ゆっくり熱力学の基礎していってね

仲山昌人

目次

弁Ⅰ早	1
P.7 $Dx+f(a)=f'(a+0)$ '25 3.22	
P.8 (1.2) $f(x)=f(a)+f'(a)(x-a)+o(x-a)$ '25 3.21	
P.10 問 1.3 (x,y) ≠ (0,0) で f は連続 '25 5.13	4
P.10 問 1.3 (0,0) で f は連続 '25 3.26	6
P.10 問 1.3 (x,y) ≠ (0,0) で fx は存在する '25 5.13	
P.10 問 1.3 (x,y) ≠ (0,0) で fx は連続 '25 5.13	
P.10 問 1.3 (0,0) で fx は連続 '25 3.26	
P.10 問 1.3 (x,y) ≠ (0,0) で fy は存在する '25 5.13	
P.10 問 1.3 (x,y) ≠ (0,0) で fy は連続 '25 5.15	
P.10 問 1.3 (0,0) で fy は連続 '25 3.26	14
P.10 問 1.3 (0,0) で fxy は不連続 '25 4.1	
P.11 数学の定理 1.1 $f(x1,,xm)$ - $f(a1,,xm)$ - $(x1-a1)fx1(a)$ = $o(x-a)$ '25 4.6	
P.11 数学の定理 1.1 $f(a1,x2xm)$ - $f(a1,a2xm)$ - $(x2-a2)fx2(a)$ = $o(x-a)$ '25 5.17	19
P.11 数学の定理 1.1 $f(x)=f(a)+$ ∇ $f(a)(x-a)+o(x-a)$ '25 4.6	
P.12 数学の定理 1.2 n 階までの導関数は微分の順序によらない'25 4.8	21
P.12 数学の定理 1.2 fxy=fyx '25 4,8	
P.12 補足 x ≠ 0 で f(x) は連続 '25 4.23	
P.12 補足 x=0 で $f(x)$ は連続 '25 4.23	
P.12 補足 x ≠ 0 で C ∞ 級 '25 4.25	
P.12 問題 1.4 '25 4.16	
第2章	34

第1章

P.7 Dx+f(a)=f'(a+0) '25 3.22

f(x)が $[a,a,\epsilon']$ で連続, $(a+a+\epsilon')$ で微分可能とする

$$f'(a+0) = \lim_{\epsilon \to +0} f'(a+\epsilon)$$
が存在するならば

$$D_x^+ f(a)$$
が存在し $D_x^+ f(a) = f'(a+0)$ である

(証明)

 $[a, a + \epsilon']$ で連続, $(a, a + \epsilon')$ で微分可能なので

平均値の定理より
$$\frac{f(a+\epsilon')-f(a)}{\epsilon'}=f'(a+\epsilon),\ 0<\epsilon<\epsilon'$$
 なる ϵ が存在する

 ϵ' に対する ϵ を 1 つ選んで $\epsilon(\epsilon')$ とする

$$f'(a+0) = \lim_{\epsilon \to +0} f'(a+\epsilon)$$
 が存在するので

任意の $\delta > 0$ に対してある ϵ_1 が存在して

$$0<\epsilon<\epsilon_1$$
 ならば $|f'(a+\epsilon)-f'(a+0)|<\delta$ である

$$0<\epsilon'<\epsilon_1$$
 ならば $0<\epsilon(\epsilon')<\epsilon'$ なので $0<\epsilon(\epsilon')<\epsilon_1$

よって
$$|f'(a+\epsilon(\epsilon'))-f'(a+0)|<\delta$$
 である

$$\dfrac{f(a+\epsilon')-f(a)}{\epsilon'}=f'(a+\epsilon(eps'))$$
 なので

$$0<\epsilon'<\epsilon_1$$
 ならば $\left|rac{f(a+\epsilon')-f(a)}{\epsilon'}-f'(a+0)
ight|<\delta$ である

$$\lim_{\substack{\epsilon' \to +0 \\ \epsilon' \neq 0}} \frac{f(a+\epsilon') - f(a)}{\epsilon'} = f'(a+0)$$
である (∵ 極限の定義)

$$\lim_{\epsilon' \to +0} \frac{f(a+\epsilon') - f(a)}{\epsilon'} = D_x^+(a) \text{ is O T}$$

$$D_x^+(a)=f'(a+0)$$
である

P.8 (1.2) f(x)=f(a)+f'(a)(x-a)+o(x-a) '25 3.21

f(x)がx=aで微分可能 $\rightleftarrows x \rightarrow a$ でf(x)=f(a)+f'(a)(x-a)+o(x-a)なるf'(a)が存在する

(証明)

 (\leftarrow)

$$o(x-a)=f(x)-f(a)-f'(a)(x-a)$$
 (∵ $f=g+o(...)$ $\rightleftarrows o(...)=f-g$ と定義する)

$$\lim_{x \to a} \frac{f(x) - f(a) - f'(a)(x - a)}{x - a} = 0 \quad (∵ 付録A o(...)の定義)$$

$$\lim_{x \to a} \left(\frac{f(x) - f(a)}{x - a} - f'(a) \right) = 0$$

$$\therefore \lim_{x \to a} \left(\frac{f(x) - f(a)}{x - a} - f'(a) \right) = 0$$

よって任意の $\epsilon > 0$ に対して $0 < |x-a| < \delta$ ならば

$$\left|\frac{f(x)-f(a)}{x-a}-f'(a)\right|<\epsilon$$

よって
$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = f'(a)$$
 (: 極限の定義)

よってf(x)はx = aで微分可能 (:: 微分の定義)

 (\rightarrow)

x = aで微分可能なので

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = f'(a)$$
が存在する (: 微分の定義)

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = f'(a) = \lim_{x \to a} f'(a)$$
 (∵ 定数の極限)

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} - \lim_{x \to a} f'(a) = 0$$
 (∵ 実数の四則の公理)

$$\lim_{x \to a} \left(\frac{f(x) - f(a)}{x - a} - f'(a) \right) = 0$$
 (注 差の極限)

$$x \to a$$
 $x - a$ $x \to a$ x

$$\therefore \ o(x-a) = f(x) - f(a) - f'(a)(x-a)$$
 (ご 付録A $o(\ldots)$ の定義)

$$\therefore$$
 $f(x) = f(a) + f'(a)(x - a) + o(x - a)$ (∵ $f - g = o(...)$ $\rightleftarrows f = g + o(...)$ と定義する)

よって
$$f(x) = f(a) + f'(a)(x-a) + o(x-a)$$
なる $f'(a)$ が存在する

P.10 問 1.3 (x,y) ≠ (0,0) で f は連続 '25 5.13

$$f(x,y) = \begin{cases} xy\frac{x^2-y^2}{x^2+y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$
 $(x,y) \neq (0,0)$ でがは連続

(証明)

任意の ϵ に対して

よって
$$\lim_{(x,y)\to(a,b)} x = a$$

よってxは連続

同様にyは連続

よって

$$x^2 - y^2$$
は連続 (*1)(*2)

$$x^2 + y^2$$
は連続 (*2)

$$(x,y) \neq (0,0)$$
ならば $x^2 + y^2 \neq 0$

よって
$$(x,y) \neq (0,0)$$
ならば

$$\frac{1}{x^2+y^2}$$
は連続 (*3)

よって
$$(x,y) \neq (0,0)$$
ならば $xy\frac{x^2-y^2}{x^2+y^2}$ は連続 (*2) また $(x,y) \neq (0,0)$ ならば $f(x,y) = xy\frac{x^2-y^2}{x^2+y^2}$

また
$$(x,y) \neq (0,0)$$
ならば $f(x,y) = xy \frac{x^2 - y^2}{x^2 + y^2}$

よって
$$(x,y) \neq (0,0)$$
ならば $f(x,y)$ は連続

(*1)fが連続,gが連続ならばfgは連続

(証明)

(a,b)でf,gが連続ならば

$$\lim_{(x,y)\rightarrow(a,b)}f(x,y)=f(a,b), \lim_{(x,y)\rightarrow(a,b)}g(x,y)=g(a,b)$$

$$\therefore$$
 lim $fg = f(a,b)g(a,b)$ (ご 積の極限)

