

Schletter, Inc.		35° Tilt w/ Seismic Design
HCV	Standard PVMax Racking System	
	Representative Calculations - ASCE 7-10	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2 Module Tilt = 35°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-10 Chapter 26-31, Wind Loads
- ASCE 7-10 Chapter 7, Snow Loads
- ASCE 7-10 Chapter 2, Combination of Loads
- International Building Code, IBC, 2012, 2015
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
g _{MIN} =	1.75 psf

Self-weight of the PV modules.

2.2 Snow Loads

	30.00 psf	Ground Snow Load, $P_g =$
(ASCE 7-10, Eq. 7.4-1)	14.43 psf	Sloped Roof Snow Load, $P_s =$
	1.00	I _s =
	0.64	$C_s =$
	0.90	$C_e =$
	1.20	$C_t =$

2.3 Wind Loads

Design Wind Speed, V =	110 mph	Exposure Category = C
Height <	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 19.00 \text{ psf}$ Including the gust factor, G=0.85. (ASCE 7-10, Eq. 27.3-1)

Pressure Coefficients

Cf+ _{TOP}	=	1.200	
Cf+ BOTTOM	=	1.200 2.000 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP, OUTER PURLIN	=	-2.700	located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-2.100 (Suction)	applied away from the surface.
Cf- BOTTOM	=	-1.200	applica analy nom allo canacio.

2.4 Seismic Loads

S _S =	2.50	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S_s of 1.5
$S_{DS} =$	1.67	$C_S = 0.8$	may be used to calculate the base shear, C_s , of
$S_1 =$	1.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	1.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S_{ds} of 1.0 was used to
$T_a =$	0.06	$C_{d} = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.5W 1.2D + 1.0W + 0.5S 0.9D + 1.0W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 0.6W 1.0D + 0.75L + 0.45W + 0.75S 0.6D + 0.6W ^M (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E ^O 1.1785D + 0.65625E + 0.75S ^O 0.362D + 0.875E ^O

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	Location	Diagonal Struts	Location	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	Location			
M4	Outer			
M8	Inner			
M12	Outer			

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4. MEMBER DESIGN CALCULATIONS

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	<u>Front</u>	Rear	
Tensile Load =	<u>48.23</u>	<u>5560.26</u>	k
Compressive Load =	3079.62	<u>4534.99</u>	k
Lateral Load =	<u>433.19</u>	3932.96	k
Moment (Weak Axis) =	0.83	0.27	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC table 1806.2 (2012, 2015).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (2) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 136480.3 in-lbs Resisting Force Required = 2067.88 lbs A minimum 132in long x 27in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 3446.47 lbs to resist overturning. Minimum Width = Weight Provided = 5383.13 lbs Sliding Force = 906.84 lbs Use a 132in long x 27in wide x 18in tall Friction = 0.4 Weight Required = 2267.10 lbs ballast foundation to resist sliding. Resisting Weight = 5383.13 lbs Friction is OK. Additional Weight Required = Cohesion Sliding Force = 906.84 lbs Cohesion = 130 psf Use a 132in long x 27in wide x 18in tall 24.75 ft² Area = ballast foundation. Cohesion is OK. Resisting = 2691.56 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs 200 psf/ft Lateral Bearing Pressure = Required Depth = 0.00 ft Shear key is not required. 2500 psi f'c = Length = 8 in

	Ballast Wigth				
	<u>27 in</u>	28 in	29 in	<u>30 in</u>	
$P_{ftg} = (145 \text{ pcf})(11 \text{ ft})(1.5 \text{ ft})(2.25 \text{ ft}) =$	5383 lbs	5583 lbs	5782 lbs	5981 lbs	

ASD LC		1.0D -	1.0D + 1.0S 1.0D + 0.6W			1.0D + 0.75L + 0.45W + 0.75S			0.6D + 0.6W							
Width	27 in	28 in	29 in	30 in	27 in	28 in	29 in	30 in	27 in	28 in	29 in	30 in	27 in	28 in	29 in	30 in
FA	1205 lbs	1205 lbs	1205 lbs	1205 lbs	967 lbs	967 lbs	967 lbs	967 lbs	1482 lbs	1482 lbs	1482 lbs	1482 lbs	70 lbs	70 lbs	70 lbs	70 lbs
F _B	1088 lbs	1088 lbs	1088 lbs	1088 lbs	1920 lbs	1920 lbs	1920 lbs	1920 lbs	2124 lbs	2124 lbs	2124 lbs	2124 lbs	-2557 lbs	-2557 lbs	-2557 lbs	-2557 lbs
F _V	200 lbs	200 lbs	200 lbs	200 lbs	1673 lbs	1673 lbs	1673 lbs	1673 lbs	1381 lbs	1381 lbs	1381 lbs	1381 lbs	-1814 lbs	-1814 lbs	-1814 lbs	-1814 lbs
P _{total}	7676 lbs	7876 lbs	8075 lbs	8274 lbs	8271 lbs	8470 lbs	8669 lbs	8869 lbs	8989 lbs	9188 lbs	9387 lbs	9587 lbs	743 lbs	863 lbs	982 lbs	1102 lbs
M	3576 lbs-ft	3576 lbs-ft	3576 lbs-ft	3576 lbs-ft	2681 lbs-ft	2681 lbs-ft	2681 lbs-ft	2681 lbs-ft	4257 lbs-ft	4257 lbs-ft	4257 lbs-ft	4257 lbs-ft	3627 lbs-ft	3627 lbs-ft	3627 lbs-ft	3627 lbs-ft
е	0.47 ft	0.45 ft	0.44 ft	0.43 ft	0.32 ft	0.32 ft	0.31 ft	0.30 ft	0.47 ft	0.46 ft	0.45 ft	0.44 ft	4.88 ft	4.21 ft	3.69 ft	3.29 ft
L/6	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft
f _{min}	231.3 psf	230.9 psf	230.4 psf	230.0 psf	275.1 psf	273.0 psf	271.1 psf	269.3 psf	269.4 psf	267.5 psf	265.8 psf	264.2 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	388.9 psf	382.8 psf	377.1 psf	371.8 psf	393.3 psf	387.0 psf	381.1 psf	375.7 psf	457.0 psf	448.4 psf	440.5 psf	433.0 psf	356.6 psf	190.4 psf	150.0 psf	133.1 psf

D = II = = 4 \ \ \ \ : = | 4 | 6

Maximum Bearing Pressure = 457 psf Allowable Bearing Pressure = 1500 psf Use a 132in long x 27in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Bearing Pressure

Seismic Design

Overturning Check

 $M_0 = 1530.5 \text{ ft-lbs}$

Resisting Force Required = 1360.46 lbs S.F. = 1.67

Weight Required = 2267.44 lbs Minimum Width = 27 in in Weight Provided = 5383.13 lbs A minimum 132in long x 27in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1	.238D + 0.875	iΕ	1.1785	D+0.65625E	+ 0.75S	0.362D + 0.875E			
Width		27 in			27 in		27 in			
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer	
F _Y	335 lbs	693 lbs	224 lbs	772 lbs	1960 lbs	687 lbs	137 lbs	203 lbs	27 lbs	
F _V	236 lbs	231 lbs	242 lbs	172 lbs	170 lbs	189 lbs	237 lbs	232 lbs	239 lbs	
P _{total}	7000 lbs	7358 lbs	6888 lbs	7116 lbs	8304 lbs	7031 lbs	2086 lbs	2151 lbs	1975 lbs	
М	904 lbs-ft	892 lbs-ft	924 lbs-ft	669 lbs-ft	675 lbs-ft	723 lbs-ft	904 lbs-ft	890 lbs-ft	911 lbs-ft	
е	0.13 ft	0.12 ft	0.13 ft	0.09 ft	0.08 ft	0.10 ft	0.43 ft	0.41 ft	0.46 ft	
L/6	0.38 ft	0.38 ft	0.38 ft	0.38 ft	0.38 ft	0.38 ft	0.38 ft	0.38 ft	0.38 ft	
f _{min}	185.4 psf	201.1 psf	178.8 psf	215.4 psf	262.8 psf	206.1 psf	0.0 psf	0.0 psf	0.0 psf	
f _{max}	380.3 psf	393.4 psf	377.9 psf	359.6 psf	408.2 psf	362.0 psf	182.8 psf	183.3 psf	180.3 psf	

Maximum Bearing Pressure = 408 psf Allowable Bearing Pressure = 1500 psf

Use a 132in long x 27in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 132in long x 27in wide x 18in tall ballast foundation and fiber reinforcing with (2) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut		Rear Strut	
Maximum Axial Load =	2.369 k	Maximum Axial Load = 3.661 I	<
M12 Bolt Capacity =	12.808 k	M12 Bolt Capacity = 12.808 I	<
Strut Bearing Capacity =	7.421 k	Strut Bearing Capacity = 7.421 I	<
Utilization =	<u>32%</u>	Utilization = 49%	
Diagonal Strut			
Maximum Axial Load =	2.480 k		
M12 Bolt Shear Capacity =	12.808 k	Bolt and bearing capacities are accounting for double s	hear.
Strut Bearing Capacity =	7.421 k	(ASCE 8-02, Eq. 5.3.4-1)	
Utilization =	<u>33%</u>		
	0	Struts under compression are shown to	demor
	7	Struis under compression are snown to	u c III

Struts under compression are shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

$$\label{eq:main_main_main} \begin{split} \text{Mean Height, } h_{\text{sx}} = & 53.78 \text{ in} \\ \text{Allowable Story Drift for All Other} & 0.020 h_{\text{sx}} \\ \text{Structures, } \Delta = \{ & 1.076 \text{ in} \\ \text{Max Drift, } \Delta_{\text{MAX}} = & 0.827 \text{ in} \\ & 0.827 \leq 1.076, \text{ OK.} \end{split}$$

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$L_{b} = 135 \text{ in}$$

$$J = 0.432$$

$$373.473$$

$$\left(Bc - \frac{\theta_{y}}{\theta_{x}} Fcy\right)$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^{\frac{1}{2}}$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_1 = 27.0 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_{b} = 135$$

$$J = 0.432$$

$$237.507$$

$$\int Bc - \frac{\theta_{y}}{a} Fcy$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_{L} = 28.3$$

3.4.16

$$b/t = 32.195$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$51 = 12.5$$
 k_*Rn

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

3.4.16

$$b/t = 37.0588$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$
$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 23.1 \text{ ksi}$$

3.4.16.1

Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$SZ = C_t$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.18

$$h/t = 37.0588$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

 $Cc = 41.015$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.2$$

$$\phi F_L = \phi b[Bbr-mDbr*h/t]$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 25.1 \text{ ksi}$$

$$lx = 897074 \text{ mm}^4$$

$$2.155 \text{ in}^4$$

y = 41.015 mm

$$Sx = 1.335 \text{ in}^3$$

$$M_{max}St = 2.788 \text{ k-ft}$$

3.4.16.1

N/A for Weak Direction

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$C_0 = 45.5$$

$$C_0 = 45.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k = 23.1 \text{ ksi}$$

$$ly = 446476 \text{ mm}^4$$

$$x = 45.5 \text{ mm}$$

$$Sy = 0.599 \text{ in}^3$$

Compression

3.4.9

$$\begin{array}{lll} b/t = & 32.195 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 25.1 \text{ ksi} \\ \\ b/t = & 37.0588 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & (\phi ck2^*\sqrt{(BpE))}/(1.6b/t) \end{array}$$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$
 $\phi F_L = 21.94 \text{ ksi}$
 $\phi F_L = 1215.13 \text{ mm}^2$
 $\phi F_L = 1.88 \text{ in}^2$
 $\phi F_L = 41.32 \text{ kips}$

 $\phi F_L = 21.9 \text{ ksi}$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Strong Axis: 3.4.14

$$L_b = 88.9 \text{ in}$$
 $J = 1.08$
 152.913

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^{\frac{1}{2}}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_1 =$$

$$\phi F_L = 29.4 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_b = 88.9$$
 $J = 1.08$
 161.829

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Bc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_I = 29.2$$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = \frac{1.6Dp}{1.6Dp}$$
$$S2 = 46.7$$

$$S2 = 46.7$$

 $\phi F_L = \phi b[Bp-1.6Dp*b/t]$

$$\varphi F_L = \varphi D[BP-1.6DP]$$

$$\varphi F_L = 31.6 \text{ ksi}$$

$$Bn - \frac{\theta_y}{Fcy} Fcy$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Used
Rb/t = 18.1
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

 $\phi F_L = \phi b[Bt-Dt^*\sqrt{(Rb/t)}]$

31.1 ksi

 $\phi F_L =$

3.4.16.1 N/A for Weak Direction

16.2

36.9

0.65

 $\frac{\theta_y}{\theta_b} 1.3 Fcy$

3.4.18

h/t =

S1 =

m =

Bbr -

3.4.18 h/t = 7.4 $S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$ S1 = 35.2 m = 0.68 $C_0 = 41.067$ Cc = 43.717 $S2 = \frac{k_1Bbr}{mDbr}$ S2 = 73.8 $\phi F_L = 1.3\phi y Fcy$

43.2 ksi

 $lx = 984962 \text{ mm}^4$

29.4 ksi

2.366 in⁴

1.375 in³

3.363 k-ft

43.717 mm

$$C_0 = 40$$
 $Cc = 40$
 $S2 = \frac{k_1 Bbr}{mDbr}$
 $S2 = 77.3$
 $\phi F_L = 1.3 \phi F Cy$
 $\phi F_L = 43.2 \text{ ksi}$
 $\phi F_L = 43.$

Compression

 $M_{max}St =$

y =

Sx =

 $\phi F_L =$

 $\phi F_L St =$

3.4.9

 $\begin{array}{lll} b/t = & 16.2 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 31.6 \text{ ksi} \\ \\ b/t = & 7.4 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi y Fcy \\ \end{array}$

33.3 ksi

3.4.10

 $\phi F_L =$

Rb/t = 18.1

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi c[Bt-Dt^*\sqrt{(Rb/t)}]$
 $\phi F_L = 31.09 \text{ ksi}$
 $\phi F_L = 31.09 \text{ ksi}$
 $\phi F_L = 1215.13 \text{ mm}^2$
1.88 in²

58.55 kips

 $P_{max} =$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_{b} = 24.8 \text{ in}$$

$$J = 0.942$$

$$38.7028$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$\begin{split} S2 &= \left(\frac{C_c}{1.6}\right)^2 \\ S2 &= 1701.56 \\ \phi F_L &= \phi b [Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2))}]} \end{split}$$

$$\phi F_L = 31.4 \text{ ksi}$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_1 = 28.2 \text{ ksi}$$

3.4.16.1 Rb/t =

4.16.1 Not Used

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

24.5

3.4.18

h/t =

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y Fcy$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$

$$lx = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$y = 27.5 \text{ mm}$$

$$Sx = 0.621 \text{ in}^3$$

 $M_{max}St = 1.460 \text{ k-ft}$

Weak Axis:

3.4.14

$$\begin{split} L_b &= & 24.8 \\ J &= & 0.942 \\ & 38.7028 \\ S1 &= & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ S1 &= & 0.51461 \\ S2 &= & \left(\frac{C_c}{1.6}\right)^2 \\ S2 &= & 1701.56 \\ \phi F_L &= & \phi b [Bc-1.6Dc*\sqrt{(LbSc)/(Cb*\sqrt{(lyJ)/2)})}] \\ \phi F_L &= & 31.4 \end{split}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t =

m =

$$\begin{array}{cccc} C_0 = & 27.5 \\ Cc = & 27.5 \\ S2 = & \frac{k_1 Bbr}{mDbr} \\ S2 = & 77.3 \\ \phi F_L = & 1.3 \phi y F c y \\ \phi F_L = & 43.2 \text{ ksi} \\ \\ \phi F_L Wk = & 28.2 \text{ ksi} \\ y = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ x = & 27.5 \text{ mm} \\ Sy = & 0.621 \text{ in}^3 \\ \\ M_{\text{max}} Wk = & 1.460 \text{ k-ft} \\ \end{array}$$

24.5

0.65

 $S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{1.3Fcy}$ mDbr

SCHLETTER

Compression

3.4.7
$$\lambda = 0.57371$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.87952$$

$$\varphi F_L = \varphi cc(Bc-Dc^*\lambda)$$

$$\varphi F_L = 28.0279 \text{ ksi}$$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \end{array}$$

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 28.03 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{max} = 28.85 \text{ kips}$$

0.0

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

$Strut = \underline{55x55}$

 $P_{max} =$

Strong Axis: Weak Axis: 3.4.14 3.4.14 $L_b =$ 86.60 in 86.6 0.942 0.942 J= J = 135.148 135.148 $S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$ S1 = 0.51461S1 = 0.51461 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$ $\phi F_L =$ 29.6 ksi $\phi F_1 =$ 29.6

SCHLETTER

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$S2 = 46.7$$

 $\phi F_L = \phi b[Bp-1.6Dp*b]$
 $\phi F_L = 28.2 \text{ ksi}$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

Not Used 0.0 3.4.16.1

$$\begin{aligned} \text{Rb/t} &= & 0.0 \\ S1 &= \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt} \right)^2 \\ \text{S1} &= & 1.1 \\ S2 &= & C_t \\ \text{S2} &= & 141.0 \\ \text{ϕF}_L &= & 1.17 \text{ϕyFcy} \\ \text{ϕF}_L &= & 38.9 \text{ ksi} \end{aligned}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

3.4.18

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$
 $lx = 279836 \text{ mm}^4$

$$x = 279836 \text{ mm}$$

 0.672 in^4
 $y = 27.5 \text{ mm}$
 $5x = 0.621 \text{ in}^3$
 $5x = 0.621 \text{ in}^3$
 $5x = 0.621 \text{ in}^3$

$$\begin{array}{cccc} \phi F_L W k = & 28.2 \text{ ksi} \\ & ly = & 279836 \text{ mm}^4 \\ & & 0.672 \text{ in}^4 \\ & x = & 27.5 \text{ mm} \\ Sy = & 0.621 \text{ in}^3 \end{array}$$

1.460 k-ft

 $M_{max}Wk =$

Compression

$$\begin{array}{lll} \lambda = & 2.00335 \\ r = & 0.81 \text{ in} \\ & S1^* = \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ & S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ & \phi cc = & 0.86047 \\ & \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ & \phi F_L = & 7.50396 \text{ ksi} \end{array}$$

3.4.9

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.10

Rb/t = 0.0
$$Bt - \frac{\theta_y}{\theta_b} Fcy$$

$$S1 = 6.87$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.50 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$P_{max} = 7.72 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_b = 78.03 \text{ in}$$
 $J = 0.942$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc\text{*}\sqrt{((LbSc)/(Cb\text{*}\sqrt{(lyJ)/2)})}]$$

$$\phi F_L =$$

Weak Axis:

$$J = 78.03$$
 $J = 0.942$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_L = 29.8$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$c_2 = \frac{k_1Bp}{k_1Bp}$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$
$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used 0.0 Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

 $\phi F_L = 38.9 \text{ ksi}$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

 $\phi F_L = 1.3 \phi y F c y$

 $\phi F_L = 43.2 \text{ ksi}$

3.4.18

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

 $\varphi F_L St =$ 28.2 ksi $lx = 279836 \text{ mm}^4$ 0.672 in⁴ 27.5 mm y = Sx = 0.621 in³ $M_{max}St = 1.460 \text{ k-ft}$

 $\phi F_l Wk =$ 28.2 ksi $ly = 279836 \text{ mm}^4$ 0.672 in⁴ 27.5 mm x =Sy = 0.621 in³ $M_{max}Wk =$ 1.460 k-ft

Compression

$$\begin{array}{lll} \lambda = & 1.80509 \\ r = & 0.81 \text{ in} \\ S1^* = & \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ S2^* = & \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ \phi cc = & 0.83271 \\ \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ \phi F_L = & 8.94465 \text{ ksi} \end{array}$$

3.4.9
$$b/t = 24.5$$

$$S1 = 12.21 \text{ (See 3.4.16 above for formula)}$$

$$S2 = 32.70 \text{ (See 3.4.16 above for formula)}$$

$$\phi F_L = \phi c[Bp-1.6Dp^*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$S1 = 12.21$$

$$S2 = 32.70$$

$$\phi F_L = \phi c[Bp-1.6Dp^*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.10

$$\begin{aligned} \text{Rb/t} &= & 0.0 \\ S1 &= \left(\frac{Bt - \frac{\theta_{y}}{\theta_{b}} Fcy}{Dt} \right)^{2} \\ \text{S1} &= & 6.87 \\ \text{S2} &= & 131.3 \\ \phi \text{F}_{\text{L}} &= & \phi \text{Fcy} \\ \phi \text{F}_{\text{L}} &= & 33.25 \text{ ksi} \\ \phi \text{F}_{\text{L}} &= & 8.94 \text{ ksi} \\ \text{A} &= & 663.99 \text{ mm}^{2} \\ & & 1.03 \text{ in}^{2} \\ \text{P}_{\text{max}} &= & 9.21 \text{ kips} \end{aligned}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc.

: HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:___

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me	Surface(
1	Dead Load, Max	DĽ		-1	,			4	,	,
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL			.8			8		

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M14	Υ	-8.366	-8.366	0	0
3	M15	Υ	-8.366	-8.366	0	0
4	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M14	Υ	-4.45	-4.45	0	0
3	M15	Υ	-4.45	-4.45	0	0
4	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3: Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-32.97	-32.97	0	0
2	M14	Υ	-32.97	-32.97	0	0
3	M15	Υ	-32.97	-32.97	0	0
4	M16	Y	-32 97	-32 97	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-63.577	-63.577	0	0
2	M14	٧	-63.577	-63.577	0	0
3	M15	V	-105.961	-105.961	0	0
4	M16	V	-105.961	-105.961	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	143.047	143.047	0	0
2	M14	V	111.259	111.259	0	0
3	M15	V	63.577	63.577	0	0
4	M16	V	63 577	63 577	0	0

Member Distributed Loads (BLC 6 : Seismic - Lateral)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Ζ	6.693	6.693	0	0
2	M14	Z	6.693	6.693	0	0
3	M15	Z	6.693	6.693	0	0
4	M16	Z	6.693	6.693	0	0
5	M13	Z	0	0	0	0
6	M14	Z	0	0	0	0
7	M15	Z	0	0	0	0
8	M16	Z	0	0	0	0

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:___

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	B	<u>Fa</u>
1	LRFD 1.2D + 1.6S + 0.5W	Yes	Υ		1	1.2	3	1.6	4	.5														
2	LRFD 1.2D + 1.0W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1														
3	LRFD 0.9D + 1.0W	Yes	Υ		2	.9					5	1												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 0.6W	Yes	Υ		1	1			4	.6														
11	ASD 1.0D + 0.75L + 0.45W + 0	Yes	Υ		1	1	3	.75	4	.45														
12	ASD 0.6D + 0.6W	Yes	Υ		2	.6					5	.6												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65.	.Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	766.853	2	1056.458	2	.772	1	.003	1	0	1	0	1
2		min	-948.916	3	-1301.307	3	-29.434	5	204	4	0	1	0	1
3	N7	max	.041	9	979.698	1	951	12	002	12	0	1	0	1
4		min	149	2	-37.103	5	-333.22	4	638	4	0	1	0	1
5	N15	max	.206	3	2368.936	1_	0	1	0	1	0	1	0	1
6		min	-1.603	2	106.198	15	-315.769	4	614	4	0	1	0	1
7	N16	max	2844.131	2	3488.451	2	0	3	0	12	0	1	0	1
8		min	-3025.357	3	-4277.124	3	-29.238	5	206	4	0	1	0	1
9	N23	max	.047	14	979.698	1_	15.126	1	.029	1	0	1	0	1
10		min	149	2	69.622	12	-321.773	5	618	4	0	1	0	1
11	N24	max	766.853	2	1056.458	2	054	12	0	12	0	1	0	1
12		min	-948.916	3	-1301.307	3	-30.192	5	206	4	0	1	0	1
13	Totals:	max	4375.935	2	9086.821	1	0	1						
14		min	-4922.921	3	-6437.056	3	-1052.503	4						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M13	1	max	140.335	1	362.759	2	-11.645	12	.002	3	.336	1	0	4
2			min	8.925	12	-584.945	3	-201.036	1	011	2	.021	12	0	3
3		2	max	140.335	1	254.281	2	-9.083	12	.002	3	.156	4	.623	3
4			min	8.925	12	-411.623	3	-154.723	1	011	2	.008	12	386	2
5		3	max	140.335	1	145.802	2	-6.522	12	.002	3	.079	5	1.029	3
6			min	8.925	12	-238.301	3	-108.409	1	011	2	051	1	636	2
7		4	max	140.335	1	37.323	2	-3.96	12	.002	3	.039	5	1.219	3
8			min	8.925	12	-64.98	3	-62.095	1	011	2	157	1	75	2
9		5	max	140.335	1	108.342	3	-1.399	12	.002	3	.003	5	1.191	3
10			min	8.925	12	-71.155	2	-31.099	4	011	2	206	1	729	2
11		6	max	140.335	1	281.664	3	30.532	1	.002	3	011	12	.948	3
12			min	3.948	15	-179.634	2	-22.64	5	011	2	197	1	572	2
13		7	max	140.335	1	454.985	3	76.845	1	.002	3	008	12	.487	3
14			min	-6.495	5	-288.113	2	-18.678	5	011	2	13	1	28	2
15		8	max	140.335	1	628.307	3	123.159	1	.002	3	0	10	.148	2
16			min	-19.327	5	-396.591	2	-14.715	5	011	2	077	4	19	3
17		9	max	140.335	1	801.629	3	169.472	1	.002	3	.178	1	.712	2
18			min	-32.158	5	-505.07	2	-10.752	5	011	2	091	5	-1.083	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]				Torque[k-ft]	LC	y-y Mome	LC		
19		10	max	140.335	1_	974.951	3	142.891	9	.011	2	.419	1	1.411	2
20			min	8.925	12	-613.548	2	-215.786	1	002	3	.02	12	-2.194	3
21		11	max	140.335	1	505.07	2	-8.846	12	.011	2	.178	1	.712	2
22			min	8.925	12	-801.629	3	-169.472	1	002	3	.007	12	-1.083	3
23		12	max	140.335	1	396.591	2	-6.285	12	.011	2	.074	5	.148	2
24			min	8.925	12	-628.307	3	-123.159	1	002	3	005	1	19	3
25		13	max	140.335	1	288.113	2	-3.724	12	.011	2	.031	5	.487	3
26			min	8.925	12	-454.985	3	-76.845	1	002	3	13	1	28	2
27		14	max	140.335	1	179.634	2	-1.162	12	.011	2	003	15	.948	3
28			min	8.925	12	-281.664	3	-35.853	4	002	3	197	1	572	2
29		15	max	140.335	1	71.155	2	15.782	1	.011	2	011	12	1.191	3
30		1.0	min	2.91	15	-108.342	3	-23.847	5	002	3	206	1	729	2
31		16	max	140.335	1	64.98	3	62.095	1	.011	2	008	12	1.219	3
32		10	min	-8.104	5	-37.323	2	-19.884	5	002	3	157	1	75	2
33		17	max	140.335	1	238.301	3	108.409	1	.011	2	001	12	1.029	3
34		17	min	-20.936	5	-145.802	2	-15.921	5	002	3	102	4	636	2
35		18	max	140.335	1	411.623	3	154.723	1	.011	2	.114	1	.623	3
		10				-254.281					3	105	5	386	
36		40	min	-33.767	5		2	-11.958	5	002					2
37		19	max	140.335	1	584.945	3	201.036	1	.011	2	.336	1	0	2
38	N 4 4	1	min	<u>-46.599</u>	5	-362.759	2	-7.995	5	002	3	118	5	0	3
39	M14	1	max	67.808	4	380.534	2	-11.944	12	.007	3_	.378	1	0	4
40			min	3.659	12	-461.254	3	-206.691	1	008	2	.024	12	0	3
41		2	max	60.593	1	272.055	2	-9.382	12	.007	3	.217	4	.493	3
42			min	3.659	12	-327.667	3	-160.378	1	008	2	.01	12	408	2
43		3	max	60.593	1	163.577	2	-6.821	12	.007	3_	.115	5	.819	3
44			min	3.659	12	-194.08	3	-114.064	1	008	2	022	1	68	2
45		4	max	60.593	1_	55.098	2	-4.26	12	.007	3	.059	5	.978	3
46			min	3.659	12	-60.493	3	-67.75	1	008	2	136	1	817	2
47		5	max	60.593	1	73.093	3	-1.698	12	.007	3	.008	5	.97	3
48			min	.756	15	-53.38	2	-45.05	4	008	2	192	1	818	2
49		6	max	60.593	1	206.68	3	24.877	1	.007	3	011	12	.796	3
50			min	-11.619	5	-161.859	2	-34.943	5	008	2	19	1	683	2
51		7	max	60.593	1	340.267	3	71.19	1	.007	3	008	12	.454	3
52			min	-24.45	5	-270.338	2	-30.98	5	008	2	13	1	413	2
53		8	max	60.593	1	473.854	3	117.504	1	.007	3	0	10	.006	9
54			min	-37.282	5	-378.816	2	-27.017	5	008	2	121	4	055	3
55		9	max	60.593	1	607.44	3	163.817	1	.007	3	.164	1	.534	2
56			min	-50.113	5	-487.295	2	-23.054	5	008	2	147	5	731	3
57		10	max	88.154	4	595.773	2	139.141	9	.008	2	.398	1	1.211	2
58			min	3.659	12	-741.027	3	-210.131	1	007	3	.019	12	-1.574	3
59		11	max		4	487.295	2	-8.547	12	.008	2	.218	4	.534	2
60			min	3.659	12	-607.44	3	-163.817	1	007	3	.007	12	731	3
61		12	max	62.491	4	378.816	2	-5.986	12	.008	2	.113	5	.006	9
62			min	3.659	12	-473.854	3	-117.504		007	3	012	1	055	3
63		13	max	60.593	1	270.338	2	-3.425	12	.008	2	.057	5	.454	3
64		10	min	3.659	12	-340.267	3	-71.19	1	007	3	13	1	413	2
65		14	max	60.593	1	161.859	2	863	12	.008	2	.005	5	.796	3
66		17	min	3.659	12	-206.68	3	-45.99	4	007	3	19	1	683	2
67		15	max	60.593	1	53.38	2	21.437	1	.008	2	01	12	.97	3
68		10	min	3.659	12	-73.093	3	-35.181	5	007	3	192	1	818	2
69		16		60.593		60.493	3	67.75	1				12		3
		16	max		1					.008	2	007		.978	
70		47	min	-4.246	5	-55.098	2	-31.219	5	007	3	136	1	817	2
71		17	max	60.593	1	194.08	3	114.064	1	.008	2	127	3	.819	3
72		40	min	-17.078	5	-163.577	2	-27.256	5	007	3	127	4	68	2
73		18	max	60.593	1	327.667	3	160.378	1	.008	2	.149	1	.493	3
74		40	min	-29.909	5	-272.055	2	-23.293	5	007	3	151	5	408	2
75		19	max	60.593	1	461.254	3	206.691	1	.008	2	.378	1	0	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC_
76			min	-42.741	5	-380.534	2	-19.33	5	007	3	177	5	0	3
77	M15	1	max	94.239	5	559.351	2	-11.901	12	.009	2	.393	4	0	2
78			min	-63.938	1	-260.176	3	-206.657	1	006	3	.024	12	0	3
79		2	max	81.407	5	397.893	2	-9.34	12	.009	2	.257	4	.279	3
80			min	-63.938	1	-186.192	3	-160.343	1	006	3	.01	12	598	2
81		3	max	68.576	5	236.434	2	-6.779	12	.009	2	.144	5	.465	3
82			min	-63.938	1	-112.208	3	-114.03	1	006	3	023	1	995	2
83		4	max	55.744	5	74.976	2	-4.217	12	.009	2	.077	5	.559	3
84			min	-63.938	1	-38.223	3	-69.574	4	006	3	136	1	-1.189	2
85		5	max	42.913	5	35.761	3	-1.656	12	.009	2	.014	5	.561	3
86			min	-63.938	1	-86.483	2	-53.948	4	006	3	192	1	-1.182	2
87		6	max	30.081	5	109.745	3	24.911	1	.009	2	011	12	.47	3
88			min	-63.938	1	-247.942	2	-43.791	5	006	3	19	1	973	2
89		7	max	17.25	5	183.729	3	71.224	1	.009	2	008	12	.287	3
90			min	-63.938	1	-409.4	2	-39.828	5	006	3	13	1	562	2
91		8	max	4.418	5	257.714	3	117.538	1	.009	2	0	10	.05	2
92			min	-63.938	1	-570.859	2	-35.865	5	006	3	148	4	0	15
93		9	max	-4.144	12	331.698	3	163.852	1	.009	2	.164	1	.865	2
94			min	-63.938	1	-732.317	2	-31.902	5	006	3	185	5	358	3
95		10	max	-4.144	12	893.776	2	-11.151	12	.006	3	.398	1	1.881	2
96			min	-63.938	1	-405.682	3	-210.165	1	009	2	.019	12	818	3
97		11	max	-1.885	15	732.317	2	-8.59	12	.006	3	.257	4	.865	2
98			min	-63.938	1	-331.698	3	-163.852	1	009	2	.007	12	358	3
99		12	max	-4.144	12	570.859	2	-6.028	12	.006	3	.14	5	.05	2
100			min	-63.938	1	-257.714	3	-117.538	1	009	2	012	1	0	15
101		13	max	-4.144	12	409.4	2	-3.467	12	.006	3	.073	5	.287	3
102			min	-63.938	1	-183.729	3	-71.224	1	009	2	13	1	562	2
103		14	max	-4.144	12	247.942	2	905	12	.006	3	.01	5	.47	3
104			min	-63.938	1	-109.745	3	-54.921	4	009	2	19	1	973	2
105		15	max	-4.144	12	86.483	2	21.403	1	.006	3	01	12	.561	3
106			min	-71.42	4	-35.761	3	-44.036	5	009	2	192	1	-1.182	2
107		16	max	-4.144	12	38.223	3	67.716	1	.006	3	007	12	.559	3
108			min	-84.252	4	-74.976	2	-40.073	5	009	2	136	1	-1.189	2
109		17	max	-4.144	12	112.208	3	114.03	1	.006	3	0	3	.465	3
110			min	-97.083	4	-236.434	2	-36.11	5	009	2	155	4	995	2
111		18	max	-4.144	12	186.192	3	160.343	1	.006	3	.149	1	.279	3
112		-		-109.915	4	-397.893	2	-32.147	5	009	2	19	5	598	2
113		19	max	-4.144	12	260.176	3	206.657	1	.006	3	.378	1	0	2
114				-122.746	4	-559.351	2	-28.184	5	009	2	228	5	0	5
115	M16	1	max	91.815	5	542.186	2	-11.51	12	.008	2	.338	1	0	2
116				-151.343				-201.271		009	3	.021	12	0	3
117		2		78.983	5	380.728	2	-8.949	12	.008	2	.201	4	.262	3
118				-151.343	1	-172.867	3	-154.957	1	009	3	.008	12	577	2
119		3		66.152	5	219.269	2	-6.387	12	.008	2	.111	5	.432	3
120				-151.343	1	-98.883	3	-108.644	1	009	3	05	1	952	2
121		4	max		5	57.811	2	-3.826	12	.008	2	.058	5	.51	3
122				-151.343	1	-24.898	3	-62.33	1	009	3	157	1	-1.125	2
123		5		40.489	5	49.086	3	-1.265	12	.008	2	.011	5	.494	3
124				-151.343	1	-103.648	2	-40.959	4	009	3	205	1	-1.096	2
125		6	max	27.657	5	123.07	3	30.297	1	.008	2	011	12	.387	3
126		T .		-151.343	1	-265.107	2	-32.342	5	009	3	197	1	866	2
127		7		14.826	5	197.054	3	76.61	1	.008	2	008	12	.187	3
128				-151.343	1	-426.565	2	-28.379	5	009	3	13	1	434	2
129		8	max	1.994	5	271.038	3	122.924	1	.008	2	0	10	.201	2
130		0		-151.343	1	-588.024	2	-24.416	5	009	3	106	4	106	3
131		9		-7.018	15	345.023	3	169.237	1	.008	2	.178	1	1.036	2
132		-		-151.343	1	-749.483	2	-20.453	5	009	3	131	5	491	3
104			1111111	101.040		743.403		-20.400	J	009	J	101	J	- .31	U

