NAME:_____

Quiz 2-Homework: Fundamentals of Mathematics (Math 320) Stevenson

Please redo this quiz and do the other set inclusion exercises below. When you start on part (a) you must start by saying: "If $f(x) \in A$ then $f(x) == c + bx + x^2$." Then you must SHOW that this f(x) satisfies the criteria to be in B. Similarly, in part (b) you must start with "If $f(x) \in B$ then $f(x) == a_0 + a_1x + a_2x^2$ such that $\deg(f(x) - x^2 = 0)$." Then you must SHOW that this f(x) satisfies the criteria to be in A.

Notice that I added something to the set B. This is because the degree of the zero polynomial $z(x) = 0 + 0x + 0x^2$ is a special case. An optional exercise could be to write a journal about what you think that the degree of the zero polynomial should be. Whatever it is, it should satisfy the rules you know about degree. In particular: $\deg(h(x)g(x)) = \deg h(x) + \deg g(x)$.

1. Let **P** be the set of all polynomials with coefficients in \mathbb{R} and in variable x of degree less than or equal to 2. That is,

$$\mathbf{P} = \{ f(x) = a_0 + a_1 x + a_2 x^2 \mid a_0, a_1, a_2 \in \mathbb{R} \}.$$

Consider the following two subsets of **P**:

$$A = \{ f(x) \in \mathbf{P} \mid \exists c, b \in \mathbb{R} \text{ s.t. } f(x) = c + bx + x^2 \}$$
$$B = \{ f(x) \in \mathbf{P} \mid \deg(f(x) - x^2) \le 1 \text{ or } f(x) - x^2 = 0 + 0x + 0x^2 \}.$$

- (a) Prove that $A \subset B$.
- (b) Is $B \subset A$? Prove your assertion. (Hint: If $f(x) \in \mathbf{P}$ then $f(x) = a_0 + a_1x + a_2x^2$. What does $f(x) - x^2$ look like?)
- 2. Continuing with **P** as above. Consider some more subsets.

$$C = \{ f(x) \in \mathbf{P} \mid f'(0) = 0 \}$$

$$D = \{ f(x) \in \mathbf{P} \mid f(0) = 0 \}.$$

$$E = \{ f(x) = a_0 \mid a_0 \in \mathbb{R} \}.$$

$$F = \{ f(x) \in \mathbf{P} \mid f(0) = f(1) = f(2) = 0 \}.$$

$$G = \{ f(x) \in \mathbf{P} \mid f''(0) = f'(0) = 0 \}.$$

- (a) Give two examples of elements in each set.
- (b) For each of the containments below state whether it is true or false. If true give a proof, if false, give an example of an element in the first set which is not contained in the second set.
 - i. $C \subset D$.
 - ii. $D \subset C$.

- iii. $C \subset E$.
- iv. $E \subset C$.
- v. $C \subset F$.
- vi. $F \subset C$.
- vii. $C \subset G$.
- viii. $G \subset C$.
- ix. $D \subset E$.
- $E \subset D$.
- xi. $D \subset F$.
- xii. $F \subset D$.
- xiii. $D \subset G$.
- xiv. $G \subset D$.
- xv. $E \subset F$.
- xvi. $F \subset E$.
- xvii. $E \subset G$.
- xviii. $G \subset E$.
- xix. $F \subset G$.
- $xx. G \subset F.$