Divisorial contraction in Kähler MMP reading notes Spring 2025 Lecture $4-25,\,02,\,2025$ (draft version) Yi Li

Contents

L	Ove	erview	J
2	Das	-Hacon's approach to divisorial contraction for Kähler 3-fold MMP	1
	2.1	The null locus is a Moishezon surface whose smooth model is projective uniruled	2
	2.2	Take DLT modification	S
	2.3	Run the relative MMP	3
	2.4	Control the set of divisors being contracted	3
	2.5	Proof the base pointness	S
3	Hör	ring-Peternell's approach for Kähler 3-fold MMP	3

1 Overview

2 Das-Hacon's approach to divisorial contraction for Kähler 3-fold MMP

In this section, we will prove the following theorem.

Theorem 1 ([DH24, Theorem 6.9]). Let (X, B) be a strong \mathbb{Q} -factorial Kähler 3-fold KLT pair. With the following condition holds

- 1. $K_X + B$ is pseudo-effective
- 2. $\alpha = [K_X + B + \beta]$ is nef and big class such that β is Kähler,
- 3. The negative extremal ray $R = \overline{NA}(X) \cap \alpha^{\perp}$ is divisorial.

Then there exists an α -trivial divisorial contraction

$$f: X \to Z$$

such that there exist some Kähler form α_Z on Z such that $\phi^*(\alpha_Z) = \alpha$.

Before going to the proof let us briefly sketch the idea. We first try to prove that the null locus $\text{Null}(\alpha)$ is the Moishezon surface whose smooth model is projective uniruled. We then take a DLT modification

$$\varphi: (X', \Delta') \to (X, \Delta)$$

of the pair $(X, \Delta = B + (1 - b)S)$ (note that this pair (X, Δ) differs from the original pair (X, B) and it is not a KLT pair).

We show that the DLT modification φ preserve the geometry outside the null locus Null(α). We then run the relative Kähler MMP for (X', Δ') over (X, Δ) , which becomes the core of the proof. Since it's Kähler 3-fold MMP, the termination is known. So that it's possible to produce positivity (say $K_{X^m} + \Delta^m$ is nef over (X, Δ)) by the termination theorem.

We need to control the divisors being contracted in the MMP.

So that the induced bimeromorphic map $f: X \dashrightarrow X^m$ is a morphism, and this is the divisorial contraction we want.

In the final step, we will show that the base point freeness holds for the divisorial contraction, say α as pull back of some Kähler form α_Z down stairs.

2.1 The null locus is a Moishezon surface whose smooth model is projective uniruled

In this subsection, we will proof the following lemma.

Lemma 2. In the same setting as Theorem 1. The null locus $\text{Null}(\alpha)$ is a irreducible Moishezon surface, whose smooth model is projective uniruled. Such that the curves in the negative extremal ray R covers the surface S with

$$R \cdot S < 0$$
.

Remark 3. Let us breifly sketch the idea. The class $\alpha|_S, \alpha|_{S^{\nu}}, \alpha|_{S^{\nu}}$ play important role in this lemma (for simplicity let us assume for now that S is a smooth surface). The idea is to try to use that if a smooth surface is not pseudo-effective, then it's uniruled projective surface. The non-pseudo-effectiveness comes from some intersection number analysis. To be more precise, we will use that $S = \text{Null}(\alpha)$, so that volume $\text{vol}(\alpha|_S) = (\alpha|_S)^2 = 0$ (by definition of null locus). In particular, the restriction $\alpha|_S$ can not be a big class. On the other hand, we can apply adjunction to

$$\alpha|_S = (K_X + B + \beta)|_S.$$

If the coefficient of S in B is 1, then everything is nice and we get

$$\alpha|_S = (K_X + B' + S + \beta)|_S = K_S + B'|_S + \beta|_S.$$

Since $B'|_S \geq 0$ and $\beta|_S$ Kahler, this will imply that K_S can not be pseudo-effective.

However, the coefficient of S in B is not 1, so that we need to take some scaling,

What nice on the projective uniruled surface is that the (0,2)-Hodge number is 0, so that the Bott-Chern class can be realized as a **R**-divisor (which is also a \mathbb{R} -curve on the surface).

Finally, we need to prove that $R \cdot S < 0$. To do this, Batyrev cone theorem for mobile curve is applied.

Proof.

- 2.2 Take DLT modification
- 2.3 Run the relative MMP
- 2.4 Control the set of divisors being contracted
- 2.5 Proof the base pointness
- 3 Höring-Peternell's approach for Kähler 3-fold MMP

References

[DH24] Omprokash Das and Christopher Hacon, On the minimal model program for kähler 3-folds, 2024.