Univerza v Ljubljani

Fakulteta za matematiko in fiziko

Finančni praktikum

Največje neodvisne množice z lokalnim iskanjem

Avtorja: Jaka Mrak Žiga Gartner

Mentorja: prof. dr. Sergio Cabello doc. dr. Janoš Vidali

Ljubljana, 9. januar 2022

Kazalo

1	Navodilo	2
2	Opis problema	2
3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3 4
4	Sklep	5
$_{ m Li}$	iteratura	6

1 Navodilo

Naloga je iskanje največje neodvisne množice v grafu G=(V,E) s pomočjo celoštevilskega linearnega programiranja. Velike neodvisne množice v grafu lahko poiščemo s pomočjo metode lokalnega iskanja. Začnemo s poljubno neodvisno množico $U\subseteq V$, kjer k vozlišč nadomestimo s k+1 vozlišči tako, da ohranjamo neodvisnost množice U. Konstanta k je dana na začetku. Primerjali bomo metodi lokalnega iskanja in optimalne rešitve ter primerjali njune rešitve za nekatere preproste grafe.

2 Opis problema

Definicija 1. Naj bo G = (V, E) graf. **Neodvisna množica** U, v grafu G, je taka podmnožica množice vozliščV, kjer poljubni dve vozlišči iz množice U nista sosednji. **Maksimalna neodvisna množica** v grafu G pa je taka neodvisna množica, kjer ne obstaja vozlišče $v \in V$ in $v \notin U$, ki bi ga lahko dodali množici U in pri tem ohranili neodvisnost množice U. Torej je neodvisna množica U največja taka, če velja ena od naslednjih dveh lastnosti:

- 1. $v \in U$
- 2. $S(v) \cap U \neq \emptyset$, kjer je S(v) množica sosedov v.

Največja neodvisna množica je neodvisna množica, največje možne velikosti, za dan graf G. Velikosti največje neodvisne množice, za graf G, pa pravimo **neodvisnostno število** in pogosto označimo $\alpha(G)$.

Definicija 2. Celoštevilski linearni program v standardni obliki je dan z matriko $A \in \mathbb{R}^{m \times n}$, vektorjem $b \in \mathbb{R}^m$ in vektorjem $c \in \mathbb{R}^n$. Iščemo

$$max < c, x >$$
,

da bodo zadoščeni pogoji

 $kjer\ je\ x\in\mathbb{Z}^n.$

Posledica 1. Problem največje neodvisne množice v grafu G = (V, E) lahko s celoštevilskim linearnim programiranjem modeliramo na sledeč način:

$$\max \sum_{v \in V} x_v,$$

da velja:

$$x_v + x_w \le 1 \ za \ \forall vw \in E,$$
$$x_v \in \{0, 1\}$$

$$x_{u} = \begin{cases} 1, & za \ u \in U \\ 0, & za \ u \notin U \end{cases}, U \text{ neodvisna množica v grafu } G.$$

Največjo neodvisno množico v množici vseh neodvisnih podmnožic grafa G = (V, E) bomo iskali s pomočjo celoštevilskega lineranega programiranja in lokalnega iskanja. **Lokalno iskanje** temelji na izbiri začetne neodvisne podmnožiče vozlišč $U \subset V$ v kateri k vozlišč zamenjamo s k+1 vozlišči in pri tem ohranjamo neodvisnost množice U.

3 Opis dela

V nadaljevanju bomo največjo oz. maksimalno množico iskali s pomočjo CLP, v Sage, in s pomočjo implementiranega algoritma $nakljucni_MIS(G)$ kasneje izboljšanega z lokalnim iskanjem. Algoritme bomo izvajali na grafih, generiranih s pomočjo Erdős-Rényijevega G(n,p) modela. Primerjali bomo maksimalne (ali pa največje) neodvisne množice, ki jih algoritmi poiščejo, časovno zahtevnost algoritmov, kasneje pa še, kako vpliva spreminjanje števila vozlišč in verjetnosti, v modelu, na velikost maksimalne (ali pa največje) neodvisne množice in časovno zahtevnost algoritmov.

3.1 Generiranje podatkov

Kot omenjeno, bomo grafe generirali s pomočjo Erdős-Rényijevega G(n, p) modela.

Definicija 3. Erdős-Rényijev model G(n, p) generira graf z n naključno povezanimi vozlišči. Vsaka povezava je v graf vključena neodvisno, z verjetnostjo p.

Generirali bomo grafe s konstantima (n,p), z naraščajočim n in konstantnim p ter s konstantim n in naraščajočim p. Za generacijo podatkov v Pythonu bomo uporabili knjižnico NetworkX, nato pa objekte grafov, s funkcijo $nx.to_dict_of_lists(graf)$, kjer je nx okrajšava za NetworkX, pretvorili še v slovarje list, da bomo lahko grafe uporabljali še v okolju Sage. Grafe, na katerih bomo izvajali algoritme, bomo shranili še v JSON datoteke.

