PROJECT REPORT

A NOVEL METHOD FOR HANDWRITTEN DIGIT RECOGNITION

submitted by

PNT2022TMID08626

Srinithi Nivashini K - 727619BCS066

Thulasimathi T - 727619BCS026

Sujaykanth S - 727619BCS054

Rudrapati Thrivendra Naidu - 727619BCS108

TABLE OF CONTENTS

TINTRODUCTION	4
1.1 PROJECT OVERVIEW	4
1.2 PURPOSE	4
2 LITERATURE SURVEY	5
2.1 EXISTING PROBLEM	5
2.2 REFERENCES	5
2.3 PROBLEM STATEMENT DEFINITION	7
3 IDEATION AND PROPOSED SOLUTION	8
3.1 EMPATHY MAP CANVAS	8
3.2 IDEATION & BRAINSTORMING	9
3.3 PROPOSED SOLUTION	10
3.4 PROBLEM SOLUTION FIT	12
4 REQUIREMENT ANALYSIS	13
4.1 FUNCTIONAL REQUIREMENTS	13
4.2 NON-FUNCTIONAL REQUIREMENTS	14
5 PROJECT DESIGN	15
5.1 DATA FLOW DIAGRAM	15
5.2 SOLUTION & TECHNICAL ARCHITECTURE	16
5.3 USER STORIES	16
6 PROJECT PLANNING AND SCHEDULING	18
6.1 SPRINT PLANNING AND ESTIMATION	18

6.2 SPRINT DELIVERY SCHEDULE						
7 CODING & SOLUTIONING	22					
8 TESTING	25					
8.1 TEST CASES	25					
8.2 USER ACCEPTANCE TESTING	26					
8.2.1 DEFECT ANALYSIS	26					
8.2.2 TEST CASE ANALYSIS	27					
9 RESULTS	28					
9.1 PERFORMANCE METRICS	28					
10 ADVANTAGES & DISADVANTAGES	33					
11 CONCLUSION	34					
12 FUTURE SCOPE						
13 APPENDIX	36					
SOURCE CODE	36					
GITHUB	48					
PROJECT DEMO	51					

INTRODUCTION

1.1 PROJECT OVERVIEW

Machine learning and deep learning play an important role in computer technology and artificial intelligence. With the use of deep learning and machinelearning, human effort can be reduced in recognizing, learning, predictions, and inmany more areas.

Handwritten Digit Recognition is the ability of computer systems to recognise handwritten digits from various sources, such as images, documents, and so on. Thisproject aims to let users take advantage of machine learning to reduce manual tasks in recognizing digits.

1.2 PURPOSE

Digit recognition systems are capable of recognizing the digits from differentsources like emails, bank cheques, papers, images, etc. and in different real-world scenarios for online handwriting recognition on computer tablets or systems, recognizing number plates of vehicles, processing bank cheque amounts, numeric entries in forms filled up by hand (tax forms) and so on.

LITERATURE SURVEY

2.1 EXISTING PROBLEM

The fundamental problem with handwritten digit recognition is that handwritten digits do not always have the same size, width, orientation, and marginssince they vary from person to person. Additionally, there would be issues with identifying the numbers because of similarities between numerals like 1 and 7, 5 and 6, 3 and 8, 2 and 5, 2 and 7, etc. Finally, the individuality and variation of each individual's handwriting influence the structure and appearance of the digits.

2.2 REFERENCES

Handwritten digits recognition with artificial neural network

Authors: K.Islam, G. Mujtaba, H.F.Nweke, R.G.Raj

In a computer vision system, handwritten digit recognition is a complex task central to various emerging applications. It has been widely used by machine learning and computer vision researchers for implementing practical applications like computerized bank check numbers reading. In this study, we implement a multi-layer fully connected neural network with one hidden layer for handwritten digit recognition. The testing has been conducted from a publicly available MNIST handwritten database. From the MNIST database, we extracted 28,000 digits images for training and 14,000 images for performing the test. Our multi-layer artificial neural network has an accuracy of 99.60% with the test performance.

Handwritten digit recognition using various neural network approaches

Authors: Sakshi ca, K. Gupta

Handwritten digit recognition is one of the important problems in computer vision these days. There is a great interest in this field because of many potential applications, most importantly where a large number of documents must be detailed such as post mail sorting, bank

cheque analysis, handwritten form processing, etc. so a system should be designed in such a way that it is capable of reading handwritten digits and provide appropriate results. This paper presents a survey on various neural approaches to recognizing handwritten digits.

