DREBIN Dataset Classification: A Machine Learning Empirical Evaluation

A. Dataset

O banco de dados DREBIN [1], derivado do método de mesmo nome, foi desenvolvido para pesquisadores interessados em estudar detecção de *malware* e comparar diferentes abordagens. O *dataset* é composto por um total de 131.611 instâncias, que representam uma variedade de aplicativos reais coletados de diferentes mercados e fontes. Dos aplicativos coletados, 5.560 são classificados como *malware*, enquanto os restantes não representam perigo para o usuário, ou seja, são considerados benignos.

Cada instância do banco de dados é composta pelas características extraídas dos aplicativos durante a análise realizada pelo método DREBIN. Essas características capturam aspectos específicos do comportamento e da estrutura dos aplicativos e são representadas de forma quantitativa, indicando a frequência com que cada característica aparece. O método DREBIN retira essas informações do código e do manifesto do aplicativo, organizando-as nas oito seguintes categorias:

- Componentes de Hardware: Refere-se aos componentes de hardware que o aplicativo utiliza ou interage.
- Permissões Solicitadas: Indica as permissões que o aplicativo solicita ao usuário para acessar recursos do dispositivo.
- Componentes do Aplicativo: Referem-se aos diferentes componentes do aplicativo, como atividades, serviços, receptores de transmissão e provedores de conteúdo.
- Intenções Filtradas: Representa as intenções que são filtradas ou manipuladas pelo aplicativo.
- Chamadas de API Restritas: Indica as chamadas de API que estão restritas pelo sistema Android devido a questões de segurança e privacidade.
- **Permissões Utilizadas:** Refere-se às permissões que o aplicativo realmente utiliza durante sua execução.
- Chamadas de API Suspeitas: Representa chamadas de API que são consideradas suspeitas com base em padrões de comportamento de *malware* conhecidos.
- Endereços de Rede: Indica os endereços de rede com os quais o aplicativo se comunica durante sua execução.

Cada posição no vetor de características corresponde a uma dessas categorias, e o valor nessa posição indica a quantidade de características presentes pertencentes a esse grupo.

Classificadores		
Decision Tree Naive Bayes KNN	Altura maxima = Unlimited Algoritmo: Gaussiano k = 7	Critério = Gini Impurity
MLP	Hidden layers size = (100)	Max iterations: 1000

Os dados, amostras de aplicativos e todos os conjuntos de características extraídas, podem ser acessados através do link fornecido pelos autores do estudo [3].

B. Modelos

Neste estudo, conduziremos uma análise empírica na área de classificação binária para a detecção de *malwares*. Faremos uso de algoritmos de classificação monolíticos, incluindo Decision Tree, Naive Bayes, KNN e MLP, conforme detalhado na Tabela 1. Além disso, para explorar estratégias de *ensemble* e aumentar a robustez do estudo, aplicaremos modelos de *Bagging*. Esses modelos criam múltiplos conjuntos de dados de treinamento por meio de amostragem aleatória com substituição e combinam as previsões dos modelos individuais para melhorar a estabilidade e precisão das previsões.

Como estamos lidando com classificadores monolíticos, que tratam todo o conjunto de dados de uma vez, devemos escolher métricas que forneçam uma visão abrangente do desempenho do modelo nas duas classes, especialmente quando há um desequilíbrio significativo entre elas [7]. Por isso, utilizaremos acurácia, precisão, recall, F1 score e área sob a carva ROC para avaliação.

1) Acurácia:

$$Acurácia = \frac{\text{Número de previsões corretas}}{\text{Número total de previsões}}$$
(1)

A acurácia é uma métrica basica que mede a proporção de previsões corretas em relação ao total de previsões feitas pelo modelo. No entanto, em conjuntos de dados desbalanceados, a acurácia pode ser enganosa, pois um modelo pode ser altamente preciso para a classe majoritária, mas ignorar completamente as classes minoritárias Para mitigar esse problema, adotaremos também as outras métricas.

TABLE II Parâmetros do Balanceamento

Algoritmo		
SMOTE	Sampling Strategy = Auto	K-Neighbors = 5

2) Precisão:

$$Precisão = \frac{Verdadeiros positivos}{Verdadeiros positivos + Falsos positivos}$$
 (2)

A precisão mede a proporção de verdadeiros positivos (previsões corretas da classe positiva) em relação a todas as previsões positivas feitas pelo modelo.

3) Recall:

$$Recall = \frac{Verdadeiros positivos}{Verdadeiros positivos + Falsos negativos}$$
 (3)

O recall mede a proporção de verdadeiros positivos em relação a todas as instâncias que realmente pertencem à classe positiva no conjunto de dados.

