Глава VII. Матрицы

§ 25. Умножение матриц. Матрицы и многочлены

Б.М.Верников

Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики

Линейные операции над матрицами и транспонирование матрицы

Этот параграф посвящен, главным образом, операции умножения матриц, которая будет введена на следующем слайде. Но сначала напомним о тех операциях над матрицами, которые уже рассматривались ранее.

В § 21 были введены линейные операции над матрицами (сложение матриц и умножение матрицы на скаляр). Свойства этих операций по существу совпадают с аксиомами векторного пространства, и потому мы не будем перечислять их в явном виде.

В § 8 была определена операция транспонирования матрицы. Укажем ее свойства.

Свойства транспонирования матрицы

Пусть A и B — матрицы одного и того же размера над (одним и тем же) кольцом R, а $t \in R$. Тогда:

- 1) $(A^{\top})^{\top} = A$;
- 2) $(A + B)^{\top} = A^{\top} + B^{\top};$
- 3) $(tA)^{\top} = tA^{\top}$.

Мы не будем доказывать эти свойства, поскольку они непосредственно вытекают из определения операций.

Умножение матриц

!! Произведение двух матриц над одним и тем же кольцом определено лишь в случае, когда число столбцов первого сомножителя равно числу строк второго.

Иными словами, если A и B — матрицы над кольцом R, A имеет размер $k \times \ell$, а B — размер $r \times m$, то произведение AB существует тогда и только тогда, когда $\ell = r$.

Определение

Пусть $A=(a_{ij})\in R^{k imes\ell}$, а $B=(b_{ij})\in R^{\ell imes m}$. Тогда *произведением AB* матриц A и B называется матрица $C=(c_{ij})\in R^{k imes m}$ такая, что

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{i\ell}b_{\ell j}$$

для всех $i=1,2,\ldots,k$ и $j=1,2,\ldots,m$. Иными словами, c_{ij} есть сумма произведений элементов i-й строки матрицы A на соответствующие элементы j-го столбца матрицы B.

Для краткости правило вычисления элементов произведения матриц часто формулируют так:

• элемент с_{іі} равен произведению і-й строки матрицы A на j-й столбец матрицы B.

Свойства произведения матриц

Свойства произведения матриц

Пусть A, B и C — матрицы над одним и тем жем же кольцом R, а $t \in R$. Тогда:

- 1) если произведения матриц AB и BC определены, то (AB)C = A(BC) (умножение матриц ассоциативно);
- 2) если A и B матрицы одного и того же размера и произведение матриц AC определено, то (A+B)C = AC + BC (умножение матриц дистрибутивно справа относительно сложения);
- 3) если B и C матрицы одного и того же размера и произведение матриц AB определено, то A(B+C)=AB+AC (умножение матриц дистрибутивно слева относительно сложения);
- 4) если произведение матриц AB определено, то (tA)B = A(tB) = t(AB);
- 5) если E единичная матрица и произведение AE [соответственно EA] определено, то AE = A [соответственно EA = A];
- 6) если O нулевая матрица такая, что произведение AO [соответственно OA] определено, то AO = O [соответственно OA = O];
- 7) если произведение матриц AB определено, то $(AB)^{\top} = B^{\top}A^{\top}$.

Обоснование свойств произведения матриц

Доказательство. Свойства 2)–7) проверяются простыми вычислениями, основанными на определениях операций над матрицами. Докажем свойство 1). Пусть $A=(a_{ij}),\ B=(b_{ij})$ и $C=(c_{ij}),\$ причем $A\in R^{m\times n}$ для некоторых m и n. Из существования матриц AB и BC вытекает, что $B\in R^{n\times r}$ и $C\in R^{r\times s}$ для некоторых r и s. Положим $AB=D=(d_{ij})$ и $BC=F=(f_{ij}).$ Ясно, что $D\in R^{m\times r}$ и $F\in R^{n\times s}.$ Отсюда вытекает, что матрицы (AB)C и A(BC) существуют и лежат в $R^{m\times s}.$ Положим $(AB)C=(g_{ij})$ и $A(BC)=(h_{ij}).$ Требуется доказать, что $g_{ij}=h_{ij}$ для всех $i=1,2,\ldots,m$ и $j=1,2,\ldots,s.$ В самом деле:

$$g_{ij} = \sum_{k=1}^{s} d_{ik} c_{kj} = \sum_{k=1}^{s} \left[\left(\sum_{\ell=1}^{n} a_{i\ell} b_{\ell k} \right) \cdot c_{kj} \right] = \sum_{k=1}^{s} \sum_{\ell=1}^{n} a_{i\ell} b_{\ell k} c_{kj} =$$

$$= \sum_{\ell=1}^{n} \sum_{k=1}^{s} a_{i\ell} b_{\ell k} c_{kj} = \sum_{\ell=1}^{n} \left[a_{i\ell} \cdot \left(\sum_{k=1}^{s} b_{\ell k} c_{kj} \right) \right] = \sum_{\ell=1}^{n} a_{i\ell} f_{\ell j} = h_{ij}.$$

Свойство 1) доказано.

Кольцо квадратных матриц

Очевидно, что если A и B — квадратные матрицы одного и того же порядка над кольцом R, то матрица AB существует и является квадратной матрицей того же порядка над R. Свойства сложения и умножения матриц показывают, что справедливо следующее утверждение.

Замечание о кольце матриц

Пусть R — кольцо, а п — натуральное число.

- 1) Множество $R^{n \times n}$ с операцией умножения матриц является моноидом. Нейтральным элементом этого моноида является единичная матрица порядка n.
- 2) Множество $R^{n \times n}$ с операциями сложения и умножения матриц является ассоциативным кольцом с 1.

Некоммутативность произведения матриц

Укажем теперь одно свойство, которым произведение матриц не обладает:

• произведение матриц не коммутативно.

В самом деле, может оказаться, что произведение матриц A и B в одном порядке существует, а в другом — нет. Например, если $A \in R^{3 \times 5}$, а $B \in R^{5 \times 4}$, то матрица AB существует (и имеет размер 3×4), а матрицы BA не существует. Далее, матрицы AB и BA могут существовать, но иметь разные размеры. Например, если $A \in R^{3 \times 5}$, а $B \in R^{5 \times 3}$, то матрицы AB и BA существуют и являются квадратными, но первая из них имеет порядок BA, а вторая — порядок BA.

Замечание о произведениях матриц в разном порядке

Если произведения AB и BA существуют и имеют одинаковые размеры, то A и B — квадратные матрицы одного и того же порядка.

Доказательство. Пусть $A \in R^{m \times n}$, а $B \in R^{r \times s}$. Из существования произведения AB вытекает, что n = r, а из существования произведения BA — что m = s. Но тогда $AB \in R^{m \times m}$, а $BA \in R^{n \times n}$. Поскольку размеры матриц AB и BA совпадают, получаем, что m = n. Таким образом, A и B — квадратные матрицы порядка n.

Но и в случае, когда A и B — квадратные матрицы одного и того же порядка, равенство AB = BA может не выполняться, в чем легко убедиться на конкретных примерах.

Ослабленный закон сокращения

В любом поле F выполнено следующее свойство, называемое законом сокращения: если $x,y,z\in F$, xz=yz и $z\neq 0$, то x=y (чтобы убедиться в этом, надо умножить обе части равенства справа на z^{-1}). В кольце матриц это свойство не выполняется. Но справедлив следующий его ослабленный аналог.

Ослабленный закон сокращения для матриц

Пусть A и B — квадратные матрицы порядка n над полем F. Если для любой матрицы X размера $n \times 1$ над F выполнено равенство AX = BX, то A = B. Аналогичное заключение верно, если для любой матрицы Y порядка $1 \times n$ над F выполнено равенство YA = YB.

Доказательство. Докажем первое утверждение. Пусть $A=(a_{ij})$ и $B=(b_{ij})$. Для всякого $i=1,2,\ldots,n$ обозначим через A_i и B_i i-е столбцы матриц A и B соответственно, а через X_i — матрицу размера $n\times 1$, в которой i-й элемент равен 1, а все остальные элементы равны 0. Ясно, что $AX_i=A_i$ и $BX_i=B_i$. Учитывая, что $AX_i=BX_i$, получаем, что i-е столбцы матриц A и B совпадают. Поскольку это выполняется для любого $i=1,2,\ldots,n$, получаем, что A=B. Второе утверждение доказывается аналогично (надо только рассматривать не столбцы, а строки матриц A и B).

Отметим, что мы уже сталкивались со свойством такого типа при изучении скалярного произведения векторов (см. § 11).

