Importing required libraries

In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
sns.set()
import warnings
warnings.filterwarnings('ignore')
```

Importing Training and Testing dataset

```
In [2]:
```

```
df_income_train = pd.read_csv("Dataset/train.csv")
df_income_test = pd.read_csv("Dataset/test.csv")
```

1. Basic data checks

In [3]:

```
df_income_train.head()
```

Out[3]:

	ld	v2a1	hacdor	rooms	hacapo	v14a	refrig	v18q	v18q1	r4h1	 SQBe
0	ID_279628684	190000.0	0	3	0	1	1	0	NaN	0	
1	ID_f29eb3ddd	135000.0	0	4	0	1	1	1	1.0	0	
2	ID_68de51c94	NaN	0	8	0	1	1	0	NaN	0	
3	ID_d671db89c	180000.0	0	5	0	1	1	1	1.0	0	
4	ID_d56d6f5f5	180000.0	0	5	0	1	1	1	1.0	0	

5 rows × 143 columns

In [4]:

df_income_test.head()

Out[4]:

	ld	v2a1	hacdor	rooms	hacapo	v14a	refrig	v18q	v18q1	r4h1	 age
0	ID_2f6873615	NaN	0	5	0	1	1	0	NaN	1	 4
1	ID_1c78846d2	NaN	0	5	0	1	1	0	NaN	1	 41
2	ID_e5442cf6a	NaN	0	5	0	1	1	0	NaN	1	 41
3	ID_a8db26a79	NaN	0	14	0	1	1	1	1.0	0	 59
4	ID_a62966799	175000.0	0	4	0	1	1	1	1.0	0	 18

5 rows × 142 columns

In [5]:

df_income_test.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 23856 entries, 0 to 23855
Columns: 142 entries, Id to agesq

dtypes: float64(8), int64(129), object(5)

memory usage: 25.4+ MB

In [6]:

df_income_train.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9557 entries, 0 to 9556
Columns: 143 entries, Id to Target

dtypes: float64(8), int64(130), object(5)

memory usage: 10.2+ MB

In [7]:

```
df_income_train.describe()
```

Out[7]:

	v2a1	hacdor	rooms	hacapo	v14a	refrig	
count	2.697000e+03	9557.000000	9557.000000	9557.000000	9557.000000	9557.000000	9557.00
mean	1.652316e+05	0.038087	4.955530	0.023648	0.994768	0.957623	0.23
std	1.504571e+05	0.191417	1.468381	0.151957	0.072145	0.201459	0.42
min	0.000000e+00	0.000000	1.000000	0.000000	0.000000	0.000000	0.00
25%	8.000000e+04	0.000000	4.000000	0.000000	1.000000	1.000000	0.00
50%	1.300000e+05	0.000000	5.000000	0.000000	1.000000	1.000000	0.00
75%	2.000000e+05	0.000000	6.000000	0.000000	1.000000	1.000000	0.00
max	2.353477e+06	1.000000	11.000000	1.000000	1.000000	1.000000	1.00

8 rows × 138 columns

Identifying fields with their datatypes

In [8]:

```
print('Integer Type: ')
print(df_income_train.select_dtypes(np.int64).columns)
print('\n')
print('Float Type: ')
print(df_income_train.select_dtypes(np.float64).columns)
print('\n')
print('Object Type: ')
print(df_income_train.select_dtypes(np.object).columns)
Integer Type:
Index(['hacdor', 'rooms', 'hacapo', 'v14a', 'refrig', 'v18q', 'r4h1', 'r4h
2',
       'r4h3', 'r4m1',
       'area1', 'area2', 'age', 'SQBescolari', 'SQBage', 'SQBhogar_total',
       'SQBedjefe', 'SQBhogar_nin', 'agesq', 'Target'],
      dtype='object', length=130)
Float Type:
Index(['v2a1', 'v18q1', 'rez_esc', 'meaneduc', 'overcrowding',
       'SQBovercrowding', 'SQBdependency', 'SQBmeaned'],
      dtype='object')
Object Type:
Index(['Id', 'idhogar', 'dependency', 'edjefe', 'edjefa'], dtype='object')
```

Identify null values in train dataset

In [9]:

```
null_counts=df_income_train.isnull().sum()
```

In [10]:

```
null_counts[null_counts > 0]
```

Out[10]:

v2a1 6860 v18q1 7342 rez_esc 7928 meaneduc 5 SQBmeaned 5 dtype: int64

Observation :: All colums named for containing the null values are of float data type

2. Data Cleaning as few columns are mixed value and replacing null values with zero (0)

In [11]:

```
#creating dictionary mapping with 2 elements as YES and NO
mapping={'yes':1,'no':0}

for df in [df_income_train, df_income_test]:
    df['dependency'] = df['dependency'].replace(mapping).astype(np.float64)
    df['edjefe'] = df['edjefe'].replace(mapping).astype(np.float64)
    df['edjefa'] = df['edjefa'].replace(mapping).astype(np.float64)

df_income_train[['dependency','edjefe','edjefa']].describe()
```

Out[11]:

	dependency	edjefe	edjefa
count	9557.000000	9557.000000	9557.000000
mean	1.149550	5.096788	2.896830
std	1.605993	5.246513	4.612056
min	0.000000	0.000000	0.000000
25%	0.333333	0.000000	0.000000
50%	0.666667	6.000000	0.000000
75%	1.333333	9.000000	6.000000
max	8.000000	21.000000	21.000000

In [12]:

```
data = df_income_train[df_income_train['v2a1'].isnull()].head()
columns=['tipovivi1','tipovivi2','tipovivi3','tipovivi4','tipovivi5']
data[columns]
```

Out[12]:

	tipovivi1	tipovivi2	tipovivi3	tipovivi4	tipovivi5
2	1	0	0	0	0
13	1	0	0	0	0
14	1	0	0	0	0
26	1	0	0	0	0
32	1	0	0	0	0

In [13]:

Home Ownership Status for Households Missing Rent Payments

In [14]:

```
#Looking at the above data it makes sense that when the house is fully paid, there will be
#Lets add 0 for all the null values.
for df in [df_income_train, df_income_test]:
    df['v2a1'].fillna(value=0, inplace=True)

df_income_train[['v2a1']].isnull().sum()
```

Out[14]:

v2a1 0 dtype: int64

In [15]:

```
# Heads of household
heads = df_income_train.loc[df_income_train['parentesco1'] == 1].copy()
heads.groupby('v18q')['v18q1'].apply(lambda x: x.isnull().sum())
```

Out[15]:

```
v18q
0 2318
1 0
Name: v18q1, dtype: int64
```

In [16]:


```
In [17]:
```

```
#Looking at the above data it makes sense that when owns a tablet column is 0, there will b
#Lets add 0 for all the null values.
for df in [df_income_train, df_income_test]:
    df['v18q1'].fillna(value=0, inplace=True)
df_income_train[['v18q1']].isnull().sum()
Out[17]:
v18q1
dtype: int64
In [18]:
# 3. Lets look at rez_esc
                              (total nulls: 7928) : Years behind in school
# why the null values, Lets look at few rows with nulls in rez_esc
# Columns related to Years behind in school
# Age in years
# Lets look at the data with not null values first.
df_income_train[df_income_train['rez_esc'].notnull()]['age'].describe()
Out[18]:
count
         1629.000000
mean
           12.258441
            3.218325
std
min
            7.000000
25%
            9.000000
50%
           12.000000
           15.000000
75%
           17.000000
max
Name: age, dtype: float64
In [19]:
#From the above , we see that when min age is 7 and max age is 17 for Years, then the 'behi
#Lets confirm
df income train.loc[df income train['rez esc'].isnull()]['age'].describe()
Out[19]:
         7928.000000
count
           38.833249
mean
           20.989486
std
min
            0.000000
           24.000000
25%
50%
           38.000000
75%
           54.000000
           97.000000
max
Name: age, dtype: float64
```

