EMBEDDED SYSTEMS ADVANCED COURSE

EMBEDDED SOFTWARE DYNAMIC DESIGN PROJECT

BY
AHMEDSAMEHSAAD99@GMAIL.COM

ECU #1 - READING SENSORS / SENDING DATA TO CAN

■ ECU #1: component state diagram

Using RTOS and assuming that all tasks have the same execution time:

ECU #1: operation state diagram (based on RTOS)

ECU #1: Sequence Diagram

To calculate the CPU load, using Simso offline simulator:

- Assuming that all tasks have the same execution time which is **500 us**

I		,	-,
CPU 1	0.2750	0.2750	0.0000
Average	0.2750	0.2750	0.0000

■ ECU #2: component state diagram

Using RTOS with 1 main task, and 4 functions

ECU #2: operation state diagram

ECU #2: Sequence Diagram

To calculate the CPU load, using Simso offline simulator:

Assuming the Main Task has 2ms of execution time

To calculate the bus load analytically:

- Assumptions made:
 - \circ CAN data field is 64bits \rightarrow 111 total frame bits
 - CAN rate of 125 kbps \rightarrow 0.00000781 second to send 1 bit
- 200 messsages / second (1000/5)
- 22200 bits are sent by second (200 * 111)
- Overall time: 22200 * 0.00000781 = 0.1734375 sec
- Then the overall bus load in 1 second = **17.34375**%