Which of the following is a significant difference between NumPy arrays and TensorFlow tensors NumPy arrays can be multidimensional but TensorFlow tensors can't Tensorflow tensors store data more efficiently that Numpy arrays Tensorflow tensors are stored in GPU whereas Numpy arrays are stored in CPU NumPy arrays are assignable whereas TensorFlow tensors are not	The following code results in an error. Why? input_const = tf.constant(3.) with tf.GradientTape() as tape: result = tf.square(input_const) gradient = tape.gradient(result, input_const) print("deriv of result w.r.t. input_const = ", gradient.numpy()) By default, constants are not tracked by GradientTape tf.square() is not a differentiable function tf.constant(3.) is not the right way to create a constant in Tensorflow tape.gradient() has its arguments in reverse order of what they should be
If A and B are tensors, what is the difference, if any, between: STAR: A * B MATMUL: tf.matmul(A, B) STAR is elementwise multiplication whereas MATMUL is matrix multiplication STAR is matrix multiplication whereas MATMUL is elementwise multiplication Both STAR and MATMUL do elementwise multiplication Both STAR and MATMUL do matrix multiplication	What of the following is NOT true about computation graphs? They are data structures representing computational operations They play a major role in Tensorflow in particular and deep learning in general They are graphs representing how many computational resources a deep learning model needs They help algorithms treat computation as data

What is the relationship between backpropagation and computation graphs? Backpropagation is the application of chain rule to a computation graph in order to compute derivatives Backpropagation is the use of computation graphs to speed up computations Backpropagation takes the weights and biases of a neural network as input and outputs its computation graph Backpropagation is an algorithm to learn computation graphs from data	Consider the logistic function $f(x) = \exp(x) / (1 + \exp(x))$. What is its domain, i.e., the set of valid (nputs?) all real numbers closed interval [0,1] open interval (0,1) positive real numbers
Suppose J is a positive floating point number. What will the following code print? x = tf.Variable(tf.math.log(J)) with tf.GradientTape() as tape: y = tf.exp(x) print(tape.gradient(y, x).numpy())	Consider the logistic function f(x) = exp(x) / (1+exp(x)). What is its range, i.e., the set of possible outputs? all real numbers closed interval [0,1] open interval (0,1) positive real numbers
$y = \text{tr.exp(x)}$ $print(tape.gradient(y, x).numpy())$ $exp(J)$ $log(J)$ J $y = e^{x} = e^{M} = J$ $x = e^{x} = e^{M} = J$	

\sim		
9		
_	t are the names of the two phases in the backpropagation algorithm?	
0	Forward pass and Backward pass	
	Upward pass and Downward pass	
	Training pass and Testing pass	_
	Collection pass and Propagation pass	
10		
Cons	ider the standard logistic function (also called the sigmoid functi	on
£1. A		
T(X) =	$\exp(x)/(1+\exp(x))$	
	exp(x) / (1+exp(x)) th of the following is NOT true?	
	th of the following is NOT true? It tends to 1 as x tends to +infinity	
Whic	ch of the following is NOT true?	
Whice	It tends to 1 as x tends to +infinity It tends to 0 as x tends to -infinity It tends to 1 as x tends to 0	
Whice	th of the following is NOT true? It tends to 1 as x tends to +infinity It tends to 0 as x tends to -infinity	
Whice	It tends to 1 as x tends to +infinity It tends to 0 as x tends to -infinity It tends to 1 as x tends to 0	
Whice	It tends to 1 as x tends to +infinity It tends to 0 as x tends to -infinity It tends to 1 as x tends to 0	
Whice	It tends to 1 as x tends to +infinity It tends to 0 as x tends to -infinity It tends to 1 as x tends to 0	