Capítulo 2

Representaciones de grupos.

Una representación de un grupo finito G nos proporciona una manera de visualizar G como un grupo de matrices. Para ser mas preciso diremos que una representación es un homomorfismo de G en el grupo de matrices invertibles.

La estructura de estos homomorfismos y sus propiedades seran objeto de estudio en este capitulo.

2.1. Representaciones de grupos.

Sea V un espacio vectorial sobre el cuerpo \mathbb{C} de los números complejos, y sea GL(V) el grupo de isomorfismos de V. Un elemento $a \in GL(V)$ es, por definición, una aplicación lineal de V en V que admite inversa a^{-1} ; a^{-1} es también lineal. Si V admite una base finita (e_i) de n elementos, toda aplicación lineal $a:V\to V$ se representa por una matriz cuadrada (a_{ij}) de orden n. Los coeficientes a_{ij} son números complejos; se calculan expresando $a(e_j)$ en la base (e_i) :

$$a(e_j) = \sum_{i} a_{ij} e_i$$

Decir que a es un isomorfismo equivale a decir que el determinante de a es no nulo. El grupo GL(V) se identifica así como el grupo de matrices cuadradas invertibles de orden n. En algunas ocasiones escribiremos GL(n, V).

Definicion 2.1.1 Sea G un grupo finito. Una representación de G en V es un homomorfismo ρ del grupo G en el grupo GL(V):

$$\rho: G \to GL(V)$$

de modo que:

$$\rho(st) = \rho(s)\rho(t)$$

cualesquiera que sean $s, t \in G$.

Supongamos que V es de dimensión finita, y sea n su dimensión; se dice también que n es el grado de la representación considerada.

Ejemplo 2.1.1 Sea G el grupo dihedral $D_8 = \langle a, b : a^4 = b^2 = 1, b^{-1}ab = a^{-1} \rangle$. Definimos las matrices A y B como:

$$A = \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right), B = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right)$$

se comprueba que:

$$A^4 = B^2 = I, B^{-1}AB = A^{-1}$$

la función

$$\rho: G \to GL(2,V)$$

definida como $\rho: a^ib^j \to A^iB^j$ para $0 \le i \le 3, \ 0 \le j \le 1$, es una representación de D_8 sobre V. Es una representación de grado 2.

En la siguiente tabla se representan las imágenes de ρ para cada elemento de D_8 :

g	$\rho(g)$
1	$\left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right)$
a	$\left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right)$
a^2	$\left(\begin{array}{cc} -1 & 0 \\ 0 & -1 \end{array}\right)$
a^3	$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$
b	$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$
ab	$\left(\begin{array}{cc} 0 & -1 \\ -1 & 0 \end{array}\right)$
a^2b	$\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$
a^3b	$\left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)$

Cuadro 2.1: Representación del grupo dihedral 8.

Ejemplo 2.1.2 Sea G un grupo cualquiera. Definimos $\rho: G \to GL(n, V)$ como $\rho(g) = I_n$ para todo $g \in G$, donde I_n es la matriz identidad $n \times n$. Entoces:

$$\rho(gh) = I_n = I_n I_n = \rho(g)\rho(h)$$

para todo $g, h \in G$, por lo tanto, ρ es una representación de G. Esto nos indica que todo grupo tiene representaciones de cualquier grado.

2.2. Representaciones equivalentes.

Sean ρ y ρ' representaciones lineales de un grupo G en espacios vectoriales V y V' respectivamente. Se dice que estas representaciones son equivalentes (o isomorfas) si existe un isomorfismo lineal $\tau: V \to V'$ que transforma ρ en ρ' , es decir, que verifica la identidad:

$$\tau \cdot \rho(s) = \rho'(s) \cdot \tau$$

para todo $s \in G$.

