

МІНІСТЕРСТВО ОСВІТИ, НАУКИ, МОЛОДІ ТА СПОРТУ УКРАЇНИ НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ «КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ» ФІЗИКО-ТЕХНІЧНИЙ ІНСТИТУТ

АСИМЕТРИЧНІ КРИПТОСИСТЕМИ ТА ПРОТОКОЛИ КОМП'ЮТЕРНИЙ ПРАКТИКУМ №2

Підготували:

студенти 4 курсу

групи ФІ-84

Ковальчук О.М.

Коломієць А.Ю.

АСИМЕТРИЧНІ КРИПТОСИСТЕМИ ТА ПРОТОКОЛИ КОМП'ЮТЕРНИЙ ПРАКТИКУМ №2

Вивчення криптосистеми RSA та алгоритму електронного підпису

Ознайомлення з методами генерації параметрів для асиметричних криптосистем

Мета та основні завдання роботи

Ознайомлення з тестами перевірки чисел на простоту і методами генерації ключів для асиметричної криптосистеми типу **RSA**; практичне ознайомлення з системою захисту інформації на основі криптосхеми **RSA**, організація з використанням цієї системи засекреченого зв'язку й електронного підпису, вивчення протоколу розсилання ключів.

Порядок і рекомендації щодо виконання роботи

Написати функцію пошуку випадкового простого числа з заданого інтервалу або заданої довжини, використовуючи датчик випадкових чисел та тести перевірки на простоту. В якості датчика випадкових чисел треба використовувати один з генераторів практикуму №1, що показав гарні статистичні властивості. В якості тесту перевірки на простоту рекомендовано використовувати тест Міллера-Рабіна із попередніми пробними діленнями.

За допомогою цієї функції згенерувати дві пари простих чисел p, q і p_1 , q_1 довжини щонайменше 256 біт. При цьому пари чисел беруться так, щоб $p*q <= p_1*q_1$; p і q – прості числа для побудови ключів абонента A, p_1 і q_1 – абонента B.

Написати функцію генерації ключових пар для **RSA**. Після генерування функція повинна повертати та/або зберігати секретний ключ **(d,p,q)** та відкритий ключ **(n,e)**. За допомогою цієї функції побудувати схеми **RSA** для абонентів **A** і **B** – тобто, створити та зберегти для подальшого використання відкриті ключі **(e,n)**, **(e_1,n_1)** та секретні **d** і **d_1**.

Написати програму шифрування, розшифрування і створення повідомлення з цифровим підписом для абонентів **A** і **B**. Кожна з операцій (шифрування, розшифрування, створення цифрового підпису, перевірка цифрового підпису) повинна бути реалізована окремою процедурою, на вхід до якої повинні подаватись лише ті ключові дані, які необхідні для її виконання.

За допомогою датчика випадкових чисел вибрати відкрите повідомлення **M** і знайти криптограму для абонентів **A** и **B**, перевірити правильність розшифрування. Скласти для **A** і **B** повідомлення з цифровим підписом і перевірити його.

За допомогою раніше написаних на попередніх етапах програм організувати роботу протоколу конфіденційного розсилання ключів з підтвердженням справжності по відкритому каналу за допомогою алгоритму \mathbf{RSA} . Протоколи роботи кожного учасника (відправника та приймаючого) повинні бути реалізовані у вигляді окремих процедур, на вхід до яких повинні подаватись лише ті ключові дані, які необхідні для виконання. Перевірити роботу програм для випадково обраного ключа $\mathbf{0} < \mathbf{k} < \mathbf{n}$.

Кожна з наведених операцій повинна бути реалізована у вигляді окремої процедури, інтерфейс якої повинен приймати лише ті дані, які необхідні для її роботи;

наприклад, функція **Encrypt()**, яка шифрує повідомлення для абонента, повинна приймати на вхід повідомлення та відкритий ключ адресата (і тільки його), повертаючи в якості результату шифротекст. Відповідно, програмний код повинен містити сім високорівневих процедур:

GenerateKeyPair(), Encrypt(), Decrypt(), Sign(), Verify(), SendKey(), ReceiveKey().

