Digit VLSI Project MMS19

一、组内分工

姓名	学号	组内分工
蒋煜	2020211073	比较器电路设计,HSPICE 代码编写
谢双文	2020211065	HSPICE 代码编写,电路整体架构搭建,电路优化
杜仪	2020211081	加法器电路设计,HSPICE 代码编写
丁晨	2020211103	加法器电路设计,HSPICE 代码编写
张云来	2020211070	比较器电路设计,HSPICE 代码编写

二、电路原理图

三、设计思想与策略的简要阐述

将输入的 8bit 数据同时输入加法器和两个比较器中。通过给 D 触发器加上一个异步的 reset 信号达到异步复位的作用。

在加法器的数据通路中,8bit 的 data 与输出反馈回来的 14bit 的 sum 值进行计算,将结果输出。valid 信号控制加法器数据通路的第一个二选一 MUX,若 valid 为 0,则将当前的 sum 循环,若 valid 为 1,则将新的计算结果输出。start 控制整个数据通路的开启,并且会将数据初始化,所以将 start 信号控制的二选一 MUX 放在距离寄存器最近的位置,若 start 为 1,则将数据通路的数据置为设定的初始值。

在比较器的数据通路中,8bit 的 data 与输出反馈回来的 8bit 的 min/max 值进行比较,用比较器的输出结果控制下一级二选一 MUX, 选取 data 和 max/min 中的最大/小值。其中的 valid 和 start 信号与加法器数据通路中作用一致,注意在 min 数据通路中, start 控制两个二选一 MUX, 达到将初始化 min 输出置为 0 和保证 min 反馈回路与 data 进行最小值比较的正确性。

优化电路功耗时,删减能够删减的晶体管,省去能够省去电路部分电路,选用低功耗的电路结构等。

四、典型仿真波形

Figure 1 200k, 0.245V, 45 个周期

Figure 2 2Meg, 0.37V, 45 个周期

Figure 3 1Geg,0.98V, 45 个周期

四、性能指标

电路的关键路径为,14 位的加法器从 14'h1FFF 翻转为 14'h2FFF(一共翻转 13 次)到 sum 输出的路径,通过这条保持正常,仿真正常工作的最低电压。

频率 Hz	极限电压 V	极限 avg_power W
200k	0.221	4.24E-09
2Meg	0.34	3.20E-08
1Geg	0.888	8.37E-05

考虑 10%电源电压波动,得到各种典型性能数据如下:

频率 Hz	电源电压 V	平均功耗 W	功耗/电压 W/V	能量效率 W/Hz
200k	0.245	5.10E-09	2.08E-08	2.55E-14
2Meg	0.37	3.81E-08	1.03E-07	1.90E-14
1Geg	0.98	1.05E-04	1.07E-04	1.05E-13

五、设计亮点和特色

- 1. 晶体管级电路设计,全定制化;
- 2. 比较器优化后只保留输出大于的端口,用于比大和比小电路,删去了部分结构,降低了电路功耗;
- 3. 加法器最后一位的进位电路删除,降低功耗。