1. Let s be a Cauchy sequence in E. Prove that if a subsequence of s converges to $L \in E$, then the whole sequence converges to L.

Let $\epsilon > 0$ and $\{s_{n_i}\}$ denote the subsequence that converges to L. Since $\{s_n\}$ is Cauchy, there is an $N \in \mathbb{N}$ so that for all n, m > N, we have $d(s_n, s_m) < \frac{\epsilon}{2}$. Moreover, since $\{s_{n_i}\}$ converges to L, there is an $M \in \mathbb{N}$ so that for all $i \geq M$, we have $d(s_{n_i}, L) < \frac{\epsilon}{2}$. Thus, for all $n > K := \max(N, M)$, we have

$$d(s_n, L) \le d(s_n, s_{n_K}) + d(s_{n_K}, L) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon,$$

i.e. s_n converges to L.

2. Prove that in any metric space, compact sets are closed.

Let K be compact. We prove that K is closed by showing that K^C is open.

Let $p \in K^C$ and consider the collection of nested open sets $O := \{U_n := \overline{B\left(p, \frac{1}{n}\right)}^C : n \in \mathbb{N}\}$. Observe that $\bigcup U_n \supset E \setminus \{p\} \supset K$. Thus, since K is compact, we obtain a finite subcover U_{n_1}, \ldots, U_{n_k} of K. Without loss of generality, assume that $n_1 > \cdots > n_k$. Then, since $U_1 \subset U_2 \subset \cdots$, we have $\bigcup U_{n_i} = U_{n_1} \supset K$. Hence, $B\left(p, \frac{1}{n_1}\right) \subset \overline{B\left(p, \frac{1}{n_1}\right)} = U_{n_1}^C \subset K^C$, as desired.

3. Prove that in any metric space, compact sets are sequentially compact.

Let K be compact and suppose for contradiction that K is not sequentially compact. Then, there is a sequence $\{s_n\} \subset K$ that does not have a convergent subsequence. Equivalently, $\{s_n\}$ has no cluster points, so for every $x \in K$, there is an $\epsilon_x > 0$ so that $B(x, \epsilon_x)$ contains only finitely many sequence members $\{s_n\}$. We therefore construct the open cover $O := \{U_x := B(x, \epsilon_x) : x \in K\}$ of K. Since K is compact, we obtain a finite subcover U_{x_1}, \ldots, U_{x_k} of K. But since we have finitely many U_{x_i} that each contain only finitely many s_n , the union $\bigcup U_{x_i}$ contains only finitely many sequence members s_n , a contradiction since $\bigcup U_{x_i} \supset K$ contains infinitely many!

4. Prove that if $f_n: E \to E'$ are continuous and f_n converges to $f: E \to E'$ uniformly on E, then f is continuous.

Let $\epsilon > 0$ and fix $p \in E$. Since $f_n \to f$ uniformly, there is an $N \in \mathbb{N}$ so that $d(f_N(x), f(x)) < \frac{\epsilon}{3}$ for all $x \in E$. Moreover, since f_N is continuous, there is a $\delta > 0$ so that, for every $x \in E$ with $d(x, p) < \delta$, we have $d(f_N(x), f_N(p)) < \frac{\epsilon}{3}$. Hence,

$$d(f(x),f(p)) \leq d(f(x),f_N(x)) + d(f_N(x),f_N(p)) + d(f_N(p),f(p)) < \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon,$$

i.e. f is continuous at p.

5. State and prove Rolle's Theorem and the Mean Value Theorem.

Theorem (Rolle). Let $f:[a,b] \to \mathbb{R}$ be continuous on [a,b], differentiable on (a,b), and have f(a) = f(b). Then, there is some $c \in (a,b)$ so that f'(c) = 0.

Proof. Since f is continuous on [a,b] compact, it attains its max and min, say M and m respectively. If M=m=f(a)=f(b), then f must be constant of [a,b]. Hence, any $c \in (a,b)$ satisfies f'(c)=0. Otherwise, one of M or m (say M for definiteness) is not equal to f(a). We therefore have a $c \in (a,b)$ so that f(c)=M, which implies f'(c)=0 by the Max-Min Test.

Theorem. Mean Value Theorem Let $f:[a,b]\to\mathbb{R}$ be continuous on [a,b] and differentiable on (a,b). Then, there is some $c\in(a,b)$ so that $f'(c)=\frac{f(b)-f(a)}{b-a}$.

Proof. Define the map $g:[a,b]\to\mathbb{R}$ by

$$g(x) = f(x) - \frac{f(b) - f(a)}{b - a}(x - a).$$

By continuity rules, g is continuous on [a, b]. Similarly, by differentiability rules, g is differentiable on (a, b) with derivative $g'(x) = f'(x) - \frac{f(b) - f(a)}{b - a}$.

