(i)
$$I = \int_0^1 e^{-x} dx$$
 $M = \int_0^1 g(x) dx$ Where $g(x) = e^{-x}$
 $f(x) = \int_0^1 e^{-x} dx$

using monte-carlo integration

We can calculate the above integral as follows

(ii) Similarly for
$$T_2 = \int_0^5 (1-x^2)^2 dx$$

again $h(x) = (1-x^2)^2$

we identify $g(x) = 1$

from this we condetermine $Pdf P(x) \in (0,6) = (0,3)$
 $P(x) = g(x) - \frac{1}{2} = \frac{1}{2}$

$$P(y) = \frac{g(x)}{\int_0^5 g(x)dx} = \frac{1}{5} = \frac{1}{5}$$

We can calculate the Monte - corlo approximation is as follows:-

$$T_{a} = C E_{p} (x) h(x)$$

$$T_{a} = \frac{1}{N} \sum_{i=1}^{N} (1-xi^{2})^{2} \text{ Where } x_{i} \text{ is sampled from } unf(0,s)$$

See Python code for Calculation

There is discrepancy in the results since Monte-Carlo utilizes integration using random numbers, while regular inte gration performs analysis at a regular Ind. Generally speaking, monte-carlo technique is very use ful evaluating higher dimensional integrals.

$$\left(\frac{\partial}{\partial x}\right) \int_{-\infty}^{\infty} \exp\left(-\frac{1}{2}\left(\frac{x-b}{\delta}\right)^{2}\right) dx$$

$$\int_{-\infty}^{\infty} \exp\left(-\frac{1}{2}\left(\frac{x}{\delta}\right)^{2}\right) dx \quad \text{When } \Delta = 0 \text{ and } \delta = 1$$

$$\Delta = \int g \omega dx \quad \text{Where } g(x) = \exp\left(-\frac{1}{2}x^{2}\right)$$

$$\int_{0}^{\infty} = 1 \text{ i.e. } x \sim \text{ uriform } (-\infty, 0)$$
When $\Delta = 1 \text{ i.e. } x \sim \text{ uriform } (-\infty, 0)$
When $\Delta = 1 \text{ i.e. } x \sim \text{ uriform } (-\infty, 0)$

$$\Delta = C = \exp(x) \ln(x)$$

$$\Delta = \left(\exp\left(-\frac{x^{2}}{2}\right)\right) = \frac{1}{N} \sum_{i=1}^{N} \exp\left(-\frac{x^{2}}{2}\right)$$

$$\Delta = \exp\left(-\frac{1}{2}\left(\frac{x-10}{4}\right)^{2}\right) dx$$

$$\Delta = C = \exp(x) \ln(x)$$

$$\Delta = C = \exp(x) \ln(x)$$

$$\Delta = \sum_{i=1}^{N} \left(\exp\left(-\frac{1}{2}\left(\frac{x-10}{4}\right)^{2}\right) = \sum_{i=1}^{N} \left(\exp\left(-\frac{1}{2}\left(\frac{x-10}{4}\right)^{2}\right)^{2}\right)$$

$$\Delta = \sum_{i=1}^{N} \left(\exp\left(-\frac{1}{2}\left(\frac{x-10}{4}\right)^{2}\right) = \sum_{i=1}^{N} \left(\exp\left(-\frac{1}{2}\left(\frac{x-10}{4}\right)^{2}\right)^{2}\right)$$

See Python code attucked

Monte-Carlo Estimation for Problem 1a Assignment 2

```
In [10]: from scipy import random
  import numpy as np
```

$(i) \exp(-x)$

```
In [11]:
    a = 0
    b = 1
    N = 1000
    xrand = np.zeros(N)

for i in range(len(xrand)):
        xrand[i] = random.uniform(a,b)

def func(x):
    return np.exp(-x)

integral = 0.0

for i in range(N):
    integral += func(xrand[i])

answer = (b-a)/float(N)*integral
    print("the integral from 0 to 1 of exp(-x) is", answer)
```

the integral from 0 to 1 of $\exp(-x)$ is 0.6376685156211883

(ii) $(1-x^2)^2$

the integral from 0 to 5 of $(1-x^2)^2$ is 556.3822219373099

Monte-Carlo Estimation for Problem 2 a

test with a given number of points and throw randomly in minimal bounding rectangle

fill the points in the rectangle and count those folling inside the curve and compute the ratio of the points inside to total

Monte-Carlo Estimation for Problem 2 b

```
In [41]: import numpy as np
```

test with a given number of points and throw randomly in minimal bounding rectangle

```
In [42]:    r = np.random.rand()
    #y = np.exp(-0.5*((x-mu)/sigma)^2)
    n1 = 0
    n = 100000
    mue = 10
    sig = 4
    xmax = 4 * sig
    xmin = 0
    ymin = 0
```

```
ymax = 1.0
a = xmax * ymax
```

fill the points in the rectangle and count those folling inside the curve and compute the ratio of the points inside to total