Supplementary Material for Quantifying the Trendiness of Trends

Andreas Kryger Jensen and Claus Thorn Ekstrøm Biostatistics, Institute of Public Health, University of Copenhagen aeje@sund.ku.dk, ekstrom@sund.ku.dk

24 May, 2020

A Proof of Proposition 1

Let $\mathbf{Y} = (Y_1, \dots, Y_n)$ and $\mathbf{t} = (t_1, \dots, t_n)$ be the vectors of observed outcomes and associated sampling times. From the data generating model we observe that the marginal distribution of the vector of observed outcomes $\mathbf{Y} \mid \mathbf{t}, \Theta$ is

$$P(\mathbf{Y} \mid \mathbf{t}, \Theta) = \int P(\mathbf{Y} \mid f(\mathbf{t}), \mathbf{t}, \Theta) dP(f(\mathbf{t}) \mid \mathbf{t}, \Theta)$$
$$= N(\mu_{\beta}(\mathbf{t}), C_{\theta}(\mathbf{t}, \mathbf{t}) + \sigma^{2} I)$$

where $\mu_{\beta}(\mathbf{t}) = (\mu_{\beta}(t_1), \dots \mu_{\beta}(t_n))$, $C_{\theta}(\mathbf{t}, \mathbf{t})$ is the $n \times n$ covariance matrix obtained by evaluating $C_{\theta}(s, t)$ at $\{(s, t) \in \mathbf{t} \times \mathbf{t}\}$ and I is an $n \times n$ identity matrix. This implies that the joint distribution of \mathbf{Y} and the latent functions (f, df, d^2f) evaluated at an arbitrary vector of time points \mathbf{t}^* is

$$\begin{bmatrix} f(\mathbf{t}^*) \\ df(\mathbf{t}^*) \\ d^2f(\mathbf{t}^*) \\ \mathbf{Y} \end{bmatrix} \mid \mathbf{t}, \Theta \sim N \begin{pmatrix} \begin{bmatrix} \mu_{\beta}(\mathbf{t}^*) \\ d\mu_{\beta}(\mathbf{t}^*) \\ d^2\mu_{\beta}(\mathbf{t}^*) \\ \mu_{\beta}(\mathbf{t}) \end{bmatrix}, \begin{bmatrix} C_{\theta}(\mathbf{t}^*, \mathbf{t}^*) & \partial_2 C_{\theta}(\mathbf{t}^*, \mathbf{t}^*) & \partial_2^2 C_{\theta}(\mathbf{t}^*, \mathbf{t}^*) & C_{\theta}(\mathbf{t}^*, \mathbf{t}) \\ \partial_1 C_{\theta}(\mathbf{t}^*, \mathbf{t}^*) & \partial_1 \partial_2 C_{\theta}(\mathbf{t}^*, \mathbf{t}^*) & \partial_1 \partial_2^2 C_{\theta}(\mathbf{t}^*, \mathbf{t}^*) & \partial_1 C_{\theta}(\mathbf{t}^*, \mathbf{t}) \\ \partial_1^2 C_{\theta}(\mathbf{t}^*, \mathbf{t}^*) & \partial_1^2 \partial_2 C_{\theta}(\mathbf{t}^*, \mathbf{t}^*) & \partial_1^2 \partial_2^2 C_{\theta}(\mathbf{t}^*, \mathbf{t}^*) & \partial_1^2 C_{\theta}(\mathbf{t}^*, \mathbf{t}) \\ C_{\theta}(\mathbf{t}, \mathbf{t}^*) & \partial_2 C_{\theta}(\mathbf{t}, \mathbf{t}^*) & \partial_2^2 C_{\theta}(\mathbf{t}, \mathbf{t}^*) & C_{\theta}(\mathbf{t}, \mathbf{t}) + \sigma^2 I \end{bmatrix} \end{bmatrix}$$

where ∂_{j}^{k} denotes the k'th order partial derivative with respect to the j'th variable.

