

Prozessmodelle

Technische Universität

Einführung in das Projektmanagement bei Softwareprojekten

Prof. Dr.-Ing. Peter Hecker, Dipl.-Ing. Paul Frost, 18. April 2017

Agenda

- 04. April Kick-Off
- 11. April Projektmanagement
- 18. April Prozessmodelle
- 25. April Versionsverwaltung und Entwicklungsumgebungen
- 02. Mai Einführung Arduino/Funduino
- 09. Mai Entwicklungsumgebungen und Debugging
- 16. Mai Dokumentation und Testing
- 23. Mai Dateieingabe und -ausgabe
- 30. Mai GUI-Erstellung mit Qt
- 06. Juni Exkursionswoche
- 13. Juni Bibliotheken
- 20. Juni Netzwerke
- 27. Juni Projektarbeit
- 04. Juli Projektarbeit
- 11. Juli Vorbereitung der Abgabe

Teil I

Wiederholung

Motivation

Abbildung 1: Chaos-Report

RFID-Verwaltung der Arduino-Kits

Lastenheft

- Jedes Arduino-Kit soll durch ein RFID-Tag eine eindeutige ID erhalten.
- Das Lesegerät soll mit einem Computer verbunden sein.
- Die IDs der Arduino-Kits sollen tabellarisch auf dem Computer gespeichert sein.
- Beim Lesen eines RFID-Tags sollen die tabellarisch gespeicherten Daten des Kits mit der entsprechenden ID angezeigt werden.

RFID-Verwaltung der Arduino-Kits

Lastenheft

- Über den Computer sollen Informationen in der Tabelle eingetragen/geändert werden können. Dazu zählen:
 - Gruppennummer/-name
 - Vollständige Namen und Matrikelnummer der Studenten, an die das Arduino Kit ausgeliehen wurde
 - Eine Übersicht der Bauteile, die seit einem bestimmten Datum fehlen oder defekt sind, mit Angabe von weiteren Hinweisen
- In der Tabelle sollen neben der Kit-Nummer weitere, unveränderliche Informationen angezeigt werden.
- Über die Eingabe der Kit-Nummer sollen die Daten des entsprechenden Kits auch ohne das Lesen des RFID-Tags angezeigt und bearbeitet werden können.

Use-Case Diagramm

Institut für

Teil II

Prozessmodelle

Softwareentwicklung

Abbildung 2: Einwurf des Balls durch Luke Burgess in ein Gedränge ¹

¹By PierreSelim - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=17336884

Ein simples Modell

- 1. Quellcode schreiben
- 2. Fehler beheben

Nachteile:

- Fehlerbehebungen führen meistens zu Umstrukturierungen
 - \Rightarrow Weitere Behebungen werden aufwendiger
- Wenig Akzeptanz des Produkts beim Endnutzer
- Fehleridentifikation ist sehr schwierig, weil Tests nur unzureichend vorbereitet wurden

Das Wasserfallmodell

Das Wasserfallmodell

Spezifikation²

- Jede Phase wird mit einem fertigen Dokument abgeschlossen
- Sequentielle Entwicklung
- Am Top-Down-Vorgehen orientiert
 Es wird immer konkreter

²softtech.

schematischer Ablauf

Vorteile:

- Einfach
- Geringer Managementaufwand

Nachteile:

- Nicht immer sinnvoll Phasen komplett abzuschließen
- Nicht immer sinnvoll alle Phasen sequentiell abzuarbeiten
- Dokumente haben zum Teil eine höhere Priorität als das Produkt
- Risiken könnten vernachlässigt werden, da der festgelegte Ablauf auch in der Form durchgeführt wird

³ softtech.

Vorgehensmodell (V-Modell)

Spezifikation

- Diente als Vorlage für die Vorgehensmodelle bei der Bundeswehr und Behörden
- Dokumentengetriebenes Modell
- Erweiterung des Wasserfallmodells um Qualitätssicherung
- Das V-Modell ist unterteilt in
 - Systemerstellung
 - Qualitätssicherung
 - Konfigurationsmanagement
 - Projektmanagement

schematischer Ablauf 1/2

V-Modell

schematischer Ablauf 2/2

Vor- und Nachteile

Vorteile:

- Generisches Modell, das angepasst werden kann
- Ermöglicht standardisiertes Vorgehen
- Gut geeignet für große Projekte

Nachteile:

- Sehr aufwendig
- Sehr bürokratisch
- Ohne Computer Aided Software Engineering (CASE)-Unterstützung nicht handhabbar
- Sehr viele Rollen erforderlich

Prototypen-Modell

- Anforderungen herausfinden
- Diskussionsbasis und Hilfe bei Entscheidungen
- Sammlung von praktischen Erfahrungen

Unterscheidung von Prototypen

- Prototyp zur Klärung von Fragen
- Prototyp zur Erstellung der Produktdefinition
- Prototyp zur inkrementellen Weiterentwicklung

Prototypen-Modell

Horizontaler Prototyp

- Realisiert spezifische Ebenen
- Ebene wird vollständig realisiert

Vertikaler Prototyp

- Umfasst alle Ebenen des Systems
- Ebenen werden partiell realisiert

Benutzeroberfläche
Anwendung
Netzanbindung
Systemsoftware

Horizontaler Prototyp

Vertikaler Prototyp

Institut für

Flugführung

Vorteile:

- Geringeres Entwicklungsrisiko
- Bessere Planbarkeit
- Unterstützung von anderen Prozessmodellen
- Benutzer können besser einbezogen werden

Nachteile:

- Mehr Aufwand
- Ein unfertiger Prototyp könnte zum Endprodukt werden
- Oft nicht eingegrenzt

