

KCSE 2024

CHEMISTRY

233/1 PAPER 1 (THEORY)

TIME: 2 HRS

NAME	
INDEX NO	CANDIDATE'S SIGN
DATE	

Kenya Certificate of Secondary Education.

INSTRUCTIONS TO CANDIDATES

- a) Write your name and index number in the spaces provided above
- b) Sign and write date of examination in the space provided.
- c) All working must be clearly shown where necessary.
- d) Mathematical tables and silent electronic calculations may be used
- e) Answer all questions in English.

For examiners use only

QUESTION	MAXIMUM SCORE	CANDIDATE'S SCORE
1-29	80	

Answer all questions

1. A magnesium ribbon sample was hea	ated in separate volumes of pure	oxygen and air.
a) In which sample was the mass of the	product higher? Explain.	(2 Marks)
••••••	•••••	•••••
••••••	••••••	••••••
••••••	•••••	•••••
b) Write the equations for the reactions	-	(2 Marks)
•••••••••••••••••••••••••••••••••••••••	•••••	••••••
2. Give the systematic name of the follo CH ₂ CHCl	wing compound and draw the str	acture of the polymer it forms:
Name		(1 Mark)
Structure		(1 Mark)
•••••	••••••	•••••
••••••	•••••	
3. When aqueous sodium hydroxide sol solution, a green precipitate was fo sulphate solution followed by sodium	rmed. When hydrogen peroxide	e was first added to iron (II)
these observations.	, , ,	(3 Marks)
•••••••••••••••••••••••••••••••••••••••		
••••••	••••••	••••••
••••••	•••••••••••••••••••••••••••••••••••••••	••••••
4. Study the following nuclear reaction	and complete it by giving the va	lues of m and n
232 92	$X \rightarrow \frac{m}{n} Y + 2 \frac{0}{-1} e^{-} + \frac{4}{2} He$	

m	(1 Mark) n	(1 Mark)
5.		
a) State Charles' Law		(1 Mark)
•••••	•••••	
•••••	••••••	
b) A certain mass of carbon (1	IV) oxide gas occupied 200cm ³	as 25°C and 750mmHg pressure.
		are is lowered to 300mmHg and the
temperature raised to 30°C.	,	(2 Marks)
•••••	•••••	•••••
•••••	•••••	•••••
•••••	•••••	•••••
•••••	•••••	•••••
6. Chlorine gas was bubbled into	o as solution of hydrogen sulphide	as shown in the diagram below.
C	Chlorine gas →	= >
	Boiling tube Hydrogen sulphide solution	
a) Explain the observation made	e in the boiling tube	(2 Marks)
•••••	•••••	•••••
•••••	•••••	•••••
•••••	•••••	•••••
b) What precaution should be tal	ken in this experiment?	(1 Mark)
•••••	•••••	•••••
•••••	•••••	•••••

c) Distinguish between the bleaching action of chlorine and that of sulphur (IV) oxide.	(1 Mark)
7. Concentrated sulphuric (VI) acid was left exposed in air for a few days. It was found of the acid had risen.	that the level
a) Why did the level of the acid in the container rise?	(1 Mark)
b) How is this property useful in the laboratory?	(1 Mark)
	••••••
8. The setup below can be used to dry and collect ammonia gas. Use it to answer the q follow. wet ammonia gas calcium chloride	uestions that
a) The wet red litmus paper remained red. Explain.	(1 Mark)
b) Name the method used when collecting ammonia gas.	(1 Mark)

9. 400cm ³ of gas D diffuses from the same apparatus in		_			
•••••					· ·
•••••	•••••	•••••	•••••	•••••	•••••
•••••	•••••	•••••	•••••	•••••	•••••
••••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	•••••	•••••
•••••	••••••	••••••	•••••	•••••	•••••
40.77 4 1 0 4 1 4	. 11 1 1	1 1 11 1	.1		
10. Use the information in th	e table below on			questions that follo	ow.
	Salt	Solubility at			
		70°C	35°C		
	CuSO ₄	38	28]	ow. Mark) Mark)
	Pb(NO ₃) ₂	78	79		
cooled to 35°C. a) Which of the two salts will	ll crystallize?	•••••	••••	(1 N	Mark)
b) Calculate the mass of crys	tals formed.			(1 N	Mark)
•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	•••••
••••••					
c) State the salt that will be u	insaturated at 35	°C		(1]	Mark)
•••••	••••••	••••••	•••••	•••••	••••••
d) How much of the salt in c	e) above would b	e required t	o make a sat	urated solution at 3	35°C?
				(1 N	Mark)
•••••	•••••	•••••	•••••	•••••	•••••

