1 PYTHAGOREAN FORMULA

1.1 When do we switch to preferring actual winning percentage?

 n_i is the number of games played by team i X_i is the Pythag W% of team i Y_i is the actual W% of team i Z_i is the residual W% of team i $(Y_i = X_i + Z_i)$

Intuition

Actual W% = Pythag W% + Residual
Outcome = Skill + Luck
$$Y_i = X_i + Z_i$$

Model

$$X_i \sim \text{ind. Normal}(\mu_i, \sigma_X^2/n_i)$$

 $\mu_i \sim \text{i.i.d. Normal}(0, \sigma_\mu^2)$

Option #1 (Z_i is all luck):

$$Z_i \sim \text{i.i.d. Normal}(0, \sigma_Z^2/n_i)$$

Option #2 (Z_i is not purely luck):

$$Z_i \sim \text{ind. Normal}(\eta_i, \sigma_Z^2/n_i)$$

 $\mu_i \sim \text{i.i.d. Normal}(0, \sigma_n^2)$

One can show that X_i does better than Y_i at estimating $E[Y_i]$ if $\sigma_{\eta}^2 < \sigma_Z^2/n$, i.e. $n < \sigma_Z^2/\sigma_{\eta}^2$.

1.2 Exercises

1. Show that X_i does better than Y_i at estimating $E[Y_i]$ if $n < \sigma_Z^2/\sigma_\eta^2$.