3 Spazi vettoriali

3.1 Spazio n-dimensionale

Definizione 3.1.1. Uno spazio **n-dimensionale** standard su **R** si rappresenta come:

$$R^{n} = \left\{ \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{bmatrix} : x_{i} \in \mathbb{R} \right\}$$

Geometricamente uno spazio n-dimensionale con n=2 sarà un punto sul piano cartesiano.

$$\begin{bmatrix} a_1 \\ a_2 \end{bmatrix} \iff Punto$$

3.2 Operazioni

Sugli spazi n-dimensionali si possono effettuare alcune operazioni:

- Somma $(x_1, x_2, x_3) + (x'_1, x'_2, x'_3) = (x_1 + x'_1, x_2 + x'_2, x_3 + x'_3).$
- Moltiplicazione $\lambda(x_1, x_2, x_3) = (\lambda x_1, \lambda x_2, \lambda x_3)$.

$$\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} + \begin{bmatrix} x'_1 \\ x'_2 \\ \vdots \\ x'_n \end{bmatrix} = \begin{bmatrix} x_1 + x'_1 \\ x_2 + x'_2 \\ \vdots \\ x_n + x'_n \end{bmatrix} \qquad \lambda \cdot \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} \lambda x_1 \\ \lambda x_2 \\ \vdots \\ \lambda x_n \end{bmatrix}$$
Somma

Moltiplicazione

3.3 Spazio vettoriale

Definizione 3.3.1 (Spazio vettoriale). Uno spazio vettoriale su \mathbb{R} è un insieme V che ammette due tipi di operazioni:

- Somma: $dati v_1, v_2 \in V \Longrightarrow v_1 + v_2 \in V$.
- Prodotto con $\lambda \in \mathbb{R}$: dato $v \in V \Longrightarrow \lambda \cdot v \in V$.

Per queste operazioni esistono anche una serie di assiomi che devono essere rispettati:

Assiomi Somma	Assiomi Moltiplicazione
$(v_1 + v_2) + v_3 = v_1 + (v_2 + v_3)$	$(\lambda_1 + \lambda_2)v = \lambda_1 v + \lambda_2 v$
$v_1 + v_2 = v_2 + v_1$	$\lambda(v_1 + v_2) = \lambda v_1 + \lambda v_2$
$\nexists 0 \in V : 0+v=v+0=v \forall v$	$(\lambda_1 \lambda_2)v = \lambda_1(\lambda_2 v)$
$\forall v \not \exists -v \in V : v + (-v) = (-v) + v = 0$	$(1 \cdot v) = v$

Table 1: Assiomi somma e moltiplicazioni vettori

Osservazione 3.3.1. \mathbb{R}^n soddisfa tutti gli assiomi sopra scritti.

Esempio 3.3.1 (Matrici). Consideriamo una matrice $n \times m$ elementi reali $M_{n \times m}(\mathbb{R})$.

$$\begin{bmatrix} a_{11} & \cdots & a_{1m} \\ \vdots & & \\ a_{n1} & \cdots & a_{nm} \end{bmatrix} \xrightarrow{\mathbb{R}[x] = \{a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0 : a_i \in \mathbb{R}, n \leq 0\}}$$
Somma: se $A = [a_{ij}], B = [b_{ij}] \in M_{n \times m}(\mathbb{R}), A + B = [a_{ij} + b_{ij}] \in M_{n \times m}(\mathbb{R})$
Prodotto con $\lambda \in \mathbb{R}$: $\lambda A = [\lambda a_{ij}]$

Esempio 3.3.2 (Polinomi). Presi dei polinomi a coefficienti reali del tipo:

$$\mathbb{R}[x] = \{ a_n \cdot x^n + a_{n-1} \cdot x^{n-1} + \dots + a_0 | a_i \in \mathbb{R} \land n \ge 0 \}$$

Possiamo eseguire entrambe le operazioni:

- Somma: $(a_n \cdot x^n + a_{n-1} \cdot x^{n-1} + \ldots + a_0) + (b_m \cdot x^m + b_{m-1} \cdot x^{m-1} + \ldots + b_0)$ con $m \ge n$ è uguale a $b_m \cdot x^m + \ldots + (a_n + b_n) \cdot x^n + (a_{n-1} + b_{n-1}) \cdot x^{n-1} + \ldots + (a_0 + b_0)$
- Prodotto con λ : $\lambda \cdot (a_n \cdot x^n + \ldots + a_0) = \lambda \cdot a_n \cdot x^n + \ldots + \lambda \cdot a_0$

Esempio 3.3.3 (Funzioni). Prendiamo due funzioni continue $f, g : \mathbb{R} \to \mathbb{R}$. Possiamo effettuare le operazioni:

- Somma: $(f_1 + f_2)(x) = f_1(x) + f_2(x)$
- Prodotto con λ : $(\lambda f)(x) = \lambda \cdot f(x)$

3.4 Sottospazio

Introduciamo ora il concetto di sottospazio vettoriale.

Definizione 3.4.1 (Sottospazio). Sia V uno spazio vettoriale. Un sottospazio $W \subset V$ è un sottoinsieme tale che:

- $v_1, v_2 \in W \Longrightarrow v_1 + v_2 \in W$.
- $v \in \mathbb{W} \Longrightarrow \lambda v \in W \,\forall \,\lambda$.

Proposizione 3.4.1. Un sottospazio $W \subset V$ è a sua volta uno spazio vettoriale.

3.4.1 Interpretazione geometrica

Un sottospazio vettoriale è una retta che passa per l'origine o un piano che passa per l'origine.

Esempio 3.4.1. Dato uno spazio vettoriale:

$$V = \mathbb{R}^n = \left\{ \begin{bmatrix} t_1 \\ t_2 \end{bmatrix} : t_i \in \mathbb{R} \right\}$$

Prendiamo un sottospazio vettoriale di V:

$$\left\{ \begin{bmatrix} t_1 \\ t_2 \end{bmatrix} \in \mathbb{R}^n : t_1 = 0 \right\} \subset \mathbb{R}^n$$

Un elemento generale di questo sottospazio (sottospazio con n=2) è: $\begin{bmatrix} 0 \\ x_2 \end{bmatrix} (x_2 \in \mathbb{R})$

Se prendiamo
$$\begin{bmatrix} 0 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ y_2 \end{bmatrix} = \begin{bmatrix} 0 \\ x_1 + x_2 \end{bmatrix} \in W$$
 e $\lambda \cdot \begin{bmatrix} 0 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ \lambda \cdot x_2 \end{bmatrix} \in W$

Similmente se prendiamo $\left\{ \begin{bmatrix} t_1 \\ t_2 \end{bmatrix} \in \mathbb{R}^n : t_2 = 0 \right\} \subset \mathbb{R}^n$ vettori di forma $\begin{bmatrix} x_1 \\ 0 \end{bmatrix}$ che è un sottospazio.

3.4 Sottospazio 10

Se prendiamo invece $\left\{ \begin{bmatrix} t_1 \\ t_2 \end{bmatrix} \in \mathbb{R}^n : t_1 = 1 \right\}$ questo non è un sottospazio perché se prendiamo il caso con $n = 2 \begin{bmatrix} 1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 \\ y_2 \end{bmatrix} = \begin{bmatrix} 2 \\ x_1 + x_2 \end{bmatrix}$ che non è un sottospazio.

