계산이론

2022년 1학기 이은주

2장 유한 오토마타 결정적 유한 인식기 정규언어 비결정적 유한 인식기

요약

- 유한 인식기
 - 유한 개수의 상태 : 유한
 - 문자열 승인(accept) 또는 거부(reject): 인식기
 - 패턴인식
- 결정적 유한 인식기(dfa: deterministic finite accepter)
 - 오토마타는 오직 하나의 선택만 가능 : 결정적
 - 정규 언어(regular language) 정의
 - 오토마타를 언어와 연결
- 비결정적 오토마타(nfa : nondeterministic automata)
- 두 인식기의 동치 : 같은 언어 승인

• 연산 과정 : 결정적으로 진행

• [정의] 결정적 유한 인식기, 결정적 유한 오토마타(dfa: deterministic dinite automata)

$$M = (Q, \sum, \delta, q_o, F)$$

- (1) Q : 내부 상태(internal state)들의 유한집합
- (2) ∑ : 입력기호(input symbol)들의 유한 집합, 입력 알파벳(input alphabet)
- $(3) \delta: Q \times \Sigma \to Q: 전체 함수(total function), 전이함수(transition function), 상태 전이 함수(state transition function)$
- (4) q₀ ∈ Q : 초기 상태(initial state)
- (5) F ⊆ Q : 승인 상태(final state), 최종 상태의 집합

$$\delta(q_0, a) = q_1$$

- [정의] **상태 전이도**(State Transition Graph(Diagram))는 다음과 같은 그래프(graph)
 - (1) 노드(node) : 상태를 나타냄
 - (2) 전이함수 δ(p,a) = q 에 대해 p→a g 가 존재한다.
 - (3) 초기 노드: →⑤
 - (4) 최종 노드 : 이중 원(circle)

• [정의] **상태 전이표**(State Transition Table)

전이함수	input		
δ	0 1		
초기 q ₀	q_0 q_1		
최종 q ₁	$q_0 q_2$		
q_2	$q_0 q_1$		
	δ 초기 q ₀ 최종 q ₁		

dfa δ	0 1
초기 q ₀ 최종 q ₁ q ₂	$q_0 \ q_1$ $q_0 \ q_2$ $q_0 \ q_1$

• 예제 2.1(교재 46page) dfa $M = (\{q_0, q_1, q_2\}, \{0, 1\}, \delta, q_0, \{q_1\})$

 $\delta :$

$$\delta(q_0, 0) = q_0 \quad \delta(q_0, 1) = q_1$$

$$\delta(q_1, 0) = q_0 \quad \delta(q_1, 1) = q_2$$

$$\delta(q_2, 0) = q_2 \delta(q_2, 1) = q_1$$

전이도

전이표

DFA δ	0 1
초기 q ₀ 최종 q ₁	$q_0 q_1$
q_2	$q_0 \ q_2 \ q_2 \ q_1$

Accept: the string 111
Reject: the string 110

확장 전이 함수(extended transition function)

• $\delta^*: Q \times \Sigma^* \to Q^*$

- $\delta*(q_0, 1001) = q_1$
- $\delta * (q_1, 000) = q_0$

• (q, v): 형상(configuration, description of automata)

q:현재상태

v: 아직 읽지 않은 입력스트링

- (q_o, w): **초기 형상**, w: 입력스트링
- (q, λ) : <u>최종 형상</u> (accepting), q ∈ F
- (q', λ): <u>최종 형상</u> (rejecting), q' ∉ F

• [ex] DFA M = ({q_o, q₁}, {a, b}, δ , q_o, {q₁}) where δ : δ (q_o, a) = q₁ δ (q_o, b) = q_o δ (q₁, a) = q₁ δ (q₁, b) = q_o