よってfgは連続

(*2)fが連続、gが連続ならばf+gは連続

(証明)

(a,b)でf,gが連続ならば

$$\lim_{(x,y)\rightarrow(a,b)}f(x,y)=f(a,b), \lim_{(x,y)\rightarrow(a,b)}g(x,y)=g(a,b)$$

∴
$$\lim f + g = f(a,b) + g(a,b)$$
 (∵ 和の極限)

よって
$$f + g$$
は連続

(*3)fが連続かつ $f \neq 0$ ならば $\frac{1}{f}$ は連続

(証明)

$$\lim_{(x,y)\to(a,b)}f(x,y)=f(a,b),\ f(a,b)\neq 0$$

$$\therefore \ \lim \frac{1}{f} = \frac{1}{f(a,b)} \ (∵ \quad 商の極限)$$

よって
$$\frac{1}{f}$$
は連続

P.10 問 1.3 (0,0) で f は連続 '25 3.26

$$f(x,y) = \begin{cases} xy\frac{x^2-y^2}{x^2+y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$
 $(x,y) = (0,0)$

(証明)

$$\lim_{(x,y)\to(0,0)} f(x,y) = \lim_{(x,y)\to(0,0)} xy \frac{x^2 - y^2}{x^2 + y^2}$$
また $(x,y) \neq (0,0)$ で $\frac{x^2 - y^2}{x^2 + y^2}$ は有界 (*1) よって $\left|\frac{x^2 - y^2}{x^2 + y^2}\right| < m$ なる m が存在する また $\lim_{(x,y)\to(0,0)} xy = 0$ (∵ 積の極限) よって $\lim_{(x,y)\to(0,0)} xy \frac{x^2 - y^2}{x^2 + y^2} = 0 = f(0,0)$ (*2) よって $f(x,y)$ は $(0,0)$ で連続

(*1)
$$\frac{x^2-y^2}{x^2+y^2}$$
が有界でないと仮定する
任意の $m>0$ に対して $\left|\frac{x^2-y^2}{x^2+y^2}\right|>m$ なる (x,y) が存在する
 $\therefore \frac{x^2-y^2}{x^2+y^2}<-m$ or $\frac{x^2-y^2}{x^2+y^2}>m$

$$\frac{x^2-y^2}{x^2+y^2}>m$$
とすると $0>(m-1)x^2+(m+1)y^2$
 $m=1$ とすると $0>2y^2$ となり矛盾
$$\frac{x^2-y^2}{x^2+y^2}< m$$
とすると $x^2(1-m)-y^2(1-m)<0$
 $m=1$ とすると $0<0$ となり矛盾
よって $\frac{x^2-y^2}{x^2+y^2}$ は有界
(*2) $f(x,y)$ が有界, $\lim g=0$ ならば $\lim fg=0$
(証明)
 $|f|なる m が存在する
任意の $e>0$ に対して、ある $e>0$ があって
 $|(x,y)|<\delta$ ならば $|g|
 e
 $f|g|
 $f|g|
 $f|g|
 $f|g|
 $f|g|
 $f|g|$$$$$$$$

P.10 問 1.3 (x,y) ≠ (0,0) で fx は存在する '25 5.13

$$f(x,y) = \begin{cases} xy\frac{x^2 - y^2}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$
 $(x,y) \neq (0,0)$ で f_x は存在する

(証明)

 $(x,y) \neq (0,0)$ とする

このとぎ
$$f(x,y)=xyrac{x^2-y^2}{x^2+y^2}$$

x,yは独立とする

$$\begin{split} f_x &= f'_{x \, \text{cow}} (*1) \\ &= (xy)' \frac{x^2 - y^2}{x^2 + y^2} + xy \left(\frac{x^2 - y^2}{x^2 + y^2} \right)' \quad (∵ 積の微分) \\ &= y \frac{x^2 - y^2}{x^2 + y^2} + xy \frac{(x^2 - y^2)'(x^2 + y^2) - (x^2 - y^2)(x^2 + y^2)'}{(x^2 + y^2)^2} \quad (∵ x^2 + y^2 \neq 0$$
なので商の微分より)
$$&= y \frac{x^2 - y^2}{x^2 + y^2} + xy \frac{4xy^2}{(x^2 + y^2)^2} \\ &= \frac{yx^4 + 4x^2y^3 - y^5}{(x^2 + y^2)^2} \end{split}$$

よって $(x,y) \neq (0,0)$ で f_x は存在する (: 公理 : f_x は存在 $\rightleftarrows f_x \in R$)

$$(*1)f', f_x$$
の定義より

$$\begin{split} f'(x,y) &= \lim_{\Delta x \to 0} \frac{f(x+\Delta x,y) - f(x,y)}{\Delta x} = f_x(x,y) \\ &\texttt{よって} f' が存在するならば f' = f_x \end{split}$$

P.10 問 1.3 (x,y) ≠ (0,0) で fx は連続 '25 5.13

$$f(x,y) = \begin{cases} xy\frac{x^2 - y^2}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$
 $(x,y) \neq (0,0)$ で f_x は連続

(証明)

 $(x,y) \neq (0,0)$ とする

$$f_x(x,y) = \frac{yx^4 + 4x^2y^3 - y^5}{(x^2 + y^2)^2} \quad (∵ \quad 別紙)$$

 $(a,b) \neq (0,0)$ とする

$$\lim_{(x,y)\to(a,b)}\frac{yx^4+4x^2y^3-y^5}{(x^2+y^2)^2}=\frac{ba^4+4a^2b^3-b^5}{(a^2+b^2)^2} \quad (\because \ (a^2+b^2)^2\neq 0$$
なので和、積、商の極限、また $\lim_{(x,y)\to(a,b)}x=a$ (*1))

よって任意の ϵ に対して $|(x,y)-(a,b)|<\delta$ ならは

$$\left|\frac{yx^4+4x^2y^3-y^5}{(x^2+y^2)^2}-\frac{ba^4+4a^2b^3-b^5}{(a^2+b^2)^2}\right|<\epsilon$$

 $\pm 0 < \delta' < |(a,b)| \ge 0$

$$|(x,y)-(a,b)|<\delta'$$
ならば $(x,y)\neq(0,0)$ である

$$\therefore \ f_x(x,y) = \frac{yx^4 + 4x^2y^3 - y^5}{(x^2 + y^2)^2}$$

よって
$$|(x,y)-(a,b)|< min(\delta,\delta')$$
ならば

$$\left|f_x(x,y) - \frac{ba^4 + 4a^2b^3 - b^5}{(a^2 + b^2)^2}\right| < \epsilon$$

$$\sharp \supset \mathsf{T} \lim_{(x,y) \to (a,b)} f_x(x,y) = \frac{ba^4 + 4a^2b^3 - b^5}{(a^2 + b^2)^2} = f_x(a,b)$$

よって
$$f_x(x,y)$$
は $(a,b) \neq (0,0)$ で連続である

$$(*1)$$
 $\lim_{(x,y)\to(a,b)} x = a$ (証明) 任意の ϵ に対して $|(x,y)-(a,b)|<\epsilon$ ならば $|x-a|<|(x,y)-(a,b)|<\epsilon$ (∵ 三角不等式) ∴ $\lim_{(x,y)\to(a,b)} x = a$

P.10 問 1.3 (0,0) で fx は連続 '25 3.26

$$f(x,y) = \begin{cases} xy\frac{x^2-y^2}{x^2+y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$
 $(x,y) = (0,0)$ で f_x は連続

(証明)

