I. Zbiory

1.Zasada indukcji matematycznej (sformułować).

Jest to metoda sprawdzania twierdzeń o liczbach naturalnych.

Jeżeli

twierdzenie T jest prawdziwe dla pewnej liczby naturalnej no, oraz z prawdziwości

twierdzenia T dla liczby naturalnej $n \ge n_0$ wynika prawdziwość twierdzenia T dla liczby n + 1, to

twierdzenie T jest prawdziwe dla wszystkich liczb naturalnych n ≥ n

2. ZASADA EKSTENSJONALNOŚCI: Zbiory A oraz B są identyczne wtw

mają one dokładnie te same elementy; symbolicznie: $A = B \text{ wtw } \forall x \text{ } (x \in A \leftrightarrow x \in B).$

ZASADA **DYSTRYBUTYWNOŚCI**: Żaden zbior nie jest identyczny z

żadnym ze swoich elementow; symbolicznie: $\neg (\exists y \exists x (Zbior(x) \land y \in x \land x = y))$

zbior pusty to zbior nie mający żadnego elementu. Pojęcie to można ściśle zdefiniować następująco:

Zbiorem pustym nazywamy zbior: $\{x : x = x \land \neg (x = x)\}.$

3. (**inkluzja**) Zbior A zawiera się w zbiorze B wtw każdy element zbioru A jest też elementem zbioru B; symbolicznie:

 $A \subseteq B$ wtw $\forall x (x \in A \rightarrow x \in B)$

(**podzbior**) Zbior A jest podzbiorem zbioru B wtw $A \subseteq B$.

(inkluzja właściwa) $A \subset B$ wtw $A \subseteq B \land \neg (A = B)$

(podzbior właściwy) Zbior A jest podzbiorem właściwym zbioru B wtw A ⊂ B.

(krzyżowanie się zbiorow)

Zbior A krzyżuje się ze zbiorem B wtw

(i) $\exists x (x \in A \land x \in B)$,

(ii) $\exists y (y \in A \land \neg (y \in B))$, oraz

(iii) $\exists z \ (z \in B \land \neg (z \in A)).$

(rozłączność zbiorow) Zbiory A oraz B są rozłączne wtw $\neg \exists x (x \in A \land x \in B)$

4. Zbior pusty jest podzbiorem każdego zbioru. Dowod nie-wprost.

Zakładamy, że dla pewnego zbioru A, zbior pusty nie należy do A.

Zachodzi to wtw

- 1) $\neg \forall x (x \in \emptyset \rightarrow x \in A)$
- 2) $\exists x \neg (x \in \emptyset \rightarrow x \in A)$
- 3) $\exists x (x \in \emptyset \rightarrow \neg (x \in A))$

Z tego wynika sprzeczność (implikacja fałszywa <1-0>).

Zbior pusty należy do zbioru A, dla każdego A.

5. **Zbior zbiorow** (tj. zbior, ktorego elementami są zbiory) nazywamy **rodziną zbiorow**.

Rodzinę wszystkich podzbiorow danego zbioru A nazywamy **zbiorem potęgowym** zbioru A i oznaczamy symbolem **2**^A.

$$2^A = \{x : x \subseteq A\}$$

 $A = \{1, 2, 3\}$
 $2^A = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$

6. **Suma** zbiorow **A** i **B** nazywamy zbior tych elementow,

ktore należą do zbioru A lub do zbioru B, matematycznie zapisujemy ją tak: $A \cup B = \{x: x \in A \lor x \in B \}$

Iloczynem/Częścią wspolną zbioru A i B nazywamy zbior tych elementow,

ktore należą jednocześnie do zbioru A i do zbioru B, formalnie zapisujemy ją tak:

$$A \cap B = \{x: x \in A \land x \in B \}$$

Iloczyn zbiorow nazywany jest także częścią wspolną zbiorow lub przekrojem zbiorow.

