第2消 600

知识结构刻

数列极限的定义及使用

定义

使用

唯一性

有界性

保号性

收敛的充要条件

归结原则

直接计算法

定义法("先斩后奏")

单调有界准则

证什么

用已知不等式 怎么证

题设给出条件来推证

数列极限的存在性与计算

证什么

夹逼准则

综合题总结

用基本放缩方法 怎么证

题设给出条件来推证

用导数综合

用积分综合

用中值定理综合

用方程(列)综合

用区间(列)综合

用极限综合

一。数列极限的定义及使用

1. 定义

 $\lim x_n = A \Leftrightarrow \forall \varepsilon > 0$, $\exists N > 0$, $\exists n > N$ 时,有 $|x_n - A| < \varepsilon$.

微信公众号 【神灯

7七字高等数学18进生微信公众号【神灯考研】,获取更多考研资源

2. 使用

- ①(是常数)常记 $\lim x_n = A, A$ 是个常数.
- ②(唯一性) A 唯一.
- ③(有界性) $\{x_n\}$ 有界,即 $\exists M > 0, 使 | x_n | \leq M$.
- ④(保号性) 若A > 0,则 $n \to \infty$ 时, $x_n > 0$;若 $n \to \infty$ 时, $x_n \ge 0$,则 $A \ge 0$.
- ⑤(收敛的充要条件)所有子列 $\{x_n\}$ 均收敛于A.

例 2.1 已知
$$a_n = \sqrt[n]{n} - \frac{(-1)^n}{n} (n = 1, 2, \dots), 则 \{a_n\} ($$
).

(A) 有最大值,有最小值

- (B) 有最大值,没有最小值
- (C)没有最大值,有最小值
- (D) 没有最大值,没有最小值

【解】应选(A).

因 $\lim_{n\to\infty} a_n = 1, a_1 = 2 > 1, a_2 = \sqrt{2} - \frac{1}{2} < 1.$ 由于 $\lim_{n\to\infty} (a_n - a_1) < 0, 则 ∃ N_1 > 0, 当 n > N_1$ 时, $a_n < a_1$. 由于 $\lim_{n\to\infty} (a_n - a_2) > 0, 则 ∃ N_2 > 0, 当 n > N_2$ 时, $a_n > a_2$. 取 $N = \max\{N_1, N_2\}$, 当 n > N 时, a_n 不可能是最大、最小值,而前有限项必存在最大、最小值.

【注】(1)最值是比较出来的.

(2) 此题用保号性说明了n > N 后的项没有资格参与比较,故前有限项必有最大、最小值.

例 2.2 设正项数列{x_n}满足

$$x_{n+1} + \frac{1}{x_n} < 2(n = 1, 2, \dots),$$

证明limx,存在,并计算其值.

则 $x_{n+1} < x_n$,即 $\{x_n\}$ 单调减少有下界,所以由单调有界准则知, $\lim_{n \to \infty} x_n$ 存在,记为A,则 $A \ge 0$.

如果
$$A = 0$$
,则令 $n \to \infty$,对题设

$$x_{n+1} + \frac{1}{x_n} < 2(n = 1, 2, \dots)$$

两边取极限得 $+ \infty \leq 2$,矛盾,所以 A > 0.

令 $n \rightarrow \infty$ 对(*)式取极限得

$$\frac{1}{2}\left(A+\frac{1}{A}\right)=1,$$

即 A = 1. 所以 $\lim_{n \to \infty} x_n = 1$.

数列极限的存在性与计算

1. 归结原则

设 f(x) 在 $\mathring{U}(x_0,\delta)$ 内有定义,则 $\lim_{x\to x_0} f(x) = A$ 存在 \Leftrightarrow 对任何 $\mathring{U}(x_0,\delta)$ 内以 x_0 为极限的数列 $\{x_n\}(x_n\neq x_0)$,极限 $\lim_{x\to x_0} f(x_n) = A$ 存在.

常考的是:若 $\lim_{x\to x_0} f(x) = A$,则当 $\{x_n\}$ 以 x_0 为极限,且 $x_n \neq x_0$ 时,有 $\lim_{n\to\infty} f(x_n) = A$.

