Constitutive Models and Materials

David Levin

Department of Computer Science

Questions

- New assignment on simulation released
- Anything from last lecture?
- Reminder: Start thinking about projects

Today

Material Models

First Piola-Kirchhoff Stress

• Simple formula to convert from P to σ

$$\mathbf{P} = J\sigma\mathbf{F}^{-T}$$

- Using hyperelastic models in FEM
 - Compute P
 - Convert to σ
 - Proceed as normal

Simple Hyperelastic Models

St. Venant-Kirchhoff

Neo Hookean

$$\mathbf{P} = \mathbf{F} \left[\mathbf{I} \mathbf{\mu} \mathbf{E} + \mathbf{\lambda} \mathbf{r}(\mathbf{E}) \mathbf{I} \right] \qquad \mathbf{P} = \mathbf{\mu} \mathbf{F} - \mathbf{F}^{-\mathsf{T}}) + \mathbf{\lambda} \log(\mathsf{J}) \mathbf{F}^{-\mathsf{T}}$$

Each model as 2 parameters:

Simple Hyperelastic Models

St. Venant-Kirchhoff

Neo Hookean

$$\mathbf{P} = \mathbf{F} \left[\mathbf{\mu} \mathbf{E} + \lambda \mathbf{r} (\mathbf{E}) \mathbf{I} \right] \qquad \mathbf{P} = \mathbf{\mu} \mathbf{F} - \mathbf{F}^{-\mathsf{T}}) + \lambda \log(\mathsf{J}) \mathbf{F}^{-\mathsf{T}}$$

Each model as 2 parameters: μ are λ Lame parameters

Simple Hyperelastic Models

St. Venant-Kirchhoff

Neo Hookean

$$\mathbf{P} = \mathbf{F} \left[\mathbf{\mu} \mathbf{E} + \lambda \mathbf{r} (\mathbf{E}) \mathbf{I} \right]$$

$$\mathbf{P} = \mathbf{\mu} \mathbf{F} - \mathbf{F}^{-\mathsf{T}}) + \lambda \log(\mathbf{J}) \mathbf{F}^{-\mathsf{T}}$$

Each model as 2 parameters: μ are λ Lame parameters

They are related to the fundamental physical parameters:

The Poisson's Ratio
The Young's Modulus (Stiffness)

Online http://www.efunda.com/formulae/solid_mechanics/mat_conversion tool: mechanics/calc_elastic_constants.cfm

Types of Materials

- There are many types of materials
 - Elastic ← Done
 - Plastic ← Now
 - Composites
 - Cellular Materials
 - Lattice Structures
- Each one has different mechanical properties
- When we fabricate things we exploit these properties to achieve optimal results

Plastic Materials

- Defining Properties:
 - Object reference shape changes
 - Object does not always return to its original shape

Old Reference State

New Reference State

Example: Crushing a Van

A Simple Model For Plasticity

- Recall our model for strain: $rac{1}{2}\left(\mathbf{F}^{T}\mathbf{F}-\mathbf{I}
 ight)$
- Let's consider how to encode a change of reference shape into this metric
- We want to exchange ${\bf F}$ with ${}^w_p{\bf F}$ a deformation gradient that takes into account the new shape of our object

New Reference State

Old Reference State

New Reference State

Mesh Lives Here!!!!
Old Reference State

New Reference State

How can we encode shape change without changing the mesh?

• **F** is our deformation measure called the deformation gradient

ullet transforms a vector from Reference Space to World Space

ullet ${f F}$ transforms a vector from Reference space to World Space

Introduce a new space

Introduce a new space

- Our goal is to approximate ${}^w_p \mathbf{F}$ but we only have access to ${}^w_r \mathbf{F}$

- Our goal is to approximate ${}^w_p \mathbf{F}$ but we only have access to ${}^w_r \mathbf{F}$

- Our goal is to approximate ${}^w_p \mathbf{F}$ but we only have access to ${}^w_r \mathbf{F}$

• We can store ${}^p_r \mathbf{F}^{-1}$ for each triangle in order to keep track of its plastic shape change

We compute the stress on each element during simulation

• When the stress in a triangles gets above a certain threshold we store ${\bf F}$ as ${}^p_{T}{\bf F}$

• Each subsequent simulation step uses $\frac{1}{2} \left({_p^w} \mathbf{F}^{Tw} \mathbf{F} - \mathbf{I} \right)$ $_p^w \mathbf{F} =_r^w \mathbf{F}_r^p \mathbf{F}^{-1}$

- Each subsequent simulation step uses $\frac{1}{2} \left(_p^w \mathbf{F}^{Tw} \mathbf{F} \mathbf{I} \right)$ $_p^w \mathbf{F} =_r^w \mathbf{F}_r^p \mathbf{F}^{-1}$
- How do we decide on the threshold?

