高精度的数字电位器X9C103

纪宗南 (南京航空航天大学自控系, 210016)

摘要:X9C103 是美国Xicor公司生产的高精度数字电位器,它具有100 个电阻值和数字控制及非 易失性功能。选择好的电阻能方便地保存在存贮器中,并能重复调用。文中主要介绍它的特 点、原理和应用电路。

关键词: 数字电位器 电阻阵列 非易失性

在各种电桥电路中,为了调节电桥平衡,必须对电位器进行多次调节,方能使电桥达到平 衡。在使用过程中,当这些电位器受到振动、冲击、温度、湿度等外界环境的影响,电位器的位 置和参数将发生变化,致使系统指标改变.要使系统达到原状,必须进行重新调节,这给使用 带来很多不便、为此、在电桥的桥臂电路中,使用数字电位器和数字技术,不仅克服上述缺点、 而且还大大提高系统的精度.

目前数字电位器阻值的变化均是阶梯式或增量式,台阶数(抽头数)越多,则阻值变化就愈 小, 调节的灵敏度就愈高, 但是台阶数愈多, 内部开关管和电路越复杂, 价格也随之提高, 因 此, 在选择数字电位器时, 一定要在台阶数和价格之间作出权衡。

X9C103 是 100 阶数字电位器, 也是 X9C102/103/104/503 系列中的一种型号, 它的电阻范围为 $40\Omega\sim 10K\Omega$,其他型号的电阻值如表1所示。X9C103片内包含有99个电阻单元的电阻阵列,在每 个单元之间和二个端点都有被滑动单元访问的抽头点。滑动单元的位置由 \overline{CS} 、 U/\overline{D} 和 \overline{INC} 三 个输入端控制,一旦位置选定后,可存放在非易失性存贮器中,因而在下一次上电时可重新调 用.

二、芯片简介

- 1. 主要特点
- 与X9103兼容
- 低功耗的CMOS工艺技术:

工作电流, 3mA(max); 等待电流, 500μA(

max); 电源电压, 3V~5V;

• 100 个滑动抽头点:

滑动端的位置由三线控制; 电阻变化类似 可逆计数器;滑动端的位置可存贮在存贮器 100年; 中, 且在上电时重新调用;

电阻范围: 40Ω~10ΚΩ;

2. 电气参数

型号图	最小电阻	最大电阻	滑动端增量
X9C102	40Ω	ΙΚΩ	10.1Ω
X9C103	40Ω	10ΚΩ	10ΙΩ
X9C503	40Ω	50ΚΩ	505Ω
X9C104	40Ω	100ΚΩ	1010Ω

99个电阻单元:

有温度补偿功能; 端点间的电阻误差: ±20%;

- 滑动端位置数据可长久保存, 时间为
 - 电阻分辨率较高: 1%.

《集成电路应用》1999年第4期

(I)推荐参数

• 电源电压

 $3V \sim 5V$

● 电源电流

lmA

• 滑动端电流

±lmA (max)

• 滑动端电阻

40Ω(ImA时)

• 端点间的电阻误差

±20%

• 电阻分辨率

1%

• 额定功率

1mW

• 噪声

<-120dB/Hz(基准为1V)

(2)极限参数

• 滑动端电流

±lmA

 CS \ INC \ U/D 和Vcc 的电压(相对Vss)

 V_H和V_L上的电压(相对Vss)

-8V~+8V

• 电源电压

• $\Delta U = |V_H - V_I|$

10V 5.5V

• 工作温度

-65℃~+135℃

• 存贮温度

-65℃~+150℃

• 引线焊接温度(10秒)

300℃

图1 X9C103引脚图

三、工作原理

X9C103内部功能图如图2 所示。该电路由输入控制、计 数器和译码器、非易失存贮器 及电阻阵列三部分组成。输入 控制部分类似一个可逆计数 器, 计数器的输出被译码后, 就接通一个单接点的电子开关, 从而把电阻阵列上的一个点连 接到滑动输出端, 在某种条件 下, 计数器的内容可以存贮到 非易失性存贮器中, 以便今后调 用. 电阻阵列中包含99个单独 的电阻, 它们以串联的形式连 接。在两个端点(VH和VL)和每 个电阻之间有一个电子开关,它 能把该点的电位传输到滑动端

