Quantum Cellular Automata The Quantum Game of Life

Benjamin Decker

Technical University of Munich

9. June 2022

Classical Cellular Automata

- Grid of cells in one or more dimensions evolving over time steps
- State in time step t+1 depends only on state in time step t

Figure: Gosper's glider gun from Conway's Game of Life

Figure: A glider in the rule-110 elementary cellular automaton

■ Represent a classical state with a quantum state

Represent a classical state with a quantum state

$$\begin{array}{l} 0 \coloneqq \textit{dead} & 1 \coloneqq \textit{alive} \\ |0\rangle \coloneqq 0 & |1\rangle \coloneqq 1 \\ \\ 000101000 \Longrightarrow |\psi\rangle = |0\rangle^{\otimes 3} \otimes |1\rangle \otimes |0\rangle \otimes |1\rangle \otimes |0\rangle^{\otimes 3} \end{array}$$

■ Represent a classical state with a quantum state $010 \Longrightarrow |\psi\rangle = |0\rangle \otimes |1\rangle \otimes |0\rangle$

- Represent a classical state with a quantum state $010 \Longrightarrow |\psi\rangle = |0\rangle \otimes |1\rangle \otimes |0\rangle$
- Extract the distribution of alive cells from the quantum state

- Represent a classical state with a quantum state $010 \Longrightarrow |\psi\rangle = |0\rangle \otimes |1\rangle \otimes |0\rangle$
- Extract the distribution of alive cells from the quantum state

To compute the probability that cell j is alive or dead, we measure with the corresponding observable

$$\hat{ar{n}}_j = \ket{0}_j ra{0}$$
 $\hat{ar{n}}_j = \ket{1}_j ra{1}$ $P(dead)_j = ra{\psi} \hat{ar{n}}_j \ket{\psi}$ $P(alive)_j = ra{\psi} \hat{ar{n}}_j \ket{\psi}$

- Represent a classical state with a quantum state $010 \Longrightarrow |\psi\rangle = |0\rangle \otimes |1\rangle \otimes |0\rangle$
- **E**xtract the distribution of alive cells from the quantum state $P(alive)_i = \langle \psi | \hat{n}_i | \psi \rangle$

- Represent a classical state with a quantum state $010 \Longrightarrow |\psi\rangle = |0\rangle \otimes |1\rangle \otimes |0\rangle$
- **E**xtract the distribution of alive cells from the quantum state $P(alive)_j = \langle \psi | \hat{n}_j | \psi \rangle$
- lacksquare Let $|\psi
 angle$ evolve with time according to the rules of the QCA

- Represent a classical state with a quantum state $010 \Longrightarrow |\psi\rangle = |0\rangle \otimes |1\rangle \otimes |0\rangle$
- **E**xtract the distribution of alive cells from the quantum state $P(alive)_j = \langle \psi | \hat{n}_j | \psi \rangle$
- Let $|\psi\rangle$ evolve with time according to the rules of the QCA

For an initial state $|\psi\rangle_0$ and a unitary time evolution operator $\hat{U}(k)$, the state after k time steps is given by

$$|\psi\rangle_{k} = \hat{U}(k) |\psi\rangle_{0}$$

- Represent a classical state with a quantum state $010 \Longrightarrow |\psi\rangle = |0\rangle \otimes |1\rangle \otimes |0\rangle$
- **Extract** the distribution of alive cells from the quantum state $P(alive)_j = \langle \psi | \hat{n}_j | \psi \rangle$
- Let $|\psi\rangle$ evolve with time according to the rules of the QCA

For an initial state $|\psi\rangle_0$ and a unitary time evolution operator $\hat{U}(k)$, the state after k time steps is given by

$$|\psi\rangle_{k} = \hat{U}(k) |\psi\rangle_{0}$$

How do we get $\hat{U}(k)$?

