Introduction to Game Theory Date: 23rd March 2020

Instructor: Sujit Prakash Gujar Scribes: Siddharth Bhat & Harshit Sankhla

Lecture X: Quasi-Linear games

1 Recap

This is the a special class of environments where the GibbardSatterthwaite theorem does not hold. A popular example of quasi-linear games are actions.

2 Introduction

(We follow some of the exposition of Game Theory by Y. Narahari: The quasilinear environment). The structure of the quasi-linear setting is as follows:

$$X \equiv \left\{ (k, t_1, \dots, t_n) : k \in K, t_i \in \mathbb{R}, \sum_i t_i \le 0 \right\}.$$

where X is the space of alternatives, K is the set of possible allocations. $k \in K$ is the currently chosen allocation, and t_i are monetary transfer receives by agent i. By convention $t_i > 0$ implies that the agent receives money, and $t_i < 0$ implies that the agent is paid money. We assume that our agents have no external source of funding (the weakly budget-balanced condition). Hence, we stipulate that $\sum_i t_i \leq 0$.

A social choice function (henceforth abbreviated as SCF) in this setting is of the form $f:\Theta\to X$, where we write $f(\theta\in\Theta)\equiv(k(\theta),t_1(\theta),t_2(\theta),\ldots,t_n(\theta))\in X$. That is, we require that $k:\Theta\to K$, $t_i:\Theta\to\mathbb{R}$ such that for all $\theta\in\Theta,\sum_i t_i(\theta)\leq 0$.

This setting is known as quasi-linear since the agent's utility function is of the form:

$$u_i: X \times \Theta_i \to \mathbb{R}; u_i(x, \theta_i) \equiv u_i((k, t_1, t_2, \dots, t_n), \theta_i) = v_i(k, \theta_i) + t_i$$

 $v_i: K \times \Theta_i \to \mathbb{R} \equiv (\text{Agent } i\text{'s valuation}) \quad t_i \equiv \text{amount paid to agent}$

Here, $v_i: \Theta \to \mathbb{R}$ is the agent's valuation function, and t_i is the amount that is paid (or is to be paid) by the agent. This informs our choice of sign convention for t_i : if the agent i is paid, then it has earned money, t_i is positive, its utility is higher.

Definition 1. Allocative Efficiency(AE) We say that a social choice function $f: \Theta \to X$ is allocatively efficient iff for all states of private information, the SCF causes us to choose the allocation that leads to the maximum common good. More formally, for all $(\theta_1, \theta_2, \dots, \theta_n) \in \Theta$, we have that:

$$k(\theta) \in \arg\max_{k \in K} \sum_{i=1}^{n} v_i(k, \theta_i).$$

Equivalently:

$$\sum_{i=1}^{n} v_i(k(\theta), \theta_i) = \arg\max_{k \in K} \sum_{i=1}^{n} v_i(k, \theta_i).$$

We can think about this as saying:

"Every allocation is value-maximizing allocation. Allocations are given to those agents that covet them."

Definition 2. Budget Balance(BB) Recall that a social choice function $f: \Theta \to X$ is said to be budget-balanced iff the total money is conserved for all states of private information. Formally:

$$\forall \theta \in \Theta, \ \sum_{i} t_i(\theta) = 0$$

We first show that the class of quasi-linear functions is non-degenerate, in the sense that it is non-dictatorial.

Lemma 1. All social choice function $f:\Theta\to X$ in the quasilinear setting are non-dictatorial.

