Álgebra Lineal 2020 (LCC - LM - PM) Cap.3- Ortogonalidad (1era. Parte)¹

Graciela Nasini - Yanina Lucarini - Eduardo Martinez

{nasini,lucarini,eduardom}@fceia.unr.edu.ar

 $^{^{1}}$ [1] Linear Algebra and its applications, G. Strang. [2] Notas de Clase, E. Mancinelli (2019)

Vectores ortogonales

En cualquier espacio vectorial (de dimensión finita n), una base nos permite pensar cualquier vector como una n-upla de escalares.

En los primero cursos de matemática, aprendimos a expresar entes geométricos (curvas, superficies, volúmenes) en \mathbb{R}^2 o \mathbb{R}^3 en términos algebraicos. Esto fue posible a partir de la relación 1-1 entre un punto de \mathbb{R}^2 (o \mathbb{R}^3) y un par (o terna) ordenado, correspondientes a la descomposición de su **vector posición** en términos de los los **versores canónicos** \vec{i}, \vec{j} (y \vec{k}).

En la terminología de espacios vectoriales, los **versores canónicos** $\vec{i}=(1,0,0), \ \vec{j}=(0,1,0)$ y $\vec{k}=(0,0,1)$ son una base de \mathbb{R}^3 y cualquier punto P tiene asociado su representación (x,y,z) en esta base.

Pero sabemos que \mathbb{R}^3 tiene infinitas bases. Por ejemplo, (1,1,1), (1,1,0) y (1,0,0) también forman una base de \mathbb{R}^3 . Nos preguntamos por qué trabajamos siempre con la base de versores canónicos y no con cualquier otra.

Vectores ortogonales

La base de los versores canónicos en \mathbb{R}^n tiene dos virtudes: sus vectores son perpendiculares y su longitud es 1. Esto es lo que se denomina una base ortonormal (vectores ortogonales y de norma 1).

Las ideas de ortogonalidad y ortonormalidad de las bases son parte de los conceptos fundacionales del Álgebra Lineal: necesitamos poder hacer los cálculos más sencillos (sic Strang).

Queremos extender esta idea de *perpendicularidad entre vectores* y *longitud de un vector* a cualquier espacio vectorial.

¿Cómo determinamos que dos vectores son perpendiculares en \mathbb{R}^3 ?.¿Cómo calculamos la longitud de un vector en \mathbb{R}^3 ? (Idem \mathbb{R}^2).

Ambas respuestas pueden ser dadas en función del producto escalar entre vectores. Recordemos:

Dados \vec{u}, \vec{v} son dos vectores ("geométricos") de \mathbb{R}^3 , su producto escalar es

$$\vec{u} \cdot \vec{v} = |\vec{u}||\vec{v}|\cos(\vec{u}^{\wedge}\vec{v}).$$

Así, si \vec{u} y \vec{v} son no nulos y perpendiculares, su producto escalar es cero y recíprocamente.

Vectores ortogonales

Sabemos además que si $u=(u_1,u_2,u_3)$ y $v=(v_1,v_2,v_3)$ son las representaciones de \vec{u},\vec{v} en la base canónica, entonces

$$\vec{u} \cdot \vec{v} = u^T v = u_1 v_1 + u_2 v_2 + u_3 v_3,$$

lo cual es mucho más sencillo de calcular.

Por otro lado, gracias a Pitágoras, sabemos que $|\vec{u}|^2 = u_1^2 + u_2^2 + u_3^2$ o, equivalentemente, $|\vec{u}|^2 = \vec{u} \cdot \vec{u} = u^T u$.

Para poder extender entonces la idea de *ortogonalidad* y *norma* a cualquier espacio vectorial, debemos tener definido un producto escalar o *producto interno*.

