101. Udowodnij, że dla parami różnych liczb
 całkowitych a,b,c i dowolnej liczby naturalnej n liczba

$$\frac{a^n}{(a-b)(a-c)} + \frac{b^n}{(b-a)(b-c)} + \frac{c^n}{(c-a)(c-b)}$$

jest całkowita.

102. Niech L będzie obwodem, a P polem trójkąta. Wykaż, że

$$L^2 > 12\sqrt{3}P.$$

Kiedy w powyższej nierówności zachodzi równość?

103. Niech x będzie liczbę niewymierną. Pokazać, że zbiór

$$\{\{nx\}^1 : n \in \mathbb{N}\}$$

jest gęsty w [0,1].

- **104.** Niech x_n oznacza pierwszą od lewej cyfrę rozwinięcia dziesiętnego liczby 2^n . Czy liczba $0, x_1x_2x_3...$ jest wymierna?
- **105.** Dla $0 < x < \pi$ znaleźć granicę²

$$\lim_{n\to\infty} \left(\cos\frac{x}{2}\cos\frac{x}{4}\dots\cos\frac{x}{2^n}\right).$$

- **106.** Czy zero jest punktem skupienia ciągu $\sin n$?
- 107. Czy zero jest punktem skupienia ciągu $\sqrt{n} \sin n$?
- 108. Ciąg a_n ma własność $a_n < (a_{n-1} + a_{n+1})/2$ dla $n \ge 2$. Pokazać, że zachodzi jedna z trzech możliwości:
 - (a) a_n jest zbieżny,
 - (b) $a_n \longrightarrow +\infty$,
 - (c) $a_n \longrightarrow -\infty$.
- **109.** Ciąg x_n spełnia warunek $0 \le x_{n+m} \le x_n + x_m$. Pokazać, że

$$\lim_{n \to \infty} \frac{x_n}{n} = \inf_n \frac{x_n}{n}.$$

110. Znaleźć granicę iloczynów

$$\frac{3}{2} \cdot \frac{5}{4} \cdot \frac{17}{16} \cdot \ldots \cdot \frac{2^{2^n} + 1}{2^{2^n}}.$$

111. Obliczyć granicę

$$\lim_{n\to\infty} n\sin(2\pi e n!).$$

112. Pokazać, że jeśli $a_n > 0$ oraz $a_n \nearrow \infty$, to

$$\sum \left(1 - \frac{a_n}{a_{n+1}}\right) = \infty.$$

113. Ciąg $a_n > 0$ jest malejący oraz

$$\sum a_n = \infty.$$

¹Symbol $\{y\}$ oznacza część ułamkową liczby y.

 $^{^2}$ Uwaga: Można korzystać z faktu: $\lim_{n\to\infty}\sin(a_n)/a_n=1$ dla $a_n\to 0,\ a_n\neq 0$

Pokazać, że

$$\sum \min\left(a_n, \frac{1}{n}\right) = \infty.^3$$

 $[\]overline{\ \ }^3 \textit{Uwaga:}$ Porównaj z podobnym zadaniem z listy 4.