$$\hat{H} = \sum_{i=3}^{L-2} \hat{S}_i \left(\hat{N}_i^{(2)} + \hat{N}_i^{(3)} \right) \tag{1}$$

$$\hat{H} = \sum_{i=3}^{L-2} \hat{S}_i \left(\hat{N}_i^{(2)} + \hat{N}_i^{(3)} \right) \tag{1}$$

Rule F_{12} :

"A cell is flipped if the number of alive cells among its nearest and next-nearest neighbors is 2 or 3"

$$\hat{H} = \sum_{i=3}^{L-2} \hat{S}_i \left(\hat{N}_i^{(2)} + \hat{N}_i^{(3)} \right) \tag{1}$$

Rule F_{12} :

"A cell is flipped if the number of alive cells among its nearest and next-nearest neighbors is 2 or 3"

• Operator \hat{S}_i flips the *i*-th cell, i.e. $\hat{S}_i = (\sigma_x)_i$

$$\hat{H} = \sum_{i=3}^{L-2} \hat{S}_i \left(\hat{N}_i^{(2)} + \hat{N}_i^{(3)} \right) \tag{1}$$

Rule F_{12} :

"A cell is flipped if the number of alive cells among its nearest and next-nearest neighbors is 2 or 3"

- Operator \hat{S}_i flips the *i*-th cell, i.e. $\hat{S}_i = (\sigma_x)_i$
- lacksquare Operators \hat{N}_i are chosen to be non-zero over the set of states where the rule applies

$$\hat{H} = \sum_{i=3}^{L-2} \hat{S}_i \left(\hat{N}_i^{(2)} + \hat{N}_i^{(3)} \right) \tag{1}$$

$$\hat{\bar{n}}_{j} = |0\rangle_{j} \langle 0| \qquad \qquad \hat{n}_{j} = |1\rangle_{j} \langle 1|$$

$$\hat{N}_{i}^{(2)} = \hat{\bar{n}}_{i-2} \hat{\bar{n}}_{i-1} \hat{n}_{i+1} \hat{n}_{i+2} + \hat{\bar{n}}_{i-2} \hat{n}_{i-1} \hat{\bar{n}}_{i+1} \hat{n}_{i+2} + \hat{\bar{n}}_{i-2} \hat{n}_{i-1} \hat{\bar{n}}_{i+1} \hat{n}_{i+2} + \hat{\bar{n}}_{i-2} \hat{\bar{n}}_{i-1} \hat{\bar{n}}_{i+1} \hat{n}_{i+2} + \hat{n}_{i-2} \hat{\bar{n}}_{i-1} \hat{\bar{n}}_{i+1} \hat{n}_{i+2} + \hat{n}_{i-2} \hat{\bar{n}}_{i-1} \hat{\bar{n}}_{i+1} \hat{\bar{n}}_{i+2}$$

$$\hat{N}_{i}^{(3)} = \hat{\bar{n}}_{i-2} \hat{n}_{i-1} \hat{n}_{i+1} \hat{n}_{i+2} + \hat{n}_{i-2} \hat{\bar{n}}_{i-1} \hat{n}_{i+1} \hat{n}_{i+2} + \hat{n}_{i-2} \hat{\bar{n}}_{i-1} \hat{n}_{i+1} \hat{n}_{i+2} + \hat{n}_{i-2} \hat{n}_{i-1} \hat{n}_{i+1} \hat{n}_{i+2}$$

$$+ \hat{n}_{i-2} \hat{n}_{i-1} \hat{\bar{n}}_{i+1} \hat{n}_{i+2} + \hat{n}_{i-2} \hat{n}_{i-1} \hat{n}_{i+1} \hat{n}_{i+2}$$

$$\hat{H} = \sum_{i=3}^{L-2} \hat{S}_i \left(\hat{N}_i^{(2)} + \hat{N}_i^{(3)} \right) \tag{1}$$

