### Clase 15 Introducción a Modelos Lineales Generales

DBT 845 - Investigación reproducible y análisis de datos biotecnológicos con R.

Dr. José Gallardo Matus y Dra. María Angélica Rueda

Pontificia Universidad Católica de Valparaíso

07 June 2022

### PLAN DE LA CLASE

#### 1.- Introducción

- ▶ Modelos lineales generales ¿Qué son y para que sirven?
- Ejemplos de modelos lineales generales.
- ► Interpretación de MLG con R.

#### 2.- Práctica con R y Rstudio cloud

- Ajustar modelos lineales generales.
- Realizar gráficas avanzadas con ggplot2.
- Elaborar un reporte dinámico en formato html.

### INTRODUCCIÓN

Durante años, los modelos lineales clásicos (normales) han sido usados como la metodología de análisis a la hora de intentar describir la mayoría de los fenómenos que ocurren en el entorno.

## ¿Qué podemos hacer cuando los datos no se ajustan a un modelo lineal?

- ▶ Muchas veces se recurre a transformar la variable respuesta.
- Pero al aplicar la transformación a la variable respuesta, NO necesariamente se cumplirían todos los supuestos.
- Las interpretaciones deben hacerse en términos de la variable transformada.

# ¿QUÉ SON LOS MODELOS LINEALES GENERALES?

Los modelos lineales generales extienden a los modelos lineales clásicos admitiendo distribuciones no normales para la variable respuesta y modelando funciones de la media.

Los MLG incluyen como casos particulares a los siguientes modelos:

- Modelos Lineales Clásicos: Modelo de regresión lineal simple, modelo de regresión lineal múltiple, ANOVA, ANCOVA.
- Modelos no lineales (con variables predictoras elevadas a alguna potencia (cuadráticas, cúbicas, etc).
- Modelo de regresión logística.

# ¿POR QUÉ USAR MODELOS LINEALES GENERALES?

- Modelos que reflejan mejor la naturaleza de los datos.
- Hay variables respuestas que son resistentes a ser transformadas (por ej. Variables discretas, o variables con gran cantidad de ceros).
- Las relaciones lineales generalmente fuerzan las predicciones del espacio de la variable respuesta (**por ej.** Predicción de valores negativos cuando la variable respuesta es un conteo).

### REGRESIÓN NO LINEAL CUADRÁTICA

En este ejemplo vamos a comparar el modelo lineal vs. el modelo no lineal con término cuadrático.



### **MODELO LINEAL**

#### Modelo 1:

**log\_microparticle\_concentration** =  $\beta_0 + \beta_1 time + \epsilon$ 

|             | Estimate  | Std. Error | t value   | Pr(> t ) |
|-------------|-----------|------------|-----------|----------|
| (Intercept) | 2.567087  | 0.0333508  | 76.97221  | 0        |
| time        | -0.014116 | 0.0009433  | -14.96447 | 0        |

$$R^2 = 0.78$$
,  $p$ -val =  $2.0490325 \times 10^{-22}$ 

# MODELO NO LINEAL (INCLUYE TÉRMINO CUADRÁTICO)

#### Modelo 2:

 $\textbf{log\_microparticle\_concentration} = \beta_0 + \beta_1 \textit{time} + \beta_2 \textit{time}^2 + \epsilon$ 

|                | Estimate   | Std. Error | t value    | Pr(> t )  |
|----------------|------------|------------|------------|-----------|
| (Intercept)    | 2.1436057  | 0.0163730  | 130.923107 | 0.0000000 |
| poly(time, 2)1 | -2.1291367 | 0.1320034  | -16.129403 | 0.0000000 |
| poly(time, 2)2 | 0.4415801  | 0.1320034  | 3.345217   | 0.0013997 |

$$R^2 = 0.81$$
, p-val =  $2.2610223 \times 10^{-23}$ 

### **COMPARACIÓN DE MODELOS**

► Modelo 1:

$$\textbf{log\_microparticle\_concentration} = \beta_0 + \beta_1 \textit{time} + \epsilon$$

► Modelo 2:

log\_microparticle\_concentration =  $\beta_0 + \beta_1 time + \beta_2 time^2 + \epsilon$ 

| Res.Df | RSS      | Df | Sum of Sq | F        | Pr(>F)    |
|--------|----------|----|-----------|----------|-----------|
| 63     | 1.275337 | NA | NA        | NA       | NA        |
| 62     | 1.080344 | 1  | 0.194993  | 11.19047 | 0.0013997 |

### **REGRESIÓN LOGÍSTICA**

- ► La regresión logística es útil para predecir variables respuesta de naturaleza binaria: Presencia o ausencia, sano o enfermo, maduro o no maduro, macho o hembra.
- Las principales supuestos del modelo de regresión logística son:
- a) Respuesta binaria: La variable respuesta debe ser binaria.
- b) Independencia: las observaciones deben ser independientes.
- c) Multicolinealidad: se requiere de muy poca a ninguna multicolinealidad entre los predictores (para regresión logística múltiple).
- **d)** Linealidad: entre la variable independiente y el logaritmo natural de la variable respuesta.

### **REGRESIÓN LOGÍSTICA SIMPLE**

Modelo de regresión logística simple:

$$p(Y=1) = rac{e^{eta_0 + eta_1 X_1}}{1 + e^{eta_0 + eta_1 X_1}}$$

p(Y = 1) = Probabilidad de que la variable respuesta dicotómica tome un valor de 1 (exito).