11. Methane burns in oxygen as shown by the equation below.

$$\mathrm{CH_4}\left(\mathrm{g}\right) + 2\mathrm{O}_2\left(\mathrm{g}\right) \Rightarrow \mathrm{CO}_2\left(\mathrm{g}\right) + 2\mathrm{H}_2\mathrm{O}\left(\mathrm{g}\right)$$

Given the following bond energies:

Bond	Bond Energy (kJ/mole)
C – H	413
O = O	497
C = O	740
O – H	463

a) Calculate the heat change for the reaction.	(2 Marks)
•••••••••••••••••••••••••••••••••••••••	••••••
b) Define molar heat of combustion.	(1 Mark)
•••••••••••••••••••••••••••••••••••••••	
12. Given solid sodium carbonate, lead (II) nitrate crystals and water, explain h solid sample of lead (II) carbonate.	(3 Marks)
	••••••
13. Calculate the volume of oxygen produced when 10g of silver nitrate was conby heating at s.t.p. (Ag = 108, N = 14, O = 16, MGV at s.t.p. = 22.4dm ³)	(3 Marks)
	••••••
••••••	

14. A solution of hydrogen chloride gas in water conducts an electrical current, w	hile that of hydrogen
chloride in methylbenzene does not conduct. Explain.	(2 Marks)
15. The scheme below shows some reactions, starting with ethyne. Study it and that follow. CHBrCHBr Reagent M HC = CH HBr Pt. + 1 mole Reagent Y Conc. H ₂ SO ₄	answer the questions
a) Name substance i)X	(½ Mark)
ii)N	_ (½ Mark)
iii)M	_ (½ Mark)
b) Ethene undergoes polymerization to form a polymer. Give an equation for the product.	(1½ Marks)
•••••••••••••••••••••••••••••••••••••••	

solution drops to 19°C.	
a) Calculate the molar enthalpy of solution of ammonium nitrate	(3 Marks)
(N = 14, O = 16, H = 1, Specific Heat Capacity for Water = 4.2kJ/kg	g/ k)
•••••••••••••••••••••••••••••••••••••••	••••••
	••••••
•••••••••••••••••••••••••••••••••••••••	••••••
•••••••••••••••••••••••••••••••••••••••	••••••
•••••••••••••••••••••••••••••••••••••••	••••••
b) Is the enthalpy change endothermic or exothermic? Give a reason	(1 Mark)
•••••••••••••••••••••••••••••••••••••••	••••••
•••••••••••••••••••••••••••••••••••••••	••••••
17. The curves below represent the volume of carbon (IV) oxide gas evolved when acid was reacted with 100g of powdered calcium carbonate and when 1M hydro reacted with the same quantity of calcium carbonate.	
Volume of CO ₂ Produced S Time (sec)	
a) Which of the two curves represents the reaction of 2M concentrated hydrochloridation.	c acid? Explain
	2 Marks)
	,
	•••••••

16. When 16g of ammonium nitrate was dissolved in 100cm³ of water at 25°C, the temperature of the

b) Why do the two curves flatten at the same	•	(1 Mark)
••••••		
18. The electron arrangement of ions X^{3+} and	Y ²⁻ are 2.8 , and 2.8.8 respectively.	
a) In which groups do X and Y belong? X	Y	(1 Mark)
b) State the formula of the compound that wo		
19. a) State two ores from which sodium metal ca		(1 Mark)
b) During the extraction, calcium chloride socium chloride added to the sodium chloride added to the	solid is added into the sodium ch	loride solid. Why is (1 Mark)
c) State two uses of sodium metal.		(2 Marks)
	•••••••••••••••	••••••••••
20. Using and energy cycle diagram, calculate	e the enthalpy change of formation	
given:	ATT 2041 I/ 1	(3 Marks)
$S(s) + O_2(g) \rightarrow SO_2(g)$ $CS_1(a) + 2O_1(a) \rightarrow CO_1(a) + 2SO_1(a)$	$\Delta H = -294 \text{kJ/mole}$	
$CS_2(g) + 3O_2(g) \rightarrow CO_2(g) + 2SO_2(g)$ $C(g) + O_2(g) \rightarrow CO_2(g)$	$\Delta H = -1072 \text{kj/mole}$ $\Delta H = -303 \text{kJ/mole}$	
$C(s) + O_2(g) \rightarrow CO_2(g)$	$\Delta H = -393 \text{kJ/mole}$	

