

FCC Certification Test Report

Report No.: FV141027C05A

Test Model: XP5700

Type Number: L15V013AA; L15V013BA; L15V013CA

Received Date: Dec. 04, 2014

Test Date: Dec. 04, 2014 ~ Dec. 09, 2014

Issued Date: Dec. 22, 2014

Applicant: Sonim Technologies, Inc.

Address: 1825 S. Grant St., Suite 200., San Mateo, CA, 94402

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

Lab Address: No. 19, Hwa Ya 2nd Rd, Wen Hwa Tsuen, Kwei Shan Hsiang, Taoyuan

Hsien 333, Taiwan, R.O.C.

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.

Report No.: FV141027C05A Page No. 1 / 29 Report Format Version: 6.1.0 Reference No.: 141205C19

Table of Contents

Re	eleas	se Control Record	3
1	Ce	ertificate of Conformity	4
2	Su	ımmary of Test Results	5
	2.1 2.2	Measurement Uncertainty	
3	Ge	eneral Information	6
	3.1 3.2 3.3 3.4 3.5 3.6	Features of EUT General Description of EUT Operating Modes of EUT and Determination of Worst Case Operating Mode Test Program Used and Operation Descriptions Primary Clock Frequencies of Internal Source	6 7 7
4	Co	onfiguration and Connections with EUT	10
	4.1 4.2	Connection Diagram of EUT and Peripheral Devices	
5	Co	onducted Emissions at Mains Ports	12
	5.1 5.2 5.3 5.4 5.5	Limits Test Instruments Test Arrangement Supplementary Information Test Results	12 13 13
6	Ra	adiated Emissions up to 1 GHz	16
	6.1 6.2 6.3 6.4 6.5	Limits Test Instruments Test Arrangement Supplementary Information Test Results	17 18 18
7	Ra	adiated Emissions above 1 GHz	21
	7.1 7.2 7.3 7.4 7.5	Limits Test Instruments Test Arrangement Supplementary Information Test Results	22 23 23
8	Pic	ctures of Test Arrangements	28
Αp	pen	dix – Information on the Testing Laboratories	29

Release Control Record

Issue No.	Description	Date Issued
FV141027C05A	Original Release	Dec. 22, 2014

Page No. 3 / 29 Report Format Version: 6.1.0

Report No.: FV141027C05A Reference No.: 141205C19

1 Certificate of Conformity

Product: LTE phone

Brand: Sonim

Test Model: XP5700

Type Number: L15V013AA; L15V013BA; L15V013CA

Sample Status: Identical Prototype

Applicant: Sonim Technologies, Inc.

Test Date: Dec. 04, 2014 ~ Dec. 09, 2014

Standards: 47 CFR FCC Part 15, Subpart B, Class B

ICES-003:2012 Issue 5, Class B

ANSI C63.4:2009

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Gina Liu / Specialist

Approved by: , Date: Dec. 22, 2014

Carl Chen / Project Engineer

2 Summary of Test Results

47 CFR FCC Part 15, Subpart B / ICES-003:2012 Issue 5, Class B ANSI C63.4:2009								
FCC Clause	FCC ICES-003 Test Item Result/Remarks Verdict							
15.107	6.1	AC Power Line Conducted Emissions	Minimum passing Class B margin is -5.37 dB at 0.64559 MHz	Pass				
1E 100	6.2.1	Radiated Emissions up to 1 GHz	Minimum passing Class B margin is -3.13 dB at 225.82 MHz	Pass				
15.109	6.2.2	Radiated Emissions above 1 GHz	Minimum passing Class B margin is -11.70 dB at 12174.216 MHz	Pass				

Note: There is no deviation to the applied test methods and requirements covered by the scope of this report.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT:

The listed uncertainties are the worst case uncertainty for the entire range of measurement. Please note that the uncertainty values are provided for informational purposes only and are not used in determining the PASS/FAIL results.

Measurement	Frequency	Expended Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150kHz ~ 30MHz	2.44 dB
Radiated Emissions up to 1 GHz	30MHz ~ 1GHz	4.70 dB
Radiated Emissions above 1 GHz	Above 1GHz	2.26 dB

2.2 Modification Record

There were no modifications required for compliance.

Report No.: FV141027C05A Reference No.: 141205C19

3 General Information

3.1 Features of EUT

The tests reported herein were performed according to the method specified by Sonim Technologies, Inc., for detailed feature description, please refer to the manufacturer's specifications or user's manual.

3.2 General Description of EUT

Product	LTE phone		
Brand	Sonim		
Test Model	XP5700		
Type Number	L15V013AA; L15V013BA; L15V013CA		
Status of EUT	Identical Prototype		
Operating Software	5A.0.0-00-4.4.2-10.01.05		
Davies Complex Dations	3.7Vdc (Battery)		
Power Supply Rating	5.0Vdc (Adapter or host equipment)		
Accessory Device	Refer to Note as below		
Data Cable Supplied	1.1m shielded cable w/o core		

Note:

1. The EUT contains following accessory devices.

Product	Brand	Model	Description				
Adapter	Sonim	1644600	I/P: 100-240Vac, 200mA O/P: 5.0Vdc, 1200mA				
Battery	Sonim	BAT-03180-01S	3.7Vdc, 3180mAh				
USB Cable	Sunway	N.A	1.1m shielded cable w/o core				

Report No.: FV141027C05A Page No. 6 / 29 Report Format Version: 6.1.0

Reference No.: 141205C19

3.3 Operating Modes of EUT and Determination of Worst Case Operating Mode

Test modes are presented in the report as below.

