

Agenda for Today's Session

- What is Classification?
- Types of Classification
- Classification Use case
- What is Decision Tree?
- Terminologies associated to a Decision Tree
- Visualizing a Decision Tree
- Writing a Decision Tree Classifier form Scratch in Python using CART Algorithm

What is Classification?

"Classification is the process of dividing the data into different categories or groups by adding lab

Note: It adds the data point to a particular

Types of Classification

- Decision Tree
- Random Forest
- Naïve Bayes

KNN

 \bigcirc

<u>Decision Tree</u>

- Graphical representation of all the possible solutions to a deci
- Decisions are based on some conditions
 - Decision made can be easily explained

Types of Classification

- Decision Tree
- Random Forest
- Naïve Bayes
- KNN

Random Forest

- Builds multiple decision trees and merges them together
- More accurate and stable prediction
- Random decision forests correct for decision trees' habit of overfitting to their training set
- Trained with the "bagging" method

Types of Classification

- Decision Tree
- Random Forest
- Naïve Bayes
- () KNN

Naïve Bayes

- Classification technique based on Bayes' Theorem
- Assumes that the presence of a particular feature in a class is unrelated to the presence of any other feature

Types of Classification

- Decision Tree
- Random Forest
- Naïve Bayes
- **○** KNN

K-Nearest Neighbors

- Stores all the available cases and classifies new cases based on a similarity measure
- The "K" is KNN algorithm is the nearest neighbors we will to take vote from.

Decision Tree?

"A decision tree is a graphical representation of the possible solutions to a decision based on cerconditions"

Machine Leaning Training Using Python

Understanding a Decision Tree

This is how our dataset looks like!

Dataset

Colour	Diameter	Label
Green	3	Mango
Yellow	3	Mango
Red	1	Grape
Red	1	Grape
Yellow	3	Lemon

Decision Tree

100% Mango

Info

Gair

N

50% Le

What is

Decision Tree?

Green 3 Mango

Yellow 3 Lemon

Mango

Yellow 3

TRUE

Is the colour green?

Is the diameter >=3

Is the colour yellow

False

Machine Leaning Training Using Python

Decision Tree Terminologies

Decision Tree Terminology

Pruning

Opposite of Splitting, basically removing unwanted branches from the tree

Parent/Child Node

Root node is the parent node and all the other nodes branched from it is known as child node

Root Node

It represents the entire population or sample and this further gets divided into two or more homogenous sets.

Branch/SubTree

Formed by splitting the tree/node

Splitting

Splitting is dividing the root node/su node into different parts on the basi of some condition.

Leaf Node

Node cannot be further segregated into further nodes

Machine Leaning Training Using Python

CART Algorithm

Let's First Visualize the Decision Tree

Which Question to ask and When?

Let's First Visualize the Decision Tree

Learn about Decision Tree

Which one among them should you pick first?

outlook	temp.	humidity	windy	play
sunny	hot	high	false	no
sunny	hot	high	true	no
overcast	hot	high	false	yes
rainy	mild	high	false	yes
rainy	cool	normal	false	yes
rainy	cool	normal	true	no
overcast	cool	normal	true	yes
sunny	mild	high	false	no
sunny	cool	normal	false	yes
rainy	mild	normal	false	yes
sunny	mild	normal	true	yes
overcast	mild	high	true	yes
overcast	hot	normal	false	yes
rainy	mild	high	true	no

Learn about Decision Tree

Answer: Determine the attribute that best classifies the training data

outlook	temp.	humidity	windy	play
sunny	hot	high	false	no
sunny	hot	high	true	no
overcast	hot	high	false	yes
rainy	mild	high	false	yes
rainy	cool	normal	false	yes
rainy	cool	normal	true	no
overcast	cool	normal	true	yes
sunny	mild	high	false	no
sunny	cool	normal	false	yes
rainy	mild	normal	false	yes
sunny	mild	normal	true	yes
overcast	mild	high	true	yes
overcast	hot	normal	false	yes
rainy	mild	high	true	no

Learn about Decision Tree

But How do we choose the best attribute?

Or

How does a tree decide where to split?

outlook	temp.	humidity	windy	play
sunny	hot	high	false	no
sunny	hot	high	true	no
overcast	hot	high	false	yes
rainy	mild	high	false	yes
rainy	cool	normal	false	yes
rainy	cool	normal	true	no
overcast	cool	normal	true	yes
sunny	mild	high	false	no
sunny	cool	normal	false	yes
rainy	mild	normal	false	yes
sunny	mild	normal	true	yes
overcast	mild	high	true	yes
overcast	hot	normal	false	yes
rainy	mild	high	true	no

How Does A Tree Decide Where To Split?

