휴강 및 중간고사 공지

휴강일시: 10월 17일 (화)

휴강사유: 예비군 훈련…

중간고사: chapters 1, 11, 12, 15 에서 출제됨.

-date: 10월 24일 14~16시

-출제내용: Lecture 한 내용만 출제됨.

-출제방식: 용어 개념 및 기작 서술형 문제 위주

2nd report: What is the protein misfolding and amyloid?

*Hint: The endoplasmic reticulum and chaperone are related...

Due date: Oct, 16

Essential Cell Biology Third Edition

Chapter 15 Intracellular Compartments and Transport

진핵세포의 내부에는 매 순간 수많은 화학반응이 일어나며 진핵세포의 내부막은 서로 다른 대사과정들을 격리시키는 막성 구획과 세포소기관 들을 만들어 낸다

Figure 15-1 Essential Cell Biology (© Garland Science 2010)

15장 세포 내 구획과 운반의 내용

- 1. 막성 세포소기관
- 2. 단백질의 분류(protein sorting)
- 3. 소낭수송(vesicular transport)
- 4. 세포외 방출(exocytosis), 세포내도입(endocytosis)

막성 세포소기관

진핵세포는 기본적인 한 세트의 막성 세포소기관들을 가지고 있다

TABLE 15–1 THE MAIN FUNCTIONS OF THE MEMBRANE-ENCLOSED COMPARTMENTS OF A EUCARYOTIC CELL				
COMPARTMENT	MAIN FUNCTION			
Cytosol	contains many metabolic pathways (Chapters 3 and 13); protein synthesis (Chapter 7)			
Nucleus	contains main genome (Chapter 5); DNA and RNA synthesis (Chapters 6 and 7)			
Endoplasmic reticulum (ER)	synthesis of most lipids (Chapter 11); synthesis of proteins for distribution to many organelles and to the plasma membrane (this chapter)			
Golgi apparatus	modification, sorting, and packaging of proteins and lipids for either secretion or delivery to another organelle (this chapter)			
Lysosomes	intracellular degradation (this chapter)			
Endosomes	sorting of endocytosed material (this chapter)			
Mitochondria	ATP synthesis by oxidative phosphorylation (Chapter 14)			
Chloroplasts (in plant cells)	ATP synthesis and carbon fixation by photosynthesis (Chapter 14)			
Peroxisomes	oxidation of toxic molecules			

활면소포체: 세포기질로 부터 Ca²⁺ 를 격리시킴
→ 외부신호에 의한 세포의 빠른 반응기작에 관여

간세포 내의 주요한 세포소기관들의 상대적 부피

막성세포소기관은 진핵세포 부피의 절반을 차지하며, 이들이 이루는 막의 양도 방대함 (세포막의 20-30배)

TABLE 15-2 THE RELATIVE VOLUMES OCCUPIED BY THE MAJOR MEMBRANE-ENCLOSED ORGANELLES IN A LIVER CELL (HEPATOCYTE)

INTRACELLULAR COMPARTMENT	PERCENTAGE OF TOTAL CELL VOLUME	APPROXIMATE NUMBER PER CELL
Cytosol	54	1
Mitochondria	22	1700
Endoplasmic reticulum	12	1
Nucleus	6	1
Golgi apparatus	3	1
Peroxisomes	1	400
Lysosomes	1	300
Endosomes	1	200

막성 세포소기관들은 서로 다른 방식으로 진화하였다.

핵막, 소포체, 골지체, 엔도솜, 리소솜 : 원형질막의 함입에 의해 생성

- → 세포내막계(endomembrane system)
- → 소낭에 의해 세포 외부와 활발한 물질교환

Figure 15-3 Essential Cell Biology (© Garland Science 2010)

막성 세포소기관들은 서로 다른 방식으로 진화하였다.

- 미토콘드리아, 엽록체: 원시 호기성원핵세포의 함입에 기원
 - → 자체 DNA를 갖으며, 자신에게 필요한 일부 단백질 합성
 - → 소낭운동 경로에서 제외됨

Figure 15-4 Essential Cell Biology (© Garland Science 2010)

단백질의 분류

세포 분열과 성장 과정

세포소기관 들도 성장하고 분열하는 과정을 거쳐야 한다

- → 새로운 분자를 삽입시키는 방식으로 성장함
- → 세포소기관으로의 물질이동이 필수적임

세포소기관들은 세가지 방식으로 단백질을 받아들임

단백질은 세 가지 기작에 의해 세포소기관으로 유입된다.

