©צוות קורס "תורת המספרים האלגוריתמית" סמסטר א תש"ף: בר אלון, מיכאל פרי, שמואל שמעוני, איברהים שאהין דורון מור,ד"ר חיה קלר,ד"ר אלעד אייגנר

אוניברסיטת אריאל

משפט החלוקה

משפט החלוקה:

אם a=bq+r שלמים יחידים כך שb=0 שלמים יחידים כך שa=0 אם a=bq+r

<u>דוגמה: (נעשתה בהרצאה)</u>

 $.3|a^3 - a|$ יהי שלם. אזי

כדי לראות זאת, קודם נשים לב כי מתקיים:

חורב. נכתב ע"י בר אלון, נערך ע"י שמואל שמעוני.

$$a^{3} - a = a(a^{2} - 1) = (a - 1)a(a + 1)$$

לפי משפט החלוקה, קיים $k\in\mathbb{Z}$ כך ש:

$$a = 3k + 2$$
 או $a = 3k + 1$ או $a = 3k$

: נבדוק את כל שלושת המקרים

ו. אם
$$a = 3k$$
 אז

$$a^3 - a = a(a^2 - 1) = 3k(a^2 - 1)$$

מתחלק ב-3.

ולכן
$$a-1=3k$$
 אז $a=3k+1$ אם .2 $a^3-a=a(a-1)(a+1)=a\cdot 3k\cdot (a+1)$ מתחלק ב-3.

$$a+1=3k+3=3(k+1)$$
 אם $a=3k+2$ אם .3
$$a^3-a=a(a-1)(a+1)=a(a-1)\cdot 3\cdot (k+1)$$
 מתחלק ב-3.

אוניברסיטת אריאל

באופן דומה ניתן להסיק את הטענה הבאה.

חורב. נכתב ע"י בר אלון, נערך ע"י שמואל שמעוני.

:טענה

b יהי של מהם כפולה אחד מהם עוקבים, לפחות של מבין כל b שלמים עוקבים. $b \in \mathbb{N}$

<u>תרגיל:</u>

הוכיחו כי המכפלה של כל שלושה מספרים שלמים עוקבים מתחלקת ב-6.

פתרון:

 $n \cdot 6 | (n-1) \cdot n \cdot (n+1)$ יהי $n \in \mathbb{Z}$ יהי

אז לכל n_1,\ldots,n_r טבעיים זרים בזוגות, m טבעי ו- n_1,\ldots,n_r אם n_1,\ldots,n_r טבעיים זרים בזוגות, $n_1 \cdots n_r \mid m$ בהרצאה הוכחנו את זה עבור $n_1 \cdots n_r \mid m$ בתזכורת הזו רק במקרה של $n_1 \cdots n_r \mid m$ יחד עם זאת, התזכורת אכן נכונה גם לכל $n_1 \cdots n_r \mid m$ טבעי וניתן להוכיח זאת באינדוקציה, תוך שימוש במקרה $n_1 \cdots n_r \mid m$

מכיוון ש- 2,3 זרים, לפי התזכורת, די שנראה כי $(n-1)\cdot n\cdot (n+1)$ וכי מכיוון ש- 3,3 זרים, לפי התזכורת, די שנראה כי $(n-1)\cdot n\cdot (n+1)$

אם n זוגי: אזי $(n+1)\cdot n\cdot (n+1)\cdot 2$ כי n+1 כי n/2 אחרת n אי זוגי): אז n+1 וגם n-1 וגם n-1 ומכאן n+1 אחרת n+1: אחרת n+1: נשתמש בדוגמה מהעמוד הקודם שהוכחה בהרצאה, בה הראינו כי מכפלת כל שלושה שלמים עוקבים מתחלקת ב-3. לכן n+1: n+1:

6 קיבלנו כי גם 2 וגם 3 מחלקים את $n \cdot (n+1) \cdot n \cdot (n+1)$. לכן מהתזכורת נובע ש גם מחלק את המכפלה הזו.

תרגיל:

 $ac|bc \Leftrightarrow a|b$:אזי: a,b שלמים שונים מb אזי: a,b הוכיחו

הוכחה:

ac|bc צ"ל a|b נתון

ac|bc ונובע bc=ack לכן b=ak - פך ש $k\in\mathbb{Z}$ ונובע $k\in\mathbb{Z}$

©צוות קורס "תורת המספרים האלגוריתמית" סמסטר א תש"ף:

בר אלון, מיכאל פרי, שמואל שמעוני, איברהים שאהין דורון מור,ד"ר חיה קלר,ד"ר אלעד אייגנר חורב. נכתב ע"י בר אלון, נערך ע"י שמואל שמעוני.

a|b צ"ל ac|bc <u>כיוון ב:</u> נתון

b=ka ולכן קיים $k\in\mathbb{Z}$ כך שbc=kac הוכחה: ac|bc.a|b

:תרגיל

-ו q שלמים שלמים שלמים . $b \nmid a$ יהיו b -ו שלמים שלמים שלמים b -ו ו-|p| < b כך ש a = bq + p כאשר a = bq + p כך ש

: אינטואיציה

נתבונן בדוגמא a=23,b=3 ונקבל a=23,b=3 כלומר, קיבלנו שארית זוגי? נהפוך את ה7ל8ואז אוגי? נהפוך את ה7ל8ואז 23 = 3 * 8 + (-1) ה"שארית" תהיה שלילית ואי זוגית

<u>הוכחה</u>

על פי משפט החלוקה, ניתן לכתוב t + t = bs + t, כאשר s ו- t שלמים וגם .0 < t < b

(נשים לב: t>0 נובע ש $b \nmid a$

p=t ו- q=s אם t אי-זוגי, אז סיימנו. שכן נוכל לקחת

(אי-זוגי, b -נניח אם כן ש- t זוגי מכך שt ומההנחה שb

מתקיים ש - b - אי-זוגי ושלילי.

