1.

TRapod 1805

" yext SIV EVAL PORCO Was by Juan. KEpa halo 1 : Elbayugh 6115 AE 7 (prosinism) Opispios Kal Xupa Krypistika plas SE Esw or HETABANCES X, y, HE y= y(x). Mia sxlon ww x, y oznronoia Epipavique Touraxiscov pla Mapagrupos ens p=y(x), siral pla o de. H raign in Hey1620 Baldyias napagnijos nou epigavijezai om 6 8 E anoze-रें। क्रिंग रवहिंग का ठिंह.

Mia 68E sival ppayurin bear or onordinore do un exparifezar us
rapaj ortas to noti pla and is y, y, y", ... Etier, n gerini

μορρή μιω γδε είναι: 5n(x) γ $^{(N)}$ + 5n-1 $^{(N)}$ γ $^{(N-1)}$ + ... + 5o(x) + γ + 5(x)=0. Η (μεαβλημά x (ανεξάρτωτη) 6 μην γδε μπορεί να εμρανίζεται με onoxoonnoce zoono.

 $\frac{\prod_{a \neq a} \delta_{i} \gamma_{\mu} \alpha t_{a}}{i) H \gamma^{g_{L}} 2^{n} t_{a}^{2} \gamma_{n} : \gamma'' + e^{\chi} \gamma' + (x^{2} + \cos^{2} x) \gamma + x^{2} e^{-\chi} + \chi + 1 = 0}{ii) H \gamma'' + \chi e^{\chi} \tau 2 \chi^{2} \gamma_{\gamma}' + \chi = 0} \quad \delta_{LV} = i V_{HI} \gamma^{g_{L}} (\mu_{H}) \gamma^{g_$

H duon an diapopinis Egiowon

O emposite ma de onolassinore tagns. Mia suraption y = y (x) sival din m, S.E. dear n ovapenon auen menadon devel.

H no gevien popper oudpenons nou iravanoisé en supopiené eflowen unocedes gevien don ens de Es auch épipaviforeal edoes audalpece oradepés, don earn ráfin ens de.

And in yevith dom, you opicules tipes tou Gradepour repordness

ula grepien l'entred don ens SE.

Παράδειχμα

Η συνάρτηση $y=e^{n^2}$ επαληθεδει των p''-2xy'-2y=0(με εύρεση των παραμύμων και αντικατάστωση δητρ έδει δείξαι)

H ευρεσο της δε ότον είναι δοσμενή η γενική λύση της
Εστω ότι δίνεται μια συνάρτηση με γ(x) στον τύπο της οποίας εμρανίζοΥται κάποιες αυθαίρετες σταθερές τος ..., τη και ζητείται η εύρεση της
δ.ε. η οποία έχει ως χενική δύση των γ = γ(x). Τότε:

α) Παραγωγίζουμε την γ = γ(x) τόσες φορίς όσες και οι αυθαίρετες μετοβήπει β) λαό τις παραγώγου της γ και την ίδια την γ απαλεί μου με το πλάθος των σταθερών.

 $\frac{\prod_{\alpha} \rho_{\alpha} \delta \epsilon_{1} \chi_{\mu\alpha}}{N \alpha \beta \rho_{\epsilon} \theta \epsilon_{1}' n \delta \epsilon} n \delta \epsilon nou i κανοποιεί n y = cx².$ y' = 2 - cx = y' y' = 2 - cx = y' y = y' = y' y = y' = y' y = y' = y'

Η α Μαχή μεταβλητών σε μια δε.

Έσω μια σδε , με × την ανεξάρτητη και y την εξαρτημένη μεταβλητή. Με αλλαβή μεταβλητής, μπορεί να προκύψει απλούστερη δε. Τότε:

α) Καθορίζουμε τη νέα ανεξάρτητη μεταβλητή και την νέα εξαρτ. μετ.

β) Ετγράζωμε τις αρχικές μετ. ως συναρτήσεις των νέων μετ. και αντικαθιστούμε.

y) ME zov Karova in alusidas unodogi foure 70 napajújous: dy = dx dx

tal avilka Diocosque.

Kegádaro 2: ZDE 1^{ns} záfns

Mia Se 1th zá Ens sival pla exérn pecaçó ens ourdornons y, ms ave quet. x to

The y . OI propples The proper va elvar:

 $y' = f(\kappa, y)$ (I)

P(x,y)dx + Q(x,y)dy = 0 (I)

H Enilvon his & onyalver esperon ins yevens lons (He otabepá)

 $\frac{\prod_{a \neq a} \delta \epsilon_{1} y_{4a}}{H y' = y^{2} + 2x} \epsilon_{1} v_{a1} \delta m_{v} \mu_{0} \rho_{p} n' (I) \epsilon m av dx - y^{2} + 2x (x_{10} \epsilon_{10})$ $\frac{dx}{x^{2} + y^{2}}$

(y2+2x) dx - (x2+y2) dy =0 EIVAI 52NV HOPPS (II).

Τρόβλημα Αρχικών (ησε) Στο πρόβλημα έχουρε δεδομένα: μια δε και μια συνθώπ της μορφώς γ(a) = b.

la the Eupton ms Juans zou nat:

a) Beloroupe my gerird Non ins de (que audalpem ozudipa'c)

B) Einv y (gerird Non) Dézoupe x=a rai y=b ondre quordorai qua

any Eppin Exlower, the one disrogue you in Booser to c.

y) AV11Kadi6 60 642 to C 02mv yd.

lapa colpnon

Η λύση του πας είναι μια μερική /ειδική λύση του πας αγού προκύπεει από την χλ χια μια συγκετριμένη πιμιά του c.

Διαφορικές εξισώσεις "χωριγομένων μεταβλητών"

Μία διαφορινώ εξίσωση 1^{10} τάξης είναι χωριγομένων μεταβλητών,

δτον μπορεί να χρωρεί στη μορρό: f(κ) dκ = g(y) dy , δηλαδή δταν

η μία μετ. μπορεί να εμρανίζεται μόνον στο ένα μέλος και η άλλη

μόνον στο άλλο.

H EPITHUON IN S.E. XWP. HEC. ZIVETAL HE and odordowon, order portonel in general door other ndesquern mopped: $\begin{cases}
f(x) dx = \int g(y) dy + c \\
f(x) dx = \int g(y) dy
\end{cases}$ Le Panens flash backs ...

 O_1 "ομογενείς" δε 1^{ns} τάξης έχουν τη μορρώ: y' = f(x,y) , δηρος f(x,y) εανοποιεί τη συνθήτη f(tx,ty) = f(x,y) f(tx)Va in disoups: a) $\theta \in upoly \in \tau_{nv}$ avrita $\tau d\sigma \tau_{aon}$ $y = u \cdot x$ δnov u = u(x) $\epsilon | var$ $\delta uvap \tau_{n} \sigma_{n}$ $\tau_{ou} \times (E_{\tau \sigma_{1}}, n) \delta \epsilon = y' = f(x, y)$ $\int |v\epsilon \tau_{a1}|$

(ux)' = f(x, ux) = u'x + u = f(x, ux)

β) Νετά από πράξεις, οι δε καταλήγει σε δε χωρ. μετ. την ροποία επιδύρνης (προηγούμενη παράγραφος) και βρίσκουμε την γενική $\lambda J \delta n \quad \tau n \quad \delta \tau n \quad \mu o \rho \rho u'$: $\varphi(u) = h(x) + c$

γ) Aviita θισιούρε u= y , οπότε προκύπεει η χενική δύση επιδε

<u>Παράδειχμα</u> Η δε 1° τάξης: y'= x+2y (1) { val o popers apos:

ov $f(x,y) = \frac{x+2y}{x-y}$, $f(tx,ty) = \frac{tx+2ty}{tx-ty} = \frac{x-2y}{x-y} = f(t,y)$

Eto, yearny soldwon in Dewpodys $y = u \cdot x \Rightarrow y' = u'x + u dya$ $y = u \cdot x + u = x + 2u \cdot x + 2u = x$

 $\frac{du}{dx} = \frac{1+2u}{1-u} \quad u = \frac{1+u+u^2}{1-u} \Rightarrow \frac{1-u}{1+u+u^2} \cdot du = \frac{1}{x} dx$ $\frac{1-u}{1-u} \quad \frac{1-u}{1-u} \Rightarrow \frac{1-u}{1+u+u^2} \cdot du = \frac{1}{x} dx$ $\frac{1}{x} \quad \frac{1}{x} \quad \frac{1}{$

ΔΕ Λου ανάχονται σε ομογενείς

Αυτές έχουν τη μορρώ: $y' = f\left(\frac{a_1x + b_1y + c_1}{a_{2x} + b_{2y} + c_2}\right)$, όπου α, b, c
είναι σταθεροί πραγματικοί αριθμοί.

