

Product Standards

PGA26E19BA

Established: Revised:

2014-09-25 2017-01-24

PGA26E19BA

Panasonic

Туре	GaN-Tr				
Application	For power switching				
Structure	N-channel enhancement mode FET				
Equivalent Circuit	Figure 1				
Out Line	DFN 8X8	Marking	PGA26E19		

A. ABSOLUTE MAXIMUM RATINGS (Tj = 25 $^{\circ}$ C , unless otherwise specified)

	SOLUTE MAXIMUM RATINGS (Tj =	Symbol	Values		Unit	Note	
No.	Item		Min.	Тур.	Max.	Unit	Note
1	Drain-source voltage (DC) *1	VDSS	-	-	600	٧	
2	Drain-source voltage (pulse) *2	VDSP	-	-	750	V	
3	Gate-source voltage (DC) *1	VGSS	-10	-	ı	٧	*VGSS+ is given by IG ratings *See application note
4	Gate current (DC) *1	IG	-	-	19	mA	*See application note
5	Gate current (pulse) *3,4	IGP	-	-	0.6	Α	*See application note
6	Electric gate charge (pulse)	QGP	-	-	12	nC	*f=200kHz *See application note
7	Drain current (DC) (Tc = 25 °C) *1	ID	-	-	13	Α	Figure 4
8	Drain reverse current (DC) (Tc = 25 °C) *1	IDR	ı	1	13	Α	
9	Drain current (pulse)*5 (Tc = 25 °C)*1	ID pulse	-	-	23	Α	Figure 4
10	Drain reverse current (pulse)*5 (Tc = 25 °C)*1	IDR pulse		-	23	Α	
11	Power dissipation (Tc = 25 °C)	PD	-	-	66	W	Figure 2
12	Junction temperature	Tj		-	150	°C	
13	Storage temperature	Tstg	-55	-	150	°C	
14	Drain-source voltage slope	dv/dt	-	-	200	V/ns	

[Special instructions]

- *1 : Please use this product to meet a condition of Tj within 150 $^{\circ}\text{C}.$
- $^{*}2$: Spike duty cycle D < 0.1, spike duration < 1us, total spike time < 1hour.
- *3: IGP is defined as (Vcc Vplateau) / Rgon, as shown in Figure A. Vplateau is the voltage between Gate and Source1.
- *4 : Please use this product to meet both a maximum gate current and a maximum gate pulse charge of IGP(0.6A) and Q(12nC) respectively, as shown in Figure H.
- *5 : Pulse width limited by Tjmax.

B. ELECTRICAL CHARACTERISTICS ($Tj = 25 \, ^{\circ}\text{C}$, unless otherwise specified)

B. ELECTRICAL CHARACTERISTICS (Tj = 25 °C, unless otherwise specified)							
No.	Item	Symbol	Measurement Condition	Min.	Тур.	Max.	Unit
1	Drain cut-off current	IDSS	VDS=600 V, VGS=0 V, Tj=25 °C	-	-	39	μΑ
	Drain out on ourient	1500	VDS=600 V, VGS=0 V, Tj=150 °C	-	39	-	μΑ
2	Gate-source leakage current	IGSS	VGS=-3 V VDS=0 V	-1	-	-	μΑ
3	Gate forward voltage	VGSF	IGS=10 mA open drain	2.8	3.5	4.2	V
4	Gate threshold voltage	VTH	VDS=10 V IDS=1 mA	0.9	1.2	1.6	V
5	Drain-source on-state resistance	RDS(on)	IGS=10 mA, IDS=5 A, Tj=25 °C	-	140	190	mΩ
	2.2		IGS=10 mA, IDS=5 A, Tj=150 °C	-	290	-	mΩ
6	Gate resistance	RG	f=100MHz open drain	-	0.8	-	Ω
7	Transfer conductance	gfs	VDS=8 V IDS=5 A	-	15	-	S
8	Input capacitance	Ciss	VDC 400 V	-	160	-	pF
9	Output capacitance	Coss	VDS=400 V VGS=0 V f=1 MHz	-	28	-	pF
10	Reverse transfer capacitance	Crss	1-1 101112	-	0.2	-	pF
11	Turn-on delay time	td(on)	VDD=400 V	-	3.4	-	ns
12	Rise time	tr	IDS=5 A (Figure A, Figure B)	-	5.2	-	ns
13	Turn-off delay time	td(off)	Vcc=12 V Rgon=15 Ω, Rgoff=4.7 Ω,	-	3.4	-	ns
14	Fall time	tf	Rig=1500 Ω, Cs=680 pF	-	2.4	-	ns
15	Effective output capacitance (energy related)	Co(er)	VDC 0.490 V	-	33	-	pF
16	Effective output capacitance (time related)	Co(tr)	VDS=0-480 V	-	37	-	pF