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC		LC	z-z Mome	LC
133		10	max	-9.336	12	747.324	1	142.779	9	.009	3	.418	1_	2.074	2
134			min	-151.343	1	-910.941	2	-215.551	1	008	2	.021	12	968	3
135		11	max	-9.336	12	749.483	2	-8.981	12	.009	3	.208	4	1.036	2
136			min	-151.343	1	-345.023	3	-169.237	1	008	2	.008	12	491	3
137		12	max	-9.336	12	588.024	2	-6.42	12	.009	3	.102	4	.201	2
138			min	-151.343	1	-271.038	3	-122.924	1	008	2	005	1	106	3
139		13	max	-9.336	12	426.565	2	-3.858	12	.009	3	.048	5	.187	3
140			min	-151.343	1	-197.054	3	-76.61	1	008	2	13	1	434	2
141		14	max	-9.336	12	265.107	2	-1.297	12	.009	3	0	15	.387	3
142			min	-151.343	1	-123.07	3	-45.606	4	008	2	197	1	866	2
143		15	max	-9.336	12	103.648	2	16.017	1	.009	3	011	12	.494	3
144			min	-151.343	1	-49.086	3	-33.525	5	008	2	205	1	-1.096	2
145		16	max	-9.336	12	24.898	3	62.33	1	.009	3	008	12	.51	3
146			min	-151.343	1	-57.811	2	-29.562	5	008	2	157	1	-1.125	2
147		17	max	-9.336	12	98.883	3	108.644	1	.009	3	002	12	.432	3
148			min	-151.343	1	-219.269	2	-25.599	5	008	2	134	4	952	2
149		18	max	-9.336	12	172.867	3	154.957	1	.009	3	.115	1	.262	3
150			min	-151.343	1	-380.728	2	-21.636	5	008	2	149	5	577	2
151		19	max	-9.336	12	246.851	3	201.271	1	.009	3	.338	1	0	2
152			min	-157.173	4	-542.186	2	-17.674	5	008	2	174	5	0	3
153	M2	1	max		2	2.039	4	.475	1	0	12	0	3	0	1
154	··· -		min	-1113.178	3	.489	15	-29.851	4	0	4	0	2	0	1
155		2	max	879.354	2	1.92	4	.475	1	0	12	0	1	0	15
156		_	min	-1112.788	3	.461	15	-30.309	4	0	4	011	4	0	4
157		3	max	879.875	2	1.801	4	.475	1	0	12	0	1	0	15
158			min	-1112.397	3	.433	15	-30.768	4	0	4	022	4	001	4
159		4	max	880.395	2	1.682	4	.475	1	0	12	0	1	0	15
160		7	min	-1112.007	3	.405	15	-31.226	4	0	4	033	4	002	4
161		5	max		2	1.563	4	.475	1	0	12	0	1	0	15
162		-	min	-1111.616	3	.377	15	-31.684	4	0	4	044	4	003	4
163		6	max	881.437	2	1.444	4	.475	1	0	12	0	1	0	15
164			min	-1111.226	3	.349	15	-32.143	4	0	4	055	4	003	4
165		7	max	881.958	2	1.326	4	.475	1	0	12	0	1	0	15
166		'	min	-1110.835	3	.321	15	-32.601	4	0	4	067	4	004	4
167		8		882.478	2	1.207	4	.475	1	0	12	.001	1	0	15
168		0	max min	-1110.445	3	.294	15	-33.06	4	0	4	078	4	004	4
		9							1		12		1		-
169 170		9	max	882.999	3	1.088 .266	4 15	.475 -33.518	4	0	4	.001	4	001	15
		10	min				4		1		12		1	004	_
171		10	max	883.52 -1109.664	2	.969		.475		0		.002		001	15
172		44	min		3	.234	12	-33.976	4	0	4	102	4_	005	4
173		11	max		2	.85	4	.475	1	0	12	.002	1_1	001	15
174		40	min	-1109.273	3	.187	12	-34.435	4	0	4	115	4_	005	4
175		12	max		2	.731	4	.475	1	0	12	.002	1_1	001	15
176		40	min	-1108.882	3	.141	12	-34.893	4	0	4	127	4_	005	4
177		13	max		2	.624	2	.475	1	0	12	.002	1_	001	15
178		4.	min	-1108.492	3	.095	12	-35.351	4	0	4	139	4_	006	4
179		14	max		2	.531	2	.475	1	0	12	.002	1	001	15
180			min	-1108.101	3	.048	12	-35.81	4	0	4	152	4_	006	4
181		15		886.123	2	.439	2	.475	1	0	12	.002	1_	001	15
182			min	-1107.711	3	02	3	-36.268	4	0	4	165	4	006	4
183		16		886.644	2	.346	2	.475	1	0	12	.003	1	001	15
184			min		3	089	3	-36.726	4	0	4	178	4	006	4
185		17	max		2	.253	2	.475	1	0	12	.003	_1_	002	15
186			min	-1106.93	3	159	3	-37.185	4	0	4	191	4	006	4
187		18	max		2	.161	2	.475	1	0	12	.003	1	002	15
188			min	-1106.539	3	228	3	-37.643	4	0	4	205	4	006	4
189		19	max	888.206	2	.068	2	.475	1	0	12	.003	1	001	12

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]				Torque[k-ft]				z-z Mome	LC
190			min	-1106.149	3_	298	3	-38.101	4	0	4	218	4	006	4
191	<u>M3</u>	1	max	637.805	2	7.679	4	7.766	4	0	12	0	1_	.006	4
192			min	-784.011	3_	1.814	15	.025	12	0	4	04	4	.001	12
193		2	max	637.634	2	6.918	4	8.3	4	0	12	0	1	.003	2
194			min	-784.139	3_	1.635	15	.025	12	0	4	036	4	0	12
195		3	max	637.464	2	6.157	4	8.835	4	0	12	0	1_	.001	2
196			min	-784.267	3_	1.456	15	.025	12	0	4	033	4	001	3
197		4	max	637.294	2	5.397	4	9.37	4	0	12	.001	1	0	15
198			min	-784.395	3	1.277	15	.025	12	0	4	029	4	002	3
199		5	max	637.123	2	4.636	4	9.904	4	0	12	.001	1	0	15
200			min	-784.522	3	1.098	15	.025	12	0	4	025	4	004	6
201		6	max	636.953	2	3.875	4	10.439	4	0	12	.001	1	001	15
202			min	-784.65	3	.919	15	.025	12	0	4	021	5	006	6
203		7	max	636.783	2	3.114	4	10.974	4	0	12	.002	1_	002	15
204			min	-784.778	3	.74	15	.025	12	0	4	017	5	007	6
205		8	max	636.612	_2_	2.353	4	11.508	4	0	12	.002	1	002	15
206			min	-784.906	3	.561	15	.025	12	0	4	012	5	008	6
207		9	max	636.442	2	1.592	4	12.043	4	0	12	.002	1	002	15
208			min	-785.033	3	.383	15	.025	12	0	4	007	5	009	6
209		10	max	636.272	2	.831	4	12.578	4	0	12	.002	1	002	15
210			min	-785.161	3	.2	12	.025	12	0	4	002	5	01	6
211		11	max	636.101	2	.18	2	13.112	4	0	12	.004	4	002	15
212			min	-785.289	3	164	3	.025	12	0	4	0	12	01	6
213		12	max	635.931	2	154	15	13.647	4	0	12	.009	4	002	15
214			min	-785.417	3	692	6	.025	12	0	4	0	12	01	6
215		13	max	635.76	2	333	15	14.182	4	0	12	.015	4	002	15
216			min	-785.545	3	-1.453	6	.025	12	0	4	0	12	009	6
217		14	max	635.59	2	512	15	14.717	4	0	12	.021	4	002	15
218				-785.672	3	-2.214	6	.025	12	0	4	0	12	009	6
219		15	max	635.42	2	691	15	15.251	4	0	12	.027	4	002	15
220			min	-785.8	3	-2.975	6	.025	12	0	4	0	12	007	6
221		16	max	635.249	2	87	15	15.786	4	0	12	.034	4	001	15
222			min	-785.928	3	-3.736	6	.025	12	0	4	0	12	006	6
223		17	max	635.079	2	-1.048	15	16.321	4	0	12	.04	4	001	15
224			min	-786.056	3	-4.497	6	.025	12	0	4	0	12	004	6
225		18	max	634.909	2	-1.227	15	16.855	4	0	12	.047	4	0	15
226			min	-786.183	3	-5.258	6	.025	12	0	4	0	12	002	6
227		19	max	634.738	2	-1.406	15	17.39	4	0	12	.054	4	0	1
228		10		-786.311	3	-6.019	6	.025	12	0	4	0	12	0	1
229	M4	1	max		1	0.013	1	952	12	0	1	.052	4	0	1
230	IVIT			-38.534	5	0	1	-332.213		0	1	0	12	0	1
231		2		976.802	1	0	1	952	12	0	1	.014	4	0	1
232				-38.455	5	0	1	-332.361	4	0	1	0	12	0	1
233		3		976.972	1	0	1	952	12	0	1	0	12	0	1
234				-38.375	5	0	1	-332.508		0	1	025	4	0	1
235		4		977.142	1	0	1	952	12	0	1	0	12	0	1
236		_	min	-38.296	5	0	1	-332.656		0	1	063	4	0	1
237		5		977.313	<u> </u>	0	1	952	12	0	1	063 0	12	0	1
238		<u> </u>		-38.216	5	0	1			0	1	101		0	1
		6					1	-332.803			1	101 0	12		1
239		6		977.483	1	0	1	952	12	0	1	_		0	1
240		7		-38.137	5	0		-332.951	4	_	•	139	4		-
241		7		977.653		0	1	952	12	0	1	0	12	0	1
242				-38.057	5	0	1_	-333.099		0	1	178	4	0	1
243		8		977.824	1_	0	1	952	12	0	1_	0	12	0	1
244			min		5	0	1_	-333.246		0	1	216	4	0	1
245		9		977.994	_1_	0	1	952	12	0	1	0	12	0	1
246			min	-37.898	5_	0	1	-333.394	4	0	1	254	4	0	1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
247		10	max		_1_	0	1	952	12	0	_1_	0	12	0	1
248			min	-37.819	5	0	1	-333.542	4	0	1	292	4	0	1
249		11	max	978.335	1	0	1	952	12	0	1	0	12	0	1
250			min	-37.739	5	0	1	-333.689	4	0	1	331	4	0	1
251		12	max	978.505	1	0	1	952	12	0	1	0	12	0	1
252			min	-37.66	5	0	1	-333.837	4	0	1	369	4	0	1
253		13	max	978.675	1	0	1	952	12	0	1	001	12	0	1
254			min	-37.58	5	0	1	-333.984	4	0	1	407	4	0	1
255		14	max	978.846	1	0	1	952	12	0	1	001	12	0	1
256			min	-37.501	5	0	1	-334.132	4	0	1	446	4	0	1
257		15	max	979.016	1	0	1	952	12	0	1	001	12	0	1
258			min	-37.421	5	0	1	-334.28	4	0	1	484	4	0	1
259		16	max	979.187	1	0	1	952	12	0	1	001	12	0	1
260			min	-37.342	5	0	1	-334.427	4	0	1	522	4	0	1
261		17	max	979.357	1	0	1	952	12	0	1	002	12	0	1
262			min	-37.262	5	0	1	-334.575	4	0	1	561	4	0	1
263		18	max	979.527	1	0	1	952	12	0	1	002	12	0	1
264			min	-37.183	5	0	1	-334.723	4	0	1	599	4	0	1
265		19	max	979.698	1	0	1	952	12	0	1	002	12	0	1
266			min	-37.103	5	0	1	-334.87	4	0	1	638	4	0	1
267	M6	1		2842.525	2	2.162	2	0	1	0	1	0	4	0	1
268			min	-3660.792	3	.348	12	-30.186	4	0	4	0	1	0	1
269		2		2843.046	2	2.07	2	0	1	0	1	0	1	0	12
270				-3660.401	3	.302	12	-30.644	4	0	4	011	4	0	2
271		3		2843.566	2	1.977	2	0	1	0	1	0	1	0	12
272				-3660.011	3	.255	12	-31.103	4	Ö	4	022	4	001	2
273		4		2844.087	2	1.884	2	0	1	0	1	0	1	0	12
274				-3659.62	3	.209	12	-31.561	4	0	4	033	4	002	2
275		5		2844.608	2	1.792	2	0	1	0	1	0	1	0	12
276			min	-3659.23	3	.163	12	-32.019	4	0	4	044	4	003	2
277		6		2845.128	2	1.699	2	0	1	0	1	0	1	0	12
278		Ť	min	-3658.839	3	.101	3	-32.478	4	0	4	056	4	003	2
279		7		2845.649	2	1.606	2	0	1	0	1	0	1	0	12
280			min	-3658.449	3	.031	3	-32.936	4	0	4	067	4	004	2
281		8	max	2846.17	2	1.514	2	0	1	0	1	0	1	<u>.00+</u>	12
282				-3658.058	3	038	3	-33.395	4	0	4	079	4	005	2
283		9		2846.69	2	1.421	2	0	1	0	1	0	1	0	12
284		Ť	min	-3657.668	3	108	3	-33.853	4	0	4	091	4	005	2
285		10		2847.211	2	1.329	2	0	1	0	1	0	1	0	3
286		- 10	min	-3657.277	3	177	3	-34.311	4	0	4	103	4	006	2
287		11		2847.732		1.236	2	0	1	0	1	0	1	0	3
288				-3656.887	3	247	3	-34.77	4	0	4	116	4	006	2
289		12		2848.253	2	1.143	2	0	1	0	1	0	1	0	3
290				-3656.496	3	316	3	-35.228	4	0	4	128	4	006	2
291		13		2848.773	2	1.051	2	0	1	0	1	0	1	0	3
292		'		-3656.106	3	385	3	-35.686	4	0	4	141	4	007	2
293		14		2849.294	2	.958	2	0	1	0	1	0	1	0	3
294		17		-3655.715	3	455	3	-36.145	4	0	4	154	4	007	2
295		15		2849.815	2	.866	2	0	1	0	1	0	1	0	3
296		'	min	-3655.325	3	524	3	-36.603	4	0	4	167	4	008	2
297		16		2850.335	2	.773	2	0	1	0	1	0	1	008	3
298		10		-3654.934	3	594	3	-37.061	4	0	4	18	4	008	2
299		17		2850.856	2	.68	2	0	1	0	1	0	1	_ 008	3
300		17		-3654.543	3	663	3	-37.52	4	0	4	193	4	008	2
301		18		2851.377	2	.588	2	0	1	0	1	193 0	1	<u>008</u> 0	3
302		10		-3654.153	3	733	3	-37.978	4	0	4	207	4	008	2
303		19		2851.897	2	.495	2		1	0	1	207 0	1	.001	3
JUJ		l 19	шах	2001.097		.495		0		U		U		.001	<u> </u>

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

004	Member	Sec		Axial[lb]		y Shear[lb]				Torque[k-ft]					LC
304	N 4 7	4	min	-3653.762	3	802	3	-38.436	4	0	4_	22	4	009	2
305	<u>M7</u>	1		2442.012	2	7.694	6	7.311	4	0	1_1	0	1_4	.009	2
306		2		-2477.97	3	1.806	15	7.040	1_4	0	<u>4</u> 1	04	<u>4</u> 1	001	3
307		2		2441.842 -2478.097	2	6.933	6 1E	7.846	<u>4</u> 1	0		0		.006	2
308		2	min		3	1.628 6.172	15	0 20	•	0	<u>4</u> 1	037	<u>4</u> 1	003	3
309		3		2441.671 -2478.225	2		6 15	8.38	<u>4</u> 1	0	4	0	4	.004	3
310		4	min		3	1.449		0		0	_ 4 _	034	1	004	
311		4		2441.501 -2478.353	3	5.411 1.27	6 15	8.915 0	<u>4</u> 1	0	4	0	4	.002	3
312		5	min	2441.331		4.65				-	_ 4 _	03 0	1	005 0	2
313		5	min	-2478.481	3	1.091	6 15	9.45	4	0	4	026	4	006	3
315		6			2	3.889	6	9.984	4	0	1	020 0	1	006	15
316		0	max	-2478.608	3	.912	15	0	1	0	4	022	4	007	3
317		7	max		2	3.128	6	10.519	4	0	1	022	1	002	15
318			min	-2478.736	3	.733	15	0	1	0	4	018	4	002	3
319		8	max	2440.82	2	2.367	6	11.054	4	0	1	018 0	1	007	15
320		0	min	-2478.864	3	.534	12	0	1	0	4	013	4	002	4
321		9	_	2440.649	2	1.732	2	11.589	4	0	1	013	1	002	15
322		3	min	-2478.992	3	.238	12	0	1	0	4	009	4	002	4
323		10		2440.479	2	1.139	2	12.123	4	0	1	0	1	002	15
324		10	min	-2479.119	3	152	3	0	1	0	4	004	4	01	4
325		11		2440.309	2	.546	2	12.658	4	0	1	.004	4	002	15
326		11	min	-2479.247	3	597	3	0	1	0	4	0	1	01	4
327		12		2440.138	2	047	2	13.193	4	0	1	.007	4	002	15
328		12	min	-2479.375	3	-1.041	3	0	1	0	4	0	1	01	4
329		13		2439.968	2	34	15	13.727	4	0	1	.012	4	002	15
330		13	min	-2479.503	3	-1.486	3	0	1	0	4	0	1	002	4
331		14		2439.798	2	519	15	14.262	4	0	1	.018	4	003	15
332		17		-2479.63	3	-2.199	4	0	1	0	4	.010	1	009	4
333		15		2439.627	2	698	15	14.797	4	0	1	.024	4	002	15
334		10	min	-2479.758	3	-2.96	4	0	1	0	4	0	1	007	4
335		16		2439.457	2	877	15	15.331	4	0	1	.031	4	001	15
336		- 10	min	-2479.886	3	-3.721	4	0	1	0	4	0	1	006	4
337		17		2439.287	2	-1.056	15	15.866	4	0	1	.037	4	001	15
338			min	-2480.014	3	-4.482	4	0	1	0	4	0	1	004	4
339		18		2439.116	2	-1.234	15	16.401	4	Ö	1	.044	4	0	15
340			min	-2480.141	3	-5.243	4	0	1	0	4	0	1	002	4
341		19		2438.946	2	-1.413	15	16.935	4	0	1	.051	4	0	1
342				-2480.269	3	-6.004	4	0	1	0	4	0	1	0	1
343	M8	1		2365.87	1	0	1	0	1	0	1	.048	4	0	1
344				105.273	15	0	1	-318.792	4	0	1	0	1	0	1
345		2		2366.04	1	0	1	0	1	0	1	.011	4	0	1
346				105.324	15	0	1	-318.939	4	0	1	0	1	0	1
347		3		2366.21	1	0	1	0	1	0	1	0	1	0	1
348				105.376	15	0	1	-319.087	4	0	1	025	4	0	1
349		4		2366.381	1	0	1	0	1	0	1	0	1	0	1
350				105.427	15	0	1	-319.235	4	0	1	062	4	0	1
351		5		2366.551	1	0	1	0	1	0	1	0	1	0	1
352				105.479	15	0	1	-319.382	4	0	1	098	4	0	1
353		6		2366.721	1	0	1	0	1	0	1	0	1	0	1
354				105.53	15	0	1	-319.53	4	0	1	135	4	Ō	1
355		7		2366.892	1	0	1	0	1	0	1	0	1	0	1
356				105.581	15	0	1	-319.677	4	0	1	172	4	0	1
357		8		2367.062	1	0	1	0	1	0	1	0	1	0	1
358				105.633	15	0	1	-319.825	4	0	1	209	4	0	1
359		9		2367.232	1	0	1	0	1	0	1	0	1	0	1
360				105.684	15	0	1	-319.973	4	0	1	245	4	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