Rożnicą zbiorow **A** i **B** nazywamy zbior tych elementow, ktore należą do zbioru **A**, a ktore nie należą do zbioru **B**, możemy ją zapisać tak: .

 $x \in A \setminus B \leftrightarrow x \in A \land x \notin B$

Rożnica zbiorow A i B zapisywana jest też A - B

(rożnica symetryczna zbiorow) Rożnica symetryczna zbiorow

A i **B** jest to zbior **A** ÷ **B** spełniający warunek:

 $x \in A \div B \leftrightarrow (x \in A \land x \notin B) \lor (x \in B \land x \notin A).$

Dopełnieniem zbioru A z przestrzeni U nazywamy zbior tych elementow przestrzeni U,

ktore nie należą do zbioru A. Dopełnienie zbioru A oznaczamy jako

A' lub Ac. Dopełnienie możemy zapisać tak:

 $A' = U \setminus A$

 $A' = \{x : x \in U \land x \notin A\}$

7. **Kres** (kraniec) **dolny** (rownież łac. **infimum**) oraz <u>kres</u> (kraniec) <u>gorny</u> (także łac. <u>supremum</u>) – w matematyce pojęcia oznaczające odpowiednio: **największe z ograniczeń dolnych** oraz <u>najmniejsze z ograniczeń gornych</u> danego zbioru, o ile takie istnieją.

Niepusty podzbior A zbioru liczb rzeczywistych nazywamy **ograniczonym z dołu**, jeśli istnieje taka liczba **m** ∈ **R**, że dla każdej liczby **x** ∈ **A** spełniona jest nierowność: **m** ≤ **x**

tzn. jeżeli istnieje liczba **m**, ktora jest **nie większa od każdej liczby zbioru** liczbowego **A**, to mowimy, że zbior A jest **ograniczony z dołu**.

Niepusty podzbior A zbioru liczb rzeczywistych nazywamy **ograniczonym z gory**, jeśli istnieje taka liczba M ∈ R, że dla każdej liczby x ∈ A spełniona jest nierowność: x ≤ M

tzn. jeżeli istnieje liczba **M**, ktora jest **nie mniejsza od każdej liczby zbioru** liczbowego **A**, to mowimy, że zbior **A** jest **ograniczony z gory**.

8. (rownoliczność zbiorow). Dwa zbiory A i B są rownoliczne

wtw istnieje funkcja wzajemnie jednoznaczna f, która odwzorowuje zbiór A na zbiór B.

O funkcji takiej mowimy, że ustala ona równoliczność zbiorow A i B.

O zbiorach równolicznych mówimy natomiast, że są one równej mocy.

(zbior przeliczalny) Zbior A jest przeliczalny wtw zbior A jest skończony lub zbior A jest rownoliczny ze zbiorem liczb naturalnych.

9. Zbior **A** nazywamy **nieprzeliczalnym** jeśli **nie jest** on **przeliczalny**

Twierdzenie 1: Zbior **{0,1}** N wszystkich ciągow przyjmujących jedynie wartości 0, 1 jest nieprzeliczalny.

Dowod: Przypuśćmy, że odwrotnie, zbior ten jest przeliczalny. Ponieważ jest on nieskończony (Przyporządkowanie każdej liczbie naturalnej ${\bf n}$ ciągu, który zaczyna się na ${\bf n}$ jedynek, a potem już ma same zera jest injekcją z ${\bf N}$ w {0,1} N .), więc musiałaby istnieć bijekcja $\epsilon: N \to \{0,1\}$

N. Skonstruujmy ciąg **γ** w następujący sposob:

 $\mathbf{v}_n = 1 - \varepsilon(n)n$.

Zauważmy, że w zgodzie z tą definicją $\mathbf{\gamma}$ nie może być wartością funkcji $\mathbf{\epsilon}$. Rzeczywiście, $\mathbf{\gamma}$ rożni się od dowolnej wartości $\mathbf{\epsilon}(n) \in \{0,1\}$

N na **n**-tym miejscu. W rezultacie ε nie jest na, więc nie jest także bijekcją. Otrzymaliśmy sprzeczność.

