

CURSO SUPERIOR DE TECNOLOGIA EM MANUFATURA AVANÇADA

RELATÓRIO DE VALIDAÇÃO DE EQUIPAMENTOS MAVIII

SISTEMA PARA AQUISIÇÃO DE DADOS AMBIENTAIS SMART FARMING

São José dos Campos 2023

RESUMO

Este trabalho teve por objetivo realizar a calibração e validação do sensor de umidade do solo (HD-38) e de um sensor de temperatura ambiente (DHT11) utilizados no desenvolvimento de um protótipo de um sistema para aquisição de dados ambientais.

Palavras-Chave: Validação, sensores, calibragem, automação.

RELATÓRIO VERSÃO 1.0 LIDA E APROVADA PELOS INTEGRANTES DA EQUIPE 19

DATA:

NOME COMPLETO DO ALUNO	ASSINATURA
Eduardo Eugênio Rodrigues de Almeida	
Felipe Nogueira Pedroso	
Felipe Pereira Lima	
Guilherme Augusto Dias de Andrade	
Jonathas Marques de Azevedo	
Lucas Oliveira de Moura	
Silvio Arnaldo dos Santos	

SUMÁRIO

1 INTRODUÇÃO	4
2 DESENVOLVIMENTO	4
2.1 Descrição dos Sensores	4
2.1.1 Sensor de Umidade do Solo HD-38	4
2.1.2 Sensor de Temperatura DHT11	5
2.2 Processo de Validação: Umidade	5
2.3 Processo de Validação: Temperatura	6
3 CONCLUSÃO	7
4 APÊNDICE	8
4.1 APÊNDICE A – Ficha de Instrução: Umidade	8
4.2 APÊNDICE B – Ficha de Instrução: Temperatura	ç

1 INTRODUÇÃO

A agricultura moderna se baseia na produção de vegetais de forma sustentável e com o mínimo de riscos e interferências externas (Assis, 2006). Durante o desenvolvimento do protótipo de um sistema controlado, foi utilizado dois sensores que fornecem dados, em tempo real, da situação no interior do protótipo. Para a validação e calibragem desses equipamentos foram realizados testes simples, que confirmassem a precisão dos modelos, assim, identificando se existe a necessidade de troca dos equipamentos.

2 DESENVOLVIMENTO

2.1 DESCRIÇÃO DOS SENSORES

2.1.1 Sensor de Umidade do Solo HD-38

O HD-38 (Figura 1), apesar de seu foco estar voltado para prototipagem, apresenta melhor qualidade em comparação com modelos mais comuns. Para facilitar a conexão com microcontroladores, ele conta com um módulo que faz a leitura de dados gerados pela sonda e encaminha por meio de interface digital ou analógica as informações ao microcontrolador. Especificações técnicas:

Tensão: 5V a 12V:

Corrente de Trabalho: <20mA;

Interface: Digital/Analógica;

Peso: 21g;

Dimensões do modulo (CxLxE): ~35x15x7mm

Figura 1

2.1.2 Sensor de Temperatura DHT11

O DHT11 (Figura 2) é capaz de medir a temperatura ambiente com uma faixa de -20°C a 50°C, com uma precisão de ±2°C. Ele também mede a umidade relativa do ar na faixa de 20% a 90%, com uma precisão de ±5%. Para medir a temperatura, o DHT11 conta um termistor, que é um componente cuja resistência varia com a temperatura. O sensor DHT11 se comunica com um microcontrolador ou outro dispositivo usando uma interface digital de apenas um fio. Isso o torna fácil de integrar em projetos com microcontroladores como Arduino, Raspberry Pi e outros. Ele opera com uma tensão de alimentação de 3 a 5 volts, o que o torna compatível com a maioria dos sistemas eletrônicos. Especificações Técnicas:

Dimensões: 23 x 12 x 5mm;Tempo de resposta: 2s;

Corrente: 200uA a 500mA, em stand by de 100uA a 150uA

Figura 2

2.2 PROCESSO DE VALIDAÇÃO: UMIDADE

Para a realização da validação do HD-38 foi utilizado um sistema de comparação com outro modelo de sensor de umidade, que possui também a capacidade de aferir a luminosidade e Ph do solo. Seguindo a ficha de instrução (Apêndice A), foram coletados dados dos dois instrumentos, conforme mostra a Tabela 1. Utilizando os dados coletados foi possível gerar um gráfico de comparação da variação de precisão entre os dois equipamentos (Figura 3).

Umidade Inserida	HD-38	Sensor (3-1)
0%	0%	0%
50%	50%	15%
75%	75%	70%
100%	97%	100%

Tabela 1

Validação: Umidade

Figura 3

Ao final do processo de validação e análise dos dados coletados, é perceptível a mínima diferença do HD-38 em relação a umidade inserida, além de seu tempo de resposta se mostrar mais que suficiente, detectando mudanças na umidade quase que de imediato, enquanto o sensor "3 em 1" levou alguns segundos para atualização da umidade registrada. Com isso, foi determinado que o HD-38 possui confiabilidade o suficiente para atender a prova de conceito, não se mostrando necessária a troca de equipamento.

