

فن تعليم الآلة

القسم الثاني: التوقع

ختام التوقع

التعليم باشراف و بدون اشراف

التوقع Regression

التوقع Regression

التوقع Regression

تطبيقات التوقع:

- اسعار البيوت
- أسعار الاسهم في البورصة
 - حالة الطقس
- المبلغ الذي سيشتري به العميل

التوقع الخطي Linear Regression

• و یسمي أیضا (Regression (Regression) او (Regression

التوقع الخطي Linear Regression

Input X	المدخلات
Output Y	المخرجات
Rows m	الصفوف
Features n	العناصر
h(x)	القيمة المتوقعة
Cost J	قيمة الخطأ
Theta ⊝	معاملات الـ X

Hypothesis: $h_{\theta}(x) = \theta_0 + \theta_1 x$

Parameters: θ_0, θ_1

Cost Function: $J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$

Goal: $\min_{\theta_0,\theta_1} \text{minimize } J(\theta_0,\theta_1)$

• الهدف تقليل الفارق بين قيمة (h(x) و هي القيمة المتوقعة من المعادلة الخطية و قيمة y و هي القيمة الحقيقية

• يتم القسمة علي 2m لربط قيمة الخطا بعدد القيم بالعينة

• الهدف ايجاد قيم ثبتا 1 و ثبتا 2 , والتي تجعل من ل (نسبة الخطا) اقل ما يمكن

• تسمي احيانا Cost error function

X	Y	h(x)	h(x) - y	(h(x) - y) ²
1	7			
2	8			
2	7			
3	9			
4	11			
5	10			
5	12			

X	Y	h(x)	h(x) - y	(h(x) - y) ²
1	7	7		
2	8	9		
2	7	9		
3	9	11		
4	11	13		
5	10	15		
5	12	15		

X	Y	h(x)	h(x) - y	(h(x) - y) ²
1	7	7	0	
2	8	9	1	
2	7	9	2	
3	9	11	2	
4	11	13	2	
5	10	15	5	
5	12	15	3	

X	Y	h(x)	h(x) - y	(h(x) - y) ²
1	7	7	0	0
2	8	9	1	1
2	7	9	2	4
3	9	11	2	4
4	11	13	2	4
5	10	15	5	25
5	12	15	3	9

$$h(x) = 5 + 2x$$

X	Y	h(x)	h(x) - y	(h(x) - y) ²
1	7	7	0	0
2	8	9	1	1
2	7	9	2	4
3	9	11	2	4
4	11	13	2	4
5	10	15	5	25
5	12	15	3	9

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$J = 1 / 14 (0+1+4+4+4+25+9)$$

$$J = 47/14 = 3.3$$

الخط الأكثر ملائمة Best fit line

تحديد قيمة ثيتا

تحديد قيمة ثيتا

تحديد قيمة ثيتا

الإنحدار التدريجي Gradient Descent

الانحدار التدريجي:

• طالما نحن نبحث عن قيم ثيتا 0 و 1 التي ستقلل قيمة ل باقصي قدر , فسنفرض قيم لثيتا 1 و 2 , ثم نقوم بتقليلها تدريجيا حتي نصل لاقل قيمة لل ل

الإنحدار التدريجي Gradient Descent

القيم المحلية:

- فهناك ما يسمي local minimum يعني قيمة دنيا, لكن محلية (علي اليمين) و لا نري جوارها اي قيم دنيا اخري, لكن في الحقيقة هناك قيم اقل منها لكن ابعد
 - والقيمة الأقل جميعا اسمها global minimum وهي المطلوبة

معادلة الإنحدار التدريجي

الفكرة:

- لاحظ ان في حالة القيمة الدنيا قيمة التفاضل بصفر (لأن وقتها هيكون الخط شبه مستقيم فالميل هيكون تقريبا 0)
- لاحظ ان قيمة التفاضل تقل كلما قل الميل (التفاضل هو ميل الخط المستقيم, فتدريجيا هيقل قيمة التفاضل لتغير الميل), وكلما اقترب من القيمة الدنيا, فلا داعي لتقليل الالفا, فالقيمة نفسها ستقل تدريجيا

