- 10. E. Asmus, Z. analyt. Chem., 178, 104 (1960).
- A.P. Borisova, I.A. Savich, Yu. V. Granovskii, L.N. Komissarova, and V.I. Spitsyn, Vestnik Moskov Univ., Ser. 2, No. 3, 51 (1965).
- V.V.Nalimov and N.A.Chernova, "Statisticheskie Metody Planirovaniya Ekstremal'nykh Eksperimentov" (Statistical Methods of Planning Extremal Experiments), Izd.Nauka, Moscow, 1965.
- L. Sommer, I. Kučerová, H. Procházková, and M. Hniličková, Publ. Fac. Sci. Univ. J. E. Purkyne, Brno, No. 464, 249-277.
- I. P. Alimarin, T. A. Belyavskaya, and G. D. Brykina, Vestnik Moskov. Univ., Ser. 2, No. 5, 69 (1965).

Moscow State University

Received 30th January 1967

U.D.C. 543.422+546.24

Spectrophotometric Study of Equilibria in Hydrochloric Acid Solutions of Tellurium(IV)

L.V.Shikheeva

Tellurium(IV) in strongly acidic solutions forms chlorocomplexes of the composition HTeCl, 5H2O (an unstable yellow compound)¹, salts with composition MTeCl₅ (where M* = Rb*, K*, or Cs*)², and also salts with organic bases3. All these compounds are yellow and have low stability. Compounds containing the $[TeCl_6]^{2-}$ ion are more stable. The salts A_2TeCl_6 (where $A_3=K^+$, NH_4^+). Rb*, Cs*, or the cation of an organic base) separate as yellow crystals from concentrated hydrochloric acid solutions when the corresponding chloride ACl is added4. Iofa and coworkers compared the absorption spectra of organic extracts containing Te^N chloro-complexes and aqueous hydrochloric acid solutions of TeW, and showed that the latter contain a number of complexes, chiefly $[TeCl_6]^{2-}$ $(\lambda_{max} = 372 \pm 4 \text{ nm})$ and $[TeCl_5(H_2O)]^- (\lambda_{max} = 268 \pm 2 \text{ nm})^5$. By analogy with the complexes of antimony and tin, these authors assumed the existence of three tetrachloro-complexes with compositions [TeCl₄(H₂O)₂], [Te(OH)Cl₄(H₂O)], and [Te(OH)₂Cl₄]². Mizumachi studied ion exchange from mixed LiCl-HCl solutions, and concluded that anionic chloro-complexes of tellurium are present in solutions with a total ionic strength of 10 M. At lower ionic strength (2.0-4.0 M) the solutions contain hydroxo-complexes.

The present paper puts forward some ideas regarding the composition of the complexes absorbing in the range 340-440 nm, and gives the formation constants for these complexes, the formation constant of $[TeOCl_4]^{2-}$, and the equilibrium constant characterising the conversion of $[TeOCl_4]^{2-}$ into $[TeCl_4(H_2O)_2]$.

EXPERIMENTAL

The absorption spectra were recorded on an SF-4 spectrophotometer. The solutions for the photometric studies contained 2.5×10^{-4} M, 5.0×10^{-4} M, and 1.0×10^{-3} M Te^N and different concentrations of hydrochloric acid $(5.0 \times 10.0$ M). The starting material for the preparation of the solutions was metallic tellurium with purity 99.99%, The spectra of some of the solutions are given in Figs. 1 and 6. The dependence of the optical density on the HCl concentration, and the mean molar absorptivities ϵ are given in Table 1.

