10/795,840

Case No.:

21333Y

Page No.:

2

IN THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

1. (original) The present invention provides a process for the preparation of compounds of structural formula (VII):

$$R^2$$
 R^1
 N_{R^3}

wherein

 R^1 is selected from the group consisting of

- (1) CN,
- (2) C(O)OH,
- (3) $C(O)-C_{1-6}$ alkyl,
- (4) $C(O C_{1-6} alkyl)_2-C_{1-6} alkyl$, and
- (5) $C(R^5)_2N(R^5)C(O)-C_{1-6}$ alkyl;

each R^2 is independently selected from the group consisting of

- (1) hydrogen,
- (2) C₁₋₆ alkyl,
- (3) $-(CH_2)_n$ -phenyl,
- (4) $-(CH_2)_n$ -naphthyl,
- (5) $-(CH_2)_n$ -heteroaryl,
- (6) $-(CH_2)_n$ -heterocyclyl,
- (7) $-(CH_2)_nC_3-7$ cycloalkyl,
- (8) fluoride,
- (9) chloride,
- (10) OR^5 ,
- (11) $-(CH_2)_nN(R^5)_2$,
- (12) $-(CH_2)_nC\equiv N$,
- (13) $-(CH_2)_nCO_2R^5$,

Page No.: 3

- (14) NO₂,
- (15) $N(R^5)_{2}$
- (16) $-(CH_2)_nNR^5SO_2R^5$,
- (17) $-(CH_2)_nSO_2N(R^5)_2$,
- (18) $-(CH_2)_nS(O)_pR^5$,
- (19) $-(CH_2)_nNR^5C(O)N(R^5)_2$,
- (20) $-(CH_2)_nC(O)N(R^5)_2$,
- (21) $-(CH_2)_nNR^5C(O)R^5$,
- (22) $-(CH_2)_nNR^5CO_2R^5$,
- (23) $-(CH_2)_nNR^5C(O)$ -heteroaryl,
- (24) $-(CH_2)_nC(O)NR^5N(R^5)_2$,
- (25) $-(CH_2)_nC(O)NR^5NR^5C(O)R^5$,
- (26) $O(CH_2)_nC(O)N(R^5)_2$,
- (27) CF₃,
- (28) CH₂CF₃,
- (29) OCF3, and
- (30) OCH2CF3,

wherein phenyl, naphthyl, heteroaryl, cycloalkyl, and heterocyclyl are unsubstituted or substituted with one to three substituents independently selected from halogen, hydroxy, oxo, C1-4 alkyl, trifluoromethyl, and C1-4 alkoxy, and wherein any methylene (CH2) carbon atom in R2 is unsubstituted or substituted with one to two groups independently selected from halogen, hydroxy, and C1-4 alkyl, or two substituents when on the same methylene (CH2) group are taken together with the carbon atom to which they are attached to form a cyclopropyl group;

 R^3 is selected from the group consisting of

- (1) C(O)O-phenyl,
- (2) C(O)O-CH₂-phenyl,
- (3) C(O)O-isopropyl,
- (4) C(O)O-isobutyl, and
- (5) C(O)O-ethyl;

each R⁵ is independently selected from the group consisting of

- (1) hydrogen,
- (2) C₁₋₆ alkyl,

Page No.: 4

(3) $-(CH_2)_n$ -phenyl,

- (4) $-(CH_2)_n$ -heteroaryl,
- (5) $-(CH_2)_n$ -naphthyl,
- (6) $-(CH_2)_n$ -heterocyclyl,
- (7) $-(CH_2)_nC_3-7$ cycloalkyl, and
- (8) -(CH₂)_nC₃-7 bicycloalkyl,

wherein alkyl, phenyl, heteroaryl, heterocyclyl, and cycloalkyl are unsubstituted or substituted with one to three groups independently selected from halogen, C₁₋₄ alkyl, hydroxy, and C₁₋₄ alkoxy, or two R⁵ groups together with the atom to which they are attached form a 4- to 8-membered mono- or bicyclic ring system optionally containing an additional heteroatom selected from O, S, and -NC₁₋₄ alkyl;

comprising the steps of:

(a) preparing a compound of structural formula (IV)

$$R^2$$
 R^1
 (IV)

wherein

R¹ and R² are as defined above, and Z is a halogen atom selected from the group consisting of bromide and iodide,

by halogenating a compound of structural formula (III)

$$R^2$$
 R^1
(III)

wherein

R1 and R2 are as defined above, and isolating the resulting product;

(b) forming an aryl magnesium halide of structural formula (V)

Page No.:

$$R^2$$
 MgZ
 (V)

wherein R¹, R² and Z are as defined above, by treating the compound of structural formula (IV) with a magnesium compound;

(c) preparing a compound of structural formula (VI)

$$R^2$$
 R^1
 N_R^3
(VI)

wherein R^1 , R^2 and R^3 are as defined above, by treating the aryl magnesium halide of structural formula (V)

$$R^2$$
 MgZ
 (V)

wherein R¹, R², and Z are as defined above, with a preformed pyridinium ion, and isolating the resulting product;

(d) reducing the dihydropyridine double bonds in the compound of structural formula (VI)

$$R^2$$
 R^1
 N_R^3
 (VI)

wherein R1, R2 and R3 are as defined above; and

10/795,840

Case No.: Page No.:

21333Y

(e) isolating the resulting product.

2. (original) The process of Claim 1 wherein R^1 is CN; R^2 is chloride; R^3 is C(O)O-CH2-phenyl; and Z is bromide.

- 3. (original) The process of Claim 2 wherein the compound of structural formula (III) is brominated by treatment with a brominating agent in the presence of an acid.
- 4. (original) The process of Claim 3 wherein the brominating agent is 1,3-dibromo-5,5-dimethylhydantoin.
 - 5. (original) The process of Claim 3 wherein the acid is methane sulfonic acid.
- 6. (original) The process of Claim 1 step (b) wherein the magnesium compound is a compound of formula (IX)

(IX) RaMgX,

wherein R^a is selected from the group consisting of isopropyl, cyclohexyl and tert-butyl, and X is selected from the group consisting of chloride, bromide, and iodide.

- 7. (original) The process of Claim 6 wherein the magnesium compound of formula (X) is isopropyl magnesium chloride.
- 8. (original) The process of Claim 1 wherein the preformed pyridinium ion of step (c) is formed by treating pyridine, with a chloroformate of formula (X)

(X) CIC(O)ORb,

wherein R^b is selected from the group consisting of ethyl, isopropyl, isobutyl, phenyl and benzyl, in the presence of a copper compound.

9. (original) The process of Claim 8 wherein the copper compound is copper iodide.

Page No.:

10. (original) The process of Claim 8 wherein the chloroformate of formula (X) is benzyl chloroformate.

- 11. (original) The process of Claim 1 wherein the dihydropyridine double bonds of compound (VI) of step (d) are reduced by hydrogenation in the presence of a catalyst.
 - 12. (original) The process of Claim 11 wherein the catalyst is RhCl(PPh3)3.
 - 13. (original) The process of Claim 1 further comprising the steps of
- (f) cleaving the R³ protecting group in the compound of structural formula (VII)

$$R^2$$
 R^1
 N_R^3
(VII)

wherein R¹, R², and R³ are as defined in Claim 1, to afford a compound of structural formula (VIII)

$$R^2$$
 R^1
 $(VIII)$

and isolating the resulting product;

(g) adding a R⁴ protecting group to the free amine (VIII) to form the compound of structural formula (I),

10/795,840

Case No.:

21333Y

Page No.:

8

$$R^2$$
 R^1
 N_R^4

wherein R^1 , R^2 are as defined above, and R^4 is selected from the group consisting of

- (1) C(O)O-tert-butyl,
- (2) C(O)O-CH₂-phenyl, and
- (3) C(O)O-phenyl; and
- (h) isolating the resulting product.
 - 14. (original) The process of Claim 13 wherein R⁴ is C(O)O-tert-butyl.
 - 15. (amended) A process for preparing a compound of structural formula (I)

$$R^2$$
 R^1
 N_R^4

wherein

R1-is selected from the group consisting of

- (1) CN.

