ESO207A: Data Structures and Algorithms Theoretical Assignment 2

Deadline: Jan 25, 2018

January 20, 2018

Instruction

- You are advised to solve these without use of the internet.
- All submission must be in the pdf format.
- Please write precise answers, don't write unnecessary details.
- Marks of subparts of questions may not be evenly distributed.

Problem 1. (20 + 10 marks) Given the head of a Linked-List of unknown length propose an algorithm to find whether the linked list has a cycle or not. For this algorithm find time complexities big Oh(O), big $omega(\Omega)$ and big theta(Θ).

Problem 2. (20 marks) Find time complexity of following four procedures.

```
int sum = 0;

for ( int i = 0; i < N; i++ ) {

| for ( int j = 0; j < i; j++ ) {

| sum += j;

| }

}
```

```
int sum = 0;

for ( int i = 1; i < N; i^*=2 ) {

    for ( int j = 0; j < i; j++ ) {

        sum += j;

    }

}
```

```
int sum = 0;

for ( int i = 1; i < N; i*=2 ) {

| for ( int j = 1; j < i; j*=2 ) {

| sum += j;

| }

}

real sum = 0;

for ( real i = N; i > 0; i/=2 ) {

| sum += i;

}
```

Problem 3. (20 marks) For each of the following functions, f(x) and g(x), indicate whether f(x) = O(g(x)). Give a formal proof in each case.

- 1. $a \log n$ and $\log_a n$
- 2. 7^{4n} and $2^{n/11}$
- 3. $2^{\sqrt{\log n}}$ and \sqrt{n}
- 4. $\sum_{i=1}^{n} \frac{1}{i}$ and $\log n$

Problem 4. (40 marks) Solve the following recursion to get a tight upper bound with proper explanation. Assume T(x) = c, $\forall x < 2$ in all subparts, where c is a constant.

- 1. T(n) = c*n + T(n/5) + T(n/3) also find condition on a,b such that T'(n) = c*n + T'(a*n) + T'(b*n) such that T and T' have same tight upper bound.
- 2. T(n) = c + T(n/k), k > 1
- 3. $T(n) = c + T(\sqrt[\alpha]{n}), \alpha > 1$
- 4. T(n) = c*n + T(n/k), k > 1

Problem 5. (10 marks) State true or false with proper mathematical proofs.

- 1. 4n + 7 is o(n). (Little-o)
- 2. 4n + 7 is $o(n^2)$.
- 3. 4n + 7 is $\omega(n)$. (Little-omega)
- 4. 4n + 7 is $\omega(log(n))$.

Problem 6. (10 marks) Choose all correct answer and explain.

1. $f(n) = c^n$, $g(n) = n^k$, where c,k are constants.

- (a) f(n) in O(g(n))
- (b) f(n) in $\Omega(g(n))$
- (c) f(n) in $\Theta(g(n))$
- (d) None
- 2. $f(n) = log_2(n), g(n) = ln(n)$
 - (a) f(n) in O(g(n))
 - (b) f(n) in $\Omega(g(n))$
 - (c) f(n) in $\Theta(g(n))$
 - (d) None
- 3. $f(n) = n^2 \log_2(n), g(n) = n \log_2(n^3)$
 - (a) f(n) in O(g(n))
 - (b) f(n) in $\Omega(g(n))$
 - (c) f(n) in $\Theta(g(n))$
 - (d) None

Problem 7. (50 marks) **Define** an inversion in an array **A** as the ordered pair (A_i, A_j) where

$$A_i > A_j$$
 and $j > i$

For example: if A = [1, 42, 3, 14, 2] then the inversions are $\{(42, 3), (42, 14), (42, 2), (3, 2), (14, 2)\}$

Devise an algorithm to count the number of inversions in a given array of length n. There exists a trivial algorithm of time complexity $O(n^2)$. However, this complexity can be improved. Your task is to find an algorithm that performs better than $O(n^2)$. Derive the time complexity for the efficient algorithm.

Please look at the hints (on the next page) iff you are stuck at some point.

Hint Can you divide the array so that the problem becomes simpler? **Another Hint** Can you relate this to merge sort?