

Specification and Verification

Lecture 5: Binary decision diagrams

Guillermo A. Pérez

October 27, 2024

BDDs in short

What are they?

A graph-based data structure for Boolean functions and sets

BDDs in short

What are they?

A graph-based data structure for Boolean functions and sets

Why use them?

They provide a canonical, sometimes space-efficient, representation of Boolean functions; allow to implement logical operations \lor, \land, \neg using efficient graph transformations.

References

Main references

- Binary Decision Diagrams. Randal E. Bryant. 2018. In Handbook of Model Checking. Springer, 2018.
- The Art of Computer Programming, Vol. 4, Pre-Fascicle 1B: Binary Decision Diagrams. Don Knuth. Addison-Wesley, 2008.

Required and target competences

What tools do we need?

Discrete mathematics, data abstraction and structures; algorithms and complexity

Required and target competences

What tools do we need?

Discrete mathematics, data abstraction and structures; algorithms and complexity

What skills will we obtain?

- theory: connect functions, logic, and BDDs
- practice: manipulate BDD-represented functions & sets

Required and target competences

What tools do we need?

Discrete mathematics, data abstraction and structures; algorithms and complexity

What skills will we obtain?

- theory: connect functions, logic, and BDDs
- practice: manipulate BDD-represented functions & sets

Why?

May be useful for professional work on circuits/hardware and

- data structures and graph algos
- artificial intelligence (knowledge representation)
- specification and verification

Outline

- 1. Recap on Boolean functions and sets
- 2. Example: from characteristic functions to BDDs
- 3. History
- 4. Motivation and applications
- 5. Reduced ordered BDDs
- 6. BDD operations
- 7. Shared table and other implementation tricks
- 8. Conclusions

Boolean functions

Definition (Boolean or switching functions)

A Boolean function f is of the form $\mathbb{B}^k \to \mathbb{B}$, where $\mathbb{B} = \{0,1\}$ and $k \in \mathbb{N}$ is the arity of f.

Boolean functions

Definition (Boolean or switching functions)

A Boolean function f is of the form $\mathbb{B}^k \to \mathbb{B}$, where $\mathbb{B} = \{0,1\}$ and $k \in \mathbb{N}$ is the arity of f.

Example

Let us define the function $g: \mathbb{B}^2 \to \mathbb{B}$ such that g(0,0)=0, g(0,1)=1, g(1,0)=1, and g(1,1)=0. Do you recognize the function?

Boolean functions

Definition (Boolean or switching functions)

A Boolean function f is of the form $\mathbb{B}^k \to \mathbb{B}$, where $\mathbb{B} = \{0,1\}$ and $k \in \mathbb{N}$ is the arity of f.

Example

Let us define the function $g: \mathbb{B}^2 \to \mathbb{B}$ such that g(0,0)=0, g(0,1)=1, g(1,0)=1, and g(1,1)=0. Do you recognize the function?

<i>x</i> ₁	<i>x</i> ₂	XOR
0	0	0
0	1	1
1	0	1
1	1	0

Defining Boolean functions

How can we define a Boolean function?

- They are expressively equivalent to
 - truth tables
 - propositional formulas
- They can encode sets via their characteristic function
- They can be represented as
 - And-inverter graphs
 - Negation normal forms
 - Propositional directed acyclic graphs
 - Binary decision diagrams

Propositional formulas & Bool functions

Propositional formulas

For a set $P = \{p_1, \dots, p_k\}$ of propositions, a propositional formula φ over P is constructed using the logical connectives \vee, \wedge, \neg . E.g. $(p_1 \wedge \neg p_2) \vee (\neg p_1 \wedge p_2)$.

Propositional formulas & Bool functions

Propositional formulas

For a set $P = \{p_1, \dots, p_k\}$ of propositions, a propositional formula φ over P is constructed using the logical connectives \vee, \wedge, \neg . E.g. $(p_1 \wedge \neg p_2) \vee (\neg p_1 \wedge p_2)$.

