

3º Grado en Ingeniería Informática

Transmisión de Datos y Redes de Computadores

TEMA 2. PROTOCOLOS Y SERVICIOS DE RED

(2020-2021)

TEMA 2. Índice

- 2.1. Enrutamiento estático y dinámico. (2h)
- ② 2.2. Protocolos de enrutamiento. (2h)
- 2.3. El problema del direccionamiento en IPv4. (4h)

APLICACIÓN PRESENTACIÓN SESIÓN TRANSPORTE RED ENLACE FÍSICO

TDRC

Tema 2.3.

El problema del direccionamiento en IPv4 (II)

Antonio M. Mora García

Recordemos

Los bloques de direcciones IPv4 se han agotado ya (Nov. 2019):

Centro de Coordinación de Redes IP Europeas

https://www.ripe.net/publications/news/about-ripe-ncc-and-ripe/the-ripe-ncc-has-run-out-of-ipv4-addresses

- Sólo quedan disponibles bloques /24 (256 direcciones) a /32 (1 dirección).
- Se van recopilando direcciones de sitios obsoletos, empresas que hayan desaparecido, proyectos terminados, hosting que ya no está en uso...
- Hay una lista de espera en RIPE NCC (https://www.ripe.net/manage-ips-and-asns/ipv4/ipv4-waiting-list).

Recordemos

SOLUCIONES

- CIDR (Classless Inter-Domain Routing)
- Direccionamiento privado
- DHCP (Dynamic Host Configuration Protocol)
- NAT (Network Address Translation)

Ya no son Suficientes

IPv6 - Introducción

- IPng (1994) \rightarrow IPv6 (1995).
- RFC 8200 (2017).
- IPv6 usa un esquema de direccionamiento de 128 bits.
- Notación hexadecimal. 8 grupos de 4 dígitos, separados por ":".
- Cada dígito hexadecimal corresponde a 4 dígitos en binario (4 bits).
- 340.282.366.920.938.463.463.374.607.431.768.211.456 (340 sextillones) direcciones diferentes.
- Compatible con IPv4.

IPv6 - Características

- Mayor eficiencia en los routers: simplicidad en el procesamiento de cabeceras (tamaño fijo), no hay comprobación de errores en las mismas, no hay fragmentación.
- **Posibilidad de etiquetado de flujos**: etiquetado de secuencias de paquetes para tratarlos como un único flujo (prioridad común, QoS).
- **Posibilidad de autenticación y privacidad**: Ofrece extensiones para autenticación, encriptación (confidencialidad) e integridad de los datos.
- **Algoritmos de enrutamiento específicos**: existen implementaciones para IPv6 de los más habituales: RIPng (*RIP Next Generation*), OSPFv3, EIGRPv6, MP BGP-4.
- Se pueden usar direcciones anycast: un grupo al que se envía sólo a uno de ellos.

IPv6 - Características

No ARP:

 Mecanismo de autoconfiguración y descubrimiento de routers y vecinos IPv6 mediante multicast sin necesidad de ARP (Stateless Adress Autoconfiguration - RFC 4862).

ARP (Address Resolution Protocol)

Permite obtener la dirección física de un equipo (MAC) para transferencias a nivel físico (Ethernet).

Para ello:

- 1) El equipo que quiere hacer un envío a una IP, pero no conoce la MAC de ese destino, difunde una consulta ARP a todas los hosts de la subred.
- 2) El host que tiene asignada dicha IP envía al host que hace la petición una respuesta ARP con su dirección física (MAC).

Formato de direcciones IPv6:

3	13	8	24	16	64 bits
FP	TLA ID	RES	NLA	SLA ID	Interface ID
public topology				site topology	Interface
network portion					host portion

- 64 bits para direcciones de red (**prefijo de red**) y 64 bits para direcciones de hosts.
- De los 64 bits de red, por defecto **16 bits** se dedican a la **definición de las subredes** (*site topology*).
- Interface ID: Los últimos 64 bits equivalen a lo que en IPv4 se llama *hostID*. Son usados para distinguir un host de otro y son de carácter único para el mismo prefijo de 64 bits.