1. The table be	elow shows tests ca	arried out in a sample of wate	er and the results obtain	ned.
	A	Addition of sodium hydroxide dropwise until excess	Whit precipitate which dissolves in excess	1
	В	Addition of excess ammonia solution	White precipitate	
	С	Addition of dilute nitric (V) acid followed by barium chloride	White precipitate	
) Identify the	anion present in the	e water sample		(1 Mark)
) Write an ion	ic equation for the	reaction in C	·	1 Mark)
	_	to answer the questions that	follow:	
n ²⁺ (aq) + 2e ⁻ Cu ²⁺ (aq) + 2e	. ,	$E^{\theta} = -0.14V$ $E^{\theta} = +0.34V$		
) Write the ce	ll representation for	r the cell made up of the two	half cells	(1 Mark)
•••••	•••••	•••••		•••••

b) Identify the reducing spec	ies	(1 Mark)
c) Calculate the E^{θ} value for	•••••••••••••••••••••••••••••••••••••••	
23. The following is a reaction		
2	$SO_2(g) + O_2(g)$ \longrightarrow $2SO_3(g)$	
The percentage of sulphur (V in the sketch graph below	(I) oxide in the equilibrium mixture varies with te	mperature as illustrated
Percentage of Sulphur (IV) Oxide	Temperature (°C)	
a) How does the percentage	of sulphur (VI) oxide in the equilibrium mixture	vary as the temperature
increases? Explain.		(1½ Mark)
•••••		
•••••		

b) Is the forward reaction in the equilibrium exothermic or endothermic? Give answer.	a reason for your (1½ Mark)
•••••••••••••••••••••••••••••••••••••••	•••••
•••••••••••••••••••••••••••••••••••••••	•••••
•••••••••••••••••••••••••••••••••••••••	
24. Radioactive polonium (Po) with a mass number of 212 and atomic number of 8	4 was detected in a
sample of water. The water had an activity of 1000 counts per second.	
a) If the water is boiled, explain whether the activity would be affected or not.	(' ' '
b) Civan that nalanium regulted from hituman (D) fallowing amission of a hote ((R) mantiala vynita a
b) Given that polonium resulted from bitumen (B) following emission of a beta (nuclear equation for the decay.	(1 Mark)
•	
c) State one medical application of radioactivity.	(1 Mark)
•••••••••••••••••••••••••••••••••••••••	••••••••
25. Name and give the formula of:	
a) The chief ore from which zinc is extracted	(1 Mark)
b) The main impurity in the ore.	(1 Mark)
~, 110 1111 1111 1111 1110 110.	,
•••••••••••••••••••••••••••••••••••••••	••••••••
c) The ore is concentrated by froth floatation. What is froth floatation?	(1 Mark)
•••••••••••••••••••••••••••••••••••••••	•••••••••••

26. The atomic number of sulphur is 16. Write the electron arrangement of sulphur	in the following
compounds	
a) H ₂ S	(1 Mark)
b) SO ₃ ²⁻	(1 Mark)
27. For the reaction: $Cl_2(g) + 2I^-(aq) \rightarrow 2CI^-(aq) + I_2(s)$	
Using oxidation numbers, state and explain the reducing species.	(2 Marks)
•••••••••••	•••••
•••••••••••••••••••••••••••••••••••••••	•••••
••••••	•••••
28. The setup below was used to investigate the effect of carbon (II) oxide on zinc or	xide.
dry carbon (II) oxide	flame
heat calcium hydroxide solution	
a) State the observations made on the setup.	(2 Marks)
•••••••••••••••••••••••••••••••••••••••	•••••
•••••••••••••••••••••••••••••••••••••••	•••••
b) Write equations for the reactions that took place.	(2 Marks)
•••••••••••••••••••••••••••••••••••••••	•••••

KCSE 2024 CHEMISTRY

233/2 PAPER 2 (THEORY)

TIME: 2 HRS

NAME	
INDEX NO	CANDIDATE'S SIGN
DATE	

Kenya Certificate of Secondary Education.

