CSE 453

Hardware/Software Integrated System Design

Project Overview

The Tracks

- Industry
- Research

The Projects

- Real World Project
- Real Client
- Deliverable Project
 - The deliverable will be used!
- The Bottom Line...

The Project MUST Work!

Industry Track

- Requires develop of user documentation on the product
- Great option for those considering industry after graduation

Laptop Controlled Device to Provide Communication & Environmental Control for an ALS Patient

- Problem
 - People with severe physical disabilities rely on others for every aspect of their lives
 - ♥ Communication
 - ♥ Comfort
 - ♥ Basic Needs
- The Client
 - Tim
 - ♦ Late stage ALS patient
 - Resides at Elderwood at Williamsville
 - ♦ Two small children
 - This project will significant increase the quality of this family's life
- Solution
 - Design a system that will allow an patient in the late stages of ALS to control items in his room & text/e-mail his wife and kids
 - ♥ TV
 - ♥ Fan
 - ♥ Call Light
 - Must integrate with his computer
 - ♦ Sony version of the Microsoft Surface
 - Must utilize the input device he utilizes
 - ♦ Sentry Eye Tracker Steelseries

https://steelseries.com/gaming-controllers/sentry

STEM

- What is STEM?
 - Science
 - Technology
 - Engineering
 - Math
- Why is STEM Important?
 - Shortage of STEM related professionals in the United States
 - National Security Impact
 - ♦ Department of Defense (DOD)
 - We need to remain at the forefront of technology to remain strong
 - The United States is not there right now
 - ♦ We used to be
 - The federal government realizes this problem
 - Influx of federal funds to solve this problem

The Next Three Projects

- Problem
 - Shortage of STEM Professionals
 - Projected to become more pronounced in the future
- Solution
 - Generate interest in STEM fields among children (K12 population)
 - ♦ How?
 - ✓ The WOW Factor
 - √ Hands-on Learning
 - ✓ Inquiry Based Learning
- Impact
 - Generate excitement among children so that they take more of an interest in STEM fields
 - Systems will be used in local schools to generate interest in STEM
 - Systems will be used in various outreach events in local school districts
 - ♦ Alden
 - ♥ Depew
 - ♥ Warsaw
 - ♥ Buffalo

The Tank

- Based on Last Year's Cannon
 - Cannon's Problem Statement
 - PHET is used as a teaching tool
 - √ http://phet.colorado.edu/en/simulation/legacy/projectile-motion
 - Simulations are not engaging enough
 - ♥ Bring the simulation to life!

Based on Last Year's Cannon

Solution

♥ Build the Canon

- ✓ Pneumatic
 - · Computer controlled pressure
- √ Variable barrel angle
- √ Fires tennis ball sized projectiles
- √ Fully instrumented
- √ Safety is paramount

♥ Goal

- ✓ Repeatedly hit a target
- ✓ Repeatability
- ✓ Accuracy

The Problem

- The cannon is a prototype
 - ⋄ It needs to be ruggedized
- The cannon is too hard to move

Solution

- Turn the cannon into a tank
- Place it on a movable platform that can be driven remotely
- Cannon must be ruggedized to withstand the student/teacher use without interaction from the technical team
 - ♦ Rewiring
 - ♦ Hardening
 - ♦ Addressing Glitches
- Additional feature could be added
 - ♦ Rotating Turret
 - ✓ Allows the barrel to be aimed left or right

Interactive Learning Tool to Demonstrate Using Light to Transmit Information

- Problem
 - Teaching electrical & computer concepts to a youngster can be challenging Why?
 - √ You can't see electricity
 - ✓ It is difficult to fathom how information can be transmitted & processed so quickly
 - Develop a System to Teach & Reinforce:
 - How light can be used to transmit information
- Target Audience
 - Elementary & Middle School Students
- Solution
 - Build a system so students can visualize the following concepts

- How data is transmitted using optical fiber
 - ✓ Single Shot Mode
 - · Transmit a character in ASCII
 - Kids see the LEDS representing 1's and 0's
 - ✓ Message Transmission Mode
 - Synchronous System
 - · Variable Period
 - Slow Speed → Kids can see transmissions
 - High Speed

 Kids can begin to realize how data can be transmitted quickly
- Goal
 - ♦ Inquiry Based Learning
 - ♦ Meets Next Generation Science Standards
 - √ NGSS

Robotics & Programming

- Problem
 - CS For All Initiative
 - Lack of STEM Professionals
 - Make Programming Fun & Engaging for Students
- Solution
 - A programming framework that uses robots to introduce high school students to programming

- Client
 - Depew High School
- Flexibility
 - The client is trying to figure out an innovative way to address this
 - Input from us is invited

The Automated Locker

- The Problem
 - K12 students with physical impairments may not be able to use a locker
- The Solution
 - Enable these students to use a locker
 - Innovative approach is needed to open the lock
 - ⋄ Finger Print Scanning
 - Can the team incorporate a feature that allows the student to attempt to open the locker, but after so many failed attempts it opens with a fallback method?
 - Encourages student to try, developing physical skills
- Side Note
 - Students in a Creativity Class the idea
 - Part of the project will be interacting with them
 - ♦ They will learn more about
 - ✓ The design process
 - ✓ Product development process
- Client
 - Alden Middle/High School
 - ♦ Jenna Ziegler

 - ♦ Creative Class
 - ♦ Special Ed Students

Device to Assist Teachers in Preventing a Special Needs Student from Wandering Away

- The Problem
 - Special Education student likes to 'run'
 - She wanders off from her class
- The Solution
 - Develop a system that
 - Provides feedback for her to return to her class
 - Allows faculty & staff to determine her whereabouts if she wanders off
- Client
 - Alden Primary School

