

Closing Time

Ungverjaland hefur N borgir, númeraðar frá 0 til N-1

Borgirnar eru tengdar með N-1 tvíáttuðum vegum, númeraðir frá 0 til N-2. Fyrir sérhvert j, þannig að $0 \le j \le N-2$, þá tengir vegur j borgina U[j] við borgina V[j], með lengd W[j], sem þýðir að hægt sé að ferðast á milli borganna á W[j] tíma einingum. Hver vegur tengir tvær mismunandi borgir og sérhvert par af borgum er í mesta lagi tengt með einum veg.

Leið á milli tveggja mismunandi borga a og b er runan p_0, p_1, \ldots, p_t , sem samanstendur af mismunandi borgum, þannig að:

- $p_0=a$,
- $p_t = b$,
- fyrir sérhvert i ($0 \le i < t$), þá er vegur á milli borganna p_i og p_{i+1} .

Það er hægt að ferðast frá sérhverri borg til sérhverrar annarrar borgar með því að nota vegi, þannig að það er til leið á milli allra mismunandi para af borgum. Hægt er að sýna fram á að þessi leið er mismunandi fyrir sérhvert par af borgum.

Lengdin á leið p_0, p_1, \ldots, p_t er summan af lengd allra t mismunandi vega sem tengja samliggjandi borgir í leiðinni.

Í Ungverjalandi ferðast margir til að mæta á hátíðir á stofnunardegi Ungverjalands í sumum stærstu borgunum. Þegar hátíðarhöldum er lokið, fara allir heim til sín. Ríkið vill passa upp á að fólkið trufli ekki heimamenn, þannig planið þeirra er að loka borgunum á ákveðnum tímum. Hverri borg verður úthlutuð **lokunartíma** frá ríkinu sem er ekki neikvæður. Ríkið hefur ákveðið að summa þessa lokunartíma skal ekki vera hærri en K. Nánar tiltekið, fyrir sérhvert i á milli 0 og N-1, með báðum meðtöldum, þá er lokunartími borgar i heiltala c[i] sem er ekki neikvæð. Summan af öllum c[i] skal ekki vera stærri en K.

Íhugið borg a og einhvern úthlutaðan lokunartíma. Við segjum að borg b sé **aðgengileg** frá borg a þá og því aðeins að b=a, eða leiðin p_0,\ldots,p_t á milli borganna (þá sérstaklega $p_0=a$ og $p_t=b$) fullnægir eftirfarandi skilyrðum:

- ullet Lengd leiðarinnar p_0,p_1 er í mesta lagi $c[p_1]$, og
- Lengd leiðarinnar p_0, p_1, p_2 er í mesta lagi $c[p_2]$, og
- ...
- Lengd leiðarinnar $p_0, p_1, p_2, \ldots, p_t$ er í mesta lagi $c[p_t]$.

Þetta árið eru tveir helstu hátíðarstaðirnir í borgum X og Y. Fyrir hverja úthlutun af lokunartímum, þá eru **þægindastigin** skilgreind sem summa af eftirfarandi tvem tölum:

- Fjöldi borga sem eru aðgengilegar frá borg X.
- Fjöldi borga sem eru aðgengilegar frá borg Y.

Takið eftir því að ef borg er aðgengileg frá borg X og einnig aðgengileg frá borg Y, þá telja þægindastigin tvisvar

Þitt verkefni er að reikna hæsta gildi þægindastiga sem hægt er að ná með einhverri úthlutun lokunartíma.

Útfærsluatriði

Þú skalt útfæra eftirfarandi fall.

```
int max_score(int N, int X, int Y, int64 K, int[] U, int[] V, int[] W)
```

- *N*: fjöldi borga
- *X*, *Y*: tvær helstu borginnar.
- *K*: efri mörk á summu lokunnartíma.
- U, V: fylki af lengd N-1 sem lýsa tengingum milli borganna.
- W: fylki af lengd N-1 sem lýsir vegalengdum.
- Þetta fall skal skila hæsta gildi þægindarstiga sem hægt er að ná með einhverri úthlutun lokunartíma.
- Sérhvert prufutilvik gæti kallað í þetta fall mörgum sinnum.

Sýnidæmi

Íhugið eftirfarandi kall:

```
max_score(7, 0, 2, 10, [0, 0, 1, 2, 2, 5], [1, 3, 2, 4, 5, 6], [2, 3, 4, 2, 5, 3])
```

Þetta samsvarar eftirfarandi vegakerfi.

Gerið ráð fyrir eftirfarandi lokunartímum:

Borg	0	1	2	3	4	5	6
Lokunartími	0	4	0	3	2	0	0

Takið eftir að summa allra lokunartíma er 9, sem er ekki meira en K=10. Borgir 0, 1 og 3 er aðgengilegra frá borg X (X=0), á meðan borgir 1, 2 og 4 eru aðgengilegar frá borg Y (Y=2). Þannig að þægindastigin eru því 3+3=6. Það er engin úthlutun lokunartíma með þægindastig meira en 6, þannig fallið skal skila 6.

Takið einnig eftir eftirfarandi kalli:

Þetta samsvarar eftirfarandi vegakerfi.

Gerið ráð fyrir eftirfarandi lokunartímum:

Borg	0	1	2	3
Lokunartími	0	1	19	0

Borg 0 er aðgengileg frá borg X (X=0), á meðan borgir 2 og 3 eru aðgengilegar frá borg Y (Y=3). Þannig að þægindastigin eru því 1+2=3. Það er engin úthlutun lokunartíma með

þægindastig meira en 3, þannig fallið skal skila 3.

Skorður

- $2 \le N \le 200\,000$
- $0 \le X < Y < N$
- $0 < K < 10^{18}$
- $0 \le U[j] < V[j] < N$ (fyrir sérhvert j bannig að $0 \le j \le N-2$)
- $1 \le W[j] \le 10^6$ (fyrir sérhvert j bannig að $0 \le j \le N-2$)
- Mögulegt er að ferðast frá öllum borgum til allra borga með því að nota vegi.
- $S_N \leq 200\,000$, þar sem S_N er summan af N yfir öll köll í max_score í sérhverju prufutilveki.

Hlutverkefni

Við segjum að vegakerfi sé **línulegt** ef vegir i tengja borgir i og i+1 (fyrir sérhvert i þannig að 0 < i < N-2).

- 1. (8 points) Lengdin á leiðinni frá borg X að borg Y er hærri en 2K.
- 2. (9 points) $S_N \leq 50$, vegakerfið er línulegt.
- 3. (12 points) $S_N \leq 500$, vegakerfið er línulegt.
- 4. (14 points) $S_N \leq 3\,000$, vegakerfið er línulegt.
- 5. (9 points) $S_N \leq 20$
- 6. (11 points) $S_N \leq 100$
- 7. (10 points) $S_N \le 500$
- 8. (10 points) $S_N \leq 3\,000$
- 9. (17 points) Engar frekari skorður.

Sýnisyfirferðarforrit

Látum C tákna fjölda atburða, það er, fjölda kalla í max_score. Sýnisyfirferðarforrit les inntakið á eftirfarandi sniði:

• lína 1: *C*

Lýsinguna á C má sjá að ofan.

Sýnisyfirferðarforritið les lýsinginuna á hverjum atburði á eftirfarandi sniði:

- lína 1: N X Y K
- Iína 2+j ($0 \le j \le N-2$): $U[j] \ V[j] \ W[j]$

Sýnisyfirferðarforritið skrifar út eina línu fyrir hvern atburð á eftirfarandi sniði:

• lína 1: skilagildið á max_score