Basic identities of matrix/vector ops	į į	Vector norms (beyond euclidean)	triangular matrices)	-Do Laplace expansion along that row/column =>	orthogonal matrix i.e. $Q^{-1} = Q^{T}$	SVD is similar to spectral decomposition, except it	•Recall: $A = \sum_{i=1}^{r} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{T}$ with $\sigma_{1} \ge \cdots \ge \sigma_{r} > 0$, so that
$(A+B)^T = A^T + B^T (AB)^T = B^T A^T (A^{-1})^T = (A^T)^{-1} $	*Notice: $Q_j c_j = \sum_{i=1} (\mathbf{q}_i \cdot \mathbf{a}_{j+1}) \mathbf{q}_i = \sum_{i=1} \operatorname{proj}_{\mathbf{q}_i} (\mathbf{a}_{j+1})$ so	-vector norms are such that: x = 0 ⇔ x = 0 , \lambda x = \lambda x + x + y ≤ x + y	The (column) rank of AJis number of linearly	notice all-but-one minor matrix determinants go to zero	$-\mathbf{q}_1, \dots, \mathbf{q}_n$ are still eigenvectors of $\underline{A} = \underline{A} = \underline{Q} \underline{D} \underline{Q}^T$ (spectral decomposition)	always exists If $\underline{n \leq m}$ then work with $\underline{A}^T \underline{A} \in \mathbb{R}^{n \times n}$	with $\underline{o_1} \ge \cdots \ge o_r$, so that
$\frac{(AB)^{-1} = B^{-1}A^{-1}}{A^{-1}}$	rewrite as		independent columns, i.e. rk(A)	Representing EROs/ECOs as transfor-	-A = QDQ ^T can be interpreted as scaling in direction of	•Obtain eigenvalues $\sigma_1^2 \ge \cdots \ge \sigma_n^2 \ge 0$ of $\underline{A^T A}$	relates principal axes and principal components • Data compression: If $\sigma_1 \gg \sigma_2$ then compress A] by
For $\underline{A \in \mathbb{R}^{m \times n}}$, $\underline{A_{ij}}$ is the i -th ROW then j -th COLUMN	$\mathbf{u}_{j+1} = \mathbf{a}_{j+1} - \sum_{i=1}^{j} (\mathbf{q}_i \cdot \mathbf{a}_{j+1}) \mathbf{q}_i = \mathbf{a}_{j+1} - \sum_{i=1}^{j} \operatorname{proj}_{\mathbf{q}_i} (\mathbf{a}_{j+1})$	$-p = 1 \mid \ \mathbf{x}\ _1 = \sum_{i=1}^{n} \left \mathbf{x}_i \right $	•I.e. its the number of pivots in row-echelon-form –I.e. its the dimension of the column-space	mation matrices For A∈ R ^{m×n} suppose a sequence of:	its eigenvectors: 1.Perform a succession of reflections/planar rotations	•Obtain orthonormal eigenvectors $\mathbf{v}_1, \dots, \mathbf{v}_n \in \mathbb{R}^n$ of	projecting in direction of principal component =>
$(A^{T})_{ij} = A_{ij} (AB)_{ij} = A_{i\star} \cdot B_{\star i} = \sum A_{iR} B_{Ri} $	i=1 $i=1•Let a_1,, a_n \in \mathbb{R}^m \mid (\underline{m \ge n}) be linearly independent,$	$-\underline{p=2} \ \mathbf{x}\ _2 = \sqrt{\sum_{i=1}^n \mathbf{x}_i^2} = \sqrt{\mathbf{x} \cdot \mathbf{x}}$	rk(A) = dim(C(A)) -I.e. its the dimension of the image-space	•EROs transform $A \rightsquigarrow_{EROs} A' \implies$ there is matrix R s.t.	to change coordinate-system	A^TA (apply normalization e.g. Gram-Schmidt!!!! to eigenspaces E_{G_i}	$\frac{A \approx \sigma_1 \mathbf{u}_1 \mathbf{v}_1'}{\mathbf{u}_1 \mathbf{v}_1'}$
$(Ax)_i = A_{i+} \cdot x = \sum A_{ii} x_i x^T y = y^T x = x \cdot y = \sum x_i y_i $	i.e. basis of n + dim subspace Un = span{a1,, an}	$-p = \infty \int_{\mathbb{R}^{ X }} \ \mathbf{x}\ _{\infty} = \lim_{p \to \infty} \ \mathbf{x}\ _{p} = \max_{1 \le i \le p} \mathbf{x}_{i} $	$rk(A) = dim(im(f_A)) of linear map f_A(x) = Ax $	•ECOs transform A → ECOs A' ⇒ there is matrix CJs.t.	 2.Apply scaling by λ_i to each dimension q_i 3.Undo those reflections/planar rotations 	$V = [v_1 v_n] \in \mathbb{R}^{n \times n}$ is orthogonal so $V^T = V^{-1}$	•Consider positive (semi-)definite $\underline{A} \in \mathbb{R}^{n \times n}$
j i	-We apply Gram-Schmidt to build ONB $(\mathbf{q}_1,, \mathbf{q}_n) \in \mathbb{R}^m$ for $U_n \subset \mathbb{R}^m$	•Any two norms in \mathbb{R}^n are equivalent, meaning there	•The (row) rank of A is number of linearly independent	AC = A'	Extension to C ⁿ	•r=rk(A)=no. of strictly +ve σ_i	•Cholesky Decomposition is A=LLT where LJis
$x^{T} A x = \sum_{i} \sum_{j} A_{ij} x_{i} x_{j}$	$-j=1 \Rightarrow u_1 = a_1 \text{ and } q_1 = \hat{u}_1$, i.e. start of iteration	exist $r>0$; $s>0$ such that: $\forall x \in \mathbb{R}^n, r \ x\ _a \le \ x\ _b \le s \ x\ _a$	•The row/column ranks are always the same, hence	•Both transform A → EROS+ECOS A' => there are	•Standard inner product: $\langle x, y \rangle = x^{\dagger} y = \sum_{i} \overline{x_{i}} y_{i}$	•Let $\mathbf{u}_i = \frac{1}{\sigma_i} A \mathbf{v}_i$ then $\underline{\mathbf{u}_1,, \mathbf{u}_r \in \mathbb{R}^m}$ are orthonormal	lower-triangular -For positive semi-definite => always exists, but
	$-j=2$ $\Rightarrow u_2 = u_2 - (q_1 \cdot u_2)q_1$ and $q_2 = u_2$ etc -Linear independence <i>guarantees</i> that $a_{j+1} \notin U_j$	X _∞ ≤ X ₂ ≤ X ₁	$rk(A) = dim(C(A)) = dim(R(A)) = dim(C(A^T)) = rk(A^T)$ •A is full-rank iff $rk(A) = min(m, n)$, i.e. its as linearly	matrices R, C J s.t. RAC = A'	-Conjugate-symmetric: $\langle x, y \rangle = \overline{\langle y, x \rangle}$	(therefore linearly independent)	non-unique
ocolumn-blocks ⇒	-For exams: compute $\mathbf{u}_{j+1} = \mathbf{a}_{j+1} - Q_j \mathbf{c}_j$	-Equivalence of ℓ_1, ℓ_2 and ℓ_{∞} \Rightarrow $\ \mathbf{x}\ _2 \le \sqrt{n} \ \mathbf{x}\ _{\infty}$	independent as possible	FORWARD: to compute these transformation matrices:	•Standard (induced) norm: $ x = \sqrt{\langle x, y \rangle} = \sqrt{x^{\dagger} y}$	-The orthogonal compliment of span $\{u_1,, u_r\}$ \Rightarrow span $\{u_1,, u_r\}^{\perp} = \text{span}\{u_{r+1},, u_m\}$	 For positive-definite => always uniquely exists s.t. diagonals of <u>L</u>Jare positive
$\lambda A + B = \lambda [A_1 A_C] + [B_1 B_C] = [\lambda A_1 + B_1 \lambda A_C + B_C]$ • row-blocks =>	1. Gather $Q_j = [\mathbf{q}_1 \mid \mid \mathbf{q}_j] \in \mathbb{R}^{m \times j}$	•Induce metric $d(x,y) = \ y-x\ $ has additional	Two matrices $\mathbf{A}, \tilde{\mathbf{A}} \in \mathbb{R}^{m \times n}$ are equivalent if there exist	•Start with [Im A In] i.e. A and identity matrices	We can diagonalise real matrices in CJwhich lets us diagonalise more matrices than before	*Solve for unit-vector u _{r+1} s.t. it is orthogonal to	•Finding a Cholesky Decomposition:
$\lambda A + B = \lambda [A_1;; A_r] + [B_1;; B_r] = [\lambda A_1 + B_1;; \lambda A_r + B_r]$	2.Compute $\mathbf{c}_j = [\mathbf{q}_1 \cdot \mathbf{a}_{j+1}, \dots, \mathbf{q}_j \cdot \mathbf{a}_{j+1}]^T \in \mathbb{R}^j$	properties:	two invertible matrices $\underline{P} \in \mathbb{R}^{m \times m}$ and $\underline{Q} \in \mathbb{R}^{n \times n}$	•For every ERO on <u>A</u>], do the same to LHS (i.e. I_m) •For every ECO on <u>A</u>], do the same to RHS (i.e. I_n)	Least Square Method	*Then solve for unit-vector \mathbf{u}_{r+2} s.t. it is orthogonal	-Compute <u>LL^T</u> and solve <u>A=LL^T</u> by matching terms -For square roots always pick positive
Matrix-multiplication distributes over: • column-blocks \Rightarrow $AB = A[B_1 B_D] = [AB_1 AB_D]$	3. Compute $Q_j c_j \in \mathbb{R}^m$ and subtract from a_{j+1}	-Translation invariance: $d(x+w, y+w) = d(x, y)$ -Scaling: $d(\lambda x, \lambda y) = \lambda d(x, y)$	such that $\mathbf{A} = \mathbf{P} \mathbf{A} \mathbf{Q}^{-1}$ Two matrices $\mathbf{A}, \mathbf{A} \in \mathbf{R}^{n \times n}$ are similar if there exists an	•Once done, you should get [I _m A I _n] → [R A' C]	If we are solving Ax = b and b & C(A) i.e. no solution, then Least Square Method is:	to u ₁ ,, u _{r+1}	-If there is exact solution then positive-definite -If there are free variables at the end, then positive
orow-blocks \Rightarrow $AB = [A_1;; A_p]B = [A_1B;; A_pB]$	Properties: dot-product & norm	Matrix norms	invertible matrix $\underline{P} \in \mathbb{R}^{n \times n}$ such that $\underline{A} = \underline{P} \underline{A} \underline{P}^{-1}$	with RAC = A'	•Finding xjwhich minimizes Ax-b 2	*And so on $-U = [\mathbf{u}_1 \dots \mathbf{u}_m] \in \mathbb{R}^{m \times m} \text{ is orthogonal so } \underline{U}^T = U^{-1}$	semi-definite
	$x^{I} y = y^{I} x = x \cdot y = \sum_{i} x_{i} y_{i} x \cdot y = a b \cos x\hat{y} $	•Matrix norms are such that: $ A = 0 \iff A = 0$,	•Similar matrices are equivalent, with Q = P AJis diagonalisable iff AJis similar to some diagonal	If the sequences of EROs and ECOs were $R_1,, R_{\lambda}$ and	•Recall for $A \in \mathbb{R}^{m \times n}$ we have unique decomposition for any $\mathbf{b} \in \mathbb{R}^m$ $\mathbf{b} = \mathbf{b}_i \cdot \mathbf{b}_k$	•S=diag _{m×n} ($\sigma_1,,\sigma_n$) AND DONE!!!	*i.e. the decomposition is a solution-set parameterized on free variables
$\frac{AB = [A_1 A_p][B_1;; B_p] = \sum_{i=1}^{P} A_i B_i}{\text{o.e.g. for } A = [a_1 a_n], B = [b_1;; b_n]} => AB = \sum_i a_i b_i}$	$x \cdot y = y \cdot x \int x \cdot (y + z) = x \cdot y + x \cdot z \int \alpha x \cdot y = \alpha (x \cdot y)$	$ \lambda A = \lambda A + A+B \le A + B $ -Matrices $\mathbb{F}^{m \times n}$ are a vector space so matrix norms	matrix D	C_1, \dots, C_{μ} respectively $R = R_{\lambda} \dots R_1$ and $C = C_1 \dots C_{\mu}$ so	-where $\mathbf{b}_i \in C(A)$ and $\mathbf{b}_k \in \ker(A^T)$	If $\underline{m < n}_J$ then let $\underline{B} = A^T$ *apply above method to $\underline{B}_J \Rightarrow \underline{B} = A^T = USV^T$	[1 1 1]
