Алгебра. Домашнее задание 1.

- 1. Докажите, что формула $m\circ n=m\cdot n-m-n+2$ задаёт бинарную операцию на множестве $\mathbb{Q}\setminus\{1\}$ и что $(\mathbb{Q}\setminus\{1\},\circ)$ является группой.
- 2. Найдите все элементы порядка 12 в группе ($\mathbb{C}\setminus\{0\},\times$).
- 3. Найдите все левые и правые смежные классы группы A_4 по подгруппе $\langle \sigma \rangle$, где $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 3 & 2 \end{pmatrix}$.
- 4. Докажит, что всякая подгруппа циклической группы является циклической.

ord.
$$x_1^2 + x_2 + 1$$
.

$$S_4/V_4 \simeq S_3$$
.

$$R=\Bigl\{egin{pmatrix} a & 0 \ b & c \end{pmatrix}|a,b,c\in\mathbb{R}\Bigr\}.$$

$$\sqrt{5}$$
, $\sqrt[3]{5}$, $\sqrt{5}$.

$$1 \geq 0, 1 > 0, 0 < 1, 0 \leq 1.$$

$$\Leftrightarrow$$
. \Leftarrow , \Rightarrow .

 $I \cap K[x]$.

1. Пусть lpha - комплексный корень многочлена $x^3 - x^2 - 3x + 1$. Представьте элемент

$$\frac{4\alpha^2-3\alpha+1}{2\alpha^3-\alpha^2-3\alpha+5}\in\mathbb{Q}(a).$$

$$rac{4lpha^2-3lpha+1}{2lpha^3-lpha^2-3lpha+5}\in \mathbb{Q}(a).$$

$$\frac{4\alpha^2-3\alpha+1}{2\alpha^3-\alpha^2-3\alpha+5}\in\mathbb{Q}(a).$$

циклический, **циклический**, циклический, циклический.

$$\prod_{i=0}^{k-1} \cdot \lim_{k o \infty} (k) \cdot \iiint \cdot$$