Si ρ y ρ' se dan en forma matricial por R y R' respectivamente, el isomorfismo se traduce en una matriz invertible T tal que:

$$T \cdot R = R' \cdot T$$

o, equivalentemente, tal que:

$$R' = TRT^{-1}$$

Sea $\rho:G\to GL(V)$ una representación, Y sea T una matriz invertible $n\times n$ de V. Para todas las $n\times n$ matrices A y B tenemos:

$$(T^{-1}AT)(T^{-1}BT) = T^{-1}(AB)T$$

Usamos esto para crear una reprsentación σ desde ρ ; definimos

$$\sigma(g) = T^{-1}\rho(g)T$$

para todo $g \in G$. Por lo tanto, para todo $g, h \in G$, tenemos:

$$\sigma(gh) = T^{-1}\rho(gh)T$$

$$= T^{-1}\rho(g)\rho(h)T$$

$$= T^{-1}\rho(g)T \cdot T^{-1}\rho(h)T$$

$$= \sigma(g)\sigma(h)$$

por lo que, σ es, en efecto, una representación.

Con esto podemos ya dar la siguiente definición:

Definicion 2.2.1 Sean $\rho: G \to GL(m,V)$ y $\sigma: G \to GL(n,V)$ representaciones de G sobre V. Decimos que ρ es equivalente a σ si n=m y existe una matriz invertible $n \times n$ T tal que, para todo $q \in G$,

$$\sigma(g) = T^{-1}\rho(g)T$$

Dadas las representaciones ρ , σ y τ de G sobre V, se tiene que:

- 1. ρ es equivalente a ρ . (Prop. Reflexiva).
- 2. si ρ es equivalente a σ , entonces σ es equivalente a ρ . (Prop. Simétrica).
- 3. si ρ es equivalente a σ y σ es equivalente a τ , entonces ρ es equivalente a τ . (Prop. Transitiva).

Esto nos indica que ser equivalentes es una relación de equivalencia.

Demostracion: Sean ρ , σ y τ representaciones de G sobre V, y sea $g \in G$. Tenemos:

1. Prop. Reflexiva:

Sea I la matriz identidad, que ademas es una matriz cuadrada e invertible, siempre podemos poner

$$\rho(q) = I^{-1}\rho(q)I$$

por lo que ρ es equivalente a ρ .

2. Prop. Simétrica:

Por ser ρ equivalente a σ , tenemos que existe una matriz cuadrada invertible T que cumple:

$$\sigma(g) = T^{-1}\rho(g)T$$

$$T\sigma(g) = \rho(g)T$$

$$T\sigma(g)T^{-1} = \rho(g)$$

lo que concluye que σ es equivalente a ρ .

3. Prop. Transitiva.

Por ser ρ equivalente a σ , tenemos que existe una matriz cuadrada invertible T que cumple:

$$\sigma(g) = T^{-1}\rho(g)T$$

Del mismo modo, por ser σ equivalente a τ , tenemos que existe una matriz cuadrada invertible P que cumple:

$$\tau(g) = P^{-1}\sigma(g)P$$

Sustituyendo tenemos que:

$$\tau(g) = P^{-1}T^{-1}\rho(g)TP$$

$$\tau(g) = (TP)^{-1}\rho(g)TP$$

por lo que ρ es equivalente a τ .

2.3. Subrepresentaciones.

Antes de avanzar en este punto, vamos a tratar, de manera muy breve, algunas nociones relativas a los espacios vectoriales.

Sea V un espacio vectorial, W y W' subespacios de V. Se dice que V es suma directa de W y W' si todo $x \in V$ se puede escribir de manera única en la forma x = w + w', $w \in W$ y $w' \in W'$; equivale a decir que $W \cap W' = 0$ y dim(V) = dim(W) + dim(W'); se escribe entonces $V = W \oplus W'$, y se dice que W' es suplementario de W en V. La aplicación p que hace corresponder a cada $x \in V$ su componente $w \in W$ se llama proyector de V sobre W (asociado a la descomposición $V = W \oplus W'$); la imagen de p es W, y p(x) = x si $x \in W$; recíprocamente, si p es un endomorfismo de V que verifica estas propiedades, inmediatamente se prueba que V es suma directa de W y del núcleo W' de p. Se establece así una correspondencia biyectiva entre los proyectores de V sobre W y los suplementarios de W en V.

Sea $\rho: G \to GL(V)$ una representación, y sea W un subespacio de V. Si W es estable por la acción de G, esto es, si $gW \subset W$, $\forall g \in G$, entonces ρ define por restricción una representación $\rho': G \to GL(W)$.

