Elements of Set Theory

Herbert B. Enderton

Contents

\mathbf{R}	Ref	erence	2													
	R.1	Empty Set Axiom	2													
	R.2		2													
	R.3	P Pair Set	2													
	R.4		2													
	R.5		3													
	R.6	Power Set Axiom	3													
	R.7	Subset Axioms	3													
	R.8	Union Axiom	3													
	R.9	Union Axiom, Preliminary Form	3													
1	Intr	roduction	4													
	1.1	Baby Set Theory	4													
		1.1.1	4													
		1.1.2	5													
		1.1.3	6													
		1.1.4	6													
	1.2	Sets - An Informal View	6													
		1.2.1 Exercise 2.1	6													
		1.2.2 Exercise 2.2	7													
		1.2.3 Exercise 2.3	8													
2	Axi	ioms and Operations 9														
	2.1	Axioms	9													
		2.1.1 • Theorem 2A	9													
		2.1.2 • Theorem 2B	9													
	2.2	Exercises 3	9													
		2.2.1	9													
		2.2.2	0													
		2.2.3	0													
		2.2.4	0													
		2.2.5	0													
		2.2.6	1													
		2.2.7 Exercise 3.6b	1													

	Exercise														
2.2.9	Exercise	3.7b													1:
2.2.10	Exercise	3.8													1
2.2.11	Exercise	3.9													1
2.2.12	Exercise	3.10													14

Chapter R

Reference

R.1 Empty Set Axiom

There is a set having no members:

$$\exists B, \forall x, x \notin B.$$

R.2 ¶ Extensionality Axiom

If two sets have exactly the same members, then they are equal:

$$\forall A, \forall B, [\forall x, (x \in A \iff x \in B) \Rightarrow A = B].$$

Axiom. \exists - Set.ext

R.3 Pair Set

For any sets u and v, the **pair set** $\{u, v\}$ is the set whose only members are u and v.

R.4 Pairing Axiom

For any sets u and v, there is a set having as members just u and v:

$$\forall u, \forall v, \exists B, \forall x, (x \in B \iff x = u \text{ or } x = v).$$

R.5 ¶ Power Set

For any set a, the **power set** $\mathscr{P}a$ is the set whose members are exactly the subsets of a.

Definition. \exists – Set.powerset

R.6 Power Set Axiom

For any set a, there is a set whose members are exactly the subsets of a:

$$\forall a, \exists B, \forall x, (x \in B \iff x \subseteq a).$$

R.7 Subset Axioms

For each formula ϕ not containing B, the following is an axiom:

$$\forall t_1, \dots \forall t_k, \forall c, \exists B, \forall x, (x \in B \iff x \in c \land \phi).$$

R.8 Union Axiom

For any set A, there exists a set B whose elements are exactly the members of the members of A:

$$\forall A, \exists B, \forall x [x \in B \iff (\exists b \in A) x \in b]$$

R.9 Union Axiom, Preliminary Form

For any sets a and b, there is a set whose members are those sets belonging either to a or to b (or both):

$$\forall a, \forall b, \exists B, \forall x, (x \in B \iff x \in a \text{ or } x \in b).$$

Chapter 1

Introduction

1.1 Baby Set Theory

Which of the following become true when " \in " is inserted in place of the blank? Which become true when " \subseteq " is inserted?

Exercise 1.1a

 $\{\emptyset\}$ ____ $\{\emptyset, \{\emptyset\}\}$.

Proof. \exists - Enderton.Set.Chapter_1.exercise_1_1a

Because the *object* $\{\emptyset\}$ is a member of the right-hand set, the statement is **true** in the case of " \in ".

Because the *members* of $\{\emptyset\}$ are all members of the right-hand set, the statement is also **true** in the case of " \subseteq ".

Exercise 1.1b

 $\{\varnothing\}_{---}\{\varnothing,\{\{\varnothing\}\}\}.$

Proof. \exists - Enderton.Set.Chapter_1.exercise_1_1b

Because the *object* $\{\emptyset\}$ is not a member of the right-hand set, the statement is **false** in the case of " \in ".