Analysis of the absorption spectra (Fig. 1) shows that at a constant tellurium concentration the optical density increases with increase in the HCl concentration, but does not reach a constant value in any range of HCl concentrations; this is possible if the chloro-complexes of tellurium have a low stability. Apparently at any HCl concentration the solution contains not less than two tellurium compounds. If the light absorption is due to the highest complex or, for two absorbing species, if the higher complex has a larger molar absorptivity, the latter can be found by Yatsimirskii's method, according to which ϵ for

Figure 1. Absorption spectra of solutions of tellurium(IV) in hydrochloric acid with varying concentration. $c_{\text{Te}} = 2.5 \times 10^{-4} \,\text{M}; \ c_{\text{HCl}} \,(\text{M}): \ 1) \, 10.0, \, 2) \, 9.0, \, 3) \, 8.0, \, 4) \, 7.0, \, 5) \, 6.0, \, 6) \, 5.0.$

Table 1. Optical density and mean molar absorptivity of solutions of tellurium(IV) in hydrochloric	c acid.
--	---------

		,		Op.		,,,,,,,																		
ig.	_		855 s	nm ·	360	nm	365	nm	870	nm	375	nm	880 1	nm	385 n	m I	390 r	ım	395 na		400 nr	n	410 m	n .
HCI 80	5	O,H.	Q			1.	Q	1.	Q	1.	Q	1	Q		a	1=	q		a	1.	a	1.	A	1=
10.0	201	0.292	1.373	1492	D.471	1884	0.555	2220	0.526	2504	0.660	2640	0.645	2580	0.579	2316	0.485	1932	0.393	1572	0.318	1272	0.197	788
9.5	161	0.332	1.358	1420	A 452	1910	∩ 537	9148	IO 607	174781	n.640	19560	10.639	19520	n.568	122/2	NJ.4/D	1904	10.380	1 1520	10.500	11234	10.132	700
9.0	123	0.368	0.340	1360	0.429	1716	0.512	2048	10.583	123321	0.618	12472	10.613	12452	0.550	2200	0.464	1856	0.373	1492	10.301	11204	10.100	/47
8,5	95.7	0.406		1200	0 400	1636	n ∡on	1960	M.553	199191	0.586	19344	i0.587	12348	10.593	12092	10.441	1764	10.360	11440	10,288	11102	10.101	124
8.0		0.454		1149	0 354	1416	0.426	1704	0.483	1932	0.519	2076	D.513	2052	0.455	1820	10.390	1560	10.316	l 1264	0.256	1024	0,159	
7.5		0.500		940	0.290	1160	0.349	1396	0.395	1580	0.430	1720	10.429	1716	0.380	11520	Ю.321	1284	0.266	1064	10.216	004	10.134	
7.0	42.4	0.553	1.185		0.220	880	0.260	1040	0.296	1184	0.320	1280	0.320	1280	0.282	1128	0.243	9/2	0.201	804	0.102	040	0.097	
6.5*	32.5	0.609	_	_	_		- 1		0.375		0.425		0.423		0.373		0.332		0.280	560			0,112	224
6.0	25.0	0.658	0.090	360	0.100	400	0.110		0.124		0.137		0.138		0.122		0.103		0.086		0.071			_
5.5**	18,7	0.695	_	_	_		. —	-	0.202	202	0.212	212	0.213	213	D.192	192	0.162	162	0.134	134	0.107	1 107	I -	I —

^{*} Optical density measured for a solution with concentration $5\times 10^{-4}M$. ** Optical density measured for a solution with concentration 1×10^{-3} M.

the higher complex is determined graphically by extrapolating the value of the mean molar absorptivity $\overline{\epsilon}=f(1/a_{\rm Cl})$ for $a_{\rm Cl}\to\infty$ at constant tellurium concentration ($\overline{\epsilon}=D/c_{\rm total}$, where $c_{\rm total}$ is the total concentration of tellurium in the solution).

Since hydrochloric acid solutions of Te^W contain various complexes, it is necessary, in the determination of the molar absorptivity of the complex $[TeCl_e]^{2-}(\epsilon_e)$, to examine the equilibria in the most concentrated HCl solutions. In this instance it is possible to take into account only the two highest complexes, for which the equilibrium can be represented by the following equations

$$H[TeCl5] + HCl \Rightarrow H2[TeCl6],$$

$$[TeCl5] - + Cl \Rightarrow [TeCl6]2-.$$
(1)

or, with allowance for the participation of water,

$$H[TeCl_5(H_2O)] + HCl \Rightarrow H_2[TeCl_5] + H_2O$$
,

$$[TeCl_5(H_2O)]^- + Cl^- \Rightarrow [TeCl_6]^{2-} + H_2O.$$
 (2)

