Solving $\mathrm{SU}(3)$ Yang-Mills theory on the lattice: a calculation of selected gauge observables with gradient flow

Hans Mathias Mamen Vege April 26, 2019 Supervisor: Andrea Shindler

Co-supervisor: Morten Hjorth-Jensen

University of Oslo

Introduction

• QCD. We will go through and explain what QCD as well as motivate its existence.

- Quantum Chromodynamics(QCD).
- · Lattice QCD.

- QCD. We will go through and explain what QCD as well as motivate its existence.
- LQCD. We will briefly show how one discretise the lattice and perform calculations on it.

- · Quantum Chromodynamics(QCD).
- · Lattice OCD.
- · Gradient flow.

- QCD. We will go through and explain what QCD as well as motivate its existence.
- LQCD. We will briefly show how one discretise the lattice and perform calculations on it.
- **Gradient flow.** We will quickly introduce gradient flow and explain its effects.

- · Quantum Chromodynamics(QCD).
- · Lattice OCD.
- · Gradient flow.
- Developing a code for solving SU(3) Yang-Mills theory.

- QCD. We will go through and explain what QCD as well as motivate its existence.
- LQCD. We will briefly show how one discretise the lattice and perform calculations on it.
- Gradient flow. We will quickly introduce gradient flow and explain its
 effects
- GLAC. Will briefly present the code which we developed as well as some benchmarks. We will also present the Metropolis algorithm.

- · Quantum Chromodynamics(QCD).
- · Lattice OCD.
- · Gradient flow.
- Developing a code for solving SU(3) Yang-Mills theory.
- Results.

- QCD. We will go through and explain what QCD as well as motivate its existence.
- LQCD. We will briefly show how one discretise the lattice and perform calculations on it.
- Gradient flow. We will quickly introduce gradient flow and explain its
 effects
- GLAC. Will briefly present the code which we developed as well as some benchmarks. We will also present the Metropolis algorithm.
- **Results.** We will present the results obtained from pure gauge calculations.

•

- Quantum Chromodynamics(QCD).
- · Lattice QCD.
- · Gradient flow.
- Developing a code for solving SU(3) Yang-Mills theory.
- · Results.

Quantum Chromodynamics(QCD)

· The standard model.

- The standard model: Six quarks and eight gluons
- · Asymptotic freedom

- · The standard model.
- · Asymptotic freedom.

- The standard model: Six quarks and eight gluons
- · Asymptotic freedom
- Confinement

- · The standard model.
- · Asymptotic freedom.
- · Confinement.

- · Asymptotic freedom
- Confinement
- · Highly nonlinear due to gluon self-interactions

- · The standard model.
- · Asymptotic freedom.
- · Confinement.
- · Nonlinearity.

- The standard model: Six quarks and eight gluons
- · Asymptotic freedom
- Confinement
- · Highly nonlinear due to gluon self-interactions

Consists of the innermost square of the six quarks and the gluons.

- The coupling constant **decreases** as we **increase** the energy
- One of the experimental proofs of QCD along with triple γ decay and muon cross section ration R.

Confinement

If we try to pull apart **two mesons**, more and more energy is required until we have enough energy to spontaneously create a **quark-antiquark** pair, forming thus **two new mesons**.

The non-linearity of QCD

The QCD Lagrangian

$$\mathcal{L}_{\mathrm{QCD}} = \sum_{f=1}^{N_f} \bar{\psi}^{(f)} \left(i \not \!\!\!D - m^{(f)} \right) \psi^{(f)} - \frac{1}{4} G^a_{\mu\nu} G^{a\mu\nu},$$

with action

$$S = \int d^4x \mathcal{L}_{QCD}.$$
 (1)

Topology in QCD

Instantons

• **Instantons** are local minimums to the Yang-Mills action in Euclidean space.

Topology in QCD

- Instantons
- \cdot Topological charge, Q

- **Instantons** are local minimums to the Yang-Mills action in Euclidean space.
- Measuring **topological charge** is a measure of the *Winding number* of the gauge field.