Prendiamo ora $\left\{ \begin{bmatrix} t_1 \\ t_2 \end{bmatrix} \in \mathbb{R}^n : t_1 = t_2 \right\} \subset \mathbb{R}$ questo è un sottospazio perché: se facciamo $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} x_2' \\ x_1' \end{bmatrix} = \begin{bmatrix} x_1 \cdot x_2' \\ x_2 + x_1' \end{bmatrix}$ e $\lambda \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} \lambda x_1 \\ \lambda x_2 \end{bmatrix}$ quindi è un sottospazio.

Esempio 3.4.2. Facciamo un esempio differente, prendiamo $\left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M_{2\times 2}(\mathbb{R}) : a = 0 \right\} \subset$

 $M_{2\times 2}(\mathbb{R})$ è un sottospazio. Ma nel caso ci ci fosse stato a=1 non sarebbe stato un sottospazio, perché non sarebbe passato passato per (0,0).

Esempio 3.4.3. Facciamo alcuni esempi prendendo delle funzioni all'interno degli spazi vettoriali.

- Dato $\{f \in \mathbb{R}[x] : deg(f) \leq d\} \subset \mathbb{R}[x]$ con d fisso ≥ 0 . Questo è un sottospazio perché:
 - Se $deg(f_1) \le d$, $deg(f_2) \le d \Longrightarrow deg(f_1 + f_2) \le d$
 - Se $deg(f) < d \Longrightarrow deg(\lambda \cdot f) < d, \forall \lambda$
- $\{f \in \mathbb{R}[x] : deg(f) = d\} \subset \mathbb{R}[x]$ non è un sottospazio per diverse ragioni:
 - Se d > 0 allora $0 \notin W_d$
 - Se d = 2 abbiamo $f = x^2 + 3 \in W$, $g = -x^2 + x + 1 \in W$ ma $f + g = x + 4 \notin W$.
- $\{f \in \mathbb{R} : f(0) = d\} \subset \mathbb{R}[x]$ invece è un sottospazio perché $f(0) = 0, g(0) = 0 \Longrightarrow (f+g)(0) = 0$ e anche $(\lambda f)(0) = 0$.
- $\{f \in \mathbb{R} : f(0) = 1\}$ non è un sottospazio perché non contiene 0.
- $\{f \in \mathbb{R} : f(2022) = 0\}$ è un sottospazio.

Esempio 3.4.4. Dati $a_1, a_2 \in \mathbb{R}$ fissi e dato il seguente insieme vettoriale

$$\left\{\begin{bmatrix} x_1\\x_2\end{bmatrix}\in\mathbb{R}^2\ :\ a_1x_1+a_2x_2=0\right\}\subset\mathbb{R}^n\ \text{\`e}\ \text{un sottospazio. Perch\'e preso}\ \begin{cases} a_1x_1+a_2x_2\\a_1y_1+a_2y_2\end{cases}$$

vediamo che la somma $a_1(x_1+y_1)+a_2(x_2+y_2)=0$ ed anche il prodotto con λ fa $a_1(\lambda x_1)+a_2(\lambda x_2)=0$.

3.4.2 Generalizzazione

Possiamo dire che, dato $a_1, a_2, \dots, a_m \in \mathbb{R}$ fissi:

$$\left\{ \begin{bmatrix} x_1 \\ \vdots \\ x_m \end{bmatrix} \in \mathbb{R}^2 \ : \ a_1x_1 + a_2x_2 + \dots + a_mx_m = 0 \right\} \subset \mathbb{R}^n \ \text{\`e} \ \text{un sottospazio}.$$

Vediamo dunque che le soluzioni di un equazioni lineari omogenee a n variabili definiscono un sottospazio di \mathbb{R}^n . Possiamo generalizzare ulteriormente:

$$\left\{\begin{bmatrix} x_1\\ \vdots\\ x_m \end{bmatrix} \in \mathbb{R}^2 : \begin{array}{l} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1m}x_m = 0\\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2m}x_m = 0\\ \vdots\\ a_{n1}x_1 + a_{n2}x_2 + \cdots + a_{nm}x_m = 0 \end{array} \right\} \subset \mathbb{R}^n \text{ Quindi è un sottospazio.}$$

Dunque che la soluzione di un sistema di questioni lineare omogenee definisce un sottospazio \mathbb{R}^m .

3.4 Sottospazio

3.5 Combinazioni lineari

Definizione 3.5.1 (Combinazione lineare e banale). Sia V uno spazio vettoriale e v_1, v_2, \ldots, v_m vettori in V. Una combinazione lineare di v_1, \ldots, v_m è una somma $\lambda v_1 + \lambda v_2 + \ldots + \lambda_m v_m \in V$, dove $\lambda_1, \lambda_2, \ldots, \lambda_m \in \mathbb{R}$. La combinazione lineare è detta banale se $\lambda_1 = \ldots = \lambda_m = 0$. In questo caso $\lambda_1 v_1 + \ldots + \lambda v_m = 0$.

Nota che una combinazione lineare può essere 0 ma non banale, per esempio:

$$V = \mathbb{R}^2$$
, $v_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $v_2 = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$, allora $-2v_1 + 1v_2 = 0$.

Definizione 3.5.2 (Sottospazio generato). Siano $v_1, \ldots, v_m \in V$ vettori. Il sottospazio generato da $v_1, \ldots, v_m \in Span(v_1, v_2, \ldots, v_m) = \{\lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_n v_m : \lambda_1, \ldots, \lambda_m \in \mathbb{R}\}$. Questo rappresenta l'insieme delle combinazioni lineari.

Proposizione 3.5.1. $Span(v_1, \dots, v_m) \subset V$ è un sottospazio.

Dimostrazione 3.5.1. Bisogna verificare che $v, w \in span \implies v + w \in span \ e \ \lambda v \in span \ \forall \ \lambda$.

Esempio 3.5.1. Prendiamo $\mathbb{R}^2 = span\left\{ \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$. $span\left\{ \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$ e $span\left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$ sono due rette.

Se facciamo $span \left\{ \lambda_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \lambda_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\} = \left\{ \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix} \right\} = \mathbb{R}^2$

Esempio 3.5.2. Sia $W = \left\{ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \mathbb{R}^3 : x_1 = 0 \right\}$ abbiamo allora che: $W = span \left\{ \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\} \subset \mathbb{R}^3$

quindi: $\left\{ \lambda_1 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + \lambda_2 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\} = \left\{ \begin{bmatrix} 0 \\ \lambda_1 \\ \lambda_2 \end{bmatrix} \right\} = \left\{ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} : x_1 = 0 \right\} \text{ è un sottospazio di } \mathbb{R}^3 \text{ ma non è uguale a}$

 \mathbb{R}^3 , ma è più piccolo essendo un piano attraverso l'origine.

Vettori lineamenti indipendenti

Definizione 3.6.1. I vettori $v_1, v_2, \dots, v_m \in V$ sono linearmente indipendenti se l'unico caso in $cui \lambda_1 v_1 + \lambda_2 v_2 + \cdots + \lambda_m v_m = 0$ $si ha quando \lambda_1 = \cdots = \lambda_m = 0.$

Questo vuol dire che se una combinazione lineare dei V è uguale a zero ⇒ la combinazione è banale. Se v_1, \dots, v_n non sono indipendenti allora sono **linearmente dipendenti**.

 v_1, v_2, \cdots, v_m sono linearmente dipendenti $\iff \exists \lambda_1, \lambda_2, \cdots, \lambda_m \in \mathbb{R}$ non tutti uguali a 0 tale che $\lambda_1 v_1 + \lambda v_2 + \dots + \lambda_2 v_2 = 0.$

Proposizione 3.6.1. v_1, v_2, \cdots, v_m sono linearmente dipendenti $\iff \exists \ 1 \le i \le n$ tale che v_i è combinazione lineare dei v_j per $j \neq i$.

