TEOREMAS DE CONVERGÊNCIA PARA INTEGRAIS

T. de Convergência Monótona de LeviT. de Convergência Dominada de Lebesgue

Luis T. Magalhães

IST

19.ABR.2020

TEOREMAS DE CONVERGÊNCIA PARA INTEGRAIS:

- T. de Convergência Monótona de Levi (TCM Levi)
- T. de Convergência Dominada de Lebesgue (TCD Lebesgue)

Introdução

Estes teoremas dão condições muito gerais e naturais para troca de limite com integral (de Lebesgue), o que é bastante mais restritivo e complicado com integral de Riemann. Como o integral de Lebesgue foi definido por limites de integrais de sucessões de funções em escada crescentes (em sentido lato) q.t.p., é de esperar que seja mais simples para este integral.

O T. de Convergência Monótona de Levi é o mais simples.

É simplesmente a prova que o processo de extensão do integral de funções em escada na definição do integral de funções limite superior aplicado a funções integráveis à Lebesgue não dá uma nova extensão.

O T. de Convergência Dominada de Lebesgue pode ser provado por aplicações do T. de Convergência Monótona de Levi.

O T. de Convergência Dominada de Lebesgue é útil quando a sucessão de funções considerada não é monótona. Em particular, para determinar integrabilidade ou calcular integrais por sucessões de funções definidas em conjuntos expansivos com união igual ao domínio de integração, se a função muda de sinal, em geral não há monotonia e o T. de Convergência Monótona de Levi não pode ser directamente aplicado.

T. de Convergência Monótona de Levi (TCM Levi)

Se $S \subset \mathbb{R}^n$ e $\{f_k\} \subset L(S)$ é sucessão monótona q.t.p. em S e $\{\int_S f_k\}$ é limitada, então $\exists_{f \in L(S)} : \lim_{k \to \infty} f_k = f$ q.t.p. em S e $\int_S f = \lim_{k \to \infty} \int_S f_k$.

Dem. Prova-se que é válido na sequência $S(I) \rightarrow U(I) \rightarrow L(I) \rightarrow L(S)$, com $I \subset \mathbb{R}^n$ um intervalo, como já feito para outras propriedades do integral (de Lebesgue). Sem perda de generalidade, supõe-se f_k crescente (se não, troca-se f_k por $-f_k$).

$$\{f_k\}\subset S(I)$$
. Se $f_k\nearrow f$ q.t.p. em I , da definição de $U(I)$, $f\in U(I)$, $f=\lim_{k\to\infty}\int_I f_k$.

Resta provar que $\lim_{k\to\infty} f_k$ existe q.t.p. em I. Seja $D=\{\mathbf{x}\in I: \{f_k(\mathbf{x})\} \text{ diverge}\};$ para $\mathbf{x}\in I\setminus D$ define-se $f(\mathbf{x})=\lim_{k\to\infty} f_k(\mathbf{x}).$ $D\subset D_{kj}=\{\mathbf{x}\in I: f_k(\mathbf{x})>j\}.$ Como $\exists_{M>0}: \int_I f_k \leq M$, a soma do volume-n de intervalos em que $f_k>j$ tende para 0 quando $j\to\infty$, pelo que $\bigcap_{j\in\mathbb{N}} D_{kj}$ tem medida nula. Logo, D tem medida nula e, portanto, definindo f com qualquer valor em D, $\lim_{k\to\infty} f_k$ existe q.t.p. em I.

 $\{f_k\}\subset U(I)$. Seja $M\geq \int_I f_k$. $\exists_{\{s_{kj}\}_{j\in \mathbb{N}}}(I): s_{kj}\nearrow f_k$ q.t.p. em I quando $j\to\infty$. Tem-se q.t.p. em I quando $j\to\infty$:

3/6

Considera-se a sucessão dos máximos da coluna j, $t_j = \max\{s_{1j}, s_{2j}, \dots, s_{jj}\}$.

T. de Convergência Monótona de Levi (TCM Levi)

 $\{f_k\} \subset L(I)$. Aproxima-se f_k por $U_k \in U(I)$. Seja $g_1 = f_1, g_k = f_k - f_{k-1} \ge 0$ q.t.p. É $f_k = \sum_{j=1}^k g_j$. Cada $g_j \in L(I)$, pelo que $\exists_{u_j, v_j \in U(I)} : g_j = u_j - v_j$ com $v_j \ge 0$, $\int_I v_j < \frac{1}{2^j}$. Logo, $u_j = g_j + v_j \ge 0$ q.t.p., $U_k = \sum_{j=1}^k u_j \in U(I)$ é crescente e $\int_I U_k = \int_I \sum_{i=1}^k u_i = \int_I \sum_{j=1}^k g_j + \int_I \sum_{i=1}^k v_j \le \int_I f_k + \sum_{i=1}^k \frac{1}{2^j} < \int_I f_k + 1$,

pelo que
$$\{\int_I U_k\}$$
 é majorada. Do caso $\{f_k\} \subset U(I)$, $\exists_{U,V \in L(I)} \colon U_k \nearrow U$, $V_k \nearrow V$ q.t.p. Com $f = U - V$ é

 $f_k = \sum_{k=1}^{k} g_j = U_k - V_k \rightarrow U - V = f$, $\int_{V_k} f_k = \int_{V_k} U_k - \int_{V_k} V_k \rightarrow U - V = f$.

