Das Problem der Zeit in der Quantengravitation

Teil 1: Vorbereitungen und allgemeine Betrachtungen

25. Mai 2014

Überblick

Mathematische Konzepte der Differentialgeometrie

Mannigfaltigkeiten

Metrik

Kovariante Ableitung

Krümmung

Feldtheorien und ADM-Formalismus

Rückblick: klassische Feldtheorien

ADM-Formalismus

Mathematische Konzepte der Differentialgeometrie

Mannigfaltigke it

Eine n-dimensionale Mannigfaltigkeit ist Menge M, die lokal die selbe Struktur wie \mathbb{R}^n .

Beispiel:

Mannigfaltigkeit

Eine n-dimensionale Mannigfaltigkeit ist Menge M, die lokal die selbe Struktur wie \mathbb{R}^n .

Beispiel:

Mannigfaltigkeit

Eine n-dimensionale Mannigfaltigkeit ist Menge M, die lokal die selbe Struktur wie \mathbb{R}^n .

Beispiel:

- ► *M* Teilmenge eines höherdimensionalen Raumes mit Dimension *m*:
 - M is eingebettet.

Mannigfaltigkeit

Eine n-dimensionale Mannigfaltigkeit ist Menge M, die lokal die selbe Struktur wie \mathbb{R}^n .

Beispiel:

► *M* Teilmenge eines höherdimensionalen Raumes mit Dimension *m*:

M is eingebettet.

▶ Dimension von M gleich m-1:

Metrik

Metrik

allgemeine Formulierung für einen Distanzbegriff Entfernung zwischen zwei Punkten hängt von der "Form" ab.

Metrik

allgemeine Formulierung für einen Distanzbegriff Entfernung zwischen zwei Punkten hängt von der "Form" ab.

ightarrow Charakterisierung mittels Metriktensors g:

$$\mathrm{d}s^2 = g_{\mu\nu} \mathrm{d}x^\mu \mathrm{d}x^\nu \tag{1}$$

Länge einer Kurve:

$$\int ds = \int_{t_1}^{t_2} dt \sqrt{g_{\mu\nu} dx(t)^{\mu} dx(t)^{\nu}}$$
 (2)

Beispiel: Zylinder

Metriktensor für diese Beispiel:
$$g=\left(\begin{array}{cc} r & 0 \\ 0 & 1 \end{array}\right)_{\square}$$

Kovariante Ableitung

Betrachten Ableitungsbegriff für eingebettete Ebenen in \mathbb{R}^3 :

 Benötigen Differentiatonsbegriff, der die Deformiertheit der Mannigfaltigkeit berücksichtigt.

Kovariante Ableitung

Betrachten Ableitungsbegriff für eingebettete Ebenen in \mathbb{R}^3 :

- Benötigen Differentiatonsbegriff, der die Deformiertheit der Mannigfaltigkeit berücksichtigt.
- ► Für Skalarfelder ist die klassische Definition ausreichend. Für Vektoren und Tensore aber nicht! → Wollen, dass Ableitung "nur in der Ebene wirkt"

Kovariante Ableitung

Betrachten Ableitungsbegriff für eingebettete Ebenen in \mathbb{R}^3 :

- Benötigen Differentiatonsbegriff, der die Deformiertheit der Mannigfaltigkeit berücksichtigt.
- ► Für Skalarfelder ist die klassische Definition ausreichend. Für Vektoren und Tensore aber nicht! → Wollen, dass Ableitung "nur in der Ebene wirkt"

Tangentialraum ($T_p(M)$): Vektorraum an jede Punkt der Mannigfaltigkeit

- ► Für eindimensionale Kurve: Alle vielfache des Tangentenvektors
- ► Für Fläche: Linearkombinationen von 2 Tangentenvektoren

Tangentialraum $ig(T_p(M)ig)$: Vektorraum an jede Punkt der Mannigfaltigkeit

- ► Für eindimensionale Kurve: Alle vielfache des Tangentenvektors
- ► Für Fläche: Linearkombinationen von 2 Tangentenvektoren

Wir wollen mit der Ableitung sozusagen nicht aus dem Tangentialraum ausbrechen:

ightarrow Wähle Projektion der normalen Ableitung

Situation für zweidimensionale Riemannsche Mannigfaltigkeiten:

lacktriangle Ableiten eines Vektors $v=a\vec{x}_u+b\vec{x}_v$ entlang Kurve

Situation für zweidimensionale Riemannsche Mannigfaltigkeiten:

- ▶ Ableiten eines Vektors $v = a\vec{x}_u + b\vec{x}_v$ entlang Kurve
- ▶ Identifzieren der Vektoren \vec{x}_{uu} , \vec{x}_{uv} und \vec{x}_{vv} :

$$\vec{x}_{uu} = \Gamma_{11}^1 \vec{x}_u + \Gamma_{11}^2 \vec{x}_v + L_1 n$$

$$\vec{x}_{uv} = \Gamma_{12}^1 \vec{x}_u + \Gamma_{12}^2 \vec{x}_v + L_2 n$$

$$\vec{x}_{vv} = \Gamma_{22}^1 \vec{x}_u + \Gamma_{22}^2 \vec{x}_v + L_3 n$$

Situation für zweidimensionale Riemannsche Mannigfaltigkeiten:

- ▶ Ableiten eines Vektors $v = a\vec{x}_u + b\vec{x}_v$ entlang Kurve
- ▶ Identifzieren der Vektoren \vec{x}_{uu} , \vec{x}_{uv} und \vec{x}_{vv} :

$$\vec{x}_{uu} = \Gamma_{11}^1 \vec{x}_u + \Gamma_{11}^2 \vec{x}_v + L_1 n$$

$$\vec{x}_{uv} = \Gamma_{12}^1 \vec{x}_u + \Gamma_{12}^2 \vec{x}_v + L_2 n$$

$$\vec{x}_{vv} = \Gamma_{22}^1 \vec{x}_u + \Gamma_{22}^2 \vec{x}_v + L_3 n$$

▶ In Ableitung einsetzen

$$\begin{split} \frac{\mathrm{D}v(t)}{\mathrm{d}t} &= \nabla_{v(t)}v(t) := & (\dot{a} + \Gamma^1_{11}a^2 + \Gamma^1_{12}ab + \Gamma^1_{22}b^2)\vec{x}_u + \\ &+ (\dot{b} + \Gamma^2_{11}a^2 + \Gamma^2_{12}ab + \Gamma^2_{22}b^2)\vec{x}_v. \end{split}$$

Ignorieren der Normalkomponenten:

$$\begin{split} \frac{\mathrm{D}v(t)}{\mathrm{d}t} &= \nabla_{v(t)}v(t) := (\dot{a} + \Gamma_{11}^1 a^2 + \Gamma_{12}^1 ab + \Gamma_{22}^1 b^2)\vec{x}_u + \\ &+ (\dot{b} + \Gamma_{11}^2 a^2 + \Gamma_{12}^2 ab + \Gamma_{22}^2 b^2)\vec{x}_v. \end{split}$$

oder in kompakter Notation mit Koorinatenachsen als Ableitungsrichtungen:

$$\nabla_{\mu}v^{\nu} = \partial_{\mu}v^{\nu} + \Gamma^{\nu}_{\rho\mu}v^{\rho}.$$

Ignorieren der Normalkomponenten:

$$\begin{split} \frac{\mathrm{D}v(t)}{\mathrm{d}t} &= \nabla_{v(t)}v(t) := (\dot{a} + \Gamma_{11}^1 a^2 + \Gamma_{12}^1 ab + \Gamma_{22}^1 b^2)\vec{x}_u + \\ &+ (\dot{b} + \Gamma_{11}^2 a^2 + \Gamma_{12}^2 ab + \Gamma_{22}^2 b^2)\vec{x}_v. \end{split}$$

oder in kompakter Notation mit Koorinatenachsen als Ableitungsrichtungen:

$$\nabla_{\mu}v^{\nu} = \partial_{\mu}v^{\nu} + \Gamma^{\nu}_{\rho\mu}v^{\rho}.$$

Christoffelsymbole:
$$\Gamma^{\mu}_{\nu\rho}=\frac{1}{2}g^{\mu\sigma}(\partial_{\rho}g_{\sigma\nu}+\partial_{\nu}g_{\sigma\rho}-\partial_{\sigma}g_{\nu\rho})$$

Krümmung

Krümmung

Zwei zentrale Begriffe:

► Intrinsische Krümmung:

Unabhängig vom Einbettungsraum – Zylinder hat die selbe intrinsische Krümmung wie eine Fläche

•00000 Krümmung

Krümmung

Zwei zentrale Begriffe:

- ► Intrinsische Krümmung: Unabhängig vom Einbettungsraum – Zylinder hat die selbe intrinsische Krümmung wie eine Fläche
- Extrinisische Krümmung:
 Abhängig von der Wahl der Einbettung Zylinder ist gekrümmmte Fläche im R³, aber einfache Fläche nicht

Krümmung

Krümmung

Zwei zentrale Begriffe:

- ▶ Intrinsische Krümmung: Angegeben über $R^{
 ho}{}_{\sigma\mu\nu}$ → Riemannscher Krümmungstensor
- Extrinisische Krümmung: intuitiv: "Wie stark ändert sich ein Normalenvektor n in einer Umgebung um einen Punkt"
 - n existiert nur, wenn die Manigfaltigkeit eingebettet ist!

