

FLOW CHART

- Data Collection: Gather all relevant data, including images and metadata.
- Data Preprocessing: Clean and normalize data to ensure it is suitable for analysis.
- Feature Engineering: Extract and combine features from both images and metadata.
- Clustering: Apply clustering algorithms to segment the data into similar groups.
- Cluster-Specific Regression: Develop and train a unique regression model for each cluster.
- Model Integration and Ensemble: Combine the predictions from each cluster-specific model using ensemble techniques.
- Evaluate and Deploy: Deploy the final model for predicting Pawpularity scores on new data.

03 Feature Engineering

- In feature engineering, I want to employ pretrained neural networks like ResNet-50 to extract high-level visual features from the images.
- These features are then combined with the metadata to create a feature set that captures both visual and contextual information.
- If I have more extra time, I will try to use another pre-trained model like VGG-16.

04 Clustering

- Using the combined feature set, I want to apply clustering algorithms K-means or hierarchical clustering to segment the data into meaningful groups.
- This segmentation is based on the similarity of features within the data.
- Also, we can determine the optimal number of clusters using methods like the Elbow method .

05 Cluster-Specific Regression Models

- For each cluster, we develop tailored regression models.
- Depending on the data characteristics of each cluster, we might use models ranging from Linear Regression to more complex ones.
- This allows us to specifically address the unique aspects of different groups within our dataset.

06 Model Integration and Ensemble

- After developing models for each cluster, we integrate their outputs using an ensemble method.
- One effective technique is stacking.
- Where a second-level model learns how to best combine predictions from all clusterspecific models, thereby enhancing overall prediction accuracy.

O6 Evaluate and Deploy

$$RMSE = \sqrt{\frac{\sum_{n=1}^{N} (\widehat{y_n} - y_n)^2}{N}}$$
 $\widehat{y_n}$: Predictions y_n : Label

Evaluation: Root Mean Square Error (RMSE)

FLOW CHART

Finish by Date	Name
Aug 2	Feature Engineering
Aug 2	Clustering
Aug 9	Cluster-Specific Regression
Aug 16	Model Integratoion
Aug 18	Evaluate and Deploy

Final Date: 8/19

