

Landscape

Kyong-Ha Lee

A Few Quates

- "A breakthrough in machine learning would be worth ten Microsofts" Bill Gates, Chairman, Microsoft)
- "Machine learning is the next Internet" (Tony Tether, Director, DARPA)
- Machine learning is the hot new thing"
 (John Hennessy, President, Stanford University)
- "Web rankings today are mostly a matter of machine learning" (Prabhakar Raghavan, Dir. Research, Yahoo)

Deep Learning: 2012 - present

* 고성능컴퓨팅	= 25편 (3.79%)
* 국방소프트웨어	■ 8편 (1.21%)
* 데이터베이스	43편 (6.52%)
* 모바일응용및시스템	39편 (5.91%)
* 사물인터넷	= 22편 (3.33%)
* 소프트웨어공학	27편 (4.09%)
* 스마트시티	■ 18편 (2.73%)
* 언어공학	51편 (7.73%)
* 오픈소스소프트웨어	■ 9편 (1.36%)
* 인공지능	233편 (35.30%)
* 전산교육시스템	Submission stats. in KCC 2020 ■ 10년 (1.52%)
* 정보보안및고신뢰컴퓨팅	43편 (6.52%)
* 정보통신	40편 (6.06%)
* 컴퓨터그래픽스및상호작용	31편 (4.70%)
* 컴퓨터시스템	54편 (8.18%)
* 컴퓨터이론	■ 3편 (0.45%)
* 프로그래밍언어	■ 4편 (0.61%)
	- 2 -

Sample applications

- Voice recognition
 - e.g., Apple SIRI, Amazon echo, ···
- Machine translation
 - Google translate, Naver papago, …
- Visual recognition
 - Face recognition, license plate recognition, automated surveillance cameras, ···
- Robotics
- Recommender systems
- Automated driving systems

Overview: Deep Learning

Massive training (labeled) data

Classification

CAT

Object Detection

CAT, DOG, DUCK

Applications

Instance Segmentation

CAT, DOG, DUCK

Challenge 1: Human-In-The-Loop Process

DL developments require many *Iterative* tasks and human interventions

Challenge 2: Size Matters!

CNN-based image classifiers

Recent advances have shown that ever-larger DNN models lead to better task performance and past progress in visual recognition tasks has also shown a strong correlation between the model size and accuracy

** Benchmark analysis of representative deep neural network architecture, Blanco et al., Oct. 2018

^{*} An analysis of Deep Neural Network Models for Practical Applications, A. Canziani et al., April 2017

Challenge 2: Gap in Technical Progress

- Performance of GPUs increases by up to 3 times for 5 years ('15~'20)
- GPU Memory increases by up to 1.5 times for 5 years (16→24GB, '15~'20)
- # operations for inferencing w/ ML models increases by about 25 times or more for 6 years ('12~'18)

Challenge 3: Time & Costs

Long training time limits ML researcher's productivity

Correlation btw. #layers and time

Model	Error rate	Training time
ResNet18	10.76%	2.5 days
ResNet50	7.02%	5 days
ResNet101	6.21%	1 week
ResNet150	6.16%	1.5 weeks

^{*} M40 GPU, fb.resnet.torch

- KoBERT (SKT, Oct. 2019)
 - 24 layers, 340M parameters
 - 1 month with 32 V100 GPUs interconnected with Horovod (w/infiniBand)

- XLNet (Yang, arXiv 19 Jun 2019)
 - 340 million parameters
 - Training: 2.5 days with 512 TPU v3 chips for 500k steps
 - 512 TPU x 2.5 days x \$8 = \$245,000
- Gpipe (Huang, NIPS Dec. 2019)
 - 556 million parameters
- NASNet (Barret, CVPR June 2018)
 - 800 GPU, 28 days training
- GPT-3 (OpenAl, 2020)
 - 175B parameters, required
 3.14E23 FLOPS for training
 - At theoretical 28 TFLOPS for V100, 355 GPU-years and cost \$4.6M for a single training run
 - 700GB memory to store it in FP32

Challenge 4: Energy Efficiency

- AlphaGo: 1,920 CPUs and 280 GPUs, \$3,000 electric bill per game
- "Training a single DL model can emit as much carbon as 5 cars in their lifetimes" MIT Tech. Review, 2019

Common carbon footprint benchmarks

In Ibs of CO2 equivalent

Roundtrip flight b/w NY and SF (1 passenger) 1,984

Human life (avg. 1 year) 11,023

American life (avg. 1 year) 36,156

US car including fuel (avg. 1 lifetime) 126,000

Transformer (213M parameters) w/ neural architecture search 626,155

Chart: MIT Technology Review • Source: Strubell et al. • Created with Datawrapper

The estimated costs of training a model

	Date of original paper	Energy consumption (kWh)	Carbon footprint (lbs of CO2e)	Cloud compute cost (USD)
Transformer (65M parameters)	Jun, 2017	27	26	\$41-\$140
Transformer (213M parameters)	Jun, 2017	201	192	\$289-\$981
ELMo	Feb, 2018	275	262	\$433-\$1,472
BERT (110M parameters)	Oct, 2018	1,507	1,438	\$3,751-\$12,571
Transformer (213M parameters) w/ neural architecture search	Jan, 2019	656,347	626,155	\$942,973-\$3,201,722
GPT-2	Feb, 2019		a	\$12,902-\$43,008

Note: Because of a lack of power draw data on GPT-2's training hardware, the researchers weren't able to calculate its carbon footprint.

Table: MIT Technology Review - Source: Strubell et al. - Created with Datawrapper

Overview of Challenges

DL development is naturally an Iterative HITL process

- Learning and test processes are performed in a batch job
- Usually developed in a trial-and-error fashion
- Massive labeled data are required for learning accurate DL models

Recent models become much larger

- Even a single model is composed of 175 billion parameters (i.e., GPT-3, ~652GBs)
- All the SIZE, TIME, and COST grow very fast beyond our resources
 - · Learning models tend to become harder with a limited budget and time

Expensive computational resources are required

Energy efficiency is also an issue