

Fakultät Mathematik Institut für Numerik, Professur für Numerik der Optimalen Steuerung

OPTIMIERUNG UND NUMERIK

Dr. John Martinovic

Wintersemester 2019/20

Autor : Eric Kunze

E-Mail : eric.kunze@mailbox.tu-dresden.de

Inhaltsverzeichnis

1	\mathbf{Ein}	führung	2
	1.1	Aufgabenstellung und Grundbegriffe	2
	1.2	Beispiele zur kontinuierlichen Optimierung	3
		1.2.1 Transportoptimierung	3
		1.2.2 Kürzeste euklidische Entfernung	4
	1.3	Beispiele zur diskreten Optimierung	4
		1.3.1 Das Rucksackproblem	4
		1.3.2 Das Bin-Packing-Problem	5
		1.3.3 Standortplanung	6
		1.3.4 Quadratisches Zuordnungsproblem	7
2	Gri	undlagen	8
	2.1	Existenz von Lösungen	8
	2.2	Optimalitätsbedingungen	10
	2.3	Das Lemma von Farkas	14
3	Lin	eare Optimierung	17
	3.1	Basislösungen und Ecken	17
	3.2	Das primale Simplex-Verfahren	19
		3.2.1 Phase 2 des Simplex-Verfahrens	20
		3.2.2 Phase 1 (Hilfsfunktionsmethode)	24
		3.2.3 Der Simplexalgorithmus	24
	3.3	Das duale Simplexverfahren	25
	3.4	Dualität	27
	3.5	Transportoptimierung	30
		3.5.1 Problemstellung	30
		3.5.2 Erzeugung eines ersten Transportplans	33
		3.5.3 Der Transportalgorithmus	34
4	Dis	krete Optimierung	37
	4.1	Spaltengenerierung	37
	4.2		38
		4.2.1 Grundlagen	38
		4.2.2 Allgemeiner B&B-Algorithmus	38

— Kapitel 1 — EINFÜHRUNG

1.1 Aufgabenstellung und Grundbegriffe

Es seien $G \subseteq \mathbb{R}^n$ und $f: G \to \mathbb{R}$ gegeben. In dieser Vorlesung betrachten wir Optimierungsaufgaben (OA) der Form

$$f(x) \to \min$$
 bei $x \in G$ (1.1)

Man nennt

- \blacksquare f die **Zielfunktion**,
- \blacksquare G den **zulässigen Bereich** und
- \blacksquare ein $x \in G$ zulässigen Punkt (oder zulässige Lösung).

Ein zulässiger Punkt $x^* \in G$ heißt **optimal** (oder Lösung oder optimale Lösung), wenn für alle $x \in G$ die Ungleichung

$$f(x^*) \le f(x) \tag{1.2}$$

gilt. Falls das Problem (1.1) lösbar ist, so wird mit $f^* = f(x^*)$ der **Optimalwert** bezeichnet. Das Problem (1.1) ist ein

- unrestringiertes (oder freies) Optimierungsproblem, wenn $G = \mathbb{R}^n$ gilt,
- \blacksquare and emfalls (d.h. für $G \neq \mathbb{R}^n$) ein **restringiertes** Problem

und außerdem eine

- diskrete (oder ganzzahlige) OA (engl. integer program), falls jede Variable eine diskreten
 Menge angehört
- kontinuierliche (oder stetige) OA, falls alle Variablen stetige Werte annehmen
- gemischt ganzzahlige OA, wenn sowohl stetige als auch diskrete Variablen vorkommen.

Gilt in (1.1) $f(x) = c^{\top}x$ für ein $c \in \mathbb{R}^n$ und ist G durch lineare Bedingungen beschreibbar, so heißt (1.1) **linear**. In diesem Fall lässt sich (1.1) schreiben als

$$c^{\top}x \to \min$$
 bei $Ax = a, Bx \le b$ (1.3)

mit geeigneten Matrizen A und B sowie Vektoren a und b.

Gerade für (gemischt) ganzzahlige OA kann die Lösung der Originalaufgabe schwierig sein. Eine verwandte, jedoch im Allgemeinen leichter zu lösende Aufgabe kann in diesen Fällen wie folgt erhalten werden:

Definition 1.1

Wir betrachten die Optimierungsaufgaben

- (P) $f(x) \to \min$ bei $x \in D \cap E$
- (Q) $g(x) \to \min$ bei $x \in E$
- (Q) heißt **Relaxation** zu (P) falls $g(x) \leq f(x)$ für alle $x \in D \cap E$ gilt. In vielen Fällen wird dabei g = f gewählt.

Der Optimalwert der Relaxation kann als Näherung (bzw. untere Schranke) für den tatsächlichen Optimalwert von (P) genutzt werden. Meistens liefert die Lösung von (Q) jedoch keinen zulässigen Puntk für (P).

Satz 1.1

Ist \overline{x} eine Lösung von (Q) und gilt $\overline{x} \in D$ sowie $f(\overline{x}) = g(\overline{x})$, dann löst \overline{x} auch (P).

Beweis. siehe Übung

Definition 1.2

Seien (Q1) und (Q2) Relaxationen zu (P). (Q1) heißt **stärker** (oder strenger) als (Q2), wenn die Schranke (d.h. der Optimalwert) von (Q1) größer oder gleich der Schranke (Optimalwert) von (Q2) für jede Instanz von (P) ist.

Anmerkung. Zur Erklärung des Begriffes "Instanz" betrachte das folgende Beispiel.

- Problemklasse: $c^{\top}x \to \min$
- Instanz der Problemklasse: $x_1 + 2x_2 3x_3 \rightarrow \min$

Eine Instanz ist also eine konkrete Belegung.

1.2 Beispiele zur kontinuierlichen Optimierung

1.2.1 Transportoptimierung

 \rightarrow lineare Optimierung

Es gebe Erzeuger $i \in I = \{0, ..., n\}$ und Verbraucher $j \in J = \{1, ..., n\}$. Weiterhin seien die Kosten c_{ij} für den Transport einer Einheit von i nach j sowie der Vorrat $a_i > 0$ und der Bedarf $b_j > 0$ für alle i und j gegeben. Wie muss der Transport organisiert werden, damit die Gesamtkosten minimal sind?

Für jedes mathematische Modell einer OA braucht man

- \blacksquare geeignete Variablen $(\to x)$
- Zielfuntkion $(\rightarrow f)$
- Nebenbedingungen $(\rightarrow G)$

Variablen $x_{ij} \geq 0$ für alle $i \in I$ und $j \in J$ beschreibe die Einheiten, die von i nach j transportiert werden.

Zielfunktion $f(x) = \sum_{i \in I} \sum_{j \in J} c_{ij} x_{ij} \to \min$

Nebenbedingungen

- Kapazitätsbeschränkung der Erzeuger $i \in I$: $\sum_{j \in J} x_{ij} \leq a_i \quad (i \in I)$ Bedarfserfüllung von Verbrauchern $j \in J$: $\sum_{i \in I} x_{ij} \geq b_j \quad (j \in J)$

Somit können wir als Modell formulieren:

$$f(x) = \sum_{i \in I} \sum_{j \in J} c_{ij} x_{ij} \to \min \quad \text{bei } \sum_{j \in J} x_{ij} \le a_i \ (i \in I),$$
$$\sum_{i \in I} x_{ij} \ge b_j \ (j \in J),$$
$$x_{ij} \ge 0 \ ((i,j) \in I \times J)$$

Kürzeste euklidische Entfernung 1.2.2

 \rightarrow nichtlineare Optimierung

Gegeben seien ein Punkt $\tilde{x} \in \mathbb{R}^n$ und eine Menge $G \subseteq \mathbb{R}^n$ mit $x \notin G$. Wir betrachten die folgende OA:

$$f(x) = \|x - \widetilde{x}\|_2^2 \to \min$$
 bei $x \in G$

Ist $G \neq \emptyset$ und abgeschlossen, so existiert eine Lösung. Ist G zusätzlich konvex, so ist die Lösung sogar eindeutig.

Weitere Beispiele und Theorie sind in der Vorlesung "Kontinuierliche Optimierung" im Master Mathematik zu erfahren.

Beispiele zur diskreten Optimierung

Das Rucksackproblem 1.3.1

Gegeben seien ein Behälter ("Rucksack") mit Kapazität $b \in \mathbb{Z}_+ := \{0,1,\ldots\}$ sowie m Teile, die jeweils durch ein Gewicht $a_i \in \mathbb{Z}_+$ und einen Nutzen $c_i \in \mathbb{Z}_+$ beschrieben werden $(i = 1, \dots, m)$. Aus dieser Menge von Objekten ist eine nutzenmaximale Teilmenge auszuwählen.

Variablen

$$x_i := \begin{cases} 1 & \text{wenn Teil } i \text{ eingepackt wird} \\ 0 & \text{sonst} \end{cases}$$
 $(i = 1, \dots, m)$

Zielfunktion
$$f(x) = \sum_{i=1}^{m} c_i x_i \to \max$$

Nebenbedingungen Kapazitätsbedingung: $\sum_{i=1}^{m} a_i x_i \leq b$

Als Modell können wir somit formulieren:

$$f(x) = \sum_{i=1}^{m} c_i x_i \to \max$$
 bei $\sum_{i=1}^{m} a_i x_i \le b$ und $x_i \in \{0, 1\}$ $(i = 1, \dots, m)$

Aufgrund der binären Gestalt der Variablen wird das Problem auch als 0/1-Rucksackproblem bezeichnet. Im Gegensatz dazu ist beim klassischen Rucksackproblem jedes Teil mehrfach nutzbar. In diesem Fall ist $x_i \in \mathbb{Z}_+$ zu fordern.

1.3.2 Das Bin-Packing-Problem

Gegeben seien (sehr große) Anzahl an Behältern der Kapazität L sowie b_i Teile des Gewichts oder Volumens ℓ_i mit $i \in I = \{1, \dots, m\}$. Man ermittle die minimale Anzahl an Behältern, die benötigt wird, um alle Objekte zu verstauen. Jede Packung (eines Behälters) kann als Vektor $a = (a_1, \ldots, a_m) \in \mathbb{Z}_+^m$ geschrieben werden, wobei a_i angibt, wie oft das Teil i benutzt wird. Ein solcher Vektor ist eine zulässige Packung, wenn

$$\sum_{i=1}^{m} \ell_i a_i \le L$$

ist.

Modell nach Kantorovich Wir benötigen

- lacktriangle eine obere Schranke $u \in \mathbb{Z}_+$ für die maximal benötigte Anzahl an Behältern
- $((i,k) \in \{1,\ldots,m\} \times \{1,\ldots,u\})$

Daraus ergibt sich nun folgendes Modell:

$$f^{\mathrm{Kant}}(x,y) = \sum_{k=1}^{u} y_k \to \min \text{ bei } \sum_{k=1}^{u} x_{ik} = b_i \qquad (i = 1, \dots, m)$$

$$\sum_{i=1}^{m} x_{ik} \ell_i \le L \cdot y_k \qquad (k = 1, \dots, u)$$

$$y_k \in \{0, 1\} \qquad (k = 1, \dots, u)$$

$$x_{ik} \in \mathbb{Z}_+ \qquad ((i, k) \in \{1, \dots, m\} \times \{1, \dots, u\})$$

Die erste Nebenbedingung sorgt dafür, dass alle Teile gepackt werden; die zweite Nebenbedingung liefert die Einhaltung der Kapazität unter Berücksichtigung, dass nur bepackte Behälter gezählt werden.

Es kann stets $u = \sum_{i=1}^m b_i$ gewählt werden. Das Auffinden besserer Schranken ist im Allgemeinen schwierig. Eine Relaxation kann z.B. durch $y_k \in [0,1]$ und $x_{ik} \in \mathbb{R}_+$ erhalten werden. Diese liefert jedoch keine guten Näherungen.

Modell von Gilmore & Gomory Es seien J eine Indexmenge aller zulässigen Packungen und $x_j \in \mathbb{Z}_+$ $(j \in J)$ die Häufigkeit, wie oft ein Behälter nach dem durch j angegebenen Schema $a^j = (a_1^j, \dots, a_m^j)$ mit $\ell^{\top} a^j \leq L$ gefüllt wird. Daraus ergibt sich folgendes Modell:

$$f^{GG}(x) = \sum_{j \in J} x_j \to \min$$
 bei $\sum_{j \in J} a_i^j \cdot x_j = b_i$ $(i = 1, \dots, m)$ $x_j \in \mathbb{Z}_+$ $(j \in J)$

Die Nebenbedingung sorgt dafür, dass alle Teile gepackt werden.

Es gibt im Allgemeinen exponentiell viele zulässige Packungen a^j $(j \in J)$, deren Koeffizienten allesamt in den Nebenbedingungen benötigt werden.