004	Member	Sec		Axial[lb]						Torque[k-ft]		1 -	LC	_	
361		10		2367.403	1_	0	1	0	1_1	0	1	0	1	0	1
362		4.4	min	105.735	<u>15</u>	0	1_	-320.12	4	0	1_	282	4	0	1
363		11		2367.573	1_	0	1	0	1_1	0	<u>1</u> 1	0	1_4	0	1
364		10		105.787	<u>15</u>	0	1	-320.268	4	0	1	319	4	0	1
365		12		2367.743	1_	0	1	0 -320.416	<u>1</u> 4	0	1	0	4	0	1
366		12	min		<u>15</u>	0	1			_	1	356	1	0	1
367 368		13		2367.914	<u>1</u> 15	0	1	-320.563	<u>1</u> 4	0	1	392	4	0	1
		14	min	105.89	<u>15</u> 1	0	1	0	_ 4 _	0	1	i	1	0	1
369		14		2368.084 105.941	15	-	1	-320.711	4		1	420		0	1
370 371		15	min	2368.254	<u>15</u> 1	0	1	0	<u>4</u> 1	0	1	429 0	1	0	1
372		10	min	105.992	15	0	1	-320.859	4	0	1	466	4	0	1
373		16		2368.425	1 <u>5</u>	0	1	0	1	0	+	0	1	0	1
374		10		106.044	15	0	1	-321.006	4	0	1	503	4	0	1
375		17		2368.595	1	0	1	0	1	0	1	0	1	0	1
376		17		106.095	15	0	1	-321.154	4	0	1	54	4	0	1
377		18		2368.765	1	0	1	0	1	0	1	0	1	0	1
378		10	min	106.147	15	0	1	-321.301	4	0	1	577	4	0	1
379		19		2368.936	1 1	0	1	0	1	0	+	0	1	0	1
380		13	min	106.198	15	0	1	-321.449	4	0	1	614	4	0	1
381	M10	1	max	878.833	2	1.995	6	027	12	0	1	0	4	0	1
382	IVITO		min	-1113.178	3	.46	15	-30.172	4	0	5	0	3	0	1
383		2	max	879.354	2	1.876	6	027	12	0	1	0	10	0	15
384			min	-1112.788	3	.432	15	-30.631	4	0	5	011	4	0	6
385		3	max	879.875	2	1.757	6	027	12	0	1	0	12	0	15
386			min	-1112.397	3	.404	15	-31.089	4	0	5	022	4	001	6
387		4	max	880.395	2	1.638	6	027	12	0	1	0	12	0	15
388		_	min	-1112.007	3	.376	15	-31.547	4	0	5	033	4	002	6
389		5	max		2	1.52	6	027	12	0	1	0	12	0	15
390			min	-1111.616	3	.348	15	-32.006	4	0	5	044	4	003	6
391		6	max	881.437	2	1.401	6	027	12	0	1	0	12	0	15
392			min	-1111.226	3	.32	15	-32.464	4	0	5	056	4	003	6
393		7	max	881.958	2	1.282	6	027	12	0	1	0	12	0	15
394			min	-1110.835	3	.292	15	-32.923	4	0	5	067	4	004	6
395		8	max	882.478	2	1.163	6	027	12	0	1	0	12	0	15
396			min	-1110.445	3	.264	15	-33.381	4	0	5	079	4	004	6
397		9	max	882.999	2	1.044	6	027	12	0	1	0	12	0	15
398			min	-1110.054	3	.236	15	-33.839	4	0	5	091	4	004	6
399		10	max	883.52	2	.925	6	027	12	0	1	0	12	001	15
400			min	-1109.664	3	.208	15	-34.298	4	0	5	103	4	005	6
401		11		884.04	2	.809	2	027	12	0	1	0	12	001	15
402			min	-1109.273	3	.18	15	-34.756	4	0	5	116	4	005	6
403		12	max		2	.716	2	027	12	0	1	0	12	001	15
404				-1108.882	3	.141	12	-35.214	4	0	5	128	4	005	6
405		13	max		2	.624	2	027	12	0	1	0	12	001	15
406			min	-1108.492	3	.095	12	-35.673	4	0	5	141	4	005	6
407		14		885.602	2	.531	2	027	12	0	1	0	12	001	15
408				-1108.101	3	.048	12	-36.131	4	0	5	154	4	006	6
409		15		886.123	2	.439	2	027	12	0	1	0	12	001	15
410			min	-1107.711	3	02	3	-36.589	4	0	5	167	4	006	6
411		16		886.644	2	.346	2	027	12	0	1	0	12	001	15
412				-1107.32	3	089	3	-37.048	4	0	5	18	4	006	6
413		17		887.164	2	.253	2	027	12	0	1	0	12	001	15
414				-1106.93	3	159	3	-37.506	4	0	5	193	4	006	6
415		18	max	887.685	2	.161	2	027	12	0	1	0	12	001	15
416			min	-1106.539	3	228	3	-37.964	4	0	5	206	4	006	6
417		19		888.206	2	.068	2	027	12	0	1	0	12	001	15

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]		z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC_
418			min	-1106.149	3	298	3	-38.423	4	0	5	22	4	006	6
419	M11	1	max	637.805	2	7.642	6	7.494	4	0	1	0	12	.006	6
420			min	-784.011	3	1.788	15	401	1	0	4	04	4	.001	15
421		2	max	637.634	2	6.881	6	8.029	4	0	1	0	12	.003	2
422			min	-784.139	3	1.61	15	401	1	0	4	037	4	0	12
423		3	max	637.464	2	6.12	6	8.564	4	0	1	0	12	.001	2
424			min	-784.267	3	1.431	15	401	1	0	4	033	4	001	3
425		4	max	637.294	2	5.359	6	9.098	4	0	1	0	12	0	15
426			min	-784.395	3	1.252	15	401	1	0	4	03	4	002	3
427		5	max	637.123	2	4.598	6	9.633	4	0	1	0	12	001	15
428			min	-784.522	3	1.073	15	401	1	0	4	026	4	004	4
429		6	max	636.953	2	3.837	6	10.168	4	0	1	0	12	001	15
430			min	-784.65	3	.894	15	401	1	0	4	022	4	006	4
431		7	max	636.783	2	3.076	6	10.702	4	0	1	0	12	002	15
432			min	-784.778	3	.715	15	401	1	0	4	017	4	007	4
433		8	max	636.612	2	2.315	6	11.237	4	0	1	0	12	002	15
434			min	-784.906	3	.536	15	401	1	0	4	013	4	009	4
435		9	max		2	1.554	6	11.772	4	0	1	0	12	002	15
436			min	-785.033	3	.357	15	401	1	0	4	008	4	009	4
437		10	max	636.272	2	.793	6	12.306	4	0	1	0	12	002	15
438			min	-785.161	3	.178	15	401	1	0	4	003	4	01	4
439		11	max	636.101	2	.18	2	12.841	4	0	1	.003	5	002	15
440			min	-785.289	3	164	3	401	1	0	4	002	1	01	4
441		12	max	635.931	2	179	15	13.376	4	0	1	.008	5	002	15
442			min	-785.417	3	73	4	401	1	0	4	002	1	01	4
443		13	max	635.76	2	358	15	13.91	4	0	1	.014	5	002	15
444			min	-785.545	3	-1.49	4	401	1	0	4	003	1	009	4
445		14	max	635.59	2	537	15	14.445	4	0	1	.02	5	002	15
446			min	-785.672	3	-2.251	4	401	1	0	4	003	1	009	4
447		15	max	635.42	2	716	15	14.98	4	0	1	.026	5	002	15
448			min	-785.8	3	-3.012	4	401	1	0	4	003	1	008	4
449		16	max		2	895	15	15.514	4	0	1	.032	5	001	15
450			min	-785.928	3	-3.773	4	401	1	0	4	003	1	006	4
451		17	max	635.079	2	-1.074	15	16.049	4	0	1	.039	5	001	15
452			min	-786.056	3	-4.534	4	401	1	0	4	003	1	004	4
453		18	max		2	-1.253	15	16.584	4	0	1	.045	5	0	15
454			min	-786.183	3	-5.295	4	401	1	0	4	003	1	002	4
455		19	max		2	-1.431	15	17.119	4	0	1	.052	5	0	1
456		1	min	-786.311	3	-6.056	4	401	1	0	4	004	1	0	1
457	M12	1	max	976.631	1	0	1	15.531	1	0	1	.05	5	0	1
458				68.089	12	0	1	-321.67		0	1	003	1	0	1
459		2		976.802	1	0	1	15.531	1	0	1	.013	5	0	1
460			min	68.174	12	0	1	-321.818		0	1	002	1	0	1
461		3		976.972	1	0	1	15.531	1	0	1	0	1	0	1
462		Ť	min	68.26	12	0	1	-321.965	4	0	1	025	4	0	1
463		4		977.142	1	0	1	15.531	1	0	1	.002	1	0	1
464			min	68.345	12	0	1	-322.113	4	0	1	061	4	0	1
465		5	max		1	0	1	15.531	1	0	1	.004	1	0	1
466		Ť	min	68.43	12	0	1	-322.261	4	0	1	098	4	0	1
467		6	max		1	0	1	15.531	1	0	1	.006	1	0	1
468			min	68.515	12	0	1	-322.408	_	0	1	136	4	0	1
469		7		977.653	1	0	1	15.531	1	0	1	.007	1	0	1
470			min	68.6	12	0	1	-322.556		0	1	173	4	0	1
471		8		977.824	1	0	1	15.531	1	0	1	.009	1	0	1
472			min	68.686	12	0	1	-322.704	4	0	1	21	4	0	1
473		9	max		1	0	1	15.531	1	0	1	.011	1	0	1
474			min	68.771	12	0	1	-322.851	4	0	1	247	4	0	1
4/4			1111111	00.77	14	U		-322.001	4	U		241	4	U	

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
475		10	max	978.164	1	0	1	15.531	1	0	1	.013	1	0	1
476			min	68.856	12	0	1	-322.999	4	0	1	284	4	0	1
477		11	max	978.335	1	0	1	15.531	1	0	1	.014	1	0	1
478			min	68.941	12	0	1	-323.147	4	0	1	321	4	0	1
479		12	max	978.505	1	0	1	15.531	1	0	1	.016	1	0	1
480			min	69.026	12	0	1	-323.294	4	0	1	358	4	0	1
481		13	max		1	0	1	15.531	1	0	1	.018	1	0	1
482			min	69.111	12	0	1	-323.442	4	0	1	395	4	0	1
483		14	max	978.846	1	0	1	15.531	1	0	1	.02	1	0	1
484		17	min	69.197	12	0	1	-323.589	4	0	1	432	4	0	1
485		15	max		1	0	1	15.531	1	0	1	.022	1	0	1
486		13	min	69.282	12	0	1	-323.737	4	0	1	469	4	0	1
		16					1	15.531	1		+	.023	1		1
487		10	max		1	0	1			0	1			0	1
488		47	min	69.367	12	0	•	-323.885	4	0	•	507	4	0	
489		17	max	979.357	1	0	1	15.531	1	0	1	.025	1	0	1
490		4.0	min	69.452	12	0	1	-324.032	4	0	1_	544	4	0	1
491		18	max		1	0	1	15.531	1	0	_1_	.027	1	0	1
492			min	69.537	12	0	1	-324.18	4	0	_1_	581	4	0	1
493		19	max	979.698	1	0	1_	15.531	1_	0	_1_	.029	1	0	1
494			min	69.622	12	0	1	-324.328	4	0	1_	618	4	0	1
495	M1	1	max		1	584.909	3	46.565	5	0	2	.336	1	.002	3
496			min	-7.995	5	-362.126	2	-140.137	1	0	3	118	5	011	2
497		2	max	201.865	1	584.028	3	47.807	5	0	2	.262	1	.18	2
498			min	-7.612	5	-363.299	2	-140.137	1	0	3	093	5	307	3
499		3	max	488.41	3	430.271	2	20.024	5	0	3	.188	1	.362	2
500			min	-279.415	2	-428.598	3	-139.93	1	0	2	068	5	603	3
501		4	max		3	429.098	2	21.265	5	0	3	.114	1	.144	1
502			min	-278.593	2	-429.478	3	-139.93	1	0	2	057	5	376	3
503		5	max	489.642	3	427.925	2	22.507	5	0	3	.041	1	003	15
504			min	-277.772	2	-430.358	3	-139.93	1	0	2	045	5	149	3
505		6	max	490.258	3	426.751	2	23.748	5	0	3	002	12	.078	3
506			min	-276.95	2	-431.238		-139.93	1	0	2	041	4	316	2
507		7	max	490.874	3	425.578	2	24.99	5	0	3	007	12	.306	3
508		<u> </u>	min	-276.128	2	-432.118	3	-139.93	1	0	2	107	1	541	2
509		8	max	491.491	3	424.404	2	26.231	5	0	3	004	15	.534	3
510		"	min	-275.307	2	-432.998	3	-139.93	1	0	2	181	1	765	2
511		9	max		3	45.119	2	70.08	5	0	9	.104	1	.622	3
512		9	min	-184.35	2	.355	15		1	0	3	156	5	877	2
513		10		510.72	3	43.945	2	71.321	5		9	0	12	.607	3
		10	max		2		15		1	0	3	12	4		
514		4.4	min	-183.528		.001	2	-200.567	5	0				901	3
515		11		511.336	3	42.772		72.563		_	9	007	12	.592	
516		40		-182.707	2	-1.439	4	-200.567	1	0	3	108	4	923	2
517		12			3	290.349	3	179.381	5	0	2	.179	1	.516	3
518		40	min	-98.313	10	-517.112	2	-136.72	1	0	3	248	5	819	2
519		13		530.496	3	289.469	3	180.622	5	0	2	.106	1	.363	3
520			min	-97.629	10	-518.285	2	-136.72	1	0	3	153	5	546	2
521		14		531.113	3	288.588	3	181.863	5	0	2	.034	1	.21	3
522					10	-519.459	2	-136.72	1	0	3	057	5	272	2
523		15	max		3	287.708	3	183.105	5	0	2	.039	5	.058	3
524			min	-96.259	10	-520.632	2	-136.72	1	0	3	038	1	019	1
525		16	max	532.345	3	286.828	3	184.346	5	0	2	.136	5	.277	2
526			min	-95.575	10	-521.806	2	-136.72	1	0	3	11	1	093	3
527		17	max		3	285.948	3	185.588	5	0	2	.234	5	.553	2
528			min	-94.89	10	-522.979	2	-136.72	1	0	3	182	1	244	3
529		18	max	17.29	5	543.893	2	-9.337	12	0	3	.236	5	.278	2
530			min	-202.087	1	-246.052	3	-158.635	4	0	2	258	1	121	3
531		19	max		5	542.72	2	-9.337	12	0	3	.174	5	.009	3
UUI		10	παλ	17.070		U-72.12		0.001	14	·	<u> </u>	.177		.000	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC				LC	Torque[k-ft]	LC		LC	z-z Mome	LC
532			min	-201.265	1	-246.932	3	-157.394	4	0	2	338	1	008	2
533	M5	1	max	431.557	1	1949.731	3	114.023	5	0	1	0	1_	.023	2
534			min	22.817	12	-1223.161	2	0	1	0	4	279	4	003	3
535		2	max	432.379	1	1948.851	3	115.265	5	0	1	0	1	.668	2
536			min	23.228	12	-1224.334	2	0	1	0	4	219	4	-1.032	3
537		3	max	1576.045	3	1325.676	2	91.097	4	0	4	0	1	1.284	2
538			min	-1004.552	2	-1397.204	3	0	1	0	1	158	4	-2.02	3
539		4	max	1576.661	3	1324.503	2	92.338	4	0	4	0	1	.594	1
540			min	-1003.73	2	-1398.085	3	0	1	0	1	109	4	-1.282	3
541		5	max	1577.277	3	1323.329	2	93.579	4	0	4	0	1	0	9
542			min	-1002.909	2	-1398.965	3	0	1	0	1	06	4	544	3
543		6	max	1577.893	3	1322.156	2	94.821	4	0	4	0	1	.194	3
544			min	-1002.087	2	-1399.845	3	0	1	0	1	011	4	812	2
545		7		1578.509	3	1320.983	2	96.062	4	0	4	.04	4	.933	3
546			min	-1001.265	2	-1400.725	3	0	1	0	1	0	1	-1.509	2
547		8	max		3	1319.809	2	97.304	4	0	4	.091	4	1.673	3
548			min	-1000.444	2	-1401.605	3	0	1	0	1	0	1	-2.206	2
549		9		1612.905	3	150.417	2	235.209	4	0	1	0	1	1.921	3
550		<u> </u>	min	-814.291	2	.357	15	0	1	0	1	236	4	-2.515	2
551		10		1613.522	3	149.244	2	236.451	4	0	1	0	1	1.867	3
552		10	min	-813.47	2	.003	15	0	1	0	1	111	4	-2.594	2
553		11		1614.138	3	148.07	2	237.692	4	0	1	.014	4	1.813	3
554			min	-812.648	2	-1.232	6	0	1	0	1	0	1	-2.672	2
555		12		1648.055	3	940.373	3	269.746	4	0	1	0	1	1.595	3
556		'-	min	-626.513	2	-1625.665	2	0	1	0	4	374	4	-2.394	2
557		13		1648.671	3	939.493	3	270.987	4	0	1	0	1	1.099	3
558		10	min	-625.692	2	-1626.838	2	0	1	0	4	231	4	-1.536	2
559		14		1649.287	3	938.613	3	272.229	4	0	1	0	1	.603	3
560		17	min	-624.87	2	-1628.011	2	0	1	0	4	088	4	678	2
561		15		1649.903	3	937.733	3	273.47	4	0	1	.056	4	.182	2
562		'0	min	-624.049	2	-1629.185	2	0	1	0	4	0	1	004	13
563		16	max		3	936.853	3	274.712	4	0	1	.201	4	1.042	2
564		1.0	min	-623.227	2	-1630.358	2	0	1	0	4	0	1	386	3
565		17		1651.136	3	935.973	3	275.953	4	0	1	.346	4	1.902	2
566		1	min	-622.405	2	-1631.532	2	0	1	0	4	0	1	88	3
567		18	max		12	1826.24	2	0	1	0	4	.397	4	.98	2
568		'	min	-431.936	1	-837.668	3	-22.686	5	0	1	0	1	46	3
569		19	max	-23.083	12	1825.067	2	0	1	0	4	.386	4	.017	2
570		1.0	min	-431.114	1	-838.548	3	-21.445	5	0	1	0	1	018	3
571	M9	1	max		1	584.909	3	140.137	1	0	3	021	12	.002	3
572	IVIO	<u> </u>	min	44044	12	-362.126		8.924	12	0	4	336	1	011	2
573		2	max		1	584.028	3	140.137	1	0	3	017	12	.18	2
574			min	12.055	12	-363.299		8.924	12	0	4	262	1	307	3
575		3	max		3	430.271	2	139.93	1	0	2	012	12	.362	2
576			min		2	-428.598	3	8.898	12	0	3	188	1	603	3
577		4		489.026	3	429.098	2	139.93	1	0	2	007	12	.144	1
578			min	-278.593	2	-429.478	3	8.898	12	0	3	114	1	376	3
579		5	max		3	427.925	2	139.93	1	0	2	003	12	003	15
580		<u> </u>	min		2	-430.358	3	8.898	12	0	3	063	4	149	3
581		6	max		3	426.751	2	139.93	1	0	2	.033	1	.078	3
582			min		2	-431.238		8.898	12	0	3	027	5	316	2
583		7	max		3	425.578	2	139.93	1	0	2	.107	1	.306	3
584			min		2	-432.118	3	8.898	12	0	3	002	5	541	2
585		8		491.491	3	424.404	2	139.93	1	0	2	.181	1	.534	3
586		0	min	-275.307	2	-432.998	3	8.898	12	0	3	.011	12	765	2
587		9		510.103	3	45.119	2	200.567	1	0	3	006	12	.622	3
588		9	min		2	.363	15	12.55	12	0	9	202	4	877	2
500			1111111	-104.00		.000	IJ	12.00	14	U	J	202	_	011	

