Национальный исследовательский университет «МЭИ»

ИНСТИТУТ РАДИОТЕХНИКИ И ЭЛЕКТРОНИКИ Кафедра Радиотехнических систем

Курсовая работа

по дисциплине

«Аппаратура потребителей спутниковых радионавигационных систем»

Группа: Э	P-15-16
Вариан	нт №: 13
Дата:	
Подпись:	
ФИО преподавателя: Корогод	цин И.В.
Оценка:	

ФИО СТУДЕНТА: ТАСКАНОВ В.Е.

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	3
ГЛАВА 1. ИСПОЛЬЗОВАНИЕ СТОРОННИХ СРЕДСТІ	B 4
1.1. Описание задания	4
1.2. Определение формы орбиты и положения спутни	ика на ней с
помощью сервиса CelesTrak	6
1.3. Расчет графика угла места собственного спутника	и от времени
по данным Trimble GNSS Planning Online	7
1.4. Расчет диаграммы угла места и азимута спутника (SkyView, он
же SkyPlot) по данным Trimble GNSS Planning Online	9
1.5. Формирование списка и описание параметров,	входящих в
состав эфемерид	12
1.6. Формирование таблицы эфемерид собственного сп	утника 13
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	15

ВВЕДЕНИЕ

Спутниковые радионавигационные системы (СРНС) являются самыми точными системами по определению координат потребителя. Они стали важной частью в различных сферах нашей жизни. Наиболее распространенными являются системы ГЛОНАСС (Россия), GPS (США), Galileo (Евросоюз), Beidou (Китай).

Цель проекта - добавление в программное обеспечение приемника функции расчета положения спутника Beidou на заданное время по данным его эфемерид.

Требования к разрабатываемому программному модулю:

- требования назначения;
- отсутствие утечек памяти;
- малое время выполнения;
- низкий расход памяти;
- корректное выполнение при аномальных входных данных.

Для достижения цели выполняется ряд задач, соответствующих этапам проекта и контрольным мероприятиям:

- обработка данных от приемника, работа со сторонними сервисами для подготовки входных и проверочных данных для разрабатываемого модуля;
- моделирование модуля в Matlab/Python;
- реализация программного модуля на C/C++, включая юниттестирование в Check.

Конечная цель всего курсового проекта - получить библиотеку функций на «С++», позволяющую рассчитывать положение спутника Beidou по его эфемеридам.

ГЛАВА 1. ИСПОЛЬЗОВАНИЕ СТОРОННИХ СРЕДСТВ

1.1. Описание задания

В задание дан номер спутника BEIDOU, в моем варианте – C24, а также бинарный и текстовый файл со значениями эфемерид для различных спутников, полученный от трехдиапазонной антенны Harxon HX-CSX601A, установленной на крыше корпуса Е МЭИ. Она через 50-метровый кабель, сплиттер, bias-tee и усилитель подключена к трем навигационным приемникам:

- Javad Lexon LGDD,
- SwiftNavigation Piksi Multi,
- Clonicus разработки ЛНС МЭИ.

Эти приемники осуществляют первичную обработку сигналов Beidou B1I, выдавая по интерфейсам соответствующие потоки данных - наблюдения псевдодальностей и эфемериды спутников. Данные от приемника Clonicus, записанные вечером 16 февраля 2021 года.

Определим с помощью «Информационно-аналитического центра координатно-временного и навигационного обеспечения» [1] номер НОРАД¹ и сравним его с номером из «Википедии» [2]:

4

¹ НОРАД(SCN) - номер по спутниковому каталогу представляет собой уникальный пятизначный идентификационный номер искусственных спутников Земли.

PRN	НОРАД	Тип КА	Тип системы	Дата запуска	Факт. сущ. (дней)	Примечание
C01	44231	GEO-8	BDS-2	17.05.19	653	Используется по ЦН
C02	38953	GEO-6	BDS-2	25.10.12	3048	Используется по ЦН
C03	41586	GEO-7	BDS-2	12.06.16	1722	Используется по ЦН
C04	37210	GEO-4	BDS-2	01.11.10	3772	Используется по ЦН
C05	38091	GEO-5	BDS-2	25.02.12	3291	Используется по ЦН
C06	36828	IGSO-1	BDS-2	01.08.10	3864	Используется по ЦН
C07	37256	IGSO-2	BDS-2	18.12.10	3725	Используется по ЦН
C08	37384	IGSO-3	BDS-2	10.04.11	3612	Используется по ЦН
C09	37763	IGSO-4	BDS-2	27.07.11	3504	Используется по ЦН
C10	37948	IGSO-5	BDS-2	02.12.11	3376	Используется по ЦН
C11	38250	MEO-3	BDS-2	30.04.12	3226	Используется по ЦН
C12	38251	MEO-4	BDS-2	30.04.12	3226	Используется по ЦН
C13	41434	IGSO-6	BDS-2	30.03.16	1796	Используется по ЦН
C14	38775	MEO-6	BDS-2	19.09.12	3084	Используется по ЦН
C16	43539	IGSO-7	BDS-2	10.07.18	964	Используется по ЦН
C19	43001	MEO-1	BDS-3	05.11.17	1211	Используется по ЦН
C20	43002	MEO-2	BDS-3	05.11.17	1211	Используется по ЦН
C21	43208	MEO-3	BDS-3	12.02.18	1112	Используется по ЦН
C22	43207	MEO-4	BDS-3	12.02.18	1112	Используется по ЦН
C23	43581	MEO-5	BDS-3	29.07.18	945	Используется по ЦН
C24	43582	MEO-6	BDS-3	29.07.18	945	Используется по ЦН

