

Today's Plan

- High Dimensional World
- OLS
- Lasso
- Standardization
- Tuning: choice of penalty
- Your time to shine!

High Dimensional Models

Linear model

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon} \tag{1}$$

where **Y** is $N \times 1$, **X** is $N \times p$ and β is $p \times 1$

- Usually we consider scenarios where N>>p and where asymptotics are derived for $N\to\infty$ such that $\frac{p}{N}\to 0$
- In high dimensional settings $\frac{p}{N}$ is non-negligible

OLS poor prediction

- Suppose our main aim is to predict Y given a set of covariates X
- If $\frac{p}{N}$ is non-negligible OLS will perform poorly as the (out of sample) prediction error is

$$E(\frac{1}{N}\sum_{i=1}^{N}(\mathbf{X}_{i}\hat{\boldsymbol{\beta}}-\mathbf{X}_{i}\boldsymbol{\beta})^{2})=\frac{\sigma^{2}p}{N}$$
(2)

where σ^2 is the variance of the IID error term ϵ

- NB we have moved to a machine learning world where prediction rather than causality is the primary aim
- This assumes that OLS is defined. For p > N the rank condition fails since $rank(\mathbf{X}'\mathbf{X}) = N < p$

Lasso

- Rescue comes from believing sparsity applies i.e. only a subset J < p of β are non-zero
- The Lasso estimator performs variable selection and regularisation

$$\hat{\boldsymbol{\beta}}(\lambda) = \underset{b \in \mathbb{R}^p}{\operatorname{argmin}} \frac{1}{N} \sum_{i=1}^{N} (Y_i - \mathbf{X}_i b)^2 + \lambda \mid\mid b \mid\mid_1$$
 (3)

where
$$||b||_1 = \sum_{j=1}^{p} |b_j|$$
 (4)

• You can implement the Lasso for given penalty levels λ using the sklearn.linear_model.Lasso package (where α is the penalty level and is divided by 2 - remember to divide your λ s by 2!)

Standardize Data

- Lasso is sensitive to the scaling of variables. Variables with bigger standard deviations, say, because they are measured in 1DKK rather than 1,000DKK will be penalised more
- To avoid this unintended effect on variable selection performed by Lasso we standardize the regressors
- We bring them all on the same scale by

$$\tilde{\mathbf{X}} = \frac{\mathbf{X} - \mathbf{X}}{\sigma_{\mathcal{X}}} \tag{5}$$

where **X** and σ_X are the mean and standard deviation of **X**, respectively

• What does this imply for the interpretation of β?

Tuning: Penalty Selection

- ullet We need to pick a penalty level λ which will be key for variable selection performed by Lasso
- Methods for selecting λ we will consider include
 - Cross Validation (CV)
 - Bickel-Ritov-Tsybakov Rule (BRT)
 - Belloni-Chen-Chernozhukov-Hansen Rule (BCCH)

Cross Validation

- Divides sample into K subsamples of equal size
- For each subsample k = 1, ... K
 - CV uses subsample k for validation and the remaining subsamples for training
 - Computes (mis)fit $F_k(\lambda) = \frac{1}{N-M} \sum_{i=M+1}^N (Y_i \mathbf{X}_i \hat{\boldsymbol{\beta}}(\lambda))^2$ where M is the number of observations in each subsample k
- The CV penalty level is then

$$\hat{\lambda}^{CV} = \underset{\lambda}{\operatorname{argmin}} \sum_{k=1}^{K} F_k(\lambda) \tag{6}$$

Implementation: sklearn.linear_models.LassoCV(cv = K)
 where K is the number of folds

Bickel-Ritov-Tsybakov Rule (BRT)

- BRT relies on two conditions:
 - A) ϵ is independent of **X** and homoskedastic
 - B) variance σ^2 of ϵ is known
- \bullet To compute $\hat{\lambda}^{BRT}$ we
 - 1) choose $lpha \in (0,1)$, usually lpha = 0.05 the prob of being inside/outside the error
 - 2) choose c>1, typically c=1.1 defines the upper bound of the error how high an error you are willing to accept
 - 3) use

$$\hat{\lambda}^{BRT} = \frac{2c\sigma}{\sqrt{N}} \Phi^{-1} \left(1 - \frac{\alpha}{2p}\right) \sqrt{\max_{1 \le j \le p} \frac{1}{N} \sum_{i=1}^{N} \mathbf{X}_{i}^{2}} \tag{7}$$

where Φ is the standard normal CDF

everything has variance 1 and drops out

• What happens to this formula when we standardize our **X**?

Belloni-Chen-Chernozhukov-Hansen Rule (BCCH)

- BCCH allows heteroskedasticity and requires no preliminary knowledge of the variance of the error terms
- To compute $\hat{\lambda}^{BCCH}$ we
 - 1) choose $\alpha \in (0,1)$ and c as for BRT
 - 2) obtain pilot Lasso $\hat{\beta}(\hat{\lambda}^{pilot}) = \hat{\beta}^{pilot}$ where

$$\hat{\lambda}^{pilot} = \frac{2c}{\sqrt{N}} \Phi^{-1} (1 - \frac{\alpha}{2p}) \sqrt{\max_{1 \le j \le p} \frac{1}{N} \sum_{i=1}^{N} (Y_i - \bar{Y})^2 \mathbf{X}_i^2}$$
(8)

3) obtain residuals $\hat{\epsilon}_i = Y_i - \mathbf{X}_i \hat{\boldsymbol{\beta}}^{pilot}$ from pilot-Lasso and compute penalty:

$$\hat{\lambda}^{BCCH} = \frac{2c}{\sqrt{N}} \Phi^{-1} (1 - \frac{\alpha}{2p}) \sqrt{\max_{1 \le j \le p} \frac{1}{N} \sum_{i=1}^{N} \hat{\epsilon}_i \mathbf{X}_i^2}$$
(9)

Your time to shine!

- Solve the problem set
- Tip #1: take a look at the documentations for these functions: sklearn.linear_model.Lasso, sklearn.linear_model.LassoCV and sklearn.preprocessing.PolynomialFeatures
- ullet Tip #2: these functions are also implemented in Jesper's slides so if you need more info you can look there
- Features such as .predict_, .alpha_ and .coef_ are especially useful when e.g. computing residuals