- 1. 핵공을 통한 수송 세포기질에서 핵으로 이동하는 단백질은 핵공을 통과
- 2. 막을 관통하는 수송 세포기질에서 소포체, 미토콘드리아, 엽록체, 퍼옥시솜으로 이동하는 단백질은 단백질전좌체 (translocator)를 이용 수송 → 막 통과 시 단백질형상이 풀려야 한다.
- 3. 소낭수송(transport vesicle) 소포체나 내막계의 소기관에서 다른 소기관으로 이동하는 단백질은 소낭수송을 통한다.

단백질이 정확한 구획으로 운반되는 것은 신호서열(signal sequence)에 의한다.

- 특정 세포소기관으로 이동하는 단백질은 15-60개의 아미노산 신호서열을 갖음 (필요충분조건)
- 신호서열이 없으면 세포기질 단백질에 해당함

TABLE 15-3 SOME TYPICAL SIGNAL SEQUENCES				
EXAMPLE OF SIGNAL SEQUENCE				
[†] H ₃ N-Met-Met-Ser-Phe-Val-Ser-Leu-Leu-Leu-Val-Gly- lle-Leu-Phe-Trp-Ala-Thr-Glu-Ala-Glu-Gln-Leu-Thr-Lys- Cys-Glu-Val-Phe-Gln-				
-Lys-Asp-Glu-Leu-COO				
[†] H ₃ N-Met-Leu-Ser-Leu-Arg-Gln-Ser-Ile-Arg-Phe-Phe- Lys-Pro-Ala-Thr-Arg-Thr-Leu-Cys-Ser-Ser-Arg-Tyr-Leu- Leu-				
-Pro-Pro-Lys-Lys-Arg-Lys-Val-				
-Ser- <mark>Lys-</mark> Leu-				

Positively charged amino acids are shown in *red*, and negatively charged amino acids in *blue*. An extended block of hydrophobic amino acids is shown in *green*. [†]H₃N indicates the N-terminus of a protein; COO⁻ indicates the C-terminus. The ER retention signal is commonly referred to by its single-letter amino acid abbreviation, KDEL.

단백질이 정확한 구획으로 운반되는 것은 신호서열에 의한다.

- 특정 세포소기관으로 이동하는 단백질은 15-60개의 아미노산 신호서열을 갖음 (필요충분조건)
- 모델실험(신호서열교환)

Figure 15-6 Essential Cell Biology (© Garland Science 2010)

핵으로 이동하는 단백질은 핵공을 통한다.

- 진핵세포의 핵막에는 모든 분자가 출입할 수 있는 핵공이 존재 세포기질에서 합성된 핵단백질 (세포기질 → 핵으로 이동) 핵에서 합성된 mRNA, 리보솜 (핵내부 → 세포기질)

Figure 15-7 Essential Cell Biology (© Garland Science 2010)

핵으로 이동하는 단백질은 핵공을 향해 능동수송된다.

- RNA 나 단백질은 핵위치신호(nuclear localization signal)가 존재 해야만 핵공을 통과할 수 있다.
- 핵수송수용체(nuclear transport receptor)가 단백질의 핵위치신호와 결합한다.
- 수용체는 핵공의 촉수와 상호작용함으로서 핵공으로 이동하는 것을 도움

GTP 가수분해를 통해 제공된 에너지가 핵수송을 매개한다.

- 핵수송수용체는 세포질에서 화물단백질과 결합 핵으로 들어감
- 이 복합체가 Ran-GTP와 결합하여 화물단백질 방출
- 수용체는 Ran-GTP와 함께 세포질로 이동
- 부속단백질이 수용체와 Ran-GTP 를 분리함
- 핵공에서의 단백질 수송은 단백질의 삼차구조가 유지된 상태에서 이루어짐

Figure 15-10 Essential Cell Biology (© Garland Science 2010)

단백질이 미토콘드리아와 엽록체로 이동하기 위해서는 풀려야 한다.

