Студент: Маргарита Чудова

Группа: 2

Дата: 27 апреля 2022 г.

1. (а) f(n) = O(n), значит $\exists N, C > 0: f(n) \leq C \cdot g(n)$. Допустим, что условие " \exists N"отбросить нельзя, сразу после какого-то N_1 все ломается. Тогда $\exists N_1: n = N_1 - 1 \Rightarrow \frac{f(n)}{g(n)} > C.$ $C_1 = \frac{f(N_1-1)}{g(N_1-1)} + 1$ - это тоже какая-то константа, причем для нее $\frac{f(n)}{g(n)} < C_1$. Повторим ту же процедуру для $n = N_1 - 2$, получим некоторую C_3 , и так далее, пока не получим n = 0. Имеем набор $C_1, C_2, C_3 \dots C_N$, из них можем выбрать максимум, и тогда условие " $\exists N$ "не будет ни на что влиять.

Такое рассуждение не зависит от типа функции и подходит и для $\mathbb{N} \to \mathbb{N}$, и для $\mathbb{N} \to \mathbb{R}_{>0}$ (и в том, и в другом случае нам помогает то, что элементов до N конечное количество). В обоих этих случаях условие " $\exists N$ "можно отбросить.

(b) Случай $\mathbb{N} \to \mathbb{N}$: возьмем f(n) = n, а g(n)

$$g(n) = \begin{cases} n^2 - 3 & n \neq 1\\ 1 & n = 1 \end{cases} \tag{1}$$

Рассмотрим $n=2,\ f(2)=2,\ g(2)=1.$ По обновленному определению $\forall n,\ C>0: f(n)< C\cdot g(n),$ но это условие не выполняется в точке 2 для $C=1\Rightarrow$ условие ' $\exists\ N$ ' отбросить нельзя.

Случай $\mathbb{N} \to \mathbb{R}_{>0}$: пусть $f(n) = \frac{2}{n}$, g(n) = n. По обновленному определению $\forall n, C > 0$: $f(n) < C \cdot g(n)$, но это условие не выполнено в точке 1 для $C = 1 \Rightarrow$ условие ' $\exists N$ ' отбросить нельзя.

2. (a) f(n) = O(n), значит $\exists N, C > 0: f(n) \leq C \cdot g(n)$, Так как $\phi(x) = \log(x)$ монотонно возрастающая, из этого неравенства следует

$$\log f(n) \le \log C g(n) = \log g(n) + \log C$$

 $\log C$ - это какая-то константа. Так как функции $\mathbb{N} \to \mathbb{N}$, то g(n) не может бесконечно убывать, и $\log g(n)$ ограничена снизу (при этом g(n)>1). Тогда введем $a=\frac{\log C}{\min(\log(g(x))}$ - эта величина конечна. Без уменьшения общности можем считать C>1/2, тогда a>-1. $\log g(n)+\log C<(a+1)\log g(n)\Rightarrow$ утверждение верно

- (b) Рассмотрим f(n)=2n, g(n)=n. Проверим по определению: $\exists N,C>0: 4^n \leq C \cdot 2^n \Rightarrow C>2^n$ не получится подобрать такую универсальную константу \Rightarrow утверждение неверно
- (c) Рассмотрим $f(n)=2^n,\ g(n)=2^{2n}.$ Проверим по определению: $\forall C>0\ \exists N:n\leq C\cdot 2n$ неправда, неравенство выполнено только для $C>1/2\Rightarrow$ утверждение неверно
- (d) f(n) = o(g(n)), значит

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0 \tag{2}$$

Рассмотрим

$$\lim_{n \to \infty} \frac{2^{f(n)}}{2^{g(n)}} = [g(n) > 1] = \lim_{n \to \infty} 2^{(f(n)/g(n) - 1) \cdot g(n)} = 2^{\lim_{n \to \infty} -g(n)}$$
(3)

Так как g(n) > 1, условие (2) возможно только при $g(n) \to \infty$. Из этого следует, что (3) = 0, то есть утверждение верно

(e) По определению $\Omega(n)$ $\exists N, C>0: \forall n\geq N \ f(n)\geq C\cdot g(n)\Rightarrow \sum\limits_{k=1}^n \frac{1}{k}\geq C\cdot \log n.$

Попробуем оценить левую часть снизу - если сможем найти подходящую константу для чегото меньшего, чем наша сумма, то для суммы такая константа тем более подходит. На роль оценки снизу подходит $\int\limits_1^n \frac{1}{x} dx = \ln n$ (можно нарисовать рисунок с функцией 1/x и прямо-угольниками, соответствующими каждому слагаемому и сравнить площади под графиком). Получим

$$\ln n > C \cdot \log n \Rightarrow C < \frac{1}{\ln 2}$$

Тогда возьмем для определения Ω $C=\frac{1}{\ln 2}-arepsilon, arepsilon=$ const, утверждение верно.