Measuring Plastic Materials

- We use a similar approach to elastic materials
- Except instead of a compression test, we use a tensile test
- We pull on the ends of the object then measure the strain induced

Measuring Plastic Materials

Other Interesting Material Properties

• Plasticity - Change in Reference State

FEM with Plasticity

A Finite Element Method for Animating Large Viscoplastic Flow

Adam W. Bargteil, CMU Chris Wojtan, Georgia Tech Jessica K. Hodgins, CMU Greg Turk, Georgia Tech

© Carnegie Mellon University, Georgia Institute of Technology, 2007

Plasticity and Finite Elements

Dynamic Local Remeshing for Elastoplastic Simulation

Martin Wicke
Daniel Ritchie
Bryan M. Klingner*
Sebastian Burke
Jonathan R. Shewchuk
James F. O'Brien

University of California, Berkeley

*Graphwalking Associates

Types of Materials

- There are many types of materials
 - Elastic ← Done
 - Plastic ← Done
 - Hysteresis ← Briefly
 - Composites
 - Cellular Materials
 - Lattice Structures
- Each one has different mechanical properties
- When we fabricate things we exploit these properties to achieve optimal results

Elastic Hysteresis

- The strain of the material does not only depend on its current stress, but also on its history
- Energy is dissipated due to material internal friction

Elastic Hysteresis

- The strain of the material does not only depend on its current stress, but also on its history
- Energy is dissipated due to material internal friction

Elastic Hysteresis

Modeling and Estimation of Internal Friction in Cloth

Eder Miguel¹ Rasmus Tamstorf² Derek Bradley³ Sara C. Schvartzman¹ Bernhard Thomaszewski³ Bernd Bickel³ Wojciech Matusik⁴ Steve Marschner⁵ Miguel A. Otaduy¹

URJC Madrid

²Walt Disney Animation Studios ³Disney Research Zurich

⁴MIT CSAIL ⁵Cornell University

Where we are now

- You have now seen the following
 - Basic equations for continuum mechanics
 - The Finite Element Method
 - Different Material Models
 - How to Measure Parameters
 - How Typical FEM Software works

Additional Reading

- Continuum Mechanics
 - Mase and Mase
- SIGGRAPH Finite Element Method Notes
 - www.femdefo.org
- Nonlinear Continuum Mechanics for Finite Element Analysis
 - Bonet and Wood

Next: Advanced Materials

Simple Materials

Advanced Materials

- Cellular materials
 - Metamaterials
- Composite materials
 - Functionally graded materials
- Biomimetic/bio-inspired materials
- Materials with structural hierarchy

Cellular Materials

- Regular
 - Lattice truss structures
- Irregular
 - Foam
 - Open-cell
 - Closed-cell
- Properties governed by:
 - Topology
 - Fraction of cell occupied by material
 - Properties of constituent material

Topologies of Cellular Lattices

Topologies of Cellular Lattices

Topologies of Cellular Lattices

Solid Foams

- Open-cell foams (<u>reticulated foams</u>)
 - Lighter, softer
- Closed-cell foams
 - Heavier, harder

Mechanical Properties

http://www.virginia.edu/ms/research/wadley/celluar-materials.html

Mechanical Properties

http://www.virginia.edu/ms/research/wadley/celluar-materials.html

Applications

http://www.virginia.edu/ms/research/wadley/celluar-materials.html

Applications

CETEX System 3, a PEI thermoplasticcore sandwich material used in Airbus A340-500/600 aircraft

Nomex honeycomb in ATEC 212 SOLO

A Nomex honeycomb core was used to build this boat (NEB)

Nomex honeycomb cores

Applications

Cellular Materials in Nature

http://www.virginia.edu/ms/research/wadley/celluar-materials.html

3D Printing Cellular Materials

- Many structures can be printed using FDM
- Closed-cell foams are difficult to print

Mechanical Metamaterials

- Periodic cellular structures made of polymers, ceramics, or metals
- Mechanical properties can be designed to have values which cannot be found in nature

