Lezione 30 MSC Petri Nets: Basic Definitions

Roberto Gorrieri

Modello distribuito non-interleaving

- Stato globale
- = multinsieme di stati locali
- Transizioni coinvolgono solo qualche stato locale
- Token game
- Parallelismo esplicito
- Esempio: 2 produttori e un consumatore

Multiset (1)

A *multiset M* over a set *A* is an unordered, possibly infinite, list of elements of *A*, where no element of *A* can occur infinitely many times.

This is usually represented as a set with *multiplicities*; for instance, $M = \{a,\tau,a,\tau,\tau\}$ is a multiset over the set $A = \{a,\tau\}$ with two occurrences of action a and three occurrences of action τ .

Given a countable set S, a *finite multiset* over S is a function $m: S \rightarrow \mathbb{N}$ such that the *support* set $dom(m) = \{s \in S \mid m(s) \neq 0\}$ is finite. The *multiplicity* of s in m is given by the number m(s).

The set of all finite multisets over S, denoted by $M_{fin}(S)$, is ranged over by m, possibly indexed.

A multiset m such that $dom(m) = \emptyset$ is called empty and is denoted by \emptyset , with abuse of notation.

Multiset (2)

Ordering: We write $m \subseteq m'$ if $m(s) \le m'(s)$ for all $s \in S$. We also write $m \subseteq m'$ if $m \subseteq m'$ and m(s) < m'(s) for some $s \in S$.

- The operator \oplus denotes *multiset union* and is defined as follows: $(m \oplus m')(s) = m(s) + m'(s)$; the operation \oplus is commutative, associative and has \emptyset as neutral element.
- If $m_2 \subseteq m_1$, then we can define multiset difference, denoted by the operator \ominus , as follows: $(m_1 \ominus m_2)(s) = m_1(s) m_2(s)$.
- The scalar product of a number j with a multiset m is the multiset $j \cdot m$ defined as $(j \cdot m)(s) = j \cdot (m(s))$.

A finite multiset m over $S = \{s_1, s_2, ...\}$ can be represented as $k_1 \cdot s_{i_1} \oplus k_2 \cdot s_{i_2} \oplus ... \oplus k_n \cdot s_{i_n}$, where $dom(m) = \{s_{i_1}, ..., s_{i_n}\} \subseteq S$ and $k_j = m(s_{i_j}) > 0$ for j = 1, ..., n. If S is finite, i.e., $S = \{s_1, ..., s_n\}$, then a finite multiset can be represented also as $k_1 \cdot s_1 \oplus k_2 \cdot s_2 \oplus ... \oplus k_n \cdot s_n$, where $k_j = m(s_j) \ge 0$ for j = 1, ..., n. \square

Place/Transition Petri Net

Definition 3.2. (P/T Petri net) A labeled *Place/Transition* Petri net (P/T net for short) is a tuple N = (S, A, T), where

- S is the countable set of *places*, ranged over by s (possibly indexed),
- $A \subseteq Lab$ is the countable set of *labels*, ranged over by ℓ (possibly indexed), and
- $T \subseteq (\mathcal{M}_{fin}(S) \setminus \{\emptyset\}) \times A \times \mathcal{M}_{fin}(S)$ is the countable set of *transitions*, ranged over by t (possibly indexed), such that, for each $\ell \in A$, there exists a transition $t \in T$ of the form (m, ℓ, m') .

Given a transition $t = (m, \ell, m')$, we use the notation:

- *t to denote its pre-set m (which cannot be an empty multiset) of tokens to be consumed;
- l(t) for its label ℓ , and

(post-set) of a place is a set

• t^{\bullet} to denote its *post-set m'* of tokens to be produced.

Hence, transition t can be also represented as $t ext{-}t$. We also define pre-sets and post-sets for places as follows: $s = \{t \in T \mid s \in t^{\bullet}\}$ and $s = \{t \in T \mid s \in t^{\bullet}\}$. Note that while the pre-set (post-set) of a transition is, in general, a multiset, the pre-set

Example

• N = (S,A,T), where $S = \{s_1,s_2,s_3,s_4\}$, $A = \{a,b,c\}$ and $T = \{(2\cdot s_1 \oplus s_2,a,s_1),(s_2 \oplus s_3,b,3\cdot s_1 \oplus s_2 \oplus 2\cdot s_3),(s_1 \oplus 2\cdot s_3,c,\varnothing)\}$.

