Exercise 5

陈志杰 524531910034

In this text: *countable* means countably infinite; $(\cdot, \cdot)_k$ means the kth element in the pair; $\mathcal{L}(V, W)$ means the vector space of all linear maps from V to W; $V \cong W$ means V and W are isomorphic vector spaces.

Problem 1.

Solution. Let S denote the set given in each problem.

- (a) Countable. Define $F: \mathbb{Z}^+ \to S$ by F(n) = n + 10.
- (b) Countable. Define $F: \mathbb{Z}^+ \to S$ by F(n) = -2n + 1.
- (d) Uncountable.
- (e) Countable. Define $F: A \times \mathbb{Z}^+ \to \mathbb{Z}^+$ by F(a, n) = 2n a + 2.

Problem 2.

Proof. We only prove (b). Then (a) follows immediately because A is not finite and no bijections exist between A and \mathbb{N} . Let x_k denote the kth term of the sequence x, where $k \in \mathbb{N}$. We construct a sequence a of natural numbers in the following way. $a_0 = f(0)_0 + 1$. Inductively, $a_k = a_{k-1} + f(k)_k + 1$. Then $a_k > a_{k-1}$ and $a_k > f(k)_k$. Hence a is increasing and $f(n) \neq a$ for each n because $f(n)_n < a_n$, as desired.

Problem 3.

Proof.
$$(A \to (B \to C)) \approx (A \times B \to C) \approx (B \times A \to C) \approx (B \to (A \to C)).$$

Problem 4.

Proof. Define $H: (B \times C)^A \to B^A \times C^A$ by $(H(F)_k)(a) = F(a)_k$, where k = 1, 2. Suppose H(F) = H(G). Then $F(a)_k = (H(F)_k)(a) = (H(G)_k)(a) = G(a)_k$, k = 1, 2, which implies that F = G. Thus H is injective. For every $\varphi_1 \in B^A$, $\varphi_2 \in C^A$, let $F(a) = (\varphi_1(a), \varphi_2(a))$. Then $(H(F)_k)(a) = F(a)_k = \varphi_k(a)$, which implies that $H(F) = (\varphi_1, \varphi_2)$. Thus H is surjective. Hence the desired result holds from the bijectivity of H.

Problem 5.

Proof. It suffices to show that $2^{\mathbb{R} \times \mathbb{R}} \approx \mathbb{R}^{\mathbb{R}}$. $\mathbb{R} \times \mathbb{R} \approx \mathbb{R}$ follows from

$$\mathbb{R} \times \mathbb{R} \approx (2^{\mathbb{N}})^2 \approx 2^{\mathbb{N} \times 2} \approx 2^{\mathbb{N}} \approx \mathbb{R}.$$

Then $2^{\mathbb{R} \times \mathbb{R}} \leq \mathbb{R}^{\mathbb{R}}$ follows from

$$2^{\mathbb{R}\times\mathbb{R}}\approx 2^{\mathbb{R}}\preceq \mathbb{R}^{\mathbb{R}}.$$

 $\mathbb{R}^{\mathbb{R}} \leq 2^{\mathbb{R} \times \mathbb{R}}$ follows from

$$\mathbb{R}^{\mathbb{R}} \approx (2^{\mathbb{N}})^{2^{\mathbb{N}}} \approx 2^{\mathbb{N} \times 2^{\mathbb{N}}} \preceq 2^{2^{\mathbb{N}} \times 2^{\mathbb{N}}} \approx 2^{\mathbb{R} \times \mathbb{R}}.$$

Because $2^{\mathbb{R} \times \mathbb{R}} \leq \mathbb{R}^{\mathbb{R}}$ and $\mathbb{R}^{\mathbb{R}} \leq 2^{\mathbb{R} \times \mathbb{R}}$, by the Bernstein theorem $2^{\mathbb{R} \times \mathbb{R}} \approx \mathbb{R}^{\mathbb{R}}$, as desired. \square

Problem 6.

Lemma 1. $\mathbb{R}^{\mathbb{N}} \approx \mathbb{R}$.

Proof.

$$\mathbb{R}^{\mathbb{N}} \approx 2^{\mathbb{N} \times \mathbb{N}} \approx 2^{\mathbb{N}} \approx \mathbb{R}.$$

Lemma 2 (from real analysis). If $f : \mathbb{R} \to \mathbb{R}$ is monotonically increasing, then f has at most countable discontinuities, and all of them are jump discontinuities.

Proof of the Problem. Let \mathcal{E} denote the set of all monotonically increasing functions from \mathbb{R} to \mathbb{R} . An element of \mathcal{E} is uniquely determined by the following: all its discontinuities (at most countable), its values at all discontinuities, and its values at all $x \in \mathbb{Q}$, because after that all undefined values of f are uniquely determined by continuity and limit (Heine's definition). Hence

$$\mathcal{E} \prec \mathbb{R}^{\mathbb{N}} \times \mathbb{R}^{\mathbb{N}} \times \mathbb{R}^{\mathbb{Q}}$$
.

The first term corresponds to "all its discontinuities", represented by the set of functions from \mathbb{N} to \mathbb{R} ; the second term corresponds to "its values at all discontinuities", represented by the set of functions from \mathbb{N} to \mathbb{R} ; the third term corresponds to "f(x)'s at all $x \in \mathbb{Q}$ ", represented by the set of functions from \mathbb{Q} to \mathbb{R} . " \preceq " is used because not all combinations are allowed or the function might be overdefined, but every element of \mathcal{E} can be described as such

Now the desired result follows from the lemma and

$$\mathbb{R} \preceq \mathcal{E} \preceq \mathbb{R}^{\mathbb{N}} \times \mathbb{R}^{\mathbb{N}} \times \mathbb{R}^{\mathbb{Q}} \approx \mathbb{R} \times \mathbb{R} \times \mathbb{R} \approx \mathbb{R}.$$

Problem 7.

Proof. Treat \mathbb{R} as a vector space over scalar field \mathbb{Q} : $\forall \boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}, \boldsymbol{u} + \boldsymbol{v} \in \mathbb{R}$; $\forall \boldsymbol{u} \in \mathbb{R}, \forall \boldsymbol{c} \in \mathbb{Q}, c\boldsymbol{u} \in \mathbb{R}$. If \mathbb{R} is finite-dimensional, there exists a basis of finite length m. Then every element of \mathbb{R} can be uniquely written as a linear combination of the m vectors in the basis. That implies that $\mathbb{R} \approx \mathbb{Q}^m \approx \mathbb{N}$, a contradiction. Hence \mathbb{R} is not finite-dimensional.

Let $C = \{v_k\}_{k \in \mathbb{N}} \subseteq \mathbb{R}$ be a linearly independent list in \mathbb{R} , where $v_0 = 1$. By Zorn's lemma, let $\mathcal{B} \supseteq \mathcal{C}$ be a basis of \mathbb{R} . Let U = span(1). Then P is the quotient space \mathbb{R}/U . Let $\{\varphi_v : v \in \mathcal{B}\}$ be the dual basis of \mathcal{B} . Note that for each $u \in \mathbb{R}$,

$$u = \sum_{v \in \mathcal{B}} \varphi_v(u)v.$$

Define $T \in \mathcal{L}(\mathbb{R}, \mathbb{R}/U)$ by

$$Toldsymbol{u} = \left[\sum_{k\in\mathbb{N}} arphi_{oldsymbol{v}_k}(oldsymbol{u})oldsymbol{v}_{k+1} + \left(oldsymbol{u} - \sum_{k\in\mathbb{N}} arphi_{oldsymbol{v}_k}(oldsymbol{u})oldsymbol{v}_k
ight)
ight] + oldsymbol{U}.$$

Suppose Tu = 0. Then

$$\sum_{k\in\mathbb{N}}\varphi_{\boldsymbol{v}_k}(\boldsymbol{u})\boldsymbol{v}_{k+1}+\left(\boldsymbol{u}-\sum_{k\in\mathbb{N}}\varphi_{\boldsymbol{v}_k}(\boldsymbol{u})\boldsymbol{v}_k\right)\in\boldsymbol{U}=\mathrm{span}(1).$$

That implies u = 0 because applying φ_1 to the term above leads to 0. Thus T is injective. For each $A \in \mathbb{R}/U$, fix $w \in \mathbb{R}$ such that A = w + U. Let

$$oldsymbol{u} = \sum_{k \in \mathbb{N}} arphi_{oldsymbol{v}_{k+1}}(oldsymbol{w}) oldsymbol{v}_k + \left(oldsymbol{w} - \sum_{k \in \mathbb{N}} arphi_{oldsymbol{v}_k}(oldsymbol{w}) oldsymbol{v}_k
ight).$$

It can be verified that Tu = w + U. Thus T is surjective. Hence we can conclude that T is an isomorphism from \mathbb{R} onto \mathbb{R}/U .

Now we have

$$\mathbb{R}\cong\mathbb{R}/\boldsymbol{U}=P.$$

The desired result follows from that isomorphic vector spaces are equinumerous by definition. $\hfill\Box$