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:_

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
589		10	max	510.72	3	43.945	2	200.567	1	0	3	.001	1	.607	3
590			min	-183.528	2	.009	15	12.55	12	0	9	119	4	901	2
591		11	max	511.336	3	42.772	2	200.567	1	0	3	.107	1	.592	3
592			min	-182.707	2	-1.389	6	12.55	12	0	9	063	5	923	2
593		12	max	529.88	3	290.349	3	240.307	4	0	3	011	12	.516	3
594			min	-98.313	10	-517.112	2	8.413	12	0	2	327	4	819	2
595		13	max	530.496	3	289.469	3	241.548	4	0	3	007	12	.363	3
596			min	-97.629	10	-518.285	2	8.413	12	0	2	2	4	546	2
597		14	max	531.113	3	288.588	3	242.79	4	0	3	002	12	.21	3
598			min	-96.944	10	-519.459	2	8.413	12	0	2	072	4	272	2
599		15	max	531.729	3	287.708	3	244.031	4	0	3	.056	4	.058	3
600			min	-96.259	10	-520.632	2	8.413	12	0	2	.002	12	019	1
601		16	max	532.345	3	286.828	3	245.273	4	0	3	.185	4	.277	2
602			min	-95.575	10	-521.806	2	8.413	12	0	2	.007	12	093	3
603		17	max	532.961	3	285.948	3	246.514	4	0	3	.315	4	.553	2
604			min	-94.89	10	-522.979	2	8.413	12	0	2	.011	12	244	3
605		18	max	-11.921	12	543.893	2	151.535	1	0	2	.35	4	.278	2
606			min	-202.087	1	-246.052	3	-93.376	5	0	3	.016	12	121	3
607		19	max	-11.511	12	542.72	2	151.535	1	0	2	.338	1	.009	3
608			min	-201.265	1	-246.932	3	-92.135	5	0	3	.021	12	008	2

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M13	1	max	.001	1	.089	2	.008	3	7.512e-3	2	NC	1	NC	1
2			min	859	4	013	3	004	2	-1.494e-3	3	NC	1	NC	1
3		2	max	.001	1	.381	3	.063	1	8.763e-3	2	NC	5	NC	2
4			min	859	4	144	1	034	5	-1.663e-3	3	686.57	3	4388.338	1
5		3	max	.001	1	.699	3	.154	1	1.001e-2	2	NC	5	NC	3
6			min	859	4	32	1	039	5	-1.832e-3	3	379.464	3	1769.316	1
7		4	max	0	1	.892	3	.234	1	1.127e-2	2	NC	15	NC	3
8			min	859	4	421	1	024	5	-2.001e-3	3	298.525	3	1162.535	1
9		5	max	0	1	.936	3	.275	1	1.252e-2	2	NC	15	NC	5
10			min	859	4	433	1	0	15	-2.17e-3	3	284.658	3	985.666	1
11		6	max	0	1	.834	3	.267	1	1.377e-2	2	NC	5	NC	5
12			min	859	4	357	1	.017	15	-2.339e-3	3	318.747	3	1016.946	1
13		7	max	0	1	.618	3	.211	1	1.502e-2	2	NC	5	NC	10
14			min	859	4	213	1	.024	10	-2.508e-3	3	428.329	3	1290.193	1
15		8	max	0	1	.343	3	.123	1	1.627e-2	2	NC	5	NC	3
16			min	859	4	037	1	.009	10	-2.677e-3	3	759.58	3	2213.897	1
17		9	max	0	1	.146	2	.048	4	1.752e-2	2	NC	4	NC	2
18			min	859	4	.004	15	005	10	-2.845e-3	3	2539.375	3	5615.026	4
19		10	max	0	1	.219	2	.026	3	1.877e-2	2	NC	3	NC	1
20			min	859	4	019	3	018	2	-3.014e-3	3	2076.628	2	NC	1
21		11	max	0	12	.146	2	.036	1	1.752e-2	2	NC	4	NC	2
22			min	859	4	.004	15	028	5	-2.845e-3	3	2539.375	3	7780.633	1
23		12	max	0	12	.343	3	.123	1	1.627e-2	2	NC	5	NC	3
24			min	859	4	037	1	027	5	-2.677e-3	3	759.58	3	2213.897	1
25		13	max	0	12	.618	3	.211	1	1.502e-2	2	NC	5	NC	5
26			min	86	4	213	1	007	5	-2.508e-3	3	428.329	3	1290.193	1
27		14	max	0	12	.834	3	.267	1	1.377e-2	2	NC	5	NC	5
28			min	86	4	357	1	.014	15	-2.339e-3	3	318.747	3	1016.946	
29		15	max	0	12	.936	3	.275	1	1.252e-2	2	NC	15	NC	12
30			min	86	4	433	1	.025	12	-2.17e-3	3	284.658	3	985.666	1
31		16	max	0	12	.892	3	.234	1	1.127e-2	2	NC	15	NC	3
32			min	86	4	421	1	.021	12	-2.001e-3	3	298.525	3	1162.535	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC			(n) L/y Ratio			
33		17	max	0	12	.699	3	.154	1	1.001e-2	2	NC	5_	NC	3
34			min	86	4	32	1	.015	12	-1.832e-3	3	379.464	3	1769.316	
35		18	max	0	12	.381	3	.063	4	8.763e-3	2	NC	_5_	NC	2
36		40	min	86	4	144	1	.006		-1.663e-3	3	686.57	3	4275.736	
37		19	max	0	12	.089	2	.008	3	7.512e-3	2	NC NC	1_	NC NC	1
38	N44.4	4	min	86	4	013	3	004	2	-1.494e-3	3	NC NC	1_	NC NC	1
39	M14	1	max	0	1	.189	3	.007	3	4.434e-3	2	NC NC	1_	NC NC	1
40		2	min	623	1	295 FF0	2	004	2	-3.257e-3	3	NC NC	1_	NC NC	1
41		2	max	0	4	.558	3	.044	1	5.359e-3	2		5	NC 5229.243	2
43		3	min	623 0	1	<u>631</u> .866	3	05 .126	1	-4.004e-3 6.283e-3	2	733.261 NC	<u>3</u> 15	NC	3
44		- 3	max	624	4	919	2	058	5	-4.751e-3	3	398.803	3	2174.867	1
45		4	max	0	1	1.075	3	.203	1	7.207e-3	2	NC	<u> </u>	NC	3
46		4	min	624	4	-1.123	2	037	5	-5.498e-3	3	304.744	3	1343.357	1
47		5	max	0	1	1.165	3	.247	1	8.131e-3	2	9173.874	15	NC	5
48			min	624	4	-1.227	2	0	15		3	276.815	3	1101.483	
49		6	max	0	1	1.136	3	.244	1	9.056e-3	2	9253.894	15	NC	12
50			min	624	4	-1.232	2	.024	12		3	285.359	3	1112.652	
51		7	max	0	1	1.009	3	.196	1	9.98e-3	2	NC	15	NC	10
52			min	624	4	-1.153	2	.022	10	-7.74e-3	3	314.776	2	1390.729	1
53		8	max	0	1	.829	3	.116	1	1.09e-2	2	NC	15	NC	3
54			min	624	4	-1.024	2	.009	10	-8.487e-3	3	370.378	2	2357.654	
55		9	max	0	1	.657	3	.068	4	1.183e-2	2	NC	5	NC	2
56			min	624	4	896	2	004	10	-9.234e-3	3	449.487	2	4056.101	4
57		10	max	0	1	.577	3	.023	3	1.275e-2	2	NC	5	NC	1
58			min	624	4	835	2	016	2	-9.981e-3	3	500.025	2	NC	1
59		11	max	0	12	.657	3	.035	1	1.183e-2	2	NC	5	NC	2
60			min	624	4	896	2	049	5	-9.234e-3	3	449.487	2	5512.223	5
61		12	max	0	12	.829	3	.116	1	1.09e-2	2	NC	15	NC	3
62			min	624	4	-1.024	2	054	5	-8.487e-3	3	370.378	2	2357.654	
63		13	max	0	12	1.009	3	.196	1	9.98e-3	2	NC	<u>15</u>	NC	4
64			min	624	4	-1.153	2	032	5	-7.74e-3	3	314.776	2	1390.729	
65		14	max	0	12	1.136	3	.244	1	9.056e-3	2	9253.528	<u>15</u>	NC	5
66			min	624	4	-1.232	2	.003	15		3	285.359		1112.652	
67		15	max	0	12	1.165	3	.247	1	8.131e-3	2	9173.424	<u>15</u>	NC	12
68		40	min	624	4	-1.227	2	.022	12	-6.246e-3	3	276.815	3	1101.483	
69		16	max	0	12	1.075	3	.203	1	7.207e-3	2	NC 204.744	15	NC	3
70		47	min	624	4	-1.123	2	.018	12		3_	304.744	3	1343.357	1
71		17	max	0	12	.866	3	.126	1	6.283e-3	2	NC 200 002	15	NC	3
72 73		10	min max	624 0	12	919 .558	3	.013 .071	12	-4.751e-3 5.359e-3	3	398.803 NC	<u>3</u> 5	2174.867 NC	2
74		10	min	624	4	631	2	.004	10	-4.004e-3		733.261	3	3810.557	
75		19		0	12	.189	3	.004	3	4.434e-3	2	NC	<u> </u>	NC	1
76		13	min	624	4	295	2	004	2	-3.257e-3	3	NC	1	NC	1
77	M15	1	max	0	12	.192	3	.007	3	2.875e-3	3	NC	1	NC	1
78	WITO	<u>'</u>	min	498	4	294	2	003	2	-4.66e-3	2	NC	1	NC	1
79		2	max	0	12	.426	3	.045	1	3.542e-3	3	NC	5	NC	2
80			min	498	4	751	2	064	5	-5.635e-3	2	591.219	2	4148.584	
81		3	max	0	12	.626	3	.126	1	4.209e-3	3	NC	15	NC	3
82			min	498	4	-1.135	2	075	5	-6.611e-3	2	320.943	2	2169.299	
83		4	max	0	12	.769	3	.203	1	4.876e-3	3	NC	15	NC	3
84			min	498	4	-1.399	2	05	5	-7.587e-3	2	244.431	2	1340.722	
85		5	max	0	12	.843	3	.247	1	5.542e-3	3	9189.649	15	NC	3
86			min	498	4	-1.517	2	007	5	-8.563e-3	2	220.848		1099.552	
87		6	max	0	12	.849	3	.245	1	6.209e-3	3	9273.194	15	NC	12
88			min	498	4	-1.49	2	.023	12	-9.538e-3	2	225.749		1110.658	
89		7	max	0	12	.798	3	.196	1	6.876e-3	3	NC	15	NC	10

Model Name

Schletter, Inc.HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio			
90			min	498	4	-1.345	2	.022	12	-1.051e-2	2	256.923	2	1387.721	1
91		8	max	0	12	.712	3	.123	4	7.542e-3	3	NC	<u>15</u>	NC	3
92			min	498	4	-1.132	2	.01	10	-1.149e-2	2	322.141	2	2222.068	4
93		9	max	0	12	.626	3	.081	4	8.209e-3	3	NC	5	NC	2
94			min	498	4	928	2	003		-1.247e-2	2	426.058	2	3421.871	4
95		10	max	0	1	.585	3	.022	3	8.876e-3	3	NC	5	NC	1
96			min	498	4	833	2	015	2	-1.344e-2	2	501.291	2	NC	1
97		11	max	0	1	.626	3	.035	1	8.209e-3	3	NC	5	NC	2
98			min	498	4	928	2	061	5	-1.247e-2	2	426.058	2	4408.539	5
99		12	max	0	1	.712	3	.116	1	7.542e-3	3	NC	15	NC	3
100			min	498	4	-1.132	2	069	5	-1.149e-2	2	322.141	2	2349.507	1
101		13	max	0	1	.798	3	.196	1	6.876e-3	3	NC	15	NC	4
102			min	498	4	-1.345	2	043	5	-1.051e-2	2	256.923	2	1387.721	1
103		14	max	0	1	.849	3	.245	1	6.209e-3	3	9272.909	15	NC	5
104			min	498	4	-1.49	2	0	15	-9.538e-3	2	225.749	2	1110.658	1
105		15	max	0	1	.843	3	.247	1	5.542e-3	3	9189.302	15	NC	3
106			min	498	4	-1.517	2	.022	12	-8.563e-3	2	220.848	2	1099.552	1
107		16	max	0	1	.769	3	.203	1	4.876e-3	3	NC	15	NC	3
108			min	498	4	-1.399	2	.018	12	-7.587e-3	2	244.431	2	1340.722	1
109		17	max	0	1	.626	3	.131	4	4.209e-3	3	NC	15	NC	3
110			min	498	4	-1.135	2	.012	12	-6.611e-3	2	320.943	2	2066.002	4
111		18	max	0	1	.426	3	.085	4	3.542e-3	3	NC	5	NC	2
112			min	498	4	751	2	.004		-5.635e-3	2	591.219	2	3195.079	
113		19	max	0	1	.192	3	.007	3	2.875e-3	3	NC	1	NC	1
114		1.0	min	497	4	294	2	003	2	-4.66e-3	2	NC	1	NC	1
115	M16	1	max	0	12	.078	2	.006	3	4.925e-3	3	NC	1	NC	1
116	WITO		min	15	4	06	3	003	2	-6.125e-3	2	NC	1	NC	1
117		2	max	0	12	.09	3	.062	1	5.902e-3	3	NC	5	NC	2
118			min	15	4	271	2	05	5	-7.043e-3	2	772.929	2	4420.3	1
119		3	max	0	12	.208	3	.153	1	6.88e-3	3	NC	5	NC	3
120		1	min	15	4	551	2	06	5	-7.961e-3	2	429.111	2	1775.872	1
121		4	max	0	12	.274	3	.233	1	7.858e-3	3	NC	5	NC	3
122		+ -	min	15	4	715	2	042	5	-8.879e-3	2	340.409	2	1164.684	
123		5	max	0	12	.278	3	.275	1	8.835e-3	3	NC	15	NC	5
124		1	min	15	4	741	2	009	5	-9.797e-3	2	329.383	2	986.076	1
125		6	max	0	12	.221	3	.267	1	9.813e-3	3	NC	5	NC	5
126		10	min	15	4	634	2	.017		-1.072e-2	2	378.991	2	1015.768	
127		7			12	.118	3					NC	5	NC	12
128		+-	max	0 15	4	421	2	.211 .021	12	1.079e-2 -1.163e-2	2	540.168	2	1285.503	
129		0	min		12				1	1.177e-2	_	NC	4	NC	3
		8	max	<u> </u>	4	<u>0</u> 157	15 2	.124		-1.255e-2	3	1146.015		2192.689	
130			min	15				.011		1.275e-2					
131		9	max	0	12	.096	1	<u></u>	4		3	NC	1_	NC 4500 000	2
132		40	min	<u>15</u>	4	12	3	002		-1.347e-2	2	4523.176	3_	4563.328	
133		10	max	0	1	.187	2	.019	3	1.372e-2	3	NC 0400 070	4	NC NC	1
134		44	min	<u>15</u>	4	17	3	014	2	-1.439e-2	2	2462.272	3	NC NC	1
135		11	max	0	1	.096	1	.037	1	1.275e-2	3	NC	1_	NC	2
136		10	min	<u>15</u>	4	12	3	041	5	-1.347e-2	2	4523.176	3_	6605.128	
137		12	max	0	1	001	15	.124	1_	1.177e-2	3	NC	_4_	NC	3
138			min	<u>15</u>	4	157	2	041	5	-1.255e-2	2	1146.015	2	2192.689	
139		13	max	0	1	.118	3	.211	1	1.079e-2	3	NC	5_	NC	5
140			min	15	4	421	2	016	5	-1.163e-2	2	540.168	2	1285.503	
141		14	max	0	1	.221	3	.267	1	9.813e-3	3	NC	5	NC	5
142			min	15	4	634	2	.013	15	-1.072e-2	2	378.991	2	1015.768	
143		15	max	0	1	.278	3	.275	1	8.835e-3	3	NC	15	NC	12
144			min	149	4	741	2	.022	12	-9.797e-3	2	329.383	2	986.076	1
145		16	max	.001	1	.274	3	.233	1	7.858e-3	3	NC	5	NC	3
146			min	149	4	715	2	.019	12	-8.879e-3	2	340.409	2	1164.684	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r					
147		17	max	.001	1	.208	3	.153	1	6.88e-3	3	NC	_5_	NC	3
148			min	149	4	551	2	.013	12	-7.961e-3	2	429.111	2	1775.872	1
149		18	max	.001	1	.09	3	.079	4	5.902e-3	3	NC	5	NC	2
150			min	149	4	271	2	.007	10	-7.043e-3	2	772.929	2	3433.544	4
151		19	max	.002	1	.078	2	.006	3	4.925e-3	3	NC	1	NC	1
152			min	149	4	06	3	003	2	-6.125e-3	2	NC	1	NC	1
153	M2	1	max	.007	2	.008	2	.011	1	1.725e-3	5	NC	1	NC	2
154			min	008	3	013	3	8	4	-3.223e-4	1	NC	1	96.204	4
155		2	max	.006	2	.006	2	.01	1	1.836e-3	5	NC	1	NC	2
156			min	008	3	013	3	736	4	-3.049e-4	1	NC	1	104.614	4
157		3	max	.006	2	.005	2	.009	1	1.946e-3	5	NC	1	NC	2
158			min	007	3	012	3	672	4	-2.875e-4	1	NC	1	114.576	4
159		4	max	.005	2	.004	2	.008	1	2.057e-3	5	NC	1	NC	2
160			min	007	3	012	3	609	4	-2.701e-4	1	NC	1	126.489	4
161		5	max	.005	2	.003	2	.007	1	2.168e-3	5	NC	1	NC	1
162		1	min	006	3	012	3	547	4	-2.527e-4	1	NC	1	140.893	4
163		6		.005	2	.002	2	.006	1	2.279e-3	5	NC	1	NC	1
164		-0	max	005	3			486	4		1	NC	1	158.533	4
		7	min			<u>011</u>	3			-2.353e-4	•		•		
165			max	.004	2	0	2	.006	1	2.39e-3	_5_	NC	1_	NC 100.10	1
166		_	min	005	3	<u>011</u>	3	427	4	-2.179e-4	<u>1</u>	NC	1_	180.46	4
167		8	max	.004	2	0	2	.005	1	2.501e-3	_5_	NC	1_	NC 000 400	1
168			min	005	3	01	3	37	4	-2.005e-4	<u>1</u>	NC	_1_	208.198	4
169		9	max	.004	2	0	2	.004	1	2.611e-3	5	NC	1_	NC	1
170			min	005	3	01	3	316	4	-1.831e-4	1_	NC	1	244.027	4
171		10	max	.003	2	001	15	.003	1	2.722e-3	5_	NC	_1_	NC	1
172			min	004	3	009	3	264	4	-1.657e-4	1_	NC	1_	291.479	4
173		11	max	.003	2	001	15	.003	1	2.833e-3	5	NC	1	NC	1
174			min	004	3	008	3	216	4	-1.483e-4	1	NC	1	356.276	4
175		12	max	.003	2	001	15	.002	1	2.95e-3	4	NC	1	NC	1
176			min	003	3	008	3	172	4	-1.309e-4	1	NC	1	448.199	4
177		13	max	.002	2	001	15	.002	1	3.067e-3	4	NC	1	NC	1
178			min	003	3	007	3	132	4	-1.135e-4	1	NC	1	585.141	4
179		14	max	.002	2	001	15	.001	1	3.185e-3	4	NC	1	NC	1
180			min	002	3	006	3	096	4	-9.606e-5	1	NC	1	802.818	4
181		15	max	.001	2	0	15	0	1	3.302e-3	4	NC	1	NC	1
182		10	min	002	3	005	3	065	4	-7.866e-5	1	NC	1	1181.524	4
183		16	max	.001	2	0	15	0	1	3.419e-3	4	NC	1	NC	1
184		10	min	001	3	004	3	04	4	-6.125e-5	1	NC	1	1935.504	
185		17	max	0	2	<u>.00+</u>	15	0	1	3.537e-3	4	NC	1	NC	1
186		17	min	0	3	003	6	02	4	-4.385e-5	1	NC	1	3816.995	
187		18		0	2	<u>003</u> 0	15	0	1	3.654e-3	4	NC	1	NC	1
188		10	min	0	3	001	6	007	4	-2.645e-5	1	NC	1	NC	1
		10							-		<u> </u>	NC NC	•		-
189		19	max	0	1	0	1	0	1	3.771e-3	4		1	NC NC	1
190	NAO	4	min	0	•	0		0		-9.043e-6	1_	NC NC	_	NC NC	1
191	<u>M3</u>	1	max	0	1	0	1	0	1	1.379e-6	1_	NC	1_	NC NC	1
192			min	0	1	0	1	0	1	-9.745e-4	4_	NC NC	1_	NC NC	1
193		2	max	0	3	0	15	.018	4	2.925e-5	_1_	NC	1	NC 0040,070	1
194			min	0	2	002	6	0	1	-2.274e-4	5_	NC	1_	9948.379	
195		3	max	0	3	0	15	.034	4	5.288e-4	4_	NC	1_	NC	1
196			min	0	2	004	6	0	1	3.478e-6	12	NC	_1_	5207.275	14
197		4	max	.001	3	001	15	.048	4	1.28e-3	4_	NC	1_	NC	1
198			min	0	2	006	6	0	3	5.163e-6	12	NC	1_	3629.875	14
199		5	max	.002	3	002	15	.062	4	2.032e-3	4	NC	1	NC	1
200			min	001	2	008	6	0	12	6.847e-6	12	NC	1_	2842.017	14
201		6	max	.002	3	002	15	.074	4	2.784e-3	4	NC	1	NC	1
202			min	002	2	01	6	0	12	8.531e-6	12	9351.164	6	2368.579	14
203		7	max	.002	3	002	15	.085	4	3.535e-3	4	NC	1_	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio			
204			min	002	2	011	6	0	12	1.021e-5		8080.224	6	2050.936	
205		8	max	.003	3	003	15	.096	4	4.287e-3	4	NC	2	NC 1000 001	1
206			min	002	2	012	6	0	12	1.19e-5	12	7297.823	<u>6</u>	1820.901	14
207		9	max	.003	3	003	15	.106	4	5.039e-3	4	NC COAC CZ	5	NC 4044 004	1
208		40	min	002	2	013	6	0	12	1.358e-5	12	6840.67	6	1644.221	14
209		10	max	.003	3	003	15	.116	4	5.79e-3	4	NC CC20 074	5	NC	1
210		4.4	min	003	2	014	6	0	12	1.527e-5	12	6630.074	6	1501.771	14
211		11	max	.004	3	003	15	.126	4	6.542e-3	4	NC 6635.269	5	NC	1
212		40	min	003	2	014	6	0	12	1.695e-5			6	1382.045	
213 214		12	max	.004 003	3	003	15	<u>.136</u>	12	7.294e-3 1.864e-5	<u>4</u> 12	NC 6861.612	3	NC	1
		40	min			013	6						6	1277.763	
215		13	max	.005	3	003	15	.146	4	8.045e-3	4	NC 7354.173	2	NC	1
216		4.4	min	004		012	6	0	12	2.032e-5	12		6	1184.182	
217		14	max	.005	3	002	15	.157	4	8.797e-3	4	NC	1_	NC 4000 400	1
218		4.5	min	004	2	011	6	0	12	2.2e-5	12	8220.592	6	1098.189	
219		15	max	.005	3	002	15	.169	4	9.549e-3	4	NC OCOZ EEE	1	NC	1
220		40	min	004	2	01	6	0	12	2.369e-5	12	9697.555	6	1017.78	14
221		16	max	.006	3	001	15	.182	4	1.03e-2	4	NC NC	1_	NC 044.705	1
222		47	min	005	2	008	6	0	12	2.537e-5	12	NC NC	1_	941.725	14
223		17	max	.006	3	0	15	.197	4	1.105e-2	4	NC NC	<u>1</u> 1	NC OCO 247	1
224		4.0	min	005		006	1	0	12	2.706e-5	12		•	869.347	14
225		18	max	.006	3	0	15	.213	4	1.18e-2	4	NC NC	1_1	NC 000 240	1
226		10	min	005		004	1	0	12	2.874e-5	12	NC NC	1_	800.348	14
227		19	max	.007	3	0	5	.231	4	1.256e-2	4	NC NC	1_	NC 704 676	2
228	N 1 4	4	min	005	2	002	3	0	12	3.042e-5	12	NC NC	1_1	734.676	14
229	M4	1	max	.002	1	.005	2	0	12	3.177e-4	4	NC NC	1_	NC 407.454	3
230		<u> </u>	min	0	5	007	3	231	4	1.033e-5	12	NC NC	1_	107.154	4
231		2	max	.002	1	.005	2	0	12	3.177e-4	4	NC NC	1_	NC 440.050	3
232		<u> </u>	min	0	5	007	3	213	4	1.033e-5	12	NC NC	1_	116.358	4
233		3	max	.002	1	.005	2	0	12	3.177e-4	4	NC NC	1_1	NC	3
234		1	min	0	5	006	3	195	4	1.033e-5	12	NC NC	1_	127.321	4
235		4	max	.002	1	.004	2	0	12	3.177e-4	4	NC NC	1_1	NC	3
236		-	min	0	5	006	3	<u>177</u>	4	1.033e-5	12	NC NC	1_	140.499	4
237		5	max	.002	1	.004	2	0	12	3.177e-4	4	NC NC	1_	NC 450 544	3
238			min	0	5	006	3	1 <u>58</u>	4	1.033e-5	<u>12</u>	NC NC	1_	156.511	4
239		6	max	.002	1	.004	2	0	12	3.177e-4	4	NC NC	1_	NC 176,214	3
240		-	min	0	5	005	3	141	4	1.033e-5	12	NC NC	1_		4
241		7	max	.002	1	.003	2	0	12	3.177e-4	4	NC NC	1_	NC 200,000	2
242		_	min	0	5	005	3	124	4	1.033e-5	12	NC NC	1_	200.828	4
243		8	max	.001	5	.003	3	0 107	12	3.177e-4 1.033e-5	4	NC NC	<u>1</u> 1	NC 232.127	2
244		0	min			004				3.177e-4					2
245		9	max	.001	5	.003	3	0	12		4	NC NC	1	NC	_
246		10	min	0		<u>004</u>		<u>091</u>	4	1.033e-5	12		1_	272.787	2
247		10	max	.001	5	.003	2	0	12	3.177e-4 1.033e-5	4	NC NC	<u>1</u> 1	NC 326.987	_
248 249		11	min	.001		004 .002	2	<u>076</u>	4		<u>12</u>	NC NC	_	NC	2
		11	max		5			0	12	3.177e-4	4		1		
250		40	min	0		003	3	062	4	1.033e-5	12	NC NC	•	401.561	4
251		12	max	0	1	.002	2	0	12	3.177e-4	4	NC NC	1	NC FOR 22	1
252		40	min	0	5	003	3	049	4	1.033e-5	12	NC NC	•	508.33	4
253		13	max	0	5	.002	2	0	12	3.177e-4	4	NC NC	1_1	NC CCO 227	1
254		4.4	min	0		002	3	037	4	1.033e-5	12	NC NC	1_	669.227	4
255		14	max	0	1	.001	2	0	12	3.177e-4	4	NC NC	1	NC 020.06	1
256		4 =	min	0	5	002	3	027	4	1.033e-5	12	NC NC	1_	928.86	4
257		15	max	0	1	.001	2	0	12	3.177e-4	4	NC NC	1_	NC	1
258		40	min	0	5	002	3	018	4	1.033e-5	<u>12</u>	NC NC	1_	1390.009	
259		16	max	0	1	0	2	0	12	3.177e-4	4	NC NC	1_1	NC	1
260			min	0	5	001	3	011	4	1.033e-5	12	NC	1	2336.647	4

