Il Teorema di Morgan

sulle immersioni isometriche di spazi metrici in spazi Euclidei

Beatrice Masala

Relatore: prof. Andrea Loi

Università degli Studi di Cagliari

14 Giugno 2023

Definizione 1

Consideriamo uno spazio metrico (X, d) e definiamo

$$\langle x, y, z \rangle = \frac{1}{2}((d(x, z))^2 + (d(y, z))^2 - (d(x, y))^2) \quad \forall x, y, z \in X$$

Esempio 1

Se X fosse un sottoinsieme di uno spazio vettoriale reale V e d la metrica indotta da un prodotto scalare su V, allora avremmo

$$\langle x, y, z \rangle = (x - z) \cdot (y - z) \quad \forall x, y, z \in X$$

Definizione 2

Per uno spazio metrico X, un n-simplesso è un sottoinsieme $Y = \{x_0, x_1, \dots, x_n\} \subseteq X$ di n+1 elementi.

Definizione 3

Per ogni (n+1)-upla ordinata (x_0, x_1, \ldots, x_n) di elementi di X sia $D(x_0, x_1, \ldots, x_n)$ il determinante della matrice $n \times n$ la cui ij-esima entrata è $\langle x_i, x_j, x_0 \rangle$:

$$D(x_0, x_1, \dots, x_n) = \det \begin{pmatrix} \langle x_1, x_1, x_0 \rangle & \cdots & \langle x_1, x_n, x_0 \rangle \\ \vdots & \ddots & \vdots \\ \langle x_n, x_1, x_0 \rangle & \cdots & \langle x_n, x_n, x_0 \rangle \end{pmatrix}$$

Alcune definizioni

Proposizione 1

 $D(x_0, x_1, \dots, x_n)$ definisce una funzione dall'insieme degli *n*-simplessi di X a \mathbb{R} .

Esempio 2

Se X è un sottoinsieme di uno spazio Euclideo, allora $D(x_0, x_1, \dots, x_n)$ è il determinante della matrice $n \times n$ la cui ij-esima entrata è $(x_i - x_0) \cdot (x_j - x_0)$.

La radice quadrata di questo determinante è il volume del parallelepipedo di lati x_1-x_0,\ldots,x_n-x_0 .

Il volume dell'*n*-simplesso $Y = \{x_0, x_1, \dots, x_n\}$ è allora dato da $\frac{1}{n!}$ volte il volume di questo parallelepipedo.

Definizione 4

Per ogni spazio metrico X e ogni n-simplesso $Y = \{x_0, x_1, \dots, x_n\} \subseteq X$

$$Vol_n(Y) = \frac{1}{n!} \sqrt{D(x_0, x_1, \dots, x_n)}$$

è detto volume simpliciale.

Definizione 5

Uno spazio metrico X è detto *piatto* se per ogni n-simplesso $Y = \{x_0, x_1, \dots, x_n\} \subseteq X$ si ha che il volume simpliciale $Vol_n(Y)$ è reale, ovvero $D(x_0, x_1, \dots, x_n) \geq 0$.

Alcune definizioni

Definizione 6

Se X è piatto, la *dimensione* di X è il più grande numero naturale n, se esiste, per cui esiste un n-simplesso di X con volume simpliciale positivo.

Definizione 7

Siano (X, d) uno spazio metrico e (V, d_v) uno spazio euclideo.

Un'immersione isometrica è un'applicazione $f: X \to V$ tale che $d(x,y) = d_v(f(x),f(y))$, $\forall x,y \in X$.

Enunciato del teorema di Morgan

Teorema di Morgan

Uno spazio metrico (X,d) può essere immerso isometricamente in uno spazio euclideo V di dimensione n se e solo se (X,d) è piatto e di dimensione minore o uguale a n.

Dimostrazione del teorema di Morgan

Criterio di Cartesio

Sia dato un polinomio $P(x) = a_n x^n + \ldots + a_1 x + a_0$ con coefficienti reali e non tutti nulli.

