ADVERSARIAL TRAINING METHODS FOR SEMI-SUPERVISED TEXT CLASSIFICATION

Keywords: Adversarial training, virtual adversarial training

목차

- 1. Class Imbalance Problem
- 2. Text Data Augmentation(...?)
- 3. Adversarial Training(논문)
- 4. Adversarial Training(연구)

1. Class Imbalance Problem!

Class Imbalance Problem???

Twitter text 데이터의 비율이 [긍정 : 부정 = 50 : 50] 라면, 별 문제 없음.

Twitter text 데이터의 비율이 [긍정 : 부정 = 98 : 2] 이라면???

Class Imbalance Problem???

• 만약, 학습된 모델이 모든 데이터를 Positive 로 판단해도

맞춘 문제 = 980개 , 틀린 문제 = 20개 → 평균 Accuracy : 98% !!! **반면, negative data 는 제대로 분류하지 못한다...** → Recall : 100% , 0% Precision : 98% , -%

• 실제로, 학습 데이터가 편향되어 있는 경우가 많아서 위와 같은 학습이 자주 발생한다 ㅠ...

Resampling Technique

: 데이터 샘플링

1. Under-Sampling : Majority data 의 개수를 줄여 학습.

Ensemble Technique

: 여러 학습 모델을 생성, 이용

Resampling Technique

: 데이터 샘플링

- 1. Under-Sampling : Majority data 의 개수를 줄여 학습.
- 2. Over-Sampling : Minority data 를 여러 번 반복 학습.

over

Ensemble Technique

: 여러 학습 모델을 생성, 이용

Resampling Technique

: 데이터 샘플링

- 1. Under-Sampling : Majority data 의 개수를 줄여 학습.
- 2. Over-Sampling: Minority data 를 여러 번 반복 학습.
- 3. SMOTE : 서로 다른 Minority data 두 개를 이용하여, 새로운 synthetic instance 생성.

Ensemble Technique

: 여러 학습 모델을 생성, 이용

Synthetic Minority Over-sampling Technique

Resampling Technique

: 데이터 샘플링

- 1. Under-Sampling : Majority data 의 개수를 줄여 학습.
- 2. Over-Sampling: Minority data 를 여러 번 반복 학습.
- 3. SMOTE : 서로 다른 Minority data 두 개를 이용하여, 새로운 synthetic instance 생성.
- 4. Both-Sampling(Under + Over), ROSE(SMOTE + bootstrapping) 등등...

Ensemble Technique

: 여러 학습 모델을 생성, 이용

1. Bagging(Bootstrap Aggregating): 샘플을 여러 번 뽑아, 샘플 별로 모델을 학습시킨 뒤, 다수 결과를 집계.

Resampling Technique

: 데이터 샘플링

- 1. Under-Sampling : Majority data 의 개수를 줄여 학습.
- 2. Over-Sampling: Minority data 를 여러 번 반복 학습.
- 3. SMOTE : 서로 다른 Minority data 두 개를 이용하여, 새로운 synthetic instance 생성.
- 4. Both-Sampling(Under + Over), ROSE(SMOTE + bootstrapping) 등등...

Ensemble Technique

: 여러 학습 모델을 생성, 이용

- 1. Bagging(Bootstrap Aggregating) : 샘플을 여러 번 뽑아, 샘플 별로 모델을 학습시킨 뒤, 다수 결과 집계.
- 2. Boosting : weak learner(오차율 50% 이하 모델) 들을 합쳐 하나의 strong learner 생성 및 결과 출력.

색다른 Class Imbalance 보정 방법??

• Data Augmentation : 기존 데이터 D 로부터, 새로운 데이터 Dnew 생성

• Adversarial Training : 기존 데이터 D 에 noise를 가한 D' 를 학습 (데이터를 생성하지는 않는다!)

2. Text Data Augmentation (...?)

Text Data Augmentation

아래 내용들을 모두 공유하고 필요한 부분에서 필요한 문제와 해결책을 제시하는데 참조하기 바란다.

1. Generative Adversarial Network를 이용한 진짜 같은 가짜 Data Augmentation

Text Data Augmentation

Data augmentation

학습 데이터를 여러 방법으로 변형한 후, 변형된 데이터를 네트워크의 새로운 입력으로 사용

→ (와! 학습할 데이터가 많아졌어요!)

• 하지만... data augmentation... 이미지는 많이 하지만... 텍스트는 그다지...

• 왜?

"I am a boy" \implies "boy a am I"

• 하지만... data augmentation... 이미지는 많이 하지만... 텍스트는 그다지...

• 왜?

"I am a boy" → "I am a", "a boy", ...

• 하지만... data augmentation... 이미지는 많이 하지만... 텍스트는 그다지...

• 왜?

"I am a boy"
"You are a girl", "KimTaeri is my girlfriend", ... (O)

"I am three boy", "I am a soccer", ... (X)

text data augmentation 은 까다롭다...

ADVERSARIAL TRAINING

- 그렇다면,
 - similar discrete word 입력 대신,

```
(ex : \underline{I} am \ a \ boy \longrightarrow \underline{you} \ are \ a \ girl \rightarrow [\underline{[0.124, -0.637, 0.394, ...]}, [...], [...], [...])
```

continuous word embedding에 대한 perturbation 모델을 정의!

```
(ex : I am a boy \rightarrow [[0.157, -0.476, 0.354, ...], ...] \rightarrow [[0.154, -0.469, 0.361, ...], ...])
```

→ 이때, Adversarial Training Model의 핵심은 "적당한 perturb" 를 찾아내는 것!

ADVERSARIAL TRAINING (논문)

(a) LSTM-based text classification model.

Model

Figure 1: Text classification models with clean embeddings (a) and with perturbed embeddings (b).

(b) The model with perturbed embeddings.

Loss Function

$$\begin{array}{ll} \operatorname{model} & & \operatorname{model} \\ \operatorname{Hoss}(\operatorname{adv}) = & -\log p(y \mid \boldsymbol{x} + \boldsymbol{r}_{\operatorname{adv}}; \boldsymbol{\theta}) \text{ where } \boldsymbol{r}_{\operatorname{adv}} = \operatorname*{arg\ min} \log p(y \mid \boldsymbol{x} + \boldsymbol{r}; \hat{\boldsymbol{\theta}}) \\ \downarrow & \downarrow & \downarrow & \downarrow \\ \operatorname{class\ data\quad noise} & & \boldsymbol{r}, \|\boldsymbol{r}\| \leq \epsilon \end{array}$$

: 일정 범위(ϵ) 내의 "적절한" noise(= r_{adv}) 를 찾아, 이를 input에 더해서 학습!

Loss Function (1/2)

Ex) Emotion Classifier

요약: "I am good" 을 넣으면, "I am good" 의 cross entropy 를 backpropagation!

Loss Function (2/2)

Ex) Emotion Classifier

요약 : "I am good" 을 넣으면, "He is brilliant" 의 cross entropy 를 backpropagation!

Virtual Adversarial Training

Loss Function

Loss(adv) =
$$\mathrm{KL}[p(\cdot \mid \boldsymbol{x}; \hat{\boldsymbol{\theta}}) || p(\cdot \mid \boldsymbol{x} + \boldsymbol{r}_{\text{v-adv}}; \boldsymbol{\theta})]$$

where
$$r_{\text{v-adv}} = \underset{r, ||r|| \le \epsilon}{\operatorname{arg max}} \operatorname{KL}[p(\cdot \mid \boldsymbol{x}; \hat{\boldsymbol{\theta}}) || p(\cdot \mid \boldsymbol{x} + r; \hat{\boldsymbol{\theta}})]$$

■ KL (Kullback-Leibler divergence) 간단 소개

- 공식 :
$$D_{KL}(P||Q) = \sum_{i} P(i)log \frac{P(i)}{Q(i)}$$

- 의미: 두 분포 간의 유사도. 유사할수록 값 작음.

- 예시: D(초록||빨강) = 1.223 D(파랑||빨강) = 0.416

요약: 모델의 예측 정확도가 가장 낮았던 입력 데이터 의 KL Divergence 를 backpropagation!

