Finite Elements for Engineers

Lecture 5: Axisymmetric Problems

S. D. Rajan

Axisymmetric Problem

- Entire FE model (geometry, properties, boundary conditions) are functions of **r** and **z**.
- Cylindrical coordinate system (r, z, θ)
- r is the radial direction
- z is the axial direction
- Sometimes called "2.5D" problems

Axisymmetric Problems

Displacement field

$$u = u(r, z)$$

$$w = w(r, z)$$

Strain-displacement relations

$$\begin{cases} \mathcal{E}_r \\ \mathcal{E}_z \\ \mathcal{Y}_{rz} \end{cases} = \begin{cases} \frac{\partial u}{\partial r} \\ \frac{\partial w}{\partial z} \\ \frac{\partial u}{\partial z} + \frac{\partial w}{\partial r} \end{cases}$$

Axisymmetric Problems

Stress-strain relations

$$\begin{cases}
\sigma_{r} \\
\sigma_{z} \\
\tau_{rz} \\
\sigma_{\theta}
\end{cases} = \frac{E}{(1+\nu)(1-2\nu)} \begin{bmatrix}
1-\nu & \nu & 0 & \nu \\
& 1-\nu & 0 & \nu \\
& & \frac{1}{2}-\nu & 0 \\
SYM & & 1-\nu
\end{bmatrix}
\begin{pmatrix}
\varepsilon_{r} \\
\varepsilon_{z} \\
\gamma_{rz} \\
\varepsilon_{\theta}
\end{pmatrix} - \begin{pmatrix} \alpha \\ \alpha \\ \delta \\ \alpha \end{pmatrix}$$

Axisymmetric Problems

Total Potential Energy

$$\Pi = \frac{1}{2} \int_{0}^{2\pi} \int_{A} \mathbf{\sigma}^{\mathsf{T}} \mathbf{\epsilon} \, r \, dA d\theta - \int_{0}^{2\pi} \int_{A} \mathbf{u}^{\mathsf{T}} \mathbf{f} \, r \, dA d\theta - \int_{0}^{2\pi} \int_{\Gamma} \mathbf{u}^{\mathsf{T}} \mathbf{T} \, r \, dl \, d\theta - \sum_{i} \mathbf{u}_{i}^{\mathsf{T}} \mathbf{P}_{i}$$

Simplifies to

$$\Pi = 2\pi \left(\frac{1}{2} \int_{A} \mathbf{\sigma}^{\mathsf{T}} \mathbf{\epsilon} \, r \, dA - \int_{A} \mathbf{u}^{\mathsf{T}} \mathbf{f} \, r \, dA - \int_{\Gamma} \mathbf{u}^{\mathsf{T}} \mathbf{T} \, r \, dl \right) - \sum_{i} \mathbf{u}_{i}^{\mathsf{T}} \mathbf{P}_{i}$$

Assumed displacement field

$$u = a_1 + a_2 \xi + a_3 \eta$$

$$w = b_1 + b_2 \xi + b_3 \eta$$

Note

$$(x, y) \equiv (r, z)$$

Shape Functions

$$\phi_1 = \xi$$

$$\phi_1 = \xi$$
 $\phi_2 = \eta$

$$\phi_3 = 1 - \xi - \eta$$

$$r = \phi_1 r_1 + \phi_2 r_2 + \phi_3 r_3$$

$$z = \phi_1 z_1 + \phi_2 z_2 + \phi_3 z_3$$

$$\det(J) = r_{13}z_{23} - r_{23}z_{13}$$

$$\det(J) = r_{13}z_{23} - r_{23}z_{13} \qquad \qquad \Gamma_{2\times 2} = \frac{1}{\det(J)} \begin{vmatrix} z_{23} & -z_{13} \\ -r_{23} & r_{13} \end{vmatrix}$$

