Introduction to R, module06

Steve Simon

Introduction

```
suppressMessages(
    suppressWarnings(
        library(tidyverse)))
R.version.string
## [1] "R version 4.1.1 (2021-08-10)"
Sys.Date()
## [1] "2022-05-09"
```

What is longitudinal data

- Definition
 - Measurements taken at different times
- Closely related datasets
 - Crossover
 - Pre-test/post-test
 - Repeated measures
 - Split plot

Two formats for longitudinal data

- Short and fat format
 - Many columns
 - Not so many rows
- Tall and thin format
 - Not so many columns
 - Many rows

Example: effect of surface and vision on balance

- Repeated measures experiment
 - Vision has 3 levels
 - Eyes open, eyes closed, dome
 - Surface has 2 levels
 - Normal or foam
 - Two replications of each format
 - 40 subjects, 3*2*2=12 measurements

Short and fat example

3 ww	w.statsci.o	rg/data/o	z/ctsibrm	× +											_		×
\leftarrow \rightarrow	C	① Not	secure	statsci.org	g/data/d	oz/ctsibrn	n.txt								☆ 🔼	S	:
ubject	Sex	Age	Height	Weight	NO1	NO2	NC1	NC2	ND1	ND2	F01	F02	FC1	FC2	FD1	FD2	
	male	22	176	68.2	1	1	2	2	1	2	2	2	2	2	2	2	
	male	22	181	67.6	1	1	2	2	2	2	2	2	3	3	3	3	
	male	22	175.5	72	2	2	2	2	2	2	2	2	3	3	2	3	
	male	21	180	73.2	1	2	2	2	2	2	2	2	3	3	3	3	
	female	20	166	63.8	1	2	2	2	3	2	2	2	3	3	3	3	
	male	18	177	78.8	1	1	1	1	1	2	2	2	2	2	2	2	
	male	29	183	86.4	1	1	2	2	2	2	2	2	2	2	2	2	
	female	22	150	44.6	1	1	2	2	2	2	2	2	3	3	2	2	
	female	29	154	57.8	1	1	2	2	2	2	2	2	3	3	3	3	
0	male	31	176.5	80.8	1	1	2	2	1	1	2	2	2	2	2	2	
1	male	24	176	91	1	1	2	2	2	2	2	2	3	3	2	2	
2	male	33	184	89.8	1	1	2	2	2	2	2	2	2	2	3	2	
3	male	18	187	85	1	1	2	2	2	2	2	2	3	3	3	2	
4	female	34	168	54.4	2	2	2	2	2	2	2	2	3	3	3	3	
5	female	27	173	60.8	1	1	2	2	2	2	2	2	3	3	3	3	
6	female	20	142	44.2	1	1	1	2	1	1	2	2	2	2	2	2	
7	male	36	183	88.6	1	1	1	1	1	1	2	2	2	3	3	2	
.8	female	34	170	67.8	1	1	2	2	2	2	2	2	2	2	2	2	
9	male	18	190	78.6	1	1	1	2	2	2	2	2	2	2	2	2	
0	male	30	168.5	64.2	1	1	1	1	2	2	2	2	3	3	3	3	
1	female	19	167.5	69.4	1	1	2	2	1	1	2	2	2	2	2	2	
2	female	20	167	50	1	2	2	2	2	2	2	2	3	3	3	3	
3	male	36	184	102.4	1	1	2	2	2	2	2	2	2	2	2	2	
4	male	31	182.5	83	1	1	2	2	2	2	2	2	3	2	3	2	

Longitudinal data stored one row per subject

Tall and thin example

Longitudinal data stores with multiple rows per patient

Which format is better?

- Short and fat advantages:
 - easy to compute change scores
 - easy to examine correlations over time
 - easy to insure consistency of demographic data
- Short and fat disadvantages:
 - hard to read because of the excessive need to scroll left and right

Which format is better?

- Tall and thin advantages:
 - easy to plot longitudinal trends
 - less need for missing value codes
 - easy to read because most scrolling is up and down
- Tall and thin disadvantages
 - hard to maintain consistency of demographic variables

Break #1

- What have you learned
 - Two formats for longitudinal data
- What is coming next
 - Converting to tall and thin format

Energy dataset (short and fat format)

- Completely randomized block design
 - Blocks are subjects (8 total)
 - Treatment are exercise
 - Running, walking, cycling
 - There are 3 measurements per subject

Energy dataset (short and fat format)

Description

An experiment is conducted to compare the energy requirements of three physical activities: running, walking and bicycle riding. Eight subjects are asked to run, walk and bicycle a measured distance, and the number of kilocalories expended per kilometre is determined for each subject during each activity. The activities are run in random order with time for recovery between activities. Each activity was monitored exactly once for each individual.