 $\{f_k\}\subset L(S)$. Do caso precedente, é válido no intervalo $I=\mathbb{R}^n$. Portanto, com a função característica de S, χ_S , e a extensão de f_k a $\mathbb{R}^n=0$ fora de S, é válido para $\chi_S f_k$, pelo que $\exists_{f\in L(\mathbb{R}^n)}: \chi_S f_k \to f$ q.t.p. e $\int_{\mathbb{R}^n} f = \lim_{k\to\infty} \int_{\mathbb{R}^n} \chi_S f_k = \lim_{k\to\infty} \int_S f_k$. Como $f_k=0$ em $\mathbb{R}^n \setminus S$ e $f_k \to f$ q.t.p. em \mathbb{R}^n , é f=0 q.t.p. em $\mathbb{R}^n \setminus S$ e $\int_{\mathbb{R}^n} f = \int_S f$. Q.E.D.

T. de Convergência Dominada de Lebesgue (TCD Lebesgue)

Se $S \subset \mathbb{R}^n$, $\{f_k\} \subset L(S)$ é uma sucessão tal que $\lim f_k = f$ q.t.p. em Se $|f_k| \le h \in L(S)$ q.t.p. em S para $k \in \mathbb{N}$, então $f \in L(S)$ e $\int_S f = \lim_{k \to \infty} \int_S f_k$.

Dem. Basta provar para S = I intervalo em \mathbb{R}^n . A ideia é encaixar $\{f_k\}$ entre sucessões monótonas crescente e decrescente e aplicar o TCM de Levi, i.e. $g_k \le f_k \le G_k$ com $g_k \nearrow e$ $G_k \searrow q.t.p.$, $\{g_k\}, \{G_k\} \subset L(I)$ e $\{\int_I g_k\}, \{\int_I G_k\}$ limitadas. Com $f_1, f_2, \ldots, f_{k-1}, f_k, \ldots, f_i, f_{i+1}, \ldots \to f$ q.t.p., define-se g_k e G_k as funções que são, resp., mínimo e máximo dos termos da sucessão $\{f_{s}\}$ de ordens $\geq k$ e G_{ki} a função que é máximo dos termos da ordem k à ordem $j \ge k$, inclusivé, i.e.

$$g_k = \min_{j \ge k} f_j$$
, $G_k = \max_{j \ge k} f_j$, $G_{kj} = \max_{k \le s \le j} f_s$,

Verifica-se $g_k \nearrow$, $G_k \searrow$ q.t.p., e com k fixo $G_{ki} \nearrow G_k$ quando $j \to \infty$ q.t.p. Para aplicar o TCM de Levi a $\{g_k\}$ e a $\{G_k\}$ é preciso garantir $\{g_k\}, \{G_k\} \subset L(I)$. Como $|G_{kj}| \le h$ q.t.p. e $|\int_I G_{kj}| \le \int_I h$, do TCM de Levi, $G_k \in L(I)$, $\int_I G_k = \lim_{j \to \infty} \int_I G_{kj} \le \int_I h$. Outra vez do TCM de Levi, $\exists_{G \in L(I)} : G_k \searrow G$ q.t.p. e $\int_I G = \lim_{I \to I} \int_I G_k$. Idem para g_{kj} e g_k , $\exists_{g \in L(I)}$: $g_k \nearrow g$ q.t.p. e $\int_I g = \lim_{k \to \infty} \int_I g_k$, $\int_I g_k = \lim_{k \to \infty} \int_I g_{kj} \leq \int_I h$. Como $f_k \rightarrow f$ q.t.p., g = f = G q.t.p. Logo, $f \in L(I)$.

$$g_k \le f_k \le G_k \Rightarrow \int_I g_k \le \int_I f_k \le \int_I G_k$$

Com lim obtém-se $k \rightarrow \infty$

$$\int_{I} f \leq \lim_{k \to \infty} \int_{I} f_{k} \leq \int_{I} f.$$

Logo, as desigualdades nesta fórmula são igualdades. Q.E.D.

TEOREMAS DE CONVERGÊNCIA PARA INTEGRAIS: Comparação

Observações

- 1. Provou-se o TCD Lebesgue com 4 aplicações do TCM de Levi.
- Os 2 Teoremas de Convergência para Integrais podem ser comparados e distinguidos com ajuda da tabela seguinte:

	SUPÕE-SE:	
	$S\subset\mathbb{R}^n$, $\{f_k\}\in L(S)$	CONCLUI-SE:
TCM Levi	$\{f_k\}$ monótona q.t.p. em S $\left\{\int_S f_k\right\}$ converge	$f_k \rightarrow f$ q.t.p. em S
TCD Lebesgue	$f_k \rightarrow f$ q.t.p. em S $ f_k \le h \in L(S)$ q.t.p. em S	$\left\{\int_{S} f_{k}\right\}$ converge
		$f \in L(S)$, $\int_{S} f = \lim_{k \to \infty} \int_{S} f_k$

- Nos 2 casos supõe-se que há uma sucessão de funções integráveis e conclui-se que o limite da sucessão é integrável e o limite troca com o integral.
- No TCM Levi supõe-se que sucessão de funções é monótona q.t.p.,
 e no TCD Lebesgue que é dominada por uma função integrável.
- A convergência da sucessão de funções q.t.p. é conclusão do TCM Levi, e é condição para aplicação do TCD Lebesgue.
- A convergência da sucessão de integrais é conclusão do TCD Lebesgue,
 e é condição para aplicação do TCM Levi.