	$\frac{x \cdot x = x ^2 = 0 \iff x = 0}{\text{for } x \neq 0, \text{ we have } x \cdot y = x \cdot z \implies x \cdot (y - z) = 0}$	 are vector norms, all results apply Sub-multiplicative matrix norm (assumed by default) 	Properties of determinants	$(R_{\lambda} \cdots R_{1})A(C_{1} \cdots C_{\mu}) = A'$	$\ \mathbf{A}\mathbf{x} - \mathbf{b}\ _2$ is minimized $\iff \ \mathbf{A}\mathbf{x} - \mathbf{b}_i\ _2 = 0 \iff \mathbf{A}\mathbf{x} = \mathbf{b}_i$	$\bullet A = B^T = VS^TU^T$	*e.g. 1 1 1 = LL ^T where
•A projection $\underline{\pi: V \to V}$ is a endomorphism such that	$ x \cdot y \le x y $ (Cauchy-Schwartz inequality)	is also such that AB ≤ A B	•Consider $\underline{A \in \mathbb{R}^{n \times n}}$, then $\underline{A_{ij}}' \in \mathbb{R}^{(n-1) \times (n-1)}$ the (i,j) minor matrix of $\underline{A}\underline{J}$ obtained by deleting \underline{i} th row	$*R^{-1} = R_1^{-1} \cdots R_{\lambda}^{-1}$ and $C^{-1} = C_{\mu}^{-1} \cdots C_{1}^{-1}$ where	$A^T Ax = A^T b$ is the normal equation which gives	Tricks: Computing orthonormal	[1 0 0]
	$ u+v ^2 + u-v ^2 = 2 u ^2 + 2 v ^2$ (parallelogram law)	•Common matrix norms, for some $\underline{\mathbf{A}} \in \mathbb{R}^{m \times n}$: $-\ \mathbf{A}\ _1 = \max_j \ \mathbf{A}_{*j}\ _1$	and j -th column from A	R_i^{-1}, C_j^{-1} are inverse EROs/ECOs respectively	solution to least square problem:	vector-set extensions You have orthonormal vectors $\mathbf{u}_1,, \mathbf{u}_r \in \mathbb{R}^m$ ⇒ need	$L = \begin{bmatrix} 1 & 0 & 0 \\ & & & \\ & & & \\ & & & \\ \end{bmatrix}, c \in [0, 1]$
•A square matrix PJ such that P2 = P is called a	$\frac{\ u+v\ \le \ u\ + \ v\ }{\ u+v\ \le \ u\ + \ v\ ^2} $ (triangle inequality) $u \perp v \iff \ u+v\ ^2 = \ u\ ^2 + \ v\ ^2 $ (pythagorean	$-\ \mathbf{A}\ _{2} = \sigma_{1}(\mathbf{A}) \text{ i.e. largest singular value of } \mathbf{A}$	•Then we define determinant of \underline{A}] i.e. $\underline{\det(A) = A }$, as		$\frac{\ \mathbf{A}\mathbf{x} - \mathbf{b}\ _2 \text{ is minimized} \iff \mathbf{A}\mathbf{x} = \mathbf{b}_i \iff \mathbf{A}^I \mathbf{A}\mathbf{x} = \mathbf{A}^I \mathbf{b}}{\mathbf{Linear Pegression}}$	to extend to orthonormal vectors $\mathbf{u}_1, \dots, \mathbf{u}_m \in \mathbb{R}^m$	[1 c V1-c²]
-It is called an orthogonal projection matrix if	theorem)	(square-root of largest eigenvalue of A ^T A or AA ^T)	$-\det(A) = \sum_{k=1}^{n} (-1)^{i+k} A_{ik} \det(A_{ik}')$ i.e. expansion along	BACKWARD: once $R_1,, R_{\lambda}$ and $C_1,, C_{\mu}$ for which $RAC = A'$ are known , starting with $[I_m \mid A \mid I_n]$	Linear Regression Let $y = f(t) = \sum_{j=1}^{n} s_j f_j(t)$ be a mathematical model,	Special case \Rightarrow two 3D vectors \Rightarrow use cross-product \Rightarrow $a \times b \perp a, b$	•If <u>A=LL^I</u> you can use [[#Forward/backward substitution forward/backward substitution]] to solve
$P^2 = P = P^{\dagger}$ (conjugate-transpose)	c ² = a ² + b ² - 2 a b cos ba (law of cosines) Transformation matrix & linear maps	$-\ \mathbf{A}\ _{\infty} = \max_{i} \ \mathbf{A}_{i\star}\ _{1} \text{ note that } \ \mathbf{A}\ _{1} = \ \mathbf{A}^{T}\ _{\infty}$	ijth row *(for any i)	•For $\underline{i=1} \rightarrow \lambda$ perform R_i on \underline{A} perform $R_{\lambda-i+1}^{-1}$ on LHS	where f_j are basis functions and s_j are parameters		equations $-For \underline{Ax = b} \Longrightarrow let \ y = L^{T} x$
•Because π: V → V is a linear map, its image space	For linear map $f : \mathbb{R}^n \to \mathbb{R}^m$, ordered bases	-Frobenius norm: $\ \mathbf{A}\ _{F} = \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} \mathbf{A}_{ij} ^{2}}$	$-\det(A) = \sum_{k=1}^{n} (-1)^{k+j} A_{kj} \det(A_{kj}')$ i.e. expansion along	(i.e. Im)	•Let (t_i, y_i) , $1 \le i \le m, m \gg n$ be a set of observations ,	Extension via standard basis $I_m = [e_1 e_m]$ using [(tweaked) GS:	-Solve Ly = b by forward substitution to find y
$U = im(\pi)$ and null space $W = ker(\pi)$ are subspaces of V	$(\mathbf{b}_1,, \mathbf{b}_n) \in \mathbb{R}^n$ and $(\mathbf{c}_1,, \mathbf{c}_m) \in \mathbb{R}^m$ $A = \mathbf{F}_{CB} \in \mathbb{R}^{m \times n}$ is the transformation-matrix of f	Vi=1 j=1	$k=1$ $j \mid \text{th column (for any } j \mid $	•For $j = 1 \rightarrow \mu$ perform C_j on \underline{A} , perform $C_{\mu-j+1}^{-1}$ on	and t, y ∈ R ^m are vectors representing those observations	•Choose candidate vector: just work through e ₁ ,,e _m sequentially starting from e ₁ => denote	- Solve $L^T x = y$ by backward substitution to find x_1
-The linear map π* = I _V -π is also a projection with	w.r.t to bases B and C	•A matrix norm $\ \cdot\ $ on $\mathbb{R}^{m \times n}$ is consistent with the vector norms $\ \cdot\ _a$ on \mathbb{R}^n and $\ \cdot\ _b$ on \mathbb{R}^m if	•When det(A) = 0 we call AJa singular matrix	RHS (i.e. In)	$-f_j(t) = [f_j(t_1), \dots, f_j(t_m)]^T$ is transformed vector	the current candidate e _k	•For <u>n = 3</u> => L = l ₁₁
$W = \operatorname{im}(\pi^*) = \ker(\pi)$ and $U = \ker(\pi^*) = \operatorname{im}(\pi)$ i.e. they swapped	$f(\mathbf{b}_j) = \sum_{i=1}^m A_{ij} \mathbf{c}_i$ \rightarrow each \mathbf{b}_j basis gets mapped to a	-for all $A \in \mathbb{R}^{m \times n}$ and $x \in \mathbb{R}^n \Longrightarrow Ax _h \le A x _q$	-Common determinants -For <u>n = 1</u> , det(A) = A ₁₁	•You should get $[I_m \mid A \mid I_n] \rightsquigarrow [R^{-1} \mid A' \mid C^{-1}]$ with $A = R^{-1}A'C^{-1}$	$-A = [f_1(t) f_n(t)] \in \mathbb{R}^{m \times n}$ is a matrix of columns	 Orthogonalize: Starting from j = r going to j = m with each iteration ⇒ with current orthonormal vectors 	
*πJis a projection along WJonto UJ	linear combination of $\sum_i a_i c_i$ bases •If f^{-1} exists (i.e. its bijective and $\underline{m} = n$) then	-If $a = b$, $\ \cdot\ $ is compatible with $\ \cdot\ _a$ -Frobenius norm is consistent with ℓ_2 norm \Rightarrow	-For <u>n = 2</u>], det(A) = A ₁₁ A ₂₂ - A ₁₂ A ₂₁		$-z = [s_1,, s_n]^T$ is vector of parameters •Then we get equation $Az = y$ \Rightarrow minimizing $ Az - y _2$	u ₁ ,,u _j	$L^{T} = \begin{bmatrix} l_{11}^{2} & l_{11}l_{21} & l_{11}l_{31} \\ l_{11}l_{21} & l_{22}^{2} + l_{22}^{2} & l_{21}l_{21} + l_{22}l_{22}^{2} \end{bmatrix}$
$*\pi^*$ is a projection along U onto W $*\pi^*$ is the identity operator on W	$(\mathbf{F}_{CB})^{-1} = \mathbf{F}^{-1}_{BC}$ (where \mathbf{F}^{-1}_{BC} is the	$ Av _2 \le A _F v _2 $	-det(I _n) = 1 •Multi-linearity in columns/rows: if	You can mix-and-match the forward/backward modes •i.e. inverse operations in inverse order for one, and	is the solution to Linear Regression		$\begin{bmatrix} LL^{T} = \begin{bmatrix} l_{11}l_{21} & l_{21}^{2} + l_{22}^{2} & l_{21}l_{31} + l_{22}l_{3} \\ l_{11}l_{31} & l_{21}l_{31} + l_{22}l_{32} & l_{31}^{2} + l_{32}^{2} + l_{3}^{2} \end{bmatrix}$
-V]can be decomposed as V = U ⊕ W meaning every	transformation-matrix of f^{-1}	• For a vector norm $\ \cdot \ $ on \mathbb{R}^n , the subordinate	$A = [a_1 a_j a_n] = [a_1 \lambda x_j + \mu y_j a_n]$ then	operations in normal order for the other	-So applying LSM to Az = y is precisely what Linear Regression is	-Compute $\mathbf{w}_{j+1} = \mathbf{e}_k - \sum_{i=1} (\mathbf{e}_k \cdot \mathbf{u}_i) \mathbf{u}_i = \mathbf{e}_k - \sum_{i=1} (\mathbf{u}_i)_k \mathbf{u}_i$	Forward/backward substitution
vector $\underline{x \in V}$ Jcan be uniquely written as $\underline{x = u + w_J}$ * $\underline{u \in U}$ Jand $\underline{u = \pi(x)}$	The transformation matrix of the identity map is called	matrix norm $\ \cdot\ $ on $\mathbb{R}^{m \times n}$ is $\ \mathbf{A}\ = \max\{\ \mathbf{A}\mathbf{x}\ : \mathbf{x} \in \mathbb{R}^n, \ \mathbf{x}\ = 1\}$	$\det(A) = \lambda \det\left(\left[a_1 \mid \dots \mid x_j \mid \dots \mid a_n \mid\right)\right)$	•e.g. you can do $[I_m \mid A \mid I_n] \rightsquigarrow [R^{-1} \mid A' \mid C]$ to get $AC = R^{-1}A'$ \Rightarrow useful for LU factorization	-We can use normal equations for this =>	= e _k -U _j c _j	•Forward substitution: for lower-triangular
$\star \underline{w \in W}$ and $\underline{w = x - \pi(x) = (I_V - \pi)(x) = \pi^*(x)}$	change-in-basis matrix	$= \max \left\{ \frac{\ \mathbf{A}\mathbf{x}\ }{\ \mathbf{x}\ } : \mathbf{x} \in \mathbb{R}^n, \mathbf{x} \neq 0 \right\}$	$+\mu \det ([a_1 \dots y_j \dots a_n])$	Eigen-values/vectors	$\ Az-y\ _2$ is minimized $\iff A^T Az=A^T y$ • Solution to normal equations unique iff Alis full-rank,	-Where $U_j = [\mathbf{u}_1 \dots \mathbf{u}_j]$ and $\mathbf{c}_j = [(\mathbf{u}_1)_k, \dots, (\mathbf{u}_j)_k]^T$	L=
•An orthogonal projection further satisfies <u>U⊥W</u> i.e. the image and kernel of <u>π</u> Jare orthogonal	•The identity matrix \underline{I}_{m} represents $id_{\mathbb{R}^{m}}$ w.r.t. the standard basis $E_{m} = (e_{1},, e_{m}) \Rightarrow \overline{i.e. I}_{m} = \underline{I}_{EE}$	$ \ \mathbf{x}\ = \max\{\ \mathbf{A}\mathbf{x}\ : \mathbf{x} \in \mathbb{R}^n, \ \mathbf{x}\ \le 1\} $	-And the exact same linearity property for rows -Immediately leads to: $ A = A^T $, $ \lambda A = \lambda^n A $, and	•Consider $A \in \mathbb{R}^{n \times n}$ non-zero $\mathbf{x} \in \mathbb{C}^n$ is an eigenvector	i.e. it has linearly-independent columns	-NOTE: $\mathbf{e}_{k} \cdot \mathbf{u}_{i} = (\mathbf{u}_{i})_{k}$ i.e. \underline{k} th component of \mathbf{u}_{i} -If $\mathbf{w}_{j+1} = 0$ then $\mathbf{e}_{k} \in \text{span}\{\mathbf{u}_{1}, \dots, \mathbf{u}_{j}\}$ => discard	[\(\ell_{n,1} \) \(\ell_{n,n} \)]
