Finanse obliczeniowe - Duży projekt Wycena skomplikowanych opcji barierowych metodą PDE

Piotr Bochnia, Paweł Marcinkowski 19 czerwca 2014

Spis treści

1	Wstęp Wyceniane instrumenty			3
2				3
	2.1	Opcje	z barierą monitorowaną dyskretnie	3
	2.2	Opcje	z barierą monitorowaną w oknie czasowym	3
	2.3	Opcje	paryskie	4
3	Dol	cument	acja funkcji	4
	3.1	Opis f	unkcji	5
		3.1.1	DM_0ut	6
		3.1.2	DM.in	6
		3.1.3	Double_KO	6
		3.1.4	KIKO	6
		3.1.5	Window_out	6
		3.1.6	$Window_{-in}$	6
		3.1.7	Window_DoubleKO	7
		3.1.8	Window_KIKO	7
		3.1.9	CalculatePriceGreeksParisianOut	7
		3.1.10	CalculatePriceGreeksParisianIn	7

1 Wstęp

Celem niniejszego projektu jest implementacja algorytmów wyceny wybranych opcji barierowych metodą opartą na rozwiązywaniu równania Blacka-Scholesa. Na podstawie danych rynkowych oraz charakterystyk opcji napisany w Octave program wyznacza parametry równania Blacka-Scholesa wraz z odpowiednimi dla danego kontraktu warunkami brzegowymi i końcowymi, a następnie rozwiązuje to równanie metodą różnic skończonych (schemat Crank-Nicholson). Poza ceną opcji obliczane są także parametry greckie: delta spot, delta forward, gamma spot, gamma forward, theta, oraz vega.

2 Wyceniane instrumenty

Wycenę przeprowadzono dla wybranych skomplikowanych opcji barierowych: opcji z pojedynczą, dyskretnie monitorowaną barierą, opcji z podwójną barierą (monitorowaną w sposób zarówno dyskretny jak i ciągły), opcji barierowych z barierami monitorowanymi w oknie czasowym, oraz opcji paryskich.

Poniżej wymieniono poszczególne typy kontraktów, dla których zaimplementowano algorytm wyceny. Niech T będzie czasem zapadalności opcji, K ceną wykonania, U i L odpowiednio barierą górną i dolną, oraz S_t ceną instrumentu bazowego w chwili t. Ponadto niech f będzie funkcją wypłaty dla opcji waniliowej tj. $f(x) = (x - K)^+$ dla opcji call i $f(x) = (K - x)^+$ dla opcji put.

2.1 Opcje z barierą monitorowaną dyskretnie

Niech $0 \le T_1 < T_2 < \ldots < T_L \le T$ będą punktami monitorowania bariery.

- Up and out z wypłatą $X = f(S_T) \cdot \mathbb{1}_{\{\forall_{t \in \{T_1, \dots, T_L\}} S_t < U\}}$
- Up and in z wypłatą $X = f(S_T) \cdot \mathbb{1}_{\{\exists_{t \in \{T_1, \dots, T_t\}} S_t \geqslant U\}}$
- Down and out z wypłatą $X = f(S_T) \cdot \mathbb{1}_{\{\forall_{t \in \{T_1, \dots, T_L\}}, S_t > L\}}$
- Down and in z wypłatą $X = f(S_T) \cdot \mathbb{1}_{\{\exists_{t \in \{T_1, \dots, T_L\}} S_t \leqslant L\}}$
- Double Knock-out z wypłatą $X = f(S_T) \cdot \mathbb{1}_{\{\forall_{t \in \{T_1, \dots, T_L\}} L < S_t < U\}}$. Zaimplementowano również wycenę tego typu opcji z ciągłym monitorowaniem bariery.
- Knock-in Knock-out z wypłatą $X = f(S_T) \cdot \Big(\mathbb{1}_{\{\exists_{t \in \{T_1, \dots, T_L\}} S_t \leqslant L\} \land \forall_{t \in \{T_1, \dots, T_L\}} S_t < U\}} \Big)$. Zaimplementowano również wycenę tego typu opcji z ciągłym monitorowaniem bariery.

2.2 Opcje z barierą monitorowaną w oknie czasowym

Niech $0 \le \tau_1 < \tau_2 \le T$ będą punktami odpowiednio początku i końca okna, którym monitorowana jest bariera.

