Week 3 HW, distinction tasks

a)

We can construct an NFA to accept this language trivially as follows,

Figure 1: image

The intuition comes from that all states after the occurrence of n-th symbol has to be constant, hence implemented by the NFA. By counting, this results in an NFA with exactly n+1 states that can describe L_n .

b)

Recall Myhill-Nerode Theorem. For a regular language L, for all i, j, substring $u_i, u_j \in L$ is *indistinguishable* by L iff,

$$\{u_i \cdot w_{ij}, u_j \cdot w_{ij}\} \subseteq L$$

, where $w_{ij} \in \Sigma \notin L$. Vice versa, distinguishable if that w_{ij} appended makes either u_i or u_j in L but not both.

The number of equivalence classes of L is the number of (u_i, u_j) pairs that are distinguishable above, also the number of minimum states the accepting DFA of L must hold.

Given that the regex for $L_n = \Sigma^* \cdot 1 \cdot \Sigma^{n-1}$. Define $u_m := \Sigma^* \cdot 1 \cdot Sigma^{i-1}$, since w_{ij} cannot be in L. We can then, for $i \neq j$,

$$u_i \cdot w_{ij} = \Sigma^* \cdot 1 \cdot \Sigma^{n-1} \in L;$$

$$u_j \cdot w_{ij} = \Sigma^* \cdot 1 \cdot \Sigma^{n-i+j-1} \notin L;$$

$$w_{ij} = \Sigma^{n-i}$$

For all $i, j \in \{1, 2, ..., n\}, i \neq j$. The number of i, j pair at i is equal to C_i^n (abbreviation for n choose i).

Hence for all i listed above, we have $C_1^n+C_2^n+\ldots+C_n^n=2^n,$ a combinatorial identity.

Hence the index of L is 2^n , meaning that the number of states of an L-accepting DFA cannot be less than 2^n .