INSTRUCTIONS TO CANDIDATES

- a) Write your name and index number in the spaces provided above
- *b)* Sign and write date of examination in the space provided.
- c) All working must be clearly shown where necessary.
- d) Mathematical tables and silent electronic calculations may be used
- e) Answer all questions in English.

FOR EXAMINERS USE ONLY

QUESTION	MAXIMUM SCORE	CANDIDATE'S SCORE
1-7	80	

Answer all questions

a) The grid below represents part of the periodic table. Study it and answer the questions that follow. The letters do not represent actual symbols of the elements

C			F	G		I	
					Н		K
D	E	8		8			
						J	

										J			
i)Identify the	most r	eactive			_							arks)	
•••••	•••••	••••••											••
••••••	•••••	•••••	••••••	••••••	••••••	•••••	•••••	•••••	•••••	•••••	••••••	••••••	• •
ii)What is the		_		-							`	Mark)	
••••••	•••••	••••••	• • • • • • • •	•	• • • • • • • • •	•••••	• • • • • • •	• • • • • • •	•••••	•••••	• • • • • • • •	• • • • • • • • • •	••
iii)Using dots (C and H.	(•) and	crosses	s(x) to	represen	it electro	ons, sho	ow bon	ıding iı	n the co	ompou		ned betwe arks)	en
iv)How does th				F compa					•••••	•••••	·	arks)	••
••••••	•••••	•••••	•••••	• • • • • • • • •	••••••	•••••	•••••	•••••	•••••	•••••	••••••	•••••	• •
•••••	•••••	•••••	• • • • • • • •	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • •	• • • • • • •	•••••	•••••	••••••	• • • • • • • • • • • •	•

b) Study the table below and answer the questions that follow.

Substance	M	N	О	P	Q	R
Melting Point (°C)	801	1356	-101	26	-39	113
Boiling Point (°C)	1410	2850	-36	154	457	445
Electrical conductivity in solid state	Poor	Poor	Poor	Poor	Good	Poor
Electrical conductivity in molten state	Good	Poor	Poor	Poor	Good	Poor

Explain why substance M is a go	ood conductor of electricity in the molten	state but not in the se
state.		(2 Marks)
••••••	•••••••••••••••••	•••••••••
NY714:-414:1:11	and hand in substance NO Empleio	(2 Manles)
•	and bond in substance N? Explain.	(2 Marks)
Structure	Bond	
•••••••••••••	••••••	••••••
••••••	••••••	• • • • • • • • • • • • • • • • • • • •
Identify, with a reason, a substance	ce that exists as a liquid at room temperatu	re. (2 Marks)
•••••••••••••••••••••••••••••••••••••••		
2.		
2. a)	•••••••••••••••••••••••••••••••••••••••	•••••••••••
2. a)		•••••••••••
2. a)	•••••••••••••••••••••••••••••••••••••••	•••••••••••

b) The figure below is part of a setup used to prepare and collect dry carbon (II) oxide from carbon (IV) oxide.

substance U	agent V
i)Complete the diagram to show how dry carbon (II) oxide gas is	collected. (1 Mark)
ii)Identify:	
• Substance U and state its use	
• Drying agent Y	
iii)Write a chemical equation for the reaction which takes place in	••••••
iv)Carbon (II) oxide is a major environmental pollutant.	
• Give one major source of carbon (II) oxide in the atmosphere	(1 Mar
• Explain how carbon (II) oxide causes poisoning	(1 Mar
•••••••••••••••••••••••••••••••••••••••	•••••••••••

c)	State one use of carbon (II) oxide	(1 Mark)
•••••	•••••••••••••••••••••••••••••••••••••••	••••••
d)	Write an equation for the formation of water gas.	(1 Mark)
e) cal	Explain why sodium hydroxide solution is not used in testing for carbon (I cium hydroxide is preferably used.	(2 Marks)
3. a)	Study the following energy cycle diagram and then answer the questions to C (graphite) + $\frac{1}{2}$ O_2 (g) CO (ΔH_1) ΔH_3 + $\frac{1}{2}$ O_2 (g) ΔH_1 ΔH_3	hat follow.
	$+ \frac{1}{2} O_2 (g)$ $+ \frac{1}{2} O_2 (g)$	
	$\mathrm{CO}_{2}\left(\mathrm{g}\right)$	
i)Nan	ne the enthalpy change represented by ΔH_2 .	(1 Mark)
•••••	•••••••••••••••••••••••••••••••••••••••	•••••
ii)Use	the following information to calculate the value of ΔH_1 for 144g of graphite $\Delta H_2 = -110 \text{ kJ/mole} \qquad \Delta H_3 = -283 \text{kJ/mole}$	
•••••	••••••	•••••
•••••	•••••••••••••••••••••••••••••••••••••••	•••••