Eine Relaxation erhält man zum Beispiel durch $x_j \in \mathbb{R}_+$. Diese stetige Relaxation ist sehr gut; man vermutet, dass folgende Bedingung gilt:

$$f^{GG,*} - f^{GG,*}_{\text{relax}} < 2$$

Erfreulicherweise gibt es zum Gilmore-Gomory-Modell äquivalente Formulierungen, die mit einer polynomiellen Zahl von Variablen arbeiten und eine ebenso gute stetige Relaxation besitzen (z.B. Flussmodelle).

1.3.3 Standortplanung

Ein Dienstleister möchte neue Filialen aufbauen, um seine Kunden $k \in K := \{1, ..., m\}$ zu versorgen. Dabei sind aus der Menge $S := \{1, ..., n\}$ mögliche Standorte, die neuen Standorte so auszuwählen, dass der Bedarf aller Kunden befriedigt wird und die Gesamtkosten minimial sind.

Wir benötigen

- lacksquare $c_s > 0 \dots$ Fixkosten für den Aufbau von Standort $s \in S$
- $d_{ks} > 0$... Kosten, um den Kunden $k \in K$ (vollständig) von Standort $s \in S$ zu beliefern.

Variablen:

- $y_{ks} \ge 0$... Anteil des Bedarfs des Kunden $k \in K$, der vom Standort $s \in S$ bedient wird (implizit: $y_{ks} \in [0,1]$)

Modell zur Standortplanung:

$$f(x,y) = \underbrace{\sum_{s \in S} x_s c_s}_{\text{Fixkosten}} + \underbrace{\sum_{s \in S} \sum_{k \in K} y_{ks} d_{ks}}_{\text{variable Kosten}} \rightarrow \min$$

bei

$$\sum_{s \in S} y_{ks} = 1 \qquad (k \in K)$$
$$y_{ks} \le x_s \qquad (s \in S, k \in K)$$
$$x_s \in \{0, 1\} (s \in S)$$
$$y_{ks} \ge 0 \qquad (k \in K, s \in S)$$

1.3.4 Quadratisches Zuordnungsproblem

Es sollen n Personen auf n Räume verteilt werden. Person i muss Person j c_{ij} mal am Tag treffen. Außerdem habe Büro k von Büro ℓ die Entfernung $d_{k\ell} > 0$. Wird Person i das Büro k zugewiesen und Person j das Büro ℓ , so ergibt sich eine Gesamtwegstrecke von $2c_{ij}d_{kl}$ (beachte Hin- und Rückweg). Gesucht ist die wegminimale Belegung der Büros.

Variablen:
$$x_{ik} = \begin{cases} 1 & \text{wenn Person } i \text{ das B\"uro } k \text{ zugewiesen wird} \\ 0 & \text{sonst} \end{cases}$$
 $(i,k) \in \{1,\ldots,n\} \times \{1,\ldots,n\}$

Zielfunktion:

$$f(x) = \sum_{i=1}^{n} \sum_{k=1}^{n} \sum_{\substack{j=1 \ j \neq i}}^{n} \sum_{\substack{\ell=1 \ j \neq i}}^{n} x_{j\ell} x_{ik} \cdot 2c_{ij} d_{kl} \to \min$$

bei

$$\sum_{i=1}^{n} x_{ik} = 1 \qquad (k = 1, ..., n)$$
 Büro k bekommt genau einen Einwohner
$$\sum_{k=1}^{n} x_{ik} = 1 \qquad (i = 1, ..., n)$$
 Person i bekommt genau ein Büro
$$x_{ik} \in \{0, 1\} \quad (i, k) \in \{1, ..., n\} \times \{1, ..., n\}$$

Weitere Beispiele sind in der Vorlesung "Diskrete Optimierung" (Master Mathe) zu finden...

— Kapitel 2 — GRUNDLAGEN

2.1 Existenz von Lösungen

Wir betrachten die Optimierungsaufgabe

$$f(x) \to \min \quad \text{bei } x \in G$$
 (2.1)

wobei folgende Bedingungen erfüllt seinen:

- f ist stetig (zumindest auf G)
- \blacksquare G ist kompakt
- $\blacksquare G \neq \emptyset$

Satz 2.1 (Weierstrass)

Unter diesen Voraussetzungen existiert ein $\overline{x} \in G$ mit

$$f^* := f(\overline{x}) \le f(x) \quad \forall x \in G$$

Beweis. Sei $f^* := \inf_{x \in G} f(x)$. Wegen $G \neq \emptyset$, finden wir eine Folge $\{f_k\}_{k \in \mathbb{N}} \subseteq \mathbb{R}$ mit $f_k = f(x_k) \geq f^*$ mit $x_k \in G$ für alle $k \in \mathbb{N}$ und $\lim_{k \to \infty} f_k = f^*$. Die daraus resultierende Folge $\{x_k\}_{k \in \mathbb{N}}$ besitzt wegen der Kompaktheit von G eine konvergente Teilfolge $\{\widetilde{x_k}\}_{k \in \mathbb{N}} \subseteq \{x_k\}_{k \in \mathbb{N}}$ mit $\lim_{k \to \infty} \widetilde{x_k} = \overline{x} \in G$ (Abgeschlossenheit von G). Die Stetigkeit von f ergibt nun $\lim_{k \to \infty} f(\widetilde{x_k}) = f(\overline{x}) = f^*$ (insbesondere $f^* \in \mathbb{R}$)

Beispiel 2.1

(1) Satz 2.1 anwendbar (G kompakt, Minimum existiert):

$$f(x_1, x_2) = x_1 - x_2 \to \min \text{ bei } x_1^2 + 4x_2^2 \le 1$$

Der zulässige Bereich ist eine Ellipse mit Rand.

(2) Satz 2.1 nicht anwendbar (G unbeschränkt, kein Minimum, $f^* = -\infty$):

$$f(x_1, x_2) = x_1 - x_2 \to \min \text{ bei } x_1^2 + 4x_2^2 \ge 1$$

(3) Satz 2.1 nicht anwendbar (G unbeschränkt, kein Minimum, $f^* = 0$)

$$f(x_1, x_2) = \frac{1}{x_1} \to \min \text{ bei } x_2 \le \frac{1}{x_1}, x_1 \ge 1, x_2 \ge 0$$

(4) Satz 2.1 nicht anwendbar (G unbeschränkt, Minimum existiert, $f^* = -1$)

$$f(x_1, x_2) = -\frac{1}{x_1} \to \min \text{ bei } x_2 \le \frac{1}{x_1}, x_1 \ge 1, x_2 \ge 0$$

Offensichtlich besitzen also nicht alle Optimierungsaufgaben eine (globale) Lösung, insbesondere deshalb, weil Bedingung (??) ziemlich stark ist. Stattdessen hat sich in der Literatur auch der folgende "schwächere" Lösungsbegriff etabliert.

Definition 2.1

Ein zulässiger Punkt $\overline{x} \in G$ heißt lokale Lösung von (2.1), falls ein $\rho > 0$ existiert mit

$$f(\overline{x}) \le f(x) \quad \forall x \in G \cap B_{\rho}(\overline{x})$$

wobei $B_{\rho}(\overline{x}) := \{x \in \mathbb{R}^n : ||x - \overline{x}||_2 \le \rho\}$ die offene Kugel vom Radius ρ um \overline{x} ist.

Bemerkung 2.1

Jede globale Lösung ist auch lokale Lösung. Die Umkehrung ist im Allgemeinen nicht korrekt.

Sofern eine globale Lösung existiert, ist diese in der Menge der lokalen Lösungen enthalten. Die Betrachtung lokaler Lösungen ist damit im Allgemeinen ausreichend. Für eine spezielle Klasse von Optimierungsaufgaben sind beide Lösungskonzepte sogar äquivalent. Dazu betrachten wir die folgenden Definitionen:

Definition 2.2 (Konvexität)

(1) $G \subseteq \mathbb{R}^n$ ist konvex, falls für alle $x, y \in G$ gilt

$$[x,y] := \{x(\lambda) \in \mathbb{R}^n : x(\lambda) = (1-\lambda)x + \lambda y, \lambda \in [0,1]\} \subseteq G$$

(2) Sei G konvex. Die Funktion $f: G \to \mathbb{R}$ heißt konvex, wenn gilt

$$f(x + \lambda(y - x)) \le f(x) + \lambda (f(y) - f(x))$$

für alle $x, y \in G$ und $\lambda \in [0, 1]$.

(3) Sei G konvex. Eine Funktion $f: G \to \mathbb{R}$ heißt streng konvex, wenn gilt

$$f(x + \lambda(y - x)) < f(x) + \lambda (f(y) - f(x))$$

für alle $x, y \in G$ und $\lambda \in [0, 1]$.

Ausgehend von diesen Begrifflichkeiten erhalten wir das folgende Resultat:

Satz 2.2

Sei $G \subseteq \mathbb{R}^n$ eine konvexe Menge und $f: G \to \mathbb{R}$ eine konvexe Funktion.

- (1) Jede lokale Lösung ist gleichzeitig auch globale Lösung von (2.1).
- (2) Falls f sogar streng konvex ist, dann existiert höchstens eine Lösung.

Beweis. (1) Sei $\tilde{x} \in G$ eine lokale Lösung von (2.1). Wir nehmen an, dass dies jedoch keine globale Lösung ist, d.h. es existiert ein $\overline{x} \in G$ mit $f(\overline{x}) < f(\tilde{x})$. Wegen der Konvexität von G gilt dann $x(\lambda) = \tilde{x} + \lambda(\overline{x} - \tilde{x}) \in G$ für alle $\lambda \in [0, 1]$. Mit der Konvexität von f folgt

letzlich

$$f(x(\lambda)) = f(\widetilde{x} + \lambda(\overline{x} - \widetilde{x})) \overset{f \text{ konvex}}{\leq} f(\widetilde{x}) + \underbrace{\lambda}_{>0} \underbrace{(f(\overline{x}) - f(\widetilde{x}))}_{\leq 0} < f(\widetilde{x}) \qquad \forall \lambda \in (0, 1]$$

Somit ist \tilde{x} keine lokale Lösung im Widerspruch zur Annahme.

(2) Seien x, y zwei voneinander verschiedene Lösungen., d.h. $f(x) = f(y) = f^*$. Wir erhalten $x(\lambda) \in G$ für alle $\lambda \in [0, 1]$ und

$$f(x(\lambda)) = f(x + \lambda(y - x))$$
 $f \text{ streng konvex} \atop < f(x) + \lambda \underbrace{(f(y) - f(x))}_{=0}$

Somit ist x keine Lösung.

Für konvexe Optimierungsaufgaben sind lokale und globale Lösungen also äquivalent. Als wichtigen Spezialfall konvexer Mengen halten wir die folgende Darstellung fest.

Aussage 2.3

Sei G gegeben durch

$$G := \{ x \in \mathbb{R}^n : g_i(x) \le 0, i \in I, h_j(x) = 0, j \in J \}$$

Dann gilt: falls alle Funktionen g_i $(i \in i)$ konvex und alle Funktionen h_j $(j \in J)$ affin-linear sind, dann ist G konvex.

Beweis. Seien $x,y\in G$ und $\lambda\in(0,1)$. Zur Klärung der Konvexität, stellt sich die Frage, ob $x(\lambda)\in G$?

$$g_{i}(x(\lambda)) = g_{i}(x + \lambda(y - x)) \leq g_{i}(x) + \lambda \left(g_{i}(y) - g_{i}(x)\right) = \underbrace{1 - \lambda}_{>0} \underbrace{g_{i}(x)}_{\leq 0} + \underbrace{\lambda}_{>0} \underbrace{g_{i}(y)}_{\leq 0}$$

$$\leq 0$$

$$h_{j}(x(\lambda)) = h_{j}(x + \lambda(y - x)) = A_{j}(x + \lambda(y - x)) + b_{j} = (1 - \lambda)A_{j}x + \lambda A_{j}y + b_{j}$$

$$= (1 - \lambda)\underbrace{[A_{j}x + b_{j}]}_{h_{j}(x) = 0} + \lambda\underbrace{[A_{j}y + b_{j}]}_{h_{j}(y) = 0}$$

$$= 0$$

Somit ist $x(\lambda) \in G$ und G also konvex.

Jeder zulässige Bereich einer linearen Optimierungsaufgabe (≯ Kapitel 3) hat diese Gestalt.

2.2 Optimalitätsbedingungen

Definition 2.3

Eine Menge $K \subseteq \mathbb{R}^n$ heißt **Kegel**, falls gilt:

$$x \in K \Rightarrow \lambda x \in K \quad \forall \lambda > 0$$

Ein Kegel K ist ein konvexer Kegel, falls K eine konvexe Menge bzw. falls gilt

$$x, y \in K \implies x + y \in K$$

für alle $x, y \in K$. Der **Kegel der zulässigen Richtungen** $Z(\tilde{x})$ ist definiert durch

$$Z(\widetilde{x}) := \{ d \in \mathbb{R}^n \mid \exists \overline{t} := \overline{t}(\widetilde{x}, d) > 0 \text{ sodass } \widetilde{x} + td \in G \ \forall t \in [0, \overline{t}] \}$$

Für Optimierungsaufgaben ist der Kegel der zulässigen Richtungen von großer Bedeutung.

