### Homework 4: Reinforcement Learning Report Template

Part I. Experiment Results

### 1. taxi.png:



### 2. cartpole.png



### 3. DQN.png



### 4. compare.png



### Part II. Question Answering:

1. Calculate the optimal Q-value of a given state in Taxi-v3, and compare with the Q-value you learned

Ans:

```
step = 11 #(2,2) -> B -> R
num = np.power(self.gamma, step)
optimal = (-1) * (1-num) / (1-self.gamma) + num * 20
print("Optimal max-q: ", optimal)
max_q = np.max(self.qtable[state])
return max_q
```

```
average reward: 8.04
Initail state:
taxi at (2, 2), passenger at B, destination at R
Optimal max-q: -0.5856821172999993
max Q:-0.5856821172999982
```

2. Calculate the max Q-value of the initial state in CartPole-v0, and compare with the Q-value you learned. (Please screenshot the result of the "check\_max\_Q" function to show the Q-value you learned)

Ans:

```
initial = self.discretize_observation(self.env.reset())
# print(initial)

max_q = np.amax(self.qtable[tuple(initial)])
step = 180

num = np.power(self.gamma, step)
optimal = (1-num) / (1-self.gamma)
print("Optimal max-q: ", optimal)
return max_q
```

```
average reward: 156.29
Optimal max-q: 33.19472449836912
max Q:30.943376424674785
```

3.

### a. Why do we need to discretize the observation in Part 2?

Ans: Because state in cartpole is sequential, so we need to discretize them in order to build a table

### b. How do you expect the performance will be if we increase "num\_bins"?

Ans: I expect the performance while be better because we have more precise state, which will lead to better choice

#### c. Is there any concern if we increase "num\_bins"?

Ans: If we discretize too much, the cost of space and time will increase extremely

## 4. Which model (DQN, discretized Q learning) performs better in Cartpole-v0, and what are the reasons?

Ans: DQN is better than discretized Q learning.

- 1.avoid large space usage when state and action increase dramatically
- 2.nural network

5.

## a. What is the purpose of using the epsilon greedy algorithm while choosing an action?

Ans: a simple method to balance exploration and exploitation by choosing between exploration and exploitation randomly

## b. What will happen, if we don't use the epsilon greedy algorithm in the CartPole-v0 environment?

Ans: the agent will use optimal solution in the training process which is not good for the model

# c. Is it possible to achieve the same performance without the epsilon greedy algorithm in the CartPole-v0 environment? Why or Why not?

Ans: No, because as I mentioned above the agent will only use limited state to train

# d. Why don't we need the epsilon greedy algorithm during the testing section? Ans:

# 6. Why is there "with torch.no\_grad():" in the "choose\_action" function in DQN?

Ans: because we don't need to calculate gradient and build graph in the data of with torch.no\_grad():, we only to pick the right action

7.

### a. Is it necessary to have two networks when implementing DQN?

Ans: No it is not necessary, but if we use two networks will stabilise the Q-training that otherwise has problems converging

#### b. What are the advantages of having two networks?

Ans: use two network will keep runaway bias from bootstrapping from dominating the system numerically, causing the estimated Q values to diverge

#### c. What are the disadvantages?

Ans: The training time will increase if we use two network

8.

# a. What is a replay buffer(memory)? Is it necessary to implement a replay buffer? What are the advantages of implementing a replay buffer?

#### Ans:

- 1.replay memory is a memory to store past experience and randomly to refresh network
- 2.It is not necessary to implement a replay buffer, but it will make dqn better
- 3. avoid bad choose or diverging, have more state to experience rather then use most recent experience, gradually change the past experience for next choose action

#### b. Why do we need batch size?

Ans: we need state to keep track of earlier state train in the neural network which control the accuracy o estimate of the error gradient

c. Is there any effect if we adjust the size of the replay buffer(memory) or batch size? Please list some advantages and disadvantages.

And:If we increase the size of batch size, the accuracy of train network will increase, but the training time will also increase

9.

### a. What is the condition that you save your neural network?

Ans: If loss smaller than 0.5, I will store my neural network

#### b. What are the reasons?

Ans: I first print loss value, and I observe the value of loss, most value is larger than loss. Since loss means difference between target network and eval network, I think if the difference is small enough, I will store the network.

#### 10. What have you learned in the homework?

Ans:I learned how to implement RL in a gym environment and how to use a tensor in artificial intelligence as a beginner. I also learned the difference between DQ and deep learning.