2.4. Núcleo de una representación.

Sea una representación $\rho: G \to GL(V)$. El núcleo de una representación consiste en un grupo de elementos $g \in G$ para los cuales $\rho(g)$ es la matriz identidad.

$$Ker \, \rho = \{ g \in G : \rho(g) = I_n \}$$

El núcleo de ρ es un subgrupo normal de G.

Puede ocurrir que el núcleo de una representación es el propio grupo G.

Definicion 2.4.1 Una representación $\rho: G \to GL(1, V)$ definida como:

$$\rho(q) = 1_G$$

para todo $g \in G$, se denomina representación trivial de G.

2.5. Representaciones irreducibles.

Definicion 2.5.1 Una representación lineal $\rho: G \to GL(V)$ se dice irreducible si $V \neq 0$ y ningún subespacio de V es estable por G, excepto, claro está, 0 y V.

Esto equivale a decir que V no es suma directa de dos subrepresentaciones, salvo la descomposición trivial $V=0\oplus V$.

Toda representacion de grado 1 es evidentemente irreducible. La suma directa de representaciones irreducibles da cualquier representación.

Teorema 2.5.1 Toda representación es suma directa de representaciones irreducibles.

Demostracion: Sea V una representación lineal de G. Se razona por inducción sobre dim(V). Si dim(V) = 0, el teorema es evidente, 0 es suma directa de la familia vacia de representaciones irreducibles. Si $dim(V) \ge 1$ y V es irreducible, también es cierto el teorema. En el resto de casos podemos descomponer V como suma directa de $V' \oplus V''$, con dim(V') < dim(V) y dim(V'') < dim(V). Por inducción, V' y V'' son suma directa de representaciones irreducibles y por tanto lo mismo le ocurre a V.

Sea V una representación y sea $V=W_1\oplus\ldots\oplus W_k$ una descomposición de V en suma directa de representaciones irreducibles. El numero de las W_i isomorfas a una representación irreducible dada no depende de la descomposición elegida.

2.6. FG-módulos.

Sea G un grupo, y sea $F = \mathbb{R}$ o $F = \mathbb{C}$. Escribiremos como $V = F^n$ el espacio vectorial formado por los vectores fila $(\lambda_1, \ldots \lambda_n)$ con $\lambda_i \in F$. Para todo $v \in V$ y $g \in G$, el producto matricial

$$v\rho(g)$$

de el vector fila v con la matriz de dimensión $n \times n \rho(g)$, es un vector fila en V.

Basandonos en el producto matricial $v\rho(g)$ definimos el FG-módulo.

Definicion 2.6.1 Sea V un espacio vectorial sobre F y sea G un grupo. Entonces V es un FG-modulo si esta definida la multiplicación vg, para $v \in V$ y $g \in G$, y ademas satisfacen las siguientes condiciones para todo $u, v \in V$, $\lambda \in F$ y $g, h \in G$:

- 1. $vg \in V$
- 2. v(qh) = (vq)h
- 3. v1 = v
- 4. $(\lambda v)g = \lambda(vg)$
- 5. (u+v)q = uq + vq

Las condiciones (1), (4) y (5) de la definición aseguran que para todo $g \in G$, la función

$$v \rightarrow vg$$

es un endomorfismo de V.

Sea V un FG-módulo, y sea B una base de V. Para cada $g \in G$, denotamos como

$$[g]_B$$

a la matriz del endomorfismo $v \to vg$ de V, relativo a la base B.

La relación entre los FG-módulos y las representaciones de G sobre F se verá en el siguiente teorema:

Teorema 2.6.1 (1) Si $\rho: G \to GL(F)$ es una representación de G sobre F, $y V = F^n$, entonces V sera un FG-módulo si definimos la multiplicación vg como

$$vg = v\rho(g)$$

ademas, existe una base B de V tal que

$$\rho(g) = [g]_B$$

para todo $q \in G$.

(2) Sea V un FG-módulo y sea B una base de V. Entonces la función

$$g \to [g]_B$$

es una representación de G sobre F.

