Report No: CCISE181116602

FCC REPORT

(Bluetooth)

Applicant: Interglobe Connection Corp

Address of Applicant: 8228 NW 30th Terrace. Doral, Miami, FL 33122

Equipment Under Test (EUT)

Product Name: Mobile Phone

Model No.: EKO Star 6.0 G65

Trade mark: EKO

FCC ID: 2AC7IEKONG65

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 30 Nov., 2018

Date of Test: 03 Dec.,2018 to 02 Jan., 2019

Date of report issued: 03 Jan., 2019

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	03 Jan., 2019	Original

Tested by: O3 Jan., 2019

Test Engineer

Reviewed by: 03 Jan., 2019

Project Engineer

3 Contents

			Page
1	COV	/ER PAGE	1
2	VFR	SION	
3			
4	TES	T SUMMARY	4
2 VERSION	5		
	5.1	CLIENT INFORMATION	5
	5.5		
	5.8		
6	TES	T RESULTS AND MEASUREMENT DATA	8
	6.1	ANTENNA REQUIREMENT	8
	6.2		_
	6.3		
	6.4	20DB OCCUPY BANDWIDTH	15
	6.5		
	6.6	HOPPING CHANNEL NUMBER	22
	6.7		
	6.8	PSEUDORANDOM FREQUENCY HOPPING SEQUENCE	27
	6.9		
	6.9.1		
	0		
	6.10	.2 Radiated Emission Method	48
7	TES	T SETUP PHOTO	53
0	CIT	CONSTRUCTIONAL DETAILS	F.4

4 Test Summary

Test Items	Section in CFR 47	Result
Antenna Requirement	15.203 & 15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(1)	Pass
Dwell Time	15.247 (a)(1)	Pass
Spurious Emission	15.205 & 15.209	Pass
Band Edge	15.247(d)	Pass

Pass: The EUT complies with the essential requirements in the standard.

N/A: Not Applicable.

5 General Information

5.1 Client Information

Applicant:	Interglobe Connection Corp
Address:	8228 NW 30th Terrace. Doral, Miami, FL 33122
Manufacturer/Factory:	INTERGLOBE CONNECTION LTD
Address:	RM 1101 11F SAN TOI BLDG 139 CONNAUGHT RD CENTRAL HK

5.2 General Description of E.U.T.

3.2 General Description	0. 2.0.11
Product Name:	Mobile Phone
Model No.:	EKO Star 6.0 G65
Operation Frequency:	2402MHz~2480MHz
Transfer rate:	1/2/3 Mbits/s
Number of channel:	79
Modulation type:	GFSK, π/4-DQPSK, 8DPSK
Modulation technology:	FHSS
Antenna Type:	Internal Antenna
Antenna gain:	1.2 dBi
Power supply:	Rechargeable Li-ion Battery DC3.85V-3150mAh
AC adapter:	Model: Ara 5.7 B5719 Input: AC100-240V, 50/60Hz, 0.15A Output: DC 5.0V, 1000mA
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Operation	Frequency eac	h of channe	el for GFSK, π	/4-DQPSK,	8DPSK		
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		
2 2404MHz 22 2424MHz 42 2444MHz 62 2464MHz 3 2405MHz 23 2425MHz 43 2445MHz 63 2465MHz 4 2406MHz 24 2426MHz 44 2446MHz 64 2466MHz 5 2407MHz 25 2427MHz 45 2447MHz 65 2467MHz 15 2417MHz 35 2437MHz 55 2457MHz 75 2477MHz 16 2418MHz 36 2438MHz 56 2458MHz 76 2478MHz 17 2419MHz 37 2439MHz 57 2459MHz 77 2479MHz 18 2420MHz 38 2440MHz 58 2460MHz 78 2480MHz							

Report No: CCISE181116602

5.3 Test environment and test mode

Operating Environment:	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test Modes:	
Non-hopping mode:	Keep the EUT in continuous transmitting mode with worst case data rate.
Hopping mode:	Keep the EUT in hopping mode.
Remark	GFSK (1 Mbps) is the worst case mode.

The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber*. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working with a fresh battery, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±2.22 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±2.76 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.28 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.72 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±2.88 dB (k=2)

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Registration No.: 727551

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC (Federal Communications Commission). The Registration No. is 727551.

IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.7 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.8 Test Instruments list

Radiated Emission: Manufacturer Model No. Serial No. Cal. Date (mm-dd-yy) Cal. Due date (mm-dd-yy) 3m SAC SAEMC 9m*6m*6m 966 07-22-2017 07-21-2020 Loop Antenna SCHWARZBECK FMZB1519B 00044 03-16-2018 03-15-2019 BiConiLog Antenna SCHWARZBECK VULB9163 497 03-16-2018 03-15-2019 Horn Antenna SCHWARZBECK BBHA9120D 916 03-16-2018 03-15-2019 Horn Antenna SCHWARZBECK BBHA9120D 1805 06-22-2017 06-21-2020 Horn Antenna SCHWARZBECK BBHA 9170 BBHA9170582 11-21-2018 11-20-2019 EMI Test Software AUDIX E3 Version: 6.110919b Pre-amplifier HP 8447D 2944A09358 03-07-2018 03-06-2019 Spectrum analyzer Rohde & Schwarz FSP30 101454 03-07-2018 03-06-2019 Spectrum analyzer Rohde & Schwarz FSP40 100363 11-21-2018 11-20-2019 EMI Test Receiver </th					
Test Equipment	Manufacturer	Model No.	Serial No.		
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-16-2018	03-15-2019
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-16-2018	03-15-2019
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-16-2018	03-15-2019
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2017	06-21-2020
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-21-2018	11-20-2019
EMI Test Software	AUDIX	E3	\	ersion: 6.110919	b
Pre-amplifier	HP	8447D			03-06-2019
Pre-amplifier	CD	PAP-1G18			03-06-2019
Spectrum analyzer	Rohde & Schwarz	FSP30	11804 03-07-2018		03-06-2019
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-21-2018	11-20-2019
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-07-2018	03-06-2019
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-07-2018	03-06-2019
Cable	MICRO-COAX	MFR64639	K10742-5	03-07-2018	03-06-2019
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-07-2018	03-06-2019
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A
Test Software	MWRFTEST	MTS8200		Version: 2.0.0.0	

Conducted Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-07-2018	03-06-2019
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-07-2018	03-06-2019
LISN	CHASE	MN2050D	1447	03-19-2018	03-18-2019
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2018	07-20-2019
Cable	HP	10503A	N/A	03-07-2018	03-06-2019
EMI Test Software	AUDIX	E3	Version: 6.110919b		

Test results and measurement data

6.1 Antenna Requirement

FCC Part 15 C Section 15.203 & 247(b) Standard requirement: 15.203 requirement: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. 15.247(b) (4) requirement: (4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi. E.U.T Antenna: The Bluetooth antenna is an Internal antenna which permanently attached, and the best case gain of the antenna is 1.2 dBi.

6.2 Conducted Emissions

Test Requirement:	FCC Part 15 C Section 1	5.207	
Test Method:	ANSI C63.10:2013		
Test Frequency Range:	150 kHz to 30 MHz		
Class / Severity:	Class B		
Receiver setup:	RBW=9 kHz, VBW=30 k	Hz, Sweep time=auto	
Limit:	Frequency range	Limit (dBuV)
	(MHz)	Quasi-peak	Average
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	5-30	60	50
	* Decreases with the log	arithm of the frequency.	
Test setup:	Reference		
	AUX Equipment Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Net Test table height=0.8m	EMI Receiver	ower
Test procedure:	line impedance stabili 50ohm/50uH coupling 2. The peripheral device LISN that provides a stermination. (Please r photographs). 3. Both sides of A.C. line interference. In order positions of equipmen	tors are connected to the zation network (L.I.S.N.). In impedance for the measures are also connected to the soohm/50uH coupling impeder to the block diagram of the are checked for maximum to find the maximum emist and all of the interface calls.4: 2014 on conducted maximum conduct	This provides a uring equipment. e main power through a edance with 50ohm of the test setup and m conducted sion, the relative ables must be changed
Test Instruments:	Refer to section 5.8 for c	letails	
Test mode:	Hopping mode		
Test results:	Pass		
	•		

EKO Star 6.0 G65

Measurement Data:

Mobile Phone

Product name:

Mike Test mode:			BT Tx mode Line					
150 kHz ~ 30 MHz Phase:								
AC 120 V/60 Hz		Environme	ent:		Temp: 22.5℃ Huni: 55%			
				Tr y				_
						rccr	NADT45 D	00
					1	ruc i	AKITOB	GP.
						FCC P	ART15 B	A۷
4	5		8	3			1012	
s. MANULUM A	Inlan.	14.0	. Maria	M .			WM	
Thylan I a What	MANAGERIA	AND THE PARTY OF	MAN IN WANT	, Vm	Myster by	N	C. M.	
A A VALUE	6	Mindle X		M	, Mar John	THAT HAT	111	le a
A A PART OF THE PA	MINAMA	A COMPANY	WHITE W	1/4	Marie		M	444
Man.		HIMM			WANT WANT	Manual A	1	-
.5	1	2		5		10	20	
	Fred	luency (MH	z)					
Read LI	ISN Cal	ole		Limi	t C	ver		
	150 kHz ~ 30 MHz AC 120 V/60 Hz	150 kHz ~ 30 MHz AC 120 V/60 Hz	150 kHz ~ 30 MHz AC 120 V/60 Hz Environm 5 1 2 Frequency (MH	150 kHz ~ 30 MHz AC 120 V/60 Hz Environment: 5 1 2 Frequency (MHz)	150 kHz ~ 30 MHz AC 120 V/60 Hz Environment: 5 150 kHz ~ 30 MHz Environment:	150 kHz ~ 30 MHz	150 kHz ~ 30 MHz AC 120 V/60 Hz Environment: Temp: 22.5°C FCC P	150 kHz ~ 30 MHz AC 120 V/60 Hz Environment: Temp: 22.5°C Huni: 55

Product model:

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
2.50	MHz	dBu∇	<u>dB</u>	<u>d</u> B	dBu∀	dBu∇	<u>ab</u>	
1	0.178	12.24	0.73	10.77	23.74	54.59	-30.85	Average
2	0.182	30.99	0.73	10.77	42.49	64.42	-21.93	QP
3	0.541	16.42	0.76	10.76	27.94	46.00	-18.06	Average
4	0.549	29.47	0.76	10.76	40.99	56.00	-15.01	QP
2 3 4 5 6 7 8 9	1.117	28.71	0.78	10.88	40.37	56.00	-15.63	QP
6	1.203	9.37	0.78	10.89	21.04	46.00	-24.96	Average
7	2.500	11.22	0.78	10.94	22.94	46.00	-23.06	Average
8	4.672	30.01	0.76	10.86	41.63	56.00	-14.37	QP
9	4.874	14.93	0.76	10.85	26.54	46.00	-19.46	Average
10	17.849	29.78	0.70	10.92	41.40	60.00	-18.60	QP
11	17.849	12.72	0.70	10.92	24.34	50.00	-25.66	Average
12	20.377	28.80	0.70	10.93	40.43		-19.57	

Notes

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Product name:	I	Mobile Phon	е	Proc	luct model:		EKO Star 6.0	G65	
Test by: Test frequency:		Mike 150 kHz ~ 30 MHz		Test mode: Phase:			BT Tx mode		
							Neutral		
Test voltage:		AC 120 V/60	Hz	Envi	ronment:	-	Гетр: 22.5°С	Huni: 55%	
80 Level (dB 70 60 50 40	uV)		55 66	7 1)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				PART15 B QP	
20 10 0.15 .2 Trace: 5	Freq	.5 Read Level	1 LISN Factor	Frequency Cable Loss		5 Limit Line		20 30 Remark	
	MHz	dBu∇	<u>ab</u>	<u>ab</u>	—dBu⊽	dBu∀	<u>ab</u>		
1 0. 2 0. 3 0. 4 0.	. 182	32.61 18.12	0.66 0.64	10.77 10.74	44.04 29.50		-20.38	QP Average	

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(1)	
Test Method:	ANSI C63.10:2013 and KDB 558074	
Receiver setup:	RBW=1MHz, VBW=3MHz, Detector=Peak (If 20dB BW ≤1 MHz) RBW=3MHz, VBW=10MHz, Detector=Peak (If 20dB BW > 1 MHz and < 3MHz)	
Limit:	For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.8 for details	
Test mode:	Non-hopping mode	
Test results:	Pass	

Measurement Data:

Test channel	Peak Output Power (dBm)	Limit (dBm)	Result	
	GFSK mo	de		
Lowest channel	3.45	30.00	Pass	
Middle channel	3.99	30.00	Pass	
Highest channel	3.77	30.00	Pass	
	π/4-DQPSK	mode		
Lowest channel	2.80	21.00	Pass	
Middle channel	3.35	21.00	Pass	
Highest channel	3.22	21.00	Pass	
	8DPSK mode			
Lowest channel	2.83	21.00	Pass	
Middle channel	2.98	21.00	Pass	
Highest channel	3.28	21.00	Pass	

Test plot as follows:

6.4 20dB Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013 and KDB 558074
Receiver setup:	RBW=30 kHz, VBW=100 kHz, detector=Peak
Limit:	NA
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.8 for details
Test mode:	Non-hopping mode
Test results:	Pass

Measurement Data:

Toot channel	20dB Occupy Bandwidth (kHz)			
Test channel	GFSK	π/4-DQPSK	8DPSK	
Lowest	824	1122	1176	
Middle	824	1122	1176	
Highest	832	1122	1176	

Test plot as follows:

6.5 Carrier Frequencies Separation

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013 and KDB 558074
Receiver setup:	RBW=100 kHz, VBW=300 kHz, detector=Peak
Limit:	 a) 0.025MHz or the 20dB bandwidth (whichever is greater) b) 0.025MHz or two-thirds of the 20dB bandwidth (whichever is greater)
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.8 for details
Test mode:	Hopping mode
Test results:	Pass

Measurement Data:

Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result	
	GFSK			
Lowest	1004	824.00	Pass	
Middle	1000	824.00	Pass	
Highest	1000	824.00	Pass	
	π/4-DQPSK mode			
Lowest	1000	748.00	Pass	
Middle	1004	748.00	Pass	
Highest	1008	748.00	Pass	
	8DPSK mode			
Lowest	1000	784.00	Pass	
Middle	1000	784.00	Pass	
Highest	1004	784.00	Pass	

Note: According to section 6.4

Mode	20dB bandwidth (kHz) (worse case)	Limit (kHz) (Carrier Frequencies Separation)
GFSK	824	824.00
π/4-DQPSK	1122	748.00
8DPSK	1176	784.00

Test plot as follows:

6.6 Hopping Channel Number

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.10:2013 and KDB 558074	
Receiver setup:	RBW=100 kHz, VBW=300 kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak	
Limit:	15 channels	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.8 for details	
Test mode:	Hopping mode	
Test results:	Pass	

Measurement Data:

Mode	Hopping channel numbers	Limit	Result
GFSK, π/4-DQPSK, 8DPSK	79	15	Pass

Test plot as follows:

6.7 Dwell Time

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013 and KDB 558074
Receiver setup:	RBW=1 MHz, VBW=1 MHz, Span=0 Hz, Detector=Peak
Limit:	0.4 Second
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.8 for details
Test mode:	Hopping mode
Test results:	Pass

Measurement Data (Worse case):

Mode	Packet	Dwell time (second)	Limit (second)	Result
	DH1	0.12480		
GFSK	DH3	0.27072	0.4	Pass
	DH5	0.31573		
	2-DH1	0.12864		
π/4-DQPSK	2-DH3	0.26592	0.4	Pass
	2-DH5	0.31403		
	3-DH1	0.12864		
8DPSK	3-DH3	0.26592	0.4	Pass
	3-DH5	0.31317		

Note:

The test period = 0.4 Second/Channel x 79 Channel = 31.6 s

Calculation Formula: Dwell time = Ton time per hop * Hopping numbers * Period

For example:

DH1 time slot=0.390*(1600/ (2*79)) * 31.6=124.80ms

DH3 time slot=1.692*(1600/ (4*79)) * 31.6=270.72ms

DH5 time slot=2.960*(1600/ (6*79)) * 31.6=315.73ms

Test plot as follows:

6.8 Pseudorandom Frequency Hopping Sequence

Test Requirement: FCC Part 15 C Section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- · Number of shift register stages: 9
- Length of pseudo-random sequence: 29-1 = 511 bits
- · Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

6.9 Band Edge

6.9.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)		
Test Method:	ANSI C63.10:2013 and KDB 558074		
Receiver setup:	RBW=100 kHz, VBW=300 kHz, Detector=Peak		
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.8 for details		
Test mode:	Non-hopping mode and hopping mode		
Test results:	Pass		

Test plot as follows:

6.9.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.209 and 15.205						
Test Method:	ANSI C63.10: 2013						
Test Frequency Range:	2.3GHz to 2.5GHz						
Test Distance:	3m						
Receiver setup:	Frequency Detector RBW VBW Rema						Remark
	Peak			1MHz	3MF	Ηz	Peak Value
	Above 1GHz RMS 1MHz 3MHz Average Value						Average Value
Limit:	Frequency Limit (dBuV/m @3m) Remark						
	Above 10	\U-		54.00		Av	erage Value
	Above 10	PΠZ		74.00		F	Peak Value
Test setup:	Antenna Tower Ground Reference Plane Test Receiver Controller Controller						
Test Procedure:	 The EUT was placed on the top of a rotating table 1.5meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or 						
Test Instruments:	Refer to sectio			d and then rep			
Test mode:	Non-hopping mode						
Test results:	Passed						

GFSK Mode:

Product N	Name:	Mobile Phone Mike			Pr	Product Model: Test mode:		EKO Star 6	.0 G65
Test By:					Те			DH1 Tx mode	
Test Cha	nnel:	Lowest ch	annel		Po	Polarization: Ver		Vertical	
est Volta	age:	AC 120/60Hz		Er	Environment:		Temp: 24℃ Huni: 57%		
Leve	l (dBuV/m)						_		
100									
80								FCC I	PART 15 (PK)
60								FCC I	PART 15 (AV)
40	~~~~	my	~~~	~~~	~~~	man	~~~~	my	
20									
0 23 1 0	2320			2350 Frequ	iency (MHz	0			2404
	Freq		intenna Factor	Cable	Preamp		Limit Line	Over Limit	Remark
	MHz	—dBu₹	dB/m		<u>dB</u>	dBu√/m	$\overline{dBuV/m}$	<u>d</u> B	
		14.94	27.37	4.69	0.00	40 60	74 00	-25.32	Dools

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

roduct Name:		Mobile Phone				roduct Mod	lel:	EKO Star 6.0 G65 DH1 Tx mode		
est By:		Mike			Te	Test mode:				
est Channel:		Lowest ch	annel		Po	Polarization:		Horizontal		
est Voltage:		AC 120/60Hz		Er	Environment:		Temp: 24℃ Huni: 57%			
110 Level (dBu)	V/m)									
100										
80								FCC	PART 15 (PK)	
60								FCC	PART 15 (AV)	
40	m	,~~~	~~~	~~~	~~~	····	~~~~	FCC	PART 15 (AV)	
mm	m	, , , , , , , , , , , , , , , , , , ,	~~~	~~~	~~~		~~~	FCC	PART 15 (AV)	
40	√√√ 320	~~~~	~~~	2350 Freq	uency (MH	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~	FCC	PART 15 (AV)	
40 20 0 2310 23	320			Freq Cable	Preamp		Limit Line	Over	VVV	
20 0 2310 23	320			Freq Cable	Preamp Factor		Line	Over Limit	240-	

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

74.00 -23.32 Peak

54.00 -10.05 Average

Product Name:	Mobile Phone	Product Model:	EKO Star 6.0 G65
Test By:	Mike	Test mode:	DH1 Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%
110 Level (dBuV/m) 100 80 60 40			FCC PART 15 (PK) FCC PART 15 (AV)
20			
2478	Fre	quency (MHz)	2500
Freq	ReadAntenna Cablo Level Factor Los:	e Preamp Limi s Factor Level Lin	t Over e Limit Remark
<u>M</u> Hz	dBu∀ dB/m dl	dB dBuV/m dBuV/	m dB

Remark:

1

2

2483.500

2483.500

16.60

9.87

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

27.57

27.57

The emission levels of other frequencies are very lower than the limit and not show in test report.

0.00

0.00

50.68

43.95

4.81

4.81

74.00 -23.37 Peak

0.00 44.06 54.00 -9.94 Average

Product Name:	Mobile Phone	Product Model:	EKO Star 6.0 G65
Test By:	Mike	Test mode:	DH1 Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%
110 Level (dBuV/m) 100 80 60 40 20 0 2478	Frequency (ReadAntenna Cable Prea		FCC PART 15 (PK) FCC PART 15 (AV) 2500
Freq	ReadAntenna Cable Prea Level Factor Loss Fact	or Level Lin	
MHz	-dBuV dB/m dB	dB dBuV/m dBuV/	mdB

0.00

50.63

Remark:

1

2483.500

2483.500

16.55

9.98

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

27.57

27.57

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

4.81

4.81

π/4-DQPSK mode

Product	Name:	Mobile Ph	Mobile Phone			oduct Mod	el:	EKO Star 6.0 G65		
est By:		Mike			Те	est mode:		2DH1 Tx mode		
est Cha	annel:	Lowest ch	annel		Pc	olarization:		Vertical		
est Vol	Itage:	AC 120/60Hz			Er	Environment:		Temp: 24°C Huni		57%
	and AdDad Heat									
110 Le	evel (dBuV/m)									
100		_		_	-					-
										Λ
80								FCC	PART 15 (I	PK
60		_						FCC	PART 15 (AV)
w.	mmy	~~~~	~~~	www	m	ww.	~~~	non	m	
40										_
20										
20										
0				2052						0.40
0	10 2320			2350 Freq	uency (MH	z)				240
0				Freq Cable	Preamp					240
0		ReadA Level		Freq Cable	Preamp				Remark	240
0			Factor	Freq Cable	Preamp Factor		Line	Limit	Remark	240
0	Freq	Level	Factor dB/m 27.37	Freq Cable Loss dB	Preamp Factor dB	Level dBuV/m 49.03	Line dBuV/m 74.00	Limit	 Peak	240

