Math G180 Blank Lecture Notes Chapter 6 – Sections 6.1

6.1 | Areas between Curves

Learning Objectives

6.1.1 Determine the area of a region between two curves by integrating with respect to the independent variable.

6.1.2 Find the area of a compound region.

6.1.3 Determine the area of a region between two curves by integrating with respect to the dependent variable.

In **Introduction to Integration**, we developed the concept of the definite integral to calculate the area below a curve on a given interval. In this section, we expand that idea to calculate the area of more complex regions. We start by finding the area between two curves that are functions of x, beginning with the simple case in which one function value is always greater than the other. We then look at cases when the graphs of the functions cross. Last, we consider how to calculate the area between two curves that are functions of y.

Area of a Region between Two Curves

Let f(x) and g(x) be continuous functions over an interval [a, b] such that $f(x) \ge g(x)$ on [a, b]. We want to find the area between the graphs of the functions, as shown in the following figure.

Figure 6.2 The area between the graphs of two functions, f(x) and g(x), on the interval [a, b].

Theorem 6.1: Finding the Area between Two Curves

Let f(x) and g(x) be continuous functions such that $f(x) \ge g(x)$ over an interval [a, b]. Let R denote the region bounded above by the graph of f(x), below by the graph of g(x), and on the left and right by the lines x = a and x = b, respectively. Then, the area of R is given by

$$A = \int_{a}^{b} [f(x) - g(x)]dx.$$
 (6.1)

We apply this theorem in the following example.

Example 6.1

Finding the Area of a Region between Two Curves 1

If *R* is the region bounded above by the graph of the function f(x) = x + 4 and below by the graph of the function $g(x) = 3 - \frac{x}{2}$ over the interval [1, 4], find the area of region *R*.

Solution

The region is depicted in the following figure.

Figure 6.4 A region between two curves is shown where one curve is always greater than the other.

We have

$$A = \int_{a}^{b} [f(x) - g(x)] dx$$

$$= \int_{1}^{4} [(x+4) - (3 - \frac{x}{2})] dx = \int_{1}^{4} [\frac{3x}{2} + 1] dx$$

$$= \left[\frac{3x^{2}}{4} + x \right]_{1}^{4} = \left(16 - \frac{7}{4} \right) = \frac{57}{4}.$$

The area of the region is $\frac{57}{4}$ units².

Example 6.2

Finding the Area of a Region between Two Curves 2

If R is the region bounded above by the graph of the function $f(x) = 9 - (x/2)^2$ and below by the graph of the function g(x) = 6 - x, find the area of region R.

Solution

The region is depicted in the following figure.

Figure 6.5 This graph shows the region below the graph of f(x) and above the graph of g(x).

We first need to compute where the graphs of the functions intersect. Setting f(x) = g(x), we get

$$f(x) = g(x)$$

$$9 - \left(\frac{x}{2}\right)^2 = 6 - x$$

$$9 - \frac{x^2}{4} = 6 - x$$

$$36 - x^2 = 24 - 4x$$

$$x^2 - 4x - 12 = 0$$

$$(x - 6)(x + 2) = 0$$

The graphs of the functions intersect when x = 6 or x = -2, so we want to integrate from -2 to 6. Since $f(x) \ge g(x)$ for $-2 \le x \le 6$, we obtain

$$A = \int_{a}^{b} [f(x) - g(x)] dx$$

$$= \int_{-2}^{6} \left[9 - \left(\frac{x}{2} \right)^{2} - (6 - x) \right] dx = \int_{-2}^{6} \left[3 - \frac{x^{2}}{4} + x \right] dx$$

$$= \left[3x - \frac{x^{3}}{12} + \frac{x^{2}}{2} \right]_{-2}^{6} = \frac{64}{3}.$$

The area of the region is 64/3 units².

Areas of Compound Regions

So far, we have required $f(x) \ge g(x)$ over the entire interval of interest, but what if we want to look at regions bounded by the graphs of functions that cross one another? In that case, we modify the process we just developed by using the absolute value function.