Handwritten Digit Recognition of MNIST dataset using Deep Learning state-of-the-art Artificial Neural Network (ANN) and Convolutional Neural Network (CNN)

Authors: Drishti Beohar, A. Rasool

Handwritten digit recognition is an intricate assignment that is vital for developing applications, in computer vision digit recognition is one of the major applications. There has been a copious exploration done in the Handwritten Character Recognition utilizing different deep learning models. Deep learning is rapidly increasing in demand due to its resemblance to the human brain. The two major Deep learning algorithms Artificial Neural Network and Convolutional Neural Network have been compared in this paper considering their feature extraction and classification stages of recognition. The models were trained using categorical cross-entropy loss and ADAM optimizer on the MNIST dataset. Backpropagation along with Gradient Descent is being used to train the networks along with reLU activations in the network which do automatic feature extraction. In neural networks, Convolution Neural Network (Conv Nets or Convolutional neural networks) is one of the primary classifiers to do image recognition, and image classification tasks in Computer Vision.

Neural Network methods for handwritten digit Recognition provided with MNIST data set Authors: Lars Kai, Christian

In Handwritten Digit Recognition, there are different challenges faced while attempting to solve this problem. The handwritten digits are not always of the same size, thickness, or orientation and position relative to the margins. Our goal was to implement a pattern classification method to recognize the handwritten digits provided in the MINIST data set of images of hand written digits (0 to 9). The data set used for our application is composed of 300 training images and 300 testing images, and is a subset of the MNIST data set (originally composed of 60,000 training images and 10,000 testing images). Each image is a 28x28 grayscale (0t o 255) labelled representation of an individual digit.

Extract data from image using Convolutional Neural Networks

Author: Gaganashree J

The main purpose of digital identifier extraction is to eliminate data redundancy and use set of digital attributes to get a more effective realization of word images. The point is to extract most of the important information from the original image data. In addition, the curve should not be as smooth as printed characters. In addition, characters dataset can be drawn in different sizes. This should always be written on the guide in a straight or vertical position. The task of recognizing handwritten digits with the help of a classifier is particularly important for the following applications such as online digit recognition on a tablet computer, recognize zip codes on mail, processing bank check applications. Various problems arise when trying to solve this problem. The size, thickness, direction, and position relative to the edge of handwritten numbers are not always the same. The main goal is to update the method of describing perception patterns characterization method to Note the handwritten digits represented in the MNIST Handwritten Digit Image Record.

2.3 PROBLEM STATEMENT DEFINITION

The problem to be solved is to recognize the handwritten digits uploaded by the user as an image and to display the equivalent digits as output. The aim is to make the computer identify and automatically understand various styles of handwritten digits to reduce the human efforts. Identifying the handwritten digits manually in the field of bank cheque processing, postal mail sorting and form data entry tasks are tedious and error-prone and hence there is a need for this recognition system to perform these tasks efficiently with improved speed and accuracy. The main goal of this system is to use artificial neural networks to train the user input images and to build a model to detect the digits.

IDEATION AND PROPOSED SOLUTION

3.1 EMPATHY MAP CANVAS

3.2 IDEATION & BRAINSTORMING

3.3 PROPOSED SOLUTION

Parameter	Description
Problem Statement	Handwriting recognition is one of the compelling
(Problem to besolved)	research works going on becauseevery individual in
	this world has their own style of writing.
	It is the capability of the computer to identify and
	understand handwritten digits or characters
	automatically. Because of the progress in the field of
	science and technology, everything is being digitalized
	to reduce humaneffort. Hence, there comes a need for
	handwritten digit recognition in many real-time
	applications.MNIST data set is widely used for this
	recognition process and it has 70000 handwritten digits.
	We use Artificial neural networks to train theseimages
	and build a deep learning model. Web application is
	created where the user can upload an image of a
	handwritten digit. this image is analyzed by the model
	and the detected result is returned on to UI.
Idea / Solution description	HANDWRITTEN digit recognition is the ability ofa
	computer system to recognize handwritten inputs like
	digits, characters etc. from a wide variety of sources
	like emails, papers, images, letting ers. Here comes the
	use of Deep Learning. In the past decade, deep learning
	has become the toolfor Image Processing, object
	detection, handwritten digit, and character recognition
	etc.A lot of machine learning tools have been
	developed like sci-kit-learn, scipy-image, etc. andmy
	brains Keras, Theano, and Tensorflow by google,
	TFLearn, etc. for Deep Learning. These tools make the
	applications robust and therefore more accurate.
	Problem Statement (Problem to besolved)