Krümmung

Intrinsische Krümmung:

Lässt sich über die (intrinsischen) Christoffelsymbole angeben:

$$R^{\rho}{}_{\sigma\mu\nu} = \partial_{\mu}\Gamma^{\rho}{}_{\nu\sigma} - \partial_{\nu}\Gamma^{\rho}{}_{\mu\sigma} + \Gamma^{\rho}{}_{\mu\lambda}\Gamma^{\lambda}{}_{\nu\sigma} - \Gamma^{\rho}{}_{\nu\lambda}\Gamma^{\lambda}{}_{\mu\sigma}$$
 (3)

Keine Beteiligung von einbettungsbezogenen Größen (wie etwa Normalvektoren!)

Extrinisische Krümmung:

Definiert auf Hyperebenen mit Normalvektor n:

Definition

Extrinisische Krümmung K:

$$K: T_p(\Sigma) \times T_p(\Sigma) \to \mathbb{R}$$

$$(v, u) \mapsto -\langle v, L(u) \rangle.$$
(4)

Wobei

$$L: T_p(\Sigma) \to T_p(\Sigma)$$
$$v \mapsto \nabla_v n$$

die Weingartenabbildung bezeichnet.

Krümmung

Extrinisische Krümmung:

Krümmung

Zusammenhang zwischen Größen der Hyperebene und des Umgebungsraumes:

Gauss-Codazzi Gleichung:

$$P^{\mu}{}_{\alpha}P^{\nu}{}_{\beta}P^{\gamma}{}_{\rho}P^{\sigma}{}_{\delta}R^{\rho}{}_{\sigma\mu\nu} = {}^{(3)}R^{\gamma}{}_{\delta\alpha\beta} + K^{\gamma}{}_{\alpha}K_{\delta\beta} - K^{\gamma}{}_{\beta}K_{\alpha\delta}$$
 (5)

Wobei ${\cal P}$ der Projektionsoperator auf den die Hyperebene bezeichnet.

Feldtheorien und ADM-Formalismus

Rückblick: klassische Feldtheorien

klassischer Mechanik: generalisierte Koordinaten $q_i(t)$

beschreiben System

Feldtheorien: Anstatt den diskreten Indizes \rightarrow kontinuierliche

Größen $\varphi(\vec{x},t)$

Rückblick: klassische Feldtheorien

klassischer Mechanik: generalisierte Koordinaten $q_i(t)$

beschreiben System

Feldtheorien: Anstatt den diskreten Indizes → kontinuierliche

Größen $\varphi(\vec{x},t)$

Wirkung:

$$S = \int_{t_1}^{t_2} \mathrm{d}t \int_{\mathbb{R}^3} \mathrm{d}^3 x \, \mathcal{L} \tag{6}$$

 \mathcal{L} ...Lagrangedichte

Aus dem Variationsprinzip ergibt sich **Euler-Lagrangefunktion** für Felder:

$$\partial_{\mu} \frac{\partial \mathcal{L}}{\partial(\partial_{\mu} \varphi)} - \frac{\partial \mathcal{L}}{\partial \varphi} = 0. \tag{7}$$

Aus dem Variationsprinzip ergibt sich **Euler-Lagrangefunktion** für Felder:

$$\partial_{\mu} \frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\varphi)} - \frac{\partial \mathcal{L}}{\partial \varphi} = 0. \tag{7}$$

Hamiltondichte:

$$\mathcal{H} = \pi \dot{\varphi} - \mathcal{L},\tag{8}$$

mit generalisiertem Impuls: $\pi = \frac{\partial \mathcal{L}}{\partial \dot{\varphi}}$

ADM-Formalismus

Zerteile Raumzeit in Schichten aus spacelike-Hyperebenen

$$M = \bigcup_{t \in \mathbb{R}} \Sigma(t) \tag{9}$$

ADM-Formalismus

Zerteile Raumzeit in Schichten aus spacelike-Hyperebenen

$$M = \bigcup_{t \in \mathbb{R}} \Sigma(t) \tag{9}$$

Ist nicht immer möglich: Hyperebenen müssen orientierbar sein und es dürfen keine Zeitzyklen auftreten

