Natural Language Processing CSE 325/425

Lecture 3:

- MLE for n-grams
- General MLE
- MAP

Estimating n-gram model using MLE

- Maximum Likelihood Estimation (MLE)
 - Let the count of word $oldsymbol{w}$ be c(w)

$$P(w) = \frac{C(w)}{n}$$

- Then given a corpus, we can count the number of times any word $w \in V$ appears. $\mathcal{N}: \mathcal{A}$
- Assumeing a unigram language model: words are selected independent of other words.
- · The likelihood of the corpus is

$$P(w_1,\ldots,w_n) \propto P(w_1) imes \cdots imes P(w_n)$$

$$imes \prod_{w \in V} P(w)^{c(w)} = L(w_1,\ldots,w_n|oldsymbol{ heta})$$

- Parameters of the model: $oldsymbol{ heta} = \{P(w): w \in V\}$
- Sufficient statistics: $\{c(w):w\in V\}$

Estimating uni-gram model using MLE

- Maximum Likelihood Estimation (MLE)
 - By choosing the parameters $heta=\{P(w):w\in V\}$ to maximize the likelihood

$$\max_{\boldsymbol{\theta}} L(w_1, \dots, w_n | \boldsymbol{\theta}) = \Pr(w_1) \times \Pr(w_2) \times \dots \times \Pr(w_n)$$
s.t.
$$\sum_{w \in V} P(w) = 1$$

$$= \lim_{w \in V} P(w) = 1$$

· Using the Lagrangian method, you will find the MLE

$$P(w) = \frac{\text{Count of } w}{\text{Count of the total tokens}}$$

MLE is considered the "best" estimation of the model parameter.

Estimating n-gram model using MLE

- Maximum Likelihood Estimation (MLE)
 - Can Laplacian be derived using MLE?
 - Yes! Just add a hallucinated appearance of every word to the corpus.
 - Suppose your vocabulary is

```
V = \{ \langle s \rangle, \langle s \rangle, I, am, Sam, do, not, like, green, eggs, and, ham, red \}
```

Adding a hallucinated document containing each word:

```
The corpus = {
    D0=[<s>, </s>, I, am, Sam, do, not, like, green, eggs, and, ham, red]
    D1=[<s> I am Sam </s>]
    D2=[<s> Sam I am </s>]
    D3=[<s> I do not like green eggs and ham </s>]
}
```

General MLE

The corpus = { $\mathcal D$ D1=[<s> I am Sam </s>] $\Pr(\mathcal{D}|\boldsymbol{\theta})$ D2=[<s> Sam I am </s>] D3=[<s> I do not like green eggs and ham </s>]

- Maximum Likelihood Estimation (MLE)
 - Given observed data \mathcal{D} (training Data in ML)
 - o can be unsupervised: a corpus
 - o supervised: documents labeled with sentiments {positive, neutral, negative}
 - Assume a probabilistic model generating the data
 - \circ parametric model for likelihood of the data $\Pr(\mathcal{D}|m{ heta})$
 - In NLP, commonly found are multi-nomial models
 - $_{\circ}$ Probabilities of seeing a word: $\pmb{\theta} = [\theta_1, \dots, \theta_{|V|}]$ $\sum_{w} \theta_w = 1$ $_{\circ}$ I ikelihood of a corpus using uni-gram:

 $|=\sum_{n} P_n(D|\theta)$

General MLE

- Maximum Likelihood Estimation (MLE)
 - Given observed data ${\mathcal D}$
 - Parametric model for likelihood of the data $\Pr(\mathcal{D}|\boldsymbol{\theta})$ $L(\boldsymbol{\theta}) = \Pr(\mathcal{D}|\boldsymbol{\theta})$
 - What's the most likely $oldsymbol{ heta}$ that generates the data?
 - MLE is the constrained optimization problem

$$oldsymbol{ heta}^* = rg \max_{oldsymbol{ heta}} L(oldsymbol{ heta}) = rg \max_{oldsymbol{ heta}} \log L(oldsymbol{ heta})$$

