Probabilidad y estadística

Clase 5

$$\int \cdot F(x) = P(X \in X) \quad \text{"ADN"} \quad \\ - f(x) \quad \text{en vaciables con thouss}$$

Estimación no paramétrica de distribuciones

Asuno $X \sim E(\lambda)$ $f(x) = 1 - e^{\lambda x}$ $f(x) = \hat{\lambda}e^{-\hat{\lambda}x}$

Función de distribución empírica

Def: Sea \underline{X}_n una m.a. tal que $X_i \overset{i.i.a}{\sim} F$, donde F es una función de distribución. La es función de distribución empírica (ECDF) es una función \widehat{F}_n que pone masa 1/n en cada observación X_i .

observación
$$X_i$$
. $\#\{\chi_i \in \chi\}$ $\widehat{\mathcal{P}}(\chi \in \chi) = \widehat{\widehat{F}}_n(x) = \frac{\sum_{i=1}^n I\{X_i \leq x\}\}}{n}$

De un experimento en los efectos de un medicamento para la ansiedad, entre otras cosas se midió la diferencia (en segundos) entre el puntaje de un test de memoria antes y después de tomar el medicamento, obteniendo los siguientes resultados:

- 1.2, 4.6, 4.3, 4.2, -7.9, 7.8, 3.4, 19.8, 25.5, -1.9, 2.1, -0.9, 4.6, 21.1, 1,7
 - 1. Obtener la función de distribución empírica a mano.
 - 2. Utilizar la columna 'Diff' del dataset Islander_data.csv y calcular la func. de distribución empírica usando software.

1.2, 4.6, 4.3, 4.2, -7.9, 7.8, 3.4, 19.8, 25.5, -1.9, 2.1, -0.9, 4.6, 21.1, 1,7

Propiedades de la ECDF

$$\mathbb{E}\left(\widehat{F}_{n}(x)\right) = F(x),$$

$$\mathbb{V}\left(\widehat{F}_{n}(x)\right) = \frac{F(x)(1 - F(x))}{n},$$

$$MSE = \frac{F(x)(1 - F(x))}{n} \to 0,$$

$$\widehat{F}_{n}(x) \stackrel{P}{\longrightarrow} F(x).$$

Estimación de densidad

. kernels

$$x$$
 es us continua $f_x(x) > 0$ $\int_{50p} f(x) = 1$

Histogramas

Se selecciona un origen x_0 y se divide la recta real en intervalos de longitud h

$$B_j = [x_0 + (j-1)h, x_0 + jh], j \in \mathbb{N}$$

Se cuenta cuantas observaciones caen en cada intervalo armando una tabla de frecuencias. Denotamos a la cantidad de observaciones que caen en el intervalo j como n_i

Para cada intervalo, se divide la frecuencia absoluta por la cantidad total de la muestra n (para convertirlas en frecuencias relativas, análogo a como se hace con las probabilidades) y por la longitud h (para asegurarse que el area debajo del histograma sea igual a 1):

Formalmente, el histograma está dado por:

$$\hat{f}_h(x) = \frac{1}{nh} \sum_{i=1}^n \sum_j \mathbf{1}(x_i \in B_j) \mathbf{1}(x \in B_j)$$

Apunte de Histograma - PyE FIUBA

A partir de los datos del ejercicio 1,

- 1. Calcular a mano, el histograma de 6 bins
- 2. A partir de los datos del dataset graficar el histograma de la columna 'Diff' usando software.

Teorema: Sea x y m fijos, y sea B_n el bin que contiene a x, luego

$$\mathbb{E}(\widehat{f}_n(x)) = \frac{p_j}{h} \qquad \mathbb{V}(\widehat{f}_n(x)) = \frac{p_j(1-p_j)}{nh^2}.$$

Estimación de densidad por kernel

Los histogramas son discontinuos, los estimadores de densidad por kernel (KDE) son una versión más suave y convergen más rápido a la densidad verdadera que el histograma.

KDE - Ejemplo

Def: Dado un kernel K y un número positivo h, llamado ancho de banda, el estimador de densidad por kernel se define como

$$\hat{f}(x) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{h} \mathbb{K}(\frac{x - X_i}{h})$$

h: ventana de cuavizada

Kernel – Definición

Se define un kernel como una función
$$K$$
 suave tal que: $K(x)\geq 0$, $\int K(x)dx=1$, $\int xK(x)dx=0$, y $\sigma_K^2=\int x^2K(x)dx>0$.

