Musterlösung zur Aufgabe: 1 Gesamtpunktzahl: 10

Unter-		Punkte
punkt 1.1	Vorteile: hohe Leistungsdichte, einfache Realisierung von Linearbewegungen, gute Steuer- und Regelbarkeit, gutes Zeitverhalten durch niedrige Massenträgheiten, einfache und zuverlässige Absicherung gegen Überlast, gute Schmierung und Abfuhr der Verlustwärme Advantages: high power density, simple realisation of linear movements, good controllability, good time behaviour due to low mass inertia, simple and reliable protection against overload, good lubrication and dissipation	0,5
	of heat loss Nachteile: Verluste durch Reibung, interne Leckage, Schmutzempfindlichkeit, Verschleiß der Komponenten, Geräuschabstrahlung, Leckage, Feuergefährdung Disadvantages: losses due to friction, internal leakage, sensitivity to dirt, component wear, noise emission, leakage, fire hazard	0,5
1.2.1	$F_K = m_K \cdot g = 0.2 \ kg \cdot 10 \frac{m}{s^2} = 1,96N$ $F_W = \rho_W \cdot A_{Zyl} \cdot L_K \cdot g$	0,5
	$A_{Pr} = \frac{\pi \cdot D^2}{4} = \frac{\pi \cdot (120mm)^2}{4} = 11310 \ mm^2$	0,5
	$F_F = c_F \cdot L_K$ $F_F = F_K + F_W$	0,5 0,5
	$L_K = \frac{m_K \cdot g}{c_F - A_{Pr} \cdot \rho_W \cdot g} = 2,2 \ mm$	0,5
1.2.2	$l = \frac{\Delta V_{Pu}}{A_{Pu}}$ $A_{Pu} = \frac{\pi \cdot d^2}{4} = \frac{\pi \cdot (80mm)^2}{4} = 5026,5 \text{ mm}^2$	0,5
	$\Delta V_{Pu} = \Delta V_{Pr}$	0,5
	$\Delta V_{Pr} = \Delta L \cdot A_{Pr}$ $\Delta L = L - L_K - h_K = 200mm - 2,2mm - 20mm$	0,5
	$= 177,8 mm (178mm)$ $l = \frac{\Delta L \cdot A_{Pr}}{A_{Pu}} = 400,06mm (354,12 mm)$	0,5

1.2.3	$\Delta p = \frac{8 \cdot \eta_w \cdot l_S}{\pi \cdot r_S^4} \cdot Q$	0,5
	$Q_{Pr}=Q_{S}$	0,5
	$Q = v_K * A_{Pr}$	0,5
	$\Delta p = \frac{8 \cdot v_K \cdot A_{Pr} \cdot \eta_W \cdot l_S}{\pi \cdot r_S^4} = 0,029 \ bar \ (0,025 \ bar)$	0,5
Blasius		
	$\lambda = \frac{64}{Re} = 8,89 \cdot 10^{-5} \; (1 \cdot 10^{-4})$	0,5
	$Re = \frac{\rho_w \cdot v_S \cdot 2 \cdot r_S}{\eta_w} = 720.000 \ (636620)$	0,5
	$v_S = v_K \cdot \frac{A_{Pr}}{A_S} = 36 m/s (31.83 m/s)$	0,5
	$\Delta p = \lambda \cdot \frac{l_S}{2 \cdot r_S} \cdot \frac{\rho_W}{2} \cdot v_S^2 = 0,029 \ bar \ (0,025 \ bar)$	0,5
1.2.4	$i = \frac{F_{Pu,max}}{F_{max}}$	0,5
	$F_{P,max} = p_{Pu,max} \cdot A_{Pu}$	0,5
	$p_{Pu,max} = p_{Pr,max} + \Delta p$	0,5
	$p_{Pr,max} = \frac{c_F \cdot (L - h_K)}{(A_{Pr})}$	0,5
	$i = \left(\frac{c_F \cdot (L - h_K)}{(A_{Pr})} + \Delta p\right) \cdot \frac{A_{Pu}}{F_{max}} = 2,1 (2,3)$	0,5
	X 117 · max	10

Musterlösung zur Aufgabe: 2

Gesamtpunktzahl: 10

Teilauf	fgabe und Antwort	Punkte
Subtasi	k and solution	Points
2.1	Primäre Aufgabe:	
	- Mögliche Lösungen: Leistungsübertragung/ Power Transmission, Druckübertragung/ Pressure Transmission	0,5
2.2	$ \frac{\eta_{2 \text{ vol}}}{\eta_{2 \text{ ges}}} $ $ 0 \qquad \frac{\Delta p}{\Delta p_{\text{max}}} \longrightarrow 1 $	
	Je richtigem Graphen 0,5 Punkte	
	Each correct graph 0,5 points	1,5
2.3	Kolbentrommel / Steuerspiegel Kolben / Kolbentrommel Gleitschuh / Schwenkwiege	
	Richitge Stelle 0,5 Punkte/ right position 0,5 points Richitge Bezeichnung für gewählte Stelle 0,5 Punkte/ right designation for	0,5 0,5
	choosen position 0,5 points	