Mode	Test Condition
	Conducted Emission
1	GSM850 Idle + BT Idle + WLAN Idle (2.4G) + GPS Rx + USB Cable + Adapter + Earphone + Battery
2	PCS1900 Idle + BT Idle + WLAN Idle (2.4G) + MPEG4 + USB Cable + USB Link + Earphone + Battery
3	WCDMA Band II Idle + BT Idle + WLAN Idle (2.4G) + Camera + USB Cable + Adapter + Earphone + Battery
4	WCDMA Band V Idle + BT Idle + WLAN Idle (2.4G) + GPS Rx + USB Cable + Adapter + Earphone + Battery
5	LTE B2 Idle + BT Idle + WLAN Idle (2.4G) + GPS Rx + USB Cable + Adapter + Earphone + Battery
6	LTE B4 Idle + BT Idle + WLAN Idle (2.4G) + GPS Rx + USB Cable + Adapter + Earphone + Battery
7	LTE B5 Idle + BT Idle + WLAN Idle (2.4G) + GPS Rx + USB Cable + Adapter + Earphone + Battery
8	LTE B17 Idle + BT Idle + WLAN Idle (2.4G) + GPS Rx + USB Cable + Adapter + Earphone + Battery
9	LTE B7 Idle + BT Idle + WLAN Idle (5G) + GPS Rx + USB Cable + Adapter + Earphone + Battery
	Radiated Emission
1	GSM850 Idle + BT Idle + WLAN Idle (2.4G) + GPS Rx + USB Cable + Adapter + Earphone + Battery
2	PCS1900 Idle + BT Idle + WLAN Idle (2.4G) + MPEG4 + USB Cable + USB Link + Earphone + Battery
3	LTE B2 Idle + BT Idle + WLAN Idle (2.4G) + Camera + USB Cable + Adapter + Earphone + Battery
4	LTE B4 Idle + BT Idle + WLAN Idle (2.4G) + GPS Rx + USB Cable + Adapter + Earphone + Battery
5	LTE B5 Idle + BT Idle + WLAN Idle (5G) + GPS Rx + USB Cable + Adapter + Earphone + Battery
6	LTE B17 Idle + BT Idle + WLAN Idle (5G) + GPS Rx + USB Cable + Adapter + Earphone + Battery
7	LTE B7 Idle + BT Idle + WLAN Idle (5G) + GPS Rx + USB Cable + Adapter + Earphone + Battery
8	WCDMA Band II Idle + BT Idle + WLAN Idle (5G) + GPS Rx + USB Cable + Adapter + Earphone + Battery
9	WCDMA Band V Idle + BT Idle + WLAN Idle (5G) + GPS Rx + USB Cable + Adapter + Earphone + Battery
Domork	

Remark:

- 1. For conducted emission test, test mode 3 was the worst case and only this mode was presented in the report.
- 2. For radiated emission test, test mode 2 was the worst case and only this mode was presented in the report.

3.4 Test Program Used and Operation Descriptions

Conducted Emission test

- a. The EUT charged from the adapter.
- b. The EUT linked with Bluetooth earphone in idle mode.
- c. The EUT played camera and sent audio signal to the earphone.
- d. The EUT communicated data with the Radio Communication Analyzer and Wireless AP, which acted as communication partners.
- e. Set WWAN and WLAN functions in idle mode.

Radiated Emission test

- a. The EUT was connected with Notebook via a USB cable.
- b. Notebook sent "H" patterns to the printer and the printer printed "H" patterns.
- c. The EUT linked with Bluetooth earphone in idle mode.
- d. The EUT played MPEG4 and sent audio signal to the earphone.
- e. The EUT communicated data with the Radio Communication Analyzer and Wireless AP, which acted as communicaton partners.
- f. Set WWAN and WLAN functions in idle mode.

Report No.: FV141027C05A Page No. 7 / 29 Report Format Version: 6.1.0 Reference No.: 141205C19

3.5 Primary Clock Frequencies of Internal Source

The highest frequency generated or used within the EUT or on which the EUT operates or tunes is 5000 MHz, provided by Sonim Technologies, Inc., for detailed internal source, please refer to the manufacturer's specifications.

3.6 Miscellaneous

Labelling Requirements for Part 15 Devices:

Verification

The specific labelling requirements for a device subject to the Verification procedure are contained in Section 15.19(a). These labelling requirements are:

If the device is subject only to Verification, include a label bearing a unique identifier (Section 2.954) and one of three compliance statements specified in Section 15.19(a). If the labeling area for the device is so small, and/or it is not practical to place the compliance statement on the device, then the statement can be placed in the user manual or product packaging (Section 15.19(a)(5)). However, the device must still be labelled with the unique identifier (Verification). Generally, devices smaller than the palm of the hand are considered too small for the compliance statement.

