Cross-temporal Probabilistic Forecast Reconciliation: online appendix

Daniele Girolimetto

Department of Statistical Sciences, University of Padova Email: daniele.girolimetto@phd.unipd.it

George Athanasopoulos

Department of Econometrics and Business Statistics, Monash University Email: george.athanasopoulos@monash.edu

Tommaso Di Fonzo

Department of Statistical Sciences, University of Padova Email: tommaso.difonzo@unipd.it

Rob J Hyndman

Department of Econometrics and Business Statistics, Monash University Email: rob.hyndman@monash.edu

29 March 2023

A Monte Carlo Simulation: one-step residuals and shrinkage covariance matrix

In Section 4.1, we discussed the use of one-step residuals in estimating the covariance matrix. In particular we point out that one-step residuals lead to a biased estimate of the covariance matrix where some correlation are zeros by definition (see Figure A.1). In addition, Tables A.1, A.2 and A.3 show the Frobenius norm, CRPS, and ES skill scores as explained in the paper to investigate the effectiveness of one-step residuals. Moreover, in Tables A.4 and A.5, we have utilized a shrinkage matrix rather than the sample covariance matrix to assess the performance of our approach.

Figure A.1: Comparison of estimated covariance and correlation matrices (first simulation) for base forecasts using a parametric Gaussian (with one-step residuals) approach. The true covariance and correlation matrices are shown in Figure 7.

		Generation of the base forecasts paths											
		Gaussian approach: sample covariance matrix											
Reconciliation approach	ctjb	ctjb In-sample residuals Multi-step residuals											
		G	В	Н	HB	G	В	Н	HB				
base	8.260	17.638	16.733	22.178	21.789	7.748	6.549	3.409	2.215				
ct(bu)	3.195	21.789	21.789	21.789	21.789	2.215	2.215	2.215	2.215				
$ct(shr_{cs}, bu_{te})$	3.202	21.942	21.789	21.942	21.789	2.224	2.215	2.224	2.215				
$\operatorname{ct}(wlsv_{te}, bu_{cs})$	3.183	18.237	18.237	21.789	21.789	2.188	2.188	2.215	2.215				
oct(wlsv)	3.766	19.174	18.611	22.304	21.789	3.082	2.191	2.910	2.215				
oct(bdshr)	3.203	18.559	18.416	21.937	21.789	2.195	2.184	2.224	2.215				
oct(shr)	5.217	25.015	23.457	23.413	21.789	2.260	2.202	2.226	2.215				
oct(bshr)	5.282	23.772	23.997	22.146	21.789	2.720	2.220	2.756	2.215				
oct(hshr)	6.161	11.336	10.940	23.598	21.789	4.138	4.167	2.225	2.215				
oct(hbshr)	5.731	11.379	10.940	22.146	21.789	5.085	4.167	2.756	2.215				
$\operatorname{oct}_h(shr)$	3.251	20.965	19.992	22.079	21.789	2.260	2.202	2.226	2.215				
$\operatorname{oct}_h(bshr)$	3.602	21.306	21.022	22.146	21.789	2.720	2.220	2.756	2.215				
$\operatorname{oct}_h(hshr)$	4.869	11.405	10.940	22.037	21.789	4.138	4.167	2.225	2.215				
$\operatorname{oct}_h^n(hbshr)$	5.731	11.379	10.940	22.146	21.789	5.085	4.167	2.756	2.215				

Table A.1: Frobenius norm between the true and the estimated covariance matrix for different reconciliation approaches and different techniques for simulating the base forecasts. Entries in bold represent the lowest value for each column, while the blue entry represent the global minimum. The reconciliation approaches are described in Table 2.

	Generation of the base forecasts paths Gaussian approach: sample covariance matrix									
			Gaussi	an appr	oach: sai	mple cov	variance	matrix		
Reconciliation	ctjb	Ir	n-sample	residua	ls	M	lulti-step	residua	ıls	
approach		G	В	Н	НВ	G	В	Н	НВ	
	I			$i \in \{2,1\}$						
base	1.000	1.008	1.009	1.044	1.047	0.998	0.999	1.002	1.004	
ct(bu)	0.901	0.930	0.929	0.929	0.929	0.900	0.900	0.900	0.900	
$\operatorname{ct}(shr_{cs}, bu_{te})$	0.901	0.929	0.928	0.929	0.928	0.900	0.899	0.900	0.900	
$\operatorname{ct}(wlsv_{te},bu_{cs})$	0.910	0.930	0.929	0.939	0.939	0.916	0.916	0.916	0.917	
oct(wlsv)	0.922	0.942	0.944	0.951	0.953	0.930	0.930	0.930	0.931	
oct(bdshr)	0.910	0.930	0.930	0.939	0.938	0.916	0.915	0.916	0.916	
oct(shr)	0.941	0.999	0.985	0.983	0.973	0.903	0.902	0.902	0.903	
oct(bshr)	0.951	0.995	1.000	0.983	0.986	0.922	0.922	0.921	0.922	
oct(hshr)	0.987	0.995	0.993	1.039	1.026	0.972	0.972	0.974	0.975	
oct(hbshr)	0.987	0.995	0.996	1.024	1.028	0.985	0.985	0.987	0.989	
$\operatorname{oct}_h(shr)$	0.904	0.929	0.928	0.932	0.932	0.903	0.902	0.902	0.903	
$\operatorname{oct}_h(bshr)$	0.923	0.948	0.952	0.951	0.954	0.922	0.922	0.921	0.922	
$\operatorname{oct}_h(hshr)$	0.974	0.982	0.982	1.012	1.012	0.972	0.972	0.974	0.975	
$\operatorname{oct}_h(hbshr)$	0.987	0.995	0.996	1.024	1.028	0.985	0.985	0.987	0.989	
,	1			k = 1						
base	1.000	1.017	1.019	1.017	1.019	0.998	0.999	0.999	1.000	
ct(bu)	0.978	0.994	0.994	0.994	0.994	0.976	0.976	0.977	0.977	
$\operatorname{ct}(shr_{cs},bu_{te})$	0.977	0.993	0.993	0.994	0.993	0.976	0.976	0.976	0.976	
$\operatorname{ct}(wlsv_{te},bu_{cs})$	0.986	1.002	1.002	1.003	1.003	0.993	0.993	0.993	0.993	
oct(wlsv)	0.998	1.014	1.015	1.015	1.016	1.006	1.006	1.007	1.007	
oct(bdshr)	0.986	1.002	1.002	1.003	1.003	0.992	0.992	0.993	0.993	
oct(shr)	1.037	1.082	1.067	1.064	1.056	0.979	0.978	0.979	0.979	
oct(bshr)	1.041	1.071	1.074	1.060	1.062	0.998	0.998	0.998	0.998	
oct(hshr)	1.080	1.090	1.091	1.119	1.105	1.050	1.050	1.053	1.053	
oct(hbshr)	1.065	1.080	1.081	1.088	1.090	1.063	1.064	1.066	1.068	
$\operatorname{oct}_h(shr)$	0.980	0.996	0.995	0.996	0.996	0.979	0.978	0.979	0.979	
$\operatorname{oct}_h(bshr)$	0.999	1.016	1.018	1.016	1.018	0.998	0.998	0.998	0.998	
$\operatorname{oct}_h(hshr)$	1.052	1.067	1.066	1.074	1.075	1.050	1.050	1.053	1.053	
$\operatorname{oct}_h(hbshr)$	1.065	1.080	1.081	1.088	1.090	1.063	1.064	1.066	1.068	
				k = 2						
base	1.000	0.998	0.999	1.071	1.075	0.998	0.999	1.005	1.008	
ct(bu)	0.831	0.869	0.869	0.869	0.869	0.830	0.829	0.829	0.830	
$\operatorname{ct}(shr_{cs},bu_{te})$	0.830	0.869	0.868	0.868	0.868	0.830	0.829	0.829	0.830	
$\operatorname{ct}(wlsv_{te}, bu_{cs})$	0.840	0.863	0.862	0.879	0.878	0.846	0.844	0.845	0.846	
oct(wlsv)	0.851	0.875	0.877	0.891	0.893	0.859	0.859	0.859	0.861	
oct(bdshr)	0.839	0.863	0.863	0.879	0.878	0.845	0.844	0.845	0.846	
oct(shr)	0.854	0.922	0.909	0.908	0.897	0.833	0.831	0.832	0.832	
oct(bshr)	0.869	0.925	0.931	0.911	0.915	0.851	0.851	0.851	0.852	
oct(hshr)	0.901	0.908	0.904	0.966	0.952	0.900	0.899	0.901	0.902	
oct(hbshr)	0.915	0.917	0.919	0.964	0.969	0.913	0.913	0.914	0.917	
$\operatorname{oct}_h(shr)$	0.834	0.868	0.865	0.872	0.872	0.833	0.831	0.832	0.832	
$\operatorname{oct}_h(bshr)$	0.852	0.886	0.890	0.890	0.894	0.851	0.851	0.851	0.852	
$\operatorname{oct}_h(hshr)$	0.902	0.904	0.904	0.953	0.952	0.900	0.899	0.901	0.902	
$\operatorname{oct}_h(hbshr)$	0.915	0.917	0.919	0.964	0.969	0.913	0.913	0.914	0.917	

Table A.2: AvgRelCRPS defined in Section 5.1. A lower value, indicates a more accurate forecast. Approaches performing worse than the benchmark (bootstrap base forecasts, ctjb) are highlighted in red, the best for each column is marked in bold, and the overall lowest value is highlighted in blue. The reconciliation approaches are described in Table 2.

