2^a Prova - FECD - Gabarito

Renato Assunção - DCC-UFMG

Julho de 2021

- 1. 5 PONTOS Vesículas são pequenas estruturas celulares de tamanhos variados e com formato aproximadamente esférico de células. Suponha que essas esferas possuem um raio aleatório R com densidade $f_R(r) = 6r(1-r) = 6(r-r^2)$ para $r \in (0,1)$. Temos interesse em obter a distribuição de probabilidade do volume aleatório $V = 4\pi/3R^3$ induzido pelo raio R.
 - ullet Estabeleça o intervalo de valores possíveis para o volume aleatório V.
 - Para um valor v no intervalo obtido acima, obtenha a distribuição acumulada $\mathbb{F}_V(v) = \mathbb{P}(V \leq v)$.
 - Derive a função $\mathbb{F}_V(v)$ para obter a função densidade de probabilidade $f_V(v)$.
 - A densidade $f_R(r)$ do raio é mais concentrada em torno do ponto r = 1/2, o centro do intervalo (0,1) onde os raios podem variar. A densidade $f_V(v)$ do volume também é mais concentrada em torno do ponto médio do intervalo de valores possíveis do volume? Ou ela é mais concentrada em alguma outra região desse intervalo?

Solução:

- O intervalo de valores possíveis para o volume aleatório V é $(0, 4\pi/3)$.
- Para $v \in (0, 4\pi/3)$ temos

$$\begin{split} \mathbb{F}_{V}(v) &= \mathbb{P}(V \leq v) \\ &= \mathbb{P}(4\pi R^{3}/3 \leq v) \\ &= \mathbb{P}(R \leq \sqrt[3]{3v/(4\pi)}) \\ &= \int_{0}^{\sqrt[3]{3v/(4\pi)}} 6(r - r^{2}) dr \\ &= 6\left(\frac{r^{2}}{2} - \frac{r^{3}}{3}\right) \left| \sqrt[3]{3v/(4\pi)} \right| \\ &= \frac{6}{2}\left(\frac{3v}{4\pi}\right)^{2/3} - \frac{3v}{2\pi} \end{split}$$

• A função densidade de probabilidade $f_V(v)$ é a derivada da função acima. Para $v \in (0, 4\pi/3)$ temos

$$f_V(v) = \left(\frac{3}{2\pi}\right) \left[\sqrt[3]{\frac{4\pi}{3v}} - 1\right]$$

- A densidade $f_V(v)$ é bem mais concentrada perto da origem r=0. Veja que a densidade decai com $\sqrt[3]{v}$.
- 2. **5 PONTOS** Temos interesse em gerar uma amostra pelo método Monte Carlo de uma v.a. X que possui densidade de probabilidade

$$f(x) = \begin{cases} 3x^2/8, & \text{se } x \in (0,2) \\ 0, & \text{se } x < 0 \text{ ou } x > 2 \end{cases}$$

Escreva uma pseudo-código (ou script python ou R) para gerar uma amostra de tamanho B usando um gerador de uma U(0,1) e o

1

- método da acumulada inversa de Stan Ulam.
- método de aceitação e rejeição de von Neumann. Veja que você deve usar uma distribuição com densidade g(x) que tenha um suporte S_g que **contenha** o suporte S_f de f(x) (que é o intervalo (0,2)). Os suportes S_g e S_f não precisam ser idênticos mas apenas $S_g \subset S_f$.
- No método de aceitação e rejeição, para gerar a amostra de tamanho B de f, quantos elementos em média de g devem ser gerados?
- Use o método de amostragem por importância para estimar $\theta_1 = \mathbb{E}_f(X)$ e $\theta_2 = \mathbb{P}_f(X < 1)$. Observe que é fácil obter θ_1 e θ_2 diretamente: $\theta_1 = 3/2$ e $\theta_2 = 1/8 = 0.125$.

Solução: Para $x \in (0,2)$, a distribuição acumulada é dada por

$$\mathbb{F}(x) = \int_0^x \frac{3}{8} t^2 dt = \frac{x^3}{8}$$

e portanto a sua inversa \mathbb{F}^{-1} é encontrada fazendo $u = \mathbb{F}(x)$ e invertendo $x = \sqrt[3]{8u} = \mathbb{F}^{-1}(u)$. Assim, para o método da acumulada inversa de Stan Ulam, o comando

```
x = (8* runif(B))^(1/3)
```

gera o vetor x com a densidade desejada.