· Winding number

Figure 1: The figure is taken from Forkel [1, p. 32].

- **Instantons** are local minimums to the Yang-Mills action in Euclidean space.
- Measuring **topological charge** is a measure of the *Winding number* of the gauge field.
- An illustration of how one can view the winding number given a function f that parametrizes a path around a circle S^1 . Given that it starts and ends at the same point, we have that the number of times it wraps around the circle gives us the winding number.

· Winding number

Figure 1: The figure is taken from Forkel [1, p. 32].

- **Instantons** are local minimums to the Yang-Mills action in Euclidean space.
- Measuring **topological charge** is a measure of the *Winding number* of the gauge field.
- An illustration of how one can view the winding number given a function f that parametrizes a path around a circle S^1 . Given that it starts and ends at the same point, we have that the number of times it wraps around the circle gives us the winding number.

A formula connecting pure gauge theory and full QCD.

$$m_{\eta'}^2 = \frac{2N_f}{f_\pi^2} \chi_{\text{top}} \tag{2}$$

- Pion decay constant $f_{\pi} = 0.130(5)/\sqrt{2}$ GeV.
- η' meson mass $m_{\eta'} = 0.95778(6)$ GeV.
- χ_{top} is the topological susceptibility.

- We use the experimental values for the pion decay constant and the η' mass.
- Allows us to estimate the number of flavors in our theory N_f .
- $\chi_{\rm top}$ is the topological susceptibility, calculated from the expectation value of Q.

Lattice Quantum Chromodynamics(LQCD)

Discretizing spacetime

1. Divide spacetime into a cube of size $N^3 imes N_T$.

Discretizing spacetime

- 1. Divide spacetime into a cube of size $N^3 imes N_T$.
- 2. Fermions live on the each *point* in the cube.

Discretizing spacetime

- 1. Divide spacetime into a cube of size $N^3 \times N_T$.
- 2. Fermions live on the each *point* in the cube.
- 3. The gauge fields live on the sites *in between* the points, and is called links.

A link

$$U_{\mu}(n) = \exp\left[iaA_{\mu}(n)\right],\,$$

connects one lattice site to another and is a SU(3) matrix.

where $U_{-\mu}(n) = U_{\mu}(n - \hat{\mu})^{\dagger}$.

- · Defined from the gauge transporter.
- A link in the positive $\hat{\mu}$ direction is shown in the figure to the left.
- A link in the negative $\hat{\mu}$ direction is shown in the figure to the right.

Gauge invariance on the lattice

Links gauge transform as

$$\begin{split} U_{\mu}(n) \to U_{\mu}'(n) &= \Omega(n) \, U_{\mu}(n) \Omega(n+\hat{\mu})^{\dagger}, \\ U_{-\mu}(n) \to U_{-\mu}'(n) &= \Omega(n) \, U_{\mu}(n-\hat{\mu})^{\dagger} \Omega(n-\hat{\mu})^{\dagger}. \end{split}$$

Gauge invariance on the lattice

Links gauge transform as

$$U_{\mu}(n) \to U'_{\mu}(n) = \Omega(n) U_{\mu}(n) \Omega(n+\hat{\mu})^{\dagger},$$

$$U_{-\mu}(n) \to U'_{-\mu}(n) = \Omega(n) U_{\mu}(n-\hat{\mu})^{\dagger} \Omega(n-\hat{\mu})^{\dagger}.$$

Two main types of gauge invariant objects,

Gauge invariance on the lattice

Links gauge transform as

$$U_{\mu}(n) \to U'_{\mu}(n) = \Omega(n) U_{\mu}(n) \Omega(n+\hat{\mu})^{\dagger},$$

$$U_{-\mu}(n) \to U'_{-\mu}(n) = \Omega(n) U_{\mu}(n-\hat{\mu})^{\dagger} \Omega(n-\hat{\mu})^{\dagger}.$$

Two main types of gauge invariant objects,

- Fully connected gauge invariant objects.
- Objects with fermions ψ , $\bar{\psi}$ as end points.