layer will comprise the people who interact with the requiredresults. The next three layers are the architecture of the application. The application w	front-end
architecture of the application. The application w	vill bo
areintecture of the application. The application w	/111 06
developed using Bootstrap which is the open-sou	ırce
platform for HTML, CS, S, and JavaScript.The	application
is deployed in the localhost which is shown on the	ne browser.
Through the app, the user will be able to upload	pictures of
handwritten digits and convert them intahe digits	alized
forms. The one in between the database and view	v layer is
the business layer which is the logical calculation	ns based on
the request from the client side. It also has a serv	rice
interface. The backend layer consists of two datas	sets:
Training Data and Test Dat a. The MNIST datab	ase has
been used for thatwhich is already divided into a	training set
of 60,000 examples and a test	
4. Social Impact / Customer In addition to reading postal addresses and bank	check
Satisfaction amounts, it is also useful for readingforms.	
Furthermore, it's used in fraud detection because	e it makes
it easy to compare two textsand determine which	one is a
copy. The application has been tested using three	emodels:
Multi-Layer Perceptron (MLP), and Convolution	n Neural
Network (CNN). As a result, this system fulfill	
customer's expectations, as it is a novel method:	for
recognizing handwritten digits, ensuring highacc	euracy for
the model	
5. Business Model (Revenue For efficient traffic control, this technology can be	pe
Model) connected with traffic surveillance camerasto rea	nd license
plates. Pin-code details can be easily identified a	nd
recognized by integrating them with the postal sy	ystem.
Some of the security areas include signatureverif	fication,
bank cheque processing, postal address interpreta	ation from
envelopes, etc.	

3.4 PROBLEM-SOLUTIONTION FIT

Project Title: A Novel Method For Handwritten Digit Recognition System,

Team ID: PNT2022TMID08626

Project Design Phase - I: Problem Solution Fit,

1. CUSTOMER SEGMENTS CS	6. CUSTOMER CONSTRAINTS CC	5. AVAILABLE SOLUTIONS AS
The customers who deal with handwritten digits like Banking sectors, schools, colleges, railways, firm, etc.	They believe that the alternatives will result in errors and faults and will be inconvenient.	There are no widely used software's to detect handwriting; instead, they check with other people to affirm what number it is.
2. JOBS-TO-BE-DONE / PROBLEMS J&P	9. PROBLEM ROOT CAUSE RC	7. BEHAVIOUR BE
Handwritten digits can be difficult to understand and interpret at times. It may cause errors when dealing with rough handwriting.	We face numerous challenges in handwritten number recognition because of different people's jotting styles and the lack of Optic character recognition. This investigation offers an in-depth comparison of various machine literacy and deep literacy.	Finding the best software for detecting accurate digits in a more efficient manner.
3. TRIGGERS TR	10. OUR SOLUTION SL	8. CHANNELS of BEHAVIOUR CH
• To obtain the numbers accurately and quickly.	A solution to this problem is the handwritten digit recognition system, which uses a picture of a digit	
4. EMOTIONS: BEFORE / AFTER	and recognizes the digit present in the image. Convolutional Neural Network model built with	
Feels frustrated and sad when numbers are not entered	PyTech and applied to the MINIST dataset to recognize handwritten digits.	by their customers.

REQUIREMENT ANALYSIS

4.1 FUNCTIONAL REQUIREMENTS

FR No.	Functional Requirement	Sub Requirement (Story / Sub-Task)				
	(Epic)					
FR-1	User Registration Registration through					
		WebsiteRegistration				
		through Gmail				
		Registration through LinkedIn				
FR-2	User Confirmation	Confirmation via Email				
		Confirmation via OTP				
FR-3	Pre-processing	The model cannot take the image data directly so				
		we need to perform some basic operations and				
		process the data. The CNN model will require one				
		more dimension so we reshape the matrix to shape				
FR-4	Create model	Creating CNN model in Python data science project.				
		A CNN model generally consists of				
		convolutional andpooling layers				
FR-5	Documentation	Captured in use case				
FR-6	Evaluation	The Modified National Institute of Standards and				
		Technology It is a collection of 60,000 tiny square				
		grayscale photographs, each measuring 28 by 28,				
		comprising handwritten single digits between 0				
		and 9.The MNIST dataset is well-balanced so we				
		can get around 90% accuracy				

42 NON-FUNCTIONAL REQUIREMENTS

FR No.	Non-Functional	Description
	Requirement	
NFR-1	Usability	Handwritten character recognition is one of the
		practically important issues in pattern recognition
		applications. The applications of digit recognition
		include postal mail sorting.
NFR-2	Security	Most PC efforts to establish safety include
		information encryption and passwords, OCR plays
		an important role for digital libraries, allowing the
		entry of image textual information into computers
		by digitization, image restoration, and recognition
		methods
NFR-3	Reliability	Specifies the probability of the software performing
		without failure for a specific number of uses or
		amount of time
NFR-4	Performance	Most standard implementations of neural networks
		achieve accuracy in correctly classifying the
		handwritten digits.
NFR-5	Availability	The system is not down due to outages or maintenance
		activities. CNN model can determine and recognize
		handwritten digits with high accuracy, as it combines
		the weights of convolution layers during feature
		extraction with fully connected
		layers.
NFR-6	Scalability	The ability of a solution or system to increase its
		capacity to serve clients and/or increase processing
		rates to match demand and speed, robustness,
		flexible and suitable for text and document formats

