

Механико-математический факультет

Линейная алгебра и геометрия, 2 семестр, 2 поток

Преподаватель: Чубаров Игорь Андреевич

Студент: Молчанов Вячеслав

Группа: 108

Контакт: Мой телеграм для связи

Содержание

1	Векторное пространство 1.1 Изменение координат вектора при замене базиса	2
2	Векторные подпространства 2.1 Примеры	
3	Пересечение и сумма подпространств	8

1 Векторное пространство

Определение 1. Множество V называется векторным пространством над полем F, если заданы операции " + " и " · " : $V \times V \to V$, $F \times V \to V$ и выполнены следующие аксиомы:

1.
$$\forall v_1, v_2, v_3 \in V : (v_1 + v_2) + v_3 = v_1 + (v_2 + v_3)$$

$$2. \ \exists \ \vec{0} \in V: \ \forall v \in V: \ v + \vec{0} = v$$

3.
$$\forall v \in V \ \exists -v \in V : v + (-v) = \vec{0}$$

4.
$$\forall v_1, v_2 \in V : v_1 + v_2 = v_2 + v_1$$

5.
$$\forall \alpha, \beta \in F, v \in V : (\alpha \beta)v = \alpha(\beta v)$$

$$6. \ \forall v \in V \ \exists \ 1 \in F : 1 \cdot v = v$$

7.
$$\forall \alpha, \beta \in F, v \in V : (\alpha + \beta)v = \alpha v + \beta v$$

8.
$$\forall \alpha \in F, v_1, v_2 \in V : \alpha(v_1 + v_2) = \alpha v_1 + \alpha v_2$$

Загадка: Одна из этих аксиом - следствие других. Какая?

Определение 2. $U \subset V$ - векторное подпространство пространства V, если оно само является пространством относительно тех же операций в V.

Утверждение. Определение 2 эквивалентно:

1.
$$\forall U \neq \emptyset$$

2.
$$\forall u_1, u_2 \in U : u_1 + u_2 \in U$$

3.
$$\forall u \in U, \ \lambda \in F : \lambda u \in U$$

Определение 3. Векторы $v_1,...,v_n\in V$ называются линойно независимыми, если $\exists \ \lambda_1,...,\lambda_n$ (не все равные 0) : $\lambda_1v_1+...+\lambda_nv_n=\vec{0}$

Утверждение. Определение $3 \iff (m \ge 2)$ хотя бы один вектор из векторов v_i выражается как линейная комбинация остальных.

Определение 4. Упорядоченный набор векторов $e = (e_1, ..., e_n), e_k \in V$, если это максимальный ЛНЗ набор веторов из V.

Утверждение. e - базис e $V \Longleftrightarrow$

1.
$$e_1, ..., e_n - JH3$$

2.
$$\forall x \in V \exists x_1, ..., x_n \in F : x = x_1 e_1 + ... + x_n e_n = \sum_{i=1}^n x_i e_i$$

Следствие. Разложение любого вектора в базисе единственно.

Доказательство. Если
$$x=\sum\limits_{i=1}^n x_ie_i=\sum\limits_{i=1}^n x_i'e_i$$
, то $\vec{0}=x-x=\sum\limits_{i=1}^n (x_i'-x_i)e_i$ Из ЛНЗ все коэффициенты равны

Обозначаем:
$$X_e = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in F^n$$
, тогда $x = eX_e = e_1x_1 + ... + e_nx_n$
$$\boxed{x = eX_e} \tag{1}$$

Теорема. Если в $V \equiv 6$ азис из k векторов, то любой базис V содержит k векторов.

Доказательство.

Если \exists базис $e'_1,...,e'_m \in V$, где m>n, то по ОЛЛЗ $e'_1,...,e'_m$ - ЛЗ, т.е. не базис. Если же m< n, то по ОЛЛЗ (в другую сторону) $e_1,...,e_n$ - ЛЗ \Longrightarrow не базис. \square

Свойства. матриц перехода

- 1. $\det C \neq 0$
- 2. $C_{e'\to e} = (C_{e\to e'})^{-1}$
- 3. $C_{e'' \rightarrow e} = C_{e \rightarrow e'} \cdot C_{e' \rightarrow e''}$

Доказательство.