Observe, too, that g(a)=f(a) and $g(b)=f(b)-\frac{f(b)-f(a)}{b-a}(b-a)=f(a)$. Thus, by Rolle's Theorem, there is some $c\in(a,b)$ so that $g'(c)=f'(c)-\frac{f(b)-f(a)}{b-a}=0$, i.e. $f'(c)=\frac{f(b)-f(a)}{b-a}$, as desired.

6. State and prove F.T.C. 1.

Theorem (F.T.C. 1). Let $f:[a,b]\to\mathbb{R}$ be continuous on [a,b] and differentiable on (a,b). If f' is bounded and integrable on [a,b], then $\int_a^b f'(x) dx = f(b) - f(a)$.

Proof. Fix a partition $P := t_0 < t_1 < \dots < t_n$ and apply the Mean Value Theorem on each interval of the partition: for every $1 \le k \le n$, there is an $x_k \in [t_{k-1}, t_k]$ such that

$$m(f', [t_{k-1}, t_k]) \le f'(x_k) = \frac{f(t_k) - f(t_{k-1})}{t_k - t_{k-1}} \le M(f', [t_{k-1}, t_k]).$$

Thus,

$$L(f', P) \le \sum f(t_k) - f(t_{k-1}) \le U(f', P)$$

for every partition P, so $\int_a^b f' = L(f') \le f(b) - f(a) \le U(f') = \int_a^b f'$, i.e. $\int_a^b f' = f(b) - f(a)$.

7. State and prove F.T.C. 2.

Theorem (F.T.C. 2). Let f be bounded and integrable on [a, b]. Then, $F(x) = \int_a^x f(t) dt$ is continuous on [a, b]. Moreover, if f is continuous at x_0 , then F is differentiable at x_0 with derivative $F'(x_0) = f(x_0)$.

Proof. Since f is bounded on [a,b], there is an $M \ge 0$ so that $|f(x)| \le M$ for all $x \in [a,b]$. Thus,

$$|F(x) - F(y)| = \left| \int_y^k f(t) \, \mathrm{d}t \right| \le \left| \int_y^x |f(t)| \, \mathrm{d}t \right| \le \left| \int_y^x M \, \mathrm{d}t \right| = M|y - x|,$$

i.e. F is Lipschitz (and thus continuous) on [a, b].

Now, suppose that f is continuous at x_0 and let $\epsilon > 0$. Then, there is a $\delta > 0$ so that for $x \in (x_0 - \delta, x_0 + \delta)$, we have $|f(x) - f(x_0)| < \epsilon$. Thus,

$$\left| \frac{F(x) - F(x_0)}{x - x_0} - f(x_0) \right| = \left| \frac{1}{x - x_0} \int_{x_0}^x f(t) \, dt - f(x_0) \right| = \left| \frac{1}{x - x_0} \int_{x_0}^x f(t) - f(x_0) \, dt \right|.$$

Since t is between x and x_0 and $|x-x_0| < \delta$, we have $|t-x_0| < \delta$ and thus, $|f(t)-f(x)| < \epsilon$. Hence,

$$\left| \frac{1}{x - x_0} \int_{x_0}^x f(t) - f(x_0) \, \mathrm{d}t \right| \le \left| \frac{1}{x - x_0} \int_{x_0}^x |f(t) - f(x_0)| \, \mathrm{d}t \right| < \left| \frac{1}{x - x_0} \int_{x_0}^x \epsilon \, \mathrm{d}t \right| = \epsilon.$$

Thus, the derivative quotient exists and is equal to $f(x_0)$.

8. State and prove the Cauchy criterion for Darboux integration.

Theorem (Cauchy Criterion). Let $f:[a,b]\to\mathbb{R}$ be bounded. Then, f is integrable on [a,b] if and only if, for all $\epsilon>0$, there is a partition P of [a,b] so that $U(f,P)-L(f,P)<\epsilon$.

Proof. (\Longrightarrow). Suppose that f is integrable on [a,b]. Then, U(f)=L(f). Fix $\epsilon>0$. Then, by the definition of $U(f)=\inf_P U(f,P)$, we have some partition P so that $U(f,P)< U(f)+\frac{\epsilon}{2}$. Similarly, since $L(f)=\sup_P L(f,P)$, we have some partition Q so that $L(f,P)>L(f)-\frac{\epsilon}{2}$. Thus, for the partition $R:=P\cup Q$, we have

$$U(f,R) - L(f,R) < U(f) - L(f) + \epsilon = \epsilon,$$

as desired.

(\Leftarrow). Now, suppose that, for every $\epsilon > 0$, there is a partition P so that $U(f, P) - L(f, P) < \epsilon$. Then,

$$U(f) \le U(f, P) - L(f, P) + L(f, P) \le \epsilon + L(f, P) \le L(f) + \epsilon,$$

so $U(f) - L(f) \le \epsilon$. Since this inequality holds for all $\epsilon > 0$, we thus conclude that $U(f) \le L(f)$ (and hence, U(f) = L(f)).