PROJECT DESIGN

5.1 DATA FLOW DIAGRAM

5.2 SOLUTION & TECHNICAL ARCHITECTURE

5.3 USER STORIES

User Type	Functional	User	User Story / Task	Acceptance	Priority	Release
	Requiremen	Story		criteria		
	t (Epic)	Number				
User in	Registration	USN-1	Users can register for the	Account-specific	High	Sprint-1
website			application by	tasks andactions can		
			entering a username,	be performed		
			email, password, and			
			phone number.			
	Login	USN-2	Enter the Username and	Right account	High	Sprint-1
			Password to login intothe	credentialsshould be		
			application.	entered		
	Dashboard	USN-3	Users can view the website		Medium	Sprint-2

Core	Core	USN-4	Design the application in	The interface	High	Sprint-3
development	function		a way such that itprovides	should beuser-		
team			a good user interface.	friendly and		
				easy to use		
		USN-5	The website should	The user experience	Medium	Sprint-3
			be responsive on all	should betaken into		
			devices irrespective	account		
			of screen size.			
		USN-6	Dataset collection and	Efficient data should	High	Sprint-3
			processing	becollected		
Maintenance	Maintenance	USN-7	The website should be		High	Sprint-4
team			maintained and the user			
			queries should be fixed as			
			quickly as possible			
User in	Upload the	USN-8	The user should upload	The input image	High	Sprint-4
website	handwritten		the handwritten images	should be in a		
	image		of the digits which are	properformat.		
			to be processed.			
	View output	USN-9	The system detects the		High	Sprint-4
			digits and displays the			
			output to the user.			
	View output	USN-9	digits and displays the		High	Sprint-4

PROJECT PLANNING AND SCHEDULING

6.1 SPRINT PLANNING AND ESTIMATION

Sprint	Functional	User Story	User Story / Task	Story	Priority	Team Members
	Requirement	Number		Points		
	(Epic)					
Sprint-1	Data	USN-1	Users could collect the	10	Low	Srinithi Nivashini K
	Collection		dataset from various			Thulasimathi T
			resources with different sets			Sujaykanth S
			of handwriting.			Rudrapati Thrivendra
						Naidu
Sprint-1	Data	USN-2	Users can load the dataset,	10	Medium	Srinithi Nivashini K
	Preprocessing		handle the missingdata, and			Thulasimathi T
			scale and split data into train			Sujaykanth S
			and test.			Rudrapati Thrivendra
						Naidu
Sprint-2	Building the	USN-3	The user will create an	5	High	Srinithi Nivashini K
	Model		application with an ML			Thulasimathi T
			model that provides high			Sujaykanth S
			accuracy of recognized			Rudrapati Thrivendra
			handwritten digits.			Naidu
Sprint-2	Add CNN	USN-4	Creating the model and addit	n 5	High	Srinithi Nivashini K
	layers		the input andoutput layers to			Thulasimathi T
						Sujaykanth S
						Rudrapati Thrivendra
						Naidu

Sprint-2	Compiling the	USN-5	Configure the learning	2	Medium	Srinithi Nivashini K
	model		process of trainingdata and			Thulasimathi T
			the model which is already			Sujaykanth S
			designed.			Rudrapati Thrivendra
						Naidu
Sprint-2	Train & test the	USN-6	Train the model with the	6	Medium	Srinithi Nivashini K
	model		image dataset.			Thulasimathi T
						Sujaykanth S
						Rudrapati Thrivendra
						Naidu
Sprint-2	Save the model	USN-7	The model is saved and	2	Low	Srinithi Nivashini K
			integrated with theweb			Thulasimathi T
			application to predict			Sujaykanth S
			something.			Rudrapati Thrivendra
						Naidu
Sprint-3	Building UI	USN-8	Users will upload the	5	High	Srinithi Nivashini K
	Application		handwritten digit imageto			Thulasimathi T
			the application by clicking			Sujaykanth S
			an upload button.			Rudrapati Thrivendra
						Naidu
Sprint-3	Predict the	USN-9	Users should know the	5	Low	Srinithi Nivashini K
	output		fundamental usage of the			Thulasimathi T
			application.			Sujaykanth S
						Rudrapati Thrivendra
						Naidu
Sprint-3	Evaluating	USN-10	The user could see the	5	Medium	Srinithi Nivashini K
	Application		predicted/recognizeddigits			Thulasimathi T
			as output in the application.			Sujaykanth S
						Rudrapati Thrivendra
						Naidu

