

MIC4576

200 kHz Simple 3A Buck Regulator

Features

- · Fixed 200 kHz Operation
- · 3.3V, 5V, and Adjustable Output Versions
- · Voltage Over Specified Line and Load Conditions:
 - Fixed version: ±3% maximum output voltage
 - Adjustable version: ±2% maximum feedback voltage
- · Guaranteed 3A Switch Current
- · Wide 4V to 36V Input Voltage Range
- Wide 1.23V to 33V Output Voltage Range
- · Requires Minimum External Components
- <200 µA Typical Shutdown Mode
- 75% Efficiency (Adjustable Version > 75% Typical)
- Standard Inductors are 25% of Typical LM2576 Inductor Values
- · Thermal Shutdown
- · Overcurrent Protection
- · 100% Electrical Thermal Limit Burn-In

Applications

- Simple High-Efficiency Step-Down (Buck) Regulator
- · Efficient Preregulator for Linear Regulators
- · On-Card Switching Regulators
- Positive-to-Negative Converter (Inverting Buck-Boost)
- · Battery Charger
- · Negative Boost Converter
- Step-Down to 3.3V for Intel Pentium[™] and Similar Microprocessors

General Description

The MIC4576 is a series of easy-to-use fixed and adjustable BiCMOS step-down (buck) switch-mode voltage regulators. The 200 kHz MIC4576 duplicates the pinout and function of the 52 kHz LM2576. The higher switching frequency may allow up to a 2:1 reduction in output filter inductor size.

The MIC4576 is available in 3.3V, and 5V fixed output versions or a 1.23V to 33V adjustable output version. Both versions are capable of driving a 3A load with excellent line and load regulation.

The feedback voltage is guaranteed to $\pm 2\%$ tolerance for adjustable versions, and the output voltage is guaranteed to $\pm 3\%$ for fixed versions, within specified voltages and load conditions. The oscillator frequency is guaranteed to $\pm 10\%$.

In Shutdown mode, the regulator draws less than 200 μA shutdown current. The regulator performs cycle-by-cycle current limiting and thermal shutdown for protection under fault conditions.

This series of simple switch-mode regulators requires a minimum number of external components and can operate using a standard series of inductors. Frequency compensation is provided internally.

The MIC4576 is available in TO-220 (T) and TO-263 (U) packages for the industrial temperature range.

Package Types

Typical Application Circuit

Adjustable Regulator

Functional Block Diagram

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

Supply Voltage (V _{IN})	+40V
Shutdown Voltage (V _{SHDN})	0.3V to +36V
Output Switch (V _{SW}), Steady State	–1V
Feedback Voltage (V _{FB}) [Adjustable]	+3.8V
Storage Temperature (T _S)	–65°C to +150°C
Junction Temperature (T _J)	+150°C
Operating Ratings ††	
Supply Voltage (V _{IN})	+36V
	+36V 40°C to +85°C
Supply Voltage (V _{IN})	+36V 40°C to +85°C
Supply Voltage (V _{IN}) Junction Temperature (T _J)	

† Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended periods may affect device reliability.

†† Notice: The device is not guaranteed to function outside its operating ratings.

- Note 1: The maximum allowable power dissipation of any T_A (ambient temperature) is $P_{D(MAX)} = (T_{J(MAX)} T_A)/\theta_{JA}$. Exceeding the maximum allowable power dissipation will result in excessive die temperature, and the regulator will go into thermal shutdown.
 - 2: Devices are ESD sensitive. Handling precautions are recommended. Human body model, 1.5 k Ω in series with 100pF.

ELECTRICAL CHARACTERISTICS

Electrical Characteristics: V_{IN} = 12V; I_{LOAD} = 500 mA; T_J = +25°C, **bold** values indicate −40°C ≤ T_J ≤ +85°C, unless noted.

