PROGRAMMING IN HASKELL

Assignment Project Exam Help
https://powcoder.com
Add WeChat powcoder

Equational Reasoning and Induction

Assignment Project Exam Help

Equation per contract the second per contract the seco

Functional Programming

- What is functional programming? Some possible answers:
 - Programming with first colors Exactions p
 - map (\x \https://pow.coder.com ~> [2,3,4]
 - Add WeChat powcoder
 Programming with mathematical functions
 - No side-effects (no global mutable state, no IO)
 - Calling a function with the same arguments, always returns the same output (not true in most languages!)

Reasoning about Purely Functional Programs

- When programs behave as mathematical functions, standard mathematical techniques can be used to reason about signification.
- Such technique
 - Equational reasoning: Interpret programs as equations; substitute equals by equals
 - Structural induction: The use of recursion means that reasoning techniques such as induction are useful.

 Whenever we have a system of mathematical equations, we can use equational reasoning to reason about such equations. Agriexample Project Exam Help

Suppose we want to find the value of x

Using annotated steps we proceed as follows

https://powcoder.com

 Using equational reasoning and structural induction we can show that the Option instance

Assignment Project Exam Help instance Monad Option where return x

None >>= f
(Some x) >>= f f x

satisfies the monad laws:

```
return a >>= k = k a

m >>= return = m

m >>= (\x -> k x >>= h) = (m >>= k) >>= h
```

• First law:

```
return a >>=Aksignment Project Exam Help

[?}

https://powcoder.com

Add WeChat powcoder
```

Second law:

https://powcoder.com

Third law:

```
m >>= (\x - \text{\text{x is ignment}} \text{Project Exam Help} \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \
```

Third law:

```
m >>= (\x - \text{\text{x in the Project Exam Help} \in \{\case analysis (or induction) on m\}
2) Case m of Some a some
```

Assignment Project Exam Help

Strute://powcodercomtion

Induction in mathematics

Induction decomposes a proof into two parts:

• Base case(s): Prove that Ptheeproperty Indias for the base cases.

https://powcoder.com

• Inductive step(s): Prove that the property holds for the recursive cases.

Induction in mathematics

The simplest and most common type of induction is induction on natural numbers.

Assignment Project Exam Help

- Base case: Show that the property holds for n = 0. https://powcoder.com
- Inductive step: Assuming that the property holds for n, show that the property holds for n + 1.

In the inductive step, the assumption is called the Induction Hypothesis.

Structural Induction

In functional programming, we can use induction to reason about functions defined over datatypes. For example, given the list Alatatypeent Project Exam Help

```
data [a] = []https://powsoder.com
```

we obtain the following inductive principle:

- Base case: Show that the property holds for xs = [].
- Inductive step: Assuming that the property holds for xs, show that the property holds for (x:xs).

Structural Induction

Consider the map function:

```
map :: (a -> A) signalent Phoject Exam Help
map f [] = [] id x = x
map f (x:xs) = f xttps://ppxcoder.com
```

It should be clear that mapping the identity function returns the same list back:

```
map id xs \equiv xs
```

Can we prove it?

Assignment Project Exam Help

https://powcoder.com

```
map id xs≡{?}2) Assignment Project Exam Help
```

https://powcoder.com

Consider the map function again:

```
map :: (a -> A) signalent Phoject Exam Help
map f [] = []
map f (x:xs) = f xttps://ppxcoder.com

(f . g) x = f (g x)

Add WeChat powcoder
```

• Do you think the following is true?

```
map f (map g xs) \equiv map (f . g) xs — map fusion
```

Can we prove it?

```
map f (map g xs)

={?}

2)

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder
```

Functors

It turns out that the map function, together with the laws:

```
map f (map gass)i snmant(ProjexsExamanolymsion map id xs ≡ xs — map identity https://powcoder.com
```

Can be generalized: dd WeChat powcoder

```
class Functor f where fmap :: (a -> b) -> f a -> f b

— Laws
```

- fmap f (fmap g fa) \equiv fmap (f.g) fa
- fmap id fa ≡ fa

List Functor

Given the map function and our two proofs, it is easy to create an instance for Functor:

Assignment Project Exam Help instance Functor [] where fmap = map https://powcoder.com

Other Functors

Maybe Functor

```
fmap id ma≡{?}1) Assignment Project Exam Help
```

https://powcoder.com

Maybe Functor

Assignment Project Exam Help

https://powcoder.com

1) Consider the definitions:

```
map :: (a ->Ab)igntheht Ptoject Exam Help
map f [] = []
map f (x:xs) = https://apowcoder.com

length :: [a] -> Int
length [] = 0
length (x:xs) = 1 + length xs
```

Prove that:

length (map f xs) \equiv length xs

```
length (map f xs)
■ {Induction on xs}
1) Base case: xs = []
length (map f [])
■ {definition of map}
length []
2) Inductive case ex Exam Help
length (map f (y:ys))powcoder.com
■ {definition of map}
length (f y : map fAyd) WeChat powcoder
■ {definition of length}
1 + length (map f ys)
■ {Induction Hypothesis}
1 + length ys
■ {definition of length}
length (y:ys)
```

2) Consider the definitions:

```
map :: (a ->Ab)ignthent Ptoject Exam Help
map f [] = []
map f (x:xs) = https://apowcoder.com

(++) :: [a] -> [a] -> [a]
[] ++ ys = ys
(x:xs) ++ ys = x : (xs ++ ys)
```

Prove that:

map $f(xs ++ ys) \equiv map f xs ++ map f ys$

```
map f(xs ++ ys)
■ {Induction on xs}
1) Case xs = []
map f([] ++ ys)
■ {definition Assignment Project Exam Help
https://powcoder.com
{definition of ++}
map f ys
[] ++ map f ys Add WeChat powcoder
■ {definition of map}
map f [] ++ map f ys
```

3) Consider the definitions:

```
data Tree a = A.caf h.Fork P.(Jree E)x(TrePla)p

mapT :: (a -> b) httpreepvoque form

mapT f Leaf

mapT f (Fork x I r) = Fork (f x) (mapT f I) (mapT f r)

flatten :: Tree a -> [a]

flatten Leaf

flatten (Fork x I r) = x : flatten I ++ flatten r
```

3) Prove that:

```
mapT id ≡ id Assignment Project Exam Help

mapT f (mapT g xstps://pot/coder.com
```

 $\begin{array}{c} Add \ WeChat \ powcoder \\ flatten \ . \ mapT \ f \ \equiv \ map \ f \ . \ flatten \end{array}$