Advanced Level Experimental Physics

F2-3: The Temperature Coefficient of Resistance of Copper

Apparatus

Metre bridge board; clamp and stand; 1.5V cell; galvanometer; jockey; standard resistor 10Ω ; copper wire & thermometer in a test tube; 1L beaker of water; bunsen burner (or other heat source); 8 connecting leads (5 long, 3 short); 1 sheet of graph paper.

Procedure

- 1. Set up the apparatus as above, connecting the battery last. Check carefully that all connections are secure. Do not begin heating yet. Find the balance point length L where the galvanometer reads zero. Disconnect the battery. Read the temperature θ .
- 2. Begin heating the water. At temperatures approximately 30, 35, 40, 45,... up to

90°C, reconnect the battery, find L, and read θ (to the nearest 0.1°C). Disconnect the battery between readings.

3. Tabulate the readings of L and θ .

Theory

1. Resistivity (the Greek ρ) at a given temperature is:

$$\rho = \text{Resistance}\left(\frac{\text{Area}}{\text{length}}\right)$$

Therefore the resistance of a given sample varies with temperature. This is given by:

$$R_{\theta} = R_0(1 + \alpha\theta + \beta\theta^2)$$
 Where: $R_{\theta} = R$ at θ °C
$$R_0 = R$$
 at 0°C
$$\alpha \text{ and } \beta \text{ are constants}$$

 β is very small, and is usually neglected. In this experiment, assume that $\beta = 0$.

2. The circuit is a Wheatstone Bridge:

When the galvanometer reads zero:

$$\frac{R_1}{R_2} = \frac{R_3}{R_4}$$
 ---- equation 1

And therefore in this experiment when the units of L are cm:

$$R_{\theta} = 10 \left(\frac{L}{100 - L} \right)$$
 ---- equation 2

Analysis

- 1. For each value of L, calculate a value of R_{θ} using the above formula (equation 2).
- 2. Plot a graph of R_{θ} vs. θ °C. Find the gradient and the y-intercept. NB: it is not necessary for the R_{θ} axis to extend down to zero).
- 3. Use the formula given in 1 of the theory, together with the gradient and y-intercept only, to calculate α , the temperature coefficient of resistance of copper.

Questions

- 1. Use equation 1 above to prove equation 2.
- 2. Calculate the expected resistance of the copper wire when its temperature is 300°C.
- 3. If copper has a **resistivity** of $1.7 \times 10^{-8} \Omega m$ at 293K, find the **resistance** of a sample of copper length 5cm, uniform cross-sectional area $10^{-6} m^2$, at:
 - a. o°C
 - b. 100°C.

© 2015 <u>CC-BY</u> by Bob Drach and Norman Price Based off of book published ???? About