# LAPORAN TUGAS BESAR IF2214 – Probabilitas dan Statistika

# Dipersiapkan oleh:

Muhammad Ariefudin Satria Dharma 119140149

Fahri Novaldi 119140205

Jaya Megelar Cakrawarty 119140227



## DAFTAR ISI

| BAB I            |                                                                              | 3           |
|------------------|------------------------------------------------------------------------------|-------------|
| PENAKS           | SIRAN INTERVAL PARAMETER RATA - RATA POPULASI                                | 3           |
| 1.1.             | Latar Belakang                                                               | 3           |
| 1.2.             | Tabal Data Sampel                                                            | 3           |
| 1.3.             | Nilai Variansi Populasi                                                      | 5           |
| 1.4.             | Diagram Batang Data Sampel                                                   | 5           |
| 1.5.             | Nilai Rata-Rata, Variansi Sampel, Modus, Median, Kuartil Atas, Kuartil Bawah | 6           |
| 1.6.             | Penaksiran Interval.                                                         | 7           |
| 1.6.1.           | Penaksiran Interval Sampel dengan Tingkat Kepercayaan 95%                    | 7           |
| 1.6.2.           | Penaksiran Interval Sampel dengan Tingkat Kepercayaan 99%                    | 7           |
| 1.7.             | Kesimpulan                                                                   | 8           |
| BAB II           |                                                                              | 9           |
| PENGU            | IIAN HIPOTESIS STATISTIK SATU ARAH DAN DUA ARAH                              | 9           |
| 2.1              | Latar Belakang                                                               | 9           |
| 2.2              | Sampel Data                                                                  | 9           |
| 2.3              | Diagram Sampel data dan Populasi                                             | 10          |
| 2.4              | Perhitungan Nilai Variansi Sampel dan Populasi                               | 11          |
| 2.5              | Perhitungan Nilai Rata-rata Sampel dan Populasi                              | 11          |
| 2.6              | Pengujian Hipotesis                                                          | 12          |
| 2.6.1            | Pengujian Hipotesis Satu Arah                                                | 12          |
| 2.6.2            | Pengujian Hipotesis Dua Arah                                                 | 13          |
| 2.7              | Kesimpulan                                                                   | 13          |
| BAB III          |                                                                              | 15          |
| PENGHI<br>SEDERH | TUNGAN KOEFISIEN KORELASI DAN PEMODELAN ANALISIS REGRESI L<br>HANA           | INIER<br>15 |
| 3.1              | Latar Belakang                                                               | 15          |
| 3.2              | Data Sampel dan Populasi                                                     |             |
| 3.3              | Koefisien Korelasi Data                                                      | 16          |
| 3.4              | Kesimpulan dari Nilai Koefisien Korelasi Data                                | 17          |
| 3.5              | Permodelan Regresi Linier                                                    |             |
| 3.6              | Prediksi Regresi Linier                                                      |             |
| 3.7              | Uji T                                                                        | 19          |
| DAFTAI           | R PUSTAKA                                                                    |             |
| I AMDID          | DANI                                                                         | 22          |

#### **BABI**

## PENAKSIRAN INTERVAL PARAMETER RATA - RATA POPULASI

#### 1.1. Latar Belakang

Vitamin C adalah unsur penting yang harus dimasukkan dalam pola makan harian kita. Konsumsi sumber makanan kaya Vitamin C membantu meningkatkan imun tubuh, yang diperlukan tubuh untuk melawan penyakit. Menambah asupan makanan tinggi Vitamin C atau menggunakannya secara topikal dapat membantu memerangi masalah kulit dan memiliki kulit yang tampak lebih muda. Vitamin C kaya akan antioksidan dan bisa membantu mengurangi risiko penyakit kronis, termasuk penyakit jantung. Ketika menyebut Vitamin C, banyak orang langsung mengacu pada buah jeruk. Buah-buahan sitrus, seperti jeruk, memang merupakan salah satu sumber terbaik Vitamin C. Namun, selain jeruk, ada sejumlah buah dan sayur tinggi Vitamin C yang juga bisa dikonsumsi sehari-hari.

Kandungan nutrisi pada buah tentu memiliki nilai yang berbeda, tidak semua buah mengandung banyak Vitamin C. Dalam hal ini penerapan materi Probabilitas dan Statistika mengenai Penaksiran Interval akan dilakukan terhadap kandungan Vitamin C yang terdapat pada buah dengan mengambil 30 sampel buah yang berbeda.

#### **1.2.** Tabal Data Sampel

Data pada tabel merupakan nilai kandungan Vitamin C pada buah yang berbeda, data yang didapatkan menunjukkan setiap buat memiliki kandungan Vitamin C yang bervariasi, data kandungan Vitamin C ini didapatkan dari web nilaigizi.

| No. | Nama Buah       | Kandungan Vitamin C<br>(mg) |
|-----|-----------------|-----------------------------|
| 1   | Alpukat         | 13                          |
| 2   | Anggur          | 3                           |
| 3   | Apel            | 5                           |
| 4   | Belimbing       | 35                          |
| 5   | Buah Naga Merah | 1                           |
| 6   | Cempedak        | 15                          |
| 7   | Duku            | 9                           |

| 8  | Durian        | 53  |
|----|---------------|-----|
| 9  | Jambu Air     | 5   |
| 10 | Jambu Biji    | 87  |
| 11 | Jambu Monyet  | 197 |
| 12 | Jeruk Garut   | 31  |
| 13 | Kedondong     | 32  |
| 14 | Kelapa Muda   | 4   |
| 15 | Kesemek       | 11  |
| 16 | Lemon         | 50  |
| 17 | Mangga        | 12  |
| 18 | Mangga Golek  | 65  |
| 19 | Manggis       | 5   |
| 20 | Markisa       | 10  |
| 21 | Matoa         | 54  |
| 22 | Nanas         | 22  |
| 23 | Pepaya        | 78  |
| 24 | Piasang Ambon | 9   |
| 25 | Pisang Kepok  | 9   |
| 26 | Rambutan      | 58  |
| 27 | Salak         | 2   |
| 28 | Semangka      | 6   |
| 29 | Sirsak        | 20  |
| 30 | Srikaya       | 30  |

Tabel 1. Data Sampel Vitamin C pada Buah

## 1.3. Nilai Variansi Populasi

Beradasarkan perhitungan menggunakan exel dengan menggunakan fungsi "=VAR.S" didapatkan nilai varansi sampel sebesar 1569,689 = 1570. Untuk nilai variansi populasi, kami melakukan klaim bahwa nilainya akan lebih besar dibandingkan dengan nilai variansi sampel yang telah didapatkan. Maka dari itu, nilai variansi populasi yang kami gunakan adalah 1580.

## 1.4. Diagram Batang Data Sampel



Diagram 1. Diagram Batang Sampel data

#### 1.5. Nilai Rata-Rata, Variansi Sampel, Modus, Median, Kuartil Atas, Kuartil Bawah

Dalam mencari nilai rata rata dari data Kandungan Vitamin C digunakan fungsi pada Excel, yaitu dengan menggunakan fungsi "=AVERAGE". Pada penggunaan fungsi ini didapatkan nilai rata rata sebesar 31, 033 = 31

$$\bar{x} = \frac{\sum_{i=1}^{n} x^{i}}{n} = \frac{13+3+5+35+1+15+9+...+30}{30} = \frac{931}{30} = 31,033 = 31$$

Untuk mencari nilai variansi sampel dari Kandungan Vitamin C pada buah digunakan fungsi pada Exel, yaitu dengan menggunakan fungsi " = VAR.S". Dari penggunaan fungsi tersebut didapatkan nilai variansi sampel sebesar 1569,689 = 1570

$$\sigma^2 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n - 1}$$

$$\sigma^2 = \frac{(13 - 31,033)^2 + (3 - 31,033)^2 + \dots + (30 - 31,033)^2}{30 - 1} = 1569,689 = 1570$$

Untuk mencari modus digunakan fungsi pada Exel, yaitu dengan menggunakan fungsi "=MODE". Dari penggunaan fungsi ini didapatkan nilai modus sebesar 5.

