

150

N" étudiant :.....

Nom :....

ER2 - 1 heure - le 6 novembre 2014 Sans document ni calculatrice

Le principe de notation associé au QCM consiste à attribuer deux points à une réponse juste et à soustraire un point pour une réponse fausse. L'absence de réponse se traduit par zéro. Une seule réponse par question. Pour les questions 4b, 8 et 9c qui ne sont pas du type QCM, appelées « EX », aucun point bien sûr n'est retiré en cas de réponse fausse.

_	_	_		
1:	О	C	м	/21

Dans le cadre de l'étude de	es capteurs, un capteur	faisant preuve of	de finesse est
-----------------------------	-------------------------	-------------------	----------------

□ intelligent

discret

☐ miniature

☐ fragile

2: QCM (/2)

Une chaîne de mesure d'un champ magnétique supposée linéaire sur l'étendue de mesure a une sensibilité de 10 mV/T. L'incertitude sur la mesure de la tension est de ±1 mV. En conséquence, quelle est l'incertitude sur la valeur du champ magnétique ?

□ ±0,01 T

₩±0,1 T

□ ±1 T

□ ±10 T

S= AV

3: QCM (/2)

Le coefficient d'un thermocouple, supposé constant sur l'étendue de mesure, est égal à 35 mV/K. Quel est l'écart de température (en valeur absolue) entre la température de référence et la température à mesurer si on mesure une tension aux bornes du thermocouple de 70 mV ?

12 K

□ 0,5 °C

☐ 275 °C

□ 275 K

DV=Sab DT

4: QCM (/2) et EX (/4)

4a. Dans le domaine des capteurs, CTN signifie

☐ Capteur Thermostaté au Nitrogène

∠ Coefficient de Température Négatif

☐ Coefficient Thermocouple Nul

□ Capteur Tungstène Nitrogène

4b. Pour mesurer une température T grâce à une CTN, on propose le circuit de la fig.1 (E imposé et I mesuré: on en déduit R_{CTN} puis T) et de la fig.2 (I₀ imposé et V mesuré: on en déduit R_{CTN} puis T) où les appareils de mesure sont parfaits (résistance nulle pour l'ampèremètre et infinie pour le voltmètre). Du point de vue de l'emballement thermique, expliquez simplement s'il vaut mieux utiliser le circuit de la fig.1 ou celui de la fig.2.

Fig.1: Po = E²/RCTN = TP => RCTN >> Po P => TP => etc. : endallement. Fig.2: Po = RCTN Io => TP => RCTN >> => Po >> => TD => etc. : stable. Fig.2 est le ne; lleur.

A est un ampèremètre

Fig.1

V est un voltmètre

Fig.2

5: QCM (/6)

La caractéristique d'une photodiode est donnée sur la fig.3 pour différents éclairements. Cette photodiode est placée dans le circuit de la fig.4 où E = 1,2 V et R_{LOAD} = 12 k Ω .

5a. Que vaut I_D et V_D pour $\phi_r = 1,6$ mW/cm²? (Il est fortement conseillé, pour vous aider, de dessiner la droite de charge sur la fig.3.)

$$\bigvee V_D = -0.2 \text{ V et } I_D = -0.083 \text{ mA}$$

 $\square V_D = +0.25 \text{ V et } I_D = -0.05 \text{ mA}$

$$\square V_D = +0.25 \text{ V et I}_D = 0.05 \text{ mA}$$

 $\square V_D = -1 V \text{ et } I_D = -0.083 \text{ mA}$

5b. Lequel de ces schémas équivalents modélise le mieux cette photodiode placée dans le circuit de la fig.4?

- \Box un générateur de tension orienté convenablement délivrant une tension V= $K\phi_r$ avec K = 5 cm²/A et ϕ_r en mW/cm²
- \bowtie un générateur de courant orienté convenablement délivrant un courant $I = K\phi_r$ avec K = 0.05 cm²/V et φ, en mW/cm²
- ☐ un générateur de tension délivrant une tension de 0 V
- une résistance de 12 k Ω

5c. On mesure $V_{mes} = 0.6 \text{ V}$. Que vaut ϕ_r ?

