

Introduction to Data Science (Lecture 6)

Dr. Mohammad Pourhomayoun

Associate Professor
Computer Science Department
California State University, Los Angeles

Decision Tree Classification

Review: Titanic Disaster

Let's start this topic with a famous problem/competition from kaggle website: Predicting survival on the Titanic!

[1]: Ref: www.kaggle.com.

Predict survival on the Titanic

Passenger list on Titanic¹:

pclass	age	gender	sibsp	parch	fare	Survival
1	54	male	0	0	52	0
3	2	male	3	1	21	0
3	27	female	0	2	11	1
2	14	female	1	1	30	1
3	4	female	1	2	16	1
3	38	male	0	0	7	0
1	24	female	0	0	71	1
3	22	female	0	0	8	1
1	38	female	1	0	53	1
3	26	male	0	1	8	0
3	???	male	1	2	8	0

[1]: Ref: Kaggle website, and Bill Howe, University of Washington.

Predict survival on the Titanic

An Improvement on the Classifier

Making decision based on <u>three features</u>.

```
    Example: Based on "gender", "pclass", and "age".

IF (Sex='female'):
     IF (pclass='1') OR (pclass='2') THEN: Survive \leftarrow Yes
     ELSE IF (pclass='3'):
            IF (age<4) THEN: Survive \leftarrow Yes
            ELSE IF (age>4) THEN: Survive ← No
ELSE IF (Sex='male'):
     IF (pclass='2') OR (pclass='3') THEN: Survive \leftarrow No
     ELSE IF (pclass='1'):
            IF (age<4) THEN: Survive \leftarrow Yes
            ELSE IF (age>4) THEN: Survive ← No
```


Decision Tree

Training a Decision Tree Model

- Question: How to select the first feature at the top of the tree:
 The feature that can split (classify) the data samples best.
- Idea: The best feature is the one that provides the most amount of information about the label.
- So, we need a metric to measure information.

Claude E. Shannon (1916 – 2001) The Father of Information Theory

- Shannon is noted for having founded information theory with a landmark paper, "A Mathematical Theory of Communication", that he published in 1948.
- He is, perhaps, equally well known for founding digital circuit design theory in 1937, when—as a 21-year-old master's degree student at MIT [1].

[1]: wikipedia

- 1. The amount of information about an <u>event x</u> has <u>inverse relationship</u> to the <u>probability</u> of that event.
- Example:
 - "The sun will rise tomorrow morning"
 - This sentence provides very Low amount of information because it talks about a common (very likely) event.
 - "An Eclipse occurs tomorrow"
 - This sentence provides High amount of information because it is an unlikely event.

The amount of
$$I(X) \sim \frac{1}{p(x)}$$
 The Probability of event x

2. When two <u>independent</u> events happen, the joint <u>probability</u> of them is the <u>multiplication</u> of the two probabilities. However, the total <u>information</u> about two <u>independent</u> events should be the <u>summation</u> of the two piece of information.

- Example: Flipping a Coin twice: H,T
 - Prob(two independent events) = prob(event1) * prob(event2)
 - info(two independent events) = info(event1) + info(event2)

When two <u>independent</u> events happen, the joint <u>probability</u> is the <u>multiplication</u> of the two probabilities. However, in this case, the total <u>information</u> about them should be the <u>summation</u> of the two pieces of information.

So, the "Information function" should have this property:
 Information (p₁,p₂) = Information(p₁) + Information(p₂)

Question: What function has this property?

$$f(xy) = f(x) + f(y)$$

Answer: Log!!!

$$\log(xy) = \log(x) + \log(y)$$

More properties:

$$\log(1/x) = -\log(x)$$

$$log(x^n) = n.log(x)$$

$Log_2(x)$

- 1. The information about an <u>event x</u> has <u>inverse relationship</u> to the <u>probability</u> of that event.
- 2. When two <u>independent</u> events happens, the total information about them should be the <u>summation</u> of the two pieces of information.
- Thus, information metric can be defined as:

$$I(X) = \log_2(\frac{1}{p(x)}) = -\log_2(p(x))$$

• Note: It is common to use log based 2, and then the unit of information is in *bit*.

ENTROPY

- Entropy measures the amount of "Uncertainty" or "Unpredictability".
- In other word, Entropy is the "expected information".
- If a random variable X has K different **possible** values $x_1, x_2, ..., x_K$, the **entropy** is defined as (E is the $Expected\ Value$):

$$H(X) = E(I(X))$$

$$= \sum_{k=1}^{K} p(X = x_k)I(X = x_k)$$

$$= -\sum_{k=1}^{K} p(X = x_k)\log_2 p(X = x_k)$$

Example: Flipping a Coin

• Question: We have a Fair Coin and an Unfair Coin. If we flip both coins, Which one is more predictable (H = Head, T = Tail)?

