

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Prof. Ryan Cotterell

Johanna Ribas: Assignment 3

jribas@student.ethz.ch, 22-944-003.

12/01/2023 - 17:01h

Question 1: Exploring the Kleene Star

a)

$$a^* = \bigoplus_{n=0}^{\infty} a^n = a^0 \oplus \bigoplus_{n=1}^{\infty} a^n = \mathbf{1} \oplus \bigoplus_{n=1}^{\infty} a^n =$$

$$= \mathbf{1} \oplus \bigoplus_{n=1}^{\infty} a \otimes a^{(n-1)} = \mathbf{1} \oplus a \otimes \bigoplus_{n=1}^{\infty} a^{(n-1)} =$$

$$= \mathbf{1} \oplus a \otimes \bigoplus_{n=0}^{\infty} a^{(n)} = \mathbf{1} \oplus a \otimes a^*$$

$$(1)$$

b)

$$W_{\log} = < \mathbb{R} \cup \{-\infty, \infty\}, \oplus_{log}, +, -\infty, 0 > 1 \oplus (a \otimes a^*) = 1 \oplus (a + a^*) = \log (e^0 + e^{a + a^*})$$

$$a^* = \log (1 + e^{a + a^*})$$

$$e^{a^*} = 1 + e^{a + a^*}$$

$$e^{a^*} (1 - e^a) = 1$$

$$e^{a^*} = \frac{1}{1 - e^a}$$

$$a^* = \log \left(\frac{1}{1 - e^a}\right)$$
Where $e^a < 1$

c)

$$a^* = 1 \oplus a \otimes a^* = 1 \oplus \langle xx^*, xy^* + yx^* \rangle$$

$$x^* = xx^* + 1 \to x^* = \frac{1}{1-x}$$

$$y^* = xy^* + yx^* \to y^* = \frac{y}{(1-x)^2}$$

$$a^* = <\frac{1}{1-x}, \frac{y}{(1-x)^2} > (3)$$

- d) 1. Proof that $\langle 2^{\Sigma^*}, \cup, \{\} \rangle$ is a commutative monoid.
 - 1.1) Distributivity of \oplus

$$A \cup (B \cup C) = A \cup \{x \mid x \in B \lor x \in C\} = \{x \mid x \in A \lor x \in B \lor x \in C\} = \{x \mid x \in A \lor x \in B] \cup C = (A \cup B) \cup C$$

1.2)
$$\mathbf{0} \oplus A = A \ \{\} \cup A = \{x \mid x \in A] = A$$

1.3) Commutativity of
$$\oplus$$
 $A \cup B = \{x \mid x \in A \lor x \in B\} = \{x \mid x \in B \lor x \in A\} = B \cup A$

- 2. Proof that $\langle 2^{\Sigma^*}, \otimes, \{\varepsilon\} \rangle$ is a monoid.
- 2.1) Distributivity of \otimes

$$\begin{split} (A \otimes B) \otimes C &= \\ \{a \circ b \mid a \in A, b \in B\} \otimes C &= \\ \{a \cdot b \circ c \mid a \in A, b \in B, C \in C\} &= \\ &= A \otimes \{b \circ c \mid b \in B, C \in C\} = A \otimes (B \otimes C) \end{split}$$

2.2) **1**
$$\otimes A = A$$

$$\{\varepsilon\} \otimes A = \{\varepsilon \circ a \mid a \in A\} = \{a \mid a \in A\} = A$$

3. Proof that \otimes distributes over \oplus

$$A \otimes (B \oplus C) = A \otimes \{x \mid x \in B \lor x \in C\} =$$

$$= \{a \circ x \mid a \in A, x \in B \lor x \in C\} =$$

$$= \{a \circ x \mid a \in A, x \in B\} \lor \{a \circ x \mid a \in A, x \in C\}$$

$$= (A \otimes B) \oplus (B \otimes C)$$

4. Proof that **0** is the anihilator.

$$\{\}\otimes A=\{\}$$

A kleene star A* for the language semiring is defined as:

$$A^* = \bigcup_{n=0}^{\infty} A^n = A^0 \cup A^1 \cup A^2 \dots$$
 (4)

As we did in lecture 7, we can find A^n inductively. First:

$$A^{0} = \mathbf{1} = \{\epsilon\}$$

$$A^{1} = A$$

$$A^{n} = \{s \circ a \mid s \in A^{n-1}, a \in A\}$$

$$(5)$$

Using what we proved in a):

$$A^* = \{\epsilon\} \cup (A \otimes A^*) = (A \otimes A^n) \tag{6}$$

Question 2: Asterating the matrix

a) We have to proof that $1 \oplus a = 1$.

