Section 3.1

Exercise 53

- a) Total: 2 quarters, 1 penny (51c)
- b) Total: 2 quarters, 1 dimes, 1 nickel, 4 pennies (69c)
- c) Total: 3 quarters, 1 penny (76c)
- d) Total: 2 quarters, 1 dime (60c)

Exercise 55

- a) Total: 2 quarters, 1 penny (51c)
- b) Total: 2 quarters, 1 dime, 9 pennies (69c)
- c) Total: 3 quarters, 1 penny (76c)
- d) Total: 2 quarters, 1 dime (60c)

The fewest coins are given when $(n \mod 25) \mod 10 \ge 5$

Exercise 56

Proof by counterexample:

15c using the greedy algorithm would draw one 12c coin and 3 pennies, which is four coins, when one dime and one nickel would suffice.

0.1 Section 3.2

Exercise 27

- a) a
- b) b

Exercise 30

- a)
- b)

Exercise 34

- a)
- b)

Exercise 42

- a)
- b)

Section 4.1

Exercise 11

- a)
- b)