BABEŞ-BOLYAI UNIVERSITY OF CLUJ-NAPOCA FACULTY OF MATHEMATICS AND INFORMATICS SPECIALIZATION: COMPUTER SCIENCE

Diploma Thesis

Critical node detection problem in complex networks

Abstract

EZ AZ OLDAL NEM RÉSZE A DOLGOZATNAK!

Ezt az angol kivonatot külön lapra kell nyomtatni és alá kell írni!

A DOLGOZATTAL EGYÜTT KELL BEADNI!

Kötelező befejezés:

This work is the result of my own activity. I have neither given nor received unauthorized assistance on this work.

2020 BÉCZI ELIÉZER

ADVISOR: ASSIST PROF. DR. GASKÓ NOÉMI Babeş-Bolyai University of Cluj-Napoca Faculty of Mathematics and Informatics Specialization: Computer Science

Diploma Thesis

Critical node detection problem in complex networks

ADVISOR: STUDENT:
ASSIST PROF. DR. GASKÓ NOÉMI BÉCZI ELIÉZER

Universitatea Babeș-Bolyai, Cluj-Napoca Facultatea de Matematică și Informatică Specializarea Informatică

Lucrare de licență

Identificarea nodurilor critice în rețele complexe

CONDUCĂTOR ȘTIINȚIFIC: LECTOR DR. GASKÓ NOÉMI ABSOLVENT: BÉCZI ELIÉZER

Babeş-Bolyai Tudományegyetem Kolozsvár Matematika és Informatika Kar Informatika Szak

Szakdolgozat

Kritikus csomópontok meghatározása komplex hálózatokban

TÉMAVEZETŐ:

Szerző:

DR. GASKÓ NOÉMI, EGYETEMI ADJUNKTUS BÉCZI ELIÉZER

Tartalomjegyzék

1.	Beve	zető	3
	1.1. 1.2.	Áttekintés	3
2.		élú CNDP	4
	2.1. 2.2.	Páronkénti konnektivitás	4
		2.2.1. Általánosan	5
		Genetikus algoritmus	5
		2.3.1. Általánosan	5
	2.4.	Hibrid Genetikus Algoritmus	9
		ilú CNDP	0

1. fejezet

Bevezető

1.1. Áttekintés

Hálózatok terén nem minden csomópont egyforma fontosságú. A kulcsfontosságú csomópontok keresésével hálózatokban széles körben foglalkoznak, különösképpen olyan csomópontok esetén, melyek a hálózat konnektivitásához köthetők. Ezeket a csomópontokat általában úgy nevezzük, hogy Kritikus Csomópontok.

Kritikus Csomópontok Meghatározásának Problémája (CNDP) egy optimalizációs feladat, amely egy olyan csoport csomópont megkereséséből áll, melyek törlése maximálisan rontja a hálózat konnektivitását bizonyos predefiniált konnektivitási metrikák szerint.

A CNDP számos alkalmazási területtel rendelkezik. Például, közösségi hálók nagy befolyással bíró egyedeinek azonosítása, komputációs biológiában kapcsolatok definiálására jelút vagy fehérje-fehérje kölcsönhatás hálózatokban, smart grid sebezhetőségének vizsgálata, egyének meghatározása védőoltással való ellátásra vagy karanténba való zárásra egy fertőzés terjedésének gátlása érdekében.

A CNDP egy \mathcal{NP} -teljes feladat. Adva van egy G=(V,E) gráf, ahol |V|=n a csomópontok száma, és |E|=m pedig az élek száma. A feladat k kritikus csomópont meghatározása, amelyek törlése a bemeneti gráfból minimalizálja a hálózat páronkénti konnektivitását. Az alapján, hogy mit értünk egy hálózat konnektivitása alatt, a CNDP-nak van egycélú illetve többcélú megfogalmazása is.