- (4) C(O C₁₋₆ alkyl)₂-C₁₋₆ alkyl, and
- (5) C(R⁵)₂N(R⁵)C(O)-C_{1-6-alkyl};

each R² is independently selected from the group consisting of

- (1) hydrogen,
- (2) C₁₋₆ alkyl,
- (3) (CH₂)_n-phenyl,
- (4) (CH₂)_n-naphthyl,

Page No.: 9

- (5) --- (CH₂)_n-heteroaryl,
- (6) (CH₂)_n-heterocyclyl,
- (7) $(CH_2)_nC_3$ -7-eyeloalkyl,
- (8) fluoride,
- (9) chloride,
- $\frac{(10)}{}$ OR5.
- (11) -(CH₂)_nN(R⁵)₂,
- (12) -(CH₂)_nC=N,
- (13) (CH₂)_nCO₂R⁵;
- (14) NO₂
- (15) $N(R^5)_2$
- (16) (CH₂)_nNR⁵SO₂R⁵,
- (17) (CH₂)_nSO₂N(R⁵)₂,
- (18) (CH₂)_nS(O)_pR⁵,
- (19) (CH₂)_nNR⁵C(O)N(R⁵)₂,
- (20) -(CH₂)_nC(O)N(R⁵)₂,
- (21) -(CH₂)_nNR⁵C(O)R⁵,
- (22) (CH₂)_nNR⁵CO₂R⁵,
- (23) (CH₂)_nNR⁵C(O)-heteroaryl,
- (24) -(CH₂)_nC(O)NR⁵N(R⁵)₂,
- (25) -- (CH₂)_nC(O)NR⁵NR⁵C(O)R⁵,
- (26) O(CH₂)_nC(O)N(R⁵)₂,
- (27) CF₃
- (28) CH2CF3,
- (29) OCF₃, and
- (30) OCH2CF3;

wherein phenyl, naphthyl, heteroaryl, cycloalkyl, and heterocyclyl are unsubstituted or substituted with one to three substituents independently selected from halogen, hydroxy, oxo, C1-4 alkyl, trifluoromethyl, and C1-4 alkoxy, and wherein any methylene (CH2) carbon atom in R2 is unsubstituted or substituted with one to two groups independently selected from halogen, hydroxy, and C1-4 alkyl, or two substituents when on the same methylene (CH2) group are taken together with the carbon atom to which they are attached to form a cyclopropyl group;

(1) C(O)O-tert-butyl,

(2) C(O)O-CH₂-phenyl, and

(3) C(O)O-phenyl; and

each R5 is independently selected from the group consisting of

- (1) hydrogen,
- (2) C₁₋₆ alkyl,
- (3) (CH₂)_n-phenyl,
- (4) (CH₂)_n-heteroaryl,
- (5) —(CH₂)_n-naphthyl,
- (6) (CH₂)_n-heterocyclyl,
- (7) (CH₂)_nC₃-7 eycloalkyl, and
- (8) (CH₂)_nC₃-7-bicycloalkyl,

wherein alkyl, phenyl, heteroaryl, heterocyclyl, and cycloalkyl are unsubstituted or substituted with one to three groups independently selected from halogen, C₁ 4 alkyl, hydroxy, and C₁ 4 alkoxy, or two R⁵ groups together with the atom to which they are attached form a 4- to 8- membered mono- or bicyclic ring system optionally containing an additional heteroatom selected from O, S, and NC₁ 4 alkyl;

comprising the steps of:

(a) preparing a compound of structural formula (IV)

$$R^2$$
 R^1
 (IV)

wherein R1 and R2 are as defined above, and Z is a halogen atom selected from the group consisting of bromide and iodide,

by halogenating a compound of structural formula (III)

wherein R1 and R2 are as defined above, and

and isolating the resulting product;

(b) forming an aryl magnesium halide of structural formula (V)

$$R^2$$
 R^1
 (V)

wherein R¹, R² and Z are as defined above,

by treating the compound of structural formula (IV) with a magnesium compound;