	Teilaufgabe und Antwort	
Subtask	and solution	Points
2.4	1. ungerade Kolbenzahl/odd number of pistons	
	$\delta \approx 1 - \cos\left(\frac{90^{\circ}}{z}\right)$	0,5
	Formel 0,5 Punkte/ formula 0,5 points	
	$\to 1 - \cos\left(\frac{90^{\circ}}{z}\right) < 0.01$	
	$\to \cos\left(\frac{90^{\circ}}{z}\right) > 0.99$	
	$\rightarrow 90^{\circ} > z \cdot \cos^{-1}(0.99)$	
	$\to z < \frac{90^{\circ}}{\cos^{-1}(0.99)} \approx 11.1$	
	$\rightarrow z_{min,odd} = 13$	
	(korrektes Ergebnis und korrekte Rundung/ solution and correct	0,5
	rounding 0,5 Punkte/points)	
2.5	Stromregelung /Flow control	0,5

abe und Antwort	Punkt
and solution	Points
für Regelbetrieb befindet sich der Ventilschieber in Mittelstellung	
$\rightarrow x = 0$	
If the Control work properly the spool is in middle position	
x = 0	0,5
Kräftegleichgewicht am Ventilschieber/ Force balance at spool:	
$p_1 \cdot A_v + F_{vor1} = p_2 \cdot A_v + F_{vor2}$	
$F_{vor2} = A_v \cdot (p_1 - p_2) + F_{vor1}$	
$F_{vor2} = A_v \cdot (\Delta p) + F_{vor1}$	
0,5 Punkte für eine der beiden Formeln/ 0.5 points for one of the	0,5
abouve formulas	
Blendengleichung/ Orifice formula:	
$Q_{Blende} = \ lpha_D \cdot A_B \cdot \sqrt{rac{2}{ ho}} \cdot \sqrt{\Delta p}$	
Formel 0,5 /formula 0.5 points	0,5
$\Delta p = \left(rac{Q_{Blende}}{lpha_D \cdot A_B} ight)^2 \cdot rac{ ho}{2}$	
$\Delta p = \left(\frac{250 \frac{l}{min} \cdot \frac{min}{60 \cdot s} \cdot \frac{m^3}{1000 l}}{0.7 \cdot 80 mm^2 \cdot \frac{10^{-6} m^2}{mm^2}}\right)^2 \cdot \frac{860 \frac{kg}{m^3}}{2}$	
$\Delta p = 23,805095 \mathrm{bar}$	
Einsetzten:	
$F_{vor_2} = A_v \cdot (p_1 - p_2) + F_{vor_1}$	
$F_{vor_2} = 500 \ mm^2 \cdot 2380509, 5 \frac{N}{m^2} + 100 \ N$	
$F_{vor_2} = 500 \ mm^2 \cdot \frac{m^2}{1000^2 mm^2} \cdot 2380509,5 \frac{N}{m^2} + 100 \ N$	
$F_{vor_2} = 1290,25 N$	
Ergebnis 0,5 Punkte/ Solution 0.5 points	0,5