Dimostrazione 3.6.1. Se v_1, \dots, v_m sono dipendenti allora $\exists \lambda_1, \dots, \lambda_m$ non tutti ugualia 0 tale che $\lambda_1 v_1 + \dots + \lambda_n v_m = 0$. $\exists i : \lambda_i \neq 0$ che possiamo usare come dividendo: $\frac{\lambda_1}{\lambda_1} v_1 + \dots + 1 v_i + \dots + \frac{\lambda_n}{\lambda_i} v_m = 0$ (mando tutti a destra) $v_i = -\frac{\lambda_1}{\lambda_i}v_1 + \dots - \frac{\lambda_{i-1}}{\lambda_i}v_{i-1} - \frac{\lambda_{i+1}}{\lambda_i}v_{i+1} + -\frac{\lambda_n}{\lambda_i}v_m$. Se $v_i = \lambda_1v_1 + \dots + \lambda_{i-1}v_{i-1} + \lambda_{i+1}v_{i+1} + \dots + \lambda_mv_m$ allora $\lambda_1v_1 + \dots + \lambda_{i-1}v_{i-1} - v_i + \lambda_{i+1}v_{i+1} + \dots + \lambda_mv_m = 0$

In pratica per vedere se m vettori $v_1, \dots, v_m \in \mathbb{R}^n$ sono linearmente indipendenti prendiamo innanzi-

$$v_1 = \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{n1} \end{bmatrix}, v_2 = \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{n2} \end{bmatrix}, \cdots, v_m = \begin{bmatrix} a_{1m} \\ a_{2m} \\ \vdots \\ a_{nm} \end{bmatrix}, \text{ questi sono vettori di } \mathbb{R}^m.$$

Questi vettori sono linearmente indipendente, quindi l'equazione $\lambda_1 v_1 + \lambda_2 v_2 + \cdots + \lambda_m v_m = 0$ vale, se e solo se $(\lambda_1, \dots, \lambda_m)$ è soluzione del sistema:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1m}x_m = 0$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2m}x_m = 0$$

$$\vdots$$

$$a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nm}x_m = 0$$

Quindi v_1, \dots, v_m sono lin. indipendenti ⇒ il sistema sopra ammette solo la soluzione banale $(0, \dots, 0)$

Interpretazioni geometrica

Facciamo un interpretazione geometrica di quello visto sopra ponendo $n=2.~V=\mathbb{R}^2,\,v_1,v_2\in\mathbb{R}^2$ sono linearmente dipendenti $v_1, v_2 \neq 0$ oppure $\exists \lambda_1, \lambda_2 : \lambda_1 v_1 + \lambda_2 v_2 = 0$. Ad esempio $\lambda \neq 0, v_1 = -\frac{\lambda_1}{\lambda_2} v_2$ e se $v_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \Longrightarrow v_1 = \begin{bmatrix} -\lambda_2 \setminus \lambda_1 \\ 0 \end{bmatrix}$ e corrisponde un punto della retta $x_2 = 0$.

In generale se $v_1 = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$, v_2 deve essere $\begin{bmatrix} \lambda x_1 \\ \lambda x_2 \end{bmatrix}$ quindi v_1, v_2 sono lin. dipendenti \Longleftrightarrow i punti correspondenti \Longrightarrow i punti correspondenti i punti correspondenti c

rispondenti sono sulla tessa retta attraverso (0,0).

Esempio 3.7.1. Si decida se i seguenti vettori di \mathbb{R}^2 sono linearmente indipendenti:

$$v_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \quad v_2 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \quad v_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \quad v_4 = \begin{bmatrix} 2 \\ 2 \\ 4 \end{bmatrix}.$$

Per faro dobbiamo cercare le soluzioni del sistema lineare omogeneo con la matrice associata.

$$\begin{array}{c} x_1 + x_2 + 2x_4 = 0 \\ 2x_1 + 2x_4 = 0 \\ 3x_1 + x_2 + x_3 + 4x_4 \end{array} \Rightarrow \begin{bmatrix} 1 & 1 & 0 & 2 \\ 2 & 0 & 0 & 2 \\ 3 & 1 & 1 & 4 \end{bmatrix} \begin{array}{c} \text{Algoritmo di gauss} \\ R_2 = R_2 - 2R_1 \\ R_3 = R_3 - 3R_1 \end{array} \Rightarrow \begin{bmatrix} 1 & 1 & 0 & 2 \\ 0 & -2 & 0 & -2 \\ 0 & -2 & 1 & -2 \end{bmatrix} R_3 = R_3 - R_2 \\ \Rightarrow \begin{bmatrix} 1 & 1 & 0 & 2 \\ 0 & -2 & 0 & -2 \\ 0 & 0 & 1 & 0 \end{bmatrix} \text{In questo caso ci sono 3 pivot, una variabile libera} \\ \Rightarrow \infty \text{ soluzioni}$$

Quindi il sistema ammette soluzioni non banali \Longrightarrow i vettori sono lim. dipendenti.

Se si guardasse solo v_1, v_2, v_3 quello che risulterebbe sarebbe una matrice 3×3 con 3 pivot, in questo caso allora ci sarebbe solo la soluzione banale ed allora v_1, v_2, v_3 sarebbero lin. indipendenti.

Proposizione 3.7.1. Se $v_1, v_2, \dots, v_n \in V$ sono vettori tali che v_n è combinazione lineare di allora: $span(v_1, v_2, ..., v_n) = span(v_1, v_2, \cdots, v_{n-1}).$

3.8 Base di un sistema lineare

Definizione 3.8.1. Un sistema v_i, \dots, v_n di vettori è una base di V se i vettori v_i, \dots, v_n :

- Sono linearmente indipendenti.
- Lo $span(v_1, v_2, \cdots, v_n) = V$

Corollario 3.8.0.1. Se $span(v_1, \dots, v_n)$) C si può scegliere una base di V fra i v_1, \dots, v_n .

Esempio 3.8.1. Vogliamo trovare la base standard di \mathbb{R}^n .

$$e_{1} = \begin{bmatrix} 1\\0\\\vdots\\0 \end{bmatrix}, e_{2} = \begin{bmatrix} 0\\1\\0\\\vdots\\0 \end{bmatrix}, \dots, e_{n} = \begin{bmatrix} 0\\0\\\vdots\\0\\1 \end{bmatrix} \text{ Possiamo osservare che } \begin{bmatrix} \lambda_{1}\\\lambda_{2}\\\vdots\\\lambda_{n} \end{bmatrix} = \lambda_{1}e_{1} + \lambda_{2}\cdot 2 + \dots + \lambda_{n}e_{n},$$

dunque $span(e_1, \dots, e_n) = \mathbb{R}^n$ e $\lambda_1 e_1 + \dots + \lambda_n e_n = 0$ se e solo se $\lambda_1 = \dots = \lambda_n = 0$. Ma questa non è l'unica base, c'è ne sono tante, ad esempio se prendiamo n = 2.

$$\begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
è una base perché $\lambda_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \lambda_2 \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} \lambda_1 + \lambda_2 \\ \lambda_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ se e solo se $\lambda_1 + \lambda_2 = \lambda_2 = 0 \Longleftrightarrow \lambda_1 = \lambda_2 = 0$

Esempio 3.8.2. Troviamo la base standard di $M_{2\times 2}(\mathbb{R})$.