Dalam mencari nilai rata rata dari data Kandungan Vitamin C digunakan fungsi pada Exel, yaitu dengan menggunakan fungsi "=MEDIAN". Pada penggunaan fungsi ini didapatkan nilai rata rata sebesar 14

$$Me = \frac{1}{2} \left( X_{\frac{n}{2}} + X_{\left(\frac{n}{2}+1\right)} \right) = \frac{1}{2} \left( \frac{30}{2} + \left( \frac{30}{2} + 1 \right) \right) = \frac{1}{2} (15 + 16) = 15,5$$

Data ke 
$$15.5 = \frac{1}{2}(13+15) = 14$$

Pada pencarian nilai maksimum dan minimum, digunakan fungsi excel "=MAX" untuk mencari nilai maksimum dan "=MIN" untuk mencari nilai minimum. Hasil yang didapatkan dalam pencarian menggunakan fungsi ini adalah nilai maksimum sebesar 197 dan nilai minimum sebesar 1.

Berdasarkan perhitungan yang telah dilakukan dari data yang telah didapatkan, besar nilai quartil bawah sebesar 6

$$Q1 = x\left(\frac{n+2}{4}\right)$$
 untuk n genap dan  $n+1$  tidak habis dibagi 4

$$Q1 = x\left(\frac{30+2}{4}\right) = x(8) \ data \ ke \ 8 = 6$$

Dan untuk besar nilai kuartil atas dari data yang telah dikumpulkan, didapatkan nilai quartil atas sebesar 50

$$Q3 = x\left(\frac{3n+2}{4}\right) untuk \ n \ genap \ dan \ n+1 \ tidak \ habis \ dibagi \ 4$$

$$Q3 = x\left(\frac{3.30 + 2}{4}\right) = x(23) \ data \ ke \ 23 = 50$$

#### 1.6. Penaksiran Interval

Variansi Sampel:

$$\sigma^2 = 1569.689$$

Standar Deviasi Populasi:

$$\sigma = \sqrt{1569,689} = 39,619$$

$$P\left(\bar{x} - z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} < \mu < \bar{x} + z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right) = 1 - \alpha$$

## 1.6.1. Penaksiran Interval Sampel dengan Tingkat Kepercayaan 95%

Nilai taksiran  $\mu$  menggunakan rerata sampel yang bernilai 31. Sedangkan untuk nilai  $\alpha$  dapat dihasilkan dari persamaan 1 –  $\alpha$  = 95% sehingga  $\alpha$  bernilai 0,05. Nilai z dengan luas 0,025 berada di bagian kanan dan 0,975 di bagian kiri adalah  $\frac{Z_{0,05}}{2} = Z_{0,025} = 1,96$  sehingga selang kepercayaan 95% yang yang dicari dapat menggunakan persamaan :

$$\left(\bar{x} - z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} < \mu < \bar{x} + z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right)$$

$$\left(31 - (1,96)\frac{39,619}{\sqrt{30}} < \mu < 31 + (1,96)\frac{39,619}{\sqrt{30}}\right)$$

Persamaan tersebut akan menghasilkan interval:

$$16,822 < \mu < 45,177$$

#### 1.6.2. Penaksiran Interval Sampel dengan Tingkat Kepercayaan 99%

Nilai taksiran  $\mu$  menggunakan nilai rerata sampel bernilai 31 Sedangkan untuk nilai  $\alpha$  dapat dihasilkan dari persamaan  $1-\alpha=99\%$  sehingga  $\infty$  bernilai 0,01. Nilai z yang memiliki luas 0.005 berada di bagian kanan dan 0.995 di bagian kiri adalah  $\frac{Z_{0,01}}{2}=Z_{0,005}=2,575$  sehingga selang kepercayaan 99% yang dicari dapat menggunakan persamaan :

$$\left(\bar{x} - z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} < \mu < \bar{x} + z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right)$$

$$\left(31 - (2,575) \frac{39,619}{\sqrt{30}} < \mu < 31 + (2,575) \frac{39,619}{\sqrt{30}}\right)$$

Persamaan tersebut akan menghasilkan interval:

$$12,373 < \mu < 49,626$$

## 1.7. Kesimpulan

Berdasarkan hasil pencarian pada selang interval dengan tingkat kepercayaan yang berbeda (95% dan 99%), dapat disimpulkan bahwa semakin tinggi tingkat kepercayaan maka interval yang dihasilkan semakin besar. Selain itu, rerata sampel dan variansi juga berpengaruh terhadap penaksiran suatu interval. Pada kasus ini, nilai kandungan Vitamin C yang bervariasi menyebabkan interval yang cukup luas.

#### **BAB II**

#### PENGUJIAN HIPOTESIS STATISTIK SATU ARAH DAN DUA ARAH

## 2.1 Latar Belakang

Tekanan darah adalah tekanan dari sirkulasi darah terhadap dinding syaraf, hal ini disebabkan oleh jantung yang memompa darah. Tekanan darah dikatakan normal jika memiliki nilai kurang dari 120. Angka tekanan darah yang tidak normal dapat berpengaruh pada kesehatan seseorang dengan menimbulkan banyak penyakit. Oleh karena itu kami berniat untuk mengunakan data tekanan darah orang diumur 30-50 tahun dan melakukan uji hipotesis pada data tersebut.

## 2.2 Sampel Data

Data pada tabel berikut ini merupakan sampel data tekanan darah (*resting blood pressure in mmHg*) pada rentang umur 30-50 tahun. sampel ini di dapatkan dari sebuah forum penyedia dataset untuk kebutuhan riset yaitu Kaggle. dataset yang disediakan berisi 303 sampel data namun, untuk memudahkan pengolahan data disarankan untuk menggunakan hanya 30 sampel secara acak.

|        |      | T                |                        | 1                        |
|--------|------|------------------|------------------------|--------------------------|
| Sampel | Umur | Tekanan<br>Darah | $(x_i - \overline{x})$ | $(x_i - \overline{x})^2$ |
| 1      |      | $(mmHg)(x_i)$    |                        |                          |
| A      | 50   | 120              | -4.86207               | 23.63971                 |
| В      | 50   | 129              | 4.137931               | 17.12247                 |
| С      | 50   | 140              | 15.13793               | 229.157                  |
| D      | 50   | 144              | 19.13793               | 366.2604                 |
| Е      | 49   | 130              | 5.137931               | 26.39834                 |
| F      | 48   | 130              | 5.137931               | 26.39834                 |
| G      | 47   | 110              | -14.8621               | 220.8811                 |
| Н      | 47   | 112              | -12.8621               | 165.4328                 |
| Ι      | 46   | 142              | 17.13793               | 293.7087                 |
| J      | 45   | 110              | -14.8621               | 220.8811                 |
| K      | 44   | 140              | 15.13793               | 229.157                  |
| L      | 44   | 108              | -16.8621               | 284.3294                 |
| M      | 44   | 120              | -4.86207               | 23.63971                 |
| N      | 44   | 112              | -12.8621               | 165.4328                 |
| О      | 44   | 120              | -4.86207               | 23.63971                 |
| P      | 42   | 136              | 11.13793               | 124.0535                 |
| Q      | 42   | 148              | 23.13793               | 535.3639                 |
| R      | 41   | 112              | -12.8621               | 165.4328                 |
| S      | 41   | 130              | 5.137931               | 26.39834                 |
| T      | 41   | 112              | -12.8621               | 165.4328                 |
| U      | 41   | 110              | -14.8621               | 220.8811                 |
| V      | 40   | 110              | -14.8621               | 220.8811                 |

| W        | 38       | 138      | 13.13793 | 172.6052 |
|----------|----------|----------|----------|----------|
| X        | 38       | 138      | 13.13793 | 172.6052 |
| Y        | 35       | 138      | 13.13793 | 172.6052 |
| Z        | 35       | 120      | -4.86207 | 23.63971 |
| AA       | 35       | 126      | 1.137931 | 1.294887 |
| AB       | 34       | 118      | -6.86207 | 47.08799 |
| AC       | 34       | 118      | -6.86207 | 47.08799 |
| RATA-    |          |          |          |          |
| RATA     | 42.72414 | 124.8621 |          |          |
| VARIANSI | 26.27833 | 157.5517 |          |          |

Tabel 2. Sampel data Tekanan darah rentang 30 – 50 tahun

## 2.3 Diagram Sampel data dan Populasi



Diagram 2. Diagram Batang Sampel data



Diagram 3. Diagram Batang Populasi data dengan densitas sampel

## 2.4 Perhitungan Nilai Variansi Sampel dan Populasi

Untuk mendapatkan nilai variansi data sampel acak data tekanan darah yang diambil dari populasi, persamaan matematis yang akan digunakan untuk mencari variansi sample adalah sebagai berikut

$$S^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n-1}$$

Dengan bantuan fungsi "VAR.S" dari excel, Sehingga didapatkan nilai  $S^2 = 157.5517$  sebagai variansi sampel data tekanan darah.

