

Parte II O vírus CODIG – Espaço de Estados

Diogo Alexandre Brandão da Silva FEUP/DEEC Porto, Portugal up201809213@fe.up.pt

Grupo 07

Manuel João Narciso Ribeiro FEUP/DEEC Porto, Portugal up201603213@fe.up.pt

José Maria Queirós Rodrigues Sarmento FEUP/DEEC Porto, Portugal up201909931@fe.up.pt Paulo Alexandre Sousa Silva FEUP/DEEC Porto, Portugal up201909556@fe.up.pt

Introdução

O conceito de modelo epidemiológico, é termo recorrente nos dias de hoje, devido à situação que nos encontramos.

O presente documento pretende demonstrar o trabalho desenvolvido para a segunda parte de uma aplicação de um destes modelos numa situação em concreto (vírus CODIG) utilizando para isto a análise com ferramentas de espaço estados após linearização do problema.

1. Análise do sistema por espaço de estados em tempo contínuo.

A. Verificação do ponto de funcionamento (S*, I_D*, I_H*, R*) como ponto de equilíbrio.

Para as demonstrações que se seguem, como se está a trabalhar em volta de um ponto escrever por exemplo S(t) ou S* significa a mesma coisa.

Do enunciado sabe-se que:

$$\dot{S}(t) = -(\alpha_1 + \alpha_2)S(t) - vS(t) + \rho R(t) \tag{1}$$

$$\dot{I_D}(t) = \alpha_1 S(t) - \gamma_1 I_D(t) \tag{2}$$

$$\dot{I}_H(t) = \alpha_2 S(t) - \gamma_2 I_H(t) \tag{3}$$

$$\dot{R}(t) = vS(t) + \gamma_1 I_D(t) + \gamma_2 I_H(t) - \rho R(t)$$
(4)

Para o ponto de equilíbrio sabe-se que:

$$U^* = R_0 - \frac{N}{0.85 \, S^*} \tag{5}$$

$$\frac{I_H^*}{I_D^*} = \frac{0.15}{0.85} \tag{6}$$

$$S^* = \frac{\gamma}{\alpha^*} (I_H^* + I_D^*) \tag{7}$$

$$R^* = \frac{(\alpha^* + \nu^*)S^*}{\rho}$$
 (8)

Onde:

$$\alpha = \alpha_1 + \alpha_2 \tag{9}$$

$$\alpha_1 = 0.85\alpha \tag{10}$$

$$\alpha_2 = 0.15\alpha \tag{11}$$

$$\gamma = \gamma_1 = \gamma_2 = \frac{1}{T_{inf}} \tag{12}$$

Pretende-se obter:

$$\dot{S}(t) = 0$$

$$\dot{I_D}(t) = 0$$

$$\dot{I}_{H}(t) = 0$$

$$\dot{R}(t) = 0$$

Com (1), (7), (8) e (9) tem-se:

$$\dot{S}(t) = -\alpha \frac{\gamma}{\alpha^*} (I_H^* + I_D^*) - v \frac{\gamma}{\alpha^*} (I_H^* + I_D^*) + \rho \frac{(\alpha^* + v^*)}{\rho} \frac{\gamma}{\alpha^*} (I_H^* + I_D^*)$$

$$= -\gamma (I_H^* + I_D^*) - v \frac{\gamma}{\alpha^*} (I_H^* + I_D^*) + \gamma (I_H^* + I_D^*) + v^* \frac{\gamma}{\alpha^*} (I_H^* + I_D^*) = 0$$

Com (2), (6), (7), (10) e (12) tem-se:

$$I_D(t) = 0.85 \alpha \frac{\gamma}{\alpha^*} \left(\frac{0.15}{0.85} I_D^* + I_D^* \right) - \gamma I_D(t) = \gamma I_D^* - \gamma I_D(t) = 0$$

Com (3), (6), (7), (11) e (12) tem-se:

$$I_{H}(t) = 0.15 \alpha \frac{\gamma}{\alpha^{*}} \left(\frac{0.85}{0.15} I_{H}^{*} + I_{H}^{*} \right) - \gamma I_{H}(t) = \gamma I_{H}^{*} - \gamma I_{H}(t) = 0$$

Com (4), (7), (8) e (12) tem-se:

$$\begin{split} \dot{R}(t) &= v \frac{\gamma}{\alpha^*} (I_H^* + I_D^*) + \gamma I_D(t) + \gamma I_H(t) - \rho \frac{(\alpha^* + v^*)}{\rho} \frac{\gamma}{\alpha^*} (I_H^* + I_D^*) \\ &= v \frac{\gamma}{\alpha^*} (I_H^* + I_D^*) + \gamma \left(I_D(t) + I_H(t) \right) - (I_H^* + I_D^*) - v^* \frac{\gamma}{\alpha^*} (I_H^* + I_D^*) = 0 \end{split}$$

B. Verificação que valores (S*, I_D *, I_H *, R*) formam ponto de equilíbrio com $v^* = 0$. Cálculo de U^* nessas condições.

Do enunciado temos que:

$$N=10x10^6$$
 $I^*=2x10^5={I_H}^*+{I_D}^*$ $R^*=10I^*=20x10^5$ $S^*=N-I^*-R^*=78x10^5$ $\rho=1/60$ $\gamma=1/6$ $R_0=2.4$ (enunciado parte I)

Para (7) temos:

$$S^* = \frac{\gamma}{\alpha^*} (I_H^* + I_D^*) = \frac{I^*}{6\alpha^*} \iff I^* = 6\alpha^* S^*$$
 (13)

Para (8) temos:

$$R^* = \frac{(\alpha^* + \nu^*)S^*}{\rho} = \frac{\alpha^*S^*}{\frac{1}{60}} \quad \leftrightarrow \quad 10I^* = \frac{\alpha^*S^*}{\frac{1}{60}} \quad \leftrightarrow \quad I^* = 6\alpha^*S^*$$
 (14)

Como através de (13) e (14) se obtém o mesmo resultado, é possível comprovar que para $v^* = 0$ os valores do ponto definido formam um ponto de equilíbrio.

Para o cálculo de U^* utiliza-se (5):

$$U^* = R_0 - \frac{N}{0.85 \, S^*} = 2.4 - \frac{10x10^6}{0.85 * 78x10^5} = 0.8917$$

C. Linearização do sistema dinâmico em torno do ponto de equilíbrio (S*, ID*, IH*, R*).

Do enunciado temos que:

$$\alpha = (R_0 - U)\gamma \frac{I_D(t)}{N} \tag{15}$$

Queremos linearizar (1), (2), (3) e (4).

Utilizando então (9), (10), (11), (12) e (15) em (1), (2), (3) e (4) tem-se:

$$\dot{S}(t) = -(R_0 - U)\gamma \frac{I_D(t)}{N} S(t) - vS(t) + \rho R(t) = f_1(S, I_D, I_H, R, U, v)$$
(16)

$$\dot{I_D}(t) = 0.85(R_0 - U)\gamma \frac{I_D(t)}{N} S(t) - \gamma I_D(t) = f_2(S, I_D, I_H, R, U, v)$$
(17)

$$\dot{I}_{H}(t) = 0.15(R_0 - U)\gamma \frac{I_D(t)}{N} S(t) - \gamma I_H(t) = f_3(S, I_D, I_H, R, U, v)$$
(18)

$$\dot{R}(t) = vS(t) + \gamma I_D(t) + \gamma I_H(t) - \rho R(t) = f_4(S, I_D, I_H, R, U, v)$$
(19)

Como queremos linearizar (16), (17), (18) e (19) em torno de um ponto temos:

$$\begin{cases}
\dot{S}(t) = \frac{\partial f_1}{\partial S} S + \frac{\partial f_1}{\partial I_D} I_D + \frac{\partial f_1}{\partial I_H} I_H + \frac{\partial f_1}{\partial R} R + \frac{\partial f_1}{\partial U} U + \frac{\partial f_1}{\partial v} V \\
\dot{I_D}(t) = \frac{\partial f_2}{\partial S} S + \frac{\partial f_2}{\partial I_D} I_D + \frac{\partial f_2}{\partial I_H} I_H + \frac{\partial f_2}{\partial R} R + \frac{\partial f_2}{\partial U} U + \frac{\partial f_2}{\partial v} V \\
\dot{I_H}(t) = \frac{\partial f_3}{\partial S} S + \frac{\partial f_3}{\partial I_D} I_D + \frac{\partial f_3}{\partial I_H} I_H + \frac{\partial f_3}{\partial R} R + \frac{\partial f_3}{\partial U} U + \frac{\partial f_3}{\partial v} V \\
\dot{R}(t) = \frac{\partial f_4}{\partial S} S + \frac{\partial f_4}{\partial I_D} I_D + \frac{\partial f_4}{\partial I_H} I_H + \frac{\partial f_4}{\partial R} R + \frac{\partial f_4}{\partial U} U + \frac{\partial f_4}{\partial v} V
\end{cases} \tag{20}$$