(*1)
$$\frac{x^4 + 4x^2y^2 - y^4}{x^4 + 2x^2y^2 + y^4}$$
は有界でないと仮定する $\frac{x^4 + 4x^2y^2 - y^4}{x^4 + 2x^2y^2 + y^4}$ は有界でないと仮定する 任意の $m > 0$ に対して $\left| \frac{x^4 + 4x^2y^2 - y^4}{x^4 + 2x^2y^2 + y^4} \right| > m$ $\therefore \frac{x^4 + 4x^2y^2 - y^4}{x^4 + 2x^2y^2 + y^4} < -m$ または $m < \frac{x^4 + 4x^2y^2 - y^4}{x^4 + 2x^2y^2 + y^4}$ である $\frac{x^4 + 4x^2y^2 - y^4}{x^4 + 2x^2y^2 + y^4} < -m$ とすると $\frac{x^4 + 4x^2y^2 - y^4}{x^4 + 2x^2y^2 + y^4} < -m$ とすると $\frac{x^4 + 4x^2y^2 - y^4}{x^4 + 2x^2y^2 + y^4} < 0$ $m = 1$ とすると $\frac{x^4 + 4x^2y^2 - y^4}{x^4 + 2x^2y^2 + y^4} > m$ とすると $\frac{x^4 + 4x^2y^2 - y^4}{x^4 + 2x^2y^2 + y^4} > m$ とすると $\frac{x^4 + 4x^2y^2 - y^4}{x^4 + 2x^2y^2 + y^4} > m$ とすると $\frac{x^4 + 4x^2y^2 - y^4}{x^4 + 2x^2y^2 + y^4} > m$ とすると $\frac{x^4 + 4x^2y^2 - y^4}{x^4 + 2x^2y^2 + y^4} > m$ とすると $\frac{x^4 + 4x^2y^2 - y^4}{x^4 + 2x^2y^2 + y^4} > m$ とすると $\frac{x^4 + 4x^2y^2 - y^4}{x^4 + 2x^2y^2 + y^4} > m$ とすると $\frac{x^4 + 4x^2y^2 - y^4}{x^4 + 2x^2y^2 + y^4} > m$ とすると $\frac{x^4 + 4x^2y^2 - y^4}{x^4 + 2x^2y^2 + y^4} > m$ とすると $\frac{x^4 + 4x^2y^2 - y^4}{x^4 + 2x^2y^2 + y^4} > m$ とすると $\frac{x^4 + 4x^2y^2 - y^4}{x^4 + 2x^2y^2 + y^4} > m$ とすると $\frac{x^4 + 4x^2y^2 - y^4}{x^4 + 2x^2y^2 + y^4} > m$ とすると $\frac{x^4 + 4x^2y^2 - y^4}{x^4 + 2x^2y^2 + y^4} > m$ とすると $\frac{x^4 + 4x^2y^2 - y^4}{x^4 + 2x^2y^2 + y^4} > m$ とすると $\frac{x^4 + 4x^2y^2 - y^4}{x^4 + 2x^2y^2 + y^4} > m$ $\frac{x^4 + 4x^2y^2 - y^4}{x^4 + 2x^2y^2 + y^4} > m$ $\frac{x^4 + 4x^2y^2 - y^4}{x^4 + 2x^2y^2 + y^4} > m$

よって
$$\frac{x^4+4x^2y^2-y^4}{x^4+2x^2y^2+y^4}$$
は有界

$$(*2)f(x,y)$$
は有界, $\lim_{(x,y)\to(0,0)}g=0$ ならば $\lim fg=0$

(証明)

$$|f(x,y)| < m$$
である

また任意の ϵ に対して $|(x,y)|<\delta$ ならば $|g(x,y)|<\epsilon$

$$\therefore |f||g| < |f|\epsilon, |f|\epsilon < m\epsilon$$

$$\therefore |f||g| < m\epsilon$$

$$\therefore |fg| < m\epsilon$$

任意の
$$\epsilon'$$
に対して $\epsilon' = m\epsilon$ とすると

$$|(x,y)| < \delta$$
ならば $|fg| < \epsilon'$

$$\therefore \lim fg = 0$$

P.10 問 1.3 (x,y) ≠ (0,0) で fy は存在する '25 5.13

$$f(x,y) = \begin{cases} xy\frac{x^2 - y^2}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$
 $(x,y) \neq (0,0)$ で f_y は存在する

(証明)

$$(x,y) \neq (0,0)$$
とする

このとぎ
$$f(x,y)=xyrac{x^2-y^2}{x^2+y^2}$$

x,yは独立とする

$$\begin{split} f_y &= f'_{y \in \text{微分}} \text{ (*1)} \\ &= (xy)' \frac{x^2 - y^2}{x^2 + y^2} + xy \left(\frac{x^2 - y^2}{x^2 + y^2} \right)' \quad (∵ 積の微分) \\ &= y \frac{x^2 - y^2}{x^2 + y^2} + xy \frac{(x^2 - y^2)'(x^2 + y^2) - (x^2 - y^2)(x^2 + y^2)'}{(x^2 + y^2)^2} \quad (∵ x^2 + y^2 \neq 0$$
なので商の微分より) \\ &= \frac{x^5 - 4y^2x^3 - 4xy^4}{(x^2 + y^2)^2} \end{split}

よって $(x,y) \neq (0,0)$ で f_y は存在する (: 公理: f_y は存在 $\rightleftarrows f_y \in R$)

(*1)
$$f', f_y$$
の定義より
$$f'(x,y) = \lim_{\Delta y \to 0} \frac{f(x,y+\Delta y) - f(x,y)}{\Delta y} = f_y(x,y)$$
 よって f' が存在するならば $f' = f_y$

P.10 問 1.3 (x,y) ≠ (0,0) で fy は連続 '25 5.15

$$f(x,y) = \begin{cases} xy\frac{x^2 - y^2}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$
 $(x,y) \neq (0,0)$ で f_y は連続

(証明)

$$(x,y) \neq (0,0)$$
 とする

$$f_y(x,y) = \frac{x^5 - 4y^2x^3 - 4xy^4}{(x^2 + y^2)^2} \quad (∵ \quad 別紙)$$

$$\lim_{(x,y)\to(a,b)}\frac{x^5-4y^2x^3-4xy^4}{(x^2+y^2)^2}=\frac{a^5-4b^2a^3-4ab^4}{(a^2+b^2)^2} \quad (\because \ (a^2+b^2)^2\neq 0$$
なので和、積、商の極限、また $\lim_{(x,y)\to(a,b)}y=b)$

よって任意の
$$\epsilon$$
に対して $|(x,y)-(a,b)|<\delta$ ならば

$$\left|\frac{x^5-4y^2x^3-4xy^4}{(x^2+y^2)^2}-\frac{a^5-4b^2a^3-4ab^4}{(a^2+b^2)^2}\right|<\epsilon$$

$$\sharp \, \hbar 0 < \delta' < |(a,b)| \, \xi \, \sharp \, \delta \, \xi$$

$$|(x,y)-(a,b)|<\delta'$$
ならば $(x,y)
eq (0,0)$ である

$$\therefore \ f_y(x,y) = \frac{x^5 - 4y^2x^3 - 4xy^4}{(x^2 + y^2)^2}$$

よって
$$|(x,y)-(a,b)|< min(\delta,\delta')$$
ならば

$$\begin{split} \left| f_y(x,y) - \frac{a^5 - 4b^2a^3 - 4ab^4}{(a^2 + b^2)^2} \right| < \epsilon \\ & \text{\sharp $\supset 7} \lim_{(x,y) \to (a,b)} f_y(x,y) = \frac{a^5 - 4b^2a^3 - 4ab^4}{(a^2 + b^2)^2} = f_y(a,b) \end{split}$$

よって
$$f_y(x,y)$$
は $(a,b) \neq (0,0)$ で連続である

P.10 問 1.3 (0,0) で fy は連続 '25 3.26

$$f(x,y) = \begin{cases} xy\frac{x^2 - y^2}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \\ (x,y) = (0,0) \ \ \text{で} f_y$$
は連続

(証明)

よって
$$\frac{x^4+4x^2y^2-y^4}{x^4+2x^2y^2+y^4}$$
は有界
$$(*2)f(x,y)$$
は有界, $\lim_{(x,y)\to(0,0)}g=0$ ならば $\lim fg=0$

P.10 問 1.3 (0,0) で fxy は不連続 '25 4.1

$$f(x,y) = \begin{cases} xy\frac{x^2 - y^2}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$
 $(x,y) = (0,0)$ で f_{xy} は不連続

(証明)

