Application Serial No.: 10/589,087

Amendments to the Claims

The listing of claims will replace all prior versions, and listings of claims in the application: Listing of claims:

Claim 1. (Currently amended) A compound of Formula I:

$$\begin{pmatrix} R_1 \\ n \\ N \\ N \\ Z \\ R_2 \\ \underbrace{(I)}_{R_3}$$

in which

n is selected from θ , 1, 2 and 3;

Z is selected from C and S(O); each

Y is independently selected from $-CR_4 = and - N =$;

wherein R_4 is selected from hydrogen, cyano, hydroxyl, $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ alkoxy, halo-substituted- $C_{1\text{-}6}$ alkyl and halo-substituted- $C_{1\text{-}6}$ alkoxy;

 R_1 is selected from halo, cyano, hydroxyl, $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ alkoxy, halo-substituted- $C_{1\text{-}}$ 6alkyl, halo-substituted- $C_{1\text{-}6}$ alkoxy and $-C(O)OR_4$; wherein R_4 is as described above selected from hydrogen, cyano, hydroxyl, $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ alkoxy, halo-substituted- $C_{1\text{-}6}$ 6alkyl and halo-substituted- $C_{1\text{-}6}$ 6alkoxy;

 R_2 is selected from C_{6-10} aryl, C_{5-10} heteroaryl, and C_{3-12} cycloalkyl and C_3 .

**sheterocycloalkyl*; wherein any aryl, heteroaryl, or cycloalkyl or heterocycloalkyl of R_2 is optionally substituted with 1 to 5 radicals independently selected from halo, hydroxy, cyano, nitro, C_{1-6} alkyl, C_{1-6} alkoxy, halo-substituted- C_{1-6} alkyl, halo-substituted- C_{1-6} alkoxy, $-C(O)NR_5R_5$, $-OR_5$, $-OC(O)R_5$, $-NR_5R_6$, $-C(O)R_5$ and $-NR_5C(O)R_5$;

wherein:

Application Serial No.: 10/589,087

 R_5 and R_6 are independently selected from hydrogen, $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ alkoxy, halo-substituted- $C_{1\text{-}6}$ alkyl, halo-substituted- $C_{1\text{-}6}$ alkoxy, $C_{6\text{-}10}$ aryl- $C_{0\text{-}4}$ alkyl, $C_{3\text{-}8}$ heteroaryl- $C_{0\text{-}4}$ alkyl, and $C_{3\text{-}12}$ cycloalkyl- $C_{0\text{-}4}$ alkyl and $C_{3\text{-}8}$ heterocycloalkyl- $C_{0\text{-}4}$ alkyl; or R_5 and R_6 together with the nitrogen atom to which R_5 and R_6 are attached form $C_{5\text{-}10}$ heteroaryl or $C_{3\text{-}8}$ heterocycloalkyl; wherein any aryl, heteroaryl, or cycloalkyl or heterocycloalkyl of R_5 or the combination of R_5 and R_6 is optionally substituted with 1 to 4 radicals independently selected from halo, hydroxy, cyano, nitro, $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ alkoxy, halo-substituted- $C_{1\text{-}6}$ alkyl and halo-substituted- $C_{1\text{-}6}$ alkoxy;

 $R_3 \text{ is selected from } C_{6\text{-}10} \text{aryl}, \underbrace{C_{5\text{-}10} \text{heteroaryl}, \text{ and } C_{3\text{-}12} \text{cycloalkyl } \text{and } C_3\text{.}}_{\text{8} \text{heterocycloalkyl}}; \text{ wherein any aryl, } \underbrace{\text{heteroaryl}, \text{ or }}_{\text{cycloalkyl}} \text{ or } \text{heterocycloalkyl} \text{ of } R_3 \text{ is substituted with } 1 \text{ to } 5 \text{ radicals independently selected from halo, } C_{1\text{-}6} \text{alkoxy, } \text{halo-substituted-} C_{1\text{-}6} \text{alkoxy, } \text{-OXC(O)NR}_7, \text{-OXC(O)NR}_7R_8, \text{-OXC(O)NR}_7XC(O)OR_8, \text{-OXC(O)NR}_7XOR_8, \text{-OXC(O)NR}_7XNR}_7R_8, \text{-OXC(O)NR}_7XS(O)_{0\text{-}2}R_8, \text{-OXC(O)NR}_7XNR}_7C(O)R_8, \text{-OXC(O)NR}_7XC(O)XC(O)OR_8, \text{-OXC(O)NR}_7R_9, \text{-OXC(O)OR}_7, \text{-OXOR}_7, \text{-OXR}_9, \text{-XR}_9, \text{-OXC(O)R}_9, \text{-OXS(O)}_{0\text{-}2}R_9 \text{ and -OXC(O)NR}_7CR}_7[C(O)R_8]_2; \text{ wherein:}$