II. Relacje, porządki, funkcje

1. (para uporządkowana) zbiory dwuelementowe, w ktorych "kolejność występowania elementow jest istotna" Parą uporządkowaną <x, y> nazywamy zbior {{x}, {x, y}}.

 $(\mathbf{n}$ -tka uporządkowana; $\mathbf{n} \ge \mathbf{2})$

(a) $\langle x1, x2 \rangle = \{\{x1\}, \{x1, x2\}\}$

(b) <x1, x2, ..., xn+1> = <<x1, x2, ..., xn>, xn+1>.

(iloczyn kartezjański; inaczej produkt kartezjański)

Iloczynem kartezjańskim zbiorow A i B nazywamy zbior:

 $A \times B = \{ \langle x, y \rangle : x \in A \land y \in B \}.$

(relacja n-członowa; n ≥ 2) Niech n ≥ 2. Relacją n-członową

nazywamy dowolny podzbior zbioru n-tek uporządkowanych.

(relacja n-członowa w zbiorze; $n \ge 2$).

Mowimy, że relacja n-członowa R jest n-członową relacją w zbiorze A wtw R ⊆ An.

(dziedzina, przeciwdziedzina i pole relacji binarnej)

Niech R będzie relacją binarną.

Dziedzina relacji R nazywamy zbior:

 $D_R = \{x : \exists y (xRy)\}. (poprzedniki)$

Przeciwdziedziną relacji R nazywamy zbior:

 $D_R^* = \{y: \exists x (xRy)\}. (następniki)$

Polem relacji R jest zbior:

D_R U D*_R. (suma zbiorow, wszystkie elementy)

(i-ta dziedzina relacji n-członowej; n > 2 oraz $1 \le i \le n$).

Niech R będzie relacją n-członową, gdzie n > 2. Pod pojęciem **i-tej**

dziedziny $(1 \le i \le n)$ relacji R rozumiemy zbior:

 \mathbf{D}_{i}

 $R = \{y : \exists x1...\exists xi-1\exists xi+1...\exists xn \ R(x1, ...,xi-1, y, xi+1, xn)\}$

- 2. Mowimy, że relacja binarna R jest:
 - (i) zwrotna w zbiorze A wtw ∀x ∈ A (xRx),
 - (ii) przeciwzwrotna w zbiorze A wtw $\forall x \in A \neg (xRx)$,
 - (iii) niezwrotna w zbiorze A wtw $\neg \forall x \in A (xRx)$.

Mowimy, że relacja binarna R jest:

- (i) symetryczna w zbiorze A wtw $\forall x \in A \ \forall y \in A \ (xRy \rightarrow yRx)$,
- (ii) przeciwsymetryczna w zbiorze A wtw $\forall x \in A \ \forall y \in A \ (xRy \rightarrow \neg (yRx))$,
- (iii) antysymetryczna w zbiorze A wtw $\forall x \in A \ \forall y \in A \ (xRy \land x \neq y \rightarrow \neg(yRx))$.

Mowimy, że relacja binarna R jest:

(i) przechodnia w zbiorze A wtw

 $\forall x \in A \ \forall y \in A \ \forall z \in A \ (xRy \land yRz \rightarrow xRz),$

- (ii) spojna w zbiorze A wtw $\forall x \in A \ \forall y \in A \ (xRy \lor yRx \lor x = y)$.
- 3. Mowimy, że relacja binarna R jest relacją **równoważnościową** w zbiorze A wtw R jest w A **zwrotna, symetryczna i przechodnia**.

Niech A będzie niepustym zbiorem, zaś R będzie relacją binarną w A i zarazem rownoważnościową w A. **Klasą abstrakcji** elementu x ∈ A względem relacji R nazywamy zbior:

 $[x]_R = \{y \in A : xRy\}.$

4. **Konwersem** (**relacja odwrotna**) relacji binarnej **R** nazywamy relację **Ř** określoną wzorem:

 $x\dot{R} y \leftrightarrow yR x$.