Aussage 2.4 (notwendiges Optimalitätskriterium)

Ist f auf G stetig differenzierbar und $\tilde{x} \in G$ ein lokales Minimum. Dann gilt

$$\nabla f(\widetilde{x})^{\top} \cdot d \ge 0 \qquad \forall d \in Z(\widetilde{x}) \tag{2.2}$$

Ist G konvex, dann erhält man die Bedingung

$$\nabla f(\widetilde{x})^{\top} (x - \widetilde{x}) \ge 0 \qquad \forall x \in G$$
 (2.3)

Beweis. Sei \widetilde{x} ein lokales Minimum und $d \in Z(\widetilde{x})$ eine zulässige Richtung. Dann existiert gemäß Definition ein \overline{t} , sodass $\widetilde{x} + td \in G$ für alle $t \in [0, \overline{t}]$ gilt. Weil außerdem \overline{x} eine lokale Lösung ist, gibt es $\rho > 0$ mit $\rho < \overline{t}$ sodass $f(\widetilde{x} + td) \ge f(\widetilde{x})$ für $t \in (0, \rho)$ gilt. Aus dieser Ungleichung folgt

$$\frac{f(\widetilde{x} - td) - f(\widetilde{x})}{t} \ge 0 \qquad \forall t \in (0, \rho)$$

Durch Grenzwertbildung $t \to 0$ auf beiden Seiten erhält man mithilfe der Definition der Richtungsableitung und der Stetigkeit von f die Behauptung (2.2). Für konvexe Mengen gilt stets $x - \tilde{x} \in Z(\tilde{x})$ für $x \in G$, also folgt (2.3).

Dieses Kriterium sagt aus, dass im Punkt \tilde{x} alle Richtungsableitungen (bezüglich zulässiger Richtungen) nicht-negativ sind, d.h. es keine zulässige Abstiegsrichtung gibt.

Bemerkung 2.2

Ein Punkt, der die Bedingung (2.2) erfüllt, heißt stationärer Punkt.

Bemerkung 2.3

Bei der freien Minimierung (d.h. für $G = \mathbb{R}^n$) ergibt sich wegen $Z(\tilde{x}) = \mathbb{R}^n$ für alle $\tilde{x} \in G$ die notwendige Bedingung

$$\widetilde{x}$$
 ist lokales Minimum $\Rightarrow \nabla f(\widetilde{x}) = 0$

Wähle dafür $d \in \{\pm e^i\}_{i=1}^n$.

Für konvexe Optimierungsaufgaben gilt auch die Umkehrung des Resultats der vorherigen Aussage.

Aussage 2.5 (hinreichendes Optimalitätskriterium)

Es seien $G \subseteq \mathbb{R}^n$ sowie $f: G \to \mathbb{R}$ konvex und stetig differenzierbar. Falls ein $\tilde{x} \in G$ existiert, welches der Bedingung (2.3) genügt, dann ist \tilde{x} (globales) Minimum von (2.1).

Beweis. Wenn f konvex und stetig differenzierbar ist und gilt

$$f(x) \ge f(\widetilde{x}) + \nabla f(\widetilde{x})^{\top} (x - \widetilde{x}) \qquad \forall x \in G$$

Wegen (2.3) folgt unmittelbar die (globale) Optimalität. Ausführlicher: siehe Übung. $\hfill\Box$

Im Fall polyedrischer zulässiger Mengen $G \subseteq \mathbb{R}^n$ (wie z.B. in der linearen Optimierung) kann die Bedingung (2.2) präzisiert werden, da dann Z(x) eine einfache Struktur besitzt.

Definition 2.4

 $G \subseteq \mathbb{R}^n$ heißt **polyedrisch**, falls eine Darstellung $G = \{x \in \mathbb{R}^n : Ax \leq b\}$ für eine geeignete Matrix A und einen geeigneten Vektor b existiert. Hierbei gilt

$$Ax \le b :\Leftrightarrow \forall i \in I = \{1, \dots, n\} : a_i^\top x = \sum_{j=1}^n a_{ij} x_j \le b_i$$

Bemerkung 2.4

Eine polyedrische Menge G ist konvex und abgeschlossen, aber im Allgemeinen nicht beschränkt. Implizit können in der Beschreibung von G aus Definition 2.4 auch Gleichungsrestriktionen enthalten sein.

Definition 2.5

Für $x \in G$ ist die Indexmenge der aktiven Restriktionen definiert durch

$$I_0(x) := \left\{ i \in I \colon a_i^\top x = b_i \right\}$$

Sei nun ein zulässiger Punkt $x \in G$ gegeben. Damit eine beliebige Richtung $d \in \mathbb{R}^n$ zulässig ist, nuss ein $\bar{t} > 0$ existieren, sodass $x + td \in G$ für alle $t \in [0, \bar{t}]$ gilt. Für einen polyedrischen Bereich G ist dies äquivalent zu

$$\forall i \in I : a_i^\top (x + td) \le b_i \iff \forall i \in I : ta_i^\top d \le b_i - a_i^\top x$$

für alle $t \in [0, \overline{t}]$.

- Für alle inaktiven Restriktionen (also solche $a_i^\top x < b_i$) wäre $ta_i^\top d \leq b_i a_i^\top x$ zu erfüllen. Egal, welchen Wert $a_i^\top d$ annimmt, es kann stets eine hinreichend kleine Schrittweite (im Sinne der Definition einer zulässigen Richtung) gefunden werden. Somit schränken inaktive Restriktionen die möglichen Richtungen $d \in \mathbb{R}^n$ nicht ein.
- Für aktive Restriktionen (also $a_i^{\top}x = b_i$) erhält man $ta_i^{\top}d \leq 0$, also (wegen t > 0) $a_i^{\top}d \leq 0$.

Diese Bedingung lässt sich geometrisch interpretieren: das Skalarprodukt der zulässigen Richtungen und des Normalenvektors (nach außen gerichtet) a_i der begrenzenden Hyperebene muss kleiner oder gleich Null sein, d.h. der Schnittwinkel beider Vektoren liegt im Bereich $[\frac{\pi}{2}, \pi]$. Folglich zeigt die zulässige Richtung $d \in \mathbb{R}^n$ tatsächlich in das Innere von G.

Für einen zulässigen Punkt $x \in G$ kann somit folgende Beobachtung angegeben werden:

$$d \in Z(x) \Leftrightarrow \forall i \in I_0(x) : a_i^{\top} d \le 0$$
 (2.4)

Außerdem ist die Größe \tilde{t} (maximale Schrittweite) wohldefiniert.

$$\widetilde{t} := \widetilde{t} := \min \left\{ \frac{b_i - a_i^{\top} x}{a_i^{\top} d} : i \in I(x, d) \right\}$$
(2.5)

wobei $I(x,d) := \left\{ i \in I \colon a_i^\top d > 0 \right\}.$

Bemerkung 2.5

Falls $I(x,d) = \emptyset$, setzen wir $\tilde{t} := \infty$.

Beispiel 2.2

Wir betrachten $x := (1, 1, 1)^{\top}$ und die polyedrische Menge

$$G := \left\{ (x_1, x_2, x_3)^\top \in \mathbb{R}^3 \colon x_1 + 2x_2 + x_3 \le 4, 3x_1 + x_2 + x_3 \le 6, x_i \ge 0, i = 1, 2, 3 \right\}$$

Offenbar gilt $x \in G$. Wir betrachten die Richtungen

$$d^{1} = (1, 1, 1)^{\top} \text{ und } d^{2} = (-1, -2, -1)^{\top}$$

Als aktive Restriktionen erkennen wir $I_0(x) = \{1\}$ (da nur die erste Nebenbedingung von G mit Gleichheit erfüllt ist).

■ Für $d = d^1$ gilt

$$a_i^{\top} d = \begin{pmatrix} 1\\2\\1 \end{pmatrix}^{\top} \begin{pmatrix} 1\\1\\1 \end{pmatrix} = 4 > 0$$

Somit ist d^1 keine zulässige Richtung wegen (2.4).

■ Für $d = d^2$ gilt

$$a_i^\top d = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}^\top \begin{pmatrix} -1 \\ -2 \\ -1 \end{pmatrix} = -6 \le 0$$

Somit ist d^2 eine zulässige Richtung wegen (2.4). Zur maximalen Schrittweite: Die Ungleichung $(3,1,1)^{\top}$ $(x+td) \leq 6$ liefert die Bedingung $t \in [-\frac{1}{6},\infty)$. Aus $x+td \geq 0$ folgt die Bedingung $t \leq \frac{1}{2}$. Insgesamt gilt $\tilde{t} = \frac{1}{2}$.

Zusammengefasst erhalten wir das folgende Resultat:

Folgerung 2.6

Sei G polyedrisch, d.h. $G = \{x \in \mathbb{R}^n \colon Ax \leq b\}$ und $f \colon G \to \mathbb{R}$ stetig differenzierbar. Ist \widetilde{x} eine lokale Lösung von (2.1), so gilt

$$\nabla f(\widetilde{x})^{\top} \cdot d \ge 0 \qquad \forall d \in \mathbb{R}^n \text{ mit } a_i^{\top} d \le 0 \ \forall i \in I_0(\widetilde{x})$$
 (2.6)

Ist f zusätzlich konvex, dann gilt auch die Umkehrung.

2.3 Das Lemma von FARKAS

Das folgende Resultat besitzt vielfältige Anwendungen in der Optimierung (↗ Dualität).

Lemma 2.7 (Farkas)

Es seien $A \in \mathbb{R}^{m \times n}$ und $a \in \mathbb{R}^m$. Von den Systemen

- (i) $Az \le 0, a^{\top}z > 0$
- (ii) $A^{\top}u = a, u \ge 0.$

ist genau eines lösbar.

Beweis. ■ höchstens eines der Systeme ist lösbar: Seien (i) und (ii) lösbar. Dann gilt

$$0 < a^{\top}z = A^{\top}u^{\top}z = \underbrace{u^{\top}}_{\geq 0}\underbrace{Az}_{\leq 0} \leq 0$$
 `

■ mindestens eines der Systeme ist lösbar — die Unlösbarkeit von (ii) impliziert die Lösbarkeit von (i): Sei (ii) nicht lösbar. Dann gilt $a \notin K := \{x = A^{\top}u \colon u \geq 0\}$, wobei K ein konvexer, abgeschlossener Kegel ist. Wir betrachten die Optimierungsaufgabe

$$f(x) = \frac{1}{2} \|a - x\|_2^2 = \frac{1}{2} (a - x)^{\top} (a - x) \to \min \text{ bei } x \in K$$

Dann existiert eine eindeutige (und globale) Lösung $\overline{x} \in K$ mit

(1)
$$\nabla f(\overline{x})^{\top} \overline{x} = 0$$
 (2) $\nabla f(\overline{x})^{\top} x \ge 0 \ \forall x \in K$

Zunächst folgt gemäß Aussage 2.4, dass $\nabla f(\overline{x})^{\top}(x-\overline{x}) \geq 0$ für alle $x \in K$. Durch Einsetzen von $x = \frac{1}{2}\overline{x} \in K$ und $x = 2 \cdot \overline{x} \in K$ (beachte: K ist Kegel) erhält man (1). Dies wiederum lässt sich zur notwendigen Bedingung ddazu addieren und man erhält (2). Nun zeigen wir, dass $z := a - \overline{x} \neq 0$ (wegen $a \notin K$) das System (i) löst. Es gilt $\nabla f(\overline{)} = -z$ und damit folgt

$$0 = \nabla f(\overline{x})^{\top} \overline{x} = -z^{\top} \cdot (\overline{x} - a + a) = z^{\top} (z - a) \implies a^{\top} z = z^{\top} z \stackrel{z \neq 0}{>} 0$$

Weiter gilt $x \in K$ genau dann, wenn ein $u \ge 0$ existiert mit $x = A^{\top}u$. Aus (2) folgt dann

$$\nabla f(\overline{x})^{\top} x \ge 0 \ \forall x \in K \ \Rightarrow \ -z^{\top} A^{\top} u \ge 0 \quad \forall u \ge 0$$

$$\Rightarrow \quad (Az)^{\top} u \le 0 \quad \forall u \ge 0$$

$$\Rightarrow \quad Az \le 0 \quad \text{(wähle z.B. wieder } u = e^1, e^2, \dots)$$

Damit löst z das System (1).

Damit können die notwendigen Optimalitätsbedingungen (2.6) bzw. äquivalent dazu

$$\forall i \in I_0(x) \colon a_i^{\top} \cdot d \le 0 \quad \Rightarrow \quad \nabla f(\widetilde{x})^{\top} \cdot d \ge 0 \tag{2.7}$$

wie folgt umformuliert werden: Offenbar ist (2.7) gleichbedeutend mit der Unlösbarkeit von

$$\nabla f(\widetilde{x})^{\top} \cdot d < 0, \qquad a_i^{\top} \cdot d \le 0 \ \forall i \in I_0(\widetilde{x})$$

Wählt man also im Lemma von Farkas $a = -\nabla f(\tilde{x})$ und A bestehend aus den Zeilen a_i^{\top} , so folgt die Lösbarkeit des Systems

$$\nabla f(\widetilde{x}) + \sum_{i \in I_0(\widetilde{x})} u_i a_i = 0 \qquad (u \ge 0)$$
(2.8)

Für konvexe Optimierungsaufgaben ist die Lösbarkeit von (2.8) sogar äquivalent dazu, dass \tilde{x} Lösung der betrachteten Aufgabe ist.