<u>입력 스트링 aba</u>

<u>입력 스트링 abb</u>

$$(q_o, abb) \vdash (q_1, bb) \vdash (q_o, b) \vdash (q_o, \lambda)$$

 $q_o \text{ is not in } F \therefore \mathbf{M} \text{ rejects abb}$

언어와 결정적 유한 인식기

• 언어: 주어진 오토마타에 의해 승인되는 모든 문자열들의 집합

• 정의 2.2 : dfa $M = (Q, \Sigma, \delta, q_o, F)$ 에 의해 인식되는 언어란 M에 의해 승인되는 Σ 에 대한 모든 문자열들의 집합이다. 공식적인 표현을 사용하면, 다음과 같다:

$$L(M) = \{ w \in \Sigma^* : \delta^*(q_0, w) \in F \}.$$

• [ex]

- 00을 포함하는 0,1의 스트링
- $\stackrel{\triangle}{\neg}$, L = { w | w ∈ {0,1}*00{0,1}* }

• 예제 2.2(48 page)

• $L(M) = \{ a^n b \mid n \ge 0 \}$

• 트랩 상태(trap state): 전이하고 이후 그 상태를 벗어날 수 없게 되는 상태

• 예제 2.3(50 page)

입력 스트링 aab

 $(q_o, aab) \vdash (q_1, ab) \vdash (q_3, b) \vdash (q_3, \lambda)$ $(q_o, aab) \vdash (q_3, \lambda) \therefore M \text{ rejects aab}$

- ✔ 하나의 edge 상에 여러 개의 symbol이 사용됨.
- ✓ q_{3:} trap 상태: 다른 상태로의 전이가 더 이상 불가능한 상태.
 (최종 상태는 trap 상태가 아니다.)
- ✔ trap 상태 및 그와 연결된 edge들을 지워도 됨

<u>입력 스트링 aab</u>

(q₀, aab) ⊢ (q₁, ab) ⊢ 전이할 상태가 존재하지 않는다. ∴ **M** rejects aab

- 예제 2.4(51 page)
- 부문자열 001이 나타나는 지 확인하기
 - 두 개의 oo 선행 : 상태 라벨 oo
- 입력문자열 oo1: 거부
 - 비승인 상태: oo1 라벨
 - 트랩

$$\delta(00,0)=00$$

• 부분스트링 bbb를 포함하는 스트링을 인식하는 dfa M

• M의 여집합(부분스트링 bbb를 포함하지 않는 스트링을 인식하는 dfa M)

• [예]

• 짝수 개의 b를 가진 스트링을 인식하는 dfa

• [예]

• 부분스트링 001을 포함하는 스트링을 인식하는 dfa

• [예]

• 부분스트링 001을 포함하는 스트링을 인식하는 dfa

정규언어

- 모든 유한 오토마타는 특정 언어 인식
- 언어군(family): 모든 가능한 유한 오토마타들과 관련된 언어들의 집합

- 정의 2.3
 - 언어 L에 대하여, L = L(M)을 만족하는 결정적 유한 인식기 M이 존재하고 오직 그럴 때에만 L을 정규 언어(regular language)라 부른다.
 - L = $\{(ab)^n a, n > 0\}$

정규언어

- 예제 2.5 (53page) L = { awa | w ∈ {a,b}* } 이 정규언어인가?
 - L을 인식하는 결정적 유한 인식기(dfa)를 만들어 보이면 된다.

정규언어

• 예제 2.6 (54page) L = { awa | w ∈ {a,b}* } 이 정규언어일때 $L^2 = \{aw_1aaw_2a: w_1,w_2 \in \{a,b\}^*\}$

가 정규 언어임을 보여라.

이 언어를 인식하는 dfa를 구성하기 위해서는 같은 형태를 갖는 두 개의 연속된 문자열을 인식하는 dfa가 필요함

(nfa: nondeterministic finite accepter)

- 비결정적 유한 상태 자동장치(NFA) 또는 비결정적 유한 오토마타(Non deterministic Finite Automata, NFA)
 - 비결정 : 상태의 입력에 대하여 전이되는 다음 상태가 한 개가 아닌 여러 개이거나 없을 수도 있음
 - 유한 오토마타(인식기)가 비결정적으로 작동하도록 허락하는 경우 표현은 매우 복잡함
 - 비결정성(nondeterminism) : 오토마타의 이동(전이)에 있어 선택을 할 수 있음을 의미
 - 각 상태에서 유일한 이동만을 규정하지 않고 가능한 여러 이동들의 집합을 허용,
 오토마타의 전이함수가 상태들의 집합을 치역(range)으로 갖게 하여 가능해짐