By the standard formula for deriving conditional distributions in a multivariate normal model, the posterior distribution of (f, df, d^2f) evaluated at the p time points in \mathbf{t}^* is

$$\begin{bmatrix} f(\mathbf{t}^*) \\ df(\mathbf{t}^*) \\ d^2f(\mathbf{t}^*) \end{bmatrix} \mid \mathbf{Y}, \mathbf{t}, \Theta \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$

where $\mu \in \mathbb{R}^{3p}$ is the column vector of posterior expectations and $\Sigma \in \mathbb{R}^{3p \times 3p}$ is the joint posterior covariance matrix, and these are given by

$$\mu = \begin{bmatrix} \mu_{\beta}(\mathbf{t}^*) \\ d\mu_{\beta}(\mathbf{t}^*) \\ d^2\mu_{\beta}(\mathbf{t}^*) \end{bmatrix} + \begin{bmatrix} C_{\theta}(\mathbf{t}^*, \mathbf{t}) \\ \partial_1 C_{\theta}(\mathbf{t}^*, \mathbf{t}) \\ \partial_1^2 C_{\theta}(\mathbf{t}^*, \mathbf{t}) \end{bmatrix} K_{\theta, \sigma}(\mathbf{t}, \mathbf{t})^{-1} (\mathbf{Y} - \mu_{\beta}(\mathbf{t}))$$

$$\Sigma = \begin{bmatrix} C_{\theta}(\mathbf{t}^*, \mathbf{t}^*) & \partial_2 C_{\theta}(\mathbf{t}^*, \mathbf{t}^*) & \partial_2^2 C_{\theta}(\mathbf{t}^*, \mathbf{t}^*) \\ \partial_1 C_{\theta}(\mathbf{t}^*, \mathbf{t}^*) & \partial_1 \partial_2 C_{\theta}(\mathbf{t}^*, \mathbf{t}^*) & \partial_1 \partial_2^2 C_{\theta}(\mathbf{t}^*, \mathbf{t}^*) \\ \partial_1^2 C_{\theta}(\mathbf{t}^*, \mathbf{t}^*) & \partial_1^2 \partial_2 C_{\theta}(\mathbf{t}^*, \mathbf{t}^*) & \partial_1^2 \partial_2^2 C_{\theta}(\mathbf{t}^*, \mathbf{t}^*) \\ \partial_1^2 C_{\theta}(\mathbf{t}^*, \mathbf{t}) \end{bmatrix} - \begin{bmatrix} C_{\theta}(\mathbf{t}^*, \mathbf{t}) \\ \partial_1 C_{\theta}(\mathbf{t}^*, \mathbf{t}) \\ \partial_1^2 C_{\theta}(\mathbf{t}^*, \mathbf{t}) \end{bmatrix} K_{\theta, \sigma}(\mathbf{t}, \mathbf{t})^{-1} \begin{bmatrix} C_{\theta}(\mathbf{t}, \mathbf{t}^*) \\ \partial_2 C_{\theta}(\mathbf{t}, \mathbf{t}^*) \\ \partial_2^2 C_{\theta}(\mathbf{t}, \mathbf{t}^*) \end{bmatrix}^T$$

where $K_{\theta,\sigma}(\mathbf{t},\mathbf{t}) = C_{\theta}(\mathbf{t},\mathbf{t}) + \sigma^2 I$. Partitioning $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$ as

$$\boldsymbol{\mu} = \begin{bmatrix} \mu_f(\mathbf{t}^* \mid \Theta) \\ \mu_{df}(\mathbf{t}^* \mid \Theta) \\ \mu_{d^2f}(\mathbf{t}^* \mid \Theta) \end{bmatrix}, \quad \boldsymbol{\Sigma} = \begin{bmatrix} \Sigma_f(\mathbf{t}^*, \mathbf{t}^* \mid \Theta) & \Sigma_{f,df}(\mathbf{t}^*, \mathbf{t}^* \mid \Theta) & \Sigma_{f,d^2f}(\mathbf{t}^*, \mathbf{t}^* \mid \Theta) \\ \Sigma_{f,df}(\mathbf{t}^*, \mathbf{t}^* \mid \Theta) & \Sigma_{df}(\mathbf{t}^*, \mathbf{t}^* \mid \Theta) & \Sigma_{df,d^2f}(\mathbf{t}^*, \mathbf{t}^* \mid \Theta) \\ \Sigma_{d^2f,f}(\mathbf{t}^*, \mathbf{t}^* \mid \Theta) & \Sigma_{d^2f,df}(\mathbf{t}^*, \mathbf{t}^* \mid \Theta) & \Sigma_{d^2f}(\mathbf{t}^*, \mathbf{t}^* \mid \Theta) \end{bmatrix}$$

and completing the matrix algebra, we obtain the expressions of the individual components given in the Proposition.

