Course 7

Simbolic (classical) Al problems. How to solve them?

5 steps in modeling an Al problem

- Understand the difference between the general problem and an instance of it

 Step 2 Decide what a state is and appreciate the dimension of the search space
- Step 3 Find a proper representation of a state
- Step 4 Represent the transitions
- Step 5 Choose a control strategy and apply it

Toy problems – examples

The 8-puzzle problem

On a 3x3 board there are 8 square pieces that can move upwards, downwards, to the right and to the left. At each move, just one piece is moved in a neighbouring position and in the limits of the table. There is an initial configuration of the pieces on the table and a final one that has to be reached. What is the sequence of moves that brings the table from the initial configuration into the final one?

Missionaries and cannibals

3 missionaries and 3 cannibals have to cross a river in a boat having 2 places. If at any moment during crossing, on one boarder or the other, the cannibals exceeds in number the missionaries, then missionaries are in darger of being eaten. How can all 6 men cross the river safely?

Sentence generation problem

Suppose we have a grammar (a set symbols called terminals, a set of symbols called nonterminals, a collection of production rules, and a start symbol). How could one produce a sentence belonging to the language generated by the grammar?

The monkey and the banana

In a cage there are: a monkey, a banana hanged by the ceiling at a height the monkey cannot reach, and, in a corner, a box. After a number of unseccessful tries, the monkey goes to the box, puts it under the banana, climbs on the box and catches the banana. How did the monkey find the solution?

The cubs world

A robot hand has to move a stack of cubs from an initial arrangement into a given final arrangement.

Problem or instance of a problem?

- 8-puzzle
 - formulated as an instance
- Missionaries and cannibals
 - formulated as an instance
- Sentence generation
 - formulated as a problem
- Monkey and banana
 - formulated as an instance
- Cubs world
 - formulated as an instance
- Other examples:
 - The chess game
 - Driving a car...

An instance of the problem of sentence generation

 Let G1 = {N1, T1, S, P1} be a grammar, such that:

```
N1 = {S, NP, VP, N, V} – a set of non-terminals, meaning: sentence, nominal
  group, verbal group, noun, verb;
T1 = {cat, mouse, catches} – a set of terminals (words);
S = the start symbol of the grammar; choosing it has the significance that a
  sequence of terminals covered by this category is wanted;
P1 = {S:= NP VP,
     NP:= DET N.
     VP:= V NP.
     N := cat.
     N := mouse.
     V := catches.
     DET := the} – a list of production rules.
```

The problem's space

Dimension of the state space

• Chess game: 10¹²⁰

Dimension of the state space

• Chess game: 10¹²⁰

• 8-puzzle: 9!

Dimension of the state space

- Chess game: 10¹²⁰
- 8-puzzle: 9!
- Missionaries and cannibals:

3 cannibals on the left side

2 cannibals on the left side

1 cannibal on the left side

no cannibals on the left side

Seeing a problem in the state space

Seeing a problem in the state space

Seeing a problem in the state space

Monkey and banana

Solution = a sequence of transitions (states)

Monkey and banana

Other possible states

Step 3

Step 3


```
Sentence generation
     Pentru instanţa de problemă G1 = {N1, T1, S1, P1}
          N1 = \{S, NP, VP, N, V\}
          T1 = {cat, mouse, catches, the}
          S1 = S => we want to generate sentences
          P1 = {
            S:= NP VP.
            NP:= DET N.
            VP:= V NP.
                                                           a sequence of symbols
              N := cat.
              N := mouse.
              V := catches,
               DET := the
States while production:
                                                     the N VP
                                                                 the cat VP
                                                                             the cat V NP
                                         DET N VP
           the cat catches NP | the cat catches DET N | the cat catches the N | the cat catches the cat
                                                                                        25
```

Step 3

How to represent a state?

