神经网络分类器

- □ 大脑是如何学习的?
 - 神经元传导
 - 神经键改变
- □ 为什么要模拟人脑?
 - 快速、智能
 - 稳定
- □ 我们如何模拟人脑的 神经元?
- https://blog.csdn.net/ zengxiantao1994/arti cle/details/72787849

x ₁	$\mathbf{x_2}$	X ₃	Y	
1	0	0	-1	×
1	0	1	1	×
1	1	0	1	ı
1	1	1	1	×
0	0	1	-1	ı
0	1	0	-1	ı
0	1	1	1	ı
0	0	0	-1	

输入结点

$$\widehat{y} = \begin{cases} 1, 0.3x_1 + 0.3x_2 + 0.3x_3 - 0.4 > 0 \\ -1, 0.3x_1 + 0.3x_2 + 0.3x_3 - 0.4 < 0 \end{cases}$$

上一个例子的模型:

$$\widehat{y} = \begin{cases} 1, 0.3x_1 + 0.3x_2 + 0.3x_3 - 0.4 > 0 \\ -1, 0.3x_1 + 0.3x_2 + 0.3x_3 - 0.4 < 0 \end{cases}$$

化为一般的形式:

$$\widehat{y} = sign(w_1x_1 + w_2x_2 + \dots + w_dx_d - t)$$

$$\widehat{y} = sign(\sum_{i} w_{ij} x_i - t)$$

```
初始:用随机值初始化权值向量w<sup>(0)</sup>
```

```
循环: 直到输出和实例一致
{
    对每个训练样例(x<sub>i</sub>,y<sub>i</sub>),按照W<sup>(k)</sup>计算输出值y<sub>i</sub><sup>(k)</sup>;
    for每个权值W<sup>(k)</sup>
    更新权值W<sup>(k+1)</sup>= W<sup>(k)</sup>+λ(y<sub>i</sub>-y<sub>i</sub><sup>(k)</sup>)x<sub>i</sub>;
```

更新权值: w^(k+1)= w^(k)+λ(y_i-y_i^(k))x_i

- □ 如果 y_i=y_i(k), 权值w不变;
- 如果 y_i=1(实际类), y_i^(k)=-1, 预测误差为2;
 为了补偿这个误差,需要提高正输入链的权值,降低负输入链的;
- 口 如果 y_i =-1(实际类), $y_i^{(k)}$ =1, 预测误差为-2; 为了补偿这个误差,需要降低正输入链的权值,提高负输入链的;

□ F. Rosenb latt证明了对"线性可分"的问题 感知机通过有限次训练就能学会正确的行为

X ₁	X ₂	X ₃	Y
1	0	0	-1
1	0	1	1
1	1	0	1
1	1	1	1
0	0	1	-1
0	1	0	-1
0	1	1	1
Λ	Λ	٥	-1

人工神经网络

□ 感知机

■ Marvin Minsky, Perceptrons 证明了感知器无法执行"异或问题"