Because the *members* of $\{\emptyset\}$ are all members of the right-hand set, the statement is **true** in the case of " \subseteq ".

⊘ Exercise 1.1c

 $\{\{\emptyset\}\}_{---}\{\emptyset,\{\emptyset\}\}.$

Proof. ∃ − Enderton.Set.Chapter_1.exercise_1_1c

Because the *object* $\{\{\emptyset\}\}$ is not a member of the right-hand set, the statement is **false** in the case of " \in ".

Because the *members* of $\{\{\emptyset\}\}$ are all members of the right-hand set, the statement is **true** in the case of " \subseteq ".

♥ Exercise 1.1d

 $\{\{\varnothing\}\}....\{\varnothing,\{\{\varnothing\}\}\}.$

Proof. ∃ – Enderton.Set.Chapter_1.exercise_1_1d

Because the *object* $\{\{\emptyset\}\}\$ is a member of the right-hand set, the statement is **true** in the case of " \in ".

Because the *members* of $\{\{\varnothing\}\}$ are not all members of the right-hand set, the statement is **false** in the case of " \subseteq ".

Exercise 1.1e

 $\{\{\emptyset\}\}_{--}\{\emptyset,\{\emptyset,\{\emptyset\}\}\}\}.$

Proof. \exists - Enderton.Set.Chapter_1.exercise_1_1e

Because the *object* $\{\{\emptyset\}\}$ is not a member of the right-hand set, the statement is **false** in the case of " \in ".

Because the *members* of $\{\{\emptyset\}\}$ are not all members of the right-hand set, the statement is **false** in the case of " \subseteq ".

Show that no two of the three sets \emptyset , $\{\emptyset\}$, and $\{\{\emptyset\}\}$ are equal to each other.

Proof. \exists - Enderton.Set.Chapter_1.exercise_1_2

By the \P Extensionality Axiom, \varnothing is only equal to \varnothing . This immediately shows it is not equal to the other two. Now consider object \varnothing . This object is a

member of $\{\emptyset\}$ but is not a member of $\{\{\emptyset\}\}$. Again, by the \P Extensionality Axiom, these two sets must be different.

Show that if $B \subseteq C$, then $\mathscr{P}B \subseteq \mathscr{P}C$.

Proof. \exists - Enderton.Set.Chapter_1.exercise_1_3

Let $x \in \mathscr{P}B$. By definition of the \P Power Set, x is a subset of B. By hypothesis, $B \subseteq C$. Then $x \subseteq C$. Again by definition of the \P Power Set, it follows $x \in \mathscr{P}C$.

Assume that x and y are members of a set B. Show that $\{\{x\}, \{x,y\}\} \in \mathscr{PPB}$.

Proof. \exists – Enderton.Set.Chapter_1.exercise_1_4

Let x and y be members of set B. Then $\{x\}$ and $\{x,y\}$ are subsets of B. By definition of the \P Power Set, $\{x\}$ and $\{x,y\}$ are members of $\mathscr{P}B$. Then $\{\{x\},\{x,y\}\}$ is a subset of $\mathscr{P}B$. By definition of the \P Power Set, $\{\{x\},\{x,y\}\}$ is a member of $\mathscr{P}B$.

1.2 Sets - An Informal View

1.2.1 **Exercise** 2.1

Define the rank of a set c to be the least α such that $c \subseteq V_{\alpha}$. Compute the rank of $\{\{\emptyset\}\}\$. Compute the rank of $\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\$.