s.t.
$$\sum \theta_i$$

log-likelihood

Los function like like of

Equivalent to minimizing the negative log-likelihood loss function

$$-\log L(\boldsymbol{\theta}) = J(\boldsymbol{\theta})$$
 \leftarrow

$$0^{*} = arg min - log L(0) = arg min J(0)$$

optimized using Gradient descent in Seneral

General MLE

Revisiting MLE for uni-gram model

$$\theta^* = \arg\max_{\boldsymbol{\theta}} \left[\frac{1}{Z} \prod_{w=1}^{|V|} \theta_w^{c(w)} \right] = \arg\max_{\boldsymbol{\theta}} -\log Z + \sum_{w=1}^{|V|} c(w) \log \theta_w$$
s.t.
$$\sum_{w} \theta_w = 1$$

$$= \arg\max_{\boldsymbol{\theta}} \left[\frac{1}{Z} \prod_{w=1}^{|V|} \theta_w^{c(w)} \right] = \arg\max_{\boldsymbol{\theta}} -\log Z + \sum_{w=1}^{|V|} c(w) \log \theta_w$$

$$= \arg\max_{\boldsymbol{\theta}} \left[\frac{1}{Z} \prod_{w=1}^{|V|} \theta_w^{c(w)} \right] = \arg\max_{\boldsymbol{\theta}} -\log Z + \sum_{w=1}^{|V|} c(w) \log \theta_w$$

$$= \arg\min_{\boldsymbol{\theta}} \left[\frac{1}{Z} \prod_{w=1}^{|V|} \theta_w^{c(w)} \right] = \arg\max_{\boldsymbol{\theta}} -\log Z + \sum_{w=1}^{|V|} c(w) \log \theta_w$$

$$= \arg\min_{\boldsymbol{\theta}} \left[\frac{1}{Z} \prod_{w=1}^{|V|} \theta_w^{c(w)} \right] = \arg\max_{\boldsymbol{\theta}} -\log Z + \sum_{w=1}^{|V|} c(w) \log \theta_w$$

$$= \arg\min_{\boldsymbol{\theta}} \left[\frac{1}{Z} \prod_{w=1}^{|V|} \theta_w^{c(w)} \right] = \arg\max_{\boldsymbol{\theta}} -\log Z + \sum_{w=1}^{|V|} c(w) \log \theta_w$$

$$= \arg\min_{\boldsymbol{\theta}} \left[\frac{1}{Z} \prod_{w=1}^{|V|} \theta_w^{c(w)} \right] = \arg\max_{\boldsymbol{\theta}} -\log Z + \sum_{w=1}^{|V|} c(w) \log \theta_w$$

$$= \arg\min_{\boldsymbol{\theta}} \left[\frac{1}{Z} \prod_{w=1}^{|V|} \theta_w^{c(w)} \right] = \arg\max_{\boldsymbol{\theta}} -\log Z + \sum_{w=1}^{|V|} c(w) \log \theta_w$$

$$= \arg\min_{\boldsymbol{\theta}} \left[\frac{1}{Z} \prod_{w=1}^{|V|} \theta_w^{c(w)} \right] = \arg\max_{\boldsymbol{\theta}} -\log Z + \sum_{w=1}^{|V|} c(w) \log \theta_w$$

$$= \arg\min_{\boldsymbol{\theta}} \left[\frac{1}{Z} \prod_{w=1}^{|V|} \theta_w^{c(w)} \right] = \arg\min_{\boldsymbol{\theta}} \left[\frac{1}{Z} \prod_{w=1}^{|V|} \theta_w^{c(w)} \right]$$

$$= \arg\max_{\boldsymbol{\theta}} \left[\frac{1}{Z} \prod_{w=1}^{|V|} \theta_w^{c(w)} \right] = \arg\min_{\boldsymbol{\theta}} \left[\frac{1}{Z} \prod_{w=1}^{|V|} \theta_w^{c(w)} \right]$$

$$= \arg\max_{\boldsymbol{\theta}} \left[\frac{1}{Z} \prod_{w=1}^{|V|} \theta_w^{c(w)} \right]$$

$$= \arg\min_{\boldsymbol{\theta}} \left[\frac{1}{Z} \prod_{w=1}^{|V|} \theta_w^{c(w)} \right]$$

$$= \min_{\boldsymbol{\theta}} \left[\frac{1}{Z} \prod_{w=1}^{|V|} \theta_w^{c($$

$$lpha rg \max_{oldsymbol{ heta}} - \log Z + \sum_{w=1}^{|V|} c(w) \log heta$$

s.t.
$$\sum_{w} \theta_{w} = 1$$

But how to solve this problem?

