ENGR 504 (Fall 2024) S. Alghunaim

11. Constrained least squares

- constrained least squares
- solution of least norm problem
- solution of constrained least squares
- linear quadratic control
- linear quadratic estimation
- portfolio optimization

Constrained least squares

minimize
$$||Ax - b||^2$$

subject to $Cx = d$

- A is an $m \times n$ matrix, C is a $p \times n$ matrix, b is an m-vector, d is a p-vector
- ||Ax b|| is the *objective*, Cx = d are the *constraints*
- we make no assumptions about the shape of A
- in most applications p < n and the equation Cx = d is underdetermined
- goal is to find a solution of Cx = d with smallest objective

Solution

- x is feasible if Cx = d
- \hat{x} is *optimal* or *solution* if it is feasible and

$$||A\hat{x} - b||^2 \le ||Ax - b||^2$$
 for all feasible x

Example: Piecewise-polynomial fitting

• fit two polynomials f(x), g(x) to points $(x_1, y_1), \dots, (x_N, y_N)$

$$f(x_i) \approx y_i$$
 for points $x_i \le a$, $g(x_i) \approx y_i$ for points $x_i > a$

• make values and derivatives continuous at point a: f(a) = g(a), f'(a) = g'(a)

Constrained LS formulation

• assume points are numbered so that $x_1, \ldots, x_M \leq a$ and $x_{M+1}, \ldots, x_N > a$:

$$\begin{array}{ll} \text{minimize} & \sum\limits_{i=1}^{M} \left(f\left(x_{i}\right)-y_{i}\right)^{2} + \sum\limits_{i=M+1}^{N} \left(g\left(x_{i}\right)-y_{i}\right)^{2} \\ \text{subject to} & f\left(a\right) = g(a), \quad f'(a) = g'(a) \end{array}$$

• for polynomials $f(x) = \theta_1 + \dots + \theta_d x^{d-1}$ and $g(x) = \theta_{d+1} + \dots + \theta_{2d} x^{d-1}$

$$A = \begin{bmatrix} 1 & x_1 & \cdots & x_1^{d-1} & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & & \vdots & \vdots & \vdots & & \vdots \\ 1 & x_M & \cdots & x_M^{d-1} & 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 & 1 & x_{M+1} & \cdots & x_{M+1}^{d-1} \\ \vdots & \vdots & & \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 0 & 1 & x_N & \cdots & x_N^{d-1} \end{bmatrix}, \quad b = \begin{bmatrix} y_1 \\ \vdots \\ y_M \\ y_{M+1} \\ \vdots \\ y_N \end{bmatrix}$$

$$C = \left[\begin{array}{cccccc} 1 & a & \cdots & a^{d-1} & -1 & -a & \cdots & -a^{d-1} \\ 0 & 1 & \cdots & (d-1)a^{d-2} & 0 & -1 & \cdots & -(d-1)a^{d-2} \end{array} \right], \quad d = \left[\begin{array}{c} 0 \\ 0 \end{array} \right]$$

Example: Advertising budget allocation

- *m* demographics groups (audiences), *n* advertising channels
- v_i^{des} is target number of views or impressions for group i
- s_j is amount of advertising purchased in channel j
- R_{ij} is # views in group i per dollar spent on ads in channel j
- $(Rs)_i$ is total number of views in group i
- fixed budget $\mathbf{1}^T s = B$
- constrained LS problem: minimize $||Rs v^{\text{des}}||^2$ subject to $\mathbf{1}^T s = B$

Example: optimal and scaled LS solution to satisfy budget

constrained least squares SA—ENGR504 11.5

Least norm problem

minimize
$$||x||^2$$

subject to $Cx = d$

- C is a $p \times n$ matrix, d is a p-vector
- the goal is to find the solution of Cx = d with the smallest norm
- a special case of constrained LS with A = I and b = 0

Least distance problem: minimizing the distance to a given point $a \neq 0$:

minimize
$$||x - a||^2$$

subject to $Cx = d$

• reduces to least norm problem by a change of variables y = x - a

minimize
$$||y||^2$$

subject to $Cy = d - Ca$

• from least norm solution y, we obtain solution x = y + a of first problem

Force sequence

- · a unit mass with zero initial position and velocity
- we apply piecewise-constant force F(t) during interval [0, 10):

$$F(t) = x_j$$
 for $t \in [j - 1, j), j = 1, ..., 10$

• position and velocity at t = 10 are given by

$$p^{\text{fin}} = (19/2)x_1 + (17/2)x_2 + (15/2)x_3 + \dots + (1/2)x_{10}$$

$$v^{\text{fin}} = x_1 + x_2 + \dots + x_{10}$$

we want to choose a force sequence that results in $p^{\rm fin}$ = 1, $v^{\rm fin}$ = 0

