CUAI cs231n 스터디

2022.04.02

발표자 : 조다영

스터디원 소개 및 만남 인증

스터디원 1: 김소원

스터디원 2: 배현규

스터디원 3 : 임현오

스터디원 4: 조다영

목차

- 1. cs231n 소개
- 2. 스터디 계획
- 3. 1~3강 내용 요약

cs231n 소개

Deep Learning for Computer Vision (Particularly image classification)

- 총 14주차
- 배우는 내용: Image classification, Loss functions, Optimization, CNN, RNN, Detection, Segmentation, Generative models, Deep reinforcement learning
- 과제 3회

Assignment #1: Image Classification, kNN, SVM, Softmax, Fully Connected Neural Network

Assignment #2: Fully Connected and Convolutional Nets, Batch Normalization, Dropout, Pytorch & Network Visualization

Assignment #3: Network Visualization, Image Captioning with RNNs and Transformers, Generative Adversarial Networks, Self-Supervised Contrastive Learning

스터디 계획

- 시험기간 제외 매주 목요일 오후 4시 30분 대면으로 진행
- 2강씩 각자 수강해온 후 돌아가면서 내용 발표

Challenges: Deformation

Data-Driven Approach

Data driven approach

- 1) 라벨링된 이미지 데이터 수집
- 2) 머신러닝 모델 활용, 분류 학습
- 3) 새로운 이미지로 모델 평가

Example training set

K-Nearest Neighbors

Instead of copying label from nearest neighbor, take **majority vote** from K closest points

Idea #4: Cross-Validation: Split data into folds, try each fold as validation and average the results

fold 1	fold 2	fold 3	fold 4	fold 5	test
fold 1	fold 2	fold 3	fold 4	fold 5	test
fold 1	fold 2	fold 3	fold 4	fold 5	test

적잘한 파라미터 선택이 중요

Linear classification

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Loss function - SVM loss

Suppose: 3 training examples, 3 classes. With some W the scores f(x, W) = Wx are:

			+
(-7	-	
•	,	_	

3.2

1.3

2.2

car

5.1

4.9

frog

-1.7

2.0

-3.1

Multiclass SVM loss:

2.5
$$L_i = \sum_{j \neq y_i} \begin{cases} 0 & \text{if } s_{y_i} \geq s_j + 1 \\ s_j - s_{y_i} + 1 & \text{otherwise} \end{cases}$$

-3.1 $= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$

Regularization

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)$$

Data loss: Model predictions should match training data

Regularization: Model should be "simple", so it works on test data

Softmax Classifier (Multinomial Logistic Regression)

Optimization - Gradient Descent

Gradient Descent

Optimization - Stochastic Gradient Descent

Stochastic Gradient Descent (SGD)

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(x_i, y_i, W) + \lambda R(W)$$

$$\nabla_W L(W) = \frac{1}{N} \sum_{i=1}^{N} \nabla_W L_i(x_i, y_i, W) + \lambda \nabla_W R(W)$$

Full sum expensive when N is large!

Approximate sum using a **minibatch** of examples 32 / 64 / 128 common