Рисунок 1 — Состав и состояние системы BEIDOU с «Информационноаналитического центра координатно-временного и навигационного обеспечения»

Nº ≑	Спутник +	PRN ÷	Дата (UTC) +	Ракета ≑	NSSDC ID +	SCN ÷	Орбита ♦	Статус +	Система 🕈	
33	Бэйдоу-3 М9	C23	29.07.2018 01:48	29.07.2018 01:48 CZ-3B/YZ-1	2018-062A&	43581 ₺	СОО, ~21 500 км	действующий		
34	Бэйдоу-3 М10	C24			2018-062B&	43582₺	СОО, ~21 500 км	действующий		
35	Бэйдоу-3 М11	C26	04.00.0040.00.07	8.2018, 23:37 CZ-3B/YZ-1	2018-067A&	43602₺	СОО, ~21 500 км	действующий		
36	Бэйдоу-3 М12	C25	24.00.2010, 23.37		2018-067B&	43603₺	СОО, ~21 500 км	действующий		
37	Бэйдоу-3 М13	C32	10.00.2019.14:07	CZ-3B/YZ-1	2018-072A&	43622₺	СОО, ~21 500 км	действующий		
38	Бэйдоу-3 М14	C33	19.09.2018, 14:07	19.09.2016, 14.07	CZ-3B/1Z-1	2018-072B&	43623₺	СОО, ~21 500 км	действующий	
39	Бэйдоу-3 М15	C35	15 10 2019 04:22		CZ-3B/YZ-1	2018-078A&	43647₺	СОО, ~21 500 км	действующий	Бэйдоу-3
40	Бэйдоу-3 М16	C34	13.10.2016, 04.23	CZ-3B/1Z-1	2018-078B&	43648₺	СОО, ~21 500 км	действующий		
41	Бэйдоу-3 G1Q	C59	01.11.2018, 15:57	CZ-3B/E	2018-085A&	43683₺	ГСО, 144.5° в. д.	действующий		
42	Бэйдоу-3 М17	C36	40.44.0040.47:40	CZ-3B/YZ-1	2018-093A₽	43706₺	СОО, ~21 500 км	действующий		
43	Бэйдоу-3 М18	C37	18.11.2018, 17:49	CZ-3B/1Z-1	2018-093B&	43707₺	СОО, ~21 500 км	действующий		
44	Бэйдоу-3 IGSO-1	C38	20.04.2019, 14:41	CZ-3B/G2	2019-023A₽	44204 &	Геосинхронная, накл. 55°;	действующий		

Рисунок 2 — Состав и состояние системы BEIDOU с сайта Википедия Из рисунков 1-2 видно, что номер спутника совпадает и равен 43582, название спутника - «BEIDOU-3 M1»

1.2. Определение формы орбиты и положения спутника на ней с помощью сервиса CelesTrak

Введем наше название спутника и сверим его по номеру NSSDC ${
m ID}^2$ и HOPAД (SCN).

Значения совпадают, значит это действительно нужный нам спутник, проведем моделирование на момент времени 15:00, 16 февраля 2021, так как на данном сервисе отсчет времени происходит по UTC(0):

Рисунок 3 – Моделирование с помощью сервиса CelesTrak

6

² NSSDC ID - номер полёта представляет собой каталожный номер каждого летающего космического объекта, находящегося на орбите и зарегистрированного в COSPAR (Комитет по космическим исследованиям)

1.3. Расчет графика угла места собственного спутника от времени по данным Trimble GNSS Planning Online

Настроим для моделирования GNSS Planning Online, координаты установим в соответствии с расположеним антенны — и они будут соответствовать значению корпуса Е МЭИ, также начальное время будет соответствовать 18:00, временной пояс будет равен +3 (UTC +3) на всем этапе моделирования в сервисе GNSS Planning Online, высота выбирается из суммы высоты над уровнем моря (146 м) и примерной высотой здания (25 м) и округляется до сотен:

Рисунок 4 — Моделирование с помощью сервиса Trimble GNSS Planning Далее ограничим количество отображаемых спутников и оставим в моделирование только нужны нам спутник — C24:

Рисунок 5 — Моделирование с помощью сервиса Trimble GNSS Planning Получим график расчета угла места собственного спутника от времени:

Рисунок 6 — График угла места собственного спутника от времени По графику видно, что на указанном в задание интервале с 18:00 — 06:00, спутник был в области видимости 2 раза - с 18:00 до 22:00 и с 4:30 до 6:00.