B Proof of Proposition 3

Rice showed in section 3.3. of Rice (1945) that the expected number of zero-crossings of a Gaussian process X on an interval \mathcal{I} is given by

$$\int_{\mathcal{I}} \int_{-\infty}^{\infty} |v| f_{X(t), dX(t)}(0, v) dv dt \tag{1}$$

where $f_{X(t),dX(t)}$ is the joint density function of X and its derivative dX at time t. To derive the expression for the Expected Trend Instability we must apply the Rice formula to the joint posterior distribution of (df, d^2f) . From Proposition 1 the distribution of $(df, d^2f) \mid \mathbf{Y}, \mathbf{t}, \Theta$ is bivariate normal for each t.

Let μ_{df} , μ_{d^2f} , Σ_{df} and Σ_{d^2f} be defined as in Proposition 1 and define further

$$\omega(t \mid \Theta) = \frac{\Sigma_{df,d^2f}(t,t \mid \Theta)}{\Sigma_{df}(t,t \mid \Theta)^{1/2} \Sigma_{d^2f}(t,t \mid \Theta)^{1/2}}$$

as the posterior point-wise cross-correlation function between df and d^2f . The joint posterior density function of (df, d^2f) at any time t evaluated at (0, v) can be factorized as

$$f_{df(t),d^2f(t)}(0,v) = c_1(t)e^{c_2(t)}e^{-c_3(t)v^2 - 2c_4(t)v}$$

where c_1, \ldots, c_4 are functions of time given by

$$c_{1}(t) = (2\pi)^{-1} \Sigma_{df}(t, t \mid \Theta)^{-1/2} \Sigma_{d^{2}f}(t, t \mid \Theta)^{-1/2} (1 - \omega(t \mid \Theta)^{2})^{-1/2}$$

$$c_{2}(t) = \frac{\mu_{df}(t \mid \Theta)^{2}}{2\Sigma_{df}(t, t \mid \Theta)(\omega(t \mid \Theta)^{2} - 1)} + \frac{\mu_{d^{2}f}(t \mid \Theta)^{2}}{2\Sigma_{d^{2}f}(t, t \mid \Theta)(\omega(t \mid \Theta)^{2} - 1)}$$

$$- \frac{\mu_{df}(t \mid \Theta)\mu_{d^{2}f}(t \mid \Theta)\omega(t \mid \Theta)}{\Sigma_{df}(t, t \mid \Theta)^{1/2} \Sigma_{d^{2}f}(t, t \mid \Theta)^{1/2}(\omega(t \mid \Theta)^{2} - 1)}$$

$$c_{3}(t) = -\frac{1}{2}\Sigma_{d^{2}f}(t, t \mid \Theta)^{-1}(\omega(t \mid \Theta)^{2} - 1)^{-1}$$

$$c_{4}(t) = -\frac{\mu_{df}(t \mid \Theta)\Sigma_{d^{2}f}(t, t \mid \Theta)^{1/2}\omega(t \mid \Theta) - \mu_{d^{2}f}(t \mid \Theta)\Sigma_{df}(t, t \mid \Theta)^{1/2}}{2\Sigma_{d^{2}f}(t, t \mid \Theta)(\omega(t \mid \Theta)^{2} - 1)\Sigma_{df}(t, t \mid \Theta)^{1/2}}$$

Let $dETI(t \mid \Theta)$ denote the inner integral in Equation (1). Using the factorization of the joint posterior density we may write it was

$$dETI(t \mid \Theta) = \int_{-\infty}^{\infty} |v| f_{df(t), d^{2}f(t)}(0, v) dv$$

$$= c_{1}(t) e^{c_{2}(t)} \int_{-\infty}^{\infty} |v| e^{-c_{3}(t)v^{2} - 2c_{4}(t)v} dv$$

$$= c_{1}(t) e^{c_{2}(t)} \left(\int_{0}^{\infty} v e^{-c_{3}(t)v^{2} + 2c_{4}(t)v} dv + \int_{0}^{\infty} v e^{-c_{3}(t)v^{2} - 2c_{4}(t)v} dv \right)$$
(2)

Because $c_3(t) > 0$ for all t since $\Sigma_{d^2f}(t, t \mid \Theta) > 0$ and $|\omega(t \mid \Theta)| < 1$ by Assumption A4 we obtain the following solution for the type of integral in the previous display by using formula 5 in section 3.462 on page 365 of Gradshteyn and Ryzhik (2014)

$$\int_0^\infty v e^{-c_3(t)v^2 \pm 2c_4(t)v} dv = \frac{1}{2c_3(t)} \pm \frac{c_4(t)}{2c_3(t)} \frac{\pi^{1/2}}{c_3(t)^{1/2}} e^{\frac{c_4(t)^2}{c_3(t)}} \left(1 \pm \operatorname{Erf}\left(\frac{c_4(t)}{\sqrt{c_3(t)}}\right)\right)$$
(3)