 φ induces a Boolean function f_{φ} that maps (x_1, \ldots, x_k) to the truth value of φ under the truth-value assignment $p_1 = x_1, \ldots, p_k = x_k$.

Propositional formulas & Bool functions

Propositional formulas

For a set $P = \{p_1, \dots, p_k\}$ of propositions, a propositional formula φ over P is constructed using the logical connectives \vee, \wedge, \neg . E.g. $(p_1 \wedge \neg p_2) \vee (\neg p_1 \wedge p_2)$.

• φ induces a Boolean function f_{φ} that maps (x_1, \ldots, x_k) to the truth value of φ under the truth-value assignment $p_1 = x_1, \ldots, p_k = x_k$.

Completeness

Every Boolean function g has a corresponding propositional formula φ , i.e. $g=f_{\varphi}$ for some φ . (Graphical proof via truth tables, see board).

Subsets and Boolean functions

Characteristic functions of subsets

Let $S = \{s_1, \dots, s_k\}$ be a finite set of elements. Every subset $P \subseteq S$ induces a function $\chi_P : S \to \mathbb{B}$

$$\chi_P(s) = egin{cases} 1 & ext{if } s \in P \ 0 & ext{otherwise}. \end{cases}$$

Subsets and Boolean functions

Characteristic functions of subsets

Let $S = \{s_1, \dots, s_k\}$ be a finite set of elements. Every subset $P \subseteq S$ induces a function $\chi_P : S \to \mathbb{B}$

$$\chi_P(s) = \begin{cases} 1 & \text{if } s \in P \\ 0 & \text{otherwise.} \end{cases}$$

Binary encoding of the set

Let $\ell = \lceil \log_2 k \rceil$ and consider a mapping $\beta : \mathbb{B}^\ell \to S \cup \{\bot\}$ such that $\beta|_{\beta^{-1}(S)}$ is injective and surjective. Every subset $P \subseteq S$ induces a function $\chi_P^\beta : \mathbb{B}^\ell \to \mathbb{B}$

$$\chi_P^{\beta}(x_1,\ldots,x_\ell) = \begin{cases} 1 & \text{if } \beta(x_1,\ldots,x_\ell) \in P \\ 0 & \text{otherwise.} \end{cases}$$

1. $S = \{Belgium, Panama, Tunisia, England, Honduras\}$

- 1. $S = \{Belgium, Panama, Tunisia, England, Honduras\}$
- 2. $P = \{Belgium, Panama, Tunisia, England\}$

$$\chi_P(\mathsf{Belgium}) = 1$$
 $\chi_P(\mathsf{Panama}) = 1$

$$\chi_P(\mathsf{Tunisia}) = 1$$
 $\chi_P(\mathsf{England}) = 1$

- 1. $S = \{Belgium, Panama, Tunisia, England, Honduras\}$
- 2. $P = \{Belgium, Panama, Tunisia, England\}$

$$\chi_P(\mathsf{Belgium}) = 1 \qquad \qquad \chi_P(\mathsf{Panama}) = 1$$

$$\chi_P(\mathsf{Tunisia}) = 1 \qquad \qquad \chi_P(\mathsf{England}) = 1$$

$$\chi_P(\mathsf{England}) = 1$$
 Countries
$$\mathbb{B}$$

- 1. $S = \{Belgium, Panama, Tunisia, England, Honduras\}$
- 2. $P = \{Belgium, Panama, Tunisia, England\}$
- 3. We choose some β , for example:

x_1	<i>x</i> ₂	<i>X</i> ₃	$s \in S \cup \{ot\}$
0	0	0	Belgium
0	0	1	Panama
0	1	0	
0	1	1	Tunisia
1	0	0	
1	0	1	Honduras
1	1	0	
1	1	1	England

1. We choose some β , for example:

x_1	<i>x</i> ₂	<i>X</i> ₃	$s \in S \cup \{\bot\}$
0	0	0	Belgium
0	0	1	Panama
0	1	0	
0	1	1	Tunisia
1	0	0	\perp
1	0	1	Honduras
1	1	0	
1	1	1	England

