

Shrimp Farm Automation

IoTEasier

Automation Process

Comparison

High

Low

Methods	Knowledge Base	Advantages	Disadvantages
Traditional Methods	ExperienceVisual Inspection		 Labor Intensive, Prone to Human Errors, Difficult for Large Scale Deployment
Naïve Automation	• Pre-defined Thresholds	Lower Labor Cost	• Lack of Adaptability, Prone to Human Errors
Advanced Automation	 Domain Knowledge Precise and Real-time Measurement Machine Extracted Insights 	Scalable, Precisive, and real-time adjustments, Lower Labor Cost	Longer cycle, higher Entry Requirements

Automation System

Remote Center

Compile all site and environmental data so the management team can remotely monitor each site. If any sensor readings exceed predefined limits or a site keeper makes a request, the remote management team can be immediately notified and provide advice and instructions

自動化與環境感測設施

WATER QUALITY SENSOR TEMPERATURE SENSOR

Cloud System

PoolKeeper

All data will be sent to the cloud. The automation system will also be hosted here to determine necessary operations based on the received data.

Warning – for the remote management team

Automation System – control site equipment

Site Manager Dispatch System – automatically assign tasks to site keeper

The Dispatch System will generate a maintenance schedule for site keepers based on sensor data, scheduling daily tasks such as feeding parameters, maintenance, ...

Environmental Data

equipment

The cloud system regularly collects weather forecasts via API for

like water wheels, valves, and feeding

System Architecture

Water Quality Monitoring

- Temperature
- PH Value
- Ammonia Nitrogen
- Salinity
- Conductivity
- TDS
- Dissolved Oxygen

Remote Center

- Display collected data
 - Water Quality
 - Environmental Data
 - Weather forecasts
 - Equipment Status
- Control Panel

Water Quality History

天氣狀況及預報(成功氣象站)

名稱	數值	單位
高度	92	m
風向	北	方位
風速	4.6	m/s
溫度	26.9	°C
濕度	86	%
氣壓	999.3	hPa
降雨量	-99	mm
當日最高溫度	26.9	°C
當日最低溫度	23.9	°C

Weather Data

Equipment Status & Control

Control Panel

- Automatic Control and Scheduling
 - Water wheel on/off
 - Water quality measurement (inlet/outlet control)
- Dispatch System
 - Feeding
 - Maintenance
 - Water quality control
 - Growth measurement

移除事項

管理員行事曆

當前事項編號 0

事項紀錄

編號	事項	時間	水池 🔷	備註
0	餵食	2022/09/17-12:	實驗	2Kg 幼蝦飼料
1	餵食	2022/09/17-16:	實驗	2Kg 幼蝦飼料
2	環境觀測	2022/09/17-14:	實驗	場域清潔-記錄
3	放水	2022/09/17-10:	實驗	池水- 25 mins
4	導入海水	2022/09/17-11:	實驗	導入海水-20mins
5	尺寸丈量	2022/09/17-18:	實驗	蝦苗生長狀態記

完成事項

自動控制排程

Overview	<u> </u>
水池1 - 水車1	
10:00-10:20	MO TU WE TH FR
10:40-10:50	MO TU WE TH FR
11:10-11:15	MO TU WE TH FR
11:30-11:40	MO TU WE TH FR
14:43-14:48	SU MO TU WE TH FR SA
16:04-16:15	SU MO TU WE TH FR SA
17:05-17:10	SU MO TU WE TH FR SA
00:00-00:10	MO TU WE TH FR
水池1 - 水質風扇	
09:00-12:00	SU MO TU WE TH FR SA
14:00-17:00	SU MO TU WE TH FR SA
20:30-23:30	SU MO TU WE TH FR SA
01:00-03:00	SU MO TU WE TH FR SA
04:30-07:30	SU MO TU WE TH FR SA

System Advantages

- Data-driven management processes
 - Real-time monitoring and control
 - Anomaly detection and prevention
 - Personnel management
 - Automatic generation of Traceable Agricultural Products
- Shorter learning curve for new site deployment
- Replicate aquaculture expert's experiences
- Cost management
 - Energy saving
 - Reduction in feed waste
 - Reduction in labor cost