- Operator \hat{S}_i flips the *i*-th cell, i.e. $\hat{S}_i = (\sigma_x)_i$
- Operators \hat{N}_i are chosen to be non-zero over the set of states where the rule applies

$$\hat{H} = \sum_{i=3}^{L-2} \hat{S}_i \left(\hat{N}_i^{(2)} + \hat{N}_i^{(3)} \right) \tag{1}$$

- Operator \hat{S}_i flips the *i*-th cell, i.e. $\hat{S}_i = (\sigma_x)_i$
- Operators \hat{N}_i are chosen to be non-zero over the set of states where the rule applies
- As visible from the summation index i, constant boundary conditions are used

$$\hat{H} = \sum_{i=3}^{L-2} \hat{S}_i \left(\hat{N}_i^{(2)} + \hat{N}_i^{(3)} \right) \tag{1}$$

By solving the Schrödinger equation

$$\mathrm{i}\partial_t \ket{\psi}_t = \hat{H}\ket{\psi}_t$$

the time evolution operator \hat{U} is given by

$$\hat{U}(t) = e^{-i\hat{H}t} \tag{2}$$

$$\hat{H} = \sum_{i=3}^{L-2} \hat{S}_i \left(\hat{N}_i^{(2)} + \hat{N}_i^{(3)} \right)$$

$$\hat{U}(t) = e^{-i\hat{H}t}$$
(2)

$$\hat{H} = \sum_{i=3}^{L-2} \hat{S}_i \left(\hat{N}_i^{(2)} + \hat{N}_i^{(3)} \right)$$

$$\hat{U}(t) = e^{-i\hat{H}t}$$
(2)

For an initial state $|\psi\rangle_0$, the state after time t is given by

$$|\psi\rangle_t = \hat{U}(t)|\psi\rangle_0 \tag{3}$$

$$egin{align} \hat{H} &= \sum_{i=3}^{L-2} \hat{S}_i \left(\hat{N}_i^{(2)} + \hat{N}_i^{(3)}
ight) \ & \hat{U}(t) = \mathrm{e}^{-\mathrm{i}\hat{H}t} \ & |\psi
angle_t = \hat{U}(t) \, |\psi
angle_0 \ \end{split}$$

(1)

(2)

(3)

$$\hat{H} = \sum_{i=3}^{L-2} \hat{S}_i \left(\hat{N}_i^{(2)} + \hat{N}_i^{(3)} \right) \tag{1}$$

$$|\psi\rangle_{t} = \hat{U}(t)|\psi\rangle_{0} \tag{3}$$

The time t needed for a state to flip under the action of operator \hat{S}_i is $\frac{\pi}{2}$. For a fixed time step duration $t = \frac{\pi}{2}$, the state after k time steps is given by

 $\hat{U}(t) = e^{-i\hat{H}t}$

$$|\psi\rangle_{k} = \left(\hat{U}\left(\frac{\pi}{2}\right)\right)^{k} |\psi\rangle_{0} \tag{4}$$

(2)

$$egin{align} \hat{H} &= \sum_{i=3}^{L-2} \hat{S}_i \left(\hat{N}_i^{(2)} + \hat{N}_i^{(3)}
ight) \ \hat{U}(t) &= e^{-\mathrm{i}\hat{H}t} \ &|\psi
angle_t = \hat{U}(t) \, |\psi
angle_0 \ &|\psi
angle_k = \left(\hat{U}\left(rac{\pi}{2}
ight)
ight)^k |\psi
angle_0 \ \end{split}$$

(1)

(3)

(4)

$$\hat{U}(t) = e^{-i\hat{H}t}$$

$$|\psi\rangle_t = \hat{U}(t) |\psi\rangle_0$$

$$|\psi\rangle_k = \left(\hat{U}\left(\frac{\pi}{2}\right)\right)^k |\psi\rangle_0$$
(4)

In particular, during 1 time step, the state of some $|\psi\rangle_k$ at time step k will evolve into $|\psi\rangle_{k+1} = \hat{U}\left(\frac{\pi}{2}\right)|\psi\rangle_{k}$