The equilibrium constant (formation constant) in the last instance has the form

$$K_{\bullet} = \frac{[\text{TeCl}_{\bullet}^{2-}] \cdot [\text{H}_{2}\text{O}]}{[\text{TeCl}_{\bullet}(\text{H}_{2}\text{O})^{-}] \cdot [\text{Cl}^{-}]},$$
(3)

where the activity of each ion can be expressed in terms of its concentration and activity coefficient:

$$[TeCle^{2-}] = fece,$$

$$[TeCl_5(H_2O)^-] = f_5c_5, [Cl^-] = a_{Cl}^- = f_{\pm}c_{Cl}^-.$$

The concentration of tellurium-containing species is small, and at a high ionic strength created by hydrochloric acid the activity coefficients of these species are probably close to one another. In this instance the ratio of the activities of the tellurium-containing complexes can be replaced by the ratio of their analytical concentrations. The activity of the chloride ion (and subsequently the hydrogen ion activity, which is equal to the chloride ion activity) was calculated from the molarity of the HCl and its mean activity coefficients, taken from the data of Robinson and Stokes?. The activity of water was calculated from the vapour pressure of water above hydrochloric acid solutions.

With allowance for the foregoing, Eqn. (3) can be written in the form

$$K_6 = \frac{c_6 \cdot a_{\mathrm{H,0}}}{c_5 \cdot a_{\mathrm{Cl}}} \cdot \tag{4}$$

The optical density for one absorbing species is given by the equation

$$D = s_{\text{core}}$$
 (5)

The total concentration of tellurium in highly concentrated solutions can be taken as the sum of the concentrations of the two complexes

$$c_{\text{total}} = c_6 + c_5. \tag{6}$$

Combination of Eqns. (4), (5), and (6) gives

The graphical solution of Eqn. (7) is given in Fig. 2. In general, it is found that $\overline{\epsilon}$ is approximately linearly dependent on $\overline{\epsilon}.(a_{\text{H}_2\text{O}}/a_{\text{Cl}^-})$ for 8.5-10.0 M HCl solutions. The values of the slopes differ significantly, however, for the short-wave and long-wave sides of the absorption band. The slope has a smaller absolute magnitude in the second instance. This can be regarded as a consequence of the

presence of the second absorbing species, the absorption band of which is displaced towards longer wavelengths. The monotonic increase in $\overline{\epsilon}$ with increase in chloride ion concentration indicates that the value of ϵ_6 is greater than that of ϵ_5 , so that Yatsimirskii's method can be used. The molar absorptivities of $[TeCl_6]^{2-}$ at various wavelengths were determined by graphical extrapolation from Fig. 2.

Figure 2. Graphical determination of ϵ_6 and K_6 from Eqn.(10). The data relate to absorption at the following wavelengths (nm): (scale I): 11) 410; 12) 420; (scale II): 1) 355; 2) 360; 8) 390; 9) 395; 10) 400; (scale III): 3) 365; 4) 370; 5) 375; 6) 380; 7) 385.

Figure 3. Absorption bands for the individual complexes $TeCl_6^2$ and $[TeCl_5(H_2O)]^-$.

To determine more precisely the shape of the absorption band of the higher complex, to which an octahedral structure is assigned, we used the equation for the probability curve

$$\sqrt{\lg\frac{\epsilon_0}{\epsilon}} = \frac{2\gamma^{\log 2}}{\Delta \nu} \left(|\nu_0 - \nu| \right),$$

where ϵ_0 is the molar absorptivity at the maximum point, ν_0 the wave number at the absorption maximum, and ϵ the molar absorptivity at an arbitrary value of ν .

The shape of the ϵ_6 band is shown in Fig. 3. The absorption maximum of the [TeCl₆]²⁻ ion lies at $\lambda = 375 \pm 2$ nm.

