

### Mariana P Silva

full backend developer



Formada em Análise e Desenvolvimento de Sistemas na FATEC de Cruzeiro-SP.

Cursando Pós em Software Architecting na FIAP. Completando 5 anos de experiência na área em 2025.

Instrutor de Formação Profissional III no SENAI (desde 2022).

Backend Developer na Venturus (desde 2022).



- 1. Qual seu maior defeito;
- 2. Qual sua maior qualidade?
- 3. Qual o maior desafio profissional que marcou sua carreira?
- Descreva sua personalidade.

# Regras

<u>link</u>



# 2569 5413

menti.com

### Sobre o Curso

Carga Horária: 60h

**Objetivo**: O desenvolvimento de competências relativas programação utilizando codificações na linguagem Python, com vistas à coleta, limpeza, organização e transformação de dados e seguindo boas práticas, procedimentos e normas.

.....

### Calendário



.....

## Calendário



# O que preciso para ter meu certificado?

Nota maior ou igual a 50 - Participação nas aulas e projeto avaliativo.

Frequência maior ou igual a 75% - Faltar em último caso.

Deem o melhor de vocês sempre!

### Como será dividido?



# O que é Data Science?

Data Science, ou Ciência de Dados, é uma área multidisciplinar que combina estatística, programação, conhecimento do domínio e técnicas de visualização para extrair conhecimento e insights de dados brutos.

Em outras palavras:

É o processo de transformar dados em informações úteis para a tomada de decisão.

# Componentes principais:

Estatística: Ajuda a entender padrões e testar hipóteses.

Programação: Permite manipular e processar grandes volumes de dados (ex: Python, R).

Banco de Dados: Coleta e armazena dados estruturados e não estruturados.

Visualização Comunica os resultados de forma clara e acessível (ex: gráficos, dashboards).

# Componentes principais:

Machine Learning: Usa algoritmos para prever ou classificar dados com base em padrões.

Conhecimento de Domínio Ajuda a interpretar os dados de forma contextualizada.

# Etapas comuns de um projeto de Data Science:

Coleta de dados (ex: APIs, bancos de dados, web scraping)

Limpeza e tratamento dos dados (ex: remoção de nulos, normalização)

Análise exploratória (ex: médias, dispersão, correlações)

Modelagem e predição (usando estatística ou machine learning)

Interpretação e visualização dos resultados

Tomada de decisão baseada em dados

# Qual carreira eu posso seguir estudando esses conceitos?

#### 1. Cientista de Dados (Data Scientist)

O que faz: Coleta, limpa, analisa e modela dados para gerar insights estratégicos.

Habilidades: Estatística, Python/R, machine learning, SQL, visualização de dados.

Diferencial: Capacidade de comunicar achados complexos para públicos não técnicos.

#### 2. Analista de Dados (Data Analyst)

O que faz: Cria relatórios, dashboards e análises descritivas para orientar decisões.

Habilidades: Excel, SQL, Power BI/Tableau, estatística básica.

Perfil: Ótima escolha para começar na área.

### Analista X Cientista de Dados





É um ramo da matemática aplicada que se dedica a coletar, analisar e interpretar dados

O que é?

### Conceitos de Estatística



População
Dado Informação X
Amostra Qualitativa
Quantitativa
Quantitativa

### Dado

São registros do que acontece no nosso dia-a-dia. Eles são a forma que encontramos de capturar, guardar e comunicar os fatos do nosso entorno.

### Informação

Ordenação e organização dos dados de forma a transmitir significado e compreensão dentro de determinado contexto. Conjunto ou consolidação dos dados.

### Conhecimento

Conjunto de informações e princípios aprendidos. É quando você usa a informação para refletir, aprender ou tomar decisões.

### Exemplo:

#### Situação completa:

Ana tirou nota 4 na prova de matemática, que tinha peso 2. A média necessária para passar é 6.

Dados:

Nota: 4

Matéria: Matemática

Peso: 2

Média para passar: 6



### Exemplo:

Situação completa:

Ana tirou nota 4 na prova de matemática, que tinha peso 2. A média necessária para passar é 6.

Informação:

É quando os dados são combinados com contexto e interpretados:

"Ana foi mal na prova de matemática e não atingiu a média."

Chave da informação: já responde "o que significa?"



### Exemplo:

#### Situação completa:

Ana tirou nota 4 na prova de matemática, que tinha peso 2. A média necessária para passar é 6.

#### Conhecimento:

É quando você usa a informação para refletir, aprender ou tomar decisões:

"Como Ana tirou 4 na prova com peso 2, ela precisará de uma nota maior nas próximas avaliações para conseguir passar. Talvez precise de reforço em matemática."

Chave do conhecimento: responde "o que fazer com isso?" ou "o que posso concluir?"



"38°C"

- a) Dado
- b) Informação
- c) Conhecimento



"38°C"

- a) Dado
- b) Informação
- c) Conhecimento



"João - 8h45 - Entrada"

- a) Dado
- b) Informação
- c) Conhecimento



"João - 8h45 - Entrada"

- a) Dado
- b) Informação
- c) Conhecimento



"Quando a temperatura ultrapassa os 37°C, é importante se hidratar e evitar exposição ao sol entre 10h e 16h."