α) Αν $D = \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} \neq 0$ τότε θεωραθμε τις αλλαγείς:

U=a1×+b1y+c1 και W=ae×+bgy+cg

Onole η δρομέμη δε μεταδχηματίζεται σε ομογενή με μετ. U, w
η οποία λυνεται τετριμμένα".

β) Av D=0 και b, ≠0 τότε θεωρούμε την αλλαρή: $u=q_1x+b_1y=y=1$ y=1 y=1

y) Aν D=0 και $b_2 \neq 0$ τότε θεωρούμε των αλλαγώ: $u=a_2x+b_2y=0$ y=1 $u=a_2x$ και n δε μετασχηματίζεται σε δε χωρ. μετ. b_2 b_2

8) Av a== bo= 0 \$ co teste sival b, \$0 km Dempolps: 4=0, x + by+c,

Το χυρακτηριστικό των δε την μορφήν αυτήν είναι δτι η ξ(κ,γ) εξαρτάται από μια πρωνεφάθμια ποσότητα των κ, γ ή από ένα πηλίκο των κ,γ ή

Πορωσείρρους Οι δε: $γ': (9x + (1y+1)^2)$, $γ'=\frac{(-4y-3)}{(x-6y-5)}$, $γ'=\frac{2}{(x+y-2)^2}$ ονοχόρενε: σε ομοχενείς.

The white $\int e^{-\frac{\pi}{2}} \frac{d^{n}x}{dx} = \int e^{-\frac{\pi}{2}} \frac{d^$

β) Ψάχνουμε μία οποιοδήποτε συνάρτηση /μ η οποία ικανοποιεί τη γμ + 5(x)γ = g(x) . Η συνάρτηση θα έχει τη μορφή γμ = c(x)· u(x), δηλαδή θα προκύπτει από τη γενική δός, τη αντίστοιχης ομοχενούς ον όπου c θέσουμε μια (άχνινστη) συνάρτηση c(x). Από την απαίτη-

 $y'_{\mu} + f(x)y_{\mu} = g(x)$ can apos $y_{\mu} = c(x) \cdot u(x)$ well and operates $f(x) \cdot u(x) = g(x)$ $f(x) \cdot u(x) = g(x)$ $f(x) \cdot u(x) = g(x)$

Με σηλή σλοκλήρωση (χωρίς σταθερά c_1) προδδιορίζεται η c(x), επομε-

Η μεθών προβδιορισμού της γρ είναι χνωστή ως μεθοδος μεταβοπίν, των σταθερών. Η γρ είναι μια μερική /ειδική λύση της δε. με το δεροισμα της γενικής δεσης της ανηδοτοίχης ομογενούς και μίας μερικής δεσης της δοσμέτης δε.

ExaMartirá, μπορούμε να χρησιμοποιήσουμε τον τόπο: $y = \left[(+) \left(g(x) e^{-5 + (x) dx} \right) dx \right] e^{-5 + (x) dx}$

Το χαρακτηριότικό των χδε 1^{ns} τάξης είναι δτι το γ εμφανίζεται αποκλειστικά ως παράγοντας (και μόνο σε πρώτη δύναμη), ενώ το χ εμφανίζετοι με οποιονδήποτε τρώπο.

 \ddot{u}) $y' + \frac{1}{2}y = e^{x}$ \dot{v} \dot{v} $y' + (\cos^{2}x)y = \sin x$

EVW of y' + xe' = x2, y' + Ty = x SEV E'ral poaffyités.

Me inihum ms, polorezas n u(x) kas doa n y(x).

To xapakanpi 671kó zav & Bernaulli sivai 671 supávigszai pla pove Sikh fővapn ya

 $\frac{\prod_{\alpha \neq \alpha} \delta_{ij} \alpha_{ij} \alpha_{ij} \alpha_{ij}}{\delta_{2}} z_{ij} \alpha_{1} z_{ij} \alpha_{1} \beta_{2} \beta_{2} \beta_{2} \beta_{3} \beta_{3} \beta_{3} \beta_{4} \beta_{5} \beta_{5}$

Hospopiul zglowon Riccati

Hosp Riccati έχει επ μορρώ: $y' + f(x) y = g(x)y^2 + h(x)$, ενώ είναι
δοσμένη και μία μερική λύση της $y_1(x)$ και για την επίλυση της Θεωρούμε

την αντικατάσταση: $y = y_1 + 1$, $y = y = y_1 + 1$, $y = y = y_2 + 1$, $y = y = y_1 + 1$

το χαρακταριότικό των δε ρίσατε είναι ότι υπάρχει ο y2.

Mapadeigrada

O, Se cival zina Riccati:

a) $y' + \frac{1}{x}y = -y^2 - \frac{9}{x^2}$

B) y'+ (2x-1)y = (x-1)y2+x

Apreso odordnewsines de.

Este n de 1º tdens: P(x,y)dx + Q(x,p)dy = 0. Ar 10x511 de: $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$, tota n de sirai duesa odordnewsinen d'estrar

 $\frac{\partial x}{\partial x}$. Για την επίπνοη της βρίσκουμε μια συμφτηση $\frac{\partial x}{\partial y}$: $\frac{\partial x}{\partial x}$ $\frac{\partial x}{\partial y}$ $\frac{\partial x}{\partial y}$

under n yd ins de elval f(x,y)=c

Popolaryus

Eow n $\delta \epsilon = (x^2 + 9xy)dx + (x^2 + y)dy = 0$ now siral dysea oboxympuloryus

H $\chi \lambda$ in gival n surdpinon f(x,y) yer

 $\frac{\theta \xi}{\theta x} = \frac{P(x,y)}{Q(x,y)}$ $\frac{\theta \xi}{\theta x} = \frac{x^2 + 2xy}{Q(x,y)}$ $\frac{\theta \xi}{\theta y} = \frac{x^2 + 2xy}{Q(x,y)}$ $\frac{\theta \xi}{\theta y} = \frac{x^2 + 2xy}{Q(x,y)}$ $\frac{\theta \xi}{\theta y} = \frac{x^2 + y}{Q(x,y)}$ $\frac{\theta \xi}{Q(x,y)} = \frac{x^2 + y}{Q(x,y)}$ $\frac{$

δλδ δεν είνοι ακριβνός. Ανα ζητώ μια συνάρτηση μ(κ, γ) $\neq 0$, έτσι ώστε η δε αν πολλίστεί με την μ(κ, γ) να μετατραπεί σε ακριβνό δε. Η μ(κ, γ) ονομόζεται πολλίστώς Εμθεν ή ολοκληρώνων παράχων και μανοποιεί τη σχέση:

ral [ravonoisi in exten: $\frac{\partial}{\partial x} \left(\mu(x,y) P(x,y) \right) = \frac{\partial}{\partial x} \left(\mu(x,y) Q(x,y) \right)$

Tra my sopnon tou nodhlow Eyler nonoia sivar nepindous, da jiver averpoped ou tedos tou BIBLIOU.

