Parsing con gramáticas LL(k)

Clase 24

IIC 2223

Prof. Cristian Riveros

Definiciones de prefijos (recordatorio)

Definiciones

$$w|_{k} = \begin{cases} a_{1} \dots a_{n} & \text{si } n \leq k \\ a_{1} \dots a_{k} & \text{si } k < n \end{cases} \qquad L|_{k} = \{w|_{k} \mid w \in L\}$$

$$u \odot_{k} v = (u \cdot v)|_{k} \qquad L_{1} \odot_{k} L_{2} = \{w_{1} \odot_{k} w_{2} \mid w_{1} \in L_{1} \text{ y } w_{2} \in L_{2}\}$$

Los operadores $|_k$ y \odot_k "miran" hasta un prefijo k.

Definición de first $_k$ y follow $_k$ (recordatorio)

Sea $\mathcal{G} = (V, \Sigma, P, S)$ una gramática libre de contexto y $k \ge 1$.

Definiciones

Se define la función $first_k : (V \cup \Sigma)^* \to 2^{\Sigma^{\leq k}}$ tal que, para $\gamma \in (V \cup \Sigma)^*$:

$$first_k(\gamma) = \{u|_k \mid \gamma \stackrel{\star}{\Rightarrow} u\}$$

Se define la función follow $_k:V\to 2^{\sum_\#^{\le k}}$ como:

$$follow_k(X) = \{ w \mid S \stackrel{\star}{\Rightarrow} \alpha X \beta \text{ y } w \in first_k(\beta \#) \}$$

Definición gramáticas LL(k) (recordatorio)

Definición

 $G = (V, \Sigma, P, S)$ es una gramática LL(k) si para todas derivaciones:

- $S \overset{\star}{\underset{\text{lm}}{\Rightarrow}} uY\beta \underset{\text{lm}}{\Rightarrow} u\gamma_1\beta \overset{\star}{\underset{\text{lm}}{\Rightarrow}} uv_1$
- $S \overset{\star}{\underset{\text{lm}}{\Rightarrow}} uY\beta \underset{\text{lm}}{\Rightarrow} u\gamma_2\beta \overset{\star}{\underset{\text{lm}}{\Rightarrow}} uv_2 \quad y$
- $v_1|_k = v_2|_k$

entonces se cumple que $\gamma_1 = \gamma_2$.

Teorema

 $\mathcal G$ es una gramática LL(k) si, y solo si, para todas dos reglas distintas $Y \to \gamma_1, Y \to \gamma_2 \in P$ y para todo $S \overset{\star}{\underset{\operatorname{Im}}{\Rightarrow}} uY\beta$, se tiene que:

$$first_k(\gamma_1\beta) \cap first_k(\gamma_2\beta) = \emptyset$$

Gramáticas LL(k) fuerte (recordatorio)

Sea $G = (V, \Sigma, P, S)$ una gramática libre de contexto y $k \ge 1$.

Definición

 $\mathcal G$ es una gramática $\mathsf{LL}(k)$ fuerte si para todas dos reglas distintas $Y \to \gamma_1, Y \to \gamma_2 \in P$ se tiene que:

$$\operatorname{first}_k(\gamma_1) \odot_k \operatorname{follow}_k(Y) \cap \operatorname{first}_k(\gamma_2) \odot_k \operatorname{follow}_k(Y) = \emptyset$$

Teorema

Una gramática \mathcal{G} es LL(1) si, y solo si, \mathcal{G} es LL(1) fuerte.

¿si \mathcal{G} es LL(k), entonces es LL(k) fuerte?

 ξ si \mathcal{G} es LL(k), entonces es LL(k) fuerte?

Contra-ejemplo

$$G: S \rightarrow aXaa \mid bXba$$

 $X \rightarrow b \mid \epsilon$

Recordatorio: \mathcal{G} es LL(k) si para todas dos reglas distintas $Y \to \gamma_1, Y \to \gamma_2 \in P$ y para todo $S \overset{\star}{\underset{\operatorname{Im}}{\longrightarrow}} uY\beta$, se tiene que:

$$\operatorname{first}_k(\gamma_1\beta) \cap \operatorname{first}_k(\gamma_2\beta) = \emptyset$$

- Si $S \stackrel{\star}{\Rightarrow} aXaa$, entonces $first_2(baa) \cap first_2(aa) = \emptyset$.
- Si $S \stackrel{*}{\underset{\text{lm}}{\Rightarrow}} bXba$, entonces $\text{first}_2(bba) \cap \text{first}_2(ba) = \emptyset$.