 $\hat{H} = \sum_{i=2}^{L-2} \hat{S}_i \left(\hat{N}_i^{(2)} + \hat{N}_i^{(3)} \right)$

(1)

(5)

$$|\psi\rangle_{k+1} = \hat{U}\left(\frac{\pi}{2}\right)|\psi\rangle_{k} \tag{5}$$

$$|\psi\rangle_{k+1} = \hat{U}\left(\frac{\pi}{2}\right)|\psi\rangle_{k} \tag{5}$$

Figure: Time evolution of the initial state $|\psi\rangle_0 = |0\rangle^{\otimes 3} \otimes |1001\rangle \otimes |0\rangle^{\otimes 4}$ according to equation (5) shown as the distribution of alive cells

$$|\psi\rangle_{k+1} = \hat{U}\left(\frac{\pi}{2}\right)|\psi\rangle_{k} \tag{5}$$

Figure: Time evolution of the initial state $|\psi\rangle_0 = |0\rangle^{\otimes 4} \otimes |101\rangle \otimes |0\rangle^{\otimes 4}$ according to equation (5) shown as the distribution of alive cells

$$|\psi\rangle_{k+1} = \hat{U}\left(\frac{\pi}{2}\right)|\psi\rangle_{k} \tag{5}$$

Figure: Time evolution of the initial state $|\psi\rangle_0=|001000100\rangle$ according to equation (5) shown as the distribution of alive cells

Variable Time Steps

$$|\psi\rangle_{k+1} = \hat{U}\left(\frac{\pi}{2}\right)|\psi\rangle_{k} \tag{5}$$

Variable Time Steps

$$|\psi\rangle_{k+1} = \hat{U}(t)|\psi\rangle_{k} \tag{6}$$

Variable Time Steps

$$|\psi\rangle_{k+1} = \hat{U}(t)|\psi\rangle_{k} \tag{6}$$

Figure: Time evolution of the initial states $|\psi\rangle_0^{(left)}=|0\rangle^{\otimes 4}\otimes|101\rangle\otimes|0\rangle^{\otimes 4}$ and $|\psi\rangle_0^{(right)}=|001000100\rangle$ according to equation (6) with $t^{(top)}=\frac{\pi}{2}$ and $t^{(bottom)}=\frac{\pi}{10}$ shown as the distribution of alive cells

Entropy of entanglement

Entropy of entanglement

$$|\Psi_{AB}\rangle = |\psi_{A}\rangle |\psi_{B}\rangle \tag{7}$$

$$\rho_{A} = Tr_{B}(|\Psi_{AB}\rangle \langle \Psi_{AB}|) \tag{8}$$

$$S(\rho_{A}) = -Tr(\rho_{A}log_{2}(\rho_{A})) \tag{9}$$

Entropy of entanglement

$$|\Psi_{AB}\rangle = |\psi_A\rangle |\psi_B\rangle \tag{7}$$

$$\rho_{A} = Tr_{B}(|\Psi_{AB}\rangle\langle\Psi_{AB}|) \tag{8}$$

$$S(\rho_A) = -Tr(\rho_A \log_2(\rho_A)) \tag{9}$$

- $S(\rho_A)$ is called the entropy of entanglement
- lacksquare A measure of the degree of entanglement between subsystems A and B
- $S(\rho_A) = 0 \Longrightarrow$ subsystems A and B are not entangled

Entropy of entanglement

$$|\Psi_{AB}\rangle = |\psi_A\rangle |\psi_B\rangle \tag{7}$$

$$\rho_{A} = Tr_{B}(|\Psi_{AB}\rangle\langle\Psi_{AB}|) \tag{8}$$

$$S(\rho_A) = -Tr(\rho_A \log_2(\rho_A)) \tag{9}$$

- $S(\rho_A)$ is called the entropy of entanglement
- lacksquare A measure of the degree of entanglement between subsystems A and B
- $S(\rho_A) = 0 \Longrightarrow$ subsystems A and B are not entangled

If A represents one cell and B represents the rest of the system, $S(\rho_A)$ is called the **single site entropy**.

