

In the context of machine learning AI, stochastic describes algorithms or models that

SGp: SGD is an ophenization algorithm used to minimize the loss function. To do so, SGP computes the gradient for a single random chosen training data at each iteration

00x100 = 10,000

a) Initialization

- Initalize the model parameters (weights and bisses) with random values or zeroes.

- set the learning rate (X or M)

set by modelors

set by modelors $\alpha: (0.01, 0.1, 0.15, 0.2)$

- Define the no of epochs (iteration over the entire dataset)

In SGD - Fraining data: 10,000 records epochs # 100.

How many times > model will update the weight & brases

Ans: For SGD: 100 × 10,000 = 1×106 = 1 million times.

b) Heration shuffle the dataset (training)

- shuffle the training dataset to ensure the random sampling

- For randomly selected single training data brint (row):

compute the gradient of the loss function

the Update the mudel parameters using the

Vanilla -> BGD: Entire dorlaret

learning rate - Input for Updation Friendly

Mewton - Ralphon's Method

Take Understand the importance of initializing GDA.

Mini-Batch Gradient Descent (MBGD)

MBGD is a trade-off between Batch Gradient and stochaster Gradient descents:

Training 10,000 data records

batch_size = 32 data records.

10000/32=312.5 £ 3/3 63/3 batches -

No. of iterations performed in implementing 3 GDAs (refer the Google collab notcloook)

m = 100

coachs = 100

$$n_b$$
 batch $=$ $\left[\frac{\log n}{32}\right] = \left[\frac{100}{32-3.125}\right] = 3$

560 # (training records x epochs) = mx epoch = los x100 = 10,000

MBGO # = n_batch x epochs = 3×100 = 200

right batch size =? L Hyper paraoder tuning ~