COUNT DATA AND OTHER NONNEGATIVE RESPONSES

Econometric Analysis of Cross Section and Panel Data, 2e MIT Press Jeffrey M. Wooldridge

- 1. Introduction
- 2. Poisson Regression
- 3. Negative Binomial Models
- 4. Hurdle Models
- 5. Binomial Regression
- 6. Endogenous Explanatory Variables
- 7. Panel Data

1. INTRODUCTION

- A count variable is one that takes on nonnegative integer values. In the leading case, there is no natural upper bound, so the support of y is $\{0,1,2,\ldots\}$. In other cases, there is an upper bound, and it can even change by individual: (n_i,y_i) is drawn with n_i a positive integer and then $y_i \in \{0,1,\ldots,n_i\}$. (For example, n_i is number of employees and y_i is the number who participate in an optional pension plan.)
- Focus here is on count data, but the quasi-likelihood methods can be applied to any nonnegative response.

- For the most part, count data are analyzed from one of two perspectives:
- (1) We are mainly interested in $E(y|\mathbf{x})$ and so we want consistent estimators of the mean parameters without additional assumptions but we would like our estimators to at least recognize the count nature of y and be efficient in some situations.
- (2) We are interested in other features of $D(y|\mathbf{x})$, and so we use various models for $D(y|\mathbf{x})$ and apply MLE.
- For later: If the data are censored or truncated, MLE is independsable, which means we should choose a flexible model for $D(y|\mathbf{x})$.

- If we our interest is in $E(y|\mathbf{x})$ and we observe y over its entire range, then, as usual, a linear model might provide a good approximation to the average partial effects. At a minimum, the linear model results can be compared with APEs from other methods. Goodness-of-fit can also be compared across different models of conditional means.
- The drawbacks of a linear model are that it will not ensure $\hat{E}(y|\mathbf{x}) \geq 0$ for all relevant vectors \mathbf{x} and it may not give sensible partial effects for extreme values of \mathbf{x} .

- We cannot use log(y) in interesting applications because y_i is typically zero for a nontrivial fraction of the observations. Sometimes log(1 + y) is used as the dependent variable in linear regression. But this transformation has several shortcomings.
- First, log(1) = 0, so this transformation does not help with the pile-up-at-zero problem. w = log(1 + y) is still a discrete, nonnegative variable.

• Second, even if we assume

$$E[\log(1+y)|\mathbf{x}] = \mathbf{x}\boldsymbol{\beta} \tag{1}$$

– not a great assumption because $\log(1+y) \ge 0$ – how do we interpret the β_i ? We cannot "undo" the log:

$$E(y|\mathbf{x}) \neq \exp(\mathbf{x}\boldsymbol{\beta}) - 1 \tag{2}$$

(Note that the RHS could be negative for some values of \mathbf{x} .) Generally, we cannot find $E(y|\mathbf{x})$, so we cannot find partial effects on $E(y|\mathbf{x})$.

- As an exercise, suppose you are willing to assume $\log(1+y) = \mathbf{x}\boldsymbol{\beta} + v$ where $D(v|\mathbf{x}) = D(v)$ and E(v) = 0. (Independence between v and \mathbf{x} is questionable because $v \ge -\mathbf{x}\boldsymbol{\beta}$ is required.) Show that $E(y|\mathbf{x}) = \eta \exp(\mathbf{x}\boldsymbol{\beta}) 1$ for some $\eta > 1$.
- Because y changes discretely, we cannot use the approximation that the change in logs is roughly the proportionate change in y, especially starting at y = 0. In other words, the β_j need not be good approximations to semi-elasticities or elasticities.

- One reason to use $\log(1 + y)$ rather than y in a linear regression is to guard against outliers (large counts). But we still face the problem of uncovering $E(y|\mathbf{x})$.
- A better solution is to model $E(y|\mathbf{x})$ directly. We will mainly use an exponential function: $E(y|\mathbf{x}) = \exp(\mathbf{x}\boldsymbol{\beta})$ but other functional forms are possible.

2. POISSON REGRESSION

Setup and Estimation

- If we were to start with a distribution for $D(y|\mathbf{x})$, when y is an unbounded count variable, the Poisson is natural. Recall that the distribution is completely characterized by its mean.
- Let $\mu(\mathbf{x}) = E(y|\mathbf{x})$ where $y \in \{0, 1, 2, ...\}$ and $\mu(\cdot) > 0$. Then the conditional distribution is Poisson if the density is

$$f(y|\mathbf{x}) = \exp[-\mu(\mathbf{x})][\mu(\mathbf{x})]^{y}/y!$$
(3)

where $y! = 1 \cdot 2 \cdot \cdot \cdot (y-1) \cdot y$ and 0! = 1.

• If $m(\mathbf{x}, \boldsymbol{\beta})$ is the parametric model of the mean, then the model of the density is

$$f(y|\mathbf{x};\boldsymbol{\beta}) = \exp[-m(\mathbf{x},\boldsymbol{\beta})][m(\mathbf{x},\boldsymbol{\beta})]^{y}/y!$$
 (4)

or, with $m(\mathbf{x}, \boldsymbol{\beta}) = \exp(\mathbf{x}\boldsymbol{\beta})$,

$$f(y|\mathbf{x};\boldsymbol{\beta}) = \exp[-\exp(\mathbf{x}\boldsymbol{\beta})] \exp(y\mathbf{x}\boldsymbol{\beta})/y!$$
 (5)

• The exponential is by far the most popular, and can be made flexible by including nonlinear functions (such as logs, squares, and interactions) in **x**.

- The Poisson distribution is a member of the linear exponential family. So, for $any \ y \ge 0$ with $E(y|\mathbf{x}) = m(\mathbf{x}, \boldsymbol{\beta}_o)$, where $m(\mathbf{x}, \boldsymbol{\beta}) > 0$ for all \mathbf{x} and $\boldsymbol{\beta}$, the Poisson QMLE is consistent for $\boldsymbol{\beta}_o$ regardless of arbitrary misspecification of other distributional features.
- It is easily seen that the score of the quasi-log likelihood has zero conditional mean when evaluated at β_o :

$$\ell_i(\boldsymbol{\beta}) = -m(\mathbf{x}_i, \boldsymbol{\beta}) + y_i \log[m(\mathbf{x}_i, \boldsymbol{\beta})] - \log(y_i!)$$
 (6)

$$\mathbf{s}_{i}(\boldsymbol{\beta}) = -\nabla_{\boldsymbol{\beta}} m(\mathbf{x}_{i}, \boldsymbol{\beta})' + y_{i} \nabla_{\boldsymbol{\beta}} m(\mathbf{x}_{i}, \boldsymbol{\beta})' / m(\mathbf{x}_{i}, \boldsymbol{\beta})$$

$$= \nabla_{\boldsymbol{\beta}} m(\mathbf{x}_{i}, \boldsymbol{\beta})' [y_{i} - m(\mathbf{x}_{i}, \boldsymbol{\beta})] / m(\mathbf{x}_{i}, \boldsymbol{\beta})$$
(7)

• Therefore, when $E(y|\mathbf{x}) = m(\mathbf{x}, \boldsymbol{\beta}_o)$,

$$E[\mathbf{s}_i(\boldsymbol{\beta}_o)|\mathbf{x}_i] = \nabla_{\boldsymbol{\beta}} m(\mathbf{x}_i, \boldsymbol{\beta}_o)' [E(y_i|\mathbf{x}_i) - m(\mathbf{x}_i, \boldsymbol{\beta}_o)] / m(\mathbf{x}_i, \boldsymbol{\beta}_o) = \mathbf{0}.$$
(8)

• In the exponential case, the score is particularly simple:

$$\mathbf{s}_i(\mathbf{\beta}) = \mathbf{x}_i'[y_i - \exp(\mathbf{x}_i\mathbf{\beta})] \tag{9}$$

an so the FOC is

$$\sum_{i=1}^{N} \mathbf{x}_{i}'[y_{i} - \exp(\mathbf{x}_{i}\hat{\boldsymbol{\beta}})] = \mathbf{0}.$$

- It follows that when $x_{i1} \equiv 1$ by far the leading case the residuals $\hat{u}_i \equiv y_i \exp(\mathbf{x}_i \hat{\boldsymbol{\beta}})$ sum to zero.
- The fitted values are $\hat{y}_i = \exp(\mathbf{x}_i \hat{\boldsymbol{\beta}})$, and so in the exponential case with a constant, the average of the fitted values equals \bar{y} . (Recall this also holds for a linear model estimated by OLS and a logit model estimated by Bernoulli MLE.)

• The Hessian in the exponential case is also simple and negative semi-definite for any value of β :

$$\mathbf{H}_{i}(\boldsymbol{\beta}) = -\exp(\mathbf{x}_{i}\boldsymbol{\beta})\mathbf{x}_{i}^{\prime}\mathbf{x}_{i}$$
 (10)

- For other conditional mean choices, the Hessian depends on y_i and is not always negative semi-definite.
- From our MLE notation, in general,

$$\mathbf{A}(\mathbf{x}_i, \boldsymbol{\beta}_o) = -E[\mathbf{H}_i(\boldsymbol{\beta}_o)|\mathbf{x}_i] = \nabla_{\boldsymbol{\beta}} m(\mathbf{x}_i, \boldsymbol{\beta}_o)' \nabla_{\boldsymbol{\beta}} m(\mathbf{x}_i, \boldsymbol{\beta}_o) / m(\mathbf{x}_i, \boldsymbol{\beta}_o)$$
(11)

$$\mathbf{A}_o = E[\mathbf{A}(\mathbf{x}_i, \boldsymbol{\beta}_o)] = -E[\mathbf{H}_i(\boldsymbol{\beta}_o)]. \tag{12}$$

• The inner part of the sandwich is

$$\mathbf{B}_o = E[\mathbf{s}_i(\boldsymbol{\beta}_o)\mathbf{s}_i(\boldsymbol{\beta}_o)'] = E[u_i^2 \nabla_{\boldsymbol{\beta}} m(\mathbf{x}_i, \boldsymbol{\beta}_o)' \nabla_{\boldsymbol{\beta}} m(\mathbf{x}_i, \boldsymbol{\beta}_o)/m(\mathbf{x}_i, \boldsymbol{\beta}_o)^2]$$
(13)

$$= E[\tau_o^2(\mathbf{x}_i)\nabla_{\beta}m(\mathbf{x}_i,\boldsymbol{\beta}_o)'\nabla_{\beta}m(\mathbf{x}_i,\boldsymbol{\beta}_o)/m(\mathbf{x}_i,\boldsymbol{\beta}_o)^2]$$
(14)

where

$$\tau_o^2(\mathbf{x}_i) \equiv E(u_i^2|\mathbf{x}_i) = Var(y_i|\mathbf{x}_i)$$
 (15)

is the *true* variance of y_i given \mathbf{x}_i .

• Robust variance matrix if $m(\mathbf{x}_i, \boldsymbol{\beta})$ is correctly specified:

$$\left(\sum_{i=1}^{N} \nabla_{\beta} \hat{m}_{i}^{\prime} \nabla_{\beta} \hat{m}_{i} / \hat{m}_{i}\right)^{-1} \left(\sum_{i=1}^{N} \hat{u}_{i}^{2} \nabla_{\beta} \hat{m}_{i}^{\prime} \nabla_{\beta} \hat{m}_{i} / \hat{m}_{i}^{2}\right)$$

$$\cdot \left(\sum_{i=1}^{N} \nabla_{\beta} \hat{m}_{i}^{\prime} \nabla_{\beta} \hat{m}_{i} / \hat{m}_{i}\right)^{-1}$$

$$(16)$$

or with multiplication by a degrees-of-freedom adjustment, N/(N-P).

• The usual Poisson MLE variance matrix estimator,

$$\left(\sum_{i=1}^{N} \nabla_{\beta} \hat{m}_{i}^{\prime} \nabla_{\beta} \hat{m}_{i} / \hat{m}_{i}\right)^{-1} \tag{17}$$

is valid only under the Poisson variance assumption:

$$Var(y|\mathbf{x}) = E(y|\mathbf{x}). \tag{18}$$

(However, other features of the Poisson distribution may be misspecified.)

• The GLM variance assumption for the Poisson QMLE is

$$Var(y|\mathbf{x}) = \sigma_o^2 E(y|\mathbf{x}) \tag{19}$$

for some $\sigma_o^2 > 0$. The case of overdispersion (relative to the Poisson assumption), $\sigma_o^2 > 1$, is common in applications. But underdispersion, $\sigma_o^2 < 1$, can occur.

• The Pearson residuals are $\hat{u}_i/\sqrt{\hat{m}_i}$ and the usual estimate of σ_o^2 is

$$\hat{\sigma}^2 = (N - P)^{-1} \sum_{i=1}^{N} \hat{u}_i^2 / \hat{m}_i.$$
 (20)

• The GLM asymptotic variance estimate is

$$\hat{\sigma}^2 \left(\sum_{i=1}^N \nabla_{\beta} \hat{m}_i' \nabla_{\beta} \hat{m}_i / \hat{m}_i \right)^{-1}. \tag{21}$$

The GLM standard errors are the MLE standard errors multiplied by $\hat{\sigma}$ (and often $\hat{\sigma} > 1$).

• For multiple restrictions, Wald test is easy to compute using any of the variance matrix estimates [preferably the fully robust form in (16).] • Under the GLM variance assumption a quasi-LR statistic is justified:

$$QLR = 2(\mathcal{L}_{ur} - \mathcal{L}_r)/\hat{\sigma}^2, \qquad (22)$$

where $\hat{\sigma}^2$ is from the unrestricted model, has an asymptotic χ_Q^2 distribution under H_0 .

• With overdispersion it is clear that the usual LR statistic, $2(\mathcal{L}_{ur} - \mathcal{L}_r)$, will be too large on average.

Estimation and Interretation with an Exponential Mean

• The Stata command for Poisson regression with an exponential function is one of the following (in order of decreasing robustness for inference):

```
glm y x1 ... xK, fam(poisson) link(log) robust
glm y x1 ... xK, fam(poisson) link(log)
scale(x2)
glm y x1 ... xK, fam(poisson) link(log)
```

- The option "scale(x2)" means to use the Pearson estimate of σ^2 and to report those standard errors.
- The first command is equivalent to

poisson y x1 ... xK, robust

and the last glm command is equivalent to

poisson y x1 ... xK

which means that the Poisson distribution (actually, the variance assumption) is taken to be correct in inference.

• If $E(y|\mathbf{x}) = \exp(\beta_1 + \beta_2 x_2 + ... + \beta_K x_K)$ then

$$\frac{\partial E(y|\mathbf{x})}{\partial x_j} = \beta_j \exp(\mathbf{x}\boldsymbol{\beta}). \tag{23}$$

• The APE is consistently estimated as

$$\hat{\beta}_{j} \left[N^{-1} \sum_{i=1}^{N} \exp(\mathbf{x}_{i} \hat{\boldsymbol{\beta}}) \right] = \hat{\beta}_{j} \bar{y}$$
 (24)

because as shown earlier (from the first-order condition), $\bar{\hat{y}} = \bar{y}$.

• Consequently for (roughly) continuous x_j , the Poisson coefficients multiplied by the sample average is comparable to the OLS estimates $\hat{\gamma}_j$ from y_i on $1, x_{i2}, \dots, x_{iK}$.