Formato de direcciones IPv6:

3	13	8	24	16	64 bits
FP	TLA ID	RES	NLA	SLA ID	Interface ID
public topology site topology					Interface
network portion					host portion

- **FP** (*Format Prefix*): Para una dirección unicast, IPv6 siempre tiene los mismos 3 bits al principio: 001
- TLA ID (Top Level Aggregator Identifier): Para ISP globales
- RES: Reservados
- **NLA ID** (*Next Level Aggregator ID*): Permite a ISP hacer una jerarquización de su espacio de direcciones para asignar a clientes (instituciones, empresas u otros ISPs locales).
- **SLA ID** (*Site Level Agregator ID*): Permite definir subredes dentro de cada Sistema Autónomo (centro, institución, empresa, etc).

- IPv6 al tener que denotar una dirección de 128 bits usa 8 grupos hexadecimales, de 16 bits cada uno (4 dígitos).
- El formato de las direcciones está dividido en campos que permiten crear niveles jerarquizados.
- <u>Ejemplo</u>:

```
2FC2:43AB:3240:0000:85E2:0002:2900:00AC
FPTLA RES NLA SLA INTERFACE
(3) (13) (8) (24) (16) (64)
```

Tipos de direcciones:

- Unicast: asociada a un único interfaz de red. Un paquete se entrega en esa dirección unicast.
- Multicast: usada por varios interfaces. Un paquete enviado a una dirección multicast se entrega en todos los interfaces que se hayan unido al grupo multicast. Se descubren estas direcciones usando un protocolo específico de multidifusión entre routers.
- **Anycast:** usada por varios interfaces. Un paquete enviado a una dirección *anycast* se entrega únicamente a una de las interfaces del grupo. Normalmente a la del host con menos coste (según la métrica del protocolo de encaminamiento).
- No existen las direcciones broadcast como tal.

- Públicas y privadas: IPv6 dispone de un esquema de direcciones públicas y privadas similar a IPv4.
 - Global Unicast: Direcciones públicas
 - **Unique Local**: Direcciones privadas de uso libre (incluyen 40 bits aleatorios)
 - **Link Local**: Direcciones privadas asociadas a cada host (incluyen su MAC)

Prefijos:

TIPO	PRIMEROS DIGITOS HEX
GLOBAL UNICAST	2 o 3
UNIQUE LOCAL	FD
LINK LOCAL	FE80
MULTICAST	FF

TIPO	PRIMEROS DIGITOS HEX
GLOBAL UNICAST	2 0 3
UNIQUE LOCAL	FD
LINK LOCAL	FE80
MULTICAST	FF

- GLOBAL UNICAST: Direcciones públicas que siempre comienzan por los bits '001'.
- **Prefijos globales**: Conjunto de direcciones Global Unicast que han sido asignadas a una empresa o institución para operar en Internet.

TIPO	PRIMEROS DIGITOS HEX
GLOBAL UNICAST	2 0 3
UNIQUE LOCAL	FD
LINK LOCAL	FE80
MULTICAST	FF

- UNIQUE LOCAL: Direcciones privadas (de uso libre en redes privadas).
 Construidas de la siguiente forma:
 - Primeros dígitos (8 bits): FD
 - 40 bits aleatorios en formato hexadecimal
 - 16 bits para definir subredes (desde 0000 hasta FFFF)
 - 64 bits para direccionamiento de hosts

TIPO	PRIMEROS DIGITOS HEX
GLOBAL UNICAST	2 0 3
UNIQUE LOCAL	FD
LINK LOCAL	FE80
MULTICAST	FF

- LINK LOCAL: Direcciones privadas para comunicaciones internas en la subred. Construidas de la siguiente forma:
 - Primeros dígitos (16 bits): FE80
 - 54 bits a 0
 - 64 bits para direccionamiento de hosts ⇔ MAC del host en formato EUI-64

- Permite simplificación eliminando grupos/bloques todos a '0'.
- Cuando se omiten varios bloques (consecutivos) se indican con "::".
- Sólo se puede hacer esta reducción una vez (bloque más a la izquierda si hay varios).

Parte Omitida

Imagen:Wikipedia

- También se pueden eliminar todos los ceros a la izquierda dentro de un grupo.
- Un grupo compuesto por ":0000:", puede sustituirse por ":0:".

• Ejemplos:

2FFE:43AB:3240:0000:85E2:0002:2900:00AC →
FFFF:EE34:12AB:0000:0000:0000:0000:0001 →
5be2:0000:0000:28f9:83ee:bda9:07fa:0007 →
1234:5678:0000:0000:0abc:0000:0000:def0 →

- También se pueden eliminar todos los ceros a la izquierda dentro de un grupo.
- Un grupo compuesto por ":0000:", puede sustituirse por ":0:".