Por lo tanto, \mathcal{G} es LL(2).

¿si \mathcal{G} es LL(k), entonces es LL(k) fuerte?

Contra-ejemplo

$$\mathcal{G}: S \rightarrow aXaa \mid bXba$$

 $X \rightarrow b \mid \epsilon$

Recordatorio: \mathcal{G} es una gramática LL(k) fuerte si para todas dos reglas distintas $Y \to \gamma_1, Y \to \gamma_2 \in P$ se tiene que:

$$first_k(\gamma_1) \odot_k follow_k(Y) \cap first_k(\gamma_2) \odot_k follow_k(Y) = \emptyset$$

Si vemos $X \to b$ y $X \to \epsilon$:

$$\begin{aligned} & \operatorname{first}_2(b) \odot_2 \operatorname{follow}_2(X) \cap \operatorname{first}_2(\epsilon) \odot_2 \operatorname{follow}_2(X) \\ &= \{b\} \odot_2 \{aa, ba\} \cap \{\epsilon\} \odot_2 \{aa, ba\} \\ &= \{ba, bb\} \cap \{aa, ba\} \\ &= \{ba\} \end{aligned}$$

... $\vee \mathcal{G}$ no es LL(2) fuerte.

Outline

Algunas consideraciones

Parsing de LL(k)

Outline

Algunas consideraciones

Parsing de LL(k)

Problema con gramáticas LL(k)

Considere la siguiente gramática

$$\begin{array}{cccc} S & \rightarrow & Xa \mid Xb \\ X & \rightarrow & c \end{array}$$

¿es esta gramática del tipo LL(1)?

Problemas de factorización

Solución (factorización)

En general, si tenemos una regla:

$$X \rightarrow \gamma \alpha_1 \mid \gamma \alpha_2$$

siempre podemos "factorizar" la regla manteniendo la semántica, como:

$$\begin{array}{ccc} X & \rightarrow & \gamma X' \\ X' & \rightarrow & \alpha_1 \mid \alpha \end{array}$$

Otro problema con gramáticas LL(k)

$$\begin{array}{c} \underbrace{S} \stackrel{\star}{\underset{\text{im}}{\longrightarrow}} uY\beta \underset{\text{im}}{\Rightarrow} u\gamma_1\beta \underset{\text{im}}{\stackrel{\star}{\Rightarrow}} uv_1 \\ \underbrace{S} \stackrel{\star}{\underset{\text{im}}{\Rightarrow}} uY\beta \underset{\text{im}}{\Rightarrow} u\gamma_2\beta \underset{\text{im}}{\stackrel{\star}{\Rightarrow}} uv_2 \\ \underbrace{V}_1|_k = V_2|_k \\ \end{array} \right) \quad \text{entonces} \quad \gamma_1 = \gamma_2.$$

Considere la siguiente gramática:

$$E \rightarrow E * E \mid n$$

¿es esta gramática del tipo LL(1)? ¿LL(k)?

...¿cuál es el problema con esta gramática?

Problema con recursión por la izquierda

Definición (recordatorio)

Una gramática G se dice recursiva por la izquierda si existe $X \in V$ tal que:

$$X \stackrel{+}{\Rightarrow} X \gamma$$
 para algún $\gamma \in (V \cup \Sigma)^*$

Teorema

Si $\mathcal{G} = (V, \Sigma, P, S)$ es una gramática reducida y recursiva por la izquierda, entonces \mathcal{G} NO es LL(k) para todo $k \ge 1$.

¿qué podemos hacer si $\mathcal G$ es recursiva por la izquierda?

Problema con recursión por la izquierda

Teorema

Si $\mathcal{G} = (V, \Sigma, P, S)$ es una gramática reducida y recursiva por la izquierda, entonces \mathcal{G} NO es LL(k) para todo $k \ge 1$.

Demostración

Por simplicidad, suponga que $X \to X\beta \in P$ y $X \to w \in P$.

