

มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี การสอบปลายภาคเรียนที่ 1 ปีการศึกษา 2553

วิชา ENE 325 Electromagnetic fields and waves ภาควิชา วศ.อิเล็กทรอนิกส์ฯ ปีที่ 3 ปกติ สอบ วันจันทร์ที่ 4 ตุลาคม พ.ศ. 2553

เวลา 13.00-16.00 น.

คำเตือน

- 1. ข้อสอบวิชานี้มี 5 ข้อ 11 หน้า (รวมใบปะหน้า)
- 2. ให้ทำทุกข้อลงในข้อสอบ
- 3. ไม่อนุญาตให้นำเอกสารประกอบการเรียนเข้าห้องสอบ
- 4. อนุญาดให้ใช้เครื่องคำนวณได้
- 5. ให้เขียนชื่อ-นามสกุล และเลขประจำตัวลงในข้อสอบทุกหน้า

เมื่อนักศึกษาทำข้อสอบเสร็จ ต้องยกมือบอกกรรมการคุมสอบ เพื่อขออนุญาตออกนอกห้องสอบ ห้ามนักศึกษานำข้อสอบและกระดาษคำตอบออกนอกห้องสอบ

นักศึกษาซึ่งทุจริตในการสอบ อาจถูกพิจารณาโทษสูงสุดให้พ้นสภาพการเป็นนักศึกษา		
ชื่อ-สกุล	รหัสประจำตัว	
อาจารย์ราชวดี ศิลาพันธ์		

ผู้ออกช้อสอบ โทร. 02-470- 9062

ข้อสอบนี้ได้ผ่านการประเมินจากคณะกรรมการประจำภาควิชาแล้ว

ผศ.ดร.วุฒิชัย อัศวินชัยโชติ หัวหน้าภาควิชาวิศวกรรมอิเล็กทรอนิกส์และโทรคมนาคม

สูตรที่ใช้ในการคำนวณ

Magnetostatics

- 1. Ampere's law: $\oint \vec{H} \cdot d\vec{l} = I$
- 2. Magnetic flux density, B was Magnetic field intensity, H: $\vec{B} = \mu \vec{H}$ Tesla
- 3. Magnetic permeability $\mu = \mu_r \mu_0$
- 4. Maxwell's equations for magnetostatics: $\nabla \cdot \vec{B} = 0$

$$\nabla \times \overrightarrow{H} = \overrightarrow{J}$$

โดยที่ ความหนาแน่นกระแส $\vec{J}=rac{\vec{I}}{area}=\sigma \vec{E}$ A/m 2

5. Curl in the cylindrical coordinate

$$\nabla \times \overrightarrow{A} = \left(\frac{1}{\rho} \frac{\partial A_z}{\partial \phi} - \frac{\partial A_{\phi}}{\partial z}\right) \hat{a}_{\rho} + \left(\frac{\partial A_{\rho}}{\partial z} - \frac{\partial A_z}{\partial \rho}\right) \hat{a}_{\phi} + \frac{1}{\rho} \left(\frac{\partial (\rho A_{\phi})}{\partial \rho} - \frac{\partial A_{\rho}}{\partial \phi}\right) \hat{a}_z$$

Dynamic fields

- 1. Transformer emf: $emf = -\int \frac{\partial \vec{B}}{\partial t} \cdot d\vec{S}$ V
- 2. Motional emf: $emf = \oint (\vec{v} \times \vec{B}) \cdot d\vec{l}$ V

Uniform Plane Wave

- 1. ตัวอย่างรูปแบบของคลื่นเดินทางในทิศ \hat{a}_z และสนามไฟฟ้าอยู่ในทิศ \hat{a}_x : Instantaneous form of forwarded electric field $\overrightarrow{E}(z,t)=E_0e^{-\alpha z}\cos(\omega t-\beta z)\hat{a}_x$ V/m Phasor form of forwarded electric field $\overrightarrow{E}(z)=E_0e^{-\alpha z}e^{-j\beta z}\hat{a}_x$ V/m
- 2. loss tangent $\tan \delta = \frac{\sigma}{\omega \varepsilon}$

