Hauptfaserbündel und Vektorbündel

Adrian Pegler

Christian-Albrechts-Universität zu Kiel Arbeitsgruppe Geometrie 24098 Kiel

1. August 2018

Zusammenfassung. This is my abstract.

1 Faserbündel

Definition 1.1. Faserbündel

Seien E, B, F Differenzierbare Mannigfaltigkeiten, $\pi \colon E \to B$ eine glatte surjektive Funktion.

Falls es um jeden Punkt $x \in B$ eine Umgebung U sowie einen Diffeomorphismus $\Phi_U \colon \pi^{-1}(U) \to U \times F$ gibt, sodass

$$\pi_U \circ \Phi_U = \pi \tag{1}$$

gilt, nennen wir (E, π, B) Faserbündel mit typischer Faser F. Nach Gleichung 1 kommutiert also folgendes Schema:

$$\pi^{-1}(U) \subset E \xrightarrow{\Phi_U} U \times F$$

$$\pi \qquad \qquad \pi_U$$

$$U \subset B$$

B heißt Basisraum und E Totalraum des Faserbündels. Die Abbildung Φ_U wird auch lokale Trivialisierung oder Bündelkarte genannt. Mit $E_x := \pi^{-1}(x)$ bezeichnen wir für alle $x \in B$ die Faser über x.

Diese Definition ist in Abbildung 1 veranschaulicht. Neben der Beziehung zwischen dem Totalraum E und dem Basisraum B, sind in blau ein Punkt $x \in B$ und sein Urbild E_x bezüglich π sowie in magenta die Umgebung U um x und deren Urbild unter π dargestellt. Zudem sind die typische Faser F in rot und der Diffeomorphismus Φ_U sowie dessen Bild $U \times F$ in orange abgebildet.

Abb. 1: Skizze eines Faserbündels.

Definition und Bemerkung 1.2.

Für alle $x \in B$ sei folgende Abbildung definiert:

$$\Phi_{U,x} \colon E_x \to F, \ \Phi_{U,x} := \pi_F \circ \Phi_U.$$

Dann ist für jede Faser E_x durch $\Phi_{U,x}$ ein Isomorphismus auf die typische Faser F gegeben, was der Grund für deren Benennung ist.

Definition 1.3. Isomorphie

Seien (E, π, B) und $(E, \tilde{\pi}, B)$ Faserbündel über dem gleichen Basisraum B. Wir nennen die Faserbündel isomorph, falls es einen Diffeomorphismus $\Psi \colon E \to \tilde{E}$ gibt, sodass $\tilde{\pi} \circ \Psi = \pi$. Schematisch gilt also Folgendes:

Beispiel 1.4.

Seien M und F Differenzierbare Mannigfaltigkeiten, $\pi\colon M\times F\to M$ die Projektion auf die erste Komponente. Dann ist $(M\times F,\pi,M)$ ein Faserbündel. Jedes zu diesem Faserbündel isomorphe Faserbündel nennen wir **trivial**.

Beispiel 1.5.

Sei M eine n-dimensionale Differenzierbare Mannigfaltigkeiten. Die Folgenden Bündel sind Faserbündel mit Basisraum M:

- 1. das Tangentialbündel: (TM, π, M) ; \mathbb{R}^n ,
- 2. das Cotangentialbündel: $(T^*M, \pi, M); \mathbb{R}^n$,
- 3. das k-Formenbündel: $(\Omega^k M, \pi, M); \mathbb{R}^{\binom{n}{k}}$.

2 Vektorbündel

Definition 2.1. $Hauptfaserb\"{u}ndel$

Hier folgt die Definition