1.2. Hozzájárulásaink

Ebben a dolgozatban többek között egy bi-objektív megfogalmazásával fogunk foglalkozni a CNDP-nak. Standard evolúciós algoritmusokat fogunk összehasonlítani egymással különböző szintetikus bemenetekre, illetve való világból inspirált bemenetekre, ugyanakkor célunk egy új hibrid algoritmus fejlesztése, melynek eredményei összehasonlíthatók a standard algoritmusok eredményeivel.

Az algoritmusokat Python-ban fogjuk bemutatni, és a NetworkX könyvtárat [Hagberg et al., 2008] fogjuk használni ahhoz, hogy gráfokat tudjunk manipulálni.

Benchmark tesztelés végett egy olyan gráfhalmazt fogunk használni, amelyben 4 alapvető típus jelenik meg, mindegyik a maga jellegzetességeivel.

2. fejezet

Egycélú CNDP

2.1. Páronkénti konnektivitás

Egycélú CNDP esetén a kihívás abban áll, hogy találjunk egy olyan konnektivitási metrikát, amely alkalmazási területtől függően megfelelően leírja egy gráf összefüggőségét. S-el fogjuk jelölni a törlendő csomópontok halmazát, míg azf(S) jóság függvény fogja jellemezni a $G[V\setminus S]$ feszített részgráf összefüggőségét. Ha H-val jelöljük a $G[V\setminus S]$ feszített részgráf összefüggő komponenseinek a halmazát, akkor a jóságfüggvény a következő képlettel írható le:

$$f(S) = \sum_{h \in H} \frac{|h| \cdot (|h| - 1)}{2},\tag{2.1}$$

amelyet az irodalom [Aringhieri et al., 2016; Ventresca, 2012] úgy tart számon, hogy **páronkénti konnektivitás**. Tehát a feladat a 2.1 függvénynek a minimalizálása:

$$\min_{S \subseteq V} f(S). \tag{2.2}$$

A 2.1 fitnesz függvény implementációját a 2.1. kódrészlet szemlélteti Python-ban.

Listing 2.1. Páronkénti konnektivitás

2.2. Mohó algoritmus

2.2.1. Általánosan

Egy mohó algoritmus egy egyszerű és intuitív algoritmus, amely gyakran használt optimalizációs feladatok megoldására. Az algoritmus helyi optimumok megvalósításával próbálja megtalálni a globális optimumot.

Habár a mohó algoritmusok jól működnek bizonyos feladatok esetében, mint pl. Dijkstra-algoritmus, amely egy csomópontból kiindulva meghatározza a legrövidebb utakat, vagy Huffman-kódolás, amely adattömörítésre szolgál, de sok esetben nem eredményeznek optimális megoldást. Ez annak köszönhető, hogy míg a mohó algoritmus függhet az előző lépések választásától, addig a jövőben meghozott döntésektől független.

Az algoritmus minden lépésben mohón választ, folyamatosan lebontva a feladatot kisebb feladattá. Más szavakkal, a mohó algoritmus soha nem gondolja újra választásait.

2.2.2. Saját mohó algoritmus

A CNDP esetén a mohó algoritmust az 1. kódrészlet szemlélteti.

Algorithm 1 Greedy CNP

```
1: function GREEDY(G, k)

2: S \leftarrow VERTEX COVER(G)

3: while |S| > k do

4: B \leftarrow \arg\min_{i \in S} f(S \setminus \{i\})

5: S \leftarrow S \setminus \{SELECT(B)\}

6: end while

7: return S

8: end function
```

A mohó algoritmus kiindul a gráf csúcslefedéséből. 1 Ez lesz a kezdeti S megoldásunk. A maradék csomópontok $V\setminus S$ a gráf maximális független csúcshalmazát 2 MIS alkotják. Mivel majdnem biztos, hogy |S|>k, ezért mohón elkezdünk kivenni csomópontokat S-ből, majd ezeket hozzáadni MIS-hez, amíg |S|>k. A hozzáadott csomópont az lesz, amelyiket ha visszatesszük az eredeti gráfba, akkor a minimum értéket téríti vissza a páronkénti konnektivitásra a keletkezett gráfban.

