

IN THE CLAIMS

Please amend the Claims as follows:

1. (previously presented) A method of forming dual damascene openings in the fabrication of an integrated circuit device comprising:
 - providing metal lines covered by an insulating layer overlying a semiconductor substrate;
 - depositing an organic dielectric layer overlying said insulating layer;
 - depositing an inorganic dielectric layer overlying said organic dielectric layer wherein no etch stop layer is formed between said organic dielectric layer and said inorganic dielectric layer;
 - etching a via pattern into said inorganic dielectric layer;
 - etching said via pattern into said organic dielectric layer using patterned said inorganic dielectric layer as a mask; and
 - thereafter etching a trench pattern into said inorganic dielectric layer wherein said organic dielectric layer acts as an etch stop to complete said forming of said dual damascene openings in the fabrication of said integrated circuit device.

2. (original) The method according to Claim 1 further comprising forming semiconductor device structures including gate electrodes and source and drain regions in and on said semiconductor substrate wherein said metal lines overlie and contact said semiconductor device structures.

3. (previously presented) The method according to Claim 1 wherein said organic dielectric layer comprises polyimides, HOSP, SILK, FLARE, benzocyclobutene (BCB), methylsilsesquioxane (MSQ), or organic polymers.

4. (previously presented) The method according to Claim 1 wherein said inorganic dielectric layer comprises CORAL, BLACK DIAMOND, fluorinated silicate glass (FSG), carbon-doped FSG, nitrogen-doped FSG, Z3MS, XLK, or hydrogen silsesquioxane (HSQ).

5. (original) The method according to Claim 1 further comprising filling said dual damascene openings with a metal layer.

6. (previously presented) A method of forming dual damascene openings in the fabrication of an integrated

circuit device comprising:

providing metal lines covered by an insulating
5 layer overlying a semiconductor substrate;
 depositing an organic dielectric layer overlying
 said insulating layer;
 depositing an inorganic dielectric layer overlying
 said organic dielectric layer wherein no etch stop layer
10 is formed between said organic dielectric layer and said
 inorganic dielectric layer;
 etching a trench pattern into said inorganic
 dielectric layer; and
 thereafter etching a via pattern into said organic
15 dielectric layer through said trench pattern to complete
 said forming of said dual damascene openings in the
 fabrication of said integrated circuit device.

7. (original) The method according to Claim 6 further
comprising forming semiconductor device structures
including gate electrodes and source and drain regions
in and on said semiconductor substrate wherein said
metal lines overlie and contact said semiconductor
device structures.

8. (previously presented) The method according to Claim
6 wherein said organic dielectric layer comprises

polyimides, HOSP, SILK, FLARE, benzocyclobutene (BCB), methylsilsesquioxane (MSQ), or organic polymers.

9. (previously presented) The method according to Claim 6 wherein said inorganic dielectric layer comprises CORAL, BLACK DIAMOND, fluorinated silicate glass (FSG), carbon-doped FSG, nitrogen-doped FSG, Z3MS, XLK, or hydrogen silsesquioxane (HSQ).

10. (original) The method according to Claim 6 further comprising filling said dual damascene openings with a metal layer.

11. (currently amended) A method of forming dual damascene openings in the fabrication of an integrated circuit device comprising:

providing metal lines covered by an insulating
5 layer overlying a semiconductor substrate;
depositing an organic dielectric layer overlying
said insulating layer;
depositing an inorganic dielectric layer overlying
said organic dielectric layer wherein no etch stop layer
10 is formed between said organic dielectric layer and said
inorganic dielectric layer;
etching a via pattern into said inorganic

dielectric layer; and

15 thereafter simultaneously etching said via pattern
 into said organic dielectric layer and etching a trench
 pattern into said inorganic dielectric layer wherein one
 etching recipe is used for said organic dielectric layer
 and a different etching recipe is used for said
 inorganic dielectric layer to complete said forming of
20 said dual damascene openings in the fabrication of said
 integrated circuit device.

12. (original) The method according to Claim 11 further comprising forming semiconductor device structures including gate electrodes and source and drain regions in and on said semiconductor substrate wherein said metal lines overlie and contact said semiconductor device structures.

13. (previously presented) The method according to Claim 11 wherein said organic dielectric layer comprises polyimides, HOSP, SILK, FLARE, benzocyclobutene (BCB), methylsilsesquioxane (MSQ), or organic polymers.

14. (previously presented) The method according to Claim 11 wherein said inorganic dielectric layer comprises CORAL, BLACK DIAMOND, fluorinated silicate glass (FSG),

carbon-doped FSG, nitrogen-doped FSG, Z3MS, XLK, or hydrogen silsesquioxane (HSQ).

15. (original) The method according to Claim 11 further comprising filling said dual damascene openings with a metal layer.

16. (previously presented) A method of forming dual damascene openings in the fabrication of an integrated circuit device comprising:

providing metal lines covered by an insulating
5 layer overlying a semiconductor substrate;
depositing an inorganic dielectric layer overlying
said insulating layer;
depositing an organic dielectric layer overlying
said inorganic dielectric layer wherein no etch stop
10 layer is formed between said inorganic dielectric layer
and said organic dielectric layer;
etching a via pattern into said organic dielectric
layer;
etching said via pattern into said inorganic
15 dielectric layer using patterned said organic dielectric
layer as a mask; and
thereafter etching a trench pattern into said
organic dielectric layer wherein said inorganic

dielectric layer acts as an etch stop to complete said
20 forming of said dual damascene openings in the
fabrication of said integrated circuit device.

17. (original) The method according to Claim 16 further
comprising forming semiconductor device structures
including gate electrodes and source and drain regions
in and on said semiconductor substrate wherein said
metal lines overlie and contact said semiconductor
device structures.

18. (previously presented) The method according to Claim
16 wherein said inorganic dielectric layer comprises
CORAL, BLACK DIAMOND, fluorinated silicate glass (FSG),
carbon-doped FSG, nitrogen-doped FSG, Z3MS, XLK, or
hydrogen silsesquioxane (HSQ).

19. (previously presented) The method according to Claim
16 wherein said organic dielectric layer comprises
polyimides, HOSP, SILK, FLARE, benzocyclobutene (BCB),
methylsilsesquioxane (MSQ), or organic polymers.

20. (original) The method according to Claim 16 further
comprising filling said dual damascene openings with a
metal layer.

CS-00-025

21-30. (canceled)