H YEWHEROIGN EDMNYEIG ZOW SE 1" TO EN- GO DOYN MES TOOKES

Tevital, μια δε 1^{MS} τάξης Παριστάνει μια μονοπαραμετρικώ οι κομ ένεια ταμπυλών του επιπέδου Οχυ. Εστω τώρα δει μια δε 1^{MS} τάξης παριστάνει μια οικογένεια καμπυλών (A). Αν στην δε Θέσουμε δπου μ' το -1 προ-

tintel n de un oltogéreles καμπυλών Β με των ιδρότωτα:
"Κάθε καμπύλη (γλ) τως (λ) τέρνει υπό ορθο γυνία κάθε καμπύλη
(γβ) τως (β). Ετοι οι καμπύλες τως (β) αποτελούν ορθομύνιες τροχιεί

in (A) "

Δηλαδή η δε των ορθομινίων τοχιών μιας δοσμένης οικογένειας καμπυλών ροχύντει από τη δε της δοσμένης οικογένειας καμπυλών αν θέσουμε στα γ' το -1.

Αν έχουμε ένα πρόβλημα ευρεοπο των ορθομανίων τροχιών μιας δοσμέπος μονοπαραμετρικώς οικογένειος καμπυλών τότε:

a) Bolocomes zur de na Karonoisital and zur doguem govorap. oir. kups.

B) $\leq \ln \sqrt{\delta z}$ $\frac{\partial z}{\partial z} \cos \mu z$ $\frac{\partial z}{\partial$

Εραλοιο 3: Ομογενείς Γραμμική ΔΕ 2^{ns} και Ανώτερου Τάξης.

Μια δ.ε. 2^{ns} τάξης είναι ομοχενής χραμμική αν κάθε όρος της Περιέχει ως παρά τονεα ακριβώς ένα από τως y, y', y'' Έτσι, η Ομογενής γραμμική δε 2^{ns} τάξης είχει φορρής.

ρ(κ) y''(κ) + g(κ) y'(κ) + r(κ) y εκ) = 0δπου υποχρεωτικά $p(κ) \neq 0$. Διαιρώντας με p(κ) είχουρε: y'' + P(κ)y' + Q(κ)y = 0

 $\frac{O \Gamma \Delta E}{E} \underline{\mu}_{E} \underline{\sigma}_{Z} \underline{\sigma$

(II) Bpiorus za lige voi:

(IIa) Av lige eR 41 21 + 22 - 2628 n Son ans Se sivai: p= Get + getex

(I) Ar dije er ye di=de=d zóz n don mo de sívai: yzciedx + uxedx

(IIc) Av 1= a+ ib / 1= a-ib zózen don zn. 8 & Elvar: y= ex (c, cos(bx) + cg sin(bx))

* Oτον έχω ογδε V-τάξη, με σταθερώς σωτελεστές, η χαρακτηριστικώ αλχεβρικώ εξίσωση είναι πολυωνυμικώ V-βαθμού και έχω:

(I) Av AxeR piga in X.a. HE public nollitar 1 162E in John ins

(II) Ar λεκρίζα της Χ.α με β.π. ρ72, στη ρίζα αυτή αντιστοιχούν οι όρρι:

(me^{λχ}, (m+1 χ e^{λχ}, ..., (m+1-1 χ e^{λχ})

(III) Av a ± bi piges 700 x.a. pe β.O. S 2622 6115 píges aviés avil-

*n givien hion apocionesi anó zo alpongua zur épur

otol $xo^{5}v$ of 6pol: $e^{4x}(c_{h_{1}}(os(bx)) + (n_{2}sin(bx)))$ $xe^{ax}(c_{h_{1}+1}(os(bx)) + (n_{2}sin(bx)))$ \vdots $x^{-1}e^{ax}(c_{h_{1}+s-1}(os(bx)) + (n_{2}+s-1sin(bx)))$

<u>Engelwon:</u> Eow πολίμο αχ²+ βχ+γ=0, με Δεο. 76τε οι ρίζες 200 είναι οι: -β ± ί √ΙΔΙ (μιγαδιεέ)

ΔΕ που μετα δχηματίζονται σε άλλες με σταθερούς συντελεστές - η δε Euler

Η δε Euler είναι τω μορφώς: $(ax+b)^2y'' + k_1(ax+b)y' + k_2y = 0$,

με a,b,k_1,k_2+R . Με αντικατάσαση t=ln|ax+b| στην δε Euler, αυτή

μετα δχημα τίζεται σε άλλη με σταθερούς συντελεστες.

Αν , επιπλέον, ax+b>0 τότε Θέτουμε $ax+b=e^t$.

No hubil $n = (2x+1)^2 y'' + 6(2x+1) y' + 4y=0$, 2x+1>0.

O'é coupe $2x+1=e^t \Rightarrow x=\frac{e^t-1}{2}$ Euppwra pre zor tarbra zon advoi
Sa), Exorpe nos: $\frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt} \Rightarrow y' = y' \cdot \dot{x} = y' \cdot \frac{e^t}{2} \Rightarrow y' = \frac{2\dot{y}}{2} (1)$

Onote the rapaging from my (1) us good t exoups: dy = d (2 i) =>

$$\Rightarrow \dots \Rightarrow \frac{dy'}{dt} = 2 \cdot \frac{\ddot{y} - \dot{y}}{e^t}$$
 (3)

Anó (2),(3):
$$2\frac{\ddot{y}-\dot{y}}{e^{t}} = y''\frac{e^{t}}{2} \Rightarrow y''=4\frac{\ddot{y}-\dot{y}}{e^{2t}}$$
 (4)

Avrika $\theta_1 6 m^2 v \cos 6 m^2 \delta \epsilon = 715$ $2x+1=e^+$, (1) $\cos (4)$ $\cos (4)$ $\cos (4)$ $\cos (4)$ $\cos (4)$

H dean mes anoton elvar n y lt) = Get + Gtet kar av 11 ka O 10 mbras t = ln(2n+1) Exauge me yevikh den mes fr.

<u>OTSE</u> 9^m ταξης με δοσμένη μια μερική λύου μ. Εσιν η δε γ" + P(x)γ + Q(x)γ = 0 Και γι μερική δύου της τόσε: (I) Θεωρώ γ = u·γι , με ω = u(x) και η δε με τα ξχυματίζεται σε μ" + P(x) μ' = 0 (1)

(I) Now my (1) (ses ponyodueun napalpago) napadelnovas dus zis exaltés odoudhourons. H y. d. ans 82 Elvai n y = Cipi + Co (cipi), me ci, ce el

γραμμική ανεξαρτησία των δύσεων
Εστω η γδε 2h τάξης: μ" + P(x) μ' + Q(x) μ = 0 και μ, μ δύο
λύσεις της. Θεωρούμε την ορίζου σα:

N= Y1
H W proper va gives 3x3, 4x4 r.or. you be 3m3, 4m3 exto.

LEPÁLOIO 4: Un ΟΓΔΕ 2^{ms} και Αμώτερης Τάξης

Οι μη ογδε 2^{ms} τάξης έχουν τη μορφή: μ' + PCL)μ' + QCL)μ = FCK)

Για την λύση της μη ογδε:

(I) βρίστω την χενική λύση της ανγίστοι χης ομοχενούς μ' + PCK)μ' + QCK)μ=0

(II) Boiorn pla prepin don uns un oporeros. H gerim don un progressos l'es un doporeros es l'un oporeros: y= yop + yur

YI-YO cival Non ms avristoryns opogerous.

 $\frac{H}{E6\pi w}$ η μη οχδε: y'' + P(x)y' + Q(x)y = F(x), η γενική λύση της αντίστοιχης ομογενούς είναι : $p_0 = q_0 p_1 + q_0 p_2 p_3$ ($q_1 p_2 p_3 p_4$), $q_2 p_3 p_4$ ανεξ, λύσεις της οχδε.

