Sungho Hong, PhD

Computational Neuroscience Unit

Okinawa Institute of Science and Technology

1919-1 Tancha, Onna-son

Okinawa 904-0495, Japan

Phone: +81-98-966-1587

Fax: +81-98-966-1063

Email: shhong@oist.jp

Skype: sungho.hong

Education

University of Pennsylvania

Aug 2004

PhD in Physics - Theoretical High Energy Physics.

Thesis: Hadron Form Factors and Interactions: Comparing AdS/CFT and QCD.

Korea Advanced Institute of Science and Technology

Aug 1999

MSc in Physics - Elementary Particle Physics.

Thesis: Aspects of String Theory Compactified on Orbifold.

Korea Advanced Institute of Science and Technology

Feb 1995

BSc in Physics.

Research Experience

Group Leader, Okinawa Institute of Science and Technology

2012-presently

Computational Neuroscience Unit. Supervisor: Erik De Schutter

- Currently studying the roles of biophysical mechanisms on neural information processing via computational methods, with a focus on the cerebellum.
- Demonstrated that the cerebellar Purkinje neurons use a multiplexed coding scheme combining spike-time and firing rate to encode saccadic eye movements (collaboration with Hans-Peter Thier, U. Tübingen). Published in *eLife*.
- Developing a large-scale (~ 1 million cells) computational model of the cerebellar cortex with physiological details. Published in *PLOS Comput Biol*.
- Studied the cellular mechanisms for encoding circadian rhythms in the suprachiasmatic nucleus (SCN) and choroid plexus (with Toru Takumi, RIKEN BSI). Published in *PNAS* and *Nat Commun*.

Researcher, Okinawa Institute of Science and Technology

2007-2012

Computational Neuroscience Unit. Advisor: Erik De Schutter

- Demonstrated that intrinsic cellular properties determine how neurons transfer information by correlated firing (with Steven Prescott, U. Toronto). This work resulted in two publications in *J Neurosci* and *Neuron*.
- Developed a clustering method for analyzing imaging data of the *Bmal1* gene expression in the SCN neurons. Published in *J Neurosci*.

Senior Fellow, University of Washington

2004-2007

Physiology and Biophysics Department. Advisor: Adrienne L. Fairhall

• Investigated biophysical interpretation of statistical models for neural coding by single neurons and cellular basis for adaptive information processing. This work resulted in 3 publications in *Neural Comput* and *PLOS Comput Biol*.

Graduate Student, University of Pennsylvania

1999-2004

Department of Physics and Astronomy. Advisor: Mirjam Cvetic, Matthew J. Strassler

• Developed superstring theory-based methods to analyze hadron-like strongly bound states for solving longstanding puzzles in nuclear physics such as the ρ -meson universality problem. This work resulted in 4 publications in *JHEP*.

Grants and Awards

2015 – 2017 Title: Role of Ion Channel Distributions in Dendritic Information Processing of the

Cerebellar Purkinje Cell. PI: Sungho Hong and Weiliang Chen.

JSPS KAKENHI (科研費) (Grant no:15K06725). Amount: ¥3,700,000.

Role: Principal Investigator. Designed the research program and wrote the grant.

2012 OCNS Travel Award.

Publications

Journal Publications:

Wichert, I., Jee, S., De Schutter, E., **Hong, S.** (2020). Pycabnn: Efficient and extensible software to construct an anatomical basis for a physiologically realistic neural network model. Front. Neuroinform., in press.

Myung, J.*, Schmal, C.*, **Hong, S.***, Tsukizawa, Y., Rose, P., Zhang, Y., Holtzman, M. J., De Schutter, E., Herzel, H., Bordyugov, G., Takumi, T. (2018). The choroid plexus is an important circadian clock component. Nat. Commun., *9*, 1062. (*contributed equally)

Sudhakar, S. K.*, **Hong, S.***, Raikov, I., Publio, R., Lang, C., Close, T., Guo, D., Negrello, M., De Schutter, E. (2017). Spatiotemporal network coding of physiological mossy fiber inputs by the cerebellar granular layer. PLOS Comput. Biol., *13*, e1005754. (*contributed equally)

Hong, S., Negrello, M., Junker, M., Smilgin, A., Thier, P., De Schutter, E. (2016). Multiplexed coding by cerebellar Purkinje neurons. ELife *5*, e13810.

Huang, S., **Hong, S.**, De Schutter, E. (2015). Non-linear leak currents affect mammalian neuron physiology. Front. Cell. Neurosci. *9*, 432-41.

