Tutorial computer- and robot-assisted surgery

NATIONALES CENTRUM FÜR TUMORERKRANKUNGEN PARTNERSTANDORT DRESDEN UNIVERSITÄTS KREBSCENTRUM UCC

getragen von:

Deutsches Krebsforschungszentrum Universitätsklinikum Carl Gustav Carus Dresden Medizinische Fakultät Carl Gustav Carus, TU Dresden Helmholtz-Zentrum Dresden-Rossendorf

Sebastian Bodenstedt Translational Surgical Oncology

Any questions from the lecture?

Review Fourier Transform

Fourier series

 Any periodic function can be expressed through (infinite) sine and cosine functions

$$f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos(n \cdot x) + \sum_{n=1}^{\infty} b_n \sin(n \cdot x)$$

where

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cdot \cos(n \cdot x) dx$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cdot \sin(n \cdot x) dx$$

Fourier Transform

Generalization of the complex Fourier series

$$f(x) = \int_{-\infty}^{\infty} F(u) \cdot e^{2\pi i u x} du$$

where

$$e^{\pm i\theta} = \cos(\theta) \pm i \cdot \sin(\theta)$$

• F(u) holds the amplitude A and phase θ of sine functions for each u

$$A \cdot \sin(u \cdot x + \theta)$$

Fourier Transform

Fourier Transform

$$F(u) = \int_{-\infty}^{\infty} f(x) \cdot e^{-2\pi i u x} dx$$

Inverse Fourier Transform

$$f(x) = \int_{-\infty}^{\infty} F(u) \cdot e^{2\pi i u x} du$$

Fourier Transform – Change in basis

$$M * f(x) = F(v)$$

Fourier Transform – Change in basis

$$\mathsf{M}^{\text{-}1} * F(\upsilon) = f(x)$$

2D Fourier Transform

Fourier Transform

$$F(u,v) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) \cdot e^{-2\pi i (ux + vy)} dxdy$$

Inverse Fourier Transform

$$f(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(u,v) \cdot e^{2\pi i (ux + vy)} du dv$$

Low-pass filter

Original image

FFT of original image

Low-pass filter

Let the low frequencies pass and eliminating the high frequencies.

Low-pass image

FFT of low-pass image

Generates image with overall shading, but not much detail

High-pass filter

Original image

FFT of original image

High-pass filter

Lets through the high frequencies (the detail), but eliminates the low frequencies (the overall shape). It acts like an edge enhancer.

High-pass image

FFT of high-pass image

Boosting high frequencies

Original image

FFT of original image

High-boost filter

High boosted image

FFT of high boosted image

Discrete Fourier Transform

Fourier Transform

$$\begin{array}{ll} \textbf{1D} & F(u) = \frac{1}{N} \sum_{x=0}^{N-1} f(x) \cdot e^{\frac{-2\pi i u x}{N}} \\ \\ \textbf{2D} & F(u,v) = \frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) \cdot e^{-2\pi i (\frac{u x}{M} + \frac{v y}{N})} \\ \\ \textbf{Inverse Fourier Transform} \end{array}$$

1D
$$f(x) = \frac{1}{N} \sum_{u=0}^{N-1} F(u) \cdot e^{\frac{2\pi i u x}{N}}$$

2D $f(x,y) = \frac{1}{MN} \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F(u,v) \cdot e^{2\pi i (\frac{u x}{M} + \frac{v y}{N})}$

Reminder Iterative Reconstruction

Iterative Reconstruction technique

Iterative Reconstruction technique

Image reconstruction - iterative

How can we calculate an image from the measurements?

Approximation of the image:

- 1. Estimate
- 2. Correction
- 3. Iteration

- First approximation derived from direction 1
- Creation of correction profiles
- Stop criteria: min. error or max. number of iteration

Quelle: Siemens

Estimate

1. projection direction: 1. Estimate of the matrix

Iterative Reconstruction technique

Iterative Reconstruction technique

5

-3

0	9	6
7	7	1
2	5	8

Lengths normalized to 1

Exercise: Iterative Reconstruction

- Exercise: Implement method for iterative reconstruction
 - Reconstruct 2 images
- Solution
- Estimate rays

Exercise: Iterative Reconstruction

Estimate

- Form delta to measurement: $\delta \vec{r} = \vec{r_m} \vec{r_e}$
- $\delta \vec{r}$ Scale and subtract from reconstruction
 - Scaling requires number of traversed pixels
 - Idea: Rotate mask and count number of relevant pixels

Exercise: Iterative Reconstruction

• Fill matrix with $\delta \vec{r}$:

Rotate back and update estimate:

