Book of Abstract Algebra 1/2

4 D	ook of Abstract Algeb	ra	(2nd Ed	lition)			
	Chapter 28, Problem 3EE		Bookmark	Show all steps: ON			
	Pro	blem	1				
	Let U and V be finite-dimensional vector spaces over a field F , and let $h:U\to V$ be a linear transformation. Prove part:						
	h is injective iff the null space of h is equal to $\{0, 1, 2, 2, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,$	} .					
	Step-by-step solution						
	Step 1 of 5						
	It is already known that U and V are vector spaces and so they satisfies all conditions fo space.						
	Comment						
	Step 2 of 5						
	Any transformation is injective if, $h(\mathbf{a}) = h(\mathbf{b}) \Rightarrow \mathbf{a} = \mathbf{b}$						
	Comment						
	Step	3 of 5					
	It is given that null space which is subset of U is	{0}					

Or,

$$\{if h(\mathbf{u}) = \mathbf{0}_v, then, \mathbf{u} = \mathbf{0}_u\}$$

Comment

Step 5 of 5

We prove required result by contradiction. Assume that kernel of U is not $\{0\}$ and contain some other element \mathbf{p} . And let h be injective.

Then for any element **u** in *U*,

$$\mathbf{u} = \mathbf{u} + \mathbf{0}$$

Taking linear transformation

$$h(\mathbf{u}) = h(\mathbf{u} + \mathbf{0})$$

 $\Rightarrow h(\mathbf{u}) = h(\mathbf{u}) + h(\mathbf{0})$

Then,

$$h(\mathbf{u}) = h(\mathbf{u}) + \mathbf{p}$$

Or,

$$h(\mathbf{u}) = h(\mathbf{u}) + \mathbf{0}_{v} = h(\mathbf{u})$$

Thus there is a contradiction that h is injective. This is due to wrong assumption that nullspace of U is not $\{0\}$ but contains other element.

Hence h is injective if nullspace of U is $\{0\}$

Comment