El teorema de los cuatro colores

Introducción a la matemática discreta CM - 254

C. Aznarán Laos

F. Cruz Ordoñez

G. Quiroz Gómez

J. Navío Torres

Facultad de Ciencias

Universidad Nacional de Ingeniería

18 de junio del 2018

- Introducción
 - El problema de los cuatro colores
 - Algunas fechas importantes
- 2 El "camino" hacia la demostración
 - La formulación de la conjetura
 - La primera "demostración": las cadenas de Kempe
 - Heawood y el error fatal de Kempe
 - Idea clave: la reducibilidad de mapas de Birkhoff
 - El método de descarga de Appel y Haken
 - Una nueva demostración de Robertson, Sanders, Seymour y Thomas
- 3 Aplicaciones
 - El juego Hex
- 4 Conclusiones
 - Importancia del teorema para los matemáticos

- Introducción
 - El problema de los cuatro colores
 - Algunas fechas importantes
- 2 El "camino" hacia la demostración
- 3 Aplicaciones
- 4 Conclusiones

Pregunta

¿Es posible colorear cualquier mapa geográfico plano usando solamente cuatro colores, de modo que dos países con frontera común tengan colores distintos?

Pregunta

¿Es posible colorear cualquier mapa geográfico plano usando solamente cuatro colores, de modo que dos países con frontera común tengan colores distintos?

Figura: Mapa político coloreado

Definición (Mapa conexo)

Un mapa es conexo^a y cada una de sus regiones también es conexa.

^aDe una sola pieza.

Observación

Dos regiones no pueden tocarse solo en un punto, y así, se pueden ignorar regiones con una única línea frontera.

Observación

Dos regiones no pueden tocarse solo en un punto, y así, se pueden ignorar regiones con una única línea frontera.

Figura: Distinciones de frontera de un mapa.

Es un problema topológico: no importa la forma de las regiones, sino como están colocadas unas respecto a otras.

TIMELINE___

Teorema de 4 Colores

By: jose

- Introducción
 - El problema de los cuatro colores
 - Algunas fechas importantes
- 2 El "camino" hacia la demostración
- 3 Aplicaciones
- 4 Conclusiones

Algunas fechas importantes

- 1852: Francis Guthrie plantea el problema a su hermano Frederick y éste a Augustus de Morgan.
- 1878: Arthur Cayley publica el enunciado de la conjetura.
- 1879: Sir Alfred Bray Kempe publica su "demostración".
- 1913: George Birkhoff introduce la noción de configuración reducible.
- 1960: Se introduce el llamado método de descarga.
- 1969: Avances de Heinrich Heesch en reducibilidad y obtención de conjuntos inevitables de configuraciones.
- 1976: Ken Appel y Wolfgang Haken prueban con ayuda de un ordenador que sus 1.482 configuraciones son reducibles (50 días de cálculo).
- 1996: N. Robertson, D.P. Sanders, P. Seymour y R. Thomas mejoran la demostración con ayuda de ordenador (sólo 633 configuraciones) y automatizan la prueba de la inevitabilidad.

- Introducción
- 2 El "camino" hacia la demostración
 - La formulación de la conjetura
 - La primera "demostración": las cadenas de Kempe
 - Heawood y el error fatal de Kempe
 - Idea clave: la reducibilidad de mapas de Birkhoff
 - El método de descarga de Appel y Haken
 - Una nueva demostración de Robertson, Sanders, Seymour y Thomas
- 3 Aplicaciones
- 4 Conclusiones

La formulación de la conjetura

Francis Guthrie (1839-1899)

Abogado y botánico, observa que puede colorear un mapa complejo de los cantones de Inglaterra con 4 colores. En 1852, enuncia el problema a su hermano Frederick (University College London) y a éste a Augustus de Morgan. Francis Guthrie observa que 3 colores no son suficientes, con el diagrama crítico:

La formulación de la conjetura

Francis Guthrie (1839-1899)

Abogado y botánico, observa que puede colorear un mapa complejo de los cantones de Inglaterra con 4 colores. En 1852, enuncia el problema a su hermano Frederick (University College London) y a éste a Augustus de Morgan. Francis Guthrie observa que 3 colores no son suficientes, con el diagrama crítico:

Figura: Diagrama Crítico.

El "camino" hacia la demostración

Difusión del teorema

Augustus de Morgan (1806-1871) estaba muy interesado en la conjetura de los 4 colores y difundió entre sus colegas su importancia. Una de las primeras personas con las que "habló" fue con el matemático y físico irlandés Sir William Rowan Hamilton (1805-1865), que no compartía el interés de De Morgan por el problema. Le escribe una carta el 23 de octubre de 1852.

El "camino" hacia la demostración

Difusión del teorema

Augustus de Morgan (1806-1871) estaba muy interesado en la conjetura de los 4 colores y difundió entre sus colegas su importancia. Una de las primeras personas con las que "habló" fue con el matemático y físico irlandés Sir William Rowan Hamilton (1805-1865), que no compartía el interés de De Morgan por el problema. Le escribe una carta el 23 de octubre de 1852.