- 미토콘드리아와 엽록체의 단백질은 핵속의 유전자에 의해 암호화되며, 세포기질에서 만들어져 수송된다.
- 단백질 말단에 신호서열을 갖음
- 미토콘드리아 외막의 신호서열 수용체가 단백질을 인식함
- 이 복합체가 이 복합체가 외막을 따라 확산되며 내막의 연결통로와 만나면 단백질의 삼차구조가 풀려서 내부도 이동함
- 이동 후 신호서열이 잘려나감
- 내부에 존재하는 샤페론(chaperone) 단백질들은 단백질의 이동에도 관여하고 이동 후 다시 삼차구조를 형성시키는데에도 관여함

https://www.youtube.com/watch?v=LfDYGanMi6Q protein translocation into mitochondria

단백질은 합성되면서 소포체로 들어간다.

- 소포체는 단백질이 소포체 내부로 들어가거나 세포표면,
 다른 세포소기관(골지체, 엔도솜, 리소솜)으로 들어가는 출발점에 해당한다.
- 소포체에서 합성된 단백질은 소낭수송을 통하여 세포막과 다른 세포소기관들로 이동함

소포체로 이동하는 단백질의 종류

- 수용성 단백질: 소포체내부로 들어감. 분비성단백질 혹은 소기관 내부단백질
- 막관통 단백질: 소포체막, 소기관막, 원형질막의 막단백질을 이름
- 단백질 수송초기과정에서 소포체 신호서열 (ER signal sequence)에 의해 소포체로 보내어 진다. ■

단백질은 합성되면서 소포체로 들어간다.

- 소포체로 수송되는 단백질 대부분은 합성자체가 내부를 향해 진행됨 → 리보솜이 소포체에 부착되어야 함 (조면소포체)

리보솜의 종류

- 막-결합성 리보솜 (membrane bound ribosome)
- 유리 리보솜 (free ribosome)
- 소포체신호서열을 가진 단백질의 합성은 소포체막으로 리보솜이

이동하여 시작된다

→ 폴리리보솜(polyribosome)

Figure 15-13 Essential Cell Biology (© Garland Science 2010)

수용성 단백질은 소포체 내강으로 방출된다.

소포체 신호서열의 구성요소

- 신호인지입자(signal-recognition particle, SRP)
- 신호인지입자 수용체(SRP receptor)
- 신호인지입자가 신호서열에 결합하면, 신호인지입자 수용체에 결합할 때까지 리보솜에 의한 단백질합성 속도가 느려짐
- 이후 신호인지입자가 복합체로 부터 분리되면, 단백질합성이 재개됨
- 전좌통로(translocation channel)을 통해 소포체 내강으로 이동
- 신호서열은 전좌통로를 여는 기능도 수행하며, 이후 신호펩티드분해효소에 의해 절단됨

개시 및 종결신호는 지질이중층 내의 막관통단백질의 배열을 결정한다.

한 번 막을 관통하는 단백질

- 막관통단백질은 아미노말단의 신호서열에 의해 이동개시되며, 이동종결서열(stop-transfer sequence)에 의해 종료된다.
- 종결서열에 도달하면 종결서열은 알파나선 모양의 막관통부위를 형성
- 이후 아미노 말단 신호서열은 절단된다.

두 번 막을 관통하는 단백질

- 단백질 내부에 존재하는 이동개시서열(start-transfer sequence)에 의해 개시되며, 이후 단백질에서 제거되지 않는다.
- 종결서열에 도달하면 이동을 멈춤
 → 두 개의 알파나선 형성

여러 번 막을 관통하는 단백질

 여러 개의 이동개시서열과 이동종결 서열을 갖음

소낭수송 (vesicular transport)

- 단백질이 소포체 내로 이동하는 것은 대부분 다른 이동목적지로 이동하기 위함이다. (대개 골지체)
- 소포체에서 골지체, 골지체에서 다른 소기관으로의 수송과정은 수송소낭(transport vesicle)의 계속적인 출아와 융합과정에 의해 이루어진다.
- 이 과정 중간에 단백질들은 탄수화물가지가 첨가되거나,
 단백질구조를 안정시키는 이황화결합이 형성되는 등 다양한 화학변화가 일어남

수송 소낭은 수용성 단백질과 막을 여러 구획으로 운반한다.

소낭수송의 두 가지 종류

- 분비성경로(secretory pathway): 소포체 → 골치체 → 세포막으로 이동
- 세포내도입경로(endocytic pathway): 세포막 → 엔도솜 → 리소솜

수송소낭이 반드시 목표한 표적막과 융합해야 한다.

