Summary of Cyrus Rashtchian's Proof for an upper bound on $c_s(w)$

Aarvan Gupta

May 20 2022

1 Problem

For a set $S \subseteq \{0,1\}^d$ we define $c_S(w) = |\{(x,y) \mid x \in S, y \in S, d(x,y) = w\}|$, i.e., the number of pairs of vectors in S that are at Hamming distance w from each other. We are asked to provide an upper bound for the sum $\frac{\sum_{w=0}^r c_S(w)}{|S|}$ over all such sets S.

2 Reformulation of Problem to graphs

We consider the set S to be a subset of the boolean hypercube graph of dimension d. In this graph, the set of vertices is $V = \{v : v \in S\}$ and the set of edges is $E = \{(x,y) : d_H(x,y) \le r\}$ where d_H is the Hamming distance function. The problem transforms to finding the maximum value of $e = \frac{|E|}{|V|}$. For sets S, and a maximum Hamming distance r, we denote this as maximising $e_{\le r}(S) = \frac{|E_{\le r}(S)|}{|S|}$.

3 Left-Compressed Down Sets

Definition 1 A set S is said to be a down-set if $x \in S$ implies $y \in S$ whenever $y \subseteq x$.

Note that the set definition of the bit string of y is used here. For example 0100010 corresponds to $\{2,6\}$.

Definition 2 A set S is said to be a left-compressed set if $x \in S$ implies $y \in S$ whenever y satisfies the two conditions-

- 1. |x| = |y|
- 2. either $x_1 = 0, y_1 = 0$ or there exists $i, j \in [d]$ with 1 < i < j such that $x_1 = y_1, ..., x_{i-1} = y_{i-1}$ and $x_i = 0, x_j = 1, y_i = 1, y_j = 0$

Theorem 1 A left-compressed down set achieves the maximum value of $e_{\leq r}(S)$.

Proof Outline. We start with a set B which achieves the maximum of $e_{\leq r}(B)$. We define a down-shift operator D_i which replaces every element in B whose i^{th} position is 1 and the replaced element is not already present in B. The set $D(B) = D_1(D_2(...(D_d(B))..)$ is a down set. By case bashing, we show that after a single operation of D_i to B, $e_{\leq r}(B) \leq e_{\leq r}(D_i(B))$. Hence any set S for which $e_{\leq r}(S)$ is maximum can be transformed into a down-set D(S) which retains the same property.

We shall proceed with a similar proof for left-compression. We define an operator $L_{i,j}$ on set B which for every $z \in B$ swaps z_i and z_j if $z_i = 0$ and $z_j = 1$ if i < j. We argue that the set $L(B) = L_{1,1}(L_{1,2}(...L_{d-1,d}(B)...))$ is a left-compressed set. WLOG we look at i = 1 and j = 2 and analyse the different cases to conclude that set $L_{1,2}(B)$ is a down-set if B is a down set. Then using similar case bashing analysis as above, we conclude that after a single operation of $L_{i,j}$ to B, $e_{\leq r}(B) \leq e_{\leq r}(L_{i,j}(B))$. Hence any set S such that $e_{\leq r}(S)$ is maximum can be transformed to a left-compressed down-set L(D(S)) with the same property.

4 Tighter Bounds for Small Distances

4.1 r = 0

For r=0, the quantity $E_{<0}(S)$ is just the number of vertices in graph of S, that is |S|.

4.2 r = 1

For $x \in S$, where S is a down-set, we have $y \in S$ for all $y \subseteq x$. So we have $2^{|x|} \le |S|$, or in turn $|x| \le \lfloor \log(S) \rfloor$. Again because S is a down-set, $|E_{\le 1}(S)| = \sum_{x \in S} |x| \le |S| \log |S|$. A better optimal bound is $|E_{\le 1}(S)| \le \frac{1}{2} |S| \log |S|$, which is obtained in some other papers cited by Rashtchian.

4.3 r = 2

4.3.1 Rewriting expression in terms of rank

Definition 3 Define the rank of a boolean vector x as $||x|| = \sum_{j \in [n]} jx_j = \sum_{j \in x} j$.

Theorem 2 For a left-compressed down set S, $E_{\leq 2}(S) = \sum_{x \in S} ||x||$.

