Introduction to Machine Learning

Sungkyunkwan University (SKKU)

Prof. Jongwuk Lee

The Concept of Machine Learning

What is Machine Learning?

> Arthur Samuel (1959)

 A field of study that lets computers have the ability to learn by themselves without being explicitly programmed.

> Tom Mitchell (1998)

- A computer program to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.
- Short version: A study of computer algorithms that allow computer program to automatically improve through experience.

Example: Predicting Exam Scores

> Given a set of time-score pairs, predict an exam score.

Time	Score
0	1
1	2
2	4
3	5
4	7

6	???
---	-----

$$Score = f(Time) = w * Time + b$$

Conventional vs. Machine Learning

> A human explicitly finds a hidden pattern from a dataset and makes a program to implement the pattern.

X	Y
0	1
1	2
2	4
3	5
4	7

Conventional vs. Machine Learning

Computers automatically learn the hidden pattern from data without being explicitly programmed.

X	Y
0	1
1	2
2	4
3	5
4	7

$$y = f(x) = w * x + b$$

Conventional vs. Machine Learning

With Teacher

Without Teacher

Direct feedback

Supervised Learning

Indirect feedback

Reinforcement Learning Unsupervised Learning

- \succ Consider observing a set of input data $X = \{x^1, x^2, ..., x^n\}$
 - Supervised Learning
 - We are also given target outputs (labels, responses): $y^1, y^2, ..., y^n$
 - The goal is to predict correct output given a new input.
 - Unsupervised Learning
 - We only have a set of input data X.
 - The goal is to discover hidden representation of data.
 - Reinforcement Learning
 - Given a state $s \in S$, the model (agent) produces a set of actions, $a_1, a_2, ..., a_k$ that affect the next state $s' \in S$ and rewards $r_1, r_2, ..., r_k$.
 - The goal is to learn actions in an environment to maximize cumulative rewards.
 - Semi-supervised Learning
 - Only a limited amount of labels, and lots of unlabeled data.

- Supervised Learning (icing)
 - Predict label y corresponding to observation x

$$y = f(x)$$

- Unsupervised Learning (cake)
 - Estimate the distribution of observation x

$$f(\mathbf{x})$$

- "Pure" Reinforcement Learning (cherry)
 - Predict action y based on observation x to maximize a future reward r.

y = f(x) that maximizes r

Yann LeCun's Cake
Analogy

Supervised Learning

What is Supervised Learning?

- Data consist of input-output pairs.
 - Input: covariates, predictors, and features
 - Output: variates, targets, labels
- > Let computers learn with many (input, output) pairs.

What is Supervised Learning?

- > Let computers learn with many (input, output) pairs.
 - ◆ The output are direct feedback for given input.
- > Regression vs. Classification
 - Regression: Labels are continuous.
 - Classification: Labels are discrete.

Supervised Learning: Regression

> Predicting real values (i.e., continuous labels)

> Examples

- Linear regression
- Polynomial regression

Supervised Learning: Classification

- Predicting categorical values (i.e., discrete labels)
 - It learns decision boundaries for data with different labels.

> Examples

- Logistic regression, Support vector machines (SVM)
- Neural Networks: Perceptron, Multilayer perceptron (MLP)
- Decision trees, Naïve Bayes, K-nearest neighbors (k-NN)

Document Classification

> Classifying a document into one or more categories

ham vs. spam

Image Classification

- > ImageNet Large Scale Visual Recognition Competition (ILSVRC)
 - 1.2M training, 100k test, 1000 object classes (categories)

Video Classification

➤ Large-scale Video Classification with Convolutional Neural Networks, CVPR 2014

Object Detection

Classification + Localization Object Detection Instance Segmentation

CAT CAT CAT, DOG, DUCK CAT, DOG, DUCK

Object Detection

- > YOLO: Real-Time Object Detection
 - https://pjreddie.com/darknet/yolo/

Video Summarization = BriefCam

> Video synopsis is the simultaneous presentation of objects, events and activities that occurred at different times.

