Semaine n° 4 : du 25 septembre au 29 septembre

Lundi 25 septembre

- Cours à préparer : Chapitre III Calculs algébriques
 - Partie 4 : Système linéaire, système homogène associé; système compatible, système incompatible; systèmes équivalents, opérations sur les lignes, algorithme du pivot.
- Exercices à corriger en classe
 - Feuille d'exercices n° 2 : exercices 11, 15.

Mardi 26 septembre

- Cours à préparer : Chapitre IV Quelques fondamentaux
 - Partie 1 : Proposition logique, valeur de vérité.
 - Partie 2 : Connecteurs logiques : négation ; conjonction , disjonction ; implication , modus ponens , contraposée ; équivalence.
- Exercices à corriger en classe
 - Feuille d'exercices n° 3 : exercices 3, 4, 6.

Jeudi 28 septembre

- Cours à préparer : Chapitre IV Quelques fondamentaux
 - Partie 3: Prédicat; quantificateur existentiel, quantificateur universel; permutation, négation.
 - Partie 4 : Principe de récurrence simple; récurrence double.
- Exercices à corriger en classe
 - Feuille d'exercices nº 3 : exercices 8, 9, 10.

Vendredi 29 septembre

- Cours à préparer : Chapitre IV Quelques fondamentaux
 - Partie 4 : Récurrence forte; récurrence à partir d'un certain rang; récurrence finie; récurrence descendante.
- Cours à préparer : Chapitre V Nombres complexes
 - Partie 1 : Inégalité triangulaire.
 - Partie 2 : Formules d'Euler, formule de Moivre.
 - Partie 3 : Groupe des nombres complexes de module 1.

Échauffements

Mardi 26 septembre

• Simplifier

1.
$$\ln\left(\frac{\sqrt{5}+1}{2}\right) + \ln\left(\frac{\sqrt{5}-1}{2}\right)$$
.

- 2. $\ln \sqrt{e}$
- 3. $e^{-\ln 3}$
- 4. $e^{\ln 2 \ln 5}$

- 5. $\ln \sqrt[3]{e^2}$
- 6. $(ee^{\sqrt{2}})^{1-\sqrt{2}}$ 7. $\left(\frac{e^{\sqrt{5}}}{e^{\sqrt{3}}}\right)^{\sqrt{3}+\sqrt{5}}$
- Cocher toutes les assertions vraies : Soit $x \in \mathbb{R}$.

 - $\Box \frac{\mathrm{d}\sin^2(x)}{\mathrm{d}x} = \sin(2x)$ $\Box \frac{\mathrm{d}\cos^2(x)}{\mathrm{d}x} = \cos(2x)$ $\Box \frac{\mathrm{d}\sin^3(x)}{\mathrm{d}x} = \sin(3x)$

Jeudi 28 septembre

Cocher toutes les assertions vraies :

- \bullet Soit f une fonction décroissante définie sur un intervalle I. Alors
 - $\square \ \forall x, y \in I, \ x \leqslant y \Rightarrow f(x) \leqslant f(y).$
 - $\square \ \forall x, y \in I, \ x < y \Rightarrow f(x) \geqslant f(y).$
 - $\square \ \forall x, y \in I, \ x < y \Rightarrow f(x) > f(y).$
 - $\square \ \forall x, y \in I, f(x) \geqslant f(y) \Rightarrow x < y.$

 - $\square \ \forall x, y \in I, f(x) \geqslant f(y) \Rightarrow x \leqslant y.$
 - $\Box f' \leq 0.$
- Soit $(x_k)_{k\in\mathbb{N}}$ et $(y_k)_{k\in\mathbb{N}}$ deux famille de complexes, n un entier naturel et $\lambda\in\mathbb{C}$.

$$\square \sum_{k=0}^{n} \lambda x_k = \lambda \sum_{k=0}^{n} x_k$$

- $\square \prod_{k=0}^{n} \lambda x_k = \lambda \prod_{k=0}^{n} x_k$
- $\square \prod_{k=0}^{n} \lambda x_k = \lambda^n \prod_{k=0}^{n} x_k$

$$\Box \sum_{k=0}^{n} x_k y_k = \sum_{k=0}^{n} x_k \sum_{k=0}^{n} y_k$$

$$\Box \sum_{i=0}^{n} \sum_{j=0}^{n} x_i y_j = \sum_{i=0}^{n} x_i \sum_{j=0}^{n} y_j$$

Vendredi 29 septembre

- $\bullet \prod_{i=2}^{15} \frac{2i^2}{i^2 + 2i + 1} = \cdots$
- Cocher toutes les assertions vraies :
 - \square pour tout $x \in \mathbb{R}$, $\sqrt{x^2} = x$.
 - \square pour tout $x \in \mathbb{R}$, $(\sqrt{x})^2 = x$.
 - \square pour tout $x \in \mathbb{R}_+, \sqrt{x^2} = x$.
- \square pour tout $x \in \mathbb{R}_+^*$, $e^{-\ln(x)} = \frac{1}{x}$.
- \square pour tout $x \in \mathbb{R}_+^*$, $e^{-\ln(x)} = -x$.
- \square pour tout $x \in \mathbb{R}_+^*$, $e^{\ln(1/x)} = -x$.
- \square pour tout $x \in \mathbb{R}$, $\ln e^{-x} = \frac{1}{x}$.
- \square pour tout $x \in \mathbb{R}$, $\ln \frac{1}{e^x} = -x$.