Sendo:

$$\begin{cases}
\frac{\partial f_1}{\partial S} = -(R_0 - U^*)\gamma \frac{I_D^*}{N} - v \\
\frac{\partial f_1}{\partial I_D} = -(R_0 - U^*)\gamma \frac{S^*}{N} \\
\frac{\partial f_1}{\partial I_H} = 0 \\
\frac{\partial f_1}{\partial R} = \rho \\
\frac{\partial f_1}{\partial U} = \gamma \frac{I_D^*}{N} S^* \\
\frac{\partial f_1}{\partial v} = -S^*
\end{cases}$$
(21)

$$\begin{cases} \frac{\partial f_2}{\partial S} = 0.85(R_0 - U^*)\gamma \frac{I_D^*}{N} \\ \frac{\partial f_2}{\partial I_D} = 0.85(R_0 - U^*)\gamma \frac{S^*}{N} - \gamma \\ \frac{\partial f_2}{\partial I_H} = 0 \\ \frac{\partial f_2}{\partial R} = 0 \\ \frac{\partial f_2}{\partial W} = -0.85\gamma \frac{I_D^*}{N} S^* \\ \frac{\partial f_2}{\partial V} = 0 \end{cases}$$
(22)

$$\begin{cases}
\frac{\partial f_3}{\partial S} = 0.15(R_0 - U^*)\gamma \frac{I_D^*}{N} \\
\frac{\partial f_3}{\partial I_D} = 0.15(R_0 - U^*)\gamma \frac{S^*}{N} \\
\frac{\partial f_3}{\partial I_H} = -\gamma \\
\frac{\partial f_3}{\partial R} = 0 \\
\frac{\partial f_3}{\partial W} = -0.15\gamma \frac{I_D^*}{N} S^* \\
\frac{\partial f_3}{\partial V} = 0
\end{cases} \tag{23}$$

$$\begin{cases} \frac{\partial f_1}{\partial S} = v \\ \frac{\partial f_1}{\partial I_D} = \gamma \\ \frac{\partial f_1}{\partial I_H} = \gamma \\ \frac{\partial f_1}{\partial R} = -\rho \\ \frac{\partial f_1}{\partial U} = 0 \\ \frac{\partial f_1}{\partial U} = S^* \end{cases}$$
(24)

Por fim através de (20), (21), (22), (23) e (24) obtém-se o sistema linearizado:

$$\begin{cases} \dot{S}(t) = \left(-(R_0 - U^*)\gamma \frac{I_D^*}{N} - \nu \right) S(t) - (R_0 - U^*)\gamma \frac{S^*}{N} I_D(t) + \rho R(t) + \gamma \frac{I_D^*}{N} S^* U(t) - S^* V \\ \dot{I_D}(t) = 0.85(R_0 - U^*)\gamma \frac{I_D^*}{N} S(t) + \left(0.85(R_0 - U^*)\gamma \frac{S^*}{N} - \gamma \right) I_D(t) - 0.85\gamma \frac{I_D^*}{N} S^* U(t) \\ \dot{I_H}(t) = 0.15(R_0 - U^*)\gamma \frac{I_D^*}{N} S(t) + 0.15(R_0 - U^*)\gamma \frac{S^*}{N} I_D(t) - \gamma I_H(t) - 0.15\gamma \frac{I_D^*}{N} S^* U(t) \\ \dot{R}(t) = \nu S(t) + \gamma I_D(t) + \gamma I_H(t) - \rho R(t) + S^* V \end{cases}$$
(25)

D. Representação em espaço de estados.

Pretende-se representar (25) na forma:

$$\dot{x} = Ax + Bu$$
$$y = Cx + Du$$

Com:

Estado:

$$x = (S, I_D, I_H, R)$$

Saída:

$$y = (I_H, I_D + I_H)$$

Controlo:

$$u = (U, V)$$

Posto isto obtém-se:

$$\dot{x} = \begin{bmatrix}
-(R_0 - U)\gamma \frac{I_D^*}{N} - \nu & -(R_0 - U)\gamma \frac{S^*}{N} & 0 & \rho \\
0.85(R_0 - U)\gamma \frac{I_D^*}{N} & 0.85(R_0 - U)\gamma \frac{S^*}{N} - \gamma & 0 & 0 \\
0.15(R_0 - U)\gamma \frac{I_D^*}{N} & 0.15(R_0 - U)\gamma \frac{S^*}{N} & -\gamma & 0 \\
\nu & \gamma & \gamma & -\rho
\end{bmatrix} \begin{bmatrix} S \\ I_D \\ I_H \\ R \end{bmatrix} + \begin{bmatrix} \gamma \frac{I_D^*}{N} S^* & -S^* \\ -0.85\gamma \frac{I_D^*}{N} S^* & 0 \\ -0.15\gamma \frac{I_D^*}{N} S^* & 0 \\ 0 & S^* \end{bmatrix} \begin{bmatrix} U \\ V \end{bmatrix} (26)$$

$$y = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} S \\ I_D \\ I_H \\ R \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} U \\ V \end{bmatrix}$$
 (27)

E. Verificação se o sistema é estável e estabilizável. Verificação se o sistema é controlável para u=U e para u=(U,V). Verificação se o sistema é observável para $y=I_H$ e para $y=(I_H,I_D+I_H)$.

Para responder às questões que se seguem são utilizados os valores definidos em **B.)** para as matrizes apresentadas.

→ Controlável

Sendo a matriz de controlabilidade dada por: $M = [B AB A^2B ... A^{n-1}B]$

• Entrada (u = U)

$$A = \begin{bmatrix} -(R_0 - U)\gamma \frac{I_D^*}{N} - \nu & -(R_0 - U)\gamma \frac{S^*}{N} & 0 & \rho \\ 0.85(R_0 - U)\gamma \frac{I_D^*}{N} & 0.85(R_0 - U)\gamma \frac{S^*}{N} - \gamma & 0 & 0 \\ 0.15(R_0 - U)\gamma \frac{I_D^*}{N} & 0.15(R_0 - U)\gamma \frac{S^*}{N} & -\gamma & 0 \\ \nu & \gamma & \gamma & -\rho \end{bmatrix}; B = \begin{bmatrix} \gamma \frac{I_D^*}{N}S^* \\ -0.85\gamma \frac{I_D^*}{N}S^* \\ -0.15\gamma \frac{I_D^*}{N}S^* \end{bmatrix}$$

$$M = [B AB A^2B A^3B]$$

Figura 1 – Matriz de controlabilidade M para uma entrada u=U

Verificando se é controlável tem-se:

$$det(M) = 0$$
$$rank(M) = 2 \neq n = 4$$

Através dos resultados obtidos, verifica-se que a característica da matriz M (Figura 1) é igual a 2, isto é, não tem característica total (rank(M) = n), e o seu determinante é igual zero. Assim sendo, conclui-se que o sistema não é controlável.

• Entrada (u = (U, V))

$$A = \begin{bmatrix} -(R_0 - U)\gamma \frac{{I_D}^*}{N} - v & -(R_0 - U)\gamma \frac{S^*}{N} & 0 & \rho \\ 0.85(R_0 - U)\gamma \frac{{I_D}^*}{N} & 0.85(R_0 - U)\gamma \frac{S^*}{N} - \gamma & 0 & 0 \\ 0.15(R_0 - U)\gamma \frac{{I_D}^*}{N} & 0.15(R_0 - U)\gamma \frac{S^*}{N} & -\gamma & 0 \\ v & \gamma & \gamma & -\rho \end{bmatrix}; B = \begin{bmatrix} \gamma \frac{{I_D}^*}{N}S^* & -S^* \\ -0.85\gamma \frac{{I_D}^*}{N}S^* & 0 \\ -0.15\gamma \frac{{I_D}^*}{N}S^* & 0 \\ 0 & S^* \end{bmatrix}$$

 $M = [B AB A^2B A^3B]$

Figura 2 - Matriz de controlabilidade M para uma entrada u = (U, V)

Nota: * significa que é um número muito próximo de 0.

Verificando se é controlável tem-se:

Não é possível determinar o determinante da matriz pois não é quadrada. rank(M) = 2

Através dos resultados obtidos, observa-se que a matriz M (Figura 2) não tem característica total e assim, conclui-se que o sistema é não é controlável.

→ Observável

Sendo a matriz de observabilidade dada por: $N = \begin{bmatrix} C & CA \\ CA^2 \\ ... \\ CA^{n-1} \end{bmatrix}$

$$A = \begin{bmatrix} -(R_0 - U)\gamma \frac{I_D^*}{N} - \nu & -(R_0 - U)\gamma \frac{S^*}{N} & 0 & \rho \\ 0.85(R_0 - U)\gamma \frac{I_D^*}{N} & 0.85(R_0 - U)\gamma \frac{S^*}{N} - \gamma & 0 & 0 \\ 0.15(R_0 - U)\gamma \frac{I_D^*}{N} & 0.15(R_0 - U)\gamma \frac{S^*}{N} & -\gamma & 0 \\ \nu & \gamma & \gamma & -\rho \end{bmatrix}; C = [0 \ 0 \ 1 \ 0]$$

$$N = \begin{bmatrix} C \\ CA \\ CA^2 \\ CA^3 \end{bmatrix}$$

Figura 3 - Matriz de observabilidade N para $y=I_H$

Nota: * significa que é um número muito próximo de 0.

Verificando se é observável tem-se:

$$det(N) = -5.0479 * 10^{-12} \neq 0$$
$$rank(N) = 4 = n$$

Através dos resultados obtidos, verifica-se que a característica da matriz N (Figura 3) é igual a 4, isto é, tem característica total (rank(N) = n), e o seu determinante é diferente de zero. Assim sendo, conclui-se que o sistema é observável.

$$A = \begin{bmatrix} -(R_0 - U)\gamma \frac{I_D^*}{N} - \nu & -(R_0 - U)\gamma \frac{S^*}{N} & 0 & \rho \\ 0.85(R_0 - U)\gamma \frac{I_D^*}{N} & 0.85(R_0 - U)\gamma \frac{S^*}{N} - \gamma & 0 & 0 \\ 0.15(R_0 - U)\gamma \frac{I_D^*}{N} & 0.15(R_0 - U)\gamma \frac{S^*}{N} & -\gamma & 0 \\ \nu & \gamma & \gamma & -\rho \end{bmatrix}; \ C = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$

$$N = \begin{bmatrix} C \\ CA \\ CA^2 \\ CA^3 \end{bmatrix}$$

Figura 4 - Matriz de observabilidade N para uma entrada $y = (I_H, I_D + I_H)$

Nota: * significa que é um número muito próximo de 0.

Verificando se é observável tem-se:

Não é possível determinar o determinante da matriz pois não é quadrada. rank(N)=4

Através dos resultados obtidos, observa-se que a matriz N (Figura 4) tem característica total e assim, conclui-se que o sistema é observável.

