$I \rightarrow if S$ and $I \rightarrow if S$ else S

P. 2 (* Shift / Reduce conflict *)

== p. 3

 $S \rightarrow . S$

 $S \rightarrow . id$

 $S \rightarrow V := E$

 $V \rightarrow$. id

This state has a $\ \ Shift$ transition on $\ \ \underline{id}$ to the state

 $S \rightarrow id$.

 $V \rightarrow id$. (* Reduce / Reduce conflict *)

Definition of LR(1) transitions (part 1). Given an LR(1) item

[A
ightharpoonup lpha , $X \gamma$, a], where X is any symbol (terminal), there is

a transition on \boldsymbol{X} to the item

 $[A \rightarrow \alpha X_{\bullet} \ \gamma, a]$

[
$$A \rightarrow \alpha$$
 • $B \gamma$, α], where B is a nonterminal, there are

E-transitions to items

[
$$B o {}_{\:\raisebox{1pt}{\text{\circle*{1.5}}}} \beta, \, b$$
] for every production $B o \beta$ and

for every token b in $First (\gamma a)$.

==

p. 5

$$[A \rightarrow (A), \$]$$

$$[A \rightarrow (A),)$$

$$[A \rightarrow a,)]$$

$$== p.11$$

$$[S \rightarrow .S, \$]$$

$$[S \rightarrow . id, \$]$$

$$[S \rightarrow .V := E, \$]$$

$$[V \rightarrow . Id, :=]$$

This state has a $\,\,shift$ transition on $\underline{id}\,\,$ to the state

$$[S \rightarrow id_{\bullet}, \$]$$

$$[V \rightarrow id_{\bullet}, :=]$$

A grammar is an LR(1) grammar if it results in no ambiguity.

- 1. For any item $[A \rightarrow \alpha . X \beta, a]$ in s with X a terminal, there is no item in s of the form $[B \rightarrow \beta . , X]$; otherwise, there is a shift-reduce conflict.
- 2. There are <u>no two items</u> in s of the form $[A \rightarrow \alpha_{.}, a]$ and $[B \rightarrow \beta_{.}, a]$; otherwise, there is a reduce-reduce conflict.

SLR(1) (= LR(0) + Follow set) If state *s* contains the complete item $A \rightarrow \gamma$, and the next token in the input string is in Follow(*A*), then the action is to reduce by the rule $A \rightarrow \gamma$.

== p. 14 No ambiguity if

- 1. For any item $A \to \alpha$. $X \not \beta$ in s with X a terminal, there is no complete item $B \to \gamma$. in s with X in Follow(B).
- 2. For any two complete items $A \rightarrow \alpha$ and $B \rightarrow \beta$ in β . Follow(A) \cap Follow(B) is empty.

(resolve the shift-reduce conflict.) = p. 30

LALR(1) (= LR(1) \rightarrow merge states which have the same core.)