Let us assume we have a dictator who is player d (for dictator). For every $\theta \in \Theta$, we have that:

$$u_d(f(\theta), \theta_d) \ge u_d(x, \theta_d) \ \forall x \in X.$$

This models a dictator since this tells us that u_d gets what he wants for all scenarios. Written differently:

$$u_d(f(\theta), \theta_d) = \max_{x \in X} u_d(x, \theta_d)$$

Since our environment is quasi-linear, we have that $u_d(f(\theta), \theta_d) = v_d(k(\theta), \theta_d) + t_d(\theta)$. Hence, we can an alternative $f' : \Theta \to X$:

$$f(\theta) \left\{ (k(\theta), (t_{-d}(\theta), t_d \equiv t_d(\theta) - \sum_i t_i(\theta))) \quad \sum_{i=1}^n t_i(\theta) < 0 \right\}$$

For the following outcome, we have that $u_d(x,\theta) > u_d(f'(\theta),\theta_d)$ which contradicts the assumption that d is a dictator.

Definition 3. Ex-post efficiency Recall that Ex-post efficiency is when the item is always allotted to the agents that value it the most. Formally, we state that a social choice function $f: \Theta \to X$ is said to be Ex-post efficient iff:

$$\sum_{i=1}^{n} u_i(k(\theta), \theta_i) = \arg \max_{k \in K} \sum_{i=1}^{n} u_i(k, \theta_i).$$

Lemma 2. A social choice function $f: \Theta \to X$ in the quasilinear setting is Ex-post efficient (EPE) iff it is budget-balanced.

We can either relax DSIC or relax rich preference structure. We decided to look at quasi-linear environments where we relax preferences. A popular example of this is auctions.

 $X = \{(k, t_1, \dots, t_n) : k \in K, t_i \in \mathbb{R}, \sum_i t_i \le 0\}$

 t_i is monetary transfer receives by agent i.

 $u_i(x, \theta_i) = v_i(k, \theta_i) + t_i$. Linear in t_i , hence the setting is quasi-linear. Often it is even $k_i \cdot \theta_i + t_i$ —these settings are known as linear settings.

3 Examples of SCF in quasi-linear settings

• Players: Seller and two buyers

• Private information: Seller $\Theta_0 = \{0\}$. Byers $= \theta_1 = \theta_2 = [0, 1]$.

4 Allocative efficiency

an SCF $f(\cdot)$ is allocative efficient if it maximises sum of valuations of agents. We assume such a maxima does exist. $k^{\star}(\theta) \in \arg\max_{k \in K} \sum_{i=1}^{n} v_i(k, \theta_i)$

We also want budget balance:

$$\sum_{i=1}^{n} t_i(\theta) = 0.$$

Properties of SCF(Social choice function) in quasi-linear 5 settings

Lemma 3. All SCFs in quasi-linear settings are non dictatorial.

because $\sum_i t_i < 0$, we can increase payment for the dictator by using $t_i + \frac{e}{n-1}$ and decrease everyone else to $t_i - \frac{e}{n-1}$. So, there is always an outcome that is better for a dictator. Hence, the best outcome cannot have a dictator.

Ex-post efficiency

in quasi linear, scf is exp-post efficient iff if is allocatively efficient and strictly budget balanced. We have to prove that $EPE \implies AE + SBB$, and also $AE + SBB \implies EPE$.

Suppose f = (k, t) is EPE but not SBB. So there exists a θ such that $\sum_i t_i(\theta) < 0$. Hence, there exists at least one agent j such that $t_j < 0$. (If everyone is positive, sum cannot be less than 0).

Now consider a new allocation X' = (k, t') where

$$t_j'(\theta) = \begin{cases} t_j(\theta) - \sum_i t_i(\theta)/n & \text{if } t_j(\theta) < 0 \\ t_j(\theta) & \text{otherwise} \end{cases}$$
 Hence, $u_j'(k,t') > u_j(k,t)$ for such j where $t_j(\theta) < 0$. For other agents, $u_j'(k,t') = u_j'(k,t)$.

This means that (k,t') pareto dominates (k,t). This is a contradiction to the assumption that f was EPE, since we constructed an outcome where one agent does better, and others don't do worse.