(c) preparing a compound of structural formula (VI)

$$R^2$$
 R^1
 N_R^3
(VI)

wherein R1, R2 are as defined above, and

R³ is selected from the group consisting of

- (1) C(O)O-phenyl,
- (2) C(O)O-CH2-phenyl,
- (3) C(O)O-isopropyl,
- (4) C(O)O-isobutyl, and

by treating the aryl magnesium halide of structural formula (V)

$$R^2$$
 MgZ
 (V)

wherein R¹, R², and Z are as defined above, with a preformed pyridinium ion, and isolating the resulting product;

(d) reducing the dihydropyridine double bonds in the compound of structural formula (VI)

$$R^2$$
 R^1
 N_R^3
(VI)

wherein R¹, R² and R³ are as defined above; and

(e) isolating the resulting product-;

wherein R1 is selected from the group consisting of

- (1) \underline{CN}
- (2) C(O)OH,
- (3) $\underline{C(O)}$ - $\underline{C_1}$ -6 alkyl,
- (4) $\underline{C(O C_{1-6} \text{ alkyl})_2-C_{1-6} \text{ alkyl, and}}$
- (5) $C(R^5)_2N(R^5)C(O)-C_{1-6}$ alkyl;

each R² is independently selected from the group consisting of

- (1) <u>hydrogen</u>,
- (2) <u>C1-6 alkyl</u>,
- (3) $-(CH_2)_n$ -phenyl,
- (4) $-(CH_2)_n$ -naphthyl,
- (5) $-(CH_2)_n$ -heteroaryl,
- (6) $\underline{\text{-(CH2)}_{n-\text{heterocyclyl}}}$
- (7) $-(CH_2)_nC_3-7$ cycloalkyl,
- (8) <u>fluoride</u>,

Page No.: 13

- (9) chloride,
- (10) OR⁵,
- (11) $-(CH_2)_{\underline{n}}N(R^5)_{\underline{2}}$,
- (12) $-(CH_2)_n C \equiv N$,
- (13) $-(CH_2)_nCO_2R^5$,
- (14) NO₂,
- (15) $N(R^5)_2$
- (16) $-(CH_2)_nNR^5SO_2R^5$,
- (17) $-(CH_2)_nSO_2N(R^5)_2$,
- (18) $-(CH_2)_nS(O)_pR_5$
- (19) $-(CH_2)_nNR^5C(O)N(R^5)_2$,
- (20) $-(CH_2)_nC(O)N(R^5)_2$,
- (21) $-(CH_2)_nNR^5C(O)R^5$,
- (22) $-(CH_2)_nNR^5CO_2R^5$,
- (23) $-(CH_2)_nNR^5C(O)$ -heteroaryl,
- (24) $-(CH_2)_nC(O)NR^5N(R^5)_2$,
- (25) $-(CH_2)_nC(O)NR^5NR^5C(O)R^5$,
- (26) $O(CH_2)_nC(O)N(R^5)_2$,
- (27) <u>CF</u>3,
- (28) <u>CH2CF3</u>,
- (29) <u>OCF3, and</u>
- (30) <u>OCH2CF3</u>,

wherein phenyl, naphthyl, heteroaryl, cycloalkyl, and heterocyclyl are unsubstituted or substituted with one to three substituents independently selected from halogen, hydroxy, oxo, C₁₋₄ alkyl, trifluoromethyl, and C₁₋₄ alkoxy, and wherein any methylene (CH₂) carbon atom in R² is unsubstituted or substituted with one to two groups independently selected from halogen, hydroxy, and C₁₋₄ alkyl, or two substituents when on the same methylene (CH₂) group are taken together with the carbon atom to which they are attached to form a cyclopropyl group;

R³ is selected from the group consisting of

- (1) $\underline{C(O)O-phenyl}$,
- (2) $\underline{C(O)O-CH_2-phenyl}$,
- (3) C(O)O-isopropyl,
- (4) C(O)O-isobutyl, and

10/795,840

Case No.: Page No.:

21333Y 14

(5) C(O)O-ethyl;