Osservazione

LTS's are a subclass of P/T nets.

Note that the latter is a generalization of the former: a transition system is just a special case of Petri net, where each net transition t = (m,a,m') is such that m and m' are singletons.

P/T net system and token game

Definition 3.3. (Marking, token, P/T net system) A finite multiset over S is called a marking. Given a marking m and a place s, we say that the place s contains m(s) tokens, graphically represented by m(s) bullets inside place s. A P/T net system $N(m_0)$ is a tuple (S, A, T, m_0) , where (S, A, T) is a P/T net and m_0 is a marking over S, called the *initial marking*. We also say that $N(m_0)$ is a marked net.

Definition 3.4. (Token game) Given a labeled P/T net N = (S, A, T), we say that a transition t is *enabled* at marking m, denoted by m[t], if ${}^{\bullet}t \subseteq m$. The execution (or *firing*) of t enabled at m produces the marking $m' = (m \ominus {}^{\bullet}t) \oplus t^{\bullet}$. This is written m[t]m'.

Permissive nature of P/T Petri nets: if t is enabled at m, then t is enabled also by any other marking m' covering m, i.e., by any m' such that $m \subseteq m'$.

This is in contrast with *nonpermissive* Petri nets, we will see in the following, where a transition t enabled at m may be disabled at m' because m' can contain a token in an inhibiting place for t.

2-Producers/1-Consumer

Rete bounded:
Al massimo 2
tokens in ogni
place

Unbounded Producer/Consumer

Note that place P' can hold an unbounded number of tokens, as the producer P can perform the initial transition **prod** repeatedly, depositing each time one token in that place.

A finite Petri net model for a system whose reachable markings are infinitely many.

Reachable markings and firing sequences

Definition 3.5. (Reachable markings and firing sequences) Given a P/T net system $N(m_0) = (S, A, T, m_0)$, the set of markings reachable from m, denoted [m], is defined as the least set such that

- $m \in [m]$ and
- if $m_1 \in [m]$ and, for some transition $t \in T$, $m_1[t]m_2$, then $m_2 \in [m]$.

We say that m is reachable if m is reachable from the initial marking m_0 . A firing sequence starting at m is defined inductively as follows:

- m is a firing sequence and
- if $m_1[t_1\rangle m_2...[t_{n-1}\rangle m_n$ (with $m=m_1$ and $n\geq 1$) is a firing sequence and $m_n[t_n\rangle m_{n+1}$, then $m=m_1[t_1\rangle m_2...[t_{n-1}\rangle m_n[t_n\rangle m_{n+1}$ is a firing sequence.

A firing sequence $m = m_1[t_1\rangle m_2 \dots [t_n\rangle m_{n+1}$ is usually abbreviated as $m[t_1 \dots t_n\rangle m_{n+1}$ and $t_1 \dots t_n$ is called a *transition sequence* starting at m and ending at m_{n+1} .

Some classes of P/T nets

Definition 3.6. (Classes of P/T Petri nets) A P/T Petri net N = (S, A, T) is

- statically acyclic if there exists no sequence $x_1x_2...x_n$, such that $n \ge 3$, $x_i \in S \cup T$ for i = 1,...,n, $x_1 = x_n$, $x_1 \in S$ and $x_i \in {}^{\bullet}x_{i+1}$ for i = 1,...,n-1;
- distinct if all the transitions have distinct labels: for all $t_1, t_2 \in T$, if $l(t_1) = l(t_2)$, then $t_1 = t_2$;
- *finite* if both S and T are finite sets;
- a finite-state machine (FSM, for short) if N is finite and for all $t \in T$, $| {}^{\bullet}t | = 1$ and $| t {}^{\bullet} | \leq 1$;
- a *BPP net* if N is finite and every transition has exactly one input place, i.e., for all $t \in T$, $| {}^{\bullet}t | = 1$;
- a CCS net if for all $t \in T$, $1 \le | {}^{\bullet}t | \le 2$ and if $| {}^{\bullet}t | = 2$ then $l(t) = \tau$.