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

004	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio	LC		LC
261		17	max	0	1	0	2	0	12	3.177e-4	4	NC	1	NC 4000 000	1
262		1.0	min	0	5	0	3	005	4	1.033e-5	12	NC	1_	4820.869	4
263		18	max	0	1	0	2	0	12	3.177e-4	4	NC	1	NC	1
264			min	0	5	0	3	002	4	1.033e-5	12	NC	1_	NC	1
265		19	max	0	1	00	1	0	1_	3.177e-4	_4_	NC	_1_	NC	1_
266		_	min	0	1	0	1	0	1	1.033e-5	12	NC	1_	NC	1
267	<u>M6</u>	1	max	.021	2	.03	2	0	1_	1.853e-3	_4_	NC	3_	NC	1_
268			min	027	3	042	3	808	4	0	1_	2591.703	2	95.256	4
269		2	max	.02	2	.027	2	0	1_	1.961e-3	4	NC	3	NC	1
270			min	026	3	039	3	743	4	0	1_	2854.674	2	103.585	4
271		3	max	.019	2	.024	2	0	1	2.069e-3	4	NC	3	NC	1_
272			min	024	3	037	3	679	4	0	_1_	3173.843	2	113.45	4
273		4	max	.018	2	.022	2	0	1	2.177e-3	4	NC	3	NC	1_
274			min	023	3	035	3	615	4	0	1	3565.457	2	125.248	4
275		5	max	.016	2	.019	2	0	1	2.285e-3	4	NC	3	NC	1
276			min	021	3	033	3	552	4	0	1	4052.302	2	139.514	4
277		6	max	.015	2	.016	2	0	1	2.393e-3	4	NC	1	NC	1
278			min	02	3	03	3	491	4	0	1	4667.125	2	156.984	4
279		7	max	.014	2	.014	2	0	1	2.502e-3	4	NC	1	NC	1
280			min	018	3	028	3	431	4	0	1	5458.357	2	178.701	4
281		8	max	.013	2	.012	2	0	1	2.61e-3	4	NC	1	NC	1
282			min	017	3	026	3	373	4	0	1	6500.111	2	206.175	4
283		9	max	.012	2	.01	2	0	1	2.718e-3	4	NC	1	NC	1
284			min	015	3	023	3	319	4	0	1	7910.529	2	241.663	4
285		10	max	.011	2	.008	2	0	1	2.826e-3	4	NC	1	NC	1
286		1.0	min	014	3	021	3	267	4	0	1	9887.618	2	288.665	4
287		11	max	.009	2	.006	2	0	1	2.934e-3	4	NC	1	NC	1
288			min	012	3	019	3	218	4	0	1	NC	1	352.85	4
289		12	max	.008	2	.004	2	0	1	3.042e-3	4	NC	1	NC	1
290		12	min	011	3	016	3	173	4	0.0420 0	1	NC	1	443.91	4
291		13	max	.007	2	.003	2	0	1	3.15e-3	4	NC	1	NC	1
292		13	min	009	3	014	3	133	4	0.106-0	1	NC	1	579.573	4
293		14	max	.006	2	.002	2	<u>133 </u>	1	3.258e-3	4	NC	1	NC	1
294		14	min	008	3	012	3	097	4	0	1	NC	1	795.232	4
295		15		.005	2	.001	2	- <u>.097</u> 0	1	3.366e-3	4	NC	1	NC	1
296		15	max	005	3	009	3	066	4	0	1	NC NC	1	1170.463	_
		16	min		2					3.474e-3	-	NC NC	1	NC	1
297		16	max	.004	3	0	2	0	1		4	NC NC			
298		47	min	005		007	3	04	4	0	1_1		1_	1917.622	4
299		17	max	.002	2	0	2	0	1	3.582e-3	4	NC	1	NC 0700 470	1
300		40	min	003	3	005	3	02	4	0	1_	NC NC	1_	3782.472	4
301		18		.001	2	0	2	0	1	3.69e-3	4	NC NC	1	NC NC	1
302		40	min	002	3	002	3	007	4	0	1_	NC NC	1_	NC NC	1
303		19	max	0	1	0	1	0	1	3.799e-3	4	NC	1	NC NC	1
304			min	0	1	0	1	0	1	0	_1_	NC	1_	NC	1
305	M7	1	max	0	1	0	1	0	1	0	_1_	NC	1_	NC NC	1
306			min	0	1	0	1	0	1	-9.813e-4	4	NC	_1_	NC	1
307		2	max	.001	3	0	15	.018	4	0	_1_	NC	_1_	NC	1
308			min	001	2	003	3	0	1	-2.511e-4	4	NC	1_	NC	1
309		3	max	.002	3	0	15	.034	4	4.791e-4	4	NC	1_	NC	1_
310			min	002	2	005	3	0	1	0	1	NC	1	9703.545	4
311		4	max	.004	3	001	15	.049	4	1.209e-3	4	NC	_1_	NC	1
312			min	004	2	007	3	0	1	0	1	NC	1	7752.255	4
313		5	max	.005	3	002	15	.062	4	1.939e-3	4	NC	1	NC	1
314			min	005	2	01	3	0	1	0	1	NC	1	7132.827	4
315		6	max	.006	3	002	15	.074	4	2.67e-3	4	NC	1	NC	1
316			min	006	2	011	3	0	1	0	1	9413.771	3	7218.178	4
317		7	max	.007	3	003	15	.086	4	3.4e-3	4	NC	1	NC	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	I.C.	(n) L/v Ratio	I C	(n) I /z Ratio	I.C.
318			min	007	2	013	3	0	1	0	1	8153.515	4	7935.984	
319		8	max	.008	3	003	15	.096	4	4.13e-3	4	NC	1	NC	1
320			min	008	2	014	3	0	1	0	1	7359.591	4	9551.034	4
321		9	max	.01	3	003	15	.106	4	4.86e-3	4	NC	1	NC	1
322			min	009	2	015	3	0	1	0	1	6895.085	4	NC	1
323		10	max	.011	3	003	15	.116	4	5.59e-3	4	NC	1	NC	1
324			min	011	2	016	3	0	1	0	1	6679.959	4	NC	1
325		11	max	.012	3	003	15	.125	4	6.32e-3	4	NC	1	NC	1
326			min	012	2	016	3	0	1	0	1	6682.77	4	NC	1
327		12	max	.013	3	003	15	.134	4	7.051e-3	4	NC	1	NC	1
328			min	013	2	016	3	0	1	0	1	6908.61	4	NC	1
329		13	max	.014	3	003	15	.144	4	7.781e-3	4	NC	1	NC	1
330			min	014	2	015	3	0	1	0	1	7402.623	4	NC	1
331		14	max	.015	3	003	15	.154	4	8.511e-3	4	NC	1	NC	1
332			min	015	2	014	3	0	1	0	1	8272.957	4	NC	1
333		15	max	.017	3	002	15	.165	4	9.241e-3	4	NC	1	NC	1
334			min	016	2	013	3	0	1	0	1	9757.596	4	NC	1
335		16	max	.018	3	002	15	.177	4	9.971e-3	4	NC	1	NC	1
336			min	018	2	012	3	0	1	0	1	NC	1	NC	1
337		17	max	.019	3	001	15	.191	4	1.07e-2	4	NC	1_	NC	1_
338			min	019	2	01	3	0	1	0	1	NC	1	NC	1
339		18	max	.02	3	0	10	.206	4	1.143e-2	4	NC	1_	NC	1
340			min	02	2	008	3	0	1	0	_1_	NC	1	NC	1
341		19	max	.021	3	.001	2	.223	4	1.216e-2	4	NC	1_	NC	1
342			min	021	2	007	3	0	1	0	1_	NC	1	NC	1
343	M8	1	max	.006	1	.021	2	0	1	1.322e-4	5	NC	1_	NC	1
344			min	0	15	022	3	223	4	0	1_	NC	1	111.229	4
345		2	max	.005	1	.019	2	0	1	1.322e-4	_5_	NC	1_	NC	1
346			min	0	15	021	3	205	4	0	1_	NC	1_	120.796	4
347		3	max	.005	1	.018	2	0	1	1.322e-4	_5_	NC	1_	NC	1_
348			min	0	15	02	3	188	4	0	1_	NC	1_	132.192	4
349		4	max	.005	1	.017	2	0	1	1.322e-4	5	NC	1	NC	1
350			min	0	15	019	3	17	4	0	_1_	NC	1_	145.888	4
351		5	max	.004	1	.016	2	0	1	1.322e-4	_5_	NC	1_	NC	1
352			min	0	15	017	3	153	4	0	<u>1</u>	NC	1_	162.53	4
353		6	max	.004	1	.015	2	0	1	1.322e-4	5	NC	<u>1</u>	NC	1
354			min	0	15	<u>016</u>	3	<u>136</u>	4	0	_1_	NC	1_	183.007	4
355		7	max	.004	1	.014	2	0	1	1.322e-4	5	NC	1	NC NC	1
356			min	0	15	015	3	<u>119</u>	4	0	_1_	NC	1_	208.587	4
357		8	max	.003	1	.013	2	0	1	1.322e-4	5	NC NC	1	NC 244,445	1
358		0	min	0	15	014	3	103	4	0	1	NC NC	1_	241.115	4
359		9	max	.003	1	.011	2	0	1	1.322e-4	5	NC NC	1	NC	1
360		10	min	003	15	012	3	088	4	1 2220 4	F	NC NC	1	283.372	4
361		10	max	.003	1 15	.01 011	3	0	1	1.322e-4	<u>5</u> 1	NC NC	1	NC	1
362		11	min	.003	15	.009	2	073 0	1	0 1.322e-4	<u>1</u> 5	NC NC	1	339.699 NC	1
363 364			max		15	01	3	059		0	<u>5</u> 1	NC NC	1	417.202	
		12	min	<u> </u>	1	.008	2		1	1.322e-4		NC NC	1	NC	1
365		12	max min	<u>2</u> 0	15	008 009	3	0 047	4	0	_ <u>5_</u> 1	NC NC	1		4
366 367		13		.002	1	009 .007	2	047 0	1	1.322e-4	_	NC NC	1	528.166 NC	1
368		13	max min	<u>.002</u>	15	007	3	036	4	0	<u>5</u> 1	NC NC	1	695.388	4
369		14	max	.002	1	.007	2	036 0	1	1.322e-4	<u> </u>	NC NC	1	NC	1
370		14	min		15	006	3	026	4	_	<u> </u>	NC NC	1	965.233	4
		15		<u> </u>	1	006 .005	2		1	0 1.322e-4	<u> </u>	NC NC	1	NC	1
371 372		10	max		15		3	0		_	<u> </u>	NC NC	1	1444.536	
373		16	min	<u> </u>	1	005 .003	2	017 0	1	0 1.322e-4	5	NC NC	1	NC	1
		10	max		15		3		4		<u> </u>	NC NC	1		
374			min	0	10	004	J	01	4	0		NC		2428.478	4