Es óptima en el sentido de error cuadrático medio

Gaussiano (simple)

A partir de la columna 'Diff' del dataset Islander_data estimar la densidad por el método de KDE. Analizar qué ocurre al tomar distintos valores de h.

Bias-Variance Tradeoff

Intervalos de confianza

Estimación por intervalo.

Hasta ahora habíamos visto estimadores puntuales, que, dada un muestra, nos devuelven un único valor $\hat{\theta}$ que se aproxima al valor verdadero del parámetro deseado θ .

$$\frac{\varkappa}{\Gamma} = (\chi_1 \chi_2 \dots \chi_n) \stackrel{\text{iid}}{\sim} F$$

$$\frac{\chi}{\Gamma} = (\chi_1 \chi_2 \dots \chi_n) \stackrel{\text{iid}}{\sim} F$$

¿Qué es un IC?

En la siguiente <u>api</u> podemos visualizar un poco mejor qué es un IC con simulaciones.

Dada una muestra aleatoria $\underline{X} = (X_1, \dots, X_n)$ de una población con distribución normal con media y varianza desconocidas, hallar el intervalo de confianza de nivel 0.99 para la media de la población.

Suponer n=50, $\mu=2, \sigma=3$, simular la muestra y calcular el IC resultante de la misma.

Región de confianza

Def: Dada una m.a. \underline{X} con distribución perteneciente a una familia $F_{\theta}(x)$, con $\theta \in \Theta$, una región de confianza $S(\underline{X})$ para θ con nivel de confianza $1-\alpha$ será un conjunto tal que $\mathbb{P}(\theta \in S(\underline{X})) = 1-\alpha. \ (*)$

✓ Obs: θ no es aleatorio, lo aleatorio es (*) es $S(\underline{X})$.

Obs: Si $S(\underline{X})=(a(\underline{X}),b(\underline{X}))$ diremos que es un intervalo de confianza. Si $S(\underline{X})=(\min(\Theta),b(\underline{X}))$ diremos que es una cota superior.

Si $S(\underline{X}) = (a(\underline{X}), \max(\Theta))$ diremos que es una cota inferior.

Método del pivote

Teorema: Sea \underline{X} una muestra aleatoria con distribución perteneciente a una familia $F_{\theta}(x)$, con $\theta \in \Theta$, y sea $\underline{U} = g(\underline{X}, \theta)$ una variable cuya distribución **no** depende de θ . Sean \underline{a} y \underline{b} tales que

$$\mathbb{P}(a \leq U \leq b) = 1 - lpha$$
. Luego, $S(\underline{X}) = \{\theta : a < g(\underline{X}, heta) \leq b\}$

es una región de confianza para heta. A U se lo llama pivote.

Dada una muestra aleatoria $\underline{X} = (X_1, \dots, X_n)$ de una población con distribución normal con media y varianza desconocidas, hallar el intervalo de confianza de nivel 0.99 para la <u>varianza</u> de la población

Simulation
$$M = 80$$
 $5^2 = 2,7213$

Position 1C del 991 $1-d=0.99$ $d=0.01$
 $2 = 78,23$
 $3-d/2 = 0.995$ $a/2 = 0.005$
 $3-d/2 = 0.995$ $a/2 = 0.005$

Algunos resultados importantes

Teorema: Sea $\underline{X} = X_1, \dots, X_n$ una m.a. de una distribución $\mathcal{N}(\mu, \sigma^2)$

$$Z=\sqrt{n}rac{(ar{X}-\mu)}{\sigma}\sim\mathcal{N}(0,1)$$

$$W=\sum_{i=1}^nrac{(X_i-ar{X})^2}{\sigma^2}\sim\chi^2_{n-1}$$

 $V\,\mathrm{y}\,W$ son independientes

Si
$$S^2=rac{1}{n-1}\sum_{i=1}^n(X_i-ar{X})^2$$
 , $U=\sqrt{n}rac{(ar{X}-\mu)}{S}\sim t_{n-1}$

Obs: en general vale que si $X\sim \mathcal{N}(0,1)$ y $Y\sim \chi_n^2$, con X e Y independientes vale que $\frac{X}{\sqrt{Y/n}}\sim t_n$