4) F1 Score:

F1 Score =
$$2 \times \frac{\text{Precisão} \times \text{Recall}}{\text{Precisão} + \text{Recall}}$$
 (4)

O F1 Score é a média harmônica entre precisão e recall e fornece uma medida única do desempenho do modelo, levando em consideração tanto falsos positivos quanto falsos negativos.

5) Área sob a curva ROC (AUC ROC): A área sob a curva ROC (Receiver Operating Characteristic) é uma métrica que avalia a capacidade do modelo de distinguir entre as classes positiva e negativa, independentemente do limiar de classificação. A ROC é particularmente útil em situações de desbalanceamento de classes, pois não é afetada pela distribuição de classes no conjunto de dados.

D. Balanceamento dos Dados

Dado o desbalanceamento das classes no conjunto de dados DREBIN e a propensão dos modelos tradicionais de aprendizado de máquina a apresentarem baixa capacidade de generalização devido ao favorecimento da predição da dasse majoritária, os modelos mencionados serão avaliados tanto antes quanto após o balanceamento dos dados. Após analisar o banco de dados, percebemos que a quantidade de features benignas é de aproximadamente 96%, enquanto as features malignas ocupam os 4% restantes. Devido a essa discrepância no balanceamento das classes, decidimos utilizar a técnica SMOTE (Synthetic Minority Over-sampling Technique) para o balanceamento. Esta técnica foi utilizada apenas para criar artificialmente novos dados para a classe minoritária, a partir daqueles já presentes no conjunto/de dados, e adicioná-los ao conjunto original. Esperarios, dessa forma, evitar que a classe majoritária seja favorecida e prevenir um possível overfitting da classe minoritária que poderia ocorrer caso apenas duplicássemos esses dados.

E. Ambiente de Experimentação

Nosse experimento foi conduzido com os seguintes recursos:

• Hardware:

- Processador: AMD Ryzen 7-5800H
- Placa de Video: NVidia GeForce RTX 3050 4GB
- Memoria: 16GB

Software:

- Sistema operacional: Windows 11
- Bibliotecas:
 - * Numpy
 - * Sklearn
 - * Pandas

III. RESULTADOS

• Protocolo Experimental 1: Para aprimorar a avaliação dos classificadores monolíticos, optamos por adotar uma abordagem estratificada de hold-out, repetida 30 vezes. Neste procedimento, o conjunto de dados foi dividido na proporção de 80/20, garantindo a representatividade de cada classe em cada iteração. Além disso, implementamos um sistema de *ensemble* para cada classificador, utilizando 30 estimadores em cada técnica de *Bagging*, para garantir uma estimativa mais estável que pode ser comparável, em termos de variabilidade, aos resultados obtidos pela estratégia monolítica. Assim, poderemos realizar uma análise estatística abrangente e robusta dos resultados obtidos.

Ao término da primeira etapa da experimentação, feita com dados desbalanceados, obtivemos os resultados apresentados na Table 2 para os classificadores monolíticos e os resultados da Table 3 para os classificadores de *ensemble*.

• Protocolo Experimental 2: Após os experimentos descritos no Protocolo Experimental 1, balanceamos os dados utilizando a tecnica SMOTE e seguimos com a mesma abordagem estratificada de hold-out, repetida por 30 vezes. Cade o conjunto de dados foi dividido numa proporção de 80/20, e continuamos implementando um sistema de *ensemble* para cada classificador, utilizando 30 estimadores em cada técnica de *Bagging*.

Ao término da segunda etapa da experimentação, conduzida com dados balanceados, obtivemos os resultados apresentados na Tabela 4 para os classificadores monolíticos e na Tabela 5 para os classificadores de ensemble. Observamos uma melhora significativa nas métricas de Precisão, Recall, F1 e AUC ROC, indicando um aprimoramento na capacidade de generalização dos modelos. No entanto, verificamos uma diminuição na Acurácia, provavelmente devido ao fato de que o modelo não pode mais acertar a maioria das predições apenas atribuindo o valor da classe majoritária às instâncias.

Observamos que, após o balanceamento dos dados, alcançamos os valores esperados para um conjunto de dados balanceado utilizando as características malignas do Drebin. Isso é consistente com os resultados de Chenglin Li et al.

DAGE

- 7

[5], que utilizaram 5560 features malignas e selecionaram aleatoriamente 5560 features benignas do banco de dados do DREBIN. Os modelos de Chenglin Li et al. apresentaram, em média, uma acurácia de 96,96%, uma precisão de 95,60% e uma F1 de 97,06%.