如:① 当
$$x \to 0$$
 时,取 $x_n = \frac{1}{n}$,即若 $\lim_{x \to 0} f(x) = A$,则 $\lim_{n \to \infty} f\left(\frac{1}{n}\right) = A$.

② 当
$$x \to +\infty$$
 时,取 $x_n = n$,即若 $\lim_{x \to +\infty} f(x) = A$,则 $\lim_{n \to \infty} f(n) = A$.

③ 当
$$x_n \rightarrow a$$
,且 $x_n \neq a$ 时,若 $\lim_{n \to \infty} f(x) = A$,则 $\lim_{n \to \infty} f(x_n) = A$.

$$\lim_{n\to\infty} \sqrt{n} (\sqrt[n]{n} - 1) = \underline{\qquad}.$$

【解】应填 0.

当
$$x \to +\infty$$
 时, $\sqrt[x]{x} - 1 = e^{\frac{1}{x} \ln x} - 1 \sim \frac{1}{x} \ln x$,于是
$$\lim_{x \to +\infty} \sqrt{x} (\sqrt[x]{x} - 1) = \lim_{x \to +\infty} \sqrt{x} \cdot \frac{1}{x} \ln x = \lim_{x \to +\infty} \frac{1}{\sqrt{x}} \ln x$$

$$\frac{\diamondsuit \sqrt{x} = t}{t} \lim_{t \to +\infty} \frac{2 \ln t}{t} \frac{\text{路必达法则}}{t} 2 \lim_{t \to +\infty} \frac{1}{t} = 0.$$

由归结原则, $\lim_{n\to\infty} \sqrt{n} (\sqrt[n]{n} - 1) = 0$.

→上述常考的②

2. 直接计算法

例 2.4 已知
$$\frac{a'_n(x)}{\cos x} = \sum_{k=1}^n (k+1)\sin^k x, x \in \left[0, \frac{\pi}{2}\right), a_n(0) = 0, 则 \lim_{n \to \infty} a_n(1) =$$

【解】应填
$$\frac{\sin^2 1}{1-\sin 1}$$
.

由于
$$a'_n(x) = \cos x \cdot \sum_{k=1}^n (k+1)\sin^k x$$
,故
$$a_n(1) - a_n(0) = \int_0^1 a'_n(x) dx = \int_0^1 [2\sin x + 3\sin^2 x + \dots + 3\cos^2 x + \dots +$$

$$a_n(1) - a_n(0) = \int_0^1 a'_n(x) dx = \int_0^1 \left[2\sin x + 3\sin^2 x + \dots + (n+1)\sin^n x \right] d(\sin x)$$

$$= (\sin^2 x + \sin^3 x + \dots + \sin^{n+1} x) \Big|_0^1 = \sin^2 1 + \sin^3 1 + \dots + \sin^{n+1} 1$$

$$= \sin^2 1(1 + \sin 1 + \dots + \sin^{n-1} 1) = \sin^2 1 \cdot \frac{1 - \sin^n 1}{1 - \sin 1}.$$

7七字高等数学18岁往微信公众号【神灯考研】,获取更多考研资源!

由 $0 < \sin 1 < 1, a_n(1) = \frac{\sin^2 1}{1 - \sin 1} \cdot (1 - \sin^n 1)$,两边取极限,得 $\lim_{n \to \infty} a_n(1) = \frac{\sin^2 1}{1 - \sin 1}$.

3. 定义法("先斩后奏")

构造 $|x_n - a|$, 证 $|x_n - a| \rightarrow 0 (n \rightarrow \infty) \rightarrow \lim_{n \rightarrow \infty} x_n = a$.

例 2.5 设 f(x)满足

 $\textcircled{1}a \leqslant f(x) \leqslant b, x \in [a,b];$

② 对任给的 $x,y \in [a,b]$,有 $|f(x)-f(y)| \leq \frac{1}{2}|x-y|$.

又 $\{x_n\}$ 满足 $a \leq x_1 \leq b, x_{n+1} = \frac{1}{2}[x_n + f(x_n)].$

- (1) 证明 f(x) = x 在[a,b] 上有唯一解 c;
- (2) 证明 $\lim_{n\to\infty}x_n=c$.

