Student: _____
Date:

Time:

Instructor: Fred Khoury

Assignment: Quiz Sec 1.7

Course: Math 2312-1000 Precalculus (Fall - 2015)

Book: Lial: College Algebra and

Trigonometry, 4e

1. Graph the function. Give the domain and range.

$$f(x) = \log_2(x - 4)$$

OA.

domain: $(-\infty,\infty)$ range: $(0,\infty)$

OB.

domain: $(0, \infty)$ range: $(-\infty, \infty)$

Oc.

domain: $(-\infty,\infty)$ range: $(-4,\infty)$

OD.

domain: $(4,\infty)$ range: $(-\infty,\infty)$

2. Graph the function. Give the domain and range.

$$f(x) = \log_5 x + 3$$

OA.

domain: $(-3,\infty)$ range: $(-\infty,0)$

Ов.

domain: $(-\infty,\infty)$ range: $(3,\infty)$

Oc.

domain: $(0, \infty)$ range: $(-\infty, \infty)$

OD.

domain: $(-\infty,0)$ range: $(-\infty,\infty)$

3. Graph the function. Give the domain and range.

$$f(x) = \log_{1/2}(x+2)$$

OA.

domain: $(-\infty,\infty)$ range: $(2,\infty)$

x -10 10 OB.

domain: $(0, \infty)$ range: $(-\infty, \infty)$

Oc.

domain: $(-2,\infty)$ range: $(-\infty,\infty)$

OD.

domain: $(-\infty,\infty)$ range: $(0,\infty)$

Student: _____
Date: ____

Time:

Instructor: Fred Khoury

Assignment: Quiz Sec 1.7

Course: Math 2312-1000 Precalculus (Fall -

2015)

Book: Lial: College Algebra and

Trigonometry, 4e

4. Match the function with its graph.

$$f(x) = \log_{4} x$$

OA.

Ов.

Oc.

OD.

5. Write the expression as a sum, difference, or product of logarithms. Assume that all variables represent positive real numbers.

$$\log_{b}\left(\frac{m^{2}p^{6}}{n^{5}b^{9}}\right)$$

$$\bigcirc$$
 A. $2 \log_b m + 6 \log_b p - 5 \log_b n - 9$

OB.
$$2 \log_{b} m + 6 \log_{b} p - 5 \log_{b} n + 9$$

OC.
$$\log_{b} m^{2} + \log_{b} p^{6} + \log_{b} n^{5} - \log_{b} b^{9}$$

$$OD. m^2p^6 - n^5b^9$$

6. Write the expression as a sum, difference, or product of logarithms. Assume that all variables represent positive real numbers.

$$\log_{b^3}\sqrt{\frac{x^4}{y^2z^8}}$$

$$\bigcirc A. \quad 4\log_b x - 2\log_b y - 8\log_b z$$

OB.
$$\frac{4}{3} \log_b x \div (\frac{2}{3} \log_b y \cdot \frac{8}{3} \log_b z)$$

$$\bigcirc C. \quad \frac{4}{3} \log_b x - \frac{2}{3} \log_b y - \frac{8}{3} \log_b z$$

OD.
$$\frac{1}{3} \log_b x^4 - \log_b y^2 - \log_b z^8$$

Student: ______
Date: _____
Time:

Instructor: Fred Khoury

Assignment: Quiz Sec 1.7

Course: Math 2312-1000 Precalculus (Fall -

2015)

Book: Lial: College Algebra and

Trigonometry, 4e

7. Use the product, quotient, and power rules of logarithms to rewrite the expression as a single logarithm. Assume that all variables represent positive real numbers.

$$\frac{1}{2}\log_2 x^4 + \frac{1}{4}\log_2 x^4 - \frac{1}{6}\log_2 x$$

- \bigcirc A. $\log_2(x^{17/6})$
- \bigcirc B. $\log_2(x^7)$
- $\bigcirc C. \quad \frac{7}{6} \log_2(x^8)$
- \bigcirc D. $\log_2(x^{9/2})$

8. Use the product, quotient, and power rules of logarithms to rewrite the expression as a single logarithm. Assume that all variables represent positive real numbers.

$$6 \log_{6}(4x+6) + 3 \log_{6}(3x-2)$$

- \bigcirc A. $\log_6((4x+6)^6(3x-2)^3)$
- OB. $\log_{6} \frac{(4x+6)^{6}}{(3x-2)^{3}}$
- OC. $18 \log_6((4x+6)(3x-2))$
- $\bigcirc D$. $\log_{6}((4x+6)^{6}+(3x-2)^{3})$

9. Use the product, quotient, and power rules of logarithms to rewrite the expression as a single logarithm. Assume that all variables represent positive real numbers.

$$\frac{1}{3}\log_3(x^6) + \frac{1}{6}\log_3(x^6) - \frac{1}{9}\log_3x$$

- \bigcirc A. $\log_3(x^{9/2})$
- \bigcirc B. $\log_3(x^7)$
- Oc. $\frac{7}{9} \log_3(x^{12})$
- \bigcirc log $_3(x^{26/9})$