1. (1 point) Let F be the function whose graph is shown below. Evaluate each of the following expressions.

(If a limit does not exist or is undefined, enter "DNE".)

1.
$$\lim_{x \to \infty} F(x) = \underline{\hspace{1cm}}$$

1.
$$\lim_{x \to -1^{-}} F(x) =$$

2. $\lim_{x \to -1^{+}} F(x) =$ ____

3.
$$\lim_{x \to -1} F(x) =$$

4. $F(-1) =$ ____
5. $\lim_{x \to 1^{-}} F(x) =$ ____

4.
$$F(-1) =$$

5.
$$\lim F(x) =$$

$$6. \quad \lim_{x \to 1^{-}} F(x) = \underline{\qquad}$$

0.
$$\lim_{x \to 1^+} F(x) =$$

7.
$$\lim_{x \to 1^+} F(x) =$$
8. $\lim_{x \to 2} F(x) =$

8.
$$\lim_{x \to 3} F(x) =$$

9. $F(3) =$ ____

The graph of y = F(x).

Correct Answers:

- 0
- 0
- 0

- DNE
- −2
- DNE

2. (1 point)

The following limit represents the derivative of some function f at some number a.

$$\lim_{h\to 0}\frac{(1+h)^{10}-1}{h}$$

What are f and a?

$$f(x) = \underline{\hspace{1cm}}$$

$$a = \underline{\hspace{1cm}}$$

$$Correct Answers:$$

3. (1 point) Find the value of the constant a that makes the following function continuous on $(-\infty, \infty)$.

$$f(x) = \begin{cases} \frac{5x^3 + 29x^2 + 4x + 60}{x + 6} & \text{if } x < -6\\ 3x^2 - 6x + a & \text{if } x \ge -6 \end{cases}$$

Correct Answers:

- 52
- **4.** (1 point) Find the value of the constant c that makes the following function continuous on $(-\infty, \infty)$.

$$f(x) = \begin{cases} x^2 - c & \text{if } -\infty < x < 6 \\ cx + 9 & \text{if } x \ge 6 \end{cases}$$

Correct Answers:

- 3.85714
- **5.** (1 point) A function f is said to have a **removable** discontinuity at a if:
- **1.** *f* is either not defined or not continuous at *a*.
- **2.** f(a) could either be defined or redefined so that the new function is continuous at a.

Let
$$f(x) = \frac{2x^2 + 5x - 7}{x - 1}$$
.

Show that f has a removable discontinuity at 1 and determine the value for f(1) that would make f continuous at 1.

Need to redefine f(1) =_____.

Correct Answers:

6. (1 point)

Find the equation of the tangent line to the curve at the given

$$y = 1 + 2x - x^3$$
, (1,2)
 $y = \underline{\hspace{1cm}}$

Correct Answers:

• -x+3

7. (1 point)

If
$$f(x) = x^3 - 5x + 1$$
, find $f'(1)$

f'(1) =____

Use it to find an equation of the tangent line to the parabola $y = x^3 - 5x + 1$ at the point (1,-3).

y = _____

Correct Answers:

- −2
- -2 x 1

8. (1 point)

This limit

 $\lim_{h\to 0} \frac{\sqrt[4]{16+h}-2}{h}$

represents the derivative of some function f at some number a. State this f and a.

a = _______ *f* =

Correct Answers:

- 16
- (x)^.25

9. (1 point) Let

$$f(x) = -3x^3 - 9x + 5$$

 $Generated\ by\ \textcircled{C}WeBWorK, http://webwork.maa.org, Mathematical\ Association\ of\ America$

Use the limit definition of the derivative to calculate the derivative of f:

$$f'(x) =$$
______.

Use the same formula from above to calculate the derivative of this new function (i.e. the second derivative of f):

$$f''(x) =$$
______.

Correct Answers:

- -9*x^2 9
- -18*x

10. (1 point) Let $f(x) = \sqrt{20-x}$

The slope of the tangent line to the graph of f(x) at the point (4,4) is _____.

The equation of the tangent line to the graph of f(x) at (4,4) is y = mx + b for

 $m = \underline{\hspace{1cm}}$

and

-b =____

Hint: the slope at x = 4 is given by

$$m = \lim_{h \to 0} \frac{f(4+h) - f(4)}{h}$$

Correct Answers:

- −0.125
- -0.125
- 4.5