【证】(1) 先证 f(x) 的连续性. $\forall x, x_0 \in [a,b]$, 有 $0 \le |f(x) - f(x_0)| \le \frac{1}{2} |x - x_0|$, 又

$$\lim_{x \to x_0} \frac{1}{2} |x - x_0| = 0,$$

$$\lim_{x \to x_0} |f(x)| = 0 \Leftrightarrow \lim_{x \to \infty} f(x) = 0$$

故由夹逼准则知 $\lim_{x\to x_0} |f(x)-f(x_0)|=0$,即 $\lim_{x\to x_0} f(x)=f(x_0)$,即 f(x) 在[a,b] 上连续.

再证 c 的存在性. 令 F(x) = f(x) - x, $x \in [a,b]$, 则 $F(a) = f(a) - a \ge 0$, $F(b) = f(b) - b \le 0$.

当F(a) = 0时,可取c = a;

当 F(b) = 0 时,可取 c = b;

当 $F(a)F(b) \neq 0$ 时,即 F(a)F(b) < 0,由零点定理知,存在 $c \in (a,b)$,使得 F(c) = 0. 最后证 c 的唯一性. 若 c 不唯一,设 $d \in [a,b]$,且 $d \neq c$,使得 F(d) = 0,则由题设有

$$|f(c)-f(d)| \leq \frac{1}{2} |c-d|,$$

但 f(c) = c, f(d) = d, 即 | f(c) - f(d) = |c - d|, 矛盾, 于是 c 唯一.

(2)
$$x_{n+1} - c = \frac{1}{2} [x_n + f(x_n)] - \frac{1}{2} [c + f(c)]$$

$$= \frac{1}{2} (x_n - c) + \frac{1}{2} [f(x_n) - f(c)],$$

从而 $|x_{n+1}-c| \leqslant \frac{1}{2} |x_n-c| + \frac{1}{2} |f(x_n)-f(c)|$

 $\leqslant \frac{1}{2} \mid x_n - c \mid + \frac{1}{2} \cdot \frac{1}{2} \mid x_n - c \mid$

 $=\frac{3}{4} \mid x_n - c \mid$,

故

20

$$0 \leqslant |x_{n+1} - c| \leqslant \frac{3}{4} |x_n - c| \leqslant \left(\frac{3}{4}\right)^2 |x_{n-1} - c| \leqslant \cdots \leqslant \left(\frac{3}{4}\right)^n |x_1 - c|.$$

而 $\forall x_1 \in [a,b]$,都有 $\lim_{n\to\infty} \left(\frac{3}{4}\right)^n \mid x_1-c\mid =0$,故由夹逼准则,有 $\lim_{n\to\infty} x_n=c$.

4. 单调有界准则

若 $\{x_n\}$ 单调增加(减少)且有上界(下界),则 $\lim x_n = a$ (存在).

- (1) 证什么.
- ① 单调是证: x_{n+1} 与 x_n 的大小关系.
- ② 有界是证: $\exists M > 0$, 使得 $|x_n| \leq M$.
- (2) 怎么证.

主要有两种证法.

- ① 用已知不等式.
- a. $\forall x \ge 0$, $\sin x \le x$, 如考 $x_{n+1} = \sin x_n \le x_n$, $\{x_n\}$ 单调减少;
- b. $\forall x, e^x \ge x + 1,$ 如考 $x_{n+1} = e^{x_n} 1 \ge x_n, \{x_n\}$ 单调增加;
- c. $\forall x > 0, x 1 \ge \ln x,$ 如考 $x_{n+1} = \ln x_n + 1 \le x_n, \{x_n\}$ 单调减少;

d.
$$a,b > 0, \sqrt{ab} \leqslant \frac{a+b}{2},$$
 如考 $x_{n+1} = \sqrt{x_n(3-x_n)} \leqslant \frac{x_n+3-x_n}{2} = \frac{3}{2}, \{x_n\}$ 有上界.

② 题设给出条件来推证.

例 2.6 设数列
$$\{x_n\}$$
 满足 $0 < x_n < \frac{\pi}{2}, \cos x_{n+1} - x_{n+1} = \cos x_n, n = 1, 2, \cdots$.

- (1) 证明 limx, 存在并求其值;
- (2) 计算 $\lim_{n\to\infty}\frac{x_{n+1}}{x_n^2}$.

(1) [证]
$$\cos x_{n+1} - \cos x_n = x_{n+1} > 0$$
,且 $0 < x_n < \frac{\pi}{2}$,故有 $0 < x_{n+1} < x_n$,于是 $\{x_n\}$ 单

调减少且有下界, $\lim_{n\to\infty} x_n = \frac{\overline{fat}}{il} a$. 在 $\cos x_{n+1} - x_{n+1} = \cos x_n$ 两边取极限,有 $\cos a - a = \cos a$,得 a = 0. 于是 $\lim_{n\to\infty} x_n = 0$.

$$(2) \left[\frac{x}{n} \right] \lim_{n \to \infty} \frac{x_{n+1}}{x_n^2} = \lim_{n \to \infty} \frac{1 - \cos x_n}{x_n^2} \cdot \frac{x_{n+1}}{1 - \cos x_n} = \frac{1}{2} \lim_{n \to \infty} \frac{x_{n+1}}{1 - \cos x_{n+1} + x_{n+1}} = \frac{1}{2}.$$

【注】这种命题将函数的具体性质与抽象理论相结合,较好地考查了考生的数学水平,还可进一步发挥:

(1) 将单通项 x, 改成双通项 a, 与 b,..

设
$$0 < a_n < \frac{\pi}{2}, 0 < b_n < \frac{\pi}{2}, \cos a_n - a_n = \cos b_n$$
,且 $\lim_{n \to \infty} b_n = 0$,则由 $\cos a_n - \cos b_n = a_n > 0$

0,知 $0 < a_n < b_n$,由夹逼准则,得 $\lim a_n = 0$,且

7七年高等数学18岁往微信公众号【神灯考研】,获取更多考研资源!

$$\lim_{n \to \infty} \frac{a_n}{b_n^2} = \lim_{n \to \infty} \frac{1 - \cos b_n}{b_n^2} \cdot \frac{a_n}{1 - \cos b_n} = \frac{1}{2} \lim_{n \to \infty} \frac{a_n}{1 - \cos a_n + a_n} = \frac{1}{2}.$$

与上述例题如出一辙.

(2) 将函数 cos x 改成 e^x.

设 $x_n > 0$, $e^{x_n} - x_n = e^{x_{n+1}}$ (或更具迷惑性地写成 $\ln(e^{x_n} - x_n) = x_{n+1}$),则由 $e^{x_n} - e^{x_{n+1}} = e^{x_n}$

$$\lim_{n \to \infty} \frac{x_n^2}{x_{n+1}} = \lim_{n \to \infty} \frac{x_n^2}{\ln(e^{x_n} - x_n)} = \lim_{n \to \infty} \frac{x_n^2}{e^{x_n} - x_n - 1} = \lim_{n \to \infty} \frac{x_n^2}{\frac{1}{2}x_n^2} = 2.$$

$$e^x = 1 + x + \frac{x^2}{2} + o(x^2)$$

$$e^x - x - 1 \sim \frac{1}{2}x^2(x \to 0)$$

设 $x_1 = 1, x_n = \int_0^1 \min\{x, x_{n-1}\} dx, n = 2, 3, \dots,$ 证明 $\lim_{n \to \infty} x_n$ 存在,并求其值.

[if] $x_2 = \int_0^1 \min\{x, x_1\} dx = \int_0^1 \min\{x, 1\} dx = \int_0^1 x dx = \frac{1}{2}$, by $0 < x_2 < 1$.

$$\frac{x_{3}}{1} = \int_{0}^{1} \min\{x, x_{2}\} dx = \int_{0}^{\frac{1}{2}} \min\{x, \frac{1}{2}\} dx + \int_{\frac{1}{2}}^{1} \min\{x, \frac{1}{2}\} dx
= \int_{0}^{\frac{1}{2}} x dx + \int_{\frac{1}{2}}^{1} \frac{1}{2} dx = \frac{3}{8},$$

故 $0 < x_3 < 1.$ 设 $x_{n-1} \in (0,1),则$

设
$$x_{n-1} \in (0,1)$$
,则
$$x_n = \int_0^1 \min\{x, x_{n-1}\} dx$$

$$= \int_0^1 \min\{x, x_{n-1}\} dx + \int_{x_{n-1}}^1 \min\{x, x_{n-1}\} dx$$

$$= \int_0^x \int_0^x \min\{x, x_{n-1}\} dx + \int_{x_{n-1}}^1 \min\{x, x_{n-1}\} dx$$

$$= \int_0^x \int_0^x x dx + \int_{x_{n-1}}^1 x_{n-1} dx$$

$$= \frac{x_{n-1}^2}{2} + x_{n-1} (1 - x_{n-1}) = x_{n-1} - \frac{x_{n-1}^2}{2},$$

所以 $0 < x_n < 1$, $\{x_n\}$ 有界.且 $x_n = x_{n-1} - \frac{x_{n-1}}{2} < x_{n-1}$, $\{x_n\}$ 单调减少,由单调有界准则知,

F(x)

图 2-1

其极限存在.

记
$$\lim_{n\to\infty} x_n = A$$
,则有 $A = A - \frac{A^2}{2}$,解得 $A = 0$,即 $\lim_{n\to\infty} x_n = 0$.

【注】本题计算 x_3 是为了使读者容易理解,事实上,由第一数学归纳法, x_3 的计算可以不写.

(1) 证明方程 $x = 2\ln(1+x)$ 在(0,+∞) 内有唯一实根 ξ ;

(2) 对于(1) 中的 ξ ,任取 $x_1 > \xi$,定义 $x_{n+1} = 2\ln(1+x_n)$, $n = 1, 2, \dots$,证明 $\lim x_n$ 存在,并 求其值.

[证](1) 令
$$F(x) = x - 2\ln(1+x), x > 0,$$
则

$$F'(x) = 1 - \frac{2}{1+x} = \frac{x-1}{1+x},$$

令 F'(x) = 0, 得 x = 1 是唯一驻点, 且当 0 < x < 1 时, F'(x) < 0; 当 x > 1 时,F'(x) > 0.

$$F(0) = 0, F(1) = 1 - 2\ln 2 < 0,$$

 $\lim [x - 2\ln(1+x)] = +\infty > 0,$

如图 2-1 所示,所以 F(x) 在(0,1) 内无零点,在(1,+ ∞) 内有唯一零 点 ξ ,故原方程在(0, + ∞) 内有唯一实根 ξ .

$$x_1 > 2\ln(1+x_1) = x_2 > 2\ln(1+\xi) = \xi,$$

即 $x_1 > x_2 > \xi$.

$$\{x_1 > \xi, \pm 2\ln(1+x_1) > 2\ln(1+\xi)\}$$
 假设 $x_{n-1} > x_n > \xi$ 成立,则有 $x_1 > \xi, \pm 2\ln(1+x_1) > 2\ln(1+\xi)$

$$x_n > 2\ln(1+x_n) = x_{n+1} > 2\ln(1+\xi) = \xi$$

即 $x_n > x_{n+1} > \xi$. 于是 $\{x_n\}$ 单调减少且有下界 ξ . $x_n > \xi$, 故 $2\ln(1+x_n) > 2\ln(1+\xi)$

故 $\lim x_n$ 存在,记为 a,在 $x_{n+1} = 2\ln(1 + x_n)$ 两边取极限,有 $a = 2\ln(1 + a)$,由(1)可

【注】读者可画出如图 2-2 所示的情形,加深理解.

7七年高等数学18游生微信公众号【神灯考研】,获取更多考研资源!

例 2.9 设
$$f_n(x) = \cos x + \cos^2 x + \dots + \cos^n x (n = 1, 2, \dots)$$
.

(1) 证明:对于每个n,方程 $f_n(x)=1$ 在 $\left[0,\frac{\pi}{3}\right]$ 内有且仅有一个实根 x_n ;

(2) 证明 $\lim x_n$ 存在,并求其值.

【证】(1) 设函数 $F_n(x) = f_n(x) - 1(n = 1, 2, \dots)$,则

$$F_n(0) = n - 1 \ge 0$$
,

$$F_{n}\left(\frac{\pi}{3}\right) = \frac{\cos\frac{\pi}{3}\left(1 - \cos^{n}\frac{\pi}{3}\right)}{1 - \cos\frac{\pi}{3}} - 1 < \frac{\cos\frac{\pi}{3}}{1 - \cos\frac{\pi}{3}} - 1 = 0.$$

方程列 $\{f_n(x)=1\}$:

 $f_1(x) = 1$, 其根为x;

 $f_2(x)=1$, 其根治 x_2 ;

.....

 $f_n(x)=1$, 其根为 x_n ;

这些根成为数列{x_,}.

所以由零点定理知, $F_n(x)$ 在 $\left[0,\frac{\pi}{3}\right]$ 内至少有一个零点.又因为

$$F'_n(x) = -\sin x (1 + 2\cos x + \dots + n\cos^{n-1}x) < 0, x \in (0, \frac{\pi}{3}),$$

所以 $F_n(x)$ 在 $\left[0,\frac{\pi}{3}\right)$ 内严格单调减少,从而 $F_n(x)$ 在 $\left[0,\frac{\pi}{3}\right)$ 内有且仅有一个零点,即对于每个 n,方程 $f_n(x)=1$ 在 $\left[0,\frac{\pi}{3}\right)$ 内有且仅有一个实根 x_n .

(2) 由(1) 可知,显然 $x_1 = 0, x_2 \in \left(0, \frac{\pi}{3}\right)$. 由于 x_n 是方程 $f_n(x) = 1$ 在 $\left[0, \frac{\pi}{3}\right)$ 内的实根,则 $F_n(x_n) = 0$,且当 $n \ge 2$ 时,有

$$F_n(x_{n-1}) = \cos x_{n-1} + \cos^2 x_{n-1} + \dots + \cos^n x_{n-1} - 1$$
$$= \cos^n x_{n-1} + F_{n-1}(x_{n-1}) = \cos^n x_{n-1} > 0.$$

由(1)可知 $F_n(x)$ 在 $\left[0,\frac{\pi}{3}\right)$ 内严格单调减少,从而 $x_{n-1} < x_n$,即 $\{x_n\}$ 是单调增加数列,又

由于 $0 \le x_n < \frac{\pi}{3}$,所以 $\{x_n\}$ 收敛.记 $\lim_{n \to \infty} x_n = a$.

月记常数
$$q = \cos x_2$$
, $0 < q < 1$, 故 $\lim_{n \to \infty} \cos^n x_2 = \lim_{n \to \infty} q^n = 0$.

注意到 $0 < x_2 < x_n < \frac{\pi}{3} (n > 2)$,所以 $0 < \cos x_n < \cos x_2 < 1$,于是由夹逼准则,有

$$\lim_{n\to\infty}\cos^n x_n = 0, \, \exists a \in \left(0, \frac{\pi}{3}\right]. \, \forall 0 < x_2 < x_n < \frac{\pi}{3} \Rightarrow 0 < x_2 \leq \lim_{n\to\infty} x_n \leq \frac{\pi}{3} \Rightarrow 0 < a \leq \frac{\pi}{3}$$

$$1 = f_n(x_n) = \cos x_n + \cos^2 x_n + \dots + \cos^n x_n = \frac{\cos x_n (1 - \cos^n x_n)}{1 - \cos x_n},$$

$$1 = \frac{\cos a}{1 - \cos a},$$

解得
$$\cos a = \frac{1}{2}$$
,因此 $a = \frac{\pi}{3}$,即

 $\lim_{n\to\infty} x_n = \frac{\pi}{3}.$

【注】当0 < q < 1且q为常数时,必有 $\lim q^n = 0$.若q不是常数,即使0 < q < 1,也未必有

$$\lim_{n\to\infty} q^n = 0, \, \text{for } q = 1 - \frac{1}{n}, \, \text{film} \left(1 - \frac{1}{n}\right)^n = e^{\lim_{n\to\infty} n \cdot \left(-\frac{1}{n}\right)} = e^{-1} \neq 0.$$

