Bài tập Nhị thức Niu - Tơn - Toán 11

I. Bài tập trắc nghiệm

Bài 1: Tìm số hạng đứng giữa trong khai triển $(x^3 + xy)^{21}$

A. $C_{21}^{10}x^{40}y^{10}$.

B. $C_{21}^{10}x^{43}y^{10}$.

C. $C_{21}^{11}x^{41}y^{11}$.

D. $C_{21}^{10}x^{43}y^{10}$; $C_{21}^{11}x^{41}y^{11}$.

Lời giải:

Theo khai triển nhị thức Niu-ton, ta có

$$(x^3 + xy)^{21} = \sum_{k=0}^{21} C_{21}^k \cdot (x^3)^{21-k} \cdot (xy)^k$$

$$= \sum_{k=0}^{21} C_{21}^{k} . x^{63-3k} . x^{k} . y^{k} = \sum_{k=0}^{21} C_{21}^{k} . x^{63-2k} . y^{k}$$

Suy ra khai triển $(x^3 + xy)^{21}$ có 22 số hạng nên có hai số hạng đứng giữa là số hạng thứ 11 (ứng với k = 10) và số hạng thứ 12 (ứng với k = 11). Vậy hai số hạng đứng giữa cần tìm là

$$C_{21}^{10}x^{43}y^{10}; C_{21}^{11}x^{41}y^{11}$$

Chọn đáp án D

Bài 2: Tìm hệ số của x^5 trong khai triển $P(x) = x(1 - 2x)^5 + x^2(1 + 3x)^{10}$

A. 80

B. 3240

C. 3320

D. 259200

Lời giải:

* Theo khai triển nhị thức Niu-tơn, ta có

$$x(1-2x)^5 = x.\sum_{k=0}^5 C_5^k.(-2x)^{5-k} = \sum_{k=0}^5 C_5^k.(-2)^{5-k}.x^{6-k}.$$

Suy ra, số hạng chứa x^5 tương ứng với $6-k=5 \Leftrightarrow k=1$.

* Tương tự, ta có:

$$x^{2}(1+3x)^{10} = x^{2} \cdot \sum_{l=0}^{10} C_{10}^{l} \cdot (3x)^{10-l} = \sum_{l=0}^{10} C_{10}^{l} \cdot 3^{10-l} \cdot x^{12-l}.$$

Suy ra, số hạng chứa x5 tương ứng với

$$12-l=5 \Leftrightarrow l=7$$
.

Vậy hệ số của x^5 cần tìm P(x) là

$$C_5^1 \cdot (-2)^4 + C_{10}^7 \cdot 3^3 = 3320$$
.

Chọn đáp án C

Bài 3: Tìm hệ số của x^5 trong khai triển : $P(x) = (1 + x) + 2(1 + x)^2 + ... + 8(1 + x)^8$.

A. 630

B. 635

C. 636

D.637

Lời giải:

Các biểu thức (1 + x), $(1 + x)^2$, ..., $(1 + x)^4$ không chứa số hạng chứa x^5 .

Hệ số của số hạng chứa x⁵ trong khai triển 5 $\left(1+x\right)^5$ là 5 C_5^5 .

Hệ số của số hạng chứa ${\bf x}^5$ trong khai triển $6{\left(1+x\right)}^6$ là $6C_6^5$.

Hệ số của số hạng chứa x^5 trong khai triển $7(1+x)^7$ là $7C_7^5$.

Hệ số của số hạng chứa \mathbf{x}^5 trong khai triển $8\big(1+x\big)^8$ là $8C_8^5$.

Vậy hệ số của x^5 trong khai triển P(x) là $5C_5^5 + 6C_6^5 + 7C_7^5 + 8C_8^5 = 636$.