Кожну операцію рекомендується перевіряти шляхом взаємодії із тестовим середовищем, розташованим за адресою:

http://asymcryptwebservice.appspot.com/?section=rsa.

Наприклад, для перевірки коректності операції шифрування необхідно:

- а) зашифрувати власною реалізацією повідомлення для серверу та розшифрувати його на сервері;
- b) зашифрувати на сервері повідомлення для вашої реалізації та розшифрувати його локально.

Хід роботи

Програмна реалізація розміщується в відкритому доступі за посиланням на **GitLab**:

https://gitlab.com/andrew.kolomiets/asymmetric-cryptography-2.git

Опис труднощів, що виникали, та шляхів їх розв'язання

Під час виконання комп'ютерного практикуму, було лише дві програмні проблеми з котрими стикнулися, та вирішили відповіно:

- Тест на простоту, а саме дуже багато необхідно додаткових функцій котрі працюватимуть швидко та правильно узгоджено на мові програмування **C**++, що змусило виправляти багато помилок при побудові програми.
- Організувати роботу протоколу розсилання секретних ключів. На перший обгляд проблеми не зрозуміло, як організувати програмно, а з іншого боку абстрактно. Вирішенням цієї програми полягало в створенні класів та використання інструментів **ООП**, де ми змогли обмежити видимість ключів, та за допомогою об'єктної моделі побудувати функції відправки, та отримання повідомлення. Зазначені функції при цьому приймали посилання на об'єкти **A** та **B**, таким чином функції відправки та отримання ключа могли взаємодіяти з об'єктами в зручному режимі, брати відповідні ключі, як приватні так і секретні.

Взаємодія з сайтом

Шифрування в застосунку

Розшифрування на сайті

RSA Testing Environment

Шифрування на сайті

RSA Testing Environment

Розшифрування в застосунку

Цифровий підпис в застосунку

Перевірка цифрового підпису на сайті

RSA Testing Environment

Цифровий підпис на сайті

RSA Testing Environment

Перевірка цифрового підпису в застосунку

Надсилання ключа в застосунку

Отримання ключа на сайті

RSA Testing Environment

Надсилання ключа на сайті

RSA Testing Environment

Отримання ключа в застосунку

```
Input other for receive key:

moduls
B7410C4C58E89EB68B619BE67516667FC7B11EF6F8ED29303DE6C2EA07F20B0E17FAA9E8179CE7864046F3D8D2BD8275BC7015A2190F20EF7FA68CF27D7EB439

-exponents
10001

-key_encrypt:
30A418FA19AD04DD90C28F3F799FCF0681E4ABBB538AE664AFF15C2B23118FF348FCE7E546C6772D1CA79386EF356E7FEA3119CDB624ACB6715661BF1B94840C
-signature_encrypt:
0504B9EB08A6C0095C1C5EE14EAB1A382063829CFFAC3A4F4B5AEEA45EBA8E66347E3A21B15875F8DD235F302238304706E5622CF4C3060AB2593DCE51DCD9A2
Receive keys:
Digital signature is real.

-results procedure receiving:
-message decrypt: B52FE551E39013FD

-digital signature: 2249088BA9C3EDDE06CF96AF159F8C128A396909744472303AFCE87FEDECDB8C8877E3576B29F0651DBEA32C5F9095C86559D019EF2EC3F8A9A6332DC56FDCE9
-check signature with message decrypt: B52FE551E39013FD
```

Робота при виконанні протоколу розсилання секретних ключів на основній машині з всіма параметрами та проміжними обчисленнями

Значення вибраних чисел p, q, p_1 , q_1 із зазначенням кандидатів, що не пройшли тест перевірки простоти, і параметрів криптосистеми RSA для абонентів A і В

Procedure of generation keys...

