Computing All Distinct Squares in Linear Time for Integer Alphabets

Hideo Bannai ¹ Shunsuke Inenaga ¹ Dominik Köppl ²

¹Department of Informatics, Kyushu University, Japan ²Department of Computer Science, TU Dortmund, Germany

CPM'17

 $\stackrel{\scriptscriptstyle 1}{a}\stackrel{\scriptscriptstyle 2}{b}\stackrel{\scriptscriptstyle 3}{a}\stackrel{\scriptscriptstyle 4}{b}\stackrel{\scriptscriptstyle 5}{a}\stackrel{\scriptscriptstyle 6}{a}\stackrel{\scriptscriptstyle 7}{a}\stackrel{\scriptscriptstyle 8}{b}\stackrel{\scriptscriptstyle 9}{a}\stackrel{\scriptscriptstyle 10}{b}\stackrel{\scriptscriptstyle 11}{a}$

squares

- abab at 1
- baba at 2
- aa at 5
- aa at 6
- abab at 7
- baba at 8

leftmost squares

- abab at 1
- baba at 2
- aa at 5
- aa at 6
- abab at 7
- baba at 8

leftmost squares

- abab at 1
- baba at 2
- aa at 5
- aa at 6
- abab at 7
- baba at 8

fact

 $leftmost \ squares \equiv distinct \ squares$

works on distinct squares

#distinct squares

```
\leq 2n Fraenkel and Simpson'98
```

 $\leq 2n - \Theta(\lg n)$ Ilie'07

 $\leq \lfloor 11n/6 \rfloor$ Deza et al.'15 $\leq n$ (yet) unknown

algorithms computing all distinct squares

 $\mathcal{O}(\sigma n)$ time Gusfield and Stoye'04

 $\mathcal{O}(n)$ time Crochemore'14

 $\mathcal{O}(n)$ time this paper

where

 \bullet σ : alphabet size

n: text length

setting

given

- text T
- n := |T| text length
- \blacksquare alphabet of size $\sigma = n^{\mathcal{O}(1)}$

problem

find all distinct squares

goal: $\mathcal{O}(n)$ time

naive solution

- create suffix array and LCP array
- iterate over each text position i
- iterate over all possible periods p
- **** compare T[i..] with $T[i+p..] \ \forall 1 \leq i, p \leq n$
- if found a square ⇒ check whether already reported

$$\Rightarrow \mathcal{O}\left(\underbrace{\underbrace{n}_{\forall i}\cdot\underbrace{n}_{\forall p}\cdot t_{\lambda}}\right)$$

 \bullet t_{λ} : time for look-up $(t_{\lambda} = n \lg \sigma \text{ for a simple trie})$

better solutions

idea to get faster

- check only at certain text position
- check only periods up to a threshold

sufficient: all borders of Lempel-Ziv factors

idea from

[Gusfield and Stoye'04] computing all distinct squares in $\mathcal{O}(\sigma n)$ time

аbаbааавава

a babaababa

a b a a a b a b a

ababaaababa

ababaabaaba

ababaaababa

reported squares:

abab

reported squares:

abab

- abab
- aa

- abab
- aa

- abab
- aa

- abab
- aa
- abab

reported squares:

- abab
- aa
- abab

problems:

- reporting duplicates
- baba not found

suffix link walk: construct suffix tree

suffix link walk: decorate squares

suffix link walk: rotate

time bounds

- \blacksquare suffix link walk traversals $\mathcal{O}(n)$ nodes
- lacktriangle number of suffix links to a particular node $\leq \sigma$
- ightharpoonup \Rightarrow a long traversal can happen $\mathcal{O}(\sigma)$ times

hence $\mathcal{O}(n\sigma)$ time [Gusfield and Stoye'04]

$\mathcal{O}(n)$ time goal

problem

- \blacksquare \nexists dictionary with $\mathcal{O}(1)$ access/update time
- store lists, be careful about uniqueness!

solution

use longest previous factor table (LPF)!

longest previous factor table

ababaaababa

longest previous factor table

longest previous factor table

a b a a a b a b a

reported squares:

abab

reported squares:

- abab
- baba
- - right rotate found squares

new techniques:

reported squares:

- abab

baba

- new techniques:
 - right rotate found squares

reported squares:

- abab
- baba

new techniques:

reported squares:

- abab
- baba
- aa

new techniques:

reported squares:

- abab
- baba
- aa

new techniques:

reported squares:

- abab
- baba
- aa

new techniques:

reported squares:

- abab
- baba
- aa

new techniques:

- right rotate found squares
- skip if LPF[i] $\geq 2p$

naive right rotation of square S takes $\mathcal{O}(|S|)$ time $\Rightarrow \mathcal{O}(n^2)$ total time!

our approach

naive right rotation of square S takes $\mathcal{O}(|S|)$ time $\Rightarrow \mathcal{O}(n^2)$ total time!

our approach

naive right rotation of square S takes $\mathcal{O}(|S|)$ time $\Rightarrow \mathcal{O}(n^2)$ total time!

our approach

naive right rotation of square S takes $\mathcal{O}(|S|)$ time $\Rightarrow \mathcal{O}(n^2)$ total time!

our approach

naive right rotation of square S takes $\mathcal{O}(|S|)$ time $\Rightarrow \mathcal{O}(n^2)$ total time!

our approach

right rotations by RMQ on LPF

 $\#RMQs \le 3 \times$ number of newly found squares

time analysis

known:

- **number** of distinct squares $occ = \mathcal{O}(n)$
- algorithm:
 - build data structures (suffix array, etc.) $\mathcal{O}(n)$
 - \blacksquare query on $\mathcal{O}(n)$ positions:
 - for a square with LCP $\mathcal{O}(1)$
 - $^{\square}$ find right rotated squares with RMQ $\mathcal{O}(occ)$ total

time

$$\mathcal{O}(n + occ) = \mathcal{O}(n)$$
 total time

experiments

collection	σ	Z	$\max_{x} F_{x} $	occ	time
dblp.xml	97	7,035,342	1060	7412	70
proteins	26	20,875,097	45,703	3,108,339	245
dna	17	13,970,040	97,966	132,594	310
english	226	13,971,134	987,766	13,408	2639
einstein	125	49,575	906,995	18,192,737	3953

- 200 MiB collections from Pizza&Chili corpus
- lacktriangle σ : alphabet size
- z: # Lempel-Ziv factors
- time in seconds

time bottleneck: RMQs

finding all distinct squares in linear time

techniques

- modification of [Gusfield and Stoye'04]
- using LPF array

open problems

- cope without RMQ
- ightharpoonup create MAST in $\mathcal{O}(n)$ time

further results

- computing online in $O(n \lg^2 \lg n / \lg \lg \lg n)$ time
- in linear time:
 - decorating suffix tree with information of all squares
 - building topology of the minimal augmented suffix tree (MAST)

finding all distinct squares in linear time

techniques

- modification of [Gusfield and Stoye'04]
- using LPF array

open problems

- cope without RMQ
- ightharpoonup create MAST in $\mathcal{O}(n)$ time

further results

- computing online in $O(n \lg^2 \lg n / \lg \lg \lg n)$ time
- in linear time:
 - decorating suffix tree with information of all squares
 - building topology of the minimal augmented suffix tree (MAST)

Thank you for listening. Any questions are welcome!