6.1 Модель устройства автоматической классификации объектов

В середине XX века ученый Ф. Розенблат предложил модель обучаемой машины, известной под названием «Персептрон». Персептрон — это первая модель технического устройства, позволяющего поставить и решить задачу автоматической классификации объектов. В основу персептрона положена процедура контролируемого обучения, также задается обучающая выборка и классы, к которым принадлежат обучающие объекты.

Каждый класс будем обозначать C_i , число классов k, а множество классов C состоит из их совокупности: $C = \{C_1, C_2, \dots C_k\}$. Объекты представляются вектором в пространстве признаков X. Число существенных признаков объектов равно n и задается вектором \vec{x} . Тогда каждый объект — это вектор вида $\vec{x} = \langle x_1, x_2, \dots, x_n \rangle$.

Ранее уже обсуждался вопрос о математическом аппарате в виде решающих правил и разделяющих функций, которые используются для классификации образов. В случае контролируемого обучения решение задачи распознавания можно разделить на два этапа: обучение и непосредственно классификация тестовых образов. Весовые коэффициенты находятся в процессе обучения. Каждому классу C_j соответствует свой вектор весовых коэффициентов C_j : $\vec{\omega} = \langle \omega_{j1}, \omega_{j2} \dots \omega_{jn} \rangle$. Ко второму этапу переходят, когда для каждой разделяющей функции найден вектор весовых коэффициентов.

Модель персептрон отражает этап обучения и определения весовых коэффициентов для каждой разделяющей функции. На рисунке 1 приведена схема персептрона, где 1 — стимулы, 2 — датчики, 3 — суммирующие ячейки, 4 — весовые множители, 5 — блок решения, 6 — управление изменением весовых коэффициентов, 7 — вычисление новых весовых множителей.

Рисунок 1 – Схема персептрона

Датчики, составляющие слой чувствительных элементов, соединены случайным образом с ассоциативным слоем, имеющим фиксированную структуру. Выходными сигналами этого слоя являются признаки $x_1, x_2, ..., x_n$, которые умножаются на весовые коэффициенты $\omega_1, \omega_2 ... \omega_n$, а затем объединяются, в результате чего получается отклик R, поступающий на блок решения 5. В частном случае, когда классификация выполняется на два класса, это пороговое устройство, дающее на выходе номера классов 1 или 2.

Поскольку система является обучаемой, это решение используется для корректировки весовых коэффициентов ($\omega_1, \omega_2...\omega_n$) после сравнения его с заранее известным. При этом решающему устройству дается «поощрение», если класс определен верно, и «наказание» — если неверно. Это выражается в том, что в первом случае решение подкрепляется, во втором — ослабляется.

В обучении должны быть использованы все объекты обучающей выборки и каждый из них вносит свой вклад в формирование векторов коэффициентов разделяющих функций. По завершении процесса обучения корректность построенных функций проверяется на обучающих образах, они должны быть правильно классифицированы. Только в этом случае можно переходить к распознаванию тестовых образов.

Модель персептронного типа может быть положена в основу системы распознавания. Ее можно улучшить за счет изменения связей между датчиками и суммирующими ячейками путем усиления одних связей и ослабления других. Система, обученная распознаванию некоторых образов, распознает только их и похожие на них. При смене класса предъявляемых образов обучение должно начинаться с начала. Тем не мене, модель персептрона достаточно удобна, так как ее можно применять для классификации практически любых объектов и явлений. Персептрон допускает определенные обобщения, в результате чего может быть использован для распознавания абстрактных понятий. Кроме того, персептрон стал основой для одной из первых искусственных нейронных сетей.

6.2 Метод коррекции весовых коэффициентов

Рассмотрим построение вектора весовых коэффициентов (он будет один) в случае разделения объектов на два класса. Расширение на большее число классов можно выполнить, например, путем параллельного соединения нескольких моделей персептронного типа.

Пусть имеются два класса — C_1 и C_2 , а также по одному обучающему объекту, принадлежащему каждому из классов. Процесс обучения и коррекции весовых коэффициентов представлен в Таблице 1. i и i+1 — итерации, на которых рассматривается обучение. Критерий классификации или решающее правило можно представить в виде условий:

если $\vec{\omega}\vec{x} > 0$, то класс C_1 ; если $\vec{\omega}\vec{x} \leq 0$, то класс C_2 .

Принцип обучения состоит в следующем: если результат классификации неверный, то применяют «наказание», увеличивая или уменьшая весовые коэффициенты; если результат классификации верный, то применяют «поощрение», или «отсутствия наказания», оставляя весовые коэффициенты без изменений. В таблице 1 показана последовательность корректирующих лействий.