subspaces	of $B = (b_1,, b_m)$ is a basis of \mathbb{R}^m , then	Vector norms are compatible with their subordinate	$ AB = BA = A B \text{ (for any } \underline{B} \in \mathbb{R}^{n \times n}$) *Alternating: if any two columns of Ajare equal (or any	with eigenvalue $\lambda \in \mathbb{C}[for A]$ if $Ax = \lambda x$ $-If Ax = \lambda x$ then $A(kx) = \lambda(kx)[for k \neq 0]$, i.e. kx is also an	Positive (semi-)definite matrices Consider symmetric $\underline{A} \in \mathbb{R}^{n \times n}$ i.e. $\underline{A} = \underline{A}^T$	w _{j+1} choose next candidate e _{k+1} try this step	-For $Lx = b$, just solve the first row b_1
 infact they are eachother's orthogonal compliments, i.e. U[⊥] = W, W[⊥] = U (because finite-dimensional 	$I_{EB} = [b_1 b_m]$ is the transformation matrix from \underline{B} to \underline{E}	matrix norms •For $p = 1, 2, \infty$ matrix norm ⋅ _p is subordinate to	two rows of A are equal), then A = 0 (its singular)	eigenvector	Alis positive-definite iff $x^T Ax > 0$ for all $x \neq 0$	again •Normalize: w _{j+1} ≠0 so compute unit vector	$\ell_{1,1} x_1 = b_1 \implies x_1 = \frac{b_1}{\ell_{1,1}}$ and substitute down
	$I_{BE} = (I_{EB})^{-1}$, so $\Rightarrow F_{CB} = I_{CE} F_{EE} I_{EB}$	the vector norm $\ \cdot\ _p$ (and thus compatible with)	-Immediately from this (and multi-linearity) => if columns (or rows) are linearly-dependent (some are	-AJhas at most nJdistinct eigenvalues •The set of all eigenvectors associated with eigenvalue	•AJis positive-definite iff all its eigenvalues are strictly positive	$\mathbf{u}_{j+1} = \hat{\mathbf{w}}_{j+1}$	Then solve the second row $b_2 - \ell_{2,1} x_1$
or oquivalently $\pi(x)$ (y, $\pi(y)$) - (x, $\pi(y)$) $\pi(y)$ - 0.1	Dot-product uniquely determines a vector w.r.t. to	Properties of matrices	linear combinations of others) then A = 0	$\underline{\lambda}$ is called eigenspace $E_{\underline{\lambda}}$ of \underline{A}	•Alis positive-definite => all its diagonals are strictly	•Repeat: keep repeating the above steps, now with	$\ell_{2,1} x_1 + \ell_{2,2} x_2 = b_2 \implies x_2 = \frac{2 - 2 + 1}{\ell_{2,2}}$ and
- Pu Cauchy Schwarz inequality we have \(\text{T} \) \(\text{V} \) \(\te	basis	Consider $A \in \mathbb{R}^{m \times n}$ If $Ax = x$ for all x then $A = I$	-Stated in other terms \Rightarrow rk(A) < n \iff A = 0 <=> RREF(A) \neq I _n \iff A = 0 (reduced row-echelon-form)	$-E_{\lambda} = \ker(A - \lambda I)$ $-\text{The geometric multiplicity of } \underline{\lambda} \text{ Jis}$	positive •Alis positive-definite => $\max(A_{ii}, A_{jj}) > A_{ij} $	new orthonormal vectors $\mathbf{u}_1,, \mathbf{u}_{j+1}$	substitute downand so on until all x_i are solved
•The orthogonal projection onto the line containing	•If $a_i = x \cdot b_i$; $x = \sum_i a_i b_i$ we call a_i the coordinate-vector of x_i w.r.t. to B_i	For square $\underline{A}_{\underline{J}}$ the trace of $\underline{A}_{\underline{J}}$ is the sum if its diagonals ,	\iff $C(A) \neq \mathbb{R}^n \iff A = 0$ (column-space)	$\dim(E_{\lambda}) = \dim(\ker(A - \lambda I))$ •The spectrum $Sp(A) = \{\lambda_1,, \lambda_n\} \text{ of } \underline{A} \text{ J is the set of all }$	i.e. strictly larger coefficient on the diagonals	SVD Application: Principal Component Analysis (PCA)	Backward substitution: for upper-triangular
	Rank-nullity theorem:	i.e. <u>tr(A)</u>	-For more equivalence to the above, see invertible matrix theorem	eigenvalues of AJ	 AJis positive-definite => all upper-left submatrices are also positive-definite 	Assume $A_{uncentered} \in \mathbb{R}^{m \times n}$ represent \underline{m} samples of \underline{n} -dimensional data (with $\underline{m} \ge n$)	U= U1,1 U1,n U1,n
since proj _U (u) = u	$\frac{\dim(\operatorname{im}(f)) + \dim(\ker(f)) = \operatorname{rk}(A) + \dim(\ker(A)) = n}{f \operatorname{is injective/monomorphism iff ker(f)} = {0} \operatorname{iff } A \operatorname{Jis}}$	AJis symmetric iff $\underline{A} = A^{T}$ AJis Hermitian, iff $\underline{A} = A^{\dagger}$ i.e.	•Interaction with EROs/ECOs:	•The characteristic polynomial of <u>A</u> Jis $P(\lambda) = A - \lambda I = \sum_{i=0}^{n} a_i \lambda^i$	•Sylvester's criterion: Alis positive-definite iff all	n-dimensional data (with m≥n) • Data centering: subtract mean of each column from	, 2
•If $U \subseteq \mathbb{R}^n$ is a k -dimensional subspace with	full-rank Orthogonality concents	its equal to its conjugate-transpose •AA ^T and A ^T A are symmetric (and positive	-Swapping rows/columns flips the sign -Scaling a row/column by ½ ≠ 0] will scale the	$-a_0 = A a_{n-1} = (-1)^{n-1} \operatorname{tr}(A) a_n = (-1)^n $	upper-left submatrices have strictly positive determinant	that column's elements	For $\underline{Ux = b}$, just solve the last row b_n
11 R	Orthogonality concepts • <u>u⊥v ⇔ u·v=0</u> , i.e. <u>u</u> jand <u>v</u> jare orthogonal	semi-definite)	determinant by λ] (by multi-linearity)	$-\lambda \in \mathbb{C}$ is eigenvalue of A iff λ is a root of $P(\lambda)$	Alic positive somi definite iff vT Av > 0 for all v	•Let the resulting matrix be $\underline{A \in \mathbb{R}^{m \times n}}$, who's columns have mean zero	$u_{n,n} \times_{n} = b_{n} \implies x_{n} = \frac{b_{n}}{u_{n,n}}$ and substitute up
-Let U=[u1] uR] E R matrix	• <u>u</u> and <u>v</u> are orthonormal iff $u \perp v$, $ u = 1 = v $ • $A \in \mathbb{R}^{n \times n}$ is orthogonal iff $A^{-1} = A^T$	 For real matrices, Hermitian/symmetric are equivalent conditions 	*Remember to scale by $\underline{\lambda^{-1}}$ to maintain equality, i.e. $\det(A) = \lambda^{-1} \det([a_1 \dots \lambda a_i \dots a_n])$	-The algebraic multiplicity of λ] is the number of times it is repeated as root of P(λ)	AJis positive semi-definite iff x¹ Ax≥0 for all xJ •AJis positive semi-definite iff all its eigenvalues are	PCA is done on centered data-matrices like At	-Then solve the second-to-last row $b_{n-1}-u_t$
	-Columns of A = [a ₁ a _n] are orthonormal basis	•Every eigenvalue λ_i of Hermitian matrices is real –geometric multiplicity of λ_i = geometric multiplicity	-Invariant under addition of rows/columns -Link to invertable matrices => A ⁻¹ = A ⁻¹ which	-1]≤ geometric multiplicity of λ] ≤ algebraic multiplicity of λ	non-negative -Alis positive semi-definite => all its diagonals are	•SVD exists i.e. $\underline{A = USV^T}$ and $\underline{r = rk(A)}$ •Let $A = [\mathbf{r}_1;; \mathbf{r}_m]$ be rows $\overline{\mathbf{r}_1,, \mathbf{r}_m} \in \mathbb{R}^n$ \Longrightarrow each	$u_{n-1,n-1} \times_{n-1} + u_{n-1,n} \times_n = b_{n-1} \implies x_{n-1} = \frac{b_{n-1} - u_n}{u_n}$
-If $\langle \mathbf{u}_1, \dots, \mathbf{u}_k \rangle$ is not orthonormal , then "normalizing	(ONB) $C = \langle \mathbf{a}_1, \dots, \mathbf{a}_n \rangle \in \mathbb{R}^n$ so $A = \mathbf{I}_{EC}$ is	of λ _i	means A is invertible $\iff A \neq 0$, i.e. singular	•Let $\lambda_1,, \lambda_n \in \mathbb{C}$ be (potentially non-distinct)	non-negative	row corresponds to a sample •Let $A = [c_1 c_n]$ be columns $c_1,, c_n \in \mathbb{R}^m$ \Rightarrow each	and substitute up and so on until all x_i are solved
factor" $(\mathbf{U}^T \mathbf{U})^{-1}$ is added => $\pi_U = \mathbf{U}(\mathbf{U}^T \mathbf{U})^{-1} \mathbf{U}^T$	change-in-basis matrix Orthogonal transformations preserve	-eigenvectors x_1, x_2 associated to distinct eigenvalues λ_1, λ_2 are orthogonal , i.e. $x_1 \perp x_2$	matrices are not invertible •For block-matrices:	eigenvalues of \underline{A} , with $\underline{x}_1,, \underline{x}_n \in \mathbb{C}^n$ their eigenvectors	•A is positive semi-definite => $\max(A_{ii}, A_{jj}) \ge A_{ij} $ i.e. no coefficient larger than on the diagonals	column corresponds to one dimension of the data	Thin QR Decomposition w/ Gram-
*For line subspaces U = span(u), we have	lengths/angles/distances => $\ Ax\ _2 = \ x\ _2$, $AxAy = xy$ *Therefore can be seen as a succession of reflections		$-\det\begin{pmatrix} A & B \\ 0 & D \end{pmatrix} = \det(A) \det(B) = \det\begin{pmatrix} A & 0 \\ C & D \end{pmatrix}$	$-\operatorname{tr}(A) = \sum_{i} \lambda_{i}$ and $\operatorname{det}(A) = \prod_{i} \lambda_{ij}$	•AJis positive semi-definite => all upper-left	Let $X_1,, X_n$ be random variables where each X_i corresponds to column c_i	Schmidt (GS)
$\frac{(\mathbf{U}^T\mathbf{U})^{-1} = (u^Tu)^{-1} = 1/(u \cdot u) = 1/\ u\ }{\text{Gram-Schmidt (GS) to gen. ONB from}}$	and planar rotations	Alis triangular iff all entries above (lower-triangular) or below (upper-triangular) the main diagonal are zero		-Alis diagonalisable iff there exist a basis of R ⁿ	submatrices are also positive semi-definite •A is positive semi-definite => it has a Cholesky	•i.e. each X; corresponds to i th component of data	•Consider full-rank A = [a ₁ a _n] ∈ R ^{m×n} (m≥n), i.e. a ₁ ,, a _n ∈ R ^m are linearly independent
lin. ind. vectors	$-\frac{\det(A) = 1}{\text{s.t. } \lambda = 1}$ or $\frac{\det(A) = -1}{\text{s.t. } \lambda = 1}$, and all eigenvalues of \underline{A} are	 Determinant ⇒ A = ∏_i a_{ii} i.e. the product of diagonal elements 	$\det \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \det(A) \det(D - CA^{-1}B)$ if Alor D are	consisting of $x_1,, x_n$ -Alis diagonalisable iff $r_i = g_i$ where	Decomposition	•i.e. random vector $X = [X_1,, X_n]^T$ models the data	-Apply [[tutorial 1#Gram-Schmidt method to generate
•Gram-Schmidt is iterative projection => we use	$\bullet A \in \mathbb{R}^{m \times n}$ is semi-orthogonal iff $A^T A = I$ or $AA^T = I$		= det(D) det(A - BD ⁻¹ C) invertible, respectively	r_i = geometric multiplicity of λ_i and g_i = geometric multiplicity of λ_i	For any $M \in \mathbb{R}^{m \times n}$, MM^T and M^TM are symmetric and	•Co-variance matrix of \underline{X} Jis Cov(A) = $\frac{1}{m-1}$ $A^T A = $	orthonormal basis from any linearly independent vectors[GS]] $\mathbf{q}_1,, \mathbf{q}_n \leftarrow GS(\mathbf{a}_1,, \mathbf{a}_n)$ to build ONB
subspace	- If <u>n > m</u> then all <u>m</u> prows are orthonormal vectors - If <u>m > n</u> then all <u>n</u> pcolumns are orthonormal vectors	A jis diagonal iff $A_{ij} = 0, i \neq j$ i.e. if all off-diagonal entries are zero	•Sylvester's determinant theorem:	- Eigenvalues of A^k are $\lambda_1,, \lambda_n$	positive semi-definite	$(A^T A)_{ij} = (A^T A)_{ij} = \operatorname{Cov}(X_i, X_i)$	$(q_1,, q_n) \in \mathbb{R}^m$ for $C(A)$ - For exams: more efficient to compute as
-Assume orthonormal basis (ONB) (q ₁ ,,q _j) ∈ R	$\cdot U \perp V \subset \mathbb{R}^n \iff \mathbf{u} \cdot \mathbf{v} = 0$ for all $\mathbf{u} \in U, \mathbf{v} \in V$, i.e. they are	•Written as	det (I _m +AB) = det (I _n +BA) •Matrix determinant lemma:	•Let P = [x ₁ x _n] , then	Singular Value Decomposition (SVD) & Singular Values		For exams : more efficient to compute as $\mathbf{u}_{j+1} = \mathbf{a}_{j+1} - Q_j \mathbf{c}_j$
$*let O := [a_* a_!] \in \mathbb{R}^{m \times j}$ be the matrix	orthogonal subspaces •Orthogonal compliment of $U \subset \mathbb{R}^n$ is the subspace	$\operatorname{diag}_{m \times n}(\mathbf{a}) = \operatorname{diag}_{m \times n}(a_1, \dots, a_p), p = \min(m, n)$ where	$-\det(\mathbf{A} + \mathbf{u}\mathbf{v}^T) = (1 + \mathbf{v}^T\mathbf{A}^{-1}\mathbf{u})\det(\mathbf{A})$	$AP = \overline{[\lambda_1 \mathbf{x}_1] \dots [\lambda_n \mathbf{x}_n]} = [\mathbf{x}_1] \dots [\mathbf{x}_n] \operatorname{diag}(\lambda_1, \dots, \lambda_n) = PD$ $\Rightarrow \text{if } P^{-1} \text{ exists then}$	Singular Value Decomposition of $A \in \mathbb{R}^{m \times n}$ is any	$ \underbrace{ \begin{array}{c} \mathbf{v}_1,, \mathbf{v}_{r,j} (columns \ of \ \underline{V} \] \ \text{are principal axes of } \underline{A}] }_{\text{Let } \underline{\mathbf{w}} \in \mathbb{R}^n \] \text{be some unit-vector} \Rightarrow \text{let } \alpha_j = \mathbf{r}_j \cdot \mathbf{w} \ \text{be the} $	
*P _j = Q _j Q _j ^T is orthogonal projection onto U _j	$II^{\perp} = \{x \in \mathbb{R}^n \mid \forall y \in \mathbb{R}^n : x \mid y\}$	$\mathbf{a} = [a_1,, a_p]^T \in \mathbb{R}^p $ diagonal entries of \underline{A}	$-\det(\mathbf{A} + \mathbf{U}\mathbf{V}^T) = \det(\mathbf{I}_m + \mathbf{V}^T \mathbf{A}^{-1} \mathbf{U}) \det(\mathbf{A})$	-A=PDP-1 i.e. Ajis diagonalisable	decomposition of the form $A = USV^T$, where •Orthogonal $U = [\mathbf{u}_1 \mid \mid \mathbf{u}_m] \in \mathbb{R}^{m \times m}$ and	projection/coordinate of sample r _j onto w	2) Compute $\mathbf{c}_j = [\mathbf{q}_1 \cdot \mathbf{a}_{j+1}, \dots, \mathbf{q}_j \cdot \mathbf{a}_{j+1}]^T \in \mathbb{R}^j$
* $P_{\underline{j}} = Q_j Q_j^T$ is orthogonal projection onto * $P_{\underline{j}} = I_m - Q_j Q_j^T$ is orthogonal projection onto	$= \{ x \in \mathbb{R}^n \mid \forall y \in \mathbb{R}^n : x \le x+y \} $ $= \mathbb{R}^n = U \oplus U^{\perp} \text{and } (U^{\perp})^{\perp} = U $	•For $\underline{\mathbf{x} \in \mathbb{R}^n}$ $A\mathbf{x} = \operatorname{diag}_{m \times n} (a_1, \dots, a_p) [x_1 \dots x_n]^T$ $= [a_1 \times a_1 \dots a_p \times a_p 0 \dots 0]^T \in \mathbb{R}^m$ [if	$\det \left(\mathbf{A} + \mathbf{U} \mathbf{W} \mathbf{V}^{T}\right) = \det \left(\mathbf{W}^{-1} + \mathbf{V}^{T} \mathbf{A}^{-1} \mathbf{U}\right) \det(\mathbf{W}) \det(\mathbf{A})$	$P = I_{EB}$ is change-in-basis matrix for basis $B = (x_1,, x_n)$ of eigenvectors	$V = [\mathbf{v}_1 \mid \dots \mid \mathbf{v}_n] \in \mathbb{R}^{n \times n}$	•Variance (Bessel's correction) of $\alpha_1,, \alpha_m$ is	all-at-once
//) 1 /- /m - wj wj is or thogonal projection onto	-U⊥V ⇔ U [±] = V and vice-versa	p = m those tail-zeros don't exist)	Tricks for computing determinant	-If A = F _{EE} is transformation-matrix of linear map f	•S = diag _{$m \times n$} ($\sigma_1, \dots, \sigma_p$) where $p = min(m, n)$ and	$\operatorname{Var}_{\mathbf{W}} = \frac{1}{m-1} \sum_{i} \alpha_{j}^{2} = \frac{1}{m-1} \mathbf{w}^{T} \left(\sum_{i} \mathbf{r}_{j}^{T} \mathbf{r}_{j} \right) \mathbf{w}$	3) Compute $Q_j c_j \in \mathbb{R}^m$ and subtract from a_{j+1}
	$-Y \subseteq X \implies X^{\perp} \subseteq Y^{\perp}$ and $X \cap X^{\perp} = \{0\}$ $-\text{Any } \underbrace{x \in \mathbb{R}^{n}}$ can be uniquely decomposed into	• $\operatorname{diag}_{m \times n}(\mathbf{a})$ • $\operatorname{diag}_{m \times n}(\mathbf{b})$ = $\operatorname{diag}_{m \times n}(\mathbf{a} + \mathbf{b})$ • $\operatorname{Consider diag}_{n \times k}(c_1, \dots, c_q), q = \min(n, k)$, then	•If block-triangular matrix then apply	then $\mathbf{F}_{EE} = \mathbf{I}_{EB} \mathbf{F}_{BB} \mathbf{I}_{BE}$ • Spectral theorem: if A J is Hermitian then P^{-1} exists:	$\sigma_1 \ge \cdots \ge \sigma_p \ge 0$ • $\sigma_1, \dots, \sigma_p$ are singular values of \underline{A}].] \	i 1
*V: 4 = P: (a: 4) = U: => discard it!!	$\mathbf{x} = \mathbf{x}_i + \mathbf{x}_k$ where $\mathbf{x}_i \in U$ and $\mathbf{x}_k \in U^{\perp}$	diag _{m×n} $(a_1,,a_p)$ diag _{m×k} $(c_1,,c_q)$, $a_1,,a_p$	$\det \begin{pmatrix} A & B \\ 0 & D \end{pmatrix} = \det(A) \det(B)$	-If \mathbf{x}_i , \mathbf{x}_j associated to different eigenvalues then	-(Positive) singular values are (positive) square-roots	$= \frac{1}{m-1} \mathbf{w}^{T} \mathbf{A}^{T} \mathbf{A} \mathbf{w}$	-Can now rewrite $\mathbf{a}_j = \sum_{i=1}^{j} (\mathbf{q}_i \cdot \mathbf{a}_j) \mathbf{q}_i = Q_j \mathbf{c}_j$
	•For matrix $\underline{A} \in \mathbb{R}^{m \times n}$ and for row-space $R(A)$, column-space $C(A)$ and null space $L(A)$	= diag _{$m \times k$} ($a_1 c_1,, a_r c_r, 0,, 0$) = diag(s)	•If close to triangular matrix apply EROs/ECOs to get it	x _i ±x _j -If associated to same eigenvalue λ then eigenspace	of eigenvalues of $\underline{AA^T}$ or $\underline{A^TA}$ -i.e. $\sigma_1^2,, \sigma_D^2$ are eigenvalues of $\underline{AA^T}$ or $\underline{A^TA}$	•First (principal) axis defined => w(1) = arg max _w = 1 w ^T A ^T Aw	•Choose $\mathbb{Q} = \mathbb{Q}_n = [\mathbf{q}_1 \dots \mathbf{q}_n] \in \mathbb{R}^{m \times n}$ notice its [[tutorial 1#Orthogonality concepts]semi-orthogonal]]
-Let $q_{i+1} = \ddot{u}_{i+1}$ => we have next ONB $(q_1,, q_{i+1})$	$-R(A)^{\perp} = ker(A)$ and $C(A)^{\perp} = ker(A^{T})$	-Where r = min(p, q) = min(m, n, k), and	there, then its just product of diagonals •If Cholesky/LU/QR is possible and cheap then do it,	-if associated to same eigenvalue \underline{A} then eigenspace $\underline{E_{\underline{A}}}$ has spanning-set $\{\mathbf{x}_{\underline{A}_{\underline{i}}}, \dots\}$	- A ₂ = σ ₁ (link to matrix norms	= arg max _{w =1} (m-1)Var _w = v ₁	since $Q^T Q = I_n$
for $U_{j+1} \Rightarrow$ start next iteration	–Any $b ∈ \mathbb{R}^m$ can be uniquely decomposed into	$s \in \mathbb{R}^{S}$, $s = \min(m, k)$ •Inverse of square-diagonals =>	then apply AB = A B •If all else fails, try to find row/column with MOST zeros	*X1Xn (are linearly independent ⇒ apply	Let $r = rk(A)$, then number of strictly positive singular	•i.e. w(1) the direction that maximizes variance Varw	-Notice ⇒
* $\mathbf{u}_{j+1} = (\mathbf{I}_m - Q_j Q_j^T) \mathbf{a}_{j+1} = \mathbf{a}_{j+1} - Q_j \mathbf{c}_j$ where	$*\mathbf{b} = \mathbf{b}_i * \mathbf{b}_k$ where $\mathbf{b}_i \in C(A)$ and $\mathbf{b}_k \in \ker(A^T)$ $*\mathbf{b} = \mathbf{b}_i * \mathbf{b}_k$ where $\mathbf{b}_i \in R(A)$ and $\mathbf{b}_k \in \ker(A)$	diag $(a_1,, a_n)^{-1}$ = diag $(a_1^{-1},, a_n^{-1})$ i.e. diagonals cannot be zero (division by zero undefined)	-Perform minimal EROs/ECOs to get that row/column	Gram-Schmidt \mathbf{q}_{λ_i} , ← \mathbf{x}_{λ_i} ,	values is \underline{r}_{J} •i.e. $\sigma_{1} \ge \cdots \ge \sigma_{r} > 0$ and $\sigma_{r+1} = \cdots = \sigma_{p} = 0$	i.e. maximizes variance of projections on line Rw(1)	$\begin{vmatrix} \mathbf{a}_j = Q_j c_j = \mathbf{Q}[\mathbf{q}_1 \cdot \mathbf{a}_j, \dots, \mathbf{q}_j \cdot \mathbf{a}_j, 0, \dots, 0]^T = \mathbf{Q}\mathbf{r}_j \\ -\text{Let } R = [\mathbf{r}_1 \mid \dots \mid \mathbf{r}_n] \in \mathbb{R}^{n \times n} \end{vmatrix} \Longrightarrow$
