

Fundamentals of Data Communications

Cloud Computing and Internet of Things (IOT)

Levi Perigo, Ph.D.
University of Colorado Boulder
Department of Computer Science
Network Engineering

Review

· OSI

Routing

Switching

Security

Network

IP Addressing

ARP

Wireless

Cloud Computing

- Using network of remote servers hosted on the Internet
 - Store (storage), manage ("as a service"), process (compute)
 - Do not use local server or PC

Cloud = "Internet"

Cloud Computing

- On-demand delivery of IT resources and applications via the Internet
 - Pay as you go

- Economies of scale
- New application implementation/innovation
- Add/remove elastic needs
- Scalability

Data Center (DC)

 Densely packed racks of high-powered computers and storage

Tremendous amounts of compute power in a

single room

Cloud Benefits

Save Money

- No large upfront investments in hardware
- Managing hardware
- Provision the right type/size of compute resources
- Pay for what you use

Cloud Benefits

- CAPEX vs. Variable Expenses
- Economies of scale
- No budget for capacity
- Speed and agility
- Innovation not infrastructure
- Global

Cloud Benefits – NIST Essentials

- On-demand self-service
 - Agility and cost
- Broad network access
 - Device and location independence
- Resource pooling
 - Performance and productivity
- Rapid elasticity
 - Reliability and scalability

DC Cloud Business Models

- Virtualization
- Infrastructure laaS
 - No need for hardware
 - Amazon (AWS), Microsoft Azure, Google Compute Engine, Rackspace "Rent out"
 Backbone network
 - Netflix & Pinterest use Amazon
- Platform PaaS
 - You manage your applications and software
- Software SaaS
 - Largest cloud market
 - Deliver applications that are managed by third-party vendor
 - Typically use web browser
 - Salesforce.com customer relationship management
 - Concur expense reporting
- Networking NaaS
- Shifts CAPEX to OPEX

DC Categories

Private single-tenant

Individual organizations that maintain their own data centers

Private multitenant

- Organizations that provide specialized DC services for other client organizations
 - Contracts to specific clients

Public multitenant

Generalized DC services to anyone (individuals or public)

DC Categories - Cloud

Public cloud

- Service provider makes services available to public over the Internet
 - Microsoft Azure
 - Amazon

Private cloud

 Server and network resources assigned to specific client; though, hardware owned by provider

Hybrid cloud

- Resources dedicated to a single tenant, but parts are shared with other tenants
 - Shared resources up/down on demand
 - Major driver in SDN in the DC!

Major Players – Consumer vs. Business

- 1. Amazon Web Services (AWS)
- 2. Microsoft Azure
- **3. IBM**
- 4. Google Cloud Platform
- 5. Oracle
- 6. Salesforce.com
 - SaaS

Google Cloud Platform (GCP)

Services

- Gmail
- Calendar
- Maps

Google Drive

- Storage
- Cloud Apps
 - Docs, sheets, slides, etc.

Cloud Hardware Access

Legacy Dumb Terminal

Current Dumb Terminal

- Web browser = "operating system"
- IOT!!

Downside of the Cloud

- ISPs control your access
 - Internet failure

- Terms of service
 - Increase in "rent"
 - Lock in?

Downside of the Cloud

Security

- IP Who owns the data you store online?
 - What if you create it in a cloud software (Google Docs)
- Private company
- Other companies on same network/servers
- Interdisciplinary No governing body use of cloud for storage and services!

Internet of Things (IOT)

IOT or IOE (Everything)

- Everyday objects have network connectivity allowing them to send/receive data
- "Everything is smart"
- Terms "connected devices" & "smart devices"
- 50 billion objects 2020 (Cisco)

Facilitators

- Ubiquitous wireless connectivity
 - Bluetooth, ZigBee, Z-Wave, LTE/5G
- IPv6
- Cloud

- Moore's Law
 - Raspberry Pi
 - Arduino Yun

Smart Cities & Grids

Transport & Traffic management

- Energy
- Health care
- Water
- Waste

Urban agriculture

Sensor Networks

- Object that detects events or changes and send info
 - Light, temperature, sound, pressure, etc.
- Turns information into action
 - Concrete (bridges)
 - Structural engineering
 - Vehicles
 - Hazard ahead, slow down
 - Smart Grids
 - Stoplights not on timers, but based on traffic flow

Home Technology Integration (HTI)

Smart Home / Home Automation

- Lighting
 - Scenes
- Sprinklers, Blinds, Locks, GPS, Refrigerator, Laundry, etc.
 - FIBARO Home Automation Demo

Retrofit

- Wireless
- Historic

HTI

Security

- Camera
- Smart Phone
- Multi-tenant Dwelling

Home Automation Controllers

- Google Home
- Apple HomeKit

Amazon Alexa

Wink

Security & Privacy

- Mirai Botnet
- Targeting
 - Wearables
 - Behavior statistics
 - Exercise, travel, shopping
 - Marketing / advertising
 - Thermostat = blankets

- Home automation
 - Door locks
 - Washing machine intruder
 - Cut Internet access
- Sports
 - Blood type
 - Nutrition
 - Heart Rate & power

Security & Privacy

- Vehicles
 - Brakes

- Smart grid / city
 - Power
 - Speed limit
 - Stop lights
 - "Italian Job"

- Health care
 - Pacemaker

- "Big Brother"
 - Off the grid?

Issues

- Underestimation of negative effects
 - Radiation from billions of wireless devices
- Government regulation and policy enforcement
 - How?
 - Drones?
- Legacy devices
 - Technology increases, what about the "original" IOT devices?
- Security and Privacy
 - The concept of privacy is going to be re-written

Software is Eating the World! – M. Andreessen (2011)

- Software has revolutionized/disrupted entire industries
 - Zoom
 - Interactive meetings
 - Metaverse
 - Netflix
 - Movie rentals
 - Uber
 - How many taxies does Uber own?
 - AirBnB
 - How many hotels does AirBnB own?
 - Amazon
 - Where is there store front?
 - What about their bookstore?
 - Social Media
 - fb, twitter, linkedin, pinterest, Instagram, snap, tiktok

Networking

SDN

NFV

Trends I track: html -> api, ipv4 -> JSON/REST, dev driven infra, Al in enterprise, infra for IoT/robotics, hw roots of trust, simplify sec

Network programmability & automation

CCIE vs Python (search Internet)

Future of Networking?

Questions?

