

Kevin Catino (61643) Agustín Galarza (61481) Abril Occhipinti (61159) Maiwenn Boizumault (65988) Agustin Benvenuto (61448)

Contenidos

01

Introducción

02

Resultados

03

Conclusiones

Descripción del problema

- Juego de rol con personajes de diferentes clases.
- Los personajes tienen equipamientos que le otorgan diferentes "stats".
 - Los "stats" definen un coeficiente a partir de una función.
- Cada personaje tiene una altura determinada.
 - La altura define un modificador de ataque y otro de defensa.
- A partir de los coeficientes y los modificadores se define el ataque y la defensa.
- Cada clase de personaje tiene definida una función para obtener el fitness a partir de su ataque y defensa.

Personajes y Desempeño

- Guerrero -> desempeño = 0.6*Ataque + 0.4* Defensa
- Arquero -> desempeño = 0.9*Ataque + 0.1* Defensa
- Defensor -> desempeño = 0.1*Ataque + 0.9* Defensa
- Infiltrado -> desempeño = 0.8*Ataque + 0.3* Defensa

ATM =
$$0.5 - (3h - 5)^4 + (3h - 5)^2 + h/2$$

DEM = $2 - (3h - 5)^4 + (3h - 5)^2 + h/2$
 $1.3m \le h \le 2m$

Equipamiento

El personaje, al elegir su equipamiento, deberá asignar <u>150 puntos distribuidos</u> <u>entre todas</u> las características

Coeficientes:

```
Fuerza<sub>p</sub> = 100 * tanh(0.01 * Fuerza<sub>items</sub>)

Agilidad<sub>p</sub> = tanh(0.01 * Agilidad<sub>items</sub>)

Pericia<sub>p</sub> = 0.6 * tanh(0.01 * Pericia<sub>items</sub>)

Resistencia<sub>p</sub> = tanh(0.01 * Resistencia<sub>items</sub>)

Vida<sub>p</sub> = 100 * tanh(0.01 * Vida<sub>items</sub>)
```

Altura

En base a la altura h se definen los modificadores de ataque y defensa:

ATM =
$$0.5 - (3h - 5)^4 + (3h - 5)^2 + h/2$$

DEM = $2 - (3h - 5)^4 + (3h - 5)^2 + h/2$
 $1.3m \le h \le 2m$

Ataque

Ataque =
$$(Agilidad_p + Pericia_p) * Fuerza_p * ATM$$

Defensa = $(Resistencia_p + Pericia_p) * Vida_p * DEM$

Genotipo

Se define el genotipo:

altura	fuerza	agilidad	pericia	resistencia	vida
		5. 5. 5. 5. 5.	P 1 1 1		

- Donde:
 - o altura: float64 / 0 ≤ altura ≤ 1
 - o fuerza: float64 / fuerza > 0
 - o agilidad: float64 / agilidad > 0
 - o pericia: float64 / pericia > 0
 - resistencia: float64 / resistencia > 0
 - vida: float64 / vida > 0

Además:

altura + fuerza + agilidad + pericia + resistencia + vida = 150

La altura se toma como un peso, donde 0 equivale a 1.3 y 1 a 2.0

Métodos

Selección

- Elite
- Roulette
- Universal
- Boltzmann
- Deterministic Tournament
- Probabilistic Tournament
- Ranking

Reemplazo

- Young bias
- Traditional

La selección debe ser A*(método1) + (1-A)*(método2) Y el reemplazo B*(método3) + (1-B)*(método4)

Criterio de Corte

- Máxima cantidad de generaciones
- Máxima cantidad de generaciones sin cambio en el desempeño

Diversidad

Se calcula como un promedio de la diversidad de <u>cada gen</u>

- Donde la diversidad de cada gen se calcula de la siguiente forma:
 - 1. Se aplica una función de *clustering* para agrupar a los genes de los individuos según un valor de proximidad configurado en 0.0001.
 - 2. La cantidad de grupos obtenida representa la diversidad de dicho gen.

