Ćwiczenie nr 33: Kondensatory

1 Wprowadzenie

1.1 Cel doświadczenia

Pomiar pojemności kondensatorów powietrznych i z warstwą dielektryka w celu wyznaczenia stałej elektrycznej ε_0 (przenikalności dielektrycznej próżni) i przenikalności względnych ε_r różnych materiałów.

1.2 Opis stanowiska

W skład stanowiska weszły:

- kondensator płaski zestawiony z dwóch kołowych płyt aluminiowych o płaskiej powierzchni oraz z przekładek wytoczonych z płyty pleksiglasowej
- miernik LCR (używany w zakresach 200pF, 200nF)
- śruba mikrometryczna (dokładność 0,01mm)
- linijka (dokładność 1mm)
- płyta PCV, płyta drewniana

Rys. 1. Układ pomiarowy^[1]

2 Sposób wykonania doświadczenia

Doświadczenie rozpoczęliśmy od włączenia miernika LCR, nastawienia zakresu 200pF oraz wyzerowania miernika. Zestawialiśmy następnie kondensator umieszczając między płytami 3 słupki pleksiglasowych przekładek. Wykonaliśmy 5 pomiarów dla wzrastającej liczby (1, 2, 3, 4, 5) przekładek w każdym z trzech słupków krążków, na zakończenie powtórzyliśmy pomiar dla kondensatora z pojedynczymi przekładkami. Mierzyliśmy grubość całego słupka użytego do budowy kondensatora. Wyznaczyliśmy dzięki tym pomiarom funkcję iloczynu Cd od odległości między okładkami.

W drugiej części doświadczenia zmieniliśmy zakres miernika na 200nF i zmierzyliśmy pojemności kondensatorów zestawionych z okładek metalowych rozdzielonych płytami wykonanymi z PCV oraz drewna.

Dokonaliśmy również pomiaru średnicy przekładek pleksiglasowych (za pomocą śruby mikrometrycznej) oraz średnicy aluminiowej płyty kondensatora (za pomocą linijki).

3 Wyniki pomiarów

3.1 Pomiar pojemności kondensatora w zależności od odległości między okładkami

Liczba	dl	d2	d3	d = (d1 + d2 + d3)/3	С	Cd		
przekładek	[mm]	[mm]	[mm]	[mm]	[pF]	[mm·pF]		
1	3,85	3,83	3,86	3,85	119,6	460,1		
2	6,79	6,74	6,71	6,75	71,3	481,0		
3	10,64	10,58	10,54	10,59	48,3	511,3		
4	13,49	13,5	13,39	13,46	39,4	530,3		
5	17,34	17,39	17,25	17,33	32	554,5		
1	3,86	3,85	3,85	3,85	118,7	457,4		

Tabela 1. Pomiar pojemności kondensatora w funkcji odległości okładek kondensatora

Średnica płyty kondensatora: D = 23.9 cm

Średnica przekładki pleksiglasowej: D_p = 19,52 mm

Pojemność kondensatora maleje w miarę dokładania kolejnych warstw przekładek, zatem zakładamy, że błędy grube nie wystąpiły.

3.2 Pomiar pojemności kondensatora z dielektrykami

Materiał	<i>d</i> [mm]	C [nF]
PCV	3,27	0,33
Drewno	12,11	0,12

Tabela 2. Pomiar pojemności kondensatora dla różnych dielektryków

4 Opracowanie wyników pomiarów

4.1 Wykres

Wykres zależności iloczynu Cd od odległości między okładkami wraz z dopasowanym wielomianem:

4.2 Analiza dopasowanego wielomianu

Wartość ekstrapolowana do d=0 iloczynu Cd wynosi:

$$(Cd)_{extr} \approx 425,0 \ mm \cdot pF$$

Korzystając z funkcji REGLINP wiemy również, że:

$$u((Cd)_{extr}) = 2.5 \ mm \cdot pF$$

4.3 Wyznaczenie ε_0

Kondensator, którego używamy do wyznaczenia ε_0 traktujemy jako połączenie równoległe kondensatora z dielektrykiem o powierzchni okładek $3S_p$ i przenikalności ε_r (pleksiglas) oraz kondensatora próżniowego (przybliżenie dla kondensatora powietrznego używanego w doświadczeniu) o powierzchni okładek $S-3S_p$.

