Source Spectrum

- EGF-based spectral ratio contain information on the source parameters, e.g. stress drop, rupture area etc.
- Rupture directivity can be inferred from azimuthal variation of the corner frequency and high/low frequency component (e.g. Zhou et al 2022)

Calderoni et al., GJI 2015

Source Spectrum

- Inputs
 - fpha_tar: phases for the target events
 - fctlg_all: catalog that contain all available events
 - fsta (station_eg.csv): station file
- Outputs
 - spectrum of target & EGFs
 - comparison of spectral ratio on different stations
 - stacked spectral ratio and estimated source parameters

Input	Operation	Output	Notes
fctlg_all & fsta	select_egf_loc.py	fpha_egf_org	select EGF by time, location, & magnitude
fpha_tar & fpha_egf_org	cut_events.py	input/events_tar input/events_egf	cut raw data
fpha_egf_org & input/events_egf	pick_events.py	fpha_egf_org	refine original pick with STA/LTA
fpha_egf_org	calc_egf-cc.py & plot_egf-cc.py	eg_tar-egf.cc & eg_tar-egf-cc.pdf	
eg_tar-egf.cc	select_egf_cc.py	fpha_egf	select with CC (not strict criteria as well)
fpha_egf	plot_waveform- events.py	evid_name.pdf	inspect selected events

Event Waveform: 4 20190709060548.71 M2.55 Z 1-20Hz

Spectral Ratio Calculation and Analysis

Input	Operation	Output	Notes
fpha_egf & fpha_tar	plot_spec-s.py	eg_spec-s_name.pdf	check the consistency between spectrum of EGFs
fpha_egf & fpha_tar	plot_spec-ratio- compare.py	eg_spec-ratio- compare_name.pdf	resolve rupture directivity first to determine the fault plane
fpha_egf & fpha_tar	plot_spec-ratio- stack.py	eg_spec-ratio- stack_name.pdf	use fault-normal stations to estimate source parameters

Aftershocks show two fault trends, thus two possible rupture directivity exists

Compare spectral ratio on two sets of stations: along Fault_1 (NE) & along Fault_2 (NW)

→ the direction with more significant contrast indicate the ruptured fault

Stacked Spectral Ratio: 20190704195600.50 (MI 4.16) $f_c = 1.00 \; Hz$ $A = 1.61 \; km^2$ $D = 3.78 \; cm$ $\Delta \sigma = 2.32 \; MPa$ 10² S Spectral Ratio 10¹ 10⁰ Single station Stacked Best fit 10° 101

Frequency (Hz)

References

- Calderoni, G., Rovelli, A., Ben-Zion, Y., & Di Giovambattista, R. (2015). Along-strike rupture directivity of earthquakes of the 2009 L'Aquila, central Italy, seismic sequence. *Geophysical Journal International*, 203(1), 399-415. https://doi.org/10.1093/gji/ggv275
- Yoon, C. E., Yoshimitsu, N., Ellsworth, W. L., & Beroza, G. C. (2019).
 Foreshocks and mainshock nucleation of the 1999 M w 7.1 Hector Mine,
 California, Earthquake. *Journal of Geophysical Research: Solid Earth*, 124(2),
 1569-1582. https://doi.org/10.1029/2018JB016383
- **Zhou, Y.**, C. Ren, A. Ghosh, H. Meng, L. Fang, H. Yue, S. Zhou, & Y. Su (2022, under review). Seismological Characterization of the 2021 Yangbi Foreshock-Mainshock Sequence, Yunnan, China: More than a Triggered Cascade. *Journal of Geophysical Research: Solid Earth*