3.2 Algoritmi

Za iskanje maksimalne neodvisne množice smo implementirali algoritem $nakljucni_MIS(G)$, čigar rešitev bomo poizkušali izboljšati še z algoritmom $lokalno_iskanje(G,I)$. Oba algoritma bosta kot argument sprejela graf G, algoritem $lokalno_iskanje(G,I)$ pa še neko maksimalno neodvisno množico I, grafa G.

Algoritem 1 $nakljucni_MIS(G)$

```
1: I \leftarrow \emptyset
```

^{2:} $\forall v \in V \text{ dobi vrednost } P(v) \in permutacija(V)$

^{3:} if P(v) < P(w) za $\forall w \in sosedi(v)$ then

^{4:} $I \leftarrow I \cup v$

^{5:} $V' \leftarrow V \setminus (I \cup sosedi(I))$.

^{6:} $E' \leftarrow E \setminus povezave(I)$.

^{7:} return $I \cup MIS(G' = (V', E'))$

Algoritem 2 $lokalno_iskanje(G, I)$

```
1: I \leftarrow \emptyset
```

- 2: $\forall v \in V \text{ dobi vrednost } P(v) \in permutacija(V)$
- 3: if P(v) < P(w) za $\forall w \in sosedi(v)$ then
- 4: $I \leftarrow I \cup v$
- 5: $V' \leftarrow V \setminus (I \cup sosedi(I))$.
- 6: $E' \leftarrow E \setminus povezave(I)$.
- 7: return $I \cup MIS(G' = (V', E'))$

3.3 Analiza rezultatov

3.3.1 Analiza algoritmov na grafih G(50, 0.3)

Najprej bomo primerjali algoritme na Erdős-Rényijevih G(50,0.3). Na tak način sva generirala 500 grafo in na njih izvedla algoritma CLP(G), $nakljucni_MIS(G)$, za vsak graf pa sva slednjega poskušala izboljšati še z algoritmom $lokalno_iskanje(G,I)$, ki poleg grafa G sprejme še $I = nakljucni_MIS(G)$.

Slika 1: Moči neodvisnih množic za grafe G(50, 0.3)

Opazimo, da neodvisne množice največjih moči najde CLP. Kljub temu so na grafu opazni osamelci, ko $lokalno_iskanje(G,I)$ vrne neodvisne množice izstopajočih moči. Teh pojavov si ne znava najbolje razložiti. Bodisi CLP nikoli ne vrne največje neodvisne množice, neodvisna množica $I = nakljucni_MIS(G)$ pa je v teh primerih odlična za lokalno iskanje.

Kljub temu, da je, za generirane grafe, CLP najpogosteje vrnil najboljšo rešitev, lahko v naslednjem grafu vidimo njegovo slabost, CLP je občutno počasnejši od preostalih dveh algoritmov.

Slika 2: Časovne zahtevnosti algoritmov za G(50, 0.3)

Če si pogledamo še odstopanja rešitev *lokalnega_iskanja* od *CLP* opazimo, da je bila rešitev *lokalnega_iskanja* največkrat za dve vozlišči manjša od rešitve *CLP*.

aaaaa

4 Sklep

Slika 3: Odstopanja rešitev lokalnega iskanja do CLP.

Literatura

- [1] Gary Miller. Lecture 32: Luby's Algorithm for Maximal Independent Set, dostopno na http://www.cs.cmu.edu/afs/cs/academic/class/15750-s18/ScribeNotes/lecture32.pdf.
- [2] Diogo Andrade, Mauricio G. C. Resende. Fast Local Search for the Maximum Independent Set Problem. Conference Paper in Journal of Heuristics, May 2008, dostopno na https://www.researchgate.net/publication/221131653_Fast_Local_Search_for_the_Maximum_Independent_Set_Problem.
- [3] Maximal independent set, v: Wikipedia: The Free Encyclopedia, [ogled 6. 1. 2022], dostopno na https://en.wikipedia.org/wiki/Maximal_independent_set.
- [4] Independent set (graph theory), v: Wikipedia: The Free Encyclopedia, [ogled 6.1.2022], dostopno na https://en.wikipedia.org/wiki/Independent_set_(graph_theory).

Slika 4: Časovnica SPACa.

Slika 5: Časovnica SPACa.

Slika 6: Časovnica SPACa.

Slika 7: Časovnica SPACa.

Slika 8: Časovnica SPACa.

Slika 9: Časovnica SPACa.