8. Прави заключения и изводи за файловите системи на различните операционни системи.	8
9. Обяснява основни оператори в shell програмирането. Демонстрира знания за създаване на shell скриптове.	10
10. Прави изводи за виртуализация и контейнери.	8

53

*

ВГРАДЕНИ СИСТЕМИ

- 1. Дефинира и обяснява основни понятия във вградените системи. Посочва и различава основни компоненти във вградените системи. Обяснява характеристиките и особеностите на вградените системи.
 - Понятието "вградени" (*embedded*) се използва като характеристика на определен клас технологии и системи за управление.

Автономни системи за управление с фиксирани цели и задачи, които са поставени в други се определят като "вградени системи", а използваните за изграждането им технологии — като "вградени технологии".

- Обект за управление, който включва:
- □ Датчици (източници за информация или сензори)

Дават информация за:

- о Състояние
- о Стойност
- Положение
- Изпълнителни механизми

Обезпечават управлението на възлите за движение, индикация и преработка на информацията.

• Силови буфери

Обезпечават електрическия интерфейс за съгласуване на работните напрежения и необходимата товароспособност.

Вградена микрокомпютърна система включва следните основни възли:

- Специализиран ЕМК (едночипов микрокомпютър) или наречен още микроконтролер
- Входни буфери (съгласуващи електрически) за въвеждане на информацията от датчиците

Изходни буфери (съгласуващи електрически) за управление на изпълнителните механизми.

Основни характеристики:

А) по отношение на структурата

- Вградените системи се различават както по апаратна реализация, така и по програмно осигуряване.
- Вградените системи се вграждат в конкретно устройство, имат малък обем и се характеризират с ниска консумация. Много често използват акумулаторно захранване.

Вградените системи обикновено разполагат с ограничена захранваща мощност и трябва да имат ефективно управление на захранването.

Б) по отношение на предназначението

• В зависимост от предназначението си, се **характеризират с различна сложност** – от **елементарни** с един микроконтролерен чип, до **комплексни системи**, съставени от множество устройства, периферни и мрежови модули, монтирани на общо шаси или дори интегрирани в общ шкаф.

В) по отношение на функционалността им

- Отличителна характеристика на вградените системи е ограниченият брой предварително дефинирани функции, които са проектирани да изпълняват.
- Системите са тясно специализирани и решават само **определена** задача или сравнително ограничен брой задачи.
- Ресурсите им никога не трябва да се използват напълно и винаги трябва да има резерви.

2. Прави заключения и изводи за разликите между микропроцесор и микроконтролер.

- Микропроцесорът се състои от силиконов чип с аритметично логическо устройство (ALU), контролен блок (CU) и регистри. Обратно, микроконтролерът включва свойствата на микропроцесора, заедно с RAM, ROM, броячи, I / О портове и т.н.
- Микропроцесорът изисква група други чипове, като таймери, контролери за прекъсване и паметта на програмата и данните, което я прави зависима. За разлика от това, микроконтролерът не изисква други хардуерни единици, тъй като вече е активиран с него.
- Неявните I / О портове са осигурени в микроконтролера, докато микропроцесорът не използва вградени I / О портове.

- Микропроцесорът изпълнява операции с общо предназначение. За разлика от това, микроконтролерът изпълнява операции, ориентирани към приложения.
- В микропроцесора основният акцент е върху производителността, поради което се стреми към пазара на висок клас. От друга страна, целта на микроконтролера за вградения пазар.
- Използването на енергия в микроконтролера е по-добро от микропроцесора.

3. Обяснява и различава видовете архитектури.

Архитектура Фон-Нойман:

Основни елементи:

- централен процесор;
- памет и периферни устройства;
- три типа линии за връзка между тях.

Особености:

- обща памет за инструкции и данни;
- обща, двупосочна шина за инструкции и данни;
- еднопосочна адресна шина;
- двупосочна управляваща шина.

Архитектура тип "Харвард":

Основни елементи:

- централен процесор;
- програмна памет;
- памет за данни;
- периферни устройства;
- линии за връзка между тях.