Definición: Sea V un espacio vectorial sobre \mathbb{K} (\mathbb{R} o \mathbb{C}). Un producto interno sobre V es una función $\langle .,. \rangle$ que a cada par de vectores $u,v \in V$ le asigna un escalar $\langle u,v \rangle \in \mathbb{K}$ y verifica las siguientes propiedades para todo $\alpha \in \mathbb{K}$, $u,v,w \in V$ (recordar: $\bar{z}=$ conjugado de z):

- (1) $\langle u, v \rangle = \overline{\langle v, u \rangle}$,
- (2) $\langle u + v, w \rangle = \langle u, w \rangle + \langle v, w \rangle$,
- (3) $\langle \alpha u, v \rangle = \alpha \langle u, v \rangle$,
- (4) $\langle u, u \rangle > 0$.
- (5) $\langle u, u \rangle = 0 \iff u = 0$

Producto interno

Ejercicio:

- 1. $\langle u, 0 \rangle = \langle 0, v \rangle = 0$
- 2. $\langle u, \alpha v \rangle = \overline{\alpha} \langle u, v \rangle$.
- 3. $\langle u, v + w \rangle = \langle u, v \rangle + \langle u, w \rangle$.

Ejemplos:

1. Recordemos que \mathbb{C} es un espacio vectorial sobre \mathbb{C} . Definiendo $\langle z,w\rangle=z\bar{w}$ para todo $z,w\in\mathbb{C}$, donde \bar{w} es el conjugado de w, es fácil probar que $\langle .,.\rangle$ es un producto interno en \mathbb{C} .

Más aún, si pensamos en el espacio vectorial \mathbb{C}^n y con \bar{z} indicamos la n-upla de números complejos correspondientes a los conjugados de las componentes de $z \in \mathbb{C}^n$, se puede verificar que $\langle z, w \rangle = z\bar{w}$ es un producto interno en \mathbb{C}^n . Se conoce como producto interno canónico.

2. Ya conocemos el producto interno *canónico* en \mathbb{R}^2 . Sin embargo, podemos definir otros. Para $u=(u_1,u_2)$ y $v=(v_1,v_2)$ definimos $\langle u,v\rangle=u_1v_1-u_2v_1-u_1v_2+4u_2v_2$.

Probemos que $\langle ., . \rangle$ es realmente un producto interno:

(1), (2), (3) Son sencillas de verificar (ejercicio).
(4)
$$\langle u, u \rangle = u_1^2 - 2u_2u_1 + 4u_2^2 = (u_1 - u_2)^2 + 3u_2^2 \ge 0.$$

(5)
$$\langle u, u \rangle = 0 \Longleftrightarrow (u_1 - u_2)^2 + 3u_2^2 = 0 \Longleftrightarrow \Leftrightarrow (u_1 - u_2)^2 = 0 \land u_2^2 = 0 \Longleftrightarrow u_2 = 0 \land u_1^2 = 0 \Longleftrightarrow u = 0.$$

Producto interno

Ejemplos: (continuación)

3. Sea V el espacio vectorial de los polinomios sobre $\mathbb C$ o $\mathbb R$, de grado a lo sumo n y t_0, t_1, \ldots, t_n escalares distintos. Para $p; q \in V$ definimos

$$\langle p,q\rangle = \sum_{i=1}^n p(t_i)\, \bar{q}(t_i).$$

Ejercicio: Probar que es un producto interno. (Ayuda: recordar que si un polinomio de grado a lo sumo n tiene n+1 raíces distintas, ese polinomio es el polinomio nulo.)

4. Sea V el espacio vectorial de las funciones reales continuas en el intervalo [0,1]. Para $f;g\in V$ sea

$$\langle f,g\rangle = \int_0^1 f(x)g(x)dx.$$

Ejercicio: Probar que es un producto interno. (Ayuda: recordar que si una función contínua es positiva en un punto x_0 , por el teorema de conservación de signo será positiva en un todo un entorno de x_0 .)

Norma

Como habíamos mencionado, el producto interno en un espacio vectorial nos permite definir el concepto de vectores *perpendiculares u ortogonales* y también el concepto de *norma* de un vector:

Definición: Sea V un espacio vectorial con un producto interno $\langle .,. \rangle$. Para todo $u,v \in V$:

- 1. decimos que u es perpendicular u ortogonal a v, y lo notamos $u \perp v$, si $\langle u, v \rangle = 0$.
- 2. La norma de u (inducida por $\langle .,. \rangle$) se denota ||u|| y su valor es $||u|| = \sqrt{\langle u,u \rangle}$. Equivalentemente, $||u||^2 = \langle u,u \rangle$ y $||u|| \ge 0$.