- X is a selected from a bond and C_{1-6} alkylene wherein any methylene of X can optionally be replaced with a divalent radical selected from C(O), NR_7 , $S(O)_2$ and O;
- R_7 and R_8 are independently selected from hydrogen, cyano, $C_{1\text{-}6}$ alkyl, halo-substituted- $C_{1\text{-}6}$ alkyl, $C_{2\text{-}6}$ alkenyl and $C_{3\text{-}12}$ cycloalkyl- $C_{0\text{-}4}$ alkyl;
- R₉ is selected from C₆₋₁₀aryl-C₀₋₄alkyl, C₅₋₁₀heteroaryl-C₀₋₄alkyl, and C₃₋₁₂cycloalkyl-C₀₋₄alkyl and C₃₋₈heterocycloalkyl-C₀₋₄alkyl; wherein any alkyl of R₉ can have a hydrogen replaced with –C(O)OR₁₀; and any aryl, heteroaryl, or cycloalkyl or heterocycloalkyl of R₉ is optionally substituted with 1 to 4 radicals independently selected from halo, C₁₋₆alkyl, C₃₋₁₂cycloalkyl, halo-substituted-C₁₋₆alkyl, C₁₋₆alkoxy,

Molteni et al.

Application Serial No.: 10/589,087

halo-substituted- C_{1-6} alkoxy, -XC(O)OR₁₀, -XC(O)R₁₀, -XC(O)NR₁₀R₁₀, -XS(O)₀₋₂NR₁₀R₁₀ and -XS(O)₀₋₂R₁₀; wherein:

 R_{10} is independently selected from hydrogen and $C_{1\text{-}6}$ alkyl; and the pharmaceutically acceptable salts, hydrates, solvates and isomers thereof.

Claim 2. (Currently amended) The compound of claim 1 of Formula Ia:

$$(R_1)$$
 N
 R_2
 R_3
 (Ia)

in which

n is selected from 1, 2 and 3;

Y is selected from -CH = and -N =;

 R_1 is selected from halo, $C_{1\text{-}6}$ alkyl, and $-C(O)OR_4$; wherein R_4 is selected from hydrogen and $C_{1\text{-}6}$ alkyl;

 $R_2 \ is \ selected \ from \ C_{6\text{-}10} aryl, \ \underline{C_{5\text{-}10} heteroaryl,} \ \underline{and} \ C_{3\text{-}12} cycloalkyl \ \underline{and} \ \underline{C_{3\text{-}}} \\ \text{$_{8}$ heterocycloalkyl}; \ wherein \ any \ aryl, \ \underline{heteroaryl,} \ \underline{or} \ cycloalkyl \ \underline{or} \ heterocycloalkyl} \ of$

 R_2 is optionally substituted with 1 to 4 radicals independently selected from halo, hydroxy, C_{1-6} alkyl, halo-substituted- C_{1-6} alkyl and $-OC(O)R_5$; wherein R_5 is selected

from hydrogen and $C_{1\text{-}6}$ alkyl; and

 R_3 is selected from C_{6-10} aryl, C_{5-10} heteroaryl, and C_{3-12} cycloalkyl and C_{3-1}

₈heterocycloalkyl; wherein any aryl, heteroaryl, or cycloalkyl or heterocycloalkyl of R_3 is substituted with 1 to 5 radicals independently selected from halo, hydroxyl, C_{1-6} alkoxy, halo-substituted- C_{1-6} alkyl, halo-substituted- C_{1-6} alkoxy, -OXR₇,

 $-OXC(O)NR_7R_8$, $-OXC(O)NR_7XC(O)OR_8$, $-OXC(O)NR_7XOR_8$,

 $-OXC(O)NR_7XNR_7R_8, -OXC(O)NR_7XS(O)_{0-2}R_8, -OXC(O)NR_7XNR_7C(O)R_8, \\$

Molteni et al.

