UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO Facultad de Ciencias

Equipo NullPointerException: Adrián Aguilera Moreno - 421005200 Diego Angel Rosas Franco - 318165330 Marco Antonio Rivera Silva - 318183583

Modelado y programación

Práctica 4

Menciona los principios de diseño esenciales de los patrones Factory, Abstract Factory y Builder. Menciona una desventaja de cada patrón.

Factory

Principios de diseño:

- Esta abierto al cambio pero no a la modificación, es decir que te permiten añadir clases nuevas sin que el código tenga que cambiar de ninguna manera.
- Si una de las clases, que no sea la principal y que a su vez forme parte del patrón, no funciona de manera correcta, esta no afecta a las demás, pues es esta quién depende de alguna otra y no al réves.
- Ordena la herencia en las clases.

Desventajas:

- No es el patrón más óptimo para complejidad en espacio.
- Se necesitan muchas clases para concretar el patrón, y cada vez que se quiera extender, entonces se agregan más clases.
- Cada vez que se necesita anexar más partes de código le agregamos complejidad al diseño, esto no permite que sea tan fácil.

Abstract Factory

Principios de diseño:

- Encapsula la responsabilidades de los objetos.
- Hace intercambiables compartamientos que ya dependen de alguna implementación del patrón abstract factory.
- Los comportamientos en una familia dada son compatibles entre sí.
- Se puede mover el código de creación de productos a un solo lugar, haciendo que el código sea más fácil de mantener.
- Es abierto al cambio y cerrado a la modificación

Desventajas:

- Cada vez que necesitemos anexar más comportamientos o clases, se necesitará una nueva interfaz (en caso de no poder depender de alguna ya existente) e implementar cada método en esta.
- Crece en complejidad en espacio.
- Hace más complejo el diseño del código.

Builder

Principios de diseño:

- El código puede ser reutilizable, o ser extendido y modificado de manera significativa, esto simplifica el proceso de extensión cuando el comportamiento a anexar tiene similitudes con los ya existentes.
- Puedes construir objetos paso a paso.
- A menudo se usa para construir estructuras compuestas.

Desventajas:

- El diseño del código se vuelve complejo.
- Aumenta la complejidad en espacio.

Instrucciones de instalación, compilación y ejecución.

Se dará por hecho que el usuario sabe moverse en terminal.

Requerimientos previos:

- Se debe contar con Java en su computadora. De preferencia la versión más reciente.

Ejecución del proyecto:

- Si está leyendo esto significa que desempaquetó con éxito el proyecto.
- Abra su terminal y diríjase a la ruta donde desempaquetó el proyecto.
- $\ Una\ vez\ estando\ en\ la\ ruta\ Practica 04_Null Pointer Exception,\ dirijas e\ a\ Practica 04_Null Pointer Exception/single properties and the properties of the prope$
- Ejecute: "javac TallerNaves. java", esto generará los .class del proyecto.
- Ejecute: "java TallerNaves", esto ejecutará el proyecto mostrándole el menú solicitado para la practica.

Justificación de uso de patrón:

Para esta práctica usamos el patrón **Builder**. En un primer vistazo vimos que builder nos ayudaba a definir toda la estructura del proyecto, mientras que con Factory teníamos más libertad de implementar como quisieramos el proyecto y buscar una parte más especifica donde implementarlo. Ahora comparado con Abstract Factory

Tabla de Estadisticas de los Componentes de una Nave:

Tipo Coponente	Precio	Peso	Ataque	Defensa	Velocidad
Laser Simple	79,834.99\$	999.52 kg	7	2	-
Misiles de Plasma	298,777.99\$	1,987.52 kg	23	2	-
Laser Destructor de Planetas	945,785.99\$	10,000.52 kg	50	2	-
Blindaje Simple	50,000.50\$	4,900.90 kg	-	5	-
Blindaje Reforzado	145,000.00\$	9,975.87 kg	-	15	-
Blindaje Fortaleza	385.000.00\$	49750.80 kg	_	50	-
Cabina Un Piloto	19,878.99\$	1,986.10 kg	_	2	-
Cabina Tripulación Pequeña	69,876.00\$	4,899.52 kg	_	5	-
Cabina Ejercito	199.789.99\$	34,567.00 kg	_	10	-
Propulsión Viaje Intercontinental	105,000.00\$	997.90 kg	-	1	100
Propulsión Viaje Interplanetario	294.000.00\$	2,985.90 kg	-	3	500
Propulsión Viaje Intergalactico	875,000.00\$	9,950.49 kg	-	5	1000

Diagrama UML:

