Contents

1	Introduction							
2	Sma	Small strain non-linear viscoelasticity in 1D						
	2.1	Maxwell model kinetics and kinematics						
	2.2	Thermodynamic considerations						
	2.3	Temporal discretization						
	2.4	The framework						
		2.4.1 Satisfying the axioms of the Maxwell model						
	2.5	Some models and their behaviour						
		2.5.1 Linear viscoelasticity						
		2.5.2 Ostwald-de Waele model						
		2.5.3 Modified Ostwald-de Waele model						
		2.5.4 Carreau–Yasuda model						
		2.5.5 Model behaviour						
	2.6	Fitting models to data						
	~							
3		all strain non-linear viscoelasticity in 3D						
	3.1	Isochoric-volumetric split						
	3.2	Maxwell model kinetics and kinematics						
	3.3	Thermodynamic considerations						
	3.4	The framework						
		3.4.1 Satisfying the axioms of the Maxwell model						
	3.5	Some models and their behaviour						
		3.5.1 Linear viscoelasticity						
		3.5.2 Ostwald-de Waele model						
		3.5.3 Modified Ostwald-de Waele model						
		3.5.4 Carreau–Yasuda model						
		3.5.5 Model behaviour						
	3.6	Fitting models to data						
1	Cor	nputational examples						
	4.1	Inverse FE to fit models??						
	4.2	Impact loading on bone: comparison of results for different models						
4	Oth	her temporal approximations						
В	Wh	y it's incorrect to simply insert a new viscosity at each time-step						

\mathbf{C}	Some	\mathbf{more}	detailed	maths	(\mathbf{maybe}))
--------------	------	-----------------	----------	-------	--------------------	---

D Extension to finite strain

Abstract

7

7

- Linear viscoelastic models are not able to fit full strain rate uniaxial loading data for bone well [1]. Furthermore, biomechanics and the characterization of biological materials is rapidly evolving. As biological solids are impregnated with biological fluids which typically display non-Newtonian behaviour it stands to reason that many biological materials which are yet to be mechanically characterized could display non-linear viscoelastic behaviour. Hence, the existence of a flexible framework for non-linear viscoelasticity is an imperative in the field of biomechanics.
- A framework of non-linear viscoelasticity in an infinitesimal setting does not appear to exist in the literature and so one is developed here.
- A generalized Maxwell model is adopted without *a priori* assumption of the constitutive behaviour of the components in the Maxwell elements.
- The crux is to enforce that viscous and elastic stresses in the dashpot and spring, respectively, are equal. In an incremental (temporally discretized) setting this is achieved by constructing a residual function and applying local (integration point level) Newton-Raphson iterations to determine the viscous strain (that is, the strain of the dashpot) at the next iteration such that the viscous and elastic stresses are equal.
- This framework can be extended to finite strains and possesses some advantages over current finite strain non-linear viscoelastic models [2]. In particular, the model need not be formulated in terms of principal stretches.

Nomenclature

Number sets

- \mathbb{C} Complex numbers
- **H** Quaternions
- \mathbb{R} Real numbers

Other symbols

 ρ Friction index

V Constant volume

Physics constants

- c Speed of light in a vacuum
- G Gravitational constant
- h Planck constant

1 Introduction

- 2 Small strain non-linear viscoelasticity in 1D
- 2.1 Maxwell model kinetics and kinematics
- 2.2 Thermodynamic considerations
- 2.3 Temporal discretization
- 2.4 The framework
- 2.4.1 Satisfying the axioms of the Maxwell model
- 2.5 Some models and their behaviour
- 2.5.1 Linear viscoelasticity
- 2.5.2 Ostwald-de Waele model
- 2.5.3 Modified Ostwald-de Waele model
- 2.5.4 Carreau-Yasuda model
- 2.5.5 Model behaviour

Instant stress

Instant strain

Constant strain rate

- 2.6 Fitting models to data
- 3 Small strain non-linear viscoelasticity in 3D
- 3.1 Isochoric-volumetric split
- 3.2 Maxwell model kinetics and kinematics
- 3.3 Thermodynamic considerations
- 3.4 The framework
- 3.4.1 Satisfying the axioms of the Maxwell model
- 3.5 Some models and their behaviour

We focus on the viscous component of the mode ssuming linear behaviour for the elastic component. However, linear behaviour of the elastic component is not a requirement for the framework

presented in Section 3.4. We take inspiration from non-Newtonian models commonly used for biological fluids.

- 3.5.1 Linear viscoelasticity
- 3.5.2 Ostwald-de Waele model
- 3.5.3 Modified Ostwald-de Waele model
- 3.5.4 Carreau-Yasuda model
- 3.5.5 Model behaviour

Instant stress

Instant strain

Constant strain rate

3.6 Fitting models to data

4 Computational examples

- 4.1 Inverse FE to fit models??
- 4.2 Impact loading on bone: comparison of results for different models

References

- [1] T. J. Cloete, G. Paul, and E. B. Ismail. "Hopkinson bar techniques for the intermediate strain rate testing of bovine cortical bone". In: *Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences* 372.2015 (2014). ISSN: 1364503X. DOI: 10.1098/rsta.2013.0210.
- [2] Stefanie Reese and Sanjay Govindjee. "A theory of finite viscoelasticity and numerical aspects". In: *International Journal of Solids and Structures* 35.26-27 (1998), pp. 3455–3482. ISSN: 00207683. DOI: 10.1016/s0020-7683(97)00217-5.

- A Other temporal approximations
- B Why it's incorrect to simply insert a new viscosity at each time-step
- C Some more detailed maths (maybe)
- D Extension to finite strain