

GRP-2.0 CLASS TEST # 04

INORGANIC CHEMISTRY

FULL SYLLABUS

TIME:30 Min

SECTION-I: (i) Only One option correct Type

This section contains **05 multiple choice questions**. Each question has four choices (A), (B), (C) and (D) out of which **ONLY ONE** is correct. 3(-1)

- 1. With reference to aqua regia,
 - Statement-1: Reaction of gold with aqua regia produces NO₂ in the absence of air
 - Statement-2: Aqua regia is prepared by mixing conc. HCl and conc. HNO₃ in 3:1 (v/v) ratio
 - Statement-3:- Reaction of gold with aqua regia produces an anion having Au in +3 oxidation state

Statement-4: The yellow colour of aqua regia is due to the presence of NOCl and Cl,

choose the CORRECT option for the above statements..

- (A) FTFT
- (B) FTTT
- (C) T F T T
- (D) T F F T

- CO₃²⁻ and S₂O₃²⁻ can be distinguished by 2.
 - (A) CuSO₄ solution (B) BaCl₂ solution
- (C) Pb(OAc), solution (D) All of these
- **3.** The correct order of mobility of M⁺ ions of alkali metal in aqueous solution is-
 - (A) $Li^+ < Na^+ < Rb^+ < Cs^+ < K^+$
- (B) $Na^+ < K^+ < Li^+ < Rb^+ < Cs^+$
- (C) $Cs^+ > Rb^+ > K^+ > Na^+ > Li^+$
- (D) $Li^+ > Na^+ > K^+ > Rb^+ > Cs^+$
- Which of the following statement is correct -4.
 - (A) Ca²⁺ and Mg²⁺ ions do not form complex with EDTA
 - (B) Be(OH), is acidic in nature
 - (C) Na₂O₂ is an oxidising agent and it oxidises charcoal, CO, NH₃, SO₂ etc.
 - (D) On heating white colour of K₂O become changed into black.
- 5. Which of the following reaction does not occur in the conversion of ZnS to Zn -
 - $(A) ZnS + 2O_2 \xrightarrow{\Delta} ZnSO_4$
- (B) $ZnS + 3/2 O_2 \xrightarrow{\Delta} ZnO + SO_2$
- (C) $2ZnO + ZnS \xrightarrow{\Delta} 3Zn + SO_2$
- (D) $ZnO + C \xrightarrow{\Delta} Zn + CO$

(ii) One or more options correct Type

This section contains **05 multiple choice questions**. Each question has four choices (A), (B), (C) and (D) out of which **ONE or MORE** are correct. 4(-1)

- Which of the following statement(s) is/are correct -6.
 - (A) Froth floatation method can be used for sulphide ore
 - (B) Tin stone consist of wolframite as magnetic impurity
 - (C) In cyanide process for the extraction of silver, Zn used as reducing agent
 - (D) Bessemerization process is involved in the extraction of copper from copper pyrite
- **√**7. What are the following step(s) is/are to be done before adding group-III reagent into the group-II filtrate.
 - (A) Group-II filtrate is to be evapourated to dryness
 - (B) Group-II filtrate is to be boiled of first
 - (C) After boiling 2-3 drops of dil.H₂SO₄ is added and boiled again.
 - (D) After boiling 2-3 drops of conc. HNO_3 is added and boiled again.
 - 8. $[Fe(H_2O)_5NO]^{2+}$ is unstable because -
 - (A) It is brown colored
 - (B) It liberates NO2 gas on shaking
 - (C) The charge of central atom is +1 (relatively low enough)
 - (D) Coordination Number of central metal is six

GRP-2.0 CLASS TEST # 04

- 9. Out of given three complexes
 - (I) $[Mn(CO)_6]^+$
- $(II) [Cr(CO)_6]$
- $(III)[V(CO)_6]^-$

Identify the correct statement(s).

- (A) (III) has maximum C-O length
- (B) (II) has lowest O.N. of metal
- (C) (I) has minimum number of electrons
- (D) (III) has maximum π -character in metal-carbon bond
- Which of the following pair of species in their aqueous solution can not exist simultaneously in one **10.** container?

