Таблица производных	Таблица интегралов
1. $(C)' = 1$, $(x)' = 1$	$1. \int dx = x + C$
$2. (x^a)' = \alpha x^{\alpha - 1}$	$2. \int x^k dx = \frac{x^{k+1}}{k+1} + C, \ (k \neq -1)$
3. $(\sqrt{x})' = \frac{1}{2\sqrt{x}}, (\frac{1}{x})' = -\frac{1}{x^2}$	3. $\int \frac{dx}{\sqrt{x}} = 2\sqrt{x} + C, \qquad \int \frac{dx}{x} = \ln x + C$
4. $(a^x)' = a^x \ln a$, $(e^x)' = e^x$	$4. \int a^x dx = \frac{a^x}{\ln a} + C, \int e^x dx = e^x + C$
5. $(\log_a x)' = \frac{1}{x \ln a}, (\ln x)' = \frac{1}{x}$	$\int \frac{dx}{\sin x} = \ln \left tg \frac{x}{2} \right + C$
$6. (\sin x)' = \cos x$	$6. \int \frac{dx}{\cos x} = \ln \left tg \left(\frac{x}{2} + \frac{\pi}{4} \right) \right x + C$
$7. (\cos x)' = -\sin x$	$7. \int \sin x dx = -\cos x + C$
$8. (tgx)' = \frac{1}{\cos^2 x}$	$8. \int \cos x dx = \sin x + C$
$9. (ctgx)' = -\frac{1}{\sin^2 x}$	$9. \int \frac{dx}{\cos^2 x} = tgx + C$
10. $(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$	$10. \int \frac{dx}{\sin^2 x} = -ctgx + C$
10. $(\arcsin x)' = \frac{1}{\sqrt{1 - x^2}}$ 11. $(\arccos x)' = -\frac{1}{\sqrt{1 - x^2}}$ 12. $(\operatorname{arct} gx)' = \frac{1}{1 + x^2}$	$11. \int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a} + C$
12. $(arctgx)' = \frac{1}{1+x^2}$	12. $\int \frac{dx}{\sqrt{x^2 \pm a^2}} = \ln\left x + \sqrt{x^2 \pm a^2}\right + C$
$13. \left(arcctgx\right)' = -\frac{1}{1+x^2}$	13. $\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln \left \frac{x - a}{x + a} \right + C$
	14. $\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \operatorname{arctg} \frac{x}{a} + C$

Правила дифференцирования и интегрирования		Некоторые тригонометрические формулы:	
a)	Правила дифференцирования	1	$\sin^2 x + \cos^2 x = 1; 1 - \sin^2 x = \cos^2 x;$
1	Производная суммы: $(u \pm v)' = u' \pm v'$	2	$ \frac{1 - \cos^2 x = \sin^2 x}{\sin^2 x} = \frac{1 - \cos 2x}{2}, \cos^2 x = \frac{1 + \cos 2x}{2}, $
2	Производная произведения: $(u \cdot v)' = u' \cdot v + u \cdot v'$	3	$\sin \alpha \cdot \sin \beta = \frac{1}{2} (\cos(\alpha - \beta) - \cos(\alpha + \beta))$
3	$(c \cdot u)' = c \cdot u'$	4	$\sin \alpha \cdot \cos \beta = \frac{1}{2}(\sin(\alpha - \beta) + \sin(\alpha + \beta))$
	Производная частного: $ \left(\frac{u}{v}\right)^l = \frac{u' \cdot v - u \cdot v'}{v^2} $	5	$\sin \alpha \cdot \sin \beta = \frac{1}{2} (\cos(\alpha - \beta) - \cos(\alpha + \beta))$ $\sin \alpha \cdot \cos \beta = \frac{1}{2} (\sin(\alpha - \beta) + \sin(\alpha + \beta))$ $\cos \alpha \cdot \cos \beta = \frac{1}{2} (\cos(\alpha + \beta) + \cos(\alpha - \beta))$
5	Сложная функция: $ ((f(\varphi(x)))' = f'_{\varphi} \cdot \varphi'(x) $		Формулы сокращённого умножения
б) 1	Правила интегрирования $\int (f(x) \pm g(x)) dx = \int f(x) dx \pm \int g(x) dx$	1	$\left(a \pm b\right)^2 = a^2 \pm 2ab + b^2$
2	$\int k \cdot f(x) dx = k \int f(x) dx$	2	$a^2 - b^2 = (a - b)(a + b)$
3	$\int k \cdot f(x)dx = k \int f(x)dx$ $\int f(ax+b)dx =$		
	$= \frac{1}{a} \int f(ax+b)d(ax+b)$		
4	$\int f(\varphi(x)) \cdot \varphi'(x) dx \pm \int f(\varphi(x)) d\varphi(x)$	3	$(a \pm b)^{3} = a^{3} \pm 3a^{2}b + 3ab^{2} \pm b^{3}$ $a^{3} \pm b^{3} = (a \pm b)(a^{2} \mp ab + b^{2})$
5	Интегрирование по частям $\int u \cdot dv = u \cdot v - \int v \cdot du$		