$\eta_{1,vol} = \frac{Q_1,eff}{Q_{1,th}}$ $\eta_{2,vol} = \frac{Q_2,th}{Q_{2,eff}}$ $\eta_{hm1} = \frac{M_{1,th}}{M_{1,eff}}$ $\eta_{hm2} = \frac{M_{2,eff}}{M_{2,th}}$ 0,5 Punkte, wenn mindestens 3 der 4 Formeln gegeben sind/0,5 Points if at least 3 of the 4 formulas are given $Volumenstrombilanz/flow balance:$ $n_1 \cdot V_1 \cdot \eta_{1,vol} = \frac{n_2 \cdot V_2}{\eta_{2,vol}}$ Formel 0,5 Punkte/ formula 0.5 points $Umstellen/rearange:$ $\eta_{1,vol} \cdot \eta_{2,vol} = \frac{n_2}{n_1} \cdot \frac{V_2}{V_1}$ Einsetzen von/insert: $\frac{\eta_{1,vol}}{\eta_{2,vol}} = 0,95$ $0,95 \cdot \eta_{2,vol}^2 = \frac{n_2}{n_1} \cdot \frac{V_2}{V_1}$ $Umstellen/rearange:$ $\eta_{2,vol} = \sqrt{\frac{1}{0,95} \cdot \frac{n_2}{n_1} \cdot \frac{V_2}{V_1}}$ Einsetzen/insert: $\eta_{2,vol} = \sqrt{\frac{1}{0,95} \cdot \frac{1}{1,53} \cdot \frac{1}{0,95}}$ $Werte bestimmen/Calculate:$ $\eta_{2,vol} = 0,85$ $\eta_{1,vol} = 0,95 * \eta_{vol2}$	eilauf	gabe und Antwort	Punkte
$\eta_{2,vol} = \frac{Q_2 \cdot th}{Q_2 \cdot eff}$ $\eta_{hm1} = \frac{M_{1.th}}{M_{1.eff}}$ $\eta_{hm2} = \frac{M_{2.eff}}{M_{2.th}}$ 0,5 Punkte, wenn mindestens 3 der 4 Formeln gegeben sind/0,5 Points if at least 3 of the 4 formulas are given $Volumenstrombilanz/flow balance:$ $n_1 \cdot V_1 \cdot \eta_{1,vol} = \frac{n_2 \cdot V_2}{\eta_{2,vol}}$ Formel 0,5 Punkte/formula 0.5 points $Umstellen/rearange:$ $\eta_{1,vol} \cdot \eta_{2,vol} = \frac{n_2}{n_1} \cdot \frac{V_2}{V_1}$ Einsetzen von/insert: $\frac{\eta_{1,vol}}{\eta_{2,vol}} = 0,95$ $0,95 \cdot \eta_{2,vol}^2 = \frac{n_2}{n_1} \cdot \frac{V_2}{V_1}$ $Umstellen/rearange:$ $\eta_{2,vol} = \sqrt{\frac{1}{0,95} \cdot \frac{n_2}{n_1} \cdot \frac{V_2}{V_1}}$ Einsetzen/insert: $\eta_{2,vol} = \sqrt{\frac{1}{0,95} \cdot \frac{1}{1,53} \cdot \frac{1}{0,95}}$ Werte bestimmen/ Calculate: $\eta_{2,vol} = 0,85$ $\eta_{1,vol} = 0,95 * \eta_{vol2}$	ubtask		Points
$\eta_{hm1} = \frac{M_{1,th}}{M_{1,eff}}$ $\eta_{hm2} = \frac{M_{2,eff}}{M_{2,th}}$ 0,5 Punkte, wenn mindestens 3 der 4 Formeln gegeben sind/0,5 Points if at least 3 of the 4 formulas are given $Volumenstrombilanz/flow balance:$ $n_1 \cdot V_1 \cdot \eta_{1,vol} = \frac{n_2 \cdot V_2}{\eta_{2,vol}}$ Formel 0,5 Punkte/formula 0.5 points $Umstellen/rearange:$ $\eta_{1,vol} \cdot \eta_{2,vol} = \frac{n_2}{n_1} \cdot \frac{V_2}{V_1}$ Einsetzen von/insert: $\frac{\eta_{1,vol}}{\eta_{2,vol}} = 0,95$ $0,95 \cdot \eta_{2,vol}^2 = \frac{n_2}{n_1} \cdot \frac{V_2}{V_1}$ $Umstellen/rearange:$ $\eta_{2,vol} = \sqrt{\frac{1}{0,95} \cdot \frac{n_2}{n_1} \cdot \frac{V_2}{V_1}}$ Einsetzen/insert: $\eta_{2,vol} = \sqrt{\frac{1}{0,95} \cdot \frac{1}{1,53} \cdot \frac{1}{0,95}}$ Werte bestimmen/ Calculate: $\eta_{2,vol} = 0,85$ $\eta_{1,vol} = 0,95 * \eta_{vol2}$	7	$oldsymbol{\eta_{1,vol}} = rac{Q_1, eff}{Q_{1,th}}$	
$\eta_{hm2} = \frac{M_{2,eff}}{M_{2,th}}$ 0,5 Punkte, wenn mindestens 3 der 4 Formeln gegeben sind/0,5 Points if at least 3 of the 4 formulas are given $Volumenstrombilanz/flow balance:$ $n_1 \cdot V_1 \cdot \eta_{1,vol} = \frac{n_2 \cdot V_2}{\eta_{2,vol}}$ Formel 0,5 Punkte/ formula 0.5 points $Umstellen/ rearange:$ $\eta_{1,vol} \cdot \eta_{2,vol} = \frac{n_2}{n_1} \cdot \frac{V_2}{V_1}$ Einsetzen von/ insert: $\frac{\eta_{1,vol}}{\eta_{2,vol}} = 0,95$ $0,95 \cdot \eta_{2,vol}^2 = \frac{n_2}{n_1} \cdot \frac{V_2}{V_1}$ $Umstellen/ rearange:$ $\eta_{2,vol} = \sqrt{\frac{1}{0,95} \cdot \frac{1}{n_1} \cdot \frac{V_2}{V_1}}$ Einsetzen/ insert: $\eta_{2,vol} = \sqrt{\frac{1}{0,95} \cdot \frac{1}{1,53} \cdot \frac{1}{0,95}}$ Werte bestimmen/ Calculate: $\eta_{2,vol} = 0,85$ $\eta_{1,vol} = 0,95 * \eta_{vol2}$			
0,5 Punkte, wenn mindestens 3 der 4 Formeln gegeben sind / 0,5 Points if at least 3 of the 4 formulas are given Volumenstrombilanz/ flow balance: $n_1 \cdot V_1 \cdot \eta_{1,vol} = \frac{n_2 \cdot V_2}{\eta_{2,vol}}$ Formel 0,5 Punkte/ formula 0.5 points Umstellen/ rearange: $\eta_{1,vol} \cdot \eta_{2,vol} = \frac{n_2}{n_1} \cdot \frac{V_2}{V_1}$ 0,5 Einsetzen von/ insert: $\frac{\eta_{1,vol}}{\eta_{2,vol}} = 0,95$ $0,95 \cdot \eta_{2,vol}^2 = \frac{n_2}{n_1} \cdot \frac{V_2}{V_1}$ Umstellen/ rearange: $\eta_{2,vol} = \sqrt{\frac{1}{0,95} \cdot \frac{n_2}{n_1} \cdot \frac{V_2}{V_1}}$ Einsetzen/ insert: $\eta_{2,vol} = \sqrt{\frac{1}{0,95} \cdot \frac{1}{1,53} \cdot \frac{1}{0,95}}$ Werte bestimmen/ Calculate: $\eta_{2,vol} = 0,95 * \eta_{vol2}$		$oldsymbol{\eta_{hm1}} = rac{oldsymbol{M_{1,th}}}{oldsymbol{M_{1,eff}}}$	
Points if at least 3 of the 4 formulas are given $ n_1 \cdot V_1 \cdot \eta_{1,vol} = \frac{n_2 \cdot V_2}{\eta_{2,vol}} $ Formel 0,5 Punkte/ formula 0.5 points $ Umstellen/ rearange: $ 0,5 $ \eta_{1,vol} \cdot \eta_{2,vol} = \frac{n_2}{n_1} \cdot \frac{V_2}{V_1} $ Einsetzen von/ insert: $ \frac{\eta_{1,vol}}{\eta_{2,vol}} = 0,95 $ 0,95 $ \eta_{2,vol}^2 = \frac{n_2}{n_1} \cdot \frac{V_2}{V_1} $ Umstellen/ rearange: $ \eta_{2,vol} = \sqrt{\frac{1}{0,95} \cdot \frac{n_2}{n_1} \cdot \frac{V_2}{V_1}} $ Einsetzen/ insert: $ \eta_{2,vol} = \sqrt{\frac{1}{0,95} \cdot \frac{1}{1,53} \cdot \frac{1}{0,95}} $ Werte bestimmen/ Calculate: $ \eta_{2,vol} = 0,85 $ $ \eta_{1,vol} = 0,95 * \eta_{vol2} $		$oldsymbol{\eta_{hm2}} = rac{oldsymbol{M_{2,eff}}}{oldsymbol{M_{2,th}}}$	
Points if at least 3 of the 4 formulas are given $ n_1 \cdot V_1 \cdot \eta_{1,vol} = \frac{n_2 \cdot V_2}{\eta_{2,vol}} $ Formel 0,5 Punkte/ formula 0.5 points $ Umstellen/ rearange: $ $ \eta_{1,vol} \cdot \eta_{2,vol} = \frac{n_2}{n_1} \cdot \frac{V_2}{V_1} $ 0,5 $ \frac{\eta_{1,vol}}{\eta_{2,vol}} = 0,95 $ 0,95 $ 0,95 \cdot \eta_{2,vol}^2 = \frac{n_2}{n_1} \cdot \frac{V_2}{V_1} $ Umstellen/ rearange: $ \eta_{2,vol} = \sqrt{\frac{1}{0,95} \cdot \frac{n_2}{n_1} \cdot \frac{V_2}{V_1}} $ Einsetzen/ insert: $ \eta_{2,vol} = \sqrt{\frac{1}{0,95} \cdot \frac{1}{1,53} \cdot \frac{1}{0,95}} $ Werte bestimmen/ Calculate: $ \eta_{2,vol} = 0,85 $ 0,5 $ \eta_{1,vol} = 0,95 * \eta_{vol2} $		0,5 Punkte, wenn mindestens 3 der 4 Formeln gegeben sind/0,5	