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

oduct l	Mobile Phone			Pro	oduct Mode	el:	EKO Star 6.0 G65			
st By:		Mike				st mode:	2	2DH1 Tx mode		
st Cha	nnel:	Lowest channel			Ро	larization:	H	Horizontal		
st Volt	age:	AC 120/60	Hz		En	vironment:	-	Temp: 24°C Huni: 57%		
	and AdDay Man									
110 Le	vel (dBuV/m)									
100										
80								FCC F	PART 15 (PK	
								rect		
60									DARLISHAV	
60	1~10 = no m		-AMA	m ~	~~~~	200-0	mmm		PART 15 (AV	
60	~~~~~	~~~	m	m	m	www.	~~~		MAN 15 (AV	
~	mmm	~~~ <u>~</u>	m	~~~~	~~~	www	~~~			
40	~~~~~	~~~\	~~~	m	~~~	www.	~~~			
40	~~~~		m	m	~~~	~~~	~~~			
~	~~~~	~~~~	~~~	~~~	~~~	~~~	~~~			
40	~~~~~		~~~	~~~	~~~	~~~	~~~			
40	10 2320		~~~~	2350	~~~~					
40	10 2320		~~~		uency (MH:	z)	~~~		nmM	
40	10 2320	Readú	ntenna	Freq			Timit		nmM	
40		ReadA Level	ntenna Factor	Freq Cable	Preamp		Limit Line		24	
40		ReadA Level	intenna Factor	Freq Cable	Preamp Factor		Line	Over Limit	24	
20 0 23	Freq	Level	Factor dB/m	Freq Cable Loss dB	Preamp Factor ————————————————————————————————————	Level	Line	Over Limit	24 Remark	
40	Freq MHz	Level — <u>dBu</u> V	Factor dB/m	Freq Cable Loss dB	Preamp Factor ————————————————————————————————————	Level dBuV/m 51.08	Line dBuV/m 74.00	Over Limit ———————————————————————————————————	24 Remark	

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

74.00 -22.14 Peak

54.00 -10.34 Average

roduct Name: Mobile Phone				Product Model: EKO Star 6.0 G65				
Test By:	Mike		Te	st mode:		2DH1 Tx mo	de	
Test Channel:	Highest channel AC 120/60Hz			Polarization: Environment:		Vertical		
Test Voltage:						Temp: 24℃	Huni: 57%	
110 Level (dBuV/m) 100 80 60 40							PART 15 (PK)	
0 ₂₄₇₈	ReadAntenna Level Factor	Frequer Cable Pr Loss Fa			Limit Line	Over Limit	2500 Remark	
MHz	dBu∀ dB/m	dB	₫B	$\overline{dBuV/m}$	dBuV/m	dB		

Remark:

1

2

2483.500

2483.500

17.78

9.58

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

27.57

27.57

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

4.81

4.81

0.00

51.86

0.00 43.66

Product Name:				P	roduct Mod	el:	EKO Star 6	.0 G65		
Test By:	Mike			Te	est mode:		2DH1 Tx mode			
Test Channel:	Highest c	Highest channel			olarization: Horizontal					
Test Voltage:	AC 120/6	0Hz		E	nvironment	:	Temp: 24℃	Huni: 57%		
110 Level (dBuV/m) 100 80 60 40								PART 15 (PK) PART 15 (AV)		
0 ₂₄₇₈ Freq	Level dBuV	— <u>dB</u> /m	Cable Loss dB	Factor dB	Level	dBuV/m	dB			
1 2483.500 2 2483.500		27.57 27.57	4.81 4.81	0.00 0.00		54.00	-22.95 -10.55	Peak Average		