Mivel több olyan csomópont lehet, amelyeket ha visszateszünk az eredeti gráfba, akkor ugyanazt a minimális értéket adják vissza a páronkénti konnektivitásra, ezért ezeket eltároljuk a B halmazban, és minden lépésben random módon határozzuk meg, hogy melyik kerüljön vissza *MIS*-be.

Ezzel az eljárással garantáljuk, hogy a mohó algoritmusunk különböző megoldásokat fog adni többszöri futtatások esetén.

2.3. Genetikus algoritmus

2.3.1. Általánosan

A genetikus algoritmus a metaheurisztikák osztályába tartozik, és a természetes kiválasztódás inspirálta. Egy globális optimalizáló, amely gyakran használt optimalizációs és keresési problémák esetében, ahol a sok lehetséges megoldás közül a legjobbat kell megkeresni. Azt hogy egy megoldás mennyire jó, a fitnesz függvény mondja meg.

^{1.} Angolul: vertex cover.

^{2.} Angolul: maximal independent set.

A genetikus algoritmus mindig egy populációnyi megoldással dolgozik. A populációba egyedek tartoznak, amelyek egyenként egyed esetén megoldásai a feladatnak. Az algoritmus minden iterációban egy új populációt állít elő az aktuális populációból úgy, hogy a **szelekciós operátor** által kiválasztott legrátermettebb szülőkön alkalmazza a **rekombinációs** és **mutációs operátorokat**.

Ezen algoritmusok alapötlete az, hogy minden újabb generáció az előzőnél valamelyest rátermettebb egyedeket tartalmaz, és így a keresés folyamán egyre jobb megoldások születnek.

2.3.2. Saját genetikus algoritmus

A CNDP esetén a genetikus algoritmust a 2. kódrészlet szemlélteti.

```
Algorithm 2 Genetic Algorithm
  1: function GA(G, k, N, \pi_{\min}, \pi_{\max}, \Delta \pi, \alpha, t_{\max})
           t \leftarrow 0
           INITIALIZE(N, P, S^*, \gamma, \pi)
  3:
 4:
           while t < t_{t_{\text{max}}} do
                P' \leftarrow \mathsf{CROSSOVER}(k, N, P)
  5:
                MUTATION(k, N, P', \pi)
  6:
                P \leftarrow \text{SELECTION}(P, P')
  7:
                \gamma, \pi = \text{UPDATE}(P, S^*, \pi, \pi_{\min}, \pi_{\max}, \Delta\pi, \alpha)
  8:
           end while
  9:
           return P
 10.
11: end function
```

Egy Genetikus Algoritmus (GA) standard algoritmikus keretrendszerét használjuk fel. Generálunk egy kezdeti populációt megoldásokkal. Utána keresztezzük őket, hogy új megoldásokat kapjunk, amelyeket pedig mutálunk. Ezután rendezzük a régi és új megoldásokat egy fitnesz függvény alapján, és létrehozunk egy új populációt eltávolítva a rossz megoldásokat. A folyamatot addig ismételjük, amíg az iterációk száma el nem ér egy felső korlátot. Az algoritmus végén visszatérítjük a legjobb megoldást.

Inicializáció

A kezdeti populáció egyedeit random generáljuk ki. Ez azt jelenti, hogy minden egyed kromoszómája egy k csomópontból álló részhalmaza lesz a bemeneti gráf csomóponthalmazának. Ezt szemlélteti a 2.2 kódrészlet.

