Using Collective Matrix Factorization and Tags to improve a Recommender System

Cristopher Arenas

PUC, Campus San Joaquín

November 25, 2015

- Recommender Systems are used to provide recommendation to users about items
- The problem consist in predict for an user u the preference about an item i, tipically with a range of values r.

- There are methods based in Collaborative Filter to resolve the problem.
- This approach find similarities
 - Users
 - Items
 - Ratings

- One of the major problems with CF is the **sparsity problem**.
- The most of users rating a few items.
- Some Matrix Factorization methods are used to solve the sparsity problem using filling techniques.

- A method called Collective Matrix Factorization will be proposed.
- The use of tag information will be considered.

Related Work

- Matrix Factorization Techniques consider the factorization of a matrix that relates users and items.
- Traditional approaches try to minimize the error function:

$$E = \sum_{(u,i)\in\mathcal{K}} (r_{ui} - q_i^T p_u)^2 + \lambda(||q_i||^2 + ||p_u||^2)$$
 (1)

There are three matrices that relates m users, n items and p tags:

- U(u, i): user-item matrix. Shows the *rating* of user u for an item i.
- T(u,t): user-tag matrix. Shows the *preference* of an user u for the tag t.
- G(i, t): tag-item matrix. Shows relevance between item i and tag t.

- U(u,i) and G(i,t) are constructed directly with information.
- \blacksquare T is constructed using U and G.

$$T(u,t) = \frac{1}{N} \sum_{k=1}^{n} U(u,k) \times G(k,t)$$
 (2)

Later, submatrices X, Y and Z are used to construct two matrices U' and T'.

$$U' = XY^T \tag{3}$$

$$T' = XZ^T \tag{4}$$

Gradient Descent Method (GDM) is performed to minimize the error between real values and approximated values:

$$ER(X, Y, Z) = \frac{1}{2} ||J \circ (U - XY^T)||_F^2 + \frac{\alpha}{2} ||T - XZ^T||_F^2 + \frac{\beta}{2} (||X||_F^2 + ||Y||_F^2 + ||Z||_F^2)$$
(5)

Gradients are calculated:

$$\nabla_X ER = \left[J \circ (XY^T - U) \right] Y + \alpha (XZ^T - T)Z + \beta X \tag{6}$$

$$\nabla_{Y} ER = \left[J \circ (XY^{T} - U) \right] X + \beta Y \tag{7}$$

$$\nabla_{Z}ER = \alpha(XZ^{T} - T)X + \beta Z \tag{8}$$

13. end while

Algorithm 1 Gradient Descent Method

```
1: Initialize X, Y, Z with random number in range (0,1)
 2: t = 0
 3: while t < max iteration do
        Get gradients \nabla_{x} ER, \nabla_{y} ER and \nabla_{z} ER.
 5:
      \gamma = 1
      while (ER(X_t - \gamma \nabla_{X_t}, Y_t - \gamma \nabla_{Y_t}, Z_t - \gamma \nabla_{Z_t}) > ER(X_t, Y_t, Z_t)) do
 6:
     \gamma = \gamma/2
     end while
     X_{t+1} = X_t - \gamma \nabla_{X_t}
 9:
    Y_{t+1} = Y_t - \gamma \nabla_{Y_t}
10:
11: Z_{t+1} = Z_t - \gamma \nabla_{Z_t}
12: t = t + 1
```

Experiments

- Dataset: MovieLens
 - 1.000.209 ratings
 - **3.682** movies
 - 6.040 users
- Tag-Genome
 - 9.734 movies
 - 1.128 tags
- 3.642 movies in MovieLens and Tag-Genome
- 80% training and 20% testing

Experiments

- **3** experiments:
 - Latent factors
 - Prediction: MAE, RMSE
 - Top-N: nDCG

Results

 $\label{eq:Figure 1} \textbf{Figure 1}: \quad \textbf{Error function using three different latent factors}.$

Results

Table 1: MAE and RMSE considering two scenarios.

Metric	With tags	Without tags	
MAE	0.7236	0.6961	
RMSE	0.9264	0.8945	

Results

Table 2: nDCG@p metric for two scenarios and differents values of p

р	Best user		Worst user		Average	
	With tags	Without tags	With tags	Without tags	With tags	Without tags
1	0.7869	0.8354	0.7869	0.8354	0.7869	0.8354
3	0.7855	0.8323	0.6431	0.6581	0.7169	0.7337
5	0.7811	0.8256	0.4256	0.5164	0.6353	0.6740
10	0.9966	0.8666	0.4147	0.5002	0.6888	0.7157
20	0.9676	0.9658	0.3974	0.4682	0.6798	0.7066

Conclusions

- Different ways to do matrix factorizations.
- Purpouse of this work: using tags in a collective matrix factorization.
- Latent factors
- About results.
- Future work: exaustive revision.