→ Estável

De modo a verificar a estabilidade do sistema foram calculados os polos da função do sistema, a partir da matriz A já apresentada anteriormente.

Figura 5 - Eigenvalues da matriz A

Como é possível observar na Figura 5, todos os polos calculados encontram-se no semiplano esquerdo, pelo que podemos concluir que o sistema é estável.

→ Estabilizável

Sendo o sistema não controlável, pode-se assumir que é não possível anular a existência de polos no semiplano direito, apesar de neste caso isso não se verificar. Logo, conclui-se que não é estabilizável.

F. Representações nas formas canónica controlável, observável e diagonal para $u=U\,e\,\gamma=I_H.$

Para a representação nas formas canónicas temos como partida o sistema dinâmico de controlo linear e invariante no tempo:

$$y^{(n)} + a_1 y^{(n-1)} + \dots + a_{n-1} y' + a_n y = b_0 u^{(n)} + b_1 u^{(n-1)} + \dots + b_{n-1} u' + b_n u$$
 (28)

→ Controlável

Uma vez que o sistema não é controlável, não é possível escrever a representação canónica controlável do mesmo.

→ Observável

De acordo com (28) temos para a forma canónica observável que:

$$A = \begin{bmatrix} 0 & 0 & \dots & 0 & 0 \\ 1 & 0 & \dots & 0 & 0 \\ \vdots & \vdots & \dots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & 0 \\ 0 & 0 & \dots & 0 & 1 \end{bmatrix}, \qquad B = \begin{bmatrix} b_n - a_n b_0 \\ b_{n-1} - a_{n-1} b_0 \\ \vdots \\ b_2 - a_2 b_0 \\ b_1 - a_1 b_0 \end{bmatrix}, \qquad C^T = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix}, \qquad D = \begin{bmatrix} b_0 \end{bmatrix}$$

O procedimento para se obter esta forma consiste em realizar uma mudança de base $x=U\tilde{x}$, onde $U=(WN)^{-1}$, sendo N a matriz de observabilidade (já calculada na Figura 3).

A matriz W neste caso é dada por:

$$W = \begin{bmatrix} a3 & a2 & a1 & 1\\ a2 & a1 & 1 & 0\\ a1 & 1 & 0 & 0\\ 1 & 0 & 0 & 0 \end{bmatrix}$$

Sendo a função de transferência do sistema com $u=U\ e\ y=I_H$ a da Figura 6:

Figura 6 - Função de transferência do sistema para $u=U\ e\ y=I_H$

Conclui-se então que:

$$\begin{cases} a4 = 5.249 * 10^{-22} \\ a3 = 0.0001306 = \frac{11}{84240} \\ a2 = 0.004274 = \frac{1}{234} \\ a1 = 0.1876 = \frac{439}{2340} \\ a0 = 1 \end{cases}$$

E que:

$$W = \begin{bmatrix} 0.0001306 & 0.004274 & 0.1876 & 1\\ 0.004274 & 0.1876 & 1 & 0\\ 0.1876 & 1 & 0 & 0\\ 1 & 0 & 0 & 0 \end{bmatrix}$$

Assim tem-se que a matriz U e a sua inversa são dadas pelas Figuras 7 e 8 respetivamente:

```
U =

-248997/4 82999/8 -8119/48 -828/185
9497/7 -9497/42 9497/252 -1909/3107
0 0 0 1
622493 -40595/4 4864/37 7309/1787
```

Figura 7 - Matriz U para forma canónica observável com $u=U\ e\ y=I_H$

Figura 8 - Matriz U inversa para forma canónica observável com $u=U\ e\ y=I_H$

Posto isto a nova representação é: $\tilde{x}_{k+1}=U^{-1}AU\tilde{x}_k+U^{-1}Bu_k$ $y_k=CU\tilde{x}_k+Du_k$

Figura 9 - Matriz A para representação na forma canónica observável

Figura 10 - Matriz B para representação na forma canónica observável

$$\tilde{x}_{k+1} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & -\frac{11}{84240} \\ 0 & 1 & 0 & -\frac{1}{234} \\ 0 & 0 & 1 & -\frac{439}{3240} \end{bmatrix} [\tilde{x}_k] + \begin{bmatrix} -1.1 * 10^{-15} \\ -\frac{221}{24} \\ -\frac{2431}{4} \\ -3315 \end{bmatrix} [u_k]$$

Figura 11 - Matriz C para representação na forma canónica observável

Figura 12 - Matriz D para representação na forma canónica observável

$$y_k = [0\ 0\ 0\ 1][\tilde{x}_k] + [0][u_k]$$

→ Diagonal

De acordo com (28) temos para a forma canónica diagonal que:

$$A = \begin{bmatrix} -p_1 & 0 & \dots & 0 & 0 \\ 0 & -p_2 & \dots & 0 & 0 \\ \vdots & \vdots & \dots & \vdots & \vdots \\ 0 & 0 & \dots & -p_{n-1} & 0 \\ 0 & 0 & \dots & 0 & -p_n \end{bmatrix}, \qquad B = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \\ 1 \end{bmatrix}, \qquad C^T = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_{n-1} \\ c_n \end{bmatrix}, \qquad D = [b_0]$$

A forma canónica diagonal corresponde a uma representação numa base de vetores próprios da matriz A associados respetivamente aos seus valores próprios. Considerando a mudança de base x=Vz onde $V=[v1\ v2\ v3\ v4]$, estes vetores próprios foram calculados através da *Jordan Canonical Form* do *MATLAB* em que é devolvida a matriz de mudança de base, V (Figura 13), e uma matriz diagonal, E (Figura 14), com os valores próprios da matriz A.

```
[V,E]=eig(A);
```

```
-665/923
                0i
                            -665/923
                             -665/923 + 0i
346/9893 - 355/4094i
                                            0i
                                                                                       -283/3822
                                                                          0i
                                                                                                        0i
          + 355/4094i
346/9893
                                                         -355/4192
                                                                          0i
                                                                                        29/17970
                                                                                                        0i
 83/13448 + 197/12874i
                              83/13448 - 197/12874i
                                                         -117/7829
                                                                          0i
                                                                                      -1153/1726
                                                                                                        0i
                                                         -269/270
                                                                                       659/890
447/658
           - 552/5411i
                             447/658
                                        + 552/5411i
                                                                          0i
                                                                                                        0i
```

Figura 13 - Matriz mudança de base V para a forma canónica diagonal com $u=U\ e\ y=I_H$

```
-49/4680
                44/1695i
                                 0
                                                 0i
                                                                                 0i
                                                                                                                  0i
                                -49/4680
 0
                 0 i
                                                44/1695i
                                                                  0
                                                                                 0 i
                                                                                                  0
                                                                                                                  Ωi
 Ω
                 Ωi
                                 Ω
                                                 Ωi
                                                                                 Ωi
                                                                                                  Ω
                                                                                                                  Ωi
 n
                 Οi
                                  n
                                                 Ωi
                                                                  0
                                                                                  Οi
                                                                                                 -1/6
                                                                                                                  0i
```

Figura 14 - Matriz diagonal E com valores próprios da matriz A

```
invV =
    -796/1147
              + 247/1491i
                               -53/3906 - 2747/516i
                                                           361/4695 + 985/2129i
                                                                                                 + 176/395i
   -796/1147
                                -53/3906
                                                           361/4695
              - 247/1491i
                                         + 2747/516i
                                                                     - 985/2129i
                                                                                                   176/395i
   -1178/1291
                              -1178/1291
                                                         -1178/1291
                                                                                     -1178/1291
                                                         -1833/1225
                               587/2223
```

Figura 15 - Matriz mudança de base V inversa

A nova representação de estado é: $z_{k+1} = V^{-1}AVz_k + V^{-1}Bu_k$ $y_k = CV + Du_k$

Figura 16 - Matriz A para representação na forma canónica diagonal

```
B =

-291404/19 +102132i
-291404/19 -102132i
-1/23902426691 - 1/2013121840981
1/1099511627776 - 1/21167619609667i
```

Figura 17 - Matriz B para representação na forma canónica diagonal

Figura 18 - Matriz C para representação na forma canónica diagonal

Figura 19 - Matriz D para representação na forma canónica diagonal

$$y_k = \left[\frac{83}{13448} + \frac{197}{12874}i \right. , \qquad \frac{83}{13448} - \frac{197}{12874}i \right. , \quad -\frac{117}{7829} \left. , \right. \\ \left. -\frac{1153}{1726}\right][z_k] + [0][u_k]$$

G. Função de transferência a partir do espaço de estados com $u=U\ e\ y=I_H$.

Tendo a representação do sistema em espaço de estados a sua função de transferência é dada por:

$$G(s) = \frac{Y(s)}{U(s)} = C(sI - A)^{-1}B + D$$
(29)

Para este caso temos:

$$A = \begin{bmatrix} -(R_0 - U)\gamma \frac{I_D^*}{N} - \nu & -(R_0 - U)\gamma \frac{S^*}{N} & 0 & \rho \\ 0.85(R_0 - U)\gamma \frac{I_D^*}{N} & 0.85(R_0 - U)\gamma \frac{S^*}{N} - \gamma & 0 & 0 \\ 0.15(R_0 - U)\gamma \frac{I_D^*}{N} & 0.15(R_0 - U)\gamma \frac{S^*}{N} & -\gamma & 0 \\ \nu & \gamma & \gamma & -\rho \end{bmatrix}, \qquad B = \begin{bmatrix} \gamma \frac{I_D^*}{N} S^* \\ -0.85\gamma \frac{I_D^*}{N} S^* \\ -0.15\gamma \frac{I_D^*}{N} S^* \\ 0 \end{bmatrix}$$

$$C = [0\ 0\ 1\ 0], \qquad D = [0]$$

A função de transferência a partir da representação no espaço dos estados para o caso de uma entrada e uma saída ($u=U,y=I_H$), foi encontrada tanto pela expressão (29) como pela função do MATLAB que devolve uma função de transferência de uma representação no espaço de estados.

