8 Detailed Description

8.1 Overview

The SN65HVD485E device is a half-duplex RS-485 transceiver suitable for data transmission at rates up to 10 Mbps over controlled-impedance transmission media (such as twisted-pair cabling). Up to 64 units of the SN65HVD485E device can share a common RS-485 bus due to the low bus-input currents of the device. The device also features a high degree of ESD protection and low standby current consumption of 1 mA (maximum).

8.2 Functional Block Diagram

8.3 Feature Description

The SN65HVD485E device provides internal biasing of the receiver input thresholds for open-circuit, bus-idle, or short-circuit failsafe conditions. It features a typical hysteresis of 30 mV to improve noise immunity. Internal ESD protection circuits protect the transceiver bus terminals against ±15-kV Human Body Model (HBM) electrostatic discharges.

8.4 Device Functional Modes

When the driver enable pin (DE) is logic high, the differential outputs A and B follow the logic states at data input D. A logic high at D causes A to turn high and B to turn low. In this case, the differential output voltage defined as $V_{OD} = V_A - V_B$ is positive. When D is low, the output states reverse, B turns high, A is low, and V_{OD} is negative.

When DE is low, both outputs turn high impedance. In this condition, the logic state at D is irrelevant. The DE pin has an internal pulldown resistor to ground; thus when left open, the driver is disabled (high impedance) by default. The D pin has an internal pullup resistor to VCC; thus when left open while the driver is enabled, output A turns high and B turns low.

INPUT	ENABLE	OUTPUTS		FUNCTION	
D DE A B	FUNCTION				
H	н	н	L	Actively drive bus High	
L	н	L	н	Actively drive bus Low	
X	L	Z	Z	Driver disabled	
X	OPEN	Z	Z	Driver disabled by default	
OPEN	н	Н	L	Actively drive bus high by default	

Table 8-1. Driver Function Table

When the receiver enable pin (RE) is logic low, the receiver is enabled. When the differential input voltage defined as $V_{ID} = V_A - V_B$ is positive and higher than the positive input threshold (V_{IT-}) the receiver output (R) turns high. When V_{ID} is negative and lower than the negative input threshold (V_{IT-}), the receiver output (R) turns low. If V_{ID} is between V_{IT+} and V_{IT-} , the output is indeterminate.

When RE is logic high or left open, the receiver output is high impedance and the magnitude and polarity of V_{ID} are irrelevant. Internal biasing of the receiver inputs causes the output to go failsafe high when the transceiver is disconnected from the bus (open-circuit), the bus lines are shorted (short-circuit), or the bus is not actively driven (idle bus).

Copyright © 2023 Texas Instruments Incorporated

Parameter Measurement Information

Figure 8-1. Driver Test Circuit, VoD and Voc Without Common-Mode Loading

Figure 8-2. Driver Test Circuit, VoD With Common-Mode Loading

Figure 8-3. Driver V_{OC} Test Circuit and Waveforms

Figure 8-4. Driver Switching Test Circuit and Waveforms

Figure 8-5. Driver Enable/Disable Test Circuit and Waveforms, High Output

Copyright © 2023 Texas Instruments Incorporated

Submit Document Feedback

NPN/PNP Silicon Digital Transistor Array

- · Switching circuit, inverter, interface circuit, driver circuit
- . Two (galvanic) internal isolated NPN/PNP Transistors in one package
- . Built in bias resistor NPN and PNP $(R_1=22 \text{ k}\Omega, R_2=22 \text{ k}\Omega)$
- · Pb-free (RoHS compliant) package
- Qualified according AEC Q101

Tape loading orientation

Marking on SOT-363 package (for example W1s) corresponds to pin 1 of device

Position in tape: pin 1

Туре	Marking	9			Package			
BCR22PN	WPs	1=E1	2=B1	3=C2	4=E2	5=B2	6=C1	SOT363

Maximum Ratings for NPN and PNP Types

Parameter	Symbol	Value	Unit
Collector-emitter voltage	V _{CEO}	50	V
Collector-base voltage	V _{CBO}	50	
Input forward voltage	V _{i(fwd)}	60	
Input reverse voltage	V _{i(rev)}	10	
DC collector current	I _C	100	mA
Total power dissipation, T _S = 115 °C	P _{tot}	250	mW
Junction temperature	T _j	150	°C
Storage temperature	T _{stq}	-65 150	
Thermal Resistance			
Junction - soldering point ¹⁾	R _{thJS}	≤ 140	K/W

 $^{^{1}}$ For calculation of R_{thJA} please refer to Application Note AN077 (Thermal Resistance Calculation)

