

INSTITUTE FOR DEFENSE ANALYSES

Impact of Conditions which Affect Exploratory Factor Analysis

Heather Wojton, Project Leader

Kevin Krost Daniel J. Porter Stephanie T. Lane Heather M. Wojton

April 2019

Approved for public release. Distribution is unlimited.

IDA Document NS D-10622

Log: H 2019-000204

INSTITUTE FOR DEFENSE ANALYSES 4850 Mark Center Drive Alexandria, Virginia 22311-1882

The Institute for Defense Analyses is a non-profit corporation that operates three federally funded research and development centers to provide objective analyses of national security issues, particularly those requiring scientific and technical expertise, and conduct related research on other national challenges.

About This Publication

This work was conducted by the Institute for Defense Analyses (IDA) under contract HQ0034-14-D-0001, Task Nos. BD-9-229990, "Test Science Applications," C9087, "T&E Knowledge Exchange," and C9082, "Statistics and Science Data Working Group," for the Office of the Director, Operational Test and Evaluation. The views, opinions, and findings should not be construed as representing the official position of either the Department of Defense or the sponsoring organization.

For more information: Heather Wojton, Project Leader hwojton@ida.org • (703) 845-6811

Robert R. Soule, Director, Operational Evaluation Division rsoule@ida.org • (703) 845-2482

Copyright Notice
© 2019 Institute for Defense Analyses
4850 Mark Center Drive, Alexandria, Virginia 22311-1882 • (703) 845-2000.

This material may be reproduced by or for the U.S. Government pursuant to the copyright license under the clause at DFARS 252.227-7013 (a)(16) [Jun 2013].

INSTITUTE FOR DEFENSE ANALYSES

IDA Document NS D-10622

Impact of Conditions which Affect Exploratory Factor Analysis

Heather Wojton, Project Leader

Kevin Krost Daniel J. Porter Stephanie T. Lane Heather M. Wojton

Executive Summary

Some things cannot be observed directly and must be inferred from multiple indirect measurements, such as human experiences accessed through a variety of survey questions. Exploratory Factor Analysis (EFA) provides a data-driven method to optimally combine these indirect measurements to infer some number of unobserved factors. Ideally, EFA should identify how many unobserved factors the indirect measures help estimate (factor extraction), as well as accurately capture how well each indirect measure estimates each factor (parameter recovery).

However, many factor extraction techniques exist, and the field lacks consensus on the most accurate approach. In my first simulation study, I primarily evaluated how accurately four standard techniques (BIC, eigenvalue thresholds, RMSEA, and Parallel Analysis) perform factor extraction. This study also identified the conditions which most influence factor extraction accuracy. In my second study, I examined how commonly encountered conditions in survey analysis, such as sample size, item quality, and repeated measurements, affect parameter recovery.

The results of these studies support several best practice recommendations for survey analysis. First, the most commonly used technique, eigenvalue thresholds, provides the least accurate results and should be avoided. Instead, analysts should utilize the less popular but much more accurate RMSEA approach. Second, while the common belief is that repeated measurements should hurt EFA, the results of these studies suggest repeated measurements strongly enhance the effectiveness of EFA.

Impact of Conditions that Affect Exploratory Factor Analysis

Kevin Krost, Heather Wojton, Daniel Porter, and Stephanie Lane

Institute for Defense Analyses

SUMMARY

Some things cannot be observed directly and must be inferred from multiple indirect measurements, for example, human experiences accessed through a variety of survey questions

Exploratory Factor Analysis (EFA) provides a data-driven method to optimally combine these indirect measurements to infer some number of unobserved factors.

Ideally, EFA should identify how many unobserved factors the indirect measures help estimate (factor extraction), as well as accurately capture how well each indirect measure estimates each factor

However, many factor extraction techniques exist, and the field lacks consensus on the most accurate approach.

In my first simulation study, I primarily evaluated how accurately four standard techniques (BIC, eigenvalue thresholds, RMSEA, and Parallel Analysis) perform factor extraction. This study also identified the conditions which most influence factor extraction accuracy.

In my second study, I examined how commonly encountered conditions in survey analysis, such as sample size, item quality, and repeated measurements, affect parameter recovery.

The results of these studies support several best practice recommendations for survey analysis.

First, the most commonly used technique, eigenvalue thresholds, provides the least accurate results and should be avoided. Instead, analysts should utilize the less popular but much more accurate RMSEA approach.

Second, while the common belief is that repeated measurements should hurt EFA, the results of these studies suggest repeated measurements strongly enhance the effectiveness of EFA.