Niech R, S będą relacjami binarnymi. **Iloczynem względnym**

relacji R i S jest relacja R o S określona następująco:

 $x(R \circ S)y \leftrightarrow \exists z (xRz \land zSy).$

5. Niech R będzie relacją binarną w zbiorze A. **Relację** R nazywamy

porządkującą zbior A wtw R jest zwrotna, przechodnia i antysymetryczna w A. Mowimy wowczas, że R porządkuje zbior A, i parę uporządkowaną <A, R> nazywamy zbiorem uporządkowanym.

Relację binarną R w zbiorze A nazywamy liniowo porządkującą zbior A wtw R porządkuje zbior A i ponadto R jest spojna w A.

Mowimy wowczas, że relacja R liniowo porządkuje zbior A, i parę uporządkowaną <A, R> nazywamy zbiorem liniowo uporządkowanym lub łańcuchem.

Niech < A, R > będzie zbiorem uporządkowanym. Element a₀ ∈ A nazywamy maksymalnym, jeżeli nie poprzedza on żadnego innego elementu w zbiorze A, czyli jeżeli nie istnieje a ∈ A takie, że a ≠ a₀ i a₀Ra. Niech < A, R > będzie zbiorem uporządkowanym. Element a₀ ∈ A nazywamy największym, jeżeli jest on poprzedzany przez wszystkie elementy zbioru A, czyli jeżeli dla każdego a ∈ A spełniony jest warunek aRa₀. W zbiorze uporządkowanym < A, R > istnieje co najwyżej jeden element największy. Element największy jest elementem maksymalnym.

Niech < A, R > będzie zbiorem uporządkowanym. Element a₀ ∈ A nazywamy minimalnym, jeżeli nie poprzedza go żadnen inny elementu w zbiorze A, czyli jeżeli nie istnieje a ∈ A takie, że a ≠ a₀ i aRa₀. Niech < A, R > będzie zbiorem uporządkowanym. Element a₀ ∈ A nazywamy najmniejszym, jeżeli poprzedza on wszystkie elementy zbioru A, czyli jeżeli dla każdego a ∈ A spełniony jest warunek a₀Ra. W zbiorze uporządkowanym < A, R > istnieje co najwyżej jeden element najmniejszy. Element najmniejszy jest elementem minimalnym.

Drzewo

Niech < A, R > będzie zbiorem uporządkowanym. < A, R > nazwiemy drzewem, jeśli w < A, R > istnieje element najmniejszy
a₀ ∈ A, oraz każdy element a ≠ a₀ ma dokładnie jeden bezpośredni poprzednik.
Element najmniejszy drzewa nazywamy korzeniem.
Jeśli < A, R > jest drzewem oraz A jest zbiorem skończonym, to
mowimy, że < A, R > jest drzewem skończonym. Wówczas elementy
maksymalne tego drzewa nazywamy liśćmi.
Niech < A, R > będzie drzewem. Jeśli B jest uporządkowanym
liniowo podzbiorem zbioru A oraz nie istnieje inny uporządkowany

liniowo podzbiorem zbioru A oraz nie istnieje inny uporządkowany
liniowo podzbior C zbioru A taki, że B ⊆ C, to B nazywamy gałęzią drzewa < A, R >
Drzewo < A, R > nazywamy drzewem binarnym, jeśli każdy element
a ∈ A ma co najwyżej dwa bezpośrednie następniki.

- 6. Relację R ⊆ A × B nazywamy **funkcją jednoargumentową** wtw spełnione są następujące warunki:
- (i) $\forall x \in D_R \exists y \in B (xRy)$,
- (ii) $\forall x \in D_R \ \forall y \in B \ \forall z \in B \ (xRy \land xRz \rightarrow y = z)$.

funkcja rożnowartościowa to taka, ktora dla rożnych argumentow przyjmuje rożne wartości.