Theorem 6.2: Finding the Area of a Region between Curves That Cross

Let f(x) and g(x) be continuous functions over an interval [a, b]. Let R denote the region between the graphs of f(x) and g(x), and be bounded on the left and right by the lines x = a and x = b, respectively. Then, the area of R is given by

$$A = \int_{a}^{b} |f(x) - g(x)| dx.$$

In practice, applying this theorem requires us to break up the interval [a, b] and evaluate several integrals, depending on which of the function values is greater over a given part of the interval. We study this process in the following example.

Example 6.3

Finding the Area of a Region Bounded by Functions That Cross

If R is the region between the graphs of the functions $f(x) = \sin x$ and $g(x) = \cos x$ over the interval $[0, \pi]$, find the area of region R.

Solution

The region is depicted in the following figure.

Figure 6.6 The region between two curves can be broken into two sub-regions.

The graphs of the functions intersect at $x = \pi/4$. For $x \in [0, \pi/4]$, $\cos x \ge \sin x$, so

$$|f(x) - g(x)| = |\sin x - \cos x| = \cos x - \sin x.$$

On the other hand, for $x \in [\pi/4, \pi]$, $\sin x \ge \cos x$, so

$$|f(x) - g(x)| = |\sin x - \cos x| = \sin x - \cos x.$$

Then

$$A = \int_{a}^{b} |f(x) - g(x)| dx$$

$$= \int_{0}^{\pi} |\sin x - \cos x| dx = \int_{0}^{\pi/4} (\cos x - \sin x) dx + \int_{\pi/4}^{\pi} (\sin x - \cos x) dx$$

$$= [\sin x + \cos x]|_{0}^{\pi/4} + [-\cos x - \sin x]|_{\pi/4}^{\pi}$$

$$= (\sqrt{2} - 1) + (1 + \sqrt{2}) = 2\sqrt{2}.$$

The area of the region is $2\sqrt{2}$ units².

6.3 If R is the region between the graphs of the functions f(x) = sin x and g(x) = cos x over the interval [π/2, 2π], find the area of region R.

Example 6.4

Finding the Area of a Complex Region

Consider the region depicted in Figure 6.7. Find the area of R.

Figure 6.7 Two integrals are required to calculate the area of this region.

Solution

As with Example 6.3, we need to divide the interval into two pieces. The graphs of the functions intersect at x = 1 (set f(x) = g(x) and solve for x), so we evaluate two separate integrals: one over the interval [0, 1] and one over the interval [1, 2].

Over the interval [0, 1], the region is bounded above by $f(x) = x^2$ and below by the x-axis, so we have

$$A_1 = \int_0^1 x^2 dx = \frac{x^3}{3} \Big|_0^1 = \frac{1}{3}$$

Over the interval [1, 2], the region is bounded above by g(x) = 2 - x and below by the x-axis, so we have

$$A_2 = \int_{1}^{2} (2 - x) dx = \left[2x - \frac{x^2}{2} \right]_{1}^{2} = \frac{1}{2}.$$

Adding these areas together, we obtain

$$A = A_1 + A_2 = \frac{1}{3} + \frac{1}{2} = \frac{5}{6}$$

The area of the region is 5/6 units².

6.1 EXERCISES

For the following exercises, determine the area of the region between the two curves in the given figure by integrating over the x-axis.

1.
$$y = x^2 - 3$$
 and $y = 1$

2.
$$y = x^2$$
 and $y = 3x + 4$

For the following exercises, split the region between the two curves into two smaller regions, then determine the area by integrating over the x-axis. Note that you will have two integrals to solve.

3.
$$y = x^3$$
 and $y = x^2 + x$

4. $y = \cos \theta$ and y = 0.5, for $0 \le \theta \le \pi$

For the following exercises, determine the area of the region between the two curves by integrating over the y-axis.

5.
$$x = y^2$$
 and $x = 9$

$$6. \quad y = x \text{ and } x = y^2$$

For the following exercises, graph the equations and shade the area of the region between the curves. Determine its area by integrating over the x-axis.