- 비결정적 유한 인식기 (nfa)
 - 결정적 유한 인식기 (dfa)와 유사하게 정의하지만
 - 입력기호를 사용하지 않고 바로 다음 상태로 전이할 수 있음을 나타내는 ϵ –전이(ϵ transition) 또는 λ -전이 (λ transition)를 추가

(nfa: nondeterministic finite accepter)

• 상태 전이 함수 $\delta: Q \times (\Sigma \cup {\lambda}) \rightarrow 2^Q$

 $(\Sigma \cup \{\lambda\})$: 입력 가능한 모든 문자열 (Σ) 과 길이가 0인 문자열 (λ) 의 집합

- 함수의 두 번째 인자로 빈 문자열(λ)을 넣을 수 있음
- 예) $\delta(q_1,\lambda)$: 입력 장치가 문자를 읽지 않아도 상태 전이가 가능하다는 것을 의미 DFA에서의 입력장치는 오른쪽으로 만 움직였는데 NFA는 멈춰 있을 수도 있음

 2^Q : 집합 Q 의 모든 부분 집합의 집합, 정의되지 않은 전이 상태(공집합)로 갈 수도 있음

(nfa: nondeterministic finite accepter)

- 입력 기호에 대해서 λ -전이에 의해 o개 이상의 이동 가능
 - 어떤 q_1 상태에서 q_2 입력 받았을 때 q_0, q_2 가 다음 상태로 가능
 - $\delta(q_1, \lambda) = \{q_0, q_2\}$ 로 표현
- dfa와 마찬가지로 비결정적 유한 인식기도 전이 그래프로 표현
 - 전이 그래프의 정점들은 Q 에 의해 결정되며, $\delta(q_i,x)$ 가 q_j 를 포함할 경우만 라벨 x를 가지는 간선 $\left(q_i,q_j\right)$ 가 존재
 - x 는 빈 문자열일 수도 있으므로 라벨 λ 를 갖는 간선들도 존재할 수 있음

- nfa에서의 인식과 거부
 - 인식(accept): 어떤 문자열에 대해, 이 문자열이 모두 처리된 후에 자동장치(automata)를 종료 상태에 놓이게 하는 이동 순서가 존재
 - 거부(reject) : 가능한 다음 상태의 경우가 없을 때
- 비결정성은 nfa가 모든 문자열들을 인식하고자 한다는 가정
 - 각 상태에서 최상의 이동 선택 : 직관적인 통찰력 필요

(nfa: nondeterministic finite accepter)

- [정의] 비결정적 유한 인식기(nfa: nondeterministic finite accepter)
 - $M = (Q, \sum, \delta, q_0, F),$
 - 상태전이함수 δ : Q × (∑ ∪ {λ}) → 2^Q, 나머지는 dfa 와 동일
 - (1) Q : 내부 상태(internal state)들의 유한집합
 - (2) ∑ : 입력기호(input symbol)들의 유한 집합, 입력 알파벳(input alphabet)
 - (3) δ : Q × (\sum \cup $\{\lambda\}$) \rightarrow 2^Q : 전체 함수(total function), 전이함수(transition function), 상태 전이함수(state transition function)
 - (4) q₀ ∈ Q : 초기 상태(initial state)
 - (5) F ⊆ Q : 승인 상태(final state), 최종 상태의 집합

$$\delta(q_1, a) = \{q_0, q_2\}$$

(nfa: nondeterministic finite accepter)

• <u>nfa의 특성</u> :

- 주어진 상태와 입력기호에 대해 o개 이상의 상태로 move가 가능
 - δ(q_i, a) = Φ 가 가능
 - δ(q_i, a) = {q_i, q_k} 가 가능
 - $\delta(q_i, \lambda) = q_i$ 가 가능 : λ -transition
- δ는 전역함수(total function)가 아니다.
- 입력 스트링을 다 읽은 후 최종상태에 도달하면
 - '입력 스트링은 NFA에 의해 인식된다'고 한다.

