

PRESENTATION NOTES, DON'T DISPLAY THESE!

Mark Blyth

Last meeting

Last time:

- The challenges of working with spiking signals
 - Lots of high-frequency energy
 - Typically noisy, both from stochastics and from measurement errors
 - Lots of high-frequency components mean a LP filter will remove the signal, as well as noise, so we can't naively clean up the signal
 - Also means using a truncated Fourier discretisation will be infeasible, since it'll have far too many components to effectively discretise
- Surrogate methods to overcome these:
 - Use a regression model in place of the real data
 - Perform desired analysis on this instead
 - 'Desired analysis' will be explained more later, in a CBC context
 - A well-chosen surrogate will filter out all the noise, without losing any signal

Surrogates point 1

- k Given $y_i = f(x_i) + \varepsilon$, estimate f(x)
 - We assume there's a 'true' underlying signal f(x)
 - This true signal is what the neuron is actually doing, eg. what the membrane potential actually is at the patch clamp location
 - We don't have access to f(x); instead, we get a time-series y_i, of noise-corrupted samples
 - These noise-corrupted samples contain both the actual signal at the given sample time, plus some nuissance variable ε from errors in measurement
 - We wish to recover f(x) from these samples, as that's the noise-free, true signal that we're interested in
 - Simply LP filtering would only remove the HF components of f(x) and ε ; instead, we wish to separate the two out into noise and signal
 - \blacktriangleright We can use statistical methods to infer f(x) and ε
 - This gives us a clean, noise-free surrogate to perform all the analysis on
 - Surrogate: we use f(x) in place of the real data

Surrogates point 2

- Splines and Gaussian processes are good methods for estimation
 - ► GPR: mathematically elegant, rigorous method
 - ightharpoonup Assume normally distributed ε
 - Point estimate: $y \sim N(f(x), \varepsilon)$
 - ► Whole function estimate: f(x) ~ GP(mu, Sigma)
 - Whole function estimate is actually a Gaussian distribution over functions
 - The whole function estimate is just a generalisation of the point estimate
 - For a sensible prior, we can then use Bayes to estimate the posterior distribution on f(x)
 - Statistically optimal estimator
 - Downside: for finite data, results are only as good as the priors we use; coming up with good priors is hard
 - ► Splines: simple, effective, less elegant
 - Split f(x) into intervals, and asume f(x) is locally polynomial on any given interval
 - ► Enforce C² smoothness over polynomial sections
 - Polynomials then join up at the edges of each interval; these joinings are called knot points
 - Remaining free parameters are chosen to maximise goodness-of-fit
 - No need to define priors, so it's easier to use on data where choice of priors becomes difficult
 - Knot points are difficult to choose; use Bayesian inference to form a posterior distribution over knots

Developments since last time

IMAGE.

- Surrogates tested and working
 - GPR works on both real and synthetic data, in cases where the data are sufficiently stationary
 - Free knot splines works always, so use it in cases where the data aren't sufficiently stationary
- Image taken from recent abstract
 - Bayesian free-knot splines
 - Works well we can extract the underlying signal near perfectly, even given very noisy observations
 - Three changepoints per period: at the start, top, and end of a spike; here, the signal rapidly changes from slow to fast behaviour
 - ► These changepoints are the hardest bits to model, and therefore the surrogates are least accurate here (the time between spikes shows a slow, gentle change that's easy to model accurately)
 - Zooming in on one of the changepoints, we see that the surrogate recreates the latent signal nearly exactly; even at the most difficult-to-fit part of the signal, we still get excellent results

Developments since last time

- Novel discretisations
 - Surrogates only give us a noise filter
 - For some CBC implementations, this is sufficient
 - In CBC cases where we have to do Newton iterations, this isn't useful; we instead need a low-dimensional discretisation
 - ► We can apply the surrogates ideas to creating discretisations
- - Best way to demonstrate that these methods work, are valuable