• For most purposes, the $\hat{\beta}_j$ are more interesting than the scaled coefficients because

$$\beta_j = \frac{\partial \log E(y|\mathbf{x})}{\partial x_j},\tag{25}$$

so $100\beta_j$ is roughly the ceteris paribus percentage change in $E(y|\mathbf{x})$ when $\Delta x_j = 1$.

- If $x_j = \log(z_j)$, then $\hat{\beta}_j$ is the estimated elasticity of $E(y|\mathbf{x})$ with respect to z_j .
- Should compute the fully robust standard errors. Also use the GLM version of the standard errors to get an estimate of σ .

• Other functional forms are easily accomodated. For example, if

$$E(y|\mathbf{z}) = \exp(\beta_1 + \beta_2 z_1 + \beta_3 z_1^2 + \mathbf{z}_2 \boldsymbol{\beta}_4), \tag{26}$$

then

$$\frac{\partial \log E(y|\mathbf{z})}{\partial z_1} = \beta_2 + 2\beta_3 z_1 \tag{27}$$

and so $100(\beta_2 + 2\beta_3 z_1)$ is roughly the percentage change in $E(y|\mathbf{z})$ when $\Delta z_1 = 1$. If β_2 and β_3 have opposite signs, the turning point in the quadratic is $z_1^* = |\beta_2/(2\beta_3)|$.

- Goodness-of-Fit: To measure how well the mean predicts y_i , can use the squared correlation between y_i and \hat{y}_i as an R-squared. (Basing it on Poisson log likelihood is too restrictive.) Or, use 1 SSR/SST.
- There are ways to test the Poisson variance assumption and the GLM variance assumption; see Chapter 18. Why test? First, to see whether a more efficient estimator might be available (see next section). Second, to see whether, if the full distribution is of interest, whether the Poisson is obviously deficient.
- If we want to estimate, say, $P(y > j|\mathbf{x})$, then we should use a flexible distribution, not the Poisson.

Efficiency of Poisson QMLE

- A loose motivation for using Poisson QMLE for count responses is that the Poisson distribution is traditionally used for modeling count data. But the assumption that the variance equals the mean is too restrictive across all applications.
- Nevertheless, it turns out the Poisson QMLE is the efficient estimator in a certain class of estimators under the GLM assumption,

$$Var(y|\mathbf{x}) = \sigma_o^2 E(y|\mathbf{x}) \tag{28}$$

• Precisely, consider any \sqrt{N} -asymptotically normal estimator that is \sqrt{N} -consistent under only the conditional mean assumption, assumption

$$E(y|\mathbf{x}) = m(\mathbf{x}, \boldsymbol{\beta}_o) \text{ for some } \boldsymbol{\beta}_o \in \mathcal{B}.$$
 (29)

Then the Poisson QMLE has a smaller asymptotic variance if the Poisson GLM variance assumption holds.

• It is important to understand that there are more efficient estimators than the Poisson QMLE if we use the mean specification *along with*

$$Var(y|\mathbf{x}) = \sigma_o^2 m(\mathbf{x}, \boldsymbol{\beta}_o)$$
 (30)

because this adds additional information useful for estimating β_o . But then such estimators generally would be inconsistent if the GLM variance assumption does not hold.

• Generally one needs to be specific about the comparison class of estimators when discussing efficiency.

3. NEGATIVE BINOMIAL MODELS

- A useful alternative to Poisson regression is the class of Negative Binomial regression models.
- Two useful approaches are what have been dubbed the NegBing I and NegBin II models (Cameron and Trivedi (1986)).
- It is important to distinguish between cases where the full distribution is assumed correctly specified, with parameters estimated by MLE, and a QMLE two-step framework. The latter only requires correct specification of the conditional mean.

MLE Estimation of NegBin II

• One way to derive NegBin II is to add an unobservable to the standard Poisson model:

$$y_i|(\mathbf{x}_i, c_i) \sim Poisson[c_i m(\mathbf{x}_i, \boldsymbol{\beta})]$$
 (31)

$$c_i|\mathbf{x}_i \sim Gamma(\eta^{-2}, \eta^{-2}) \tag{32}$$

$$E(c_i) = 1, Var(c_i) = \eta^2$$
 (33)

• Adding c_i is one device to obtain a more flexible distribution for $D(y_i|\mathbf{x}_i)$. We need the density of y_i conditional on \mathbf{x}_i .

• Can show the log-likelihood function for each *i* is

$$\ell_{i}(\boldsymbol{\beta}, \eta^{2}) = \eta^{-2} \log \left[\frac{\eta^{-2}}{\eta^{-2} + m(\mathbf{x}_{i}, \boldsymbol{\beta})} \right] + y_{i} \log \left[\frac{m(\mathbf{x}_{i}, \boldsymbol{\beta})}{\eta^{-2} + m(\mathbf{x}_{i}, \boldsymbol{\beta})} \right]$$

$$+ \log \left[\Gamma(y_{i} + \eta^{-2}) / \Gamma(\eta^{-2}) \right]$$
(34)

where $\Gamma(\cdot)$ is the gamma function: for r > 0,

$$\Gamma(r) = \int_0^\infty u^{r-1} \exp(-u) du \tag{35}$$

- MLE is relatively straightfoward. Technically, it has no known robustness properties for estimating β if the density is misspecified, but it often seems to give similar estimates to the Poisson QMLE.
- In Stata with an exponential mean:

```
nbreg y x1 ... xK, disp(mean)
```

- Stata labels $\alpha = \eta^2$.
- NegBin II implies that there *must* be overdispersion, and it must be a function of the mean.

• To see this, we can find the mean and variance of y_i conditional only on \mathbf{x}_i (and we do not even need to assume a Gamma distribution for c_i):

$$E(y_i|\mathbf{x}_i) = E[E(y_i|\mathbf{x}_i,c_i)|\mathbf{x}_i] = E(c_i|\mathbf{x}_i)m(\mathbf{x}_i,\boldsymbol{\beta}) = m(\mathbf{x}_i,\boldsymbol{\beta})$$
(36)

and

$$Var(y_i|\mathbf{x}_i) = E[Var(y_i|\mathbf{x}_i, c_i)|\mathbf{x}_i] + Var[E(y_i|\mathbf{x}_i, c_i)|\mathbf{x}_i]$$

$$= E[c_i m(\mathbf{x}_i, \boldsymbol{\beta})|\mathbf{x}_i] + Var[c_i m(\mathbf{x}_i, \boldsymbol{\beta})|\mathbf{x}_i]$$

$$= E(c_i|\mathbf{x}_i)m(\mathbf{x}_i, \boldsymbol{\beta}) + Var(c_i|\mathbf{x}_i)[m(\mathbf{x}_i, \boldsymbol{\beta})]^2$$

$$= m(\mathbf{x}_i, \boldsymbol{\beta}) + \eta^2[m(\mathbf{x}_i, \boldsymbol{\beta})]^2$$
(38)

• So, the variance for NegBin II does not allow underdisperion because $Var(y_i|\mathbf{x}_i) \geq E(y_i|\mathbf{x}_i)$, with strict inequality if $\eta^2 > 0$. Plus, it rules out the GLM variance assumption, $Var(y|\mathbf{x}) = \sigma^2 m(\mathbf{x}, \boldsymbol{\beta})$, unless $\eta^2 = 0$ and $\sigma^2 = 1$.

• Generally, the dispersion of $D(y_i|\mathbf{x}_i)$ is defined as

$$Disperson(\mathbf{x}_i) = \frac{Var(y_i|\mathbf{x}_i)}{E(y_i|\mathbf{x}_i)}$$
(39)

and is a function of \mathbf{x}_i .

• For the GLM variance assumption, the dispersion is constant and equal to σ^2 . For NegBin II, the dispersion is linear in the mean:

$$Disperson(\mathbf{x}_i) = 1 + \eta^2 m(\mathbf{x}_i, \boldsymbol{\beta})$$
 (40)

Two-Step QMLE for NegBin II

• The variance expression in (38) suggests a two-step approach.

Estimate $\boldsymbol{\beta}$ by, say, Poisson regression. Letting $u_i = y_i - E(y_i|\mathbf{x}_i)$, note that $E(u_i^2|\mathbf{x}_i) = m(\mathbf{x}_i,\boldsymbol{\beta}) + \eta^2[m(\mathbf{x}_i,\boldsymbol{\beta})]^2$. Therefore,

$$\eta^2 = E \left[\frac{u_i^2 - m(\mathbf{x}_i, \boldsymbol{\beta})}{[m(\mathbf{x}_i, \boldsymbol{\beta})]^2} \right], \tag{41}$$

so, letting \check{u}_i be the Poisson residuals, define

$$\hat{\eta}^2 = N^{-1} \sum_{i=1}^{N} \frac{\left[\boldsymbol{\breve{u}}_i^2 - m(\mathbf{x}_i, \boldsymbol{\breve{\beta}}) \right]}{\left[m(\mathbf{x}_i, \boldsymbol{\breve{\beta}}) \right]^2}$$
(42)

• Importantly, for fixed η^2 , say $\bar{\eta}^2$, the log likelihood

$$l_i(\boldsymbol{\beta}) = \bar{\eta}^{-2} \log \left[\frac{\bar{\eta}^{-2}}{\bar{\eta}^{-2} + m(\mathbf{x}_i, \boldsymbol{\beta})} \right] + y_i \log \left[\frac{m(\mathbf{x}_i, \boldsymbol{\beta})}{\bar{\eta}^{-2} + m(\mathbf{x}_i, \boldsymbol{\beta})} \right]$$
(43)

is in the LEF. (Term depending on gamma function no longer needed.)

• Exercise: Show that the score evaluated at "true" β (call it β_o) has zero conditional mean whenever the mean is correctly specified (with arbitrary misspecification of other aspects of the distribution).

• Whether or not the variance function is correct,

 $\hat{\eta}^2 \stackrel{p}{\to} E\{[u_i^2 - m(\mathbf{x}_i, \boldsymbol{\beta})]/[m(\mathbf{x}_i, \boldsymbol{\beta})]^2\}$. The two-step QMLE is like using a fixed value of η^2 . In effect, we just take

$$\bar{\eta}^2 \equiv plim_{N\to\infty}(\hat{\eta}^2)$$

and apply the LEF results.

• Can also show that plugging in $\hat{\eta}^2$ for η^2 does not affect the \sqrt{N} -asymptotic distribution of the 2SQMLE. (Verify that key result holds for two-step M-estimation.)

- The two-step NeBin II QMLE is asymptotically equivalent to weighted NLS using estimated variance function $m(\mathbf{x}_i, \mathbf{\check{\beta}}) + \hat{\eta}^2 [m(\mathbf{x}_i, \mathbf{\check{\beta}})]^2$.
- Can also fix η^2 at given value, such as $\eta^2 = 1$ for Geometric distribution.
- Using two or more different QMLEs in the LEF with the same mean function (Poisson, Geometric, two-step NegBin, NLS) can provide evidence of conditional mean misspecification.

MLE Estimation of NegBin I

• A different parameterization of the NegBin distribution, called NegBin I, has the same mean function $m(\mathbf{x}_i, \boldsymbol{\beta})$ but variance

$$(1+\eta^2)m(\mathbf{x}_i,\boldsymbol{\beta}) \tag{44}$$

so the dispersion is contant, $1 + \eta^2$.

• Like NegBin II, NegBin I allows only overdispersion.

• If, for example, the mean is correctly specified and $Var(y_i|\mathbf{x}_i) = \sigma^2 m(\mathbf{x}_i, \boldsymbol{\beta})$ with $\sigma^2 < 1$, neither NegBin I nor NegBin II estimated by MLE is consistent (although the two-step NegBin II estimator would be). A practical issue is how much the estimates differ from Poisson regression.

- In Stata with an exponential mean, NegBin I is estimated as nbreg y x1 x2 ... xK, disp(const)
- The reported estimates are interpreted just as with Poisson regression, since the mean is exponential (just like NegBin II). Stata uses $\alpha = \eta^2$.
- For NegBin I and II, need to average $\exp(\hat{\beta}_1 + \hat{\beta}_2 x_{i2} + ... + \hat{\beta}_K x_{iK})$ to get APEs. The average of fitted values is not \bar{y} .

- Goodness-of-Fit just like in Poisson case. Use squared correlation between actual and fitted values or an SSR version.
- Remember, only OLS (or NLS, if we used a nonlinear mean function) chooses the parameters to maximize the *R*-squared. The other estimators maximize the (quasi-) log likelihood function.

- Example: GROGGER.DTA. Data on men in California born in 1960 or 1961. All had been arrested at least once previously. Data from 1986.
- *narr*86 is the number of times the man was arrested during 1986. Are there deterrent effects to prior convictions or sentence lengths? What is the effect of incarceration? What about labor market opportunities?

. des

Contains data from crimel.dta

obs: 2,725 vars: 19

6 Nov 1996 10:54

size: 155,325 (98.5% of memory free)

variable name	storage type	display format	value label	variable label
narr86 nfarr86 nparr86 pcnv avgsen tottime ptime86 qemp86 inc86 durat black hispan born60 pcnvsq pt86sq inc86sq	float float byte	%9.0g %9.0g %9.0g %9.0g %9.0g %9.0g %9.0g %9.0g %9.0g		<pre># times arrested, 1986 # felony arrests, 1986 # property crme arr., 1986 proportion of prior convictions avg sentence length, mos. time in prison since 18 (mos.) mos. in prison during 1986 # quarters employed, 1986 legal income, 1986, \$100s recent unemp duration =1 if black =1 if Hispanic =1 if born in 1960 pcnv^2 ptime86^2 inc86^2</pre>

. tab narr86

# times arrested, 1986	Freq.	Percent	Cum.
0	1,970	72.29	72.29
1	559	20.51	92.81
2	121	4.44	97.25
3	42	1.54	98.79
4	12	0.44	99.23
5	13	0.48	99.71
6	4	0.15	99.85
7	1	0.04	99.89
9	1	0.04	99.93
10	1	0.04	99.96
12	1	0.04	100.00
Total	+ 2,725	100.00	

. sum pcnv avgsen ptime86 inc86

Variable	0bs	Mean	Std. Dev.	Min	Max
pcnv	2725	.3577872	.395192	0	1
avgsen	2725	.6322936	3.508031	0	59.2
ptime86	2725	.387156	1.950051	0	12
inc86	2725	54.96705	66.62721	0	541

. reg narr86 pcnv avgsen tottime ptime86 inc86 qemp86 black hispan born60, robust

Linear regression	Number of obs =	2725
	F(9, 2715) =	25.93
	Prob > F =	0.0000
	R-squared =	0.0725
	Root MSE =	.82873

narr86	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
pcnv avgsen tottime ptime86 inc86 qemp86 black hispan born60	131886 0113316 .0120693 0408735 0014617 0513099 .3270097 .1938094 022465	.0335876 .0141409 .0131776 .0067985 .0002289 .014205 .0584381 .0401625	-3.93 -0.80 0.92 -6.01 -6.38 -3.61 5.60 4.83 -0.70	0.000 0.423 0.360 0.000 0.000 0.000 0.000 0.000	197745803905950137699054204300191060791636 .2124221 .11505720853961	
_cons	.576566	.032094	13.53	0.484	.4930302	.6601019

. glm narr86 pcnv avgsen tottime ptime86 inc86 qemp86 black hispan born60, fam(poisson)