	Объект известного класса	Восприятие		Класен-	Изменение весов
		От- клик	Решение	фикация	(с — константа)
	$\vec{x}(i) \in C_{1}$	€0	C ₂	Неверно	$\overrightarrow{w}(i+1) = \overrightarrow{w}(i) + \overrightarrow{cx}(i)$
	$\vec{x}(i) \in C_{\vec{i}}$	>0	C ₁	Верно	$\stackrel{\rightarrow}{w}(i+1) = \stackrel{\rightarrow}{w}(i)$

Неверно

Верно

 $\vec{x}(i) \in C_2$

 $\vec{x}(i) \in C_2$

>0

 C_1

Ca

Таблица 1 Коррекция весовых коэффициентов в процессе обучения

 $\vec{w}(i+1) = \vec{w}(i) - \overset{\rightarrow}{cx}(i)$

 $\stackrel{\rightarrow}{w}(i+1) = \stackrel{\rightarrow}{w}(i)$

Текущая итерация обучения обозначена индексом i. Задача состоит в отыскании для (i+1)-ой итерации вектора весовых коэффициентов $\omega(i+1)$, который выражается через коэффициенты $\omega(i)$. Задача обучения считается решенной, когда все обучающие объекты классифицированы правильно. Этот алгоритм сводится к конечному числу шагов, если классы линейно сепарабельны.

6.3 Классификация объектов на два класса методом потенциалов

После того, как получено решающее правило и построена разделяющая функция, предъявляются объекты тестовой выборки, которые необходимо классифицировать, отнеся каждый из них к одному из двух классов. Тестовая выборка задается векторами с наборами признаков. Результаты работы алгоритма представим в аналитическом и графическом виде.

Метод потенциалов относится к группе алгоритмов контролируемого обучения, где все объекты делятся на обучающую и тестовую выборки. Алгоритм состоит из двух этапов.

На *первом этапе* строится разделяющая функция, позволяющая, исходя из обучающей выборки, определить границу между двумя классами. Эту процедуру называют обучением. На *втором этапе* разделяющая функция используется для классификации заданных объектов.

Разделяющая функция находится с помощью суммарного потенциала $K(\vec{x})$, вычисляемого как сумма частных потенциалов $K(\vec{x}, \vec{x}_i)$, связанных с каждым обучающим объектом. Суммарный потенциал

вычисляется по правилу $K_{i+1}(\vec{x}) = K_i(\vec{x}) + \rho_{i+1}K(\vec{x},\vec{x}_{i+1})$, в котором через i обозначен номер итерации обучения. Корректирующий член ρ_{i+1} подчиняется следующим условиям:

$$\rho_{i+1} = \begin{cases} 1, \ \text{если} \ x_{i+1} \in \mathcal{C}_1 \ \text{и} \ K_i(\vec{x}_{i+1}) \leq 0 \\ -1, \ \text{если} \ x_{i+1} \in \mathcal{C}_2 \ \text{и} \ K_i(\vec{x}_{i+1}) > 0 \\ 0, \ \text{при правильной классификации.} \end{cases} \tag{1}$$

Правильная классификация соответствует случаям, когда

K(x)>0 при $\vec{x} \in C_1$ и $K(x)\leq 0$ при $\vec{x} \in C_2$.

Поэтому можно использовать $K_i(\vec{x})$ как разделяющую функцию и определить ее итеративным путем: $d_{i+1}(\vec{x}) = d_i(\vec{x}) + \rho_{i+1}K(\vec{x},\vec{x}_{i+1})$.

Поскольку интервал изменения аргументов x_1 и x_2 может простираться от $-\infty$ до ∞ , воспользуемся полиномами Эрмита, ограничиваясь первыми четырьмя слагаемыми и двумя переменными x_1 и x_2 . Полиномы связаны следующим рекуррентным соотношением:

$$H_{n+1} = 2xH_n - 2nH_{n-1}$$
, где $H_0 = 1$, $H_1 = 2x$.