- Up and out z wypłatą $X = f(S_T) \cdot \mathbb{1}_{\{\forall_{t \in [\tau_1, \tau_2]} S_t < U\}}$
- Up and in z wypłatą $X = f(S_T) \cdot \mathbb{1}_{\{\exists_{t \in [\tau_1, \tau_2]} S_t \geqslant U\}}$
- Down and out z wypłatą $X = f(S_T) \cdot \mathbb{1}_{\{\forall_{t \in [\tau_1, \tau_2]} S_t > L\}}$
- Down and in z wypłatą $X = f(S_T) \cdot \mathbb{1}_{\{\exists_{t \in [\tau_1, \tau_2]} S_t \leq L\}}$
- Double Knock-out z wypłatą $X = f(S_T) \cdot \mathbb{1}_{\{\forall_{t \in [\tau_1, \tau_2]} L < S_t < U\}}$
- Knock-in Knock-out z wypłatą $X = f(S_T) \cdot \left(\mathbbm{1}_{\{\exists_{t \in [\tau_1, \tau_2]} S_t \leqslant L\} \land \forall_{t \in [\tau_1, \tau_2]} S_t < U\}} \right)$

2.3 Opcje paryskie

Jednobarierowe opcje paryskie są kontraktami, w których własność *in* lub *out* jest aktywowana nie w momencie dotknięcia bariery lecz po pewnym ustalonym z góry czasie przebywania ceny instrumentu bazowego nad lub pod barierą (czas barierowy). Opcje typu paryskiego dzielą się na dwie klasy:

- Parisian W momencie, gdy cena akcji jest równa barierze, czas barierowy jest zerowany.
- Parasian Czas barierowy jest sumą wszyskich przebywań poza barierą.

Wypłata z opcji jest równa wypłacie z opcji europejskiej po spełnieniu warunków zależnych od typu bariery (analogicznie do tradycyjnych opcji barierowych) i zero w przeciwnym przypadku.

3 Dokumentacja funkcji

Wszystkie funkcje używane do wyceny opcji zwracają 7-elementowy wektor zawierający na kolejnych pozycjach odpowiednio cenę opcji, deltę spot, deltę forward, gammę spot, gammę forward, thetę oraz vegę. Funkcje przyjmują następujące argumenty:

- F_bid kurs forward bid
- F_bid kurs forward ask
- barrier wysokość bariery (w przypadku opcji jednobarierowych, wyrażona w walucie kwotowania)
- Lbarrier wysokość dolnej bariery (w przypadku opcji dwubarierowych, wyrażona w walucie kwotowania)
- Ubarrier wysokość górnej bariery (w przypadku opcji dwubarierowych, wyrażona w walucie kwotowania)
- strike kurs wykonania opcji

- issue_date data zawarcia kontraktu (np. '21-May-2014')
- expire_date data zapadalności kontraktu (np. '21-May-2014')
- PPO liczba dni roboczych od daty zawarcia kontraktu do dnia zapłaty premi opcyjnej (*Premium Payment Offset*)
- OSO liczba dni roboczych od daty zapadalności opcji do dnia rozliczenia kontraktu (Option Settlement Offset)
- monitoring_dates wektor zawierający daty monitorowania barier w kolejności chronologicznej
- price_type typ obliczanej ceny (poprawne wartości: bid, ask)
- barrier_type typ bariery (w przypadku opcji jednobarierowych, poprawne wartości: *up*, *down*)
- payoff_type typ opcji (poprawne wartości: put, call)
- window_start_date data początku okna czasowego, w którym monitorowane są bariery
- window_end_date data końca okna czasowego, w którym monitorowane są bariery
- day_hat czas przebywania poza barierą konieczny do aktywacji bariery (w przypadku opcji paryskich, wyrażony w dniach)
- isAsian parametr określający typ opcji paryskiej 0 *Parisian*, 1 *Parasian* (poprawne wartości: 0, 1)

Dodatkowo poprzez zmienne globalne przekazywane są parametry metody PDE

- Mt liczba punktów siatki w wymiarze czasowym
- Mx liczba punktów siatki w wymiarze przestrzennym
- \bullet dsigma przyrost volatility opcji używany do obliczania współczynnika vega

3.1 Opis funkcji

W tym podrozdziale zostaną przedstawione sygnatury funkcji służących do wyznaczenia cen oraz parametrów greckich instrumentów opisanych w poprzednim rozdziale. Każda z nich zwaraca wektor 7 elemetowy zawierający kolejno cenę, delte spot, delte forward, gamme spot, gamme forward, thete oraz vege.

