

108389 6 JUL -2 2009

510(k) Summary

Destiny MAX

A. 510(k) Submitter Information:

Submitter's name:

Trinity Biotech

Address:

· IDA Business Park

Bray, Co. Wicklow

Ireland

Contact Person:

Bonnie DeJoy

Phone Number:

(716) 483-3851

Fax Number:

(716) 488-1990

Date of Preparation:

December, 15 2008

B. Device Information:

Trade Name:

Destiny MAX

Device Classification Name:

System, Multipurpose for in vitro

coagulation studies, 21CFR864.5425.

Product code JPA

Common Name:

Destiny MAX

C. Predicate Device:

AMAX DestinyTM Coagulation Analyzer

(K021162)

Indications for Use

The Destiny Max Coagulation Analyzer is a multipurpose system for in vitro coagulation studies consisting of one automated instrument and its associated reagents and controls. The system is used to perform a series of coagulation studies and coagulation factor assays.

Device Description

The Destiny Max instrument performs coagulation testing (clotting, chromogenic and immuno-turbidimetric) using human samples. The system is comprised of an instrument (Destiny Max Analyzer) that performs the tasks necessary to generate an assay result together with a Personal Computer (PC) that receives the user's requests and provides the results. The assays used with the Destiny Max are generally used for detection of clotting deficiencies or disorders and/or monitoring of anticoagulant therapy on various patient populations.

Section 3: 510k Summary Page 1 of 10

Predicate Device and Equivalence Information

The Destiny Max employs the same detection technologies previously employed in the predicate device with a new graphic user interface, cap piercing capability and enhanced through put. The Destiny Max system is substantially equivalent to the AMAX Destiny system in intended use and performance.

Device Technological Characteristics

Table 1 is a summary of the technological characteristics of the Destiny Max compared to the predicate device.

Table 1: Comparison of Technological Characteristics

Loature and the second	AMAX Destiny	Destiny MAX
Integrated PC	Yes	No
Integrated Monitor	Yes	· No
Touch screen	Yes	Yes
Instrument Drive and User Interface SW separated	No	Yes
Optical clotting	Yes	Yes
Minimum test volume in µL optical clotting	150	150
Mechanical clotting	Yes	Yes
Minimum test volume in µL mechanical clotting	75	75
Throughput PT	180	≈350
Throughput PT/PTT/FIB	110	≈300
Multishot sample	Yes	Yes
Multiple dispense reagent on appropriate reagents	Yes	Yes
Optical Wavelengths	405nm	340nm, 405nm, 635nm and 705nm
Cap piercing	No	Yes
QC scheduling	No	Yes
Result tracking to Lot#, operator, QC, calibration curve	No	Yes
Tracking of Operator to editing of assay definitions	Yes	Yes
Barcode ID of samples and reagents	Yes	Yes

Device Performance Characteristics – Method Comparison Table 2 describes the performance of the Destiny Max system when compared to the predicate at 3 sites using a variety of clinical samples.

ZASSTY.	Site	N.	Slope	untercer	III R
TriniCLOT PT HTF Optical Mode Seconds	1	77	1.04	-2.00	1.00
TriniCLOT PT HTF Optical Mode Seconds	2	42	1.00	-1.28	0.99
TriniCLOT PT HTF Optical Mode Seconds	3	85	1.23	-3.71	0.99
TriniCLOT PT HTF Mechanical Mode Seconds	1	80	1.02	-1.37	1.00
TriniCLOT PT HTF Mechanical Mode Seconds	2	51	1.02	-1.66	1.00
TriniCLOT PT HTF Mechanical Mode Seconds	3	86	1.21	-3.01	1.00