Chọn đáp án C

Bài 4: Tìm số nguyên dương n thỏa mãn $C_{2n+1}^1 + C_{2n+1}^2 + ... + C_{2n+1}^n = 2^{20} - 1$

A.n = 8

B.n = 9

C.n = 10

D. n = 11

Ta có:

$$2^{2n+1} = (1+1)^{2n+1} = C_{2n+1}^0 + C_{2n+1}^1 + \dots + C_{2n+1}^{2n+1}. (1)$$

Lai có:

$$C_{2n+1}^{0} = C_{2n+1}^{2n+1}; C_{2n+1}^{1} = C_{2n+1}^{2n}; C_{2n+1}^{2} = C_{2n+1}^{2n-1}; ...; C_{2n+1}^{n} = C_{2n+1}^{n+1}.$$
 (2)

Từ (1) và (2), suy ra:

$$C_{2n+1}^0 + C_{2n+1}^1 + \dots + C_{2n+1}^n = \frac{2^{2n+1}}{2}$$

$$\Leftrightarrow C_{2n+1}^1 + ... + C_{2n+1}^n = \frac{2^{2n+1}}{2} - C_{2n+1}^0$$

$$\Leftrightarrow C_{2n+1}^1 + \dots + C_{2n+1}^n = 2^{2n} - 1$$

$$\Leftrightarrow 2^{20} - 1 = 2^{2n} - 1 \Leftrightarrow n = 10$$

Vậy n =10 thỏa mãn yêu cầu bài toán.

Chọn đáp án C

Bài 5: Tìm số nguyên dương n thỏa mãn $C_{2n+1}^1 + C_{2n+1}^3 + ... + C_{2n+1}^{2n+1} = 1024$

$$A.n = 5$$

$$B.n = 9$$

$$C.n = 10$$

$$D.n = 4$$

Xét khai triển

$$(x+1)^{2n+1} = C_{2n+1}^0 x^{2n+1} + C_{2n+1}^1 x^{2n} + \dots + C_{2n+1}^{2n+1}.$$

Cho x = 1 , ta được:
$$2^{2^{n+1}} = C_{2^{n+1}}^0 + C_{2^{n+1}}^1 + \ldots + C_{2^{n+1}}^{2^{n+1}}. \quad (1)$$

$$0 = -C_{2n+1}^{0} + C_{2n+1}^{1} - \dots + C_{2n+1}^{2n+1}.$$
 (2)

Cộng (1) và (2) vế theo vế, ta được:

$$2^{2n+1} = 2\left(C_{2n+1}^1 + C_{2n+1}^3 + \dots + C_{2n+1}^{2n+1}\right)$$

$$\Leftrightarrow 2^{2n+1} = 2.1024 = 2^{11}$$

$$\Leftrightarrow 2n+1=11 \Leftrightarrow n=5$$

Chọn đáp án A

Bài 6: Tìm số nguyên dương n sao cho: $C_n^0 + 2C_n^1 + 4C_n^2 + ... + 2^nC_n^n = 243$

A. 5

B. 11

C. 12

D. 4

Lời giải:

Xét khai triển: $(1+x)^n = C_n^0 + xC_n^1 + x^2C_n^2 + ... + x^nC_n^n$

Cho x= 2 ta có: $C_n^0 + 2C_n^1 + 4C_n^2 + ... + 2^n C_n^n = 3^n$

Do vậy ta suy ra $3^n = 243 = 3^5 \implies n = 5$.

Chọn đáp án A

Bài 7: Tính
$$S = C_{2011}^0 + 2^2 C_{2011}^2 + ... + 2^{2010} C_{2011}^{2010}$$

A.
$$\frac{3^{2011}+1}{2}$$

B.
$$\frac{3^{2012}-1}{2}$$

D.
$$\frac{3^{2011}-1}{2}$$

Lời giải:

* Xét khai triển:

$$(1+x)^{2011} = C_{2011}^0 + xC_{2011}^1 + x^2C_{2011}^2 + \dots + x^{2010}C_{2011}^{2010} + x^{2011}C_{2011}^{2011}$$

* Cho x= 2 ta có được:

$$3^{2011} = C_{2011}^0 + 2.C_{2011}^1 + 2^2 C_{2011}^2 + ... + 2^{2010} C_{2011}^{2010} + 2^{2011} C_{2011}^{2011}$$
(1)

* Cho x= -2 ta có được:

$$-1 = C_{2011}^{0} - 2.C_{2011}^{1} + 2^{2}C_{2011}^{2} - \dots + 2^{2010}C_{2011}^{2010} - 2^{2011}C_{2011}^{2011}$$
(2)

* Lấy (1) + (2) ta có:

$$2(C_{2011}^0 + 2^2C_{2011}^2 + ... + 2^{2010}C_{2011}^{2010}) = 3^{2011} - 1$$

Suy ra:
$$S = C_{2011}^0 + 2^2 C_{2011}^2 + ... + 2^{2010} C_{2011}^{2010} = \frac{3^{2011} - 1}{2}$$
.

