Ramanakumar G. Sankar

rshankar2012@my.fit.edu

OBJECTIVE

To study the dynamics and cloud morphology on planetary atmospheres.

Ph.D. in Space Sciences Florida Institute of Technology

2016 - 2021

EDUCATION

	Researching Jovian atmospheric dynamics and moist-convective storm formation
2012 - 2016	B.S. Astronomy & Astrophyics
	Dual Major in B.S. Mathematical Sciences
	Florida Institute of Technology
	Graduated cum laude
	RESEARCH PROJECTS
2016 -	Studying Jovian atmospheric dynamics and cloud formation using the EPIC atmospheric model
	Current graduate research project. Involved in updating the model with a moist-convective scheme to analyze the effect of convective plumes on cloud morphology and atmospheric structure. Updated model with improved parameterization of cloud sedimentation velocity.
2019 - 2020	Fragmentation modelling of the Aug 2019 jovian impact
	Implemented a atmospheric meteor fragmentation model to study the impact on Jupiter to determine the impact geometry and physical parameters. Used the fragmentation model to find the best case scenario for the impactor object based on best fits to the lightcurve.
2017 - 2019	Analyzing the trajectory, orbit and material makeup of the meteor
	over Arizona on June 2nd, 2016
	Used multiple all-sky cameras to triangulate the location of the meteor, and
	determine its trajectory. A backward integration yieled the orbit of the parent
	body. Multi-spectral radiometric data was analyzed to determine energy out-
	put from the bolide to determine mass and size estimates, and consequently,
2017 2020	the physical characteristics of the object.
2017 - 2020	Studying the Great Dark Spot observed by Voyager 2 on Neptune
	using atmospheric simulations

Used the EPIC atmospheric model to simulate the Great Dark Spot observed in 1989 by the Voyager spacecraft. Helped in the analysis of model output.

PUBLICATIONS

Journal publications

- Hadland, N., Sankar, R., LeBeau, R. P., Palotai, C. EPIC simulations of Neptune's dark spots using an active cloud microphysical model. *Monthly Notices of the Royal Astronomical* Society. 496, 4760-4768. (2020)
- Sankar, R., Palotai, C., Hueso, R., Delcroix, M., Chappel, E., Sánchez-Lavega, A. Fragmentation modelling of the 2019 August impact on Jupiter. *Monthly Notices of the Royal Astronomical Society.* 493, 4622-4630. (2020)
- LeBeau, R., Farmer, K., Sankar, R., Hadland, N., Palotai, C. A Numerical Investigation of the Berg Feature on Uranus as a Vortex-Driven System. *Atmosphere*. 11, 52. (2020)
- Palotai, C., Sankar, R., Free, D. L., Howell, J. A., Botella, E., Batcheldor, D. Analysis of the 2016 June 2 bolide event over Arizona. *Monthly Notices of the Royal Astronomical Society*. 487, 2307-2318. (2019)

Conference Abstracts

- Sankar, R., Klare, C., Palotai, C. Moist convection in Jupiter's fastest jet. Europlanet Science Congress 2020, online, 21 September 9 Oct 2020. (2020)
- Sankar, R., Klare, C., Palotai, C., Hughes, A. Simulation of Jovian moist convection with an active water and ammonia hydrological cycle using the EPIC GCM. AGU Fall Meeting Abstracts. (2019)
- Hadland, N., Sankar, R., Klare, C., Palotai, C., Farmer, K., Lebeau, R. EPIC Modeling of Large Scale Dynamical Features of the Gas Giants. *EPSC-DPS Joint Meeting 2019*. (2019)
- Le Beau, R. P., Loiacono, R., Wagner, A., Farmer, K., Palotai, C. J., Sankar, R., Hadland, N., Nodolski, N. Using Numerical Simulation to Consider the Observed Variations in the Behavior and Appearance of Dark Spots on the Ice Giants. American Astronomical Society Meeting Abstracts #234. (2019)
- LeBeau, R., Farmer, K., Palotai, C., Hadland, N., **Sankar, R.**, Nodolski, N. Simulating the Uranian Berg Feature as a Vortex-Driven Cloud. *AGU Fall Meeting Abstracts*. (2018)
- Sankar, R., Hadland, N., Klare, C., Flom, A., Nodolski, N., Palotai, C., LeBeau, R., Farmer, K. Simulations of large scale cloud features on Outer Solar System planets. AAS/Division for Planetary Sciences Meeting Abstracts #50. (2018)
- Le Beau, R. P., Farmer, K., Palotai, C., Hadland, N., Sankar, R., Nodolski, N. Simulating Drifting Features in the Atmospheres of the Ice Giants. AAS/Division for Planetary Sciences Meeting Abstracts #50. (2018)
- LeBeau, R., Koutas, N., Palotai, C., Bhure, S., Hadland, N., **Sankar, R.** Catching the Drift: Simulating Dark Spots and Bright Companions on the Ice Giants. *AGU Fall Meeting Abstracts*. (2017)
- Sankar, R., Palotai, C. J. Analysis of cloud microphysical processes on extrasolar giant planet atmospheres. AAS/Division for Planetary Sciences Meeting Abstracts #49. (2017)

- Bhure, S., Sankar, R., Hadland, N., Palotai, C. J., Le Beau, R. P., Koutas, N. Studies of Dark Spots and Their Companion Clouds on the Ice Giant Planets. AAS/Division for Planetary Sciences Meeting Abstracts #49. (2017)
- Palotai, C. J., Sankar, R., McCabe, T., Korycansky, D. Waves, Plumes and Bubbles from Jupiter Comet Impacts. AAS/Division for Planetary Sciences Meeting Abstracts #49. (2017)
- Flom, A., Sankar, R., Palotai, C. J., Dowling, T. E. Studying the Structure of Condensables Jupiter's 24deg Jet. AAS/Division for Planetary Sciences Meeting Abstracts #49. (2017)

TEACHING EXPERIENCE

Graduate student assistant at Florida Tech for Physics lab and Observational Astronomy Physics lab:

- Teaching experimental aspect of basic physics laws relating to Newtonian dynamics
- Training students in experimental error analysis and process of writing lab reports

Observational astronomy:

• Training students with use of 8" telescopes and the data reduction using a CCD.

SKILLS

- Proficient in Python, C and C++
- Basic knowledge of FORTRAN and R
- Proficient in using the Ortega 32" telescope at Florida Tech
- Capable of processing images using lucky-imaging technique
- Fluent in English and Tamil. Others (in order of fluency): French, Kannada and Swahili

AWARDS AND ACHIEVEMENTS

- Recipient of 2019 NASA FINESST award
- Dean's list at Florida Tech Spring 2013/Fall 2014/Spring 2015/Fall 2015
- Member of Sigma Pi Sigma honor society
- Member of Phi Kappa Phi honor society