Arquitetura de Computadores

PROF. DR. ISAAC

Instruções do MSC-51

Tipo	Quantidade	
Aritméticas	24	
Lógicas	25	
Transferência (cópia) de Dados	28	
Booleanas	17	
Saltos	17	

Instruções aritméticas: envolvem operações do tipo soma, subtração, multiplicação, divisão, incremento e decremento.

Instruções lógicas: fazem operações bit a bit com registradores e também rotações.

Instruções do MSC-51

Instruções de transferência (cópia) de dados: copiam bytes entre os diversos registradores e a RAM interna.

Instruções booleanas: essas instruções são denominadas booleanas porque trabalham com variáveis lógicas (variável de 1 bit). Como o próprio nome sugere, elas são talhadas para resolver expressões booleanas.

Instruções de desvio: desviam o fluxo de execução do programa, chamam subrotinas, fazem desvios condicionais e executam laços de repetição.

Instruções do 8051

Lógica	Aritmética	Memória	Outros
ANL 🗸	ADD 🗸	MOV	NOP √
ORL •	ADDC •	MOVC √	RET e RETI
XRL 🗸	SUBB √	MOVX √	ACALL e LCALL
CLR •	MUL 🗸	PUSH	JMP 🗸
CPL 🗸	DIV	POP	AJMP 🗸
RL •	INC •	XCH 🗸	LJMP √
RLC 🗸	DEC √	XCHD √	SJMP √
RR	DA		JB e JNB
RRC •			JZ e JNZ ✓
SWAP			JC e JNC ◀
SETB √			JBC 🗸
			DJNZ
			CJNE

Instruções de Desvio

Instruções de Desvio:

Chamadas de Subrotinas

Chamadas de Subrotinas

As **subrotinas** são úteis para evitar a repetição de trechos de programas. Antes de efetivar o desvio para a subrotina, o processador armazena na pilha o endereço de retorno, para que possa recuperá-lo por ocasião do regresso.

Esse empilhamento de endereços permite que, de dentro de uma subrotina, se faça chamada para uma outra subrotina.

Instrução - ACALL

Operação: ACALL

Função: Chamada absoluta dentro do bloco de 2K

Sintaxe: ACALL endereço

Descrição: ACALL chama uma subrotina localizada no endereço indicado. Nenhuma flag é afetada.

Exemplo:

ACALL LABEL

Instrução - LCALL

Operação: LCALL

Função: Long Call

Sintaxe: LCALL endereço_codigo

Descrição: LCALL chama uma subrotina do programa. O endereço da próxima instrução a ser executada é inserido na pilha antes que o PC desvie para a subrotina.

Exemplo:

LCALL SUB1

Instrução - LCALL

		Bytes	MC	Op1	Op2	Op3
LCALL	end16	3	2	12	MSB(end16)	LSB(end16)
ACALL	end11	2	2	[(MSB(end11))<<5]OU11H	LSB(end11)	-

Instruções de chamada de subrotinas.

Instruções de Desvio:

Retorno das Subrotinas

Instrução - RET

Operação: RET

Função: Retorna de uma subrotina

Sintaxe: RET

Descrição: RET é usado para retornar de uma subrotina chamada por LCALL ou ACALL. A execução do programa continua do endereço (2 bytes) restaurados da pilha. Primeiro o byte mais significativo é retirado, seguido pelo menos significativo.

Exemplo:

• RET

Instrução - RETI

Operação: RETI

Função: Retorna da Interrupção

Sintaxe: RETI

Descrição: RETI é usado para retornar de um serviço de

interrupção.

Exemplo:

Instruções – RET e RETI

	Bytes	MC	Ор
RET	1	2	22
RETI	1	2	32

Instruções de retorno de sub-rotinas.

Exercícios

Exercício 1

Exercício 1:

Crie uma **sub-rotina** que escreva zero em todas as posições da RAM interna, ou seja, do endereço 0 até o endereço 127 da RAM interna. O programa deve iniciar no endereço 0080h.

Exercício 2

Exercício 2:

Construir e testar programa-fonte em linguagem assembly que invoca uma **sub-rotina** que deve carregar (alocar) o valor EEh em 80 bytes consecutivos da RAM interna iniciando no endereço 20h. O programa deve iniciar no endereço 0080h.

Exercício 3

Exercício 3:

Crie um programa que fique alternando a rotação a esquerda e rotação a direita na porta P1, faça com que essa rotação seja alternada a cada 3 voltas. Faça com que seu programa chame duas sub-rotinas, uma para a rotação a esquerda e a outra para a rotação a direita. O programa deve iniciar no endereço 0080h.

Bibliografia

ZELENOVSKY, R.; MENDONÇA, A. Microcontroladores Programação e Projeto com a Família 8051. MZ Editora, RJ, 2005.

Gimenez, Salvador P. Microcontroladores 8051 - Teoria e Prática, Editora Érica, 2010.