Demostracion: (1) Sabemos que $v\rho(g) \in F^n$, ademas por ser ρ un homomorfismo tenemos que $v(\rho(gh)) = v(\rho(g)\rho(h))$ y $v(\rho(1)) = v$. Del mismo modo, por las propiedades de la multiplicación matricial tenemos que $(\lambda v)\rho(g) = \lambda(v\rho(g))$ y $(u+v)\rho(g) = u\rho(g) + v\rho(g)$ para todo $u,v \in F^n$, $\lambda \in F$ y $g,h \in G$.

Por lo tanto, F^n se convertirá en un FG-módulo si definimos

$$vq = v\rho(q)$$

para todo $v \in F^n, g \in G$.

Ademas, si consideramos la base B como

$$(1,0,0,...,0), (0,1,0,...,0), ..., (0,0,0,...,1)$$

de F^n , entonces $\rho(g) = [g]_B$ para todo $g \in G$.

(2) Sea V un FG-módulo con base B. De v(gh)=(vg)h para todo $g,h\in G$ y todo $v\in B,$ se sigue que

$$[gh]_B = [g]_B[h]_B$$

En particular,

$$[1]_B = [g]_B[g^{-1}]_B$$

para todo $g \in G$. Ahora v1 = v para todo $v \in V$, asi que $[1]_B$ es la matriz identidad.

Por lo tanto cada matriz $[g]_B$ es invertible.

Hemos probado que la función $g \to [g]_B$ es un homomorfismo de G a GL(F) y por lo tanto es una representación de G sobre F.

Podemos construir FG-módulos sin usar una representación. Para hacer esto transformamos

un espacio vectorial V sobre F en un FG-módulo especificando la acción de los elementos del grupo en una base $v_1, \ldots v_n$ de V y haciendo que sea lineal la acción en el entorno de V, es decir, primero definimos $v_i g$ para cada i y cada $g \in G$, y entonces definimos

$$(\lambda_1 v_1 + \ldots + \lambda_n v_n)g$$

para $\lambda_i \in F$, como

$$\lambda_1(v_1g) + \ldots + \lambda_n(v_ng)$$

Como era de esperar existen restricciones a la hora de definir los vectores $v_i g$.

Teorema 2.6.2 Sea $v_1, \ldots v_n$ una base de un espacio vectorial V sobre F. Supongamos que tenemos una multiplicación vg para todo $v \in V$ y $g \in G$, la cual satisface las siguientes condiciones para todo i con $1 \le i \le n$, para todo $g, h \in G$ y para todo $\lambda_1, \ldots, \lambda_n \in F$:

- 1. $v_i g \in V$
- 2. $v_i(gh) = (v_ig)h$
- 3. $v_i 1 = v$

4.
$$(\lambda_1 v_1 + \ldots + \lambda_n v_n)g = \lambda_1(v_1 g) + \ldots + \lambda_n(v_n g)$$

Entonces V es un FG-módulo.

Demostracion: Es trivial ver de (3) y (4) que v1 = v para todo $v \in V$. Las condiciones (1) y (4) nos aseguran que, para todo $g \in G$, la función $v \to vg$ ($v \in V$) es un endomorfismo de V. Esto es:

$$vg \in V,$$

$$(\lambda v)g = \lambda(vg),$$

$$(u+v)g = ug + vg,$$

para todo $u, v \in V$, $\lambda \in F$ y $g \in G$. Por lo tanto

$$(\lambda_1 u_1 + \ldots + \lambda_n u_n)h = \lambda_1(u_1 h) + \ldots + \lambda_n(u_n h)$$

para todo $\lambda_1, \ldots, \lambda_n \in F$, todo $u_1, \ldots, u_n \in V$, y todo $h \in G$.

Ahora sea $v \in V$ y $g, h \in G$. Entonces $v = \lambda_1 v_1 + \ldots + \lambda_n v_n$ para algún $\lambda_1, \ldots, \lambda_n \in F$, y

$$v(gh) = \lambda_1(v_1(gh)) + \dots + \lambda_n(v_n(gh))$$
$$= \lambda_1((v_1g)h) + \dots + \lambda_n((v_ng)h)$$
$$= (\lambda_1(v_1g) + \dots + \lambda_n(v_ng))h$$
$$= (vg)h$$

Con esto hemos comprobado todos los axiomas requeridos para que V sea un FG-módulo.

