Appendix: Planning with Multi-agent Belief using Justified Perspectives

Guang Hu, Tim Miller, Nir Lipovetzky

School of Computing and Information Systems The University of Melbourne Parkville, VIC 3010, AUS

ghu1@student.unimelb.edu.au, tmiller@unimelb.edu.au, nir.lipovetzky@unimelb.edu.au

1 Complete semantics for justified belief

Definition 1.1 (Complete semantics). The complete semantics for justified belief is defined as:

(a)
$$(M, \vec{s}) \models r(\vec{t})$$
 iff $\pi(s_n, r(\vec{t})) = true$

(b)
$$(M, \vec{s}) \vDash \phi \land \psi$$
 iff $(M, \vec{s}) \vDash \phi$ and $(M, s) \vDash \psi$

(c)
$$(M, \vec{s}) \vDash \neg \varphi$$
 iff $(M, \vec{s}) \not\vDash \varphi$

(d)
$$(M, \vec{s}) \models S_i v$$
 iff $v \in \text{dom}(O_i(s_n))$

(e)
$$(M, \vec{s}) \vDash S_i \varphi$$
 iff $\forall \vec{g} \in \vec{S}_G, (M, \vec{g}[\langle O_i(s_n) \rangle]) \vDash \varphi$ or $\forall \vec{g} \in \vec{S}_G, (M, \vec{g}[\langle O_i(s_n) \rangle]) \vDash \neg \varphi$

(f)
$$(M, \vec{s}) \models K_i \varphi$$
 iff $(M, \vec{s}) \models \varphi \wedge S_i \varphi$

(g)
$$(M, \vec{s}) \models B_i \varphi$$
 iff $\forall \vec{g} \in \vec{S}_G, (M, \vec{g}[f_i(\vec{s})]) \models \varphi$

where: $\vec{S}_G \in \vec{S}$ is the set of all possible global states sequences and $\vec{g}[\vec{s}] = g_1[s_1], \ldots, g_n[s_n]$; and, g[s] means function override: g[s](v) = s(v) when $v \in \text{dom}(s)$ and g(v) otherwise; and s_n is the final state in sequence \vec{s} ; that is, $s_n = \vec{s}(|\vec{s}|)$.

2 Ternary semantics for justified belief

Definition 2.1 (Ternary semantics). The ternary semantics are defined using function T, omitting the model M for readability:

(a)
$$T[\vec{s}, r(\vec{t})] = 1$$
 if $\pi(s_n, r(\vec{t})) = true$;
 0 if $\pi(s_n, r(\vec{t})) = false$;
 $\frac{1}{2}$ otherwise

(b)
$$T[\vec{s}, \phi \wedge \psi] = \min(T[\vec{s}, \phi], T[\vec{s}, \psi])$$

(c)
$$T[\vec{s}, \neg \varphi] = 1 - T[\vec{s}, \varphi]$$

(d)
$$T[\vec{s}, S_i v] = \frac{1}{2} \text{ if } i \notin \text{dom}(s_n) \text{ or } v \notin \text{dom}(s_n)$$

 $0 \text{ if } v \notin \text{dom}(O_i(s_n))$

(e) $T[\vec{s}, S_i \varphi]$ $= \frac{1}{2} \text{ if } T[\vec{s}, \varphi] = \frac{1}{2} \text{ or } i \notin \text{dom}(s_n);$ $0 \text{ if } T[\langle O_i(s_n) \rangle, \varphi] = \frac{1}{2};$ 1 otherwise

(f)
$$T[\vec{s}, K_i \varphi] = T[\vec{s}, \varphi \wedge S_i \varphi]$$

(g)
$$T[\vec{s}, B_i \varphi] = T[f_i(\vec{s}), \varphi]$$

Copyright © 2023, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.

where s_n is the final state in sequence \vec{s} ; that is, $s_n = \vec{s}(|\vec{s}|)$.

3 Proof for $KD45_n$

Now, we give the theorem and proof for $KD45_n$ properties.

Theorem 3.1. The following axioms hold, making this a $KD45_n$ logic:

K (Distribution): $B_i \varphi \wedge B_i (\varphi \to \psi) \to B_i \psi$

D (Consistency): $B_i \varphi \rightarrow \neg B_i \neg \varphi$

4 (Positive Introspection): $B_i \varphi \to B_i B_i \varphi$

5 (Negative Introspection): $\neg B_i \varphi \rightarrow B_i \neg B_i \varphi$

Proof. Based on the definition of B_i , $M, \vec{s} \vDash B_i \varphi$ is equivalent to $M, f_i(\vec{s}) \vDash \varphi$. From this, axiom K is: $M, f_i(\vec{s}) \vDash \varphi$ and $M, f_i(\vec{s}) \vDash (\varphi \to \psi)$ imply $M, f_i(\vec{s}) \vDash \psi$, which holds trivially. For the axiom D, when $M, f_i(\vec{s}) \varphi$ holds, then it must be that $M, f_i(\vec{s}) \neg \varphi$ does not hold.

Axioms 4 and 5 are more involved. The value of a variable from $f_i(\vec{s})$ depends on two values: lt and \vec{s} , which are, respectively, the last time the variable was seen by agent i and the input perspectives. The lt depends only on the function O_i . Since $O_i(s) = O_i(O_i(s))$, the lt of $f_i(\vec{s})$ and $f_i(f_i(\vec{s}))$ for each state and each variable are the same.

Now, note that the retrieval function R returns the value v = e if v is in the state s_{lt} (the first line of R), the value of each variable in $f_i(s)$ is the same as its in $f_i(f_i(s))$. Therefore, $f_i(s) = f_i(f_i(s))$.

Given that axiom 4 is equivalent to $M, f_i(\vec{s}) \models \varphi$ implies $M, f_i(f_i(\vec{s})) \models \varphi$, this holds trivially.

For axiom 5, $M, f_i(s) \nvDash \varphi$ is equivalent to $M, f_i(f_i(s)) \nvDash \varphi$. Based on the definition of B_i , $M, f_i(f_i(s)) \nvDash \varphi$ gives $M, f_i(s) \nvDash B_i \varphi$. Then, based on the definition of \neg , we have that $M, f_i(s) \nvDash B_i \varphi$ is equivalent to $M, f_i(s) \vDash \neg B_i \varphi$. Therefore, axiom 5 holds.

4 Experiment Results for Coin example

	Parameters				Performance					
	Agt	d	$ \mathcal{G} $	P	Gen	Exp	Calls	TIM	E(s) Total	Goal
C01	2	1	1	1	3	2	2	0.0	0.0	$B_a coin = head$
C02	2	1	1	2	7	18	7	0.0	0.0	$B_a coin = tail$
C03	2	1	1	2	5	12	7	0.0	0.0	$B_a coin = head \wedge B_b coin = head$
C04	2	2	1	4	43	126	61	0.0	0.0	$B_a coin = head \wedge B_b coin = tail$
C05	2	3	2	4	46	135	58	0.0	0.0	$B_a coin = head \land B_b coin = tail \land B_b B_a coin = head$
C06	2	2	2	6	414	1239	533	0.5	0.7	$B_a B_b coin = tail \wedge B_b B_a coin = head$

Table 1: Experimental results for coin domain