	Generation of the base forecasts paths									
			Gaussi	an appr	oach: sa	mple cov	ariance	matrix		
Reconciliation	ctjb	Ir	n-sample	residua	ıls	Μ	lulti-ster	residua	als	
approach		G	В			G	•			
		<u> </u>		Н	HB	G	В	Н	HB	
				$x \in \{2,1\}$						
base	1.000	1.005	1.009	1.039	1.046	0.996	0.999	1.000	1.004	
ct(bu)	0.897	0.924	0.923	0.924	0.923	0.895	0.896	0.897	0.895	
$\operatorname{ct}(shr_{cs},bu_{te})$	0.896	0.924	0.923	0.923	0.922	0.895	0.895	0.896	0.896	
$\operatorname{ct}(wlsv_{te},bu_{cs})$	0.906	0.924	0.923	0.933	0.932	0.912	0.911	0.910	0.912	
oct(wlsv)	0.916	0.935	0.937	0.944	0.945	0.923	0.923	0.923	0.924	
oct(bdshr)	0.906	0.923	0.923	0.932	0.932	0.910	0.910	0.911	0.912	
oct(shr)	0.938	0.993	0.980	0.977	0.969	0.898	0.898	0.898	0.897	
oct(bshr)	0.947	0.990	0.995	0.979	0.981	0.915	0.915	0.915	0.915	
oct(hshr)	0.978	0.987	0.985	1.027	1.016	0.963	0.964	0.966	0.967	
oct(hbshr)	0.977	0.986	0.985	1.012	1.016	0.974	0.976	0.977	0.978	
$\operatorname{oct}_h(shr)$	0.900	0.923	0.922	0.926	0.925	0.898	0.898	0.897	0.898	
$\operatorname{oct}_h(bshr)$	0.916	0.940	0.943	0.942	0.945	0.914	0.916	0.915	0.916	
$\operatorname{oct}_h(hshr)$	0.967	0.974	0.974	1.002	1.002	0.964	0.964	0.966	0.967	
$\operatorname{oct}_h(hbshr)$	0.978	0.984	0.986	1.012	1.015	0.975	0.976	0.977	0.980	
				k = 1						
base	1.000	1.014	1.020	1.015	1.019	0.997	1.000	0.997	1.000	
ct(bu)	0.969	0.985	0.983	0.985	0.984	0.967	0.967	0.968	0.968	
$\operatorname{ct}(shr_{cs},bu_{te})$	0.968	0.984	0.983	0.984	0.983	0.968	0.967	0.968	0.968	
$\operatorname{ct}(wlsv_{te}, bu_{cs})$	0.977	0.991	0.991	0.992	0.992	0.984	0.983	0.981	0.984	
oct(wlsv)	0.989	1.002	1.004	1.003	1.004	0.994	0.995	0.995	0.997	
oct(bdshr)	0.977	0.989	0.991	0.992	0.992	0.981	0.982	0.983	0.985	
oct(shr)	1.028	1.070	1.056	1.053	1.046	0.969	0.969	0.970	0.969	
oct(bshr)	1.034	1.061	1.065	1.051	1.053	0.985	0.987	0.986	0.987	
oct(hshr)	1.066	1.075	1.076	1.099	1.090	1.037	1.037	1.039	1.039	
oct(hbshr)	1.050	1.065	1.065	1.070	1.073	1.048	1.049	1.049	1.052	
$\operatorname{oct}_h(shr)$	0.971	0.985	0.985	0.986	0.986	0.969	0.969	0.969	0.969	
$\operatorname{oct}_h(bshr)$	0.987	1.002	1.005	1.002	1.005	0.986	0.987	0.987	0.988	
$\operatorname{oct}_h(hshr)$	1.040	1.053	1.053	1.059	1.058	1.036	1.036	1.040	1.040	
$\operatorname{oct}_h(hbshr)$	1.051	1.064	1.063	1.071	1.073	1.047	1.049	1.051	1.052	
_				k = 2						
base	1.000	0.997	0.999	1.063	1.073	0.996	0.998	1.003	1.008	
ct(bu)	0.831	0.867	0.867	0.867	0.867	0.829	0.829	0.830	0.828	
$\operatorname{ct}(shr_{cs},bu_{te})$	0.829	0.867	0.866	0.866	0.865	0.828	0.829	0.829	0.829	
$\operatorname{ct}(wlsv_{te},bu_{cs})$	0.839	0.860	0.860	0.877	0.876	0.844	0.844	0.844	0.845	
oct(wlsv)	0.849	0.872	0.875	0.887	0.890	0.858	0.856	0.856	0.857	
oct(bdshr)	0.839	0.861	0.861	0.876	0.875	0.845	0.843	0.845	0.844	
oct(shr)	0.856	0.921	0.909	0.907	0.898	0.832	0.831	0.832	0.831	
oct(bshr)	0.868	0.924	0.930	0.911	0.915	0.849	0.848	0.849	0.848	
oct(hshr)	0.897	0.905	0.901	0.959	0.947	0.895	0.896	0.898	0.899	
oct(hbshr)	0.910	0.912	0.912	0.957	0.961	0.906	0.909	0.909	0.910	
$\operatorname{oct}_h(shr)$	0.835	0.865	0.862	0.870	0.868	0.833	0.833	0.831	0.832	
$\operatorname{oct}_h(bshr)$	0.850	0.881	0.885	0.886	0.889	0.847	0.849	0.849	0.850	
$\operatorname{oct}_h(hshr)$	0.900	0.902	0.901	0.947	0.948	0.897	0.896	0.897	0.899	
$\operatorname{oct}_h(hbshr)$	0.910	0.910	0.914	0.957	0.961	0.907	0.908	0.909	0.912	

Table A.3: ES ratio indices defined in Section 5.1. A lower value, indicates amore accurate forecast. Approaches performing worse than the benchmark (bootstrap base forecasts, ctjb) are highlighted in red, the best for each column is marked in bold, and the overall lowest value is highlighted in blue. The reconciliation approaches are described in Table 2.

