Kurzskript Algebraische Topologie^{1,2} Teil 1

Dozent: Dr. V. Alekseev

 $ext{MT}_{ ext{E}} ext{X}: ext{rydval.jakub@gmail.com}$

Version: 1. Juli 2017

Technische Universität Dresden

 $^{^1\}mathrm{Math}$ Ma ALGTOP: Algebraische Topologie, WS 2016/17

²Zusatzinhalt mit * gekennzeichnet

INHALTSVERZEICHNIS

Inhaltsverzeichnis

1	Einführung Topologische Räume		1	
2			2	
	2.1	Grundlagen	2	
2	Homotopie		2	
	2.1	Homotopie zwischen Abbildungen	2	
	2.2	Konstruktionen und Beispiele	3	
	2.3	Fundamentalgruppe	3	
	2.4	Hochhebung von Wegen und Homotopien	3	
	2.5	Fundamental gruppe von S^1	5	
	2.6	Überlagerungen und Fundamentalgruppe	5	
	2.7	Gruppen angegeben durch Erzeuger und Relationen;		
		freie Gruppen	13	
	2.8	Angabe der Gruppen durch Erzeuger und Relationen.	15	
	2.9	Konsequenzen des Satzes von Seifert-van Kampen	19	
	2.10	Höhere Homotopiegruppen		

1 Einführung

Algebraische Topologie dient dazu, mittels algebraischen Methoden (Zuordnung von algebraischen Objekten) topologische Räume zu verstehen (Klassifizierung). Beispiele von algebraischen Objekten:

- $S_2 = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\}$ Einheitssphäre,
- Π_2 Torus.

Ein Merkmal der Sphäre: jede Schleife $\gamma:[0,1]\longrightarrow S^2$ (stetig) ist zusammenziehbar. Auf dem Torus gibt es sogar zwei Arten nicht zusammenziehbarer Schleifen, die man ineinander nicht überführen Kann.

Literaturempfehlung:

- A. Hatcher: Algebraic Topology (https://www.math.cornell.edu/~hatcher/AT/AT.pdf),
- C. Kosniowski: A First Course in Algebraic Topology,
- A. Fomenko, D. B. Fuchs: Homotopic Topology.

Bemerkung: Der Teil 2 dieser Vorlesung ist komplett in dem Buch von A. Hatcher enthalten (Kapiteln über Homologie bis zur Euler-Charakteristik und Betti-Zahlen).

Topologische Räume

2.1 Grundlagen

Definition. (X, \mathcal{T}) ist ein topologischer Raum, wenn \mathcal{T} ein System von Teilmengen von X ist, das folgende Eigenschaften hat:

- (1) $\emptyset, X \in \mathcal{T}$,
- $\begin{array}{ll} \text{(2)} & (U_i)_{i \in I} \subset \mathcal{T} \Longrightarrow \bigcup_{i \in I} U_i \in \mathcal{T}, \\ \text{(3)} & U_1, ..., U_n \in \mathcal{T} \Longrightarrow \bigcap_{i=1}^n U_i \in \mathcal{T}. \end{array}$

 \mathcal{T} heißt *Topologie*, Elemente von \mathcal{T} heißen *offene Teilmengen* von X, $U_t \subset X$ heißt *Umgebung* von einem $t \in X$ wenn $\exists O \in \mathcal{T}$ s.d. $t \in O \subset U_t$. $\{O_i\}_{i \in I} \subset \mathcal{T}$ heißt *Basis* von \mathcal{T} , falls $\forall O \in \mathcal{T} \exists J \subset I$ s.d. $O = \bigcup_{i \in I} O_i$. $A \subset X$ heißt abgeschlossen gdw. $X \setminus A$ offen ist. Sei (X, \mathcal{T}') ein weiterer topologischer Raum, dann ist \mathcal{T}' stärker als \mathcal{T} , wenn $\mathcal{T} \subseteq \mathcal{T}'$ ($\iff \mathcal{T}$ schwächer als \mathcal{T}')

Beispiel. • X beliebige Menge;

- $T_{\text{disc}} = \{\text{alle Teilmengen von X}\}\ diskrete\ Topologie,$
- $\mathcal{T}_{triv} = \{\emptyset, X\}$ antidiskrete Toplogie.
- (X,d) metrischer Raum;
 - $\mathcal{T}_d := \{ U \subset X \mid \forall x \in U \exists \varepsilon > 0 \text{ s.d. } B(x, \varepsilon) \subset U \}.$

Definition. $(X, \mathcal{T}_X), (Y, \mathcal{T}_Y)$ topologische Räume, Abb. $f: X \longrightarrow Y$ heißt

- *stetig in* $x \in X$ falls \forall Umgeb. $U_{f(x)} \exists$ Umgeb. $U_x : f(U_x) \subset U_{f(x)}$,
- stetig, wenn $\forall U \in \mathcal{T}_Y$ gilt: $f^{-1}(U) \in \mathcal{T}_X$,
- *Homöomorphismus*, falls f stetig ist und $\exists g: Y \longrightarrow X$ stetig mit $f \circ g = \mathrm{id}_Y$, $g \circ f =$ id_X (insbesondere sind Homöomorphismen stets Bijektionen).

Bemerkung: Falls nicht explizit gesagt, wird ab jetzt Stetigkeit aller Abb. vorausgesetzt.

Definition. topologischer Raum (X, \mathcal{T}_X) heißt:

- *zusammenhängend*, wenn es keine Zerlegung $X = X_1 \sqcup X_2$ in zwei disjunkte, nichtleere, offene Mengen gibt,
- wegzusammenhängend, wenn $\forall x, y \in X \exists \gamma : [0,1] \longrightarrow X$ stetig mit $\gamma(0) = x, \gamma(1) = y$.

Proposition. Wegzusammenhängende Räume sind zusammenhängend.

Beweis. (Beruhrt an der Tatsache, dass [0,1] zusammenhängend ist.) (X,\mathcal{T}_X) topologischer Raum, $X = X_1 \sqcup X_2$, X_1 , X_2 offen, nichtleer $\implies \exists x \in X_1, y \in X_2$. Da Xwegzusammenhängend ist: $\exists \gamma$: $[0,1] \longrightarrow X$, $\gamma(0) = x$, $\gamma(1) = y$. Es folgt $[0,1] = \gamma^{-1}(X) = \gamma^{-1}(X_1 \sqcup X_2) = \gamma^{-1}(X_1) \sqcup \gamma^{-1}(X_2)$. Die Tatsache, dass $\gamma^{-1}(X_1)$, $\gamma^{-1}(X_2)$ offen sind liefert einen Widerspruch.

Definition. (X, \mathcal{T}) topologischer Raum, $A \subset X$.

$$\overline{A} := \bigcap_{\substack{A \subset F \subset X \\ \text{abgeschl.}}} F$$

ist der *Abschluss* von *A. A* liegt *dicht* in $X : \Longleftrightarrow \overline{A} = X$.

Lemma. $\overline{A} = \{x \in X \mid \forall U \ni x \text{ offen gilt } U \cap A \neq \emptyset\}.$

Beweis. Übung.

Definition. (X, \mathcal{T}) topologischer Raum heißt *Hausdorffraum*, wenn

$$\forall x \neq y \in X \exists U_x, U_y \text{ offen mit } x \in U_x, y \in U_y, U_x \cap U_y = \emptyset.$$

Bemerkung: Metrische Räume sind Hausdorffräume.

Definition. (X, \mathcal{T}) topologischer Raum heißt *kompakt*, wenn es für jede offene Überdeckung $\{U_i\}_{i\in I}$ von X (also U_i offen, $\bigcup_{i\in I} U_i = X$) eine endliche Teilüberdeckung $U_{i_1}, ..., U_{i_n}$ gibt $(\exists i_1, ..., i_n \in I \text{ s.d. } U_i \text{ offen, } \bigcup_{k=1}^n U_{i_k} = X)$.

Bemerkung: Es ist sinnvoll, Kompaktheit nur auf Hausdorffräumen zu betrachten. Im Weiteren werden topologische Räume/ Hausdorffräume einfach mit X bezeichnet.

Definition. (X, \mathcal{T}_X) topologischer Raum, $Y \subset X \Longrightarrow (Y, \mathcal{T}_Y)$ ist topologischer Raum mit *induzierter Topologie* (*Teilraumtopologie*) $\mathcal{T}_Y := \{U \cap Y \mid U \in \mathcal{T}_X\}.$

Proposition. X Hausdorffraum, $Y \subset X$ kompakt $\implies Y$ abgeschlossen.

Beweis. X ist Hausdorffraum $\Longrightarrow \forall x \in X \setminus Y \forall y \in Y \exists V_{x,y} \ni y, \ U_{x,y} \ni x \text{ offen mit } V_{x,y} \cap U_{x,y} = \emptyset.$ Wenn $x \in X \setminus Y \Longrightarrow \bigcup_{y \in Y} (V_{x,y} \cap Y) = Y, \ V_{x,y} \cap Y \text{ offen in } Y.$ Y ist kompakt $\Longrightarrow \exists y_1, ..., y_n \in Y \text{ s.d. } \bigcup_{k=1}^n (V_{x,y} \cap Y) = Y, \ V_{x,y_k} \cap U_{x,y_k} \Longrightarrow U_{x,y_k} \cap Y = \emptyset \Longrightarrow \text{ für } U_x := \bigcap_{k=1}^n U_{x,y_k} \text{ gilt } U_x \cap Y = \emptyset.$ Nun ist $X \setminus Y = \bigcup_{x \in X \setminus Y} U_x \text{ offen } \Longrightarrow Y \text{ ist abgeschlossen.}$

Proposition. X kompakt, Y Hausdorffraum, $Abb.\ f: X \longrightarrow Y$ stetig, injektiv $\Longrightarrow f: X \longrightarrow Y$ ist ein Homöomorphismus.

Beweis. $f: X \longrightarrow f(X)$ ist stetig und bijektiv \Longrightarrow man braucht zu zeigen, dass die inverse Abb. stetig ist, oder, dass f abgeschlossene Teilmengen von X auf abgeschlossene Teilmengen von f(X) abbildet. Nun, wenn $X' \subset X$ abgeschlossen, dann auch kompakt $\Longrightarrow f(X')$ kompakt, da Kompaktheit unter stetigen Abbildungen erhalten bleibt $(f(X') = \bigcup_{i \in I} U_i \Longrightarrow X' = \bigcup_{i \in I} f^{-1}U_i \overset{X' \text{ komp.}}{=} \bigcup_{k=1}^n f^{-1}U_{i_k} \Longrightarrow f(X') = \bigcup_{k=1}^n U_{i_k}) \Longrightarrow f(X') \subset Y$ abgeschlossen nach obiger Proposition.

*Satz. X Hausdorffraum $\iff \Delta := \{(x, x) \mid x \in X\}$ ist abgeschlossen bzgl. der Produkttopologie auf $X \times X$.

2 TOPOLOGISCHE RÄUME

Beweis. Sei X hausdorffsch, $x \neq y \Longrightarrow \exists$ Umgebungen $U_x \cap U_y = \emptyset \Longrightarrow (U_x \times U_y) \cap \Delta = \emptyset$ Umgebung von $(x,y) \Longrightarrow (X \times X) \setminus \Delta$ offen. Rückrichtung analog, wobei U_x, U_y Projektionen einer Umgebung U von (x,y) auf beide Komponenten.

*Satz. X Zusammenhängend $\iff X$, \emptyset die einzigen offenen und abgeschlossenen Mengen in X.

Beweis. " \Longrightarrow " Ang. $A \notin \{\emptyset, X\}$ offen und abgeschlossen $\Longrightarrow X \setminus A$ offen $\Longrightarrow X = A \sqcup X \setminus A \Longrightarrow$ Widerspruch zu X zusammenhängend.

" \Leftarrow " Ang. $X = A \sqcup B$, A, B offen, nichtleer \Rightarrow A, B offen und abgeschlossen \Rightarrow Widerspruch.

2 Homotopie

Definition. Sei Y ein topologischer Raum, $A \subset Y$ ein Teilraum. A heißt Deformations retrakt von Y, wenn $\exists F: Y \times [0,1] \rightarrow Y$ stetig, s.d.

- $F(\cdot,0) = \mathrm{id}_Y$,
- $F(y,1) \in A \forall y \in Y$,
- $F(a, t) = a \forall t \in [0, 1] \forall a \in A.$

Definition. Sei X ein topologischer Raum, $f: X \to Y$ (d.h. f surjektiv), dann kann man eine Topologie $\mathcal{T}_f := \{U \subset Y \mid f^{-1}(U) \subset X \text{ offen}\}$ auf Y definieren. Diese heißt *Quotiententopologie*.

Proposition (universelle Eigenschaft der Quotiententopologie). Sei Y eine Menge, X ein topologischer Raum, $f: X \rightarrow Y$ (surjektive) Abbildung. Betrachte (Y, \mathcal{T}_f) . Dann gilt für alle topologische Räume Z: eine Abb. $g: Y \rightarrow Z$ ist stetig $\iff g \circ f: X \rightarrow Z$ ist stetig.

Beweis. " \Longrightarrow " Sei $U \subseteq Z$ offen. Dann $g^{-1}(U)$ offen da g stetig und $f^{-1}(g^{-1}(U)) = (g \circ f)^{-1}(U)$ offen bzgl. \mathcal{T}_f . Also $g \circ f$ stetig.

" \Leftrightarrow " $g \circ f$ stetig $\Longrightarrow (g \circ f)^{-1}(U) = f^{-1}(g^{-1}(U))$ offen $\Longrightarrow g^{-1}(U)$ offen wegen \mathcal{T}_f $\Longrightarrow g$ stetig.

2.1 Homotopie zwischen Abbildungen

Definition. Seien X, Y topologische Räume, f_0 , $f_1: X \to Y$ (stetig). Eine *Homotopie* zwischen f_0 und f_1 ist eine stetige Abbildung $F: X \times [0,1] \to Y$ mit $F(\cdot,0) = f_0$, $F(\cdot,1) = f_1$.

Definition. Sei $A \subset X$ ein Teilraum. Dann heißt eine Abbildung $r: X \to A$ mit $r|_A = \mathrm{id}_A$ eine *Retraktion* von X auf A.

Definition. Seien X, Y topologische Räume, f_0 , $f_1: X \to Y$ stetig, $A \subset X$ Teilraum mit $f_0|_A = f_1|_A$, f_0 und f_1 heißen homotop relativ zu A, wenn $\exists F: X \times [0,1] \to Y$ Homotopie zwischen f_0 und f_1 , sodass $F(a,t) = f_0(a) = f_1(a) \forall a \in A \forall t \in [0,1]$.

Definition. Zwei topologische Räume X, Y heißen *homotopieäquivalent*, wenn $\exists f: X \to Y$, $g: Y \to X$, sodass $f \circ g$ homotop zu id $_Y$ und $g \circ f$ homotop zu id $_X$.

2.2 Konstruktionen und Beispiele

Definition. Ein *CW-Komplex X* ist ein topologischer Raum, der wie folgt entsteht:

- (0) Fange mit einem diskreten Raum $X^0 :=$ disjunkte Vereinigung von Punkten an.
- (1) Definiere induktiv die Räume X^n (die sogenannte n-Skelette / n-Gerüste von X) für $n \geq 1$ folgendermaßen: für eine Familie $\{e_{\alpha}^n\}_{\alpha \in A}$ von n-Zellen fixiere stetige Abbildungen $\varphi_{\alpha}^n: \partial e_{\alpha}^n \to X^{n-1}$ und definiere $X^n:=(\bigsqcup_{\alpha \in A} e_{\alpha}^n) \cup_{\varphi_{\alpha}^n} X^{n-1}$.
- (2) $X = \bigcup_{n \in \mathbb{N}} X^n$ mit der *schwachen Topologie*: $Y \subset X$ offen $\iff Y \cap X^n$ offen für alle n.

2.3 Fundamentalgruppe

Proposition. Seien X, Y topologische Räume, $f: X \to Y$ stetig, $x_0 \in X$, $y_0 \in Y$, $f(x_0) = y_0$. Dann gilt: die Abbildung $f_*: \pi_1(X, x_0) \to \pi_1(Y, y_0)$, $[\gamma] \mapsto [f \circ \gamma]$ ein Gruppenhomomorphismus. Außerdem: wenn $g: Y \to Z$ stetig, $g(y_0) = z_0 \Longrightarrow (g \circ f)_* = g_* \circ f_*: \pi_1(X, x_0) \to \pi_1(Z, z_0)$.

Beweis. Wohldefiniert: Wenn $\gamma_1 \sim \gamma_2$ durch H, dann $f \circ \gamma_1 \sim f \circ \gamma_2$ durch $f \circ H$. Homomorphismus: $f_*(\gamma_2 \cdot \gamma_1) = [f \circ (\gamma_2 \cdot \gamma_1)] = [(f \circ \gamma_2) \cdot (f \circ \gamma_1)] = [f \circ \gamma_2] \cdot [f \circ \gamma_1] = f_*(\gamma_2) \cdot f_*(\gamma_1)$. Letzte Aussage: $(g \circ f)_*([\gamma]) = [g \circ f \circ \gamma] = g_*([f \circ g]) = (g_* \circ f_*)([\gamma])$.

Lemma. $f, f': X \to Y$ zwei stetige Abb. mit $f(x_0) = f'(x_0) = y_0 \implies f \sim f'$ rel. zu $x_0 \implies f_* = f'_*$.

Beweis. $f_*([\gamma]) = [f \circ \gamma]$. Erste Homotopie $f \leadsto f'$ induziert eine Homotopie $f \circ \gamma \leadsto f'([\gamma]) = [f \circ \gamma] = [f' \circ \gamma] = f'([\gamma])$.

Lemma. Sei X ein wegzusammenhängender Raum, $x_0, x_1 \in X$. Dann gilt: $\pi_1(X, x_0) \cong \pi_1(X, x_1)$. Jede Homotopieklasse der Wege $\beta: I \to X$, $\beta(0) = x_0$, $\beta(1) = x_1$ induziert einen solchen Isomorphismus $\Theta_{[\beta]}: \pi_1(X, x_0) \to \pi_1(X, x_1)$, $[\gamma] \mapsto [\beta \cdot \gamma \cdot \beta^{-1}]$.

2.4 Hochhebung von Wegen und Homotopien

Definition. Eine *Überlagerung* $p: Y \to X$ ist eine surjektive stetige Abbildung mit folgenden Eigenschaften: Für jeden Punkt $x \in X$ ex. eine Umgebung $U \ni x$, so dass

$$p^{-1}(U) = \bigsqcup_{j \in I} V_j \subset Y,$$

wobei $V_j \subset Y$ offen und so dass $p|_{V_i} \to U$ ein Homöomorphismus ist.

Proposition (Homotopiehochhebungseigenschaft von Überlagerungen). Sei $p: Y \to X$ eine überlagerung, $F: Z \times I \to X$ stetig. Sei $\widetilde{F}: Z \times \{0\} \to Y$ eine Abbildung mit $p \circ \widetilde{F} = F|_{Z \times \{0\}}$ (intuitiv: F ist eine Homotopie zwischen $F|_{Z \times \{0\}}$ und $F|_{Z \times \{1\}}$, und eine Hochhebung von der ersten Abbildung ist gegeben). Dann existiert eine Fortsetzung $\widetilde{F}: Z \times I \to Y$ mit $p \circ \widetilde{F} = F$, von der obigen $\widetilde{F}: Z \times \{0\} \to Y$.

Korollar. (1) Gegeben $\gamma: I \to X$ und $y_0 \in Y$ s.d. $p(y_0) = \gamma(0)$, es ex. genau eine Hochhebung $\widetilde{\gamma}: I \to Y$ mit $\widetilde{\gamma}(0) = y_0$ ($Z = \{*\}, F = \gamma: I \to X$, $\widetilde{F}|_{\{0\}} = y_0$).

(2) Gegeben $\gamma_1, \gamma_2 : I \to X$, eine Homotopie $H : \gamma_1 \leadsto \gamma_2$ und $y_0 \in p^{-1}(\gamma_1(0)) = p^{-1}(\gamma_2(0)) \Longrightarrow \exists ! \widetilde{H} : I \times I \to Y$ zwischen den Hochhebungen $\widetilde{\gamma}_1, \widetilde{\gamma}_2$ s.d. $\widetilde{H}|_{I \times \{0\}} = H$.

Beweis (der Homotopiehochhebungseigenschaft). Sei $z_0 \in Z$ fest. Wir werden erstmal \widetilde{F} auf $N \times I$ fortsetzen, wobei $N \ni z_0$ eine Umgebung von z_0 ist. Die Abbildung

 $F:Z\times I\longrightarrow X \text{ ist stetig, deswegen existiert für jedes }t\in X \text{ eine Umgebung }N_t\times(a_t,b_t)\subset Z\times I \text{ von }(z_0,t), \text{ s.d. }F(N_t\times(a_t,b_t))\subset U^t\subset X \text{ für eine Umgebung }U^t \text{ von }F(z_0,t) \text{ mit }p^{-1}(U^t)=\bigsqcup_{j\in I}V_j^t, \text{ wobei }p|_{V_j^t} \text{ ein Homöomorphismus ist }(F \text{ stetig}+\text{Def. der }U\text{berlagerung}). Sei \bigcup_{t\in I}(a_t,b_t)=I \text{ eine off. }U\text{berdeckung, }I \text{ kompakt} \implies \text{es gibt eine endliche Teilüberdeckung, also }I=\bigcup_{i=1}^n(a_{t_i},b_{t_i}), \text{ o.B.d.A. }0=a_{t_1}< b_{t_1}<\ldots < a_{t_n}< b_{t_n}=1. \text{ Sei }N:=\bigcap_{i=1}^nN_{t_i}\subset Z. \text{ Wir definieren }\widetilde{F} \text{ auf }N\times I \text{ induktiv: (o.B.d.A.)}$ $F(N\times[a_{t_1},b_{t_1}))\subset U^{t_1}, \text{ deswegen }\exists!j \text{ s.d. }\widetilde{F}(N\times\{0\})\subset V_j^{t_1}; \text{ definiere }\widetilde{F}|_{N\times(a_{t_1},b_{t_1})}:=p_{j,1}^{-1}\circ F, \text{ wobei }p_{j,1}^{-1}:U^{t_1}\longrightarrow V_j^{t_1} \text{ der inverse Homöomorphismus ist. Weiter: Wenn }\widetilde{F}$ auf $N\times\bigcup_{i=1}^k(a_{t_i},b_{t_i})$ definiert ist, dann ist der Durchschnitt $(a_{t_k},b_{t_k})\cap(a_{t_{k+1}},b_{t_{k+1}})\neq\emptyset$ (evtl. nach Umnummerierung). Dann definiert man $\widetilde{F}|_{N\times(a_{t_{k+1}},b_{t_{k+1}})}:=p_{j,k+1}^{-1}\circ F, \text{ wobei }p_{j,k+1}:U^{t_{k+1}}\longrightarrow V_j^{t_{k+1}} \text{ ein Homöomorphismus ist, }F(N\times(a_{t_k},b_{t_k}))\subset V_j^{t_{k+1}}. \text{ Nach endlich vielen Schritten erhalten wir }\widetilde{F}:N\times I\longrightarrow Y. \text{ Diese Fortsetzung ist eindeutig, weil die Wahl von }j\text{ in jedem Schritt eindeutig war. Schreibe jetzt }Z=\bigcup_{z\in Z}N_z\text{ (wiederhole für jede Wahl von }z_0)\Longrightarrow \text{ erhalte }\widetilde{F}_z:N_z\times I\longrightarrow Y \text{ für jedes }z\text{. Sobald }N_z\cap N_{z'}\neq\emptyset, \text{ gilt }\widetilde{F}_z=\widetilde{F}_{z'}, \text{ weil die Fortsetzung eindeutig}\Longrightarrow \text{ Definiere }\widetilde{F}_z\text{ eindeutig}.$

2.5 Fundamentalgruppe von S^1

Satz. $\pi_1(S^1, 1) \cong \mathbb{Z}$ $(S^1 \subseteq \mathbb{C})$, sie wird durch die Äquivalenzklasse der Schleife $\omega : I \to S^1$, $s \mapsto e^{2\pi i s} = \cos(2\pi s) + i\sin(2\pi s)$ erzeugt.

Beweis. $p: \mathbb{R} \to S^1$, $x \mapsto e^{2\pi i x}$ ist eine Überlagerung. Die Hochhebung $\widetilde{\omega}$ von ω mit $\widetilde{\omega}(0) = 0$ ist $\widetilde{\omega}(s) = s$ (damit $(p \circ \widetilde{\omega})(s) = e^{2\pi i s} = \omega(s)$). Entsprechend ist $\widetilde{\omega}^n(s) = n \cdot s$ die eindeutige Hochhebung von ω^n . Definiere eine Abbildung $\phi: \pi_1(S^1, 1) \to \mathbb{Z}$ durch $\phi([\gamma]) := \widetilde{\gamma}(1)$, wobei $\widetilde{\gamma}$ die (eindeutige) Hochhebung von γ ist.

Z.z.: ϕ ist wohldefiniert: $\widetilde{\gamma}$ ist eine Hochhebung, also $p \circ \widetilde{\gamma} = \gamma \Longrightarrow (p \circ \widetilde{\gamma})(1) = p(\widetilde{\gamma}(1)) = \gamma(1) = 1 \Longrightarrow \widetilde{\gamma}(1) \in p^{-1}(1) = \mathbb{Z}$. Seien γ_1, γ_2 zwei homotope Schleifen an 1. Seien $\widetilde{\gamma}_1, \widetilde{\gamma}_2$ ihre Hochhebungen. Nach dem Korollar von oben sind auch $\widetilde{\gamma}_1, \widetilde{\gamma}_2$ homotop, und daher $\widetilde{\gamma}_1(1) = \widetilde{\gamma}_2(1)$.

Z.z.: ϕ ist ein Gruppenhomomorphismus: Sei $\gamma \in \Omega(S^1,1)$. Hebe γ hoch zu $\widetilde{\gamma}$, sei $\phi([\widetilde{\gamma}]) = n \in \mathbb{Z}$. Jetzt sind $\widetilde{\gamma}$ und $\widetilde{\omega}^n$ zwei Wege in \mathbb{R} mit den gleichen Anfangspunkten $\widetilde{\gamma}(0) = 0 = \widetilde{\omega}^n(0)$ und Endpunkten $\widetilde{\gamma}(1) = n = \widetilde{\omega}^n(1) \Longrightarrow \widetilde{\gamma} \sim \widetilde{\omega}^n$, weil je zwei Wege in \mathbb{R} mit gleichen Anfangs- und Endpunkten homotop sind. Daher: $\gamma = p \circ \widetilde{\gamma} \sim p \circ \widetilde{\omega}^n = \omega^n$. Ferner $\phi([\omega^n]) = n$, $\phi([\omega^n] \cdot [\omega^m]) = \phi([\omega^{n+m}]) = n + m = \phi([\omega^n]) + \phi([\omega^m]) \Longrightarrow \phi$ ist eine Homomorphismus, surjektiv. Bleibt: ϕ ist injektiv. Dazu $\phi([\omega^n]) = 0 \Longrightarrow n = 0$, $\omega^0 = 1$.

Proposition. Seien X, Y topologische Räume, $x_0 \in X$, $y_0 \in Y$. Dann gilt: $\pi_1(X \times Y, (x_0, x_0)) \cong \pi_1(X, x_0) \times \pi_1(Y, y_0)$.

Beweis. Jede Schleife γ in $X \times Y$ an (x_0, y_0) definiert durch Verknüpfung mit Projektionen $\pi_X : X \times Y \to X$, $(x, y) \mapsto x$, $\pi_Y : X \times Y \to Y$, $(x, y) \mapsto y$ zwei Schleifen $\pi_X \circ \gamma$, $\pi_Y \circ \gamma$. Umgedreht: ein Paar $(\gamma_x, \gamma_y) \in \Omega(X, x_0) \times \Omega(Y, y_0)$ definiert Schleife $\gamma(x) := (\gamma_x(x), \gamma_y(x)) \in \Omega(X \times Y, (x_0, y_0))$. Diese Entsprechung respektiert Homotopien und Verknüpfungen (nachzurechnen) $\implies (\pi_X)_* \times (\pi_Y)_* : \pi_1(X \times Y, (x_0, y_0)) \to \pi_1(X, x_0) \times \pi_1(Y, y_0)$ ist ein Isomorphismus.

Korollar.
$$\pi_1(\Pi^n) = \pi_1(S^1 \times ... \times S^1) \cong \mathbb{Z}^n$$
.

2.6 Überlagerungen und Fundamentalgruppe

Sei $p:(Y,y_0) \to (X,x_0)$ eine Überlagerung, dann ist $p_*: \pi_1(Y,y_0) \to \pi_1(X,x_0), [\gamma] \mapsto [p \circ \gamma]$ der induzierte Gruppenhomomorphismus.

Proposition. p_* ist injektiv, $p_*(\pi_1(Y, y_0)) \subset \pi_1(X, x_0)$ ist die Untergruppe der Homotopieklassen von Schleifen γ , deren Hochhebung $\widetilde{\gamma}$ mit $\widetilde{\gamma}(0) = y_0$ auch Schleife ist.

 $\begin{array}{l} \textbf{Beweis.} \ \ \text{Sei} \ [\widetilde{\gamma}] \in \ker p_*, \text{ d.h. } p \circ \widetilde{\gamma} \sim \underline{x_0}. \ \text{Dann ist } \underline{y_0} \ \text{die eindeutige Hochhebung von } p \circ \gamma \\ \Longrightarrow \gamma \sim \underline{y_0}. \ \text{Wenn} \ [\gamma] \in \operatorname{Im}(p_*) \Longrightarrow [\widetilde{\gamma}] \in \pi_1(Y,y_0), \ \text{weil} \ p_*([\widetilde{\gamma}]) = [\gamma] \Longrightarrow \widetilde{\gamma} \in \Omega(Y,y_0). \end{array}$

Definition. Sei (X, x_0) ein punktierter Raum. Eine Überlagerung $\widetilde{p}: (\widetilde{X}, \widetilde{x}_0) \to (X, x_0)$ heißt *universelle Überlagerung*, falls $\pi_1(\widetilde{X}, \widetilde{x}_0) = \{e\}$.

Definition. X heißt *semilokal einfach zusammenhängend* wenn für jede offene Teilmenge $x \in W \subset X$ eine offene Teilmenge $x \in U \subset W \subset X$ existiert s.d. jede Schleife $\gamma \in \Omega(U,x)$ homotop zur konstanten Schleife \underline{x} ist.

Dies ist eine Eigenschaft von X, die notwendig für die Existenz von einer universellen Überlagerung ist: Sei $\widetilde{p}:(\widetilde{X},\widetilde{x}_0) \to (X,x_0)$ eine universelle Überlagerung, sei $\gamma \in \Omega(X,x_0)$, $\widetilde{\gamma} \in \Omega(\widetilde{X},\widetilde{x}_0)$ eine Hochhebung von γ (also setzen wir voraus, dass γ zu einer Schleife hochgehoben wird). Dann ist $\widetilde{\gamma} \sim \underline{\widetilde{x}_0}$, weil \widetilde{X} einfach zusammenhängend ist. Wenn $U \ni x_0$ eine Umgebung von x_0 derart ist, dass $p^{-1}(U) = \bigsqcup_{\alpha \in F} V_\alpha$ mit $p: V_\alpha \to U$ Homöomorphismus, dann liegt $\widetilde{x}_0 \in V_{\alpha_0}$, also hebt sich jede Schleife $\gamma \in \Omega(U,x_0)$ zu $\widetilde{\gamma} \in \Omega(V_{\alpha_0},\widetilde{x}_0)$. D.h. $\widetilde{\gamma} \sim \widetilde{x}_0 \Longrightarrow \gamma \sim x_0$.

Definition. X heißt *lokal wegzusammenhängend*, wenn $\forall x \in W \subset X$ offen eine offene Teilmenge $x \in U \subset W$ ex. s.d. U wegzusammenhängend ist.

Sei $\widetilde{X} := \{ [\gamma] \mid \gamma : I \to X \text{ Weg mit } \gamma(0) = x_0 \}, \ p : \widetilde{X} \to X, \ [\gamma] \mapsto \gamma(1), \ \widetilde{x}_0 := \underline{x_0} \in \widetilde{X}.$ Die Abb. p ist wohldefiniert und surjektiv, da X wegzusammenhängend. Wir brauchen eine Topologie auf \widetilde{X} , s.d. $p : (\widetilde{X}, \widetilde{x}_0) \to (X, x_0)$ eine Überlagerung ist. Dazu betrachten wir: $\mathcal{U} := \{U \subset X \text{ offen, wegzusammenhängend } | \iota_* : \pi_1(U) \to \pi_1(X) \text{ trivial} \}.$ Bemerkung: $U \in \mathcal{U}, \ V \subset U \text{ offen, wegzusammenhängend } \Longrightarrow \ V \in \mathcal{U} \ (\iota_*^V : \pi_1(V) \to \pi_1(U) \to \pi_1(X) \text{ ist trivial, weil } \iota_*^U \text{ trivial}).$

Behauptung. Sei X lokal wegzusammenhängend, semilokal einfach zusammenhängend $\implies \mathcal{U}$ ist eine Basis der Topologie auf X.

Beweis. $\forall W \subset X$ offen $\forall x \in W \exists U_x$ offen, zusammenhängend s.d. jede Schleife in U_x homotop zur konstanten Schleife in X ist. Es folgt $W = \bigcup_{x \in W} U_x$.

Wir beweisen nun den nächsten Satz. Sei $U \in \mathcal{U}$ und $[\gamma] \in \widetilde{X}$ mit $\gamma(1) \in U$. Definiere $U_{[\gamma]} := \{ [\eta \cdot \gamma] \mid \eta : I \to X \text{ mit } \eta(0) = \gamma(1) \text{ und } \eta(I) \subset U \}$

(wohldefiniert, weil Homotopie verträglich mit Verknüpfung ist). Die Abbildung

$$p|_{U_{[\gamma]}}:U_{[\gamma]}\to U$$

ist surjektiv, weil U wegzusammenhängend ist, auch injektiv, weil wenn $(\eta_1 \cdot \gamma)(1) = (\eta_2 \cdot \gamma)(1) \Longrightarrow [\eta_1 \cdot \gamma] = [\eta_2 \cdot \gamma]$. Sei jetzt \mathcal{T} die Topologie auf \widetilde{X} , die $\{U_{[\gamma]} \mid U \in \mathcal{U}, [\gamma] \in \widetilde{X}\}$ als Basis hat. Dann gilt: $p|_{U_{[\gamma]}} : U_{[\gamma]} \to U$ ist ein Homöomorphismus (wenn $V_{[\gamma]} \subset U_{[\gamma]} \iff V \subset U$). Also ist $p: (\widetilde{X}, \widetilde{x}_0) \to (X, x_0)$ stetig, weil Stetigkeit eine lokale Eigenschaft ist. Sei jetzt $U \in \mathcal{U}$, wähle $x \in U$.

$$p^{-1}(U) = \bigsqcup_{[\gamma]} {}^{1}U_{[\gamma]}.$$

Weil: Sei $U_{[\gamma_1]} \cap U_{[\gamma_2]} \neq \emptyset$. D.h. $[\eta_1 \cdot \gamma_1] = [\eta_2 \cdot \gamma_2]$ für gewisse $\eta_1, \eta_2 : I \to U, \gamma_1, \gamma_2 : I \to X$. Sei $[\eta' \cdot \gamma_1] \in U_{[\gamma_1]}$. Dann gilt

$$[\eta' \cdot \gamma_1] = [\eta' \cdot \overline{\eta_1} \cdot \eta_1 \cdot \gamma_1] = [\eta' \cdot \overline{\eta_1} \cdot \eta_2 \cdot \gamma_2] = [\eta'' \cdot \gamma_2] \in U_{[\gamma_2]}$$

 $\Longrightarrow U_{[\gamma_1]} = U_{[\gamma_2]}$. Also: $p: (\widetilde{X}, \widetilde{x}_0) \to (X, x_0)$ ist eine Überlagerung. Bleibt zu zeigen: \widetilde{X} ist einfach zusammenhängend.

(1) \widetilde{X} ist wegzusammenhängend. Sei $[\gamma] \in \widetilde{X}$. Wir brauchen einen Weg $\widetilde{\gamma}: I \to \widetilde{X}$ mit $\widetilde{\gamma}(0) = \widetilde{x}_0, \, \widetilde{\gamma}(1) = \gamma$. Def.

$$\widetilde{\gamma}(t) := s \mapsto \begin{cases} \gamma(s) & \text{falls } s \in [0, t], \\ \gamma(t) & \text{falls } s \in [t, 1] \end{cases}$$
 (tautologische Definition)

$$\implies \widetilde{\gamma}(0) = x_0, \, \widetilde{\gamma}(1) = \gamma.$$

(2) Es reicht zu zeigen: $p_*(\pi_1(\widetilde{X},\widetilde{x}_0)) = \{e\} < \pi_1(X,x_0)$, da p_* injektiv ist. Das Bild $p_*(\pi_1(\widetilde{X},\widetilde{x}_0))$ besteht aus Homotopieklassen $[\gamma]$ von Wegen $\gamma \in \Omega(X,x_0)$, deren Hochhebung $\widetilde{\gamma} \in \Omega(\widetilde{X},\widetilde{x}_0)$. Wenn $\gamma \in \Omega(X,x_0)$, sei $\widehat{\gamma}: I \to \widetilde{X}$ wie oben definiert. $\widehat{\gamma}$ ist eine Hochhebung von γ mit $\widehat{\gamma}(0) = \underline{x_0}$ und $\{\widehat{\gamma}(t)\}_{t \in I}$ ist eine Homotopie zwischen \widetilde{x}_0 und $\widetilde{\gamma}$. D.h.: $[\widetilde{\gamma}] = [\widetilde{x}_0] \Longrightarrow \pi_1(\widetilde{X},\widetilde{x}_0) = \{e\}$.

Satz. Sei X ein wegzusammenhängender, lokal wegzusammenhängender und semilokal einfach zusammenhängender Raum. Dann existiert eine universelle Überlagerung p: $(\widetilde{X}, \widetilde{x}_0) \rightarrow (X, x_0)$ (für jedes $x_0 \in X$).

Definition. Sei Γ eine Gruppe, Y ein topologischer Raum. Eine *Wirkung* von Γ auf Y ist ein Gruppenhomomorphismus $\alpha: \Gamma \to \operatorname{Homeo}(Y)$. Bezeichnung: $\Gamma \overset{\alpha}{\frown} Y$. Sei $\Gamma \overset{\alpha}{\frown} Y$ eine Wirkung, $R_{\Gamma \overset{\alpha}{\frown} Y} := \{(y, \alpha(g)(y)) \mid y \in Y, g \in \Gamma\}$.

$$\Gamma^{\backslash Y} := R_{\Gamma \overset{\alpha}{\frown} Y} \backslash Y = \underset{y \in Y, g \in \Gamma}{y \sim \alpha(g)(y)}, \backslash Y$$

heißt Quotientenraum der Wirkung (der Raum aller Orbits).

Definition. Sei X ein topologischer Raum, $\alpha : \Gamma \cap X$ eine Wirkung. Dann heißt α eine Überlagerungswirkung, wenn jedes $x \in X$ eine Umgebung $U \ni x$ hat s.d. $\forall g_1 \neq g_2 \in \Gamma$ gilt $g_1U \cap g_2U = \emptyset$ $(g_1U = \alpha(g_1)(U), g_2U = \alpha(g_2)(U))$.

Proposition. $\alpha:\Gamma \cap X$ ist eine Überlagerungswirkung $\Longrightarrow q:X \to_{\Gamma} \backslash X$ ist eine Überlagerung.

Beweis. q ist surjektiv und stetig bzgl. Quotiententopologie. Sei $x \in X$, $U \ni x$ aus der Def. der Überlagerungswirkung. Dann gilt für V := q(U): $q^{-1}(V) = \left| \begin{array}{c} \\ \\ \\ \\ \end{array} \right|_{g \in \Gamma} gU$, denn:

• $q(x) \in V \iff \exists g \in \Gamma \text{ s.d. } g \cdot x \in U \text{ (Def. des Quotientenraumes)}.$

¹Vereinigung über Homotopieklassen von Wegen $\gamma: I \to X, \gamma(0) = x_0, \gamma(1) = x \in U$

- die Vereinigung ist disjunkt, denn: $g_1U \cap g_2U \neq \emptyset \Longrightarrow g_1 = g_2$ nach Definition eine Überlagerungswirkung.
- $q|_{gU}: gU \to V$ ist ein Homöomorphismus nach Definition der Quotiententopologie. (Inverse stetig wegen Injektivität).

Sei (X, x_0) topologischer Rum, $(\widetilde{X}, \widetilde{x}_0)$ eine universelle Überlagerung, $\Gamma := \pi_1(X, x_0)$. Wir haben folgende Rechtswirkung von Γ auf $(\widetilde{X}, \widetilde{x}_0)$: $\widetilde{\beta} : \widetilde{X} \times \Gamma \to \widetilde{X}, ([\gamma], [\delta]) \mapsto [\gamma \cdot \delta]$. Dies ist tatsächlich eine Wirkung, denn $[(\gamma \cdot \delta_1) \cdot \delta_2] = [\gamma \cdot (\delta_1 \cdot \delta_2)]$. Es ist ebenfalls eine Überlagerungswirkung: Für jedes $\widetilde{x} \in \widetilde{X}$ gibt es eine Umgebung $U_{[\gamma]}$ (bei der Konstruktion von \widetilde{X} benutzt) mit: $[\gamma_1] \neq [\gamma_2] \in \pi_1(X, x_0) \Longrightarrow U_{[\gamma]} \cdot \gamma_1 \cap U_{[\gamma]} \cdot \gamma_2 = \emptyset$ (wurde bei Konstruktion von \widetilde{X} bewiesen).

Korollar. Sei $\Lambda < \Gamma := \pi_1(X, x_0)$ eine Untergruppe. Dann gilt: die Abbildung $q_\Lambda : (\widetilde{X}, \widetilde{x}_0) \to (\widetilde{X}, \widetilde{x}_0)/\Lambda =: X_\Lambda$ ist eine Überlagerung.

Also haben wir:

$$(\widetilde{X}, \widetilde{x}_0) \qquad q_{\Lambda}$$

$$\widetilde{p} \downarrow \qquad (X, x_0) \leftarrow p_{\Lambda} (X_{\Lambda}, x_0^{\Lambda})$$

Wenn $\widetilde{x} \cdot g = \widetilde{y}$ für ein $g \in \Lambda$ mit $\widetilde{x} = [\gamma]$, $\widetilde{y} = [\gamma']$, $g = [\delta]$. Dann $[\gamma'] = [\gamma \cdot \delta] \Longrightarrow \gamma'(1) = \gamma(1) \Longrightarrow \widetilde{p}(\widetilde{y}) = \widetilde{p}(\widetilde{x}) \Longrightarrow \exists p_{\Lambda} : (X_{\Lambda}, x_{0}^{\Lambda}) \to (X, x_{0})$ stetig (nach universellen Eigenschaft von Quotientenraum) $p_{\Lambda}([\gamma] \cdot \Lambda) = \gamma(1)$.

Proposition. p_{Λ} ist eine Überlagerung.

Beweis. Zu zeigen: $\forall x \in X \exists U \ni x \text{ s.d. } p_{\Lambda}^{-1}(U) = \bigsqcup_{j \in J} V_j \text{ s.d. } p_{\Lambda}|_{V_j} : V_j \overset{\cong}{\to} U$ ein Homöomorphismus. Nimm U aus der Überlagerungseigenschaft von $\widetilde{p} \Longrightarrow \widetilde{p}(U) = \bigsqcup_{k \in K} \widetilde{V}_k \subset \widetilde{X} \text{ s.d. } \widetilde{p}|_{\widetilde{V}_k}$ Homöomorphismus $\Longrightarrow V_j := q_{\Lambda}(\widetilde{V}_k)$, wo \widetilde{V}_{k_j} einzeln (aus jeder Λ-Bahn wird eine gewählt) aus Λ-Bahnen von \widetilde{V}'_k 's gewählt werden.

Proposition. $(p_{\Lambda})_*(\pi_1(X_{\Lambda}, x_0^{\Lambda})) = \Lambda < \pi_1(X, x_0).$

Beweis. Charakterisierung von $(p_{\Lambda})_*(\pi_1(X_{\Lambda}, x_0^{\Lambda})) : [\gamma] \in (p_{\Lambda})_*(\pi_1(X_{\Lambda}, x_0^{\Lambda})) \iff \widetilde{\gamma}$ Hochhebung nach X_{Λ} ist eine Schleife in X_{Λ} . D.h. $\widetilde{\gamma}(1) = \widetilde{\gamma}(0) = x_0^{\Lambda}$. Sei $\widetilde{\widetilde{\gamma}}$ die Hochhebung von γ nach \widetilde{X} (es gilt: $q_{\Lambda}(\widetilde{\widetilde{\gamma}}) = \widetilde{\gamma}$). Es gilt $\widetilde{\gamma}(1) = x_0^{\Lambda}$ gdw. $\widetilde{\widetilde{\gamma}}(1)$ liegt in der Λ -Bahn von \widetilde{x}_0 , also $\exists [\delta] \in \Lambda$ s.d. $\widetilde{\widetilde{\gamma}}(1) = \widetilde{x}_0 \cdot [\delta] = [\delta]$. Aber $\widetilde{\widetilde{\gamma}}(1) = [\gamma] \in \widetilde{X}$ (wenn $\gamma : I \to X$ Weg, ist $\widetilde{\widetilde{\gamma}} : I \to \widetilde{X}$, $t \mapsto [\gamma|_{[0,t]}]$ die Hochhebung von γ) $\Longrightarrow [\gamma] = [\delta] \in \Lambda$.

Definition. Zwei Überlagerungen $p:(Y,y_0)\to (X,x_0),\ p':(Y',y_0')\to (X,x_0)$ heißen *isomorph*, wenn $\exists h:Y\to Y'$ Homöomorphismus mit $p'\circ h=p$.

Proposition. Sei p, f wie oben, Z wegzusammenhängend. Eine Hochhebung $\overline{f}:(Z,z_0) \to (Y,y_0)$ existiert genau dann, wenn $f_*(\pi_1(Z,z_0)) \subset p_*(\pi_1(Y,y_0))$.

Beweis. Notwendigkeit erledigt. Sei $f:(Z,z_0)\to (X,x_0)$ gegeben, $f_*(\pi_1(Z,z_0))\subset p_*(\pi_1(Y,y_0))$. Sei $z\in Z$ gegeben, sei $\gamma_z:I\to Z$ ein Weg von z_0 nach z. $f\circ\gamma_z$ ist ein Weg in X mit Anfang x_0 . Sei $\overline{\gamma}_z$ die Hochhebung von $f\circ\gamma_z$ nach Y mit Anfang y_0 . Sei $\overline{f}(z):=\overline{\gamma}_z(1)$. Dann $p\circ\overline{f}(z)=f(z)$ nach Eigenschaften von $\overline{\gamma}_z$.

Frage: Warum ist \overline{f} wohldefiniert? Sei γ_z' ein anderer Weg von z_0 nach z, $f \circ \gamma_z', \overline{\gamma}_z'$ entsprechend. Zu zeigen: $\overline{\gamma}_z(\underline{1}) = \overline{\gamma}_z'(1)$. Es ist $\gamma_z'^{-1} \cdot \gamma_z \in \Omega(Z, z_0) \Longrightarrow f \circ (\gamma_z'^{-1} \cdot \gamma_z) \in \Omega(X, x_0)$. Also $[f \circ (\gamma_z'^{-1} \cdot \gamma_z)] = f_*([\gamma_z'^{-1} \cdot \gamma_z]) \subset \operatorname{Im} p_*$ nach Voraussetzung $\Longrightarrow f \circ \gamma_z'^{-1} \cdot \gamma_z$ hebt sich zu einer Schleife hoch; nach Eindeutigkeit ist diese Schleife gleich $\overline{\gamma}_z'^{-1} \cdot \overline{\gamma}_z \Longrightarrow \overline{\gamma}_z(1) = \overline{\gamma}_z'(1)$.

*Proposition (Eindeutigkeit der Hochhebung). Sei $p:(Y,y_0)\to (X,x_0)$ Überlagerung, $f:Z\to X$ Abbildung, Y wegzusammenhängend. Seien $\overline{f}_1,\overline{f}_2:Y\to X$ Hochehbungen $von\ f.$ Falls $\exists\ y\in Y\ s.d.\ \overline{f}_1(y)=\overline{f}_2(y)\Longrightarrow \overline{f}_1\equiv \overline{f}_2.$

Satz (Isomorphie von Überlagerungen). Seien $p:(Y,y_0) \to (X,x_0)$, $p':(Y',y_0') \to (X,x_0)$ Überlagerungen, sodass die Grundräume Y,Y' wegzusammenhängend sind mit $p_*(\pi_1(Y,y_0)) = p_*'(\pi_1(Y',y_0')) \subset \pi_1(X,x_0)$. Dann gilt: $p:(Y,y_0) \to (X,x_0)$ und $p':(Y',y_0') \to (X,x_0)$ sind isomorph.