- a) Dado
- b) Informação
- c) Conhecimento

"Quando a temperatura ultrapassa os 37°C, é importante se hidratar e evitar exposição ao sol entre 10h e 16h."

- a) Dado
- b) Informação
- c) Conhecimento

"João chegou atrasado ao trabalho, pois o horário de entrada é 8h."

- a) Dado
- b) Informação
- c) Conhecimento



"João chegou atrasado ao trabalho, pois o horário de entrada é 8h."

- a) Dado
- b) Informação
- c) Conhecimento





### População X Amostra

A população é o conjunto completo de todos os elementos que estão sendo estudados, enquanto a amostra é uma porção selecionada dessa população

### Variáveis

1. Variáveis Qualitativas (Categóricas):

Essas variáveis descrevem qualidades ou categorias e não possuem uma ordem numérica inerente.

Nominais: Não têm uma ordem específica.

Exemplo: Cores favoritas (vermelho, azul, verde)

 Ordinais: Têm uma ordem específica, mas as diferenças entre os valores não são mensuráveis.

Exemplo: Nível de satisfação (muito insatisfeito, insatisfeito, neutro, satisfeito, muito satisfeito)



### Variáveis

2. Variáveis Quantitativas (Numéricas):

Essas variáveis representam quantidades e podem ser medidas numericamente.

Discretas: Assumem valores inteiros e contáveis.

Exemplo: Número de filhos em uma família (0, 1, 2, 3)

 Contínuas: Podem assumir qualquer valor dentro de um intervalo contínuo e são medidas com precisão.

Exemplo: Tempo de espera (em minutos) para atendimento (2,5 minutos, 7,8 minutos)



Cor dos olhos de uma pessoa

- a) Quantitativa
- b) Qualitativa



Cor dos olhos de uma pessoa

- a) Quantitativa
- b) Qualitativa



Idade de um aluno

- a) Quantitativa
- b) Qualitativa



Idade de um aluno

- a) Quantitativa
- b) Qualitativa



Tipo sanguíneo (A, B, AB, O)

- a) Quantitativa
- b) Qualitativa



Tipo sanguíneo (A, B, AB, O)

- a) Quantitativa
- b) Qualitativa



#### **COMPARAÇÃO DE GRUPOS**

#### Gráfico de barra



#### Gráfico de pizza



#### **COMPARAÇÃO DE GRUPOS**

#### **Nuvem de Palavras**



#### Diagrama de Árvore



#### **DISTRIBUIÇÃO DOS DADOS**

#### Histograma



#### **RELAÇÃO ENTRE VARIÁVEIS**

#### Gráfico de dispersão



#### **EVOLUÇÃO**

#### Gráfico de linha



# Distribuição de Frequências

É uma forma de organizar e resumir um conjunto de dados em uma tabela.

- 1. Frequência absoluta
- 2. Frequência acumulada
- 3. Frequência relativa
- 4. Frequência relativa acumulada

# Regras para calcular o número de classes



$$k = 1 + 3.3 \log (n)$$

A regra da Raíz

$$k = \sqrt{n}$$

Intervalo de Classes

$$h = AMP / k$$



### Medidas de Tendência Central

Média - Média Ponderada

Mediana

Moda



### Medidas de Dispersão

#### Variância σ2

$$\sigma^2 = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n}$$

#### Desvio Padrão σ

$$\sigma = \sqrt{\sigma^2}$$

Coeficiente de Variação cv

$$CA = Q/X$$



### Quartis e Percentis







# Atividade em Grupo: Aula invertida

Em grupos de 3 a 5 pessoas, vocês deverão criar uma apresentação clara e didática que aborde os tópicos de Estatística Descritiva.

Todos devem anexar o slide no Classroom.

Não tem máximo nem mínimo de slides.

Irei sortear dois grupos para apresentarem. Se preparem!

# Atividade em Grupo: Aula invertida

Em grupos de 3 a 5 pessoas, vocês deverão criar uma apresentação clara e didática que aborde os tópicos de Estatística Descritiva.

Todos devem anexar o slide no Classroom.

Não tem máximo nem mínimo de slides.

Irei sortear dois grupos para apresentarem. Se preparem!

### Principais ferramentas para Data Science

#### 1. Linguagens de programação

Python: A mais popular, versátil e com uma enorme biblioteca para análise, manipulação, visualização de dados e machine learning (ex: pandas, NumPy, scikit-learn, TensorFlow, PyTorch).

R: Muito usada para estatística, análises exploratórias e visualizações sofisticadas (ex: ggplot2, dplyr).

SQL: Linguagem padrão para consulta em bancos de dados relacionais.

......

# Principais ferramentas para Data Science

#### 2. Ambientes e Notebooks

Jupyter Notebook / JupyterLab: Ambiente interativo para desenvolvimento com células de código, texto e gráficos.

Google Colab: Versão cloud do Jupyter, com GPUs grátis e integração com Google Drive.

RStudio: IDE para linguagem R, com suporte para scripts, notebooks e visualizações.