	Generation of the base forecasts paths									
			Gaussia	n approa	ach: shri	nkage co	ovarianc	e matrix		
Reconciliation	ctjb	Ir	n-sample	e residua	ıls	Μ	lulti-ster	residua	als	
approach		G	В	Н	НВ	G	В	Н	НВ	
		<u> </u>				<u> </u>		11	110	
				$i \in \{2,1\}$						
base	1.007	1.009	1.044	1.046	0.997	0.999	1.002	1.003	1.000	
ct(bu)	0.929	0.929	0.929	0.929	0.899	0.900	0.900	0.900	0.901	
$\operatorname{ct}(shr_{cs},bu_{te})$	0.929	0.928	0.929	0.928	0.899	0.899	0.900	0.900	0.901	
$\operatorname{ct}(wlsv_{te},bu_{cs})$	0.930	0.930	0.939	0.938	0.915	0.916	0.917	0.916	0.910	
oct(wlsv)	0.943	0.944	0.951	0.952	0.929	0.930	0.931	0.930	0.922	
oct(bdshr)	0.930	0.930	0.938	0.938	0.915	0.916	0.916	0.916	0.910	
oct(shr)	0.994	0.982	0.980	0.973	0.902	0.902	0.903	0.902	0.941	
oct(bshr)	0.995	0.998	0.983	0.986	0.921	0.922	0.922	0.922	0.951	
oct(hshr)	0.994	0.994	1.035	1.025	0.971	0.972	0.974	0.974	0.987	
oct(hbshr)	0.995	0.997	1.025	1.027	0.984	0.986	0.988	0.988	0.987	
$\operatorname{oct}_h(shr)$	0.929	0.928	0.932	0.932	0.902	0.902	0.903	0.902	0.904	
$\operatorname{oct}_h(bshr)$	0.948	0.951	0.951	0.953	0.921	0.922	0.922	0.922	0.923	
$\operatorname{oct}_h(hshr)$	0.982	0.982	1.011	1.011	0.971	0.972	0.974	0.974	0.974	
$\operatorname{oct}_h(hbshr)$	0.995	0.997	1.025	1.027	0.984	0.986	0.988	0.988	0.987	
				k = 1						
base	1.017	1.019	1.017	1.019	0.998	0.999	0.999	0.999	1.000	
ct(bu)	0.994	0.994	0.994	0.994	0.976	0.976	0.977	0.976	0.978	
$\operatorname{ct}(shr_{cs},bu_{te})$	0.993	0.993	0.993	0.993	0.975	0.976	0.976	0.976	0.977	
$\operatorname{ct}(wlsv_{te}, bu_{cs})$	1.002	1.002	1.003	1.003	0.992	0.993	0.993	0.993	0.986	
oct(wlsv)	1.015	1.015	1.015	1.016	1.005	1.007	1.007	1.007	0.998	
oct(bdshr)	1.002	1.002	1.003	1.002	0.992	0.992	0.993	0.992	0.986	
oct(shr)	1.076	1.065	1.061	1.056	0.978	0.978	0.979	0.978	1.037	
oct(bshr)	1.070	1.072	1.060	1.062	0.997	0.998	0.998	0.998	1.041	
oct(hshr)	1.090	1.092	1.114	1.105	1.049	1.050	1.053	1.052	1.080	
oct(hbshr)	1.080	1.081	1.089	1.090	1.062	1.064	1.066	1.066	1.065	
$\operatorname{oct}_h(shr)$	0.996	0.995	0.996	0.996	0.978	0.978	0.979	0.978	0.980	
$\operatorname{oct}_h(bshr)$	1.016	1.018	1.016	1.018	0.997	0.998	0.998	0.998	0.999	
$\operatorname{oct}_h(hshr)$	1.066	1.067	1.075	1.075	1.049	1.050	1.053	1.052	1.052	
$\operatorname{oct}_h(hbshr)$	1.080	1.081	1.089	1.090	1.062	1.064	1.066	1.066	1.065	
_				k = 2						
base	0.997	0.999	1.071	1.074	0.997	0.999	1.005	1.008	1.000	
ct(bu)	0.869	0.868	0.868	0.868	0.829	0.829	0.830	0.830	0.831	
$\operatorname{ct}(shr_{cs},bu_{te})$	0.868	0.867	0.868	0.867	0.829	0.829	0.830	0.829	0.830	
$\operatorname{ct}(wlsv_{te},bu_{cs})$	0.863	0.862	0.878	0.878	0.845	0.845	0.846	0.846	0.840	
oct(wlsv)	0.876	0.877	0.891	0.892	0.859	0.860	0.860	0.860	0.851	
oct(bdshr)	0.863	0.863	0.878	0.877	0.844	0.845	0.846	0.845	0.839	
oct(shr)	0.918	0.906	0.906	0.897	0.832	0.832	0.833	0.832	0.854	
oct(bshr)	0.924	0.928	0.911	0.915	0.850	0.851	0.852	0.851	0.869	
oct(hshr)	0.907	0.905	0.962	0.951	0.898	0.899	0.902	0.902	0.901	
oct(hbshr)	0.917	0.919	0.964	0.968	0.912	0.913	0.915	0.916	0.915	
$\operatorname{oct}_h(shr)$	0.867	0.864	0.872	0.871	0.832	0.832	0.833	0.832	0.834	
$\operatorname{oct}_h(bshr)$	0.886	0.890	0.890	0.893	0.850	0.851	0.852	0.851	0.852	
$\operatorname{oct}_h(hshr)$	0.904	0.905	0.952	0.952	0.898	0.899	0.902	0.902	0.902	
$\operatorname{oct}_h(hbshr)$	0.917	0.919	0.964	0.968	0.912	0.913	0.915	0.916	0.915	

Table A.4: AvgRelCRPS defined in Section 5.1. A lower value, indicates a more accurate forecast. Approaches performing worse than the benchmark (bootstrap base forecasts, ctjb) are highlighted in red, the best for each column is marked in bold, and the overall lowest value is highlighted in blue. The reconciliation approaches are described in Table 2.

	Generation of the base forecasts paths									
			Gaussia	n approa	ach: shri	nkage co	ovarianc	e matrix	:	
Reconciliation	ctjb	Ir	n-sample	residua	ls	M	lulti-ster	residua	ıls	
approach	, I	G	В	Н	НВ	G	В	Н	НВ	
1	1.00	1 000		$: \in \{2,1\}$		0.000	1 000	1 000	1 000	
base	1.005	1.008	1.039	1.045	0.996	0.999	1.000 0.897	1.003	1.000	
ct(bu)	0.923	0.923 0.922	0.923	0.923	0.895	0.896	0.897	0.897	0.897	
$\operatorname{ct}(shr_{cs},bu_{te})$	0.923		0.922 0.932	0.922 0.932	0.896	0.895	0.893	0.895 0.911	0.896	
$\operatorname{ct}(wlsv_{te},bu_{cs})$	0.924	0.924		0.932	0.910 0.922	0.911	0.911	0.911	0.906	
oct(wlsv)	0.933	0.937 0.924	0.944 0.932	0.943	0.922	0.924 0.911	0.923	0.923	0.916 0.906	
oct(bdshr)	0.924	0.924	0.932	0.931	0.897	0.898	0.898	0.898	0.908	
oct(shr) oct(bshr)	0.999	0.978	0.978	0.981	0.915	0.030	0.030	0.090	0.938	
oct(bshr)	0.986	0.985	1.024	1.015	0.913	0.964	0.966	0.913	0.947	
oct(hshr)	0.985	0.986	1.024	1.015	0.903	0.904	0.900	0.907	0.977	
$\operatorname{oct}_h(shr)$	0.983	0.930	0.925	0.925	0.897	0.898	0.898	0.898	0.900	
$\operatorname{oct}_h(shr)$	0.923	0.922	0.942	0.925	0.913	0.030	0.030	0.090	0.900	
$\operatorname{oct}_h(bshr)$ $\operatorname{oct}_h(hshr)$	0.941	0.945	1.001	1.001	0.964	0.964	0.966	0.913	0.910	
$\operatorname{oct}_h(hshr)$	0.974	0.986	1.001	1.001	0.904	0.904	0.900	0.900	0.978	
$OCC_h(nosnii)$	0.703	0.700	1.015	k = 1	0.773	0.770	0.777	0.776	0.776	
base	1.014	1 010	1.015	k = 1 1.019	0.997	0.000	0.007	0.998	1 000	
ct(bu)	1.014 0.983	1.018 0.984	0.984	0.984	0.997	0.999 0.967	0.997 0.969	0.998	1.000 0.969	
$\operatorname{ct}(\mathit{bu})$ $\operatorname{ct}(\mathit{shr}_{\mathit{cs}},\mathit{bu}_{\mathit{te}})$	0.983	0.984	0.984	0.983	0.967 0.966	0.967	0.969	0.969 0.966	0.969	
$\operatorname{ct}(shr_{cs}, bu_{te})$ $\operatorname{ct}(wlsv_{te}, bu_{cs})$	0.983	0.992	0.993	0.992	0.983	0.983	0.983	0.983	0.977	
oct(wlsv)	1.002	1.004	1.004	1.004	0.994	0.995	0.994	0.983	0.989	
oct(wise) oct(bdshr)	0.990	0.991	0.992	0.991	0.981	0.983	0.984	0.982	0.977	
oct(shr)	1.065	1.054	1.051	1.045	0.969	0.970	0.970	0.969	1.028	
oct(shr)	1.061	1.063	1.051	1.052	0.986	0.986	0.987	0.985	1.034	
oct(bshr)	1.076	1.077	1.095	1.088	1.036	1.036	1.040	1.038	1.066	
oct(hbshr)	1.064	1.065	1.071	1.073	1.047	1.048	1.050	1.050	1.050	
$\operatorname{oct}_h(shr)$	0.984	0.985	0.986	0.986	0.969	0.969	0.969	0.968	0.971	
$\operatorname{oct}_h(bshr)$	1.003	1.005	1.003	1.005	0.985	0.987	0.987	0.986	0.987	
$\operatorname{oct}_h(hshr)$	1.054	1.054	1.059	1.059	1.036	1.037	1.038	1.039	1.040	
$\operatorname{oct}_h(hbshr)$	1.063	1.065	1.071	1.074	1.046	1.048	1.049	1.051	1.051	
<i>n</i> (******)				k = 2						
base	0.996	0.998	1.064	1.073	0.995	0.999	1.003	1.007	1.000	
ct(bu)	0.867	0.866	0.867	0.866	0.829	0.829	0.830	0.830	0.831	
$\operatorname{ct}(shr_{cs},bu_{te})$	0.867	0.866	0.866	0.866	0.830	0.829	0.830	0.830	0.829	
$\operatorname{ct}(wlsv_{te},bu_{cs})$	0.861	0.861	0.875	0.875	0.843	0.845	0.845	0.845	0.839	
oct(wlsv)	0.873	0.874	0.888	0.889	0.856	0.857	0.857	0.856	0.849	
oct(bdshr)	0.862	0.861	0.876	0.874	0.843	0.844	0.844	0.844	0.839	
oct(shr)	0.918	0.907	0.905	0.898	0.831	0.832	0.832	0.832	0.856	
oct(bshr)	0.924	0.928	0.911	0.915	0.849	0.849	0.849	0.849	0.868	
oct(hshr)	0.904	0.901	0.957	0.946	0.895	0.896	0.898	0.900	0.897	
oct(hbshr)	0.912	0.913	0.956	0.961	0.905	0.909	0.909	0.911	0.910	
$\operatorname{oct}_h(shr)$	0.866	0.863	0.869	0.869	0.830	0.831	0.832	0.832	0.835	
$\operatorname{oct}_h(bshr)$	0.882	0.886	0.886	0.889	0.846	0.848	0.849	0.848	0.850	
$\operatorname{oct}_h(hshr)$	0.901	0.902	0.947	0.946	0.896	0.896	0.898	0.899	0.900	
$\operatorname{oct}_h(hbshr)$	0.912	0.914	0.958	0.961	0.905	0.908	0.910	0.909	0.910	

Table A.5: ES ratio indices defined in Section 5.1. A lower value, indicates amore accurate forecast. Approaches performing worse than the benchmark (bootstrap base forecasts, ctjb) are highlighted in red, the best for each column is marked in bold, and the overall lowest value is highlighted in blue. The reconciliation approaches are described in Table 2.