Discretisations

- Discretisation takes a function, projects it onto a set of basis functions
- Coefficients and basis functions are sufficient to represent the signal
- Lots of possible choices for basis functions
 - C^{infinity} signals can be represented exactly with monomial basis functions (taylor expansion)
 - Periodic signals can be represented exactly with trig basis functions (Fourier series)
 - These are bad choices for neuron CBC require lots of coefficients to describe the spiking signals
- We've already met splines; turns out we can define a set of basis functions for splines
 - ► Can therefore express any spline curve in the above form
 - This means we can discretise with splines too!
 - Splines are a good choice: they provide a nice simple, intuitive model, and don't require many basis functions to get a good approximation

Splines discretisation

- \blacktriangleright Fit a set of basis functions to initial signal $f_0(x)$
 - Choose a set of knots xi, such that the splines basis $b_i(x)$ that we construct from knots xi is able to fit the initial signal $f_0(x)$ as accurately as possible, in the least squares sense
 - ► This is actually hard to do open research problem
 - Elegant approach: find a Bayesian posterior over $\xi | data$. Downside: is slow and complicated; need to do MCMC to approximate intractable integral
 - Simple approach 1: put a knot at every datapoint then penalise functional of second derivative, to enforce smoothness. Downside: we end up with huge numbers of knots.
 - Simple approach 2: keep adding knots until we reach satisfactory results; downside: lower quality fit, no guarantee of low-dimensionality
- My approach: choose the number of knots; numerically optimise knot positions; start from random initial knots; avoid local minima by repeating this lots
 - Downside: need to repeat lots to find global minimum
 - Need to choose the number of knots a priori; algo doesn't work it out for us
 - Upside: quick and easy approach to finding a good set of knots; easiest way to get low-dimensional knot set

Splines demo

- Splines discretisation works well
- This example uses just 8 knot points
 - ► Higher than an 8d discretisation, as we need to add exterior knots so that the basis splines have support across the range of the data
- Reconstructs the latent signal near-perfectly

Splines vs Fourier

Also shown: Fourier

- Visually, splines fits better than Fourier
- Fourier is harder to fit
- Too few harmonics and the series can't fit the data
- Too many harmonics and the series starts fitting the noise as well as the data
- Not really any sweet spot; no point where the series fits the signal, but averages out the noise
- This is the usage case for surrogates when we have noisy data, but still want to use Fourier with it!

Goodness-of-fit

This shows the goodness-of-fit of a splines model with given number of knots, and Fourier series with given number of harmonics

- No noise, Fitzhugh Nagumo
- Splines error decays more rapidly than Fourier error
- Effects become even more dramatic for more neuron-like signals
- Note though this is the goodness-of-fit of a splines, fourier model on a single signal; doesn't determine how well the splines model generalises to discretising unseen signals, ie. only shows how well the spline model fits a signal to which its basis functions were fitted; using the same basis functions on a signal from a different parameter value might get different goodness-of-fit. Fourier won't have this issue since it uses trig basis all the time

Method usage cases

Harmonically forced:

- When we have a harmonically forced system, we can have a harmonically oscillating control action, and treat the control action as the forcing term
- In this setup, we can efficiently iterate on the Fourier harmonics, to drive the higher-order harmonics of the control action to zero
- This necessitates a Fourier projection. No need for a novel discretisation, but we could possibly improve the Fourier discretisation by using a surrogate to first filter off the noise

Non-harmonically forced:

- If system is unforced, we apply parameter and control action separately, and need the control action to be zero
- We can use Newton iterations to solve for the noninvasive control action
- Since we're doing Newton iterations, we need to work with a low dimensional system, otherwise it'll be impractically slow
- To have a low-dimensional system, we use a novel discretisation, eg. splines

In-silico CBC

Current work: implementing an in-silico CBC simulation

Best way to test if the surrogates, discretisations work with CBC is to try using them with CBC!

