

Il piano di progetto (punti specifici)

Struttura del piano di progetto

- 1. Introduzione
- 2. Organizzazione del Progetto
- 3. Descrizione dei Processi Gestionali
- 4. Descrizione dei Processi Tecnici
- 5. Pianificazione del lavoro, delle risorse umane e del budget.

1. Introduzione

- 1.1 Overview del Progetto
 - Descrizione di massima del progetto e del prodotto.
- 1.2 Deliverables del Progetto
 - Tutti gli items che saranno consegnati, con data e luogo di consegna
- 1.3 Evoluzione del Progetto
 - Piani per cambiamenti ipotizzabili e non
- 1.4 Materiale di riferimento
 - Lista dei documenti cui ci si riferisce nel Piano di Progetto
- 1.5 Definizioni e Abbreviazioni

2. Organizzazione del progetto

- 2.1 Modello del Processo
 - Relazioni tra le varie fasi del processo
- 2.2 Struttura Organizzativa
 - Gestione interna, chart dell'organizzazione
- 2.3 Interfacce Organizzative
 - Relazioni con altre entità
- 2.4 Responsabilità di Progetto
 - Principali funzioni e attività;
 - Di che natura sono?
 - Chi ne è il responsabile ?

3. Processi gestionali

- 3.1 Obiettivi e Priorità
- 3.2 Assunzioni, Dipendenze, Vincoli
 - Fattori esterni
- 3.3 Gestione dei rischi
 - Identificazione, Valutazione, Monitoraggio dei rischi
- 3.4 Meccanismi di monitoraggio e di controllo
 - Meccanismi di reporting, format, flussi di informazione, revisioni
- 3.5 Pianificazione dello staff
 - Skill necessari (cosa?, quanto?, quando?)

4. Processi tecnici

4.1 Metodi, Strumenti e Tecniche

- Sistemi di calcolo, metodi di sviluppo, struttura del team, ecc.
- Standards, linee guida, politiche.

4.2 Documentazione del Software

 Piano di documentazione, che deve includere milestones, e revisioni

4.3 Funzionalità di supporto al progetto

- Pianificazione della qualità
- Pianificazione della gestione delle configurazioni

5. Pianificazione del lavoro, delle risorse umane e del budget.

5.1 WBS (Work breakdown structure)

Il progetto è scomposto in tasks; definizione di ciascun task

5.2 Dipendenze

Relazioni di precedenza tra funzioni, attività e task

5.3 Risorse Necessarie

 Stima delle risorse necessarie, in termini di personale, di tempo di computazione, di hardware particolare, di supporto software ecc.

5.4 Allocazione del Budget e delle Risorse

Associa ad ogni funzione, attività o task il costo relativo

5.5 Pianificazione

Deadlines e Milestones

Punto 3.3 Gestione dei rischi

- Identificazione dei rischi
 - legati alla taglia del prodotto da costruire o modificare
 - legati ai vincoli importi dal mercato o dal contratto
 - legati alle caratteristiche del cliente
 - legati alla buona definizione del processo
 - legati all'ambiente di sviluppo (qualità e affidabilità degli strumenti)
 - legati alla complessità del sistema da costruire e alle novità tecnologiche legate al sistema
 - legati alla dimensione e all'esperienza del team di sviluppo
- Sviluppare una tabella: probabilità e impatto
- Strategia di gestione: evitare/monitorare/gestire

Fattori di fallimento

- Requisiti incompleti 13.1%
- Mancato coinvolgimento del cliente 12.4%
- Mancanza di risorse 10.6%
- Aspettative non realistiche
 9.9%
- Mancanza di supporto esecutivo 9.3%
- Cambiamenti dei requisiti 8.7%

Fattori di successo

•	Coinvolgimento del cliente	15.9%
•	Supporto della direzione esecutiva	13.9%
•	Definizione chiara dei requisiti	13.0%
•	Pianificazione corretta	9.6%
•	Aspettative realistiche	8.2%
•	Personale competente	7.2%

Gestione dei rischi

The Risk Management Process

Classification of software risks

Software Project Risks

 Resource constraints, external interfaces, supplier relationships, nonperforming vendors, internal politics, interteam/intergroup coordination problems, inadequate funding.