C. GATE CHARGE CHARACTERISTICS (Tj = 25 °C, unless otherwise specified)

No.	Item	Symbol	Measurement Condition	Min.	Тур.	Max.	Unit
1	Gate charge	Qg		-	2.0	-	nC
2	Gate-source charge	Qgs	VDD=400 V IDS=5 A	-	0.3	-	nC
3	Gate-drain charge	Qgd	(Figure C, Figure D)		1.0	-	nC
4	Gate plateau voltage	V plateau	VDD=400 V IDS=5 A	-	1.8	-	٧

D. REVERSE CONDUCTING CHARACTERISTICS (Ti = 25 °C, unless otherwise specified)

D. IVE	b. Reverse solubouting offaracterionics (1) = 23 °C, unless officials specified)							
No.	Item	Symbol	Measurement Condition	Min.	Тур.	Max.	Unit	
1	Source-drain forward voltage	VSD	VGS=0 V ISD=5 A	-	2.6	-	٧	
2	Reverse recovery charge	Qrr			0	-	nC	
3	Reverse recovery time	trr	VDS=400 V	-	0	-	ns	
4	Peak reverse recovery current	Irrm	ISD=5 A	-	0	-	Α	
5	Output charge	Qoss		-	17	-	nC	

E. THERMAL RESISTANCE CHARACTERISTICS

No.	Item	Symbol	Measurement Condition	Min.	Тур.	Max.	Unit
1	Thermal resistance (junction to case)	Rth(j-c)		1	-	1.9	°C/W
2	Thermal resistance (junction to ambient) *1	Rth(j-a)		ı	1	46	°C/W
3	Reflow soldering temperature	Tsold	reflow MSL3	-	-	260	°C

[Notes]

Page 4 of 11 Established: 2014-09-25

Revised: 2017-01-24

^{*1 :} Device mounted on four layers epoxy PCB (6.45 cm^2 copper area and 70 μm thickness).

■Equivalent circuit / Electrical characteristics

1,2.3,4 : Drain 5,6,9 : Source2 7 : Source1 8 : Gate

[Figure 1: Pin layout / Equivalent circuit]

Notice:

Please connect Source1 pin to gate driver.

[Figure 2: Max. power dissipation]

[Figure 3 : Transient thermal impedance]

Temperature Tc [°C]

Drain-source voltage VDS [V] [Figure.5:Output characteristics Tc=25 °C]

[Figure.6:Output characteristics Tc=125°C]

[Figure 7:Drain-source on-state resistance(RDS(on)-Tj)]

[Figure 8:Gate characteristics]

Gate-source current IGS [A] [Figure 9:Drain-source on-state resistance(RDS(on)-IGS)]

[Figure.10:Gate characteristics]

[Figure.11:Drain-source on-state resistance(RDS(on)-VGS)]

[Figure 12:Transfer characteristics]

[Figure.13:Reverse channel characteristics (Tc=25°C)]

[Figure.14:Reverse channel characteristics (Tc=125°C)]

[Figure 15:Gate charge characteristics]

[Figure 16:Capacitance characteristics]

[Figure 17:Output capacitance stored energy]

[Figure.19:Threshold voltage (VTH-Tj)]

[Figure 18:Output charge]

[Figure.20:Drain-Source leakage current (Tc=25°C)]

VGS 10% 90% 90% 90% 10% td (on) tr td (off) tf toff

[Figure A : Switching time measurement]

[Figure B : Switching wave form]

[Figure C : Gate charge measurement]

[Figure D : Gate charge wave form]

[Figure E : Reverse bias safe operating area dv/dt measurement circuit]

[Figure F : Reverse bias safe operating area dv/dt wave form]

[Figure G : di/dt measurement circuit]

[Figure H : IGP wave form]

PGA26E19BA

[Precautions for Use]

- The product has risks for break-down or burst or giving off smoke in following conditions. Avoid the following use. Fuse should be added at the input side or connect zener diode between Gate pin and GND, etc as a countermeasure to pass regulatory Safety Standard. Concrete countermeasure could be provided individually. However, customer should make the final judgment.
 - (1) Reverse the Drain pin and gate pin connection to the power supply board.
 - (2) Drain pin short to Source1 pin and Source2 pin.
 - (3) Drain pin short to Gate pin.
 - (4) Gate pin open.
- This product is under development and is subject to change without notice standards.

Established: 2014-09-25 Page 10 of 11

Revised: 2017-01-24

Outline

Unit: mm

SYMBOL	DIMENSION						
STWIBOL	MIN	NOM	MAX				
А	1.15	1.25	1.35				
A1	0.00	0.02	0.05				
A2	0.40	0.50	0.60				
b	0.90	1.00	1.10				
D	7.90	8.00	8.10				
D1	6.84	6.94	7.04				
D2	0.40	0.50	0.60				
E	7.90	8.00	8.10				
E1	0.90	1.00	1.10				
E2	3.10	3.20	3.30				
E3	2.70	2.80	2.90				
е	2.00 B.S.C.						
L	0.40	0.50	0.60				

^{*}Please note that technical specifications are subject to change without notice.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Panasonic: PGA26E19BA