7.
$$y = x^2$$
 and $y = -x^2 + 18x$

8.
$$y = \frac{1}{x}$$
, $y = \frac{1}{x^2}$, and $x = 3$

9.
$$y = \cos x$$
 and $y = \cos^2 x$ on $x = [-\pi, \pi]$

10.
$$y = e^x$$
, $y = e^{2x-1}$, and $x = 0$

11.
$$y = e^x$$
, $y = e^{-x}$, $x = -1$ and $x = 1$

12.
$$y = e$$
, $y = e^x$, and $y = e^{-x}$

13.
$$y = |x|$$
 and $y = x^2$

For the following exercises, graph the equations and shade the area of the region between the curves. If necessary, break the region into sub-regions to determine its entire area.

14.
$$y = \sin(\pi x), y = 2x, \text{ and } x > 0$$

15.
$$y = 12 - x$$
, $y = \sqrt{x}$, and $y = 1$

16.
$$y = \sin x$$
 and $y = \cos x$ over $x = [-\pi, \pi]$

17.
$$y = x^3$$
 and $y = x^2 - 2x$ over $x = [-1, 1]$

18.
$$y = x^2 + 9$$
 and $y = 10 + 2x$ over $x = [-1, 3]$

19.
$$y = x^3 + 3x$$
 and $y = 4x$

For the following exercises, graph the equations and shade the area of the region between the curves. Determine its area by integrating over the y-axis.

20.
$$x = y^3$$
 and $x = 3y - 2$

21.
$$x = 2y$$
 and $x = y^3 - y$

22.
$$x = -3 + y^2$$
 and $x = y - y^2$

23.
$$y^2 = x$$
 and $x = y + 2$

24.
$$x = |y|$$
 and $2x = -y^2 + 2$

25.
$$x = \sin y$$
, $x = \cos(2y)$, $y = \pi/2$, and $y = -\pi/2$

For the following exercises, graph the equations and shade the area of the region between the curves. Determine its area by integrating over the x-axis or y-axis, whichever seems more convenient.

26.
$$x = y^4$$
 and $x = y^5$

27.
$$y = xe^x$$
, $y = e^x$, $x = 0$, and $x = 1$

28.
$$y = x^6$$
 and $y = x^4$

29.
$$x = y^3 + 2y^2 + 1$$
 and $x = -y^2 + 1$

30.
$$y = |x|$$
 and $y = x^2 - 1$

31.
$$y = 4 - 3x$$
 and $y = \frac{1}{2}$

32.
$$y = \sin x$$
, $x = -\pi/6$, $x = \pi/6$, and $y = \cos^3 x$

33.
$$y = x^2 - 3x + 2$$
 and $y = x^3 - 2x^2 - x + 2$

34.
$$y = 2\cos^3(3x)$$
, $y = -1$, $x = \frac{\pi}{4}$, and $x = -\frac{\pi}{4}$

35.
$$y + y^3 = x$$
 and $2y = x$

36.
$$y = \sqrt{1 - x^2}$$
 and $y = x^2 - 1$

37.
$$y = \cos^{-1} x$$
, $y = \sin^{-1} x$, $x = -1$, and $x = 1$

For the following exercises, find the exact area of the region bounded by the given equations if possible. If you are unable to determine the intersection points analytically, use a calculator to approximate the intersection points with three decimal places and determine the approximate area of the region.

38. **[T]**
$$x = e^y$$
 and $y = x - 2$

39. **[T]**
$$y = x^2$$
 and $y = \sqrt{1 - x^2}$

40. **[T]**
$$y = 3x^2 + 8x + 9$$
 and $3y = x + 24$

41. [T]
$$x = \sqrt{4 - y^2}$$
 and $y^2 = 1 + x^2$

42. **[T]**
$$x^2 = y^3$$
 and $x = 3y$

43. [T]
$$y = \sin^3 x + 2$$
, $y = \tan x$, $x = -1.5$, and $x = 1.5$

44. [T]
$$y = \sqrt{1-x^2}$$
 and $y^2 = x^2$

45. [T]
$$y = \sqrt{1-x^2}$$
 and $y = x^2 + 2x + 1$

46. **[T]**
$$x = 4 - y^2$$
 and $x = 1 + 3y + y^2$

47. **[T]**
$$y = \cos x$$
, $y = e^x$, $x = -\pi$, and $x = 0$