substances. Study them and answer the question	s that follow.	
$C_4H_{10}(g) + \frac{13}{2}O_2(g) \rightarrow 4CO_2(g) + 5H_2O$	$\Delta H^{\theta}_{c} = -2877 \text{kJ/mole}$	
$C(s) + O_2(g) \rightarrow CO_2(g)$	$\Delta H^{\theta}_{c} = -399 \text{kJ/mole}$	
$H_2(g) + \frac{1}{2}O_2(g) \Rightarrow H_2O(l)$	$\Delta H^{\theta}_{c} = -286 \text{kJ/mole}$	
i)What is molar enthalpy of combustion of a subst		(1 Mark)
•••••••••••••••••••••••••••••••••••••••		
i)Calculate the molar enthalpy of formation of b	utane (C ₄ H ₁₀) using the infor	mation given above (3 Marks)
••••••		••••••
• • • • • • • • • • • • • • • • • • • •		
••••••		
	••••••	
c) The following results were obtained in an of 25cm ³ of 2M sodium hydroxide solution, using the Initial temperature of acid Initial temperature of alkali	experiment, to determine the hang 25cm ³ of hydrochloric acid = 25.0°C = 26.0°C	neat of neutralizatio
c) The following results were obtained in an of 25cm ³ of 2M sodium hydroxide solution, using Initial temperature of acid Initial temperature of alkali Final temperature of mixture of acid + alkali =	experiment, to determine the hang 25cm ³ of hydrochloric acid = 25.0°C = 26.0°C	neat of neutralizatio
c) The following results were obtained in an of 25cm ³ of 2M sodium hydroxide solution, using the Initial temperature of acid Initial temperature of alkali	experiment, to determine the hang 25cm ³ of hydrochloric acid = 25.0°C = 26.0°C	neat of neutralizatio
c) The following results were obtained in an of 25cm³ of 2M sodium hydroxide solution, using Initial temperature of acid Initial temperature of alkali Final temperature of mixture of acid + alkali = Density of solution	experiment, to determine the hang 25cm ³ of hydrochloric acid = 25.0°C = 26.0°C = 38.5°C =1g/cm ³	neat of neutralizatio
c) The following results were obtained in an of 25cm ³ of 2M sodium hydroxide solution, using Initial temperature of acid Initial temperature of alkali Final temperature of mixture of acid + alkali = Density of solution Specific heat capacity of solution i)Define molar heat of neutralization	experiment, to determine the hang 25cm ³ of hydrochloric acid = 25.0°C = 26.0°C = 38.5°C =1g/cm ³	neat of neutralizatio : (1 Mark
c) The following results were obtained in an of 25cm ³ of 2M sodium hydroxide solution, using Initial temperature of acid Initial temperature of alkali Final temperature of mixture of acid + alkali = Density of solution Specific heat capacity of solution i)Define molar heat of neutralization	experiment, to determine the hang 25cm ³ of hydrochloric acid = 25.0°C = 26.0°C = 38.5°C =1g/cm ³ =4.2 J/g/K	neat of neutralization: (1 Mark
c) The following results were obtained in an of 25cm³ of 2M sodium hydroxide solution, using Initial temperature of acid Initial temperature of alkali Final temperature of mixture of acid + alkali = Density of solution Specific heat capacity of solution i)Define molar heat of neutralization	experiment, to determine the hang 25cm ³ of hydrochloric acid = 25.0°C = 26.0°C = 38.5°C =1g/cm ³ =4.2 J/g/K	neat of neutralization: (1 Mark
c) The following results were obtained in an of 25cm³ of 2M sodium hydroxide solution, using Initial temperature of acid Initial temperature of alkali Final temperature of mixture of acid + alkali = Density of solution Specific heat capacity of solution i)Define molar heat of neutralization ii)Write an ionic equation for the neutralization	experiment, to determine the hang 25cm ³ of hydrochloric acid = 25.0°C = 26.0°C = 38.5°C =1g/cm ³ =4.2 J/g/K	neat of neutralization: (1 Mark
c) The following results were obtained in an of 25cm³ of 2M sodium hydroxide solution, using Initial temperature of acid Initial temperature of alkali Final temperature of mixture of acid + alkali = Density of solution Specific heat capacity of solution i)Define molar heat of neutralization	experiment, to determine the half and 25cm ³ of hydrochloric acid = 25.0°C = 26.0°C = 38.5°C = 1g/cm ³ = 4.2 J/g/K reaction involving hydrochlo	ric acid and sodium