unless noted.								
Parameter	Sym.	Min.	Тур.	Max.	Units	Conditions		
MIC4576 (Adjustable)								
Feedback Voltage	V_{FB}	1.217	1.230	1.243	V			
		1.193	1.230	1.267	V	0)/ 5)/ 500/ 0.54 51 504		
Feedback Voltage	V_{FB}	1.180	_	1.280	V	$8V \le V_{IN} \le 36V$, $0.5A \le I_{LOAD} \le 3A$		
Efficiency	η	_	77	_	%	I _{LOAD} = 3A, Note 1		
Maximum Duty Cycle (On)	D _{MAX}	90	95	_	%	V _{FB} = 1.0V		
SW Lookage Current		_	0	2	mA	$V_{IN} = 36V, V_{FB} = 1.5V, V_{SW} = 0V$		
SW Leakage Current	I _{SW_LK}		7.5	35	mA	$V_{IN} = 36V, V_{FB} = 1.5V, V_{SW} = -1V$		
Quiescent Current	ΙQ	_	5	10	mA	V _{FB} = 1.5V		
Foodbook Dies Coment	-	_	50	100	nA			
Feedback Bias Current	I _{FB}			500	nA			
MIC4576-3.3								
Output Voltage	V_{OUT}	3.234	3.3	3.366	V			
Output Valtage	V	3.168	3.3	3.432	V	61/61/ 6361/ 05461 634		
Output Voltage	V _{OUT}	3.135	_	3.465	V	$6V \le V_{IN} \le 36V$, $0.5A \le I_{LOAD} \le 3A$		
Efficiency	η	_	72	_	%	I _{LOAD} = 3A		
Maximum Duty Cycle (On)	D_{MAX}	90	95		%	V _{FB} = 2.5V		
SW Lookage Current			0	2	mA	V _{IN} = 36V, V _{FB} = 4V, V _{SW} = 0V		
SW Leakage Current	I _{SW_LK}	_	7.5	35	mA	$V_{IN} = 36V, V_{FB} = 4V, V_{SW} = -1V$		
Quiescent Current	I_Q	_	5	10	mA	V _{FB} = 4.0V		
MIC4576-5.0								
Output Voltage	V_{OUT}	4.900	5.0	5.100	V			
Output Valtage	.,,	4.800	5.0	5.200	V	0)/ 5 / 7 / 5 26 / 0 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 /		
Output Voltage	V _{OUT}	4.750	_	5.250	V	$8V \le V_{IN} \le 36V$, $0.5A \le I_{LOAD} \le 3A$		
Efficiency	η	_	77		%	I _{LOAD} = 3A		
Maximum Duty Cycle (On)	D_{MAX}	90	95		%	V _{FB} = 4.0V		
SW Leakage Current	ı		0	2	mA	$V_{IN} = 36V, V_{FB} = 6V, V_{SW} = 0V$		
SVV Leakage Current	I _{SW_LK}	_	7.5	35	mA	$V_{IN} = 36V, V_{FB} = 6V, V_{SW} = -1V$		
Quiescent Current	ΙQ	_	5	10	mA	V _{FB} = 6.0V		
MIC4576/-3.3/-5.0								
Oscillator Frequency	f_{SW}	180	200	220	kHz			
Saturation Voltage	V _{SAT}	_	1.7	2.3	V	Ι = 3Δ		
		_	_	2.5	V	I _{OUT} = 3A		
Current Limit	1.	4.2	5.2	7.9	Α	Pook current to < 2 up \/ = 0\/		
Current Limit	I _{CLIM}	3.5	_	8.5	Α	Peak current, t _{ON} ≤ 3 μs; V _{FB} = 0V		
Shutdown Current	I _{SD}	_	50	200	μA	V_{SHDN} = 5V (regulator off), V_{FB} = 0V		

Note 1: $V_{OUT} = 5V$.

ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical Characteristics: $V_{IN} = 12V$; $I_{LOAD} = 500$ mA; $T_J = +25$ °C, **bold** values indicate -40°C $\leq T_J \leq +85$ °C, unless noted.

Parameter	Sym.	Min.	Тур.	Max.	Units	Conditions		
SHDN Turn-off Threshold	V _{SDTH_OFF}	1	1.4	_	V	Regulator turns off		
SHDN Turn-on Threshold	V _{SDTH_ON}	1	1.2		V	Regulator turns on		
OUDNI II I	V _{IH}	2.4	_	_	V	V _{OUT} = 0V (regulator off)		
SHDN Input Logic Level	V _{IL}		_	0.8	V	V _{OUT} = 3.3V or 5V (regulator on)		
CUDN Issued Comment	I _{IH}		4	30	μA	V _{SHDN} = 5V (regulator off)		
SHDN Input Current	I _{IL}	-10	0.01	10	μA	V _{SHDN} = 0V (regulator on)		

Note 1: V_{OUT} = 5V.