In the determination of the formation constant K_6 , allowance was made for the absorption of two species $[\mathrm{TeCl}_6]^2$ and $[\mathrm{TeCl}_5(\mathrm{H}_2\mathrm{O})]$ and the optical density of the solution is given by the equation

$$D = \varepsilon_6 c_6 + \varepsilon_5 c_5 \,. \tag{8}$$

where ϵ_5 is the molar absorptivity of [TeCl₅(H₂O)]⁻. Using (4), (6), and (8), we obtain

$$\frac{\overline{\epsilon}}{\epsilon} = \epsilon_5 + \frac{K_6(\epsilon_6 - \overline{\epsilon}) a_{\text{Cl}}^-}{a_{\text{H}_10}} . \tag{9}$$

 K_6 and ϵ_5 were found graphically from the dependence of ϵ on $(\epsilon_6 - \epsilon).a_{\rm Cl}/a_{\rm H_{2O}}$ from the values of ϵ for 8.5–10.0 M HCl solutions and the more accurately determined values of ϵ_6 (Fig. 4). The equation for the probability curve was again used to determine more precisely the values of ϵ_6 . The values obtained for K_6 , ϵ_6 , ϵ_5 , and $\epsilon_{\rm 5corrected}$ are given in Table 2, and the shape of the absorption band of the complex $[{\rm TeCl}_5({\rm H_2O})]^-$ is given in Fig. 3.

Figure 4. Graphical determination of ϵ_5 and K_6 from Eqn.(12) for $c_{\text{HCI}} = 8.5 - 10.0$ M. The data relate to the apparent molar absorptivities at the following wavelengths: 1) 355; 2) 360; 3) 365; 4) 370; 5) 375; 6) 380; 7) 395; 8) 400.

Table 2. Molar absorptivities of the complexes $[TeCl_6]^{2^-}(\epsilon_6)$ and $[TeCl_5(H_2O)]^-(\epsilon_5)$ and formation constants.

· λ	e ₆	e ₅	corrected e5	10 ³ K ₆
355	1644	680	520	7.5
360	2095	1030	740	5.6
365	2480	1300	1070	5.2
370	2733	1400	1380	7.0
375	2820	1500	1600	6.3
380	2735	1690	1690	7.0
	2510	1590	1660	6.2
385 390	2200	1525	1500	4.0
396	1760	1220	1250	3.0
400	1451	1020	980	=
		_	mean (6.	±0.7) · 10-8

With decrease in the HCl concentration below 8.5 M, the decrease in the optical density is greater than that which should be observed in the presence of the two highest complexes alone. The sharp fall in optical density can be attributed to the appearance in solution of tetrachlorocomplexes of tellurium, which do not absorb in the range being considered. The compositions of the tetrachlorocomplexes can be represented by the three formulae $[TeCl_4(H_2O)_2]$, $[Te(OH)Cl_4(H_2O)]^-$, and $[Te(OH)_2Cl_4]^2^-$.

These complexes are, as it were, products of successive stages in the acidic dissociation of the first complex. Since the acidic dissociation should depend on the H* ion activity in the solution, it can be neglected in the more concentrated HCl solutions (7.5-8.5 M). In these solutions the equilibrium between the tetrachloro-complex and the pentachloro-complex is given by the equation

$$[TeCl_4(H_2O)_2] + Cl^- \Rightarrow [TeCl_5(H_2O)]^- + H_2O$$
, (10)

with equilibrium constant

$$K_{\delta} = \frac{c_{\delta} \cdot a_{\mathrm{H}_{\delta}O}}{c_{\delta} \cdot a_{\mathrm{Cl}}^{-}} . \tag{11}$$

From (4), (8), (11), and the tellurium balance

$$c_{\text{total}} = c_6 + c_5 + c_4 \tag{12}$$

we obtain

$$\frac{K_6(e_6-\bar{\epsilon})}{a_{\rm H_4O}/a_{\rm Cl}^-}+(\epsilon_5-\bar{\epsilon})=\bar{\epsilon}\frac{a_{\rm H_4O}}{a_{\rm Cl}^-\cdot K_5}.$$
 (13)

From this equation we can determine K_5 analytically, using the values of $\overline{\epsilon}$ for solutions 7.5-8.0 M with respect to HCl (Table 3). Further decrease in the hydrochloric acid concentration is probably associated with the following equilibria

$$[TeCl_4(H_2O)_2] \Rightarrow [Te(OH)Cl_4(H_2O)]^r + H^*,$$

$$[Te(OH)Cl_4(H_2O)]^r \Rightarrow [Te(OH)_2Cl_4]^{2^r} + H^*,$$

$$[Te(OH)_2Cl_4]^{2^r} \Rightarrow [TeOCl_4]^{2^r} + H_2O.$$

$$(16)$$

Table 3. Values of K_5 obtained from Eqn.(13).

