

Density Estimation

Mahdi Roozbahani Georgia Tech

Why we love exponential terms?

When I try to take derivative of Exp

Outline

- Overview
- Parametric Density Estimation
- Nonparametric Density Estimation

Continuous variable

Continuous probability distribution
Probability density function
Density value
Temperature (real number)
Gaussian Distribution

$$\int f_X(x)dx = 1$$

Discrete variable

Discrete probability distribution
Probability mass function
Probability value
Coin flip (integer)
Bernoulli distribution

$$\sum_{x \in A} f_X(x) = 1$$

Why Density Estimation?

Learn more about the "shape" of the data cloud

- Access the density of seeing a particular data point
 - Is this a typical data point? (high density value)
 - Is this an abnormal data point / outlier? (low density value)
- Building block for more sophisticated learning algorithms
 - Classification, regression, graphical models ...
 - A simple recommendation system

Histogram is an estimate of the probability distribution of a continuous variable

Example: Test Scores

Parametric Density Estimation

- Models which can be described by a fixed number of parameters
- Discrete case: eg. Bernoulli distribution $P(x|\theta) = \theta^{x}(1-\theta)^{1-x} \qquad \begin{array}{c} 1 \to Head \\ 0 \to Tails \end{array}$

 $1 \rightarrow Head$

one parameter, $X \in [0,1]$, which generate a family of models, $\mathcal{F} =$ $\{P(x|\theta) \mid x \in [0,1]\}, \quad \theta \text{ probability of possible outcome}$

• Continuous case: eg. Gaussian distribution in \mathbb{R}^d

$$p(x|\mu,\Sigma) = \frac{1}{|\Sigma|^{\frac{1}{2}}(2\pi)^{\frac{d}{2}}} exp\left(-\frac{1}{2}(x-\mu)^{\mathsf{T}}\Sigma^{-1}(x-\mu)\right)$$

Two sets of parameters $\{\mu, \Sigma\}$, which again generate a family of models, $\mathcal{F} = \{ p(x | \mu, \Sigma) \mid \mu \in \mathbb{R}^d, \Sigma \in \mathbb{R}^{d \times d} \text{ and } PSD \}$,

Nonparametric Density Estimation

- What are nonparametric models?
 - "nonparametric" does not mean there are no parameters
 - can not be described by a fixed number of parameters
 - one can think of there are many parameters
- Eg. Histogram
- Eg. Kernel density estimator

Parametric v.s. Nonparametric Density Estimation

Parametric v.s. Nonparametric Density Estimation

Outline

- Overview
- Parametric Density Estimation

Nonparametric Density Estimation

Estimating Parametric Models

- A very popular estimator is the maximum likelihood estimator (MLE), which is simple and has good statistical properties
- Assume that n data points $X = \{x_1, x_2, ..., x_n\}$ drawn independently and identically (iid) from some distribution $P^*(x)$ $P(x_1, x_2, ..., x_n) \stackrel{\text{def}}{=} \bigcap_{i=1}^{n} P(x_i, x_i) \stackrel{\text{de$

Using the parameters, we can estimate each data point

• Want to fit the data with a model $P(x|\theta)$ with parameter θ

$$\theta = argmax_{\theta} \log P(X | \theta) = argmax_{\theta} \log \prod_{i=1}^{N} P(x_i | \theta)$$

Example Problem

- Estimate the probability θ of landing in heads using a biased coin
- Given a sequence of n independently and identically distributed (iid) flips

• Eg.
$$X = \{x_1, x_2, \dots, x_n\} = \{1, 0, 1, \dots, 0\}, x_i \in \{0, 1\}$$

•
$$P(x|\theta) = \begin{cases} 1 - \theta, for \ x = 0 \\ \theta, for \ x = 1 \end{cases}$$

$$L(\theta|x_n) = p(x_n|\theta) = \theta^{x_n}(1-\theta)^{1-x_n}$$

MLE for Biased Coin

Objective function, log-likelihood

$$\begin{split} l(\theta|\mathbf{X}) &= \log L(\theta|\mathbf{X}) = \log \prod_{i=1}^{N} \theta^{x_i} (1-\theta)^{1-x_i} = \log(\theta^{N_H} (1-\theta)^{N_T}) \\ &= N_H \times \log \theta + N_T \times \log(1-\theta) \\ N_H &= \text{number of heads, } N_T = \text{number of tails} \end{split}$$

