q-類似の Coq による形式化

アドバイザー: Jacques Garrigue 教授

学籍番号: 322101289

氏名:中村 薫

January 31, 2023

- 1 はじめに
- 2 q-類似
- 3 Coq
- 4 q-類似の形式化
- 5 今後の展望

- 1 はじめに
- 2 q-類似
- Coq
- 4 q-類似の形式化
- 5 今後の展望

目的:q-類似の初等的な結果を Coq を用いて形式化する

目的:q-類似の初等的な結果を Coq を用いて形式化する q-類似 $q \rightarrow 1$ で通常の数学に戻るような諸概念の拡張

目的:q-類似の初等的な結果を Coq を用いて形式化する

q-類似 $q \rightarrow 1$ で通常の数学に戻るような諸概念の拡張

形式化 人工言語に数学的な主張とその証明を翻訳し,正しさを機械的に検証すること

目的:q-類似の初等的な結果を Coq を用いて形式化する

q-類似 $q \rightarrow 1$ で通常の数学に戻るような諸概念の拡張

形式化 人工言語に数学的な主張とその証明を翻訳し,正しさを機械的に検証すること

Coq 形式化を行うためのソフトウェア

目的:q-類似の初等的な結果を Coq を用いて形式化する

q-類似 $q \rightarrow 1$ で通常の数学に戻るような諸概念の拡張

形式化 人工言語に数学的な主張とその証明を翻訳し,正しさを機械 的に検証すること

Coq 形式化を行うためのソフトウェア

形式化の意義:

目的:q-類似の初等的な結果を Coq を用いて形式化する

q-類似 $q \rightarrow 1$ で通常の数学に戻るような諸概念の拡張

形式化 人工言語に数学的な主張とその証明を翻訳し,正しさを機械的に検証すること

Coq 形式化を行うためのソフトウェア

形式化の意義:

• 人間がチェックすることが難しい複雑な証明の正しさの保証

目的:q-類似の初等的な結果を Coq を用いて形式化する

q-類似 $q \rightarrow 1$ で通常の数学に戻るような諸概念の拡張

形式化 人工言語に数学的な主張とその証明を翻訳し,正しさを機械的に検証すること

Coq 形式化を行うためのソフトウェア

形式化の意義:

- 人間がチェックすることが難しい複雑な証明の正しさの保証
- 証明付きプログラミング

目的:q-類似の初等的な結果を Coq を用いて形式化する

q-類似 $q \rightarrow 1$ で通常の数学に戻るような諸概念の拡張

形式化 人工言語に数学的な主張とその証明を翻訳し,正しさを機械的に検証すること

Coq 形式化を行うためのソフトウェア

形式化の意義:

- 人間がチェックすることが難しい複雑な証明の正しさの保証
- 証明付きプログラミング

本発表における q-類似の定義, 定理及びその証明は Victor Kac, Pokman Cheung の *Quantum Calculus* [2] によるものだが, その形式化を行ったという点において独自性がある. 形式化したコード全体は

https://github.com/nakamurakaoru/q-analogue/tree/thesis[5] にある.

