Clase 10 Análisis de varianza Diplomado en análisis de datos con R para la acuicultura.

Dr. José A. Gallardo y Dra. María Angélica Rueda. jose.gallardo@pucv.cl | Pontificia Universidad Católica de Valparaíso

22 October 2021

PLAN DE LA CLASE

1.- Introducción

- ¿Qué es un análisis de varianza?.
- Modelos lineales en Anova.
- Hipótesis y supuestos.
- Interpretar resultados de análisis de varianza con R.

2.- Práctica con R y Rstudio cloud

- Realizar guía 9 + Realizar pruebas de hipótesis: Anova y posteriores.
- Realizar gráficas avanzadas con ggplot2.
- Elaborar un reporte dinámico en formato pdf.

ANOVA

¿Qué es el análisis de varianza?

Herramienta básica para analizar el efecto de uno o más factores (cada uno con dos o más niveles) en un experimento.

PROBLEMA DE LAS COMPARACIONES MÚLTIPLES

¿Por qué preferir anova y no múltiples t-test?

Porque con una t-test normal se incrementa la tasa de error al aumentar el número de comparaciones múltiples.

Fuente[1]: [1]:doi:10.21037/jtd.2017.05.34

ANOVA: MODELOS LINENALES

Una forma muy conveniente de representar una ANOVA es mediante un modelo lineal.

Modelo lineal para ANOVA de una vía

$$y \sim \mu + \alpha + \epsilon$$

Modelo lineal para ANOVA de dos vías

$$y \sim \mu + \alpha + \beta + \epsilon$$

Modelo lineal para ANOVA de dos vías con interacción

$$y \sim \mu + \alpha + \beta + \alpha * \beta + \epsilon$$

ANOVA: HIPÓTESIS Y SUPUESTOS

Hipótesis factor 1

 $\mathbf{H_0}: \alpha_{1.1} = \alpha_{1.2} = \alpha_{1.3}$

Hipótesis factor 2

 $\mathbf{H_0}: \beta_{2.1} = \beta_{2.2} = \beta_{2.3}$

Hipótesis interacción

 $H_0: \alpha^*\beta = 0$

Hipótesis Alternativa

 H_A : No todas las medias son iguales

Supuestos:

- 1) Independencia de las observaciones.
- 2) Normalidad.
- 3) Homocedasticidad: homogeneidad de las varianzas.

ANOVA PARA COMPARAR MEDIAS

¿Por qué se llama ANOVA si se comparan medias?

Por que el estadístico **F** es un cociente de varianzas.

$$\mathbf{F} = rac{\sigma_{entregrupos}^2}{\sigma_{dentrogrupos}^2}$$

Mientras mayor es el estadístico **F**, más es la diferencia de medias entre grupos.

TEST POSTERIORES (PRUEBAS A POSTERIORI)

¿Para qué sirven?

Para identificar que pares de niveles de uno o más factores son significativamente distintos entre sí.

¿Cuando usarlos?

Sólo cuando se rechaza H_0 del ANOVA.

Tukey test

Es uno de los más usados, similar al *t-test*, pero corrige la tasa de error por el número de comparaciones.

ESTUDIO DE CASO: EVALUACIÓN DE DIETAS TRUCHA ARCOIRIS

Anova de una vía.

Table 1: Anova de una vía.

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Dietas	2	3.77	1.88	4.85	0.02
Residuals	27	10.49	0.39	NA	NA

aov() sólo para diseños balanceados

Prueba de Tukey

Table 2: Prueba de Tukey.

Trat.	Contraste	H0	Diferencia	IC-bajo	IC-alto	p-ajustado
Dietas	trt1-ctrl	0	-0.37	-1.06	0.32	0.39
Dietas	trt2-ctrl	0	0.49	-0.20	1.19	0.20
Dietas	trt2-trt1	0	0.86	0.17	1.56	0.01

ESTUDIO DE CASO: EVALUACIÓN CRECIMIENTO TILAPIA (TEMPERATURA Y SALINIDAD)

Anova de dos vías con interacción

Table 3: Anova de dos vías.

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Temperatura	2	2426.434	1213.217	92.000	0.000
Salinidad	1	205.350	205.350	15.572	0.000
Temperatura:Salinidad	2	108.319	54.160	4.107	0.022
Residuals	54	712.106	13.187	NA	NA

PRÁCTICA ANÁLISIS DE DATOS

- Guía de trabajo práctico disponible en drive y Rstudio.cloud.
 Clase_10
- ► El trabajo práctico se realiza en Rstudio.cloud. **Guía 10 Anova y posteriores**

RESUMEN DE LA CLASE

- Elaborar hipótesis
- Realizar análisis de varianza
 - ▶ 1 factor.
 - 1 factor con posteriores.
 - 2 factores con interacción.
- Realizar gráficas avanzadas con ggplot2