- 이를 위해 소기관 특이단백질과 지질 구성성분의 일정량을 항상 유지하여야 한다.
- 모든 인지과정은 수송소낭막의 수용체에 의해 이루어짐

소낭의 출아는 단백질 외피의 조립으로 일어난다.

피복소낭(coated vesicle) 출아하는 대부분 소낭은 표면에 특이적 단백질 외피를 가지고 있음
→ 출아가 완료된 소낭은 외피가 탈피됨

외피의 역할

- 소낭출아를 도움
- 수송할 단백질을 소낭으로 끌어들임

Figure 15-19a Essential Cell Biology (© Garland Science 2010)

클라트린-피복 소낭(clathrin-coated vesicle)

- 세포 외부로 수송하는 분비성 골지체와 세포막에서의 소낭 출아

출아과정

- 클라트린-피복 구멍에서 소낭이 형성되기 시작
- 클라트린분자들이 서로 결합 바구니모양의 구조물 형성
- 다이나민이 외피 구멍의 목부위를 고리모양으로 조합
- 소낭을 세포막에서 분리

소낭 수송단백질의 선별

- 소낭에 존재하는 어뎁틴(adaptin)에 의해서 선별에 도움
- 운반되는 분자들은 수송신호(transport signal)를 가짐

COP피복 소낭(COP-coated vesicle)

- 소포체에서 골지체, 골지체 한 엽에서 다른 엽으로의 물질 수송에 관여함

TABLE 15-4 SOME TYPES OF COATED VESICLES					
TYPE OF COATED VESICLE	COAT PROTEINS	ORIGIN	DESTINATION		
Clathrin-coated	clathrin + adaptin 1	Golgi apparatus	lysosome (via endosomes)		
Clathrin-coated	clathrin + adaptin 2	plasma membrane	endosomes		
COP-coated	COP proteins	ER Golgi cisterna Golgi apparatus	Golgi apparatus Golgi cisterna ER		

소낭이 특정 소기관과의 결합은 밧줄 단백질과 SNARE의 작용에 의한다.

- 대부분의 소낭은 세포골격섬유를 따라 움직이는 운동단백질에 의해 능동수송된다.

소낭의 표적 소기관 융합과정

- 소낭표면의 Rab 단백질이 표적막의 표면에 존재하는 밧줄단백질(tethering protein)에 의해 인지됨
- 소낭에 존재하는 v-SNARE와 표적막의 t-SNARE 가 상보적인 특이결합을 형성 제 위치에 결합할 수 있도록 한다.

융합과정은 두개의 막이 1.5 nm로 가까워야 한다. → 물분자가 제거되어야 하므로 에너지적으로 매우 어려운 과정

- SNARE 단백질이 중요한 역할을 수행 → v-SNARE와 t-SNARE 가 결합 후 서로 꼬이는 과정을 통하여 두막을 근접시킴

https://www.youtube.com/watch?v=FqTSYHtyHWE vesicle fusion into cell membrane snare protein

분비 경로

세포외방출 (exocytosis): 일부 단백질, 지질, 당류는 소낭수송을 통해 소포체 → 골지체 → 세포막 순으로 이동 외부로 방출됨

대부분의 단백질은 소포체에서 공유결합에 의해 변형된다.

- 이황화결합(disulfide bond): 소포체 내강의 효소에 의해 시스테인 간의 산화에 의해 형성
- <mark>당화과정(glycosylation): 소포체 내강 혹은 막으로 이동한 단백질은</mark> 당화효소에 의해 올리고당 사슬이 결합됨

당화과정

- 14개의 단당으로 이루어진 올리고당이 돌리콜(dolicol)에 결합
- 단백질 전좌과정 중 아스파라긴이 소포체 내강으로 들어오면 아스파라긴의 아미노기로 이동하여 결합함
 - → 소포체 내강의 효소에 의해 촉매됨 (N-결합 형성)
- 이후 추가적인 변형과정을 통하여 매우 다양한 형태로 변형

Figure 15-23 Essential Cell Biology (© Garland Science 2010)

정상적인 구조를 지닌 단백질만 소포체로부터 방출된다.

