Optimizing Cryptographic Strength of Substitution Layers in Symmetric-Key Cryptosystems

Christopher A. Wood

May 17, 2012

Agenda

- 1 Motivation and background
- 2 Security measurements
- 3 Optimization problem formulation
- 4 Optimization solution
- 5 Final remarks

Motivation

- Cryptography has wide variety of practical applications
 - Online banking, e-commerce, radio and telecommunication transmissions, etc
- One of the main purposes is to encrypt sensitive data
- How can we ensure the security of such data?

Background

Cryptographic algorithm security is measured by:

- Levels of confusion and diffusion
 - Confusion Complexity of the relationship between the secret-key and ciphertext
 - Diffusion Influence of single bit changes in the plaintext on the ciphertext
- Resilience to common cryptanalytic attacks
 - Linear cryptanalysis
 - Differential cryptanalysis

The substitution layer

A S-box is a common source for nonlinearity in symmetric-key cryptographic algorithms. It can be defined as function $f: \mathbb{F}_2^n \to \mathbb{F}_2^n$, where n is the number of bits needed to represent each element in the field.

S-box design

Which S-box configurations yield the highest measures of diffusion and confusion?

Security measurements

- Branch number
 - Measures lower bound on susceptibility to differential cryptanalysis
- Avalanche number
 - Measures the total number of bit changes for a single bit change in the input to the S-box
- Nonlinearity degree
 - Measures how much nonlinear "behavior" the S-box exhibits by counting the number of output elements that are directly proportional to its input.

Known optimal values

Security Measurement	Theoretical Optimal Value
Branch number (B_N)	n
Avalanche number (A_N)	$n^2 2^{n-1}$
Nonlinearity degree (P_S)	1*

 $^{^*}P_S \le$ 2 indicates that the function is "almost perfectly nonlinear", which is also a good value

Exhaustive search for 2-bit S-box

Branch number problem formulation

Branch Number - Minimize

$$B'_N(X) = -B_N(X) = -\min_{i,j \neq i} (\operatorname{wt}(i \oplus j) + \operatorname{wt}(X(i) \oplus X(j))),$$

subject to the constraints

$$0 \le X(i) \le 2^n - 1$$

where n is the number of bits needed to represent the design variables.

Avalanche number problem formulation

Avalanche Number - Minimize

$$A'_N(X) = -A_N(X) = -\sum_{i=0}^{n-1} \sum_{x \in \mathbb{F}_2^n} \operatorname{wt}(f(x) \oplus f(x \oplus 2^i))$$

subject to the constraints

$$0 \le X(i) \le 2^{n} - 1$$

$$\sum_{i=0}^{n-1} \sum_{x \in \mathbb{F}_2^n} \operatorname{wt}(f(x) \oplus f(x \oplus 2^i)) - n2^{n-1} \le 0$$

where n is the number of bits needed to represent the design variables.

Nonlinearity degree problem formulation

Degree of Nonlinearity - Minimize

$$P_S(X) = \max_{0 \neq a,b} |\{x \in \mathbb{F}_2^n : S(x+a) - S(x) = b\}|,$$

subject to the constraints

$$0 \le X(i) \le 2^n - 1,$$

where n is the number of bits needed to represent the design variables.

Finding a shared solution

- Create a linear combination of each objective function
- Assign variable weights that correspond to the overall influence of each objective function

$$f(X) = w_1 A'_N(X) + w_2 B'_N(X) + w_3 P_S(X)$$

Optimization solution

Candidate optimization methods

- Traditional MINLP methods
 - Branch and Bound (and all derivative) algorithms
- Evolutionary methods
 - Genetic algorithm

Genetic algorithm solver

- Objective functions are equivalent to fitness functions
- Randomized population generation and mutation
 - Optimal generations are chosen from a set of possible solutions
- No crossover function utilized
- Maximum of 500 generations and small stall limit

Avalanche number for 4-bit S-box

Branch number for 4-bit S-box

Nonlinearity degree for 4-bit S-box

Multi-objective solution for 3-bit S-box

<i>W</i> ₁	W ₂	<i>W</i> ₃	S-Box Configuration	(A_N,B_N,P_S)
1	2 ⁸	2 ⁸	56255625	(40, 1, 8)
1	2 ⁴	2 ⁸	43362554	(50, 1, 6)
1	2 ⁸	2 ⁴	25222522	(24, 1, 8)
1	2 ⁴	2 ⁴	35423542	(40, 1, 8)

Solution Analysis

Measurement	Results	
Branch number	Exponentially less effective with higher	
	order S-boxes	
Avalanche number	Logarithmically less effective with	
	higher order S-boxes	
Nonlinearity degree	Consistently effective with all order S-	
	boxes	
Multi-objective	Ineffective	

Conclusions

- Evolutionary optimization algorithms are appropriate for cryptographic applications
 - Effectively finds solutions for some discontinuous and instable functions
 - Not effective at finding solution for multi-objective problems
- Difficult to find optimal S-box configurations with high security assurances
 - Does not replace hardened proofs of security