Section 3: 510k Summary Page 2 of 10

Assay -	Site	N.	Slope	Intercept	R
TriniCLOT Excel S Optical Mode Seconds	1	77	1.03	1.61	
TriniCLOT Excel S Optical Mode Seconds	2	43	0.99	-1.61	1.00
TriniCLOT Excel S Optical Mode Seconds	3	75	1.01	-1.36	1.00
TriniCLOT Excel S Mechanical Mode Seconds	1	78	1.09	-0.05	1.00
TriniCLOT Excel S Mechanical Mode Seconds	2	49		-2.08	1.00
TriniCLOT Excel S Mechanical Mode Seconds	3		1.04	-1.29	1.00
TriniCLOT APTT S Optical Mode Seconds	1	78	1.13	-1.43	1.00
TriniCLOT APTT S Optical Mode Seconds	2	63	0.97	-1.82	0.99
TriniCLOT APTT S Optical Mode Seconds		49	0.87	1.57	0.93
TriniCLOT APTT S Optical Mode Seconds	3	80	1.03	-3.11	0.99
TriniCLOT APTT S Mechanical Mode Seconds TriniCLOT APTT S Mechanical Mode Seconds	1	67	0.91	2.65	0.99
	2	57	1.05	-2.08	0.97
TriniCLOT APTT S Mechanical Mode Seconds	3	86	1.01	-0.27	0.98
TriniCLOT Thrombin Time Mechanical Mode Seconds	1	50	1.21	-3.35	0.97
TriniCLOT Thrombin Time Mechanical Mode Seconds	2	19	0.89	0.91	0.96
TriniCLOT Thrombin Time Mechanical Mode Seconds	3	73	1.04	-0.37	0.99
TriniCLOT Fibrinogen Optical Mode mg/dL	1	80	0.90	15.56	1.00
TriniCLOT Fibrinogen Optical Mode mg/dL	2	69	1.02	-5.45	0.98
TriniCLOT Fibrinogen Optical Mode mg/dL	3	68	0.73	71.70	0.95
TriniCLOT Fibrinogen Mechanical Mode mg/dL	1	80	0.86	44.28	0.99
TriniCLOT Fibrinogen Mechanical Mode mg/dL	2	65	1.10	-21.04	0.97
TriniCLOT Fibrinogen Mechanical Mode mg/dL	3	60	0.91	49.84	0.94
TriniCLOT FVII Optical Mode %	1	77	0.94	0.30	0.98
TriniCLOT FVII Optical Mode %	2	81	0.99	-1.65	0.98
TriniCLOT FVII Optical Mode %	3	57	0.78	8.56	0.98
TriniCLOT FVII Mechanical Mode %	1	77	0.98	3.91	0.96
TriniCLOT FVII Mechanical Mode %	2	82	0.89	10.35	0.96
TriniCLOT FVII Mechanical Mode %	3	58	0.82	6.87	0.96
TriniCLOT FIX Optical Mode %	1	117	0.84	0.92	0.88
TriniCLOT FIX Optical Mode %	2	76	1.01	-1.43	0.97
TriniCLOT FIX Optical Mode %	3	60	1.06	-6.17	0.95
TriniCLOT FIX Mechanical Mode %	1	117	0.96	3.21	0.90
TriniCLOT FIX Mechanical Mode %	2	77	0.95	1.46	0.96
TriniCLOT FIX Mechanical Mode %	3	60	0.87	2.60	0.97
TriniCHROM Antithrombin IIa %	1	80	0.98	7.87	0.99
TriniCHROM Antithrombin IIa %	2	77	0.84	4.52	0.97
TriniCHROM Antithrombin IIa %	3	80	0.95	13.62	0.99
TriniLIA D-Dimer ng/mL	1	76	0.88	182.84	0.99
TriniLIA D-Dimer ng/mL	2	68	1.28	-184.08	0.99
TriniLIA D-Dimer ng/mL	3	79	1.14	-435.84	0.98

Section 3: 510k Summary Page 3 of 10

Device Performance Characteristics - Linearity Table 3 describes the linearity data generated for calibrated assays on the Destiny Max system.

Assay	Range %	R R
TriniCLOT Fibrinogen Optical Mode	64 - 1400	0.993
TriniCLOT Fibrinogen Mechanical Mode	62 - 844	1.000
TriniCLOT Factor VII Optical Mode	1 - 112	0.998
TriniCLOT Factor VII Mechanical Mode	2 - 110	0.998
TriniCLOT Factor IX Optical Mode	0 - 230	0.996
TriniCLOT Factor IX Mechanical Mode	0 - 104	0.996
TriniCHROM Antithrombin Chromogenic Mode	0 -150	0.998
TriniLIA D-Dimer Immunoturbidometric Mode	70 - 13911	0.996

Device Performance Characteristics - Precision Tables 4 to 12 describe the precision data generated at 3 sites