B Australian GDP dataset: one-step residuals and shrinkage covariance matrix

			Ge	eneration	ase fore	casts pat	ths			
Reconciliation approach	ctjb	C	Gaussian	approacl	h*	ctjb	G	aussian	approacl	h*
11		G_h	H_h	G_{oh}	H_{oh}		G_h	H_h	G_{oh}	H_{oh}
		$\forall k$	$x \in \{4,2,$	1}				k = 1		
base	1.000	0.979	0.995	0.968	0.976	1.000	0.988	0.988	0.971	0.971
$\operatorname{ct}(shr_{cs},bu_{te})$	0.937	0.956	0.956	0.976	0.976	0.992	1.008	1.008	1.029	1.029
$\operatorname{ct}(wls_{cs},bu_{te})$	0.930	0.917	0.917	0.898	0.898	0.986	0.974	0.975	0.956	0.956
oct(wlsv)	0.926	0.919	0.920	0.900	0.900	0.984	0.981	0.979	0.959	0.959
oct(bdshr)	0.940	0.965	0.945	0.992	0.957	0.997	1.019	1.003	1.044	1.018
oct(shr)	0.944	1.020	0.940	1.094	0.988	1.015	1.095	1.010	1.160	1.059
oct(hshr)	0.988	0.972	1.002	0.974	1.001	1.048	1.037	1.060	1.034	1.061
$oct_o(wlsv)$	0.926	0.911	0.912	0.896	0.895	0.984	0.971	0.970	0.954	0.954
$oct_o(bdshr)$	0.978	0.964	0.946	0.952	0.930	1.034	1.016	1.003	1.005	0.989
$oct_o(shr)$	0.950	0.946	0.922	0.925	0.903	1.014	1.003	0.985	0.987	0.968
$oct_o(hshr)$	0.989	0.966	0.984	0.954	0.965	1.047	1.028	1.038	1.012	1.023
$oct_{oh}(shr)$	1.102	1.059	1.001	1.094	0.988	1.172	1.109	1.066	1.160	1.059
$oct_{oh}(hshr)$	1.006	0.983	1.009	0.974	1.001	1.068	1.046	1.059	1.034	1.061
			k = 2					k = 4		
base	1.000	0.984	0.993	0.968	0.976	1.000	0.966	1.004	0.964	0.981
$ct(shr_{cs}, bu_{te})$	0.949	0.966	0.966	0.987	0.987	0.874	0.896	0.896	0.914	0.914
$ct(wls_{cs}, bu_{te})$	0.942	0.928	0.928	0.909	0.909	0.866	0.853	0.853	0.834	0.834
oct(wlsv)	0.938	0.929	0.931	0.911	0.911	0.860	0.853	0.855	0.835	0.834
oct(bdshr)	0.953	0.976	0.956	1.003	0.969	0.874	0.904	0.880	0.931	0.889
oct(shr)	0.955	1.031	0.951	1.113	1.002	0.866	0.940	0.864	1.015	0.909
oct(hshr)	1.001	0.985	1.014	0.987	1.016	0.919	0.900	0.935	0.904	0.931
$oct_o(wlsv)$	0.938	0.921	0.923	0.907	0.906	0.860	0.847	0.848	0.832	0.830
$oct_o(bdshr)$	0.991	0.974	0.957	0.964	0.942	0.914	0.905	0.883	0.892	0.865
$oct_o(shr)$	0.965	0.958	0.934	0.938	0.916	0.877	0.882	0.852	0.854	0.831
$oct_o(hshr)$	1.002	0.979	0.996	0.967	0.978	0.922	0.898	0.923	0.888	0.898
$oct_{oh}(shr)$	1.120	1.069	1.013	1.113	1.002	1.020	1.002	0.928	1.015	0.909
$oct_{oh}(hshr)$	1.021	0.996	1.021	0.987	1.016	0.934	0.912	0.951	0.904	0.931

^{*}The Gaussian method employs a sample covariance matrix:

Table B.6: AvgRelCRPS indices defined in Section 5.1 for the Australian Quarterly National Accounts dataset. A lower value, indicates a more accurate forecast. Approaches performing worse than the benchmark (bootstrap base forecasts, ctjb) are highlighted in red, the best for each column is marked in bold, and the overall lowest value is highlighted in blue. The reconciliation approaches are described in Table 2.

 G_h and H_h use multi-step residuals and G_{oh} and H_{oh} use overlapping and multi-step residuals.

	Generation of the base forecasts paths									
Reconciliation approach	ctjb	C	Gaussian	approacl	h [*]	ctjb	C	Gaussian	approacl	n*
**		G_h	H_h	G_{oh}	H_{oh}		G_h	H_h	G_{oh}	H_{oh}
		$\forall k$	$c \in \{4, 2, 1\}$	1}				k = 1		
base	1.000	0.970	0.988	0.960	0.970	1.000	0.977	0.977	0.965	0.965
$\operatorname{ct}(shr_{cs},bu_{te})$	0.897	0.944	0.944	0.973	0.973	0.964	1.001	1.001	1.033	1.033
$\operatorname{ct}(wls_{cs},bu_{te})$	0.886	0.880	0.880	0.860	0.860	0.954	0.944	0.945	0.928	0.928
oct(wlsv)	0.890	0.890	0.894	0.872	0.872	0.958	0.957	0.957	0.938	0.939
oct(bdshr)	0.905	0.956	0.934	0.992	0.954	0.972	1.014	0.994	1.048	1.018
oct(shr)	0.895	0.979	0.895	1.053	0.944	0.973	1.060	0.969	1.121	1.015
oct(hshr)	0.951	0.940	0.973	0.959	0.992	1.017	1.010	1.034	1.023	1.055
$\operatorname{oct}_o(wlsv)$	0.891	0.879	0.881	0.864	0.864	0.958	0.945	0.945	0.931	0.931
$oct_o(bdshr)$	0.940	0.928	0.910	0.918	0.895	1.004	0.986	0.971	0.980	0.961
$\operatorname{oct}_o(shr)$	0.900	0.899	0.876	0.878	0.858	0.973	0.963	0.944	0.949	0.930
$oct_o(hshr)$	0.956	0.936	0.955	0.922	0.936	1.021	1.004	1.012	0.987	1.000
$oct_{oh}(shr)$	1.059	1.015	0.956	1.053	0.945	1.130	1.063	1.019	1.121	1.016
$oct_{oh}(hshr)$	0.986	0.968	0.999	0.959	0.992	1.053	1.034	1.049	1.024	1.055
			k = 2					k = 4		
base	1.000	0.972	0.985	0.959	0.969	1.000	0.959	1.000	0.957	0.976
$ct(shr_{cs}, bu_{te})$	0.915	0.961	0.960	0.991	0.991	0.818	0.874	0.874	0.899	0.900
$\operatorname{ct}(wls_{cs},bu_{te})$	0.904	0.896	0.896	0.877	0.877	0.807	0.805	0.805	0.782	0.783
oct(wlsv)	0.909	0.907	0.912	0.889	0.889	0.811	0.813	0.819	0.794	0.794
oct(bdshr)	0.925	0.976	0.953	1.013	0.974	0.825	0.883	0.860	0.920	0.876
oct(shr)	0.913	1.000	0.914	1.076	0.963	0.807	0.885	0.808	0.967	0.861
oct(hshr)	0.973	0.960	0.993	0.978	1.014	0.871	0.856	0.897	0.881	0.913
$\operatorname{oct}_o(wlsv)$	0.908	0.895	0.898	0.881	0.882	0.812	0.802	0.806	0.786	0.786
$oct_o(bdshr)$	0.960	0.947	0.929	0.938	0.915	0.860	0.856	0.836	0.841	0.816
$oct_o(shr)$	0.921	0.919	0.896	0.898	0.878	0.814	0.821	0.796	0.794	0.775
$oct_o(hshr)$	0.977	0.956	0.976	0.942	0.957	0.876	0.854	0.882	0.844	0.856
$oct_{oh}(shr)$	1.082	1.029	0.973	1.076	0.963	0.971	0.954	0.882	0.967	0.861
$\operatorname{oct}_{oh}(hshr)$	1.007	0.988	1.017	0.979	1.014	0.904	0.888	0.934	0.881	0.913

^{*}The Gaussian method employs a sample covariance matrix:

Table B.7: ES ratio indices defined in Section 5.1 for the AustralianQuarterlyNational Accounts dataset. A lower value, indicates a more accurate forecast. Approaches performing worse than the benchmark (bootstrap base forecasts, ctjb) are highlighted in red, the best for each column is marked in bold, and the overall lowest value is highlighted in blue. The reconciliation approaches are described in Table 2.

