90%: $\alpha/2(0,05) = 1,645$;

95 %:
$$\alpha/2$$
 (0, 025) = 1, 96;

99%:
$$\alpha/2 = 2.576$$

Chương 1:

1.1.QT cộng xác suất

+) A,B không giao nhau : P(A U B) = P(A) + P(B)

+)A,B giao nhau : P(A U B) = P(A) +P(B) - P(A N B)

1.2. XS điều kiện và ct nhân xs

+) XS của biến cố A với dkien B đã xảy ra: $P(A|B) = \frac{P(A \cap B)}{P(B)}$

+) CT nhân xs : P(A N B) = P(A|B) . P(B)

1.3. Tính độc lập $P(A \cap B) = P(A) * P(B)$

1.4.Xấp xỉ phân phối nhị thức

Trong trường hợp $np(1-p) \geq 10$, ta có thể xấp xỉ phân bố Nhị

• P(X = k)
$$\approx \Phi\left(\frac{k+0.5-np}{\sqrt{np(1-p)}}\right) - \Phi\left(\frac{k-0.5-np}{\sqrt{np(1-p)}}\right)$$
.

•
$$P(k_1 \leq X) \approx 1 - \Phi\left(\frac{k_1 - 0.5 - np}{\sqrt{np(1-p)}}\right)$$

•
$$P(X \le k_2) \approx \Phi\left(\frac{k_2+0.5-np}{\sqrt{np(1-p)}}\right)$$

•
$$P(k_1 \le X \le k_2) \approx \Phi\left(\frac{k_2 + 0.5 - np}{\sqrt{np(1-p)}}\right) - \Phi\left(\frac{k_1 - 0.5 - np}{\sqrt{np(1-p)}}\right)$$
.

1.5. Xác suất toàn phần:

+) Xác suất phân phối nhị phân $P(X=k) = C_{b}^{n} \cdot p^{k} \cdot (1-p)^{n-k}$

$$P(D) = P(A).P(D|A) + P(B).P(D|B) +$$

1.6. CT Bayes:

$$\frac{P(A|B_i).P(B_i)}{\sum_{i=1}^{n} P(A|B_i).P(B_i)}$$

Chương 2: Biến ngẫu nhiên

2.1.Kỳ vọng

2.2.Phương sai : $Var(X) = E[X^2] - (E[X])^2$

nếu X = aY +b -> $Var(X) = a^2$. Var(Y)

2.3.Hê số biến thiên $\sigma = \sqrt{var(x)} = \sqrt{E[X^2] - (E[X])^2}$

 $\mathbf{E}[\mathbf{X}] = \sum x_i \cdot \mathbf{p}$

2.4.Hợp phương sai

2.5.Hệ số tương quan: $\mathbf{p(X,Y)} = \frac{\mathit{Cov(X,Y)}}{\sqrt{\mathit{Var(X)}.\mathit{Var(Y)}}}$

2.6.Ct Z-score: $\mathbf{Z} = \frac{\bar{x} - \mu}{\sigma}$

Cov(X,Y) = E[X.Y] - E[X].E[Y]

$$X,Y$$
 độc lập -> $p(X,Y) = Cov(X,Y) = 0$

phân bố student : $t = \frac{x - \mu}{\frac{s}{\sqrt{\mu}}}$

Các tính chất: +)Nếu X,Y là 2 biến ngẫu nhiên: E[aX+bY) = a.E[X] +b.E[Y]

+)X,Y độc lập: E[X,Y] = E[X].E[Y]; Var(X,Y) = Var(X)+Var(Y)

Chương 3: thống kê

3.1 Trung bình mẫu

3.3.Độ lệch chuẩn

3.4.Cthuc Poison:

$$\overline{x} = \frac{x1 + x2 + \dots + xn}{n}$$

$$\mathbf{s} = \sqrt{s^2} = \sqrt{\frac{\sum (x_i - \overline{x})^2}{n-1}} \quad ; \quad s^2 \text{ là phương sai mẫu}$$

$$\mathbf{p(i)} = \mathbf{P(X=i)} = e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}$$

+)Thực chất là lặp lại tìm trung vị ba lần: Q1, Q2,Q3

+)Khoảng tứ phân vị là hiệu số IQR(denta Q) = Q3 - Q1

+)Mốt (Mo) là giá trị của mẫu số liệu có tần số xuất hiện lớn nhất

B1. Tính khoảng tứ phân vị $\Delta Q = Q3 - Q1$.

B2. Xác định các cận dưới Q1 - 1.5∆Q và cận trên Q3 + 1.5∆Q.

