THAT WHICH IS CLAIMED IS:

- 1. An isolated antimicrobial peptide isolated from a mast cell.
- 5 2. A peptide according to claim 1, wherein said mast cell is a fish mast cell.
 - 3. A peptide according to claim 1, wherein said mast cell is a mammalian mast cell.
- 4. A peptide according to claim 1 selected from the group consisting of peptides having an amino acid sequence selected from the group consisting of:

SEQ ID NO: 1;

SEQ ID NO: 2; and

SEQ ID NO: 3.

15

- 5. A method of isolating an antimicrobial peptide, comprising the steps of:
- (a) providing mast cells;
- (b) detecting a peptide having antimicrobial activity in said mast cells; and
- (c) isolating said detected peptide.

20

- 6. A method according to claim 5, wherein said mast cells are fish mast cells.
- 7. The method according to claim 5, wherein said mast cells are mammalian mast cells.

25

- 8. The method according to claim 5, wherein said providing step is carried out by collecting tissue containing mast cells.
- 9. The method according to claim 5, wherein said detecting step is carried out by extracting pepetides from said mast cells and screening said extracted peptides for antimicrobial activity.

10

20

- 10. A pharmaceutical formulation comprising a peptide according to claim 1 in a pharmaceutically acceptable carrier.
- 11. A method of treating microbial infection in a subject in need thereof,
 5 comprising administering to said subject an antimicrobial peptide according to claim
 1 in an effective antimicrobial amount.
 - 12. A method of reducing antibiotic resistance in a bacteria, comprising administering to a bacteria resistant to at least one antibiotic a peptide according to claim 1 in an amount effective to reduce antibiotic resistance.
 - 13. A method according to claim 12, wherein said at least one antibiotic is selected from the group consisting of methicillin, vancomycin, and streptogramin.
- 14. A method according to claim 12, wherein said bacteria is selected from the group consisting of *Staphylococcus aureus*, *Escherichia coli*, *Streptococcus faecalis*, *Klebsiella pneumoniae*, *Pseudomonas aeruginosa*, and *Shigella flexneri*.
 - 15. An antibody that specifically binds to a peptide according to claim 1.
 - 16. An antibody according to claim 15, wherein said antibody is a monoclonal antibody.
 - 17. A nucleic acid that encodes a peptide of claim 1.
- 25 18. A nucleic acid of claim 17, wherein said nucleic acid is DNA.
 - 19. A pharmaceutical formulation comprising a peptide according to claim 9 in a pharmaceutically acceptable carrier.
- 30 20. A method of treating microbial infection in a subject in need thereof, comprising administering to said subject an antimicrobial peptide according to claim

9 in an effective antimicrobial amount.

Attorney Doc

5

- 21. A method of reducing antibiotic resistance in a bacteria, comprising administering to a bacteria resistant to at least one antibiotic a peptide according to claim 9 in an amount effective to reduce antibiotic resistance.
- 22. A method according to claim 21, wherein said at least one antibiotic is selected from the group consisting of methicillin, vancomycin, and streptogramin.
- 23. A method according to claim 21, wherein said bacteria is selected from 10 the group consisting of Staphylococcus aureus, Escherichia coli, Streptococcus faecalis, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Shigella flexneri.
 - 24. An antibody that specifically binds to a peptide according to claim 9.
 - 25. An antibody according to claim 24, wherein said antibody is a monoclonal antibody.
 - 26. A nucleic acid that encodes a peptide of claim 9.
- 20 27. A nucleic acid of claim 26, wherein said nucleic acid is DNA.

15