- 1 はじめに
- 2 q-類似
- 3 Coq
- 4 q-類似の形式化
- 5 今後の展望

q-類似:以下の2つの条件をみたす数学の諸概念の一般化

q-類似:以下の2つの条件をみたす数学の諸概念の一般化

• $q \rightarrow 1$ とすると通常の数学に一致する

q-類似:以下の2つの条件をみたす数学の諸概念の一般化

- $q \rightarrow 1$ とすると通常の数学に一致する
- 実数パラメータ q, 実数上の関数 f に対して

$$D_q f(x) := \frac{f(qx) - f(x)}{(q-1)x}$$

で定義される q-微分に対してうまく振る舞う

q-類似:以下の2つの条件をみたす数学の諸概念の一般化

- $q \rightarrow 1$ とすると通常の数学に一致する
- 実数パラメータ q, 実数上の関数 f に対して

$$D_q f(x) := \frac{f(qx) - f(x)}{(q-1)x}$$

で定義される q-微分に対してうまく振る舞う

q-類似を考える利点:あえてパラメータを増やすことで証明が簡単になる場合がある

q-類似:以下の2つの条件をみたす数学の諸概念の一般化

- *q* → 1 とすると通常の数学に一致する
- 実数パラメータ q, 実数上の関数 f に対して

$$D_q f(x) := \frac{f(qx) - f(x)}{(q-1)x}$$

で定義される q-微分に対してうまく振る舞う q-類似を考える利点:あえてパラメータを増やすことで証明が簡単になる場合がある

- Jacobi の三重積 ([2] p35 Theorem 11.1) -

 $z, q \in \mathbb{R}, |q| < 1 \ge \bigcup \mathcal{T},$

$$\sum_{n=-\infty}^{\infty} q^{n^2} z^n = \prod_{n=1}^{\infty} (1 - q^{2n})(1 + q^{2n-1}z)(1 + q^{2n-1}z^{-1})$$

が成り立つ.

q-微分

q-差分, q-微分の定義をする. 以下, q を 1 でない実数とする.

q-微分

q-差分, q-微分の定義をする. 以下, q を 1 でない実数とする.

Definition 2.1 ([2] p1 (1.1), p2 (1.5))

関数 $f: \mathbb{R} \to \mathbb{R}$ に対して, f(x) の q 差分 $d_q f(x)$ を,

$$d_q f(x) \coloneqq f(qx) - f(x)$$

と定める. 更に, f(x) の q 微分 $D_q f(x)$ を,

$$D_q f(x) := \frac{d_q f(x)}{d_q x} = \frac{f(qx) - f(x)}{(q-1)x}$$

と定める.

$$D_q f(x) \coloneqq \frac{d_q f(x)}{d_q x} = \frac{f(qx) - f(x)}{(q-1)x}$$

$$D_q f(x) \coloneqq \frac{d_q f(x)}{d_q x} = \frac{f(qx) - f(x)}{(q-1)x}$$

$$D_q x^n = \frac{(qx)^n - x^n}{(q-1)x}$$

$$D_q f(x) \coloneqq \frac{d_q f(x)}{d_q x} = \frac{f(qx) - f(x)}{(q-1)x}$$

$$D_q x^n = \frac{(qx)^n - x^n}{(q-1)x} = \frac{q^n - 1}{q - 1} x^{n-1}$$

 x^n $(n \in \mathbb{N})$ を定義に沿って q-微分する.

$$D_q f(x) \coloneqq \frac{d_q f(x)}{d_q x} = \frac{f(qx) - f(x)}{(q-1)x}$$

$$D_q x^n = \frac{(qx)^n - x^n}{(q-1)x} = \frac{q^n - 1}{q-1} x^{n-1}$$

通常の微分では, $(x^n)' = nx^{n-1}$ となることと比較して,

 x^n $(n \in \mathbb{N})$ を定義に沿って q-微分する.

$$D_q f(x) \coloneqq \frac{d_q f(x)}{d_q x} = \frac{f(qx) - f(x)}{(q-1)x}$$

$$D_q x^n = \frac{(qx)^n - x^n}{(q-1)x} = \frac{q^n - 1}{q - 1} x^{n-1}$$

通常の微分では, $(x^n)' = nx^{n-1}$ となることと比較して, n の q-類似 [n] を

$$[n] = \frac{q^{n} - 1}{q - 1} (= 1 + q + q^{2} + \dots + q^{n-1})$$

と定める ([2]p2 (1.9)).

$(x-a)^n$ の q-類似

Definition 2.2 ([2] p8 Definition (3.4))

 $x, a \in \mathbb{R}, n \in \mathbb{N}$ に対して, $(x-a)^n$ の q-類似 $(x-a)_q^n$ を,

$$(x-a)_q^n = \begin{cases} 1 & \text{if } n = 0\\ (x-a)(x-qa)\cdots(x-q^{n-1}a) & \text{if } n \ge 1 \end{cases}$$

と定義する.

