Méthodes numériques (R2.09)

Exercice 1

Démontrer par récurrence que pour tout $n \in \mathbb{N}$:

$$\sum_{k=0}^{n} k^3 = \frac{n^2(n+1)^2}{4}$$

Autrement dit,

$$\sum_{k=0}^{n} k^{3} = \left(\frac{n(n+1)}{2}\right)^{2} = \left(\sum_{k=0}^{n} k\right)^{2}$$

Exercice 2

Soit (u_n) la suite définie par $u_0 = 0$ et $\forall n \in \mathbb{N}$:

$$u_{n+1} = \frac{1}{2 - u_n}$$

- 1. Calculer les 4 premiers termes de cette suite.
- 2. Démontrer par récurrence que pour tout $n \in \mathbb{N}^*$, $0 < u_n < 1$.
- 3. Démontrer que pour tout $n \in \mathbb{N}$

$$u_{n+1} - u_n = \frac{(u_n - 1)^2}{2 - u_n}$$

- 4. Démontrer que la suite (u_n) est convergente.
- 5. On considère la suite (v_n) définie par $\forall n \in \mathbb{N}$

$$v_n = \frac{1}{u_n - 1}$$

Démontrer que (v_n) est une suite arithmétique de raison -1.

- 6. En déduire v_n en fonction de n, puis u_n en fonction de n.
- 7. Déterminer la limite de u_n .

Exercice 3

Soit (u_n) une suite définie par la relation de récurrence

$$u_{n+1} = \frac{1}{2}u_n + 1$$

- 1. Montrer que si $u_0 \le 2$ alors pour tout $n \ge 0$, $u_n \le 2$ et que la suite est croissante. En déduire que la suite est convergente et déterminer sa limite.
- 2. Montrer que si $u_0 \ge 2$ alors pour tout $n \ge 0$, $u_n \ge 2$ et que la suite est décroissante. En déduire que la suite est convergente et déterminer sa limite.
- 3. On pose pour tout n, $v_n = u_n 2$. Montrer que v_n est une suite géométrique de raison $\frac{1}{2}$.
- 4. En déduire une expression de u_n en fonction de n et de u_0 . Retrouver le résultat des deux premières questions.
- 5. En déduire

$$\lim_{n \to +\infty} \frac{\sum_{k=0}^{n} u_k}{n}.$$

Exercice 4

Soient u_0 , a et b trois réels. On considère la suite $(u_n)_{n\in\mathbb{N}}$ telle que :

$$u_{n+1} = au_n + b$$

- 1. Comment appelle-t-on cette suite lorsque a = 1? Lorsque $a \neq 1$ et b = 0?
- 2. Exprimer u_n dans ces deux cas particuliers?
- 3. Dans le cas général, calculer u_1 , u_2 et u_3 en fonction de u_0 , a et b.
- 4. Démontrer par récurrence que le terme général de la suite est donné par :

$$\forall n \in \mathbb{N}^{\star}, u_n = a^n u_0 + b \sum_{k=1}^n a^{n-k}$$

5. On suppose $a \neq 1$. Démontrer que

$$\sum_{k=1}^{n} a^{n-k} = \frac{a^n - 1}{a - 1}$$

6. Déduire de ce qui précède que pour tout $n \in \mathbb{N}^*$:

$$u_n = \frac{a^n(u_1 - u_0) - b}{a - 1}$$

7. On suppose dans cette question que 0 < a < 1, montrer que $(u_n)_{n \in \mathbb{N}}$ converge et que sa limite ne dépend pas de u_0 .

Exercice 5

Soit $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=1$ et $\forall n\in\mathbb{N}$:

$$u_{n+1} = \frac{u_n + 8}{2u_n + 1}$$

et soit $(v_n)_{n\in\mathbb{N}}$ définie par

$$v_n = \frac{u_n - 2}{u_n + 2}$$

- 1. Montrer que $(v_n)_{n\in\mathbb{N}}$ est une suite géométrique de raison $-\frac{3}{5}$.
- 2. Exprimer v_n en fonction de n.
- 3. Montrer que $(u_n)_{n\in\mathbb{N}}$ converge et déterminer sa limite.

Exercice 6

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle définie par $u_0\in]0,1]$ et $\forall n\in\mathbb{N}$:

$$u_{n+1} = \frac{u_n}{2} + \frac{u_n^2}{4}$$

- 1. Montrer que $\forall n \in \mathbb{N}, u_n > 0$.
- 2. Montrer que $\forall n \in \mathbb{N}, u_n \leq 1$.
- 3. Montrer que la suite est monotone. En déduire que la suite est convergente.
- 4. Déterminer la limite de cette suite.

Exercice 7

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle définie par $u_0\in]1,2]$ et $\forall n\in\mathbb{N}$:

$$u_{n+1} = \frac{3}{4} + \frac{u_n^2}{4}$$

- 1. Montrer que $\forall n \in \mathbb{N}, u_n > 1$.
- 2. Montrer que $\forall n \in \mathbb{N}, u_n \leq 2$.
- 3. Montrer que la suite est monotone. En déduire que la suite est convergente.
- 4. Déterminer la limite de cette suite.

Exercice 8

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle définie par $u_0=\frac{3}{2}$ et $\forall n\in\mathbb{N}$:

$$u_{n+1} = (u_n - 1)^2 + 1$$

- 1. Montrer que $\forall n \in \mathbb{N}, 1 < u_n < 2$.
- 2. Montrer que $(u_n)_{n\in\mathbb{N}}$ est strictement monotone.
- 3. En déduire que la suite est convergente et déterminer sa limite.

Exercice 9

1. Montrer que pour tout $k \in \mathbb{N}^*$

$$\frac{1}{k(k+1)} = \frac{1}{k} - \frac{1}{k+1}$$

2. Soit $(u_n)_{n\in\mathbb{N}^*}$ la suite définie pour tout n>0 par

$$u_n = \sum_{k=1}^n \frac{1}{k(k+1)} = \frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \dots + \frac{1}{n(n+1)}$$

Montrer que (u_n) est convergente et déterminer sa limite.

Exercice 10

Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par la donnée de u_0 et de u_1 et $\forall n\in\mathbb{N}$:

$$2u_{n+2} - u_{n+1} - u_n = 0$$

On pose $\forall n \in \mathbb{N}$

$$v_n = u_{n+1} - u_n$$

et

$$w_n = 2u_{n+1} + u_n$$

- 1. Montrer que $(v_n)_{n\in\mathbb{N}}$ est une suite géométrique de raison $-\frac{1}{2}$. On exprimera v_n en fonction de n, u_0 et u_1 .
- 2. Montrer que $(w_n)_{n\in\mathbb{N}}$ est une suite constante. On exprimera w_n en fonction de u_0 et u_1 .
- 3. En calculant $-2v_n + w_n$ de deux façons différentes, exprimer u_n en fonction de n, u_0 et u_1 .
- 4. On pose $\forall n \in \mathbb{N}$

$$S_n = \sum_{k=0}^n u_k$$

Calculer S_n en fonction de n, u_0 et u_1 . A quelle condition la suite $(S_n)_{n\in\mathbb{N}}$ admet-elle une limite finie? Dans ce cas, exprimer cette limite en fonction de u_0 .