Máquina de Turing

Esdras Lins Bispo Jr. esdraspiano@gmail.com

Teoria Computação Bacharelado em Ciência da Computação

26 de março de 2019

Plano de Aula

- Revisão
- Máquina de Turing
- Configuração de MT

Sumário

Revisão

- 2 Máquina de Turing
- Configuração de MT

Diferenças entre MT e AFDs

- Uma MT pode tanto escrever sobre a fita quanto ler a partir dela;
- A cabeça de leitura-escrita pode mover-se tanto para a esquerda quanto para a direita;
- A fita é infinita;
- Os estados especiais para rejeitar e aceitar fazem efeito imediatamente.

Sumário

- Revisão
- 2 Máquina de Turing
- Configuração de MT

Construindo uma MT

Construir M_1 que reconheça a linguagem

$$B = \{\omega\#\omega \mid \omega \in \{0,1\}^*\}.$$

Descrição de M_1

 $M_1 =$ "Sobre a cadeia de entrada ω :

- Faça um zigue-zague ao longo da fita checando posições correspondentes de ambos os lados do símbolo # para verificar se elas contêm o mesmo símbolo. Se elas não contêm, ou se nenhum # for encontrado, rejeite. Marque os símbolos à medida que eles são verificados para manter registro de quais símbolos têm correspondência.
- Quando todos os símbolos à esquerda do # tiverem sido marcados, verifique a existência de algum símbolo remanecente à direta do #. Se resta algum símbolo, rejeite; caso contrário, aceite.


```
° 1 1 0 0 0 # 0 1 1 0 0 0 u ...
х 1 1 0 0 0 # 0 1 1 0 0 0 u ...
x 1 1 0 0 0 # x 1 1 0 0 0 \( \dots \)...
   1000#x11000u...
х x 1 0 0 0 # x 1 1 0 0 0 u ...
x x x x x x # x x x x x
                         accept
```


Uma **máquina de Turing** é uma 7-upla $(Q, \Sigma, \Gamma, \delta, q_0, q_{aceita}, q_{rejeita})$, de forma que Q, Σ, Γ são todos conjuntos finitos e

- Q é o conjunto de estados,
- ② Σ é o alfabeto de entrada sem o **símbolo branco** \sqcup ,
- lacktriangle Γ é o alfabeto da fita, em que $\sqcup \in \Gamma$ e $\Sigma \subseteq \Gamma$,
- $oldsymbol{0}$ $\delta: Q \times \Gamma o Q \times \Gamma \times \{E, D\}$ é a função de transição,
- $oldsymbol{0} q_0 \in Q$ é o estado inicial,
- $oldsymbol{0}$ $q_{aceita} \in Q$ é o estado de aceitação, e
- $m{Q}$ $q_{rejeita} \in Q$ é o estado de rejeição, em que $q_{rejeita}
 eq q_{aceita}$

Máquina de Turing

Esdras Lins Bispo Jr. esdraspiano@gmail.com

Teoria Computação Bacharelado em Ciência da Computação

26 de março de 2019

