Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа <u>M3211</u>	К работе допущен
Студент <u>Низамутдинов Э.Р. Сидякин Я.А</u>	Работа выполнена
Преподаватель Тимофеева Э.О.	Отчет принят

Рабочий протокол и отчет по лабораторной работе №1.04

Исследование равноускоренного вращательного движения (Маятник Обербека)

- 1. Цель работы.
 - 1. Проверка основного закона динамики вращения.
 - 2. Проверка зависимости момента инерции от положения масс относительно оси вращения
- 2. Задачи, решаемые при выполнении работы.
 - 1. Измерение времени падения груза при разной массе груза и разном положении утяжелителей на крестовине.
 - 2. Расчёт ускорения груза, углового ускорения крестовины и момента силы натяжения нити.
 - 3. Расчёт момента инерции крестовины с утяжелителями и момента силы трения.
 - 4. Исследование зависимости момента силы натяжения нити от углового ускорения. Проверка основного закона динамики вращения.
 - 5. Исследование зависимости момента инерции от положения масс относительно оси вращения. Проверка теоремы Штейнера.
- 3. Объект исследования.

Исследование равноускоренного вращательного движения

- 4. Метод экспериментального исследования.
 - 1. Лабораторный эксперимент
 - 2. Анализ

5. Рабочие формулы и исходные данные.

Второй закон Ньютона:

$$ma = mg - T$$

Ускорение груза:

$$a = \frac{2 * h}{t^2}$$

Угловое ускорение крестовины:

$$\varepsilon = \frac{2 * a}{d}$$

Сила натяжение нити:

$$T = m(g - a)$$

Момент силы натяжение нити:

$$M = \frac{md}{2}(g - a)$$

Основной закон динамики вращения крестовины:

$$I\varepsilon = M - M_{Tn}$$

Момент инерции крестовины:

$$I = I_0 + 4m_{YT}R^2$$

Расстояние между осью вращения и центром утяжелителя:

$$R = l_1 + (n-1)l_0 + 0.5b$$

6. Измерительные приборы.

№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Линейка	Измерительный	0-700 мм	0.5 мм
2	Секундомер	Цифровой	0-60 c	0.005 c

7. Схема установки (перечень схем, которые составляют Приложение 1).

Рис. 2. Стенд лаборатории механики (общий вид):

I — основание; 2 — рукоятка сцепления крестовин; 3 — устройство принудительного трения; 4 — поперечина; 5 — груз крестовины; 6 — трубчатая направляющая; 7 — передняя крестовина; 8 — задняя крестовина; 9 — шайбы каретки; 10 — каретка; 11 — система передних стоек.

8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

Таблица 1.

Протокол измерений времени падения груза при разной массе груза и разном положении утяжелителей на крестовине

Magaz Envisa E	Положение утяжелителей						
Масса груза, г	1 риска	2 риска	3 риска	4 риска	5 риска	6 риска	
	4,49	5,06	6,00	7,15	7,82	8,85	
220	4,52	5,05	5,98	6,90	7,82	8,74	
220	4,51	5,08	5,97	7,10	7,97	8,80	
	4,51	5,06	5,98	7,05	7,87	8,80	
	3,31	3,57	4,24	5,11	5,58	6,19	
440	3,20	3,50	4,36	4,80	5,58	6,16	
440	3,34	3,60	4,32	5,09	5,64	6,17	
	3,28	3,56	4,31	5,00	5,60	6,17	
	2,68	2,95	3,40	4,07	4,59	5,14	
660	2,72	3,06	3,47	4,00	4,66	5,16	
	2,75	2,93	3,45	3,97	4,61	5,15	
	2,72	2,98	3,44	4,01	4,62	5,15	
880	2,10	2,50	2,97	3,42	3,90	4,44	
	2,18	2,42	2,97	3,47	3,87	4,56	
	2,02	2,43	3,05	3,56	3,89	4,50	
	2,10	2,45	3,00	3,48	3,89	4,50	

- 9. Расчет результатов косвенных измерений (таблицы, примеры расчетов).
 - 1. Вычисление t_{cp} для 1 риски и массы груза 220г:

$$t_{cp} = \frac{4.49 + 4.52 + 4.51}{3} = 4.51, c$$

2. Среднеквадратичное отклонение среднего значения:

$$\sigma_N = 0.009$$

3. Погрешность

$$\Delta t = 0.04$$

4. Рассчитаем ускорение α груза, угловое ускорение ε крестовины, момента М силы натяжении нити.

