import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from scipy.stats import skew
from sklearn.preprocessing import MinMaxScaler
from sklearn.model\_selection import train\_test\_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear\_model import LogisticRegression
from sklearn import metrics

In [159...

#dataset ---> ds

ds=pd.read\_csv('QualityPrediction.csv')
ds

Out[159...

|      | fixed<br>acidity | volatile<br>acidity | citric<br>acid | residual<br>sugar | chlorides | free<br>sulfur<br>dioxide | total<br>sulfur<br>dioxide | density | рН   | sulphates | alcoho |
|------|------------------|---------------------|----------------|-------------------|-----------|---------------------------|----------------------------|---------|------|-----------|--------|
| 0    | 7.4              | 0.700               | 0.00           | 1.9               | 0.076     | 11.0                      | 34.0                       | 0.99780 | 3.51 | 0.56      | 9.4    |
| 1    | 7.8              | 0.880               | 0.00           | 2.6               | 0.098     | 25.0                      | 67.0                       | 0.99680 | 3.20 | 0.68      | 9.8    |
| 2    | 7.8              | 0.760               | 0.04           | 2.3               | 0.092     | 15.0                      | 54.0                       | 0.99700 | 3.26 | 0.65      | 9.8    |
| 3    | 11.2             | 0.280               | 0.56           | 1.9               | 0.075     | 17.0                      | 60.0                       | 0.99800 | 3.16 | 0.58      | 9.8    |
| 4    | 7.4              | 0.700               | 0.00           | 1.9               | 0.076     | 11.0                      | 34.0                       | 0.99780 | 3.51 | 0.56      | 9.4    |
| •••  |                  |                     |                |                   |           |                           |                            |         |      |           |        |
| 1594 | 6.2              | 0.600               | 0.08           | 2.0               | 0.090     | 32.0                      | 44.0                       | 0.99490 | 3.45 | 0.58      | 10.5   |
| 1595 | 5.9              | 0.550               | 0.10           | 2.2               | 0.062     | 39.0                      | 51.0                       | 0.99512 | 3.52 | 0.76      | 11.2   |
| 1596 | 6.3              | 0.510               | 0.13           | 2.3               | 0.076     | 29.0                      | 40.0                       | 0.99574 | 3.42 | 0.75      | 11.(   |
| 1597 | 5.9              | 0.645               | 0.12           | 2.0               | 0.075     | 32.0                      | 44.0                       | 0.99547 | 3.57 | 0.71      | 10.2   |
| 1598 | 6.0              | 0.310               | 0.47           | 3.6               | 0.067     | 18.0                      | 42.0                       | 0.99549 | 3.39 | 0.66      | 11.(   |
|      |                  |                     |                |                   |           |                           |                            |         |      |           |        |

1599 rows × 12 columns

4

### ML model

# **Logistic Regression**

In [160...

ds.describe()
#ds.isna().sum()

Out[160...

| •• |       | fixed<br>acidity | volatile<br>acidity | citric acid | residual<br>sugar | chlorides   | free sulfur<br>dioxide | total sulfur<br>dioxide |  |
|----|-------|------------------|---------------------|-------------|-------------------|-------------|------------------------|-------------------------|--|
|    | count | 1599.000000      | 1599.000000         | 1599.000000 | 1599.000000       | 1599.000000 | 1599.000000            | 1599.000000             |  |
|    | mean  | 8.319637         | 0.527821            | 0.270976    | 2.538806          | 0.087467    | 15.874922              | 46.467792               |  |