Definicja: Funkcja rożnowartościowa - injekcja

Funkcja f: X \rightarrow Y jest rożnowartościowa jeżeli dla wszystkich x_1 , x_2 prawdziwa jest implikacja $x_1 \neq x_2 \Rightarrow f(x_1)$ \rightarrow $f(x_2)$

Funkcję f: $X \to Y$ nazywamy funkcją "na" (surjekcją), jeżeli dla każdego y istnieje x , taki, że y = f(x) Każdy element zbioru Y ma swoj odpowiednik w zbiorze X

Bijekcją nazywamy funkcję, ktora jest jednocześnie funkcją rożnowartościową (injekcją) i funkcją "na" (surjekcją).

7. **Funkcja odwrotna** – funkcja przyporządkowująca wartościom jakiejś funkcji jej odpowiednie argumenty, czyli

działająca odwrotnie do niej.

Funkcję $f: X \to Y$ (por. uwaga) nazywamy odwracalną, gdy istnieje funkcja $g: X \to Y$ taka, że

g(f(x)) = x dla każdego $x \in X$

f(g(y)) = y dla każdego $y \in Y$

Złożenie (**superpozycja**) **funkcji** – funkcja zwracająca wartość pewnej funkcji w punkcie zadanym za pomocą innej.

 $f^* g(x) = f(g(x))$

8.

9.Twierdzenie o gęstym uporządkowaniu zbioru liczb wymiernych – dowod – zbior jest uporządkowany gęsto wtw dla

dowolnych a,b, a \neq b istnieje c takie, że a<=c oraz a \neq c i c \neq b. Liczba a+b/2 jest liczbą c twierdzenie o niewymierności liczby pierwiastek z 2 – nie jest wymierna – dowod nie-wprost! Zał. Pierw.z 2 jest liczbą wymierną. Wowczas dla pewnych liczb n,m nal Z, m \neq 0 mamy: pier z 2=n/m / do kwadratu

 $2 = n^2/m^2$

2m²=n² – n jest liczbą parzystą = 2k

 $2m^2 = 4k^2$

m^2 = 2k^2 - m,n nie są względnie pierwsze - SDPRZECZNOŚĆ

Ш

1. Ciąg arytmetyczny – ciąg liczbowy, w ktorym każdy wyraz można otrzymać dodając wyraz bezpośrednio go poprzedzający oraz ustaloną liczbę, zwaną rożnicą ciągu. Ciąg liczbowy (a_n) nazywamy ciągiem arytmetycznym, jeśli dla pewnej liczby r (nazywanej rożnicą ciągu) zachodzi a_{n+1} = a_n + r Ciąg geometryczny - ciąg liczbowy (skończony bądź nieskończony), ktorego kolejny wyraz jest iloczynem wyrazu

poprzedniego przez pewną stałą nazywaną ilorazem. (an) = qan - 1

IV

1. **Granica ciągu** – Liczbę **g** nazywamy **granicą** ciągu **a**_n, jeśli do dodatniego, dowolnie małego **E**, istnieje taka liczba **N**, że wszystkie wartości **a**_n o wskaźniku **n>= N** spełniają nierowność: **|an - g|< E** zbieżność określa sytuacje kiedy ciąg dążą do pewnej wartości granicznej. Niech **a**_n będzie dowolnym ciągiem. Jeśli w każdym otoczeniu **ε g** znajdują się wszystkie wyrazy ciągu **a**_n to an jest **zbieżny do g**, a liczbę tę nazywamy **granicą**. (**lim a**_n=**g**)

Dla niektorych rozbieżnych ciągow nieskończonych wprowadza się pojęcie **granicy niewłaściwej**. Są to te ciągi, ktorych

wyrazy rosną lub maleją nieograniczenie; można powiedzieć, że dążą one do punktu w nieskończoności.