Особености:

 физическо разделяне на паметта на две части – за инструкции и данни, със собствени шини за адреси и данни.

СРАВНВНИЕ МЕЖДУ АРХИТЕКТУРИТЕ НА ФОН НОЙМАН И ХАРВАРД

- **Бързодействие**: при архитектурата тип "Харвард" могат да се извличат едновременно инструкции и данни, което осигурява по-голямо бързодействие.
- Надеждност: при архитектурата тип "Харвард" не може да се записва в програмната памет т.е. Да се повреди програмата.
- Гъвкавост: при архитектурата на Фон Нойман може да се променя съотношението програмна памет/ памет за данни, а при тип "Харвард" са твърдо зададени.
- Апаратна част: наличието на две памети с отделни магистрали за адреси и данни предполага по-сложна апаратна част.

RISC архитектурата е компютър с намален набор от инструкции. Това е тип микропроцесорна архитектура, която използва малък оптимизиран набор от инструкции.

Технологията CISC (Complex Instruction Set Computer) е свързана с традиционните процесори, при които се поддържат множество инструкции, изпълнявани за различно време. Това време е в зависимост от типа на инструкцията, дължината, метода за адресиране на операндите и пр.

Сравнителна таблица:

CISC архитектура	RISC архитектура
1. CISC означава компютър с комплексни	RISC означава компютър с намалена

инструкции.

- 2. Процесорът CSIC има сложни инструкции, които заемат множество часовници за изпълнение.
- 3. Производителността се оптимизира с повече фокус върху хардуера.
- 4. Разполага с блок памет за изпълнение на сложни инструкции.

инструкция.

Процесорите RISC имат прости инструкции, отнемащи около един тактов цикъл.

Производителността се оптимизира с повече фокус върху софтуера

Той няма модул памет и използва отделен хардуер за изпълнение на инструкции

4. Демонстрира знания за архитектурата на съвременен микропроцесор.

Суперскаларна архитектура — изпълнява по 2 инструкции на такт чрез 2 паралелни ковейера(U и V). Възможност за динамично предсказване на преходите и разделена кеш памет за инструкции и за данни. Използва се RISC ядро при запазване на CISC архитектура за "външния свят". Усъвършенствани са средствата за работа в многопроцесорна конфигурация — протокол за поддържане консистентността на вътрешните кеш памети (MESI) и интелигентен програмируем контролер на прекъсванията (APIC).

Съвременни технологии:

Мултимедийни инструкции на процесора са специализирана технология за мултимедийна обработка на данни, която разширява възможностите на процесора, без да променя взаимодействието му с вече съществуващите х86 инструкции.

5

Основни принципи на мултимедийни инструкции:

• Включва нови команди, с цел ускоряване обработката на мултимедийни данни.

Разширява възможностите на процесора без да променя поведението му при работа със съществуващите инструкции.

ММХ технология

• MMX (Multi-Media eXtension) – това е SIMD-разширение за потокова обработка на целочислени данни.

SIMD - single-instruction multiple-data (една инструкция - множество данни) — подход, който използва алгоритм за работа с мултимедийни данни, който се базират на паралелното изпълнение на една операция над няколко числа. За пръв път тази технология се използва при процесорите Pentium MMX.

SSE (Streaming SIMD Extensions) технология

Развитие на идеите SIMD става технология SSE (Streamed SIMD Extensions), за пръв път представена в процесорите Pentium III.

- 5. Модифицира принципна електрическа схема на микроконтролер по зададена задача.
- 6. Изброява базови и периферни компоненти на микроконтролер.

Микроконтролерният чип е силно интегриран с процесор, памет (RAM и ROM), регистри, прекъсващи контролни единици и специални I / О портове.

Базови компоненти:

Централен процесор

Централния процесор се състои от:

- Аритметично & Логическо устройство (АЛУ)
- Регистри
- Управляващо Устройство (УУ).