Strain-displacement relations

$$\mathbf{B}_{4\times6} = \begin{bmatrix} \mathbf{B}_{3\times6}^{1} \\ \\ \\ \mathbf{B}_{1\times6}^{2} \end{bmatrix} \implies \mathbf{B}_{3\times6}^{1} = \begin{bmatrix} \Gamma_{11} & \Gamma_{12} & 0 & 0 \\ 0 & 0 & \Gamma_{21} & \Gamma_{22} \\ \Gamma_{21} & \Gamma_{22} & \Gamma_{11} & \Gamma_{12} \end{bmatrix}_{3\times4} \begin{bmatrix} \phi_{1,\xi} & 0 & \phi_{2,\xi} & 0 & \phi_{3,\xi} & 0 \\ \phi_{1,\eta} & 0 & \phi_{2,\eta} & 0 & \phi_{3,\eta} & 0 \\ 0 & \phi_{1,\xi} & 0 & \phi_{2,\xi} & 0 & \phi_{3,\xi} \\ 0 & \phi_{1,\eta} & 0 & \phi_{2,\eta} & 0 & \phi_{3,\eta} \end{bmatrix}_{4\times6}$$

$$\mathbf{B}_{1\times 6}^2 = \left[\begin{array}{ccc} \underline{\phi_1} & 0 & \underline{\phi_2} & 0 & \frac{\phi_3}{r} & 0 \end{array} \right]_{1\times 6}$$

$$\mathbf{B}_{4\times6} = \begin{bmatrix} \frac{z_{23}}{\det(J)} & 0 & \frac{z_{31}}{\det(J)} & 0 & \frac{z_{12}}{\det(J)} & 0 \\ 0 & \frac{r_{32}}{\det(J)} & 0 & \frac{r_{13}}{\det(J)} & 0 & \frac{r_{21}}{\det(J)} \\ \frac{r_{32}}{\det(J)} & \frac{z_{23}}{\det(J)} & \frac{r_{13}}{\det(J)} & \frac{z_{31}}{\det(J)} & \frac{r_{21}}{\det(J)} & \frac{z_{12}}{\det(J)} \\ \frac{\phi_1}{r} & 0 & \frac{\phi_2}{r} & 0 & \frac{\phi_3}{r} & 0 \end{bmatrix}$$

$$\mathbf{k}_{6\times6} = 2\pi \iint_{A} \mathbf{B}_{6\times4}^{\mathsf{T}} \mathbf{D}_{4\times4} \mathbf{B}_{4\times6} \, rdA$$

One can integrate this exactly by expressing *r* in terms of the shape functions.

$$r = \sum_{i=1}^{n} \phi_i r_i$$

Or approximately as

$$\overline{r} = \frac{r_1 + r_2 + r_3}{3} \Longrightarrow \mathbf{k}_{6\times 6} = 2\pi \overline{r} A \mathbf{B}_{6\times 4}^{\mathrm{T}} \mathbf{D}_{4\times 4} \mathbf{B}_{4\times 6}$$

Computation of Strains and Stresses

$$\mathbf{\varepsilon}_{4\times 1} = \overline{\mathbf{B}}_{4\times 6} \mathbf{d}_{6\times 1}$$

$$\mathbf{\sigma}_{4\times 1} = \mathbf{D}_{4\times 4} (\mathbf{\varepsilon} - \mathbf{\varepsilon}_0)_{4\times 1}$$

Example: Hollow Cylinder

FE Model

$$E = 200 \, GPa$$
 $v = 0.3$

FE Results

POST3D V 1.716 SOLID MECHANICS Stress Plot : Mises Equal Interval Distribution 3.58646e+006 : 3.73098e+006 3.73098e+006 : 3.87192e+006 3.87192e+006 : 4.01285e+006 4.01285e+006 : 4.15378e+006 4.15378e+006 : 4.29472e+006 4.29472e+006 : 4.43565e+006 4.43565e+006 : 4.57659e+006 4.57659e+006 : 4.71752e+006 4.71752e+006 : 4.85846e+006 4.85846e+006 : 4.99939e+006 4.99939e+006 : 5.14033e+006 5.14033e+006 : 5.28126e+006 5.28126e+006 : 5.4222e+006 5.4222e+006 : 5.56313e+006 5.56313e+006 : 5.70406e+006 5.70406e+006 : 5.85084e+006 Model Limits X Min:0.04 X Max:0.06 Y Min:0 Y Max:0.05 Z Min:0 Z Max:0 Project: AxiCyl-1 08/21/04 07:01 PM

