

Universidade Eduardo Mondlane

Exame:	Português	Nº Questões:	58
Duração:	120 minutos	Alternativas por questão:	5
Ano	2011		

INSTRUÇÕES

- 1. Preencha as suas respostas na FOLHA DE RESPOSTAS que lhe foi fornecida no início desta prova. Não será aceite qualquer outra folha adicional, incluindo este enunciado.
- Na FOLHA DE RESPOSTAS, assinale a letra que corresponde à alternativa escolhida pintando completamente o interior do rectângulo por 2.
- cima da letra. Por exemplo, pinte assim , se a resposta escolhida for A A máquina de leitura óptica anula todas as questões com mais de uma resposta e/ou com borrões. Para evitar isto, preencha primeiro à lápis HB, 3. e só depois, quando tiver certeza das respostas, à esferográfica.

1.	O número 0,4 ⁻³ pode	ser escrito na seguinte	e forma:			
	A. -0.4^3	B. $\frac{4^3}{10}$	C. 125	D. 0,064	E1,2	
			8			
2.	O valor $\sqrt{2^3} + \sqrt{32}$ é	igual a:				
		B. $2\sqrt{20}$	C. $6\sqrt{2}$	D. $5\sqrt{8}$	E. $2^{2/3} +$	$4.2^{1/2}$
3.	A quinta parte de $\frac{3}{7}$ é:					
	,		2	D 5	1.5	
	A. $\frac{1}{5}$	B. $\frac{3}{35}$	C. $\frac{3}{5}$	D. 5	E. $\frac{15}{7}$	
4.	A e B estão de folga no		aue A tem folga de 6 er	n 6 dias e B. de 4 em 4	/ I dias e que a folga do	s dois coincide sempre
	a cada x dias, pode-se			ir o dido e D, de Tein	i una e que a rorga uo	o dois comerae sempre
	A. 4	B. 6	C. 10	D. 12	E. 24	
5.	Os números x e y são	o tais que 5 < x < 10	e 20 < v < 30. O majo	or valor possível de $\frac{x}{-}$	é·	
	os nameros w e y sa		0 2 0 = y = 00 . 0	y		
	$A = \frac{1}{2}$	$_{\rm B} = \frac{1}{-}$	C. $\frac{1}{3}$	$D = \frac{1}{2}$	E. 1	
			3	2	Б. 1	
6.	A expressão $\sqrt{(-4)^2}$	é equivalente a:				
	A4		C. 4	D2	E. Não existe	
7.	O valor $\sqrt{2} + \sqrt{3}$ é igu					
		_	0 4/26	D. 3.5	E. Nenhum dos valo	ores anteriores
8.		B. $\sqrt{6}$	C. V30			
0.	A expressão simplificado		√5 é:			
9.	A. 3	В1	C. 2	D. 1	E. 0	
9.	O valor de $\left(\frac{1}{3}\right)^{-10} \cdot 2$	$7^{-3} \cdot (0.2)^{-4} \cdot 25^{-2}$	$\left(\frac{1}{\sqrt{4}}, \frac{1}{9}\right)^{-3}$	A. 8	B. $\frac{7}{3}$	C. 9
	O valor de $\left(\frac{-}{3}\right)$ · 2	/ + (0,2) · 23 +	e:			
				D. 6	E. $\frac{5}{8}$	
10.	18 ²	-19^{2}				
	O valor da fracção $\frac{18^2}{56^2}$	$\frac{1}{-19^2}$ é igual a:				
		1	. 1	5	5	
	A. 0,75	B. $-\frac{1}{75}$	C. $\frac{1}{75}$	D. $-\frac{5}{73}$	E. $\frac{5}{73}$	
11.	Das igualdades apreser	ıtadas a que é válida p	ara todos os valores de	a reais é: $a^2 - 2a +$	2 = (a-1)(a-2)	
	A. $a^3 - 1 = (a^2)^2$	(-a+1)(a-1)	B. $a^2 + 4 = (a$	+2)(a-2)	C. $(a+1)^2 +$	$3 = (a+2)^2$
	D. $(a^2 - 1)^2 = $	<i>,</i> , ,	E. $a^2 - 2a + 2$		()	,
12.	O preço de um produto		ara 25,00 MT. Neste cas	so, o preço subiu:		
	A. 15%	B. 20%	C. 25%	D. 30%	E. 10%	
13.	A solução da inequação $\frac{x+3}{-5} \ge 1$ é:					
	A. $x \ge -8$	B. $x \le 8$	C. <i>x</i> ≥	–2 D.	$x \ge 2$	E. $x \le -8$