2. Twierdzenia o: jednoznaczności granicy – Jeśli ciąg jest zbieżny, to ma dokładnie jedną granicę O ograniczoności ciągu zbieżnego – Jeśli ciąg jest zbieżny, jest rownież ograniczony (WNIOSEK: jeśli jest

nieograniczony, nie jest zbieżny)

o działaniach na ciągach zbieżnych – jeśli an i bn są zbieżne, to ciągi an+bn, an-bn, an*bn są zbieżne oraz

 $\lim(a_n+b_n)=\lim a_n+\lim b_n$, (tak samo z rożnicą i iloczynem)

o trzech ciągach – jeżeli ciągi a_n i b_n są zbieżne do tej samej granicy g oraz począwszy od pewnego wskaźnika m,

zachodzi an<cn
bn dla n>m to ciąg cn jest rownież zbieżny do g

o ciągu zbieżnym do 0 i nieograniczonym – jeśli ciąg an jest zbieżny do 0 oraz ciąg b_n jest nieograniczony to ciąg

V

1. **Granica funkcji w punkcie** – Niech f będzie funkcją określoną w pewnym otoczeniu (**x-a, x+a**) punktu **x**, gdzie

a<0. Jeśli dla dowolnego ciągu **xn** argumentow funkcji **f**, takiego że \mathbf{x}_n ->**x** przy n->nieskończoność oraz \mathbf{x}_n -/= \mathbf{x} ,

dla każdego \mathbf{n} , odpowiedni ciąg wartości $\mathbf{f}(\mathbf{x}_n)$ jest zbieżny do granicy \mathbf{g} , to mowimy, że \mathbf{g} jest granicą funkcji \mathbf{f} w

punkcie x (lim f(x) = g)

Ciągłość funkcji w punkcie – niech f będzie określoną w pewnym otoczeniu x_0 (x_0 -a, x_0 +a), a > 0. Jeśli f ma w x_0 granicę rowną f(x) (tj. $\lim f(x) = f(x_0)$) to mowimy, że f jest ciągła w punkcie x_0 .

2. Tw. O działaniach na funkcjach ciągłych -

```
np. f * g(x) = f(x) * g(x)

f + g(x) = f(x) + g(x)
```

f - g(x) = f(x) - g(x)

f / g(x) = f(x) / g(x) (o ile $g(x) \neq 0$ dla kazdego x)

Jeśli **f** i **g** są funkcjami **ciągłymi** na przedziale **(a,b)** to funkcje **f** * **g**, **f** + **g**, **f** - **g**, **f** / **g** też są ciągłe na przedziale **(a,b)**.

3. Wspołczynnik a w rownaniu f(x) = ax + b nazywamy wspołczynnikiem kierunkowym f(x) = ax + b nazywamy wspołczynnikiem kierunkowym f(x) = ax + b nazywamy wspołczynnikiem kierunkowym f(x) = ax + b nazywamy wspołczynnikiem kierunkowym

iloraz rożnicowy – niech f będzie dowolną funkcją rzeczywistą określoną w pewnym otoczeniu (x₀-a, x₀+a) punktu x₀.

Niech ponadto 0 < |h| < a. Wowczas liczbę $f(x_0 + h) - f(x_0) / h$ nazywamy ilorazem roznicowym funkcji f w punkcie x_0 dla przyrostu h.

pochodna funkcji w punkcie- niech f będzie funkcją rzeczywistą określoną w pewnym otoczeniu (x₀ - a, x₀ + a) punktu x₀

oraz niech 0 < |h| < a. Jeśli istnieje **skończona granica** ilorazu rożnicowego to tę granicę nazywamy **pochodną funkcji** f w

punkcie xo

 $f'(x) = \lim f(x_0 + h) - f(x_0) / h$

Rożniczkowalność - Jeśli funkcja f ma w punkcie x₀ pochodną, to mowimy, że funkcja jest rożniczkowalna w x₀. Jeśli

funkcja określona w (a, b) ma pochodną w każdym punkcie przedziału (a, b) to mowimy, że f ma pochodną w (a, b) lub, że

f jest rożniczkowalne w (a, b)