(nfa: nondeterministic finite accepter)

• [ex] nfa의 특성

$$\delta(q_{1}, 0) = \{q_{0}, q_{2}\}$$

$$\checkmark$$
 δ(q₁, λ) = {q₂} : λ-transition

$$\checkmark$$
 $\delta(q_2, 0) = \Phi$

<u>입력 스트링 101</u> NFA accepts 101

<u>입력 스트링 110</u> NFA rejects 110

(nfa: nondeterministic finite accepter)

(q_o, 01001)

⊢ (q_o, 1001)

 $\vdash (q_o, oo1)$

 $\vdash (q_3, o1)$

⊢ (q₄, 1)

 $\vdash (q_4, \lambda)$ $\therefore olool \in L(M)$

nfa δ	0	1	
초기 q ₀	$\{q_0, q_3\}$	$\{q_0, q_1\}$	
q_1	Φ	$\{q_2\}$	
최종 q ₂	{q ₂ }	$\{q_2\}$	
q_3	$\{q_4\}$	Φ	
최종 q ₄	q_4	$\{q_4\}$	

nfa δ		0	1
초기	q 0	$\{q_0, q_3\}$	} {q ₀ ,q ₁ }
(q_1	-	q_2
최종	72	q_2	q_2
(q_3	q_4	-
최종 (74	q_4	q_4

(nfa: nondeterministic finite accepter)

• [ex] nfa M = ($\{q_0, q_1, q_2, q_3, q_4\}, \{1,2,3\}, \delta, q_0, \{q_4\})$

nfa δ	1	2	3
초기 q ₀	{q ₀ ,q ₁ }	$\{q_0, q_2\}$	$\{q_0, q_3\}$
q_1	{q ₁ ,q.	q_1	q_1
q_2	q_2	$\{q_2, q_4\}$	q_2
q_3	q_3	q_3	$\{q_3, q_4\}$
최종 q ₄			

$$(q_0, 12321) \vdash (q_1, 2321) \vdash (q_1, 321) \vdash (q_1, 21) \vdash (q_1, 1) \vdash (q_4, \lambda)$$

 $\therefore 12321 \in L(M)$

(nfa: nondeterministic finite accepter)

• 예제 2.7(59 page)

전이 그래프 : q_0 로 부터의 라벨 a를 갖는 전이가 두 개

• 비결정적 유한 인식기

(nfa: nondeterministic finite accepter)

• 예제 2.8(59 page) 이 오토마타는 하나의 정점으로부터 같은 라벨을 갖는 여러 개의 간선들이 있을 뿐 아니라, 또한 λ-전이를 가지므로 비결정적

$$\delta(q_0, \lambda) = \{q_2\} \text{ and } \delta(q_2, 0) = \emptyset$$

(nfa: nondeterministic finite accepter)

- dfa에서와 마찬가지로 nfa에서도 전이 함수는 두 번째 인수로 문자열을 갖도록 확장될수 있음
- 확장 전이 함수 δ*

$$\delta*(q_i, w) = Q_i$$

• 예제 2.8에서 확장 전이 함수

$$\delta^*(q_0, 10) = \{q_0, q_2\}$$
 $\delta^*(q_0, 101) = \{q_1\}$

- 정의 2.5
 - nfa의 확장 전이 함수는 다음과 같이 정의한다.
 - 전이 그래프에서 q_i 로부터 q_j 로의 라벨 w를 갖는 보행이 존재하고 오직 그럴 때에만 $\delta^*(q_i,w)$ 가 q_i 를 포함한다. 이는 모든 $q_i,q_i\in Q$ 와 $w\in \Sigma^*$ 에 대해 성립한다.

