Théorème 14.50 (0) - de la limite monotone

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle.

1. si $(u_n)_{n\in\mathbb{N}}$ est croissante et majorée, alors :

$$\begin{cases} \lim_{n \to +\infty} u_n = \sup_{n \in \mathbb{N}} (u_n) \\ \forall n \in \mathbb{N}, \ u_n \le \sup_{n \in \mathbb{N}} (u_n) \end{cases}$$

2. si $(u_n)_{n\in\mathbb{N}}$ est strictement croissante et majorée, alors :

$$\begin{cases} \lim_{n \to +\infty} u_n = \sup_{n \in \mathbb{N}} (u_n) \\ \forall n \in \mathbb{N}, \ u_n < \sup_{n \in \mathbb{N}} (u_n) \end{cases}$$

3. si $(u_n)_{n\in\mathbb{N}}$ est décroissante et minorée, alors :

$$\begin{cases} \lim_{n \to +\infty} u_n = \inf_{n \in \mathbb{N}} (u_n) \\ \forall n \in \mathbb{N}, \ u_n \ge \inf_{n \in \mathbb{N}} (u_n) \end{cases}$$

4. si $(u_n)_{n\in\mathbb{N}}$ est décroissante et minorée, alors :

$$\begin{cases} \lim_{n \to +\infty} u_n = \inf_{n \in \mathbb{N}} (u_n) \\ \forall n \in \mathbb{N}, \ u_n > \inf_{n \in \mathbb{N}} (u_n) \end{cases}$$

Proposition 14.50 (1) - caractérisation de la convergence d'une suite monotone

Une suite monotone est convergente si et seulement si elle est bornée.

Proposition 14.50 (2) - limites de suites croissante non majorée, décroissante non minorée

Une suite croissante et non majorée diverge vers $+\infty$.

De même, Une suite décroissante et non minorée diverge vers $-\infty$.

Théorème 14.65 - monotonie d'une suite récurrente définie par $u_{n+1} = f(u_n)$

Soit $D \subset \mathbb{R}$, $u_0 \in D$, $f: D \to D$ une fonction et $(u_n) \in D^{\mathbb{N}}$ l'unique suite définie par la relation $u_{n+1} = f(u_n)$.

1. Le signe de $x \mapsto f(x) - x$ renseigne sur la monotonie de (u_n) :

$$\begin{cases} \forall x \in D, f(x) \ge x \implies \forall n \in \mathbb{N}, u_{n+1} \ge u_n \\ \forall x \in D, f(x) \le x \implies \forall n \in \mathbb{N}, u_{n+1} \le u_n \end{cases}$$

- **2.** Si f est croissante, alors (u_n) est :
 - croissante si $u_1 > u_0$
 - décroissante si $u_1 \leq u_0$
- 3. si f est décroissante, alors (u_{2n}) et (u_{2n+1}) sont monotones et de sens contraire :
 - si $u_2 \ge u_0$ alors (u_{2n}) est croissante et (u_{2n+1}) est décroissante
 - si $u_2 \leq u_0$ alors (u_{2n}) est décroissante et (u_{2n+1}) est croissante

Théorème 14.66 - du point fixe

Soit $D \subset \mathbb{R}$, $u_0 \in D$, $f : D \to D$ une fonction et $(u_n) \in D^{\mathbb{N}}$ l'unique suite définie par la relation $u_{n+1} = f(u_n)$. Si $\lim_{n \in \mathbb{N}} u_n = \ell \in D$ et si f est continue en ℓ , alors $f(\ell) = \ell$.

Soit $u \in K$ " une suite telle que uo = a, u1 = B et pour tout entier naturel n, Un+2+aUn+1+bun=0, avec b+0. 1. Si x2+ax+b=0 admet une solution double $r \in K$, alors $30, p) \in K2$, $Vn \in N$. Un = Ar.n + unr". 2. Si x2+ax+b=0 admet deux solutions distinctes $r1 \in K$ et $r2 \in K$, alors $r3 \in K$, $r3 \in K$, alors $r3 \in K$, $r3 \in K$,

Théorème 14.bonus - suites récurrentes linéaires du deuxième ordre

Soit $u \in \mathbb{K}^{\mathbb{N}}$ une suite telle que pour tout $n \in \mathbb{N}$, $u_{n+2} + au_{n+1} + bu_n = 0$ avec $(a,b) \in \mathbb{K} \times \mathbb{K}^*$. On note $P = X^2 + aX + b$ le polynôme caractéristique associé à $(u_n)_{n \in \mathbb{N}}$

1. Si P admet une racine double $r \in \mathbb{K}$, alors :

$$\exists (\alpha, \beta) \in \mathbb{K}^2, \, \forall n \in \mathbb{N}, \, u_n = \alpha r^n + \beta n r^n$$

2. Si P admet deux solutions distinctes r_1 et r_2 dans \mathbb{K} , alors :

$$\exists (\alpha, \beta) \in \mathbb{K}^2, \, \forall n \in \mathbb{N}, \, u_n = \alpha r_1^n + \beta r_2^n$$

3. Si $\mathbb{K} = \mathbb{R}$ et P admet deux solutions complexes conjuguées $r_1 = \rho^{i\theta}$ et $r_2 = \rho^{-i\theta}$ dans \mathbb{K} , alors :

$$\exists (\alpha, \beta) \in \mathbb{K}^2, \, \forall n \in \mathbb{N}, \, u_n = \rho(\alpha \cos(n\theta) + \beta \sin(n\theta))$$