Sutovsky

Introduction

Interence

Real dat

Real data

Estimation of species richness

Peter Sutovsky

School of Mathematics & Statistics, Newcastle University, UK

26th May, 2017

> Peter Sutovsky

Introduction

Interend

Real dat results

- Biodiversity ("biological diversity,") variety and variability of life on Earth.
- Method: metagenomics (environmental genomics, ecogenomics, or community genomics)
 - Study of genetic material recovered directly from environmental samples (Wikipedia)

PROBLEM: METAGENOMIC SURVEYS RECOVER ONLY A SMALL FRACTION OF THE EXTANT DIVERSITY. NONETHELESS, MANY METHODS TREAT THE OBSERVED SAMPLE AS THE POPULATION.

Microbes 3

Estimation of species richness

> Peter Sutovsky

Introduction

Models

Real da

 Microbes are required to sustain almost every other form of life and influence

- Climate, health, and agricultural productivity and the fate of pollutants
- Sometimes unanticipated modulators
- Laboratory cultures different form real life microbial communities
- How do these microbial communities form?

Peter Sutovsky

Introduction

Inference Models

- Diversity the number of taxa or species richness as well as their relative abundance.
- Operational taxonomic units (OTUs) based on differences of 16S rDNA sequences
- Taxa clusters of sequences that differ by at most 3% of sites
- Microbial world 10³⁰organisms
 - Vast, diverse and largely unexplored
 - Observed through relatively small sample size
- Sample size Technological and financial limitations
- How big a sample is big enough?

Peter Sutovsky

Introduction

Models

- Microbial ecology (or environmental microbiology) is the ecology of microorganisms
 - their relationship with one another and with their environment.
- It concerns the three major domains of life Eukaryota, Archaea, Bacteria, and viruses
 - fingerprinting of microbial communities or assessing biodiversity
- Microbial ecology and biotechnology provide tools to address environmental and economic challenges
 - e.g. for fingerprinting, assessing biodiversity, and tracking the changes of microbial communities

Peter Sutovsky

Introduction

Inference Models

- Relative species abundance and species richness describe key elements of biodiversity
- Relative species abundance
 - component of biodiversity and
 - refers to how common or rare a species is relative to other species in a defined location or community

Peter Sutovsky

Introduction

Inference Models

Peter Sutovsky

Introduction

Models

Real data results

Physical DNA sample

Next-generation sequencing;
Bioinformatic preprocessing

Collection of sequences
Alignment, clustering, counting

Cluster sequences at some % "identity," typically 97% {clusters} = {OTUs} OTU = "operational taxonomic unit"

Peter Sutovsky

Introduction

Models

Real data results

Comprised of:

- *species richness*: number of species present
- heterogeneity of species
 - relative abundance of each species present in the community

Peter Sutovsky

Introduction

Inference Models

- Estimate total population diversity number of species, classes, taxa, OTUs – based on frequency count data
- Data =
 - # of units observed exactly once in sample (singletons);
 - # observed exactly twice (doubletons);
 - # observed exactly three times; . . .

Estimation of species richness Peter Sutovsky

Introduction

Inference

Real data

Global Ocean Survey (GOS) data from the upper oceans given by Rusch et al. (2007)

Abundance	No. of species
1	311
2	213
3	61
4	38
5	33
34	1
36	2
38	1
39	1
365	1
1163	1

Peter Sutovsky

Introduction

Models

Figure: Abundance of species - whole population

Peter Sutovsky

Introduction

Interenc

Real data results

Figure: Abundance of species - 0.02% of community sampled

Peter Sutovsky

Introduction

Inference Models

Real data results

Figure: TAD of TARA ocean data (ERR315852)

Peter Sutovsky

Introduction

Inference Models

Real data

i – abundance

- $P_0 = P(n = 0 | \theta')$
- f_k number of taxa with abundance k
- \blacksquare S total number of taxa in the community
- $D = \sum_{k=1}^{L} f_k$ number of observed taxa in sample
- $f_0 = S D$ number of unobserved taxa in sample

$$\hat{S} = D + \hat{E}[f_0]$$

$$E[f_0] = \sum_{i=1}^{S} P(n_i = 0)$$

Methods 15

Estimation of species richness

Peter Sutovsky

Introduction

Inference Models

iviodeis

Real data results Diversity-estimator methods:

- 1 Parametric
- 2 Non-parametric
- 3 Coverage based

Peter Sutovsky

Introduction

Inference Models

- Based on specific assumptions about the probability distributions of species densities
- Maximize the Likelihood of the observed f_k as a function of S and the parameters of the probability distributions of species densities.

Peter Sutovsky

Introduction

Inference Models

Deelele

- $lue{S}$ classes/taxa/species/OTUs in population.
- Assumption: Each species independently contributes Poisson-distributed number of representatives to the sample:
 - Sample: $X_1, X_2, X_3, X_4, ..., X_S$
- Counts ~ zero-truncated mixed Poisson:

$$X_1 \sim Poisson(\lambda_1), \ X_2 \sim Poisson(\lambda_2),$$

 $Poisson(\lambda_3), \ldots, \ X_S \sim Poisson(\lambda_S)$

Peter Sutovsky

Introduction

Inference Models

- Species (taxon) i contributes a Poisson-distributed number X_i of replicates to the sample i.e., taxon i appears in the sample X_i
- Units appear independently in the sample.
- lacksquare Fundamental problem: heterogeneity, i.e., unequal Poisson means λ_i
- standard approach: model λ_i 's as i.i.d. replicates from some mixing distribution F
- Frequency counts f_k are then marginally i.i.d. F-mixed Poisson random variables Zero-truncated since zero counts X_i are unobservable

Sutovsky

Inference Models

- Mixing distribution F, i.e., distribution of sampling intensities λ , is also called *species abundance distribution* (SAD) or *taxon abundance distribution* (TAD)
- Assumptions: Each species contribution to the sample is independent and identically distributed
- Both assumptions are probably wrong

Peter Sutovsky

Introduction

Inference Models

- $T(\lambda|\theta)$ Normalised TAD, where
- lacksquare is vector of parameters
 - λ taxon abundance
- Quince, Curtis, and Sloan (2008)
 - Assumption: probability that individual sampled (with replacement) is from given taxon is $\frac{\lambda}{N}$, where N is size of population
 - Number of times a taxon appears in the sample will be approximately \sim Poisson $(\frac{\lambda L}{N})$, where L is the sample size and $\frac{L}{N}$ is sampling frequency

> Peter Sutovsky

Inference Models

- Parametric, low-dimensional parameter vector
 - 1 Lognormal
 - 2 Inverse Gaussian
 - 3 Generalized inverse Gaussian (Sichel)
 - 4 Log-t
 - 5 None \equiv point mass at $\lambda \equiv$ all equal species sizes Gamma (Fisher, 1943)
 - 6 Pareto
 - 7 Stable
- Finite mixture of exponentials semiparametric

Peter Sutovsky

Introduction

Inference Models

- Approach based on paper of Quince, Curtis, and Sloan (2008)
- \blacksquare Probability that we will observe a taxon n times:

$$P_n(r,\theta) = \int_0^\infty \frac{e^{-r\lambda}}{n!} (r\lambda)^n T(\lambda|\boldsymbol{\theta}) d\lambda, \qquad (1)$$

- $T(\lambda|\theta)$ is taxon abundance (mixing) distribution
- $ightharpoonup r = rac{L}{N}$ is sampling ratio
- lacksquare N is total population number
- lacksquare θ is vector of parameters
- lacksquare λ is taxon abundance

Peter Sutovsky

Introduction

Inference Models

Real data

■ Substitution $x = r\lambda$

$$P_n\left(\boldsymbol{\theta'}\right) = \int_{0}^{\infty} \frac{e^{-x}}{n!} x^n T\left(\frac{x}{r}|\boldsymbol{\theta}\right) dx,$$

using invariance of most abundance distribution to rescaling

$$T\left(\frac{X}{r}|\theta\right) = T\left(X|\theta'\right)$$

where heta' are rescaled parameters

$$P_n\left(\boldsymbol{\theta'}\right) = \int_{0}^{\infty} \frac{e^{-x}}{n!} x^n T\left(X|\boldsymbol{\theta'}\right) dx$$

