Magnetic Refinement: Tutorial (Symmetry)

Roger Johnson

- Space group *Pbnm*
- Consider a vector space $V_c = \{ \boldsymbol{m}_c^1, \boldsymbol{m}_c^2, \boldsymbol{m}_c^3, \boldsymbol{m}_c^4 \}$
- Assume k=(0,0,0)

- Space group *Pbnm*
- Consider a vector space $V_c = \{ \boldsymbol{m}_c^1, \boldsymbol{m}_c^2, \boldsymbol{m}_c^3, \boldsymbol{m}_c^4 \}$
- Assume k = (0,0,0)
- Write down the matrix representations

$$1: \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \qquad \overline{1}: \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \qquad 2_{100}: \begin{pmatrix} 0 & \overline{1} & 0 & 0 \\ \overline{1} & 0 & 0 & 0 \\ 0 & 0 & 0 & \overline{1} \\ 0 & 0 & \overline{1} & 0 \end{pmatrix}$$

$$2_{010}: \begin{pmatrix} 0 & 0 & 0 & \overline{1} \\ 0 & 0 & \overline{1} & 0 \\ 0 & \overline{1} & 0 & 0 \\ \overline{1} & 0 & 0 & 0 \end{pmatrix} \quad 2_{001}: \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \qquad m_{100}: \begin{pmatrix} 0 & \overline{1} & 0 & 0 \\ \overline{1} & 0 & 0 & 0 \\ 0 & 0 & \overline{1} & 0 \\ 0 & 0 & \overline{1} & 0 \end{pmatrix} \qquad m_{010}: \begin{pmatrix} 0 & 0 & \overline{1} \\ 0 & 0 & \overline{1} & 0 \\ 0 & \overline{1} & 0 & 0 \\ \overline{1} & 0 & 0 & 0 \end{pmatrix} \qquad m_{001}: \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & \overline{1} & 0 \\ 0 & \overline{1} & 0 & 0 \\ \overline{1} & 0 & 0 & 0 \end{pmatrix}$$

$$m_{100}$$
: $egin{pmatrix} 0 & \overline{1} & 0 & 0 \ \overline{1} & 0 & 0 & 0 \ 0 & 0 & 0 & \overline{1} \ 0 & 0 & \overline{1} & 0 \end{pmatrix}$

$$m_{010}$$
: $\begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & \overline{1} & 0 \\ 0 & \overline{1} & 0 & 0 \\ \overline{1} & 0 & 0 & 0 \end{pmatrix}$

$$m_{001}: \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

Example: Orthoferrites
$$\Gamma_{V_p} = \sum_{ij} a_i^j \Gamma_i^j$$
 $a_i^j = \frac{1}{h} \sum_g \chi_{\Gamma_{V_p}}(g) \chi_{\Gamma_i^j}(g)$ $\Gamma_{V_c} = m \Gamma_1^+ + m \Gamma_2^+ + m \Gamma_3^+ + m \Gamma_4^+$

$$\Gamma_{V_c} = m\Gamma_1^+ + m\Gamma_2^+ + m\Gamma_3^+ + m\Gamma_4^+$$

	1	2 ₁₀₀	2 ₀₀₁	2 ₀₁₀	1	m ₁₀₀	m ₀₀₁	m ₀₁₀	
Γ_{V_C}	4	0	0	0	4	0	0	0	
$m\Gamma_1^+$	1	1	1	1	1	1	1	1	Pbnm
$m\Gamma_1^-$	1	1	1	1	-1	-1	-1	-1	Pb'n'm'
$m\Gamma_2^+$	1	1	-1	-1	1	1	-1	-1	Pbn'm'
$m\Gamma_2^-$	1	1	-1	-1	-1	-1	1	1	Pb'nm
$m\Gamma_3^+$	1	-1	-1	1	1	-1	-1	1	Pb'nm'
$m\Gamma_3^-$	1	-1	-1	1	-1	1	1	-1	Pbn'm
$m\Gamma_4^+$	1	-1	1	-1	1	-1	1	-1	Pb'n'm
$m\Gamma_4^-$	1	-1	1	-1	-1	1	-1	1	Pbnm'

- Space group *Pbnm*
- Consider a vector space $V_a = \{ \boldsymbol{m}_a^1, \boldsymbol{m}_a^2, \boldsymbol{m}_a^3, \boldsymbol{m}_a^4 \}$
- Assume k=(0,0,0)
- Write down the matrix representations