Certification

If the device is subject to Certification: (1) Section 2.925 contains information on identification of the equipment; (2) include a label bearing an FCC Identifier (FCC ID) (Section 2.926) and (3) include the appropriate compliance statement in Section 15.19(a). If the device is considered too small and therefore it is impractical (smaller than the palm of the hand) to display the compliance statement, then the statement may be placed in the user manual or product packaging. However, the device must still be labelled with the FCC ID. If the device is unquestionably too small for the FCC ID to be readable (smaller than 4-6 points), the FCC ID may be placed in the user manual. However, it must be determined that the device itself is too small – the label area allocated to the FCC ID may not be reduced because of over crowded identification of other product and regulatory information.

An electronic display of the FCC ID (see 9. Electronic Labelling below) may be used for Certification of Section 15.212 modular transmitters and software defined radios (Section 2.944).

Declaration of Conformity (DoC):

The labelling requirements for a device subject to the DoC procedure are specified in Section 15.19(b). The label should include the FCC logo along with the Trade Name and Model Number, which satisfies the unique identifier requirement of Section 2.1074 if it represents the identical equipment tested for DoC compliance. For personal computers assembled from authorized components, the following additional text must also be included: "Assembled from tested components," "Complete system not tested." When the device is so small and/or when it is not practical to place the required additional text on the device, the text may be placed in the user manual or pamphlet supplied to the user. However, the FCC logo, Trade Name, and Model Number must still be displayed on the device (Section 15.19(b)(3)).

Part 15 Declaration of Conformity (DoC) Label Examples

Equipment certified as software defined radio may use a means that readily displays the FCC ID on an electronic display screen, instead of labelling the device (Section 2.925 (e)).

Further information may refer to FCC KDB:784748 D01 Labelling Part 15 &18 Guidelines

Report No.: FV141027C05A Page No. 8 / 29 Report Format Version: 6.1.0 Reference No.: 141205C19

Labelling Requirements for ICES-003 Devices: ➤ Industry Canada ICES-003 Compliance Label:						
CAN ICES-3 (*)/NMB-3(*)						
Insert either "A" or "B" but not both to identify the a	pplicable Class of IT	E.				
·						

Report No.: FV141027C05A Page No. 9 / 29 Reference No.: 141205C19

4 Configuration and Connections with EUT

4.1 Connection Diagram of EUT and Peripheral Devices

For Conducted Emission

For Radiated Emission

4.2 Configuration of Peripheral Devices and Cable Connections

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
A.	Wireless N Dual band Router	D-LINK	DIR-815	PVK21B5000399	KA21R815A1	
В.	B. BLUETOOTH ELECOM LBT-MPHS400		LBT-MPHS400	N/A	N/A	
C.	Radio Communication Analyzer	Anritsu	MT8820C	6201010284	N/A	
D.	Earphone	Minami	ME-816B5-E	N/A	N/A	Provided by client
E.	SD Card	Transcend	N/A	N/A	N/A	
F.	Notebook	DELL	V3560D	HGZ5RX1	N/A	
G.	USB PRINTER	EPSON	T22	MEEZ070388	N/A	

Note:

- 1. All power cords of the above support units are non-shielded (1.8m).
- 2. Items A~C acted as communication partners to transfer data.

ID	Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	Earphone Cable	1	1.2	N	0	Provided by client
2.	USB Cable	1	1.1	Υ	0	Accessory of the EUT
3.	USB Cable	1	1.8	Υ	0	

Note: The core(s) is(are) originally attached to the cable(s).

Report No.: FV141027C05A Reference No.: 141205C19

5 Conducted Emissions at Mains Ports

5.1 Limits

Fraguency (MHz)	Class A	(dBuV)	Class B (dBuV)	
Frequency (MHz)	Quasi-peak	Average	Quasi-peak	Average
0.15 - 0.5	79	66	66 - 56	56 - 46
0.50 - 5.0	73	60	56	46
5.0 - 30.0	73	60	60	50

Notes: 1. The lower limit shall apply at the transition frequencies.

5.2 Test Instruments

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	DATE OF CALIBRATION	DUE DATE OF CALIBRATION
Test Receiver ROHDE & SCHWARZ	ESCI	100612	Sep. 30, 2014	Sep. 29, 2015
RF signal cable Woken	5D-FB	Cable-HYC01-01	Dec. 27, 2013	Dec. 26, 2014
LISN ROHDE & SCHWARZ (EUT)	ESH3-Z5	835239/001	Feb. 13, 2014	Feb. 12, 2015
LISN ROHDE & SCHWARZ (Peripheral)	ESH3-Z5	100311	Jul. 21, 2014	Jul. 20, 2015
Software ADT	BV ADT_Cond_ V7.3.7.3	NA	NA	NA

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The test was performed in HwaYa Shielded Room 2.
- 3. The VCCI Site Registration No. is C-2047.

^{2.} The limit decreases linearly with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.

5.3 Test Arrangement

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The tset results of conducted emissions at mains ports are recorded of six worst margins for quasi-peak (mandatory) [and average (if necessary)] values against the limits at frequencies of interest unless the margin is 20 dB or greater.

Note: The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.

Note: 1.Support units were connected to second LISN.