Teddy Bear Talker

- Problem
 - A girl with a developmental disability cannot communicate
 - She is 5 to 6 years old, but cognitively she is where a 1 year old might be
- Solution
 - Integrate sensors, a microprocessor, speaker, GPS (and possibly WiFi) into a stuffed animal
 - When she hugs the bear, it speaks
 - The harder she hugs, the louder it speaks
 - Speech output determined by location and time of day, a programmed by her teachers
 - Programming interface for teachers/family required
 - Must have ability to add a touch screen so the bear can grow with her

Rowing Machine

- Problem
 - A rowing machine is being developed which takes transducer input, processes the data, & creates an image on a computer display to simulate a real rowing environment
- Solution
 - Involves designing & developing bridge circuits, noise filters, routines for data analysis, display, & gaming
- Client
 - Sharp Tooling

Northrup Grumman Bird Chirp Classifier

- EAS 494 (Interdisciplinary Senior Design)
- Industry Project
 - Northrup Grumman Amherst Systems
- Problem
 - Develop a system to identify bird types from the sound of their chirps from digital audio input
 - Trade Survey Required
 - Research & analyze machine learning algorithms, tools, & architecture for implementing said algorithms

Solution

- Software & FPGA frameworks
- Should run without Internet access
- Deliverable system
- Team
 - FEE & CEN

Lockheed Quadcopter

- EAS 494 (Interdisciplinary Senior Design)
- Industry Project
 - Lockheed Martin
- Problem
 - Send a targeting quadcopter to operational area
 - ♦ Identifies drop zones
 - ✓ Laser?
 - Payload quadcopter delivers payload to identified area
 - ♦ Multiple payloads (up to 4) are possible
 - ✓ Must be within one meter of target
 - Uses only a remote video feed

Solution

- Use only commercially available hardware & flight control software
- Emphasis
 - ♦ Remote sensing
 - ♥ Communication
 - Payload release
- Team

Bike Simulator

- University Project
 - UB SEAS Driving Simulation Lab
- Problem
 - Develop a fully functional bike simulator
 - User rides stationary bike
 - ♥ Visuals updates (based on speed/maneuvers)

Solution

- Must be fully functional, integrating sensors, DAQ system/microcontroller, & VR platform
- Team
 - 3-5 ME, 2 CEN, 3 CS

2D CubeSat Attitude Control System Testbed

- University Project
 - Inspired by a project from the NASA-Goddard Space Flight Center
- Problem
 - Develop a 2 dimensional control test bench
 - Allows for algorithms or systems that would normally be simulated to be physically tested

Solution

- Gyroscope system allows free rotation along two axis of rotation
 - Requires in depth analysis on flywheels
- Sensor input used by microcontroller to calibrate factors that affect the CubeSat

Variant

- Create an educational outreach kit for high school through graduate school exemplifying the engineering principles learned in college.
- Previous three projects (EAS 494) must be filled for this one to become a reality
- Team

Research Track

- May result in a research paper instead of user documentation on the product
- Great option for those considering graduate school or academia

AutoDietary II

- Problem
 - Wearable necklace records eating sounds via a microphone & transmits data to an Android device via NFC or BLE for processing.
 - App must be developed using the aforementioned hardware to analyze & visualize eating information & statistics

Solution

- Hardware development
 - ♦ Necklace
 - ♦ 3D Printing the necklace itself
- Software Development
 - ♦ App & Drivers
 - Android Programming Required

Client

Dr. Wenyao Xu, CSE Assistant Professor

Better Brains for RC Servos in Robotics

- Problem
 - Motors are essential for building robots.
 - High-grade Actuators
 - ♦ Integrate high precision encoders, motor drivers, and load sensors
 - Expensive
 - Hobby RC servos
 - ♦ Low cost alternative
 - Raw power can approach the power of robotics actuators

Solution

Replace the driving circuits for an RC servo

♥ Turn it into a high-grade actuator

Required Key Features

- Addressable via serial protocols
- Run in different control modes (position, velocity)
- ♥ Can measure/limit current

Starting Point

Some similar open source projects (e.g. OpenServo) exist.

Upon Completion

Project will be immediately incorporated into a robot used in research.

Impact

Inexpensive Robots

♦ Provide for increased integration into our daily lives

Improved quality of life for many people in our society

- Helping the disabled live more independently
- Reducing the risks for first responders

Client

Dr. Nils Napp, CSE Assistant Professor

Integrating Robots with 3D Printed Environments

Problem

Integrating things like capacitive switches & conductive ink into 3D printed environments to create an environment that the robot can operate in to perform some specific task(s)

Solution

- Involves 3D printing the environment in which the robot will operate
- The robot will have to be programmed and outfitted to perform the desired task in the environment

Client

Dr. Nils Napp, CSE Assistant Professor

Combination of the Previous Two Projects

 It is possible that the previous two project can be combined into a single project, especially if there is enough interest

Summary

Industry

- The Tank
- Interactive Learning Tool to Demonstrate Using Light to Transmit Information
- Robotics & Programming
- Teddy Bear Talker
- Laptop Controlled Device to Provide Communication & Environmental Control for an ALS Patient
- Device to Assist Teachers in Preventing a Special Needs Student from Wandering Away
- Automated Locker
- Rowing Machine
- Bird Chirp Classifier
- Quadcopter
- Bike Simulator
- 2D CubeSat

Research

- AutoDietary II
- Better Brains for Servos in Robotics
- Integrating Robots with 3D Printed Environments