 $(x,y) \neq (0,0)$ とする

$$(*1)x,y$$
は独立なので $f_{xy}=f_x'$ $_{y$ で微分 また $(x^2+y^2)^2\neq 0$ なので和、積、商の微分公式より

経路
$$\left\{egin{aligned} x=0 \\ y=y \end{aligned} \right.$$
 に沿った $(x,y) o (0,0)$ の極限は $\lim_{y o 0} f_{xy}(0,y) = \lim_{y o 0} -1 = -1$

経路
$$\left\{egin{aligned} x=x &$$
 に沿った $(x,y) o (0,0)$ の極限は $\lim_{x o 0} f_{xy}(x,0) = \lim_{x o 0} 1 = 1 \end{aligned}
ight.$

経路によって極限が異なるので f_{xy} の $(x,y) \rightarrow (0,0)$ の極限は存在しない

よって (0,0) で f_{xy} は連続ではない

P.11 数学の定理 1.1 f(x1,..,xm)-f(a1,..,xm)-(x1-a1)fx1(a)=o(|x-a|) '25 4.6

fはā の近傍で連続的微分可能ならば

$$\vec{x}
ightarrow \vec{a}$$
 で $f(\vec{x}) - f(a_1, \dots, x_m) - (x_1 - a_1) f_{x_1}(\vec{a}) = o(|\vec{x} - \vec{a}|)$ である

(証明)

 x_1, \ldots, x_m は独立で fは \vec{a} の近傍で連続的微分可能なので

 (a_1,\ldots,x_m) が \vec{a} の近傍ならば

f は区間 $[a_1,x_1]$ で連続、区間 (a_1,x_1) で x_1 で微分可能

よって平均値の定理より

$$\frac{f(\vec{x}) - f(a_1, \ldots, x_m)}{x_1 - a_1} = f'(a_1 + k(x_1 - a_1), \ldots, x_m), \ 0 < k < 1 \text{ なる } k(x_2, \ldots, x_m) \text{ が存在する}$$

$$x_1,\ldots,x_m$$
 は独立なので $f_{x_1}=f'_{x_1$ で微分

よって
$$\frac{f(\vec{x}) - f(a_1, \dots, x_m)}{x_1 - a_1} = f_{x_1}(a_1 + k(x_1 - a_1), \dots, x_m) \dots (1)$$

また f_{x_1} は \vec{a} で連続なので

$$\lim_{\vec{x}\to\vec{a}}f_{x_1}(\vec{x})=f_{x_1}(\vec{a})$$

よって任意の δ に対して

$$|ec{x}-ec{a}|<\epsilon$$
 ならば $|f_{x_1}(ec{x})-f_{x_1}(ec{a})|<\delta$ なる ϵ が存在する

$$\vec{x}' = (a_1 + k(x_1 - a_1), \dots, x_m)$$
 とする

$$\begin{split} |\vec{x}' - \vec{a}| &= \sqrt{(a_1 + k(x_1 - a_1) - a_1)^2 + \dots + (x_m - a_m)^2} \\ &= \sqrt{k^2(x_1 - a_1)^2 + \dots + (x_m - a_m)^2} \\ &< |\vec{x} - \vec{a}| \quad \text{(*1)} \end{split}$$

 $(*1)k = k(x_2, ..., x_m)$ であるが

0 < k < 1なので

$$k^2(x_1 - a_1)^2 < (x_1 - a_1)^2$$

よって $|\vec{x}' - \vec{a}| < \epsilon$ なので $|f_{x_1}(\vec{x}') - f_{x_1}(\vec{a})| < \delta$

$$\label{eq:final_state} \boldsymbol{\dot{\cdot}} \quad \lim_{\vec{x} \to \vec{a}} f_{x_1}(\vec{x}') = f_{x_1}(\vec{a})$$

$$\label{eq:final_state} \begin{split} \therefore & \lim_{\vec{x} \rightarrow \vec{a}} f_{x_1}(a_1 + k(x_1 - a_1), \dots, x_m) = f_{x_1}(\vec{a}) \end{split}$$

$$\lim_{\vec{x} \to \vec{a}} \frac{f_{x_1}(\vec{x}) - f_{x_1}(a_1, \dots, x_m)}{x_1 - a_2} = f_{x_1}(\vec{a}) \quad (\because \quad (1))$$

$$\lim_{\vec{x} \to \vec{a}} f_{x_1}(a_1 + \kappa(x_1 - a_1), \dots, x_m) - f_{x_1}(a)$$

$$\lim_{\vec{x} \to \vec{a}} \frac{f_{x_1}(\vec{x}) - f_{x_1}(a_1, \dots, x_m)}{x_1 - a_1} = f_{x_1}(\vec{a}) \quad (\because \quad (1))$$

$$\lim_{\vec{x} \to \vec{a}} \frac{f_{x_1}(\vec{x}) - f_{x_1}(a_1, \dots, x_m) - (x_1 - a_1)f_{x_1}(\vec{a})}{x_1 - a_1} = 0 \quad (\because \quad \lim c = c,$$
 和の極限)

よって任意のδに対して

$$|\vec{x}-\vec{a}|<\epsilon \text{ is if }\left|\frac{f(\vec{x})-f(a_1,\ldots,x_m)-(x_1-a_1)f_{x_1}(\vec{a})}{x_1-a_1}\right|<\delta$$

また
$$|\vec{x} - \vec{a}| \ge |x_1 - a_1|$$
 (: 三角不等式) なので

$$\left|\frac{f(\vec{x}) - f(a_1, \dots, x_m) - (x_1 - a_1) f_{x_1}(\vec{a})}{|\vec{x} - \vec{a}|}\right| \leq \left|\frac{f(\vec{x}) - f(a_1, \dots, x_m) - (x_1 - a_1) f_{x_1}(\vec{a})}{x_1 - a_1}\right| < \delta$$

よって
$$\lim_{\vec{x}\rightarrow\vec{a}}\left|\frac{f(\vec{x})-f(a_1,\dots,x_m)-(x_1-a_1)f_{x_1}(\vec{a})}{|\vec{x}-\vec{a}|}\right|=0$$

よって
$$\vec{x} \rightarrow \vec{a}$$
 で

$$f(\vec{x}) - f(a_1, \dots, x_m) - (x_1 - a_1) f_{x_1}(\vec{a}) = o(|\vec{x} - \vec{a}|)$$

$$(\not\exists \pm) \lim_{x_1 \to a_1} \frac{f(\vec{x}) - f(a_1,..,x_m)}{(x_1 - a_1)} = f_{x_1}(a_1,..,x_m) \ (*)$$

から始めると $\lim_{x_1 o a_1}$ を $\lim_{ar{x} o ar{a}}$ に変換できなくて失敗する

平均値の定理を利用するとうまく $\lim_{ec{a} o ec{a}}$ を導ける

平均値の定理はd近傍でのfの連続性と微分可能性を利用できるが

(*)から始めると \vec{a} での連続性と微分可能性しか

利用できないからだと思われる

P.11 数学の定理 1.1 f(a1,x2..xm)-f(a1,a2..xm)-(x2-a2)fx2(a)=o(|x-a|) '25 5.17

fはā の近傍で連続的微分可能ならば

$$ec{x}
ightarrow ec{a}$$
 で $f(a_1, x_2, \ldots, x_m) - f(a_1, a_2, \ldots, x_m) - (x_2 - a_2) f_{x_2}(ec{a}) = o(|ec{x} - ec{a}|)$ である

(証明)

 x_1 の場合と同様に

$$\lim_{\vec{x} \to \vec{a}} \left| \frac{f(\vec{x}) - f(x_1, a_2, \dots, x_m) - (x_2 - a_2) f_{x_2}(\vec{a})}{|\vec{x} - \vec{a}|} \right| = 0$$

である

$$g(x_1,\dots,x_m) = \frac{f(\vec{x}) - f(x_1,a_2,\dots,x_m) - (x_2 - a_2) f_{x_2}(\vec{a})}{|\vec{x} - \vec{a}|}$$

とする

$$\lim_{\vec{x}\to\vec{a}}|g(x_1,\dots,x_m)|=0$$

なので

任意の $\epsilon > 0$ に対して $|\vec{x} - \vec{a}| < \delta$ ならば $|g(x_1, ..., x_m)| < \epsilon$ である