Evolutionäres Modell

- Stufenweise Entwicklung
- Gut für nicht komplett generierbare Anforderungen
- Konzentration auf lauffähige Teilprodukte

Evolutionäres Modell

schematischer Ablauf

Inkrementelles Modell

- Aufgebaut wie das evolutionäre Modell aber
- Anforderungen werden vollständig erfasst und modelliert
- Nur ein Teil der Anforderungen wird umgesetzt

Inkrementelles Modell

Schematischer Ablauf

Schritt 1:

- Identifikation der Ziele
- Alternative Möglichkeiten
 - Entwurf A, Entwurf B
 - Wiederverwendung
 - Kauf
- Randbedingungen ausarbeiten
 - Kosten
 - Zeit
 - Schnittstellen

Schritt 2:

- Evaluierung der Alternativen
- Bei Risiken: Entwicklung einer Strategie
 - Prototypen
 - Simulationen
 - Benutzerbefragungen

Schritt 3:

- Risiken ⇒ Wahl eines Prozessmodells
 - evolutionäres Modell
 - Prototypenmodell
 - Wasserfall-Modell
 - **.**..
- Kombinationen denkbar

Schritt 4:

- Planung des nächsten Zyklus
 - Ressourcen
 - Aufteilung in Komponenten
- Review der Schritte 1-3
- Einverständnis über den nächsten Schritt

Vorteile:

- Periodische Überprüfung kann ein Abdriften von Zielen und Risiken verhindern
- Je nach Zyklus kann ein geeignetes Prozessmodell ausgewählt werden
- Flexibel
- Erfahrungen können im nächsten Zyklus eingebracht werden

Nachteile:

- Hoher Managementaufwand f
 ür kleine und mittlere Projekte
- Risiken müssen identifizierbar sein

Scrum

 $^{^{4}} Von Scrum_process.svg; \ Lakeworks derivative work: Sebastian \ Wallroth \ (talk) - Scrum_process.svg, \ CC \ BY-SA \ 3.0, \ https://commons.wikimedia.org/w/index.php?curid=10772971$

Scrum

Technische Universität

Braunschweig

⁴Von Scrum_process.svg: Lakeworksderivative work: Sebastian Wallroth (talk) - Scrum_process.svg, CC BY-SA 3.0,

Scrum

⁴Von Scrum_process.svg; Lakeworksderivative work: Sebastian Wallroth (talk) - Scrum_process.svg, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=10772971

Product owner:

- Verkörpert die Projektidee
- Maximiert den Wert des Produktes
- Vermittelt die Vision an das Team
- Stellt das Team zusammen
- Erstellung eines Produkt-Backlogs
- Priorisierung des Produkt-Backlogs

Scrum Master:

- Treibt den Prozess
- Wahrung und Vermittlung der Scrum-Werte und -Regeln
- Schützt das Team vor Störungen
- Löst von Blockaden
- Vermittelt zwischen Team und Product Owner

Entwicklungsteam (3-9 Personen):

- Selbst organisierend
- Interdisziplinär
- Liefert Produkt
- Arbeitet eigenständig an den User Storys eines Sprints
- Implementiert und testet Anforderungen

Institut für

Flugführung

Prozessmodell Überblick

Prozessmodell	Primäres Ziel	Antreibendes Moment
Wasserfall-Modell	minimaler	Dokumente
	Managementaufwand	
V-Modell	maximale Qualität	Dokumente
Prototypen-Modell	Risikominimierung	Code
Evolutionäres-Modell	minimale	Code
	Entwicklungszeit	
Inkrementelles-Modell	minimale	Code
	Entwicklungszeit	
Objektorientiertes-Modell	Zeit- und	Wiederverwendung
	Kostenminimierung	
Spiralmodell	Risikominimierung	Risiko

API-Prozessmodell

Ziel

- Risiko minimieren
- Minimale Entwicklungszeit
- Wenig Bürokratie
- Geeignet für Neueinsteiger

Auswahl

- Ein für API angepasstes Spiralmodell
- Software-Entwicklung soll evolutionär oder inkrementell erfolgen

Teil A:

■ Ziele für den kommenden Zyklus formulieren

Teil B:

- Risiken formulieren (falls vorhanden)
- Maßnahmen ausarbeiten und ggf. Risiken einbeziehen
- Kleinere Prototypen entwickeln

Teil C:

- Ziele ausarbeiten
 - Feinentwurf und/oder
 - Programmieren und/oder
 - Prototypen entwickeln

Teil D:

- Review des aktuellen Zyklus (Ziele erreicht? Qualität?)
- Planung folgenden Zyklus

API-Spiralmodell

Maßnahmen

Beispiel

Ziele Matrikel-Nr., Vorname und Name über

Studentenausweis einlesen

Risiken Daten sind nicht auslesbar

a) Prototyp: Testaufbau erstellen

b) Auslesen des Studentenausweises testen

c) ggf. andere Karte auslesen

Ergebnisse a) Testaufbau fertiggestellt

b) Studentenausweis kann nicht ausgelesen werden

c) Auslesen der anderen Karten erfolgt problemlos

Review Inhalte hierfür folgen am 16.05.17

Nächster Zyklus Verknüpfung zwischen Student und Funduino-Kit

Teil III

Projektarbeit

API-Spiralmodell

Aufgabe 1

- Erstellen Sie im Wiki Ihres Projekts die Seite Prozessmodell
- Beginnen Sie den ersten von drei Zyklen zu planen und füllen Sie das API-Spiralmodell so weit es geht aus
- 3. Passen Sie Ihren Zeitplan so an, dass drei Zyklen erarbeitet werden können

Institut für

GIT Installieren

Aufgabe 2

- 1. Git herunterladen
 https://git-scm.com/downloads
- 2. Git installieren