Como \mathcal{G} es reducida, entonces existe una derivación $S \stackrel{\star}{\Rightarrow} uX\gamma$.

$$S \stackrel{\star}{\underset{\operatorname{Im}}{\Rightarrow}} uX\gamma \Rightarrow \stackrel{n\text{-veces}}{\cdots} \Rightarrow uX\beta^n\gamma$$

Por **contradicción**, suponga que G es LL(k). Por lo tanto:

$$first_k(X\beta^{n+1}\gamma) \cap first_k(w\beta^n\gamma) = \emptyset$$

Suponga que $\beta \stackrel{\star}{\Rightarrow} v \in \Sigma^*$ y $\gamma \stackrel{\star}{\Rightarrow} v' \in \Sigma^*$. Con n = k, tendremos que:

$$(wv^kv')|_k \in first_k(X\beta^{k+1}\gamma) \cap first_k(w\beta^k\gamma)$$

Eliminación de recursión por la izquierda (recordatorio)

Eliminación de recursión inmediata

Sea G una gramática tal que que existe $X \in V$:

$$X \rightarrow X\alpha_1 \mid \cdots \mid X\alpha_m \mid \beta_1 \mid \cdots \mid \beta_n$$

Sea \mathcal{G}' la misma gramática \mathcal{G} pero cambiando las reglas de X por:

Entonces $\mathcal{L}(\mathcal{G}) = \mathcal{L}(\mathcal{G}')$.

Eliminación de recursión NO-inmediata

Dado $V = \{X_1, \dots X_n\}$, removemos la recursión inductivamente en n tal que, en cada paso i de la inducción, se cumplirá que para todo $i, j \le n$:

si
$$X_i \rightarrow X_j \alpha$$
, entonces $i < j$.

Eliminación de recursión por la izquierda (recordatorio)

 $E \rightarrow TE'$

Eliminando la recursión inmediata de E:

$$E' \rightarrow +TE' \mid \epsilon$$

$$T \rightarrow T*F \mid F$$

$$F \rightarrow (E) \mid n$$

Eliminando la recursión inmediata de T:

$$E \rightarrow TE'$$

$$E' \rightarrow +TE' \mid \epsilon$$

$$T \rightarrow FT'$$

$$T' \rightarrow *FT' \mid \epsilon$$

$$F \rightarrow (E) \mid n$$

Problema con recursión por la izquierda (conclusión)

Definición (recordatorio)

Una gramática G se dice recursiva por la izquierda si existe $X \in V$ tal que:

$$X \stackrel{+}{\Rightarrow} X \gamma$$
 para algún $\gamma \in (V \cup \Sigma)^*$

Teorema

Si $\mathcal{G} = (V, \Sigma, P, S)$ es una gramática reducida y recursiva por la izquierda, entonces \mathcal{G} NO es LL(k) para todo $k \ge 1$.

Conclusión

Es posible eliminar la recursividad por la izquierda, pero esto NO asegura que el resultado sea una gramática LL(k) para algún k.

Outline

Algunas consideraciones

Parsing de LL(k)

Parsing de gramáticas LL(k)

Parsing de gramáticas LL(k)

Sea Σ un alfabeto finito.

Definiciones

Se definen los siguientes conjuntos de palabra:

- $\dot{\Sigma} = \Sigma^* \times \Sigma^*$
- $\bullet \dot{\Sigma}^{\leq k} = \{(u, v) \in \dot{\Sigma} \mid |uv| \leq k\}$

Notación

- En vez de $(u,v) \in \dot{\Sigma}_{\#}^{\leq k}$, escribiremos $u.v \in \dot{\Sigma}_{\#}^{\leq k}$.
- El par $\epsilon.\epsilon$ lo denotaremos solamente por ϵ .

Transductor apilador con k-lookahead

Definición

Un transductor apilador con k-lookahead (k-PDT) es una tupla:

$$\mathcal{T} = (Q, \Sigma, \Omega, \Delta, q_0, F)$$

- Q es un conjunto finito de estados.
- Σ es el alfabeto de input.
- Ω es el alfabeto de output.
- $\Delta \subseteq Q^+ \times \dot{\Sigma}_\#^{\leq k} \times (\Omega \cup \{\epsilon\}) \times Q^*$ es la relación de transición.
- $q_0 \in Q$ es un conjunto de estados iniciales.
- $F \subseteq Q$ es el conjunto de estados finales.

Configuración de un k-PDT

Sea $\mathcal{T} = (Q, \Sigma, \Omega, \Delta, q_0, F)$ un k-PDT.

