COMP3131/9102: Programming Languages and Compilers

Jingling Xue

School of Computer Science and Engineering The University of New South Wales Sydney, NSW 2052, Australia

http://www.cse.unsw.edu.au/~cs3131

http://www.cse.unsw.edu.au/~cs9102

Copyright @2022, Jingling Xue

Week 3 (1st Lecture): Top-Down Parsing (Revisited)

- Feedback for Assignment 1 (see the feedback video online)
- Revisit First and Follow sets
- Revisit Top-Down Parsing
- Formal Grammars
- Equivalence between Regular Grammars and FAs

A Simple Tool for Computing First and Follow Sets

https://gist.github.com/DmitrySoshnikov/924ceefb1784b30c5ca6

LL(k) Grammar and Parsing

- A grammar is LL(k) if it can be parsed deterministically using k tokens of lookahead
- A formal definition for LL(k) grammars can be found in Grune and Jacobs' book

```
https://dickgrune.com/Books/PTAPG_1st_
Edition/
```

- Grammar 1 in Slide 171 is not LL(k) for any k!
- However, Grammar 2 in Slide 171 is LL(1)
- Only a understanding of LL(1) is required this year

The VC Grammar Is Not LL(1)

- Program: common prefix in its production right-hand sides
- A lots of left-recursive productions

Must eliminate both parsing conflicts to write your recogniser for Assignment 2

Formal Grammar

A grammar G is a quadruple (V_T, V_N, S, P) , where

- V_T : a finite set of terminal symbols or tokens
- V_N : a finite set of nonterminal symbols $(V_T \cap V_N = \emptyset)$
- S: a unique start symbol $(S \in N)$
- P: a finite set of rules or productions of the form:

$$\alpha \to \beta$$
 $(\alpha \neq \epsilon)$

- α is a string of one or more terminals and nonterminals
- $-\beta$ is a string of zero or more terminals and nonterminals

Chomsky's Hierarchy

Depending on $\alpha \rightarrow \beta$, four types of grammars distinguished:

GRAMMAR	Known as	DEFINITION	MACHINE
Type 0	phrase-structure grammar	$\alpha \neq \epsilon$	Turing machine
1 1 1 1	context-sensitive grammar	$ \alpha \le \beta $	linear bounded
	CSGs		automaton
Type 2	context-free grammar	$A{ ightarrow}\alpha$	stack automaton
	CFGs	$A \rightarrow \alpha$	
Type 3	right-linear grammar	$A \rightarrow a \mid aB$	finite automaton
	regular grammars		

Note:

- a is a terminal.
- regular grammars can also be specified by left-linear grammars:

$$A \rightarrow a \mid Ba$$

Relationships between the Four Types of Languages

- Type k language is a proper subset of Type k-1 language.
- The existence of a Type 0 language is proved:

page 228, J. Hopcroft and J. Ullman, *Introduction to Automata Theory, Languages, and Computation*, Addison-Wesley, 1979.

Regular Expressions, Regular Grammars and Finite Automata

- All three are equivalent:
- Example:
 - Regular expression: $[A Za z_{-}][A Za z0 9_{-}]^*$
 - Regular grammar:

```
identifier -> letter | identifier letter | identifier digit
letter -> A|B| ... |Z|a|b| ... |z|_
digit -> 0|1| ... |9
```

– DFA: letter, digit

Limitations of Regular Grammars

- Cannot generate nested constructs
- The following language is not regular

$$L = \{a^n b^n \mid n \geqslant 0\}$$

- But L is context-free: $S \rightarrow \epsilon \mid aSb$
- Regular grammars (expressions) powerful enough for specifying tokens, which are not nested
- By replacing "a" and "b" with "(" and ")", the following $L = \{(^n)^n \mid n \geqslant 0\}$

is not regular

- Formal proof: Pages 180 181 of Red / \$4.2.7 of Purple
- Regular grammars (finite automata) cannot count

Limitations of CFGs

- CFLs only include a subset of all languages
- Examples of non-CFL constructs:
 - An abstraction of variable declaration before use:

$$L_1 = \{wcw \mid \mathbf{w} \text{ is in } (a|b)^*\}$$

where the 1st w represents a declaration and the 2nd its use

- a method called with the right number of arguments:

$$L_2 = \{a^n b^m c^n d^m \mid n \geqslant 1, m \geqslant 1\}$$

where a^n and b^m represent formal parameter lists in two methods with n and m arguments, respectively, and c^n and d^m represent actual parameter lists in two calls to the two methods.