$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \quad \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \quad \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

Si applica lo stesso ragionamento visto sopra con \mathbb{R}^n .

Esempio 3.8.3. Base standard di $\mathbb{R}[x]_{\leq d} = \{f \in \mathbb{R}[x] : deg(x) \leq d\}$ sarebbe $1, x, x^2, \dots, x^s$. Infatti, $a_d x^d + a_{d-1} x^{d-1} + \dots + a_0 = a_0 \cdot 1 + a_1 \cdot x + \dots + a_d \cdot x^d$ è il sistema indipendente

Esempio 3.8.4. Prendiamo $\mathbb{R}[x]$ che non ammette di base finita. Infatti $\nexists f_1, \dots, f_n \in \mathbb{R}[x]$: $span(f_1, \dots, f_n = \mathbb{R}[x] \text{ perché se } f \in span(f_1, \dots, f_n) \text{ allora } deg(f) \leq max(deg(f_1), \dots, deg(f_n)).$ (Comunque è vero: $span(1, x, x^2, x^2, \dots) = \mathbb{R}[x]$ e ogni sottoinsieme finito di $1, x, x^2, \dots$ è lin. indipendente)

Proposizione 3.8.1. Sia v_1, \ldots, v_n una base di V, $e \ v \in V$ un vettore. Allora $\nexists \alpha_1, \ldots, \alpha_n \in \mathbb{R} | v = \alpha_1 \cdot v_1 + \alpha_2 \cdot v_2 + \ldots + \alpha_n \cdot v_n$. (Ogni vettore si scrive in modo unico come combinazione lineare degli elementi della base)

Dimostrazione 3.8.1. Scriviamo come $V = span(v_1, \ldots, v_n)$, l'esistenza degli α_i è chiaro. Se adesso $v = \alpha_1 \cdot v_i + \ldots + \alpha_n \cdot v_n = \beta_1 \cdot v_1 + \ldots + \beta_n \cdot v_n$ allora $0 = (\alpha_1 - \beta_1) \cdot v_1 + \ldots + (\alpha_n - \beta) \cdot v_n$ allora $\alpha_1 = \beta_1, \ldots, \alpha_1 = \beta_n$ perché i v_i sono lin. indipendenti.

3.9 Dimensione spazio vettoriale

La dimensione di uno spazio vettoriale V sarà definita come il numero degli elementi di una sua base. Questo numero sarà lo stesso per ogni base.

Proposizione 3.9.1. Sia V uno spazio vettoriale che ammette una base e_1, e_2, \ldots, e_n . Se $v_1, v_2, \ldots, v_n \in V$ e $r > n \Longrightarrow v_1, v_2, \ldots, v_n$ sono linearmente dipendenti.

Dimostrazione 3.9.1. Per n=2, la prima osservazione è che se la proposizione vale per r=2 vale per ogni r>2. Infatti se $\lambda_1v_2+\lambda_2v_2+\lambda_3v_3=0$ è una combinazione lineare non banale allora $\lambda_1v_2+\lambda_2v_2+\lambda_3v_3+0\cdot v_4+0\cdot v_5+\ldots+0\cdot v_r=0$ è una combinazione non banale (perché λ_1,λ_2 o λ_3 è diverso da 0). Quindi siano n=2, r=3 e e_1,e_2 una base di V. Come $V=span(e_1,e_2)$, $v_1,v_2,v_3\in span(e_1,e_2)$. Quindi:

 $v_1 = a_{11}e_1 + a_{12}e_2$ Dobbiamo trovare $\lambda_1, \lambda_2, \lambda_3$ non tutti = 0 tali che $v_2 = a_{21}e_1 + a_{22}e_2$ $\lambda_1v_1 + \lambda_2v_2 + \lambda_3v_3 = 0$. Facciamo la sostituzione con il sistema a fianco.

 $\lambda_1(a_{11}e_1 + a_{12}e_2) + \lambda_2(a_{21}e_1 + a_{22}e_2) + \lambda_3(a_{31}e_1 + a_{32}e_2) = 0$ che diventa $(\lambda_1a_{11} + \lambda_1a_{12})e_2 + (\lambda_2a_{21} + \lambda_2a_{22})e_2 + (\lambda_3a_{31} + \lambda_3a_{32})e_2 = 0$. Ma e_1, e_2 sono linearmente indipendenti, quindi:

$$\lambda_1 a_{11} + \lambda_2 a_{21} + \lambda_3 a_{31} = 0$$
 Questo è un sistema omogeneo di equazioni per $\lambda_1, \lambda_2, \lambda_3$ con matrice di coefficienti
$$\begin{bmatrix} a_{11} & a_{21} & a_{31} \\ a_{12} & a_{22} & a_{32} \end{bmatrix}$$

Se facciamo l'algoritmo di Gauss, ottengo un numero di pivot minore o uguale a 2 (perché ci sono solo due righe), allora ci sarà ≥ 1 colonne senza pivot ed allora il sistema avrà ∞ soluzioni ed allora ci sarà una soluzione non banale $\lambda_1, \lambda_2, \lambda_2$. Ma se il sistema sopra ha una soluzione non banale $(\lambda_1, \lambda_2, \lambda_2)$ allora anche $\lambda_1 v_1 + \lambda_2 v_2 + \lambda_3 v_3 = 0$ sarà una combinazione non banale e quindi ci siamo.

La dimostrazione per n, r generale è la stessa, infatti alla fine ottengo un sistema lineare di n equazioni in r > n variabili ed allora c'è sempre una soluzione non banale.

Corollario 3.9.0.1. Sia e_1, \ldots, e_n una base di V. Se v_1, \ldots, v_n è un sistema linearmente indipendente \implies anche v_1, \ldots, v_n è una base di V.

Dimostrazione 3.9.2. Dobbiamo dimostrare che $Span(v1, ..., v_n) = V$.

Sia $v \in V$. Per la proposizione 3.9.1, il sistema di n+1 vettori v_1, \ldots, v_n, v è linearmente dipendente. Quindi $\exists \lambda_1, \ldots, \lambda_{n+1}$ non tutti = 0 tali che $\lambda_1 \cdot v_1 + \ldots + \lambda_n \cdot v_n + \lambda_{n+1} \cdot v = 0$. (*)

Se $\lambda_{n+1} = 0$ allora $\lambda_1 \cdot v_1 + \ldots + \lambda_n \cdot v_n = 0 \Longrightarrow \lambda_1 = \ldots = \lambda_n = 0$ perché v_1, \ldots, v_n sono **indipendenti** \Longrightarrow con $\lambda_1, \ldots, \lambda_{n+1}$ non tutti = 0.

Quindi $\lambda_{n+1} \neq 0$. Ma allora (*) mi dà $v = -\frac{\lambda_1}{\lambda_{n+1}} + \ldots + (-\frac{\lambda_n}{\lambda_{n+1}}) \cdot v_n \Longrightarrow v \in Span(v_1, \ldots, v_n)$. Questo vale per ogni $v \in V \Longrightarrow V = Span(v_1, \ldots, v_n)$.

Corollario 3.9.0.2. Se v_1, \ldots, v_r ed e_1, \ldots, e_n sono due basi di V allora r = n.