1. We choose some β , for example:

	x_1	<i>x</i> ₂	<i>X</i> ₃	$s \in S \cup \{\bot\}$
	0	0	0	Belgium
	0	0	1	Panama
	0	1	0	
	0	1	1	Tunisia
	1	0	0	
	1	0	1	Honduras
	1	1	0	
	1	1	1	England

2. $P = \{Belgium, Panama, Tunisia, England\}$

$$\chi_P^\beta(0,0,0)=1$$

$$\chi_P^eta(0,0,1)=1$$

$$\chi_P^\beta(0,1,1)=1$$
 and all other combinations map to 0. Also, $\chi_P^\beta=f_\varphi$ with $\varphi=(\neg x_1 \wedge \neg x_2) \vee (x_2 \wedge x_3).$

Example: truth tables to dec. trees

<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	$s \in S \cup \{\bot\}$	χ_{P}^{β}
0	0	0	Belgium	1
0	0	1	Panama	1
0	1	0		0
0	1	1	Tunisia	1
1	0	0		0
1	0	1	Honduras	0
1	1	0		0
1	1	1	England	1

■ dashed: assignment $x_1 = 0$; solid arrows, $x_1 = 1$

■ leaves: value of χ_P^β

1. Identify useless sub-graphs: those whose children are equivalent

- 1. Identify useless sub-graphs: those whose children are equivalent
- 2. Merge equivalent leaves and remove useless sub-trees

- 1. Identify useless sub-graphs: those whose children are equivalent
- 2. Merge equivalent leaves and remove useless sub-trees
- 3. Merge sub-graph-equivalent inner vertices

- 1. Identify useless sub-graphs: those whose children are equivalent
- 2. Merge equivalent leaves and remove useless sub-trees
- 3. Merge sub-graph-equivalent inner vertices

Exercise: from a subset to its ROBDD

- $S = \{Brussels, Antwerp, Leuven, Amsterdam\}$
- \blacksquare We choose β as follows

x_1	<i>x</i> ₂	$s \in S \cup \{ot\}$
0	0	Brussels
0	1	Antwerp
1	0	Amsterdam
1	1	Leuven

- \blacksquare $P = \{ Brussels, Leuven, Antwerp \}$
- What is the ROBDD for χ_P^{β} ?

History

From Boole to Lee

■ The Shannon expansion (due to Boole) is the basic theoretical idea behind BDDs

for any
$$x_i$$
.
$$f(x_1,\ldots,x_k) = \left(\neg x_i \wedge f|_{x_i \leftarrow 0}\right) \vee \left(x_i \wedge f|_{x_i \leftarrow 1}\right)$$

■ Representation of Switching Circuits by Binary-Decision Programs. C. Y. Lee. 1959. Bell System Tech. Journal.

History

From Boole to Lee

■ The Shannon expansion (due to Boole) is the basic theoretical idea behind BDDs

for any
$$x_i$$
.
$$f(x_1,\ldots,x_k) = \left(\neg x_i \wedge f|_{x_i \leftarrow 0}\right) \vee \left(x_i \wedge f|_{x_i \leftarrow 1}\right)$$

■ Representation of Switching Circuits by Binary-Decision Programs. C. Y. Lee. 1959. Bell System Tech. Journal.

BDDs become efficient

- Randal E. Bryant introduces sharing (for compression) and order fixing (for canonicity) [1986–1990]
- Don Knuth: "one of the only really fundamental data structures that came out in the last ... years"

Motivation and applications

Any $f(x_1, ..., x_k)$ for which you can build a BDD

- we can evaluate f(x) in at most k steps,
- we can find the (lexicographically) smallest x such that f(x) = 1,
- we can count and/or list the number of solutions to f(x) = 1,
- . . .

Applications

- Computer-aided design of circuits
- Formal verification
- Bayesian reasoning
- ...

Sample application: the geography game

- Alternate naming cities, no repetition allowed
- The next city's name should start with the same letter as the last letter of the previously named city

■ If I start, can I win or make sure the game lasts for at least three rounds (i.e. I play at least 2 cities)?