Тогда, определим значения первых четырех $\phi_i(\vec{x})$:

$$\phi_{1}(\vec{x}) = H_{0}(x_{1})H_{0}(x_{2}) = 1 \cdot 1 = 1;$$

$$\phi_{2}(\vec{x}) = H_{1}(x_{1})H_{0}(x_{2}) = 2x_{1} \cdot 1 = 2x_{1};$$

$$\phi_{3}(\vec{x}) = H_{0}(x_{1})H_{1}(x_{2}) = 1 \cdot 2x_{2} = 2x_{2};$$

$$\phi_{4}(\vec{x}) = H_{1}(x_{1})H_{1}(x_{2}) = 2x_{1} \cdot 2x_{2} = 4x_{1}x_{2},$$

при этом потенциальная функция $K(\vec{x}, \vec{x}_i) = \sum_{n=1}^4 \phi_n(\vec{x}) \, \phi_n(\vec{x}_i)$, для элемента x_i , будет иметь вид:

$$K(\vec{x}, \vec{x}_i) = 1 + 4x_1 x_1^{(i)} + 4x_2 x_2^{(i)} + 16x_1 x_2 x_1^{(i)} x_2^{(i)}, \tag{2}$$

где $x_1^{(i)}$ — составляющая x_1 от i-ого элемента, $x_2^{(i)}$ — составляющая x_2 от i-ого элемента.

Рассмотрим пример, в котором требуется построить разделяющую функцию между двумя классами C_1 и C_2 , для которых имеются представители: объекты $X_1(-1,0), X_2(1,1) \in C_1$ и объекты $X_3(2,0), X_4(1,-2) \in C_2$. В качестве начального значения разделяющей функции примем $K_0(\vec{x}) = 0$.

Метод потенциалов

1. Суммарный потенциал на первом шаге вычисляется через суммарный потенциал на нулевом шаге и частный потенциал в первом обучающем объекте следующим образом $K_1(\vec{x}) = K_0(\vec{x}) + K(\vec{x}, \vec{x}_1)$. Частный потенциал $K(\vec{x}, \vec{x}_1)$ определяется с помощью выражения (2) путем подстановки в него координат первого объекта. В результате $K_1(\vec{x}) = 1 - 4x_1$. Определим значение разделяющей функции в точке X_2 , подставив ее координаты в

полученное выражение: $K_1(\vec{x}_2) = 1 - 4 = -3 < 0$. При такой классификации разделяющая функция требует корректировки в соответствии с равенством (1).

- $2. K_2(\vec{x}) = K_1(\vec{x}) + K(\vec{x}, \vec{x}_2)$, где в результате подстановки координат объекта X_2 в выражение (2) получаем $K(\vec{x}, \vec{x}_2) = 1 + 4x_1 + 4x_2 + 16x_1x_2$. Тогда $K_2(\vec{x}) = 2 + 4x_2 + 16x_1x_2$. Определим значение разделяющей функции в точке X_3 , подставив ее координаты в полученное выражение: $K_2(\vec{x}_3) = 2 > 0$. При такой классификации разделяющая функция требует корректировки в соответствии с равенством (1).
- $3. K_3(\vec{x}) = K_2(\vec{x}) K(\vec{x}, \vec{x}_3)$, где в результате подстановки координат объекта X_3 в выражение (2) получаем $K(\vec{x}, \vec{x}_3) = 1 + 8x_1$. Тогда $K_3(\vec{x}) = 1 8x_1 + 4x_2 + 16x_1x_2$. Определим значение разделяющей функции в точке X_4 , подставив ее координаты в полученное выражение: $K_3(\vec{x}_4) = -47 < 0$. Классификация верна, и разделяющая функция не требует корректировки. Поэтому $K_3(\vec{x}) = K_4(\vec{x})$.
- 4. Поскольку в начале алгоритма было сделано предположение для первого объекта, проверяем, как классифицируется точка X_1 : $K_4(\vec{x}_1) = 9 > 0$. Классификация верна, и разделяющая функция не требует корректировки.

Таким образом, все четыре обучающих объекта классифицированы правильно, и разделяющая функция задается уравнением: $d(\vec{x}) = 1 - 8x_1 + 4x_2 + 16x_1x_2$, откуда $x_2 = \frac{8x_1 - 1}{16x_1 + 4}$.

На рисунке 2 показан график разделяющей функции с указанием обучающих точек. Объекты X_1, X_2 помечены белыми квадратиками, а объекты X_3, X_4 помечены черными квадратиками. Разделяющая функция является границей между областями двух классов.

Рисунок 2 – Разделяющая функция и обучающие точки для двух классов

На рисунке 3 показано распределение 250 точек на два класса с помощью ранее построенной разделяющей функции.

Рисунок 3 — Разделяющая функция и классификация 250 точек

Если в полученное уравнение разделяющей функции подставить координаты обучающих объектов, то для X_1 и X_2 ее значения будут положительными, а для X_3 и X_4 — отрицательными. Для классификации других объектов необходимо выполнить те же действия. Если значение разделяющей функции больше нуля, объект принадлежит первому классу, если ее значение меньше нуля, объект принадлежит второму классу. В случае нулевого значения разделяющей функции предъявляемый объект находится на границе классов.