# 争取未来开挖掘机

姜圣的追随者 2024.7.12

#### 摘要

沉迷游戏的我无意间看见关于姜圣的新闻。深感愧疚,幼儿班的我就已经熟练的掌握 了的九九乘法表。而现在我却每天沉迷于提瓦特大陆,天天只知道打丘丘人。

从今天开始我也要努力学习数学,希望姜圣以后当上院士的时候能带我一起开发挖掘机。

(本书内容: 仅有公式, 定理及证明)

(作者文凭:中专学历,混的文凭,简单理解就是初中学历(-。-)!)

(公式及证明出处:公式及证明都是在别的书里参考过来的,极个别公式证明是我自己瞎写的。)

# 目录

| 1 | 三角  | 函数     |      |             |     |   |  |      |  |      |  |  |  |  |   |  |  |                | 6  |
|---|-----|--------|------|-------------|-----|---|--|------|--|------|--|--|--|--|---|--|--|----------------|----|
|   | 1.1 | 三角恒    | 等式   |             |     |   |  |      |  |      |  |  |  |  |   |  |  | <br>. <b>.</b> | 6  |
|   | 1.2 | 双曲函    | 数 .  |             |     |   |  |      |  |      |  |  |  |  |   |  |  | <br>           | (  |
| 2 | 不等  | 式      |      |             |     |   |  |      |  |      |  |  |  |  |   |  |  |                | 7  |
| 3 | 排列  | 组合     |      |             |     |   |  |      |  |      |  |  |  |  |   |  |  |                | 8  |
|   | 3.1 | 定义 .   |      |             |     |   |  |      |  |      |  |  |  |  |   |  |  | <br>           | 8  |
|   | 3.2 | 运算 .   |      |             |     |   |  | <br> |  |      |  |  |  |  | • |  |  | <br>           | 8  |
| 4 | 区间  | 与映射    |      |             |     |   |  |      |  |      |  |  |  |  |   |  |  |                | ę  |
|   | 4.1 | 区间定    | 义 .  |             |     |   |  |      |  |      |  |  |  |  |   |  |  | <br>           | ç  |
|   | 4.2 | 领域定    | 义 .  |             |     |   |  |      |  | <br> |  |  |  |  |   |  |  | <br>           | ć  |
|   | 4.3 | 映射定    | 义 .  |             |     |   |  | <br> |  |      |  |  |  |  |   |  |  | <br>           | ć  |
| 5 | 函数  | 与图像    |      |             |     |   |  |      |  |      |  |  |  |  |   |  |  |                | 11 |
|   | 5.1 | 函数的    | 定义   |             |     |   |  | <br> |  |      |  |  |  |  |   |  |  | <br>           | 11 |
|   | 5.2 | 函数的    | 类型   |             |     |   |  |      |  |      |  |  |  |  |   |  |  | <br>           | 11 |
|   | 5.3 | 函数的    | 性质   |             |     |   |  | <br> |  |      |  |  |  |  |   |  |  | <br>           | 11 |
|   |     | 5.3.1  | 函数的  | 有           | 界性  |   |  | <br> |  |      |  |  |  |  |   |  |  | <br>           | 11 |
|   |     | 5.3.2  | 函数的  | り单i         | 凋性  |   |  | <br> |  |      |  |  |  |  |   |  |  | <br>           | 12 |
|   |     | 5.3.3  | 函数的  | <b>勺奇</b> 1 | 偶性  |   |  |      |  |      |  |  |  |  |   |  |  | <br>           | 12 |
|   |     | 5.3.4  | 周期性  | <b>±</b> .  |     |   |  | <br> |  |      |  |  |  |  |   |  |  | <br>           | 12 |
| 6 | 并集  | ,交集    |      |             |     |   |  |      |  |      |  |  |  |  |   |  |  |                | 13 |
|   | 6.1 | 定义 .   |      |             |     |   |  |      |  | <br> |  |  |  |  |   |  |  | <br>           | 13 |
|   | 6.2 | 运算 .   |      |             |     |   |  | <br> |  |      |  |  |  |  |   |  |  | <br>           | 13 |
|   | 6.3 | 性质 .   |      |             |     |   |  |      |  | <br> |  |  |  |  |   |  |  | <br>           | 13 |
|   | 6.4 | gustus | De M | orga        | n 定 | 理 |  |      |  |      |  |  |  |  |   |  |  | <br>           | 14 |
|   | 6.5 | 德摩根    | 律 定理 | 里           |     |   |  | <br> |  |      |  |  |  |  |   |  |  | <br>           | 14 |
| 7 | 群,  | 环,域    |      |             |     |   |  |      |  |      |  |  |  |  |   |  |  |                | 15 |
|   | 7.1 | 群      |      |             |     |   |  | <br> |  |      |  |  |  |  |   |  |  | <br>           | 15 |
|   |     | 7.1.1  | M1 . |             |     |   |  | <br> |  |      |  |  |  |  |   |  |  | <br>           | 15 |
|   |     | 7.1.2  | M2 . |             |     |   |  |      |  |      |  |  |  |  |   |  |  | <br>           | 15 |