Sprint-4	Train the	USN-11	Train the model	10	High	Srinithi Nivashini K
	model on		on IBM and			Thulasimathi T
	IBM		integrate			Sujaykanth S
			flask/Django with			Rudrapati
			scoring endpoints			Thrivendra Naidu
Sprint-4	Cloud	USN-12	Users can access the	10	High	Srinithi Nivashini K
	Deployment		web application and			Thulasimathi T
			make use of the			Sujaykanth S
			product from			Rudrapati
			anywhere.			Thrivendra Naidu

6.2 SPRINT DELIVERY PLAN

Sprint	Total	Duration	Sprint Start	Sprint End Date	Story Points	Sprint Release
	Story		Date	(Planned)	Completed (as	Date (Actual)
	Points				on Planned End	
					Date)	
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	29 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	20	05 Nov 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	20	12 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	20	19 Nov 2022

6.3 REPORTS FROM JIIRA

Burndown Chart:

Velocity Report:

RoadMap:

CODING & SOLUTIONING

```
import numpy as np
import os
from PIL import Image
from PIL import Tlask, request, render_template, url_for
from werkzeug.utlis import secure_filename, redirect
from gevent.pywsgi import WSGIServer
from keras.models import load_model
from keras.preprocessing import image
from flask import send_from_directory

import os
UPLOAD_FOLDER = r'C:\\Users\\HP\\OneDrive\\OneDrive_1_11-5-2021\\Notes\\IBM\\naleiyathiran\\IBM-Project-9741-1659070960-main\\Final Deliverables\\Final app = Flask(__name__)
app = Flask(__name__)
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER

model = load_model("./models/mnistcNN.h5")

@app.route('/')
odef index():
cap return render_template('indexpage.html')
```


TESTING

8.1 TEST CASES

Test case ID	Feature Type	Component	Test Scenario	Expected Result	Actual Result	Status
HP_TC_001	Functional	Home Page	Verify the user can see the Homepage when clicking on the link	The home page should be displayed	Working as expected	PASS
HP_TC_00 2	UI	Home Page	Verify the UI elements on the Homepage	The application should show below UI elements: a.choose file button b.predict button	Working as expected	PASS
HP_TC_00 3	Functional	Home Page	Verify the can to choose the file from the local system and click on predict	c.clear button Choose file popup screen must be displayed and the user should be able to click on predict button	Working as expected	PASS
HP_TC_00 4	Functional	Home Page	user selects	The application won't allow attaching formats	Working as expected	PASS

			me format	other than ".png, .jiff, .pjp, jpeg, .jpg, .pjpeg"		
Predict_TC _005	Functional	Predict Page	Verify the user can navigate to the predict to and view the predicted result	The user must be navigated to the predicted page and must view the predicted result	Working as expected	PASS

8.2 USER ACCEPTANCE TESTING

8.2.1 DEFECT ANALYSIS

Resolution	Severity 1	Severity 2	Severity 3	Severity 4	Total
By Design	1	0	1	0	2
Duplicate	0	0	0	0	0
External	0	0	2	0	2
Fixed	4	1	0	1	6
Not Reproduced	0	0	0	1	1
Skipped	0	0	0	1	1
Won't Fix	1	0	1	0	2
Total	6	1	4	3	14

8.22 TEST CASE ANALYSIS

Section	Total Cases	Not Tested	Fail	Pass
Client Application	10	0	3	7
Security	2	0	1	1
Performance	3	0	1	2
Exception Reporting	2	0	0	2

RESULTS

9.1 PERFORMANCE METRICS

MODEL SUMMARY

Model: "sequential"		
Layer (type)	Output Shape	Param #
conv2d (Conv2D)	(None, 26, 26, 64)	640
conv2d_1 (Conv2D)	(None, 24, 24, 32)	18464
flatten (Flatten)	(None, 18432)	0
dense (Dense)	(None, 10)	184330
=======================================		:=======
Total params: 203,434 Trainable params: 203,434		

Non-trainable params: 0

ACCURACY

C CONTENT	VALUE
Training Accuracy	99.14%
Training Loss	2.70 %
Validation Accuracy	97.76%
Validation Loss	10.36%

CONFUSION MATRIX

CLASSIFICATION REPORT

	precision	recall	f1-score	support
0	1.00	0.97	0.98	980
1	0.99	0.99	0.99	1135
2	0.96	0.99	0.97	1032
3	0.97	1.00	0.98	1010
4	1.00	0.95	0.98	982
5	0.96	1.00	0.98	892
6	0.99	0.96	0.97	958
7	0.99	0.98	0.99	1028
8	0.99	0.99	0.99	974
9	0.97	0.99	0.98	1009
accuracy			0.98	10000
macro avg	0.98	0.98	0.98	10000
weighted avg	0.98	0.98	0.98	10000