x ₁	X ₂	Y
0	0	-1
1	0	1
0	1	1
1	1	-1

- □ 多层人工神经网络
 - □ 人工神经网络比感知机模型复杂
 - ▶输入层和输出层之间包含隐藏层

□ 多层人工神经网络

- □ 人工神经网络比感知机模型复杂
 - ▶激活函数可以是多种函数

□ 多层人工神经网络

□ 例:用两层前馈神经网络解决异或问题

(a) 决策边界

(b) 神经网络拓扑结构

"异或"的真值表

用两计算层感知器解决"异或"问题。

x1	x2	у1	y2	0
0	0	1		
0	1	1		
1	0	0		
1	1	1		

双层感知器

"异或"问题分类

"异或"的真值表

用两计算层感知器解决"异或"问题

x1	x2	у1	y2	0
0	0		1	
0	1		0	
1	0		1	
1	1		1	

双层感知器

"异或"问题分类

"异或"的真值表

用两计算层感知器解决"异或"问题。

x 1	x2	у1	y2	0
0	0	1	1	
0	1	1	0	
1	0	0	1	
1	1	1	1	

双层感知器

"异或"问题分类

"异或"的真值表

例四 用两计算层感知器解决"异或"问题。

 x1
 x2

 0
 0

 0
 1

 1
 0

 1
 1

 0
 0

双层感知器

"异或"问题分类

误差反向传播 (BP) 网络

基于BP算法的多层前馈网络模型

- ■激活函数
 - □必须处处可导
 - ■一般都使用S型函数
- 使用S型激活函数时BP网络输入与输出关系

□ 输出
$$y = f(net) = \frac{1}{1 + e^{-net}}$$

BP网络的标准学习算法

- 学习的过程:
 - □ 神经网络在外界输入样本的刺激下不断改变网络的连接权值,以使网络的输出不断地接近期望的输出。
- 学习的本质:
 - □ 对各连接权值的动态调整
- 学习规则:
 - □ 权值调整规则,即在学习过程中网络中各神经元的连 接权变化所依据的一定的调整规则。

- 学习的类型:有监督式学习
- 核心思想:
 - □ 将输出误差*以某种形式*通过隐层向输入层逐层反传

修正各单元权 信

- 学习的过程:
 - □ 信号的正向传播 误差的反向传播

- 正向传播:
 - □ 输入样本---输入层---各隐层---输出层
- 判断是否转入反向传播阶段:
 - □ 若输出层的实际输出与期望的输出(教师信号)不符
- 误差反传
 - □ 误差以某种形式在各层表示----修正各层单元的 权值

网络输出的误差减少到可接受的程度 进行到预先设定的学习次数为止

人工神经网络

初始化权重

1. 初始化权重
$$I_j = \sum_i w_{ij} x_i - t_j$$
 $y_j = \frac{1}{1 + e^{-I_j}}$ 循环以下两步,直到满足条件 $I_j = \sum_i w_{ij} x_i - t_j$ $y_j = \frac{1}{1 + e^{-I_j}}$

$$y_j = \frac{1}{1 + e^{-I_j}}$$

向前传播输入

在每个节点加权求和, 再代入激活函数

$$\widehat{y} = sign(\sum_{i} w_{ij} x_i - t_j)$$

S型函数 0.5 -0.5

向后传播误差

$$Err_{j} = O_{j}(1 - O_{j})(T_{j} - O_{j})$$

$$Err_{j} = O_{j}(1 - O_{j})\sum_{k} Err_{k}w_{jk}$$

$$w_{ij} = w_{ij} + \lambda Err_{j}y_{i}$$

$$t_{j} = t_{j} + \lambda Err_{j}$$

人工神经网络

初始随机设置参数

x_1	x_2	<i>x</i> ₃	w_{14}	w ₁₅	w ₂₄	w ₂₅	w34	w35	w46	w ₅₆	θ_4	θ_5	θ_6
1	0	1	0.2	-0.3	0.4	0.1	-0.5	0.2	-0.3	-0.2	-0.4	0.2	0.1

静输入和输出的表格

Unit j	Net input, I_j	Output, O_j
4	0.2 + 0 - 0.5 - 0.4 = -0.7	$1/(1+e^{0.7}) = 0.332$
5	-0.3 + 0 + 0.2 + 0.2 = 0.1	$1/(1 + e^{-0.1}) = 0.525$
6	(-0.3)(0.332) - (0.2)(0.525) + 0.1 = -0.105	$1/(1 + e^{0.105}) = 0.474$

人工神经网络

$$0.2 + 0 - 0.5 - 0.4 = -0.7$$

输出: 1/(1+e^0.7)=0.332

人工神经网络

-0.3 + 0 + 0.2 + 0.2 = 0.1

输出: 1/(1+e^-0.1)=0.525

人工神经网络

(-0.3)(0.332)-(0.2)(0.525)+0.1=-0.105

输出: 1/(1+e^-0.105)=0.474

$$Err_j = O_j(1 - O_j)(T_j - O_j)$$

$$Err_j = O_j (1 - O_j) \sum_k Err_k w_{jk}$$

计算各结点的误差

Unit j	Err_j
6	(0.474)(1-0.474)(1-0.474) = 0.1311
5	(0.525)(1-0.525)(0.1311)(-0.2) = -0.0065
4	(0.332)(1-0.332)(0.1311)(-0.3) = -0.0087

