Question 3.

First we calculate the interquartile range and multiplying the value by 1.5. Then by adding the value to 75% percentile and subtracting from 25% percentile, we get upper and lower outlier range. Let's first take a look at **MonthlyCharges** variable:

Percentiles

		Percentiles						
		5	10	25	50	75	90	95
Weighted Average (Definition 1)	MonthlyCharges	19.6500	20.0500	35.5000	70.3500	89.8500	102.6300	107.4400
Tukey's Hinges	MonthlyCharges			35.5000	70.3500	89.8500		

Inter Quartile Range = 89.85 - 35.5 = 54.35

Outlier Ranges = 54.35 * 1.5 = 81.525

Upper Outlier Range = 89.85 + 81.525 = 171.375

Lower Outlier Range = 35.5 - 81.525 = -46.025

TotalCharges

Percentiles

		Percentiles						
		5	10	25	50	75	90	95
Weighted Average (Definition 1)	TotalCharges	49.5500	84.5300	401.3500	1397.4750	3795.2125	5978.8600	6927.1250
Tukey's Hinges	TotalCharges			401.4000	1397.4750	3794.9750		

Inter Quartile Range = 3795.2125 - 401.35 = 3393.8625 Outlier Ranges = 3393.8625 * 1.5 = 5090.79 Upper Outlier Range = 5090.79 + 3795.2125 = 8886.006 Lower Outlier Range = 401.35 - 5090.79 = -4689.44

Question 4.

MonthlyCharges variable was split into 5 groups by first determining the minimum and maximum values.

- Minimum 18.25
- Maximum 118.75

We subtract minimum from maximum and divide it by 5, we get 20.1. We can then create an interval consisting of ranges:

- 18.25
- 38.35
- 58.45
- 78.55
- 98.65
- 118.75

We created a new variable with conditional ranges to automatically determine if the value is going to be "cox pis, pis, normal, yaxshi, ela".

Question 5.

Statistics

		MonthlyCharge s	tenure	TotalCharges
Ν	Valid	7043	7043	7032
	Missing	0	0	11
Mean		64.7616	32.37	2283.3004
Median		70.3500	29.00	1397.4750
Mode		20.05	1	20.20
Minimum		18.25	0	18.80
Maximum		118.75	72	8684.80
Percentiles	25	35.5000	9.00	401.3500
	50	70.3500	29.00	1397.4750
	75	89.8500	55.00	3795.2125

Question 7.

After importing the file from demo folder, we connect the table from output section to our sav file to see the variables and values of the "bankloan.sav" file. We can see that the variables consists of age, education, credit debt, income, etc.