$n_{1} \cdot V_{1} \cdot \eta_{1,vol} = \frac{n_{2} \cdot V_{2}}{\eta_{2,vol}}$ $Formel \ 0.5 \ Punkte/ formula \ 0.5 \ points$ $Umstellen/ rearange:$ $\eta_{1,vol} \cdot \eta_{2,vol} = \frac{n_{2}}{n_{1}} \cdot \frac{V_{2}}{V_{1}}$ $Einsetzen \ von/ insert:$ $\frac{\eta_{1,vol}}{\eta_{2,vol}} = 0.95$ $0.95 \cdot \eta_{2,vol}^{2} = \frac{n_{2}}{n_{1}} \cdot \frac{V_{2}}{V_{1}}$ $Umstellen/ rearange:$ $\eta_{2,vol} = \sqrt{\frac{1}{0.95} \cdot \frac{n_{2}}{n_{1}} \cdot \frac{V_{2}}{V_{1}}}$ $Einsetzen/ insert:$ $\eta_{2,vol} = \sqrt{\frac{1}{0.95} \cdot \frac{1}{1.53} \cdot \frac{1}{0.95}}$ $Werte \ bestimmen/ \ Calculate:$ $\eta_{2,vol} = 0.85$ $\eta_{1,vol} = 0.95 * \eta_{vol2}$		Points if at least 3 of the 4 formulas are given	0,5
Formel 0.5 Punkte/ formula 0.5 points $Umstellen/rearange:$ $\eta_{1,vol} \cdot \eta_{2,vol} = \frac{n_2}{n_1} \cdot \frac{V_2}{V_1}$ $Einsetzen \ von/ \ insert:$ $\frac{\eta_{1,vol}}{\eta_{2,vol}} = 0.95$ $0.95 \cdot \eta_{2,vol}^2 = \frac{n_2}{n_1} \cdot \frac{V_2}{V_1}$ $Umstellen/ \ rearange:$ $\eta_{2,vol} = \sqrt{\frac{1}{0.95} \cdot \frac{n_2}{n_1} \cdot \frac{V_2}{V_1}}$ $Einsetzen/ \ insert:$ $\eta_{2,vol} = \sqrt{\frac{1}{0.95} \cdot \frac{1}{1.53} \cdot \frac{1}{0.95}}$ $Werte \ bestimmen/ \ Calculate:$ $\eta_{2,vol} = 0.85$ $\eta_{1,vol} = 0.95 * \eta_{vol2}$		Volumenstrombilanz/ flow balance:	
$ \eta_{1,vol} \cdot \eta_{2,vol} = \frac{n_2}{n_1} \cdot \frac{V_2}{V_1} $ Einsetzen von/insert: $ \frac{\eta_{1,vol}}{\eta_{2,vol}} = 0,95 $ $ 0,95 \cdot \eta_{2,vol}^2 = \frac{n_2}{n_1} \cdot \frac{V_2}{V_1} $ Umstellen/rearange: $ \eta_{2,vol} = \sqrt{\frac{1}{0,95} \cdot \frac{n_2}{n_1} \cdot \frac{V_2}{V_1}} $ Einsetzen/insert: $ \eta_{2,vol} = \sqrt{\frac{1}{0,95} \cdot \frac{1}{1,53} \cdot \frac{1}{0,95}} $ Werte bestimmen/Calculate: $ \eta_{2,vol} = 0,85 $ $ \eta_{1,vol} = 0,95 * \eta_{vol2} $		$n_1 \cdot V_1 \cdot \eta_{1,vol} = rac{n_2 \cdot V_2}{\eta_{2,vol}}$	
$\eta_{1,vol} \cdot \eta_{2,vol} = \frac{n_2}{n_1} \cdot \frac{V_2}{V_1}$ $Einsetzen \ von/insert:$ $\frac{\eta_{1,vol}}{\eta_{2,vol}} = 0,95$ $0,95 \cdot \eta_{2,vol}^2 = \frac{n_2}{n_1} \cdot \frac{V_2}{V_1}$ $Umstellen/rearange:$ $\eta_{2,vol} = \sqrt{\frac{1}{0,95} \cdot \frac{n_2}{n_1} \cdot \frac{V_2}{V_1}}$ $Einsetzen/insert:$ $\eta_{2,vol} = \sqrt{\frac{1}{0,95} \cdot \frac{1}{1,53} \cdot \frac{1}{0,95}}$ $Werte \ bestimmen/\ Calculate:$ $\eta_{2,vol} = 0,85$ $\eta_{1,vol} = 0,95 * \eta_{vol2}$		Formel 0,5 Punkte/ formula 0.5 points	
$\eta_{1,vol} \cdot \eta_{2,vol} = \frac{n_2}{n_1} \cdot \frac{v_2}{V_1}$ $Einsetzen \ von/insert:$ $\frac{\eta_{1,vol}}{\eta_{2,vol}} = 0,95$ $0,95 \cdot \eta_{2,vol}^2 = \frac{n_2}{n_1} \cdot \frac{V_2}{V_1}$ $Umstellen/rearange:$ $\eta_{2,vol} = \sqrt{\frac{1}{0,95} \cdot \frac{n_2}{n_1} \cdot \frac{V_2}{V_1}}$ $Einsetzen/insert:$ $\eta_{2,vol} = \sqrt{\frac{1}{0,95} \cdot \frac{1}{1,53} \cdot \frac{1}{0,95}}$ $Werte \ bestimmen/Calculate:$ $\eta_{2,vol} = 0,85$ $\eta_{1,vol} = 0,95 * \eta_{vol2}$		Umstellen/rearange:	
$\frac{\eta_{1,vol}}{\eta_{2,vol}} = 0,95$ $0,95 \cdot \eta_{2,vol}^2 = \frac{n_2}{n_1} \cdot \frac{V_2}{V_1}$ $Umstellen/rearange:$ $\eta_{2,vol} = \sqrt{\frac{1}{0,95} \cdot \frac{n_2}{n_1} \cdot \frac{V_2}{V_1}}$ $Einsetzen/insert:$ $\eta_{2,vol} = \sqrt{\frac{1}{0,95} \cdot \frac{1}{1,53} \cdot \frac{1}{0,95}}$ $Werte \ bestimmen/\ Calculate:$ $\eta_{2,vol} = 0,85$ $\eta_{1,vol} = 0,95 * \eta_{vol2}$, ,	0,5
$0,95 \cdot \eta_{2,vol}^{2} = \frac{n_{2}}{n_{1}} \cdot \frac{V_{2}}{V_{1}}$ $Umstellen/rearange:$ $\eta_{2,vol} = \sqrt{\frac{1}{0,95} \cdot \frac{n_{2}}{n_{1}} \cdot \frac{V_{2}}{V_{1}}}$ $Einsetzen/insert:$ $\eta_{2,vol} = \sqrt{\frac{1}{0,95} \cdot \frac{1}{1,53} \cdot \frac{1}{0,95}}$ $Werte bestimmen/Calculate:$ $\eta_{2,vol} = 0,85$ $\eta_{1,vol} = 0,95 * \eta_{vol2}$		Einsetzen von/insert:	
$Umstellen/rearange:$ $\eta_{2,vol} = \sqrt{\frac{1}{0.95} \cdot \frac{n_2}{n_1} \cdot \frac{V_2}{V_1}}$ $Einsetzen/insert:$ $\eta_{2,vol} = \sqrt{\frac{1}{0.95} \cdot \frac{1}{1.53} \cdot \frac{1}{0.95}}$ $Werte\ bestimmen/\ Calculate:$ $\eta_{2,vol} = 0.85$ $\eta_{1,vol} = 0.95 * \eta_{vol2}$ 0.5		$\frac{\eta_{1,vol}}{\eta_{2,vol}} = 0.95$	
$\eta_{2,vol} = \sqrt{\frac{1}{0,95} \cdot \frac{n_2}{n_1} \cdot \frac{V_2}{V_1}}$ $Einsetzen/insert:$ $\eta_{2,vol} = \sqrt{\frac{1}{0,95} \cdot \frac{1}{1,53} \cdot \frac{1}{0,95}}$ $Werte \ bestimmen/\ Calculate:$ $\eta_{2,vol} = 0,85$ $\eta_{1,vol} = 0,95 * \eta_{vol2}$ $0,5$		$0.95 \cdot \eta_{2,vol}^{2} = \frac{n_2}{n_1} \cdot \frac{V_2}{V_1}$	
Einsetzen/insert: $\eta_{2,vol} = \sqrt{\frac{1}{0,95} \cdot \frac{1}{1,53} \cdot \frac{1}{0,95}}$ Werte bestimmen/ Calculate: $\eta_{2,vol} = 0,85$ $\eta_{1,vol} = 0,95 * \eta_{vol2}$		Umstellen/ rearange:	
Einsetzen/insert: $\eta_{2,vol} = \sqrt{\frac{1}{0,95} \cdot \frac{1}{1,53} \cdot \frac{1}{0,95}}$ Werte bestimmen/ Calculate: $\eta_{2,vol} = 0,85$ $\eta_{1,vol} = 0,95 * \eta_{vol2}$		$\eta_{2,vol} = \sqrt{\frac{1}{0.95} \cdot \frac{n_2}{n_1} \cdot \frac{V_2}{V_1}}$	
Werte bestimmen/ Calculate: $\eta_{2,vol} = 0.85$ $\eta_{1,vol} = 0.95 * \eta_{vol2}$			
$\eta_{2,vol} = 0.85$ $\eta_{1,vol} = 0.95 * \eta_{vol2}$		$\eta_{2,vol} = \sqrt{\frac{1}{0.95} \cdot \frac{1}{1.53} \cdot \frac{1}{0.95}}$	
$\eta_{2,vol} = 0.85$ $\eta_{1,vol} = 0.95 * \eta_{vol2}$		Werte bestimmen/ Calculate:	
$\eta_{1,vol} = 0.95 * \eta_{vol2}$, and the second	0,5
$n_{1 \text{ mol}} = 0.81$		$\eta_{1,vol} = 0.81$	
je Ergebnisse 0,5 Punkte/ each solutions 0.5 points			0,5