Generation secret keys:

-generation secret keys first pair:

-generation prime number fixes size:

-generation prime number fixes size:

-generation secret keys second pair:

-generation prime number fixes size:

-generation prime number fixes size:

-also inverted secret element:

4494598382653494818326743350749068475809245869477193040924122726676376323217532563638555658056860 435255603131056148284579638823208111085073608693500781153

Generation public keys:

-generation public key first:

 $1956110595467942041509172297972528191012634264873735782961786952935574417664094772701900029666848\\821234504128107566948519721051030834001211813212467998883$

-generation public key second:

In hex representation all generated keys, which we will be using:
- first user:
- secrete keys:
35AE4FFD5BF3CB6C650D9F91A94E0C7EF6D007A70AF676FC74791169476279B1
B21CEFD2ED48D6D31FE1F090C8297C5488DC4D6DAA117749C51D522C26DCD093
F6094D43F9ED7B331C50E241E761697AAA50D3AE353BE73203F092983FC41CDC4816BFBF43C6F85BC9289A226C7D9A058 1C4F0CB10E6777338ADA14B27D90A1
- public keys:
10001
255944F8E1125EE9B0A15C9E41A7B840E7EB0CEE4ACE1A75933CC2F415CCCDBFAC320F5AF284064B83279DEAB7C4DC70E 234E305D0171175A4B11C90DA87B0A3
- second user:
- secrete keys:
5DD3A5915225982A549FE8E67031C8B468E480D2EB4BA2327F040577B00ED0F1
ED49DF26E50994AAC276FF4BE84BB0C29D0B80126FBC8D7989765A2EDFCA1B43
55D123A6A5CCF9D451430CB01DB250B9D1E74ECCCD84C64BD854EEAD9E88ADA53AD72D7AE59AB975C083F151D08B5EB69 B87D921E40682B906F05733C012A261
- public keys:
10001
56F8036B5E133AC147AD1D3D309E15D0021838BC41E4BD7E61A57A7037416EC96343B66484CFB28A661B359A414401165 0A88474A67D23815DA326E571141A13

Чисельні значення прикладів ВТ, ШТ, цифрового підпису для А і В

Input message:
9435647D4CC5F8303A0B94F65FDBB2BEB6C72A34300DE4DCECF355AE5DD241B5
- encryption message:
24C9B91E1D6F9CD9BBE12CE0CCEBE510908D11455AE06FA32A0C8D3BEF52F538FAE11E26096772E8870BCF061A90C4E10 36584C2CBCAE0FCCCB1581E1B846A08
- decryption cryptogram:
9435647D4CC5F8303A0B94F65FDBB2BEB6C72A34300DE4DCECF355AE5DD241B5
- digital signature of message:
201DB0B6459B9E965A2FD562CF341BDC76FB52548462509DC3108EECBD7EF90DA3B50CB87E0EC8DB60A980489FAD6BEA1 FF072A8BF01C498982B5481A0E438
- check digital signature of message:
Digital signature is real.
9435647D4CC5F8303A0B94F65FDBB2BEB6C72A34300DE4DCECF355AE5DD241B5

Опис кроків протоколу конфіденційного розсилання ключів з підтвердженням справжності, чисельні значення характеристик на кожному кроці

Input secret keys which we want to send using protocol sending:
9435647D4CC5F8303A0B94F65FDBB2BEB6C72A34300DE4DCECF355AE5DD241B5
Send keys:
-encryption key parameters:
9435647D4CC5F8303A0B94F65FDBB2BEB6C72A34300DE4DCECF355AE5DD241B5
10001
56F8036B5E133AC147AD1D3D309E15D0021838BC41E4BD7E61A57A7037416EC96343B66484CFB28A661B359A414401165 0A88474A67D23815DA326E571141A13
-digital signature parameters:
9435647D4CC5F8303A0B94F65FDBB2BEB6C72A34300DE4DCECF355AE5DD241B5
10001
255944F8E1125EE9B0A15C9E41A7B840E7EB0CEE4ACE1A75933CC2F415CCCDBFAC320F5AF284064B83279DEAB7C4DC70E 234E305D0171175A4B11C90DA87B0A3
-encryption digital signature parameters:
201DB0B6459B9E965A2FD562CF341BDC76FB52548462509DC3108EECBD7EF90DA3B50CB87E0EC8DB60A980489FAD6BEA3 FF072A8BF01C498982B5481A0E438
10001