(A)
$$(Tl^{3+}_{(aq.)} + KI)$$

(B)
$$(CsI_2 + KI_2)$$

(C)
$$(TI^+I_3^- + KI_2)$$

(B)
$$(CsI_3 + KI_3)$$
 (C) $(TI^+I_3^- + KI_3)$ (D) $(SnCl_2 + HgCl_2)$

(iii) Paragraph Type

This section contains **02 paragraphs** each describing theory, experiment, data etc. Each question of a paragraph has **only one correct answer** among the four choices (A), (B), (C) and (D).

Paragraph for Q.11 to Q.13

The hardness of natural water is generally caused by presence of bicarbonates, chlorides and sulphates of calcium and magnesium but infact soluble salts that form a scum with soap cause hardness. Hardness of water is two types: (1) temporary hardness. (2) permanent hardness.

- Temporary hardness is caused due to the presence of -
 - (A) CO₂²⁻
- (B) SO_{4}^{2-}
- (C) PO₄³-
- (D) None
- In ion exchange resin method, cations which are responsible for hardness is removed, now the obtained **12.** water is not fit for the drinking purpose due to the presence of -
 - (A) Acidic nature

(B) Basic nature

(C) Ca^{+2} / Mg^{2+} ion

- (D) dissolve resin
- **13.** Permanent hardness is removed by -
 - (A) Boiling
- (B) NaCl
- (C) CaCl₂
- (D) Na₂CO₃

Paragraph for Q. 14 to Q. 16

- **14.** Identify A-
 - (A) Na₂S₂O₃
- (B) Na₂SO₄
- (C) Na₂S
- (D) None of these

- What is the formula of yellow ppt. (E)-**15.**
 - (A) HgSO₄
- (B) 2HgSO₄.HgO
- (C) 2HgO.HgSO₄
- (D) None of these

- What is the shape of Anionic part of (C) **16.**
 - (A) Trigonal planar
- (B) Tetrahedral
- (C) TBP
- (D) Square planar

GRP-2.0 CLASS TEST # 04

(iv) Matching List Type

This Section contains 3 multiple choice questions. Each question has matching lists. The codes for the lists. have choices (A), (B), (C) and (D) out of which ONLY ONE is correct.

4(0)

Column-I	Column-11		Column-III		
Reactant-A	Reactant-B (in aq. solution)		Reactant-C (Characteristic of Reaction)		
(I) PH ₃	(i)	Cl ₂	(P)	Disproportion	
(II) NH ₃	(ii)	CaOCI ₂	(Q)	Precipitate is formed	
(III) SO ₃ ²⁻ (excess)	(iii)	CaCl ₂	(R)	Adduct/complex is formed	
(IV) NaOH	(iv)	$AgNO_3$	(S)	Redox reaction	

- 17. Which of the following is **CORRECT** combination for PH₂.
 - (A)(I),(i),(Q)
- (B) (I), (ii), (S)
- (C)(I),(iii),(P)
- (D) (I), (iv), (R)
- **18.** Which of the following combination is **INCORRECT**?
 - (A)(II),(i),(S)

(B) (II), (iv), (Q)

(C) (III), (iv), (Q)

- (D)(III),(i),(S)
- **19.** Which of the following is correct combination for NaOH.
 - (A) (IV), (i), (P)(S)
- (B) (IV), (ii), (Q)
- (C) (IV), (iii), (S)
- (D) (IV), (iv), (S)

SECTION-II: Matrix-Match Type

This Section contains **01 question**. Question has **four statements** (A, B, C and D) given in **Column I** and five statements (P, Q, R, S and T) in **Column II**. Any given statement in Column I can have correct matching with **ONE** or **MORE** statement(s) given in Column II. For example, if for a given question, statement B matches with the statements given in Q and R, then for the particular question, against statement B, darken the bubbles corresponding to Q and R in the ORS. **8(0)**

1. Column-I

(Complex compound)

- /(A) [CoCl₂Br₂]⁻²
 - (B) $[Rh(en)_3]^{3+}$
 - (C) $[Cr(en)_2Br_2]^+$
 - (D) [Pt(gly)ClBr]-1

Column-II

(Characteristics)

- (P) Does not show geometrical isomerism
- (Q) Does not show optical isomerism
- (R) Having two optically active form
- (S) Chelating complex
- (T) Metal is in +2 oxidation state