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes

5.4 Supplementary Information

N/A

Report No.: FV141027C05A Page No. 13 / 29 Report Format Version: 6.1.0

Reference No.: 141205C19

5.5 Test Results

Frequency Range	0.15-30 MHz	Phase	Line 1
Input Power	120 Vac, 60 Hz	Enviornmental Conditions	23 °C, 65% RH
Tested by	Felix Chen	Test Date	2014/12/08
Test Mode	3		

	Eroa	Corr. Reading Value		Corr. Reading Value Emission Level		Limit		Margin		
No	Freq.	Factor	[dB	(uV)]	[dB	(uV)]	[dB ((uV)]	(dl	3)
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.31800	0.10	30.66	17.97	30.76	18.07	59.76	49.76	-29.00	-31.69
2	0.55680	0.14	34.33	19.90	34.47	20.04	56.00	46.00	-21.53	-25.96
3	0.64840	0.15	43.62	30.34	43.77	30.49	56.00	46.00	-12.23	-15.51
4	0.78200	0.17	34.91	23.24	35.08	23.41	56.00	46.00	-20.92	-22.59
5	1.80600	0.24	28.00	17.19	28.24	17.43	56.00	46.00	-27.76	-28.57
6	25.58924	1.28	31.52	16.55	32.80	17.83	60.00	50.00	-27.20	-32.17

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin Value = Emission Level Limit Value
- 4. Correction Factor = Insertion Loss + Cable Loss
- 5. Emission Level = Correction Factor + Reading Value

Frequency Range	0.15-30 MHz	Phase	Line 2
Input Power	120 Vac, 60 Hz	Enviornmental Conditions	23 °C, 65% RH
Tested by	Felix Chen	Test Date	2014/12/08
Test Mode	3		

	Eroa	Corr.	Readin	Reading Value I		n Level	Lir	nit	Mar	gin
No	Freq.	Factor	[dB	(uV)]	[dB	(uV)]	[dB	(uV)]	(dl	B)
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.57644	0.18	29.98	16.46	30.16	16.64	56.00	46.00	-25.84	-29.36
2	0.64559	0.19	46.49	40.44	46.68	40.63	56.00	46.00	-9.32	-5.37
3	1.29426	0.22	38.36	24.65	38.58	24.87	56.00	46.00	-17.42	-21.13
4	1.94600	0.22	37.53	27.05	37.75	27.27	56.00	46.00	-18.25	-18.73
5	3.36200	0.25	32.77	19.62	33.02	19.87	56.00	46.00	-22.98	-26.13
6	25.41400	1.15	36.27	23.10	37.42	24.25	60.00	50.00	-22.58	-25.75

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin Value = Emission Level Limit Value
- 4. Correction Factor = Insertion Loss + Cable Loss
- 5. Emission Level = Correction Factor + Reading Value

6 Radiated Emissions up to 1 GHz

6.1 Limits

Emissions radiated outside of the specified bands, shall be according to the general radiated limits as following:

Tollowing.									
	Radiated Emissions Limits at 10 meters (dBµV/m)								
Frequencies (MHz)	FCC 15B / ICES-003, Class A	FCC 15B / ICES-003, Class B	CISPR 22, Class A	CISPR 22, Class B					
30-88	39	29.5							
88-216	43.5	33.1	40	30					
216-230	46.4	35.6							
230-960	40.4	33.0	47	37					
960-1000	49.5	43.5	4/	31					

	Radiated Emissions Limits at 3 meters (dBµV/m)								
Frequencies (MHz)	FCC 15B / ICES-003, Class A	FCC 15B / ICES-003, Class B	CISPR 22, Class A	CISPR 22, Class B					
30-88	49.5	40							
88-216	54	43.5	50.5	40.5					
216-230	56.9	46							
230-960	56.9	40	57.5	47.5					
960-1000	60	54	57.5	47.5					

Notes: 1. The lower limit shall apply at the transition frequencies.

2. Emission level $(dBuV/m) = 20 \log Emission level (uV/m)$.

3. QP detector shall be applied if not specified.

Report No.: FV141027C05A Reference No.: 141205C19 Page No. 16 / 29

Report Format Version: 6.1.0

6.2 Test Instruments

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	DATE OF CALIBRATION	DUE DATE OF CALIBRATION
Test Receiver ROHDE & SCHWARZ (V)	ESR-7	101240	Sep. 29, 2014	Sep. 28, 2015
Test Receiver ROHDE & SCHWARZ (H)	ESR-7	101264	Dec. 04, 2014	Dec. 03, 2015
BILOG Antenna SCHWARZBECK (V)	VULB9168	9168-148	Feb. 25, 2014	Feb. 24, 2015
BILOG Antenna SCHWARZBECK (H)	VULB9168	9168-149	Feb. 25, 2014	Feb. 24, 2015
Preamplifier Agilent (V)	8447D	2944A10636	Oct. 18, 2014	Oct. 17, 2015
Preamplifier Agilent (H)	8447D	2944A10637	Oct. 18, 2014	Oct. 17, 2015
Preamplifier Agilent	8449B	3008A01959	Oct. 18, 2014	Oct. 17, 2015
RF signal cable Woken (V)	8D-FB	Cable-CH(V)-01	Oct. 25, 2014	Oct. 24, 2015
RF signal cable Woken (H)	8D-FB	Cable-CH(H)-01	Oct. 25, 2014	Oct. 24, 2015
Software BV ADT	BV ADT_Radiated_ V 8.7.07	NA	NA	NA
Antenna Tower (V)	MFA-440	9707	NA	NA
Antenna Tower (H)	MFA-440	970705	NA	NA
Turn Table	DS430	50303	NA	NA
Controller (V)	MF7802	074	NA	NA
Controller (H)	MF7802	08093	NA	NA

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The test was performed in HwaYa Chamber 1.
- 3. The FCC Site Registration No. is 477732.
- 4. The IC Site Registration No. is IC 7450F-1.
- 5. The VCCI Site Registration No. is R-1893, G-113.

