

系统设计与应用 (System Structuring & Applications)

Machine Learning

梁毅雄

yxliang@csu.edu.cn

Some materials from Andrew Ng, Hongyi Lee and others

机器学习系统设计

垃圾邮件分类器:

From: @foxmail.com>

Fime: 22:26:47 Dec 19, 2017 (Tuesday)

To: yxliang <yxliang@csu.edu.cn>

Consider a classification problem. Adding regularization may cause your classifier to incorrectly classify some training examples (which it had correctly classified when not using regularization, i.e. when $\lambda=0$).

梁老师,我觉得这道题的意思是:添加正则化可能会导致分类器错误地对一些训练样例进行分类(当不使用正则化时,即 λ = 0时,它已经正确分类)。 当不使用正则化时,这些训练样例都可以正确分类。

这样讲不对吧。当不使用正则化时,这些训练样例也可能被错误地分类。

From: ewfewdwqd <wqfqedqwd@edm.oemr2012.org>

(Forward by richmail_99e008e81d3c514d1da0fbb18f499fe3-yxliang=csu.e

Time: 18:08:04 Dec 28, 2017 (Thursday)

To: yxliang@csu.edu.cn

EI (GA) 检索匿名期刊

http://www.csetis.org/

一. 检索

- 1. EI期刊: BI检索官方机构的EI目录每年都会有些变化,如果某期刊2014年被踢了,2014年已经检索的文章,也会被删除。比如2014年不检索了,2013年的也会检索完:
- 2. 检索的保证:检索仅由检索机构说了才算,因此任何非检索官方的机构都没有权力也没有资格去保证检索,我们没有任何权力保证检索。我们推荐的期刊都是EI源刊,即在EI的目录里,检索的概率超过99.9%,只是我们没有资格来做这个保证;
- 3. 不检索的避免:首先:源头即期刊,我们并不是什么期刊都推荐,我们会在众多期刊中选择我们有把握的,稳健的期刊;其次,终端即作者,如果我们推荐的期刊论文出现未出版的现象,退全款,如果论文出版了未检索,扣除出版社收取费用,退掉剩余款;
- 4. BI期刊不存在全文检索与摘要检索的说法,BI检索的仅为题目+摘要+作者与单位信息,至于全文内容,BI官方仅提供查询链接也可以不提供全文

机器学习系统设计

垃圾邮件分类问题属于监督学习典型案例:

- x =邮件文本特征, y = 1(垃圾邮件)或者<math>y = 0(正常邮件)
- 特征x: Bag of Words (BoW), 对应特征的维度等于words的个数, 若邮件 文本中存在该词,则对应的分量为1, 否则为0

$$x = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

● 如何选择words? 一种简单的方案是选择5000-10000个常用字。

机器学习系统设计

如何提高垃圾邮件分类器的准确率?

- 收集更多的数据
- 设计设计更好的特征表示*x*方法
- 同源同义词合并、拼写校正等
- ...

Chain of assumptions in ML

- Fit training set well on cost function
- Fit validation set well on cost function
- Fit test set well on cost function
- Perform well in real world

错误分析

假设验证集有500个样本,算法准确率仅80%,即存在100个错分样本,此时可以 对这些错分的样本进行详细的分析,如

- 这些错分样本的类型
- 能找到那些方法或者线索(特征)可以减少错误的分类?

• ...

错误分析

100

% of total

8%

43%

Incorrectly labeled examples

Drawing of a cat;

Not a real cat.

x

y

1

O

1

Image

Dog

Great Cat

Blurry

Incorrectly
labeled

Comments

...