Kemudian Untuk mendapatkan nilai variansi populasi, persamaan matematis yang akan digunakan untuk mencari variansi sample adalah sebagai berikut

$$\sigma^2 = \frac{\sum_{i=1}^n (x_i - \mu)^2}{N}$$

Berbeda dengan variansi sampel, perhitungan variansi populasi sangatlah panjang. Penyebabnya adalah jumlah populasi yang digunakan sebanyak 94 data, kami menggunakan bantuan bahasa pemrograman python untuk memudahkan pengolahan data variansi populasi karena sangat tidak efisien jika dimuat langsung pada dokumen ataupun spreadsheet. Maka diperoleh lah nilai variansi populasi  $\sigma^2 = 161.252001$ 

#### 2.5 Perhitungan Nilai Rata-rata Sampel dan Populasi

Untuk mendapatkan nilai rata-rata sampel acak data tekanan darah yang diambil dari populasi, persamaan matematis yang akan digunakan untuk mencari nilai rata-rata sample adalah

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$

Dengan bantuan fungsi "AVERAGE" dari excel, Sehingga didapatkan nilai  $\bar{x}=124.862$  sebagai variansi sampel data tekanan darah.

Kemudian Untuk mendapatkan nilai rata-rata populasi, persamaan matematis yang akan digunakan untuk mencari variansi sample adalah sebagai berikut

$$\mu = \frac{\sum_{i=1}^{n} x_i}{N}$$

Berbeda dengan variansi sampel, perhitungan nilai rata-rata populasi sangatlah panjang. Penyebabnya adalah jumlah populasi yang digunakan sebanyak 94 data, kami menggunakan bantuan bahasa pemrograman python untuk memudahkan pengolahan data variansi populasi karena sangat tidak efisien jika dimuat langsung pada dokumen ataupun spreadsheet. Maka diperoleh lah nilai variansi populasi  $\mu=124.606383$ .

## 2.6 Pengujian Hipotesis

#### 2.6.1 Pengujian Hipotesis Satu Arah

Dari nilai rata-rata sampel yang diperoleh maka dapat diketahui rumusan hipotesis statistiknya untuk mengecek apakah data rata-rata laju pertumbuhan penduduk yang ada benar-benar valid yaitu :

$$H_0: \mu = 124.606383$$

$$H_1: \mu > 124.606383$$

Dengan tingkat kepercayaan 95% atau signifikansi yaitu  $\alpha=5\%$ . Nilai kritisnya adalah  $Z_{0.05}=1,645$  yang didapat dari tabel distribusi normal. Dengan sampel berukuran n=30, simpangan baku sampel  $S=\sqrt{S^2}=\sqrt{157.5517}=12.55196$  dan rata-rata sampel  $\bar{x}=124.862$ , maka pengujian ini dapat kita cari dengan cara sebagai berikut



$$Z_h = \frac{\bar{X} - \mu_0}{S/\sqrt{n}} = \frac{124.862 - 124.606383}{12.55196/\sqrt{30}} = 0.1115420993$$

#### 2.6.2 Pengujian Hipotesis Dua Arah

Dari nilai rata-rata sampel yang diperoleh maka dapat diketahui rumusan hipotesis statistiknya untuk mengecek apakah data rata-rata laju pertumbuhan penduduk yang ada benar-benar valid yaitu :

$$H_0: \mu = 124.606383$$

$$H_1: \mu \neq 124.606383$$

Dengan tingkat kepercayaan 95% atau signifikansi yaitu  $\alpha=5\%$ . Maka Nilai kritis yang akan diuji dari 2 arah sebesar  $\alpha_{/2}=2.5\%$ , Nilai kritisnya adalah  $Z_{0.025}=1,96$  yang didapat dari tabel distribusi normal. Dengan sampel berukuran n=30, simpangan baku sampel  $S=\sqrt{S^2}=\sqrt{157.5517}=12.55196$  dan rata-rata sampel  $\bar{x}=124.862$ , maka pengujian ini dapat kita cari dengan cara sebagai berikut



$$Z_h = \frac{\bar{X} - \mu_0}{S/\sqrt{n}} = \frac{124.862 - 124.606383}{12.55196/\sqrt{30}} = 0.1115420993$$

#### 2.7 Kesimpulan

Berdasarkan hasil pengujian hipotesis yang dilakukan secara satu arah, nilai  $Z_h=0.1115420993$  berada di luar daerah penolakan hipotesis, sehingga dapat disimpulkan hipotesis  $H_0$  adalah benar dan menyebabkan  $H_1$  mengalami penolakan. Begitu juga dengan pengujian hipotesis dua arah, walaupun daerah penolakannya berubah nilai  $Z_h=0.1115420993$  masih berada di luar daerah penolakan hipotesis. Sehingga  $H_1$  masih mengalami penolakan.

Kesimpulan yang dapat kita tarik adalah pengambilan sampel dan perhitungan rata-rata tekanan darah tersebut adalah valid dan sudah teruji secara 1 arah maupun 2 arah.

#### **BAB III**

# PENGHITUNGAN KOEFISIEN KORELASI DAN PEMODELAN ANALISIS REGRESI LINIER SEDERHANA

## 3.1 Latar Belakang

Kebahagiaan bagi setiap penduduk negara merupakan hal yang sangat penting untuk suatu negara, oleh karena itu United Nations Sustainable Development Solutions Network (SDSN) membuat laporan nilai kebahagiaan negara-negara di seluruh dunia yang diantaranya berisikan *Happiness Score* dan GDP per capita yang setelah kami perhatikan negara dengan GDP yang rendah maka happiness score nya pun ikut rendah begitu juga sebaliknya. Oleh karena itu kami ingin membuat model menggunakan metode regresi linier sederhana untuk memprediksi memprediksi *Happiness Score* yang dimiliki Suatu negara berdasarkan GDP per capita nya.

## 3.2 Data Sampel dan Populasi

| Index | Country or region | GDP per capita (X) | Happiness<br>Score (Y) | <i>X</i> <sup>2</sup> | <i>Y</i> <sup>2</sup> | XY       |
|-------|-------------------|--------------------|------------------------|-----------------------|-----------------------|----------|
| 92    | China             | 1.029              | 5.191                  | 1.058841              | 26.94648              | 5.341539 |
| 27    | Saudi Arabia      | 1.403              | 6.375                  | 1.968409              | 40.64063              | 8.944125 |
| 150   | Yemen             | 0.287              | 3.38                   | 0.082369              | 11.4244               | 0.97006  |
| 65    | Portugal          | 1.221              | 5.693                  | 1.490841              | 32.41025              | 6.951153 |
| 43    | Slovenia          | 1.258              | 6.118                  | 1.582564              | 37.42992              | 7.696444 |
| 41    | Lithuania         | 1.238              | 6.149                  | 1.532644              | 37.8102               | 7.612462 |
| 130   | Myanmar           | 0.71               | 4.36                   | 0.5041                | 19.0096               | 3.0956   |
| 123   | Tunisia           | 0.921              | 4.461                  | 0.848241              | 19.90052              | 4.108581 |
| 112   | Namibia           | 0.879              | 4.639                  | 0.772641              | 21.52032              | 4.077681 |
| 9     | Austria           | 1.376              | 7.246                  | 1.893376              | 52.50452              | 9.970496 |
| 121   | Mauritania        | 0.57               | 4.49                   | 0.3249                | 20.1601               | 2.5593   |
| 144   | Burundi           | 0.046              | 3.775                  | 0.002116              | 14.25063              | 0.17365  |
| 38    | Trinidad & Tobago | 1.231              | 6.192                  | 1.515361              | 38.34086              | 7.622352 |
| 137   | Zambia            | 0.578              | 4.107                  | 0.334084              | 16.86745              | 2.373846 |
| 98    | Ivory Coast       | 0.569              | 4.944                  | 0.323761              | 24.44314              | 2.813136 |
| 147   | Botswana          | 1.041              | 3.488                  | 1.083681              | 12.16614              | 3.631008 |
| 63    | Northern Cyprus   | 1.263              | 5.718                  | 1.595169              | 32.69552              | 7.221834 |
| 52    | Latvia            | 1.187              | 5.94                   | 1.408969              | 35.2836               | 7.05078  |
| 59    | Kazakhstan        | 1.173              | 5.809                  | 1.375929              | 33.74448              | 6.813957 |
| 128   | Sierra Leone      | 0.268              | 4.374                  | 0.071824              | 19.13188              | 1.172232 |
| 58    | Honduras          | 0.642              | 5.86                   | 0.412164              | 34.3396               | 3.76212  |
| 125   | Iraq              | 1.043              | 4.437                  | 1.087849              | 19.68697              | 4.627791 |
| 62    | Paraguay          | 0.855              | 5.743                  | 0.731025              | 32.98205              | 4.910265 |
| 54    | Estonia           | 1.237              | 5.893                  | 1.530169              | 34.72745              | 7.289641 |
| 80    | Belarus           | 1.067              | 5.323                  | 1.138489              | 28.33433              | 5.679641 |
| 13    | Luxembourg        | 1.609              | 7.09                   | 2.588881              | 50.2681               | 11.40781 |
| 122   | Mozambique        | 0.204              | 4.466                  | 0.041616              | 19.94516              | 0.911064 |
| 16    | Germany           | 1.373              | 6.985                  | 1.885129              | 48.79023              | 9.590405 |
| 73    | Tajikistan        | 0.493              | 5.467                  | 0.243049              | 29.88809              | 2.695231 |

