Cryprographie sur les courbes elliptiques

TIPE

Paul Chaudagne

Lundi 29 septembre 2025

Table des matières

1.	Les courbes elliptiques	. 3
	1.1. Définition des courbes elliptiques	. 3

1 - Les courbes elliptiques

1) Définition des courbes elliptiques

Lemme 1

La relation \mathcal{R} , définie sur $\mathbb{K}^3 \setminus \{(0,0,0)\}$ par :

$$\forall ((a,b,c),(a',b',c')) \in (\mathbb{K}^3 \setminus \{(0,0,0)\})^2,$$

$$(a,b,c)\mathcal{R}(a',b',c') \Longleftrightarrow (\exists \lambda \in \mathbb{K} \setminus \{0\},(a,b,c) = \lambda(a',b',c'))$$

$$(1.1)$$

est une relation d'équivalence.

Preuve:

Par définition d'un corps, on a :

- \mathcal{R} est réflexive car $1 \in \mathbb{K}$
- \mathcal{R} est symétrique car pour tout λ dans $\mathbb{K} \setminus \{0\}, \lambda^{-1} \in \mathbb{K}$
- \mathcal{R} est transitive car pour tous $\lambda, \mu \in \mathbb{K}, \lambda \mu \in \mathbb{K}$

Donc $\mathcal R$ est une relation d'équivalence.

Définition 1 (Plan projectif)

Soit $\mathbb K$ un corps, on appelle plan projectif l'ensemble des classes d'équivalence pour la relation $\mathcal R$, noté :

$$\mathbb{P}^2(\mathbb{K}) = (\mathbb{K}^3 \setminus \{(0,0,0)\})/\mathcal{R} \tag{1.2}$$

Cela revient à projeter l'espace sur une demi-sphère centrée en (0, 0, 0), où chaque classe d'équivalence correspond à une droite passant par l'origine et un unique point de la demi-sphère, soit en dimension deux :

Fig. 1. – Représentation de l'espace projectif en dimension deux.

finir schéma

Définition 2 (Courbe elliptique)

Proposition 1