• Ejemplos:

2FFE:43AB:3240:0000:85E2:0002:2900:00AC → 2FFE:43AB:3240:0:85E2:2:2900:AC

FFFF:EE34:12AB:0000:0000:0000:00001 → FFFF:EE34:12AB:0:0:0:0:1

FFFF:EE34:12AB::1

5be2:0000:0000:28f9:83ee:bda9:07fa:0007 → 5be2:0:0:28f9:83ee:bda9:7fa:7

5be2::28f9:83ee:bda9:7fa:7

1234:5678:0000:0000:0abc:0000:0000:def0 → 1234:5678::abc:0:0:def0

- Se pueden restringir los bits dedicados al prefijo de red.
- Se determina una máscara en notación CIDR.
- El resto de bits se dedicarían a hosts.

Ejemplo:

2233:abc:5773::/48 → Dirección de Red

2233:0abc:5773;0000:0000:0000:0000/48 → Dirección de red sin comprimir

Red Hosts

IPv6 – Asignación de direcciones

- Igual que en IPv4 la IANA es la encargada de asignar direcciones IPv6 mediante RIR y LIR.
- El enfoque en el **diseño de subredes** usando IPv6 es completamente **distinto** al de IPv4. En IPv6 hay direcciones de sobra y **no hay necesidad de ajustar el tamaño de las subredes**.
- **Diseño con Global Unicast** (direcciones públicas):
 - Una vez conozcamos nuestro prefijo /X
 - Podríamos tener hasta: 2^(64-X) subredes
 - En cada subred habría un mínimo de: 2⁶⁴ hosts
- **Diseño con Unique Local** (direcciones privadas):
 - Elegir un identificador global de 48 bits que empiece por 'FD'
 - Usar los siguientes 16 bits para poder hacer las subredes que queramos
 - Dejar 64 bits para la identificación de la interfaz

0 16 31

Versión	Tamaño Cabecera	Tipo de Servicio	Longitud Total		
Identificador			Flags	Posición de Fragmento	
Tiempo	Tiempo de Vida Protocolo			Suma de Control de Cabecera	
Dirección IP de Origen					
Dirección IP de Destino					
Opciones				Relleno	

16 31 Tamaño Versión Tipo de Servicio **Longitud Total** Cabecera Identificador Flags Posición de Fragmento Tiempo de Vida Protocolo Suma de Control de Cabecera Dirección IP de Origen Dirección IP de Destino Opciones Relleno

Versión:

0100 ⇔ 4

Tamaño cabecera:

En palabras de 32 bits (entre 5 y 15) ⇔ entre 20 y 60 bytes.

Tipo servicio:

Preferencia de envío (mínimo retardo, máximo rendimiento, mínimo coste).

Longitud total:

Tamaño en bytes del datagrama completo (incluyendo datos).

16 31 0 Tamaño Versión Tipo de Servicio **Longitud Total** Cabecera Identificador Flags Posición de Fragmento Tiempo de Vida Protocolo Suma de Control de Cabecera Dirección IP de Origen Dirección IP de Destino Opciones Relleno

Identificador:

Número de orden del paquete en un mensaje.

Flags:

Indican si hay fragmentación.

Posición fragmento:

Desplazamiento del fragmento respecto del paquete original (para reconstruirlo).

0 16 31 Tamaño Versión Tipo de Servicio **Longitud Total** Cabecera Identificador Flags Posición de Fragmento Tiempo de Vida Protocolo Suma de Control de Cabecera Dirección IP de Origen Dirección IP de Destino Opciones Relleno

Tiempo de vida (TTL):

Tiempo que puede estar el paquete en una red.

Protocolo: (RFC 3232) TCP, UDP, ICMP, etc

Suma de control:

Número para comprobar la corrección de la cabecera.

0 16 31 Tamaño Versión Tipo de Servicio **Longitud Total** Cabecera Identificador Flags Posición de Fragmento Tiempo de Vida Protocolo Suma de Control de Cabecera Dirección IP de Origen Dirección IP de Destino Opciones Relleno

Opciones:

Hasta 40 bytes. Permite hacer funciones de test y depuración sobre la red (sello de tiempo, registro de ruta, etc).

