APELLIDO Y NOMBRE:

<u>Nota:</u> El examen se aprueba con una nota de 4 (o mayor) que equivale a **60 puntos**.

Datos útiles:

- $|g| = 9.8 \ m/s^2$
- Identidad trigonométrica: $sen(2\theta) = 2 sen(\theta) cos(\theta)$.
- Las raíces del polinomio cuadrático $p(x) = ax^2 + bx + c$ son iguales a: $\frac{-b \pm \sqrt{b^2 4ac}}{2a}$
- 1. Una bala es disparada desde un cañón ubicado en el punto O con una velocidad inicial $|\vec{v}_0|=30~m/s$ que forma un ángulo θ con la horizontal. El cañón se encuentra a una distancia R=50~m del borde de un acantilado de altura h=20~m.

- (a) (15 pts.) Determine el ángulo de disparo θ máximo (θ_m) para que el proyectil impacte en el punto A que se encuentra justo en el borde del acantilado.
- (b) (15 pts.) Suponga que se realiza un segundo disparo utilizando el ángulo θ_m determinado en el punto (a) pero duplicando el módulo de la velocidad inicial $(2|\vec{v}_0|)$. Calcule la distancia horizontal que recorre el proyectil (punto B).
- (c) (10 pts.) ¿Cuál es la altura máxima que alcanza el proyectil en ambos disparos?.
- 2. En el diagrama de la figura, el bloque A que pesa 44.5 N se encuentra sobre una superficie horizontal y el bloque B que pesa 22.2 N cuelga verticalmente. Dichos bloques están unidos por una cuerda inextensible y de masa despreciable. El coeficiente de rozamiento estático entre el bloque A y el suelo es $\mu=0.20$. Sobre el bloque A descansa el bloque C de peso desconocido.

- (a) (10 pts.) Realice el diagrama de cuerpo aislado sobre los bloques A y B.
- (b) (20 pts.) Determinar la masa mínima que debe poseer el bloque C para evitar que A y B de desplacen, es decir para que el sistema se encuentre en equilibrio.

- **3.** La posición angular de una partícula que se mueve a lo largo de una circunferencia de radio R=2 m está dada por la expresión $\theta(t)=3$ $[rad/s^2]$ $t^2+\pi/4$.
 - (a) (10 pts.) Escriba el vector posición \vec{r} de la partícula válida para todo t.
 - (b) (10 pts.) Determine el instante t_A en que $\theta = 5\pi/4$. Además para este instante calcule los vectores posición \vec{r} , velocidad \vec{v} y aceleración \vec{a} . Realice un gráfico.
 - (c) (10 pts.) En el instante en que la posición angular es $\theta(t) = 2\pi [rad]$, la partícula inicia un movimiento con desaceleración angular constante $\gamma(t) = -1/2 [rad/s^2]$, determine cuántas vueltas requerirá la partícula para detenerse.

P	rob.	1	Prob. 2	Prob. 3	Puntos totales (0-100)	Nota final