```
In [20]:
df_income_train.loc[(df_income_train['rez_esc'].isnull() & ((df_income_train['age'] > 7) &
Out[20]:
count
          1.0
         10.0
mean
          NaN
std
         10.0
min
         10.0
25%
         10.0
50%
75%
         10.0
max
         10.0
Name: age, dtype: float64
In [21]:
df_income_train[(df_income_train['age'] ==10) & df_income_train['rez_esc'].isnull()].head()
df_income_train[(df_income_train['Id'] =='ID_f012e4242')].head()
#There is only one member in household for the member with age 10 and who is 'behind in sch
#This explains why the member is behind in school.
Out[21]:
                                                                           ... SC
              ld
                     v2a1 hacdor rooms hacapo v14a refrig v18q v18q1
                                                                      r4h1
2514 ID_f012e4242 160000.0
                               0
                                     6
                                             0
                                                                  1.0
                                                                         0
1 rows × 143 columns
In [22]:
#from above we see that the 'behind in school' column has null values
# Lets use the above to fix the data
for df in [df_income_train, df_income_test]:
    df['rez_esc'].fillna(value=0, inplace=True)
df_income_train[['rez_esc']].isnull().sum()
Out[22]:
```

rez_esc dtype: int64

In [23]:

```
data = df_income_train[df_income_train['meaneduc'].isnull()].head()
columns=['edjefe','edjefa','instlevel1','instlevel2']
data[columns][data[columns]['instlevel1']>0].describe()
```

Out[23]:

	edjefe	edjefa	instlevel1	instlevel2
count	0.0	0.0	0.0	0.0
mean	NaN	NaN	NaN	NaN
std	NaN	NaN	NaN	NaN
min	NaN	NaN	NaN	NaN
25%	NaN	NaN	NaN	NaN
50%	NaN	NaN	NaN	NaN
75%	NaN	NaN	NaN	NaN
max	NaN	NaN	NaN	NaN

In [24]:

```
#from the above, we find that meaneduc is null when no level of education is 0
#Lets fix the data
for df in [df_income_train, df_income_test]:
    df['meaneduc'].fillna(value=0, inplace=True)
df_income_train[['meaneduc']].isnull().sum()
```

Out[24]:

meaneduc 6 dtype: int64

In [25]:

```
#Lets look at SQBmeaned (total nulls: 5): square of the mean years of education of adults # why the null values, Lets look at few rows with nulls in SQBmeaned # Columns related to average years of education for adults (18+) # edjefe, years of education of male head of household, based on the interaction of escolar # head of household and gender, yes=1 and no=0 # edjefa, years of education of female head of household, based on the interaction of escol # head of household and gender, yes=1 and no=0 # instlevel1, =1 no level of education # instlevel2, =1 incomplete primary
```

In [26]:

```
data = df_income_train[df_income_train['SQBmeaned'].isnull()].head()

columns=['edjefe','edjefa','instlevel1','instlevel2']
data[columns][data[columns]['instlevel1']>0].describe()
```

Out[26]:

	edjefe	edjefa	instlevel1	instlevel2
count	0.0	0.0	0.0	0.0
mean	NaN	NaN	NaN	NaN
std	NaN	NaN	NaN	NaN
min	NaN	NaN	NaN	NaN
25%	NaN	NaN	NaN	NaN
50%	NaN	NaN	NaN	NaN
75%	NaN	NaN	NaN	NaN
max	NaN	NaN	NaN	NaN

In [27]:

```
#from the above, we find that SQBmeaned is null when no level of education is 0
#Lets fix the data
for df in [df_income_train, df_income_test]:
    df['SQBmeaned'].fillna(value=0, inplace=True)
df_income_train[['SQBmeaned']].isnull().sum()
```

Out[27]:

SQBmeaned 0 dtype: int64

In [28]:

```
#Lets look at the overall data
null_counts = df_income_train.isnull().sum()
null_counts[null_counts > 0].sort_values(ascending=False)
```

Out[28]:

Series([], dtype: int64)

In [29]:

```
# Groupby the household and figure out the number of unique values
all_equal = df_income_train.groupby('idhogar')['Target'].apply(lambda x: x.nunique() == 1)
# Households where targets are not all equal
not_equal = all_equal[all_equal != True]
print('There are {} households where the family members do not all have the same target.'.f
```

There are 85 households where the family members do not all have the same target.

In [30]:

```
#Lets check one household
df_income_train[df_income_train['idhogar'] == not_equal.index[0]][['idhogar', 'parentesco1']
```

Out[30]:

	idhogar	parentesco1	Target
7651	0172ab1d9	0	3
7652	0172ab1d9	0	2
7653	0172ab1d9	0	3
7654	0172ab1d9	1	3
7655	0172ab1d9	0	2

In [31]:

```
#Lets use Target value of the parent record (head of the household) and update rest. But be
# if all families has a head.
households_head = df_income_train.groupby('idhogar')['parentesco1'].sum()

# Find households without a head
households_no_head = df_income_train.loc[df_income_train['idhogar'].isin(households_head[ho
print('There are {} households without a head.'.format(households_no_head['idhogar'].nuniqu
```

There are 15 households without a head.

In [32]:

```
# Find households without a head and where Target value are different
households_no_head_equal = households_no_head.groupby('idhogar')['Target'].apply(lambda x:
print('{} Households with no head have different Target value.'.format(sum(households_no_he
```

0 Households with no head have different Target value.

In [33]:

```
#Lets fix the data
#Set poverty level of the members and the head of the house within a family.
# Iterate through each household
for household in not_equal.index:
    # Find the correct label (for the head of household)
    true_target = int(df_income_train[(df_income_train['idhogar'] == household) & (df_income_train.loc[df_income_train['idhogar'] == household
    df_income_train.loc[df_income_train['idhogar'] == household, 'Target'] = true_target

# Groupby the household and figure out the number of unique values
all_equal = df_income_train.groupby('idhogar')['Target'].apply(lambda x: x.nunique() == 1)

# Households where targets are not all equal
not_equal = all_equal[all_equal != True]
print('There are {} households where the family members do not all have the same target.'.f
```

There are 0 households where the family members do not all have the same target.

In [34]:

```
#Lets look at the dataset and plot head of household and Target
# 1 = extreme poverty, 2 = moderate poverty ,3 = vulnerable households, 4 = non vulnerable
target_counts = heads['Target'].value_counts().sort_index()
target_counts
```

Out[34]:

- 1 222
- 2 442
- 3 355
- 4 1954

Name: Target, dtype: int64

In [35]:

```
target_counts.plot.bar(figsize = (8, 6),linewidth = 2,edgecolor = 'k',title="Target vs Tota
```

Out[35]:

<AxesSubplot:title={'center':'Target vs Total_Count'}>

In [36]:

```
(9557, 143)
(9557, 134)
```

In [37]:

```
id = ['Id', 'idhogar', 'Target']
ind_bool = ['v18q', 'dis', 'male', 'female', 'estadocivil1', 'estadocivil2', 'estadocivil3'
              'estadocivil4', 'estadocivil5', 'estadocivil6', 'estadocivil7', 'parentesco1', 'parentesco2', 'parentesco3', 'parentesco4', 'parentesco5', 'parentesco6', 'parentesco7', 'parentesco8', 'parentesco9', 'parentesco10', 'parentesco11', 'parentesco12', 'instlevel1', 'instlevel2', 'instlevel3',
               'instlevel4', 'instlevel5', 'instlevel6', 'instlevel7', 'instlevel8',
               'instlevel9', 'mobilephone'l
ind_ordered = ['rez_esc', 'escolari', 'age']
hh_bool = ['hacdor', 'hacapo', 'v14a', 'refrig', 'paredblolad', 'paredzocalo',
              'paredpreb','pisocemento', 'pareddes', 'paredmad',
             'paredzinc', 'paredfibras', 'paredother', 'pisomoscer', 'pisoother', 'pisonatur', 'pisonotiene', 'pisomadera',
             'techozinc', 'techoentrepiso', 'techocane', 'techootro', 'cielorazo',
             'abastaguadentro', 'abastaguafuera', 'abastaguano',
             'public', 'planpri', 'noelec', 'coopele', 'sanitario1', 'sanitario2', 'sanitario3', 'sanitario5', 'sanitario6',
             'energcocinar1', 'energcocinar2', 'energcocinar3', 'energcocinar4',
             'elimbasu1', 'elimbasu2', 'elimbasu3', 'elimbasu4',
             'elimbasu5', 'elimbasu6', 'epared1', 'epared2', 'epared3',
             'etecho1', 'etecho2', 'etecho3', 'eviv1', 'eviv2', 'eviv3',
             'tipovivi1', 'tipovivi2', 'tipovivi3', 'tipovivi4', 'tipovivi5',
             'computer', 'television', 'lugar1', 'lugar2', 'lugar3',
             'lugar4', 'lugar5', 'lugar6', 'area1', 'area2']
hh_ordered = [ 'rooms', 'r4h1', 'r4h2', 'r4h3', 'r4m1', 'r4m2', 'r4m3', 'r4t1', 'r4t2',
                 'r4t3', 'v18q1', 'tamhog', 'tamviv', 'hhsize', 'hogar_nin',
                 'hogar_adul','hogar_mayor','hogar_total', 'bedrooms', 'qmobilephone']
hh_cont = ['v2a1', 'dependency', 'edjefe', 'edjefa', 'meaneduc', 'overcrowding']
```

In [38]:

```
#Check for redundant household variables
heads = df_income_train.loc[df_income_train['parentesco1'] == 1, :]
heads = heads[id_ + hh_bool + hh_cont + hh_ordered]
heads.shape
```

Out[38]:

(2973, 98)

In [39]:

```
# Create correlation matrix
corr_matrix = heads.corr()

# Select upper triangle of correlation matrix
upper = corr_matrix.where(np.triu(np.ones(corr_matrix.shape), k=1).astype(np.bool))

# Find index of feature columns with correlation greater than 0.95
to_drop = [column for column in upper.columns if any(abs(upper[column]) > 0.95)]
to_drop
```

Out[39]:

['coopele', 'area2', 'tamhog', 'hhsize', 'hogar_total']

In [40]:

```
corr_matrix.loc[corr_matrix['tamhog'].abs() > 0.9, corr_matrix['tamhog'].abs() > 0.9]
```

Out[40]:

	r4t3	tamhog	tamviv	hhsize	hogar_total
r4t3	1.000000	0.996884	0.929237	0.996884	0.996884
tamhog	0.996884	1.000000	0.926667	1.000000	1.000000
tamviv	0.929237	0.926667	1.000000	0.926667	0.926667
hhsize	0.996884	1.000000	0.926667	1.000000	1.000000
hogar_total	0.996884	1.000000	0.926667	1.000000	1.000000

In [41]:


```
In [42]:

# There are several variables here having to do with the size of the house:
# r4t3, Total persons in the household
# tamhog, size of the household
# tamviv, number of persons living in the household
# hhsize, household size
# hogar_total, # of total individuals in the household
# These variables are all highly correlated with one another.

In [43]:

cols=['tamhog', 'hogar_total', 'r4t3']
for df in [df_income_train, df_income_test]:
    df.drop(columns = cols,inplace=True)
```

In [44]:

```
df_income_train.shape
Out[44]:
```

ouc[++].

(9557, 131)

In [45]:

```
#Check for redundant Individual variables
ind = df_income_train[id_ + ind_bool + ind_ordered]
ind.shape
```

Out[45]:

(9557, 39)

In [46]:

```
# Create correlation matrix
corr_matrix = ind.corr()

# Select upper triangle of correlation matrix
upper = corr_matrix.where(np.triu(np.ones(corr_matrix.shape), k=1).astype(np.bool))

# Find index of feature columns with correlation greater than 0.95
to_drop = [column for column in upper.columns if any(abs(upper[column]) > 0.95)]
to_drop
```

Out[46]:

['female']

In [47]:

```
# This is simply the opposite of male! We can remove the male flag.
for df in [df_income_train, df_income_test]:
    df.drop(columns = 'male',inplace=True)
```

```
In [48]:
df_income_train.shape
Out[48]:
(9557, 130)
In [49]:
#lets check area1 and area2 also
# area1, =1 zona urbana
# area2, =2 zona rural
#area2 redundant because we have a column indicating if the house is in a urban zone
for df in [df_income_train, df_income_test]:
    df.drop(columns = 'area2',inplace=True)
df_income_train.shape
Out[49]:
(9557, 129)
In [50]:
#Finally lets delete 'Id', 'idhogar'
cols=['Id','idhogar']
for df in [df_income_train, df_income_test]:
    df.drop(columns = cols,inplace=True)
In [51]:
df_income_train.shape
Out[51]:
(9557, 127)
```

Prediction using random forest classifier.