Speech Recognition

> Converting speech into text

Unsupervised Learning

What is Unsupervised Learning?

> Finding hidden patterns in a dataset with no labels and with a minimum of human supervision

Data representation

What is Unsupervised Learning?

> Given a dataset with no labels, how to classify them?

What is Unsupervised Learning?

- > Finding hidden meaningful representations of data
 - Clustering: discover groups of similar examples within the data.
 - E.g., K-means clustering
 - Dimensionality reduction: project the data from a high-dimensional space to a lower dimension space.
 - E.g., Principle Component Analysis (PCA)
 - Density estimation: determine the distribution of data within the input space.
 - E.g., Gaussian Mixture Model (GMM)

Clustering

- > Grouping similar data tuples into clusters
 - Defining the similarities between data according to the characteristics found in the data
- > Cluster: A group of data instances
 - Similar (or related) to one another within the same group
 - Dissimilar (or unrelated) to the tuples in other groups

Outlier Detection

- > Finding a data point that does not comply with the general behavior of the data
 - Noise or exception?
- > Useful in fraud detection, rare events analysis

Dimensionality Reduction

- ➤ Assume that a D-dimensional data lie on or near a d-dimensional subspace.
- > How to represent the axes of subspace effectively?

Dimensionality Reduction

- > How to reduce dimensionality without loss of information?
 - ◆ With different axis [2 3 0 0 0] and [0 0 2 4 2], all rows are rearranged.

	Mon	Tue	Wed	Thu	Fri
Alice	2	3	0	0	0
Bob	4	6	0	0	0
Carol	6	9	0	0	0
David	0	0	2	4	2
Eve	0	0	3	6	3
Frank	0	0	1	2	1

	F1	F2
Alice	1	0
Bob	2	0
Carol	3	0
David	0	1
Eve	0	1.5
Frank	0	0.5

> Data can be represented by two-dimensional space.

Why Reduce Dimensions?

- > Discovering hidden correlations of features
- > Removing redundant and noisy features
- > Easier storage and processing of the data
- > Interpretation and visualization

Density Estimation

 \succ Given input data $x_1, x_2, ..., x_n$ sampled by an unknown distribution P(X), estimate z associated with P(X).

Generative Adversarial Nets (GAN)

> Learning to generate new data with the same statistics as the training set

Style-Based GAN

- > Analyzing and Improving the Image Quality of StyleGAN
 - https://arxiv.org/abs/1912.04958

Video-to-Video Synthesis

> Everybody Dance Now

Reinforcement Learning

Nature of Learning

- > We learn from past experiences.
 - When an infant plays, waves its arms, or looks about,
 - She has no explicit teacher but does have direct interaction to the environment.

> Positive compliments vs. negative criticism

What is Reinforcement Learning?

> Learning agents to take actions in an environment to maximize cumulative rewards.

Sequential actions with world

What is Reinforcement Learning?

- > Computational approach to learning from interaction
 - Learn to make good sequences of decisions.
 - No supervisor
 - Feedback is delayed.
 - Actions affect the subsequent future rewards.

Learn to make good sequences of decisions

Repeated interactions with world

Learn to make good sequences of decisions

Rewards for sequences of decisions

Learn to make good sequences of decisions

Don't know how the world works

Learn to make good sequences of decisions

The key challenge is to learn to make good decisions under uncertainty.

Example: Frozen Lake

> Rules

- You go from Start to Goal without falling into Hole.
- You get reward of +1 for reaching the Goal; otherwise you receive nothing.
- Every time you can go left, right, up and, down.
- But you can't leave the grid.

> Assumptions

- Do not know where holes are.
- Move to another position with an unknown probability.

Atari Game with RL

Atari Breakout

AlphaGo with RL

Sensorimotor Learning

Q&A