- 4. Twierdzenie o ciągłości funkcji rożniczkowalnej jeśli funkcja jest rożniczkowalna w pewnym punkcie, to jest w tym punkcie ciągła
- 5. Twierdzenie o działaniach arytmetycznych na pochodnych Jeżeli funkcje f(x) i g(x) są rożniczkowalne. to
- a) (a * f(x))' = a * f '(x), gdzie a jest liczbą rzeczywistą
- b) (f(x) + g(x))' = f'(x) + g'(x), (pochodna sumy dwoch funkcji rożniczkowalnych rowna jest sumie pochodnych tych funkcji),
- c) (f(x) g(x))' = f'(x) g'(x), (pochodna rożnicy dwoch funkcji rożniczkowalnych jest rowna rożnicy pochodnych tych funkcji),
- d) (f(x) * g(x))' = f'(x) * g(x) + f(x) * g'(x)
- e) $(f(x)/g(x))' = [f'(x)*g(x)-f(x)*g'(x)]/[g(x)]^2$, $g(x) \neq 0$.

- 6. Twierdzenie o pochodnej funkcji złożonej Jeżeli funkcja $\mathbf{u} = \mathbf{g}(\mathbf{x})$ ma w punkcie \mathbf{x}_0 pochodną $\mathbf{g}'(\mathbf{x}_0)$ oraz
- funkcja y = f(u) ma w odpowiednim punkcie $u_0 = g(x_0)$ pochodną $f'(u_0)$, to funkcja złożona y = f(g(x)) ma w punkcie x_0 pochodną określoną wzorem $y' = f'(g(x_0))g'(x_0)$.
 - twierdzenie **o pochodnej funkcji odwrotnej** Jeżeli funkcja y = f(x) jest ciągła i ściśle monotoniczna w przedziale X oraz
- rożniczkowalna w pewnym punkcie $x_0 \in X$, to funkcja do niej odwrotna x = g(y) jest rożniczkowalna w punkcie $y_0 = f(x_0)$
- $i g'(y_0) = 1f'(x_0), gdy f'(x_0) \neq 0.$
- 7. **Pochodna drugiego rzędu** Niech **f** będzie funkcją o wartościach rzeczywistych określoną w pewnym otoczeniu punktu **x**₀ i różniczkowalną w tym punkcie. Jeśli **f** ' ma pochodną w punkcie **x**₀, to tą pochodną nazywamy pochodną drugiego rzędu funkcji **f** w punkcie **x**₀ (**f** "(**x**))
 - **ekstremum lokalne** niech **f** będzie funkcją o wartościach rzeczywistych określoną w pewnym otoczeniu punktu **x**₀ (**x**₀- **a**, **x**₀+**a**). Jeśli istnieje liczba ... :o<...<=a taka że x należy(x₀-
 - ..., $x_0+...$)=>f(x)=<f(x_0), to mowimy, \dot{z} funkcja f ma w x0 maksimum lokalne . Jeżeli dla pewnej ...:0<...=<a zachodzi x($x_0-...,x_0+...$)=>f(x)>=f(x_0) to f ma w x_0 minimum lokalne
- 8. Twierdzenie o warunku koniecznym istnienia ekstremum lokalnego funkcji jeśli funkja f o wartościach rzeczywistych określona w pewnym otoczeniu i rożniczkowalna w tym punkcie ma w x_0 ekstremum lokalnem to $f'(x_0)=0$
- 9. Twierdzenie o warunku dostatecznym istnienia ekstremum lokalnego funkcji- niech f będzie funkcją o wartościach rzeczywistych określoną w pewnym otoczeniu punktu \mathbf{x}_0 , rożniczkowalną w \mathbf{x}_0 . Niech ponadto f będzie rożniczkowalne w \mathbf{x}_0 i niech $\mathbf{f}(\mathbf{x}_0)=\mathbf{0}$
 - 1) Jeśli f "(x) < 0, to funkcja f ma w x₀ max lokalne
 - 2) jeśli f "(x) > 0, to f ma w x₀ minimum lokalne