Observemos que el producto escalar de dos vectores x,y en \mathbb{R}^2 o en \mathbb{R}^3 , (definido en asignaturas anteriores) puede ser expresado como x^Ty . Es fácil ver que el producto escalar es un producto interno en estos espacios vectoriales.

Con este producto interno la norma de un vector (en \mathbb{R}^2 y \mathbb{R}^3) es *su longitud* según la geometría euclídea y el Teorema de Pitágoras. En efecto, si $x=(x_1,x_2,x_3)\in\mathbb{R}^3$, $\|x\|=\sqrt{x_1^2+x_2^2+x_3^2}$.

Norma

Es sabido que la norma euclídea en \mathbb{R}^2 y \mathbb{R}^3 , verifica las siguientes propiedades:

- 1. $||x|| \ge 0$
- 2. $||x|| = 0 \iff x = 0$
- 3. $\|\alpha x\| = |\alpha| \|x\|$
- 4. $||x + y|| \le ||x|| + ||y||$ (designaldad triangular).

Otra propiedad muy importante que satisface esta norma es 5. $|\langle x, y \rangle| < ||x|| ||y||$ (desigualdad de Cauchy-Swartz).

Si recordamos que en \mathbb{R}^2 y \mathbb{R}^3 el producto escalar verificaba $\langle x,y\rangle=\|x\|\,\|y\|\cos(x^\wedge y)$, la desigualdad de Cauchy-Swartz es claramente válida.

Lo interesante es que *toda norma proveniente de un producto escalar en cualquier espacio vectorial* cumple con estas cuatro propiedades.

Lema: En todo espacio vectorial con un producto interno la norma por él definida satisface las 5 propiedades presentadas anteriormente.

Prueba: Las propiedades 1., 2. y 3. son inmediatas. Para las dos restantes, precisamos probar primero la 5. y después la 4.

Norma

Prueba (continuación)

5. Debemos probar $|\langle x,y\rangle| \le ||x|| \, ||y||$. Claramente, la desigualdad vale si x=0.

Sea $x \neq 0$. Construimos $z = y - \frac{\langle x, y \rangle}{\|x\|^2} x$. Es fácil verificar (ejercicio) que

$$||z||^2 = ||y||^2 - \frac{\langle x, y \rangle^2}{||x||^2}.$$

Como $||z||^2 \ge 0$, resulta $||y||^2 ||x||^2 \ge \langle x, y \rangle^2$. Por lo tanto,

$$|\langle x,y\rangle| \leq ||y|| \, ||x||.$$

4. Debemos probar $||x + y|| \le ||x|| + ||y||$. Tenemos

$$||x + y||^2 = ||x||^2 + 2\langle x, y \rangle + ||y||^2 \le ||x||^2 + 2|\langle x, y \rangle| + ||y||^2 \le$$

$$\leq \|x\|^2 + 2\|x\|\|y\| + \|y\|^2 = (\|x\| + \|y\|)^2.$$

Por lo tanto, $||x + y|| \le ||x|| + ||y||$.

Ángulos en espacios vectoriales

En espacios vectoriales de funciones o matrices, y también en \mathbb{R}^n con $n \geq 4$, no tenemos el concepto de *ángulo* entre dos vectores no nulos. Sin embargo, la desigualdad de Cauchy-Swartz nos permite definir este concepto en cualquier espacio vectorial sobre \mathbb{R} .

Sea V un espacio vectorial sobre \mathbb{R} , $x,y\in V$, $x\neq 0$, $y\neq 0$. Por Cauchy-Swartz sabemos que $-1\leq \frac{\langle x,y\rangle}{\|x\|\|y\|}\leq 1$. Por lo tanto, podemos definir el ángulo entre x e y como

$$\hat{xy} = arccos \frac{\langle x, y \rangle}{\|x\| \|y\|}.$$

Observar que, con esta definición, tenemos que en cualquier espacio vectorial sobre $\mathbb R$ con producto interno se verifica $\langle x,y\rangle=\|x\|\,\|y\|\cos(x\hat{y}).$

Observación: El ángulo (en particular, la ortogonalidad) entre dos vectores no depende de su norma. En efecto, si $x, y \in V$ y $\alpha, \beta \in \mathbb{R}$, entonces, $|\cos(\hat{xy})| = |\cos((\alpha x)(\beta y))|$. (Ejercicio).

