Titre du document

Sous-titre du document

 $Texte\ central$

REALISÉ PAR ETUDIANT 1 ET ETUDIANT 2

Contents

Contents	
I. I	Raisonnement par programmation dynamique
	1 - Première étape
II.	La PLNE à la rescousse
	1 - Modélisation
	2 - Implantation et tests

I. Raisonnement par programmation dynamique

1 - Première étape

Question 1:

Si l'on a calculé tous les T(j,l), pour savoir si il est possible de colorier la ligne l_i entière avec la séquence entière il suffit de de regarder T(m-1,k), si ce dernier vaut vrai alors il est possible de colorier la ligne entière avec la séquence entière. Si il vaut faux alors ce n'est pas possible.

Question 2:

• Cas $l=0,\,j\in\{0,...,m-1\}$: Vrai

• Cas $l \ge 1$, $j < s_l - 1$: Faux

• Cas $l \ge 1, j = s_l - 1$:

- Si l=1alors Vrai

– Si $l \neq 1$ alors Faux

Question 3:

La relation de récurrence permettant de calculer T(j, l) est la suivante:

$$T(j,l) = T(j - (s_l + 1), l - 1)$$

En effet si l'on se trouve à la case j et que l'on veut savoir si il est possible de colorier la sous séquence $(s_1, ..., s_l)$ il faut pouvoir colorier s_l case(s) et laisser une case de séparation entre les coloration de $s_{l-1}ets_l$, il faut donc regarder si l'on peut colorier la ligne de la case 0 à $j-s_l-1$ avec la sous séquence $(s_1, ..., s_{l-1})$

avec la sous sequence $(s_1,, s_{l-1})$					
instances	nbCases	nb_cLines	$\operatorname{nb}_{c}Col$	time	
0	20	6	7	0.0003902912139892578	
1	25	9	9	0.001840829849243164	
2	400	74	54	0.2608957290649414	
3	481	39	90	0.24814534187316895	
4	625	112	112	0.396716833114624	
5	675	52	61	0.47020387649536133	
6	900	102	100	1.2078001499176025	
7	1054	102	76	0.6994450092315674	
8	1400	115	98	1.0557177066802979	
9	2500	239	334	12.915187358856201	
10	9801	364	349	20.11224913597107	

II. La PLNE à la rescousse

1 - Modélisation

Question 10:

- \boldsymbol{x}_{ij} vaut 1 si la case (i, j) est coloriée en noir et 0 si coloriée en noir.

- y_{ij}^t vaut 1 si le t_{ieme} bloc de la ligne l_i commence à la case (i, j) et 0 sinon.

- z_{ij}^t vaut 1 si le t_{ieme} bloc de la colonne c_j commence à la case (i, j) et 0 sinon.

Par conséquent on a : $y_{ij}^t = 1 \Rightarrow \sum_{k=i}^{j+s_t-1} x_{ik} = s_t$

Et donc $\sum_{k=j}^{j+s_t-1} x_{ik} = y_{ij}^t \times s_t$

Par conséquent la condition est: $\sum_{k=j}^{j+s_t-1} x_{ik} \geq y_{ij}^t \times s_t$

Avec le même raisonnement on a pour les colonnes: $\sum_{k=i}^{i+s_t-1} x_{kj} \ge z_{ij}^t \times s_t$

Question 11:

On a: $y_{ij}^t = 1 \Rightarrow \sum_{k=i}^{j+s_t} y_{ik}^{t+1} = 0$

et
$$y_{ij}^t = 0 \Rightarrow \sum_{k=j}^{j+s_t} y_{ik}^{t+1} \in \{0, 1\}$$

Et donc la condition est: $y_{ij}^t + \sum_{k=i}^{j+s_t} y_{ik}^{t+1} \leq 1$

Avec le même raisonnement on a pour les colonnes: $z_{ij}^t + \sum\limits_{k=i}^{i+s_t} z_{kj}^{t+1} \leq 1$

Question 12:

$$Min z = ?$$

$$\begin{split} \mathbf{z} &= ? \\ & \begin{cases} \sum_{k=j}^{j+s_t-1} x_{ik} \geq y_{ij}^t \times s_t \mid \forall i \in \{0,1,2,...,N-1\}, \forall t \in \{1,2,...,k_i\} \\ \sum_{k=i}^{i+s_t-1} x_{kj} \geq z_{ij}^t \times s_t \mid \forall j \in \{0,1,2,...,M-1\}, \forall t \in \{1,2,...,k_j\} \\ y_{ij}^t + \sum_{k=j}^{j+s_t} y_{ik}^{t+1} \leq 1 \mid \forall i \in \{0,1,2,...,N-1\}, \forall t \in \{1,2,...,k_i\} \\ z_{ij}^t + \sum_{k=i}^{i+s_t} z_{kj}^{t+1} \leq 1 \mid \forall j \in \{0,1,2,...,M-1\}, \forall t \in \{1,2,...,k_j\} \\ \sum_{j=0}^{M-1} y_{ij}^t = 1 \mid \forall i \in \{0,1,2,...,M-1\}, \forall t \in \{1,2,...,k_j\} \\ \sum_{i=0}^{N-1} z_{ij}^t = 1 \mid \forall j \in \{0,1,2,...,M-1\}, \forall t \in \{1,2,...,k_j\} \\ x_{ij} \in \{0,1\} \mid \forall i \in \{0,1,2,...,N-1\}, \forall j \in \{0,1,2,...,M-1\}, \forall t \in \{1,2,...,k_i\} \\ z_{ij}^t \in \{0,1\} \mid \forall i \in \{0,1,2,...,N-1\}, \forall j \in \{0,1,2,...,M-1\}, \forall t \in \{1,2,...,k_j\} \end{cases} \end{split}$$

2 - Implantation et tests

Question 13:

(N'oublions pas que j commence à 0 et termine à M-1)

- Pour une ligne l_i le l^{ieme} bloc ne peut commencer avant la case $(i, \sum_{n=1}^{l-1} (s_n+1))$, ni commencer après la case $(i, M-s_l - \sum\limits_{n=l+1}^{k_i} (s_n+1))$.