- 1) Столбцы координаты ЛНЗ векторов $e_1',...,e_n' \Longrightarrow rkC = n \Longrightarrow \det C \neq 0$
- 2) Перепишем определение матрицы перехода в матричный вид. По определению:

$$e' = (e'_1, ..., e'_n) = (e_1, ..., e_n) C_{e \to e'}, \text{ r.e. } e' = e C_{e \to e'}$$

$$\boxed{e' = e C_{e \to e'}}$$
(2)

С другой стороны

$$C = e'C_{e'\to e} = eC_{e\to e'}C_{e'\to e} \Longrightarrow C_{e\to e'}C_{e'\to e} = E$$

ввиду единственности разложения векторов по базису, т.е.

$$C_{e \to e'} = (C_{e' \to e})^{-1}$$

3)
$$e'' = e'C_{e' \to e''} = e(C_{e \to e'}C_{e' \to e''}) = eC_{e \to e''}$$

В силу единственности разложения $C_{e \to e''} = C_{e \to e'} C_{e' \to e''}$

Алгоритм. Как вычислить матрицу перехода, если известны координаты векторов e_i и e'_j в некотором универсальном? $e' = eC_{e \to e'}$ можно рассмотреть как матричное уравнение:

$$(e_1^{\uparrow}, ..., e_n^{\uparrow})C = (e_1^{\prime \uparrow}, ..., e_n^{\prime \uparrow})$$
$$[e_1^{\uparrow}, ..., e_n^{\uparrow} \mid e_1^{\prime \uparrow}, ..., e_n^{\prime \uparrow}] \stackrel{cmpon}{\leadsto} [E \mid C_{e \to e^{\prime}}]$$

1.1 Изменение координат вектора при замене базиса

Теорема. Формула изменения координат вектора при замене базиса:

$$X_e = C_{e \to e'} X_{e'} \tag{3}$$

Доказательство.

$$\forall x \in V : x = eX_e = e'X_{e'} = eC_{e \to e'}X_{e'}$$
$$\Longrightarrow X_e = C_{e \to e'}X_{e'}$$

2 Векторные подпространства

2.1 Примеры

- 1. Геометрические вектроры
- 2. F^n пространство слобцов (строк) высоты (длины) n с естественными оперицаями $(+, \cdot \lambda)$

Базис
$$\vartheta = \left\{ \begin{pmatrix} 1\\0\\\vdots\\0\end{pmatrix}, \begin{pmatrix} 0\\1\\\vdots\\0\end{pmatrix}, ..., \begin{pmatrix} 0\\0\\\vdots\\1\end{pmatrix} \right\}$$
 (можно взять столбцы любой

невырожденной матрицы порядка n)

Замечание. Доказать, что если e - базис, C - невырожденная матрица, то eC - тоже базис (из (2))

Упражнение. Пусть $|F|=q, \dim_F V=n \Longrightarrow |V|=q^n$ $\dim M_{m,n}=mn$, стандартный базис - $\{E_{ij}\}$, где E_{ij} содержит 1 на ij-ой позиции и 0 на остальных.

3. $V = \{F: \underset{(X \subseteq \mathbb{R})}{X} \to \mathbb{R}\}$ с операциями сложения и λF

Оно бесконечномерно, если X бесконечно.

Если $\lambda_1,...,\lambda_n$ - попарно различные числа, то $y_1=e^{\lambda_1 x},...,y_n=e^{\lambda_n x}$ ЛНЗ Допустим, что:

$$\begin{cases} C_{1}y_{1} + \dots + C_{n}y_{n} \equiv 0 \\ C_{1}y'_{1} + \dots + C_{n}y'_{n} \equiv 0 \\ \vdots \\ C_{1}y_{1}^{(n-1)} + \dots + C_{n}y_{n}^{(n-1)} \equiv 0 \end{cases} \Longrightarrow \begin{cases} C_{1}e^{\lambda_{1}x} + \dots + C_{n}e^{\lambda_{n}x} \equiv 0 \\ \lambda_{1}C_{1}y'_{1} + \dots + \lambda_{n}C_{n}y'_{n} \equiv 0 \\ \vdots \\ \lambda^{n-1}C_{1}e^{\lambda_{1}x} + \dots + \lambda^{n-1}C_{n}e^{\lambda_{n}x} \equiv 0 \end{cases}$$

$$\Delta = V(\lambda_{1}, \dots, \lambda_{n}) \neq 0 \Longrightarrow C_{1} = \dots = C_{n} = 0$$

4. F[t] с естественными операциями сложением и умножением на скаляр - бесконечномерное пространство, т.к.: $\forall n \in N_0: 1, t, t^2, ...$ - линейно независимы.

