Response dated February 17, 2011
Reply to Office Action Mailed August 17, 2010

CLAIMS

The following listing of claims lists all of the presently pending claims, and supersedes all prior listings, and versions, of claims in this application.

LISTING OF CLAIMS:

1. (Previously presented) A method of converting the shape of polarized eukaryotic cells to

spherical morphology, comprising the steps of:

determining a frequency of internal NAD(P)H oscillation within the polarized eukaryotic

cells, and

applying an electric field of sinusoidal frequency to the cells,

wherein application of said electric field cause at least one of the polarized eukaryotic cells

to assume spherical morphology.

2. (Original) The method of claim 1, wherein the electric field has a frequency within about

ten per cent of the frequency of internal NAD(P)H oscillation within the cells.

3. (Original) The method of claim 1, wherein the field strength of the electric field is at least

10⁻² volts/meter.

4. (Original) The method of claim 1, wherein the frequency of the electric field is substantially

phase-matched to the frequency of internal NAD(P)H oscillation within the cells.

5. (Original) The method of claim 1, wherein the electric field is applied to the cells for a time

period equal to at least three periods of the internal NAD(P)H oscillation.

6. (Original) The method of claim 1, wherein the electric field is applied by means of magnetic

induction.

Response dated February 17, 2011

Reply to Office Action Mailed August 17, 2010

7. (Previously presented) A method of converting the shape of polarized eukaryotic cells to spherical morphology, comprising the steps of:

determining a frequency of internal NAD(P)H oscillation within the polarized eukaryotic cells, and

applying an electric field of sinusoidal frequency to the cells, wherein:

the electric field has a frequency within ten per cent of the frequency of internal NAD(P)H oscillation within the cells;

the frequency of the electric field is substantially phase-matched to the frequency of internal NAD(P)H oscillation within the cells;

the field strength of the electric field is at least 10⁻² volts/meter; and

application of said electric field cause at least one of the polarized eukaryotic cells to assume spherical morphology.

- (Original) The method of claim 7, where the electric field is applied to the cells for a time period equal to at least three periods of the internal NAD(P)H oscillation of the cells.
- (Original) The method of claim 7, wherein the polarized eukaryotic cells are selected from
 the group consisting of neutrophils, macrophages, lymphocytes, platelets, tumor cells, and retinal
 cells.
- 10. (Previously presented) A method for converting the shape of polarized eukaryotic cells to spherical morphology, comprising the steps of:

determining a frequency of internal NAD(P)H oscillation within the polarized eukaryotic cells, and

applying a pulsed electric field to the cells,

wherein the field strength of said electric field is at least 10⁻⁵ volts/meter and application of said electric field causes at least one of the polarized eukaryotic cells to assume spherical morphology.

Application No. 10/585,677 Docket No.: 66174-0006

Response dated February 17, 2011

Reply to Office Action Mailed August 17, 2010

 (Original) The method of claim 10, wherein the electric field has a frequency within ten per cent of the frequency of the internal NAD(P)H oscillation frequency within the cells.

12. (Canceled).

13. (Original) The method of claim 10, wherein the field strength of the electric field is at least 10⁻⁴ volts/meter.

14. (Original) The method of claim 10, wherein the electric field is applied at other than the minima of the NAD(P)H oscillation frequency.

 (Original) The method of claim 10, wherein the electric field is applied by means of magnetic induction.

16. (Previously presented) A method for converting the shape of polarized eukaryotic cells to spherical morphology, comprising the steps of:

determining a frequency of internal NAD(P)H oscillation with the polarized eukaryotic cells, and

applying a pulsed electric field to the cells, where:

the electric field has a frequency within ten per cent of the frequency of the internal

NAD(P)H oscillation within the cells, and

the field strength of the electric field is at least 10⁻⁵ volts/meter,

and wherein application of the pulsed electric field causes at least one of the polarized eukaryotic cells to assume spherical morphology.

 (Original) The method of claim 16, where the field is applied at other than the minima of the internal NAD(P)H oscillation.

Response dated February 17, 2011

Reply to Office Action Mailed August 17, 2010

18. (Original) The method of claim 16, where the field is applied at other than about $\pm \pi/10$ radians of the internal NAD(P)H oscillation.

radials of the memar 17/15(1)11 oscination.

19. (Original) The method of claim 16, wherein the electric field is applied by means of

magnetic induction.

(Original) The method of claim 16, wherein the polarized eukaryotic cells are selected from

the group consisting of neutrophils, macrophages, lymphocytes, platelets, tumor cells, and retinal

cells.