$\mathbf{c}_{j} = [\mathbf{q}_{1} \cdot \mathbf{a}_{j+1}, \dots, \mathbf{q}_{j} \cdot \mathbf{a}_{j+1}]^{T}$		•Determinant of square-diagonals =>	to be all-but-one zeros *Don't forget to keep track of sign-flipping &	*Then $\{\mathbf{q}_{\lambda_{i}},\}$ is orthonormal basis (ONB) of $\underline{E_{\lambda}}$ $-Q = \langle \mathbf{q}_{1},, \mathbf{q}_{n} \rangle$ is an ONB of $\underline{\mathbf{R}^{n}} \Longrightarrow \mathbf{Q} = [\mathbf{q}_{1} \mathbf{q}_{n}]$ is	$A = \sum_{i=1}^{r} \sigma_i \mathbf{u}_i \mathbf{v}_i^T$	σ ₁ u ₁ ,, σ _r u _r (columns of <u>US</u>) are principal components/scores of <u>A</u>]	PHOTOMETER 1
		$ \operatorname{diag}(a_1,,a_n) = \prod_i a_i$ (since they are technically	scaling-factors	- 41114W1			

$\begin{bmatrix} \mathbf{q}_1^T \mathbf{a}_1 & \dots & \mathbf{q}_1^T \mathbf{a}_n \end{bmatrix}$	-Householder matrix $H_u = I_n - 2uu^T$ is reflection w.r.t.	with $\ \mathbf{I}_n - Q^{\dagger} Q\ = \text{loss}$	$-\tilde{f}$ is computer implementation , so inputs/outputs are FP	$-f!(\sum x_i y_i) = \sum x_i y_i (1 + \epsilon_i)$ where	$\frac{\ \delta A\ }{\ A\ } = O(\rho \epsilon_{\text{machine}})$ \Rightarrow only backwards stable if	Eigenvalue Problems: Iterative Tech-	$\star (\underline{p^{(0)},,p^{(n-1)}})$ and $(\underline{r^{(0)},,r^{(n-1)}})$ are bases for
$A = QR = Q \begin{bmatrix} & \ddots & \vdots \\ 0 & & \mathbf{q}_n^T \mathbf{a}_n \end{bmatrix} \text{ notice its}$	hyperplane P_U Recall: let $L_U = \mathbb{R} u$	-Classical GS ⇒ $\ I_n - Q^{\dagger}Q\ \approx \text{Cond}(A)^2 \epsilon_{\text{mach}}$	-Input $\underline{x \in X}$ J is first rounded to $\underline{f(x)}$, i.e. $\underline{\tilde{f}(x)} = \tilde{f}(f(x))$	$1+\epsilon_i = (1+\delta_i) \times (1+\eta_i) \cdots (1+\eta_n)$ and $ \delta_i , \eta_i \le \epsilon_{mach}$	ρ = O(1)	•If A Jis [[tutorial 1#Properties of	QR Algorithm to find Schur decomposi-
[[tutorial 1#Properties of matrices upper-triangular]]	* $\operatorname{proj}_{L_{U}} = uu^{T}$ and $\operatorname{proj}_{P_{U}} = I_{n} - uu^{T}$ =>	-Modified GS ⇒ $\ I_n - Q^{\dagger}Q\ \approx \text{Cond}(A) \epsilon_{\text{mach}}$	-f cannot be continuous (for the most part) -Absolute error $\Rightarrow \ \hat{f}(x) - f(x)\ $ relative error \Rightarrow	$*1+\epsilon_i \approx 1+\delta_i + (\eta_i + \dots + \eta_n)$	•Full pivoting is PAQ = LU finds largest entry in bottom-right submatrix	matrices diagonalizable]] then [[tutorial 1#Eigen-values/vectors eigen-decomposition]]	$tion A = QUQ^{\dagger}$
Full QR Decomposition •Consider full-rank $A = [a_1 a_n] \in \mathbb{R}^{m \times n} (\underline{m \ge n}),$	H _u = proj _{Pu} - proj _{Lu}	-NOTE: Householder method has $\ I_n - Q^{\dagger}Q\ \approx \epsilon_{\text{mach}}\ $ Multivariate Calculus	$\ \tilde{f}(x)-f(x)\ $	$ \star fl(x^T y) - x^T y \le \sum_i x_i y_i \varepsilon_i $	 Makes it pivot with row/column swaps before normal elimination 	$A = X \wedge X^{-1}$	•Any $\underline{A \in \mathbb{C}^{m \times m}}$ has Schur decomposition $\underline{A = QUQ^{\dagger}}$
i.e. $\mathbf{a}_1, \dots, \mathbf{a}_n \in \mathbb{R}^m$ are linearly independent	*Visualize as preserving component in Pu then flipping component in Lu	•Consider $f : \mathbb{R}^n \to \mathbb{R}$ => when clear write i -th		*Assuming $n\epsilon_{\text{mach}} \le 0.1$ => $ fl(x^T y) - x^T y \le \phi(n)\epsilon_{\text{mach}} x ^T y , \text{ where}$	-Very expensive O(m ³) search-ops, partial pivoting	$ \begin{array}{c c} \textbf{-Dominant} \ \lambda_1; x_1 \\ \text{for which} \ \underline{Ax = \lambda x} \end{array}] \text{ are such that } \underline{ \lambda_1 } \text{ is strictly largest} $	-QJis unitary, i.e. Q [†] = Q ⁻¹ and upper-triangular <u>U</u> J -Diagonal of <u>U</u> Jcontains eigenvalues of <u>A</u> J
Apply [[#Thin QR Decomposition w/ Gram-Schmidt (GS) thin QR decomposition]] to obtain:	-Hu is involutory, orthogonal and symmetric,	component of input as \underline{i} instead of $\underline{x_i}$: -Level curve w.r.t. to $\underline{c} \in \mathbb{R}$ is all points s.t. $\underline{f}(\mathbf{x}) = c$	• \vec{f} is accurate if $\forall x \in X$. $\frac{\ \vec{f}(x) - f(x)\ }{\ f(x)\ } = O(\epsilon_{\text{mach}})$	$ x _i = x_i $ is vector and $\phi(n)$ is small function of n -Summing a series is more stable if terms added in	only needs O(m ²)	- Rayleigh quotient for Hermitian A = A is	•![[Pasted image 20250420135506.png 300]] •For $A \in \mathbb{R}^{m \times m}$ each iteration $A^{(k)} = Q^{(k)}R^{(k)}$ produces
$-ONB\left(\frac{\mathbf{q}_{1},\ldots,\mathbf{q}_{n}}{q_{n}}\right)\in\mathbb{R}^{m} \text{ for } \underline{C}(A)$	i.e. $H_u = H_u^{-1} = H_u^T$ Modified Gram-Schmidt	−Projecting level curves onto R ⁿ gives contour-map	• \tilde{f} is stable if $\underline{\forall x \in X}$ $\underline{\exists \tilde{x} \in X}$ s.t. $\frac{\ \tilde{f}(x) - f(\tilde{x})\ }{\ f(\tilde{x})\ } = O(\varepsilon_{\text{mach}}) \text{ and } \frac{\ \tilde{x} - x\ }{\ x\ } = O(\varepsilon_{\text{mach}})$	order of increasing magnitude	Systems of Equations: Iterative Tech- niques	$R_{A}(x) = \frac{x^{\dagger} Ax}{x^{\dagger} x}$	orthogonal $Q^{(k)}^T = Q^{(k)-1}$
-Semi-orthogonal $Q_1 = [\mathbf{q}_1 \dots \mathbf{q}_n] \in \mathbb{R}^{m \times n}$ and upper-triangular $R_1 \in \mathbb{R}^{n \times n}$ where $A = Q_1 R_1$	 Go check [[tutorial 1#Gram-Schmidt method to 	of \underline{f} n_k th order partial derivative w.r.t i_k of, of	$ f(\tilde{x}) = O(\epsilon_{mach})$ and $ x = O(\epsilon_{mach})$ -i.e. nearly the right answer to nearly the right question	•For FP matrices , let $ M _{ij} = M_{ij} _{j}$ i.e. matrix $ M _{j}$ of absolute values of M	•Let $\underline{A}, R, G \in \mathbb{R}^{n \times n}$ where $\underline{G^{-1}}$ exists => splitting $\underline{A} = G + R$ helps iteration	*Eigenvectors are stationary points of R _A *R _A (x) is closest to being like eigenvalue of x _I .	·So
•[[tutorial 3#Tricks Computing orthonormal vector-set	generate orthonormal basis from any linearly independent vectors [Classical GM]] first, as this is just	th order partial derivative w.r.t of f is:	-outer-product is stable	$-fl(\lambda \mathbf{A}) = \lambda \mathbf{A} + E, E _{ij} \le \lambda \mathbf{A} _{ij} \in_{mach}$	-Ax = b rewritten as x = Mx + c where	i.e. $R_A(\mathbf{x}) = \underset{\alpha}{\operatorname{argmin}} \ A\mathbf{x} - \alpha\mathbf{x}\ _2$	$\frac{A^{(k+1)} = R^{(k)}Q^{(k)} = (Q^{(k)}^TQ^{(k)})R^{(k)}Q^{(k)} = Q^{(k)}^TA^{(k)}Q^{(k)}}{\text{means } A^{(k+1)} \text{is similar to } A^{(k)} }$
extensions Compute basis extension]] to obtain remaining $\mathbf{q}_{n+1},,\mathbf{q}_m \in \mathbb{R}^m$, where $\langle \mathbf{q}_1,,\mathbf{q}_m \rangle$ is	an alternative computation method •Let $P_{\perp} \mathbf{q}_{j} = \mathbf{I}_{m} - \mathbf{q}_{j} \mathbf{q}_{j}^{T}$ be projector onto [[tutorial	$\frac{\partial^n k^{*\cdots *n_1}}{\partial x_1} f = \partial^n_{i_k} \cdots \partial^n_{i_n} f = f^{(n_1, \dots, n_k)}_{i_n \dots i_n} = f^{(n_1, \dots, n_k)}_{i_n \dots i_n}$	$\begin{cases} \int_{K=1}^{\tilde{f}} \mathbf{s}_{1} \log \mathbf{k} \mathbf{y} \cdot \mathbf{x} d\mathbf{x} \cdot \mathbf{x} & \exists \tilde{x} \in X \mathbf{s.t.} \tilde{f}(x) = f(\tilde{x}) \\ 1 \text{ and } \frac{\ \tilde{x} - x\ }{\ x\ } = O\left(\epsilon_{\text{mach}}\right) \end{cases}$	$-f!(\mathbf{A} * \mathbf{B}) = (\mathbf{A} * \mathbf{B}) * E, E _{ij} \le \mathbf{A} * \mathbf{B} _{ij} \in mach$	$M = -G^{-1}R$; $c = -G^{-1}b$ Define $f(x) = Mx + c$ and sequence	$*R_A(\mathbf{x})-R_A(\mathbf{v})=O(\ \mathbf{x}-\mathbf{v}\ ^2)$ as $\mathbf{x} \to \mathbf{v}$ where \mathbf{v} is	- Setting $\underline{A}^{(0)} = \underline{A}$ we get $\underline{A}^{(k)} = \underline{Q}^{(k)T} \underline{A} \underline{Q}^{(k)}$ where
ONB for $\mathbb{R}^{\underline{m}}$ -Notice $(\mathbf{q}_{n+1},, \mathbf{q}_{m})$ is ONB for $\mathbb{C}(A)^{\perp} = \ker(A^{\top})$	5#Lines and hyperplanes in Euclidean space \$	'k '1	-i.e. exactly the right answer to nearly the right	$fl(AB) = AB + E, E _{ij} \le n \epsilon_{mach}(A B)_{ij} + O(\epsilon_{mach}^2)$	$\mathbf{x}^{(k+1)} = f(\mathbf{x}^{(k)}) = M\mathbf{x}^{(k)} + \mathbf{c}$ with starting point $\mathbf{x}^{(0)}$	eigenvector - Payer iteration define requests b(k+1) - Ab(k)	$\underline{\tilde{Q}}(k) = Q(0) \dots Q(k-1)$ • Under certain conditions QR algorithm converges to
-Let $Q_2 = [\mathbf{q}_{n+1} \dots \mathbf{q}_m] \in \mathbb{R}^{m \times (m-n)}$ let	mathbb{E} {n}{{=} mathbb{R} {n})\$ hyperplane]]	-Overall, its an N -th order partial derivative where $N = \sum_{k} n_{k}$	question, a subset of stability	• Taylor series about $\underline{a} \in \mathbb{R}$ jis $\underline{n} f^{(k)}(a)$	-Limit of $\langle x_R \rangle$ is fixed point of \underline{f} => unique fixed point of \underline{f} is solution to $\underline{Ax = b}$	•Power iteration: define sequence $b^{(k+1)} = \frac{Ab^{(k)}}{\ Ab^{(k)}\ }$	Schur decomposition
