Lecture 13

Frequency Response

Designing controllers by frequency response is common in industry. We'll see it has some advantages over root locus design.

We've spent a lot of time focusing on the case where the input is a step function. Now let's look at the case where the input is a sinusoid. Assume:

$$u(t) = A\sin(\omega t) \cdot 1(t)$$

Then,

$$\mathcal{L}(u(t)) = U(s) = \frac{A\omega}{s^2 + \omega^2} = \frac{A\omega}{(s + j\omega)(s - j\omega)}$$
$$Y(s) = GU = G\frac{A\omega}{(s + j\omega)(s - j\omega)}$$

$$Y = \frac{R_1}{s + j\omega} + \frac{R_2}{s - j\omega} + \text{extra terms from poles of } G(s)$$
$$y(t) = R_1 e^{-j\omega t} + R_2 e^{j\omega t} + \text{extra terms from poles of } G$$

If G(s) is stable:

- All poles of G(s) are in the LHP
- "extra terms" will decay to zero eventually

$$y_{\text{steady state}}(t) = R_1 e^{-j\omega t} + R_2 e^{j\omega t}$$

We can find R_1 and R_2 :

$$R_{1} = (s+j\omega)Y\Big|_{s=-j\omega} = \frac{G(s)A\omega}{s-j\omega}\Big|_{s=-j\omega} = \frac{-AG(-j\omega)}{2j}$$

$$R_{2} = (s-j\omega)Y\Big|_{s=j\omega} = \frac{G(s)A\omega}{s+j\omega}\Big|_{s=j\omega} = \frac{AG(j\omega)}{2j}$$

$$\Rightarrow y_{ss}(t) = \frac{-AG(-j\omega)}{2j}e^{-j\omega t} + \frac{AG(j\omega)}{2j}e^{j\omega t}$$

What are $G(j\omega)$ and $G(-j\omega)$? We will use an example to show.

Reminder about period:

- $\sin(t)$ is periodic with period $T = 2\pi$
- If we replace t with ωt , then: $\omega T = 2\pi$
- So, $\sin(\omega t)$ has a period of $T = \frac{2\pi}{\omega}$

Example

Consider a system with transfer function G(s) = 3 + s. Find $G(j\omega)$ and $G(-j\omega)$ and evaluate at $\omega = 1, 2, 3$.

$$G(j\omega) = 3 + j\omega, \quad G(-j\omega) = 3 - j\omega$$

$$\frac{\omega \quad G(j\omega) \quad G(-j\omega)}{1 \quad 3 + j \quad 3 - j}$$

$$2 \quad 3 + 2j \quad 3 - 2j$$

$$3 \quad 3 + 3j \quad 3 - 3j$$

Example

Consider a system with transfer function G(s) = (s+2)(s+4). Find $G(j\omega)$ and $G(-j\omega)$ and evaluate at $\omega = 1, 2, 3$.

$$G(s) = s^{2} + 6s + 8$$

$$G(j\omega) = (j\omega)^{2} + 6(j\omega) + 8 = -\omega^{2} + j6\omega + 8 = (8 - \omega^{2}) + j(6\omega)$$

$$G(-j\omega) = (-j\omega)^{2} - 6(j\omega) + 8 = -\omega^{2} - j6\omega + 8 = (8 - \omega^{2}) - j(6\omega)$$

$$\frac{\omega}{1} \frac{G(j\omega)}{7 + 6j} \frac{G(-j\omega)}{7 - 6j}$$

$$\frac{2}{3} \frac{4 + 12j}{1 + 18j} \frac{4 - 12j}{1 - 1 - 18j}$$

In general:

$$G(j\omega) = a(\omega) + jb(\omega)$$
$$G(-j\omega) = a(\omega) - jb(\omega)$$

Recall that a complex number can be written in polar notation as:

$$a + ib = Me^{j\phi}$$

So,

$$G(j\omega) = Me^{j\phi}$$
where $M(\omega) = \sqrt{(a(\omega)^2 + b(\omega)^2)}$
and $\phi = \tan^{-1}\left(\frac{b(\omega)}{a(\omega)}\right)$

$$G(-j\omega) = Me^{j(-\phi)}$$

$$M(\omega)$$

$$\phi(\omega)$$

$$a(\omega)$$

where
$$M(\omega) = \sqrt{(a(\omega)^2 + b(\omega)^2)}$$

and $\phi = -\tan^{-1}\left(\frac{b(\omega)}{a(\omega)}\right)$

Now, we will substitute these definitions of $G(j\omega)$ and $G(-j\omega)$ into the definition of $y_{ss}(t)$.

$$y_{ss}(t) = \frac{-AG(-j\omega)}{2j}e^{-j\omega t} + \frac{AG(j\omega)}{2j}e^{j\omega t}$$

$$y_{ss}(t) = \frac{-AMe^{-j\phi}}{2j}e^{-j\omega t} + \frac{AMe^{j\phi}}{2j}e^{j\omega t}$$

$$y_{ss}(t) = \frac{-AM}{2j} e^{-j(\omega t + \phi)} + \frac{AM}{2j} e^{j(\omega t + \phi)}$$
$$y_{ss}(t) = AM \left(\frac{e^{j(\omega t + \phi)} - e^{-j(\omega t + \phi)}}{2j} \right)$$
$$y_{ss}(t) = AM(\omega) \sin(\omega t + \phi(\omega))$$

- If the input is a sine wave, then the output at steady state is a sine wave.
- Frequency of input = frequency of output
- The output differs from the input in two ways:
 - 1. Amplitude of output = Amplitude of input $\times M(\omega)$
 - 2. There is a phase shift of $\phi(\omega)$
- $M(\omega)$ is the gain or Bode magnitude
- $\phi(\omega)$ is the phase angle

Finding M and ϕ from a transfer function

Example

Find the expressions for $G(j\omega)$, $M(\omega)$ and $\phi(\omega)$ for G(s) = s + 2.

$$G(j\omega) = 2 + j\omega$$

 $M(\omega) = \sqrt{2^2 + \omega^2}$

$$\phi(\omega) = \tan^{-1}\left(\frac{\omega}{2}\right)$$

Example

Find the expressions for $G(j\omega)$, $M(\omega)$ and $\phi(\omega)$ for G(s) = (s+2)/(s+3).

$$G(j\omega) = \frac{j\omega + 2}{j\omega + 3} = \frac{M_1 e^{j\phi_1}}{M_2 e^{j\phi_2}} = \frac{M_1}{M_2} e^{j(\phi_1 - \phi_2)}$$
$$M(\omega) = \frac{\sqrt{2^2 + \omega^2}}{\sqrt{3^2 + \omega^2}}$$
$$\phi(\omega) = \tan^{-1}\left(\frac{\omega}{2}\right) - \tan^{-1}\left(\frac{\omega}{3}\right)$$

Graphical representations of frequency response

The frequency response is typically represented on a **Bode Diagram**, which includes two plots:

Plot 1: Magnitude plot: $20 \log_{10} M(\omega)$ in decibels vs. ω in rad/s, where ω is on a log scale.

Plot 2: Phase plot: ϕ in degrees vs. ω in rad/s, where ω is on a log scale.

A few notes on log magnitude:

- $20\log_{10}M$ is often written as Lm M "the log-magnitude of M".
- Multiplication/division in the linear scale is equivalent to addition/subtraction in the dB scale.

