

(19) BUNDESREPUBLIK
DEUTSCHLAND

DEUTSCHES
PATENT- UND
MARKENAMT

(12) **Offenlegungsschrift**
(10) **DE 100 08 089 A 1**

(51) Int. Cl.⁷:
C 07 K 5/078

C 07 D 277/56
C 07 D 207/26
C 07 D 207/38
C 07 D 213/79
C 07 C 271/22
C 07 F 7/18
// C07M 7:00

(21) Aktenzeichen: 100 08 089.8
(22) Anmeldetag: 22. 2. 2000
(43) Offenlegungstag: 31. 10. 2001

DE 100 08 089 A 1

(71) Anmelder:

Gesellschaft für Biotechnologische Forschung mbH
(GBF), 38124 Braunschweig, DE

(74) Vertreter:

Patentanwälte Dr. Boeters, Bauer, Dr. Forstmeyer,
81541 München

(72) Erfinder:

Höfle, Gerhard, 38124 Braunschweig, DE; Leibold,
Thomas, 38124 Braunschweig, DE; Steinmetz,
Heinrich, 38124 Braunschweig, DE

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

- (54) Syntheseverfahren zur Herstellung von Tubulysinen
(57) Erfindungsgemäß wird die absolute Konfiguration von
Tubulysin, ein Verfahren zur Herstellung von Tubulysinen
und die dabei eingesetzten Zwischenprodukte offenbart.

DE 100 08 089 A 1

DE 100 08 089 A 1

Beschreibung

- [0001] Erfindungsgemäß wird die absolute Konfiguration von Tubulysin, ein Verfahren zur Herstellung von Tubulysinen und die dabei eingesetzten Zwischenprodukte offenbart.
- [0002] Vor kurzem haben wir die Tubulysine (1) als eine neue, auf das Tubulin-Skelett wirkende, Substanzfamilie aus Myxobakterien in Irsee vorgestellt [1]. Im Gegensatz zu den Epothilonen zeigen diese eine mikrotubuli-abbauende Wirkung sowie die vermehrte Ausbildung von Zentrosomen [1] (s. Abb. 1). Mit einer Cytotoxizität von $IC_{50} = 10\text{--}500 \mu\text{g}$ sind die Tubulysine als potentielle Cytostatika von besonderem Interesse.
- [0003] Die Aufklärung der Konstitution erfolgte mit spektroskopischen Methoden, insbesondere 2D-NMR-Techniken, und durch Einbau von ^{13}C -markiertem Acetat und Methionin. Aufgrund der außergewöhnlichen Aktivität und einer interessanten Ähnlichkeit zu dem analog wirkenden Dolastatin 10[2a] (s. Abb. 2) wurde ein Programm zur Aufklärung der absoluten Konfiguration sowie anschließender Totalsynthese des Tetrapeptids in Angriff genommen.
- [0004] Die Konfigurationszuordnung erfolgte durch Vergleich der durch Totalhydrolyse erhaltenen Aminosäuren mit den entsprechenden Synthese-Intermediaten mittels GC- und HPLC-Analytik. Die Tubulysine enthalten nur eine proteinogene (natürliche) Aminosäure, Isoleucin. Für die Synthese der drei weiteren Bestandteile wurde erfindungsgemäß stets ein enantio- bzw. diastereoselektiver Syntheseweg entwickelt.
- [0005] Es zeigen:
- [0006] Fig. 1: Vermehrte Ausbildung von Zentrosomen und Abbau der Mikrotubuli bei Tubulysin D Zugabe (0,5 ng/ml, PtK₂ Zellen der Beutelratte);
- [0007] Fig. 2: Tubulysine A-F, Biogenesestudie und Vergleich mit Dolastatin 10 bzw. Lu 103793 [2b];
- [0008] Fig. 3a: ^1H -NMR-Spektrum von Tubulysin A (MSO, 400 MHz);
- [0009] Fig. 3b: ^{13}C -NMR-Spektrum von Tubulysin A (DMSO, 400 MHz);
- [0010] Fig. 4: GC-Spektren von Baustein I (FS-Hydrodex β -3P, 25 m, 120°C);
- [0011] Fig. 5: GC-Spektren von Baustein II (Permabond L-Chirasil-Val, 25 m, 80°C);
- [0012] Fig. 6: GC-Spektren von Baustein IV (FS-Hydrodex β -3P, 25 m, 165°C);
- [0013] Fig. 7: Relative Konfiguration von 16 (δ in ppm) (W. A. König et al. Liebigs Ann. Chem., 1987, 803–807);
- [0014] Fig. 8: GC-Spektren von Baustein III (Permabond L-Chirasil-Val, 25 m, 80°C);
- [0015] Fig. 9: Absolute Konfiguration von Tubulysin 1;