```
In [52]:
```

```
x_features=df_income_train.iloc[:,0:-1]
y_features=df_income_train.iloc[:,-1]
print(x_features.shape)
print(y_features.shape)

(9557, 126)
(9557,)
```

In [53]:

```
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score,confusion_matrix,f1_score,classification_report
x_train,x_test,y_train,y_test=train_test_split(x_features,y_features,test_size=0.2,random_s
rmclassifier = RandomForestClassifier()
```

In [54]:

```
rmclassifier.fit(x_train,y_train)
```

Out[54]:

RandomForestClassifier()

In [55]:

Out[55]:

RandomForestClassifier(n_estimators=10)

In [56]:

```
y_predict = rmclassifier.predict(x_test)
```

In [57]:

```
print(accuracy_score(y_test,y_predict))
print(confusion_matrix(y_test,y_predict))
print(classification_report(y_test,y_predict))
```

0.9476987447698745

```
[[ 135
           0
                0
                     22]
     1
         283
                1
                     32]
 [
 ſ
     0
              191
                     41]
           1
 0
           1
                 1 1203]]
                precision
                              recall f1-score
                                                    support
            1
                     0.99
                                0.86
                                            0.92
                                                        157
            2
                     0.99
                                0.89
                                            0.94
                                                        317
            3
                     0.99
                                0.82
                                            0.90
                                                        233
            4
                     0.93
                                1.00
                                            0.96
                                                       1205
                                            0.95
                                                       1912
    accuracy
                     0.98
                                            0.93
   macro avg
                                0.89
                                                       1912
                     0.95
                                0.95
                                            0.95
                                                       1912
weighted avg
```

```
In [58]:
```

```
y_predict_testdata = rmclassifier.predict(df_income_test)
```

In [59]:

```
y_predict_testdata
```

Out[59]:

```
array([4, 4, 4, ..., 4, 4], dtype=int64)
```

Check the accuracy using random forest with cross validation

In [60]:

```
from sklearn.model_selection import KFold,cross_val_score
```

In [61]:

```
seed=7
kfold=KFold(n_splits=5,random_state=seed,shuffle=True)

rmclassifier=RandomForestClassifier(random_state=10,n_jobs = -1)
print(cross_val_score(rmclassifier,x_features,y_features,cv=kfold,scoring='accuracy'))
results=cross_val_score(rmclassifier,x_features,y_features,cv=kfold,scoring='accuracy')
print(results.mean()*100)
```

```
[0.94246862 0.94979079 0.94557823 0.94243851 0.94976452]
94.60081361157272
```

In [62]:

```
# Checking the score using 100 trees

um_trees= 100

rmclassifier=RandomForestClassifier(n_estimators=100, random_state=10,n_jobs = -1)
print(cross_val_score(rmclassifier,x_features,y_features,cv=kfold,scoring='accuracy'))
results=cross_val_score(rmclassifier,x_features,y_features,cv=kfold,scoring='accuracy')
print(results.mean()*100)
```

```
[0.94246862 0.94979079 0.94557823 0.94243851 0.94976452]
94.60081361157272
```

In [63]:

```
rmclassifier.fit(x_features,y_features)
labels = list(x_features)
feature_importances = pd.DataFrame({'feature': labels, 'importance': rmclassifier.feature_i
feature_importances=feature_importances[feature_importances.importance>0.015]
feature_importances.head()
```

Out[63]:

	feature	importance
0	v2a1	0.018653
2	rooms	0.025719
9	r4h2	0.020706
10	r4h3	0.019808
11	r4m1	0.015271

In [64]:

```
y_predict_testdata = rmclassifier.predict(df_income_test)
y_predict_testdata
```

Out[64]:

```
array([4, 4, 4, ..., 4, 4], dtype=int64)
```

In [65]:

```
feature_importances.sort_values(by=['importance'], ascending=True, inplace=True)
feature_importances['positive'] = feature_importances['importance'] > 0
feature_importances.set_index('feature',inplace=True)
feature_importances.head()

feature_importances.importance.plot(kind='barh', figsize=(11, 6),color = feature_importance
plt.xlabel('Importance')
```

Out[65]:

Text(0.5, 0, 'Importance')