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r			LC		LC
375		17	max	0	1	.002	2	0	1	1.322e-4	5_	NC	_1_	NC	1_
376			min	0	15	002	3	005	4	0	1_	NC	1_	5010.734	4
377		18	max	0	1	.001	2	0	1	1.322e-4	5	NC	_1_	NC	1
378			min	0	15	001	3	002	4	0	1	NC	1	NC	1
379		19	max	0	1	0	1	0	1	1.322e-4	5	NC	1_	NC	1_
380			min	0	1	0	1	0	1	0	1	NC	1	NC	1
381	M10	1	max	.007	2	.008	2	0	12	1.878e-3	4	NC	1_	NC	2
382			min	008	3	013	3	808	4	2.12e-5	12	NC	1	95.329	4
383		2	max	.006	2	.006	2	0	12	1.984e-3	4	NC	1	NC	2
384			min	008	3	013	3	743	4	2.006e-5	12	NC	1	103.665	4
385		3	max	.006	2	.005	2	0	12	2.089e-3	4	NC	1	NC	2
386			min	007	3	012	3	678	4	1.892e-5	12	NC	1	113.539	4
387		4	max	.005	2	.004	2	0	12	2.195e-3	4	NC	1	NC	2
388			min	007	3	012	3	614	4	1.778e-5	12	NC	1	125.348	4
389		5	max	.005	2	.003	2	0	12	2.3e-3	4	NC	1	NC	1
390			min	006	3	012	3	552	4		12	NC	1	139.627	4
391		6	max	.005	2	.002	2	0	12	2.406e-3	4	NC	1	NC	1
392			min	006	3	011	3	49	4		12	NC	1	157.114	4
393		7	max	.004	2	0	2	0	12	2.511e-3	4	NC	1	NC	1
394			min	005	3	011	3	431	4		12	NC	1	178.852	4
395		8	max	.004	2	0	2	0	12	2.617e-3	4	NC	1	NC	1
396			min	005	3	01	3	373	4	1.321e-5	12	NC	1	206.354	4
397		9	max	.004	2	0	2	0	12	2.722e-3	4	NC	1	NC	1
398			min	005	3	01	3	318	4	1.207e-5	12	NC	1	241.88	4
399		10	max	.003	2	001	2	510	12	2.828e-3	4	NC	1	NC	1
400		10	min	004	3	009	3	267	4		12	NC NC	1	288.934	4
401		11	max	.003	2	003	15	0	12	2.933e-3	4	NC	1	NC	1
402			min	004	3	002	3	218	4		12	NC	1	353.194	4
403		12		.003	2	002	15	<u>210</u> 0	12	3.039e-3		NC	1	NC	1
		12	max		3	002	3	173			4	NC NC	1	444.367	_
404		13	min	003 .002	2	008 002	15	<u>173</u> 0	12	3.144e-3	<u>12</u> 4	NC NC	1	NC	1
		13	max		3		3		-						_
406		4.4	min	003		007		133	4	7.499e-6	12	NC NC	1_	580.21	4
407		14	max	.002	2	001	15	0	12	3.25e-3	4	NC NC	1	NC 700 400	1
408		4.5	min	002	3	006	4	097	4	6.357e-6	<u>12</u>	NC NC	1_	796.183	4
409		15	max	.001	2	001	15	0	12	3.355e-3	4	NC NC	1	NC	1
410		40	min	002	3	005	4	066	4		12	NC	1_	1172.022	4
411		16	max	.001	2	001	15	0	12	3.461e-3	4_	NC	1_	NC	1
412			min	001	3	004	4	04	4		12	NC	1_	1920.576	4
413		17	max	0	2	0	15	0	12	3.566e-3	4_	NC	1_	NC	1
414			min	0	3	003	4	02	4		12	NC	1_	3789.637	4
415		18	max	0	2	0	15	0	12	3.672e-3	4	NC	1	NC	1
416			min	0	3	002	4	007	4	1.789e-6	12	NC	_1_	NC	1
417		19	max	0	1	0	1	0	1	3.777e-3	4_	NC	_1_	NC	1_
418			min	0	1	0	1	0	1		12	NC	1	NC	1
419	M11	1	max	0	1	0	1	0	1		12	NC	_1_	NC	1_
420			min	0	1	0	1	0	1	-9.753e-4	4	NC	1	NC	1
421		2	max	0	3	0	15	.018	4	-1.794e-6	12	NC	1	NC	1
422			min	0	2	002	4	0	12	-2.426e-4	4	NC	1	NC	1
423		3	max	0	3	001	15	.034	4	4.963e-4	5	NC	1	NC	1
424			min	0	2	004	4	0	12	-5.713e-5	1	NC	1	NC	1
425		4	max	.001	3	002	15	.048	4	1.225e-3	5	NC	1	NC	1
426			min	0	2	006	4	0	1	-8.5e-5	1	NC	1	8135.76	4
427		5	max	.002	3	002	15	.062	4	1.956e-3	4	NC	1	NC	1
428			min	001	2	008	4	0	1	-1.129e-4	1	NC	1	7559.696	4
429		6	max	.002	3	003	15	.074	4	2.688e-3	4	NC	1	NC	1
430			min	002	2	01	4	0	1	-1.408e-4	1	9131.331	4	7755.258	
431		7	max	.002	3	003	15	.085	4	3.421e-3	4	NC	1	NC	1
_ TU I			παλ	.002	J	.000	ı ı U	.000		J.72 10 J		110		110	

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

432		Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC				LC
434	432			min	002	2	012	4	0	1	-1.686e-4	1	7903.969	4	8700.84	4
436	433		8	max	.003		003	15	.096	4		4		2		1
436	434			min	002	2	013	4	0	1	-1.965e-4	1	7148.975	4	NC	1
437	435		9	max	.003		003	15	.105	4	4.886e-3	4		5	NC	1
438				min						1		1				1
439	437		10	max	.003		004	15	.115	4	5.619e-3	4	NC	5	NC	1
440	438			min	003		015		001	1	-2.522e-4	1		4		1
441	439		11	max		3		15		4		4		5		1
MAY MAY	440			min	003					1		1				1
443			12	max	.004		004	15	.134	4	7.084e-3	4		3		1
A444	442			min	003	_	014	4	003	1	-3.08e-4	1		4	NC	1
446	443		13	max	.005		003	15	.144	4	7.817e-3	4		2		1
A46				min				4		1	-3.359e-4	1		4		1
448	445		14	max	.005		003	15	.154	4	8.55e-3	4		1	NC	1
448	446			min	004		012		004	1	-3.637e-4	1		4		1
449	447		15	max	.005		003	15	.165	4		4	NC	1_		
450	448			min	004		011		005	1		1	9551.75	4		5
451	449		16	max	.006	3	002	15	.178	4	1.002e-2	4	NC	1	NC	1
452	450			min	005	2	009	4	006	1	-4.195e-4	1	NC	1	9215.828	5
453	451		17	max	.006		002	15	.192	4	1.075e-2	4	NC	1	NC	1
455	452			min	005	2	006	4	007	1		1	NC	1	NC	1
455	453		18	max	.006	3	001	15	.207	4	1.148e-2	4	NC	1	NC	1
456	454			min	005	2	004	4	009	1	-4.752e-4	1	NC	1	NC	1
457 M12	455		19	max	.007	3	0	10	.225	4	1.221e-2	4	NC	1_	NC	2
458	456			min	005	2	002	3	01	1	-5.031e-4	1	NC	1	8753.794	1
459	457	M12	1	max	.002	1	.005	2	.01	1	2.447e-4	5	NC	1	NC	3
459	458			min	0	12	007	3	225	4	-1.665e-4	1	NC	1	110.479	4
461	459		2	max	.002	1	.005	2	.009	1		5	NC	1	NC	3
462	460			min	0	12	007	3	207	4	-1.665e-4	1	NC	1	119.974	4
463	461		3	max	.002	1	.005	2	.009	1	2.447e-4	5	NC	1	NC	3
Mathematical Property of the	462			min	0	12	006	3	189	4	-1.665e-4	1	NC	1	131.284	4
465	463		4	max	.002	1	.004	2	.008	1	2.447e-4	5	NC	1_	NC	3
466	464			min	0	12	006	3	171	4	-1.665e-4	1	NC	1_	144.878	4
467 6 max .002 1 .004 2 .006 1 2.447e-4 5 NC 1 NC 3 468 min 0 12 005 3 136 4 -1.665e-4 1 NC 1 181.72 4 469 7 max .002 1 .003 2 .006 1 2.447e-4 5 NC 1 NC 2 470 min 0 12 005 3 12 4 -1.665e-4 1 NC 1 NC 2 471 8 max .001 1 .003 2 .005 1 2.447e-4 5 NC 1 NC 2 472 min 0 12 004 3 104 4 -1.665e-4 1 NC 1 NC 2 473 9 max .001 1 .003	465		5	max	.002	1	.004	2	.007	1	2.447e-4	5	NC	1	NC	3
468 min 0 12 005 3 136 4 -1.665e-4 1 NC 1 181.72 4 469 7 max .002 1 .003 2 .006 1 2.447e-4 5 NC 1 NC 2 470 min 0 12 005 3 12 4 -1.665e-4 1 NC 1 207.109 4 471 8 max .001 1 .003 2 .005 1 2.447e-4 5 NC 1 NC 2 472 min 0 12 004 3 104 4 -1.665e-4 1 NC 1 239.396 4 473 9 max .001 1 .003 2 .004 1 2.447e-4 5 NC 1 NC 2 474 min 0 12 004 3 <td>466</td> <td></td> <td></td> <td>min</td> <td>0</td> <td>12</td> <td>006</td> <td>3</td> <td>154</td> <td>4</td> <td>-1.665e-4</td> <td>1</td> <td>NC</td> <td>1</td> <td>161.395</td> <td>4</td>	466			min	0	12	006	3	154	4	-1.665e-4	1	NC	1	161.395	4
469 7 max .002 1 .003 2 .006 1 2.447e-4 5 NC 1 NC 2 470 min 0 12 005 3 12 4 -1.665e-4 1 NC 1 207.109 4 471 8 max .001 1 .003 2 .005 1 2.447e-4 5 NC 1 NC 2 472 min 0 12 004 3 104 4 -1.665e-4 1 NC 1 239.396 4 473 9 max .001 1 .003 2 .004 1 2.447e-4 5 NC 1 NC 2 474 min 0 12 004 3 088 4 -1.665e-4 1 NC 1 281.338 4 475 min 0 12 004 3 </td <td>467</td> <td></td> <td>6</td> <td>max</td> <td>.002</td> <td>1</td> <td>.004</td> <td>2</td> <td>.006</td> <td>1</td> <td>2.447e-4</td> <td>5</td> <td>NC</td> <td>1</td> <td>NC</td> <td>3</td>	467		6	max	.002	1	.004	2	.006	1	2.447e-4	5	NC	1	NC	3
470 min 0 12 005 3 12 4 -1.665e-4 1 NC 1 207.109 4 471 8 max .001 1 .003 2 .005 1 2.447e-4 5 NC 1 NC 2 472 min 0 12 004 3 104 4 -1.665e-4 1 NC 1 239.396 4 473 9 max .001 1 .003 2 .004 1 2.447e-4 5 NC 1 NC 2 474 min 0 12 004 3 088 4 -1.665e-4 1 NC 1 281.338 4 475 10 max .001 1 .003 2 .003 1 2.447e-4 5 NC 1 NC 2 476 min 0 12 003 3<	468			min	0	12	005	3	136	4	-1.665e-4	1	NC	1	181.72	4
471 8 max .001 1 .003 2 .005 1 2.447e-4 5 NC 1 NC 2 472 min 0 12 004 3 104 4 -1.665e-4 1 NC 1 239.396 4 473 9 max .001 1 .003 2 .004 1 2.447e-4 5 NC 1 NC 2 474 min 0 12 004 3 088 4 -1.665e-4 1 NC 1 281.338 4 475 10 max .001 1 .003 2 .003 1 2.447e-4 5 NC 1 NC 2 476 min 0 12 004 3 074 4 -1.665e-4 1 NC 1 NC 2 478 nmin 0 12 003 3 06 4 -1.665e-4	469		7	max	.002	1	.003	2	.006	1	2.447e-4	5	NC	1	NC	2
472 min 0 12 004 3 104 4 -1.665e-4 1 NC 1 239.396 4 473 9 max .001 1 .003 2 .004 1 2.447e-4 5 NC 1 NC 2 474 min 0 12 004 3 088 4 -1.665e-4 1 NC 1 281.338 4 475 10 max .001 1 .003 2 .003 1 2.447e-4 5 NC 1 NC 2 476 min 0 12 004 3 074 4 -1.665e-4 1 NC 1 NC 2 477 11 max .001 1 .002 2 .003 1 2.447e-4 5 NC 1 NC 1 NC 1 414.173 4 44 47e 4 <td>470</td> <td></td> <td></td> <td>min</td> <td>0</td> <td>12</td> <td>005</td> <td>3</td> <td>12</td> <td>4</td> <td>-1.665e-4</td> <td>1</td> <td>NC</td> <td>1</td> <td>207.109</td> <td>4</td>	470			min	0	12	005	3	12	4	-1.665e-4	1	NC	1	207.109	4
473 9 max .001 1 .003 2 .004 1 2.447e-4 5 NC 1 NC 2 474 min 0 12 004 3 088 4 -1.665e-4 1 NC 1 281.338 4 475 10 max .001 1 .003 2 .003 1 2.447e-4 5 NC 1 NC 2 476 min 0 12 004 3 074 4 -1.665e-4 1 NC 1 337.247 4 477 11 max .001 1 .002 2 .003 1 2.447e-4 5 NC 1 NC 2 478 min 0 12 003 3 06 4 -1.665e-4 1 NC 1 NC 1 480 min 0 12 003 3	471		8	max	.001		.003		.005	1		5	NC	1	NC	2
473 9 max .001 1 .003 2 .004 1 2.447e-4 5 NC 1 NC 2 474 min 0 12 004 3 088 4 -1.665e-4 1 NC 1 281.338 4 475 10 max .001 1 .003 2 .003 1 2.447e-4 5 NC 1 NC 2 476 min 0 12 004 3 074 4 -1.665e-4 1 NC 1 337.247 4 477 11 max .001 1 .002 2 .003 1 2.447e-4 5 NC 1 NC 2 478 min 0 12 003 3 06 4 -1.665e-4 1 NC 1 NC 1 480 min 0 12 003 3	472			min	0	12	004	3	104	4	-1.665e-4	1	NC	1	239.396	4
475 10 max .001 1 .003 2 .003 1 2.447e-4 5 NC 1 NC 2 476 min 0 12 004 3 074 4 -1.665e-4 1 NC 1 337.247 4 477 11 max .001 1 .002 2 .003 1 2.447e-4 5 NC 1 NC 2 478 min 0 12 003 3 06 4 -1.665e-4 1 NC 1 NC 1 479 12 max 0 1 .002 2 .002 1 2.447e-4 5 NC 1 NC 1 480 min 0 12 003 3 047 4 -1.665e-4 1 NC 1 NC 1 481 13 max 0 1 .002	473		9	max	.001	1	.003	2	.004	1	2.447e-4	5	NC	1_	NC	2
476 min 0 12 004 3 074 4 -1.665e-4 1 NC 1 337.247 4 477 11 max .001 1 .002 2 .003 1 2.447e-4 5 NC 1 NC 2 478 min 0 12 003 3 06 4 -1.665e-4 1 NC 1 414.173 4 479 12 max 0 1 .002 2 .002 1 2.447e-4 5 NC 1 NC 1 480 min 0 12 003 3 047 4 -1.665e-4 1 NC 1 NC 1 481 13 max 0 1 .002 2 .002 1 2.447e-4 5 NC 1 NC 1 482 min 0 12 002 3	474			min	0	12	004	3	088	4	-1.665e-4	1	NC	1_	281.338	4
477 11 max .001 1 .002 2 .003 1 2.447e-4 5 NC 1 NC 2 478 min 0 12 003 3 06 4 -1.665e-4 1 NC 1 414.173 4 479 12 max 0 1 .002 2 .002 1 2.447e-4 5 NC 1 NC 1 480 min 0 12 003 3 047 4 -1.665e-4 1 NC 1 524.31 4 481 13 max 0 1 .002 2 .002 1 2.447e-4 5 NC 1 NC 1 NC 1 4 482 min 0 12 002 3 036 4 -1.665e-4 1 NC 1 NC 1 NC 1 4 483 14 <	475		10	max	.001		.003	2	.003	1	2.447e-4	5	NC	1_	NC	2
478 min 0 12 003 3 06 4 -1.665e-4 1 NC 1 414.173 4 479 12 max 0 1 .002 2 .002 1 2.447e-4 5 NC 1 NC 1 480 min 0 12 003 3 047 4 -1.665e-4 1 NC 1 524.31 4 481 13 max 0 1 .002 2 .002 1 2.447e-4 5 NC 1 NC 1 482 min 0 12 002 3 036 4 -1.665e-4 1 NC 1 NC 1 483 14 max 0 1 .001 2 .001 1 2.447e-4 5 NC 1 NC 1 484 min 0 12 002 3	476			min	0	12	004		074	4	-1.665e-4	1	NC	1	337.247	4
479 12 max 0 1 .002 2 .002 1 2.447e-4 5 NC 1 NC 1 480 min 0 12 003 3 047 4 -1.665e-4 1 NC 1 524.31 4 481 13 max 0 1 .002 2 .002 1 2.447e-4 5 NC 1 NC 1 482 min 0 12 002 3 036 4 -1.665e-4 1 NC 1 690.284 4 483 14 max 0 1 .001 2 .001 1 2.447e-4 5 NC 1 NC 1 484 min 0 12 002 3 026 4 -1.665e-4 1 NC 1 NC 1 485 15 max 0 1 .001	477		11	max	.001	1	.002	2	.003	1	2.447e-4	5	NC	1	NC	2
480 min 0 12 003 3 047 4 -1.665e-4 1 NC 1 524.31 4 481 13 max 0 1 .002 2 .002 1 2.447e-4 5 NC 1 NC 1 482 min 0 12 002 3 036 4 -1.665e-4 1 NC 1 690.284 4 483 14 max 0 1 .001 2 .001 1 2.447e-4 5 NC 1 NC 1 484 min 0 12 002 3 026 4 -1.665e-4 1 NC 1 NC 1 485 15 max 0 1 .001 2 0 1 2.447e-4 5 NC 1 NC 1 486 min 0 12 002 3 <t< td=""><td>478</td><td></td><td></td><td>min</td><td>0</td><td>12</td><td>003</td><td>3</td><td>06</td><td>4</td><td>-1.665e-4</td><td>1</td><td>NC</td><td>1</td><td>414.173</td><td>4</td></t<>	478			min	0	12	003	3	06	4	-1.665e-4	1	NC	1	414.173	4
481 13 max 0 1 .002 2 .002 1 2.447e-4 5 NC 1 NC 1 482 min 0 12 002 3 036 4 -1.665e-4 1 NC 1 690.284 4 483 14 max 0 1 .001 2 .001 1 2.447e-4 5 NC 1 NC 1 484 min 0 12 002 3 026 4 -1.665e-4 1 NC 1 958.111 4 485 15 max 0 1 .001 2 0 1 2.447e-4 5 NC 1 NC 1 486 min 0 12 002 3 017 4 -1.665e-4 1 NC 1 NC 1 487 16 max 0 1 0 2	479		12	max	0	1	.002	2	.002	1	2.447e-4	5	NC	1	NC	1
481 13 max 0 1 .002 2 .002 1 2.447e-4 5 NC 1 NC 1 482 min 0 12 002 3 036 4 -1.665e-4 1 NC 1 690.284 4 483 14 max 0 1 .001 2 .001 1 2.447e-4 5 NC 1 NC 1 484 min 0 12 002 3 026 4 -1.665e-4 1 NC 1 958.111 4 485 15 max 0 1 .001 2 0 1 2.447e-4 5 NC 1 NC 1 486 min 0 12 002 3 017 4 -1.665e-4 1 NC 1 NC 1 487 16 max 0 1 0 2	480				0	12			047	4		1	NC	1	524.31	4
482 min 0 12 002 3 036 4 -1.665e-4 1 NC 1 690.284 4 483 14 max 0 1 .001 2 .001 1 2.447e-4 5 NC 1 NC 1 484 min 0 12 002 3 026 4 -1.665e-4 1 NC 1 958.111 4 485 15 max 0 1 .001 2 0 1 2.447e-4 5 NC 1 NC 1 486 min 0 12 002 3 017 4 -1.665e-4 1 NC 1 1433.82 4 487 16 max 0 1 0 2 0 1 2.447e-4 5 NC 1 NC 1			13		0			2		1		5	NC	1		1
483 14 max 0 1 .001 2 .001 1 2.447e-4 5 NC 1 NC 1 484 min 0 12 002 3 026 4 -1.665e-4 1 NC 1 958.111 4 485 15 max 0 1 .001 2 0 1 2.447e-4 5 NC 1 NC 1 486 min 0 12 002 3 017 4 -1.665e-4 1 NC 1 1433.82 4 487 16 max 0 1 0 2 0 1 2.447e-4 5 NC 1 NC 1						12				4				1		4
484 min 0 12 002 3 026 4 -1.665e-4 1 NC 1 958.111 4 485 15 max 0 1 .001 2 0 1 2.447e-4 5 NC 1 NC 1 486 min 0 12 002 3 017 4 -1.665e-4 1 NC 1 1433.82 4 487 16 max 0 1 0 2 0 1 2.447e-4 5 NC 1 NC 1			14		0					1		5		1		1
485 15 max 0 1 .001 2 0 1 2.447e-4 5 NC 1 NC 1 486 min 0 12 002 3 017 4 -1.665e-4 1 NC 1 1433.82 4 487 16 max 0 1 0 2 0 1 2.447e-4 5 NC 1 NC 1				_						4		1		1		4
486 min 0 12 002 3 017 4 -1.665e-4 1 NC 1 1433.82 4 487 16 max 0 1 0 2 0 1 2.447e-4 5 NC 1 NC 1			15							1		5		1		
487 16 max 0 1 0 2 0 1 2.447e-4 5 NC 1 NC 1						12			017	4				1		4
			16							_		5		1		_
									01	4		-		1		4