|     | fixed<br>acidity | volatile<br>acidity | citric acid | residual<br>sugar | chlorides | free sulfur<br>dioxide | total sulfur<br>dioxide |  |
|-----|------------------|---------------------|-------------|-------------------|-----------|------------------------|-------------------------|--|
| std | 1.741096         | 0.179060            | 0.194801    | 1.409928          | 0.047065  | 10.460157              | 32.895324               |  |
| min | 4.600000         | 0.120000            | 0.000000    | 0.900000          | 0.012000  | 1.000000               | 6.000000                |  |
| 25% | 7.100000         | 0.390000            | 0.090000    | 1.900000          | 0.070000  | 7.000000               | 22.000000               |  |
| 50% | 7.900000         | 0.520000            | 0.260000    | 2.200000          | 0.079000  | 14.000000              | 38.000000               |  |
| 75% | 9.200000         | 0.640000            | 0.420000    | 2.600000          | 0.090000  | 21.000000              | 62.000000               |  |
| max | 15.900000        | 1.580000            | 1.000000    | 15.500000         | 0.611000  | 72.000000              | 289.000000              |  |
| 4   |                  |                     |             |                   |           |                        | <b>&gt;</b>             |  |

## a) Assigning a binary type dependent variable in place of quality

```
In [161...
    grade = [] #Declaring a new list
    for i in ds['quality']:
        if i >= 7:
            i = 1
                 grade.append(i)
        else:
            i = 0
                 grade.append(i)
        ds['grade'] = grade
        ds.drop('quality', axis = 1, inplace = True)
```

In [162...

ds

Out[162...

| • |      | fixed<br>acidity | volatile<br>acidity | citric<br>acid | residual<br>sugar | chlorides | free<br>sulfur<br>dioxide | total<br>sulfur<br>dioxide | density | рН   | sulphates | alcoho |
|---|------|------------------|---------------------|----------------|-------------------|-----------|---------------------------|----------------------------|---------|------|-----------|--------|
|   | 0    | 7.4              | 0.700               | 0.00           | 1.9               | 0.076     | 11.0                      | 34.0                       | 0.99780 | 3.51 | 0.56      | 9.4    |
|   | 1    | 7.8              | 0.880               | 0.00           | 2.6               | 0.098     | 25.0                      | 67.0                       | 0.99680 | 3.20 | 0.68      | 9.8    |
|   | 2    | 7.8              | 0.760               | 0.04           | 2.3               | 0.092     | 15.0                      | 54.0                       | 0.99700 | 3.26 | 0.65      | 9.8    |
|   | 3    | 11.2             | 0.280               | 0.56           | 1.9               | 0.075     | 17.0                      | 60.0                       | 0.99800 | 3.16 | 0.58      | 9.8    |
|   | 4    | 7.4              | 0.700               | 0.00           | 1.9               | 0.076     | 11.0                      | 34.0                       | 0.99780 | 3.51 | 0.56      | 9.4    |
|   | •••  |                  |                     |                |                   |           |                           |                            |         |      |           |        |
|   | 1594 | 6.2              | 0.600               | 0.08           | 2.0               | 0.090     | 32.0                      | 44.0                       | 0.99490 | 3.45 | 0.58      | 10.    |
|   | 1595 | 5.9              | 0.550               | 0.10           | 2.2               | 0.062     | 39.0                      | 51.0                       | 0.99512 | 3.52 | 0.76      | 11.2   |
|   | 1596 | 6.3              | 0.510               | 0.13           | 2.3               | 0.076     | 29.0                      | 40.0                       | 0.99574 | 3.42 | 0.75      | 11.(   |
|   | 1597 | 5.9              | 0.645               | 0.12           | 2.0               | 0.075     | 32.0                      | 44.0                       | 0.99547 | 3.57 | 0.71      | 10.2   |
|   | 1598 | 6.0              | 0.310               | 0.47           | 3.6               | 0.067     | 18.0                      | 42.0                       | 0.99549 | 3.39 | 0.66      | 11.(   |
|   |      |                  |                     |                |                   |           |                           |                            |         |      |           |        |

1599 rows × 12 columns

b) Fixing Outliers

```
In [163... ds.drop(ds[ds['residual sugar']>3.65].index,axis=0,inplace=True)
#ds['residual sugar'].describe()
sns.displot(ds['residual sugar'])
```

