$\begin{array}{l} LNMIIT/B.Tech.-M.Sc./CCE-CSE-ECE-ME-MME-MTH/\\ OE-DC/2019-20/ODD/MTH3011/Qz2 \end{array}$

THE LNM INSTITUTE OF INFORMATION TECHNOLOGY DEPARTMENT: MATHEMATICS OPTIMIZATION (MTH3011) EXAM TYPE: QUIZ 2

Time: 30 minutes Date: 16/11/2019 Maximum Marks: 7.5

1. Show that if we add a fixed number k to each element of the pay-off matrix, then the optimal strategies remain unchanged while the value of the game is increased by k. Find the value and the optimal strategies for the following two-person zero-sum game:

		B				
		B_I	B_{II}	B_{III}	B_{IV}	
	A_I	3	2	5	1	
1	A_{II}	4	5	3	5	
А	A_{III}	5	3	5	1	
	A_{IV}	1	5	1	9	

Solution:- Part1: Let the original pay-off matrix $P_1 = (a_{ij})_{m \times n}$ and $P_2 = (a_{ij} + k)_{m \times n}$ after adding a fixed quantity k to each element a_{ij} of P_1 . Let E_1 and E_2 indicate the original and new expected pay-off function corresponding to a mixed strategy X of player

A and a mixed strategy Y of player B. Then
$$E_1 = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} x_i y_j$$
, $E_2 = \sum_{i=1}^{m} \sum_{j=1}^{n} (a_{ij} + k) x_i y_j = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} x_i y_j + k \sum_{i=1}^{m} \sum_{j=1}^{n} x_i y_j = E_1 + k \sum_{i=1}^{m} x_i \sum_{j=1}^{n} y_j = E_1 + k \sum_{i=1}^{m} x_i = E_1 + k$, as $\sum_{i=1}^{m} x_i = \sum_{i=1}^{m} y_i = 1$.

For adding a fixed quantity k to each element a_{ij} of P_1 , the nture of pay-off function remains same and the new pay-off function can be obtained from the original pay-off function by adding k only. Thus the optimal strategies for both the matrix games with pay-off E_1 , E_2 are same and the value of the game is increased by k.

Part2: Let the pure strategies of player A are A_1 , A_2 , A_3 , A_4 and player B are B_1 , B_2 ,

Here, A_{III} dominates A_{I} . Then, we get the following reduced matrix.

		B						
		B_I	B_{II}	B_{III}	B_{IV}			
	A_{II}	4	5	3	5			
Λ	A_{III}	5	3	5	1			
Л	A_{IV}	1	5	1	9			

Now, B_I is inferior to B_{III} for B. So, the reduced matrix will be

			B	
		B_{II}	B_{III}	B_{IV}
	A_{II}	5	3	5
1	A_{III}	3	5	1
Л	A_{IV}	5	1	9

Again, B_{II} is inferior to $\frac{1}{2}(B_{III} + B_{IV})$, so

Since, $\frac{1}{2}(A_{III} + A_{IV}) = A_{II}$, we get further reduced matrix as

$$\begin{array}{c|cccc}
 & & B \\
 & & B_{III} & B_{IV} \\
A & A_{III} & 5 & 1 \\
A_{IV} & 1 & 9 &
\end{array}$$

Let $X = (x_1, x_2, x_3, x_4)$ and $Y = (y_1, y_2, y_3, y_4)$ are the optimal mixed strategy of A and B. Then $x_1 = 0 = x_2, x_3 = \frac{9-1}{(5+9)-(1+1)} = \frac{8}{12} = \frac{2}{3}, \ x_4 = \frac{5-1}{12} = \frac{1}{3}, \ y_1 = 0 = y_2, y_3 = \frac{9-1}{(5+9)-(1+1)} = \frac{8}{12} = \frac{2}{3}, \ y_4 = \frac{5-1}{12} = \frac{1}{3}$ and value of the game is $\gamma = \frac{45-1}{12} = \frac{11}{3}$.

Or

Solve the following game by matrix method.

