

Organizers: Moses Charikar, Anay Mehrotra, Charlotte Peale, Chirag Pabbaraju, Grigoris Velegkas

Validity-Breadth Trade-Off (Part I)

This Talk:

- ➤ Why Breadth?
- > Definitions of Breadth + Abstractions
- > Results
- > Step Back
- > Future Directions

Recap of Language Generation in the Limit

Kleinberg, Mullainathan, 2024

Success: guess correct (i.e., valid and unseen) for every **!** > **!** (We say that algorithm has generated **K** in the limit)

Kleinberg, Mullainathan, 2024

Algorithm never sees negative examples

Kleinberg, Mullainathan, 2024

Algorithm never sees negative examples
No feedback

Kleinberg, Mullainathan, 2024

Algorithm never sees negative examples

No feedback

Assume all languages infinite

Language Generation in the Limit

Theorem [Kleinberg, Mullainathan 2024]

Language generation in the limit is possible for any countable collection of languages

One question asked by [KM24]: Can a generator avoid hallucinations while maintaining some notion of "breadth"

One question asked by [KM24]: Can a generator avoid hallucinations while maintaining some notion of "breadth" Or what is the limit in generation in the limit

- Generator's support *G*
- Training data *S*
- Target language K

- Generator's support *G*
- Training data *S*
- Target language K

- Generator's support *G*
- Training data *S*
- Target language *K*

Why is this relevant?

- Generator's support *G*
- Training data *S*
- Target language *K*

- Generator's support *G*
- Training data *S*
- Target language *K*

Why is this relevant? Captures how much the "knows"

- Generator's support *G*
- Training data *S*
- Target language *K*

Why is this relevant? Captures how much the "knows"

Solve new math problems

For generator G, let $G(S) \subseteq X$ be the output-set of G trained on S

For generator G, let $G(S) \subseteq X$ be the output-set of G trained on S

Set Theoretic Definitions

Exact Breadth $G(S) = K \setminus S$

Approximate Breadth $|(K \setminus S) \setminus G(S)| < \infty$

For generator G, let $G(S) \subseteq X$ be the output-set of G trained on S

Exact Breadth
$$G(S) = K \setminus S$$

Approximate Breadth $|(K \setminus S) \setminus G(S)| < \infty$

Consider
$$K = \mathbb{N}$$
, $G(S) = \{i, i + 1, ...\}$ and $G(S) = \{2, 4, 6, ...\}$

For generator G, let $G(S) \subseteq X$ be the output-set of G trained on S

Consider $K = \mathbb{N}$, $G(S) = \{i, i + 1, ...\}$ and $G(S) = \{2, 4, 6, ...\}$

Can also require/relax additional properties [CP'25] [KMV'24]

Abstractions of Breadth

Most lower bounds for breadth use diagonalization [CP'25] [KMV'24]

Core Question (in diagonalization-based proofs): How many languages can *G* achieve the property for *simultaneously*?

Abstractions of Breadth

Most lower bounds for breadth use diagonalization [CP'25] [KMV'24]

Core Question (in diagonalization-based proofs): How many languages can *G* achieve the property for *simultaneously*?

This view gives two abstractions:

Definition (Uniqueness). Property *P* has uniqueness, if generator *G* can achieve *P* for only one language at once.

Abstractions of Breadth

Most lower bounds for breadth use diagonalization [CP'25] [KMV'24]

Core Question (in diagonalization-based proofs): How many languages can *G* achieve the property for *simultaneously*?

This view gives two abstractions:

Definition (Uniqueness). Property *P* has uniqueness, if generator *G* can achieve *P* for only one language at once.

Definition (Finite Non-Uniqueness). Property P has finite non-uniqueness, if G can achieve P for L_1 and L_2 only if $|L_1\Delta L_2| < \infty$

Definition (Uniqueness). Property *P* has uniqueness, if generator G can achieve P for only one language at once.

Exact Breadth:

Definition (Uniqueness). Property *P* has uniqueness, if generator G can achieve P for only one language at once.

Exact Breadth: 2

Definition (Uniqueness). Property *P* has uniqueness, if generator G can achieve P for only one language at once.

Exact Breadth: 2

Definition (Uniqueness). Property *P* has uniqueness, if generator *G* can achieve *P* for only one language at once.