$(x-a)^n$ の q-類似

Definition 2.2 ([2] p8 Definition (3.4))

 $x, a \in \mathbb{R}, n \in \mathbb{N}$ に対して, $(x-a)^n$ の q-類似 $(x-a)_q^n$ を,

$$(x-a)_q^n = \begin{cases} 1 & \text{if } n = 0\\ (x-a)(x-qa)\cdots(x-q^{n-1}a) & \text{if } n \ge 1 \end{cases}$$

と定義する.

Proposition 2.3

 $n \in \mathbb{Z}_{>0}$ に対し,

$$D_q(x-a)_q^n = [n](x-a)_q^{n-1}$$

が成り立つ.

q-Taylor 展開

Definition 2.4 ([2] p7 (3.1))

 $n \in \mathbb{N}$ について、階乗の q-類似を以下のように定める.

$$[n]! := \begin{cases} 1 & (n=0) \\ [n] \times [n-1] \times \dots \times [1] & (n \ge 1) \end{cases}$$

q-Taylor 展開

Definition 2.4 ([2] p7 (3.1))

 $n \in \mathbb{N}$ について、階乗の q-類似を以下のように定める.

$$[n]! := \begin{cases} 1 & (n=0) \\ [n] \times [n-1] \times \dots \times [1] & (n \ge 1) \end{cases}$$

Theorem 2.5 ([2] p12 Theorem 4.1)

f(x) を、N 次の実数係数多項式とする. 任意の $c \in \mathbb{R}$ に対し、

$$f(x) = \sum_{j=0}^{N} (D_q^j f)(c) \frac{(x-c)_q^j}{[j]!}$$

が成り立つ.

Gauss's binomial formula

Definition 2.6 ([2] p12 (4.5))

 $n \geq j$ をみたす $n, j \in \mathbb{N}$ について、二項係数の q-類似を以下のように定める.

$$\left[\begin{array}{c} n \\ j \end{array}\right] \coloneqq \frac{[n]!}{[j]![n-j]!}$$

Gauss's binomial formula

Definition 2.6 ([2] p12 (4.5))

 $n \geq j$ をみたす $n, j \in \mathbb{N}$ について、二項係数の q-類似を以下のように定める.

$$\left[\begin{array}{c}n\\j\end{array}\right] \coloneqq \frac{[n]!}{[j]![n-j]!}$$

Lemma 2.7 ([2] p15 Example (5.5))

 $n \in \mathbb{Z}_{>0}$ について,

$$(x+a)_q^n = \sum_{j=0}^n \begin{bmatrix} n \\ j \end{bmatrix} q^{j(j-1)/2} a^j x^{n-j}$$

が成り立つ. この式は Gauss's binomial formula と呼ばれる.

- 1 はじめに
- 2 q-類似
- 3 Coq
- 4 q-類似の形式化
- 5 今後の展望

Coq の使い方 コマンド

Coq に与える命令はコマンドとタクティックの2種類がある.

Coq の使い方 コマンド

Coq に与える命令はコマンドとタクティックの2種類がある.

Require Import ライブラリを読み込む.

Variable 特定の型を持つ変数を宣言する

Definition 新たに関数を定義する.

Fixpoint 再帰関数を定義する. 停止性が保証されていない関数を定義 することはできない.

Lemma 補題を宣言する. Lemma の代わりに Theorem, Corollary 等でも同じ機能をもつ.

Proof/Qed Proof は Lemma の後に書いて補題の主張と証明を分ける. 証明を完了させて Qed を書くことで Coq に補題を登録することができ, 他の補題の証明に使えるようになる.

Coq の使い方 コマンド

Coq に与える命令はコマンドとタクティックの2種類がある.

Require Import ライブラリを読み込む.

Variable 特定の型を持つ変数を宣言する

Definition 新たに関数を定義する.

Fixpoint 再帰関数を定義する. 停止性が保証されていない関数を定義 することはできない.

Lemma 補題を宣言する. Lemma の代わりに Theorem, Corollary 等でも同じ機能をもつ.

Proof/Qed Proof は Lemma の後に書いて補題の主張と証明を分ける. 証明を完了させて Qed を書くことで Coq に補題を登録することができ, 他の補題の証明に使えるようになる.