30 Synthese der Aminosäurebausteine

Baustein I: N-Methyl-pipecolinsäure (Mep)

- [0016] Enantiomerenreine N-Methyl-pipecolinsäure 3 wurde durch reduktive Aminierung von L-Pipecolinsäure 2 dargestellt (s. Schema 1). Racemische N-Methyl-pipecolinsäure 3* wurde durch Verseifung von käuflichem Ethylester-Racemat hergestellt.

Schema 1 Synthese von L-N-Methyl-pipecolinsäure

50 Baustein II: Isoleucin (Ile, allo-Ile)

- [0017] Alle GC-Derivate wurden direkt aus den käuflichen Isoleucin- bzw. allo-Isoleucin-Enantiomeren dargestellt.
- 55 Baustein III: 2-(3-Amino-1-hydroxy-4-methyl-pentyl)-thiazol-4-carbonsäure ('Tubuvalin, Tuv)

- [0018] Ausgehend von N-Cbz-L-Valin 4 wurde der Aminoalkohol 5 dargestellt, der nach Swern-Oxidation mit dem Thiazol-Wittig-Ylid 6 zum Enolether 7 umgesetzt wurde.
- [0019] Saure Hydrolyse des Enolethers lieferte Keton 8, welches durch Reduktion mit Natriumborhydrid in die diastereomeren, geschützten Tuv-Analoga 9a/b überführt wurde. Entsprechend wurde auch das Racemat 8* erhalten (s. Schema 2)

DE 100 08 089 A 1

Schema 2 Darstellung des Bausteins III (9)

Baustein IV: 4-Amino-5-phenyl-2-methyl-pentansäure (Tubuphenylalanin, Tup)

[0020] N-BOC-L-Phenylalanin 10 wurde durch Reduktion, Reoxidation mittels Swern-Oxidation und abschließende Wittig-Reaktion um eine C₃-Einheit verlängert. Es wurden zwei Produkte erhalten, bei denen es sich um das offenkettige E-Additionsprodukt 13 sowie das Lactam 12 handelte. Chromatographische Trennung und Hydrierung lieferte aus 13 ein 2 : 1 Isomerengemisch 15a/b, während aus 12 nur das BOC-geschützte Lactam 14 mit 2R/4R-Konfiguration entstand. Nach Ringöffnung und Veresterung mit Diazomethan wurde hieraus diastereomerenreines 15b erhalten (s. Schema 3).

45

50

55

60

65

DE 100 08 089 A 1

Schem. 3 Aufbau von Baustein IV ausgebildet von Phenylalanin

Konfigurationsaufklärung durch GC-Vergleich an chiralen Phasen

Totalhydrolyse und Derivatisierung

[0021] Tubulysin wurde für 12 h mit 6 N Salzsäure, bzw. für die Bestimmung von Baustein IV mit Hydrazin-Hydrat bei 100°C abgebaut. Anschließende Veresterung mit methanolischer bzw. ethanolischer Salzsäure bei 100°C und Acylierung mit Trifluoressigsäureanhydrid lieferte die für die Messungen verwendeten Derivate. Die synthetisch aufgebauten Vergleichssubstanzen wurden unter identischen Bedingungen derivatisiert.

[0022] Da bei saurer Hydrolyse eine teilweise Epimerisierung an C-2 des Bausteins IV aufgetreten war, wurde für die Bestimmung der C-terminalen Aminosäure Hydrazin-Hydrat ohne beobachtbare Epimerisierung eingesetzt.

Konfigurationsaufklärung von Baustein III

[0023] Die Zuordnung der absoluten Konfiguration von Baustein III sollte zunächst wie bereits für die anderen Bausteine beschrieben erfolgen. Überraschenderweise wurde nach der Derivatisierung von reinem 9a eine starke Racemisierung des benzyllischen Zentrums festgestellt (20–40%). Dies war bei der Derivatisierung von Tubulysin ebenfalls zu beobachten (vol[ständige Racemisierung]), weshalb eine direkte Zuordnung auf diesem Weg nicht möglich war.

[024] Im Verlauf der Hydrolyse der beiden O-Acylgruppen konnten wir ein Tubulysin-Derivat 16 mit cyclischem N,O-Acetal isolieren, welches zweifelsfrei zumindest die relative Konfigurationszuordnung der beiden Zentren ermöglichte (s. Schema 4).