Definición

Una configuración de $\mathcal T$ es una tupla:

$$(q_1 \dots q_k, w, o) \in (Q^+, \Sigma^* \cdot \{\#\}, \Omega^*)$$

- $q_1 \dots q_k$ es el contenido del stack con q_1 el tope del stack.
- w es el contenido del input.
- o es el contenido del output.

Decimos que una configuración:

- $(q_0, w\#, \epsilon)$ es inicial.
- $(q_f, \#, o)$ es final si $q_f \in F$.

Ejecución de un k-PDT

Sea $\mathcal{T} = (Q, \Sigma, \Omega, \Delta, q_0, F)$ un k-PDT.

Definición

Se define la relación $\vdash_{\mathcal{T}}$ de **siguiente-paso** entre configuraciones de \mathcal{T} :

$$(\gamma_1, w_1, o_1) \vdash_{\mathcal{T}} (\gamma_2, w_2, o_2)$$

si, y solo si, existe $(\alpha, u.v, a, \beta) \in \Delta$, $\gamma \in \Gamma^*$ y $w \in \Sigma^* \cdot \{\#\}$ tal que:

- **Stack**: $\gamma_1 = \alpha \cdot \gamma$ y $\gamma_2 = \beta \cdot \gamma$
- **Look-ahead**: $w_1 = u \cdot v \cdot w$ y $w_2 = v \cdot w$
- **Output**: $o_2 = o_1 \cdot a$

Se define $\vdash_{\mathcal{T}}^*$ como la clausura **refleja** y **transitiva** de $\vdash_{\mathcal{T}}$.

Función definida por un k-PDT

Sea
$$\mathcal{T} = (Q, \Sigma, \Omega, \Delta, q_0, F)$$
 un k -PDT, $w \in \Sigma^*$ y $o \in \Omega^*$.

Definiciones

■ \mathcal{T} entrega o con input w si existe una configuración inicial $(q_0, w \cdot \#, \epsilon)$ y una configuración final $(q_f, \#, o)$ tal que:

$$(q_0, w \cdot \#, \epsilon) \vdash_{\mathcal{T}}^* (q_f, \#, o)$$

• Se define la función $[T]: \Sigma^* \to 2^{\Omega^*}$:

$$[\![\mathcal{T}]\!](w) = \{o \in \Omega^* \mid \mathcal{T} \text{ entrega } o \text{ con input } w\}$$

En un *k*-PDT combinamos las ideas de **autómatas apilador**, **transductor** y *k*-**lookahead** vistas anteriormente.

Determinismo en k-PDT

Sea
$$\mathcal{T} = (Q, \Sigma, \Omega, \Delta, q_0, F)$$
 un k -PDT.

Definición

 \mathcal{T} es determinista si para todo $(\alpha_1, u_1.v_1, a_1, \beta_1), (\alpha_2, u_2.v_2, a_2, \beta_2) \in \Delta$ con $(\alpha_1, u_1.v_1, a_1, \beta_1) \neq (\alpha_2, u_2.v_2, a_2, \beta_2)$ se cumple que:

 α_1 NO es prefijo de α_2 o u_1v_1 NO es prefijo de u_2v_2 .

"Para cualquier configuración (γ, w, o) existe a lo más una configuración (γ', w', o) tal que $(\gamma, w, o) \vdash_{\mathcal{T}}^{*} (\gamma', w', o')$."

¿cuál es la ventaja de un k-PDT determinista?

Parser k-PDT para gramática LL(k) fuerte

Sea $G = (V, \Sigma, P, S)$ una gramática LL(k) fuerte.

Construcción

Se define el k-PDT para \mathcal{G} :

$$\mathcal{T}[\mathcal{G}] = \left(V \cup \Sigma \cup \{q_0, q_f\}, \Sigma, \underbrace{P}_{\Omega}, \Delta, q_0, \{q_f\}\right)$$

La relación de transición Δ se define como:

Inicio: $(q_0, \epsilon_0, \epsilon, S \cdot q_f)$

Reducir: $(a, a., \epsilon, \epsilon)$ para cada $a \in \Sigma$

Expandir: $(X, .u, p, \gamma)$

para cada $p := (X \to \gamma) \in P$ tal que $u \in \text{first}_k(\gamma) \odot_k \text{follow}_k(X)$