APPLICATION TEST REPORT

ADVANTAGES & DISADVANTAGES

ADVANTAGES

- Reduces manual work
- More accurate than the average human
- Capable of handling a lot of data
- Can be used anywhere from any device

DISADVANTAGES

- Cannot handle complex data
- All the data must be in digital format
- Requires a high-performance server for faster predictions
- Prone to occasional errors

CHAPTER 11

CONCLUSION

This project demonstrated a web application that uses machine learning to recognize handwritten numbers. Flask, HTML, CSS, JavaScript, and a few other technologies were used to create this project. The model predicts the handwritten digit using a CNN network. During testing, the model achieved a 99.61% recognition rate. The proposed project is scalable and can easily handle a huge number of users. Since it is a web application, it is compatible with any device that can run a browser. This project is extremely useful in real-world scenarios such as recognizing the numberplates of vehicles, processing bank cheque amounts, numeric entries in forms filled up by hand (tax forms), and so on. There is so much room for improvement, which can be implemented in subsequent versions.

CHAPTER 12

FUTURE SCOPE

This project is far from complete and there is a lot of room for improvement. Some of the improvements that can be made to this project are as follows:

- Add support to detect digits in multiple images and save the results
- Add support to detect multiple digits
- Improve the model to detect digits from complex images
- Add support to different languages to help users from all over the world

This project has endless potential and can always be enhanced to become better.Implementing this concept in the real world will benefit several industries and reduce the workload on many workers, enhancing overall work efficiency.

CHAPTER 13

APPENDIX

Source code:

Model:


```
- Analyzing the data
{x}
          [ ] x_train[5]
                 array([[ 0,
0,
0,
[ 0,
0,
0,
0],
0,
0,
                                                     0,
0,
                                                           0,
0,
                                                                   0, 0, 0,
0, 0, 0,
                                                      0,
0,
                                                             0,
0,
                                                                    0,
0,
                                                                           0,
0,
                                                                                   0,
0,
                                                                                          0,
0,
                            [
                                       0,
0,
0],
                                              0,
0,
                                                                    0,
0,
                            [
                                              0,
0,
                                                      0,
0,
<>
                                       0,
0,
0],
0,
                                                             0,
0,
                                                                    0,
0,
                                                                            0,
0,
                                                                                   0,
0,
                                                                                          0,
0,
                                                                                                  0,
0,
                                                                                                         0,
0,
\equiv
                                            0, 0, 0, 0, 0, 0, 13, 25, 100, 122, 7,
>_
          [ ] y_train[5]
Q
{x}
           import matplotlib.pyplot as plt
plt.imshow(x_train[5])
<matplotlib.image.AxesImage at 0x7fa18f25ecd0>
                   10
                   15
<>
                   20
\equiv
>_
                                                                                                                                                                                                                                          ×
Q
      - Reshaping the data
{x}
          [ ] x_train=x_train.reshape(60000,28,28,1).astype('float32')
    x_test=x_test.reshape(10000,28,28,1).astype('float32')
print ("Shape of X_train: {}".format(X_train.shape))
print ("Shape of y_train: {}".format(Y_train.shape))
print ("Shape of X_test: {}".format(X_test.shape))
print ("Shape of y_test: {}".format(Y_test.shape))
           Shape of X_train: (60000, 28, 28, 1)
Shape of y_train: (60000,)
Shape of X_test: (10000, 28, 28, 1)
Shape of y_test: (10000,)
<>
◡
      - Applying one Hotencoding
{x}
convert numerical values to classes where 0 to 9 are 10 seperate classes if value is 5 class 5 is 1 else 0
          [ ] no_of_classes=10
    y_train=np_utils.to_categorical(y_train,no_of_classes)
    y_test=np_utils.to_categorical(y_test,no_of_classes)
          [ ] y_test[3]
                  array([1., 0., 0., 0., 0., 0., 0., 0., 0., 0.], dtype=float32)
<>
\equiv
          [ ] from keras.layers import Dense, Flatten, MaxPooling2D, Dropout
>_
```

```
    Adding CNN layer

{x}
         [ ] model = Sequential()
model.add(Conv2D(64,(3,3),input_shape=(28,28,1),activation='relu'))
                model.add(Conv2D(32,(3,3),activation='relu'))
                model.add(Dense(no_of_classes,activation='softmax'))

    Compile the model

\equiv
         [ ] model.compile(loss='categorical_crossentropy',optimizer='Adam',metrics=['accuracy'])
>_
<sup>{x}</sup> → Train the model
[ ] model.fit(x_train,y_train,validation_data=(x_test,y_test),epochs=5,batch_size=32)
                Epoch 1/5
                <>
                >_
               Q
                Epoch 3/5
1875/1875 [=:
                                    ============================= ] - 187s 100ms/step - loss: 0.0477 - accuracy: 0.9847 - val_loss: 0.0900 - val_accuracy: 0.9781
{x}
                Epoch 4/5
                1865 99ms/step - loss: 0.0304 - accuracy: 0.9907 - val_loss: 0.0842 - val_accuracy: 0.9820 - val_loss: 0.0842 - val_accuracy: 0.9820 - val_loss: 0.0842 - val_accuracy: 0.9820 - val_accuraccuracy: 0.9820 - val_accuracy: 0.9820 - val_accuracy: 0.9820 - v
     - Observing the metrices
         [ \ ] \ \ metrics=model.evaluate(x\_test,y\_test,verbose=0)
                print("metrics-score=>test loss & accuracy")
                print(metrics)
\equiv
                metrics-score=>test loss & accuracy
[0.08420193940401077, 0.9819999933242798]
>_
{x}
         [ ] prediction=model.predict(x_test[:5])
                print(prediction)
()
>_
```

```
[ ] import numpy as np

[ ] print(np.argmax(prediction,axis=1))

[ 7 2 1 0 4]

[ ] print(y_test[:5])

[ [0. 0. 1. 0. 0. 0. 0. 0. 0. 0.]

[ [0. 1. 0. 0. 0. 0. 0. 0. 0.]

[ [0. 1. 0. 0. 0. 0. 0. 0. 0.]

[ [0. 1. 0. 0. 0. 0. 0. 0. 0.]

[ [0. 0. 0. 0. 0. 0. 0. 0. 0.]

[ [0. 0. 0. 0. 0. 0. 0. 0. 0.]
```

```
import tensorftow

import tensorftow

import tensorftowness source at tool by goods

from tensorftowness supert superdisponds and order towers

from tensorftowness supert superdisponds and restricts

from tensorftowness supert superdisponds and restricts

from tensorftowness supert superdisponds towers

from tensorftowness supert superdisponds towers

from tensorftowness, optimizes supert tensorftowness and flatten lowers

from tensorftowness, optimizes supert tensorftowness

from tensorftowness, optimizes supert tensorftowness

from tensorftowness, optimizes and flatten lowers

from tensorftowness, optimizes

from tensorfto
```

```
convert numerical values to classes where 0 to 9 are 10 separate classes if value is 5 class 5 is 1 else 0

convert numerical values to classes where 0 to 9 are 10 separate classes if value is 5 class 5 is 1 else 0

convert numerical values to classes where 0 to 9 are 10 separate classes if value is 5 class 5 is 1 else 0

convert numerical values to classes where 0 to 9 are 10 separate classes if value is 5 class 5 is 1 else 0

convert numerical values to classes where 0 to 9 are 10 separate classes if value is 5 class 5 is 1 else 0

convert numerical values to classes of the classes
```

HTML Code:

Index Page:

<html>

<head>

<title>Digit Recognition WebApp</title>

<meta name="viewport" content="width=device-width">

<!-- GoogleFont -->

 $<\!link\ href="https://fonts.googleapis.com/css2?family=Prompt:wght@600\&display=swap" rel="stylesheet">$