Полураспавшаяся матрица

Наша следующая цель — доказать, что определитель произведения матриц равен произведению их определителей. Чтобы сделать это, нам потребуется рассмотреть один специальный вид матриц.

Определение

Квадратная матрица L порядка n называется n порядков p и q соответственно такие, что либо

$$L = \begin{pmatrix} A & N \\ O & B \end{pmatrix} \tag{1}$$

для нулевой матрицы O размера $q \times p$ и некоторой матрицы N размера $p \times q$, либо

$$L = \begin{pmatrix} A & O \\ N & B \end{pmatrix} \tag{2}$$

для нулевой матрицы O размера $p \times q$ и некоторой матрицы N размера $q \times p$. Матрицы A и B называются *диагональными блоками* полураспавшейся матрицы L.

Определитель полураспавшейся матрицы (1)

Предложение об определителе полураспавшейся матрицы

Если L — полураспавшаяся матрица с диагональными блоками A и B, то $|L| = |A| \cdot |B|.$

Доказательство. Достаточно рассмотреть случай, когда матрица L имеет вид (1). В самом деле, если L имеет вид (2), то L^{\top} — полураспавшаяся матрица вида (1) с диагональными блоками A^{\top} и B^{\top} . Поэтому если для матриц вида (1) предложение уже доказано, то, используя 1-е свойство определителей (см. $\S 8$), имеем $|L| = |L^{\top}| = |A^{\top}| \cdot |B^{\top}| = |A| \cdot |B|$. Пусть $A = (a_{ij}), B = (b_{ij})$ и $N = (n_{ij})$. Дальнейшие рассуждения проведем индукцией по p.

База индукции. Если p=1, то $A=(a_{11})$ и

$$|L| = \begin{vmatrix} a_{11} & n_{11} & n_{12} & \dots & n_{1q} \\ 0 & b_{11} & b_{12} & \dots & b_{1q} \\ 0 & b_{21} & b_{22} & \dots & b_{2q} \\ \dots & \dots & \dots & \dots \\ 0 & b_{q1} & b_{q2} & \dots & b_{qq} \end{vmatrix}.$$

Разложив определитель из правой части этого равенства по первому столбцу, получим, что $|L|=a_{11}\cdot |B|=|A|\cdot |B|$.

Определитель полураспавшейся матрицы (2)

Шаг индукции. Пусть p>1. Минор матрицы A, соответствующий элементу a_{ij} , будем обозначать через M_{ij} . Разложив определитель матрицы L по первому столбцу и использовав предположение индукции, получим:

$$|L| = a_{11} \cdot \begin{vmatrix} a_{22} & \dots & a_{2p} & n_{21} & \dots & n_{2q} \\ a_{32} & \dots & a_{3p} & n_{31} & \dots & n_{3q} \\ \dots & \dots & \dots & \dots & \dots \\ a_{p2} & \dots & a_{pp} & n_{r1} & \dots & n_{rq} \\ 0 & \dots & 0 & b_{11} & \dots & b_{1q} \\ \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & b_{q1} & \dots & b_{qq} \end{vmatrix} - a_{21} \cdot \begin{vmatrix} a_{12} & \dots & a_{1p} & n_{11} & \dots & n_{1q} \\ a_{32} & \dots & a_{3p} & n_{31} & \dots & n_{3q} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ a_{p2} & \dots & a_{pp} & n_{r1} & \dots & n_{pq} \\ 0 & \dots & 0 & b_{11} & \dots & b_{1q} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & b_{q1} & \dots & b_{qq} \end{vmatrix} + \dots + \dots + (-1)^{p+1} a_{p1} \cdot \begin{vmatrix} a_{12} & \dots & a_{1p} & n_{11} & \dots & n_{1q} \\ a_{22} & \dots & a_{2p} & n_{21} & \dots & n_{2q} \\ \dots & \dots & \dots & \dots & \dots \\ a_{p-12} & \dots & a_{p-1p} & n_{p-11} & \dots & n_{p-1q} \\ 0 & \dots & 0 & b_{11} & \dots & b_{1q} \\ \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & b_{q1} & \dots & b_{qq} \end{vmatrix} = \\ = a_{11} M_{11} \cdot |B| - a_{21} M_{21} \cdot |B| + \dots + (-1)^{p+1} a_{p1} M_{p1} \cdot |B| = \\ = a_{11} A_{11} \cdot |B| + a_{21} A_{21} \cdot |B| + \dots + a_{p1} A_{p1} \cdot |B| = \\ = (a_{11} A_{11} + a_{21} A_{21} + \dots + a_{p1} A_{p1}) \cdot |B| = |A| \cdot |B|.$$

Определитель произведения матриц (1)

Теорема об определителе произведения матриц

Если $A=(a_{ij})$ и $B=(b_{ij})$ — квадратные матрицы одного и того же порядка, то $|AB|=|A|\cdot |B|$.

Доказательство. Обозначим порядок матриц A и B через n, а матрицу AB — через C. Пусть $C = (c_{ij})$. Рассмотрим следующую полураспавшуюся матрицу с диагональными блоками A и B:

$$D = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} & 0 & 0 & \dots & 0 \\ a_{21} & a_{22} & \dots & a_{2n} & 0 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} & 0 & 0 & \dots & 0 \\ -1 & 0 & \dots & 0 & b_{11} & b_{12} & \dots & b_{1n} \\ 0 & -1 & \dots & 0 & b_{21} & b_{22} & \dots & b_{2n} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & -1 & b_{n1} & b_{n2} & \dots & b_{nn} \end{pmatrix}$$

В силу предложения об определителе полураспавшейся матрицы

$$|D| = |A| \cdot |B|. \tag{3}$$

Определитель произведения матриц (2)

Для всякого j = 1, 2, ..., n прибавим к (n + j)-му столбцу матрицы D ее первый столбец, умноженный на b_{1i} , второй, умноженный на b_{2i} , ..., и, наконец, n-й, умноженный на b_{ni} . Полученную матрицу обозначим через D'. Ясно, что первые n столбцов матрицы D' совпадают с соответствующими столбцами матрицы D. Для всякого j = 1, 2, ..., nэлемент, стоящий в i-й строке и (n+i)-м столбце матрицы D', равен $a_{i1}b_{1i}+a_{i2}b_{2i}+\cdots+a_{in}b_{ni}=c_{ii}$, если $1\leqslant i\leqslant n$, и $-b_{ii}+b_{ii}=0$, если $n+1 \leqslant i \leqslant 2n$. Таким образом, матрица D' имеет следующий вид:

$$D' = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} & c_{11} & c_{12} & \dots & c_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} & c_{21} & c_{22} & \dots & c_{2n} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} & c_{n1} & c_{n2} & \dots & c_{nn} \\ -1 & 0 & \dots & 0 & 0 & 0 & \dots & 0 \\ 0 & -1 & \dots & 0 & 0 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & -1 & 0 & 0 & \dots & 0 \end{pmatrix}.$$

С учетом 7-го свойства определителей и принципа равноправия строк и столбцов (см. §8), получаем, что

$$|D'| = |D|. (4)$$

Определитель произведения матриц (3)

Поменяем в матрице D' местами сначала (n+1)-й столбец с первым, затем (n+2)-й столбец — со вторым, . . . , наконец, последний столбец — с n-м. В результате мы получим матрицу

$$D'' = \begin{pmatrix} c_{11} & c_{12} & \dots & c_{1n} & a_{11} & a_{12} & \dots & a_{1n} \\ c_{21} & c_{22} & \dots & c_{2n} & a_{21} & a_{22} & \dots & a_{2n} \\ & & & & & & & & \\ c_{n1} & c_{n2} & \dots & c_{nn} & a_{n1} & a_{n2} & \dots & a_{nn} \\ 0 & 0 & \dots & 0 & -1 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & 0 & -1 & \dots & 0 \\ & & & & & & & & \\ 0 & 0 & \dots & 0 & 0 & 0 & \dots & -1 \end{pmatrix}.$$

Переходя от матрицы D' к матрице D'', мы сделали n перестановок столбцов. Применяя 4-е свойство определителей и принцип равноправия строк и столбцов (см. § 8), имеем

$$|D''| = (-1)^n \cdot |D'|. \tag{5}$$

Определитель произведения матриц (4)

Матрица D'' является полураспавшейся матрицей с диагональными блоками C и -E. Предложение об определителе треугольной матрицы (см. $\S 8$) и предложение об определителе полураспавшейся матрицы показывают, что $|D''|=|C|\cdot (-1)^n$. Умножая обе части этого равенства на $(-1)^n$, имеем $(-1)^n\cdot |D''|=(-1)^{2n}\cdot |C|=|C|$, т. е.

$$|C| = (-1)^n \cdot |D''|.$$
 (6)

Из равенств (3)-(6) вытекает, что

$$|C| = (-1)^n \cdot |D''| = (-1)^{2n} \cdot |D'| = |D'| = |A| \cdot |B|.$$

Теорема доказана.

Зафиксируем кольцо R и натуральное число n. В силу замечания о кольце матриц множество $R^{n\times n}$ с операциями сложения и умножения матриц является ассоциативным кольцом с 1 (роль единицы играет единичная матрица порядка n). Рассмотрим кольцо $R^{n\times n}[x]$, т. е. кольцо многочленов над кольцом $R^{n\times n}$. Его элементами являются многочлены, коэффициентами которых являются квадратные матрицы порядка n над кольцом R, т. е. выражения вида $A_nx^n+A_{n-1}x^{n-1}+\cdots+A_0$, где $A_n,A_{n-1},\ldots,A_0\in R^{n\times n}$. Элементы кольца $R^{n\times n}[x]$ можно рассматривать как матрицы над кольцом R[x]. Другими словами, $R^{n\times n}[x]=\left(R[x]\right)^{n\times n}$. Например, в следующем равенстве слева от знака равенства стоит элемент кольца $\mathbb{R}^{2\times 2}[x]$, а справа от него — элемент кольца $\left(\mathbb{R}[x]\right)^{2\times 2}$:

$$\begin{pmatrix} 3 & -1 \\ 2 & 2 \end{pmatrix} x^2 + \begin{pmatrix} 5 & 1 \\ -1 & 0 \end{pmatrix} x + \begin{pmatrix} 1 & 2 \\ -2 & 4 \end{pmatrix} = \begin{pmatrix} 3x^2 + 5x + 1 & -x^2 + x + 2 \\ 2x^2 - x - 2 & 2x^2 + 4 \end{pmatrix}.$$

Присоединенная матрица

В дальнейшем нам понадобится следующее понятие.

Определение

Пусть $A=(a_{ij})$ — квадратная матрица порядка >1 над полем F. Матрица (A_{ij}) , т. е. матрица, составленная из алгебраических дополнений к элементам матрицы A, называется матрицей, присоединенной к A, и обозначается через A^\vee .

Замечание о присоединенной матрице

Если А — произвольная квадратная матрица, то

$$A \cdot (A^{\vee})^{\top} = (A^{\vee})^{\top} \cdot A = |A| \cdot E.$$

Доказательство. Пусть $X = A \cdot (A^{\vee})^{\top}$. Положим $X = (x_{ij})$. Ясно, что $x_{ij} = a_{i1}A_{j1} + a_{i2}A_{j2} + \cdots + a_{in}A_{jn}$. В силу формулы (7) из § 8 получаем, что

$$x_{ij} = egin{cases} |A|, & ext{если } i = j, \ 0, & ext{если } i
et j. \end{cases}$$

Следовательно, $A\cdot (A^\vee)^\top=|A|\cdot E$. Равенство $(A^\vee)^\top\cdot A=|A|\cdot E$ проверяется точно так же.

Характеристический многочлен квадратной матрицы

Следующее понятие будет играть исключительно важную роль в дальнейшем.

Определение

Пусть A — квадратная матрица над полем F. Характеристическим многочленом матрицы A называется многочлен |A-xE|, где E — единичная матрица того же порядка, что и A. Этот многочлен обозначается через $\chi_A(x)$.

Если $A=(a_{ij})$, а порядок A равен n, то

$$\chi_{\mathbf{A}}(x) = \begin{vmatrix} a_{11} - x & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - x & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} - x \end{vmatrix}.$$

Ясно, что при вычислении определителя, стоящего в правой части этого равенства, появится лишь одно слагаемое, содержащее x^n , именно, — $(a_{11}-x)(a_{22}-x)\cdots(a_{nn}-x)$. Поэтому старший член многочлена $\chi_{\bf A}(x)$ имеет вид $(-1)^nx^n$. Кроме того, очевидно, что свободный член этого многочлена есть $\chi_{\bf A}(0)=|A|$.

Значение многочлена от квадратной матрицы

Определение

Пусть A — квадратная матрица над полем F. Для всякого целого $n\geqslant 0$ определим по индукции матрицу A^n следующим образом: $A^0=E$, где E — единичная матрица того же порядка, что и A, а если n>0, то $A^n=A^{n-1}\cdot A$.

Поскольку, как уже отмечалось выше, произведение двух квадратных матриц одного и того же порядка всегда определено и является квадратной матрицей того же порядка, матрица A^n при любом n определена и является квадратной матрицей того же порядка, что и A.

Определение

Пусть $f(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_0$ — многочлен над полем F, а A — квадратная матрица над F. Значением многочлена f от матрицы A называется матрица $f(A)=a_nA^n+a_{n-1}A^{n-1}+\cdots+a_0E$.

Ясно, что f(A) — квадратная матрица над F того же порядка, что и A.

Определение

Пусть F — поле, $A \in F^{n \times n}$ и $f \in F[x]$. Говорят, что многочлен f аннулирует матрицу A, если f(A) = O.

Теорема Гамильтона-Кэли (1)

Теорема Гамильтона-Кэли

Характеристический многочлен произвольной квадратной матрицы А аннулирует эту матрицу.

Доказательство. Пусть $\chi_{\mathbf{A}}(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_0$. Положим $B(x)=\left((A-xE)^\vee\right)^\top$. Элементами матрицы B(x) являются алгебраические дополнения к элементам матрицы A-xE, т.е., с точностью до знака, миноры (n-1)-го порядка этой матрицы. Ясно, что эти миноры суть многочлены степени $\leqslant n-1$. Следовательно, матрицу B(x) можно записать в виде $B_{n-1}x^{n-1}+\cdots+B_1x+B_0$, где $B_0,B_1,\ldots B_{n-1}\in F^{n\times n}$. Из замечания о присоединенной матрице вытекает, что $(A-xE)B(x)=|A-xE|\cdot E=\chi_{\mathbf{A}}(x)\cdot E$. Следовательно,

$$(A-xE)(B_{n-1}x^{n-1}+\cdots+B_1x+B_0)=a_nx^nE+a_{n-1}x^{n-1}E+\cdots+a_0E.$$

Раскрывая скобки в левой части этого равенства и приводя подобные, имеем

$$-B_{n-1}x^{n} + (AB_{n-1} - B_{n-2})x^{n-1} + \dots + (AB_{1} - B_{0})x + AB_{0} =$$

$$= a_{n}x^{n}E + a_{n-1}x^{n-1}E + \dots + a_{0}E.$$

Теорема Гамильтона-Кэли (2)

Приравнивая коэффициенты при одинаковых степенях x в левой и правой частях последнего равенства, имеем

$$a_n E = -B_{n-1}, a_{n-1} E = AB_{n-1} - B_{n-2}, \dots, a_1 E = AB_1 - B_0, a_0 E = AB_0.$$

Умножая слева первое из этих равенств на A^n , второе – на A^{n-1} , ..., предпоследнее — на A, последнее — на E, получим следующий набор равенств:

Сумма левых частей этих равенств равна

$$a_n A^n + a_{n-1} A^{n-1} + \cdots + a_1 A + a_0 E = \chi_A(A),$$

а сумма их правых частей равна O. Следовательно, $\chi_{\mathbf{A}}(A) = O$.

Матричная запись системы линейных уравнений

Используя операцию умножения матриц, можно получить другую, более компактную и удобную запись системы линейных уравнений. Пусть дана система

$$\begin{cases}
a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1, \\
a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2, \\
\dots \\
a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m.
\end{cases} (7)$$

Обозначим через A ее основную матрицу и положим

$$X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$
 $y \quad B = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$.

Тогда система (7) равносильна матричному равенству AX = B. Это равенство (при условии, что X и B — матрицы, состоящие из одного столбца) называется матричной записью системы линейных уравнений (7).

Матричное уравнение вида AX = B(1)

Матричным уравнением называется уравнение, в котором неизвестным является матрица. Здесь мы подробно рассмотрим матричное уравнение вида

$$AX = B, (8)$$

где A и B — известные матрицы, а X — неизвестная. Из определения произведения матриц видно, что число строк в матрице AX равно числу строк в матрице A. Следовательно, если число строк в матрицах A и B различно, то уравнение (8) решений не имеет. Поэтому всюду в дальнейшем, говоря об этом уравнении, мы будем считать, что матрицы A и B имеют одинаковое число строк.

Из определения произведения матриц видно также, что число столбцов в матрице AX равно числу столбцов в матрице X. Следовательно, если X — решение уравнения (8), то матрицы X и B содержат одинаковое число столбцов. Как мы видели выше, если матрицы X и B содержат один столбец, то уравнение (8) есть просто другой способ записи системы линейных уравнений. Обозначим через k число столбцов в матрицах X и B. Для всякого $i=1,2,\ldots,k$ обозначим i-й столбец матрицы X через X_i , а i-й столбец матрицы B — через B_i . Из определения произведения матриц вытекает, что i-й столбец матрицы AX равен AX_i .

Матричное уравнение вида AX = B (2)

Поэтому

!! в общем случае уравнение (8) равносильно совокупности k систем линейных уравнений вида

$$AX_1 = B_1, AX_2 = B_2, \dots, AX_k = B_k.$$
 (9)

Для того чтобы решить каждую из этих систем методом Гаусса, надо записать расширенную матрицу системы и с помощью элементарных преобразований привести ее к ступенчатому виду. Если при этом окажется, что хотя бы одна из систем несовместна, то и исходное матричное уравнение не имеет решений. Если же все системы совместны, то, решив каждую из них, мы найдем все столбцы матрицы X, а значит и саму эту матрицу. Но у всех решаемых систем основная матрица одна и та же — матрица A. Это позволяет решать все системы одновременно, действуя по алгоритму, который приведен на следующем слайде.

Матричное уравнение вида AX = B (3)

Алгоритм решения матричного уравнения вида AX = B

Пусть дано уравнение (8), в котором A — матрица размера $n \times k$, а B — матрица размера $n \times m$. Запишем матрицу $(A \mid B)$, т. е. матрицу размера $n \times (k+m)$, в которой в первых k столбцах стоит матрица A, а в последних m столбцах — матрица B. С помощью элементарных преобразований всей этой матрицы приведем ее левую часть (т. е. первые k столбцов) к ступенчатому виду. После этого для всякого $i=1,2,\ldots,k$ можно найти i-й столбец матрицы X, решив систему линейных уравнений вида $A'X_i=B_i'$, где A' — левая часть полученной матрицы, а B_i' — i-й столбец правой части полученной матрицы. Если при этом окажется, что хотя бы одна из этих систем несовместна, то уравнение AX=B решений не имеет.

Матричное уравнение вида AX = B в случае невырожденной квадратной матрицы A (1)

Особый интерес с точки зрения дальнейшего представляет уравнение (8), в котором матрица A является квадратной и невырожденной. В этом случае каждая из систем (9) является крамеровской. В силу теоремы Крамера (см. § 9) все эти системы имеют единственное решение. Следовательно, и уравнение (8) имеет единственное решение. Это позволяет использовать для его решения метод Гаусса—Жордана в том виде, в каком он был изложен в конце § 7. Объединяя приведенный там алгоритм нахождения решения системы, имеющей единственное решение, и алгоритм с предыдущего слайда, получаем изложенный на следующем слайде алгоритм, который будет использован в дальнейшем для решения ряда важных задач.

Матричное уравнение вида $A\overline{X} = B$ в случае невырожденной квадратной матрицы A (2)

Алгоритм решения матричного уравнения вида AX = B в случае невырожденной квадратной матрицы A

Пусть дано уравнение (8), в котором A — невырожденная квадратная матрица порядка n, а B — матрица размера $n \times k$. Запишем матрицу $(A \mid B)$ размера $n \times (n+k)$ и с помощью элементарных преобразований всей этой матрицы приведем ее левую часть (т. е. первые n столбцов) к единичному виду. В правой части (т. е. в последних k столбцах) полученной матрицы будет записана матрица X, являющаяся единственным решением уравнения (8).

Матричное уравнение вида XA = B

Все сказанное выше об уравнении (8) можно использовать для того, чтобы решить матричное уравнение вида XA=B, где A и B — известные матрицы, а X — неизвестная. Транспонируя обе части равенства XA=B и используя свойство 7) произведения матриц, получаем уравнение $A^\top X^\top = B^\top$, т. е. уравнение вида (8). Решив его одним из двух описанных выше способов, мы найдем матрицу X^\top (естественно, второй способ можно применять лишь в случае, когда A — невырожденная квадратная матрица). Транспонировав матрицу X^\top , найдем искомую матрицу X.