Representation Theory of Finite Group HW1

Date: Mar 5 Made by Eric

Problem A

$$F_n = \langle \alpha, \beta | \alpha^2 = \beta^2 = 1, (\alpha \beta)^n = 1 \rangle$$

We know $\langle r, s | r^n = 1 = s^2, srs^{-1} = r^{-1} \rangle$ is a presentation of D_n

Let ψ be defined by $\alpha \mapsto rs, \beta \mapsto s$

We prove ψ preserve the defining relation of F_n

Proof.
$$s^2 = 1$$
 and $srs^{-1} = r^{-1} \implies srs = r^{-1}$

$$\psi(\alpha)^2 = (rs)^2 = r(srs) = rr^{-1} = 1$$

$$s^2 = 1 \implies \psi(\beta)^2 = s^2 = 1$$

$$(\psi(\alpha)\psi(\beta))^n = (rss)^n = r^n = 1$$

So there exists an unique homomorphism $\phi: F_n \to D_n$ lifted by ψ

We prove ϕ is onto.

Proof.
$$\phi(\alpha\beta) = \phi(\alpha)\phi(\beta) = rss = r$$

$$\phi(\beta) = s$$

The generators of D_n belong to $\phi[F_n] \implies D_n \subseteq \phi[F_n]$

We prove $|P|=8=Q_8$, then ϕ is thus bijective, implicating that ϕ is an isomorphism from P to Q_8

Proof. Every element $w \in F_n$ by definition can be expressed as one of the following four forms.

(i)
$$w = \alpha^{c_1} \beta^{c_2} \dots \alpha^{c_n}$$

(ii)
$$w = \alpha^{c_1} \beta^{c_2} \dots \alpha^{c_{n_1}} \beta^{c_n}$$

(iii)
$$w = \beta^{c_1} \alpha^{c_2} \dots \beta^{c_n}$$

(iv)
$$w = \beta^{c_1} \alpha^{c_2} \dots \beta^{c_{n-1}} \alpha^{c_n}$$

Becasue $\beta^2 = 1$, we know $\beta^{c_i} = \beta$ if c_i is odd, $\beta^{c_i} = 1$ if c_i is even.

Same goes α

So every $w \neq 1 \in F_n$ starts either with α or with β , ends either with α or with β , and contain "isolated" terms α and β in the middle.

More precisely, w is in one of the following four forms.

(i)
$$w = \alpha \beta \dots \alpha$$

(ii)
$$w = \alpha \beta \dots \alpha \beta$$

(iii)
$$w = \beta \alpha \dots \beta$$

(iv)
$$w = \beta \alpha \dots \beta \alpha$$

In forms (i) and (ii), $w = (\alpha \beta)^p \alpha^q$, $\exists q \in \mathbb{Z}$

If q = 0, w is in (i) form. If not, w is in (ii) form.

Notice in forms (iii) or (iv), $w=(\beta\alpha)^m\alpha^k, \exists m,n\in\mathbb{Z}$, and $(\beta\alpha)\alpha=\beta=\alpha(\alpha\beta)$, so $w=(\beta\alpha)^m\alpha^k=\alpha^p(\alpha\beta)^q, \exists p,q\in\mathbb{Z}$

Because $(\alpha\beta)^n=1=\alpha^2$, we can set $0\leq p\leq n-1, 0\leq q\leq 1$, WOLG.

Till here, we have already turn every element $w \in F_n$ into the form $(\alpha\beta)^p\alpha^q$, $\exists 0 \le p \le n-1, 0 \le q \le 1$

We now show p=0, q=0 is the only possibility such $(\alpha\beta)^p\alpha^q=1$, then $(\alpha\beta)^{d_1}\alpha^{d_2}=(\alpha\beta)^{d_3}\alpha^{d_4}\iff (\alpha\beta)^{d_1-d_3}\alpha^{d_2-d_4}=1\iff d_1=d_3, d_2=d_4$, the form $(\alpha\beta)^p\alpha^q$ have exactly 2n number amount of distinct elements.

If
$$q=0$$
, $1=(\alpha\beta)^p\alpha^q\implies (\alpha\beta)^p=1\implies p=0$, since $(\alpha\beta)$ is of order n

Assume
$$1 = (\alpha \beta)^p \alpha$$

Let C_{α} be defined by $C_{\alpha}(x) = \alpha x \alpha$

Let C_{β} be defined by $C_{\beta}(x) = \beta x \beta$

$$C_{\alpha}(1) = \alpha \alpha = 1 = \beta \beta = C_{\beta}(1)$$

$$C_{\alpha}(1 = (\alpha\beta)^{p}\alpha) = \alpha(\alpha\beta)^{p}\alpha\alpha = \alpha(\alpha\beta)(\alpha\beta)^{p-1} = \beta(\alpha\beta)^{p-1} = 1$$

$$C_{\beta}(1 = \beta(\alpha\beta)^{p-1}) = \beta\beta(\alpha\beta)^{p-1}\beta = (\alpha\beta)^{p-2}(\alpha\beta)\beta = (\alpha\beta)^{p-2}\alpha = 1$$