98

V

Labeler missed cat in background

99

V

61%

6%

•尽量采用单值评估指标:如平均准确率/错误率等

Algorithm	US	China	India	Other
A	3%	7%	5%	9%
В	5%	6%	5%	10%
C	2%	3%	4%	5%
D	5%	8%	7%	2%
E	4%	5%	2%	4%
F	7%	11%	8%	12%

- 对于癌症分类这类样本分布极为不平衡的 二分类问题,是否仍然采用(平均)准确 率进行评估?
 - 假设采用Logistic Regression来处理癌症分类, 发现测试集上的错误率为1%
 - 但若实际癌症只有0.5%,若一简单分类器把所有的样本都判别为正常,则错误率只有0.5%,是否该选择这一简单分类器?

$$precision = \frac{TP}{\hat{P}} = \frac{TP}{TP + FP}$$

$$recall = \frac{TP}{P} = \frac{TP}{TP + FN}$$

$$specificity = \frac{TN}{N} = \frac{TN}{FP + TN}$$

$$accuracy = \frac{TP + TN}{P + N}$$

		y		
		1	0	
\hat{y} -	1	TP	FP	\hat{P}
	0	FN	TN	\hat{N}
		P	N	

Table 1: Confusion Matrix

$$precision = PPV = \frac{TP}{\hat{P}} = \frac{TP}{TP + FP}$$

$$recall = TPR = \frac{TP}{P} = \frac{TP}{TP + FN}$$

Classifier	Precision	Recall
A	95%	90%
В	98%	85%

Code

$$F_1Score = \frac{2}{\frac{1}{precision} + \frac{1}{recall}}$$

Classifier	Accuracy	Running time
A	90%	80 ms
В	92%	$95 \mathrm{ms}$
C	95%	1,500ms

 $\max(\texttt{Accuracy} - \lambda \texttt{Running time})$

 \max Accuracy

s.t. Running time $\leq 100ms$

训练集、验证集与测试集

Regions:

- US
- UK
- Other Europe
- South America
- India
- China
- Other Asia
- Australia

验证集

训试集 Experiment

训练集、验证集

Data from webpages

Data from mobile app

如何选择训练集与验证集?

验证集与测试集

- 如何选择训练集、验证集和测试集?
- 要确保你在训练集上的训练、在验证集上调参、 模型选择等工作真正发挥了作用
- Choose a validation set and test set to reflect data you expect to get in the future and consider important to do well on.

快速迭代: Speech recognition example

- Noisy background
 - Café noise
 - Car noise
- Accented speech
- Far from microphone
- Young children's speech
- Stuttering
- •

- Set up dev/test set and metric
- Build initial system quickly
- Use Bias/Variance analysis & Error analysis to prioritize next steps.

Guideline:

Build your first system quickly, then iterate

迁移学习

- Task A and B have the same input x.
- You have a lot more data for Task A than Task B
- Low level features from A could be helpful for learning

多任务学习

多任务学习

- When multi-task learning makes sense
 - Training on a set of tasks that could benefit from having shared lower-level features.
 - Usually: Amount of data you have for each task is quite similar
 - Can train a big enough model to do well on all the tasks

Machine Learning

应用

异常检测

Aircraft engine features:

 $x_1 = \text{heat generated}$

 $x_2 = \text{vibration intensity}$

Dataset: $\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$

New engine: x_{test}

• • •

Is x_{test} anomalous?

方法: 估计 x_{test} 出现的概率 若 $p(x_{test}) < \epsilon$ 小概率事件(异常) 若 $p(x_{test}) \ge \epsilon$ 正常 常采用高斯模型(或混合高斯模型)

Problem Formulation

- Given a set of training data $\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$
- We want to find a function detecting input is similar to training data or not.

Applications

- Fraud Detection
 - Training data: 正常刷卡行为, x: 盗刷?
 - Ref: https://www.kaggle.com/ntnu-testimon/paysim1/home
 - Ref: https://www.kaggle.com/mlg-ulb/creditcardfraud/home
- Network Intrusion Detection
 - Training data: 正常连接, x: 攻击行为?
 - Ref: http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
- Cancer Detection
 - Training data: 正常细胞, x: 癌细胞
 - Ref: https://www.kaggle.com/uciml/breast-cancer-wisconsindata/home

Binary Classification?