IMPORTANT TERMS

- Exploratory Factor Analysis (EFA) A statistical method which provides a measure of the strength that an item measures an unobserved trait or skill.
- Monte Carlo Simulation Study A computer-intensive method to evaluate a statistical method by generating and analyzing data many
- Item Quality (Communality) The variance each item accounts for across all factors, ranging from 0 to 1 with higher values desired
- Bayesian Information Criterion (BIC) A statistic which measures the amount of error in a model and values closest to -co are
- Eigenvalue The amount of variance attributed to a latent factor where values greater than 1 indicate the number of factors to extract
- Root Mean Squared Error of Approximation (RMSEA) A statistic which measures error and values closest to 0 are desired
- Parallel Analysis A simulation method which generates random data with the same number of observations and variables then compares it to the true data until the results converge
- Parameter Recovery The difference between a true statistic and an estimated statistic which can be calculated using several statistics
- Root Mean Squared Error (RMSE) A measure of model error which only takes on positive values
- Mean Absolute Error (MAE) A measure of average model error which only takes on positive values
- Bias A measure of model error which can be positive or negative and can indicate over- or under-estimation

METHODS

Monte Carlo simulation study to evaluate EFA

· Data simulated and analyzed 1,000 times then averaged across the

Fully crossed to evaluate interactions between conditions

• 4 * 3 * 3 conditions = 36 unique combinations

Software used was R and Microsoft Excel

- Psych package was used for data generation and analysis
- · Excel used for data organization and visualization

Conditions values are summarized in the following table

Conditions	Levels	Levels of Condition			
Total Sample Size	24	48	144	384	
Item Quality	0.3	0.5	0.8		
Number of Measurements	1	3	6		

FACTOR EXTRACTION RESULTS

RMSEA was the most accurate method for determining the number of factors to extract, where the correct number of factors resulted in the smallest amount of error. Using eigenvalues > 1 was the least accurate method.

Repeated Measurements Increase Factor Extraction Accuracy

Parallel Analysis was the second most accurate factor extraction method, and repeated measurements was the strongest predictor of its accuracy. There was a large increase in accuracy going from 1 to 3 measurements, and almost perfect accuracy with 6 measurements.

PARAMETER RECOVERY RESULTS

Factor Loading Estimate

The true estimate in this situation was 0.897, indicating a high quality item. Most estimated values were lower than the true value, but fairly accurate given the particular conditions of this replication.

Item Quality and Repeated Measures Improve Parameter Recovery

Item quality and the number of measurements were the strongest predictors of average model error. The model error was minimized as item quality and the number of repeated measurements increased. Overall, model error was minimal

ACKNOWLEDGEMENTS

Thank you to my excellent team who provided amazing guidance, support, and expertise. Thank you to IDA who provided me with this incredible opportunity by selecting me to be a summer associate.

Bias Increases with Repeated Measures

Model bias was minimal when there was a single measurement, but somewhat larger when measurements increased. There were sizable differences between the smallest and largest sample sizes. but the effect was less noticeable among larger sample sizes.

Importance of Conditions Across Outcome Measures

Study Conditions with Largest Effects

The importance of the condition depended on the outcome and study in question. Item quality was the strongest predictor for MAE and RMSE, while repeated measurements was the strongest predictor of BIC and parallel analysis extraction methods.

DISCUSSION

These studies offer several insights about exploratory factor analysis:

- 1. Researchers should rely less on eigenvalue cutoff rules when choosing the number of factors for EFA.
- 2. RMSEA is the most accurate factor extraction indicator and should be used more. Parallel Analysis was the second most accurate factor extraction method
- 3. Repeated measurements appear to have a positive effect on EFA and should be explored more.
- 4. Sample size is less important than previously thought, so small sample sizes may be viable when conducting EFA.
- 5. Item quality is important for parameter recovery, but less important
- 6. Researchers should use multiple methods to validate their factor solutions, to account for potential discrepancies among the results.

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

	RETURN YOUR FOR		E AUUKESS.				
1. REPORT DA	TE (DD-MM-YYYY)	2. REPOR	T TYPE			3. DATES COVERED (From - To)	
4. TITLE AND SUBTITLE					5a. C0	DNTRACT NUMBER	
			5b		5b. GI	5b. GRANT NUMBER	
					5c. PF	ROGRAM ELEMENT NUMBER	
6. AUTHOR(S)					5d. PF	ROJECT NUMBER	
					5e. TA	ASK NUMBER	
					5f. WORK UNIT NUMBER		
7. PERFORMIN	G ORGANIZATIOI	NAME(S) ANI	O ADDRESS(ES)			8. PERFORMING ORGANIZATION REPORT NUMBER	
9. SPONSORIN	G/MONITORING A	GENCY NAME	(S) AND ADDRESS(ES)		10. SPONSOR/MONITOR'S ACRONYM(S)	
						11. SPONSOR/MONITOR'S REPORT NUMBER(S)	
12. DISTRIBUT	ION/AVAILABILIT	Y STATEMENT					
13. SUPPLEME	NTARY NOTES						
44 ADOTDAOT							
14. ABSTRACT							
15. SUBJECT T	ERMS						
	CLASSIFICATION		17. LIMITATION OF ABSTRACT	18. NUMBER OF	19a. NAME	OF RESPONSIBLE PERSON	
a. REPORT	b. ABSTRACT	c. THIS PAGE	7.50171701	PAGES	19b. TELEP	PHONE NUMBER (Include area code)	
					.00. 1222	TOTAL TRANSPORT (MORAGE AND COUC)	