→ Pela expressão (29)

```
TF = \frac{-31028400*s*(6485183463413514240*s^2 + 1188950301625811124*s + 18014398509481987)}{60701317217550493286400*s^4 + 11387982161754132690240*s^3 + 259407338536540885680*s^4 + 7926335344172078960*s + 178898161754132690240*s^3 + 269407338536540885680*s^4 + 7926335344172078960*s + 178898161754132690240*s^3 + 26940733853654085680*s^4 + 7926335344172078960*s + 178898161754132690240*s^4 + 1788981617541369080*s^4 + 1788981617541369080*s^4 + 1788981617541369080*s^4 + 17889816175418690*s^4 + 17889816175418690*s^4 + 17889816175418690*s^4 + 17889816175418690*s^4 + 17889816175418690*s^4 + 17889816175418690*s^4 + 1788981618690*s^4 + 1788981690*s^4 + 1888981690*s^4 + 1888981690*s^4 + 1888981690*s^4 + 18889881690*s^4 + 18889881690*s^4 + 18889881690*s^4 +
```

O que simplificando fica:

$$TF = \frac{-3315s^3 - 607.75s^2 - 9.208s}{s^4 + 0.1876s^3 + 0.0042735s^2 + 1.306 * 10^{-4} * s + 2.8 * 10^{-22}}$$

→ MATLAB

Figura 20 - Espaço de estados do sistema

Continuous-time state-space model.

Figura 21 - Função de transferência do sistema

Posto isto pode-se verificar que as funções de transferência são praticamente iguais, apenas diferem em valores de reduzida escala comparando com os outros.

- H. Gráfico para resposta temporal transitória: (i) condições iniciais nulas e controlo em degrau de U^* para $0.9U^*$; (ii) controlo nulo e condições iniciais não nulas com I_D igual a $1.2I_D^*$.
- → Condições inicias nulas e controlo em degrau

U passa de U* para 0.9 U*

```
SS =
 A =
                                   Ih
       -0.004526
                                          0.01667
   S
                   -0.2077
        0.003847
                   0.009853
   Ιd
                                     0
                                                 0
   Ih 0.0006789
                   0.03115
                               -0.1667
                                                 0
  R
               0
                     0.1667
                               0.1667
                                         -0.01667
 B =
         2.21e+04
      -1.879e+04
  Id
  Ιh
            -3315
  c =
       S
         Id Ih
                   R
       0
           0
               1
```

Continuous-time state-space model.

Figura 22 - Espaço de estados para os critérios definidos

Figura 23 - Função de transferência para os critérios definidos

Figura 24 - Resposta temporal transitória para os critérios definidos

→ Condições iniciais não nulas e controlo nulo

 I_D é 1.2 ${I_D}^*$ U é 0

Continuous-time state-space model.

Figura 25 - Espaço de estados para os critérios definidos

Figura 26 – Função de transferência para os critérios definidos

Figura 27 - Resposta temporal transitória para os critérios definidos

Analisando os gráficos é fácil de perceber as diferenças existentes. Na primeira ocasião em que o controlo existe, visualiza-se que a curva dos afetados acaba por atenuar o que resulta numa melhor contenção do vírus em si. Apesar de ter um grande pico inicial, os picos sucessivos vão ser cada vez mais pequenos até por fim, ficar a rondar o 0 do eixo vertical.

Na segunda ocasião em que não existe controlo e o número de infetados é multiplicado por 1.2, podemos constatar que, tanto a condição inicial de 204000 infetados a recuperar no domicílio é cumprida, assim como este caso é piorem termos de contenção e dizimação do vírus. Apesar de no primeiro caso, demorar bastante tempo até se verificar uma quase anulação do número de infetados, no segundo nunca chegamos a visualizar a atenuação do numero de infetados e há um ponto esse numero cresce a uma velocidade muito grande até atingir um valor que supera a própria população total N.

2. Projeto de controlador em tempo contínuo por espaço de estados.

A. Projeção de um controlador através da técnica de colocação de polos.

Para esta parte do trabalho começou-se por analisar o sistema em malha aberta vendo a posição dos seus polos no lugar de raízes.

Utilizando a função *ss()* para criou-se um espaço de estados em tempo continuo. Apos isso utilizou-se a função *rlocus()* para se poder ver o lugar de raízes do sistema. Obtendo assim o que está representado na Figura 28.

Figura 28 - Lugar de raízes do sistema

Pela análise decidiu-se que uma boa abordagem seria colocar os polos no eixo real para menos oscilações e tentar polos mais próximos dos zero para que a estabilização seja mais lenta e tenha por isso menor *overshoot*.

Para fazer isso utilizou-se o método direto usando a fórmula presente no formulário, sendo ela a seguinte:

$$det([\lambda I - (A - KeC)])$$

Para colocar os polos em $[-0.4 - 0.04 \ 0 - 1/6]$ (de realçar que se manteve os dois polos que já estavam no eixo real, sendo eles $0 \ e - 1/6$) resolveu-se o sistema em ordem a K_e por forma a conseguir calcular a nova matriz A, sendo ela dada pela seguinte formula:

$$A_{cl} = A - BK_e$$

Para resolver isto no MATLAB utilizou-se o código da Figura 29.


```
%% Colocação de polos pelo metodo direto
syms lamb k1 k2 k3 k4;
polos = [-0.4 -0.04 0 -1/6]; %Polos desejados para o nosso sistema, mantivemos 2 polos o -1/6 e o zero,
                             %visto que so conseguimos controlar dois polos
                             %se tentassemos controlar mais polos o sistema
                             %e perder a estabilidade
Kcontrolo = [k1 k2 k3 k4];
metDireto = det(lamb*eye(4)-(A-B*Kcontrolo));% aplicação do metodo segundo o formulario
fator = sym2poly((lamb-polos(1))*(lamb-polos(2))*(lamb-polos(3))*(lamb-polos(4))); % obeter o valor que multiplica por Lamb
                                                                                     %isto é exemplo: a1*X + a2*X retorna uma matriz
                                                                                     %com [a1 a2]
coeficientes = coeffs (metDireto, lamb); % retorna o coeficentes do lambda
equacao1 = coeficientes(5) == fator(1);%%cria as equacoes
equacao2 = coeficientes(4) == fator(2);
eguação3 = coeficientes(3) == fator(3);
equacao4 = coeficientes(2) == fator(4);
equacao5 = coeficientes(1) == fator(5);
resultado = solve([equacao1 equacao2 equacao3 equacao4 equacao5], Kcontrolo);% resolve as equaçoes em ordem a K
Kcontrolo=[double(resultado.k1), double(resultado.k2), double(resultado.k3), double(resultado.k4)];
```

Figura 29 - Código para exercício 2.A

Assumindo como condições iniciais o vetor x0 = [10e6, 100, 1, 1] pode-se tentar agora comparar as respostas em malha aberta e em malha fechada.

Começando por mostrar a evolução em malha aberta (Figura 30):

Figura 30 - Resposta em malha aberta dos estados

O comportamento da saída em malha aberta, que se considera como o número de infetados no Hospital (de notar que esta saída já podia ser vista nos estados acima, mas assim torna-se mais fácil de comparar com malha fechada) pode ser visto na Figura 31:

Figura 31 - Saída do sistema em malha aberta

Em malha fechada obteve-se os resultados das Figura 32 e 33:

Figura 32 - Resposta em malha fechada dos estados

Figura 33 - Saída do sistema em malha fechada

Como é visível pela análise das Figuras 30, 31, 32 e 33 o sistema em malha fechada tende a estabilizar não oscilando como em malha aberta. É possível ver também a dinâmica do sistema, por exemplo em malha fechada vemos que o número de infetados no hospital tende a estabilizarem mais ou menos em $3.7 * 10^4$ abaixo da capacidade máxima do serviço nacional de saúde estabelecida na parte 1 do trabalho.

O código utilizado para gerar os gráficos em malha aberta e malha fechada são idênticos por isso na Figura 34 a título de exemplo o usado na malha aberta.

```
%% Representacao grafica do sistema
Utf = 0.8917; %
u=[];
for i = 0:0.1:300
   u = [u Utf];
T final = 300;
t=0:0.1:T final;
x0=[10e6,100,1,1];%% Valores iniciais, parecidos com os usados no trabalho 1
[y1, t1, x1]=lsim(sys,u,t,x0);
figure (2)
hold on
title('Sistema malha aberta Resposta dos Estados')
xlabel('Tempo Dias')
ylabel('Estado')
plot(t,x1)
legend('S','ID','IH','R');
grid
figure (3)
hold on
title ('Sistema malha aberta Resposta da Saida')
xlabel('Tempo Dias')
ylabel('Estado')
plot(t,y1)
grid
```

Figura 34 - Código usado para gerar a resposta do sistema

B. Projeção de um estimador de estado para uma norma de erro ao fim de dois dias de um décimo do erro inicial.

Para este exercício começou-se por atribuir um valor para o erro do estimador de [-0.03 -0.06 0 -0.5], este valor é dez vezes menor que o erro ao fim de 2 dias. Em seguida para calcular os valores de K_e , tendo em conta os valores de erro de estimação, utilizou-se a fórmula de *Ackermann* sendo esta a seguinte:

$$K_e = p_e(A)N^{-1} \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$$

De ressalvar que p_e é o polinómio característico que neste caso é igual ao erro do estimador.