 $F[t]_n=\{a_0+a_1t+a_2t^2+...+a_nt^n\mid a_k\in F,\ k=0,...,n;\ n\in N_0\}$ - подпространство, $\dim U=n+1,$ базис: $1,t,...,t^n$

Тейлоровский базис: $1, t-t_0, ..., (t-t_0)^n$; $\sum_{k=0}^n \frac{f^{(k)}(t_0)}{k!} (t-t_0)^k$

5. $\Omega \neq 0, \ V = 2^{\Omega}$ с операциями вместо сложения:

$$A \triangle B = (A \cap \overline{B}) \cup (B \cap \overline{A}) \ \forall A, B \subseteq \Omega$$

 $F = \mathbb{Z}_2, \ 0 \cdot A = \emptyset, \ 1 \cdot A = A$

Упражнение. Доказать, что V - векторное пространство над \mathbb{Z}_2

2.2 Два основных способа задания подпространства в V

1. Линейная оболочна семейства векторов $S \subset V$:

$$\langle S \rangle = \{ \sum_{i \in I} \lambda_i s_i \text{ (канонические суммы) } | s_i \in S, \lambda_i \in F \}$$

Частный случай:

$$\langle a_1, ..., a_m \rangle = \{ \sum_{i=1}^m \lambda_i a_i \mid \lambda_i \in F \} = U$$

Утверждение. $\langle a_1,...,a_m\rangle\subseteq V\Longrightarrow \dim\langle a_1,...,a_m\rangle=rk\{a_1,...,a_m\}$

Доказательство.

$$\mu \sum_{i=1}^{m} \lambda_i a_i = \sum_{i=1}^{m} (\mu \lambda_i) a_i$$
$$\sum_{i=1}^{m} \mu_i a_i + \sum_{i=1}^{m} \lambda_i a_i = \sum_{i=1}^{m} (\mu_i + \lambda_i) a_i \in U$$

Если $r=rk\langle a_1,...,a_m\rangle$, то $a_{j1},...,a_{jr}$ - базисные, то $\forall a_i$ через них тоже выражается

$$orall \sum_{i=1}^m \lambda_i a_i \Longrightarrow \{a_{j1},...,a_{jr}\}$$
 — базис U

Алгоритм. Алгоритм вычисления $\dim \langle a_1, ..., a_m \rangle$ и базиса, если известны координаты этих векторов:

1) Составить матрицу:

$$(a_1^{\uparrow},...,a_m^{\uparrow}) \xrightarrow[cmpo\kappa]{j_1 \cdots j_r} \begin{pmatrix} 1 & 0 & \\ & \ddots & 0 \\ 0 & 1 & \\ & & 0 \end{pmatrix}$$

- 2) Столбцы с номерами $j_1, ..., j_r$ базис в U, разложение оставшихся векторов можно сразу считать из преобразованной матрицы
- **2.** $(\dim V = n, \text{ известны координаты в некотором базисе})$

$$\forall \sum_{i=1}^{n} X_i e_i = eX, \ X = \begin{pmatrix} X_1 \\ \vdots \\ X_n \end{pmatrix}$$

$$W = \{x = eX \mid AX = 0\}$$
 — задание с помощью ОСЛУ

Утверждение. W - подпространство в V, $\dim W = n - rkA$, базис - любая ΦCP (это переход от **2.** к **1.** способу задания подпространства).

Теорема. Линейную оболочку конечного числа векторов в конечномерном векторном пространстве V можно задать c помощью OCЛУ.