Gini Index

The measure of impurity (or purity) used in building decision tree in CART is Gini Index

Chi Square

It is an algorithm to find out the statistical significance between the differences between sub-nodes and parent node

Information Gain

The information gain is the decrease in entropy after a dataset is split on the basis of an attribute. Constructing a decision tree is all about finding attribute that returns the highest information gain

Reduction in Variance

Reduction in variance is an algorithm used for continuous target variables (regression problems). The split with lower variance is selected as the criteria to split the population

Let's First Understand What is Impurity

Impurity = 0

Let's First Understand What is Impurity

Impurity $\neq 0$

What is Entropy?

- Defines randomness in the data
- Entropy is just a metric which measures the impurity or
- The first step to solve the problem of a decision tree

What is Entropy?

Entropy(s) =- $P(yes) log_2 P(yes) - P(no) log_2 P(no)$

Where,

- S is the total sample space,
- P(yes) is probability of yes

If number of yes = number of no ie P(S) = 0.5

$$\Rightarrow$$
 Entropy(s) = 1

If it contains all yes or all no ie P(S) = 1 or 0

$$\Rightarrow$$
 Entropy(s) = 0

What is Entropy?

$$E(S) = -P(Yes) \log_2 P(Yes)$$

When
$$P(Yes) = P(No) = 0.5$$
 ie YES + NO = Total Sample(S)

$$E(S) = 0.5 \log_2 0.5 - 0.5 \log_2 0.5$$

$$E(S) = 0.5(\log_2 0.5 - \log_2 0.5)$$

$$E(S) = 1$$

What is Entropy?

$$E(S) = -P(Yes) \log_2 P(Yes)$$

When $P(Yes) = 1$ ie YES = Total Sample(S)
 $E(S) = 1 \log_2 1$
 $E(S) = 0$

$$E(S) = -P(No) \log_2 P(No)$$

When $P(No) = 1$ ie $No = Total \ Sample(S)$
 $E(S) = 1 \log_2 1$
 $E(S) = 0$

Information Gain?

- Measures the reduction in entropy
- Decides which attribute should be selected as the decision node

If S is our total collection,

Information Gain = Entropy(S) - [(Weighted Avg) x Entropy(each feature

Machine Leaning Training Using Python

Let's Build Our Decision Tree

Step 1: Compute the entropy for the Data set

Out of 14 instances we have 9 YES and 5 NO

So we have the formula,

$$E(S) = -P(Yes) \log_2 P(Yes) - P(No) \log_2 P(No)$$

$$E(S) = -(9/14)* \log_2 9/14 - (5/14)* \log_2 5/14$$

$$E(S) = 0.41 + 0.53 = 0.94$$

D2	sunny	hot	high	true	no
D3	overcast	hot	high	false	yes
D4	rainy	mild	high	false	yes
D5	rainy	cool	normal	false	yes
D6	rainy	cool	normal	true	no
D7	overcast	cool	normal	true	yes
D8	sunny	mild	high	false	no
D9	sunny	cool	normal	false	yes
D10	rainy	mild	normal	false	yes
D11	sunny	mild	normal	true	yes
D12	overcast	mild	high	true	yes
D13	overcast	hot	normal	false	yes
D14	rainy	mild	high	true	no

outlook

sunny

D1

temp.

hot

humidity

high

windy

false

no

Which Node To Select As Root Node?

outlook	temp.	humidity	windy	play
sunny	hot	high	false	no
sunny	hot	high	true	no
overcast	hot	high	false	yes
rainy	mild	high	false	yes
rainy	cool	normal	false	yes
rainy	cool	normal	true	no
overcast	cool	normal	true	yes
sunny	mild	high	false	no
sunny	cool	normal	false	yes
rainy	mild	normal	false	yes
sunny	mild	normal	true	yes
overcast	mild	high	true	yes
overcast	hot	normal	false	yes
rainy	mild	high	true	no

Which Node To Select As Root Node: Outlook

outlook	temp.	humidity	windy	play
sunny	hot	high	false	no
sunny	hot	high	true	no
overcast	hot	high	false	yes
rainy	mild	high	false	yes
rainy	cool	normal	false	yes
rainy	cool	normal	true	no
overcast	cool	normal	true	yes
sunny	mild	high	false	no
sunny	cool	normal	false	yes
rainy	mild	normal	false	yes
sunny	mild	normal	true	yes
overcast	mild	high	true	yes
overcast	hot	normal	false	yes
rainy	mild	high	true	no