 $X_1 = Variable predictora.$ 

 $B_0 = Intercepto.$ 

 $B_1 = Pendiente.$ 

# ESTUDIO DE CASO 2: MADURACIÓN EN SALMÓN DEL ATLÁNTICO

En este estudio de caso trabajaremos con un subconjunto de la base de datos relacionada a la maduración en salmones machos (n=90).

| variable   | Descripción                                      |
|------------|--------------------------------------------------|
| Fish       | Identificador del salmón                         |
| Genotype   | Genotipo                                         |
| Gonad      | Peso de gónada                                   |
| Maturation | estado de maduración (1: maduro) o (0: inmaduro) |

# RELACIÓN ENTRE MADURACIÓN VS PESO DE GÓNADA



## REGRESIÓN LINEAL ENTRE MADURACIÓN VS PESO DE GÓNADA

¿Qué supuestos no se cumplen de la regresión lineal?



### **MODELO LINEAL**

 $Maduración = \beta_0 + \beta_1$  Peso de gónada  $+ \epsilon$ 

|             | Estimate   | Std. Error | t value    | Pr(> t )  |
|-------------|------------|------------|------------|-----------|
| (Intercept) | -0.0280808 | 0.0306710  | -0.9155493 | 0.3624054 |
| Gonad       | 0.0984246  | 0.0042997  | 22.8908036 | 0.0000000 |

$$R^2 = 0.86$$
, p-val =  $7.977942 \times 10^{-39}$ 

### PREDICCIÓN LOGÍSTICA



### **REGRESIÓN LOGÍSTICA SIMPLE**

|             | Estimate  | Std. Error | z value  | Pr(> z )  |
|-------------|-----------|------------|----------|-----------|
| (Intercept) | -8.089844 | 2.6425566  | -3.06137 | 0.0022033 |
| Gonad       | 1.381678  | 0.4255612  | 3.24672  | 0.0011674 |

### **EJEMPLO PREDICCIÓN DE AMBOS MODELOS**

Probabilidad de estar maduro para un peso de gónada de 4 gramos.

#### REGRESIÓN LINEAL

Probabilidad de maduración

0.3656176

### REGRESIÓN LOGÍSTICA

Probabilidad de maduración

0.0715492

## RELACIÓN ENTRE MADURACIÓN VS GENOTIPO

Genotipo  $\mathsf{E} = \mathsf{Madurac}\mathsf{i}\mathsf{o}\mathsf{n}$  temprana o Early.

Genotipo L = Maduración tardía o Late.

¿Qué genotipo tiene mayor probabilidad de maduración?

table(maduracion\$Maturation, maduracion\$Genotype) %>%
kable()

|   | EE | EL | LL |
|---|----|----|----|
| 0 | 4  | 22 | 19 |
| 1 | 44 | 1  | 0  |

### REGRESIÓN LOGÍSTICA MÚLTIPLE

Modelo de regresión logística múltiple:

$$p(Y=1) = \frac{e^{\beta_0+\beta_1X_1+\cdots+\beta_\rho X_\rho}}{1+e^{\beta_0+\beta_1X_1+\cdots+\beta_\rho X_\rho}}$$

p(Y = 1) = Probabilidad de que la variable respuesta dicotómica tome un valor de 1 (exito).

 $X_1 = \text{Variable predictora } 1.$ 

 $X_p = Variable predictora p.$ 

 $B_0 = Intercepto.$ 

 $B_1 = \text{Pendiente variable } X_1.$ 

 $B_p$  = Pendiente variable  $X_p$ .

## REGRESIÓN LOGÍSTICA MÚLTIPLE

|             | Estimate   | Std. Error   | z value    | Pr(> z )  |
|-------------|------------|--------------|------------|-----------|
| (Intercept) | -5.951859  | 3.1608767    | -1.8829772 | 0.0597035 |
| Gonad       | 1.135307   | 0.4546516    | 2.4970928  | 0.0125216 |
| GenotypeEL  | -1.296134  | 1.6538041    | -0.7837292 | 0.4331990 |
| GenotypeLL  | -16.852220 | 3447.6185502 | -0.0048881 | 0.9960999 |

## **REGRESIÓN LOGÍSTICA (MODELO NULO)**

|             | Estimate | Std. Error | z value | Pr(> z ) |
|-------------|----------|------------|---------|----------|
| (Intercept) | 0        | 0.2108185  | 0       | 1        |

### COMPARACIÓN DE MODELOS AIC Y BIC

AIC(mod\_nulo,mod\_logit,mod\_logit\_mult)%>% kable()

|                | df | AIC       |
|----------------|----|-----------|
| mod_nulo       | 1  | 126.76649 |
| mod_logit      | 2  | 18.30228  |
| mod_logit_mult | 4  | 21.25087  |

BIC(mod\_nulo,mod\_logit,mod\_logit\_mult)%>% kable()

|                | df | BIC       |
|----------------|----|-----------|
| mod_nulo       | 1  | 129.26630 |
| mod_logit      | 2  | 23.30190  |
| mod_logit_mult | 4  | 31.25011  |

## **COMPARACIÓN DE MODELOS (ANOVA)**

| Resid. Df | Resid. Dev | Df | Deviance   | Pr(>Chi)  |
|-----------|------------|----|------------|-----------|
| 89        | 124.76649  | NA | NA         | NA        |
| 88        | 14.30228   | 1  | 110.464210 | 0.0000000 |
| 86        | 13.25087   | 2  | 1.051411   | 0.5911383 |

### **RESUMEN DE LA CLASE**

- 1). Revisión de conceptos: modelos lineales generales.
- 2). Construir y ajustar modelos lineales generales.