• Fair Coin: p(H) = p(T) = 0.5

$$H(X) = -\sum_{k=1}^{K} p(X = x_k) \log_2 p(X = x_k)$$
$$= -(0.5 \log_2 0.5 + 0.5 \log_2 0.5) = 1 \text{ bit}$$

• Unfair Coin: p(H) = 0.7, p(T) = 0.3

$$H(X) = -\sum_{k=1}^{K} p(X = x_k) \log_2 p(X = x_k)$$
$$= -(0.7 \log_2 0.7 + 0.3 \log_2 0.3) = 0.88 \text{ bit}$$

• The unfair coin is less unpredictable (more predictable) than a fair coin.

Example: Rolling a Fair Die

• Fair Die: p(1) = p(2) = p(3) = p(4) = p(5) = p(6) = 1/6

$$H(X) = -\sum_{k=0}^{K} p(X = x_k) \log_2 p(X = x_k)$$
$$= -6 \times \left(\frac{1}{6} \log_2 \frac{1}{6}\right) = 2.58 \text{ bit}$$

Example: Rolling an Unfair Die

• Unfair Die: p(1) = p(2) = p(3) = p(4) = p(5) = 0.1, p(6) = 0.5

$$H(X) = -\sum_{k=1}^{K} p(X = x_k) \log_2 p(X = x_k)$$

$$= -5 \times (0.1 \log_2 0.1) - 0.5 \log_2 0.5$$

$$= 2.16 \text{ bit}$$

• The unfair die is less unpredictable (more predictable) than a fair coin.

Example: Titanic

- 1500 died, 724 survivors, out of 2224 passengers in titanic,
 - Thus, the probability of survival: 724/2224
 - The probability of not survival: 1500/2224

$$H(X) = -\sum_{k=1}^{K} p(X = x_k) \log_2 p(X = x_k)$$

$$= -\left((\frac{1500}{2224}) \log_2 (\frac{1500}{2224}) + (\frac{724}{2224}) \log_2 (\frac{724}{2224}) \right) = 0.91 \text{ bit}$$

• If the log base is 2, the unit of the entropy is called "bit"

Information Gain

- Reminder: Entropy measures the <u>uncertainty</u>.
- Idea: Gaining Information reduces uncertainty.
- In case of decision tree, we define <u>Information Gain</u> as the <u>reduction in the Entropy</u> from <u>before to after</u> the dataset is split on a feature.

Information Gain

- Reminder: Entropy measures the <u>uncertainty</u>
- Idea: Gaining Information reduces uncertainty
- In case of decision tree, we define <u>Information Gain</u> as the reduction in the Entropy from before to after the dataset is split on an attribute:

$$IG = H(S) - \sum_{t \in T} p(t)H(t)$$

- H(S): Entropy of dataset before splitting
- T: The set of subsets created after splitting the dataset
- P(t): The proportion of the number of elements in each subset t after splitting
- H(t): Entropy of the subset t

Splitting in Decision Trees

 Question: Which feature do we choose at each level of the tree to split data samples?

- Answer: The one with the largest information gain.
 - The one that reduces the entropy (i.e. unpredictability, uncertainty)
 the most.

Training a Decision Tree Classifier

Temp	Humidity	Windy	Label
high	low	Yes	Sunny
low	high	Yes	Rainy
high	low	No	Sunny
high	high	Yes	Rainy
mild	mild	No	Sunny
mild	high	No	Rainy
low	mild	Yes	Rainy

Training Data

Example: Training (building) a
Decision Tree Classifier for Weather
Forecasting, based on Temperature,
Humidity, and Wind information of
the past 7 days.

