Assignment 2 MAT 367

Q1: Let M be a k dimensional submanifold of \mathbb{R}^n . Since M is a subspace of \mathbb{R}^n , it inherits second countability and is hausdorff. Therefore it is sufficient to show that given two submanifold coordinate charts $(U_1, \varphi_1^{-1}), (U_2, \varphi_2^{-1})$, the transition map $\varphi_2^{-1} \circ \varphi_1$ is a diffeomorphism. Define the maps $h_i : \mathbb{R}^k_x \times \mathbb{R}^{n-k}_y \to \mathbb{R}^n$ by

$$h_i(x,y) = \varphi_i(x) + (0,y).$$

Similarly as in A1, we have that h_i is a diffeomorphism. Therefore the composition

$$h_2^{-1} \circ h_1$$

is a diffeomorphism of \mathbb{R}^n . If ι_x is the inclusion of \mathbb{R}^k_x into $\mathbb{R}^n_{x,y}$ into the first k coordinates and π_x is the projection onto the x coordinates, the composition,

$$\pi_x \circ (h_2^{-1} \circ h_1) \circ \iota_x = \pi_x(h_2^{-1} \circ (\varphi_1(x), 0)) = \pi_x(\varphi_2^{-1}(\varphi_1(x), 0)) = \varphi_2^{-1} \circ \varphi_1(x).$$

This is a diffeomorphism since it has rank k.