Example: Orthoferrites
$$\Gamma_{V_p} = \sum_{ij} a_i^j \Gamma_i^j$$
 $a_i^j = \frac{1}{h} \sum_g \chi_{\Gamma_{V_p}}(g) \chi_{\Gamma_i^j}(g)$ $\Gamma_{V_a} = m \Gamma_1^+ + m \Gamma_2^+ + m \Gamma_3^+ + m \Gamma_4^+$

$$\Gamma_{V_a} = m\Gamma_1^+ + m\Gamma_2^+ + m\Gamma_3^+ + m\Gamma_4^+$$

	1	2 ₁₀₀	2 ₀₀₁	2 ₀₁₀	<u>1</u>	m ₁₀₀	m ₀₀₁	m ₀₁₀	
$\Gamma_{\!V_c}$	4	0	0	0	4	0	0	0	
$\Gamma_{\!V_a}$	4	0	0	0	4	0	0	0	
$m\Gamma_1^+$	1	1	1	1	1	1	1	1	Pbnm
$m\Gamma_1^-$	1	1	1	1	-1	-1	-1	-1	Pb'n'm'
$m\Gamma_2^+$	1	1	-1	-1	1	1	-1	-1	Pbn'm'
$m\Gamma_2^-$	1	1	-1	-1	-1	-1	1	1	Pb'nm
$m\Gamma_3^+$	1	-1	-1	1	1	-1	-1	1	Pb'nm'
$m\Gamma_3^-$	1	-1	-1	1	-1	1	1	-1	Pbn'm
$m\Gamma_4^+$	1	-1	1	-1	1	-1	1	-1	Pb'n'm
$m\Gamma_4^-$	1	-1	1	-1	-1	1	-1	1	Pbnm'

Example: Orthoferrites
$$\Gamma_{V_p} = \sum_{ij} a_i^j \Gamma_i^j$$
 $a_i^j = \frac{1}{h} \sum_g \chi_{\Gamma_{V_p}}(g) \chi_{\Gamma_i^j}(g)$ $\Gamma_{V_b} = m \Gamma_1^+ + m \Gamma_2^+ + m \Gamma_3^+ + m \Gamma_4^+$

$$\Gamma_{V_b} = m\Gamma_1^+ + m\Gamma_2^+ + m\Gamma_3^+ + m\Gamma_4^+$$

	1	2 ₁₀₀	2 ₀₀₁	2 ₀₁₀	<u>1</u>	m ₁₀₀	m ₀₀₁	m ₀₁₀	
Γ_{V_C}	4	0	0	0	4	0	0	0	
Γ_{V_a}	4	0	0	0	4	0	0	0	
Γ_{V_b}	4	0	0	0	4	0	0	0	
$m\Gamma_1^+$	1	1	1	1	1	1	1	1	Pbnm
$m\Gamma_1^-$	1	1	1	1	-1	-1	-1	-1	Pb'n'm'
$m\Gamma_2^+$	1	1	-1	-1	1	1	-1	-1	Pbn'm'
$m\Gamma_2^-$	1	1	-1	-1	-1	-1	1	1	Pb'nm
$m\Gamma_3^+$	1	-1	-1	1	1	-1	-1	1	Pb'nm'
$m\Gamma_3^-$	1	-1	-1	1	-1	1	1	-1	Pbn'm
$m\Gamma_4^+$	1	-1	1	-1	1	-1	1	-1	Pb'n'm
$m\Gamma_4^-$	1	-1	1	-1	-1	1	-1	1	Pbnm'

$$\Gamma_{V_c} = m\Gamma_1^+ + m\Gamma_2^+ + m\Gamma_3^+ + m\Gamma_4^+$$

$$P_j = \frac{d_j}{h} \sum_i \chi_j(g_i) g_i(V)$$

$$V_c$$
:

$$P_{m\Gamma_{1}^{+}} : \frac{1}{4} \begin{pmatrix} 1 & \overline{1} & 1 & \overline{1} \\ \overline{1} & 1 & \overline{1} & \overline{1} & 1 \\ 1 & \overline{1} & \overline{1} & \overline{1} & \overline{1} \\ \overline{1} & 1 & \overline{1} & 1 \end{pmatrix}$$

$$\phi = (m_c^1, -m_c^2, m_c^3, -m_c^4)$$

$$P_{m\Gamma_{2}^{+}} : \frac{1}{4} \begin{pmatrix} \frac{1}{1} & 1 & 1 & 1\\ \frac{1}{1} & 1 & 1 & \frac{1}{1}\\ \frac{1}{1} & \frac{1}{1} & \frac{1}{1} & 1 \end{pmatrix}$$

$$\boldsymbol{\phi} = (\boldsymbol{m}_c^1, -\boldsymbol{m}_c^2, -\boldsymbol{m}_c^3, \boldsymbol{m}_c^4)$$

$$P_{m\Gamma_{3}^{+}} \colon \frac{1}{4} \begin{pmatrix} 1 & 1 & \frac{1}{1} & \frac{1}{1} \\ \frac{1}{1} & \frac{1}{1} & 1 & 1 \\ \frac{1}{1} & \frac{1}{1} & 1 & 1 \end{pmatrix}$$

$$\phi = (m_c^1, m_c^2, -m_c^3, -m_c^4)$$

$$\boldsymbol{\phi} = (\boldsymbol{m}_c^1, \boldsymbol{m}_c^2, \boldsymbol{m}_c^3, \boldsymbol{m}_c^4)$$