TEMPERATURE SPECIFICATIONS

Parameter	Sym.	Min.	Тур.	Max.	Units	Conditions			
Temperature Ranges									
Operating Junction Temperature	TJ	-40	_	+85	°C				
Maximum Junction Temperature	T _{J(ABSMAX)}	l	_	+150	°C				
Storage Temperature	T _S	- 65	_	+150	°C				
Package Thermal Resistances									
Thermal Resistance, TO-220	θ_{JA}	l	65	_	°C/W	Junction to air			
Thermal Resistance, TO-220	θ_{JC}	1	2	_	°C/W	Junction to case			
Thermal Resistance, TO-263	θ_{JA}	_	65	_	°C/W	Junction to air			
Thermal Resistance, TO-263	θ_{JC}	_	2		°C/W	Junction to case			

2.0 PIN DESCRIPTION

The description of the pins are listed in Table 2-1.

TABLE 2-1: PIN FUNCTION TABLE

Pin Number	Pin Name	Description
1	VIN	Supply Voltage (Input): Unregulated +4V to +36V supply voltage.
2	SW	Switch (Output): Emitter of NPN output switch. Connect to external storage inductor and Shottky diode.
3, TAB	GND	Ground.
4	FB	Feedback (Input): Output voltage feedback to regulator. Connect to output of regular application circuit for fixed versions. Connect to 1.23V tap of resistive divider for adjustable versions.
5	SHDN	Shutdown (Input): Logic low enables regulator. Logic high (> 2.4V) shuts down regulator.

3.0 FUNCTIONAL DESCRIPTION

The MIC4576 is a variable duty cycle switch-mode regulator with an internal power switch. Refer to the "Functional Block Diagram".

3.1 Supply Voltage

The MIC4576 operates from a +4V to +36V unregulated input. Highest efficiency operation is from a supply voltage around +15V.

3.2 Enable/Shutdown

The shutdown (SHDN) input is TTL compatible. Ground the input if unused. A logic low enables the regulator. A logic high shuts down the regulator which reduces the device current consumption to typically 50 μ A.

3.3 Feedback

Fixed versions of the regulator have an internal resistive divider from the feedback (FB) pin. Connect the FB pin directly to the output line.

Adjustable versions require an external resistive voltage divider from the output voltage to ground, connected from the 1.23V tap to the FB pin.

3.4 Duty Cycle Control

A fixed-gain error amplifier compares the feedback signal with a 1.23V bandgap voltage reference. The resulting error amplifier output voltage is compared to a 200 kHz sawtooth waveform to produce a voltage controlled variable duty cycle output.

A higher feedback voltage increases the error amplifier output voltage. A higher error amplifier voltage (comparator inverting input) causes the comparator to detect only the peaks of the sawtooth, reducing the duty cycle of the comparator output. A lower feedback voltage increases the duty cycle.

3.5 Output Switching

When the internal switch is on, an increasing current flows from the supply V_{IN} , through external storage inductor L1, to output capacitor C_{OUT} and the load. Energy is stored in the inductor as the current increases with time.

When the internal switch is turned off, the collapse of the magnetic field in L1 forces current to flow through fast recovery diode D1, charging C_{OUT} .

3.6 Output Capacitor

External output capacitor C_{OUT} provides stabilization and reduces ripple.

3.7 Return Paths

During the on portion of the cycle, the output capacitor and load currents return to the supply ground. During the off portion of the cycle, current is being supplied to the output capacitor and load by storage inductor L1, which means that D1 is part of the high-current return path.

4.0 APPLICATION INFORMATION

The applications circuit that follow have been constructed and tested. For additional information, refer to the MIC4576 product webpage from the Microchip website at www.microchip.com for the following Application Notes:

- For information on efficiency graphs, addresses and telephone numbers of the manufacturer for most circuits, refer to the "Practical Switching Regulator Circuits" (AN15).
- For a mathematical approach to component selection and circuit design, refer to the "200kHz MIC4574/5/6 Family Design Guide" (AN14).