Respuesta de Hamilton

Cuatro días después, Hamilton le contesta: "I am not likely to attempt your "quaternion" of colours very soon".

- Introducción
- El "camino" hacia la demostración
 - La formulación de la conjetura
 - La primera "demostración": las cadenas de Kempe
 - Heawood y el error fatal de Kempe
 - Idea clave: la reducibilidad de mapas de Birkhoff
 - El método de descarga de Appel y Haken
 - Una nueva demostración de Robertson, Sanders, Seymour y Thomas
- 3 Aplicaciones
- 4 Conclusiones

La primera "demostración": las cadenas de Kempe

Kempe se interesa por el problema de los 4 colores tras la pregunta de Cayley en la London Mathematical Society.

La primera "demostración": las cadenas de Kempe

Kempe se interesa por el problema de los 4 colores tras la pregunta de Cayley en la London Mathematical Society.

En junio de 1879 obtiene su solución del teorema de los 4 colores y lo publica en el Amer. Journal of Maths. En 1880, publica unas versiones. simplificadas de su prueba, donde corrige algunas erratas de su prueba original, pero deja intacto el error fatal.

- Introducción
- El "camino" hacia la demostración
 - La formulación de la conjetura
 - La primera "demostración": las cadenas de Kempe
 - Heawood y el error fatal de Kempe
 - Idea clave: la reducibilidad de mapas de Birkhoff
 - El método de descarga de Appel y Haken
 - Una nueva demostración de Robertson, Sanders, Seymour y Thomas
- 3 Aplicaciones
- 4 Conclusiones

Heawood y el error fatal de Kempe

Definición (Número cromático)

Sea G=(V,E) un grafo y sea k un número natural. Una aplicación $c\colon V\to\{1,2,\dots k\}$ se llama coloración del grafo G si $c(x)\neq c(y)$ se cumple para cada rama $\{x,y\}\in E$.

El *número cromático* de G, denotado por $\chi(G)$, es el *mínimo valor* de k para el cual existe una coloración $c \colon V(G) \to \{1, 2, \dots, k\}$.

Heawood y el error fatal de Kempe

Definición (Número cromático)

Sea G=(V,E) un grafo y sea k un número natural. Una aplicación $c\colon V\to\{1,2,\dots k\}$ se llama coloración del grafo G si $c(x)\neq c(y)$ se cumple para cada rama $\{x,y\}\in E$.

El *número cromático* de G, denotado por $\chi(G)$, es el *mínimo valor* de k para el cual existe una coloración $c \colon V(G) \to \{1, 2 \dots, k\}$.

Definición (Grafo Dual)

Sea G=(V,E) un grafo planar con un dibujo planar fijo. Denotamos por $\mathcal F$ el conjunto de caras de G. Definimos un grafo, con posibles lazos y ramas múltiples, como $(\mathcal F,E,\varepsilon)$, donde ε se define como $\varepsilon(e)=\{F_i,F_j\}$ siempre que la rama e sea una frontera común de las caras F_i y F_j . Este grafo $(\mathcal F,E,\varepsilon)$ se le llama el dual de G y se denota por G^* .

Heawood y el error fatal de Kempe I

Ejemplo (Grafos Duales)

Para construir una gráfica dual de un grafo plano G se debe colocar un vértice dentro de cada región de G e incluir la región infinita de G. Para cada arista compartida por las 2 regiones, se debe dibujar una arista que conecte a los vértices dentro de estas regiones y para cada arista que se recorre 2 veces en el camino cerrado alrededor de las aristas de una región se dibuja un lazo en el vértice de la región.

Figura: Grafo G.

Figura: Grafo G y su dual G^* .

Heawood y el error fatal de Kempe II

Ejemplo (Grafos duales)

Sea G=(V,E) un grafo plano, se llama grafo dual de G y se denota por G^{st} , aquel construido de la siguiente manera:

- **1** Se elige un punto v_i en cada cara F_i de G. Estos puntos son los vértices de G^* .
- 2 Por cada arista $e \in E$ se traza una línea e^* que atraviesa únicamente la arista e, y se unen los vértices v_i pertenecientes a las caras adjuntas a e. Estas líneas son las aristas de G^* . A continuación se ilustra este procedimiento de construcción con un ejemplo:

Heawood y el error fatal de Kempe III

Figura: Grafo planar G y su grafo dual $G'=G^*$.

Heawood y el error fatal de Kempe

Teorema (Fórmula de Euler para mapas)

$$\#caras - \#aristas + \#v\'{e}rtices = 2.$$

Heawood y el error fatal de Kempe

Teorema (Fórmula de Euler para mapas)

$$\#caras - \#aristas + \#v\'{e}rtices = 2.$$

Figura: Grafos de cada uno de los cinco sólidos platónicos.

