Certificate Chains

Somesh Jha

Imagine that an employee Bob works for a company MSFT. The following question arises in *public-key infrastructures (PKIs)*.

How does Bob prove to Alice that his public-key is pk_B ?

Consider the following certificates or certs:

- $c_{V \to M}$: this is a signed statement by Verisign that "MSFT's public-key is pk_M ". Recall the for signing a statement you need the secret key, so only Verisign can sign this statement.
- $c_{M\to B}$: this is a signed statement by MSFT) that "Bob's public-key is pk_B ".

Now Bob presents $\langle c_{V\to M}c_{M\to B}\rangle$ (called *cert-chain*) to Alice, who verifies it as follows:

- 1. Uses the public key pk_V of Verisign to verify $c_{V\to M}$ and extract MSFT's public key pk_M . We assume that everybody (including Alice) *trusts* that Verisign's public key is pk_V .
- 2. Uses pk_M to verify $c_{M\to B}$ and extract Bob's public key pk_B .

X.509 is a standard for certs and has a lot more information than what was described before (e.g., expiration date). Details can be found here: https://en.wikipedia.org/wiki/X.509 CRLs: Certificate Revocation Lists (CRLs) are essentially a "databases" of certificates that have been revoked for some reason (e.g., they were misused). If the cert is in a CRL, it should not be accepted.