ここで

$$|(a_1,x_2,\dots,x_m)-\vec{a}| \leq |\vec{x}-\vec{a}| \quad (\because \quad \Xi角不等式)$$
 $< \delta$

なので $|g(a_1,x_2,\dots,x_m)|<\epsilon$ である

$$\label{eq:continuous_equation} \therefore \ \lim_{\vec{x} \to \vec{a}} |g(a_1, x_2, \dots, x_m)| = 0$$

$$\therefore \quad \lim_{\vec{x} \to \vec{a}} \left| \frac{f(a_1, x_2, \dots, x_m) - f(a_1, a_2, \dots, x_m) - (x_2 - a_2) f_{x_2}(\vec{a})}{|(a_1, x_2, \dots, x_m) - \vec{a}|} \right| = 0$$

ここで
$$|(a_1, x_2, \dots, x_m) - \vec{a}| \le |\vec{x} - \vec{a}|$$
 (: 三角不等式) なので

$$\begin{split} \left| \frac{f(a_1, x_2, \dots, x_m) - f(a_1, a_2, \dots, x_m) - (x_2 - a_2) f_{x_2}(\vec{a})}{|\vec{x} - \vec{a}|} \right| \\ & \leq \left| \frac{f(a_1, x_2, \dots, x_m) - f(a_1, a_2, \dots, x_m) - (x_2 - a_2) f_{x_2}(\vec{a})}{|(a_1, x_2, \dots, x_m) - \vec{a}|} \right| \end{split}$$

$$\ \, \therefore \ \, \lim_{\vec{x} \to \vec{a}} \left| \frac{f(a_1, x_2, \ldots, x_m) - f(a_1, a_2, \ldots, x_m) - (x_2 - a_2) f_{x_2}(\vec{a})}{|\vec{x} - \vec{a}|} \right| = 0 \quad \text{(*1)}$$

 $(*1)|f| \le |g|, \lim g = 0$ ならば $\lim f = 0$

$$\text{ ... } f(a_1,x_2,\ldots,x_m) - f(a_1,a_2,\ldots,x_m) - (x_2-a_2)f_{x_2}(\vec{a}) = o(|\vec{x}-\vec{a}|)$$

P.11 数学の定理 1.1 f(x)=f(a)+ ∇ f(a)(x-a)+o(|x-a|) '25 4.6

fはā の近傍で連続的微分可能ならば

$$\vec{x} o \vec{a}$$
 で $f(\vec{x}) = f(\vec{a}) + \vec{\nabla} f(\vec{a}) (\vec{x} - \vec{a}) + o(|\vec{x} - \vec{a}|)$ である

(証明)

$$\begin{split} \lim_{\vec{x} \to \vec{a}} \left| \frac{f(x_1, \dots, x_m) - f(a_1, \dots, x_m) - f_{x_1}(\vec{a})(x_1 - a_1)}{|\vec{x} - \vec{a}|} \right| &= 0 \quad (\because \quad \text{別紙}) \\ \lim_{\vec{x} \to \vec{a}} \left| \frac{f(a_1, \dots, x_m) - f(a_1, a_2, \dots, x_m) - f_{x_2}(\vec{a})(x_2 - a_2)}{|\vec{x} - \vec{a}|} \right| &= 0 \quad (\because \quad \text{別紙}) \\ &\vdots \\ \lim_{\vec{x} \to \vec{a}} \left| \frac{f(a_1, \dots, a_{m-1}, x_m) - f(a_1, \dots, a_m) - f_{x_m}(\vec{a})(x_m - a_m)}{|\vec{x} - \vec{a}|} \right| &= 0 \quad (\because \quad x_1, x_2 \text{ or } \text{場合と同様}) \\ \mathbb{E} \cup \triangle \text{ are } \frac{f(\vec{x}) - f(\vec{a}) - f_{x_1}(\vec{a})(x_1 - a_1) - f_{x_2}(\vec{a})(x_2 - a_2) - \dots - f_{x_m}(\vec{a})(x_m - a_m)}{|\vec{x} - \vec{a}|} \right| &= 0 \quad (*1) \end{split}$$

(*1)
$$\lim |f| = 0$$
, $\lim |g| = 0$ ならば $\lim |f| + |g| = 0$
$$|f + g| \le |f| + |g| \ (三角不等式)$$
なので $\lim |f + g| = 0$

ここで

$$\vec{\nabla} f(\vec{a}) = (f_{x_1}(\vec{a}), \dots, f_{x_m}(\vec{a}))$$

$$(\vec{x} - \vec{a}) = (x_1 - a_1, \dots, x_m - a_m)$$

$$\vec{\nabla} f(\vec{a}) \cdot (\vec{x}-\vec{a}) = f_{x_1}(\vec{a})(x_1-a_1) + \dots + f_{x_m}(\vec{a})(x_m-a_m)$$

なので

$$\lim_{\vec{x} \rightarrow \vec{a}} \left| \frac{f(\vec{x}) - f(\vec{a}) - \vec{\nabla} f(\vec{a}) \cdot (\vec{x} - \vec{a})}{|\vec{x} - \vec{a}|} \right| = 0$$

$$\therefore$$
 $f(\vec{x}) - f(\vec{a}) - \vec{\nabla} f(\vec{a}) \cdot (\vec{x} - \vec{a}) = o(|\vec{x} - \vec{a}|)$ (∵ 付録 $A \mathcal{O} o(\dots) \mathcal{O}$ 定義)

$$\therefore$$
 $f(\vec{x}) = f(\vec{a}) + \vec{\nabla} f(\vec{a}) \cdot (\vec{x} - \vec{a}) + o(|\vec{x} - \vec{a}|)$ (: $f + h = o(...) \rightleftharpoons f = -h + o(...)$ と定義する)

P.12 数学の定理 1.2 n 階までの導関数は微分の順序によらない'25 4.8

ある開領域で $f(x_1, \dots, x_m)$ が C^{∞} 級ならば

その領域で n 階までの偏導関数は微分の順序によらない

(証明)

fの2階以上n階以下の偏導関数を考える

$$f_{x_{p_1}\dots x_{p_i}x_{p_i}\dots x_{p_k}}$$

fは C^{∞} 級なので

 $f_{x_{p_1}...x_{p_i}x_{p_i}}$ は存在し連続である

また $f_{x_{p_1}\dots x_{p_i}x_{p_i}}$ も存在し連続である

よって $f_{x_{p_1}\dots x_{p_i}x_{p_i}}=f_{x_{p_1}\dots x_{p_i}x_{p_i}}$ (∵ $f_{xy}=f_{yx}$ 別紙)

 $\mbox{$\sharp$} \mbox{$\circ$} \mbox{$\tau$} \ f_{x_{p_1} \dots x_{p_i} x_{p_i} \dots x_{p_k}} = f_{x_{p_1} \dots x_{p_i} x_{p_i} \dots x_{p_k}} \ \ (1)$

 p_1, \dots, p_k を昇順に並べたリストを q_1, \dots, q_k とする

(1) より x_{q_1} による偏微分を左隣りの変数の偏微分との入れ換えをくりかえして

 x_{q_1} と同様に x_{q_2} について

$$f_{x_{p_1}...x_{p_k}} = f_{x_{q_1}x_{q_2}...x_{p_k}}$$
 とする

これを繰り返して

$$f_{x_{p_1}\dots x_{p_k}}=f_{x_{q_1}\dots x_{q_k}}$$
 となる

 r_1, \dots, r_2 は p_1, \dots, p_2 を任意に並べ替えたリストとする。上と同様に

$$f_{x_{r_1}\dots x_{r_k}}=f_{x_{q_1}\dots x_{q_k}}$$
 となる

よって
$$f_{x_{r_1}\dots x_{r_k}}=f_{x_{p_1}\dots x_{p_k}}$$
 となる

よって n 階までの偏導関数は微分の順序によらない

P.12 数学の定理 1.2 fxy=fyx '25 4,8

(2変数の場合)

