação (desde CLK)
- Tempo de "Setup" (D antes da transição de CLK)
- Tempo de "Hold" (D após transição de CLK)

TTL edge-triggered D flip-flop

- Entradas de "Preset" e "clear"
 - como latch S-R
- 3 anéis de "feedback"
- Carga em D e
 CLK muito leve

Flip-flops J-K

Tlip-flops T (Toggle)

 Importantes para implementação de contadores

Circuitos Sequenciais

Table 7-1

Latch and flip-flop characteristic equations.

Device Type	Characteristic Equation
S-R latch	$Q* = S + R' \cdot Q$
D latch	Q* = D
Edge-triggered D flip-flop	Q* = D
Master/slave S-R flip-flop	$Q* = S + R' \cdot Q$
Master/slave J-K flip-flop	$Q* = J \cdot Q' + K' \cdot Q$
Edge-triggered J-K flip-flop	$Q* = J \cdot Q' + K' \cdot Q$
T flip-flop	Q* = Q'
T flip-flop with enable	$Q* = EN \cdot Q' + EN' \cdot Q$