The plaquette

The simplest gauge invariant object,

$$\begin{split} P_{\mu\nu}(n) &= \, U_{\mu}(n) \, U_{\nu}(n+\hat{\mu}) \, U_{-\mu}(n+\hat{\mu}+\hat{\nu}) \, U_{-\nu}(n+\hat{\nu}) \\ &= \, U_{\mu}(n) \, U_{\nu}(n+\hat{\mu}) \, U_{\mu}(n+\hat{\nu})^{\dagger} \, U_{\nu}(n)^{\dagger}, \end{split}$$

The Wilson gauge action

The Wilson gauge action is given as

$$S_G[U] = \frac{\beta}{3} \sum_{n \in \Lambda} \sum_{\mu < \nu} \operatorname{Re} \operatorname{tr} \left[1 - P_{\mu\nu}(n) \right], \tag{3}$$

with $\beta = 6/g_S^2$.

• Using the definition of the link we saw earlier, we can reproduce the continuum action up to an discretization error of $\mathcal{O}(a^2)$.

Developing a code for solving $\mathrm{SU}(3)$ Yang-Mills theory on the lattice

The numerical challenge in lattice QCD

A lattice configuration consists of $\mathop{
m SU}(3)$ matrices,

- The $\mathrm{SU}(3)$ matrices are 3×3 matrices of nine complex numbers or 18 real numbers.
- This leads to an absolute requirement of efficiency, both in calculations and in input/output.
- When returning to what ensembles of configurations we generated this will be evident

The numerical challenge in lattice QCD

A lattice configuration consists of SU(3) matrices,

$$\underbrace{N^3}_{\text{Spatial}} \times \underbrace{N_T}_{\text{Emporal}} \times \underbrace{4}_{\text{Einks}} \times \underbrace{9}_{\text{SU(3) matrix}} \times \underbrace{2}_{\text{C-numbers}} = 72N^3N_T,$$

- The SU(3) matrices are 3×3 matrices of nine complex numbers or 18 real numbers.
- This leads to an absolute requirement of efficiency, both in calculations and in input/output.
- When returning to what ensembles of configurations we generated this will be evident

The numerical challenge in lattice QCD

A lattice configuration consists of SU(3) matrices,

$$\begin{array}{lll} \underbrace{N^3} & \times & \underbrace{N_T} & \times & \underbrace{4} & \times & \underbrace{9} & \times & \underbrace{2} & = 72N^3N_T, \\ \text{Spatial Temporal Links SU(3) matrix \mathbb{C}-numbers } \\ & \to 8 \times 72N^3N_T \text{ bytes.} \end{array}$$

- The SU(3) matrices are 3×3 matrices of nine complex numbers or 18 real numbers.
- This leads to an absolute requirement of efficiency, both in calculations and in input/output.
- When returning to what ensembles of configurations we generated this will be evident

The path integral I

$$\langle O \rangle = \frac{1}{Z} \int \mathcal{D} U O[\psi, \bar{\psi}, U] e^{-S_G[U] - S_F[\psi, \bar{\psi}, U]}.$$

with

$$Z = \int \mathcal{D} U \mathcal{D} \bar{\psi} \mathcal{D} \psi e^{-S_G[U] - S_F[\psi, \bar{\psi}, U]}.$$

The path integral I

$$\langle O \rangle = \frac{1}{Z} \int \mathcal{D} U O[U] e^{-S_G[U]}.$$

with

$$Z = \int \mathcal{D} U e^{-S_G[U]}.$$

The path integral I

$$\langle O \rangle = \frac{1}{Z} \int \mathcal{D} U O[U] e^{-S_G[U]}.$$

with

$$Z = \int \mathcal{D} U e^{-S_G[U]}.$$

An example of the discretized path integral, going from time t_0 to t_{N_T} , where the end points is taken to be equal, $x_0=x_{N_T}$. We integrate over all of space at each time t_i finding the most likely position at a given time.

