ConvLSTM Architectures for meteorological nowcasting based on satellite imagery

Vlad Ionescu, Gabriel Mircea

Predicting the weather: fighting the Butterfly Effect

- Chaotic behaviour
- Fluid dynamics
- Turbulence
- Extremely computationally expensive + coping with chaos

Importance of Nowcasting in the context of more frequent Severe Convective Storms in Europe

- Germany, last week, storm causes devastating tornadoes
- Significant increase of severe meteo phenomena in Europe in recent years
- Can ML models predict SCSs?

Data Model:

- Satellite imagery from the EUMESAT Meteosat-11 satellite covering Europe and Africa
- Continuous stream of images (one every 15 minutes)
- Meteo product employed: Convection RGB
- Focus on Europe

Why ConvLSTM?

- Works very well on temporal progressions of data
- Models well slightly organized movement in chaotic contexts
- Simple and straightforward DL architecture, best fit for a temporal progression of high res imagery

Proposed Architecture

Performance Evaluation

- Baseline CNN:
- Baseline U-Net:
- Baseline Pix2Pi GAN:

Model	MAE	NMAE	MSE	Training (epochs/iterations)
ProposedModel	0.0169	1.6991	0.0012	40 epochs
Baseline CNN	0.0295	2.9464	0.0029	32 epochs
Baseline U-Net	0.0251	2.5097	0.0022	40 epochs
Baseline Pix2Pix	0.0305	3.0523	0.0035	40000 iterations

Obtained result on satellite imagery

Conclusions and future improvements

- The ConvLSTM model adapts well to the nowcasting based on satellite imagery problem
- The obtained performances need to be evaluated not only from a numerical perspective but, more importantly, from a meteorological perspective
- Further effort should be employed on adapting the input parameters to more accurate nowcasting needs