Построение кривой нормального распределения по опытным данным. Проверка гипотезы о нормальном распределении выборки

§ 8. Лабораторная работа № 2.

Лабораторная работа № 2.

Цельработы: овладение студентом способами построения эмпирической и теоретической (нормальной) кривой распределения; выработка умения и навыков применения критериев согласия для проверки выдвинутой статистической гипотезы.

С о д е р ж а н и е р а б о т ы: на основе дискретного вариационного ряда, полученного в лабораторной работе № 1, выполнить следующее:

- 1. Построить эмпирическую (полигон) и теоретическую (нормальную) кривую распределения.
- 2. Проверить согласованность эмпирического распределения с теоретическим нормальным, применяя три критерия:
- а) критерий Пирсона;
- б) один из критериев: Колмогорова, Романовского, Ястремского;
- в) приближенный критерий.

Рис. 5.

Продолжим вероятностно-статистическую обработку результатов эксперимента, предложенных в лабораторной работе № 1, то есть обводненности нефти из насосных скважин. За основу берем дискретный вариационный ряд в табл. 8

варианты, x_i	60,15	60,45	60,75	61,05	61,35	61,65	61,95	62,25	62,55	62,85
частоты, m_i	3	6	9	18	29	16	2	10	5	2

и значения $\bar{x} = 61,39$ и S = 0,599.

Эмпирическая кривая распределения представляет собой полигон частот (см. лабораторную работу № 1). Для построения теоретической (нормальной) кривой найдем координаты точек (x_i, n'_i) , для чего рассчитаем теоретические частоты n'_i (табл. 16).

Таблица 16

x_i	n_i	$x_i - \overline{x}$	$u_i = \frac{x_i - \overline{x}}{S}$	$\varphi(u_i)$	$y_i = \frac{nh}{S} \varphi(u_i)$	n_i'
60,15	3	- 1,24	-2,07	0,0468	2,3	2
60,45	6	- 0,94	- 1,57	0,1163	5,8	6
60,75	9	- 0,64	- 1,07	0,2251	11,3	11
61,05	18	- 0,34	- 0,57	0,3391	17,0	17
61,35	29	- 0,04	-0,07	0,3980	19,9	20
61,65	16	0,26	0,43	0,3637	18,2	18
61,95	2	0,56	0,93	0,2589	13,0	13
62,25	10	0,86	1,44	0,1415	7,1	7
62,55	5	1,16	1,94	0,0608	3,0	3
62,85	2	1,46	2,44	0,0203	1,0	1

Строим эмпирическую и теоретическую кривые (рис. 5).

Проверим согласованность эмпирического распределения (обводненности нефти из насосных скважин) с теоретическим нормальным по критерию Пирсона. Вычислим величину χ^2 по формуле

$$\chi^2 = \sum_{i=1}^l \frac{(n_i - n_i')^2}{n_i'}.$$

Для нахождения суммы составляем расчетную табл. 17.

Таблица 17

				1 4 0 11 11 4 4 1 7
n_i	n_i'	$n_i - n'_i$	$(n_i - n_i')^2$	$\frac{(n_i - n_i')^2}{n_i'}$
3	2	1	1	0,5
6	6	0	0	0
9	11	-2	4	0,363636
18	17	1	1	0,058824
29	20	9	81	4,05
16	18	-2	4	0,222222
2	13	-11	121	9,307692
10	7	3	9	1,285714
5	3	2	4	1,333333
2	1	1	1	1
				$\chi_0^2 = 18,12$

Находим число степеней свободы k = s - r = s - 3 = 10 - 3 = 7. Выбираем уровень значимости $\alpha = 0.95$. По таблице критических точек распределения χ^2 (приложение 5) находим $\chi^2_{\rm kp} = 2.17$. Так как $\chi^2_{\rm kp} < \chi^2_0$ (2,7 < 18,12), то делаем вывод, что данные выборки, характеризующие обводненность нефти из насосных скважин, не подчиняются нормальному закону распределения.

Проведём проверку близости эмпирического распределения к нормальному по критерию Романовского. Вычислим, согласно (32), величину

$$\left| \frac{\chi^2 - k}{\sqrt{2k}} \right|$$
. Tak kak $\chi^2 = \chi_0^2 = 18,12$, $k = 7$, to $\left| \frac{\chi^2 - k}{\sqrt{2k}} \right| = \left| \frac{18,12 - 7}{\sqrt{14}} \right| = 2,97 < 3$, t.e.

расхождение между эмпирическим и теоретическим распределением несущественно, что позволяет утверждать, что данные выборки, характеризующие обводненность нефти из насосных скважин по критерию Романовского подчиняются нормальному закону распределения. К такому же выводу мы приходим, применяя критерий Колмогорова (проверить самостоятельно).

Наконец, проведём проверку близости рассматриваемой выборки к нормальному распределению по приближенному критерию, используя выборочные статистики: асимметрию, эксцесс и их средние квадратические отклонения. В лабораторной работе \mathbb{N}_2 1 были найдены $A_s = 0,328$, $E_x = -0,115$. Средние квадратические отклонения для асимметрии и эксцесса находим по формулам (39) и (40):

$$S_{A_s} = \sqrt{\frac{6(n-1)}{(n+1)(n+3)}} = \sqrt{\frac{6.99}{101.103}} = 0.24,$$

$$S_{E_x} = \sqrt{\frac{24n(n-2)(n-3)}{(n-1)^2(n+3)(n+5)}} = \sqrt{\frac{24\cdot100\cdot98\cdot97}{99^2\cdot103\cdot105}} = 0,46.$$

Так как $|A_s| = 0.328 > S_{A_s}$ и $|E_x| = 0.115 < S_{E_x}$, то делаем вывод, что данные выборки, характеризующие обводненность нефти из насосных скважин, не подчиняются нормальному закону распределения.

Итак, для проверки согласованности эмпирического распределения с теоретическим нормальным мы применили 4 критерия, два из них подтвердили близость выборочной совокупности к нормальному распределению. Однако, учитывая, что критерий Колмогорова является более мощным, чем критерий χ^2 Пирсона, и подтверждает близость рассматриваемой выборки к нормальному распределению, окончательно заключаем, что за закон распределения признака X — обводненности нефти из насосных скважин — можно принять нормальное распределение.

Замечание. В качестве вариантов заданий для выполнения лабораторной работы № 2 следует брать дискретные вариационные ряды из лабораторной работы № 1, а так же значения статистик \bar{x} , S, A_s , E_x .