ME SESOHERO 671 0 GNTERESTAS TO Y" 1/201 1, " MIN OYSE EXEL HEPIM L'ON TOS MOPPINS: $Y_{\mu}(x) = G(x)y_{\mu}(x) + c_{2}(x)y_{2}(x)$, HE CI(x), (a(x)) dynustes surptingers, EM 10x5E1 n exeon: $c'_{1}(x)y_{1}(x) + c'_{2}(x)\mu_{2}(x) = 0$ (1)

Mε χρήση της μη ορδε και της (1) καταληγουρε πως:
(('(x) y (x) + (e'(x) pe'(x) = F(x) (2)

 O_1 (4) [8] αποτελούν χραμμικό αλγεβρικό σύσημα με αγνώστων G(x), G(x). Λύνοντων το βρίσκουμε τις G(x), G(x) και με απλή ολοκλήρωση εχουμε τα G(x), G(x) (παραλείποντως σταθερές ολοκλήρωσης). Με αντικατάσταση στην γμ , έχαμε την μερική λύση της μη οχδε.

TEAIRD, n y.l. mo for oybe Elvar: y= Yo + //4.

TAE με σταθερούς συντελεστές και ειδική μορφή 200 μέλους. Έστω γδε οποιασδή ποτε τάξης, της οποίας το 20 μέλους είναι: (I) Ατέραιο πολυώνυμο (οποιοδήποτε βαθμού) δ(κ) ή

(II) TPIZOUNDHETPIKN OUVAPTHON THS MOPPHS: Acos (UX) + BSIN (UX), HE A, B, WER N

(III) Exortim swapmon ma goppis Deex, ME DIPER i

Γινόμιγο αυτών των περιπτώδιων. Αν το 2° μίδος είναι τος μορφής. f(x) (Acos(ωt) + Βιίπ(ωκ)) Deex τότι λέμε πως η δε έχει ειδιτώ μορφή 2° μέδους · Αν , επιπλέον η δε είναι γραμμική με σταθερούς συντελεστές, τότε μια μερική δύση της βρίσκεται:

(i) Ourpu tur artíszorzn opozen kar Bpioku znr y. A. (opozem pe

620 Pross ONTELEGTÉS.

(ii) Ocupu zov prejadred p + iw doa:

(iia) av o p + iw bev sivar piqa m x.a. m aviozorgen oprogenoù n preprim abon $\{x \in I \text{ in proprin: } y_{\mu} = (n(x) \cos(\omega x) + \varphi(x) \sin(\omega x))e^{\rho x}$

(iib) or sival piza HE BudHó nox/zas r = 1, 2... zóze n HEPIEN don $\{\chi_{EI}$ on Hopph: $\chi_{\mu} = \chi^{*}(\eta(x)\cos(\omega x) + \varphi(x)\sin(\omega x))e^{\rho x}$

Ta n(x), p(x) sival noduvirya opopathia a tex).

(iii) Αντικαθιστώ τη μερική λύση στην δε και προσδιορίζω τα π(κ), μ (κ). Τελικά, βρίσκω την χενική λύση y= yo + yμ. TAE 48.2° 4/20 a doorge surprisent

Proton

Av: y1 pla pepind alon on $\delta \varepsilon$: $y'' + P(x)y' + Q(x)y = F_1(x)$ kal

Y2 pla pepind alon on $\delta \varepsilon$: $y'' + P(x)y' + Q(x)y = F_2(x)$ tore of

Y1+ Y2 sival pla μ . λ . on $\delta \varepsilon$: $y'' + P(x)y' + Q(x)y = F_1(x) + F_2(x)$

Επομένως, για να βρούμε μια μλ τως δε: $y'' + P(x)y' + Q(x)y = F_1(x) + F_2(x)$ Χριπ διμοποιούμε των πρότασω (βρίστω y_1 , με από κάθε δε και τις προσθέτω).

```
Regardano 5: Noon DE pe Merasynparishó Laplace, M/L
U opienós zou M/L
Esaw surdotnen f(t), \mu_{\Sigma} f(t)=0 yla t\geq 0 kal oplopievn yla t \geq 0. Oplopieval on M/L and f F(s) and in 6\chi \leq 0?

F(s) = \int_{-\infty}^{+\infty} \left[f(t) e^{-st}\right] dt
 Zuppodique: L&f(t) == F(s) n' f(t) => F(s) Enindéor,
opique inv ouraproon Heaviside in unit step function:
           4(t-a)=51, t>a, \mu \in h(s)=\frac{1}{5}
OI I DIOTAZES ZON M/L
  2 + f_1(t) + f_2(t) = F_1(s) + f_2(s)
  (II) Modiques in +(+) us eat: & & eat +(+) = +(5-a), (a 6 zadros)
   (Enopiemo, av μια συνάφτηση έχει eat, βρίσκουρε τον M/L anda mo f και έπειτα αντικαθισκούμε σε αυτόν τον M/L όπου o, το s-α)
  (III) M2 tation (on th) + (t): & f f (t-a) = e - as L f f (t) }
  (V) Hallagni redignaras: & & & (At) $ = 1 F (5/2) (1 6 zatro)
  (VI) Modlopios rns flt) me 1/t: 2 = 5 F(u) du
  (VII) O zwipnya apxiris kai tzdiris Tipins: Eyosov unapxon za opia.
                              tal lim f(+) = lim (5 F(s))
       lim f(t) = lim (s F(s))
t-0 s-+00
```

Dewporpa Textens Typis

Oswpupa Apxied, Trins

(VIII) Macagnipion my f(+): L { f(+) } = 5 F(s) - f(0) 2 f (+) = 5 F(s) - 5 F(o) - F(o) 2 5 (t) 3 = 53 F(s) -52 f(0) -5f(0) -5(0)

(IX) Eurédien: L & f(+)*g(+) 5 = F(s). G(s) בי חום צמדש צום לוחדסשוניבונים

Basicoi M/L & \(\frac{1}{5} = \frac{1}{5} $2 \leq cos(at) + (t) = \frac{S}{S^2 + a^2}$ 25 e at H(t) 5 = 1 $2 \int \sin(at) H(t) = \frac{a}{5^a + a^2}$

25 + 4(t)5 = 115 th H(+) 3 = n!

DM/L συνάρτησης η οποία αλλά ξει κατά διαστήματα

Εσω η χυνοπή συνάρτηση Heaviside: H(t-a) = {1 t > a Θεωρούμε

Ο , t < a

Try ovaprnon: f(t) = H(t-a) - H(t-b), $\mu_{\Sigma} = b > a$. Apa: $f(t) = \begin{cases} 0, & t < a \\ 1, & a < t < b \end{cases}$ $f(t) = \begin{cases} 0, & t < a \\ 0, & t > b \end{cases}$

Englishms , Kaza deljoure 17 ms av:

(I) Mia sovaprnon flt) nou siral pinderich you tea paperal stu popper S(t) . H(t-a)

(I) Mia swapinon tel) nou sival pundsviku yla tea, +>b, poapszal 67n 40ppn + (+) (H (+-a) - H (+-b)), In dadi:

Fia The Eupern Tow M/L Miss ourdornons nonoia adda GEI who icard

(I) $\Gamma pd poulue 7nv ouvaprnon ouv d'opolopia óper in pappels: <math>f(t)$ (H(t-a)-H(t-b)) pla rade sidonnea (a,b) ozov onoio no ovaprnon exel zuno f(t).

Av n ovapinon exer rino or daompa (c, too) tote da eppaviçe-

Tal kai 0 Spos + (+) H(+-c)

(II) Γροποποιούμε το παραπάνω άθροισμα ώστε κάθε όρου του να έχειτη

(III) ME xprien in idiotricas ins perazónions ins + l+) za M/L, Bolowyer zov. M/L ins Eosperns ouraprinons.

Ο αντίστροφος μετως γηματισμός Laplace A_V $L = \{f(t)\} = F(s)$, τότε ορίζεται ο αντίστροφος ΜΕΙ είναι: $\{f(t)\} = \{f(t)\} = \{f$

(I) H F(s) is a poppi to, Eival yourson' (SES "Basikoi N/L"). Tore, unpo, sival andá ta npágnara... P.x. L-1 & 1/s-a = e at H(+)

(II) Η F(s) pn τή με τον βαθμό του πολυμνύμου του παρονομασιή να είναι μεμαδίτερου από αυτόν του αριθμητή. Τό τε την αναλύουμε σε απλά κλάσματα (1º βάθμιοι παρανομαστές) και βρίσκουμε τον Μ/L-1 κάθε κλάσματου ξεχωριστά, με βαδη τουν βαδικούν Μ/L.