Dimostrazione 3.9.3. Se $r > n, v_1, \ldots, v_r$ è linearmente dipendente se e_1, \ldots, e_n è una base (proposizione 3.8.1), quindi $r \le n$. Se r < n e v_1, \ldots, v_n è una base allora e_1, \ldots, e_n è linearmente dipendete e questa è una contraddizione. Dunque r = n.

Definizione 3.9.1 (Dimensione di un V). Se V ammette una base e_1, \ldots, e_n n è la dimensione di V. La dimensione di V si indica come dimV = n.

Corollario 3.9.0.3. Se la dimensione di V è n e v_1, \ldots, v_m sono vettori lin. indipendenti con $m < n \Longrightarrow \exists w_{m+1}, w_{m+2}, \cdots, w_n | v_1, \ldots, v_n, w_{m+1}, \cdots, w_n$ sono una base di V.

Dimostrazione 3.9.4. Dobbiamo verificare che $span(v_1, \ldots, v_m) = V$. Sappiamo che $span(v_1, \ldots, v_m)$ non può essere V, allora $\exists v \in V$ tale che $v \notin span(v_1, \ldots, v_m)$. Ma allora basta vedere che v_1, v_2, \ldots, v_m sono linearmente indipendenti ed allora abbiamo una contraddizione.

Sia $\lambda_1 \cdot v_1 + \lambda_2 \cdot v_2 + \ldots + \lambda_m \cdot v_m + \lambda_0 \cdot v_0 = 0$ una combinazione lineare se $\lambda = 0 \Longrightarrow \lambda_1 = \lambda_2 = \cdots = \lambda_n = 0$ perché v_1, v_n, \ldots, v_m lin. indipendenti allora v_1, v_2, \ldots, v_m lin. indipendenti. Se prendiamo un $\lambda_{m+1} \neq 0$ possiamo fare $-\frac{\lambda_1}{\lambda} \cdot v_1 - \frac{\lambda_2}{\lambda} \cdot v_2 - \ldots - \frac{\lambda_n}{\lambda} \cdot v_n = V \in span(v_1, \ldots, v_n)$, ma questa è una contraddizione $v \notin span$.

Esempio 3.9.1. Decidiamo se $\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$ sono una base \mathbb{R}^3 .

Per faro dobbiamo solo decidere se sono indipendenti o meno, e per farlo usiamo Gauss.

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix} R_3 - R_2 \Rightarrow \begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 1 \\ 0 & -2 & 1 \end{bmatrix} \xrightarrow{\text{Scambio}R_2, R_3} \begin{bmatrix} 1 & 2 & 3 \\ 0 & -2 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

Vediamo dunque che ci sono 3 pivot e quindi i vettori sono lineamenti indipendenti e di conseguenza abbiamo una base.

Esempio 3.9.2. Prendiamo $V = \mathbb{R}[x]_{\leq 2}$. Abbiamo visto che $1, x, x^2$ sono una base questo vuol dire allora che $\mathbb{R}[x]_{\leq 2}=2$. Vediamo se $1,1+x,(1+x)^2$ forma una base. Per fare questo bisogna vedere se sono linearmente indipendenti. Supponiamo che: $\lambda_1 1 + \lambda_2 (1+x) + \lambda_3 (1+x)^2 = 0 \Rightarrow$ $\lambda_1 + \lambda_2 + \lambda_2 x + \lambda_3 x^2 + 2x\lambda_3 + \lambda_3 = 0 \Rightarrow (\lambda_1 + \lambda_2 + \lambda_3)1 + (\lambda_2 + \lambda_3)x + \lambda_3 + x^2 = 0.$ Visto che $1, x, x^2$ sono lin. indipendenti allora $\lambda_1 + \lambda_2 + \lambda_3 = 0$, $\lambda_2 + 2\lambda_3 = 0$, $\lambda_3 = 0$ sostituendo viene che $\lambda_2 = 0, \lambda_1 = 0$ allora $1, 1 + x, (1 + x)^2$ sono lin. indipendenti ed allora sono una base di $\mathbb{R}(x)_{\leq 2}$.

Esempio 3.9.3. $W' = \{f \in \mathbb{R}[x]_{\leq 2} : f(1) = f(2) = 0\}, W' \subset W \text{ (per esempio visto prima) e }$ $dim(W) = 3 \Longrightarrow dim(W') \le 2$. Ci sono due vettori indipendenti in $W, (x-1)(x-2), (x-1)(x-2)^2$ di gradi diversi $\Longrightarrow dim(W') = 2$.

 $W' \subset W$ in base $W' \stackrel{.}{e} (x-1)(x-2), (x-1)(x-2)^2$ e completiamo in una base di W(x-1), (x-1) $(1)(x-2), (x-1)(x-2)^2 \in W \setminus W'$ è una base di W, perché sono indipendenti: $W \subset V, dim(V) = 4, dim(W) = 4, 1, x - 1, (x - 1)(x - 2), (x - 1)(x - 2)^2$ è una base di $V \setminus W$.

Esempio 3.9.4. $V = M_{3\times 3}(\mathbb{R})$, la dimensione è dim(V) = 9. Mentre $W \subset \{A \in M_{3\times 3}(\mathbb{R}) : A \in M_{3\times$ la somma di ogni riga è 0}. Supponiamo dim(W) < 9 elementi linearmente indipendenti di W.

$$\begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & -1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & -1 \end{bmatrix}$$

Essendo linearmente indipendente allora $dim(W) \geq 6$. Proviamo a dire che dim(W) = 6. L'idea:

 $W_1 = \{ A \in M_{3\times 3}(\mathbb{R}) : \text{ la somma della prima riga} = 0 \},$

 $W_1 = \{ A \in M_{3\times 3}(\mathbb{R}) : \text{ la somma della prima e della seconda riga} = 0 \}.$

 $W \subset W_2 \subset W_1 \subset M_{3\times 3}(\mathbb{R})$, sapendo $dim(M_{3\times 3}(\mathbb{R})) = 9$, $dim(W_1) = 6$, $dim(W_2) = 7$, dim(W) = 7.

Esempio 3.9.5. Sappiamo già: $v_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, v_2 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, v_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ che sono una base di \mathbb{R}^3 . Troviamo le

coordinate di $\begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix}$ rispetto a queste basi. $\alpha_1 \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + \alpha_2 \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + \alpha_3 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix}$. Ed usiamo Gauss-Jordan.

$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 2 & 0 & 0 & 2 \\ 3 & 1 & 1 & 1 \end{bmatrix} \quad \begin{matrix} R_2 - 2R_1 \\ R_3 - 3R_1 \end{matrix} \Rightarrow \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & -2 & 0 & 2 \\ 0 & -2 & 1 & 1 \end{bmatrix} \quad \begin{matrix} R_3 - R_2 \\ R_2 = \frac{1}{2}R_1 \end{matrix} \Rightarrow \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 \end{bmatrix} \quad \begin{matrix} R_1 - R_2 \Rightarrow \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

Abbiamo quindi $\alpha_1 = 1, \alpha_2 = -1, \alpha_3 = -1.$

Esempio 3.9.6. Vedere se $\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 3 \\ 1 \\ 1 \end{bmatrix}$ è una base \mathbb{R}^3 e calcolare coordinate $\begin{bmatrix} 2 \\ 0 \\ 4 \end{bmatrix}$ rispetto a base.

