Classification périodique

Classification périodique des éléments ou Tableau périodique = Référentiel universel pour classer les éléments suivant leurs comportements physiques et chimiques

Tableau périodique établi par le russe Mendeleïev en 1860, (Tableau de **Mendeleïev**)

Plusieurs mises à jour avec la découverte de nouveaux éléments.

118 éléments ($_1$ H -> $_{118}$ Uuo $\mathit{ununoctium}$) en Février 2010

Tableau périodique des éléments Tableau périodique des éléments

Chaque atome est composé: d'un noyau central chargé positivement. Noyau = protons (chargés +) + neutons (neutres) d'un nuage électronique: électrons chargés (-) qui tournent à très grande vitesse autour du noyau Particule masse (uma) charge électrique (C) Electron 5,49.10-4 1,6.10-19

+ 1,6.10-19

0

* Masse des électrons négligeables par rapport au noyau. Masse de l'atome assimilé à masse du noyau

1 uma=1/12 (masse de C)

1,0073 1,0086

Luma= 1.6603.10⁻²⁴ g

Proton

Neutron

Eléments chimiques

Elément chimique X, AZX

A: nombre de masse = nombre total de protons et de neutrons

Z nombre de charge ou **numéro atomique** = nombre de protons = nombre d'électrons <u>si</u> l'élément est neutre

Exemples: ${}^{56}{}_{26}\text{Fe}, {}^{56}{}_{26}\text{Fe}^{2+}, {}^{56}{}_{26}\text{Fe}^{3+}$

Nombre de masse A ≠ masse atomique (uma) masse atomique (uma) ≈ masse molaire (M g/mol) avec 1 uam = 1.6603 10^{-24} g et \mathcal{R}_a = 6.023 10^{23}

Les isotopes

- Atomes d'un même élément qui ont le **même nombre de protons** mais un nombre différent de neutrons
- Atomes avec le **même numéro atomique Z** mais avec un nombre de masse **A différent**

Exemple:

Le Chlore naturel (Z=17) possède 2 isotopes: chlore 35 et chlore 37

	35CI	37 CI
Numéro atomique Z	17	17
Nombre de masse A	35	37
Electrons	17	17
Protons	17	17
Neutrons = A-Z	18	20

Abondance des isotopes

Abondance isotopique = pourcentage des isotopes d'un élément

Masse moyenne pondérée = Masse atomique (cf. tableau périodique) qui tient compte des isotopes et de leur abondance

Exemple:

Element	nombre de masse: A	masse (uma) isotopique	abondance en %
35 Cl	35	34,97	75,8
37 CI	37	36,97	24,2

Masse moyenne pondérée du chlore: = (0,758 * 34,97) + (0,242 * 36,97) = 35,454 uma

Orbitales atomiques

Les électrons sont disposés suivant des orbites bien définies. Les distributions spatiales des électrons dans les atomes sont décrites par des orbitales atomiques (OA). Exemples: orbitale atomique s, p, d...

Une OA est une région de l'espace où l'électron a une probabilité donnée de se trouver.

Les OA sont définies par 4 nombres quantiques :

Nombres quantiques: n,l, m et s

n= nombre quantique principal, n∈ N*

n caractérise la couche et représente le niveau d'énergie de l'orbite

l= nombre quantique secondaire, $0 \le l \le n-1$

l caractérise la sous couche et définit la forme de l'orbitale atomique

Pour **I = 0**, l'OA est appelée **s** (sphérique)
Pour **I = 1**, l'OA est appelée **p** (lobe ou haltère)
Pour **I = 2**, l'OA est appelée **d** (lobes croisées)

m= nombre quantique magnétique, -l $\leq m \leq l$ m définit l'orientation dans l'espace de l'orbitale de l'électron sous l'effet d'un champ magnétique

s = nombre de spin, s = (-1/2) ou (+1/2)

Couches et sous couches

 $n \in N^*$, n = couche

 $0 \le I \le n-1$, I = sous couche

Pour une couche correspondant à n (niveau d'énergie), il y a autant de sous couche que de n

Pour **n=1**: **I=0**: 1 sous couche s: OA: 1s

Pour n=2; I=0,1; 2 sous couches s,p; OA: 2s 2p Pour n=3; I=0,1,2; 3 sous couches s,p,d; OA: 3s 3p 3d

valeurs de **n**) valeurs de | 0 0,1 0,1,2 s p d

Orbitales atomiques 1s 2s 2p 3s 3p 3d OA correspondantes.

Configuration	s électroniques	
Configurations électroniques de quelques éléments:		
₁ H: (1s) ¹		
2He: (1s)2		
₃ Li : (1s) ² (2s) ¹		
4Be: (1s)2(2s)2		
sB: (1s) ² (2s) ² (2p) ¹		
₉ F: (1s) ² (2s) ² (2p) ⁵		
₁₀ Ne: (1s) ² (2s) ² (2p) ⁶		
$_{11}$ Na : $(1s)^2(2s)^2(2p)^6(3s)^1$	OU 10Ne (3s)1	
$_{12}$ Mg: $(1s)^2(2s)^2(2p)^6(3s)^2$	OU 10Ne (3s) ²	
•••		