Generalized li Optimization				Resid	of obs = dual df = e parameter =	2715
Deviance Pearson	$= 2822.18 \\ = 4118.07$			(1/d:	f) Deviance = f) Pearson =	1.039479
Variance funct Link function				[Poi: [Log	sson]]	
Log likelihood	= -2248.76	51092		AIC BIC		1.657806 -18654.07
 narr86	Coef.	OIM Std. Err.	z	P> z	[95% Conf.	Interval]
pcnv avgsen tottime ptime86 inc86 qemp86 black hispan born60 _cons	4015713 0237723 .0244904 0985584 0080807 0380187 .6608376 .4998133 0510286 5995888	.0849712 .019946 .0147504 .0206946 .001041 .0290242 .0738342 .0739267 .0640518	-4.73 -1.19 1.66 -4.76 -7.76 -1.31 8.95 6.76 -0.80 -8.92	0.000 0.233 0.097 0.000 0.000 0.190 0.000 0.000 0.426 0.000	5681117 0628658 0044199 1391192 010121 0949051 .5161252 .3549196 1765678 7313966	2350308 .0153212 .0534006 0579977 0060404 .0188677 .80555 .644707 .0745106 467781

. glm narr86 pcnv avgsen tottime ptime86 inc86 qemp86 black hispan born60, fam(poisson) robust

Generalized linea	r models	No. of obs	=	2725
Optimization	: ML	Residual df	=	2715
		Scale parameter	=	1
Deviance	= 2822.184873	(1/df) Deviance	=	1.039479
Pearson	= 4118.079859	(1/df) Pearson	=	1.516788
		AIC	=	1.657806
Log pseudolikelih	1000 = -2248.761092	BIC	=	-18654.07

 narr86	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
pcnv avgsen tottime ptime86 inc86 qemp86 black hispan born60 _cons	4015713 0237723 .0244904 0985584 0080807 0380187 .6608376 .4998133 0510286 5995888	.1011619 .0236078 .0205023 .0223035 .0012276 .0341509 .0994572 .0923874 .0811403 .0893463	-3.97 -1.01 1.19 -4.42 -6.58 -1.11 6.64 5.41 -0.63 -6.71	0.000 0.314 0.232 0.000 0.000 0.266 0.000 0.529 0.000	5998449 0700427 0156934 1422724 0104867 1049532 .4659051 .3187374 2100606 7747044	2032976 .0224981 .0646741 0548445 0056747 .0289158 .85577 .6808892 .1080034 4244732

Generalized li	near models			No.	of obs =	2725
Optimization	: ML			Resi	dual df =	2715
				Scal	e parameter =	1
Deviance	= 2822.18	34873		(1/d	f) Deviance =	1.039479
Pearson	= 4118.07	9859		(1/d	f) Pearson =	1.516788
				AIC	=	1.657806
Log likelihood	1 = -2248.76	1092		BIC	=	-18654.07
	_	OIM				
narr86	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
nany	4015713	.1046488	-3.84	0.000	6066791	1964634
pcnv	0237723	.0245651	-3.64 -0.97	0.333	0719191	.0243745
avgsen tottime	.0244904	.0181663	1.35	0.333	0111149	.0600957
!						
ptime86	0985584	.0254871	-3.87	0.000	1485122	0486047
inc86	0080807	.0012821	-6.30	0.000	0105935	0055679
qemp86	0380187	.0357456	-1.06	0.288	1080788	.0320414
black	.6608376	.0909327	7.27	0.000	.4826127	.8390624
hispan	.4998133	.0910466	5.49	0.000	.3213652	.6782614
born60	0510286	.0788849	-0.65	0.518	2056401	.103583
_cons	5995888	.0828238	-7.24	0.000	7619206	437257

(Standard errors scaled using square root of Pearson X2-based dispersion)

```
. di sqrt(1.5168)
1.2315843
```

- . * The estimate of sigma is about 1.232.
- . predict narr86h_p
 (option mu assumed; predicted mean narr86)
- . corr narr86 narr86h_p
 (obs=2725)

```
| narr86 narr86~p
------
narr86 | 1.0000
narr86h_p | 0.2775 1.0000
```

- .di .2775^2 .07700625
- . * Somewhat better fit than linear model.

. * Average marginal (or partial) effects:

. margeff

Average partial effects after glm y = log(narr86)

pcnv 1623973 .0427474 -3.80 0.000 2461807 078614 avgsen 0096136 .0099407 -0.97 0.333 0290969 .0098697 tottime .009904 .0073557 1.35 0.178 0045129 .024321 ptime86 039922 .0104625 -3.82 0.000 0604282 0194158 inc86 0032679 .0005325 -6.14 0.000 0043115 0022243 qemp86 0153749 .014467 -1.06 0.288 0437298 .0129799 black .3278389 .0601313 5.45 0.000 .2099838 .4456941 hispan .2349835 .0535485 4.39 0.000 .1300302 .3399367 born60 020474 .030841 -0.66 0.507 0809213 .0399732	variable	Coef.	 Std. Err.	z	P> z	95% Conf.	Interval]
	avgsen tottime ptime86 inc86 qemp86 black hispan	0096136 .009904 039922 0032679 0153749 .3278389 .2349835	.0099407 .0073557 .0104625 .0005325 .014467 .0601313	-0.97 1.35 -3.82 -6.14 -1.06 5.45 4.39	0.333 0.178 0.000 0.000 0.288 0.000 0.000	0290969 0045129 0604282 0043115 0437298 .2099838 .1300302	.0098697 .024321 0194158 0022243 .0129799 .4456941 .3399367

. * Marginal effects at averages:

. mfx

Marginal effects after glm

y = predicted mean narr86 (predict)

= .32918187

variable	dy/dx	Std. Err.	z	P> z	[95%	C.I.]	X
pcnv avgsen tottime ptime86 inc86 qemp86 black* hispan*	132190078254 .00806180324437002660125151 .27712	.03412 .00808 .00598 .00835 .00039 .01182 .04734	 -3.87 -0.97 1.35 -3.89 -6.81 -1.06 5.85 4.79	0.000 0.333 0.177 0.000 0.000 0.290 0.000	19907 02367 003655 0488 003426 035691 .184332 .113184		.357787 .632294 .838752 .387156 54.967 2.30903 .161101 .217615
born60*	0166821	.02561	-0.65	0.515	06688	.033516	.362569

^(*) dy/dx is for discrete change of dummy variable from 0 to 1

- . * Now estimate NegBin II model:
- . nbreg narr86 pcnv avgsen tottime ptime86 inc86 qemp86 black hispan born60, disp(mean)

Negative binomial regression	Number of obs	=	2725
	LR chi2(9)	=	266.12
Dispersion = mean	Prob > chi2	=	0.0000
Log likelihood = -2157.628	Pseudo R2	=	0.0581

narr86	 Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
pcnv avgsen tottime ptime86 inc86 qemp86 black hispan born60 _cons	4770963 0173385 .0197394 1073997 0077126 0504884 .6560406 .5048465 046412 5637368	.1033295 .0261171 .0192325 .025074 .0011465 .0351857 .0923594 .0895663 .0776384	-4.62 -0.66 1.03 -4.28 -6.73 -1.43 7.10 5.64 -0.60 -6.82	0.000 0.507 0.305 0.000 0.000 0.151 0.000 0.000 0.550 0.000	6796183 0685272 0179557 1565439 0099596 1194511 .4750195 .3292998 1985804 7258495	2745743 .0338501 .0574344 0582555 0054656 .0184743 .8370617 .6803932 .1057564 4016242
/lnalpha	+ 0738912	.1177617			3046999	.1569175
alpha	 .9287728	.1093739			.7373446	1.169899

Likelihood-ratio test of alpha=0: chibar2(01) = 182.27 Prob>=chibar2 = 0.000

variable	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
pcnv	1933489	.0429863	-4.50	0.000	2776004	1090974
avgsen	0070266	.010587	-0.66	0.507	0277767	.0137235
tottime	.0079996	.0078007	1.03	0.305	0072894	.0232886
ptime86	0436086	.010438	-4.18	0.000	0640668	0231504
inc86	0031256	.0004821	-6.48	0.000	0040705	0021807
qemp86	020461	.0143138	-1.43	0.153	0485155	.0075935
black	.3256315	.061895	5.26	0.000	.2043195	.4469436
hispan	.2382802	.0535439	4.45	0.000	.1333361	.3432244
born60	0186745	.0305162	-0.61	0.541	078485	.0411361

```
. predict narr86h_nb2
(option n assumed; predicted number of events)
```

. corr narr86 narr86h_nb2
(obs=2725)

- . di .2735^2
- .07480225
- . corr narr86h_p narr86h_nb2
 (obs=2725)

	narr86~p	narr86~2
narr86h_p	1.0000	
narr86h_nb2	0.9982	1.0000

- .* Compute proportionate change in mean if pcnv increases by .1:
- . di .1*-.4015713
- -.04015713

- . * NLS with exponential mean:
- . glm narr86 pcnv avgsen tottime ptime86 inc86 qemp86 black hispan born60, fam(normal) link(log) robust

Generalized l	linear models	No. of obs	=	2725
Optimization	: ML	Residual df	=	2715
		Scale parameter	=	.6812465
Deviance	= 1849.584158	(1/df) Deviance	=	.6812465
Pearson	= 1849.584158	(1/df) Pearson	=	.6812465
		AIC	=	2.457709
Log pseudolik	xelihood = -3338.628406	BIC	=	-19626.67

narr86	Coef.	Robust Std. Err.	Z	P> z	[95% Conf.	Interval]
pcnv	1869304	.1079617	-1.73	0.083	3985315	.0246707
avgsen	0350896	.0218319	-1.61	0.108	0778793	.0077001
tottime	.03202	.0209271	1.53	0.126	0089963	.0730363
ptime86	0783047	.0219865	-3.56	0.000	1213974	035212
inc86	0107211	.0018603	-5.76	0.000	0143672	0070749
gemp86	.0051333	.0375761	0.14	0.891	0685146	.0787811
black	.6837919	.1104365	6.19	0.000	.4673403	.9002434
hispan	.5239022	.1075846	4.87	0.000	.3130403	.7347641
born60	0533576	.0973706	-0.55	0.584	2442006	.1374853
_cons	6944945	.0945734	-7.34	0.000	879855	509134

. margeff
Average partial effects after glm
 y = log(narr86)

variable	Coef.	 Std. Err.	z	 P> z		Interval]
Variabie						
pcnv	0750057	.0367633	-2.04	0.041	1470604	002951
avgsen	0140797	.0071365	-1.97	0.049	028067	0000924
tottime	.012848	.0049705	2.58	0.010	.003106	.02259
ptime86	0314518	.008387	-3.75	0.000	04789	0150136
inc86	0043018	.0008093	-5.32	0.000	0058879	0027157
qemp86	.0020597	.0141107	0.15	0.884	0255967	.0297162
black	.3389282	.0523359	6.48	0.000	.2363517	.4415046
hispan	.2459323	.0501628	4.90	0.000	.147615	.3442495
born60	0212337	.0278328	-0.76	0.446	075785	.0333176

^{. *} The big differences in Poisson and NLS suggests functional form

^{. *} misspecification of the conditional mean (not variance!)

^{. *} Adding quadratics in pcinv, ptime86, and inc86 shows they are jointly

^{. *} significant but give some odd turning points.

- . * NLS minimizes the SSR, which is not the same as maximizing the correlation
- . * between y and yhat. Still, NLS might actually fit the mean better (and it
- . * does):
- . predict narr86h_nls
 (option mu assumed; predicted mean narr86)
- . corr narr86 narr86h_nls
 (obs=2725)

	narr86	narr86~s
narr86	1.0000	
narr86h_nls	0.2829	1.0000

- . di .2829^2
- .08003241

- . * Now use Poisson QMLE to test for joint significance of quadratics in some . * variables:
- . glm narr86 pcnv avgsen tottime ptime86 inc86 qemp86 black hispan born60 pcnvsq pt86sq inc86sq, fam(poisson) robust

Robust narr86 Coef. Std. Err. z P> z [95% Conf. Inte	erval]
avgsen 025572 .0280475 -0.91 0.362 080544 tottime .0121518 .0231558 0.52 0.600 0332328 .05 ptime86 .6836811 .0975803 7.01 0.000 .4924273 .87 inc86 0120712 .0017862 -6.76 0.000 0155721 00 qemp86 .0230132 .0362222 0.64 0.525 047981 .09 black .5913914 .0993506 5.95 0.000 .3966677 .78 hispan .4220377 .0924178 4.57 0.000 .2409021 .60 born60 0929425 .0799599 -1.16 0.245 2496609 .0 pcnvsq -1.795063 .4297431 -4.18 0.000 -2.637344 95 pt86sq 1034404 .0160526 -6.44 0.000 1349029 07 inc86sq .0000207 5.03e-06 4.11 0.000 .0000108 .00	.88246 .0294 .75364 .749349 .085703 .940073 .9631732 .063776 .527822 .719779 .00305 .363229
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

- . test pcnvsq pt86sq inc86sq
- (1) [narr86]pcnvsq = 0
- (2) [narr86]pt86sq = 0
- (3) [narr86]inc86sq = 0

$$chi2(3) = 78.31$$

Prob > $chi2 = 0.0000$

- . * Compute the turning points for the variables in quadratics:
- . di .6837/(2*.1034)
- 3.3060928
- . * So the turning point for the ptime86 variable is at just over three months,
- . * which is somewhat puzzling because the effect of prison time is positive
- . * up until that point. It does imply the effect of ptime86 gets stronger
- . * as it heads to 12.

. di .0121/(2*.000021) 288.09524

. sum inc86

Variable	0bs	Mean	Std. Dev.	Min	Max
inc86	2725	54.96705	66.62721	0	541

. count if inc86 > 288
 14

- . * The turning point for inc86 is acceptable because only 14 observations
- . * are to the right of the minimum value, 288.
- . di 1.153/(2*1.795)
- .32116992
- . sum pcnv

Variable	0bs	Mean	Std. Dev.	Min	Max
pcnv	2725	.3577872	.395192	0	1

- . count if pcnv > .32
 1316
- . * pcnv has a puzzling turning point.

. * Now NLS on expanded model:

. glm narr86 pcnv avgsen tottime ptime86 inc86 qemp86 black hispan born60 pcnvsq pt86sq inc86sq, fam(normal) link(log) robust

narr86	 Coef.	Robust Std. Err.	Z 	P> z	[95% Conf.	Interval]
pcnv avgsen tottime ptime86 inc86 qemp86 black hispan born60 pcnvsq pt86sq inc86sq	1.20703 0569116 .0249159 .6230321 012419 .0170401 .5397976 .4398227 0994788 -1.659975 0923192 .0000196	.424864 .0438451 .02692 .1264642 .0022894 .0406964 .1196815 .1086155 .0988655 .5038294 .0220002 5.14e-06	2.84 -1.30 0.93 4.93 -5.42 0.42 4.51 4.05 -1.01 -3.29 -4.20 3.82	0.004 0.194 0.355 0.000 0.675 0.000 0.000 0.314 0.001 0.000	.374311914284640278463 .375166801690610627234 .3052261 .22694032932516 -2.6474631354389 9.56e-06	2.039748 .0290233 .0776781 .8708975 007932 .0968036 .7743691 .6527051 .094294 6724878 0491996 .0000297
_cons	7030874	.0950016	-7.40	0.000	8892871	5168877

^{. *} NLS and Poisson estimates now seem closer. Could compute APEs.

