Game Trees, Minimax, Alpha-Beta Pruning (Project2)

Nguyen Quoc Huy

23020082

CS 188

Method

Research Design

Objective: Understand the terminology of Game Trees, Minimax and Alpha-beta pruning.

Results

Fundamental Terminology

- Adversarial search problems, known as games.
- Type of games:
 - + Deterministic or Stochastic (probabilistic).
 - + Zero-sum.
 - + Number of players.
 - + Perfect information.
- Adversarial search returns a strategy or policy.
- Standard game consists of:
 - + Initial state.
 - + Players.
 - + Actions.
 - + Transition model.
 - + Terminal test.
 - + Terminal values.

Minimax

- Zero-sum-game algorithm.
- The opponent we face behaves optimally.
- Game tree:
 - + State value: optimal score attainable by the agent that controls that state.

- + Terminal state: given end assumption.
- + Terminal utility: the value of a terminal state.
- We aim to maximize our score and minimize the margin of defeat:
 - + \forall agent-controlled states, $V(s) = \max V(s')$ (s' \in successors(s)).
 - + \forall opponent-controlled states, $V(s) = \min V(s')$ (s' \in successors(s)).
 - + \forall terminal states, V(s) = known.

Alpha-Beta Pruning

- An optimization for minimax.
- We can prune the search tree based on max's best option on the path to the root and min's best option on the path to the root.

Evaluation Function

- Functions take in a state and output an estimate of the true minimax value of that node.
- Depth-limited minimax: we give non-terminal nodes mock terminal utilities determined by a evaluation function.
 - A common design for an evaluation function:

- + Each feature fi is assigned a corresponding weight wi.
- + Features are some elements of a game state that we can extract and assign a numerical value.

Algorithm

I am currently revisiting my learning by implementing various search algorithms from previous lectures.