ALGORITMI E STRUTTURE DATI

Prof. Manuela Montangero

A.A. 2022/23

STRUTTURE DATI:

Heap Binario

"E' vietata la copia e la riproduzione dei contenuti e immagini in qualsiasi forma.

E' inoltre vietata la redistribuzione e la pubblicazione dei contenuti e immagini non autorizzata espressamente dall'autore o dall'Università di Modena e Reggio Emilia."

MIN-HEAP BINARIO:

Dato un insieme di chiavi totalmente ordinabile, un heap binario è un **albero binario** che memorizza chiavi dell'insieme e:

- Ogni nodo memorizza una sola chiave
- PROPRIETÀ STRUTTURALE (topologia): l'albero è binario completo quasi perfettamente bilanciato a sinistra
- PROPRIETA di ORDINAMENTO: per ogni nodo v dell'albero, la chiave memorizzata in v è \leq delle chiavi memorizzate nel sottoalbero radicato in v

L'albero è completo fino al penultimo livello.

Le foglie dell'ultimo livello sono ammassate a sinistra.

MAX-HEAP BINARIO:

Dato un insieme di chiavi totalmente ordinabile, un heap binario è un **albero binario** che memorizza chiavi dell'insieme e:

- Ogni nodo memorizza una sola chiave
- PROPRIETÀ STRUTTURALE (topologia): l'albero è binario completo quasi perfettamente bilanciato a sinistra
- PROPRIETA di ORDINAMENTO: per ogni nodo v dell'albero, la chiave memorizzata in v è \geq delle chiavi memorizzate nel sottoalbero radicato in v

L'albero è completo fino al penultimo livello.

Le foglie dell'ultimo livello sono ammassate a sinistra.

PROPOSIZIONE:

Un Heap con n nodi ha altezza $h = \lfloor \log n \rfloor$

REMINDER:

un albero binario completo perfettamente bilanciato di altezza h ha esattamente $n=2^{h+1}-1$ nodi

• L'heap ha almeno tanti nodi quanti ne ha un albero binario completo perfettamente bilanciato di altezza h-1

$$n > 2^{(h-1)+1} - 1 = 2^h - 1$$

ullet L'heap non ha più nodi di quanti ne abbia un albero binario completo perfettamente bilanciato di altezza h

$$n \le 2^{h+1} - 1$$

PROPOSIZIONE:

Un Heap con n nodi ha altezza $h = \lfloor \log n \rfloor$

$$n \le 2^{h+1} - 1$$

$$n+1 \le 2^{h+1}$$

$$\log(n+1) \le h+1$$

$$\log(n+1) - 1 \le h$$

$$\log n - 1 < h$$

$$\log n \ge h$$

 $h = \lfloor \log n \rfloor$

Perché *h* deve essere un intero

min-heap

Le chiavi dell'heap sono inserite nell'array livello per livello

е

per ogni livello, da sinistra a destra

LungHeap
ultimo indice
dell'array

DimHeap
ultimo indice
contenente
una chiave
dell'heap

Padre(i) return
$$\lceil \frac{i}{2} \rceil - 1$$

FiglioSinistro(i) return
$$2i + 1$$

FiglioDestro(i) return
$$2(i+1)$$

Padre(i) return
$$\lceil \frac{i}{2} \rceil - 1$$

FiglioSinistro(i) return 2i+1

FiglioDestro(i) return 2(i+1)

$$n' = 2^{(\ell-1)+1} - 1 = 2^{\ell} - 1$$
 #nodi fino livello $\ell - 1$

$$2^{\ell}$$
 #nodi a livello ℓ \Rightarrow $2^{\ell} = n' + 1$

$$i = n' + \ell_s$$
 posizione i

posizione del figlio sinistro: $(i + \ell_d + 2 \cdot \ell_s + 1)$

posizione del figlio destro: $i + \ell_d + 2 \cdot \ell_s + 2$

$$i+\mathcal{C}_d+2\cdot\mathcal{C}_s+1=i+\underbrace{(\mathcal{C}_d+\mathcal{C}_s+1)}_{\text{\#nodi a livello }\ell}+\mathcal{C}_s=i+(n'+1)+\mathcal{C}_s=i+\underbrace{(n'+\mathcal{C}_s)}_{=i}+1=2i+1$$

Padre(i) return
$$\lceil \frac{i}{2} \rceil - 1$$

FiglioSinistro(i) return
$$2i + 1$$

FiglioDestro(i) return
$$2(i+1)$$

Se i è il figlio sinistro di j

dispari
$$i = 2j + 1 \qquad \Rightarrow \qquad j = \frac{i - 1}{2} = \lceil \frac{i}{2} \rceil - 1$$

$$\frac{i - 1}{2} \qquad \lceil \frac{i}{2} \rceil$$

Se i è il figlio destro di j

PRIMITVE MIN-HEAP (assumendo rappresentazione implicita con array):

