Examenul național de bacalaureat 2023 Proba E. c) Matematică *M_mate-info*

Varianta 7

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Toate subiectele sunt obligatorii. Se acordă zece puncte din oficiu.
- Timpul de lucru efectiv este de trei ore.

SUBIECTUL I (30 de puncte)

- **5p** 1. Determinați termenul a_6 al progresiei aritmetice $(a_n)_{n>1}$, cu $a_1 = 3$ și $a_5 = 23$.
- **5p 2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 6x + 8$. Determinați numărul real m, știind că punctul A(m,-1) aparține graficului funcției f.
- **5p 3.** Rezolvați în mulțimea numerelor reale ecuația $3^{2x-1} = 9 \cdot 3^{x+1}$.
- **5p 4.** Se consideră mulțimea $A = \{1, 2, 3, 4, 5\}$. Determinați numărul submulțimilor nevide ale mulțimii A, care au cel mult două elemente.
- **5.** În reperul cartezian xOy se consideră punctele A(3,1) și B(4,4). Determinați coordonatele punctului C, știind că $\overrightarrow{OA} = \overrightarrow{BC}$.
- **5p 6.** Se consideră triunghiul ABC, dreptunghic în A, cu AB = 6 și înălțimea AD = 3. Arătați că raza cercului circumscris triunghiului ABC este egală cu $2\sqrt{3}$.

SUBIECTUL al II-lea (30 de puncte)

- 1. Se consideră matricea $A(x) = \begin{pmatrix} x & x & x \\ 1 & x & 1 \\ -1 & -x & -1 \end{pmatrix}$, unde x este număr real.
- **5p** a) Arătați că $\det(A(1)) = 0$.
- **5p b)** Arătați că $A(x) \cdot A(y) A(xy) = (x + y 2)A(0)$, pentru orice numere reale x și y.
- **5p** c) Determinați numerele reale x și y pentru care $A(-1) \cdot A(3) \cdot A(x) = A(y)$.
 - **2.** Se consideră polinomul $f = X^4 + 2X^3 8X^2 + 3mX + m$, unde m este număr real.
- **5p** a) Pentru m=2, arătați că f(1)=3.
- **5p b)** Pentru m = 0, determinați rădăcinile polinomului f.
- **5p** c) Determinați numărul rațional m pentru care polinomul f are rădăcina $x_1 = 1 + \sqrt{3}$.

SUBIECTUL al III-lea (30 de puncte)

- 1. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{3e^x}{x^2 + x + 1}$.
- **5p** a) Arătați că $f'(x) = \frac{3e^x(x^2 x)}{(x^2 + x + 1)^2}, x \in \mathbb{R}$.
- **5p b)** Arătați că $\lim_{x \to +\infty} \frac{f(2x)}{f(x)} = +\infty$.
- **5p** c) Demonstrați că ecuația f(x) = m are exact trei soluții, pentru orice $m \in (e,3)$.
 - **2.** Se consideră funcția $f:(-1,+\infty) \to \mathbb{R}$, $f(x) = 6x + \ln(x+1)$.
- **5p** a) Arătați că $\int_{1}^{2} (f(x) \ln(x+1)) dx = 9$.

5p b) Arătați că
$$\int_{0}^{e-1} \frac{f(x) - 6x}{x+1} dx = \frac{1}{2}$$
.

5p c) Determinați numărul real a, știind că aria suprafeței plane delimitate de graficul funcției $g: \mathbb{R} \to \mathbb{R}$, $g(x) = f(x^2)$, axa Ox și dreptele de ecuații x = 0 și x = 1 este egală cu $a\pi + \ln 2$.