							Mode:	Clottii	ng						
Level		•		Optica	al						Mechani	cal			
1	Within Rur					Total			With	in Run		Total			
	N	Sec	SD	%CV	Sec	SD	%CV	N	Sec	SD	%CV	Sec	SD	%CV	
Site 1	57	12.3	0.32	2.6	12.3	0.42	3.4	57	12.8	0.31	2.4	12.8	0.41	3.2	
Site 2	56	12.6	0.29	2.3	12.6	0.58	4.6	60	12.8	0.28	2.2	12.8	0.5	3.9	
Site 3	60	12.5	0.26	2.1	12.5	0.28	2.3	58	12.5	0.15	1.2	12,5	0.27	2.2	

Table 4b: Level 2 Precision Data TriniCLOT PT HTF

							Mode:	Clotti	ng					
Level				Optica	il						Mechani	cal		
2		With	nin Run		Total				With	in Run			Total	
	N	Sec	SD	%CV	Sec	SD	%CV	N	Sec	SD	%CV	Sec	SD	%CV
Site 1	56	20.7	0.46	2.2	20.7	0.55	2.6	56	21.2	0.52	2.4	21.2	0.58	2.7
Site 2	56	21.2	0.41	1.9	21.2	0.57	2.7	59	21.5	0.39	1.8	21.5	0.40	1.9
Site 3	59	21.1	0.34	1.6	21.1	0.42	2.0	57	21.0	0.2	0.9	21.0	0.38	1.8

Section 3: 510k Summary Page 4 of 10

Table 4c: Level 3 Precision Data TriniCLOT PT HTF

							Mode:	Clottli	ng					
Level				Optica	ai						Mechan	ical	·	.
3		Within Run N Sec SD %CV			Total			Within Run				Total		
	N	Sec	SD	%CV	Sec	SD	%CV	N	Sec	SD	%CV	Sec	SD	%CV
Site 1	53	34.8	0.57	1.6	34.8	0.56	1.6	55	34.7	0.51	1.5	35.7	0.68	1.9
Site 2	59	35.5	0.54	1.5	35.5	0.81	2.3	60	36.1	0.86	2.4	36.1	1.05	2.9
Site 3	60	35.1	0.47	1.3	35.1	0.7	2.0	60	35.4	0.39	1.1	35.4	0.58	1.7

Table 5a: Level 1 Precision Data TriniCLOT PT Excel S

							Mode:	Clotti	ng						
Level				Optica	al			Ι			Mechani	ical			
1 .		Witi	nin Run		Total			Within Run					Total		
	N	Sec	SD	%CV	Sec	SD	%CV	N	Sec	SD	%CV	Sec	SD	%CV	
Site 1	54	13.6	0.24	1.7	13.6	0.25	1.8	57	14.2	0.21	1.5	14.2	0.26	1.8	
Site 2	54	13.8	0.23	1.6	13.8	0.43	3.1	59	14.4	0.22	1.5	14.4	0.47	3.3	
Site 3	60	13.4	0.26	1.9	13.4	0.29	2.2	59	14.0	0.24	1.7	14.0	0.28	2.0	

Table 5b: Level 2 Precision Data TriniCLOT PT Excel S

	ŀ			_			Mode:	Clotti	ng					
Level				Optica	31			Mechanical						
2		Witl	nin Run		Total			Within Run				<u> </u>	Total	
	N	Sec	SD	%CV	Sec	SD	%CV	N -	Sec	SD	%CV	Sec	SD	%CV
Site 1	56	23.9	0.36	1.5	23.9	0.61	2.6	57	25.4	0.46	1.8	25.4	0.75	3.0
Site 2	45	24.8	0.5	2.0	24.8	1.04	4.3	59	26.3	0.31	1.2	26.3	1.08	4.1
Site 3	59	23.2	0.40	1.7	23.2	0.62	2.7	58	25.1	0.52	2.1	25.1	0.76	3.0

