(Tensor) Triangular Geometry

Pablo S. Ocal (pablo.ocal@oist.jp)

Okinawa Institute of Science and Technology

Motivation

Let \mathcal{C} be a monoidal triangulated category. That is:

- \bullet \mathcal{C} is essentially small,
- \bullet \mathcal{C} is an additive category,
- $T: \mathcal{C} \to \mathcal{C}$ is an exact functor,
- there is a collection of exact triangles $a \to b \to c \to Ta$ of \mathcal{C} ,
- $\otimes : \mathcal{C} \times \mathcal{C} \to \mathcal{C}$ is a symmetric biexact functor,
- $1 \in \mathrm{Obj}(\mathcal{C})$ is the monoidal unit.

We want to do geometry with \mathcal{C} . That is, we want to draw a picture that captures the essential information within \mathcal{C} . Mathematically this is done via a function σ which assigns to each object a of \mathcal{C} a closed subset of a topological space X. Our goal is to find such a function.

$$\sigma: \mathrm{Obj}(\mathcal{C}) \longrightarrow \mathrm{Closed}(X)$$

This function should be compatible with the structure of C. Namely, we have the following wish list:

- (SD1) $\sigma(0) = \emptyset$,
- (SD2) $\sigma(a \oplus b) = \sigma(a) \cup \sigma(b)$ for all $a, b \in \text{Obj}(\mathcal{C})$,
- (SD3) $\sigma(Ta) = \sigma(a)$ for all $a \in \text{Obj}(\mathcal{C})$,
- (SD4) $\sigma(a) \subseteq \sigma(b) \cup \sigma(c)$ for all exact triangles $a \to b \to c \to Ta$ of \mathcal{C} ,
- $(SD5) \ \sigma(1) = X,$
- (SD6) $\sigma(a \otimes b) = \sigma(a) \cap \sigma(b)$ for all for all $a, b \in \text{Obj}(\mathcal{C})$.

As it is posed, our goal is very easy! It suffices to take $X = \{\star\}$ a single point, declaring $\sigma(0) = \emptyset$ and $\sigma(a) = \star$ for all nonzero $a \in \text{Obj}(\mathcal{C})$.

The universal space admitting supports [B05]

We would like to have a space more interesting than just a point. Being ambitious, we ask about the best space to draw pictures. Mathematically, this will be the final space admitting a support datum for C. Remarkably, this space exists: Its points are certain subcategories of C.

Definition 1. A support datum on a monoidal triangulated category C is a pair (X, σ) where X is a topological space and σ assigns to every $a \in \text{Obj}(C)$ a closed subset $\sigma(a) \subseteq X$ satisfying (SD1), (SD2), (SD3), (SD4), (SD5), and (SD6).

Theorem 2. The pair $(\operatorname{Spc}(\mathcal{C}), \operatorname{supp})$ is the final support datum on \mathcal{C} , where $\operatorname{Spc}(\mathcal{C}) = \{\mathcal{P} \subsetneq \mathcal{C} \mid \mathcal{P} \text{ prime thick triangulated tensor ideal}\}$ and $\operatorname{supp}(a) = \{\mathcal{P} \in \operatorname{Spc}(\mathcal{C}) \mid a \notin \mathcal{P}\} \text{ for all } a \in \operatorname{Obj}(\mathcal{C}).$

Being final means that if (X, σ) is another support datum on \mathcal{C} , then there exists a continuous function $f: X \to \operatorname{Spc}(\mathcal{C})$ such that $\sigma(a) = f^{-1}(\operatorname{supp}(a))$ for all $a \in \operatorname{Obj}(\mathcal{C})$. In other words, all support datum (X, σ) can be obtained from $(\operatorname{Spc}(\mathcal{C}), \operatorname{supp})$.

Theorem 3. Let X be a quasi-compact quasi-separated scheme, then: $\operatorname{Spc}(\operatorname{D^{perf}}(X)) \cong X.$

Theorem 4. Let R be a commutative Noetherian ring, then: $\operatorname{Spc}(\operatorname{D^{perf}}(R)) \cong \operatorname{Spec}(R).$

Theorem 5. Let G be a finite group, then: $\operatorname{Spc}(\operatorname{stmod}(\Bbbk G)) \cong \operatorname{Proj}(\operatorname{H}^{\bullet}(G, \Bbbk)).$

Example 6. The Zariski spectrum of the integers. $\operatorname{Spc}(\operatorname{D}^{\operatorname{perf}}(\mathbb{Z}))\cong \bullet \bullet \bullet \bullet \bullet \bullet$

Example 8. Let k be a field of characteristic 2.

 $\operatorname{Spc}(\operatorname{stmod}(\mathbb{k}(C_2 \times C_2))) \cong$

Generalizing to (non-monoidal) triangulated categories [BO24]

What happens if our category does not have a monoidal structure? We no longer need to care about the requirements involving the tensor product (SD5) and (SD6), but we can still ask for a universal space where pictures can be drawn. Surprisingly, this space is still an interesting one!

Theorem 9. Let $Sp(C) = \{ \mathcal{T} \subseteq C \mid \mathcal{T} \text{ thick subcategory} \}$ and $sup(a) = \{ \mathcal{T} \in Sp(C) \mid a \notin \mathcal{T} \}$ for all $a \in Obj(C)$. The pair (Sp(C), sup) is the final support datum on C.

Proof. Let (X, σ) be a support datum on \mathcal{C} , then $f: X \to \operatorname{Sp}(\mathcal{C})$ defined by $f(x) = \{a \in \mathcal{C} \mid x \notin \sigma(a)\}$ is the desired unique continuous map. \square

Example 10. Let k be a field.

Example 11. Let k be an algebraically closed field.

References

- [B05] P. Balmer. The spectrum of prime ideals in tensor triangulated categories. J. Reine Angew. Math., 2005.
- [BO24] P. Balmer, P. S. Ocal. Universal support for triangulated categories. C. R. Math. Acad. Sci. Paris, 2024.
- [BCR97] D. J. Benson, J. F. Carlson, J. Rickard. Thick subcategories of the stable module category. *Fund. Math.*, 1997.
- [BIK97] D. J. Benson, S. B. Iyengar, H. Krause. Stratifying modular representations of finite groups. *Ann. of Math. (2)*, 2011.
- [Brü07] K. Brüning. Thick subcategories of the derived category of a hereditary algebra. *Homology Homotopy Appl.*, 2007.
- [KS19] H. Krause, G. Stevenson. The derived category of the projective line. *EMS Ser. Congr. Rep.*, 2019.
- [Nee97] A. Neeman. The chromatic tower for D(R). Topology, 1992.
- [Tho97] R. W. Thomason. The classification of triangulated subcategories. Compos. Math., 1997.