Listing 2.2. Random inicializáció

Egy új fitnesz függvényt vezetünk be egyed esetén egyed jóságának felmérése végett. Ez abban tér el a 2.1 részben tárgyaltaktól, hogy nem csak a páronkénti konnektivitás mértékét vesszük figyelembe egy

egyed esetén, hanem hogy az eddigi talált legjobb megoldástól mennyire tér el. Ezt a fitnesz függvényt a következő képlettel írjuk le:

$$g(S, S^*) = f(S) + \gamma \cdot |S \cap S^*|.$$
 (2.3)

A képletben szereplő S^* jelenti az eddig talált legjobb megoldást. A γ egy változó, amely abban segít, hogy fenntartsuk a változatosságot a populáció egyedei között, megbüntetve azokat, amelyek túl közel vannak a legjobbhoz. A γ változót minden iterációban a következő képlettel számoljuk újra:

$$\gamma = \frac{\alpha \cdot f(S)}{\langle |S \cap S^*| \rangle_{S \in P}},\tag{2.4}$$

ahol a nevező a populáció egyedeinek és a legjobb egyed közötti átlagos hasonlóságot fejezi ki. Az α pedig a képletben található változók egymás feletti fontosságát befolyásolja. A 2.4 képlet implementációját a 2.3 kódrészlet mutatja be.

Listing 2.3. γ inicializálása

A π paraméter a mutáció valószínűségét fejezi ki egy egyed esetén. Ezt kezdetben π_{\min} -re állítjuk, de minden iterációban frissítjük aszerint, hogy találtunk-e az új generációban egy olyan megoldást, amely jobb, mint a globális legjobb. Ha találtunk az eddigieknél jobb megoldást, akkor a π értékét π_{\min} -re állítjuk, különben a $\pi = \min\left(\pi + \Delta\pi, \pi_{\max}\right)$ képlet szerint növeljük. Ez arra jó, hogy fenntartsuk a populáció sokféleségét abban az esetben, amikor nem tudunk javítani az eddig talált legjobb megoldáson, mindezt úgy, hogy megnöveljük a mutációk kialakulásának a valószínűségét.

Reprodukció

A genetikus algoritmus egy kulcsfontosságú fázisa a reprodukció. Itt döntjük el, hogy a meglévő populációból miként jöjjön létre az új generáció. Ez azt jelenti, hogy meghatározzuk, hogy az S_1 és S_2 szülők kromoszómáit hogyan olvasztjuk egybe annak érdekében, hogy egy új S' egyed szülessen. Ezt a folyamatot szemlélteti a 2.4 kódrészlet.

Listing 2.4. Reprodukció

```
| def new_generation(k, N, P):
| new_P = []
| for _ in range(N):
| r1 = random.randrange(N)
| r2 = random.randrange(N)
| while r1 == r2:
```

Esetünkben úgy történik egy új egyed létrehozása, hogy random módon kiválasztunk 2 különböző szülőt, és ezek kromoszómáit egybevonjuk: $S' = S_1 \cup S_2$. Mivel majdnem biztos, hogy az így kapott egyed kromoszómája több, mint k csomópontot tartalmaz, ezért szükséges törölnünk belőle nódusokat, amíg |S'| > k. Az hogy melyik nódus kerül törlésre az új egyed kromoszómájából, random módon történik.

Fontos megemlítenünk, hogy mivel a szülőket random módon választjuk ki egyed esetén egyed létrehozásához, ezért a populáció egyedei között nem teszünk különbséget. Vagyis keresztezéskor nem nézzük, hogy csak a legrátermettebb szülőket válasszuk, hanem egyenlő eséllyel választunk kevésbé jó fitnesz értékkel rendelkező egyedet is szülőnek. Ez lelassítja a populáció uniformizálódásának folyamatát, de segíti a megoldástér bejárását. Ez azért jó, mert nem tudjuk előre, hogy a csomópontok mely kombinációja fogja eredményezni a bemeneti gráf maximális szétesését, ha ezeket együtt töröljük a gráfból. Ezért a kevésbé jó fitnesz értékkel rendelkező egyedeket sem kell figyelmen kívül hagyni, mert kombinálva őket jó megoldásokhoz juthatunk.