1.4. Расчет диаграммы угла места и азимута спутника (SkyView, он же SkyPlot) по данным Trimble GNSS Planning Online

Так как сервис для определения Sky Plot используется тот же - Trimble GNSS Planning Online, то настройки оставим прежние, и проведем моделирование Sky Plot во временном интервале 18:00-06:00 и зафиксируем положение спутника на небосводе в критических точках, то есть когда он находился в области видимости - в 18:00, 22:00, 4:30 и 6:00.

Тогда получим 4-е графика моделирования:

• 16 февраля 2021 в 18:00:

Рисунок 7 – Моделирование с помощью сервиса Trimble GNSS Planning

• 16 февраля 2021 в 22:00:

Рисунок 8 – Моделирование с помощью сервиса Trimble GNSS Planning

• 17 февраля 2021 в 4:30:

Рисунок 9 – Моделирование с помощью сервиса Trimble GNSS Planning

• 17 февраля 2021 в 6:00:

Рисунок 10 – Моделирование с помощью сервиса Trimble GNSS Planning Для удобства наложим друг на друга полученные 4 графика - рисунок 7-10 и получим карту небосвода:

Рисунок 11 – Карта небосвода

1.5. Формирование списка и описание параметров, входящих в состав эфемерид

Таблица 1 – Описание параметров, входящих в состав эфемерид

Параметры	Определение				
t_{oe}	Отсчет времени эфемерид				
\sqrt{A}	Квадратный корень из большой полуоси орбиты				
e	Эксцентриситет				
ω	Аргумент перигея				
$\triangle n$	Среднее отклонение движения от расчетного значения				
M_{0}	Средняя аномалия в исходное время				
Ω_0	Долгота восходящего узла орбитальной плоскости,				
	вычисленная по опорному времени				
Ω	Скорость прямого восхождения				
i_0	Угол наклона в исходное время				
IDOT	Скорость угла наклона				
C_{uc}	Амплитуда косинусной поправки к аргументу широты				
C_{us}	Амплитуда синусной поправки к аргументу широты				
C_{rc}	Амплитуда косинусной поправки к				
	радиусу орбиты				
C_{rs}	Амплитуда синусной поправки к радиусу орбиты				
C_{ic}	Амплитуда косинусной поправки к углу наклона				
C_{is}	Амплитуда синусной поправки к углу наклона				

1.6. Формирование таблицы эфемерид собственного спутника

Данные спутника берутся из текстового файла, полученного из дампа бинарного потока данных от приемника в формате NVS BINR.

Таблица 2 – Значения эфемерид спутника С24

Параметры	Значение	Размерность	
SatNum	tNum 24		
toe	273600000.000		
Crs	7.77656250000000000e+01	M	
Dn	4.03945410107353631e-12	-	
M0	6.81925786249041765e-01	рад	
Cuc	3.90363857150077820e-06	рад	
e	7.21270451322197914e-04	-	
Cus	6.92019239068031311e-06	рад	
sqrtA	5.28261914062500000e+03	M ^{1/2}	
Cic	-3.16649675369262695e-08	рад	
Omega0	1.82397473298889579e+00	рад	
Cis	-2.09547579288482666e-08	рад	
i0	9.49933076182709835e-01	рад	
Crc	2.14812500000000000e+02	M	
omega	5.73989896823145385e-01	рад	
OmegaDot	-7.02029242335824152e-12	рад/с	
iDot	2.81797452280710840e-13	рад/с	
Tgd	7.00000000000000000e+04	сек	
toc	2.73600000000000000e+08	сек	
af2	0.00000000000000000e+00	сек/сек2	
af1	-7.99094124204202672e-12	сек/сек	
af0	-7.62200236320495605e-01	сек	
URA	0	-	

IODE	514	-
IODC	2	-
codeL2	0	-
L2P	0	-
WN	789	нед.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- [1]. «Инфомационно-аналитечкского центра коррдинатновременного и навигационного обеспечения «www.glonass-iac.ru»»
- [2]. «Википедия. Свободная энциклопедия «https://ru.wikipedia.org/wiki/Бэйдоу»»
- [3]. «Определение формы орбиты и положения спутника на ней «https://www.celestrak.com»»
- [4]. « «https://www.gnssplanningonline.com/»»