The following are thermochemical equations for molar enthalpies of combustion for some

b)

iii)Calculate:	
• The enthalpy change during this experiment.	(2 Marks)
•••••••••••••••••••••••••••••••••••••••	•••••
	•••••
	•••••
•••••••••••••••••••••••••••••••••••••••	
• The molar enthalpy of neutralization for this reaction	(2 Marks)
•••••••••••••••••••••••••••••••••••••••	•••••
•••••••••••••••••••••••••••••••••••••••	
4.	
a) Below is a simplified diagram of the Down's Cell, used for the manufacture.	facture of sodium Study
it and answer the questions that follow.	acture of sourum. Study
sodium chloride in chlorine out	
sodium	
← molte	en sodium ide electrolyte
steel	circular steel
cathode	cathode

anode			
i) What material is the anode made of? Give the reason why that material is used.			
•••••	•••••		

ii)What precaution is taken to prevent chlorine and sodium from re-combining?	(1 Mark)
iii)Write an ionic equation for the reaction in which chlorine gas is formed	(1 Mark)
••••••	
•••••••••••••••••••••••••••••••••••••••	••••••
b) In the Downs process, (used for manufacture of sodium), a certain salt is added	l to lower the
melting point of sodium chloride from about 800°C to about 600°C.	
i)Name the salt that is added.	(1 Mark)
•••••••••••••••••••••••••••••••••••••••	•
ii)State why it is necessary to lower the temperature in b) above	(1 Mark)
c) Explain why aqueous sodium chloride is not suitable as an electrolyte for the 1	manufacture of
sodium in the Down's Process.	(2 Marks)
••••••	
d) Sodium metal reacts with air to form two oxides. Give the formulae of the two	o oxides (1 Mark)
e) State two uses of sodium	(2 Marks)

a) The diagram below shows part of the Frasch process, used for the extraction of sulphur. Use it to answer the questions that follow.

i)Identify X	(1 Mark)
•••••••••••••••••••••••••••••••••••••••	•••••
ii)Why is it necessary to use superheated water and hot compressed air in this	•
•••••••••••••••••••••••••••••••••••••••	•••••
iii)State two physical properties of sulphur that makes it possible for it to be e	extracted by this method (2 Marks)
••••••	
•••••	•••••
••••••	•••••

b) The diagram below shows part of the process in the manufacture of sulphuric (VI) acid. Study it and use it to answer the questions that follow.

(2 Marks)

iv)State two roles of the heat exchanger

v)Describe the test for sulphite anion, SO ₃ ² -	(2 Marks)
	•••••
vi)Explain the observation made when a few drops of concentrated sulphuric (VI) crystals of hydrated copper (II) sulphate. Explain your answer.	acid are added to (2 Marks)
	••••••
6. Study the reaction scheme below and answer the questions the follow: liquid X + gas Z	
i)What is the distinguishing physical property of Substance P ?	(1 Mark)
••••••	•••••
ii)Identify a suitable reagent that can be used in Step I.	(1 Mark)
•••••••••••••••••••••••••••••••••••••••	••••••

iii)Describe a chemical test on how C ₃ H ₇ CO	OH can be distinguished from C ₄ H ₉ OH	(2 Marks)
••••••	•••••••	•••••
iv)Write an equation for the reaction that take		(1 Mark)
v)Name the types of reaction that occur in sto	eps II, III, V, and VII	(2 Marks)
II	III	
V	VII	
(MGV = 22.4 litres, C = 12, H = 1, O = 1	••••••	••••••
••••••	•••••••••••••••••••••••••••••••••••••••	••••••
vii)Write an equation for the reaction between	-	(1 Mark)
viii)Describe a chemical test for liquid X	((2 Marks)
••••••	•••••••••••••••••••••••••••••••••••••••	••••••
•••••		•••••

KCSE 2024

CHEMISTRY

233/3
PAPER 3 (Practical)

TIME: 21/4 HRS

NAME	
	CANDIDATE'S SIGN
	••••••
	Kenya Certificate of Secondary Education.
	CONFIDENTIAL REPORT
N. CERDIA CERTANA	COM IDENTIFIE REPORT

INSTRUCTIONS.

