Name:	Question 1
	Question 2
Exam 2	Question 3
CSc 75010: Theoretical Computer Science	Question 4
Graduate Center of CUNY	Question 5
22 November 2002	Question 6
(Blue Version)	Total

Total

Do five of the following six problems. Write each answer on a separate piece of paper.

- 1. (a) Define *computable function* and give an example of a function that is not computable.
 - (b) Assume that the alphabet and tape alphabet are: $\Sigma = \Gamma = \{0,1\}$. Give an implementation level description of a Turing machine that copies the input string on the tape. That is, if the input to the machine is the string w, the output is ww.
- 2. (a) Show that for any finite set Σ , the set of all finite strings of Σ , Σ^* is countable.
 - (b) Let $\Sigma = \{0, 1\}$. Show that the set of all infinite strings over Σ is uncountable.
- 3. (a) Show that the Halting Problem is undecidable, using the diagonalization method.
 - (b) Show that the set of all finitely defined computable functions (that is, the set of all functions that diverge for all but a finite set) is not decidable.
- (a) Show that the set of decidable languages is closed under intersection.
 - (b) Show that if A and \bar{A} are Turing-recognizable, then A is decidable.
- 5. (a) State Rice's Theorem.
 - (b) Prove Rice's Theorem.
- 6. (a) Show that if A Turing-recognizable and $A \leq_m \bar{A}$, then A is decidable.
 - (b) Show that if $A \leq_T B$ and $B \leq_T C$ implies $A \leq_T C$.