

## DKE CO.,LTD

EPD Module User Manual

DEPG0213RWS800F13



## Specification for 2.13 inch EPD

Model NO.: DEPG0213RWS800F13

### **DKE's Confirmation:**

| 6) DKE GINTIAL |
|----------------|
| 6 DIN ENTIAL   |
|                |

## Customer approval:

| Customer | Approved by | Date |
|----------|-------------|------|
|          |             |      |
|          |             |      |



### **Revision History**

| Version | Content                             | Date       | Producer |
|---------|-------------------------------------|------------|----------|
| 1.0     | New release                         | 2019/04/03 |          |
| 1.1     | Updata Mechanical Specification     | 2019/6/12  |          |
| 1.2     | Updata the module partial parameter | 2019/7/30  |          |
|         |                                     |            |          |
|         |                                     |            | n (E)    |
|         |                                     |            |          |
|         |                                     |            |          |
| 6       | DKEDEN                              | TIA        |          |





## CONTENTS

| 1.Over View                                                 | 6  |
|-------------------------------------------------------------|----|
| 2. Features                                                 | 6  |
| 3. Mechanical Specification                                 | 6  |
| 4.Mechanical Drawing of EPD Module                          | 7  |
| 5. Input/output Pin Assignment                              | 8  |
| 6. Electrical Characteristics                               |    |
| 6.1 Absolute Maximum Rating                                 | 9  |
| 6.2 Panel DC Characteristics                                | 10 |
| 6.3 Panel DC Characteristics(Driver IC Internal Regulators) | 11 |
| 6.4 Panel AC Characteristics                                | 11 |
| 6.4.1 MCU Interface Selection                               | 11 |
| 6.4.2 MCU Serial Interface (4-wire SPI)                     | 11 |
| 6.4.3 MCU Serial Interface (3-wire SPI)                     | 13 |
| 6.4.4 Interface Timing.                                     | 14 |
| 7.Command Table                                             | 16 |
| 8. Optical Specification                                    | 24 |
| 9. Handling, Safety, and Environment Requirements           | 24 |
| 10. Reliability Test                                        | 25 |



| 11. Block Diagram                                  | 26 |
|----------------------------------------------------|----|
| 12. Typical Application Circuit with SPI Interface | 27 |
| 13 Typical Operating Sequence                      | 28 |
| 13.1Normal Operation Flow                          | 28 |
| 13.2 Normal Operation Reference Program Code       | 29 |
| 13.3 OTP Operation Flow.                           | 30 |
| 13.4 OTP Operation Reference Program Code          | 31 |
| 14. Part Number Definition                         | 32 |
| 15. Inspection condition                           | 32 |
| 15.1 Environment                                   | 32 |
| 15.2 Illuminance                                   | 32 |
| 15.3 Inspect method                                | 32 |
| 15.4 Display area                                  | 33 |
| 15.5 Inspection standard                           | 33 |
| 15.5.1 Electric inspection standard                | 34 |
| 15.5.2 Appearance inspection standard              | 35 |
| 16.Packaging                                       | 36 |



#### 1. Over View

DEPG0213RWS800F13 is an Active Matrix Electrophoretic Display (AM EPD), with interface and a reference system design. The display is capable to display images at 1-bit white, black and red full display capabilities. The 2.13inch active area contains 250×122 pixels. The module is a TFT-array driving electrophoresis display, with integrated circuits including gate driver, source driver, MCU interface, timing controller, oscillator, DC-DC, SRAM, LUT, VCOM. Module can be used in portable electronic devices, such as Electronic Shelf Label (ESL) System.

#### 2. Features

- ♦250×122 pixels display
- ◆ High contrast High reflectance
- ◆Ultra wide viewing angle Ultra low power consumption
- ◆Pure reflective mode
- ◆Bi-stable display
- ◆Commercial temperature range
- ◆Landscape portrait modes
- ◆ Hard-coat antiglare display surface
- ◆Ultra Low current deep sleep mode
- ◆On chip display RAM
- ◆ Waveform can stored in On-chip OTP or written by MCU
- ◆ Serial peripheral interface available
- ◆On-chip oscillator
- ◆On-chip booster and regulator control for generating VCOM, Gate and Source driving voltage
- ◆I<sup>2</sup>C signal master interface to read external temperature sensor
- ◆Built-in temperature sensor

### 3. Mechanical Specification

| Parameter           | Specifications           | Unit  | Remark  |
|---------------------|--------------------------|-------|---------|
| Screen Size         | 2.13                     | Inch  |         |
| Display Resolution  | 122(H)×250(V)            | Pixel | DPI:130 |
| Active Area         | 23.705×48.55             | mm    |         |
| Pixel Pitch         | 0.1942×0.1942            | mm    |         |
| Pixel Configuration | Square                   |       |         |
| Outline Dimension   | 29.2(H)×59.2 (V) ×1.0(D) | mm    |         |
| Weight              | 3.2±0.5                  | g     |         |



## 4. Mechanical Drawing of EPD Module







## 5. Input/output Pin Assignment

| No. | Name  | I/O     | Description                                                                                                        | Remark    |
|-----|-------|---------|--------------------------------------------------------------------------------------------------------------------|-----------|
| 1   | NC    |         | Do not connect with other NC pins                                                                                  | Keep Open |
| 2   | GDR   | О       | N-Channel MOSFET Gate Drive Control                                                                                |           |
| 3   | RESE  | I       | Current Sense Input for the Control Loop                                                                           |           |
| 4   | NC    | NC      | Do not connect with other NC pins                                                                                  | Keep Open |
| 5   | VSH2  | С       | Positive Source driving voltage(Red)                                                                               |           |
| 6   | TSCL  | О       | I2C Interface to digital temperature sensor Clock pin                                                              |           |
| 7   | TSDA  | I/O     | I2C Interface to digital temperature sensor Data pin                                                               |           |
| 8   | BS1   | I       | Bus Interface selection pin                                                                                        | Note 5-5  |
| 9   | BUSY  | О       | Busy state output pin                                                                                              | Note 5-4  |
| 10  | RES#  | I       | Reset signal input. Active Low.                                                                                    | Note 5-3  |
| 11  | D/C#  | I       | Data /Command control pin                                                                                          | Note 5-2  |
| 12  | CS#   | Ī       | Chip select input pin                                                                                              | Note 5-1  |
| 13  | SCL   | )) I \( | Serial Clock pin (SPI)                                                                                             | St.       |
| 14  | SDA   | I       | Serial Data pin (SPI)                                                                                              |           |
| 15  | VDDIO | P       | Power Supply for interface logic pins It should be connected with VCI                                              |           |
| 16  | VCI   | P       | Power Supply for the chip                                                                                          |           |
| 17  | VSS   | P       | Ground                                                                                                             |           |
| 18  | VDD   | С       | Core logic power pin VDD can be regulated internally from VCI. A capacitor should be connected between VDD and VSS |           |
| 19  | VPP   | P       | FOR TEST                                                                                                           | Keep Open |
| 20  | VSH1  | С       | Positive Source driving voltage                                                                                    |           |
| 21  | VGH   | С       | Power Supply pin for Positive Gate driving voltage and VSH1                                                        |           |
| 22  | VSL   | C       | Negative Source driving voltage                                                                                    |           |
| 23  | VGL   | С       | Power Supply pin for Negative Gate driving voltage VCOM and VSL                                                    |           |
| 24  | VCOM  | C       | VCOM driving voltage                                                                                               |           |





- I = Input Pin, O = Output Pin, /O = Bi-directional Pin (Input/output), P = Power Pin, C = Capacitor Pin
- Note 5-1: This pin (CS#) is the chip select input connecting to the MCU. The chip is enabled for MCU communication only when CS# is pulled LOW.
- Note 5-2: This pin is (D/C#) Data/Command control pin connecting to the MCU in 4-wire SPI mode. When the pin is pulled HIGH, the data at SDA will be interpreted as data. When the pin is pulled LOW, the data at SDA will be interpreted as command.
- Note 5-3: This pin (RES#) is reset signal input. The Reset is active low.
- Note 5-4: This pin is Busy state output pin. When Busy is High, the operation of chip should not be interrupted, command should not be sent. The chip would put Busy pin High when -Outputting display waveform -Communicating with digital temperature sensor

Note 5-5: Bus interface selection pin

| BS1 State | MCU Interface                                          |
|-----------|--------------------------------------------------------|
| L         | 4-lines serial peripheral interface(SPI) - 8 bits SPI  |
| Н         | 3- lines serial peripheral interface(SPI) - 9 bits SPI |

### 6. Electrical Characteristics

### 6.1 Absolute Maximum Rating

| Parameter                | Symbol | Rating           | Unit |
|--------------------------|--------|------------------|------|
| Logic supply voltage     | VCI    | -0.5 to +4.0     | V    |
| Logic Input voltage      | VIN    | -0.5 to VCI +0.5 | V    |
| Logic Output voltage     | VOUT   | -0.5 to VCI +0.5 | V    |
| Operating Temp range     | TOPR   | 0 to +40         | °C.  |
| Storage Temp range       | TSTG   | -25 to+40        | °C.  |
| Optimal Storage Temp     | TSTGo  | 23±2             | °C.  |
| Optimal Storage Humidity | HSTGo  | 55±10            | %RH  |

#### Note:

Maximum ratings are those values beyond which damages to the device may occur. Functional operation should be restricted to the limits in the Panel DC Characteristics tables.



### **6.2 Panel DC Characteristics**

The following specifications apply for: VSS=0V, VCI=3.0V, TOPR =23°C.

| Parameter                 | Symbol            | Condition                                                 | Applicab<br>le pin | Min.    | Тур.  | Max.                | Unit |
|---------------------------|-------------------|-----------------------------------------------------------|--------------------|---------|-------|---------------------|------|
| Single ground             | Vss               | -                                                         |                    | -       | 0     | -                   | V    |
| Logic supply voltage      | Vci               | -                                                         | VCI                | 2.2     | 3.0   | 3.7                 | V    |
| Core logic voltage        | $V_{\mathrm{DD}}$ |                                                           | VDD                | 1.7     | 1.8   | 1.9                 | V    |
| High level input voltage  | Vih               | -                                                         | -                  | 0.8 Vci | -     | -                   | V    |
| Low level input voltage   | VIL               | -                                                         | -                  | -       | -     | 0.2 Vci             | V    |
| High level output voltage | Voh               | IOH = -100uA                                              | -                  | 0.9 Vci | -     | -                   | V    |
| Low level output voltage  | Vol               | IOL = 100uA                                               | -                  | -       | -     | 0.1 Vci             | V    |
| Typical power             | PTYP              | Vci =3.0V                                                 | -                  | -       | 9.0   | -                   | mW   |
| Deep sleep mode           | PSTPY             | V <sub>CI</sub> =3.0V                                     | -                  | -       | 0.003 | Control of the last | mW   |
| Typical operating current | Iopr_VCI          | V <sub>CI</sub> =3.0V                                     | -                  | -       | 3.0   | 1                   | mA   |
| Image update time         | -                 | 23 °C                                                     | Comment            | ((-)    | 14    | }} - \\             | sec  |
| Sleep mode current        | Islp_Vcı          | DC/DC off<br>No clock<br>No input load<br>Ram data retain | Ne Ne              |         | 20    |                     | uA   |
| Deep sleep mode current   | Idslp_Vci         | DC/DC off No clock No input load Ram data not retain      |                    | T-I     | AN    | 5                   | uA   |

Notes: 1. The typical power is measured with following transition from horizontal 2 scale pattern to vertical 2 scale pattern.



- 2. The deep sleep power is the consumed power when the panel controller is in deep sleep mode.
- 3. The listed electrical/optical characteristics are only guaranteed under the controller & waveform provided by DKE.



### 6.3 Panel DC Characteristics(Driver IC Internal Regulators)

The following specifications apply for: VSS=0V, VCI=3.0V, TOPR =23°C.

| Parameter                      | Symbol | Condition | Applicable pin | Min.  | Тур. | Max.  | Unit |
|--------------------------------|--------|-----------|----------------|-------|------|-------|------|
| VCOM output voltage            | VCOM   | -         | VCOM           | -     | TBD  | -     | V    |
| Positive Source output voltage | Vsh    | -         | S0~S121        | +14.5 | +15  | +15.5 | V    |
| Negative Source output voltage | Vsl    | -         | S0~S121        | -15.5 | -15  | -14.5 | V    |
| Positive gate output voltage   | Vgh    | -         | G0~G249        | +21   | +22  | +23   | V    |
| Negative gate output voltage   | Vgl    | -         | G0~G249        | -21   | -20  | -19   | V    |

#### **6.4 Panel AC Characteristics**

#### 6.4.1 MCU Interface Selection

The pin assignment at different interface mode is summarized in Table 6-4-1. Different MCU mode can be set by hardware selection on BS1 pins. The display panel only supports 4-wire SPI or 3-wire SPI interface mode.

| Pin Name         | Data/Comm | and Interface | e Control Signal |             |      |
|------------------|-----------|---------------|------------------|-------------|------|
| Bus interface    | SDA       | SCL           | CS#              | D/C#        | RES# |
| BS1=L 4-wire SPI | SDA       | SCL           | CS#              | D/C#        | RES# |
| BS1=H 3-wire SPI | SDA       | SCL           | CS#              | 7     r5p n | RES# |

### 6.4.2 MCU Serial Interface (4-wire SPI)

The serial interface consists of serial clock SCL, serial data SDA, D/C#, CS#. This interface supports Write mode and Read mode.

| Function      | CS# | D/C# | SCL |
|---------------|-----|------|-----|
| Write command | L   | L    | 1   |
| Write data    | L   | Н    | 1   |

Note: ↑ stands for rising edge of signal

In the write mode SDA is shifted into an 8-bit shift register on every rising edge of SCL in the order of D7, D6, ... D0. The level of D/C# should be kept over the whole byte. The data byte in the shift register is written to the Graphic Display Data RAM /Data Byte register or command Byte register according to D/C# pin.

CS#

D/C#

SCL

SDA (Write Mode)

D7 D6 D5 D4 D3 D2 D1 D0 W

Figure 6-1: Write procedure in 4-wire SPI mode

#### In the Read mode:

1. After driving CS# to low, MCU need to define the register to be read.

Register

- 2. SDA is shifted into an 8-bit shift register on every rising edge of SCL in the order of D7, D6, ... D0 with D/C# keep low.
- 3. After SCL change to low for the last bit of register, D/C# need to drive to high.
- 4. SDA is shifted out an 8-bit data on every falling edge of SCL in the order of D7, D6, ... D0.
- 5. Depending on register type, more than 1 byte can be read out. After all byte are read, CS# need to drive to high to stop the read operation.



Figure 6-2: Read procedure in 4-wire SPI mode



#### **6.4.3 MCU Serial Interface (3-wire SPI)**

The 3-wire serial interface consists of serial clock SCL, serial data SDA and CS#. This interface also supports Write mode and Read mode.

The operation is similar to 4-wire serial interface while D/C# pin is not used. There are altogether 9-bits will be shifted into the shift register on every ninth clock in sequence: D/C# bit, D7 to D0 bit. The D/C# bit (first bit of the sequential data) will determine the following data byte in the shift register is written to the Display Data RAM (D/C# bit = 1) or the command register (D/C# bit = 0).

| Function      | CS# | D/C# | SCL |
|---------------|-----|------|-----|
| Write command | L   | Tie  | 1   |
| Write data    | L   | Tie  | 1   |

Note: ↑ stands for rising edge of signal

SDA (Write Mode)

Register

Register

CS#

SCL

SDA (Write Mode)

Register

Parameter

Figure 6-3: Write procedure in 3-wire SPI mode

#### In the Read mode:

- 1. After driving CS# to low, MCU need to define the register to be read.
- 2. D/C=0 is shifted thru SDA with one rising edge of SCL
- 3. SDA is shifted into an 8-bit shift register on every rising edge of SCL in the order of D7, D6, ... D0.
- 4. D/C=1 is shifted thru SDA with one rising edge of SCL
- 5. SDA is shifted out an 8-bit data on every falling edge of SCL in the order of D7, D6, ... D0.
- 6. Depending on register type, more than 1 byte can be read out. After all byte are read, CS# need to drive to high to stop the read operation.



Figure 6-4: Read procedure in 3-wire SPI mode



### **6.4.4 Interface Timing**

The following specifications apply for: VSS=0V, VCI=3.0V, TOPR =23°C.



**Changed Diagram** 



### **Serial Interface Timing Characteristics**

 $(VCI - VSS = 2.2V \text{ to } 3.7V, TOPR = 23^{\circ}C, CL=20pF)$ 

#### Write mode

| Symbol   | Parameter                                                                    | Min | Тур. | Max | Unit |
|----------|------------------------------------------------------------------------------|-----|------|-----|------|
| fSCL     | SCL frequency (Write Mode)                                                   |     |      | 20  | MHz  |
| tCSSU    | Time CS# has to be low before the first rising edge of SCLK                  | 60  |      |     | ns   |
| tCSHLD   | Time CS# has to remain low after the last falling edge of SCLK               | 20  |      |     | ns   |
| tCSHIGH  | Time CS# has to remain high between two transfers                            | 100 |      |     | ns   |
| tSCLHIGH | Part of the clock period where SCL has to remain high                        | 25  |      |     | ns   |
| tSCLLOW  | Part of the clock period where SCL has to remain low                         | 25  | 7    | 10  | ns   |
| tSISU    | Time SI (SDA Write Mode) has to be stable before the next rising edge of SCL | 10  |      | 1   | ns   |
| tSIHLD   | Time SI (SDA Write Mode) has to remain stable after the rising edge of SCL   | 40  |      |     | ns   |
| Read mod | de la                                    | A   |      |     |      |

| Wheel of     |                                                                          | 177 | 11   |     |      |
|--------------|--------------------------------------------------------------------------|-----|------|-----|------|
| Symbol       | Parameter                                                                | Min | Тур. | Max | Unit |
| fSCL         | SCL frequency (Read Mode)                                                |     |      | 2.5 | MHz  |
| tCSSU        | Time CS# has to be low before the first rising edge of SCLK              | 100 |      |     | ns   |
| tCSHLD       | Time CS# has to remain low after the last falling edge of SCLK           | 50  |      |     | ns   |
| tCSHIGH      | Time CS# has to remain high between two transfers                        | 250 |      |     | ns   |
| tSCLHIG<br>H | Part of the clock period where SCL has to remain high                    | 180 |      |     | ns   |
| tSCLLOW      | Part of the clock period where SCL has to remain low                     | 180 |      |     | ns   |
| tSOSU        | Time SO(SDA Read Mode) will be stable before the next rising edge of SCL |     | 50   |     | ns   |
| tSOHLD       | Time SO (SDA Read Mode) will remain stable after the rising edge of SCL  |     | 0    |     | ns   |



### 7. Command Table

| /.0  | OIIII | 11411 | u  | av |    |    |     |    |            |       |                                                    |                                                                                                                                                                                                                                                                                |
|------|-------|-------|----|----|----|----|-----|----|------------|-------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| R/W# | D/C#  | Hex   | D7 | D6 | D5 | D4 | D3  | D2 | D1         | D0    | Comman<br>d                                        | Description                                                                                                                                                                                                                                                                    |
| 0    | 0     | 01    | 0  | 0  | 0  | 0  | 0   | 0  | 0          | 1     | Driver                                             | Gate setting                                                                                                                                                                                                                                                                   |
| 0    | 1     |       | A7 | A6 | A5 | A4 | A3  | A2 | A1         | A0    | Output                                             | Set A[8:0]=0097h                                                                                                                                                                                                                                                               |
| 0    | 1     |       | 0  | 0  | 0  | 0  | 0   | 0  | 0          | A8    | control                                            | Set B[8:0]=00h                                                                                                                                                                                                                                                                 |
| 0    | 1     |       | 0  | 0  | 0  | 0  | 0   | B2 | B1         | В0    |                                                    |                                                                                                                                                                                                                                                                                |
| 0    | 0     | 03    | 0  | 0  | 0  | 0  | 0   | 0  | 1          | 1     | Gate                                               | SetGate Driving voltage                                                                                                                                                                                                                                                        |
| 0    | 1     |       | 0  | 0  | 0  | A4 | A3  | A2 | <b>A</b> 1 | A0    | Driving voltage                                    | A[4:0]=17h[POR],VGH at 20V[POR]<br>VGH setting from 10V to 20V                                                                                                                                                                                                                 |
|      |       |       |    |    |    |    |     |    |            |       | control                                            |                                                                                                                                                                                                                                                                                |
| 0    | 0     | 04    | 0  | 0  | 0  | 0  | 0   | 1  | 0          | 0     | Source                                             | SetSource Driving voltage                                                                                                                                                                                                                                                      |
| 0    | 1     |       | A7 | A6 | A5 | A4 | A3  | A2 | A1         | A0    | Driving                                            | A[7:0]= 41h[POR],VSH1 at 15V                                                                                                                                                                                                                                                   |
| 0    | 1     |       | В7 | В6 | В5 | B4 | В3  | В2 | B1         | В0    | voltage<br>control                                 | B[7:0]=A Ch[POR], VSH2 at 5.4V<br>C[7:0]= 32h[POR], VSL at -15V                                                                                                                                                                                                                |
| 0    | 1     |       | C7 | C6 | C5 | C4 | C3  | C2 | C1         | C0    | Control                                            | 52m[1 GR], V 52 ut 13 V                                                                                                                                                                                                                                                        |
| 0    | 0     | 08    | 0  | 0  | 0  | 0  | 1   | 0  | 0          | 0     | Initial<br>Code<br>Setting<br>OTP<br>Program       | Program Initial Code Setting The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation                                                                                                                                       |
| 0    | 0     | 09    | 0  | 0  | 0  | 0  | 1\1 | 0  | 0          | 1\    | Write                                              | Write Register for Initial Code Setting                                                                                                                                                                                                                                        |
| 0    | 1     |       | A7 | A6 | A5 | A4 | A3  | A2 | A1         | A0    | Register                                           | Selection                                                                                                                                                                                                                                                                      |
| 0    | 1     |       | В7 | B6 | B5 | B4 | В3  | B2 | B1         | В0    | Code                                               | A[7:0] ~ D[7:0]: Reserved<br>Details refer to Application Notes of Initial                                                                                                                                                                                                     |
| 0    |       | 1     | C7 | C6 | C5 | C4 | C3  | C2 | C1         | C0    | Setting                                            | Code Setting                                                                                                                                                                                                                                                                   |
| 0    | Y,    | V).   | D7 | D6 | D5 | D4 | D3  | D2 | D1         | D0    | 71/=                                               | May a                                                                                                                                                                                                                                                                          |
| 0    | 0     | 0A    | 0  | 0  | 0  | 0  |     | 0  | 1          | 0     | Read<br>Register<br>for Initial<br>Code<br>Setting | Read Register for Initial Code Setting                                                                                                                                                                                                                                         |
| 0    | 0     | 10    | 0  | 0  | 0  | 1  | 0   | 0  | 0          | 0     | Deep                                               | Deep Sleep mode Control:                                                                                                                                                                                                                                                       |
| 0    | 1     |       | 0  | 0  | 0  | 0  | 0   | 0  | 0          | $A_0$ | Sleep<br>mode                                      | A[1:0]: Description 00 Normal Mode [POR] 01 Enter Deep Sleep Mode 1 11 Enter Deep Sleep Mode 2 After this command initiated, the chip will enter Deep Sleep Mode, BUSY pad will keep output high. Remark: To Exit Deep Sleep mode, User required to send HWRESET to the driver |



| 0 | 0 | 11 | 0 | 0 | 0 | 1 | 0 | 0              | 0  | 1              | Entry<br>mode<br>setting | Define data entry sequence A[2:0] = 011 [POR] A [1:0] = ID[1:0] Address automatic increment / decrement setting The setting of incrementing or decrementing of the address counter can be made independently in each upper and                                                                                                                                                                                    |
|---|---|----|---|---|---|---|---|----------------|----|----------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 1 |    | 0 | 0 | 0 | 0 | 0 | A <sub>2</sub> | Aı | A <sub>0</sub> |                          | lower bit of the address.  00 - Y decrement, X decrement,  01 - Y decrement, X increment,  10 - Y increment, X decrement,  11 - Y increment, X increment [POR]  A[2] = AM  Set the direction in which the address counter is updated automatically after data are written to the RAM.  AM= 0, the address counter is updated in the X direction. [POR]  AM = 1, the address counter is updated in the Y direction |
|   | Ć |    |   |   |   |   |   |                |    |                | DE                       | NTIAL                                                                                                                                                                                                                                                                                                                                                                                                             |



|               |      |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |      |      |     |      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  |
|---------------|------|-----|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|------|------|-----|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| 0             | 0    | 0C  | 0  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0    | 0    | 1    | 1    | 0   | 0    | Booster                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Booster Enable with Phase 1, Phase 2 and Phase 3 |
|               |      |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |      |      |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | for soft start current and duration setting.     |
|               |      |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |      |      |     |      | Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A[7:0] -> Soft start setting for Phase1          |
|               |      |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |      |      |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | = 8Bh [POR]                                      |
|               |      |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |      |      |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | B[7:0] -> Soft start setting for Phase2          |
|               |      |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |      |      |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | = 9Ch [POR]                                      |
|               |      |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |      |      |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C[7:0] -> Soft start setting for Phase3          |
|               |      |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |      |      |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | = 96h [POR]                                      |
|               |      |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |      |      |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D[7:0] -> Duration setting                       |
|               |      |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |      |      |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | = 0Fh [POR]                                      |
|               |      |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |      |      |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bit Description of each byte:                    |
|               |      |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |      |      |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A[6:0] / B[6:0] / C[6:0]:                        |
|               |      |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |      |      |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bit[6:4]                                         |
|               |      |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |      |      |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Driving Strength                                 |
|               |      |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |      |      |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Selection                                        |
|               |      |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |      |      |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 000 1(Weakest)                                   |
|               |      |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |      |      |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 001 2                                            |
|               |      |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |      |      |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 010 3                                            |
|               |      |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |      |      |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 011 4                                            |
|               |      |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |      |      |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100 5                                            |
|               |      |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |      |      |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 101 6                                            |
|               |      |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |      |      |     |      | and the same of the same                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 110 7                                            |
|               |      |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |      |      |     | ,    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 111 8(Strongest)                                 |
|               |      |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |      |      |     | - {  | ( =1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Bit[3:0]                                         |
|               |      |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 17   | 1    |      | 7   | /    | 1 -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Min Off Time Setting of GDR                      |
|               |      |     |    | and the same of the same                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1/   |      | \    | (    |     |      | A CONTRACTOR OF THE PARTY OF TH | [ Time unit ]                                    |
|               | ~_7  |     | 1  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1/   |      | \    |      | -   |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0000                                             |
| " The same of | 68 > |     | \\ | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1    |      | 0    |      |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |
| 1//           |      | 1/1 | \\ | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | / \  | 7)   |      |      |     |      | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0011                                             |
| 1 1/          | S    | //) | 10 | Control of the Contro |      |      |      |      | 653 | 77 0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NA                                               |
| / //          | C2   |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |      | 15   | = 1 |      | 11 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0100 2.6                                         |
| -             |      |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1    | 1    | 13   | 1 /5 |     | 1 6  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0101 3.2                                         |
|               |      |     |    | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -((_ | - }} | 1/3/ | 1 1  |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0110 3.9                                         |
| 0             | 1    |     | 1  | A6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A5   | A4   | A3   | A2   | A1  | A0   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0111 4.6                                         |
| 0             | 1    |     | 1  | В6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | B5   | B4   | В3   | B2   | B1  | В0   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1000 5.4                                         |
|               |      |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |      |      |     |      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1001 6.3                                         |
| 0             | 1    |     | 1  | C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C5   | C4   | C3   | C2   | C1  | C0   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1010 7.3                                         |
| 0             | 1    |     | 0  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | D5   | D4   | D3   | D2   | D1  | D0   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1011 8.4                                         |
|               | 1    |     |    | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | J-T  | 23   | 22   | 101 | 20   | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1100 9.8                                         |
|               |      |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |      |      |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1101 11.5                                        |
|               |      |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |      |      |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1110 13.8                                        |
|               |      |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |      |      |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1111 16.5                                        |
|               |      |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |      |      |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D[5:0]: duration setting of phase                |
|               |      |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |      |      |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D[5:4]: duration setting of phase 3              |
|               |      |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |      |      |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D[3:2]: duration setting of phase 2              |
|               |      |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |      |      |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D[1:0]: duration setting of phase 1              |
|               |      |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |      |      |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bit[1:0]                                         |
|               |      |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |      |      |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Duration of Phase                                |
|               |      |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |      |      |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [Approximation]                                  |
|               |      |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |      |      |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00 10ms                                          |
|               |      |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |      |      |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 01 20ms                                          |
|               |      |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |      |      |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 30ms                                          |
|               |      |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |      |      |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |
| 1             |      |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      | ĺ    |      |     |      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11 40ms                                          |



| 0 | 0    | 12  | 0  | 0  | 0  | 1  | 0  | 0  | 1  | 0  | SWRES<br>ET                                           | It resets the commands and parameters to their S/W Reset default values except R10h-Deep Sleep Mode During operation, BUSY pad will output high.  Note: RAM are unaffected by this command.                                                                                                     |
|---|------|-----|----|----|----|----|----|----|----|----|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 0    | 18  | 0  | 0  | 0  | 1  | 1  | 0  | 0  | 0  | _                                                     | Temperature Sensor Selection                                                                                                                                                                                                                                                                    |
| 0 | 1    |     | A7 | A6 | A5 | A4 | A3 | A2 | A1 | A0 | ure<br>Sensor<br>Control                              | A[7:0] = 48h [POR], external temperature sensor<br>A[7:0] = 80h Internal temperature sensor                                                                                                                                                                                                     |
| 0 | 0    | 1A  | 0  | 0  | 0  | 1  | 1  | 0  | 1  | 0  | Temperat                                              | Write to temperature register.                                                                                                                                                                                                                                                                  |
| 0 | 1    |     | A7 | A6 | A5 | A4 | A3 | A2 | A1 | A0 | ure<br>Sensor                                         | A[11:0] = 7FFh [POR]                                                                                                                                                                                                                                                                            |
| 0 | 1    |     | В7 | В6 | B5 | B4 | 0  | 0  | 0  | 0  | Control<br>(Write to<br>temperat<br>ure<br>register)l | - OIIP                                                                                                                                                                                                                                                                                          |
| 0 | 0    | 20  | 0  | 0  | 1  | 0  | 0  | 0  | 0  | 0  | Master<br>Activatio<br>n                              | Activate Display Update Sequence The Display Update Sequence Option is located at R22h User should not interrupt this operation to avoid corruption of panel images.                                                                                                                            |
| 0 | 0    | 21  | 0  | 0  | 1  | 0  | 0  | 0  | 0  | 1  | Display                                               | RAM content option for Display Update                                                                                                                                                                                                                                                           |
| 0 | (Vi) | 1/1 | A7 | A6 | A5 | A4 | A3 | A2 | A1 | A0 | Update                                                | A[7:0] = 00h [POR]                                                                                                                                                                                                                                                                              |
| 0 |      |     | B7 | 0  | 0  | 0  | 0  | 0  | 0  | 0  | Control 1                                             | B[7:0] = 00h [POR] A[7:4] Red RAM option 0000 Normal 0100 Bypass RAM content as 0 1000 Inverse RAM content A[3:0] BW RAM option 0000 Normal 0100 Bypass RAM content as 0 1000 Inverse RAM content B[7] Source Output Mode 0 Available Source from S0 to S175 1 Available Source from S8 to S167 |



|       |                       | 22   |    |              |        |      |       |         |     |      | D: ,                  |                                        |
|-------|-----------------------|------|----|--------------|--------|------|-------|---------|-----|------|-----------------------|----------------------------------------|
| 0     | 0                     | 22   | 0  | 0            | 1      | 0    | 0     | 0       | 1   | 0    |                       | Display Update Sequence Option:        |
|       |                       |      |    |              |        |      |       |         |     |      |                       | Enable the stage for Master Activation |
|       |                       |      |    |              |        |      |       |         |     |      |                       | A[7:0] = FFh (POR)                     |
|       |                       |      |    |              |        |      |       |         |     |      |                       | Operating sequence                     |
|       |                       |      |    |              |        |      |       |         |     |      |                       | Parameter                              |
|       |                       |      |    |              |        |      |       |         |     |      |                       | (in Hex)                               |
|       |                       |      |    |              |        |      |       |         |     |      | 1                     | Enable clock signal 80                 |
|       |                       |      |    |              |        |      |       |         |     |      |                       | Disable clock signal 01                |
|       |                       |      |    |              |        |      |       |         |     |      |                       | Enable clock signal                    |
|       |                       |      |    |              |        |      |       |         |     |      |                       | Enable Analog                          |
|       |                       |      |    |              |        |      |       |         |     |      |                       | -                                      |
|       |                       |      |    |              |        |      |       |         |     |      | 1                     | C0                                     |
|       |                       |      |    |              |        |      |       |         |     |      |                       | Disable Analog                         |
|       |                       |      |    |              |        |      |       |         |     |      |                       | Disable clock signal                   |
|       |                       |      |    |              |        |      |       |         |     |      |                       | 03                                     |
|       |                       |      |    |              |        |      |       |         |     |      |                       | Enable clock signal                    |
|       |                       |      |    |              |        |      |       |         |     |      | 4                     | Load LUT with DISPLAY Mode 1           |
| 0     | 1                     |      | A7 | A6           | A5     | A4   | A3    | A2      | A1  | A0   |                       | Disable clock signal                   |
|       |                       |      |    |              |        |      |       |         |     |      |                       | 91                                     |
|       |                       |      |    |              |        |      |       |         |     |      |                       | 1 1000                                 |
|       |                       |      |    |              |        |      |       |         |     |      |                       | Enable clock signal                    |
|       |                       |      |    |              |        |      |       |         |     |      |                       | Load LUT with DISPLAY Mode 2           |
|       |                       |      |    |              |        |      |       |         |     |      |                       | Disable clock signal                   |
|       |                       |      |    |              |        |      |       |         |     |      | and the second second | 99                                     |
|       |                       |      |    |              |        |      |       |         |     |      | 1                     | Enable clock signal                    |
|       |                       |      |    |              |        |      |       |         |     | 1    | (-1                   | Load temperature value                 |
|       |                       |      |    |              |        | 17   | r \ 1 |         | 100 | 1    | 1 -11                 | Load LUT with DISPLAY Mode 1           |
|       |                       |      |    | e (accino    | $\Box$ | //   | \     | Carrent | 100 |      |                       | Disable clock signal                   |
|       |                       |      | 1  | and the same | 11     | /<   | \     | \       |     |      | 1                     | B1                                     |
| 400   |                       |      | \\ | \            | } \.   |      | -     | L       |     |      |                       | Enable clock signal                    |
| 1 / 1 | MF.                   | 1    | \\ |              | / \    | 1    | 1     |         |     |      |                       |                                        |
| 1 //  |                       | 1/1  | 1/ |              |        |      |       |         |     | -    |                       | Load temperature value                 |
| 1 //  |                       | 11/2 | 1  |              |        |      |       | 4 8400  | 5 G | P 11 | 11/15                 | Load LUT with DISPLAY Mode 2           |
| 1     |                       | Á    |    |              |        |      | 20    | 10      |     | 1    |                       | Disable clock signal                   |
|       | and the second second |      |    |              | 17     | 17   | B     | 1 1     |     | J. 1 | 1                     | B9                                     |
|       |                       |      |    | 1            | 17     | - }} | 11 %  | 7 0     |     |      |                       | Enable clock signal                    |
|       |                       |      |    | //           | 1      |      | 15.5  |         |     |      |                       | Enable Analog                          |
|       |                       |      |    | 1            |        |      |       |         |     |      |                       | Display with DISPLAY Mode 1            |
|       |                       |      |    |              |        |      |       |         |     |      |                       | Disable Analog                         |
|       |                       |      |    |              |        |      |       |         |     |      |                       | Disable OSC                            |
|       |                       |      |    |              |        |      |       |         |     |      |                       | C7                                     |
|       |                       |      |    |              |        |      |       |         |     |      |                       |                                        |
|       |                       |      |    |              |        |      |       |         |     |      |                       | Enable clock signal                    |
|       |                       |      |    |              |        |      |       |         |     |      |                       | Enable Analog                          |
|       |                       |      |    |              |        |      |       |         |     |      |                       | Display with DISPLAY Mode 2            |
|       |                       |      |    |              |        |      |       |         |     |      |                       | Disable Analog                         |
|       |                       |      |    |              |        |      |       |         |     |      |                       | Disable OSC                            |
|       |                       |      |    |              |        |      |       |         |     |      |                       | CF                                     |
|       |                       |      |    |              |        |      |       |         |     |      |                       | Enable clock signal                    |
|       |                       |      |    |              |        |      |       |         |     |      |                       | Enable Analog                          |
|       |                       |      |    |              |        |      |       |         |     |      |                       | Load temperature value                 |
|       |                       |      |    |              |        |      |       |         |     |      |                       | DISPLAY with DISPLAY Mode 1            |
|       |                       |      |    |              |        |      |       |         |     |      |                       |                                        |
|       |                       |      |    |              |        |      |       |         |     |      |                       | Disable Analog                         |
|       |                       |      |    |              |        |      |       |         |     |      |                       | Disable OSC                            |
|       |                       |      |    |              |        |      |       |         |     |      |                       | F7                                     |
|       |                       |      |    |              |        |      |       |         |     |      | 1                     | Enable clock signal                    |
|       |                       |      |    |              |        |      |       |         |     |      |                       | Enable Analog                          |
|       |                       |      |    |              |        |      |       |         |     |      |                       | Load temperature value                 |



| O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0  | 0              | 24   | 0       | 0               | 1   | 0  | 0  | 1   | 0  | 0  | Write<br>RAM<br>(Black<br>White)<br>/ RAM<br>0x24 | After this command, data entries will be written into the BW RAM until another command is written. Address pointers will advance accordingly For Write pixel:  Content of Write RAM(BW) = 1  For Black pixel:  Content of Write RAM(BW) = 0 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----------------|------|---------|-----------------|-----|----|----|-----|----|----|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0         1         A7         A6         A5         A4         A3         A2         A1         A0         VCOM register         A[7:0] = 00h [POR]           0         0         2D         0         0         1         0         1         0         1         OTP         Read Register for Display Option: A[7:0]: VCOM OTP Selection           1         1         A7         A6         A5         A4         A3         A2         A1         A0         Register         A[7:0]: VCOM OTP Selection         (Command 0x37, Byte A)         B[7:0]: VCOM Register         A[7:0]: VCOM Register         (Command 0x37, Byte A)         B[7:0]: VCOM Register         B[7:0]: VCOM Register         (Command 0x2C)         C[7:0]~G[7:0]: Display Mode         C(T:0]~G[7:0]: Display Mode         C(T:0]~G[7:0]: Display Mode         C(T:0]~G[7:0]: Waveform Version         C(T:0]~K[7:0]: Waveform Version         [5 bytes]         H[7:0]~K[7:0]: Waveform Version         [4 bytes]           1         1         H7         H6         H5         H4         H3         H2         H1         H0         H1         H1         H1         H1         H1         H1         H1         H1         H1         H2         H1         H1         H2         H2         H2         H2         H2         H                                                                                  | 0  | 0              | 26   | 0       | 0               | 1   | 0  | 0  | 1   | 1  | 0  | (RED)<br>/ RAM                                    | command is written. Address pointers will advance accordingly.  For Red pixel:  Content of Write RAM(RED) = 1  For non-Red pixel [Black or White]:                                                                                          |
| 0         1         A7         A6         A5         A4         A3         A2         A1         A0         register           0         0         2D         0         0         1         0         1         0         Total Dota Date Date Date Date Date Date Date Da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0  | 0              | 2C   | 0       | 0               | 1   | 0  | 1  | 1   | 0  | 0  |                                                   |                                                                                                                                                                                                                                             |
| 1       1       A7       A6       A5       A4       A3       A2       A1       A0       Register Read for Read for Display Option       A[7:0]: VCOM OTP Selection (Command 0x37, Byte A)       B[7:0]: VCOM Register (Command 0x37, Byte A)         1       1       D7       D6       D5       D4       D3       D2       D1       D0         1       1       D7       D6       D5       D4       D3       D2       D1       D0         1       1       E7       E6       E5       E4       E3       E2       E1       E0         1       1       F7       F6       F5       F4       F3       F2       F1       F0         1       1       G7       G6       G5       G4       G3       G2       G1       G0         1       1       H7       H6       H5       H4       H3       H2       H1       H0         1       1       17       16       15       14       13       12       11       10     Register Read for Display Option (Command 0x37, Byte A) B[7:0]: VCOM Register (Command 0x37, Byte B to Byte F) [5 bytes] H[7:0]~K[7:0]: Waveform Version (Command 0x37, Byte G to Byte J) [4 bytes] B[7:0]: VCOM OTP Selection (Command 0x37, Byte A) B[7:0]: V                                                                                                                                                                                                                                  | 0  | 1              |      | A7      | A6              | A5  | A4 | A3 | A2  | A1 | A0 |                                                   | A[7:0] = 00h [POR]                                                                                                                                                                                                                          |
| 1       1       B7       B6       B5       B4       B3       B2       B1       B0       Read for Display Option       (Command 0x37, Byte A)       B[7:0]: VCOM Register       B[7:0]: VCOM Register       (Command 0x2C)       C[7:0]~G[7:0]: Display Mode       C[7:0]~G[7:0]: Display Mode       (Command 0x37, Byte B to Byte F)       C[7:0]~G[7:0]: Display Mode       (Command 0x37, Byte B to Byte F)       [5 bytes]       H[7:0]~K[7:0]: Waveform Version       [6 bytes]       H[7:0]~K[7:0]: Waveform Version       (Command 0x37, Byte B to Byte F)       [6 bytes]       H[7:0]~K[7:0]: Waveform Version       (Command 0x37, Byte B to Byte F)       [6 bytes]       H[7:0]~K[7:0]: Waveform Version       (Command 0x37, Byte G to Byte J)       [6 bytes]         1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 </td <td>0</td> <td>0</td> <td>2D</td> <td>0</td> <td>0</td> <td>1</td> <td>0</td> <td>1</td> <td>1</td> <td>0</td> <td>1</td> <td></td> <td></td> | 0  | 0              | 2D   | 0       | 0               | 1   | 0  | 1  | 1   | 0  | 1  |                                                   |                                                                                                                                                                                                                                             |
| 1       1       B7       B6       B5       B4       B3       B2       B1       B0       Display         1       1       C7       C6       C5       C4       C3       C2       C1       C0       Option       B[7:0]: VCOM Register         1       1       D7       D6       D5       D4       D3       D2       D1       D0         1       1       E7       E6       E5       E4       E3       E2       E1       E0         1       1       F7       F6       F5       F4       F3       F2       F1       F0         1       1       G7       G6       G5       G4       G3       G2       G1       G0         1       1       H7       H6       H5       H4       H3       H2       H1       H0         1       1       17       16       15       14       13       12       11       10     Display  Option  Option  Option  Option  Display  Display  Option  Display  D                                                                                                                                                                                                                                  | 1  | 1              |      | A7      | A6              | A5  | A4 | A3 | A2  | A1 | A0 |                                                   |                                                                                                                                                                                                                                             |
| 1       1       C7       C6       C5       C4       C3       C2       C1       C0       Option       (Command 0x2C)         1       1       D7       D6       D5       D4       D3       D2       D1       D0         1       1       E7       E6       E5       E4       E3       E2       E1       E0         1       1       F7       F6       F5       F4       F3       F2       F1       F0         1       1       G7       G6       G5       G4       G3       G2       G1       G0         1       1       H7       H6       H5       H4       H3       H2       H1       H0         1       1       17       16       15       14       13       12       11       10     (Command 0x2C)  (Command 0x37, Byte B to Byte F)  [5 bytes]  H[7:0]~K[7:0]: Waveform Version (Command 0x37, Byte G to Byte J)  [4 bytes]  [4 bytes]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1  | 1              |      | В7      | B6              |     | B4 |    | 100 | B1 | B0 | F                                                 |                                                                                                                                                                                                                                             |
| 1       1       E7       E6       E5       E4       E3       E2       E1       E0         1       1       F7       F6       F5       F4       F3       F2       F1       F0         1       1       G7       G6       G5       G4       G3       G2       G1       G0         1       1       H7       H6       H5       H4       H3       H2       H1       H0         1       1       17       16       15       14       13       12       11       10    (Command 0x37, Byte B to Byte F) [5 bytes] H[7:0]~K[7:0]: Waveform Version (Command 0x37, Byte G to Byte J) [4 bytes] [4 bytes]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1  | 1              |      | C7      | C6              | C5  | C4 | C3 | C2  | C1 | C0 |                                                   | (Command 0x2C)                                                                                                                                                                                                                              |
| 1     1     F7     F6     F5     F4     F3     F2     F1     F0       1     1     G7     G6     G5     G4     G3     G2     G1     G0       1     1     H7     H6     H5     H4     H3     H2     H1     H0       1     1     1     16     15     14     13     12     11     10   [5 bytes] [H[7:0]~K[7:0]: Waveform Version (Command 0x37, Byte G to Byte J) [4 bytes] [4 bytes]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1  |                |      | -       | Colonia Colonia | 1.1 | // | _  | \   | D1 |    |                                                   |                                                                                                                                                                                                                                             |
| 1       1       F7       F6       F5       F4       F3       F2       F1       F0         1       1       G7       G6       G5       G4       G3       G2       G1       G0         1       1       H7       H6       H5       H4       H3       H2       H1       H0         1       1       17       16       15       14       13       12       11       10    H[7:0]~K[7:0]: Waveform Version (Command 0x37, Byte G to Byte J) [4 bytes]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    | and the second |      |         | - \             | 1 1 |    | 7  | 1   |    |    |                                                   |                                                                                                                                                                                                                                             |
| 1     1     G7     G6     G5     G4     G3     G2     G1     G0       1     1     H7     H6     H5     H4     H3     H2     H1     H0       1     1     17     16     15     14     13     12     11     10   (Command 0x37, Byte G to Byte J) [4 bytes]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1/ | 7.135          | 11   | - 1 - 1 | 1               | ,   | F4 | F3 |     | F1 | F0 | 0                                                 | H[7:0]~K[7:0]: Waveform Version                                                                                                                                                                                                             |
| 1 1 17 16 15 14 13 12 11 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1  | Y              | 1/)_ | G7      | G6              | G5  | G4 | G3 | G2  | G1 | G0 | ME                                                | (Command 0x37, Byte G to Byte J)                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1  | 1              | 4    | H7      | Н6              | H5  | H4 | Н3 | H2  | H1 | H0 | 1                                                 | [4 bytes]                                                                                                                                                                                                                                   |
| 1 1 J7 J6 J5 J4 J3 J2 J1 J0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1  | 1              |      | I7      | I6              | 15  | I4 | I3 | I2  | I1 | 10 |                                                   |                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1  | 1              |      | J7      | J6              | J5  | J4 | J3 | J2  | J1 | J0 | -                                                 |                                                                                                                                                                                                                                             |
| 1 1 K7 K6 K5 K4 K3 K2 K1 K0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1  | 1              |      | K7      | K6              | K5  | K4 | K3 | K2  | K1 | K0 | -                                                 |                                                                                                                                                                                                                                             |



| 0 | 0  | 2F   | 0  | 0  | 1  | 0   | 1   | 1    | 1    | 1     | Status<br>Bit Read     | Read IC status Bit [POR 0x01] A[5]: HV Ready Detection flag [POR=0] 0: Ready 1: Not Ready A[4]: VCI Detection flag [POR=0] 0: Normal 1: VCI lower than the Detect level A[3]: [POR=0] A[2]: Busy flag [POR=0] 0: Normal 1: BUSY A[1:0]: Chip ID [POR=01] Remark: A[5] and A[4] status are not valid after RESET, they need to be initiated by command 0x14 and command 0x15 respectively |
|---|----|------|----|----|----|-----|-----|------|------|-------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 0  | 30   | 0  | 0  | 1  | 1   | 0   | 0    | 0    | 0     | Program<br>WS OTP      | Program OTP of Waveform Setting The contents should be written into RAM before sending this command. The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation                                                                                                                                                                         |
| 0 | 0  | 32   | 0  | 0  | 1\ | /4  | 0   | 0    | 1    | 0     | Write                  | Write LUT register from MCU interface                                                                                                                                                                                                                                                                                                                                                    |
| 0 | 4- |      | A7 | A6 | A5 | A4  | A3  | A2   | A1   | A0    | LUT                    | [153 bytes], which contains the content of                                                                                                                                                                                                                                                                                                                                               |
| 0 |    | 1/1  | В7 | В6 | В5 | B4  | В3  | B2   | B1   | В0    | register               | VS[nX-LUTm], TP[nX], RP[n], SR[nXY],                                                                                                                                                                                                                                                                                                                                                     |
| 0 | Ŧ, | 11), | 1  | :  | :  | :   | :   |      | 29   | 11: 9 | MIT                    | FR[n] and XON[nXY] Refer to Session 6.7 WAVEFORM                                                                                                                                                                                                                                                                                                                                         |
| 0 | T  | 9    | :  | :  | :  | - I | 1.8 | 1/2  | > \) | 1.1   |                        | SETTING                                                                                                                                                                                                                                                                                                                                                                                  |
| 0 | 1  |      | :  | 1  | (( |     | 11  | 7 11 | : '  | :     | 1                      |                                                                                                                                                                                                                                                                                                                                                                                          |
| 0 | 1  |      | :  | 1  | 1  |     | :   | :    | :    | :     | 1                      |                                                                                                                                                                                                                                                                                                                                                                                          |
| 0 | 0  | 39   | 0  | 0  | 1  | 1   | 1   | 0    | 0    | 1     | OTP<br>program<br>mode | OTP program mode A[1:0] = 00: Normal Mode [POR] A[1:0] = 11: Internal generated OTP programming voltage Remark: User is required to EXACTLY follow the reference code sequences                                                                                                                                                                                                          |
| 0 | 0  | 3C   | 0  | 0  | 1  | 1   | 1   | 1    | 0    | 0     |                        | Select border waveform for VBD<br>A[7:0] = C0h [POR], set VBD as HIZ.                                                                                                                                                                                                                                                                                                                    |



| 0  | 1                     |    | <b>A</b> <sub>7</sub> | A <sub>6</sub> | <b>A</b> <sub>5</sub> | A <sub>4</sub> | 0              | 0              | Aı             | $A_0$          |                         | A [7:6] :Select VBD option A[7:6] Select VBD as 00 GS Transition, Defined in A[2] and A[1:0] 01 Fix Level, Defined in A[5:4] 10 VCOM 11[POR] HiZ A [5:4] Fix Level Setting for VBD A[5:4] VBD level 00 VSS 01 VSH1 10 VSL 11 VSH2 A[2] GS Transition control A[2] GS Transition control 0 Follow LUT (Output VCOM @ RED) 1 Follow LUT |
|----|-----------------------|----|-----------------------|----------------|-----------------------|----------------|----------------|----------------|----------------|----------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |                       |    |                       |                |                       |                |                |                |                |                |                         | A [1:0] GS Transition setting for VBD<br>A[1:0] VBD Transition                                                                                                                                                                                                                                                                        |
|    |                       |    |                       |                |                       |                | -              |                |                | - (            |                         | 00 LUT0<br>01 LUT1                                                                                                                                                                                                                                                                                                                    |
|    |                       |    |                       |                | П                     | 11             | 1              |                | 3              | \              |                         | 10 LUT2                                                                                                                                                                                                                                                                                                                               |
| 0  | 0                     | 44 | 0                     | 1              | 0                     | 0              | 0              | 1              | 0              | 0              | Set RAM                 | 11 LUT3 Specify the start/end positions of the window                                                                                                                                                                                                                                                                                 |
| 0  | 1/1                   | Ž. | 0                     | 0              | 0                     | $A_4$          | $A_3$          | $A_2$          | $A_1$          | $A_0$          | X -                     | address in the X direction by an address unit                                                                                                                                                                                                                                                                                         |
| 0  |                       | // | 0                     | 0              | 0                     | B <sub>4</sub> | B <sub>3</sub> | $B_2$          | B <sub>1</sub> | $B_0$          | address                 | A[4:0]: XSA[4:0], X Start, POR = 00h                                                                                                                                                                                                                                                                                                  |
| 11 |                       |    |                       |                |                       |                | a f            | TE             | 3 1            | \              | Start /<br>End          | B[4:0]: XEA[4:0], X End, POR = 0Ch                                                                                                                                                                                                                                                                                                    |
|    | and the second second |    |                       |                | 1                     | 1              | M              | 1 1            | 1              | The l          | position                |                                                                                                                                                                                                                                                                                                                                       |
| 0  | 0                     | 45 | 0                     | (1             | 0                     | 0              | 0              | 1              | 0              | 1              | Set Ram                 | Specify the start/end positions of the window                                                                                                                                                                                                                                                                                         |
| 0  | 1                     |    | A <sub>7</sub>        | A <sub>6</sub> | <b>A</b> <sub>5</sub> | A <sub>4</sub> | A <sub>3</sub> | A <sub>2</sub> | A <sub>1</sub> | $A_0$          | Y-<br>address           | address in the Y direction by an address unit A[8:0]: YSA[8:0], Y Start, POR = 00D3h                                                                                                                                                                                                                                                  |
| 0  | 1                     |    | 0                     | 0              | 0                     | 0              | 0              | 0              | 0              | A <sub>8</sub> | Start /                 | B[8:0]: YEA[8:0], Y End, POR = 0000h                                                                                                                                                                                                                                                                                                  |
| 0  | 1                     |    | B <sub>7</sub>        | B <sub>6</sub> | B <sub>5</sub>        | B <sub>4</sub> | B <sub>3</sub> | B <sub>2</sub> | B <sub>1</sub> | $B_0$          | →                       |                                                                                                                                                                                                                                                                                                                                       |
| 0  | 1                     |    | 0                     | 0              | 0                     | 0              | 0              | 0              | 0              | $B_8$          | position                |                                                                                                                                                                                                                                                                                                                                       |
| 0  | 0                     | 4E | 0                     | 1              | 0                     | 0              | 1              | 1              | 1              | 0              |                         | Make initial settings for the RAM X address in                                                                                                                                                                                                                                                                                        |
| 0  | 1                     |    | 0                     | 0              | 0                     | A <sub>4</sub> | A <sub>3</sub> | A <sub>2</sub> | A <sub>1</sub> | A <sub>0</sub> | X<br>address<br>counter | the address counter (AC)<br>A[4:0]: XAD[4:0], POR is 00h                                                                                                                                                                                                                                                                              |
| 0  | 0                     | 4F | 0                     | 1              | 0                     | 0              | 1              | 1              | 1              | 1              |                         | Make initial settings for the RAM Y address in                                                                                                                                                                                                                                                                                        |
| 0  | 1                     |    | A <sub>7</sub>        | A <sub>6</sub> | $A_5$                 | $A_4$          | A <sub>3</sub> | $A_2$          | A <sub>1</sub> | $A_0$          | Y                       | the address counter (AC)                                                                                                                                                                                                                                                                                                              |
| 0  | 1                     |    | 0                     | 0              | 0                     | 0              | 0              | 0              | 0              | A <sub>8</sub> | address<br>counter      | A[8:0]: YAD[8:0], POR is 00D3h                                                                                                                                                                                                                                                                                                        |
|    |                       |    |                       |                |                       |                |                |                |                |                | Counter                 |                                                                                                                                                                                                                                                                                                                                       |



### 8. Optical Specification

Measurements are made with that the illumination is under an angle of 45 degree, the detection is perpendicular unless otherwise specified

| Symbol   | Parameter          | Conditions | Min | Тур.                   | Max | Units | Notes |
|----------|--------------------|------------|-----|------------------------|-----|-------|-------|
| R        | White Reflectivity | White      | 30  | 35                     | -   | %     | 8-1   |
| CR       | Contrast Ratio     | indoor     | 8:1 |                        | -   |       | 8-2   |
| GN       | 2Grey Level        | -          | -   | DS+(WS-DS)*n(m-1)      |     |       | 8-3   |
| T update | Image update time  | at 23 °C   | -   | 14                     | -   | sec   |       |
| Life     |                    | Topr       |     | 1000000times or 5years |     |       |       |

Notes: 8-1. Luminance meter: Eye-One Pro Spectrophotometer.

8-2. CR=Surface Reflectance with all white pixel/Surface Reflectance with all black pixels.

8-3 WS: White state, DS: Dark state

### 9. Handling, Safety, and Environment Requirements

### Warning

The display glass may break when it is dropped or bumped on a hard surface. Handle with care. Should the display break, do not touch the electrophoretic material. In case of contact with electrophoretic material, wash with water and soap.

#### Caution

The display module should not be exposed to harmful gases, such as acid and alkali gases, which corrode electronic components. Disassembling the display module.

Disassembling the display module can cause permanent damage and invalidates the warranty agreements.

Observe general precautions that are common to handling delicate electronic components. The glass can break and front surfaces can easily be damaged. Moreover the display is sensitive to static electricity and other rough environmental conditions.

| Data sheet status                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                              |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--|--|--|--|--|
| Product specification                                                                                                                                                                                                                                                                                                                                                                                                                                     | Product specification This data sheet contains final product specifications. |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Limiting values                                                              |  |  |  |  |  |
| Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability. |                                                                              |  |  |  |  |  |
| Application information                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                              |  |  |  |  |  |
| Where application information is given, it is advisory and does not form part of the specification.                                                                                                                                                                                                                                                                                                                                                       |                                                                              |  |  |  |  |  |



## 10. Reliability Test

| NO | Test items                                   | Test condition                                                                                                                                                                                                                 |
|----|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | Low-Temperature<br>Storage                   | T = -25°C, 240 h<br>Test in white pattern                                                                                                                                                                                      |
| 2  | High-Temperature<br>Storage                  | T=60°C, RH=40%, 240h<br>Test in white pattern                                                                                                                                                                                  |
| 3  | High-Temperature Operation                   | T=40°C, RH=35%, 240h                                                                                                                                                                                                           |
| 4  | Low-Temperature Operation                    | 0°C, 240h                                                                                                                                                                                                                      |
| 5  | High-Temperature,<br>High-Humidity Operation | T=40°C, RH=80%, 240h                                                                                                                                                                                                           |
| 6  | High Temperature, High<br>Humidity Storage   | T=50°C, RH=80%, 240h<br>Test in white pattern                                                                                                                                                                                  |
| 7  | Temperature Cycle                            | 1 cycle:[-25°C 30min]→[+60 °C 30 min] : 50 cycles<br>Test in white pattern                                                                                                                                                     |
| 8  | UV exposure Resistance                       | 765W/m² for 168hrs,40 °C<br>Test in white pattern                                                                                                                                                                              |
| 9  | ESD Gun                                      | Air+/-15KV;Contact+/-8KV  (Test finished product shell, not display only)  Air+/-8KV;Contact+/-6KV  (Naked EPD display, no including IC and FPC area)  Air+/-4KV;Contact+/-2KV  (Naked EPD display, including IC and FPC area) |

Note: Put in normal temperature for 1hour after test finished, display performance is ok.



## 11. Block Diagram





## 12. Typical Application Circuit with SPI Interface



| Part Name            | Value       | Reference Part      | Requirements for spare part                                                                                                 |  |  |  |
|----------------------|-------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------|--|--|--|
| C4 C7                | 1uF         | X5R/X7R             | X5R/X7R;Voltage Rating:6v or 25v                                                                                            |  |  |  |
| C1 C2 C3 C6<br>C8 C9 | 1uF         | 0402/0603/0803      | 5; X5R/X7R; Voltage Rating: 25v                                                                                             |  |  |  |
| C10                  | 0.47uF/1 uF |                     | 0603/0805; X7R; Voltage Rating: 25v<br>NOTE: Effective capacitance > 0.25uF @18v DC bias                                    |  |  |  |
| R1                   | 2.2Ohm      | 0402,0603,0         | 0805; 1% variation, ≥ 0.05W                                                                                                 |  |  |  |
| D4 D5 D6             | Diode       | MBR0530             | <ol> <li>Reverse DC Voltage ≥ 30V</li> <li>Io≥500mA</li> <li>Forward voltage ≤ 430mV</li> </ol>                             |  |  |  |
| Q1                   | NMOS        | Si1304BDL/NX3008NBK | <ol> <li>Drain-Source breakdown voltage≥30v</li> <li>Vgs(th)=0.9v(Typ), 1.3v(Max)</li> <li>rds on≤2.1Ω@ Vgs=2.5v</li> </ol> |  |  |  |
| L2                   | 47UH        | CDRH2D18/LDNP-470NC | 1) Io=500mA(max)                                                                                                            |  |  |  |



## 13 Typical Operating Sequence

### 13.1Normal Operation Flow





## 13.2 Normal Operation Reference Program Code

| ACTION                 | VALUE/DATA               | COMMENT                                    |  |  |  |
|------------------------|--------------------------|--------------------------------------------|--|--|--|
| POWER ON               |                          |                                            |  |  |  |
| delay                  | 10ms                     |                                            |  |  |  |
| PIN CONFIG             |                          |                                            |  |  |  |
| RESE#                  | low                      | Hardware reset                             |  |  |  |
| delay                  | 200us                    |                                            |  |  |  |
| RESE#                  | high                     |                                            |  |  |  |
| delay                  | 200us                    |                                            |  |  |  |
| Read busy pin          |                          | Wait for busy low                          |  |  |  |
| Command 0x12           |                          | Software reset                             |  |  |  |
| Read busy pin          |                          | Wait for busy low                          |  |  |  |
| Command 0x01           | Data 0xF9 0x00 0x00      | Set display size and driver output control |  |  |  |
| Command 0x11           | Data 0x01                | Ram data entry mode                        |  |  |  |
| Command 0x44           | Data 0x01 0x10           | Set Ram X address                          |  |  |  |
| Command 0x45           | Data 0xF9 0x00 0x00 0x00 | Set Ram Y address                          |  |  |  |
| Command 0x3C Data 0x05 |                          | Set border                                 |  |  |  |
|                        | SET VOLTAGE AND L        | OAD LUT                                    |  |  |  |
| Command 0x2C           | Data 0x36                | Set VCOM value                             |  |  |  |
| Command 0x03           | Data 0x17                | Gate voltage setting                       |  |  |  |
| Command 0x04           | Data 0x41 0x00 0x32      | Source voltage setting                     |  |  |  |
| Command 0x32           | Write 153bytes LUT       | Load LUT                                   |  |  |  |
|                        | LOAD IMAGE AND U         | JPDATE                                     |  |  |  |
| Command 0x4E           | Data 0x01                | Set Ram X address counter                  |  |  |  |
| Command 0x4F           | Data 0xF9 0x00           | Set Ram Y address counter                  |  |  |  |
| Command 0x24           | 4000bytes                | Load image (128/8*250)(BW)                 |  |  |  |
| Command 0x26           | 4000bytes                | Load image (128/8*250)(RED)                |  |  |  |
| Command 0x22 Data 0XC7 |                          | Image update                               |  |  |  |
| Command 0x20           |                          |                                            |  |  |  |
| Read busy pin          |                          | Wait for busy low                          |  |  |  |
| Command 0x10           | Data 0X01                | Enter deep sleep mode                      |  |  |  |
|                        | POWER OFF                |                                            |  |  |  |



## 13.3 OTP Operation Flow





### 13.4 OTP Operation Reference Program Code

| ACTION        | VALUE/DATA         | COMMENT                     |  |  |
|---------------|--------------------|-----------------------------|--|--|
|               | POWER ON           |                             |  |  |
| delay         | 10ms               |                             |  |  |
|               | PIN CONFIG         |                             |  |  |
| RESE#         | low                | Hardware reset              |  |  |
| delay         | 200us              |                             |  |  |
| RESE#         | high               |                             |  |  |
| delay         | 200us              |                             |  |  |
| Read busy pin |                    | Wait for busy low           |  |  |
| Command 0x12  |                    | Software reset              |  |  |
| Read busy pin |                    | Wait for busy low           |  |  |
|               | SET VOLTAGE AND LO | OAD LUT                     |  |  |
|               | LOAD IMAGE AND U   | PDATE                       |  |  |
| Command 0x24  | 4000bytes          | Load image (128/8*250)(BW)  |  |  |
| Command 0x26  | 4000bytes          | Load image (128/8*250)(RED) |  |  |
| Command 0x20  |                    |                             |  |  |
| Read busy pin |                    | Wait for busy low           |  |  |
| Command 0x10  | Data 0X01          | Enter deep sleep mode       |  |  |
|               | POWER OFF          |                             |  |  |
| 6 D           | KEG                | ENTIAL                      |  |  |



### 14. Part Number Definition

#### DEP G 0213 R W S800 F13

1 2 3 4 5 6 7

1: DEP:DKE product

2: G:Dot matrix type

3: The E-paper size:2.13inch:0213

4: The color of E-paper:

B: Black/White R: Black/White/Red Y: Black/White/Yellow

5: OT range: N: Normal L/S: Low temperature H/W: High temperature

6: Driver type: internal temperature sensor

7: FPC type

### 15. Inspection condition

### 15.1 Environment

Temperature: 25±3 °C Humidity: 55±10%RH

#### 15.2 Illuminance

Brightness:1200~1500LUX;distance:20-30CM;Angle:Relate 45°surround.

### 15.3 Inspect method





### 15.4 Display area



## 15.5 Inspection standard

### 15.5.1 Electric inspection standard

|     |                               |                                                                                                               | <b>D</b> 0      |                            | <del>                                     </del> |
|-----|-------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------|----------------------------|--------------------------------------------------|
| NO. | Item                          | Standard                                                                                                      | Defect<br>level | Method                     | Scope                                            |
| 1   | Display                       | Display complete Display uniform                                                                              | MA              |                            |                                                  |
| 2   | Black/White spots             | D≤0.25mm, Allowed<br>0.25mm < D≤0.4mm on N≤3, and<br>Distance≥5mm<br>0.4mm < D Not Allow                      | MI              | Visual inspection          |                                                  |
| 3   | Black/White spots (No switch) | L $\leq$ 0.6mm, W $\leq$ 0.2mm, N $\leq$ 1<br>L $\leq$ 2.0mm,W $>$ 0.2mm, Not Allow<br>L $>$ 0.6mm, Not Allow | . MI            | Visual/<br>Inspection card | Zone A                                           |
| 4   | Ghost image                   | Allowed in switching process                                                                                  | MI              | Visual inspection          |                                                  |



| 5 | Flash spots/<br>Larger FPL size                      | Flash spots in switching, Allowed FPL size larger than viewing area, Allowed | MI | Visual/<br>Inspection card | Zone A<br>Zone B |
|---|------------------------------------------------------|------------------------------------------------------------------------------|----|----------------------------|------------------|
| 6 | Display<br>wrong/Missing                             | All appointed displays are showed correct                                    | MA | Visual<br>inspection       | Zone A           |
| 7 | Short circuit/<br>Circuit break/<br>Display abnormal | Not Allow                                                                    |    |                            |                  |

### 15.5.2 Appearance inspection standard

| NO. | Item                                              | Standard                                                                                                                                                                                               | Defect<br>level | Method                 | Scope            |
|-----|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------------|------------------|
|     | B/W spots<br>/Bubble/<br>Foreign bodies/<br>Dents | D= $(L+W)/2$ D $\leq 0.25$ mm, Allowed 0.25mm $\leq D\leq 0.4$ mm, N $\leq 3$ D $\geq 0.4$ mm, Not Allow                                                                                               | MI              | Visual inspection      | Zone A           |
| 2   | Glass crack                                       | Not Allow                                                                                                                                                                                              | MA              | Visual                 | Zone A<br>Zone B |
| 3   | Dirty                                             | Allowed if can be removed                                                                                                                                                                              | MI              | / Microscope           | Zone A<br>Zone B |
| 4   | Chips/Scratch/<br>Edge crown                      | $X \le 3$ mm, $Y \le 0.5$ mm And without affecting the electrode is permissible $2$ mm $\le X$ or $2$ mm $\le Y$ Not Allow $W \le 0.1$ mm, $L \le 5$ mm, No harm to the electrodes and $N \le 2$ allow | MI              | Visual<br>/ Microscope | Zone A<br>Zone B |



| 5  | TFT Cracks                                                | Not Allow                                                                                                                                                                               | MA | Visual<br>/ Microscope | Zone A<br>Zone B   |
|----|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|------------------------|--------------------|
| 6  | Dirty/ foreign<br>body                                    | Allowed if can be removed/ allow                                                                                                                                                        | MI | Visual<br>/ Microscope | Zone A /<br>Zone B |
| 7  | FPC broken/ Goldfingers exidation/ scratch                | Not Allow                                                                                                                                                                               | MA | Visual<br>/ Microscope | Zone B             |
| 8  | TFT edge bulge<br>/TFT chromatic<br>aberration            | TFT edge bulge: $X \le 3$ mm, $Y \le 0.3$ mm Allowed TFT chromatic aberration :Allowed                                                                                                  | MI | Visual<br>/ Microscope | Zone A<br>Zone B   |
| 9  | PCB damaged/<br>Poor welding/<br>Curl                     | PCB (Circuit area) damaged Not<br>Allow<br>PCB Poor welding Not Allow<br>PCB Curl≤1%                                                                                                    |    |                        |                    |
| 10 | Edge glue height/<br>Edge glue bubble                     | Edge Adhesives H≤PS surface (Including protect film) Edge adhesives seep in≤1/2 Margin width Length excluding Edge adhesives bubble: bubble Width ≤1/2 Margin width; Length ≤0.5mm₀ n≤5 | MI | Visual<br>/ Ruler      | Zone B             |
| 11 | Protect film                                              | Surface scratch but not effect protect function, Allowed                                                                                                                                |    | Visual<br>Inspection   |                    |
| 12 | Silicon glue                                              | Thickness ≤ PS surface(With protect film): Full cover the IC; Shape: The width on the FPC ≤ 0.5mm (Front) The width on the FPC≤1.0mm (Back) smooth surface, No obvious raised.          | MI | Visual<br>Inspection   |                    |
| 13 | Warp degree<br>(TFT substrate)                            | FPL<br>TFT<br>t≤2.0mm                                                                                                                                                                   | MI | Ruler                  |                    |
| 14 | Color difference<br>in COM area<br>(Silver point<br>area) | Allowed                                                                                                                                                                                 |    | Visual<br>Inspection   |                    |



## 16.Packaging

#### DATE 2019.03.15 EPD PACKING INSTRUCTION DESIGN CHECKED DKE-QS. D-010 APPROVED P/N Customer Code Ref.P/N PKG Method Printing Surface Marks Pull Tape Bar. Code Туре DEPG0213 Blister None GLASS BACK None YES Marks instruction: Pull tape: print on the back of the product Contents: model+Lot# Packing Materials List 28PCS/LAYER, 20INNER BOX/CTN, TOTAL 560PCS/CTN. Model List Materials Q'ty Unit Barcode Instruction: corrugate Carton Piece BOX 7# (INNER) corrugate 2 Piece DEPG0213B Blister box PET 22 Piece EPE 20 Piece 289. 0\*261. 0\*T1. 8-2. 0 Thin foam Vaccum bag 450. 0\*590. 0\*0. 075 2 Piece Foam board DKE2251-10 **EPE** 3 16\*5\*T0.05 560 Piece pull tape Detail: Blister box should be rotated Blister box: TOTAL 10 LAYERS PER INNER BOX WITH ONE Empty blister box Vaccum bag Thin foam MORE EMPTY BLISTER ON THE TOP OF THE Blister PRODUCTS. ed with rubber bands Foam board . PUT IT INTO 7# INNER CARTON INNER BOX LABEL 7# INNER BOX PUT TWO 7# INNER BOXS INTO 7# CARTON Packing belt Quantity: 4\*7=28PCS rohs Label Epaper Identification