|           |      | 7.1.3 M3           | 15       |
|-----------|------|--------------------|----------|
|           |      | 7.1.4 M4           | 15       |
|           |      | 7.1.5 sdas         |          |
|           | 7.2  |                    | 15       |
|           | 7.3  |                    | 15       |
|           |      |                    |          |
| 8         | 极限   |                    | 16       |
|           | 8.1  | 29.0 4 lb 10.0     | 16       |
|           |      | 77 V V V Z Z       | 16       |
|           |      | 8.1.2 数列极限的定义      | 16       |
|           |      | 8.1.3 有界数列         | 16       |
|           |      | 8.1.4 收敛数列的有界性     | 16       |
|           |      | 8.1.5 收敛数列的保号性     | 16       |
|           | 8.2  | 函数极限               | 16       |
|           |      | 8.2.1 性质           | 16       |
|           | 8.3  | 运算                 | 17       |
|           |      | 8.3.1 夹逼定理 (三明治定理) | 17       |
| 0         | 已业   |                    | 10       |
| 9         | 导数   | 幂数,指数,对数           | 18<br>10 |
|           | 9.1  |                    |          |
|           | 9.2  |                    | 18       |
|           | 9.3  | 倒数运算               | 19       |
| 10        | 积分   |                    | 20       |
|           | 10.1 | 幂数,指数,对数           | 20       |
|           | 10.2 | 三角函数               | 20       |
|           | 10.3 | 积分运算               | 20       |
| 11        | 番批   | AL 142             | 0.1      |
| 11        | 令取   | 的一些                | 21       |
| <b>12</b> | 证明   |                    | 23       |
|           | 12.1 | 1.2.1              | 23       |
|           | 12.2 | 1.2.2              | 23       |
|           | 12.3 | 1.2.3              | 23       |
|           | 12.4 | 1.2.4              | 23       |
|           | 19 5 | 8.1.1              | 24       |

| 12.6 | 8.1.2 |  |  | <br> |  |  |  |  | <br> |  |  |  |  |  |  |  |  |  |  | 2       |
|------|-------|--|--|------|--|--|--|--|------|--|--|--|--|--|--|--|--|--|--|---------|
| 12.7 | 8.2.1 |  |  | <br> |  |  |  |  | <br> |  |  |  |  |  |  |  |  |  |  | $2^{2}$ |
| 12.8 | 8 3 4 |  |  |      |  |  |  |  |      |  |  |  |  |  |  |  |  |  |  | 24      |

### 1 三角函数

#### 1.1 三角恒等式

$$\sin(A + B) = \sin A \cos B + \cos A \sin B$$
  

$$\sin(A - B) = \sin A \cos B - \cos A \sin B$$
  

$$\cos(A + B) = \cos A \cos B - \sin A \sin B$$
  

$$\cos(A - B) = \cos A \cos B + \sin A \sin B$$

## 1.2 双曲函数

定义

$$\sinh x = \frac{e^x - e^{-x}}{2} \qquad \cosh x = \frac{e^x + e^{-x}}{2}$$
$$\tanh x = \frac{e^x - e^{-x}}{e^x + e^{-x}} \qquad \coth x = \frac{e^x + e^{-x}}{e^x - e^{-x}}$$

恒等式

$$\sinh(2x) = 2\sinh x \cosh x \tag{1.2.1}$$

$$\cosh^2 x - \sinh^2 x = 1 \tag{1.2.2}$$

$$\cosh^2 x + \sinh^2 x = \cosh(2x) \tag{1.2.3}$$

$$\cosh x = 1 + 2\sinh^2 \frac{x}{2} \tag{1.2.4}$$

# 2 不等式

$$\frac{x_1 + x_2 + \dots + x_n}{n} \geqslant \sqrt[n]{x_1 + x_2 + \dots + x_n}$$
 (2.0.1)

$$|x+y| < |x| + |y| \tag{2.0.2}$$

$$\sin x < x < \tan x \tag{2.0.3}$$

## 伯努利不等式

$$(1+x)^n \leqslant 1 + nx \tag{2.0.4}$$

# 3 排列组合

# 3.1 定义

$$\mathbb{A}_n^k = \frac{n!}{(n-k)!} \tag{3.1.1}$$

$$\mathbb{C}_n^k = \frac{\mathbb{A}_n^k}{k!} = \frac{n!}{k!(n-k)!}$$
 (3.1.2)

# 3.2 运算

### 4 区间与映射

#### 4.1 区间定义

区间定义 
$$\begin{cases} (a,b) = \{x | a < x < b\} \\ [a,b] = \{x | a \leqslant x \leqslant b\} \\ (a,b] = \{x | a < x \leqslant b\} \\ (a,+\infty) = \{x | a < x\} \end{cases}$$

### 4.2 领域定义

点a的领域

$$U(a,\delta) = \begin{cases} \{x|a-\delta < x < a+\delta\} & a \\ \{x| |x-a| < \delta\} & a+\delta \end{cases}$$

点 a 的去心领域

$$\mathring{U}(a,\delta) = \begin{cases} \{x|a-\delta < x < a+\delta \land x \neq 0\} & a \\ \{x|0 < |x-a| < \delta\} & a+\delta \end{cases}$$

点 a 的左领域 
$$(a - \delta, a)$$
  
点 a 的右领域  $(a, a + \delta)$ 

### 4.3 映射定义

定义:X 与 Y 是两个非空集合, 如果存在一个法则对任一  $x \in X$ , 都有确定的 y 与之对应。则称 f 为从 X 到 Y 的一个映射。

#### 5 函数与图像

#### 5.1 函数的定义

设数集  $D \in R$  的映射

$$f:D\to R$$

称 f 为定义在 D 上的函数, 记为

$$y = f(x) \ \{x \in D\}$$

#### 5.2 函数的类型



$$f(x) = sgn \ x = \begin{cases} 1 & x > 0 \\ 0 & x = 0 \\ -1 & x < 0 \end{cases}$$

$$|x| = x \ sgnx$$

### 5.3 函数的性质

### 5.3.1 函数的有界性

#### 5.3.2 函数的单调性

单调增加 若
$$\{x_1, x_2 \in D\}$$
  $x_1 < x_2 \Rightarrow$  
$$\begin{cases} f(x_1) < f(x_2) \% f(x) \text{在 D 上单调增加} \\ f(x_1) > f(x_2) \% f(x) \text{在 D 上单调减少} \\ f(x_1) \leqslant f(x_2) \% f(x) \text{在 D 上单调非降} \\ f(x_1) \geqslant f(x_2) \% f(x) \text{在 D 上单调非增} \end{cases}$$

#### 5.3.3 函数的奇偶性

定义域

$$\forall x \in D$$
  $f(-x) = \begin{cases} f(x) & \text{偶函数} \\ -f(x) & \text{奇函数} \end{cases}$ 

奇偶性运算

奇函数 
$$\times$$
 奇函数 = 偶函数 (5.3.1)

奇函数 
$$\times$$
 偶函数  $=$  奇函数 (5.3.2)

偶函数 
$$\times$$
 偶函数 = 偶函数 (5.3.3)

#### 5.3.4 周期性

$$Def: f(x+L) = f(x)\{L > 0$$
常数,  $\forall x \in D\} \Rightarrow f(x)$  为  $L$  的周期函数

## 6 并集,交集

### 6.1 定义

$$(\lor 或, \land 与)$$
$$A \cup B = \{x \in A \lor x \in B\}$$
$$A \cap B = \{x \in A \land x \in B\}$$

#### 6.2 运算

运算满足 
$$\begin{cases} \dot{\phi}$$
 接律 
$$\begin{cases} A \cup B &= B \cup A \\ A \cap B &= B \cap A \end{cases}$$
 结合律 
$$\begin{cases} (A \cup B) \cup C = A \cup (B \cup C) \\ (A \cap B) \cap C = A \cap (B \cap C) \end{cases}$$
 分配律 
$$\begin{cases} (A \cup B) \cap C = (A \cap C) \cup (B \cap C) \\ (A \cap B) \cup C = (A \cup C) \cap (B \cup C) \end{cases}$$
 对偶律 
$$\begin{cases} (A \cup B)^C = A^C \cap B^C \\ (A \cap B)^C = A^C \cup B^C \end{cases}$$
 
$$A \cup A = A = A \cap A$$
 
$$A = B \Leftrightarrow A \subset B \land A \supset B$$
 
$$A \cup \varnothing = A \qquad A \cap \varnothing = \varnothing$$

# 6.3 性质

性质 1.

$$A \subset (A \cup B)$$
  $A \supset (A \cap B)$  (6.3.1)

性质 2.

$$A \cup B = B \Leftrightarrow A \subset B \tag{6.3.2}$$

性质 3.

$$A \cap B = A \Leftrightarrow A \subset B \tag{6.3.3}$$

(6.3.5)

性质  $4.(n \in N)$ 

$$A \cup (B_1 \cap B_2 \cap \dots \cap B_n) = (A \cup B_1) \cap (A \cup B_2) \cap \dots \cap (A \cup B_n)$$

$$(6.3.4)$$

性质  $5. (n \in N)$ 

$$A \cap (B_1 \cup B_2 \cup \dots \cup B_n) = (A \cap B_1) \cup (A \cap B_2) \cup \dots \cup (A \cap B_n)$$

# 6.4 gustus De Morgan 定理

$$\neg(A \lor B) \Leftrightarrow (\neg A) \land (\neg B)$$

$$\neg(A \land B) \Leftrightarrow (\neg A) \lor (\neg B)$$

## 6.5 德摩根律 定理

$$\left(\bigcup_{\alpha} E_{\alpha}\right)^{C} = \bigcap_{\alpha} (E_{\alpha}^{C})$$

$$\left(\bigcap_{\alpha} E_{\alpha}\right)^{C} = \bigcup_{\alpha} (E_{\alpha}^{C})$$

# 7 群,环,域

- 7.1 群
- 7.1.1 M1
- 7.1.2 M2
- 7.1.3 M3
- 7.1.4 M4
- 7.1.5 sdas
- 7.2 琢
- 7.3 域

### 8 极限

### 8.1 数列极限

#### 8.1.1 数列的定义

$$Def: \{x_n\}: N^+ \to R$$

$$x_n = f(n)$$

#### 8.1.2 数列极限的定义

$$Def: \{x_n\}, n \in N^+, \exists a, \forall \varepsilon > 0, \exists N, n > N \Rightarrow |x_n - a| < \varepsilon$$
  $\lim_{n \to \infty} x_n = a$  极限存在,为收敛,不存在为发散

#### 8.1.3 有界数列

若∃M > 0, { $M \in \text{正数}$ } 使得 $\forall n$ ,  $|x_n| \leq M$ 则称数列 { $x_n$ } 为有界数列

### 8.1.4 收敛数列的有界性

(8.1.1)

#### 8.1.5 收敛数列的保号性

如果  $\lim n \to \infty x_n = a$  存在,且 a > 0,则  $\exists N > 0 \{ N \in N^+ \}$  当 n > N 时,都有  $x_n > 0$  (8.1.2)

#### 8.2 函数极限

#### 8.2.1 性质

极限的唯一性

(8.2.1)

#### 8.3 运算

$$\lim_{n \to \infty} (x_n \pm y_n) = \lim_{n \to \infty} x_n \pm \lim_{n \to \infty} y_n$$
 (8.3.1)

$$\lim_{n \to \infty} (x_n y_n) = \lim_{n \to \infty} (x_n) \lim_{n \to \infty} (y_n)$$
(8.3.2)

$$\lim_{n \to \infty} \frac{x_n}{y_n} = \frac{\lim_{n \to \infty} x_n}{\lim_{n \to \infty} y_n}$$
(8.3.3)

# 8.3.1 夹逼定理 (三明治定理)

$$x_n \leqslant z_n \leqslant y_n \qquad \forall b > N_0$$
 若  $\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n = a$ 则  $\lim_{n \to \infty} z_n = a$  (8.3.4)

#### 导数 9

#### 幂数,指数,对数 9.1

$$\frac{d}{\mathrm{d}x}x^a = ax^{a-1} \tag{9.1.1}$$

$$\frac{d}{\mathrm{d}x}b^x = b^x \ln b \tag{9.1.2}$$

$$\frac{d}{dx}e^x = e^x \tag{9.1.3}$$

$$\frac{d}{\mathrm{d}x}\ln x = \frac{1}{x} \tag{9.1.4}$$

# (9.1.5)

(9.2.3)

(9.2.5)

#### 9.2三角函数

$$\frac{d}{dx}\sin x = \cos x\tag{9.2.1}$$

$$\frac{d}{\mathrm{d}x}\arcsin x = \frac{1}{\sqrt{1-x^2}}\tag{9.2.2}$$

$$\frac{d}{dx}\csc x = -\csc x \cot x$$

$$\frac{dx}{dx}\cos x = -\sin x\tag{9.2.4}$$

$$\frac{d}{dx}\sec x = \sec x \tan x$$

$$d \qquad 1$$

$$\frac{d}{dx}\operatorname{arcsec} x = \frac{1}{|x|\sqrt{x^2 - 1}} \tag{9.2.6}$$

$$\frac{d}{dx}\tan x = \sec^2 x$$

$$\frac{d}{dx}\tan x = \sec^2 x \tag{9.2.7}$$

$$\frac{d}{dx}\arctan = \frac{1}{1+x^2} \tag{9.2.8}$$

$$\frac{d}{dx}\cot x = -\csc^2 x\tag{9.2.9}$$

$$\frac{d}{dx}\sinh x = \cosh x \tag{9.2.10}$$

$$\frac{d}{dx}\cosh x = \sinh x \tag{9.2.11}$$

# 9.3 倒数运算

$$A = B$$

$$(9.3.1-1)$$

$$C = D$$

(10.1.1)

(10.2.2)

(10.2.3)

#### 10 积分

10.2

#### 10.1 幂数,指数,对数

三角函数

$$\int x^{a} dx = \frac{1}{a-1} x^{a-1} + C$$
 (10.1.1)  

$$\int b^{x} dx = \frac{b^{x}}{\ln b} + C$$
 (10.1.2)  

$$\int e^{x} dx = e^{x} + C$$
 (10.1.3)  

$$\int \frac{1}{x} dx = \ln x + C$$
 (10.1.4)  

$$\int \sin x dx = -\cos x + C$$
 (10.2.1)

$$\int \sin x dx = -\cos x + C$$

$$\int \frac{1}{\sqrt{1 - x^2}} dx = \arcsin x + C$$

$$\int \csc x \cot x dx = -\csc x + C$$

$$\int \cos x dx = \sin x + C$$

$$\int \sec x \tan x dx = \sec x + C$$

$$\int \sec^2 x dx = \tan x + C$$

$$\int \csc x \cot x dx = -\csc x + C$$

$$\int \cos x dx = \sin x + C$$

$$\int \sec x \tan x dx = \sec x + C$$

$$\int \sec^2 x dx = \tan x + C$$

$$\int \csc^2 x dx = -\cot x + C$$

$$\int \frac{1}{|x| \sqrt{x^2 - 1}} dx = \operatorname{arcsec} x + C$$

$$\int \frac{1}{1 + x^2} dx = \tan x + C$$

$$\int \sinh x dx = \cosh x + C$$

$$\int \cosh x dx = \sinh x + C$$

$$(10.2.3)$$

$$(10.2.4)$$

$$(10.2.5)$$

$$(10.2.6)$$

$$(10.2.7)$$

$$(10.2.8)$$

$$(10.2.9)$$

$$\int \sinh x dx = \cosh x + C$$

$$(10.2.10)$$

$$\int \cosh x dx = \sinh x + C$$

$$(10.2.11)$$

#### 积分运算 10.3

#### 11 零散的一些

$$\sum_{k=0}^{n} q^k = \frac{1 - q^{n+1}}{1 - q} \tag{11.0.1}$$

$$A_N = \sum_{k=0}^n q^k \qquad qA_N = \sum_{k=1}^{n+1} q^k$$

$$A_N - qA_N = \sum_{k=0}^n q^k - \sum_{k=1}^{n+1} q^k = 1 - q^{n+1}$$

$$A_N = \frac{1 - q^{n+1}}{1 - q}$$

$$\log_{10} x = \lg_x \tag{11.0.2}$$

$$\log_e x = \ln_x \tag{11.0.3}$$

$$\log_b xy = \log_b x + \log_b y \tag{11.0.4}$$

$$\log_{(b^n)} x = \frac{1}{n} \log_b x \tag{11.0.5}$$

$$\log_b x^n = n \log_b x \tag{11.0.6}$$

$$\log_b x = \frac{\log_c x}{\log_b b} \tag{11.0.0}$$

$$b^n = x$$
  $b^m = y$ 

$$b^{n+m} = xy$$

 $\log_b xy = n + m = \log_b x + \log_b y$ 

$$b^n = x$$

$$\log_b x = n$$

$$\frac{1}{n}\log_b x = 1 = \log_{(b^n)} x$$

$$b^{1} = x^{n} \qquad b^{\frac{1}{n}} = x$$
$$n \log_{b} x = 1 = \log_{b} x^{n}$$

$$\log_b x = \log_{c^{(\log_c b)}} c^{(\log_c x)} = \frac{\log_c x}{\log_c b}$$

### 12 证明

#### $12.1 \quad 1.2.1$

$$\sinh x \cosh x = \left(\frac{e^x - e^{-x}}{2}\right) \left(\frac{e^x + e^{-x}}{2}\right)$$
$$= \left(\frac{1}{2}\right) \left(\frac{e^{2x} - e^{-2x}}{2}\right)$$
$$= \frac{1}{2} \sinh(2x)$$
$$\sinh(2x) = 2 \sinh x \cosh x$$

#### 12.2 1.2.2

$$\cosh^{2} x - \sinh^{2} x = \left(\frac{e^{x} + e^{-x}}{2} + \frac{e^{x} - e^{-x}}{2}\right) \left(\frac{e^{x} + e^{-x}}{2} - \frac{e^{x} - e^{-x}}{2}\right)$$

$$= e^{x} \times e^{-x}$$

$$= 1$$

#### $12.3 \quad 1.2.3$

$$\cosh^{2} x + \sinh^{2} x = \left(\frac{e^{x} + e^{-x}}{2}\right)^{2} + \left(\frac{e^{x} - e^{-x}}{2}\right)^{2}$$

$$= \frac{2e^{2x} + 2e^{-2x}}{4}$$

$$= \frac{e^{2x} + e^{-2x}}{2}$$

$$= \cosh(2x)$$

#### 12.4 1.2.4

$$\cosh(2x) = \cosh^2 x + \sinh^2 x$$

$$= \sinh^2 x + 1 + \sinh^2 x$$

$$= 2\sinh^2 x + 1$$

$$\cosh x = 2\sinh^2 \frac{x}{2} + 1$$

12.5 8.1.1 12 证明

#### $12.5 \quad 8.1.1$

#### 12.6 8.1.2

#### 12.7 8.2.1

反设 
$$\lim_{n \to \infty} x_n = a$$
,  $\lim_{n \to \infty} x_n = b$ ,  $\mathbb{H}a < b$ 

$$\varepsilon = \frac{b-a}{3} \begin{cases} \exists N_1, \ n > N_1, \ |x_n - a| < \frac{b-a}{3} \\ \exists N_2, \ n > N_2, \ |x_n - b| < \frac{b-a}{3} \end{cases}$$

$$N = \max\{N_1, N_2\}, \ n > N \Rightarrow \begin{cases} n > N_1 \\ n > N_2 \end{cases}$$

$$b - a = |(x_n - a) - (x_n - b)|$$

$$\leqslant |x_n - a| + |x_n - b|$$

$$< \frac{b-a}{3} + \frac{b-a}{3}$$

$$< \frac{2(b-a)}{3}$$

#### 12.8 8.3.4

$$\forall \varepsilon > 0$$

$$|x_n - a| < \varepsilon \qquad \forall n > N_1$$

$$|y_n - a| < \varepsilon \qquad \forall n > N_2$$

$$\Rightarrow N = \max\{N_1, N_2, N_0\}, \, \text{则当} n > N \text{时有}$$

$$a - \varepsilon < x_n \le z_n \le y_n < a + \varepsilon$$

$$|z_n - a| < \varepsilon$$

$$\lim_{n \to \infty} z_n = a$$