• Some common magnitudes in linear and log scales:

$$\begin{array}{lll} M=1 & \Rightarrow & \operatorname{Lm} \ M=20 \log_{10}(1)=0 \ \operatorname{dB} \\ M=10 & \Rightarrow & \operatorname{Lm} \ M=20 \log_{10}(10)=20 \ \operatorname{dB} \\ M=0.1 & \Rightarrow & \operatorname{Lm} \ M=20 \log_{10}(0.1)=-20 \ \operatorname{dB} \\ M=2 & \Rightarrow & \operatorname{Lm} \ M=20 \log_{10}(2)=6 \ \operatorname{dB} \\ M=\frac{1}{2} & \Rightarrow & \operatorname{Lm} \ M=20 \log_{10}\left(\frac{1}{2}\right)=-6 \ \operatorname{dB} \\ M=\sqrt{2} & \Rightarrow & \operatorname{Lm} \ M=20 \log_{10}\left(\sqrt{2}\right)=3 \ \operatorname{dB} \end{array}$$

Or, working backwards:

$$\begin{array}{lll} \text{Lm } M = 0 \text{ dB} & \Rightarrow & M = 10^{0/20} = 1 \\ \text{Lm } M = 20 \text{ dB} & \Rightarrow & M = 10^{20/20} = 10 \\ \text{Lm } M = -20 \text{ dB} & \Rightarrow & M = 10^{-20/20} = 0.1 \\ \text{Lm } M = 6 \text{ dB} & \Rightarrow & M = 10^{6/20} = 2 \\ \text{Lm } M = -6 \text{ dB} & \Rightarrow & M = 10^{-6/20} = \frac{1}{2} \\ \text{Lm } M = 3 \text{ dB} & \Rightarrow & M = 10^{3/20} = \sqrt{2} \end{array}$$

Example

Evaluate the log-magnitude of M = 20.

$$Lm 20 = Lm (10 \cdot 2) = Lm 10 + Lm 2 = 20 + 6$$

 $Lm 20 = 26 dB$

Evaluate the log-magnitude of $M = 5\sqrt{2}$.

Lm
$$5\sqrt{2} = \text{Lm } \left(10/\sqrt{2}\right) = \text{Lm } 10 - \text{Lm } \sqrt{2} = 20 - 3$$

Lm $5\sqrt{2} = 17 \text{ dB}$

Sketching Bode plots

Note: Before we begin, note that Bode plots are drawn on a logarithmic scale, not a linear one.

Specifically, the x-axis is a logarithmic scale of the oscillation frequency ω . We refer to an increase of one power of 10 as a "decade". For instance, 10^0 to 10^1 is one decade; 10^2 to 10^3 is one decade; 10^{-2} to 10^0 is two decades, and so on.

Drawing Bode Plots: If G(s) is a rational function, then it consists of terms such as: K, 1/s, s, s + a, 1/(s + a), $\omega_n^2/(s^2 + 2\zeta\omega_n s + \omega_n^2)$, etc... Let's look at how to sketch Bode plots for these simple terms.

Gain Let G(s) = K. What is the Bode plot?

$$G(j\omega) = K + j(0)$$

$$M(\omega) = K$$

$$\phi(\omega) = \tan^{-1}\left(\frac{0}{K}\right) = 0$$

$$\operatorname{Lm} M \uparrow \qquad \qquad \phi \uparrow$$

$$20 \log_{10}(K) \qquad \qquad 0^{\circ}$$

 ω

Integrator Let G(s) = 1/s. What is the Bode plot?

$$G(j\omega) = \frac{1}{j\omega}$$

$$M(\omega) = \frac{M_{num}}{M_{den}} = \frac{\sqrt{1^2 + 0^2}}{\sqrt{0^2 + \omega^2}} = \frac{1}{\omega}$$

$$\text{Lm } M(\omega) = 20 \log_{10} \frac{1}{\omega} = 20 \log_{10} (1) - 20 \log_{10} (\omega) = -20 \log_{10} \omega$$

$$\phi(\omega) = \phi_{num} - \phi_{den} = \tan^{-1} \left(\frac{0}{1}\right) - \tan^{-1} \left(\frac{\omega}{0}\right) = 0 - 90^{\circ} = -90^{\circ}$$

