

International Polarized Radiative Transfer

Case B2: Rayleigh scattering and molecular absorption

This test checks whether molecular absorption is correct. The setup is the same as for case B1 but with molecular absorption and at a different wavelength.

Setup:

- model atmosphere with 30 layers, scattering optical thicknesses provided in tau_rayleigh_325.dat, absorption optical thickness in tau_molabs_325.dat
- wavelength: 325 nm
- Rayleigh depolarization factor: 0.03
- surface albedo: 0
- ouput altitudes: 0 km, 1 km, 30 km
- sun position ($sza=60^{\circ}$, $saa=0^{\circ}$)
- viewing zenith angles:
 - at 0 km : vza: 0° 85°, 5° increment
 - at 1 km: vza: 0° 180°, 5° increment (without 90°)
 - at 30 km: vza: 95° 180°, 5° increment
- viewing azimuth angle vaa: 0° 180°, 5° increment

Output format:

• The output should be provided in the same format as for case A1 (Rayleigh scattering).

Results

Difference plots between the models IPOL, 3DMCPOL, SPARTA (previously named TROPOS), SHDOM, PSTAR and MYSTIC for the full radiation field:

3DMCPOL

IPOL

SPARTA

SHDOM

PSTAR

Data of all models (MYSTIC and 3DMCPOL include also standard deviation):

MYSTIC

3DMCPOL

 IPOL

SPARTA

SHDOM

PSTAR

intercomparisons/b2_absorption.txt · Last modified: 2015/03/10 17:07 (external edit)

1 of 1 1/5/2016 11:05 AM