Pojemność tak powstałego kondensatora wynosi:

$$C = \frac{\varepsilon_0(S - S_p)}{d} + \frac{\varepsilon_0 \varepsilon_r \cdot 3S_p}{d} = \varepsilon_0 \frac{S + 3S_p(\varepsilon_r - 1)}{d}$$

Stad:

$$\varepsilon_0 = \frac{Cd}{S + 3S_p(\varepsilon_r - 1)}$$

 ε_0 – stała elektryczna

 ε_r – przenikalność względna dielektryka (w tym przypadku pleksiglasu)

S – pole powierzchni okładek kondensatora

 S_p — pole powierzchni przekładek

d-odległości między okładkami kondensatora

Uwzględniając, że $S=\frac{\pi D^2}{4}$ oraz $S_p=\frac{\pi D_p^2}{4}$, gdzie D – średnica kondensatora, D_p – średnica przekładki oraz że względny udział pola rozproszonego jest najmniejszy dla wartości ekstrapolowanej $(\mathcal{C}d)_{extr}$, otrzymujemy wzór końcowy do wyznaczenia ε_0 na podstawie wykonanych pomiarów w postaci:

$$\varepsilon_0 = \frac{4}{\pi} \frac{(Cd)_{extr}}{D^2 + 3(\varepsilon_r - 1)D_p^2}$$

Po wstawieniu danych:

$$\varepsilon_0 = \frac{4}{\pi} \frac{425,0mm \cdot pF}{(239 \text{ mm})^2 + 3(2.6 - 1)(19,52 \text{ mm})^2} \approx 0,00917943 \frac{pF}{mm} \approx 9,179 \cdot 10^{-12} \frac{F}{m}$$

4.4 Niepewność pomiarowa $u(\varepsilon_0)$

Korzystając z uproszczonego wzoru $\varepsilon_0 = \frac{4(Cd)_{extr}}{\pi D^2}$ oraz prawa przenoszenia niepewności względnej: $\frac{u(\varepsilon_0)}{\varepsilon_0} = \sqrt{\left(\frac{u((Cd)_{extr})}{(Cd)_{extr}}\right)^2 + \left(\frac{-2u(D)}{D}\right)^2}$

$$\frac{u(\varepsilon_0)}{\varepsilon_0} = \sqrt{\left(\frac{u((Cd)_{extr})}{(Cd)_{extr}}\right)^2 + \left(\frac{-2u(D)}{D}\right)^2}$$

otrzymujemy:

$$u(\varepsilon_0) = \varepsilon_0 \sqrt{\left(\frac{u((Cd)_{extr})}{(Cd)_{extr}}\right)^2 + \left(\frac{-2u(D)}{D}\right)^2}$$

Niepewność $u((Cd)_{extr})$ podana przez funkcję REGLINP: $u((Cd)_{extr}) = 2.5 \ mm \cdot pF$ Niepewność pomiarowa typu B średnicy kondensatora: u(D) = 1mm

Stąd

$$u(\varepsilon_0) = 9,179 \cdot 10^{-12} \frac{F}{m} \sqrt{\left(\frac{2,5 \ mm \cdot pF}{425,0 \ mm \cdot pF}\right)^2 + \left(\frac{-2 \cdot 1 \text{mm}}{239 \ \text{mm}}\right)^2} \approx 0,094 \cdot 10^{-12} \frac{F}{m}$$

4.5 Niepewność rozszerzona i porównanie wyliczonej wartości ε_0 z wartością tabelaryczną

Niepewność rozszerzona dla k=3 wynosi:

$$U(\varepsilon_0) = 0.29 \cdot 10^{-12} \frac{F}{m}$$

Wartość tabelaryczna stałej elektrycznej $\varepsilon_{0t} = 8,854 \cdot 10^{-12} \frac{F}{m}$ [2]

$$|\varepsilon_{0t} - \varepsilon_0| = \left| 8,854 \cdot 10^{-12} \frac{F}{m} - 9,179 \cdot 10^{-12} \frac{F}{m} \right| = 0,325 \cdot 10^{-12} \frac{F}{m} > U(\varepsilon_0)$$

Uzyskany wynik nie jest zgodny z tabelaryczną stałą elektryczną $\varepsilon_{0t} = 8.854 \cdot 10^{-12} \frac{F}{m}$ mimo uwzględnienia niepewności rozszerzonej.