56F8036B5E133AC147AD1D3D309E15D0021838BC41E4BD7E61A57A7037416EC96343B66484CFB28A661B359A414401165

0A88474A67D23815DA326E571141A13

-results procedure sending:
-message encrypt: 207FD3A9EA55FEF6CE59A3C3D136504C98FB422AB301AC7DD4D6D9C501D2CDB9DFB9955DBC53F05FC5794CBF2B72E46E3 5763C187A91F4AF07E7C45CD19B3079
-digital signature: 201DB0B6459B9E965A2FD562CF341BDC76FB52548462509DC3108EECBD7EF90DA3B50CB87E0EC8DB60A980489FAD6BEA1 FF072A8BF01C498982B5481A0E438
-signature encrypt: 2E72180D975F0CEDD5F0D6455FBF799D95B59647806B48567F47BA2008B638CBE2BBA54D7B92BCF35F5DF3F38C613EA20 D22E6C47D8FF5644666126BBD0EB42
Receive keys:
-decryption key parameters:
207FD3A9EA55FEF6CE59A3C3D136504C98FB422AB301AC7DD4D6D9C501D2CDB9DFB9955DBC53F05FC5794CBF2B72E46E3 5763C187A91F4AF07E7C45CD19B3079
55D123A6A5CCF9D451430CB01DB250B9D1E74ECCCD84C64BD854EEAD9E88ADA53AD72D7AE59AB975C083F151D08B5EB69 B87D921E40682B906F05733C012A261
56F8036B5E133AC147AD1D3D309E15D0021838BC41E4BD7E61A57A7037416EC96343B66484CFB28A661B359A414401165 0A88474A67D23815DA326E571141A13
-decryption digital signature parameters:
2E72180D975F0CEDD5F0D6455FBF799D95B59647806B48567F47BA2008B638CBE2BBA54D7B92BCF35F5DF3F38C613EA20 D22E6C47D8FF5644666126BBD0EB42
55D123A6A5CCF9D451430CB01DB250B9D1E74ECCCD84C64BD854EEAD9E88ADA53AD72D7AE59AB975C083F151D08B5EB69 B87D921E40682B906F05733C012A261
56F8036B5E133AC147AD1D3D309E15D0021838BC41E4BD7E61A57A7037416EC96343B66484CFB28A661B359A414401165 0A88474A67D23815DA326E571141A13
-check digital signature parameters:
Digital signature is real.

201DB0B6459B9E965A2FD562CF341BDC76FB52548462509DC3108EECBD7EF90DA3B50CB87E0EC8DB60A980489FAD6BEA1 FF072A8BF01C498982B5481A0E438

10001

255944F8E1125EE9B0A15C9E41A7B840E7EB0CEE4ACE1A75933CC2F415CCCDBFAC320F5AF284064B83279DEAB7C4DC70E 234E305D0171175A4B11C90DA87B0A3

9435647D4CC5F8303A0B94F65FDBB2BEB6C72A34300DE4DCECF355AE5DD241B5

- -results procedure receiving:
- -message decrypt: 9435647D4CC5F8303A0B94F65FDBB2BEB6C72A34300DE4DCECF355AE5DD241B5
- -digital signature: 201DB0B6459B9E965A2FD562CF341BDC76FB52548462509DC3108EECBD7EF90DA3B50CB87E0EC8DB60A980489FAD6BEA1 FF072A8BF01C498982B5481A0E438
- -check signature with message decrypt: 9435647D4CC5F8303A0B94F65FDBB2BEB6C72A34300DE4DCECF355AE5DD241B5

Висновки

Під час виконання комп'ютерного практикому, було прийнято рішення використовувати генератор випадкових чисел та тест Міллера-Рабіна для пошуку простих чисел, що видавав генератор випадкових чисел. Найкращим генератором для пошуку простоти виявився **l20_generator**, він має статистичні властивості, котрі є прийнятними на практиці, та виявився досить швидким, тому всі процедури відбуваються миттєво. Сама реалізація криптосистеми **RSA** має багато винятків, що враховані при програмній реалізації. Але слід зазначити, що тут не повний стандарт **RSA**, бо ми не використовували попереднього шифрування повідомлення, та геш-функції. Найскладніший процес в реалізації-це протокол узгодженого надсилання секретних ключів, що виник в даній роботі.