(ii) Bpiskovye zov M/L-1 rms P(s), Indadi tov pL+).

(iii) Mod/Jose to p(t) HE eat apa:

(IV) H F(s) EXEL TO MOPPH $e^{-as}G(s)$. Total

(i) BPIONOME FOR M/L^{-1} For G(s), In Lad dn': L^{-1} G(s) $\xi = g(t)$

(V) H F(s) Elvar Aograph Offich h to Go Eputatoriens. To ce: (i) Belorouse the -F'(s) (path) ran Energy to M/(c-1) then (ii) Texted: f(t) = -F'(s) = f'(s) =

NUEN DE ME XOMEN TOU MIL (GRADEPOI OWEEDESTES)

Ισχύει rws: £ { ;(+) } = 5 F(s) - f(o). Για την επίλυση ΔΕ:

(i) METATOX NIMATÍ FOURE THV SE KATÁ LAPLACE KAI ENILÓDURE THV ANYERROIENÉ
E FÍONON NOU MONTEI US MOS TO F(S) (O RETADX MARTITYOS TO SE

XIVETAI RE PLON THV AVENTÉPOLU, SIÓTHEA AND A KAI YIA TIS ÁNDES MAGAJULJOUS
SES ISIÓTHEES MIL).

(ii) Bplokeruse zov M/L-1 Ths F(s) now Bpédike oro (i), o onolos sivar kar

<u>Mapadényua</u>

 $5 Y(s) - y(o) + 9 Y(s) = 0 \Rightarrow (5+9) Y(s) = 1 = 0$ $Y(s) = \frac{1}{5+9}$. Apa, rail $\frac{5+9}{5+9}$ apois, $1^{-1} \frac{1}{5} \frac{1}{5+9} = e^{-2+} H(+) : y(+) = 1^{-1} \frac{1}{5} \frac{1}{5} \frac{1}{5} = e^{-2+} H(+)$.

ON/L THIS OUVERIENS EWAPTH SEWY

OPÍGOURZ THV OUVÉRIEN, DUO OWAPTH SEWY f(t), g(t) (+20): $f(t) * g(t) = \int_{0}^{t} [f(u) \cdot g(t-u)] du$

rai 16x511: 1 { f(+) * g(+) } = F(s). G(s)

Κεραλοιο 6: Γραμμικά Διαρφρικά Συστήματα Ένα $y \delta \delta$ 1^{ns} τάξης είχει τη (μορρά: $\dot{x}_1 = a_{11}(t) x_1 + a_{12}(t) x_2 + \dot{f}_1(t)$ $\dot{x}_2 = a_{21}(t) x_1 + a_{22}(t) x_2 + \dot{f}_2(t)$

 M_{ε} \times_{1} , \times_{2} dywhores evaporations to a ais, fi grades. M_{ε} xorden airdenvi: $\begin{bmatrix} \dot{x}_{i} \\ \dot{x}_{2} \end{bmatrix} = \begin{bmatrix} a_{11}(t) & a_{1e}(t) \\ a_{e1}(t) & a_{e2}(t) \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} + \begin{bmatrix} f_{1}(t) \\ f_{2}(t) \end{bmatrix}$

(Av to $f_1(t) = f_2(t) = 0$ tote sival omogenes). Av Obsorpe $X = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$, $A = \begin{bmatrix} a_{11}(t) & a_{12}(t) \\ a_{21}(t) & a_{22}(t) \end{bmatrix}$, $b = \begin{bmatrix} f_1(t) \\ f_2(t) \end{bmatrix}$ Exorpe: $X = A \cdot t + b$, $(z_0 \text{ avii } 6201 \times 0 \text{ omogenes}: \dot{X} = A \cdot x)$

A Joseph Solis Fixel va analytimore o'how tows aprintations extos and evar, va history the series and evar, va history the series and evar, va history the series and evar, va properties the series of the prioresters are the dynamical town to series waptings to the series of the se

(I) Mapaguyi Parpie us mos t mor (1) Kai mordotter fra (3)

(II) I THY (1) ENIL SOUPE US ADDS Y KAI AVTIKA DISTOSHE STAY (2):

(II) Zenv (3) avil ku O1020 Spe to y and TNV (2) KO1 MOOKBOTEL TO E (4) dy vuroto 20 y=x (4)

Aντίστροφα, μια 6δε v-τάξης μπορεί να μετατραπεί 6ε 1σοδύναμο δο 1^m τάξης, v-δε με v-αγνωστες συναρτάσεις: Ωχ, είσω η δε 2^m τάξης: χ + P(t) χ + Q(t) χ = Q(t)

(i) O'E TOURE X=Y (17 SE ZON SO)

harman ha
(ii) Mapayory! James The x=y => x=y kal HE articatdotaon the x, x or SE npochness in 20 SE too So ETGI, to So Elvas:
SE Apordaces a 2ª de tou do ETOS, to do Elvas:
$\dot{y} = -Q(t) \times -P(t) y + Q(t)$ $\dot{y} = -Q(t) \times -P(t) y + Q(t)$ $\dot{y} = -Q(t) \times -P(t) = \begin{bmatrix} 0 & 1 & 1 & 1 & 0 \\ -Q(t) & -P(t) & 1 & 1 & 0 \\ & & & & & & & & & & & & & & & & &$
$\dot{y} = -Q(t)x - P(t)y + Q(t)$ $\int_{-Q(t)}^{\infty} \left[-Q(t) - P(t) \right] \left[y \right] \left[R(t) \right]$
LUGA OXET IN TEEN HE TA MEDOSO TWY XUPARUPLETIKÚV HEYEDÚV MÍVOKA
Ένα ονδο 100 τάξης με σταθερούς συντελεστές ΕΧΕΙ τη μορρώ:
$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \beta \in \alpha \text{ otabapá. kai } \alpha \in \mathbb{R}.$
$\begin{bmatrix} x_0 \end{bmatrix} = \begin{bmatrix} q_{01} & q_{12} \end{bmatrix} \begin{bmatrix} x_0 \end{bmatrix}$
Sia the FUDEON THE WY TOU SO DEWPOSAE TOU A = Sail 4/2 Kai
Για την εύρεση της χλ του δο θεωρούρε τον $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$
βρίστουμε ιδιοτιμές και ιδιοδιανδόματα. Τότε αν:
(I) O_1 , $\delta_1 \circ \tau_1 \mu \dot{\epsilon}_1$ $\lambda_1 \lambda_2 \in \mathbb{R}$ cas $\lambda_1 \neq \lambda_2$ $\mu \epsilon$ avt/ $\sigma_2 \circ \chi_2$ 1 $\delta_1 \circ \delta_1 \circ \lambda_2 \circ \mu \circ \chi_2$
a re n xx sival: x = c. r.ent + ce re exet =)
Tx, T condit [Y(1)] + con exet [Yo(1)]
$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = c_1 e^{\lambda_1 t} \begin{bmatrix} y_1^{(1)} \\ y_1^{(n)} \end{bmatrix} + c_2 e^{\lambda_2 t} \begin{bmatrix} y_2^{(1)} \\ y_2^{(n)} \end{bmatrix}$
(I) OI I διοτιμές λ, λη είναι συζυγείς μιγαδικές (δλδ είναι της μορφές
x + iy και x - iy ίσα προμωτικά , αντίθετα γανταστικά μέρη). Τότε:
(i) Bpi skoupe i diodiaviqua 12 avilozoixo ins di (pigadico)
(ii) O Ewpolar The nosothta: Vient kal apol: eig = cosp + ising year
HE o in Hoppin: rient = Fi (+) + i Fo (+) HE F(+) Mayharika hav
(iii) H x A Eival: X = <1 F1(4) + Se Fe (+)
(III) OI (SIOTIMES de, de sivar ises (Kar don goapperixés). Tore:
(i) Bolocoupe Eva i Sio Siavoqua I nou avrio zoix Ei 67m di=de=d.
(a) Nivorcas Inv A re - 1. re = r. Bploroupe to 1 dio diducipa re
(iii) Hyd Firan: X = c1 r1 ext + ce (x1t + re)ext
~ ~ ~