Definicion 2.6.2 El FG-módulo trivial es un espacio vectorial V sobre F 1-dimensional con

$$vq = v$$

para todo $v \in V$, $q \in G$.

Definicion 2.6.3 Un FG-módulo V es fiel si el elemento unitario de G es el único elemento g para el cual

$$vg = v$$

para todo $v \in V$.

2.6.1. FG-módulos y representaciones equivalentes.

Veamos ahora las relaciones entre los FG-módulos y las representaciones equivalentes de G sobre F. Un FG-módulo tiene varias representaciones, todas de la forma

$$g \to [g]_B$$

para una base B de V. El siguiente resultado muestra que todas estas representaciones son equivalentes entre si.

Teorema 2.6.3 Sea V un FG-módulo con una base B, y sea ρ la representación de G sobre F definida por

$$\rho:g\to[g]_B$$

(1) Si B' es una base de V, entonces la representación

$$\phi: g \to [g]_{B'}$$

de G es equivalente a ρ .

(2) Si σ es una representación de G la cual es equivalente a ρ , entonces existe una base B" de V tal que

$$\sigma:g\to[g]_{B''}$$

Demostracion: (1) Sea T la matriz del cambio de base de B a B'. Para todo $g \in G$, tenemos

$$[g]_B = T^{-1}[g]_{B'}T$$

Por lo tanto ϕ es equivalente a ρ .

(2) Supongamos que ρ y σ son representaciones equivalentes de G. Entonces, para la matriz invertible T tenemos

$$g\rho = T^{-1}(g\sigma)T$$

para todo $g \in G$. Sea B'' la base de V para la cual la matriz del cambio de base de B a B'' es T. Entonces para todo $g \in G$

$$[g]_B = T^{-1}[g]_{B''}T$$

por lo que $g\sigma = [g]_{B''}$.

2.6.2. FG-submódulos.

En lo sucesivo G sera un grupo y F sera \mathbb{R} o \mathbb{C} .

Definicion 2.6.4 Sea V un FG-módulo. Un subconjunto W de V se dice que es un FG-submódulo de V si W es un subespacio y $wg \in W$ para todo $w \in W$ y $g \in G$.

2.6.3. FG-módulos irreducibles.

Definicion 2.6.5 Un FG-módulo V se dice que es irreducible si es diferente a $\{0\}$ y no tiene FG-submódulos aparte de $\{0\}$ y V.

Si V tiene un FG-submódulo W donde W es distinto a {0} o V, entonces V es recucible.

Del mismo modo, una representación $\rho:G\to GL(F)$ es irreducible si el correspondiente FG-módulo F^n dado por

$$vg = v(\rho(g))$$

es irreducible; y ρ es reducible si F^n es reducible.

Supongamos ahora que V es un FG-módulo reducible, por lo tanto hay un FG-submódulo W con $0 < \dim W < \dim V$. Tomando una base B_1 de W y extendiéndola a una base B de V. Entonces para todo $g \in G$, la matriz $[g]_B$ tiene la forma

$$\left(\begin{array}{c|c} X_g & 0 \\ \hline Y_g & Z_g \end{array}\right)$$
(2.6.1)

para las matrices X_g , Y_g y Z_g , donde X_g es $k \times k$ para k = dim(W).

Una representación de grado n es reducible si, y solo si, es equivalente a una representación de la forma (2.6.1), donde X_g es $k \times k$ y 0 < k < n. Notemos que en (2.6.1), las funciones $g \to X_g$ y $g \to Z_g$ son representaciones de G.

2.6.4. FG-homomorfismos.

Definicion 2.6.6 Sean V y W FG-módulos. Una función $\vartheta:V\to W$ se dice que es un FG-homomorfismo si ϑ es una transformación lineal y

$$\vartheta(vg) = \vartheta(v)g$$

En otras palabras, si ϑ envia v a w entonces envia vg a wg.

