

A naive question about quantum groups

Let G be a connected semisimple Lie group with finite center ; consider, using standard notation, its category $\mathcal{O} \subset \mathfrak{g}\text{-mod}$ of BGG-modules, its category \mathcal{H} of Harish-Chandra modules, its (complex) flag variety $G_{\mathbb{C}}/B$, its compact symmetric space G_c/K — and recall the following theorems.

(1) **Theorem** (BGG). For any simple finite dimensional object V of \mathcal{O} there is a graded algebra isomorphism

$$\mathrm{Ext}_{\mathcal{O}}^{\bullet}(V, V) \simeq H^{\bullet}(G_{\mathbb{C}}/B, \mathbb{C}).$$

(2) **Theorem** (É. Cartan, Casselman). For any simple finite dimensional object V of \mathcal{H} there is a graded algebra isomorphism

$$\mathrm{Ext}_{\mathcal{H}}^{\bullet}(V, V) \simeq H^{\bullet}(G_c/K, \mathbb{C}).$$

I think of these statements as being some kind of cohomological Schur Lemmas, whence the following definition.

(3) **Definition.** Let X be a topological space and \mathcal{A} be a \mathbb{C} -category [see Bass [1] p. 57] equipped with a functor $F : \mathcal{A} \rightarrow \mathbb{C}\text{-mod}$. Then \mathcal{A} is a **Schur category** over X if

$$\left. \begin{array}{c} V \in \mathcal{A} \\ V \text{ simple} \\ \dim FV < \infty \end{array} \right\} \implies \mathrm{Ext}^{\bullet}(V, V) \simeq H^{\bullet}(X, \mathbb{C})$$

[isomorphism of graded algebras].

In this terminology Theorems (1) and (2) take the respective forms “ \mathcal{O} is a Schur category over $G_{\mathbb{C}}/B$ ” and “ \mathcal{H} is a Schur category over G_c/K ”.

The purpose of these few lines is to present a conjectural quantum analog of Theorem (1). To this end I proceed in two steps. First I define a category, denoted $\mathcal{O}(\mathfrak{g}, h, f)$, which is supposed to be a quantum analog of the category \mathcal{O} [or more precisely of the category \mathcal{O} “with weights in the root lattice”] ; then I conjecture that $\mathcal{O}(\mathfrak{g}, h, f)$ is a Schur category over the flag variety of \mathfrak{g} . The category $\mathcal{O}(\mathfrak{g}, h, f)$ will appear as a subcategory of a certain category $\mathcal{C}(\mathfrak{g}, h, f)$, which is itself a quantum analog of $(\mathfrak{g}, \mathfrak{h})\text{-mod}$ [or more precisely of the category of $(\mathfrak{g}, \mathfrak{h})$ -modules with weights in the root lattice]. Here are the details.

Let

\mathfrak{g} be a semisimple Lie algebra,

$\alpha_1, \dots, \alpha_r$ a basis of simple roots,

(a_{ij}) the Cartan matrix (*i.e.* $a_{ij} = 2(\alpha_i | \alpha_j) / (\alpha_i | \alpha_i)$),

h a complex number,

$f = (f_1, \dots, f_r)$ a list of functions $f_i : \mathbb{Z}^r \rightarrow \mathbb{C}$.

[It might help the reader to know before hand that the classical case will be obtained by putting $f_j(n) = \sum_i a_{ij} n_i$.]

Here starts the **definition of the category** $\mathcal{C}(\mathfrak{g}, h, f)$.

An object V of $\mathcal{C}(\mathfrak{g}, h, f)$ is a direct sum

$$V = \bigoplus_{n \in \mathbb{Z}^r} V(n)$$

of vector spaces equipped with endomorphisms x_i, y_i ($1 \leq i \leq r$) satisfying

$$x_i V(n) \subset V(n + e_i),$$

$$y_i V(n) \subset V(n - e_i),$$

$$[x_i, y_j]v = \delta_{ij} f_j(n)v \quad \text{for } v \in V(n),$$

where (e_i) is the canonical basis of \mathbb{Z}^r , and the **quantum Serre relations**, which putting

$$b(i, j) = 1 - a_{ij},$$

$$q(i) = \exp \left((\alpha_i | \alpha_i) \frac{h}{2} \right),$$

$$z_i = x_i \quad \forall i \quad \text{or} \quad z_i = y_i \quad \forall i,$$

take the form

$$\sum_{k=0}^{b(i,j)} (-1)^k \binom{b(i,j)}{k}_{q(i)} z_i^k z_j z_i^{b(i,j)-k} = 0 \quad \forall i \neq j.$$

[The classical case is of course given by $h = 0$.]

The morphisms are the obvious ones. [Here ends the definition of the category $\mathcal{C}(\mathfrak{g}, h, f)$.]

(4) **Definition of the category $\mathcal{O}(\mathfrak{g}, h, f)$.** Let $U_h(\mathfrak{n})$ be the algebra generated by the x_i subject to the quantum Serre relations. Then $\mathcal{O}(\mathfrak{g}, h, f)$ is the full subcategory of $\mathcal{C}(\mathfrak{g}, h, f)$ whose objects are $U_h(\mathfrak{n})$ -finite and of finite length.

If \mathcal{C} is \mathbb{C} -category and \mathcal{B} a full sub- \mathbb{C} -category, say that \mathcal{B} is **Ext-full** in \mathcal{C} if for all $V, W \in \mathcal{B}$ the natural morphism

$$\mathrm{Ext}_{\mathcal{B}}^\bullet(V, W) \rightarrow \mathrm{Ext}_{\mathcal{C}}^\bullet(V, W)$$

is an isomorphism.

(5) **Conjectures.**

- (a) The categories $\mathcal{O}(\mathfrak{g}, h, f)$ and $\mathcal{C}(\mathfrak{g}, h, f)$ are Schur categories [see (3)] over the flag variety of \mathfrak{g} ,
- (b) the inclusion $\mathcal{O}(\mathfrak{g}, h, f) \subset \mathcal{C}(\mathfrak{g}, h, f)$ is Ext-full.

In the classical case [*i.e.* $h = 0$, $f_j(n) = \sum_i a_{ij} n_i$] (a) is due to BGG [see Theorem (1)]. Fuser checked the conjecture for $\mathfrak{g} = \mathfrak{sl}(2, \mathbb{C})$. — Let \mathcal{C} be either $\mathcal{C}(\mathfrak{g}, h, f)$ or $\mathcal{O}(\mathfrak{g}, h, f)$ and $\{V_i \mid i \in I\}$ a system of representatives of the simple objects in \mathcal{C} .

(6) **Conjecture.** The vector space $\oplus_{p,i,j} \text{Ext}_{\mathcal{C}}^p(V_i, V_j)$ is a [nonunital] Koszul algebra.

This conjecture has been proved for $\mathfrak{sl}(2, \mathbb{C})$ by Fuser and for the classical category \mathcal{O} by Beilinson, Ginzburg and Soergel (see [2]).

* * *

[1] Bass H., **Algebraic K-theory**, Benjamin, New York 1968.

[2] Beilinson A., Ginzburg V., Soergel W., Koszul duality patterns in representation theory, *J. Am. Math. Soc.* **9** No.2 (1996) 473-527.

This text and others are available at <http://www.iecn.u-nancy.fr/~gaillard>