Double Integrator Let $G(s) = 1/s^2$. What is the Bode plot?

$$G(j\omega) = \frac{1}{(j\omega)^2} = \frac{1}{-\omega^2}$$

$$M(\omega) = \frac{M_{num}}{M_{den}} = \frac{\sqrt{1^2 + 0^2}}{\sqrt{0^2 + (-\omega^2)^2}} = \frac{1}{\omega^2}$$

$$\operatorname{Lm} M(\omega) = 20 \log_{10} \frac{1}{\omega^2} = 20 \log_{10} (1) - 2 \times 20 \log_{10} (\omega) = -40 \log_{10} \omega$$

$$\phi(\omega) = \phi_{num} - \phi_{den} = \tan^{-1} \left(\frac{0}{1}\right) - \tan^{-1} \left(\frac{0}{-\omega^2}\right) = 0 - 180^\circ = -180^\circ$$

Differentiator Let G(s) = s. What is the Bode plot?

$$G(j\omega) = j\omega$$

$$M(\omega) = \sqrt{0^2 + \omega^2} = \omega$$

$$\phi(\omega) = \tan^{-1}\left(\frac{\omega}{0}\right) = 90^{\circ}$$

The plot of s is a mirror image of the plot of 1/s.

First-Order Zero Let $G(s) = \tau s + 1$. What is the Bode plot?

$$G(j\omega) = 1 + j(\tau\omega)$$

$$M(\omega) = \sqrt{1^2 + \tau^2 \omega^2}$$

$$\phi(\omega) = \tan^{-1}\left(\frac{\tau\omega}{1}\right)$$

Neither the gain nor phase is a straight line. They will be harder to sketch than in previous cases. We will start by looking at the gain by finding:

- an approximation for M when $\tau\omega\ll 1$,
- an approximation for M when $\tau\omega\gg 1$, and
- a precise value of M when $\tau\omega=1$

When $\tau\omega \ll 1$:

- $\tau\omega \approx 0$ so $M(\omega) \approx 1$.
- $20\log_{10}(1) = 0$

When $\tau\omega\gg 1$:

- $\tau\omega + 1 \approx \tau\omega$ so $M(\omega) \approx \tau\omega$.
- $20 \log_{10}(\tau \omega)$ is a straight line with slope of 20dB/decade and is 0 at $\omega = 1/\tau$.

When $\tau \omega = 1$ precisely:

- $M(\omega) = \sqrt{1+1} = \sqrt{2}$.
- Lm $M(1/\tau) = 3$ dB.

Next, we look at the phase by finding approximations for ϕ when::

- an approximation for M when $\tau\omega\ll 1$,
- an approximation for M when $\tau\omega\gg 1$, and
- a precise value of M when $\tau\omega=1$

When $\tau\omega \ll 1$:

• $\tau\omega \approx 0$ so $\phi(\omega) \approx \tan^{-1}(0/1) = 0^{\circ}$.

When $\tau\omega\gg 1$:

• $\tau\omega + 1 \approx \tau\omega$ and $\tau\omega \approx \infty$ so $\phi(\omega) \approx \tan^{-1}(\infty/1) = 90^{\circ}$.

When $\tau \omega = 1$ precisely:

• $\phi(\omega) = \tan^{-1}(1/1) = 45^{\circ}$.

A decent rule of thumb for drawing first-order phase plots is that the phase change takes place over roughly 2 decades, centered on the cutoff frequency (or $1/\tau$). This line is marked on the phase plot.

First-Order Pole The first-order pole $G(s) = 1/(\tau s + 1)$ is a mirror image of the first-order zero.