\$gクティックは\$Proof...\$Qed の間に使われる. よく使われる\$gクティックは\$move, \$app\$ly, \$rewrite \$g0 \$g0.

Coq の使い方 モーダスポーネンス

「命題 P, Q について, $P \Longrightarrow Q$ かつ P であれば, Q が成り立つ」

「命題 P, Q について, $P \Longrightarrow Q$ かつ P であれば, Q が成り立つ」 From mathcomp Require Import ssreflect.

Lemma modus_ponens (P Q : Prop) : (P \rightarrow Q) \land P \rightarrow Q.

「命題 P, Q について, $P \Longrightarrow Q$ かつ P であれば, Q が成り立つ」 From mathcomp Require Import ssreflect.

Lemma modus_ponens (P Q : Prop) : (P \rightarrow Q) \land P \rightarrow Q.

Prop は Coq での命題全体を表す型, A は「かつ」を表す

```
1 subgoal P, Q : Prop  (P \rightarrow Q) \ \land \ P \rightarrow Q
```

タクティック:move=> []

```
1 subgoal P, Q : Prop  (P \rightarrow Q) \rightarrow P \rightarrow Q
```

```
1 subgoal P, Q : Prop  (P \rightarrow Q) \rightarrow P \rightarrow Q
```

タクティック:move=> pq

```
1 subgoal
P, Q: Prop
pq: P \rightarrow Q

P \rightarrow Q
```

```
1 subgoal
P, Q: Prop
pq: P \rightarrow Q

P \rightarrow Q
```

タクティック:move=> p

```
1 subgoal
P, Q : Prop
pq : P → Q
p : P
------
Q
```

```
1 subgoal
P, Q : Prop
pq : P → Q
p : P
_______
Q
```

タクティック:apply pq

```
1 subgoal
P, Q: Prop
pq: P → Q
p: P
------
P
```

タクティック:done

No more subgoals.

No more subgoals.

コマンド:Qed

```
Lemma modus_ponens (P Q : Prop) : (P \rightarrow Q) \land P \rightarrow Q. Proof.

move\Rightarrow [].

move\Rightarrow pq.

move\Rightarrow p.

apply pq.

done.

Qed.
```

標準ライブラリ [1] に加えて mathcomp [3] を用いる.

標準ライブラリ [1] に加えて mathcomp [3] を用いる. mathcomp の型には階層構造があり、より一般の型の性質を引き継ぐ.

標準ライブラリ [1] に加えて mathcomp [3] を用いる. mathcomp の型には階層構造があり, より一般の型の性質を引き継ぐ. 今回は実数の形式化に rcfType(Real Closed Field: 実閉体) を使う.

標準ライブラリ [1] に加えて mathcomp [3] を用いる. mathcomp の型には階層構造があり, より一般の型の性質を引き継ぐ. 今回は実数の形式化に rcfType(Real Closed Field: 実閉体) を使う.

eqType \rightarrow choiceType

- $\rightarrow {\tt zmodType} \rightarrow {\tt ringType} \rightarrow {\tt comRingType} \rightarrow {\tt comUnitRingType}$
- ightarrow idomainType ightarrow fieldType
- \rightarrow numFieldType \rightarrow realFieldType \rightarrow rcfType

標準ライブラリ [1] に加えて mathcomp [3] を用いる. mathcomp の型には階層構造があり, より一般の型の性質を引き継ぐ. 今回は実数の形式化に rcfType(Real Closed Field: 実閉体) を使う.

eqType \rightarrow choiceType

- $\rightarrow {\tt zmodType} \rightarrow {\tt ringType} \rightarrow {\tt comRingType} \rightarrow {\tt comUnitRingType}$
- ightarrow idomainType ightarrow fieldType
- \rightarrow numFieldType \rightarrow realFieldType \rightarrow rcfType

ringType, fieldType の性質が重要

- 1 はじめに
- 2 q-類似
- 3 Coq
- 4 q-類似の形式化
- 5 今後の展望

q-微分の形式化

$$d_q f(x) \coloneqq f(qx) - f(x) \quad D_q f(x) \coloneqq \frac{d_q f(x)}{d_q x}$$

q-微分の形式化

$$d_q f(x) \coloneqq f(qx) - f(x) \quad D_q f(x) \coloneqq \frac{d_q f(x)}{d_q x}$$

From mathcomp Require Import all_ssreflect all_algebra. Import GRing.