Example

there are many solution; we consider two solutions:

1. bang-bang force: solutions with only two nonzero elements:

$$x = (1, -1, 0, \dots, 0), \quad x = (0, 1, -1, \dots, 0), \dots$$

2. least norm solution: smallest force sequence

minimize
$$\int_0^{10} F(t)^2 dt = \|x\|^2$$
 subject to
$$\begin{bmatrix} 19/2 & 17/2 & 15/2 & \cdots & 1/2 \\ 1 & 1 & 1 & \cdots & 1 \end{bmatrix} x = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Example results

Bang-bang force

Least norm force

Outline

- constrained least squares
- solution of least norm problem
- solution of constrained least squares
- linear quadratic control
- linear quadratic estimation
- portfolio optimization

Solution of least norm problem

minimize
$$||x||^2$$

subject to $Cx = d$

Assumption: we assume that C has linearly independent rows

- Cx = d has at least one solution for every d
- C is wide or square $(p \le n)$; if p < n there are infinitely many solutions

Solution of least norm problem

$$\hat{x} = C^T (CC^T)^{-1} d$$

- in other words if Cx = d and $x \neq \hat{x}$, then $||x|| > ||\hat{x}||$
- unique solution under the above assumption
- $C^T(CC^T)^{-1} = C^{\dagger}$ is the pseudo-inverse of C, which is also a right-inverse

Proof

1. we first verify that \hat{x} satisfies the constraints:

$$C\hat{x} = CC^T(CC^T)^{-1}d = d$$

2. next we show that $||x|| > ||\hat{x}||$ if Cx = d and $x \neq \hat{x}$

$$||x||^{2} = ||\hat{x} + x - \hat{x}||^{2}$$

$$= ||\hat{x}||^{2} + 2\hat{x}^{T}(x - \hat{x}) + ||x - \hat{x}||^{2}$$

$$= ||\hat{x}||^{2} + ||x - \hat{x}||^{2}$$

$$\geq ||\hat{x}||^{2} \text{ with equality only if } x = \hat{x}$$

line 3 follows from

$$\hat{x}^{T}(x - \hat{x}) = d^{T}(CC^{T})^{-1}C(x - \hat{x}) = 0$$

where we used $Cx = C\hat{x} = d$

QR factorization method

using the QR factorization $C^T = QR$ of C^T , we get

$$\hat{x} = C^{T}(CC^{T})^{-1}d$$

$$= QR(R^{T}Q^{T}QR)^{-1}d$$

$$= QR(R^{T}R)^{-1}d$$

$$= QR^{-T}d$$

Algorithm

- 1. compute QR factorization $C^T = QR (2p^2n \text{ flops})$
- 2. solve $R^Tz = d$ by forward substitution (p^2 flops)
- 3. matrix-vector product $\hat{x} = Qz$ (2pn flops)

complexity: $2p^2n$ flops

Example

$$C = \left[\begin{array}{ccc} 1 & -1 & 1 & 1 \\ 1 & 0 & 1/2 & 1/2 \end{array} \right], \quad d = \left[\begin{array}{c} 0 \\ 1 \end{array} \right]$$

• QR factorization $C^T = OR$

$$\begin{bmatrix} 1 & 1 \\ -1 & 0 \\ 1 & 1/2 \\ 1 & 1/2 \end{bmatrix} = \begin{bmatrix} 1/2 & 1/\sqrt{2} \\ -1/2 & 1/\sqrt{2} \\ 1/2 & 0 \\ 1/2 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 0 & 1/\sqrt{2} \end{bmatrix}$$

• solve $R^T z = b$

$$\begin{bmatrix} 2 & 0 \\ 1 & 1/\sqrt{2} \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \Rightarrow z_1 = 0, z_2 = \sqrt{2}$$

• evaluate $\hat{x} = Qz = (1, 1, 0, 0)$

Outline

- constrained least squares
- solution of least norm problem
- solution of constrained least squares
- linear quadratic control
- linear quadratic estimation
- portfolio optimization

