

Contact:

Dr. Michael Affenzeller FH OOE - School of Informatics, Communications and Media Heuristic and Evolutionary Algorithms Lab (HEAL) Softwarepark 11, A-4232 Hagenberg

e-mail:

michael.affenzeller@fh-hagenberg.at
Web:

http://heal.heuristiclab.com http://heureka.heuristiclab.com

What is machine learning/ data mining? MACHINE LEARNING

"The field of machine learning is concerned with the question of how to construct computer programs that automatically improve with experience" (Tom Mitchell, 1997)

DATA MINING

"Data Mining is the non-trivial process of identifying valid, novel, potentially useful, and ultimately understandable patterns in data "

(Fayyad et al, 1996)

"Learning is making useful changes in our minds."

(Marvin Minsky, 1985)

"Learning denotes changes in a system that are adaptive in the sense that they enable the system to do the same task or tasks drawn from the same population more efficiently next time."

(Herbert Simon, 1983)

"Learning means behaving better as a result of experience."

(Stuart Russell & Peter Norvig, 1995)

"Learning is constructing or modifying representations of what is being experienced."

(Ryszard Michalski, 1986)

- What is a system with the ability to learn?
- System (Program) with input and output *f*:

$$x \longrightarrow f \longrightarrow y$$

- Search & Sort
- Shortest path
- Linear programming
- **@**
- Algorithmic solutions
- How to solve a problem?

- Pattern matching
- Robot playing soccer
- Piagnosis
- Automatic adaption
- **Property** How to learn to solve a problem?

 \leadsto

7

Input: $X \in \{0, 1\}^{1024}$

Output: $Y \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

© Task: Classification of man or woman?

Input: Picture of a person (as Bitmap)

Output: Sex of the person

Task: Analyzing of credit risk (credit rating)

Task: Mining of gene expression data

- Analysis of gene databases
- Search for relations of the genes and the functions of the proteins

C Task: Spam Filter

Training data: Input/Output

Y = 7

Training data: Input/Output

 $1\ 1\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 1\ 1\ 1\ 1\ 1\ 1\ 0\ 0\ 0\ 0\ 0\ 1\ 1\ 1\ 1\ 1\ 1\ 0\ 0\ 0\ 0\ 0\ 0$ 000000001110000000000000000

Y = 4

Prognosis: Input given / Output wanted

1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 $1\ 1\ 1\ 1\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 1\ 1\ 1\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 1\ 1\ 1\ 1\ 1\ 0\ 0\ 0$ $0\ 0\ 1\ 1\ 1\ 1\ 0\ 0\ 0\ 0\ 0\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 1\ 1\ 1\ 1\ 1\ 1$

Y = ???

Feature Selection: Which features can be used to classify the data?

- Amount of ones
- Length of the longest sequence of ones
- Increase of the density of ones
- •

Lernen ist jede Veränderung eines Systems, die es ihm erlaubt, eine Aufgabe bei der Wiederholung derselben Aufgabe oder einer Aufgabe derselben Art besser zu lösen [Simon, 1983].

Lernen ist das Konstruieren oder Verändern von Repräsentationen von Erfahrungen [Michalski, 1986].

Formalization of learning

Supervised learning:

The system gets questions (Inputs) with correct answers (Outputs) with the goal that after the training the system can give correct answers to new questions.

(Distinction between reinforcement and correcting learning)

Unsupervised learning:

System has to identify structure of data itself.

Example: Clustering

Supervised Learning (Learn with Examples)

Given: A set of examples (x_i, y_i)

$$S = \{(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)\} \subseteq x \times y$$

- Transduction: Output y for input x0 ??
- Induction: Complete functionally relation $f: X \to Y$??

- Unsupervised Learning (Example Clustering)
 - Given: Set of data of patients
 - Wanted: cluster patients with similar features (Symptoms)
- Typical applications of SOMs (Self organizing maps)

Classification of variables/ attributes

- nominal/categorical: finite range, no order
 - Example: color ∈ {red, blue, green}
- ordinal: finite range, linear order
 - Example: hotel category ∈ {economy, mid scale, luxury}
- numerical: numerical (intercal or proportional) range
 - Example: temperature, size

Polistinction of of task based on output

- Classification: Output is categorical
 - binary, multi-class, multi-label classification
- Ordinal classification: Output is ordinal
- Regression: Output is numerical

Examples:

- Two-class classification
- Multi-class classification
- Regression
- Time-series analysis