6.3 Test Arrangement

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at an accredited test facility. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.

Note: The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for quasi-peak detection (QP) at frequency below 1GHz.

6.4 Supplementary Information

N/A

6.5 Test Results

Frequency Range	30-1000 MHz		
Input Power	120 Vac, 60 Hz	Enviornmental Conditions	20 °C, 60% RH
Tested by	Ben Huang	Test Date	2014/12/04
Test Mode	2		

	Antenna Polarity & Test Distance: Horizontal at 10 m								
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	135.000	16.87 QP	30.00	-13.13	1.00 H	292	31.83	-14.96	
2	221.700	26.78 QP	30.00	-3.22	2.50 H	209	42.76	-15.98	
3	225.820	26.87 QP	30.00	-3.13	2.00 H	41	42.83	-15.96	
4	307.180	24.56 QP	37.00	-12.44	2.00 H	290	35.99	-11.43	
5	343.800	22.51 QP	37.00	-14.49	3.00 H	232	33.06	-10.55	
6	619.270	27.63 QP	37.00	-9.37	2.50 H	359	32.06	-4.43	

- 1. Emission Level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB) Pre-Amplifier Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin Value = Emission Level Limit Value

Frequency Range	30-1000 MHz		
Input Power	120 Vac, 60 Hz	Enviornmental Conditions	20 °C, 60% RH
Tested by	Ben Huang	Test Date	2014/12/04
Test Mode	2		

	Antenna Polarity & Test Distance:: Vertical at 10 m							
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	45.030	23.60 QP	30.00	-6.40	3.00 V	98	37.78	-14.18
2	139.250	18.31 QP	30.00	-11.69	2.00 V	145	32.51	-14.20
3	172.710	17.67 QP	30.00	-12.33	1.00 V	277	31.45	-13.78
4	216.360	23.55 QP	30.00	-6.45	2.50 V	47	39.30	-15.75
5	493.050	25.87 QP	37.00	-11.13	2.50 V	348	32.87	-7.00
6	850.010	28.25 QP	37.00	-8.75	2.00 V	67	28.10	0.15

- 1. Emission Level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB) Pre-Amplifier Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin Value = Emission Level Limit Value

7 Radiated Emissions above 1 GHz

7.1 Limits

Emissions radiated outside of the specified bands, shall be according to the general radiated limits as following:

.e.e.i.i.g.								
Radiated Emissions Limits at 10 meters (dBµV/m)								
Frequencies FCC 15B / ICES-003, FCC 15B / ICES-003, CISPR 22, Class A CISPR 22, Class B								
(MHz)	Class A Class B Class B							
1000-3000	1000-3000 Avg: 49.5 Avg: 43.5 Not defined Not defined							
Above 3000	Peak: 69.5	Peak: 63.5	Not defined	Not defined				

Radiated Emissions Limits at 3 meters (dBµV/m)									
Frequencies (MHz) FCC 15B / ICES-003, FCC 15B / ICES-003, Class B CISPR 22, Class A CISPR 22, Class B									
1000-3000	Avg: 60	Avg: 54	Avg: 56 Peak: 76	Avg: 50 Peak: 70					
Above 3000	Peak: 80	Peak: 74	Avg: 60 Peak: 80	Avg: 54 Peak: 74					

Notes: 1. The lower limit shall apply at the transition frequencies.

- 2. Emission level $(dBuV/m) = 20 \log Emission level (uV/m)$.
- 3. As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

Radiated Emissions Limits at 1.5 meters (dBµV/m)							
Frequencies (MHz)	FCC 15B / ICES-003, Class A	FCC 15B / ICES-003, Class B					
Above 18000	Avg: 66 Peak: 86	Avg: 60 Peak: 80					

Note: Limit@1.5m = Limit@3m + 20log(3/1.5)

Frequency Range (For unintentional radiators)

Highest frequency generated or used in the device or	Upper frequency of measurement range (MHz)	
on which the device operates or tunes (MHz) Below 1.705	30	
1.705-108	1000	
108-500	2000	
500-1000	5000	
Above 1000	5th harmonic of the highest frequency or 40GHz,	
Above 1000	whichever is lower	

