CS3230 – Design and Analysis of Algorithms (S2 AY2024/25)

Lecture 3b: Divide and Conquer

- 1. Divide the problem into smaller subproblems.
- 2. Solve the subproblems recursively.
- 3. Combine the subproblem solutions to get the solution of the full problem.

- 1. Divide the problem into smaller subproblems.
- 2. Solve the subproblems recursively.
- 3. Combine the subproblem solutions to get the solution of the full problem.

MergeSort(A[1..n])

- If $n \ge 2$, do the following steps.
 - MergeSort(A[1...[n/2]]).
 - MergeSort(A[[n/2] + 1...n]).
 - "Merge" the two sorted arrays.

- $\Theta(n)$ = the cost for **splitting/combining**:
- Split a problem into subproblems.
- <u>Combine</u> the solutions of subproblems.
- 1. Divide the problem into smaller subproblems.
- 2. Solve the subproblems recursively.
- 3. Combine the subproblem solutions to get the solution of the full problem.

MergeSort(A[1..n])

- If $n \ge 2$, do the following steps.
 - MergeSort(A[1...[n/2]]).
 - MergeSort(A[[n/2] + 1...n]).
 - "Merge" the two sorted arrays.

$$T(n) = \begin{cases} \Theta(1) & \text{if } n \le 1\\ 2T\left(\frac{n}{2}\right) + \Theta(n) & \text{if } n > 1 \end{cases}$$

The size of each subproblem is n/2.

There are 2 subproblems.

f(n) =the cost for **splitting/combining**:

- Split a problem into subproblems.
- <u>Combine</u> the solutions of subproblems.
- 1. Divide the problem into smaller subproblems.
- 2. Solve the subproblems recursively.
- 3. Combine the subproblem solutions to get the solution of the full problem.

$$T(n) = \begin{cases} \Theta(1) & \text{if } n \le 1\\ aT\left(\frac{n}{b}\right) + f(n) & \text{if } n > 1 \end{cases}$$

The size of each subproblem is n/b.

There are a subproblems.

Question

• The recurrence for the running time of a divide-and-conquer algorithm:

•
$$T(n) = 8T\left(\frac{n}{2}\right) + n^3$$

- Two improvements to the algorithm are found:
 - Improvement 1: The cost for splitting/combining is reduced from n^3 to n^2 .
 - **Improvement 2**: The number of subproblems is reduced from 8 to 7.

Question

- The recurrence for the running time of a divide-and-conquer algorithm:
 - $T(n) = 8T\left(\frac{n}{2}\right) + n^3$
- Two improvements to the algorithm are found:
 - Improvement 1: The cost for splitting/combining is reduced from n^3 to n^2 .
 - **Improvement 2**: The number of subproblems is reduced from 8 to 7.
- Which of the improvements is asymptotically better?
 - Improvement 1
 - Improvement 2
 - Both improvements yield the same improved asymptotic running time.
 - Both improvements do not improve the asymptotic running time.

Answer

Both improvements yield the same improved asymptotic running time.

	Recurrence	n^d	f(n)	Master theorem	T(n)
Original algorithm	$T(n) = 8T\left(\frac{n}{2}\right) + n^3$	$n^{\log_2 8} = n^3$	n^3	Case 2	$\Theta(n^3 \log n)$
Improvement 1	$T(n) = 8T\left(\frac{n}{2}\right) + n^2$	$n^{\log_2 8} = n^3$	n^2	Case 1	$\Theta(n^3)$
Improvement 2	$T(n) = 7T\left(\frac{n}{2}\right) + n^3$	$n^{\log_2 7} = n^{2.807\dots}$	n^3	Case 3	$\Theta(n^3)$

Remember to check the regularity condition.

• Input: two positive integers a and n.

• Output: a^n

• Input: two positive integers a and n.

• Output: a^n

Note: To ensure that the output fits into one word, we consider **modular arithmetic**.

