MODULI SPACES OF 5d SCFTs

A walk in the tropical rainforest

Workshop on Recent Advances in QFT and geometry December 4th 2020

Antoine BOURGET (Imperial College)

Based on: [1810.01495] Cabrera, Hanany, Yagi

[1908.04245] AB, Cabrera, Grimmingn, Harany, Speling, Zajac, Zhong

[2008.05577] van Beest, AB, Echhand, Schafer-Namhi

[2011.07033] van Beest, AB, Eckhard, Schefer - Namuki

MODULI SPACE OF 5d SCFT GEOMETRY OF X Extended Coulomb branch Extended Kähln cone Complex structure deformations () Higgs branch Hryferkähln spærs NB: As a function of the Real Apaces

Real Apaces

Extended CB (mass params) ECB farameters, the Higgs branch under goes discontinuous transitions. Coulomb branch (compact divisors) Questions: dimension? flavor sym? more?

SU(2) + 1 F Example: E2 SCFT 4:m Moving on ECB allows to connect 5d SCFTs via decoupling "trees"

The simplest decoupling tree is: E-STRING DESCENDANTS < SU(2) +8F 6d marginal Higgs branch Generalized affine Dynkin diagram

toric

SU(2m) n + AS + 8F marginal theory decoupling "tree"

$N_F \setminus \frac{N_F}{2} + k$	n+4	n+3	n+2	n+1	n
8	Marginal				
		9 1			
7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
	$\mathfrak{e}_8 \oplus \mathfrak{su}(2)$	$\mathfrak{su}(8) \oplus \mathfrak{u}(1)^2$			
		2 1 • • • n-2 1 2 3 4 5 4 2	2 1 0 n-2 1 2 3 4 3 2 1		
	○ 4n-2	3 1 0 n-3	n-3		
6	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 2 3 4 3 1 1		
	$\mathfrak{e}_7 \oplus \mathfrak{su}(2)$	$\mathfrak{su}(7) \oplus \mathfrak{u}(1)^2$	$\mathfrak{su}(6) \oplus \mathfrak{su}(2) \oplus \mathfrak{u}(1)^2$		
				2 1 n-1 1 n-2 n-2	
	4n-2	2 1 • n-1	2 1	1 1 ↑	
5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 2 3 4 3 2	1 2 3 2 2 1	1 2 3 3 1	
	$\mathfrak{e}_6 \oplus \mathfrak{su}(2)$	$\mathfrak{su}(6) \oplus \mathfrak{u}(1)^2$	$\mathfrak{su}(5) \oplus \mathfrak{su}(2) \oplus \mathfrak{u}(1)^2$	$\mathfrak{su}(5) \oplus \mathfrak{u}(1)^3$	
		1 1 • • n-1 1 2 3 3 2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 1 1 1 n-2 1 1 2 2 1
4	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	$\mathfrak{so}(10) \oplus \mathfrak{su}(2)$	$\mathfrak{su}(5) \oplus \mathfrak{u}(1)^2$	$\mathfrak{su}(4) \oplus \mathfrak{su}(2) \oplus \mathfrak{u}(1)^2$	$\mathfrak{su}(4) \oplus \mathfrak{u}(1)^3$	$\mathfrak{su}(4) \oplus \mathfrak{u}(1)^3$

Results

- · Description of the Higgs branch, including dimension
 global symmetry
 full singularity structure
- . It least the nonabelian fart.
 . Including non
 simply laced
 algebras
 - everywhen on the ECB
- Reproduction of decoupling trees [In, Katz, Kim, Vafa, Bhandway, Zafin, ...]

 [Aprizzi, Lawrie, Lin, Shafer-Nameli, Wang ...]

 [Hayashi, Kim, Lee, Yagi]
- · Many new families of moduli space / quivers

 Some of them offer challenges for quiver subtraction algorithm

 [work in progress...]