Relleno:

Bits a 0 para completar una palabra de 32 bits en la cabecera.

- Se tiene una cabecera base (o fija), de tamaño 40 bytes (no variable). Más sencilla de procesar para los routers.
- Se pueden tener varias cabeceras extendidas (opcionales). Esto permite añadir flexibilidad al protocolo y ampliar sus funcionalidades en el futuro.

Cabecera Base	Cabecera Extendida 1	ij	Cabecera Extendida N	DATOS
------------------	-------------------------	----	-------------------------	-------

IPv6 – Cabecera base/fija

0 16 31

Versión	Clase de tráfico	Etiqueta de flujo				
	Longitud del campo de da	tos	Cabecera siguiente	Límite de saltos		
Dirección de origen						
Dirección de destino						

IPv6 - Cabecera base/fija

Versión (4 bits):

0110 ⇔ 6

Clase de tráfico (8b):

Prioridad de los paquetes.

Etiqueta de flujo (24b):

Todos los paquetes de un "flujo" se enviarán entre las mismas IPs, con la misma prioridad y con la misma etiqueta. Para gestionar condiciones de calidad de servicio (QoS).

IPv6 - Cabecera base/fija

Longitud datos (16b):

Tamaño del campo de datos en bytes.

Cabecera siguiente (8b):

Tipo de la siguiente cabecera extendida. Si no hay más tendría valor 59.

Límite de saltos (8b):

Número máximo de saltos en la red para el paquete. Se va decrementando en 1 cada vez que atraviesa un enlace.

- Existen distintos tipos de cabeceras extendidas (o cabeceras de extensión RFC 2460):
 - **Fragmentación** (*Fragment*) → Datos de fragmentación. Ésta se hace en el origen (no en los routers intermedios).
 - **Encaminamiento** (*Routing*) → Especificar desde el origen la ruta a seguir por el paquete.
 - **Autenticación** (*Authentication*) → Autenticación del paquete y comprobación de su integridad.
 - **Encapsulado de seguridad** (*Encapsulating Security Payload*) → Transporta los datos encriptados para mayor seguridad e integridad.
 - **Opciones salto a salto** (*Hop-by-Hop options*) → Información a consultar en cada uno de los saltos de la ruta al destino.
 - **Opciones de destino** (*Destination options*) → Información a consultar en el destino de la transmisión.
- Cada cabecera indica el tipo de la siguiente o No Next Header (código 59).

Ejemplos

 Cabecera IPv 6 sin extensiones

 Cabecera IPv6 con extensión de Routing

 Cabecera IPv6 con dos extensiones: Routing y Fragment

Ejemplo:

Hop-By-Hop

IPv6 Trace Analysis using Wireshark, Nalini Elkins, CEO Inside Products. Inc. Nalini.elkins@insidethestack.com

Ejemplo:

Routing

```
Time
                                                               Destination
                                Source
     1 0.000000
                                3001::200:10ff:fe10:1181
                                                               3000::200:10ff:fe10:1060
Frame 1: 119 bytes on wire (952 bits), 119 bytes captured (952 bits)
Ethernet II, Src: Hughes_10:10:60 (00:00:10:10:10:60), Dst: IntelCor_16:c7:fe (00:15:17:16:c7
□ Internet Protocol Version 6, Src: 3001::200:10ff:fe10:1181 (3001::200:10ff:fe10:1181), Dst: 3

⊕ 0110 .... = Version: 6

 ∄ .... 0000 0000 .... = Traffic class: 0x00000000
    .... .... 0000 0000 0000 0000 0000 = Flowlabel: 0x00000000
   Payload length: 65
   Next header: IPv6 routing (43)
   Hop limit: 255
    Source: 3001::200:10ff:fe10:1181 (3001::200:10ff:fe10:1181)
    [Source SA MAC: Hughes_10:11:81 (00:00:10:10:11:81)]
   Destination: 3000::215:17ff:fe16:c7fe (3000::215:17ff:fe16:c7fe)
    [Destination SA MAC: IntelCor_16:c7:fe (00:15:17:16:c7:fe)]
    [Source GeoIP: Unknown]
    [Destination GeoIP: Unknown]
  ■ Routing Header, Type : IPv6 Source Routing (0)
      Next header: ICMPv6 (58)
     Length: 6 (56 bytes)
      Type: IPv6 Source Routing (0)
      Segments Left: 1
      Address: 3002::200:10ff:fe10:1262 (3002::200:10ff:fe10:1262)
      Address: 3003::200:10ff:fe10:1363 (3003::200:10ff:fe10:1363)
      Address: 3000::200:10ff:fe10:1060 (3000::200:10ff:fe10:1060)
■ Internet Control Message Protocol v6
   Type: Echo (ping) request (128)
    Code: 0
 ⊕ Checksum: 0x1d00 [incorrect, should be 0xdbb9]
    [Bad Checksum: True]
   Identifier: 0x0000
    Sequence: 0
                                                         IPv6 Trace Analysis using Wireshark, Nalini Elkins, CEO Inside

⊕ Data (1 byte)
```