Some classes of P/T net systems

A P/T net system $N(m_0)$ is

- dynamically acyclic if there exists no $m_1 \in [m_0]$ with a nonempty (i.e, with $n \ge 2$) firing sequence $m_1[t_1]m_2...[t_{n-1}]m_n$ such that $m_1 \subseteq m_n$;
- a sequential FSM if N is an FSM and m_0 is a singleton, i.e., $|m_0| = 1$;
- a *concurrent* FSM if N is an FSM and m_0 is arbitrary;
- k-bounded if any place contains at most k tokens in any reachable marking, i.e., $\forall s \in S \ m(s) \le k$ for all $m \in [m_0)$;
- *safe* if it is 1-bounded;
- bounded if $\forall s \in S \ \exists k \in \mathbb{N}$ such that $m(s) \leq k$ for all $m \in [m_0]$.

Fig. 3.4 A sequential finite-state machine in (a), and a concurrent finite-state machine in (b)

Fig. 3.5 Some further nets: a BPP net in (a), and a CCS net in (b)

Proposition 3.1. Given a P/T system $N(m_0)$, the following hold:

- 1. if N is an FSM net, then N is also a BPP net;
- 2. if N is a BPP net, then N is also a finite CCS net;
- 3. if $N(m_0)$ is a sequential FSM, then $N(m_0)$ is also a concurrent FSM;
- 4. if $N(m_0)$ is a sequential FSM, then $N(m_0)$ is also safe;
- 5. if $N(m_0)$ is a concurrent FSM, then $N(m_0)$ is also $|m_0|$ -bounded;
- 6. if $N(m_0)$ is finite and bounded, then $N(m_0)$ is also k-bounded for some suitable $k \in \mathbb{N}$;
- 7. if $N(m_0)$ is finite and bounded, then the set $[m_0]$ of the markings reachable from m_0 is finite;
- 8. if N is statically acyclic, then $N(m_0)$ is dynamically acyclic;
- 9. if $N(m_0)$ is finite and dynamically acyclic, then the set of its firing sequences is finite.

Proof. We prove only (7). Assume $N(m_0)$ is finite and bounded, where the cardinality of the set S of places is n and the bound limit on places is k. Then, there cannot be more than $(k+1)^n$ different markings, because each place s can hold any number of tokens in the range $\{0,\ldots,k\}$.

Finite and bounded implies k-bounded

Any finite net that is bounded is also k-bounded for some suitable $k \subseteq N$; in fact, boundedness implies that for all $s \in S$ there exists an upper bound k_s on the number of tokens that can be accumulated on s; if the net is finite, then it is enough to choose the largest k_s (call it k'), which has the property that for all $s, k_s \le k'$, so that the net is k'-bounded. It follows that a bounded net that is not k-bounded for any k is infinite. For instance, consider the net $N(m_0)=(S,A,T,m_0)$ where $S = \{s_i \mid i \in \mathbb{N}\}, A = \{a_i \mid i \in \mathbb{N}\}, T = \{(s_i, a_i, 2 \cdot \tilde{s}_{i+1}) \mid i \in \mathbb{N}\}, m_0 = 1\}$ $\{s_0\}$ — is an infinite net such that place s_i can hold up to 2^i tokens; hence, $N(m_0)$ is bounded, but there is no k such that $2^i \le k$ for all $i \subseteq \mathbb{N}$.

Why these classes?

The interest in these classes is because we will see that they are strictly related to particular process algebras derived from CCS and Multi-CCS. In particular, we will see that

- SFM process terms (essentially finite-state CCS) originate sequential FSMs (Chapter 4),
- CFM process terms (finite-state CCS with an external operator of asynchronous parallelism) represent concurrent FSMs (Section 5.1),
- BPP process terms are mapped to BPP nets (Section 5.2),
- FNC process terms (essentially finite-net CCS) originate finite CCS P/T nets (Chapter 6), and finally
- FNM process terms (essentially finite-net Multi-CCS) represent all finite P/T nets (Chapter 7).

The Hierarchy

Fig. 1.5 The hierarchy of net classes and process algebras

Dynamically reachable subnet

Definition 3.7. (Dynamically reachable subnet) Given a P/T net system $N(m_0) = (S, A, T, m_0)$, the *dynamically reachable subnet* $Net_d(N(m_0))$ is (S', A', T', m_0) , where

$$S' = \{s \in S \mid \exists m \in [m_0] \text{ such that } m(s) \geq 1\},$$
 $T' = \{t \in T \mid \exists m \in [m_0] \text{ such that } m[t]\},$
 $A' = \{\ell \mid \exists t \in T' \text{ such that } l(t) = \ell\}.$

Definition 3.8. (**Dynamically reduced net**) A P/T net system $N(m_0) = (S, A, T, m_0)$ is *dynamically reduced* if $N(m_0) = Net_d(N(m_0))$, i.e., the net system is equal to its dynamically reachable subnet.