Section 3: 510k Summary Page 5 of 10

Table 5c: Level 3 Precision Data TriniCLOT PT Excel S

	1						Mode:	Clotti	ng						
Level				Optica	al						Mechan	nical			
3	Within Run N Sec SD				Γ-	Total		-	With	in Run		Γ -	Total		
	N	Sec	SD	%CV	Sec	SD	%CV	N	Sec	SD	%CV	Sec	SD	%CV	
Site 1	57	42.8	0.68	1.6	42.8	1.60	3.8	57	45.9	0.79	1.7	45.9	1.72	3.8	
Site 2	57	42.8	0.69	1.6	42.8	2.28	5.3	60	47.4	0.95	2.0	47.4	2.62	5.5	
Site 3	59	39.9	0.44	1.1	39.9	1.02	2.5	60	43.5	1.04	2.4	43.5	1.76	4.1	

Table 6a: Level 1 Precision Data TriniCLOT APTT S

							Mode:	Clotti	ng					
Level				Optica	al						Mechan	ical		
1		Within Run N Sec SD %CV						Within Run				Total		
	N	Sec	SD	%CV	Sec	SD	%CV	N	Sec	SD	%CV	Sec	SD	%CV
Site 1	57	30.9	0.21	0.7	30.9	0.4	1.3	57	32.4	0.73	2.3	32.4	0.97	3.0
Site 2	59	30.7	0.29	0.9	30.6	0.59	1.9	60	33.3	1.12	3.4	33.3	1.19	3.6
Site 3	59	30.6	0.21	0.7	30.6	0.35	1.1	58	32.4	0.66	2.0	32.4	0.82	2.5

Table 6b: Level 2 Precision Data TriniCI OT APTT S

							Mode:	Clotti	ng					
Level				Optica	al		····				Mechan	ical		
		Wit	hin Run		Total			 	With	in Run		Total		
	N	Sec	SD	%CV	Sec	SD	%CV	N	. Sec	SD	%CV	Sec	SD	%CV
Site 1	57	65.3	0.59	0.9	65.3	1.00	1.5	56	69.1	1.13	1.6	69.1	1.64	2.4
Site 2	53	63.0	0.75	1.2	63.0	1.81	2.9	52	69.0	2.24	3.2	69.0	2.56	3.7
Site 3	57	61.1	0.37	0.6	61.1	1.81	3.0	57	66.1	1.21	1.8	66.1	1.71	2.6

Section 3: 510k Summary

Page 6 of 10

Table 6c: Level 3 Precision Data TriniCLOT APTT S

				-			Mode	: Clotti	ing		•			
Level				Optica	21					ħ	/lechanic	cal		
3		With	nin Run			Total			Withi	n Run			Total	
	N	Sec	SD	%CV	Sec	SD	%CV	N	Sec	SD	%CV	Sec	SD	%CV
Site 1	57	94.8	1.08	1.1	94.8	1.63	1.7	56	101.0	2.95	2.9	101.0	4.12	4.1
Site 2	59	91.0	1.59	1.7	91.0	2.18	2.4	58	96.7	3.80	3.9	96.7	9.20	9.5
Site 3	59	87.0	0.69	0.8	87.0	2.55	2.9	58	94.7	1.92	2.0	94.7	2.89	3.1

Table 7a and Table 7b: Level 1 and Level 2 Precision Data TriniCLOT Thrombin Time

			N	lode: Cl	otting						N	lode: Cl	otting		
Level				Optic	al			Level	ļ			Optic	al .		
•		Witi	hin Run			Total	-	2		Wit	hin Run			Total	<u> </u>
	N	Sec	SD	%CV	Sec	SD	%CV		N	Sec	SD	%CV	Sec	ŞD	%CV
Site 1	59	15.8	0.41	2.6	15.8	0.49	3.1	Site 1	60	18.8	0.27	1.5	18.8	0.40	2.1
Site 2	47	15.1	0.16	1.1	15.1	2.5	1.7	Site 2	59	18.7	0.24	1.3	18.7	0.45	2.4
Site 3	56	15.0	0.38	2.5	15.0	0.49	3.3	Site 3	54	18.4	0.30	1.6	18.4	0.32	1.8

Table 8a: Level 1 Precision Data TriniCl OT Fibringen

							Mode: (Clottin	9			·		
Level				Optic	al						Mechan	nical		
1	-	Withi	n Run			Total			With	n Run			Total	
	N	mg/dL	SD	%CV	mg/dL	SD	%CV	N	mg/dL	SD	%CV	mg/dL	SD	%CV
Site 1	60	339.4	8.18	2.4	339.4	12.26	3.6	60	295.3	5.54	1.9	295.3	6.39	2.2
Site 2	54	311.9	5.89	1.9	311.9	11.4	3.7	47	343.0	6.77	2.0	343.0	10.14	3.0
Site 3	60	288.1	4.63	1.6	288.1	7.14	2.5	59	336.9	7.37	2.2	336.9	9.27	2.8

Section 3: 510k Summary Page 7 of 10

Table 8b: Level 2 Precision Data TriniCLOT Fibrinogen

							Mode:	Clotti	ng					
Level	 			Optica	ıl Territoria						Mecha	nical		
2		Withi	n Run			Total			Withi	n Run			Total	
	N	mg/dL	SD	%CV	mg/dL	SD	%CV	N	mg/dL	SD	%CV	mg/dL	SD	%CV
Site 1	60	129.1	4.35	3.5	129.1	5.34	4.4	60	111.4	5.52	5.0	111.4	6.99	6.3
Site 2	53	124.2	6.97	5.6	124.2	9.76	7.9	51	132.1	2.11	1.6	132.1	6.51	4.9
Site 3	59	1,011	3.78	3.4	110.1	4.47	4.1	59	126.3	6.25	4.9	126.3	8.76	6.9

Table 9a: Level 1 Precision Data TriniCLOT FVII

	ļ						Mode: (lottin	9	. =				
Level				Optica	1						Mechan	ical		
1		With	in Run			Total	-		Witi	hin Run			Total	·
,	N	%	SD	%CV	%	SD	%CV	N	%	SD	%CV	%	SD	%CV
Site 1	60	100.8	10.31	10.2	100.8	12.93	12.8	60	105.1	11.72	11.1	105.1	14.83	14.1
Site 2	60	113.9	9.06	8.0	113.9	10.95	9.6	60	128.2	10.20	8.0	128.2	10.86	8.5
Site 3	59	115.3	10.15	8.8	115.3	10.15	8.8	60	103.8	7.05	6.8	103.8	7.45	7.2

Table 9b: Level 2 Precision Data TriniCLOT FVII

							Mode:	Clottin	9					
Level				Optica	ı						Mechani	cal		
2		With	in Run		·	Total			With	in Run			Total	
	N	%	SD	%CV	%	SD	%CV	N	%	SD	%CV	%	SD	%CV
Site 1	60	20.3	1.35	6.6	20.3	1.85	9.1	60	21.4	1.56	7.3	21.4	2.52	11.7
Site 2	60	20.6	1.36	6.6	20.6	1.62	7.9	60	20.5	1.26	6.1	20.5	1.49	7.3
Site 3	58	22.3	1.16	5.2	22.3	1.3	5.8	60	22.7	1.02	4.5	22.7	1.08	4.7

Section 3: 510k Summary

Page 8 of 10

Table 9c: Level 3 Precision Data TriniCLOT FVII

	·· · · · · · · · · · · · · · · · · · ·					Mode:	Clottin	g	•		 -		
			Optica	ıl			ſ			Mechani	cal		
	With	in Run		***************************************	Total			With	in Run			Total	
N	%	SD	%CV	%	SD	%CV	N	%	SD	%CV	%	SD	%CV
60	10.8	0.86	8.0	10.8	1.02	9.4	60	12.2	0.64	5.3	12.2	0.78	6.4
60	11.5	0.68	5.9	11.5	0.92	8.1	60	13.0	1.30	10.0	13.0	1.93	14.9
58	13.0	1.09	8.4	13.0	1.33	10.3	60	12.3	0.68	5.5	12.3	0.69	5.6
	60	N % 60 10.8 60 11.5	60 10.8 0.86 60 11.5 0.68	Within Run N % SD %CV 60 10.8 0.86 8.0 60 11.5 0.68 5.9	N % SD %CV % 60 10.8 0.86 8.0 10.8 60 11.5 0.68 5.9 11.5	Within Run Total N % SD %CV % SD 60 10.8 0.86 8.0 10.8 1.02 60 11.5 0.68 5.9 11.5 0.92	Optical Within Run Total N % SD %CV % SD %CV 60 10.8 0.86 8.0 10.8 1.02 9.4 60 11.5 0.68 5.9 11.5 0.92 8.1	Optical Within Run Total N % SD %CV % 60 10.8 0.86 8.0 10.8 1.02 9.4 60 60 11.5 0.68 5.9 11.5 0.92 8.1 60	Within Run Total Within Run N % SD %CV % SD %CV N % 60 10.8 0.86 8.0 10.8 1.02 9.4 60 12.2 60 11.5 0.68 5.9 11.5 0.92 8.1 60 13.0	Optical Within Run Total Within Run N % SD %CV % SD %CV N % SD 60 10.8 0.86 8.0 10.8 1.02 9.4 60 12.2 0.64 60 11.5 0.68 5.9 11.5 0.92 8.1 60 13.0 1.30	Optical Mechani	Optical Mechanical	Optical Mechanical