Para resolver isto no MATLAB utilizou-se a função acker() como se pode ver na Figura 35:

```
%% Estimador

Valor_erro estimado = [-0.03 -0.06 0 -0.5];

Kestimado acker(A',C',Valor_erro_estimado)'

disp('Novo valor propio de A');

disp(eig(A-Kestimado*C));
```

Figura 35 - Cálculo do estimador no MATLAB

A evolução do sistema neste caso foi a apresentada das Figuras 36 e 37:

Figura 36 - Resposta dos estados em malha fechada com estimador

Figura 37 - Resposta da saída em malha fechada com estimador

Como é visível na Figura 37 o número de infetados no hospital estabiliza num número abaixo do valor que obtivemos no sistema com controlador. Porem isto apenas está relacionado com a escolha dos polos. É de esperar que neste caso, visto não termos acesso a alguns estados, a resposta do sistema seja pior que no anterior.

C. Equações que definem o sistema com controlador e estimador.

Pode-se definir o sistema com controlador e estimador da seguinte forma

$$\begin{cases} \hat{x} = A\hat{x} + Bu + K_e(y - C\hat{x}) \\ u = -K\hat{x} \end{cases}$$

$$\begin{cases} \hat{x} = A\hat{x} - BK\hat{x} + K_e(Cx - C\hat{x}) \\ Bu = -BK\hat{x} \end{cases}$$

$$\begin{cases} \hat{x} - \dot{x} = A(x - \hat{x}) - BK(x - \hat{x}) + K_e(Cx - C(x - \hat{x})) \\ \dot{x} - Ax = -BK(x - \hat{x}) \end{cases}$$

$$\begin{cases} \dot{x} = \dot{x} + (A - BK)x - (A - BK)\hat{x} + K_eC\hat{x} \\ \dot{x} = (A - BK)x + BK\hat{x} \end{cases}$$

$$\begin{cases} BK\hat{x} = \dot{x} - A\hat{x} + BK\hat{x} + K_eC\hat{x} \\ \dot{x} = (A - BK)x + BK\hat{x} \end{cases}$$

$$\begin{cases} \dot{x} = (A - K_eC)\hat{x} \\ \dot{x} = (A - BK)x + BK\hat{x} \end{cases}$$

Passando agora para a forma matricial temos o seguinte:

$$\begin{bmatrix} \dot{x} \\ \dot{\tilde{x}} \end{bmatrix} = \begin{bmatrix} A - BK & BK \\ 0 & A - LC \end{bmatrix} \begin{bmatrix} x \\ \tilde{x} \end{bmatrix}
y = \begin{bmatrix} C & 0 \end{bmatrix} \begin{bmatrix} x \\ \tilde{x} \end{bmatrix}$$
(30)

D. Análise da resposta do sistema controlado.

Para a última parte implementou-se a fórmula (30) no MATLAB da como se pode ver na Figura 38:

```
%% Sistema com controlador e estimador

sys_controlo_estimador= ss([A-B*Kcontrolo,B*Kcontrolo;zeros(4),A-Kestimado*C],[B;zeros(4,1)],[C,zeros(1,4)],D);
```

Figura 38 - Implementação do estimador e controlador

Obtendo os resultados das Figuras 39 e 40:

Figura 39 - Resposta dos estados

Figura 40- Resposta da saída (infetados no hospital)

Os resultados obtidos são idênticos aos obtidos pelo método de colocação de polos. Parte-se do suposto que isto deve-se ao facto de uma escolha não correta dos valores para o estimador. Deveriam ser vistas algumas diferenças pois neste caso alguns dos estados não são acessíveis.

Tirando este aspeto, os resultados obtidos tal como na alínea **3A** são satisfatórios, e consegue-se ver bem a dinâmica do sistema. Como se pode observar existe uma descida de suscetíveis que passam a infetados e depois a recuperados, estes valores tendem todos a estabilizar mantendo sempre os infetados nos hospitais abaixo da capacidade máxima.

3. Espaço de estados em tempo discreto.

A. Modelo de espaço de estado discreto com período de amostragem de um dia.

A partir da alínea C obteve-se a o sistema em espaço de estados na D, equação (26). De seguida, retirou-se as matrizes A, B, C e D, onde se substituiu os respetivos valores de **1B**, para obter as matrizes A, B, C e D:

$$\mathbf{A} = \begin{bmatrix} -0.0043 & -0.1960 & 0 & 1/60 \\ 0.0036 & 0 & 0 & 0 \\ 0.0006 & 0.0294 & -1/6 & 0 \\ 0 & 1/6 & 1/6 & -1/6 \end{bmatrix} B = \begin{bmatrix} 22100 & -7800000 \\ -18785 & 0 \\ -3315 & 0 \\ 0 & 7800000 \end{bmatrix}$$

$$C = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix} \quad D = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

De modo a discretizar A e B, iremos utilizar as seguintes expressões:

$$\tilde{A} = e^{At} \tag{31}$$

$$\tilde{B} = \left(\int_0^T e^{At} dt\right) B \tag{32}$$

$$e^{At} = L^{-1}[(sI - A)^{-1}] (33)$$

Começando então pela discretização de A, utilizando as expressões (31)e(33) obtém-se:

$$(sI - A)^{-1} = \begin{bmatrix} s + 0.0043 & 0.1960 & 0 & -\frac{1}{60} \\ -0.0036 & s & 0 & 0 \\ -0.0006 & -0.0294 & s + \frac{1}{6} & 0 \\ 0 & -\frac{1}{6} & -\frac{1}{6} & s + \frac{1}{6} \end{bmatrix}^{-1}$$

De seguida, através da matriz adjunta realizamos a inversa, resulta a seguinte matriz que iremos nomear de matriz J por razões de simplificação:

$$\frac{1}{\det}\begin{bmatrix} s^3 + 0.1833s^2 + 0.0028s & -0.1960s^2 - 0.03312s & 0.00278s & 0.01667s^2 + 0.0028s \\ 0.0036s^2 + 0.0007s & s^3 + 0.1876s^2 + 0.0036s & 0 & 0 \\ 0.0006s^2 + 0.0001s & 0.0294s^2 + 0.005s & s^3 + 0.0209s^2 + 0.0008s & 0 \\ 0.0007s + 0.0001 & 0.1667s^2 + 0.0334s + 1e^{-4} & 0.1667s^2 + 1e - 4s + 1e - 4 & s^3 + 0.1709s^2 + 0.0014 * s + 1e - 4 \end{bmatrix}$$

Onde,

$$det = s^4 + 0.1876s^3 + 0.0042s^2 + 0.0001s$$

De seguida encontrou-se os zeros do polinómio do determinante de modo a fatorizá-los. Para facilitar a representação mais tarde nomeou-se os polos de p1, p3, p3 e p4.

$$p1 = -0.1667$$

 $p2 = 0$
 $p3 = -0.0105 - 0.0260i$
 $p4 = -0.0105 + 0.0260i$

Através das frações parciais chegou-se às matrizes m1, m2, m3 e m4:

$$\frac{1}{(s-p2)(s-p3)(s-p4)}J|_{s=p1} = \begin{bmatrix} 0 & -0.0196 & 0.1108 & 0 \\ 0 & 4.2614e - 04 & -0.0024 & 0 \\ 0 & -0.1764 & 0.9996 & 0 \\ 0 & 0.1955 & -1.1080 & 0 \end{bmatrix}$$

$$\frac{1}{(s-p1)(s-p3)(s-p4)}J|_{s=p2} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0.0773 & 0.0773 & 0.0773 & 0.0773 \\ 0.0136 & 0.0136 & 0.0136 & 0.0136 \\ 0.9091 & 0.9091 & 0.9091 & 0.9091 \end{bmatrix}$$

$$\frac{1}{(s-p1)(s-p2)(s-p4)}J|_{s=p3} = \begin{bmatrix} 0.5000 + 0.1194i & 0.0098 - 3.8356i & -0.0554 + 0.3333i & 0.3210i \\ -0.0386 + 0.0544i & 0.4612 + 0.1874i & -0.0374 - 0.0228i & -0.0386 - 0.0156i \\ -0.0068 + 0.0096i & 0.0814 + 0.0331i & -0.0066 - 0.0040i & -0.0068 - 0.0028i \\ -0.4545 - 0.1833i & 0.5523 + 3.6151i & 0.0994 - 0.3065i & 0.0455 - 0.3027i \end{bmatrix}$$

$$\frac{1}{(s-p1)(s-p2)(s-p3)} I|_{s=p4}$$

$$= -\begin{bmatrix} 0.5000 + 0.1194i & 0.0098 - 3.8356i & -0.0554 + 0.3333i & 0.3210i \\ -0.0386 + 0.0544i & 0.4612 + 0.1874i & -0.0374 - 0.0228i & -0.0386 - 0.0156i \\ -0.0068 + 0.0096i & 0.0814 + 0.0331i & -0.0066 - 0.0040i & -0.0068 - 0.0028i \\ -0.4545 - 0.1833i & 0.5523 + 3.6151i & 0.0994 - 0.3065i & 0.0455 - 0.3027i \end{bmatrix}$$

Resultando então em:

$$\frac{1}{(s-p1)}m1 + \frac{1}{(s-p2)}m2 + \frac{1}{(s-p3)}m3 + \frac{1}{(s-p4)}m4$$

Aplicando a transformação inversa de Z, resultando em:

$$e^{At} = e^{p1.t}m1 + e^{p2.t}m1 + e^{p3.t}m3 + e^{p4.t}m4$$

Sendo t=1, obtém-se então \hat{A} :

$$e^{At} = \widetilde{A} = \begin{bmatrix} 0.9954 & -0.1942 & 0.0013 & 0.0165 \\ 0.0036 & 0.9996 & 0 & 0 \\ 0.0006 & 0.0270 & 0.8465 & 0 \\ 0.0004 & 0.1676 & 0.1522 & 0.9835 \end{bmatrix}$$

De seguida de modo a calcular \tilde{B} , visto que A não é invertível utilizou-se a seguinte expressão da definição (32), resultando em:

$$\tilde{B} = \begin{bmatrix} 2.3879*10^4 & -7.7179*10^6 \\ -1.8743*10^4 & -1.4067*10^4 \\ -3.3075*10^3 & -2.4825*10^3 \\ -1.8288*10^3 & 7.7344*10^6 \end{bmatrix}$$