Application Serial No.: 10/589,087

 $-OXC(O)NR_7XC(O)XC(O)OR_8, -OXC(O)NR_7R_9, -OXC(O)OR_7, -OXOR_7, -OXR_9, \\ -XR_9, -OXC(O)R_9 \ and \ -OXC(O)NR_7CR_7[C(O)R_8]_2;$

X is a selected from a bond and C₁₋₆alkylene;

R₇ and R₈ are independently selected from hydrogen, cyano, C₁₋₆alkyl, halo-substituted-C₁₋₆alkyl, C₂₋₆alkenyl and C₃₋₁₂cycloalkyl-C₀₋₄alkyl;

 R_9 is selected from $C_{6\text{-}10}$ aryl- $C_{0\text{-}4}$ alkyl, $C_{5\text{-}10}$ heteroaryl- $C_{0\text{-}4}$ alkyl, and $C_{3\text{-}12}$ cycloalkyl- $C_{0\text{-}4}$ alkyl and $C_{3\text{-}8}$ heterocycloalkyl- $C_{0\text{-}4}$ alkyl; wherein any alkyl of R_9 can have a hydrogen replaced with $-C(O)OR_{10}$; and any aryl, heteroaryl, or cycloalkyl or heterocycloalkyl of R_9 is optionally substituted with 1 to 4 radicals independently selected from halo, $C_{1\text{-}6}$ alkyl, $C_{3\text{-}12}$ cycloalkyl, halo-substituted- $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ alkoxy, halo-substituted- $C_{1\text{-}6}$ alkoxy, $-XC(O)OR_{10}$, $-XC(O)R_{10}$, $-CR_{10}(NR_{10}R_{10}) = NOR_{10}$, $-XC(O)NR_{10}R_{10}$, $-XS(O)_{0\text{-}2}NR_{10}R_{10}$ and $-XS(O)_{0\text{-}2}R_{10}$;

wherein

wherein

 R_{10} is independently selected from hydrogen and C_{1-6} alkyl.

Claim 3. (Currently amended) The compound of claim 2 in which

- R₁ is selected from fluoro, chloro, methyl and -C(O)OCH₃; and
- R₂ is selected from phenyl, cyclohexyl, cyclopentyl, pyrazolyl, and naphthyl, benzo[1,3]dioxolyl, thienyl, furanyl and pyridinyl; wherein any aryl, heteroaryl or cycloalkyl of R₂ is optionally substituted with 1 to 4 radicals independently selected from fluoro, chloro, bromo, hydroxy, methyl, ethyl, propyl, t-butyl, amino, dimethylamino, methoxy, trifluoromethyl, trifluoromethoxy and -OC(O)CH₃.

Claim 4. (Currently amended) The compound of claim 3 in which R₃ is selected from phenyl, benzo[1,3]dioxolyl, pyridinyl, 2,2-difluoro-benzo[1,3]dioxol-5-yl and benzooxazolyl; wherein any aryl or heteroaryl of R₃-is substituted with 1 to 5 radicals independently selected from fluoro, chloro, bromo, methoxy, hydroxyl, difluoromethoxy, -OCH₂C(O)NH₂, -OCH₂C(O)OCH₃, -OCH₂C(O)NHCH₃, -OCH₂C(O)N(CH₃)₂, -R₉, -OR₉, -OCH₂R₉, -OCH₂C(O)R₉,