Exact Breadth: 2

Definition (Uniqueness). Property *P* has uniqueness, if generator G can achieve P for only one language at once.

Exact Breadth: 2

Definition (Uniqueness). Property *P* has uniqueness, if generator *G* can achieve *P* for only one language at once.

Exact Breadth 📀

Definition (Uniqueness). Property *P* has uniqueness, if generator *G* can achieve *P* for only one language at once.

Exact Breadth 📀

Approximate-Breadth: 🖏

Definition (Uniqueness). Property *P* has uniqueness, if generator *G* can achieve *P* for only one language at once.

Exact Breadth

Approximate-Breadth:

Consider $L_1 \subsetneq L_2$ with $|L_2 \setminus L_1| < \infty$

Definition (Uniqueness). Property *P* has uniqueness, if generator *G* can achieve *P* for only one language at once.

Exact Breadth

Approximate-Breadth:

Consider $L_1 \subsetneq L_2$ with $|L_2 \setminus L_1| < \infty$

Definition (Uniqueness). Property *P* has uniqueness, if generator *G* can achieve *P* for only one language at once.

Exact Breadth

Approximate-Breadth:

Let G(S) have approximate breadth for L_2

Definition (Uniqueness). Property *P* has uniqueness, if generator *G* can achieve *P* for only one language at once.

Exact Breadth

Approximate-Breadth:

Let G(S) have approximate breadth for L_2

Can generate things not in L_1 !

Definition (Uniqueness). Property *P* has uniqueness, if generator *G* can achieve *P* for only one language at once.

Exact Breadth

Approximate-Breadth:

Consider $L_1 \subsetneq L_2$ with $|L_2 \setminus L_1| < \infty$

Let G(S) have approximate breadth for L_2 L_1

Definition (Uniqueness). Property *P* has uniqueness, if generator *G* can achieve *P* for only one language at once.

Exact Breadth Approximate Breadth

Definition (Uniqueness). Property *P* has uniqueness, if generator *G* can achieve *P* for only one language at once.

Exact Breadth Approximate Breadth

Unambiguous generation has uniqueness:

Definition (Uniqueness). Property *P* has uniqueness, if generator *G* can achieve *P* for only one language at once.

Exact Breadth Approximate Breadth

Unambiguous generation has uniqueness:

Definition. *G* generates unambiguously from *K* w.r.t. \mathcal{L} if *G* is *strictly better* generator for *K* than $L \neq K$ in \mathcal{L} (w.r.t. any metric)

Definition (Uniqueness). Property *P* has uniqueness, if generator *G* can achieve *P* for only one language at once.

Exact Breadth Approximate Breadth

Unambiguous generation has uniqueness:

Definition. *G* generates unambiguously from *K* w.r.t. \mathcal{L} if *G* is strictly better generator for *K* than $L \neq K$ in \mathcal{L} (w.r.t. any metric)

Definition (Uniqueness). Property *P* has uniqueness, if generator *G* can achieve *P* for only one language at once.

Exact Breadth Approximate Breadth Unambiguous

Unambiguous generation has uniqueness:

Definition. *G* generates unambiguously from *K* w.r.t. \mathcal{L} if *G* is *strictly better* generator for *K* than $L \neq K$ in \mathcal{L} (w.r.t. any metric)

Definition (Finite Non-Uniqueness). Property P has finite non-uniqueness, if G can achieve P for L_1 and L_2 only if $|L_1\Delta L_2| < \infty$

Any property with uniqueness:

Definition (Finite Non-Uniqueness). Property P has finite non-uniqueness, if G can achieve P for L_1 and L_2 only if $|L_1\Delta L_2| < \infty$

Any property with uniqueness:

Exact Breadth Approximate Breadth Unambiguous

Definition (Finite Non-Uniqueness). Property *P* has finite nonuniqueness, if G can achieve P for L_1 and L_2 only if $|L_1\Delta L_2|<\infty$

Any property with uniqueness:

Exact Breadth Approximate Breadth ? Unambiguous 🗸

Approximate Breadth: 💸

Definition (Finite Non-Uniqueness). Property P has finite non-uniqueness, if G can achieve P for L_1 and L_2 only if $|L_1\Delta L_2| < \infty$

Any property with uniqueness:

Exact Breadth Approximate Breadth Unambiguous

Approximate Breadth:

Suppose G(S) has approximate breadth for L_1 and L_2

Definition (Finite Non-Uniqueness). Property *P* has finite nonuniqueness, if G can achieve P for L_1 and L_2 only if $|L_1\Delta L_2|<\infty$

Any property with uniqueness:

Exact Breadth Approximate Breadth Unambiguous

Approximate Breadth:

$$L_1 \triangle L_2 \subseteq (L_1 \setminus L_2) \cup (L_2 \setminus L_1)$$

Definition (Finite Non-Uniqueness). Property *P* has finite nonuniqueness, if G can achieve P for L_1 and L_2 only if $|L_1\Delta L_2|<\infty$

Any property with uniqueness:

Exact Breadth Approximate Breadth Unambiguous 🗸

Approximate Breadth:

Suppose G(S) has approximate breadth for L_1 and L_2

$$L_1 \triangle L_2 \subseteq (L_1 \setminus L_2) \cup (L_2 \setminus L_1)$$

$$\subseteq (L_1 \setminus G(S)) \cup (L_2 \setminus G(S))$$

because $G(S) \subseteq L_1, L_2$

Definition (Finite Non-Uniqueness). Property P has finite non-uniqueness, if G can achieve P for L_1 and L_2 only if $|L_1\Delta L_2| < \infty$

Any property with uniqueness:

Exact Breadth Approximate Breadth Unambiguous

$$L_1 \triangle L_2 \subseteq (L_1 \setminus L_2) \cup (L_2 \setminus L_1)$$

$$\subseteq (L_1 \setminus G(S)) \cup (L_2 \setminus G(S))$$

because $G(S) \subseteq L_1, L_2$

Definition (Finite Non-Uniqueness). Property P has finite non-uniqueness, if G can achieve P for L_1 and L_2 only if $|L_1\Delta L_2| < \infty$

Any property with uniqueness:

Exact Breadth Approximate Breadth Unambiguous

Other examples: Allow generators to have finite hallucinations

Theorem [CP'25][KMV'24]. For any language collection \mathcal{L} :

Theorem [CP'25][KMV'24]. For any language collection \mathcal{L} :

▷ Generator G can achieve a property P with uniqueness for \mathcal{L} only if \mathcal{L} is identifiable

Theorem [CP'25][KMV'24]. For any language collection \mathcal{L} :

- \triangleright Generator \mathcal{G} can achieve a property P with uniqueness for \mathcal{L} only if \mathcal{L} is identifiable
- \triangleright Generator \mathcal{G} can achieve a property P with *finite non-uniqueness* for \mathcal{L} only if \mathcal{L} is "almost" identifiable

Theorem [CP'25][KMV'24]. For any language collection \mathcal{L} :

- ▷ Generator G can achieve a property P with uniqueness for \mathcal{L} only if \mathcal{L} is identifiable
- \triangleright Generator \mathcal{G} can achieve a property P with *finite non-uniqueness* for \mathcal{L} only if \mathcal{L} is "almost" identifiable

Will be formalized in the next talk!

Theorem [CP'25][KMV'24]. For any language collection \mathcal{L} :

- \triangleright Generator \mathcal{G} can achieve a property P with uniqueness for \mathcal{L} only if \mathcal{L} is identifiable
- \triangleright Generator \mathcal{G} can achieve a property P with *finite non-uniqueness* for \mathcal{L} only if \mathcal{L} is "almost" identifiable

Will be formalized in the next talk!

Proof strategy? Diagonalization via characterization of identification

Theorem [CP'25][KMV'24]. For any language collection \mathcal{L} :

- \triangleright Generator \mathcal{G} can achieve a property P with uniqueness for \mathcal{L} only if \mathcal{L} is identifiable
- \triangleright Generator \mathcal{G} can achieve a property P with *finite non-uniqueness* for \mathcal{L} only if \mathcal{L} is "almost" identifiable

Will be formalized in the next talk!

Proof strategy? Diagonalization via characterization of identification

[KMV'25]: (a) extends to statistical model, (b) extends conditionally

Implication: For non-identifiable collections exact breadth is violated infinitely many times

Question: Is it possible to achieve exact breadth infinitely many times?

