Determining the Camera Response Function

Short Presentation

2010-05-12

Dominik Neumann

Chair of Pattern Recognition (Computer Science 5)
Friedrich-Alexander-University Erlangen-Nuremberg

The Camera Response

Motivation

Various Computer Vision Algorithms require Image

Irradiance

- Color Constancy
- Shape from Shading
- Inverse Rendering
- Creating accurate HDR-Images

Color Constancy: Images by Eva Eibenberger

- But: Output of a usual camera is not linear
- My task: Examination of methods for CRF Estimation
 - "Using Geometry Invariants for Camera Response Function Estimation" (Ng et al.)
 - "Radiometric Calibration from a Single Image" (Lin et al.)

Camera Response Functions

→ Sample CRFs from **DoRF** (**D**atabase **o**f **R**esponse **F**unctions) (compiled by Grossberg and Nayar)

Dominik Neumann

CRF Estimation: Geometry Invariants

- Physics-based approch
 - → Separation of camera nonlinearities from reflectance-induced nonlinearities
- Strategy
 - Find set of "Locally Planar Irradiance Points" (LPIP)
 - → no more reflectance-induced nonlinearities
 - Estimate CRF from this data
- Main Steps of the Algorithm:

CRF Estimation: Radiometric Calibration

→ Method is edge-based and chooses the best fitting one of the previously learned CRFs from DoRF

Dominik Neumann

CRF Estimation

- What have I done so far?
 - Radiometric Calibration almost done

Next steps

- Completing the code on "Radiometric Calibration"
- Start implementing the "Geometry Invariants" paper
- Evaluation

by the algorithm (Radiometric Calibration)

Evaluation Methods

Synthetically generated Images

- Take direct output of camera sensor (supposed to be linear)
- Manually apply a particular CRF and check if this CRF is found afterwards

Ground Truth Evaluation

- Use a camera with a well known CRF (extract from DoRF)
- Check how far our computed CRFs are from the ground truth

Stability Test

- Obtain series of images taken by the same camera (with fixed camera settings)
- Analyze how much the individual results vary

Determining the Camera Response Function

Thank you for your attention!