Zinv neplnowen idiotipins 1 με βαθμό πολ/τως 3, βρίστουμε ένα ιδιοδιάνυσμα

Mn oy fo 100 rátes - μεθοδος μεταβολώς των σταθερών

Εστω το μη ογδο: $\begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} = \begin{bmatrix} a_{11}(t) & a_{12}(t) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} f_{1}(t) \\ f_{2}(t) \end{bmatrix} & \overset{\circ}{n} \overset{\circ}$

(I) βρίδκουμε μια μερική δύου του μη οχδο:

[χμ] = (1(+) [χι(+)] + (2(+) [χ2(+)] , η οποία προσώπες από των χλ του

[χμ] = (1(+) [χι(+)] + (2(+) [χ2(+)] , η οποία προσώπες από των χλ του

(χμ] = (1(+) [χι(+)] + (2(+) [χ2(+)] , η οποία προσώπες από των χλ του

(χμ] = (1(+) [χ1(+)] + (2(+) [χ2(+)] , η οποία προσώπες από των χλ του

(μεθοδος μεταβολής των σταθερών).

(II) H uspir don reasonari to 80, don: $\begin{bmatrix} x_{\mu} \end{bmatrix} = \begin{bmatrix} a_{11}(t) & a_{12}(t) \end{bmatrix} \begin{bmatrix} x_{\mu} \end{bmatrix} + \begin{bmatrix} f_{1}(t) \\ f_{2}(t) \end{bmatrix}$ Kal μ_{ϵ} now $\xi_{\epsilon i}$ ixou μ_{ϵ} : $c_{1}(t) \begin{bmatrix} x_{1}(t) \end{bmatrix} + c_{2}(t) \begin{bmatrix} x_{2}(t) \end{bmatrix} \times (t) \begin{bmatrix} x_{2}(t) \end{bmatrix} = \begin{bmatrix} f_{1}(t) \\ f_{2}(t) \end{bmatrix}$

Anó in Hoppin auch, βρίσκουμε 715 ci(+), ca(+) και με andi odordyowan (χωρίς σταθερές) βρίσκουμε 711 κ,(+), ca(+). Βρίσκουμε την μερική δόση.

(IV) If y > Tou por of 80 Eival. [x4] = [x0(+)] + [x4(+)] y(+)]

```
H HEDDOS TOU MIL you to Son y 80 ps 6200. OWELSONE
  Eo 2 το χδο 100 2 2 ξno: X1 = a11 X1 + a12 x2 + 51(+), με a σεαθχοά, f(+)
                                                                                                             X2 = a21 X1 + a22 X2 + f2(+)
YVENEZES OUVAPTHOSIS CAI X1(0), X2(0) SOGRÉVES TIGLÉS. TOTE:
                      (I) MEZAOXIHAZÍ JONAS 715 DE KUZÁ LAPLACE, OPOU ÉXONAE:
                                          X1 (s) = L & x1 (+) $ Kal X2 (s) = L & x2 (+) $
                     (I) ASVOLUE TO OSGTAGIO TUN M/L Kal BPISKOUGE TIS XICS), Xe (5) Kal
 PPIGKONE TO X1(+), relt apos: X1(+) = 2-1 & X1(5) } Koi Ke(+) = 2-1 { X6(5) }
Onivaras ext
        Form o nivaras Avxv. O nivaras B = A+ sival enions vxv ral av 1
 colorium zou A, zóze à ideorium zou B=At.
            O nivaras en = en alvar vxv car no houverpo que que parapamen B, que
βαθμό 20 rods v-1:

e<sup>2</sup> = c<sub>v-1</sub> β<sup>v-1</sup> + c<sub>v-2</sub> β<sup>v-2</sup> + ... + c<sub>1</sub> β + c<sub>0</sub> I , με c σ zαθεροί
apiduoi, or onolor unodogi Forcas us paon 715 1 du 714is, apod Kade
 ( Scotifin 200 B Enoly dever The Eglowen:
                                                                                    ex = cv-1 xv-1 + cv-2 x v-e + ... + c, x + c.
        Enopleyur, av Exoure oxos 1" rd \( \xi \) ro onolo \( \xi \) \( \
    x = e^{\Delta + C} x = e^{\Delta + C
```

Répadaso 7: H Nélodos zur Duragoorpour

It suraproseipá sival zo áppospa: $\sum_{v=0}^{\infty} a_v (x-x_0)^v = a_0 + o_1 (x-x_0) + ... + a_v (x-x_0)$ To onmile to expla feral keyroo the Suraprossipas. Of surredestes do, di,... 51 Vol of open mas are doubles by. An Olsoupe $x - x_0 = t$ where $x_0 = t$ is $x_0 = t$ and $x_0 = t$

Οι τιμές τουχχια το οποίες το άθροισμα υπάρχει και τίται πεπεραφιένο αποτελούν το διάστημα σύχτλισης της δυναμοσείράς.

Mia ovapinon f(x) oropa /2 tal avadutica 6 to ongelo Xo otav avantús 620 δε δυνομοσειρά κέντρου χο.

Τα ακέραια πολυώνυμα οι ζοιγωνομετρικές συναρτίσεις, η εκθετική συνάρτηση καθώς και οι συναρτήσεις οι οποίες προκύπτουν μετά οπό πράξεις μεταξύ autiv sival avadutikis.

E6w τωρα η δε: ρ(x) y"(x) + q(x) y'(x) + y(x) y(x) =0 με p(x), q(x), r(x) avadutivis 620 xo. Av: (ar der Stretal to Ko, the (I) P(x0) \$0 =) x0 opadó snyelo on de Raipyw No-0) (II) p(Ko)=0 > xo arupado onquelo us de

H repiremen 300 opadoù onpeioù AV p(xo) $\neq 0$ tote n be exel don in propon $y(x) = \sum_{v=0}^{+\infty} a_v(x-x_0)^v$. Enideyouran adplota $a_0 = (1, a_1 = c_0)$ repordince n yevirin don $a_0 = (1, a_1 = c_0)$

y(x)=(1/1(x) + (2/2(x) The the Epopping Zw napanam:

(I) Dianiewww nws p (xo) \$0

(I) Osupu y(x) = \(\sup av (x-x0) = a0 + ap (x-x0) + ... + av (x-x0) + ...

 $| x_{0} | = \sum_{k=0}^{\infty} a_{k} \cdot v \cdot (x - x_{0})^{k-1} = 0_{1} + 2a_{2}(x - x_{0}) + ... + a_{k} \cdot v \cdot (x - x_{0})^{k-1} + ...$ $| y'(x)| = \sum_{k=0}^{\infty} a_{k} \cdot v \cdot (v - t) (x - x_{0})^{k-2} = 2a_{2} + ... + a_{k} \cdot v \cdot (v - t) (x - x_{0})^{k-2} + ...$

(ΙΙ) Αντικαθιστών τα ανωτέρων σεπν δε και μετά από πράξειο καταλήμω σε μια ισότητα πολυωνθρων με 0.

(IV) EZ 16WYW ZOUS ENTE dE 67ÉS TOU MONUMUNION HE O KUI UNO DÉ ZOU NOUS

ao, a, \$0 . ETEI, EKPPÉZ W ZOUS de, as, ... WE ENTAPTHÉES ZOU

do, 01 \$0.

(V) AV11 ka $\theta_{1}\delta_{1}\dot{\omega}$ 713 E kgod 6415 a $\omega_{1}\dot{\epsilon}$ 6710 y (x) = $\sum_{n=0}^{\infty} a_{n}(x-x_{0})^{n} = a_{0} + a_{1}(x-x_{0})t$.

ka 1 προκώπει η γενική λώση της μορφής:

y (x) = a_{0} y, (x) + a_{1} γ a_{2} (x).

