

A Federated Learning Approach to Predicting Communication Demand in the National Airspace

Integrated Communications, Navigation, and Surveillance Conference (ICNS) 2022

Herndon, VA

April 5-7, 2022

Nathan Schimpf, Hongxiang Li, *University of Louisville, Louisville, KY* Eric J. Knoblock, Rafael D. Apaza, *NASA Glenn Research Center, Cleveland, OH*

Overview

- Background
- Demand Prediction Framework needs and high-level phases
- Workload modelling
 - Data Sources
 - Models and Aspects aggregate, discrete, relational
- Parameter Inferencing
 - Scope and Data Sources
 - Predictive / Prescriptive approaches

Background

- Aviation consumes ~14% of US spectrum, regulatory and tech. pressures to reduce
- Autonomous spectrum project is transformative, decades-ahead, may inform policy
 - Machine learning approaches require quality data items, such as communication demand
- Communication technologies may continue to evolve
 - Continued transition of voice -> VDL clearance requests
 - ICAO regulations include Sub-channelization (25 -> 8.33 kHz spacing)
- Nature of communication services will expand and alter
 - Medium altering: digitization, sub-channelization....
 - Expansion: UAS/UAM/AAM data and control plane services
- Demand prediction research primarily addresses time-series forecasting

Comm Demand should be generalized, to allow for robust and speculative approaches to NAS comms

Demand Prediction Framework

Defining requirements based on an Autonomous Spectrum Concept

Relevant challenges/constraints for comm demand prediction

- Data engineering: What will make data sufficient? ATC Workload Modelling
- Technology Implementation Independence & Backwards Compatibility: How do we support both in demand prediction? Modular, event-oriented predictions
- System resiliency: How can we insure prediction accounts for outages? NOTAM and convective weather information

- ATC Elements
 - National Flow Control (ATCSCC)
 - Define Frequency re-use factor and bands available to each region
 - En-route / Regional Control (ARTCC)
 - Predicts regional air traffic
 - Allocates channel set from ATCSCC recommendation
 - Airport (ATCT) & Departure / Arrival (TRACON) Control
 - Refined predictions with real-time trajectory and flight information
 - Joint channel-power allocation from ARTCC candidate channels

Additional Requirements

- Data are distributed across large domains
 - -> federated learning necessary to generalize
 - Hierarchical design necessary: training overhead v. accuracy
- Workload data are non-IID
 - -> data aggregation similar to Astraea Framework
- Trends currently require a mix of data & embedded, sector-specific features -> personalization is necessary
- Degree of explainability desirable, if possible

Data Investigation Framed with Air Traffic Control Workloads

- Horizontal Movement: baseline workload
 - sector density
 - transit time
- Conflict Detect-and-Resolve: maintaining minimum separation
 - Type: succeeding, crossing opposite,
 - Phase: climbing, cruising, descending
- Coordination: non-conflict events requiring coordination
 - clearance issue, tower / facility / silent transfer
- Aircraft Maneuvering: mitigating external factors
 - level off, commence climb/descent

Relevant Sherlock Data Items

Dataset	Summary	Workload Sufficiency
IFF Data	Flight plan amendments, re- broadcasts, and flight track information	Coordination: re-broadcasts indicate sector crossings Conflict detection: amendments Aircraft maneuvering: amendments
EV Data	Flight events in terms of airspace operations: Takeoff/landing, top-of-climb/descent, sector crossing, go-around, etc.	Aircraft Maneuvering: Altitude changes described in-detail Coordination: sector crossings Conflict Detection: go-arounds and altitude changes
Instant Aircraft Counts Sector	Sector aircraft counts over 15-minute windows: Min, max, average, aggregate Daily statistics of each sector:	Horizontal Movement: sector density Horizontal Movement: average transit
Statistics	Total aircraft count, hourly flow, Average transit time and airspeed, Sector transition counts	time, density statistics Coordination: Sector transition counts
NOTAMs	Urgent, non-standard conflicts and airspace outage notices	Conflict Detection: indication of reduced sector / center capacity
CWAM	Describes regions with high probability of convective weather (60/70/80%)	Aircraft Maneuvering: adjusted airflows from convective weather
Echo Top	Radar measurements of cloud height, corresponds to weather severity	Aircraft Maneuvering: adjusted airflows from convective weather

Event Prediction

Data Engineering

Collaboration of the University of Louisville and National Aeronautics and Space Administration

Event Prediction

Overview and Model Interplay

Aggregate Prediction

- Given sector-level statistics, approximate sector demand.
- Focus on relationships of data, learning embedded/personalized sector information

Discrete Prediction

- Given live flight and weather information, identify conflict and maneuvering events
- Predictions are (theoretically) more accurate/informed than aggregate

Relational Prediction

- Given sector-level predictions, model how demand is displaced due to airspace events.
- Relies on Aggregate + Discrete Predictions

NASA

Event Prediction

Aggregate Prediction

Global federated learning can learn general trends in data

 Federated Personalization must identify sector-specific trends and seasonalities

 Considers "optimal" data: no outages, limited convective weather

NTCSCC: Server model for event inference Aggregated from edge models (FedAvg)

ARTCC: Edge models for event inference mediates sectors in evenly-distributed workload clusters (Astraea)

No additional data incorporated

ATCT/TRACON: local / client models **Inputs:** density, transit time, total

crossings_{d-1} CWAM

Outputs: density, sector crossings,

takeoff/landing clearances, airspeed/altitude adjustments

Collaboration of the University of Louisville and National Aeronautics and Space Administration

NASA

Event Prediction

Discrete Prediction

- Global federated learning model sufficient
- No data limitations / extensive filtering necessary
- Predictions may be limited due to expected inference complexity

NTCSCC: Server model for event inference Aggregated from edge models (FedAvg)

ARTCC: Edge models for event inference mediates sectors in evenly-distributed workload clusters (Astraea)

No additional data incorporated

ATCT/TRACON: local / client models
Inputs: sector-coverage of ADS-B data,

CWAM

Outputs: density, sector crossings, takeoff/landing clearances, airspeed/altitude adjustments

Collaboration of the University of Louisville and National Aeronautics and Space Administration

Event Prediction

Relational Prediction

- Input predictions under nominal conditions
- Federated learning irrelevant: displacements influenced largely by region/sector structure

NTCSCC:

Potentially aggregates a global model (FedAvg) Likely ignored – relational patterns too specific to each region

ARTCC:

Estimates offsets in demand as a result of facility / capacity limits, convective weather

Inputs: Region-coverage CWAM, Sector-level Aggregate predictions

Outputs: Actual/displaced aggregate predictions

ATCT/TRACON:

Generates nominal-condition aggregate predictions

Parameter Inference

- Inputs: Demand events over X-minute window
- Outputs: Comm parameters (channel access duration, bandwidth, datarate, power, and modulation technique)
- Current usage estimation
 - Limited data availability: CPDLC, RWTH Aachen measurements, direct monitoring
 - Approaches:
 - Centralized v. hierarchical federated/machine learning
 - K-means clustering, KNN, linear regressions, Decision Tree variants
- Speculative: Linear model, Decision Tree with assumed weights

Conclusions

- Intelligent allocation of spectrum requires detailed knowledge of communication demand
- Communication demand must be informed by the systemwide operations of the airspace
- Modular approaches to demand prediction enable a flexible, speculative assessment of spectrum allocation schemes
- Immediate implementation work may begin with assessing these models in airspace density (a simplified case)