ROBDDs: the formal definition (1/4)

Reduced ordered BDDs

A (RO)BDD is a rooted directed acyclic graph (DAG) with inner decision vertices and constant-value leaves (with values 0 or 1).

■ Every decision vertex v is labelled by a Boolean variable VAR(v) and has two children: LO(v) and HI(v) respectively representing a truth-value assignment of 0 or 1 for v.

ROBDDs: the formal definition (1/4)

ROBDDS, continued

- All paths $v_1 \dots v_\ell$ are such that $VAR(v_i) < VAR(v_i)$ for all i < j (for some ordering of the variables).
- There are at most two constant-value leaves with distinct values.
- No two vertices u, v induce isomorphic graphs (VAR(u) = VAR(v), LO(u) = LO(v), and HI(u) = HI(v)) and
- all vertices v have non-isomorphic children, i.e. $LO(v) \neq HI(v)$.

ROBDDs: an example (2/4)

■ for the order $x_1 < x_2 < x_3$

ROBDDs: from BDDs to functions (3/4)

Given a BDD, what is its function/formula?

For a BDD with variables x_1, \ldots, x_k and root u, the Boolean function $f_u(x_1, \ldots, x_k)$ induced by it is defined as follows. For all vertices v

- \blacksquare if VAR(v) = 0 then $f_v(x_1, \dots, x_k) = 0$,
- \blacksquare if VAR(v) = 1 then $f_v(x_1, \ldots, x_k) = 1$,
- otherwise, by the Shannon expansion,

$$\mathit{f}_{\mathit{v}}(\mathit{x}_{1},\ldots,\mathit{x}_{\mathit{k}}) = \left(\neg \mathtt{VAR}(\mathit{v}) \land \mathit{f}_{\mathtt{LO}(\mathit{v})}\right) \lor \left(\mathtt{VAR}(\mathit{v}) \land \mathit{f}_{\mathtt{HI}(\mathit{v})}\right).$$

ROBDDs: from BDDs to functions (3/4)

Given a BDD, what is its function/formula?

For a BDD with variables x_1, \ldots, x_k and root u, the Boolean function $f_u(x_1, \ldots, x_k)$ induced by it is defined as follows. For all vertices v

- \blacksquare if VAR(ν) = 0 then $f_{\nu}(x_1,\ldots,x_k)=0$,
- if VAR(v) = 1 then $f_v(x_1, \dots, x_k) = 1$,
- otherwise, by the Shannon expansion,

$$f_{\nu}(x_1,\ldots,x_k) = \left(\neg \mathtt{VAR}(\nu) \wedge f_{\mathtt{LO}(\nu)}\right) \vee \left(\mathtt{VAR}(\nu) \wedge f_{\mathtt{HI}(\nu)}\right).$$

Theorem (Canonicity [Bryant '86])

For all Boolean functions $f(x_1,...,x_k)$, for every ordering of $x_1,...,x_k$, there is a unique BDD with root u such that $f=f_u$.

Exercise: from BDDs to functions

■ What are the formulas for the following BDDs?

ROBBDs: on the ordering (4/4)

What order should one use?

Depending on the ordering of x_1, \ldots, x_k , the size of the BDD representing $f(x_1, \ldots, x_k)$ may vary exponentially!

- Deciding whether a given order is size-minimal is an NP-complete problem.
- In practice, heuristics are used to dynamically choose a "good" ordering.

ROBDDs: on the ordering (4/4)

Example

x_1	<i>x</i> ₂	<i>X</i> 3	f
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

<i>x</i> ₂	x_1	<i>X</i> 3	f
$\frac{x_2}{0}$	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

ROBDDs: on the ordering (4/4)

Example

x_1	<i>x</i> ₂	<i>X</i> 3	f
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