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

8DPSK mode

oduc	oduct Name: Mobile Phone			Pr	roduct Mod	lel:	EKO Star 6.0 G65			
est By	<i>y</i> :	Mike			Te	est mode:		3DH1 Tx mode		
est Ch	nannel:	Lowest channel AC 120/60Hz			Po	Polarization: Environment:		Vertical		
est Vo	oltage:				Er			Temp: 24℃ Huni: 57%		
	and AD Alles	-			•		•			
110	evel (dBuV/m)		100							
100										
									۸	
80								FCC P	PART 15 (PK)	
								,,,,,		
60								FCC F	PART 15 (AV)	
_	and the second of the second	Λ.Λ	.000	~ ~ ~ ~ ~	m. 0-0		Mm	000000	~ ANT IS IAVA	
h	1) AMARA	AN YOU LAN								
40	marmy	~~~	~ ~	~ 0.0	. ~~ ~~ ~	~ · · · · ·	<u> </u>	, , , , , , , , , , , , , , , , , , ,	D /4	
40	m	~~~~	~~ ~	7 00		~~~	· · ·			
	~~~~	~~~~~	<i></i>	7 00		V 40 10	<u> </u>			
40	~~~~			7 00	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	~ · · · · ·				
	~~~~			7 00	, , , , ,	~ · · · · ·				
20	310 2320			2350	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	~ · · · · ·			240-	
20	310 2320				uency (MHz	z)			240	
20			ntenna	Frequ Cable	Preamp		Limit			
20	310 2320 Freq	ReadA Level		Frequ Cable	Preamp					
20				Frequ Cable	Preamp Factor		Line	Limit		
20	Freq	Level	Factor	Frequence Cable Loss dB	Preamp Factor	Level	Line dBuV/m	Limit	Remark	

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

roduc	uct Name: Mobile Phone			Р	roduct Mod	del:	EKO Star 6.0 G65			
est By	/ :	Mike			T	est mode:		3DH1 Tx n	node	
est Ch	nannel:	Lowest channel			Р	Polarization:		Horizontal		
est Vo	oltage:	AC 120/6	0Hz		E	nvironmen	t:	Temp: 24℃ Huni: 57%		
	and AlDed One				·					
110 Le	evel (dBuV/m)									
100										
80								FCC	PART 15 (PK)	
-								100	TAKT 15 (I)	
								FCC	PART 15 (AV)	
60								FLL	PART 15 (AV)	
60		~ ~~	\mm	Mank	~ ~~	ARRAM	an m	Sam	- money	
~	mmm	~~~	ma	mm	mm	~~~	M	www	mon ,	
40	mann	~~~	m	non	mm	~~~~	~~~	m	" home	
40	man.	~~~		vm	~~~	~~~	Mr.	m	" home	
~	mm	~~~		mm m		~~~	~~~	~~~~	· ····································	
40	man m	~~~		~~~		~~~~	~~~	~~~	" Lower	
40 20	310 2320			2350		~~~~	~ ~~~	~~~	2404	
40 20		~~~			quency (MH	Az)	~~~~	~~~~	2404	
40 20			ntenna	Fred	quency (MH		Limit	Over	2404	
40 20		ReadA		Fred Cable			Limit Line	Over Limit		
40 20	310 2320	ReadA	Factor	Fred Cable	quency (MH Preamp Factor		Line	Limit		
40 20	310 2320 Freq	ReadA Level	Factor ——dB/m	Fred Cable Loss dB	Preamp Factor dB	Level dBuV/m 49.87	Line dBuV/m 74.00	Limit	Remark	

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:						roduct Mo	del:	EKO Star	6.0 G65
Test By:		Mike			T	est mode:		3DH1 Tx r	node
Test Channel:		Highest cl	nannel		Р	olarization	:	Vertical	
Test Voltage:		AC 120/60	OHz		E	nvironmen	t:	Temp: 24°	C Huni: 57%
110 Level (dBuV/n 100 80 60 40 20 2478	n)	2		Frequ	uency (MHz	z)			PART 15 (PK) PART 15 (AV) 2500
		ReadA	ntenna	Cable	Preamp		Limit		
F	req	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu₹	dB/m	₫B	₫B	dBu√/m	dBuV/m	<u>dB</u>	
1 2483. 2 2483.		17.38 9.67	27.57 27.57	4.81 4.81	0.00 0.00			-22.54 -10.25	Peak Average

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Mobile Phone	Product Model:	EKO Star 6.0 G65
Test By:	Mike	Test mode:	3DH1 Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Freq		Antenna Factor					
	MHz	dBu∜	— <u>d</u> B/m	 <u>d</u> B	dBuV/m	dBuV/m	<u>d</u> B	
1	2483.500 2483.500							

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.10 Spurious Emission

6.10.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)
Test Method:	ANSI C63.10:2013 and KDB 558074
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.8 for details
Test mode:	Non-hopping mode
Test results:	Pass

Test plot as follows:

6.10.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C	Section 15	5.209)			
Test Method:	ANSI C63.10: 2		00				
Test Frequency Range:	9 kHz to 25 GH:						
Test Distance:	3m						
Receiver setup:	Frequency	Detecto	or	RBW	VBV	v	Remark
Traces of College	30MHz-1GHz	Quasi-pe		120kHz	300kl		Quasi-peak Value
		Peak		1MHz	ЗМН		Peak Value
	Above 1GHz RMS 1MHz 3MHz Average Val						
Limit:	Frequenc	y	Lim	it (dBuV/m @	23m)	,	Remark
	30MHz-88N	ИHz		40.0		Q	uasi-peak Value
	88MHz-216	MHz		43.5		Q	uasi-peak Value
	216MHz-960	MHz		46.0		Q	uasi-peak Value
	960MHz-10	GHz		54.0		Q	uasi-peak Value
	Above 1GI	⊔-,		54.0		,	Average Value
	Above 1GI	П		74.0			Peak Value
Test setup:	7/////	Jum 0.8m A able A and Plane	4m				
Test Procedure:			Test F	Ground Reference Plane Receiver	ating tab		Bm(below 1GHz)
	/1.5m(above was rotated 3 radiation.						namber. The table the highest

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

	 The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test Instruments:	Refer to section 5.8 for details
Test mode:	Non-hopping mode
Test results:	Pass
Remark:	 Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case. 9 kHz to 30 MHz is noise floor, so only shows the data of above 30MHz in this report.

Measurement Data (worst case):

Below 1GHz:

Product Name:	Mobile Phone	Product Model:	EKO Star 6.0 G65
Test By:	Mike	Test mode:	BT Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%
80 Level (dBuV/m)			

	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∜	dB/m	₫B	<u>d</u> B	dBuV/m	$\overline{dBuV/m}$	<u>dB</u>	
1	46.503	43.24	13.82	1.28	29.85	28.49	40.00	-11.51	QP
1 2 3	57.392	39.32	12.81	1.37	29.79	23.71	40.00	-16.29	QP
3	99.878	42.09	11.68	1.94	29.53	26.18	43.50	-17.32	QP
4	125.446	44.39	9.37	2.24	29.36	26.64	43.50	-16.86	QP
5	184.490	39.51	10.44	2.76	28.94	23.77	43.50	-19.73	QP
5	283.979	32.11	13.51	2.90	28.48	20.04	46.00	-25.96	QP

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	Name:	Mobile Ph	one		Pro	oduct Mode	el:	EKO Star 6.0 G65		
Test By:		Mike Test mode: BT Tx mode				BT Tx mode				
Test Fre	quency:	30 MHz ~	1 GHz		Po	larization:		Horizontal Temp: 24°C Huni: 579		
Test Vol	tage:	AC 120/60	OHz		En	vironment:				
70 60 50	/el (dBuV/m)							FCC PAR	RT15 CLA	SSB
30				13 mm	3	4		1 1 m	and when the property to	de de la constitución de la cons
20	hand the state of	Market production and	100	Mary Lang	200	Wanta and	Manhort	500	and wife representations	1000
10		May make many			uency (MH	Wanta and			and wife of the second	
10			100 Antenna Factor	Cable	uency (MH Preamp	Wanta and	Limit	Over		1000
10	50		Intenna	Cable	uency (MH Preamp Factor	Z)	Limit Line	Over Limit		1000

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Above 1GHz:

Above 1GHz	:									
			Test ch	annel: Lowe	est channel					
			De	tector: Peak	Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4804	47.81	35.99	6.80	41.81	48.79	74.00	-25.21	Vertical		
4804	48.05	35.99	6.80	41.81	49.03	74.00	-24.97	Horizontal		
Detector: Average Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4804.00	38.24	35.99	6.80	41.81	39.22	54.00	-14.78	Vertical		
4804.00	37.15	35.99	6.80	41.81	38.13	54.00	-15.87	Horizontal		
				annel: Mido						
		l a .		tector: Peak	Value		I			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4882.00	46.89	36.38	6.86	41.84	48.29	74.00	-25.71	Vertical		
4882.00	46.55	36.38	6.86	41.84	47.95	74.00	-26.05	Horizontal		
			Dete	ctor: Averag	ge Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4882.00	37.24	36.38	6.86	41.84	38.64	54.00	-15.36	Vertical		
4882.00	37.91	36.38	6.86	41.84	39.31	54.00	-14.69	Horizontal		
				annel: Highe						
		T	De	tector: Peak	Value		T			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4960.00	47.35	36.71	6.91	41.87	49.10	74.00	-24.90	Vertical		
4960.00	46.65	36.71	6.91	41.87	48.40	74.00	-25.60	Horizontal		
Detector: Average Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4960.00	38.24	36.71	6.91	41.87	39.99	54.00	-14.01	Vertical		
4960.00	38.49	36.71	6.91	41.87	40.24	54.00	-13.76	Horizontal		

Remark:

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.