Assumptions

minimize
$$||Ax - b||^2$$

subject to $Cx = d$

Assumptions

1. the stacked $(m + p) \times n$ matrix

$$\begin{bmatrix} A \\ C \end{bmatrix}$$

has linearly independent columns (left-invertible)

2. $p \times n$ matrix C has linearly independent rows (right-invertible)

assumptions imply that $p \le n \le m + p$

Optimality conditions

minimize
$$||Ax - b||^2$$

subject to $Cx = d$

 \hat{x} solves the constrained LS problem if and only if there exists a z such that

$$\left[\begin{array}{cc} A^T A & C^T \\ C & 0 \end{array}\right] \left[\begin{array}{c} \hat{x} \\ z \end{array}\right] = \left[\begin{array}{c} A^T b \\ d \end{array}\right]$$

- this is a set of n + p linear equations in n + p variables
- equations are also known as Karush-Kuhn-Tucker (KKT) equations
- matrix on left is called KKT matrix

Special cases

- least squares: when p = 0, reduces to normal equations $A^T A \hat{x} = A^T b$
- least norm: when A = I, b = 0, reduces to $C\hat{x} = d$ and $\hat{x} + C^Tz = 0$

Proof

suppose x satisfies Cx = d, and (\hat{x}, z) satisfies optimality conditions, then

$$||Ax - b||^{2} = ||A(x - \hat{x}) + A\hat{x} - b||^{2}$$

$$= ||A(x - \hat{x})||^{2} + ||A\hat{x} - b||^{2} + 2(x - \hat{x})^{T}A^{T}(A\hat{x} - b)$$

$$= ||A(x - \hat{x})||^{2} + ||A\hat{x} - b||^{2} - 2(x - \hat{x})^{T}C^{T}z$$

$$= ||A(x - \hat{x})||^{2} + ||A\hat{x} - b||^{2}$$

$$\geq ||A\hat{x} - b||^{2}$$

- on line 3 we use $A^T A \hat{x} + C^T z = A^T b$; on line 4, $Cx = C \hat{x} = d$
- inequality shows that \hat{x} is optimal
- \hat{x} is the unique optimum because equality holds only if

$$A(x - \hat{x}) = 0$$
, $C(x - \hat{x}) = 0$ \Longrightarrow $x = \hat{x}$

by the first assumption

Nonsingularity

the KKT matrix

$$\begin{bmatrix} A^T A & C^T \\ C & 0 \end{bmatrix}$$

is nonsingular (invertible) if and only if the two assumptions hold

Proof: if assumptions hold

$$\begin{bmatrix} A^T A & C^T \\ C & 0 \end{bmatrix} \begin{bmatrix} x \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Longrightarrow x^T (A^T A x + C^T z) = 0, \quad Cx = 0$$
$$\Longrightarrow ||Ax||^2 = 0, \quad Cx = 0$$
$$\Longrightarrow Ax = 0, \quad Cx = 0$$
$$\Longrightarrow x = 0 \quad \text{by assumption 1}$$

if x = 0, we have $C^T z = -A^T A x = 0$; hence also z = 0 by assumption 2

Singularity

if the assumptions do not hold, then the matrix

$$\left[\begin{array}{cc} A^T A & C^T \\ C & 0 \end{array}\right]$$

is singular

• if assumption 1 does not hold, there exists $x \neq 0$ with Ax = 0, Cx = 0; then

$$\begin{bmatrix} A^T A & C^T \\ C & 0 \end{bmatrix} \begin{bmatrix} x \\ 0 \end{bmatrix} = 0$$

• if assumption 2 does not hold there exists a $z \neq 0$ with $C^Tz = 0$; then

$$\begin{bmatrix} A^T A & C^T \\ C & 0 \end{bmatrix} \begin{bmatrix} 0 \\ z \end{bmatrix} = 0$$

in both cases, this shows that the matrix is singular

Solving KKT equation directly

$$\begin{bmatrix} A^T A & C^T \\ C & 0 \end{bmatrix} \begin{bmatrix} x \\ z \end{bmatrix} = \begin{bmatrix} A^T b \\ d \end{bmatrix}$$