Table 10a: Level 1 Precision Data TriniCLOT FIX

						Mode: C	lotting	9					
			Optical	1						Mechani	cal		•
	Withi	n Run			Total			With	in Run			Total	•
N	%	SD	%CV	%	SD	%CV	N	%	SD	%CV	%	SD	%CV
50	113.1	8.41	7.4	113.1	17.43	15.4	59	107.3	3.94	3.7	107.3	11.60	10.8
60	89.7	5.02	5.6	89.7	· 6.68	7.4	58	91.4	7.33	8.0	91.4	7.51	8.2
5	0	% 0 113.1	0 113.1 8.41	Within Run N % SD %CV 0 113.1 8.41 7.4	% SD %CV % 0 113.1 8.41 7.4 113.1	Optical Within Run Total N % SD %CV % SD 0 113.1 8.41 7.4 113.1 17.43	Optical Within Run Total N % SD %CV % SD %CV 0 113.1 8.41 7.4 113.1 17.43 15.4	Optical Within Run Total N % SD %CV % SD %CV N 0 113.1 8.41 7.4 113.1 17.43 15.4 59	Optical Within Run Total With N % SD %CV N % 0 113.1 8.41 7.4 113.1 17.43 15.4 59 107.3	Optical Within Run Total Within Run W	Optical Mechani Within Run Total Within Run N % SD %CV N % SD %CV 0 113.1 8.41 7.4 113.1 17.43 15.4 59 107.3 3.94 3.7	Optical Mechanical Within Run Total Within Run N % SD %CV N % SD %CV % 0 113.1 8.41 7.4 113.1 17.43 15.4 59 107.3 3.94 3.7 107.3	Optical Mechanical

Table 10b: Level 2 Precision Data TriniCLOT FIX

		· ·				Mode: C	lotting	9					
			Optical							Mechani	cal		
	With	in Run			Total			With	in Run			Total	
N	%	SD	%CV	%	SD	%CV	N	%	SD	%CV	%	SD	%CV
58	16.8	1.35	8.0	16.8	2.49	14.9	60	19.0	0.75	4.0	19.0	3.97	20.9
58	18.6	1.11	5.9	18.6	2.47	13.2	58	17.2	1.41	8.2	17.2	2.28	13.3
	58	N %	58 16.8 1.35	Within Run N % SD %CV 58 16.8 1.35 8.0	N % SD %CV % 58 16.8 1.35 8.0 16.8	Within Run Total N % SD %CV % SD 58 16.8 1.35 8.0 16.8 2.49	Optical Within Run Total N % SD %CV % SD %CV 58 16.8 1.35 8.0 16.8 2.49 14.9	Optical Within Run Total N % SD %CV % SD %CV N 58 16.8 1.35 8.0 16.8 2.49 14.9 60	Within Run Total With N % SD %CV % SD %CV N % 58 16.8 1.35 8.0 16.8 2.49 14.9 60 19.0	Optical Within Run Total Within Run N % SD %CV % SD %CV N % SD 58 16.8 1.35 8.0 16.8 2.49 14.9 60 19.0 0.75	Optical Mechanic	Optical Mechanical	Optical Mechanical