Allora il massimo numero di radici reali positive del polinomio è dato dal numero di variazioni di segno fra coefficienti consecutivi, trascurando eventuali coefficienti nulli.

Lemma

Sia M una matrice reale simmetrica $m \times m$ avente tutti gli autovalori non negativi.

Sia D[i,j] il minore $(m-1) \times (m-1)$ ottenuto eliminando la riga i-esima e la colonna j-esima di M. Allora:

$$(D[i,j])^2 \leq D[i,i]D[j,j].$$

Dimostrazione lemma

- Essendo M simmetrica e semidefinita positiva, sappiamo che esiste una matrice A a entrate reali $m \times m$ tale che $M = A^T A$.
- Siano $a_1,...,a_m$ i vettori colonna di A; allora la kl-esima entrata di M è $a_k \cdot a_l$, dove è il prodotto scalare in \mathbb{R}^m .
- Sia M_{ij} la matrice ottenuta eliminando la riga i-esima e la colonna j-esima di M.
- Consideriamo lo spazio $\bigwedge^{m-1}(\mathbb{R}^m)$, su cui è definito un prodotto scalare tale che:

$$(a_1\wedge\cdots\wedge a_{i-1}\wedge a_{i+1}\wedge\cdots\wedge a_m)\cdot (a_1\wedge\cdots\wedge a_{j-1}\wedge a_{j+1}\wedge\cdots\wedge a_m)=\det(M_{ij})$$

• Ricordando che $det(M_{ij}) = D[i,j]$ e usando la diseguaglianza di Schwartz, otteniamo $(D[i,j])^2 \le D[i,i]D[j,j]$.

- Supponiamo che (X, d) possa essere immerso isometricamente in uno spazio euclideo di dimensione n.
- $\bullet\,$ Il volume simpliciale è conservato per isometrie in quanto dipende solo dalle distanze.
- Quindi (X, d) è piatto e di dimensione minore o uguale a n.

- Supponiamo ora che (X, d) sia uno spazio metrico piatto di dimensione n e sia $\{x_0, x_1, \ldots, x_n\}$ un n-simplesso di X di volume simpliciale positivo.
- Definiamo l'applicazione $f: X \to \mathbb{R}^n$ come

$$f(x) = (\langle x, x_1, x_0 \rangle, \langle x, x_2, x_0 \rangle, \dots, \langle x, x_n, x_0 \rangle) \qquad \forall x \in X$$

ullet Sia $\langle u,v
angle$ la forma bilineare simmetrica su \mathbb{R}^n data da

$$\langle u, v \rangle = u^T L^{-1} v \qquad \forall u, v \in \mathbb{R}^n$$

dove L è la matrice $n \times n$ avente come entrata ij-esima $\langle x_i, x_j, x_0 \rangle$:

$$L = \begin{pmatrix} \langle x_1, x_1, x_0 \rangle & \cdots & \langle x_1, x_n, x_0 \rangle \\ \vdots & \ddots & \vdots \\ \langle x_n, x_1, x_0 \rangle & \cdots & \langle x_n, x_n, x_0 \rangle \end{pmatrix}$$

- Consideriamo il polinomio in x dato da det(xI + L), con I matrice identità $n \times n$.
- Gli autovalori di L sono gli opposti delle radici di questo polinomio.
- Il coefficiente dei termini di grado n-k di questo polinomio è la somma dei minori di ordine k di L che si trovano sulla diagonale principale.

- Ognuno di questi minori è non-negativo perché è la radice di k! volte il volume simpliciale di un k-simplesso di X (che ha dimensione n).
- Per il criterio di Cartesio, il polinomio det(xI + L) non ha radici positive e quindi tutti gli autovalori di L sono non negativi.
- Essendo L simmetrica e invertibile, non ha autovalori nulli e quindi tutti gli autovalori sono positivi; dunque $\langle \cdot, \cdot \rangle$ è un prodotto scalare.
- Vogliamo ora mostrare che $\langle x,y,x_0\rangle=\langle f(x),f(y)\rangle$ per ogni $x,y\in X$.