- Given a set of normal data data $\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$
- Given anomaly $\{\hat{x}^{(1)}, \hat{x}^{(2)}, \dots, \hat{x}^{(m)}\}\$
- Then training a binary classifier?

Binary Classification?

- Given a set of normal data data $\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$
- Given anomaly $\{\hat{x}^{(1)}, \hat{x}^{(2)}, \dots, \hat{x}^{(m)}\}$
- Then training a binary classifier?
- NO. anomaly cannot be considered as a class
- Even worse, in some cases, it is difficult to find anomaly example

Problem Formulation

- Given a set of training data $\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$ which are generated from distribution p(x)
- We want to find a function detecting input is similar to training data or not.

Anomaly detection example

$$\mu_1 = 5, \sigma_1 = 2$$
 $\mu_2 = 3, \sigma_2 = 1$

$$\varepsilon = 0.02$$

$$p(x_{test}^{(2)}) = 0.0021$$

- 假设有部分带标注的数据 $(y = 0 \ 表示正常, y = 1$ 表示异常)和部分无标注的数据
- 用不带标注的数据训练模型
- 将带标注的数据分为验证集和测试集去进行模型选择和评估

Aircraft engines motivating example

- 10000 good (normal) engines, 20 flawed engines (anomalous)
 - Training set: 6000 good engines
 - CV set: 2000 good engines (y = 0), 10 anomalous (y = 1)
 - Test set: 2000 good engines (y = 0), 10 anomalous (y = 1)

• Alternative:

- Training set: 8000 good engines
- CV set: 1000 good engines (y = 0), 10 anomalous (y = 1)
- Test set: 1000 good engines (y = 0), 10 anomalous (y = 1)

- Fit model p(x) on training set $\{x^{(1)}, \dots, x^{(m)}\}$
- \bullet On a cross validation/test example x, predict

$$y = \begin{cases} 1 & \text{if } p(x) < \varepsilon \text{ (anomaly)} \\ 0 & \text{if } p(x) \ge \varepsilon \text{ (normal)} \end{cases}$$

- Possible evaluation metrics:
 - True positive, false positive, false negative, true negative
 - Precision/Recall
 - F1-score
- Can also use cross validation set to choose parameter ε

More ...

Source of images: https://scikitlearn.org/stable/modules/outlier_detectio n.html#outlier-detection

One-class SVM

Ref: https://papers.nips.cc/paper/1723support-vector-method-for-noveltydetection.pdf

Isolated Forest

Ref: https://cs.nju.edu.cn/zhouzh/zhouzh.fil es/publication/icdm08b.pdf

More

Learn a classifier giving low confidence score to anomaly

Kimin Lee, Honglak Lee, Kibok Lee, Jinwoo Shin, Training Confidence-calibrated Classifiers for Detecting Out-of-Distribution Samples, ICLR 2018

How can you obtain anomaly?

Generating by Generative Models?

Mark Kliger, Shachar Fleishman, Novelty Detection with GAN, arXiv, 2018

异常检测 vs. 监督学习

Very small number of positive examples (y=1). (0-20 is common).

Large number of negative ($y=0\,$) examples.

Many different "types" of anomalies. Hard for any algorithm to learn from positive examples what the anomalies look like; future anomalies may look nothing like any of the anomalous examples we've seen so far.

Large number of positive and negative examples.

Enough positive examples for algorithm to get a sense of what positive examples are like, future positive examples likely to be similar to ones in training set.

Machine Learning

应用

推荐系统

基于内容的推荐系统

Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)
Love at last	5	5	0	0
Romance forever	5	?	?	0
Cute puppies of love	Ş	4	0	?
Nonstop car chases	0	0	5	4
Swords vs. karate	0	0	5	?

For each user j, learn a parameter $\theta^{(j)} \in \mathbb{R}^3$. Predict user j as rating movie i with $(\theta^{(j)})^T x^{(i)}$ stars.