Table 10c: Level 3 Precision Data TriniCLOT FIX

						Mode: C	lotting	3		-		* • · · · · · · · · · · · · · · · · · ·	
			Optical							Mechani	cal		
	With	in Run			Total			With	nin Run	1		Total	
N	%	SD	%CV	%	ŞD	%CV	N	%	SD	%CV	%	SD	%CV
60	8.1	0.91	11.3	8.1	1.14	14.1	60	9.5	0.81	8.5	9.5	2.18	23.0
57	9.9	1.64	16.6	9.9	1.99	20.2	56	9.3	1.15	12.4	9.3	2.25	24.2
	60	N % 60 8.1	60 8.1 0.91	Within Run	N % SD %CV % 60 8.1 0.91 11.3 8.1	Within Run Total N % SD %CV % SD 60 8.1 0.91 11.3 8.1 1.14	Optical Within Run Total N % SD %CV % SD %CV 60 8.1 0.91 11.3 8.1 1.14 14.1	Optical Within Run Total N % SD %CV N 60 8.1 0.91 11.3 8.1 1.14 14.1 60	Within Run Total With N % SD %CV % SD %CV N % 60 8.1 0.91 11.3 8.1 1.14 14.1 60 9.5	Optical Within Run Total Within Run N % SD %CV N % SD 60 8.1 0.91 11.3 8.1 1.14 14.1 60 9.5 0.81	Optical Mechanic	N SD %CV N % SD %CV % 60 8.1 0.91 11.3 8.1 1.14 14.1 60 9.5 0.81 8.5 9.5	N SD %CV N % SD %CV % SD 60 8.1 0.91 11.3 8.1 1.14 14.1 60 9.5 0.81 8.5 9.5 2.18

Section 3: 510k Summary Page 9 of 10

Table 11: Level 1 and Level 2 Precision Data TriniCHROM Antithrombin

			Mod	le: Chro	nogenic						Mod	e: Chror	nogenic		
Level			· · · · · ·	Optic	al			Level			_	Optica	31		
1		With	in Run			Total	<u> </u>	2		With	in Run			Total	
	N	%	SD	%CV	Sec	SD	%CV		N	%	SD	%CV	Sec	SD	%CV
Site 1	56	129.8	6.57	5.1	129.8	6.65	5.1	Site 1	60	49.9	2.36	4.7	49.9	2.66	5.3
Site 2	58	121.1	5.78	4.8	121.1	8.08	6.7	Site 2	60	44.6	1.50	3.4	44.6	2.46	5.5
Site 3	48	125.0	3.38	2.7	125,0	7.95	6.4	Site 3	47	45.9	2.56	5.6	45.9	4.62	10.1

Table 12a: Level 1 Precision Data TriniLIA D-Dimer

			Mode: I	mmunctu	rbidometri	C	
Level				Optica	i		
1		Wit	hin Run			Total	
	N	ng/mL	SD	%CV	Sec	SD	%CV
Site 1	59	310.1	37.29	12.0	310.1	55.4	17.9
Site 2	60	348.7	49.08	14.1	348.7	71.13	20.4
Site 3	60	333.7	33.04	9.9	333.7	45.20	13.5
L							

Table 12b: Level 1 Precision Data TriniLIA D-Dimer

	Mode: Immunoturbidometric Optical							
Level 2								
	Within Run				Total			
	N	ng/mL	SD	%CV	Sec	\$D	%CV	
Site 1	58	1657.7	93.67	5.7	1657.7	120.08	7.2	
Site 2	59	1618.8	67.57	4.2	1618.8	67.54	4.2	
Site 3	60	1753.1	55.1	3.1	1753.1	86.85	5.0	

Section 3: 510k Summary

Page 10 of 10

Trinity Biotech c/o Ms. Bonnie B. DeJoy Corporate Vice President Trinity Biotech, USA 2823 Girts Road Jamestown, NY 14701 Food and Drug Administration 10903 New Hampshire Avenue Document Mail Center-WO66-G609 Silver Spring, MD 20993-0002

JUN 0 2 2010

Re: k083896

Trade/Device Name: Destiny MAX Regulation Number: 21 CFR 864.5425

Regulation Name: Multipurpose System for In Vitro Coagulation Studies

Regulatory Class: Class II

Product Code: JPA Dated: June 15, 2009 Received: June 17, 2009

Dear Ms. DeJoy::

This letter corrects our substantially equivalent letter of July 2, 2009.