- The output is $a^n \pmod{m}$.
- *m* is some integer that fits into one word.

For the sake of simplicity, we omit explicitly stating \pmod{m} in the subsequent discussion.

- Input: two positive integers a and n.
- Output: a^n

First approach:

- $a^n = a^{n-1} \cdot a$
- Recurrence: $T(n) = T(n-1) + \Theta(1)$
 - Computing a^{n-1} recursively: T(n-1) time
 - Computing a^n from a^{n-1} : $\Theta(1)$ time
- $T(n) \in \Theta(n)$

- Input: two positive integers a and n.
- Output: a^n

First approach:

- $a^n = a^{n-1} \cdot a$
- Recurrence: $T(n) = T(n-1) + \Theta(1)$
 - Computing a^{n-1} recursively: T(n-1) time
 - Computing a^n from a^{n-1} : $\Theta(1)$ time
- $T(n) \in \Theta(n)$

Second approach:

- If (*n* is even), $a^n = a^{\left\lfloor \frac{n}{2} \right\rfloor} \cdot a^{\left\lfloor \frac{n}{2} \right\rfloor}$
- If (n is odd), $a^n = a^{\left\lfloor \frac{n}{2} \right\rfloor} \cdot a^{\left\lfloor \frac{n}{2} \right\rfloor} \cdot a$
- Recurrence: $T(n) = T\left(\left|\frac{n}{2}\right|\right) + \Theta(1)$
 - Computing $a^{\left\lfloor \frac{n}{2} \right\rfloor}$ recursively: $T\left(\left\lfloor \frac{n}{2} \right\rfloor \right)$ time
 - Computing a^n from $a^{\left[\frac{n}{2}\right]}$: $\Theta(1)$ time
- $T(n) \in \Theta(\log n)$

Exponential improvement!

- $F_0 = 0$
- $F_1 = 1$
- For $n \ge 2$, $F_n = F_{n-1} + F_{n-2}$
- 0, 1, 1, 2, 3, 5, 8, 13, 21, ...
- **Recall:** F_n can be computed in O(n) time.

Question: Can we do better by divide and conquer?

- $F_0 = 0$
- $F_1 = 1$
- For $n \ge 2$, $F_n = F_{n-1} + F_{n-2}$
- 0, 1, 1, 2, 3, 5, 8, 13, 21, ...
- **Recall:** F_n can be computed in O(n) time.

IFib(n)

- If $n \leq 1$
 - return *n*
- Else,
 - prev2 = 0
 - prev1 = 1
 - for i = 2 to n
 - temp = prev1
 - prev1 = prev1+prev2
 - prev2 = temp
 - return prev1

$$\bullet \ \phi = \frac{1+\sqrt{5}}{2}$$

•
$$\psi = \frac{1-\sqrt{5}}{2}$$

- It can be shown that $F_n = \frac{1}{\sqrt{5}} (\phi^n \psi^n)$.
- Can we use the exponentiation algorithm to compute F_n in $O(\log n)$ time?

•
$$\psi = \frac{1-\sqrt{5}}{2}$$

- It can be shown that $F_n = \frac{1}{\sqrt{5}} (\phi^n \psi^n)$.
- Can we use the exponentiation algorithm to compute F_n in $O(\log n)$ time?

Potential issues:

- Even if we intend to do modulo arithmetic, handling real numbers can be tricky.
- How many bits of precision do we need to ensure that the output is correct?

$$\begin{pmatrix} F_{n+1} & F_n \\ F_n & F_{n-1} \end{pmatrix} = \begin{pmatrix} F_n + F_{n-1} & F_n \\ F_{n-1} + F_{n-2} & F_{n-1} \end{pmatrix} = \begin{pmatrix} F_n & F_{n-1} \\ F_{n-1} & F_{n-2} \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$

$$\begin{pmatrix} F_{n+1} & F_n \\ F_n & F_{n-1} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^n$$

$$\begin{pmatrix} F_{n+1} & F_n \\ F_n & F_{n-1} \end{pmatrix} = \begin{pmatrix} F_n + F_{n-1} & F_n \\ F_{n-1} + F_{n-2} & F_{n-1} \end{pmatrix} = \begin{pmatrix} F_n & F_{n-1} \\ F_{n-1} & F_{n-2} \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$

$$\begin{pmatrix} F_{n+1} & F_n \\ F_n & F_{n-1} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^n$$

The exponentiation algorithm can compute $\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^n$ in $O(\log n)$ time.

 F_n can be computed in $O(\log n)$ time.

Exponential improvement!

Midterm exam information

• 13/03/2025 (THU)

• MPSH 1B

• Start time: 14:00

Mode of assessment:

 Hardcopy (Pen and Paper),
 Open book, No calculators or electronic devices

- Bring 2B pencils
- Scratch paper

Matrix multiplication

- Input: Two $(n \times n)$ matrices $A = [a_{i,j}]$ and $B = [b_{i,j}]$
- Output: $C = A \cdot B$

$$\begin{bmatrix} c_{1,1} & \cdots & c_{1,n} \\ \vdots & \ddots & \vdots \\ c_{n,1} & \cdots & c_{n,n} \end{bmatrix} = \begin{bmatrix} a_{1,1} & \cdots & a_{1,n} \\ \vdots & \ddots & \vdots \\ a_{n,1} & \cdots & a_{n,n} \end{bmatrix} \cdot \begin{bmatrix} b_{1,1} & \cdots & b_{1,n} \\ \vdots & \ddots & \vdots \\ b_{n,1} & \cdots & b_{n,n} \end{bmatrix}$$

$$c_{i,j} = \sum_{k=1}^{n} a_{i,k} \cdot b_{k,j}$$

Matrix multiplication

- Input: Two $(n \times n)$ matrices $A = [a_{i,j}]$ and $B = [b_{i,j}]$
- Output: $C = A \cdot B$ $\bigcirc (n^3)$ time

$$\begin{bmatrix} c_{1,1} & \cdots & c_{1,n} \\ \vdots & \ddots & \vdots \\ c_{n,1} & \cdots & c_{n,n} \end{bmatrix} = \begin{bmatrix} a_{1,1} & \cdots & a_{1,n} \\ \vdots & \ddots & \vdots \\ a_{n,1} & \cdots & a_{n,n} \end{bmatrix} \cdot \begin{bmatrix} b_{1,1} & \cdots & b_{1,n} \\ \vdots & \ddots & \vdots \\ b_{n,1} & \cdots & b_{n,n} \end{bmatrix}$$

$$\begin{matrix} n^2 \text{ entries} \end{matrix}$$

$$c_{i,j} = \sum_{k=1}^n a_{i,k} \cdot b_{k,j}$$

 $\Theta(n)$ time

Matrix multiplication

Question: Can we do better by divide and conquer?

- Input: Two $(n \times n)$ matrices $A = [a_{i,j}]$ and $B = [b_{i,j}]$
- Output: $C = A \cdot B$ $\bigcirc (n^3)$ time

$$\begin{bmatrix} c_{1,1} & \cdots & c_{1,n} \\ \vdots & \ddots & \vdots \\ c_{n,1} & \cdots & c_{n,n} \end{bmatrix} = \begin{bmatrix} a_{1,1} & \cdots & a_{1,n} \\ \vdots & \ddots & \vdots \\ a_{n,1} & \cdots & a_{n,n} \end{bmatrix} \cdot \begin{bmatrix} b_{1,1} & \cdots & b_{1,n} \\ \vdots & \ddots & \vdots \\ b_{n,1} & \cdots & b_{n,n} \end{bmatrix}$$

$$c_{i,j} = \sum_{k=1}^{n} a_{i,k} \cdot b_{k,j}$$

 $\Theta(n)$ time

$$\begin{bmatrix} r & s \\ t & u \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \cdot \begin{bmatrix} e & f \\ g & h \end{bmatrix}$$