ある開領域で f_{xy} , f_{yx} が連続ならば $f_{xy} = f_{yx}$ である

(証明)

領域内の任意の点 (a,b),(x,y) とする

$$\Delta(x,y) = (f(x,y) - f(x,b)) - (f(a,y) - f(a,b))$$
 ≥ 7

$$F(x) = f(x,y) - f(x,b)$$
 とすると

$$\Delta(x,y) = F(x) - F(a)$$

領域内で f は連続なので xの区間[a,x] で f(x,y),f(x,b) は連続

よって F(x) は xの区間[a,x] で連続 (*1)

領域内で f は偏微分可能なので xの区間(a,x) で f(x,y),f(x,b) は x で微分可能

よって F(x) は xの区間(a,x) で x で微分可能 (*2)

よって平均値の定理より

$$\begin{split} \Delta(x,y) &= F(x) - F(a) \\ &= F'(a + (x-a)\theta_1)(x-a), \ 0 < \theta_1 < 1 \\ &= (f_x(a + (x-a)\theta_1, y) - f_x(a + (x-a)\theta_1, b))(x-a) \end{aligned} \tag{*3}$$

(*1)f,gが連続ならばf+gも連続

(*2)f,gが微分可能ならばf+gも微分可能

(*3) f_{xy} が存在するならばx,yは独立

$$x,y$$
が独立ならば $f_x=f'_{x \circ (\%)}$

領域内で f_x は連続かつ y で偏微分可能 (∵ f_{xy} が存在するので)

よって $f_x(a+(x-a)\theta_1,y)$ は yの区間[b,y] で連続かつ 区間(b,y) で y で微分可能

よって平均値の定理より

$$\begin{split} f_x(a+(x-a)\theta_1,y) - f_x(a+(x-a)\theta_1,b) \\ &= f_{xy}(a+(x-a)\theta_1,b+(y-b)\theta_2)(x-b), \ 0 < \theta_2 < 1 \quad \mbox{(*4)} \end{split}$$

(*4)x,yは独立なので

よって

$$\Delta(x,y) = f_{xy}(a + (x-a)\theta_1, b + (y-b)\theta_2)(x-a)(x-b)$$

$$x'=a+(x-a)\theta_1$$

$$y'=b+(y-b)\theta_2$$

$$\frac{\Delta(x,y)}{(x-a)(x-b)} = f_{xy}(x',y')$$

 f_{xy} は連続なので

$$\lim_{(x,y)\to(a,b)}f_{xy}(x,y)=f_{xy}(a,b)$$

よって任意の ϵ に対して

$$|(x,y)-(a,b)|<\delta$$
 ならば $|f_{xy}(x,y)-f_{xy}(a,b)|<\epsilon$

また

$$\begin{split} |(x',y')-(a,b)| &= \sqrt{(a+(x-a)\theta_1-a)^2+(b+(y-b)\theta_2-b)^2} \\ &= \sqrt{(x-a)^2\theta_1^2+(y-b)^2\theta_2^2} \\ &< |(x,y)-(a,b)| \quad (\because \quad 0<\theta_1<1, \ 0<\theta_2<1) \end{split}$$

よって
$$|(x',y')-(a,b)|<\delta$$
なので $|f_{xy}(x',y')-f_{xy}(a,b)|<\epsilon$

よって
$$\lim_{(x,y)\to(a,b)} f_{xy}(x',y') = f_{xy}(a,b)$$

よって
$$\lim_{(x,y)\rightarrow(a,b)} f_{xy}(x',y') = f_{xy}(a,b)$$
 よって
$$\lim_{(x,y)\rightarrow(a,b)} \frac{\Delta(x,y)}{(x-a)(y-b)} = f_{xy}(a,b) \quad (1)$$

 $\Delta(x,y)$ の右辺の順番をかえて

$$\Delta(x,y) = (f(x,y) - f(a,y)) - (f(x,b) - f(a,b))$$
 ≥ 3

$$G(y) = f(x,y) - f(a,y)$$
 とすると

$$\Delta(x,y) = G(y) - G(b)$$

f は領域で連続なので 区間[b,y] で f(x,y),f(a,y) は連続

よって
$$G(y)$$
 は 区間 $[b,y]$ で連続 (∵ f,g が連続ならば $f+g$ は連続)

f は領域で偏微分可能なので 区間(b,y) で f(x,y),f(a,y) は y で微分可能

$$(∵ x,yが独立なので $f_y = f'_{y$ で微分})$$

よって
$$G(y)$$
 は 区間 (b,y) で y で微分可能 (: $(f+g)'=f'+g'$)

よって平均値の定理より

$$\begin{split} \Delta(x,y) &= G'(b + (y-b)\theta_3)(y-b), \ 0 < \theta_3 < 1 \\ &= (f_y(x,b + (y-b)\theta_3) - f_y(a,b + (y-b)\theta_3))(y-b) \quad (\because \ f_y = f'_y) \end{split}$$

領域内で f_y は連続かつ x で偏微分可能なので

 $f_y(x,b+(y-b)\theta_3)$ は 区間[a,x] で連続かつ 区間(a,x) で x で微分可能 (: x,yが独立ならば $f_{yx}=f_y'$) よって平均値の定理より

$$\begin{split} &\Delta(x,y)=f_{yx}(a+(x-a)\theta_4,b+(y-b)\theta_3)(y-b)(x-a),\ 0<\theta_4<1\\ &x'=a+(x-a)\theta_4 \end{split}$$

$$y' = b + (y - b)\theta_3$$

とすると

$$\begin{split} &\Delta(x,y) = f_{yx}(x',y')(y-b)(x-a) \\ & \text{\sharp or } \frac{\Delta(x,y)}{(y-b)(x-a)} = f_{yx}(x',y') \end{split}$$

 f_{yx} は連続なので

$$\lim_{(x,y)\to(a,b)}f_{yx}(x,y)=f_{yx}(a,b)$$

よって任意の ϵ に対して

$$|(x,y)-(a,b)|<\delta$$
 ならば $|f_{yx}(x,y)-f_{yx}(a,b)|<\epsilon$

また

$$\begin{split} |(x',y')-(a,b)| &= \sqrt{(a+(x-a)\theta_4-a)^2+(b+(y-b)\theta_3-b)^2} \\ &= \sqrt{(x-a)^2\theta_4^2+(y-b)^2\theta_3^2} \\ &< |(x,y)-(a,b)| \quad (\because \quad 0<\theta_3<1,0<\theta_4<1) \end{split}$$

よって
$$|(x',y')-(a,b)|<\delta$$
 なので

$$|f_{yx}(x',y') - f_{yx}(a,b)| < \epsilon$$

よって
$$\lim_{(x,y)\to(a,b)} f_{yx}(x',y') = f_{yx}(a,b)$$
 よって
$$\lim_{(x,y)\to(a,b)} \frac{\Delta(x,y)}{(y-b)(x-a)} = f_{yx}(a,b) \quad (2)$$

$$f_{xy}(a,b) = f_{yx}(a,b) \label{eq:fxy}$$

a,b は任意なので

$$f_{xy}(x,y) = f_{yx}(x,y)$$

P.12 補足 x ≠ 0 で f(x) は連続 '25 4.23

$$f(x) = \begin{cases} e^{-\frac{1}{x^2}} & x \neq 0 \\ 0 & x = 0 \end{cases}$$
 $x \neq 0$ で $f(x)$ は連続

(証明)

xは連続 (∗1)

よって
$$x \neq 0$$
 ならば $\frac{1}{x}$ は連続 (*2)

よって
$$x \neq 0$$
 ならば $\frac{1}{x^2}$ は連続 (*3)

よって
$$x \neq 0$$
 ならば $-\frac{1}{x^2}$ は連続 (*3)

よって
$$x \neq 0$$
 ならば $e^{-\frac{1}{x^2}}$ は連続 (*4)

$$0 < |x - a| < |a|$$
 ならば $x \neq 0$

(
$$\because x = 0$$
 とすると $|a| < |a|$ となり矛盾)

$$e^{-\frac{1}{x^2}}$$
 は $x \neq 0$ で連続なので

任意の ϵ に対して

$$0<|x-a|<\delta$$
 ならば $\left|e^{-\frac{1}{x^2}}-e^{-\frac{1}{a^2}}
ight|<\epsilon$