Which Node To Select As Root Node: Outlook

$$E(Outlook = Sunny) = -2/5 \log_2 2/5 - 3/5 \log_2 3/5 = 0.971$$

$$E(Outlook = Overcast) = -1 \log_2 1 - 0 \log_2 0 = 0$$

$$E(Outlook = Sunny) = -3/5 \log_2 3/5 - 2/5 \log_2 2/5 = 0.971$$

$$Information \ from \ outlook,$$

$$I(Outlook) = 5/14 \times 0.971 + 4/14 \times 0 + 5/14 \times 0.971 = 0.693$$

$$Information \ gained \ from \ outlook,$$

Gain(Outlook) = E(S) - I(Outlook)

outlook	temp.	humidity	wind
sunny	hot	high	false
sunny	hot	high	true
overcast	hot	high	false
rainy	mild	high	false
rainy	cool	normal	false
rainy	cool	normal	true
overcast	cool	normal	true
sunny	mild	high	false
sunny	cool	normal	false
rainy	mild	normal	false
sunny	mild	normal	true

high

high

normal

overcast

overcast

rainy

mild

hot

mild

no

no

ves

yes

yes

no

yes

yes

yes

yes

yes

no

true

false

true

Which Node To Select As Root Node: Outlook

outlook	temp.	humidity	windy	play
sunny	hot	high	false	no
sunny	hot	high	true	no
overcast	hot	high	false	yes
rainy	mild	high	false	yes
rainy	cool	normal	false	yes
rainy	cool	normal	true	no
overcast	cool	normal	true	yes
sunny	mild	high	false	no
sunny	cool	normal	false	yes
rainy	mild	normal	false	yes
sunny	mild	normal	true	yes
overcast	mild	high	true	yes
overcast	hot	normal	false	yes
rainy	mild	high	true	no

Which Node To Select As Root Node: Windy

$$E(Windy = True) = 1$$
 $E(Windy = False) = 0.811$

Information from windy,

 $I(Windy) = 8/14 \times 0.811 + 6/14 \times 1 = 0.892$

Information gained from outlook,

 $Gain(Windy) = E(S) - I(Windy)$
 $0.94 - 0.892 = 0.048$

outiook	temp.	Harmany	willing	pia
sunny	hot	high	false	no
sunny	hot	high	true	no
overcast	hot	high	false	yes
rainy	mild	high	false	yes
rainy	cool	normal	false	yes
rainy	cool	normal	true	no
overcast	cool	normal	true	yes
sunny	mild	high	false	no
sunny	cool	normal	false	yes
rainy	mild	normal	false	yes
sunny	mild	normal	true	yes
overcast	mild	high	true	yes
overcast	hot	normal	false	yes
rainy	mild	high	true	no

humidity

outlook

Machine Leaning Training Using Python

Similarly We Calculated For Rest Two

Which Node To Select As Root Node

Outlook:

Info

Gain: 0.940-0.693

Temperature:

Info

Gain: 0.940-0.911

0.911

0.029

Humidity:

Gain: 0.940-0.788

Info

0.152

0.788

0.693

0.247

Info

Windy:

Gain: 0.940-0.982

0.892

0.048

Since Max gain = 0.247,

Outlook is our ROOT Node

outlook	temp.	numidity	wind
sunny	hot	high	false
sunny	hot	high	true
overcast	hot	high	false
rainy	mild	high	false
rainy	cool	normal	false
rainy	cool	normal	true
overcast	cool	normal	true
sunny	mild	high	false
sunny	cool	normal	false

mild

mild

mild

hot

mild

humidity

normal

normal

normal

high

high

play

no

no

yes

yes

yes no

yes no

yes

yes

yes

yes

yes

no

false

true

true

false

true

outlook

rainy

sunny

overcast

overcast

rainy

Which Node To Select Further?

outlook	temp.	humidity	windy	play
sunny	hot	high	false	no
sunny	hot	high	true	no
overcast	hot	high	false	yes
rainy	mild	high	false	yes
rainy	cool	normal	false	yes
rainy	cool	normal	true	no
overcast	cool	normal	true	yes
sunny	mild	high	false	no
sunny	cool	normal	false	yes
rainy	mild	normal	false	yes
sunny	mild	normal	true	yes
overcast	mild	high	true	yes
overcast	hot	normal	false	yes
rainy	mild	high	true	no

This Is How Your Complete Tree Will Look Like

Machine Leaning Training Using Python

What Should I Do To Play - Pruning

edureka!

"A decision tree is a graphical representation of the possible solutions to a decision based on cerconditions"

What is Pruning?

Pruning: Reducing The Complexity

Are tree based models better than linear models?

edureka!