Efecto de Carga

18 de Octubre del 2021

Escala de 10 V

Kirchhoff estaba equivocado? - Video 2

5,0 V

Experiencia planteada:

2,5 V

Experiencia planteada:

V_AC	V_BC	V_AB	V_BC + V_AB
5,0 V	2,5 V		
V_A'C'	V_B'C'	V_A'B'	V_B'C' + V_A'B'

2,5 V

Experiencia planteada:

V_AC	V_BC	V_AB	V_BC + V_AB
5,0 V	2,5 V	2,5 V	
V_A'C'	V_B'C'	V_A'B'	V_B'C' + V_A'B'

Experiencia planteada:

5,0 V

Experiencia planteada:

V_AC	V_BC	V_AB	V_BC + V_AB
5,0 V	2,5 V	2,5 V	5,0 V
V_A'C'	V_B'C'	V_A'B'	V_B'C' + V_A'B'

1,2 V

Experiencia planteada:

V_AC	V_BC	V_AB	V_BC + V_AB
5,0 V	2,5 V	2,5 V	5,0 V
V_A'C'	V_B'C'	V_A'B'	V_B'C' + V_A'B'

1,2 V

Experiencia planteada:

V_AC	V_BC	V_AB	V_BC + V_AB
5,0 V	2,5 V	2,5 V	5,0 V
V_A'C'	V_B'C'	V_A'B'	V_B'C' + V_A'B'

Experiencia planteada:

V_AC	V_BC	V_AB	V_BC + V_AB
5,0 V	2,5 V	2,5 V	5,0 V
V_A'C'	V_B'C'	V_A'B'	V_B'C' + V_A'B'
5,0 V	1,2 V	1,2 V	2,4 V

Experiencia planteada:

V_AC	V_BC	V_AB	V_BC + V_AB
5,0 V	2,5 V	2,5 V	5,0 V

V_A'C'	V_B'C'	V_A'B'	V_B'C' + V_A'B'
5,0 V	1,2 V	1,2 V	2,4 V

Experiencia planteada:

Resultados:

V_AC	V_BC	V_AB	V_BC + V_AB
5,0 V	2,5 V	2,5 V	5,0 V

V_A'C'	V_B'C'	V_A'B'	V_B'C' + V_A'B'
5,0 V	1,2 V	1,2 V	2,4 V

Kirchhoff estaba equivocado?

Las Leyes de Kirchhoff no pueden ser incorrectas

Las Leyes de Kirchhoff no pueden ser incorrectas

La ley de mallas se basa en el principio físico de conservación de la energía

Es demostrable a partir de la relación entre tensión y energía [V] = [J] / [C]

Las Leyes de Kirchhoff no pueden ser incorrectas

La ley de mallas se basa en el principio físico de conservación de la energía

Es demostrable a partir de la relación entre tensión y energía [V] = [J] / [C]

Revisemos nuestro banco de medición

Si la tensión medida entre B' y C' fue menor...

- Cómo es la resistencia entre B' y C' ??
- Falta algo en el esquema??

Ejercicio: Qué valor tiene R_int si la tensión medida fue de 1,2 V?

Ejercicio: Qué valor tiene R_int si la tensión medida fue de 1,2 V?

Por qué no hubo problemas al medir V_AB y V_BC??

Efecto de carga

El fenómeno que vimos, se conoce como **efecto de carga**.

El fenómeno que vimos, se conoce como **efecto de carga**.

Veamos un ejemplo más "cotidiano".

El fenómeno que vimos, se conoce como efecto de carga.

Veamos un ejemplo más "cotidiano".

• Experiencia #1:

Termómetro de bulbo mide temperatura de una cucharadita de agua @ 35 °C

El fenómeno que vimos, se conoce como **efecto de carga**.

Veamos un ejemplo más "cotidiano".

• Experiencia #1:

Termómetro de bulbo mide temperatura de una cucharadita de agua @ 35 °C

• Experiencia #2:

El fenómeno que vimos, se conoce como **efecto de carga**.

Veamos un ejemplo más "cotidiano".

• Experiencia #1:

Termómetro de bulbo mide temperatura de una cucharadita de agua @ 35 °C

• Experiencia #2:

El fenómeno que vimos, se conoce como efecto de carga.

Veamos un ejemplo más "cotidiano".

• Experiencia #1:

Termómetro de bulbo mide temperatura de una cucharadita de agua @ 35 °C

• Experiencia #2:

- ★ Medirán lo mismo?
- ★ En qué caso se perturba más la medición?

El fenómeno que vimos, se conoce como efecto de carga.

Veamos un ejemplo más "cotidiano".

• Experiencia #1:

Termómetro de bulbo mide temperatura de una cucharadita de agua @ 35 °C

• Experiencia #2:

- ★ Medirán lo mismo?
- ★ En qué caso se perturba más la medición?
- ★ El efecto de carga se debe al <u>sistema</u> como un todo.