Gerade im Hinblick auf die praktische Anwendbarkeit ist (2.8) in der jetzigen Form wenig hilfreich, da \tilde{x} und damit $I_0(\tilde{x})$ unbekannt sind. Man betrachtet daher oftmals die folgende äquivalente Umformulierung:

Lemma 2.8

Sei $G := \left\{ x \in \mathbb{R}^n \colon a_i^\top x \leq b_i, i \in I \right\}$ und $f \colon G \to \mathbb{R}$ stetig differenzierbar. Wenn $x \in \mathbb{R}^n$ Lösung von

$$f(x) \to \min \text{ bei } x \in G$$

ist, dann existiert ein Vektor u, sodass das Paar (x, u) das folgende System löst:

$$\nabla f(x) + \sum_{i \in I} u_i a_i = 0 \qquad u_i \ge 0, \quad a_i^{\top} - b_i \le 0 \quad (i \in I)$$

$$u_i \left(a_i^{\top} x - b_i \right) = 0 \qquad (i \in I)$$

$$(2.9)$$

Dabei beschreibt $a_i^{\top} - b_i \leq 0$ die Zulässigkeit von $x \in G$ und $u_i \left(a_i^{\top} x - b_i \right) = 0$ gleicht die zu große Indexmenge der Summe wieder aus, d.h. für inaktive Restriktionen folgt $u_i = 0$. Ist f konvex, so gilt auch die Umkehrung. Man nennt (2.9) auch ein **KKT-System**.

Bemerkung 2.6

- (1) KKT steht für Karush-Kuhn-Tucker.
- (2) Die Variablen u heißen Lagrange-Multiplikatoren.

KAPITEL 2. GRUNDLAGEN

(3) Gibt es neben den Ungleichungen auch Gleichungsrestriktionen $a_i^{\top}x = b_i$ für $i = m + 1, \ldots, \overline{m}$ und $\overline{m} > m$, dann erhält man das KKT-System

$$\nabla f(x) + \sum_{i=1}^{m} u_{i} a_{i} + \sum_{i=m+1}^{\overline{m}} u_{i} a_{i} = 0$$

$$u_{i} \geq 0, a_{i}^{\top} x - b_{i} \leq 0 \qquad (i = 1, \dots, m)$$

$$a_{i}^{\top} x - b_{i} = 0 \qquad (i = m+1, \dots, \overline{m})$$

$$u_{i} \left(a_{i}^{\top} x - b_{i} \right) = 0 \qquad (i = 1, \dots, m)$$
(2.10)

Kapitel 3

LINEARE OPTIMIERUNG

Wir betrachten die Optimierungsaufgabe

$$z = c^{\top} x \to \min \text{ bei } x \in G := \{ x \in \mathbb{R}^n \colon Ax = b, x \ge 0 \}$$
 (3.1)

mit $A \in \mathbb{R}^{m \times n}$, $c \in \mathbb{R}^n$, $b \in \mathbb{R}^m$. Außerdem nehmen wir an, dass $\operatorname{rg}(A) = m$ gilt und dass $m \leq n$ erfüllt ist.

Bemerkung 3.1

- (1) G ist eine polyedrische Menge.
- (2) Alle endlich-dimensionalen linearen Optimierungsaufgaben lassen sich **Standardform** (3.1) überführen (≯ Übung).

3.1 Basislösungen und Ecken

Sei $I := \{1, ..., n\}$. Da $\operatorname{rg}(A) = m$, existiert eine Indexmenge $I_B \subseteq I$ mit $|I_B| = m$ derart, dass alle Spalten A^i $(i \in I_B)$ linear unabhängig sind. I_B wird **Basis-Indexmenge** genannt. Mit $I_N := I \setminus I_B$ (Nichtbasis) definieren wir

$$A_B = (A^i)_{i \in I_B}$$

$$C_B = (c_i)_{i \in I_B}$$

$$A_N = (A^i)_{i \in I_N}$$

$$C_N = (c_i)_{i \in I_N}$$

$$x_N = (x_i)_{i \in I_N}$$

Dann lässt sich (3.1) schreiben als

$$z = c_B^{\top} x_B + c_N^{\top} x_N \to \text{min bei } A_B x_B + A_N x_N = b, x_b \ge 0, x_N \ge 0$$
 (3.2)

bzw. durch Auflösen der Gleichung nach x_B (beachte: A_B hat Vollrang) als

$$z = \left(c_N^{\top} - c_B^{\top} A_B^{-1} A_N\right) x_N + c_B^{\top} A_B^{-1} b \to \text{min bei } x_B = -A_B^{-1} A_N x_N + A_B^{-1} b, x_B \ge 0, x_N \ge 0$$
(3.3)

Definition 3.1

Der Punkt

$$x = \begin{pmatrix} x_B \\ x_N \end{pmatrix} = \begin{pmatrix} A_B^{-1}b \\ 0 \end{pmatrix}$$

heißt Basislösung zu I_B . Gilt zusätzlich $A_B^{-1}b \ge 0$, dann heißt $x=(x_B,x_N)$ zulässige Basislösung.

Definition 3.2

Der Punkt $x \in G$ heißt **Ecke** (von G), falls aus $x = \frac{1}{2}(x^1 + x^2)$ mit $x^1, x^2 \in G$ stets $x = x^1 = x^2$ folgt.

Ecken des zulässigen Bereichs können also nicht durch andere zulässige Punkte linear kombiniert werden.

Zur Wiederholung benennen wir im Folgenden (ohne Beweis) einige Eigenschaften von Ecken und zulässigen Basislösungen.

Satz 3.1

Sei rg(A) = m. Dann ist jede zulässige Basislösung auch Ecke von G. Umgekehrt gibt es zu jeder Ecke mindestens eine zulässige Basislösung.

Häufig unterscheidet man zwischen

- degenerierten (oder entarteten) Ecken, die mehrere zulässige Basislösungen besitzen
- nicht-degenerierten (oder nicht-entarteten) Ecken, die genau eine zulässige Basislösung besitzen.

Dabei gilt: Eine Ecke $x \in G$ ist genau dann degeneriert, wenn ein $i \in I_B$ mit $x_i = 0$ existiert.

Beispiel 3.1

Sei

$$G := \{x \in \mathbb{R}^n : x_1 + x_2 + x_3 = 1, \ 2x_1 + x_2 + x_4 = 2, \ x_1, \dots, x_4 \ge 0\}$$

Hierbei ist die Ecke $E_1 = (0, 1, 0, 1)^{\top}$ nicht degeneriert, da sie nur die Zerlegung $I_B = \{2, 4\}$ und $I_N = \{1, 3\}$ gestattet. Die Ecke $E_2 = (1, 0, 0, 0)^{\top}$ ist degeneriert, weil ein $i \in I_B$ zwangsläufig $x_i = 0$ erfüllen muss.

Satz 3.2

Seo $G \neq \emptyset$. Dann besitzt G

- (1) mindestens eine Ecke
- (2) höchstens endlich viele Ecken.

Beweis. siehe Übung

Satz 3.3

Ist (3.1) lösbar, dann gibt es eine Ecke von G, die (3.1) löst.

Bei linearen Optimierungsaufgaben genügt es daher die Ecken von G zu betrachten. Ist die Aufgabe lösbar, so findet man durch systematisches Abschreiten der Ecken eine Lösung. Um dabei zu erkennen, ob Optimalität vorliegt, hilft folgendes Resultat:

Aussage 3.4 (Optimalitätskriterium)

Gilt für die zuässige Basislösung $x = (x_B, x_N) = (A_B^{-1}b, 0)$ die Bedingung

$$c_N^{\mathsf{T}} - c_B^{\mathsf{T}} A_B^{-1} A_N \ge 0 \tag{3.4}$$

dann ist x Lösung von (3.1).

Beweis. Sei $x = (x_B, x_N)$ eine zulässige Basislösung. Wir zeigen zunächst:

$$Z(x) \subseteq \{d \in \mathbb{R}^n : Ad = 0, d_N \ge 0\}$$

Sei $d \in Z(x)$. Dann existiert t>0 mit $A(x+td)\stackrel{!}{=}b$ (beachte die Definition von G mit Gleichheitsrestriktionen). Es gilt

$$Ax + tAd = b \Leftrightarrow b + tAd = b \stackrel{t \ge 0}{\Leftrightarrow} Ad = 0$$

Wegen $x_N = 0$ ergibt sich aus $x + td \stackrel{!}{\geq} 0$ (nach Definition von G) sofort $d_N \geq 0$. Insbesondere gilt

$$Ad = 0 \Leftrightarrow A_B d_B + A_N d_N = 0 \Leftrightarrow d_B = -A_B^{-1} A_N d_N \qquad \forall d \in Z(x)$$

Damit folgt unter Berücksichtigung von (3.4)

$$\nabla f(x)^{\top} d = c^{\top} d$$

$$= c_B^{\top} d_B + c_N^{\top} d_N$$

$$= -c_B^{\top} A_B^{-1} A_N d_N + c_N^{\top} d_N$$

$$= \underbrace{\left(c_N^{\top} - c_B^{\top} A_B^{-1} A_N\right)}_{\geq 0} \underbrace{d_N}_{\geq 0} \geq 0 \qquad \forall d \in Z(x)$$

d.h. x genügt der notwendigen Optimalitätsbedingung (2.2), die hier (im konvexen Fall) auch hinreichend ist.

Eine entsprechende Systematik zum Abschreiten der Ecken wird im Folgenden Abschnitt behandelt.

3.2 Das primale Simplex-Verfahren

Das primale Simplexverfahren durchläuft zwei Phasen (falls nötig):

- Phase 1 besteht aus der Ermittlung einer ersten Ecke (zulässige Basislösung),
- Phase 2 aus der darauf aufbauenden Bestimmung einer optimalen Ecke.

3.2.1 Phase 2 des Simplex-Verfahrens

Wir betrachten die (erste) zulässige Basislösung (Ecke) $x = (x_B, x_N)$ und schreiben (3.3) als Simplex-Tableau:

$$\frac{T_0 \mid x_N \mid 1}{x_B = \mid P \mid p}$$

$$z = \mid q^{\top} \mid q_0$$

$$P = -A_B^{-1} A_N \qquad p = A_B^{-1} b$$

$$q^{\top} = c_N^{\top} - c_B^{\top} A_B^{-1} A_N \quad q_0 = c_B^{\top} A_B^{-1} b$$
(3.5)

Wir nehmen zunächst an, dass $x = (x_B, x_N)$ eine nicht-entartete Ecke mit $x_B = (x_1, \dots, x_m)^{\top}$ und $x_N = (x_{m+1}, \dots, x_n)^{\top}$ ist. Die hierzu gehörige Basislösung ist $x = (x_B, x_N) = (p, 0)$ und es gilt $p \ge 0$ (da zulässig). Folglich ist $x \in G$.

Frage: Wenn x nicht optimal ist – wie kann eine bessere zulässige Basislösung (Ecke) gefunden werden?

Antwort: Wahl einer zulässigen Richtung $d \in Z(x)$ mit maximaler Schrittweite, die eine Verkleinerung des Zielfunktionswerts ermöglicht.

Nach Aussage 3.4 ist x optimal, falls $q \ge 0$ gilt. Sei nun $q_{\tau} < 0$ für $\tau \in I_N$. Zur Konstruktion einer neuen Ecke setzen wir $x_{\tau} = t$ (bisher war $x_{\tau} = 0$). Dann folgt zunächst $x_N(t) = t \cdot e_{\tau}$ und wegen der Forderung $x_N(t) \ge 0$ auch $t \ge 0$. Ferner ergibt sich aus Tableau T_0 der Zusammenhang $x_i(t) = P_{i\tau} \cdot x_{\tau} + p_i = P_{i\tau} \cdot t + p_i$ für alle $i \in I_B$.

Insgesamt verfolgen wir ausgehend von x=(p,0) die zulässige Richtung $d\in\mathbb{R}^n$

$$d_i = \begin{cases} P_{i\tau} & i \in I_B \\ 1 & i = \tau \\ 0 & i \in I_N \setminus \{\tau\} \end{cases}$$

Die maximale Schrittweite \bar{t} erhält man wie folgt: Für jedes $i \in I_B$ ist $x_i(t) \geq 0$ zu gewährleisten. Gilt $P_{i\tau} \geq 0$, so ergibt dies keine Einschränkung für die Schrittweite (weil $p_i \geq 0$, $t \geq 0$, $P_{i\tau} \geq 0$ $\Rightarrow x_i(t) \geq 0$ für alle $t \geq 0$). Für $P_{i\tau} < 0$ muss hingegen $t \leq -\frac{p_i}{P_{i\tau}}$ (aus Tableauzusammenhang) gewählt werden. Die maximal mögliche Schrittweite ergibt sich folglich zu

$$t \le \bar{t} = \bar{t}(x, d) := \min\left\{-\frac{p_i}{P_i \tau} : P_{i\tau} < 0, i \in I_B\right\}$$
 (3.6)

bzw. $\bar{t} = \infty$, falls $P_{i\tau} \geq 0$ für alle $i \in I_B$.