Como G es un grupo finito y $\vartheta:V\to W$ es un FG-homomorfismo, entonces para todo $v\in V$ y $r=\sum_{g\in G}\lambda_g g\in FG$, tenemos

$$\vartheta(vr) = \vartheta(v)r$$

Teorema 2.6.4 Sea V y W FG-módulos y sea $\vartheta:V\to W$ un FG-homomorfismo. Entonces $Ker\,\vartheta$ es un FG-submódulo de V y $Im\,\vartheta$ es un FG-submódulo de W.

 $Demostracion: Ker \vartheta$ es un subespacio de V y $Im \vartheta$ es un subespacio de W ya que ϑ es una transformación lineal.

Sea $v \in Ker \vartheta y g \in G$, entonces

$$\vartheta(vg) = \vartheta(v)g = 0g = 0$$

asi que $vg \in Ker \vartheta$. Ademas $Ker \vartheta$ es un FG-submodulo de V. Sea $w \in Im \vartheta$, tal que $w = \vartheta(v)$ para algún $v \in V$. Para todo $g \in G$,

$$wg = \vartheta(v)g = \vartheta(vg) \in Im \vartheta$$

por lo que $Im \vartheta$ es un FG-submódulo de W.

2.6.5. Isomorfismos de FG-módulos.

Definicion 2.6.7 Sean V y W FG-módulos. Decimos que $\vartheta:V\to W$ es un FG-isomorfismo si ϑ es un FG-homomorfismo y ademas posee inversa. Si $\vartheta:V\to W$ es un FG-isomorfismo, entonces V y W son FG-módulos isomorfos y los representaremos como $V\cong W$.

En el siguiente teorema veremos que si $V \cong W$ entonces $W \cong V$.

Teorema 2.6.5 Si $\vartheta: V \to W$ es un FG-isomorfismo, entonces la inversa $\vartheta^{-1}: W \to V$ es tambien un FG-isomorfismo.

Demostracion: Es evidente que ϑ^{-1} es una transformación lineal invertible, por lo que, unicamente, debemos demostrar que ϑ^{-1} es un FG-homomorfismo. Sean $w \in W$ y $g \in G$,

$$\vartheta(\vartheta^{-1}(w)g) = g(\vartheta(\vartheta^{-1}(w)))$$

como ϑ es un FG-homomorfismo,

$$= wg$$

$$\vartheta(\vartheta^{-1}(wg))$$

Así que $\vartheta^{-1}(w)g = \vartheta^{-1}(wg)$ como se buscaba.

Sea $\vartheta:V\to W$ un FG-isomorfismo, entonces podemos usar ϑ y ϑ^{-1} para cambiar entre los FG-módulos isomorfos V y W, y probar que V y W comparten la mismas propiedades estructurales; algunos ejemplos pueden ser:

- 1. dim $V = \dim W$ (cada v_1, \ldots, v_n es una base de V si y solo si $\vartheta(v_1), \ldots, \vartheta(v_n)$ es base de W).
- 2. V es irreducible si y solo si W es irreducible (cada X es un FG-submódulo de V si y solo si $\vartheta(X)$ es un FG-submódulo de W).
- 3. V contiene un FG-submódulo trivial si y solo si W contiene un FG-submódulo trivial (cada X es un FG-submódulo trivial de V si y solo si $\vartheta(X)$ es un FG-submódulo trivial de W).

Teorema 2.6.6 Sea V un FG-módulo con una base B, y sea W un FG-módulo con una base B'. Entonces V y W son isomorfas si y solo si las representaciones

$$\rho: g \to [g]_B$$

$$\sigma: g \to [g]_{B'}$$

son equivalentes.

Demostracion: Para la demostración del anterior teorema primero estableceremos lo siguiente:

1. Los FG-módulos V y W son isomorfos si y solo si existe una base B_1 de V y una base B_2 de W tal que

$$[g]_{B_1} = [g]_{B_2}$$

para todo $q \in G$.

