INLÄMNINGSUPPGIFT 3

Yasir Riyadh Jabbar, KTH ... //2021

$$a = 7, b = 1$$

Uppgift 1. (Matlab)

En Markov kedja med två tillstånd E1 och E2 har övergångsmatrisen

$$P = \begin{bmatrix} \frac{12}{20} & \frac{8}{20} \\ \frac{9}{10} & \frac{1}{10} \end{bmatrix}$$

a) Bestäm tillhörande stationära sannolikhetsvektorer $\vec{q}=(q_1,q_2)$ genom att lösa ekvationer:

$$\vec{q}P = \vec{q}$$

$$q_1 + q_2 = 1$$

b) Låt $\vec{p}^{(0)}$ vara en initialvektor. Bestäm sannolikhetsvektorerna $\vec{p}^{(1)}, \vec{p}^{(2)}, \vec{p}^{(3)}, \vec{p}^{(50)}, \vec{p}^{(100)}$ om

b1)
$$\vec{p}^{(0)} = (0.1, 0.9)$$
 b2) $\vec{p}^{(0)} = (0.7, 0.3)$

c) Vad är sannolikheten att systemet som startar i E1 befinner sig i tillstånd E2 efter 100 tidsenheter (dvs efter 100 övergångar).

	Känd	Krav	Metod	Resultat av Matlab
a)	P	$\vec{q} = (q_1, q_2)$	$\vec{q}P = \vec{q}$ $q_1 + q_2 = 1$	$\vec{q} = (0.6923, 0.3077)$
	$\vec{p}^{(0)} = (0.1, 0.9)$	$\vec{p}^{(1)}$	$ec{p}^{(n)}=ec{p}^{(0)}~oldsymbol{P}^n$	$\vec{p}^{(1)} = (0.8700 \ 0.1300)$
b)		$ec{p}^{(2)}$		$\vec{p}^{(2)} = (0.6390 \ 0.3610)$
		$\vec{p}^{(3)}$		$\vec{p}^{(3)} = (0.7083 \ 0.2917)$
		$ec{p}^{(50)}$		$\vec{p}^{(50)} = (0.6923 \ 0.3077)$
		$\vec{p}^{(100)}$		$\vec{p}^{(100)} = (0.6923 \ 0.3077)$
	$\vec{p}^{(0)} = (0.7, 0.3)$	$ec{p}^{(1)}$		$\vec{p}^{(1)} = (0.6900 \ 0.3100)$
		$ec{p}^{(2)}$		$\vec{p}^{(2)} = (0.6930 \ 0.3070)$
		$ec{p}^{(3)}$		$\vec{p}^{(3)} = (0.6921 \ 0.3079)$
		$\vec{p}^{(50)}$		$\vec{p}^{(50)} = (0.6923 \ 0.3077)$
		$ec{p}^{(100)}$		$\vec{p}^{(100)} = (0.6923 \ 0.3077)$
c)	$\vec{p}^{(0)} = (1, \ 0)$	$p_2^{(100)}$	$\vec{p}^{(100)} = (p_1^{(100)}, \ p_2^{(100)})$	$\vec{p}^{(100)} = (0.6923 \ 0.3077)$
		$p_{\hat{2}}$		$p_2^{(100)} = 0.3077$

Uppgift 2. (Matlab)

En Markovkedja i diskret tid har följande övergångsmatris

$$P = \begin{bmatrix} 2x & 0.4 & 0.2 & y \\ 0.2 & x & 2y & 0.3 \\ z+1 & 0.22 & 0.33 & 0.2 \\ 0.2 & w+7 & 0.24 & 0.42 \end{bmatrix}$$

- a) Bestäm x, y, z, w och matrisen P.
- b) Antag att initialvektorn är $\vec{p}^{(0)} = (0.2, 0.3, 0.2, 0.3)$. Bestäm sannolikhetsvektorerna $\vec{p}^{(1)}, \vec{p}^{(2)}, \vec{p}^{(3)}, \vec{p}^{(50)}, \vec{p}^{(100)}$.
- c) Kan man ange approximativt värdet av sannolikhetsvektorn $\vec{p}^{(5743)}$ utan att beräkna det?
- d) Vad säger b) om den stationära sannolikhetsvektorn?
- e) Bestäm stationära sannolikheter $\vec{q}=(q_1,q_2,q_3,q_4)$ genom att lösa ekvationer $\vec{q}=\vec{q}\cdot P$ och $q_1+q_2+q_3+q_4=1$.
- f) Jämför dina resultat i b) och e)

	Känd	Krav	Metod	Resultat av Matlab	
a)	Ofullständig P	[x, y, z, w] P	$\sum_k p_{ik} = 1$	$[x, y, z, w] = [0.1, 0.2, -0.75, -6.86]$ $P = \begin{bmatrix} 0.2 & 0.4 & 0.2 & 0.2 \\ 0.2 & 0.1 & 0.4 & 0.3 \\ 0.25 & 0.22 & 0.33 & 0.2 \\ 0.2 & 0.14 & 0.24 & 0.42 \end{bmatrix}$	
b)	$\vec{p}^{(0)} = (0.2, 0.3, 0.2, 0.3)$	$ec{p}^{(1)} \ ec{p}^{(2)} \ ec{p}^{(3)} \ ec{p}^{(50)} \ ec{p}^{(100)}$	$ec{p}^{(n)}=ec{p}^{(0)}~oldsymbol{P}^n$	$ \begin{array}{c} (0.2100, 0.1960, 0.2980, 0.2960) \\ (0.2149, 0.2106, 0.2898, 0.2847) \\ (0.2145, 0.2106, 0.2912, 0.2837) \\ \hline (0.2146, 0.2107, 0.2913, 0.2834) \\ (0.2146, 0.2107, 0.2913, 0.2834) \end{array} $	
c)	$ec{p}^{(100)}$	$ec{p}^{(5743)}$	$pprox ec{p}^{(100)}$	(0.2146, 0.2107, 0.2913, 0.2834)	
	P	p(s/1s)	*	(0.2146, 0.2107, 0.2913, 0.2834)	
d)	$\vec{p}^{(1)}, \vec{p}^{(2)}, \vec{p}^{(3)}, \vec{p}^{(50)}, \vec{p}^{(100)}$	stationära sannolikhet vektorn	När börjar det upprepa värden	(0.2146, 0.2107, 0.2913, 0.2834)	
e)	P	$\vec{q} = (q_1, q_2, q_3, q_4)$	$\vec{q}P = \vec{q}$ $q_1 + q_2 + q_3 + q_4$ $= 1$	$\vec{q} = (0.2146, 0.2107, 0.2913, 0.2834)$	
f)	När man jämför resultaten blir det tydligt att: $ec{p}^{(50)}=ec{p}^{(100)}=ec{q} eller \lim_{n o\infty}ec{p}^{(n)}=ec{q}$				

^{*} Man kan också uppskatta det ungefärliga värdet av sannolikhetsvektorn från egenvektorn för P', motsvarande egenvärdet 1. Det skulle vara vektorn Q, så att Q * P = Q.