Negative Poisson's Ratio

Pentamode Metamaterials (Meta-fluids)

- Solid that behaves like a fluid
- Hard to compress, easy to deform

Interesting Uses: Mechanical Cloaking Device

http://www.nature.com/articles/ncomms5130

Composite Materials

- Made from two or more constituent materials
 - At least one matrix and one reinforcement material e.g., polymer + fiber

Matrices

Reinforcements

Reinforcements

Why Composite Materials

Advantages

- Lower density (20 to 40%)
- Higher directional mechanical properties
- Strength (ratio of material strength to density)
 - 4 times greater than that of steel and aluminum
- Higher fatigue endurance
- Higher toughness than ceramics and glasses
- Versatility and tailoring by design
- Easy to machine
- Can combine other properties (damping, corrosion)
- Cost

Why Not Composite Materials

- Disadvantages
 - Not often environmentally friendly
 - Low recyclability
 - Can be damaged
 - Anisotropic properties
 - Matrix degrades
 - Low reusability

Functionally Graded Materials (FGMs)

- A special case of composite materials
- Composition and structure of the constituent materials can gradually change

Functionally Graded Materials (FGMs)

FGM Origin

- The "first" FGM developed in Japan in 1984-85
- Many FGM materials have existed for decades
- Some FGM also occur naturally
 - Bones and teeth
 - Seashells

FGM Motivation

 FGMs allow better customization and tailoring of materials for specific tasks

Stiffer at clamped end

Softer at clamped end

More variety in material selection for engineering design

3D Printing FGMs

• FGMs can be printed using inkjet-based 3D printers

Mix before UV-curing

3D Printing FGMs

- FGMs can be printed using inkjet-based 3D printers
 - Input volume is dithered

Input Volume

Halftoned Volume

Halftoning in 3D

Applications: Aerospace

- Ceramic-metal FGMs are particularly suited for thermal barriers in space vehicles
 - Metal side can be bolted onto the airframe rather than bonded as are the ceramic tiles used in the Orbiter

Applications: Fuel Cells

- Creating a porosity gradient in the electrodes
 - the efficiency of the reaction can be maximized

Applications: GRIN Optics

• GRIN = Graded Refractive Index

Traditional Lens

GRIN Lens

Applications: GRIN Optics

• GRIN = Graded Refractive Index

FGMs: Advantages and Challenges

Advantages

- Multiple functions
 - benefits of different materials e.g., ceramics and metals
- Control of deformation, dynamic response, wear, corrosion
- Design for different complex environments
- Removing stress concentrations

• Challenges:

- Mass production
- Quality control
- Cost

Biomimetic/Bio-inspired Materials

Plant: the energy reservoir

www.gardeningoncloud9.com

Brain: the super computer www.healthguide.hovistuffworks.com

Spider silk: tough materials

Flagellum: the mechanical motor Lotus leaf: hydrophobic surface

Termites mound the natural cooler

Bird: the natural airplane

Eye: nature's best camera

Dolphins the best ship

Biomimetic Materials: Spider Silk

Biomimetic Materials: Swimming Faster

 The structure of shark skin reduces drag in the water leading to more energy efficient locomotion

Denticles in shark skin

Biomimetic Materials: Swimming Faster

• This was big news for the 2008 Summer Olympics

Biomimetic Materials: Strong Materials

Mollusc Teeth

Biomimetic Materials: Velcro

Inspired by Burrs

Biomimetic Materials: Velcro

• Detachable adhesive

Biomimetic Materials: Velcro

Biomimetic Materials: Velcro in Action

Materials with Varying Stiffness

- Inspired by sea cucumbers which can alter the stiffness of their dermis (outer skin layer)
- Change the structure of collagen fibers embedded in low stiffness matrix

Materials with Varying Stiffness

Transparent Construction Materials

 Inspired by skeletons of undersea sponges made of glass and Venus Flower Basket

Transparent Construction Materials

• Glass sponge

Mussel Superglue

- Mussels can stay attached to rocks in very strong tides
- They emit a slime that forms a thread-like, ultra-strong, water resistant adhesive on contact with water

Hydrophobic Materials: Lotus Leaf

 Lotus leaves have a bumpy structure that causes water to bead and roll off

Hydrophobic Materials

Structural Coloration

Materials with Structural Hierarchy

- Both man-made and natural
- Structure at more than one scale
- Structural hierarchy can result in improved mechanical properties
- Examples:
 - Bones
 - Livers