Summe/Sum:

Ceilaufgabe und Antwort	Punkte
ubtask and solution	Points
Aufstellen der Formeln für Δp / formulas for Δp :	
Pumpe: $\frac{M_{th1} \cdot 2 \cdot \pi}{V_1} = \Delta p$	
Pumpe: $\frac{M_{eff1} \cdot \eta_{hm1} \cdot 2 \cdot \pi}{V_1} = \Delta p$	
Motor: $\frac{M_{th2} \cdot 2 \cdot \pi}{V_2} = \Delta p$	
Motor: $\frac{M_{eff2} \cdot 2 \cdot \pi}{\eta_{hm2} \cdot V_2} = \Delta p$	
Gleichstellen/equate:	
$M_{eff1} \cdot \eta_{hm1} \cdot 2 \cdot \pi = M_{eff2} \cdot 2 \cdot \pi$	0.5
$\frac{M_{eff1} \cdot \eta_{hm1} \cdot 2 \cdot \pi}{V_1} = \frac{M_{eff2} \cdot 2 \cdot \pi}{\eta_{hm2} \cdot V_2}$	0,5
Formel 0,5 Punkte / formula 0.5 points	
Umstellen/ rearange:	
$\eta_{hm1} \cdot \eta_{hm2} = rac{M_{eff2}}{M_{eff1}} \cdot rac{V_1}{V_2}$	
M_{eff1} V_2 Einsetzen von/ <i>insert</i> :	
$\frac{\eta_{1,hm}}{\eta_{2,hm}} = 0.93$	
$0.93 \cdot \eta_{hm2}^2 = \frac{M_{eff2}}{M_{eff1}} \cdot \frac{V_1}{V_2}$	
Umstellen/ rearange:	
$\eta_{2,hm} = \sqrt{rac{1}{0.93} \cdot rac{M_{eff2}}{M_{eff1}} \cdot rac{V_1}{V_2}}$	
Einsetzen/ insert:	
1 1	
$\eta_{2,hm} = \sqrt{\frac{1}{0.93} \cdot \frac{1}{1.29} \cdot 0.95}$	
Werte bestimmen/ Calculate:	
$\eta_{2,hm}=0$, 89	0,5
Bestimmen von η_{hm1} / Calculate η_{hm1}	
$\eta_{1,hm} = 0.93 \cdot \eta_{2,hm}$	
$\eta_{1,hm}=0$, 83	0,5
Je Ergebnisse 0,5 Punkte/ Both solutions 0.5 points	7-

