DEUXIEME COMPOSITION DE MATHEMATIQUES (4 h)

Les candidats sont invités, pour alléger ou simplifier certains calculs, à faire des remarques géométriques; ces remarques devront être rédigées avec soin.

Un solide S lié à un repère orthonormé O, \overrightarrow{i} , \overrightarrow{j} , \overrightarrow{k} (axes Ox, Oy, Oz) est en mouvement par rapport à un solide T défini par un repère orthonormé Ω , \overrightarrow{I} , \overrightarrow{J} , \overrightarrow{K} (axes ΩX , ΩY , ΩZ) dans les conditions suivantes :

- (a) La droite Ox de S passe à tout instant par le point Ω et on posera $\overrightarrow{O\Omega} = \overrightarrow{i} \cdot f(t)$, f étant une fonction dérivable du temps t, $f' = \frac{\mathrm{d}f}{\mathrm{d}t}$ une fonction continue de t.
- (b) Le vecteur rotation instantanée du mouvement de S par rapport à T est à tout instant égal à \overrightarrow{k} .
- (c) L'axe instantané de rotation et de glissement du mouvement perce le plan Oxy en un point I, variable, situé sur la droite D qui passe par O et de vecteur directeur \overrightarrow{i} cos $\alpha + \overrightarrow{j}$ sin α , α étant une constante donnée satisfaisant à $0 < \alpha < \frac{\pi}{2}$, on désignera par P le plan contenant Oz et D.

À l'instant t = 0, début de l'étude proposée, on a f(0) = d, $\vec{k} = \vec{K}$ et les axes Ox et ΩX coïncident en direction et sens. Dans tout le problème, t varie de 0 à $+\infty$.

QUESTION I

Montrer que le plan Oxy glisse sur le plan ΩXY . Déterminer à l'instant t l'angle $(\Omega X, Ox)$ et, par ses coordonnées, la position de O dans le repère $(\Omega, \vec{I}, \vec{J})$.

Montrer que les conditions (a), (b) et (c) sont compatibles si et seulement si la fonction f satisfait à l'équation différentielle :

$$\frac{\mathrm{d}f}{\mathrm{d}t} + f \cdot \operatorname{tg}\alpha = 0.$$

Indiquer une construction géométrique de la position I en supposant connue celle de O.

Déterminer les ensembles Γ et Γ' des positions prises par I et par O dans le plan ΩXY au cours du mouvement. Dessiner l'allure générale de Γ et démontrer que Γ' se déduit de Γ par une transformation géométrique simple.

Démontrer qu'il existe une infinité dénombrable de valeurs de α pour lesquelles l'ensemble Γ est inclus dans Γ' (on ne cherchera pas à calculer ces valeurs de α).

QUESTION II

Déterminer les droites Δ liées à S sur lesquelles existe à chaque instant un point de S dont le vecteur vitesse par rapport à T est nul ou parallèle à Δ .

Démontrer, en considérant d'abord le cas où elle rencontre Oz, qu'une droite liée à S et parallèle au plan Oxy reste tangente à une courbe, liée à T, semblable à Γ ou parallèle à une courbe semblable à Γ , sauf lorsque cette droite a une direction particulière que l'on précisera.

On pourra définir la droite étudiée, liée à S, par sa cote et sa projection sur le plan Oxy (l'équation de cette projection étant mise sous forme normale).

QUESTION III

Démontrer que dans tout plan lié à S et non parallèle à Oxy existe à chaque instant une droite telle que les vecteurs vitesses par rapport à T de chacun de ses points soient nuls ou parallèles au plan.

On considère le plan Q lié à S et admettant pour équation dans le repère (O, i, j, k):

$$-x\sin\varphi + y\cos\varphi + z - h = 0$$

où φ , élément de $[0\,;\pi[$, et h sont des constantes données.

Soit M le point de Q ayant une vitesse nulle à l'instant t. Démontrer que l'ensemble des positions de M dans T est un arc d'une courbe G dont les tangentes font un angle constant avec le plan ΩXY .

A quelle condition portant sur φ la courbe G est-elle plane?

A quelle condition le plan Q est-il le plan osculateur à G en M?

Vérifier que l'intersection D' des plans P et Q roule sans glisser sur la courbe G.

Calculer la courbure et la torsion de G en M.

Démontrer que lorsque la courbe G n'est pas plane elle est tracée sur un cône de révolution d'axe ΩZ et qu'elle coupe les génératrices de ce cône sous un angle constant.

Démontrer que le centre de courbure de G en M se déplace lui aussi sur un cône de révolution d'axe ΩZ . Pour quelles valeurs de α existe-t-il une ou plusieurs valeurs de φ telles que les deux cônes ci-dessus soient confondus?

QUESTION IV

Soit \mathscr{T} le triède de Frenet de la courbe G à l'instant t. Déterminer le vecteur rotation instantanée du mouvement de \mathscr{T} par rapport à T. Etudier le mouvement de \mathscr{T} par rapport à S.

QUESTION V

Un repère orthonormé Σ défini par O_1 , \overrightarrow{u} , \overrightarrow{v} , \overrightarrow{w} est en mouvement par rapport à S: le point O_1 coïncide à chaque instant avec O et le vecteur rotation instantanée de Σ par rapport à S, fixe par rapport à S donc aussi par rapport à Σ , a pour expression:

$$\vec{\omega} = \vec{i} \sin \alpha - \vec{j} \cos \alpha - \lambda \vec{k}$$

où λ est une constante donnée (à l'instant t=0 les vecteurs \overrightarrow{u} , \overrightarrow{v} , \overrightarrow{w} coïncident respectivement avec les vecteurs \overrightarrow{i} , \overrightarrow{j} , \overrightarrow{k}).

En utilisant le théorème sur la composition des vitesses, déterminer le vecteur rotation instantanée du mouvement de Σ par rapport à T. Déterminer λ pour que O_1 appartienne à l'axe instantané de rotation et de glissement δ de ce mouvement.

Lorsque λ a la valeur trouvée ci-dessus, quelle est la surface engendrée par δ dans le repère Σ ?