•
$$r = ae + bg$$

•
$$s = af + bh$$

•
$$t = ce + dg$$

•
$$u = cf + dh$$

$$A = \begin{bmatrix} 2 & 3 & 1 & 7 \\ 9 & 4 & 5 & 0 \\ 6 & 3 & 6 & 7 \\ 8 & 6 & 3 & 4 \end{bmatrix} = \begin{bmatrix} 2 & 3 \\ 9 & 4 \end{bmatrix} \begin{bmatrix} 1 & 7 \\ 5 & 0 \\ 6 & 3 \\ 8 & 6 \end{bmatrix} \begin{bmatrix} 6 & 7 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

•
$$a = \begin{bmatrix} 2 & 3 \\ 9 & 4 \end{bmatrix}$$

•
$$b = \begin{bmatrix} 1 & 7 \\ 5 & 0 \end{bmatrix}$$

•
$$c = \begin{bmatrix} 6 & 3 \\ 8 & 6 \end{bmatrix}$$

•
$$d = \begin{bmatrix} 6 & 7 \\ 3 & 4 \end{bmatrix}$$

r, s, t, u, a, b, c, d, e, f, g, h are $\left(\frac{n}{2} \times \frac{n}{2}\right)$ matrices.

$$\begin{bmatrix} r & s \\ t & u \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \cdot \begin{bmatrix} e & f \\ g & h \end{bmatrix}$$

•
$$r = ae + bg$$

•
$$s = af + bh$$

•
$$t = ce + dg$$

•
$$u = cf + dh$$

8 multiplications of
$$\left(\frac{n}{2} \times \frac{n}{2}\right)$$
 matrices: 8 $T\left(\frac{n}{2}\right)$ time.

4 additions of
$$\left(\frac{n}{2} \times \frac{n}{2}\right)$$
 matrices: $\Theta(n^2)$ time.

$$T(n) = 8T\left(\frac{n}{2}\right) + \Theta(n^2)$$

$$T(n) \in \Theta(n^{\log_2 8}) = \Theta(n^3)$$

$$r, s, t, u, a, b, c, d, e, f, g, h$$
 are $\left(\frac{n}{2} \times \frac{n}{2}\right)$ matrices.

$$\begin{bmatrix} r & s \\ t & u \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \cdot \begin{bmatrix} e & f \\ g & h \end{bmatrix}$$

•
$$r = ae + bg$$

•
$$s = af + bh$$

•
$$t = ce + dg$$

•
$$u = cf + dh$$

8 multiplications of
$$\left(\frac{n}{2} \times \frac{n}{2}\right)$$
 matrices: $8T\left(\frac{n}{2}\right)$ time.

4 additions of
$$\left(\frac{n}{2} \times \frac{n}{2}\right)$$
 matrices: $\Theta(n^2)$ time.

$$T(n) = 8T\left(\frac{n}{2}\right) + \Theta(n^2)$$

$$T(n) \in \Theta(n^{\log_2 8}) = \Theta(n^3)$$

r, s, t, u, a, b, c, d, e, f, g, h are $\left(\frac{n}{2} \times \frac{n}{2}\right)$ matrices.

Observation: The asymptotic running time can be improved if the number of subproblems is reduced.