21. (Original) A method of mitigating an inflammatory condition in a mammal, comprising the

step of:

applying an electric field of sinusoidal frequency to a tissue comprising an inflammatory

condition of the mammal, wherein the field strength of the electric field within tissue comprises at least 10⁻² volts/meter.

22. (Original) The method of claim 21, wherein the electric field is applied by means of

magnetic induction.

23. (Original) The method of claim 22, wherein the means of magnetic induction comprises a

coil applicator.

24. (Original) The method of claim 21, wherein the mammal is a human.

25. (Original) A method of mitigating an inflammatory condition in a mammal, comprising the

step of:

applying a pulsed electric field to a tissue comprising an inflammatory condition of the

mammal, wherein the field strength of the electric field within tissue comprises at least 10⁻⁵

volts/meter.

Response dated February 17, 2011

Reply to Office Action Mailed August 17, 2010

 (Original) The method of claim 25, wherein the electric field is applied by means of magnetic induction.

- (Original) The method of claim 26, wherein the means of magnetic induction comprises a coil applicator.
- 28. (Original) The method of claim 26, wherein the magnetic induction comprises a timevarying magnetic field.
- (Original) The method of claim 28, wherein the magnetic field comprise a square wave form.
- (Original) The method of claim 28, where the magnetic field comprises a sawtooth wave form
- 31. (Original) The method of claim 25, wherein the mammal is a human.
- (Original) A method of mitigating an inflammatory condition in a mammal, comprising the steps of:

applying a pulsed electric field to a tissue comprising an inflammatory condition of the mammal, wherein:

the field strength of the electric field within tissue comprises at least 10^{-5} volts/meter, the electric field is applied by means of magnetic induction, and the magnetic induction comprises a time-varying magnetic field.

33. (Original) The method of claim 32, wherein the means of magnetic induction comprises a coil applicator that is transiently energized by activation and deactivation of the coil applicator with electric current in a linear manner.

Application No. 10/585,677 Docket No.: 66174-0006

Response dated February 17, 2011

Reply to Office Action Mailed August 17, 2010

34. (Original) The method claim 32, wherein the pulsed electric field is comprised of at least

one pulse train of at least two pulses.

35. (Original) The method of claim 32, wherein the mammal is a human.

36. (Original) A method of treating a pathological condition in a mammal, comprising the step

of:

applying a pulsed electric field to a region of the mammal's body comprising the

pathological condition of the mammal, wherein:

the field strength of the electric field within tissue comprises at least 10^{-5} volts/meter, the

electric field is applied by means of magnetic induction, and

the magnetic induction comprises a time-varying magnetic field.

37. (Original) The method of claim 36, wherein the mammal is a human.

38. (Previously presented) A method of converting the shape of polarized eukaryotic cells to

spherical morphology, comprising the steps of:

applying an electric field to the polarized cukaryotic cells by means of magnetic induction, wherein the magnetic induction is comprised of at least two pulse trains each comprised of at least two magnetic pulses and application of said electric field cause at least one of the

polarized eukaryotic cells to assume spherical morphology.

39. (Original) The method of claim 38, wherein at least one pulse train is delayed in phase from

at least one previous pulse train.

40. (Original) The method of claim 39, wherein at least one pulse train is gated for a period of

between 9 and 11 seconds.

Application No. 10/585,677 Docket No.: 66174-0006

Response dated February 17, 2011

Reply to Office Action Mailed August 17, 2010

(Original) The method of claim 38, wherein a first pulse train is comprised of at least six 41. pulses gated for a period of between 9 and 11 seconds, and a second pulse train of at least six pulses

is delayed in phase from a previous pulse train.

42 (Previously presented) A method of treating a pathological condition in a mammal,

comprising the step of:

applying an electric field to the polarized eukaryotic cells by means of magnetic induction,

wherein the magnetic induction is comprised of at least two pulse trains each comprised of at

least two magnetic pulses and application of said electric field cause at least one of the

polarized eukaryotic cells to assume spherical morphology.

43 (Original) The method of claim 42, wherein a first pulse train is comprised of at least six

pulses gated for a period of between 9 and 11 seconds, and a second pulse train of at least six

pulses is delayed in phase from a previous pulse train.

44 (New) A method for converting the shape of polarized eukaryotic cells to spherical

morphology, comprising the steps of:

determining a frequency of internal NAD(P)H oscillation within the polarized eukaryotic

cells, and

applying a pulsed electric field to the cells.

wherein said electric field is sufficient to achieve a field intensity of at least 10⁻⁴ volts/meter

across at least one of the polarized eukarvotic cells for at least 20 milliseconds during a pulse and

application of said electric field causes at least one of the polarized eukaryotic cells to assume

spherical morphology.