Data Based Modeling: Process

RPO2	euristic Lab							GKEIT		US		MASSE 12035.59	DRESSIER GRAD_M W	STRECKG RAD_M W	GRAD_ MW	WALZKR AFT_MW
199.6 .	204.74	0.242	4 2425	7F 7F	12211 67	٦	169.99	291.74	0.23	1.3225 0 ⁽¹ .2125 1.7025	.75.75	13314.67			1.0407	
169.99	291.74	0.243	1.2125		13314.67	1	168.6	294.46	0.245	1.7025	75	13110.49			1.2134	
168.6	^{294.4} 6R,				13110.49 24066.61	1.	171.8	296.7	0 243	1.51	57	24066.63			1.0882	
171.8 179.17	293.89	0.243 0.227	1.5175 1.5225	57 58.5		1.	179.17	293.89	0.227		58.5	24625.73	1.311	0.0245	1.311	?
179.17	295.89	0.227	¥.365	58.75	29176.93	1.	172.76	296.34	0.235	65	58.75	29176.93	1.2165	0	1.2168	?
233.7	307.6	0.233	4.305	54	20860		233.7	307.6	0.214	1.325	54	29869.29	1.5809	0.0009	1.5789	?
165.43	294.29	0.		54.25	₂₄₄₃₈] E	st	165.43	294.29	0.251	1.325	54.25	24438.Ր	1 0603	0.0383	1.0663	?
151.08	282.85	0.261	1.6475	59.5	3309.304	0.	151.08	282.85	0.261	1.6475	59.5	3309.3	MALZKO	0	0.9504	?
158.8	287.48			65	12057.68	0.	158.8	287.48	0.251	1.5325	65	12057.	VALZKR	0.0409	0.8482	?
158.03	285.16	1√10 0 <u>,2</u> 58	deling5 2,265	64	18946.35	0.	158.03	285.16		2,265			VFT_MW	0.0518	0.8651	
175.88	300.64	(Tra	ining 2 3 5	50.5	27860.24	1.	175.88	300.64					1498.92	0.0166	1.302	
173.64	297.41	0.238	1.315	50.5	400 -	1.	173.64	297.41			50/5		1899.42		1.3158	
166.93	291.64	0.238	1.313	53.25	26364.02	1	166.93	291.64	0.244	1.33 70, 1.37 1.885	<u> </u>	26364.	1704.12	0.0002	1.1291	
263.6	315.9	0.206	1.37	49.25		+ 1.	263.6	315.9	0.206	1.37		29821.	2102.28	0.0231	1.563	
336.95	411.94	0.15	1.885	52	3	+ 1.	336.95	411.94	0.15	1.685	• 52	22509.		0.0111	1.9382	
161.91	287.43	0.251	1.4125	57.25	28378.74	0.	161.91 174.98	287.43 294.67	0.251	1.4125	57.25	28378.	1955.39		0.9263	
174.98	294.67	0.229	1.38	59	28938.11	4.40	174.98	294.67	0.229 0.24	1.38 1.395		28938.1 29560.1	2198.06	0.018	1.2498 1.2421	
172.43	297.86	0.24	1.395	55.25	29560.72	تنت التاريخ	283.7			1.3325		29754.4	2003.71	0.0238		
283.7	321.9	0.201	1.3325	57.75	29754.42	1.	276.4		0.201	1.3525		17823.	1698.28		1.46	
150 200 250 300 350 400 450									1,023.	1697.23	0.1003	1.40				
					150 200	. 2	Original value	300 400	400				1760.48			
													1848.21			

Occam's Razor: If a models M_1 explains a phenomena as good as another model M_2 and M_1 is simpler, then we choose M_1 (Preference of the simpler model)

BSPL
$$f: \Re \to \Re$$

$$\mathcal{S} = \big\{ \ (1,1), (3,5), (7,13), (10,19) \ \big\}$$

Hypothesis 1: $h: x \mapsto 2x - 1$

Hypothesis 2: $h: x \mapsto x^4 - 21x^3 + 141x^2 - 329x + 209$

Problem: Overfitting vs. Underfitting

Overfitting: Approximation of "noise" in training partition leads to bad results in estimation partition

Underfitting:

If the complexity of the training model is to low to fully understand the problem, e.g. trying to solve nonlinear problems (a priori not known) with linear model

Bias Variance compromise: Polynom (Degree 1)

Bias Variance compromise: Polynom (Degree 2)

Bias Variance compromise: Polynom (Degree 3)

Bias Variance compromise: Polynom (Degree 4)

Bias Variance compromise: Polynom (Degree 5)

Bias Variance compromise: Polynom (Degree 10)

- **©** Error of generalization not known
- **©** Estimation of error
 - Reserved data partition for validation / test
 - Training on restricted partition

Problems: non-deterministic functions

Day	Month	Coin	Result
Monday	March	1 Euro	Tail
Wednesday	November	2 Euro	Tail
Saturday	November	2 Euro	Head
Sunday	December	1 Euro	Tail
Sunday	August	1 Euro	Tail
Monday	July	1 Euro	Head
Monday	June	2 Euro	Tail
Friday	May	2 Euro	Head

Seemingly explanation of examples with non-relevant features

A 1 euro coin tossed on a Sunday results in tail.

