Programmieraufgaben

Blatt 10

(1) Interpolieren Sie mithilfe des Verfahrens von Aitken-Neville (s. Blatt 9 Aufgabe (3)) die Funktionen

(a)
$$f(x) = \sin(8x^2 + 2)$$

(b)
$$q(x) = |x|$$

(c)
$$h(x) = 1/(1+100x^2)$$

auf dem Intervall [-1,1] durch Polynome vom Grad n. Verwenden Sie als Stützstellen x_i zum Einen eine äquidistante Unterteilung des Intervalls und zum Anderen Chebyshev-Punkte. Bestimmen Sie die Interpolationspolynome vom Grad n=10 und zeichnen Sie diese beiden Polynome mit zugehörigen Stützstellen sowie die zugrundelegende Funktion jeweils in einen Plot.

(2) (a) Implementieren Sie die diskrete Fouriertransformation (DFT), also berechnen Sie die Fourier-koeffizienten näherungsweise mit der Trapezregel. Testen Sie Ihr Programm an der Funktion aus Aufgabe (5), variieren Sie N und beobachten Sie die Konvergenz

$$\hat{f}_N(k) o \hat{f}(k)$$
 für $|k| \le \frac{N}{2}$.

- (b) Erweitern Sie Ihr Programm durch die Berechnung des trigonometrischen Interpolationspolynoms, unter Verwendung der zuvor berechneten DFT. Testen Sie Ihr Programm wieder an der Funktion f aus Aufgabe (5) auf dem Intervall $[0, 2\pi]$. Variieren Sie die Anzahl an Stützstellen und bestimmen Sie den Interpolationsfehler.
- (3) Gegeben sei das Signal

$$y(t) := \sin(7t) + 0.5\sin(5t)$$

an 128 äquidistanten Punkten auf dem Intervall $[0,2\pi]$. Fügen Sie den Messpunkten ein zufälliges Rauschen ≤ 0.75 hinzu. Versuchen Sie nun, das ursprüngliche Signal zu rekonstruieren, indem Sie das Signal fouriertransformieren (DFT aus Aufgabe (2) oder FFT, evtl. vorgefertigte Routine verwenden, Normierung beachten!) und Fourierkoeffizienten, deren Betrag ≤ 0.125 ist, auf 0 setzen. Vergleichen Sie das Ausgangssignal mit dem rekonstruierten Signal.

Theorieaufgaben

- (4) Sei $y: [a, b] \to \mathbb{R}$ genügend glatt.
 - (a) Zeigen Sie, dass

$$\lim_{x_0,\dots,x_k\to x}\delta^k y_0=\frac{y^{(k)}(x)}{k!}.$$

- (b) Schreiben Sie das Dividierte Differenzenschema für $x_0, x_0 + \epsilon, \dots, x_0 + n\epsilon \in [a, b]$ an, und führen Sie dann im Interpolationspolynom den Grenzprozess $\epsilon \to 0$ durch. Was ergibt sich? Wie sieht die Fehlerabschätzung aus?
- (5) Setzen Sie die Funktion $f: [0, \pi] \to \mathbb{R}, x \mapsto x(\pi x)$ gerade (dh. mittels f(x) = f(-x)) auf $[-\pi, \pi]$ und dann periodisch auf ganz \mathbb{R} fort. Berechnen Sie die Fourier-Koeffizienten

$$\hat{f}(k) = \frac{1}{2\pi} \int_0^{2\pi} f(x) e^{-ikx} dx.$$