This is a quick summary of the PDF Gilks 1992 that described the process of Adaptive-Rejection Sampling. I thought this may be easier to reference as it only includes the necessary information.

Overview

In short, these are the steps for sampling from a univariate log-concave f(x):

- 1. Find an enveloping function above $\log f(x)$ using tangents on points in $\log f(x)$.
- 2. Find a squeezing function below $\log f(x)$ using lines connecting these points.
- 3. With each acceptance of a point during sampling, update these functions.

Formulas

See PDF or R code for calculations.

Process

0.0.1 Initialization Step

Choose k x_i 's. If f(x) is unbounded on the left, choose x_1 so $h'(x_1) > 0$. If f(x) is unbounded on the right, choose x_k so $h'(x_k) < 0$. Calculate $u_k(x)$, $s_k(x)$, and $l_k(x)$.

0.0.2 Sampling Step

- 1. Sample x^* from $s_k(x)$.
- 2. Sample w from Unif(0,1).
- 3. If $w \le exp\{l_k(x^*) u_k(x^*)\}$, accept x^* . Otherwise,
- 4. Evaluate $h(x^*)$ and $h'(x^*)$.
- 5. If $w \le exp\{h(x^*) u_k(x^*)\}$, accept x^* . Otherwise, reject x^* .

0.0.3 Updating Step

If $h(x^*)$ and $h'(x^*)$ were evaluated in the sampling step, add x^* to original x_i 's, sort the x_i 's, reconstruct $u_{k+1}(x)$, $s_{k+1}(x)$, and $l_{k+1}(x)$, increment k, and repeat process until n points have been sampled.