Myung, J., **Hong, S.**, DeWoskin, D., De Schutter, E., Forger, D., and Takumi, T. (2015). GABA-mediated repulsive coupling between circadian clock neurons in the SCN encodes seasonal time. Proc. Nat. Acad. Sci. USA *112*, E3920-9.

Ratté, S., **Hong, S.**, De Schutter, E., and Prescott, S.A. (2013). Impact of neuronal properties on network coding: Roles of spike initiation dynamics and robust synchrony transfer. Neuron *78*, 758-72.

Hong, S., Robberechts, Q., and De Schutter, E. (2012). Efficient estimation of Phase Response Curves via Compressive Sensing. J. Neurophysiol., *208*, 2069–81.

Myung, J., **Hong, S.**, Hatanaka, F., Nakajima, Y., De Schutter, E., and Takumi, T. (2012). Period coding of *Bmal1* oscillators in the suprachiasmatic nucleus. J. Neurosci. *32*, 8900–18.

Hong, S., Ratté, S., Prescott, S. A., and De Schutter, E. (2012). Single neuron firing properties impact correlation-based population coding. J. Neurosci. *32*, 1413–28.

Anwar, H., **Hong, S.**, and De Schutter, E. (2010). Controlling Ca²⁺-Activated K⁺ channels with models of Ca²⁺ buffering in Purkinje cells. Cerebellum, 1–13 (online first).

Hong, S., and De Schutter, E. (2008). Purkinje neurons: What is the signal for complex spikes? Curr. Biol. *18*, R969–R971.

Hong, S., Lundstrom, B.N., and Fairhall, A.L. (2008). Intrinsic gain modulation and adaptive neural coding. PLOS Comput. Biol. *4*, e1000119.

Lundstrom, B.N., **Hong, S.**, Higgs, M.H., and Fairhall, A.L. (2008). Two computational regimes of a single-compartment neuron separated by a planar boundary in conductance space. Neural Comput. *20*, 1239–60.

Hong, S., Agüera y Arcas, B., and Fairhall, A.L. (2007). Single neuron computation: from dynamical system to feature detector. Neural Comput. *19*, 3133–72.

Hong, S., Yoon, S., and Strassler, M.J. (2006). On the couplings of vector mesons in AdS/QCD. J. High Energy Phys. *04*, 003.

Hong, S., Yoon, S., and Strassler, M.J. (2006). Adjoint Trapping: A new phenomenon at strong 't Hooft coupling. J. High Energy Phys. 03, 012.

Erlich, J., **Hong, S.**, and Unsal, M. (2004). Matrix models, monopoles and modified moduli. J. High Energy Phys. 09, 024.

Hong, S., Yoon, S., and Strassler, M.J. (2004). Quarkonium from the fifth dimension. J. High Energy Phys. 04, 046.

Preprints online:

Linderman, S.*, Kros., L*, **Hong, S.**, Meijas, J.F., Romano, V., Negrello, M., Bosman, L.W.J, De Zeeuw, C.I. (2020). Cerebellar Purkinje cells can differentially modulate coherence between sensory and motor cortex depending on region and behavior. bioRxiv. doi:10.1101/2020.03.11.986943.

Han, D., De Schutter, E., and **Hong, S.** (2019). Lamina-specific neuronal properties promote robust, stable signal propagation in feedforward networks. bioRxiv. doi:10.1101/596676.

Other Publications:

Hong, S. (2004). Hadron Form Factors and Interactions: Comparing AdS/CFT and QCD. University of Pennsylvania Thesis (Philadelphia: University of Pennsylvania).

Presentations

Talks in Conferences and Workshops:

Hong, S. (2019) Lamina-specific neuronal properties promote robust, stable signal propagation in feedforward networks. OCNS Workshop: *Neural Multiplexed Coding* (Barcelona, Spain).

Hong, S. (2018). Impact of neuronal properties on network coding. NCTS Winter School: *Frontiers of Complex Systems Science*. (Taipei, Taiwan).

Han, D. and **Hong**, **S.** (2017). Heterogeneous layers stabilize propagation of a multiplexed spike signal in a feedforward network. Computational Neuroscience Meeting (CNS) 2017 (Antwerp, Belgium).

Hong, S. (2016) Multiplexed coding in the cerebellar cortex. Annual Meeting of Korean Society for Chemical Senses (Ansan, Korea).

Hong, S. and Myung, J. (2016) GABA-mediated phase couplings and seasonal time coding in the suprachiasmatic nucleus. Japanese Society for Mathematical Biology Meeting (Fukuoka, Japan).

Hong, S. (2015) GABA-mediated phase couplings and seasonal time coding in the suprachiasmatic nucleus. East Asia Joint Symposium on Biomedical Research (Okinawa, Japan).

Hong, S. (2015) Multiplexed coding by cerebellar Purkinje cells. OCNS Workshop: *Rate vs. temporal coding schemes: mutually exclusive or cooperatively coexisting?* (Prague, Czech).

Hong, S. (2015) Multiplexed coding by cerebellar Purkinje cells. Mini Symposium: *Recent Findings on the Cerebellar Microcircuitry* (Okinawa, Japan).

Hong, S. (2014) Exploring microcircuits in the cerebellum via computational modeling. Korean Society for Computational Neuroscience Meeting (Seoul, Korea) (*Plenary talk*).

Sudhakar, S. K., **Hong, S.**, and De Schutter, E. (2014). Patterns in network activity and information processing in a detailed computer model of the cerebellar granular layer, CNS 2014 (Quebec City, Canada).

Hong, S. (2012) Adaptive computation of neurons with Hodgkin-Huxley mechanisms. OCNS Conference: 60 Years of the Hodgkin-Huxley (Cambridge, UK).

Hong, S. (2012) Single neuron firing properties impact correlation-based population coding. RIKEN BSI Workshop: *Circuit Function of the Brain* (Wako, Japan).

Hong, S. (2011) Single neuron firing properties impact correlation-based population coding. APCTP Young Computational Neuroscientist Workshop (Daejon, Korea).

Hong, S., and De Schutter, E. (2009). Rich single neuron computation implies a rich structure in noise correlation and population coding. CNS 2009 (Berlin, Germany).

Invited Talks:

Nov 2018	Korea Brian Research Institute (Daegu, Korea)
Oct 2017	Center for Functional Connectomics, KIST (Seoul, Korea)
Oct 2017	Dept. of Bio and Brain Engineering, KAIST (Daejon, Korea)
Oct 2016	Dept. of Brain and Cognitive Science, DGIST (Daegu, Korea)
July 2016	Center for Functional Connectomics, KIST (Seoul, Korea)
Dec 2015	College of Pharmacy, Hanyang University (Ansan, Korea)
July 2015	Dept. of Neuroscience, Erasmus MC (Rotterdam, Netherlands)
July 2015	Dept. of Cognitive Neurology, University of Tübingen (Tübingen, Germany)
Aug 2013	Blue Brain Project, EPFL (Lausanne, Switzerland)
Aug 2013	Dept. of Neuroscience, Erasmus MC (Rotterdam, Netherlands)
Oct 2009	Dept. of Physics, Kyoto University (Kyoto, Japan)
Oct 2009	Graduate School of Biomedical Sciences, Hiroshima University (Hiroshima,
	Japan)
Mar 2008	Dept. of Neurobiology, Yale School of Medicine (New Haven, CT)
Jun 2007	Center for Brain Science, Harvard University (Cambridge, MA)
Jun 2006	Dept. of Bio and Brain Engineering, KAIST (Daejon, Korea)
Oct 2003	Physics Dept., University of Washington (Seattle, WA)

Teaching Experience

Courses and Lectures:

Joint Lecturer, Okinawa Institute of Science and Technology (Okinawa, Japan) 2014-2020

Course: Computational Neuroscience (A310)

Responsibilities: Introduction building physiologically detailed computer models of neural systems and to a simulation platform (Materials available at https://github.com/shhong/a310 cns 2020).

Lecturer, Okinawa Course of Computational Neuroscience (Okinawa, Japan)

2016

1999-2000

Course: Introduction to Numerical Methods for Ordinary/Partial Differential Equations *Responsibilities*: Introducing differential equations and numerical methods to students with the biology background.

Graduate Teaching Assistant, University of Pennsylvania (Philadelphia, PA)

Course: Introduction to Physics

Responsibilities: Teaching physics lab classes, explaining experimental aims and designs, and grading reports.

Service and Outreach

Academic Editor of PeerJ.	
Reviewer for the Computational Neuroscience Meeting.	
Reviewer for PLOS Computational Biology, Physical Review Letters, Cerebellum, Neural Computation, and Journal of Physics A.	
Lab instructor in <i>Penn Summer Science Academy</i> , a summer science program for high school students.	
Military service (mandatory). The 72 Infantry Division, Korean Army.	