基于内容的推荐系统

- r(i,j) = 1 if user j has rated movie i (0 otherwise)
- $y^{(i,j)} = \text{rating by user } j \text{ on movie } i \text{ (if defined)}$
- $\theta^{(j)}$ = parameter vector for user j
- $x^{(i)}$ = feature vector for movie i
- For user j, movie i, predicted rating: $(\theta^{(j)})^T(x^{(i)})$
- $m^{(j)}$ = no. of movies rated by user j

To learn $\theta^{(j)}$

$$\min_{\theta^{(j)}} \frac{1}{2m^{(j)}} \sum_{i:r(x,y)=1} \left((\theta^{(i)})^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2m^{(j)}} \sum_{k=1}^n (\theta_k^{(i)})^2$$

基于内容的推荐系统

$$\min_{\theta^{(j)}} \frac{1}{2} \sum_{i:r(i,j)=1} \left((\theta^{(j)})^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{k=1}^n (\theta_k^{(j)})^2 \\
= \min_{\theta^{(1)}, \dots, \theta^{(n_u)}} \frac{1}{2} \sum_{j=1}^{n_u} \sum_{i:r(i,j)=1} \left((\theta^{(j)})^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{j=1}^n \sum_{k=1}^n (\theta_k^{(j)})^2 \\
= \sum_{j=1}^n \sum_{i:r(i,j)=1}^n \left((\theta^{(j)})^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{j=1}^n \sum_{k=1}^n (\theta_k^{(j)})^2 \\
= \sum_{j=1}^n \sum_{i:r(i,j)=1}^n \left((\theta^{(j)})^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{j=1}^n \sum_{k=1}^n (\theta_k^{(j)})^2 \\
= \sum_{j=1}^n \sum_{i:r(i,j)=1}^n \left((\theta^{(j)})^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{j=1}^n \sum_{k=1}^n (\theta_k^{(j)})^2 \\
= \sum_{j=1}^n \sum_{i:r(i,j)=1}^n \left((\theta^{(j)})^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{j=1}^n \sum_{k=1}^n (\theta_k^{(j)})^2 \\
= \sum_{j=1}^n \sum_{i:r(i,j)=1}^n \left((\theta^{(j)})^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{j=1}^n \sum_{k=1}^n (\theta_k^{(j)})^2 \\
= \sum_{j=1}^n \sum_{i:r(i,j)=1}^n \left((\theta^{(j)})^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{j=1}^n \sum_{k=1}^n (\theta_k^{(j)})^2 \\
= \sum_{j=1}^n \sum_{i:r(i,j)=1}^n \left((\theta^{(j)})^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{j=1}^n \sum_{k=1}^n (\theta_k^{(j)})^2 \\
= \sum_{j=1}^n \sum_{k=1}^n \left((\theta_k^{(j)})^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{j=1}^n \sum_{k=1}^n (\theta_k^{(j)})^2 \\
= \sum_{j=1}^n \sum_{i:r(i,j)=1}^n \left((\theta_k^{(j)})^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{j=1}^n \sum_{k=1}^n (\theta_k^{(j)})^2 \\
= \sum_{j=1}^n \sum_{i:r(i,j)=1}^n \left((\theta_k^{(j)})^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{j=1}^n \sum_{k=1}^n (\theta_k^{(j)})^2 \\
= \sum_{j=1}^n \sum_{i:r(i,j)=1}^n \left((\theta_k^{(j)})^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{j=1}^n \sum_{k=1}^n (\theta_k^{(j)})^2 \\
= \sum_{j=1}^n \sum_{i:r(i,j)=1}^n \left((\theta_k^{(j)})^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{j=1}^n \sum_{k=1}^n (\theta_k^{(j)})^2 \\
= \sum_{j=1}^n \sum_{i:r(i,j)=1}^n \left((\theta_k^{(j)})^T x^{(i)} - y^{(i,j)} \right)^2 \\
= \sum_{j=1}^n \sum_{i:r(i,j)=1}^n \left((\theta_k^{(j)})^T x^{(i)} - y^{(i,j)} \right)^2 \\
= \sum_{j=1}^n \sum_{i:r(i,j)=1}^n \left((\theta_k^{(j)})^T x^{(i)} - y^{(i,j)} \right)^2 \\
= \sum_{j=1}^n \sum_{i:r(i,j)=1}^n \left((\theta_k^{(i)})^T x^{(i,j)} - y^{(i,j)} \right)^2 \\
= \sum_{j=1}^n \sum_{i:r(i,j)=1}^n \left((\theta_k^{(i,j)})^T x^{(i,j)} - y^{(i,j)} \right)^2 \\
= \sum_{j=1}^n \sum_{i:r(i,j)=1}^$$