< link href="https://fonts.googleapis.com/css2?family=Varela+Round&display=swap" rel="stylesheet">

```
link
href="https://fonts.googleapis.com/css2?family=Source+Code+Pro:wght@500&display=swap"
rel="stylesheet">
        link
href="https://fonts.googleapis.com/css?family=Calistoga|Josefin+Sans:400,700|Pacifico&display=sw
ap" rel="stylesheet">
        <!-- bootstrap -->
        k rel="stylesheet"
href="https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/css/bootstrap.min.css" integrity="sha384-
ggOyR0iXCbMQv3Xipma34MD+dH/1fQ784/j6cY/iJTQUOhcWr7x9JvoRxT2MZw1T"
crossorigin="anonymous">
        k rel="stylesheet" type= "text/css" href="{{ url_for('static',filename='css/styleNT.css')}
}}">
        <!-- fontawesome -->
        <script src="https://kit.fontawesome.com/b3aed9cb07.js"</pre>
crossorigin="anonymous"></script>
        <script src="https://code.jquery.com/jquery-3.3.1.slim.min.js" integrity="sha384-</pre>
q8i/X + 965DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH + 8abtTE1Pi6jizo"\\
crossorigin="anonymous"></script>
        <script src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.7/umd/popper.min.js"</pre>
integrity="sha384-
UO2eT0CpHqdSJQ6hJty5KVphtPhzWj9WO1clHTMGa3JDZwrnQq4sF86dIHNDz0W1"\\
crossorigin="anonymous"></script>
        <script src="https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/js/bootstrap.min.js"</pre>
integrity="sha384-
JjSmVgyd0p3pXB1rRibZUAYoIIy6OrQ6VrjIEaFf/nJGzIxFDsf4x0xIM+B07jRM"
crossorigin="anonymous"></script>
        <script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@latest"></script>
       </head>
       <script>
        function preview() {
         frame.src=URL.createObjectURL(event.target.files[0]);
        }
          $(document).ready(function() {
```

```
$('#clear_button').on('click', function() {
               $('#image').val(");
               $('#frame').attr('src',"");
              });
            });
       </script>
       <body>
         <section id="content">
            <center><h1>HANDWRITTEN DIGIT PREDICTION</h1><center>
            <div class="leftside">
            <form action="/predict" method="POST" enctype="multipart/form-data">
            <label>Select a image:</label>
            <input id="image" type="file" name="image" accept="image/png, image/jpeg"</pre>
onchange="preview()"><br><br>
             <img id="frame" src="" width="200px" height="200px"/>
             <div class="buttons_div">
               <button type="submit" class="btn btn-light" id="predict_button">Predict</button>
              <button type="button" class="btn btn-light" id="clear_button">&nbsp Clear
&nbsp</button>
             </div>
            </form>
            </div>
         </section>
       </body>
       </html>
```

Predict Page:

```
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>Prediction</title>
link rel="stylesheet" type= "text/CSS" href= "{{
url_for('static',filename='css/predictNT.css') }}">
</head>
<body>
<div id="rectangle">
<h1 id="ans">Predicted Number : {{num}}</h1>
</div>
</body>
</html>
```

CSS Code:

Index Page:

```
body{
background:#b2ecec;
}
#clear_button{
margin-left: 15px;
font-weight: bold;
color: black;
}
```

```
#confidence{
 font-family: 'Josefin Sans', sans-serif;
 margin-top: 7.5%;
}
#content{
 margin: 0 auto;
 padding: 2% 15%;
 padding-bottom: 0;
}
.welcome{
 text-align: center;
 position: relative;
 color: honeydew;
 background-color:#0E6655;
 padding-top: 1%;
 padding-bottom: 1%;
 font-weight: bold;
 font-family: 'Prompt', sans-serif;
}
#team_id{
 text-align: right;
 font-size: 20px;
 padding-right: 3%;
}
#predict_button{
 margin-right: 15px;
```

```
color: black;
 font-weight: bold;
#prediction_heading{
 font-family: 'Josefin Sans', sans-serif;
margin-top: 7.5%;
#result{
font-size: 5rem;
#title{
padding: 1.5% 15%;
 margin: 0 auto;
text-align: center;
.btn {
  font-size: 15px;
  -WebKit-appearance: none;
  background: #3bd6c6;
  border: 1px solid #888;
  margin-top: 20px;
  margin-bottom: 20px;
}
.buttons_div{
 margin-bottom: 30px;
margin-right: 80px;
```

```
.heading{
 font-family: 'Varela Round', sans-serif;
 font-weight: 700;
 font-size: 2rem;
 display: inline;
.leftside{
 text-align: center;
 margin: 0 auto;
 margin-top: 2%;
/* padding-left: 10%; */
}
#frame{
 margin-right: 10%;
}
.predicted_answer{
 text-align: center;
 margin: 0 auto;
padding: 3% 5%;
 padding-top: 0;
/* padding-left: 10%; */
}
p{
 font-family: 'Source Code Pro', monospace, sans-serif;
 margin-top: 1%;
}
```

```
@media (min-width: 720px) {
    .leftside{
       padding-left: 10%;
    }
}
input[type="file"] {
    font-size: 17px;
    color: black;
    margin-top: 20px;
    margin-bottom: 20px;
    display: inline-block;
}
```

Predict Page:

```
body{
   background: #FDF4DC;
   background-repeat: no-repeat;
   background-size: cover;
}

#rectangle{
   width:1200px;
   height:150px;
   background-color: #b3ecec;
   opacity: 0.8;
   border-radius: 25px;
   position: absolute;
   top:30%;
   left:50%;
   transform:translate(-50%,-50%);
}
```

```
#ans{
text-align: center;
font-size: 60px;
margin: 0 auto;
padding: 3% 5%;
padding-top: 3%;
color: black;
}
```


https://github.com/IBM-EPBL/IBM-Project-9741-1659070960

PROJECT DEMO

 $\frac{https://drive.google.com/file/d/1jlEU0Z2OMkYRIUzfYBSwtNz212gRXbHw/v}{iew?usp=share_link}$