Масса груза,	Волишино	Положение утяжелителей					
г	Величина	1 риска	2 риска	3 риска	4 риска	5 риска	6 риска
	tcp, c	4,51	5,06	5,98	7,05	7,87	8,80
220	α, м/с2	0,07	0,05	0,04	0,03	0,02	0,02
220	ε, рад/с2	2,99	2,37	1,70	1,22	0,98	0,79
	M, H*m	0,05	0,05	0,05	0,05	0,05	0,05
	tcp, c	3,28	3,56	4,31	5,00	5,60	6,17
440	α, м/с2	0,13	0,11	0,08	0,06	0,04	0,04
440	ε, рад/с2	5,66	4,81	3,28	2,43	1,94	1,60
	M, H*m	0,10	0,10	0,10	0,10	0,10	0,10
660	tcp, c	2,72	2,98	3,44	4,01	4,62	5,15
	α, м/с2	0,19	0,16	0,12	0,09	0,07	0,05
	ε, рад/с2	8,23	6,85	5,14	3,78	2,85	2,30
	M, H*m	0,15	0,15	0,15	0,15	0,15	0,15
880	tcp, c	2,10	2,45	3,00	3,48	3,89	4,50
	α, м/с2	0,32	0,23	0,16	0,12	0,09	0,07
	ε, рад/с2	13,80	10,14	6,78	5,02	4,03	3,01
	M, H*m	0,19	0,19	0,20	0,20	0,20	0,20

5. Вычислим погрешности косвенных измерений для первых измерений а, є, М

$$\Delta a = \sqrt{\frac{4h^2}{t^6}} (\Delta t)^2 + \frac{4}{t^4} (\Delta h)^2$$

$$\Delta \varepsilon = \sqrt{\frac{4}{d^2}} (\Delta a)^2 + \frac{4a^2}{d^4} (\Delta d)^2$$

$$\Delta M = \sqrt{(\frac{d(g-a)}{2})^2 (\Delta m)^2 + (\frac{m(g-a)}{2})^2 (\Delta d)^2 + \frac{d^2m^2}{4} (\Delta a)^2}$$

Подставим нужные значения:

$$\Delta a = 0.002, m/c^2$$

$$\Delta \varepsilon = 0.34, rad/c^2$$

$$\Delta M = 0.0017, H*m$$

6. С помощью метода наименьших квадратов вычислим момент I инерции крестовины с утяжелителем, момент силы трения Мтр.

Положение утяжителей	I, кг*м2	Мтр, Н*м	ΔΙ	ΔМтр
1 риска	0,013	0,021	0,002	0,017
2 риска	0,019	0,008	0,001	0,009
3 риска	0,028	0,002	0,001	0,003
4 риска	0,039	-0,003	0,002	0,006
5 риска	0,049	0,004	0,002	0,006
6 риска	0,067	-0,005	0,002	0,003

7. Формулы графиков, вычисленные по МНК

$$M = 0.021 + 0.013$$

$$M = 0.008 + 0.019$$

$$M = 0.002 + 0.028$$

$$M = -0.003 + 0.039$$

$$M = 0.004 + 0.049$$

$$M = -0.005 + 0.067$$

8. Посчитаем R^2 и занесем в таблицу

Положение						
утяжелителей	1	2	3	4	5	6
R	0,077	0,102	0,127	0,152	0,177	0,202
R^2	0,005929	0,010404	0,016129	0,023104	0,031329	0,040804
	0,013	0,019	0,028	0,039	0,049	0,067

9. На основе найденных значений I и R2 с помощью МНК определим значения I0 и Мут, а также их погрешности Δ I0 и Δ Мут

$$\begin{array}{c} 4m = 1,515068009 \\ m = 0,378767002 \\ I_0 = 0,003573978 \cdot ^2 \\ \Delta m = \frac{\Delta 4m}{4} = 0,012828326 \end{array}$$

10. Графики (перечень графиков, которые составляют Приложение 2).

11. Окончательные результаты.

$$lpha = (0.07 \pm 0.002) \text{м/c}^2;$$

 $\varepsilon = (2.99 \pm 0.34) \text{рад/c}^2;$
 $M = (0.05 \pm 0.0017) \text{H*m};$

$$m_{YT} = (0.37 \pm 0.012)$$
кг; $I_0 = (0.0035 \pm 0,002)$ кг*м^2

12. Выводы и анализ результатов работы.

В ходе лабораторной работы был проверен основной закон динамики вращательного движения. Анализ графика зависимости M(ε) показывает, что эта зависимость является линейной, а экспериментальные данные соответствуют теоретическим значениям в пределах погрешности. Рассматривая график зависимости I (R^2), можно подтвердить гипотезу, что момент инерции пропорционален квадрату расстояния до утяжелителей.

13. Приложение

Примечание:

- 1. Пункты 1-6,8-13 Протокола-отчета обязательны для заполнения.
- 2. Необходимые исправления выполняют непосредственно в протоколе-отчете.
- 3. При ручном построении графиков рекомендуется использовать миллиметровую бумагу.
- 4. Приложения 1 и 2 вкладывают в бланк протокола-отчета.