Gradient descent update:

$$\theta_k^{(j)} := \theta_k^{(j)} - \alpha \sum_{i:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)}) x_k^{(i)} \text{ (for } k = 0)$$

$$\theta_k^{(j)} := \theta_k^{(j)} - \alpha \left(\sum_{i:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)}) x_k^{(i)} + \lambda \theta_k^{(j)} \right) \text{ (for } k \neq 0)$$

Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)	$ x_1 $	x_2
					(romance)	(action)
Love at last	5	5	0	0	?	?
Romance forever	5	?	?	0	?	?
Cute puppies of love	?	4	0	?	?	?
Nonstop car chases	0	0	5	4	?	?
Swords vs. karate	0	0	5	?	?	?

$$\theta^{(1)} = \begin{bmatrix} 0 \\ 5 \\ 0 \end{bmatrix}, \, \theta^{(2)} = \begin{bmatrix} 0 \\ 5 \\ 0 \end{bmatrix}, \, \theta^{(3)} = \begin{bmatrix} 0 \\ 0 \\ 5 \end{bmatrix}, \, \theta^{(4)} = \begin{bmatrix} 0 \\ 0 \\ 5 \end{bmatrix}$$

• 给定
$$\theta^{(1)}, \dots, \theta^{(n_u)},$$
学习 $x^{(i)}$

$$\min_{x^{(i)}} \frac{1}{2} \sum_{j:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{k=1}^n (x_k^{(i)})^2$$

• 给定
$$\theta^{(1)}, \dots, \theta^{(n_u)},$$
学习 $x^{(1)}, \dots, x^{(n_m)}$

$$\min_{x^{(1)}, \dots, x^{(n_m)}} \frac{1}{2} \sum_{i=1}^{n_m} \sum_{j: r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^n (x_k^{(i)})^2$$

- 给定 $x^{(1)}, \dots, x^{(n_m)}$,可以估计 $\theta^{(1)}, \dots, \theta^{(n_u)}$ $\min_{\theta^{(1)}, \dots, \theta^{(n_u)}} \frac{1}{2} \sum_{j=1}^{n_u} \sum_{i:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^n (\theta_k^{(j)})^2$
- 给定 $\theta^{(1)}, \dots, \theta^{(n_u)}, \exists \forall \exists x^{(1)}, \dots, x^{(n_m)}$ $\min_{x^{(1)}, \dots, x^{(n_m)}} \frac{1}{2} \sum_{i=1}^{n_m} \sum_{j: r(i,j)=1} ((\theta^{(j)})^T x^{(i)} y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^n (x_k^{(i)})^2$
- $\bullet \ \theta \to x \to \theta \to \cdots$

• 同时最小化 $x^{(1)}, \ldots, x^{(n_m)}$ 和 $\theta^{(1)}, \ldots, \theta^{(n_u)}$:

$$J(x^{(1)}, \dots, x^{(n_m)}, \theta^{(1)}, \dots, \theta^{(n_u)}) =$$

$$\left| \frac{1}{2} \sum_{(i,j):r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^n (x_k^{(i)})^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^n (\theta_k^{(j)})^2 \right|$$

$$\min_{x^{(1)}, \dots, x^{(n_m)}} J(x^{(1)}, \dots, x^{(n_m)}, \theta^{(1)}, \dots, \theta^{(n_u)})
\theta^{(1)}, \dots, \theta^{(n_u)}$$