Apart from the normal fittings in the laboratory, each candidate will need the following chemicals and apparatus.

- a) 500ml of distilled water supplied in a wash bottle
- b) 50ml burette
- c) 25ml
- d) a pipette filler
- e) 2 conical flasks (250ml)
- f)Source of heat (means of heating)
- g) Stop watch/clock
- h) A ruler
- *i)* 100ml measuring cylinder
- *j)* 50ml measuring cylinder
- **k)** Complete retort stand
- 1) 12cm long magnesium ribbon labelled C
- m) 100ml of solution A (sulphuric acid)
- n) 80ml of solution B (Sodium hydroxide soltn.)
- o) 100ml empty beaker
- p) Funnel
- q) Sand paper
- r) 3g of solid E
- s) 1g of solid F

- t) Means of labeling
- u) Six clean test tubes in a test tube rack
- v) 3 boiling tubes in a rack
- w) Metallic spatula
- x) About 0.2g of sodium hydrogen carbonate
- y) Glass rod.

Access

- 1. 2M Ammonia solution supplied with a dropper
- 2. 2M Sodium hydroxide solution supplied with a dropper
- 3. 2M Lead (II) Nitrate supplied with a dropper
- 4. 0.2M Silver Nitrate solution supplied with a dropper
- 5. Acidified potassium dichromate (VI) supplied with a dropper
- 6. Acidified Potassium Manganate (VII) supplied with dropper

<u>N/B</u>

- ^{1.} Solution A is prepared by accurately measuring 27.5cm³ of concentrated Sulphuric acid, then adding it to 700ml of distilled water then topping it to one litre. Density of acid 1.84g/cm³
- 2. Solution B is prepared by accurately measuring 20g of NaOH pellets and dissolving it in 800cm³ of distilled water then topping to one litre with distilled water.
- **3.** Solid E sodium chloride
- **4.** Solid F maleic acid

KCSE 2024

CHEMISTRY

233/3 PAPER 3 (Practical)

TIME: 21/4 HRS

NAME	••••••
INDEX NO	CANDIDATE'S SIGN
DATE	

Kenya Certificate of Secondary Education.

INSTRUCTION TO CANDIDATES:

- a) Write your name and class in the spaces provided on this page above
- b) Sign and write the date of examination in the spaces on this page above.
- c) Answer ALL the questions in the spaces provided after EACH question in the question-paper.
- d) You are NOT allowed to start working with the apparatus for the first 15minutes of the 2½ hours allowed for this paper. This time is to enable you read the question-paper and make sure you have ALL the chemicals and apparatus that you may need.
- e) Mathematical tables and silent electronic calculator may be used.
- f)ALL working MUST be clearly shown where necessary.

Questions	Maximum Score	Candidate's Score
1	25	
2	15	
Total Score	40	

QUESTION 1.

You are provided with:

- Sulphuric acid solution A
- 0.5M sodium hydroxide solution B
- Magnesium ribbon labelled C

You are required to:-

- Investigate the rate of reaction between solution A and metal C
- Determine the concentration of sulphuric acid in moles per litre

Procedure I

- (i) Using a ruler, make 6 marks at 2cm length interval on the Magnesium ribbon provided. Cut the magnesium ribbon into 2 cm long pieces.
- (ii) Transfer 50cm³ of acid solution using a measuring cylinder into a clean dry 100ml beaker. Place 2cm length piece of magnesium ribbon into the beaker with the acid and immediately start the stop watch/clock. Shake gently and note the time taken for the piece of magnesium ribbon to react completely.
- (iii) Record in table I below. Place another piece of magnesium ribbon (2cm) to the same solution and again note the time taken.
- (iv) Repeat the procedure until all six pieces of magnesium ribbon have reacted with the same solution initially placed in the beaker
- (v) Complete the table I below:

Note: Keep the solution obtained in this experiment for use in procedure II

(a) Table I

Piece of magnesium added	1	2	3	4	5	6
Length of magnesium	2	4	6	8	10	12
added (cm)						
Time taken t(second)						
Reciprocal of time $1/t^{(s-1)}$						