Before Splitting: 7 data samples, 3 Sunny, 4 Rainy

Probability of sunny: 3/7

Probability of rainy: 4/7

Temp	Humidity	Windy	Label
high	low	Yes	Sunny
low	high	Yes	Rainy
high	low	No	Sunny
high	high	Yes	Rainy
mild	mild	No	Sunny
mild	high	No	Rainy
low	mild	Yes	Rainy

Before Splitting: 7 data samples, 3 Sunny, 4 Rainy

Probability of sunny: 3/7

Probability of rainy: 4/7

Entropy Before Splitting:

$$H(X) = -\sum_{k=1}^{K} p(X = x_k) \log_2 p(X = x_k)$$
 Entropy Before Splitting
$$= -\left((\frac{4}{7})\log_2(\frac{4}{7}) + (\frac{3}{7})\log_2(\frac{3}{7})\right) = 0.98 \ bit$$

Temp	Humidity	Windy	Label
high	low	Yes	Sunny
low	high	Yes	Rainy
high	low	No	Sunny
high	high	Yes	Rainy
mild	mild	No	Sunny
mild	high	No	Rainy
low	mild	Yes	Rainy

- Split based on Wind (2 branches):
 - Windy: 4 samples (4/7): 1 Sunny, 3 Rainy
 - Not Windy: 3 samples (3/7): 2 Sunny, 1
 Rainy

Windy:
$$H(X) = -\left(\frac{1}{4}\log_2(\frac{1}{4}) + (\frac{3}{4})\log_2(\frac{3}{4})\right) = 0.81 \ bit$$

Not Windy:
$$H(X) = -\left(\frac{2}{3}\log_2(\frac{2}{3}) + (\frac{1}{3})\log_2(\frac{1}{3})\right) = 0.91 \ bit$$
 Average Entropy
After Splitting on Wind

Weighted Average:
$$E(H(X)) = \left(\frac{4}{7} \times 0.81 + + \frac{3}{7} \times 0.91\right) = 0.85 \ bit$$

Temp	Humidity	Windy	Label
high	low	Yes	Sunny
low	high	Yes	Rainy
high	low	No	Sunny
high	high	Yes	Rainy
mild	mild	No	Sunny
mild	high	No	Rainy
low	mild	Yes	Rainy

Split based on <u>Humidity</u> (3 branches):

- high: 3 samples (3/7): 0 Sunny, 3 Rainy
- mild: 2 samples (2/7): 1 Sunny, 1 Rainy
- low: 2 samples (2/7): 0 Rainy, 2 Sunny

High:
$$H(X) = -\left(\frac{3}{3}\log_2(\frac{3}{3}) + (\frac{0}{3})\log_2(\frac{0}{3})\right) = 0$$
 bit

Mild:
$$H(X) = -\left(\frac{1}{2}\log_2(\frac{1}{2}) + (\frac{1}{2})\log_2(\frac{1}{2})\right) = 1 \ bit$$

Low:
$$H(X) = -\left(\frac{2}{2}\log_2(\frac{2}{2}) + (\frac{0}{2})\log_2(\frac{0}{2})\right) = 0$$
 bit

Weighted Average:
$$E(H(X)) = \left(\frac{3}{7} \times 0 + \frac{2}{7} \times 1 + \frac{2}{7} \times 0\right) = 0.28 \ bit$$

Average Entropy After Splitting on Humidity

Temp	Humidity	Windy	Label
high	low	Yes	Sunny
low	high	Yes	Rainy
high	low	No	Sunny
high	high	Yes	Rainy
mild	mild	No	Sunny
mild	high	No	Rainy
low	mild	Yes	Rainy

Split based on <u>Temp</u> (3 branches):

high: 3 samples (3/7): 2 Sunny, 1 Rainy

• mild: 2 samples (2/7): 1 Sunny, 1 Rainy

low: 2 samples (2/7): 2 Rainy, 0 Sunny

High:
$$H(X) = -\left(\frac{2}{3}\log_2(\frac{2}{3}) + \frac{1}{3}\log_2(\frac{1}{3})\right) = 0.91 \ bit$$

Mild:
$$H(X) = -\left(\frac{1}{2}\log_2(\frac{1}{2}) + (\frac{1}{2})\log_2(\frac{1}{2})\right) = 1 \ bit$$

Low:
$$H(X) = -\left(\frac{2}{2}\log_2(\frac{2}{2}) + (\frac{0}{2})\log_2(\frac{0}{2})\right) = 0$$
 bit

Weighted Average: $E(H(X)) = \left(\frac{3}{7} \times 0.91 + \frac{2}{7} \times 1 + \frac{2}{7} \times 0\right) = 0.67 \text{ bit}$

Average Entropy After Splitting on Temp

Entropy Before Split: 0.98

Entropy After Split on Temp: 0.67

Information Gain: 0.98 - 0.67 = 0.31

Entropy Before Split: 0.98

Entropy After Split on Humidity: 0.28

Information Gain: 0.98 - 0.28 = 0.70

Entropy Before Split: 0.98

Entropy After Split Wind: 0.85

Information Gain: 0.98 - 0.85 = 0.13

Entropy Before Split: 0.98

Entropy After Split on Temp: 0.67

Information Gain: 0.98 - 0.67 = 0.31

Humidity

Entropy Before Split: 0.98

Entropy After Split on Humidity: 0.28

Information Gain: 0.98 - 0.28 = 0.70

Entropy Before Split: 0.98

Entropy After Split Wind: 0.85

Information Gain: 0.98 - 0.85 = 0.13

The Best Feature

- In this example, Splitting the data samples based on **Humidity** will **minimize the entropy** (unpredictability) compare to other features.
- In other word, splitting based on Humidity provides the maximum amount of Information Gain at this level.