Para ver esto supongamos, primero, que ϑ es un FG-isomorfismo de V a W, y sea v_1, \ldots, v_n una base B_1 de V; entonces $\vartheta(v_1), \ldots, \vartheta(v_n)$ es una base de B_2 de W. Sea $g \in G$. Ya que $\vartheta(v_ig) = \vartheta(v_i)g$ para cada i, se sigue que $[g]_{B_1} = [g]_{B_2}$.

De modo inverso, supongamos que v_1, \ldots, v_n una base B_1 de V y w_1, \ldots, w_n una base B_2 de W tal que $[g]_{B_1} = [g]_{B_2}$ para todo $g \in G$. Sea ϑ la transformación lineal invertible de V a W para la cuál $\vartheta(v_i) = w_i$. Y que $[g]_{B_1} = [g]_{B_2}$, se deduce que $\vartheta(v_ig) = \vartheta(v_i)g$ y por lo tanto cada ϑ es un FG-isomorfismo. Esto completa la demostración de (1).

Ahora asumimos que V y W son FG-módulos isomorfos. Por (1) hay una base B_1 de V y una base B_2 de W tal que $[g]_{B_1} = [g]_{B_2}$ para todo $g \in G$. Definimos ahora una representación ϕ de G como $\phi: g \to [g]_{B_1}$. Según el teorema 2.6.3(1), ϕ es equivalente a ρ y a σ , por lo que ρ y σ son equivalentes.

A la inversa, supongamos que ρ y a σ son equivalentes, entonces, por el teorema 2.6.3(2) hay una base B'' de V tal que $\sigma(g) = [g]_{B''}$ para todo $g \in G$; esto es, $[g]_{B'} = [g]_{B''}$ para todo $g \in G$. Por lo tanto V y W son FG-módulos isomorfos, por (1).

2.6.6. Suma directa de FG-módulos.

Sea V un FG-módulo, y supongamos que

$$V = U \oplus W$$

donde U y W son FG-submódulos de V. Sea u_1, \ldots, u_m una base B_1 de U, y w_1, \ldots, w_n una base B_2 de W. Entonces sabemos, por los primeros cursos de álgebra lineal, que $u_1, \ldots, u_m, w_1, \ldots, w_n$ es una base B de V, y para $g \in G$

 $\left(\begin{array}{c|c} [g]_{B_1} & 0 \\ \hline 0 & [g]_{B_2} \end{array}\right)$

Generalizando aun mas, si $V = U_1 \oplus \ldots \oplus U_r$, es suma directa de los FG-submódulos U_i y B_i es una base de U_i , entonces podemos unir B_1, \ldots, B_r , para obtener una base mathscr B de V, y para $g \in G$,

$$[g]_B = \begin{pmatrix} [g]_{B_1} & 0 \\ & \ddots & \\ 0 & [g]_{B_r} \end{pmatrix}$$

Proposicion 2.6.1 Sea V un FG-módulo, y supongamos que

$$V = U_1 \oplus \ldots \oplus U_r$$

donde cada U_i es un FG-submódulo de V. Para $v \in V$, tenemos que $v = u_1 + \ldots + u_r$ para $u_i \in U_i$, y definimos $\pi_i : V \to V$ como

$$\pi_i(v) = u_i$$

Entonces cada π_i es un FG-homomorfismo, y es, ademas, una proyección de V.

Demostracion: Evidentemente π_i es una transformación lineal; y es también un FG-homomorfismo, ya que para $v \in V$ con $v = u_i + \ldots + u_r$ siendo $u_i \in U_i$ para todo j, y $g \in G$, tenemos que

$$\pi_i(vq) = \pi_i(u_1q + \ldots + u_rq) = u_iq = \pi_i(v)q$$

por lo tanto

$$\pi_i^2(v) = \pi_i(u_i) = u_i = \pi_i(v)$$

asi que $\pi_i^2 = \pi_i$. Lo que implica que π_i es una proyección.

Veamos, por último, un resultado concerniente a la suma de FG-módulos irreducibles del cual no daremos una demostración.

Proposicion 2.6.2 Sea V un FG-módulo, y supongamos que

$$V = U_1 + \ldots + U_r$$

donde cada U_i es un FG-submódulo irreducible de V. Entonces V es una suma directa de algunos FG-submódulos U_i .