Aussage 3.5

Im Fall $\bar{t} = \infty$ besitzt (3.1) keine Lösung, da die Zielfunktion nach unten unbeschränkt ist.

Beweis. Wegen $\bar{t} = \infty$ gilt $x(t) \in G$ für alle $t \geq 0$. Dann liefert $q_{\tau} < 0$ sogleich Z(t) =

$$\overline{q} \cdot x_N(t) + q_0 \stackrel{x_N(t) = t \cdot e_\tau}{=} q_\tau \cdot t + q_0 \to -\infty \text{ für } t \to \infty.$$

Bemerkung 3.2

Die beiden Fälle

- (1) $q_i \geq 0$ für alle $i \in I_N$ \sim Optimalität
- (2) es existiert ein $\tau \in I_N$ mit $q_{\tau} < 0$ und $P_{i\tau} \ge 0$ für alle $i \in I_B$ \longrightarrow Unbeschränktheit werden primal entscheidbar genannt.

Im sogenannten nicht-entscheidbaren Fall, d.h. falls

$$(\exists \ \tau \in I_N \colon a_{\tau} < 0) \land \left(\exists \ \sigma \in I_B \colon \overline{t} = -\frac{p_{\sigma}}{P_{\sigma\tau}} = \min \left\{ -\frac{p_i}{P_{i\tau}} \colon P_{i\tau < 0, i \in I_B} \right\} < \infty \right)$$

ergibt die (maximale) Schrittweite \bar{t} den Punkt

$$\overline{x} = x + \overline{t}d \in G \text{ mit } f(\overline{x}) = f(x) + \overline{t}g_{\tau} = g_0 + \overline{t}g_{\tau}$$

Für entartete Ecken kann man die Schrittweite $\bar{t}=0$ erhalten. In diesem Fall ändert sich der Punkt \bar{x} nicht, aber die Menge I_N und I_B . Zum Verlassen einer (noch nicht optimalen) entarteten Ecke können mehrere Schritte nötig sein.

Satz 3.6

 \overline{x} ist eine Ecke von Gmit Basis-Indexmenge

$$\overline{I_B} = \overline{I_B}(\overline{x}) := (I_B \setminus \{\sigma\}) \cup \{\tau\}$$
$$\overline{I_N} = \overline{I_N}(\overline{x}) := (I_N \setminus \{\tau\}) \cup \{\sigma\}$$

Um zu zeigen, dass die Matrix $\overline{A_B}:=(A')_{i\in \overline{I_B}}$ regulär ist, nutzen wir das folgende Resultat.

Lemma 3.7 (Sherman / Morrison)

Es seien $B \in \mathbb{R}^{m \times m}$ regulär und $u, v \in \mathbb{R}^m$. Die Matrix $\overline{B} := B + uv^{\top}$ ist genau dann regulär, wenn $1 + v^{\top}B^{-1}u \neq 0$ erfüllt ist und dann gilt

$$\overline{B}^{-1} = B^{-1} - \frac{B^{-1}uv^{\top}B^{-1}}{1 + v^{\top}B^{-1}u}$$

Beweis. Übung oder Selbststudium (aber wird nie gefragt werden)

Beweis (Satz 3.6). Der "Austausch" der Spalten A^{τ} und A^{σ} kann durch ein dyadisches Produkt uv^{\top} beschrieben werden:

$$\overline{A_B} = A_B + uv^{\top} \text{ mit } u = A^{\tau} - A^{\sigma} \text{ und } v = e^{\sigma}$$

Wegen

$$1 + v^{\top} B^{-1} u = 1 + (e^{\sigma})^{\top} A_B^{-1} (A^{\tau} - A^{\sigma})$$

$$= 1 + (e^{\sigma})^{\top} A_B^{-1} A^{\tau} - 1 \qquad ("A^{\sigma} \in A_B")$$

$$= -P_{\sigma\tau} \neq 0 \qquad (P = -A_B^{-1} A_N \text{ und } "A^{\tau} \in A_N")$$

folgt aus Lemma 3.7 die Regularität von $\overline{A_B}$.

Beispiel 3.2

Wir betrachten $z=-x_1-x_2\to \min$ bei $x_1+2x_2\le 6,\ 4x_1+x_2\le 10,\ x_1,x_2\ge 0.$ Um aus den Ungleichungen Gleichungsnebenbedingungen zu machen, führen wir sogenannte Schlupfvariablen $x_3,x_4\ge 0$ ein und erhalten

$$x_1 + 2x_2 + x_3 = 6$$
, $4x_1 + x_2 + x_4 = 10$, $x_1, x_2, x_3, x_4 \ge 0 \implies x_3 = 6 - x_1 - 2x_2$ and $x_4 = 10 - 4x_1 + x_2 + x_3 = 6$.

Damit liegt nun eine Optimierungsaufgabe in Standardform (3.1) vor. Notieren wir dies nun in Tableauform mit $I_N = \{1, 2\}$ und $I_B = \{3, 4\}$ (betrachte dazu $x_B = Px_N + p$):

$$\begin{array}{c|ccccc} T_0 & x_1 & x_2 & 1 \\ \hline x_3 = & -1 & -2 & 6 & \overline{t} = \frac{6}{1} \\ \hline x_4 = & -4 & -1 & 10 & \overline{t} = \frac{10}{4} \\ \hline z = & -1 & -1 & 0 & \end{array}$$

Wir können nun $\tau \in \{1, 2\}$ wählen, oBdA wählen wir hier $\tau = 1$. Für x_3 ergibt sich eine maximale Schittweite $\bar{t} = -\frac{p_i}{P_{i\tau}} = \frac{6}{1}$. Für x_4 ergibt sich $\bar{t} = \frac{10}{4}$. Damit wird $\sigma = 4$ gewählt.

Mit $\tau=1$ und $\sigma=4$ sowie $\bar{t}=\frac{5}{2}$ erhält man

$$\overline{x} = x + \overline{t}d = \begin{pmatrix} 0 \\ 0 \\ 6 \\ 10 \end{pmatrix} + \frac{5}{2} \begin{pmatrix} 1 \\ 0 \\ -1 \\ -4 \end{pmatrix} = \begin{pmatrix} \frac{5}{2} \\ 0 \\ \frac{7}{2} \\ 0 \end{pmatrix}$$

und

$$z(\overline{x}) = -\frac{5}{2}$$

Der Austausch von x_{τ} und x_{σ} im Simplextableau kann formal durch die sogenannten Austauschregeln erfolgen.

$$\begin{array}{c|cccc} T_0 & x_N & 1 \\ \hline x_B = & P & p \\ \hline z = & q^\top & q_0 \end{array} \implies \begin{array}{c|cccc} T_1 & x_{\widetilde{N}} & 1 \\ \hline x_{\widetilde{B}} = & \widetilde{P} & \widetilde{p} \\ \hline z = & \widetilde{q}^\top & \widetilde{q_0} \end{array}$$

$$\widetilde{I_B} = (I_B \cup \{\tau\}) \setminus \{\sigma\}$$
$$\widetilde{I_N} = (I_B \cup \{\sigma\}) \setminus \{\tau\}$$

Austauschregeln:

$$\begin{split} \widetilde{P}_{\sigma,\tau} &:= \frac{1}{P_{\sigma,\tau}} & \qquad \qquad \text{(Pivotelement)} \\ \widetilde{P}_{\sigma,j} &:= -\frac{P_{\sigma,j}}{P_{\sigma,\tau}} \quad (j \in I_N \setminus \{\tau\}) & \qquad \qquad \widetilde{p}_{\sigma} = -\frac{p_{\sigma}}{P_{\sigma,\tau}} \quad \text{(Pivotzeile)} \\ \widetilde{P}_{i,\tau} &:= -\frac{P_{i,\tau}}{P_{\sigma,\tau}} \quad (i \in I_B \setminus \{\sigma\}) & \qquad \qquad \widetilde{q}_{\tau} := \frac{q_{\tau}}{P_{\sigma,\tau}} \quad \text{(Pivotspalte)} \\ \widetilde{P}_{i,j} &:= P_{i,j} - \frac{P_{\sigma,j}}{P_{\sigma,\tau}} P_{i,\tau} \quad (i \in I_B \setminus \{\sigma\}) & \qquad \qquad \text{(sonstige Elemente)} \\ \widetilde{p}_i &:= p_i - \frac{p_{\sigma}}{P_{\sigma,\tau}} P_{i,\tau} \quad (i \in I_B \setminus \{\sigma\}) & \qquad \qquad \widetilde{q}_j := q_j - \frac{P_{\sigma,j}}{P_{\sigma,\tau}} q_{\tau} \quad (j \in I_N \setminus \{\tau\}) \end{split}$$

Vergleiche dazu auch das Merkblatt zum Simplex-Verfahren unter https://www.math.tu-dresden.de/~martinovic/Zusammenfassung_Simplexverfahren.pdf

Beispiel 3.3

Wir betrachten wie in Beispiel 3.2 die Optimierungsaufgabe $z=-x_1-x_2\to \min$ bei $x_1+2x_2\le 6$, $4x_1+x_2\le 10,\ x_1,x_2\ge 0$. mit Simplex-Starttableau:

	T_0	x_1	x_2	1	
	$x_3 =$			6	$\bar{t} = 3$
	$x_4 =$	-4	-1	10	$\bar{t} = 10$
	z =	-1	-1	0	•
Kel	lerzeile	$-\frac{1}{2}$	*	3	= neue Pivotzeile

Nun wählen wir aber $\tau=2$, woraus sich $\sigma=3$ ergibt. Zur besseren Übersicht haben wir eine Kellerzeile eingeführt. Diese entspricht genau der neu berechneten Pivotzeile.

_	x_1	_		
$x_2 =$	-1/2	-1/2	3	(Division durch -1 * Pivot)
$x_4 =$	-7/2	$1/_{2}$	7	
z =	-1/2	$^{1}/_{2}$	-3	
Kellerzeile	-2/7	$^{1}/_{7}$	2	

Nebenrechnung: z.B. $7 = 10 + 3 \cdot (-1)$

Im nächsten Schritt wählen wir nun $\tau = 1$ und $\sigma = 4$.

T_2	x_4	x_3	1
$x_2 =$	1/7	-4/7	2
$x_1 =$	-2/7	$^{1}/_{7}$	2
z =	1/7	3/7	-4

Da $\widetilde{p}=\left(\frac{2}{2}\right)\geq 0$ ist, ist die Lösung zulässig. Außerdem wissen wir wegen $\widetilde{q}^{\top}=\left(\frac{1}{7},\frac{3}{7}\right)\geq 0$, dass die Lösung optimal ist. Somit ergibt sich

$$x^* = (x_1^*, x_2^*, x_3^*, x_4^*) = (2, 2, 0, 0) \text{ mit } z^* = -4$$

3.2.2 Phase 1 (Hilfsfunktionsmethode)

Wir betrachten das Problem

$$z = c^{\top} x \to \min \text{ bei } Ax = b, x \ge 0$$
 (3.7)

Ohne Einschränkung sei $b \ge 0$. Durch folgendes Hilfsproblem lässt sich eine Startecke ermitteln (sofern eine solche überhaupt existiert).

$$h = e^{\top} y \to \min \text{ bei } y + Ax = b, x \in \mathbb{R}^n_+, y \in \mathbb{R}^m_+$$
 (3.8)

mit $e = (1, ..., 1)^{\top} \in \mathbb{R}^m$. Eine erste Basislösung für (3.8) ist gegeben durch

$$\frac{T_0 \quad x \quad 1}{y = \quad -A \quad b} \\
h = \quad -e^{\top}A \quad e^{\top}b$$
(3.9)

Satz 3.8

Das Problem (3.7) besitzt genau dann eine zulässige Lösung, wenn $h_{\min} = 0$ den Optimalwert von (3.8) darstellt.

Beweis. Offenbar gilt $h_{\min} = 0 \iff y = 0$.

- (⇒) Besitzt (3.7) eine zulässige Lösung \widetilde{x} , dann ist $\begin{pmatrix} \widetilde{x} \\ 0 \end{pmatrix}$ zulässig für (3.8). Wegen $0 \le h = e^{\top}\widetilde{y} = 0$ folgt $h_{\min} = 0$.
- (\Leftarrow) Hat man umgekehrt $h_{\min} = 0$, so gilt $\widetilde{y} = 0$ für jede optimale Lösung $\begin{pmatrix} \widetilde{x} \\ \widetilde{y} \end{pmatrix}$ von (3.8). Aus der Zulässigkeit von $\begin{pmatrix} \widetilde{x} \\ \widetilde{y} \end{pmatrix}$ für (3.8) folgt dann die Zulässigkeit von \widetilde{x} für (3.7).