Ejemplo de Configuración

```
"role": "Fighter",
"crossover": "OnePoint",
"selections": ["Universal", "Elite", "Roulette", "Universal"],
"mutation": "Complete",
"pm": 0.75.
"selection strategy": "traditional",
"A": 0.75.
"B": 0.5,
"max iterations": 10000,
"max iterations without change": 20,
"K": 20,
"N": 100,
"plot": false,
"boltzmann temperature" : 1,
"deterministic_tournament_m" : 5,
"probabilistic tournament_threshold" : 0.75
```


Ejemplo de salida

- Se generan dos archivos por corrida
 - "input_{role}_{config_hash}.json": contiene la configuración utilizada en la ejecución.
 - "output_{role}_{config_hash}_{timestamp}.csv": es el archivo de salida con los datos de cada generación hasta que se cumple la condición de corte:

• • •

Ejemplo de salida

- Alternativamente al final de la simulación, la misma devuelve el agente de mayor fitness.
- Utilizamos este dato para capturar los máximos globales sin tener que guardar toda la información intermedia.
- Luego generamos json de la siguiente forma para hacer gráficos con esta información

Mutación de un gen

- A la hora de decidir mutar un gen, se genera un modificador aleatorio en el intervalo [0.5, 2].
- Luego se computa **gen = gen*modificador**.
- Finalmente, se normaliza el cromosoma para que cumplan con las restricciones.

Ejemplo de salida

- Se generan dos archivos por corrida
 - "input_{role}_{config_hash}_{timestamp}.json": contiene la configuración utilizada en la ejecución.
 - "output_{role}_{config_hash}_{timestamp}.csv": es el archivo de salida con los datos de cada generación hasta que se cumple la condición de corte:

Resultados variando la probabilidad de Mutación

```
"role": "Fighter",
"crossover": "OnePoint",
"selections": ["Universal", "Universal", "Universal", "Universal"],
"mutation": "Complete",
"pm": 0.1 | 0.3 | 0.5 | 0.6 | 0.9,
"selection strategy": "traditional",
"A": 1.
"B": 1.
"max iterations": 10000.
"max iterations without change": 100,
"K": 20.
"N": 200,
"plot": true,
"boltzmann temperature" : 1,
"deterministic_tournament_m" : 5,
"probabilistic tournament threshold": 0.75
```

Resultados variando la probabilidad de Mutación

Resultados variando el método de cruza

```
"role": "Fighter",
"crossover": "OnePoint" | "TwoPoint" | "Anular" | "Uniform",
"selections": ["Universal", "Universal", "Universal", "Universal"],
"mutation": "Complete",
"pm": 0.3.
"selection strategy": "traditional",
"A": 1.
"B": 1.
"max iterations": 10000,
"max iterations without change": 100,
"K": 20.
"N": 200,
"plot": true,
"boltzmann temperature" : 1,
"deterministic_tournament_m" : 5,
"probabilistic tournament threshold": 0.75
```

Resultados variando el método de cruza

Mejores resultados obtenidos

Se obtuvieron usando la siguiente configuración

```
"role": "Archer",
"crossover": "TwoPoint",
"selections": ["Elite", "Ranking", "Elite", "Ranking"],
"mutation": "Complete",
"pm": 0.5,
"selection_strategy": "traditional",
"A": 0.1.
"B": 0.3.
"max iterations": 500,
"max iterations without change": 100,
"K": 200.
"seed": 0,
"N": 100.
"plot": false,
"boltzmann_temperature" : 10,
"deterministic tournament m" : 5,
"probabilistic_tournament_threshold" : 0.75
```


Mejores resultados Archer

Fitness -> Archer_1: 61.88, Archer_2: 61.88, Archer_3: 61.89
Alcanzan mismo máximo de fitness pero con cromosomas distintos!