CBC method POINTS 1, 2

- Use PD control
 - Easy, model-free control method
 - Gets good results with a method we could easily use in experiments too
 - Fit control parameters with brute force
 - Easy to simulate, minimal effort in controller design
- ★ As per standard numerical continuation, do a change in variables so that time is in [0,1], and treat period as an extra continuation variable
 - Not necessary with Fourier discretisation
 - Splines knots are like finite-differences or collocation mesh points
 - ► Time rescaling is necessary with mesh-based methods, as changing the period would effectively move the mesh points relative to the signal

CBC method POINTS 3, 4

Non-adaptive mesh

- Fit knots at the start, keep them in the same position throughout
- Adaptive mesh would mean re-fitting the knots after a prediction-correction step
- In terms of code, this is minimal extra effort, but would add a slight fitting overhead
- Only using non-adaptive mesh because I'm interested to see how well it works
- Use Newton iterations to solve for discretised control target = discretised system output
 - Nothing fancy, just simple, slow Newton with finite differences; able to do this in-silico, but would need more rigorous treatment for experiments
 - Sensible to start off with easy root finding, and develop something fancy (Broyden) later
 - Splines method adds exterior knots, and some of the coefficients are always zero, so they can be removed from the discretisation to speed up the finite-differences Jacobian step; I'm currently being lazy and not doing this

Discretisors

- Instantiate desired discretisor type with its relevant parameter
 - Fourier: n_{harmonics}
 - Splines: knot locations
 - Regardless of discretisor type, can then call discretisor discretise, discretisor undiscretise
- Simple, standard interface to discretisation routines
 - Able to swap between Fourier, Splines with zero effort
 - Allows direct comparison between discretisation methods
 - Could easily implement any other discretisation (eg. wavelets) using the same interface
- Lightly tested:
 - ► The code runs and produces sensible outputs
 - Haven't tested its ability to generalise to new signals
 - le. don't know how well basis funcs fitted to $f_0(x)$ will work for discretising $f_1(x)$

Controllers

- Can design controllers with a standard interface too
 - Set the controller type, control target, gains, and the control matrices
 - The controller object handles the rest
- Similarly, can design systems with a standard interface
 - Specify a function that gives the ODE RHS; a list of ODE parameters; the controller
 - Can then run the controlled model for any choice of time range, ICs, pars
 - Subsequent runs optionally start with ICs given by final state of last run, much like a real system

The point of all these standardised interfaces is that it becomes really easy to swap everything out; eg. apply to different models, different control strategies, different discretisors

Can then run a CBC experiment in less than 10 lines of code; easy to apply, reapply, experiment with

Control

IMAGE

FH system with sine target; looks very reasonable

- - Seems like a sensible output
- Can easily write out the RHS of a PD-controlled FH system w/ sine target; can compare this explicit RHS to the code-generated system, to make sure the code isn't doing anything funny
 - Haven't done this yet

Continuation

- Runs a psuedo-arclength secant-predictor Newton-corrector CBC
- Code is written now
- Requires a 'system': this is just a controlled model [from previous code], with its arguments binded

Simulation summary

- Results handling is just something to take the set of natural periodic orbits, apply some measure (eg. amplitude), then plot them on a bifurcation diagram.
- Should be working and tested within a week

Open questions

- Will splines discretisation work?
 - If splines can only model the signal to which the knots were fitted, they won't work for CBC
 - My guess is they will work
- Stationary or adaptive mesh?
 - If splines basis aren't good at generalising, can re-fit knots at each step, much like an adaptive mesh, which would hopefully fix problems
- Efficient solving methods
 - Remove zero-coefficients from discretisation
 - Broyden Jacobian update?
 - Newton-Picard iterations? Ludovic's suggestion of Newton-iterating on unstable coefficients, fixed-point iterating on stable coefficients; reduces the size of the Jacobian / finite differences step
- Can we interface the code with Simulink?
 - Ludovic has a simulink model that would be fun to play with; haven't looked at it yet since I've been testing the CBC codes; would be interesting to try to call the finished code from MATLAB, in which case we might be able to interface the two

Next steps

- Continuation tutorial paper
 - Haven't touched it recently
 - Making slower progress since I'm trying to get the stuff for this done before the paper deadline
- Conference paper for this: will start on that once the CBC simulation is sorted