Polynômes - TD3 Fractions rationnelles

Exercice 1. On y va. Décomposer en éléments simples sur \mathbb{C} et \mathbb{R} (pour les parties g) et h) en fonction du paramètre $a \in \mathbb{R}$):

a)
$$\frac{1}{(X-1)(X+2)}$$
 b) $\frac{2X+1}{(X-3)(X+1)}$ c) $\frac{X^2+1}{X^3-X^2-6X}$ d) $\frac{X^2}{(X-1)^2}$ e) $\frac{X^5+1}{X^3-X^2+X-1}$ f) $\frac{X^2-1}{X^4+2X^2+1}$ g) $\frac{X+2}{X^2-(a+1)X+a}$ h) $\frac{2X}{X^2+a}$ i) $\frac{1}{X^n-1}$

Exercice 2. Calculer la valeur des sommes suivantes :

a)
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$
 b) $\sum_{n=1}^{\infty} \frac{1}{n(n+1)(n+2)}$

Exercice 3. Relation entre les racines de P et P'. Soit $P \in \mathbb{C}[X]$, deg $P = n \ge 1$. Soient a_1, \ldots, a_n ses racines (comptées avec leur multiplicité).

a) Montrer que

$$\frac{P'}{P} = \sum_{i=1}^{n} \frac{1}{X - a_i}.$$

b) Soit a une racine de P'. Déduire de a) qu'il existe des réels positifs b_1, \ldots, b_n , non tous nuls, tels que

$$\sum_{i=1}^{n} b_i(a - a_i) = 0.$$

c) En déduire que chaque racine de P' s'écrit comme combinaison convexe des a_1, \ldots, a_n . (Une combinaison convexe des a_1, \ldots, a_n est un nombre $x \in \mathbb{C}$, tel que $x = \sum_{i=1}^n c_i a_i$, avec $c_i \geq 0$ pour tout i et $\sum_{i=1}^n c_i = 1$.)