3.2.3 Der Simplexalgorithmus

Mit den zuvor beschriebenen Vorgehensweisen lässt sich das Simplexverfahren zur Lösung der Optimierungsaufgabe (3.1) wie folgt algorithmisch formulieren:

- Schritt 1 (*Initialisierung*): Ermittle eine erste zulässige Basislösung $x = (x_B^\top, x_N^\top)^\top = (p^\top, 0^\top)^\top$ mit $p = (A_B)^{-1}b \ge 0$, wobei I_B die Menge der Basisindizes ist und stelle ein erstes Simplextableau auf.
- Schritt 2 (Optimalitätstest): Berechne entsprechend Aussage 3.4

$$\overline{q} := \min_{j \in I_N} q_j \quad \text{mit} \quad q_J := c_j d^\top A^j \ (j \in I_N)$$
(3.10)

wobei $d^{\top}:=c_B^{\top}(A_B)^{-1}$ ist. Gilt $\overline{q}\geq 0$, dann ist x Lösung von (3.1). Andernfalls sei $q_{\tau}=\overline{q}<0$.

- Schritt 3 (*Test auf Unbeschränktheit*): Gilt $P_{i\tau} \geq 0$ für alle $I \in I_B$, so ist die Aufgabe nicht lösbar $(f^* = -\infty)$.
- Schritt 4 (Austauschschritt): Bestimme die Pivotzeile σ gemäß

$$-\frac{p_{\sigma}}{P_{\sigma\tau}} = \min\left\{-\frac{p_i}{P_{i\tau}} : \overline{P}_{i\tau} < 0, i \in I_B\right\}$$

und führe den Austauschschritt $\sigma \leftrightarrow \tau$ (Aktualisierung Simplextableau) durch. Gehe zu Schritt 2.

Bemerkung 3.3

- (i) Der Simplexalgorithmus löst Problem (3.1) nach endlich vielen Schritten exakt oder stellt dessen Unlösbarkeit fest.
- (ii) Pro Simplexschritt ist im Wesentlichen die Matrix P (der Dimension $m \times (n-m)$) zu transformieren. Für $n \gg m$ kann das recht aufwendig sein, sodass ggf. alternative Varianten des Simplexalgorithmus' (z.B. das revidierte Simplexverfahren oder die Technik der Spaltengenerierung) effizienter sind.
- (iii) Der Test auf Unbeschränktheit der Zielfunktion kann auch für jede Spalte $j \in I_N$ mit $q_j < 0$ erfolgen, sofern dies nicht zu aufwendig ist.

3.3 Das duale Simplexverfahren

Nach Aussage 3.4 ist ein Tableau

$$\begin{array}{c|cc} T_0 & x_N & 1 \\ \hline x_B = & P & p \\ \hline z = & q^\top & q_0 \end{array}$$

optimal, wenn $p \geq 0$ und $q \geq 0$ gelten. Nach Konstruktion gilt beim primalen Simplexverfahren stets $p \geq 0$. Sei nun ein Tableau T_0 gegeben mit $q \geq 0$, aber nicht $p \geq 0$, d.h. es gibt eine Zeile $\sigma \in I_B$ mit $p_{\sigma} < 0$. Die zu T_0 gehörige Basislösung ist dann nicht zulässig. Mithilfe des dualen Simplexverfahrens lässt sich jedoch (unter Beibehaltung von $q \geq 0$) eine zulässige Basislösung (d.h. mit " $p \geq 0$) erzeugen. Entsprechend der bekannten Austauschregeln ergeben sich folgende

Bedingungen:

$$\widetilde{q}_{j} := q_{j} - \frac{P_{\sigma,j}}{P_{\sigma,\tau}} q_{\tau} \stackrel{!}{\geq} 0 \qquad \forall j \in I_{N} \setminus \{\tau\}$$

$$\widetilde{q}_{\tau} := \frac{q_{\tau}}{P_{\sigma,\tau}} \qquad \stackrel{!}{\geq} 0$$

$$\widetilde{p}_{\sigma} := -\frac{p_{\sigma}}{P_{\sigma,\tau}} \qquad \stackrel{!}{\geq} 0$$

Wegen $p_{\sigma} < 0$ und $q_{\tau} \ge 0$ ist somit ein Pivotelement mit $P_{\sigma,\tau} > 0$ zu wählen. Zur Sicherstellung von $\tilde{q}_j \ge 0$ für alle $j \in I_N \setminus \{\tau\}$ muss ferner gelten

$$\frac{q_{\tau}}{P_{\sigma,\tau}} = \min \left\{ \frac{q_j}{P_{\sigma,j}} \colon P_{\sigma,j} > 0, j \in I_N \right\}$$

Die eigentlichen Austauschregeln sind analog zu denen des primalen Simplexverfahrens.

Bemerkung 3.4

Da dieses Verfahren mit einem *unzulässigen* Punkt startet, ist die Folge der Zielfunktionswerte (im Gegensatz zum primalen Simplexverfahren) nicht monoton fallend.

Bemerkung 3.5

Falls eine zulässige Basislösung gefunden wird, so ist diese zwangsläufig optimal.

Beispiel 3.4

Betrachten wir die Optimierungsaufgabe

$$z=6x_1+5x_2+12x_3+8x_4+9x_5 \to \min$$
 bei $x_1+x_3+x_4+x_5 \geq 300,$
$$x_2+2x_3+x_4 \geq 400,$$

$$x_i \geq 0 \qquad \forall i=1,\ldots,5$$

Um daraus Gleichungsrestriktionen zu machen, führen wir Schlupfvariablen $x_6, x_7 \geq 0$ ein, d.h.

$$x_1 + x_3 + x_4 + x_5 = 300 + x_6,$$

 $x_2 + 2x_3 + x_4 = 400 + x_7,$
 $x_i \ge 0$ $\forall i = 1, ..., 7$

Daraus ergibt sich nun folgendes Tableau

Zur Wahl von $\tau = 2$: $\frac{5}{1}$, $\frac{12}{6} = 6$, $\frac{8}{1} = 8$. Dabei ist 5 minimal, also $\tau = 2$. Fahren wir nun mit den weiteren Tableaus fort:

						1	
T_1	x_1	x_7	x_3	x_4	x_5	1	
$\overline{x_6} =$	1	0	1	1	1	-300	$\leftarrow \sigma = 6$
$x_2 =$	0	1	-2	-1	0	400	
z =	6	5	2	3	9	2000	
Keller	0	*	*	-1	0	400	
T_2	x_1	x_7	x_6	x_4	x_5	1	
$\overline{x_3} =$	1	0	1	-1	1	300	-
$x_2 =$	2	1	-2	1	2	-200	$\leftarrow \sigma = 2$
z =	4	5	2	1	7	2600	
Keller	-2	-1	2	$\tau =$	-2	200	
				4			
						•	
T_3	x_1	x_7	x_6	x_2	x_5	1	
$\overline{x_3} =$	1	1	-1	-1	1	100	-
$x_4 =$	-2	-1	2	1	-2	200	
z =	2	4	4	1	5	2800	•

Somit ergibt sich die Lösung

$$x^* = (0, 0, 100, 200, 0, 0, 0)^{\top}$$
 und $z^* = 2800$

3.4 Dualität

Wir betrachten nun die Optimierungsaufgabe

$$c^{\top}x \to \min \text{ bei } Ax \le b \text{ und } x \in \mathbb{R}^n_+$$

$$I := \{1, \dots, m\} \text{ und } J := \{1, \dots, n\}$$
 (P)

Satz 3.9 (Charakterisierungssatz)

Ein Punkt $x \in \mathbb{R}^n$ ist genau dann Lösung von (P), wenn ein $\overline{x} \in \mathbb{R}^m$ existiert, sodass insgesamt das folgende System gelöst wird:

$$A\overline{x} - b \le 0 \qquad \overline{x} \ge 0 \qquad (1)$$

$$A^{\top}\overline{u} + c \ge 0 \qquad \overline{u} \ge 0 \qquad (2)$$

$$\overline{u}^{\top} (A\overline{x} - b) = 0 \qquad \overline{x}^{\top} (A^{\top}\overline{u} + c) = 0 \qquad (3)$$

Beweis. Die vorliegende Optimierungsaufgabe ist äquivalent zu

$$f(x) = c^{\top} x \to \min \text{ bei } \underbrace{\begin{pmatrix} A \\ -\mathbb{1}_n \end{pmatrix}}_{=\widetilde{A} \in \mathbb{R}^{(m+n) \times n}} x \le \underbrace{\begin{pmatrix} b \\ 0 \end{pmatrix}}_{=\widetilde{b} \in \mathbb{R}^{m+n}}$$
 (P')

Gemäß Lemma 2.8 ist x genau dann Lösung von (P') (und (P)), wenn ein Vektor $w=(\frac{u}{v})\in$ \mathbb{R}^{m+n} existiert mit

$$\nabla f(x) + \sum_{i \in I \cup J} w_i \tilde{a}_i = 0$$

$$w_i \ge 0 \qquad (i \in I \cup J)$$

$$\tilde{a}_i^\top x - \tilde{b}_i \le 0 \qquad (i \in I \cup J)$$

$$w_i \left(\tilde{a}_i^\top x - b_i \right) = 0 \qquad (i \in I \cup J)$$

Trennung von I und J führt zu

$$c + \sum_{i \in I} u_i a_i + \sum_{j \in J} v_j (-e^j) = 0$$

$$u_i \ge 0 \qquad (i \in I) \qquad v_j \ge 0 \qquad (j \in J)$$

$$a_i^\top x - b_i \le 0 \qquad (i \in I) \qquad \left(-e^j\right)^\top x - 0 \le 0 \qquad (j \in J)$$

$$u_i \left(a_i^\top x - b_i\right) = 0 \qquad (i \in I) \qquad v_j \left(\left(-e^j\right)^\top x - 0\right) = 0 \qquad (j \in J)$$

Überführt man dieses System in eine Matrix-Vektor-Schreibweise, so ergibt sich

$$c + A^{\top}u - v = 0$$
$$u, v, x \ge 0$$
$$Ax - b \le 0$$
$$u^{\top} (Ax - b) = 0$$
$$x^{\top}v = 0$$

Durch Umstellen der ersten Gleichung nach v lässt sich diese Variable im System "eliminieren" und wir erhalten die Behauptung.

Definition 3.3

Das Problem

(D)
$$z_D = -b^{\top}u \to \max$$
 bei $A^{\top}u \ge -c, u \in \mathbb{R}^m_+$ (3.11)

heißt duale Optimierungsaufgabe zu (P).

Begründung: Die Anwendung von Satz 3.9 auf (D) ergibt das selbe KKT-System wie im Falle von (P). Dazu müssen wir (D) umformulieren als Minimierungsaufgabe

$$-z_D = b^{\mathsf{T}} u \to \min$$
 bei $-A^{\mathsf{T}} u \le c, u \in \mathbb{R}_+^m$

(damit die selbe Form wie in Satz 3.9 vorliegt). Einsetzen in (1) - (3) ergibt

$$(1) \leadsto \qquad -A^{\top} u - c \le 0, \qquad \qquad u \ge 0$$

$$(2) \leadsto \left(-A^{\top}\right)^{\top} y + b \ge 0, \qquad y \ge 0$$

$$(3) \rightsquigarrow \quad y^{\top} \left(-A^{\top} u - c \right) = 0, \quad u^{\top} \left(\left(-A^{\top} \right)^{\top} y + b \right) = 0$$

Umformulierung liefert

- $(1) \sim A^{\top} u + c \ge 0,$ $u \ge 0$ entspricht (2) aus System für (P)
- $(2) \sim Ay b \leq 0,$ $y \geq 0$ entspricht (1) aus System für (P) mit y = x
- $(3) \rightsquigarrow y^{\top} (A^{\top}u + c) = 0, \quad u^{\top} (Ay b) = 0$ entspricht (3) aus System für (P)
- (D) liefert also dasselbe System (1) (3) wie (P).

Satz 3.10 (schwache Dualität)

Sei x zulässig für (P) und u zulässig für (D). Dann gilt

$$-b^{\top}u \le c^{\top}x$$

Beweis. Es gilt

$$-b^{\top}u \le (-Ax)^{\top}u = -x^{\top}A^{\top}u \qquad (Ax \le b, u \ge 0)$$

$$\le x^{\top}c = c^{\top}x \qquad (A^{\top}u \ge -c, x \ge 0)$$

Satz 3.11 (starke Dualität)

Die Optimierungsaufgabe (P) ist genau dann lösbar, wenn (D) lösbar ist. Für die zugehörigen Lösungen \overline{x} und \overline{u} gilt dann

$$-b^{\top}\overline{u} = c^{\top}\overline{x}$$

also die Gleichheit der Optimalwerte.