10

Musterlösung zur Aufgabe: 3 Gesamtpunktzahl: 10

	gabe und Antwort	Punkte
	and solution	Points
3.1.	1. <u>Sperrventil / Check Valve</u>	
	2. Wegeventil / Directional Control Valve	
	3. <u>Druckventil / Pressure Control Valve</u>	
	4. <u>Stromventil / Flow Control Valve</u>	
	0,5 Punkte für jeweils 2 korrekte Antworten	
	0.5 points for 2 correct answers	Max. 1,0
3.2.	Ventile werden hydraulisch betätigt, wenn große Betätigungskräfte benötigt werden. (Alternative: Bessere Dynamik; Eignung für Systeme mit hohen Drücken und großen Volumenströmen) / Valves are hydraulically actuated when high actuating forces are required. (Alternative: Better dynamics; suitable for systems with high pressures and large volume flows)	
	Weitere Betätigungsarten sind / Other types of actuation: • Mechanisch/mechanical • Elektrisch/electrical	0,5 0,5 Max. 1,5
3.3	Dämpfungs- blende / Damping orifice O,5 Punkte für jeweils 2 korrekte Antworten	
	0.5 points for 2 correct answers	Max. 1,0
3.4	Vorteil/Advantage: Energieeffizienz/Energy efficiency	0,5
	Nachteil/Disadvantage: kein paralleler Betrieb möglich/No parallel operation possible	0,5 Max. 1,0

Blatt/Page:	9
-------------	---

Teilau	fgabe und Antwort	Punkte
Subtas	k and solution	Points
3.5	T B P A	1,0
	Benennung: hydraulisch betätigtes, federzentriertes 4/3-Wege-Schaltventil (Je fehlender Bezeichung -0,5 Punkte / Keine Minuspunkte möglich) Denomination: hydraulically actuated, spring-centred 4/3- directional control valve (Per missing name -0.5 points / No negative points possible)	1,0
	Eigenschaft: Ein angeschlossenes Bauteil kann in der Mittelstellung beliebig bewegt werden, da Anschluss A und B mit Anschluss T verbunden sind.	
	Functionality: A connected element can be moved arbitrarily in the middle position because ports A and B are connected with port T	0,5 Max. 2,5
3.6	Schließen – Die Strömungskräfte wirken in schließende Richtung	
	Closing – Flow forces acting in closing direction	Max. 0,5