4. HURDLE MODELS

- As with a corner solution that is continuous over positive values, we can specify hurdle models for count data.
- The idea again is that the mechanisms determining $y_i = 0$ versus $y_i > 0$ may be different (but related to some common factors).
- If $h(\cdot|\mathbf{x}, \boldsymbol{\delta})$ denotes a count density conditional on \mathbf{x} , and $G(\mathbf{x}, \boldsymbol{\gamma})$ is a model for $P(y = 0|\mathbf{x})$, then a general density for a hurdle model is

$$f(0|\mathbf{x}, \mathbf{\theta}) = G(\mathbf{x}, \mathbf{\gamma}) \tag{45}$$

$$f(y|\mathbf{x}, \mathbf{\theta}) = [1 - G(\mathbf{x}, \mathbf{\gamma})] \frac{h(y|\mathbf{x}, \mathbf{\delta})}{[1 - h(0|\mathbf{x}, \mathbf{\delta})]}, y = 1, 2, \dots$$
(46)

• To nest common models (Poisson, NegBin I & II), choose

$$G(\mathbf{x}, \mathbf{\gamma}) = h(0|\mathbf{x}, \mathbf{\gamma}), \tag{47}$$

so that when $\gamma = \delta$, $f(y|\mathbf{x}, \theta) = h(y|\mathbf{x}, \delta)$, y = 0, 1, 2, ...

• Suppose $h(y|\mathbf{x}, \boldsymbol{\delta})$ is the Poisson distribution with mean $\exp(\mathbf{x}\boldsymbol{\beta})$. Then

$$h(0|\mathbf{x}, \boldsymbol{\beta}) = \exp[-\exp(\mathbf{x}\boldsymbol{\beta})] \tag{48}$$

and so choose

$$G(\mathbf{x}, \mathbf{\gamma}) = \exp[-\exp(\mathbf{x}\mathbf{\gamma})] \tag{49}$$

The density is then

$$f(0|\mathbf{x}, \mathbf{\theta}) = \exp[-\exp(\mathbf{x}\mathbf{y})] \tag{50}$$

$$f(y|\mathbf{x}, \mathbf{\theta}) = \{1 - \exp[-\exp(\mathbf{x}\mathbf{\gamma})]\} \frac{\exp[-\exp(\mathbf{x}\mathbf{\beta})] \exp(\mathbf{x}\mathbf{\beta})^{y}/y!}{\{1 - \exp[-\exp(\mathbf{x}\mathbf{\beta})]\}},$$
 (52)
$$y = 1, 2, \dots$$

• The MLE of γ is easily seen to be the MLE for a binary response, defining $w_i = 1[y_i > 0]$, so that

$$P(w_i = 1 | \mathbf{x}_i) = 1 - \exp[-\exp(\mathbf{x}_i \mathbf{\gamma})]$$
 (53)

- Then, β can be estimated by MLE using the truncated Poisson distribution (that is, conditional on $y_i \ge 1$).
- For more flexibility, use, say, NegBin II for $h(\cdot)$ and $G(\cdot)$.

5. BINOMIAL REGRESSION

- Now suppose y_i is a count variable taking values in $\{0, 1, ..., n_i\}$ for an integer $n_i > 0$. A random draw consists of (y_i, n_i, \mathbf{x}_i) and, as usual, the sample size is N.
- For example, $n_i = 30$ for all i and y_i is the number of days in the last 30 that a person has smoked marijuana. Or, n_i is number of adult children in a family and y_i is the number of who attended college.

• A natural starting point is to view y_i as the number of "successes" out of n_i independent Bernoulli (zero-one) trials, with chance of success $0 < p(\mathbf{x}_i, \boldsymbol{\beta}) < 1$. Typically, $p(\mathbf{x}_i, \boldsymbol{\beta}) = \Phi(\mathbf{x}_i \boldsymbol{\beta})$ or $p(\mathbf{x}_i, \boldsymbol{\beta}) = \Lambda(\mathbf{x}_i \boldsymbol{\beta})$.

- Under the previous assumptions, y_i given (n_i, \mathbf{x}_i) has a $Binomial[n_i, p(\mathbf{x}_i, \boldsymbol{\beta})]$ distribution.
- The mean and variance are

$$E(y_i|n_i,\mathbf{x}_i) = n_i p(\mathbf{x}_i,\boldsymbol{\beta}) \tag{54}$$

$$Var(y_i|n_i,\mathbf{x}_i) = n_i p(\mathbf{x}_i,\boldsymbol{\beta})[1 - p(\mathbf{x}_i,\boldsymbol{\beta})]. \tag{55}$$

• Given standard functional forms for $p(\mathbf{x}_i, \boldsymbol{\beta})$, it is easy to obtain partial effects on the mean.

• The Binomial log likelihood is

$$l_i(\boldsymbol{\beta}) = y_i \log[p(\mathbf{x}_i, \boldsymbol{\beta})] + (n_i - y_i) \log[1 - p(\mathbf{x}_i, \boldsymbol{\beta})] + \log\{n_i!/[y_i!(n_i - y_i)!]\}$$
 and we drop the last term.

- MLE estimation is straightforward.
- Importantly, the Binomial density is in the linear exponential family, so only $E(y_i|n_i,\mathbf{x}_i)$ needs to be correctly specified to consistently estimate $\boldsymbol{\beta}$.

- It is easy to devise cases particularly when the underlying Bernoulli trials for each i are correlated (so $y_i = w_{i1} + w_{i2} + ... + w_{i,n_i}$) where the binomial variance function is incorrect.
- Later we will discuss so-called "cluster sampling," which is more appropriate if we actually observe the individual w_{ir} along with covariates \mathbf{x}_{ir} .
- Fully robust inference is straightforward.
- The GLM variance assumption is

$$Var(y_i|n_i,\mathbf{x}_i) = \sigma^2 n_i p(\mathbf{x}_i,\boldsymbol{\beta})[1 - p(\mathbf{x}_i,\boldsymbol{\beta})]$$
 (57)

for $\sigma^2 > 0$.

• As before, a consistent estimator of σ^2 is based on the sum of squared weighted residuals,

$$\hat{\sigma}^2 = (N - P)^{-1} \sum_{i=1}^{N} \hat{u}_i^2 / \hat{v}_i$$
 (58)

$$\hat{u}_i = y_i - n_i p(\mathbf{x}_i, \hat{\boldsymbol{\beta}}) \tag{59}$$

$$\hat{\mathbf{v}}_i = n_i p(\mathbf{x}_i, \hat{\boldsymbol{\beta}}) [1 - p(\mathbf{x}_i, \hat{\boldsymbol{\beta}})]$$
 (60)

• There can be overdispersion ($\sigma^2 > 1$) or underdispersion ($\sigma^2 < 1$).

• In Stata:

```
glm y x1 ... xK, fam(binomial n) link(logit)
robust
glm y x1 ... xK, fam(binomial n) link(probit)
sca(x2)
glm y x1 ... xK, fam(binomial n) link(logit)
The last command produces the MLE standard errors and inference.
The variable n must be defined by you as the number of "trials," such
as nkids for the number of children in a family.
```

• To estimate the APE for a continuous x_i ,

$$\widehat{APE}_{j} = N^{-1} \sum_{i=1}^{N} n_{i} \frac{\partial p(\mathbf{x}_{i}, \hat{\boldsymbol{\beta}})}{\partial x_{j}}$$

If $p(\mathbf{x}_i, \hat{\boldsymbol{\beta}}) = G(\mathbf{x}_i \hat{\boldsymbol{\beta}})$ (by far the most common case, where usually $G(\cdot) = \Phi(\cdot)$ or $\Lambda(\cdot)$),

$$\widehat{APE}_j = \hat{\beta}_j \left[N^{-1} \sum_{i=1}^N n_i g(\mathbf{x}_i \hat{\boldsymbol{\beta}}) \right]$$

where $g(\cdot)$ is the derivative of $G(\cdot)$.

 \bullet For a discrete change in one or more elements of \mathbf{x} ,

$$\widehat{APE} = N^{-1} \sum_{i=1}^{N} n_i [G(\mathbf{x}_i^{(1)} \hat{\boldsymbol{\beta}}) - G(\mathbf{x}_i^{(0)} \hat{\boldsymbol{\beta}})]$$

• When margeff is used in Stata after GLM estmation, it computes the APEs on $G(\mathbf{x}_i \boldsymbol{\beta})$, the response probability for the underlying binary outcomes. It does not compute the APEs on $E(y|n,\mathbf{x})$.

6. ENDOGENOUS EXPLANATORY VARIABLES

- An exponential regression function is very convenient for nonnegative responses. IV methods and control function methods have been worked out to handle endogeneity. (In the CF cases, we will cover the continuous and binary cases.)
- With a single EEV, write

$$E(y_1|\mathbf{z},y_2,c_1) = \exp(\mathbf{z}_1\delta_1 + \alpha_1y_2 + c_1), \tag{61}$$

where c_1 is the omitted variable. (Extensions to general nonlinear functions of (\mathbf{z}_1, y_2) are immediate; we just add those functions with linear coefficients. Leading cases are polynomials and interactions.)

• Suppose first that y_2 has a standard linear reduced form with an additive, independent error:

$$y_2 = \mathbf{z}\pi_2 + v_2 = \mathbf{z}_1\pi_{21} + \mathbf{z}_2\pi_{22} + v_2 \tag{62}$$

$$D(c_1, v_2 | \mathbf{z}) = D(c_1, v_2), \tag{63}$$

so that (c_1, v_2) is independent of **z**. As in linear and probit models, for identification we need $\pi_{22} \neq \mathbf{0}$.

- The independence of v_2 and **z** effectively rules out discrete y_2 .
- We can write

$$E(y_1|\mathbf{z},y_2) = E(y_1|\mathbf{z},v_2) = E[\exp(c_1)|v_2] \exp(\mathbf{z}_1 \delta_1 + \alpha_1 y_2). \tag{64}$$

• Suppose we can write $c_1 = \rho_1 v_2 + e_1$ where e_1 is independent of v_2 ; always holds if (c_1, v_2) are jointly normal. Then

$$E[\exp(c_1)|v_2] = \exp(\eta_1 + \rho_1 v_2) \text{ where } \exp(\eta_1) = E[\exp(e_1)]. \text{ Then}$$

$$E(y_1|\mathbf{z}, y_2) = E(y_1|\mathbf{z}, v_2) = \exp(\eta_1 + \mathbf{z}_1 \boldsymbol{\delta}_1 + \alpha_1 y_2 + \rho_1 v_2). \tag{65}$$

• Because \mathbf{z}_1 should always contain an intercept, a two-step procedure based on this mean identifies only $\eta_1 + \delta_{11}$. But this is fine because the average partial effects depend on $\eta_1 + \delta_{11}$. To see this, the average structural function is

$$ASF(\mathbf{z}, y_2) = E_{c_1}[\exp(\mathbf{z}_1 \boldsymbol{\delta}_1 + \alpha_1 y_2 + c_1)]$$

$$= E_{c_1}[\exp(c_1)] \exp(\mathbf{z}_1 \boldsymbol{\delta}_1 + \alpha_1 y_2 + c_1)$$

$$= E_{(v_2, e_1)}[\exp(\rho_1 v_2 + e_1)] \exp(\mathbf{z}_1 \boldsymbol{\delta}_1 + \alpha_1 y_2)$$

$$= E_{v_2}[\exp(\rho_1 v_2)] \exp(\eta_1 + \mathbf{z}_1 \boldsymbol{\delta}_1 + \alpha_1 y_2)$$
(67)

where $E_{(v_2,e_1)}[\exp(\rho_1 v_2 + e_1)] = E_{v_2}[\exp(\rho_1 v_2) \exp(\eta_1)]$ follows from iterated expectations and independence of e_1 and v_2 .

• We will be able to estimate the scale term out front via sample averages. So, the APEs depend on the intercept $\eta_1 + \delta_{11}$. In what follows, absorb η_1 into δ_{11} .

• Two-step CF estimation procedure. (1) Estimate the reduced form for y_2 and obtain the residuals. (2) Include \hat{v}_2 , along with \mathbf{z}_1 and y_2 , in a QMLE in the LEF. Especially if y_1 is a count variable, Poisson QMLE is attractive, or the two-step NegBin II. For a continuous y_1 , might use the Exponential distribution (special case of Gamma).

• A (fully robust) t test of H_0 : $\rho_1 = 0$ is valid as a test that y_2 is exogenous. Average partial effects on the mean are obtained from

$$\left[N^{-1}\sum_{i=1}^{N}\exp(\hat{\rho}_1\hat{v}_{i2})\right]\exp(\mathbf{z}_1\hat{\boldsymbol{\delta}}_1+\hat{\alpha}_1y_2). \tag{68}$$

- Can use bootstrap for standard errors.
- Proportionate effects on the expected value, that is elasticities and semi-elasticities, do not depend on the scale factor out front in [•].

EXAMPLE: Data in FERTIL2.DTA. Effects of schooling on fertility in Botswana. Treat education as a continuous variable. As an IV for education, use a dummy variable for being born in the first half of the year. (Of course, must first establish partial correlation with education.)

. tab children

number of living children	Freq.	Percent	Cum.
0	1,132	25.96	25.96
1	907	20.80	46.76
2	696	15.96	62.71
3	528	12.11	74.82
4	392	8.99	83.81
5	255	5.85	89.66
6	197	4.52	94.18
7	134	3.07	97.25
8	68	1.56	98.81
9	32	0.73	99.54
10	13	0.30	99.84
11	3	0.07	99.91
12	3	0.07	99.98
13	1	0.02	100.00
Total	+ 4,361	100.00	

. tab educ

years of education	Freq.	Percent	Cum.
0	906	20.78	20.78
1	60	1.38	22.15
2	104	2.38	24.54
3	142	3.26	27.79
4	194	4.45	32.24
5	234	5.37	37.61
6	298	6.83	44.44
7	1,162	26.65	71.08
8	184	4.22	75.30
9	232	5.32	80.62
10	527	12.08	92.71
11	33	0.76	93.46
12	165	3.78	97.25
13	19	0.44	97.68
14	36	0.83	98.51
15	25	0.57	99.08
16	17	0.39	99.47
17	15	0.34	99.82
18	3	0.07	99.89
19	4	0.09	99.98
20	1	0.02	100.00
Total	4,361	100.00	

- . * First use OLS and Poisson regression assuming educ exogenous.
- . reg children educ age agesq tv electric spirit protest catholic, robust

Robust children Coef. Std. Err. t P>|t| [95% Conf. Interval] -.076893 .0064872 0.000 -.0896111 -.0641749 educ -11.85 .3382634 .3759252 .0192102 17.61 0.000 .3006016 age -.0033722 -.002683 .0003516 -7.63 0.000 -.0019937 agesq -.0438035 -.2056831 -2.49 0.013 .0825702 -.3675628 tv -.2929425 .0740342 -3.96 electric 0.000 -.4380873 -.1477976 spirit .1297104 .056653 2.29 0.022 .2407791 .0186417 1.10 .2025404 .0727998 .066177 0.271 protest -.0569409 .248915 catholic 1.20 0.230 -.059887 .094514 .0787555 -4.842674 -4.355587 .2484493 -17.530.000 -3.8685 _cons

Generalized li Optimization	: ML			Resi Scal	of obs = dual df = e parameter =	4349
Deviance	= 4090.5	-		•	f) Deviance =	
Pearson	= 3419.99	19350		(1/0)	f) Pearson =	.7863875
				AIC		3.027522
Log pseudolike	elihood = -658	37.970483		BIC	=	-32353.03
		Robust				
children	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
educ	0254056	.0026802	-9.48	0.000	0306587	0201525
age	.3663358	.0092647	39.54	0.000	.3481773	.3844944
agesq	0044562	.0001433	-31.11	0.000	004737	0041754
tv	1136942	.0439245	-2.59	0.010	1997847	0276037
electric	1333479	.0375466	-3.55	0.000	2069379	0597579
spirit	.0310247	.0251135	1.24	0.217	0181969	.0802463
protest	.0060793	.0297304	0.20	0.838	0521912	.0643499
catholic	.0029979	.0366356	0.08	0.935	0688065	.0748023
_cons	-5.765003	.1476478	-39.05	0.000	-6.054387	-5.475619

. * The estimated variance-mean ratio is about .786, so there is underdisperion

. * in this application.