FE Results

POST3D V 1.716 SOLID MECHANICS Stress Plot : Mises Equal Interval Distribution 3.30764e+006 : 3.48121e+006 3.48121e+006 : 3.65147e+006 3.65147e+006 : 3.82174e+006 3.82174e+006 : 3.992e+006 3.992e+006 : 4.16226e+006 4.16226e+006 : 4.33252e+006 4.33252e+006 : 4.50278e+006 4.50278e+006 : 4.67305e+006 4.67305e+006 : 4.84331e+006 4.84331e+006 : 5.01357e+006 5.01357e+006 : 5.18383e+006 5.18383e+006 : 5.35409e+006 5.35409e+006 : 5.52436e+006 5.52436e+006 : 5.69462e+006 5.69462e+006 : 5.86488e+006 5.86488e+006 : 6.04118e+006 Model Limits X Min:0.04 X Max:0.06 Y Min:0 Y Max:0.05 Z Min:0 Z Max:0 Project: AxiCyl-2 08/21/04 07:04 PM

Summary

- Axisymmetric analysis provides an efficient
 2D solution to a 3D problem (*r* is *x* and *z* is *y*).
- The analysis has several similarities with plane elasticity analysis. The same isoparametric procedure applies.
- Hoop strain and stress are generated in addition to the other three components.

Programming Project: Option 1

- What needs to be programmed?
 - Input? Output?
- Theory?
- Algorithm?
- Program organization?
- Debugging?
- Test Cases?
- Documentation?

Problem T3L2-2

Compute nodal displacements, strains, stresses and support reactions.

Problem T3L2-2(a): CST Solution

Units: m, N

Element 1: 1-3-4

Element 2: 1-2-3

Plane stress problem.

CST Solution

Step 2: Element equations

```
ELEMENT STIFFNESS MATRIX. ELEMENT :
ROW: 1
   2.6316E+08
               0.0000E+00
                            0.0000E+00 -1.3158E+08 -2.6316E+08
                                                                1.3158E+08
ROW:
   0.0000E+00
               7.8555E+08 -1.2962E+08
                                        0.0000E+00
                                                    1.2962E+08
                                                               -7.8555E+08
ROW :
   0.0000E+00 -1.2962E+08 1.9639E+08
                                        0.0000E+00 -1.9639E+08
                                                                1.2962E+08
ROW:
                                                    1.3158E+08 -6.5789E+07
  -1.3158E+08 0.0000E+00
                           0.0000E+00
                                        6.5789E+07
ROW: 5
  -2.6316E+08 1.2962E+08 -1.9639E+08
                                                               -2.6119E+08
                                        1.3158E+08
                                                    4.5954E+08
ROW: 6
   1.3158E+08 -7.8555E+08
                           1.2962E+08 -6.5789E+07 -2.6119E+08
                                                                8.5134E+08
ELEMENT STIFFNESS MATRIX. ELEMENT :
ROW:
      1
                                        1.2962E+08
   1.9639E+08
               0.0000E+00 -1.9639E+08
                                                    0.0000E+00
                                                               -1.2962E+08
ROW: 2
   0.0000E+00
               6.5789E+07
                           1.3158E+08 -6.5789E+07 -1.3158E+08
                                                                0.0000E+00
ROW :
  -1.9639E+08
               1.3158E+08
                            4.5954E+08 -2.6119E+08 -2.6316E+08
                                                                1.2962E+08
ROW: 4
   1.2962E+08 -6.5789E+07
                          -2.6119E+08
                                        8.5134E+08
                                                    1.3158E+08
                                                               -7.8555E+08
ROW :
   0.0000E+00 -1.3158E+08 -2.6316E+08
                                       1.3158E+08
                                                    2.6316E+08
                                                                0.0000E+00
ROW:
  -1.2962E+08
              0.0000E+00
                          1.2962E+08 -7.8555E+08
                                                    0.0000E+00
                                                                7.8555E+08
```

