Proposta de solució al problema 1

- a) $\lfloor n/2 \rfloor 1$
- b) 0
- c) |n/17| 1
- d) El cost de l'algorisme es pot expressar com:

$$\sum_{\substack{x=2\\x \text{ primer}}}^n \Theta(\lfloor n/x \rfloor - 1) + \sum_{\substack{x=2\\x \text{ no primer}}}^n \Theta(1).$$

El segon sumatori és O(n). Per altra banda, com que $\lfloor n/x \rfloor - 1$ és $\Theta(n/x)$, el primer sumatori és equivalent a

$$\sum_{\substack{x=2\\x \text{ primer}}}^n \Theta(n/x) = n \sum_{\substack{x=2\\x \text{ primer}}}^n \Theta(1/x) = \Theta(n \log \log n).$$

El resultat és doncs

$$\Theta(n \log \log n) + O(n) = \Theta(n \log \log n).$$

e) El cost no millora, continua essent $\Theta(n \log \log n)$, perquè el cost en aquest cas té una expressió similar a l'anterior amb l'única diferència que ara els sumatoris arriben només fins a \sqrt{n} . Per tant, l'expressió final que un obté és $\Theta(n \log \log \sqrt{n})$, que és el mateix que $\Theta(n \log \log n)$, ja que $\log \log \sqrt{n} = \log(\frac{1}{2} \log n) = \log \frac{1}{2} + \log \log n = \Theta(\log \log n)$.

Proposta de solució al problema 2

- a) El mínim n tal que $n^3 \ge 10n^{2.81}$, és a dir, $n^{0.19} \ge 10$, és $n = \lceil 10^{\frac{1}{0.19}} \rceil = 183299$.
- b) El mínim n tal que $10n^{2.81} \ge 100n^{2.38}$, és a dir, $n^{0.43} \ge 10$, és $n = \lceil 10^{\frac{1}{0.43}} \rceil = 212$.

Proposta de solució al problema 3

a) Una solució consisteix en ordenar els intervals en ordre creixent per l'extrem esquerre en temps $\Theta(n \log n)$, i després processar-los de la manera descrita a continuació. Recorrem la seqüència d'esquerra a dreta mantenint l'extrem esquerre mínim (eem) i l'extrem dret màxim (edM) vistos des de l'últim interval que hem escrit a la sortida. Si el següent interval de la seqüència te un extrem esquerre més gran que l'edM llavors podem tancar l'interval [eem,edM], afegir-lo a la sortida, i actualitzar eem i edM als extrems esquerre i dret de l'interval que acabem de processar. En cas contrari actualitzem l'edM si és necessari, és a dir, si l'extrem dret de l'interval processat és més gran que l'edM. El cost d'aquesta fase és $\Theta(n)$ i per tant el cost total és $\Theta(n \log n)$.

¹Una segona solució seria un algorisme de dividir-i-vèncer semblant a l'ordenació per fusió.

- b) En primer lloc calculem la unió dels intervals igual que en el primer apartat, amb cost $\Theta(n \log n)$. Després determinem, per cada punt p_i , si està dins d'algun interval de la unió o no. Quan m és gran, com és el cas si m=n, una bona solució consisteix a ordenar p en ordre creixent, i després "fusionar" intervals i punts en temps lineal. A cada pas de la fusió considerem un interval $[a_i, b_i]$ i un punt p_j . Si $b_i < p_j$, l'interval es descarta i avancem a la seqüència d'intervals. Si $a_i \le p_j \le b_j$, incrementem el comptador i avancem a les dues seqüències. Si $p_j < a_i$, el punt es descarta i avancem a la seqüència de punts. Quan no quedin punts, el procés acaba. El cost de la segona fase és $\Theta(m \log m) + \Theta(n+m)$. Per m=n, això és $\Theta(n \log n)$.
- c) Farem servir un altre algorisme. Un punt pertany a la unió si i només si pertany a algun dels intervals de la seqüència d'entrada, i per tant podem determinar si pertany a la unió en temps $\Theta(n)$ simplement recorrent la seqüència d'intervals tal com ens ve donada (sense processar-la prèviament). Donat que $m \le 5$, això són no més de 5 recorreguts de cost $\Theta(n)$ cadascún i per tant el cost total és $\Theta(n)$.

Proposta de solució al problema 4

- a) Resposta: $\Theta(3^{\log_2(n)}) \neq \Theta(3^{\log_4(n)})$. Justificació: Siguin $f(n) = 3^{\log_2(n)}$ i $g(n) = 3^{\log_4(n)} = 3^{\log_2(n)/2}$ de manera que $f(n)/g(n) = 3^{\log_2(n)-\log_2(n)/2} = 3^{\log_2(n)/2}$. Com que $\lim_{n\to\inf} f(n)/g(n) = \infty$, f(n) creix estrictament més ràpid que g(n).
- b) Cal calcular $2^1 \cdot \dots \cdot 2^{100} = 2^{5050} \pmod{9}$. Com que $2^6 = 1 \pmod{9}$ i $5050 = 4 \pmod{6}$, tenim $2^{5050} = 2^4 = 7 \pmod{9}$.
- c) Ordenades d'ordre de creixement més petit a més gran, les funcions són

$$(\ln(n))^2$$
, $n^{1/3}$, \sqrt{n} , $n^4 - 3n^3 + 1$.

d) Les tres recurrències són:

$$A(n) = \Theta(n) + 5A(n/2) = \Theta(n^{\log_2 5}).$$

$$B(n) = \Theta(1) + 2B(n-1) = \Theta(2^n).$$

$$C(n) = \Theta(n^2) + 9C(n/3) = \Theta(n^2 \log n).$$

C és la més eficient perquè $\log n$ creix més lentament que $n^{\log_2 5 - 2} = n^{0.3219...}$

²Una segona solució, menys eficient, seria primer calcular la unió en forma d'intervals disjunts ordenats com en el primer apartat en temps $\Theta(n \log n)$, i després fer m cerques dicotòmiques en temps $\Theta(m \log n)$. Quan m és una constant, el cost total és $\Theta(n \log n)$.