• Poniamo $x_{n+1} = x$ e $x_{n+2} = y$ e consideriamo la matrice M di dimensione $(n+2) \times (n+2)$ la cui ij-esima entrata è data da (x_i, x_i, x_0) :

$$M = \begin{pmatrix} \langle x_1, x_1, x_0 \rangle & \cdots & \langle x_1, x_n, x_0 \rangle & \langle x_1, x, x_0 \rangle & \langle x_1, y, x_0 \rangle \\ \vdots & \ddots & \vdots & \vdots & \vdots \\ \langle x_n, x_1, x_0 \rangle & \cdots & \langle x_n, x_n, x_0 \rangle & \langle x_n, x, x_0 \rangle & \langle x_n, y, x_0 \rangle \\ \langle x, x_1, x_0 \rangle & \cdots & \langle x, x_n, x_0 \rangle & \langle x, x, x_0 \rangle & \langle x, y, x_0 \rangle \\ \langle y, x_1, x_0 \rangle & \cdots & \langle y, x_n, x_0 \rangle & \langle y, x, x_0 \rangle & \langle y, y, x_0 \rangle \end{pmatrix}$$

- Utilizzando il criterio di Cartesio, si dimostra che i suoi autovalori sono tutti non negativi.
- Sia D[i,j] il determinante del minore di ordine (n+1) di M ottenuto eliminando la i-esima riga e la j-esima colonna di M.

- Per il lemma abbiamo che $(D[i,j])^2 \leq D[i,i]D[j,j]$.
- D[i,i] è il quadrato di (n+1)! volte il volume di un (n+1)-simplesso di X; ma X ha dimensione n, quindi D[i,i]=0 e di conseguenza, per il lemma, D[i,j]=0.
- Consideriamo la matrice K ottenuta eliminando da M la riga (n+2)-esima e la colonna (n+1)-esima:

$$\begin{pmatrix} \langle x_1, x_1, x_0 \rangle & \cdots & \langle x_1, x_n, x_0 \rangle & \langle x_1, x, x_0 \rangle & \langle x_1, y, x_0 \rangle \\ \vdots & \ddots & \vdots & & \vdots \\ \langle x_n, x_1, x_0 \rangle & \cdots & \langle x_n, x_n, x_0 \rangle & \langle x_n, x, x_0 \rangle & \langle x_n, y, x_0 \rangle \\ \langle x, x_1, x_0 \rangle & \cdots & \langle x, x_n, x_0 \rangle & \langle x, x, x_0 \rangle & \langle x, y, x_0 \rangle \\ \langle y, x_1, x_0 \rangle & \cdots & \langle y, x_n, x_0 \rangle & \langle y, x, x_0 \rangle & \langle y, y, x_0 \rangle \end{pmatrix}$$

• K ha determinante nullo in quanto $\det(K) = D[n+2, n+1] = 0$. Inoltre possiamo vederla come una matrice a blocchi L, $\langle x, y, x_0 \rangle$, $f(x)^T$ e f(y):

$$K = \begin{pmatrix} \langle x_1, x_1, x_0 \rangle & \cdots & \langle x_1, x_n, x_0 \rangle & \langle x_1, y, x_0 \rangle \\ \vdots & \ddots & \vdots & \vdots \\ \langle x_n, x_1, x_0 \rangle & \cdots & \langle x_n, x_n, x_0 \rangle & \langle x_n, y, x_0 \rangle \\ \langle x, x_1, x_0 \rangle & \cdots & \langle x, x_n, x_0 \rangle & \langle x, y, x_0 \rangle \end{pmatrix}$$

Usiamo la formula di Schur:

$$\det(K) = \det(L) \cdot (\langle x, y, x_0 \rangle - f(x)^T L^{-1} f(y)) = 0$$

da cui ricaviamo, ricordando che L è invertibile, che

$$\langle x, y, x_0 \rangle - f(x)^T L^{-1} f(y) = 0.$$

• Otteniamo quindi $\langle x, y, x_0 \rangle = \langle f(x), f(y) \rangle$.

GRAZIE PER L'ATTENZIONE!