Per calcolare le coordinate dobbiamo risolvere il sistema lineare che si crea con le 3 matrici:

 $x_1 + 2x_2 + 3x_3 = 2$ Usiamo Gauss per verificare l'indipendenza perché se $x_1 = 4$ questi vettori sono indipendenti allora i coefficienti 4, -1, 0 saranno le coordinate.

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix} R_3 - R_1 \begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 1 \\ 0 & -2 & -2 \end{bmatrix}$$
Inverto $R_2, R_3 \begin{bmatrix} 1 & 2 & 3 \\ 0 & -2 & -2 \\ 0 & 0 & 1 \end{bmatrix}$

Torna $x_1 = 4, x_2 = -1, x_3 = 0$, inoltre abbiamo una forma a scalini con 3 pivot allora i vettori sono indipendenti e quindi sono una base.

Proposizione 3.9.2. Se abbiamo uno spazio vettoriale dim(V) = n ed abbiamo v_1, v_2, \cdots, v_m vettori linearmente indipendenti di V con m < n allora $\exists w_{m+1}, w_{m+2}, \cdots, w_n : v_1, \cdots, v_m, w_{m+1}, \cdots, w_n$ sono una base di V.

Dimostrazione 3.9.5. $Span(v_1,\ldots,v_m)$ non può essere V, perché se $span(v_1,\cdots,v_m)=V$ v_1, \cdots, v_m è una base ma m < nè dim(V) = n e questa è una contraddizione. Quindi $span(v_1, \cdots, v_m) \neq 0$ $V \Longrightarrow \exists w_{m+1} \in V : w_{m+1} \notin span(v_1, \dots, v_m)$. Ma allora v_1, \dots, v_m, w_{m+1} sono linearmente indipendenti tale che se $\lambda_1 v_1 + \dots + \lambda_m v_m + \lambda_{m+1} w_{m+1} = 0$, $\lambda_{m+1} = 0$ allora $\lambda_1 = \dots = \lambda_m = 0$. Se $\lambda_{m+1} \neq 0$ allora $v_{m+1} = (-\frac{\lambda_1}{\lambda_{m+1}})v_1 + \dots + (\frac{-\lambda_m}{\lambda_{m+1}})w_m \in span(w_1, \dots, v_m)$ che è una contraddizione.

Per ricapitolare se la dim(V) = n e v_1, \dots, v_n sono vettori di V possiamo dire che:

- Se m > n allora i vettori sono linearmente dipendenti.
- Se m = n e i vettori sono indipendenti allora si forma una base.
- Se m < n e i vettori sono indipendenti allora si completa in una base di V.

Esempio 3.9.7. Facciamo un esercizio che sarà suddiviso in due parti.

• Decidiamo se i vettori $\begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} -1 \\ 1 \\ -1 \end{bmatrix}$, $\begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix}$ sono una base di \mathbb{R}^3 . $dim(\mathbb{R}^3) \Longrightarrow$ se sono indipendenti sono allora una base. Usiamo gauss.

$$\begin{bmatrix} 1 & -1 & -1 \\ -1 & 1 & -1 \\ 1 & -1 & 1 \end{bmatrix} \quad \begin{matrix} R_2 + R_1 \\ R_3 - R_1 \end{matrix} \Rightarrow \begin{bmatrix} 1 & -1 & -1 \\ 0 & 0 & -2 \\ 0 & 0 & 2 \end{bmatrix} R_2 + R_3 \begin{bmatrix} 1 & -1 & -1 \\ 0 & 0 & -2 \\ 0 & 0 & 0 \end{bmatrix}$$

Risulta avere 2 pivot e quindi i vettori sono dipendenti. I pivot però sono delle colonne 1 e 3 e quindi se escludiamo la colonna centrale abbiamo come risultato due vettori indipendenti che chiamiamo v_1, v_2 .

• Ora come secondo punto dobbiamo completare v_1, v_2 in una base di \mathbb{R}^3 . Per fare questo dobbiamo trovare un terzo vettore non contenente in $span(v_1, v_2)$.

L'idea qui è che so che $v_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, e_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, e_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ è la base standard. So anche che almeno

uno di questi 3 vettori non è contenuto in $span(v_1, v_2)$ perché se $e_1, e_2, e_3 \in span(v_1, v_2) \Longrightarrow span(e_1, e_2, e_3) \subset span(v_1, v_2)$ ma $span(e_1, e_2, e_3) = \mathbb{R}^3$ e quindi abbiamo una contraddizione. A questo punto devo trovare quale dei 3 vettori non è in $span(v_1, v_2)$. Lo facciamo provando i vari vettori e trovano quello che utilizzando Guass faccia venire 3 pivots.

$$\begin{bmatrix} 1 & -1 & 0 \\ -1 & -1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \xrightarrow{R_2 + R_1} \Rightarrow \begin{bmatrix} 1 & -1 & 1 \\ 0 & -2 & 0 \\ 0 & 2 & 1 \end{bmatrix} R_3 - 2R_2 \Rightarrow \begin{bmatrix} 1 & -1 & 1 \\ 0 & -2 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

Il risultato in questo caso è 3 pivot quindi i vettori sono linearmente indipendenti e quindi è una base di \mathbb{R}^3 .

Proposizione 3.9.3. Sia $W \subset V$ un sottospazio. Allora:

- 1. Abbiamo che $dim(W) \leq dim(v)$.
- 2. Se $W \neq V$ allors dim(W) < dim(v).

Dimostrazione 3.9.6. Per dimostrare questa proposizione bisogna andare a dimostrare i due punti separatamente.

- 1. Se r = dim(W) e w_1, \ldots, w_r è una base di W allora se r > n per una proposizione vista precedentemente w_1, \ldots, w_r sarebbero linearmente dipendenti e questa è una contraddizione quindi $r \le n$.
- 2. Se $r = n, w_1, ..., w_r$ sono n = r vettori lineamenti indipendenti di V ed allora sono una base di V quindi $span(w_1, ..., w_r) = V \Longrightarrow V = W$.

Esempio 3.9.8. Sia $V=M_{2\times 2}(\mathbb{R}), W=\{\begin{bmatrix} a & b \\ c & d \end{bmatrix}\in M_{2\times 2}(\mathbb{R}): b=c\}$ (questa è definita anche matrice simmetrica).

Si calcoli da dimensione di W, dim(W). Partiamo dal fatto che la $dim(M_{2\times 2}(\mathbb{R}))=4$ (basi standard). Mentre $V\neq M_{2\times 2}(\mathbb{R})\Longrightarrow dim(V)\leq 3$. Vediamo però che:

 $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \quad \begin{array}{l} \text{Sono linearmente indipendenti quindi} \\ \text{devono essere una base di W e quindi} \\ \text{dim}(W) = 3 \end{array}$

Esempio 3.9.9. Sia $W = \{f \in \mathbb{R}[x : deg(f) \leq 3, f(1) = 0\}$ sottospazio di $V = \mathbb{R}[x]_{\leq 3}$. Sappiamo che la dim(V) = 4 $(1, x, x^2, x_3)$. La proposizione mi dice che $dim(W) \leq 3$ e se trovo 3 vettori indipendenti allora dim(W) = 3. Possiamo vedere che $x - 1, x^2 - 1, x_3 - 1$ sono lin. indipendenti quindi concludiamo che dim(W) = 3.