(nfa: nondeterministic finite accepter)

- 예제 2.9(6o page)
 - 여러 개의 λ-전이
 - $\delta(q_2, a)$: 정의 없는 전이
 - $\delta^*(q_1,a)$, $\delta^*(q_2,\lambda)$ 구하기

$$\delta^*(q_1,a) = \{q_0,q_1,q_2\}$$

$$\delta^*(q_2,\lambda) = \{q_0,q_2\}$$

$$\delta^*(q_2, aa) = \{q_0, q_1, q_2\}$$

(nfa: nondeterministic finite accepter)

- 정의 2.6
 - nfa에 의해 인식되는 언어

$$L(M) = \{ w \in \Sigma^* \colon \delta^*(q_0, w) \cap F \neq \emptyset \}$$

• 전이 그래프의 초기 정점에서 승인 정점까지 라벨이 w인 보행이 존재하는 모든 문자열 w로 구성

(nfa: nondeterministic finite accepter)

• 예제 2.10(62 page) 그림의 오토마타에서 인식되는 언어는?

- 승인상태 도달 : 10 반복, 빈문자열
- $L = \{(10)^n : n \ge 0\}$ $w = 110, \delta^*(q_0, 11) = q_2$
- 종말현상(dead configuration)

$$\delta^*(q_0, 110) = \emptyset$$

(nfa: nondeterministic finite accepter)

• 비결정성의 필요성

- nfa를 이용하는 것이 dfa를 이용하는 것보다 훨씬 쉬움
- dfa로 디자인하기 어려울 경우 먼저 nfa를 디자인 하고 그것과 동치인 dfa로 변환
- 비결정성은 복잡한 문제를 간략하게 기술하는데 매우 효과적

비결정적 유한 인식기 (nfa : nondeterministic finite accepter)

- [ex]
 - a{a,b}*a 의 nfa와 dfa

(nfa: nondeterministic finite accepter)

• {a,b}*abb 의 nfa와 dfa

(nfa: nondeterministic finite accepter)

• {a,b}*abb 의 nfa와 dfa

비결정성을 사용하는 이유

- 결정적 알고리즘 : 어떤 단계에서 하나의 선택, 결정 예) 게임 프로그램
 - 게임 프로그램의 각 단계에서 최적의 이동을 알 수 없는 경우
 - 백트래킹(backtracking) 등의 기법으로 모든 경우를 탐색
 - 가능한 선택 대상이 여러 개 있는 경우 : 하나를 선택하고 그 선택이 최적인지 아닌지가 명확히 밝혀질 때까지 계속 검사
 - 선택이 최적이 아닐 경우 : 마지막 결정 지점으로 되돌아와서 다른 선택에 대한 검사 다시 시작
 - 최적의 선택을 할 수 있는 비결정적 알고리즘을 사용할 경우: 백트래킹 없이 문제를 해결할수 있으며, 결정적 알고리즘은 추가적인 작업을 통하여 비결정성을 시뮬레이트 (simulate)할 수 있음
 - 비결정적 기계 : 탐색-백트랙 알고리즘(search-and-backtrack algorithm)에 대한 모델로 사용될 수 있음

비결정성을 사용하는 이유

• 비결정성은 문제들을 쉽게 해결하는 데 유용함

- 이 nfa가 선택을 내려야 하는 곳은 분명
 - 하나의 선택을 할 경우 문자열 a³ 승인
 - 다른 선택을 할 경우 : 짝수 개의 a를 갖는 모든 문자열들이 승인됨
- 이 nfa에 의해 인식되는 언어 : {a³} ∪ {a²n : n ≥ 1}
 - 이 언어는 서로 다른 두 개 집합들의 합집합
 - 이 경우 비결정성은 시작에 필요한 결정을 할 수 있게 함
 - 이 문제에 대한 결정적 해결법 : 정의에서처럼 명확하지 않음

비결정성을 사용하는 이유

- 비결정성은 몇몇 복잡한 언어들을 간명하게 정의하는 데에 효과적
 - 문법의 정의에서 비결정적 요소를 가지고 있음을 유의
 - 생성규칙 S → aSb | λ
 - 모든 시점에 두 생성규칙들 중 하나를 선택
 - 단지 두 개의 규칙으로 많은 문자열들을 지정할 수 있게 해줌
- 비결정성을 도입하는 데에는 기술적인 이유 존재
 - dfa보다는 nfa에 대한 어떤 이론적인 결과를 더 쉽게 수립하게 됨
 - 이 두 가지 형태의 오토마타 사이에는 근본적인 차이가 존재하지 않음
 - 비결정성을 사용하는 것이 결론의 일반성을 그대로 유지하면서 공식적인 논증을 간단히 하는 효과를 보이게 됨

• 오토마타들간의 동치성(equivalence)

[정의] 다음과 같은 조건이 만족되는 경우:

$$L(M_1) = L(M_2)$$

즉, 두 오토마타가 같은 언어를 인식하는 경우, 두 개의 유한 인식기 M_1 과 M_2 는 동치

• 예제 2.11(66 page) 다음의 dfa와 nfa는 서로 동치

두 인식기 모두 언어 $\{(10)^n : n \ge 0\}$ 을 인식

nfa: $0 \\ q_0 \\ 1 \\ \chi$

- 강력(powerful): 한 종류의 오토마타가 다른 종류의 오토마타에서 수행할 수 없는 어떤 일을 수행할 수 있을 때
- dfa : nfa의 한 제한된 종류
 - dfa에 의해 인식되는 모든 언어 : 어떤 nfa에 의해서도 인식될 수 있음
 - nfa에 의해 인식되는 모든 언어들에 대해 같은 언어를 인식하는 dfa가 항상 존재
- 문자열 w를 읽은 후
 - 각 상태에 라벨 부여
 - 동등한 dfa가 라벨이 {qi, qj, ..., qk}인 상태에 놓이도록
 - dfa의 각 상태의 라벨이 nfa의 상태들의 집합이 되도록
- |O|개 상태들의 집합에 대하여, 2|이개의 부분집합들이 존재
 - 대응되는 dfa에는 유한개의 상태들이 존재

- 예제 2.12(67 page) 다음 그림의 nfa를 동치인 dfa로 변환
 - 상태 q。에서 시작 : dfa의 초기 상태에 라벨 {q。}를 부여
 - 문자 a를 읽은 후, 이 nfa는 상태 q_1 에 놓이거나 또는 λ-전이를 한 후 상태 q_2 에 놓임
 - 해당 dfa는 라벨이 {q₁, q₂}인 상태와 다음과 같은 전이를 가져야 함 : δ({q₀}, a) = {q₁, q₂}
 - 상태 q₀에서 심벌 b가 입력되었을 때
 - nfa의 상태 전이는 정의되어 있지 않으며, 따라서 해당 dfa는 다음의 전이를 가져야 함 : $\delta(\{q_0\},b)=\emptyset$

- 예제 2.12(67 page) 계속
 - 라벨 Ø을 갖는 상태는 nfa에서의 불가능한 이동을 표현하는 것
 - 문자열을 승인할 수 없음을 의미
 - dfa에서의 이 상태는 비승인 트랩 상태(nonfinal trapstate)

- 예제 2.12(67 page) 계속
 - dfa에 상태 {q,, q,} 추가 : 이 상태로부터 다른 상태로의 전이 고려
 - dfa에서의 이 상태는 nfa에서 도달할 수 있는 두 개의 상태가 있으므로 nfa를 다시 참조하여야 함
 - nfa가 상태 q₁에 있고 a를 읽을 경우 : 그대로 상태 q₁에 놓임
 - nfa는 상태 q,에서 λ-전이를 통해 상태 q,로 전이할 수 있음
 - 같은 입력에 대해, 이 nfa는 상태 q_2 에서 어떤 전이도 정의되어 있지 않음 : $\delta(\{q_1, q_2\}, a) = \{q_1, q_2\}$.

• 예제 2.12(67 page) 계속

$$\delta(\{q_1, q_2\}, b) = \{q_0\}.$$

- 각 상태에 대해 모든 전이 정의
 - dfa로 구성

$$\delta(\{q_0\}, a) = \{q_1, q_2\}$$

$$\delta(\{q_0\},b)=\emptyset$$

$$\delta(\{q_1, q_2\}, a) = \{q_1, q_2\}$$

$$\delta(\{q_1, q_2\}, b) = \{q_0\}$$

[정리 2.2]

