

RAID

Redundant Array of Independent Disks

DE HOGESCHOOL MET HET NETWERK

Hogeschool PXL – Dep. PXL-IT – Elfde-Liniestraat 26 – B-3500 Hasselt www.pxl.be - www.pxl.be/facebook

RAID

RAID

- Kan softwarematig of hardwarematig zijn
- Verenigen van meerdere harddisks of partities
 - voor snelheidswinst van het lezen/schrijven van data
 - of om de veiligheid van de data te vergroten
- RAID-levels
 - Geven het type van verenigen van de disks weer
 - worden voorgesteld door RAID plus een cijfer (RAIDO)

RAID 0

 Data wordt in parallel naar 2 of meer disks geschreven waarbij de data over de drives verdeeld wordt.

■ Data Block

- De data blokken worden als volgt geschreven
 - block 1 naar disk 1, block 2 naar disk 2, block 3 naar disk 3 etc.
- Wordt ook striping genoemd

RAID 0

- Capaciteit: De totale capaciteit van alle RAID-members
- Voordelen
 - Snelheid is zeker een voordeel omdat alles in parallel geschreven wordt
 - Het volledig beschikbaar hebben van alle ruimte is natuurlijk ook een plus.
- Nadelen
 - Het grote nadeel is echter het ontbreken van betrouwbaarheid.
 - Als 1 disk crasht is alle data verloren.

- RAID 1
 - De data van de ene drive wordt gespiegeld naar de andere
 - op deze manier heb je dus altijd 2 drives met dezelfde data.
 - Deze configuratie is niet sneller, maar wel de eenvoudigste betrouwbare RAID.
 - Wordt ook mirroring genoemd

RAID 1

- Capaciteit: helft van de totale capaciteit van de RAID-members
- Voordelen
 - Betrouwbaarheid is zeker een voordeel van deze opstellingen.
 - als 1 disk crasht heb je toch nog alle data
 - Het vereist ook maar minimaal 2 drives en is daarmee eenvoudig en relatief goedkoop.

Nadelen

- Niet echt efficiënt gebruik van opslagcapaciteit
 - je gebruikt twee even grote drives om uiteindelijk maar de helft van hun totale capaciteit te kunnen gebruiken.

• RAID 5

- De data wordt in blokken weggeschreven over de verschillende drives (minimum 3)
 - De Data-blocks worden verdeeld over alle RAID-members
 - Tevens worden er op iedere RAIDmember Parity-blocks geplaatst gemaakt van de data-blocks die weggeschreven zijn op de andere RAID members.

• RAID 5

parity-block

Hard disk 1	Hard disk 2	Hard disk 3
Α	В	pariteit voor AB
pariteit voor CD	С	D
•••		
pariteit wordt san	nengesteld op b	asis van XOR
Α	В	A XOR B
0	0	0
1	1	0
0	1	1
1	0	1

RAID 5

- Ook genoemd "Striping met roterende Pariteit"
- Capaciteit: Som van de capaciteit van alle drives (Som van de capaciteit van alle drives / aantal drives)
- Voordelen
 - Zeer goede betrouwbaarheid en goede snelheid.
- Nadelen
 - Trager dan mirroring
 - RAID 6 heeft met vergelijkbare snelheid een hogere betrouwbaarheid.
 - RAID 6 heeft minimum 4 disks en de pariteiten worden telkens op twee verschillende RAID-members geschreven
 - Er mogen hier dus 2 disks tegelijkertijd failen

RAID 5Crash of a member

Rebuilding

Nested RAID

- Nested RAID (=meerdere RAID-types tegelijk)
 - RAID 0+1
 - is een mirror (1) van stripes(0)
 - Eerst worden er twee RAID 0-stripes gemaakt en vervolgens worden deze als een mirror gezet.

```
A B C <=> D E F <stripe> <stripe>
```

- 6 disks (A-F) van 100GB geeft dan 300GB totale capaciteit
- Eén member-failure is geen probleem
- Twee member-failures is geen probleem als de gefailde disks in dezelfde stripe zitten

Nested RAID

- Nested RAID (=meerdere RAID-types tegelijk)
 - RAID 10 (of 1+0)
 - is een stripe(0) van mirrors (1)
 - Eerst worden de mirrors gemaakt en vervolgens worden deze als een stripe gezet.

$$A \le B + C \le D + E \le F$$

- 6 disks (A-F) van 100GB geeft dan 300GB totale capaciteit
- Er mogen tot 3 disks failen zolang deze maar niet in eenzelfde mirror zitten

Nested RAID

- Nested RAID (=meerdere RAID-types tegelijk)
 - RAID 50 (of 5+0)
 - is een stripe(0) van RAID5-arrays
 - Eerst worden de RAID5-arrays gemaakt en vervolgens worden deze gestriped.