Software Process Risks

 Undocumented software process, lack of effective peer reviews, no defect prevention, poor design process, poor requirements management, ineffective planning.

Software Product Risks

 Lack of domain expertise, complex design, poorly defined interfaces, poorly understood legacy system(s), vague or incomplete requirements.

Software risks

Risk	Affects	Description
Staff turnover	Project	Experienced staff will leave the project before it is finished.
Management change	Project	There will be a change of organisational management with different priorities.
Hardware unavailability	Project	Hardware that is essential for the project will not be delivered on schedule.
Requirements change	Project and product	There will be a larger number of changes to the requirements than anticipated.
Specification delays	Project and product	Specifications of essential interfaces are not available on schedule
Size underestimate	Project and product	The size of the system has been underestimated.
CASE tool under- performance	Product	CASE tools which support the project do not perform as anticipated
Technology change	Business	The underlying technology on which the system is built is superseded by new technology.
Product competition	Business	A competitive product is marketed before the system is completed.

Come identificare i rischi

- Stilare una lista di elementi di rischio tipici
- Analizzare la pianificazione del progetto
 - Cammini critici
 - Membri dello staff critici
 - Consegne critiche
 - Milestones critiche
- Analizzare i requisiti
- Analizzare la progettazione tecnica
- Analizzare i progetti precedenti

Come identificare i rischi

- Conduci delle sessioni di brainstorming con lo staff, gli utenti finali, I venditori ed il management dedicate all'identificazione dei rischi.
 - Try to assess the direction of thinking by third parties as they may give an indication of future requirements, expectations, or vendor changes.
 - If your dependent on vendors, try to understand their business situation

Rischi: Analisi, Conseguenze e Priorità

- Individua la probabilità che un rischio occorra
- Individua le conseguenze dell'occorrenza di un rischio.
- 3. Stima l'impatto di tali conseguenze sull'intero progetto
- 4. Indica l'accuratezza della stima effettuata

Tabella dei rischi

- Elenca I rischi nella prima colonna della tabella
- Classifica ciascun rischio: a quale ambito si riferisce? (colonna 2)
- Stima la probabilità che il rischio occorra (colonna 3)
- Stabilisci la rilevanza del rischio (negligible, marginal, critical, catastrophic) in base ad una tabella di criteri.
- Indica i riferimenti al documento di gestione dei rischi (RMMM)

Risks	Category	Probability	Impact	RMMM
Wrong estimated size of project in LOC or FP	PS	80%	2	**
Lack of needed specialization increases defects and reworks	ST	50%	2	**
Unfamiliar areas of the product take more time than expected to design and implement	DE	50%	2	**
Does the environment make use of a database	DE	35%	3	
Components developed separately cannot be integrated easily, requiring redesign	DE	25%	3	
Development of the wrong software functions requires redesign and	DE	25%	3	
implementation Development of extra software functions that are not needed	DE	20%	3	
Strict requirements for compatibility with existing system require more testing, design, and implementation than expected	DE	20%	3	
Operation in unfamiliar software environment causes unforeseen problems	EV	25%	4	
Team members do not work well together	ST	20%	4	
Key personnel are available only part-time	ST	20%	4	

CATEGORY \ COMPONENTS		PERFORMANCE	SUPPORT	COST	SCHEDULE	
CATASTROPHIC	1	Failure to meet would result in mission failure		Failure results in increased costs and schedule delays with expected values in excess of \$500K		
	2	Significant degradation to non- achievement of technical performance	Non-responsive or unsupportable software	Significant, financial shortages, budget overrun likely	Unachievable delivery date	
CRITICAL	1	Failure to meet the requirement would degrade system performance to a point where mission success is questionable		Failure results in operational delays and/or increased costs with expected value of \$100K to \$500k		
	2	Some reduction in technical performance	Minor delays in software modifications	Some shortage of financial resources, possible overruns	Possible slippage in delivery date	

CATEGORY \ COMPONENTS		PERFORMANCE	SUPPORT	COST	SCHEDULE
MARGINAL	1	Failure to meet the requirement would result in degradation of secondary mission		Costs, impacts, and/or recoverable schedule slips with expected value of \$1K to \$100K	
	2	Minimal to small reduction in technical performance	Responsive software support	Sufficient financial resources	Realistic, achievable schedule
NEGLIGIBLE	1	Failure to meet the requirement would create inconvenience or nonoperational impact		Error results in minor cost and/or schedule impact with expected value of less than \$1K	
	2	No reduction in technical performance	Easily supportable software	Possible budget underrun	Early achievable date