 G_h and H_h use multi-step residuals and G_{oh} and H_{oh} use overlapping and multi-step residuals.

	Generation of the base forecasts paths									
Reconciliation approach	ctjb	G	Gaussian	approacl	n*	ctjb	C	aussian	approacl	n*
		G_h	H_h	G_{oh}	H_{oh}		G_h	H_h	G_{oh}	H_{oh}
		$\forall k$	$c \in \{4, 2, 1\}$	1}				k = 1		
base	1.000	0.979	1.011	0.968	0.987	1.000	0.988	0.988	0.971	0.971
$\operatorname{ct}(shr_{cs},bu_{te})$	0.937	0.960	0.961	0.962	0.960	0.992	1.001	1.001	1.004	1.000
$\operatorname{ct}(wls_{cs},bu_{te})$	0.930	0.951	0.953	0.911	0.915	0.986	0.997	0.998	0.964	0.967
oct(wlsv)	0.926	0.972	0.957	0.918	0.917	0.984	1.010	1.003	0.971	0.970
oct(bdshr)	0.940	0.986	0.966	0.981	0.956	0.997	1.015	1.006	1.016	1.000
oct(shr)	0.944	0.999	0.962	1.051	0.995	1.015	1.047	1.021	1.105	1.058
oct(hshr)	0.988	1.000	1.021	0.979	1.002	1.048	1.045	1.066	1.034	1.053
$\operatorname{oct}_o(wlsv)$	0.926	0.961	0.948	0.914	0.912	0.984	1.000	0.993	0.966	0.965
$oct_o(bdshr)$	0.978	0.956	0.949	0.949	0.934	1.034	0.984	0.983	0.988	0.977
$oct_o(shr)$	0.950	0.957	0.946	0.933	0.917	1.014	0.998	0.995	0.986	0.974
$oct_o(hshr)$	0.989	0.997	1.013	0.967	0.982	1.047	1.039	1.054	1.019	1.032
$oct_{oh}(shr)$	1.102	1.010	1.006	1.051	0.995	1.172	1.059	1.063	1.105	1.058
$oct_{oh}(hshr)$	1.006	0.989	1.004	0.979	1.002	1.068	1.037	1.050	1.034	1.053
			k = 2					k = 4		
base	1.000	0.984	1.009	0.968	0.987	1.000	0.966	1.037	0.964	1.002
$ct(shr_{cs}, bu_{te})$	0.949	0.972	0.972	0.974	0.971	0.874	0.910	0.911	0.910	0.910
$\operatorname{ct}(wls_{cs}, bu_{te})$	0.942	0.962	0.964	0.923	0.927	0.866	0.897	0.900	0.851	0.855
oct(wlsv)	0.938	0.988	0.968	0.931	0.929	0.860	0.921	0.903	0.856	0.856
oct(bdshr)	0.953	1.004	0.979	0.996	0.970	0.874	0.942	0.914	0.932	0.900
oct(shr)	0.955	1.016	0.973	1.070	1.010	0.866	0.937	0.895	0.981	0.922
oct(hshr)	1.001	1.015	1.034	0.993	1.017	0.919	0.942	0.965	0.913	0.937
$oct_o(wlsv)$	0.938	0.976	0.959	0.927	0.925	0.860	0.910	0.894	0.853	0.852
$oct_o(bdshr)$	0.991	0.970	0.963	0.963	0.948	0.914	0.917	0.905	0.899	0.880
$oct_o(shr)$	0.965	0.973	0.959	0.948	0.931	0.877	0.903	0.886	0.868	0.850
$oct_o(hshr)$	1.002	1.013	1.026	0.980	0.996	0.922	0.943	0.962	0.905	0.921
$\operatorname{oct}_{oh}(shr)$	1.120	1.026	1.019	1.070	1.010	1.020	0.947	0.939	0.981	0.922
$oct_{oh}(hshr)$	1.021	1.005	1.017	0.993	1.017	0.934	0.929	0.946	0.913	0.937

^{*}The Gaussian method employs a shrinkage covariance matrix:

Table B.8: AvgRelCRPS indices defined in Section 5.1 for the Australian Quarterly National Accounts dataset. A lower value, indicates a more accurate forecast. Approaches performing worse than the benchmark (bootstrap base forecasts, ctjb) are highlighted in red, the best for each column is marked in bold, and the overall lowest value is highlighted in blue. The reconciliation approaches are described in Table 2.

 G_h and H_h use multi-step residuals and G_{oh} and H_{oh} use overlapping and multi-step residuals.

	Generation of the base forecasts paths									
Reconciliation approach	ctjb	C	Gaussian	approacl	h*	ctjb	C	Gaussian	approacl	h [*]
11		G_h	H_h	G_{oh}	H_{oh}		G_h	H_h	G_{oh}	H_{oh}
		$\forall k$	$c \in \{4,2,$	1}				k = 1		
base	1.000	0.967	1.002	0.957	0.980	1.000	0.973	0.973	0.961	0.962
$\operatorname{ct}(shr_{cs},bu_{te})$	0.897	0.968	0.969	0.963	0.962	0.964	1.012	1.012	1.009	1.004
$\operatorname{ct}(wls_{cs},bu_{te})$	0.886	0.939	0.944	0.882	0.888	0.954	0.994	0.998	0.947	0.952
oct(wlsv)	0.890	0.966	0.959	0.897	0.901	0.958	1.017	1.012	0.960	0.965
oct(bdshr)	0.905	0.997	0.981	0.986	0.960	0.972	1.031	1.021	1.024	1.005
oct(shr)	0.895	0.979	0.945	1.021	0.962	0.973	1.041	1.011	1.083	1.028
oct(hshr)	0.951	0.997	1.023	0.973	1.005	1.017	1.051	1.073	1.034	1.063
$\operatorname{oct}_o(wlsv)$	0.891	0.950	0.945	0.889	0.892	0.958	1.002	0.997	0.953	0.956
$oct_o(bdshr)$	0.940	0.935	0.933	0.922	0.909	1.004	0.965	0.964	0.969	0.959
$\operatorname{oct}_o(shr)$	0.900	0.935	0.928	0.895	0.884	0.973	0.984	0.982	0.960	0.950
$oct_o(hshr)$	0.956	0.997	1.015	0.945	0.965	1.021	1.049	1.062	1.007	1.024
$oct_{oh}(shr)$	1.059	0.981	0.983	1.021	0.962	1.130	1.034	1.041	1.083	1.029
$oct_{oh}(hshr)$	0.986	0.996	1.014	0.973	1.005	1.053	1.050	1.064	1.034	1.063
			k = 2					k = 4		
base	1.000	0.970	0.999	0.955	0.980	1.000	0.958	1.033	0.953	1.000
$ct(shr_{cs}, bu_{te})$	0.915	0.987	0.988	0.983	0.982	0.818	0.909	0.910	0.902	0.902
$\operatorname{ct}(wls_{cs}, bu_{te})$	0.904	0.958	0.962	0.900	0.906	0.807	0.871	0.876	0.805	0.812
oct(wlsv)	0.909	0.988	0.979	0.916	0.920	0.811	0.896	0.891	0.820	0.825
oct(bdshr)	0.925	1.024	1.005	1.010	0.984	0.825	0.938	0.919	0.926	0.895
oct(shr)	0.913	1.006	0.967	1.045	0.982	0.807	0.898	0.864	0.940	0.881
oct(hshr)	0.973	1.020	1.046	0.994	1.028	0.871	0.924	0.954	0.897	0.929
$oct_o(wlsv)$	0.908	0.972	0.964	0.908	0.911	0.812	0.882	0.876	0.812	0.816
$oct_o(bdshr)$	0.960	0.959	0.957	0.945	0.932	0.860	0.884	0.879	0.857	0.841
$oct_o(shr)$	0.921	0.958	0.950	0.917	0.905	0.814	0.867	0.857	0.815	0.803
$oct_o(hshr)$	0.977	1.021	1.038	0.966	0.987	0.876	0.926	0.949	0.868	0.889
$oct_{oh}(shr)$	1.082	1.002	1.003	1.045	0.982	0.971	0.910	0.911	0.941	0.882
$oct_{oh}(hshr)$	1.007	1.017	1.036	0.994	1.028	0.904	0.924	0.947	0.896	0.929

^{*}The Gaussian method employs a shrinkage covariance matrix:

Table B.9: ES ratio indices defined in Section 5.1 for the AustralianQuarterlyNational Accounts dataset. A lower value, indicates a more accurate forecast. Approaches performing worse than the benchmark (bootstrap base forecasts, ctjb) are highlighted in red, the best for each column is marked in bold, and the overall lowest value is highlighted in blue. The reconciliation approaches are described in Table 2.

 G_h and H_h use multi-step residuals and G_{oh} and H_{oh} use overlapping and multi-step residuals.

