Supplemental Table 1. Crystallographic Data

P2₁: HTMC2, *T. maritima* SMC hinge domain, residues 485-670

 $a=54.7 \text{ Å}, b=57.9 \text{ Å}, c=62.5 \text{ Å}, \beta=112.4^{\circ}, \text{ two molecules/ASU}$

P2₁2₁2₁: HTMC2

a=58.9 Å, b=62.2 Å, c=225.1 Å, twinning fraction 0.158, four molecules/ASU

C2 HTMC9, *T. maritima* SMC hinge domain, residues 473-685

 $a=136.7 \text{ Å}, b=115.9 \text{ Å}, 69.4 \text{ Å}, \beta=93.4^{\circ}, \text{ four molecules/ASU}$

Dataset	λ[Å]	SG	resol.[Å]	I/σI ¹	Rm ²	multipl. ³	compl.[%] ⁴
$P2_1$	0.9393	$P2_1$	2.0	12.2(4.3)	0.072	2.2	95.0
$P2_1PK1$	0.9784	P2 ₁	2.5	25.4(10.3)	0.037	5.1	98.8
P2 ₁ PK2	0.9784	$P2_1$	2.5	27.1(10.4)	0.033	4.8	96.1
P2 ₁ IN1	0.9793	$P2_1$	2.5	23.9(9.1)	0.040	5.1	98.9
P2 ₁ IN2	0.9793	$P2_1$	2.5	31.2(12.0)	0.035	6.4	96.1
P2 ₁ RE1	0.9500	P2 ₁	2.5	22.8(8.6)	0.044	5.1	98.8
$P2_1RE2$	0.9500	P2 ₁	2.5	29.3(8.7)	0.037	6.2	96.1
$P2_{1}2_{1}2_{1}$	0.9393	$P2_{1}2_{1}2_{1}$	3.0	10.6(3.1)	0.093	2.8	92.7
C2PK1	0.9793	C2	3.0	16.3(2.9)	0.075	5.1	95.1
C2PK2	0.9793	C2	3.2	16.2(4.4)	0.059	3.9	95.3

 $^{^{1}}$ Signal to noise ratio of intensities, highest resolution bin in brackets. 2 R $_{m}$: $\Sigma_{h}\Sigma_{i}|I(h,i)$ - $I(h)|/\Sigma_{h}\Sigma_{i}|I(h,i)$ where I(h,i) are symmetry related intensities and I(h) is the mean intensity of the reflection with unique index h. 3 Multiplicity for unique reflections, for MAD datasets I(+) and I(-) are kept separate. 4 Completeness of unique reflections, merged Friedel pairs. Correlation coefficients of anomalous differences at different wavelengths for the MAD experiment in P2 $_{1}$: PEAK1 versus INFL1: 0.36, PEAK1 versus HREM1: 0.40, INFL1 versus HREM1: 0.28.