	Teilaufgabe und Antwort Subtask and solution	
3.7	$F_{flow} = (\dot{m} \cdot v)_{out} - (\dot{m} \cdot v)_{in}$	<i>Points</i> 0,5
	Auslasswinkel $\varepsilon_2 = 90^{\circ} \rightarrow (\dot{m} \cdot v)_{out} = 0$	
	$F_{flow} = -Q \cdot \rho \cdot v_{1,x}$	0,5
	$v_{1,x} = v_1 \cdot \cos(\varepsilon_1)$	
	$v_{1,y} = v_1 \cdot \sin(\varepsilon_1) = \frac{Q}{A} \rightarrow v_1 = \frac{Q}{A \cdot \sin(\varepsilon_1)}$	0,5
	$A = \pi \cdot d \cdot x$	0,5
	$F_{flow} = -\frac{Q^2 \cdot \rho}{A} \cdot \frac{\cos(\varepsilon_1)}{\sin(\varepsilon_1)} = 98,14 N$	0,5
		Max. 2,5
	Summe/Sum:	10

Musterlösung zur Aufgabe: 4 Gesamtpunktzahl: 10

Unter- punkt		Punkte
4.1.1	Speisung/Supply: Aufgeprägter Volumenstrom/Volume flow supply	0,5
	Steuerung/Control: Verdrängersteuerung/Positive displacement control	0,5
4.1.2	+: Hoher Wirkungsgrad (keine Drosselverluste)/ High efficiency (No throttling losses)	0,5
	-: Schlechtere Dynamik (als Widerstandssteuerung)/Worse dynamics (compared to resistive control)	0,5
4.1.3	Widerstandssteuerung/Resistive Control	1
4.2.1	English: $i_{ges} = i_{tot}$; $d_{Rad} = d_{wheel}$ $i_{ges} = \frac{n_{m,max}}{n_{R,max}}$	
	$n_{R,max} = \frac{v}{\pi d_{Rad}}$	0,5
	$i_{ges} = \frac{n_{m,max} \cdot \pi \cdot d_{Rad}}{v} = 49$	0,5
4.2.2	English: $i_{ges} = i_{tot}$; $d_{Rad} = d_{wheel}$	
	$2M_R = M_M i_{ges}$	0,5
	Moment an einem Rad/Torque at one wheel: $M_R = \frac{F_{max}}{4} \cdot \frac{d_{Rad}}{2}$	0,5
	Effektives Motorabtriebsmoment/Effective motor torque: $M_m = \frac{\Delta p_{max} \cdot V_M}{2\pi} \eta_{hm,M}$	0,5
	$\frac{F_{max}}{4} d_{Rad} = \frac{\Delta p_{max} \cdot V_{M}}{2\pi} \eta_{hm,M} \cdot i_{ges}$ $V_{M} = \frac{\pi F_{max} d_{Rad}}{2i_{ges} \cdot \eta_{hm,M} \cdot \Delta p_{max}} = 89,04 \text{ cm}^{3} \text{ bzw. } 87,26 \text{ cm}^{3} (i_{ges} = 50)$	0,5
4.2.3	English: $VKM = ICE$;	
	Moment des Dieselmotors/Torque at ICE: $M_{VKM} = \frac{P_{VKM}}{\omega_{VKM}} = \frac{P_{VKM}}{2 \cdot \pi \cdot n_{VKM}}$	0,5
	Effektives Antriebsmoment der Pumpe/Effective torque at pump: $M_{P,eff} = \frac{\Delta p_{max} \cdot V_P}{2\pi \cdot n_{bm} \cdot P}$	0,5
	$M_{VKM} = M_{P,eff} \to \frac{P_{VKM}}{2\pi \cdot n_{VKM}} = \frac{\Delta p_{max} V_P}{2\pi \cdot \eta_{hm,P}} \to V_P = \frac{P_{VKM} \cdot \eta_{hm,P}}{n_{VKM} \cdot \Delta p_{max}} = 36,42 \text{ cm}^3$	0,5

4.2.4	English: $i_{ges} = i_{tot}$; $d_{Rad} = d_{wheel}$	
	Effektiver Volumenstrom der Pumpe/Effective volume flow of pump: $Q_{eff,P} = V_p n_P \eta_{vol}$	0,5
	Effektiver Volumenstrom pro Motor/Effective volume flow of motor: $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	0,5
	$Q_{eff,M} = V_M \cdot n_M \cdot \frac{1}{\eta_{vol,M}} = V_M \cdot \frac{v \cdot i_{ges}}{\pi d_{Rad}} \cdot \frac{1}{\eta_{vol}}$	0,5
	Volumenstrombilanz/Volume flow balance:	
	$Q_{eff,P} = 2 \cdot Q_{eff,M} \rightarrow V_p \cdot n_P \cdot \eta_{vol} = 2 \cdot V_M \cdot \frac{v \cdot i_{ges}}{\pi d_{Rad}} \cdot \frac{1}{\eta_{vol}}$	
		0,5
4.2.5	$F_z v_{max} = P_{ab,mech} = P_{theo,M} \cdot \eta_{ges,M} = P_{theo,P} \eta_{ges,M} = P_{VKM} \eta_{vol}^2 \eta_{hm,M} \eta_{hm,P}$	0,5
	$F_z = \frac{P_{VKM} \eta_{vol}^2 \eta_{hm,M} \eta_{hm,P}}{v_{max}} = 4589 N$	0,5
		10