E = Vmes - 1) = Vo = -0,6V

 $\square \approx 0.4 \text{ mW/cm}^2$

 $\square \approx 0.7 \text{ mW/cm}^2$

 \bowtie 1 mW/cm² $\square \approx 1.3$ mW/cm²

Fig.4

ER2 - 1 heure - le 6 novembre 2014

Sans document ni calculatrice

_		
6	OCM	1111

R C

Rappelons que pour un courant I, la tension mes	capteur à effet Hall de c urée est reliée au champ r	coefficient de Hall R _H , magnétique par : V _{mes} =	d'épaisseur e, dans le R _H IB/e.	quel circule un
6a. Pour une même épai coefficient de Hall R _H vau	isseur e et un même cour it	ant I, le capteur à effet	: Hall le plus sensible e	st celui dont le S = Vmes = RH I
\Box -7.10 ⁻¹¹ m ³ /C	\Box +3.10 ⁻¹¹ m ³ /C	\Box -2.10 ⁻³ m ³ /C	$\sqrt{-7.10^{-3}} \text{ m}^3/\text{C}$. B e
également un amplificat courbe de la tension de	Hall du commerce contie teur de tension. Le const e sortie (en volts) en for rappel : 10000 gauss = e ce capteur ?	ructeur donne la nction du champ	4.5 VOLTS	OUTPUT VOLTAGE TYPICAL 2.5 VOLTS
□ 2,5 V/G	☐ 25 mV/G		.5 VOL1	s
₩ 2,5 mV/G	□ 25 μV/G		800 -400 0	400 800
7: QCM (/8) 800 6	= 2000 mV 800 G	= 2,5 mV/6	Fig.5	
par un seul panneau soie	1000 W/m² et à 25°C, un choisie, quelle que soit la ent égaux à 20 V et 1 A. C rie, soit les trois en parallè	configuration, de façor On dispose de trois pan	n que la tension et le c	ourant délivrés
7a. Quel est le courant m	naximum que peut délivre	l'ensemble des trois p	anneaux sous 1000 W/	m² et à 25°C ?
□ 0,33 A	□ 1 A	⊠ 3 A	□ 20 A	(3 en 11)
7b. Quelle est la tension	maximale que peut délivr	er l'ensemble des trois	panneaux sous 1000 W	/m² à 25°C ?
□ 1 V	□ 6,66 V	□ 20 V	⋈ 60 ∨	(3 en sévie)
7c. Quelle est la puissar 25°C?	nce maximale que peut d	élivrer l'ensemble des	trois panneaux sous 1	W and the second
□ 0,33 W	□ 6,66 W	⊠ 60 W	□ 120 W	3A × 20V (11) on 1A × 60V (5évia)
7d. On donne les coeffici Toujours sous 1000 W/m	ients de température suiv ² , que valent le courant I _n	ants pour ces panneau: _{app} et la tension V _{mpp} qu	x : α = +0,5 mA/°C et β and la température est	= -100 mV/°C. de 15°C ?
\square V _{mpp} = 21 V et		\bigvee V _{mpp} = 21 V et I _{mpp}		
$\square V_{mpp} = 19 V ef$	t I _{mpp} = 1,005 A	\square V _{mpp} = 19 V et I _{mpp}	= 0,995 A	
-1 KT	1, (2500 1	(150/)	

ER2 - 1 heure - le 6 novembre 2014

Sans document ni calculatrice

8: EX (/12)

Soit le capteur de position de la fig.6. Il est constitué :

- D'un substrat (isolant) sur lequel est déposé un matériau magnétorésistif constituant une résistance filiforme de longueur L dont la surface de la section du fil est appelée S: l'extrémité gauche est appelée le point A, l'extrémité droite le point D et le point du milieu est appelé C. En l'absence du champ magnétique considéré, la résistivité du matériau magnétorésistif vaut ρ₀, en présence du champ magnétique considéré, elle vaut 2ρ₀. Le substrat et la résistance sont immobiles par rapport au repère.
- D'un aimant (fixé à un système) engendrant une zone supposée rectangulaire (de largeur d) où il y a un champ magnétique B uniforme (il y a le même champ dans toute la zone, il est nul en dehors). *L'aimant et donc la zone de champ sont mobiles suivant l'axe des x (translation suivant x). On impose d < L/2.