Section q_analogue.

Local Open Scope ring_scope.

Variables (R : rcfType) (q : R).

Hypothesis Hq : $q - 1 \neq 0$.

Notation "f // g" := (fun x \Rightarrow f x / g x) (at level 40).

Definition dq (f : R \rightarrow R) x := f (q * x) - f x. Definition Dq f := dq f // dq id.

[n] の形式化

$$[n] := \frac{q^n - 1}{q - 1}$$
 $D_q x^n = [n] x^{n-1}$

[n] の形式化

$$[n] := \frac{q^n - 1}{q - 1}$$
 $D_q x^n = [n] x^{n-1}$

Definition quat $n : R := (q \cdot n - 1) / (q - 1)$.

```
Lemma Dq_pow n x : x \neq 0 \rightarrow
  Dg (fun x \Rightarrow x \hat{n}) x = gnat n * x \hat{n} (n - 1).
Proof.
  move \Rightarrow Hx.
  rewrite /Dq /dq /qnat.
  rewrite -{4}(mul1r x) -mulrBl expfzMl -add_div;
    last by apply mulf_neq0.
  rewrite [in x \hat{n}](\underline{\ }: n = (n - 1) + 1) //; last by rewrite subrK.
  rewrite expfzDr ?expr1z ?mulrA -?mulNr ?red_frac_r ?add_div //.
  rewrite -{2}[x ^ (n - 1)]mul1r -mulrBl mulrC mulrA.
  by rewrite [in (q - 1)^-1 * (q ^ n - 1)] mulrC.
0ed.
```

$(x-a)_q^n$ の形式化

$$(x-a)_q^n = \begin{cases} 1 & \text{if } n = 0\\ (x-a)(x-qa)\cdots(x-q^{n-1}a) & \text{if } n \ge 1 \end{cases}$$

$$D_q(x-a)_q^n = [n](x-a)_q^{n-1} \quad (n \in \mathbb{Z}_{>0})$$

$(x-a)_q^n$ の形式化

$$(x-a)_q^n = \begin{cases} 1 & \text{if } n = 0\\ (x-a)(x-qa)\cdots(x-q^{n-1}a) & \text{if } n \ge 1 \end{cases}$$

$$D_q(x-a)_q^n = [n](x-a)_q^{n-1} \quad (n \in \mathbb{Z}_{>0})$$

Fixpoint qbinom_pos a n x := match n with $| 0 \Rightarrow 1$ $| n0.+1 \Rightarrow (qbinom_pos a n0 x) * (x - q ^ n0 * a) end.$

Theorem Dq_qbinom_pos a n x : $x \neq 0 \rightarrow$ Dq (qbinom_pos a n.+1) x = qnat n.+1 * qbinom_pos a n x.

約分に条件が必要ない

約分に条件が必要ない x/x = 1 を計算するとき

実数 … x ≠ 0 が必要

約分に条件が必要ない x/x = 1 を計算するとき

- 実数 … x ≠ 0 が必要
- 多項式 … x は単項式なので自動的に x ≠ 0(ゼロ多項式)

約分に条件が必要ない

x/x = 1を計算するとき

- 実数 … x ≠ 0 が必要
- 多項式 … x は単項式なので自動的に x ≠ 0(ゼロ多項式)
- \rightarrow 多項式で考えれば約分した後でも x=0 での値が求められる.

約分に条件が必要ない

x/x = 1を計算するとき

- 実数 · · · x ≠ 0 が必要
- 多項式 … x は単項式なので自動的に x ≠ 0(ゼロ多項式)
- \rightarrow 多項式で考えれば約分した後でも x=0 での値が求められる.

$$D_q(x-a)_q^n = [n](x-a)_q^{n-1}$$

という計算をした後でも0での値が求められる.