R4 is selected from the group consisting of

- (1) C(O)O-tert-butyl,
- (2) C(O)O-CH₂-phenyl, and
- (3) C(O)O-phenyl;

each R5 is independently selected from the group consisting of

- (1) hydrogen,
- (2) <u>C</u>1-6 <u>alkyl</u>,
- (3) $-(CH_2)_n$ -phenyl,
- (4) $\underline{-(CH_2)_n-heteroaryl}$,
- (5) $-(CH_2)_n$ -naphthyl,
- (6) $-(CH_2)_n$ -heterocyclyl,
- (7) -(CH₂)_nC₃-7 cycloalkyl, and
- (8) -(CH2)nC3-7 bicycloalkyl,

wherein alkyl, phenyl, heteroaryl, heterocyclyl, and cycloalkyl are unsubstituted or substituted with one to three groups independently selected from halogen, C₁₋₄ alkyl, hydroxy, and C₁₋₄ alkoxy, or two R⁵ groups together with the atom to which they are attached form a 4- to 8-membered mono- or bicyclic ring system optionally containing an additional heteroatom selected from O, S, and -NC₁₋₄ alkyl; and

Z is a halogen atom selected from the group consisting of bromide and iodide.

16. (original) The process of Claim 15 wherein R¹ is CN; R² is chloride; R³ is C(O)O-CH₂-phenyl; R⁴ is C(O)O-*tert*-butyl; and Z is bromide.

17. (original) The process of Claim 16 wherein the compound of structural formula (III) is brominated by treatment with a brominating agent in the presence of an acid.

18. (original) The process of Claim 17 wherein the brominating agent is 1,3-dibromo-5,5-dimethylhydantoin.

Page No.: 15

19. (original) The process of Claim 17 wherein the acid is methanesulfonic acid, trifluoroacetic acid, or sulfuric acid, or a combination thereof.

20. (original) The process of Claim 15 step (b) wherein the magnesium compound is a compound of formula (IX)

(IX) RaMgX,

wherein R^a is selected from the group consisting of isopropyl, cyclohexyl and tert-butyl, and X is selected from the group consisting of chloride, bromide, and iodide.

- 21. (original) The process of Claim 20 wherein the magnesium compound of formula (X) is isopropyl magnesium chloride.
- 22. (original) The process of Claim 15 wherein the preformed pyridinium ion of step (c) is formed by treating pyridine, with a chloroformate of formula (X)

(X) ClC(O)ORb,

wherein R^b is selected from the group consisting of ethyl, isopropyl, isobutyl, phenyl and benzyl, in the presence of a copper compound.

- 23. (original) The process of Claim 22 wherein the copper compound is copper iodide.
- 24. (original) The process of Claim 22 wherein the chloroformate of formula (X) is benzyl chloroformate.
- 25. (original) The process of Claim 15 wherein the dihydropyridine double bonds of compound (VI) of step (d) are reduced by hydrogenation in the presence of a catalyst and an anhydride.
 - 26. (original) The process of Claim 25 wherein the catalyst is Pd/C.

Serial No.: 10/795,840

Case No.: 21333Y

Page No.: 16

27. (original) The process of Claim 25 wherein the anhydride is *tert*-butyloxycarbonyl anhydride.

28. (amended) A process for preparing a compound of structural formula (I)

$$R^2$$
 R^1
 N_R^4

wherein

R¹-is-selected from the group consisting of

- (1) _____CN.
- (2) C(O)OH,
- (3) C(O) C_{1-6-alkyl},
- (4) C(O C₁ 6 alkyl)₂-C₁ 6 alkyl, and
- (5) C(R⁵)₂N(R⁵)C(O)-C₁₋₆ alkyl;

-each-R2-is independently selected from the group consisting of

- (1) hydrogen,
- (2) C_{1-6-alkyl},
- (3) (CH₂)_n-phenyl,
- (4) (CH₂)_n-naphthyl,
- (5) (CH₂)_n-heteroaryl,
- (6) (CH₂)_n-heterocyclyl,
- (7) -(CH₂)_nC₃-7-eyeloalkyl,
- (8) fluoride,
- (9) chloride,
- (10) OR^{5}
- (11) (CH₂)_nN(R⁵)₂,
- (12) $(CH_2)_nC=N$,
- (13) -(CH₂)_nCO₂R⁵,
- $\frac{(14)}{NO_{27}}$
- (15) $N(R^5)_{2}$