where Erf: $x \mapsto 2\pi^{-1} \int_0^x e^{-u^2} du$ is the error function. Combining Equations (2) and (3) we may express dETI as

$$dETI(t \mid \Theta) = c_1(t)e^{c_2(t)} \left(\frac{1}{c_3(t)} + \frac{c_4(t)}{c_3(t)} \frac{\pi^{1/2}}{c_3(t)} e^{\frac{c_4(t)^2}{c_3(t)}} Erf\left(\frac{c_4(t)}{\sqrt{c_3(t)}}\right) \right)$$

Defining $\zeta(t \mid \Theta) = \sqrt{2}c_4(t)c_3(t)^{-1/2}$ and collecting some terms, the index can be rewritten as

$$dETI(t \mid \Theta) = \frac{c_1(t)}{c_3(t)} \left(e^{c_2(t)} + \frac{\pi^{1/2}}{2^{1/2}} e^{\frac{c_4(t)^2}{c_3(t)} + c_2(t)} \zeta(t) \operatorname{Erf}\left(\frac{\zeta(t \mid \Theta)}{2^{1/2}}\right) \right)$$

Straightforward arithmetic calculations show that

$$\frac{c_4(t)^2}{c_3(t)} + c_2(t) = -\frac{\mu_{df}(t \mid \Theta)^2}{2\Sigma_{df}(t, t \mid \Theta)}, \quad c_2(t) = -\frac{1}{2} \left(\zeta(t \mid \Theta)^2 + \frac{\mu_{df}(t \mid \Theta)^2}{\Sigma_{df}(t, t \mid \Theta)} \right)$$

and by defining ϕ : $x \mapsto (2\pi)^{-1/2}e^{-x^2}$ as the density function of the standard normal distribution we may write $e^{\frac{c_4(t)^2}{c_3(t)}+c_2(t)}=(2\pi)^{1/2}\phi\left(\frac{\mu_{df}(t|\Theta)}{\Sigma_{df}(t,t|\Theta)^{1/2}}\right)$ and $e^{c_2(t)}=2\pi\phi(\zeta(t))\phi\left(\frac{\mu_{df}(t|\Theta)}{\Sigma_{df}(t,t|\Theta)^{1/2}}\right)$ which leads to

$$dETI(t \mid \Theta) = \frac{c_1(t)}{c_3(t)} \pi \phi \left(\frac{\mu_{df}(t \mid \Theta)}{\sum_{df}(t, t \mid \Theta)^{1/2}} \right) \left(2\phi(\zeta(t \mid \Theta)) + \zeta(t \mid \Theta) \operatorname{Erf} \left(\frac{\zeta(t \mid \Theta)}{2^{1/2}} \right) \right)$$

Standard arithmetics show that

$$\frac{c_1(t)}{c_3(t)} = \frac{1}{\pi} \frac{\sum_{d^2 f} (t, t \mid \Theta)^{1/2}}{\sum_{d f} (t, t \mid \Theta)^{1/2}} \left(1 - \omega(t \mid \Theta)^2 \right)^{1/2}$$

and we finally obtain the expression

$$dETI(t \mid \Theta) = \lambda(t \mid \Theta)\phi\left(\frac{\mu_{df}(t \mid \Theta)}{\Sigma_{df}(t, t \mid \Theta)^{1/2}}\right)\left(2\phi(\zeta(t \mid \Theta)) + \zeta(t \mid \Theta)\operatorname{Erf}\left(\frac{\zeta(t \mid \Theta)}{2^{1/2}}\right)\right)$$

where λ and ζ are given by

$$\lambda(t \mid \Theta) = \frac{\sum_{d^2 f} (t, t \mid \Theta)^{1/2}}{\sum_{d f} (t, t \mid \Theta)^{1/2}} \left(1 - \omega(t \mid \Theta)^2 \right)^{1/2}$$

$$\zeta(t \mid \Theta) = \frac{\mu_{d f} (t \mid \Theta) \sum_{d^2 f} (t, t \mid \Theta)^{1/2} \omega(t) \sum_{d f} (t, t \mid \Theta)^{-1/2} - \mu_{d^2 f} (t \mid \Theta)}{\sum_{d^2 f} (t, t \mid \Theta)^{1/2} \left(1 - \omega(t \mid \Theta)^2 \right)^{1/2}}$$

By definition

$$ETI(\mathcal{I} \mid \Theta) = \int_{\mathcal{I}} dETI(t \mid \Theta) dt$$

which completes the proof.