例 2.10 (1) 证明方程 $\tan x = x$ 在 $\left(n\pi, n\pi + \frac{\pi}{2}\right)$ 内存在实根 $\xi_n, n = 1, 2, 3, \cdots$;

(2) 求极限 $\lim_{n\to\infty}(\xi_{n+1}-\xi_n)$.

(1) [iii]
$$\Rightarrow f(x) = \tan x - x, x \in \left[n\pi, n\pi + \frac{\pi}{2}\right),$$

 $n=1,2,3,\cdots,y=\tan x$ 的图像如图 2-3 所示.因 $f(n\pi)=\tan n\pi-n\pi=-n\pi<0,$ $\lim_{x\to \left(n\pi+\frac{\pi}{2}\right)^{-}}(\tan x-x)=+\infty>0,$

区间列 $(n\pi, n\pi + \frac{\pi}{2})$: 在 $(\pi, \pi + \frac{\pi}{2})$ 内的根为 ξ_1 ; 在 $(2\pi, 2\pi + \frac{\pi}{2})$ 内的根为 ξ_2 ; ……; 在 $(n\pi, n\pi + \frac{\pi}{2})$ 内的根为 ξ_3 ; …… 这些根成为数列 $\{\xi_n\}$.

故存在 $x_n \in \left(n\pi, n\pi + \frac{\pi}{2}\right)$,使得 $f(x_n) > 0$.由零点定理知,存在

$$\xi_n \in (n\pi, x_n) \subset \left(n\pi, n\pi + \frac{\pi}{2}\right),$$

使得 $f(\xi_n) = 0$.

(2) 【解】当
$$n \to \infty$$
 时,由于 $\xi_n \in \left(n\pi, n\pi + \frac{\pi}{2}\right)$,则 $\lim_{n \to \infty} \xi_n =$

$$+\infty$$
,且 $\frac{\pi}{2}$ < ξ_{n+1} - ξ_n < $\frac{3}{2}\pi$,有界,又

$$\tan(\xi_{n+1} - \xi_n) = \frac{\tan \xi_{n+1} - \tan \xi_n}{1 + \tan \xi_{n+1} \cdot \tan \xi_n}$$

$$= \frac{\pm (1)}{1 + \xi_{n+1} - \xi_n} \frac{\xi_{n+1} - \xi_n}{1 + \xi_{n+1} \cdot \xi_n},$$

由
$$a < y < b, c < x < d \Rightarrow a - d < y - x < b - c$$
,于是,当
$$(n+1)\pi < \xi_{n+1} < (n+1)\pi + \frac{\pi}{2}, n\pi < \xi_n < n\pi + \frac{\pi}{2}$$
 时,有
$$\frac{\pi}{2} = (n+1)\pi - \left(n\pi + \frac{\pi}{2}\right) < \xi_{n+1} - \xi_n < (n+1)\pi + \frac{\pi}{2} - n\pi = \frac{3}{2}\pi$$

故 $\lim_{n\to\infty} \tan(\xi_{n+1}-\xi_n) = \lim_{n\to\infty} \frac{\xi_{n+1}-\xi_n}{1+\xi_{n+1}\xi_n} = 0$,从而 $\lim_{n\to\infty} (\xi_{n+1}-\xi_n) = \pi$.

5. 夹逼准则

$$\longrightarrow \xi_{n+1} - \xi_n$$
有界, $\frac{1}{1 + \xi_{n+1} \xi_n} \to 0$,有界乘无穷小仍是无穷小.

若① $y_n \leq x_n \leq z_n$;② $\lim_{n \to \infty} y_n = a$, $\lim_{n \to \infty} z_n = a$,则 $\lim_{n \to \infty} x_n = a$.这里①中无须验证等号;②中a 可为 0,c($c \neq 0$) 或 ∞ .

- (1) 证什么.
- ① 对 x_n 放缩: $y_n \leq x_n \leq z_n$.
- ②取极限.
- (2) 怎么证.

主要有两种证法:

① 用基本放缩方法.

$$n \cdot u_{\min} \leq u_1 + u_2 + \dots + u_n \leq n \cdot u_{\max}$$
,
当 $u_i \geq 0$ 时, $1 \cdot u_{\max} \leq u_1 + u_2 + \dots + u_n \leq n \cdot u_{\max}$.

微信公众号【神灯考研】

考研人的精神家园

7七年高等数学183性微信公众号【神灯考研】,获取更多考研资源)

② 题设给出条件来推证.

例 2.11 (1) 当
$$0 < x < \frac{\pi}{2}$$
 时,证明 $\sin x > \frac{2}{\pi}x$;

(2) 设数列 $\{x_n\}$, $\{y_n\}$ 满足 $x_{n+1} = \sin x_n$, $y_{n+1} = y_n^2$, $n = 1, 2, 3, \cdots$, $x_1 = y_1 = \frac{1}{2}$,当 $n \to \infty$ 时,证明 y_n 是比 x_n 高阶的无穷小量.

【证】(1) 设
$$f(x) = \sin x - \frac{2x}{\pi}, x \in \left(0, \frac{\pi}{2}\right), 则$$

$$f'(x) = \cos x - \frac{2}{\pi}, f''(x) = -\sin x < 0,$$

所以曲线 $f(x) = \sin x - \frac{2x}{\pi}$ 在 $\left(0, \frac{\pi}{2}\right)$ 内是凸的,又 $f(0) = f\left(\frac{\pi}{2}\right) = 0$,所以 $f(x) = \sin x - \frac{2x}{\pi} > 0$,即

$$\sin x > \frac{2x}{\pi}.$$

(2) 首先, $x_{n+1} = \sin x_n < x_n$, $x_n > 0$,由单调有界准则,知 $\lim_{n \to \infty} x_n = \frac{fat}{ith} a$,于是 $a = \sin a$,得a = 0.

 $y_{n+1} = y_n^2 < y_n$, $0 < y_n \le \frac{1}{2} < 1$, 由单调有界准则,知 $\lim_{n \to \infty} y_n = \frac{fat}{it}$, 于是 $b = b^2$, 得 b = 0. (因保号性,舍去 b = 1)

又由(1),当0\frac{\pi}{2}时,有 sin
$$x>\frac{2}{\pi}x$$
,且 $y_{n+1}=y_n^2=y_n\cdot y_n\leqslant \frac{1}{2}y_n$,于是

$$0 < \frac{y_{n+1}}{x_{n+1}} = \frac{y_n^2}{\sin x_n} < \frac{\frac{1}{2}y_n}{\frac{2}{x_n}} = \frac{\pi}{4} \cdot \frac{y_n}{x_n} < \left(\frac{\pi}{4}\right)^2 \cdot \frac{y_{n-1}}{x_{n-1}} < \dots < \left(\frac{\pi}{4}\right)^n \cdot \frac{y_1}{x_1} = \left(\frac{\pi}{4}\right)^n.$$

又 $\lim_{n\to\infty} \left(\frac{\pi}{4}\right)^n = 0$,由夹逼准则,有 $\lim_{n\to\infty} \frac{y_{n+1}}{x_{n+1}} = 0$,故 y_n 是比 x_n 高阶的无穷小量.

考生应熟悉 $a_{n+1} < ka_n < k^2 a_{n-1} < \cdots < k^n a_1$ 这种连续放缩方法 (压缩映射)

6. 综合题总结

数列极限的存在性与计算问题可与很多经典知识综合,故常作为压轴题出现在试卷中,考生应多作总结,看看这些综合的点在哪里,打通它们,建立知识结构,便有思路了,比如可作如下总结.

- ① 用导数综合.
- ② 用积分综合.
- ③用中值定理综合.
- ④ 用方程(列)综合.
- ⑤ 用区间(列)综合.
- ⑥ 用极限综合.

微信公众号【神灯考研】 考研人的精神家园