

Machine Learning

Motivation I: Data Compression

Data Compression

Reduce data from 2D to 1D

Data Compression

Reduce data from 2D to 1D

$$x^{(1)} \longrightarrow z^{(1)}$$

$$x^{(2)} \longrightarrow z^{(2)}$$

$$x^{(2)} \longrightarrow z^{(2)}$$

$$x^{(m)} \rightarrow z^{(m)}$$

Data Compression

Reduce data from 3D to 2D

Machine Learning

Motivation II: Data Visualization

Data Visualization

						ivicali	
		Per capita			Poverty	household	
	GDP	GDP	Human		Index	income	
	(trillions of	(thousands	Develop-	Life	(Gini as	(thousands	
Country	US\$)	of intl. \$)	ment Index	expectancy	percentage)	of US\$)	
Canada	1.577	39.17	0.908	80.7	32.6	67.293	
China	5.878	7.54	0.687	73	46.9	10.22	

0.547

0.755

0.866

0.91

• • •

64.7

65.5

80

78.3

• • •

India1.6323.41Russia1.4819.84Singapore0.22356.69USA14.52746.86

...

...

...

...

Mean

0.735

0.72

67.1

84.3

36.8

39.9

42.5

40.8

Data Visualization

Country	z_1	z_2	
Canada	1.6	1.2	
China	1.7	0.3	
India	1.6	0.2	
Russia	1.4	0.5	
Singapore	0.5	1.7	
USA	2	1.5	
•••	•••	•••	

Data Visualization

Machine Learning

Principal Component Analysis problem formulation

Principal Component Analysis (PCA) problem formulation

Principal Component Analysis (PCA) problem formulation

Reduce from 2-dimension to 1-dimension: Find a direction (a vector $u^{(1)} \in \mathbb{R}^n$) onto which to project the data so as to minimize the projection error.

Reduce from n-dimension to k-dimension: Find k vectors $u^{(1)}, u^{(2)}, \ldots, u^{(k)}$ onto which to project the data, so as to minimize the projection error.

PCA is not linear regression

PCA is not linear regression

考虑以下二维数据集:

下列哪个图片对应的PCA可能返回的 $u^{(1)}$ (第一特征向量/第一主成分)的值?选出所有正确项

Machine Learning

Principal Component Analysis algorithm

Data preprocessing

Training set: $x^{(1)}, x^{(2)}, \dots, x^{(m)}$

Preprocessing (feature scaling/mean normalization):

$$\mu_j = \frac{1}{m} \sum_{i=1}^m x_j^{(i)}$$
 Replace each $x_j^{(i)}$ with $x_j - \mu_j$

If different features on different scales (e.g., $x_1 =$ size of house, x_2 =number of bedrooms), scale features to have comparable range of values.

$$x_j = \frac{x_j - \mu_j}{s_i}$$

Principal Component Analysis (PCA) algorithm

Reduce data from 2D to 1D

Reduce data from 3D to 2D

Principal Component Analysis (PCA) algorithm

Reduce data from n-dimensions to k-dimensions Compute "covariance matrix":

$$\Sigma = \frac{1}{m} \sum_{i=1}^{n} (x^{(i)}) (x^{(i)})^{T}$$

Compute "eigenvectors" of matrix Σ :

$$[U,S,V] = svd(Sigma);$$

$$U = \begin{bmatrix} \begin{vmatrix} & & & & \\ u^{(1)} & u^{(2)} & \dots & u^{(n)} \\ & & & \end{bmatrix} \in \mathbb{R}^{n \times n}$$

Principal Component Analysis (PCA) algorithm

From [U,S,V] = svd(Sigma), we get:

$$U = \begin{bmatrix} | & | & | & | \\ u^{(1)} & u^{(2)} & \dots & u^{(n)} \\ | & | & | \end{bmatrix} \in \mathbb{R}^{n \times n}$$

$$z^{(i)} = U_{reduce}^T * x^{(i)} =$$

Principal Component Analysis (PCA) algorithm summary

After mean normalization (ensure every feature has zero mean) and optionally feature scaling:

```
Sigma = \frac{1}{m} \sum_{i=1}^{m} (x^{(i)})(x^{(i)})^{T}
[U,S,V] = \text{svd}(\text{Sigma});
\text{Ureduce} = U(:,1:k);
z = \text{Ureduce}' *x;
```