Algorithm

- 1. compute $H = A^T A (mn^2 \text{ flops})$
- 2. compute $c = A^T b (2mn \text{ flops})$
- 3. solve the linear equation

$$\begin{bmatrix} H & C^T \\ C & 0 \end{bmatrix} \begin{bmatrix} x \\ z \end{bmatrix} = \begin{bmatrix} c \\ d \end{bmatrix}$$

by the LU factorization $((2/3)(p+n)^3$ flops) or QR factorization $(2(n+p)^3)$

complexity: $mn^2 + (2/3)(p + n)^3$ flops

Solution by QR factorization

we derive a method that avoid computing gram matrix by using QR factorization

$$\left[\begin{array}{cc} A^T A & C^T \\ C & 0 \end{array}\right] \left[\begin{array}{c} \hat{x} \\ z \end{array}\right] = \left[\begin{array}{c} A^T b \\ d \end{array}\right]$$

• multiply 2nd eq. by C^T , add to 1st eq., make change of variables w = z - d,

$$\begin{bmatrix} A^T A + C^T C & C^T \\ C & 0 \end{bmatrix} \begin{bmatrix} \hat{x} \\ w \end{bmatrix} = \begin{bmatrix} A^T b \\ d \end{bmatrix}$$

• assumption 1 guarantees $A^TA + C^TC$ is nonsingular and QR factorization exists:

$$\left[\begin{array}{c} A \\ C \end{array}\right] = QR = \left[\begin{array}{c} Q_1 \\ Q_2 \end{array}\right] R$$

11 20

Solution by QR factorization

substituting $A = Q_1R$ and $C = Q_2R$ gives the equation

$$\begin{bmatrix} R^T R & R^T Q_2^T \\ Q_2 R & 0 \end{bmatrix} \begin{bmatrix} \hat{x} \\ w \end{bmatrix} = \begin{bmatrix} R^T Q_1^T b \\ d \end{bmatrix}$$

• multiply first equation with R^{-T} and make change of variables $y = R\hat{x}$

$$\left[\begin{array}{cc} I & Q_2^T \\ Q_2 & 0 \end{array}\right] \left[\begin{array}{c} y \\ w \end{array}\right] = \left[\begin{array}{c} Q_1^T b \\ d \end{array}\right]$$

• next we note that the matrix $Q_2 = CR^{-1}$ has linearly independent rows:

$$Q_2^T u = R^{-T} C^T u = 0 \implies C^T u = 0 \implies u = 0$$

because C has linearly independent rows (assumption 2)

Solution by QR factorization

we use the QR factorization of Q_2^T to solve

$$\left[\begin{array}{cc} I & Q_2^T \\ Q_2 & 0 \end{array}\right] \left[\begin{array}{c} y \\ w \end{array}\right] = \left[\begin{array}{c} Q_1^T b \\ d \end{array}\right]$$

• from the 1st block row, $y = Q_1^T b - Q_2^T w$; substitute this in the 2nd row:

$$Q_2 Q_2^T w = Q_2 Q_1^T b - d$$

• we solve this equation for w using the QR factorization $Q_2^T = \tilde{Q}\tilde{R}$:

$$\tilde{R}^T \tilde{R} w = \tilde{R}^T \tilde{Q}^T Q_1^T b - d$$

which can be simplified to

$$\tilde{R}w = \tilde{Q}^T Q_1^T b - \tilde{R}^{-T} d$$

after solving for w, we get $y = Q_1^T b - Q_2^T w$ and solve for \hat{x} in $y = R\hat{x}$

11.22

Summary of QR factorization method

$$\begin{bmatrix} A^TA + C^TC & C^T \\ C & 0 \end{bmatrix} \begin{bmatrix} \hat{x} \\ w \end{bmatrix} = \begin{bmatrix} A^Tb \\ d \end{bmatrix}$$

Algorithm

1. compute the two QR factorizations

$$\left[\begin{array}{c} A \\ C \end{array}\right] = \left[\begin{array}{c} Q_1 \\ Q_2 \end{array}\right] R \quad \text{and} \quad Q_2^T = \tilde{Q}\tilde{R}$$

- 2. solve $\tilde{R}^T u = d$ by forward substitution and compute $c = \tilde{Q}^T Q_1^T b u$
- 3. solve $\tilde{R}w = c$ by back substitution and compute $y = Q_1^T b Q_2^T w$
- 4. compute $R\hat{x} = y$ by back substitution

Complexity

- $2(m+p)n^2 + 2np^2$ flops (QR factorizations dominates)
- order $(m+p)n^2$ due to assumption $p \le n \le m+p$

