Projet_05:

Segmentez des clients d'un site e-commerce

Presentation

Jérôme LE GAL Etudiant OpenClassRooms – parcours Data Scientist Le 21/09/2024

Contexte du projet:

- Mission pour Olist
- Analyse de ses clients

- Segmenter les clients
- Compréhension des comportements

Description du jeu de données :

Base de données SQL anonymisée :

- Historique de commandes Produits achetés
- Commentaires
- Localisation

Dates: du 2016-09-04 au 2018-09-03

Période : 2 années

Problématique et import des données:

1. Objectifs

- Personnaliser les offres
- Identifier les clients
- 2. Définition des critères de segmentation
 - Choix des features initiales
 - Feature engineering à prévoir

Feature Engineering:

- Récence
- Fréquence
- Montant total
- Satisfaction

- Standardisation
- Transformation logarithmique

Analyse exploratoire des

données:

- Récence
- Fréquence
- Montant

Stratégie de modélisation :

Répondre aux exigences d'Olist

Segmentation pertinente

- Forme des clusters
- Stabilité
- Cohérence métier

Nature des données

Modèles

- Kmeans
- DBSCAN
- Agglomerative Clustering

Recherche du nombre de cluster optimal:

Optimisation par les métriques de k = 3 à k = 6:

- Inertie (méthode du coude)
- Coefficient de silhouette (optimal proche de 1)
- Index de Davies-Bouldin (optimal au plus faible)

Modèle 1 – KMeans : K = 4 Init = « k-means++ » n_init=1 Random_state = 22

Nombre de clusters : 4

Nombre de points 'noise' : 0

Coefficient de silhouette : 0.37

Index Davies-Bouldin: 0.85

Profiling des clusters KMeans:

- Cluster 0 (36049 pts) : "Nouveaux clients à faibles dépenses"
- Cluster 1(5111 pts)"Clients potentiellement fidèles"
- Cluster 2 (26473 pts): "Clients inactifs/perdus"
- Cluster 3 (25763 pts): "Clients réguliers et dépensiers."

Modèle 2 – DBSCAN: epsilon = 1 min_sample = 30

Nombre de clusters : 4

Nombre de points 'noise' : 75

Coefficient de silhouette : 0.54

Index Davies-Bouldin: 0.81

Profiling des clusters DBSCAN:

- Cluster 0 (88285 pts): «Clients ayant réalisé 1 commande»
- Cluster 1(4356 pts): «Clients ayant réalisé 2 commandes»
- Cluster 2 (554 pts): «Clients ayant réalisé 3 commandes»
- Cluster 3 (126 pts): «Clients ayant réalisé 4 commandes»
- NOISE(75 pts): «Clients ayant réalisé plus de 5 commandes»

Modèle 3 – Agglomerative Clustering:

n_clusters = 4 linkage = « single »

Nombre de clusters : 4

Nombre de points 'noise' : 0

Coefficient de silhouette : 0.91

Index Davies-Bouldin: 0.07

Profiling des clusters Agglomerative Clustering :

- Cluster 0 (93389 pts): «Majorité des clients »
- Cluster 1(5 pts): «Clients ayant réalisé 8 commandes»
- Cluster 2 (1 pt): «Clients ayant réalisé 12 commandes»
- Cluster 3 (1 pt): «Clients ayant réalisé 15 commandes»

K = 4Random_state = 22

Nombre de clusters : 4

Nombre de points 'noise' : 0

Coefficient de silhouette : 0.32

Index Davies-Bouldin: 1,06

Profiling des clusters KMeans:

- Cluster 0 (41450 pts): «Nouveaux clients vraiment satisfaits»
- Cluster 1(15675 pts): «Clients non fidèles et insatisfaits»
- Cluster 2 (5111 pts) « Clients fidèles mais modérément satisfaits»
- Cluster 3 (31160 pts) « Clients inactifs/perdus mais satisfaits»

Choix modèle final et

classe:

Modèle sélectionné : **KMeans RFM + Satisfaction** k = 4

Nouveaux clients?

Class OlistClustering(df):

- clustering.get_labels()
- clustering.metrics()
- clustering.plot_2D()
- clustering.plot_correlation_circle()
- clustering.summary_clustering()
- clustering.interpretation_graph()

Contrat de maintenance:

SAMIALO SETUP SAMIALO SETUP SAMIALO SETUP PERIOTAL SETUP SAENAROIO TESTING SAMIALO SETUP SAENAROIO TESTING SARFAMIO TESTUP SARFAMIO TE

Stratégie de simulation :

- 1. Suivre la stabilité des clusters
- > Adjusted Rand Index hebdomadaire)
- 2. Analyse de l'évolution des distributions des features
- > Tests de Kolmogorov-Smirnov (hebdomadaire)
- Boxplots (mensuel)
- 3. Recommandations de réévaluation périodique

Stabilité des clusters:

Le concept de calcul avec l'Adjusted Rand Index

Résultats sur 52 semaines :

X_0 : données les plus récentes sur 1 an

W_1: données d'une période d'1an glissée d'1 semaine / X_0

...

W_52 : données d'une période d'1an glissée de 52 semaines / X 0

weeks

 week
 ari_score
 limit

 0
 1
 0.998576
 0.8

 1
 2
 0.980462
 0.8

 2
 3
 0.944798
 0.8

 3
 4
 0.894912
 0.8

 4
 5
 0.830295
 0.8

 5
 6
 0.773432
 0.8

 6
 7
 0.719753
 0.8

 7
 8
 0.667857
 0.8

 9
 0.625017
 0.8

 9
 10
 0.564480
 0.8

• **Données** : 1 année glissante

Seuil ARI: 0.8

Evolution des distributions des features:

Distributions:

Recommandations:

Maintenance:

• Réentrainement : 5 semaines

• Automatisation : fourniture d'une classe

Conclusion:

- Clustering KMeans à 4 clusters
- RFM + satisfaction
- Réentrainement : 5 semaines

Questions?