معادلة الإنحدار التدريجي

$$egin{aligned} heta_0 &:= heta_0 - lpha \, rac{1}{m} \sum_{i=1}^m (h_ heta(x_i) - y_i) \ heta_1 &:= heta_1 - lpha \, rac{1}{m} \sum_{i=1}^m ((h_ heta(x_i) - y_i) x_i) \end{aligned}$$

مساحة البيت (م²) X ₁	السعر (الف \$) ٢
100	135
95	130
90	110
80	95
80	90
70	85
70	80
60	80

- لاحظ ان المساحة اكس, بينما السعر هو واي
 - عشان اعمل best fit line هنفرض الثبتات قيم معينة, وليكن ثبتا 0 = 1 و ثبتا 1 = 3
 - المعادلة هتكون:

$$h(x) = 1 + 3 X$$

X ₁	Y	h(x)	h(x) -y
100	300		
95	285		
90	270		
80	240		
80	235		
70	200		
70	205		
60	180		

$$heta_0 := heta_0 - lpha \, rac{1}{m} \sum_{i=1}^m (h_ heta(x_i) - y_i)$$

المعادلة

$$h(x) = 1 + 3 X$$

X ₁	Y	h(x)	h(x) -y
100	300	301	1
95	285	286	1
90	270	271	1
80	240	241	1
80	235	241	6
70	200	211	11
70	205	211	6
60	180	181	1

$$heta_0 := heta_0 - lpha \, rac{1}{m} \sum_{i=1}^m (h_ heta(x_i) - y_i)$$

المعادلة

$$h(x) = 1 + 3 X$$

Theta
$$0 = 1 - ((0.002 / 8) * (28))$$

Theta
$$0 = 1 - 0.007 = 0.993$$

$$heta_0 := heta_0 - lpha \, rac{1}{m} \sum_{i=1}^m (h_ heta(x_i) - y_i)$$

$$0.002 = 1$$
الفا

X ₁	Y	h(x)	h(x) -y	(h(x) -y)x
100	300	301	1	100
95	285	286	1	95
90	270	271	1	90
80	240	241	1	80
80	235	241	6	480
70	200	211	11	770
70	205	211	6	420
60	180	181	1	60

$$heta_1 := heta_1 - lpha \, rac{1}{m} \sum_{i=1}^m ((h_ heta(x_i) - y_i) x_i)$$

Theta
$$1 = 3 - ((0.002 / 8) * (2095)$$

Theta
$$1 = 3 - 0.52 = 2.48$$

$$heta_1 := heta_1 - lpha\,rac{1}{m}\sum_{i=1}^m ((h_ heta(x_i) - y_i)x_i)$$

$$0.002 = 1$$
الفا

Theta
$$1 = 3$$

$$heta_0 := heta_0 - lpha \, rac{1}{m} \sum_{i=1}^m (h_ heta(x_i) - y_i)$$

$$heta_1 := heta_1 - lpha \, rac{1}{m} \sum_{i=1}^m ((h_ heta(x_i) - y_i) x_i)$$

$$heta_0 := heta_0 - lpha \, rac{1}{m} \sum_{i=1}^m (h_ heta(x_i) - y_i)$$

$$heta_1 := heta_1 - lpha \, rac{1}{m} \sum_{i=1}^m ((h_ heta(x_i) - y_i) x_i)$$

Theta
$$1 = 3$$

Theta
$$0 = 0.993$$
 Theta $1 = 2.48$

$$heta_0 := heta_0 - lpha \, rac{1}{m} \sum_{i=1}^m (h_ heta(x_i) - y_i)$$

$$heta_1 := heta_1 - lpha\,rac{1}{m}\sum_{i=1}^m ((h_ heta(x_i) - y_i)x_i)$$

Theta
$$0 = 1$$
 Theta $1 = 3$

Theta
$$0 = 0.993$$
 Theta $1 = 2.48$

Theta
$$0 = 0.991$$
 Theta $1 = 2.46$

$$heta_0 := heta_0 - lpha \, rac{1}{m} \sum_{i=1}^m (h_ heta(x_i) - y_i)$$

$$heta_1 := heta_1 - lpha\,rac{1}{m}\sum_{i=1}^m ((h_ heta(x_i) - y_i)x_i)$$

Theta
$$0 = 1$$

Theta
$$1 = 3$$

Theta
$$0 = 0.993$$

Theta
$$1 = 2.48$$

Theta
$$0 = 0.991$$

Theta
$$1 = 2.46$$

••

..

