Routing in Ad Hoc Wireless Networks

PROF. MICHAEL TSAI / DR. KATE LIN 2014/05/14

Routing Algorithms

Link-State algorithm

- Each node maintains a view of the whole network topology
- Find the shortest path over the network
- Maintain the topology information by periodical flooding

Distance-Vector algorithm

- Each node maintains the distance of each destination and the corresponding next hop
- Periodically send the table to all neighbors
- Also known as distributed bellman-ford

Distance Vector

Ad Hoc Wireless Networks

- No base station or access point to relay the packets
- Relaying is necessary to send information to destinations out of our range
- Initial application: military usage

• Other applications: mesh networks, vehicular networks, etc

Why do we need new protocols?

- No centralized control
- No dedicated routers
- Unpredictable network topology changes
- Time-variant wireless channel
 - Link breakage is common in wireless network → Connectivity problem
 - Links are not always bidirectional and/or symmetric
- Power Limitation

Conventional Routing Protocols

 Not designed for highly dynamic and low bandwidth networks

Loop formation when topology changes

 Flooding causes high control overhead (e.g., Link State)

Dest	Cost	Next Hop
Α	2	В
В	1	В

Next Hop

Α

Dest	Cost	Next Hop
Α	2	В
R	1	B

Next Hop

Null

Cost

1

Infinity

	_	
Dest	Cost	Next Hop
Α	2	В
В	1	В

Next Hop

Cost

This continues until the cost reaches infinity (unreachable). During the process, the packets destined for A will bounce back and forth between B and C

Existing Routing Protocols

Table-Driven:

- •S and all other nodes maintain full routing information
- •Require periodic table update

Hybrid Scheme

- •Network is divided into multiple zones
- Use Table-Driven within the zone
- •Demand-Driven across the zones through boundary nodes

Demand-Driven

- Route is discovered when S wants to talk to D
- A Route only needs to be maintained for as long as S and D are still talking
- EX: Dynamic Source Routing (DSR)

Proactive vs. Reactive Routing

Proactive

- Table driven
- Rely on periodic update to keep track of the topology change
- No latency in route discovery
- Need large storage space to keep information of the entire network
- A lot of routing information may never be used

Reactive

- On demand
- Route Discovery by local flood or gossiping
- Additional latency during route discovery
- Not appropriate for real-time communication
- Route maintenance
 - Feedback from Link Level ACK
 - Issue new route discovery when link breaks

Destination Sequenced Distance Vector (DSDV)

Proactive Routing Protocols

- Each node advertises a monotonically increasing sequence number
- Each Route entry is tagged with a sequence number generated by destination to prevent loops (count-to-infinity problem)
- Sequence number indicates the "freshness" of a route
 - Routes with more recent sequence numbers are preferred for packet forwarding
 - If same sequence number, one having smallest metric is used

C. E. Perkins and P. Bhagwat. "Highly dynamic Destination Sequenced Distance-Vector routing (DSDV) for mobile computers", *In Proceedings of the SIGCOMM* '94 *Conference on Communication Architecture, Protocols and Applications*, pages 234-244, August '94.

Example: DSDV

- For each reachable node in the network the routing entry contains:
 - Destination Address
 - Next Hop
 - Distance (Metric)
 - Sequence Number

Destination	Next Hop	Distance	Sequence Number
A	A	0	S205_A
В	В	1	S334_B
C	C	1	S198_C
D	D	1	S567_D
E	D	2	S767_E
F	D	2	S45_F

DSDV - Table Update

Dest	Cost	Next Hop	Seq. #
В	1	В	1
С	1	С	1

Dest	Cost	Next Hop	Seq. #
Α	Infinity	Null	2
C	1	С	1

Dest	Cost	Next Hop	Seq. #
В	1	В	1
C	1	C	1

C's routing update will not change B's routing table since the sequence number is smaller (older).

Dest	Cost	Next Hop	Seq. #
Α	2	В	1
С	1	С	1

Cost

Infinity

1

Next

Hop

Null

C

Seq. #

DSDV: Topology changes

- Assign a metric of ∞ to
 - A broken link
 - Any route through a hop with a broken link
- "∞ routes" are assigned new sequence numbers by any host and immediately broadcast via a triggered update
- If a node has an equal/later sequence number with a finite metric for an "∞ route", a route update is triggered

DSDV - Summary

Advantages

- Simple (almost like Distance Vector)
- Loop free
- No latency for route discovery

Disadvantages

- Periodical updates
- Most routing information never used

Dynamic Source Routing

Assumptions

- All nodes are willing to participate
- The network size is small
- The degree of network dynamics is moderate with respect to the packet transmission latency
- All nodes are overhearing (promiscuous)
- Links are symmetric

Dynamic Source Routing

- Route Discovery
 - Route Request (RREQ)
 - Route Reply (RREP)
- Route Maintenance
 - Route Error (PERR)

Dynamic Source Routing [DSR] Route Discovery

Source node

Broadcasts the Route Request (RREQ) <id, target>

Intermediate node

- Discards if the id has been seen before, or node is in the route record (header of RREQ)
- Else append address in the route record and rebroadcast

Destination Node

- Return Route Reply (RREP)
- Use previously cached route to source node
- Call Route Discovery for source node, with route reply piggy backed
- Use reverse sequence of Route Record, in case of bidirectional links

D. B. Johnson, D.A. Maltz, and J. Broch. "DSR: The Dynamic Source Routing Protocol for Multi-Hop Wireless Ad Hoc Networks", *Ad Hoc Networking*, pages 139-172, 2001.