$$\Gamma_{V_i} = m\Gamma_1^+ + m\Gamma_2^+ + m\Gamma_3^+ + m\Gamma_4^+$$

	$m\Gamma_{\!1}^+$ Pbnm	$m\Gamma_2^+$ Pbn'm'	$m\Gamma_3^+$ Pb'nm'	$m\Gamma_4^+$ Pb'n'm
V_c	C_c $(m^1 - m^2 m^3 - m^4)$	G_c $(m^1 - m^2 - m^3 m^4)$	A_c $(\boldsymbol{m}_c^1, \boldsymbol{m}_c^2, -\boldsymbol{m}_c^3, -\boldsymbol{m}_c^4)$	F_c $(m{m}_c^1, m{m}_c^2, m{m}_c^3, m{m}_c^4)$

$$\Gamma_{V_{\alpha}}$$

 $\Gamma_{V_a} = m\Gamma_1^+ + m\Gamma_2^+ + m\Gamma_3^+ + m\Gamma_4^+$

$$P_j = \frac{d_j}{h} \sum_i \chi_j(g_i) g_i(V)$$

 V_a :

$$\Gamma_{V_i} = m\Gamma_1^+ + m\Gamma_2^+ + m\Gamma_3^+ + m\Gamma_4^+$$

	$m\Gamma_1^+$ Pbnm	$m\Gamma_2^+$ Pbn'm'	$m\Gamma_3^+$ <i>Pb'nm'</i>	$m\Gamma_4^+$ Pb'n'm
V_c	C_c	G_c	A_c	F_c
V _a	A_a	F_a	C_a	G_a
V_b	G_b	C_b	F_b	A_b

Bilbao crystallographic server

https://www.cryst.ehu.es/

Isotropy suite

https://stokes.byu.edu/iso/isotropy.php

ISOTROPY Software Suite

Harold T. Stokes, Dorian M. Hatch, and Branton J. Campbell, Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84606, USA, branton_campbell@byu.edu

Description: The ISOTROPY software suite is a collection of software which applies group theoretical methods to the analysis of phase transitions in crystalline solids.

How to cite: To cite a tool from the ISOTROPY Software Suite, see the citation instructions on the tool's individual home page. To cite the entire suite, use the following: H. T. Stokes, D. M. Hatch, and B. J. Campbell, ISOTROPY Software Suite, iso byu edu.

References and Resources

Isotropy subgroups and distortions

- ISODISTORT: Explore and visualize distortions of crystalline structures. Possible distortions include atomic displacements, atomic ordering, strain, and magnetic moments
- . ISOSUBGROUP: Interactive program using user-friendly interface to list isotropy subgroups.
- . ISOTROPY: Interactive program using command lines to explore isotropy subgroups and their associated distortions.
- . ISOTILT: NEW! Interactive program for detecting cooperative rigid-unit modes (RUMs) in framework materials.
- . SMODES: Find the displacement modes in a crystal which brings the dynamical matrix to block-diagonal form, with the smallest possible blocks
- . FROZSL: Calculate phonon frequencies and displacement modes using the method of frozen phonons.
- . ISOVIZ: Stand-alone utility for viewing interactive distortions created by ISODISTORT (installers only, alpha version).

Space groups and irreducible representations

- ISOCIF: Create or modify CIF files.
- . FINDSYM: Identify the space group of a crystal, given the positions of the atoms in a unit cell.
- ISOSPACEGROUP: NEW! Tables of crystallographic space groups: nonmagnetic and magnetic 3-dimensional space groups and (3+d)-dimensional superspace groups.
- . ISO-IR: Tables of Irreducible Representations. The 2011 version of IR matrices.
- . ISO-KOV: NEW! Mapping of the irreducible representations of Kovalev onto those of Cracknell, Davies, Miller and Love.
- ISO-MAG: Tables of magnetic space groups, both in human-readable and computer-readable forms

Superspace Groups

- ISO(3+d)D: (3+d)-Dimensional Superspace Groups for d=1,2,3
- ISO(3+1)D: Isotropy Subgroups for Incommensurately Modulated Distortions in Crystalline Solids: A Complete List for One-Dimensional Modulations
- . FINDSSG: Identify the superspace group symmetry given a list of symmetry operators.
- . TRANSFORMSSG: Transform a superspace group to a new setting.

Phase Transitions

- . COPL: Find a complete list of order parameters for a phase transition, given the space-group symmetries of the parent and subgroup phases.
- . INVARIANTS: Generate invariant polynomials of the components of order parameters.
- . COMSUBS: Find common subgroups of two structures in a reconstructive phase transition

Linux

ISOTROPY Software Suite for Linux: includes ISOTROPY, FINDSYM, SMODES, COMSUBS

Isodistort

https://stokes.byu.edu/iso/isodistort.php

B. J. Campbell, H. T. Stokes, D. E. Tanner, and D. M. Hatch, "ISODISPLACE: An Internet Tool for Exploring Structural Distortions." J. Appl. Cryst. 39, 607-614 (2006).