Proof. We first compute the values of V_n for $0 \le n \le 3$ under the assumption the set of atoms A at the bottom of the hierarchy is empty.

$$\begin{split} V_0 &= \varnothing \\ V_1 &= V_0 \cup \mathscr{P} V_0 \\ &= \varnothing \cup \{\varnothing\} \\ &= \{\varnothing\} \\ V_2 &= V_1 \cup \mathscr{P} V_1 \\ &= \{\varnothing\} \cup \mathscr{P} \{\varnothing\} \\ &= \{\varnothing\} \cup \{\varnothing, \{\varnothing\}\} \\ &= \{\varnothing, \{\varnothing\}\} \\ V_3 &= V_2 \cup \mathscr{P} V_2 \\ &= \{\varnothing, \{\varnothing\}\} \cup \mathscr{P} \{\varnothing, \{\varnothing\}\}, \{\varnothing\}, \{\varnothing\}\} \} \\ &= \{\varnothing, \{\varnothing\}\} \cup \{\varnothing, \{\varnothing\}\}, \{\varnothing\}\} \} \end{split}$$

It then immediately follows $\{\{\varnothing\}\}\$ has rank 2 and $\{\varnothing, \{\varnothing\}, \{\varnothing, \{\varnothing\}\}\}\$ has rank 3.

We have stated that $V_{\alpha+1} = A \cup \mathscr{P}V_{\alpha}$. Prove this at least for $\alpha < 3$.

Proof. Let A be the set of atoms in our set hierarchy. Let P(n) be the predicate, " $V_{n+1} = A \cup \mathscr{P}V_n$." We prove P(n) holds true for all natural numbers $n \geq 1$ via induction.

Base Case Let n=1. By definition, $V_1=V_0\cup \mathscr{P}V_0$. By definition, $V_0=A$. Therefore $V_1=A\cup \mathscr{P}V_0$. This proves P(1) holds true.

Induction Step Suppose P(n) holds true for some $n \geq 1$. Consider V_{n+1} . By definition, $V_{n+1} = V_n \cup \mathcal{P}V_n$. Therefore, by the induction hypothesis,

$$\begin{aligned} V_{n+1} &= V_n \cup \mathscr{P}V_n \\ &= (A \cup \mathscr{P}V_{n-1}) \cup \mathscr{P}V_n \\ &= A \cup (\mathscr{P}V_{n-1} \cup \mathscr{P}V_n) \end{aligned} \tag{1.1}$$

But V_{n-1} is a subset of V_n . \bigcirc Exercise 1.3 then implies $\mathscr{P}V_{n-1} \subseteq \mathscr{P}V_n$. This means (1.1) can be simplified to

$$V_{n+1} = A \cup \mathscr{P}V_n$$

proving P(n+1) holds true.

Conclusion By mathematical induction, it follows for all $n \ge 1$, P(n) is true.

1.2.3 **Exercise** 2.3

List all the members of V_3 . List all the members of V_4 . (It is to be assumed here that there are no atoms.)

Proof. As seen in the proof of PExercise 2.1,

$$V_3 = \{\varnothing, \{\varnothing\}, \{\{\varnothing\}\}, \{\varnothing, \{\varnothing\}\}\}\}.$$

By \mathscr{F} Exercise 2.2, $V_4 = \mathscr{P}V_3$ (since it is assumed there are no atoms). Thus

```
V_4 = \{
             Ø,
             \{\varnothing\},
             \{\{\emptyset\}\},
             \{\{\{\emptyset\}\}\},
             \{\{\varnothing,\{\varnothing\}\}\},
             \{\varnothing, \{\varnothing\}\},
             \{\varnothing, \{\{\varnothing\}\}\},\
             \{\varnothing, \{\varnothing, \{\varnothing\}\}\},\
             \{\{\varnothing\},\{\{\varnothing\}\}\},
             \{\{\varnothing\},\{\varnothing,\{\varnothing\}\}\},
             \{\{\{\varnothing\}\},\{\varnothing,\{\varnothing\}\}\},
             \{\varnothing,\{\varnothing\},\{\{\varnothing\}\}\},
             \{\varnothing, \{\varnothing\}, \{\varnothing, \{\varnothing\}\}\},\
             \{\varnothing, \{\{\varnothing\}\}, \{\varnothing, \{\varnothing\}\}\}\}
             \{\{\varnothing\},\{\{\varnothing\}\},\{\varnothing,\{\varnothing\}\}\},
             \{\varnothing, \{\varnothing\}, \{\{\varnothing\}\}, \{\varnothing, \{\varnothing\}\}\}\}
}.
```

9

Chapter 2

Axioms and Operations

2.1 Axioms

2.1.1 • Theorem 2A

Theorem 2A. There is no set to which every set belongs.

