# <u>Deep Reinforcement Learning for</u> <u>Automated Stock Trading Ensemble Strategy</u>

-Vishal Juneja

#### Introduction

The ensemble strategy inherits and integrates the best features of the three algorithms, thereby robustly adjusting to different market situations and using a load on demand technique for processing large data to avoid large memory consumption.



Trading agents and environments interacts with each other using *Action*, *State* and *Reward* 

## Markov Decision Process for Stock Trading

- State s = [p, h, b]: Vector (Stock price, Shares, Remaining Balance)
- O Action a: Vector for taking actions as (Selling, Buying, Holding
- O Reward r = (s, a, s'): Direct reward for action from state  $s \rightarrow s'$
- O Policy  $\pi(s)$ : Probability distribution of a at s
- O Q-Value  $Q_{\pi}(s,a)$ : Expected reward of action a at s following policy  $\pi$



Taking action will change Portfolio

## Return Maximization as Trading Goal

#### **Stocking Constraints**

- Market Liquidity: assuming that stock market will not be affected by our reinforcement trading agent
- O Non Negative Balance  $b \ge 0$ :
- $\circ$  Transaction cost  $c_t$ : Transaction costs are incurred for each trade
- Risk Aversion for Market Crash:
   Turbulence index as turbulence<sub>t</sub>

#### Maximising Reward Function

•  $r = Potfolio_{t+1} - portfolio_t - c_t$ 

#### Sell all during Market Crash

•  $turbulence_t > threshold value$ 

## Stock Trading management

- Environment for Multiple Stocks: A continuous action space to model the trading of multiple stocks it is assumed that the portfolio has 30 stocks in total
  - 1. State Space: This space is defined on components as balance, stock price, no. of stocks, MACD, RCI, CCI, ADX.
  - 2. Action Space: This space present is defined on the basis of number of shares k ( $k < h_{max}$ ) to perform action of buying, selling or holding
- Memory Management: The load-ondemand technique does not store all results in memory, rather, it generates them on demand due to which the memory usage us reduced



## Deep Learning Algorithms

#### Advantage Actor Critic (A2C)

- It is a typical actor-critic algorithm which utilizes an advantage function to reduce the variance of the policy gradient.
- It is a great model for stock trading because of its stability.

## Proximal Policy Optimization (PPO)

- It updates and ensure that the new policy will not be too different from the previous one.
- Chosen for stock trading because it is stable, fast, and simpler to implement and tune.

#### Deep Deterministic Policy Gradient (DDPG)

- It encourage maximum investment return and combines the frameworks of both Q-learning and policy gradient.
- It is effective at handling continuous action space, and so it is appropriate for stock trading.

## **Ensemble Strategy**

Step 1

Step 2

Step 3

- Growing window of n months to retrain our three agents concurrently, for the paper n=3
- Calculating Sharpe Ratio
- Sharpe ratio =  $\frac{\overline{r_p} r_f}{\sigma_p}$   $\bar{r}_p$ - portfolio return,  $r_f$ - risk free return,  $\sigma_p$ - portfolio standard deviation
- After the best agent is picked, it is used to predict and trade for the next quarter.
- This maximizes the returns adjusted to the increasing risk

## **Performance Evaluation Plots**



| 112          |            |            |
|--------------|------------|------------|
| PEDECODMANCE | EVALUATION | COMPADISON |

| (2016/01/04-2020/05/08) | Ensemble (Ours) | PPO    | A2C    | DDPG   | Min-Variance | DJIA   |
|-------------------------|-----------------|--------|--------|--------|--------------|--------|
| Cumulative Return       | 70.4%           | 83.0%  | 60.0%  | 54.8%  | 31.7%        | 38.6%  |
| Annual Return           | 13.0%           | 15.0%  | 11.4%  | 10.5%  | 6.5%         | 7.8%   |
| Annual Volatility       | 9.7%            | 13.6%  | 10.4%  | 12.3%  | 17.8%        | 20.1%  |
| Sharpe Ratio            | 1.30            | 1.10   | 1.12   | 0.87   | 0.45         | 0.47   |
| Max Drawdown            | -9.7%           | -23.7% | -10.2% | -14.8% | -34.3%       | -37.1% |

#### Performance Evaluation Conclusions

- A2C agent is more adaptive to risk. It has the lowest annual volatility 10.4% and max drawdown -10.2%
- PPO agent is good at following trend and acts well in generating more returns, it has the highest annual return 15.0% and cumulative return 83.0%
- DDPG performs similar but not as good as PPO, it can be used as a complementary strategy to PPO, but its returns are not as satisfactory as other two.
- O By incorporating the turbulence index, the agents are able to cut losses and successfully survive the stock market crash in March 2020.

#### SHARPE RATIOS OVER TIME.

| Trading Quarter | PPO   | A2C   | DDPG  | Picked Model |
|-----------------|-------|-------|-------|--------------|
| 2016/01-2016/03 | 0.06  | 0.03  | 0.05  | PPO          |
| 2016/04-2016/06 | 0.31  | 0.53  | 0.61  | DDPG         |
| 2016/07-2016/09 | -0.02 | 0.01  | 0.05  | DDPG         |
| 2016/10-2016/12 | 0.11  | 0.01  | 0.09  | PPO          |
| 2017/01-2017/03 | 0.53  | 0.44  | 0.13  | PPO          |
| 2017/04-2017/06 | 0.29  | 0.44  | 0.12  | A2C          |
| 2017/07-2017/09 | 0.4   | 0.32  | 0.15  | PPO          |
| 2017/10-2017/12 | -0.05 | -0.04 | 0.12  | DDPG         |
| 2018/01-2018/03 | 0.71  | 0.63  | 0.62  | PPO          |
| 2018/04-2018/06 | -0.08 | -0.02 | -0.01 | DDPG         |
| 2018/07-2018/09 | -0.17 | 0.21  | -0.03 | A2C          |
| 2018/10-2018/12 | 0.30  | 0.48  | 0.39  | A2C          |
| 2019/01-2019/03 | -0.26 | -0.25 | -0.18 | DDPG         |
| 2019/04-2019/06 | 0.38  | 0.29  | 0.25  | PPO          |
| 2019/07-2019/09 | 0.53  | 0.47  | 0.52  | PPO          |
| 2019/10-2019/12 | -0.22 | 0.11  | -0.22 | A2C          |
| 2020/01-2020/03 | -0.36 | -0.13 | -0.22 | A2C          |
| 2020/04-2020/05 | -0.42 | -0.15 | -0.58 | A2C          |

## Results for Ensemble Strategy

- The ensemble strategy achieves a Sharpe ratio 1.30, which is much higher than the Sharpe ratio the two baselines, 0.47 for DJIA, and 0.45 for the min-variance portfolio allocation
- The ensemble strategy also outperforms A2C with a Sharpe ratio of 1.12, PPO with a Sharpe ratio of 1.10, and DDPG with a Sharpe ratio of 0.87, respectively
- Ensemble strategy outperforms the three individual algorithms, balancing risk and return under transaction costs, which makes it auto adjustable to choose for the specific market condition.

### References

- O Deep Reinforcement Learning for Automated Stock Trading: An Ensemble Strategy
- O A2C Algorithm
- O Proximity Policy Optimization Algorithm
- O <u>Deep Deterministic Policy Gradient algorithm</u>