Single site entropy

$$S(\rho_A) = -Tr(\rho_A \log_2(\rho_A)) \tag{9}$$

9/12

Single site entropy

$$S(\rho_A) = -Tr(\rho_A \log_2(\rho_A)) \tag{9}$$

Figure: Time evolution of the initial states $|\psi\rangle_0^{(left)} = |0\rangle^{\otimes 4} \otimes |101\rangle \otimes |0\rangle^{\otimes 4}$ and $|\psi\rangle_0^{(right)} = |001000100\rangle$ shown as the distribution of alive cells (top) and single site entropy (bottom)

$$\hat{H} = \sum_{i=3}^{L-2} \hat{S}_i \left(\hat{N}_i^{(2)} + \hat{N}_i^{(3)} \right) \tag{1}$$

$$\hat{H} = \sum_{i=3}^{L-2} \hat{S}_i \left(\hat{N}_i^{(2)} + \hat{N}_i^{(3)} \right) \tag{1}$$

From this specific Hamiltonian, other Hamiltonians corresponding to different rules can be derived. A more general form looks like

$$\hat{H} = \sum_{i} \hat{S}_{i} \left(\hat{N}_{i} \right) \tag{10}$$

$$\hat{H} = \sum_{i=3}^{L-2} \hat{S}_i \left(\hat{N}_i^{(2)} + \hat{N}_i^{(3)} \right) \tag{1}$$

From this specific Hamiltonian, other Hamiltonians corresponding to different rules can be derived. A more general form looks like

$$\hat{H} = \sum_{i} \hat{S}_{i} \left(\hat{N}_{i} \right) \tag{10}$$

 \hat{N}_i defines how many neighbors are considered and how many of them need to be alive to flip a cell

$$\hat{H} = \sum_{i=3}^{L-2} \hat{S}_i \left(\hat{N}_i^{(2)} + \hat{N}_i^{(3)} \right)$$
 (1)

From this specific Hamiltonian, other Hamiltonians corresponding to different rules can be derived. A more general form looks like

$$\hat{H} = \sum_{i} \hat{S}_{i} \left(\hat{N}_{i} \right) \tag{10}$$

- \hat{N}_i defines how many neighbors are considered and how many of them need to be alive to flip a cell
- The bounds of the summation index i depend on \hat{N}_i and on the the boundary conditions used

$$\hat{H} = \sum_{i} \hat{S}_{i} \left(\hat{N}_{i} \right) \tag{10}$$

$$\hat{H} = \sum_{i} \hat{S}_{i} \left(\hat{N}_{i} \right) \tag{10}$$

Figure: Time evolution of the initial state $|\psi\rangle_0 = |0\rangle^{\otimes 4} \otimes |101\rangle \otimes |0\rangle^{\otimes 4}$ according to rule F_{12} (left) and rule 150 (right) shown as the distribution of alive cells (top) and single site entropy (bottom)

$$\hat{H} = \sum_{i} \hat{S}_{i} \left(\hat{N}_{i} \right) \tag{10}$$

Figure: Time evolution of the initial state $|\psi\rangle_0 = |0\rangle^{\otimes 5} \otimes |1\rangle \otimes |0\rangle^{\otimes 5}$ according to rule F_{12} (left) and rule 150 (right) shown as the distribution of alive cells (top) and single site entropy (bottom)

$$\hat{H} = \sum_{i} \hat{S}_{i} \left(\hat{N}_{i} \right) \tag{10}$$

"A cell is flipped if the number of alive cells among its nearest neighbors is 1"

