Análise de Crescimento de Plantas a Partir de Fotos Semanais Plant Growth Analyzer

Lucas Cardoso dos Santos Lucas Miranda Mendonça Rezende

Universidade de São Paulo - Ribeirão Preto

2025

Sumário

- Introdução
- ② Desenvolvimento
- Problemas
- Resultados
- Conclusão

Introdução

Agricultura Inteligente

Proposta do Projeto

Objetivo: Desenvolver um método automatizado para extrair métricas de crescimento de plantas (área, altura e largura) a partir de imagens digitais

Aplicações:

- Criação de benchmarks científicos
- Estimativa de safras agrícolas
- Monitoramento da saúde das culturas
- Detecção precoce de pragas/doenças
- Otimização de recursos (água, fertilizantes)

Desenvolvimento

Algoritmo de Processamento de Imagem

Visão Geral do Pipeline

- Leitura e validação da entrada
- Oecodificação e pré-processamento da imagem
- Oetecção de bordas e segmentação
- Identificação da região da planta
- Pós-processamento da máscara
- Extração de medidas morfológicas
- Geração da imagem de saída

Passo 1: Leitura e Validação

Entrada:

- Identificador único para cada imagem
- Arquivo JSON com parâmetros (granularidade, limiar)
- Imagem codificada em base64

Validação:

- Verificação da versão do Python
- Validação das dependências
- Prevenção de falhas de compatibilidade

Passo 2: Decodificação e Pré-processamento

Decodificação:

- Conversão de base64 para imagem
- Redimensionamento adaptativo (máx. 1024px)

Pré-processamento:

- Conversão para tons de cinza
- Desfoque gaussiano adaptativo
- Realce de contraste com CLAHE
- Redução de ruídos e variações locais

Passo 3: Segmentação - Algoritmo Watershed

Detecção de bordas:

- Filtro de Sobel
- Fechamento morfológico

Algoritmo Watershed:

- Interpretação da imagem como superfície topográfica
- Marcadores definidos em regiões de interesse
- Simulação de "preenchimento com água"
- Criação de fronteiras entre objetos
- Robusto para objetos conectados

Passo 4: Identificação da Planta

Análise de cor em dois espaços:

- BGR: modelo tradicional RGB
- HSV: separa matiz, saturação e valor

Critério principal: Predominância de tons de verde

Vantagens:

- Robusto a variações de iluminação
- Adaptativo para diferentes espécies
- Reduz falsos positivos

Passo 5: Pós-processamento da Máscara

Problemas na segmentação:

- Buracos devido a reflexos
- Falhas por sombras
- Regiões desconectadas

Soluções:

- Operações morfológicas de fechamento
- Preenchimento de buracos
- Tamanho mínimo ajustado dinamicamente
- Garantia de continuidade da área foliar

Passo 6: Extração de Medidas

Três medidas morfológicas principais:

- Área: Contagem de pixels segmentados
- Altura: Regressão linear dos pontos o extensão máxima ao longo do eixo principal
- Largura: Projeção no eixo perpendicular à reta ajustada

Passo 7: Geração da Imagem de Saída

Visualização dos resultados:

- Sobreposição da máscara segmentada
- Linhas de medição coloridas:
 - Altura em amarelo
 - Largura em magenta
- Codificação em base64 (JPEG/PNG)

Resultado: Processo interpretável e transparente para o usuário

Problemas Encontrados

Detecção de Caules

Dificuldades na Detecção de Caules

Principal desafio: Detecção automática dos caules das plantas

Problemas identificados:

- Grande variação de tonalidade (marrom claro a esverdeado)
- Sombras projetadas pelas folhas
- Reflexos do solo úmido
- Semelhança com substrato e galhos secos
- Muitos falsos positivos e negativos

Tentativas de Solução

1. Segmentação por cor:

- Limiares nos espaços BGR e HSV
- Resultado: intervalo de cor não robusto

2. Morfologia e geometria:

- Transformada de Radon para estruturas lineares
- Resultado: resposta difusa, pouco informativa

3. Machine Learning:

- Classificadores tradicionais e CNNs
- Resultado: baixa precisão, alta taxa de erro

Exemplos de Tentativas Frustradas

Resultados

Interface Gráfica Desenvolvida

Tela Principal

Visualização de Coleções

Processamento Individual

Gráficos de Crescimento

Conclusão

Avaliação da Performance

Resultados Alcançados

Pontos positivos:

- Máscaras precisas para identificação de folhas
- Medidas morfológicas estáveis e reprodutíveis
- Processo transparente e confiável
- Interface intuitiva e eficiente
- Solução completa e acessível

Limitações:

- Detecção de caules não implementada
- ullet Conversão pixel o medidas reais não abordada

Avaliação da Performance

Eficácia do sistema:

- Segmentação robusta em diferentes condições
- Resistente a variações de iluminação
- Acompanhamento quantitativo do crescimento
- Adequado para pesquisa, ensino e hobby

Contribuição:

- Modernização do monitoramento vegetal
- Democratização de técnicas de análise
- Automação de práticas manuais
- Base para futuras melhorias

Obrigado!

Lucas Cardoso dos Santos

Lucas Miranda Mendonça Rezende