Прошу обратить внимание, что подробные выкладки и объяснения даются на лекции, в презентациях их не будет.

В дальнейшем домашнее задание в письменном виде выкладываться не будет.

Задачи:

1. Если допустить, что ошибка $\varepsilon = y - f(\alpha, x)$ имеет нормальное распределение $N(0, \sigma^2 I)$, то параметры $\hat{\alpha}$, полученные с помощью МНК, являются оценками максимального правдоподобия (ОМП) истинных параметров α (см. презентацию).

Докажите, что если ошибка имеет распределение Лапласа $f(z) = \frac{\lambda}{2} e^{-\lambda|z|}, \lambda > 0$, то параметры $\hat{\alpha}$, полученные с помощью минимизации $MAE = \frac{1}{l} \sum |y_i - f(\alpha, x_i)|$, являются оценками максимального правдоподобия (ОМП) истинных параметров α .

2. Предполагая, что для обучающей выборки выполнены определенные предположения (слайд "Статистические свойства МНК-оценок"), докажите, что ковариационная матрица для $\hat{\alpha}$ равна $\sigma^2(F^TF)^{-1}$.