Need two more tools:

- gradient descent
- matrix calculus
- Lagrangian methods

Alg GD

Initialize
$$\theta = \theta^{(0)}$$
 randomly

for $t = 1 - - - T$
 $\theta^{(t)} \leftarrow \theta^{(t-1)} - \eta \times \frac{\partial J(\theta)}{\partial \theta} = \theta^{(t-1)}$

Caradiant descent (minimal)

Gradient descent (minimal)

• The loss function is a scalar function of the vector $oldsymbol{ heta}$

Matrix calculus (minimal)

unigram LM g=[0,--- 0|v|]

• How to find the gradient of a scalar function with respect to a vector $oldsymbol{ heta}$

When there are two parameters

Multi-variate function:

$$f(\mathbf{x}) = f(x_1, \dots, x_n)$$

$$f(x,y) = x^2 - y^2$$

Gradient:

$$abla_{\mathbf{x}}f = \left[egin{array}{c} rac{\partial f}{\partial x_1} \ dots \ rac{\partial f}{\partial x_n} \end{array}
ight] \in \mathbb{R}^n$$

$$X \in \mathbb{Z}^h$$

Constrained optimization

(used in estimating parameters)

Maximum Likelihood Estimation (MLE)

$$\theta^* = \arg\min_{\boldsymbol{\theta}} -\frac{1}{Z} \prod_{w=1}^{|V|} \theta_w^{c(w)} = \arg\min_{\boldsymbol{\theta}} \log Z - \sum_{w=1}^{|V|} c(w) \log \theta_w$$
 s.t.
$$\sum_{w} \theta_w = 1$$
 [UV]

Take the gradient of the objective function with respect to $oldsymbol{ heta}$

Can you descend to the optimal $oldsymbol{ heta}^*$? Don't forget the constraint. Need the Lagrangian method.

$$\frac{1}{2} \left(0, \lambda \right) = \left[\frac{1}{2} \left(\frac{1}{2} \right) - \frac{1}{2} \left(\frac{1}{2} \right) \right] = \left[\frac{1}{2} \left(\frac{1}{2} \right) - \frac{1}{2} \left(\frac{1}{2} \right) \right] = \left[\frac{1}{2} \left(\frac{1}{2} \right)$$

MAP

- MAP (Maximum a Posterior) estimation
 - Assume a probabilistic model generating the data
 - $\Pr(\mathcal{D}|\boldsymbol{\theta}) \leftarrow \text{multinomial dist}$ parametric model for likelihood of the data
 - $\Pr(\boldsymbol{\theta}|\boldsymbol{\alpha})$ can have prior distribution over the parameter
 - Use the Bayes theorem to find the posterior

$$\Pr(\boldsymbol{\theta}|\mathcal{D}) = \frac{\Pr(\mathcal{D}|\boldsymbol{\theta}) \times \Pr(\boldsymbol{\theta}|\boldsymbol{\alpha})}{\Pr(\mathcal{D})}$$

dw: Hallucinated appearance ef word w

- For convenience, the prior is a conjugage distribution of the likelihood.
 - with multi-nomial, the conjugage is the Dirichlet distribution

MLE in NLP

- Looking ahead, we will use MLE to learn a few models
 - Word embedding (glove) word vectors
 - Hidden Markov Model (HMM) ____ Segmence S
 - Conditional random fields (CRF) word vectors + Seq.
 - Reccurent NN -> NN version of CRF
 - Probabilistic CFG parser
 Recursive NN

>NN on trees

Summary

- Maximum likelihood estimation
 - Probabilistic models: likelihood
- Tools:
 - gradient descent.
 - matrix calculus to find gradients.
 - constrained optimization.
- Maximum posterior estimation
 - Prior, conjugacy, and posterior using the Bayes theorem.
 - Laplacian smoothing as MAP