Runge Kutta Example Geoffrey Matthews

October 12, 2017

Suppose we have a point moving in space, and the coordinates of the point are given by p(t). For a one-dimensional spring, the coordinates we're interested in are position, velocity, and acceleration, or

$$p(t) = (x(t), v(t), a(t))$$

For our simple spring, the acceleration is a simple function:

$$a(t) = -2x(t)$$

We also presume to know the derivative at any position:

$$p'(p(t)) = p'(x(t), v(t), a(t))$$

= $(v(t), a(t), ?)$

We don't know the derivative of the acceleration, but it will turn out not to matter.

Now, our system starts at a given time, t_0 , and advances by Δt , giving times $t_n = t_0 + n\Delta t$. When we talk about positions or derivatives or vectors at n, it is a simple translation to actual times:

$$p(n) = p(t_0 + n\Delta t)$$

$$p'(p(n)) = p'(p(t_0 + n\Delta t))$$

For Fourth Order Runge-Kutta integration, we need to calculate four new vectors, and three new points:

$$k_1(n) = p'(p(n))\Delta t$$

$$p_2(n) = p(n) + \frac{1}{2}k_1(n)$$

$$k_2(n) = p'(p_2(n))\Delta t$$

$$p_3(n) = p(n) + \frac{1}{2}k_2(n)$$

$$k_3(n) = p'(p_3(n))\Delta t$$

$$p_4(n) = p(n) + k_3(n)$$

$$k_4(n) = p'(p_4(n))\Delta t$$

We can now start to fill in our table, with $\Delta t = \frac{1}{2}$ and a = -2x.

	N	X	v	a
p(0)	0	8	0	-16
$k_1(0)$	0	$0\Delta t$	$-16\Delta t$?
$k_1(0)$	0	0	-8	?
$p_{2}(0)$	0	$8 + \frac{1}{2}0$	$0 + \frac{1}{2}(-8)$?
$p_2(0)$	0	8	-4	-16

At this point we can see why we didn't need the derivative of acceleration. When we calculate a new point, we get it just from a = -2x. Continuing:

_	N	x	v	a
p(0)	0	8	0	-16
$k_1(0)$	0	$0\Delta t$	$-16\Delta t$?
$k_1(0)$	0	0	-8	?
$p_{2}(0)$	0	$8 + \frac{1}{2}0$	$0+\frac{1}{2}(-8)$?
$p_{2}(0)$	0	8	-4	-16
$k_2(0)$	0	$-4\Delta t$	$-16\Delta t$?
$k_{2}(0)$	0	-2	-8	?
$p_{3}(0)$	0	$8 + \frac{1}{2}(-2)$	$0+\frac{1}{2}(-8)$?
$p_{3}(0)$	0	7	-4	-14
$k_{3}(0)$	0	$-4\Delta t$	$-14\Delta t$?
$k_{3}(0)$	0	-2	-7	?
$p_4(0)$	0	8 + (-2)	0 + (-7)	?
$p_4(0)$	0	6	-7	-12
$k_4(0)$	0	$-7\Delta t$	$-12\Delta t$?
$k_4(0)$	0	$-\frac{7}{2}$	-6	?

Summarizing:

Now we can use the update rule for Runge-Kutta:

$$p(1) = p(0) + \frac{k_1(0)}{6} + \frac{k_2(0)}{3} + \frac{k_3(0)}{3} + \frac{k_4(0)}{6}$$

$$x(1) = x(0) + \frac{0}{6} + \frac{-2}{3} + \frac{-2}{3} + \frac{7}{(2)(6)}$$

$$= 8 + \frac{-4}{3} + \frac{7}{12}$$

$$= 8 + \frac{-9}{12}$$

$$= 7 + \frac{1}{4}$$

$$v(1) = v(0) + \frac{-8}{6} + \frac{-8}{3} + \frac{-7}{3} + \frac{-6}{6}$$

$$= \frac{-44}{6}$$

$$= -(7 + \frac{1}{3})$$

$$a(1) = -2(7 + \frac{1}{4})$$

$$= -(14 + \frac{1}{2})$$

So now we have the next row in our table:

	N	X	v	a
p(0)	0	8	0	-16
p(1)	1	$7 + \frac{1}{4}$	$-(7+\frac{1}{3})$	$-(14+\frac{1}{2})$

and we can start on p(2)!