1- a) Camera Model

c) Pose Estimation

R =			T =
0.8660	0.0000	0.5000	-2.2680
-0.0000	-1.0000	-0.0000	0.5000
0.5000	0.0000	-0.8660	7.9282

2- Neural network

a) $\frac{\partial E_{q} = -(x_{q} - q_{q}) \cdot G}{\partial V_{q} p} \quad \text{where} \quad \frac{\partial E_{p}}{\partial V_{q} p} = \frac{\partial E_{q}}{\partial V_{q} p} \cdot \frac{\partial V_{q}}{\partial V_{q} p} = \frac{\partial V_{q}}{\partial V_{q} p} \cdot \frac{\partial V_{q}}{\partial V_{q} p} = \frac{\partial V_{q}}{\partial V_{q} p} \cdot \frac{\partial V_{q}}{\partial V_{q} p} = \frac{\partial V_{q}}{\partial V_{q} p} \cdot \frac{\partial V_{q}}{\partial V_{q} p} = \frac{\partial V_{q}}{\partial V_{q} p} \cdot \frac{\partial V_{q}}{\partial V_{q}$ $Q = h(I_q) \Rightarrow \emptyset$ $I_q = \text{Ewgp op-} \emptyset \Rightarrow I_q \Rightarrow \frac{\partial Q}{\partial I_q} \Rightarrow 0$ $I_p = \text{Ewpj oj-} \emptyset$ $O_j = \frac{\partial I_p}{\partial O_q} \Rightarrow 0$ $O_j = \frac{\partial I_q}{\partial O_q} \Rightarrow 0$ where $\frac{\partial Q}{\partial I_2} = \frac{\partial [h_2(I_2)]}{\partial I_2} = h'(I_2) = f' = \frac{\partial [h_2(I_2)]}{\partial I_2} = \frac{\partial [h_2$ Sq = $(r_2 - 0_q)h'_q(I_q)$: $-\partial E_q$ ∂O_q the above equations $\Delta Wqp : \alpha(r_p - 0_q)h'(I_q) Op = \alpha(r_p - 0_q)h(I_q)h(l - I_q)Op$ Was new = Was ad + DWas Smb! = - SJE = - SJE got gib mpare ge = 30b[z(2-0d)] = -(2-04) god god god = -84 mb. a Op = op(1-op); Ip = Zwpj oj ; a Fe = oj TMb! = 4 JE * Job + JEb

b) and c)

Oq1 =	Oq2 =	Oq3 =	Oq4 =
0.9964	0.0020	0.0004	0.0044
0.0069	0.9803	0.0118	0.0003
0.0003	0.0083	0.9778	0.0078
0.0012	0.0006	0.0250	0.9973

$$h = G_{\sigma c} * R + G_{\sigma s} * (R - G)$$

$$h = G_{\sigma c} * R + G_{\sigma s} * (R - G) + G_{\sigma s} (R - R)$$

$$h = [G_{\sigma c} - G_{\sigma s}] * R + G_{\sigma s} * (2R - G)$$

$$h = DoG * R + G_{\sigma s} * (2R - G)$$

b) <u>PCA</u>

C =

0.0861	0.0487
0.0634	0.0384
0.0384	0.0270
	0.0634

0.2067 0.0076 0.0007

D =

0.7693 0.5495 0.3260 -0.5338 0.2724 0.8005 -0.3511 0.7898 -0.5029

c) Image Segment

4- a)

```
4(a)
LHS = (A \circ B)^c = ((A \circ B) \circ B)^c \Rightarrow Gram \text{ the definition } \mathcal{O}_{A} \cdot doeling \\ (A \circ B)^c = (A \circ B)^c \Rightarrow \mathcal{O}_{A} \cdot \mathcal{O}_{A}
```

b) Morphology