B3. Xác định tất cả các giá trị $x \in I(Q1 - 1.5\Delta Q, Q3 + 1.5\Delta Q)$.

Nếu mẫu dữ liệu được biểu diễn dưới dạng bảng tần số

Giá trị
$$x_1 \cdots x_k$$

Tần số $n_1 \cdots n_k$

thì

$$s_n^2(X) = \frac{1}{n-1} \sum_{i=1}^k n_i (x_i - \bar{x})^2.$$

Chương 4. Khoảng ước lượng

4.1 Khoảng ước lượng khi biết
$$\sigma^2$$
 $(\overline{x} \pm z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}})$

$$= Z_{\alpha/2} \cdot \frac{s}{\sqrt{n}}$$

4.2. Cỡ mẫu lớn (n>= 30) 4.3. Cỡ mẫu nhỏ (n<30)
$$(\overline{x} \pm z_{\alpha/2} \cdot \frac{s}{\sqrt{n}})$$
 $(\overline{x} \pm t_{\alpha/2, n-1} \cdot \frac{s}{\sqrt{n}})$

4.4 Ước lương cho σ

$$\left(\frac{(n-1)s^2}{c_{\frac{\alpha}{2},n-1}^2},\frac{(n-1)s^2}{c_{1-\frac{\alpha}{2},n-1}^2}\right)$$

 $c_{a,n-1}^2$ thỏa mãn

$$P(\chi_{n-1}^2 > c_{a,n-1}^2) = a.$$

4.5 Khoảng ước lượng cho tỉ lệ

$$\left(f_n - z_{\alpha/2} \sqrt{\frac{f_n(1-f_n)}{n}}, f_n + z_{\alpha/2} \sqrt{\frac{f_n(1-f_n)}{n}}\right)$$

trong đó $z_{\alpha/2}$ thỏa mãn $\Phi(z_{\alpha/2}) = 1 - \frac{\alpha}{2}$.

Chương 5. Kiểm định giả thuyết

Thống kê kiểm định $Z_0 = \frac{\bar{x} - \mu_0}{\sigma/\sqrt{n}}$

Kiểm định cho 1 mẫu

Kiểm định khi biết σ^2

 H_1 : $\mu \neq \mu_0$ $H_1: \mu > \mu_0$ $H_1: \mu < \mu_0$ Kiểm định khi cỡ mẫu lớn (n>= 30)

α	Đối thuyết	Tiêu chuẩn bác bỏ H_0 ở mức ý nghĩa
	H_1 : $\mu \neq \mu_0$	$ Z_0 >z_{\alpha/2}$
	$H_1: \mu > \mu_0$	$Z_0 > z_{\alpha}$
	$H_1: \mu < \mu_0$	$Z_0 < -z_{\alpha}$

Kiểm định khi cỡ mẫu nhỏ (n<30)

Thống kê kiểm định $T_0 =$

Đối thuyết	Tiêu chuẩn bác bỏ H_0 ở mức ý nghĩa $lpha$
H_1 : $\mu \neq \mu_0$	$ T_0 > t_{\alpha/2,n-1}$
$H_1: \mu > \mu_0$	$T_0 > t_{\alpha,n-1}$
$H_1: \mu < \mu_0$	$T_0 < -t_{lpha,n-1}$

với $t_{a,n-1}$ thỏa mãn P $(T_{n-1} > t_{a,n-1}) = a$.

Kiểm định cho tỉ lệ

Đối thuyết | Tiêu chuẩn bác bỏ H_0 ở mức ý nghĩa

Thống kê kiểm định $Z_0 = \frac{f_n - \rho_0}{\sqrt{\rho_0 (1 - \rho_0)/n}}$

 $|Z_0| > z_{\alpha/2}$ $Z_0 > z_{\alpha}$

Đối thuyết	Tiêu chuẩn bác bỏ H_0 ở mức ý nghĩa $lpha$
H_1 : $p \neq p_0$	$ Z_0 >z_{\alpha/2}$
$H_1: p > p_0$	$Z_0 > z_{\alpha}$
$H_1: p < p_0$	$Z_0 < -z_{\alpha}$

Kiểm định cho của phân bố chuẩn

Thống kê kiểm định $\chi_0^2 = \frac{(n-1)s^2}{\sigma_0^2}$

Đối thuyết	Tiêu chuẩn bác bỏ H_0 ở mức ý nghĩa $lpha$
H_1 : $\sigma \neq \sigma_0$	$\chi_0^2 > c_{lpha/2,n-1}^2$ hoặc $\chi_0^2 < c_{1-lpha/2,n-1}^2$
H_1 : $\sigma > \sigma_0$	$\chi_0^2 > c_{\alpha,n-1}^2$
H_1 : $\sigma < \sigma_0$	$\chi_0^2 < c_{1-\alpha,n-1}^2$

 $c_{a,n-1}^2$ thỏa mãn $P(\chi_{n-1}^2 > c_{a,n-1}^2) = a$.