	10 ² K ₅ for λ, nm								
c _{HCI} , M	385	890	395	400					
8.0	1.94	1.55	1.51	1.53					
7.5	j 1.61	1.33	1.40 s = (1.48±	1.45					

Hydroxo-compounds of Te^{IV} are extremely unstable, and readily give up water and are converted into oxo-compounds. For example, tellurium(IV) oxide chloride and oxide nitrate are familiar compounds, and tellurous acid readily loses water and is converted into the dioxide on gentle heating. It may thus be assumed that the relative concentration of $[Te(OH)Cl_4(H_2O)]^-$ and $[Te(OH)_2Cl_4]^{2-}$ ions is comparatively low and can be neglected in the equations for the tellurium balance. Thus Eqns. (14), (15), and (16) can be represented by the overall equation

$$[TeOCl_4]^{2-} + 2H^+ + H_2O \Rightarrow [TeCl_4(H_2O)_2],$$
 (17)

which is characterised by the equilibrium constant

$$K_{4}' = \frac{c_{4}}{c_{4}' \cdot a_{H_{2}O} \cdot a^{2}_{H^{+}}},$$
 (18)

where c'_4 relates to the concentration of [TeOCl₄]². In addition to these equilibria, with decrease in the HCl concentration it is also possible to make allowance for the appearance of trichloro-complexes in the solution, taking part in the equilibrium

$$[\text{TeO(OH)Cl}_3]^{2^-} + \text{Cl}^- + \text{H}^* \Rightarrow [\text{TeOCl}_4]^{2^-} + \text{H}_2\text{O}$$
 (19)

which is characterised by the formation constant

$$K_4 = \frac{c_4' \cdot a_{\rm H,0}}{c_3 \cdot a_{\rm Cl}^{-} \cdot a_{\rm H}^{+}} . \tag{20}$$

Eqns. (4), (8), (11), (18), and (20), and the equation for the tellurium balance

$$c_{\text{total}} = c_6 + c_5 + c_4 + c_4' + c_3 \tag{21}$$

after slight transformation, give the equation

$$a_{\text{Cl}}^{2} \cdot \left[\frac{K_{0}K_{5}(e_{0} - \bar{e})a_{\text{Cl}}^{2}}{\bar{e}} + \frac{K_{5}(e_{5} - \bar{e})a_{\text{Cl}}}{\bar{e}} \right] - a_{\text{H},0} =$$

$$= \frac{1}{K_{4}'} + \frac{1}{K_{4}K_{4}'} \cdot \frac{a_{\text{H},0}}{a_{\text{m}}^{2}}$$
(22)

(assuming $a_{C1} - = a_{H+}$).

Figure 5. Graphical determination of K_4 and K'_4 from Eqn.(22). The quantity plotted on the axis of ordinates is

$$A = a_{\mathrm{Cl}}^{2} - \left[\frac{K_{6}K_{5}(\varepsilon_{6} - \varepsilon)a_{\mathrm{Cl}}^{2}}{\varepsilon} + \frac{K_{5}(\varepsilon_{5} - \varepsilon)a_{\mathrm{Cl}}^{-}}{\varepsilon} - a_{\mathrm{H}_{5}\mathrm{O}} \right]$$

Figure 6. Absorption spectra of solutions of tellurium(IV) in moderately concentrated hydrochloric acid: 1) $c_{\rm Te} = 5 \times 10^{-4} \, \rm M$, $c_{\rm HCl} = 7.0 \, \rm M$; 2) $c_{\rm Te} = 5 \times 10^{-4} \, \rm M$, $c_{\rm HCl} = 6.5 \, \rm M$; 3) $c_{\rm Te} = 1 \times 10^{-3} \, \rm M$, $c_{\rm HCl} = 5 \, \rm M$; 4) $c_{\rm Te} = 1 \times 10^{-3} \, \rm M$, $c_{\rm HCl} = 5 \, \rm M$; 4) $c_{\rm Te} = 1 \times 10^{-3} \, \rm M$, $c_{\rm HCl} = 4.0 \, \rm M$.