約分に条件が必要ない

x/x = 1を計算するとき

- 実数 · · · x ≠ 0 が必要
- 多項式 … x は単項式なので自動的に x ≠ 0(ゼロ多項式)
- \rightarrow 多項式で考えれば約分した後でも x=0 での値が求められる.

$$D_q(x-a)_q^n = [n](x-a)_q^{n-1}$$

という計算をした後でも0での値が求められる.

→Gauss's binomial formula の証明に必要

Coq での多項式

T: ringType のとき, {poly T} · · · T 係数多項式全体

Coq での多項式

T: ringType のとき, {poly T} · · · T 係数多項式全体 {poly R} も ringType の構造を持っている

Coq での多項式

```
T: ringType のとき, {poly T} · · · T 係数多項式全体 {poly R} も ringType の構造を持っている
```

 $\poly_{-}(i < n) E(i)$ 次数がn-1次以下,i次の係数がE(i) である多項式

c%:P 定数 c のみからなる単項式

'X 変数 x のみからなる単項式

p'_i 多項式 p の i 次の係数

size p 多項式 p の次数 +1

p.[x] 多項式pのxでの値

多項式に対する q-差分

多項式に対する q-差分

```
Definition scale_var (p : {poly R}):=
  \poly_(i < size p) (q ^ i * p'_i).
Definition dqp p := scale_var p - p.</pre>
```

多項式に対する q-差分

```
Definition scale_var (p : {poly R}):=
  \poly_(i < size p) (q ^ i * p'_i).
Definition dqp p := scale_var p - p.</pre>
```

多項式に対する q-微分

多項式に対する q-差分

```
Definition scale_var (p : {poly R}):=
  \poly_(i < size p) (q ^ i * p'_i).
Definition dqp p := scale_var p - p.</pre>
```

多項式に対する q-微分

Definition Dqp p := dqp p %/ dqp 'X.

p %/ p' は多項式 p を多項式 p' で割った商

多項式に対する q-差分

```
Definition scale_var (p : {poly R}):=
  \poly_(i < size p) (q ^ i * p'_i).
Definition dqp p := scale_var p - p.</pre>
```

多項式に対する q-微分

Definition Dqp p := dqp p % / dqp 'X.

p%/p は多項式 p を多項式 p 'で割った商 \rightarrow 余りが 0 でない可能性があるため, q-微分の正しい形式化である保証がない

```
多項式に対する q-差分
```

```
Definition scale_var (p : {poly R}):=
  \poly_(i < size p) (q ^ i * p'_i).
Definition dqp p := scale_var p - p.</pre>
```

多項式に対する q-微分

Definition Dqp p := dqp p %/ dqp 'X.

p%/p は多項式pを多項式p7で割った商 \rightarrow 余りが0でない可能性があるため,q-微分の正しい形式化である保証がない

Lemma Dqp_ok p : dqp 'X %| dqp p.

p' %| p · · · p が p' で割り切れる

扱いやすさのため、'Xで約分した形を使う

```
Definition Dqp' (p : {poly R}) :=
  \poly_(i < size p) (qnat (i.+1) * p'_i.+1).</pre>
```

```
扱いやすさのため. 'X で約分した形を使う
Definition Dqp' (p : {poly R}) :=
  poly_{i} = (i < size p) (qnat (i.+1) * p'_i.+1).
Dap と Dap'は等しく. また Dap'と多項式に対する Da は等しい
Lemma Dqp_Dqp'Ep : Dqpp = Dqp'p.
Definition ap_op_poly (D : (R \rightarrow R) \rightarrow (R \rightarrow R)) (p : {poly R}) :=
  D (fun (x : R) \Rightarrow p.[x]).
Notation "D # p" := (ap\_op\_poly D p) (at level 49).
Lemma Dqp'_DqE p x : x \neq \emptyset \rightarrow (Dqp' p).[x] = (Dq \# p) x.
```

多項式としての $(x-a)_a^n$ の再定義

```
Fixpoint qbinom_pos_poly a n :=
  match n with
  | 0 ⇒ 1
  | n0.+1 ⇒ (qbinom_pos_poly a n0) * ('X - (q ^ n0 * a)%:P)
  end.
```