© Error probability

- Assumption: Instances becomes generated with a probability distribution p(x)
- Error probability: Probability of an instance, which has been misclassified by the hypothesis
- Can't be measured, because p(x) and the result are unknown (otherwise we wouldn't have to learn)
- Estimation of empirical error rate with data

Training error rate

- Number of misclassified training examples / number of all trainings examples
- Problem: Hypothesis is adjusted to the trainings data
- We would like to know how good the hyopthesis is for unknown instances
- Idea: Partition of trainings examples in tranings partition and test partition

© Error estimation

- Algorithm (training and test)
 - 80% of examples: trainings partition
 - 20% of examples: test partition
 - h1 = learn algorithm trainings partition)
 - Determine E with test partition
 - h = learn algorithm (all examples)
 - Get hypothesis h with error estimator E

- **©** Error estimation
- Additionally a validation set can be used:
 - Partition of data set in 3 groups (training, validation, test)
 - Search of hypothesis with trainings partition (as usual)
 - Different kind of usage of validation set:
 - Selection of best model eveluated with validation set (robustify)
 - Detection of overfitting
 - Regulation of hypothesis complexity

- **©** Error estimation
- Better than Training/Test: cross-validation
- n-fold crossvalidation:
 - Partition data set in n groups
 - Use (n-1) of these groups to train
 - Use remaining one to test
 - Repeat procedure n-times, until every partition was used once for testing
 - Return value is the arithmetic mean of results in the test partition

Hypothesis space H:

- Influences the training success
- Allows contribution of knowledge
- The more complex, the greater the risk of overfitting
- Perhaps it doesn't contain the wanted function
- Learning = Search for "good" Hypotheses in H
- **©** Example:

Class of degree of polynomial m:

$$\mathcal{H} = \left\{ x \mapsto \sum_{i=0}^{m} \alpha_i \cdot x^i \mid \alpha_0, \alpha_1, \dots, \alpha_m \in \mathfrak{R} \right\}$$

C Literature:

- The classic
- Not up to date

C Literature:

- Comprehensive
- 60 € at Amazon.de

Citerature:

- Similar to Han, Kamber
- Not that detailed
- 58€ at Amazon.de

© Literature:

- Practice-oriented theory
- A lot of Tips and Hints about WEKA
- 48€ at Amazon.de

Citerature:

- Application of genetic programming for data analysis
- Advanced methods for nonlinear system identification
- 64€ at Amazon.de

References:

- M. Affenzeller: Neuronale Netze (SS 04, JKU Linz)
- Eyke Hüllermeier: Methoden der Bioinformatik Maschinelles Lernen (Uni Marburg)
- Rainer Malaka: Mustererkennung und Maschinelles Lernen (WS 04/05, Uni Karlsruhe)
- T. Scheffer/S. Bickel: Maschinelles Lernen und Data Mining (Humboldt Universität Berlin)
- Gerhard Widmer: Maschinelles Lernen (JKU Linz)
- © GECCO 2005 2018, GPTP 2015 2018

Example:Virtual Sensors for Modeling Exhaust Gases

Motivation:

- High quality modeling of emissions (NOx and soot) of a diesel engine
- Virtual sensors: (Mathematical) models that mimic the behavior of physical sensors
- Advantages: low cost and non-intrusive
- Identify variable impacts:
 - Injected fuel, engine frequency, manifold air pressure, concentration of O₂ in exhaustion etc.

$$NO_x(t) = f(x1_{(t-7)}, x2_{(t-2)}, ...)$$

Example: Blast furnace modeling

x1	x2	x3	x4	x5	у		7			——f(x) • y
28.07845	13.93902	87.63394	20.07777	63.00267	250.4028				0.3	,
27.95657	12.75236	87.05083	19.95878	63.00894	440.0825				0.2	
25.43135	23.03532	88.32881	21.98374	74.99575	292.6644					
28.5034	36.71041	87.59461	20.55528	75.01106	100.8683				0.1	
23.03413	46.5804	79.38985	18.67402	80.31421	435.7738				0	
20.97957	41.52231	73.32074	21.49193	79.98517	288.5032				-0.1	
28.07431	28.49076	106.4166		79.97826	?				-0.2	
28.00494	36.33813	104.7173	27.99428	75.00266	?					
28.0274	31.84306	102.277		78.1752	?				-0.3 +	0.2 0.4 0.6 0.8
26.503	27.67078		21.29002 24.54099	62.99904 80.00291						0.2 0.7 0.0 0.0
23.869	27.25298	93.67531								Addition Multiplication
				_						Addition Addition
			$f(\mathbf{x})$)			1.1579E -002	Ma	ultiplication	7.1562E 4.1047E+00 3.0712E-001
1ode			. ,		Prog	nosis		Multiplica	ation RM	1.495E+0 9.503E+001 1.7797E+000 LSTAT