Chọn đáp án D

Bài 8: Khai triển biểu thức $(x-m^2)^4$ thành tổng các đơn thức:

A.
$$x^4 - x^3m + x^2m^2 + m^4$$

B.
$$x^4 - x^3m^2 + x^2m^4 - xm^6 + m^8$$

C.
$$x^4 - 4x^3m + 6x^2m^2 - 4xm + m^4$$

D.
$$x^4 - 4x^3m^2 + 6x^2m^4 - 4xm^6 + m^8$$

Lời giải:

Sử dụng nhị thức Niuton với a = x, $b = -m^2$

$$(x - m^{2})^{4} = \left[x + (-m^{2})\right]^{4}$$

$$= C_{4}^{0} \cdot x^{4} + C_{4}^{1} \cdot x^{3} \cdot (-m^{2}) + C_{4}^{2} \cdot x^{2} \cdot (-m^{2})^{2} + C_{4}^{3} \cdot x \cdot (-m^{2})^{3} + C_{4}^{4} \cdot (-m^{2})^{4}$$

$$= x^{4} - 4x^{3}m^{2} + 6x^{2}m^{4} - 4x \cdot m^{6} + m^{8}$$

Chọn đáp án D

Bài 9: Tìm số hạng không chứa x trong khai triển

$$\left(3x - \frac{1}{3x^2}\right)^9$$

- A. 2268
- B. -2268
- C. 84
- D. -27

Lời giải:

Số hạng thứ k+1 trong khai triển là:

$$T_{k+1} = C_9^k (3x)^{9-k} \left(\frac{-1}{3x^2}\right)^k$$

$$= C_9^k 3^{9-k} \cdot x^{9-k} \cdot \frac{(-1)^k}{3^k \cdot x^{2k}}$$

$$= C_9^k \cdot (-1)^k \cdot 3^{9-k-k} \cdot x^{9-k-2k}$$

$$= C_9^k \cdot (-1)^k \cdot 3^{9-2k} \cdot x^{9-3k}$$

Để số hạng này không chứa x ta cần tìm k sao cho:

$$9 - 3k = 0 \Leftrightarrow k = 3$$

Vậy số hạng không chứa x là

$$C_{\rm q}^3 \cdot (-1)^3 \cdot 3^3 = -2268.$$

Chọn đáp án là B

Bài 10: Xác định hệ số của số hạng chứa x3 trong khai triển $(x^2 - \frac{x}{2})n$ nếu biết tổng các hệ số của ba số hạng đầu trong khai triển đó bằng 49.

A. 160

C.
$$160x^3$$

D.
$$-160x^3$$

Lời giải:

Theo nhị thức Newton, ta có:

Số hạng đầu tiên là $C_n^0.(x^2)^n = x^{2n}$

Số hạng thứ hai là:

$$C_n^1 \cdot (x^2)^{n-1} \cdot \left(\frac{-2}{x}\right) = n \cdot x^{2n-2} \cdot \frac{-2}{x} = -2n \cdot x^{2n-3}$$

Số hạng thứ ba là:

$$C_n^2.(x^2)^{n-2}.\left(\frac{-2}{x}\right)^2 = \frac{n(n-1)}{2}.x^{2n-4}.\frac{4}{x^2} = 2n(n-1).x^{2n-6}$$

Tổng các hệ số của ba số hạng đầu trong khai triển bằng 49

$$N$$
ên:1- $2n + 2n(n - 1) = 49$

$$\Leftrightarrow 1 - 2n + 2n^2 - 2n - 49 = 0$$

$$\Leftrightarrow 2n^2 - 4n - 48 = 0 \Leftrightarrow \begin{bmatrix} n = 6 \\ n = -4 < 0 \ (l) \end{bmatrix}$$

Vây n = 6.

Từ đó ta có số hạng tổng quát trong khai triển $\left(x^2 - \frac{2}{x}\right)^6$ là:

$$C_6^k.(x^2)^{6-k}.\left(\frac{-2}{x}\right)^k = (-2)^k.C_6^k.x^{12-3k}$$

Để số hạng này chứa x^3 thì: $12 - 3k = 3 \Leftrightarrow k = 3$

Do đó hệ số của số hạng chứa x^3 là $(-2)^3C_6^3 = -160$

Chọn đáp án là B

II. Bài tập tự luận có lời giải

Bài 1: Tính tổng S = 3^{2015} .C20150- 3^{2014} C20151+ 3^{2013} C20152-...+3C20152014 - C20152015?

Lời giải:

Theo nhị thức Newton ta có:

$$(3+x)^{2015} = C_{2015}^{0}.3^{2015} + C_{2015}^{1}.3^{2014}.x + C_{2015}^{2}.3^{2013}.x^{2} + + C_{2015}^{2014}.3.x^{2014} + C_{2015}^{2015}.x^{2015}$$

Thay x = -1 ta được:

$$(3-1)^{2015} = C_{2015}^0.3^{2015} - C_{2015}^1.3^{2014} + C_{2015}^2.3^{2013}$$

-....+ $C_{2015}^{2014}.3 - C_{2015}^{2015}$
Suy ra, S = 2^{2015}

Bài 2: Trong khai triển nhị thức $(a + 2)^{n+6}$, $(n \in N)$. Có tất cả 17 số hạng. Vậy n bằng:

Lời giải:

Trong khai triển
$$(a+2)^{n+6}$$
, $(n \in \mathbb{N})$
Có tất cả $n+6+1=n+7$ số hạng.
Do đó $n+7=17 \Leftrightarrow n=10$.

Bài 3: Tìm hệ số của x^{12} trong khai triển $(2x - x^2)^{10}$

Theo khai triển nhị thức Niu-tơn, ta có

$$(2x - x^{2})^{10} = \sum_{k=0}^{10} C_{10}^{k} \cdot (2x)^{10-k} \cdot (-x^{2})^{k}$$

$$= \sum_{k=0}^{10} C_{10}^{k} \cdot (2)^{10-k} \cdot (-1)^{k} \cdot x^{10-k+2k}$$

$$= \sum_{k=0}^{10} C_{10}^{k} \cdot (2)^{10-k} \cdot (-1)^{k} \cdot x^{10+k}.$$

Hệ số của x^{12} ứng với $10 + k = 12 \Leftrightarrow k = 2$ Hệ số cần tìm $C_{10}^2 2^8$.

Bài 4: Tìm số hạng chứa x^3 trong khai triển $\left(x + \frac{1}{2x}\right)^9$.

Lời giải:

Theo khai triển nhị thức Niu-tơn, ta có:

$$\left(x + \frac{1}{2x}\right)^9 = \sum_{k=0}^9 C_9^k . x^{9-k} . \left(\frac{1}{2x}\right)^k = \sum_{k=0}^9 C_9^k . \left(\frac{1}{2}\right)^k . x^{9-2k}.$$

Hệ số của x^3 ứng với $9-2k=3 \Leftrightarrow k=3$

Vậy số hạng cần tìm $\frac{1}{8}C_9^3x^3$.

Bài 5: Viết khai triển theo công thức nhị thức Niu - Tơn:

a)
$$(a + 2b)^5$$

b)
$$(a - \sqrt{2})^6$$

c)
$$(x - \frac{1}{x})^{13}$$

Lời giải:

a) Theo dòng 5 của tam giác Pascal, ta có:

$$(a + 2b)^5 = a^5 + 5a^4(2b) + 10a^3(2b)^2 + 10a^2(2b)^3 + 5a(2b)^4 + (2b)^5$$

= $a^5 + 10a^4b + 40a^3b^2 + 80a^2b^3 + 80ab^4 + 32b^5$

b) Theo dòng 6 của tam giác Pascal, ta có:

$$(a - \sqrt{2})^6 = [a + (-\sqrt{2})]^6 = a^6 + 6a^5 (-\sqrt{2}) + 15a^4 (-\sqrt{2})^2 + 20a^3 (-\sqrt{2})^3 + 15a^2 (-\sqrt{2})^4 + 6a(-\sqrt{2})^5 + (-\sqrt{2})^6 = a^6 - 6\sqrt{2}a^5 + 30a^4 - 40\sqrt{2}a^3 + 60a^2 - 24\sqrt{2}a + 8.$$

c) Theo công thức nhị thức Niu - Tơn, ta có:

$$\left(x+\frac{1}{x}\right)^{13} = \left[x+\left(-\frac{1}{x}\right)\right]^{13} = \sum_{k=0}^{13} C_{13}^k. \, x^{13-k}. \left(\frac{-1}{x}\right)^k = \sum_{k=0}^{13} C_{13}^k (-1)^k. \, x^{13-2k}$$

Nhận xét: Trong trường hợp số mũ n khá nhỏ (chẳng hạn trong các câu a) và b) trên đây) thì ta có thể sử dụng tam giác Pascal để tính nhanh các hệ số của khai triển.

Bài 6 Tìm hệ số của x3 trong khai triển của biểu thức: $\left(x + \frac{2}{x^2}\right)^{6}$

Lời giải:

$$\left(x+rac{2}{x^2}
ight)^6 = \sum_{k=0}^6 C_6^k.\, x^{6-k}. \left(rac{2}{x^2}
ight)^k = \sum_{k=0}^6 C_6^k.2^k.\, x^{6-3k}$$

Trong tổng này, số hạng Ck⁶. 2k. x⁶ - 3k có số mũ của x bằng 3 khi và chỉ khi

$$\left\{ \begin{array}{l} 6-3k=3 \\ 0 \leq k \leq 6 \end{array} \Leftrightarrow k=1 \right.$$

Do đó hệ số của x3 trong khai triển của biểu thức đã cho là: $\frac{C_6^2.2}{}=2$. 6=12

Bài 7: Tìm hệ số của x^5 trong khai triển : $P(x) = (1 + x) + 2(1 + x)^2 + ... + 8(1 + x)^8$.

Các biểu thức (1 + x), $(1 + x)^2$, ..., $(1 + x)^4$ không chứa số hạng chứa x^5 .

Hệ số của số hạng chứa \mathbf{x}^5 trong khai triển $5\left(1+x\right)^5$ là $5C_5^5$.

Hệ số của số hạng chứa x^5 trong khai triển $6(1+x)^6$ là $6C_6^5$.

Hệ số của số hạng chứa x^5 trong khai triển $7(1+x)^7$ là $7C_7^5$.

Hệ số của số hạng chứa \mathbf{x}^5 trong khai triển $8 \left(1+x\right)^8$ là $8 C_8^5$.

Vậy hệ số của x^5 trong khai triển P(x) là $5C_5^5 + 6C_6^5 + 7C_7^5 + 8C_8^5 = 636$.

Bài 8 Tìm số nguyên dương n thỏa mãn $C_{2n+1}^1 + C_{2n+1}^2 + ... + C_{2n+1}^n = 2^{20} - 1$

Lời giải:

Ta có:

$$2^{2n+1} = (1+1)^{2n+1} = C_{2n+1}^0 + C_{2n+1}^1 + \dots + C_{2n+1}^{2n+1}. (1)$$

Lai có:

$$C_{2n+1}^{0} = C_{2n+1}^{2n+1}; C_{2n+1}^{1} = C_{2n+1}^{2n}; C_{2n+1}^{2} = C_{2n+1}^{2n-1}; ...; C_{2n+1}^{n} = C_{2n+1}^{n+1}.$$
(2)

Từ (1) và (2), suy ra:

$$C_{2n+1}^0 + C_{2n+1}^1 + \dots + C_{2n+1}^n = \frac{2^{2n+1}}{2}$$

$$\Leftrightarrow C_{2n+1}^1 + \dots + C_{2n+1}^n = \frac{2^{2n+1}}{2} - C_{2n+1}^0$$

$$\Leftrightarrow C_{2n+1}^1 + ... + C_{2n+1}^n = 2^{2n} - 1$$

$$\Leftrightarrow 2^{20} - 1 = 2^{2n} - 1 \Leftrightarrow n = 10$$

Vậy n =10 thỏa mãn yêu cầu bài toán.

