

ESCUELA DE INGENIERÍA MECÁNICA INDUSTRIAL

Formulario de teoría de inventarios

Ciclo productivo EOQ

• Sin faltantes (básico)

Reabastecimiento inmediato

No hay escasez (faltantes)

$$q^* = \sqrt{\frac{2 * r * Cp}{Ca}}$$
$$tp = \sqrt{\frac{2 * Cp}{r * Ca}}$$

$$C^* = \sqrt{2 * r * Ca * Cp}$$

$$C_T = \frac{Cp * r}{q^*} + \frac{Ca * q^*}{2} + p * r$$

Donde:

- q* Cantidad óptima por pedido
- tp Tiempo en demanda, tiempo de ciclo
- Cp Costo de arranque, costo por pedido, costo de producción
- Ca Costo de almacenamiento, costo de mantenimiento, costo de manejo

- $\it r$ Demanda
- C_T Costo total del ciclo
- p Precio unitario
- C * Costo óptimo

ESCUELA DE INGENIERÍA MECÁNICA INDUSTRIAL

Con faltantes

Reabastecimiento inmediato

Permite escasez

$$q^* = \sqrt{\frac{2 * r * Cp * (Ca + Ce)}{Ca * Ce}}$$

$$tp = \sqrt{\frac{2 * Ce * Cp}{r * (Ca + Ce) * Ca}}$$

$$S = \sqrt{\frac{2 * r * Ce * Cp}{r * (Ca + Ce) * Ca}}$$

$$C^* = \sqrt{\frac{2 * r * Ca * Ce * Cp}{Ca + Ce}}$$

$$te = \sqrt{\frac{2 * Ca * Cp}{r * (Ca + Ce) * Ce}}$$

$$D = \sqrt{\frac{2 * r * Ca * Cp}{(Ca + Ce) * Ce}}$$

$$C_T = \frac{S^2 * Ca}{2 * q^*} + \frac{D^2 * Ce}{2 * q^*} + \frac{Cp * r}{q^*} + p * r$$

Donde:

Сe	Costo	те	Hempo	tp	Hempo en	ν	Escasez	3	inventario
	por		en		demanda,		máxima,		máximo,
	escasez,		escasez,		tiempo		máximo		máximo
	faltantes		tiempo		abarrotado		de		de
			en				faltantes		inventario
			espera				permitidos		permitido

ESCUELA DE INGENIERÍA MECÁNICA INDUSTRIAL

Ciclo productivo LEP

• Sin faltantes

Sin reabastecimiento inmediato

No permite escasez

$$q^* = \sqrt{\frac{2 * r * Cp}{Ca * (1 - \frac{r}{k})}}$$

$$S = \sqrt{\frac{2 * r * Cp * (1 - \frac{r}{k})}{Ca}}$$

$$tp = \sqrt{\frac{2 * Cp * (1 - \frac{r}{k})}{r * Ca}}$$

$$C_T = \frac{Cp * r}{a^*} + \frac{Ca * q^* * (k - r)}{2 * k} + p * r$$

Donde:

tr Tiempo en reabastecimiento, producir, tiempo de pedido

 k Tasa de producción, tasa de fabricación, tasa de reabastecimiento, total de producción

ESCUELA DE INGENIERÍA MECÁNICA INDUSTRIAL

Con faltantes

Sin reabastecimiento inmediato

Permite escasez

$$q^* = \sqrt{\frac{2 * r * Cp * (Ca + Ce)}{Ca * Ce * (1 - \frac{r}{k})}}$$

$$S = \sqrt{\frac{2 * r * Ce * Cp * (1 - \frac{r}{k})}{(Ca + Ce) * Ca}}$$

$$tp = \sqrt{\frac{2 * Ce * Cp * (1 - \frac{r}{k})}{r * (Ca + Ce) * Ca}}$$

$$te = \sqrt{\frac{2 * Ca * Cp * (1 - \frac{r}{k})}{r * (Ca + Ce) * Ce}}$$

$$tr = \frac{tp * r}{k - r}$$

$$D = \sqrt{\frac{2 * r * Ca * Cp * (1 - \frac{r}{k})}{(Ca + Ce) * Ce}}$$

Donde:

tk Tiempo de reabastecimiento en escasez

ESCUELA DE INGENIERÍA MECÁNICA INDUSTRIAL

Otras fórmulas:

$$D = q^* - S$$
 $t_{agotamiento} = \frac{q^* - D}{r}$ $t_{ciclo} = \frac{q^*}{r}$ $t_{produccion} = \frac{q^*}{k}$ $\# \frac{ciclos}{a\~no} = \frac{r}{q^*}$