The Importance of Lighting for Plants

--Electric Lamp Options

	Lamp Type	Conversion* Efficiency	Lamp Life* (hrs)	Spectrum
•	Incandescent/Tungsten**	5-10%	2000	Intermd.
•	Xenon	5-10%	2000	Broad
•	Fluorescent***	20%	5,000-20,000	Broad
•	Metal Halide	25%	20,000	Broad
•	High Pressure Sodium	30%	25,000	Intermd.
•	Low Pressure Sodium	35%	25,000	Narrow
•	Microwave Sulfur	35-40%+	?	Broad
•	LEDs (red and blue)****	>40%	100,000 ?	Narrow

^{*} Approximate values.

^{**} Tungsten halogen lamps have broader spectrum.

^{***} For VHO lamps; lower power lamps with electronic ballasts last up to ~20,000 hrs.

^{****} State-of-Art Blue and Red LEDs most efficient.

Direct Solar Radiation Options

Earth Radiation:

- incident* ~1350 W m⁻² total

~ 600 W m⁻² PAR

Mars Radiation (~44% of Earth's):

- incident* ~ 600 W m⁻² total

~ 260 W m⁻² PAR

- daily PAR** ~ 7 MJ m⁻² d⁻¹ (~26 mol m⁻² d⁻¹)

- * At outer edge of atmosphere
- ** Surface irradiance estimated from Landis (1996); values dependent on latitude, time of year, and weather

Crop Yield vs. Light

Photosynthetically Active Radiation (mol m⁻² d⁻¹)

Can "Greenhouses" be Used on Mars?

- Optimized Light Collection
 - Greenhouse Structural Design
 - Ancillary Collectors / Reflectors ?
- Thermal Management Challenges
- Materials Challenges:
 - Inflatable Systems (for reduced mass)
 - Resistance to Leakage
 - Resistance to UV
 - Temperature Tolerance

Buried Plant Growth Chambers

Previous Studies with Plants and Pressure

- Wright Patterson Air Base, USA (1960s)
- Siegel et al. (1962, 1963)
- Burg and Burg (1965)
- Gale (1972, 1973)
- Rule and Staby (1981)
- Andre and Richaud (1985); Andre and Massimino (1992)
- Musgrave et al. (1988)
- Daunicht and Brinkjans (1992, 1996)
- Ohta et al. (1993)
- Goto et al. (1995, 1996), Iwabuchi et al. (1996)
- Corey et al. (1996, 1997)

• Studies Ongoing: Texas A&M Univ. (USA)

Kennedy Space Center, FL

Univ. of Guelph (Canada)

Role of Bioregenerative Life Support for Future Missions

Short Durations (early missions)

Longer Durations

Autonomous Colonies

Stowage and Physico-Chemical

Bioregenerative

Plant Growing Area

 $\sim 1-5 \text{ m}^2 \text{ total}$

~10-25 m²/person

~50 m²/person