Musterlösung zur Aufgabe: 5

Gesamtpunktzahl: 10

Unter- punkt		Punkte
5.1	$\rho_0 = \frac{p_0}{R_0 \cdot T_0} = 1,1845 \frac{kg}{m^3}$	1,0
	$\dot{m} = \rho_0 \cdot \dot{V}_0 = 189,52 \frac{g}{min}$	1,0
5.2	$p_{ver/s} = \frac{p_1}{b} = 12 \ bar_{abs}$	1,0
	$C = \frac{\dot{m}}{p_{ver/s} \cdot \rho_0 \cdot \sqrt{\frac{T_0}{T_{ver/s}}}} = 14.007 \frac{Nl/Sl}{min \cdot bar}$	1,0
5.3	$T_2 = T_1 \cdot \left(\frac{p_2}{p_1}\right)^{\frac{n-1}{n}} = 231,38 K$	1,0
5.4	$w_{t12} = \frac{n}{n-1} \cdot R_0 \cdot (T_2 - T_1) = -72,57 \frac{kJ}{kg}$	1,0
	$\dot{W}_{t12} = \dot{m} \cdot w_{t12} = -241,90 \ W$	1,0
5.5	$c_p = \frac{\kappa}{\kappa - 1} \cdot R_0 = 1008 \frac{J}{kg \cdot K}$	1,0
	$\dot{Q} = \dot{m} \cdot c_p \cdot (T_2 - T_1) - \dot{W}_{t12}$ $= 44,62 W$	1,0
	$ \downarrow \\ \dot{m} \cdot h_2 $ Wärme wird zugeführt	1,0
	Summe/Sum:	10

Musterlösung zur Aufgabe: 6

Gesamtpunktzahl: 10

Unter- punkt		Punkte
6.1	$F_G = m_{Anlage} * g * S = 750N$ $F_{DL} = \left(p_{Komp/Comp} - p_{U/a}\right) * 2 * A$ $A = \frac{1}{2} * \frac{F_G}{p_{Komp/comp} - p_{U/a}}$ $A = \frac{1}{4}\pi d^2$	
	$d = \sqrt{\frac{2 * F_G}{\pi * (p_{Komp/comp} - p_{U/a})}} = 30,9mm$	1
	ADN-32-800	0,5
6.2	$c_L = 2 * \frac{A}{h} * \kappa * p$ $A = \frac{1}{4} \pi d^2 = 0.25 * \pi * (32mm)^2 = 804.25 mm^2$	1
	$A = \frac{1}{4}\pi d^2 = 0.25 * \pi * (32mm)^2 = 804.25 mm^2$ $c_L = 2 * \frac{804.25}{800} mm * 1.4 * 6 bar = 1.688 \frac{N}{mm}$	0,5
6.4	Einstellbare Drossel an richtiger Stelle / Adjustable throttle in the correct position	1
	Abluftdosselung / Exhaust air throttling	0,5

a) Federn / springs b) ODER-Ventil / OR-Valve c) korrektes Ventil und Anschluss / correct valve and connection d) korrektes Ventil / correct valve e) korrektes Ventil + Steuerstrom/ korrekter Druckluftsteuerstrom/ correct air as control signal f) korrektes Ventil / correct valve korrekten Anschluss an die Druckluftleitung und das	K valve	2 3,3
a) Federn / springs b) ODER-Ventil / OR-Valve c) korrektes Ventil und Anschluss / correct valve and connection d) korrektes Ventil / correct valve e) korrektes Ventil + Steuerstrom/ korrekter Druckluftsteuerstrom/ correct air as control signal f) korrektes Ventil / correct valve korrekten Anschluss an die Druckluftleitung und das Wegeventil/ correct connections to compressed air line and to 0,5	R valve	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
a) Federn / springs b) ODER-Ventil / OR-Valve c) korrektes Ventil und Anschluss / correct valve and connection d) korrektes Ventil / correct valve e) korrektes Ventil + Steuerstrom/ korrekter Druckluftsteuerstrom/ correct air as control signal f) korrektes Ventil / correct valve korrekten Anschluss an die Druckluftleitung und das		to 0,5
a) Federn / springs b) ODER-Ventil / OR-Valve c) korrektes Ventil und Anschluss / correct valve and connection d) korrektes Ventil / correct valve e) korrektes Ventil + Steuerstrom/ korrekter Druckluftsteuerstrom/ correct air as control signal f) korrektes Ventil/ correct valve 1,0		.
a) Federn / springs b) ODER-Ventil / OR-Valve c) korrektes Ventil und Anschluss / correct valve and connection d) korrektes Ventil / correct valve e) korrektes Ventil + Steuerstrom/		1,0
a) Federn / springs b) ODER-Ventil / OR-Valve c) korrektes Ventil und Anschluss / correct valve and connection d) korrektes Ventil / correct valve	kter Druckluftsteuerstrom/ correct air as control signa	0,5
a) Federn / springs b) ODER-Ventil / OR-Valve c) korrektes Ventil und Anschluss / correct valve and connection 0,5	ktes Ventil + Steuerstrom/	1,0
a) Federn / springs b) ODER-Ventil / OR-Valve	ktes Ventil / correct valve	1,0
a) Federn/springs 0,5	ktes Ventil und Anschluss / correct valve and connect	on 0,5
		0,5
	m / springs	0.5
Hochy	nd	
6.3 Pown		