Osservazione 3.9.1. Se V è un spazio, $V_1, V_2 \subset V$ sottospazi allora anche $V_1 \cup V_2$ è un sottospazio. Infatti se $v \in V_1 \cup V_2$ e $w \in V_1 \cap V_2 \Longrightarrow v + wV_1 \cap V_2$ perché V_1 sottospazio ed allora $v + w \in V_1$ ed allora in modo simile per $V_2 \Longrightarrow v + w \in V_2$ ed in modo simile $\lambda v \in V_1, \lambda v \in V_2 \Longrightarrow \lambda v \in V_1 \cap V_2 \forall \lambda \in \mathbb{R}$.

Esempio 3.9.10. Sia $W_i \subset \mathbb{R}^n$ il sottospazio delle soluzioni dell'equazione omogenea $E_i: a_{i1}x_1 + \cdots + a_{in}x_n = 0$. Allora $W_1 \cap W_2 \cap \cdots \cap W_r$ è il sottospazio delle soluzioni comuni di E_1, E_2, \cdots, E_r .

3.10 Formula di Grassman

Definizione 3.10.1 (Somma fra sottospazi). Siano $V_1, V_2 \subset V$ due sottospazi. La loro somma di V_1, V_2 è definita come:

$$V_1 + V_2 = \{v_1 + v_2 : v_1 \in V_1, v_2 \in V_2\}$$

Osservazione 3.10.1. Si osservi che $V_1 + V_2 \subset V$ è un sottospazio a sua volta.

Dimostrazione 3.10.1. Questa definizione si somma fra sottospazi è vera perché se $v, w \in V_1 + V_2$ allora:

$$\begin{array}{ll} v = v_1 + v_2 & \text{con } (v_i \in V_i) \\ w = w_1 + w_2 & \text{con } (w_i \in V_i) \end{array} \} \Rightarrow v + w = (v_1 + w_1) + (v_2 + w_2) \in V_1 + V_2 \text{ perch\'e} (v_1 + w_1) \in V_1, (v_2 + w_2) \in V_2$$

Se
$$\lambda \in \mathbb{R}$$
, $\lambda v = \lambda(v_1 + v_2) = \lambda v_1 + \lambda v_2 \in V_1 + V_2$ con $\lambda v_1 \in V_1$ e $\lambda v_2 \in V_2$.

Proposizione 3.10.1. Se $v_1, v_2, \dots, v_n \in V_1 + V_2 \Longrightarrow span(v_1, \dots, v_n) \subset V_1 + V_2$.

Dimostrazione 3.10.2. La dimostrazione è abbastanza veloce, infatti basta vedere che se $V_1 + V_2$ è un sottospazio che contiene v_1, \dots, v_n allora contiene le loro combinazioni. lineari.

Esempio 3.10.1. Dato un
$$V_1 = \{ \begin{bmatrix} a \\ 0 \end{bmatrix} : a \in \mathbb{R} \}, V_2 = \{ \begin{bmatrix} 0 \\ b \end{bmatrix} \} : b \in \mathbb{R} \subset \mathbb{R}^2$$
 sottospazi. Allora $V_1 + V_2 = \{ \begin{bmatrix} a \\ b \end{bmatrix} : a, b \in \mathbb{R} \} = \mathbb{R}^2$

Esempio 3.10.2. Dati
$$V_1 = \{ \begin{bmatrix} 0 \\ a_2 \\ a_3 \end{bmatrix} : a_2, a_3 \in \mathbb{R} \}, V_2 = \{ \begin{bmatrix} a_1 \\ a_2 \\ 0 \end{bmatrix} : a_1, a_2 \in \mathbb{R} \} \subset \mathbb{R}^3.$$

Allora
$$V_1 + V_2 = \{ \begin{bmatrix} a_1 \\ a_2 + a_2 \\ a_3 \end{bmatrix} : a_1, a_2, a_3 \in \mathbb{R} \} = \mathbb{R}^{\mathbb{H}} \text{ ma anche } V_1 \cap V_2 = \{ \begin{bmatrix} 0 \\ a_2 \\ 0 \end{bmatrix} : a_2 \in \mathbb{R} \}$$

Teorema 3.10.1 (Formula di Grassman). Sia $dim(V) < \infty$, $V_1, V_2 \subset V$ sottospazi allora:

$$dim(V_1 + V_2) = dim(V_1) + dim(V_2) - dim(V_1 \cap V_2)$$

Dimostrazione 3.10.3. Per dimostrare questa formula sia e_1, \dots, e_4 una base di $V_1 \cap V_2$. Si completa in una base $e_1, \dots, e_r, v_{r+1}, \dots, v_n$ di V_1 e $e_1, \dots, e_r, w_{r+1}, \dots, w_m$ di V_2 . Quindi abbiamo he $dim(V_1) = n, dim(V_2) = m$ e che $V_1 \cap V_2 = r$. A questo punto verifichi-

Quindi abbiamo ne $dim(V_1) = n$, $dim(V_2) = m$ e che $V_1 \cap V_2 = r$. A questo punto verifichiamo che $e_1, \dots, e_r, v_{r+1}, \dots, v_n, w_{r+1}, \dots, w_m$ è una base di $V_1 + V_2$. Se fosse una base allora $dim(V_1 + V_2) = n + m - r$. Per verificare se è una base verifichiamo se è lin indipendente, sia:

 $\lambda_1 e_1 + \dots + \lambda_r e_r + \mu_2 v_{r+1} + \dots + \mu_{n-r} v_n + \nu_1 w_{r+1} + \dots + \nu_{m-r} w_m = 0. \text{ Tutti i coefficienti } \lambda_i, \mu_i, \nu_i \in \mathbb{R},$ dobbiamo ora vedere se sono tutti uguali a 0.

 $\begin{array}{lll} \lambda_1e_1+\cdots+\lambda_re_r+\mu_2v_{r+1}+\cdots+\mu_{n-r}v_n=-\nu_1w_{r+1}-\cdots-\nu_{m-r}w_m. & \text{Vediamo che la parte }\\ \lambda_1e_1+\cdots+\lambda_re_r+\mu_2v_{r+1}+\cdots+\mu_{n-r}v_n\in V_1 & \text{mentre }-\nu_1w_{r+1}-\cdots-\nu_{m-r}w_m\in V_2, \text{ quindi }\\ -\nu_1w_{r+1}-\cdots-\nu_{m-r}w_m\in V_1\cap V_2 & \Longrightarrow \text{come }e_1,\cdots,e_r \text{ è una base di }V_1\cap V_2,\exists \ \alpha_1,\cdots,\alpha_r: \\ \alpha_1e_1+\cdots+\alpha_re_r=-\nu w_{r+1}-\cdots-\nu_{m-r}w_m. \end{array}$

Ma $e_1,\cdots,e_r,w_{r+1},\cdots,w_m$ è base di V_2 ed allora è linearmente indipendente ed allora $\alpha_1=\cdots=\alpha_r=\nu_1=\cdots=\nu_{m-r}=0$, ma allora $\lambda_1e_1+\cdots+\lambda_re_r+\mu_1v_{r+1}+\cdots+\nu_{n-r}v_n=0\Longrightarrow\lambda_1=\cdots=\lambda_r=\mu_1=\cdots=\mu_{n-r}=0$ perché $e_1,\cdots,e_r,v_{r+1},\cdots,v_n$ è una base di V_1 . Vediamo dunque che $span(e_1,\cdots,e_r,v_1,\cdots,v_{n-r},w_1,\cdots,w_{m-r})=V_1+V_2$ se $v\in V_1+V_2,v=v^1,v^2:v^1\in V_1,v^2\in V_2$. Ma allora $\exists\alpha_1,\cdots,\alpha_m,\beta_1,\cdots,\beta_m\in\mathbb{R}:v^2=\alpha_1e_1+\cdots+\alpha_re_r+\alpha_{r+1}v_1+\cdots+\alpha_nv_{n-r}$ e $v_2=\beta_1e_1+\cdots+\beta_re_r+\beta_{r+1}w_1+\cdots+\beta_mw_{m-r}$ perché $e_1,\cdots,e_r,v_1,\cdots,v_{n-r}$ è un base di V_1 e $e_1,\cdots,e_r,w_1,\cdots,w_{m-r}$ è una base di V_2 . Detto ciò allora abbiamo che $v_1=v^1+v^2=(\alpha_1+\beta_1)e_1+\cdots+(\alpha_r+\beta_r)e_r+\alpha_{r+1}v_{r+1}+\cdots+\alpha_nv_n+\beta_{r+1}w_1+\cdots+\beta_mw_m$.