Mutáció

A következő nagy jelentőséggel bíró fázisa a genetikus algoritmusnak a mutáció. Mutáció alatt azt értjük, hogy vesszük az újonnan létrejött populációt, és a populációban található egyedek génjeit perturbáljuk valamilyen csekély valószínűséggel. A mutáció azért tartozik a nagy döntések halmazába, mert a mutáció révén fenntartjuk a populáció sokféleségét, és elkerüljük a korai konvergenciát. ³ A 3. kódrészlet a mutáció műveletét hívatott bemutatni.

A populáció minden egyes új egyede esetén, a mutáció valószínűségét a π paraméter befolyásolja. Generálunk egy egyenletes eloszlású véletlen számot 1 és 100 között, és ha ez kisebb, mint π , akkor módosítjuk a megoldást. A módosítás úgy történik, hogy leszögezzük, hogy a megoldás hány génjét szeretnénk változtatni. Ezt a számot tükrözi az n_g változó, amely értékét a [0,k] intervallumból veszi, és random generáljuk. A következő lépés, hogy kitörlünk n_g csomópontot a megoldásból, de mivel majdnem biztos, hogy a megoldásunk így nem-optimális, mert |S| < k, ezért szükséges visszaadogatnunk csomópontokat S-be. Ennek érdekében véletlenszerűen kiválasztunk egy csomópontot a $V \setminus S$ halmazból, és a kiválasztott csomópontot visszatesszük a megoldásba.

^{3.} Angolul: premature convergence.

Algorithm 3 Mutation Operator

```
1: procedure MUTATION(k, N, P', \pi)
          for i \leftarrow 1, N do
 2:
 3:
              r \leftarrow \text{RAND INT}(1, 100)
              if r < \pi then
 4:
                   S' \leftarrow P'[i]
 5:
                   n_q \leftarrow \text{RAND INT}(0, k)
                                                                                                Number of genes to mutate
 6:
 7:
                   for j \leftarrow 1, n_q do
 8:
                        idx \leftarrow RAND INT(1, |S'|)
                        S' \leftarrow S' \setminus \{P\left[idx\right]\}
 9:
                   end for
10:
                   MIS \leftarrow V \setminus S'
11:
                   while |S'| < k do
12:
13:
                        elem \leftarrow Select(MIS)
                        S' \leftarrow S' \cup \{elem\}
14:
                   end while
15:
              end if
16:
         end for
17:
18: end procedure
```

Szelekció

Az utolsó fázisa a genetikus algoritmusunknak a szelekció. Itt döntjük el, hogy mely egyedek fogják alkotni a következő nemzedéket. Jelen esetben ez úgy megy végbe, hogy összefésüljük a régi P és az újonnan létrejött P' populációkat, és rendezzük az egyedeket a 2.3 fitnesz függvény alapján. Növekvő sorrendbe rendezzük őket, mivel nem szabad elfelejtenünk, hogy célunk végső soron a páronkénti konnektivitás minimalizálása. Ezután kiválasztjuk az első $\mathcal N$ egyedet, és ezeket visszük tovább a következő iterációba.

2.4. Hibrid Genetikus Algoritmus

3. fejezet

Kétcélú CNDP

Irodalomjegyzék

- Aringhieri, R., Grosso, A., Hosteins, P., és Scatamacchia, R. A general evolutionary framework for different classes of critical node problems. *Engineering Applications of Artificial Intelligence*, 55: 128–145, 2016.
- Hagberg, A., Swart, P., és S Chult, D. Exploring network structure, dynamics, and function using networkx. Technical report, Los Alamos National Lab.(LANL), Los Alamos, NM (United States), 2008.
- Ventresca, M. Global search algorithms using a combinatorial unranking-based problem representation for the critical node detection problem. *Computers & Operations Research*, 39(11):2763–2775, 2012.