SBVLIFA: Linguagens Formais e Autômatos

Aula 06: Propriedades das Linguagens Regulares

2/45 Linguagens Regulares

Linguagens Regulares

Tipo	Classe de Linguagens	Modelo de Gramática	Modelo de Reconhecedor
0	Recursivamente enumeráveis	Irrestrita	Máquina de Turing
1	Sensíveis ao contexto	Sensível ao contexto	Máquina de Turing com fita limitada
2	Livres de contexto	Livre de contexto	Autômato de pilha
3	Regulares	Linear (direita ou esquerda)	Autômato finito

- Veremos nessa aula algumas propriedades importantes das linguagens regulares, a saber:
 - Lema do Bombeamento (Pumping Lemma): provar que certas linguagens não são regulares;
 - Propriedades de Fechamento: ferramenta para construção de autômatos complexos;
 - Propriedades de Decisão: equivalência entre linguagens com minimização de autômatos.

Teorema: (O lema do bombeamento para linguagens regulares) Seja L uma linguagem regular. Então, existe uma constante n, que depende de L, tal que, para toda string w em L sendo $|w| \ge n$, podemos dividir w em três strings, w = xyz, tais que:

- 3. Para todo $k \ge 0$, a string xy^kz também está em L
- Isto é, sempre podemos encontrar uma string não vazia y não muito longe do início de w que pode ser "bombeada", ou seja, podemos repetir y qualquer número de vezes, ou excluí-la, o caso de k=0, mantendo a string resultante em L.

Prova: Suponha que L seja regular. Então, L = L(A) para algum DFA A. Suponha que A tenha n estados. Agora, considere qualquer string w de comprimento n ou maior, digamos $w = a_1 a_2 \dots a_m$, onde $m \ge n$ e cada a_i é um símbolo de entrada. Para i = 0, 1, ..., n, defina o estado p_i como $\hat{\delta}(q_0, a_1 a_2 \dots a_i)$, onde δ é a função de transição de A e q_0 é o estado inicial de A. Isto é, p_i é o estado em que A se encontra depois de ler os primeiros i símbolos de w. Note que $p_0 = q_0$. Não é possível que os n+1 diferentes p_i 's para i = 0, 1, ..., n sejam distintos, pois só existem n estados diferentes. Desse modo, podemos encontrar dois inteiros diferentes $i \in j$, com $0 \le i < j \le n$, tais que $p_i = p_i$. Agora, podemos dividir w = xyz como a seguir:

1.
$$x = a_1 a_2 \dots a_i$$

2.
$$y = a_{i+1}a_{i+2} \dots a_j$$

3.
$$z = a_{j+1}a_{j+2} \dots a_m$$

Ou seja, x nos leva a p_i uma vez; y nos leva de p_i de volta a p_i (pois p_i também é p_i) e z é o restante de w. Os relacionamentos entre as strings e os estados são sugeridos no diagrama abaixo. Observe que x pode ser vazio, no caso em que i=0. Além disso, z pode ser vazio se j=n=m. Entretanto, y não pode ser vazio, pois i é estritamente menor que j.

Toda string mais longa que o número de estados deve causar a repetição de um estado

Agora, considere o que acontece se o autômato A recebe a entrada xy^kz para qualquer $k \ge 0$. Se k = 0, então o autômato vai do estado inicial q_0 (que também é p_0) para p_i na entrada x. Tendo em vista que p_i também é p_i , A deve ir de p_i para o estado de aceitação, mostrado no diagrama anterior, para a entrada z. Desse modo, A aceita xz.

Se k > 0, então A vai de q_0 para p_i sobre a entrada x, circula de p_i para $p_i k$ vezes para a entrada y^k , e depois vai para o estado de aceitação para a entrada z. Desse modo, para qualquer $k \ge 0$, xy^kz também é aceito por A; ou seja, xy^kz está em L. \square

Exemplo 1: Vamos mostrar que L_{eq} , que consiste em todas as strings com um número igual de 0's e 1's (não em qualquer ordem específica), isto é $L_{eq} =$ {01,0011,000111,00001111,...}, não é uma linguagem regular. Pensaremos na prova como um jogo de dois oponentes. Seremos o jogador 1 e teremos que lidar com as escolhas que o jogador 2 fizer. Suponha que n seja a constante que deve existir se L_{eq} é regular, de acordo com o lema do bombeamento; isto é o jogador 2 escolhe n. Escolheremos $w = 0^n 1^n$, isto é, n $\cancel{0}$'s seguidos por n 1's, uma string que sem dúvida está em L_{eq} .

