DSP Sample Exam

This is a **sample exam sheet**. The exercises / questions are for illustrative purposes only. The exercises shown here are merely the ones from the lectures. In the real exam, they will be changed.

Exercises

- 1. (2p) Is the signal x[n] = sin(3n) periodic? If yes, compute its period. If no, explain why.
- 2. (2p) Compute the convolution of the two sequences $x_1 = ...0, 0, 1, 2, \frac{1}{1}, 3, 1, 4, 0, 0, ...$ and $x_2 = ...0, 0, 3, \frac{2}{1}, 1, 0, 0, ...$
- 3. (3p) Find the **anti-causal** signal x[n] which has the Z transform

$$X(z) = \frac{7}{(1 - 2z^{-1})(1 + 0.5z^{-1})}$$

- 4. (3p) Consider a signal $x[n] = \{..., 0, -1, 2, -3, 2, -1, 0, ...\}$, whose Fourier transform is $X(\omega)$. Compute the following values:
 - a. X(0)
 - b. $\int_{-\pi}^{\pi} |X(\omega)|^2 d\omega$
- 5. (3p) A signal x[n] has a Z transform with one pole $p_1 = -0.5$ and one zero $z_1 = 0.9$. It is known that at $\omega = \pi$, the modulus of the Fourier transform is $|X(\omega = \pi)| = 1$.
 - a. Find the signals's Z transform X(z)
 - b. Find the values $|X(\frac{\pi}{2})|$, $|X(\frac{-\pi}{2})|$ and |X(0)|
 - c. Sketch $|X(\omega)|$
- 6. (3p) Consider the following system

$$H(z) = \frac{1 - 2z^{-1} + z^{-2}}{1 + 2z^{-1} + z^{-2}}$$

- a. Find the difference equation of the system y[n] = ...
- b. Implement the system in **Direct-Form II** structure
- 7. (3p) Which of the following filters has a linear-phase? Justify for each one.
 - a. $H(z) = 7 + 3z^{-1} + z^{-2} + 7z^{-3} + 3z^{-4} + z^{-5}$ b. $H(z) = \frac{1+2z^{-1}+z^{-2}}{1-2z^{-1}+z^{-2}}$ c. $H(z) = 1 + 2z^{-1} + z^{-2}$

Theory

- 1. (2p) Consider two analog signals $x_1(t) = cos(2\pi 500t)$ and $x_1(t) = cos(2\pi 1000t)$. Find the sampling frequency $F_s = ?$ for which the resulting discrete signals $x_1[n]$ and $x_2[n]$ are actually identical.
- 2. (2p) Explain the difference between a non-recursive and a recursive system.
- 3. (2p) What is the equivalent impulse response for the following interconnection of systems:

Figure 1:

- 4. (2p) A signal x[n] has the Region of Convergence 0.2 < |z| < 1.4. Is the signal causal / anti-causal / bilateral? Justify your choice.
- 5. (2p) Fill in the blanks: "A causal system is stable if _____ are
- 6. (2p) A discrete periodic signal with period N can be expressed as a sum of sinusoidal components.
 - a. What are the frequencies of the sinusoidal components?
 - b. What do the Fourier series coefficients tell us about the sinusoidal components?
- 7. (2p) Fill in the blanks:
 - A signal which is **discrete in time** is _____ in frequency
 - A signal which is **periodic in time** is ______ in frequency
 - A signal which is discrete and periodic in time is _____ frequency

- 8. (2p) Prove that an input signal $x[n] = Ae^{j\omega_0 n}$, when applied to the input of a Linear and Time Invariant (LTI) system, produces an output y[n] that is proportional to the input: $y[n] = x[n] \cdot H(\omega_0)$.
- 9. (2p) Where are the poles located for a digital oscillator which oscillates with frequency $\omega = \frac{\pi}{2}$? Draw the poles on the pole-zero diagram.