Training Large Language Models

How to reduce memory and compute

Learning goals

- Learn about different techniques to reduce compute and memory
- Learn about distributed training with data/tensor parallelism
- Learn about Flash Attention

DISTRIBUTED TRAINING

- Training LLMs faster on many GPUs
- Avoiding OOM issues
- Data parallelism: split the data on different model replicas
- Tensor parallellism: split model parameters accross GPUs

DATA PARALELISM (ANIMATED GIF!)

Source: Nvidia

TENSOR PARALELISM (ANIMATED GIF!)

Source: Nvidia

FlashAttention

Fast and Memory-Efficient Exact Attention with IO-Awareness

- Fast
 - 15% faster than BERT
 - 3x faster than GPT-2
 - 2.4x faster than Megatron-LM
- Memory-efficient
 - Reducing from $O(n^2)$ to O(n)
- Exact
 - Same as "vanilla attention", not an approximation
- IO aware
 - Reducing memory load/store operations

GPU MEMORY HIERARCHY

Source: Dao et al. (2022)

COMPUTING CONSIDERATIONS

- GPU compute has been growing faster than memory bandwidth
 - GPU has to wait for data
- Transformer operations are memory-bound
 - Elementwise operations with high memory access
- IO aware means reducing memory load/store operations
- FlashAttention implements the following:
 - Operation fusion to reduce memory access
 - Tiling or chunking the softmax matrix into blocks
 - Recomputation for better memory utilization

OPERATION FUSION

Source: https://horace.io/brrr_intro.html

LIMITATIONS AND PROSPECTS

- FlashAttention requires writing attention to CUDA language
 - A new CUDA kernel for each new attention implementation
 - CUDA is lower-level than PyTorch
 - Implementation may not be transferable accross GPUs
- Towards IO-Aware Deep Learning
 - Extending beyonde attention
- Multi-GPU IO-Aware Methods
 - FlashAttention computation may be parallelizable accross multiple GPUs