Report No.: FV141027C05A Page No. 21 / 29 Report Format Version: 6.1.0

Reference No.: 141205C19

7.2 Test Instruments

DESCRIPTION & MANUFACTURER					
ROHDE & SCHWARZ ESCI 100424 Oct. 06, 2014 Oct. 05, 2015		MODEL NO.	SERIAL NO.		DUE DATE OF CALIBRATION
Agilent E4440A MT44301124 Feb. 12, 2014 Feb. 11, 2015		ESCI	100424	Oct. 06, 2014	Oct. 05, 2015
SCHWARZBECK VULB9168 9168-157 Feb. 26, 2014 Feb. 25, 2015 RF signal cable Woken 8D-FB NA Mar. 21, 2014 Mar. 20, 2015 HORN Antenna SCHWARZBECK BBHA 9120 D 9120D-404 Jan. 05, 2014 Jan. 04, 2015 HORN Antenna SCHWARZBECK BBHA 9170 BBHA9170243 Jan. 09, 2014 Jan. 08, 2015 Preamplifier Agilent (Below 1GHz) 8447D 2944A10629 Oct. 18, 2014 Oct. 17, 2015 Preamplifier Agilent (Above 1GHz) 8449B 3008A01959 Oct. 18, 2014 Oct. 17, 2015 RF signal cable HUBER+SUHNER SUCOFLEX 104 MWX322+MWX2211308S0295 Nov. 06, 2014 Nov. 05, 2015 Software BV ADT AT100 AT93021702 NA NA NA Antenna Tower BV ADT AT100 AT93021702 NA NA NA BV ADT TT100 TT93021702 NA NA NA RF signal cable HUBER+SUHNNER SUCOFLEX 102 38218/2+37433/2 Oct. 25, 2014 Oct. 24, 2015 Fix tool for Boresight antenna tower BAF-01 2 NA </td <td>Agilent</td> <td>E4446A</td> <td>MY44360124</td> <td>Feb. 12, 2014</td> <td>Feb. 11, 2015</td>	Agilent	E4446A	MY44360124	Feb. 12, 2014	Feb. 11, 2015
Woken 8D-FB NA Mar. 21, 2014 Mar. 20, 2015 HORN Antenna SCHWARZBECK BBHA 9120 D 9120D-404 Jan. 05, 2014 Jan. 04, 2015 HORN Antenna SCHWARZBECK BBHA 9170 BBHA9170243 Jan. 09, 2014 Jan. 08, 2015 Preamplifier Agilent (Below 1GHz) 8447D 2944A10629 Oct. 18, 2014 Oct. 17, 2015 Preamplifier Agilent (Above 1GHz) 8449B 3008A01959 Oct. 18, 2014 Oct. 17, 2015 RF signal cable HUBER+SUHNER SUCOFLEX 104 MWX322+MWX2211308S0295 Nov. 06, 2014 Nov. 05, 2015 Software BV ADT ADT_Radiated_ V7.6.15.9.4 NA NA NA NA Antenna Tower BV ADT AT100 AT93021702 NA NA NA BV ADT TT100 TT93021702 NA NA Controller BV ADT SC100 SC93021702 NA NA RF signal cable HUBER+SUHNNER SUCOFLEX 102 38218/2+37433/2 Oct. 25, 2014 Oct. 24, 2015 Fix tool for Boresight antenna tower BAF-01 2 NA NA <td></td> <td>VULB9168</td> <td>9168-157</td> <td>Feb. 26, 2014</td> <td>Feb. 25, 2015</td>		VULB9168	9168-157	Feb. 26, 2014	Feb. 25, 2015
SCHWARZBECK BBHA 9120 D 9120D-404 Jan. 05, 2014 Jan. 04, 2015 HORN Antenna SCHWARZBECK BBHA 9170 BBHA9170243 Jan. 09, 2014 Jan. 08, 2015 Preamplifier Agilent (Below 1GHz) 8447D 2944A10629 Oct. 18, 2014 Oct. 17, 2015 Preamplifier Agilent (Above 1GHz) 8449B 3008A01959 Oct. 18, 2014 Oct. 17, 2015 RF signal cable HUBER+SUHNER SUCOFLEX 104 MWX322+MWX2211308S0295 Nov. 06, 2014 Nov. 05, 2015 Software BV ADT BV ADT_Radiated_ V7.6.15.9.4 NA NA NA NA Antenna Tower BV ADT AT100 AT93021702 NA NA NA BV ADT TT100 TT93021702 NA NA NA Controller BV ADT SC100 SC93021702 NA NA NA RF signal cable HUBER+SUHNNER SUCOFLEX 102 38218/2+37433/2 Oct. 25, 2014 Oct. 24, 2015 Fix tool for Boresight antenna tower BAF-01 2 NA NA	Woken	8D-FB	NA	Mar. 21, 2014	Mar. 20, 2015