Η περίπτωση του κανονικού ανωμαλου σημείου

Εστω η δε: ρ(x) γ" + q(x) χ' + r(x) γ = σ, με ρ(x), q(x), r(x)αναλυτικές ότο κο , αλλά ρ(xο)=0. Τότε για κ χ κο διαιρώ με ρ(x)

ιται έχω: y" + q(x) y' + r(x) y = σ ω y'' + P(x) y' + Q(x) y = σ

 $\rho(x)$ $\rho(x)$

Θεωρώ 11> εναρτήσει» (x-ro) P(x) (x-xo) Q(x) και αν αυτές είναι αναλυτικές τότε το xo είναι "κανονικό ανωμαλο σημείο" της δε. Εγαρμόζω τη μέθοδο Fröbenius:

(I) Exemply to both: $\mu = \lim_{\kappa \to \kappa_0} (\kappa - \kappa_0)^2 Q(\kappa)$, to onois first repayment to $\kappa \to \kappa_0$ (II) Drupu's the Exiowen: θ . $(\theta-1)$ + μ . θ + σ = 0 (Exiowen deserving of Selection Exiowen the Selection

(II) H S.E. EXEL JUGA TAS HOPPINS: $y_{1}(x) = (x - x_{0})^{\theta} \sum_{v=0}^{\infty} a_{v}(x - x_{0})^{v}$ $y_{1}(x) = \sum_{v=0}^{\infty} a_{v}(x - x_{0})^{v}$ $y_{2}(x) = \sum_{v=0}^{\infty} a_{v}(x - x_{0})^{v}$

ónou o rivar piça ens frirzpias Eficuens.

(IV) Αντικαθιδιώ την γι στην δε και προκόρτει ένα πολυώνυμο ίσο με Ο. Από τον μη δενισμό εων συντελεστών του και με ασ το βρίσκω τους συντελεστές της αν.

cal n gerich abon sival y(x) = (1 y,(x) + ce ye (x)

10, entitistis dr, pr noossiopiforten katal ta junsta, onus Rapanario)

(ii) $\log \sin \theta = \theta_2 = \theta_1$. To the:

a) Deup in surdprison $y(x) = \sum_{v=0}^{+\infty} q_v(x-x_0)^{v+\theta}$ (pupis avrikated states that $\lambda \leq 0$). Kall $\alpha \leq 0$ for $\delta \in \mathbb{R}$.

B) METER TIS ROAGES KAI TINV 100 ENTER TOU MODULIVOUS HE O, GOOKUSTOUV OI GUTE LEGTES AV OURAPTIOSI TOU O: ar (A).

 $y_1(x) = y(x)$ $\theta = \theta_\lambda$ $\theta = \theta_\lambda$ $\theta = \theta_\lambda$

(iii) H fragopa $\theta_1 - \theta_2$ sivar axépacos aprôpos. Es em $\theta > \theta_2$, zóze:

a) $\Delta \text{oxima for } \text{pulmus unapxouv or } \Delta \text{oxim}$: $y_1(x) = \sum_{v=0}^{\infty} 4v (x-x_0)^{v+\theta_1}$, $y_2(x) = \sum_{v=0}^{\infty} \beta_v (x-x_0)^{v+\theta_2}$

down star li). Ar unappow, the nyevikh him siral: y(x) = (1 y, (x) + ceps/x Ar dx1, the:

β) θεωρώ των λύεν γ(x)= ξωο αν (x-x0) +θ και την αντικαθίστώ στων δε και βρίδων τους αν (θ).

y) Or AJOSES TOD $\delta \in SIVAL:$ $y_1(x) : y(x) | \theta = \theta_1$ $y_2(x) = \frac{1}{2}y$ tol $9 = y_2(x)$ $y_1(x) = \frac{1}{2}y$ $y_2(x) = \frac{1}{2}y$ $y_2(x) = \frac{1}{2}y$ $y_2(x) = \frac{1}{2}y$

TO OXE SIDGEN 020 FIJASIKÓ ENTOSSO

(I) Extenifu in piga nonoia Bpi oketal or preposion and oras and to Sospero onpelo xo tal inv unologizoupe d (xo, lon) = do

(II) Harriva objektion, R ens Swapossipas - Adons sirai R = do.

Av n p(x)=0 der éxel dien (errés jous en xo) zote Q= too, don n Sumpostipa oupedirel pla kdoe x.

KEgadoro 8: Er Sixá Defiara

To loris Euler on poppis $\mu = \mu(u)$ door u = u(x,y) sival doquéra ovalomon Este n δz : P(x,y) dx + O(x,y) dy = 0 nonoia $\delta z = zival$ de z = zivalOdordnoworum (Py + Qx). Moéner n de: μ(u) Pdx + μ(u) Q · dy = 0 να είναι άμεσα ολοκληρώ είρη · Ασα: $\frac{\partial \left(\mu(u)P\right)}{\partial y} = \frac{\partial \left(\mu(u)Q\right)}{\partial x} \Rightarrow \frac{\partial \mu(u)}{\partial y} \cdot P + \mu(u)\frac{\partial P}{\partial y} = \frac{\partial \mu(u)}{\partial x} \cdot Q + \mu(u)\frac{\partial Q}{\partial x}$ με μ = μ(u) όπου μ = μ(u) μ =µ'(u) dy · P + p(u) Dy = p'(u) dx Q + p(u) Qx => $\frac{\mu'(u) \cdot (P uy - Q ux)}{\mu(u)} = \mu(u) \cdot (Q_x - P_y) \Rightarrow \mu'(u) = Q_x - P_y$ $\frac{\mu(u)}{\mu(u)} = P \cdot u_y - Q ux$ $\frac{d\mu}{Q u} = \frac{d\mu}{P \cdot u_y} = \frac{d\mu}{Q u} = \frac{d\mu}{\rho(u)} = \frac{d\mu$

=> du = p(a) du.

Me and odordopowon poloro to pla) car to nod/for one de peragé-

λία ζουσες λύσεις δε 1° τάξης είνοι η πιο χενική μορφή συνάρτησης που ικανοποιεί τη δε (μι στυθερίς). Για τιμές των σταθερών προκύστων ειδικές λύσεις. Οι λίσεις που δεν προκύπτων από την γενική λύση λέχονται ιδιάζων

[18 TOV 1906 DIOPIQUÓ TOUS: (I) $\sum_{(n)} \delta_{2} = 0 \in \epsilon_{(n)} \quad y' = 0 \quad \text{onder} \quad F(x,y,y') = 0 \Rightarrow F(x,y,p) = 0 \quad (1)$

(I) Papajuji for pipita us nos p= d F(x,p,p) = 0 (2)

(II) H 18. 2500 goiferal and 112 (1), (e), pe napd 4 8 700 p.

De 1ms ratins of onoises beveniloveral us pos y OF TW y'=p , HE p=p(x). Avaloga in MOPPH:

(I) $\Delta \epsilon \text{ Lagrange: } \mu \epsilon \text{ Hopyb: } y = \times g(y') + h(y'), \text{ onow } g(y') \neq y'$.

1/2 y'=p: y=xg(p)+h(p). (1)

Parsympton us agos x rai agos y=y(x), p=p(x):

ρ= g(ρ) + xg'(ρ) dρ + h'(ρ) dρ => ... =>

 $\frac{dx}{d\rho} + \frac{1}{g(\rho)-\rho} \times = \frac{h'(\rho)}{\rho-g(\rho)}$

Honola sival you in ta zns as de ayunom oudponon x = x(p) (2) And (1), (2) Show in yev. Lim ins de $(u \in napage zpo p)$.

Av λ sival plo piqu tos g(z)=z tote of $\sum_{i=1}^{n} x_i = x_i$ for $\sum_{i=1}^{n} x$

(II) De Clairant: y = x.y' + q(y'). Me y=p rai exorpie: Y=X.P + p(p) (1). Me napopularon us new x

 $y' = \rho + x d\rho + \rho'(\rho) d\rho \Rightarrow d\rho (x + \rho'(\rho)) = 0$. Av.