C Australian Tourism Demand dataset: shrinkage covariance matrix

			Ge	neration	of the b	ase fore	ecasts pa	iths		
Reconciliation approach	ctjb	G	aussian	approac	h*	ctjb	G	aussian	approac	h*
11		G	В	Н	HB		G	В	Н	HB
		$\forall k \in \{$	[12, 6, 4,	3,2,1}				k = 1		
base	1.000	0.971	0.971	0.973	0.973	1.000	0.972	0.972	0.972	0.972
ct(bu)	1.321	1.011	1.011	1.011	1.011	1.077	0.983	0.982	0.982	0.982
$\operatorname{ct}(shr_{cs},bu_{te})$	1.057	0.974	0.969	0.974	0.969	0.976	0.963	0.962	0.963	0.962
$\operatorname{ct}(wlsv_{te},bu_{cs})$	1.062	0.974	0.974	0.972	0.972	0.976	0.965	0.965	0.966	0.966
oct(ols)	0.989	0.989	0.989	0.987	0.987	0.982	0.986	0.988	0.986	0.989
oct(struc)	0.982	0.962	0.961	0.961	0.959	0.970	0.963	0.963	0.963	0.963
oct(wlsv)	0.987	0.959	0.959	0.958	0.957	0.952	0.957	0.957	0.957	0.957
oct(bdshr)	0.975	0.956	0.953	0.952	0.951	0.949	0.955	0.953	0.954	0.954
$\operatorname{oct}_h(hbshr)$	0.989	1.018	1.020	1.016 1.016	1.018	0.982	1.004	1.007	1.004 1.006	1.009 1.012
$\operatorname{oct}_h(bshr)$	0.994	1.018 0.993	1.020 0.993	0.990	1.019 0.991	0.988	1.007 0.977	1.013 0.977	0.979	0.979
$\operatorname{oct}_h(hshr)$ $\operatorname{oct}_h(shr)$	1.007	0.980	0.993 0.972	0.970	0.991 0.970	1.000	0.977	0.977	0.979	0.979 0.974
$\operatorname{oct}_h(snr)$	1.007	0.900		0.970	0.970	1.000	0.900		0.970	0.574
base	1.000	0.970	k = 2 0.969	0.970	0.971	1.000	0.971	k = 3 0.971	0.972	0.973
ct(bu)	1.189	0.970	0.999	0.970	0.971	1.000	1.010	1.010	1.010	1.010
$\operatorname{ct}(\mathit{shr}_{\mathit{cs}},\mathit{bu}_{\mathit{te}})$	1.015	0.972	0.970	0.972	0.970	1.041	0.977	0.974	0.977	0.974
$\operatorname{ct}(wlsv_{te},bu_{cs})$	1.016	0.971	0.971	0.970	0.970	1.046	0.976	0.974	0.974	0.974
oct(ols)	0.992	0.991	0.991	0.990	0.991	0.994	0.992	0.993	0.991	0.992
oct(struc)	0.982	0.966	0.965	0.965	0.965	0.986	0.967	0.966	0.966	0.965
oct(wlsv)	0.972	0.961	0.960	0.960	0.960	0.983	0.963	0.962	0.962	0.962
oct(bdshr)	0.964	0.958	0.957	0.956	0.956	0.972	0.960	0.958	0.957	0.957
$\operatorname{oct}_h(hbshr)$	0.992	1.013	1.015	1.012	1.015	0.994	1.019	1.021	1.018	1.020
$\operatorname{oct}_h(bshr)$	0.997	1.015	1.018	1.013	1.017	0.999	1.021	1.022	1.018	1.022
$\operatorname{oct}_h(hshr)$	0.965	0.987	0.987	0.986	0.987	0.971	0.994	0.994	0.992	0.993
$\operatorname{oct}_h(shr)$	1.005	0.986	0.978	0.976	0.975	1.009	0.986	0.978	0.976	0.976
			k = 4					k = 6		
base	1.000	0.973	0.973	0.974	0.975	1.000	0.976	0.976	0.978	0.978
ct(bu)	1.340	1.016	1.015	1.015	1.015	1.450	1.023	1.023	1.023	1.023
$\operatorname{ct}(shr_{cs},bu_{te})$	1.061	0.978	0.973	0.978	0.973	1.094	0.978	0.972	0.978	0.972
$\operatorname{ct}(wlsv_{te},bu_{cs})$	1.068	0.977	0.977	0.974	0.974	1.103	0.977	0.977	0.974	0.974
oct(ols)	0.993	0.991	0.992	0.990	0.990	0.989	0.989	0.989	0.987	0.986
oct(struc)	0.986	0.965	0.964	0.964	0.963	0.986	0.961	0.960	0.959	0.957
oct(wlsv)	0.990	0.962	0.961	0.961	0.960	1.001	0.960	0.959	0.958	0.957
oct(bdshr)	0.977	0.959	0.956	0.955	0.954	0.985	0.956	0.953	0.950	0.948
$\operatorname{oct}_h(hbshr)$	0.993 0.997	1.021 1.022	1.023 1.022	1.019 1.019	1.021 1.022	0.989	1.024 1.022	1.026 1.022	1.022 1.020	1.022 1.022
$\operatorname{oct}_h(bshr)$	0.997	0.996	0.997	0.994	0.995	0.994	1.022	1.022	0.996	0.997
$\operatorname{oct}_h(hshr)$ $\operatorname{oct}_h(shr)$	1.009	0.984	0.997	0.973		1.010		0.970	0.990	0.997
$\operatorname{oct}_h(snr)$	1.009	0.904		0.973	0.973	1.010	0.976	0.970	0.907	0.907
base	1.000	0.968	k = 12 0.967	0.969	0.969	ı				
ct(bu)	1.675	1.038	1.037	1.037	1.038					
ct(bu) $ct(shr_{cs}, bu_{te})$	1.163	0.977	0.965	0.977	0.965					
$\operatorname{ct}(wlsv_{te},bu_{cs})$	1.174	0.978	0.978	0.971	0.971					
oct(ols)	0.982	0.982	0.983	0.980	0.975					
oct(struc)	0.982	0.951	0.949	0.947	0.943					
oct(wlsv)	1.025	0.954	0.953	0.949	0.947					
oct(bdshr)	1.002	0.950	0.944	0.939	0.935					
$\operatorname{oct}_h(hbshr)$	0.982	1.027	1.029	1.024	1.021					
$\operatorname{oct}_h(bshr)$	0.987	1.024	1.021	1.021	1.019					
$\operatorname{oct}_h(hshr)$	0.978	1.003	1.005	0.996	0.997					
$\operatorname{oct}_h(shr)$	1.010	0.963	0.956	0.952	0.952					

 $^{^*}$ The Gaussian method employs a sample covariance matrix and includes four techniques (G, B, H, HB) with multi-step residuals.

Table C.10: AvgRelCRPS defined in Section 5.1 for Australian Tourism Demand. A lower value, indicates a more accurate forecast. Approaches performing worse than the benchmark (bootstrap base forecasts, ctjb) are highlighted in red, the best for each column is marked in bold, and the overall lowest value is highlighted in blue. The reconciliation approaches are described in Table 2.

