ECE 310 Recitation 8

Concept Check

1. Discrete Fourier Transform (DFT)

$$X_{m} = \sum_{n=0}^{N-1} x_{n} e^{-j\frac{2\pi}{N}mn} \leftrightarrow x_{n} = \frac{1}{N} \sum_{m=0}^{N-1} X_{m} e^{j\frac{2\pi}{N}mn}, \quad m, n = 0,1,...,N-1$$

- 2. DFT Properties
 - Linearity
 - Periodicity
 - Conjugate Symmetry
 - Time shift
 - Duality
 - Parseval theorem
 - Cyclic Convolution

Exercise

- **1.** [Fa18 midterm#2] The length-4 sequences $x_1[n]$ and $x_2[n]$ have DFTs: $X_1[k] = \{1,2j,-1,1\}$ and $X_2[k] = \{1,2,1,-1\}$, respectively.
- a) What is the DFT of $x_1[n] + 3x_2[n]$?
- b) What is the DFT of $e^{j\pi n}x_1[n]$?
- c) What is $\sum_{n=0}^{3} |x_2[n]|^2$?
- d) What is $x_2[0]$?
- e) What is $x_1[1]$?
- 2. Let X[m] be the 10-point DFT of the sequence x[n] = [1, -1, 2, 3, -3, 4, 0, 0, 0, 0]. Let y[n] be a finite length sequence whose DFT Y [m] is related to X[m] as Y[m] = X[m] $e^{-j\frac{2\pi}{5}mn_0}$, where $n_0 = 3$. Determine the sequence y[n].
- 3. Let X[m] denote the 240-point DFT of x[n], $0 \le n \le 239$. The sequence y[n] is obtained by zero-padding x[n] to length 256. Determine m_0 such that Y [32] = X[m_0].
- 4. Prove Cyclic Convolution Property.