Out[163... <seaborn.axisgrid.FacetGrid at 0x1e3f9454400>



```
ds.drop(ds[ds['free sulfur dioxide']>40.875].index,axis=0,inplace=True)
#ds['free sulfur dioxide'].describe()
sns.displot(ds['residual sugar'])
```

Out[164... <seaborn.axisgrid.FacetGrid at 0x1e3f95c3c70>



```
ds.drop(ds[ds['total sulfur dioxide']>110].index,axis=0,inplace=True)
#ds['total sulfur dioxide'].describe()
sns.displot(ds['total sulfur dioxide'])
```

Out[165... <seaborn.axisgrid.FacetGrid at 0x1e3f9b11610>



```
In [166...
    ds.drop(ds[ds['sulphates']>1].index,axis=0,inplace=True)
    #ds['sulphates'].describe()
    sns.displot(ds['sulphates'])
```

Out[166... <seaborn.axisgrid.FacetGrid at 0x1e3f96897f0>



```
In [186...
    ds.drop(ds[ds['alcohol']>13.35].index,axis=0,inplace=True)
    #ds['alcohol'].describe()
    sns.displot(ds['alcohol'])
```

Out[186... <seaborn.axisgrid.FacetGrid at 0x1e3f94ad820>



#### c) Correlation between variables

```
plt.figure(figsize=[20,10],facecolor='white')
sns.heatmap(ds.corr(),annot=True, cmap='Greens')
```

### Out[168... <AxesSubplot:>



No multi-collinearity

#### d) Train-Test split

```
In [177...
         #Independent variables
         x=ds.iloc[:,0:-1].values
         #Dependent variable
         y=ds.iloc[:,-1:].values.ravel()
In [178...
         scaler = StandardScaler()
         scaler.fit(x)
         scaled_x = scaler.transform(x)
         x_train, x_test, y_train, y_test = train_test_split(scaled_x, y , test_size = 0.2, r
In [179...
         logreg = LogisticRegression()
         logreg.fit(x_train,y_train)
        LogisticRegression()
Out[179...
In [180...
         y_pred=log_reg.predict(x_test)
         y_pred
        array([0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0,
Out[180...
              0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1,
              0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0,
              0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1,
              0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
              1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1,
              0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0,
              1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0,
              1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0,
              0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
              1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0,
              0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0], dtype=int64)
In [184...
         y_test
        array([0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0,
Out[184...
              0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0,
              0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
              0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0,
              0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0,
              0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1,
              0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0,
              0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
              1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
```

#### e) Evaluation using Visualization

```
from sklearn.metrics import confusion_matrix
conf_matrix = confusion_matrix(y_test,y_pred)
conf_matrix
```

```
array([[169, 58],
Out[187...
                [ 4, 29]], dtype=int64)
In [196...
          import seaborn as sns
          fig, ax = plt.subplots(figsize=(8,5))
          sns.heatmap(conf_matrix, annot = True, cmap='Greens', fmt='g')
         <AxesSubplot:>
Out[196...
                                                                    160
                                                                    140
                       169
                                                                    - 120
                                                                   - 100
                                                                    - 80
                                                                    - 60
                                                 29
                                                                    - 40
                                                                   - 20
                                                 i
In [197...
          print("Accuracy: ", metrics.accuracy_score(y_test,y_pred))
          print("Precision: ", metrics.precision_score(y_test,y_pred))
          print("Recall: ", metrics.recall_score(y_test,y_pred))
         Accuracy: 0.7615384615384615
         Recall: 0.87878787878788
In [205...
          y_pred_proba = log_reg.predict_proba(x_test)[::,1]
          fpr, tpr, _ = metrics.roc_curve(y_test, y_pred_proba)
          auc = metrics.roc_auc_score(y_test, y_pred_proba)
          plt.figure(figsize=(12,10))
          plt.plot(fpr,tpr,label="AUC = "+str(auc))
          plt.legend(loc=4)
          plt.title("ROC Curve")
          plt.xlabel("False Positive Rate ---->")
          plt.ylabel("True Positive Rate ---->")
```

plt.show()