Доказательство. Два способа:

1) Вектор
$$x$$
 (со столбцами координат $X = \begin{pmatrix} X_1 \\ \vdots \\ X_n \end{pmatrix}$):

$$x \in \langle a_1, ..., a_m \rangle = U$$

$$\iff$$
 $\exists \ \alpha_1,...,\alpha_m \in F: \sum_{i=1}^m \alpha_i a_i = x, \$ или в координатах: $\sum_{i=1}^m \alpha_1 a_i^{\uparrow} = X$

т.е. СЛУ с $\widetilde{A}=(a_1^\uparrow,...,a_m^\uparrow\mid \begin{pmatrix} X_1\\ \vdots\\ X_n\end{pmatrix})$ совместна \Longleftrightarrow после алгоритма Гаусса:

$$\widetilde{A} \longrightarrow \begin{pmatrix} K & \sum_{j} C_{kj} X_{j} \\ 0 & \sum_{j} C_{r+1} X_{j} = 0 \\ \sum_{j} C_{nj} X_{j} = 0 \end{pmatrix}$$

$$\left(K\right)$$
 имеет ступенчатый вид, а $\left(\sum C_{r+1}X_j=0\right)$ - нужная нам система.

Упражнение. Доказать, что эти уравнения ЛНЗ.

2) Пусть дана ОСЛУ:
$$\underset{(r \times n)}{C} X = 0, \ rkC = r$$

$$C \xrightarrow[\text{строк}]{\Im\Pi} \left(E_r \mid D \right) = C'$$

$$\begin{cases} x_1 = -(d_{1,r+1}x_{1,r+1} + \dots + d_{1n}x_n) \\ \vdots \\ x_k = -(d_{k,r+1}x_{k,r+1} + \dots + d_{kn}x_n) \end{cases}$$
 $k = 1, \dots, r$

Фундаментальная матрица: $\mathcal{F} = \left(\frac{-D}{E_{n-r}}\right)$

$$C' \cdot \mathcal{F} = E_r \cdot (-D) + D \cdot E_{n-r} = -D + D = 0$$

Рассмотрим матрицу из строк координат векторов $a_1, ..., a_r$:

$$\begin{pmatrix} a_1^{\rightarrow} \\ \vdots \\ a_r^{\rightarrow} \end{pmatrix} \xrightarrow{\text{улучшенный вид}} \begin{pmatrix} M \mid E_r \end{pmatrix} \xrightarrow{\text{Транспонируем}} \begin{pmatrix} M^T \\ E_r \end{pmatrix} = \mathcal{F}$$

Тогда искамая система будет иметь матрицу: $C = (E_{n-r} \mid -M^T)$ Пространство $\{X \mid CX = 0\}$ имеет размерность n - (n-r) = r

3 Пересечение и сумма подпространств

Утверждение.

- 1. Если U_i $(i \in I)$ подпространство V, то $W = \bigcap_{i \in I} U_i$ тоже подпространство в V
- 2. Объединение подпространств может НЕ быть подпространством даже для двух подространств. (РИСУНОК)

Доказательство. 1. $\overline{Q} \in W$, т.к. $\overline{Q} \in U_i$, $\forall i \in I$.

Если
$$x, y \in U_i, \ \forall i \in I \Longrightarrow x + y \in U_i, \ \forall i \in I \Longrightarrow x + y \in \bigcap_{i \in I} U_i$$

Если $x \in U_i, \ \forall i \in I, \ \forall \lambda \in F \Longrightarrow \lambda x \in U_i, \ \forall i \in I \Longrightarrow x \in \bigcap_{i \in I} U_i$

Замечание. Если U_1, U_2 - подпространства в V и Q - любое подпространство, которое содержит U_1 и U_2 , то оно содержит и сумму u_1+u_2 , если $u_i\in U_i,\ i=1,2$ Замечание. Суммой подпространств $U_1,...,U_m\subseteq V$ назовем:

$$U_1 + \dots + U_m = \{x_1 + \dots + x_m \mid x_i \in U_i\}$$

Утверждение. $U_1 + ... + U_m$ - подпространство в V

Теорема. (Формула Гриссмана)

Если U_1, U_2 - подпространства в V, $\dim U_1 < \infty$, $\dim U_2 < \infty$, то

$$\dim(U_1 + U_2) = \dim U_1 + \dim U_2 - \dim(U_1 \cap U_2)$$

Упражнение. Верна ли аналогичная формула для трех подпространств?