Práctica - Arquitectura de Computadoras

Clase 6 - Unidad 3 - Práctica 6

Instrucciones del microprocesador 8086

Objetivo

Después de leer el capítulo 7 del libro denominado Arquitectura de computadoras de Patricia Quiroga, podrás entender el lenguaje técnico, la importancia del lenguaje ensamblador y la programación a nivel hardware de una computadora. Además, podrás reconocer una máquina Von Neumann, y al mismo tiempo, identificar los componentes de una computadora además del conjunto de instrucciones básicas de una computadora tipo 8086.

En relación a la lectura propuesta en el párrafo anterior, y después de asistir a la clase práctica número 6, podrás utilizar el emulador de microprocesadores 80286/80386 bosbox en conjunto con el programa debug.exe para poner en práctica la utilización del set de instrucciones básicos abordados en la teoría.

Consigna

Respondé las siguientes preguntas y realizá los ejercicios propuestos con el depurador de consola debug.

Práctica - Arquitectura de Computadoras

Pregunta 1. Defina los siguientes conceptos: Lenguaje máquina, código objeto, lenguaje ensamblador, lenguaje de alto nivel, lenguaje nemónico, compilar y set de instrucciones.

Pregunta 2. Analice las instrucciones para programar el 8086/88. Uso y sintaxis.

Ejercicio 1. Dados los siguientes programas analice que realizan y con que valor quedan cada uno de los registros involucrados y la memoria.

a)	e)	h)		\sim $^{\prime}$
MOV AH,F3 MOV BH,04 ADD AH,BH SHL AH INT 20	MOV AH,[0210] MOV BH,[0211] SUB AH,BH MOV AL,02 MUL AH SHR AL MOV [0215],AH INT 20	MOV BP,0001 MOV DH,04 MOV SI, 0300 MOV BX,0210 MOV CX,0003 ** MOV AH,00 MOV AL, [BX] DIV DH MOV [SI],AL	0210 0211	45 73 F2
MOV AL,[0220] MOV BL,07 SHR BL OR AL,BL MOV [0250],AL INT 20 c)	MOV AH, [0210] MOV DL, [0211] AND AH,0F AND DL,0F ADD AH,DL INT 20 g)	MOV [SI+BP],AH INC BX INC SI INC SI LOOP ** INT 20	0220 0250	B6
MOV AH,1D MOV BL,1F NOT BL ADD BL,1 ADD AH,BL MOV [0250], AH INT 20 d) MOV AH,1D MOV BH,1A XCHG AH,BH NOT BH INC BH ADD AH,BH MOV [0250], AH INT 20	MOV SI, 0213 MOV BX, 0210 MOV AL, [BX] INC BX MOV AH, [BX] AND AL,08 OR AH, 08 MOV [SI], AH INC SI MOV [SI],AL INT 20	MOV BX, 210 MOV SI, 300 MOV CX,03 * MOV AH,[BX] MOV [SI],AH INC BX INC SI LOOP * MOV CX,03 ** MOV BX,210 MOV AH,[SI] MOV [BX],AH INC BX DEC SI LOOP ** INT 20)

Práctica - Arquitectura de Computadoras

Ejercicio 2. Realice un programa que cambie el signo a 5 datos ubicados en la memoria a partir de la posición de memoria 0500.

Ejercicio 3. Realice un programa que tome diez datos ubicados en la memoria a partir de la posición 05FF los multiplique por 5 y los guarde a partir de la posición 0700.

Ejercicio 4. Dados 100 datos ubicados en la memoria a partir de la posición 0200 realice un programa que le reste 5 a cada dato y los guarde a partir de la posición 0300.

Ejercicio 5. Dado un banco de 10 datos a partir de la posición 0300, realice un programa que le cambie el signo a los últimos cinco datos, sume cada uno de ellos con los cinco primeros y guarde cada resultado a partir de la posición 030B.

Ejercicio 6. Dados 20 datos ubicados a partir de la posición 0200 hacer un programa que reste el primero del último, el segundo con el penúltimo y así sucesivamente y almacene los resultados a partir de la posición 0500.

Ejercicio 7. Realice un programa que copie 100 datos ubicados a partir de la posición de memoria 0200 a partir de la posición 0300 en orden invertido.