2.3 PROCESSO DE VALIDAÇÃO: TEMPERATURA

Para a validação do DHT11 o sistema de comparação com outros equipamentos medidores também foi utilizado. Os termômetros empregados para servirem como confrontação foram:

- Termômetro digital Usinainfo TP 101;
- Sensor digital SYH&AQYE.

Respeitando a ficha de instrução (Apêndice B), os três sensores foram submetidos a temperatura de uma lâmpada incandescente em um ambiente fechado, as informações recolhidas também foram inseridas em uma tabela (Tabela 2), permitindo a geração de mais um gráfico de comparação.

Com o teste finalizado é possível observar que, dentre os 3 diferentes tipos de sensor, o DHT11 foi o que menos apresentou alterações em sua leitura, tendo, em média uma variação de ±1,05 °C.

Com isso, foi definido que o DHT11 também atende o projeto e não necessita de substituição

Tempo (min)	DHT11 (°C)	TP 101 (°C)	SYH&AQYE (°C)
2	45,30	38,3	37
5	46,10	40	39
10	45,60	37,8	39,8
12	44	35	37
15	43,80	35	40,7
18	44,30	45	40,9
20	44,50	38	41,45

Tabela 2

Validação: Temperatura

Figura 4

3 CONCLUSÃO

Após a realização dos testes foi chegada à conclusão de que os dois sensores são capazes de atender as necessidades do projeto e se encontram em boas condições para o início do plantio para a validação do sistema controlado como um todo.

4 APÊNDICE

4.1 APÊNDICE A - Ficha de Instrução: Umidade

Lista de materiais

Descrição dos componentes	Quantidade	
Balança	1 unidade	
Forno	1 unidade	
Peneira	1 inidade	
Recipiente	4 unidades	
Substrato	400 gramas	
Água	225 gramas	

Descrição dos materiais

Balança				
Marca:	JPX tech	Modelo:	SF-400	

Ordem de preparo do processo

- 1. Separação do substrato de aproximadamente ____ gramas;
- 2. Levar ao forno por 12 horas a 105°C / Secagem no sol;
- 3. Peneirar substrato:
- 4. Colocar o substrato nos recipientes utilizando a balança para que fiquem com mesma massa 100 gramas;
- 5. Colocar recipiente 2 a colocar 50% da massa de água;
- 6. Colocar recipiente 3 a colocar 75% da massa de água;
- 7. Colocar recipiente 4 a colocar 100% da massa de água;

Iniciar processo

- 1. Ligar e iniciar a Smart Farming;
- 2. Utilizar sensor que de umidade que fica localizado no vaso no interior;
- 3. Fazer a limpeza do sensor com pano úmido e fazer a secagem;
- 4. Iniciar teste com pote 1, onde não foi adicionado água;
- 5. Colocar sensor por completo e registrar os dados coletados na tabela 1;
- 6. Realizar limpeza novamente com pano úmido e seco;
- 7. Pote 2, colocar sensor por completo e registrar os dados coletados na tabela 1;
- 8. Realizar a limpeza com pano úmido e seco;
- 9. Pote 3, colocar sensor por completo e registrar os dados coletado na tabela 1.

4.2 APÊNDICE B - Ficha de Instrução: Temperatura

Lista de materiais

Descrição dos componentes	Quantidade	
Caixa de papelão 29x20x10 cm	1 unidade	
Estilete	1 unidade	
Extensão	1 unidade	
Fita isolante	1 unidade	
Lâmpada de aquecimento	1 inidade	
Termômetro	2 unidades	

Lâmpada de	aquecimento			
Marca:	Uva uvb	Modelo:	3.0	
Voltagem:	220 V	Potência:	50 w	
_				
Termômetro				

Modelo:

TP 101

Tipo: (x) Digital ()Analógico

Usinainto

Termômetro

Marca:

Descrição dos materiais

Marca: SYH&AQYE Modelo: Leesisters

Tipo: (x) Digital () Analógico

Ordem de preparo do processo

- 8. Separar uma caixa de papelão com uma dimensão de no mínimo de 10 cm entre lâmpada e sensor;
- 9. Com um estilete fazer um furo na parte traseira da caixa comum diâmetro onde bocal da lâmpada passe;
- 10. Posicionar a lâmpada no furo
- 11. Realizar a vedação com fita isolante;
- 12. Ligar lâmpada a extensão;

Iniciar processo

- 10. Ligar e iniciar a Smart Farming;
- 11. Utilizar sensor que de temperatura que fica localizado no vaso no interior;
- 12. Fazer a limpeza do sensor com pano úmido e fazer a secagem;
- 13. Colocar sensor e termômetro dentro da caixa;
- 14. Registrar temperatura inicial na tabela 1
- 15. Ligar a lâmpada;
- 16. Registrar valores de comparação dos termômetros com sensor.