Beweis. Satz über Hochhebung von Abbildungen liefert Hochhebungen $\overline{p}:(Y,y_0) \to (Y',y_0'), \overline{p}':(Y',y_0) \to (Y,y_0)$. Wir wollen zeigen, dass $\overline{p} \circ \overline{p}' = \operatorname{id}_{Y'}, \overline{p}' \circ \overline{p} = \operatorname{id}_{Y}$. Dazu: $\overline{p} \circ \overline{p}'(y_0') = y_0'$, d.h. die Menge $A' := \{y' \in Y' \mid \overline{p} \circ \overline{p}' = y'\} \neq \emptyset$. Wir zeigen: A' ist offen und abgeschlossen:

- A' abgeschlossen, denn $A' = ((\overline{p} \circ \overline{p}') \times \mathrm{id})^{-1}(\Delta)$, wobei $\Delta := \{(y', y') \mid y' \in Y'\} \subseteq Y' \times Y'$ (Δ abgeschlossen da Y' Hausdorffraum).
- A' ist offen: $\overline{p} \circ \overline{p}' : (Y', y_0') \to (Y', y_0')$ ist eine Hochhebung von der $p' : (Y, y_0) \to (X, x_0)$, denn $p' \circ \overline{p} \circ \overline{p}' = p \circ \overline{p}' = p'$.

Sei $U \subset X$ eine offene Teilmenge s.d. $p'^{-1}(U) = \bigsqcup_{j \in J} V_j$ s.d. $p'|_V : V_j \xrightarrow{\cong} U$ lokaler Homöomorphismus ist. Sei $y' \in Y'$ s.d. $p'(y') \in U$ und $\mathrm{id}(y') = \overline{p} \circ \overline{p}'(y')$. Es $\exists j$ s.d. $y' \in V_j$. Daher bildet $\overline{p} \circ \overline{p}'$ das V_j in V_j ab. Weil $p' \circ (\overline{p} \circ \overline{p}') = p'$ und p' (bzw. p'^{-1}) injektiv ist, folgt $\overline{p} \circ \overline{p}'|_{V_j} = \mathrm{id}|_{V_j} \Longrightarrow A'$ ist offen (mit jedem Punkt enthält sie eine Umgebung).

Nun ist Y' ist wegzusammenhängend $\Longrightarrow A' = Y' \Longrightarrow \overline{p} \circ \overline{p}' = \mathrm{id}$; aus Symmetriegründen folgt auch $\overline{p}' \circ \overline{p} = \mathrm{id}_Y$.

Satz (Klassifikationssatz für Überlagerungen). *Es gibt eine* 1:1-*Korrespondenz zwischen Isomorphieklassen von Überlagerungen* $p:(Y,y_0) \to (X,x_0)$ (wegzusammenhängend) und Untergruppen $\Lambda < \pi_1(X,x_0)$. Die Korrespondenz ordnet einer Überlagerung $p:(Y,y_0) \to (X,x_0)$ die Untergruppe $p_*(\pi_1(Y,y_0)) \subseteq \pi_1(X,x_0)$ zu.

Beweis. Aussage folgt aus Existenz von Überlagerungen zu jeder Untergruppe von $\pi_1(X, x_0)$ und da Überlagerungen, die zu gleicher Untergruppe gehören isomorph sind.

Lemma. $\Lambda_1 < \Lambda_2 < \Gamma$, dann gilt: es gibt ein kommutatives Diagramm

Entsprechend: Wenn es eine stetige Abbildung $q_{\Lambda_2}^{\Lambda_1}$ gibt, die das obige Diagramm kommutativ macht, dann gilt $\Lambda_1 < \Lambda_2$.

Beweis. Wenn $\Lambda_1 < \Lambda_2$, dann erhalten wir eine kanonische stetige Abbildung

$$q_{\Lambda_2}^{\Lambda_1}: X_{\Lambda_1} = \widetilde{X}/\Lambda_1 \to X_{\Lambda_1} = \widetilde{X}/\Lambda_2$$

 $p_{\Lambda_1} = p_{\Lambda_2} \circ q_{\Lambda_2}^{\Lambda_1}$ nach Konstruktion von p_{Λ_1} , p_{Λ_2} . Die Umkehrung folgt aus Eindeutigkeit der Korrespondenz zwischen Gruppen mit Überlagerungen.

Definition. Sei $p:(Y,y_0)\to (X,x_0)$ eine Überlagerung mit (X,x_0) wegzusammenhängend. Die Mächtigkeit von $p^{-1}(x_0)$ heißt *Anzahl der Blätter* der Überlagerung (wohldefiniert, da $|p^{-1}(x_0)|=|p^{-1}(x)|\forall x\in X$ wegen X wegzusammenhängend: γ ein Weg mit $\gamma(0)=x_0,\gamma(1)=x,\ p^{-1}(x_0)=\bigcup_i y_{0i}$, seien $\widetilde{\gamma}_i$ eindeutige Hochhebungen von γ mit $\widetilde{\gamma}_i(0)=y_{0i}$, dann $p^{-1}(x)=\bigcup_i \widetilde{\gamma}_i(1)$.

Lemma. Sei $p_{\Lambda}: (X_{\Lambda}, x_0^{\Lambda}) \to (X, x_0)$ eine Überlagerung, $\Lambda < \pi_1(X, x_0) =: \Gamma$. Dann gilt: $|p_{\Lambda}^{-1}(x_0)| = [\Gamma : \Lambda]$.

Beweis. Sei $\gamma \in \Omega(X, x_0)$, $\widetilde{\gamma} : I \to X_{\Lambda}$ die Hochhebung davon. Wenn $[\lambda] \in \Lambda \implies \widetilde{\lambda} \in \Omega(X_{\Lambda}, x_0^{\Lambda})$, das heißt, $\widetilde{\gamma} \cdot \widetilde{\lambda}$ hat gleichen Endpunkt wie $\widetilde{\gamma}$. Definiere jetzt

$$\Phi: \Gamma/\Lambda \to p_{\Lambda}^{-1}(x_0), [\gamma] \cdot \Lambda \mapsto \widetilde{\gamma}(1).$$

Φ ist injektiv: $\widetilde{\gamma}(1) = \widetilde{\gamma}'(1) \implies \widetilde{\gamma}'^{-1} \circ \widetilde{\gamma} \in \Omega(X_{\Lambda}, x_0^{\Lambda}) \implies [\gamma'^{-1} \circ \gamma] \in \Lambda \implies [\gamma] \in [\gamma'] \cdot \Lambda$. Φ ist surjektiv: X_{Λ} wegzusammenhängend $\implies \forall y \in p^{-1}(x_0) \exists \widetilde{\gamma} : I \to X_{\Lambda}$, ein Weg von x_0^{Λ} nach y; $p_{\Lambda} \circ \widetilde{\gamma} \in \Omega(X, x_0)$ mit Hochhebung $\widetilde{\gamma}$, $\Phi([p_{\Lambda} \circ \widetilde{\gamma}] \cdot \Lambda) = \widetilde{\gamma}(1) = y$.

Korollar. Die Anzahl der Blätter der universellen Überlagerung ist gleich $|\pi_1(X, x_0)|$.

Definition. Sei $(Y, y_0) \xrightarrow{p} (X, x_0)$ eine Überlagerung. Eine *Decktransformation* $h: Y \to Y$ ist ein Homöomorphismus mit $p \circ h = p$ (anders gesagt: $h: (Y, y_0) \to (Y, h(y_0))$ ist ein Isomorphismus von Überlagerungen). Die Decktransformationen bilden eine Gruppe, die durch Aut(p) bezeichnet wird.

Definition. Eine Überlagerung $(Y, y_0) \xrightarrow{p} (X, x_0)$ heißt *normal*, wenn die Gruppe von Decktransformationen $\operatorname{Aut}(p)$ *transitiv* auf $p^{-1}(x_0)$ wirkt $(\forall x_0' \in p^{-1}(x_0) \exists h \in \operatorname{Aut}(p)$ mit $h(x_0) = x_0'$).

Proposition. Sei $p:(Y,y_0)\to (X,x_0)$ eine Überlagerung, s.d. beide Räume wegzusammenhängend sind, sei $\Lambda:=p_*(\pi_1(Y,y_0))<\pi_1(X,x_0)=:\Gamma$ die zugehörige Untergruppe. Dann gilt:

- (1) p ist normal $\iff \Lambda \triangleleft \Gamma$ Normalteiler.
- (2) $\operatorname{Aut}(p) \cong N(\Lambda)/\Lambda$, wobei $N(\Lambda) := \{g \in \Gamma \mid g \Lambda g^{-1} = \Lambda\}$ der Normalisator von Λ in Γ .
- (3) Insbesondere gilt: $p \text{ normal} \Longrightarrow \operatorname{Aut}(p) \cong \Gamma /_{\Lambda}$.

Korollar. Aut $(\widetilde{p}) \cong \pi_1(X, x_0) = \Gamma$ für eine universelle Überlagerung $\widetilde{p}: (\widetilde{X}, \widetilde{x}_0) \to (X, x_0)$.

Beweis. Sei $h \in Aut(p)$, dann haben wir folgendes kommutative Diagramm:

$$h: (Y, y_0) \xrightarrow{p} (Y, y_1)$$

Beobachtung: $\Lambda = p_*\pi_1(Y, y_0) = p_*h_*\pi_1(Y, y_0) = p_*\pi_1(Y, y_1)$, weil h_* ein Isomorphismus ist.

Sei $\widetilde{\gamma}$ ein Weg in Y von y_0 nach y_1 , $\gamma := p \circ \widetilde{\gamma}$. Es gibt einen Isomorphismus $\phi_{\gamma}: \pi_1(Y,y_0) \longrightarrow \pi_1(Y,y_1)$, $[\delta] \mapsto [\widetilde{\gamma} \cdot \delta \cdot \widetilde{\gamma}^{-1}]$. p_* ist injektiv $\Longrightarrow p_*\pi_1(Y,y_0)$ und $p_*\pi_1(Y,y_1)$ sind durch $[\gamma] \in \pi_1(X,x_0)$ konjugiert: $[\gamma] \cdot \Lambda \cdot [\gamma]^{-1} = p_*\pi_1(Y,y_1)$. Wenn jetzt $h \in \operatorname{Aut}(p)$ mit $h(y_0) = y_1$, so ist $p_*\pi_1(Y,y_1) = \Lambda$ nach obiger Beobachtung $\Longrightarrow [\gamma] \cdot \Lambda \cdot [\gamma]^{-1} = \Lambda \iff [\gamma] \in N(\Lambda)$.

Das heißt: Wenn p normal ist, nimm ein beliebiges $[\gamma] \in \pi_1(X, x_0)$, lifte das zu $\widetilde{\gamma}$ in Y mit Anfang y_0 . Sei y_1 das Ende von $\widetilde{\gamma}$. Nach Normalität von $p \exists h \in \operatorname{Aut}(p)$ mit $h(y_0) = y_1 \Longrightarrow [\gamma] \in N(\Lambda)$. Da $[\gamma]$ beliebig war, folgt $N(\Lambda) = \Gamma \Longrightarrow \Lambda \unlhd \Gamma$.

Umgekehrt: Wenn $\Lambda \unlhd \Gamma$ normal, $y_1 \in p^{-1}(x_0)$ gegeben. Nimm $\widetilde{\gamma}$ in Y von y_0 nach $y_1 \Longrightarrow \gamma := p \circ \widetilde{\gamma}$ erfüllt $[\gamma] \cdot \Lambda \cdot [\gamma]^{-1} = \Lambda$. Da $[\gamma] \cdot \Lambda \cdot [\gamma]^{-1} = p_* \pi_1(Y, y_1)$, $\exists h : (Y, y_0) \longrightarrow (Y, y_1)$ mit $p \circ h = p$ (nach dem Satz über Isom. v. Überlagerungen). Aus Symmetriegründen existiert $g : (Y, y_1) \longrightarrow (Y, y_0)$ mit $p \circ g = p$. Da h, g eindeutig sind und jeweils p hochheben, gilt $g \circ h = \mathrm{id}$, $h \circ g = \mathrm{id} \Longrightarrow h \in \mathrm{Aut}(p)$.

Damit ist (1) bewiesen.