14.	A solução da inequação $x^2-9\ge 0$ é:				
	A. $x \le -3 \lor x \ge 3$ B. $x \ge \pm 3$ C. $-3 \le x \le 3$ D. $x \le \pm 3$ E. $x \ge 3$				
15.	Sejam $\log_a m = p$ e $\log_a n = q$. Se $p + q = \log_a x$ e $p - q = \log_a y$, o valor de m^2 é:				
	A. xy B. x^2 C. y^2 D. $x-y$ E. $\frac{x}{}$				
	y				
16.	O número $\frac{\log_2 3}{\log_4 27}$ é igual a:				
	A. $\frac{1}{9}$ B. $\frac{1}{12}$ C. $\frac{2}{3}$ D. $\frac{2}{9}$ E. $\frac{1}{4}$				
17.					
	Sendo $x \neq y$, a expressão $\frac{x^2 + y^2 + 2xy}{x + y}$ é equivalente a:				
	2xv				
	A. $x+y+\frac{2xy}{x+y}$ B. $x+y+2xy$ C. $x+y$ D. x^2+y^2+2 E. 1				
18.	Em relação à $- x < x$ é correcto afirmar que a solução da equação é:				
	A. $\{\}$ B. $x = 0$ C. $x < 0$ D. $x > 0$ E. R				
19.					
	Seja a equação $ x+5 =-3$. Das seguintes respostas é correcta a alínea: A. $x=-8$ B. não tem soluções C. $x=-2$ D. $x=2$ E. $x=-8 \lor x=-2$				
20.	A soma das raízes da equação $ 3+x =2$ é igual a:				
	A. 6 B5 C4 D. 4 E3				
21.					
	Seja a equação $senx = \frac{4}{3}$. No intervalo $\left[-\pi, \pi\right]$ a solução é:				
	A. $x = \frac{\pi}{3} \lor x = \frac{4\pi}{3}$ B. $x = \frac{\pi}{3}$ C. não tem solução D. $x = 0$ E. $x = \frac{\pi}{3} \lor x = -\frac{\pi}{3}$				
22.					
	O gráfico que representa a função $f(x) = \frac{x+1}{x-1}$ é:				
	A. B. C. D.				
	1				
22	E. Nenhuma das alternativas				
23.	O contradomínio da função $y = \frac{1}{1-x} + 2$ é:				
	A. R B. $R \setminus \{1\}$ C. $R \setminus \{2\}$ D. $[3,+\infty[$ E. $]-\infty;2]$				
24.	A área de um rectângulo, em cm^2 , cuja diagonal mede 10 cm e a soma de dois lados consecutivos $14cm$ é:				
	A. 24 B. 32 C. 48 D. 54 E. 72				
25.	Num curso de iniciação à informática, a distribuição das idades dos alunos, segundo o sexo, é dada pelo gráfico seguinte. Com base nos				
	1 1 1 70 1 0				
	dados do grafico, pode-se afirmar que: A. O número de meninas com, no máximo, 16 anos é maior que o número de meninos nesse mesmo intervalo de idades B. o número total de alunos é 19 C. a média de idade das meninas é 15 anos				
	B. o número total de alunos é 19 C. a média de idade das meninas é 15 anos				
	D. o número de meninas é igual ao número de meninas				
	E. o número de meninos com idade superior a 15 anos é maior que o número de meninas nesse mesmo intervalo de idades				
	0 14 15 16 17 18				
26.	Seja a função $f(x) = x^3 - 1$. A função tem extremo em:				
	A. $x=1 \lor x=-1$ B. $x=-1$ C. $x=0$ D. $x=1$ E. $x=0 \lor x=1$				
27.					
	O domínio da função $f(x) = \frac{x}{x^2 + 1}$ é:				
	A. $R \mid \{-1\}$ B. $R \mid \{1\}$ C. $R \mid \{-1,1\}$ D. R				
28.	A primeira derivada de $f(x) = \ln x^2$ é:				
	A. $\frac{2}{x}$ B. $2 \ln x$ C. $\frac{1}{x^2}$ D. $\frac{1}{\ln x^2}$ E. $\frac{2x}{\ln x^2}$				

