COMP90051 Statistical Machine Learning

Semester 2, 2015

Lecturer: Ben Rubinstein

COMP90049 Revision

Covered Knowledge

- un/supervised learning
- probability theory; entropy
- association rule mining
- k-means clustering
- naive Bayes
- instance-based learning (IB1)

- feature selection (mutual information)
- decision stump/tree induction (0R, 1R, ID5)
- basic sampling (hold-out, cross-validation)
- evaluation (precision/recall/F, ROC)
- Seen: SVMs, bit of Bayes nets

Entropy

The entropy of a discrete random event x with possible states 1, ..n
 is:

$$H(x) = -\sum_{i=1}^{n} P(i) \log_2 P(i)$$

where $0 \log_2 0 =^{def} 0$

Association Rules: Definitions

- An association rule is an implication $A \to B$, where A and B are disjoint itemsets
 - $\star A =$ antecedent
 - $\star B = consequent$
- N.B. in association mining parlance:
 - \star item = attribute-value pair (I = set of items)
 - ★ itemset = set of attribute-value pairs
 - \star k-itemset = set of k attribute-value pairs
 - \star transaction = exemplar (T = set of transactions)

APriori Algorithm (Rule Generation)

k-means Clustering

- Given k, the k-means algorithm is implemented in four steps:
 - 1. Select k points at random to act as seed clusters
 - Compute seed points as the centroids of the clusters of the current partition (the centroid is the centre, i.e., mean point, of the cluster)
 - 3. Assign each instance to the cluster with the nearest centroid
 - 4. Go back to 2, stop when no reassignments
- Exclusive, deterministic, partitioning, batch clustering method

Naive Bayes (NB) Classifiers

• Classify instance
$$D = \langle x_1, x_2, ..., x_n \rangle$$
 as class $c_j \in C$
$$c = \underset{c_j \in C}{\operatorname{arg max}} P(c_j | x_1, x_2, ..., x_n)$$

$$= \underset{c_j \in C}{\operatorname{arg max}} \frac{P(x_1, x_2, ..., x_n | c_j) P(c_j)}{P(x_1, x_2, ..., x_n)}$$

$$= \underset{c_j \in C}{\operatorname{arg max}} P(x_1, x_2, ..., x_n | c_j) P(c_j)$$

$$= \underset{c_j \in C}{\operatorname{arg max}} P(c_j) \prod_{i=1}^n P(x_i | c_j)$$

Model trained using frequencies

Nearest Neighbour Classification

- Combining training—test instance scores to form an overall categorisation function:
- Method 1: index all training documents, and query the training document set with each test document; classify the test document according to the class of the top-ranked training document [1-NN]
- **Method 2:** index all training documents, and query the training document set with each test document; classify the test document according to the **majority class** within the *k* top-ranked training documents **[k-NN]**

Similarity/Distance Metrics

• Cosine similarity:

$$sim(x,y) = \frac{\vec{x} \cdot \vec{y}}{|\vec{x}||\vec{y}|} = \frac{\sum_{i} x_{i} y_{i}}{\sqrt{\sum_{i} x_{i}^{2}} \sqrt{\sum_{i} y_{i}^{2}}}$$

Relative entropy:

$$D(x || y) = \sum_{i} x_i (\log_2 x_i - \log_2 y_i)$$

or alternatively **skew divergence**:

$$s_{\alpha}(x,y) = D(x \mid\mid \alpha y + (1 - \alpha)x)$$

Feature Selection

• Mutual information:

$$MI(T;C) = \sum_{t \in \{0,1\}} \sum_{c} P(t,c) \log_2 \frac{P(t,c)}{P(t)P(c)}$$

Constructing Decision Trees: ID3

 Basic method: construct decision trees in recursive divide-andconquer fashion

FUNCTION ID3 (Root)

IF all instances at root have same class

THEN stop

ELSE Select a new attribute to use in partitioning root node instances

Create a branch for each attribute value and partition up root node instances according to each value

Call ID3(LEAF $_i$) for each leaf node LEAF $_i$

Note: we may not end up with pure leaves

Split Criteria

• The **information gain** for attribute R_A (with values $x_1,...x_m$) at a given root node R is:

$$IG(R_A|R) = H(R) - \sum_{i=1}^{m} P(x_i)H(x_i)$$

• The corresponding gain ratio is:

$$GR(R_A|R) = \frac{IG(R_A|R)}{H(R_A)}$$

$$= \frac{H(R) - \sum_{i=1}^{m} P(x_i)H(x_i)}{-\sum_{i=1}^{m} P(x_i)\log_2 P(x_i)}$$

Evaluation

• Classification accuracy: is the proportion of

$$ACC = \frac{TP + TN}{TP + FP + FN + TN}$$

Error rate:

$$ER = \frac{FP + FN}{TP + FP + FN + TN}$$

• Error rate reduction:

$$ERR = \frac{ER_0 - ER}{ER_0}$$

• Precision:

$$Precision = \frac{TP}{TP + FP}$$

• Recall:

$$Recall = \frac{TP}{TP + FN}$$

F-score:

F-score =
$$(1 + \beta^2) \frac{PR}{R + \beta^2 P}$$

Sampling

- Holdout = train a classifier over a fixed training dataset, and evaluate it over a fixed held-out test dataset
- Random Subsampling = perform holdout over multiple iterations, randomly selecting the training and test data (maintaining a fixed size for each dataset) on each iteration
- Cross Validation = partition data into N folds, and use N-1 as training data and 1 as test $\times N$ iterations
- **Stratified Cross Validation** = partition the data so as to maintain the overall class distribution within individual partitions

ROC Curves

- 1. Sort the test instances in ascending order of "rating" $t_1, t_2, ..., t_k$
- 2. Initialise $TP_{k+1} = FP_{k+1} = 0$, and set FN_{k+1} and TN_{k+1} to the number of positive and negative instances in the dataset, resp.
- 3. For each i = k, ..., 2, 1
 - i. update TP_i , FP_i , FN_i and TN_i assuming positive classification of instance i, based on the actual class of t_i and TP_{i+1} , FP_{i+1} , FN_{i+1} and TN_{i+1}
 - ii. calculate TPR and FPR at t_i
- 4. Plot the TPR and FPR values for each t_i

Generating ROC Curves: Example

Class	_	+	_	+	+	
Score	0.85	0.85	0.87	0.93	0.95	
i	1	2	3	4	5	6
TP	3	3	2	2	1	0
FP	2	1	1	0	0	0
FN	0	0	1	1	2	3
TN	0	1	1	2	2	2
TPR	$\frac{3}{3}$	$\frac{3}{3}$	$\frac{2}{3}$	$\frac{2}{3}$	$\frac{1}{3}$	0
FPR	$\frac{3}{3}$ $\frac{2}{2}$ $\frac{2}{2}$	$\frac{3}{3}$ $\frac{1}{2}$	$\frac{\frac{2}{3}}{\frac{1}{2}}$	Ö	Ö	0

Generating ROC Curves: Example

What other topics in ML have you seen?