Fine-tuning GPT-2 for Short Query Intent Classification

Jin Young Lee

June 9, 2025

Motivation and Problem Statement

Problem & Importance

- Users input short, ambiguous queries
- Predicting intent is key to user experience
- Applicable to voice assistants, chatbots, search engines
- Challenge: minimal context increases ambiguity

Example Queries

- "Weather?" → weather_query
- "Pizza nearby" \rightarrow find restaurant

Proposed Approach and Methodology

Model Architecture

- GPT-2 base model (768d hidden)
- Custom classification head
- Two fine-tuning modes:
 - Last-linear-layer only
 - Full-model fine-tuning
- Dropout (0.3) for regularization

Training Setup

- Optimizer: AdamW
- Learning rate: 1e-3
- Batch size: 8
- Cross-entropy loss
- Early stopping on dev accuracy

Dataset and Preprocessing

Amazon MASSIVE Dataset

- EN-US subset
- Multiple domains
- Short/long queries
- Labeled intent classes

Preprocessing Pipeline

- GPT-2 tokenizer
- Dynamic padding
- Truncation to max length
- EOS token as padding
- Unique IDs for tracking

Implementation Details

Model Components

- GPT2IntentClassifier class:
 - GPT-2 backbone with frozen/fine-tuned params
 - Linear classification head (768d → num_labels)
 - Dropout layer (0.1) before classification
- Custom dataset classes:
 - IntentClassificationDataset for train/dev
 - IntentClassificationTestDataset for test
- Evaluation metrics:
 - Accuracy and Macro F1 score
 - Per-class performance analysis

Training Progress

Loss and Metrics Tracking

- Training loss decreases steadily
- Validation metrics show convergence
- No significant overfitting observed
- Full-model fine-tuning shows better convergence

Figure: Training metrics over epochs

Experiments and Results

Quantitative Results

- Best performance:
 - Accuracy: 89.4%
 - Macro F1: 88.2%
- Fine-tuning comparison:
 - Full-model ¿ Last-layer (+3.5 F1)
 - Better generalization
- Performance patterns:
 - Strong on multi-word queries
 - Challenging for single-word inputs

Challenges and Learnings

Technical Challenges

- Model architecture:
 - Balancing model capacity vs. overfitting
 - Optimal dropout rates (0.3 for GPT, 0.1 for head)
- Training dynamics:
 - Learning rate sensitivity
 - Batch size limitations (GPU memory)
- Data processing:
 - Tokenization edge cases
 - Padding strategy impact

Future Work

Technical Improvements

- Model efficiency:
 - Implement LoRA for efficient fine-tuning
 - Explore model quantization
- Architecture enhancements:
 - Add attention visualization
 - Implement confidence scoring
- Training improvements:
 - Learning rate scheduling
 - Gradient accumulation

Q&A Preparation

Technical Questions

- Why GPT-2 over BERT?
- Handling of out-of-vocab tokens?
- Memory requirements?

Implementation Questions

- Training time and resources?
- Deployment considerations?
- Error analysis methodology?