Parser k-PDT para gramática LL(k) fuerte

$$\mathcal{T}[\mathcal{G}] \ = \ \left(\textit{V} \cup \Sigma \cup \{\textit{q}_0, \textit{q}_f\}, \Sigma, \underbrace{\textit{P}}_{\Omega}, \Delta, \textit{q}_0, \{\textit{q}_f\} \right)$$

Inicio: $(q_0, \epsilon., \epsilon, S \cdot q_f)$

Reducir: $(a, a., \epsilon, \epsilon)$ para cada $a \in \Sigma$

Expandir: $(X, .u, p, \gamma)$

para cada $p := (X \to \gamma) \in P$ tal que $u \in \mathrm{first}_k(\gamma) \odot_k \mathrm{follow}_k(X)$

Propiedades

- 1. $\mathcal{T}[\mathcal{G}]$ es un k-PDT determinista si, y solo si, \mathcal{G} es LL(k) fuerte.
- 2. si $w \notin \mathcal{L}(\mathcal{G})$ entonces $[T](w) = \emptyset$.
- 3. si $w \in \mathcal{L}(\mathcal{G})$ entonces $[\mathcal{T}](w) = \{r_1 \dots r_m\}$ es una derivación por la izquierda de \mathcal{G} sobre w.

Parsing lineal para gramática LL(k) fuerte

Propiedades

- 1. $\mathcal{T}[\mathcal{G}]$ es un k-PDT determinista si, y solo si, \mathcal{G} es LL(k) fuerte.
- 2. si $w \notin \mathcal{L}(\mathcal{G})$ entonces $[T](w) = \emptyset$.
- 3. si $w \in \mathcal{L}(\mathcal{G})$ entonces $[\![\mathcal{T}]\!](w) = \{r_1 \dots r_m\} \text{ es una derivación por la izquierda de } \mathcal{G} \text{ sobre } w.$

Algoritmo

Para una gramática LL(k) \mathcal{G} y una palabra $w \in \Sigma^*$:

- 1. Construya el k-PDT determinista $\mathcal{T}[\mathcal{G}]$ a partir de \mathcal{G} .
- 2. Ejecute $\mathcal{T}[\mathcal{G}]$ sobre w.

Como $\mathcal{T}[\mathcal{G}]$ es determinista, entonces algoritmo toma **tiempo lineal** en w.

Tabla predictiva para LL(k) fuerte

Sea $G = (V, \Sigma, P, S)$ una gramática LL(k) fuerte.

Definición

Para cada $u \in \Sigma^k \cup \Sigma^{< k} \cdot \{\#\}$, se define $M[X, u] \in (V \cup \Sigma)^* \cup \{ERROR\}$:

$$M[X,u] = \begin{cases} \gamma & \text{si } X \to \gamma \in P \text{ y } u \in \text{first}_k(\gamma) \odot_k \text{follow}_k(X) \\ \text{ERROR en otro caso.} \end{cases}$$

Computo de tabla predictiva puede tomar **tiempo exponencial** en $|\mathcal{G}|$ y k.

Caso especial: tabla predictiva para LL(1)

Sea $G = (V, \Sigma, P, S)$ una gramática LL(1) fuerte.

Definición

Para cada $a \in \Sigma \cup \{\#\}$, se define $M[X, a] \in (V \cup \Sigma)^* \cup \{ERROR\}$:

$$M[X,a] \ = \left\{ \begin{array}{ll} \gamma & \text{si } X \to \gamma \in P \ \text{y} \ a \in \mathtt{first}_1(\gamma) \\ \\ \gamma & \text{si } X \to \gamma \in P, \ \epsilon \in \mathtt{first}_1(\gamma) \ \text{y} \ a \in \mathtt{follow}_1(X) \\ \\ \mathtt{ERROR} & \text{en otro caso.} \end{array} \right.$$

Este cálculo se puede hacer en tiempo $\mathcal{O}(|V| \cdot |P|)$.

Caso especial: tabla predictiva para LL(1)

Ejemplo de tabla predictiva

	id	+	*	()	#
Е	TE'	ERROR	ERROR	TE'	ERROR	ERROR
E'	ERROR	+ <i>TE</i> ′	ERROR	ERROR	ϵ	ϵ
Т	FT'	ERROR	ERROR	FT'	ERROR	ERROR
T'	ERROR	ϵ	*FT'	ERROR	ϵ	ϵ
F	id	ERROR	ERROR	(<i>E</i>)	ERROR	ERROR
		ı	•			ı