Theta
$$0 = 0.825$$
 Theta $1 = 1.772$

التوقع الخطي الأكثر من متغير Linear Regression with Multivariables

التعامل مع اكثر من بعد:

- تحدثنا سابقا, عن التعامل مع متغير واحد (قيمة لـ X و نجيب منها قيمة Y) الان نتعامل مع اكثر من متغير
- أكثر من متغير معناها ان البيانات الداخلة لها اكثر معلومة لكل صف , فبدلا من ادخال مساحة البيت لمعرفة سعره (X واحدة) , نقوم بادخال مساحة البيت و عدد غرفه , وعمره, و موقعه , وحالته , ولونه , لتحديد سعره , وهذه الأشياء تسمي features

التوقع الخطي لأكثر من متغير Linear Regression with Multivariables

Multiple features (variables).

Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)	
×1	Xz	×3	*4	9	
2104	5	1	45	460 7	_
1416	3	2	40	232	M= 47
1534	3	2	30	315	
852	2	1	36	178	
Notation:	*	1	1		

Notation:

- $\rightarrow n$ = number of features n=4
 - $x^{(i)}$ = input (features) of i^{th} training example.
 - $x_j^{(i)}$ = value of feature j in i^{th} training example.

التعامل مع اكثر من بعد:

- فنري ان سعر البيت (Y) يتاثر بعدد من العوامل (Features) (Xs
 - عدد الاكسات نسميه n, بينما عدد الصفوف لازال m

التوقع الخطي الأكثر من متغير Linear Regression with Multivariables

$$x_{j}^{(i)} = \text{value of feature } j \text{ in the } i^{th} \text{ training example}$$

الرقم اللي فوق يكون رقم الصف (انهي ريكورد فيهم m) و الرقم اللي تحت هيكون رقم العمود (انهي معلومة فيهم n)

التوقع الخطي الأكثر من متغير Linear Regression with Multivariables

القانون الجديد

```
repeat until convergence: {
	heta_0 := 	heta_0 - lpha \, rac{1}{m} \sum_{i=1}^m (h_	heta(x^{(i)}) - y^{(i)}) \cdot x_0^{(i)}
	heta_1 := 	heta_1 - lpha \, rac{1}{m} \sum_{i=1}^m (h_	heta(x^{(i)}) - y^{(i)}) \cdot x_1^{(i)}
	heta_2 := 	heta_2 - lpha rac{1}{m} \sum_{i=1}^m (h_	heta(x^{(i)}) - y^{(i)}) \cdot x_2^{(i)}
```

الصيغة المجمعة

repeat until convergence:
$$\{$$
 $\theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) \cdot x_j^{(i)}$ for $j := 0...n$ $\}$

X ₁	X_2	X_3	Y	(m) 5
العمر	القدرة	الاسطوانات	السعر	كل سيارة
5	20	6	12	(fe
5	35	6	14	-

سعر السيارات:

- عدد السيارات 5المعلومات عن كا eatures n) 3

X ₁	X ₂	X ₃	Y
العمر	القدرة	الاسطوانات	السعر
5	20	6	114
5	35	6	120
6	38	8	123
7	40	8	121
7	46	10	135

X ₁	X_2	X_3	
1 5	1 5	1 6	
20	35	38	Theta
6	6	8	Theta0
			Theta1
X_4	X_5		Theta2
1	1		Theta3
7	7		
40	46		
8	10		