• So, the **best feature** to split the data samples at the top of the decision tree is Humidity.

Humidity

Building a Decision Tree (ID3 Algorithm)

- 1. Calculate the entropy after splitting the dataset based on every feature.
- 2. Select the feature for which the entropy is minimum (information gain is maximum).
- 3. Split the dataset into subsets using that feature, and make a decision tree node for that.
- 4. Repeat with remaining features.
- 5. Stop splitting a branch if:
 - No features left, or
 - All samples assigned the same label
- **Note**: In ID3, we assume that features are discrete. Thus, we need to Discretize continuous attributes.

Temp	Humidity	Windy	Label
90	low	Yes	Sunny
60	high	Yes	Rainy
92	low	No	Sunny
89	high	Yes	Sunny
70	mild	No	Sunny
73	high	No	Rainy
61	mild	Yes	Rainy

- In general, features can be continuous-valued (numeric)
- We need to define intervals/thresholds to discretize continuous features.

Temp	Humidity	Windy	Label		Temp	Humidity	Windy	Label
90	low	Yes	Sunny		92	low	No	Sunny
60	high	Yes	Rainy		90	low	Yes	Sunny
92	low	No	Sunny		89	high	Yes	Sunny
89	high	Yes	Sunny	Sort	73	high	No	Rainy
70	mild	No	Sunny	,	70	mild	No	Sunny
73	high	No	Rainy		61	mild	Yes	Rainy
61	mild	Yes	Rainy		60	high	Yes	Rainy

• We need to define intervals/thresholds to discretize continuous features.

Temp	Humidity	Windy	Label		Temp	Humidity	Windy	Label
90	low	Yes	Sunny		92	low	No	Sunny
60	high	Yes	Rainy		90	low	Yes	Sunny
92	low	No	Sunny		89	high	Yes	Sunny
89	high	Yes	Sunny	Sort	73	high	No	Rainy
70	mild	No	Sunny	,	70	mild	No	Sunny
73	high	No	Rainy		61	mild	Yes	Rainy
61	mild	Yes	Rainy		60	high	Yes	Rainy

Temp	Humidity	Windy	Label
92	low	No	Sunny
90	low	Yes	Sunny
89	high	Yes	Sunny
73	high	No	Rainy
70	mild	No	Sunny
61	mild	Yes	Rainy
60	high	Yes	Rainy

Any smarter way to do it? (rather than trying every possible split point)

Temp	Humidity	Windy	Label
92	low	No	Sunny
90	low	Yes	Sunny
89	high	Yes	Sunny
73	high	No	Rainy
70	mild	No	Sunny
61	mild	Yes	Rainy
60	high	Yes	Rainy

Temp	Humidity	Windy	Label
92	low	No	Sunny
90	low	Yes	Sunny
89	high	Yes	Sunny
73	high	No	Rainy
70	mild	No	Sunny
61	mild	Yes	Rainy
60	high	Yes	Rainy

Temp	Humidity	Windy	Label
92	low	No	Sunny
90	low	Yes	Sunny
89	high	Yes	Sunny
73	high	No	Rainy
70	mild	No	Sunny
61	mild	Yes	Rainy
60	high	Yes	Rainy

Temp	Humidity	Windy	Label
Hi	low	No	Sunny
Hi	low	Yes	Sunny
Hi	high	Yes	Sunny
Mild	high	No	Rainy
Mild	mild	No	Sunny
Low	mild	Yes	Rainy
Low	high	Yes	Rainy

- General Approach (Brute Force): We have to try every possible split to see which one minimizes the entropy.
- But, the above choice of threshold might be a good approach!

Advantages and Disadvantages

Advantages of using decision tree classifier:

- Easily interpretable by human
- Handles both numerical and categorical data
- It is a parametric algorithm: unlike KNN, we do not need to carry our training dataset around

Disadvantages:

- Very prone to Overfitting (more on this later).
- Heuristic training techniques (brute force, trial & error)

Thank You!

Questions?