CST Solution

Step 4: System equations: $K_{4x4}D_{4x1} = F_{4x1}$

$$10^{8} \begin{bmatrix} 4.5954 & -2.6119 & -2.6316 & 1.2962 \\ 8.5134 & 1.3158 & -7.8555 \\ 4.5954 & 0 \\ 8.5134 \end{bmatrix} \begin{bmatrix} D_{3} \\ D_{4} \\ D_{5} \\ D_{6} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ -10000 \end{bmatrix}$$

Step 5: Solution

		NODAL	DISPLACEMENTS	
		LC	X DISP	Y DISP
			()	()
NODE :	1	1	0.0000E+00	0.0000E+00
NODE :	2	1	-2.2359E-05	-1.2056E-04
NODE :	3	1	2.1716E-05	-1.1959E-04
NODE :	4	1	0.0000E+00	0.0000E+00

Step 6: Secondary unknowns

CST Solution

```
ELEMENT STRAINS FOR MATERIAL GROUP:
             LC
                          ΕX
                                      ΕY
        ELM
                 SP
                                                  EXY
                     3.619E-04
                                  0.000E+00
                                             -1.993E-03
                    -3.727E-04
                                3.249E-05
                                             -5.402E-04
MIN
                    -3.727E-04
                                  0.000E+00
                                             -1.993E-03
                            2
                                        1
                                                     1
ELEMENT
                     3.619E-04
                                  3.249E-05
                                             -5.402E-04
MAX
ELEMENT
```

```
^2) MATERIAL GROUP:
        ELEMENT STRESSES (
                                     SY
                                                 SXY
        ELM
            LC
                 SP
                         SX
                     2.843E+07
                                9.382E+06 -5.245E+07
                 1 -2.843E+07
                                -7.108E+06 -1.422E+07
MIN
                    -2.843E+07
                                -7.108E+06
                                            -5.245E+07
ELEMENT
                                                    1
MAX
                     2.843E+07
                                 9.382E+06
                                            -1.422E+07
                           1
                                                    2
ELEMENT
```

CST Solution

			STRESS	EQUIVALENTS	. MATERIAL C	GROUP: 1	
ELM	LC	SP	S11	S22	S33	TRESCA	VONMISES
1	1	1	7.222E+07	-4.398E+00	-3.440E+07	1.066E+08	9.425E+07
2	1	1	1.843E+00	-7.103E-01	-3.554E+07	3.554E+07	3.554E+07
MIN			1.843E+00	-4.398E+00	-3.554E+07	3.554E+07	3.554E+07
ELEME	NT		2	1	2	2	2
MAX			7.222E+07	-7.103E-01	-3.440E+07	1.066E+08	9.425E+07
ELEME	NT		1	2	1	1	1

			N	ODAL REACTIONS	
			LC	X REAC	Y REAC
				()	()
NODE	:	1	1	2.0000E+04	-6.8236E+02
NODE	:	4	1	-2.0000E+04	1.0682E+04
MIN				-2.0000E+04	-6.8236E+02
NODE				4	1
MAX				2.0000E+04	1.0682E+04
NODE				1	4