9. Prove that every continuous function $f:[0,1]\to\mathbb{R}$ is Darboux integrable.

Fix $\epsilon > 0$. Since f is continuous on [0,1] compact, f is uniformly continuous. Thus, there is some $\delta > 0$ so that for all $x,y \in [0,1]$, if $|x-y| < \delta$, then $|f(x)-f(y)| < \epsilon$. Let P be a partition of [0,1] with mesh $(P) < \delta$. Then,

$$U(f,P) - L(f,P) = \sum (M(f,[t_{i-1},t_i]) - m(f,[t_{i-1},t_i]))(t_i - t_{i-1}).$$

Since $|t_i - t_{i-1}| < \delta$, we must have $M - m < \epsilon$. Thus,

$$U(f,P) - L(f,P) < \epsilon \sum t_i - t_{i-1} = \epsilon,$$

so f is integrable by the Cauchy Criterion.

10. Prove that if f_n are bounded and integrable on [0,1] and f_n converges to f uniformly on [0,1], then f is integrable on [0,1] and $\int_0^1 f_n \to \int_0^1 f$ as $n \to \infty$.

Given $\epsilon > 0$, we can pick an $N \in \mathbb{N}$ so that, for all $n \geq N$, we have $|f_n(x) - f(x)| < \epsilon$ for all $x \in [a,b]$ (since $f_n \to f$ uniformly). By the Cauchy Criterion, we can also pick a partition P so that $U(f_N,P) - L(f_N,P) < \epsilon$. Now, note that

$$U(f, P) \le U(f_N, P) + U(f - f_N, P) \le U(f_N, P) + \epsilon(b - a).$$

Similarly,

$$L(f, P) \ge L(f_N, P) - L(f - f_N, P) \ge L(f_N, P) - \epsilon(b - a).$$

Thus,

$$U(f,P) - L(f,P) \le U(f_N,P) - L(f_N,P) + 2\epsilon(b-a) < \epsilon + 2\epsilon(b-a).$$

So, by the Cauchy Criterion, f is integrable on [a, b].

Now, observe that

$$\left| \int_a^b f_n(x) \, \mathrm{d}x - \int_a^b f(x) \, \mathrm{d}x \right| \le \left| \int_a^b |f_n(x) - f(x)| \, \mathrm{d}x \right| \le \epsilon (b - a).$$

Thus, $\int_a^b f_n \to \int_a^b f$.

11. Prove that any power series with radius of convergence R and center x_0 converges uniformly on any compact subset of the interval $(x_0 - R, x_0 + R)$.

It suffices to prove that for any $0 \le R_1 < R$, the series converges on $[x_0 - R_1, x_0 + R_1]$. Recall that the series

$$S := \sum_{n=0}^{\infty} a_n (x - x_0)^n$$

converges absolutely for $x \in (x_0 - R, x_0 + R)$.

Thus, if $x \in [x_0 - R_1, x_0 + R_1] \subset (x_0 - R, x_0 + R)$, the series $\sum |a_n|R_1^n$ converges, too. But since $|a_n(x - x_0)^n| \le |a_n|R_1^n$ here, S converges uniformly on $[x_0 - R_1, x_0 + R_1]$ by the Weierstrass M-Test.

12. Prove Banach's Fixed Point Theorem: Let (E,d) be a complete metric space and let $T: E \to E$ be a contraction (i.e. $\exists c \in [0,1), \forall x,y \in E, d(T(x),T(y)) \leq cd(x,y)$), then there exists a unique $p \in E$ so that T(p) = p.

(Uniqueness). Suppose that $x, y \in E$ are fixed points of T. Then,

$$0 \le d(x,y) = d(T(x), T(y)) \le cd(x,y).$$

Since c < 1, we thus conclude that d(x, y) = 0, i.e. x = y.

(Existence). Take $p_1 \in S$ and define a sequence by the recurrence $p_{n+1} = T(p_n)$. Note that for $n \geq 2$, we have

$$d(p_n, p_{n+1}) = d(T(p_{n-1}), T(p_n)) \le c^{n-1}d(p_1, p_2).$$

Thus, for n < m, we get

$$d(p_n, p_m) \le d(p_n, p_{n+1}) + \dots + d(p_{m-1}, p_m) \le \sum_{k=n+1}^m c^{k-1} d(p_1, p_2) \le \sum_{k=n+1}^\infty c^{k-1} d(p_1, p_2).$$

Since $c \in [0,1)$, this geometric series converges, and thus, for any $\epsilon > 0$, we can find a tail $\sum_{k=N}^{\infty} c^{k-1} d(p_1, p_2) < \epsilon$. So, for m > n > N, we therefore get

$$d(p_n, p_m) \le \sum_{k=n+1}^{\infty} c^{k-1} d(p_1, p_2) \le \sum_{k=N}^{\infty} c^{k-1} d(p_1, p_2) < \epsilon,$$

i.e. $\{p_n\}$ is Cauchy. Since (E,d) is complete, $p_n \to p \in E$. Moreover, since T is Lipschitz, it's continuous. So,

$$p = \lim T(p_n) = T(\lim p_n) = T(p),$$

i.e. p is indeed a fixed point.