CS 2850 – Networks HW 3

jfw225

September 2022

- 1. Let b_i be the bid made by the *i*-th bidder, and let b_j be the bid made by the *j*-th bidder where $i, j \in \{2, 3\}$ and $i \neq j$. Suppose that bidder *i* bids at least as much as bidder *j* (i.e. $b_i \geq b_j$). In order to win, we must bid $b_1 > b_i$ for the item. Since this is a second-price sealed-bid auction, we will pay b_i for the item if we win which yields a payoff of $v_1 b_i$. If instead we lose the auction, then our payoff is zero. From this, we consider two cases:
 - Case 1: $\mathbf{b_i} > \mathbf{v_1}$ If $b_i > v_1$ is the second highest bet and we won the auction, then it must be the case that we bid more than v_1 . In this case, we are guaranteed to have a payoff of $v_1 b_i \leq 0$. Notice that winning when $b_i > v_1$ is at best as valuable as not playing at all. Thus, we should never bid more than v_1 when $b_i > v_1$.
 - Case 2: $\mathbf{b_i} \leq \mathbf{v_1}$ In this case, we know that both b_i and b_j are at $\overline{\text{most } v_i}$. We will still pay b_i for the item, but we are guaranteed to have a payoff of at least zero. More specifically, our payoff is $v_1 b_i \geq 0$. Notice that when $b_i \leq v_1$, a bid of $b_1 = v_i$ is guaranteed to yield the exact same payoff as a bid of $b_1 > v_i$.

Thus, bidding above $v_1 = 30$ never increases the payoff and only adds additional risk. Therefore, our friend is incorrect and we should never bid more than 30.

2. Let $\psi_i(R, v_i, b_i, b_j)$ be the payoff for bidder i when placing a bid of b_i for an object valued at v_i while facing off in a two-buyer auction against some other bidder j who places a bid of b_j . In addition, the auction is a second-price auction with a reserve price R. Let us further define this payoff function as

$$\psi_i\left(R,v_i,b_i,b_j\right) = \begin{cases} 0 & \text{if } b_i \leq b_j \text{ or } b_i \leq R, \\ v_i - \max\{b_j,R\} & \text{if } b_i > b_i \text{ and } b_i > R. \end{cases}$$

(a) Let us refer to the opposing buyer as bidder j and ourselves as bidder i. From the question, we know that R = 10 and our value is $v_i = 15$. Our goal is to bid such that our expected payoff is maximized, or

rather, pick a value b_i such that $\mathbb{E}\left[\psi_i\left(R, v_i, b_i, b_j\right)\right]_{b_j}$ is maximized, where the expected payoff is given by

$$\mathbb{E}\left[\psi_{i}\left(R,v_{i},b_{i},b_{j}\right)\right]_{b_{j}} = \sum_{b \in \{5,10,15\}} \mathbb{P}\left(b_{j} = b\right) \cdot \psi_{i}\left(R = 10,v_{i} = 15,b_{i},b_{j} = b\right).$$

Computing each value of b_i gives us

$$\mathbf{b_{i}} = \mathbf{5}: \quad \mathbb{E}\left[\psi_{i}\left(R, v_{i}, b_{i} = 5, b_{j}\right)\right]_{b_{j}} = \frac{1}{3} \cdot 0 + \frac{1}{3} \cdot 0 + \frac{1}{3} \cdot 0$$

$$= 0,$$

$$\mathbf{b_{i}} = \mathbf{10}: \quad \mathbb{E}\left[\psi_{i}\left(R, v_{i}, b_{i} = 10, b_{j}\right)\right]_{b_{j}} = \frac{1}{3}(15 - 10) + \frac{1}{3}(15 - 10) + \frac{1}{3} \cdot 0$$

$$= \frac{5}{3},$$

$$\mathbf{b_{i}} = \mathbf{15}: \quad \mathbb{E}\left[\psi_{i}\left(R, v_{i}, b_{i} = 15, b_{j}\right)\right]_{b_{j}} = \frac{1}{3}(15 - 15) + \frac{1}{3}(15 - 10) + \frac{1}{3} \cdot 0$$

$$= \frac{5}{3}.$$

Since choosing $b_i = 15$ has a higher win probability than any other value and also yields an expected at least as good as the next choice, we should bid $b_i = 15$.