Kiểm định cho 2 mẫu

So sánh tb khi biết phương sai

Giả thuyết H_0 : $\mu_X = \mu_Y$.

Thống kê kiểm định
$$Z_0 = rac{ar{x} - ar{y}}{\sqrt{rac{\sigma_X^2}{n_X} + rac{\sigma_Y^2}{n_Y}}}$$

Đối thuyết	Tiêu chuẩn bác bỏ H_0 ở mức ý nghĩa $lpha$
$H_1: \mu_X \neq \mu_Y$	$ Z_0 >z_{lpha/2}$
H_1 : $\mu_X > \mu_Y$	$Z_0>z_{lpha}$
$H_1: \mu_X < \mu_Y$	$Z_0 < -z_{cc}$

So sánh 2 tỉ lệ

Giả thuyết H_0 : $p_X = p_Y$.

Thống kê kiểm định
$$Z_0 = \frac{f_X - f_Y}{\sqrt{f(1-f)\left(\frac{1}{n_X} + \frac{1}{n_Y}\right)}}$$
, với

$$f = \frac{k_X + k_Y}{n_X + n_Y}$$

Đối thuyết	Tiêu chuẩn bác bỏ H_0 ở mức ý nghĩa $lpha$
$H_1: p_X \neq p_Y$	$ Z_0 >z_{lpha/2}$
$H_1: p_X > p_Y$	$Z_0>z_{lpha}$
$H_1: p_X < p_Y$	$Z_0 < -z_{lpha}$

So sánh trung bình khi chưa biết phương sai (cỡ mẫu lớn n>=30)

Thống kê kiểm định $Z_0 = \frac{\bar{x} - \bar{y}}{\sqrt{\frac{s_X^2}{n_X} + \frac{s_Y^2}{n_Y}}}$

Đối thuyết	Tiêu chuẩn bác bỏ H_0 ở mức ý nghĩa $lpha$
$H_1: \mu_X \neq \mu_Y$	$ Z_0 >z_{lpha/2}$
H_1 : $\mu_X > \mu_Y$	$Z_0 > z_{\alpha}$
$H_1: \mu_X < \mu_Y$	$Z_0 < -z_{lpha}$

Chưa biết phương sai cỡ mẫu nhỏ (n<30)

Thống kê kiểm định

	T	$\bar{x} - \bar{y}$	1
'	70 —	$\sqrt{\frac{(n_X-1)s_X^2+(n_Y-1)s_Y^2}{n_X+n_Y-2}}\sqrt{\frac{1}{n_X}+\frac{1}{n_Y}}$	ľ

Đối thuyết	Tiêu chuẩn bác bỏ H_0 ở mức ý nghĩa $lpha$
$H_1: \mu_X \neq \mu_Y$	$ T_0 > t_{\alpha/2, n_X + n_Y - 2}$
H_1 : $\mu_X > \mu_Y$	$T_0 > t_{\alpha,n_X+n_Y-2}$
$H_1: \mu_X < \mu_Y$	$T_0 < -t_{\alpha,n_X+n_Y-2}$

Chương 6. Hồi quy

6.1 Hệ số tương quan

$$r(X,Y) = \frac{S_{xy}}{\sqrt{S_{xx} \cdot S_{yy}}} ; S_{xx} = \sum_{i=1}^{n} (x_i - \overline{x})^2; S_{yy} = \sum_{i=1}^{n} (y_i - \overline{y})^2; S_{xy} = \sum_{i=1}^{n} (x_i - \overline{x}) (y_i - \overline{y})^2$$

$$S_{yy} = \sum_{i=1}^{n} (y_i - \overline{y})^2$$

$$S_{xy} = \sum_{i=1}^{n} (x_i - \overline{x}) (y_i - \overline{y})$$

6.2. Phương trình đường thẳng hồi quy

$$y = \widehat{\beta_0} + \widehat{\beta_1} x$$

;
$$\widehat{\beta_1} = \frac{S_{xy}}{S_{xx}}$$

$$; \qquad \widehat{\beta_0} = \overline{y} - \widehat{\beta_1} \overline{x}$$

+) Hệ quả BĐT Chebyshev

Nếu X là biến ngẫu nhiên có kỳ vọng μ và phương sai σ^2 , thì với moi k > 0,

$$P[|X - \mu| \ge k] \le \frac{\sigma^2}{k^2}$$
.