Obtendo-se por fim o seguinte espaço de estados discreto:

$$\begin{split} \dot{x} &= \begin{bmatrix} 0.9954 & -0.1942 & 0.0013 & 0.0165 \\ 0.0036 & 0.9996 & 0 & 0 \\ 0.0006 & 0.0270 & 0.8465 & 0 \\ 0.0004 & 0.1676 & 0.1522 & 0.9835 \end{bmatrix} \begin{bmatrix} S \\ I_D \\ I_H \\ R \end{bmatrix} + \begin{bmatrix} 2.3879*10^4 & -7.7179*10^6 \\ -1.8743*10^4 & -1.4067*10^4 \\ -3.3075*10^3 & -2.4825*10^3 \\ -1.8288*10^3 & 7.7344*10^6 \end{bmatrix} \begin{bmatrix} U \\ V \end{bmatrix} \\ y &= \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} S \\ I_D \\ I_H \\ R \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} U \\ V \end{bmatrix} \end{aligned}$$

Para verificar os valores calculados utilizou-se a função **c2d()** do MATLAB, convertendo o sistema em espaço de estados continuo obtido em 1D para discreto utilizando a taxa de amostragem igual a 1 e obteve-se:

$$\dot{x} = \begin{bmatrix} 0.9954 & -0.1942 & 0.0013 & 0.0165 \\ 0.0035 & 0.9996 & 0 & 0 \\ 0.0006 & 0.0270 & 0.8465 & 0 \\ 0.0004 & 0.1686 & 0.1522 & 0.9835 \end{bmatrix} \begin{bmatrix} S \\ I_D \\ I_H \\ R \end{bmatrix} + \begin{bmatrix} 2.388*10^4 & -7.718*10^6 \\ -1.875*10^4 & -1.407*10^4 \\ -3308 & -2482 \\ -1829 & 7.734*10^6 \end{bmatrix} \begin{bmatrix} U \\ V \end{bmatrix}$$

$$y = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} S \\ I_D \\ I_H \\ R \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} U \\ V \end{bmatrix}$$

B. Função de transferência em Z a partir do espaço de estados. Comparação com a discretização de 1G.

De forma a comparar com o com a função de transferência obtida em **1G**, utilizou-se de igual forma apenas uma entrada e uma saída ($u = U \ e \ y = I_H$).

Utilizando a seguinte equação:

$$\frac{Y(z)}{U(z)} = \tilde{C}(zI - \tilde{A})^{-1}\tilde{B} + \tilde{D}$$

Obteve-se então a seguinte função de transferência:

$$FT = \frac{-3308z^3 + 9360z^2 - 8806z + 2753}{z^4 - 3.825z^3 - 5.479z^2 - 3.483z + 0.8289}$$

De seguida, obtendo a discretização da expressão em **1G** recorrendo **c2d()**, com uma taxa de amostragem igual a **1**, obteve-se exatamente a mesma função de transferência que se obteve utilizando o espaço de estados discreto.

29

C. Projeção de um controlador, sem saturação da entrada, que leva o sistema ao ponto de equilíbrio em quatro instantes de tempo.

Por motivos de tempo não foi possível chegar a nenhum resultado apresentável nesta alínea.

Conclusão

Dado por terminado o trabalho, de uma forma geral pode-se dizer que apesar de não, se ter implementado o controlador discreto corretamente em MATLAB, seria possível controlar este sistema, por forma a manter o caso de infetados abaixo do limite máximo dos Serviço de Saúde á semelhança do que se observou para tempo contínuo.

Este trabalho permitiu também ficar com uma melhor ideia de como abordar sistemas através da utilização de espaço de estados e das vantagens que este apresenta no que toca à sua versatilidade na análise de sistemas contínuos e discretos.

1 Anexos

1.a Exercício 1

```
Codig
3 %Desenvolvido por :
                                               #
4 %Diogo Silva up201809213
                                               #
5 %Paulo Silva up201909556
                                               #
6 %Emanuel Ribeiro up201603213
7 %Jose Sarmento up201909931
10 % Exercicio 1 parte 1
12 clear
13 format rat;
14 syms Ro U Id Ih y N v S p s R I;
16 %VALORES
_{18} N=10*10^6;
19 p = 1/60;
_{20} Ro=2.4;
S = (78 * 10^5);
^{22} U=Ro-N/(0.85*S);
v = 0;
y = (1/6);
25 Id = ((2*10^5)/(1+(0.15/0.85)));
_{26} Ih = ((2*10^5)/(1+(0.85/0.15)));
I = Id + Ih;
_{28} R=10*I;
30 %MATRIZ A
_{32} A=[(-(Ro-U)*y*(Id/N)-v) (-(Ro-U)*y*(S/N)) 0 p;
33 (0.85*(Ro-U)*y*(Id/N)) 0.85*(Ro-U)*y*(S/N)-y 0 0;
_{34} (0.15*(Ro-U)*y*(Id/N)) 0.15*(Ro-U)*y*(S/N) -y 0;
y y y -p;
37 %MATRIZ B1 - 1 INPUT
39 B1=[y*(Id/N)*S;
```

```
_{40} (-0.85*y*(Id/N)*S);
_{41} (-0.15*y*(Id/N)*S);
42 0];
44 %MATRIZ B2 - 2 INPUT
46 B2=[y*(Id/N)*S -S;
_{47} (-0.85*y*(Id/N)*S) 0;
_{48} (-0.15*y*(Id/N)*S) 0;
49 0 S];
51 %MATRIZ C1 - 1 OUTPUT
C1 = [0 \ 0 \ 1 \ 0];
55 %MATRIZ C2 - 2 OUTPUT
56
57 \text{ C2} = [0 \ 0 \ 1 \ 0;]
    0 1 1 0];
60 %MATRIZ D1 - 1 INPUT / 1 OUTPUT
62 D11 = [0];
64 %MATRIZ D1 - 2 INPUT / 1 OUTPUT
66 D21=[0 \ 0];
68 %MATRIZ D1 - 1 INPUT / 2 OUTPUT
70 D12 = [0;
      0];
73 %MATRIZ D2 - 2 INPUT / 2 OUTPUT
75 D22=[0 \ 0;
      0 0];
78 %MATRIZ IDENTIDADE Ie
79
```