(b) Let m_0 be the expected revenue earned from the second-price auction with a reserve price of R=0. We can compute m_0 by summing over all possible values of $\min\{b_i,b_j\}$ (note we take the min since this is a second-price auction) and multiplying by the probability of each value occurring. This gives us

$$m_0 = \sum_{b_i \in \{5,10,15\}} \sum_{b_j \in \{5,10,15\}} \frac{1}{9} \min\{b_i,b_j\} = \$7.78.$$

(c) If in this case R=10 and the expected revenue is m_{10} , then we only include values of b_i, b_j if $b_i \ge 10$ or $b_j \ge 10$. This gives us

$$m_{10} = m_0 - \frac{1}{9} \min\{b_i = 5, b_j = 5\} = \$7.22.$$

(d) Let m_p be the expected revenue earned for the object when the seller posts it for price p. We can compute m_p by multiplying p by the probability that at least one of the buyers want to buy the object at

a price of at least p-let E_p be this event. This gives us

$$m_{p} = p \cdot \mathbb{P}(E_{p}),$$

$$m_{5} = 5 \cdot \mathbb{P}(E_{5}) = 5 \cdot \frac{9}{9} = \$5,$$

$$m_{10} = 10 \cdot \mathbb{P}(E_{10}) = 10 \cdot \frac{8}{9} = \$8.89,$$

$$m_{15} = 15 \cdot \mathbb{P}(E_{15}) = 15 \cdot \frac{5}{9} = \$8.33.$$

3. (a) The solution can be obtained by solving the following system of equations:

$$x + y = 100$$
$$10 + \frac{x}{10} = \frac{y}{20} + 17$$

which yields a Nash equilibrium of x = 80 and y = 20.

(b) Let us refer to the new route (i.e. $A \to E \to B$) as Route III. Notice that $10 + \frac{t}{10} < 17 + \frac{t}{20}$ for all $0 \le t \le 100$. Thus, it will always be faster to take Route III over Route II. In other words, Route II is strictly dominated by Route III. It follows that y=0 in the Nash equilibrium. We can determine the value of x,z by solving the following system of equations:

$$x + z = 100$$

$$10 + \frac{x}{10} = \frac{z}{10} + 10$$

which yields a Nash equilibrium of x = 50, y = 0, and z = 50.

4. (a) The following is a map of the game:

Notice that taking Route 3 is strictly dominated if there exists a Nash equilibrium such that

$$4 + \frac{x}{20} \le 12,\tag{1}$$

$$4 + \frac{x}{20} \le 12,$$
 (1)
$$2 + \frac{y}{10} \le 12.$$
 (2)

If we let z=0 for now, then we can solve the following system of equations:

$$x + y = 200$$

$$x + y = 200$$

 $4 + \frac{x}{20} = 2 + \frac{y}{10}$

which yields x = 120, y = 80. Since these values satisfy equations (1) and (2), we have a Nash equilibrium of x = 120, y = 80, z = 0.

(b) Project 1: We can find a Nash equilibrium by solving the following system of equations:

$$x + y + z = 200$$

$$4 + \frac{x}{20} = 2 + \frac{y}{10}$$
$$2 + \frac{y}{10} = 5$$

$$2 + \frac{y}{10} = 5$$

which yields a Nash equilibrium of x=20,y=30,z=150 and a total travel time of $t_1=x\left(4+\frac{x}{20}\right)+y\left(2+\frac{y}{10}\right)+5z=1000$ hours.

Project 2: With the new road, travelers can simply go from $A \to C \to D \to B$ for a constant travel time of 4+0+2 hours per traveler. This yields a Nash equilibrium of x=0,y=0,z=0 and a total travel time of $t_2=200*6=1200$ hours.

Travelers could also start by taking the $A \to D$ path until $\frac{y}{10} = 4$ -at which point it becomes more efficient to take the $A \to C$ path. Thus, y = 40 travelers will take the $A \to D$ path and 160 travelers will take the $A \to C$ path. From this point, all travelers have a choice to take the $C \to B$ path or the $D \to B$ path. Moreover, it is more efficient to take the $C \to B$ path until $\frac{x}{20} = 2$ -at which point it becomes more efficient to take the $D \to B$ path. Thus, x = 40 travelers will take the $C \to B$ path and 160 travelers will take the $D \to B$ path. This yields a Nash equilibrium of x = 40, y = 40, z = 0 and a total travel time of $t_2 = 160 \cdot 4 + y \cdot \frac{y}{10} + 160 \cdot 2 + x \cdot \frac{x}{20} = 200 \cdot 4 + 200 \cdot 2 = 1200$ hours.

Conclusion: Project 1 should be chosen over Project 2 because it has a lower total travel time.