Agora, o jogador 2 desmembra nosso w em xyz. Tudo que sabemos é que $y \neq \varepsilon$ e $|xy| \leq n$, no entanto, essas informações são muito úteis, e "ganhamos" da maneira indicada a seguir.

Tendo em vista que $|xy| \le n$, e xy vem na frente de w, sabemos que x e y consistem apenas em símbolos 0. O lema do bombeamento nos diz que xz está em L_{eq} , se L_{eq} é regular. Essa conclusão é o caso k=0 no lema do bombeamento. Porém, xz tem n 1's, pois todos os 1's de w estão em z. Entretanto, xz também tem menos de n 0's, porque perdemos os 0's de y. Como $y \neq \varepsilon$, sabemos que não pode haver mais de que n-1 0's entre $x \in z$. Assim, depois de supor que L_{eq} é uma linguagem regular, provados um fato conhecido como falso, de que xz está em L_{eq} . Temos uma prova por contradição de que L_{ea} não é regular. \Box

Exemplo 2: Vamos mostrar que L_{pr} , que consiste em todas as strings de 1's cujos comprimentos são primos, não é uma linguagem regular.

Primeiramente, suporemos que esta linguagem é regular. Sendo assim, há uma constante n que satisfaz as condições do lema do bombeamento. Considere algum primo $p \ge n + 2$ que deve existir, dado que existe uma infinidade de primos. Considere $w = 1^p$.

Pelo lema do bombeamento, podemos quebrar w = xyz, tal que $y \neq \varepsilon$ e $|xy| \le n$. Considerando |y| = m, então $|xz| \le p - m$. Agora considere a string $xy^{p-m}z$ que deve estar em L_{pr} pelo lema do bombeamento se L_{pr} for regular. Entretanto,

$$|xy^{p-m}z| = |xz| + (p-m)|y| = p-m + (p-m)m = (m+1)(p-m)$$

Parece que $|xy^{p-m}z|$ não é um primo, visto que possui dois fatores (m+1)e $(p \neq m)$. Entretanto, precisamos confirmar que nenhum desses fatores é 1, visto que (m+1)(p-m) poderia ser um primo. No entanto, m+1>1, porque $y \neq \varepsilon$ nos diz que $m \ge 1$. Também temos que p - m > 1, visto que escolhemos $p \ge n + 2$ e que $m \le n$ pois,

$$m = |y| \le |xy| \le n$$

Sendo assim, $p-m \geq 2$.

Novamente, começamos assumindo que essa linguagem é regular e derivamos uma contradição ao mostrar que alguma string que não está na linguagem era obrigada, pelo lema do bombeamento, a estar na linguagem. Desse modo, concluímos que L_{pr} não é uma linguagem

Exemplo 3: Provar que $L = \{0^i \mid i > 0 \text{ e } i \text{ é par}\}$ **é** regular. Será que é possível? Sabemos que L é regular, pois existe um DFA A tal que L = L(A):

Vamos supor que L não é regular. Pelo lema do bombeamento, temos:

- Escolhemos n, digamos n = 3;
- Escolhemos w, digamos w = 0000;
- Dividimos w em xyz, obedecendo ao lema do bombeamento:
 - w = xyz
 - $> x = 0, |xy| \le n$
 - $y = 0, y \neq \varepsilon$
 - z = 00

4. Para todo k, $w = xy^kz$ deve estar em L. Escolhemos k, digamos k = 2:

$$w = xy^k z = 00^2 00 = 00000$$
, ou seja,

|w| = 5 (ímpar), mas não podemos afirmar que L não é regular pelo lema do bombeamento, visto que L é regular, pois L = L(A)! Sendo assim, não se pode aplicar o lema do bombeamento para provar que uma linguagem é regular.