. margeff

Average partial effects after glm y = log(children)

variable	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
educ age agesq tv electric spirit protest	0576149 .8493913 0101047 2459013 2878202 .0705026 .0138084	.0061909 .0231569 .000328 .0897211 .0756018 .05793	-9.31 36.68 -30.81 -2.74 -3.81 1.22 0.20	0.000 0.000 0.000 0.006 0.000 0.224 0.838		045481 .894778 0094619 0700513 1396435 .1840433
catholic	.0068061	.083297	0.08	0.935	156453	.1700652

Generalized li Optimization	inear models : ML			Resi	of obs = dual df =	4349
Deviance Pearson	= 4090.5 = 3419.99			(1/c)	le parameter = lf) Deviance = lf) Pearson =	.9405804
Log likelihood	d = -6587.97	70483		AIC BIC		3.027522 -32353.03
children	Coef.	OIM Std. Err.	z	P> z	[95% Conf.	Interval]
educ age agesq tv electric spirit protest catholic _cons	0254056 .3663358 0044562 1136942 1333479 .0310247 .0060793 .0029979 -5.765003	.0026197 .00854 .0001261 .0416736 .0337158 .0226257 .0266835 .0346797 .1423751	-9.70 42.90 -35.33 -2.73 -3.96 1.37 0.23 0.09 -40.49	0.000 0.000 0.000 0.006 0.000 0.170 0.820 0.931 0.000	0305401 .3495977 0047034 195373 1994297 0133209 0462194 0649731 -6.044053	0202712 .383074 004209 0320154 0672661 .0753703 .058378 .0709689 -5.485953

(Standard errors scaled using square root of Pearson X2-based dispersion)

^{. *} The GLM standard errors are, generally, slightly less than the

^{. *} fully robust ones.

- . * Reduced form for educ. Omitted IV from fertility equation is frsthalf
- . reg educ frsthalf age agesq tv electric spirit protest catholic

Source	SS	df 	MS		Number of obs F(8, 4349)	= 4358 = 203.40
Model Residual	18293.8049 48892.9866		286.72561 L.2423515		Prob > F R-squared Adj R-squared	= 0.0000 $= 0.2723$ $= 0.2709$
Total	67186.7914	4357 15	5.4204249		Root MSE	= 3.353
educ	Coef.	Std. Eri	f. t	P> t	[95% Conf.	Interval]
frsthalf age agesq tv electric spirit protest catholic _cons	6881822 1093716 0006491 2.623495 2.103403 .6109302 1.839693 2.188532 8.321511	.1021737 .0380656 .0006275 .2077932 .1733896 .1287208 .1480623 .1894826	-2.87 -1.03 12.63 12.13 4.75 12.43 11.55	0.000 0.004 0.301 0.000 0.000 0.000 0.000 0.000	8884947 1839997 0018792 2.216115 1.763471 .3585718 1.549416 1.81705 7.240143	4878696 0347436 .000581 3.030876 2.443335 .8632886 2.12997 2.560015 9.402878

^{. *} So frsthalf is strongly correlated with educ.

[.] predict v2h, resid

⁽³ missing values generated)

Instrumental variables (2SLS) regression

Number of obs = 4358 F(8, 4349) = 695.91 Prob > F = 0.0000 R-squared = 0.5527 Root MSE = 1.4874

children	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
educ	1700919 .3279273	.0646806 .0207317	-2.63 15.82	0.009	2968988 .2872826	0432849 .3685721
age agesq	0027435	.0003533	-7.77	0.000	0034361	0020509
tv electric	.0419927 0931133	.1926421 .1524638	0.22 -0.61	0.827 0.541	335684 3920202	.4196695
spirit	.1865364	.0700722	2.66	0.008	.0491592	.3239136
protest catholic	.2442842 .2980737	.1367228 .1624449	1.79 1.83	0.074 0.067	0237621 0204011	.5123305 .6165485
_cons	-3.611507	.5758888	-6.27	0.000	-4.740543	-2.482472

Instrumented: educ

Instruments: age agesq tv electric spirit protest catholic frsthalf

. glm children educ v2h age agesq tv electric spirit protest catholic, fam(poisson) robust

Generalized li Optimization	near models : ML			Resi	of obs = dual df = e parameter =	4348
Deviance Pearson	= 4088.33 $= 3416.43$			(1/d	f) Deviance = f) Pearson =	.9402754
Log pseudolike	elihood = -658	36.837199		AIC BIC		= 3.027461 = -32346.92
children	Coef.	Robust Std. Err.	Z	P> z	[95% Conf.	Interval]
educ v2h age agesq tv electric spirit	0697537 .0447756 .3614873 0044861 .0038535 0376484 .0578503	.0281717 .0282491 .0098567 .0001433 .0881183 .0692252	-2.48 1.59 36.67 -31.31 0.04 -0.54 1.90	0.013 0.113 0.000 0.000 0.965 0.587 0.057	1249692 0105917 .3421685 0047669 1688551 1733274 0017687	0145381 .1001429 .3808061 0042053 .1765621 .0980305 .1174693

_cons | -5.41201 .2710455 -19.97 0.000 -5.94325 -4.880771

.0875434 .0594771 1.47

.0999684 .0719366 1.39

protest

catholic

0.141 -.0290296 .2041163

.2409616

0.165 -.0410248

variable		Std. Err.	z	P> z	95% Conf.	Interval]
educ v2h age agesq tv electric spirit protest catholic	1582985 .1015305 .8376609 0101725 .0087523 0841601 .1317427 .2035704 .236228	.0641851 .0641333 .0243225 .0003292 .2005306 .1517847 .0712942 .1445524	-2.47 1.58 34.44 -30.90 0.04 -0.55 1.85 1.41 1.32	0.014 0.113 0.000 0.000 0.965 0.579 0.065 0.159 0.186		
	· 					

^{. *} Only marginal evidence of endogeneity, but estimated effect differs by a lot.

- In the case just treated, under similar assumptions can justify a plug-in method: insert \hat{y}_2 for y_2 and then use QMLE in the second stage. But it has little to offer over the CF method (and does not yield a very easy test).
- Now suppose *y*² is binary,

$$y_2 = 1[\mathbf{z}\pi_2 + v_2 \ge 0], v_2|\mathbf{z} \sim Normal(0, 1).$$
 (69)

• With $E(y_1|\mathbf{z}, y_2, c_1) = \exp(\mathbf{z}_1 \boldsymbol{\delta}_1 + \alpha_1 y_2 + c_1)$, it is tempting to try the following. First, estimate a probit model for y_2 and obtain the fitted probabilities, $\Phi(\mathbf{z}\hat{\boldsymbol{\pi}}_2)$. In a second stage, plug $\Phi(\mathbf{z}\hat{\boldsymbol{\pi}}_2)$ in for y_2 and use, say, Poisson regression of y_1 on \mathbf{z}_1 , $\Phi(\mathbf{z}\hat{\boldsymbol{\pi}}_2)$.

• This plug-in method does not consistently estimate the parameters or average partial effects. It acts as if we can pass the expected value through the exponential function. The (incorrect!) argument goes like this:

$$E(y_1|\mathbf{z}) = E[\exp(\mathbf{z}_1\boldsymbol{\delta}_1 + \alpha_1 y_2 + c_1)|\mathbf{z}]$$

$$= \exp[\mathbf{z}_1\boldsymbol{\delta}_1 + \alpha_1 E(y_2|\mathbf{z}) + E(c_1|\mathbf{z})]$$

$$= \exp[\mathbf{z}_1\boldsymbol{\delta}_1 + \alpha_1 \Phi(\mathbf{z}\boldsymbol{\pi}_2) + 0] = \exp[\mathbf{z}_1\boldsymbol{\delta}_1 + \alpha_1 \Phi(\mathbf{z}\boldsymbol{\pi}_2)].$$
(70)

Unfortunately, the second equality is wrong.

- As shown by Terza (1998), a control function method can be applied when (c_1, v_2) has a joint normal distribution and is independent of **z**.
- In order to implement a CF approach, we need to find $E(y_1|\mathbf{z},y_2) = \exp(\mathbf{x}_1\boldsymbol{\beta}_1)E[\exp(c_1)|\mathbf{z},y_2]$, where \mathbf{x}_1 is a function of (\mathbf{z}_1,y_2) which would almost certainly include y_2 linearly and possibly interacted with elements of \mathbf{z}_1 .

• Let $\tau_1^2 = Var(c_1)$ and $\rho_1 = Cov(v_2, c_1)$, so that $c_1 = \rho_1 v_2 + e_1$ where $e_1 | \mathbf{z}, v_2 \sim \text{Normal}(0, \tau_1^2 - \rho_1^2)$. Then

$$E(y_{1}|\mathbf{z}, v_{2}) = E[\exp(e_{1})] \exp(\mathbf{x}_{1}\boldsymbol{\beta}_{1} + \rho_{1}v_{2})$$

$$= \exp((\tau_{1}^{2} - \rho_{1}^{2})/2) \exp(\mathbf{x}_{1}\boldsymbol{\beta}_{1} + \rho_{1}v_{2})$$

$$= \exp((\tau_{1}^{2} - \rho_{1}^{2})/2 + \mathbf{x}_{1}\boldsymbol{\beta}_{1}) \exp(\rho_{1}v_{2}).$$
(71)

To find $E(y_1|\mathbf{z},y_2)$, we have

$$E(y_1|\mathbf{z},y_2) = \exp((\tau_1^2 - \rho_1^2)/2) \exp(\mathbf{x}_1 \boldsymbol{\beta}_1) E[\exp(\rho_1 v_2)|\mathbf{z},y_2]. \tag{72}$$

Can show

$$E[\exp(\rho_1 v_2)|\mathbf{z}, y_2 = 1] = E[\exp(\rho_1 v_2)|\mathbf{z}, v_2 > -\mathbf{z}\pi_2]$$

$$= \exp(\rho_1^2/2)\Phi(\rho_1 + \mathbf{z}\pi_2)/\Phi(\mathbf{z}\pi_2). \tag{73}$$

Similarly,

$$E[\exp(\rho_1 v_2)|\mathbf{z}, y_2 = 0] = \exp(\rho_1^2/2)[1 - \Phi(\rho_1 + \mathbf{z}\pi_2)]/[1 - \Phi(\mathbf{z}\pi_2)]$$

and so

$$E(y_1|\mathbf{z}, y_2) = \exp(\tau_1^2/2 + \mathbf{x}_1\boldsymbol{\beta}_1) \{\Phi(\rho_1 + \mathbf{z}\boldsymbol{\pi}_2)/\Phi(\mathbf{z}\boldsymbol{\pi}_2)\}^{y_2} \cdot \{[1 - \Phi(\rho_1 + \mathbf{z}\boldsymbol{\pi}_2)]/[1 - \Phi(\mathbf{z}\boldsymbol{\pi}_2)]\}^{(1-y_2)}.$$
(74)

• If \mathbf{x}_1 contains unity, as it should, then only $\tau_1^2/2 + \beta_{11}$ is identified, along with the other elements of $\boldsymbol{\beta}_1$, ρ_1 , and $\boldsymbol{\pi}_2$. This is just fine because the average structural function is $ASF(\mathbf{z}_1, y_2) = E_{c_1}[\exp(\mathbf{x}_1 \boldsymbol{\beta}_1 + c_1)] = \exp(\tau_1^2/2 + \mathbf{x}_1 \boldsymbol{\beta}_1)], \text{ and so the}$

intercept that is identified is exactly what we want for computing APEs.

- So just absorb $\tau_1^2/2$ into the intercept.
- Two-step CF method: (1) Estimate the probit model of y_2 on \mathbf{z} to obtain the MLE, $\hat{\boldsymbol{\pi}}_2$. (2) Estimate the above mean function, with $\hat{\boldsymbol{\pi}}_2$ in place of $\boldsymbol{\pi}_2$. We can use nonlinear least squares or a quasi-MLE, such as the Poisson.

- Inference should account for the two-step estimation, either using the delta method or bootstrap.
- A simple test of H_0 : $\rho_1 = 0$ is available. The derivative of the mean function with respect to ρ_1 , evaluated at $\rho_1 = 0$, is $\exp(\mathbf{x}_1\boldsymbol{\beta}_1)[\lambda(\mathbf{z}\boldsymbol{\pi}_2)]^{y_2}[-\lambda(-\mathbf{z}\boldsymbol{\pi}_2)]^{(1-y_2)}$, where $\lambda(\cdot)$ is the IMR.
- Simple variable addition test of $\rho_1 = 0$: add the variable $y_2 \log[\lambda(\mathbf{z}\hat{\boldsymbol{\pi}}_2)] (1 y_2) \log[\lambda(-\mathbf{z}\hat{\boldsymbol{\pi}}_2)]$ to the exponential model $\exp(\mathbf{x}_1\boldsymbol{\beta}_1)$. For each i define

 $\hat{r}_{i2} = y_{i2} \log[\lambda(\mathbf{z}_i \hat{\boldsymbol{\pi}}_2)] - (1 - y_{i2}) \log[\lambda(-\mathbf{z}_i \hat{\boldsymbol{\pi}}_2)]$ (called a *generalized* residual) and then use a QMLE to estimate the artificial mean function $\exp(\mathbf{x}_{i1}\boldsymbol{\beta}_1 + \rho_1 \hat{r}_{i2})$, and use a robust t statistic for $\hat{\rho}_1$.

• Unfortunately, adding \hat{r}_{i2} to an exponential regression does not solve the endogeneity problem; it is only justified as a test. For "small" amounts of endogeneity, that is, ρ_1 "close" to zero, it might be approximately valid. But how "small" it needs to be is unclear, and then maybe ignoring endogeneity is sufficient, anyway.

- An alternative to CF approaches is an IV approach. It is nice because, as in the linear case, it can be applied regardless of the nature of y_2 .
- Write $\mathbf{x}_1 = \mathbf{g}_1(\mathbf{z}_1, \mathbf{y}_2)$ as any function of exogenous and endogenous variables. If we start with

$$E(y_1|\mathbf{z},\mathbf{y}_2,c_1) = \exp(\mathbf{x}_1\boldsymbol{\beta}_1 + c_1)$$
 (75)

then we can use a transformation due to Mullahy (1997) to consistently estimate β_1 by method of moments.