For the tropical semiring:

$$min(0, a) = 0, \forall a \in R_{>0}.$$

For the arctic semiring:

$$max(0, a) = 0, \forall a \in R_{\leq 0}.$$

b) The adjacency matrix M of graph G contains the weight of the paths of length 1 (weight of each transition between nodes). To start our proof by induction, the base case is $M^1 = M$. We assume that M^{n-1} encodes the sum of all paths of length exactly n-1. Because $M^n = M^{n-1} \otimes M$ and by the definition of matrix multiplication, we have that:

$$(M^n)_{i,k} = \bigoplus_{j=0}^{N-1} (M^{n-1})_{i,j} \otimes M_{j,k}$$
 (7)

This is the semiring sum of all the paths between i and k of length n-1 and length 1, i.e, it is the semiring-sum of all paths from the node i to node k in graph G of length exactly n.

c)

d) If the transition matrix is over a 0-closed semiring, the shortest path weight depends only on the paths of at most N-1.

The semiring-sum of paths between node i and node k of length at most N-1 is: $\bigoplus_{j=0}^{N-1} (M^n)_{i,k}$.

Combining these two results, we derive that:

$$M^* = \bigoplus_{n=0}^{\infty} (M^n) = \bigoplus_{n=0}^{N-1} (M^n).$$

e) For the algorithm we will use two equations:

$$M^* = \bigoplus_{n=0}^{N-1} M^n$$
 and $M^n = M^{n-1} \otimes M$

We initialize matrix M^n and its kleene star M^* as identity matrices.

Then we run a loop N times such that at each iteration:

- Overwrite M^n with $M^n \otimes M$.
- Overwrite M^* with $M^* \oplus M^n$.

The resulting M^* will be our kleene star.

The runtime of the matrix multiplication is cubic with N. Because the algorithm computes matrix multiplication N times, the runtime of the algorithm will be $O(N^4)$.

f)
$$a \oplus a = (\mathbf{1} \otimes a) \oplus (\mathbf{1} \otimes a) = (\mathbf{1} \oplus \mathbf{1}) \otimes a = \mathbf{1} \otimes a = a$$
 (8)

We use first the identity property and second the distributivity property. Third, because its a 0-closed semiring and $\mathbf{1}$ is an element of the semiring, $\mathbf{1} \oplus \mathbf{1} = \mathbf{1}$. Last, we use the identity property again.

g)

h)

i) First, we see that for any x: $\left\|\frac{x}{\|x\|_2}\right\|_2 = 1$. Second, if x is a constant, then $\|Ax\| = \|A\||x|$. For this, when we calculate the supremum of $\frac{\|Ax\|_2}{\|x\|_2}$, we can rewrite it as $\sup_{x\neq 0} \left\|A\frac{x}{\|x\|_2}\right\|_2 = \sup_{\|x\|_2=1} \|Ax\|_2$.

Next, we will use the Single Value Decomposition of the matrix $A = U\Sigma V^T$ where U and V are orthogonal and Σ is the diagonal matrix with $\sigma_1, ..., \sigma_n$ values. Then:

$$\sup_{\|x\|_2=1} \|Ax\|_2 = \sup_{\|x\|_2=1} \|U\Sigma V^T x\|_2 = \sup_{\|a\|_2=1} \|\Sigma a\|_2 = \sup_{1 \le i \le n} \sqrt{\sum_{i=1}^n \sigma_i^2 a_i^2} = \sigma_{max}.$$
 (9)

j)
$$\left\| A^* - \sum_{n=0}^K A^n \right\|_2 = \left\| \sum_{n=0}^\infty A^n - \sum_{n=0}^K A^n \right\|_2 = \left\| \sum_{n=K+1}^\infty A^n \right\|_2$$

$$\leq \sum_{n=K+1}^\infty \left\| A^n \right\|_2 \leq \sum_{n=K+1}^\infty \left\| A \right\|_2^n = \sum_{n=K+1}^\infty \sigma_{\max}(A)^n.$$

We can rewrite the previous result in terms of geometric series:

$$\sum_{n=K+1}^{\infty} \sigma_{\max}(A)^n = \sum_{n=0}^{\infty} \sigma_{\max}(A)^n - \sum_{n=0}^{K} \sigma_{\max}(A)^n$$

This substraction will go to 0 when K goes to ∞ if $|\sigma_{max}| < 1$ because then we can calculate the limit as:

$$\lim_{K \to \infty} \sum_{n=0}^{\infty} \sigma_{\max}(A)^n - \sum_{n=0}^{\Lambda} \sigma_{\max}(A)^n = \lim_{K \to \infty} \frac{1}{1 - \sigma_{\max}(A)} - \frac{1 - \sigma_{\max}(A)^K}{1 - \sigma_{\max}(A)} = \lim_{K \to \infty} \frac{\sigma_{\max}(A)^K}{1 - \sigma_{\max}(A)} = 0$$

k) The big-O bound of the truncation error is $O(\sigma_{max}(A)^K)$.

Question 3: Implementation of a Neural Transducer

Link to colab notebook:

https://colab.research.google.com/drive/1ymghMoIvWvvLeUs63ruBn1PTGI_T16E9?usp=sharing