- 1. Let $B = \{\mathbf{b}_1, \mathbf{b}_2\}$ and $C = \{\mathbf{c}_1, \mathbf{c}_2\}$ be bases for a vector space V, and suppose $\mathbf{b}_1 = -2\mathbf{c}_1 + 3\mathbf{c}_2$ and $\mathbf{b}_2 = -7\mathbf{c}_1 + 6\mathbf{c}_2$.
 - a. Find the change-of-coordinates matrix from B to C.
 - b. Find $[\mathbf{x}]_C$ for $\mathbf{x} = 5\mathbf{b}_1 2\mathbf{b}_2$. Use part (a).

a.
$$P = \begin{bmatrix} -2 & -7 \\ \hline 3 & 6 \end{bmatrix}$$

$$b. [\mathbf{x}]_{C} = \begin{bmatrix} 4 \\ 3 \end{bmatrix}$$

(Simplify your answers.)

- 2. Let $A = \{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}$ and $B = \{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\}$ be bases for a vector space V, and suppose $\mathbf{b}_1 = 2\mathbf{a}_1 3\mathbf{a}_3$, $\mathbf{b}_2 = -\mathbf{a}_1 + \mathbf{a}_2$, $\mathbf{b}_3 = \mathbf{a}_1 + \mathbf{a}_2 + 6\mathbf{a}_3$.
 - a. Find the change-of-coordinates matrix from *B* to *A*.
 - b. Find $[\mathbf{x}]_A$ for $\mathbf{x} = \mathbf{b}_1 4\mathbf{b}_2 + 4\mathbf{b}_3$.

a.
$$P = \begin{bmatrix} 2 & -1 & 1 \\ 0 & 1 & 1 \\ -3 & 0 & 6 \end{bmatrix}$$

b.
$$[\mathbf{x}]_A = \begin{bmatrix} 10 \\ 0 \\ 21 \end{bmatrix}$$
 (Simplify your answers.)

- 3. Let $A = \{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}$ and $B = \{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\}$ be bases for a vector space V, and suppose $\mathbf{a}_1 = 2\mathbf{b}_1 \mathbf{b}_2$, $\mathbf{a}_2 = -\mathbf{b}_1 + 5\mathbf{b}_2 + \mathbf{b}_3$, $\mathbf{a}_3 = \mathbf{b}_2 6\mathbf{b}_3$.
 - a. Find the change-of-coordinates matrix from A to B.
 - b. Find $[\mathbf{x}]_B$ for $\mathbf{x} = 3\mathbf{a}_1 + 4\mathbf{a}_2 + \mathbf{a}_3$.

a.
$$P = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 5 & 1 \\ 0 & 1 & -6 \end{bmatrix}$$

b.
$$[\mathbf{x}]_B = \begin{bmatrix} 2 \\ 18 \\ -2 \end{bmatrix}$$
 (Simplify your answers.)

4. Let $B = \{\mathbf{b}_1, \mathbf{b}_2\}$ and $C = \{\mathbf{c}_1, \mathbf{c}_2\}$ be bases for \mathbb{R}^2 . Find the change-of-coordinates matrix from B to C and the change-of-coordinates matrix from C to B.

$$\mathbf{b}_1 = \begin{bmatrix} -7 \\ -16 \end{bmatrix}, \, \mathbf{b}_2 = \begin{bmatrix} 3 \\ 7 \end{bmatrix}, \, \mathbf{c}_1 = \begin{bmatrix} 1 \\ 4 \end{bmatrix}, \, \mathbf{c}_2 = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$

Find the change-of-coordinates matrix from B to C.

$$P = \begin{bmatrix} 5 & -2 \\ -12 & 5 \end{bmatrix}$$
 (Simplify your answers.)

Find the change-of-coordinates matrix from C to B.

$$P = \begin{bmatrix} 5 & 2 \\ B \leftarrow C & 12 & 5 \end{bmatrix}$$
 (Simplify your answers.)

- 5. The sets B and C are bases for a vector space V. Mark each statement true or false. Justify each answer.
 - a. The columns of P are linearly independent.
 - b. If $V = \mathbb{R}^2$, $B = \{\mathbf{b}_1, \mathbf{b}_2\}$, and $C = \{\mathbf{c}_1, \mathbf{c}_2\}$, then row reduction of $\begin{bmatrix} \mathbf{c}_1 & \mathbf{c}_2 & \mathbf{b}_1 & \mathbf{b}_2 \end{bmatrix}$ to $\begin{bmatrix} \mathbf{I} & \mathbf{P} \end{bmatrix}$ produces a matrix P that satisfies $[\mathbf{x}]_B = P[\mathbf{x}]_C$ for all \mathbf{x} in V.
 - a. Is the statement true or false?
 - A. The statement is false. The columns of P are linearly dependent because they are the $C \leftarrow B$ coordinate vectors of the linearly dependent set B.
 - B. The statement is false. The columns of P are linearly dependent because they are the C←B coordinate vectors of the linearly dependent set C.
 - \bigcirc **C.** The statement is true. The columns of P are linearly independent because they are the $C \leftarrow B$ coordinate vectors of the linearly independent set C.
 - **\bigcirc D.** The statement is true. The columns of P are linearly independent because they are the $C \leftarrow B$ coordinate vectors of the linearly independent set B.
 - b. Is the statement true or false?
 - \bigcirc **A.** The statement is true. Left-multiplying $[x]_C$ by P gives $[x]_B$.
 - **B.** The statement is false. Matrix P satisfies $[\mathbf{x}]_C = P[\mathbf{x}]_B$ for all \mathbf{x} in V.
 - \bigcirc **C.** The statement is false. Left-multiplying $[\mathbf{x}]_C$ by P gives $[\mathbf{x}]_B$.
 - D. The statement is true. Matrix P is the change-of-coordinates matrix from C to B.

6.	In \mathbb{P}_2 , find the change-of-coordinates matrix from the basis $B = \{1 - 3t + t^2, 2 - 5t + 3t^2, 2 - 3t + 6t^2\}$ to the standard basis $C = \{1, t, t^2\}$.
	Then find the B-coordinate vector for $2-6t+3t^2$.

In \mathbb{P}_2 , find the change-of-coordinates matrix from the basis $B = \{1 - 3t + t^2, 2 - 5t + 3t^2, 2 - 3t + 6t^2\}$ to the standard basis $C = \{1, t, t^2\}$.

Find the *B*-coordinate vector for $2 - 6t + 3t^2$.

$$[\mathbf{x}]_B = \begin{bmatrix} & & 6 \\ & -3 & \\ & & 1 \end{bmatrix}$$
 (Simplify your answers.)

7. In \mathbb{P}_2 , find the change-of-coordinates matrix from the basis $B = \{1 - 5t^2, 5 + t - 24t^2, 1 + 4t\}$ to the standard basis. Then write t^2 as a linear combination of the polynomials in B.

In \mathbb{P}_2 , find the change-of-coordinates matrix from the basis *B* to the standard basis.

(Simplify your answers.)

Write t^2 as a linear combination of the polynomials in B.

$$t^2 = 19 (1 - 5t^2) + -4 (5 + t - 24t^2) + 1 (1 + 4t)$$

(Simplify your answers.)