Announcements

□ Homework for tomorrow...

```
Ch. 26, Probs. & 50
Ch. 27, Probs. 24 & 26
CQ7: a. 10
CQ8: 2nC/cm<sup>2</sup>
26.12: a) 0
b) 4,100 N/C
26.14: a) 0
b) 92,000 N/C
```

□ Office hours...

```
MW 10-11 am
TR 9-10 am
F 12-1 pm
```

■ Tutorial Learning Center (TLC) hours:

```
MTWR 8-6 pm
F 8-11 am, 2-5 pm
Su 1-5 pm
```

Chapter 27

Gauss' Law (Conductors in Electrostatic Equilibrium)

Last time...

■ *E-field* of a *infinite plane* of charge..

$$E_{plane} = \frac{\eta}{2\epsilon_0}$$

■ E-field of a *sphere* (of radius *R*) of charge...

$$E_{sphere} = \frac{1}{4\pi\epsilon_0} \frac{Q}{r^2} \text{ for } r \ge R$$

□ *E-field* of a parallel-plate capacitor..

$$\vec{E}_{cap} = \frac{\eta}{\epsilon_0}$$

Quiz Question 1

Which *E*-field is responsible for the proton's trajectory?

© 2013 Pearson Education, Inc.

- 1. (a)
- **2**. (b)
- 3. (c)
- 4. (d)
- 5. (e)

i.e. 26.9: Deflecting an *e*⁻ beam

An e^- gun creates a beam of e^- 's moving horizontally with a speed of 3.3 x 10⁷ m/s. The e^- 's enter a 2.0 cm long gap between two parallel electrodes where the electric field is $E = -(5.0 \times 10^4 \text{ N/C})$ jhat.

In which direction, and by what angle, is the electron beam

deflected by these electrodes?

$$\frac{1}{V_{1}} + \frac{1}{V_{2}} + \frac{1}{V_{2$$

27.6:

Conductors in Electrostatic Equilibrium

Consider a charged conductor in electrostatic equilibrium...

□ all charges are *stationary*.

The electric field inside the conductor is zero.

- \blacksquare *E*-field is ZERO at all points w/in the conductor.
- \square Any excess q resides on the exterior surface.

Excess charge resides on the surface

Consider a charged conductor in electrostatic equilibrium...

$$\vec{E}_{surface} = \frac{\eta}{\epsilon_0} \; , \; \perp \text{ to surface}$$

The electric field at the surface

- □ *E*-field at the surface of a charged conductor..
 - is *perpendicular* to the surface.
 - is of magnitude η/ε_0 , where η is the surface charge density at that pt.

Consider a charged conductor in electrostatic equilibrium...

The outer surface must have charge +q so that the conductor remains neutral.

 $lue{}$ *E*-field is ZERO inside any hole w/in a conductor, *unless* there is a q in the hole.

Q: How can we exclude an *E*-field from some region?

We want to exclude the electric field from this region.

Q: How can we exclude an *E*-field from some region?

(b) The conducting box has been polarized and has induced surface charges.

The electric field is perpendicular to all conducting surfaces.

© 2013 Pearson Education, Inc.

A: Insert a neutral conducting box (a.k.a. Faraday cage)

i.e. 27.7: The *E*-field at the surface of a charged metal sphere.

A 2.0 cm diameter brass sphere has been given a charge of 2.0 nC.

What is the *E*-field strength at the surface?

Quiz Question 2

A point charge q is located a distance r from the center of a neutral metal sphere. The E-field at the center of the sphere is

1.
$$\frac{q}{4\pi\epsilon_0 r^2}$$

$$\frac{q}{4\pi\epsilon_0 R^2}$$

$$\frac{q}{4\pi\epsilon_0(R-r)^2}$$

- (4.) O Always Zero insid
 - 5. It depends on the type of metal.