Problem H. Alex and a Rhombus

Time limit 1000 ms **Mem limit** 262144 kB

While playing with geometric figures Alex has accidentally invented a concept of a n-th order rhombus in a cell grid.

A 1-st order rhombus is just a square 1×1 (i.e just a cell).

A n-th order rhombus for all $n \ge 2$ one obtains from a n-1-th order rhombus adding all cells which have a common side with it to it (look at the picture to understand it better).

Alex asks you to compute the number of cells in a n-th order rhombus.

Input

The first and only input line contains integer n ($1 \le n \le 100$) — order of a rhombus whose numbers of cells should be computed.

Output

Print exactly one integer — the number of cells in a n-th order rhombus.

Sample 1

Input	Output
1	1

Sample 2

Input	Output
2	5

Sample 3

Input	Output
3	13

Note

Images of rhombus corresponding to the examples are given in the statement.