人工神经网络

=-0.261

人工神经网络

$$w' = w + \lambda * Err*0_{j}$$

 $w' = -0.2 + 0.9 * 0.1311 * 0.525$
 $= -0.138$

人工神经网络

$$w' = w + \lambda * Err * 0_j$$

 $w' = 0.2 + 0.9 * - 0.0065 * 1 = 0.194$

人工神经网络

人工神经网络

根据误差 调整新的 权重 和 偏倚

Weight or bias	New value	
w ₄₆	-0.3 + (0.9)(0.1311)(0.332) = -0.261	
w ₅₆	-0.2 + (0.9)(0.1311)(0.525) = -0.138	
w_{14}	0.2 + (0.9)(-0.0087)(1) = 0.192	
w ₁₅	-0.3 + (0.9)(-0.0065)(1) = -0.306	
w ₂₄	0.4 + (0.9)(-0.0087)(0) = 0.4	
w ₂₅	0.1 + (0.9)(-0.0065)(0) = 0.1	
W34	-0.5 + (0.9)(-0.0087)(1) = -0.508	
w ₃₅	0.2 + (0.9)(-0.0065)(1) = 0.194	
θ_6	0.1 + (0.9)(0.1311) = 0.218	
θ_5	0.2 + (0.9)(-0.0065) = 0.194	
θ_4	-0.4 + (0.9)(-0.0087) = -0.408	

」后向传播算法

人工神经网络

初始化权重

循环以下两步,直到满足条件
$$I_j = \sum_i w_{ij} x_i - t_j$$
 $y_j = \frac{1}{1 + e^{-I_j}}$

$$y_j = \frac{1}{1 + e^{-I_j}}$$

向前传播输入

在每个节点加权求和, 再代入激活函数

$$\widehat{y} = sign(\sum_{i} w_{ij} x_i - t_j)$$

向后传播误差

$$Err_{j} = O_{j}(1 - O_{j})(T_{j} - O_{j})$$

$$Err_{j} = O_{j}(1 - O_{j})\sum_{i} Err_{k}w_{jk}$$

$$w_{ij} = w_{ij} + \lambda Err_j y_i$$

$$t_{j} = t_{j} + \lambda Err_{j}$$

均方误差

$$J(w,b) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{2} (Y - Y^{hat})^2$$

权值迭代,梯度下降法

推导参考:

https://baijiahao.baidu.com/s?i d=1589633691348109038&wfr=s pider&for=pc

训练过程

$$D = \{ (\vec{x_1}, \vec{y_1}), (\vec{x_2}, \vec{y_2}), \cdots, (\vec{x_m}, \vec{y_m}) \}, \vec{x_i} \in \mathbb{R}^d, \vec{y_i} \in \mathbb{R}^l$$

训练集

验证集

示例

超参数

Input:
$$\vec{x} = (x_1, x_2, x_3)$$

Output:
$$\vec{\hat{y}}=(\hat{y}_1,\hat{y}_2,\hat{y}_3)$$

Real:
$$ec{y}=(y_1,y_2,y_3)$$

$$\alpha_3 = \sum_{k=0}^{3} w_{k3}^{(1)} x_k \qquad \beta_2 = \sum_{k=0}^{4} w_{i2}^{(2)} h_i$$

$$h_3 = f(\alpha_3 - b_2^{(1)})$$

$$\beta_2 = \sum_{i=1}^{n} w_{i2}^{(2)} h$$

Real:
$$\vec{y}=(y_1,y_2,y_3)$$
 $h_3=f(\alpha_3-b_3^{(1)})$ $\hat{y}_2=f(\beta_2-b_2^{(2)})$

梯度下降法

□ 什么是梯度?

