Bayesian Factor Model

J. C. Martínez-Ovando

1. Estructura y especificación

Suponemos que los datos $\{y_1, \ldots, y_T\}$ toman valores en \mathbb{R}^p (con $p < \infty$). Para cualquier numero $k \leq p$ se tiene que el modelo de factores queda especificado como

$$egin{aligned} oldsymbol{y}_t | oldsymbol{f}_t & \sim & \operatorname{N}\left(oldsymbol{y}_t | oldsymbol{B} oldsymbol{f}_t, oldsymbol{\Sigma}
ight) \ oldsymbol{f}_t & \sim & \operatorname{N}\left(oldsymbol{f}_t | oldsymbol{0}, oldsymbol{I}
ight), \end{aligned}$$

para $t = 1, \ldots, T$, donde

 \boldsymbol{f}_t es el vector de factores k-dimensionalasociado con \boldsymbol{y}_t

 ${\pmb B}$ es una matriz de dimensión $(p\times k)$ con los vectores de cargas asociados con los factores ${\pmb f}_t$ para ${\pmb y}_t$

 Σ es una matriz diag $\{\sigma_1^2,\ldots,\sigma_n^2\}$ positivo definida de dimensión $(p\times p)$

I es la matriz identidad de dimensión $(k \times k)$.

De la especificación anterior se sigue que la varianza no condicional de las observaciones es,

$$var(\boldsymbol{y}_t|\boldsymbol{B},\boldsymbol{\Sigma}) = \boldsymbol{B}\boldsymbol{B}' + \boldsymbol{\Sigma}.$$

El modelo implica que, condicional a los factores comunes, las variables observables no est
n correlacionadas: por lo tanto, los factores comunes explican toda la estructura de dependencia entre la
s \boldsymbol{p} variables. lo anterior motiva para considerar:

- lacktriangle la sucesión de factores $\{ oldsymbol{f}_t \}_{t=1}^T$ como un conjunto de variables latentes, y
- lacksquare al conjunto $\{B, \Sigma\}$ como los parámetros del modelo.

La verosimilitud extendida del modelo (i.e. verosimilitud para parámetros y variables latentes), se define como

$$\begin{array}{lcl} lik\left(\boldsymbol{B},\boldsymbol{\Sigma},\{\boldsymbol{f}_t\}_{t=1}^T|\{\boldsymbol{y}_t\}_{t=1}^T\right) &=& p\left(\{\boldsymbol{y}_t\}_{t=1}^T|\boldsymbol{B},\boldsymbol{\Sigma},\{\boldsymbol{f}_t\}_{t=1}^T\right) \\ &\propto& \det(\boldsymbol{\Sigma})^{-T/2}\mathrm{etr}\left\{-(1/2)\boldsymbol{\Sigma}^{-1}\boldsymbol{e}\boldsymbol{e}'\right\}, \end{array}$$

donde $\operatorname{etr}\{A\} = \exp\{\operatorname{tr}(A)\}$ para toda matriz A.

1.1. Distribución inicial

1.2. Distribución final

Algorithm 1: Gibbs sampler para el modelo de factores

1 Inicialización:
$$B^{(0)}$$
, $\Sigma^{(0)}$, $Y\{f_t^{(0)}\}_{t=1}^T$
2 for k en $1:M$ do
3 | simular $B^{(k)}$ de

$$p\left(B|\Sigma^{(k-1)}, \{f_t^{(k-1)}\}_{t=1}^T, \{y_t\}_{t=1}^T\right)$$
4 | simular $\Sigma^{(k)}$ de

$$p\left(\Sigma|B^{(k)}, \{f_t^{(k-1)}\}_{t=1}^T, \{y_t\}_{t=1}^T\right)$$
5 | simular $\{f_t^{(k)}\}_{t=1}^T$ de

$$p\left(\{f_t\}_{t=1}^T|B^{(k)}, \Sigma^{(k)}, \{y_t\}_{t=1}^T\right)$$
6 end
7 return $\{B^{(k)}, \Sigma^{(k)}, \{f_t^{(k)}\}_{t=1}^T\}_{k=1}^M$