Implication: For non-identifiable collections exact breadth is violated infinitely many times

Theorem. [KW'25] There is a generator G, that achieves exact breadth *infinitely* many times for *any* countable collection \mathcal{L}

Implication: For non-identifiable collections exact breadth is violated infinitely many times

Implication: For non-identifiable collections exact breadth is violated infinitely many times

Implication: For non-identifiable collections exact breadth is violated infinitely many times

Implication: For non-identifiable collections exact breadth is violated infinitely many times

Implication: For non-identifiable collections exact breadth is violated infinitely many times

Implication: For non-identifiable collections exact breadth is violated infinitely many times

Implication: For non-identifiable collections exact breadth is violated infinitely many times

Implication: For non-identifiable collections exact breadth is violated infinitely many times

Implication: For non-identifiable collections exact breadth is violated infinitely many times

Implication: For non-identifiable collections exact breadth is violated infinitely many times

Immediate Open Questions

- 1. Fine-grained trade-offs between hallucinations and breadth *Partial results* [CP'25], [KMV'24], [KW'25]
- 2. Allow multiple responses (could bypass impossiblity results)
- 3. What other type of feedback is useful? *Partial results* [KMV'25a], [CP'25]

Immediate Open Questions

- 1. Fine-grained trade-offs between hallucinations and breadth *Partial results* [CP'25], [KMV'24], [KW'25]
- 2. Allow multiple responses (could bypass impossiblity results)
- 3. What other type of feedback is useful? *Partial results* [KMV'25a], [CP'25]

COLT 2025

On Thursday in the Language Model Session

Example

Let \mathcal{L} be a countable collection indexed by axiomatic systems

Example

Let \mathcal{L} be a countable collection indexed by axiomatic systems 1. $L \in \mathcal{L}$ is defined by some axiomatic system (e.g., ZFC)

Example

Let \mathcal{L} be a countable collection indexed by axiomatic systems

- 1. $L \in \mathcal{L}$ is defined by some axiomatic system (e.g., ZFC)
- 2. L has strings of the form " $\langle Theorem \rangle \langle Proof \rangle$ "

Example

Let \mathcal{L} be a countable collection indexed by axiomatic systems

- 1. $L \in \mathcal{L}$ is defined by some axiomatic system (e.g., ZFC)
- 2. *L* has strings of the form " $\langle Theorem \rangle \langle Proof \rangle$ "

Let *K* be defined by ZFC system (there is a TM that enumerates *K*)

Example

Let \mathcal{L} be a countable collection indexed by axiomatic systems

- 1. $L \in \mathcal{L}$ is defined by some axiomatic system (e.g., ZFC)
- 2. *L* has strings of the form " $\langle \text{Theorem} \rangle \langle \text{Proof} \rangle$ "

Let *K* be defined by ZFC system (there is a TM that enumerates *K*)

If a generator achieves exact breadth for *K* (in a prompted model), it can be used to prove all *provable* statements

Example

Let \mathcal{L} be a countable collection indexed by axiomatic systems

- 1. $L \in \mathcal{L}$ is defined by some axiomatic system (e.g., ZFC)
- 2. *L* has strings of the form " $\langle \text{Theorem} \rangle \langle \text{Proof} \rangle$ "

Let *K* be defined by ZFC system (there is a TM that enumerates *K*)

If a generator achieves exact breadth for *K* (in a prompted model), it can be used to prove all *provable* statements ...even without knowing the axiomatic system

Example

Let \mathcal{L} be a countable collection indexed by axiomatic systems

- 1. $L \in \mathcal{L}$ is defined by some axiomatic system (e.g., ZFC)
- 2. *L* has strings of the form " $\langle \text{Theorem} \rangle \langle \text{Proof} \rangle$ "

Let *K* be defined by ZFC system (there is a TM that enumerates *K*)

If a generator achieves exact breadth for *K* (in a prompted model), it can be used to prove all *provable* statements

...even without knowing the axiomatic system

Does not contradict Godel (does contradict Turing's decidability)

References

```
[CP'25] Exploring Facets of Language Generation in the Limit, COLT'25
[HKMV'25] On Union-Closedness of Language Generation, arXiv'25
[KM'24] Language Generation in the Limit, NeurIPS'24
[KW'24] Density Measures for Language Generation, arXiv'25
[KMV'25] On the Limits of Language Generation: ... STOC'25
[KMV'24] Characterizations of Language Generation With Breadth, arXiv'24
[PRR'25] Representative Language Generation, ICML'25
```