ECE 313 • Course Project

Impulse Noise Interpolation for Images

09-Dec-21

Chung Yu, Zahin Zaman ECE 313 – Digital Signal Processing Fall 2021 Department of Electrical & Computer Engineering

Problem Statement

What is impulse noise?

Impulse noise is described as the category of noise that is undesired and of <u>relatively short duration</u>, often caused by switching noise or adverse channel environments in communication.

Other Solutions

Median filter

- Most go-to solution for impulsive noise removal is median filtering
- Involves replacing every pixel with the median of its surrounding pixels
- Downside is the loss of edges and texture of the image
- There is a need for a method that reduces noise while also preserving edges and details

Median filter with n = 3

Solution

In this project we reproduce the methods and results of research paper titled **Impulsive Noise Removal Using Interpolation Technique in Color Images**, authored by professors Yasuhide Wakabayashi and Akira Taguchi.

The solution outlined involves two steps:

- Impulsive Noise Detection
 Noisy pixels are detected using an appropriate threshold value
- 2. <u>Noise Interpolation</u>
 Noisy pixels identified are replaced using interpolation of surrounding pixels in all RGB channels of image

Noise Detection: Theory

We start by defining a noisy color channel pixel, $x_k(i,j)$, given by:

$$x_k(i,j) = \begin{cases} s_k(i,j), & 1 - p_1 - p_2 \\ 255, & p_1 \\ 0, & p_2 \end{cases}$$

Detection of this noise can be done by sliding a window of size $N \times N$ across the pixels and computing the following:

$$|x_k(i,j) - x_k^{MED}(i,j)| > \varepsilon$$

where ε is a threshold value (the detailed calculation of which can be found on the paper and the report) and $x_k^{MED}(i,j)$ is the median pixel value in the $N \times N$ window.

Noise Interpolation: Theory

Once we have identified noisy pixels, we perform interpolation, which involves sliding a 3×3 sized window across the pixels and computing the following values:

$$\hat{C}[4] = \frac{C[k] + C[l]}{2} + \frac{-A_i[k] + 2A_i[4] - A_i[l]}{2}$$

C[0]	C[1]	C[2]
C[3]	C[4]	C[5]
C[6]	C[7]	C[8]

A _i [0]	A _i [1]	A _i [2]
A _i [3]	A _i [4]	A _i [5]
A _i [6]	A _i [7]	A _i [8]

where (k, l) take values of $\{(0, 8), (1, 7), (2, 6), (3, 5)\}$ and i takes values of 1, 2. This gives us 8 possible interpolated pixels, the process of choosing which is described in greater detail in the paper and the report.

Noise Generation: Implementation

Noise Detection: Implementation

Noise Interpolation: Implementation

Performance

Normalized Mean-Squared Error Between Image Pixels

	Red Channel	Green Channel	Blue Channel
Noisy & Original	0.193763	0.199618	0.198139
Interpolated & Original	0.040137	0.038811	0.043348

Limitations

It is, however, important to remember the context of these results, and identify limitations to this method:

- The noise used in this project was salt-and-pepper noise, which involves noise that is sharp, and either very high or very low in value. If an image is affected by noise that can vary between a large range of values, this method may not be appropriate.
- This method assumes correlation between the RGB channels of an image. If no such correlation exists for an image, this method will likely not perform well.

Resources

Github Repository:

https://github.com/alvii147/ImageNoiseInterpolation

Source Code Documentation:

https://alvii147.github.io/ImageNoiseInterpolation/build/html/utils.html

Project Report:

https://alvii147.github.io/ImageNoiseInterpolation/report/ECE 313 Course Project

References

Y. Wakabayashi, A. Taguchi. (2005, December). *Impulsive Noise Removal Using Interpolation Technique in Color Images*. Available https://ieeexplore.ieee.org/document/1595367

Fictspedia Wiki. (2012). *Birb* [Online]. Available https://fictspedia.fandom.com/wiki/Birb

D. Chappelle, N. Brennan. (2004, March). Chappelle's Show (Season 2, Episode 8).

UNIVERSITY OF WATERLOO

FACULTY OF ENGINEERING