

Chapter 4

Block Ciphers and the Data Encryption Standard

Stream Cipher

- Encrypt plaintext bit by bit or byte by byte.
- Each unit (bit or byte) is encrypted with a different key.
 - $E(k_i, p_i)=c_i, 1 \le i \le m$
- Examples
 - Autokeyed Vigenère cipher
 - Vernam cipher, one-time pad
 - RC4
 - Hardware-based: Linear Feed Shift Register (LFSR)

Block Cipher

- Encrypt plaintext block by block, typically 128 bits
- Each unit is encrypted with the same key
 - $E(k, p_i)=c_i, 1 \le i \le m$
- Examples
 - Playfair cipher
 - Hill cipher
 - DES, AES

(a) Stream Cipher Using Algorithmic Bit Stream Generator

(b) Block Cipher

Design principles

- Horst Feistel
 - a cipher should alternate substitutions and permutations
 - Feistel structure
 - Easy decryption no matter what functions are used
 - Focus on substitution and permutation design
- Claude Shannon
 - for practical application, a cipher should be a product of alternate confusion and diffusion functions
 - Accumulate full security from small security of each function

Diffusion and Confusion

- To thwart "statistical analysis"
- Diffusion
 - The statistical structure of the plaintext is dissipated into long-range statistics of the ciphertext
 - Each plaintext digit affects many ciphertext digits
- Confusion
 - Complicate the statistics relationship between of the ciphertext and the encryption key
 - Even if the attacker gets some statistics of the ciphertext, the key is still too complex to deduce

Feistel structure

Feistel Cipher: Factors

- Speed (hardware/software) and security concerns
 - Block size
 - Key size
 - Number of rounds
 - Round function F
 - Subkey generation algorithm
 - Security analysis

Data Encryption Standard (DES)

- National Bureau of Standards (now NIST) 1977, Federal Information Processing Standard 46 (FIPS-46), 1977
- Data Encryption Algorithm (DEA)
 - Plaintext, ciphertext: 64 bits
 - Key size: 56-bit key
 - 16 rounds
 - Feistel cipher
- Replaced by Advanced Encryption Standard (AES) in 2001, FIPS 197

DES: initial permutation

- Initial permutation: IP (64 bits → 64 bits)
- Final permutation: IP⁻¹ (64 bits → 64 bits)

IP-1

58	50	42	34	26	18	10	2
60	52	44	36	28	20	12	4
62	54	46	38	30	22	14	6
64	56	48	40	32	24	16	8
57	49	41	33	25	17	9	(1)
59	51	43	35	27	19	11	3
61	53	45	37	29	21	13	5
63	55	47	39	31	23	15	7

(40)	8	48	16	56	24	64	32
39	7	47	15	55	23	63	31
38	6	46	14	54	22	62	30
37	5	45	13	53	21	61	29
36	4	44	12	52	20	60	28
35	3	43	11	51	19	59	27
34	2	42	10	50	18	58	26
33	1	41	9	49	17	57	25

DES: a single round

F function

DES: E

- Expansion permutation E: 32 bits → 48bits
- Input bits: 1 2 3 ... 32

32	1	2	3	4	5
4	5	6	7	8	9
8	9	10	11	12	13
12	13	14	15	16	17
16	17	18	19	20	21
20	21	22	23	24	25
24	25	26	27	28	29
28	29	30	31	32	1

DES: S-box

- The only non-linear relation between input and output
- The core of security

i S_i

1	14	4	13	1	2	15	11	8	3	10	6	12	5	9	0	7
	0	15	7	4	14	2	13	1	10	6	12	11	9	5	3	8
	4	1	14	8	13	6	2	11	15	12	9	7	3	10	5	0
	15	12	8	2	4	9	1	7	5	11	3	14	10	0	6	13
2	15	1	8	14	6	11	3	4	9	7	2	13	12	0	5	10
	3	13	4	7	15	2	8	14	12	0	1	10	6	9	11	5
	0	14	7	11	10	4	13	1	5	8	12	6	9	3	2	15
	13	8	10	1	3	15	4	2	11	6	7	12	0	5	14	9
3	10	0	9	14	6	3	15	5	1	13	12	7	11	4	2	8
	13	7	0	9	3	4	6	10	2	8	5	14	12	11	15	1
	13	6	4	9	8	15	3	0	11	1	2	12	5	10	14	7
	1	10	13	0	6	9	8	7	4	15	14	3	11	5	2	12
4	7	13	14	3	0	6	9	10	1	2	8	5	11	12	4	15
	13	8	11	5	6	15	0	3	4	7	2	12	1	10	14	9
	10	6	9	0	12	11	7	13	15	1	3	14	5	2	8	4
	3	15	0	6	10	1	13	8	9	4	5	11	12	7	2	14
5	2	12	4	1	7	10	11	6	8	5	3	15	13	0	14	9
	14	11	2	12	4	7	13	1	5	0	15	10	3	9	8	6
	4	2	1	11	10	13	7	8	15	9	12	5	6	3	0	14
	11	8	12	7	1	14	2	13	6	15	0	9	10	4	5	3
6	12	1	10	15	9	2	6	8	0	13	3	4	14	7	5	11
	10	15	4	2	7	12	9	5	6	1	13	14	0	11	3	8
	9	14	15	5	2	8	12	3	7	0	4	10	1	13	11	6
	4	3	2	12	9	5	15	10	11	14	1	7	6	0	8	13
7	4	11	2	14	15	0	8	13	3	12	9	7	5	10	6	1
	13	0	11	7	4	9	1	10	14	3	5	12	2	15	8	6
	1	4	11	13	12	3	7	14	10	15	6	8	0	5	9	2
	6	11	13	8	1	4	10	7	9	5	0	15	14	2	3	12
8	13	2	8	4	6	15	11	1	10	9	3	14	5	0	12	7
	1	15	13	8	10	3	7	4	12	5	6	11	0	14	9	2
	7	11	4	1	9	12	14	2	0	6	10	13	15	3	5	8
	2	1	14	7	4	10	8	13	15	12	9	0	3	5	6	11