3. 引脚图和引脚功能

X9C103引脚图如图1所示。

X9C103引脚功能如表2所示。

表2 X9C103 引脚功能

引脚	名称	功能				
1	ĪNC	"增加"输入脚, INC 输入端是负边沿触发. 触发 INC 将				
	V	使 滑动端向计数器增加或减少的方向移动,移动的方向				
		由 U/\overline{D} 端输人的逻辑电平决定.				
2	U/\overline{D}	升/降输入脚。 U/\overline{D} 输入控制滑动端移动的方向,因而控制				
		计数器是增加或是减少.				
		高电压端及低电压端,X9C102/103/104/503 幻高(VH)和低(VL)电				
3	V _{II}	压端等效于一个机械电位器的固定端. 其最小电压是-5V, 而				
		最大电压是+5V. 但必须注意 V. 和 Va 这个术语只是规定了由				
6	V_L	U/D 输入端选择的关于滑动端滑动方向的相对位置,而并				
		不是端点上的电压.				
4	Vss	地				
5	Vw	滑动端. Vw是一个滑动端, 相当于机械电位器的可移动端. 滑				
		动端在电阻阵列中的位置由控制输入端决定, 滑动端的串耶				
		阻值典型是40公。				
7	\overline{CS}	片选输人端,当 \overline{CS} 端输入为低时器件被选中,当 \overline{CS} 变为				
		高,且 \overline{INC} 输入端也为高时,当前计数器的值被贮存在非易				
.]		失性存贮器中、在贮存操作完成后,X9C102/103/104/503 将处于				
		低功耗的等待方式,直到器件再次被选中.				
8	Vcc	电源电压				

 \overline{INC} 、 U/\overline{D} 和 \overline{CS} 三个输入引脚能控制滑动端在电阻阵列中移动的位置,当 \overline{CS} 为低电平时,则X9C103 被选中。这时 \overline{INC} 和 U/\overline{D} 输入引脚才能接受信号。当 \overline{INC} 输入引脚由高到低变化可能增加或减小一个7位计数器的值,这主要决定 U/\overline{D} 输入引脚的电平,当 U/\overline{D} 为高电平,计数器的值增加;当 U/\overline{D} 为低电平,计数器的值减小。7位可逆计数器输出译码后,立即

进行一百选一的操作,从而使滑动端的位置沿着电阻阵列移动,当滑动端位于一个固定点时,就象等效的机械滑动端那样,不会移到超出终端位置,即计数器达到一个极限端(0000000 或 1111111)时,不会循环回复,

当 \overline{CS} 和 \overline{INC} 同时为高电平时,计数器的值被存贮到非易失性存贮器中。当X9C103 断电,最后存贮在计数器的值仍然维持在非易失性存贮器中,当电源恢复后,存贮器中的内容就是断电时计数器的值。

 \overline{INC} 、 \overline{CS} 和 U/\overline{D} 三个输入引脚的电平决定工作方式的选择,详细情况如表3所示。时序图如图3所示。

图3 X9C103工作时序图

表3 方式选择

人工 人							
\overline{CS}	ĪNC	U/\overline{D}	方式				
低电平	7_	髙电平	向上滑动				
低电平	T-J	低电平	向下滑动				
	高电平	高电平或低电平	存贮滑动端位置				
高电平	高电平或低电平	高电平或低电平	等待电流				
	低电平	高电平或低电平	不存贮,返回等待				

四、应用电路

由于X9C103数字电位器具有精度 高、抗干扰强、功耗低、数字控制和保 存时间长的特点,所以广泛应用在需要 数字微调电阻的各种电路中,现以文氏 电桥振荡器中的数控电路为例说明它的典型应用.

图4 X9C103组成的文氏电桥

利用X9C103组成的文氏电桥振荡器的电路如图4所示. 该电路有两个反馈通道(正反馈和负反馈),这两个通道组成电桥的两个臂. 其中一个臂为负反馈通道,它由R3、R4A、R4B和Q1(CR3、U3B、R11和C7组成幅度检测电路)组成,主要完成幅度检测和振幅平衡调节任务;另一个桥臂为正反馈通道,它由C1、C2、R1+U1和R2+U2组成,主要完成频率调节功能. 假设C1=C2,

RI+UI=R2+U2, 则振荡频率为:
$$f = \frac{1}{2\pi C1(R1+U1)}$$

图中幅度检测电路(CR3、U3B、R11和C7)能自动设置负反馈,使得峰值电压等于基准电压,这样就限制振荡器的电压幅度,不进入运算放大器的饱和区,从而保证振幅平衡.

为了保证振荡器每个周期不发生限流, RII 和C7的时间常数必须远大于振荡器的最低频率; 这也是选择这两个元件的重要原则。

工作程序的连续性、可靠性.

5. 为了减少口线,也可不用锁存器锁存WDO 信号,改用软件判断,其根据是:上电复位时CPU内部的RAM为随机状态,而其他复位由于系统未断电CPU内部的RAM保持不变.我们可以在程序中设定内部RAM某区域为特定值(如AAH),系统复位后,用程序监测检查该区域的值,以确定复位的类型,决定程序的走向。当然,干扰信号也可能破坏了上述标志,但这种可能性极小。

总之,用MAX8I3L构成的微机监控系统,电路简单、工作可靠、价格低廉、精度较高、性能优良.该芯片具有较好的应用前景。