$Q = [Q_1 Q_2] \in \mathbb{R}^{m \times m} \text{let } R = [R_1; 0_{m-n}] \in \mathbb{R}^{m \times n}$ Then full QR decomposition is	(Rqj) Li.e. [[tutorial 5#Lines and hyperplanes in Euclidean space \$ mathbb{E} {n}{(=} mathbb{R}	$\bullet \nabla f = [\partial_1 f,, \partial_n f]^T$ is gradient of $f = (\nabla f)_i = \frac{\partial f}{\partial x_i}$	-⊕, ⊖, ⊗, ⊘ , inner-product , back-substitution w/ triangular systems, are backwards stable	$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k * O((x-a)^{n+1}) $ as $\underline{x \to a}$	-If ∥-∥ is consistent norm and ∥M∥ <1 then ⟨x _k ⟩	with initial b(0) s.t. b(0) = 1	•We can apply shift $\mu^{(k)}$ at iteration $\underline{k} = >$ $A^{(k)} - \mu^{(k)} \underline{I} = Q^{(k)} R^{(k)}; A^{(k+1)} = R^{(k)} Q^{(k)} + \mu^{(k)} \underline{I}$
A = $QR = [Q_1 Q_2] \begin{bmatrix} R_1 \\ 0_{m-n} \end{bmatrix} = Q_1 R_1$	{n})\$ orthogonal compliment]] of line Rqj	$-\nabla^T f = (\nabla f)^T$ is transpose of ∇f , i.e. $\nabla^T f$ is row vector	-If backwards stable f has condition number	-Need $\underline{a=0}$ => $f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^k * O(x^{n+1})$ as	converges for any x ⁽⁰⁾ (because Cauchy-completeness)	-Assume dominant $\lambda_1; x_1$ exist for \underline{A} , and that $\text{proj}_{x_1} (b^{(0)}) \neq 0$	-If shifts are good eigenvalue estimates then last column of $\tilde{Q}^{(k)}$ converges quickly to an eigenvector
	-Notice: $P_{\perp j} = I_m - Q_j Q_j^T = \prod_{i=1}^{J} (I_m - q_i q_i^T) = \prod_{i=1}^{J} P_{\perp} q_i$	• $D_{\mathbf{u}} f(\mathbf{x}) = \lim_{\delta \to 0} \frac{f(\mathbf{x} + \delta \mathbf{u}) - f(\mathbf{x})}{\delta}$ directional-derivative	$\underline{\kappa(x)} \text{ [then relative error } \frac{\ \widehat{f}(x) - f(x) \ }{\ f(x) \ } = O\left(\kappa(x) \epsilon_{\text{mach}}\right)$	x → 01	*For splitting, we want M; c and easy to compute	-Under above assumptions.	-Estimate μ ^(k) with Rayleigh quotient =>
$-\underline{Q}$ Jis orthogonal , i.e. $\underline{Q^{-1}} = \underline{Q}^T$, so its a basis transformation	*[[tutorial 1#Column-wise & row-wise matrix/vector	of f	•Accuracy, stability, backwards stability are norm-independent for fin-dim X, Y	- n .	*Stopping criterion usually the relative residual	$\mu_{R} = R_{A} \left(\mathbf{b}^{(R)} \right) = \frac{\mathbf{b}^{(R)}^{\dagger} A \mathbf{b}^{(R)}}{\mathbf{b}^{(R)} A \mathbf{b}^{(R)}} $ converges to dominant	$\mu^{(k)} = (A_k)_{mm} = \tilde{\mathbf{q}}_m^{(k)T} A \tilde{\mathbf{q}}_m^{(k)}$ where $\tilde{\mathbf{q}}_m^{(k)}$ is \underline{m} th
$\frac{-\text{proj}_{C(A)} = Q_1 Q_1^T}{1 \# \text{proj}_{C(A)} \perp = Q_2 Q_2^T} \text{ are [[tutorial } \\ 1 \# \text{Projection properties}] \text{ orthogonal projections]]}$	ops Outer-product sum equivalence]] =>	-It is rate-of-change in direction u, where u∈ R ⁿ is unit-vector	Big-O meaning for numerical analysis	e.g. $(1+\epsilon)^p = \sum_{k=0}^n \binom{p}{k} \epsilon^k + O(\epsilon^{n+1}) = \sum_{k=0}^n \frac{p!}{k!(p-k)!} \epsilon^k + O(\epsilon^{n+1})$	$n+1$ $\frac{\ \mathbf{b}-\mathbf{A}\mathbf{x}^{(R)}\ }{\ \mathbf{b}\ } \le \epsilon$	b(k) [†] b(k)	column of $\underline{\tilde{Q}}^{(R)}$
onto $C(A) \downarrow C(A)^{\perp} = \ker(A^{T})$ respectively	$Q_j Q_j^T = [\mathbf{q}_1 \mid \mid \mathbf{q}_j] [\mathbf{q}_1^T;; \mathbf{q}_i^T] = \sum_{i=1}^{j} \mathbf{q}_i \mathbf{q}_i^T$	$-D_{\mathbf{u}}f(\mathbf{x}) = \nabla f(\mathbf{x}) \cdot \mathbf{u} = \nabla f(\mathbf{x}) \mathbf{u} \cos(\theta) \Rightarrow D_{\mathbf{u}}f(\mathbf{x}) $	•In complexity analysis $f(n) = O(g(n))$ as $n \to \infty$ •But in numerical analysis $f(\epsilon) = O(g(\epsilon))$ as $\epsilon \to 0$.	as <u>€</u> → 0]	•Assume Afs diagonal is non-zero (w.l.o.g.	$-\frac{(b_k)}{(b_k)}$ converges to some dominant x_1 associated	
-Notice: $QQ^T = \mathbf{I}_m = Q_1 Q_1^T + Q_2 Q_2^T$	*For <u>i * k}</u> ,=>	maximized when $\cos \theta = 1$ -i.e. when x , u are parallel \Rightarrow hence $\nabla f(x)$ is direction	i.e. $\limsup_{\epsilon \to 0} \ f(\epsilon)\ / \ g(\epsilon)\ < \infty$	Elementary Matrices -identity I _n = [e ₁ e _n] = [e ₁ ;; e _n] has elementary	permute/change basis if isn't) then A = D+L+U -Where D is diagonal of A L, U are strict lower/upper	with $\lambda_1 \Rightarrow Ab^{(k)} $ converges to $ \lambda_1 $	
 Generalizable to A∈C^{m×n} by changing transpose to conjugate-transpose 	$\prod_{j=1}^{j} \left(\mathbf{I}_{m} - \mathbf{q}_{j} \mathbf{q}_{j}^{T} \right) = \mathbf{I}_{m} - \sum_{j=1}^{j} \mathbf{q}_{j} \mathbf{q}_{j}^{T} = \mathbf{I}_{m} - Q_{j} Q_{j}^{T}$	of max. rate-of-change • $\mathbf{H}(f) = \nabla^2 f = \mathbf{J}(\nabla f)^T$ is the Hessian of f \Rightarrow	-i.e. $\exists C, \delta > 0 \mid s.t. \ \underline{\forall \epsilon \mid}$ we have $0 < \ \epsilon\ < \delta \implies \ f(\epsilon)\ \le C \ g(\epsilon)\ $	vectors e ₁ ,,e _n for rows/columns	triangular parts of A • Jacobi Method: G = D; R = L + U =>	$-\text{If } \underline{\text{proj}}_{x_1} \left(\underline{b}^{(0)} \right) = 0 \text{ then } \underline{(\underline{b}_k); (\underline{0}_k)} \text{ converge to}$ $\text{second } \underline{\text{dominant}} \lambda_2; \underline{x_2} \text{ instead}$	
-Inner product $x^T y \Rightarrow x^{\dagger} y$	i=1 ' i=1	$\mathbf{H}(f)_{ij} = \frac{\partial^2 f}{\partial x_i \partial x_j}$	O(g) is set of functions $\{f: \lim_{n \to \infty} \ f(e)\ / \ g(e)\ \le \infty \}$	•Row/column switching: permutation matrix P _{ij} obtained by switching e _i and e _j in I _n (same for	$M = -D^{-1}(L+U); c = D^{-1}b$	-If no dominant <u>∧</u> (i.e. multiple eigenvalues of	
-Orthogonal matrix $U^{-1} = U^{T}$] \Rightarrow unitary matrix $U^{-1} = U^{\dagger}$	-Re-state: $\mathbf{u}_{j+1} = (\mathbf{I}_m - Q_j Q_j^T) \mathbf{a}_{j+1} \Longrightarrow$	• f has local minimum at x_{loc} if there's radius $r>0$ s.t.	$ \underbrace{\left\{f: \limsup_{\epsilon \to 0} \ f(\epsilon)\ / \ g(\epsilon)\ < \infty\right\}}_{\epsilon \text{ mallness partial order } O(g_1) \preceq O(g_2) \text{ defined by } $	rows/columns)	$\left -\frac{\mathbf{x}_{i}^{(k+1)}}{\mathbf{x}_{i}^{(k+1)}} = \frac{1}{A_{ii}} \left(\mathbf{b}_{i} - \sum_{j \neq i} A_{ij} \mathbf{x}_{j}^{(k)} \right) \right \Rightarrow \frac{\mathbf{x}_{i}^{(k+1)}}{\mathbf{x}_{i}^{(k+1)}} $ only needs	maximum [\lambda] then (\frac{\b}{k}) will converge to linear combination of their corresponding eigenvectors	
*For orthogonal $U = [\mathbf{u}_1 \mid \mid \mathbf{u}_b] \in \mathbb{R}^{m \times k} \mid \Rightarrow$	$\mathbf{u}_{j+1} = \left(\prod_{i=1}^{j} P_{\perp \mathbf{q}_{i}}\right) \mathbf{a}_{j+1} = \left(P_{\perp \mathbf{q}_{j}} \cdots P_{\perp \mathbf{q}_{1}}\right) \mathbf{a}_{j+1}$	$\forall x \in B[r; x_{loc}]$ we have $\underline{f(x_{loc}) \le f(x)}$	set-inclusion $O(g_1) \subseteq O(g_2)$ -i.e. as $\varepsilon \to 0$ $g_1(\varepsilon)$ goes to zero faster than $g_2(\varepsilon)$	-Applying Pij from left will switch rows, from right will swap columns		-Slow convergence if dominant λ_1 not "very dominant"	
proj _U = UU ^T projects onto C(U)	-Projectors P _{⊥ q₁} ,, P _{⊥ qᵢ} are iteratively applied to	$-\underline{f}$ has global minimum \underline{x}_{glob} if $\underline{\forall x \in \mathbb{R}^n}$ we have $f(\underline{x}_{glob}) \le f(\underline{x})$	-Roughly same hierarchy as complexity analysis but	$-P_{ij} = P_{ij}^T = P_{ij}^{-1}$, i.e. applying twice will undo it	b _i ; x ^(R) ; A _{i*} => row-wise parallelization • Gauss-Seidel (G-S) Method: G=D+L; R=U =>	$-\ \mathbf{b}^{(k)} - \alpha_k \mathbf{x}_1\ = O\left(\left \frac{\lambda_2}{\lambda_1}\right ^k\right)$ for phase factor	
*For unitary $U = [\mathbf{u}_1 \mid \mid \mathbf{u}_k] \in \mathbb{C}^{m \times k}$ => $\underline{\text{proj}_U = UU^{\uparrow}}$ projects onto $\underline{C}(U)$	$\frac{1}{q_1}$, removing its components along $\frac{1}{q_1}$ then along	-A local minimum satisfies optimality conditions:	flipped (some break pattern) *e.g, $O(\varepsilon^3) < O(\varepsilon^2) < O(\varepsilon) < O(1)$	•Row/column scaling: $D_i(\lambda)$ obtained by scaling e_i by λ in I_n (same for rows/columns)	$M = -(D+L)^{-1}U$; $c = (D+L)^{-1}b$	$\alpha_k \in \{-1, 1\}$ [it may alternate if $\lambda_1 < 0$]	
-And so on Lines and hyperplanes in Euclidean	q ₂ and so on	$*\nabla f(\mathbf{x}) = 0$ e.g. for $\underline{n=1}$ its $\underline{f'(\mathbf{x})} = 0$ $*\nabla^2 f(\mathbf{x})$ is positive-definite, e.g. for $\underline{n=2}$ its $f''(\mathbf{x}) > 0$	-Maximum: $O(\max(g_1 , g_2)) = O(g_2) \iff O(g_1) \leq O(g_2)$	-Applying P _{ij} from left will scale rows, from right will	$-\frac{1}{\mathbf{x}_{i}^{(k+1)}} = \frac{1}{A_{ii}} \left(\mathbf{b}_{i} - \sum_{j=1}^{i-1} A_{ij} \mathbf{x}_{j}^{(k+1)} - \sum_{j=i+1}^{n} A_{ij} \mathbf{x}_{j}^{(k)} \right)$	$*\alpha_k = \frac{(\lambda_1)^k c_1}{ \lambda_1 ^k \lambda_1 ^k} \text{ where } c_1 = \mathbf{x}_1^{\dagger} \mathbf{b}^{(0)} \text{ and assuming}$	
space $\mathbb{E}^n(=\mathbb{R}^n)$	•Let $\mathbf{u}_{k}^{(j)} = \left(\prod_{i=1}^{j} P_{\perp \mathbf{q}_{i}}\right) \mathbf{a}_{k}$, i.e. $\underline{\mathbf{a}_{k}}$ without its	•Interpret $\underline{F}: \mathbb{R}^n \to \mathbb{R}^m$ as \underline{m} functions $F_i: \mathbb{R}^n \to \mathbb{R}$	*e.g. $O(\max(\epsilon^k, \epsilon)) = O(\epsilon)$	scale columns $-D_j(\lambda) = \text{diag}(1,,\lambda,,1)$ so all diagonal properties			