4.6 Wyznaczenie względnej przenikalności elektrycznej wybranych dielektryków

Przekształcając wzór $C = \frac{\varepsilon_0 \varepsilon_r S}{d}$ otrzymujemy:

$$\varepsilon_r = \frac{Cd}{\varepsilon_0 S}$$

Korzystając z wartości tablicowej $\epsilon_{0t} = 8.854 \cdot 10^{-12} \frac{F}{m}$ i wykonanych pomiarów C, d oraz uwzględniając że $S = \frac{\pi D^2}{4}$ dostajemy wartości:

Materiał	d [mm]	C [nF]	$arepsilon_r$
PCV	3,27	0,33	2,717
drewno	12,11	0,12	3,66

Tabela 3. Przenikalność elektryczna wybranych dielektryków

4.7 Niepewność pomiarowa względnej przenikalności elektrycznej wybranych dielektryków

Korzystając z prawa przenoszenia niepewności względnej:

$$\frac{u(\varepsilon_r)}{\varepsilon_r} = \sqrt{\left(\frac{u(C)}{C}\right)^2 + \left(\frac{u(d)}{d}\right)^2 + \left(\frac{-2u(D)}{D}\right)^2}$$

stad:

$$u(\varepsilon_r) = \varepsilon_r \sqrt{\left(\frac{u(\mathcal{C})}{\mathcal{C}}\right)^2 + \left(\frac{u(d)}{d}\right)^2 + \left(\frac{-2u(D)}{D}\right)^2}$$

u(d) = 0.01 mm

$$u(D) = 1 \text{ mm}$$

 $u(C) = \frac{0.01 \text{nF}}{\sqrt{3}} \approx 0.0058 \text{nF}$

dla PCV:

$$u(\varepsilon_r) = 2.717 \sqrt{\left(\frac{0.0058 \text{nF}}{0.33 \text{ nF}}\right)^2 + \left(\frac{0.01 \text{ mm}}{3.27 \text{mm}}\right)^2 + \left(\frac{-2 \text{ mm}}{239 \text{ mm}}\right)^2} \approx 0.054$$

dla drewna:

$$u(\varepsilon_r) = 3.66 \sqrt{\left(\frac{0.0058 \text{nF}}{0.12 \text{ nF}}\right)^2 + \left(\frac{0.01 \text{ mm}}{12.11}\right)^2 + \left(\frac{-2 \text{ mm}}{239 \text{ mm}}\right)^2} \approx 0.18$$

4.8 Niepewność rozszerzona $U(\varepsilon_r)$ i porównanie z wartością tabelaryczną

Dla PCV:

Niepewność rozszerzona $U(\varepsilon_r)$ dla k=2:

$$II(\varepsilon_{m}) = 0.11$$

$$U(\varepsilon_r) = 0.11$$
 Wartość tabelaryczna ε_{rt} dla PCV wynosi 2,8
$$|\varepsilon_{rt} - \varepsilon_r| = |2.8 - 2.717| = 0.083 < U(\varepsilon_r)$$

Wyznaczona wartość względnej przenikalności PCV jest zgodna z wartością tabelaryczną w granicach rozszerzonej niepewności pomiarowej.

Dla drewna:

Niepewność rozszerzona U(ε_r) dla k=2:

$$U(\varepsilon_r) = 0.36$$

Wartość tabelaryczna ε_{rt} dla drewna wynosi 4

$$|\varepsilon_{rt} - \varepsilon_r| = |4 - 3,66| = 0,34 < U(\varepsilon_r)$$

Wyznaczona wartość względnej przenikalności drewna jest zgodna z wartością tabelaryczną w granicach rozszerzonej niepewności pomiarowej.

4.9 Wyznaczenie prędkości światła

Korzystając z zależności na prędkość rozchodzenia się fal elektromagnetycznych w danym ośrodku, możemy w szczególności wyznaczyć prędkość światła c, czyli prędkość rozchodzenia się fal elektromagnetycznych w próżni.

$$c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}}$$

Korzystamy z otrzymanej wcześniej wartości ε_0 , natomiast wartość μ_0 liczymy z definicji ampera i traktujemy jako stałą:

wartość prądu, który płynąc przez dwa nieskończone równoległe przewody odległe o a = 1 m wytwarza

wartosc prądu, ktory płynąc przez dwa meskonczone rownolegie przewody odiegie c
siłę
$$F = 2 \cdot 10^{-7}$$
 N na odcinku $l = 1$ m długości przewodu. Siła ta dana jest wzorem:
$$F = \frac{\mu_0 l^2 l}{2\pi a} \qquad \text{stąd: } \mu_0 = \frac{2\pi a F}{l^2 l} = \frac{2\pi \cdot 1[m] \cdot 2 \cdot 10^{-7}[N]}{(1[A])^2 \cdot 1[m]} = 4\pi \cdot 10^{-7} \frac{Vs}{Am}$$