| 36 | Bahrain | 1.362 | 6.199 | 1.855044 | 38.4276 | 8.443038 |
|----|---------|-------|-------|----------|---------|----------|
|----|---------|-------|-------|----------|---------|----------|

Tabel 3. Sampel data (30) happiness score yang diambil dari dataset

Untuk data populasinya tidak dapat dimuat dalah dokumen secara lengkap, namun akan kami lampirkan dalam lampiran.

|       | GDP per capita | Score      |
|-------|----------------|------------|
| count | 156.000000     | 156.000000 |
| mean  | 0.905147       | 5.407096   |
| std   | 0.398389       | 1.113120   |
| min   | 0.000000       | 2.853000   |
| 25%   | 0.602750       | 4.544500   |
| 50%   | 0.960000       | 5.379500   |
| 75%   | 1.232500       | 6.184500   |
| max   | 1.684000       | 7.769000   |

Tabel 4. Deskripsi ringkas tentang Populasi data

#### 3.3 Koefisien Korelasi Data

Untuk mencari Koefisien korelasi data rumus yang digunakan adalah adalah :

$$r = \frac{n \sum XY - \sum X \sum Y}{\sqrt{[n(\sum X^2) - (\sum X)^2][n(\sum Y^2) - (\sum Y)^2]}}$$

Dalam perhitungan Koefisien korelasi data, kami menggunakan bahasa pemrograman python agar hasil perhitungan lebih presisi dan efisien, berikut adalah hasil perhitungan yang di dapatkan

$$\Sigma XY = 818.066182$$
 $\Sigma X = 141.203$ 
 $\Sigma Y = 843.507$ 
 $\Sigma X^2 = 152.41022900000002$ 
 $(\Sigma X)^2 = 19938.287209000002$ 
 $\Sigma Y^2 = 4752.974011$ 
 $(\Sigma Y)^2 = 711504.0590489999$ 
 $\Sigma Y = 0.7938828678781272$ 

$$r = \frac{156 \left(818.066182\right) - \left(141.203\right) \left(843.507\right)}{\sqrt{\left[156 \left(152.410229\right) - \left(19938.287209\right)\right] \left[156 \left(4752.974011\right) - \left(711504.059048\right)\right]}}$$

 $r \approx 0.7938828678781272$ 

#### 3.4 Kesimpulan dari Nilai Koefisien Korelasi Data

Berdasarkan perhitungan diperoleh hasil koefisien korelasi data adalah  $r \approx 0.7938828678781272$ . Maka jika dilihat dari tabel 5 dapat diperoleh kesimpulan bahwa nilai koefisien relasi antara Nilai *Gross Domestic Product* atau GDP suatu negara dengan *Happiness Score* warga negara tersebut berada di antara interval 0.600-0.799 yang artinya keduanya memiliki tingkat hubungan yang Kuat. Sehingga salah satu variable ini bisa dijadikan sebagai *predictor*.

| Interval Koefisien | Tingkat Hubungan |
|--------------------|------------------|
| 0,000-0,199        | Sangat Rendah    |
| 0,200-0,399        | Rendah           |
| 0,400-0,599        | Sedang           |
| 0,600-0,799        | Kuat             |
| 0,800-1,000        | Sangat Kuat      |

Tabel 5. Interpretasi koefisien korelasi

#### 3.5 Permodelan Regresi Linier

Dalam pemodelan regresi linier dapat dilakukan dengan menggunakkan cara di bawah ini. Regresi linier dapat diperoleh dengan persamaan:

$$\hat{Y} = a + bX$$

**I.** nilai a dapat diperoleh dari persamaan

$$a = \frac{\sum Y \sum X^2 - \sum X \sum XY}{n(\sum X^2) - (\sum X)^2}$$

Dalam perhitungan ini, kami menggunakan bahasa pemrograman python agar hasil perhitungan lebih presisi dan efisien, berikut adalah hasil perhitungan yang di dapatkan

$$a = \frac{(843.507)(152.410229) - (141.203)(818.066182)}{156(152.410229) - (711504.0590489999)} \approx 3.399345178292416$$

**II.** nilai *b* dapat diperoleh dari persamaan

$$b = \frac{n\sum XY - \sum X\sum Y}{n(\sum X^2) - (\sum X)^2}$$

Dalam perhitungan ini, kami menggunakan bahasa pemrograman python agar hasil perhitungan lebih presisi dan efisien, berikut adalah hasil perhitungan yang di dapatkan

$$b = \frac{156(818.066182) - (141.203)(843.507)}{156(152.410229) - (711504.0590489999)} \approx 2.2181480010083603$$

Sehingga model regresi linier yang diperoleh adalah dari nilai  $a \approx 3.399345178292416$  dan  $b \approx 2.2181480010083603$  akan disubstitusi ke persamaan regresi linear yang dapat digunakan untuk memprediksi nilai Y, sehingga menjadi

$$\hat{Y} = 3.399345178292416 + 2.2181480010083603X$$



Jika diplot ke dalam Grafik, garis persamaan regresi linear dengan titik populasi tidak begitu tersebar jauh, sehingga persamaan regresi linear ini cukup reliabel

## 3.6 Prediksi Regresi Linier

Untuk menguji kehandalan model regresi ini, maka kita dapat menggunakan salah satu sample dengan studi kasus berikut :

"Pada tahun 2019, Gross Domestic Produk Indonesia adalah 0.931 per kapita. Berapakah index kesejahteraan penduduk Indonesia pada tahun 2019?"

Dari contoh kasus ini, kita dapat memprediksi index kesejahteraan penduduk dengan menggunakan persamaan regresi linear,

$$\hat{Y} = 3.399345178292416 + (2.2181480010083603)(0.931)$$

$$\hat{Y} = 5.464441$$

Menurut hasil prediksi dari persamaan ini, Index kesejahteraan penduduk Indonesia adalah 5.464441.

Actual Happiness Score Indonesia = 5.192 Predicted Happiness Score Indonesia = 5.464441



Jika dilihat dari data sebenarnya, kesejahteraan penduduk Indonesia adalah 5.192. bisa dilihat pada grafik, hasil prediksi menunjukan nilai yang hampir mendekati nilai sebenarnya. Maka bisa disimpulkan, hasil prediksi dari persamaan regresi linear ini cukup reliabel.

#### 3.7 Uji T

Kemudian Langkah selanjutnya adalah uji T, Hipotesis yang diajukan adalah

 $H_0: \beta = 0$ ; Nilai GDP tidak berpengaruh terhadap happiness score

 $H_1: \beta \neq 0$ ; Nilai GDP berpengaruh terhadap happiness score

Dengan parameter a = 0.05; r = 0.7938828678781272;

$$df = n - k = 156 - 2 = 154$$

Maka dapat diperoleh

$$t_{hitung} = \frac{r\sqrt{n-2}}{\sqrt{1-r^2}} = \frac{0.7938828678781272\sqrt{156-2}}{\sqrt{1-0.7938828678781272^2}} = 21.70000054478138$$

Dengan menggunakan tabel uji T untuk taraf signifikansi a=0.05 dan df=154 maka memperoleh nilai  $t_{table}\approx 1.66$ .

