QUIZ-3 ELEMENTARY STOCHASTIC PROCESS (MTH-212A)

Name (Roll Number):

No extra sheet will be provided or collected, Time 20 mins., Max. Marks: 15.

1. Suppose a finite Markov Chain with state space $\{1, 2, ..., M\}$ have the following transition probability matrix; $\mathbf{P} = ((p_{ij}))$, where $p_{ij} = \frac{1}{M}$, for $1 \le i, j \le M$. (a) Find the equivalent classes. (b) Find the period of each state. (c) Find $\sum_{n=2}^{\infty} f_{11}^n$. (d) Find $\lim_{n\to\infty} p_{11}^n$. (2+2+2+2=8)

Solution: Observe $P^n = P$. Since $p_{ij} > 0$, for all $1 \le i, j \le M$, hence all the states communicate with each other, and each has period one. $\lim_{n\to\infty} p_{11}^n = 1/M$. All the states are recurrent, hence $\sum_{n=2}^{\infty} f_{11}^n = 1 - 1/M$

2. Suppose a finite Markov Chain with state space $\{1, 2, ..., M\}$, where M > 2, have the following transition probability matrix;

$$\boldsymbol{P} = \begin{bmatrix} \frac{1}{M} & \frac{1}{M} & \dots & \frac{1}{M} & \frac{1}{M} \\ 0 & \frac{1}{M-1} & \dots & \frac{1}{M-1} & \frac{1}{M-1} \\ 0 & 0 & \frac{1}{M-2} & \dots & \frac{1}{M-2} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & \frac{1}{2} & \frac{1}{2} \\ 0 & 0 & \dots & 0 & 1 \end{bmatrix}.$$

Find the recurret and transient states. Find $\lim_{n\to\infty} p_{kk}^n$, for $k=1,\ldots,M$. (3+4=7)

Solution: Note that $p_{kk}^n=1/(M-k+1)^n$, for $k=1,\ldots,M$. Hence, all the states are transient except the state 'M', as $\sum_{n=1}^{\infty}p_{kk}^n<\infty$, for $k=1,\ldots,M-1$, and $\sum_{n=1}^{\infty}p_{MM}^n=\infty$. $\lim_{n\to\infty}p_{kk}^n=0$ if $k=1,\ldots,M-1$, and it is 1, for k=M.