13/45 Propriedades das Linguagens Regulares Propriedades de Fechamento das Linguagens Regulares

- Fechamento sob operações booleanas:
 - A união de duas linguagens regulares é regular;
 - A intersecção de duas linguagens regulares é regular;
 - O complemento de uma linguagem regular é regular;
 - A diferença de duas linguagens regulares é regular;
- reverso de uma linguagem regular é regular;
 - ightharpoonup Se w = abc, $w^R = cba$
 - \blacksquare Se $L = \{0, 10, 101, 1010\}, L^R = \{0, 01, 101, 0101\}$
- O fechamento (estrela) de uma linguagem regular é regular;
- A concatenação de linguagens regulares é regular;

14/45 Propriedades das Linguagens Regulares Propriedades de Fechamento das Linguagens Regulares

- Um homomorfismo (substituição de símbolos por strings) de uma linguagem regular é regular;
 - Se $L = \{0, 1, 01, 10, 0101\}$ e h é um homomorfismo sobre Σ definido como:
 - h(0) = ab
 - $h(1) = \varepsilon$
 - Então $h(L) = \{\varepsilon, ab, abab\}$
- O homomorfismo inverso de uma linguagem regular é regular;
 - Se $L = \{\varepsilon, ab, abab\}$ e h é um homomorfismo sobre Σ definido como:
 - h(0) = ab
 - $h(1) = \varepsilon$
 - Então $h^{-1}(L) = 1^*(ε + 01^*)(ε + 01^*)$

15/45 Propriedades das Linguagens Regulares Propriedades de Decisão das Linguagens Regulares

- Conversão entre representações:
 - ▶ NFA ou ε-NFA → DFA;
 - DFA → NFA ou ε -NFA;
 - DFA, NFA ou ε -NFA → RE;
 - \rightarrow RE $\rightarrow \varepsilon$ -NFA;
- Teste de caráter vazio de linguagens regulares;
 - Se não há caminho entre o estado inicial até algum estado de aceitação ou todos;
- Teste de pertinência em linguagens regulares;
 - Se há caminho do estado inicial até algum estado de aceitação;
- Equivalência e minimização de autômatos.

- **Equivalência de Estados:** entender quando dois estados distintos $p \in q$ podem ser substituídos por um único estado que se comporte como $p \in q$.
- Dois estados distintos p e q são equivalentes se:
 - Para todas as strings de entrada w, $\hat{\delta}(p,w)$ é um estado de aceitação se e somente se $\hat{\delta}(q,w)$ é um estado de aceitação.
- Se dois estados não são equivalentes, então dizemos que eles são distinguíveis, isto é, o estado p é distinguível do estado q se existe pelo menos uma string w tal que um estado entre $\hat{\delta}(p,w)$ e $\hat{\delta}(q,w)$ é de aceitação e o outro é de não aceitação.

- CeG:
 - Não são equivalentes pois um deles é de aceitação (C) e o outro não (G).

- A e G:
 - \blacksquare A string ε não os distingue, porque ambos são estados de não-aceitação;
 - → A string 0 não os distingue, porque eles vão para os estados B e G, respectivamente para a entrada 0, e ambos são estados de nãoaceitação;
 - A string 1 não os distingue, porque eles vão para os estados F e E, respectivamente para a entrada 1, e ambos são estados de nãoaceitação;
 - ► A string 01 os distingue, porque $\hat{\delta}(A,01) = C e$ $\hat{\delta}(G,01)=\mathrm{E}$, sendo que C é de aceitação e E não é. Qualquer string de entrada que leve A e C a estados em que somente um é de aceitação é suficiente para provar que A e G não são equivalentes.

- A e E:
 - \blacksquare A string ε não os distingue, porque ambos são estados de não-aceitação;
 - Para a entrada 1, ambos vão para o estado F. Desse modo nenhuma string de entrada que comece com 1 pode distinguir A de E pois, para qualquer string x, $\hat{\delta}(A, 1x) = \hat{\delta}(E, 1x)$;
 - Para entradas que começam com 0, eles vão para os estados B e H respectivamente. Como nenhum deles é de aceitação, a string 0 sozinha não distingue A de E. Entretanto, B e H não ajudam, pois para a entrada 1, ambos vão para C e para a entrada 0 ambos vão para G. Portanto, todas as entradas que começarem com 0 deixarão de distinguir A de E. Como não há strings que os distinguem, podemos concluir que A e E são equivalentes.