Proof. TODO

2.1.2 • Theorem 2B

Theorem 2B. For any nonempty set A, there exists a unique set B such that for any x,

 $x \in B \iff x \text{ belongs to every member of } A.$

Proof. TODO

2.2 Exercises 3

Assume that A is the set of integers divisible by 4. Similarly assume that B and C are the sets of integers divisible by 9 and 10, respectively. What is in $A \cap B \cap C$?

Answer. \exists - Enderton.Set.Chapter_1.exercise_3_1

The set of integers divisible by 4, 9, and 10.

Give an example of sets A and B for which $\bigcup A = \bigcup B$ but $A \neq B$.

Answer. \exists - Enderton.Set.Chapter_1.exercise_3_2

Let
$$A = \{\{1\}, \{2\}\}$$
 and $B = \{\{1, 2\}\}.$

Show that every member of a set A is a subset of $\bigcup A$. (This was stated as an example in this section.)

Proof. \exists - Enderton.Set.Chapter_1.exercise_3_3

Let $x \in A$. By definition,

$$\bigcup A = \{y \mid (\exists b \in A)y \in b\}.$$

Then $\{y \mid y \in x\} \subseteq \bigcup A$. But $\{y \mid y \in x\} = x$. Thus $x \subseteq \bigcup A$.

Show that if $A \subseteq B$, then $\bigcup A \subseteq \bigcup B$.

Proof. \exists - Enderton.Set.Chapter_1.exercise_3_4

Let A and B be sets such that $A \subseteq B$. Let $x \in \bigcup A$. By definition of the union, there exists some $b \in A$ such that $x \in b$. By definition of the subset, $b \in B$. This immediately implies $x \in \bigcup B$. Since this holds for all $x \in \bigcup A$, it follows $\bigcup A \subseteq \bigcup B$.

Assume that every member of \mathscr{A} is a subset of B. Show that $\bigcup \mathscr{A} \subseteq B$.

Proof. \exists - Enderton.Set.Chapter_1.exercise_3_5

Let $x \in \bigcup \mathscr{A}$. By definition,

$$\bigcup \mathscr{A} = \{ y \mid (\exists b \in A) y \in b \}.$$

Then there exists some $b \in A$ such that $x \in b$. By hypothesis, $b \subseteq B$. Thus x must also be a member of B. Since this holds for all $x \in \bigcup \mathscr{A}$, it follows $\bigcup \mathscr{A} \subseteq B$.

Show that for any set A, $\bigcup \mathscr{P}A = A$.

Proof. \exists - Enderton.Set.Chapter_1.exercise_3_6a

We prove that (i) $\bigcup \mathscr{P}A \subseteq A$ and (ii) $A \subseteq \bigcup \mathscr{P}A$.

- (i) By definition, the \P Power Set of A is the set of all subsets of A. In other words, every member of $\mathscr{P}A$ is a subset of A. By \lozenge Exercise 3.5, $\bigcup \mathscr{P}A \subseteq A$.
- (ii) Let $x \in A$. By definition of the power set of A, $\{x\} \in \mathscr{P}A$. By definition of the union,

$$\bigcup \mathscr{P}A = \{y \mid (\exists b \in \mathscr{P}A), y \in b\}.$$

Since $x \in \{x\}$ and $\{x\} \in \mathscr{P}A$, it follows $x \in \bigcup \mathscr{P}A$. Thus $A \subseteq \bigcup \mathscr{P}A$.