- 用小的随机数初始化 $x^{(1)}, \ldots, x^{(n_m)}$ 和 $\theta^{(1)}, \ldots, \theta^{(n_u)}$
- 基于梯度下降法最小化 $J(x^{(1)},...,x^{(n_m)},\theta^{(1)},...,\theta^{(n_u)})$:

$$x_k^{(i)} := x_k^{(i)} - \alpha \left(\sum_{j:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)}) \theta_k^{(j)} + \lambda x_k^{(i)} \right)$$

$$\theta_k^{(j)} := \theta_k^{(j)} - \alpha \left(\sum_{i:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)}) x_k^{(i)} + \lambda \theta_k^{(j)} \right)$$

Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)
Love at last	5	5	0	0
Romance forever	5	?	?	0
Cute puppies of love	?	4	0	?
Nonstop car chases	0	0	5	4
Swords vs. karate	0	0	5	?

Predicted ratings:

$$X = \begin{bmatrix} (x^{(1)})^T \\ (x^{(2)})^T \\ \vdots \\ (x^{(n_m)})^T \end{bmatrix} \qquad \Theta = \begin{bmatrix} (\theta^{(1)})^T \\ (\theta^{(2)})^T \\ \vdots \\ (\theta^{(n_u)})^T \end{bmatrix}$$

$$\begin{bmatrix} (\theta^{(1)})^T(x^{(1)}) & (\theta^{(2)})^T(x^{(1)}) & \dots & (\theta^{(n_u)})^T(x^{(1)}) \\ (\theta^{(1)})^T(x^{(2)}) & (\theta^{(2)})^T(x^{(2)}) & \dots & (\theta^{(n_u)})^T(x^{(2)}) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ (\theta^{(1)})^T(x^{(n_m)}) & (\theta^{(2)})^T(x^{(n_m)}) & \dots & (\theta^{(n_u)})^T(x^{(n_m)}) \end{bmatrix} = X\Theta^T$$

- 对于每部电影,都会学习到一个特征表示 $x^{(i)} \in \mathbb{R}^n$
- 思考:
 - 如何找到与某部电影最相关的电影?
 - 如何找到与某部电影最相关的5部电影?

协同滤波: Mean normalization

Users who have not rated any movies

Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)	Eve (5)	_	Г~	_	0	0	٦٦	
Love at last	5	5	0	0	Ş		5	5 2	0	0	$\begin{bmatrix} \cdot \\ 2 \end{bmatrix}$	
Romance forever	5	?	?	0	?	V _	$\begin{vmatrix} 5 \\ 2 \end{vmatrix}$: 1		2	?	
Cute puppies of love	?	4	0	?	?	I =	$\begin{bmatrix} 0 \\ \vdots \end{bmatrix}$	0	5	4	?	
Nonstop car chases	0	0	5	4	?		Γ_0	U	Э	U		
Swords vs. karate	0	0	5	?	?							

$$\sum_{\substack{min \\ g^{(1)}, \dots, g^{(n_u)}}} \frac{1}{2} \sum_{(i,j): r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^n (x_k^{(i)})^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^n (\theta_k^{(j)})^2$$

协同滤波: Mean normalization

$$Y = \begin{bmatrix} 5 & 5 & 0 & 0 & ? \\ 5 & ? & ? & 0 & ? \\ ? & 4 & 0 & ? & ? \\ 0 & 0 & 5 & 4 & ? \\ 0 & 0 & 5 & 0 & ? \end{bmatrix} \qquad \mu = \begin{bmatrix} 2.5 \\ 2.5 \\ 2 \\ 2.25 \\ 1.25 \end{bmatrix} \rightarrow Y = \begin{bmatrix} 2.5 & 2.5 & -2.5 & -2.5 & ? \\ 2.5 & ? & ? & -2.5 & ? \\ ? & 2 & -2 & ? & ? \\ -2.25 & -2.25 & 2.75 & 1.75 & ? \\ -1.25 & -1.25 & 3.75 & -1.25 & ? \end{bmatrix}$$

