Übungsblatt 10 zur Algebraischen Zahlentheorie

Aufgabe 1. Das inverse galoissche Problem im abelschen Fall

- a) Sei $n \geq 1$. Finde eine galoissche Erweiterung K von $\mathbb Q$ mit $\operatorname{Gal}(K|\mathbb Q) \cong \mathbb Z/(n)$. Hinweis. Finde nach Dirichlets Satz eine Primzahl p mit $p \equiv 1$ modulo n und konstruiere K als geeigneten Fixkörper von $\mathbb Q(\zeta_p)$ über $\mathbb Q$.
- b) Sei A eine endliche abelsche Gruppe. Finde eine galoissche Erweiterung K von $\mathbb Q$ mit $\mathrm{Gal}(K|\mathbb Q)\cong A$.

 $\label{eq:hinweis} \textit{Hinweis}. \mbox{Wir k\"{o}nnen } A \cong \mathbb{Z}/(n_1) \times \cdots \times \mathbb{Z}/(n_r) \mbox{ schreiben und nach Dirichlets Satz } \textit{verschiedene} \mbox{ Primzahlen } p_i \mbox{ mit } p_i \equiv 1 \mbox{ modulo } n_i \mbox{ finden.} \\ \mbox{Wir k\"{o}nnen dann die gesuchte Erweiterung } K \mbox{ als den Fixk\"{o}rper der Erweiterung } \mathbb{Q}(\zeta_{p_1} \cdots \zeta_{p_r}) | \mathbb{Q} \mbox{ bezüglich einer geeigneten Untergruppe seiner } \\ \mbox{Galoisgruppe finden. Diese ist unkanonisch isomorph zu } \mathbb{Z}/(p_1-1) \times \cdots \times \mathbb{Z}/(p_r-1).$

c) Löse Teilaufgabe b) für nichtkommutative endliche Gruppen.

Aufgabe 2. Für Matthias S.

Seien p und q Primzahlen mit $p \neq q$. Seien ζ_p und ζ_q entsprechende primitive Einheitswurzeln.

- \heartsuit a) Erinnere dich, wie man für $n \geq 1$ zeigt, dass $Gal(\mathbb{Q}(\zeta_n)|\mathbb{Q}) \cong (\mathbb{Z}/(n))^{\times}$.
 - b) Zeige ohne viel Mühe: $\mathbb{Q}(\zeta_p,\zeta_q)=\mathbb{Q}(\zeta_{pq})$.

 Hinweis. Dein Beweis zeigt allgemeiner, dass $\mathbb{Q}(\zeta_n,\zeta_m)=\mathbb{Q}(\zeta_{\mathrm{kgV}(n,m)})$.
 - c) Zeige: $\mathbb{Q}(\zeta_p) \cap \mathbb{Q}(\zeta_q) = \mathbb{Q}$.

Hinweis. Auch diese Behauptung gilt allgemeiner (mit ggT statt kgV), ist dann aber etwas komplizierter zu beweisen. Es gibt mehrere Beweise der spezialisierten Behauptung. Interessant ist zum Beispiel folgender: Erinnere dich, dass sich p in $\mathbb{Q}(\zeta_p)$ mit r=f=1 zerlegt. Zeige, dass sich p in $\mathbb{Q}(\zeta_q)$ mit e=1 zerlegt. Folgere, dass sich p in $\mathbb{Q}(\zeta_q)$ mit p=00 mit p=01 zerlegt. Wieso genügt das?

Aufgabe 3. Ein Kriterium für die Unmöglichkeit einer Potenzbasis

Sei K ein Zahlkörper vom Grad n. Existiere eine Primzahl p < n, welche in K unverzweigt ist. Zeige, dass kein $\alpha \in K$ mit $\mathcal{O}_K = \mathbb{Z}[\alpha]$ existiert.

Aufgabe 4. Endlich etwas Konzeptionelles zum Eisenstein-Kriterium

Ein normiertes Polynom $f(X)=X^n+a_{n-1}X^{n-1}+\cdots+a_1X+a_0\in\mathbb{Z}[X]$ heißt genau dann Eisensteinsch bei einer Primzahl p, wenn alle a_i durch p teilbar, der konstante Koeffizient a_0 aber nicht durch p^2 teilbar ist. Man lernt, dass solche Polynome stets irreduzibel sind.

- a) Sei ϑ eine Nullstelle eines solchen Polynoms. Zeige, dass p in $\mathbb{Q}(\vartheta)$ rein verzweigt ist.
 - $\mathit{Tipp}.$ Sei $\mathfrak p$ einer der Primidealfaktoren von $(p)\subseteq\mathcal O_K.$ Sei e sein Verzweigungsindex; es gilt also $(p)\subseteq\mathfrak p^e$ und wir hoffen, e=n nachweisen zu können. Zeige, dass $a_i\vartheta^i$ für $i=1,\ldots,n-1$ in $\mathfrak p^{e+1}$ liegt. Zeige weiter, dass a_0 (zwar in $\mathfrak p^e$, aber) nicht in $\mathfrak p^{e+1}$ liegt. Folgere, dass ϑ^n nicht in $\mathfrak p^{e+1}$ liegt. Beobachte, dass ϑ^n aber in $\mathfrak p^n$ liegt. Sei fertig.
- b) Welche Primzahlen muss man also nur untersuchen, wenn man das Eisenstein-Kriteriums anwenden möchte? Ist deine Antwort sogar robust gegen Verschiebungen des Polynoms, also dem Übergang zu f(X-a)?

Aufgabe 5. Eine Knobelaufgabe vom Erfinders des Blogs

Für welche Primzahlen p ist 1/p ein Dezimalbruch mit Periodenlänge 10?