• وقتها الفنكشن, هتكون متعددة الحدود زي كدة,

$$h(x) = (Theta)^T X$$

$$(Theta)^T = 5^T = (5 2 3 6)$$

$$2$$

$$3$$

$$6$$

$$X_1 = 5$$

$$2$$

$$6$$

$$h(x)_1 = (5\ 2\ 3\ 6) = 5*1 + 2*5 + 3*20 + 6*6 = 111$$

$$h(x)_1 = 111$$
 $h(x)_2 = 119$ $h(x)_3 = 127$ $h(x)_4 = 122$ $h(x)_5 = 140$

• القانون الجديد

```
repeat until convergence: {
	heta_0 := 	heta_0 - lpha \, rac{1}{m} \sum_{i=1}^m (h_	heta(x^{(i)}) - y^{(i)}) \cdot x_0^{(i)}
	heta_1 := 	heta_1 - lpha rac{1}{m} \sum_{i=1}^m (h_	heta(x^{(i)}) - y^{(i)}) \cdot x_1^{(i)}
	heta_2 := 	heta_2 - lpha rac{1}{m} \sum_{i=1}^m (h_	heta(x^{(i)}) - y^{(i)}) \cdot x_2^{(i)}
```

$$heta_0 := heta_0 - lpha \, rac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)}) \cdot x_0^{(i)}$$

Suppose Alpha = 0.01 m = 5

Theta
$$0 = \frac{5}{100} - (0.01/5) [(111-114) + (119-120) + (127-123) + (122-121) + (140-135) (1)] = \frac{4.9}{100}$$

$$heta_0 := heta_0 - lpha \, rac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)}) \cdot x_0^{(i)}$$

Suppose Alpha = 0.01 m = 5

Theta
$$0 = \frac{5}{5} - (0.01/5) [(111-114) + (119-120) + (127-123) + (122-121) + (140-135) (1)] = \frac{4.9}{5}$$

Theta 1 =
$$\frac{2}{2}$$
 - (0.01/5) [(111-114) + (119-120) + (127-123)+ (122-121)+ (140-135) (5)] = $\frac{2.6}{1.00}$

Theta
$$2 = \frac{3}{3} - (0.01/5) [(111-114) + (119-120) + (127-123) + (122-121) + (140-135) (20)] = \frac{3.9}{1.0}$$

Theta
$$3 = \frac{6}{100} - (0.01/5) [(111-114) + (119-120) + (127-123) + (122-121) + (140-135) (6)] = \frac{6.4}{100}$$

$$heta_0 := heta_0 - lpha rac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)}) \cdot x_0^{(i)}$$

Suppose Alpha = 0.01 m = 5

Theta 0 = 4.9

Theta 1 = 2.6

Theta 2 = 3.9

Theta 3 = 6.4

$$heta_0 := heta_0 - lpha \, rac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)}) \cdot x_0^{(i)}$$

Suppose Alpha = 0.01 m = 5

Theta
$$0 = \frac{4.9}{4.9}$$
 Theta $0 = \frac{4.7}{4.6236}$ Theta $0 = \frac{4.6236}{4.6236}$

عدد المحاولات Number of Iteration

ما هو العدد المناسب ؟

- من الواضح ان كل ما بنحاول اكتر, قيمة ل بتقل و ديه حاجة كويسة
- بس كل ما يزيد عدد المحاولات, كل ما التكلفة و الوقت يزيدو. وده عيب كبير
 - يبقى نحاول كام مرة ؟ ؟

عدد المحاولات Number of Iteration

ما هو العدد المناسب ؟

- الرسمة هنا واضح فيها ان كل ما بنزود عدد المحاولات, كل ما قيمة ل هتقل اكتر, بس بعد فترة معينة السلوب بيقرب لصفر, و بيكون فيه عدد ضخم جدا من المحاولات مع فرق بسيط, و هنا لازم نوقف, عشان هيكون ضياع وقت علي الفاضي
 - ممكن نوقف بعد 5 او 50 او 5 مليون محاولة, محدش هيقدر يحدد الرقم كام, كل حالة بحالتها

قبمة ألفا

قيمة الفا ؟ ؟

repeat until convergence: {

$$heta_0 := heta_0 - lpha \, rac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)}) \cdot x_0^{(i)}$$

