ροsco 포스코ICT

『철강산업의 스마트팩토리 사례』

- ●스마트 팩토리 이해
- 철강산업의 스마트팩토리
- 철강산업 적용사례

2015. 3.18

POSCO ICT 컨설팅 그룹 홍승민 파트너

I. 스마트팩토리 이해

II. 철강산업의 스마트팩토리

II. 철강산업 적용사례

노동원가 및 원자재 비용상승, 환경문제로 성장한계 도달 또한, 맞춤형 제조, 제품사이클 단축, 제품 변동성 증가

생산현장의 혁신은 "품질 고도화, 원가 절감, 적기 납기"로 귀결

생산공정의 효율화, 무인화 등은 70년대부터 많은 성과를 이루었고 완전 자동화된 최종 모습이 Smart Factory

Industry 3.0

🕨 — Industry 4.0 🎉

Manual 설비 제어

Automation 공장

Smart 공장

- 사람에 의한 제어
- 사후 조치, 해결 시간이 장시간 소요
- HMI를 통한 통합 제어
- 원인 분석 및 해결시간 단축
- 완전한 자동생산 체계
- CPS* 기반의 Virtual Factory
- 문제점 및 원인의 선제적 대응

스마트 팩토리(Smart Factory)는 사물인터넷(Internet of Things) 기술을 기반으로, 공장 안의 모든 요소가 유기적으로 연결되어 지능적으로 운영되는 공장

Bilbao, October 15, 2014

Industrie 4.0: The Fourth Industrial Revolution based on Smart Factories

Professor Wolfgang Wahlster CEO of DFKI

인간의 개입을 최소화하고 기계 스스로가 제어하는 인공 지능형의 자동 생산 체계

Industry 4.0 > Smart Factory > Smart Machine

목차

I. 스마트팩토리 이해

Ⅱ. 철강산업의 스마트팩토리

II. 철강산업 적용사례

특징

철강산업의 어려움 극복도 "품질 고도화, 원가 절감, 적기 납기" 필수

▶ 경기 민감 산업 ▶ 제조원가 비중이 높은 산업 철강산업 ▶ 규모의 경제 적용 ▶ 높은 전후방 연쇄효과

산업 특성과 비용이 고려된

현재 인프라를 최대 활용한 Smart Factory 구축

Smart Factory 모습

현<u>실 모습</u>

가변 생산경로, 가변 자재운반 경로

不연속 제조공정 (모듈공정) → 자율·분산제어

범용장비 중심

설비고장은 한 기계에만 영향 → 타 설비를 이용하여 생산활동 가능

🚅 고정 생산경로, 고정 자재운반 경로

연속 제조공정 (일관공정) → 중앙·집중제어

전용 특수장비 중심

하나의 설비고장은 공장 전체에 영향 → 생산인력은 일이 없고, 설비비용 계속 발생

최소의 비용으로 현재 생산환경 하에서 스마트팩토리 구축 방법은 소프트웨어 중심의 혁신

I. 스마트팩토리 이해

II. 철강산업의 스마트팩토리

III. 철강산업 적용사례

과거 HW(기계)에 SW 설치방식에서 SW에 HW설치방식으로 전환

경쟁사와 초격차 유지를 위해 Differentiating단계에서 Breakaway 단계로 Jump Up 필요

최고의 경쟁력 제품을 생산하는 『Smart Factory』 구현

구 분	현 재	변 경
설 비	고장 대응 정비	품질 / 생산성고려 예지 정비
품 질	평균값으로 품질판정	설비상태고려 품질 예측
조 업	지시대로 생산	소재 / 공정상태 고려 <mark>실시간 최적</mark> 생산
안 전	생산중심 센서배치	안전을 최우선으로 <mark>센싱 및 통제</mark>
에너지	차별 없이 공평배분	가격, 효율성고려 <mark>최적 배분</mark>