- O algoritmo de preenchimento de tabela: Descoberta recursiva de pares distinguíveis em um DFA $A = (Q, \Sigma, \delta, q_0, F)$, sendo definido como:
 - **Base:** Se p é um estado de aceitação e q é de não aceitação, então o par $\{p,q\}$ é distinguível.
 - **Indução:** Sejam p e q estados tais que, para algum símbolo de entrada a, $r = \delta(p, a)$ e $s = \delta(q, a)$ formam um par de estados conhecidos por serem distinguíveis. Então, $\{p,q\}$ é um par de estados distinguíveis. A razão para essa regra fazer sentido é que deve haver alguma string w que faça distinção entre r e s, isto é, exatamente um estado entre $\hat{\delta}(r,w)$ e $\hat{\delta}(s,w)$ é de aceitação. Então, o string aw deve distinguir p de q, pois $\hat{\delta}(p,aw)$ e $\hat{\delta}(q,aw)$ constituem o mesmo par de estados que $\hat{\delta}(r, w)$ e $\hat{\delta}(s, w)$.

- Exemplo de execução do algoritmo de preenchimento de tabela:
 - x → pares distinguíveis;
 - vazio → pares equivalentes;
 - Executando a Base: C é o único estado de aceitação, então marcamos com x cada par que envolve C.

Tabela de distinções

- Exemplo de execução do algoritmo de preenchimento de tabela:
 - x → pares distinguíveis;
 - vazio → pares equivalentes;
 - Executando a Base: C é o único estado de aceitação, então marcamos com x cada par que envolve C.

Exemplo de execução do algoritmo de preenchimento de tabela:

X

Χ

X

X

X

- x → pares distinguíveis;
- vazio → pares equivalentes;

В

G

Н

Executando a Indução: Para cada par restante, avaliamos suas transições e aumentamos a string testada um símbolo por vez, se necessário, até completar a tabela.

- Exemplo de execução do algoritmo de preenchimento de tabela:
 - x → pares distinguíveis;
 - vazio → pares equivalentes;

Executando a Indução: Para cada par restante, avaliamos suas transições e aumentamos a string testada um símbolo por vez, se necessário, até completar a tabela.

- Exemplo de execução do algoritmo de preenchimento de tabela:
 - x → pares distinguíveis;
 - vazio → pares equivalentes;

Executando a Indução: Para cada par restante, avaliamos suas transições e aumentamos a string testada um símbolo por vez, se necessário, até completar a tabela.

В X X X X Χ X X G X X Χ X Н

- Equivalência de Linguagens Regulares: verificar se duas representações de linguagens regulares representam a mesma linguagem.
- \blacksquare Dadas duas linguagens regulares, L e M, primeiramente convertemos suas representações para DFA's, se necessário, visto que uma, ou ambas, já podem estar representadas na forma de um DFA.
- Agora imaginamos um DFA composto pela união dos DFA's obtidos anteriormente. Tecnicamente, este DFA tem dois estados iniciais, mas para o propósito do teste de equivalência de estados isso é irrelevante, sendo assim, tomamos um dos estados iniciais como o estado inicial do autômato da união.
- Testamos assim se o estados iniciais dos dois DFA's originais são equivalentes, usando o algoritmo de preenchimento de tabelas. Se forem equivalentes, isso implica que L = M, caso contrário, $L \neq M$.

Exemplo: Dados os dois DFA's abaixo, considere-os como apenas um DFA. Esses DFA's aceitam a string vazia e todas as strings que terminam em 0, ou seja, algo como $\varepsilon + (0+1)^*0$.

Começamos marcando com x todos os pares de estados em que exatamente um dos estados é de aceitação.

Coméçamos marcando com x todos os pares de estados em que exatamente um dos estados é de aceitação.

Nesse caso, não há mais o que fazer, visto que os quatro pares restantes, $\{A,C\}$, $\{A,D\}$, $\{C,D\}$ e $\{B,E\}$ são equivalentes. Como os estados A e C são equivalentes e eles são os estados iniciais dos dois autômatos, podemos concluir que esses DFA's aceitam a mesma linguagem.

Começamos marcando com x todos os pares de estados em que exatamente um dos estados é de aceitação.

Transitividade! Teorema 4.23, página 172 (HOPCROFT et al., 2003)

Nesse caso, nao tá mais o que fazer, visto que os quatro pares restantes, $\{A,C\}$, $\{A,D\}$, $\{C,D\}$ e $\{B,E\}$ são equivalentes. Como os estados A e C são equivalentes e eles são os estados iniciais dos dois autômatos, podemos concluir que esses DFA's aceitam a mesma linguagem.