• Can write

$$y_1 = \exp(\mathbf{x}_1 \boldsymbol{\beta}_1 + c_1) a_1 = \exp(\mathbf{x}_1 \boldsymbol{\beta}_1) \exp(c_1) a_1$$
$$E(a_1 | \mathbf{z}, \mathbf{y}_2, c_1) = 1. \tag{76}$$

• We can write

$$\exp(-\mathbf{x}_1\mathbf{\beta}_1)y_1 = \exp(c_1)a_1$$

• If c_1 is independent of **z** then

$$E[\exp(-\mathbf{x}_1\boldsymbol{\beta}_1)y_1|\mathbf{z}] = E[\exp(c_1)|\mathbf{z}] = E[\exp(c_1)] = 1, \tag{77}$$

where the last equality is just a normalization that defines the intercept in β_1 .

• Therefore, we have conditional moment conditions

$$E[\exp(-\mathbf{x}_1\boldsymbol{\beta}_1)y_1 - 1|\mathbf{z}] = 0, \tag{78}$$

which depends on the unknown parameters β_1 and observable data. Any function of z can be used as instruments in a nonlinear GMM procedure. An important issue in implementing the procedure is choosing instruments.

• The CF methods are convenient for testing, but the IV method can work for any kind of y_2 (continuous, binary, corner, count, fraction, and so on).

7. PANEL DATA

- Let $\{(\mathbf{x}_{it}, y_{it}) : t = 1, ..., T\}$ be a random draw for cross section i, where $y_{it} \ge 0$. We are thinking of cases where y_{it} is a count variable, but several methods can be applied for any nonnegative response.
- Can start with a standard linear unobserved effects model estimated by FE!
- The most common model for the conditional mean allows multiplicative in the heterogeneity:

$$E(y_{it}|\mathbf{x}_{it},c_i) = c_i \exp(\mathbf{x}_{it}\boldsymbol{\beta})$$
 (79)

where $c_i \ge 0$ is the unobserved effect and \mathbf{x}_{it} would incude a full set of year dummies in most cases.

- There is no difficulty in replacing $\exp(\mathbf{x}_{it}\boldsymbol{\beta})$ with a general function $m_t(\mathbf{x}_{it},\boldsymbol{\beta}) > 0$ but the exponential model is by far the most popular.
- Notice that if we start with

$$E(y_{it}|\mathbf{x}_{it},r_i) = \exp(\mathbf{x}_{it}\mathbf{\beta} + g_i)$$
 (80)

then we can take $c_i = \exp(g_i)$.

• As in the linear case, many estimation methods assume strict exogeneity of the covariates conditional on c_i :

$$E(y_{it}|\mathbf{x}_{i1},\ldots,\mathbf{x}_{iT},c_i)=E(y_{it}|\mathbf{x}_{it},c_i). \tag{81}$$

- Adding independence between c_i and \mathbf{x}_i a random effects approach
- and using $E(c_i) = 1$ as a normalization,

$$E(y_{it}|\mathbf{x}_i) = \exp(\mathbf{x}_{it}\boldsymbol{\beta}). \tag{82}$$

- Various estimation methods can be used to account for the serial dependence in $\{y_{it}\}$ conditional on \mathbf{x}_i .
- For example, a simple approach is the pooled Poisson quasi-MLE, which only requires

$$E(y_{it}|\mathbf{x}_{it}) = \exp(\mathbf{x}_{it}\boldsymbol{\beta}), \tag{83}$$

and so we do not even need to impose strict exogeneity (because we have effectively dropped the heterogeneity).

• Pooled Poisson regression is likely to be inefficient. So, can apply GEE with the Poisson family. Can specify the working correlation to be exchangeable or unstructured.

• The error term that we nominally apply the constant conditional correlation assumption to is

$$e_{it} = \frac{[y_{it} - \exp(\mathbf{x}_{it}\boldsymbol{\beta})]}{\exp(\mathbf{x}_{it}\boldsymbol{\beta}/2)}$$

• Stata commands:

```
xtgee y x1 ... xK, fam(poisson) corr(exch)
robust
xtgee y x1 ... xK, fam(poisson) corr(uns) robust
```

• If one believes the first two moments of the Poisson distribution conditional on c_i ,

$$E(y_{it}|\mathbf{x}_i,c_i) = c_i \exp(\mathbf{x}_{it}\boldsymbol{\beta})$$
 (84)

$$Var(y_{it}|\mathbf{x}_i,c_i) = c_i \exp(\mathbf{x}_{it}\mathbf{\beta})$$
 (85)

along with $D(c_i|\mathbf{x}_i) = D(c_i)$, and conditional uncorrelatedness:

$$Cov(y_{it}, y_{is}|\mathbf{x}_i, c_i) = 0, t \neq s,$$

then the GEE Poisson variance-covariance matrix is wrong.

• The derivation of $Var(y_{it}|\mathbf{x}_i)$ follows the same argument as in the derivation in the cross section case:

$$Var(y_{it}|\mathbf{x}_i) = \exp(\mathbf{x}_{it}\mathbf{\beta}) + \eta^2 \exp(2\mathbf{x}_{it}\mathbf{\beta})$$
 (86)

• For the covariances conditional on \mathbf{x}_i :

$$Cov(y_{it}, y_{is}|\mathbf{x}_i) = E[Cov(y_{it}, y_{is}|\mathbf{x}_i, c_i)|\mathbf{x}_i] + Cov[E(y_{it}|\mathbf{x}_i, c_i), E(y_{is}|\mathbf{x}_i, c_i)|\mathbf{x}_i]$$

$$= 0 + Var(c_i|\mathbf{x}_i) \exp(\mathbf{x}_{it}\boldsymbol{\beta}) \exp(\mathbf{x}_{is}\boldsymbol{\beta})$$

$$= \eta^2 \exp(\mathbf{x}_{it}\boldsymbol{\beta}) \exp(\mathbf{x}_{is}\boldsymbol{\beta})$$
(8)

- Could use multivariate WNLS using this variance-covariance structure. Use simple moment estimators for η^2 .
- The conditional correlations are not constant:

$$Corr(y_{it}, y_{is}|\mathbf{x}_i) = \frac{\eta^2 \exp(\mathbf{x}_{it}\boldsymbol{\beta}) \exp(\mathbf{x}_{is}\boldsymbol{\beta})}{\sqrt{[\exp(\mathbf{x}_{it}\boldsymbol{\beta}) + \eta^2 \exp(2\mathbf{x}_{it}\boldsymbol{\beta})][\exp(\mathbf{x}_{is}\boldsymbol{\beta}) + \eta^2 \exp(2\mathbf{x}_{is}\boldsymbol{\beta})]}}.$$

• Rather than just first and second moment assumptions, suppose we maintain

$$D(y_{it}|\mathbf{x}_i,c_i) \sim Poisson[c_i \exp(\mathbf{x}_{it}\boldsymbol{\beta})]$$
 (88)

$$D(c_i|\mathbf{x}_i) \sim Gamma(\delta,\delta),$$
 (89)

where $E(c_i) = 1$ and $Var(c_i) = 1/\delta$, and conditional independence:

$$D(y_{i1},...,y_{iT}|\mathbf{x}_i,c_i) = \prod_{t=1}^{T} D(y_{it}|\mathbf{x}_i,c_i)$$
 (90)

then we have the random effects Poisson model.

• Can show that the log likelihood for observation *i* is (up to addive factors)

$$\ell_{i}(\mathbf{\theta}) = \sum_{t=1}^{T} y_{it} \mathbf{x}_{it} + \delta \log(\delta) - \log[\Gamma(\delta)]$$

$$+ \log \left[\sum_{t=1}^{T} \exp(\mathbf{x}_{it} \mathbf{\beta}) + n_{i} \right] - (n_{i} + \delta) \log \left[\sum_{t=1}^{T} \exp(\mathbf{x}_{it} \mathbf{\beta}) + \delta \right]$$

where $\Gamma(\cdot)$ is the gamma function and $n_i = y_{i1} + ... + y_{iT}$.

• Maximizing the sample log likelihood is relatively straightforward.

Available in Stata as

xtpoisson y x1 ... xK, re

• This estimator has no known robustness properties if any of the assumptions are violated. In particular, it, like RE probit, requires the conditional independence assumption in (90). GEE is more robust but less efficient if all of the RE assumptions hold.

• In the pooled Poisson, GEE Poisson, and Poisson RE approaches, can implement a Chamberlain-Mundlak correlated random effects (CRE) device by assuming

$$c_i = \exp(\psi + \bar{\mathbf{x}}_i \boldsymbol{\xi}) a_i, \tag{91}$$

where a_i is independent of \mathbf{x}_i with unit mean. Then

$$E(y_{it}|\mathbf{x}_i) = \exp(\psi + \mathbf{x}_{it}\boldsymbol{\beta} + \mathbf{\bar{x}}_i\boldsymbol{\xi}). \tag{92}$$

• So, use any of the previous methods by adding $\bar{\mathbf{x}}_i$ as a set of covariates. Can include time-constant covariates, say \mathbf{z}_i , if desired.

 Stata commands (assuming time averages have been generated using, say, egen)

glm y x1 ... xK x1bar ... xKbar, fam(poisson) cluster(id)

xtgee y x1 ... xK x1bar ... xKbar, fam(poisson)
corr(exch) robust

xtpoisson y x1 ... xK x1bar ... xKbar, re

• Pooled Poisson and GEE only use $E(y_{it}|\mathbf{x}_i) = \exp(\psi + \mathbf{x}_{it}\boldsymbol{\beta} + \mathbf{\bar{x}}_i\boldsymbol{\xi})$.

The Poisson RE method requires that $D(y_{it}|\mathbf{x}_i, c_i)$ is Poisson, a_i in (91) has a $Gamma(\delta, \delta)$ distribution, and conditional independence over time.

• An important estimator that can be used under just

$$E(y_{it}|\mathbf{x}_i,c_i)=c_i\exp(\mathbf{x}_{it}\mathbf{\beta})$$

is the conditional MLE derived under a Poisson distributional assumption and the conditional independence assumption.

• It is often called the **fixed effects Poisson estimator**. It is best characterized as a conditional MLE (like fixed effects logit). But, in this case, $\hat{\beta}$ turns out to be identical to using pooled Poisson QMLE and treating the c_i as parameters to estimate (one for each i). (This is a rare case, like the linear model, where "estimating" the unobserved effects does not result in an incidental parameters problem for estimating β .)

• For FE Poisson, we *nominally* start with strict exogeneity and the Poisson distributional assumptions,

$$D(y_{it}|\mathbf{x}_i,c_i) \sim Poisson[c_i \exp(\mathbf{x}_{it}\boldsymbol{\beta})], \tag{93}$$

and conditional independence,

$$D(y_{i1},...,y_{iT}|\mathbf{x}_i,c_i) = \prod_{t=1}^{T} D(y_{it}|\mathbf{x}_i,c_i),$$
 (94)

but put no restrictions on $D(c_i|\mathbf{x}_i)$.

• Let $n_i = y_{i1} + ... + y_{iT}$ be the total number of counts.

• Can show that the joint distribution of $(y_{i1}, ..., y_{iT})$ conditional on (n_i, \mathbf{x}_i, c_i) is multinomial with probabilities

$$p_t(\mathbf{x}_i, \boldsymbol{\beta}) = \frac{c_i \exp(\mathbf{x}_{it} \boldsymbol{\beta})}{\sum_{r=1}^T c_i \exp(\mathbf{x}_{ir} \boldsymbol{\beta})} = \frac{\exp(\mathbf{x}_{it} \boldsymbol{\beta})}{\sum_{r=1}^T \exp(\mathbf{x}_{ir} \boldsymbol{\beta})}$$
(95)

so that the heterogeneity c_i has disappeared.

• Time-constant variables drop out, as in linear case. For example, γz_i would come out in front as $\exp(\gamma z_i)$ and cancel in the numerator and demoninator.

• The FE Poisson estimator maximimizes the resulting log-likelihood function. For each *i*,

$$l_i(\mathbf{\beta}) = \sum_{t=1}^{T} y_{it} \log[p_t(\mathbf{x}_i, \mathbf{\beta})]. \tag{96}$$

• In Stata:

xtpoisson y x1 ... xK, fe

• Important result: The Poisson distribution can be arbitrarily misspecified, and any kind of serial correlation can be present, and the the FEP estimator is consistent provided

$$E(y_{it}|\mathbf{x}_{i1},\ldots,\mathbf{x}_{iT},c_i)=E(y_{it}|\mathbf{x}_{it},c_i)=c_i\exp(\mathbf{x}_{it}\boldsymbol{\beta}).$$

- In particular, y_{it} need not even be a count variable. It could be continuous, or a corner. However, the mean $c_i \exp(\mathbf{x}_{it}\boldsymbol{\beta})$ should make logical sense.
- We do require strict exogeneity.
- See Wooldridge (1999, Journal of Econometrics) for a general proof.

- Whether or not y_{it} is a count, should make inference fully robust to serial correlation and violation of the Poisson distribution.
- The score can be written as

$$\mathbf{s}_i(\boldsymbol{\beta}) = \nabla_{\boldsymbol{\beta}} \mathbf{p}(\mathbf{x}_i, \boldsymbol{\beta})' \mathbf{W}(\mathbf{x}_i, \boldsymbol{\beta}) [\mathbf{y}_i - n_i \mathbf{p}(\mathbf{x}_i, \boldsymbol{\beta})]$$

where $\mathbf{p}(\mathbf{x}_i, \boldsymbol{\beta})$ is the $T \times 1$ vector with elements $p_t(\mathbf{x}_i, \boldsymbol{\beta})$ and $\mathbf{W}(\mathbf{x}_i, \boldsymbol{\beta})$ is the $T \times T$ diagonal matrix with elements $1/p_t(\mathbf{x}_i, \boldsymbol{\beta})$.

• See text, Section 18.7.4, for verification that $E[\mathbf{s}_i(\boldsymbol{\beta}_o)|\mathbf{x}_i] = \mathbf{0}$ (when one is careful to indicate the true value).

• As usual, the robust variance matrix estimator of $\sqrt{N}(\hat{\beta} - \beta)$ has the sandwich form, $\hat{\mathbf{A}}^{-1}\hat{\mathbf{B}}\hat{\mathbf{A}}^{-1}$ with

$$\hat{\mathbf{A}} = N^{-1} \sum_{i=1}^{N} n_i \nabla_{\beta} \mathbf{p}(\mathbf{x}_i, \hat{\boldsymbol{\beta}})' \mathbf{W}(\mathbf{x}_i, \hat{\boldsymbol{\beta}}) \nabla_{\beta} \mathbf{p}(\mathbf{x}_i, \hat{\boldsymbol{\beta}})$$
(99)

$$\mathbf{\hat{B}} = N^{-1} \sum_{i=1}^{N} \mathbf{s}_{i}(\mathbf{\hat{\beta}}) \mathbf{s}_{i}(\mathbf{\hat{\beta}})'$$
(100)

• If the Poisson distribution is correct and independence holds, both conditional on (\mathbf{x}_i, c_i) , then $\hat{\mathbf{A}}^{-1}$ can be used.

• Fully robust form in Stata (as an "ado" file):

```
xtpqml y x1 ... xK, fe
```

- In effect, xtpqml has superceded xtpoisson.
- Can cluster at a higher level of aggregation (we will discuss later). For example, if have a few firms per industry, and lots of industries, might allow within-industry correlation:

```
xtset firmid year
xtpqml y x1 ... xK, fe cluster(industid)
```

EXAMPLE: The patents-R&D relationship. 226 firms over 10 years. Data compiled by NBER (update?). Need to allow for substantial lag.