29. É correcta a afirmação:

A.
$$\lim_{x \to -3} \frac{x^2 - 9}{x + 3} = 0$$

B.
$$\lim_{x \to -3} \frac{x^2 - 9}{x + 3} = 0$$

C.
$$\lim_{x \to -3} \frac{x^2 - 9}{x + 3} =$$

A.
$$\lim_{x \to -3} \frac{x^2 - 9}{x + 3} = 0$$
 B. $\lim_{x \to -3} \frac{x^2 - 9}{x + 3} = \infty$ C. $\lim_{x \to -3} \frac{x^2 - 9}{x + 3} = 3$ D. $\lim_{x \to -3} \frac{x^2 - 9}{x + 3} = -6$ E. Nenhuma delas

30. O limite $\lim 5e^{-x}$ é:

31. As funções $y = a^x$ e $y = b^x$ com a > 0, b > 0 e $a \ne b$ têm gráficos que se intersectam em:

E. Nenhum ponto

32. A sucessão de termo geral $u_n = 5 + e^{-3n}$, $n \in \mathbb{N}$ é:

- A. Apenas monótona crescente

- D. Crescente e decrescente
- B. Crecente e constante E. Apenas monótona decrescente
- C. Constante

33. Se x_1 e x_2 são os zeros da função $y = 3x^2 + 4x - 2$, então o valor de $\frac{1}{x_1} + \frac{1}{x_2}$ é igual a:

A.
$$\frac{1}{8}$$

B.
$$\frac{8}{3}$$

E. 3

A solução da inequação $(0,1)^{4x^2-2x-2} \le (0,1)^{2x-3}$ é: 34.

A.
$$x \in [2;1]$$

B.
$$x \in [1;2]$$
 C. $x \in \emptyset$

$$C x \in Q$$

D.
$$x \in [-2:]$$

E.
$$x \in R$$

35. O conjunto solução do sistema $\begin{cases} \frac{x}{y} + \frac{y}{x} = \frac{13}{6} \\ \text{é:} \end{cases}$

$$\mathbf{a} \begin{cases} \frac{x}{y} + \frac{y}{x} = \frac{13}{6} \\ x \cdot y = 6 \end{cases}$$
 é:

A.
$$(3,-2) \lor (3,2)$$

B.
$$(-2,3)\lor(2,$$

C.
$$\left(\frac{3}{2},4\right) \lor \left(\frac{2}{3},9\right)$$
 D. $\left(4,\frac{3}{2}\right) \lor \left(9,\frac{2}{3}\right)$

D.
$$\left(4,\frac{3}{2}\right) \vee \left(9,\frac{2}{3}\right)$$

36. Sabendo que $tg \varphi = -2$, $90^{\circ} < \varphi < 270^{\circ}$, então $sen \varphi + 2 cos \varphi$ é equivalente a:

A.
$$-\frac{1}{\sqrt{5}}$$

37.