Proof Outline. The key idea being used here is that $\{x,y\} \in E_{\leq 2}(S)$ implies that $||y|| \neq ||x||$. Note that a rank of the order $O(n^2)$ does not work for r=3 and this distinguishing property of ranks is the only reason the proof works for r=2 and not for higher powers. After noticing this, WLOG we fix $x \in S$ and count y such that ||y|| < ||x||. Now, y can be of three forms:

- 1. $y = x \cup \{i\} \setminus \{j\}$ where $i < j, j \in x$, and $i \notin x$.
- 2. $y = x \setminus \{i\}$ where $i \in x$.
- 3. $y = x \setminus \{i, j\}$ where $i, j \in x$.

Counting the number of possible y's in all three cases and adding them up gives us our required result.

4.3.2 Finding an upper bound for rank

Theorem 3 For a left-compressed down-set S, for any $x \in S$ we have

$$||x|| \leq d.l'$$

where
$$l^{'} = min\{\lceil \frac{log|S|}{load-loglog|S|} \rceil, \lfloor log|S| \rfloor\}.$$

Proof Outline. Written down in detail in notebook. Too long to type :). However I have tried to give a very brief outline here-

- 1. We first prove the inequality for $l' = \lfloor log |S| \rfloor$. From the r = 1 case we know that $|x| \leq \lfloor log |A| \rfloor$. Hence, we have $E_{\leq 2}(S) = \sum_{x \in S} ||x|| \leq \sum_{x \in S} d|x| \leq dlog |S|$. Therefore we have $e_{\leq 2}(S) \leq l'$.
- 2. We now look at the case when $l' = \lceil \frac{log|S|}{logd-loglog|S|} \rceil$ for the rest of this proof. If this is the case, then the value of the denominator will be greater than 1. Or in turn we have $2 < \frac{d}{log|S|}$.
- 3. We define $\beta' = \lfloor \frac{dl'}{\log |S|} \rfloor$. Let $x \in \{0,1\}^d$ be decomposed as $x = x_1 \cup x_2$ where $x_1 \subseteq \{1,2,...,\beta\}$ and $x_2 \subseteq \{\beta+1,...,d\}$. For a fixed x, consider a $y \in \{0,1\}^d$ of the form $y = y' \cup y$ " where $y' \subseteq x'$ and $y'' \subseteq ([\beta'] \backslash x') \cup x$ " and $|y''| \le |x''|$. Every such y is in the left-compressed down-set S if $x \in S$.
- 4. The main idea here is to bound the size of the set S given $x \in S$ using the fact that it is left-compressed. From the observation in the previous point, we observe that $|S| \ge \text{number of } y$'s guaranteed to be in set S by existence of $x \ge |y'| \cdot |y''|$. Note that the choice of y' is independent of the choice of y''.
- 5. Number of y''s for a given $x = |y'| = 2^{|x'|}$. We define another quantity ϵ_x such that $2^{|x'|} = |S|^{\epsilon_x}$. Now, number of choices of $y'' = \sum_{j=0}^{x''} {\beta' |x'| + |x''| \choose j}$.
- 6. Coming back to the the thing we want to prove, we will show that $||x|| \le \beta' |x'| + d|x''| \le d.l'$. This is equivalent to showing $|x''| \le (1 \epsilon_x)l'$. We proceed to prove this by contradiction. We assume $|x''| > (1 \epsilon_x)l'$ then show that this implies that $|y''| > |S|^{1-\epsilon_x}$, which is not possible.
- 7. This point gives a very brief outline of how we bound the number of y". We first use the inequality $\binom{a}{b} \geq (\frac{a}{b})^b$ and the contradiction assumption $|x^*| > (1 \epsilon_x)l'$ to show that $\sum_{j=0}^{x^*} {\binom{\beta'-|x'|+|x^*|}{j}} \geq (\frac{\beta'-|x'|+|x^*|}{(1-\epsilon_x)l'})^{(1-\epsilon_x)l'}$. After some simple mathematics, we prove that $\beta' \geq \frac{2}{\log(3)}\log(S)$. This implies that $\beta' |x'| \geq (1 \frac{\log(3)}{2}\epsilon_x)\beta'$. We do a case-wise analysis of |x'| and in all three cases try to prove that $\frac{\beta'-|x'|+|x^*|}{(1-\epsilon_x)l'} > \frac{d}{\log|S|}$. After proving this, we have $\sum_{j=0}^{x^*} {\binom{\beta'-|x'|+|x^*|}{j}} > (\frac{d}{\log|S|})^{(1-\epsilon_x)l'} \geq |S|^{(1-\epsilon_x)}$ as we desired.