(16) -(CH₂)_nNR⁵SO₂R⁵,

(17) -(CH₂)_nSO₂N(R⁵)₂,

(18) -(CH₂)_nS(O)_pR⁵,

(19) (CH₂)_nNR⁵C(O)N(R⁵)₂,

(20) -(CH₂)_nC(O)N(R⁵)₂,

(21) -(CH₂)_nNR⁵C(O)R⁵,

(22) (CH₂)_nNR⁵CO₂R⁵,

(23) (CH₂)_nNR⁵C(O) heteroaryl,

(24) -(CH₂)_nC(O)NR⁵N(R⁵)₂,

(25) (CH₂)_nC(O)NR⁵NR⁵C(O)R⁵,

(26) $O(CH_2)_nC(O)N(R^5)_2$,

(27) CF3,

(28) - CH2CF3,

(29) OCF3, and

(30) OCH2CF3;

wherein phenyl, naphthyl, heteroaryl, cycloalkyl, and heterocyclyl are unsubstituted or substituted with one to three substituents independently selected from halogen, hydroxy, oxo, C1_4-alkyl, trifluoromethyl, and C1_4-alkoxy, and wherein any methylene (CH2) carbon atom in R2-is unsubstituted or substituted with one to two groups independently selected from halogen, hydroxy, and C1_4 alkyl, or two substituents when on the same methylene (CH2) group are taken together with the carbon atom to which they are attached to form a cyclopropyl group;

R4-is selected from the group consisting of

- (1) C(O)O-tert-butyl,
- (2) C(O)O-CH₂-phenyl, and
- (3) C(O)O-phenyl; and

each R5 is independently selected from the group consisting of

- (1)—hydrogen,
- (2) C_{1-6-alkyl},
- (3) (CH₂)_n-phenyl,
- (4) (CH₂)_n-heteroaryl,
- (5) -(CH₂)_n-naphthyl,
- (6) (CH₂)_n-heterocyclyl,

- (7) -- (CH₂)_nC₃-7-cycloalkyl, and
- (8) (CH₂)_nC₃-7-bicycloalkyl,

wherein alkyl, phenyl, heteroaryl, heterocyclyl, and cycloalkyl are unsubstituted or substituted with one to three groups independently selected from halogen, C₁-4 alkyl, hydroxy, and C₁-4 alkoxy, or two R⁵-groups together with the atom to which they are attached form a 4- to 8-membered mono- or bicyclic ring system optionally containing an additional heteroatom selected from O, S, and -NC₁-4 alkyl;

comprising the steps of:

(a) reducing the dihydropyridine double bonds in the compound of structural formula (VI)

$$R^2$$
 R^1
 N_R^3
 (VI)

wherein R¹, R² are as defined above, and

R³-is-selected from the group consisting of

- (1) C(O)O-phenyl,
- (2) C(O)O CH_2 phenyl,
- (3) C(O)O-isopropyl,
- (4)—C(O)O-isobutyl, and
- (5) --- C(O)O-ethyl;

(b) isolating the resulting product-;

wherein R1 is selected from the group consisting of

- (1) \underline{CN}
- (2) C(O)OH,
- (3) $C(O)-C_{1-6}$ alkyl,
- (4) <u>C(O C₁₋₆ alkyl)2-C₁₋₆ alkyl, and</u>
- (5) $C(R^5)2N(R^5)C(O)-C_{1-6}$ alkyl;