Figure: Time evolution of the initial state $|\psi\rangle_0 = \bigotimes_{k=0}^{N-1} \left[R_{\rm x} \left(\pi \frac{k}{N-1} \right) |1\rangle \right]$, with $R_{\rm x}(\theta)$ the x-rotation gate and N=11, according to rule 150 with $t^{(top)}=\frac{\pi}{2}$ and $t^{(bottom)}=\frac{\pi}{10}$ shown as the distribution of alive cells

Desciption for plots in slide "The Quantum Game of Life"

- Classical: The time evolution corresponding to a classical cellular automaton
- Quantum: The time evolution of the distribution of alive cells
- Rounded: The rounded version of "Quantum"
- single site entropy: The time evolution of the single site entropy

Desciption for plots in slide "The Quantum Game of Life"

Plots in order:

■ rule:
$$f_{12}$$
, $t = \frac{\pi}{2}$, $|\psi\rangle_0 = |0\rangle^{\otimes 4} \otimes |101\rangle \otimes |0\rangle^{\otimes 4}$, start time step $k = 0$

■ rule: 150,
$$t = \frac{\pi}{2}$$
, $|\psi\rangle_0 = |0\rangle^{\otimes 4} \otimes |101\rangle \otimes |0\rangle^{\otimes 4}$, start time step $k = 0$

■ rule: 150,
$$t = \frac{\pi}{2}$$
, $|\psi\rangle_0 = |0\rangle^{\otimes 5} \otimes |1\rangle \otimes |0\rangle^{\otimes 5}$, start time step $k = 0$

■ rule: 150,
$$t = \frac{\pi}{2}$$
, $|\psi\rangle_0 = |0\rangle^{\otimes 3} \otimes |10101\rangle \otimes |0\rangle^{\otimes 3}$, start time step $k = 0$

■ rule: 150,
$$t = \frac{\pi}{2}$$
, $|\psi\rangle_0 = |0\rangle \otimes |1\rangle^{\otimes 9} \otimes |0\rangle$, start time step $k = 0$

$$lacksquare$$
 rule: 150, $t=rac{\pi}{2}$, $|\psi
angle_0=igotimes_{k=0}^{N-1}\left[R_{\scriptscriptstyle X}\left(\pirac{k}{N-1}
ight)|1
angle
ight]$, start time step $k=0$

$$lacksquare$$
 rule: 150, $t=rac{\pi}{10}$, $|\psi
angle_0=igotimes_{k=0}^{N-1}\left[R_{\scriptscriptstyle X}\left(\pirac{k}{N-1}
ight)|1
angle
ight]$, start time step $k=0$

$$lacksquare$$
 rule: 150, $t=rac{\pi}{2}$, $|\psi
angle_0=igotimes_{k=0}^{N-1}\left[R_{\scriptscriptstyle X}\left(\pirac{k}{N-1}
ight)|1
angle
ight]$, start time step $k=70$

■ rule: 150,
$$t = \frac{\pi}{10}$$
, $|\psi\rangle_0 = \bigotimes_{k=0}^{N-1} \left[R_{\mathsf{X}} \left(\pi \frac{k}{N-1} \right) |1\rangle \right]$, start time step $k = 70$

A naming system to define the rules of a cellular automaton

A naming system to define the rules of a cellular automaton

Rule 150:

A naming system to define the rules of a cellular automaton

Rule 150:

1 1 1	1 1 0	1 0 1	1 0 0	0 1 1	0 1 0	0 0 1	0 0 0
1	0	0	1	0	1	1	0

A naming system to define the rules of a cellular automaton

Rule 150:

"A cell is flipped if the number of alive cells among its nearest neighbors is 1"

The corresponding wolfram code for this rule is 10010110b = 150

A naming system to define the rules of a cellular automaton

Rule 150:

"A cell is flipped if the number of alive cells among its nearest neighbors is 1"

The corresponding wolfram code for this rule is 10010110b = 150

The wolfram code for rule- F_{12} is 2266898040