Le mesurande, bien sûr variable, est α : c'est la distance entre le centre de la zone de champ et l'origine x = 0. Les grandeurs électriques mesurées sont les résistances entre les points A, C et D (R_{AC} ou/et R_{AD} ou/et R_{CD}). Remarque : quand la zone de champ magnétique est centrée (autant sur la partie AC que sur la partie CD), α = 0.

Rappel: pour un fil, la résistance est égale à la résistivité du matériau le constituant multipliée par la longueur du fil divisées par la surface de la section du fil.

Avant tout, un expérimentateur mesure R_{AD} en l'absence de champ : cette valeur est donc supposée connue.

ER2 - 1 heure - le 6 novembre 2014

Sans document ni calculatrice

8a. Quelle est la particularité essentielle d'un matériau magnétorésistif?

12

Sa résistivité dépend du champ magnétique dans lequel il est plongé. (p(B))

8b. Exprimez en fonction de L, S et ρ_0 les résistances R_{AC} (résistance entre A et C) et R_{CD} (résistance entre C et D) si la zone de champ magnétique ne couvre pas du tout la partie allant des points A à D (autrement dit : $|\alpha| > L/2 + d/2$).

12

$$R_{AC} = \left(P_o \times \frac{L/2}{S} \right) = \left(P_o L \right) / (2S)$$

$$R_{CD} = \left(P_o L \right) / (2S)$$

8c. Exprimez en fonction de L, d et α la résistance R_{AC} divisée par la résistance R_{CD} (R_{AC}/R_{CD}) si la zone de champ magnétique couvre partiellement la partie allant des points A à C et partiellement la partie allant des points C à D (autrement dit : $|\alpha| < d/2$).

16

Résultat:
$$R_{AC}/R_{CD} = \frac{d+L-2\alpha}{d+L+2\alpha} \qquad (R_{AC} = (x-d_2+d_2) \frac{C_5}{5} + (d_2-\alpha) \frac{2P_0}{5}$$

$$d R_{CD} = (d_2-\alpha-d_2) \frac{C_5}{5} + (d_2+\alpha) \frac{2P_0}{5}$$

8d. α est maintenant quelconque. On mesure R_{AC} et R_{CD} et on trouve R_{AC} = R_{CD} . L'un des expérimentateurs dit alors que α = 0, l'autre que le matériau magnétorésistif est en dehors de la zone de champ magnétique. Comment les départager sans mesure supplémentaire?

12

Si Rac + RCD = RAD en l'abserce de chanp (cg. phrase an dessis de la fig. 6) alors le chanp est en dehors. Sinon il est centré.

ER2 - 1 heure - le 6 novembre 2014

Sans document ni calculatrice

9 : QCM (/6) et EX (/	2)	190	8:	
9a. Pour transporter	l'énergie électriqu	e avec un minimum de perte, il	faut que l'amplitude de l	a tension soit
☐ la plus basse poss	ible	💢 la plus haute possible (d	ans les limites supportée	es par le câble)
\square proportionnelle à	la fréquence	☐ inversement proportion	nelle à la fréquence	
9b. Quelle est la fréq	uence du réseau é	lectrique européen ?		
□ 10 Hz	₹ 50 Hz	☐ 110 Hz	□ 220 Hz *	*
9c. Pour le transport qu'un réseau alterna		ique, donnez un avantage d'util	iser un réseau alternatif	triphasé plutôt
A Packive	égde	, le volume d	l'un vésern	Kriphese
esk La w	roitie d	'un monophesé		
(g. p.7	2 crs. n	. Helier, n°5) de perte, pa		
et anssi	moins	de perte, pa	5 Jessin de	nentre,
· · · · · · · · · · · · · · · · · · ·	(6) (6) (6) (6)	s s 8 1x		
9d. Un « smart grid »	est			
☐ une voiture	électrique intellige	ente et propre		
	permettant de tra tte énergie intelliga	ansformer l'énergie électrique emment	non utilisée en énergie ı	non électrique et
consommat	électrique capable teurs ou producte t économique	e d'intégrer de manière intellige eurs afin de maintenir une fo	ente les actions des diffé ourniture d'électricité c	rents utilisateurs, durable, efficace,
□ un réseau	de centrales n	ucléaires interconnectées et	capable de gérer un	incident grave
		*	8.	