ΘΕΜΑ 2

2.1. Η ταχύτητα διαφυγής ενός σώματος από σημείο Α που βρίσκεται σε ύψος $h=R$	$_{arGamma}$ από την επιφάνεια
της Γης έχει μέτρο:	

(a)
$$v_{\delta} = \sqrt{g_0 \cdot R_{\Gamma}}$$

$$(\beta) \ v_{\delta} = \sqrt{\frac{g_0 \cdot R_{\Gamma}}{2}}$$

(
$$\gamma$$
) $v_{\delta} = \sqrt{2 g_0 \cdot R_{\Gamma}}$

2.1.Α. Να επιλέξετε την ορθή απάντηση.

Μονάδες 4

2.1.Β. Να αιτιολογήσετε την επιλογή σας.

Μονάδες 8

2.2. Σώμα Σ_1 μάζας m_1 που κινείται με ταχύτητα μέτρου v_1 πάνω σε λείο οριζόντιο επίπεδο, συγκρούεται πλαστικά με σώμα Σ_2 μάζας $m_2=2m_1$ το οποίο κινείται πάνω στο ίδιο λείο οριζόντιο επίπεδο, σε αντίθετη κατεύθυνση με ταχύτητα μέτρου v_2 . Το συσσωμάτωμα που προκύπτει παραμένει ακίνητο μετά την κρούση. Αν K_1 και K_2 οι κινητικές ενέργειες των σωμάτων Σ_1 και Σ_2 πριν την κρούση, ο λόγος τους $\frac{K_1}{K_2}$ θα έχει τιμή

(α) $\frac{1}{2}$

(β) 2

(γ) 3

2.2.Α. Να επιλέξετε την ορθή πρόταση. αιτιολογήσετε την επιλογή σας.

Μονάδες 4

2.2.Β. Να αιτιολογήσετε την επιλογή σας.

Μονάδες 9