多項式としての $(x-a)_q^n$ の再定義

```
Fixpoint qbinom_pos_poly a n :=
match n with
| 0 ⇒ 1
| n0.+1 ⇒ (qbinom_pos_poly a n0) * ('X - (q ^ n0 * a)%:P)
end.

多項式の x での値は元の定義の qbinom_pos と等しい

Lemma qbinom_posE a n x :
qbinom_pos a n x = (qbinom_pos_poly a n).[x].
```

多項式としての $(x-a)_q^n$ の再定義

 $qbinom_pos a n x = (qbinom_pos_poly a n).[x].$

Dqp と qbinom_pos_poly に対しても

$$D_q(x-a)_q^n = [n](x-a)_q^n$$

が成り立つ

多項式としての $(x-a)_a^n$ の再定義

```
Fixpoint qbinom_pos_poly a n :=
  match n with
  | 0 \Rightarrow 1
  | n0.+1 \Rightarrow (qbinom_pos_poly \ a \ n0) * ('X - (q \ n0 * a)%:P)
  end.
```

多項式のxでの値は元の定義のqbinom_posと等しい

Lemma qbinom_posE a n x : $qbinom_pos a n x = (qbinom_pos_poly a n).[x].$

Dap と gbinom_pos_poly に対しても

$$D_q(x-a)_q^n = [n](x-a)_q^n$$

が成り立つ

Lemma Dqp'_qbinom_poly a n : Dgp' ($qbinom_pos_poly a n.+1$) = (qnat n.+1) *: (qbinom_pos_poly a n).

q-Taylor 展開の形式化

$$f(x) = \sum_{j=0}^{N} (D_q^j f)(c) \frac{(x-c)_q^j}{[j]!}$$

q-Taylor 展開の形式化

$$f(x) = \sum_{j=0}^{N} (D_q^j f)(c) \frac{(x-c)_q^j}{[j]!}$$

Fixpoint qfact n :=

Gauss's binomial formula の形式化

$$(x+a)_q^n = \sum_{j=0}^n \begin{bmatrix} n \\ j \end{bmatrix} q^{j(j-1)/2} a^j x^{n-j}$$

Gauss's binomial formula の形式化

$$(x+a)_q^n = \sum_{j=0}^n \begin{bmatrix} n \\ j \end{bmatrix} q^{j(j-1)/2} a^j x^{n-j}$$

Definition qbicoef n j := qfact n / (qfact j * qfact (n - j)).

```
Theorem Gauss_binomial a n : (\forall n, qfact n \neq 0) \rightarrow qbinom_pos_poly (-a) n = \sum_(0 \le i < n.+1) (qbicoef n i * q ^+ (i * (i - 1))./2 * a ^+ i) *: 'X^(n - i).
```

- 1 はじめに
- 2 q-類似
- Coq
- 4 q-類似の形式化
- 5 今後の展望

現在開発中のライブラリ mathcomp analysis [4] の利用

現在開発中のライブラリ mathcomp analysis [4] の利用

• $q \rightarrow 1$ で通常の数学に戻ることの形式化

現在開発中のライブラリ mathcomp analysis [4] の利用

- $q \rightarrow 1$ で通常の数学に戻ることの形式化
- 無限和に関する形式化

現在開発中のライブラリ mathcomp analysis [4] の利用

- $q \rightarrow 1$ で通常の数学に戻ることの形式化
- 無限和に関する形式化
 - \rightarrow Gauss's binomial formula の拡張, q-指数関数, q-三角関数

- Coq Team, *The Coq Standard Library*, https://coq.inria.fr/distrib/current/stdlib/, 2023.
- Victor Kac, Pokman Cheung, Quantum Calculus, Springer, 2001.
- Mathematical Components Team, *Mathematical Components*, https://github.com/math-comp/math-comp, 2023.
- Mathematical Components Team, *Mathematical Components compliant Analysis Library*, https://github.com/math-comp/analysis, 2023.
- 中村 薫, *q-analogue*, https://github.com/nakamurakaoru/q-analogue/tree/thesis, 2023.