The graphical solution of Eqn. (22) in which data on the optical density are used for 5.5-7.0 M HCl solutions is shown in Fig. 5. Results for wavelengths of 385, 390, 395, and 400 nm were used, since the short-wave side of the

overall absorption band shows a shoulder which is particularly clearly defined as the tellurium concentration is increased (Fig. 6). 2.0-5.0 M HCl solutions apparently contain a third species absorbing in the range 300-380 nm. The mean value of the constants characterising equilibria (17) and (19) are

$$K_4' = (6.3 \pm 1.3) \cdot 10^{-8}$$
 and $K_4 = (4.8 \pm 0.8) \cdot 10^{-4}$.

Further decrease in the HCl concentration displaces the equilibrium towards the formation of $[TeO(OH)_2Cl_2]^{2-}$, $[TeO(OH)_2Cl_3]^{-}$, and $[TeO(OH)_2]$. Further calculations which involve the 340-440 nm band are difficult, however, since it is necessary to use a large number of interrelated quantities.

SUMMARY

- The absorption spectra of solutions of tellurium(IV) in hydrochloric acid with different concentration have been recorded in the range 340-440 nm.
- 2. The absorption bands corresponding to the individual complexes [TeCl₅]² ($\lambda_{max} = 375 \pm 2$ nm) and [TeCl₅(H₂O)] ($\lambda_{max} = 381 \pm 2$ nm) have been isolated.
- 3. The consecutive formation constants have been calculated for the complexes $[TeCl_6]^{2-}$ ($K_6 = (6.4 \pm 0.7) \times 10^{-3}$), $[TeCl_5(H_2O)]^-$ ($K_6 = (1.48 \pm 0.08) \times 10^{-2}$), and $[TeOCl_4]^{2-}$ ($K_4 = (4.8 \pm 0.8) \times 10^{-4}$).
- The equilibrium constant for the conversion of oxotetrachlorotellurate(IV) into tetrachlorodiaquotellurium(IV) has been calculated; the value found is (6.3 ± 1.3) × 10⁻³.

REFERENCES

- 1. R. Metzner, Compt. rend., 124, 1448 (1897).
- 2. H.L. Wheller, Z. anorg. Chem., 3, 428 (1893).
- 3. E.E.Aynsley and W.A.Campbel, J.Chem.Soc., 832 (1957).
- Y.E. Norris and R. Mommers, J.Amer. Chem. Soc., 22, 491 (1900); V. Lenher, J. Amer. Chem. Soc., 22, 138 (1900);
 730 (1903); A. Gutbier, F. Flory, and H. Micheler, J. prakt. Chem., 83, 145 (1911).
- B. Z. Iofa, Wang Wan-hsin, and M. Ridvan, Radiokhimiya, 8, 14 (1966).
- 6. Kunihiko Mizumachi, Nippon Kagaku Zasshi, 83, 73 (1962).
- R.A.Robinson and R.H.Stokes, "Electrolyte Solutions" (Translated into Russian), Inostr. Lit., Moscow, 1963, p. 589.
- "Spravochnik Khimika" (Chemist's Reference Book), 2nd Edition, Goskhimizdat, Moscow, 1964, Vol.3, p.337.
- 9. G. Engel, Z. Krist., 90, 341 (1935).

Plekhanov Leningrad Mining Institute Received 18th May 1967

U. D. C. 541.49 + 546.831 + 546.832 + 546.32

Complex Oxide Fluorides of Zirconium and Hafnium with Potassium

I.A.Sheka, A.A.Lastochkina, and L.A.Malinko

We have established previously that precipitation of zirconium and hafnium hydroxides from solutions of K_2ZrF_6 and K_2HfF_6 with ammonia and alkalis involves the formatical