Machine Learning HW7 Report

學號:R07943107 系級:電子所碩一 姓名:徐晨皓

1. PCA of color faces:

a. 請畫出所有臉的平均。

b. 請畫出前五個 Eigenfaces , 也就是對應到前五大 Eigenvalues 的 Eigenvectors。

c. 請從數據集中挑出任意五張圖片,並用前五大 Eigenfaces 進行 reconstruction,並畫出結果。

Name	Original image	Reconstructed image
1.jpg		(35)
10.jpg		
22.jpg		(35)
37.jpg		
72.jpg		

d. 請寫出前五大 Eigenfaces 各自所佔的比重,請用百分比表示並四捨五入 到小數點後一位。

	2nd eigenface		2	
4.1%	2.9%	2.4 %	2.2%	2.1%

2. Image clustering:

a. 請實作兩種不同的方法,並比較其結果(reconstruction loss, accuracy)。 (不同的降維方法或不同的 cluster 方法都可以算是不同的方法)

● 方法一

先使用自己的 autoencoder (在問題 2c 有詳細介紹)降維,再使用 sklearn 的 PCA(whiten=True) 進一步降維,最後使用 sklearn 的 KMeans(init='k-means++', n clusters=2, max iter=2000)進行分群。

Autoencoder 的 reconstruction loss 為 0.00176 Private score 為 0.97935 public score 為 0.97954 。

● 方法二

先使用自己的 autoencoder (在問題 2c 有詳細介紹)降維,再使用 sklearn 的 PCA(whiten=True) 進一步降維,最後使用 sklearn 的 Birch(branching_factor=50, n_clusters=2)進行分群。

Autoencoder 的 reconstruction loss 為 0.00176 Private score 為 0.85912 public score 為 0.85867 \circ

● 結果比較

方法一使用 KMeans 的分群方法實驗上比方法二使用的 Birch 還要好。從實驗來看,branching_factor 的增加,能使方法二準確率上升,但branching_factor 太大時,會造成記憶體不足的問題,故方法二只將branching_factor 設為 50。

b. 預測 visualization.npy 中的 label,在二維平面上視覺化 label 的分佈。(用PCA, t-SNE 等工具把你抽出來的 feature 投影到二維,或簡單的取前兩維 2 的 feature)其中 visualization.npy 中前 2500 個 images 來自 dataset A,後 2500 個 images 來自 dataset B,比較和自己預測的 label 之間有何不同。

● 方法

直接使用 sklearn 的 PCA 將 data 降至二維,再使用 sklearn 的 KMeans 進行分群。由於直接降至二維因此 label 正確率只有 80%左右。

● 正確 label 的結果(圖一)

● 自己預測的 label 的結果(圖二)

● 觀察與討論

我們可以發現圖二有非常明顯的界線在兩群之間,這是因為 KMeans 會偏向於尋找 nearest neighbors,所以不會有混雜的情況。圖 一為正確 labels 的結果,我們可以發現有很嚴重交雜的情況,這是因 為我們將原 data 降至二維,因此損失很多資訊,導致 KMeans 無法很 好的區分開這兩種 labels。 c. 請介紹你的 model 架構(encoder, decoder, loss function...), 並選出任意 32 張圖片, 比較原圖片以及用 decoder reconstruct 的結果。

● 模型架構

Layer (type)	Output	Shape	Param #
input_1 (InputLayer)	(None,	32, 32, 3)	0
conv2d_1 (Conv2D)	(None,	32, 32, 64)	1792
max_pooling2d_1 (MaxPooling2	(None,	16, 16, 64)	0
conv2d_2 (Conv2D)	(None,	16, 16, 32)	18464
max_pooling2d_2 (MaxPooling2	(None,	8, 8, 32)	0
conv2d_3 (Conv2D)	(None,	8, 8, 32)	9248
up_sampling2d_1 (UpSampling2	(None,	16, 16, 32)	0
conv2d_4 (Conv2D)	(None,	16, 16, 64)	18496
up_sampling2d_2 (UpSampling2	(None,	32, 32, 64)	0
conv2d_5 (Conv2D)	(None,	32, 32, 3)	1731
Total params: 49,731 Trainable params: 49,731 Non-trainable params: 0			

上圖為本次作業 autoencoder 的架構。

- I. 在 encoder 部分,使用兩層 convolutional layers 及兩層 maxpooling layers 交錯而成。
- II. 在 decoder 部分,使用三層 convolutional layers 及兩層 upsampling layers 交錯而成。
- III. Loss function 使用 mean squared error (mse)。
- IV. Optimizer 使用 adam。

以自己實作的 encoder 降維後,再以 sklearn 的 PCA(whiten=True)再進行降維。最後使用 sklearn 的 KMeans 將降維後的資料進行分群。

● 原圖與重建後結果

左圖為原圖,右圖為重建後圖片。可以發現右圖較左圖模糊一些。