

Description

Image

Caption

Medium carbon steel is the material of cheap tools. Low alloy steels are much superior and only a little more expensive -- quality tools are low alloy. © Granta Design

The material

Medium carbon steel (0.25-0.7% carbon) hardens when quenched - a quality that gives great control over properties. "Hardenability" measures the degree to which it can be hardened in thick sections; plain carbon steels have poor hardenability - additional alloying elements are used to increase it (see Low alloy steels). Medium carbon steels are used on an enormous scale for railroad tracks; there are many other lower-volume applications.

Compositional summary

Fe/0.3 - 0.7%C

General properties

Density	487	-	493	lb/ft^3
Price	* 0.263	-	0.268	USD/lb
Date first used	1610			

Mechanical properties

and distance in the property of				
Young's modulus	29	-	31.3	10^6 psi
Shear modulus	11.2	-	12.3	10^6 psi
Bulk modulus	22.9	-	24.7	10^6 psi
Poisson's ratio	0.285	-	0.295	
Yield strength (elastic limit)	44.2	-	131	ksi
Tensile strength	59.5	-	174	ksi
Compressive strength	44.2	-	255	ksi
Elongation	4	-	39	% strain
Hardness - Vickers	120	-	565	HV
Fatigue strength at 10^7 cycles	* 33.2	-	87	ksi

Fracture toughness	* 10.9	-	83.7	ksi.in^0.5
Mechanical loss coefficient (tan delta)	* 2.2e-4	-	0.00119	

Thermal properties

Melting point	2.52e3	-	2.76e3	°F	
Maximum service temperature	* 698	-	788	°F	
Minimum service temperature	* -90.7	-	-27.7	°F	
Thermal conductor or insulator?	Good conductor				
Thermal conductivity	26	-	31.8	BTU.ft/h.ft^2.F	
Specific heat capacity	0.105	-	0.124	BTU/lb.°F	
Thermal expansion coefficient	5.56	-	7.78	µstrain/°F	

Electrical properties

Electrical conductor or insulator?	Good conductor
Electrical resistivity	15 - 22 μohm.cm

Opaque

5

Optical properties

Transparency

Processability				
Castability	2	-	3	
Formability	4	-	5	
Machinability	3	-	4	
Weldability	5			

Eco properties

Solder/brazability

Embodied energy, primary production	* 2.72e3	-	3.01e3	kcal/lb
CO2 footprint, primary production	* 1.72	-	1.9	lb/lb
Recycle	√			

Supporting information

Design guidelines

Hardenability measures the degree to which it can be hardened in thick sections; plain carbon steels have poor hardenability - additional alloying elements are used to increase it (see Low alloy steels).

Technical notes

The two standard classifications for steels, the AISI and the SAE standards, have now been merged. In the SAE-AISI system, each steel has a four-digit code. The first two digits indicate the major alloying elements. The second two give the amount of carbon, in hundredths of a percent. Thus the plain carbon steels have designations starting 10xx, 11xx, 12xx or 14xxx, depending on how much manganese, sulfur and phosphorus they contain. The common low-carbon steels have the designations 1015,1020, 1022, 1117,1118; the common medium carbon steels are 1030,1040, 1050, 1060, 1137, 1141, 1144 and 1340; the common high alloy steels are 1080and 1095. More information on designations and equivalent grades can be found on the Granta Design website at www.grantadesign.com/designations

Phase diagram

Phase diagram description

Medium carbon steels are alloys of iron (Fe) with 0.3 - 0.7% carbon (C), for which this is the phase

Typical uses

General construction; general mechanical engineering; automotive; tools; axles; gears; bearings; cranks; shafts; gears; bells; cams, knives and scissors.

Medium carbon steel

Links	
Reference	
ProcessUniverse	
Producers	