Monkey and banana

```
Relation Monkey-Box:
```

MoBo-far= Monkey is far from Box

MoBo-near = Monkey is near Box

MoBo-on = Monkey is on Box

MoBo-under = Monkey is under Box

Relation Box-Banana:

BoBa-lateral = Box is lateral from Banana

BoBa-under = Box is under Banana

Relation Monkey-Banana:

MoBa-far = Monkey is far from Banana

MoBa-near = Monkey is near Banana

MoBa-holds = Monkey holds Banana

Initial state: MoBo-far, BoBa-lateral, MoBa-far.

Final state: MoBa-holds

a collection of predicates

How to represent a state?

Cubs world – representing the configuration of the hand handEmpty handHolds(X) a collection of predicates

Two ways to navigate in the state space:

states are generated only the moment they are visited

Chess:

```
Rule pawn-on-A-double-step
IF

pawn in position (A,2) AND
position (A,3) is free AND
position (A,4) is free
THEN
move pawn from position (A,2) onto position (A,4)
```

8 rules of this kind...

Chess:

```
Rule pawn-on-(X)-double-step

IF

pawn in position (X,2) AND

position (X,3) is free AND

position (X,4) is free

THEN

move pawn from position (X,2) onto position (X,4)
```

Only one rule of this kind!

... or two, if corresponding rule for the other player is also considered.

8-puzzle:

```
Regula move-piece-1-upwards
```

IF

piece 1 is not tight to the upper side of the border AND the position above is free

THEN

change the piece with the position above it

8 rules of this kind!
x 4 directions → 32 rules in all

8-puzzle:

Rule move-blac-upwards

IF

blanc is not tight to the upper side of the border THFN

change the blanc with the piece above it

Only one rule of this kind!
x 4 directions → 4 rules in all

Monkey and banana:

```
Being far from the box, the monkey gets closer to the box: getCloser-MoBo:
```

IF {MoBo-far} THEN DELETE{MoBo-far}, ADD{MoBo-near}

Being by the box, the monkey draws away from it:

drawAway-MoBo:

IF {MoBo-near} THEN DELETE{MoBo-near}, ADD{MoBo-far}

Being by the box and far from banana, the monkey pulls the box under banana:

pullUnder-MoBoBa:

IF {MoBo-near, BoBa-lateral} THEN DELETE{BoBa-lateral}, ADD{BoBa-under}

Being by the box and under banana, monkey pushes the box away from banana: pushLateral-MoBoBa;

Being by the box, monkey climbs on it: climbOn-MoBo;

Being on the box, monkey gets down from it: getDown-MoBo;

Being by the box, monkey puts the box on its head: putOnHead-MoBo;

With the box on its head, monkey gets down the box from the head: **getDownFromHead-MoBo**;

Being on the box and under banana, monkey grasps banana: grasp-MoBa.

How to represent transitions?

```
STRIPS rules systems
```

States represented as sets of predicates (features)

Rules:

```
if conditions-list>
then <delete-list> <add-list>
```

How to represent transitions?

How to represent transitions?

STRIPS rules systems in the cubs world

takeFromBlock(X,Y):

IF {on(X, Y), freeAbove(X), handEmpty} THEN DELETE{on(X, Y), freeAbove(X), handEmpty} ADD{freeAbove(Y), handHolds(X)}

takeFromTable(X):

IF {on(X, table), freeAbove(X), handEmpty} THEN DELETE{on(X, table), freeAbove(X), handEmpty} ADD{handHolds(X)}

putOnBlock(X,Y):

IF {handHolds(X), freeAbove(Y)} THEN DELETE{handHolds(X), freeAbove(Y)} ADD{on(X, Y), freeAbove(X), handEmpty}

putOnTable(X):

IF {handHolds(X)} THEN DELETE{handHolds(X)} ADD{on(X, table),
freeAbove(X), handEmpty}

Step 5

In search for the solution

- Algorithms and search heuristics in the state space
 - irrevocable strategies
 - hill-climbing (ascensional)
 - tentative strategies
 - backtracking (annealing ascensional)
 - exhaustive strategies (brute-force)
 - generate-and-test
 - depth-first
 - breadth-first
 - best-first