현재 운영 중인 공장을 우선적으로 Smart Factory화

IoT, Robot, Big Data 등의 ICT 신 기술을 철강제조와 융합한 미래 제철소(Smart Factory) 구현

- ① Big Data 활용 :
 - 제품 불량 사전 예측
 - 고장 예측

- 실시간 모니터링 센터

(5) Environment & Safety

- MPS & Plasma
- 위치추적 기반의 작업자 안전

- EMS,ESS 활용 에너지 효율화

③ IoT, 무선 활용 :

- 실시간 물류

⑥로보트 활용 무인화 :

-자동 Scarfing

-무인 크레인

- 신/증설 설계 시 사전검증
- Platform 개발

제품 생산 공정별 품질영향인자 도출 및 설비 분위기 등으로 불량분석 및 예측 기능

머신비전(Machine Vision)을 통한 품질검증

제품불량 패턴 예측

멀티 포인트 센서를 활용한 빅데이터 수집 분석으로 설비 고장 예지 분석

열연공장 진동특성 외 다수의 센서포인트 활용 빅데이타 수집, 분석 통해 고장예측진단 정밀화

※ 압연기 모터 진동특성 모니터링 하는 CMS*의 발전

에너지관리시스템(EMS) 적용으로 에너지 효율 극대화

에너지 다소비 공정 EMS* 운영으로 효율화

그림 2. 산소공장에 도입된 EMS 시스템 구성도(자료 제공: 포스쾨CT)

냉연·열연코일, 후판용 RFID 개발로 물류혁신

코일, 후판용 RFID 상용화

재고 및 물류관리, 고객정보제공

RFID Tag 부착

창고적재

재고조사

ANGESTS ANGEST

고객사 입고관리

실시간 트래킹

화물선적

스마트워크 모바일 업무환경 및 원격 모니터링 위한 IMC* 구축

대기환경 개선을 위한 대기환경 관리 시스템 구축

IoT for Safety, 위치추적 기반의 작업자 안전행동 예측

작업장내 작업자 위치 및 상태인식 작업현장 위험인식 및 통제

작업자 행동분석

열악한 환경하에서 사람이 하던 업무를 지능형 로보트를 이용하여 자동 Scarfing*

^{*} 연주 Scarfing 공정은 Slab의 표면에 있는 개재물을 고압 산소와 LNG 가스를 이용하여 제거하는 작업

제품 야드 크레인에 위치인식 센서와 자동 컨트롤 SW를 이용하여 고소지역 근무환경 개선 및 물류처리 효율 제고

수동운전(크레인 1명, 지상 1명)

무인화(크레인 0명, 지상 0명)

가상현실 공장 구현 통한 검증 후 실제공장 적용

Virtual Factory 구현

- 3D로 Real Factory와 동일한 설비 제작
- 설비 구동용 시뮬레이터 개발
- 설비운전 Data 입력하여 검증

3D 교육컨텐츠 활용

• 신입 엔지니어 교육 및 포철공고 가상현실 교육실 운영 - HMI 등 실제 공장운영 환경 재현

Industry 4.0 Platform을 통한 제시된 다양한 솔류션을 Virtual Factory 환경하에서 검증

제품 경쟁력 뿐만 아니라 철강 SF 구현 능력 확보

마치면서....

기업들이 가지고 있는 당면 문제들, 수많은 혁신 활동들을 통해 해결하려고 시도하였지만 사람과 여건 등의 다양한 이유로 실패한 문제가 해결 단, 스마트 공장이 구현 된다면.....

당면 문제(예시)

- ☑ 과도한 재고와 이로 인한 가격인하 그리고 제품가치의 하락
- ☑ 정확하지 못한 납기회신(Order Promising)과 이로 인한 고객의 수요 대응 부족
- ☑낮은 자산 운용율
- ☑ 잘못된 제품구성(Product Mix)으로 인한 수익의 하락
- ☑ 빈번한 재고 고갈과 이로 인한 급배송(Expediting)
- ☑ 긴급수요에 대한 부적절한 공급 관련 대응
- ☑복잡해져 가는 제품구성과 짧아지는 수명주기
- ☑ 단방향적인(Unidirectional) 계획능력과 이로 인한 공급망 전체 최적화의 어려움

감사합니다.