•Consider standard Euclidean space $\mathbb{E}^{n}(=\mathbb{R}^{n})$ •with standard basis $(e_{1},,e_{n}) \in \mathbb{R}^{n}$		(one per output-component) $-J(F) = \left[\nabla^T F_1;; \nabla^T F_m \right] $ is Jacobian matrix of $\underline{F} = 1$	•Using functions $f_1,, f_n$ let $2(f_1,, f_n)$ be formula defining some function	apply, e.g. $D_i(\lambda)^{-1} = D_i(\lambda^{-1})$	-Computing $\mathbf{x}_{i}^{(k+1)}$ needs \mathbf{b}_{i} ; $\mathbf{x}^{(k)}$; $\mathbf{A}_{i\star}$ and $\mathbf{x}_{j}^{(k+1)}$ for $j < i$ => lower storage requirements	$\frac{b^{(k)}; \mathbf{x}_1}{b^{(k)}}$ are normalized $-(A-\sigma I)$ has eigenvalues $\lambda - \sigma I \Rightarrow$ power-iteration on	
–with standard origin 0∈ ℝ ⁿ	components along $\mathbf{q}_1, \dots, \mathbf{q}_j$ Notice: $\mathbf{u}_j = \mathbf{u}_i^{(j-1)}$, thus $\mathbf{q}_j = \hat{\mathbf{u}}_j^{(j-1)} / r_{jj}$ where	$J(F)_{ij} = \frac{\partial F_i}{\partial x_i}$	-Then $(O(g_1),, O(g_n))$ is the class of functions	•Row addition: $L_{ij}(\lambda) = \mathbf{I}_n + \lambda \mathbf{e}_i \mathbf{e}_j^T$ performs	•Successive over-relaxation (SOR):	$(A-\sigma I) has \frac{\lambda_2 - \sigma}{\lambda_1 - \sigma} $	
 A line L = Rn + c is characterized by direction n ∈ Rⁿ (n ≠ 0) and offset from origin c ∈ L 			$\frac{[P(f_1,, f_n) : f_1 \in O(g_1),, f_n \in O(g_n)]}{*e.g. \in O(1) = \{ \in f(\varepsilon) : f \in O(1) \}}$	$R_i \leftarrow R_i + \lambda R_j$ when applying from left	$\frac{G = \omega^{-1}D + L; R = (1 - \omega^{-1})D + U}{M = -(\omega^{-1}D + L)^{-1}((1 - \omega^{-1})D + U); c = -(\omega^{-1}D + L)^{-1}b}$	-Eigenvector guess => estimated eigenvalue	
-It is customary that: *njis a unit vector, i.e. n = n̂ = 1	$r_{jj} = \left\ \mathbf{u}_{j}^{(\bar{j}-1)} \right\ $ -Iterative step:	Conditioning •A problem is some $f: X \rightarrow Y$ where X, Y are normed	-General case:	$-\lambda e_i e_j^T$ is zeros except for $\lambda \ln (i,j)$ th entry		•Inverse (power-)iteration: perform power iteration on $(A-\sigma I)^{-1}$ to get $\lambda_{1,\sigma}$ closest to σ_I	
$*\underline{c} \in L$ is closest point to origin, i.e. $\underline{c} \perp \underline{n}$	$\mathbf{u}_{k}^{(j)} = \left(P_{\perp} \mathbf{q}_{j}\right) \mathbf{u}_{k}^{(j-1)} = \mathbf{u}_{k}^{(j-1)} - \left(\mathbf{q}_{j} \cdot \mathbf{u}_{k}^{(j-1)}\right) \mathbf{q}_{j}$	vector-spaces A problem <i>instance</i> is f with fixed input $x \in X$,	$[2_1(O(f_1),,O(f_m))=[2_2(O(g_1),,O(g_n))]$ means $[2_1(O(f_1),,O(f_m))\subseteq [2_2(O(g_1),,O(g_n))]$	$-L_{ij}(\lambda)^{-1} = L_{ij}(-\lambda)$ both triangular matrices LU factorization w/ Gaussian elimina-	$\mathbf{x}_{i}^{(k+1)} = \frac{\omega}{A_{ii}} \left(\mathbf{b}_{i} - \sum_{j=1}^{i-1} A_{ij} \mathbf{x}_{j}^{(k+1)} - \sum_{j=i+1}^{n} A_{ij} \mathbf{x}_{j}^{(k)} \right) * (1 - \omega) \mathbf{x}$	$-(A-\sigma I)^{-1}$ has eigenvalues $(\lambda - \sigma)^{-1}$ so power iteration	
-If <u>c≠λn</u> => <u>L</u> not vector-subspace of <u>R</u> ⁿ *i.e. <u>0</u> ∉ <u>L</u> i.e. <u>L</u> doesn't go through the origin	-i.e. each iteration j of MGS computes P⊥ q ; (and	shortened to just "problem" *(with $\underline{x \in X}$ implied) $-\delta \underline{x}$ is small perturbation of \underline{x} $\Rightarrow \delta f = f(x + \delta x) - f(x)$	*e.g. $e^{O(1)} = O(k^{\epsilon})$ means $\{e^{f(\epsilon)} : f \in O(1)\} \subseteq O(k^{\epsilon})$	tion	for relaxation factor ω > 1	will yield largest $(\lambda_{1,\sigma} - \sigma)^{-1}$	
*LJis affine-subspace of \mathbb{R}^n] $-\text{If } \mathbf{c} = \lambda \mathbf{n}$, i.e. $L = \mathbb{R}\mathbf{n}$] \Rightarrow LJ is vector-subspace of \mathbb{R}^n]	projections under it) in one go	-A problem (instance) is:	not necessarily true -Special case: $f = ?(O(g_1),, O(g_n))$ means	•[[tutorial 1#Representing EROs/ECOs as transformation matrices Recall that]] you can	•If AJ is strictly row diagonally dominant then Jacobi/Gauss-Seidel methods converge	-i.e. will yield smallest $\lambda_{1,\sigma}$ - σ , i.e. will yield $\lambda_{1,\sigma}$ closest to σ	
The Court is a fire and become the authors	-At start of iteration $\underline{j \in 1n}$ we have ONB $\mathbf{q}_1,, \mathbf{q}_{j-1} \in \mathbb{R}^m$ and residual $\mathbf{u}_j^{(j-1)},, \mathbf{u}_n^{(j-1)} \in \mathbb{R}^m$	*Well-conditioned if all small δx lead to small δf , i.e. if κ is small (e.g. 1) δx	$f \in \mathbb{C}(O(g_1), \dots, O(g_n))$	represent EROs and ECOs as transformation matrices R, C respectively	-Alis strictly row diagonally dominant if	$-\ \mathbf{b}^{(k)} - \alpha_k \mathbf{x}_{1,\sigma}\ = O\left(\left \frac{\lambda_{1,\sigma} - \sigma}{\lambda_{2,\sigma} - \sigma}\right ^k\right) \text{ where } \mathbf{x}_{1,\sigma}$	
 A hyperplane jis characterized by normal n∈Rⁿ 		*Ill-conditioned if some small $\underline{\delta x}$ lead to large $\underline{\delta f}$,	*e.g. $(\varepsilon + 1)^2 = \varepsilon^2 + O(\varepsilon)$ means $\varepsilon \mapsto (\varepsilon + 1)^2 \in (\varepsilon^2 + f(\varepsilon))$; not necessarily true	•LU factorization => finds A = LU where L, U are	$ A_{ii} > \sum_{j \neq i} A_{ij} $	(1 2,0 1)	
(n × 0) and offset from origin c∈P -It represents an (n - 1) dimensional slice of the	-Compute $r_{jj} = \left\ \mathbf{u}_{j}^{(j-1)} \right\ = \mathbf{q}_{j} = \mathbf{u}_{j}^{(j-1)} / r_{jj}$	i.e. if $\underline{\kappa}$ jis large *(e.g. 10^6), 10^{16}) *Absolute condition number cond(x) = $\hat{\kappa}(x)$ = $\hat{\kappa}$ of f at	•Let $f_1 = O(g_1)$, $f_2 = O(g_2)$ and let $k \neq 0$ be a constant	lower/upper triangular respectively •Naive Gaussian Elimination performs	 If A J is positive-definite then G-S and SOR (ω∈(0,2)) converge 	corresponds to $\lambda_{1,\sigma}$ and $\lambda_{2,\sigma}$ is 2nd-closest to σ – Efficiently compute eigenvectors for known	
n_dimensional space *Points are hyperplanes for n = 1	-For each $k \in (j+1)n$ compute $r_{jk} = \mathbf{q}_j \cdot \mathbf{u}_k^{(j-1)} \Longrightarrow$	xjis 6f	$-f_1 \bar{f}_2 = O(g_1 g_2)$ and $f \cdot O(g) = O(fg)$ $-f_1 + f_2 = O(\max(g_1 , g_2))$ \Rightarrow if $g_1 = g = g_2$ then	$\begin{bmatrix} I_m \mid A \mid I_n \end{bmatrix} \Rightarrow \begin{bmatrix} R^{-1} \mid U \mid I_n \end{bmatrix} \text{ to get } \underbrace{AI_n = R^{-1} U} \text{ using}$ only row addition	Break up matrices into (uneven	eigenvalues o - Eigenvalue guess ⇒ estimated eigenvector	
*Lines are hyperplanes for $\underline{n=2}$	$\mathbf{u}_{k}^{(j)} = \mathbf{u}_{k}^{(j-1)} - r_{jk}\mathbf{q}_{j}$ -We have next ONB $\langle \mathbf{q}_{1},, \mathbf{q}_{j} \rangle$ and next residual	$-\hat{\kappa} = \lim_{\delta \to 0} \sup_{\ \delta x\ \le \delta} \frac{\ Of\ }{\ \delta x\ } \Longrightarrow \text{for most problems}$	$ \frac{\overline{f_1 + f_2} = O(g)}{-O(k \cdot g) = O(g)} $	$-R^{-1}$ i.e. inverse EROs in reversed order, is lower-triangular so $L = R^{-1}$	•e.g. symmetric A∈ R ^{n×n} can become	-![[Pasted image 20250420131643.png 300]]	
*Planes are hyperplanes for <u>n = 3</u>] —It is customary that:	$\begin{bmatrix} \mathbf{u}_{j+1}^{(j)}, \dots, \mathbf{u}_{n}^{(j)} \end{bmatrix}$	simplified to $\hat{\kappa} = \sup_{\delta x} \frac{\ \bar{\delta}f\ }{\ \delta x\ }$	Floating-point numbers	-![[Pasted image 20250419051217.png 400]]	$A = \begin{bmatrix} a_{1,1} & b \\ \end{bmatrix}$ then perform proofs on that	-Can reduce matrix inversion O(m ³) to O(m ²) by pre-factorization	
*n is a unit vector, i.e. $\ \mathbf{n}\ = \ \hat{\mathbf{n}}\ = 1$ * $\mathbf{c} \in P$ is closest point to origin, i.e. $\mathbf{c} = \lambda \mathbf{n}$	$ j+1, \dots, q_j $ $-NOTE: \text{ for } \underline{j=1} \Rightarrow q_1, \dots, q_{j-1} = \emptyset \text{ i.e. we don't have}$	-If Jacobian $J_f(x)$ exists then $\hat{\kappa} = J_f(x) $, where	•Consider base/radix β≥2](typically 2) and precision t≥1 (24 or 53 for IEEE single/double precisions)	-The pivot element is simply diagonal entry $u_{kk}^{(k-1)}$	[P ₁ C]	Nonlinear Systems of Equations: Itera- tive Techniques	•
*With those $\Rightarrow P = \{x \in \mathbb{R}^n \mid x \cdot \mathbf{n} = \lambda\}$	any yet	matrix norm $\ -\ $ induced by norms on X and Y . •Relative condition number $\kappa(x) = \kappa \text{ of } f \text{ at } x \text{ is}$	•Floating-point numbers are discrete subset $\mathbf{F} = \left\{ (-1)^{S} \left(m/\beta^{T} \right) \beta^{e} \mid 1 \le m \le \beta^{T}, s \in \mathbb{B}, m, e \in \mathbb{Z} \right\} $	fails if $u_{kk}^{(k-1)} \approx 0$	•Metrics obey these axioms	•[[tutorial 6#Multivariate Calculus Recall]] that ∇f(x) is	
-If <u>c·n≠0</u> => P not vector-subspace of R ⁿ *i.e. <u>0∉P</u> , i.e. <u>P</u> doesn't go through the origin	• By end of iteration $\underline{j = n}$, we have ONB $(\underline{q_1},, \underline{q_n}) \in \mathbb{R}^m$ of \underline{n} dim subspace	$-\kappa = \lim_{\delta \to 0} \sup_{\ \delta x\ \le \delta} \left(\frac{\ \delta f\ }{\ f(x)\ } / \frac{\ \delta x\ }{\ x\ } \right) = \text{for most}$	-sjis sign-bit, m/β^t is mantissa, ejis exponent (8) bit	$-\underline{LU = A + \delta A}$, $\frac{ L \cdot U }{ L \cdot U } = U(\epsilon_{mach})$; only backwards	$ \begin{vmatrix} -d(x, x) = 0 \\ -x \neq y \Longrightarrow d(x, y) > 0 \end{vmatrix} $	direction of max . rate-of-change ∇f(x) •Search for stationary point by gradient descent :	