언어 L: 비결정적 유한 인식기 $M_N = (Q_N, \Sigma, \delta_N, q_0, F_N)$ 에 의해 인식되는 언어

다음을 만족하는 결정적 유한 인식기 $M_D=(Q_D,\Sigma,\delta_D,\{q_0\},F_D)$ 가 항상 존재 $L=L(M_D)$

procedure: nfa-to-dfa

- 1. 정점 $\{q_0\}$ 를 갖는 그래프 G_D 를 생성 : 이 정점을 초기 정점으로 함
- 2. 다음 과정을 모든 간선들이 생성될 때까지 반복:

Σ의 어떤 원소 a \in Σ에 대해 진출 간선을 갖지 않는 G_D 의 정점 $\{q_i, q_j, ..., q_k\}$ 를 선택한다. $\delta *_N(q_i, a), \delta *_N(q_i, a), ..., \delta *_N(q_k, a)$ 들을 계산 $\delta *_N(q_i, a) \cup \delta *_N(q_i, a) \cup ... \cup \delta *_N(q_k, a) = \{q_i, q_m, ..., q_n\}$ 이라 하고 G_D 에 라벨이 $\{q_i, q_m, ..., q_n\}$ 인 정점이 아직 없다면, 이를 라벨로 갖는 정점 추가

 G_D 에 정점 $\{q_i, q_i, ..., q_k\}$ 로부터 정점 $\{q_i, q_m, ..., q_n\}$ 으로 향하는 간선을 추가하고 이에 라벨 a를 부여

- $_3$. G_D 의 상태들 중 라벨이 $G_F \in F_N$ 을 포함하는 모든 상태들을 승인 상태로 지정
- $_4$. 인식기 $_N$ 이 $_\lambda$ 를 인식하는 경우, $_0$ 의 정점 $_{\{q_a\}}$ 를 승인 정점으로 지정

단계 $_2$ 의 반복작업이 한 번 수행될 때마다 $_{D}$ 에 간선이 하나씩 추가됨 $_{D}$ 의 간선의 개수가 많아야 $_{2}$ 이 반복작업은 유한 시간 내에 종료됨

NFA에서 DFA로의 변환

- [정리₂]
 - NFA M = (Q, Σ, δ, q₀, F)에 의해 인식되는 언어를 L이라고 하면
 - L을 인식하는 DFA M' = (Q', Σ, δ', q₀', F') 은 다음과 같이 구성
 - (1) Q': subset of 2^Q, Q'의 한 상태는 [q_i, q_i,···]의 형태로 표시
 - (2) $q_0' = [q_0]$
 - (3) $F' = \{ q \in Q' \mid q \cap F \neq \Phi \}$
 - (4) $\delta(\{q_1,q_2,\dots,q_i\}, a) = \{p_1,p_2,\dots,p_i\} \iff \delta'([q_1,q_2,\dots,q_i],a) = [p_1,p_2,\dots,p_i]$

NFA에서 DFA로의 변환

- [ex]
 - 정리2를 이용하여 주어진 nfa M을 동치인 dfa M'로 바꾸어 보자.

nfa M	0	1
초기 q ₀	$\{q_0, q_1\}$	{ q ₀ }
최종 q ₁	_	$\{q_0, q_1\}$

- (1) $Q' = \{ [q_0], [q_0, q_1] \}$
- (2) 시작상태 q₀' = [q₀]
- (3) 최종상태 $F' = \{ [q_0, q_1] \} : NFA의 최종상태 q_1을 포함한 것$
- $(4) \delta'([q_o], o) = [q_o, q_1]$

$$\delta'([q_o], 1) = [q_o]$$

$$\delta'([q_0, q_1], 0) = [q_0, q_1]$$

$$\delta'([q_0, q_1], 1) = [q_0, q_1]$$

NFA에서 DFA로의 변환

• 상태 전이표

dfa M'	0	1
초기 [q ₀]	[q ₀ , q ₁]	[q ₀]
최종 [q ₀ , q ₁]	[q ₀ , q ₁]	$[q_0, q_1]$

• [q_o] = A, [q_o, q₁] = C 로 상태이름을 바꾸고

dfa M'	0	1	
초기 A	С	Α	
최종 C	C	C	

• 상태 전이도를 그리면

• 최종의 dfa가 만들어짐