PTML 10: 16/06/2022

TABLE DES MATIÈRES

1	Ait	ken's Δ^2 process	1
	1.1	Presentation	1
	1.2	Equations	2
	1.3	Simulation	2
2	Ric	hardson extrapolation	3
		Presentation	
	2.2	Simulation in \mathbb{R}^2	3
	2.3	Application to logistic regression	3
		2.3.1 Simulation	3

INTRODUCTION

In this session we study some methods that accelerate the convergence of some iterative algorithms to their limit.

These methods combine iterates of the algorithms to produce a another sequence in parallel, that sometimes converges faster to the limit.

1 AITKEN'S Δ^2 PROCESS

1.1 Presentation

Aitken's process is one of the simplest of these methods. We consider a sequence $(x_k)_{k\in\mathbb{N}}\in\mathbb{R}^{\mathbb{N}}$. The idea is to locally model the sequence as a first-order autoregressive sequence, which means finding, for each $k\in\mathbb{R}$, two numbers a_k and b_k , such that :

$$\begin{cases} x_{k+1} = a_k x_k + b_k \\ x_{k+2} = a_k x_{k+1} + b_k \end{cases}$$

and then compute the limit of the sequence $(y_i^k)_{i\in\mathbb{N}}$ defined by

$$\mathbf{y}_{i+1}^k = \mathbf{a}_k \mathbf{y}_i^k + \mathbf{b}_k \tag{1}$$

we note l_k the limit of $(y_i^k)_{i\in\mathbb{N}}$. This defines another sequence $(l_k)_{k\in\mathbb{N}}$, that might converge faster to the limit of $(x_k)_{k\in\mathbb{N}}$, if this limit exists.

Note that in order to observe an acceleration, this model does not need to be exact, it can also be true only asymptotically.

1.2 Equations

Exercice 1: Assuming that if iterate is different $x_k \neq x_{k+1}$, solve the linear system defining the locally auto-regressive process for a given k (which means find $\alpha_{\boldsymbol{k}}$ and

Exercice 2: For a given k, what would be a sufficient condition that ensures that the sequence $(y_i^k)_{i \in}$ has a limit?

Simulation 1.3

We will apply Aitken's method to the Leibniz formula, a method to approximate π as the limit of the following sequence :

$$x_k = 4\sum_{j=0}^k \frac{(-1)^j}{2j+1} \tag{2}$$

this is one of the most famous applications of the method.

Exercice 3: Is the condition from question 2 verified?

Exercice 4: Run a simulation that applies the method to the sequence $(x_k)_{k \in \mathbb{N}}$. You should observe something like figure 1, i.e. an acceleration of the convergence to the limit.

FIGURE 1 – Aitken's Δ^2 process accelerates the convergence to the π .

2 RICHARDSON EXTRAPOLATION

Presentation

We consider $(x_k)_{k\in\mathbb{N}}$ of points of \mathbb{R}^d and we assume that

$$x_{k} = x_{*} + \frac{1}{k}\Delta + O(\frac{1}{k^{2}}) \tag{3}$$

With $\Delta \in \mathbb{R}^d$. Hence, $(x_k)_{k \in \mathbb{N}} \to x_*$.

Exercice 5: Show that for k even:

$$2x_k - x_{k/2} = x_* + \mathcal{O}(\frac{1}{k^2}) \tag{4}$$

Hence, the sequence defined by $y_k = 2x_k - x_{k/2}$ might converge faster to the limit x*. This method is called Richardson extrapolation This method is called Richardson extrapolation

Exercice 6: Can Richardson extrapolation have a strong negative impact? what is the worst-case loss of performance?

2.2 Simulation in \mathbb{R}^2

Exercice 7: To get familiar with the method, apply it to your own sequence of points in \mathbb{R}^2 .

2.3 Application to logistic regression

When performing gradient descent, for instance on logistic regression, it is possible to average the obtained iterates $x_i \in \mathbb{R}^d$.

$$z_{k} = \frac{1}{k} \sum_{j=0}^{k-1} x_{j} \tag{5}$$

This provides robustness to noise, however the initial conditions are not forgotten very fast. A workaround is tail-averaging, which means only taking the last half of the iterates. If k is even, we then define a new sequence t_k .

$$t_k = \frac{1}{k/2} \sum_{j=k/1}^{k-1} x_j \tag{6}$$

Exercice 8: What is the link with Richardson extrapolation?

2.3.1 Simulation

Exercice 9: In some contexts, like logistic regression, as explained in [Bach, 2021] , it is possible to show that the sequence z verifies 3. Run a simulation that applies the method and look for a configuration where Richardson extrapolation accelerates convergence.

You have some useful functions for logistic regression in TP4.

RÉFÉRENCES

[Bach, 2021] Bach, F. (2021). On the Effectiveness of Richardson Extrapolation in Data Science. SIAM Journal on Mathematics of Data Science, 3(4):1251–1277.