For user j, on movie i predict:

$$(\theta^{(j)})^T(x^{(i)}) + \mu_i$$

User 5 (Eve):

$$\theta^{(5)} = \left| \begin{array}{c} 0 \\ 0 \end{array} \right|$$

Machine Learning

应用

Large Scale Machine Learning

Recap: Linear Regression with Gradient Descent

$$h_{\theta}(x) = \sum_{j=0}^{n} \theta_{j} x_{j}$$

$$J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

$$\text{Repeat } \{$$

$$\theta_{j} := \theta_{j} - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{j}^{(i)}$$

$$\text{(for every } j = 0, \dots, n)$$

Recap: Linear Regression with Gradient Descent

$$h_{\theta}(x) = \sum_{j=0}^{n} \theta_{j} x_{j}$$

$$J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

$$\theta_{j} := \theta_{j} - \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

$$(\text{for every } j = 0, \dots, n)$$

Batch Gradient Descent m = 300,000,000

Stochastic gradient descent

- Randomly shuffle (reorder) training examples
- Repeat {
 for $i = 1, \dots, m$ { $\theta_j := \theta_j \alpha(h_\theta(x^{(i)}) y^{(i)})x_j^{(i)}$ (for every $j = 0, \dots, n$)
 }

Stochastic gradient descent

Batch gradient descent

$J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$ Repeat $\{ \theta_{j} := \theta_{j} - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{j}^{(i)} \}$ (for every $j = 0, \dots, n$)

Stochastic gradient descent

$$cost(\theta, (x^{(i)}, y^{(i)})) = \frac{1}{2} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$
$$J_{train}(\theta) = \frac{1}{m} \sum_{i=1}^{m} cost(\theta, (x^{(i)}, y^{(i)}))$$

- Randomly shuffle dataset
- Repeat {
 for $i = 1, \dots, m$ { $\theta_j := \theta_j \alpha(h_\theta(x^{(i)}) y^{(i)})x_j^{(i)}$ (for every $j = 0, \dots, n$)
 }

Mini-batch gradient descent

- Batch gradient descent: Use all m examples in each iteration
- Stochastic gradient descent: Use 1 example in each iteration
- Mini-batch gradient descent: Use b examples in each iteration

```
Say b = 10, m = 1000

Repeat {
for i = 1, 11, 21, 31, \dots, 991{
\theta_j := \theta_j - \alpha \frac{1}{10} \sum_{k=i}^{i+9} (h_{\theta}(x^{(k)}) - y^{(k)}) x_j^{(k)} \text{ (for every } j = 0, \dots, n)
}}
```

Map-reduce and data parallelism

Batch gradient descent: $\theta_j := \theta_j - \alpha \frac{1}{400} \sum_{i=1}^{400} (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)}$

- Machine 1: Use $(x^{(1)}, y^{(1)}), \dots, (x^{(100)}, y^{(100)}).$ $temp_j^{(1)} = \sum_{i=1}^{100} (h_\theta(x^{(i)}) - y^{(i)}) \cdot x_j^{(i)}$
- Machine 2: Use $(x^{(101)}, y^{(101)}), \dots, (x^{(200)}, y^{(200)}).$ $temp_j^{(2)} = \sum_{i=101}^{200} (h_{\theta}(x^{(i)}) - y^{(i)}) \cdot x_j^{(i)}$
- Machine 3: $(x^{(201)}, y^{(201)}), \dots, (x^{(300)}, y^{(300)}).$ $temp_j^{(3)} = \sum_{i=201}^{300} (h_\theta(x^{(i)}) - y^{(i)}) \cdot x_j^{(i)}$
- Machine 4: $(x^{(301)}, y^{(301)}), \dots, (x^{(400)}, y^{(400)}).$ $temp_j^{(4)} = \sum_{i=301}^{400} (h_{\theta}(x^{(i)}) - y^{(i)}) \cdot x_j^{(i)}$

Map-reduce and data parallelism

Map-reduce and data parallelism

Thanks!

Any questions?