A	В	О	О	Θ	ω	Ω
$\log^k n$	n^2	+	+	-	-	-
n^k	c^n	+	+	-	-	-
\sqrt{n}	$n^{sin(n)}$	-	-	-	-	-
2^n	$2^{n/2}$	-	-	-	+	+
$n^{\log m}$	$m^{\log n}$	+	-	+	-	+
$\log n!$	$\log n^n$	+	-	+	-	+

3. (а) Проверим на о-малое:

$$\lim_{n \to \infty} \frac{\log^k(n)}{n^{\varepsilon}} = \lim_{n \to \infty} \frac{\ln^k(n)}{e^{\varepsilon \ln n} \cdot \ln 2} = [t = \ln(n)] = \lim_{n \to \infty} \frac{t^k}{e^{\varepsilon t} \ln 2} =$$

$$= [\text{применяем k раз правило Лопиталя}] = \lim_{n \to \infty} \frac{k!}{\varepsilon^k e^{\varepsilon t} \ln 2} \to 0 \tag{4}$$

В определении о-малого ($\forall C>0:\exists N:\forall n\geq N:f(n)< C\cdot g(n)$) из $\forall C>0$ выберем конкретную, тогда отсюда следует определение для О-большого. Из определений следует, что f(n) не может быть $\Omega(n)$ или $\omega(n)$ и o(n) одновременно (будем этим пользоваться и в следующих пунктах). Так как $f(n)=\Theta(n)\Leftrightarrow f(n)=\Omega(n)\cap f(n)=O(n)$, то $f(n)\neq\Theta(n)$ (этим тоже пользуемся далее).

(b) Проверим на о-малое:

$$\lim_{n\to\infty}\frac{n^k}{c^n}=\lim_{n\to\infty}\frac{n^k}{e^{\ln C\cdot n}}=\left[\text{применяем k раз правило Лопиталя}\right]=\lim_{n\to\infty}\frac{k!}{\ln^k Ce^{\ln C\cdot n}}\to 0\quad (5)$$

(c) Степень функции В $x=\sin(n)$ является периодической функцией и может меняться от -1 до 1. Будем рассматривать большие n - тогда при x<0 можем сколь угодно сильно приблизить n^x к нулю за счет величины n. Такие встречаются периодически при сколь угодно больших n. Тогда все определения, в которых фигурирует неравенство вида $f(n) < C \cdot g(n)$ (то есть о-малое, О-большое) автоматически отпадают, не найдется такого C.

Аналогично для $f(n) > C \cdot g(n)$ (то есть $\omega(n)$, $\Omega(n)$). Если х близко к 1, то n^x близко к n. Увеличивая n, мы сможем сделать n^x сколь угодно близким к $n > n^{0.5}$, значит, неравенство не будет выполняться для любого сколь угодно большого n.

(d) Проверим на $\omega(n)$:

$$\forall C > 0 : \exists N : \forall n > N : 2^n > C \cdot 2^{n/2} \Rightarrow C < 2^{n/2}$$

По любому заданному С сможем найти $N=2\log C-\varepsilon$, где ε - какая-то маленькая константа, следовательно $f(n)=\omega(n)$.

Отсюда следует (аналогично рассуждениям с о-малым и О-большим выше), что $f(n) = \Omega(n)$

(e)
$$\frac{n^{\log(m)}}{m^{\log(n)}} = \frac{2^{\log(n)\log(m)}}{2^{\log(m)\log(n)}} = 1$$

Это одна и та же функция. В определениях возьмем $C = 1 \Rightarrow$ для $\Omega(n), O(n)$ условия выполняются, а в $\omega(n), o(n)$ неравенство неверное.

(f) Воспользуемся формулой Стирлинга:

$$n! \sim \sqrt{2\pi n} \frac{n^n}{e^n} \Rightarrow \log n! \sim (n+1/2) \log(n) - n$$

Рассмотрим

$$\lim_{n\to\infty}\frac{(n+1/2)\log(n)-n}{\log(n^n)}=\lim_{n\to\infty}\frac{(n+1/2)\log(n)-n}{n\log(n)}\to 1$$

Тогда $\log(n!) \neq o(n)$ (предел тогда должен был бы быть равен 0), но $\log(n!) = O(n)$ (если в определении взять, например, C = 2, то все выполняется с некоторого N). Проверим на $\Omega(n)$. $f(n) = \Omega(g(n)) \Leftrightarrow g(n) = O(f(n))$.

$$\lim_{n\to\infty}\frac{n\log(n)}{(n+1/2)\log(n)-n}=\lim_{n\to\infty}\frac{1}{(1+1/2n)-1/\log n}\to 1$$

- аналогично выполнено

5. (а) По сути, в этой задаче требуется для каждого элемента a_i из массива найти d_i - максимальную длину отрезка, на которой он минимален, и взять максимум из a_id_i .