FIGURE 4-1: 6V-24V to 3.3V/3A Buck Converter Through Hole.

FIGURE 4-2: 6V-36V to 3.3V/3A Buck Converter Through Hole.

FIGURE 4-3: 8V-24V to 5V/3A Buck Converter Through Hole.

FIGURE 4-4: 8V-36V to 5V/3A Buck Converter Through Hole.

FIGURE 4-5: 16V-36V to 12V/3A Buck Converter Through Hole.

FIGURE 4-6: Parallel Switching Regulators.

5.0 PACKAGING INFORMATION

5.1 **Package Marking Information**

5-Lead TO-220 Adjustable Output

> **M**XXX XXXXXX **WNNNP 576**

Example

MIC 4576WT 5963P 576

5-Lead TO-220 **Fixed Output**

> **M**XXXX X.XXX **WNNNP 576**

Example

4576 5.0WT 5963P 576

5-Lead TO-263 Adjustable Output

> XXX XXXXXX **WNNNP 576**

Example

MIC 4576WU 5963P 576

5-Lead TO-263 Flxed Output

> XXXX X.XXX **WNNNP 576**

Example

4576 3.3WU 5963P 576

Legend: XX...XProduct code or customer-specific information

> Year code (last digit of calendar year) Υ ΥY Year code (last 2 digits of calendar year) WW Week code (week of January 1 is week '01')

NNN Alphanumeric traceability code

Pb-free JEDEC® designator for Matte Tin (Sn) (e3)

This package is Pb-free. The Pb-free JEDEC designator (@3)) can be found on the outer packaging for this package.

•, ▲, ▼ Pin one index is identified by a dot, delta up, or delta down (triangle mark).

In the event the full Microchip part number cannot be marked on one line, it will Note: be carried over to the next line, thus limiting the number of available characters for customer-specific information. Package may or may not include the corporate logo.

Underbar () and/or Overbar () symbol may not be to scale.

5.2 Package Outline Drawing

5-Lead Transistor Outline Type LB03 (B8X) - [TO-220] Micrel Legacy Package TO220-LB03-5LD-PL-1

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-036 Rev D Sheet 1 of 2

END VIEW

5-Lead Transistor Outline Type LB03 (B8X) - [TO-220] Micrel Legacy Package TO220-LB03-5LD-PL-1

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	INCHES					
Dimension	Dimension Limits					
Number of Leads	N		5			
Pitch	е		.067 BSC			
Overall Height	Α	.160	.175	.190		
Tab Height	A1	.045	.050	.055		
Seating Plane to Lead	A2	.080	.098	.115		
Lead Width	b	.025	.033	.040		
Lead Thickness	С	.012	.012 .016 .02			
Lead Length	L	.500	.500 .540 .580			
Total Body Length Including Tab	D	.542 .580 .619				
Molded Body Length	D1	.348 .354 .360				
Total Width	Е	.380 .400 .42				
Pad Width	E1	0.256 REF				
Pad Length	D2	0.486 REF				
Hole Diameter	ØP	.146 .151 .156				
Hole Center to Tab Edge	Q	.103 .108 .11				
Molded Body Draft Angle	θ1	3 7 10				
Molded Body Draft Angle	θ2	1 4 7				

Notes:

- Pin 1 visual index feature may vary, but must be located within the hatched area.
 Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-036 Rev D Sheet 2 of 2

TITLE

5 LEAD T0263 PACKAGE OUTLINE & RECOMMENDED LAND PATTERN

DRAWING # T0263-5LD-PL-1

POS MIN Α 0.000 A1 0.026

BOTTOM VIEW

SIDE VIEW 2

NOTE:

- 1. PACKAGE OUTLINE EXCLUSIVE OF MOLD FLASH & METAL BURR.
- 2. PACKAGE OUTLINE INCLUSIVE OF PLATING THICKNESS.
 3. FOOT LENGTH USING GAUGE PLANE METHOD MEASUREMENT
- 0.010 A PACKAGE TOP MARK MAY BE IN TOP CENTER OR LOWER LEFT CORNER
- 5. ALL DIMENSIONS ARE IN INCHES/MILLIMETERS.