[3.5 marks]

Solution:- Let $B_1 = \begin{pmatrix} 2 & 4 \\ 9 & 6 \end{pmatrix}$. Then $Adj(B_1) = \begin{pmatrix} 6 & -4 \\ -9 & 2 \end{pmatrix}$, $T_r = (1,1)$. Then

$$\bar{X}_r = (x_1, x_2) = \frac{T_r A d j(B_1)}{T_r A d j(B_1) T_r^t} = \frac{\binom{(1,1)}{6} \binom{6}{-9} \binom{-4}{2}}{\binom{(1,1)}{6} \binom{6}{-4} \binom{1}{1}} = \frac{\binom{-3,-2)}{(-3,-2)} \binom{1}{1}}{\binom{1}{1}} = \binom{\frac{3}{5}, \frac{2}{5}}{\binom{1}{5}}, \text{ all are}$$

positive. Then, $\bar{Y}_r = (y_1, y_2) = \frac{T_r(Adj(B_1))^t}{T_rAdj(B_1)T_r^t} = \frac{(1,1)\left(\begin{array}{cc} 6 & -9 \\ -4 & 2 \end{array}\right)}{-5} = \frac{(2,-7)}{-5} = \left(-\frac{2}{5}, \frac{7}{5}\right)$ which is invalid as probabilty. Thus we reject B_1 .

Let
$$B_2 = \begin{pmatrix} 2 & 12 \\ 9 & 3 \end{pmatrix}$$
. Then $Adj(B_2) = \begin{pmatrix} 3 & -12 \\ -9 & 2 \end{pmatrix}$, $T_r = (1, 1)$. Then $\bar{X}_r = (x_1, x_2) = (x_1, x_2)$

$$\frac{T_r A d j(B_2)}{T_r A d j(B_2) T_r^t} = \frac{\binom{(1,1)}{9} \binom{3}{2}}{\binom{(1,1)}{9} \binom{3}{2} \binom{1}{1}} = \frac{\binom{(-6,-10)}{9}}{\binom{(-6,-10)}{1}} = \binom{\frac{3}{8},\frac{5}{8}}{\binom{5}{8}}, \text{ all are positive. Then,}$$

 $\bar{Y}_r = (y_1, y_3) = \frac{T_r(Adj(B_2))^t}{T_rAdj(B_2)T_r^t} = \frac{(1,1)\left(\begin{array}{c} 3 & -9 \\ -12 & 2 \end{array}\right)}{-16} = \frac{(-9, -7)}{-16} = \left(\frac{9}{16}, \frac{7}{16}\right). \text{ Then possible value of the game is } \gamma = \frac{\det(B_2)}{T_rAdj(B_2)T_r^t} = \frac{-102}{-16} = \frac{51}{8}. \text{ Now, for player } A; \ 2x_1 + 9x_2 = 2 \times \frac{3}{8} + 9 \times \frac{5}{8} = \frac{51}{8} = \gamma, \ 4x_1 + 6x_2 = 4 \times \frac{3}{8} + 6 \times \frac{5}{8} = \frac{42}{8} < \gamma, \text{ a contradiction as it should be } \ge \gamma. \text{ Thus we reject } B_2.$

Let
$$B_3 = \begin{pmatrix} 4 & 12 \\ 6 & 3 \end{pmatrix}$$
. Then $Adj(B_3) = \begin{pmatrix} 3 & -12 \\ -6 & 4 \end{pmatrix}$, $T_r = (1,1)$. Then $\bar{X}_r = (x_1, x_2) = \begin{pmatrix} 3 & -12 \\ -6 & 4 \end{pmatrix}$

$$\frac{T_r A d j(B_2)}{T_r A d j(B_3) T_r^t} = \frac{\binom{(1,1)}{6} \binom{3}{6} - \binom{12}{6}}{\binom{(1,1)}{6} \binom{3}{6} - \binom{12}{6}} = \frac{\binom{(-3,-8)}{6}}{\binom{(-3,-8)}{6} \binom{1}{1}} = \binom{\frac{3}{11},\frac{8}{11}}{\binom{1}{1}}, \text{ all are positive. Then,}$$

