Introduction to Coding Theory Assignment 14

Divij Singh

08/03/19

1 Q1

 $e_R=1,2\ ,\, e_L={\rm does\ not\ exist}$

2 Q2

 $e_L=0,-1,1\ ,\,e_R={\rm does\ not\ exist}$

3 Q3

 $e_R =$ does not exist , $e_L =$ does not exist

4 Q4

(a)

 $e_L = e_R$

Suppose both exist for \circ over elements of S.

Then, look at $e_L \circ e_R$

This gives us $e_L \circ e_R = e_R$

But as e_R is the right identity, we get $e_L \circ e_R = e_L$

As such, $e_L = e_R$

(b) We already know that if e_L and e_R exist, then $e_L = e_R$ Let $e = e_L = e_R$, and have two distinct values e_1 and e_2 , such that $e_1 \neq e_2$ Then we get $e_1 \circ e_2 = e_1$, and $e_1 \circ e_2 = e_2$ Therfore, either e_L or e_R is unique.

5 Q5

(a)

 $\begin{bmatrix} 1/4 & 1/4 \\ 1/4 & 1/4 \end{bmatrix}$

(b)

 $\begin{bmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{bmatrix}$