Strassen's algorithm

$$\begin{bmatrix} r & s \\ t & u \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \cdot \begin{bmatrix} e & f \\ g & h \end{bmatrix}$$
• $r = P_5 + P_4 - P_2 + P_6$

•
$$s = P_1 + P_2$$

•
$$t = P_3 + P_4$$

•
$$u = P_5 + P_1 - P_3 - P_7$$

•
$$P_1 = a \cdot (f - h)$$

•
$$P_2 = (a+b) \cdot h$$

•
$$P_3 = (c+d) \cdot e$$

•
$$P_4 = d \cdot (g - e)$$

•
$$P_5 = (a+d) \cdot (e+h)$$

$$\bullet \ P_6 = (b-d) \cdot (g+h)$$

•
$$P_7 = (a-c) \cdot (e+f)$$

Strassen's algorithm

$$\begin{bmatrix} r & s \\ t & u \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \cdot \begin{bmatrix} e & f \\ g & h \end{bmatrix}$$
• $r = P_5 + P_4 - P_2 + P_6$ Checking its correctness.
• $s = P_1 + P_2$
• $t = P_3 + P_4$
• $u = P_5 + P_1 - P_3 - P_7$

$$r = P_5 + P_4 - P_2 + P_6$$
= $(a+d)(e+h) + d(g-e) - (a+b)h + (b-d)(g+h)$
= $ae + ah + de + dh + dg - de - ah - bh + bg + bh - dg - dh$
= $ae + bg$

•
$$P_1 = a \cdot (f - h)$$

•
$$P_2 = (a+b) \cdot h$$

•
$$P_3 = (c+d) \cdot e$$

•
$$P_4 = d \cdot (g - e)$$

•
$$P_5 = (a + d) \cdot (e + h)$$

•
$$P_6 = (b - d) \cdot (g + h)$$

•
$$P_7 = (a-c) \cdot (e+f)$$

Strassen's algorithm

$$\begin{bmatrix} r & s \\ t & u \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \cdot \begin{bmatrix} e & f \\ g & h \end{bmatrix}$$
• $r = P_5 + P_4 - P_2 + P_6$

•
$$s = P_1 + P_2$$

•
$$t = P_3 + P_4$$

•
$$u = P_5 + P_1 - P_3 - P_7$$

7 multiplications of $\left(\frac{n}{2} \times \frac{n}{2}\right)$ matrices: $7T\left(\frac{n}{2}\right)$ time. 18 additions of $\left(\frac{n}{2} \times \frac{n}{2}\right)$ matrices: $\Theta(n^2)$ time. $T(n) = 7T\left(\frac{n}{2}\right) + \Theta(n^2)$ $T(n) \in \Theta(n^{\log_2 7}) = \Theta(n^{2.807 \dots})$

•
$$P_1 = a \cdot (f - h)$$

•
$$P_2 = (a+b) \cdot h$$

•
$$P_3 = (c+d) \cdot e$$

•
$$P_4 = d \cdot (g - e)$$

•
$$P_5 = (a+d) \cdot (e+h)$$

•
$$P_6 = (b-d) \cdot (g+h)$$

•
$$P_7 = (a-c) \cdot (e+f)$$

State of the art

Strassen's algorithm

Coppersmith–Winograd algorithm

Timeline of matrix multiplication exponent				
Year	Matrix multiplication exponent	Authors		
1969	2.8074	Strassen		
1978	2.796	Pan		
1979	2.780	Bini, Capovani, Romani		
1981	2.522	Schönhage		
1981	2.517	Romani		
1981	2.496	Coppersmith, Winograd		
1986	2.479	Strassen		
1990	2.3755	Coppersmith, Winograd		
2010	2.3737	Stothers		
2012	2.3729	Williams		
2014	2.3728639	Le Gall		
2020	2.3728596	Alman, Williams		
2022	2.371866	Duan, Wu, Zhou		
2024	2.371552	Williams, Xu, Xu, and Zhou		

https://en.wikipedia.org/wiki/Computational complexity of matrix multiplication

Acknowledgement

 The slides are modified from previous editions of this course and similar course elsewhere.

• List of credits:

- Diptarka Chakraborty
- Yi-Jun Chang
- Erik Demaine
- Steven Halim
- Sanjay Jain
- Wee Sun Lee
- Charles Leiserson
- Hon Wai Leong
- Warut Suksompong
- Wing-Kin Sung