Conclusion By (i) and (ii), $\bigcup \mathscr{P}A = A$.

Show that $A \subseteq \mathcal{P} \bigcup A$. Under what conditions does equality hold?

Proof. \exists - Enderton.Set.Chapter_1.exercise_3_6b

Let $x \in A$. By \bigcirc Exercise 3.3, x is a subset of $\bigcup A$. By the definition of the \P Power Set,

$$\mathscr{P}\bigcup A=\{y\mid y\subseteq\bigcup A\}.$$

Therefore $x \in \mathcal{P} \bigcup A$. Since this holds for all $x \in A$, $A \subseteq \mathcal{P} \bigcup A$.

We show equality holds if and only if there exists some set B such that $A=\mathscr{P}B.$

- (\Rightarrow) Suppose $A = \mathcal{P} \bigcup A$. Then our statement immediately follows by settings $B = \bigcup A$.
- (\Leftarrow) Suppose there exists some set B such that $A = \mathscr{P}B$. Therefore

$$\mathcal{P} \bigcup A = \mathcal{P} \left(\bigcup \mathcal{P} B \right)$$

$$= \mathcal{P} B$$

$$= A.$$
Exercise 3.6a

Conclusion By (\Rightarrow) and (\Leftarrow) , $A = \mathcal{P} \bigcup A$ if and only if there exists some set B such that $A = \mathcal{P}B$.

Show that for any sets A and B,

$$\mathscr{P}A\cap\mathscr{P}B=\mathscr{P}(A\cap B).$$

Proof. ∃ – Enderton.Set.Chapter_1.exercise_3_7a

Let A and B be arbitrary sets. We show that $\mathscr{P}A\cap\mathscr{P}B\subseteq\mathscr{P}(A\cap B)$ and then show that $\mathscr{P}A\cap\mathscr{P}B\supseteq\mathscr{P}(A\cap B)$.

(\subseteq) Let $x \in \mathscr{P}A \cap \mathscr{P}B$. That is, $x \in \mathscr{P}A$ and $x \in \mathscr{P}B$. By the definition of the \P Power Set,

$$\mathscr{P}A = \{ y \mid y \subseteq A \}$$
$$\mathscr{P}B = \{ y \mid y \subseteq B \}$$

Thus $x \subseteq A$ and $x \subseteq B$, meaning $x \subseteq A \cap B$. But then $x \in \mathscr{P}(A \cap B)$, the set of all subsets of $A \cap B$. Since this holds for all $x \in \mathscr{P}A \cap \mathscr{P}B$, it follows

$$\mathscr{P}A\cap\mathscr{P}B\subseteq\mathscr{P}(A\cap B).$$

 (\supseteq) Let $x \in \mathcal{P}(A \cap B)$. By the definition of the \P Power Set,

$$\mathscr{P}(A \cap B) = \{ y \mid y \subseteq A \cap B \}.$$

Thus $x \subseteq A \cap B$, meaning $x \subseteq A$ and $x \subseteq B$. But this implies $x \in \mathscr{P}A$, the set of all subsets of A. Likewise $x \in \mathscr{P}B$, the set of all subsets of B. Thus $x \in \mathscr{P}A \cap \mathscr{P}B$. Since this holds for all $x \in \mathscr{P}(A \cap B)$, it follows

$$\mathscr{P}(A \cap B) \subseteq \mathscr{P}A \cap \mathscr{P}B.$$

Conclusion Since each side of our identity is a subset of the other,

$$\mathscr{P}(A \cap B) = \mathscr{P}A \cap \mathscr{P}B.$$

Show that $\mathscr{P}A \cup \mathscr{P}B \subseteq \mathscr{P}(A \cup B)$. Under what conditions does equality hold?

Proof.