Mejores resultados Defender

Fitness -> Defender_1: 42.62, Defender_2: 58.24, Defender_3: 58.24

Defender_1 se pierde en un máximo local -> pareciera deberse a la altura

Mejores resultados Fighter

Fitness -> Fighter_1: 41.25, Fighter_2: 41.26, Fighter_3: 41.26

Nuevamente con cromosomas variados se alcanza mismo máximo en fitness

Mejores resultados Infiltrate

Fitness -> Infiltrate_1: 55.01, Infiltrate_2: 55.01, Iniltrate_3: 55.01

Nuevamente con cromosomas variados se alcanza mismo máximo en fitness

```
"role": "Fighter | Infiltrate | Archer | Defender",
"crossover": "Uniform",
"selections": ["Elite", "Ranking", "Elite", "Ranking"],
"mutation": "OneGen",
"pm": 0.01,
"selection_strategy": "traditional",
"A": 1,
"B": 0.2,
"max iterations": 150,
"max iterations without change": 20,
"K": 5.
"seed": 0,
"N": 100.
"plot": true,
"boltzmann temperature" : 10,
"deterministic tournament_m" : 5,
"probabilistic tournament threshold" : 0.75
```



```
"role": "Fighter | Infiltrate | Archer | Defender",
"crossover": "Uniform",
"selections": ["Elite", "Ranking", "Elite", "Ranking"],
"mutation": "OneGen",
"pm": 0.3,
"selection_strategy": "traditional",
"A": 1,
"B": 0.2,
"max iterations": 150,
"max iterations without change": 20,
"K": 50.
"seed": 0,
"N": 100.
"plot": true,
"boltzmann temperature" : 10,
"deterministic_tournament_m" : 5,
"probabilistic tournament threshold" : 0.75
```



```
"role": "Fighter | Infiltrate | Archer | Defender",
"crossover": "OnePoint",
"selections": ["Ranking", "Elite", "Universal", "DeterministicTournament"],
"mutation": "UniformMultiGen",
"pm": 0.5,
"selection_strategy": "young",
"A": 1,
"B": 1,
"max iterations": 150,
"max_iterations_without_change": 20,
"K": 20,
"N": 100,
"plot": true,
"boltzmann_temperature" : 1,
"deterministic_tournament_m" : 5,
"probabilistic_tournament_threshold" : 0.75
```

```
"role": "Fighter | Infiltrate | Archer | Defender",
"crossover": "OnePoint",
"selections": ["Ranking", "Elite", "Universal", "DeterministicTournament"],
"mutation": "UniformMultiGen",
"pm": 0.5,
"selection_strategy": "young",
"A": 1,
"B": 1,
"max iterations": 700,
"max iterations without change": 20,
"K": 20.
"N": 100,
"plot": true,
"boltzmann temperature" : 1,
"deterministic_tournament_m" : 5,
"probabilistic_tournament_threshold" : 0.75
```

Comparación de configuraciones Fighter

Diversidad para Fighter

Desempeño para Fighter

Comparación de configuraciones Infiltrate

Comparación de configuraciones Archer

Diversidad para Archer

Desempeño para Archer

Comparación de configuraciones Defender

Otras config interesantes (Maximun)

```
"role": "Archer",
"crossover": "TwoPoint",
"selections": ["Ranking", "Elite", "Roullete", "DeterministicTournement"],
"mutation": "OneGen",
"pm": 0.2,
"selection strategy": "young",
"A": 0.75.
"B": 0.75,
"max iterations": 10000,
"max iterations without change": 50,
"K": 20,
"seed": 0.
"N": 100.
"plot": false,
"boltzmann temperature" : 1,
"deterministic_tournament_m" : 5,
"probabilistic tournament threshold": 0.75
```

Otras config interesantes (Global-Max)

```
"role": "Archer",
"crossover": "TwoPoint",
"selections": ["Boltzman", "ProbabilisticTournement", "Universal",
                           "Ranking"],
"mutation": "Complete",
"pm": 0.2.
"selection strategy": "young",
"A": 0.75.
"B": 0.75,
"max_iterations": 10000,
"max iterations without change": 50,
"K": 20.
"seed": 0.
"N": 100,
"plot": false,
"boltzmann temperature" : 1,
"deterministic tournament m" : 5,
"probabilistic_tournament_threshold" : 0.75
```

Conclusiones

- No existe un cromosoma único que maximice la función de fitness para un rol
- Los roles que se benefician más del ataque que la defensa intentan maximizar la agilidad y la fuerza a costa de los otros atributos.
- El defensor busca maximizar la vida y la resistencia. A su vez minimizar la altura es clave para su fitness
- Mientras no seamos muy elitistas al principio hay muchas configuraciones que encuentran los máximos
- La pericia demostró ser poco eficiente para todos los roles.