- . use patent
- . des cusip year patents rnd lrnd

variable name	_	display format	value label	variable label
cusip year patents rnd lrnd	float byte int float float	%9.0g %9.0g %9.0g		firm identifier 72 through 81 patents applied for R&D expend, current mill \$ log(1+rnd)

. tab patents if year == 81

patents applied for	 Freq.	Percent	Cum.
0	125	55.31	55.31
1	37	16.37	71.68
2	8	3.54	75.22
3	7	3.10	78.32
4	4	1.77	80.09
5	4	1.77	81.86
6	5	2.21	84.07
7	5	2.21	86.28
8	j 1	0.44	86.73
9	. 2	0.88	87.61

Fixed-eff	fects (within) regression	Number of obs	=	904
Group var	riable: cusip	Number of groups	=	226
R-sq: wi	thin = 0.1117	Obs per group: min	n =	4
be	etween = 0.3831	avg	g =	4.0
ov	$y_{erall} = 0.2870$	max	x =	4

(Std. Err. adjusted for 226 clusters in cusip)

patents	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
lrnd lrnd_1 lrnd_2 lrnd_3 lrnd_4 lrnd_5 lrnd_6 y79 y80 y81 _cons	-4.891047 -8.770371 -1.399383 -3.218844 -8.89406 -4.574966 -13.7178 2.282507 .6192547 -9.543918 93.2246	4.487274 5.825649 3.024928 3.173328 4.729909 5.090455 6.755444 1.051129 1.261851 2.827286 18.58406	-1.09 -1.51 -0.46 -1.01 -1.88 -0.90 -2.03 2.17 0.49 -3.38 5.02	0.277 0.134 0.644 0.312 0.061 0.370 0.043 0.031 0.624 0.001 0.000	-13.73351 -20.25018 -7.360195 -9.472087 -18.21464 -14.60603 -27.02983 .2111897 -1.867302 -15.11526 56.60353	3.951412 2.70944 4.561428 3.034399 .4265244 5.456098 4057713 4.353824 3.105811 -3.972572 129.8457
rho	+ .93762215	(fraction	of varia	 nce due	 to u_i)	

- . gen lpatents = log(1 + patents)
- . xtreg lpatents lrnd lrnd_1 lrnd_2 lrnd_3 lrnd_4 lrnd_5 lrnd_6 y79-y81, fe cluster(cusip)

Fixed-effects (within) regression Group variable: cusip	Number of obs = Number of groups =	= 904 = 226
R-sq: within = 0.4905 between = 0.7607 overall = 0.5018	Obs per group: min = avg = max =	= 4.0

(Std. Err. adjusted for 226 clusters in cusip)

lpatents	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
lrnd lrnd_1 lrnd_2 lrnd_3 lrnd_4 lrnd_5 lrnd_6 y79 y80 y81 _cons	2326016 2410225 1720482 0878612 1987401 .0657994 3073906 .042687 0160116 727999 3.638258	.1544488 .1543456 .135934 .1543296 .1446014 .1778924 .1660589 .0475658 .0593244 .0781183 .3846061	-1.51 -1.56 -1.27 -0.57 -1.37 0.37 -1.85 0.90 -0.27 -9.32 9.46	0.133 0.120 0.207 0.570 0.171 0.712 0.065 0.370 0.787 0.000	5369528 5451702 4399149 3919775 4836863 2847489 6346203 0510444 132914 8819359 2.880368	.0717496 .0631252 .0958184 .2162552 .0862061 .4163477 .0198391 .1364183 .1008909 574062 4.396149
sigma_u sigma_e rho	3.034257 .50399388 .97315113	(fraction	of variar	nce due t	co u_i)	

(Std. Err. adjusted for 226 clusters in cusip)

patents	Coef.	Robust Std. Err.	Z	P> z	[95% Conf.	Interval]
lrnd_2	.731086935299642556217 .5953963 .39250390209466314388310047264389727 -1.871174 .8720311	.3421723 .3324251 .4482509 .5041567 .2426363 .3541238 .436545 .0618751 .0639321 .0994861 .2072225	2.14 -1.06 -0.57 1.18 1.62 -0.06 -0.72 -1.62 -6.87 -18.81 4.21	0.033 0.288 0.568 0.238 0.106 0.953 0.471 0.104 0.000 0.000	.0604416 -1.004538 -1.134177392732808305457150165 -1.17000122174555642773 -2.066163 .4658825	1.401732 .2985449 .6229339 1.583525 .8680624 .6731232 .5412242 .0208004 3136681 -1.676185 1.27818

```
. test lrnd lrnd 1 lrnd 2 lrnd 3 lrnd 4 lrnd 5 lrnd 6
      [patents]lrnd = 0
 (1)
(2) [patents]lrnd_1 = 0
(3) [patents]lrnd_2 = 0
(4) [patents]lrnd 3 = 0
(5) [patents]lrnd 4 = 0
(6) [patents]lrnd 5 = 0
(7) [patents]lrnd_6 = 0
         chi2(7) = 224.78
        Prob > chi2 = 0.0000
. lincom lrnd + lrnd_1 + lrnd_2 + lrnd_3 + lrnd_4 + lrnd_5 + lrnd_6
(1) [patents]lrnd + [patents]lrnd_1 + [patents]lrnd_2 + [patents]lrnd_3
       + [patents]lrnd_4 + [patents]lrnd_5 + [patents]lrnd_6 = 0
patents | Coef. Std. Err. z P>|z| [95% Conf. Interval]
        (1) | .775034 .0710549 10.91 0.000 .6357689 .914299
```

. xtpoisson patents lrnd lrnd_1 lrnd_2 lrnd_3 lrnd_4 lrnd_5 lrnd_6 y79-y81, fe note: 19 groups (76 obs) dropped because of all zero outcomes

					- ` `	
828 207	of obs = of groups =		Conditional fixed-effects Poisson regression Group variable: cusip			
4 4.0 4	er group: min = avg = max =	Obs per				
2588.77 0.0000	chi2(10) = chi2 =	Wald cl Prob >		46	d = -1288.63	Log likelihood
Interval]	[95% Conf.	P> z	z	Std. Err.	Coef.	patents
.2071103 .2443688 .2659956 .0704909	1728101 2148056 0368013 2478084	0.860 0.900 0.138 0.275	0.18 0.13 1.48 -1.09	.0969203 .1171385 .0772455 .0812003	.0171501 .0147816 .1145972 0886588	lrnd lrnd_1 lrnd_2 lrnd_3

y80 | -.4133889 .0463611 -8.92 0.000 -.504255 -.3225228 y81 | -1.785541 .0709727 -25.16 0.000 -1.924645 -1.646437

-0.81

3.63 1.68

-4.11

0.416

0.000

0.094

0.000

-.3033336

-.0361188

-.1721592

.2256

.1254955

.7542438

.4620972

-.0610312

.1093972

.1348606

.1270982

.0283495

1rnd 4

lrnd_5

lrnd_6

y79

-.0889191

.4899219

.2129892

-.1165952

. lincom lrnd + lrnd_1 + lrnd_2 + lrnd_3 + lrnd_4 + lrnd_5 + lrnd_6

(1) [patents]lrnd + [patents]lrnd_1 + [patents]lrnd_2 + [patents]lrnd_3
+ [patents]lrnd_4 + [patents]lrnd_5 + [patents]lrnd_6 = 0

patents	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
(1)	.6718622	.1905634	3.53	0.000	.2983647	1.04536

^{. *} But the above standard errors assume the Poisson variance assumption and

^{. *} conditional independence.

. xtpqml patents lrnd lrnd_1 lrnd_2 lrnd_3 lrnd_4 lrnd_5 lrnd_6 y79-y81, fe note: 19 groups (76 obs) dropped because of all zero outcomes

Conditional fixed-effects Poisson regression

Number of obs = 828

Group variable: cusip

Number of groups = 207

Obs per group: min = 4

avg = 4.0

max = 4

Coef. Std. Err. P> | z | [95% Conf. Interval] patents .2071103 lrnd .0171501 .0969203 0.18 0.860 -.1728101 .0147816 .1171385 -.2148056 .2443688 lrnd 1 0.13 0.900 1.48 .2659956 .1145972 .0772455 lrnd 2 0.138 -.0368013 -.2478084 .0704909 -.3033336 .1254955 0.275 -.0886588 1rnd 3 .0812003 -1.09 $lrnd_4$.1093972 -0.81 0.416 -.0889191 .1348606 .2256 .7542438 1rnd 5 .4899219 3.63 0.000 lrnd_6 .2129892 .1270982 1.68 0.094 -.0361188 .4620972 .0283495 -.1165952 -4.11 -.1721592 -.0610312 y79 0.000 -.504255 -8.92 0.000 у80 -.4133889 .0463611 -.3225228 -1.785541.0709727 -25.160.000 -1.924645y81 -1.646437

Calculating Robust Standard Errors...

patents	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
patents						
lrnd	.0171501	.1362715	0.13	0.900	2499372	.2842374
lrnd_1	.0147816	.149009	0.10	0.921	2772706	.3068339
lrnd_2	.1145972	.0554412	2.07	0.039	.0059344	.2232599
lrnd_3	0886588	.0889173	-1.00	0.319	2629335	.085616
lrnd_4	0889191	.1358352	-0.65	0.513	3551512	.1773131
lrnd_5	.4899219	.1846058	2.65	0.008	.1281011	.8517427
lrnd_6	.2129892	.2252369	0.95	0.344	2284671	.6544455
y79	1165952	.0386929	-3.01	0.003	1924318	0407585
у80	4133889	.0679516	-6.08	0.000	5465717	2802061
y81	-1.785541	.1304135	-13.69	0.000	-2.041147	-1.529936
Wald chi2(10)	= 472.12				 Prob > chi2	= 0.0000

- . lincom lrnd + lrnd_1 + lrnd_2 + lrnd_3 + lrnd_4 + lrnd_5 + lrnd_6
- (1) [patents]lrnd + [patents]lrnd_1 + [patents]lrnd_2 + [patents]lrnd_3 + [patents]lrnd_4 + [patents]lrnd_5 + [patents]lrnd_6 = 0

patents	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
(1)	.6718622	.3317594	2.03	0.043	.0216257	1.322099

^{. *} The robust 95% CI for the long run elasticity is much wider than the CI that

^{. *} maintains the Poisson distribution and serial independence. The LR elasticity

^{. *} is (barely) statistically different from zero at the 5% leve, but not

^{. *} statistically different from unity.

• A simple test to detect violation of strict exogeneity is to add $\mathbf{w}_{i,t+1}$ to the FE Poisson estimation and test its joint significance, where $\mathbf{w}_{i,t+1}$ is a subset of $\mathbf{x}_{i,t+1}$ that varies (at least somewhat) across i and t and which is suspected of violating strict exogeneity. As usual, a fully robust statistic should be used.

- . sort cusip year
- . gen lrndp1 = lrnd[_n+1] if year < 81
 (226 missing values generated)</pre>
- . xtpqml patents lrnd lrnd_1 lrnd_2 lrnd_3 lrnd_4 lrnd_5 lrnd_6 y79-y80 lrndp1, fe note: 20 groups (60 obs) dropped because of all zero outcomes

Conditional fixed-effects Poisson regression	Number of obs	=	618
Group variable: cusip	Number of groups	=	206

pate	ents	Coef. S	Std. Err.	Z	P> z	[95% Conf.	Interval]
lrr lrr lrr lrr lrr	nd_1 .0 nd_2 .0 nd_3 0 nd_4 .0 nd_5 .0 nd_6 .0 y79 0 y80 0	0177909 0946511 0679123 0443248 4613278 0658392 0857226 3748064	.1372362 .14832 .1415702 .0325261 .0565806	0.14 1.20 -0.82 0.32 3.11 0.47 -2.64 -6.62	0.413 0.747 0.002 0.642 0.008 0.000	.1168286 239157 0604763 2303727 2246532 .170626 2116333 1494727 4857023 6439883	.5733977 .2747388 .2497785 .0945482 .3133029 .7520296 .3433118 0219726 2639105 2394338
	·						

Calculating Robust Sta	ndard Errors
------------------------	--------------

patents	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
patents						
lrnd	.3451131	.0998228	3.46	0.001	.149464	.5407623
lrnd_1	.0177909	.1486163	0.12	0.905	2734917	.3090735
lrnd_2	.0946511	.050323	1.88	0.060	0039802	.1932823
lrnd_3	0679123	.0822041	-0.83	0.409	2290293	.0932048
lrnd_4	.0443248	.1940994	0.23	0.819	3361031	.4247527
lrnd_5	.4613278	.1864198	2.47	0.013	.0959517	.8267039
lrnd_6	.0658392	.1976914	0.33	0.739	3216287	.4533072
y79	0857226	.0461068	-1.86	0.063	1760902	.004645
у80	3748064	.0716907	-5.23	0.000	5153177	2342951
lrndp1	4417111	.1257841	-3.51	0.000	6882434	1951787
Wald chi2(10) = 198.11						

• The rejection of strict exogeneity of the R&D variable is pretty strong, although the sign is a bit hard to interpret.

Estimation Under Sequential Exogeneity

• RE Poisson, FE Poisson, and GEE all assume strict exogeneity of $\{\mathbf{x}_{it}: t=1,2,...,T\}$ conditional on c_i . Pooled Poisson QMLE (or other pooled methods) do not require strict exogeneity but they effectively rule out correlation between c_i and $\{\mathbf{x}_{it}: t=1,...,T\}$ (as do RE and GEE methods unless we included time averages)

• Now we assume only sequential exogeneity of $\{\mathbf{x}_{it}: t=1,2,...,T\}$ conditional on c_i with an exponential regression function:

$$E(y_{it}|\mathbf{x}_{it},\ldots,\mathbf{x}_{i1},c_i)=E(y_{it}|\mathbf{x}_{it},c_i)=c_i\exp(\mathbf{x}_{it}\boldsymbol{\beta}).$$

• We are silent on whether

$$E(y_{it}|\mathbf{x}_{iT},\ldots,\mathbf{x}_{it},\ldots,\mathbf{x}_{i1},c_i)=E(y_{it}|\mathbf{x}_{it},\ldots,\mathbf{x}_{i1},c_i)$$

but we think it might not be true.

- As in the linear case, this setup applies to models with lagged dependent variables so, say, $y_{i,t-1}$ is in \mathbf{x}_{it} , or functions of $y_{i,t-1}$, such as $1[y_{i,t-1} = 0]$ and $1[y_{i,t-1} > 0] \log(y_{i,t-1})$ and also finite distributed lag (FDL) models, where $\mathbf{x}_{it} = (\mathbf{z}_{it}, \mathbf{z}_{i,t-1}, \dots, \mathbf{z}_{i,t-Q})$.
- We need to choose \mathbf{x}_{it} appropriately so that no further lags of elements in \mathbf{x}_{it} matter.

• By definition we can write

$$y_{it} = c_i \exp(\mathbf{x}_{it}\mathbf{\beta}) r_{it} \tag{101}$$

$$E(r_{it}|\mathbf{x}_{it},\ldots,\mathbf{x}_{i1},c_i)=1.$$
 (102)

• Viewing $\{r_{it}: t=1,...,T\}$ as multiplicative "shocks," this setup allows $\mathbf{x}_{i,t+1}$ to be correlated with r_{it} , which is necessarily true if \mathbf{x}_{it} contains functions of $y_{i,t-1}$. It can also can also be true when there is feedback in static or FDL models.