Für (2): Wie betrachten die Abbildung $\varphi:N(\Lambda)\longrightarrow \operatorname{Aut}(p)$, $[\gamma]\mapsto h_{[\gamma]}$, $h_{[\gamma]}$ ist die eindeutig bestimmte Hochhebung

$$(Y, y_1) \xrightarrow{h_{[\gamma]}} p$$

$$(Y, y_0) \xrightarrow{p} (X, x_0)$$

wobei $y_1 = \tilde{\gamma}(1)$, $\tilde{\gamma}$ ist die Hochhebung von γ .

- φ ist wohldefiniert: $\widetilde{\gamma}(1)$ kommt nur auf $[\gamma]$ an (homotope Wege haben homotope Hochhebungen).
- $h_{[\gamma]} \in \text{Aut}(p)$ wie in (1). $h_{[\gamma]} \cdot h_{[\gamma]-1}$ ist die Hochhebung der $p : (Y, y_0) \longrightarrow (X, x_0)$ nach (Y, y_0) und ist daher gleich id.
- φ ist ein Homomorphismus: $h_{[\gamma_2 \cdot \gamma_1]}$ und $h_{[\gamma_2]} \cdot h_{[\gamma_1]}$ heben $p:(Y, y_0) \longrightarrow (X, x_0)$ nach (Y, y_2) hoch \Longrightarrow Gleichheit wegen Eindeutigkeit.
- φ ist surjektiv: Sei $h \in Aut(p)$,

$$h: (Y, y_0) \xrightarrow{p} (Y, y_1)$$

Sei $\widetilde{\gamma}$ ein Weg von y_0 nach y_1 in Y, $\gamma := p \circ \widetilde{\gamma}$. Dann ist $h = h_{[\gamma]}$ nach Konstruktion.

• $\ker \varphi = \{ [\gamma] \in N(\Lambda) \mid h_{[\gamma]} = \mathrm{id} \} = \{ [\gamma] \in N(\Lambda) \mid \widetilde{\gamma}(1) = y_0 \}$, (gerade Λ besteht aus Schleifen unten, die sich zu Schleifen hochheben.) D.h. $\varphi : N(\Lambda) \longrightarrow \mathrm{Aut}(p)$ surjektiv, $\ker(\varphi) = \Lambda \Longrightarrow \mathrm{Aut}(p) \cong N(\Lambda) /_{\Lambda}$ nach dem Homomorphiesatz.

Proposition. *Sei* $\Gamma \cap Y$ *eine Überlagerungswirkung. Dann:*

- (1) $\operatorname{Aut}(q) \cong \Gamma$, wenn Y wegzusammenhängend.
- (2) $\Gamma \cong \pi_1(Y/\Gamma)/q_*\pi_1(Y)$, wenn Y wegzusammenhängend ist.

Beweis. Die Überlagerung $q:(Y,y_0)\longrightarrow \left(\frac{Y}{\Gamma},\overline{y_0}\right)$ ist normal, weil $q^{-1}(\overline{y_0})=y_0\cdot\Gamma$, und $\Gamma\subset\operatorname{Aut}(p)$ wirkt darauf transitiv. Nach dem obigen Satz folgt

$$\operatorname{Aut}(q) \cong \pi_1(Y/\Gamma)/q_*\pi_1(Y).$$

Wenn $h \in Aut(q)$, haben wir folgende Hochhebung:

 $\exists g \in \Gamma \text{ s.d. } y_1 = \alpha(g)y_0.$ Aber dann ist $\alpha(g)$ auch eine Hochhebung von $q:(Y,y_0) \longrightarrow \left(\frac{Y}{\Gamma}, \overline{y_0}\right)$ nach $(Y,y_1) \Longrightarrow h = \alpha(g)$ nach Eindeutigkeit von Hochhebungen \Longrightarrow Aut $(q) \cong \Gamma$.

Korollar. Wenn $\Gamma \cap Y$ eine Überlagerungswirkung ist, Y einfach zusammenhängend (Y wegzusammenhängend, $\pi_1(Y) \cong \{1\}$). Dann gilt:

$$\pi_1(Y/\Gamma) \cong \Gamma.$$

Definition. Sei Γ eine Gruppe, $S \subset \Gamma$ Teilmenge,

$$\langle S \rangle := \bigcup_{\Lambda < \Gamma, S \subseteq \Lambda} \Lambda$$

die durch S erzeugte Untergruppe von Γ . S heißt Erzeugendenmenge von Γ , wenn $\langle S \rangle = \Gamma$. (Übung: $\langle S \rangle = \{s_1^{\varepsilon_1} \cdots s_n^{\varepsilon_n} \mid n \in \mathbb{N}, \ s_i \in S, \varepsilon_i \in \{\pm 1\}$).

Definition. Sei Γ eine Gruppe, $S \subseteq \Gamma$, $\langle S \rangle = \Gamma$. Cay(Γ , S) ist der Graph mit

- Ecken $V(\text{Cay}(\Gamma, S)) = \Gamma$,
- Kanten $E(\operatorname{Cay}(\Gamma, S)) = \{(g, gs) \mid g \in \Gamma, s \in S\}.$

Entsprechend können wir $Cay(\Gamma, S)$ als einen 1-dimensionalen CW-Komplex auffassen (Ecken=0-Zellen, Kanten=1-Zellen).

Die Linkswirkung von Γ auf sich selbst induziert eine Wirkung $\Gamma \stackrel{\alpha}{\frown} \text{Cay}(\Gamma, S)$:

- Auf Knoten $g \in \Gamma = V(\text{Cay}(\Gamma, S)): \alpha(h)(g) = h \cdot g$.
- Auf Kanten $(g, gs) \in E(Cay(\Gamma, S))$: $\alpha(h)(g, gs) = (hg, hgs) \in E(Cay(\Gamma, S))$.

Die Wirkung $\Gamma \cap \operatorname{Cay}(\Gamma, S)$ ist eine Überlagerung (Übung). Den Quotientenraum $\Gamma \setminus \operatorname{Cay}(\Gamma, S)$ kann man leicht verstehen; Γ wirkt transitiv auf Γ , also bleibt im Quotienten nur eine Ecke [1], an dieser Ecke bekommen wir |S| Schleifen. Sei X ein Punkt mit |S| Schleifen. Was ist $\pi_1(X)$? Beobachtung: Wenn $\pi_1(\operatorname{Cay}(\Gamma, S)) \cong \{1\} \Longrightarrow \pi_1(X_S) \cong \Gamma$ nach Proposition. $\pi_1(X_1) = \pi(\bullet) \cong \mathbb{Z}$. Um $\pi(\bullet)$ zu berechnen, brauche ich eine Gruppe $\Gamma = \langle a, b \rangle$, s.d. $\pi_1(\operatorname{Cay}(\Gamma, \{a, b\})) \cong \{1\}$ (ohne Schleifen).

2.7 Gruppen angegeben durch Erzeuger und Relationen; freie Gruppen $_{\rm Eine\; andere}$

Kopie von S

Definition. Sei S eine Menge, $X = S \sqcup \overline{S}$ Ein Wort im Alphabet X ist eine endliche Folge $w = x_1 x_2 \cdots x_n$ von Elementen von X, $n \in \mathbb{N}$ $(n = 0 \implies w = \underline{\varepsilon} = \underline{1}$ leeres Wort).

Wort w heißt reduziert, wenn es kein Teilwort von der Form $s \cdot \overline{s}$ oder $\overline{s} \cdot s$ hat, $s \in S$. Z.B. $S = \langle a, b \rangle$, $a \, \overline{b} \, \overline{a} \, b$ reduziert, $a \, \overline{a}$ nicht reduziert. Die Menge der Wörter bezeichnet man X^* . Die reduzierten Wörter bezeichnet man X^*_r . Wenn $v, w \in X^*$, $v = v_1 \cdots v_m$, $w = w_1 \cdots w_n$, $v_i, w_i \in X$ dann $v w := v_1 \cdots v_n w_1 \cdots w_n$. Die Reduktion eines Wortes $w = v \, s \, \overline{s} \, u$, $s \in S$, $v, u \in X^*$ ist das Wort $w' = v \, u$; die Reduktion von $w = v \, \overline{s} \, s \, u$ ist $w = v \, u$

Lemma. Jedes Wort kann man durch endlich viele Reduktionsschritte auf ein reduziertes Wort bringen, dieses ist eindeutig.

Bezeichnung: $r: X^* \longrightarrow X_r^*$, $w \mapsto$ (reduzierte Form von w).

Proposition und Definition. (X_r^*, \cdot) , $w \cdot v := r(wv)$ ist eine Gruppe. Sie heißt freie Gruppe mit dem Erzeugendensystem S. Bezeichnung: \mathbb{F}_S freie Gruppe auf dem Erzeugendensystem S.

Beweis. Assoziativität folgt aus Assoziativität der Konkatenation und Eindeutigkeit der reduzierten Form: $w \cdot v \cdot u = r(w \cdot v \cdot u) = r(r(w \cdot v) \cdot u) = r(w \cdot r(v \cdot u))$. Sei $\overline{} : X \longrightarrow X$, $S \ni a \mapsto \overline{a} \in \overline{S}$, $\overline{S} \ni \overline{a} \mapsto a \in S$. Dann gilt mit $w^{-1} := \overline{w_n} \cdots \overline{w_1}$:

$$w^{-1} \cdot w = r(\overline{w_n} \cdots \overline{w_1} \cdot w_1 \cdots w_n) = \underline{1} = r(w_n \cdots w_1 \cdot \overline{w_1} \cdots \overline{w_n}) = w \cdot w^{-1}.$$

Je zwei unterschiedliche reduzierte Wörter sind unterschiedliche Elemente von der Gruppe nach Konstruktion.

Proposition (Universelle Eigenschaft der freien Gruppe). Sei S eine Menge, \mathbb{F}_S freie Gruppe auf S. Dann gilt: für jede Gruppe Γ und jede Abbildung $\varphi: S \longrightarrow \Gamma$ \exists ! Homomorphismus $\phi: \mathbb{F}_S \longrightarrow \Gamma$ s.d. $\phi|_S = \varphi$.

Beweis. Sei $\varphi: S \longrightarrow \Gamma$ gegeben. Definiere $\Phi(w_1, ..., w_n) = \varphi(w_1) \cdots \varphi(w_n)$, $w_i \in S = S \cup S^{-1}$. Sei $\varphi(w^{-1}) := \varphi(w)^{-1}$ (auf S^{-1} fortgesetzt). Dann gilt $\Phi(r(w \cdot v)) = \Phi(w \cdot v) = \Phi(w) \cdot \Phi(v)$ weil $\varphi(s) \cdot \varphi(s^{-1}) = \varphi(s) \cdot \varphi(s)^{-1} = 1 \Longrightarrow \Phi$ ist ein Homomorphismus.

Eindeutigkeit: Wenn $\Psi: \mathbb{F}_S \longrightarrow \Gamma$ ist Homomorphismus mit $\Psi|_S = \varphi$, dann gilt: $\Psi(s^{-1}) = \Psi(s)^{-1} = \varphi(s)^{-1} = \Phi(s)^{-1}$, $s \in S$. Dann gilt: $\Psi(w_1 \cdots w_n) = \Psi(w_1) \cdot \Psi(w_n) = \varphi(w_1) \cdots \varphi(w_n) = \Phi(w_1) \cdots \Phi(w_n) = \Phi(w)$.

Korollar. Wenn |S| = |S'|, dann gilt $\mathbb{F}_S \cong \mathbb{F}_{S'}$.

Korollar. Wenn $\Gamma = \langle S \rangle$, dann ist Γ ein Quotient von $\mathbb{F}_S : \exists q : \mathbb{F}_S \twoheadrightarrow \Gamma$. Nach universellen Eigenschaft: q surjektiv, weil $\Gamma > q(\mathbb{F}_S) \supseteq dS \implies q(\mathbb{F}_S) \supseteq \langle S \rangle = \Gamma$.

Proposition. Cay(\mathbb{F}_2 , {a, b}) ist ein 4-regulärer Baum.

Beweis. (1) Jede Ecke ist mit 4 anderen Knoten verbunden (durch a, b, a^{-1} , b^{-1}).

(2) Es ist ein Baum, denn: ein Zyklus an $w \in \mathbb{F}_2$ ist eine Sequenz $w, w a^{\varepsilon_1}, w a^{\varepsilon_2} b^{\varepsilon_2}, ..., w \cdot v = w \iff v = 1$, wobei v reduziert ist, weil wir Rückgänge nicht erlauben, somit ist v trivial \implies es gibt keine Zyklen.