- ► Algoritmo para minimização do DFA $A = (Q, \Sigma, \delta, q_0, F)$:
 - Use o algoritmo de preenchimento de tabela para descobrir todos os pares de estados equivalentes;
 - 2. Particione o conjunto de Q estados em blocos de estados mutuamente equivalentes, ou seja, para cada estado q do DFA, crie um bloco consistindo em q e em todos os estados equivalentes a q. Todos os elementos de um bloco são equivalentes e nenhum par de estados escolhidos de diferentes blocos é equivalente;
 - Construa o DFA B que é o autômato equivalente a A com número mínimo de estados. Tomamos γ como a função de transição de B. Suponha que S seja um conjunto de estados equivalentes de A e que a seja um símbolo de entrada. Então deve haver um bloco T de estados tais que, para todos os estados q em S, $\delta(q,a)$ é um elemento do bloco T. Caso contrário, o símbolo de entrada a tomará dois estados p e q de S como estados em diferentes blocos e esses estados serão distinguíveis. Isso nos leva a concluir que p e a não são equivalentes e que eles não pertenciam ambos a S. Como consequência, podemos fazer $\gamma(S,a) = T$. Além disso:
 - O estado inicial de B é o bloco que contém o estado inicial de A.
 - O conjunto de estados de aceitação de B é o conjunto de blocos que contém estados de aceitação de A. Pelo o que já foi visto, pode-se notar também que se um bloco contém um estado de aceitação, obrigatoriamente todos os estados desse bloco devem ser de aceitação.

Exemplo: Minimizar o DFA a seguir:

Passo 1:

Passo 1:

Equivalência e Minimização de Autômatos

Passo 2:

Equivalência e Minimização de Autômatos

Passo 2:

В	X						
С	X	X					
D	X	X	X		_		
Е		X	X	X			
F	X	X	X		x		
G	X	X	X	X	x	X	
Н	X		X	X	x	X	X
	Δ	R		D		FEDERAL DI), CIÊ <mark>NC</mark> IA E	

Equivalência e Minimização de Autômatos

Passo 3:

Equivalência e Minimização de Autômatos

Equivalência e Minimização de Autômatos

Passo 3:

Equivalência e Minimização de Autômatos

Propriedades das Linguagens Regulares **Exercícios Escritos**

Exercício e6.1: Aplique o lema do bombeamento para provar que as seguintes linguagens não são regulares:

$$Ca) L = \{a^i b^i c \mid i \ge 1\}$$

b)
$$L = \{ba^i b^{2i} \mid i \ge 1\}$$

c)
$$L \neq \{a^i b^{i+2} \mid i \geq 1\}$$

$$d)/L = \{a^i b^i c^i \mid i \ge 1\}$$

$$L = \{wcw^R cw \mid w \in \{a, b\}^*\}$$

f)
$$L = \{a^{i^3}b^{i^2}c^i \mid i \ge 1\}$$

Propriedades das Linguagens Regulares **Exercícios Escritos**

Exercício e6.2: Minimize o DFA descrito pela sua tabela de transições abaixo.

0	1
В	Α
Α	С
D	В
D	A
D	F
G	E
F	G
G	D
	B A D D C G F

Propriedades das Linguagens Regulares **Exercícios Escritos**

Exercício e6.3: Minimize o DFA descrito pela sua tabela de transições abaixo.

	0	1
$\rightarrow A$	В	E
В	С	F
* C	D	Н
D	E	Н
Е	F	Ι
* F	G	В
G	Н	В
Н	I	С
* I	Α	E
	_	

45/45 Bibliografia

HOPCROFT, J. E.; ULLMAN, J. D.; MOTWANI, R. Introdução à Teoria de Autômatos, Linguagens e Computação. 2. ed. Rio de Janeiro: Elsevier, 2002. 560 p.

RAMOS, M. V. M.; JOSÉ NETO, J.; VEGA, I. S. Linguagens Førmais: Teoria, Modelagem e Implementação. Porto Alegre: Bookman, 2009. 656 p.

SIPSER, M. Introdução à Teoria da Computação. 2. ed. São Paulo: Cengage Learning, 2017. 459 p.