よって
$$0 < |x-a| < min(|a|, \delta)$$
 ならば

$$x \neq 0$$
 なので $f(x) = e^{-\frac{1}{x^2}}$

$$\sharp \, \operatorname{tr} \left| e^{-\frac{1}{x^2}} - e^{-\frac{1}{a^2}} \right| < \epsilon$$

$$\therefore |f(x) - f(a)| < \epsilon$$

よって
$$\lim_{x\to a} f(x) = f(a)$$

よって $x \neq 0$ ならば f(x) は連続

$$(*1)0 < |x-a| < \epsilon$$
 ならば
$$|x-a| < \epsilon$$
 ∴ $\lim_{x \to a} x = a$
$$(*2) \lim_{x \to a} f(x) = F, F \neq 0 \text{ ならば } \lim_{x \to a} \frac{1}{f} = \frac{1}{F}$$
 (証明) 任意の ϵ に対し $0 < |x-a| < \delta$ ならば $|f(x)-F| < \epsilon \cdots (1)$ $\epsilon = \frac{|F|}{2}$ とすると $0 < |x-a| < \delta'$ ならば $|f(x)-F| < \frac{|F|}{2}$

$$0 < |x-a| < min(\delta, \delta')$$
 ならば

$$\left|\frac{1}{f(x)} - \frac{1}{F}\right| = \frac{|f(x) - F|}{|f(x)||F|} < \frac{2\epsilon}{F^2} = \epsilon' \ (\because \ (1), (2))$$

$$\sharp \supset \mathsf{T} \lim_{x \to a} \frac{1}{f(x)} = \frac{1}{F}$$

(*3)
$$\lim_{x\to a} f(x) = F$$
, $\lim_{x\to a} g(x) = G$ ならば $\lim_{x\to a} fg = FG$ (証明)

任意の
$$\epsilon$$
 に対して $0<|x-a|<\delta$ ならば $|f-F|<\epsilon, |g-G|<\epsilon\cdots(1)$ $\epsilon=|F|$ とすると

$$0 < |x-a| < \delta'$$
 ならば $|f-F| < |F|$

$$\therefore$$
 $|f|-|F|<|F|$ (\therefore 三角不等式 $|a|-|b|\leq |a-b|$)

$$\therefore$$
 $|f| < 2|F| \cdots (2)$

任意の
$$\epsilon'$$
 に対して $\epsilon = \frac{\epsilon'}{|G| + 2|F|}$ とする

$$0 < |x - a| < min(\delta, \delta')$$
 ならば

$$|fg - FG| = |fg - fG + fG - FG|$$

$$= |f(g - G) + G(f - F)|$$

$$\leq |f(g - G)| + |G(f - F)| \ (\because \quad 三角不等式 |a + b| < |a| + |b|)$$

$$= |f||g - G| + |G||f - F|$$

$$< 2|F|\epsilon + \epsilon|G| \ (\because \quad (1)(2))$$

$$= \epsilon(2|F| + |G|) = \epsilon'$$

よって
$$\lim_{r\to a} fg = FG$$

(*4)a で f(x) は連続, f(a) で g(x) は連続ならば a で g(f(x)) は連続 (証明)

$$\lim_{x \to f(a)} g(x) = g(f(a))$$
 なので

任意の
$$\epsilon$$
 に対して $0 < |x - f(x)| < \delta$ ならば $|g(x) - g(f(a))| < \epsilon$

$$\lim_{x \to a} f(x) = f(a) \ なので$$

$$0 < |x-a| < \delta'$$
 ならば $|f(x) - f(a)| < \delta$

よって
$$0 < |x-a| < \delta'$$
 ならば $|g(f(x)) - g(f(a))| < \epsilon$

よって
$$\lim_{x \to a} g(f(x)) = g(f(a))$$

よって
$$a$$
 で $g(f(x))$ は連続

P.12 補足 x=0 で f(x) は連続 '25 4.23

$$f(x) = \begin{cases} e^{-\frac{1}{x^2}} & x \neq 0 \\ 0 & x = 0 \end{cases}$$
 $x = 0$ で $f(x)$ は連続

(証明)

$$\lim_{x \to 0} e^{\frac{1}{x^2}} = \infty \quad (*1)$$

$$\therefore \quad \lim_{x \to 0} e^{-\frac{1}{x^2}} = 0 \quad (*4)$$

$$\therefore \quad \lim_{x \to 0} f(x) = \lim_{x \to 0} e^{-\frac{1}{x^2}} \quad (\because \quad x \neq 0)$$

$$= 0$$

$$= f(0)$$

よってx = 0でf(x)は連続

$$(*1)e^{\frac{1}{x^2}} = 1 + \left(\frac{1}{x^2}\right) + \frac{\left(\frac{1}{x^2}\right)^2}{2} + \cdots \quad (\because e^x \text{の定義})$$

$$> 1 + \frac{1}{x^2}$$

$$\lim_{x \to 0} \left(1 + \frac{1}{x^2}\right) = \infty \quad (*2)$$

$$\therefore \lim_{x \to 0} e^{\frac{1}{x^2}} = \infty \quad (*3)$$

$$(*2)任意の $\epsilon > 1$ に対して $0 < |x| < \frac{1}{\sqrt{\epsilon - 1}}$ ならば
$$x^2 < \frac{1}{\epsilon - 1} \quad (\because 0 < a < b$$
ならば $a^2 < b^2$)
$$\frac{1}{x^2} > \epsilon - 1 \quad (\because 0 < a < b$$
ならば $\frac{1}{a} > \frac{1}{b}$)
$$\therefore 1 + \frac{1}{x^2} > \epsilon$$

$$\therefore \lim_{x \to 0} 1 + \frac{1}{x^2} = \infty$$

$$(*3)g(x) > f(x), \lim_{x \to a} f(x) = \infty$$
ならば $\lim_{x \to a} g(x) = \infty$
(証明)
$$任意の ϵ に対して $0 < |x - a| < \delta$ ならば $f(x) > \epsilon$

$$\therefore g(x) > \epsilon$$

$$\therefore \lim_{x \to a} g(x) = \infty$$

$$(*4) \lim_{x \to a} f(x) = \infty$$
ならば $\lim_{x \to a} \frac{1}{f(x)} = 0$
(証明)
$$任意の ϵ に対して $0 < |x - a| < \delta$ ならば $f(x) > \epsilon$

$$\therefore \frac{1}{f(x)} < \frac{1}{\epsilon} \quad (\because 0 < a < b$$
ならば $\frac{1}{a} > \frac{1}{b}$)$$$$$$

任意の
$$\epsilon'$$
に対して $\epsilon = \frac{1}{\epsilon'}$ とする

P.12 補足 x ≠ 0 で C ∞ 級 '25 4.25

$$f(x) = \begin{cases} e^{-\frac{1}{x^2}} & x \neq 0 \\ 0 & x = 0 \end{cases}$$
$$x \neq 0$$
 不 C^{∞} 級

(証明)

$$x \neq 0$$
とする
$$f^{(1)} = \left(e^{-\frac{1}{x^2}}\right)'$$

$$= \left(-\frac{1}{x^2}\right)'e^{-\frac{1}{x^2}} \quad (*1), (*2)$$

$$= -\left(\frac{1}{x^2}\right)'e^{-\frac{1}{x^2}} \quad (∵ 積の微分)$$

$$= -(-2)x^{-3}e^{-\frac{1}{x^2}} \quad (*3)$$

$$= 2x^{-3}e^{-\frac{1}{x^2}} \quad \cdots (1)$$

である。

$$n>0$$
で
$$f^{(n)}=\left(\sum_{\nu=1}^m k_\nu x^{-\nu}\right)e^{-\frac{1}{x^2}}$$
 と仮定する

$$\begin{split} \left(\sum_{\nu=1}^{m}k_{\nu}x^{-\nu}\right)' &= \sum_{\nu=1}^{m}k_{\nu}(x^{-\nu})' \quad (∵ \quad 和, 積の微分) \\ &= \sum_{\nu=1}^{m}(-\nu k_{\nu})x^{-\nu-1} \quad (*3)\cdots(2) \end{split}$$