Membandingkan  $t_{hitung}$  dengan  $t_{table}$ ,

$$t_{hitung} > t_{table} \rightarrow 21.7 > 1.66$$

Kesimpulannya adalah nilai  $t_{hitung} > t_{table}$  sehingga bisa dikatakan bahwa adanya pengaruh nyata dan signifikan variable predictor yaitu GDP terhadap variable response yaitu happiness score dengan taraf signifikansi 5%.

## **DAFTAR PUSTAKA**

- [1] "Nilai Gizi," [Online]. Available: <a href="https://nilaigizi.com/">https://nilaigizi.com/</a> . [Diakses 30 April 2021].
- [2] "Heart Decease UCL," [Online]. Available: <a href="https://www.kaggle.com/ronitf/heart-disease-uci">https://www.kaggle.com/ronitf/heart-disease-uci</a> . [Diakses 30 April 2021].
- [3] "World Happiness Report," [Online]. Available: <a href="https://www.kaggle.com/unsdsn/world-happiness?select=2019.csv">https://www.kaggle.com/unsdsn/world-happiness?select=2019.csv</a> . [Diakses 30 April 2021].
- [4] "DataFrame," [Online]. Available: <a href="https://pandas.pydata.org/pandas-docs/stable/reference/frame.html">https://pandas.pydata.org/pandas-docs/stable/reference/frame.html</a> [Diakses 30 April 2021].

#### **LAMPIRAN**

## 1. Lampiran BAB I – Penaksiran Data





















# 2. Lampiran BAB II – PENGUJIAN HIPOTESIS STATISTIK SATU ARAH DAN DUA ARAH

Link dataset: https://www.kaggle.com/ronitf/heart-disease-uci



| 1  | Α      | В       | С                | D    | E       | F | G      | Н                | I         | J               | K | L | М |
|----|--------|---------|------------------|------|---------|---|--------|------------------|-----------|-----------------|---|---|---|
| 1  | Sampel | Umur    | Tekanan<br>Darah |      |         |   | Sampel | Tekanan<br>Darah | (xi-xbar) | (xi-<br>xbar)^2 |   |   |   |
| 2  | Α      | 50      | 120              | AVG  | 124.862 |   | Α      | 120              | -4.86207  | 23.6397         |   |   |   |
| 3  | В      | 50      | 129              | VARS | 157.552 |   | В      | 129              | 4.13793   | 17.1225         |   |   |   |
| 4  | С      | 50      | 140              |      |         |   | С      | 140              | 15.1379   | 229.157         |   |   |   |
| 5  | D      | 50      | 144              |      |         |   | D      | 144              | 19.1379   | 366.26          |   |   |   |
| 6  | E      | 49      | 130              |      |         |   | E      | 130              | 5.13793   | 26.3983         |   |   |   |
| 7  | F      | 48      | 130              |      |         |   | F      | 130              | 5.13793   | 26.3983         |   |   |   |
| 8  | G      | 47      | 110              |      |         |   | G      | 110              | -14.8621  | 220.881         |   |   |   |
| 9  | Н      | 47      | 112              |      |         |   | Н      | 112              | -12.8621  | 165.433         |   |   |   |
| 10 | ı      | 46      | 142              |      |         |   | I      | 142              | 17.1379   | 293.709         |   |   |   |
| 11 | J      | 45      | 110              |      |         |   | J      | 110              | -14.8621  | 220.881         |   |   |   |
| 12 | K      | 44      | 140              |      |         |   | K      | 140              | 15.1379   | 229.157         |   |   |   |
| 13 | L      | 44      | 108              |      |         |   | L      | 108              | -16.8621  | 284.329         |   |   |   |
| 14 | M      | 44      | 120              |      |         |   | M      | 120              | -4.86207  | 23.6397         |   |   |   |
| 15 | N      | 44      | 112              |      |         |   | N      | 112              | -12.8621  | 165.433         |   |   |   |
| 16 | 0      | 44      | 120              |      |         |   | 0      | 120              | -4.86207  | 23.6397         |   |   |   |
| 17 | Р      | 42      | 136              |      |         |   | Р      | 136              | 11.1379   | 124.054         |   |   |   |
| 18 | Q      | 42      | 148              |      |         |   | Q      | 148              | 23.1379   | 535.364         |   |   |   |
| 19 | R      | 41      | 112              |      |         |   | R      | 112              | -12.8621  | 165.433         |   |   |   |
| 20 | S      | 41      | 130              |      |         |   | S      | 130              | 5.13793   | 26.3983         |   |   |   |
| 21 | Т      | 41      | 112              |      |         |   | T      | 112              | -12.8621  | 165.433         |   |   |   |
| 22 | U      | 41      | 110              |      |         |   | U      | 110              | -14.8621  | 220.881         |   |   |   |
| 23 | V      | 40      | 110              |      |         |   | V      | 110              | -14.8621  | 220.881         |   |   |   |
| 24 | W      | 38      | 138              |      |         |   | W      | 138              | 13.1379   | 172.605         |   |   |   |
| 25 | X      | 38      | 138              |      |         |   | X      | 138              | 13.1379   | 172.605         |   |   |   |
| 26 | Υ      | 35      | 138              |      |         |   | Υ      | 138              | 13.1379   | 172.605         |   |   |   |
| 27 | Z      | 35      | 120              |      |         |   | Z      | 120              | -4.86207  | 23.6397         |   |   |   |
| 28 | AA     | 35      | 126              |      |         |   | AA     | 126              | 1.13793   | 1.29489         |   |   |   |
| 29 | AB     | 34      | 118              |      |         |   | AB     | 118              | -6.86207  | 47.088          |   |   |   |
| 30 | AC     | 34      | 118              |      |         |   | AC     | 118              | -6.86207  | 47.088          |   |   |   |
| 31 | AVG    | 42.7241 | 124.862          |      |         |   |        |                  |           |                 |   |   |   |
| 32 | VARS   | 26.2783 | 157.552          |      |         |   |        |                  |           |                 |   |   |   |
| 33 |        |         |                  |      |         |   |        |                  |           |                 |   |   |   |
| 34 |        |         |                  |      |         |   |        |                  |           |                 |   |   |   |

<sup>\*</sup>perhitungan sample dataset

#### Out[4]:

|       | age       | trestbps   |
|-------|-----------|------------|
| count | 94.000000 | 94.000000  |
| mean  | 43.553191 | 124.606383 |
| std   | 4.094625  | 12.698504  |
| min   | 34.000000 | 94.000000  |
| 25%   | 41.000000 | 115.750000 |
| 50%   | 44.000000 | 122.000000 |
| 75%   | 46.750000 | 133.500000 |
| max   | 50.000000 | 152.000000 |

```
In [6]: variansi_bps = data_clean.var()['trestbps']
    average_bps = data_clean.mean()['trestbps']
    print("Variansi Populasi Tekanan darah = ", str(variansi_bps))
    print("Rata-rata Populasi Tekanan darah = ", str(average_bps))
```

Variansi Populasi Tekanan darah = 161.25200183024486 Rata-rata Populasi Tekanan darah = 124.6063829787234

\*perhitungan populasi dari dataset

```
In [7]: #perhitungan Z
zh = 124.862-124.606383
dzh = 12.55196 / (30**0.5)
print(zh/dzh)
```

## 0.11154209938670816

## Perhitungan z

```
In [11]: x = np.arange(-3,3,0.0001)
z0 = 1.645
z_hypo = 0.1115420993
draw_z_score(x, x>z0, 0, 1, 'Daerah Penolakan Hipotesis 1 Arah', z_hypo)
```