ניתן לכתוב: (שימו לב שזה בדיוק מה שעשינו באינטואיציה דלעיל...) a = bs + t = (bs + b) + (t - b) = b(s + 1) + (t - b)

$$p = t - b$$
, $q = s + 1$ כעת נגדיר

|t-b|=b-t : שלילי ולכן |t-b|=|t-b|< b אכן, עלינו להראות כי |p| = b - t < b ומכיוון ש- t > 0 נובע כי

כאן השתמשנו בכך ש $|x|=egin{cases} x, & if \ x\geq 0 \ -x, & if \ x< 0 \end{bmatrix}$ כאן השתמשנו בכך ש מוחלט.)

©צוות קורס "תורת המספרים האלגוריתמית" סמסטר א תש"ף: בר אלון, מיכאל פרי, שמואל שמעוני, איברהים שאהין דורון מור,ד"ר חיה קלר,ד"ר אלעד אייגנר חורב. נכתב ע"י בר אלון, נערך ע"י שמואל שמעוני.

 $a \ mod \ b < rac{a}{2}$ יהיו כי מתקיים שלמים. שלמים שלמים 1 ב

 $a \bmod b$ ב- a מסמן את שארית החלוקה של $a \bmod b$

ניתן שתי הוכחות שונות.

<u>הוכחה 1</u>

נכתוב a = bk + r כאשר a = bk + r

 $r = a \bmod b$ כלומר

 $a-bk \geq rac{a}{2}$ נניח בשלילה שr=a-bk - מכיוון ש, $r\geq rac{a}{2}$ - נובע כי

 $a \ge 2bk$ כלומר $a \ge 2bk$ ולכן $a \ge 2bk$ ולכן $a \ge 2bk$ ולכן מתקיים

r < b -ש בסתירה לכך ש $k \geq 1$ ומכיוון ש $r \geq b$ כלומר קיבלנו

הוכחה 2

נכתוב a=bk+r כאשר, כאשר, משר שלם. על פי משפט החלוקה, נחלק מקרים:

 $b \leq \frac{a}{2}$: מקרה ראשון

 $ab > \frac{a}{2}$ מקרה שני:

. ולכן סיימנו $r \leq b-1 \leq \frac{a}{2}-1 < \frac{a}{2}$ ולכן סיימנו $r \leq b-1 \leq \frac{a}{2}-1 < \frac{a}{2}$

a-ם אך קטן מ-a/2 -ם במקרה השני, אנו מחלקים את במספר הגדול מ-

מכיוון ש) r < a/2r = a - b לכן . a = b + r לכן k = 1 ונובע ונובע

. כנדרש. $r = (a \ mod \ b) < \frac{a}{2}$ כנדרש. ($b > \frac{a}{2}$

תרגילי בית:

חורב. נכתב ע"י בר אלון, נערך ע"י שמואל שמעוני.

:1 שאלה

(m א. הוכיחו כל מספר ריבועי (כלומר מספר שניתן להצגה כריבוע של מספר טבעי 4k או 4k+1.

: אם המספר m הוא זוגי אזי הוא מהצורה m=2j אם נעלה אותו בריבוע m=2j וקיבלנו מספר מהצורה $m^2=(2j)^2=4j^2$

: אם המספר m הוא אי זוגי אזי הוא מהצורה m=2j+1 אם המספר m הוא אי זוגי אזי הוא מהצורה m=2j+1 נקבל מספר $(2j+1)^2=4j^2+4j+1=4(j^2+j)+1$

ב. הסיקו מסעיף א' כי אף אחד מהמספרים הבאים אינו ריבועי :..11,111,1111,111

<u>הוכחה:</u> הסדרה הנ"ל מוגדרת ע"י הנוסחה הבאה:

$$a_1 = 11$$

 $a_n = 4 \cdot 25 \cdot 10^{n-2} + a_{n-1} \quad \forall n \ge 2$

נראה באינדוקציה כי כל אברי הסדרה הם מהצורה 4k+3 ולכן לפי הסעיף הקודם אף אחד מהם אינו ריבוע.

 $a_n=4k+3$ הוא מהצורה a_n כלשהו, n כלשהו, נניח כי עבור k'
eq k הוא מהצורה 4k'+3 הוא מהצורה a_{n+1} כמובן

$$a_{n+1} = 4 \cdot 25 \cdot 10^{n-1} + a_n = 4 \cdot 25 \cdot 10^{n-1} + (4k+3) =$$

= $4 \cdot (25 \cdot 10^{n-1} + k) + 3 = 4k' + 3$

כאשר השוויון השני משמאל משתמש בהנחת האינדוקציה.

קבלנו כי כל אברי הסדרה הם מהצורה 4k+3 ולכן לפי הסעיף הקודם אף אחד מהם אינו ריבועי.