Bài 9 Tính
$$S = C_{2011}^0 + 2^2 C_{2011}^2 + ... + 2^{2010} C_{2011}^{2010}$$

* Xét khai triển:

$$(1+x)^{2011} = C_{2011}^0 + xC_{2011}^1 + x^2C_{2011}^2 + \dots + x^{2010}C_{2011}^{2010} + x^{2011}C_{2011}^{2011}$$

* Cho x= 2 ta có được:

$$3^{2011} = C_{2011}^0 + 2.C_{2011}^1 + 2^2 C_{2011}^2 + \dots + 2^{2010} C_{2011}^{2010} + 2^{2011} C_{2011}^{2011}$$
 (1)

* Cho x= -2 ta có được:

$$-1 = C_{2011}^{0} - 2.C_{2011}^{1} + 2^{2}C_{2011}^{2} - \dots + 2^{2010}C_{2011}^{2010} - 2^{2011}C_{2011}^{2011}$$
(2)

* Lấy (1) + (2) ta có:

$$2\left(C_{2011}^{0}+2^{2}C_{2011}^{2}+...+2^{2010}C_{2011}^{2010}\right)=3^{2011}-1$$

Suy ra:
$$S = C_{2011}^0 + 2^2 C_{2011}^2 + ... + 2^{2010} C_{2011}^{2010} = \frac{3^{2011} - 1}{2}$$
.

Bài 10 Tìm số hạng không chứa x trong khai triển

$$\left(3x-\frac{1}{3x^2}\right)^9$$

Lời giải:

Số hạng thứ k+1 trong khai triển là:

$$T_{k+1} = C_9^k (3x)^{9-k} \left(\frac{-1}{3x^2}\right)^k$$

$$= C_9^k 3^{9-k} \cdot x^{9-k} \cdot \frac{(-1)^k}{3^k \cdot x^{2k}}$$

$$= C_9^k \cdot (-1)^k \cdot 3^{9-k-k} \cdot x^{9-k-2k}$$

$$=C_9^k.(-1)^k.3^{9-2k}.x^{9-3k}$$

Để số hạng này không chứa x ta cần tìm k sao cho:

$$9 - 3k = 0 \Leftrightarrow k = 3$$

Vậy số hạng không chứa x là

$$C_0^3 \cdot (-1)^3 \cdot 3^3 = -2268.$$

III. Bài tập vận dụng

Bài 1 Biết hệ số của x^2 trong khai triển của $(1 - 3x)^n$ là 90. Tìm n.

Bài 2 Tìm số hạng không chứa x trong khai triển của $(x^3 +)^8$

Bài 3 Từ khai triển biểu thức $(3x-4)^{17}$ thành đa thức, hãy tính tổng các hệ số của đa thức nhận được.

Bài 4 Chứng minh rằng:

- a) $11^{10} 1$ chia hết cho 100;
- b) 101¹⁰⁰– 1 chia hết cho 10 000;

c)
$$\sqrt{10}$$
 [(1+ $\sqrt{10}$)100-(1- $\sqrt{10}$)100] là một số nguyên

Bài 5 Viết khai triển theo công thức nhị thức Niu - Tơn:

a)
$$(a + 2b)^5$$

b)
$$(a - \sqrt{2})^6$$

c)
$$(x - \frac{1}{x})^{13}$$

Bài 6 Tìm hệ số của x^3 trong khai triển của biểu thức: $\left(x+rac{2}{x^2}
ight)^6$

Bài 7 Biết hệ số của x^2 trong khai triển của $(1 - 3x)^n$ là 90. Tìm n.

Bài 8 Tìm số hạng không chứa x trong khai triển của $(x^3 + \frac{1}{x})^8$

Bài 9 Từ khai triển biểu thức $(3x - 4)^{17}$ thành đa thức, hãy tính tổng các hệ số của đa thức nhận được?

Bài 10 Chứng minh rằng:

- a) $11^{10} 1$ chia hết cho 100;
- b) $101^{100} 1$ chia hết cho 10 000;
- c) $\sqrt{10}[(1+\sqrt{10})100-(1-\sqrt{10})100]$ là một số nguyên.