Feature Selection with Mutual Information

Clayton W. Seitz

September 5, 2022

Outline

Feature Selection

What is it?

A special type of dimensionality reduction where we select a subset of features, in contrast with *feature extraction*

Why do we do it?

- Quality of the input data is just as important as the algorithm you choose
- ► The volume of a feature space grows exponentially in the number of dimensions *n*
- ▶ But we often have a small number of samples p << n

Mutual Information

Mutual information comes from information theory and statistics.

$$I(X; Y) = D_{KL}(P(X, Y)||P(X)P(Y))$$

= $H(X) - H(X|Y)$

where H denotes the entropy

- ▶ It quantifies the amount of information one variable carries about another
- Captures nonlinear correlation and is not limited to continuous variables
- Y could be categorical e.g., cellular phenotypes

An Example

Using Mutual Information for Feature Selection

$$X^* = \underset{X}{\operatorname{argmax}} I(X; Y)$$

For phenotyping, we might want to find the optimal X which is most informative about the cell type Y

This is an optimization problem (NP-hard) on maximizing the *joint mutual information*

There are approximate solutions

Maximum Relevancy Minimum Redundancy (MRMR)

By making some approximations, we can rewrite I(X; Y) as

$$I(\boldsymbol{X}; Y) \approx \sum_{i} \left(I(X_i; Y) - \alpha \sum_{j} I(X_i; X_j) \right)$$

where the parameter $\boldsymbol{\alpha}$ determines how strongly we consider redundancy

Results for T1D dataset

Algorithm Details

The chain-rule for mutual information tells us that

$$I(\boldsymbol{X};Y) = \sum_{i} I(X_{i};Y|\boldsymbol{X}_{\setminus i})$$
 (1)

To simplify notation let $Z = \mathbf{X}_{\setminus i}$. The chain rule for info can also be used to show that

$$I(X; Y, Z) = I(X; Z) + I(X; Y|Z)$$

Solving for I(X; Y|Z) says we can rewrite (1) as

$$I(\mathbf{X}; Y) = \sum_{i} I(X_i; Y|Z)$$
$$= \sum_{i} I(X_i; Y, Z) - I(X_i; Z)$$

Algorithm Details

Applying the chain rule one more time gives

$$I(X; Y) = \sum_{i} I(X_{i}; Y, Z) - I(X_{i}; Z)$$

$$= \sum_{i} I(X_{i}; Y) - I(X_{i}; Z) + I(X_{i}; Z|Y)$$

We maximize the sum by maximizing the each term s_i

$$s_i = I(X_i; Y) - I(X_i; Z) + I(X_i; Z|Y)$$

$$\approx I(X_i; Y) - \alpha \sum_i I(X_i; X_j) + \beta \sum_k I(X_i; X_k|Y)$$

Setting $\beta=0$ gives the so-called maximum relevancy minimum redundancy (MRMR) features

Algorithm Details

$$s_i \approx I(X_i; Y) - \alpha \sum_i I(X_i; X_j)$$

Algorithm 1 Pseudocode for Greedy MRMR

```
1: features = {}
 2: for i = 1 to N do
 3:
   if i=1 then
        add x_i to features
     else
 5:
        if s_i > s_{i-1} then
 6:
 7:
           add x_i to features
        end if
 8:
      end if
 g.
10: end for
```

References I