Pengambaran grafik uji hipotesis 1 arah

# 3. Lampiran BAB III – PENGHITUNGAN KOEFISIEN KORELASI DAN PEMODELAN ANALISIS REGRESI LINIER SEDERHANA

Link dataset: https://www.kaggle.com/unsdsn/world-happiness?select=2019.csv



| /_ | Α   | В           | С         | D     | E       | F       | G       | Н |
|----|-----|-------------|-----------|-------|---------|---------|---------|---|
| 1  | Cou | intry or re | P per cap | Score | X^2     | Y^2     | XY      |   |
| 2  | 92  | China       | 1.029     | 5.191 | 1.05884 | 26.9465 | 5.34154 |   |
| 3  | 27  | Saudi Ara   | 1.403     | 6.375 | 1.96841 | 40.6406 | 8.94413 |   |
| 4  | 150 | Yemen       | 0.287     | 3.38  | 0.08237 | 11.4244 | 0.97006 |   |
| 5  | 65  | Portugal    | 1.221     | 5.693 | 1.49084 | 32.4102 | 6.95115 |   |
| 6  | 43  | Slovenia    | 1.258     | 6.118 | 1.58256 | 37.4299 | 7.69644 |   |
| 7  | 41  | Lithuania   | 1.238     | 6.149 | 1.53264 | 37.8102 | 7.61246 |   |
| 8  | 130 | Myanmar     | 0.71      | 4.36  | 0.5041  | 19.0096 | 3.0956  |   |
| 9  | 123 | Tunisia     | 0.921     | 4.461 | 0.84824 | 19.9005 | 4.10858 |   |
| 10 | 112 | Namibia     | 0.879     | 4.639 | 0.77264 | 21.5203 | 4.07768 |   |
| 11 | 9   | Austria     | 1.376     | 7.246 | 1.89338 | 52.5045 | 9.9705  |   |
| 12 | 121 | Mauritan    | 0.57      | 4.49  | 0.3249  | 20.1601 | 2.5593  |   |
| 13 | 144 | Burundi     | 0.046     | 3.775 | 0.00212 | 14.2506 | 0.17365 |   |
| 14 | 38  | Trinidad {  | 1.231     | 6.192 | 1.51536 | 38.3409 | 7.62235 |   |
| 15 | 137 | Zambia      | 0.578     | 4.107 | 0.33408 | 16.8674 | 2.37385 |   |
| 16 | 98  | Ivory Coa:  | 0.569     | 4.944 | 0.32376 | 24.4431 | 2.81314 |   |
| 17 | 147 | Botswana    | 1.041     | 3.488 | 1.08368 | 12.1661 | 3.63101 |   |
| 18 | 63  | Northern    | 1.263     | 5.718 | 1.59517 | 32.6955 | 7.22183 |   |
| 19 | 52  | Latvia      | 1.187     | 5.94  | 1.40897 | 35.2836 | 7.05078 |   |
| 20 | 59  | Kazakhsta   | 1.173     | 5.809 | 1.37593 | 33.7445 | 6.81396 |   |
| 21 | 128 | Sierra Leo  | 0.268     | 4.374 | 0.07182 | 19.1319 | 1.17223 |   |
| 22 | 58  | Honduras    | 0.642     | 5.86  | 0.41216 | 34.3396 | 3.76212 |   |
| 23 | 125 | Iraq        | 1.043     | 4.437 | 1.08785 | 19.687  | 4.62779 |   |
| 24 | 62  | Paraguay    | 0.855     | 5.743 | 0.73103 | 32.982  | 4.91027 |   |
| 25 | 54  | Estonia     | 1.237     | 5.893 | 1.53017 | 34.7274 | 7.28964 |   |
| 26 | 80  | Belarus     | 1.067     | 5.323 | 1.13849 | 28.3343 | 5.67964 |   |
| 27 | 13  | Luxembou    | 1.609     | 7.09  | 2.58888 | 50.2681 | 11.4078 |   |
| 28 | 122 | Mozambio    | 0.204     | 4.466 | 0.04162 | 19.9452 | 0.91106 |   |
| 29 | 16  | Germany     | 1.373     | 6.985 | 1.88513 | 48.7902 | 9.59041 |   |
| 30 | 73  | Tajikistar  | 0.493     | 5.467 | 0.24305 | 29.8881 | 2.69523 |   |
| 31 | 36  | Bahrain     | 1.362     | 6.199 | 1.85504 | 38.4276 | 8.44304 |   |
| 32 |     |             |           |       |         |         |         |   |
| 33 |     |             |           |       |         |         |         |   |
| 24 |     |             |           |       |         |         |         |   |

|    |                      | GDP                  |                        |          |          |          |
|----|----------------------|----------------------|------------------------|----------|----------|----------|
|    | Country or region    | per<br>capita<br>(X) | Happiness<br>Score (Y) | X^2      | Y^2      | XY       |
| 0  | Finland              | 1.34                 | 7.769                  | 1.7956   | 60.35736 | 10.41046 |
| 1  | Denmark              | 1.383                | 7.6                    | 1.912689 | 57.76    | 10.5108  |
| 2  | Norway               | 1.488                | 7.554                  | 2.214144 | 57.06292 | 11.24035 |
| 3  | Iceland              | 1.38                 | 7.494                  | 1.9044   | 56.16004 | 10.34172 |
| 4  | Netherlands          | 1.396                | 7.488                  | 1.948816 | 56.07014 | 10.45325 |
| 5  | Switzerland          | 1.452                | 7.48                   | 2.108304 | 55.9504  | 10.86096 |
| 6  | Sweden               | 1.387                | 7.343                  | 1.923769 | 53.91965 | 10.18474 |
| 7  | New Zealand          | 1.303                | 7.307                  | 1.697809 | 53.39225 | 9.521021 |
| 8  | Canada               | 1.365                | 7.278                  | 1.863225 | 52.96928 | 9.93447  |
| 9  | Austria              | 1.376                | 7.246                  | 1.893376 | 52.50452 | 9.970496 |
| 10 | Australia            | 1.372                | 7.228                  | 1.882384 | 52.24398 | 9.916816 |
| 11 | Costa Rica           | 1.034                | 7.167                  | 1.069156 | 51.36589 | 7.410678 |
| 12 | Israel               | 1.276                | 7.139                  | 1.628176 | 50.96532 | 9.109364 |
| 13 | Luxembourg           | 1.609                | 7.09                   | 2.588881 | 50.2681  | 11.40781 |
| 14 | United Kingdom       | 1.333                | 7.054                  | 1.776889 | 49.75892 | 9.402982 |
| 15 | Ireland              | 1.499                | 7.021                  | 2.247001 | 49.29444 | 10.52448 |
| 16 | Germany              | 1.373                | 6.985                  | 1.885129 | 48.79023 | 9.590405 |
| 17 | Belgium              | 1.356                | 6.923                  | 1.838736 | 47.92793 | 9.387588 |
| 18 | United States        | 1.433                | 6.892                  | 2.053489 | 47.49966 | 9.876236 |
| 19 | Czech Republic       | 1.269                | 6.852                  | 1.610361 | 46.9499  | 8.695188 |
| 20 | United Arab Emirates | 1.503                | 6.825                  | 2.259009 | 46.58063 | 10.25798 |
| 21 | Malta                | 1.3                  | 6.726                  | 1.69     | 45.23908 | 8.7438   |
| 22 | Mexico               | 1.07                 | 6.595                  | 1.1449   | 43.49403 | 7.05665  |
| 23 | France               | 1.324                | 6.592                  | 1.752976 | 43.45446 | 8.727808 |
| 24 | Taiwan               | 1.368                | 6.446                  | 1.871424 | 41.55092 | 8.818128 |
| 25 | Chile                | 1.159                | 6.444                  | 1.343281 | 41.52514 | 7.468596 |
| 26 | Guatemala            | 0.8                  | 6.436                  | 0.64     | 41.4221  | 5.1488   |
| 27 | Saudi Arabia         | 1.403                | 6.375                  | 1.968409 | 40.64063 | 8.944125 |
| 28 | Qatar                | 1.684                | 6.374                  | 2.835856 | 40.62788 | 10.73382 |
| 29 | Spain                | 1.286                | 6.354                  | 1.653796 | 40.37332 | 8.171244 |
| 30 | Panama               | 1.149                | 6.321                  | 1.320201 | 39.95504 | 7.262829 |
| 31 | Brazil               | 1.004                | 6.3                    | 1.008016 | 39.69    | 6.3252   |
| 32 | Uruguay              | 1.124                | 6.293                  | 1.263376 | 39.60185 | 7.073332 |
| 33 | Singapore            | 1.572                | 6.262                  | 2.471184 | 39.21264 | 9.843864 |
| 34 | El Salvador          | 0.794                | 6.253                  | 0.630436 | 39.10001 | 4.964882 |
| 35 | Italy                | 1.294                | 6.223                  | 1.674436 | 38.72573 | 8.052562 |
| 36 | Bahrain              | 1.362                | 6.199                  | 1.855044 | 38.4276  | 8.443038 |
| 37 | Slovakia             | 1.246                | 6.198                  | 1.552516 | 38.4152  | 7.722708 |
| 38 | Trinidad & Tobago    | 1.231                | 6.192                  | 1.515361 | 38.34086 | 7.622352 |
| 39 | Poland               | 1.206                | 6.182                  | 1.454436 | 38.21712 | 7.455492 |
| 40 | Uzbekistan           | 0.745                | 6.174                  | 0.555025 | 38.11828 | 4.59963  |
| 41 | Lithuania            | 1.238                | 6.149                  | 1.532644 | 37.8102  | 7.612462 |
| 42 | Colombia             | 0.985                | 6.125                  | 0.970225 | 37.51563 | 6.033125 |