Machine Learning

Reconstruction from compressed representation

Reconstruction from compressed representation

$$z = U_{reduce}^T x$$

 x_1

Machine Learning

Choosing the number of principal components

Choosing k (number of principal components)

Average squared projection error: $\frac{1}{m}\sum_{i=1}^{m}\|x^{(i)}-x_{approx}^{(i)}\|^2$ Total variation in the data: $\frac{1}{m}\sum_{i=1}^{m}\|x^{(i)}\|^2$

Typically, choose k to be smallest value so that

$$\frac{\frac{1}{m} \sum_{i=1}^{m} \|x^{(i)} - x_{approx}^{(i)}\|^2}{\frac{1}{m} \sum_{i=1}^{m} \|x^{(i)}\|^2} \le 0.01$$
 (1%)

"99% of variance is retained"

Choosing k (number of principal components)

Algorithm:

Try PCA with k = 1

Compute $U_{reduce}, z^{(1)}, z^{(2)},$

$$\ldots, z^{(m)}, x^{(1)}_{approx}, \ldots, x^{(m)}_{approx}$$

Check if

$$\frac{\frac{1}{m} \sum_{i=1}^{m} \|x^{(i)} - x_{approx}^{(i)}\|^2}{\frac{1}{2} \sum_{i=1}^{m} \|x^{(i)}\|^2} \le 0.01?$$

[U,S,V] = svd(Sigma)

$$\mathbf{S} = \begin{bmatrix} S_{11} & 0 & 0 & 0 \\ 0 & S_{22} & 0 & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & S_{nn} \end{bmatrix}$$

$$1 - \frac{\sum_{i=1}^{k} S_{ii}}{\sum_{i=1}^{n} S_{ii}} \le 1\%$$

$$\frac{\sum_{i=1}^k S_{ii}}{\sum_{i=1}^n S_{ii}} \ge 0.99$$

Choosing k (number of principal components)

$$[U,S,V] = svd(Sigma)$$

Pick smallest value of k for which

$$\frac{\sum_{i=1}^{k} S_{ii}}{\sum_{i=1}^{m} S_{ii}} \ge 0.99$$

(99% of variance retained)

Machine Learning

Advice for applying PCA

Supervised learning speedup

$$(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})$$

Extract inputs:

Unlabeled dataset: $x^{(1)}, x^{(2)}, \dots, x^{(m)} \in \mathbb{R}^{10000}$

$$\downarrow PCA$$

$$z^{(1)}, z^{(2)}, \dots, z^{(m)} \in \mathbb{R}^{1000}$$

New training set:

$$(z^{(1)}, y^{(1)}), (z^{(2)}, y^{(2)}), \dots, (z^{(m)}, y^{(m)})$$

Note: Mapping $x^{(i)} \to z^{(i)}$ should be defined by running PCA only on the training set. This mapping can be applied as well to the examples $x_{cv}^{(i)}$ and $x_{test}^{(i)}$ in the cross validation and test sets.

Application of PCA

- Compression
 - Reduce memory/disk needed to store data
 - Speed up learning algorithm

- Visualization

Bad use of PCA: To prevent overfitting

Use $z^{(i)}$ instead of $x^{(i)}$ to reduce the number of features to k < n.

Thus, fewer features, less likely to overfit.

This might work OK, but isn't a good way to address overfitting. Use regularization instead.

$$\min_{\theta} \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \frac{\lambda}{2m} \sum_{j=1}^{n} \theta_j^2$$

PCA is sometimes used where it shouldn't be

Design of ML system:

- Get training set $\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})\}$
- Run PCA to reduce $x^{(i)}$ in dimension to get $z^{(i)}$
- Train logistic regression on $\{(z^{(1)},y^{(1)}),\ldots,(z^{(m)},y^{(m)})\}$
- Test on test set: Map $x_{test}^{(i)}$ to $z_{test}^{(i)}$. Run $h_{\theta}(z)$ on $\{(z_{test}^{(1)},y_{test}^{(1)}),\ldots,(z_{test}^{(m)},y_{test}^{(m)})\}$

How about doing the whole thing without using PCA?

Before implementing PCA, first try running whatever you want to do with the original/raw data $x^{(i)}$. Only if that doesn't do what you want, then implement PCA and consider using $z^{(i)}$.