For $f(\theta_0, \theta_1) \xrightarrow{V} (\frac{\partial f}{\partial \theta_0}, \frac{\partial f}{\partial \theta_1})^T$ example:

- \square 梯度 ∇f 指向函数增长最快的方向
- □ -∇f 指向函数下降最快的方向

最小化
$$f(\theta_0, \theta_1)$$
 \Longrightarrow $\vec{\theta} \leftarrow \vec{\theta} - \eta \nabla f(\vec{\theta})$ \Longrightarrow $\theta_0 \leftarrow \theta_0 - \eta \frac{\partial f}{\partial \theta_0}$ $\theta_1 \leftarrow \theta_1 - \eta \frac{\partial f}{\partial \theta_1}$

梯度下降法

梯度下降是求一个函数最小值的一阶迭代优化算法

更新神经网络中的参数

minimize loss function

$$E = \frac{1}{2} \sum_{j=1}^{l} (\hat{y}_j - y_j)^2$$

Update Parameters:

$$\vec{w} \leftarrow \vec{w} - \eta \nabla E$$

$$\vec{b} \leftarrow \vec{b} - \eta \nabla E$$

如何高效地更新参数? 误差反传播算法(Backpropagation)

Backpropagation

$$\alpha_3 = \sum_{k=1}^3 w_{k3}^{(1)} x_k$$

$$h_3 = f(\alpha_3 - b_3^{(1)})$$

$$\beta_2 = \sum_{i=1}^4 w_{i2}^{(2)} h_i$$

$$\hat{y}_2 = f(\beta_2 - b_2^{(2)})$$

$$E = \frac{1}{2} \sum_{j=1}^{3} (\hat{y}_j - y_j)^2$$

$$\frac{\partial E}{\partial \hat{y}_2} = \hat{y}_2 - y_2$$

$$\frac{\partial \hat{y}_2}{\partial \beta_2} = f'(\beta_2 - b_2^{(2)})$$

$$= f(\beta_2 - b_2^{(2)})(1 - f(\beta_2 - b_2^{(2)}))$$

$$= \hat{y}_2(1 - \hat{y}_2)$$

$$\frac{\partial \beta_2}{\partial w_{32}^{(2)}} = h_3$$

」后向传播算法

人工神经网络

初始化权重

循环以下两步,直到满足条件
$$I_j = \sum_i w_{ij} x_i - t_j$$
 $y_j = \frac{1}{1 + e^{-I_j}}$

$$y_j = \frac{1}{1 + e^{-I_j}}$$

向前传播输入

在每个节点加权求和, 再代入激活函数

$$\widehat{y} = sign(\sum_{i} w_{ij} x_i - t_j)$$

向后传播误差

$$Err_{j} = O_{j}(1 - O_{j})(T_{j} - O_{j})$$

$$Err_{j} = O_{j}(1 - O_{j})\sum_{i} Err_{k}w_{jk}$$

$$w_{ij} = w_{ij} + \lambda Err_j y_i$$

$$t_{j} = t_{j} + \lambda Err_{j}$$

均方误差

$$J(w,b) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{2} (Y - Y^{hat})^2$$

权值迭代,梯度下降法

推导参考:

https://baijiahao.baidu.com/s?i d=1589633691348109038&wfr=s pider&for=pc

人工神经网络

总结

- □ 普适近似,精度较高
- □ 噪声敏感
- □ 训练非常耗时,但对目标分类较快
- □ 缺少完整、成熟的理论体系

神经网络分类编程实践

https://scikitlearn.org/stable/modules/neural netwo
rks supervised.html

■ 同学们可以尝试利用python读入本地iris数据集,来完成神经网络分类,分析其分类效果

第13次课后作业

- 第十三次课后作业-在educoder平台上完成作业
- https://www.educoder.net/shixuns/tf9qcivo/challenges

提交作业截至时间: 2020年4月2日

Any Questions?

谢谢!