3.1.1 DM_0ut

Funcja DM_out służy do wyznaczenia ceny i parametrów greckich opcji dyskretnie monitorowanych *up and out, down and out*

 $DM_out(F_bid, F_ask, barrier, strike, monitoring_dates, issue_date, expire_date, PPO, OSO\\, price_type, barrier_type, payoff_type)$

3.1.2 DM_in

Funcja DM_in służy do wyznaczenia ceny i parametrów greckich opcji dyskretnie monitorowanych up and in, down and in

 $DM_in(F_bid, F_ask, barrier, strike, monitoring_dates, issue_date, expire_date, PPO, OSO, price_type, barrier_type, payoff_type)$

3.1.3 Double_KO

Funcja Double_KO służy do wyznaczenia ceny i parametrów greckich opcji z podwójną barierą typu out monitorowanych dyskretnie lub w sposób ciągły (należy wywołać funkcję z parametrem monitoring_dates = []).

 $Double KO(F_bid, F_ask, Lbarrier, Ubarrier, strike, monitoring_dates, issue_date, expire_date, \\PPO, OSO, price_type, payoff_type)$

3.1.4 KIKO

Funcja KIKO służy do wyznaczenia ceny i parametrów greckich opcji z jedną barierą typu in, i z drugą barierą typu out monitorowanych dyskretnie lub w sposób ciągły (należy wywołać funkcję z parametrem monitoring_dates = []).

 $KIKO(F_bid, F_ask, Lbarrier, Ubarrier, strike, monitoring_dates, issue_date, expire_date, PPO, OSO, price_type, payoff_type)$

3.1.5 Window_out

Funcja Window_out służy do wyznaczenia ceny i parametrów greckich opcji z jedną barierą okienkową typu out.

 $Window_out(F_bid, F_ask, barrier, strike, issue_date, window_start_date, window_end_date, expire_date, PPO, OSO, price_type, barrier_type, payoff_type)$

3.1.6 Window_in

Funcja Window_in służy do wyznaczenia ceny i parametrów greckich opcji z jedną barierą okienkową typu $\mathit{out}.$

 $Window_in(F_bid, F_ask, barrier, strike, issue_date, window_start_date, window_end_date, expire_date, PPO, OSO, price_type, barrier_type, payoff_type)$

3.1.7 Window_DoubleKO

Funcja Window_DoubleKO służy do wyznaczenia ceny i parametrów greckich opcji z podwójną barierą typu *out* aplikowaną w zdefiniowanym przez parametry oknie czasowym.

 $Window_DoubleKO(F_bid, F_ask, Lbarrier, Ubarrier, strike, issue_date, window_start_date, window_end_date, expire_date, PPO, OSO, price_type, payoff_type)$

3.1.8 Window_KIKO

Funcja Window_KIKO służy do wyznaczenia ceny i parametrów greckich opcji z jedną barierą typu in, i z drugą barierą typu out aplikowanymi w wyznaczonym przez parametry oknie czasowym.

 $Window_KIKO(F_bid, F_ask, Lbarrier, Ubarrier, strike, issue_date, window_start_date, window_end_date, expire_date, PPO, OSO, price_type, payoff_type)$

3.1.9 CalculatePriceGreeksParisianOut

Funcja Calculate PriceGreeks Parisian Out służy do wyznaczenia ceny i parametrów greckich opcji typu paryskiego z barierą typu $\it out.$

 $Calculate Price Greeks Parisian Out (F_bid, F_ask, barrier, day_hat, strike, issue_date, expire_date, \\ PPO, OSO, price_type, barrier_type, payoff_type, is Asian)$

3.1.10 CalculatePriceGreeksParisianIn

Funcja Calculate Price Greeks Parisian
In służy do wyznaczenia ceny i parametrów greckich opcji typu paryskiego z barierą typu in.

 $Calculate Price Greeks Parisian In (F_bid, F_ask, barrier, day_hat, strike, issue_date, expire_date, PPO, OSO, price_type, barrier_type, payoff_type, is Asian)$