| 43       | Slovenia              | 1 250          | £ 110          | 1.582564             | 27 //2002            | 7.696444            |
|----------|-----------------------|----------------|----------------|----------------------|----------------------|---------------------|
| 44       | Nicaragua             | 1.258<br>0.694 | 6.118<br>6.105 | 0.481636             | 37.42992<br>37.27103 | 4.23687             |
| 45       | Kosovo                | 0.882          | 6.103          | 0.481636             | 37.27103             | 5.3802              |
| 46       | Argentina             | 1.092          | 6.086          | 1.192464             | 37.21                | 6.645912            |
| 47       | Romania               | 1.162          | 6.07           | 1.350244             | 36.8449              | 7.05334             |
| 48       | Cyprus                | 1.162          | 6.046          | 1.595169             | 36.55412             | 7.636098            |
| 49       | Ecuador               | 0.912          | 6.028          | 0.831744             | 36.33678             | 5.497536            |
| 50       | Kuwait                | 1.5            | 6.021          | 2.25                 | 36.25244             | 9.0315              |
| 51       | Thailand              | 1.05           | 6.008          | 1.1025               | 36.09606             | 6.3084              |
| 52       | Latvia                | 1.187          | 5.94           | 1.408969             | 35.2836              | 7.05078             |
| 53       | South Korea           | 1.301          | 5.895          | 1.692601             | 34.75103             | 7.669395            |
| 54       | Estonia               | 1.237          | 5.893          | 1.530169             | 34.72745             | 7.289641            |
| 55       | Jamaica               | 0.831          | 5.89           | 0.690561             | 34.6921              | 4.89459             |
| 56       | Mauritius             | 1.12           | 5.888          | 1.2544               | 34.66854             | 6.59456             |
| 57       | Japan                 | 1.327          | 5.886          | 1.760929             | 34.645               | 7.810722            |
| 58       | Honduras              | 0.642          | 5.86           | 0.412164             | 34.3396              | 3.76212             |
| 59       | Kazakhstan            | 1.173          | 5.809          | 1.375929             | 33.74448             | 6.813957            |
| 60       | Bolivia               | 0.776          | 5.779          | 0.602176             | 33.39684             | 4.484504            |
| 61       | Hungary               | 1.201          | 5.758          | 1.442401             | 33.15456             | 6.915358            |
| 62       | Paraguay              | 0.855          | 5.743          | 0.731025             | 32.98205             | 4.910265            |
| 63       | Northern Cyprus       | 1.263          | 5.718          | 1.595169             | 32.69552             | 7.221834            |
| 64       | Peru                  | 0.96           | 5.697          | 0.9216               | 32.45581             | 5.46912             |
| 65       | Portugal              | 1.221          | 5.693          | 1.490841             | 32.41025             | 6.951153            |
| 66       | Pakistan              | 0.677          | 5.653          | 0.458329             | 31.95641             | 3.827081            |
| 67       | Russia                | 1.183          | 5.648          | 1.399489             | 31.8999              | 6.681584            |
| 68       | Philippines           | 0.807          | 5.631          | 0.651249             | 31.70816             | 4.544217            |
| 69       | Serbia                | 1.004          | 5.603          | 1.008016             | 31.39361             | 5.625412            |
| 70       | Moldova               | 0.685          | 5.529          | 0.469225             | 30.56984             | 3.787365            |
| 71       | Libya                 | 1.044          | 5.525          | 1.089936             | 30.52563             | 5.7681              |
| 72<br>73 | Montenegro            | 1.051          | 5.523          | 1.104601<br>0.243049 | 30.50353<br>29.88809 | 5.804673            |
| 74       | Tajikistan<br>Croatia | 0.493<br>1.155 | 5.467<br>5.432 | 1.334025             | 29.50662             | 2.695231<br>6.27396 |
| 75       | Hong Kong             | 1.438          | 5.43           | 2.067844             | 29.4849              | 7.80834             |
| 76       | Dominican Republic    | 1.015          | 5.425          | 1.030225             | 29.43063             | 5.506375            |
| 77       | Bosnia and            | 1.015          | 3.123          | 1.050225             | 23. 13003            | 3.300373            |
|          | Herzegovina           | 0.945          | 5.386          | 0.893025             | 29.009               | 5.08977             |
| 78       | Turkey                | 1.183          | 5.373          | 1.399489             | 28.86913             | 6.356259            |
| 79       | Malaysia              | 1.221          | 5.339          | 1.490841             | 28.50492             | 6.518919            |
| 80       | Belarus               | 1.067          | 5.323          | 1.138489             | 28.33433             | 5.679641            |
| 81       | Greece                | 1.181          | 5.287          | 1.394761             | 27.95237             | 6.243947            |
| 82       | Mongolia              | 0.948          | 5.285          | 0.898704             | 27.93123             | 5.01018             |
| 83       | North Macedonia       | 0.983          | 5.274          | 0.966289             | 27.81508             | 5.184342            |
| 84       | Nigeria               | 0.696          | 5.265          | 0.484416             | 27.72023             | 3.66444             |
| 85       | Kyrgyzstan            | 0.551          | 5.261          | 0.303601             | 27.67812             | 2.898811            |
| 86       | Turkmenistan          | 1.052          | 5.247          | 1.106704             | 27.53101             | 5.519844            |
| 87       | Algeria               | 1.002          | 5.211          | 1.004004             | 27.15452             | 5.221422            |
| 88       | Morocco               | 0.801          | 5.208          | 0.641601             | 27.12326             | 4.171608            |

| ۱ ۵۵       | l                       |                |                |                 |                      |                      |
|------------|-------------------------|----------------|----------------|-----------------|----------------------|----------------------|
| 89         | Azerbaijan              | 1.043          | 5.208          | 1.087849        | 27.12326             | 5.431944             |
| 90         | Lebanon                 | 0.987          | 5.197          | 0.974169        | 27.00881             | 5.129439             |
| 91         | Indonesia               | 0.931          | 5.192          | 0.866761        | 26.95686             | 4.833752             |
| 92         | China                   | 1.029          | 5.191          | 1.058841        | 26.94648             | 5.341539             |
| 93         | Vietnam                 | 0.741          | 5.175          | 0.549081        | 26.78063             | 3.834675             |
| 94         | Bhutan                  | 0.813          | 5.082          | 0.660969        | 25.82672             | 4.131666             |
| 95         | Cameroon                | 0.549          | 5.044          | 0.301401        | 25.44194             | 2.769156             |
| 96         | Bulgaria                | 1.092          | 5.011          | 1.192464        | 25.11012             | 5.472012             |
| 97         | Ghana                   | 0.611          | 4.996          | 0.373321        | 24.96002             | 3.052556             |
| 98         | Ivory Coast             | 0.569          | 4.944          | 0.323761        | 24.44314             | 2.813136             |
| 99         | Nepal                   | 0.446          | 4.913          | 0.198916        | 24.13757             | 2.191198             |
| 100        | Jordan                  | 0.837          | 4.906          | 0.700569        | 24.06884             | 4.106322             |
| 101        | Benin                   | 0.393          | 4.883          | 0.154449        | 23.84369             | 1.919019             |
| 102        | Congo (Brazzaville)     | 0.673          | 4.812          | 0.452929        | 23.15534             | 3.238476             |
| 103        | Gabon                   | 1.057          | 4.799          | 1.117249        | 23.0304              | 5.072543             |
| 104        | Laos                    | 0.764          | 4.796          | 0.583696        | 23.00162             | 3.664144             |
| 105        | South Africa            | 0.96           | 4.722          | 0.9216          | 22.29728             | 4.53312              |
| 106        | Albania                 | 0.947          | 4.719          | 0.896809        | 22.26896             | 4.468893             |
| 107        | Venezuela               | 0.96           | 4.707          | 0.9216          | 22.15585             | 4.51872              |
| 108        | Cambodia                | 0.574          | 4.7            | 0.329476        | 22.09                | 2.6978               |
| 109        | Palestinian Territories | 0.657          | 4.696          | 0.431649        | 22.05242             | 3.085272             |
| 110<br>111 | Senegal                 | 0.45           | 4.681          | 0.2025          | 21.91176             | 2.10645              |
| 111        | Somalia                 | 0              | 4.668          | 0 773644        | 21.79022             | 0                    |
| 113        | Namibia                 | 0.879          | 4.639          | 0.772641        | 21.52032             | 4.077681             |
| 114        | Niger<br>Burkina Faso   | 0.138          | 4.628          | 0.019044        | 21.41838             | 0.638664             |
| 115        | Armenia                 | 0.331          | 4.587          | 0.109561 0.7225 | 21.04057<br>20.78448 | 1.518297             |
| 116        | 1                       | 0.85           | 4.559          |                 | 20.78448             | 3.87515              |
| 117        | Iran                    | 1.1<br>0.38    | 4.548<br>4.534 | 1.21<br>0.1444  | 20.55716             | 5.0028<br>1.72292    |
| 118        | Guinea                  |                |                | 0.784996        | 20.33716             |                      |
| 119        | Georgia<br>Gambia       | 0.886<br>0.308 |                | 0.784996        |                      |                      |
| 120        | Kenya                   | 0.508          | 4.516          | 0.094864        | 20.33426             | 1.390928<br>2.308608 |
| 121        | Mauritania              | 0.512          | 4.309          | 0.202144        | 20.33108             | 2.5593               |
| 122        | Mozambique              | 0.204          | 4.466          | 0.3249          | 19.94516             | 0.911064             |
| 123        | Tunisia                 | 0.921          | 4.461          | 0.848241        | 19.90052             |                      |
| 124        | Bangladesh              | 0.562          | 4.456          | 0.315844        | 19.85594             | 2.504272             |
| 125        | Iraq                    | 1.043          | 4.437          | 1.087849        | 19.68697             |                      |
| 126        | Congo (Kinshasa)        | 0.094          | 4.418          | 0.008836        | 19.51872             | 0.415292             |
| 127        | Mali                    | 0.385          | 4.39           | 0.148225        | 19.2721              | 1.69015              |
| 128        | Sierra Leone            | 0.268          | 4.374          | 0.071824        | 19.13188             | 1.172232             |
| 129        | Sri Lanka               | 0.949          | 4.366          | 0.900601        | 19.06196             | 4.143334             |
| 130        | Myanmar                 | 0.71           | 4.36           | 0.5041          | 19.0096              | 3.0956               |
| 131        | Chad                    | 0.35           | 4.35           |                 | 18.9225              |                      |
| 132        | Ukraine                 | 0.82           | 4.332          | 0.6724          | 18.76622             | 3.55224              |
| 133        | Ethiopia                | 0.336          | 4.286          | 0.112896        | 18.3698              | 1.440096             |
| 134        | Swaziland               | 0.811          | 4.212          | 0.657721        | 17.74094             |                      |
| I          | J                       |                |                | - ·             |                      |                      |