C Zero-crossings of f and df in the zero-mean stationary case

Let $f \sim \mathcal{GP}(0, C_{\theta}(\cdot, \cdot))$ where the C_{θ} is either the Squared Exponential or Rational Quadratic covariance function. We look at the expected number of zero-crossings on an interval by either f and df as given by the Rice formula in Equation (1) with either X(t) = f(t) or X(t) = df(t). In this case the expressions simplifies immensely due to the zero means of both f, df, and d^2f and because Cov[f(t), df(t)] = 0 and $\text{Cov}[df(t), d^2f(t)] = 0$. The latter is a result of using a stationary covariance function for the prior distribution of f (Cramer and Leadbetter 1967). In this stationary case local expected number of zero-crossing of f and df are given by

$$\frac{\partial_1 \partial_2 C_{\theta}(s,t) \Big|_{s=t}^{1/2}}{\pi C_{\theta}(t,t)^{1/2}} \quad \text{and} \quad \frac{\partial_1^2 \partial_2^2 C_{\theta}(s,t) \Big|_{s=t}^{1/2}}{\pi \partial_1 \partial_2 C_{\theta}(s,t) \Big|_{s=t}^{1/2}}$$

respectively. It then follows that

$$\begin{split} C_{\theta}^{\mathrm{SE}}(t,t) &= \sigma^2, \quad \partial_1 \partial_2 C_{\theta}^{\mathrm{SE}}(s,t) \Big|_{s=t} = \frac{\sigma^2}{\rho^2}, \quad \partial_1^2 \partial_2^2 C_{\theta}^{\mathrm{SE}}(s,t) \Big|_{s=t} = \frac{3\sigma^2}{\rho^4} \\ C_{\theta}^{\mathrm{RQ}}(t,t) &= \sigma^2, \quad \partial_1 \partial_2 C_{\theta}^{\mathrm{RQ}}(s,t) \Big|_{s=t} = \frac{\sigma^2}{\rho^2}, \quad \partial_1^2 \partial_2^2 C_{\theta}^{\mathrm{RQ}}(s,t) \Big|_{s=t} = \frac{2\sigma^2(1+\nu)}{\nu \rho^4} \end{split}$$

and the local expected number of zero-crossings of f and df for either the Squared Exponential and the Rational Quadratic covariance functions are

$$\begin{split} \frac{\partial_{1}\partial_{2}C_{\theta}^{\mathrm{SE}}(s,t)\Big|_{s=t}^{1/2}}{\pi C_{\theta}^{\mathrm{SE}}(t,t)^{1/2}} &= \frac{1}{\pi\rho}, \qquad \frac{\partial_{1}^{2}\partial_{2}^{2}C_{\theta}^{\mathrm{SE}}(s,t)\Big|_{s=t}^{1/2}}{\pi\partial_{1}\partial_{2}C_{\theta}^{\mathrm{SE}}(s,t)\Big|_{s=t}^{1/2}} &= \frac{3^{1/2}}{\pi\rho} \\ \frac{\partial_{1}\partial_{2}C_{\theta}^{\mathrm{RQ}}(s,t)\Big|_{s=t}^{1/2}}{\pi C_{\theta}^{\mathrm{RQ}}(t,t)^{1/2}} &= \frac{1}{\pi\rho}, \qquad \frac{\partial_{1}^{2}\partial_{2}^{2}C_{\theta}^{\mathrm{RQ}}(s,t)\Big|_{s=t}^{1/2}}{\pi\partial_{1}\partial_{2}C_{\theta}^{\mathrm{RQ}}(s,t)\Big|_{s=t}^{1/2}} &= \frac{3^{1/2}}{\pi\rho} \left(1 + v^{-1}\right)^{1/2} \end{split}$$

D Simulation study

Figure 1: 50 random observations from each simulation scenario.

E Trace plot for hyper-parameters for smoking application

F Trend analysis of smoking data with logit transformed outcome

Bibliography

Cramer, Harald, and M. R. Leadbetter. 1967. Stationary and Related Stochastic Processes – Sample Function Properties and Their Applications. John Wiley & Sons, Inc.

Gradshteyn, Izrail Solomonovich, and Iosif Moiseevich Ryzhik. 2014. Table of Integrals, Series, and Products. Academic Press.

Rice, Stephen O. 1945. "Mathematical Analysis of Random Noise, II." Bell System Technical Journal 24 (1): 46–156.