Comparison of the two methods

Complexity: LU is slightly more efficient

LU factorization

$$mn^2 + \frac{2}{3}(p+n)^3 \le mn^2 + \frac{16}{3}n^3$$
 flops

QR factorization

$$2(p+m)n^2 + 2np^2 \le 2mn^2 + 4n^3$$
 flops

upper bounds follow from $p \le n$ (assumption 2)

Stability

- QR factorization method avoids calculation of Gram matrix A^TA
- hence more robust/stable to numerical errors

Outline

- constrained least squares
- solution of least norm problem
- solution of constrained least squares
- linear quadratic control
- linear quadratic estimation
- portfolio optimization

Linear quadratic control

Linear dynamical system

$$x_{t+1} = A_t x_t + B_t u_t, \quad y_t = C_t x_t, \quad t = 1, 2, \dots$$

- *n*-vector x_t is system *state* (at time t)
- *m*-vector *u*_t is system *input* (we control)
- p-vector y_t is system output
- x_t, u_t, y_t are typically desired to be small

Objective: choose inputs u_1, \ldots, u_{T-1} that minimizes $J_{\text{output}} + \rho J_{\text{input}}$ with

$$J_{\mathsf{output}} = \|y_1 - y_1^{\mathsf{des}}\|^2 + \dots + \|y_T - y_T^{\mathsf{des}}\|^2, \quad J_{\mathsf{input}} = \|u_1\|^2 + \dots + \|u_{T-1}\|^2$$

where y_i^{des} are given desired values (possibly zero)

Constraints

- dynamics constraint
- initial state and (possibly) the final state are specified $x_1 = x^{\text{init}}, x_T = x^{\text{des}}$

Linear quadratic control problem

minimize
$$\|C_1x_1 - y_1^{\text{des}}\|^2 + \dots + \|C_Tx_T - y_T^{\text{des}}\|^2 + \rho \left(\|u_1\|^2 + \dots + \|u_{T-1}\|^2\right)$$

subject to $x_{t+1} = A_tx_t + B_tu_t$, $t = 1, \dots, T-1$
 $x_1 = x^{\text{init}}$, $x_T = x^{\text{des}}$

variables: x_1, \ldots, x_T and u_1, \ldots, u_{T-1}

Constrained least squares formulation

$$\begin{array}{ll} \text{minimize} & \|\tilde{A}z - \tilde{b}\|^2 \\ \text{subject to} & \tilde{C}z = \tilde{d} \end{array}$$

variables: the (nT + m(T - 1))-vector

$$z = (x_1, \ldots, x_T, u_1, \ldots, u_{T-1})$$

Linear quadratic control problem

Objective function: $\|\tilde{A}z - \tilde{b}\|^2$ with

$$\tilde{A} = \begin{bmatrix} C_1 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \cdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & C_T & 0 & \cdots & 0 \\ \hline 0 & \cdots & 0 & \sqrt{\rho}I & \cdots & 0 \\ \vdots & \cdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & 0 & \cdots & \sqrt{\rho}I \end{bmatrix}, \quad \tilde{b} = \begin{bmatrix} y_1^{\text{des}} \\ \vdots \\ y_T^{\text{des}} \\ \hline 0 \\ \vdots \\ 0 \end{bmatrix}$$

Constraints: $\tilde{C}z = \tilde{d}$ with

$$\tilde{C} = \begin{bmatrix} A_1 & -I & 0 & \cdots & 0 & 0 & B_1 & 0 & \cdots & 0 \\ 0 & A_2 & -I & \cdots & 0 & 0 & 0 & B_2 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & A_{T-1} & -I & 0 & 0 & \cdots & B_{T-1} \\ \hline I & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 & I & 0 & 0 & \cdots & 0 \end{bmatrix}, \quad \tilde{d} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ \hline x^{\text{init}} \\ x^{\text{des}} \end{bmatrix}$$

11.27

Example

time-invariant system with constant matrices

$$A = \begin{bmatrix} 0.855 & 1.161 & 0.667 \\ 0.015 & 1.073 & 0.053 \\ -0.084 & 0.059 & 1.022 \end{bmatrix}, \quad B = \begin{bmatrix} -0.076 \\ -0.139 \\ 0.342 \end{bmatrix}$$
$$C = \begin{bmatrix} 0.218 & -3.597 & -1.683 \end{bmatrix}$$

- $v^{\text{des}} = 0$. T = 100
- initial condition $x^{\text{init}} = (0.496, -0.745, 1.394)$
- target or desired final state $x^{\text{des}} = 0$
- input and output have dimension one