2

มหาวิทยาลัยเทค ใน ใล<i>่ยีทระจอมเกล็</i>าธน	נע
--	----

parameters	Lossless media	Low-loss dielectrics	Good conductors
		$\tan \delta < 0.1$	$\tan \delta > 10$
Attenuation constant $lpha$	0	$\cong \frac{\sigma}{2} \sqrt{\frac{\mu}{\varepsilon}}$	$\sqrt{\pi f \mu \sigma}$
(Np/m)		2 V ε	
Propagation constant $oldsymbol{eta}$	ω√με	$\cong \omega \sqrt{\mu \varepsilon}$	$\sqrt{\pi f \mu \sigma}$
(rad/m)			
Intrinsic impedance η	$\sqrt{\frac{\mu}{\varepsilon}}$	$\cong \sqrt{\frac{\mu}{\varepsilon}}$	$\sqrt{\omega\mu}e^{j45^{\circ}}$
(Ω)	νε	- V ε	ν σ
Phase velocity v_p (m/s)	ω/β		
Wavelength λ (m)	$2\pi/\beta$		
Skin depth δ (m)	$-\frac{1}{\sqrt{\pi f \mu \sigma}}$		

- 4. ความสัมพันธ์ระหว่าง \overrightarrow{E} (V/m) และ \overrightarrow{H} (A/m), $\overrightarrow{H}=\frac{1}{\eta}\hat{a}_{\rho}\times\overrightarrow{E}$; $\hat{a}_{\rho}=$ ทิศทางการเคลื่อนที่ของ คลื่น
- 5. กำลังคลื่นเฉลี่ย $\overrightarrow{P}_{avg}=rac{1}{2}\operatorname{Re}(\overrightarrow{E}^s imes\overrightarrow{H}^{sullet})$ W/m² (คำนวณโดยใช้รูปแบบเฟสเซอร์ของ \overrightarrow{E} และ \overrightarrow{H})

ค่าคงที่

$$\mathbf{E}_0 = 8.854 \times 10^{-12} \text{ F/m}$$

$$\mu_0 = 4\pi \times 10^{-7} \text{ H/m}$$

- 1. Ampere's law: ลวดรัศมี 3 mm แบ่งเป็น 2 ชั้น ชั้นใน (0 <ho < 2 mm) มีค่าความนำ σ = 10^7 S/m และ ชั้นนอก (2 mm <ho < 3 mm) มีค่าความนำ σ = 4×10^7 S/m กำหนดให้มีกระแสตรงไหลในเส้น ลวด 100 mA จงคำนวณ (25 คะแนน)
- a) สนามแม่เหล็ก \overrightarrow{H} (ตอบในเทอมของ $oldsymbol{
 ho}$) บริเวณ $0 < oldsymbol{
 ho} < 2$ mm (10 คะแนน) แนะนำ: 1.คำนวณค่าความหนาแน่นกระแส $J = oldsymbol{\sigma} E$ A/m² ในแต่ละขั้น
 - 2.สนามไฟฟ้าตกคร่อมเส้นลวดมีค่าเท่ากันทั้งในลวดชั้นในและชั้นนอก
 - 3. กระแสรวม /_{Total} = /รู้_{นใน} + /รู้_{นนอก}

b) สนามแม่เหล็ก \overrightarrow{H} (ตอบในเทอมของ $oldsymbol{
ho}$) บริเวณ 2 < $oldsymbol{
ho}$ < 3 mm (10 คะแนน)

4		
## DECEMBER 1997 1997 1997 1997 1997 1997 1997 1997 1997 1997 1997 1997 1997 1997	รหัสประจำตัว	เลขทนงสอบ

c) สนามแม่เหล็ก \overrightarrow{H} (ตอบในเทอมของ $oldsymbol{
ho}$) บริเวณ $oldsymbol{
ho}$ > 3 mm (5 คะแนน)

g	รหัสประจำตัว	ู เลขที่นั่งสอบ ถ้านี้	The Conser

- มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุว อามทิศ z กำหนดให้มีกระแสตรงไหลในตัวนำ 2 A จงคำนวณ (15 คะแนน)
- a) ความหนาแน่นกระแส \vec{J} (5 คะแนน)

b) ใช้ Ampere's law คำนวณความเข้มสนามแม่เหล็ก \vec{H} ที่ระยะรัศมี ρ ใดๆ ในเทอมของความ หนาแน่นกระแส J และจงพิสูจน์ว่าค่า \vec{H} ที่ได้สอดคล้องกับ Maxwell's equation สำหรับ Static field: $\nabla \times \vec{H} = \vec{J}$ (10 คะแนน)

