Intervals, Transformations, and Slope Solution (version 177)

1. The function f is graphed below.

Indicate the following intervals using interval notation. Remember, you can use \cup between two intervals to indicate the union. Except for range, all intervals will indicate x values; this is standard.

Feature	Where
Positive	$(-10, -8) \cup (-5, -3)$
Negative	$(-8, -5) \cup (-3, 0)$
Increasing	$(-6, -4) \cup (-2, 0)$
Decreasing	$(-10, -6) \cup (-4, -2)$
Domain	(-10,0)
Range	(-6,6)

Intervals, Transformations, and Slope Solution (version 177)

2. In the four graphs below, y = f(x) is graphed as a dotted line. With a solid line, please graph the transformations indicated by the equations below.

3. Let function g be defined by the table below. Use the formula $\frac{g(x_2)-g(x_1)}{x_2-x_1}$ to find the average rate of change between $x_1=66$ and $x_2=76$. Express your answer as a reduced fraction.

\overline{x}	g(x)
13	66
15	76
66	15
76	13

$$\frac{g(76) - g(66)}{76 - 66} = \frac{13 - 15}{76 - 66} = \frac{-2}{10}$$

The greatest common factor of -2 and 10 is 2. Divide numerator and denominator by the greatest common factor.

$$AROC = \frac{-1}{5}$$

2