Optimal trade-off curve

Three points on the trade-off curve

Linear state feedback control

Linear state feedback

• linear state feedback control uses the input

$$u_t = Kx_t, \quad t = 1, 2, \dots$$

- *K* is the state feedback gain matrix
- widely used, especially when x_t should converge to zero, T is not specified

One approach to compute K

- solve the linear quadratic control problem with $x^{des} = 0$ for (large) T
- solution u_t is a linear function of x^{init} , hence u_1 can be written as $u_1 = Kx^{\text{init}}$
- columns of K can be found by computing u_1 for $x^{\text{init}} = e_1, \ldots, e_n$
- use this K as state feedback gain matrix

Example

- setup of previous example
- blue curve uses optimal linear quadratic control for T=100
- red curve uses simple linear state feedback $u_t = Kx_t$
- optimal choice achieves $y_T = 0$ but linear state feedback makes y_T small only

linear quadratic control SA — ENGR504 11.32

Outline

- constrained least squares
- solution of least norm problem
- solution of constrained least squares
- linear quadratic control
- linear quadratic estimation
- portfolio optimization

State estimation

Linear dynamical system model

$$x_{t+1} = A_t x_t + B_t w_t, \quad y_t = C_t x_t + v_t, \quad t = 1, 2, \dots$$

- x_t is state (n-vector)
- y_t is measurement (p-vector)
- w_t is input or process noise (m-vector)
- v_t is measurement noise or residual (p-vector)
- A_t, B_t, C_t are the known dynamics, input, and output matrices

State estimation

- we have measurements y_1, \ldots, y_T
- w_t, v_t are unknown, but assumed small
- goal: estimate state sequence x_1, \ldots, x_T

Least squares state estimation

minimize
$$J_{\text{meas}} + \lambda J_{\text{proc}}$$

subject to $x_{t+1} = A_t x_t + B_t w_t$, $t = 1, \dots, T-1$

- variables are the states x_1, \ldots, x_T and input noise w_1, \ldots, w_{T-1}
- primary objective J_{meas} is sum of squares of measurement residuals:

$$J_{\text{meas}} = ||C_1 x_1 - y_1||^2 + \dots + ||C_T x_T - y_T||^2$$

• secondary objective J_{proc} is sum of squares of process noise

$$J_{\text{proc}} = ||w_1||^2 + \dots + ||w_{T-1}||^2$$

- $\lambda > 0$ is a parameter, trades off measurement and process errors
- similar to control formulation but interpretation is different

Constrained least squares formulation

minimize
$$\|C_1x_1 - y_1\|^2 + \dots + \|C_Tx_T - y_T\|^2 + \lambda \left(\|w_1\|^2 + \dots + \|w_{T-1}\|^2\right)$$
 subject to $x_{t+1} = A_tx_t + B_tw_t$, $t = 1, \dots, T-1$

can be written as

minimize
$$\|\tilde{A}z - \tilde{b}\|^2$$

subject to $\tilde{C}z = \tilde{d}$

• vector z contains the Tn + (T-1)m variables:

$$z = (x_1, \dots, x_T, w_1, \dots, w_{T-1})$$

Constrained least squares formulation

$$\tilde{A} = \begin{bmatrix} C_1 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ 0 & C_2 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \cdots & C_T & 0 & \cdots & 0 \\ \hline 0 & 0 & \cdots & 0 & \sqrt{\lambda}I & \cdots & 0 \\ \vdots & \vdots & & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & 0 & \cdots & \sqrt{\lambda}I \end{bmatrix}, \quad \tilde{b} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_T \\ \hline 0 \\ \vdots \\ 0 \end{bmatrix}$$

$$\tilde{C} = \begin{bmatrix} A_1 & -I & 0 & \cdots & 0 & 0 & B_1 & 0 & \cdots & 0 \\ 0 & A_2 & -I & \cdots & 0 & 0 & 0 & B_2 & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & A_{T-1} & -I & 0 & 0 & \cdots & B_{T-1} \end{bmatrix}, \quad \tilde{d} = 0$$

linear quadratic estimation SA-ENGR504 11.36

Example

$$A_{t} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad B_{t} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad C_{t} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

- simple model of mass moving in a 2-D plane
- $x_t = (p_t, z_t)$: 2-vector p_t is position, 2-vector z_t is the velocity
- $y_t = C_t x_t + w_t$ is noisy measurement of mass position
- T = 100