Esempio 3.10.3. Consideriamo i due sottospazi in \mathbb{R}^4 seguenti:

$$V = \left\{ \text{soluzioni di} \begin{array}{l} x_1 + 2x_2 + x_3 = 0 \\ -x_1 - x_2 + 3x_4 = 0 \end{array} \right\}, W = span \left(w_1 = \begin{bmatrix} 2 \\ 0 \\ 1 \\ 1 \end{bmatrix}, w_2 = \begin{bmatrix} 3 \\ -2 \\ -2 \\ 0 \end{bmatrix} \right)$$

Calcoliamo $dim(V \cap W)$, dim(V + W). Sappiamo che dim(W) = 2 perché w_1 e w_2 sono **linearmente** indipendenti. Questo è ovvio in quanto abbiamo solo due vettori che non sono uno il multiplo dell'altro.

Bisogna dunque calcolare la dim(V) tramite Gauss-Jordan:

$$\begin{bmatrix} 1 & 2 & 1 & 0 \\ -1 & -1 & 0 & 3 \end{bmatrix} \xrightarrow{R_2 + R_1} \begin{bmatrix} 1 & 2 & 1 & 0 \\ 0 & 1 & 1 & 3 \end{bmatrix} \xrightarrow{R_1 - 2R_2} \begin{bmatrix} 1 & 0 & -1 & -6 \\ 0 & 1 & 1 & 3 \end{bmatrix}$$

Abbiamo dunque x_3, x_4 come variabili libere che fa si che $x_1 = x_3 + 6x_4$ e $x_2 = -x_3 - 3x_4$, la soluzione generale è dunque:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = x_3 \begin{bmatrix} 1 \\ -1 \\ 1 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 6 \\ -3 \\ 0 \\ 1 \end{bmatrix} \quad \text{con } v_1 = \begin{bmatrix} 1 \\ -1 \\ 1 \\ 0 \end{bmatrix} \text{ e } v_2 = \begin{bmatrix} 6 \\ -3 \\ 0 \\ 1 \end{bmatrix}$$

Quindi dim(V) = 2 e v_1, v_2 è una base. Cerchiamo ora dim(V + W).

$$\begin{bmatrix} 1 & 6 & 2 & 3 \\ -1 & -3 & 0 & -2 \\ 1 & 0 & 1 & -2 \\ 0 & 1 & 1 & 0 \end{bmatrix} \xrightarrow{R_3 - R_1} \begin{bmatrix} 1 & 6 & 2 & 3 \\ 0 & 3 & 2 & 1 \\ 0 & -6 & -1 & -5 \\ 0 & 1 & 1 & 0 \end{bmatrix} \xrightarrow{R_3 + 3R_1} \begin{bmatrix} 1 & 6 & 2 & 3 \\ 0 & 3 & 2 & 1 \\ 0 & 0 & 3 & -3 \\ 0 & 1 & 1 & 0 \end{bmatrix} \xrightarrow{\text{Inverto } R_2, R_4} \begin{bmatrix} 1 & 6 & 2 & 3 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 3 & -3 \\ 0 & 3 & 2 & 1 \end{bmatrix}$$

Abbiamo dunque 3 pivots ed allora le prime 3 colonne sono indipendenti ma v_1, v_2, w_1, w_2 sono dipendenti. Questo fa si che dim(V + W) = 3.

Utilizzando poi Grassman: $dim(V\cap W)=dim(V)+dim(W)-dim(V+W)=2+2-3=1$

Esempio 3.10.4. Siano
$$V = span \left(\begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\-1\\1\\1 \end{bmatrix} \right), W = span \left(\begin{bmatrix} 1\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\2\\0\\2 \end{bmatrix} \right).$$

Chiamiamo i due vettori in V v_1, v_2 mentre i due in W w_1, w_2 . Trovare basi di $V + W, V \cap W$. Per V + W facciamo:

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 0 & 2 \\ 1 & 1 & 1 & 0 \\ 1 & -1 & 0 & 2 \end{bmatrix} \quad \begin{matrix} R_2 - R_1 \\ R_3 - R_1 \\ R_3 - R_1 \end{matrix} \Rightarrow \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & -2 & -1 & 1 \\ 0 & 0 & 0 & -1 \\ 0 & -2 & -1 & 1 \end{bmatrix} \quad R_4 - R_2 \Rightarrow \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & -2 & -1 & 1 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Abbiamo dunque 3 pivtos ed allora dim(V+W)=3, perché v_1,v_2,w_2 sono lin. indipendenti e quindi sono una base. Utilizzando allora Grassmann: $dim(V\cap W)=dim(V)+dim(W)-dim(V+W)=2+2-3=1$.

In uno spazio di dim = 1 ogni vettore diverso da 0 è base, per trovarlo facciamo:

$$\begin{array}{ll} x_1+x_2+x_3+x_4=0\\ -x_2-x_3-x_4=0\\ -x_4=0 \end{array} \text{ Abbiamo dunque che } x_4=0, x_3=\text{t sono variabili libere. Quindi } x_2=-\frac{7}{2}, x_1=-\frac{t}{2} \end{array}$$

La soluzione generale è dunque $(-\frac{t}{2},-\frac{t}{2},t,0)$ e con t=1 abbiamo $(\frac{1}{2},\frac{1}{2},-1,0)$ che fa si abbiamo $(\frac{1}{2}v_1+\frac{1}{2}v_2-w_1=0)$. Dunque $w_1=\frac{1}{2}v_1+\frac{1}{2}v_2\in V\cap W$.

Quindi w_1 è una base di $V \cap W$ e questo perché so che questo spazio ha dim = 1 grazie a Grassman. Ogni volta che $V \cap W$ è della forma $t \cdot w_1$ allora ri dimostra che $dim(V \cap W) = 1$.

Esempio 3.10.5. Dati $V = M_{3\times 3}(R)$, $V_1 = \{\text{matrici diagonali}\}\ e\ V_2 = \{\text{matrici dove la 1}^\circ\ \text{riga} = 2^\circ\ \text{riga}\}$.

Base di
$$V_1$$
:
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \Rightarrow dim(V_1) = 3$$

$$\text{Base di V_2: } \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \Rightarrow dim(V_1) = 6$$

Elemento generale di
$$V_1 \cap V_2$$
:
$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \Rightarrow dim(V_1 \cap V_2) = 1$$

Grassmann: $dim(V_1 + V_2) = 3 + 6 - 1 = 8$