55

60

65

DE 100 08 089 A 1

Schema 4 Synthese eines Tubulysin-Derivats mit cyclischem Acetal

[0025] Durch Vergleich der NMR-Daten von 16 mit Literaturwerten wurde für Baustein III eine relative trans-Konfiguration abgeleitet (s. Abb. 7).

[0026] Der Versuch, die noch fehlende absolute Konfiguration an C-3' durch Vergleich auf der Keto-Stufe 8 (s. Schema 5) durchzuführen, scheiterte, da auf verschiedenen chiralen GC- und HPLC-Säulen keine Trennung der Enantiomeren erreicht werden konnte.

Ein weiterer Abbau sollte nun durch Bayer-Villiger-Oxidation/-Hydrolyse und Vergleich der Produkte mit Valinol bzw. Homovalin erfolgen. Da die Reaktion selbst mit Pertrifluoressigsäure extrem langsam verlief (< 2% Umsatz in 7d), wurde ein ozonolytischer Abbau untersucht. Umsetzung von 8 mit Trimethylsilyltrifluoromethansulfonat lieferte zunächst Silylenolether 17, der nach Ozonolyse und oxidativer Aufarbeitung sowie Veresterung zu N-Cbz-

Valinethylester abgebaut wurde (s. Schema 5).

Schema 5 Abbauversuche ausgehend von Keton 8

[0027] Durch Anwendung dieser Abbau-Sequenz auf die aus Tubulysin hergestellte Aminosäure 19 konnte nun dem

DE 100 08 089 A 1

letzten Stereozentrum die L-Konfiguration zugeordnet werden (s. Schema 6 und Abb. 8).

Schema 6 Abbau von Tubulysin zu 20

[0028] Aus den Ergebnissen der GC-Untersuchungen ergibt sich für Tubulysin folgende absolute Konfiguration (s. Abb. 9):

[0029] Zunächst sollte eine konvergente Totalsynthese von Tubulysin D unter weitgehender Verwendung der bisher dargestellten Aminosäuren durchgeführt werden (s. Schema 9). N-Methylpipocolinsäure wurde in racemischer Form eingesetzt, eine Trennung erfolgte dann auf der Dipeptid-Stufe 27a/b. Baustein III wurde wie bereits beschrieben synthetisiert, der entscheidende Punkt ist hier der selektive Aufbau des Amidoacetals (s. Schema 7). Es ist vorgesehen, die 2'-Hydroxyfunktion im Baustein erst auf einer möglichst späten Stufe durch Reduktion des Ketons einzuführen.

Schema 7 Synthese von Baustein-II 22

[0030] Die Synthese von Baustein IV 25 wird durch Methylierung der Aminosäure in 2-Position unter Verwendung eines Evans-Auxiliars erreicht (s. Schema 8).

DE 100 08 089 A 1

Schema 8 Synthese von Baustein-IV 25

Schema 9 Kupplungsstrategie

[0031] Abschließende Reduktion und Acetylierung an C-1' von Tuv, Trennung der Diastereomeren und Abspaltung des TMSE-esters liefert 1.

Reagenzien auf S. 7

DECP/NEt₃: Phosphonsäurediethylester-cyanid/Triethylamin

65

PFPOH/DCC: Pentafluorphenol/Dicyclohexylcarbodiimid

PEPOTFA: Pentafluorphenol-Trifluoracetat

Ac₂O: Essigsäureanhydrid

66

TBAF: Tetrabutylammoniumfluorid

DE 100 08 089 A 1

[0032] Es ist uns gelungen, die absolute Konfiguration von Tubulysin durch Abbau und Vergleich mit Referenzsubstanzen aufzuklären. Die für die vier Aminosäure-Bausteine entwickelten Synthesen erlauben nun eine konvergente Totalsynthese der durch Isolierung nur in äußerst geringen Mengen zugänglichen natürlichen Tubulysine A-F. Darüber hinaus erlaubt es diese Strategie, durch Variation der vier Bausteine eine Bibliothek von stereoisomeren und strukturanalogen Tubulysinen herzustellen.

Literatur

- 1) Sasse et al. (Poster) 10. Irseer Naturstofftag der Dechema e. V., Irsee, 1998.
- 10 2) a. G. R. Pellett et al., J. Nat. Prod. 1981, 44, 482-485; b. M. DeArruda et al., Cancer Res. 1995, 55, 3085-3092.
- 3) J. Lukas et al. Collect. Czech. Chem. Commun. 1957, 22, 286.
- 4) A. M. P. Koskinen et al. J. Org. Chem. 1998, 63, 92-98.

