

Universidad Nacional de San Agustín de Arequipa **Escuela Profesional de Ciencia de la Computación** Curso: Computación Bioinspirada

LABORATORIO 07 ANT COLONY SYSTEM

Docente: Edward Hinojosa Cárdenas

19 de Junio del 2020

1 COMPETENCIA DEL CURSO

Conoce, comprende e implementa algoritmos dentro de la familia de algoritmos de Computación Social para resolver problemas de búsqueda complejos.

2 COMPETENCIA DEL LABORATORIO

Implementa el algoritmo Ant Colony System para resolver problemas de búsqueda complejos.

3 CONCEPTOS BÁSICOS

3.1 Algoritmo del Ant Colony System

Procedure of ACS Algorithm:

Begin

Initialize

While stopping criterion not satisfied do

Position each ant in a starting node

Repeat

For each ant do

Choose next node by applying the state transition rule Apply step by step pheromone update

End for

Until every ant has built a solution

Update best solution

Apply offline pheromone update

End While

End

UNSA-EPCC/CB 2

4 EQUIPOS Y MATERIALES

- Un computador.
- · Material del curso.
- Bibliografía del curso [1] [2].

5 EJERCICIOS

1. Implemente el Algoritmo de Sistema de Colonia de Hormigas (Ant Colony System) para resolver el siguiente problema TSP:

	Α	В	С	D	Е	F	G	Н	- 1	J
Α	0	12	3	23	1	5	23	56	12	11
В	12	0	9	18	3	41	45	5	41	27
С	3	9	0	89	56	21	12	48	14	29
D	23	18	89	0	87	46	75	17	50	42
E	1	3	56	87	0	55	22	86	14	33
F	5	41	21	46	55	0	21	76	54	81
G	23	45	12	75	22	21	0	11	57	48
Н	56	5	48	17	86	76	11	0	63	24
- 1	12	41	14	50	14	54	57	63	0	9
J	11	27	29	42	33	81	48	24	9	0

- Cantidad de Hormigas: <= 10.
- Considere una ciudad (o nodo) inicial igual para todas las hormigas.
- Por lo menos considere 4 decimal.
- Los demás parámetros los puede definir Ud.

6 ENTREGABLES

Al finalizar el estudiante deberá:

- 1. Generar un archivo .txt con el resultado obtenido al ejecutar la implementación en cada uno de los ejercicios.
- 2. Compactar el(los) código(s) fuente junto al(los) archivo(s) .txt en un archivo .zip. Subir el archivo compactado al aula virtual (teniendo del día jueves 25/06 hasta las 23:55pm) con el nombre:

 $Laboratorio_XX_Apellido Paterno_Apellido Materno_Primer Nombre_UNSA_EPCC_CB.zip$

UNSA-EPCC/CB 3

7 RÚBRICA DE EVALUACIÓN

Criterios	Muy Bueno	Bueno	Regular	Malo	
Resolución del Laboratorio	Resuelve todos los	Resuelve todos los	Resuelve todos los		
	ejercicios sin errores	ejercicios con pocos	ejercicios con varios	No resuelve todos los	
	mostrando cada uno	errores mostrando	errores y mostrando	ejercicios o no	
	de los puntos	casi o todos todos los	todos o pocos de los	entrega el laboratorio.	
	solicitados. Puntaje:	puntos solicitados.	puntos solicitados.	Puntaje: 0 puntos	
	16 puntos	Puntaje: 14 puntos	Puntaje: 8 puntos		
	La presentación es	La presentación es			
Presentación	clara y entendible, sin	clara y entendible,	La presentación no es	No presenta todos los	
y Resolución de Preguntas	errores y	con algunos errores; y	entedible y/o comete	ejerccios o no entrega el laboratorio.	
	respondiendo todas	respondiendo la	muchos errores.		
	las preguntas.	mayor cantidad de	Puntaje: 1 punto	Puntaje: 0 puntos	
	Puntaje: 4 puntos	preguntas. Puntaje: 2	i untaje. i punto		
	i untaje. 4 puntos	puntos			

• IMPORTANTE En caso de copia o plagio o similares todos los alumnos implicados tendrán sanción en toda la evaluación del curso.

BIBLIOGRAFÍA

- [1] BRABAZON, A.; O'NEILL, M.; MCGARRAGHY, S. **Natural Computing Algorithms**. 1st. Edition: Springer Publishing Company, Incorporated, 2015. ISBN 3662436302.
- [2] CASTRO, L. de. **Fundamentals of Natural Computing: Basic Concepts, Algorithms, and Applications**. 1st. Edtion: Chapman & Hall/CRC, 2006. ISBN 9781584886433.