• Maximize $l(\theta|\mathbf{X})$ w.r.t. $\theta \to$ take derivative w.r.t. θ and set it to zero

$$\frac{\partial l(\theta | \mathbf{X})}{\partial \theta} = \frac{N_H}{\theta} - \frac{N - N_H}{1 - \theta} = 0 \rightarrow \theta_{MLE} = \frac{N_H}{N}$$

• Example: $N_H = 78$, $N_H = 22 \rightarrow \theta = 0.78$

Estimating Gaussian Distributions

Gaussian distribution in R

$$p(x|\mu,\sigma) = \frac{1}{(2\pi)^{\frac{1}{2}}\sigma} exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)$$

- Need to estimate two sets of parameters μ , σ
- Given n iid samples

$$X = \{x_1, x_2, ..., x_n\}, x_i \in R$$

Density of a data point:

$$p(x_i | \mu, \sigma) \propto exp\left(-\frac{1}{2\sigma^2}(x_i - \mu)^2\right)$$

Estimating Gaussian Distributions

Gaussian distribution in R

$$p(x|\mu,\sigma) = \frac{1}{(2\pi)^{\frac{1}{2}\sigma}} exp\left(-\frac{1}{2\sigma^{2}}(x-\mu)^{2}\right)$$

Mean

$$\mu = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Variance

$$\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2$$

MLE for Gaussian Distribution

Objective function, log likelihood

Jective function, log likelihood
$$l(\mu, \sigma; X) = \log \prod_{i=1}^{N} \frac{1}{(2\pi)^{\frac{1}{2}}\sigma} exp\left(-\frac{1}{2\sigma^2}(x_i - \mu)^2\right)$$
$$= -\frac{n}{2}\log 2\pi - \frac{n}{2}\log \sigma^2 - \sum_{i=1}^{N} \frac{(x_i - \mu)^2}{2\sigma^2}$$

log (exp (u)) = U

- Maximize $l(\mu, \sigma; X)$ with respect to μ, σ
- Take derivatives w.r.t. $\mu, \frac{\partial^2}{\partial v} = 0$ $\frac{\partial l}{\partial v} = 0$

$$\frac{\partial l}{\partial \mu} = 0$$

$$\frac{\partial l}{\partial \sigma^2} = 0$$

MLE for Gaussian Distribution

$$l(\mu, \sigma; X) = -\frac{n}{2} \log 2\pi - \frac{n}{2} \log \sigma^2 - \sum_{i=1}^{N} \frac{(x_i - \mu)^2}{2\sigma^2}$$

$$\frac{\partial l}{\partial \mu} = \frac{1}{\sigma^2} \sum_{i=1}^{N} (x_i - \mu) = 0$$

$$\Rightarrow \sum_{i}^{N} x_i = n \mu \Rightarrow \mu = \frac{1}{n} \sum_{i=1}^{N} x_i$$

$$\frac{\partial l}{\partial \sigma^2} = -\frac{n}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{i}^{N} (x_i - \mu)^2 = 0$$

$$\Rightarrow \sum_{i}^{N} (x_i - \mu)^2 = n \sigma^2 \Rightarrow \frac{1}{n} \sum_{i=1}^{N} (x_i - \mu)^2 = 0$$

Example

Outline

- Overview
- Parametric Density Estimation
- Nonparametric Density Estimation

Can be used for:

- Visualization
- Classification
- Regression

Example: Test Scores

1-D Histogram

One the simplest nonparametric density estimator

• Given N iid samples $X = \{x_1, x_2, ..., x_n\} = x_i \in [0,1)$

Split [0,1) into M bins

$$B_1 = \left[0, \frac{1}{M}\right), B_2 = \left[\frac{1}{M}, \frac{2}{M}\right), \dots, B_l = \left[\frac{l-1}{M}, \frac{l}{M}\right), \dots, B_M = \left[\frac{M-1}{M}, 1\right)$$

- Count the number of points (c_1) within B_1 , c_2 within B_2 ...
- ullet For a new test data point x which belongs to B_l

$$p(x) = \frac{M}{N} \sum_{i=1}^{N} 1(x_i \in B_l) = \frac{\text{number of points in bin } B_l(c_l)}{\text{total number of data points } \times \text{bin width}}$$

$$P = \int p(x)dx$$
 The probability that point x is drawn from a distribution p(x)

$$\begin{pmatrix}
P_1 \\
P_2 \\
\hline
N
\end{pmatrix}$$

$$P_2 = \frac{C_2}{N}$$

$$f_{i}(b-a) = f_{i} \frac{1}{M} = \begin{pmatrix} P_{1} \end{pmatrix}$$

$$\frac{C_1}{N} = \frac{1}{N} \implies \frac{1}{N} = \frac{C_1}{N \times 1}$$

Why is Histogram Valid?

- Requirement for density p(x)
- $p(x) \ge 0$, $\int_{\Omega} p(x) dx = 1$

• For histogram,
$$\int_{[0,1)} p(x) dx = \int_{0}^{1} \frac{M}{N} \sum_{i=1}^{N} 1(x_{i} \in B_{l}) dx$$

$$= \int_{0}^{1} \frac{M}{N} \sum_{i=1}^{N} 1(x_{i} \in B_{l}) dx + \int_{\frac{1}{M}}^{\frac{2}{M}} \frac{M}{N} \sum_{i=1}^{N} 1(x_{i} \in B_{l}) dx + \dots + \int_{\frac{l-1}{M}}^{l} \frac{M}{N} \sum_{i=1}^{N} 1(x_{i} \in B_{l}) dx =$$

$$= \frac{M}{N} \left[\int_{0}^{\frac{1}{M}} c_{1} dx + \int_{\frac{1}{M}}^{\frac{2}{M}} c_{2} dx + \dots + \int_{\frac{l-1}{M}}^{l} c_{l} dx + \dots + \int_{\frac{M-1}{M}}^{1} c_{M} dx \right] =$$

$$= \frac{M}{N} \sum_{l=1}^{M} \int_{\frac{l-1}{M}}^{\frac{1}{M}} c_{l} dx = \frac{M}{N} \sum_{j=1}^{M} c_{l} \left[\frac{l}{M} - \frac{l-1}{M} \right] = \sum_{l=1}^{M} \frac{c_{l}}{N} = 1$$

Higher-Dimensional Histogram

- Given n iid samples $X = \{x_1, x_2, ..., x_n\}, x_i \in [0,1)^d$
- Split $[0,1)^d$ evenly into M^d bins
- Bin size is $h = \frac{1}{M}$

Two Dimensional data:

M = 10 (number of bins in each dimension)

 $M^2 = 100$ (total number of bins for two dimensional data)

Output Depends on Where You Put the Bins

Histogram with breaks at n.0 and n.5 binwidth=0.5

Output Depends on Where You Put the Bins

Histogram with breaks at n.25 and n.75 binwidth=0.5

Kernel Density Estimation

Kernel density estimator

$$p(x) = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{h} K\left(\frac{x_l - x_i}{h}\right) \qquad x_l = x_{gridline}$$

- Smoothing kernel function
 - $K(u) \geq 0$,
 - $\bullet \int K(u)du = 1,$
 - $\bullet \int uK(u)=0,$
 - $\int u^2 K(u) du \le \infty$
- An example: Gaussian kernel $K(u) = \frac{1}{\sqrt{2\pi}}e^{-u^2/2}$