Для того, чтобы найти d_i , нужно найти r_i и l_i . Для l_i делаем это следующим образом: возьмем стек и начинаем по порядку класть туда элементы массива с их номером, при этом предварительно удаляя все верхушки стека, большие или равные элементу, который мы хотим положить. Предположим, мы кладем в стек элемент a_k , и, удалив все, что больше него, получаем элемент a_i верхним в стеке. Тогда a_i - самый левый элемент, меньший a_k , а значит r=i+1.

Почему это работает? Элемент a_l между a_k и a_i не мог удалить a_i до этого шага, так как $a_l \geq a_k, \ a_i < a_k \Rightarrow a_l \geq a_i$. Элементы добавляются/удаляются не более 2 раз, так что время работы этой части алгоритма O(n).

Аналогично ищем r_i , но кладем элементы в стек, начиная с последнего. Вычисление a_id_i и поиск среди них максимума тоже дадут O(n), так что общее время работы - O(n)

(b) Все аналогично предыдущей задаче, но теперь на максимальном отрезке, на котором a_i минимально, нужно искать сумму всех элементов отрезка S_i , а не длину d_i , и выбирать максимум из a_iS_i .

Как искать сумму на отрезке так, чтобы это занимало $\mathcal{O}(1)$? Воспользуемся результатами задачи 8 с семинара: сначала посчитаем все кумулятивные суммы, запишем их в массив – это $\mathcal{O}(n)$. После для каждого a_i найдем соответствующие r, l, вычтем одно значение кумулятивной суммы из другого и получим сумму на этом отрезке – тоже $\mathcal{O}(n)$.

- 6. Пусть на вход дан массив $[a_1..a_n]$.
 - (a) Преобразуем его в $[\tilde{a_1}..\tilde{a_n}]$ следующим образом:

$$\tilde{a_1} = a_1$$

$$\tilde{a_i} = a_i - a_{i-1}, \ i \neq 1$$

(b) Для каждого запроса add(x,l,r) будем проделывать с массивом следующее (так m раз):

$$\tilde{a}_l + = x$$

$$\tilde{a}_{r+1} - = x$$

Получим что-то вида $[a_1,..,a_l-a_{l-1}+x,a_{l+1}-a_l..,a_{r+1}-a_r-x,..]$

(с) После обработки всех запросов заведем переменную temp и запустим цикл:

```
answ = [a[1]] \\для простоты пусть нумерация с 1
temp = a[1]
for i in range(2, n):
   temp +=ta[i] \\ ta - массив а с тильдой из предыдущих пунктов
   answ.append(temp)
print(answ)
```

Понятно, что предыдущее слагаемое сокращается со следующим так, что остается только a_i + нужные х из запросов. answ - это преобразованный после всех запросов массив. (a) займет O(n), (b) - O(1)*m = O(m), (c) - O(n)

7. Рассмотрим дерево решений. Пусть k - глубина дерева, понятно, что спускаемся до тех пор, пока размер подзадачи не станет 1. Посмотрим, как меняются характеристики подзадач:

```
1итерация: задачи размера n,\,2^{\log^*n}тратится в каждом узле. Количество задач - 1 2 итерация: задачи размера \log n,\,2^{\log^*\log n}=2^{1+\log^*\log\log n}тратится в каждом узле. Количество задач - 2
```

. . .

k итерация: задачи размера $\log \ldots \log n$, $2^{\log^* \log \ldots \log n}$ тратится в каждом узле (везде k логарифмов). Количество задач - 2^k

На последнем шаге $\log \ldots \log n$ должен быть равен 0. На шаге k-1 в степени двойки будет на один логарифм меньше, можем раскрыть эту степень по рекуррентной формуле и получить формулу через k логарифмов: $1 + \log \ldots \log n = 1$. Продолжим в том же духе до верха дерева, на самом верхнем уровне получим 2^k . Таким образом общее время равно:

$$T(n) = 2^k \cdot 1 + 2^{k-1} \cdot 2 + \ldots + 1 \cdot 2^k$$

Поскольку на каждом шаге задача уменьшается в \log раз, $k = \log^* n$, $T(n) = 2^{\log^* n} \cdot \log^* n$

P.S: по непонятной для меня причине мой тех ругается на lfloor и rfloor, поэтому их здесь нет, надеюсь, что суть без них ясна.