Metrik im ADM-Formalismus:

$$ds^{2} = - (Zeitartiger Abstand)^{2} + (Raumartiger Abstand)^{2} =$$

$$= - N^{2}dt^{2} + q_{ij}(dx^{i} + N^{i}dt)(dx^{j} + N^{j}dt).$$
(10)

Einstein-Hilbert Wirkung:

$$S_{EH} = \frac{1}{16\pi G} \int_M \mathrm{d}^4 x \sqrt{-g} R \tag{11}$$

Einstein-Hilbert Wirkung:

$$S_{EH} = \frac{1}{16\pi G} \int_M \mathrm{d}^4 x \sqrt{-g} R \tag{11}$$

Zusammen mit Gauss-Codazzi Gleichungen und der Metrik ergibt sich für den ADM-Formalismus:

$$S_{EH} = \frac{1}{16\pi G} \int_{M} d^{4}x N \sqrt{h} (^{(3)}R + \text{Tr}(K)^{2} - K^{ij}K_{ij})$$
 (12)

Constraints: Mit den Definitionen

$$H_{\perp} := 16\pi G G_{ijkl} \pi^{ij} \pi^{kl} - \frac{1}{16\pi G} \sqrt{h^{(3)}} R = 0$$
 (13)

$$H^i := -2^{(3)} \nabla_j \pi^{ij} = 0 \tag{14}$$

$$\pi_{ij} := \frac{\partial \mathcal{L}}{\partial (\partial_t h_{ij})} \tag{15}$$

ergibt sich

$$S_{EH} = \int dt \int_{\Sigma} d^3x (\pi^{ij} \partial_t h_{ij} - NH_{\perp} - N^i H_i)$$

wobei:
$$G_{ijkl} = \frac{1}{2\sqrt{h}}(h_{ik}h_{jl} + h_{jk}h_{il} - h_{ij}h_{kl})$$

Die Constraints erfüllen:

$$H_{\perp} := 16\pi G G_{ijkl} \pi^{ij} \pi^{kl} - \frac{1}{16\pi G} \sqrt{h^{(3)}} R = 0$$
 (16)

$$H^i := -2^{(3)} \nabla_j \pi^{ij} = 0 \tag{17}$$

und die Poissonklammerausdrücke:

$$\begin{aligned}
\{H_{i}(\vec{x}), H_{j}(\vec{x}')\} &= H_{i}(\vec{x}')\partial_{j}\delta(\vec{x} - \vec{x}') - H_{j}(\vec{x})\partial\vec{x}'_{i}\delta(\vec{x} - \vec{x}') \\
\{H_{i}(\vec{x}), H_{\perp}(\vec{x}')\} &= H_{\perp}(\vec{x})\partial_{j}\delta(\vec{x} - \vec{x}') \\
\{H_{i}(\vec{x}), H_{\perp}(\vec{x}')\} &= \\
&= h^{ij}(\vec{x})H_{i}(\vec{x})\partial'_{j}\delta(\vec{x} - \vec{x}') - h^{ij}(\vec{x}')H_{i}(\vec{x}')\partial_{j}\delta(\vec{x} - \vec{x}')
\end{aligned}$$

Erstes Problem: h taucht explizit in Poissonklammerausdrücken auf!

Desweiteren besitzten die Constraints eine wichtige Eigenschaft:

Theorem

g erfüllt die Einsteingleichungen dann und nur dann wenn auf allen raumartigen Hyperebenen die Constraints (16-17) erfült sind.

Desweiteren besitzten die Constraints eine wichtige Eigenschaft:

Theorem

g erfüllt die Einsteingleichungen dann und nur dann wenn auf allen raumartigen Hyperebenen die Constraints (16-17) erfült sind.

super-Hamilton Constraint und super-Momentum Constraint besitzen vollständige dynamische Information über System!

Zusammenfassung:

► Bisher nur klassische Feldtheorie

Zusammenfassung:

- ► Bisher nur klassische Feldtheorie
- ► Wir haben einen Hamiltonformalismus der allgemein Relativitätstheorie abgeleitet

Zusammenfassung:

- ► Bisher nur klassische Feldtheorie
- ► Wir haben einen Hamiltonformalismus der allgemein Relativitätstheorie abgeleitet
- ► Der nächste Schritt: die Quantisierung