Peter Sutovsky

Introduction

Inference Models

$$P(f|\theta', S) = P_0^{S-D} \prod_{i=1}^{L} \frac{P_i^{f_i}}{f_i} \frac{S!}{(S-D)!}$$

- *i* abundance
- $P_0 = P(n = 0 | \boldsymbol{\theta'})$
- \bullet f_i number of taxa with abundance i
- \blacksquare S total number of taxa in the community
- $D = \sum_{i=1}^{L} f_i$ number of observed taxa in sample
- $f_0 = S D$ number of unobserved taxa in sample

Peter Sutovsky

Introduction

Inference Models

- Estimated parameters: #taxa in community, mean and variance of lognormal distribution
- lacktriangle TAD as lognormal distribution numerical integration to calculate P_n
- Bayesian parameter estimation using Metropolis-Hastings MCMC with quasi-noninformative priors
- Run length 400 000 to 1 200 000 steps with 180 000 burn-in period

Estimating sampling effort with log-normal TAD 26

Estimation of species richness

Peter Sutovsky

Introduction

Inference Models

Real data

From community abundance λ to sample abundance $x=r\lambda$

- For $\ln\left(\lambda = X\frac{N}{L}\right) \sim N\left(\mu, \sigma^2\right)$, $\ln\left(X = \lambda\frac{L}{N}\right) \sim N\left(M, V\right)$, since $M = \mu \ln\left(\frac{L}{N}\right)$
- Using the fact that $M^{new} = ln\left(\frac{L^{new}}{L}\right) + M$.
- lacktriangle Observed fraction of taxa $c^* = \frac{E[D]}{S} = 1 P_0(M^{new}, V)$
- For chosen c^* , observed L and sample of parameters M and V from posterior distribution
 - 1 Find M^{new} s.t. $c^* = 1 P_0(M^{new}, v)$
 - 2 Calculate $L^{new} = exp (M^{new} M)$

Non-parametric estimation

Estimation of species richness

Peter Sutovsky

Introduction

Inference Models

Real data

 Depend on no assumptions about the probability distributions of species densities e.g.

■ Chao estimator 1 (Chao 1984):

$$\hat{S}_{min} = D + \hat{E}[f_0]$$
, where

$$\hat{E}[f_0] = \frac{(f_1)^2}{2f_2}$$

and f_i is number of species with abundance i.

First order Jackknife (Burnham and Overton 1979):

$$\hat{E}\left[f_{0}\right] = \frac{L-1}{L}f_{1},$$

where L- number of sampled units

Peter Sutovsky

Introduction

Inference Models

- Coverage is the sum of the proportions of total density accounted for by all species encountered in the sample.
- If all species had equal density
 - $c = \frac{D}{S}$ and therefore $\hat{S} = \frac{D}{\hat{c}}$
- Chao (Chao 1987, Chao and Lee 1992) has developed coverage-based estimators (ACE) by for the general case of unequal densities based on the coverage of infrequent species

Sutovsky

Inference Models

Real data

- (Willis & Bunge 2015)
- Idea:
- ratios $r(j) = \frac{(j+1)f_{j+1}}{f_i}$ are ~ linear :

$$r(j) = \frac{(j+1)f_{j+1}}{f_j} = \alpha + \beta_j$$

■ Project line downward to obtain $f_0 = \#$ of unobserved species

Estimation of number of species S in community for various microbial datasets 30

Estimation of species richness

Peter Sutovsky

Introduction

Interence

Estimation of number of species in community for selected dataset 31

species richness Peter Sutovsky

Estimation of

Introduction

Inference Models

Peter Sutovsky

Introduction

Inference Models

Real data results

- Recent results look promising more testing on real and synthetic data from various environments needed
- Future work
 - Fitting other TAD distributions: inverse Gaussian, log-Student's t, Sichel
 - Model comparison
 - Including into EBI pipeline

This is joint work with Darren Wilkinson and Tom Curtis , funded jointly with the EBI by the BBSRC BBR grant: "EBI Metagenomics Portal" led by Rob Finn at the EBI