Problem T3L2-2: Q4 Solution

Units: m, N

Element 1: 1-2-3-4

Plane stress problem

Q4 Solution

Step 2: Element equations

```
ELEMENT STIFFNESS MATRIX. ELEMENT :
ROW: 1
             1.3060E+08 -4.3205E+07 -9.8193E+05 -1.5318E+08 -1.3060E+08
  3.0636E+08
 -1.0998E+08 9.8193E+05
ROW: 2
  1.3060E+08 5.6756E+08
                           9.8193E+05 2.1799E+08 -1.3060E+08 -2.8378E+08
 -9.8193E+05 -5.0177E+08
ROW: 3
 -4.3205E+07 9.8193E+05
                           3.0636E+08 -1.3060E+08 -1.0998E+08 -9.8193E+05
 -1.5318E+08
             1.3060E+08
ROW: 4
 -9.8193E+05 2.1799E+08
                         -1.3060E+08
                                       5.6756E+08 9.8193E+05 -5.0177E+08
  1.3060E+08 -2.8378E+08
ROW: 5
 -1.5318E+08 -1.3060E+08 -1.0998E+08
                                       9.8193E+05
                                                   3.0636E+08
                                                               1.3060E+08
 -4.3205E+07 -9.8193E+05
ROW: 6
  -1.3060E+08 -2.8378E+08
                         -9.8193E+05 -5.0177E+08
                                                 1.3060E+08
                                                               5.6756E+08
  9.8193E+05 2.1799E+08
ROW: 7
 -1.0998E+08 -9.8193E+05 -1.5318E+08 1.3060E+08 -4.3205E+07
                                                               9.8193E+05
  3.0636E+08 -1.3060E+08
ROW: 8
  9.8193E+05 -5.0177E+08
                          1.3060E+08 -2.8378E+08 -9.8193E+05
                                                               2.1799E+08
 -1.3060E+08 5.6756E+08
```

Q4 Solution

Step 4: System equations: $K_{4x4}D_{4x1} = F_{4x1}$

$$10^{8} \begin{bmatrix} 3.0636 & -1.3060 & -1.0998 & -0.009819 \\ & 5.6756 & 0.009819 & -5.0177 \\ & & & & & & & & \\ sym & & & & & & & \\ \end{bmatrix} \begin{bmatrix} D_{3} \\ D_{4} \\ D_{5} \\ D_{6} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ -10000 \end{bmatrix}$$

Step 5: Solution

		NODAL	DISPLACEMENTS	
		LC	X DISP	Y DISP
			()	()
NODE :	1	1	0.0000E+00	0.0000E+00
NODE :	2	1	-6.1928E-05	-2.0148E-04
NODE :	3	1	6.8636E-05	-2.1165E-04
NODE :	4	1	0.0000E+00	0.0000E+00

Step 6: Secondary unknowns

Q4 Solution

```
ELEMENT STRAINS FOR MATERIAL GROUP:
       ELM LC
                        ΕX
                                    ΕY
                                                EXY
        1
            1
                1
                    5.591E-05 -1.694E-04 -1.267E-03
                    5.591E-05 -1.694E-04 -1.267E-03
MIN
                                      1
ELEMENT
                          1
                                                  1
                    5.591E-05 -1.694E-04 -1.267E-03
MAX
ELEMENT
```

```
ELEMENT STRESSES ( /
                                ^2) MATERIAL GROUP: 1
       ELM LC
                        SX
                                    SY
                                                SXY
         1
                1 -1.699E+00 -1.186E+07
                                          -3.333E+07
            1
                   -1.699E+00
                               -1.186E+07
                                          -3.333E+07
MTN
ELEMENT
                   -1.699E+00
                               -1.186E+07
                                          -3.333E+07
MAX
ELEMENT
                          1
```

Q4 Solution

			STRESS	EQUIVALENTS	. MATERIAL	GROUP: 1	
ELM	LC	SP	S11	S22	S33	TRESCA	VONMISES
1	1	1	2.793E+07	-1.397E+00	-3.979E+07	6.771E+07	5.894E+07
MIN			2.793E+07	-1.397E+00	-3.979E+07	6.771E+07	5.894E+07
ELEME	NT		1	1	1	. 1	1
MAX			2.793E+07	-1.397E+00	-3.979E+07	6.771E+07	5.894E+07
ELEME	NT		1	1	1	. 1	1

			NODAL	REACTIONS	
			LC	X REAC	Y REAC
				()	()
NODE	:	1	1 2	.0000E+04	7.1154E+03
NODE	:	4	1 -2	.0000E+04	2.8846E+03
MIN			-2	.0000E+04	2.8846E+03
NODE				4	4
MAX			2	.0000E+04	7.1154E+03
NODE				1	1

Surface Traction

t=0.1 in

$$\mathbf{f}_{6\times 1} = \frac{tT}{2} \left[(y_2 - y_1) \quad (x_1 - x_2) \quad (y_2 - y_1) \quad (x_1 - x_2) \quad 0 \quad 0 \right]^T$$

Example 1

Example 2