2

```
80 Ie = eye(4);
81
82 %
     83
84 % EXERCICIO 1.E - CONTROLABILIDADE, OBSERVABILIDADE, ESTAVEL,
     ESTABILIZAVEL
86 disp('EXERCICIO 1.E');
  fprintf('\n');
89 %%CONTROLABILIDADE - 1 INPUT
90 \operatorname{disp}('\operatorname{Matriz} M - 1 \operatorname{input}:');
_{91} M1=ctrb (A, B1)
92 disp('Determinante M1');
_{93} \det M1 = \det (M1)
94 disp('Caracteristica M1');
95 \operatorname{rankM1} = \operatorname{rank}(M1)
96
97 %CONTROLABILIDADE - 2 INPUT
98 disp('Matriz M - 2 input:');
99 M2 = ctrb(A, B2)
100 disp ('Matriz n o
                          quadrada');
101 fprintf('\n');
102 disp('Caracteristica M2');
rankM2 = rank (M2)
104
105 %%OBSERVABILIDADE - 1 OUTPUT
disp('Matriz N - 1 output:');
_{107} N1 = obsv(A, C1)
108 disp('Determinante N1');
detN1 = det(N1)
110 disp('Caracteristica N1');
_{111} rankN1=rank(N1)
113 %%OBSERVABILIDADE - 2 OUTPUT
disp('Matriz N - 2 output:');
^{115} N2=obsv (A, C2)
116 disp ('Matriz n o
                          quadrada');
117 fprintf('\n');
118 disp('Caracteristica N2');
rankN2 = rank(N2)
120
121 %%ESTABILIDADE
123 disp ('Valores pr prios de A');
eigen=eig(A)
```

```
126 %%ESTABILIZ VEL
128 disp('N o estabiliz vel pois n o control vel');
129 fprintf('\n');
130
131 %
    132
133
134 %
    135
                   EXERCICIO 1.F - FORMAS CAN NICAS
136 %
137
138 disp('EXERCICIO 1.F');
139 fprintf('\n');
140
141 % FORMA CAN NICA CONTROL VEL
142 disp ('FORMA CAN NICA CONTROL VEL:')
143 disp('Sistema n o control vel, n o poss vel calcular'
    );
 fprintf('\n');
146 %%FORMA CAN NICA OBSERV VEL
147 disp ('FORMA CAN NICA OBSERV VEL:')
polos=poly(A);
_{149} W=[polos(4) polos(3) polos(2) 1;
    polos (3) polos (2) 1 0;
    polos (2) 1 0 0;
    1 0 0 0];
_{153} Uo=inv(W*N1);
invU=inv(Uo);
155 disp('Matriz A observ vel');
156 Ao=invU*A*Uo
157 disp('Matriz B observ vel');
Bo=invU*B1
159 disp('Matriz C observ vel');
160 Co=C1*Uo
161 disp('Matriz D observ vel');
162 Do=D11
164 WAFORMA CANNICA DIAGONAL
165 disp ('FORMA CAN NICA DIAGONAL:')
166 fprintf('\n');
[V, E] = eig(A);
```

```
invV = inv(V);
169 disp('Matriz A diagonal');
_{170} Ad=invV*A*V
171 disp('Matriz B diagonal');
_{172} Bd=invV*B1
173 disp ('Matriz C diagonal');
174 Cd=C1*V
175 disp('Matriz D diagonal');
176 Dd=D11
177
178 %
    179
180
181 %
    182
183 %
                EXERCICIO 1.G - FUN O DE TRANSFERNCIA
185 states = { 'S' 'Id' 'Ih' 'R' };
inputs = \{ u'\};
outputs = \{ 'y' \};
188 SS=ss(A, B1, C1, D11, 'statename', states, 'inputname', inputs, '
    outputname', outputs)
^{189} TF= tf (SS)
190
191 TF1=C1*inv(s*Ie-A)*B1+D11;
_{192} TF1=simplify(TF1)
193
194 %
    195
196
197 %
    198
199 %
              EXERCICIO 1.H - RESPOSTA TEMPORAL TRANSIT RIA
200
201 %I
202
203 disp ('CONDI ES INICIAIS NULAS, CONTROLO EM DEGRAU E U=0.9U*'
    )
_{204} U=U * 0.9;
205 disp('Nova matriz A');
```

```
_{206} A=[(-(Ro-U)*y*(Id/N)-v) (-(Ro-U)*y*(S/N)) 0 p;
207 (0.85*(Ro-U)*y*(Id/N)) 0.85*(Ro-U)*y*(S/N)-y 0 0;
_{208} (0.15*(Ro-U)*y*(Id/N)) 0.15*(Ro-U)*y*(S/N) -y 0;
v y y -p;
210 SS=ss (A, B1, C1, D11, 'statename', states, 'inputname', inputs, '
    outputname', outputs)
TFI = tf(SS)
212 figure (1); clf
[x, t] = step(SS);
u = ones(length(t), 1);
                     es iniciais nulas, x0 ignorado
215 lsim (SS, u, t) % c o n d i
216 title ('Resposta temporal com condi es iniciais nulas,
    controlo em degrau e U=0.9U*')
217 xlabel('Dias')
ylabel ('Amplitude')
219 grid on
220
222 %
    2 %
                   Codig
3 %Desenvolvido por :
                                             #
                                             #
4 %Diogo Silva up201809213
5 %Paulo Silva up201909556
                                             #
6 %Emanuel Ribeiro up201603213
7 %Jose Sarmento up201909931
10 % Exercicio 1 parte 2
12 clear
13 format shortEng;
14 syms Ro U Id Ih y N v S p s R I;
16 %VALORES
_{18} N=10*10^6;
19 p = 1/60;
_{20} Ro=2.4;
_{21} S=7800000;
22 U=0; %controlo NULO
v = 0;
y = (1/6);
25 Id = ((2*10^5)/(1+(0.15/0.85)))*1.2;
```

```
26 Ih = ((2*10^5)/(1+(0.85/0.15)));
I = Id + Ih;
_{28} R=10*I;
30 %MATRIZ A
_{32} A=[(-(Ro-U)*y*(Id/N)-v) (-(Ro-U)*y*(S/N)) 0 p;
_{33} (0.85*(Ro-U)*y*(Id/N)) 0.85*(Ro-U)*y*(S/N)-y 0 0;
_{34} (0.15*(Ro-U)*y*(Id/N)) 0.15*(Ro-U)*y*(S/N) -y 0;
y y y -p;
37 %MATRIZ B1 - 1 INPUT
39 B1=[y*(Id/N)*S;
_{40} (-0.85*y*(Id/N)*S);
_{41} (-0.15*y*(Id/N)*S);
42 0];
44 %MATRIZ B2 - 2 INPUT
^{46} B2=[y*(Id/N)*S -S;
^{47} (-0.85*y*(Id/N)*S) 0;
_{48} (-0.15*y*(Id/N)*S) 0;
49 0 S1;
51 %MATRIZ C1 - 1 OUTPUT
53 \text{ C1} = [0 \ 0 \ 1 \ 0];
55 %MATRIZ C2 - 2 OUTPUT
57 \text{ C2} = [0 \ 0 \ 1 \ 0;
      0 1 1 0];
60 %MATRIZ D1 - 1 INPUT / 1 OUTPUT
62 D11 = [0];
64 %MATRIZ D1 - 2 INPUT / 1 OUTPUT
65
```

```
66 D21=[0 \ 0];
68 %MATRIZ D1 - 1 INPUT / 2 OUTPUT
70 D12 = [0;
     01;
73 %MATRIZ D2 - 2 INPUT / 2 OUTPUT
75 D22=[0 \ 0;
     0 01;
78 disp ('CONDI ES INICIAIS NO NULAS, CONTROLO EM DEGRAU NULO
   E Id = 1.2 Id * ');
79 fprintf('\n');
so states = { 'S' 'Id' 'Ih' 'R' };
inputs = \{ u' \};
82  outputs = { 'y' };
83 SS=ss(A, B1, C1, D11, 'statename', states, 'inputname', inputs, '
    outputname', outputs)
TFII = tf(SS)
85 figure (2); clf
[x, t] = step(SS);
u=ones(length(t),1);
x0 = [Id Id Id Id];
89 1 sim(SS, u, t, x0) % condi es iniciais Id=1.2 Id
% title ('Resposta temporal com condi es iniciais n o nulas,
    controlo em degrau nulo e Id=1.2Id*')
91 xlabel('Dias')
92 ylabel ('Amplitude')
93 grid on
94
95 %
```

1.b Exercício 2

```
10 %/Exercicio 2
11 % Limpar consola
12 close all;
13 clear all;
14 clc;
16 % Elementos da matriz A com os valores calculados manualmente
a11 = -0.0042735166666667;
_{18} a12 = -0.196079;
a13 = 0;
a14 = 1/60;
a21 = 0.0036324891666667;
a22 = 4.83333333333333333 = -7;
a23 = 0;
a24 = 0;
a31 = 0.0006410275;
a32 = 0.02941185;
_{29} a33 = -1/6;
30 \ a34 = 0;
32 a41 = 0;
33 a42 = 1/6;
_{34} a43 = 1/6;
_{35} a44 = -1/60;
37 % Matriz A
_{38} A = [a11 \ a12 \ a13 \ a14;
      a21 a22 a23 a24;
       a31 a32 a33 a34;
       a41 a42 a43 a44;];
   disp('Matriz A');
   display (A);
44 % Matriz B
45 p = 1/60;
46 R = 2.4;
_{47} S = (78 * 10^5);
^{48} U=0.8917;
49 v = 0;
y = (1/6);
_{51} N=10*10^6;
I = ((2*10^5)/(1+(0.15/0.85)));
1e = eye(4);
_{55} B = [y*(I/N)*S;
_{56} (-0.85*y*(I/N)*S);
_{57} (-0.15*y*(I/N)*S);
```

```
58 0];
   disp('Matriz B');
   display (B);
61 % Matriz C
62 C = [0 \ 0 \ 1 \ 0];
   disp('Matriz C');
   display (C);
65 % Matriz D
_{66} D = [0];
   disp('Matriz D');
   display (D);
69 %% Verificar valor propio de A
valor_propioA = eig (A);
71 disp('Valor Propio de A');
72 display (valor_propioA);
73 %% Sistema em malha aberta
74 sys = ss(A,B,C,D); % Criar sistema em malha aberta
75 figure (1)
76 hold on
77 rlocus (sys);
78 % Representação grafica do sistema
79 Utf = 0.8917; %
u = [];
_{81} for i = 0:1:300
      u = [u \ Utf];
83 end
_{84} T_{final} = 300;
t = 0:1:T \text{ final};
x0=[10e6,100,1,1];%% Valores iniciais, parecidos com os usados
     no trabalho 1
[y1, t1, x1] = 1sim(sys, u, t, x0);
88 figure (2)
89 hold on
90 title ('Sistema malha aberta Resposta dos Estados')
91 xlabel ('Tempo Dias')
92 ylabel ('Estado')
plot(t, x1)
94 legend('S','ID','IH','R');
95 grid
96 figure (3)
97 hold on
98 title ('Sistema malha aberta Resposta da Saida')
99 xlabel ('Tempo Dias')
vlabel('Estado')
101 plot(t,y1)
102 grid
104 %% Coloca ao de polos pelo metodo direto
```

```
105 syms lamb k1 k2 k3 k4;
polos = [-0.4 -0.04 \ 0 \ -1/6]; %Polos desejados para o nosso
     sistema, mantivemos 2 polos o -1/6 e o zero,
                                %visto que so conseguimos
                                   controlar dois polos
                                %se tentassemos controlar mais
108
                                   polos o sistema
                                %e perder a estabilidade
109
110
Kcontrolo = [k1 k2 k3 k4];
metDireto = det(lamb*eye(4)-(A-B*Kcontrolo));% aplica ao do
     metodo segundo o formulario
114
fator = sym2poly((lamb-polos(1))*(lamb-polos(2))*(lamb-polos(3))
     )*(lamb-polos(4))); % obeter o valor que multiplica por Lamb
116
```