*PJis affine-subspace of R ⁿ		0→0 5x ≤δ \ J \ (X)	for single, 11 bit for double) -Equivalently, can restrict to $\beta^{t-1} \le m \le \beta^t - 1$ for	stable if $\ L\ \cdot \ U\ \approx \ A\ $ -Work required: $-\frac{2}{3} m^3$ flops $-O(m^3)$	$-\frac{d(x,y)=d(y,x)}{-d(x,z)\leq d(x,y)+d(y,z)}$	$\frac{\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \alpha \nabla f(\mathbf{x}^{(k)})}{\mathbf{A}_{J}}$ for step length $\underline{\alpha}_{J}$ •AJ is positive-definite solving $\underline{\mathbf{A}}\mathbf{x} = \underline{\mathbf{b}}$ and	
$- f \underbrace{\mathbf{c} \cdot \mathbf{n} = 0}_{\mathbf{R}^n} $ i.e. $\underbrace{P = (\mathbf{R}\mathbf{n})^{\perp}}_{} \Rightarrow \underbrace{P \mid \mathbf{s}}_{}$ vector-subspace of	$A = [a_1 \dots a_n] = [q_1 \dots q_n] \begin{bmatrix} r_{11} & \dots & r_{1n} \\ & \ddots & \vdots \end{bmatrix} = \underset{\mathbb{Q}R}{\mathbb{Q}}$	$\frac{\delta_X}{\delta_X} \left(\frac{\ f(x)\ }{\ f(x)\ } \right)$	unique mjand ej	-Solving $\underline{Ax = LUx}$ is $\sim \frac{2}{3} m^3$ flops (back substitution is	•For metric spaces, mix-and-match these infinite/finite	$\min_{\mathbf{X}} f(\mathbf{x}) = \frac{1}{2} \mathbf{x}^T \mathbf{A} \mathbf{x} - \mathbf{x}^T \mathbf{b}$ are equivalent	
*i.e. 0∈Pj i.e. Pjgoes through the origin *Pjhas dim(P)=n-1	[0 r _{nn}]	-If Jacobian $\underline{J}_f(x)$ exists then $\kappa = \frac{\ J_f(x)\ }{\ f(x)\ /\ x\ }$	-F⊂R is idealized (ignores over/underflow), so is countably infinite and self-similar (i.e. F=βF)	<u>O(m²)</u>	limit definitions: $-\lim_{X\to+\infty} f(x) = +\infty \iff \forall r \in \mathbb{R}, \exists N \in \mathbb{N}, \forall x > N : f(x) > r$	-Get iterative methods $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \mathbf{Q}^{(k)} \mathbf{p}^{(k)}$ for step	
•Notice $L = \mathbb{R}_{\mathbf{n}}$ and $P = (\mathbb{R}_{\mathbf{n}})^{\perp}$ are orthogonal	Gram-Schmidt (GS) thin QR decomposition]]	−More important than k for numerical analysis	-For all $\underline{x \in \mathbb{R}}$ there exists $\underline{fl(x) \in \mathbb{F}}$ s.t. $ x-fl(x) \le \varepsilon_{\text{mach}} x $	-NOTE: Householder triangularisation requires ~ $\frac{4}{3}$ m^3		length $a^{(k)}$ and directions $p^{(k)}$ • $\phi_0(f(gate) gradient (CG) method: if A \in \mathbb{R}^{n \times n}$ also	
compliments, so: -proj _L = $\hat{\mathbf{n}}\hat{\mathbf{n}}^T$ is orthogonal projection onto L](along	-Where $\underline{A} \in \mathbb{R}^{m \times n}$ is full-rank, $\underline{Q} \in \mathbb{R}^{m \times n}$ is semi-orthogonal, and $\underline{R} \in \mathbb{R}^{n \times n}$ is upper-triangular	-Matrix condition number Cond(A) = K(A) = A A ⁻¹ => comes up so often that has its own name	*Equivalently fl(x) = x(1+δ), δ ≤ ε _{mach}	•Partial pivoting computes PA = LU where P is a permutation matrix ⇒ PP = I i.e. its orthogonal	$x \to p$ Cauchy sequences,	symmetric then (u, v) _A = u ^T Av is an inner-product	
P) -proje = iden - proje = I _n - pn ^T is orthogonal	Classical vs. Modified Gram-Schmidt	$-\underline{A} \in \mathbb{C}^{m \times m}$ is well-conditioned if $\underline{\kappa(A)}$ is small , ill-conditioned if large	•Machine epsilon $\epsilon_{\text{machine}} = \epsilon_{\text{mach}} = \frac{1}{2} \beta^{1-t}$ is maximum relative gap between FPs	=For each column j finds largest entry and row-swaps to make it new pivot ⇒ Pj	i.e. $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}$, $\forall m, n \ge N$: $d(a_m, a_n) < \varepsilon$ converge in complete spaces	-GC chooses $\underline{p^{(k)}}$ that are conjugate w.r.t. \underline{A}	
-proj _p = id _R n - proj _L = I _n - n̂n̂ ^T is orthogonal projection onto P]*(along L)	(for thin QR) These algorithms both compute [[tutorial 5#Thin QR]	$-\kappa(A) = \kappa(A^{-1})$ and $\kappa(A) = \kappa(\gamma A)$	-Half the gap between 1 and next largest FP	-Then performs normal elimination on that column =>	•You can manipulate matrix limits much like in real	i.e. $(\mathbf{p}^{(i)}, \mathbf{p}^{(j)})_A = 0$ for $\underline{i * j}$ And chooses $a^{(k)}$ s.t. residuals	
$-L = im(proj_L) = ker(proj_P) and$ $P = ker(proj_L) = im(proj_P) $	Decomposition w/ Gram-Schmidt (GS) thin QR	$-\text{If } \ \cdot\ = \ \cdot\ _2 \text{ then } \kappa(A) = \frac{\circ_1}{\sigma_m}$	$-2^{-24} \approx 5.96 \times 10^{-8}$ and $2^{-53} \approx 10^{-16}$ for single/double	$-\frac{L_j}{Result}$ is $L_{m-1}P_{m-1} \dots L_2P_2L_1P_1A=U$ where	analysis, e.g. $\lim_{n\to\infty} (A^n B * C) = (\lim_{n\to\infty} A^n) B * C$	-And chooses $\underline{\alpha^{(k)}}$ s.t. residuals $\underline{r^{(k)}} = -\nabla f(\underline{x^{(k)}}) = \underline{b} - \underline{A}\underline{x^{(k)}}$ are orthogonal	
$-\mathbb{R}^n = \mathbb{R}^n \oplus (\mathbb{R}^n)^{\perp}$ i.e. all vectors $\mathbf{v} \in \mathbb{R}^n$ uniquely	20250418034701.png 400]] ![[Pasted image	•For $\underline{A \in \mathbb{C}^{m \times n}}$, the problem $f_{\underline{A}}(x) = Ax$ has	•FP arithmetic: let <u>∗</u> , □ Jbe real and floating counterparts of arithmetic operation	L _{m-1} P _{m-1} L ₂ P ₂ L ₁ P ₁ = L' _{m-1} L' ₁ P _{m-1} P ₁	•Turn metric limit $\lim_{n\to\infty} x_n = L$ into real limit	$\star \underline{k=0} \Longrightarrow \underline{\mathbf{p}}^{(0)} = -\nabla f(\mathbf{x}^{(0)}) = \mathbf{r}^{(0)}$	
decomposed into v=v _L +v _P	20250418034855.png 400]] •Computes at j th step:	$\kappa = \ A\ \frac{\ x\ }{\ Ax\ } \implies \text{if } \underline{A^{-1}} \text{ exists then } \underline{\kappa \leq \text{Cond}(A)}$ $= \text{If } Ax = b \text{ I problem of finding } x \text{ is given } b \text{ is inst}$	-For x, y ∈ F we have	-Setting $L = (L'_{m-1} \dots L'_1)^{-1}$ $P = P_{m-1} \dots P_1$ gives	$\lim_{n\to\infty} d(x_n, L) = 0$ to leverage real analysis -Bounded monotone sequences converge in R	$*_{\underbrace{k \ge 1}} = p^{(k)} = r^{(k)} - \sum_{i < k} \frac{(p^{(i)}, r^{(k)})_A}{(p^{(i)}, p^{(i)})_A} p^{(i)}$	
Reflection w.r.t. hyperplanes and Householder Maps	-Classical GS $\Rightarrow j$ th column of Q and the j th column of R	$ \frac{ A }{- fAx=b } \text{ problem of finding } \underline{x} \text{ igiven } \underline{b} \text{] is just} $ $ f_{A^{-1}}(b) = A^{-1}b \implies \kappa = \ A^{-1}\ \frac{\ b\ }{\ x\ } \le \text{Cond}(A) $	$x \boxtimes y = fl(x \star y) = (x \star y)(1 + \varepsilon), \delta \le \varepsilon_{mach}$ $\star Holds for \textit{any} arithmetic operation \boxtimes = \emptyset, \emptyset, \emptyset, \emptyset$	-![[Pasted image 20250420092322.png 450]] -Work required: $-\frac{2}{3}m^3$ flops $-0(m^3)$ results in	– Sandwich theorem for limits in ℝJ=> pick easy	$+\alpha(k) = \operatorname{argmin} f(\mathbf{v}(k) + \alpha(k) \mathbf{p}(k)) = \frac{\mathbf{p}(k) \cdot \mathbf{r}(k)}{\mathbf{r}(k)}$	
•Two points $\mathbf{x}, \mathbf{y} \in \mathbb{E}^n$ are reflections w.r.t hyperplane $P = (\mathbf{Rn})^{\perp} + \mathbf{c}$ if:	-Modified GS ⇒ jj-th column of Q and the jj-th row of	•For $\mathbf{b} \in \mathbb{C}^m$, the problem $f_{\mathbf{b}}(A) = A^{-1}\mathbf{b}$ (i.e. finding \underline{x} in	 Complex floats implemented pairs of real floats, so above applies complex ops as-well 	-Work required: $\sim \frac{2}{3} m^3$ flops $\sim O(m^3)$; results in $L_{ij} \le 1$ so $ L = O(1)$	upper/lower bounds $-\lim_{n\to\infty} r^n = 0 \iff r < 1 \text{ and}$	$-\text{Without rounding errors, } \mathbf{CG} \text{ converges in } \leq n_1$	
1)The translation $\vec{xy} = y - x$ is <i>parallel</i> to normal n .	•Both have flop (floating-point operation) count of	$Ax = b$ has $\kappa = A A^{-1} = Cond(A)$	*Caveat: $\epsilon_{\text{mach}} = \frac{1}{2} \beta^{1-t}$ must be scaled by factors	max _{i,i} u _{i,i}		iterations	
i.e. $x\overline{y} = \lambda \mathbf{n}$ 2) Midpoint $m = 1/2(\mathbf{x} + \mathbf{y}) \in P$ lies on P], i.e. $m \cdot \mathbf{n} = \mathbf{c} \cdot \mathbf{n}$	$O(2mn^2)$ -NOTE: Householder method has $2(mn^2 - n^3/3)$ flop	Stability Given a problem $f: X \to Y$, an algorithm for f is	on the order of $2^{3/2}$, $2^{5/2}$ for 9 , 9 respectively	-Stability depends on growth-factor $\rho = \frac{\max_{i,j} u_{i,j} }{\max_{i,j} a_{i,j} }$	$\lim_{n \to \infty} \sum_{i=0}^{n} ar^{i} = \frac{a}{1-r} \iff r < 1$	*Similar to to [[tutorial 1#Gram-Schmidt method to generate orthonormal basis from any linearly	
•Suppose $P_{u} = (\mathbb{R}u)^{\perp}$ goes through the origin with unit	count, but better numerical properties	Given a problem $\underline{f: X \to Y}$, an algorithm for \underline{f} is $\underline{\tilde{f}: X \to Y}$	$(x_1 \oplus \cdots \oplus x_n) \approx (x_1 + \cdots + x_n) + \sum_{i=1}^n x_i \left(\sum_{j=i}^n \delta_j \right), \delta_j \le \epsilon_{ma}$			independent vectors Gram-Schmidt]] (different inner-product)	
normal $u \in \mathbb{R}^n$	•Recall: $Q^{\dagger}Q = I_{n}$ \Rightarrow check for loss of orthogonality		$-(x_1 \otimes \cdots \otimes x_n) \approx (x_1 \times \cdots \times x_n)(1 + \epsilon), \epsilon \le 1.06(n - 1)\epsilon_{\text{mach}}$			producy	