[0033] In der Beschreibung und den Ansprüchen können R, R1 und R2 unabhängig voneinander ein H-Atom, eine Alkylgruppe, eine Arylgruppe oder eine Heteroarylgruppe darstellen.

[0034] Vorzugsweise ist eine Alkylgruppe eine C1-6-Alkylgruppe, weist eine Arylgruppe bis zu vier gegebenenfalls anellierte Ringe auf und weist eine Heteroarylgruppe bis zu vier gegebenenfalls anellierte Ringe auf, wobei jeder Ring bis zu drei Heteroatome wie z. B. N, O oder S-Atome enthalten kann.

Patentansprüche

- 20 1. Verfahren zur Herstellung einer Verbindung der Formel

worin R¹ ein H-Atom, eine Alkylgruppe, eine Arylgruppe oder eine Heteroarylgruppe ist und R² ein H-Atom oder eine OH-Gruppe ist,

35 **dadurch gekennzeichnet**, daß
a) eine Verbindung der Formel 3*

40 mit einer Verbindung der Formel 26

45 zu einer Verbindung der Formel 27b

50 60 umgesetzt wird;
b) eine Verbindung der Formel 22

DE 100 08 089 A 1

in der R¹ ein H-Atom, eine Alkylgruppe, eine Arylgruppe oder eine Heteroarylgruppe ist mit einer Verbindung der Formel 25

zu einer Verbindung der Formel 28

umgesetzt wird;

c) die Verbindung der Formel 27b mit der Verbindung der Formel 28 zu einer Verbindung der Formel 29

umgesetzt wird;

- d) die Ketogruppe am 1'-C-Atom der Verbindung der Formel 29 in eine Acetylgruppe umgewandelt wird;
- e) die Diastereomeren getrennt werden, und
- f) der TMSE-Ester in eine COOH-Gruppe umgewandelt wird.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß in Schritt a) Phosphonsäurediethylester-cyanid/Triethylamin eingesetzt wird.

40

3. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß in Schritt b) Pentafluorphenol/Dicyclohexylcarbodiimid eingesetzt wird.

45

4. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß in Schritt c) zunächst Pentafluorphenol-Trifluoracetat und dann Triethylamin/Pd/C, H₂ eingesetzt wird.

50

5. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß in Schritt d) zunächst die Ketogruppe reduziert und dann das 1'-C-Atom acetyliert wird.

6. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß in Schritt f) Tetrabutylammoniumfluorid eingesetzt wird.

7. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß R eine C1–6-Alkylgruppe, eine Arylgruppe mit bis zu vier gegebenenfalls anneliierten Ringen oder eine Heteroarylgruppe mit bis zu vier gegebenenfalls anneliierten Ringen ist, wobei jeder Ring bis zu drei Heteroatome wie z. B. N, O oder S-Atome enthalten kann.

8. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß R eine Ethyl-, Propyl-, i-Butyl, sec-Butyl oder tert.-Butylgruppe ist.

55

9. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die Verbindung der Formel 3 als Racemat eingesetzt wird.

10. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Verbindung der Formel 3 als L-Enantiomeres eingesetzt wird.

11. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die Verbindung der Formel 26 als Diastereomerengemisch eingesetzt wird.

60

12. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß die Verbindung der Formel 26 in der allo-Form eingesetzt wird.

13. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die Verbindung der Formel 22 als Diastereomerengemisch eingesetzt wird.

14. Verfahren nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß die Verbindung der Formel 22 diastereomerenrein eingesetzt wird.

15. Verbindung der Formel 9a/b

65

DE 100 08 089 A 1

- 10 16. Verbindung nach Anspruch 16 mit einer R,R-, S,S-, R,S- oder S,R-Konfiguration.
17. Verbindung der Formel 8

- 20 dadurch gekennzeichnet, daß sie als L-Form oder als Racemat vorliegt.
18. Verfahren zur Herstellung einer Verbindung nach Anspruch 15 oder 16, dadurch gekennzeichnet, daß eine Verbindung der Formel 8 – vorzugsweise mit Natriumborhydrid in einem Alkohol – reduziert wird.
19. Verbindung der Formel 22

