Fundamentals of Computer Networks ECE 478/578

Lecture #3 Instructor: Loukas Lazos Dept of Electrical and Computer Engineering University of Arizona

Network Performance Metrics

Bandwidth

Amount of data transmitted per unit of time; per link, or end-to-end Units 1KB = 2^{10} bytes, 1Mbps = 10^6 bits per sec How many KB/sec is a 1Mbps line? How many MB/sec?

Throughput

Data rate delivered by the a link, connection or network Per link or end-to-end, same units as Bandwidth

Latency or Delay

Time for sending data from host A to B (in sec, msec, or µsec)

Per link or end-to-end

Usually consists of

T_t: Transmission delay

T_p: Propagation delay

T_q: Queuing delay

Round Trip Time (RTT): time to send a message from A to B and back $\,$

Important for flow control mechanisms

3

Delay Calculation

Tt: Transmission Delay: file size/bandwidth

 T_n : Propagation Delay: time needed for signal to travel the medium, Distance / speed of medium

 T_q : Queuing Delay: time waiting in router's buffer

Example: Problem 1.6 from Book

Transfer 1,5 MB file, assuming RTT of 80 ms, a packet size of 1-KB and an initial "handshake" of 2xRTT

Bandwidth is 10 Mbps and data packets can be sent continuously

RTT = 80 ms $T_{\rm t} = 1024 \times 8 \text{ bits/} 10^7 \text{ bits/s} = 0.8192 \text{ ms}$ $T_{\rm p} = 40 \text{ ms}$

of packets = 1536 (1.5 x 1024)

 $D = 2xRTT + 1536xT_t + T_p$ = 160 + 1258.29 + 40 ms

= 1.458 s

Example: Problem 1.6 from Book

Transfer 1,5 MB file, assuming RTT of 80 ms, a packet size of 1-KB and an initial "handshake" of 2xRTT

After sending each packet must wait one RTT

RTT = 80 ms $T_{\rm t}$ = 1024x8 bits/10⁷ bits/s = 0.8192 ms $T_{\rm p} = 40 \; {\rm ms}$

of packets = 1536 (1.5 x 1024)

 $D = 2xRTT + 1535x(T_t + RTT) + T_t + T_p$ = 160 + 124,057 + 0.8192 + 40 ms

= 124.258 s

Example: Problem 1.6 from Book

Transfer 1,5 MB file, assuming RTT of 80 ms, a packet size of 1-KB and an initial "handshake" of 2xRTT

Only 20 packets can be send per RTT, but infinitely fast


```
RTT = 80 ms T_{\rm p} = 0 ms T_{\rm p} = 40 ms T_{\rm p} = 40 ms \# of packets = 1536 (1.5 x 1024) D = 2 {\rm xRTT} + 76 {\rm xRTT} + T_{\rm p} \\ = 160 + 6080 + 40 ms = 6.28 s
```

Example: Problem 1.6 from Book

Transfer 1,5 MB file, assuming RTT of 80 ms, a packet size of 1-KB and an initial "handshake" of 2xRTT

1st RTT one packet, 2 RTT two packets ... Infinite transmission rate


```
RTT = 80 ms T_{\rm t} = 0 ms T_{\rm p} = 40 ms T_{\rm p} = 40 ms # of packets = 1536 (1.5 x 1024) # of waits (1+2+...2^n = 2^{n+1} -1) 2^{11} \cdot 1 =2047 packets, n = 10 D = 2 {\rm xRTT} + 10 {\rm xRTT} + T_{\rm p} \\ = 160 + 800 + 40 {\rm ms} \\ = 1 {\rm s}
```

Latency vs. Bandwidth

Importance depends on application

1 byte file, 1ms/1Mbps vs. 100ms/100Mbps 1 ms + 8μ s = 1.008ms,

100ms + 0.08μs =100 ms.

1GB file, 1ms/1Mbps vs. 100ms/100Mbps

1ms + 1024³ x 8 /106 = 2.38h + 1ms,

100ms + 85 s

Bandwidth	x Dela	y Product
-----------	--------	-----------

The amount of data (bits or bytes) "in the pipe" Example: 100Mbps x 10ms = 1 Mbit

The amount of data sent before first bit arrives

Usually use RTT as delay: amount of data before a reply from a receiver arrives to the sender $% \left(1\right) =\left(1\right) \left(1\right) \left$

10

High-Speed Networks

Link Type	Bandwidth	Distance	RTT	Delay x BW
Dial-up	56 kbps	10 km	87 μs	5 bits
Wireless LAN	54 Mbps	50 m	0.33 μs	18 bits
Satellite link	45 Mbps	35,000 km	230 ms	10 Mb
Cross-country fiber	10 Gbps	4,000 km	40 ms	400 Mb

Infinite bandwidth

Propagation delay dominates

Throughput = Transfer size/Transfer time

Transfer time = RTT + Transfer size/Bandwidth

1MB file across 1Gbps line with 100ms RTT, Throughput is 74.1 Mbps

11

Computing Application Bandwidth

FTP can utilize entire BW available

Video-on-demand may specify upper limit (only what's needed)

Example: res: 352x240 pixels, 24-bit color, 30 fps Each frame is (352 x 240 x 24)/8 =247.5 KB Total required BW = 352 x 240 x 24 x 30 = 60.8 Mbps

12

Network Jitter

Variability in the delay between packets

Video-on-demand application: If jitter is known, application can decide how much buffering is needed

Example: jitter is 50ms per frame and 10s video at 30fps must be transmitted.

If Y frames buffered, video can play uninterrupted for $Y \times 1/30s$.

The last frame will arrive 50 x (10 x 30 - Y) ms after video start, worst case

 $Y/30 = 50 \times (300 - Y) \rightarrow Y = 180 \text{ frames}$

13

Example: Problem 1.19 from Book

1 – Gbps Ethernet with a s-a-f switch in the path and a packet size of 5,000 bits. $T_{\rm p}$ = 10 μs , switch transmits immediately after reception

Example: Problem 1.19 from Book

1- Gbps Ethernet with a s-a-f switch in the path and a packet size of 5,000 bits. ${\it T}_p$ = 10 $\mu s,\,3$ switches in between A and B

4 links equal to 4 $T_{\rm p}$ delay

4 transmissions equal to 4 $T_{\rm t}$ delay

Total: $4T_p + 4T_t = 60 \mu s$

Three switches, each transmits after 128 bits are received

Total: $4T_p + T_t + 3x128/10^9 = 40\mu s + 5\mu s + 0.384\mu s = 45.384\mu s$

15