Efecto de carga - Voltímetro/Amperimetro

Vimos la modelización de este efecto en el voltímetro como:

• Una R interna en el voltímetro *real*, en **paralelo** al voltímetro *ideal*

Efecto de carga - Voltímetro/Amperímetro

Vimos la modelización de este efecto en el voltímetro como:

- Una R interna en el voltímetro real, en paralelo al voltímetro ideal
- Qué pasará si medimos corriente? Cómo se modeliza el efecto de carga de un amperímetro?

Efecto de carga - Voltímetro/Amperimetro

Vimos la modelización de este efecto en el voltímetro como:

- Una R interna en el voltímetro real, en paralelo al voltímetro ideal
- Qué pasará si medimos corriente? Cómo se modeliza el efecto de carga de un amperímetro?

Efecto de carga - Voltímetro/Amperimetro

Vimos la modelización de este efecto en el voltímetro como:

- Una R interna en el voltímetro real, en paralelo al voltímetro ideal
- Qué pasará si medimos corriente? Cómo se modeliza el efecto de carga de un amperímetro?

Habrá un <u>efecto de carga</u> al medir con un multímetro de R_int = 1 MOhm, la tensión sobre:

- R1?
- R2?

Habrá un <u>efecto de carga</u> al medir con un multímetro de R_int = 1 MOhm, la tensión sobre:

- R1?
- R2?

 V_{R2} real?

Habrá un efecto de carga al medir con un multímetro de R_int = 1 MOhm, la tensión sobre:

R1?

 V_{R2} real $V_{R2} = V_{gen} \cdot \frac{R_2}{R_2 + R_1} = 10 \text{ V} \cdot \frac{1 \text{ M}\Omega}{1 \text{ M}\Omega + 50 \Omega} = 9,9995 \text{ V}$

Habrá un efecto de carga al medir con un multímetro de R_int = 1 MOhm, la tensión sobre:

R1?

 V_{R2} real $V_{R_2} = V_{gen} \cdot \frac{R_2}{R_2 + R_1} = 10 \text{ V} \cdot \frac{1 \text{ M}\Omega}{1 \text{ M}\Omega + 50 \Omega} = 9,9995 \text{ V}$

• R2? **?**

Habrá un <u>efecto de carga</u> al medir con un multímetro de R_int = 1 MOhm, la tensión sobre:

R1 ?

 V_{R2} real $V_{R_2} = V_{gen} \cdot \frac{R_2}{R_2 + R_1} = 10 \text{ V} \cdot \frac{1 \text{ M}\Omega}{1 \text{ M}\Omega + 50 \Omega} = 9,9995 \text{ V}$

• R2? **?**

$$V_{R2}$$
 medida $V_{R_2} = V_{gen} \cdot \frac{(R_2//R_{int})}{(R_2//R_{int}) + R_1} = 10 \text{ V} \cdot \frac{500 \text{ k}\Omega}{500 \text{ k}\Omega + 50 \Omega} = 9,9990 \text{ V}$

Habrá un efecto de carga al medir con un multímetro de R_int = 1 MOhm, la tensión sobre:

R1?

 V_{R2} real $V_{R_2} = V_{gen} \cdot \frac{R_2}{R_2 + R_1} = 10 \text{ V} \cdot \frac{1 \text{ M}\Omega}{1 \text{ M}\Omega + 50 \Omega} = 9,9995 \text{ V}$

• R2? **?**

$$V_{R2}$$
 medida $V_{R_2} = V_{gen} \cdot \frac{(R_2//R_{int})}{(R_2//R_{int}) + R_1} = 10 \text{ V} \cdot \frac{500 \text{ k}\Omega}{500 \text{ k}\Omega + 50 \Omega} = 9,9990 \text{ V}$

Esto demuestra que es un efecto debido a todo el sistema: instrumento + circuito

Habrá un efecto de carga al medir con un multímetro de R_int = 1 MOhm, la tensión sobre:

R1 ?

R2?

$$V_{R2}$$
 medida $V_{R_2} = V_{gen} \cdot \frac{(R_2//R_{int})}{(R_2//R_{int}) + R_1} = 10 \text{ V} \cdot \frac{500 \text{ k}\Omega}{500 \text{ k}\Omega + 50 \Omega} = 9,9990 \text{ V}$

Esto demuestra que es un efecto debido a todo el sistema: instrumento + circuito

Conclusión

Para saber si habrá o no efecto de carga ...

Conclusión

Para saber si habrá o no efecto de carga ...

 Comparar la R_int del voltímetro contra la R_th "vista desde los bornes del multímetro hacia el circuito"

Conclusión

Para saber si habrá o no efecto de carga ...

- Comparar la R_int del voltímetro contra la R_th "vista desde los bornes del multímetro hacia el circuito"
- En el mejor caso, si no hay efecto de carga, el voltímetro medirá V_th

¿Preguntas?