Discrete Optimization

Local Search: Part VI

Goals of the lecture

- Escaping local minima
- Connectivity

If you want guarantees, buy a toaster (C. Eastwood)

- Local minima
 - a configuration c is a local minima with respect to neighborhood N if

$$\forall n \in N(c) : f(n) \ge f(c)$$

- No guarantees for global optimality
 - escaping local optima is a critical issue in local search

Local Search

How to Find High-Quality Minima?

How to Find High-Quality Minima?

Connectivity

► A neighborhood N is connected if, from every configuration S, some optimal solution O can be reached by a sequence of moves, i.e.,

$$S = S_0 \rightarrow S_1 \rightarrow S_2 \rightarrow \dots \rightarrow S_n = O$$

where

$$S_i \in N(S_{i-1}).$$

Connectivity

- Connectivity does not guarantee optimality
 - our local searches have been greedy

Connectivity

- Connectivity does not guarantee optimality
 - our local searches have been greedy

Graph Coloring

Graph Coloring

- Neighborhood
 - -Change the color of a node
- ► The neighborhood is connected
 - -simple algorithm
 - -S_n is the color of node n in configuration S
 - -O is the optimal configuration

```
\begin{array}{l} \text{S} := \text{some configuration} \\ \text{for each node n} \\ \text{if } S_n \ != O_n \\ S_n \ := O_n \end{array}
```

Car Sequencing

- Cars on an assembly line
- Cars require specific options
 - -leather seats, moonroof
- Capacity constraints on the production units
 - at most 2 out of 5 successive cars can require a moonroof
- Sequence all the cars such that the capacity constraints are satisfied

Car Sequencing

Slots	1	2	3	4	5	6	7	8	9	10	Demand
Class 1											1
Class 2											1
Class 3											2
Class 4											2
Class 5											2
Class 6											2
Setup	1	2	3	4	5	6	7	8	9	10	Capacity
Option 1											1/2
Option 2											2/3
Option 3											1/3
Option 4											2/5

Options	1	2	3	4	5	Demand
Class 1	yes		yes	yes		1
Class 2				yes		1
Class 3		yes			yes	2
Class 4		yes		yes		2
Class 5	yes		yes			2
Class 6	yes	yes				2
Capacity	1/2	2/3	1/3	2/5	1/5	

1/5

Option 5

The Swap Neighborhood is Connected

- Neighborhood
 - -Swap two slots in the assembly
- ► The neighborhood is connected
 - -simple algorithm

```
S := some configuration \\ for(int i = 1; i <= n; i++) \\ if (S_i != O_i) \\ let S_j = O_i (j > i) \\ S_i <-> S_j
```

Traveling Salesman Problem

2-OPT

Is 2-OPT Connected?

2-OPT

Is 2-OPT Connected?

Is 2-OPT Connected?

- ► The neighborhood is connected
 - -simple algorithm

```
\begin{split} T &:= \text{some tour} \\ &\text{for(int i = 1; i <= n; i++)} \\ &\text{ if } (T_i \ != O_i) \\ &\text{ find } S_i, \ldots, S_{i+k} \text{ such that } S_{i+k} = O_i \\ &S &:= (S_1, \ldots, S_{i-1}, S_{i+k}, S_{i+k-1}, \ldots, S_i, S_{i+k+1}, \ldots, S_n) \end{split}
```

Is the TPP Neighborhood Connected?

Call me if you have the proof

Until Next Time

Citations

Wolfsburg - Volkswagen Assembly Line (http://www.flickr.com/photos/24736216@N07/2994043188/) by Roger Wollstadt (http://www.flickr.com/photos/24736216@N07/) CC BY-SA 2.0 (http://creativecommons.org/licenses/by-sa/2.0/deed.en)

Geely assembly line in Beilun, Ningbo (http://commons.wikimedia.org/wiki/File:Geely_assembly_line_in_Beilun,_Ningbo.JPG) by Siyuwj (Own work) [CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0)], via Wikimedia Commons