Variable Report

Cuny MSDA 624 Project 2

Tom Detzel

11/25/2017

```
knitr::opts_chunk$set(echo = TRUE)

# load required packages
suppressMessages(library(easypackages))
suppressMessages(libraries("tidyverse", "nnet", "kernlab", "
```

Get the data

```
# read in the data
df <- read.csv("data/StudentData.csv", header=T, strip.white
# str(df)</pre>
```

Get my variables

```
df <- df[, 25:33]
```

Missingness

Missing values aren't a big problem with these vars.

```
## assumes '0' is an NA
zero_vals <- data.frame(cbind(colSums(df==0)))
colnames(zero_vals) <- "zero_count"
pander(zero_vals)</pre>
```

	zero_count
Pressure.Vacuum	0
PH	4
Oxygen.Filler	12
Bowl.Setpoint	2
Pressure.Setpoint	12
Air.Pressurer	0
Alch.Rel	9
Carb.Rel	10
Balling.Lvl	8

Work with complete cases

We lost 40 observations, a de minimus number.

```
# recode '0' as NA
df[df==0] <- NA

# complete cases
df_c <- na.omit(df)</pre>
```

```
#reorder cols to make PH last
df_c <- df_c[c(1,3:9,2)]</pre>
```

Exploratory plots

Histograms and density plots show the bimodal character of several variables: Bowl.Setpoint, Pressure.Setpoint, Alch.Rel, Carb.Rel, and Balling.Lvl.

Histograms

```
# histograms for each variable
par(mfrow=c(4,2))
for(i in c(1:8)) {
   hist(df_c[,i], main=names(df_c)[i], col="lightblue")
}
```


Density plots

```
# density plot for each var
par(mfrow=c(2,4))
for(i in 1:8) {
  plot(density(df_c[,i]), main=names(df_c)[i])
}
```


Boxplots

```
# boxplots
par(mfrow=c(2,4))
for(i in 1:8) {
  boxplot(df_c[,i], main=names(df_c)[i], col="lightblue")
}
```


XY plots

Pressure.Vacuum, Oxygen Filler, Bowl.Setpoint and Carb.Rel all have a postive association with PH; Pressure.Setpoint has a modest negative correlation.

```
par(mfrow=c(2,4))
for(i in 1:8) {
  plot(df_c[,i], df_c$PH, xlab=colnames(df_c)[i], ylab="PH",
  abline(lsfit(df_c[,i], df_c$PH), col="red", lwd=2)
}
```


Correlation plot

Alch.Rel, Carb.Rel and Balling.Lvl are strongly correlated to each other. None of the vars is strongly correlated with PH.

```
# correlation plot
correlations <- cor(df_c)
corrplot(correlations, method="circle")</pre>
```


Variable importance

We'll fit linear, Random Forest and Cubist models to test variable importance. Results suggest that Air.Pressure isn't an important variable and could be eliminated to simplify the model.

Error comparison

```
modelResults <- resamples(list(LM=fit.lm, Cubist=fit.cubist,
summary(modelResults)</pre>
```

```
##
## Call:
## summary.resamples(object = modelResults)
##
## Models: LM, Cubist, RF
## Number of resamples: 10
##
## MAE
            Min. 1st Qu. Median Mean 3rd Qu. Max. NA
##
## LM 0.11900 0.12220 0.12330 0.12420 0.12710 0.12940
## Cubist 0.06054 0.06673 0.07063 0.07019 0.07363 0.07854
## RF 0.06197 0.06360 0.06973 0.06789 0.07109 0.07371
##
## RMSE
            Min. 1st Qu. Median Mean 3rd Qu. Max. NA'
##
## LM 0.14600 0.15290 0.15550 0.15470 0.1573 0.1618
## Cubist 0.08309 0.09536 0.10110 0.09998 0.1051 0.1118
## RF
     0.08235 0.09200 0.09832 0.09745 0.1039 0.1082
##
```

```
## Rsquared

## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's

## LM 0.1261 0.1599 0.1953 0.1889 0.2172 0.2397 0

## Cubist 0.5803 0.6197 0.6515 0.6594 0.7103 0.7507 0

## RF 0.6130 0.6355 0.6687 0.6810 0.7355 0.7664 0
```

Varible importance, Cubist

```
warImp(fit.cubist)

## cubist variable importance
##
##
```

```
## Bowl.Setpoint 100.000
## Balling.Lvl 78.261
## Oxygen.Filler 52.174
## Pressure.Vacuum 50.000
## Alch.Rel 48.913
## Carb.Rel 32.609
## Air.Pressurer 7.609
## Pressure.Setpoint 0.000
```

Variable importance plot, Random Forest

```
varImp(fit.rf)
```

```
## rf variable importance
##
## Overall
## Bowl.Setpoint 100.00
## Pressure.Vacuum 90.33
## Oxygen.Filler 88.08
## Balling.Lvl 87.07
## Alch.Rel 79.93
```

```
## Carb.Rel 74.83
## Air.Pressurer 65.54
## Pressure.Setpoint 0.00
```

Variable importance, linear fit

Results show that Pressure.Vaccum, Bowl.Setpoint, Pressure.Setpoint, Alch.Rel and Balling.Lvl all are significant at p <.001. In this model, these predictors explain ony 19 percent of the variation in PH.

```
summary(fit.lm)
```

```
##
## Call:
## lm(formula = .outcome ~ ., data = dat)
##
## Residuals:
       Min
                     Median
##
                10
                                 30
                                        Max
## -0.58146 -0.09526 0.01523 0.11277 0.32954
##
## Coefficients:
                    Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                    8.545508 0.003075 2779.390 < 2e-16
## Pressure Vacuum
                    0.013896 0.003452 4.025 5.86e-05
## Oxygen.Filler
                    0.007158 0.003270 2.189 0.0287
## Bowl.Setpoint
                    0.043085 0.003609
                                         11.940 < 2e-16
## Pressure.Setpoint -0.025479 0.003602
                                         -7.074 1.94e-12
## Air Pressurer 0.003919 0.003218
                                         1.218 0.2234
## Alch.Rel
                    0.057046 0.008675
                                         6.575 5.87e-11
## Carb.Rel
                   0.014521 0.006175
                                         2.352
                                                 0.0188
## Balling.Lvl
                                        -6.292 3.68e-10
                              0.008642
                  -0.054377
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1
##
## Residual standard error: 0.1547 on 2522 degrees of freedo
## Multiple R-squared: 0.1903, Adjusted R-squared: 0.1877
```

F-statistic: 74.07 on 8 and 2522 DF, p-value: < 2.2e-16