Classificazione

- Occorrenze e impatto
 - Scala da 1 a 5
- Priorità
 - Red High
 - Yellow Med
 - Green Low
- E' un piano da rivedere in modo periodico

RMMM

- Risk mitigation
 - proactive planning for risk avoidance
- Risk monitoring
 - assessing whether predicted risks occur or not
 - ensuring risk aversion steps are being properly applied
 - collect information for future risk analysis
 - determining which risks caused which problems
- Risk management
 - contingency planning
 - actions to be taken in the event that mitigation steps have failed and the risk has become a live problem

Risk Mitigation (Example)

Risk: loss of key team members

- Determine causes of job turnover.
- Eliminate causes before project starts.
- After project starts, assume turnover is going to occur and work to ensure continuity.
- Make sure teams are organized and distribute information widely.
- Define documentation standards and be sure documents are produced in a timely manner.
- Conduct peer review of all work.
- Define backup staff.

Project Termination

 Quali sono le condizioni nelle quali conviene chiudere anzitempo il progetto (abort)?

Pianificazione delle attività (punto 5)

Work breakdown structure

Attività

Organizzazione delle attività

- In un progetto le attività devono essere organizzate in modo da produrre risultati valutabili dal management
- Milestones sono i punti finali di ogni singola attività di processo
- Deliverables sono i risultati che sono forniti al committente
- Il modello a cascata suggerisce una definizione ovvia di "milestone"

Milestones & deliverables

MILESTONES

Funzioni

 Attività o insiemi di attività che coprono tutta la durata del progetto

- Project management
- Configuration Management
- Documentation
- Quality Control (Verifica e validazione)
- Training

Tasks

- Unità di lavoro "atomiche"
 - Hanno durata stimabile, necessitano di certe risorse, producono risultati tangibili (documentazione, codice, ...)
- Specifica di un task: Work package
 - Nome e descrizione del lavoro che deve essere fatto
 - Precondizioni per poter avviare il lavoro, durata, risorse necessarie
 - Risultato del lavoro e criteri di accettabilità
 - Rischi

Scheduling di progetto

- Dividi il progetto in attività e mansioni (tasks) e stima il tempo e le risorse necessarie per completare ogni singola mansione
- Organizza le mansioni in modo concorrente, per ottimizzare la forza lavoro
- Minimizza la dipendenza tra le singole mansioni per evitare ritardi dovuti all'attesa del completamento di un'altra mansione

Processo di scheduling del progetto

Grafo delle attività (PERT), grafico a barre e diagramma di Gannt

- Diversi tipi di rappresentazione grafica dello scheduling del progetto
- Mostrano la suddivisione del lavoro in mansioni. Le mansioni non devono essere troppo piccole (una settimana o due di lavoro)
- Il grafo delle attività (PERT) evidenzia le dipendenze e il cammino critico
- Il grafico a barre mostra lo scheduling come calendario lavori
- Il diagramma di Gannt esprime la temporizzazione

Grafo delle attività

Diagramma di PERT

- ES: earliest start time:
 - il minimo giorno di inizio dell'attività, a partire dal minimo tempo necessario per le attività che precedono
- EF: earliest finish time:
 - dato ES e la durata dell'attività, il minimo giorno in cui l'attività può terninare
- LF: latest finish time:
 - qual è il giorno massimo in cui quel job deve finire senza che si crei ritardo per i jobs che dipendono da lui
- LS: latest start time:
 - dato LF e la durata del job, qual è il giorno massimo in cui quel job deve iniziare senza provocare ritardo per i job che dipendono da lui

Cammino critico

Mansioni: durata e dipendenze

Mansioni	Durata (giorni)	Dipendenze
T1	8	
T2	15	
T3	15	T1
T4	10	
T5	10	T2, T4
T6	5	T1, T2
T7	20	T1
T8	25	T4
T9	15	T3, T6
T10	15	T5, T7
T11	7	T9
T12	10	T11

Network delle attività

Diagramma di Gannt

Allocazione della forza lavoro