• Can count two but not three:

$$L_3 = \{a^n b^n c^n \mid n \geqslant 0\}$$

Limitations of CFGs (Cont'd)

- L_3 is not context-free
 - The language:

$$L_3 = \{a^n b^n c^n \mid n \geqslant 0\}$$

- The grammar:
- A Context-Sensitive Grammar (CSG) (that is not a CFG) for L_3 :

CSG:		A derivation for aabbcc	
$S \\ S \\ CB \\ bB \\ bC$	$\begin{array}{ccc} \rightarrow & aSBC \\ \rightarrow & abC \\ \rightarrow & BC \\ \rightarrow & bb \\ \rightarrow & bc \end{array}$	$S \implies aSBC$ $\implies aabCBC$ $\implies aabBCC$ $\implies aabbCC$ $\implies aabbCC$	
cC	\rightarrow cc	$\implies aabbcc$	

Why CFGs in Parser Construction?

- Types 0 and 1 are less understood, no simple ways of constructing parsers for them, and parsers for these languages are slow
- Type 3 cannot define recursive language constructs
- Type 2 context-free grammars (CFGs):
 - Easily related to the structure of the language;
 productions give us a good idea of what to expect in the language
 - Close relationships between the productions and the corresponding computations, which is the basis of syntax-directed translation
 - Efficient parsers can be built automatically from CFGs

Equivalence between Regular Grammars and FAs

- Week 1 (2nd Lecture): the equivalence among REs and FAs
- Slides 222 227: NFAs \equiv Regular Grammars

Converting NFAs to Right-Linear Grammars

• The alphabet: the same

where $a \in \sum$ or $a = \epsilon$

- For each state in the NFA, create a nonterminal with the same name.
- The start state will be the start symbol
- Then

TRANSITION	PRODUCTION
$ \begin{array}{c} $	$\implies A \to aB$
A	$\implies A \rightarrow \epsilon$

Example 1

• The DFA:

• The grammar:

$$S \rightarrow 0S$$

$$S \rightarrow 1A$$

$$A \rightarrow 0A$$

$$A \rightarrow 1S$$

$$A \rightarrow \epsilon$$

Example 2

• The NFA:

• The grammar:

$$D \rightarrow C \qquad A \rightarrow aC$$

$$D \rightarrow E \qquad E \rightarrow aF$$

$$C \rightarrow aB \qquad E \rightarrow \epsilon$$

$$C \rightarrow \epsilon \qquad F \rightarrow aE$$

$$B \rightarrow aA$$

Converting Right-Linear Grammars to NFAs

- The alphabet: the same
- For each nonterminal, create a state in the NFA with the same name. The start symbol will be the start state
- Add one new state and make it the only final state \mathcal{F}
- Then

PRODUCTION TRANSITION $A \rightarrow aB \implies A \xrightarrow{a} B \qquad T(A,a) = B$ $A \rightarrow a \implies A \xrightarrow{a} \mathcal{F} \qquad T(A,a) = \mathcal{F}$ where $a \in \Sigma$ or $a = \epsilon$

Example 1

• The grammar:

$$S \rightarrow 0S$$

$$S \rightarrow 1A$$

$$A \rightarrow 0A$$

$$A \rightarrow 1S$$

$$A \rightarrow \epsilon$$

• The NFA:

• This NFA accepts the same language as the one in Slide 223

Example 2

• The grammar:

$$D \rightarrow C \qquad A \rightarrow aC$$

$$D \rightarrow E \qquad E \rightarrow aF$$

$$C \rightarrow aB \qquad E \rightarrow \epsilon$$

$$C \rightarrow \epsilon \qquad F \rightarrow aE$$

$$B \rightarrow aA$$

• The NFA:

• This NFA accepts the same language as the NFA in Slide 224

Reading

- Many online material on computing First and Follow sets
- The Dragon textbook

Next Class: Abstract Syntax Trees (Preparing You for Assignment 3)