Smoothing Kernel Functions

• An example: Gaussian kernel $K(u) = \frac{1}{\sqrt{2\pi}}e^{-u^2/2}$

Example

Effect of the Kernel Bandwidth (h)

Visual Example

50 datapoints are given to us

 -15
 -10
 -5
 0
 5
 10
 15

Visual Example

Let's implement 20 bins histogram

Visual Example

Let's create 200 uniform gridlines (x_l) to have a smoother density function **OR** simply you can just implement this on each datapoint

For **each** linearly spaced gridline x_l , let's calculate the Gaussian kernel value over the given 50 points

$$p(x) = \frac{1}{N} \sum_{i}^{N} \frac{1}{h} K(u_i)$$

$$u_i = \frac{x_l - x_i}{h} \quad K(u_i) = \frac{1}{\sqrt{2\pi}} e^{-u_i^2/2}$$

Density value As an example of kernel heights for line at 0

Density value

Visual Example

Based on Gaussian kernel estimator

Interactive Example


```
For \sigma = 1;
```

Numerical Example

```
% Data; There are 200 data points (-13~<data<~13)  
% Used for reproducibility  
x = [randn(100,1)-10; randn(100,1)+10]; % Two Normals mixed (GROUND TRUTH)
```

Silverman's rule of thumb: If using the Gaussian kernel, a good choice for is $\frac{1}{2}$

$$h = \left(\frac{4\hat{\sigma}^2}{3N}\right)^{\frac{1}{5}} \approx 1.06\hat{\sigma}N^{-\frac{1}{5}}$$

```
h = std(x)*(4/3/numel(x))^(1/5); % Bandwidth estimated by Silverman's Rule of Thumb
```

```
% Let's create apply density estimation over 1000 linearly spaced points (x_l) xl = linspace(-25,+25,1000); % gridlines % Let's generate a "TRUE" density over all the bins given the "Ground Truth" information. truepdf_firstnormal = \exp(-.5*(xl-10).^2)/\operatorname{sqrt}(2*\operatorname{pi}); truepdf_secondnormal = \exp(-.5*(xl+10).^2)/\operatorname{sqrt}(2*\operatorname{pi}); truepdf = truepdf firstnormal/2 + truepdf secondnormal/2;
```

% divided down by 2, because we are adding density value two times

% Let's calculate Gaussian kernel density for each linearly spaced point over 200 Given data points

$$p(x) = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{h} K(u_i) \qquad u_i = \frac{x_i - x_i}{h}$$

Gaussian kernel
$$K(u_i) = \frac{1}{\sqrt{2\pi}}e^{-u_i^2/2}$$

```
for l=1:size(xl,1) % let's loop over grid lines (x_l) u = (xl(l) - x)./h; % length of u is 200 Ku = exp(-.5*u.^2)/sqrt(2*pi); Ku = Ku./h; px(l) = mean(Ku); end
```


Two-Dimensional Examples

- This example shows the product KDE of a bivariate <u>unimodal</u> Gaussian
 - 100 data points were drawn from the distribution
 - The figures show the true density (left) and the estimates using $h=1.06\sigma N^{-1/5}$ (middle) and $h=0.9AN^{-1/5}$ (right)

Choosing the Kernel Bandwidth

 Silverman's rule of thumb: If using the Gaussian kernel, a good choice for is

$$h \approx 1.06 \hat{\sigma} N^{-\frac{1}{5}}$$

where is the standard deviation of the samples

- A better but more computational intensive approach:
 - Randomly split the data into two sets
 - Obtain a kernel density estimate for the first
 - Measure the likelihood of the second set
 - Repeat over many random splits and average

Non-parametric vs parametric

Summary

- Parametric density estimation
 - . Maximum likelihood estimation
 - Different parametric forms
- Nonparametric density estimation
 - 。 Histogram
 - . Kernel density estimation