skfda.datasets.make_sinusoidal_process

skfda.datasets.make_sinusoidal_process(n_samples: int = 15, n_features: int = 100, *, start:
float = 0.0, stop: float = 1.0, period: float = 1.0, phase_mean: float = 0.0, phase_std: float = 0.6,
amplitude_mean: float = 1.0, amplitude_std: float = 0.05, error_std: float = 0.2, random_state=None)
 [source]

Generate sinusoidal proccess.

Each sample $x_i(t)$ is generated as:

$$x_i(t) = \alpha_i \sin(\omega t + \phi_i) + \epsilon_i(t)$$

where $\omega = \frac{2\pi}{\text{period}}$. Amplitudes α_i and phases ϕ_i are normally distributed. $\epsilon_i(t)$ is a gaussian white noise process.

Parameters:

- n_samples Total number of samples.
- n_features Points per sample.
- start Starting point of the samples.
- stop Ending point of the samples.
- period Period of the sine function.
- phase_mean Mean of the phase.
- phase_std Standard deviation of the phase.
- amplitude_mean Mean of the amplitude.
- amplitude_std Standard deviation of the amplitude.
- error_std Standard deviation of the gaussian Noise.
- random_state Random state.

Returns:

FDataGrid object comprising all the samples.