Innovations:

- Results as formulas → Domain experts can analyze, simplify and refine the models
- Integration of prior physical knowledge into modeling process
- Special interest of domain experts in model simplification and variable impact analysis

Example: Extinguishing systems

Goals

- Detect **relevant impact factors** and potential relationships between foam parameters with respect to throw range and foam quality
- Model throw range and foam quality
- Configure extinguishing systems for optimal throw range and foam quality

Example: Plasma Nitriding Modeling

- Hardening of materials (e.g., transmission parts)
- Process parameter settings based on expert knowledge

- a) Prediction of quality values based on process parameters and material composition
- b) Propose process parameter settings to reach the desired material characteristics

Example: Process Parameter Optimization

Material composition Process parameter

Quality estimates

Material composition Desired quality

Process parameter

Example: Medical Diagnosis

Motivation:

- Research goal: Identification of mathematical models for cancer diagnosis
- Tumor markers: substances found in humans (especially blood and / or body tissues) that can be used as indicators for certain types of cancer.

C Data

- Medical database compiled at the central laboratory of the General Hospital Linz, Austria, in the years 2005 – 2008
- Total: Blood values and cancer diagnoses for 20,819 patients

Modeling Scenarios

- Model virtual tumor markers using normal blood data
- Develop cancer diagnosis models using normal blood data
- Develop cancer diagnosis models using normal blood data and (virtual) tumor markers

Cancer Diagnosis Estimation

Example: Medical Diagnosis: Data Preprocessing for Cancer Prediction

Patient	Date	[Measured values]	Diagnosis	
1001	01.01.2004	[]	-	٦
1001	01.01.2005	[]	-	Healthy
1001	01.01.2006	[]	-	
1001	29.05.2007	[]	-	ה
1001	01.06.2007	[]	-	
1001	02.06.2007	[]	-	Relevant measurements
1001	15.06.2007	[]	C61	J
1001	02.07.2007	[]	C61	٦
1001	15.07.2007	[]	C61	51:6:17:
1001	02.09.2007	[]	C61	Falsified (treatments,)
1001	01.01.2008	[]	C61	
1001	05.02.2008	[]	-	ו
1001	01.03.2008	[]	-	1111h (2)
1001	17.03.2008	[]	-	Healthy (?)
1001	01.01.2009	[]	-	J

- **©** Generate numerous forecasting models
- Reduce error caused by varianve
- Robustification of modeling results
- May be combined with various modeling techniques (e.g. random forests)
- May be combined with regression as well as with classification modeling
 - Averaging or prediction values for regression
 - Majority voting for classification
- Basis for enhanced confidence interpretation

Based on clearness of majority voting

$$cm_1 := 2 \left(\frac{|votes(winning class)|}{|votes|} - 0.5 \right) \epsilon [0, 1]$$

Assuming for example 300 models for a 2-class classification problem:

- Vote of 300:0 results in $cm_1 = 1.0$
- Vote of 150:150 results in $cm_1 = 0.0$
- Vote of 200:100 results in $cm_1 = 1/3$
- Vote of 250:50 results in $cm_1 = 2/3$

Based on clearness of voting and on closeness of predictions

0 —

$$cm_2 = \min\left(\frac{\Delta\left(m(t), m(e)\right)}{\Delta\left(m(t), class\right)}, 1\right) \in [0, 1]$$

Standard offspring selection GP modeling results

	Avg. training accuracy of 100 best models	Avg. test accuracy of 100 best models	Training accuracy of best model	Test accuracy of best training model
Breast with TM	83.17%	77.89%	84.74%	79.33%

© Ensemble modeling results

	Majority Vote	Average Threshold
Accuracy training	84.99%	84.99%
Accuracy test	81.44%	81.44%
Average Confidence Correct Classified	cm ₁ = 0.8500	cm ₂ = 0.6182
Average Confidence Incorrect Classified	cm ₁ = 0.4806	cm ₂ = 0.2449
Confidence Delta	0.3694	0.3733

- **©** Test accuracy of best training model for breast cancer: 79.33%
- **Test accuracy of ensemble model for breast cancer: 81.44%**

Majority Vote

Test accuracy	Covered samples	Confidence
81.72%	95.33%	0.1
83.47%	88.24%	0.3
86.57%	78.05%	0.5
89.88%	69.97%	0.7
92.93%	56.09%	0.9
95.45%	46.74%	0.95
98.00%	35.41%	1