4.3.3 Substituting expression for rank back to get final bound

Substituting the bound for rank obtained in Theorem 3, we substitute it back in the expression in Theorem 2.

$$e_{\leq 2}(S) = \frac{1}{|S|} \sum_{x \in S} ||x|| \leq d.l'$$

where $l^{'} = min\{\lceil \frac{log|S|}{logd-loglog|S|} \rceil, \lfloor log|s| \rfloor\}.$

5 The general case for even r

5.1 Partitioning the edge set into a disjoint union of equal mutual hamming distance pairs $e_{(b,a)}(S)$

For non-negative integral a and b define

$$E_{(b,a)}(S) = \{x, y \in E_{\leq 2t}(S) : |x \setminus y| = b, |y \setminus x| = a\}$$

Now let

$$U = \{(b,a): b \ge a, b+a \le 2t\}$$

Also let $e_{(b,a)}(S) = |E_{(b,a)}(S)|$. Now we can decompose $E_{\leq 2t}(S)$ as a disjoint union

$$E_{\leq 2t}(S) = \bigcup_{(b,a)\in U} E_{(b,a)}(S)$$

and in turn we have

$$e_{\leq 2t}(S).|S| = \sum_{(b,a)\in U} e_{(b,a)}(S)$$

5.2 $l_x < l$

We start off with some definitions. We define $l = min\{\lceil \frac{2log|S|}{logd-loglog|S|} \rceil, \lfloor log|S| \rfloor\}$ and $\beta = \lfloor (\frac{d}{log|S|})^{\frac{1}{2}} l \rfloor$. We then define $l_x = |x \cap \{\beta+1,...,d\}|$ for an $x \in S$. This intuitively represents the number of "big" elements in x. Note that the inequality $\beta^2 < dl$ follows from the definition.

Theorem 4 Let $S \subseteq \{0,1\}^d$, $|S| \ge 2$ be a left-compressed down set. If $x \in S$, then $l_x \le l$.

Proof Outline. We first look at the case when $l = \lfloor log|S| \rfloor$. We obviously have $l_x \leq |x|$ and from the r = 1 case we know that $|x| \leq \lfloor log|S| \rfloor$. So the result follows for $l = \lfloor log|S| \rfloor$.

Now we look at when $l = \lceil \frac{2log|S|}{logd-loglog|S|} \rceil$. For this case we lower bound the number of y that are guaranteed to be in the set S if $x \in S$. We know that $|S| \ge \text{number of such } y$'s. Now we assume the contradiction that $l_x > l$ and show that number of y's> |S|. This leads to a contradiction.

5.3 Counting pairs and finding an upper bound on $e_{(b,a)}(S)$ for fixed (b,a)

We now find an upper bound on the number of pairs $\{x,y\} \in E_{(b,a)}(S)$ at a hamming distance of at most 2t. We partition the pairs into two cases: when $l_y \leq l_x$ and when $l_y > l_x$. The proofs for both are very similar so we just look at the case when $l_y \leq l_x$ for brevity.

Now fix an $x \in S$, for each $p \in 0, 1, ..., a$ we bound the number of $y \in \{0, 1\}^d = |Y|$ such that $\{x, y\} \in E_{(b,a)}(S)$ and $l_y \leq l_x$ and $|(y \setminus x) \cap \{\beta + 1, ..., d\}| = p$. By some combinatorial arguments we show that

$$|Y| \le \binom{n-\beta-l_x}{p} \binom{l_x}{p} \binom{\beta-|x|+l_x}{a-p} \binom{|x|}{b-p}$$

Now we use the inequality $l_x \leq l$ we proved earlier to say that

$$|Y| \le \binom{n}{p} \binom{l}{p} \binom{\beta}{a-p} \binom{|x|}{b-p} \le \frac{(nl)^p \cdot \beta^{a-p} \cdot |x|^{b-p}}{(p!)^2 \cdot (a-p)! \cdot (b-p)!}$$

Using Stirling's approximation and Jensen's inequality we lower bound the denominator as $(p!)^2 \cdot (a-p)! \cdot (b-p)! \ge (\frac{b+a}{4e})^{b+a}$.

Now we upper-bound the numerator using the inequalities $\beta |x| \le nl$, $\beta^2 \le nl$, and $|x|^2 \le nl$. We just look at the case when b+a is even for brevity and this leads us to

$$(nl)^p.\beta^{a-p}.|x|^{b-p} \le (nl)^p.(nl)^{\frac{a-p}{2}}.(nl)^{\frac{b-p}{2}} = (nl)^{\frac{b+a}{2}}$$

. This lets us bound $e_{(b,a)}(S)$ for $l_y \leq l_x$. We get similar results when b+a is odd and when $l_y > l_x$.

5.4 Putting it all together