SCHWARZBECK BBHA 9170 BBHA 9170 BBHA 9170 BBHA 9170 Jan. 09, 2014 Jan. 08, 2015 Preamplifier Agilent (Below 1 GHz) 8447D 2944A10629 Oct. 18, 2014 Oct. 17, 2015 Preamplifier Agilent (Above 1 GHz) 8449B 3008A01959 Oct. 18, 2014 Oct. 17, 2015 RF signal cable HUBER+SUHNER SUCOFLEX 104 MWX322+MWX2211308S0295 Nov. 06, 2014 Nov. 05, 2015 Software BV ADT BV ADT_Radiated_V7.6.15.9.4 NA NA NA NA Antenna Tower BV ADT AT100 AT93021702 NA NA NA NA Turn Table BV ADT TT100 T193021702 NA NA NA RF signal cable BV ADT SC100 SC93021702 NA NA NA RF signal cable HUBER+SUHNNER SUCOFLEX 102 38218/2+37433/2 Oct. 25, 2014 Oct. 24, 2015 Oct. 25, 2014 Oct. 24, 2015 Fix tool for Boresight antenna tower BAF-01 2 NA NA	SCHWARZBECK	BBHA 9120 D	9120D-404	Jan. 05, 2014	Jan. 04, 2015
Agilent (Below 1GHz) 8447D 2944A10629 Oct. 18, 2014 Oct. 17, 2015 Preamplifier Agilent (Above 1GHz) 8449B 3008A01959 Oct. 18, 2014 Oct. 17, 2015 RF signal cable HUBER+SUHNER SUCOFLEX 104 MWX322+MWX2211308S0295 Nov. 06, 2014 Nov. 05, 2015 Software BV ADT BV ADT_Radiated_ V7.6.15.9.4 NA NA NA Antenna Tower BV ADT AT100 AT93021702 NA NA Turn Table BV ADT TT100 TT93021702 NA NA Controller BV ADT SC100 SC93021702 NA NA RF signal cable HUBER+SUHNNER SUCOFLEX 102 38218/2+37433/2 Oct. 25, 2014 Oct. 24, 2015 Fix tool for Boresight antenna tower BAF-01 2 NA NA	SCHWARZBECK	BBHA 9170	BBHA9170243	Jan. 09, 2014	Jan. 08, 2015
Agilent (Above 1GHz) 8449B 3008A01959 Oct. 18, 2014 Oct. 17, 2015 RF signal cable HUBER+SUHNER SUCOFLEX 104 MWX322+MWX2211308S0295 Nov. 06, 2014 Nov. 05, 2015 Software BV ADT BV ADT_Radiated_V7.6.15.9.4 NA NA NA NA Antenna Tower BV ADT AT100 AT93021702 NA NA Turn Table BV ADT TT100 TT93021702 NA NA Controller BV ADT SC100 SC93021702 NA NA RF signal cable HUBER+SUHNNER SUCOFLEX 102 38218/2+37433/2 Oct. 25, 2014 Oct. 24, 2015 Fix tool for Boresight antenna tower BAF-01 2 NA NA	Agilent	8447D	2944A10629	Oct. 18, 2014	Oct. 17, 2015
HUBER+SUHNER SUCOFLEX 104 MWX322+MWX2211308S0295 Nov. 06, 2014 Nov. 05, 2015 Software BV ADT BV ADT_Radiated_ V7.6.15.9.4 NA NA NA NA Antenna Tower BV ADT AT100 AT93021702 NA NA Turn Table BV ADT TT100 TT93021702 NA NA Controller BV ADT SC100 SC93021702 NA NA RF signal cable HUBER+SUHNNER SUCOFLEX 102 38218/2+37433/2 Oct. 25, 2014 Oct. 24, 2015 Fix tool for Boresight antenna tower BAF-01 2 NA NA	Agilent	8449B	3008A01959	Oct. 18, 2014	Oct. 17, 2015
Software BV ADT		SUCOFLEX 104	MWX322+MWX2211308S0295	Nov. 06, 2014	Nov. 05, 2015
BV ADT AT 100 AT 93021702 NA NA Turn Table BV ADT TT100 TT93021702 NA NA Controller BV ADT SC100 SC93021702 NA NA RF signal cable HUBER+SUHNNER SUCOFLEX 102 38218/2+37433/2 Oct. 25, 2014 Oct. 24, 2015 Fix tool for Boresight antenna tower BAF-01 2 NA NA		ADT_Radiated_	NA	NA	NA
BV ADT T1100 T193021702 NA NA Controller BV ADT SC100 SC93021702 NA NA RF signal cable HUBER+SUHNNER SUCOFLEX 102 38218/2+37433/2 Oct. 25, 2014 Oct. 24, 2015 Fix tool for Boresight antenna tower BAF-01 2 NA NA		AT100	AT93021702	NA	NA
BV ADT SC100 SC93021702 NA NA RF signal cable HUBER+SUHNNER SUCOFLEX 102 38218/2+37433/2 Oct. 25, 2014 Oct. 24, 2015 Fix tool for Boresight antenna tower BAF-01 2 NA NA		TT100	TT93021702	NA	NA
HUBER+SUHNNER Fix tool for Boresight antenna tower SUCOFLEX 102 38218/2+37433/2 Oct. 25, 2014 Oct. 24, 2015 NA NA	BV ADT	SC100	SC93021702	NA	NA
antenna tower Z NA NA	HUBER+SUHNNER	SUCOFLEX 102	38218/2+37433/2	Oct. 25, 2014	Oct. 24, 2015
26GHz ~ 40GHz Amplifier EMC26400 815221 Oct. 18, 2014 Oct. 17, 2015		BAF-01	2	NA	NA
	26GHz ~ 40GHz Amplifier	EMC26400	815221	Oct. 18, 2014	Oct. 17, 2015