| 135 | Uganda          | 0.332     | 4.189 | 0.110224 | 17.54772 | 1.390748 |
|-----|-----------------|-----------|-------|----------|----------|----------|
| 136 | Egypt           | 0.913     | 4.166 | 0.833569 | 17.35556 | 3.803558 |
| 137 | Zambia          | 0.578     | 4.107 | 0.334084 | 16.86745 | 2.373846 |
| 138 | Togo            | 0.275     | 4.085 | 0.075625 | 16.68723 | 1.123375 |
| 139 | India           | 0.755     | 4.015 | 0.570025 | 16.12023 | 3.031325 |
| 140 | Liberia         | 0.073     | 3.975 | 0.005329 | 15.80063 | 0.290175 |
| 141 | Comoros         | 0.274     | 3.973 | 0.075076 | 15.78473 | 1.088602 |
| 142 | Madagascar      | 0.274     | 3.933 | 0.075076 | 15.46849 | 1.077642 |
| 143 | Lesotho         | 0.489     | 3.802 | 0.239121 | 14.4552  | 1.859178 |
| 144 | Burundi         | 0.046     | 3.775 | 0.002116 | 14.25063 | 0.17365  |
| 145 | Zimbabwe        | 0.366     | 3.663 | 0.133956 | 13.41757 | 1.340658 |
| 146 | Haiti           | 0.323     | 3.597 | 0.104329 | 12.93841 | 1.161831 |
| 147 | Botswana        | 1.041     | 3.488 | 1.083681 | 12.16614 | 3.631008 |
| 148 | Syria           | 0.619     | 3.462 | 0.383161 | 11.98544 | 2.142978 |
| 149 | Malawi          | 0.191     | 3.41  | 0.036481 | 11.6281  | 0.65131  |
| 150 | Yemen           | 0.287     | 3.38  | 0.082369 | 11.4244  | 0.97006  |
| 151 | Rwanda          | 0.359     | 3.334 | 0.128881 | 11.11556 | 1.196906 |
| 152 | Tanzania        | 0.476     | 3.231 | 0.226576 | 10.43936 | 1.537956 |
| 153 | Afghanistan     | 0.35      | 3.203 | 0.1225   | 10.25921 | 1.12105  |
| 154 | Central African |           |       |          |          |          |
|     | Republic        | 0.026     | 3.083 | 0.000676 | 9.504889 | 0.080158 |
| 155 | South Sudan     | 0.306     | 2.853 | 0.093636 | 8.139609 | 0.873018 |
|     |                 | T-1-1 1-4 | 1     | •        |          |          |

Tabel data populasi

```
#creating artificial table
subject = pd.Series(data3_clean['Country or region'])
subject = pd.Series(data3_clean['Country or region'])
x = pd.Series(data3_clean['GDP per capita'])
y = pd.Series(data3_clean['Score'])
y_square = pd.Series([i ** 2 for i in y])
x_square = pd.Series([i ** 2 for i in x])
x_y = pd.Series([x[i] * y[i] for i in range(len(x))])
data = pd.DataFrame({'Country or region' : subject, 'X' : x, 'Y' : y, 'X^2' : x_square, 'Y^2' : y_square, 'XY' : x_y})
rpint(data)
print(data)
 #data.to_excel('population3_data.xlsx')
n = 156
#y=mx+c
#y=mx+c

m = (n * data['XY'].sum() - data['X'].sum() * data['Y'].sum() ) / (n * data['X^2'].sum() - data['X'].sum() ** 2)

c = (data['Y'].sum() * data['X^2'].sum() - data['X'].sum() ** data['XY'].sum()) / (n * data['X^2'].sum() - data['X'].sum() ** 2)

print("b = ", m)

print("a = ", c)
                    Country or region
                                    Finland 1.340 7.769 1.795600 60.357361 10.410460
Denmark 1.383 7.600 1.912689 57.760000 10.510800
0
1
                                                   1.488
                                                                7.554
                                                                           2.214144
                                                                                            57.062916
                                                                                                              11.240352
                                      Norway
                                                               7.494 1.904400 56.160036 10.341720
7.488 1.948816 56.070144 10.453248
                                     Iceland
                                                   1.380
                              Netherlands 1.396
4
                                      Rwanda 0.359 3.334
                                                                           0.128881 11.115556
                                                                                                               1.196906
                                   Tanzania 0.476 3.231
152
                                                                           0.226576 10.439361
                                                                                                               1.537956
       Afghanistan 0.350 3.203 0.122500 10.259209 Central African Republic 0.026 3.083 0.000676 9.504889
153
                                                                                                                1.121050
                                                                                                                0.080158
                              South Sudan 0.306 2.853 0.093636
                                                                                             8.139609
                                                                                                                0.873018
[156 rows x 6 columns]
b = 2.2181480010083603
a = 3.399345178292416
```

Perhitungan variable a dan b pada regresi linear

```
In [43]: #print((m, c))
def get_prediction(x):
    return m"x + c

#inp = data
#print(inp)
x_plot = np.linspace(data['X'].min(), data['X'].max())
#indo_x = 0.931
#plt.plot(indo_x, get_prediction(indo_x), 'ro') # predictions (Red Dot)
plt.plot(inp['X'], inp['Y'], 'bo') # input data (Blue Dot)
plt.plot(x_plot, get_prediction(x_plot), 'r') # Line
plt.title('Grafik regresi linear GDP dengan Happiness Score')
plt.show()

Grafik regresi linear GDP dengan Happiness Score

8

7
6
6
6
7
```

## Prediksi variable GDP dengan score

0.50 0.75 1.00 1.25 1.50

```
In [42]: t1 = 0.7938828678781272 * math.sqrt(154)
    t2 = math.sqrt( (1-0.7938828678781272))
    t = t1/t2
    print(t)
    21.70000054478138
In [ ]:
```

Perhitungan uji T