/ 2 1

Divide21: The Impact of One-Step Lookahead on Greedy Strategy

Jacinto Quimua

Background/Review

How do we know that a number is divisible by:

- 2
- 3
- 4
- ...
- 9

Background

- Divide21 (Divide to One) is a game designed to foster logical and strategic thinking, improved memory and pattern recognition through <u>digit manipulation</u> and <u>division</u>.
- It can help students, especially those in foundational math courses, to better understand and master core concepts such as divisibility, prime numbers, factors and multiples, through a fun and interactive play.
- It can be used as a Logical Reasoning (Symbolic AI) benchmark.

Rules

1 - Initial Setup

A random positive integer **X** is generated, such that:

- It has more than one digit, which is determined before the game starts.
- All of its divisors (except 1) must also have more than one digit.

2 - Player Actions

Players alternate turns, and on each turn may:

- Change a single digit of X, such that:
 - X does not become 0 or 1
 - All ten digits (0-9) must be used at a given index before any of them is reused.
 - Leading zeros are not allowed; if they appear, they cannot be changed.
- Attempt division of X by a one-digit number (2-9):
 - o If successful, the divisor is added to the player's score.
 - o If unsuccessful, the divisor is subtracted from the score.
 - If a player misses a valid division opportunity, the largest one-digit factor of X is subtracted from the player's score.

3 - After Division

- The quotient becomes the new X, and the player may keep dividing it to get extra points.
- Digits in the quotient cannot be reused at their respective index, unless all ten one-digit numbers (2-9) have been used.
- The timer does not reset.

4 - Win and Loss Conditions

- Win: Reach a quotient 1 or accumulate 9x the number of digits points or more.
- Loss: Run out of time or drop to -9x the number of digits points or less.

Example **Player1**: 493 \rightarrow change digit 9 to 0 \rightarrow 403

Player1: 409 \rightarrow change digit 4 to 3 \rightarrow 309

Player1: 173 \rightarrow change digit 3 to 2 \rightarrow 172

Player1: 13 \rightarrow change digit 3 to 7 \rightarrow 17

Player1: **14** ÷ 2 = 7 (+2 points) \rightarrow **7**

Player2: 43 \rightarrow change digit 4 to 1 \rightarrow 13

Player2: 17 \rightarrow change digit 7 to 4 \rightarrow 14 Player1: $7 \div 7 = 1 (+7 \text{ points}) \rightarrow 1 (Player1 \text{ wins by Quotient 1})$

Player2: 403 \rightarrow change digit 3 to 9 \rightarrow 409

Player2: **309** ÷ 3 = 103 (+3 points) \rightarrow **103**

Player2: 103 \rightarrow change digit 0 to 7 \rightarrow 173

Player2: **172** ÷ 4 = 43 (+4 points) \rightarrow **43**

Methodology

Greedy Agent

VS

Greedy Agent

+

One Move Lookahead (Selfish)

Experiment Design

- 10 Game Simulations
 - Per digit
- Simple Greedy vs. Selfish Greedy
 - Each agent gets to make the first move

Metric Collection

- Win Rate
 - by Quotient 1
 - by points
 - by Quotient 1 and points
- Average Game Length
 - o per Digit

- Turn Advantage Effect
- Average index chosen
- Average digit usage

Expected Outcomes

- The Selfish Greedy Agent outperforms the Simple Greedy Agent.
- More wins by points than by quotient 1 or both.
- No turn advantage effect.

Preliminary Results

- The Selfish Greedy Agent outperforms the Simple Greedy Agent.
 - True
 - Total games (per digit): 10, with 2-9 digits
 - Selfish Greedy Agent: 77-3
- More wins by points than by quotient 1 or both.
 - Not Clear
 - The results seem balanced (need more data)
- No turn advantage effect.
 - True
 - Each agent made the first move 50% of the time

Play Online!

divide21.com