• اختلافها يغير من سرعة التعامل, ودقته

قيمة ألفا

قيمة الفا ؟ ؟

• لو زادت قيمة الفا هجري بسرعة ,بس ممكن اقع في مشكلة اني ازود قيمة الـ ل, ولو مشيت ببطئ , هيكون دقيق بس بطئ جدا , فلازم اختار قيم مظبوطة

قيمة ألفا

قيمة الفا ؟ ؟

- اختار قيمة صغيرة, واضرب في 3
- من الممكن اختيار قيمة وسط قيمتين

0.001	0.003	0.01	0.03	.1	.3	1	3	10	30	
-------	-------	------	------	----	----	---	---	----	----	--

مفهوم القيم العظمي و الصغري

اي منحني تصاعدي, تكون قيمة التفاضل موجبة

• اي منحني هابط, تكون قيمة التفاضل سالبة

• اي قيمة صغري او كبري تكون قيمة التفاضل صفر

مفهوم القيم العظمي و الصغري

• تتواجد عندما يكون التفاضل يساوي صفر

طريقة الـ Normal Equation

- وهي عن طريق الاعتماد علي تفاضل الـ ل و مساوتها بالصفر لايجاد قيمة الثيتا المطلوبة
- و اذا كان لدينا جدول مثل هذا لاكثر من متغير , فبعد مفاضلتها و مساوتها بالصفر ستكون الثيتا كالتالي

$$\theta = (X^T X)^{-1} X^T y$$

X ₁	X ₂	X ₃	Y
العمر	القدرة	الاسطوائات	السعر
5	20	6	114
5	35	6	120
6	38	8	123
7	40	8	121
7	46	10	135

X_1	X_2	X_3	
1	1	1	
5	5	6	Y
20	35	38	•
6	6	8	114
			120
X_4	X_5		123
			121
1	1		135
7	7		
40	46		
8	10		

$$(X^T X)^{-1} X^T Y$$

: Normal Equation ولا الـ Gradient Descent ولا الـ Gradient Descent

- الـ Normal Equation ميزتها ان مش محتاج تحسب قيمة الفا, و مش هتعمل خطوات كتير, هي خطوة واحدة
- بس عيبها انها بتكون صعبة و بطيئة جدا مع عدد كبير للـ features اللي هي n لان الماتركس هتكون مخيفة خاصة لعمل الـ inverse , فلو عدد الـ ي يقل عن 10 الاف خليك في الـ inverse , فلو خاصة لعمل الـ Gradient Descent ,
- كمان فيه خوارزميات (زي linear regression) مش هينفع تشتغل الا بالـ Normal Equation, فلازم تكون عارف الاتنين و تشوف مين مناسب و خوارزميات تانية ممكن الـ Normal Equation, فلازم تكون عارف الاتنين و تشوف مين مناسب لايه

أحيانا بتحصل مشكلة في نوع النور مال , ان مصفوفة X^T في اكس تكون singular و معناها ان مش هينفع يتعمل لها inverse , وده هيعمل مشكلة

غالبا بيكون سبب انها singular حاجة من اتنين

- ان عدد الـ m (عدد الصفوف) اقل من عدد الـ n (العواميد او المعلومات عن كل بيت) خاصة لو الفرق كبير, فا اما تمسح شوية عواميد مش مهمة, او تزود بيانات و صفوف, او تشوف نوع تاني
- اما يكون فيه عمودين معتمدين علي بعض, يعني فيه مثلا مساحة البيت بالمتر المربع, ومساحة البيت بالقدم المربع, وده معناه ان فيه عمود كامل يساوي عمود تاني مضروب في فاكتور, وده هيؤدي ان قيمة الماتركس كلها تساوي صفر, فالـ inverse مش هيظهر

محتويات الكورس:

```
• القسم الأول : مقدمة
```

• القسم الثاني : التوقع Regression

• القسم الثالث : برنامج بایثون 🧽

• القسم الرابع : التقسيم Classification

• القسم الخامس : الشبكات العصبية NN

• القسم السادس : نظام الدعم الالي SVM

• القسم السابع : التعليم بدون اشراف Unsupervised ML

• القسم الثامن : مواضيع هامة (القيم الشاذة, نظام الترشيحات . . .)