 Net_d(N(m₀)) is algorithmically computable for any finite P/T net system (complexity: exponential)

Example

Fig. 3.7 A net system in (a) and its dynamically reachable subnet in (b)

Statically reachable subnet (1)

Definition 3.9. (Statically reachable subnet and statically reduced net) Given a finite P/T net N = (S, A, T), we say that a transition t is statically enabled by a set of places $S' \subseteq S$, denoted by S'[t], if $dom(^{\bullet}t) \subseteq S'$.

Given two sets of places $S_1, S_2 \subseteq S$, we say that S_2 is statically reachable in one step from S_1 if there exists a transition $t \in T$, such that $S_1[t]$, $dom(t^{\bullet}) \not\subseteq S_1$ and $S_2 = S_1 \cup dom(t^{\bullet})$; this is denoted by $S_1 \stackrel{t}{\Longrightarrow} S_2$. The static reachability relation $\Longrightarrow^* \subseteq \mathscr{P}_{fin}(S) \times \mathscr{P}_{fin}(S)$ is the least relation such that

- $S_1 \Longrightarrow^* S_1$ and
- if $S_1 \Longrightarrow^* S_2$ and $S_2 \stackrel{t}{\Longrightarrow} S_3$, then $S_1 \Longrightarrow^* S_3$.

A set of places $S_k \subseteq S$ is the *largest* set statically reachable from S_1 if $S_1 \Longrightarrow^* S_k$ and for all $t \in T$ such that $S_k[t]$, we have that $dom(t^{\bullet}) \subseteq S_k$.

Statically reachable subnet (2)

Given a finite P/T net system $N(m_0) = (S, A, T, m_0)$, we denote by $[dom(m_0)]$ the largest set of places statically reachable from $dom(m_0)$, i.e., the largest S_k such that $dom(m_0) \Longrightarrow^* S_k$.

The statically reachable subnet $Net_s(N(m_0))$ is the net (S', A', T', m_0) , where

$$S' = \llbracket dom(m_0)
angle,$$
 $T' = \{t \in T \mid S' \llbracket t
angle \},$
 $A' = \{\ell \mid \exists t \in T' \text{ such that } l(t) = \ell \}.$

A finite P/T net system $N(m_0) = (S, A, T, m_0)$ is statically reduced if $Net_s(N(m_0)) = N(m_0)$, i.e., the net system is equal to its statically reachable subnet.

 Net_s(N(m₀)) is algorithmically computable for any finite P/T net system (complexity: polynomial)

Example (revisited)

Fig. 3.8 The statically reachable subnet of Figure 3.7(a)

Properties

Proposition 3.2. Given a P/T net system $N(m_0) = (S, A, T, m_0)$, if $N(m_0)$ is dynamically reduced, then it is also statically reduced.

Proposition 3.3. Given a P/T net system $N(m_0) = (S, A, T, m_0)$, if its dynamically reachable subnet $Net_d(N(m_0))$ is (S', A', T', m_0) and its statically reachable subnet $Net_s(N(m_0))$ is (S'', A'', T'', m_0) , then $S' \subseteq S''$, $T' \subseteq T''$ and $A' \subseteq A''$.

For some classes of nets, however, the two notions coincide.

Proposition 3.4. If $N(m_0)$ is a BPP net that is statically reduced, then it is also dynamically reduced.

Proof. A BPP transition t is such that $| {}^{\bullet}t | = 1$; therefore, the notions of dynamically enabled transition and statically enabled transition coincide.

Decidable Properties

- Computing Net_d and Net_s for any finite P/T net system N(m₀)
- Reachability: deciding whether a given marking is reachable from the initial marking for a finite P/T net system (complexity: non-primitive recursive).
- Deadlock: deciding whether a finite P/T net system has a deadlock, i.e., reaches a marking that does not enable any transition.
- Liveness: a transition t is *live* if for each marking m reachable from m_0 there exists a marking m' reachable from m such that t is enabled at m'. The finite P/T net system $N(m_0)$ is *live* if each of its transitions is live. This problem is decidable.