Position estimates

- 100 noisy measurements y_t shown as circles
- solid line is exact position C_tx_t
- $\bullet\,$ blue lines show position estimates for three values of λ

Outline

- constrained least squares
- solution of least norm problem
- solution of constrained least squares
- linear quadratic control
- linear quadratic estimation
- portfolio optimization

Return of an asset

Asset value

- asset can be stock, bond, real estate, commodity, ...
- buy q shares of an asset at price p at beginning of investment period
- h = pq is dollar value of holdings

Asset return

- sell q shares at new price p^+ at end of period
- profit is

$$q(p^{+}-p) = \frac{(p^{+}-p)}{p}h = rh$$

where r (fractional) return is

$$r = \frac{(p^+ - p)}{p} = \frac{\text{profit}}{\text{investment}}$$

Mean return and risk

- r is a time-series (vector) of returns
- avg(r) is portfolio *mean return* (or just return); std(r) is *risk*
- avg(r) and std(r) are *per-period* return and risk
- mean return and risk are often expressed in annualized form (i.e., per year)

Annualized return and risk: if we have P trading periods per year

annualized return =
$$P \operatorname{avg}(r)$$
, annualized risk = $\sqrt{P} \operatorname{std}(r)$

• if returns are daily, with 250 trading days in a year

annualized return =
$$250 \text{avg}(r)$$
, annualized risk = $\sqrt{250} \text{std}(r)$

• example: daily return r with per-period (daily) return 0.05% and risk 0.5% has an annualized return and risk of 12.5% and 7.9%

portfolio optimization Sa_FNGR504 11.40

Portfolio investment

- n different assets
- ullet we invest a total of V dollars over some period (one day, week, month, ...)
- goal: make investments so that the combined return for all investments is high

Portfolio allocation weights

- w is asset weight or allocation vector with $\mathbf{1}^T w = 1$
- w_j is fraction of total portfolio value held in asset j; short position if $w_j < 0$
 - short positions are assets you borrow and sell at the beginning, but must return to the borrower at the end of the period
- Vw_j is the dollar value of asset j
- w = (-0.2, 0.0, 1.2) means we take a short position of 0.2V in asset 1, don't hold any of asset 2, and invest 1.2V in asset 3
- *leverage* of portfolio is $L = |w_1| + \cdots + |w_n|$

portfolio optimization SA — ENGREGOA 11.41

Return matrix

(asset) return matrix for investments held for T periods is

$$R = \begin{bmatrix} R_{11} & R_{12} & \cdots & R_{1n} \\ R_{21} & R_{22} & \cdots & R_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ R_{T1} & R_{T2} & \cdots & R_{Tn} \end{bmatrix} = \begin{bmatrix} \tilde{r}_1^T \\ \tilde{r}_2^T \\ \vdots \\ \tilde{r}_T^T \end{bmatrix}$$

- R_{t j} is fractional return of asset j in period t
 - $-R_{61}=0.02$ means that asset 1 gained 2% in period 6
- tth row \tilde{r}_t^T gives asset returns in period t
- jth column is time series of asset j returns
- we often assume asset n is cash with risk-free return $\mu^{\rm rf}>0$
- ullet if last asset is risk-free, the last column of R is $\mu^{\mathrm{rf}} \mathbf{1}$

Return over a period

- ullet we invest a total (positive) amount V_t at the beginning of period t
- so we invest V_t w_j in asset j
- the dollar value of the whole portfolio at end of period t is

$$V_{t+1} = \sum_{j=1}^{n} V_t w_j (1 + R_{tj}) = V_t (1 + \tilde{r}_t^T w)$$

where
$$\tilde{r}_t = (R_{t1}, \dots, R_{tn})$$

• total (fractional) return of the portfolio over period t is

$$\frac{V_{t+1} - V_t}{V_t} = \frac{V_t (1 + \tilde{r}_t^T w) - V_t}{V_t} = \tilde{r}_t^T w$$

- r = Rw is portfolio (fractional) returns vector (time series)
 - if *n* is risk free and $w = e_n$, then $Rw = \mu^{rf} \mathbf{1}$ (constant return)

Portfolio value

Total portfolio value: if r is portfolio return vector in period t, then

$$V_{t+1} = V_1 (1 + r_1) (1 + r_2) \cdots (1 + r_t)$$

- V₁ is initial investment amount
- portfolio value versus time traditionally plotted using $V_1 = \$10000$

