Corso di Laurea in Informatica Algebra Lineare e Analisi Numerica Esame del 21/1/2022 (6 CFU + seconda parte per 9 CFU)

- 1. Si supponga di dover calcolare $f(x) = \frac{2x-1}{2x+1} \frac{x-2}{x+2}$ per valori di x molto grandi.
 - (a) Determinare (e discutere) il condizionamento del problema del calcolo di f(x).
 - (b) Studiare l'errore di arrotondamento nei seguenti algoritmi per il calcolo di f(x):

(b1):
$$x \mapsto f1 := \frac{2x-1}{2x+1}, \ f2 := \frac{x-2}{x+2} \mapsto y1 := f1 - f2$$

(b2):
$$x \mapsto n := 6x, d := 2x^2 + 5x + 2 \mapsto y^2 := n/d$$

2. Determinare una sequenza di rotazioni di Givens che porti il vet-

tore
$$x = \begin{pmatrix} 0 \\ 1 \\ -3 \\ 0 \\ -2 \end{pmatrix}$$
 nella forma $\begin{pmatrix} 0 \\ 0 \\ \gamma \\ 0 \\ 0 \end{pmatrix}$, con γ opportuno (esplicitare

le matrici di rotazione). Dare inoltre un'interpretazione geometrica dell'esercizio svolto.

3. Determinare i parametri a,b,c della funzione scritta nella forma

$$g(x) = a |x| + b x + c$$

che approssima ai minimi quadrati i seguenti dati:

Dare inoltre un'interpretazione geometrica dell'esercizio svolto.

4. Verificare che $\lambda=0$ è un autovalore di molteplicità 2 della matrice

$$A = \left(\begin{array}{rrr} 1 & -2 & -1 \\ -2 & 4 & 2 \\ -1 & 2 & 1 \end{array}\right)$$

e calcolare, se esiste, una diagonalizzazione di A.

Calcolare le prime 3 iterazioni del metodo delle potenze a partire dal vettore iniziale $v=\begin{pmatrix}1\\0\\0\end{pmatrix}$ e dire se il metodo delle potenze è convergente.

5. Si considerino la matrice
$$A=\left(\begin{array}{ccc}1&0&-1\\0&1&0\\-100&0&101\end{array}\right)$$
e i vettori

$$x = \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix}, b = A \cdot x \in \delta b = \begin{pmatrix} 10^{-2} \\ -10^{-2} \\ 10^{-2} \end{pmatrix}.$$

- (i) Verificare che $A^{-1} = \begin{pmatrix} 101 & 0 & 1 \\ 0 & 1 & 0 \\ 100 & 0 & 1 \end{pmatrix}$.
- (ii) Calcolare i condizionamenti $\mu_1(A)$ e $\mu_\infty(A)$ relativi alle norme $\|\cdot\|_1$ e $\|\cdot\|_\infty$ rispettivamente.
- (iii) Calcolare le norme $\|\cdot\|_2$ e $\|\cdot\|_\infty$ per ognuno dei vettori x, b e δb .
- (iv) Calcolare una maggiorazione dell'errore $\|\tilde{x} x\|_{\infty}$ per la soluzione del sistema lineare perturbato $A\tilde{x} = b + \delta b$.