Experiment & Result

- 4가지 benchmark dataset에 대하여 Adversarial Training 시행.
- loss function = loss(cross entropy) + loss(adv) 로 정의!
 - Adversarial Training

$$loss(adv) = -\log p(y \mid \boldsymbol{x} + \boldsymbol{r}_{adv}; \boldsymbol{\theta}) \text{ where } \boldsymbol{r}_{adv} = \arg \min_{\boldsymbol{r}, \|\boldsymbol{r}\| \le \epsilon} \log p(y \mid \boldsymbol{x} + \boldsymbol{r}; \hat{\boldsymbol{\theta}})$$

Virtual Adversarial Training

$$\begin{aligned} \mathsf{KL}[p(\cdot \mid \boldsymbol{x}; \hat{\boldsymbol{\theta}}) || p(\cdot \mid \boldsymbol{x} + \boldsymbol{r}_{\text{v-adv}}; \boldsymbol{\theta})] \\ & \text{where } \boldsymbol{r}_{\text{v-adv}} = \mathop{\arg\max}_{\boldsymbol{r}, \|\boldsymbol{r}\| \leq \epsilon} \mathsf{KL}[p(\cdot \mid \boldsymbol{x}; \hat{\boldsymbol{\theta}}) || p(\cdot \mid \boldsymbol{x} + \boldsymbol{r}; \hat{\boldsymbol{\theta}})] \end{aligned}$$

- 결론: 1. 분류 성능 증가!
 - 2. V.A.T. 의 semi-supervised text classification 성능 준수 확인

ADVERSARIAL TRAINING (연구)

• 어...? 잠시만...?!

• "noise 포함 데이터" 에 대한 loss 를 학습하는 건 괜찮은 시도인 듯!

• 하지만, "원래 데이터"(noise X) 에 대해서도 따로 학습을 진행해야 하는 것 아닌가?! (: 결국 중요한 건, 데이터 A를 넣었을 때 A를 잘 분류하는 모델을 만드는 것이므로!)

-> Adversarial Training을 적용하는 다양한 모델 학습 방식에 대한 탐구 진행!

• 연구 목표!

(1) : 다양한 학습 방식에 따른 accuracy 확인

-> Adversarial Training 의 성능 검증

(2) : 학습 횟수에 따른 accuracy 확인

-> Adversarial Training 의
Data Augmentation 효과 검증

(3): 다양한 classifier 에 대한 성능 검증

-> Adversarial Training 의 범용성 검증

• 분석을 위한 다양한 training 모델

: loss = loss(cross entropy) 사용. : loss = loss(cross entropy) + loss(adv) 사용.

• 모델 (1) : 일반적인 Classification 학습 모델.

loss = loss(cross entropy)

(A.T. 적용 X)

• 모델 (2) : 논문에서 제시한 Classification 학습 모델.

loss = loss(cross entropy) + loss(adv) (A.T. 적용 O)

• 분석을 위한 다양한 training 모델

: loss = loss(cross entropy) 사용.

: loss = loss(cross entropy) + loss(adv) 사용.

• 모델 (3) : "보충학습" 모델 (타겟 모델)

■ $1 \sim 3000 \text{ step}$: loss = loss(cross entropy)

■ 3001~4000 step : 가장 accuracy가 낮은 class에 대해서

loss = loss(cross entropy) + loss(adv)

STEP

1
3000
3001
4000
4001
7000
7001
8000
Data(인사)

worst class : 부정
worst class : 인사

worst class : 인사

• 모델 (4) : 모델 (3)의 대조군. -> loss(adv) 의 검증을 위함.

■ $1 \sim 3000 \text{ step}$: loss = loss(cross entropy)

■ 3001~4000 step: : 가장 accuracy가 낮은 class에 대해서

loss = loss(cross entropy) X

• 타겟 모델에 대한 훈련 결과

• 초반에는, 학습 효율 저하함.

• 타겟 모델에 대한 훈련 결과

• 후반에는, "보충 학습" 한 Class에 대해 정확도를 높임.

• 다양한 training 방식에 따른 결과

• 연구 목표 (2) : 학습 횟수에 따른 Adversarial Training의 성능 검증.

■ CE: 학습 횟수가 증가할 경우, 잘 인식하는 class는 더 잘 인식하고 잘 인식하지 못하는 class는 더욱 정확도가 떨어지는 현상 발생.

- 연구 목표 (2) : 학습 횟수에 따른 Adversarial Training의 성능 검증.
 - hybrid : 모든 intent 의 classification accuracy 상승([20k] 에서 과 보정된 "약속" 제외)

• 연구 목표 (2) : 학습 횟수에 따른 Adversarial Training의 성능 검증.

• 연구 결과!

(1) : 다양한 학습 방식에 따른 accuracy 확인

-> Adversarial Training 성능 준수함!

(2): 학습 횟수에 따른 accuracy 확인

-> Adversarial Training 의
Data Augmentation 효과 검증됨!

(3): 다양한 classifier 에 대한 성능 검증

-> Future Work...

Thank you!!