

Национальный исследовательский университет ИТМО (Университет ИТМО)

Факультет систем управления и робототехники

Дисциплина: Электротехника **Отчет по контрольной работе №2.**

Студент: Евстигнеев Дмитрий Группа: R3242 Преподаватель: Горшков К.С.

Задача.

ЗАДАНИЕ 1. Выполнить анализ переходного процесса в цепи первого порядка. Схема цепи изображена на рис.1 в обобщенном виде. Начальные условия нулевые.

Перед исследованием необходимо составить схему цепи, воспользовавшись информацией таблицы. В качестве примера на рис. 2 изображена схема с параметрами 24-го варианта таблицы 1.

Методом, рекомендованным преподавателем, рассчитать i(t), u(t) в момент коммутации и после нее. Представить обе величины графиками в интервале времени $0 \div 4\tau$ [c].

Рис. 2

Таблица 1

Вариант	E [B]	<i>R</i> [кОм]	<i>L</i> [мГн]	<i>С</i> [мкФ]	Искомые величины
		E14.760	Later Service		
	1.00		LUI THE		1
1	1.81	A.700,783			-
4	130	$R_1 = R_7 = 0.25$	-	$C_2 = 1$	$i_1(t); u_7(t)$

Решение.

Для наглядности сделаю векторную иллюстрацию полученной схемы (puc. 1)

Рисунок 1. Схема, нарисованная в Adobe Illustrator

Проведем расчеты:

$$R_{1} = R_{1} = 0.25 \text{ kOM}$$

$$E_{1} = 130 \text{ B}$$

$$i_{1}(+) - ?$$

$$U_{2}(+) - ?$$

$$U_{3}(+) - ?$$

$$U_{4}(+) - ?$$

$$U_{5}(-) = 0$$

$$I_{6}(-) = 0$$

$$I_{1}(-) = \frac{1}{2} \text{ for } 0$$

$$I_{1} = \frac{1}{2} + i \cdot 2$$

$$I_{1} = \frac{1}{2} + i \cdot 2$$

$$I_{2} = \frac{1}{2} + i \cdot 2$$

$$I_{3} = \frac{1}{2} + i \cdot 2$$

$$I_{1} = \frac{1}{2} + i \cdot 2$$

$$I_{2} = \frac{1}{2} + i \cdot 2$$

$$I_{3} = \frac{1}{2} + i \cdot 2$$

$$I_{1} = \frac{1}{2} + i \cdot 2$$

$$I_{2} = \frac{1}{2} + i \cdot 2$$

$$I_{1} = \frac{1}{2} + i \cdot 2$$

$$I_{2} = \frac{1}{2} + i \cdot 2$$

$$I_{3} = \frac{1}{2} + i \cdot 2$$

$$I_{4} = \frac{1}{2} + i \cdot 2$$

$$I_{5} = \frac{1}{2} + i \cdot 2$$

$$I_{7} = \frac{1}{2} + i \cdot 2$$

$$\frac{Cdue}{dt} + \frac{(P_1 + P_2) u_C}{P_1 P_2} = 0$$

$$P = -\frac{P_1 + P_2}{CP_1 P_2}$$

$$Ae = Ae -\frac{P_1 + P_2}{CP_1 P_2} + \frac{P_2}{CP_1 P_2} + \frac{P_3}{P_1 + P_2}$$

$$U_{c}(t) = -\frac{EP_2}{P_1 + P_2} e^{-\frac{P_1 + P_2}{CP_1 P_2}} + \frac{EP_3}{P_1 + P_2}$$

$$U_{r}(t) = u_c(t); L_{r}(t) = \frac{u_{r} - u_{r}}{P_1}$$

$$u_{r} = 60 (1 - e^{-800t})$$

Построим и проведем симуляцию в утилите LTSpice и сравним с нашими расчетами

 $\tau = 0.00025 c$

