Compactification d'Alexandrov

Jean Pierre Mansour

1 Janvier 2022

Proposition et Définition. Soit (E, \mathcal{T}) un espace topologique. Posons $\overline{E} = E \cup \{\infty\}$, avec $\{\infty\}$ un élément très précis. O est un ouvert de \overline{E} si et seulement si O ouvert de E ou $\infty \in O$ et $E \setminus O \subset E$ est fermé et compact. Alors \overline{E} est compact. On dit que \overline{E} est le compactifié d'Alexandrov.

Preuve. Posons

 $\overline{\mathscr{T}} = \{O \subset \overline{E} \ / \ O \text{ ouvert de E ou } \infty \in O \text{ et } E \setminus O \subset E \text{ est fermé et compact}\}.$ Montrons que $(\overline{E}, \overline{\mathscr{T}})$ est un espace topologique.

(O1) $\emptyset \in \overline{\mathscr{T}}$ car \emptyset est un ouvert de E.

 $\overline{E} \in \overline{\mathscr{T}}$. En effet, $E \setminus \overline{E} = \emptyset$ est un fermé (Il est dans la topologie de E et son complémentaire) et compact (Axiome Borel-Lebesgue)

(O2) Soit $(O_i)_{i \in I}$ une famille quelconque de parties de \overline{E} .

- Si pour tout $i \in I$, O_i est un ouvert de E, alors la réunion est aussi un ouvert de E. Donc $\bigcup_{i \in I} O_i \in \overline{E}$.
- Sinon, il existe $i_0 \in I / O_{i_0}$ contient ∞ et $E \setminus O_{i_0}$ fermé et compact de E. Alors la réunion contient ∞ . De plus,

$$E \setminus (\bigcup_{i \in I} O_i) = E \setminus O_{i_0} \cap \bigcap_{i \in I \setminus \{i_0\}} (E \setminus O_i)$$
 (1)

 $\bigcap_{i \in I \setminus \{i_0\}} (E \setminus O_i)$ est une intersection quelconque de fermés de E donc elle est fermée et

$$E \setminus O_{i_0} \cap \bigcap_{i \in I \setminus \{i_0\}} (E \setminus O_i) \subset E \setminus O_{i_0}$$
 (2)

Mais $E \backslash O_{i_0}$ compact et un fermé dans un compact est compact. D'ou $\bigcup_{i \in I} O_i \in \overline{E}.$

(O3) Même raisonnement pour l'intersection finie.

Finalement, soit $(O_i)_{i \in I}$ un recouvrement d'ouverts de $\overline{E} / \overline{E} = \bigcup_{i \in I} O_i$. Alors il existe $i_0 \in I / O_{i_0}$ contient ∞ et $E \setminus O_{i_0}$ fermé et compact de E recouvert par $(O_i)_{i\in I}$. Donc on peut extraire un sous-recouvrement fini de $E\backslash O_{i_0}$. On ajoute O_{i_0} à ce sous-recouvrement et on obtient que \overline{E} est compact.

(C'est évident dans cas où $(O_i)_{i\in I}$ est une famille d'ouverts de E)