Foundations of Artificial Intelligence 31. Propositional Logic: DPLL Algorithm

Martin Wehrle

Universität Basel

April 25, 2016

Chapter overview: propositional logic

- 29. Basics
- 30. Reasoning and Resolution
- 31. DPLL Algorithm
- 32. Local Search and Outlook

Motivation

Propositional Logic: Motivation

- Propositional logic allows for the representation of knowledge and for deriving conclusions based on this knowledge.
- many practical applications can be directly encoded, e.g.
 - constraint satisfaction problems of all kinds
 - circuit design and verification
- many problems contain logic as ingredient, e.g.
 - automated planning
 - general game playing
 - description logic queries (semantic web)

main problems:

Motivation

- reasoning $(\Theta \models \varphi?)$: Does the formula φ logically follow from the formulas Θ ?
- equivalence $(\varphi \equiv \psi)$: Are the formulas φ and ψ logically equivalent?
- satisfiability (SAT): Is formula φ satisfiable? If yes, find a model.

German: Schlussfolgern, Äquivalenz, Erfüllbarkeit

The Satisfiability Problem

The Satisfiability Problem (SAT)

given:

propositional formula in conjunctive normal form (CNF) usually represented as pair $\langle V, \Delta \rangle$:

- V set of propositional variables (propositions)
- Δ set of clauses over V(clause = set of literals v or $\neg v$ with $v \in V$)

find:

- satisfying interpretation (model)
- or proof that no model exists

SAT is a famous NP-complete problem (Cook 1971; Levin 1973).

Relevance of SAT

- The name "SAT" is often used for the satisfiability problem for general propositional formulas (instead of restriction to CNF).
- General SAT can be reduced to CNF. (conversion in time O(n)).
- All previously mentioned problems can be reduced to SAT (conversion in time O(n)).
- → SAT algorithms important and intensively studied

this and next chapter: SAT algorithms

Systematic Search: DPLL

SAT vs. CSP

SAT can be considered as constraint satisfaction problem:

- CSP variables = propositions
- domains = $\{F, T\}$
- constraints = clauses

However, we often have constraints that affect > 2 variables.

Due to this relationship, all ideas for CSPs are applicable to SAT:

- search
- inference
- variable and value orders

The DPLL Algorithm

The DPLL algorithm (Davis/Putnam/Logemann/Loveland) corresponds to backtracking with inference for CSPs.

- recursive call $DPLL(\Delta, I)$ for clause set Δ and partial interpretation I
- result is consistent extension of I;
 unsatisfiable if no such extension exists
- first call DPLL(Δ, ∅)

inference in DPLL:

- simplify: after assigning value d to variable v,
 simplify all clauses that contain v
 → forward checking (for constraints of potentially higher arity)
- unit propagation: variables that occur in clauses without other variables (unit clauses) are assigned immediately
 minimum remaining values variable order

The DPLL Algorithm: Pseudo-Code

```
function DPLL(\Delta, I):
if \square \in \Delta:
                                             [empty clause exists → unsatisfiable]
     return unsatisfiable
else if \Delta = \emptyset:
                          [no clauses left \rightsquigarrow interpretation I satisfies formula]
     return /
else if there exists a unit clause \{v\} or \{\neg v\} in \Delta: [unit propagation]
     Let v be such a variable, d the truth value that satisfies the clause.
     \Delta' := simplify(\Delta, v, d)
     return DPLL(\Delta', I \cup \{v \mapsto d\})
else:
                                                                        splitting rule
     Select some variable v which occurs in \Delta.
     for each d \in \{F, T\} in some order:
           \Delta' := simplify(\Delta, v, d)
           I' := \mathsf{DPLL}(\Delta', I \cup \{v \mapsto d\})
           if I' \neq unsatisfiable
                 return I'
     return unsatisfiable
```

The DPLL Algorithm: simplify

function simplify(Δ , v, d)

Let ℓ be the literal for v that is satisfied by $v \mapsto d$.

Let $\bar{\ell}$ be the complementary (opposite) literal to ℓ .