Approximate total portfolio value

• for small per-period returns r_t and not too large T, we have

$$V_{T+1} = V_1 (1 + r_1) \cdots (1 + r_T)$$

 $\approx V_1 + V_1 (r_1 + \cdots + r_T)$
 $= V_1 (1 + Tavg(r))$

- approximation assumes $r_i r_j$ are small (e.g., $|r_t|$ small) and can be neglected
- approx. suggests that we can maximize our portfolio value, by maximizing avg(r)

Portfolio optimization

choose w to minimize risk with fixed mean return ho

minimize
$$\operatorname{std}(Rw)^2 = (1/T)\|Rw - \rho \mathbf{1}\|^2$$

subject to $\mathbf{1}^T w = 1$, $\operatorname{avg}(Rw) = \rho$

- R is the returns matrix for past returns
- r = Rw is the (past) portfolio return time series
- solutions w are called Pareto optimal

Assumption: future returns will be similar to past ones

- · this is false in general
- we choose w that would have worked well on past returns
- ... and hope it will work well going forward (just like data fitting)
- we can use validation by finding a solution of certain past period, then testing on another past period

Portfolio optimization via constrained least squares

minimize
$$\|Rw - \rho \mathbf{1}\|^2$$

subject to $\begin{bmatrix} \mathbf{1}^T \\ \mu^T \end{bmatrix} w = \begin{bmatrix} 1 \\ \rho \end{bmatrix}$

- $\mu = (1/T)R^T\mathbf{1}$ is *n*-vector of (past) asset returns
- ρ is required (past) portfolio return
- an equality constrained least squares problem, with solution

$$\begin{bmatrix} w \\ z_1 \\ z_2 \end{bmatrix} = \begin{bmatrix} 2R^TR & \mathbf{1} & \mu \\ \mathbf{1}^T & 0 & 0 \\ \mu^T & 0 & 0 \end{bmatrix}^{-1} \begin{bmatrix} 2\rho T\mu \\ 1 \\ \rho \end{bmatrix}$$

Optimal portfolio

optimal portfolio w is an affine function of ρ

$$\begin{bmatrix} w \\ z_1 \\ z_2 \end{bmatrix} = \begin{bmatrix} 2R^TR & \mathbf{1} & \mu \\ \mathbf{1}^T & 0 & 0 \\ \mu^T & 0 & 0 \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + \rho \begin{bmatrix} 2R^TR & \mathbf{1} & \mu \\ \mathbf{1}^T & 0 & 0 \\ \mu^T & 0 & 0 \end{bmatrix}^{-1} \begin{bmatrix} 2T\mu \\ 0 \\ 1 \end{bmatrix}$$

vector w has the form

$$w = w^0 + \rho v, \quad \mathbf{1}^T v = 0$$

- Pareto optimal portfolio form a line with base w^0 and direction v
- . a point on a line can be written as affine combination of two other points on line
- Pareto optimal portfolios are affine comb. of just two portfolios (two-fund theorem)

portfolio optimization SA PMODEOA 11.47

Example

- daily return data for 19 stocks over a period of 2000 days (8 years)
- plus risk-free asset with 1% annual return
- open circles shows individual assets $(\sqrt{250} \operatorname{std}(Re_i), 250 \operatorname{avg}(Re_i))$
- line shows risk and return for the Pareto optimal portfolios (for different ρ)

portfolio optimization SA_ENGR504 11.48

Five portfolios

	Return			Ri	sk	
Portfolio	Train	Test	Tra	in	Test	Leverage
risk-free	0.01	0.01	0.0	00	0.00	1.00
ho = 10%	0.10	0.08	0.0	9	0.07	1.96
$\rho = 20\%$	0.20	0.15	0.	18	0.15	3.03
ho = 40%	0.40	0.30	0.0	38	0.31	5.48
1/n (uniform weights)	0.10	0.21	0.2	23	0.13	1.00

• train period of 2000 days used to compute optimal portfolio

• test period is different 500-day period

Total portfolio value

portfolio optimization SA = FMGR504 11.50

References and further readings

- S. Boyd and L. Vandenberghe. Introduction to Applied Linear Algebra: Vectors, Matrices, and Least Squares, Cambridge University Press, 2018.
- L. Vandenberghe. *EE133A lecture notes*, Univ. of California, Los Angeles. (http://www.seas.ucla.edu/~vandenbe/ee133a.html)

references SA_ENGR504 11.51