 Er zijn nog andere nested-configs, maar die worden hier niet behandeld

Nieuwe HDs gereedmaken voor RAID

- De HDs moeten voorzien worden van partities m.b.v. fdisk
 - sudo fdisk /dev/sdx
 - nieuwe partitie aanmaken
 - n (new), p (primary), 1 (partnr), <enter> (first cylinder),
 <enter> (last cylinder)
 - type goedzetten voor RAID
 - t (type), 1 (partnr), fd (RAID autodetect)
 - Aanpassingen wegschrijven
 - W

Aanmaken van een RAID1-set

- Minstens twee disks (even nummer)
 - met partities die klaargemaakt zijn voor Linux RAID autodetect
 - Disks checken: sudo mdadm --examine /dev/sdc /dev/sdd
 - disks hebben een partitie van het type fd(=RAID autdetect)
 - Partities checken: mdadm --examine /dev/sdc1 /dev/sdd1

 partities hebben nog geen md-superblock omdat ze nog geen deel uitmaken van een RAID-set

Aanmaken van een RAID1-set

- RAID1-set maken van de partities
 - sudo mdadm --create /dev/md0 --level=mirror
 --raid-devices=2 /dev/sdc1 /dev/sdd1
 - Partities checken: mdadm --examine /dev/sdc1 /dev/sdd1
 - partities maken nu deel uit van de RAID-set en geven hierover tal van informatie
 - Wordt voor de eerste keer gebuild, zodat de mirror werkt
 - Status kan bekeken worden via: cat /proc/mdstat
 - Geeft de RAID-members alsook het (re-)sync-percentage

Info van de RAID1-set

- Nieuw RAID1-device
 - /dev/md0
 - Kan hetzelfde gebruikt worden als een andere partitie
 - te bekijken via: sudo ls -l /dev | grep md0
 - Details bekijken
 - sudo mdadm --detail /dev/md0
 - Geeft info zoals Clean-state, Active-devices, Working-devices,
 Failed-devices, Spare-devices, RAID-members, ...

Werken met de RAID1-set

- Nieuw RAID1-device
 - /dev/md0
 - Moet nog een filesysteem krijgen
 - sudo mkfs.ext4 /dev/md0
 - Moeten we nog mounten
 - sudo mkdir /var/ftpfiles
 - sudo mount /dev/md0 /var/ftpfiles
 - Nu kunnen we er mee werken
 - echo "echo Hallo" > /var/ftpfiles/testfile; cat /var/ftpfiles/testfile
 - Indien de mount moet blijven na reboot
 - toevoegen in /etc/fstab

RAID1-set met een spare

spare

- is een block-device dat gewoon wacht totdat een RAID-member failed. Dan wordt hij actief en zal de failed member vervangen.
 - Zo vlug hij online komt, zal er opnieuw gesynced worden. Dit proces noemt men Rebuilden
 - is ook een partitie van type RAID autodetect (fd)
- toe te voegen via
 - sudo mdadm --manage /dev/md0 --add /dev/sde1
 - checken: sudo mdadm --detail /dev/md0 (state spare)

RAID1-set met een spare

- spare als active-member
 - Indien we een member-failure hebben, begint het resync proces voor de spare. Gedurende deze tijd zijn we niet meer beveiligd tegen een extra member-failure
 - Het is daarom beter om de spare al onmiddellijk te betrekken in de RAID.
 - Dit kan via
 - sudo mdadm --grow --raid-devices=3 /dev/md0
 - checken: sudo mdadm --detail /dev/md0 (state active)
 Indien nu een disk failed, moet de spare niet gesynced worden

Extra commando's

- Extra commando's
 - Een RAID-member zelf als failing aanduiden
 - sudo mdadm --fail /dev/md0 /dev/sdd1
 - Een gefailde RAID-member verwijderen
 - sudo mdadm --remove /dev/md0 /dev/sdd1
 - Het aantal members van de RAID-set veranderen
 - sudo mdadm --grow --raid-devices=2 /dev/md0

Extra commando's

- Extra commando's
 - Een verwijderde RAID-member klaarmaken om opnieuw toegevoegd te worden aan de RAID-set
 - Hiervoor moet de superblock-info verwijderd worden
 - Dit kan met: sudo mdadm --zero-superblock /dev/sdd1

Superblock Definition

Aanmaken van een RAID5-set

- RAID5-set maken van de partities
 - sudo mdadm --create /dev/md1 --level=5
 --raid-devices=3 /dev/sdf1 /dev/sdg1 /dev/sdh1
 - Partities checken: mdadm --examine /dev/sdf1 /dev/sdg1...
 - partities maken nu deel uit van de RAID-set en geven hierover tal var informatie
 - RAID-device checken: sudo mdadm --detail /dev/md1
 - geeft info over de RAID-set en RAID-members alsook de build-status

 Ook hier zouden we een extra spare kunnen toevoegen zoals we bij de RAID1-set hebben gedaan.

Werken met de RAID5-set

- Nieuw RAID5-device
 - /dev/md1
 - Moet nog een filesysteem krijgen
 - sudo mkfs.ext4 /dev/md1
 - Moeten we nog mounten
 - sudo mkdir /var/www
 - sudo mount /dev/md1 /var/www
 - Nu kunnen we er mee werken
 - echo "echo Hallo" > /var/www/testfile; cat /var/www/testfile
 - Indien de mount moet blijven na reboot
 - toevoegen in /etc/fstab

Verwijderen van een RAID-set

- Verwijderen van een volledige RAID-set
 - /dev/md1
 - Moet eerst gestopt worden
 - sudo mdadm --stop /dev/md1
 - /dev/sdf /dev/sdg /dev/sdh
 - kunnen nu opnieuw gepartitioneerd worden om te gebruiken zonder RAID

Hernoemen van een RAID-set

- Een RAID-set wordt soms na rebooten automatisch hernoemd naar md127
 - Om de naam vast te zetten
 - sudo su
 - mdadm --detail --scan | tail -1 >> /etc/mdadm/mdadm.conf
 - vi /etc/mdadm/mdadm.conf
 - Achter ARRAY hernoemen naar /dev/md/<nummer>
 - sudo update-initramfs -u
 - reboot