Процесорът е отговорен за обработката на данни. Как ще се обработват данните, зависи от програмата, която му е зададена да изпълнява. От гледна точка на процесора, програмата е набор от инструкции, които му указват какво да прави.

Програмна памет

- Програмната памет, както подсказва името, служи за съхранение на инструкциите, които изграждат програмата.
- Програмната памет се нарича още ROM (Read Only Memory).

Памет за данни

Служи за съхранение на временни данни, използвани в програмата и резултати, получени от изпълнението й. Паметта за данни се нарича още памет с произволен достъп (RAM - Random Access

Memory). Информацията в RAM се пази само докато е налично захранване. При изключване на захранването, данните в RAM се губят.

Контролер на прекъсванията

Контролерът на прекъсванията приема сигналите за прекъсване, получени от периферните модули, и известява процесора, че е възникнало някакво събитие.

Всеки източник на прекъсване се характеризира със следните атрибути:

- Флаг на прекъсване IF (Interrupt Flag);
- Локален бит за разрешаване на прекъсването IE (Interrupt Enable);
- Подпрограма за обработка на прекъсването (ISR Interrupt Service Routine).

Генераторен блок

Генераторният блок служи да генерира всички необходими **тактови сигнали**, необходими за работата на компонентите на микроконтролера. Типично в микроконтролерите се използват следните видове генератори:

- RC генератор;
- Кварцов или керамичен генератор;

PLL (Phase-locked loop) генератор.

Периферни компоненти: портове, таймери, ШИМ, аналого-цифров преобразувател, аналогов компаратор

7. Обяснява и модифицира блок-схема на вградена система. Свързва компоненти в схема при зададена задача за моделиране на вградена система. Представя графично блок-схема на вградена система.

Блок - схема на вградена система

Електрическа схема с бутон, така че при натискане на бутона да светне светодиода.

8. Избира необходимите хардуерни компоненти при реализирането на вградена система, така че да реши поставената задача.

Дадена е готова верига. Кои хардуерни компоненти ще ви бъдат необходими за да изградите веригата, така че да осветява светодиод в SOS модел. Светодиодът се включваше и изключваше, отново и отново и отново, винаги в един и същ модел.

Хардуерни компоненти:

- 1 светодиод
- 1 220 ома резистор (червен, червен, кафяв, златен)
- 3 10К Ом резистор (кафяв, черен, оранжев, златен)
- 3 моментен бутонен превключвател
- 1 високоговорител
- Джъмперни проводници
- Макет
- Arduino Uno

9. Прави заключения и изводи за захранването и енергийната ефективност.

- Съвременните цифрови устройства, в това число микроконтролерите, се произвеждат по т.нар. CMOS (Complementary Metal-Oxid-Semiconductor) технология.
- Градивните елементи, използвани в тази технология, са MOS транзистори.
- **MOS транзисторът** може да се разглежда като 3-изводно устройство, кое то работи като управлявано с напрежение съпротивление.

- Напрежението, приложено към единия извод, управлява съпротивлението между другите два.
- В цифровите схеми, където се използват напрежения с две нива, ниско (0V) и високо (например 5V), MOS транзисторите работят в ключов режим.

Захранващо напрежение:

- CMOS устройствата използват различни захранващи напрежения: +5V, +3.3V, +2.5V и +1.2V.
- Микроконтролерите използват първите две захранващи напрежения (+5V и +3.3V).

Технология като CMOS се използва в различни чипове като микроконтролери, микропроцесори, SRAM (статична RAM) и други цифрови логически схеми. Тази технология се използва в широк спектър от аналогови схеми, които включват преобразуватели на данни, сензори за изображения и силно вградени приемо-предаватели за няколко вида комуникация.

Предимства:

- CMOS технология В цифровите схеми, където се използват напрежения с две нива, ниско (0V) и високо (например 5V)
- Много ниска статична консумация на енергия
- Висока устойчивост на шум
- Намалете сложността на веригата

10. Анализира и модифицира програмен код, така че да реши поставена задача.