$$\bar{Y}_r = (y_2, y_3) = \frac{T_r(Adj(B_3))^t}{T_rAdj(B_3)T_r^t} = \frac{(1,1) \left(\begin{array}{ccc} 3 & -6 \\ -12 & 4 \end{array}\right)}{-11} = \frac{(-9,-2)}{-11} = \left(\frac{9}{11},\frac{2}{11}\right), \text{ all are positive.}$$
 Then possible value of the game is $\gamma = \frac{\det(B_3)}{T_rAdj(B_3)T_r^t} = \frac{-60}{-11} = \frac{60}{11}.$ Now, for player A ; $2x_1 + 9x_2 = 2 \times \frac{3}{11} + 9 \times \frac{8}{11} = \frac{75}{11} > \gamma, \ 4x_1 + 6x_2 = 4 \times \frac{3}{11} + 6 \times \frac{8}{11} = \frac{60}{11} = \gamma \ \text{and for player}$ B ; $4y_2 + 12y_3 = 4 \times \frac{9}{11} + 12 \times \frac{2}{11} = \frac{60}{11} = \gamma, \ 6y_2 + 3y_3 = 6 \times \frac{9}{11} + 3 \times \frac{2}{11} = \frac{60}{11} = \gamma.$ Thus all the constrains satisfied for players A and B . Hence, $X = \left(\frac{3}{11}, \frac{8}{11}\right)$ and $Y = \left(0, \frac{9}{11}, \frac{2}{11}\right)$ are optimal strategies for A and B and value of the game is $\gamma = \frac{60}{11}$.

2. There are 5 jobs, each of which must go through machines M_1 , M_2 , M_3 in the order $M_1M_2M_3$. Processing times are given in the following Table. Determine the optimal sequence that minimizes the total elapsed time required to complete the following tasks and the corresponding time.

Machine\Job	1	2	3	4	5
M_1	16	14	13	19	15
M_2	18	10	20	15	16
M_3	12	11	15	19	16

[4 marks]

Solution:- $\min_{i} M_{i1} = 13 < \max_{i} M_{i2} = 20$, and $\min_{i} M_{i3} = 11 < \max_{i} M_{i2} = 20$. Hence, we can't convert it equivalently a n jobs 2 machines problem. We solve it by heuristic method (Campbell, Dudek, Smith). For the first set of n jobs 2 machines, let $A_1 = M_1$ and $B_1 = M_3$.

	Machine\Job	1	2	3	4	5
Then	A_1	16	14	$(13)_{III}$	$(19)_{V}$	$(15)_{IV}$
	B_1	$(12)_{II}$	$(11)_{I}$	15	19	16

and job sequence will be $\boxed{3}$ $\boxed{5}$ $\boxed{4}$ $\boxed{1}$ $\boxed{2}$

Then time schedule will be

	Machine 1		Machine 2			Machine 3		
Job	In	Out	In	Out	Idle	In	Out	Idle
3	0	13	13	33	13	33	48	33
5	13	28	33	49	0	49	65	1
4	28	47	49	64	0	65	84	0
1	47	63	64	82	0	84	96	0
2	63	77	82	92	0	96	107	0

For the last set of n jobs 2 machines, let $A_2 = M_1 + M_2$ and $B_2 = M_2 + M_3$.

	Machine\Job	1	2	3	4	5
Then	A_2	34	24	$(33)_{IV}$	$(34)_{V}$	$(31)_{III}$
	B_2	$(30)_{II}$	$(21)_{I}$	35	34	32

and job sequence will be 5 3 4 1 2

Then time schedule will be

	Machine 1		Machine 2			Machine 3		
Job	In	Out	In	Out	Idle	In	Out	Idle
5	0	15	15	31	15	31	47	31
3	15	28	31	51	0	51	66	4
4	28	47	51	66	0	66	85	0
1	47	63	66	84	0	85	97	0
2	63	77	84	94	0	97	108	0

Thus the optimal job scedule according to this method is

	3	5	4	1	2	and the corresponding total elapsed time
7	will be 107 unit.					