Colles - Semaine 6

Exercice 1

N désigne un entier naturel supérieur ou égal à 2. Un joueur lance une pièce équilibrée indéfiniment. On note X_N la variable aléatoire réelle discrète égale au nombre de fois où, au cours des N premiers lancers, deux résultats successifs ont été différents. On peut appeler X_N le « nombre de changements » au cours de N premiers lancers.

Par exemple, si les N=9 premiers lancers ont donné successivement :

Pile, Pile, Face, Pile, Face, Face, Face, Pile, Pile,

alors la v.a.r. X_9 aura pris la valeur 4 (quatre changements aux $3^{\rm ème}$, $4^{\rm ème}$, $5^{\rm ème}$ et $8^{\rm ème}$ lancers).

- 1. Justifier que $X_N(\Omega) = [0, N-1]$.
- 2. Déterminer la loi de X_2 , ainsi que son espérance. Déterminer la loi de X_3 .

3. Montrer que
$$\mathbb{P}([X_N = 0]) = \left(\frac{1}{2}\right)^{N-1}$$
 et $\mathbb{P}([X_N = 1]) = 2(N-1)\left(\frac{1}{2}\right)^N$

- **4.** a) Justifier que pour tout entier $k \in [0, N-1], \mathbb{P}_{[X_N=k]}([X_{N+1}=k]) = \frac{1}{2}$.
 - **b)** En déduire que pour tout entier $k \in [0, N-1]$, $\mathbb{P}([X_{N+1} X_N = 0] \cap [X_N = k]) = \frac{1}{2}\mathbb{P}([X_N = k])$.
 - c) En sommant cette relation pour k variant de 0 à N-1, montrer que $\mathbb{P}([X_{N+1}-X_N=0])=\frac{1}{2}$.
 - d) Montrer que la variable $X_{N+1} X_N$ suit une loi de Bernoulli de paramètre $\frac{1}{2}$ En déduire la relation $\mathbb{E}(X_{N+1}) = \frac{1}{2} + \mathbb{E}(X_N)$, puis donner $\mathbb{E}(X_N)$ en fonction de N.
- 5. a) Montrer grâce aux résultats 4.b) et 4.c) que les variables $X_{N+1} X_N$ et X_N sont indépendantes.
 - b) En déduire par récurrence sur N que X_N suit une loi binomiale $\mathcal{B}(N-1,\frac{1}{2})$. En déduire la variance $\mathbb{V}(X_N)$.

Exercice 2

Trois personnes a_1, a_2, a_3 entrent à l'instant 0 dans un bureau de poste qui ne comporte que deux guichets. Les personnes a_1 et a_2 peuvent être servies immédiatement alors que a_3 doit attendre qu'un guichet soit libéré pour être servie. On supposera que le temps est mesuré par des nombres entiers avec une unité fixée.

Soit $p \in]0,1[$. On suppose que pour $i \in \{1,2,3\}$ le temps de service de la personne a_i est une variable aléatoire X_i dont la loi est donnée par :

$$\forall k \in \mathbb{N}, \ \mathbb{P}([X_i = k]) = (1 - p).p^k$$

On suppose que les variables aléatoires X_1 , X_2 et X_3 sont indépendantes.

On désigne par Y l'instant de première sortie (celle de a_1 ou a_2) qui est aussi l'instant où a_3 commence à se faire servir. Enfin, Z désigne l'instant de sortie de a_3 .

- 1. Exprimer l'événement $[Y \ge k]$ à l'aide des variables aléatoires X_1 et X_2 . Calculer pour tout entier $k \ge 0$, le nombre $\mathbb{P}([Y \ge k])$. Déterminer alors la loi de Y.
- 2. Exprimer Z en fonction de Y et X_3 . Déterminer la loi de Z.
- 3. Calculer le temps moyen passé par a_3 à la poste.

Exercice 3

On considère une suite infinie de lancers d'une pièce équilibrée. Pour tout entier naturel non nul n, on désigne par P_n l'événement « Pile apparaît au nème lancer » et par F_n l'événement « Face apparaît au nème lancer ».

Soit Y la v.a. désignant le rang du lancer où, pour la première fois, apparaît un Face précédé d'au moins deux Pile si cette configuration apparaît, et prenant la valeur 0 si cette configuration n'apparaît jamais.

On suppose que l'expérience est modélisée par un espace probabilisé $(\Omega, \mathscr{A}, \mathbb{P})$.

On pose $c_1 = c_2 = 0$ et pour tout $n \ge 3$, $c_n = \mathbb{P}([Y = n])$. On note également :

$$\forall n \geqslant 3, \ B_n = P_{n-2} \cap P_{n-1} \cap F_n \ \text{et} \ U_n = \bigcup_{i=3}^n B_i$$

On pose enfin $u_1 = u_2 = 0$ et pour tout $n \ge 3$, $u_n = \mathbb{P}(U_n)$

- 1. Montrer que la suite $(u_n)_{n\geqslant 3}$ est monotone et convergente.
- 2. a) Pour tout $n \ge 3$, calculer $\mathbb{P}(B_n)$.
 - b) Montrer que, pour tout $n \ge 3$, les événements B_n , B_{n+1} et B_{n+2} sont deux à deux incompatibles.
 - c) Calculer les valeurs de u_3 , u_4 et u_5 .
- 3. Dans cette question, on suppose $n \ge 5$.
 - a) Comparer les événements $U_n \cap B_{n+1}$ et $U_{n-2} \cap B_{n+1}$. Préciser leurs probabilités respectives.
 - **b)** Montrer que pour tout $n \ge 3$, $u_{n+1} = u_n + \frac{1}{8}(1 u_{n-2})$.
 - c) Déterminer la limite de la suite (u_n) .
 - d) Calculer $\mathbb{P}([Y=0])$.
- 4. Pour tout $n \in \mathbb{N}^*$, on pose $v_n = 1 u_n$.
 - a) Trouver $(\beta, \gamma) \in \mathbb{R}^2$ tels que pour tout $n \in \mathbb{N}^*$, $v_n = \beta v_{n+2} + \gamma v_{n+3}$.
 - **b)** Montrer que la série de terme général v_n est convergente et calculer $\sum_{n=0}^{+\infty} v_n$.