Energy dataset (short and fat format)

Import energy dataset (short and fat format)

```
fi <- "../data/energy.txt"
en <- read_table(fi, col_types="nnnn")</pre>
```

Energy dataset, glimpse

```
glimpse(en)
## Rows: 8
## Columns: 4
## $ Subject <dbl> 1, 2, 3, 4, 5, 6, 7, 8
## $ Running <dbl> 1.4, 1.5, 1.8, 1.7, 1.~
## $ Walking <dbl> 1.1, 1.2, 1.3, 1.3, 0.~
## $ Cycling <dbl> 0.7, 0.8, 0.7, 0.8, 0.~
```

Converting to tall and thin, code

Converting to tall and thin, output

```
glimpse(en_tall)
## Rows: 24
## Columns: 3
## $ Subject <dbl> 1, 1, 1, 2, 2, 2, 3, ~
## $ activity <chr> "Running", "Walking",~
## $ energy <dbl> 1.4, 1.1, 0.7, 1.5, 1~
```

Lineplot

```
activity_lineplot <- ggplot(en_tall,
   aes(x=activity,
        y=energy,
        group=Subject)) +
      geom_line()

ggsave(
   "../images/activity-by-energy.png",
   activity lineplot, width=4, height=4)</pre>
```

Lineplot

Plot showing activity levels by activity

Earthquake dataset

- Longitudinal study of stress
 - Study started two weeks prior to major earthquake (Week0)
 - Researchers added extra stress measurments
 - Week3, Week6, Week9, Week12
 - There are 25 subjects, 5 measurements

Earthquake dataset

Screenshot of data dictionary website

Earthquake dataset

⊗ w	ww.statsci.	org/data/g	eneral/lor	× +		
← -) G	① Not	secure	statsci.org/data/general/lomaprie.txt	☆ 🔼	S
Week0	Week3	Week6	Week9	Week12		
6	10	8	4	6		
2	4	8	5	6		
2	4	8	5	6		
4	5	8	10	7		
4	7	9	7	12		
5	7	9	7	7		
2	9	11	8	8		
6	9	11	8	8		
13	10	11	8	9		
7	3	11	8	11		
7	12	8	8	11		
7	10	11	9	11		
9	10	13	10	11		
9	11	12	6	12		
11	11	12	19	7		
11	12	12	12	19		
12	12	12	13	14		
12	12	13	13	15		
7	12	13	13	15		
13	10	13	14	15		
13	14	11	15	16		
13	14	14	17	16		
13	14	15	11	18		
14	14	15	20	14		
15	17	16	21	19		

View of the earthquake dataset

Read in the earthquake data

```
fn <- "../data/quake.txt"
qu <- read_table(fn, col_types="nnnnn")</pre>
```

Check structure of the earthquake data

Convert to tall and thin format

```
qu$id <- 1:25
qu_tall <- pivot_longer(qu,
    contains("Week"),
    names_to="time",
    values_to="depression")</pre>
```

Display new structure

```
depression_boxplot01 <-
    ggplot(
        qu_tall,
        aes(x=time, y=depression)) +
        geom_boxplot()

ggsave(
    "../images/time-by-depression01.png",
        depression boxplot01, width=4, height=4)</pre>
```


Boxplots showing depression levels over time

```
qu_tall$time <- case_when(
   qu_tall$time=="Week0"~"week00",
   qu_tall$time=="Week3"~"week03",
   qu_tall$time=="Week6"~"week06",
   qu_tall$time=="Week9"~"week09",
   qu_tall$time=="Week12"~"week12")</pre>
```

Re-drawn boxplot

```
depression_boxplot02 <-
    ggplot(qu_tall,
        aes(x=time, y=depression)) +
    geom_boxplot()
ggsave("../images/time-by-
depression02.png",
    depression_boxplot02, width=4, height=4)</pre>
```


Modified boxplots showing depression levels over time

Break #2

- What have you learned
 - Converting to tall and thin format
- What is coming next
 - Converting to short and fat format

Backpain dataset

- Matched case-control study
 - Study of 11 runners with back pain
 - Two control groups
 - Runners without pain, Sedentary volunteers
 - Matched by age, height, weight
 - Outcome variables
 - Flexibility and length of various muscle groups
 - Also collected covariates
 - Type of running, number of years running
 - Our focus: quality of matching
 - Convert to one row per matched triple

