Übungsaufgaben zur Vorlesung "Analysis IIb"

Blatt 1

Aufgabe 1. Sei M eine nichtleere Menge und $d: M \times M \to \mathbb{R}$,

$$d(x,y) = \begin{cases} 1, & \text{falls } x \neq y, \\ 0, & \text{falls } x = y. \end{cases}$$

- i) Zeigen Sie, dass d eine Metrik ist. Sie heißt diskrete Metrik.
- ii) Sei $x_0 \in M$. Wie sehen die Kugeln $B_{\frac{1}{2}}(x_0)$ und $B_{13}(x_0)$ aus?
- iii) Beschreiben Sie die konvergenten Folgen in (M, d).
- iv) Zeigen Sie, dass jede Teilmenge von M zugleich offen und abgeschlossen ist.

Aufgabe 2. Welche der folgenden Mengen M sind offen, abgeschlossen, weder offen noch abgeschlossen in X, wobei X mit der euklidischen Metrik versehen ist. Bestimmen Sie den Abschluss, das Innere und den Rand dieser Mengen.

a)
$$X = \mathbb{R}, M = \{1, \frac{1}{2}, \frac{1}{3}, ...\}$$

b)
$$X = \mathbb{Q}, M = \{x \in \mathbb{Q} : \sqrt{3} \le x < 13\}$$

Aufgabe 3. Sei X ein metrischer Raum und $M_i \subset X$, $i \in \mathbb{N}$.

a) Beweisen Sie:

$$i) \ \overline{\bigcup_{i=1}^m M_i} = \bigcup_{i=1}^m \overline{M_i}$$

ii)
$$\overline{\bigcup_{i=1}^{\infty} M_i} \supset \bigcup_{i=1}^{\infty} \overline{M_i}$$

b) Konstruieren Sie ein Beispiel für die echte Inklusion in ii).

Aufgabe 4. Zeigen Sie, dass jede offene Menge in \mathbb{R}^n eine Vereinigung abzählbar vieler offener Kugeln ist.

Abgabe: Bis 14. Mai um 10 Uhr als PDF-Datei in StudIP in der Veranstaltung Übung Analysis IIb unter dem Reiter Dateien im dafür vorgesehenen Ordner.

Aufgabe	1	2		3		4	
	a	a	b	a	b		
Punkte	5	2	2	5	2	4	20

Präsenzaufgaben

1. Untersuchen Sie, welche der folgenden Abbildungen Metriken auf X definieren:

a)
$$X = \{x = (x_1, x_2, ...) : x_k \in \mathbb{R} \text{ (oder } \mathbb{C}), k = 1, 2, ...\}, d(x, y) = \sum_{k=1}^{\infty} 2^{-k} \frac{|x_k - y_k|}{1 + |x_k - y_k|}, x = (x_1, ..., x_k, ...), y = (y_1, ..., y_k, ...)$$

b) $X = \mathbb{R}^2$,

$$d(x,y) = \begin{cases} ||x-y||, & \text{falls } x, y, P \text{ auf einer Geraden liegen,} \\ ||x-P|| + ||y-P||, & \text{sonst,} \end{cases}$$

wobei $P \in \mathbb{R}^2$ ein fester Punkt und $\|\cdot\|$ die euklidische Norm ist. Für welche französische Stadt könnte P stehen, wenn wir das Eisenbahnnetz in Frankreich betrachten?

2. Sei $\|\cdot\|$ eine Norm auf \mathbb{K}^n . Zeigen Sie, dass die Operatornorm

$$||A||_{\text{op}} := \sup\{||Ax|| : x \in \mathbb{K}^n, ||x|| < 1\}, \quad A \in \mathbb{K}^{n \times n}$$

eine Norm ist.

- 3. Beweisen oder widerlegen Sie:
 - a) ? Sei $(X, \|\cdot\|)$ ein normierter Raum und B die offene Einheitskugel um 0 in X. Dann ist $\overline{B} = \{x \in X : \|x\| \le 1\}$. ?
 - b) ? Sei (X, d) ein metrischer Raum, $a \in X$ und B die offene Einheitskugel um a in X. Dann ist $\overline{B} = \{x \in X : d(x, a) \leq 1\}$. ?
 - c) ? Der Durchschnitt der Inneren zweier Teilmengen eines metrischen Raums ist das Innere ihres Durchschnitts. ?
 - d) ? Die Vereinigung der Inneren zweier Teilmengen eines metrischen Raums ist das Innere ihrer Vereinigung. ?
- 4. Welche der folgenden Mengen M sind offen, abgeschlossen, weder offen noch abgeschlossen in X, wobei X mit der euklidischen Metrik versehen ist. Bestimmen Sie den Abschluss, das Innere und den Rand dieser Mengen.
 - a) $X = \mathbb{R}, M = \mathbb{Q}$
 - b) $X = \mathbb{C}, M = \mathbb{Q} \cup \{i\}$
 - c) $X = \mathbb{R}^3$, $M = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_3 > 0\} \cap \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1^2 + x_2^2 < 1\}$. Skizzieren Sie M.