So, $\cdots \circ C_{\beta} \circ C_{\alpha}((\alpha\beta)^{p}\alpha = 1) = (\alpha \text{ or } \beta) = 1 \text{ CaC}$

Probelem B

$$P = \langle a, b | a^4 = 1 = b^4, a^2 = b^2, ba = a^{-1}b \rangle$$

Let ψ be defined by $a \mapsto i, b \mapsto j$

We prove ψ preserve the definig relation in P

Proof.
$$(\psi(a))^4 = i^4 = 1$$

$$(\psi(b))^4 = j^4 = 1$$

$$(\psi(a)^2) = i^2 = -1 = j^2 = (\psi(b))^2$$

$$\psi(b)\psi(a) = ji = -k = (-i)j = (\psi(a))^{-1}\psi(b)$$

So there exists an unique homomorphism $\phi:P\to Q_8$ lifted by ψ

We prove ϕ is onto.

$$\begin{array}{l} \textit{Proof.} \ 1 = i^4 \\ -1 = i^2 \\ i = i \\ -i = i^3 \\ j = j \\ -j = j^3 \\ k = ij \\ -k = ji \end{array}$$

We prove $|P|=8=Q_8$, then ϕ is thus bijective, implicating that ϕ is an isomorphism from P to Q_8

Proof. Because $ba=a^{-1}b$ and $a^4=1=b^4$, we can turn every elements in P into the form $a^pb^q, \exists 0\leq p,q\leq 3$

Using $a^2 = b^2$, we can have following:

$$a^2b = b^3$$

$$ab^2 = a^3$$

$$a^2b^2 = 1$$

$$a^3b = ab^3$$

$$a^3b^2 = a$$

$$a^2b^3 = b$$

$$a^3b^3 = ab$$

and obviously $b^2 = a^2$

We only have to show $S := \{1, a, b, ab, a^3, b^3, ab^3, a^2\}$ (S is the elements on the RHS of the equations above) contains 8 distinct elements.

Clearly, $\{1, a, b\}$ are unique elements

Assume a = ab or b = ab, then 1 = b or 1 = a CaC

Assume 1 = ab

$$ba = a^{-1}b \implies aba = aa^{-1}b \implies a = b \text{ CaC}$$

So $\{1, a, b, ab\}$ are all distinct elements.

And we see a^3 , b^3 , ab^3 are respectively the inverse elements of a, b, ab, so $\{1, a, b, ab, a^3, b^3, ab^3\}$ are all distinct elements.

Lastly, we see order(a)=order(b)=order(ab)=4, and order(a^2)=2, so $\{1, a, b, ab, a^3, b^3, ab^3, a^2\}$ are all distinct elements.

Problem C

$$\tilde{D}_n = \left\{ \begin{bmatrix} \pm 1 & k \\ 0 & 1 \end{bmatrix} \middle| k \in \mathbb{Z}_n \right\}$$

$$D_n = \langle r, s \middle| r^n = 1 = s^2, srs^{-1} = r^{-1} \rangle$$

Let
$$\psi$$
 be defined by $\psi(r)=\begin{bmatrix}1&1\\0&1\end{bmatrix}$, $\psi(s)=\begin{bmatrix}-1&1\\0&1\end{bmatrix}$

We prove ψ preserve the defining relation of D_n

Proof. We prove
$$\forall 0 < k < n, \psi(r)^k = \begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix}$$
, by inducion. (i)

Base step:
$$\psi(r)^1 = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

This is trivial.

$$\text{Induction step: } \psi(r)^{k-1} = \begin{bmatrix} 1 & k-1 \\ 0 & 1 \end{bmatrix} \implies \psi(r)^k = \begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix}$$

$$\psi(r)^k = \psi(r)^{k-1} \psi(r) = \begin{bmatrix} 1 & k-1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix}$$

$$\text{So } \psi(r)^n = \psi(r)^{n-1} \psi(r) = \begin{bmatrix} 1 & n-1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix} = I_2$$

$$\psi(s)^2 = \begin{bmatrix} -1 & 1 \\ 0 & 1 \end{bmatrix}^2 = I_2$$

$$\psi(s)\psi(r)\psi(s)^{-1} = \begin{bmatrix} -1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} = \phi(r)^{-1}$$

So there exists an unique homomorphism $\phi:D_n\to \tilde{D_n}$ lifted by ψ We prove ϕ is onto.

Proof.
$$\forall k \in \mathbb{Z}_n, \begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix} = \phi(r)^k$$
 have already been proven in (i). $\forall k \in \mathbb{Z}_n, \begin{bmatrix} -1 & k \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -k+1 \\ 0 & 1 \end{bmatrix} = \phi(s)\phi(r)^{-k+1}$

Clearly, $|\tilde{D_n}|=2n=|D_n|$, implicating that ϕ is an isomorphism from $\tilde{D_n}=D_n$.