- Introducción
- El "camino" hacia la demostración
 - La formulación de la conjetura
 - La primera "demostración": las cadenas de Kempe
 - Heawood y el error fatal de Kempe
 - Idea clave: la reducibilidad de mapas de Birkhoff
 - El método de descarga de Appel y Haken
 - Una nueva demostración de Robertson, Sanders, Seymour y Thomas
- 3 Aplicaciones
- 4 Conclusiones

Idea clave: la reducibilidad de mapas de Birkhoff

Teorema (Birkhoff)

Solo una de las siguientes afirmaciones es verdadera:

- 1 La conjetura de los cuatro colores puede ser falsa.
- 2 Es posible hallar una colección finita de configuraciones reducibles tal que cualquier mapa planar debe contener uno de ellos (lo que probaría la conjetura de cuatro colores).
- 3 La conjetura de cuatro colores puede ser cierta, pero pueden requerirse métodos más complicados para una prueba.

- Introducción
- 2 El "camino" hacia la demostración
 - La formulación de la conjetura
 - La primera "demostración": las cadenas de Kempe
 - Heawood y el error fatal de Kempe
 - Idea clave: la reducibilidad de mapas de Birkhoff
 - El método de descarga de Appel y Haken
 - Una nueva demostración de Robertson, Sanders, Seymour y Thomas
- 3 Aplicaciones
- 4 Conclusiones

- Introducción
- El "camino" hacia la demostración
 - La formulación de la conjetura
 - La primera "demostración": las cadenas de Kempe
 - Heawood y el error fatal de Kempe
 - Idea clave: la reducibilidad de mapas de Birkhoff
 - El método de descarga de Appel y Haken
 - Una nueva demostración de Robertson, Sanders, Seymour y Thomas
- 3 Aplicaciones
- 4 Conclusiones

- Introducción
- 2 El "camino" hacia la demostración
- 3 Aplicaciones
 - El juego Hex
- 4 Conclusiones

El juego Hex

"Mientras contemplaba el famoso teorema de topología de cuatro colores. El juego se hizo popular en Dinamarca bajo el nombre de Polígono. El juego fue impreso en blocs de papel; y se vende como un juego de papel y lápiz. Durante meses, los periódicos daneses corrieron una serie de problemas de "Polígono". Albert Einstein mantuvo el juego en un estante en su estudio."

- Piet Hein

- Pollard's p-1 algorithm (1974)
- Dixon's Random Squares Algorithm (1981)
- Quadratic Sieve (QS): Pomerance (1981)

- Introducción
- 2 El "camino" hacia la demostración
- 3 Aplicaciones
- 4 Conclusiones
 - Importancia del teorema para los matemáticos

Agradecimientos

¡Muchas gracias!

Colaboradores:

- 1 Elaboración de la línea de tiempo: José Navío.
- 2 Tipografía en LATEX: Franss Cruz y Oromion.
- 3 Explicación del contenido matemático: Gabriel Quiroz.
- 4 Esquema de la exposición: MSc. Fidel Jara Huanca.

Presentación disponible en:

https://github.com/carlosal1015/4colores

Dudas, sugerencias o preguntas a caznaranl@uni.pe

Referencias I

Libros

- Rudolf Fritsch y Gerda Fritsch. The Four-Color Theorem: History, Topological Foundations, and Idea of Proof. Springer, 1998, págs. 1-41.
- J. Pelikán Lovácz L y K. Vesztergombi. Discrete mathematics, elementary and beyond. Springer Undergraduate Text in Mathematics, 2003, págs. 189-218.
- Jiří Matoušek y Jaroslav Nešetřil. Invitation to Discrete Mathematics. Oxford University Press, 2009, págs. 206-214.
- Artículos matemáticos
 - Alfred Bray Kempe. "On the Geographical Problem of the Four Colours". En: *American Journal of Mathematics* 2.3 (1879), págs. 193-200.

Referencias II

- George D. Birkhoff. "The Reducibility of Maps". En: *American Journal of Mathematics* 35.2 (1913), págs. 115-128.
- Kenneth Appel y Wolfgang Haken. "The Solution of the Four-Color-Map Problem". En: Scientific American 237.4 (1977), págs. 108-121.
- Neil Robertson, Daniel Sanders, Paul Seymour y Robin Thomas. "The four-colour theorem". En: *Journal of Combinatorial Theory, Series B* 70.1 (1997), págs. 2-44.
- V. Vilfred Kamalappan. "The four color theorem: a new proof by induction". En: (2017).
- Sitios web
 - Robin Thomas. The Four Color Theorem. 1995. URL: http://people.math.gatech.edu/~thomas/FC/ (visitado 13-11-1995).

Referencias III

© Combinatorics y Optimization University of Waterloo. SiGMa 2017 László Miklós Lovász, Extremal graph theory and finite forcibility. 2017. URL:

https://www.youtube.com/watch?v=OfPf4qA1x_k (visitado 05-06-2018).

Combinatorics y Optimization University of Waterloo. SiGMa 2017 Paul Seymour, Rainbow induced paths in graphs with large chromatic and small clique number. 2017. URL:

https://www.youtube.com/watch?v=CnxmwDuYpX8 (visitado 06-06-2018).