Beweis. Der erste Teil der Aussage folgt direkt aus der Gleichheit der KKT-Systeme. Aus Eigenschaft (3) des KKT-Systems folgt dann die Gleichheit der Optimalwerte mittels

$$\overline{u}^{\top} (A\overline{x} - b) = 0 = \overline{x}^{\top} (A^{\top} \overline{u} + c) \Rightarrow -b^{\top} \overline{u} = \overline{u}^{\top} A \overline{x} = c^{\top} \overline{x}$$

Aus dem schwachen Dualitätssatz folgt insbesondere auch, dass die Existenz eines dual (primal) zulässigen Punktes eine endliche untere (obere) Schranke für den primalen (dualen) Optimalwert liefert.

Folgerung 3.12

(P) lösbar
$$\Leftrightarrow$$
 (D) lösbar \Leftrightarrow $\exists x \geq 0, u \geq 0 \colon Ax \leq b, A^{\top}u \geq -c$

Die Bedingungen (3) im KKT-System werden Komplementaritätsbedingungen genannt.

zum Beispiel: $u^{\top}(Ax - b) = 0, x \ge 0, u \ge 0, Ax - b \le 0, d.h.$ $u_i(Ax - b)_i = 0$ für alle i.

Es ist möglich, primale und duale Aufgabe gleichzeitig innerhalb eines Tableaus zu lösen:

$$(P)$$
 $z_P = c^{\top} x \to \min$ bei $Ax \leq b, x \geq 0$

$$(D)$$
 $z_D = -b^\top u \to \max$ bei $-A^\top u \le c, u \ge 0$

Durch Einführen von Schlupfvariablen $s \ge 0, v \ge 0$ erhält man

$$(P)$$
 $z_P = c^{\top} x \to \min$ bei $s = b - Ax, x \ge 0, s \ge 0$

$$(D)$$
 $-z_D = b^\top u \to \min$ bei $v = c + A^\top u, u \ge 0, v \ge 0$

Beide Schemata sind (gewissermaßen) zueinander transponiert. Das duale Simplexverfahren für (P) kann als primales Simplexverfahrens für (D) interpretiert werden.

3.5 Transportoptimierung

3.5.1 Problemstellung

Zur Erinnerung: Es gebe Erzeuger $i \in I = \{0, ..., r\}$ und Verbraucher $k \in K = \{1, ..., s\}$. Weiterhin seien die Kosten c_{ik} für den Transport einer Einheit von i nach k sowie der Vorrat $a_i > 0$ und der Bedarf $b_k > 0$ für alle $i \in I$ und $k \in K$ bekannt. Wie ist der gesamte Transport kostenminimal zu gestalten.

Als Variablen verwenden wir die Transportmenge x_{ik} von i nach k.

$$z = \sum_{i \in I} \sum_{k \in K} c_{ik} x_{ik} \to \min \quad \text{bei} \quad \sum_{k \in K} x_{ik} = a_i \quad (i \in I)$$

$$\sum_{i \in I} x_{ik} = b_k \quad (k \in K)$$

$$x_{ik} \geq 0 \quad (i, k) \in I \times K$$

$$(3.12)$$

Mit

$$x = (x_{11}, x_{12}, \dots, x_{1s}, x_{21}, \dots, x_{rs})^{\top}$$

$$c = (c_{11}, c_{12}, \dots, c_{1s}, c_{21}, \dots, c_{rs})^{\top}$$

$$\bar{b} = (a_1, \dots, a_r, b_1, \dots, b_s)^{\top}$$

hat (3.12) die Form

$$z = c^\top x \to \min \ \text{bei} \ Ax = \overline{b}, x \ge 0$$

Bemerkung 3.6

Das Transportproblem ist eine sehr spezielle Optimierungsaufgabe. Dei Koeffizientenmatrix

$$A = \begin{pmatrix} 1 & 1 & \cdots & 1 & & & & & & \\ & & & & & 1 & 1 & \cdots & 1 & & & \\ & & & & & & 1 & 1 & \cdots & 1 & \\ & & & & & 1 & & & 1 & & & \\ & & & \ddots & & & & \ddots & & & \\ & & & 1 & & & & 1 & & & 1 \end{pmatrix} \in \mathbb{R}^{(r+s)\times(r\cdot s)}$$

ist schwach besetzt. Insbesondere hat die Spalte von A, die zur Variablen x_{ik} gehört, die Gestalt $A^{ik} = \left(\begin{smallmatrix} e^i \\ e^k \end{smallmatrix} \right) \in \mathbb{R}^{r+s}$.

Satz 3.13

Das Transportproblem ist genau dann lösbar, wenn die Sättigungsbedingung

$$\sum_{i \in I} a_i = \sum_{k \in K} b_k \tag{3.13}$$

gilt.

Beweis. Wir zeigen zuerst, dass (3.13) äquivalent zu $G \neq \emptyset$ ist.

 \blacksquare Einerseits folgt aus $x \in G \neq \emptyset$ durch Summation der Gleichungsnebenbedingungen

$$\sum_{i \in I} a_i = \sum_{i \in I} \sum_{k \in K} x_{ik} = \sum_{k \in K} \sum_{i \in I} x_{ik} = \sum_{k \in K} b_k$$

■ Gilt hingegen (3.13), so ist mit $\sigma := \sum_{i \in I} a_i = \sum_{k \in K} b_k$ ein zulässiger Punkt $x = (x_{ik})$ wie folgt definiert:

$$x_{ik} := \frac{a_i b_k}{\sigma}$$

Der zulässige Bereich G ist polyedrisch (und damit abgeschlossen) und ferner wegen $0 \le x_{ik} \le \min\{a_i,b_k\}$ beschränkt und somit kompakt. Mit dem Satz von Weierstraß¹ folgt dann die Lösbarkeit des Transportproblems.

Die Systemmatrix A besitzt für praxisrelevante Problemgrößen eine sehr große Anzahl an Einträgen, sodass die Anwendung des Simplexverfahrens im Allgemeinen nicht empfehlenswert ist; insbesondere deshalb, weil dieses die Struktur von A nicht mit einbezieht.

Zur Lösung des Transportproblems hat sich daher ein Verfahren etabiliert, das auch die duale Aufgabe

$$w := a^{\mathsf{T}} u + b^{\mathsf{T}} v \to \max \text{ bei } A^{\mathsf{T}} \left(\begin{smallmatrix} u \\ v \end{smallmatrix}\right) \le c, u \in \mathbb{R}^r, v \in \mathbb{R}^s \tag{3.14}$$

¹Die Zielfunktion ist linear, d.h. stetig, auf einer komapkten Menge G.

bzw.

$$w := \sum_{i \in I} a_i u_i + \sum_{k \in K} b_k v_k \to \max \text{ bei } u_i + v_k \le c_{ik} \quad (u_i, v_k \in \mathbb{R}, i \in I, k \in K)$$

$$(3.15)$$

Satz 3.14 (Optimalitätskriterium)

Sei $x \in G$, d.h. x ist zulässiger Transportplan, dann gilt

$$x \text{ optimal } \Leftrightarrow \exists u \in \mathbb{R}^r, v \in \mathbb{R}^s \text{ mit } u_i + v_k \leq c_{ik}, x_{ik} \cdot (c_{ik} - u_i - v_k) = 0 \quad \forall i \in I, k \in K$$

Beweis. Nach dem Charakterisierungssatz gilt: $x \in G$ ist genau dann optimal, wenn duale Variablen $u \in \mathbb{R}^r$ und $v \in \mathbb{R}^s$ existieren, sodass (u, v) dual zulässig ist und die Komplementaritätsbedingungen gelten.

Aussage 3.15

Der Rang von A ist |I| + |K| - 1 = r + s - 1.

Beweis. Einerseits sind die Spalten $A^{11}, \ldots, A^{1s}, A^{21}, A^{31}, \ldots, A^{r1}$ von A linear unabhängig, d.h. $\operatorname{rg}(A) \geq r+s-1$. Andererseits ist die Summe der ersten r Zeilen identisch mit der Summe der letzten s Zeilen. Somit ist der Rang von oben beschränkt mit $\operatorname{rg}(A) \leq r+s-1$.

Folgerung 3.16

Jede Ecke des zulässigen Bereichs G hat höchstens r+s-1 positive Komponenten.

Definition 3.4

Eine Folge von Zellen (Indexpaaren) $(i_1, k_1), (i_2, k_1), (i_2, k_2) \dots (i_\ell, k_\ell), (i_1, k_\ell), (i_1, k_1)$ mit $i_\nu \neq i_\mu, k_\nu \neq k_\mu$ für $\nu \neq \mu$ heißt **Zyklus** (der Länge 2ℓ).

Beispiel 3.5

Im folgenden Schema ist ein Zyklus der Länge $2\ell = 8$ abgebildet:

Dieses Beispiel spielt eine wichtige Rolle bei der Feststellung, ob ein gegebener Transportplan eine Ecke von G ist.

Aussage 3.17

- (i) Sei J eine Menge von Zellen. Gilt $|J| \geq r + s$, so enthält J mindestens einen Zyklus.
- (ii) Sei $x = (x_{ik})$ ein zulässiger Transportplan. x ist genau dann eine Ecke von G, wenn $J_+ := \{(i,k) : x_{ik} > 0\}$ keinen Zyklus enthält.

Beweis. vielleicht in der Übung — oder auch nicht.

3.5.2 Erzeugung eines ersten Transportplans

Dieser Teil entspricht der ersten Phase des Simplexverfahrens, d.h. also der Bestimmung einer Startecke. Gemäß der vorherigen Beobachtungen genügt es einen zyklenfreien zulässigen Transportplan zu finden. Hierfür können unterschiedliche Methoden genutzt werden.

Nordwest-Ecken-Regel: Die jeweilige noch nicht belegte Nordwest-Zelle wird mit maximaler Transportmenge belegt.

Regel der minimalen Kosten: In jedem Schritt wird eine noch nicht belegte Zelle, die minimale Kosten hat, mit maximaler Transportmenge belegt.

Methode von Vogel: Bestimme in jeder Zeile und Spalte die Differenz der zwei kleinsten Kostenkoeffizienten der noch freien Zellen. Wähle dann eine Zeile/Spalte mit maximaler Differenz und belege die Zelle mit kleinsten Kosten.

Darstellung der Inputdaten oder zulässigen Punkte in folgenden Schemata:

Tabelle 3.1: Inputdaten

X	b_1	b_2		b_s
a_1	x_{11}	x_{12}		x_{1s}
:	:	÷	٠	:
a_r	x_{r1}	x_{r2}		x_{rs}

Tabelle 3.2: Transportplan

Beispiel 3.6

Gegeben Sei das folgende Transportproblem:

	12				
4	12 10 4	6	10	9	5
19	10	16	17	3	7
14	4	11	5	8	10

Man erhält folgende Startecken:

X_{NW}	1280	50	\emptyset 0	70	79
0	4	0	0	0	0
0 Ø H H	8	5	6	0	0
0714	0	0	0	7	7
**	1 ~ ~ ~	J .	d 0	-	- -
X_{NW}	1280	5 0	Ø 0	70	79
	1280 4	3 0	Ø 0 0	7 0	79
		· .	· .		

Zielfunktionswert: $z(x_{NW}) = 4 \cdot 12 + 8 \cdot 10 + 5 \cdot 16 + 6 \cdot 17 + 7 \cdot 8 + 7 \cdot 10 = 436$

Zielfunktionswert: $z(x_{MK}) = 268$

Zielfunktionswert: $z(x_V) = 236$

Je nach Qualität der Startlösung können unterschiedlich viele Iterationen des Transportalgorithmus vonnöten sein.

3.5.3 Der Transportalgorithmus

Ausgehend von einer Startlösung berechnet der Algorithmus zunächst ein Paar (u, v) dualer Variablen und prüft dann die Optimalität mit Satz 3.14. Liegt keine Optimalität vor, wird ein neuer Plan erzeugt.

Vorgehensweise:

- (1) Bestimme einen zulässigen, zyklenfreien Transportplan X_0 mit genau r+s-1 markierten Basiszellen. (Diese bilden dann die Menge $J_B=J_B(X_0)$.)
- (2) Bestimme für den aktuellen Plan X die zugehörigen dualen Variablen u_i und v_k aus dem Gleichungssystem

$$u_i + v_k = c_{ik}$$
 $(i, k) \in J_B = J_B(X)$ (3.16)

- (3) Berechne für alle $(i,k) \notin J_B$ die Koeffizienten $w_{ik} = c_{ik} u_i v_k$. Falls $w_{ik} \geq 0$ für alle Zellen ist, dann ist X optimal. Andernfalls wähle man eine Zelle (p,q) mit $w_{pq} = \min\{w_{ik} : i \in I, k \in K\} < 0$.
- (4) Markiere (p,q) im Schema von X, bestimme den (eindeutigen) Zyklus J_{pq} in $J_B \cup \{(p,q)\}$ und markiere abwechselnd die Zellen in J_{pq} mit "+" und "-". Sei J_{pq}^- die Menge der mit "-" gekennzeichneten Zellen.
- (5) Ermittle $\delta=x_{gh}:=\min\left\{x_{ik}:(i,k)\in J_{pq}^{-}\right\}$ und aktualisiere den Plan X gemäß

$$X^{\text{neu}} := (x_{ik}^{\text{neu}}) \quad \text{mit} \quad x_{ik}^{\text{neu}} := \begin{cases} x_{ik} + \delta & \text{falls } (i, k) \in (J_{pq} \cup \{(g, h)\}) \setminus J_{pq}^{-} \\ x_{ik} - \delta & \text{falls } (i, k) \in J_{pq}^{-} \\ x_{ik} & \text{sonst} \end{cases}$$

Aktualisere die Menge der Basiszellen

$$J_B^{\text{neu}} := (J_B \cup \{(p,q)\}) \setminus \{(g,h)\}$$

und gehe zu Schritt 2.