We now argue that f must be allocatively efficient, if f is EPE. For contradiction, let us assume that f is not AE. That means that there is a k^* such that $\sum_i v_i(k^*, \theta) > v_i(k, \theta)$. Define $t_i'(\theta) = v_i(k, \theta) - t_i(\theta) - \sum_j \theta_j(k^*, \theta) + \epsilon$ where $\epsilon < \sum_j v_j(k^s tar, \theta) - theta_j(k, \theta)$. Note that $v_i(k, \theta) - t_i(\theta) = u_i(k, t)$. Now note that $u_i(k^*, t') = u_i(k, t) + \epsilon/n$, where ϵ is positive.

Hence, $u_i(k^*, t') > u_i(k, t)$.

We need to check that t' is feasible: ie, $\sum_i t'_i < 0$.

$$\sum_{i} t'_{i} = \sum_{i} v_{i}(k, theta) - \sum_{i} v_{j}(k^{\star}, \theta) + \sum_{i} t_{i}(\theta) \le 0??$$

Also note that for all i, $u_i(k^*,t') > u_i(k,t)$. This is contradiction to the fact that f is APE. Hence, f must be AE.

Other way round: if f is AE + SBB, then it is EPE

For this, we will need to prove a lemma:

Lemma 4. If $f: \Theta \to X$ st $\forall \theta \in \Theta$,

$$\sum_{i} u_i(f(\theta), \theta_i) \ge \sum_{i} u_i(x, \theta_i) \forall x \in X$$

then f is EPE.

The key idea is to write $u_i = v_i + t_i$, an we can get rid of t_i since f is SBB.

First price versus second price auction

First price: reporting valuation truthfully is not an equilibrium. Second price: truthful reporting is equilibrium.

How do we generalize this to more situations? The key idea is that in a second price auction, our payment is independent of what we report. The allocation might depend on our payment, but payment does not. How can we have more DSIC mechanisms?

Groves theorem 9

TODO: fill up groves theorem

Three families A B C, can go to Munnar or Simla.

	Manali	Shimoga
Alice	-1	10
Bob	5	-2

Claire 5 (Claire is a kid, loves vacations)

We want to get this information truthfully, by using VCG/Groves mechanism. there are two outcomes, M or S. If we go to M, the tuility is 5+5-1=9. If we choose S, it is

10-2+4=12. so S is allocatively efficient.

	$\{A\}$	$\{B\}$	$\{C\}$	$\{A,B\}$	$\{A,C\}$	$\{B,C\}$	$\{A, B, C\}$
P_1	10	0	5	10	20	5	20
P_2	0	9	15	9	15	20	20
P_3	10	2	2	10	12	2	28
P_4	8	3	3	8	8	3	8

Giving A to P_1 and BC to P_2 gives 10 + 20 = 30.

A direct revelation mechanism in which f satisfies allocative efficiency and the groves payment scheme is knows as the groves mechanism.

before this, there is another mechanism called as Clarke's mechanism

10 Clarke's mechanism

 $\begin{array}{l} h_i(\theta_i) = \sum_{j \neq i} v_j(k_{-i}^\star(\theta_{-i},\theta_j)) \forall \theta_{-i} \in \Theta_{-i} \\ \text{That is, each agent } i \text{ receives} \end{array}$

$$t_i(\theta) = \sum_{j \neq i} (v_j(k^{\star}(\theta), \theta_j)) - \sum_{j \neq i} v_j(k^{\star}_{-i}(\theta_{-i}), \theta_j))$$

This works for combinatorial auctions as well. It's a generalization of second-price auction.

(C is a kid, loves vacations) \mathbf{C} 4

For player A, first consider:

AE is M.

Following Clarke Mechanism:

 $t_A = [\text{valuation of remaining agents at allocatively efficient outcome without A}](-2+4)$

- [valuation of remaining agents at allocatively efficient outcome with A][5+5]

= 8

for player B, first consider:

AE is S. So, $t_B = 0$. Similarly, $t_C = 0$.