each R² is independently selected from the group consisting of

- (1) hydrogen,
- (2) <u>C</u>1-6 <u>alkyl</u>,
- (3) $-(CH_2)_n$ -phenyl,
- (4) $-(CH_2)_n$ -naphthyl,
- (5) $-(CH_2)_n$ -heteroaryl,
- (6) $-(CH_2)_n$ -heterocyclyl,
- (7) <u>-(CH2)nC3-7 cycloalkyl</u>,
- (8) fluoride,
- (9) chloride,
- (10) OR^5 ,
- (11) $-(CH_2)_nN(R^5)_2$,
- (12) $\underline{-(CH_2)_nC\equiv N}$,
- (13) $-(CH_2)_nCO_2R^5$,
- (14) NO₂,
- (15) $N(R^5)_2$
- (16) $-(CH_2)_n NR^5 SO_2 R^5$,
- (17) $-(CH_2)_nSO_2N(R^5)_2$,
- (18) $-(CH_2)_nS(O)_pR^5$,
- (19) $-(CH_2)_nNR^5C(O)N(R^5)_2$,
- (20) $-(CH_2)_nC(O)N(R^5)_2$,
- (21) $-(CH_2)_nNR^5C(O)R^5$,
- (22) $-(CH_2)_nNR^5CO_2R^5$,
- (23) $-(CH_2)_nNR^5C(O)$ -heteroaryl,
- (24) $-(CH_2)_n C(O)NR^5N(R^5)_2$,
- (25) $-\frac{(CH_2)_nC(O)NR^5NR^5C(O)R^5}{}$
- (26) $\underline{O(CH_2)_{\underline{n}}C(O)N(R^5)_{\underline{2}}}$,
- (27) <u>CF3</u>,
- (28) <u>CH2CF3</u>,
- (29) OCF3, and
- (30) OCH2CF3,

wherein phenyl, naphthyl, heteroaryl, cycloalkyl, and heterocyclyl are unsubstituted or substituted with one to three substituents independently selected from halogen, hydroxy, oxo,

C₁₋₄ alkyl, trifluoromethyl, and C₁₋₄ alkoxy, and wherein any methylene (CH₂) carbon atom in R² is unsubstituted or substituted with one to two groups independently selected from halogen, hydroxy, and C₁₋₄ alkyl, or two substituents when on the same methylene (CH₂) group are taken together with the carbon atom to which they are attached to form a cyclopropyl group;

R³ is selected from the group consisting of

- (1) C(O)O-phenyl,
- (2) $\underline{C(O)O-CH_2-phenyl}$,
- (3) C(O)O-isopropyl,
- (4) C(O)O-isobutyl, and
- (5) C(O)O-ethyl;

R4 is selected from the group consisting of

- (1) C(O)O-tert-butyl,
- (2) C(O)O-CH₂-phenyl, and
- (3) C(O)O-phenyl; and

each R⁵ is independently selected from the group consisting of

- (1) <u>hydrogen</u>,
- (2) C_{1-6} alkyl,
- (3) $-(CH_2)_n$ -phenyl,
- (4) $-(CH_2)_n$ -heteroaryl,
- (5) $-(CH_2)_n$ -naphthyl,
- (6) $\frac{-(CH_2)_n-heterocyclyl}{}$
- (7) -(CH2)nC3-7 cycloalkyl, and
- (8) -(CH₂)_nC₃-7 bicycloalkyl,

wherein alkyl, phenyl, heteroaryl, heterocyclyl, and cycloalkyl are unsubstituted or substituted with one to three groups independently selected from halogen, C₁₋₄ alkyl, hydroxy, and C₁₋₄ alkoxy, or two R⁵ groups together with the atom to which they are attached form a 4- to 8-membered mono- or bicyclic ring system optionally containing an additional heteroatom selected from O, S, and -NC₁₋₄ alkyl.

29. (original) The process of Claim 28 wherein R¹ is CN; R² is chloride; R³ is C(O)O-CH₂-phenyl; and R⁴ is C(O)O-tert-butyl.

10/795,840

Case No.: Page No.:

21333Y 21

30. (original) The process of Claim 28 wherein the dihydropyridine double bonds of compound (VI) of step (d) are reduced by hydrogenation in the presence of a catalyst and an anhydride.

- 31. (original) The process of Claim 30 wherein the catalyst is Pd/C.
- 32. (original) The process of Claim 30 wherein the anhydride is *tert*-butyloxycarbonyl anhydride.
 - 33. (original) The compound <u>1-6</u>

34. (amended) The compound 1-5

$$\begin{bmatrix} CI & & & \\ & CN & & N & O \\ & & &$$

35. (amended) A The compound 1-4 selected from