Electrical Characteristics at TA=25°C, unless otherwise specified

Parameter	Symbol	Values			Unit	
		min.	typ.	max.	1	
DC Characteristics for NPN and PNP Type	S					
Collector-emitter breakdown voltage	V _{(BR)CEO}	50	-	-	V	
$I_{\rm C}$ = 100 μ A, $I_{\rm B}$ = 0						
Collector-base breakdown voltage	V _{(BR)CBO}	50	-	-]	
$I_{\rm C} = 10 \ \mu \text{A}, \ I_{\rm E} = 0$						
Collector cutoff current	I _{CBO}	-	-	100	nΑ	
$V_{\text{CB}} = 40 \text{ V}, I_{\text{E}} = 0$						
Emitter cutoff current	I _{EBO}	-	-	350	μΑ	
$V_{\rm EB}$ = 10 V, $I_{\rm C}$ = 0						
DC current gain 1)	h _{FE}	50	-	-	-	
$I_{\rm C}$ = 5 mA, $V_{\rm CE}$ = 5 V						
Collector-emitter saturation voltage1)	V _{CEsat}	-	-	0.3	٧	
$I_{\rm C}$ = 10 mA, $I_{\rm B}$ = 0.5 mA						
Input off voltage	V _{i(off)}	0.8	-	1.5]	
$I_{\rm C}$ = 100 μ A, $V_{\rm CE}$ = 5 V						
Input on Voltage	V _{i(on)}	1	-	2.5]	
$I_{\rm C}$ = 2 mA, $V_{\rm CE}$ = 0.3 V						
Input resistor	R ₁	15	22	29	kΩ	
Resistor ratio	R_1/R_2	0.9	1	1.1	-	
AC Characteristics for NPN and PNP Type	s					
Transition frequency	f _T	-	130	-	MHz	
$I_{\rm C}$ = 10 mA, $V_{\rm CE}$ = 5 V, f = 100 MHz						
Collector-base capacitance	C _{cb}	-	3	-	pF	
V _{CB} = 10 V, f = 1 MHz						

¹⁾ Pulse test: t < 300μs; D < 2%

CN-0364 Circuit Note

Figure~1.~PLC/DCS~Quad~Channel~Voltage~and~Current~Input~Front~End~(Simplified~Schematic:~All~Connections~and~Decoupling~Not~Shown)

Circuit Note CN-0364

Table 1. Voltage Input Circuit Parameters (Maximum Values Based on Worst-Case Calculations)

			Test Conditions/
Parameter	Value	Unit	Comments
Input Impedance	903	kΩ	
Divider Ratio	0.11		Resistor divider of
			402 kΩ and 49.9 kΩ
Initial Error from	0.18	%FSR	25°C, uncalibrated;
Resistors		max	assumed 0.1% resistors
Error from Input	±0.01	%FSR	±10 V range; AD7173-8,
Leakage			±2 nA typical leakage
Error from	18	ppm/°C	Assumed 10 ppm/°C
Resistor Drift		max	resistors
	9	ppm/°C	Assumed 5 ppm/°C
		max	resistors
Error from Reference Drift	10	ppm/°C max	Internal reference
mererence brint		******	
Common Mode	±5	V	
Data Rate	31.25	kSPS	1 input enabled (14.7 bit noise-free code
			resolution for ±10 V)
	1.55	kSPS	,
	1.55	KSPS	4 channels, each fully settled, sinc5+1 filter
			(14.7 bit noise-free code
			resolution for ±10 V)
	6.25	SPS	4 channels, each fully
			settled, 50 HZ/60 Hz
			reject (18.8 bit noise-free
			code resolution for ±10 V)
Input Filter	20	kHz	Differential
	200	kHz	Common mode

Current Input Circuit

Figure 3 shows the current input network for Channel 1.

Figure 3. Current Input Equivalent Circuit (Simplified)

The circuit has four current input channels, supporting a maximum input range of 0 mA to 24 mA. The input impedance of the circuit is 250 $\Omega,$ and the input is referenced to ground. A precision 100 Ω current sense resistor is used so that a 24 mA input

produces 2.4 V, which is within the 2.5 V full-scale range of the AD7173-8 (using the internal 2.5 V voltage reference). The board is populated by default with a 0.1%, 10 ppm/ $^{\circ}$ C R_{SENSE} resistor.

There are two input paths to separate ADC inputs. The fast input path is for channels not using HART, and the slow input path is for channels using HART.

The fast input path allows signals up to the full input bandwidth of the Σ - Δ ADC. It is also possible to use the internal sinc filters to reject the 1.2 kHz and 2.2 kHz HART frequencies. However, using the sinc filters requires running the relevant channel at the 400 SPS data rate (sinc3 filter), which increases the time required to convert all four channels.

The slow input contains a 16 Hz double-pole filter, which filters out the 1.2 kHz and 2.2 kHz HART digital signaling frequencies. Using this input, the Σ -A ADC can still run at its fast data rate and also reject the HART digital signaling frequencies. The time required to convert all four channels is not reduced. Operating the ADC at its fast data rate is especially useful if not all channels have HART enabled.

Table 2 summarizes the current input circuit parameters.

Table 2. Current Input Circuit Parameters (Maximum Values Based on Worst-Case Calculations)

			Test Conditions/		
Parameter	Value	Unit	Comments		
Input Impedance	250	Ω	Grounded		
Error from Resistor	N/A¹	%FSR max	Per Rsense resistor specifications		
Error from Resistor Drift	N/A¹	ppm/°C max	Per Rsense resistor specifications		
Error from Reference Drift	10	ppm/°C max	Internal reference		
Data Rate	31.25	kSPS	1 input enabled (14.8 bit noise-free code resolution for 0 mA to 20 mA)		
	1.55	kSPS	4 channels, each fully settled, sinc5+1 filter (14.8 bit p-p resolution for 0 mA to 20 mA)		
	6.25	SPS	4 channels, each fully settled, 50 Hz/60 Hz reject (18.1 bit p-p resolution for 0 mA to 20 mA)		
Input Filter	27	kHz	Fast input		
	16	Hz	Slow input providing HART filtering		

¹ N/A = not applicable.