We have reviewed your Section 510(k) premarket notification of intent to market the device referenced above and have determined the device is substantially equivalent (for the indications for use stated in the enclosure) to legally marketed predicate devices marketed in interstate commerce prior to May 28, 1976, the enactment date of the Medical Device Amendments or to devices that have been reclassified in accordance with the provisions of the Federal Food, Drug, and Cosmetic Act (Act) that do not require approval of a premarket approval (PMA). You may, therefore, market the device, subject to the general controls provisions of the Act. The general controls provisions of the Act include requirements for annual registration, listing of devices, good manufacturing practice, labeling, and prohibitions against misbranding and adulteration.

If your device is classified (see above) into either class II (Special Controls) or class III (PMA), it may be subject to additional controls. Existing major regulations affecting your device can be found in the Code of Federal Regulations, Title 21, Parts 800 to 898. In addition, FDA may publish further announcements concerning your device in the <u>Federal Register</u>.

Please be advised that FDA's issuance of a substantial equivalence determination does not mean that FDA has made a determination that your device complies with other requirements of the Act or any Federal statutes and regulations administered by other Federal agencies. You must comply with all the Act's requirements, including, but not limited to: registration and listing (21 CFR Part 807); labeling (21 CFR Part 801); medical

Page 2 – Ms. Bonnie B. DeJoy

device reporting (reporting of medical device-related adverse events) (21 CFR 803); good manufacturing practice requirements as set forth in the quality systems (QS) regulation (21 CFR Part 820); and if applicable, the electronic product radiation control provisions (Sections 531-542 of the Act); 21 CFR 1000-1050.

If you desire specific advice for your device on our labeling regulation (21 CFR Part 801), please go to

http://www.fda.gov/AboutFDA/CentersOffices/CDRH/CDRHOffices/ucm115809.htm for the Center for Devices and Radiological Health's (CDRH's) Office of Compliance. Also, please note the regulation entitled, "Misbranding by reference to premarket notification" (21CFR Part 807.97). For questions regarding the reporting of adverse events under the MDR regulation (21 CFR Part 803), please go to

http://www.fda.gov/MedicalDevices/Safety/ReportaProblem/default.htm for the CDRH's Office of Surveillance and Biometrics/Division of Postmarket Surveillance.

You may obtain other general information on your responsibilities under the Act from the Division of Small Manufacturers, International and Consumer Assistance at its toll-free number (800) 638-2041 or (301) 796-7100 or at its Internet address http://www.fda.gov/MedicalDevices/ResourcesforYou/Industry/default.htm.

Sincerely yours,

Maria M. Chan, Ph.D.

mova in clan

Director

Division of Immunology and Hematology Devices Office of *In Vitro* Diagnostic Device Evaluation and Safety

Center for Devices and Radiological Health

Indication for Use

510(k) Number (if known):	V283896	
510(k) Number (11 known):	200 30 , 2	
Device Name: Destiny MAX		
Indication for Use:		
The Destiny Max Coagulation Acconsisting of one automated instused to perform a series of coagu	trument and its associa	se system for in vitro coagulation studies ted reagents and controls. The system is alation factor assays.
·		
•		
	•	•
•		
Prescription Use \(\sqrt{\textsq}\textsqrt{\textsqrt{\textsqrt{\textsqrt{\textsqrt{\textsqrt{\textsqrt{\t	And/Or	Over the Counter Use
(21 CFR Part 801 Subpart D)	11114	(21 CFR Part 801 Subpart C)
(21 CLV Late on Panchauf D)		(21 0111 141 001 040 041 041
-	W THIS I INE CONTIN	,
(PLEASE DO NOT WRITE BELO	•	UE ON ANOTHER PAGE IF NEEDED)
(PLEASE DO NOT WRITE BELO	•	
(PLEASE DO NOT WRITE BELO) Concurrence of CDRH, Office	e of In Vitro Diagnos	UE ON ANOTHER PAGE IF NEEDED)
Concurrence of CDRH, Office	e of In Vitro Diagnos	UE ON ANOTHER PAGE IF NEEDED)
(PLEASE DO NOT WRITE BELO) Concurrence of CDRH, Office	e of In Vitro Diagnosi	UE ON ANOTHER PAGE IF NEEDED)

510(k) KOB3896