∃ - Enderton.Set.Chapter_1.exercise_3_7b_i

∃ - Enderton.Set.Chapter_1.exercise_3_7b_ii

Let $x \in \mathscr{P}A \cup \mathscr{P}B$. By definition, $x \in \mathscr{P}A$ or $x \in \mathscr{P}B$ (or both). By the definition of the \P Power Set,

$$\mathscr{P}A = \{y \mid y \subseteq A\}$$

$$\mathscr{P}B = \{ y \mid y \subseteq B \}.$$

Thus $x \subseteq A$ or $x \subseteq B$. Therefore $x \subseteq A \cup B$. But then $x \in \mathscr{P}(A \cup B)$, the set of all subsets of $A \cup B$.

We show equality holds if and only if one of A or B is a subset of the other.

 (\Rightarrow) Suppose

$$\mathscr{P}A \cup \mathscr{P}B = \mathscr{P}(A \cup B). \tag{2.1}$$

By the definition of the \P Power Set, $A \cup B \in \mathscr{P}(A \cup B)$. Then (2.1) implies $A \cup B \in \mathscr{P}A \cup \mathscr{P}B$. That is, $A \cup B \in \mathscr{P}A$ or $A \cup B \in \mathscr{P}B$ (or both).

For the sake of contradiction, suppose $A \not\subseteq B$ and $B \not\subseteq A$. Then there exists an element $x \in A$ such that $x \notin B$ and there exists an element $y \in B$ such that $y \notin A$. But then $A \cup B \notin \mathscr{P}A$ since y cannot be a member of a member of $\mathscr{P}A$. Likewise, $A \cup B \notin \mathscr{P}B$ since x cannot be a member of a member of $\mathscr{P}B$. Therefore our assumption is incorrect. In other words, $A \subseteq B$ or $B \subseteq A$.

(\Leftarrow) WLOG, suppose $A \subseteq B$. Then, by \bigcirc Exercise 1.3, $\mathscr{P}A \subseteq \mathscr{P}B$. Thus

$$\begin{split} \mathscr{P}A \cup \mathscr{P}B &= \mathscr{P}B \\ &= \mathscr{P}A \cup B. \end{split}$$

Conclusion By (\Rightarrow) and (\Leftarrow) , it follows $\mathscr{P}A \cup \mathscr{P}B \subseteq \mathscr{P}(A \cup B)$ if and only if $A \subseteq B$ or $B \subseteq A$.

Show that there is no set to which every singleton (that is, every set of the form $\{x\}$) belongs. [Suggestion: Show that from such a set, we could construct a set to which every set belonged.]

Proof. We proceed by contradiction. Suppose there existed a set A consisting of every singleton. Then the \mathcal{O} Union Axiom suggests $\bigcup A$ is a set. But this set is precisely the class of all sets, which is not a set. Thus our original assumption was incorrect. That is, there is no set to which every singleton belongs.

Give an example of sets a and B for which $a \in B$ but $\mathscr{P}a \notin \mathscr{P}B$.

Answer. \exists - Enderton.Set.Chapter_1.exercise_3_9

Let $a = \{1\}$ and $B = \{\{1\}\}$. Then

$$\mathcal{P}a = \{\varnothing, \{1\}\}\$$

$$\mathcal{P}B = \{\varnothing, \{\{1\}\}\}.$$

It immediately follows that $\mathscr{P}a \notin \mathscr{P}B$.

Show that if $a \in B$, then $\mathscr{P}a \in \mathscr{PP} \bigcup B$. [Suggestion: If you need help, look in the Appendix.]

Proof. \exists - Enderton.Set.Chapter_1.exercise_3_10

Suppose $a \in B$. By \bigcirc Exercise 3.3, $a \subseteq \bigcup B$. By \bigcirc Exercise 1.3, $\mathscr{P}a \subseteq \mathscr{P} \bigcup B$. By the definition of the \P Power Set,

$$\mathscr{P}\mathscr{P}\bigcup B=\{y\mid y\subseteq\mathscr{P}\bigcup B\}.$$

Therefore $\mathscr{P}a \in \mathscr{PP} | B$.