UNIT INCH/MM

RECOMMENDED LAND PATTERN (UNIT: mm)

For the most current package drawings, please see the Microchip Packaging Specification located at Note: http://www.microchip.com/packaging.

APPENDIX A: REVISION HISTORY

Revision A (December 2019)

- Converted Micrel document MIC4576 to Microchip data sheet DS20006158A.
- Changed the package marking format.
- Made minor text changes throughout the document.

MIC4576

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.

						Ex	amples:	
Device - Part No.	X.X Output	<u>X</u> Temperature	X Package	- Ме	XX edia Type	a) l	MIC4576WT:	200 kHz 3A Step-Down Regulator, Adjustable Output
T dittio.	Voltage	Range	- uonago		Tala Typo			Voltage, –40°C to +85°C Temperature Range,
Device:	MIC4576:	200 kHz 3 <i>A</i>	Step-Down R	egulato	r			5-Lead TO-220 Package, 50/Tube
Output Voltage:	5.0 =	3.3V Fixed 5.0V Fixed Adjustable				b)	MIC4576-3.3WU:	200 kHz 3A Step-Down Regulator, 3.3V Fixed Output Voltage, -40°C to +85°C Temperature Range, 5-Lead DDPAK Package,
Temperature Range:	W =	-40°C to +85°C,	Industrial, Rol	HS-Com	npliant	c) I	MIC4576-3.3WU-TR:	50/Tube 200 kHz 3A Step-Down Regulator, 3.3V Fixed Output
Package:		5-Lead TO-220* 5-Lead TO-263 (DDPAK)					Voltage, –40°C to +85°C Temperature Range, 5-Lead DDPAK Package, 750/Reel
Media Type:		50/Tube (T, TO-2 750/Reel (U, DD		K)		d)	MIC4576-5.0WT:	200 kHz 3A Step-Down Regulator, 5.0V Fixed Output
•	• • • • • • • • • • • • • • • • • • • •	is available for TC s for bent or stagg			es			Voltage, -40°C to +85°C Temperature Range, 5-Lead TO-220 Package,
						e)	MIC4576WU-TR:	50/Tube 200 kHz 3A Step-Down Regulator, Adjustable Output Voltage, -40°C to +85°C Temperature Range, 5-Lead DDPAK Package, 750/Reel
						No	catalog part nu used for orderi the device pac	identifier only appears in the mber description. This identifier is ng purposes and is not printed on kage. Check with your Microchip r package availability with the option.

MIC4576

NOTES:

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
 knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data
 Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TempTrackr, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, Vite, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2019, Microchip Technology Incorporated, All Rights Reserved.

ISBN: 978-1-5224-5395-6

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200

Tel: 480-792-7200 Fax: 480-792-7277 Technical Support:

http://www.microchip.com/ support

Web Address:

www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614

Fax: 678-957-1455 Austin, TX

Tel: 512-257-3370 Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI

Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Fax: 317-773-5453 Tel: 317-536-2380 Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000

China - Chengdu Tel: 86-28-8665-5511

China - Chongqing Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang Tel: 86-24-2334-2829

China - Shenzhen Tel: 86-755-8864-2200

China - Suzhou Tel: 86-186-6233-1526

China - Wuhan

Tel: 86-27-5980-5300 **China - Xian** Tel: 86-29-8833-7252

China - Xiamen
Tel: 86-592-2388138

China - Zhuhai Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631

India - Pune Tel: 91-20-4121-0141

Japan - Osaka Tel: 81-6-6152-7160

Japan - Tokyo

Tel: 81-3-6880- 3770 Korea - Daegu

Tel: 82-53-744-4301

Korea - Seoul Tel: 82-2-554-7200

Malaysia - Kuala Lumpur Tel: 60-3-7651-7906

Malaysia - Penang Tel: 60-4-227-8870

Philippines - Manila Tel: 63-2-634-9065

Singapore Tel: 65-6334-8870

Taiwan - Hsin Chu Tel: 886-3-577-8366

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600

Thailand - Bangkok Tel: 66-2-694-1351

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

Finland - Espoo Tel: 358-9-4520-820

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Garching Tel: 49-8931-9700

Germany - Haan Tel: 49-2129-3766400

Germany - Heilbronn Tel: 49-7131-72400

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Padova Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7288-4388

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820