Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Московский государственный технический университет имени Н. Э. Баумана

Лабораторная работа №0 «Теория формальных языков»

Студент группы ИУ9-52

Карькин А. И.

Преподаватель:

Магазов С.С.

1. Проверить ассоциативность операции, найти порождающие и единицу с право и слева.

1)

	а	b	C	d	f
а	а	а	а	d	d
b	а	b	С	d	d
С	а	С	b	d	d
d	d	d	d	а	а
f	d	f	f	а	а

Ассоциативность: выполняется

Единица справа: b

Единица слева: не существует

Порождающие: $\langle c, f \rangle$ ($c \cdot f = d, c^2 = b, d^2 = a$)

2)

•	e	f	g	а
e	e	e	e	e
f	e	f	f	f
g	e	g	g	g
а	а	е	е	е

 $((g\circ a)\circ e=g\circ e=e)\neq (g\circ (a\circ e)=g\circ a=g)=>$ ассоциативность не выполняется $e\neq g$.

Единица справа: не существует Единица слева: не существует

Порождающие: < a, g, f >

3)

	e	f	g	а	d	y
e	e	f	g	а	d	y
f	f	f	g	а	f	f
g	g	а	d	у	g	f
а	а	а	d	у	g	f
у	у	y	y	y	y	y

Неверная таблица.

2. Составить таблицы умножения для Z(5) и Z(6)

Z(5)

-(-					
	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

Z(6)

	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	1

- 3. Построить пример бесконечного дискретного порядка не изоморфного ω . $(\mathbb{R},<)\not\equiv\omega$
- 4. Показать, что отношение x|y (x делится на цело y'ком) отношение порядка.

Рефлексивность: $\forall x \, x \, \lor \, x = 1 - \textit{верно}$

Антисимметричность: $\forall x, y(x|y) \land (y|x) \rightarrow x = y - верно$

Транзитивность: $\forall x, y, z : (x|y) \land (y|z) \rightarrow x \lor z - верно$

Линейность: $\rightarrow x \lor y-$ отношение частичного порядка. $\rightarrow \forall x$, y(x|y) **v** (y|x)- не верно

5. Аксиоматизировать в LP класс графов без петель.

$$G = (V, E)$$

V – множество вершин;

Е – бинарный предикат смежности;

$$\forall x \in V \not\exists E(x,x);$$

$$\forall x, y \in V^{\square} : \exists E(x, y) \Longrightarrow E(y, x);$$

6. Аксиоматизировать в LP класс деревьев.

$$\forall x_1, \dots, x_n \in V \not\exists n \in N : \left(E\left(x_1, x_2\right) \land \dots \land E\left(x_{n-1}, x_n\right) \land E\left(x_n, x_1\right) \right) \land \left(\forall i \neq j \exists ! E\left(x_i, x_j\right) \right)$$

7. Дать формализацию отношение дружбы в LP. Для которой, выполнялся бы принцип "Друг моего друга мой друг".

$$\forall x, y, z \in X(a \circ b) \land (b \circ c) \Rightarrow (a \circ c),$$
 где \circ — бинарное отношение дружбы

8. Дать определение дискретного порядка с наибольшим элементом.

$$\left(\forall x \exists y (x < y) \right) \Rightarrow \left(\exists z (x \le z) \land (z \le y) \land (z \ne x) \land (z \ne y) \right) \lor \lor \left(\exists x_0 : \forall y \ne x_0 \ y < x_0 \right)$$

9. Дана таблица реляционной базы данных:

WORKER					
<u>ID_WRK</u> <pi></pi>	Number (8)	<u>≪M></u>			
sName	Variable characters (40)				
sFamily	Variable characters (40)				
nTab	Number (10)				
Key_1 <pi></pi>					

записать, на языке УИП требования к целостности:

- 1. ID_WRK первичный ключ
- 2. nRate_of находится в приделах 6000-1000000
- 3. nTab уникальное поле
- 4. Сочетание поле sName и sFamily определяет строку однозначно

Дана физическая схема реляционной базы данных.

Записать, на языке УИП:

ID_DPT1 в таблице

- 1) WORKER внешний обязательные ключ.
- 2) WORKER внешний не обязательные ключ.
- 1) $\forall a_i, a_j \in Worker : i \neq j a_i. ID_{WRK} \neq a_j. ID_{WRK}$
- 2) $\forall a \in Worker(a.nRate_{of} < 1000000) \land (a.nRate_{of} > 6000)$
- 3) $\forall a_i, a_j \in Worker : i \neq j a_i. ID_{nTab} \neq a_j. ID_{nTab}$
- 4) $\forall a_i, a_i \in Worker \neg ||(a_i. sName = a_i. sName) \land ||(a_i. sFamily = a_i. sFamily)||$
- 5) 1) $\forall a \in Worker \exists b \in Department : (a. ID_{DPT} 1 = b. ID_{DPT} 1)$
 - **2)** $\forall a \in Worker \exists b \in Department : (a. ID_{DPT} 1 = b. ID_{DPT} 1)$

 $\parallel \not\exists b \in Department : (a. ID_{DPT}1 = b. ID_{DPT}1)$

10. Дана физическая схема реляционной базы данных.

Записать, на языке УИП:

Dep_ID_DPT является внешним ключем.

iDepartament уникальное поле

```
1) \forall a \in Department (\exists b \in Department: (a.DEP_ID_DPT = b.DEP_ID_DPT) \mid \exists b \in Department: (a.DEP_ID_DPT = b.DEP_ID_DPT) )
```

2) $\forall a_i, a_j \in Department \ a_i.iDepartment \neq a_j.iDepartment \ i \neq j$