(4 marks)

(b) (i) On the grid provided, plot a graph of total length of magnesium ribbon added against				
reciprocal of time $\binom{1}{t}$	for the reaction to go	to completion.	(3 marks)	
(ii) From your graph, determine the time taken when 4.5cm length of magnesium ribbon				
to react completely.			(1 mark)	
•••••	•••••	•••••	•••••	

(III) Write a chemical equation for the reaction between magnesium and sulphuric	,
••••••	
(iv) Given that the mass of solid V, which reacted was 0.12g and that atomic mass	s of
magnesium is 24.0g, determine the number of moles of sulphuric (VI) acid that we	ere used
up during the reaction.	(1 mark)
•••••••••••••••••••••••••••••••••••••••	•••••
•••••••••••••••••••••••••••••••••••••••	•••••
•••••••••••••••••••••••••••••••••••••••	•••••
(v) From your graph, state and explain the relationship between the length of magr	nesium
ribbon and the reciprocal of time $(1/t)$	(1 mark)
•••••••••••••••••••••••••••••••••••••••	•••••
•••••••••••••••••••••••••••••••••••••••	•••••
••••••	•••••

Procedure II

Place all the solution obtained in procedure I in a clean 100ml measuring cylinder. Add distilled water to make 100cm³ of solution. Transfer all the solution into a beaker and shake well. Label it solution D. Fill the burette with solution B. Pipette 25.0cm³ of solution D into a conical flask. Add 2-3drops of phenolphthalein indicator and titrate with solution. Record your results in the table II below. Repeat the titration two more times

Table II

Titration	Ι	II	III
Final burette reading (cm ³)			
Initial burette reading (cm ³)			
Volume of solution B (cm ³) used			

(4 marks)

(c) (i) Determine the average volume of solution B used .	(1 mark)
	••••••
	(1 mark)
	••••••
(d) Calculate: (i) The number of moles of sulphuric acid in 25.0cm ³ of solution D.	(1 mark)
(ii) The number of moles of sulphuric acid in 100cm ³ of solution D.	(1 mark)
(e) Determine the total number of moles of sulphuric acid in 50cm ³ of solution A.	(1 mark)
(f) Calculate the concentration of the original sulphuric acid solution A in moles per	litre.(1 mrk)
	•••••

QUESTION 2.

You are provided with solid E. Carry out the following tests and write your observations and inferences in the table below:

(a) Place all the solid E in a boiling tube. Add about 15cm³ of distilled water and shake vigorously for about 2 minutes.

Observations	Inferences
½ mark	1 mark

- b) Divide the solution into five equal portions in five different clean test tubes.
- (i) To the first portion, add 2M ammonia solution drop wise until in excess.

Observations	Inferences
1 mark	½ mark

ii) To the second portion add 2M Sodium hydroxide solution drop wise until in excess.

Observations	Inferences
1 mark	1 mark

iii)	To	the	third	portion	add 4	drops	of 2M	Lead	(II)	nitrate solution.	
------	----	-----	-------	---------	-------	-------	-------	------	------	-------------------	--

Observations	Inferences
1 mark	1 mark

iv) To the fourth portion, add 4 drops of 0.2M silver nitrate solution.

Observations	Inferences
1 mark	1 mark

(v) Clean one end of the glass rod provided. Dip the clean end of the glass rod in the fifth portion. Remove the end and heat it in the non-luminous part of a Bunsen burner flame. Note the colour of the flame and record below.

Observations	Inferences
1 mark	1 mark

QUESTION 3.

You are provided with solid F. Carry out the tests below. Write your observations and inferences in the spaces provided

(a) Place about a half of solid F on a metallic spatula and burn it using a Bunsen burner flame.

Observations	Inferences
½ mark	½ mark

(b) Place the remaining of solid F in a boiling tube. Add about 10cm3of distilled water and shake the mixture well.

Observations	Inferences
	4 1
1 mark	1 mark

- (c) Divide the mixture obtained into three portions.
 - (i) To the first portion, add a small amount of solid sodium hydrogen carbonate.

Observations	Inferences
1 mark	1 mark

(ii) To the second portion, add about 1cm³ of acidified potassium dichromate (VI) and warm.

Observations	Inferences
1 mark	1 mark

(iii) To the third portion, add two drops of acidified potassium magnate (VII)

Observations	Inferences
	,
1 mark	1 mark