DES: P

Permutation function P: 32 bits → 32 bits

16	7	20	21	29	12	28	17
1	15	23	26	5	18	31	10
2	8	24	14	32	27	3	9
19	13	30	6	5 32 22	11	4	25

Key scheduling

Key scheduling

	(a) Input Key									
1	2	3	4	5	6	7	8			
9	10	11	12	13	14	15	16			
17	18	19	20	21	22	23	24			
25	26	27	28	29	30	31	32			
33	34	35	36	37	38	39	40			
41	42	43	44	45	46	47	48			
49	50	51	52	53	54	55	56			
57	58	59	60	61	62	63	64			

	100.00					
57	49	41	33	25	17	9
1	58	50	42	34	26	18
10	2	59	51	43	35	27
19	11	3	60	52	44	36
63	55	47	39	31	23	15
7	62	54	46	38	30	22
14	6	61	53	45	37	29
21	13	5	28	20	12	4

(b) Permuted Choice One (PC-1)

(c) Permuted Choice Two (PC-2)

14	17	11	24	1	5	3	28
15	6	21	10	23	19	12	4
26	8	16	7	27	20	13	2
41	52	31	37	47	55	30	40
51	45	33	48	44	49	39	56
34	53	46	42	50	36	29	32

- 28 positions in total
 - → re-position after 16 rounds
- Decryption: shift right

(d) Schedule of Left Shifts

Round Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Bits Rotated 1 1 2 2 2 2 2 2 1 2 2 2 2 2 2 1

DES Example

plaintext: 02468aceeca86420

key: of1571c947d9e859

ciphertext: dao2cd3a89ecac3b

Round	Ki	Li	Ri
IP		5a005a00	3cf03c0f
1	1e030f03080d2930	3cf03c0f	bad22845
2	0a31293432242318	bad22845	99e9b723
3	23072318201d0c1d	99e9b723	0bae3b9e
4	05261d3824311a20	0bae3b9e	42415649
5	3325340136002c25	42415649	18b3fa41
6	123a2d0d04262a1c	18b3fa41	9616fe23
7	021f120b1c130611	9616fe23	67117cf2
8	1c10372a2832002b	67117cf2	c11bfc09
9	04292a380c341f03	c11bfc09	887fbc6c
10	2703212607280403	887fbc6c	600f7e8b
11	2826390c31261504	600f7e8b	f596506e
12	12071c241a0a0f08	f596506e	738538b8
13	300935393c0d100b	738538b8	c6a62c4e
14	311e09231321182a	c6a62c4e	56b0bd75
15	283d3e0227072528	56b0bd75	75e8fd8f
16	2921080b13143025	75e8fd8f	25896490
IP-1		da02ce3a	89ecac3b

DES security

- The core of security is the non-linear mapping of S-boxes
- Key size: to defend the brute-force attack
- Avalanche effect
- Bit independence effect

Avalanche effect

- A <u>small change</u> in either the plaintext or the key should produce <u>a significant change in the</u> <u>ciphertext</u>
- In particular, one bit change in either the plaintext or the key → half bits change in ciphertext

Fast avalanche effect

- Example
 - Altered plaintext = 12468aceeca86420
- δ : number of different bits

Round		δ
	02468aceeca86420	1
	12468aceeca86420	
1	3cf03c0fbad22845	1
	3cf03c0fbad32845	
2	bad2284599e9b723	5
	bad3284539a9b7a3	
3	99e9b7230bae3b9e	18
	39a9b7a3171cb8b3	
4	0bae3b9e42415649	34
	171cb8b3ccaca55e	
5	4241564918b3fa41	37
	ccaca55ed16c3653	
6	18b3fa419616fe23	33
	d16c3653cf402c68	
7	9616fe2367117cf2	32
	cf402c682b2cefbc	
8	67117cf2c11bfc09	33
	2b2cefbc99f91153	

Round		δ
9	c11bfc09887fbc6c	32
	99f911532eed7d94	
10	887fbc6c600f7e8b	34
	2eed7d94d0f23094	
11	600f7e8bf596506e	37
	d0f23094455da9c4	
12	f596506e738538b8	31
	455da9c47f6e3cf3	
13	738538b8c6a62c4e	29
	7f6e3cf34bc1a8d9	
14	c6a62c4e56b0bd75	33
	4bc1a8d91e07d409	
15	56b0bd7575e8fd8f	31
	1e07d4091ce2e6dc	
16	75e8fd8f25896490	32
	1ce2e6dc365e5f59	
IP-1	da02ce3a89ecac3b	32
	057cde97d7683f2a	

Exhaustive Key Search

Key size (bits)	Cipher	Number of Alternative Keys	Time Required at 109 decryptions/s	Time Required at 10 ¹³ decryptions/s
56	DES	$2^{56} \approx 7.2 10^{16}$	2^{55} ns = 1.125 years	1 hour
128	AES	$2^{128} \approx 3.4 10^{38}$	$2^{127} \text{ ns} = 5.3 10^{21} \text{ years}$	5.3 10 ¹⁷ years
168	Triple DES	$2^{168} \approx 3.7 10^{50}$	$2^{167} \text{ ns} = 5.8 10^{33} \text{ years}$	5.8 10 ²⁹ years
192	AES	$2^{192} \approx 6.3 10^{57}$	$2^{191} \text{ ns} = 9.8 10^{40} \text{ years}$	9.8 10 ³⁶ years
256	AES	$2^{256} \approx 1.2 10^{77}$	$2^{255} \text{ ns} = 1.8 10^{60} \text{ years}$	1.8 10 ⁵⁶ years

Average Time Required for Exhaustive Key Search

S-box security

- Strict avalanche criterion (SAC)
 - When an input bit i is inverted, an output bit j of an S-box changes with probability 0.5
- Bit independence criterion (BIC)
 - When an input bit i is inverted, output bits j and k change independently, for all i, j, and k

		Middle 4 bits of input															
S ₅		0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
Outer bits	00	0010	1100	0100	0001	0111	1010	1011	0110	1000	0101	0011	1111	1101	0000	1110	1001
	01	1110	1011	0010	1100	0100	0111	1101	0001	0101	0000	1111	1010	0011	1001	1000	0110
	10	0100	0010	0001	1011	1010	1101	0111	1000	1111	1001	1100	0101	0110	0011	0000	1110
	11	1011	1000	1100	0111	0001	1110	0010	1101	0110	1111	0000	1001	1010	0100	0101	0011

Key Schedule

- One subkey is generated in each round
- It is difficult to deduce individual subkeys and the main key from a subkey
- Meet the SAC and BIC conditions

DES: weakness

- Key complementation: $C = DES(P, K) \rightarrow \overline{C} = DES(\overline{P}, \overline{K})$
- Differential cryptanalysis
 - $\Delta_x = P_1 \oplus P_2$ and $\Delta_y = S(P_1) \oplus S(P_2)$ have some relation
 - Chosen plaintext attack: need 2⁴⁷ pair of plaintexts and 2³⁷ DES calls
 - Significantly less than 2⁵⁵ exhaustive key search.
- 16 rounds are the boundary for current known attacks
- 56-bit is too small in current technology
 - Quantum computers reduces the key search to 2²⁸
 - Should use 3DES with 112-bit keys at least

2-Key Triple DES

Attack on 3-key Triple-DES

Given (P, C)

- Naive attack
 - For all K_1 , K_2 , K_3 , if $E(D(E(P, K_1), K_2), K_3) = C$, then output (K_1, K_2, K_3)
 - Time: O(2^{56x3})
- Meet-in-the-middle attack
 - For all K₁, K₂, store D(E(P, K₁), K₂) in Table I
 - For all K₃, store D(C, K₃) in Table II
 - Match Tables I & II and output matched K₁, K₂, K₃
 - Time: O(2^{56x2}+2⁵⁶+matched time)

Summary

- Traditional Block Cipher Structure
 - Stream ciphers
 - Block ciphers
 - Motivation for the Feistel cipher structure
 - Feistel cipher
- The Data Encryption Standard (DES)
 - Encryption
 - Decryption
 - Avalanche effect

- The strength of DES
 - Use of 56-bit keys
 - Nature of the DES algorithm
 - Timing attacks
- Block cipher design principles
 - Number of rounds
 - Design of function F
 - Key schedule algorithm