Backpain overview

Data dictionary for backpain dataset

Backpain dataset

```
C:\Users\steve\Documents\git\introduction-to-r\data\backpain.csv - Notepad...
                                                                                     X
File Edit Search View Encoding Language Settings Tools Macro Run Plugins Window ?
🔚 backpain.csv 🔀
      "Subject", "Group", "Match", "Age", "Height", "Weight"
     16, "NoPain", 1, 19, 181, 75
     1, "Pain", 1, 22, 180, 74
      30, "Sedentary", 1, 21, 185, 75
     21, "NoPain", 2, 18, 185, 74
     3, "Pain", 2, 17, 182, 70
      25, "Sedentary", 2, 19, 183, 69
     13, "NoPain", 3, 17, 180, 79
      2, "Pain", 3, 17, 182, 65
  10 29, "Sedentary", 3, 18, 183, 63
     17, "NoPain", 4, 35, 178, 63
  12 6, "Pain", 4, 32, 181, 71
  13 28, "Sedentary", 4, 31, 178, 68
 14 14, "NoPain", 5, 25, 185, 73
length: 8{ Ln: 1 Col: 1 Sel: 0 | 0
                                               Windows (CR LF)
                                                                UTF-8
                                                                                  INS
```

Partial view of backpain raw data

Reading in the backpain dataset

```
fn <- "../data/backpain.csv"
pain <- read_csv(fn, col_types="ncnnn")</pre>
```

Display

```
glimpse(pain)
## Rows: 33
## Columns: 6
## $ Subject <dbl> 16, 1, 30, 21, 3, 25, ~
## $ Group <chr> "NoPain", "Pain", "Sed~
## $ Match
             <dbl> 1, 1, 1, 2, 2, 2, 3, 3~
## $ Age <dbl> 19, 22, 21, 18, 17, 19~
## $ Height <dbl> 181, 180, 185, 185, 18~
## $ Weight \langle dbl \rangle 75, 74, 75, 74, 70, 69~
```

Converting to short and fat

```
pain_fat <- pivot_wider(pain,
  id_cols=Match,
  names_from=Group,
  values_from=c(Age, Height, Weight))</pre>
```

Display new structure

```
glimpse(pain fat)
## Rows: 11
## Columns: 10
                     <dbl> 1, 2, 3, 4, 5~
## $ Match
                     <dbl> 19, 18, 17, 3~
## $ Age NoPain
                     <dbl> 22, 17, 17, 3~
## $ Age Pain
## $ Age Sedentary <dbl> 21, 19, 18, 3~
## $ Height NoPain <dbl> 181, 185, 180~
                <dbl> 180, 182, 182~
## $ Height Pain
```

Remaining variables

```
names (pain_fat) [7:10]
## [1] "Height_Sedentary"
## [2] "Weight_NoPain"
## [3] "Weight_Pain"
## [4] "Weight_Sedentary"
```

Backpain plot code (1 of 3)

```
age_range <- range(c(
  pain_fat$Age_Pain,
  pain_fat$Age_NoPain,
  pain_fat$Age_Sedentary))</pre>
```

Backpain plot code (2 of 3)

```
agreement_age <- ggplot(pain_fat,
    aes(x=Age_Pain,
        y=Age_NoPain,
        label=Match)) +
    geom_text(color="darkgreen") +
    geom_text(aes(y=Age_Sedentary),
color="red") +
    ylab("Age_Sedentary (red) and
Age NoPain (green)")</pre>
```

Backpain plot code (3 of 3)

```
agreement age <-
  agreement age +
    expand limits (
      x=age range, y=age range) +
    geom segment (
      x=age range[1], x=nd=age range[2],
      y=age range[1], yend=age range[2])
ggsave (
  "../images/agreement age.png",
  agreement age, width=4, height=4)
```

Plots of agreement

Plot showing agreement in ages

Break #3

- What have you learned
 - Converting to short and fat format
- What is coming next
 - Separating into time constant/time varying tables

One last recommendation

- Both formats have problems
 - Tall and thin: repetition of demographic information
 - Short and fat: poor handling of missing value
- Ideal solution: normalization
 - Put time constant data in first table
 - Put time varying data in second table

