Problem Set #5

MACS 40200, Dr. Evans

Due Thursday, Feb. 9 at 12:00pm

1. Estimating the Brock and Mirman (1972) model by GMM (5 points). You can observe time series data in an economy for the following variables: (c_t, k_t, w_t, r_t) . Data on (c_t, k_t, w_t, r_t) can be loaded from the file MacroSeries.txt. This file is a comma separated text file with no labels. The variables are ordered as (c_t, k_t, w_t, r_t) . These data have 100 periods, which are quarterly (25 years). Suppose you think that the data are generated by a process similar to the Brock and Mirman (1972). A simplified set of characterizing equations of the Brock and Mirman model are the following.

$$(c_t)^{-1} - \beta E \left[r_{t+1} (c_{t+1})^{-1} \right] = 0 \tag{1}$$

$$c_t + k_{t+1} - w_t - r_t k_t = 0 (2)$$

$$w_t - (1 - \alpha)e^{z_t} \left(k_t\right)^{\alpha} = 0 \tag{3}$$

$$r_t - \alpha e^{z_t} \left(k_t \right)^{\alpha - 1} = 0 \tag{4}$$

$$z_{t} = \rho z_{t-1} + (1 - \rho)\mu + \varepsilon_{t}$$
where $E[\varepsilon_{t}] = 0$ (5)

The variable c_t is aggregate consumption in period t, k_{t+1} is total household savings and investment in period t for which they receive a return in the next period (this model assumes full depreciation of capital). The wage per unit of labor in period t is w_t and the interest rate or rate of return on investment is r_t . Total factor productivity is z_t , which follows an AR(1) process given in (5). The rest of the symbols in the equations are parameters that must be estimated $(\alpha, \beta, \rho, \mu)$. The constraints on these parameters are the following.

$$\alpha, \beta \in (0,1), \quad \mu, \sigma > 0, \quad \rho \in (-1,1)$$

Assume that the first observation in the data file variables is t = 1. Let k_1 be the first observation in the data file for the variable k_t .

(a) (2 points) Estimate ρ and μ by GMM using the unconditional moment condition that $E[\varepsilon_t] = 0$. Use data on r_t and k_t and equation (4) to back out a time series for z_t . Then use the unconditional moment condition that $E[\varepsilon_{t+1}] = 0$, which also implies that $E[\varepsilon_{t+1}\varepsilon_t] = 0$, to estimate ρ and μ . That is, use the following two moment conditions to estimate ρ and μ . Report your estimated values and the value of your minimized criterion function.

$$E \Big[z_{t+1} - \rho z_t - (1 - \rho) \mu \Big] = 0 \tag{6}$$

$$E\left[\left(z_{t+1} - \rho z_t - (1 - \rho)\mu\right)z_t\right] = 0\tag{7}$$

(b) (3 points) To estimate α and β by GMM, we use the unconditional moment condition from equation (1).

$$E\left[\beta r_{t+1} \frac{c_t}{c_{t-1}} - 1\right] = 0 \tag{8}$$

We need both α and β in the moment conditions, so we substitute in the expression for r_{t+1} from (4). Use your implied series for z_t from part (a) and the following two moment conditions to estimate α and β . Report your estimated values and the value of your minimized criterion function.

$$E\left[\beta \alpha e^{z_{t+1}} k_{t+1}^{\alpha - 1} \frac{c_t}{c_{t+1}} - 1\right] = 0 \tag{9}$$

$$E\left[\left(\beta\alpha e^{z_{t+1}}k_{t+1}^{\alpha-1}\frac{c_t}{c_{t+1}}-1\right)w_t\right] = 0$$
 (10)

2. Estimating the Brock and Mirman (1972) model by SMM (5 points). One nice property of the Brock and Mirman (1972) model is that the household decision has a known analytical solution in which the optimal savings decision k_{t+1} is a function of the productivity shock today z_t and the amount of capital today k_t .

$$k_{t+1} = \alpha \beta e^{z_t} k_t^{\alpha} \tag{11}$$

With this solution, it is straightforward to simulate the data of the Brock and Mirman (1972) model given parameters $(\alpha, \beta, \rho, \mu, \sigma)$. First, assume that $z_1 = \mu$ and that $k_1 = \text{mean}(k_t)$ from the data. These are initial values that will not change across simulations. Next, draw T = 100 normally distributed values of $\varepsilon_t \sim N(0, \sigma)$. Note that for SMM we have to return to fully specifying the distributional assumptions. Then, you can use equation (5) to calculate the simulated series for z_t . Now, you can use the policy function for savings (11) recursively to solve for the entire k_t series. With the entire k_t and z_t simulated series, you can use (3) to solve for the w_t series and (4) to solve for the r_t series. Lastly, you use the budget constraint (2) to solve for the c_t series.

(a) Estimate the five parameters of the Brock and Mirman (1972) model $(\alpha, \beta, \rho, \mu, \sigma)$ described by equations (1) through (5) by SMM. Choose the five parameters to match the following six moments from the 100 periods of empirical data $\{c_t, k_t, w_t, r_t\}_{t=1}^{100}$ in MacroSeries.txt: mean (c_t) , mean (k_t) , var (c_t) , var (k_t) , corr (c_t, k_t) , and corr (k_t, k_{t+1}) . In your simulations of the model, set T=100 and S=1,000. Start each of your simulations from $k_1=\max(k_t)$ from the MacroSeries.txt file and $z_1=\mu$. Input the bounds to be $\alpha, \beta \in [0.01, 0.99], \ \rho \in [-0.99, 0.99], \ \mu \in [-0.5, 1],$ and $\sigma \in [0.001, 1]$. Also, use the identity matrix as your weighting matrix \boldsymbol{W} . Report your solution $\hat{\boldsymbol{\theta}}=(\hat{\alpha},\hat{\beta},\hat{\rho},\hat{\mu},\hat{\sigma})$, the vector of moment differences at the optimum, and the criterion function value.

References

Brock, William A. and Leonard J. Mirman, "Optimal economic growth and uncertainty: The discounted case," *Journal of Economic Theory*, June 1972, 4 (3), 479–513.