Second-Order Pole Let G(s) be defined as

$$G(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

What is the Bode plot?

$$G(j\omega) = \frac{1}{\frac{-\omega^2}{\omega_n^2} + \frac{j(2\zeta\omega)}{\omega_n} + 1} = \frac{1}{\left(1 - \frac{\omega^2}{\omega_n^2}\right) + j\left(2\zeta\frac{\omega}{\omega_n}\right)}$$

We will start by finding the gain as a function of ω .

$$M = \frac{1}{\sqrt{\left(1 - \frac{\omega^2}{\omega_n^2}\right)^2 + \left(2\zeta \frac{\omega}{\omega_n}\right)^2}}$$

From here, we will find M when $\frac{\omega}{\omega_n}=1$ precisely and find approximations for M when $\frac{\omega}{\omega_n}\ll 1$ and when $\frac{\omega}{\omega_n}\gg 1$.

• When
$$\frac{\omega}{\omega_n} \ll 1$$
, $M \approx 1/\sqrt{1^2 - 0^1} = 1$

$$\circ$$
 Lm $(1) = 0dB$

• When
$$\frac{\omega}{\omega_n} \gg 1$$
,

$$M \approx \frac{1}{\sqrt{\frac{\omega^4}{\omega_n^4} + 2\zeta \frac{\omega^2}{\omega_n^2}}} \approx \frac{1}{\frac{\omega^2}{\omega_n^2}}$$

$$\circ \text{ Lm } M = \text{Lm } \left(\frac{1}{\frac{\omega^2}{\omega_n^2}}\right) = \text{Lm } (1) - \text{Lm } \left(\frac{\omega}{\omega_n}\right)^2 = 0 - 40 \log_{10} \left(\frac{\omega}{\omega_n}\right)$$

• Straight line with slope of -40dB/decade and 0dB at $\omega = \omega_n$

• When $\omega = \omega_n$ precisely,

$$M = \frac{1}{\sqrt{(1-1^2)^2 + (2\zeta 1)^2}} = \frac{1}{2\zeta}$$

- If $\zeta = 1/\sqrt{(2)}$, $M = 1/\sqrt{2}$ and Lm M = -3dB.
- \circ If $\zeta = 1/2$, M = 1 and Lm M = 0dB.
- \circ If $\zeta = 1/4$, M = 2 and Lm M = 6dB.
- \circ As ζ goes down, the magnitude at $\omega = \omega_n$ goes up.

Next, we find the phase as a function of ω .

$$\phi = -\tan^{-1}\left(\frac{2\zeta\frac{\omega}{\omega_n}}{1 - \frac{\omega^2}{\omega_n^2}}\right)$$

From here, we will find ϕ when $\frac{\omega}{\omega_n} = 1$ precisely and find approximations for ϕ when $\frac{\omega}{\omega_n} \ll 1$ and when $\frac{\omega}{\omega_n} \gg 1$.

- When $\frac{\omega}{\omega_n} \ll 1$ (meaning $\omega \to 0$), $\phi \approx -\tan^{-1}(\frac{0}{1}) = 0^{\circ}$
- When $\omega = \omega_n$, $\phi \approx -\tan^{-1}(\frac{2\zeta}{0}) = -90^{\circ}$
- When $\frac{\omega}{\omega_n} \gg 1$ (meaning $\omega \to \infty$), $\phi \approx -\tan^{-1}(\frac{2\zeta}{-\infty}) = -180^{\circ}$

Decreasing ζ decreases the range of frequencies over which the phase shift occurs — that is, the phase shift is "sharper", and the slope at the center $(\omega = \omega_n)$ is closed to vertical. When drawing a 2nd-order phase plot by hand, the phase shift can be approximated by estimating that the phase shift starts at

$$\omega_{start} = \omega_n \cdot 10^{-\zeta}$$

and ends at

$$\omega_{end} = \omega_n \cdot 10^{\zeta}$$

More simply, this means that the phase change takes place over 2ζ decades. For example,

- If $\zeta=1/2$, the phase shift happens over 1 decade half a decade for 0° to -90° , and half a decade for -90° to -180° .
- If $\zeta = 1/4$, the phase shift happens over half a decade one quarter of a decade for 0° to -90° , and one quarter of a decade for -90° to -180° .