In search for the solution

Synchronous bidirectional search

Irrevocable strategies: hill-climbing

- There is no way back
 - a function approximates the closeness to the solution at any step

dangers: local maxima, plateaux

Hill climbing

```
procedure hill-climbing(initial-state)
begin
  current-state <- initial-state;</pre>
  while(current-state) {
   if (current-state is a final state) return current-state;
   all-new-neighbour-states <- set of all states that can be
obtained from current-state by operators possible to be applied
here;
   all-new-neighbour-states <- all-new-neighbour-states minus all
states already visited;
   sort all-new-neighbour-states in the descending order of their
cost values:
   all-new-neighbour-states <- all-new-neighbour-states minus all
states having a lower cost then current-state;
   if (all-new-neighbour-states \neq \emptyset) current-state <- the first
state ranked in all-new-neighbour-states);
   else current-state = nil;
  return FAIL;
                                                               43
```

end

8-puzzle: a happy ending search using *hill-climbing*

Tentative strategies: backtracking

- If a state has no successors "take the track back"
 - needed: a memory which stores at any step the neighbouring unvisited states

 a. In any point in which a choice is made, the unexplored yet states are stored **b**. When the storing space is represented as a stack, the visiting is performed in the depth-first order

Backtracking hill-climbing

```
procedure backtracking-hill-climbing(initial-state)
begin
  heap <- initial-state \circ \varnothing;
  solution \leftarrow \emptyset;
  while(heap) {
   current-state <- first(heap);</pre>
   heap <- rest(heap);</pre>
   solution <- solution o current-state;</pre>
   if (current-state e stare finală) return solution;
   all-new-neighbour-states <- setul stărilor ce pot fi</pre>
obținute din current-state prin operatorii aplicabili ei;
   all-new-neighbour-states <- all-new-neighbour-states \
toate stările deja vizitate;
   heap <- heap ° all-new-neighbour-states;</pre>
   sort heap descendent după valorile funcției cost;
   heap <- heap \ stările de valori mai mici decât a lui
current-state;
  return FAIL;
end
```

Systematic search methods (brute-force)

- Depth-first search DFS
 - memory is a stack

Step 5

```
function depthFirstSearch(root)
begin
  stack <- push(root, \emptyset); solution <- \emptyset;
  while (stack not empty)
   { node <- pop(stack);
     if goal(node) then {
       solution <- node ° ∅; ancestor <- node.father;
       while (ancestor) {
         solution <- solution ° ancestor;
         ancestor <- ancestor ° father;</pre>
       return solution;
     else push(node's successors, stack);
  return FAIL;
end
```

Systematic search methods (brute-force)

- Breadth-first search BFS
 - memory is a queue

Step 5

```
function breadthFirstSearch(root)
begin
  queue <- in(root, \emptyset); solution <- \emptyset;
  while (queue not empty)
   { node <- out(queue);
     if goal(node) then {
       solution <- node ° ∅; ancestor <- node.father;
       while (ancestor) {
         solution <- solution ° ancestor;
         ancestor <- ancestor ° father;</pre>
       return solution;
     else in(node's successors, queue);
  return FAIL;
end
```

Step 5

Example: best-first search

Systematic search methods (brute-force)

Best-first search

Step 5

memory is a list; nodes got scores by a cost function

```
function bestFirstSearch(root)
begin
  list \leftarrow include(root, \emptyset);
  while (list not empty)
   { node <- get-first(list);
     if goal(node) then {
       solution <- node ° ∅; ancestor <- node.father;
       while (ancestor) {
           solution <- solution o ancestor;
           ancestor <- ancestor ° father:</pre>
       return solution;
     else
      { for each successor of node {
                   list <- successor o list); }</pre>
         sort list descending;
  return FAIL;
end
```