姓	名: 學	號:	成績:
Ele	ectromagnetic(II) Quiz #6		May 22, 2024
1.	請解釋下列名詞。		64%
	(a) 均勻平面波:		
	(b) 波前及相位速度:		
	(c) 本質阻抗:		
	(d) 橫向電磁波:		
	(e) 波數與傳播常數的不同]:	
	(f) 衰減常數與相位常數的]單位:	
	(g) 損耗正切:		
	(h) 集膚深度:		
2.	均勻平面波頻率為 300MI	Hz 其電場強度為 $\vec{E} = \vec{a}_x E_x$ 在無	員材料(ε _r =9,μ _r =1)中往+z 方向傳
	播·若在 t=0 時在 z= $\frac{1}{18}$ m	處測得最大電場強度為 10(V/m	(\mathbf{n}) ·請寫出 \overrightarrow{E} 和 \overrightarrow{H} 的瞬時表示式。
	10		9%
3	若有一火車發出哨音(680)	Hz)往與觀測者 60°夾角方向移動	助,若火車的辣度 72(Km/hr),
	•	率為何? (聲波的波速約為 340m	, ,
4.		V/m),若以 900MHz 頻率在有 E正切為 0.001,請問此波在此 ^z	i損耗材料中傳播,如果此材料的 材料中的平均功率消耗為何? 9%
5.			振幅為 100(μV/m)·若在距離 P1 勺衰減常數為何·請分別用 Np 與 9%

Electromagnetic(II) Quiz #6 Solution

- 1. 解釋如下:
 - (a) uniform plane wave, 傳播方向垂直的平面上其電場與磁場為均勻的波
 - (b) wavefront and phase velocity:在平面波上相位相同點形成的平面,從一個相位點移動到下一個同相位點亦即一個波長除以所需的時間
 - (c) intrinsic impedance:在均勻平面波中電場振幅除以磁場振幅等於固定的值= $\sqrt{\frac{\mu}{\varepsilon}}$
 - (d) Transverse Electromagnetic wave:在傳播方向無電場與磁場分佈且電場與磁場也相互垂 直的電磁波
 - (e) Wave number and propagation constant: k (波數)=jγ(傳播常數)
 - (f) Attenuation constant and phase constant: α (Np/m), β (rad/m)
 - (g) Loss tangent: $σ/ωε_rε_0$: σ:介質導電度・ω:電磁波的頻率・ $ε(=ε_rε_0)$:介質的介電常數。
 - (h) Skin depth: 在導體表面電磁波穿透後衰減至原來的 e-1 的深度。
- 2. $\vec{E} = \vec{a}_x E_0 \cos(6\pi \times 10^8 \text{t-}kz + \psi)$ $k = \omega \sqrt{\varepsilon_r \varepsilon_0 \mu_0} = 6\pi \times 10^8 \times 3/(3 \times 10^8) = 6\pi$ $\psi = kz = \pi/3 \text{ or } 60^\circ$ $\vec{E} = \vec{a}_x 10 \cos(6\pi \times 10^8 \text{t-}6\pi z + \pi/3)$ $\eta = \sqrt{\frac{\mu_0}{\varepsilon_r \varepsilon_0}} = 120\pi/3 = 40\pi = 125.6\Omega$ $\vec{H} = \vec{a}_y \frac{10}{40\pi} \cos(6\pi \times 10^8 \text{t-}6\pi z + \pi/3) = 7.95 \times 10^{-2} \cos(6\pi \times 10^8 \text{t-}6\pi z + \pi/3)$
- 3. $f = f_0(1 + \frac{u}{s}\cos\theta) = 680(1 + \frac{20}{340}\cos60^\circ) = 700$ Hz
- 4. loss tangent= $0.001 = \frac{\sigma}{\omega \varepsilon_r \varepsilon_0}$ $\Rightarrow \sigma = 1 \times 10^{-3} \times 2\pi \times 9 \times 10^8 \times 10 \times \frac{1}{36\pi} \times 10^{-9} = 5 \times 10^{-4}$ 功率消耗= $\frac{1}{2}$ σ E²= $2.5 \times 10^{-4} \times 4 = 1 (mW/m^3)$
- 5. 衰減量為 $60/100=0.6 \Rightarrow 100 \times \alpha = -\ln 0.6 = 0.51 \text{Np}$ 或 $-20 \log 0.6 = 4.43 \text{dB}$ $\alpha = 5.1 \times 10^{-3} \text{ Np/m}$ 或 $4.43 \times 10^{-2} \text{ dB/m}$