DSR: Route Maintenance

Monitoring the route

- Passive Acknowledgement overhearing the next-hop node sending packet to its next-hop
- Set a bit in packet to request explicit next hop acknowledgement

Route Error

- Rely on data link layer to report the broken links
- Notify source of the broken link via Route Error (RERR)
- Source truncates all routes which use nodes mentioned in RERR
- Initiate new route discovery

F transmits the packet I just sent to her. That means she received my packet correctly.

Optimization 1: Route Caching

- Use cached entries to create RREP at intermediate node
 - S finds route [S,E,F,J,D] to D, S also learns route [S,E,F] to F
 - F receives Route Request [S,E,F] destined for some node D, F learns route [F,E,S] to S
- Promiscuous mode to add more routes
 - Caching overheard RREQ/RREP

Optimization 1: Route Caching

Route reply storm

- A lot of neighbors know the route to target and attempt to send RREP in response to RREQ
- Solution: Delay RREP for a period d=H*(h-1+r)
 - r: random number between o and 1
 - H : small constant delay
 - h : number of hops to source from that node

Out-of-date cache

- Cached routes may become invalid
- Stale or invalid information may be propagated to whole network

Optimization 2: Expanding Ring

- Route Request Hop Limit
- Use TTL in the packet header to specify the first ring boundary
- RREQ is initially forwarded n times (n hops)
- If destination is not within nhop
 - Increase TTL to a larger value

This is useful if destination is close to the source

Optimization 3: Gossiping

Gossip: Probabilistic Flooding

• Node forward packets with some probability $p_G < 1$

• How good is it?

 35% less overhead than flooding

What determine P_G?

Network Connectivity

Network Connectivity

Connectivity: Fraction of nodes that is connected to the network

Sub-Critical

- Low connectivity
- Mobile nodes are sparsely distributed in the network
- Performance is limited !!

Super-Critical

- High connectivity region
- Most or all the nodes can communicate

DSR - Summary

Advantages

- Purely on-demand
- Zero control message overhead
- Loop-free route

Disadvantages

- High data latency
- Space overhead in packets
- Storage overhead for caching
- Promiscuous mode consumes extra power

Ad-Hoc On Demand Distance Vector Routing (AODV)

Protocol overview - Pure on-demand protocol

- Node does not maintain knowledge of another node unless it communicates with it
- Routes discovered on as-needed basis and maintained only as long as necessary
- Nodes not involved in the route should not pay any cost
- No cost to deal with out-of-date
- Little or no periodic advertisement

AODV - Route Discovery

Initiation

- Source node sends a Route Request (RREQ) when it has no information about destination node in its table
- RREQ contains
 - Source and destination's address and sequence number
 - Broadcast id
 - Hop count
- Source address and broadcast id uniquely identify RREQ

Reverse Path Setup

- Reverse paths are formed when a node hears a route request
- Neighbor increments hop count and broadcasts to neighbors
- Records address of neighbor which first sends the RREQ

AODV - Route Discovery

Forward Path Setup

- Intermediate node satisfies RREQ if
 - Destination itself
 - Has route entry in table with destination sequence number ≥ that given in RREQ
- Unicasts RREP to neighbor which sent RREQ
 - Source address
 - Destination address and sequence number (updated)
 - Hop count
 - Lifetime
- As RREP travels backwards, each node sets pointer to sending node and updates destination sequence number and timeout entry for source and destination routes

AODV - Route Discovery

Other nodes

- RREQ times out : Route Request Expiration Timer
- Deletes corresponding pointers

More than one RREP received

- One with greater destination number
- Lesser hop count

Source node starts transmission - updates if a better RREP is received

C. E. Perkins and E. M. Royer. "Ad-Hoc On Demand Distance Vector Routing", *Proceedings of the IEEE Workshop on Mobile Computing Systems and Applications (WMCSA)*, pages 90-100, 1999.

AODV - Route Maintenance

- Nodes send hello message if it has not sent a packet in hello_interval
- Failing to receive allowed_hello_loss packets consecutively means link is broken
- In case of broken link
 - unsolicited RERR sent to affected source node
 - Source initiates new RREQ
 - Sequence number updated
 - Hop count set = ∝
- Route Caching Timeout after the route is considered invalid
- Optional* AODV-LL uses link layer ACK instead of hello messages

Link Quality Metrics

- The protocol chooses the route with the smallest hop count
 Long hops will be included
- Long hops usually have lower SNR → high PER → retransmission!
- Original thought: lower hop count = lower bandwidth usage
- New thought: retransmission means wasted bandwidth

Link Quality Metrics

- Instead of using hop count only, we need to take "link quality" into account!
- What is a good metric for link quality?
 - RSSI (representing SNR)
 - ETX (Expected Transmission Count)
- Then we combine hop count + link quality to choose an optimal route

Example: ETX

Minimize total transmissions per packet (ETX, Expected Transmission Count)

Link throughput ≈ 1/ Link ETX

<u>Delivery Ratio</u>			Link ETX	<u>Throughput</u>
100%			1	100%
50%	Ŏ	*	2	50%
33%		*	3	33%

Measuring delivery ratios

- Each node broadcasts small link probes (134 bytes), once per second
- Nodes remember probes received over past 10 seconds
- Reverse delivery ratios estimated as

 $r_{\text{rev}} \approx \text{pkts received / pkts sent}$

 Forward delivery ratios obtained from neighbors (piggybacked on probes)

Route ETX

Route ETX = Sum of link ETXs

Route ETX	<u>Throughput</u>
1	100%
2	50%
2	50%
3	33%
5	20%