Ejercicio 2

1. Sea el siguiente PPL estándar con X_3 y X_4 como variables de holgura

Máx
$$Z = 5X_1 + 6X_2 + 0X_3 + 0X_4$$

(Maximización de beneficios)

s.a.:
$$3X_1 + 2X_2 + X_3 = 120$$
 (Insumo 1) $4X_1 + 6X_2 + X_4 = 260$ (Insumo 2) X_1 , X_2 , X_3 , $X_4 \ge 0$ (Restrictiones de signo)

El cual tiene el siguiente tabla óptima:

Base	Z	X ₁	X ₂	X ₃	X ₄	LD
Z	1	0	0	3/5	4/5	280
X ₁	0	1	0	3/5	- 1/5	20
X ₂	0	0	1	- 2/5	3/10	30

Según el cual debieran producirse 20 unidades del bien A y 30 unidades del bien B, con un beneficio de \$280 y sin que exista sobrante de los insumos 1 y 2.

Resultado Solver

x1	x2	Z	
20	30	280	
5	6		
3	2	120	120
4	6	260	260

Resultado PHP Simplex

Tabla 1			5	6	0	0
Base	Сь	\mathbf{P}_0	Pı	P2	P 3	P 4
P1	5	20	1	0	0.6	-0.2
P2	6	30	0	1	-0.4	0.3
Z		280	0	0	0.6	0.8

Análisis de sensibilidad con Solver

Celdas de variables

Final		Reducido	Objetivo	Permisible	Permisible	
Celda	Nombre	Valor	Coste	Coeficiente	Aumentar	Reducir
\$A\$4	X1	20	0	5	4	1
\$B\$4	X2	30	0	6	1.5	2.666666667

Restricciones

	Final		Sombra	Restricción	Permisible	Permisible
Celda	Nombre	Valor	Precio	Lado derecho	Aumentar	Reducir
\$C\$8	Z	120	0.6	120	75	33.3333333
\$C\$9	Z	260	0.8	260	100	100

Se Pide:

- a. Combinación óptima de la producción, si se dispusiese de 80 unidades adicionales del insumo 1 y de 20 unidades adicionales del insumo 2
- insumo 1 = 120 + 80 = 200
- insumo 2 = 260 + 20 = 280

Verificación de la factibilidad

$$(A_{J})^{-1} \times b'$$

$$\left(\begin{array}{cc} 5 & 6 \end{array} \right) \times \left(\begin{array}{c} 64 \\ 4 \end{array} \right) = 344$$

$$\begin{cases} X_{1} & X_{2} \\ X_{3} & X_{2} \\ X_{4} & X_{5} \\ X_{7} & X_{8} \\ X_{1} & X_{2} \\ X_{1} & X_{2} \\ X_{3} & X_{1} \\ X_{2} & X_{3} \\ X_{4} & X_{5} \\ X_{5} & X_{1} \\ X_{1} & X_{2} & X_{3} \\ X_{2} & X_{3} & X_{4} \\ X_{5} & X_{1} & X_{2} \\ X_{5} & X_{2} & X_{3} \\ X_{5} & X_{4} & X_{5} \\ X_{5} & X_{5} & X_{5} \\ X_{5} & X_$$

Respuesta

X1	X2	z
64	4	344

0.60	-0.20	x	200	=	64	>	0
-0.40	0.30		280		4		factible
5	6	x	64	=	344		
			4				
X1	X2	Z					
64	4	344					

Celdas de variables

Final		Reducido	Objetivo	Permisible	Permisible	
Celda	Nombre	Valor	Coste	Coeficiente	Aumentar	Reducir
\$A\$4	X1	20	0	5	4	1
\$B\$4	X2	30	0	6	1.5	2.666666667

Restricciones

	Final		Sombra	Restricción	Permisible	Permisible
Celda	Nombre	Valor	Precio	Lado derecho	Aumentar	Reducir
\$C\$8	Z	120	0.6	120	75	33.3333333
\$C\$9	Z	260	0.8	260	100	100

Comprobación:

Table 3	c _j	5	6	0	0	
C _b	Base	X ₁	X ₂	S ₁	S ₂	R
5	X ₁	1	0	3/5	-1/5	64
6	X ₂	0	1	-2/5	3/10	4
	Z	0	0	3/5	4/5	344

ECONÓMICAMENTE: Económicamente le conviene a la empresa que los insumos aumentan porque por cada unidad del insumo 1 que aumente se ganan 0.6\$ y por cada unidad que el insumo 2 aumente se ganan 0.8\$. Por ende si los insumos 1 y 2 se aumentan a 200 y 280 respectivamente los beneficios son de 344\$

b. Determinar en cuánto podría variar la disponibilidad de insumo 2, sin que dejase de convenir la producción conjunta del bien A y del bien B

Celda	Nombre	Final Valor	Sombra Precio	Restricción Lado derecho	Permisible Aumentar	Permisible Reducir	min	max
\$D\$17	Z insumo1	120	0.6	120	75	33.3333333	86.6666667	153.333333
\$D\$18	Z insumo2	260	0.8	260	100	100	160	360

260	100	100
	160	360

$$\begin{pmatrix} \frac{3}{5} & \frac{-1}{5} \\ \frac{-2}{5} & \frac{3}{10} \end{pmatrix} \cdot \begin{pmatrix} 120 \\ 260 + \alpha \end{pmatrix} = \begin{pmatrix} \frac{-\alpha + 100}{5} \\ \frac{3\alpha + 300}{10} \end{pmatrix}$$

$$\equiv \qquad \qquad \equiv$$

Según la tabla de análisis de sensibilidad de solver se puede decir que la disponibilidad del insumo 2 actual es de 260, sin embargo puede aumentar en 100 unidades su capacidad, lo significa que la nueva capacidad sería de 360, del mismo modo la capacidad se puede disminuir en 100 unidades, siendo la nueva capacidad 160 unidades del insumo 2.

 c. Combinación óptima de la producción, si la contribución unitaria al beneficio del bien A aumentase a \$10 y la contribución unitaria al beneficio del bien B aumentase a \$8

		Final	Reducido	Objetivo	Permisible	Permisible		
Celda	Nombre	Valor	Coste	Coeficiente	Aumentar	Reducir	min	max
\$B\$11	X1	20	0	5	4	1	4	9
\$C\$11	X2	30	0	6	1.5	2.66666667	3.33333333	7.5

10			0.60	-0.20	_	2.00	0.40
10	0	X			=	2.80	0.40
			-0.40	0.30			
0	0	-	2.80	0.40	=	-2.80	-0.40
						Se mantiene la	a optimalidad
X1	X2	Z					
10	8	440					

I	$B^{-1}D$	$B^{-1}b$
0	$C_D^{T} - C_B^{T} B^{-1}D$	$-C_B^TB^{-1}b$

 $\begin{array}{c}
 x1 = 20 \\
 X2 = 30
 \end{array}$

Se mantiene la optimalidad, por lo que no varía la base óptima, aunque sí varía el valor de la función objetivo

ECONÓMICAMENTE: Por lo tanto modificando las utilidades de los productos, la cantidad de productos a producir no varía, pero sus utilidades si aumentando hasta 440