なので

$$\begin{split} f^{(n+1)} &= \left(\sum_{\nu=1}^m k_\nu x^{-\nu}\right)' e^{-\frac{1}{x^2}} + \left(\sum_{\nu=1}^m k_\nu x^{-\nu}\right) \left(e^{-\frac{1}{x^2}}\right)' \quad (∵ \ \, 積の微分) \\ &= \sum_{\nu=1}^m (-\nu k_\nu) x^{-\nu-1} e^{-\frac{1}{x^2}} + \sum_{\nu=1}^m k_\nu x^{-\nu} 2x^{-3} e^{-\frac{1}{x^2}} \quad (∵ \ \, (1),(2)) \\ &= \left(\sum_{\nu=1}^m -\nu k_\nu x^{-\nu-1} + \sum_{\nu=1}^m 2k_\nu x^{-\nu-3}\right) e^{-\frac{1}{x^2}} \\ &= \sum_{\mu=1}^{m+4} (p_\mu + q_\mu) x^{-\mu} e^{-\frac{1}{x^2}} \end{split}$$

$$p_{\mu} = \begin{cases} -(\mu - 1)k_{\mu - 1} & \mu = 2, \dots, m + 1 \\ 0 & other \end{cases}$$

$$q_{\mu} = \begin{cases} 2k_{\mu-3} & \mu = 4, \cdots, m+3 \\ 0 & other \end{cases}$$

よって、
$$n>0$$
 において
$$f^{(n)}=\left(\sum_{\nu=1}^m k_\nu x^{-\nu}\right)e^{-\frac{1}{x^2}}$$

である。 $x \neq 0$ で $f^{(n)}, n \in \mathbb{N}$ は存在するので f は C^{∞} 級である

(*1)合成関数の微分

$$g'(x), f'(g(x))$$
が存在するなら

$$f(g(x))' = g'(x)f'(g(x))$$

$$(*2)(e^x)' = e^x$$

(証明)

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$
 (∵ e^x の定義)

右辺の項別微分を考える

$$\sum_{n=0}^{\infty} \left(\frac{x^n}{n!}\right)' = (1)' + \sum_{n=1}^{\infty} \left(\frac{x^n}{n!}\right)'$$

$$= \sum_{n=1}^{\infty} n \frac{x^{n-1}}{n!} \quad (*2.1)$$

$$= \sum_{n=1}^{\infty} \frac{x^{n-1}}{(n-1)!}$$

$$= \sum_{n=0}^{\infty} \frac{x^n}{n!} \quad (*2.2)$$

$$= e^x \quad (\because e^x \mathcal{O} 定義)$$

ここで任意のxに対して

-A < x < A, A > 0なる区間を考える

$$\left|\frac{x^{\nu}}{\nu!}\right| \leq \frac{A^{\nu}}{\nu!}, \nu = 0, 1, 2, \dots \, \mathfrak{C} \, \mathfrak{d} \, \mathfrak{d}$$

また
$$\sum_{\nu=0}^{\infty} \frac{A^{\nu}}{\nu!} = e^a \ (\because e^a$$
の定義)

なので
$$\sum_{\nu=0}^{\infty} rac{x^{
u}}{
u!}$$
は区間 $[-A,A]$ で一様収束する

(∵ 定理:ある区間で $|a_n(x)| \leq C_n$ なる定数 C_n があって

$$\sum^{\infty} C_n が収束するならば \sum^{\infty} a_n は - 様収束する)$$

よって
$$(e^x)' = e^x$$

(: 定理:無限級数が収束し各項の導関数が連続で項別微分が

一様収束するならば無限級数の導関数は項別微分に等しい)

$$(*2.1)(1)' = 0$$

$$n > 0$$
ならば $x^n = nx^{n-1}$ (*3)

$$(kf(x))' = kf'(x)$$
 (ご 積の微分)

$$(*2.2) \sum_{n=1}^{\infty} \frac{x^{n-1}}{(n-1)!} = 1 + x + \frac{x^2}{2!} + \cdots$$
$$\sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \cdots$$
$$\therefore \sum_{n=1}^{\infty} \frac{x^{n-1}}{(n-1)!} = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

P.12 問題 1.4 '25 4.16

$$f(x,y) = x^2 e^y, \quad (x,y) \in \mathbb{R}^2$$

(i)

$$f_x = 2xe^y \quad (*1)$$

$$f_y = x^2 e^y \quad (*1)$$

$$f_{xx} = 2e^y$$

$$f_{yy} = x^2 e^y$$

$$f_{xy} = 2xe^y$$

$$f_{ux} = 2xe^y$$

$$f_x(0,0) = 0, f_x(1,1) = 2e$$

$$f_y(0,0) = 0, f_y(1,1) = e$$

$$f_{xx}(0,0)=2,\,f_{xx}(1,1)=2e$$

$$f_{yy}(0,0) = 0, f_{yy}(1,1) = e$$

$$f_{xy}(0,0)=0,\,f_{xy}(1,1)=2e$$

$$f_{yx}(0,0)=0,\,f_{yx}(1,1)=2e$$

(ii)

$$x^2$$
 は x で連続よって (x,y) で連続 $(*2)$

$$e^y$$
 は x で連続よって (x,y) で連続 $(*2)$

よって
$$f(x,y) = x^2 e^y$$
 は (x,y) で連続 (*3)

同様に

$$f_x = 2xe^y$$
 は連続

$$f_y = x^2 e^y$$
 は連続

$$f_{xx} = 2e^y$$
 は連続

$$f_{yy} = x^2 e^y$$
 は連続

$$f_{xy} = 2xe^y$$
 は連続

$$f_{yx} = 2xe^y$$
 は連続

よって
$$f$$
 は C^2 級

(iii)

$$f_{xy}=2xe^y, f_{yx}=2xe^y$$
 なので $f_{xy}=f_{yx}$

$$(*1)$$
 x と y が独立ならば $f_x = f'_{x$ で微分

$$(*2)$$
 $f(x)$ が x で連続ならば $f(x)$ は (x,y) で連続である

(証明)

$$x$$
で連続なので $f(x) = \lim_{\Delta x \to 0} f(x + \Delta x)$

よって任意の
$$\epsilon$$
に対して

$$0 < |\Delta x| < \delta$$
ならば

$$|f(x + \Delta x) - f(x)| < \epsilon$$

$$|(\Delta x, \Delta y)| < \delta$$
\$ if

$$|\Delta x| \le |(\Delta x, \Delta y)|$$
 (: 三角不等式)

$$\therefore |\Delta x| < \delta$$

$$\therefore \quad \Delta x = 0 \text{ or } 0 < |\Delta x| < \delta$$

$$0 < |\Delta x| < \delta$$
とすると

$$|f(x + \Delta x) - f(x)| < \epsilon$$

$$\Delta x = 0$$
とすると

$$|f(x+\Delta x)-f(x)|=0<\epsilon$$

よって
$$|(\Delta x, \Delta y)| < \delta$$
ならば $|f(x + \Delta x) - f(x)| < \epsilon$

よって
$$\lim_{(\Delta x, \Delta y)) \to (0,0)} f(x + \Delta x, y + \Delta y) = f(x,y)$$

(*2)f,gが連続ならばfgは連続

(証明)

$$\lim_{(\Delta x, \Delta y) \to (0,0)} f(x + \Delta x, y + \Delta y) = f(x,y)$$

$$\lim_{(\Delta x, \Delta y) \to (0,0)} g(x + \Delta x, y + \Delta y) = g(x,y)$$

よって

$$\begin{split} &\lim_{(\Delta x, \Delta y) \to (0,0)} f(x + \Delta x, y + \Delta y) g(x + \Delta x, y + \Delta y) \\ &= \lim f(x + \Delta x, y + \Delta y) \lim g(x + \Delta x, y + \Delta y) \ (∵ 積の極限) \\ &= f(x,y) g(x,y) \end{split}$$

よってfgは連続

第2章