Bemerkung 3.7

Aufgrund von $|J_B| = r + s - 1$ ist das in Schritt 2 zu lösende Gleichungssystem (zur Ermittlung von u und v) unterbestimmt. Eine der Variablen kann also beliebig festgelegt werden. Die in Schritt 3 bestimmten Werte w_{ik} sind jedoch unabhängig von dieser Wahl.

Im gesamten Algorithmus gilt stets $w_{ik} = 0$ für die aktuellen Basiszellen $(i, k) \in J_B$ (per Konstruktion in Schritt 2), diese beeinflussen den Optimalitätstest in Schritt 3 also nicht. Daher kann zur Darstellung das folgende komprimierte Schema genutzt werden:

Beispiel 3.7 (Fortsetzung von Beispiel 3.6)

Gegeben Sei das Problem

Mit der Minimale-Kosten-Regel haben wir bereits den Plan X_0 bestimmt:

Bestimmung der dualen Variablen (Potenziale) \boldsymbol{u}_i und \boldsymbol{v}_k

$$T_0$$
 $v_1 = 16$
 $v_2 = 16$
 $v_3 = 17$
 $v_4 = 3$
 $v_5 = 7$
 $u_1 = -2$
 -2
 -8
 -5
 8
 4
 $u_2 = 0$
 -6
 5
 4
 7
 3
 $u_3 = -12$
 12
 7
 2
 17
 15

$$5$$
: $\underbrace{u_2}_{-0} + v_2 = c_{22} = 16 \implies v_2 = 16$

$$-12$$
: $u_3 + \underbrace{v_3}_{=17} = c_{33} = 5 \implies u_3 = c_{33} - 17 = -12$

Dieser Plan ist nicht optimal, da negative Einträge w_{ik} existieren. Wir wählen also den eindeutig

KAPITEL 3. LINEARE OPTIMIERUNG

bestimmten Zyklus $-8 \to 4 \to 3 \to 5 \to 8$ und geben alternierende "Vorzeichen", d.h. $-8^+ \to 4^- \to 3^+ \to 5^- \to 8^+$. Wir wählen das kleinste mit einem "-" markierte Zellenelement des Zyklus: $\delta = \min \left\{ x_{ik} : (i,k) \in J_{pq}^- \right\} = 4$.

Ein neuer Plan ergibt sich nun mit

Achtung: $x_{21} = \boxed{4}$ war vorher nicht in der Basis (also $x_{21} = 0$) und somit $x_{21}^{\text{neu}} = x_{21} + \delta = 4$.

Bestimmung der Potenziale u_i und v_k für X_1 :

$$T_1$$
 $v_1 = 16$
 $v_2 = 16$
 $v_3 = 17$
 $v_4 = 3$
 $v_5 = 7$
 $u_1 = -10$
 6
 4
 4
 16
 8

 $u_2 = 0$
 -6
 1
 4
 7
 7

 $u_3 = -12$
 12
 7
 2
 17
 15

Auch dieses Tableau ist noch nicht optimal. Wir erkennen den Zyklus $-6^+ \rightarrow 12^- \rightarrow 2^+ \rightarrow 4^-$.

Ein neuer Plan ergibt sich zu

mit den Potenzialen

$$T_2$$
 $v_1 = 10$
 $v_2 = 16$
 $v_3 = 11$
 $v_4 = 3$
 $v_5 = 7$
 $u_1 = -10$
 12
 4
 9
 16
 8

 $u_2 = 0$
 4
 1
 6
 7
 7

 $u_3 = -6$
 8
 1
 6
 11
 9

Alle $w_{ik} \geq 0$, d.h. der das Tableau ist optimal und X_2 ist eine Lösung der gegebenen Optimierungsaufgabe. Es gilt $z(X_2) = 212$.

Kapitel 4

DISKRETE OPTIMIERUNG

In diesem Kapitel befassen wir uns mit Techniken zur Lösung ganzzahliger Optimierungsaufgaben. Dabei dürfen einige oder gar alle Variablen diskrete Werte annehmen. Somit entfällt eine Argumentation über Ableitung, zulässige Richtungen etc. Ganzzahlige Optimierungsaufgaben sind also "schwieriger" als die zugehörige stetige Relaxation. Dennoch kann, in einigen Fällen, das Lösen diskreter Aufgaben auch zur effizienten Lösung stetiger Aufgaben beitragen, wie folgendes Beispiel verdeutlicht.

Spaltengenerierung 4.1

Wir betrachten die stetige Relaxation des Bin-Packing-Problems (vgl. Kapitel 1). Zur Erinnerung: Es sind b_i Teile der Länge ℓ_i $(i=1,\ldots,m)$ in möglichst wenige Behälter der Kapazität Lzu packen.

- Packungsvarianten: $a^j = \left(a_1^j, \dots, a_m^j\right)^\top \in \mathbb{Z}_+^m$ mit $\ell^\top a^j \leq L \ (j \in J)$

■ Variablen:
$$x_j$$
 beschreibt Häufigkeit, wie oft Variante a^j genutzt wird.
$$z = \sum_{j \in J} x_j \to \min \quad \text{bei} \quad \sum_{j \in J} a_i^j \cdot x_j = b_i \quad (i \in I) \quad \text{und} \quad x_j \ge 0 \quad (j \in J)$$

Grundsätzlich ist diese Aufgabe mit dem Simplexverfahren lösbar, jedoch gibt es im Allgemeinen exponentiell viele Variablen, sodass pro Austauschschritt ein großer Aufwand entstünde.

Wir können uns hierbei zu Nutze machen, dass alle Spalten der Systemmatrix A eine gemeinsame Struktur aufweisen:

$$a^j$$
 ist Spalte von $A \iff a^j \in \mathbb{Z}_+^m$ und $\ell^\top a^j \leq L$

Offenbar gilt hie $c = e = (1, \dots, 1)^{\mathsf{T}}$, sodass für eine gewählte Basismatrix A_B in Schritt 2 des Simplexalgorithmus folgendes zu bestimmen wäre:

$$\overline{q} := \min_{j \in J_N} q_j \quad \text{mit} \quad q_j = c_j - d^\top a^j = 1 - d^\top a^j, \quad a^j \in \mathbb{Z}_+^m, \ell^\top a^j \le L$$

wobei $d^\top := c_B^\top A_B^{-1}.$ In Schritt 2 wäre folglich die Aufgabe

$$1 - d^{\top} a^j = q_j \to \min$$
 bei $\ell^{\top} a^j \le L$ und $a^j \in \mathbb{Z}_+^m$

bzw.

$$\boldsymbol{d}^{\top}\boldsymbol{a}^{j} \rightarrow \max \ \text{bei} \ \boldsymbol{\ell}^{\top}\boldsymbol{a}^{j} \leq L, \boldsymbol{a}^{j} \in \mathbb{Z}_{+}^{m}$$

zu lösen. Gilt $q_j^* < 0$, so liegt keine Optimalität vor und eine zugehörige Lösung $a^{j,*}$ wäre in die Basismatrix aufzunehmen. Gilt $g_j^* \ge 0$, so sind wir fertig.

4.2 Die Methode Branch & Bound

Branch & Bound (B & B) ist eine sehr flexible Technik, um exakte Lösungsverfahren für Probleme der diskreten Optimierung zu entwickeln. Anschaulich betrachtet wird dabei eine schwierige Optimierungsaufgabe sukzessiv in Teilprobleme zerlegt, die wiederum "leich" (näherungsweise) gelöst werden können und somit zur Lösung des Gesamtproblems beitragen. Näherungslösungen erhält man dabei oftmals mithilfe geeigneter Relaxationen.

4.2.1 Grundlagen

Wir betrachten das Anfangsproblem

$$(P) f(x) \to \min \text{ bei } x \in E \cap D (P_0)$$

und eine zugehörige Relaxation

$$g(x) \to \min \text{ bei } x \in E$$
 (Q)

wobei $g(x) \leq f(x)$ auf $D \cap E$ gilt.

Prinzip der B&B-Methode

Die Menge E wird durch Separation in Teilmengen E_i mit $i \in I$ zerlegt. Dadurch entstehen **Teilprobleme**

$$f(x) \to \min \text{ bei } x \in D \cap E_i$$
 (P_i)

Jedem dieser Teilprobleme (P_i) soll nun eine Zahl $b(P_i)$, genannt **untere Schranke**, zugeordnet werden, sodass gilt

- (a) $b(P_i) \le \min \{f(x) : x \in D \cap E_i\}$
- (b) $b(P_i) = f(\widehat{x})$ falls $D \cap E = {\widehat{x}}$
- (c) $b(P_i) \leq b(P_j)$ falls $E_j \subset E_i$

Eine geeignete Möglichkeit besteht darin, z.B. die stetige Relaxation der Teilprobleme (P_i) zu betrachten, d.h.

$$b(P_i) := \begin{cases} \min \{g(x) : x \in E_i\} & \text{falls } |E_i \cap D| > 1 \\ f(\widehat{x}) & \text{falls } |E_i \cap D| = 1 \\ +\infty & \text{falls } E_i \cap D = \emptyset \end{cases}$$

4.2.2 Allgemeiner B&B-Algorithmus

Bezeichne mit R die Menge der noch zu bearbeitenden Teilprobleme ("Restmenge") und mit \overline{z} den Zielfunktionswert der bisher besten gefundenen zulässigen Lösung $\overline{x} \in D \cap E$.

Schritt 0: Initialisierung — Bestimme $b(P_0)$.

(a) Falls $\overline{x} \in D \cap E$ bekannt ist mit $f(\overline{x}) = b(P_0)$, dann STOP.

KAPITEL 4. DISKRETE OPTIMIERUNG

- (b) Setze $R := \{P_0\}$ und $\overline{z} := +\infty$ oder $\overline{z} = f(x)$, wenn ein $x \in D \cap E$ bekannt ist.
- <u>Schritt 1:</u> Abbruchtest Falls $R \neq \emptyset$, dann STOP. Falls $\overline{z} = +\infty$, dann ist (P_0) nicht lösbar (leerer zulässiger Bereich), andernfalls ist \overline{x} Lösung von (P_0)
- Schritt 2: Strategie Wähle entsprechend einer Auswahlstrategie ein $P_i \in R$ und setze $R := R \setminus \{P_i\}.$
- Schritt 3: Zerlegung ("branch") Zerlege P_i durch Separation in endlich viele Teilprobleme $P_{i,1}, \ldots, P_{i,k_i}$. Setze j := 1.

Schritt 4: Schranken- und Dominanztests ("bound")

- (a) Berechne $b(P_{i,j})$. Falls dabei ein $\widetilde{x} \in D \cap E$ gefunden wurde mit $f(\widetilde{x}) < \overline{z}$, setze $\overline{x} := \widetilde{x}$ und $\overline{z} := f(\widetilde{x})$.
- (b) Falls $b(P_{i,j}) < \overline{z}$, dann setze $R := R \cup \{P_{i,j}\}$. Falls $j < k_i$, setze j := j + 1 und gehe zu (a).
- (c) Setzte $R := R \setminus \{P_k\}$ für alle $P_k \in R$ mit $b(P_k) \ge \overline{z}$.

Gehe zu Schritt 1.

Bemerkung

- (1) Die Endlichkeit des Verfahrens ist zu sichern, z.B. durch $|E_{i,j} \cap D| \leq |E_i \cap D|$ für alle j (falls $E_i \cap D$ endlich ist) oder durch $b(P_{i,j}) > b(P_i) + \varepsilon$ mit $\varepsilon > 0$ für alle j und i.
- (2) Das B&B-Verfahren kann mithilfe eines Verzweigungsbaumes veranschaulicht werden.
- (3) In Schritt 2 können verschiedene Auswahlstrategien gewählt werden, z.B.
 - Minimalsuche (best bound search): wähle $P_i \in R$ mit $b(P_i) \le b(P_k)$ für alle $P_k \in R$.
 - Tiefensuche (depth-first search, LIFO): wähle $P_i \in R$ mit kleinstem Schrankenwert unter allen Teilproblemen mit maximaler Verzweigungstiefe.
 - Breitensuche (breadth-first-search, FIFO): wähle $P_i \in R$ mit kleinstem Schrankenwert unter allen Teilproblemen mit minimaler Verzweigungstiefe.