Ortogonalidad y lineal independencia

Lema: Sea V un espacio vectorial con producto interno y $W \subset V$ un conjunto vectores no nulos mutuamente ortogonales. Entonces, los vectores de W son vectores l.i..

Prueba: Consideremos una combinación lineal nula de los vectores v^1, \ldots, v^k de W:

$$\sum_{i=1}^{\kappa} \alpha_i v^i = 0.$$

Para $j \in \{1, ..., k\}$, realicemos el producto escalar

$$\left\langle v^{j}, \sum_{i=1}^{k} \alpha_{i} v^{i} \right\rangle = \sum_{i=1}^{k} \overline{\alpha_{i}} \left\langle v^{j}, v^{i} \right\rangle.$$

Como $v^j \perp v^i$ para todo $i \neq j$, resulta

$$\overline{\alpha_i}\langle v^j, v^j\rangle = 0.$$

Considerando que $v^j \neq 0$, tenemos que $\alpha_j = 0$ para todo $j \in \{1, \dots, k\}$. Por lo tanto, los vectores W son l.i..

Ejercicio: La recíproca del lema anterior no es válida.

Ortogonalidad y lineal independencia

Si V es un espacio de dimensión infinita, W en el lema anterior puede ser un conjunto infinito de vectores ortogonales.

Ejemplo:

Sea V el espacio vectorial de las funciones reales continuas en el intervalo [0,1] con el producto interno $\langle f,g\rangle=\int_0^1 f(t)g(t)dt$.

Para cada $n \in \mathbb{N}$, consideremos las funciones

$$f_n(x) = \sqrt{2} \cos(2\pi nx)$$
, $g_n(x) = \sqrt{2} \sin(2\pi nx)$.

Puede probarse que el conjunto $\{f_n : n \in \mathbb{N}\} \cup \{g_n : n \in \mathbb{N}\}$ es un conjunto infinito de vectores ortogonales de V.

Más aún, para todo $n \in \mathbb{N}$, $||f_n|| = ||g_n|| = 1$.

Bases ortonormales

Hemos visto que vectores mutuamente ortogonales son l.i.. Observemos que si V es un espacio vectorial con producto interno $\langle .,. \rangle$ y $\mathcal{B} = \{u^1, \ldots, u^k\}$ es una base de vectores mutuamente ortogonales, la descomposición de cualquier vector en esta base es muy sencilla de calcular.

En efecto, sea $v = \sum_{i=1}^k \alpha_i u^i$. Si realizamos el producto interno de v con cualquiera de los elementos $u^j \in \mathcal{B}$, obtenemos:

$$\langle u^j, v \rangle = \sum_{i=1}^k \alpha_i \langle u^j, u^i \rangle = \alpha_j \langle u^j, u^j \rangle = \alpha_j \|u^j\|^2.$$

Por lo tanto, $\alpha_j = \frac{\langle u', v \rangle}{\|u^j\|^2}$ para $j = 1, \dots, k$.

Observemos que si $\left\|u^{j}\right\|=1$ para todo $j=1,\ldots,k$, tenemos

$$v = \sum_{i=1}^{k} \left\langle v, u^{i} \right\rangle u^{i}.$$

Bases ortonormales

Como la ortogonalidad no se afecta *escalando* los vectores, si los vectores no tienen norma 1, podemos definir $\mathcal{B}'=\{w^j:w^j=\frac{u^j}{\|u^j\|};j=1,\ldots,k\}$, la cual resulta también base de V. (Justificar)

Claramente, los cálculos se simplifican cuando trabajamos con bases cuyos vectores, además de ser mutuamente ortogonales tienen todos norma 1.

Definición: Dado un espacio vectorial V con producto interno, una base de V es ortogonal si sus vectores son mutuamente ortogonales y es ortonormal si es base ortogonal y sus vectores tienen norma 1.

Los versores canónicos e^i , $i=1,\ldots,n$ son la base ortonormal de \mathbb{R}^n más utilizada. Sin embargo, cualquier rotación de estos vectores configura una nueva base ortonormal.

Así, dado cualquier ángulo θ , los vectores $v^1 = (\cos \theta, \sin \theta)$ y $v^2 = (-\sin \theta, \cos \theta)$ definen una base ortonormal de \mathbb{R}^2 .