Balance data set: Short and fat format

www.statsci.org/data/oz/ctsibrm x +															- 🗆 ×			
(->	C	① Not s	secure	statsci.org	g/data/c	oz/ctsibrn	n.txt								☆ 🔼	S	:	
ubject	Sex	Age	Height	Weight	NO1	NO2	NC1	NC2	ND1	ND2	F01	F02	FC1	FC2	FD1	FD2		
L	male	22	176	68.2	1	1	2	2	1	2	2	2	2	2	2	2		
2	male	22	181	67.6	1	1	2	2	2	2	2	2	3	3	3	3		
;	male	22	175.5	72	2	2	2	2	2	2	2	2	3	3	2	3		
1	male	21	180	73.2	1	2	2	2	2	2	2	2	3	3	3	3		
,	female	20	166	63.8	1	2	2	2	3	2	2	2	3	3	3	3		
i	male	18	177	78.8	1	1	1	1	1	2	2	2	2	2	2	2		
	male	29	183	86.4	1	1	2	2	2	2	2	2	2	2	2	2		
	female	22	150	44.6	1	1	2	2	2	2	2	2	3	3	2	2		
	female	29	154	57.8	1	1	2	2	2	2	2	2	3	3	3	3		
0	male	31	176.5	80.8	1	1	2	2	1	1	2	2	2	2	2	2		
1	male	24	176	91	1	1	2	2	2	2	2	2	3	3	2	2		
2	male	33	184	89.8	1	1	2	2	2	2	2	2	2	2	3	2		
3	male	18	187	85	1	1	2	2	2	2	2	2	3	3	3	2		
4	female	34	168	54.4	2	2	2	2	2	2	2	2	3	3	3	3		
5	female	27	173	60.8	1	1	2	2	2	2	2	2	3	3	3	3		
6	female	20	142	44.2	1	1	1	2	1	1	2	2	2	2	2	2		
7	male	36	183	88.6	1	1	1	1	1	1	2	2	2	3	3	2		
8	female	34	170	67.8	1	1	2	2	2	2	2	2	2	2	2	2		
9	male	18	190	78.6	1	1	1	2	2	2	2	2	2	2	2	2		
Э	male	30	168.5	64.2	1	1	1	1	2	2	2	2	3	3	3	3		
1	female	19	167.5	69.4	1	1	2	2	1	1	2	2	2	2	2	2		
2	female	20	167	50	1	2	2	2	2	2	2	2	3	3	3	3		
3	male	36	184	102.4	1	1	2	2	2	2	2	2	2	2	2	2		
4	male	31	182.5	83	1	1	2	2	2	2	2	2	3	2	3	2		

Longitudinal data stored one row per subject

Tall and thin example

Longitudinal data stores with multiple rows per patient

Read balance in short and fat structure

Display balance short and fat structure

```
glimpse(short and fat data)
## Rows: 40
## Columns: 17
## $ Subject <dbl> 1, 2, 3, 4, 5, 6, 7, 8~
## $ Sex <chr> "male", "male", "male"~
## $ Age <dbl> 22, 22, 21, 20, 18~
## $ Height <dbl> 176.0, 181.0, 175.5, 1~
## $ Weight <dbl> 68.2, 67.6, 72.0, 73.2~
## $ NO1 <dbl> 1, 1, 2, 1, 1, 1, 1~
```

Additional variables

```
names(short_and_fat_data)[7:17]
## [1] "NO2" "NC1" "NC2" "ND1" "ND2"
"FO1"
## [7] "FO2" "FC1" "FC2" "FD1" "FD2"
```

Create time constant data

```
time_constant <- c(
    "Subject",
    "Sex",
    "Age",
    "Height",
    "Weight")
time_constant_data <-
    short_and_fat_data[, time_constant]</pre>
```

Structure of time constant data

Read balance in tall and thin format

```
fn <- "../data/balance2.txt"
tall_and_thin_data <-
   read_table(fn, col_types="ncnnnccn")</pre>
```

Balance data, tall and thing structure

```
glimpse(tall and thin data)
## Rows: 480
## Columns: 8
## $ Subject <dbl> 1, 1, 1, 1, 1, 1, 1~
## $ Sex <chr> "male", "male", "male"~
## $ Age <dbl> 22, 22, 22, 22, 22~
## $ Height <dbl> 176, 176, 176, 176, 17~
## $ Weight <dbl> 68.2, 68.2, 68.2, 68.2~
## $ Surface <chr> "norm", "norm", "norm"~
```

Additional variables

```
names(tall_and_thin_data)[7:8]
## [1] "Vision" "CTSIB"
```

Create time varying table

```
time_variable <- c(
    "Subject",
    "Surface",
    "Vision",
    "CTSIB")
time_variable_data <-
    tall_and_thin_data[ , time_variable]</pre>
```

Display structure of time varying table

Summary

- Two formats
 - Short and fat
 - Tall and thin
- pivot_longer
 - converts to tall and thin
- pivot_wider
 - converts to short and fat
- Alternative approach
 - Time constant table
 - Time variable table