Introducción al Análisis Matemático Tema 3 Clase Práctica 3

Licenciatura en Matemática Curso 2022

Al estudiante:

Bienvenido a la Clase Práctica 3 del Tema 2 del curso *Introducción al Análisis Matemático*. Los siguientes ejercicios pueden ser abordados con los conocimientos adquiridos en la conferencia correspondiente. ¡Esperamos que le vaya bien!

Colectivo de la asignatura

EJERCICIOS

Ejercicio 1.

Usando la fórmula

$$f(x) = \sum_{k=0}^{n} \frac{(x-a)^k}{k!} f^{(k)}(a) + \int_a^x \frac{(x-t)^n}{n!} f^{(n+1)}(t) dt$$
 (1)

con n=3 calcula aproximadamente sen (18°) y acota el error cometido.

Ejercicio 2.

Determina el grado del polinomio de Taylor que permite calcular:

- a) $\cos(9^{\circ})$, con error < 10^{-5} .
- b) $\sqrt{5}$ con error < 10^{-4} .

Ejercicio 3.

a) Usando la **Propiedad 2** (página 236 de [1] formato físico, página 153 de [1] formato digital) prueba la desigualdad siguiente

$$\left| \int_{a}^{b} f(x) dx \right| \le \int_{a}^{b} |f(x)| dx.$$

b) Prueba que si $|f(x)| \leq M, x \in [a, b]$ entonces se cumple

$$\left| \int_{a}^{b} f(x)dx \right| \le M(b-a).$$

Ejercicio 4.

a) Prueba que si las funciones f(x) y g(x) satisfacen las condiciones:

$$f(a) = g(a), \ f^{(k)}(a) = g^{(k)}(a)$$
 para $k = 1, 2, ..., n - 1$ y $f^{(n)}(x) > g^{(n)}(x), \ x > a$ entonces

$$f(x) > g(x), \ x > a.$$

b) Prueba las desigualdades siguientes:

i)
$$x - \frac{x^2}{2} \le \ln(1+x) \le x - \frac{x^2}{2} + \frac{x^3}{3}, \ x \ge 0.$$

ii)
$$\tan x \ge x + \frac{x^3}{3}, \ 0 \le x < \frac{\pi}{2}.$$

Ejercicio 5.

a) Demuestra que

$$\sinh x \ge \sin x, \ x \ge 0.$$

¿Qué ocurre si $x \leq 0$?

b) Analiza los puntos de extremo relativo de la función $f(x) = \cosh x - \cos x$.

Ejercicio 6.

Haciendo uso de la ${f Propiedad}\ {f 2}$ (mencionada en el ejercicio 3) demuestra las desigualdades siguientes:

a)
$$\frac{1}{5\sqrt{2}} \le \int_0^1 \frac{x^4 dx}{\sqrt{1+x}} \le \frac{1}{5}$$

b)
$$\frac{1}{10\sqrt{2}} \le \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{\sin x \, dx}{x} \le \ln 3$$

c)
$$1 - \frac{1}{n} \le \int_0^1 e^{-x^n} dx \le 1$$

d)
$$\frac{4}{9}(e-1) \le \int_0^1 \frac{e^x}{(x+1)(2-x)} dx \le \frac{1}{2}(e-1).$$

Referencias

[1] Valdés, C. (2017) $Introdución\ al\ Análisis\ Matemático.$ Universidad de La Habana.