C.
$$\sqrt{5}$$

D.
$$\frac{1}{\sqrt{5}}$$

0 C. $\sqrt{5}$ D. $\frac{1}{\sqrt{5}}$ E. 1

Na figura, a recta s é paralela à recta r e passa pelo vértice V da parábola. Então a equação da recta s é:

A. $y = 2x + \frac{2}{3}$ B. $y = 2x - \frac{2}{3}$ C. $y = -2x + \frac{2}{3}$

$$B. \quad y = 2x - \frac{1}{2}$$

$$C. \quad y = -2x +$$

D.
$$y = -2x - \frac{2}{3}$$
 E. $y = 2x + \frac{1}{3}$

E.
$$y = 2x + \frac{1}{3}$$

38. As áreas de dois triângulos rectângulos semelhantes são 6m^2 e 24m^2 . Um dos catetos do primeiro triângulo mede 3m. As medidas dos lados, em metros, do segundo triângulo são:

C. 4, 12,
$$4\sqrt{10}$$

D. 3, 6,
$$3\sqrt{5}$$

E. 8, 9,
$$2\sqrt{3}$$

O número positivo x cuja soma com o seu inverso $\frac{1}{x}$ é mínima é: 39.

Sejam dadas as funções f(x)=x-1 e $g(x)=x^2+x$. A grandeza f[g(2)] é igual a:
A. 1 B. 2 C. 3 D. 4 40.

Simplificando a expressão $\frac{n!+(n+1)!}{2!(n-1)!}$, obtém-se: 41.

A.
$$n^2 + n$$

B.
$$\frac{n^2}{2} + n$$

B.
$$\frac{n^2}{2} + n$$
 C. $\frac{n}{2(n-1)}$ D. $\frac{n^2 + n}{2}$ E. $\frac{n+1}{n-1}$

D.
$$\frac{n^2 + n}{2}$$

E.
$$\frac{n+1}{n-1}$$

42. A soma de todas as raízes da equação $x^2 - \sqrt{x^2} = 4$ é igual a:
A. 1 B. -1 C. 2

43. Na figura está apresentado o gráfico da função f, definida no intervalo [0,2]. Então é correcto afirmar-

B.
$$\lim f(x) = 0 \land \lim f(x) = 0$$

$$\lim_{x \to 1^{-}} f(x) = 1 \times \lim_{x \to 1^{-}} f(x) = 0$$

$$\lim_{x \to 1^{-}} f(x) = 1 \times \lim_{x \to 1^{-}} f(x) = 0$$

B. $\lim_{x \to 1^-} f(x) = 0$ C. $\lim_{x \to 1^-} f(x) = 1 \land \lim_{x \to 1^-} f(x) = 0$ E. $\lim_{x \to 1^+} f(x) = 1 \land \lim_{x \to 1^-} f(x)$ B. $\lim_{x \to 1^-} f(x) = 0 \land \lim_{x \to 1^-} f(x) = 1$ D. $\lim_{x \to 1^-} f(x) \neq f(1) \land \lim_{x \to 1^+} f(x) \neq f(1)$ E. $\lim_{x \to 1^+} f(x) = 1 \land \lim_{x \to 1^-} f(x)$ não existe $\frac{3}{2 + 2 \land 1} f(x) = 0 \land \lim_{x \to 1^-} f(x) = 1$ $\frac{2}{2 - 2sen30^{\circ}} + \frac{3}{3 + 3\cos 60^{\circ}}$ é igual a:

A.
$$\frac{5}{2}$$

E.
$$\frac{\sqrt{3}}{2}$$

45. As raízes da equação sen 2x = -0.5 são:

A.
$$-\frac{1}{4}$$

B.
$$\pm \frac{\pi}{12} + \pi k$$

C.
$$\pm \frac{5}{12} \pi + \pi k$$

D.
$$(-1)^k \frac{\pi}{12} + \frac{\pi}{2} k$$

B.
$$\pm \frac{\pi}{12} + \pi k$$
 C. $\pm \frac{5}{12} \pi + \pi k$ D. $(-1)^k \frac{\pi}{12} + \frac{\pi}{2} k$ E. $(-1)^{k+1} \frac{\pi}{12} + \frac{\pi}{2} k$

46.

