Artificial Intelligence 2 – Assignment #2

Nicky Bayat - 251090689

1. Generative Models, Naïve Bayes Classifier [20 points]

a)
$$\rho(Water = warm|Play = yes), \rho(Water = warm|Play = no)$$

$$\rho(Water = warm|Play = yes) = \frac{2}{3}$$

$$\rho(Water = warm|Play = no) = 1$$

b) $\rho(Play = yes|Water = warm), \rho(Play = no|Water = warm)$

$$\rho(Play = yes|Water = warm) = \frac{2}{3}$$

$$\rho(Play = no|Water = warm) = \frac{1}{3}$$

c) $\rho(Play = yes|Forecast = same), \rho(Play = yes|Forecast = change)$

$$\rho(Play = yes|Forecast = same) = \frac{1}{1}$$

$$\rho(Play = yes|Forecast = change) = \frac{1}{2}$$

d) $\rho(Water = warm|Play = yes), \rho(Water = warm|Play = no) * with Laplace smoothing *$

$$\rho(Water = warm|Play = yes) = \frac{2+1}{3+2} = \frac{3}{5}$$

$$\rho(Water = warm|Play = no) = \frac{1+1}{1+2} = \frac{1}{3}$$

- 2. Kernels [30 points]
- a) $k(x,z) = a_1k_1(x,z) a_2k_2(x,z)$ where $a_1a_2 > 0$ are real numbers Not Valid

I first prove that $k(x,z) = \alpha k(x,z)$ is a kernel and then I prove that subtraction of these two kernels is not a valid kernel.

Proof: K (x, z) = $\sum_{i=1}^{m} \alpha_i k_i$ (z, x) is a valid kernel. Because each k_i is a valid kernel function, it is symmetric so $k_i(x,z) = k_i(z,x)$; So:

Positive Semi-definite: Let $u \in \mathbb{R}^n$ be arbitrary. The Gram matrix of K, denoted by G has the property,

$$G_{i,j} = K(x_i, z_j) = \sum_{i=1}^{m} \alpha_i k_i (z, x) \rightarrow G = \alpha_1 G_1 + \dots + \alpha_m G_m$$

Now $u^T G u = u^T (\alpha_1 G_1 + \dots + \alpha_m G_m) u = u^T \alpha_1 G_1 u + \dots + u^T \alpha_m G_m u = \sum_{i=1}^m \alpha_i u^T k_i (z, x) u$

$$u^T G_i u > 0$$
 and $\alpha_i >= 0$, So: $\alpha_i u^T G_i u >= 0$

Now I prove K (x, z) = $k_1(x, z) - k_2(x, z)$ is not a valid kernel:

This equation is symmetric however it is not Positive-Semidefinite; the counter example is:

Suppose Gram matrix associated with k_1 is I_p - the identity matrix and Gram matrix associated with k_2 is $2I_p$ - twice the identity matrix, then k_1 - k_2 = -I which is negative.

For Example:
$$k_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 $k_2 = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$ $k = k_1 - k_2 = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$

Therefore $k(x,z) = a_1k_1(x,z) - a_2k_2(x,z)$ is not a kernel function.

b)
$$k(x,z) = k_1(x,z)k_2(x,z)$$
 Valid

Symmetry:
$$K(z, x) = \sum_{i=1}^{m} k_{i,1}(z, x) k_{i,2}(z, x) = \sum_{i=1}^{m} k_{i,1}(x, z) k_{i,2}(x, z) = K(x, z) = K(x, z) = K(x, z)$$

Positive Semi-definite: Let $u \in \mathbb{R}^n$ be arbitrary. The Gram matrix of K, denoted by G has the property,

$$G_{i,j} = K(x_{i,}z_{j}) = \sum_{i=1}^{m} k_{i,1}(z,x)k_{i,2}(z,x) = G_{1,1}G_{2,1} + \dots + G_{1,m}G_{2,m}$$

$$u^{T}Gu = u^{T}(G_{1,1}G_{2,1} + \dots + G_{1,m}G_{2,m})u = u^{T}G_{1,1}G_{2,1}u + \dots + u^{T}G_{1,m}G_{2,m}u$$

$$= \sum_{i=1}^{m} u^{T}k_{1,i}(z,x)k_{2,i}(z,x)u$$

Since $u^T G_{1,i} u \geq 0$ and $u^T G_{2,i} u \geq 0 \Rightarrow u^T G_{1,m} G_{2,m} u \geq 0$

Therefore, $k(x,z) = k_1(x,z)k_2(x,z)$ is a valid kernel function.

c)
$$k(x,z) = f_1(x)f_1(z) + f_2(x)f_2(z)$$
 Valid

I first prove that adding two valid kernel results in a valid kernel, then I prove k(x, z) = f(x)f(z) is a valid kernel.

Symmetry:
$$K(z, x) = k_1(z, x) + k_2(z, x) = k_1(x, z) + k_2(x, z) = K(x, z) = K(x, z) = K(x, z)$$

Positive Semi-definite: Let $u \in R^n$ be arbitrary. The Gram matrix of K, denoted by G has the property,

$$G_{i,j} = K(x_{i,}z_{j}) = \sum_{i=1}^{m} k_{1}(x_{i}, z_{i}) + k_{2}(x_{j}, z_{j})$$

$$u^{T}Gu = u^{T}(G_{1,1} + G_{2,1} + \dots + G_{1,m} + G_{2,m})u$$

$$= u^{T}G_{1,1}u + u^{T}G_{2,1}u + \dots + u^{T}G_{1,m} + u^{T}G_{2,m}u$$

$$= \sum_{i=1}^{m} u^{T}k_{1,i}(z, x)u + u^{T}k_{2,i}(z, x)u$$

Since $u^T k_{2,i}(z,x) u \ge 0$ and $u^T k_{1,i}(z,x) u \ge 0$ thus: $u^T k_{1,i}(z,x) u + u^T k_{2,i}(z,x) u \ge 0$

Second, I have to prove $k(x,z) = f_1(x)f_1(z)$ is a valid kernel. I do this with finding the φ function such that $k(x,z) = \varphi(x)^T \varphi(x)$

So, if f_1 or f_2 are functions whose transpose is same as themselves, we can consider them a valid φ function for the formula. An example of such function is identity.

$$k(x,z) = f_1(x)f_1(z) = I(x)I(z) = I(x)^TI(z) = \varphi(x)^T\varphi(x)$$

As a result, $k(x,z) = f_1(x)f_1(z) + f_2(x)f_2(z)$ is a valid kernel.

3. PCA and Eigenface [50 points]

This section is implemented in the Jupiter notebook attached. All answers are embedded within the code.