How to measure

The observable becomes an average over the $\ensuremath{N_{\mathrm{MC}}}$ gauge configurations.

$$\langle O \rangle = \lim_{N_{\mathrm{MC}} \to \infty} \frac{1}{N_{\mathrm{MC}}} \sum_{i}^{N_{\mathrm{MC}}} O[U_i]$$

We now need to generate configurations...

• We perform an average of the created configurations.

The Metropolis algorithm

end if

```
repeat Randomly generate a candidate state j with probability T_{i \rightarrow i}. Calculate A_{i \rightarrow j} which saw on previous slide. Generate random number u \in [0,1]. if u \leq A_{i \rightarrow j} then Accept new state j. else if u > A_{i \rightarrow j} then Reject new state j and retain the old state i.
```

until $N_{\rm MC}$ samples are generated.

- Generated state j is a gauge configuration.
- · Algorithm of choice when sampling gauge configurations.
- \cdot For generating $N_{
 m MC}$ Monte Carlo samples.

The Metropolis algorithm on the lattice

A parameter ϵ_{rnd} controls the spread of the candidate matrices.

- 1. Initialize lattice with SU(3) matrices close to unity(hot start) or at unity(cold start).
- 2. Thermalize with $N_{\rm therm}$ sweeps.
- 3. Generate $N_{
 m MC}$ samples,
 - i Perform $N_{\rm corr}$ correlation updates.
 - ii At each update, perform $N_{
 m up}$ single link update for every lattice link.
 - iii Store configuration and/or apply gradient flow and sample observables on it.

 $\boldsymbol{\cdot}$ We use $periodic\ boundary\ conditions$ for all calculations.

- N_{MC} is how many configurations we will generate.
- $N_{
 m up}$ is how many single link updates we will perform.
- $N_{
 m corr}$ is how many full sweeps we shall perform in between each sampling. Needed in order to reduce the autocorrelation between the configurations.

Parallelization

Two methods used:

- · Single link sharing used in the Metropolis algorithm.
- · shifts used in in gradient flow and observable sampling

- Tested out halos, but turned out to be problematic when generating.
- · We parallelized using MPI.

- · An illustration of the lattice shift.
- The links U_{ν} of the lattice are copied over to a temporary lattice shifted in direction $\hat{\mu}$.
- The face that is shifted over to an adjacent sub-lattice is shared through a non-blocking MPI call, while we copy the links to the temporary lattice.
- Allows for a simplified syntax close to that of the equations we are working with.
- · Don't have to write out any loops over the lattice positions.

Scaling

We checked three types of scaling,

 \cdot Strong scaling: fixed problem and a variable N_p cores

Strong scaling

Scaling

We checked three types of scaling,

- \cdot Strong scaling: fixed problem and a variable N_p cores
- Weak scaling: fixed problem per processor and a variable N_p cores.

- Strong scaling
- · Weak scaling

- Strong scaling: fixed problem and a variable N_p cores
- Weak scaling: fixed problem per processor and a variable N_p cores.
- Speedup: defined as $S(p) = \frac{t_{N_{p,0}}}{t_{N_{n}}}$.

- · Strong scaling
- · Weak scaling
- The speedup of the configuration generation, flowing, and IO. The speedup is calculated by dividing the run time of each N_p run, with the run time of the run with the least number of processors, $N_p=8$.

We appear to have a plateau around 512 cores.

- Strong scaling: fixed problem and a variable N_p cores
- Weak scaling: fixed problem per processor and a variable N_p cores.
- Speedup: defined as $S(p) = \frac{t_{N_p,0}}{t_{N_p}}$.

- · Strong scaling
- · Weak scaling
- The speedup of the configuration generation, flowing, and IO. The speedup is calculated by dividing the run time of each N_p run, with the run time of the run with the least number of processors, $N_p=8$.