소포체잔류 단백질

- 소포체잔류신호(ER retention signal)을 가지고 있어 소포체에 존재하는 수용체에 인식되어 소포체에 잔류

분비단백질

- 수송소낭 출아과정은 매우 선택적이다.
- 잘못접힌 단백질의 경우는 샤페론과 결합하여 소포체바깥으로 이동이 억제됨
 - → 소포체에서 골지체로 이동하는 과정자체가 단백질의 정확한 한 구조를 지니도록 도와주는 역할을 함

<mark>낭소성섬유증(cystic fibrosis): 위의 제어과정이 악영향</mark>을 미친 예

소포체의 크기는 소포체를 통과하는 단백질의 양에 의해 조절된다.

- 단백질의 생산이 소포체의 운반과 접힘용량을 초과하면 잘못 접힌 단백질이 축적됨 → 특정수용체를 활성화 → UPR 기구활성화
- UPR프로그램은 세포가 적절한 단백질접힘과 처리에 필요한 분자기구 전부를 포함한 소포체를 더 생산하도록 함

- 확장된 소포체로도 단백질 생산을 감당하지 못해 잘못 접힌 단백질이 축적될 경우 UPR프로그램은 세포자살로 유도할 수 있음 예) 성인기 발병형 당뇨병

Unfolded Protein Response

단백질은 골지체에서 추가적인 변형과 분류 과정을 거친다.

- -수용성 단백질과 막은 소포체로부터 유래된 수송소낭을 통해 근골지 망상조직(cis Golgi network)로 들어간다.
- 단백질들은 한 골지엽에서 다른 골지엽으로 소낭수송을 통해 이동함
- 원골지 망상조직(trans Golgi network)에서 단백질들은
- 소낭수송을 통해 세포막이나 다른 소기관으로 이동함
- -소포체에서 단백질에 부착된 올리고당그룹은 골지체에서 부가적인 변형이 일어남

20 μm

분비성 단백질은 세포외 방출에 의해 세포밖으로 배출된다

상시 세포외방출 경로(constitutive exocytosis pathway)

- <mark>일정한 속도로 소낭수송을 통해 새로 합성된 지질과 단백질을</mark> 세포막에 공급 → 분비단백질, 막단백질, 원형질막 공급
 - → 자동경로(default pathway)

조절 세포외방출 경로(regulated exocytosis pathway)

- 분비를 위해 <mark>특화된 세포에서만 작동</mark>하는 경로
- 분비세포(secretory cell)은 호르몬, 점액, 소화효소등을 다량 생산하여 분비소낭에 저장함
- 분비소낭은 골지체에서 출아하여 원형질막 근처에 축적됨
- 세포막과의 <mark>융합을 자극</mark>하는 외부신호를 기다림
 - 예) 혈액내 포도당량 증가→ 췌장세포 자극 → 인슐린 분비

분비성 단백질은 세포외 방출에 의해 세포밖으로 배출된다

단백질분류 및 분비소낭으로의 포장

- 원골지 망상조직에서 단백질 분류와 소낭으로의 포장이 이루어짐
- 단백질 응집조건: 독특한 이온환경(낮은 산도, 고농도칼슘 등)
- → 특정자극에 의해 많은 양의 단백질을 신속하게 분비하게 함
- -상시 분비경로를 통해 분비되는 단백질은 응집과정이 없이 배출됨
- 분비소낭이나 수송소낭 모두 원형질막을 증가시킴 → 유사한 빈도의 endocytosis에 의해 균형을 이룸

secretory vesicle containing insulin plasma membrane

0.2 μm

단백질과 소낭수송의 추적

시험관에서 단백질 추적

Figure 15-29 Essential Cell Biology (© Garland Science 2010)

효모에게 묻기 (온도민감성 돌연변이 이용)

GFP를 이용한 단백질 추적

Figure 15-30 Essential Cell Biology (© Garland Science 2010)

세포내도입 경로

진핵세포는 세포내도입 과정을 통해 분자, 유동물질, 다른 세포등을 유입할 수 있다.

세포내도입(endocytosis)

음세포작용(pinocytosis): 작은 소낭을 통해 액체와 분자를 유입

→ 모든 진핵세포에서 일어남

식세포작용(phagocytosis): 미생물 및 세포단편 같은 거대입자를 포식소체(phagosome)을 통해 유입

→ 특화된 포식세포(phagocytic cell)에서 수행함

특수화된 포식세포는 거대입자를 섭취한다.