Products, Inc. Nalini.elkins@insidethestack.com

- Actualmente existen muchos nodos intermedios (routers) que usan IPv4.
- Es posible enviar, enrutar y recibir paquetes IPv4 sobre datagramas IPv6.
- Una dirección IPv4 será una dirección IPv6 con 96 bits a '0' y los últimos 32 bits corresponden con la dirección IPv4.
- No es posible "detener Internet" para actualizar todas las máquinas a IPv6.
- Hay que buscar forma de enviar datos en formato IPv6 pasando por nodos IPv4.
- Que sea transparente para el usuario.

Túneles (tunneling):

- Túnel es un conjunto de routers IPv4 situados entre routers IPv6.
- Los datagramas IPv6 se transmiten sobre datagramas IPv4.
- Los datagramas IPv6 son los datos de los datagramas IPv4.

Túneles (tunneling):

- Un router IPv6 conectado con routers IPv4 hace ese encapsulamiento (IPv6 dentro de IPv4).
- El router del otro extremo **desencapsula** los datos antes de **transmitirlos** a **otro router IPv6**. Sabe que debe desencapsularlos por el campo del **protocolo** en IPv4, que es el **41** (RFC 4213).

Ejemplo: Transmisión de R1 a R6

38

Doble Pila (dual stack):

- Cada host y router tiene una dirección IPv4 y otra IPv6.
 - Solución simple y sin problemas de compatibilidad. Muy extendida.
 - Requiere tablas de enrutamiento dobles y algoritmos de enrutamiento dobles.
- ISATAP (Intra-Site Automatic Tunnel Addressing Protocol):
 - Se usa a nivel de hosts.
 - Usa IPv4 como capa de enlace para IPv6 mediante un interfaz virtual ISATAP.
 - Permite conectar hosts IPv6 con dual-stack mediante la infraestructura IPv4.

IPv6 - Despliegue

ACTUALMENTE:

- 30% del total de IPs en el mundo son IPv6
- 3% del total de IPs en España son IPv6
- 46% del total de IPs en Alemania son IPv6
- 37% del total de IPs en EEUU son IPv6
- 0.6% del total de IPs en China son IPv6

https://www.google.com/intl/es/ipv6/statistics. html#tab=per-country-ipv6-adoption

Disponibilidad de IPv6 por países.

Verde oscuro → mayor implementación. Sin problemas. Rojo → menor implementación. Problemas de latencia.

FUENTE: Google

Bibliografía y enlaces

- P. García-Teodoro, J.E. Díaz-Verdejo, J.M. López-Soler. Transmisión de datos y redes de computadores, 2ª Edición. Editorial Pearson, 2014.
- James F. Kurose, Keith W. Ross. Redes de computadoras. Un enfoque descendente. 7º Edición. Editorial Pearson S.A., 2017.
- Behrouz A. Forouzan. Transmisión de datos y redes de comunicaciones, 4º Edición. Editorial Mc Graw Hill 2007.
- IPv6 (RFC 8200) https://tools.ietf.org/html/rfc8200
- Stateless Adress Autoconfiguration (RFC 4862) https://tools.ietf.org/html/rfc4862
- IP Version 6 Addressing Architecture (RFC 4291) https://tools.ietf.org/html/rfc4291
- ISATAP (Intra-Site Automatic Tunnel Addressing Protocol) (RFC 5214) https://tools.ietf.org/html/rfc5214

Entonces... ¿tenemos ya delegad@?

Para que sea el/la intermediario/a para la comunicación entre la clase y los profesores de la asignatura.

¿Alguna duda?