We appear to have a plateau around 512 cores.

Optimizing the gauge configuration generation

Generated 200 configurations for a lattice of size $N^3 \times N_T = 16^3 \times 32$ and $\beta = 6.0$.

- We run for different values for $^2\!N_{\rm up}$ and $^1\!N_{\rm corr}$ to see what gives optimizes computational cost and autocorrelation.
- The integrated autocorrelation time for topological charge $\langle Q \rangle$ for a lattice of size N=16 and $N_T=32$ with $\beta=6.0$ for combinations of $N_{\rm corr} \in [200,400,600]$ and $N_{\rm up} \in [10,20,30]$, plotted against flow time $\sqrt{8t_f}$.

• We run for different values for $N_{\rm up}$ and $N_{\rm corr}$ to see what gives optimizes computational cost and autocorrelation.

• The time taking to generate 200 configurations and flowing them $N_{\mathrm{flow}}=250$ flow steps for a lattice of size N=16 and $N_T=32$, with $\beta=6.0$ for combinations of $N_{\mathrm{corr}}\in[200,400,600]$ and $N_{\mathrm{up}}\in[10,20,30]$.

• We run for different values for $N_{\rm up}$ and $N_{\rm corr}$ to see what gives optimizes computational cost and autocorrelation.

• The time taking to generate 200 configurations and flowing them $N_{\mathrm{flow}}=250$ flow steps for a lattice of size N=16 and $N_T=32$, with $\beta=6.0$ for combinations of $N_{\mathrm{corr}}\in[200,400,600]$ and $N_{\mathrm{up}}\in[10,20,30]$.

Gradient flow

The flow equation

The flow of the SU(3) gauge fields are denoted by $B_{\mu}(x, t_f)$ which are Lie algebra valued gauge fields,

$$\frac{\mathrm{d}}{\mathrm{d}t_f} B_{\mu}(x, t_f) = D_{\nu} G_{\nu \mu}(x, t_f), \tag{4}$$

$$D_{\mu} = \partial_{\mu} + [B_{\mu}(x, t_f), \cdot], \tag{5}$$

$$G_{\mu\nu}(x, t_f) = \partial_{\mu} B_{\nu}(x, t_f) - \partial_{\nu} B_{\mu}(x, t_f) - i[B_{\mu}(x, t_f), B_{\nu}(x, t_f)],$$
 (6)

with the initial condition of eq. (4) being the fundamental gauge field,

$$B_{\mu}(x, t_f)|_{t_f=0} = A_{\mu}(x).$$

- · Bad approx.: diffusion equation.
- · Topological charge preserved and is more pronounced.
- · Renormalizes the topological charge at non-zero flow time.

Solving gradient flow on the lattice

Verifying the integration

Smearing the lattice

Results

Ensembles

The clover field strength definition

· We will use the clover field strength definition in gauge observables

Energy definition

$$E = \frac{a^4}{2|\Lambda|} \sum_{n \in \Lambda} \sum_{\mu,\nu} \left(F_{\mu\nu}^{\text{clov}}(n) \right)^2$$

· We can use this definition to set a scale.

Scale setting

Topological charge definition

$$Q = a^4 \sum_{n \in \Lambda} q(n),$$

with the charge density given by

$$q(n) = \frac{1}{32\pi^2} \epsilon_{\mu\nu\rho\sigma} \text{tr} \left[F_{\mu\nu}(n) F_{\rho\sigma}(n) \right].$$

- We will use the clover field strength definition.
- Symmetries will allow us to reduce the effective number of clovers need to calculate from 24 to 6.

Topological charge

Topological susceptibility

The fourth cumulant

The topological charge correlator

The effective glueball mass

Conclusion

Questions?

References

[1] Hilmar Forkel. A Primer on Instantons in QCD. arXiv:hep-ph/0009136, September 2000. URL http://arxiv.org/abs/hep-ph/0009136. arXiv: hep-ph/0009136.