I otrzymujem

$$c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}} = \frac{1}{\sqrt{4\pi \cdot 10^{-7} \frac{Vs}{Am} \cdot 9,179 \cdot 10^{-1} \frac{F}{m}}} \approx 294\,440\,389 \frac{m}{s} \approx 294\,400\,000 \frac{m}{s}$$

4.10 Niepewność pomiarowa u(c)

Korzystając z prawa przenoszenia niepewności względnej

$$\frac{u(c)}{c} = \sqrt{\left(\frac{-\frac{1}{2}u(\varepsilon_0)}{\varepsilon_0}\right)^2} = \frac{1}{2} \cdot \frac{u(\varepsilon_0)}{\varepsilon_0}$$

stad:

$$u(c) = c \cdot \frac{1}{2} \cdot \frac{u(\varepsilon_0)}{\varepsilon_0} = \frac{1}{2} \cdot 294\,400\,000 \frac{m}{s} \cdot \frac{0,094 \cdot 10^{-12} \frac{F}{m}}{9,179 \cdot 10^{-1} \frac{F}{m}} \approx 1\,600\,000 \frac{m}{s}$$

4.11 Niepewność rozszerzona U(c) i porównanie z wartościa tabelaryczna

Niepewność rozszerzona dla k=3:

$$U(c) = 4\,800\,000\frac{m}{s}$$

Porównanie z wartością tabelaryczną:

$$|c - c_t| = \left| 294\,400\,000 \frac{m}{s} - 299\,792\,458 \frac{m}{s} \right| = 5\,392\,458 \frac{m}{s} > U(c)$$

Oszacowana prędkość światła nie zgadza się z wartością tabelaryczną $c = 299792458\frac{m}{c}$ [2] mimo uwzględnienia rozszerzonej niepewności pomiarowej.

5 Wnioski

Uzyskane wyniki stałej elektrycznej ε₀ oraz prędkości światła c nie są zgodne z wartościami tabelarycznymi mino uwzględnienia rozszerzonej niepewności pomiarowej.

Taki rezultat doświadczenia mógł być spowodowany niedokładnością pomiarów – błędem w odczycie wymiarów, wadliwością miernika LCR lub korzystaniem z przybliżonego wzoru do oszacowania niepewności. W szczególności mógł pojawić się również błąd systematyczny.

Uzyskane wyniki względnej przenikalności elektrycznej PCV oraz drewna są natomiast zgodne

5 Źródła

[1] https://pf.agh.edu.pl/home/wfiis/pracfiz/Opisy cwiczen/33 opis.pdf, data dostępu: 18.10.2024

z wartościami tabelarycznymi w zakresie rozszerzonych niepewności pomiarowych.

[2]https://www.cke.gov.pl/images/_EGZAMIN_MATURALNY_OD_2023/Informatory/wybrane_wz ory_stale_fizykochemiczne_EM2023.pdf, data dostępu: 18.10.2024

Załącznik: Wyniki pomiarów przesłane po zakończonych zajęciach

Liczba	d_1	d_2	d_3	$d = (d_1 + d_2 + d_3)/3$			C			Cd					
przekładek	[mm]	[mm]	[mm]	[mm]			[pF]			[mm·pF]					
1	3,85	3,83	3,86	3,846666667			119	119,6		460,061333					
2	6,79	6,74	6,71	6,746666667			71,3		481,037333						
3	10,64	10,58	10,54	10,58666667			48,3		511,336						
4	13,49	13,5	13,39	13,46			39,4		530,324						
5	17,34	17,39	17,25	17,32666667		32			554,453333						
1	3,86	3,85	3,85	3,853333333			118	8,7		457,390667					
									Cd(d)						
				600			y = -0	,0911x² +	+ 9,0552	c + 425,0	01				
		Cd[pF*mm]		500	500		y = -0,0911x ² + 9,								
		460,0613333		400											
		481,0373333													
	10,586667 13,46			300											
		554,4533333		200											
		457,3906667													
	0,000000	107,3300007		100											
				0 0	2 4		6	8	10	12	1	4	16	18	20
				0	2 4	•	0	0	10	12	1	4	10	10	20
	Cd	425,01	pFmm			średnica przekładki średnica kondensatora		ki					"+-0,01mm" "+-0,1cm"		
								atora							
	Materiał	d[mm]	C[nF]												
	PCV	3,27													
	drewno	12,11	0,12												