Considere o quadrado ABCD incrito na semicircunferência de centro na origem. Se (x, y) são as coordenadas do ponto A, então a área da região exterior ao quadrado ABCD e interior à semicircunferência é igual a:

A.
$$\left(\frac{5}{2}\pi - 4\right)x^2$$

$$B. \quad x^2 + y^2$$

B.
$$x^2 + y^2$$
 C. $(5\pi - 4)x^2$

D.
$$\left(\frac{5}{2}\pi - 2\right)x^2$$

47. A expressão $sen 30^{0} - \cos 120^{0} - 3tg 540^{0}$ é igual a:

C.
$$-2 + \frac{\sqrt{3}}{2}$$

D.
$$\sqrt{3}$$

48

O conjunto imágem (o contradomínio) da função $f(x)=2^{x+1}-3$ é:

Em uma classe de 30 alunos a proporção de meninas e meninos é 4:6. A quantidade das meninas na classe é: 49.

50.

Se $f(x) = \sqrt{x^4 + 4x + 2}$ então f'(x) é igual a:

A.
$$\frac{2(x^3+1)}{\sqrt{x^4+4x+2}}$$

A.
$$\frac{2(x^3+1)}{\sqrt{x^4+4x+2}}$$
 B. $\frac{\sqrt{(x^4+4x+2)^3}}{6(x^3+1)}$ C. $\frac{1}{2\sqrt{x^4+4x+2}}$ D. $4(x^3+1)$

$$C. \quad \frac{1}{2\sqrt{x^4 + 4x + 2}}$$

D.
$$4(x^3 + 1)$$

E.
$$\frac{(x^4 + 4x + 2)^2}{4x^3}$$

51.

Dada a função $f(x) = \frac{x-3}{9-x^2}$ O ponto de abcissa x = 3:

- A. é ponto de descontinuidade não-eliminável de 1^a espécie
- C. é ponto de descontinuidade não-eliminável de 2^a espécie
- nenhuma das alternativas aneriores

- B. não é ponto de descontinuidade
- D. é ponto de descontinuidade eliminável

52.

A área do quadrilátero ABCD, sabendo que o lado de cada quadrado da rede mede 1 cm, é igual a:

B. 10 cm^2 C. 11 cm^2 D. 12 cm^2 E. 15 cm^2

53.

O domínio de definição da função $f(x) = \sqrt{\frac{\ln 3}{1 + \frac{3}{2}}}$ é:

[-1,2]

54.

Na figura está apresentado o gráfico da função f , definido no intervalo [0,3] É correcto afirmar-se que:

A. nos pontos x=1 e x=2 a função f é descontínua

B. no ponto x = 1 a função f é contínua e f'(1) = 0

C. no ponto x = 2 a função f é contínua e f'(2) = 0

D. no ponto x=1 a função f é contínua mas não tem derivada

E. no ponto x=2 a função f é contínua mas não tem derivada

Um quadrado está inscrito numa circunferência de centro (1,2) e um dos seus vértices é o ponto (-3,-1). Os outros vertices são: 55.

- A. (-3,2), (2,5) e (5,5)
- B. (-3,5), (5,-3) e (5,5)
- C. (5,-3), (-5,-3) e (5,5)

- D. (-3,-5), -(5,-3) e (-5,-5)
- E. Nenhuma das alternativas

56.

O valor da derivada da função $f(x) = sen(\pi x)$ no ponto x = 1 é igual a:

57.

Na figura está apresentada a recta y = kx + b cujo parâmetro k é:

- B. 2

Seja f(x) uma função cujo gráfico tem um ponto máximo de abcissa x=2. O gráfico que poderá representar a primeira derivada de f(x) é:

A.

В.

C.

D.

E. Nenhuma das alternativas

FIM!