Heurística e Metaheurísticas

Atividade Avaliativa 3

Heitor Lourenço Werneck

1 Introdução

O GRASP é um método que utiliza como princípio a combinação de um método construtivo com busca local, em um procedimento iterativo com iterações completamente independentes.

Já o Path Relinking é um método que faz um balanço entre intensificação e diversificação, o método considera um par de soluções e o objetivo e chegar na solução guia a partir da solução de partida, por meio disto ele consegue os feitos citados anteriormente.

A combinação dos dois métodos será estudada a seguir utilizando como problema a mochila binária.

2 Estrátegias e implementação

Para a formulação do GRASP primeiro foi utilizado uma heuristica construtiva por valor, ou seja, a lista restrita de candidatos é $\{j|c_j \geq c_{max} - \alpha(c_{max} - c_{min})\}$. O alpha utilizado foi 0.7, isso tendo uma lista bem diversa em soluções.

O algoritmo de busca local utilizado foi o VND(Variable Neighborhood Descent), sendo este algoritmo uma busca local que utiliza vizinhanças sucessivas na descida até um ótimo local. Se uma solução s não é melhorada na sua vizinhança atual/corrente $N^k(s)$, a estrutura é alterada da vizinhança N^k para N^{k+1} . Se a solução é melhorada então a busca se inicializa de novo na nova solução melhorada na primeira vizinhança.

Para a implementação do VND foram utilizadas duas vizinhanças, uma N^1 e outra N^2 . A vizinhança N^1 troca um bit da representação por vez e testa a solução com o bit trocado e guarda a melhor solução com 1 bit trocado. A vizinhança N^2 troca dois bits da representação por vez e testa a solução com os bits trocados e guarda a melhor solução.

Para combinar o **Path Relinking** com o GRASP foi utilizado o **Path Relinking** como etapa de intensificação entre um ótimo local e uma solução elite. A solução elite escolhida é aleatória.

O conjunto elite foi definido com um tamanho fixo de 10. O critério de entrada de uma solução no conjunto é de ser melhor que a pior solução no conjunto. O critério de saída escolhe a pior solução para sair da lista.

A direção utilizada para o Path Relinking foi a reconexão por caminhos regressiva pois é considerada mais eficiente.

3 Resultados

Como os algoritmos não são determinísticos então cada abordagem será aplicada 5 vezes e cada valor apresentado é a média dessas 5 execuções.

Usando a instâncias "large scale"de http://artemisa.unicauca.edu.co/~johnyortega/instances_ 01_KP/ os resultados são mostrados na tabela abaixo:

Instância	Usando PR	Função Objetivo	Tempo (s)	Ótimo
knapPI 1 1000 1000 1	Não	54373.2	641.63	54503
knapPI 1 1000 1000 1	Sim	54357.2	640.83	54503
knapPI_1_100_1000_1	Não	9147.0	0.30	9147
knapPI_1_100_1000_1	Sim	9147.0	0.31	9147
$knapPI_1_200_1000_1$	Não	11238.0	2.55	11238
$knapPI_1_200_1000_1$	Sim	11238.0	2.52	11238
$knapPI_1_500_1000_1$	Não	28852.4	56.81	28857
$knapPI_1_500_1000_1$	Sim	28857.0	57.00	28857
knapPI_2_1000_1000_1	Não	7122.8	574.60	9052
knapPI_2_1000_1000_1	Sim	7381.4	604.27	9052
$knapPI_2_100_1000_1$	Não	1482.8	0.33	1514
$knapPI_2_100_1000_1$	Sim	1456.6	0.31	1514
$knapPI_2_200_1000_1$	Não	1476.6	2.30	1634
$knapPI_2_200_1000_1$	Sim	1463.2	2.31	1634
$knapPI_2_500_1000_1$	Não	3707.2	62.78	4566
$knapPI_2_500_1000_1$	Sim	3768.6	62.97	4566
knapPI_3_1000_1000_1	Não	14350.0	135.29	14390
knapPI_3_1000_1000_1	Sim	14350.0	135.14	14390
$knapPI_3_100_1000_1$	Não	1976.8	0.17	2397
knapPI_3_100_1000_1	Sim	1957.0	0.18	2397
$knapPI_3_200_1000_1$	Não	2697.0	1.31	2697
$knapPI_3_200_1000_1$	Sim	2697.0	1.36	2697
$knapPI_3_500_1000_1$	Não	7117.0	19.58	7117
knapPI_3_500_1000_1	Sim	7117.0	19.42	7117

É possível obesrvar que não houve diferença significativa na utilização ou não do Path Relinking no tempo de execução, isso pois ele possui complexidade $O(n^2)$ e além disso a distância de hamming é sempre bem pequena entre soluções. O principal que utiliza mais a CPU é a busca local, então a redução ou otimização de outros componentes do algoritmo tem pouco impacto no tempo geral.

Em algumas instâncias o GRASP-PR conseguiu sobressair o GRASP puro porém pelo não determinísmo do algoritmo algumas vezes o GRASP conseguiu ser melhor que o GRASP-PR por muito pouco, porém o GRASP-PR conseguiu aumentos mais significativos.

Porém os dois algoritmos conseguiram obter valores próximos do ótimo e mostraram que conseguem obter uma solução boa em tempo viável.

Para ter uma ideia de como as soluções se comportam durante as iterações vamos observar o gráfico abaixo(Observação: o gráfico é a média de cada iteração das 5 execuções, ou seja, isso não quer dizer que o valor máximo é realmente o valor máximo de uma execução pois o que está apresentado é a média):

Figura 1: Execução da instância knapPI_1_500_1000_1

A primeira coisa que se percebe é que o GRASP-PR consegue manter a qualidade das soluções durante as execuções e chegando nas ultimas iterações ele aproximadamente converge em um ponto. Já o GRASP, como suas iterações são independentes, não apresenta essas características logo possui muito mais variações em execuções pois não é guiado por boas soluções anteriores.

4 Conclusão

Uma adaptação da metaheurísticas Path Relinking foi proposta e combinada com o GRASP para solucionar o problema da mochila binária.

Foi possível observar com esse estudo que o GRASP com Path Relinking consegue guiar melhores soluções e também que a adição dessa método não adiciona significativamente em tempo computacional.