- 동물세포에서의 포식작용은 영양섭취보다는 감염에 대한 일차적인 방어작용을 함 → 대식세포(macrophage) 혹은 백혈구에 의해 이루어짐
- -대식세포의 표면의 수용체가 포식세포의 항체를 인식하여 위족(pseudopod)을 형성 세균을 삼킨 후 포식소체형성 → 이후 포식소체는 리소솜과 융합 세균을 소화함

https://www.youtube.com/watch?v=BDr44vLNnPY Phagocytosis by macrophage
https://www.youtube.com/watch?v=JnlULOjUhSQ Phagocytosis by white blood cell

유동물질과 거대분자는 음세포작용에 의해 섭취된다.

-진핵세포는 끊임없이 음세포소낭(pinocytic vesicle) 형태로 세포외 유동물질을 섭취함

음세포작용의 특성

- 시간당 매우 높은 비율을 유지함
- 대식세포의 경우 매시간 자신의 25%에 해당하는 부피를 섭취함
 - → 분당 3%의 원형질막 필요, 30분에 100% 소요됨
 - → 손실된 원형질막은 비슷한 속도의 exocytosis에 의해 보충됨
- 음세포작용은 클라트린-피복 소낭에 의해 주로 수행됨
- 이후 피복이 제거된 후 엔도솜과 융합됨

수용체매개 세포내도입은 동물세포의 특수 수송경로이다.

- 음세포작용은 선별적인 특성을 갖지 않음
- 대부분의 동물세포는 특정거대분자를 선별하여 세포내유입하는 경로를 가지고 있음

수용체매개 세포내도입(receptor-mediated endocytosis)

 특정 거대분자가 세포표면에 존재하는 수용체에 결합하여, 수용체-거대분자 복합체로서 클라트린-피복 소낭을 이루어 세포내로 들어옴 (콜레스테롤, 비타민B12, 철 등의 흡수)

예) 콜레스테롤의 세포내도입경로 LDL이 수용체와 결합 → 피복소낭출아 →엔도솜 → 리소솜 →콜레스테롤분리

수용체에 결함이 있는 경우 → 동맥경화의 위험

https://www.youtube.com/watch?v=OejK9KAfFCY LDL endocytosis part1 https://www.youtube.com/watch?v=TuuwLLlKYGU LDL endocytosis part2

세포내로 도입된 거대분자들은 엔도솜에서 분류된다.

- 엔도솜의 내부는 산성을 유지 → ATP의존성 수소펌프에 기인
- 엔도솜(endosome)은 세포내도입으로 도입된 물질의 주된 분류 기관으로 작용
 - → 엔도솜의 산성환경은 수용체에서 외부물질의 분리를 유도하여 분류과정에 중요한 역할을 수행

엔도솜의 수용체의 처리방식

- 1. 대부분의 수용체들은 원형질막으로 회귀
- 2. 일부수용체는 리소솜으로 이동하여 분해
- 3. 일부수용체는 세포의 반대편의 원형질막으를 이동 → 세포통과(transcytosis)

외부물질의 도입경로 소낭을 통해 유입 → 세포막근처의 초기엔도솜과 결합 → 이후 핵근처의 후기엔도솜 → 리소솜

리소솜은 세포내 물질분해가 일어나는 주된 장소이다.

리소솜(lysosome)

- 세포내로 도입된 물질은 리소솜에서 분해됨
- 40여가지의 다양한 가수분해효소를 함유 (산성에서 활성을 가짐)
 - → 외부물질 및 세포소기관을 분해함
- 리소솜 막에는 ATP의존성 수소이온펌프가 존재함
 - → 리소솜 내부를 산성환경으로 유지함

리소솜 소화효소 및 막단백질의 생성 및 이동경로 소포체에서 합성 → 골지체로 이동 → 소낭수송을 통해 엔도솜을 경유 리소솜으로 이동함

리소솜은 세포내 물질분해가 일어나는 주된 장소이다.

물질들의 리소솜으로 향하는 경로

- 1. 세포내도입(endocytosis)
- 2. 식세포작용(phagocytosis)
- 3. 자기포식작용(autophagy): 노후한 소기관을 막이 둘러싸서 자기포식소체(autophagosome)를 형성하며 리소솜과 융합됨