			Ge	neration	of the l	oase fore	ecasts pa	iths		
Reconciliation approach	ctjb	G	aussian	approac	h*	ctjb	G	aussian	approac	h [*]
11		G	В	Н	HB		G	В	Н	HB
		$\forall k \in \cdot$	12, 6, 4,	3,2,1}				k = 1		
base	1.000	0.956	0.955	0.958	0.951	1.000	0.952	0.950	0.952	0.950
ct(bu)	2.427	0.983	0.983	0.983	0.983	1.759	0.982	0.982	0.982	0.982
$\operatorname{ct}(shr_{cs},bu_{te})$	1.243	0.886	0.879	0.886	0.879	1.098	0.929	0.928	0.930	0.927
$\operatorname{ct}(wlsv_{te},bu_{cs})$	1.499	0.977	0.977	0.971	0.972	1.241	0.975	0.975	0.973	0.974
oct(ols)	0.955	0.893	0.891	0.893	0.888	0.975	0.937	0.936	0.936	0.935
oct(struc)	1.085	0.917	0.915	0.916	0.912	1.027	0.943	0.942	0.943	0.942
oct(wlsv)	1.132	0.933	0.929	0.931	0.927	1.050	0.951	0.949	0.950	0.949
oct(bdshr)	1.047	0.904	0.897	0.897	0.891	1.009	0.936	0.933	0.934	0.931
$\operatorname{oct}_h(hbshr)$	0.956	0.889	0.886	0.888	0.884	0.975	0.937	0.936	0.937	0.935
$\operatorname{oct}_h(bshr)$	0.931	0.867	0.866	0.863	0.860	0.965	0.927	0.927	0.925	0.923
$\operatorname{oct}_h(hshr)$	1.081	0.935	0.931	0.935	0.927	1.028	0.952	0.951	0.952	0.950
$\operatorname{oct}_h(shr)$	1.068	0.899	0.878	0.875	0.864	1.023	0.935	0.923	0.921	0.916
			k = 2					k = 3		
base	1.000	0.958	0.954	0.956	0.953	1.000	0.961	0.958	0.960	0.955
ct(bu)	2.176	1.001	1.001	1.001	1.001	2.428	0.998	0.997	0.997	0.997
$\operatorname{ct}(shr_{cs},bu_{te})$	1.192	0.927	0.921	0.927	0.921	1.245	0.911	0.904	0.911	0.904
$\operatorname{ct}(wlsv_{te},bu_{cs})$	1.400	0.992	0.992	0.988	0.988	1.500	0.991	0.991	0.986	0.987
oct(ols)	0.985	0.935	0.932	0.934	0.930	0.976	0.918	0.915	0.917	0.912
oct(struc)	1.075	0.949	0.947	0.948	0.944	1.096	0.939	0.936	0.938	0.933
oct(wlsv)	1.110	0.960	0.958	0.958	0.955	1.142	0.953	0.949	0.951	0.946
oct(bdshr)	1.045	0.938	0.933	0.933	0.929	1.060	0.926	0.920	0.921	0.915
$\operatorname{oct}_h(hbshr)$	0.984	0.933	0.931	0.933	0.928	0.975	0.915	0.912	0.915	0.909
$\operatorname{oct}_h(bshr)$	0.967	0.917	0.916	0.913	0.908	0.954	0.895	0.895	0.892	0.887
$\operatorname{oct}_h(hshr)$	1.073	0.962	0.959	0.963	0.956	1.093	0.955	0.951	0.956	0.949
$\operatorname{oct}_h(shr)$	1.064	0.933	0.916	0.913	0.904	1.082	0.923	0.903	0.900	0.890
			k = 4					k = 6		
base	1.000	0.960	0.960	0.962	0.956	1.000	0.961	0.959	0.964	0.956
ct(bu)	2.585	0.996	0.996	0.995	0.996	2.849	1.004	1.003	1.003	1.004
$\operatorname{ct}(shr_{cs},bu_{te})$	1.277	0.898	0.890	0.899	0.891	1.339	0.882	0.873	0.883	0.874
$\operatorname{ct}(wlsv_{te},bu_{cs})$	1.559	0.990	0.990	0.984	0.985	1.662	0.997	0.997	0.991	0.992
oct(ols)	0.966	0.905	0.902	0.904	0.899	0.962	0.889	0.887	0.890	0.885
oct(struc)	1.106	0.930	0.927	0.928	0.924	1.132	0.923	0.919	0.922	0.916
oct(wlsv)	1.157	0.947	0.943	0.945	0.939	1.192	0.942	0.937	0.941	0.934
oct(bdshr)	1.065	0.917	0.909	0.910	0.903	1.084	0.907	0.897	0.898	0.890
$\operatorname{oct}_h(hbshr)$	0.967	0.901	0.898	0.900	0.895	0.964	0.882	0.880	0.883	0.877
$\operatorname{oct}_h(bshr)$	0.943	0.879	0.878	0.876	0.871	0.932	0.856	0.855	0.851	0.848
$\operatorname{oct}_h(hshr)$	1.101	0.949	0.944	0.949	0.941	1.126	0.945	0.939	0.945	0.936
$\operatorname{oct}_h(shr)$	1.089	0.915	0.893	0.890	0.878	1.107	0.899	0.875	0.871	0.858
			k = 12							
base	1.000	0.942	0.947	0.951	0.937					
ct(bu)	2.990	0.922	0.921	0.923	0.923					
$\operatorname{ct}(shr_{cs},bu_{te})$	1.326	0.779	0.767	0.777	0.766					
$\operatorname{ct}(wlsv_{te}, bu_{cs})$	1.679	0.917	0.917	0.906	0.908					
oct(ols)	0.872	0.783	0.784	0.783	0.779					
oct(struc)	1.077	0.826	0.822	0.823	0.818					
oct(wlsv)	1.149	0.851	0.845	0.847	0.840					
oct(bdshr)	1.021	0.808	0.796	0.796	0.787					
$\operatorname{oct}_h(hbshr)$	0.872	0.775	0.772	0.772	0.770					
$\operatorname{oct}_h(bshr)$	0.833	0.741	0.741 0.846	0.737	0.735					
	1.066 1.043	0.851 0.797	0.846	$0.848 \\ 0.764$	0.838 0.750					
och (siii)	1.040	0.7 77	0.700	0.704	0.750					

 $^{^*}$ The Gaussian method employs a sample covariance matrix and includes four techniques (G, B, H, HB) with multi-step residuals.

Table C.11: ES ratio indices defined in Section 5.1 for Australian Tourism Demand. A lower value, indicates a more accurate forecast. Approaches performing worse than the benchmark (bootstrap base forecasts, ctjb) are highlighted in red, the best for each column is marked in bold, and the overall lowest value is highlighted in blue. The reconciliation approaches are described in Table 2.

			Ge	neratior	of the l	oase fore	ecasts pa	iths		
Reconciliation approach	ctjb	G	aussian	approac	h [*]	ctjb	G	aussian	approac	h*
"PPTOWELL		G	В	Н	HB		G	В	Н	HB
		$\forall k \in \cdot$	{12, 6, 4,	3, 2, 1}				k = 1		
base	1.000	0.971	0.972	0.971	0.972	1.000	0.972	0.971	0.972	0.971
ct(bu)	1.321	1.017	1.018	1.017	1.017	1.077	0.983	0.983	0.983	0.983
$\operatorname{ct}(shr_{cs},bu_{te})$	1.057	1.013	0.971	1.013	0.971	0.976	0.987	0.961	0.988	0.961
$\operatorname{ct}(wlsv_{te},bu_{cs})$	1.062	1.069	1.070	0.974	0.974	0.976	0.986	0.986	0.965	0.965
oct(ols)	0.989	1.163	1.052	1.139	0.987	0.982	1.038	0.992	1.047	0.987
oct(struc)	0.982	1.099	1.039	1.037	0.960	0.970	1.007	0.971	0.999	0.962
oct(wlsv)	0.987	1.080	1.041	0.992	0.958	0.952	1.004	0.969	0.978	0.956
oct(bdshr)	0.975	1.072	1.032	0.985	0.950	0.949	0.999	0.965	0.975	0.952
$\operatorname{oct}_h(hbshr)$	0.989	1.189	1.076	1.171	1.021	0.982	1.045	1.000	1.063	1.009
$\operatorname{oct}_h(bshr)$	0.994	1.202	1.073	1.168	1.021	0.988	1.046	1.012	1.063	1.012
$\operatorname{oct}_h(hshr)$	0.969	1.066	1.052	1.008	0.994	0.953	0.994	0.972	0.991	0.979
$\operatorname{oct}_h(shr)$	1.007	1.090	1.046	1.000	0.970	1.000	1.035	0.992	0.998	0.973
			k = 2					k = 3		
base	1.000	0.969	0.969	0.968	0.968	1.000	0.971	0.970	0.969	0.970
ct(bu)	1.189	1.000	1.000	1.000	1.000	1.273	1.013	1.013	1.013	1.013
$\operatorname{ct}(shr_{cs},bu_{te})$	1.015	1.004	0.968	1.004	0.968	1.041	1.013	0.973	1.014	0.973
$\operatorname{ct}(wlsv_{te},bu_{cs})$	1.016	1.043	1.044	0.969	0.969	1.046	1.067	1.068	0.974	0.974
oct(ols)	0.992	1.118	1.037	1.092	0.989	0.994	1.153	1.053	1.124	0.990
oct(struc)	0.982	1.075	1.022	1.020	0.963	0.986	1.099	1.041	1.033	0.964
$\operatorname{oct}(wlsv)$	0.972	1.064	1.021	0.987	0.958	0.983	1.083	1.041	0.993	0.960
oct(bdshr)	0.964	1.057	1.015	0.983	0.953	0.972	1.075	1.033	0.988	0.955
$\operatorname{oct}_h(hbshr)$	0.992	1.136	1.055	1.116	1.014	0.994	1.178	1.075	1.153	1.020
$\operatorname{oct}_h(bshr)$	0.997	1.145	1.059	1.114	1.016	0.999	1.190	1.075	1.151	1.021
$\operatorname{oct}_h(hshr)$	0.965	1.050	1.029	1.001	0.986	0.971	1.067	1.051	1.009	0.994
$\operatorname{oct}_h(shr)$	1.005	1.083	1.035	1.001	0.973	1.009	1.097	1.050	1.004	0.974
			k = 4					k = 6		
base	1.000	0.973	0.973	0.971	0.973	1.000	0.976	0.977	0.975	0.977
ct(bu)	1.340	1.021	1.021	1.021	1.021	1.450	1.032	1.033	1.032	1.033
$\operatorname{ct}(shr_{cs},bu_{te})$	1.061	1.018	0.974	1.018	0.974	1.094	1.023	0.974	1.024	0.974
$\operatorname{ct}(wlsv_{te},bu_{cs})$	1.068	1.087	1.089	0.976	0.976	1.103	1.108	1.110	0.978	0.978
oct(ols)	0.993	1.186	1.068	1.148	0.989	0.989	1.223	1.080	1.184	0.987
oct(struc)	0.986	1.120	1.057	1.042	0.962	0.986	1.141	1.071	1.054	0.959
oct(wlsv)	0.990	1.100	1.059	0.996	0.959	1.001	1.115	1.076	0.998	0.958
oct(bdshr)	0.977	1.091	1.049	0.989	0.952	0.985	1.103	1.064	0.989	0.949
$\operatorname{oct}_h(hbshr)$	0.993	1.215	1.095	1.182	1.022	0.989	1.258	1.112	1.225	1.026
$\operatorname{oct}_h(bshr)$	0.997	1.230	1.089	1.178	1.023	0.994	1.278	1.101	1.219	1.025
$\operatorname{oct}_h(hshr)$	0.973	1.084	1.071	1.012	0.996	0.976	1.097	1.091	1.017	1.002
$\operatorname{oct}_h(shr)$	1.009	1.108	1.062	1.003	0.972	1.010	1.113	1.070	1.000	0.968
_			k = 12							
base	1.000	0.968	0.969	0.969	0.971					
ct(bu)	1.675	1.056	1.057	1.057	1.057					
$\operatorname{ct}(shr_{cs},bu_{te})$	1.163	1.032	0.974	1.033	0.974					
$\operatorname{ct}(wlsv_{te},bu_{cs})$	1.174	1.128	1.130	0.982	0.982					
oct(ols)	0.982	1.277	1.085	1.252	0.982					
oct(struc)	0.982	1.158	1.074	1.075	0.950					
oct(wlsv)	1.025	1.122	1.085	1.001	0.954					
oct(bdshr)	1.002	1.110	1.071	0.989	0.941					
$\operatorname{oct}_h(hbshr)$	0.982	1.322	1.125	1.305	1.033					
$\operatorname{oct}_h(bshr)$	0.987	1.347	1.107	1.297	1.031					
$\operatorname{oct}_h(hshr)$	0.978	1.106	1.107	1.021	1.010					
$\operatorname{oct}_h(shr)$	1.010	1.107	1.067	0.991	0.959					