- 35 worin R¹ ein H-Atom, eine Alkylgruppe, eine Arylgruppe oder eine Heteroarylgruppe ist.
20. Verfahren zur Herstellung einer Verbindung nach Anspruch 19, dadurch gekennzeichnet, daß eine Verbindung der Formel 8
 a) gegebenenfalls mit NaOH in H₂O und
 b) gegebenenfalls mit TMS-EtOH und DCC versetzt wird und
 c) gegebenenfalls in Gegenwart von NaI mit einer Verbindung der Formel 21

- vorzugsweise in Gegenwart einer sauren Verbindung hydrolysiert wird.
22. Verfahren zur Herstellung einer Verbindung der Formel 7 dadurch gekennzeichnet, daß eine Verbindung der Formel 5

oxidiert und mit einer Verbindung der Formel 6

DE 100 08 089 A 1

5

umgesetzt wird.
23. Verbindung der Formel 15b

10

15b

24. Verfahren zur Herstellung einer Verbindung der Formel 15b dadurch gekennzeichnet, daß eine Verbindung der Formel 14

20

25

14

einer Ringöffnung unterworfen und das entstandene Produkt verestert wird.

25. Verfahren nach Anspruch 24, dadurch gekennzeichnet, daß die Verbindung 15b diastereomerenfrei ist.

26. Verfahren zur Herstellung einer Verbindung der Formel 14 dadurch gekennzeichnet, daß eine Verbindung der Formel 12

30

35

12

hydriert wird.

40

27. Verfahren zur Herstellung einer Verbindung der Formel 12 dadurch gekennzeichnet, daß eine Verbindung der Formel 11

45

11

oxidiert und dann um eine C₃-Einheit verlängert wurde.

50

28. Verfahren nach Anspruch 27, dadurch gekennzeichnet, daß die Oxidation eine Swern-Oxidation ist.

29. Verfahren nach einem der Ansprüche 27 oder 28, dadurch gekennzeichnet, daß die Verlängerung um eine C₃-Einheit durch eine Wittigreaktion erfolgt.

30. Verbindung der Formel 25

55

60

31. Verfahren zur Herstellung einer Verbindung der Formel 25, dadurch gekennzeichnet, daß eine Verbindung der Formel 24

65

DE 100 08 089 A 1

mit TNSEOH und DCC und dann mit $\text{CF}_3\text{CO}_2\text{H}/\text{CH}_2\text{Cl}_2$ umgesetzt wird.

32. Verfahren zur Herstellung einer Verbindung der Formel 24, dadurch gekennzeichnet, daß eine Verbindung der Formel 23

10 in 2-Position methyliert wird, wobei ein Evans-Auxiliar eingesetzt werden kann, und die Esterfunktion dann hydrolysiert wird.

33. Verfahren zur Herstellung einer Verbindung der Formel 23, dadurch gekennzeichnet, daß eine Verbindung der Formel 11

20 zunächst einer Oxidation unterzogen wird und dann im Rahmen einer Wittig Reaktion umgesetzt wird.

34. Verfahren zur Herstellung von einer Verbindung der Formel 3

30 dadurch gekennzeichnet, daß eine Verbindung der Formel 2

40 reduktiv aminiert wurde.

35. Verfahren nach Anspruch 34, dadurch gekennzeichnet, daß die Verbindungen der Formeln 2 und 3 in L-Form vorliegen.

Hierzu 10 Seite(n) Zeichnungen

45

50

55

60

65

ZEICHNUNGEN SEITE 1

Nummer:

DE 100 08 089 A1

Int. Cl.⁷:

C 07 K 5/078

Offenlegungstag:

31. Oktober 2001

Abb. 1

Abb. 2

Tubulysin A-F R¹ = Et, Pr, ⁱBu R² = H, OHEinbau von ^{[13]C₂}Acetat (→) und ^{[13]C-Me}Methionin (■) in Tubulysin A

Dolastatin 10

Lu 103 793

Abb. 3a $^1\text{H-NMR}$ Spektrum von
Tubulysin A (DMSO, 400 MHz)

Abb. 3b ^{13}C -NMR Spektrum von
Tubulysin A (DMSO, 400 MHz)

**Abb. 4 GC-Spektren von Baustein I
(FS-Hydrodex β -3P, 25m, 120°C)**

**Abb. 5 GC-Spektren von Baustein II
(Permabond L-Chirasil-Val, 25m, 80°C)**

**Abb. 6 GC-Spektren von Baustein IV
(FS-Hydrodex β -3P, 25m, 165°C)**

Abb. 7

Abb. 8 GC-Spektren von Baustein III
(Permabond L-Chirasil-Val, 25m, 80°C)

Abb. 9