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The test was performed in HwaYa Chamber 2.
- 3. The horn antenna and HP preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.
- 4. The FCC Site Registration No. is 686814.
- 5. The IC Site Registration No. is IC 7450F-2.
- 6. The VCCI Site Registration No. is G-18.

7.3 Test Arrangement

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at an accredited chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. For frequency range 1GHz ~ 18GHz, the EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. For frequency range 18GHz ~ 40GHz, the EUT was set 1.5 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- e. The height of antenna can be varied from one meter to four meters, the height of adjustment depends on the EUT height and the antenna 3dB beamwidth both, to detect the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- f. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- g. The spectrum analyzer system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz.

Note: The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for Peak detection (PK) at frequency above 1GHz. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz for Average detection (AV) at frequency above 1GHz.

7.4 Supplementary Information

N/A

7.5 Test Results

Frequency Range	1GHz ~ 18GHz		
Input Power	120 Vac, 60 Hz	Enviornmental Conditions	22 °C, 64% RH
Tested by	Daniel Lin	Test Date	2014/12/08
Test Mode	2		

	Antenna Polarity & Test Distance: Horizontal at 3 m								
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	1199.243	35.51 PK	74.00	-38.49	1.52 H	10	44.85	-9.34	
2	1199.243	30.20 AV	54.00	-23.80	1.52 H	10	39.54	-9.34	
3	1597.729	38.06 PK	74.00	-35.94	1.00 H	337	45.89	-7.83	
4	1597.729	31.20 AV	54.00	-22.80	1.00 H	337	39.03	-7.83	
5	7037.480	49.78 PK	74.00	-24.22	1.75 H	218	40.16	9.62	
6	7037.480	35.20 AV	54.00	-18.80	1.75 H	218	25.58	9.62	
7	11329.508	57.10 PK	74.00	-16.90	1.85 H	200	40.48	16.62	
8	11329.508	42.10 AV	54.00	-11.90	1.85 H	200	25.48	16.62	

- 1. Emission Level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB) Pre-Amplifier Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin Value = Emission Level Limit Value

i 			
Frequency Range	1GHz ~ 18GHz		
Input Power	120 Vac, 60 Hz	Enviornmental Conditions	22 °C, 64% RH
Tested by	Daniel Lin	Test Date	2014/12/08
Test Mode	2		

	Antenna Polarity & Test Distance: Vertical at 3 m									
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	1249.054	42.73 PK	74.00	-31.27	1.00 V	124	51.80	-9.07		
2	1249.054	29.60 AV	54.00	-24.40	1.00 V	124	38.67	-9.07		
3	1439.230	40.06 PK	74.00	-33.94	1.25 V	200	48.46	-8.40		
4	1439.230	32.50 AV	54.00	-21.50	1.25 V	200	40.90	-8.40		
5	9625.565	53.66 PK	74.00	-20.34	1.02 V	152	40.75	12.91		
6	9625.565	40.10 AV	54.00	-13.90	1.02 V	152	27.19	12.91		
7	12174.216	56.72 PK	74.00	-17.28	1.25 V	360	40.55	16.17		
8	12174.216	42.30 AV	54.00	-11.70	1.25 V	360	26.13	16.17		

- 1. Emission Level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB) Pre-Amplifier Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin Value = Emission Level Limit Value

Frequency Range	18GHz ~ 40GHz		
Input Power	120 Vac, 60 Hz	Enviornmental Conditions	22 °C, 64% RH
Tested by	Daniel Lin	Test Date	2014/12/09
Test Mode	2		

	Antenna Polarity & Test Distance: Horizontal at 1.5 m									
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	22312.500	59.20 PK	80.00	-20.80	1.05 H	200	63.60	-4.40		
2	22312.500	40.80 AV	60.00	-19.20	1.05 H	200	45.20	-4.40		

- 1. Emission Level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB) Pre-Amplifier Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin Value = Emission Level Limit Value

Frequency Range	18GHz ~ 40GHz		
Input Power	120 Vac, 60 Hz	Enviornmental Conditions	22 °C, 64% RH
Tested by	Daniel Lin	Test Date	2014/12/09
Test Mode	2		

	Antenna Polarity & Test Distance: Vertical at 1.5 m									
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	24321.200	55.60 PK	80.00	-24.40	1.00 V	322	59.49	-3.89		
2	24321.200	43.20 AV	60.00	-16.80	1.00 V	322	47.09	-3.89		

- 1. Emission Level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB) Pre-Amplifier Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin Value = Emission Level Limit Value

8 Pictures of Test Arrangements	
Please refer to the attached file (Test Setup Photo).	

Appendix - Information on the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab Hsin Chu EMC/RF/Telecom Lab

Tel: 886-2-26052180 Tel: 886-3-5935343 Fax: 886-2-26051924 Fax: 886-3-5935342

Hwa Ya EMC/RF/Safety Lab

Tel: 886-3-3183232 Fax: 886-3-3270892

Email: service.adt@tw.bureauveritas.com
Web Site: www.bureauveritas-adt.com

The address and road map of all our labs can be found in our web site also.

--- END ---

Report No.: FV141027C05A Page No. 29 / 29 Report Format Version: 6.1.0

Reference No.: 141205C19