117

11

```
118
coeficientes = coeffs (metDireto, lamb); % retorna o coeficentes
     do lambda
equacao1 = coeficientes (5) == fator (1); %cria as equa oes
122 equacao2 = coeficientes(4) == fator(2);
equacao3 = coeficientes(3) == fator(3);
_{124} equacao4 = coeficientes (2) == fator (4);
equacao5 = coeficientes(1) == fator(5);
  resultado = solve([equacao1 equacao2 equacao3 equacao4 equacao5
     ], Kcontrolo);% resolve as equa oes em ordem a K
128
129 Kcontrolo = [double (resultado.k1), double (resultado.k2), double (
     resultado.k3), double (resultado.k4)];
130 % Sistema em malha fechada
syscl = ss(A-B*Kcontrolo, B, C, D);
133 % resposta do sistema com controlador
[y1, t1, x1] = 1sim(syscl, u, t, x0);
135 figure (4)
136 hold on
137 title ('Sistema malha fechada Resposta dos Estados')
138 xlabel ('Tempo Dias')
ylabel ('Estado')
_{140} plot (t, x1)
141 legend('S','ID','IH','R');
142 grid
143 figure (5)
144 hold on
145 title ('Sistema malha fechada Resposta da Saida')
146 xlabel ('Tempo Dias')
ylabel ('Estado')
148 plot (t, y1)
149 grid
150
151 % Estimador
Valor_{erro_{estimado}} = [-0.03 -0.06 \ 0 \ -0.5];
153 Kestimado=acker(A',C', Valor_erro_estimado)'
154 disp('Novo valor propio de A');
  disp (eig (A-Kestimado*C));
156
157 %% Sistema com estimador
sys_estimado = ss(A-Kestimado*C,B,C,D);
x0 = [10e6, 100, 1, 1];
[y4, t4, x4] = 1sim(sys\_estimado, u, t, x0);
```

```
size_x = size(x4);
163 figure (6)
164 hold on
165 title ('Sistema com estimador Resposta dos Estados')
166 xlabel ('Tempo Dias')
ylabel('Estado')
168 plot (t, x4)
169 legend('S','ID','IH','R');
170 grid
171 figure (7)
172 hold on
173 title ('Sistema com estimador Resposta da Saida')
174 xlabel ('Tempo Dias')
ylabel ('Estado')
plot(t, y4)
177 grid
178
179 % Sistema com controlador e estimador
sys_controlo_estimador= ss([A-B*Kcontrolo, B*Kcontrolo; zeros(4),
     A-Kestimado*C], [B; zeros (4,1)], [C, zeros (1,4)], D);
182 % Resposta do sistema com controlador e estimador
xt = [-0.3 -0.6 \ 0 \ -5];
[y2, t1, x2] = lsim(sys\_controlo\_estimador, u, t, [x0, xt]);
size_x = size(x2);
186 figure (8)
187 hold on
188 title ('Sistema com estimador e controlador resposta dos estados
     ')
189 xlabel('Tempo Dias')
190 ylabel('Estado')
191 plot(t, x2(:, 1: size_x(1,2)/2));
192 legend('S','ID','IH','R');
193 grid
195 figure (9)
196 hold on
197 title ('Sistema com estimador Resposta da Saida')
198 xlabel('Tempo Dias')
ylabel ('Estado')
200 plot (t, y2)
201 grid
  1.c Exercício 3
 2 %
                      Codig
3 %Desenvolvido por :
                                                   #
4 %Diogo Silva up201809213
                                                   #
```

```
5 %Paulo Silva up201909556
                                                    #
6 %Emanuel Ribeiro up201603213
                                                    #
7 %Jose Sarmento up201909931
10 % Exercicio 3 Parte 1
12 clear all;
13 clc;
15 syms R;
16 syms U I y N v S p s t;
17 format shortEng;
18 sympref ('Floating Point Output', true)
_{19} N=10*10^6;
p = 1/60;
_{21} R=2.4;
_{22} S = (78 * 10^5);
^{23} U=R-N/(0.85*S);
v = 0;
y = (1/6);
I = ((2*10^5)/(1+(0.15/0.85)));
_{28} Ie = eye(4);
30 % %% duas entradas duas saidas
31 A1 = [(-(R-U)*y*(I/N)-v) (-(R-U)*y*(S/N)) 0 p;
(0.85*(R-U)*v*(I/N)) (0.85*(R-U)*v*(S/N)-v) 0 0;
(0.15*(R-U)*y*(I/N)) (0.15*(R-U)*y*(S/N)) -y 0;
y y y - p
_{36} B1 = [y*(I/N)*S, -S;
_{37} (-0.85*y*(I/N)*S),0;
_{38} (-0.15*y*(I/N)*S), 0;
_{39} 0,S]
C1 = [0 \ 0 \ 1 \ 0];
     0 1 1 0;]
44 D1=[0]
46 % uma entradas uma saidas
47\% \text{ A1} = [(-(R-U)*y*(I/N)-v) (-(R-U)*y*(S/N)) 0 p;
48\% (0.85*(R-U)*y*(I/N)) (0.85*(R-U)*y*(S/N)-y) 0 0;
49 % (0.15*(R-U)*y*(I/N)) (0.15*(R-U)*y*(S/N)) -y 0;
50 % v y y −p]
51 %
_{52} % B1=[y*(I/N)*S;
```

```
_{53} % (-0.85*y*(I/N)*S);
_{54}\% (-0.15*y*(I/N)*S);
55 % 0]
56 %
57\% C1 = [0 \ 0 \ 1 \ 0]
59 \% A1 = [0 \ 1 \ 0;
60 %
      0 0 1;
      -8 -14 -7
62\% B1 = [0;0;1]
_{63} % C1=[2 1 0]
_{65} %D1=[0]
66
67
69 Ad_1 = (s * Ie - A1) %e^(At)
70 Ad_det=det(Ad_1); %determinante
71 Ad_ajoint=adjoint(Ad_1) %adjun
72 T_Ad_adjoint=transpose (Ad_ajoint);
zerus = solve(Ad_det, s, 'MaxDegree', 4); %encontra os zeros do
      polinomio do det
74 matriz_d=Ad_ajoint;
75
77 matriz1\_aux = matriz\_d * (1/((s-zerus(2))*(s-zerus(3))*(s-zerus(4))
     )); %fracoes parciais
78 matriz1=subs (matriz1_aux, s, zerus(1));
 matriz2\_aux = matriz\_d * (1/((s-zerus(1))*(s-zerus(3))*(s-zerus(4))
80 matriz2=subs(matriz2_aux,s,zerus(2));
 matriz3_aux = matriz_d * (1/((s-zerus(1))) * (s-zerus(2)) * (s-zerus(4))
82 matriz3=subs(matriz3_aux,s,zerus(3));
 matriz4_aux = matriz_d * (1/((s-zerus(1))*(s-zerus(2))*(s-zerus(3))
84 matriz4=subs(matriz4_aux,s,zerus(4));
86 %inversa de Z
exp1=exp(t*zerus(1));
exp2=exp(t*zerus(2));
89 \exp 3 = \exp (t * z \operatorname{erus}(3));
exp4 = exp(t*zerus(4));
91 \% t = 1;
92 Ad_aux_var_1=vpa(exp1*matriz1);
93 Ad_aux_var_2=vpa(exp2*matriz2);
94 Ad_aux_var_3=vpa(exp3*matriz3);
95 Ad_aux_var_4=vpa(exp4*matriz4);
```

```
96 aux_var=Ad_aux_var_1+Ad_aux_var_2+Ad_aux_var_3+Ad_aux_var_4;
97 % substitui T
Ad_subs = subs(aux_var, t, 1);
99 % A discreta
100 \text{ Ad\_fin= } \text{vpa}(\text{round}(\text{Ad\_subs}*10000)/10000)
102 %B discreta pela integral (e^(At))*B
matrix_Ad=Ad_ajoint *(1/Ad_det);
int_exp1 = int(Ad_aux_var_1,0,1);
int_exp2 = int (Ad_aux_var_2, 0, 1);
int_exp3 = int (Ad_aux_var_3, 0, 1);
int_{exp4} = int(Ad_{aux_{var_{4}}}, 0, 1);
sum_ints=int_exp1+int_exp2+int_exp3+int_exp4;
Bd_fin = real(sum_ints)*B1
Codig
                                                  #
3 %Desenvolvido por :
4 %Diogo Silva up201809213
                                                  #
5 %Paulo Silva up201909556
6 %Emanuel Ribeiro up201603213
7 %Jose Sarmento up201909931
10 % Exercicio 3 Parte 2
12 clear all;
14 syms R;
15 syms U I y N v S p s z;
16 format shortEng;
_{17} N=10*10^{6};
p = 1/60;
19 R = 2.4;
_{20} S = (78 * 10^5);
_{21} U=R-N/(0.85*S);
v = 0;
y = (1/6);
I = ((2*10^5)/(1+(0.15/0.85)));
_{26} Ie = eye(4);
27
29 % %% duas entradas duas saidas
_{30} % A=[(-(R-U)*y*(I/N)-v) (-(R-U)*y*(S/N)) 0 p;
_{31}\% (0.85*(R-U)*y*(I/N)) (0.85*(R-U)*y*(S/N)-y) 0 0;
_{32}\% (0.15*(R-U)*y*(I/N)) (0.15*(R-U)*y*(S/N)) -y 0;
33 \% v y y -p
```

```
34 %
_{35} % B=[y*(I/N)*S,-S;
_{36}\% (-0.85*y*(I/N)*S),0;
37\% (-0.15*y*(I/N)*S),0;
38\%0,S
39 %
_{40} % C=[0 0 1 0;
      0 1 1 0;]
42 %
43 % D=[0]
45 % uma entrada uma saida codigo copiado do ex1
46 A=[(-(R-U)*y*(I/N)-v) (-(R-U)*y*(S/N)) 0 p;
(0.85*(R-U)*y*(I/N)) (0.85*(R-U)*y*(S/N)-y) 0 0;
48 (0.15*(R-U)*y*(I/N)) (0.15*(R-U)*y*(S/N)) -y 0;
49 V Y Y -p];
_{51} B=[y*(I/N)*S;
_{52} (-0.85*y*(I/N)*S);
_{53} (-0.15*y*(I/N)*S);
54 0];
_{56} C=[0 0 1 0];
_{58} D = [0];
59
61 states = { 'S' 'Id' 'Ih' 'R' };
inputs = \{ u'\};
63 outputs = { 'Ih' };
64 SS=ss(A,B,C,D, 'statename', states, 'inputname', inputs, 'outputname
     ', outputs);
65 display ("espa o de estados continuo:")
66 G=ss(A,B,C,D)%espa o de estados continuo do ex 1
transf = tf(G);
69 %%ex 3
70 %a
71 display ('espa o de estados discreto:')
72 G_d=c2d(G,1) %% discretiza o do espa o de estados G
74 %b
75 %calculo da Ft
_{76} I_A = z * Ie - G_d . A;
I_A_adj = adjoint(I_A);
I_A_{det} = \det(I_A);
79 Y_U = vpa(C*(I_A_adj)*G_d.B)*(1/vpa(I_A_det));
```