Korollar. $\pi_1(\text{Cay}(\mathbb{F}_2, \{a, b\})) \cong \{1\}.$

Beweis. $(Cay(\mathbb{F}_2, \{a, b\}))$ ist zusammenziehbar: wir müssen eine Homotopie zwischen id und $c: Cay(\mathbb{F}_2) \longrightarrow e$ konstruieren. Sei h_t , $t \in [0, 1]$ eine Familie der Abbildungen, die die 4 Kanten an 1 zusammenzieht?

 $h_t^{(1)}$ sei die Familie von Abbildungen, die diese neuen Kanten an e zusammenzieht. Die gewünschte topologie entsteht durch Ausführung von $h_t^{(n)}$ auf dem Intervall $t \in [1-1/2^n, 1-1/2^{n+1}]$ und Verkleben.

Korollar.
$$\pi(\bigcirc)\cong \mathbb{F}_2$$
; analog (Übung): $\pi(\bigcirc)\cong \mathbb{F}_S$.

Tatsächlich gilt noch mehr: die Fundamentalgruppe von jedem Graphen ist frei (Übung). Idee: G = (V, E) hat einen maximalen Baum $T \subseteq G$, T wird zusammenziehbar.

2.8 Angabe der Gruppen durch Erzeuger und Relationen.

Definition. Sei Γ eine Gruppe, $F \subseteq \Gamma$ eine Teilmenge. Die *normale Hülle* von F ist die kleinste normale Untergruppe $N \triangleleft \Gamma$, welche F enthält. Bezeichnung:

$$\langle\langle F \rangle\rangle = \bigcap_{N' \lhd \Gamma, N' \supseteq F} N'.$$

Proposition. Sei Γ eine Gruppe, $F \subseteq \Gamma$ eine Teilmenge. Die normale Hülle $\langle \langle F \rangle \rangle$ hat folgende Eigenschaft: \forall Homomorphismen $\varphi : \Gamma \longrightarrow \Lambda$ mit $F \subseteq \ker \varphi$ gilt: $\langle \langle F \rangle \rangle \subseteq \ker \varphi$, und $\langle \langle F \rangle \rangle$ ist die größte normale Untergruppe von Γ mit dieser Eigenschaft.

Beweis. $\ker \varphi \triangleleft \Gamma \implies (F \subseteq \ker \varphi \implies \langle \langle F \rangle \rangle \subseteq \ker \varphi)$. Maximalität: $q : \Gamma \twoheadrightarrow \Gamma / \langle \langle F \rangle \rangle$, $\ker q = \langle \langle F \rangle \rangle$.

Definition. Sei S eine Menge, $R \subseteq \mathbb{F}_S$. Die Gruppe $\Gamma = \langle S | R \rangle$ definiert durch Erzeuger S mit Relationen R ist

$$\Gamma = \langle S|R\rangle := \mathbb{F}_S / \langle \langle R\rangle \rangle.$$

Proposition. $\Gamma = \langle S | R \rangle$ hat folgende universelle Eigenschaft: \forall Gruppen Λ und jede Abbildung $\varphi : S \longrightarrow \Lambda$ s.d. $\ker \phi \supseteq \langle \langle R \rangle \rangle$, wobei $\phi : \mathbb{F}_S \longrightarrow \Lambda$ der durch φ induzierter Homomorphismus ist, existiert ein eindeutiger Homomorphismus $\overline{\phi} : \Gamma \longrightarrow \Lambda$. Die Abbildung kann man auf Erzeuger angeben, wenn Relationen erfüllt sind.

2 HOMOTOPIE

Beweis. Übung.

Definition. Seien Γ_1 , Γ_2 , Λ drei Gruppen und seien die Homomorphismen $\varphi_1 : \Lambda \longrightarrow \Gamma_1$, $\varphi_2 : \Lambda \longrightarrow \Gamma_2$ gegeben. Also ein Diagramm

$$\begin{array}{c}
\Lambda \xrightarrow{\varphi_1} \Gamma_1 \\
\varphi_2 \downarrow \\
\Gamma_2
\end{array}$$

Eine Gruppe Γ zusammen mit Homomorphismen $\psi_1: \Gamma_1 \longrightarrow \Gamma$, $\psi_2: \Gamma_2 \longrightarrow \Gamma$ heißt *Pushout* von diesem Diagramm, wenn

- (1) $\psi_1 \circ \varphi_1 = \psi_2 \circ \varphi_2$.
- (2) \forall Gruppen G mit Homomorphismen $\theta_1 : \Gamma_1 \longrightarrow G$, $\theta_2 : \Gamma_2 \longrightarrow G$ mit $\theta_1 \circ \varphi_1 = \theta_2 \circ \varphi_2$ $\exists ! \phi : \Gamma \longrightarrow G$, welcher das Diagramm kommutativ macht.

Proposition. Jedes Diagramm

$$\begin{array}{c}
\Lambda \xrightarrow{\varphi_1} \Gamma_1 \\
\varphi_2 \downarrow \\
\Gamma_2
\end{array}$$

hat einen Pushout. Den kann man folgendermaßen konstruieren: Seien $\Gamma_1 = \langle S_1 | R_1 \rangle$, $\Gamma_2 = \langle S_2 | R_2 \rangle$. Dann ist der Pushout

$$\Gamma := \langle S_1 \cup S_2 | R_1 \cup R_2 \cup \{ \underbrace{\varphi_1(\lambda) \varphi_2(\lambda)^{-1}}_{\in \Gamma_1} \mid \lambda \in \Lambda \}$$

Insbesondere ist der Pushout bis auf Isomorphie eindeutig bestimmt, ψ_1, ψ_2 sind induziert durch Inklusionen $S_1, S_2 \hookrightarrow S_1 \cup S_2$.

Beweis. Nach Proposition vom letzten Mal ist ein Homomorphismus $\phi: \Gamma \longrightarrow G$ bestimmt durch $\phi(S_1 \cup S_2)$, falls die Relationen im Kern des induzierten Homomorphismus $\overline{\phi}: \mathbb{F}_{S_1 \cup S_2} \longrightarrow G$ liegen.

Wir müssen nachrechnen, dass $R_1 \cup R_2 \cup \{\varphi_1(\lambda)\varphi_2(\lambda)^{-1} \mid \lambda \in \Lambda\} \subseteq \ker \overline{\phi}$, wobei $\phi(s_1) := \theta_1(s_1)$, $\phi(s_2) := \theta_2(s_2)$.

 $R_1, R_2 \subseteq \ker \phi$, denn θ_1, θ_2 induzieren Homomorphismen $\overline{\theta}_1, \overline{\theta}_2$ auf freien Gruppen $\underline{\mathbb{F}}_{S_1}, \ \mathbb{F}_{S_2}, \ \text{s.d.} \ R_1 \ \text{bzw.} \ R_2 \ \text{im} \ \text{Kern von} \ \overline{\theta}_1 \ \text{bzw.} \ \overline{\theta}_2 \ \text{liegt.} \ \text{Es gilt} \ \overline{\phi}(\varphi_1(\lambda)\varphi_2(\lambda)^{-1}) = \overline{\phi}(\varphi_1(\lambda))\overline{\phi}(\varphi_1(\lambda))^{-1} = \overline{\theta}_1(\varphi_1(\lambda))\overline{\theta}_2(\varphi_2(\lambda))^{-1} = 1, \text{ weil } \theta_1 \circ \varphi_1 = \theta_2 \circ \varphi_2.$ Γ ist durch $S_1 \cup S_2$ erzeugt $\Longrightarrow \phi$ eindeutig bestimmt.

Definition. Der Pushout vom Diagramm

heißt *freies Produkt* von Γ_1 und Γ_2 . Bezeichnung: $\Gamma = \Gamma_1 * \Gamma_2$.

Konkret: $\Gamma_1 = \langle S_1 | R_1 \rangle$, $\Gamma_2 = \langle S_2 | R_2 \rangle \Longrightarrow \Gamma_1 * \Gamma_2 = \langle S_1 \cup S_2 | R_1 \cup R_2 \rangle$.

Definition. Seien Γ_1 , Γ_2 Gruppen, $\Lambda < \Gamma_1$, $\Lambda < \Gamma_2$. Der Pushout von

heißt *amalgamiertes freies Produkt* von Γ_1 , Γ_2 über Λ ; Bezeichnung: $\Gamma_1 *_{\Lambda} \Gamma_2$.

Satz (Seifert—van Kampen). Sei $X = U_1 \cup U_2$ eine Vereinigung von zwei offenen Teilmengen, s.d. $U_1, U_2, U_1 \cap U_2$ wegzusammenhängend sind. Sei $x_0 \in U_1 \cap U_2$. Dann gilt: $\pi_1(X, x_0)$ ist der Pushout von

$$\pi_1(U_1 \cap U_2, x_0) \xrightarrow{(\iota_1)_*} \pi_1(U_1, x_0)$$

$$\downarrow \\ \pi_1(U_2, x_0)$$

wobei $\iota_1: U_1 \hookrightarrow X$, $\iota_2: U_2 \hookrightarrow X$ Inklusionsabbildungen sind.

Korollar. $\pi_1(\bigcirc \bullet \bigcirc) \cong \mathbb{F}_2$ (denn $\bigcirc \bullet \bigcirc \bullet \bigcirc \bullet \bigcirc$ mit einer kleinen gemeinsamen Umgebung des Mittelpunktes $\implies \pi_1(U_1 \cap U_2) \cong 1$ und $\pi_1(U_1) = \pi_1(U_2) = \mathbb{F}_1$). Analoge Aussage hat man für n hintereinander geschachtelte Schleifen.

Zur Idee des Beweises vom Satz von Seifert—van Kampen: Wir wollen zeigen, dass $\pi_1(X, x_0)$ ein Pushout ist d.h., $\forall G$ und $\forall \theta_1 : \pi_1(U_1, x_0) \longrightarrow G$, $\theta_2 : \pi_1(U_2, x_0) \longrightarrow G$ mit $\theta_1 \circ (\iota_1)_* = \theta_2 \circ (\iota_2)_* \exists ! \phi : \pi_1(X, x_0) \longrightarrow G$.

Frage: Wie interpretiert man einen Homomorphismus $\theta : \pi_1(Y, y_0) \longrightarrow G$ geometrisch (topologisch)?

Konstruktion: Sei (Y, y_0) ein punktierter Raum, $\theta : \pi_1(Y, y_0) \longrightarrow G$ ein Homomorphismus. Betrachte

$$Z:=\widetilde{Y}\times_{\theta}G=\widetilde{Y}\times G/(y\cdot [\gamma],g)\sim (y,\theta([\gamma])g),[\gamma]\in \pi_{1}(Y,y_{0}),g\in G\cdot$$

Alternativ:

$$Z := \widetilde{Y} \times G /_{\pi_1(Y, Y_0)},$$

wobei $\pi_1(Y, y_0)$ von rechts auf $\widetilde{Y} \times G$ wirkt:

$$(y,g)\cdot[\gamma]=(y[\gamma],\theta([\gamma])^{-1}g).$$

 $p:Z\longrightarrow Y$, $[(y,g)]\mapsto \widetilde{p}(y)$, $\widetilde{p}:\widetilde{Y}\longrightarrow Y$ dann ist $p:(Z,z_0)\longrightarrow (Y,y_0)$ eine Überlagerungsabbildung $(z_0=[(\widetilde{y}_0,1)])$, weil \widetilde{p} eine Überlagerung war. Außerdem trägt Z eine rechte G-Wirkung durch Decktransformationen:

$$[(y,g)] \cdot h := [(y,gh)].$$

Außerdem gilt: $Z/G \cong Y$. Fazit: Aus einem Homomorphismus $\theta : \pi_1(Y, y_0) \longrightarrow G$ haben wir eine Überlagerung $p : (Z, z_0) \longrightarrow (Y, y_0)$ mit einer G-Wirkung durch Decktransformation bekommen, s.d. $Z/G \cong Y$.

Definition. Seien $p:(Z,z_0)\longrightarrow (Y,y_0)$ eine Überlagerung mit einer G-Wirkung, $p':(Z',z_0')\longrightarrow (Y,y_0)$ eine Überlagerung mit einer G-Wirkung. Ein Homomorphismus $h:Z\longrightarrow Z'$ s.d. $p'\circ h=p$ und $h(z\cdot g)=h(z)\cdot g\ \forall\ z\in Z,\ g\in G$ heißt *Isomomorphismus* (von Überlagerungen mit G-Wirkung).

Proposition. Homomorphismen $\theta: \pi_1(Y, y_0) \longrightarrow G$ entsprechen eindeutig Isomorphie-klassen von Überlagerungen $p: (Z, z_0) \longrightarrow (Y, y_0)$ mit G-Wirkung s.d. $Z/G \cong Y$.

Beweis. Inverse Konstruktion zur obigen. Wenn: $p:(Z,z_0)\longrightarrow (Y,y_0)$ eine G-Überlagerung mit $Z/_G\cong Y$. Sei $\theta:\pi_1(Y,y_0)\longrightarrow G$ gegeben durch $[\gamma]\mapsto g_{[\gamma]}$ s.d. $z_0\cdot g_\gamma=\widetilde{\gamma}(1)$, wobei $\widetilde{\gamma}$ die eindeutig bestimmte Hochhebung von γ ist. Diese Konstruktion ist invers zur obigen (wir zeigen allerdings nur eine Richtung) Wenn $Z=\widetilde{Y}\times_\theta G$, sei $[\gamma]\in\pi_1(Y,y_0)$, die Hochhebung $\widetilde{\gamma}$ von γ nach \widetilde{Y} erfüllt $\widetilde{\gamma}(1)=[\gamma]$. D.h., die Hochhebung $\widetilde{\gamma}_z$ von γ nach Z erfüllt

$$\widetilde{\gamma}_z(1) = [(z_0[\gamma], 1)] = [(z_0, \theta([\gamma]))] = [(z_0, 1)] \cdot \theta([\gamma]) \Longrightarrow g_{[\gamma]} = \theta([\gamma]).$$

Beweis (Seifert—van Kampen). Bedeutung von Satz von Seifert—van Kampen: Es gibt ein kommutatives Diagramm

 $\varphi_1, \ \varphi_2$ seien Homomorphismen induziert durch $U_1, U_2 \hookrightarrow X$. Brauchen: Universelle Eigenschaft: Sei G eine Gruppe, $\theta_1, \ \theta_2$ gegeben. Nach Proposition heben wir Überlagerungen $(U_1', x_1) \longrightarrow (U_1, x_0)$ und $(U_2', x_1) \longrightarrow (U_2, x_0)$ mit G-Wirkungen, die zu $\theta_1: \pi_1(U_1, x_0) \longrightarrow G, \ \theta_2: \pi_1(U_2, x_0) \longrightarrow G$ gehören. Die Einschränkungen dieser Überlagerungen auf $U_1 \cap U_2$ sind isomorph als G-Überlagerungen, denn sie gehören nach Proposition zu Hom. $\theta_1 \circ (\iota_1)_*$ bzw. $\theta_2 \circ (\iota_2)_*$: $\pi_1(U_1 \cap U_2, x_0) \longrightarrow G$, die gleich sind. D.h. \exists Homöomorphismus $h: p_1^{-1}(U_1 \cap U_2) \longrightarrow p_2^{-1}(U_1 \cap U_2)$, der mit Projektionen kommutiert und mit G-Wirkungen verträglich ist. Definiere

$$X' := U_1' \cup U_2' = U_1' \sqcup U_2' /_{X \sim h(X)}$$

 p_1, p_2 geben Abbildung $p: X' \longrightarrow X$. X' ist eine G-Überlagerung, weil U_1', U_2' es waren, h verträglich mit der G-Wirkung \leadsto erhalte $\phi: \pi_1(X, x_0) \longrightarrow X$, der zu X' gehört. Es gilt : $\phi \circ \varphi_2$ ist eindeutig durch die Struktur von X' über U_2 bestimmt $\Longrightarrow \phi \circ \varphi_2 = \theta_2$. Eindeutigkeit: Wenn $\phi': \pi_1(X, x_0) \longrightarrow G$ mit $\varphi' \circ \varphi_2 = \theta_2$, $\phi' \circ \varphi_1 = \theta_1$. Konstruiere eine Überlagerung $p: X'' \longrightarrow X$ zu ϕ .

- X'' ist über U_2 isomorph zu U_2' , weil $\phi' \circ \varphi_2 = \theta_2$
- X'' ist über U_1 isomorph zu U_1' , weil $\phi' \circ \varphi_1 = \theta_1$

$$\implies X'' \cong X'$$
.

2.9 Konsequenzen des Satzes von Seifert-van Kampen

Sei $\Gamma = \langle S \mid R \rangle$ eine Gruppe gegeben durch Erzeuger und Relationen. Betrachte den CW-Komplex X_{Γ} gegeben durch:

- eine 0-Zelle e^0 ,
- |S| 1-Zellen e_s^1 , $s \in S$, die mit beiden Randpunkten an e^0 angeklebt werden,
- |R| 2-Zellen e_r^2 , $r \in R$ mit Anklebeabbildungen $\varphi_r : \partial e_r^2 \cong S^1 \longrightarrow e^0 \cup \bigcup_{s \in S} e_s^1$ (klebe e_r^2 längs des Weges r im Erzeuger $s \in S$ an). Wenn $r = s_1^{\alpha_1} \cdot s_2^{\alpha_2} \cdots s_k^{\alpha_k}$. Zerlege S^1 in $|\alpha_1| + \ldots + |\alpha_k|$ gleiche Teile.

Proposition. Sei X ein wegzusammenhängender Raum, sei $Y := X \cup_{\varphi_{\alpha}} (\bigcup e_{\alpha}^{2})_{\alpha \in A}$, d.h. X mit angeklebten Zellen e_{α}^{2} durch Abbildung $\varphi_{\alpha} : S^{1} \longrightarrow X$. Seien $x_{\alpha} \in \varphi_{\alpha}(S^{1})$, $x_{0} \in X$, γ_{α} Weg von x_{0} nach x_{α} . Sei $[\varphi_{\alpha}] \in \pi_{1}(X, x_{\alpha})$ die Klasse von φ_{α} , $[\gamma_{\alpha}^{-1} \cdot \varphi_{\alpha} \cdot \gamma_{\alpha}] \in \pi_{1}(X, x_{0})$. Sei $N := \langle \langle [\gamma_{\alpha}^{-1} \cdot \varphi_{\alpha} \cdot \gamma_{\alpha}] | \alpha \in A \rangle \rangle \triangleleft \pi_{1}(X, x_{0})$. Dann gilt:

- (1) Die Inklusion $X \hookrightarrow Y$ definiert eine Surjektion $\pi_1(X, x_0) \longrightarrow \pi_1(Y, x_0)$ mit Kern gleich N; also gilt $\pi_1(Y, x_0) \cong \pi_1(X, x_0)/N$.
- (2) Wenn Y' aus Y durch Ankleben von n-Zellen für n > 2 erhalten wird, gilt: $Y \hookrightarrow Y'$ induziert einen Isomorphismus von Fundamentalgruppen.
- (3) X CW-Komplex, dann gilt: die Inklusion $X^2 \hookrightarrow X$ von dem 2-Skelett induziert einen Isomorphismus $\pi_1(X^2, x_1) \cong \pi_1(X, x_0)$.

Korollar. X CW-Komplex, $X^2 = e^0 \cup \bigcup_{s \in S} e^1_s \cup_{\varphi_r} \bigcup_{r \in R} e^2_r$ mit $Anklebeabbildung <math>\varphi_r$. Seien $\overline{r} \in \mathbb{F}_s \cong \pi_1(X^1, e^0)$ induziert durch φ_r $(\overline{r} = [\varphi_r] \in \pi_1(X^1, e^0))$. Dann gilt: $\pi_1(X, x_0) \cong \langle S \mid \overline{r}, r \in R \rangle$.

Beweis (der letzten Proposition). Wähle $y_{\alpha} \in e_{\alpha}^2$. Schreibe $Y = U \cup V$, $U = Y \setminus \bigcup_{\alpha} \{y_{\alpha}\}$, $V = Y \setminus X \cong \{x'_{\alpha}\}$. Dann

$$\underbrace{U \cap V}_{x_0' := \{x_0\} \times 1 \in} = \bigcup_{\alpha \in A} e_{\alpha}^2 \setminus \{y_{\alpha}\} \cup \bigcup_{\alpha \in A} (\operatorname{Im} \gamma_{\alpha}) \times (0, 1].$$

 $\pi_1(X, x_0) \cong \pi_1(Y, x_0')$ —Berechnung mit Seifert-van Kampen:

$$\pi_{1}(U \cap V, x'_{0}) \longrightarrow \pi_{1}(U, x'_{0}) \cong \pi_{1}(X, x_{0})$$

$$\downarrow \qquad \qquad \downarrow$$

$$1 \cong \pi_{1}(V, x'_{0}) \longrightarrow \pi_{1}(Y, x'_{0}) \cong \pi_{1}(X, x_{0}) / N$$

$$\pi_{1}(U, x'_{0}) \cong \pi_{1}(X, x_{0}) \quad \pi_{1}(U \cap V, x'_{0}) \cong \mathbb{F}_{A} = \langle a_{\alpha} \mid \alpha \in A \rangle.$$

Es gilt nach Konstruktion $\iota_*(a_\alpha) = [\gamma_\alpha^{-1} \circ \varphi_\alpha \circ \gamma_\alpha] \in \pi_1(X, x_0)$. Also $\pi_1(Y, x_0') \cong \pi_1(X, x_0) / N$, damit ist (1) bewiesen. (2) analog, wobei alle Gruppen im Diagramm trivial sind, da man in S^n für n > 1 schleifen zusammenziehen kann. (3): X CW-Komplex, dann gilt $\pi_1(X^2, x_0) \cong \pi_1(X, x_0)$.

Korollar. $\Gamma = \langle S \mid R \rangle$, $X_{\Gamma} = e^0 \cup \bigcup_{s \in S} e^1_s \cup_{\varphi_r} \bigcup_{r \in R} e^2_r$ mit Anklebeabbildung φ_r durch Relationen gegeben, dann gilt

$$\mathbb{F}_{S}/\langle\langle R\rangle\rangle \cong \pi_{1}(X_{\Gamma}) \cong \Gamma.$$

Für jeden CW-Komplex X kann man somit die Fundamentalgruppe in Termen von Erzeugern und Relationen aus der CW-Struktur bestimmen. Also gibt die Fundamentalgruppe nur Information über niedrigdimensionale Struktur von X. Somit kann man durch π_1 z.B. Flächen unterscheiden: $\pi_1(\Sigma_g)$ ist nicht isomorph zu $\pi_1(\Sigma_{g'})$ für $g \neq g'$, aber $\pi_1(\mathbb{RP}^n) \not\cong \pi_1(\mathbb{RP}^m)$ für $n \neq m$.

2.10 Höhere Homotopiegruppen

Nach Def. ist $\pi_1(X, x_0) = \{ [\gamma] \mid \gamma : (S^1, 1) \longrightarrow (X, x_0) \}$. Analog: $\pi_n(X, x_0) = \{ [\gamma] \mid \gamma : (S^n, *) \longrightarrow (X, x_0) \}$.

Definition. (X, x_0) , (Y, y_0) zwei punktierte Räume. Dann ist

$$X \vee Y := X \sqcup Y /_{x_0} \sim y_0$$

mit ausgewählten Punkten x_0 , y_0 die *Ein-Punkt-Vereinigung*. Die Abbildung $S^1 \stackrel{g}{\longrightarrow} S^1 \vee S^1$ definiert die Verknüpfung in der Fundamentalgruppe, gegeben $\gamma_1: S^1 \longrightarrow X$, $\gamma_2: S^1 \longrightarrow X$:

$$\gamma_1 \lor \gamma_2 : S^1 \lor S^1 \longrightarrow X \quad \gamma_1 \cdot \gamma_2 : S^1 \stackrel{g}{\longrightarrow} S^1 \lor S^1 \stackrel{\gamma_1 \lor \gamma_2}{\longrightarrow} X$$

Analog hat man $q: S^n \longrightarrow S^n \vee S^n$. Verknüpfung auf $\pi_n(X, x_0): f_1, f_n \in \pi_n(X, x_0)$;

$$f_1 \cdot f_2 : S^n \xrightarrow{q} S^n \vee S^n \xrightarrow{f_1 \vee f_2} (X, x_0).$$

Liefert Gruppenstruktur auf $\pi_n(X, x_0)$. Hauptproblem: $\pi_n(S^k)$ sind unbekannt. Z.B. $\pi_3(S^2)$ ist nichttrivial \implies es existiert eine nichttriviale Abbildung $h: S^3 \longrightarrow S^2$, die sogenannte *Hopf-Faserung*.