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

491 18 max 0 1 0 2 0 1 2.447e-4 5 NC 492 min 0 12 0 3 002 4 -1.665e-4 1 NC 493 19 max 0 1 0 1 0 1 2.447e-4 5 NC 494 min 0 1 0 1 0 1 -1.665e-4 1 NC 495 M1 1 max .008 3 .089 2 .86 4 1.562e-2 2 NC	1 NC 1 4973.121 1 NC 1 NC 1 NC 1 NC 1 NC 1 NC 1 NC	1 1 1 1 1 1
491 18 max 0 1 0 2 0 1 2.447e-4 5 NC 492 min 0 12 0 3 002 4 -1.665e-4 1 NC 493 19 max 0 1 0 1 0 1 2.447e-4 5 NC 494 min 0 1 0 1 0 1 -1.665e-4 1 NC 495 M1 1 max .008 3 .089 2 .86 4 1.562e-2 2 NC	1 NC 1 NC 1 NC 1 NC 1 NC 1 NC 1 NC 4 NC	1 1 1 1 1
492 min 0 12 0 3 002 4 -1.665e-4 1 NC 493 19 max 0 1 0 1 0 1 2.447e-4 5 NC 494 min 0 1 0 1 0 1 -1.665e-4 1 NC 495 M1 1 max .008 3 .089 2 .86 4 1.562e-2 2 NC	1 NC 1 NC 1 NC 1 NC 1 NC 1 NC	1 1 1 1
493 19 max 0 1 0 1 0 1 2.447e-4 5 NC 494 min 0 1 0 1 0 1 -1.665e-4 1 NC 495 M1 1 max .008 3 .089 2 .86 4 1.562e-2 2 NC	1 NC 1 NC 1 NC 1 NC 4 NC	1 1 1
494 min 0 1 0 1 0 1 -1.665e-4 1 NC 495 M1 1 max .008 3 .089 2 .86 4 1.562e-2 2 NC	1 NC 1 NC 1 NC 4 NC	1
495 M1 1 max .008 3 .089 2 .86 4 1.562e-2 2 NC	1 NC 1 NC 4 NC	1
	1 NC 4 NC	
406	4 NC	
		1
10. 2 11.6.7 1000 0 1011 2 100 1 010100 0 1	0 0054 040	1
	2 9651.949	5
	5 NC	2
	2 5270.066	5
501 4 max .008 3 .041 3 .769 4 1.249e-2 4 NC	5 NC	1
502 min004 2068 201 1 -4.802e-3 3 733.321	2 3803.319	5
503 5 max .008 3 .076 3 .737 4 1.068e-2 4 NC	5 NC	1
504 min004 2129 2007 1 -9.465e-3 3 528.734	2 3072.809	5
505 6 max .008 3 .114 3 .705 4 1.279e-2 2 NC 1	5 NC	1
	2 2635.32	5
	5 NC	1
	2 2322.261	4
	5 NC	1
	2 2094.059	4
	5 NC	1
	2 1953.563	
	5 NC	1
	2 1913.322	4
	5 NC	1
	2 1957.858	_
	5 NC	1
	2 2100.189	4
	5 NC	1
	2 2455.611	4
	5 NC	1
	2 3182.394	
	5 NC	1
	2 4717.175	-
	5 NC	1
	2 8659.552	
	5 NC	2
	2 9864.83	1
	4 NC	
	2 NC	1
10.1	1 NC	1
002 1 1101 1000 2 100 0 1002 1 110 120 2 0 110	1 NC	1
000 1110 1 1110X 1020 0 1210 2 1000 1 0 1 110	1 NC	1
00.	1 NC	1
	5 NC	1
	2 7154.88	4
	5 NC	1
	2 4195.454	4
	5 NC	1
	2 3257.279	4
	I5 NC	1
	2 2816.662	4
	5 NC	1
	2 2553.018	4
545 7 max .024 3 .455 3 .672 4 3.755e-3 4 4338.228 1	5 NC	1

Model Name

Schletter, Inc.HCV

ПСУ

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC		
546			min	017	2	678	2	0	1	0	1	128.588	2	2345.512	4
547		8	max	.024	3	.548	3	.637	4	1.068e-3	4_	3813.179	<u>15</u>	NC	1
548			min	016	2	799	2	0	1	0	1	113.421	2	2134.571	4
549		9	max	.023	3	.608	3	.603	4	0	1_	3543.79	15	NC	1
550			min	016	2	875	2	0	1	-4.046e-6	5	105.604	2	1948.64	4
551		10	max	.023	3	.629	3	.564	4	0	_1_	3462.622	<u>15</u>	NC	1
552			min	016	2	9	2	0	1	-3.933e-6	5	103.322	2	1924.719	4
553		11	max	.022	3	.612	3	.523	4	0	1_	3543.901	15	NC	1
554			min	016	2	874	2	0	1	-3.82e-6	5	106.011	2	1980.125	4
555		12	max	.021	3	.559	3	.481	4	7.675e-4	4	3813.446	15	NC	1
556			min	015	2	794	2	0	1	0	1	114.743	2	2060.914	4
557		13	max	.021	3	.475	3	.434	4	2.7e-3	4	4338.794	15	NC	1
558			min	015	2	666	2	0	1	0	1	131.994	2	2423.16	4
559		14	max	.02	3	.368	3	.381	4	4.632e-3	4	5241.777	15	NC	1
560			min	015	2	507	2	0	1	0	1	162.131	2	3371.724	4
561		15	max	.02	3	.249	3	.326	4	6.564e-3	4	6804.194	15	NC	1
562			min	015	2	335	2	0	1	0	1	215.479	2	6100.415	4
563		16	max	.019	3	.128	3	.273	4	8.496e-3	4	9714.46	15	NC	1
564			min	014	2	166	2	0	1	0	1	317.902	2	NC	1
565		17	max	.019	3	.015	3	.224	4	1.043e-2	4	NC	5	NC	1
566			min	014	2	019	2	0	1	0	1	545.513	2	NC	1
567		18	max	.019	3	.094	2	.183	4	5.295e-3	4	NC	5	NC	1
568			min	014	2	082	3	0	1	0	1	1204.347	2	NC	1
569		19	max	.019	3	.187	2	.15	4	0	1	NC	1	NC	1
570			min	014	2	17	3	0	1	-3.433e-6	4	NC	1	NC	1
571	M9	1	max	.008	3	.089	2	.859	4	2.719e-2	3	NC	1	NC	1
572			min	004	2	013	3	001	1	-1.562e-2	2	NC	1	NC	1
573		2	max	.008	3	.041	2	.835	4	1.346e-2	3	NC	4	NC	1
574			min	004	2	003	3	0	12	-7.649e-3	2	2415.154	2	7250.024	4
575		3	max	.008	3	.013	3	.807	4	1.449e-2	4	NC	5	NC	2
576			min	004	2	01	2	0	12	-4.882e-6	10	1163.029	2	4220.079	4
577		4	max	.008	3	.041	3	.776	4	1.135e-2	5	NC	5	NC	1
578			min	004	2	068	2	0	12	-4.237e-3	2	733.321	2	3251.12	4
579		5	max	.008	3	.076	3	.742	4	9.465e-3	3	NC	5	NC	1
580			min	004	2	129	2	0	12	-8.515e-3	2	528.734	2	2792.448	4
581		6	max	.008	3	.114	3	.707	4	1.413e-2	3	NC	15	NC	1
582			min	004	2	188	2	0	12	-1.279e-2	2	416.124	2	2520.405	4
583		7	max	.008	3	.15	3	.672	4	1.879e-2	3	NC	15	NC	1
584			min	004	2	241	2	0	1	-1.707e-2	2	349.699	2	2315.538	4
585		8	max	.008	3	.18	3	.637	4	2.345e-2	3	9419.047	15	NC	1
586			min	004	2	282	2	001	1	-2.135e-2	2	310.433	2	2119.196	4
587		9	max	.007	3	.199	3	.602	4	2.357e-2	3	8797.688	15	NC	1
588			min	004	2	309	2	0	12	-2.462e-2	2	290.003	2	1946.928	4
589		10	max	.007	3	.206	3	.564	4	2.065e-2	3	8608.591	15	NC	1
590			min	004	2	318	2	0	1	-2.722e-2	2	284.031	2	1914.832	4
591		11	max	.007	3	.201	3	.523	4	1.774e-2	3	8797.367	15	NC	1
592			min	004	2	309	2	0	1	-2.981e-2	2	291.087	2	1967.115	4
593		12	max	.007	3	.184	3	.481	4	1.481e-2	3	9418.445	15	NC	1
594			min	003	2	281	2	0	12	-2.908e-2	2	313.764	2	2076.161	4
595		13	max	.007	3	.157	3	.433	4	1.185e-2	3	NC	15	NC	1
596			min	003	2	237	2	0	12	-2.334e-2	2	357.873	2	2459.295	4
597		14	max	.007	3	.122	3	.38	4	8.895e-3	3	NC	15	NC	1
598			min	003	2	182	2	003	1	-1.76e-2	2	433.696	2	3341.284	5
599		15	max	.006	3	.083	3	.327	4	6.19e-3	5	NC	5	NC	1
600		l .	min	003	2	121	2	007	1	-1.186e-2	2	565.122	2	5459.205	
601		16	max	.006	3	.043	3	.274	4	8.35e-3	5	NC	5	NC	1
602		1	min	003	2	06	2	01	1	-6.116e-3	2	810.594	2	NC	1
002			11.001	.000	_	.00	_	101		3.1.000	_	J 10.00 /	_		

Company Designer Job Number Model Name Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
603		17	max	.006	3	.005	3	.226	4	1.051e-2	4	NC	5	NC	2
604			min	003	2	006	2	01	1	-6.712e-4	1	1339.745	2	9864.83	1
605		18	max	.006	3	.039	2	.184	4	5.123e-3	3	NC	4	NC	1
606			min	003	2	029	3	007	1	-1.208e-2	2	2867.791	2	NC	1
607		19	max	.006	3	.078	2	.15	4	1.042e-2	3	NC	1	NC	1
608			min	003	2	06	3	0	12	-2.419e-2	2	NC	1	NC	1

Company:	Schletter, Inc.	Date:	11/17/2015					
Engineer:	HCV	Page:	1/5					
Project:	Standard PVMax - Worst Case, 14-42 Inch Width							
Address:								
Phone:								
E-mail:								

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015					
Engineer:	HCV	Page:	2/5					
Project:	Standard PVMax - Worst Case, 14-42 Inch Width							
Address:								
Phone:								
E-mail:								

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015					
Engineer:	HCV	Page:	3/5					
Project:	Standard PVMax - Worst Case, 14-42 Inch Width							
Address:								
Phone:								
E-mail:								

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1723.0	23.0	593.0	593.4	
Sum	1723 0	23.0	593.0	593 4	

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1723

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'vx (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'_c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_N$	$_{lc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec.	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247 75	0.967	1.00	1 000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

$ au_{k,cr}$ (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)			
1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N_{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,i}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a)			
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ extsf{p}, extsf{Na}}$	N _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	4/5		
Project:	Standard PVMax - Worst Case, 14-42 Inch Width				
Address:					
Phone:					
E-mail:					

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

$V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq.	. D-24)
--	---------

le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cby} = \phi (A_1)$	$_{ m Vc}$ / $A_{ m Vco}$) $\Psi_{ m ed,V}$ $\Psi_{ m c}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

l _e (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	vc / A vco) Ψed, v Ψc,	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

I _e (in)	d _a (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) $\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\varPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

	u)	(-4)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)	
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \mathcal{Y}_{ed,Na} \mathcal{Y}_{p,Na} N_{a0}; k_{cp} (A_{Nc}/A_{Nco}) \mathcal{Y}_{ed,N} \mathcal{Y}_{c,N} \mathcal{Y}_{c,N} \mathcal{Y}_{cp,NNb}| \text{ (Eq. D-30a)}$

Kcp	A _{Na} (In²)	A _{Na0} (In²)	$arPsi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	Na0 (ID)	Na (ID)			
2.0	109.66	109.66	1.000	1.000	9755	9755			
4 (:-2)	A (:2)	177	177	177	A / /II- \	A / /II- \	,		
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	N_{cb} (lb)	ϕ	ϕV_{cp} (lb)	
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298	

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1723	6071	0.28	Pass
Concrete breakout	1723	5710	0.30	Pass
Adhesive	1723	5365	0.32	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	593	3156	0.19	Pass (Governs)
T Concrete breakout y+	593	3934	0.15	Pass
T Concrete breakout x+	23	3018	0.01	Pass
Concrete breakout y+	23	8508	0.00	Pass
Concrete breakout x+	593	6875	0.09	Pass
Concrete breakout, combined	-	-	0.15	Pass
Pryout	593	12298	0.05	Pass
Interaction check Nu	a/φNn Vua/φVn	Combined Rat	o Permissible	Status
Sec. D.7.1 0.3	32 0.00	32.1 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	11/17/2015					
Engineer:	HCV	Page:	1/5					
Project:	Standard PVMax - Worst Case, 21-30 Inch Width							
Address:								
Phone:								
E-mail:								

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 cac (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Apply entire shear load at front row: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 21	-30 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 21	-30 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x , V_{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2344.5	1654.5	0.0	1654.5
2	2344.5	1654.5	0.0	1654.5
Sum	4689.0	3309.0	0.0	3309.0

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 4689 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N_{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}}^{1.5}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_N$	ıc / ΑΝco) Ψec,N Ψea	$_{I,N}\varPsi_{c,N}\varPsi_{cp,N}N_{b}$ (3	Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$arPsi_{ extsf{c}, extsf{N}}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
378.00	324 00	1 000	0.972	1.00	1 000	12492	0.65	9208

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

,								
τ _{k,cr} (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_{Na})$	$_{a}$ / A_{Na0}) $\Psi_{ed,Na}$ Ψ_{g}	$_{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extsty$	l _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$\mathscr{\Psi}_{ extsf{ extsf{p}}, extsf{Na}}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 21	-30 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

378.00	648.00	1 000	0 836	1 000	1 000	15503	<i>Ψ</i> 0.70	φν cbgx (ID)
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec.V}$	$arPsi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	φ	ϕV_{cbqx} (lb)
$\phi V_{cbgx} = \phi (A$	$(V_{c}/A_{V_{co}})\Psi_{ec,V}\Psi_{ec}$	$_{ed,V} arPsi_{c,V} arPsi_{h,V} V_{bx}$	(Sec. D.4.1 & Ed	ą. D-22)				
4.00	0.50	1.00	2500	12.00	15593			
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{bx} (lb)			
$V_{bx} = 7(I_e/d_e)$	$(a)^{0.2} \sqrt{d_a} \lambda \sqrt{f'_c} C_{a1}^{1.5}$	⁵ (Eq. D-24)						

Shear parallel to edge in x-direction:

$V_{by} = 7(I_e/d$	$_{a})^{0.2}\sqrt{d_{a}}\lambda\sqrt{f'_{c}c_{a1}}^{1.9}$	⁵ (Eq. D-24)					
I _e (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	8.16	8744		
$\phi V_{cbx} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\mathcal{V}_{c,V} \mathcal{\Psi}_{h,V} V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
299.64	299.64	1.000	1.000	1.000	8744	0.70	12241

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{cpg} = \phi \text{mi}$	n <i>kcpNag</i> ; <i>kcpN</i>	$ c_{bg} = \phi \min k_{cp} $	(ANa/ANa0)Ψe	$_{d,Na} arPsi_{g,Na} arPsi_{ec,Na} arP$	Ψ _{p,Na} Na0 ; Kcp(A	Nc / ANco) $\Psi_{\text{ec},N} \Psi$	$\mathscr{C}_{ed,N}\mathscr{V}_{cp,N}\mathscr{N}_{b}$	(Eq. D-30b)
Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{\sf ec,Na}$	$arPsi_{p,Na}$	N_{a0} (lb)	Na (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
A _{Nc} (in ²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ
378.00	324.00	1.000	0.972	1.000	1.000	12492	14166	0.70

φV_{cpg} (lb) 19833

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2345	6071	0.39	Pass
Concrete breakout	4689	9208	0.51	Pass
Adhesive	4689	8093	0.58	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1655	3156	0.52	Pass
T Concrete breakout x+	3309	5323	0.62	Pass (Governs)
Concrete breakout y-	1655	12241	0.14	Pass (Governs)
Pryout	3309	19833	0.17	Pass
Interaction check Nua/	φNn Vua/φVn	Combined Rat	o Permissible	Status

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 21-30 Inch Width				
Address:					
Phone:					
E-mail:					

Sec. D.7.3 0.58 0.62 120.1 % 1.2 Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.