3. emf: จากรูปวงจรตัวนำสี่เหลี่ยมจตุรัสมีค่าความต้านทาน $R=500~\Omega~$ ตั้งอยู่ในสนามแม่เหล็ก $\stackrel{
ightharpoonup}{B}$ จงคำนวณกระแสเหนี่ยวนำ I(t) ที่ไหลในวงจรถ้า (20 คะแนน)

a) จงคำนวณกระแสเหนี่ยวนำ I(t) ที่ไหลในวงจรถ้า $\vec{B} = 0.1\cos(120\pi t - 30^\circ)\hat{a}_z$ T (10 คะแนน)

b) ค่าแรงดันและทิศทาง emf ที่เวลา t เท่ากับ 1/120 วินาที (10 คะแนน) แนะนำ: วาดกราฟ $\overrightarrow{B}(t)$ และดูทิศทางของสนามแม่เหล็กนี้ที่เวลา t

4. Uniform Plane Wave: กำหนดให้คลื่นแม่เหล็กไฟฟ้าเดินทางผ่านตัวกลางแบบสูญเสียต่ำ (low loss) ชนิดหนึ่งซึ่งทราบค่า μ , = 5 แต่ไม่ทราบค่า ε , โดยพบว่ามีค่าความเข้มสนามแม่เหล็ก $\vec{H}(z,t) = 10e^{-10z}\cos(2\pi 10^9 t - 209z)\hat{a}_y$ A/m จงคำนวณ (20 คะแนน)

a) ค่า dielectric constant & (5 คะแนน)

b) ค่าความนำไฟฟ้า **ฮ**ในหน่วย S/m (5 คะแนน)

c) คำนวณค่าความต้านทานของคลื่นในตัวกลางนี้ η ในหน่วยโอห์ม (5 คะแนน)

ชื่อ	รหัสประจำดัว	เลขที่นั่งสอบู สำนักหยกมูล
d) ค่าความเข้มสนามไฟฟ้า <i>E</i>	F(z,t) (5 คะแนน)	มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนาเริ

d) ค่าความเข้มสนามไฟฟ้า $\overrightarrow{E}(z,t)$ (5 คะแนน)

ai .		
ďO		
n c		

•	
511 271	ระจำตัว
THINL	1 4 5 21 1 31 4

_ เลขที่นั่งสอบ_ สานกท**อสมุ**ศ

5. Power Transmission: คลื่น Uniform Plane Wave (UPW) เคลื่อนที่ในตัวน้ำที่มีคำความโด**วิทยา**จะมเกล้าธนบุริ

 σ = 40 S/m μ_{r} = 1 และมีค่าสนามไฟฟ้าในรูปแบบเฟสเซอร์

$$\vec{E}^s = 10e^{-500x}e^{-j500x}\hat{a}_z + 20e^{-500x}e^{-j500x}\hat{a}_y$$
 V/m (20 Az uu)

a) จงคำนวณค่าความเข้มสนามแม่เหล็กในรูปแบบเฟสเซอร์ \overrightarrow{H}^s (10 คะแนน)

b) คำนวณความถี่ของคลื่นในหน่วย Hz (5 คะแนน)

ชื่อ	รหัสประจำตัว	เลขที่นั่งสลาก หอกมุส
c) ค่าความหนาแน่นกำลังไฟฟ้าเฉลี่	ย д (5 คะแนน)	มหาวิทยาลัยเทคโน โลยีพระจอมเก ล้าธนบุร ิ

c) ค่าความหนาแน่นกำลังไฟฟ้าเฉลี่ย $\overset{
ightarrow}{P}_{\scriptscriptstyle 2V}$ (5 คะแนน)