Para o método de aceitação-rejeição de von Neumann, vamos usar a densidade de uma uniforme em (0,2). Para obter uma amostra de U(0,2), basta gerar da U(0,1) e multiplicar os valores por 2. A densidade g(x) da U(0,2) é constante e igual a 1/2 para $x \in (0,2)$. Como a densidade alvo possui o máximo em x=2 e igual a $f(2)=3/8(2)^2=3/2$. Assim, podemos tomar M=3 para garantir que $f(x)/(3g(x)) \le 1$ para todo $x \in (0,2)$.

```
xg = 2 * runif(3*B)
prob = (3/8 * xg^2)/(3/2)
aceita = rbinom(3*B, 1, prob)
xf = xg[aceita == 1]
hist(xf)
```

Como M=3, para gerar B valores devemos simular aproximadamente M*B valores da densidade g(x).

Para a amostragem por importância, temos

```
w = (3/8 * xg^2)/(1/2)

sum(w*xg)/(3*B)

sum(w*(xg<1))/(3*B)
```

3. **5 PONTOS** A Tabela abaixo mostra a distribuição conjunta do vetor aleatório discreto (X, Y). Obtenha: (a) a distribuição marginal da variável Y, (b) a distribuição condicional (X|Y=2).

	x = 0	x = 1	x = 2	x = 3
y = 0	0.1	0.2	0.05	0.15
y=1	0.1	0.05	0.1	0.15
y=2	0.05	0.0	0.0	0.05

Solução: A distribuição marginal da variável Y é obtida somando-se ao longo de cada linha da tabela:

$$\mathbb{P}(Y = 0) = 0.1 + 0.2 + 0.05 + 0.15 = 0.50$$

$$\mathbb{P}(Y = 1) = 0.1 + 0.05 + 0.1 + 0.15 = 0.40$$

$$\mathbb{P}(Y=2) = 0.05 + 0.0 + 0.0 + 0.05 = 0.10$$

0

A distribuição condicional (X|Y=2) é obtida usnado-se o valor de $\mathbb{P}(Y=2)$ obtido acima:

$$\mathbb{P}(X=0|Y=2) = \frac{\mathbb{P}(X=0,Y=2)}{\mathbb{P}(Y=2)} = \frac{0.05}{0.10} = \frac{1}{2}$$

$$\mathbb{P}(X=1|Y=2) = \frac{\mathbb{P}(X=1,Y=2)}{\mathbb{P}(Y=2)} = \frac{0.00}{0.10} = 0$$

$$\mathbb{P}(X=2|Y=2) = \frac{\mathbb{P}(X=2,Y=2)}{\mathbb{P}(Y=2)} = \frac{0.00}{0.10} = 0$$

$$\mathbb{P}(X=3|Y=2) = \frac{\mathbb{P}(X=3,Y=2)}{\mathbb{P}(Y=2)} = \frac{0.05}{0.10} = \frac{1}{2}$$

4. **5 PONTOS** Um ponto X é escolhido com distribuição uniforme no intervalo (0,L). Este ponto X particiona o intervalo (0,L) em dois segmentos. Calcule a probabilidade de que a razão entre o segmento menor e o segmento maior seja menor que 1/4. (Dica: faça o cálculo condicionando em cada uma das duas possibilidades, X < L/2 e $X \ge L/2$.)

Solução: A especificação da razão R entre o segmento menor e o segmento maior depende da posição X em relação ao ponto central L/2. Se X < L/2, a razão é R = X/(L-X), e se $X \ge L/2$, a razão é R = (L-X)/X. Assim, a probabilidade desejada é

$$\mathbb{P}(R < 1/4) = \mathbb{P}(R < 1/4 \cap X < L/2) + \mathbb{P}(R < 1/4 \cap X \ge L/2) \tag{1}$$

$$= \mathbb{P}(R < 1/4|X < L/2)\mathbb{P}(X < L/2) + \mathbb{P}(R < 1/4|X \ge L/2)\mathbb{P}(X \ge L/2) \tag{2}$$

$$= \mathbb{P}(X/(L-X) < 1/4|X < L/2)0.5 + \mathbb{P}((L-X)/X < 1/4|X \ge L/2)0.5 \tag{3}$$

$$= 0.5 \left(\mathbb{P}(X/(L-X) < 1/4 | X < L/2) + \mathbb{P}((L-X)/X < 1/4 | X \ge L/2) \right) \tag{4}$$

Temos

$$\mathbb{P}(X/(L-X) < 1/4|X < L/2) = \mathbb{P}(X < L/4 - X/4|X < L/2) \tag{5}$$

$$= \mathbb{P}(5X/4 < L/4|X < L/2) \tag{6}$$

$$= \mathbb{P}(X < L/5|X < L/2) \tag{7}$$

$$= \frac{\mathbb{P}([X < L/5] \cap [X < L/2])}{\mathbb{P}(X < L/2)} \tag{8}$$

$$=\frac{\mathbb{P}(X < L/5)}{1/2} \tag{9}$$

$$= (1/5)/(1/2) = 2/5 \tag{10}$$

De modo semelhante obtemos $\mathbb{P}((L-X)/X < 1/4|X \ge L/2) = 2/5$ e portanto $\mathbb{P}(R < 1/4) = 2/5$.

0