Intestazione	Descrizione						
CostruisciHeap(H)	Costruire un heap a partire da un insieme di						
	chiavi memorizzate nell'array H						
$MinimoHeap(H) \rightarrow k$	Restituire la chiave minima memorizzata						
	nell'heap H						
DecrementaChiaveHeap (H, i, k)	Decrementare il valore della chiave						
	all'indice i nell'heap H , impostando il suo valore						
	\mid a k						
InserzioneChiaveHeap (H, k)	Inserire la nuova chiave k nell'heap H						
Heapify (H, i)	Ripristinare la proprietà di ordinamento						
	di un heap in seguito all'incremento di una						
	(sola) chiave (quella in posizione i) già presente						
	$\operatorname{nell'heap} H$						
ESTRAZIONEMINIMOHEAP $(H) \rightarrow k$	Restituire la chiave minima ed eliminarla						
	dall'heap H						

MinimoHeap(H): restituisce la chiave minima memorizzata nell'heap

MinimoHeap(H)
if DimHeap < 0
then return error
else return H[0]</pre>

Costo computazionale O(1)

DecrementaChiaveHeap(H,i,k): decrementa il valore della chiave all'indice i dell'heap, impostando il valore a k

0	1	2	3	4	5	6	7	8	9	10	11
5	7	10	4	8	19	13	17	20	11	21	22

-	•	1	_	_	•	_	•	•	•	•		
	5	4	10	7	8	19	13	17	20	11	21	22

 $O(\log n)$

Costo computazionale


```
DecrementaChiaveHeap(H,i,k)
if i > DimHeap OR k > H[i]
  then return error
H[i] := k
while i > 0 AND H[Padre(i)] > k do
  Scambia H[i] con H[Padre(i)]
  i := Padre(i)
```

InserzioneChiave(H,k): inserisce la chiave nell'heap

InserzioneChiaveHeap(H,k)
if DimHeap = LungHeap
 then return error
DimHeap := DimHeap + 1
H[DimHeap] := k
DecrementaChiaveHeap(H,DimHeap,k)

Costo computazionale $O(\log n)$

Heapify(H,i): ripristina la proprietà di ordinamento di un heap H a seguito dell'<u>incremento</u> della chiave in posizione i

Heapify(H,i): ripristina la proprietà di ordinamento di un heap H a seguito dell'<u>incremento</u> della chiave in posizione i

```
Heapify(H,i)
if i > DimHeap then return error
min := i
s := FiglioSinistro(i)
d := FiglioDestro(i)
// Confronto con il filgio sinistro
if s \leq DimHeap AND H[s] < H[i]
 then min := s
// Confronto con il figlio destro
if d \le DimHeap AND H[d] < H[min]
 then min := d
if min \neq i
 then
  scambia H[i] con H[min]
  // ripeti nel sottoalbero radicato in min
  Heapify(H,min)
```

Costo computazionale $O(\log n)$

EstrazioneMinimoHeap(H)

EstrazioneMinimoHeap(H): restituisce il minimo valore memorizzato nell'heap e lo elimina dall'heap

```
EstrazioneMinimoHeap(H)
if DimHeap < 0
  then return error
min := H[0]
H[0] := H[DimHeap]
DimHeap := DimHeap - 1
Heapify(H,0)
return min</pre>
```

Costo computazionale $O(\log n)$

CostruisciHeap(H)


```
CostruisciHeap(H)
DimHeap := length(H)-1
LunghHeap := length(H)-1
for i = Padre(DimHeap) downto 0
Heapify(H,i)
```

CostruisciHeap(H): costruisce un heap che memorizza le chiavi nell'array H

```
CostruisciHeap(H)
DimHeap := length(H)-1
LunghHeap := length(H)-1
for i = Padre(DimHeap) downto 0
Heapify(H,i)
```

Costo computazionale $O(n \log n)$

possiamo fare un'analisi più accurata?

CostruisciHeap(H): costruisce un heap che memorizza le chiavi nell'array H

```
CostruisciHeap(H)
DimHeap := length(H)-1
LunghHeap := length(H)-1
for i = Padre(DimHeap) downto 0
Heapify(H,i)
```

con un'analisi più accurata:

"heapify viene chiamata *molte* volte su heap bassi, *poche* volte su heap alti"

Costo computazionale O(n)

CostruisciHeap(H): costruisce un heap che memorizza le chiavi nell'array H

Un albero binario completo e perfettamente bilanciato di altezza h

ha
$$2^{h-\ell}=\left\lceil\frac{n}{2^{\ell+1}}\right\rceil$$
 nodi interni a livello $h-\ell$, per $\ell=1,\ldots,h$

$$\sum_{\ell=1}^{\lfloor \log n \rfloor} \left\lceil \frac{n}{2^{\ell+1}} \right\rceil \cdot O(\ell) = O\left(n \sum_{\ell=2}^{\lfloor \log n \rfloor + 1} \frac{\ell}{2^{\ell}}\right) = O(n),$$
 costo di Heapify

FACOLTATIVO

$$\sum_{\ell=2}^{\lfloor \log n \rfloor + 1} \frac{\ell}{2^{\ell}} \le \sum_{\ell=0}^{\infty} \frac{\ell}{2^{\ell}} = \sum_{\ell=0}^{\infty} \ell \left(\frac{1}{2}\right)^{\ell} = \frac{\frac{1}{2}}{(1 - \frac{1}{2})^2} = 2$$