• Generally, $\{r_{it}\}$ is serially correlated, although when \mathbf{x}_{it} contains lags of y_{it} , the intention is probably that

$$E(r_{it}|\mathbf{x}_{it},y_{i,t-1},\mathbf{x}_{i,t-1},\ldots,\mathbf{x}_{i1},c_i)=E(r_{it}|\mathbf{x}_{it},\ldots,\mathbf{x}_{i1},c_i)=1$$

in which case $\{r_{it}\}$ would not be serially correlated. In finite distributed lag models, with $\mathbf{x}_{it} = (\mathbf{z}_{it}, \mathbf{z}_{i,t-1}, \dots, \mathbf{z}_{i,t-Q})$, would expect serial correlation.

• How do we obtain moments that can be used to estimate β ? We can write, for t = 1, ..., T - 1,

$$y_{it} - y_{i,t+1} \left[\frac{\exp(\mathbf{x}_{it}\boldsymbol{\beta})}{\exp(\mathbf{x}_{i,t+1}\boldsymbol{\beta})} \right] = c_i \exp(\mathbf{x}_{it}\boldsymbol{\beta}) r_{it} - c_i \exp(\mathbf{x}_{it}\boldsymbol{\beta}) r_{i,t+1}$$
(103)

$$= c_i \exp(\mathbf{x}_{it}\mathbf{\beta})(r_{it} - r_{i,t+1})$$
 (104)

• Using only the condition $E(r_{it}|\mathbf{x}_{it},...,\mathbf{x}_{i1},c_i)=1$ we can show that the RHS has zero mean conditional on $(\mathbf{x}_{it},...,\mathbf{x}_{i1},c_i)$:

$$E[c_i \exp(\mathbf{x}_{it}\boldsymbol{\beta})(r_{it} - r_{i,t+1})|\mathbf{x}_{it}, \dots, \mathbf{x}_{i1}, c_i]$$
 (105)

$$= c_i \exp(\mathbf{x}_{it}\boldsymbol{\beta}) E(r_{it} - r_{i,t+1} | \mathbf{x}_{it}, \dots, \mathbf{x}_{i1}, c_i)$$
(106)

$$=c_i\exp(\mathbf{x}_{it}\mathbf{\beta})(1-1)=0; \qquad (107)$$

note that $E(r_{i,t+1}|\mathbf{x}_{it},...,\mathbf{x}_{i1},c_i)=1$ by iterated expectations.

• Therefore,

$$E\{[y_{it} - y_{i,t+1} \exp((\mathbf{x}_{it} - \mathbf{x}_{i,t+1})\boldsymbol{\beta}) | \mathbf{x}_{it}, \dots, \mathbf{x}_{i1}] = 0.$$
 (108)

• Because these moment conditions depend only on observed data and the parameter vector $\boldsymbol{\beta}$, GMM can be used to estimate $\boldsymbol{\beta}$, and fully robust inference is straightforward.

- Because the moment conditions depend on the change in the explanatory variables, GMM approach might suffer from a weak instruments problem. [That is, $\mathbf{x}_{it} \mathbf{x}_{i,t+1}$ is only weakly correlated with functions of $(\mathbf{x}_{it}, \dots, \mathbf{x}_{i1})$.]
- Choice of instruments is not obvious. What might be some good approximations to the optimal instruments?

• If violation of strict exogeneity is due only to a lagged dependent variable, can use a conditional MLE approach. For example, suppose

$$D(y_{it}|\mathbf{z}_i,y_{i,t-1},\ldots,y_{i1},y_{i0},c_i) = Poisson[c_i \exp(\mathbf{x}_{it}\boldsymbol{\beta})]$$

where, say, \mathbf{x}_{it} can be any function of $(\mathbf{z}_{it}, y_{i,t-1})$. (Adding lags of \mathbf{z}_{it} , or further lags of y_{it} , is relatively straightforward with several time periods.). This assumption implies correct dynamics as well as strict exogeneity of $\{\mathbf{z}_{it}: t=1,\ldots,T\}$.

• As usual, the presence of dynamics and heterogeneity in nonlinear models raises an "initial conditions" problem. A simple solution is to model the dependence between c_i and (\mathbf{z}_i, y_{i0}) :

$$c_i = \exp(\psi + \mathbf{z}_i \mathbf{\gamma} + \xi y_{i0}) a_i \tag{110}$$

$$D(a_i|\mathbf{z}_i, y_{i0}) = Gamma(\delta, \delta)$$
(111)

where $E(a_i) = 1$ and $\delta = 1/\eta^2 = 1/Var(a_i)$.

• As shown in Wooldridge (2005, Journal of Applied Econometrics), the resulting likelihood function is identical to the Poisson RE likelihood with explanatory variables

$$(\mathbf{z}_{it}, y_{i,t-1}, \mathbf{z}_i, y_{i0}) \tag{112}$$

in the case $\mathbf{x}_{it} = (\mathbf{z}_{it}, y_{i,t-1})$.

• So, to implement the method, generate \mathbf{z}_i and y_{i0} so that they appear on every line (time period) of data for each i.

Contemporaneous Endogeneity

• How can we handle heterogeneity and contemporaneously endogenous explanatory variables? There are control function and GMM approaches, with the former being more convenient but imposing more restrictions.

- Papke and Wooldridge (2008, Journal of Econometrics) propose a control function approach that allows contemporaneous endogeneity and for heteroegeneity to be correlated with the instruments.
- We can start with an omitted variables formulation:

$$E(y_{it1}|\mathbf{z}_i,y_{it2},c_{i1},r_{it1}) = \exp(\mathbf{z}_{it1}\boldsymbol{\delta}_1 + \alpha_1y_{it2} + c_{i1} + r_{it1}),$$

where c_{i1} is unobserved heterogeneity and r_{it1} is a time-varying omitted variable.

• The $\{\mathbf{z}_{it}\}$ – including the excluded instruments – are assumed to be strictly exogenous here. We must have at least one time-varying IV.

• If y_{it2} is (roughly) continuous we might specify

$$y_{it2} = \psi_2 + \mathbf{z}_{it}\boldsymbol{\pi}_2 + \mathbf{\bar{z}}_i\boldsymbol{\xi}_2 + v_{it2},$$

where we have imposed the Chamberlain-Mundlak device to allow heterogeneity affecting y_{it2} to be correlated with \mathbf{z}_i through the time average, $\mathbf{\bar{z}}_i$.

• If we also specify

$$c_{i1} = \psi_1 + \mathbf{\bar{z}}_i \boldsymbol{\xi}_1 + a_{i1}$$

then we can write

$$E(y_{it1}|\mathbf{z}_i, y_{it2}, v_{it1}) = \exp(\psi_1 + \mathbf{z}_{it1}\boldsymbol{\delta}_1 + \mathbf{\bar{z}}_i\boldsymbol{\xi}_1 + \alpha_1 y_{it2} + v_{it1}),$$
where $v_{it1} = a_{i1} + r_{it1}$.

- It is reasonable (but not completely general) to assume (v_{it1}, v_{i2}) is independent of \mathbf{z}_i .
- If we specify $E[\exp(v_{it1})|v_{it2}] = \exp(\eta_1 + \rho_1 v_{it2})$ (as would be true under joint normality), we obtain the estimating equation

$$E(y_{it1}|\mathbf{z}_i,y_{it2},v_{it2}) = \exp(\kappa_1 + \mathbf{z}_{it1}\delta_1 + \alpha_1y_{it2} + \mathbf{\bar{z}}_i\boldsymbol{\xi}_1 + \rho_1v_{it2}).$$

- Now we can apply a simple two-step method. (1) Obtain the residuals \hat{v}_{it2} from the pooled OLS estimation y_{it2} on 1, \mathbf{z}_{it} , $\mathbf{\bar{z}}_i$ across t and i. (2) Use a pooled NLS or QMLE (perhaps the Poisson or NegBin II) to estimate the exponential function, where $(\mathbf{\bar{z}}_i, \hat{v}_{it2})$ are explanatory variables along with $(\mathbf{z}_{it1}, y_{it2})$. (As usual, a fully set of time period dummies is a good idea in the first and second steps).
- Note that y_{it2} is not strictly exogenous in the estimating equation. and so GEE should not be used. GMM with carefully constructed moments could be.

• Estimating the ASF is straightforward:

$$\widehat{ASF}_{t}(\mathbf{z}_{t1}, y_{t2}) = N^{-1} \sum_{i=1}^{N} \exp(\hat{\kappa}_{1} + \mathbf{z}_{t1} \hat{\delta}_{1} + \hat{\alpha}_{1} y_{t2} + \mathbf{\bar{z}}_{i} \hat{\xi}_{1} + \hat{\rho}_{1} \hat{v}_{it2});$$

that is, we average out $(\mathbf{\bar{z}}_i, \hat{v}_{it2})$.

• Test the null of contemporaneous exogeneity of y_{it2} by using a fully robust t statistic on \hat{v}_{it2} .

• A GMM approach can be applied if the instruments satisfy a sequential exogeneity assumption; we do not need strict exogeneity:

$$y_{it} = c_i \exp(\mathbf{x}_{it}\mathbf{\beta}) r_{it} \tag{113}$$

$$E(r_{it}|\mathbf{z}_{it},\ldots,\mathbf{z}_{i1},c_i)=1, \qquad (114)$$

which contains the the case with sequentially exogenous $\{\mathbf{x}_{it}\}$ as a special case $(\mathbf{z}_{it} = \mathbf{x}_{it})$.

• Now start with the transformation

$$\frac{y_{it}}{\exp(\mathbf{x}_{it}\mathbf{\beta})} - \frac{y_{i,t+1}}{\exp(\mathbf{x}_{i,t+1}\mathbf{\beta})} = c_i(r_{it} - r_{i,t+1}). \tag{115}$$

• In the sequential exogeneity case,

 $E(r_{it}|\mathbf{x}_{it},...,\mathbf{x}_{i1},c_i)=E(r_{i,t+1}|\mathbf{x}_{it},...,\mathbf{x}_{i1},c_i)=1$, and so multiplying the moment conditions by any function of \mathbf{x}_{it} is allowed. We get the previous moment conditions by multiplying through by $\exp(\mathbf{x}_{it}\boldsymbol{\beta})$.

• Cannot multiply through by $\exp(\mathbf{x}_{it}\boldsymbol{\beta})$ if \mathbf{x}_{it} is contemporaneously endogenous (correlated with r_{it}).

• Can easily show that $E[c_i(r_{it} - r_{i,t+1})|c_i, \mathbf{z}_{it}, \dots, \mathbf{z}_{i1}) = 0$, which leads to the moment conditions

$$E\left[\frac{y_{it}}{\exp(\mathbf{x}_{it}\boldsymbol{\beta})} - \frac{y_{i,t+1}}{\exp(\mathbf{x}_{i,t+1}\boldsymbol{\beta})} \middle| \mathbf{z}_{it}, \dots, \mathbf{z}_{i1}\right] = 0, t = 1, \dots, T-1.$$
 (116)

• Using these directly generally causes computational problems. For example, if $x_{itj} \ge 0$ for some j and all i and t, with strict inequality in some cases – for example, if x_{itj} is a time dummy – then the moment conditions can be made arbitarily close to zero by choosing β_j larger and larger.

• Windmeijer (2002, Economics Letters) suggested (effectively) multiplying through by $\exp(\mu_x \beta)$ where

$$\mu_{\mathbf{x}} \equiv T^{-1} \sum_{r=1}^{T} E(\mathbf{x}_{ir}). \tag{117}$$

In other words, $\mu_{\mathbf{x}}$ is the average of the $E(\mathbf{x}_{it})$ across t. Notice that $\exp(\mu_{\mathbf{x}}\boldsymbol{\beta})$ is a constant and so the orthogonality conditions are not changed.

• The modified moment conditions are

$$E\left[\frac{y_{it}}{\exp[(\mathbf{x}_{it}-\boldsymbol{\mu}_{\mathbf{x}})\boldsymbol{\beta}]}-\frac{y_{i,t+1}}{\exp[(\mathbf{x}_{i,t+1}-\boldsymbol{\mu}_{\mathbf{x}})\boldsymbol{\beta}]}\,\middle|\,\mathbf{z}_{it},\ldots,\mathbf{z}_{i1}\,\right]=0. \tag{118}$$

• As a practical matter, replace μ_x with the overall sample average,

$$\bar{\mathbf{x}} = (NT)^{-1} \sum_{i=1}^{N} \sum_{r=1}^{T} \mathbf{x}_{ir}.$$
 (119)

• The deviated variables, $\mathbf{x}_{it} - \mathbf{\bar{x}}$, will always take on positive and negative values, and this seems to solve the GMM computational problem. (But more work could be done on this, especially in models with time dummies.)

• The sample moments look like

$$\sum_{i=1}^{N} \sum_{t=1}^{T-1} \mathbf{g}'_{it} \left[\frac{y_{it}}{\exp[(\mathbf{x}_{it} - \overline{\mathbf{x}})\boldsymbol{\beta}]} - \frac{y_{i,t+1}}{\exp[(\mathbf{x}_{i,t+1} - \overline{\mathbf{x}})\boldsymbol{\beta}]} \right]$$

where $\mathbf{g}_{it} \equiv \mathbf{g}_t(\mathbf{z}_{it}, \dots, \mathbf{z}_{i1})$ is a function of the instruments up through time t. Or, stack these over the time periods for more efficiency.

• As usual, we use GMM with an optimal weighting matrix to set the sample moments as close to zero as possible.

- For computing standard errors and conducting statistical inference, we can probably ignore the sampling variation in $\bar{\mathbf{x}}$ (it is an estimator of $\mu_{\mathbf{x}}$) in computing standard errors. The sampling variation in $\hat{\boldsymbol{\beta}}$, given that $\hat{\boldsymbol{\beta}}$ is based on a kind of differencing, likely swamps that in $\bar{\mathbf{x}}$.
- The earlier moment conditions under sequential exogeneity replace $\bar{\mathbf{x}}$ with \mathbf{x}_{it} .

• An alternative approach is to multiply through by $\exp(\mu_{\mathbf{x}_t} + \mu_{\mathbf{x}_{t+1}})$ to get

$$E\left[\frac{y_{it}\exp(\mathbf{\mu}_{\mathbf{x}_{t+1}}\mathbf{\beta})}{\exp[(\mathbf{x}_{it}-\mathbf{\mu}_{\mathbf{x}_t})\mathbf{\beta}]}-\frac{y_{i,t+1}\exp(\mathbf{\mu}_{\mathbf{x}_t}\mathbf{\beta})}{\exp[(\mathbf{x}_{i,t+1}-\mathbf{\mu}_{\mathbf{x}_t+1})\mathbf{\beta}]}\left|\mathbf{z}_{it},\ldots,\mathbf{z}_{i1}\right.\right]=0,$$

and then replace $\mu_{\mathbf{x}_r}$, r = t, t + 1, with its sample analog,

$$\mathbf{\bar{x}}_r = N^{-1} \sum_{i=1}^N \mathbf{x}_{ir}.$$

• Results in demeaning the covariates within each time period.