 $\Delta' := \{C \mid C \in \Delta \text{ such that } \ell \notin C\}$

 $\Delta'' := \{ \textit{C} \setminus \{ \bar{\ell} \} \mid \textit{C} \in \Delta' \}$

return Δ''

$$\Delta = \{\{X, Y, \neg Z\}, \{\neg X, \neg Y\}, \{Z\}, \{X, \neg Y\}\}$$

$$\Delta = \{\{X,Y,\neg Z\}, \{\neg X,\neg Y\}, \{Z\}, \{X,\neg Y\}\}$$

1. unit propagation: $Z \mapsto \mathbf{T}$

$$\Delta = \{\{X, Y, \neg Z\}, \{\neg X, \neg Y\}, \{Z\}, \{X, \neg Y\}\}$$

1. unit propagation: $Z \mapsto \mathbf{T}$ $\{\{X, Y\}, \{\neg X, \neg Y\}, \{X, \neg Y\}\}$

$$\Delta = \{\{X,Y,\neg Z\}, \{\neg X,\neg Y\}, \{Z\}, \{X,\neg Y\}\}$$

- 1. unit propagation: $Z \mapsto \mathbf{T}$ $\{\{X, Y\}, \{\neg X, \neg Y\}, \{X, \neg Y\}\}$
- 2. splitting rule:

$$\Delta = \{\{X,Y,\neg Z\}, \{\neg X, \neg Y\}, \{Z\}, \{X, \neg Y\}\}$$

- 1. unit propagation: $Z \mapsto \mathbf{T}$ $\{\{X,Y\}, \{\neg X, \neg Y\}, \{X, \neg Y\}\}$
- 2. splitting rule:

2a.
$$X \mapsto \mathbf{F}$$
 $\{\{Y\}, \{\neg Y\}\}$

$$\Delta = \{\{X, Y, \neg Z\}, \{\neg X, \neg Y\}, \{Z\}, \{X, \neg Y\}\}$$

- 1. unit propagation: $Z \mapsto \mathbf{T}$ $\{\{X,Y\},\{\neg X,\neg Y\},\{X,\neg Y\}\}$
- 2. splitting rule:
- 2a. $X \mapsto \mathbf{F}$ $\{\{Y\}, \{\neg Y\}\}$
- 3a. unit propagation: $Y \mapsto \mathbf{T}$ $\{\Box\}$

$$\Delta = \{\{X, Y, \neg Z\}, \{\neg X, \neg Y\}, \{Z\}, \{X, \neg Y\}\}\}$$

- 1. unit propagation: $Z \mapsto \mathbf{T}$ $\{\{X,Y\},\{\neg X,\neg Y\},\{X,\neg Y\}\}$
- 2. splitting rule:

2a.
$$X \mapsto \mathbf{F}$$
 2b. $X \mapsto \mathbf{T}$ $\{\{Y\}, \{\neg Y\}\}$

3a. unit propagation: $Y \mapsto \mathbf{T}$ $\{\Box\}$

$$\Delta = \{ \{X, Y, \neg Z\}, \{\neg X, \neg Y\}, \{Z\}, \{X, \neg Y\} \}$$

- 1. unit propagation: $Z \mapsto \mathbf{T}$ $\{\{X,Y\},\{\neg X,\neg Y\},\{X,\neg Y\}\}$
- 2. splitting rule:
- 2a. $X \mapsto \mathbf{F}$ $\{\{Y\}, \{\neg Y\}\}$
- 3a. unit propagation: $Y \mapsto \mathbf{T}$ $\{\Box\}$

- 2b. $X \mapsto \mathbf{T}$ $\{\{\neg Y\}\}$
- 3b. unit propagation: $Y \mapsto \mathbf{F}$ {}

$$\Delta = \{ \{X, Y, \neg Z\}, \{\neg X, \neg Y\}, \{Z\}, \{X, \neg Y\} \}$$

- 1. unit propagation: $Z \mapsto T$ $\{\{X,Y\},\{\neg X,\neg Y\},\{X,\neg Y\}\}$
- 2. splitting rule:
- 2a. $X \mapsto \mathbf{F}$ $\{\{Y\}, \{\neg Y\}\}$
- 3a. unit propagation: $Y \mapsto \mathbf{T}$ $\{\Box\}$

- 2b. $X \mapsto \mathbf{T}$ $\{\{\neg Y\}\}$
- 3b. unit propagation: $Y \mapsto \mathbf{F}$ {}

$$\Delta = \{\{W, \neg X, \neg Y, \neg Z\}, \{X, \neg Z\}, \{Y, \neg Z\}, \{Z\}\}\}$$

$$\Delta = \{\{W, \neg X, \neg Y, \neg Z\}, \{X, \neg Z\}, \{Y, \neg Z\}, \{Z\}\}\}$$

1. unit propagation: $Z \mapsto \mathbf{T}$

$$\Delta = \{\{W, \neg X, \neg Y, \neg Z\}, \{X, \neg Z\}, \{Y, \neg Z\}, \{Z\}\}\}$$

1. unit propagation: $Z \mapsto \mathbf{T}$ $\{\{W, \neg X, \neg Y\}, \{X\}, \{Y\}\}\}$

$$\Delta = \{\{W, \neg X, \neg Y, \neg Z\}, \{X, \neg Z\}, \{Y, \neg Z\}, \{Z\}\}\}$$