 $^{^*}$ The Gaussian method employs a shrikage covariance matrix and includes four techniques (G, B, H, HB) with multi-step residuals..

Table C.12: AvgRelCRPS defined in Section 5.1 for Australian Tourism Demand. A lower value, indicates a more accurate forecast. Approaches performing worse than the benchmark (bootstrap base forecasts, ctjb) are highlighted in red, the best for each column is marked in bold, and the overall lowest value is highlighted in blue. The reconciliation approaches are described in Table 2.

	Generation of the base forecasts paths									
Reconciliation approach	ctjb	Gaussian approach*				ctjb	Gaussian approach*			
11		G	В	Н	HB		G	В	Н	HB
		$\forall k \in \cdot$	{12, 6, 4,	3,2,1}				k = 1		
base	1.000	0.958	0.984	0.972	0.992	1.000	0.954	0.958	0.954	0.958
ct(bu)	2.427	1.040	1.042	1.040	1.041	1.759	1.001	1.002	1.002	1.002
$\operatorname{ct}(shr_{cs},bu_{te})$	1.243	0.988	0.913	0.990	0.913	1.098	1.011	0.938	1.013	0.938
$\operatorname{ct}(wlsv_{te},bu_{cs})$	1.499	1.117	1.120	1.025	1.025	1.241	1.019	1.020	0.990	0.990
oct(ols)	0.955	1.000	0.984	0.985	0.922	0.975	0.983	0.961	0.987	0.945
oct(struc)	1.085	1.094	1.047	1.018	0.952	1.027	1.054	0.981	1.022	0.953
oct(wlsv)	1.132	1.137	1.065	1.059	0.969	1.050	1.078	0.989	1.043	0.960
oct(bdshr)	1.047	1.085	1.013	1.011	0.927	1.009	1.050	0.966	1.019	0.942
$\operatorname{oct}_h(hbshr)$	0.956	1.018	0.981	1.016	0.919	0.975	0.991	0.961	1.002	0.947
$\operatorname{oct}_h(bshr)$	0.931	1.002	1.001	0.982	0.889	0.965	0.980	0.975	0.985	0.933
$\operatorname{oct}_h(hshr)$	1.081	1.109	1.039	1.076	0.973	1.028	1.061	0.978	1.052	0.963
$\operatorname{oct}_h(shr)$	1.068	1.088	1.008	0.995	0.896	1.023	1.061	0.966	1.011	0.924
			k = 2					k = 3		
base	1.000	0.960	0.971	0.958	0.972	1.000	0.963	0.981	0.966	0.986
ct(bu)	2.176	1.035	1.036	1.035	1.035	2.428	1.042	1.044	1.042	1.043
$\operatorname{ct}(shr_{cs},bu_{te})$	1.192	1.020	0.942	1.021	0.942	1.245	1.009	0.931	1.011	0.931
$\operatorname{ct}(wlsv_{te},bu_{cs})$	1.400	1.104	1.106	1.018	1.019	1.500	1.127	1.130	1.029	1.029
oct(ols)	0.985	1.028	1.008	1.002	0.950	0.976	1.020	1.004	0.994	0.938
oct(struc)	1.075	1.115	1.051	1.039	0.967	1.096	1.117	1.064	1.033	0.965
oct(wlsv)	1.110	1.149	1.065	1.070	0.979	1.142	1.160	1.082	1.073	0.981
oct(bdshr)	1.045	1.105	1.024	1.033	0.949	1.060	1.109	1.032	1.029	0.943
$\operatorname{oct}_h(hbshr)$	0.984	1.041	1.007	1.024	0.951	0.975	1.036	1.002	1.023	0.937
$\operatorname{oct}_h(bshr)$	0.967	1.029	1.025	0.998	0.928	0.954	1.024	1.025	0.993	0.911
$\operatorname{oct}_h(hshr)$	1.073	1.122	1.042	1.083	0.983	1.093	1.129	1.054	1.090	0.984
$\operatorname{oct}_h(shr)$	1.064	1.110	1.019	1.018	0.922	1.082	1.116	1.030	1.015	0.915
			k = 4					k = 6		
base	1.000	0.962	0.987	0.973	0.996	1.000	0.963	0.998	0.984	1.011
ct(bu)	2.585	1.052	1.054	1.053	1.053	2.849	1.083	1.085	1.083	1.084
$\operatorname{ct}(shr_{cs},bu_{te})$	1.277	1.000	0.923	1.002	0.923	1.339	0.999	0.921	1.000	0.920
$\operatorname{ct}(wlsv_{te},bu_{cs})$	1.559	1.150	1.153	1.037	1.037	1.662	1.189	1.193	1.066	1.066
oct(ols)	0.966	1.022	1.008	0.994	0.931	0.962	1.023	1.014	1.003	0.930
oct(struc)	1.106	1.120	1.076	1.031	0.963	1.132	1.132	1.100	1.039	0.972
oct(wlsv)	1.157	1.167	1.097	1.075	0.982	1.192	1.187	1.124	1.090	0.995
oct(bdshr)	1.065	1.112	1.041	1.025	0.939	1.084	1.121	1.058	1.029	0.940
$\operatorname{oct}_h(hbshr)$	0.967	1.041	1.005	1.027	0.929	0.964	1.046	1.008	1.042	0.924
$\operatorname{oct}_h(bshr)$	0.943	1.028	1.028	0.994	0.900	0.932	1.029	1.032	1.000	0.887
$\operatorname{oct}_h(hshr)$	1.101	1.137	1.068	1.093	0.986	1.126	1.153	1.089	1.110	0.999
$\operatorname{oct}_h(shr)$	1.089	1.118	1.039	1.012	0.910	1.107	1.118	1.045	1.006	0.902
			k = 12							
base	1.000	0.948	1.010	1.002	1.033					
ct(bu)	2.990	1.028	1.031	1.029	1.029					
$\operatorname{ct}(shr_{cs},bu_{te})$	1.326	0.897	0.830	0.899	0.830					
$\operatorname{ct}(wlsv_{te},bu_{cs})$	1.679	1.119	1.123	1.009	1.009					
oct(ols)	0.872	0.927	0.914	0.930	0.840					
oct(struc)	1.077	1.028	1.012	0.950	0.894					
oct(wlsv)	1.149	1.089	1.041	1.006	0.922					
oct(bdshr)	1.021	1.015	0.964	0.935	0.855					
$\operatorname{oct}_h(hbshr)$	0.872	0.955	0.906	0.978	0.833					
$\operatorname{oct}_h(bshr)$	0.833	0.927	0.927	0.927	0.784					
$ oct_h(hshr) $ $ oct_h(shr) $	1.066 1.043	1.056 1.011	1.005 0.952	1.026 0.909	0.926 0.809					
ocih(siii)	1.040	1.011	0.752	0.703	0.009					

^{*}The Gaussian method employs a shrikage covariance matrix and includes four techniques (G, B, H, HB) with multi-step residuals.

Table C.13: ES ratio indices defined in Section 5.1 for Australian Tourism Demand. A lower value, indicates a more accurate forecast. Approaches performing worse than the benchmark (bootstrap base forecasts, ctjb) are highlighted in red, the best for each column is marked in bold, and the overall lowest value is highlighted in blue. The reconciliation approaches are described in Table 2.