<i>x</i> ₂	x_1	<i>X</i> 3	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

■ with large BDDs the effect is more evident

Exercise: a different order

■ construct the ROBDD for Belgium's World Cup group using the order $x_2 < x_3 < x_1$ and compare against the one we had before

x_1	<i>x</i> ₂	<i>X</i> 3	$s \in S \cup \{\bot\}$
0	0	0	Belgium
0	0	1	Panama
0	1	0	
0	1	1	Tunisia
1	0	0	
1	0	1	Honduras
1	1	0	
1	1	1	England

BDD operations: logical negation (1/4)

Negating a BDD

Given a BDD representing the Boolean function $f(x_1, \ldots, x_k)$, we can obtain a BDD for $g(x_1, \ldots, x_k) = \neg f(x_1, \ldots, x_k)$ by simply replacing the 0 and 1 constant-value leaves.

BDD operations: logical negation (1/4)

BDD operations: \vee, \wedge (2/4)

Divide and conquer using Shannon's expansion

For $\mathrm{op} \in \{ \vee, \wedge \}$ we have that $f(x_1, \dots, x_k)$ op $g(x_1, \dots, x_k)$ is equivalent to the following for all $1 \leq i \leq k$ $\left(\neg x_i \wedge \left(f|_{x_i \leftarrow 0} \text{ op } g|_{x_i \leftarrow 0} \right) \right) \vee \left(x_i \wedge \left(f|_{x_i \leftarrow 1} \text{ op } g|_{x_i \leftarrow 1} \right) \right).$

BDD operations: \vee, \wedge (2/4)

More graphically...

We do a DFS on both BDDs from the root stepping lexicographically and

- **synchronously** if the current vertices u, v have the same label, i.e. VAR(u) = VAR(v),
- **asynchronously** from v if the current vertices u, v are such that VAR(u) > VAR(v).

For every vertex-pair whose children s,t have been visited, we add a new vertex r with VAR(r) = min(VAR(u), VAR(v)) and LO(r) = s, HI(r) = t to the resulting BDD.

^aWe suppose $VAR(t) \ge VAR(v)$ for all constant-value vertices t and all vertices v.

BDD operations: example (3/4)

• conjoining the first two BDDs yields the third (from left to right)

Exercise: disjunction of BDDs

■ the disjunction of the first two BDDs yields. . .

٠

BDD operations: others (4/4)

Useful classical operations

■ existential quantification can be implemented using the equivalence

$$\exists x_1 : f(x_1, \ldots, x_k) = f|_{x_1 \leftarrow 0} \lor f|_{x_1 \leftarrow 1},$$

universal quantification via the equivalence

$$\forall x_1: f(x_1,\ldots,x_k) = f|_{x_1\leftarrow 0} \wedge f|_{x_1\leftarrow 1},$$

- composition $f|_{x_i \leftarrow g}$ for f, g Boolean functions,
- (partial) evaluation $f|_{x_i,...,x_i \leftarrow b_i,...,b_i}$
-

Shared table and other tricks

Implementing the data structure

Most implementations keep a unique table:

- \blacksquare every entry is of the form $\langle id, v, \ell, h, \rangle$ and every "function" is a reference to an entry of the table.
- **Some implementations also include flags to indicate whether** ℓ or h are negated (allows further sharing).

Shared table and other tricks

Implementing the data structure

Most implementations keep a unique table:

- \blacksquare every entry is of the form $\langle id, v, \ell, h, \rangle$ and every "function" is a reference to an entry of the table.
- Some implementations also include flags to indicate whether ℓ or h are negated (allows further sharing).

Algorithms for the data structure

- Most operations share some code that is usually refactored into the ITE (if-then-else) method.
- After every operation, the unique table is scanned to compute the size of referenced BDDs.
- Based on this, a dynamic-reordering algorithm may be called to attempt to reduce that size.

Conclusions

Theory

- Boolean functions can be represented by truth tables, propositional logic formulas, and BDDs.
- Reduced ordered BDDs are a canonical representation of Boolean functions for any fixed variable order.

Practice

- BDDs can easily be manipulated using the usual logical connectives to obtain BDDs for more complex formulas.
- Under the hood, these operations are implemented using graph algorithms.
- The latter allows for many useful operations to be applicable to an already constructed BDD.