IV. COMPARAÇÃO COM TRABALHOS RELACIONADOS

V. CONCLUSÕES E DISCUSSÕES

REFERENCES

- Daniel Arp et Al. "Drebin: Efficient and Explainable Detection of Android Malware in Your Pocket", 21th Annual Network and Distributed System Security Symposium (NDSS), February 2014
 Michael Spreitzenbarth et Al. "MobileSandbox: Looking Deeper into
- [2] Michael Spreitzenbarth et Al. "MobileSandbox: Looking Deeper into Android Applications", 25th International ACM Symposium on Applied Computing (SAC), 16464, 2013
- [3] https://drebin.mlsec.org/
- [4] Luo Shi-qi et Al. "Deep Learning in Drebin: Android malware Image Texture Median Filter Analysis and Detection," KSII Transactions on Internet and Information Systems, vol. 13, no. 7. Korean Society for Internet Information (KSII), 2019.
- [5] Chenglin Li et (1) "Android Malware Detection Based on Factorization Machine" in IEEE Access, vol. 7, pp. 184008-184019, 2019
 [6] V. Kouliaridis et (Al.) "Feature Importance in Android Malware Detections"
- [6] V. Kouliaridis et (Al) "Feature Importance in Android Malware Detection," 2020 TFFE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom), Guangzhou, China, 2020, pp. 1449-1454
- [7] De Diego et al. General Performance Score for classification problems. Appl Intell 52, 12049–12063 (2022)

- Colour o pome conflet

- Dutros Trabaltos
USARAM ESTE
RANCO TXE DADOS?
RANCO TXE DADOS?
CONO FOI D RESULTADO
Selves?

Classificadores	Acurácia	Precisão	Recall	F1	AUC ROC
Decision Tree	$0.9817 \pm (0.0007)$	$0.7713 \pm (0.0106)$	$0.8194 \pm (0.0128)$	$0.7945 \pm (0.0077)$	$0.9042 \pm (0.0063)$
Naive Bayes	$0.9163 \pm (0.0030)$	$0.2501 \pm (0.0098)$	$0.4704 \pm (0.0149)$	$0.3264 \pm (0.0097)$	$0.7034 \pm 0.(0070)$
MLP	$0.9769 \pm (0.0011)$	$0.8174 \pm (0.0327)$	$0.6016 \pm (0.0282)$	$0.6920 \pm (0.0149)$	$0.7977 \pm (0.0136)$
KNN	$0.9814 \pm (0.0007)$	$0.8136 \pm (0.0114)$	$0.7383 \pm (0.0134)$	$0.7740 \pm (0.0089)$	$0.8653 \pm (0.0066)$

Classificadores	Acurácia	Precisão	Recall	F1	AUC ROC
Decision Tree Bagging	0.9891	0.9037	0.8354	0.8682	0.9157
Naive Bayes Bagging	0.9178	0.2486	0.4487	0.3200	0.6938
MLP Bagging	0.9795	0.8527	0.6349	0.7278	0.8150
KNN Bagging	0.9823	0.8183	0.7572	0.7865	0.8748

Classificadores	Acurácia	Precisão	Recall	F1	AUC ROC
Decision Tree	$0.9812 \pm (0.0006)$	$0.9737 \pm (0.0009)$	$0.9891 \pm (0.0011)$	$0.9813 \pm (0.0006)$	$0.9812 \pm (0.0006)$
Naive Bayes	$0.7299 \pm (0.0046)$	$0.7255 \pm (0.0047)$	$0.7397 \pm (0.0141)$	$0.7325 \pm (0.0067)$	$0.7299 \pm (0.0046)$
MLP	$0.9337 \pm (0.0025)$	$0.9319 \pm (0.0119)$	$0.9361 \pm (0.0147)$	$0.9338 \pm (0.0028)$	$0.9337 \pm (0.0025)$
KNN	$0.9707 \pm (0.0009)$	0.9516 ± (0.0016)	$0.9919 \pm (0.0013)$	$0.9713 \pm (0.0009)$	$0.9707 \pm (0.0009)$

 $\begin{tabular}{l} TABLE\ VI\\ RESULTADOS\ DO\ EXPERIMENTO\ 1\ -\ DADOS\ BALANCEADOS\ E\ BAGGING \end{tabular}$

Classificadores	Acurácia	Precisão	Recall	F1	AUC ROC
Decision Tree Bagging	0.9853	0.9806	0.9903	0.9854	0.9853
Naive Bayes Bagging	0.7308	0.7254	0.7428	0.7340	0.7308
MLP Bagging	0.9437	0.9393	0.9488	0.9440	0.9437
KNN Bagging	0.9720	0.9544	0.9913	0.9725	0.9720