(i) $d\rho = 0 \Rightarrow \rho = c$ car doju ons (1) n jevim don eivar: $d\kappa$ y = xc + p(c)

(ii) $x + p'(p) = 0 \Rightarrow x = -p'(p)$ (2). ETOI opi (crai kai δεύτερα λόση ος Παραμιτρική μορρή από τις (1), (2) με παραμετρο. Αντώ η λόση είναι n 1812 4006a

(II) H be bev nepléxel to y, allé to x,p': Oé tw y'=p tal:

(i) Niva us neps x, does noordneel x = p(p) (1). cal napagragificans

neps p: $dx = p'(p) \Rightarrow p'(p) dp = 1$

(ii) Eupovique to y: de = de de = de y' =) de = de . P

(iii) $\varphi'(\rho) \cdot d\rho = 1 \Rightarrow \varphi'(\rho) d\rho \cdot \rho = 1 \Rightarrow d\rho = \rho \varphi'(\rho) d\rho$ (e)

(iv) Me odordupuon: y = Spelip) dp + c

0, (11 (2) spifour anv 18. 250n.

(IV) H de Sev Ext Za x,y: dd F(y')=0. Av λ piza no F(a)=0The sival $y'=\lambda$ \Rightarrow $y=\lambda x+c$ \Rightarrow $\lambda=\frac{y-c}{x}$ \Rightarrow $F(\mu)=0$

Or idiomes to gorgos Wronski Esta y SE 2nd to Equal y" + P(x)y" + Q(x)y = 0, HE ALOES $y_1(x)$, Ye(x) $x \in (a,\beta)$. Av P, Q sweetels 500 (a,β) kar $W(x) \neq 0$ year value $x \in (a,\beta)$ (NE Total of y, y anotehos Defection des solutions to de σ to (α, β) kal of p v. As an σ sival: y = (y) + (2/2). H opiquosa Wronski i kavonoisi in de: W + P(x) W=0 (1" takens gross)

Nat - Orwanga Picard πρόβλημα Αρχικών τημών - πατ είναι η δε 1 τάξης y'= f(κ,y) και n apxixá owodzn yla)=b.

OEWphya Picard

AV OI omaprisons f(x,y), df sival owexels or mia preproxis row on president (a, B) Tota to not: $\frac{1}{2}y' = \frac{1}{2}(x,y)$, $y(a) = \frac{1}{2}\frac{1}{2}$ sign $\frac{1}{2}$ povadital $\frac{1}{2}$ on $\frac{1}{2}$ notes $\frac{1}{2}$ $\frac{1}{2}$

HE yolt) = b.

Pasitos (θεμελιώδης) ηίνακας οχδο 1° τάξης:

 $- \chi = A \chi$ To onolo exter n-aymóstors HE n- de. Eom X, , Xn or d'Sosis

TOU SUGIN HATOS aUTOS.

Eσω ο πίνακας φ(+) που κέχει για στηλές τις πλόςις χι, ..., ξε. Αν ΨΕΘΔ : φ (+) +0 => χι, ..., χω γραμ. ανεξ. και ο φ είναι Basicos Mirakas es oy 86.

Mia uspiká diom sou un opopsous overhuszos $\dot{X} = A(t) X + b(t) sivai$ $\dot{X}\mu = \phi(t) \int_{-\infty}^{\infty} \phi^{-1}(u) \dot{b}(u) du$

dra to elvar 6 to Orgó orqueio za Siastinga tos A.

Enidum un paugirin de 2" zo Ens (I) DE xupis zo y: Deupui y'-p » y" = dp rai avilkadiszió sm de razadi-

jortes de 100 tazons. Exortes on p(x), pe ado Edopour, Ejes on y(x).

(II) $\Delta \epsilon$ xupis to x: $\Theta \epsilon \omega \rho \omega$ $y'=\rho \Rightarrow y''=d\rho = d\rho \cdot dy = d\rho \Rightarrow y''=\rho d\rho$ dx = dy = dx = dy = dyMe aviikardola on nookon(2) $\delta \epsilon = 0$ $\delta = 0$ $\delta \epsilon = 0$ $\delta = 0$ δ

Me avrikazdola on nookdolei Se 1º Talins, ktho

H owdprings &(t) zw Dirac $\begin{cases} f(t) = 5 & 0 \\ 2 & t = 0 \end{cases}$ $\begin{cases} f(t) = 5 & 0 \\ 2 & t = 0 \end{cases}$ $\begin{cases} f(t) = 5 & 0 \\ 2 & t = 0 \end{cases}$ $\begin{cases} f(t) = 5 & 0 \\ 2 & t = 0 \end{cases}$ $\begin{cases} f(t) = 5 & 0 \\ 2 & t = 0 \end{cases}$

(Siblines tou M/L

Η ευστάθια των λύσεων του γ.δ.σ.

Εστω το χδο με στωθερούς συντελεστές: $\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} + \begin{bmatrix} \dot{f}_1(\dot{x}_1) \\ \dot{f}_2(\dot{x}_2) \end{bmatrix}$ Η χαρ. εξίσωση του σύστωματος είναι: $\begin{bmatrix} a_{11} - \lambda & a_{12} \\ a_{21} & a_{22} - \lambda \end{bmatrix} = 0$ αξι αξι αξι αξι αξι αξι χύσεων χόσ χαρακτηρί ρονται αξυμητωματικά ευσταθείς

β) Αν μια τουλάχιστον λύση ε R^+ n' εC με θετικό Rε τότε σι λύσεις του χόσ είναι ασταθείς

Y) Ly li, la tadapa parzaozités, tôte oi dosso zou you zivas zvozadtis

Τα ανωτέρω Ισχύουν και για περισσότερες εξισώσεις.

Autóvopa 6061 hpara - Norpalta pássury

Êra 6061 hpa dégetal autóropo ótar éxel en popó $\frac{1}{2}$ $\frac{1}{2$

Eiral engelo 160poorlas n'eploque onquelo.

Mia doen zou overnýmatos sival opopanús n x(t)=a, y(t)=b, n enería sival n" λ bon isopponias" n' "upisiym λ bon". Av n λ bon avan zivan susza cho esta co en prio (a, b) kadsizal Eusta Dés. Addins, kadsizal asta Dés.

Eσω x=x(+), y=y(+) η χενική λύση του συστήματος. Με απαλειρή του τ βρίσκουμε y=y(x), με σταθερές. Η (yen yla πις διάρορες πιμές των σταθερών αποτελεί το πορτραίτο των φάσεων του συστήματος.

Mn spappied overduaza	
$ξ_{66W}$ το σύστημα: $ξ = f(x,y)$, $y = g(x,y) ξ με το A(o,β)$	10
Elvar 1060 Tou oco thyazos: { f(x,y)=0, g(x,y)}	24
10 Thy EUGTOFUS To A.	
$\begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} = \begin{bmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \\ \frac{\partial g}{\partial x} & \frac{\partial f}{\partial y} \end{bmatrix} \begin{bmatrix} x \\ y \\ \frac{\partial g}{\partial x} & \frac{\partial f}{\partial y} \end{bmatrix} \begin{bmatrix} x \\ y \\ \frac{\partial g}{\partial x} & \frac{\partial f}{\partial y} \end{bmatrix} \begin{bmatrix} x \\ y \\ \frac{\partial g}{\partial x} & \frac{\partial f}{\partial y} \end{bmatrix} \begin{bmatrix} x \\ y \\ \frac{\partial g}{\partial y} & \frac{\partial f}{\partial y} & \frac{\partial g}{\partial y} & \frac{\partial g}{\partial y} \end{bmatrix} \begin{bmatrix} x \\ y \\ \frac{\partial g}{\partial y} & $	6 Zd96
H Sladikaolu avin sivai prwozn ws spappikonoinon.	
	-
	-