Statistiques décisionnelles : TD 1

Exercice 1. 1. Vous vous promenez le long d'une voie ferrée, en pleine rêverie. Vous prenez soudain conscience d'un grand bruit, droit derrière vous. En quoi consiste l'erreur de première espèce? L'erreur de deuxième espèce? Laquelle est la plus grave? Que faites-vous?

- 2. Vrai ou faux : si on compare un test d'hypothèses à un jugement, on peut dire que l'erreur de première espèce est de condamner un homme coupable.
- 3. Dans l'analogie du jugement, que se passerait-il, si on souhaitait rendre l'erreur de première espèce nulle?
- 4. Dans l'analogie du jugement, comment interpréter la puissance du test?

Définition 1. Si X_1, \ldots, X_n sont des variables aléatoires, on note $X_{(1)}, \ldots, X_{(n)}$ l'échantillon ordonné croissant des X_i . Ainsi, $X_{(1)}$ est la plus petite valeur prise par les X_i , $X_{(2)}$ la seconde plus petite valeur et ainsi de suite jusqu'à $X_{(n)}$ qui est la plus grande valeur des X_i . Cette notation avec des parenthèses est standard en probabilités et statistiques. Attention, les X_i sont i.i.d. mais les $X_{(i)}$ ne sont ni indépendants, ni identiquement distribués. Gardez en tête que $X_{(i)}$ dépend de toutes les variables X_1, \ldots, X_n .

Exercice 2 (Rappels sur les fonctions de répartitions). Soit $(X_i)_{i \in \mathbb{N}^*}$ une suite de variables aléatoires i.i.d. de loi inconnue.

- 1. Rappeler la définition de la fonction de répartition des X_i , notée F_X , ainsi que la fonction de répartition empirique, notée F_n .
- 2. Représenter graphiquement F_X et F_n lorsque les X_i suivent une loi uniforme sur [0, 1] et où on a obtenu les valeurs

$$X_1 = 0.17$$
 $X_2 = 0.66$ $X_3 = 0.42$ $X_4 = 0.62$, $X_5 = 0.41$.

Sur ce graphe, que vaut sup $|F_X(t) - F_n(t)|$?

3. Représenter graphiquement F_X et F_n lorsque les X_i suivent une loi $\mathcal{E}(1)$ et où on a obtenu les valeurs

$$X_1 = 0.33$$
 $X_2 = 0.98$ $X_3 = 0.53$ $X_4 = 0.22$, $X_5 = 0.39$.

Sur ce graphe, que vaut $\sup |F_X(t) - F_n(t)|$?

- 4. Montrer que, quel que soit $t \in \mathbb{R}$, la suite $(F_n(t))_{n\geq 1}$ converge presque sûrement vers $F_X(t)$.
- 5. Donner un intervalle de confiance asymptotique pour $F_X(t)$ de niveau 95%.
- 6. Rappeler le théorème de Glivenko-Cantelli. Quelle est la différence avec ce qui a été montré précédemment? Comment calculez-vous en pratique $\sup_{t\in\mathbb{R}}|F_X(t)-F_n(t)|$? On pourra ordonner les variables X_i de manière croissante en notant $X_{(i)}$ la i-ème plus grande valeur dans l'échantillon X_1, \ldots, X_n .

Exercice 3. Soit X_1, \ldots, X_n un échantillon i.i.d. de loi $\mathcal{E}(\lambda)$.

- 1. Si U est une variable aléatoire de loi uniforme sur [0,1], calculer la fonction de répartition de $-\ln(1-U)$ et en déduire la loi de cette variable. Quel théorème du cours est illustré ici?
- 2. Si X est une variable aléatoire de loi $\mathcal{E}(1)$, quelle est la loi de $\frac{1}{\lambda}X$? En déduire la loi de $\frac{-1}{\lambda}\ln(1-U)$ si U est une variable aléatoire de loi uniforme sur [0,1].
- 3. Si X est une variable aléatoire de loi $\mathcal{E}(1)$, quelle est la loi de $1 e^{-X}$? Bonus : Si F_X est inversible, quelle est la loi de $F_X(X)$?
- 4. Soient U_1, \ldots, U_n des variables aléatoires i.i.d. uniformes sur [0,1]. On définit les Y_i par $Y_i = -\frac{1}{\lambda} \ln(1-U_i)$. Quelle est la relation entre les variables ordonnées $Y_{(1)}, \ldots, Y_{(n)}$ et $U_{(1)}, \ldots, U_{(n)}$?
- 5. Pour différentes valeurs de n, on cherche à comprendre la loi de la variable aléatoire $\sup_{t \in \mathbb{R}} |F_X(t) F_n(t)|$. En vous inspirant de l'exercice précédent, écrivez cette quantité comme un maximum d'un nombre fini de quantités mettant en jeu les $X_{(i)}$
- 6. Si X suit une lui exponentielle de paramètre 1 et n=1, explicitez la variable aléatoire $\sup_{t\in\mathbb{R}} |F_X(t)-F_n(t)|$. Même question si X suit une loi exponentielle de paramètre λ .
- 7. Même question si U suit une loi uniforme sur [0,1].
- 8. Même question si $Y = -\frac{1}{\lambda} \ln(1 U)$ où U suit une loi uniforme sur [0, 1]. Que remarquez-vous? Reliez cette question aux deux précédentes.
- 9. Recommencez la question précédente pour n=2 puis n quelconque. Après réflexion, de quoi dépend la variable $\sup_{t\in\mathbb{R}} |F_X(t) F_n(t)|$?
- 10. Comment feriez-vous pour connaître approximativement les propriétés de cette variable pour n = 1, n = 5? (à l'aide d'un ordinateur et de R).