- 1. unit propagation: $Z \mapsto \mathbf{T}$ $\{\{W, \neg X, \neg Y\}, \{X\}, \{Y\}\}\}$
- 2. unit propagation: $X \mapsto \mathbf{T}$ $\{\{W, \neg Y\}, \{Y\}\}$

$$\Delta = \{\{W, \neg X, \neg Y, \neg Z\}, \{X, \neg Z\}, \{Y, \neg Z\}, \{Z\}\}\}$$

- 1. unit propagation: $Z \mapsto \mathbf{T}$ $\{\{W, \neg X, \neg Y\}, \{X\}, \{Y\}\}\}$
- 2. unit propagation: $X \mapsto \mathbf{T}$ $\{\{W, \neg Y\}, \{Y\}\}$
- 3. unit propagation: $Y \mapsto \mathbf{T}$ $\{\{W\}\}$

$$\Delta = \{\{W, \neg X, \neg Y, \neg Z\}, \{X, \neg Z\}, \{Y, \neg Z\}, \{Z\}\}\}$$

- 1. unit propagation: $Z \mapsto \mathbf{T}$ $\{\{W, \neg X, \neg Y\}, \{X\}, \{Y\}\}\}$
- 2. unit propagation: $X \mapsto \mathbf{T}$ $\{\{W, \neg Y\}, \{Y\}\}$
- 3. unit propagation: $Y \mapsto \mathbf{T}$ $\{\{W\}\}$
- 4. unit propagation: $W \mapsto \mathbf{T}$ {}

$$\Delta = \{\{W, \neg X, \neg Y, \neg Z\}, \{X, \neg Z\}, \{Y, \neg Z\}, \{Z\}\}\}$$

- 1. unit propagation: $Z \mapsto T$ $\{\{W, \neg X, \neg Y\}, \{X\}, \{Y\}\}\}$
- 2. unit propagation: $X \mapsto T$ $\{\{W, \neg Y\}, \{Y\}\}$
- 3. unit propagation: $Y \mapsto T$ $\{\{W\}\}$
- 4. unit propagation: $W \mapsto T$ {}

Properties of DPLL

- DPLL is sound and complete.
- DPLL computes a model if a model exists.
 - Some variables possibly remain unassigned in the solution 1: their values can be chosen arbitrarily.
- time complexity in general exponential
- → important in practice: good variable order and additional inference methods (in particular clause learning)
 - Best known SAT algorithms are based on DPLL.

Horn Formulas

important special case: Horn formulas

Definition (Horn formula)

A Horn clause is a clause with at most one positive literal, i.e., of the form

$$\neg x_1 \lor \cdots \lor \neg x_n \lor y \text{ or } \neg x_1 \lor \cdots \lor \neg x_n$$

(n = 0 is allowed.)

A Horn formula is a propositional formula in conjunctive normal form that only consists of Horn clauses.

German: Hornformel

- foundation of logic programming (e.g., PROLOG)
- hot research topic in program verification

DPLL on Horn Formulas

Proposition (DPLL on Horn formulas)

If the input formula φ is a Horn formula, then the time complexity of DPLL is polynomial in the length of φ .

Proof.

properties:

- 1. If Δ is a Horn formula, then so is simplify (Δ, v, d) . (Why?)
 - → all formulas encountered during DPLL search are Horn formulas if input is Horn formula
- 2. Every Horn formula without empty or unit clauses is satisfiable:
 - all such clauses consist of at least two literals
 - Horn property: at least one of them is negative
 - assigning F to all variables satisfies formula

DPLL on Horn Formulas (Continued)

Proof (continued).

- 3. From 2. we can conclude:
 - if splitting rule applied, then current formula satisfiable, and
 - if a wrong decision is taken, then this will be recognized without applying further splitting rules (i.e., only by applying unit propagation and by deriving the empty clause).

DPLL on Horn Formulas

- 4. Hence the generated search tree for *n* variables can only contain at most n nodes where the splitting rule is applied (i.e., where the tree branches).
- 5. It follows that the search tree is of polynomial size, and hence the runtime is polynomial.

Summary

Summary

- satisfiability basic problem in propositional logic to which other problems can be reduced
- here: satisfiability for CNF formulas
- Davis-Putnam-Logemann-Loveland procedure (DPLL): systematic backtracking search with unit propagation as inference method
- DPLL successful in practice, in particular when combined with other ideas such as clause learning
- polynomial on Horn formulas (= at most one positive literal per clause)