Application Serial No.: 10/589,087

- $-OCH_2C(O)NHR_9$, $-OCH_2C(O)N(CH_3)R_9$, $-OCH_2C(O)NHCH_2R_9$, $-OCH_2CN$, $-OCH_2C_2H_3$,
- $-OCH_2C_2H_4$, $-O(CH_2)_2OH$, $-OCH_2C(O)NH(CH_2)_2C(O)OC_2H_5$, $-OCH_2C(O)NH(CH_2)_2CH_2F$,
- -OCH₂C(O)NHCH₂CH₂F, -OCH₂C(O)NH(CH₂)₂C(O)OH,
- $-OCH_2C(O)NHCH(CH_2R_9)C(O)OC_2H_5$, $-OCH_2C(O)NHC(O)(CH_2)_2C(O)OCH_3$,
- -OCH₂C(O)NH(CH₂)₂NHC(O)CH₃, -OCH₂C(O)NHCH₂C(O)C₂H₅,
- $-OCH_2C(O)NH(CH_2)_2C(O)OC_4H_9, -OCH_2C(O)NHCH_2C(O)OC_2H_5,\\$
- $-OCH_2C(O)NHCH[C(O)OC_2H_5]_2$, $-S(O)_2CH_3$, $-OCH_2C(O)NHCH_2CF_3$,
- $-OCH_2C(O)NHCH_2C(O)(CH_2)_2C(O)OCH_3$, $-OCH_2C(O)N(CH_3)CH_2C(O)OCH_3$,
- $-OCH_2C(O)NH(CH_2)_3OC_2H_5$, $-OCH_2C(O)NH(CH_2)_3OCH(CH_3)_2$, $-OCH_2C(O)NH(CH_2)_2SCH_3$,
- -OCH₂C(O)NHCH₂CH(CH₃)₂, -OCH₂C(O)NHCH(CH₃)CH₂OH,
- -OCH₂C(O)NHCH₂CH(CH₃)C₂H₅, -OCH₂C(O)NHCH(CH₃)C(O)OC₂H₅,
- -OCH₂C(O)NHCH₂CH(CH₃)₂ and -OCH₂C(O)(CH₂)₃OCH(CH₃)₂; wherein

R₉ is phenyl, cyclopropyl-methyl, isoxazolyl, benzthiazolyl, furanyl, furanyl-methyl, tetrahydro furanyl, pyridinyl, 4 oxo 4,5 dihydro thiazol 2 yl, pyrazolyl, isothiazolyl, 1,3,4 thiadiazolyl, thiazolyl, phenethyl, morpholino, morpholino propyl, isoxazolyl methyl, pyrimidinyl, tetrahydro pyranyl, 2 oxo 2,3 dihydro pyrimidin 4 yl, piperazinyl, pyrrolyl, piperidinyl, pyrazinyl, imidazolyl, imidazolyl-propyl, benzo[1,3]dioxolyl, benzo[1,3]dioxolyl-propyl, 2-oxo pyrrolidin-1 yl and 2-oxo pyrrolidin-1 yl propyl; wherein any alkyl of R₉ can have a hydrogen replaced with – C(O)OC₂H₅; wherein any aryl, heteroaryl or heterocycloalkyl of R₉ is optionally substituted with 1 to 4 radicals independently selected from methyl, ethyl, cyclopropyl, methoxy, trifluoromethyl, –OC(O)CH₃, -COOH, -S(O)₂NH₂, -CH(NH₂)=NOH, –C(O)OC₂H₅, -CH₂C(O)OH, -CH₂C(O)OC₂H₅, -CH₂C(O)OCH₃, -C(O)NHCH₃ and –C(O)CH₃.

Claim 5. (Original) A pharmaceutical composition comprising a therapeutically effective amount of a compound of Claim 1 in combination with a pharmaceutically acceptable excipient.

Claim 6. (Withdrawn) A method for treating a disease or disorder in an animal in which modulation of LXR activity can prevent, inhibit or ameliorate the pathology and/or symptomatology of the disease, which method comprises administering to the animal a therapeutically effective amount of a compound of Claim 1.

Claim 7. (Withdrawn) The method of claim 6 wherein the diseases or disorder are selected from cardiovascular disease, diabetes, neurodegenerative diseases and inflammation.

Claim 8. (Cancelled).

Claim 9. (Withdrawn) A method for treating a disease or disorder in an animal in which modulation of LXR activity can prevent, inhibit or ameliorate the pathology and/or symptomatology of the disease, which method comprises administering to the animal a therapeutically effective amount of a compound of Claim 1.

Claim 10. (Withdrawn) The method of claim 9 further comprising administering a therapeutically effective amount of a compound of Claim 1 in combination with another therapeutically relevant agent.

Claim 11. (New) The compound of claim1 selected from: