presentation_client

September 10, 2020

```
[1]: # import packages
     import os
     import pandas as pd
     #import pandas_profiling
     import numpy as np
     import warnings
     warnings.filterwarnings('ignore')
     import xgboost
     from sklearn.experimental import enable_iterative_imputer
     from sklearn.impute import IterativeImputer
     from sklearn.preprocessing import OrdinalEncoder
     from sklearn.ensemble import (GradientBoostingRegressor, __
     →GradientBoostingClassifier)
     pd.set_option('max.columns',100)
     pd.set_option('max.rows',500)
     import matplotlib.pyplot as plt
     import matplotlib.mlab as mlab
     import matplotlib
     plt.style.use('ggplot')
     from matplotlib.pyplot import figure
     get_ipython().run_line_magic('matplotlib', 'inline')
     matplotlib.rcParams['figure.figsize'] = (12,8)
     pd.options.mode.chained_assignment = None
     import seaborn as sns
     from sklearn import preprocessing
     from sklearn.model_selection import train_test_split, cross_val_score,_

→StratifiedKFold

     from sklearn.linear_model import LogisticRegression
     from IPython.display import Image
     from sklearn.preprocessing import StandardScaler
```

```
from sklearn.cluster import DBSCAN
from sklearn.neighbors import LocalOutlierFactor
sns.set(style="darkgrid", palette="pastel", color_codes=True)
sns.set_context('talk')
from sklearn.impute import KNNImputer
import missingno as msno
from datetime import datetime
```

```
os.chdir("D:\\DSP2\\Git\\monitoring-athletes-performance\\main")
data_path = '{}/data'.format(os.path.pardir)
athlete_csv_file = '{}/{}'.format(data_path, 'Eduardo Oliveira (Intermediate).

→csv')
```

```
[7]: #reading eddy data and print its shape and data type
eddy=pd.read_csv(athlete_csv_file)
print('eddy data shape: ', eddy.shape)#shape
print(eddy.dtypes)#data type
```

Activity Type object Date object Favorite bool Title object Distance object Calories object Time object Avg HR object Max HR. object Aerobic TE object Avg Run Cadence object Max Run Cadence object Avg Speed object Max Speed object Elev Gain object Elev Loss object Avg Stride Length float64 Avg Vertical Ratio float64 Avg Vertical Oscillation float64 object Avg Ground Contact Time Avg GCT Balance object Avg Bike Cadence object Max Bike Cadence object Normalized Power® (NP®) object L/R Balance object

eddy data shape: (1140, 43)

```
Training Stress Score®
                                 float64
    Max Avg Power (20 min)
                                  object
    Avg Power
                                  object
    Max Power
                                  object
    Grit
                                  object
    Flow
                                 float64
    Total Strokes
                                  object
    Avg. Swolf
                                  object
    Avg Stroke Rate
                                  object
    Total Reps
                                  object
    Total Sets
                                  object
    Bottom Time
                                  object
    Min Temp
                                 float64
    Surface Interval
                                  object
    Decompression
                                  object
    Best Lap Time
                                  object
    Number of Laps
                                  object
                                 float64
    Max Temp
    dtype: object
[8]: eddy.drop(['Favorite','Aerobic TE','Avg Run Cadence','Max Run Cadence','Avg
      →Stride Length', 'Avg Vertical Ratio', 'Avg Vertical Oscillation', 'Avg Ground
      \hookrightarrowContact Time'
     ,'Avg GCT Balance','L/R Balance','Grit','Flow','Total Reps','Total
      →Sets', 'Bottom Time', 'Min Temp', 'Surface Interval', 'Decompression', 'Best Lap_
      →Time','Max Temp'], axis =1, inplace=True)
[9]: print(eddy.head())
                Activity Type
                                                Date
    0
              Virtual Cycling 2020-04-06 18:15:01
    1
               Indoor Cycling 2020-04-05 17:00:02
    2
              Virtual Cycling 2020-04-05 16:00:01
    3
              Virtual Cycling 2020-04-04 06:59:59
    4
              Virtual Cycling
                                2020-04-03 18:00:28
    1135
               Indoor Cycling 2017-03-16 18:44:33
    1136
                       Running 2017-03-16 18:30:17
               Indoor Cycling 2017-03-16 18:08:25
    1137
    1138
                   Multisport 2017-03-12 07:52:43
          Open Water Swimming 2017-03-11 12:56:24
    1139
                                                   Title Distance Calories \
```

Zwift - AHDR BBQ (D)

Indoor Cycling

27.56

14.08

23.22

50.56

479

398

431

838

Zwift - TBR Knights of Suburbia (D)

Zwift - Scott D'Aucourt's Meetup - Tick Tock

0

1

2

```
10.32
4
           Zwift - Haute Route Watopia Stage 1 (E)
                                                                       218
                                       Indoor Cycling
                                                            3.83
1135
                                                                       118
                                       Elwood Running
1136
                                                            1.84
                                                                       153
                                       Indoor Cycling
1137
                                                            8.13
                                                                       198
1138
                           Portarlington Multi-Sport
                                                           35.83
                                                                     1,725
1139
                    St Leonards Open Water Swimming
                                                             411
             Time Avg HR Max HR Avg Speed Max Speed Elev Gain Elev Loss
        00:45:14
                                       36.6
                                                  56.5
0
                                                               80
        00:36:17
                                       23.3
                                                  30.2
1
2
        00:40:38
                                       34.3
                                                  54.1
                                                               89
3
        01:36:19
                                       31.5
                                                  59.0
                                                              158
4
        00:19:28
                                       31.8
                                                  68.1
                                                               92
                                        •••
                               •••
      00:09:19.0
                                                  31.4
                                                                2
1135
                     144
                             153
                                       24.6
1136
        00:10:27
                     168
                             183
                                       5:40
                                                  4:04
                                                                1
                                                                           3
1137
        00:21:31
                                       22.7
                                                  35.0
                                                                2
                                                                           2
                      125
                             147
1138
        02:03:46
                             186
                                                                         170
                                       17.4
                                                              180
1139
        00:10:34
                                       2:34
                                                  0:40
                                                                          10
     Avg Bike Cadence Max Bike Cadence Normalized Power® (NP®)
0
                    87
                                      111
                                                                191
1
                    89
                                      127
                                                                195
2
                    85
                                      111
                                                                192
3
                                      125
                                                                167
                    84
4
                    92
                                      116
                                                                189
1135
                    80
                                       92
1136
                     --
                                       --
1137
                    88
                                      115
1138
1139
      Training Stress Score® Max Avg Power (20 min) Avg Power Max Power \
0
                           0.0
                                                    197
                                                               181
                                                                          445
                          43.2
1
                                                    195
                                                               183
                                                                          623
2
                           0.0
                                                    198
                                                               180
                                                                          620
3
                           0.0
                                                    166
                                                               152
                                                                          737
4
                           0.0
                                                               183
                                                                          647
1135
                           0.0
1136
                           0.0
1137
                           0.0
1138
                           0.0
1139
                           0.0
```

Total Strokes Avg. Swolf Avg Stroke Rate Number of Laps

```
2
     1
                   3179
     2
                                                                 1
     3
                                                                 1
     4
                                                                 1
     1135
                    750
     1136
     1137
                   1867
     1138
     1139
                                                 26
                    284
                                 56
     [1140 rows x 23 columns]
[10]: eddy.columns
[10]: Index(['Activity Type', 'Date', 'Title', 'Distance', 'Calories', 'Time',
             'Avg HR', 'Max HR', 'Avg Speed', 'Max Speed', 'Elev Gain', 'Elev Loss',
             'Avg Bike Cadence', 'Max Bike Cadence', 'Normalized Power® (NP®)',
             'Training Stress Score®', 'Max Avg Power (20 min)', 'Avg Power',
             'Max Power', 'Total Strokes', 'Avg. Swolf', 'Avg Stroke Rate',
             'Number of Laps'],
            dtype='object')
[11]: eddy.columns= eddy.columns.str.replace(',', '')
      print(eddy.columns)
     Index(['Activity Type', 'Date', 'Title', 'Distance', 'Calories', 'Time',
            'Avg HR', 'Max HR', 'Avg Speed', 'Max Speed', 'Elev Gain', 'Elev Loss',
            'Avg Bike Cadence', 'Max Bike Cadence', 'Normalized Power® (NP®)',
            'Training Stress Score®', 'Max Avg Power (20 min)', 'Avg Power',
            'Max Power', 'Total Strokes', 'Avg. Swolf', 'Avg Stroke Rate',
            'Number of Laps'],
           dtype='object')
[12]: eddy.head()
[12]:
              Activity Type
                                            Date \
            Virtual Cycling 2020-04-06 18:15:01
      0
             Indoor Cycling 2020-04-05 17:00:02
      1
      2
            Virtual Cycling 2020-04-05 16:00:01
      3
            Virtual Cycling 2020-04-04 06:59:59
            Virtual Cycling 2020-04-03 18:00:28
      4
      5
            Virtual Cycling 2020-04-03 17:42:41
      6
            Virtual Cycling 2020-04-03 17:08:26
      7
            Virtual Cycling 2020-04-02 17:05:54
            Virtual Cycling 2020-04-01 18:10:01
      8
```

```
9
              Running
                        2020-03-31 18:03:03
10
      Virtual Cycling
                        2020-03-30 18:15:01
11
      Virtual Cycling
                        2020-03-29 17:00:01
      Virtual Cycling
12
                        2020-03-28 06:59:58
13
      Virtual Cycling
                        2020-03-26 18:05:01
14
      Virtual Cycling
                        2020-03-24 18:20:17
    Strength Training
                        2020-03-24 17:21:40
15
16
      Virtual Cycling
                        2020-03-23 20:55:01
              Running
17
                        2020-03-22 08:08:25
18
      Virtual Cycling
                        2020-03-21 19:00:01
              Running
19
                        2020-03-20 08:36:49
20
              Running
                        2020-03-20 07:37:03
21
      Virtual Cycling
                        2020-03-18 16:30:01
22
              Running
                        2020-03-17 18:00:33
         Road Cycling
23
                        2020-03-14 06:41:32
24
      Virtual Cycling
                        2020-03-13 16:45:01
25
      Virtual Cycling
                        2020-03-12 18:49:11
26
              Running
                        2020-03-12 10:09:35
27
    Strength Training
                        2020-03-12 09:19:15
28
              Running
                        2020-03-09 19:19:16
29
               Hiking
                        2020-03-08 09:32:27
         Road Cycling
                        2020-03-07 06:32:23
30
    Strength Training
                        2020-03-05 18:19:06
31
    Strength Training
32
                        2020-03-05 09:20:12
33
        Pool Swimming
                        2020-03-04 05:45:03
34
        Pool Swimming
                       2020-03-02 18:15:17
35
              Running
                        2020-03-01 09:13:49
36
         Road Cycling
                        2020-02-29 06:36:32
37
    Strength Training
                        2020-02-28 18:17:14
38
    Strength Training
                        2020-02-27 09:17:04
39
        Pool Swimming
                        2020-02-26 05:58:00
40
              Running
                        2020-02-25 05:47:01
        Pool Swimming
41
                        2020-02-24 18:15:33
42
    Strength Training
                        2020-02-24 09:16:48
                                                  Title Distance Calories
                  Zwift - TBR Knights of Suburbia (D)
0
                                                           27.56
                                                                       479
1
                                        Indoor Cycling
                                                           14.08
                                                                       398
2
                                  Zwift - AHDR BBQ (D)
                                                           23.22
                                                                       431
3
         Zwift - Scott D'Aucourt's Meetup - Tick Tock
                                                           50.56
                                                                       838
4
             Zwift - Haute Route Watopia Stage 1 (E)
                                                           10.32
                                                                       218
5
                                      Zwift - Richmond
                                                            7.77
                                                                       129
6
      Zwift - Stage 1 Race (D) - Tour of Watopia 2020
                                                            8.12
                                                                       191
7
                          Zwift - SZR Sunrise Ride (C)
                                                           16.77
                                                                       315
    Zwift - TBR Crikey Down Under - Galahs vs Womb...
                                                                     527
8
                                                         30.96
9
                                     Melbourne Running
                                                            8.02
                                                                       468
10
                  Zwift - TBR Knights of Suburbia (D)
                                                           27.58
                                                                       498
```

```
11
                                    Zwift - AHDR BBQ (D)
                                                              36.45
                                                                          598
12
    Zwift - Scott D'Aucourt's Meetup - Greater Lon...
                                                            30.08
                                                                        654
13
                           Zwift - SZR Sunrise Ride (C)
                                                              17.09
                                                                          334
14
                                              Zwift - NYC
                                                              20.96
                                                                          374
15
                                                               0.00
                                                                          223
                                                 Strength
    Zwift - The Herd's Monday Morning Coffee Crew ...
16
                                                                        235
                                                            12.16
17
                                                                          982
                                       Melbourne Running
                                                              15.03
18
                           Zwift - SZR Morning Ride (D)
                                                              30.30
                                                                          537
19
                                       Melbourne Running
                                                               2.35
                                                                          161
20
                                       Melbourne Running
                                                               8.67
                                                                          518
                                                                        356
21
    Zwift - The Herd's Wednesday Social Down Under...
                                                            20.20
22
                                       Melbourne Running
                                                               8.05
                                                                          469
23
                                 Melbourne Road Cycling
                                                              54.42
                                                                        1,121
24
     Zwift - EVO CC Flux Ride [1.5 - 2.0w/kg avg] (D)
                                                              26.12
                                                                          393
       Zwift - TBR Get Fried Fenced Sprint / Spin (D)
25
                                                              17.21
                                                                          267
26
                                       Melbourne Running
                                                               2.01
                                                                          117
27
                                                 Strength
                                                               0.00
                                                                          197
28
                                       Melbourne Running
                                                               5.17
                                                                          352
29
                                   Pentland Hills Hiking
                                                               7.70
                                                                          734
30
                                  Melbourne Road Cycling
                                                              58.74
                                                                          647
31
                                                 Strength
                                                               0.00
                                                                          212
32
                                                               0.00
                                                 Strength
                                                                          174
33
                                           Pool Swimming
                                                              2,200
                                                                          537
34
                                           Pool Swimming
                                                              3,800
                                                                          873
35
                                       Melbourne Running
                                                              11.01
                                                                          628
                                 Melbourne Road Cycling
36
                                                              70.53
                                                                          950
                                                 Strength
37
                                                               0.00
                                                                          175
38
                                                               0.00
                                                 Strength
                                                                          142
39
                                             Lap Swimming
                                                              3,300
                                                                          760
40
                                       Melbourne Running
                                                               8.01
                                                                          439
41
                                                              3,300
                                             Lap Swimming
                                                                          833
42
                                                               0.00
                                                 Strength
                                                                          259
        Time Avg HR Max HR Avg Speed Max Speed Elev Gain Elev Loss
0
    00:45:14
                                   36.6
                                              56.5
                                                           80
1
    00:36:17
                                   23.3
                                              30.2
2
    00:40:38
                                   34.3
                                              54.1
                                                           89
3
    01:36:19
                                   31.5
                                              59.0
                                                          158
4
    00:19:28
                                   31.8
                                              68.1
                                                           92
5
    00:14:24
                          ___
                                              52.3
                  __
                                   32.4
                                                           24
6
    00:12:51
                                   37.9
                                              51.9
                                                           37
7
    00:27:13
                  __
                          ___
                                   37.0
                                              63.1
                                                          136
                                                                      __
8
    00:50:13
                 152
                         177
                                   37.0
                                                          102
                                              56.3
9
    00:42:04
                 146
                         167
                                   5:15
                                              4:39
                                                           40
                                                                      36
    00:45:14
10
                                   36.6
                                              64.0
                                                           80
                  --
                          --
    01:00:19
                                   36.3
                                              55.3
11
                                                          106
    01:05:08
12
                 161
                         197
                                   27.7
                                              71.1
                                                          262
```

13	00:27:48	158	183	36.9	57.2	134	
14	00:42:13	3		29.8	57.3	219	
15	00:34:56	115	152				
16	00:20:33	151	172	35.5	49.1	31	
17	01:20:25	159	181	5:21	4:21	148	164
18	00:50:28	158	174	36.0	55.0	102	
19	00:12:58		159	5:31	4:41	20	4
20	00:47:38		165	5:30	4:22	50	62
21	00:35:43			33.9	53.8	121	
22	00:42:38		171	5:18	4:32	31	29
23	01:53:54		187	28.7	55.1	220	239
24	00:45:15		168	34.6	52.9	82	
25	00:30:20		193	34.0	59.1	36	
26	00:30:20		155	5:19	4:10	21	9
27	00:45:30		147	5.15	4.10	Z1 	
	00:43:30		163	E.20	4.10	24	24
28				5:30	4:18		34
29	02:10:23		166	16:55	7:14	312	293
30	02:02:04		176	28.9	48.9	212	232
31	00:41:43		149				
32	00:41:39		139	4 00			
33	00:39:42			1:28	0:25		
34	01:07:38			1:39	0:34		
35	00:58:02		164	5:16	3:45	82	64
36	02:30:25		175	28.1	45.3	209	225
37	00:46:06		141				
38	00:38:18		143				
39	00:55:24			1:36	0:29		
40	00:40:48	144	158	5:06	3:37	11	12
41	00:54:59			1:29	0:27		
42	00:47:51	. 107	142				
	Avg Bike	Cadence	Max Bike	Cadence	${\tt Normalized}$	Power® (NP®)	\
0		87		111		191	
1		89		127		195	
2		85		111		192	
3		84		125		167	
4		92		116		189	
5		84		123		179	
6		87		105		234	
7		84		98		205	
8		80		100		188	
9							
10		89		113		194	
11		89		127		181	
12		86		122		185	
13		88		106		222	
14		91		113		173	
				-		· -	

15						
16	81	111		215		
17						
18	85	130		190		
19						
20						
21	81	121		201		
22						
23	82	115		189		
24	84	118		156		
25	84	135		214		
	04	135		214		
26						
27						
28						
29						
30	82	115		145		
31						
32						
33						
34						
35						
36	80	121		148		
37						
38						
39						
40						
41						
42						
	Training Stress Score	® Max Avg Power	(20 min)	Avg Power Ma	x Power	\
0	0.	0	197	181	445	
1	43.	2	195	183	623	
2	0.		198	180	620	
3	0.		166	152	737	
4	0.			183	647	
5	0.			157	699	
6	0.			228	580	
7	0.		210	200	383	
8	0.		189	178	420	
9	0.					
10	0.		208	189	672	
11	0.		182		855	
				171 175		
12	0.		199	175	744	
13	0.		220	208	565	
14	0.		170	154	566	
15	0.					
16	0.	U	200	196	740	

17		0.0				
18		0.0		200	183	708
19		0.0				
20		0.0				
21		0.0		188	171	812
22		0.0				
23		128.5		188	164	1,039
24		0.0		158	149	654
25		0.0		160	154	944
26		0.0				
27		0.0				
28		0.0				
29		0.0				
30		80.4		167	89	1,062
31		0.0				
32		0.0				
33		0.0				
34		0.0				
35		0.0				
36		103.9		143	106	889
37		0.0				
38		0.0				
39		0.0				
40		0.0				
41		0.0				
42		0.0				
		0.0				
	Total Strokes A	Avg. Swolf A	Avg Stroke Rate	Number	of Laps	
0					1	
1	3179				2	
2					1	
3					1	
4					1	
5					1	
6					1	
7					1	
8					1	
9					9	
10					1	
11					1	
12					1	
13					1	
14					1	
15					1	
-0					-	

```
20
                                                                   9
      21
                                                                   1
      22
                                                                   9
      23
                   8772
                                                                   6
      24
                                                                   1
      25
                                                                   1
                                                                   3
      26
      27
                                                                   1
      28
                                                                   6
      29
                                                                   1
      30
                   9431
                                                                   6
      31
                                                                   1
      32
                     --
                                                                   1
      33
                                                                   2
                    840
                                 63
                                                  26
                                                                   4
      34
                   1762
                                 73
                                                  28
      35
                                                                  12
                     --
      36
                  10859
                                                                   8
      37
                                                                   1
      38
                                                                   1
      39
                   1422
                                 70
                                                                   6
                                                  27
      40
                                                                   9
      41
                   1285
                                                  26
                                                                   3
                                 64
      42
                                                                   1
[13]: eddy = eddy.replace({ "--": np.nan, "...": np.nan })#missing values replaced by
       \rightarrow nan
      eddy
[13]:
                   Activity Type
                                                   Date \
                Virtual Cycling 2020-04-06 18:15:01
      0
                  Indoor Cycling 2020-04-05 17:00:02
      1
      2
                 Virtual Cycling 2020-04-05 16:00:01
      3
                 Virtual Cycling 2020-04-04 06:59:59
      4
                 Virtual Cycling
                                   2020-04-03 18:00:28
      1135
                  Indoor Cycling
                                  2017-03-16 18:44:33
      1136
                         Running
                                   2017-03-16 18:30:17
      1137
                  Indoor Cycling
                                   2017-03-16 18:08:25
      1138
                      Multisport
                                   2017-03-12 07:52:43
      1139
            Open Water Swimming
                                  2017-03-11 12:56:24
                                                      Title Distance Calories \
      0
                      Zwift - TBR Knights of Suburbia (D)
                                                                27.56
                                                                            479
      1
                                                                14.08
                                                                            398
                                             Indoor Cycling
      2
                                      Zwift - AHDR BBQ (D)
                                                                23.22
                                                                            431
      3
            Zwift - Scott D'Aucourt's Meetup - Tick Tock
                                                                50.56
                                                                            838
```

4	Zwift -	Haute	e Route	Watopia	Stage	1 (E)	10	.32	:	218	
 1105				т	J C.					110	
1135 1136						ycling unning		3.83 L.84		118 153	
1137						ycling		3.13		198	
1137			Porto	rlington						725	
1139		S+ Ia		Open Wa		_		411	Ι,	98	
1109		DC LC	onarus	open wa	CEL DW	ıııııı		411		90	
		_		Avg Spe		_	Elev		Elev		\
0	00:45:14	NaN	NaN	36		56.5		80		NaN	
1	00:36:17	NaN	NaN	23		30.2		NaN		NaN	
2	00:40:38	NaN	NaN	34		54.1		89		NaN	
3	01:36:19	NaN	NaN	31		59.0		158		NaN	
4	00:19:28	NaN	NaN	31	.8	68.1		92		NaN	
		•••			_		•••	_			
1135	00:09:19.0	144	153			31.4		2		NaN	
1136	00:10:27	168	183	5:		4:04		1		3	
1137	00:21:31	125	147	22		35.0		2		2	
1138	02:03:46	NaN	186	17		NaN		180		170	
1139	00:10:34	NaN	NaN	2:	34	0:40		NaN		10	
	Avg Bike Cad	ence Ma	ax Bike	Cadence	Norma	lized F	Power	o (NPa	3) \		
0	6 21110 ouu	87	an Dino	111	no i ma	11204 1	0 11 01		91		
1		89		127					95		
2		85		111					92		
3		84		125					37		
4		92		116					39		
•••	•••						•••				
1135		80		92				Na	aN		
1136		NaN		NaN				Na	aN		
1137		88		115				Na	aN		
1138		NaN		NaN				Na	aN		
1139		NaN		NaN				Na	aN		
	m · · · · · · · · · · · · · · · · · · ·	a	o W			00		D	34	D	,
0	Training St	ress So		ax Avg P	ower (_				
0			0.0			197		183		445	
1			43.2			195		183		623	
2			0.0			198		180		620	
3			0.0			166		152		737	
4			0.0			Nal	V	183		647	
 1135		••	. 0 0		•	 Nal	 J		 .ī	NaN	
1136			0.0			Nai Nai		Nal Nal		nan NaN	
1137			0.0			Nal		Nai		NaN	
1138			0.0			Nal		Nai		NaN	
1139			0.0			Nal		Nai		NaN	
1100			0.0			Ival	•	Ivai	•	wan	

```
Total Strokes Avg. Swolf Avg Stroke Rate Number of Laps
0
                 NaN
                              NaN
                                                NaN
                                                                    2
1
                3179
                              NaN
                                                NaN
2
                 NaN
                              NaN
                                                NaN
                                                                    1
3
                              NaN
                 NaN
                                                NaN
                                                                    1
4
                 NaN
                              NaN
                                                NaN
                                                                    1
1135
                 750
                              NaN
                                                {\tt NaN}
                                                                 NaN
                                                                 NaN
1136
                              NaN
                                                NaN
                 NaN
1137
                1867
                              NaN
                                                NaN
                                                                 NaN
1138
                              NaN
                 NaN
                                                NaN
                                                                 NaN
1139
                 284
                               56
                                                 26
                                                                 NaN
```

[1140 rows x 23 columns]

```
[14]: #capitalization
eddy['Activity Type'] = eddy['Activity Type'].str.lower()
eddy['Title'] = eddy['Title'].str.lower()
print(eddy.head())
```

```
Activity Type
                                          Date
          virtual cycling 2020-04-06 18:15:01
0
           indoor cycling
1
                           2020-04-05 17:00:02
2
          virtual cycling
                           2020-04-05 16:00:01
          virtual cycling
3
                           2020-04-04 06:59:59
4
          virtual cycling
                           2020-04-03 18:00:28
           indoor cycling
                           2017-03-16 18:44:33
1135
1136
                  running
                           2017-03-16 18:30:17
           indoor cycling
                           2017-03-16 18:08:25
1137
1138
               multisport
                           2017-03-12 07:52:43
1139
      open water swimming 2017-03-11 12:56:24
```

```
Title Distance Calories
0
               zwift - tbr knights of suburbia (d)
                                                        27.56
                                                                    479
1
                                     indoor cycling
                                                        14.08
                                                                    398
2
                               zwift - ahdr bbq (d)
                                                        23.22
                                                                    431
3
      zwift - scott d'aucourt's meetup - tick tock
                                                        50.56
                                                                    838
4
          zwift - haute route watopia stage 1 (e)
                                                        10.32
                                                                    218
1135
                                     indoor cycling
                                                         3.83
                                                                    118
1136
                                     elwood running
                                                         1.84
                                                                    153
1137
                                     indoor cycling
                                                         8.13
                                                                    198
                          portarlington multi-sport
1138
                                                        35.83
                                                                  1,725
1139
                    st leonards open water swimming
                                                          411
                                                                     98
```

Time Avg HR Max HR Avg Speed Max Speed Elev Gain Elev Loss \

0	00:45:14	NaN	NaN	36.6	3	56.5	80	NaN	
1	00:36:17	NaN	NaN			30.2	NaN	NaN	
2	00:40:38	NaN	NaN			54.1	89	NaN	
3	01:36:19	NaN	NaN			59.0	158	NaN	
4	00:19:28	NaN	NaN			68.1	92	NaN	
					,	00.1		wan	
 1135	 00:09:19.0	 144	 153		 3	31.4	2	NaN	
1136	00:10:27	168	183			4:04	1	3	
1137	00:21:31	125	147			35.0	2	2	
1138	02:03:46	NaN	186			NaN	180	170	
1139	00:10:34	NaN	NaN			0:40	NaN	10	
1109	00.10.54	Ivaiv	IValv	2.0-	I	0.40	Ivaiv	10	
	Avg Bike Cade	nce Ma	y Riko	Cadence N	Jormali	zed Po	wer® (NP®) \		
0	AVE DIRC Odde	87	A DIRO	111	vormari	.zca i o	191	`	
1		89		127			195		
2		85		111			192		
3		84		125			167		
4		92		116			189		
-		32		110			103		
 1135	•••	80		 92			 NaN		
1136		NaN		NaN			NaN		
1137		88		115			NaN		
1138		NaN		NaN			NaN		
1139		NaN		NaN			NaN		
1 1 . 1 . 7							וומוו		
1100		ii aii		nan					
1100			ore® M		zer (20) min)		Dougr	\
					ver (20		Avg Power Max		\
0		ess Sc	0.0		ver (20	197	Avg Power Max 181	445	\
0		ess Sc	0.0 43.2		ver (20	197 195	Avg Power Max 181 183	445 623	\
0 1 2		ess Sc	0.0 43.2 0.0		ver (20	197 195 198	Avg Power Max 181 183 180	445 623 620	\
0 1 2 3		ess Sc	0.0 43.2 0.0 0.0		ver (20	197 195 198 166	Avg Power Max 181 183 180 152	445 623 620 737	\
0 1 2 3 4		ess Sc	0.0 43.2 0.0		ver (20	197 195 198	Avg Power Max 181 183 180 152 183	445 623 620	\
0 1 2 3 4 		ess Sc	0.0 43.2 0.0 0.0		wer (20	197 195 198 166 NaN	Avg Power Max 181 183 180 152 183	445 623 620 737 647	\
0 1 2 3 4 		ess Sc	0.0 43.2 0.0 0.0 0.0		wer (20	197 195 198 166 NaN	Avg Power Max 181 183 180 152 183 	445 623 620 737 647	\
0 1 2 3 4 1135 1136		ess Sc	0.0 43.2 0.0 0.0 0.0		wer (20	197 195 198 166 NaN NaN	Avg Power Max 181 183 180 152 183 NaN	445 623 620 737 647 NaN NaN	\
0 1 2 3 4 1135 1136 1137		ess Sc	0.0 43.2 0.0 0.0 0.0		wer (20	197 195 198 166 NaN NaN NaN	Avg Power Max 181 183 180 152 183 NaN NaN	445 623 620 737 647 NaN NaN	\
0 1 2 3 4 1135 1136 1137 1138		ess Sc	0.0 43.2 0.0 0.0 0.0 0.0 0.0		wer (20	197 195 198 166 NaN NaN NaN NaN	Avg Power Max 181 183 180 152 183 NaN NaN NaN	445 623 620 737 647 NaN NaN NaN	`
0 1 2 3 4 1135 1136 1137		ess Sc	0.0 43.2 0.0 0.0 0.0		wer (20	197 195 198 166 NaN NaN NaN	Avg Power Max 181 183 180 152 183 NaN NaN	445 623 620 737 647 NaN NaN	\
0 1 2 3 4 1135 1136 1137 1138	Training Str	ress Sc	0.0 43.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0	ax Avg Pov		197 198 166 NaN NaN NaN NaN NaN	Avg Power Max 181 183 180 152 183 NaN NaN NaN NaN	445 623 620 737 647 NaN NaN NaN	\
0 1 2 3 4 1135 1136 1137 1138 1139	Training Str	mess Sc	0.0 43.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Swolf	ax Avg Pov	 e Rate	197 198 166 NaN NaN NaN NaN NaN	Avg Power Max 181 183 180 152 183 NaN NaN NaN NaN NaN	445 623 620 737 647 NaN NaN NaN	`
0 1 2 3 4 1135 1136 1137 1138 1139	Training Str	mess Sc 	0.0 43.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Swolf	ax Avg Pov	 e Rate NaN	197 198 166 NaN NaN NaN NaN NaN	Avg Power Max 181 183 180 152 183 NaN NaN NaN NaN NaN	445 623 620 737 647 NaN NaN NaN	
0 1 2 3 4 1135 1136 1137 1138 1139	Training Str Total Strokes NaN 3179	mess Sc 	0.0 43.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Swolf NaN	ax Avg Pov	 Rate NaN NaN	197 198 166 NaN NaN NaN NaN NaN	Avg Power Max 181 183 180 152 183 NaN NaN NaN NaN NaN NaN Of Laps 1	445 623 620 737 647 NaN NaN NaN	
0 1 2 3 4 1135 1136 1137 1138 1139	Training Str Total Strokes NaN 3179 NaN	Avg.	0.0 43.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Swolf NaN NaN	ax Avg Pov	 Rate NaN NaN	197 198 166 NaN NaN NaN NaN NaN	Avg Power Max 181 183 180 152 183 NaN NaN NaN NaN NaN NaN 1 2 1	445 623 620 737 647 NaN NaN NaN	
0 1 2 3 4 1135 1136 1137 1138 1139	Training Str Total Strokes NaN 3179 NaN	mess Sc s Avg.	0.0 43.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Swolf NaN NaN NaN	ax Avg Pov	 Rate NaN NaN NaN	197 198 166 NaN NaN NaN NaN NaN	Avg Power Max 181 183 180 152 183 NaN NaN NaN NaN NaN NaN 1 2 1 1	445 623 620 737 647 NaN NaN NaN	
0 1 2 3 4 1135 1136 1137 1138 1139 0 1 2 3 4	Training Str Total Strokes NaN 3179 NaN	mess Sc 	0.0 43.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Swolf NaN NaN	ax Avg Pov	 Rate NaN NaN	197 195 198 166 NaN NaN NaN NaN NaN NaN NaN	Avg Power Max 181 183 180 152 183 NaN NaN NaN NaN NaN NaN 1 2 1	445 623 620 737 647 NaN NaN NaN	
0 1 2 3 4 1135 1136 1137 1138 1139 0 1 2 3 4 	Training Str Total Strokes NaN 3179 NaN NaN NaN		0.0 43.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Swolf NaN NaN NaN NaN	ax Avg Pov	 NaN NaN NaN NaN NaN	197 198 166 NaN NaN NaN NaN NaN	Avg Power Max 181 183 180 152 183 NaN NaN NaN NaN NaN 1 2 1 1 1	445 623 620 737 647 NaN NaN NaN	
0 1 2 3 4 1135 1136 1137 1138 1139 0 1 2 3 4 1135	Training Strokes NaN 3179 NaN NaN NaN 750	mess Sc	0.0 43.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Swolf NaN NaN NaN NaN	ax Avg Pov	Rate NaN NaN NaN NaN NaN NaN	197 195 198 166 NaN NaN NaN NaN NaN NaN NaN	Avg Power Max 181 183 180 152 183 NaN NaN NaN NaN NaN 1 2 1 1 1	445 623 620 737 647 NaN NaN NaN	
0 1 2 3 4 1135 1136 1137 1138 1139 0 1 2 3 4 	Training Str Total Strokes NaN 3179 NaN NaN NaN	mess Scommens.	0.0 43.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Swolf NaN NaN NaN NaN	ax Avg Pov	 NaN NaN NaN NaN NaN	197 195 198 166 NaN NaN NaN NaN NaN NaN NaN	Avg Power Max 181 183 180 152 183 NaN NaN NaN NaN NaN 1 2 1 1 1	445 623 620 737 647 NaN NaN NaN	

```
1139
                     284
                                 56
                                                  26
                                                                NaN
     [1140 rows x 23 columns]
[15]: #formats
      eddy['Elev Gain'] = eddy['Elev Gain'].str.replace(',', '')
      eddy['Elev Gain'] = eddy['Elev Gain'].astype(float)
[16]: eddy["Elev Gain"] = pd.to_numeric(eddy["Elev Gain"])
      print(eddy.dtypes)
     Activity Type
                                  object
                                  object
     Date
     Title
                                  object
     Distance
                                  object
     Calories
                                  object
     Time
                                  object
     Avg HR
                                  object
     Max HR
                                  object
     Avg Speed
                                  object
     Max Speed
                                  object
     Elev Gain
                                 float64
     Elev Loss
                                  object
     Avg Bike Cadence
                                  object
     Max Bike Cadence
                                  object
     Normalized Power® (NP®)
                                  object
     Training Stress Score®
                                 float64
     Max Avg Power (20 min)
                                  object
     Avg Power
                                  object
     Max Power
                                  object
     Total Strokes
                                  object
     Avg. Swolf
                                  object
     Avg Stroke Rate
                                  object
     Number of Laps
                                  object
     dtype: object
[17]: eddy['Elev Loss'] = eddy['Elev Loss'].str.replace(',', '')
      eddy['Elev Loss'] = eddy['Elev Loss'].astype(float)
[18]: eddy['Elev Loss'] = pd.to_numeric(eddy['Elev Loss'])
      print(eddy.dtypes)
     Activity Type
                                  object
     Date
                                  object
     Title
                                  object
     Distance
                                  object
     Calories
                                  object
```

NaN

NaN

NaN

NaN

```
Time
                                  object
     Avg HR
                                  object
     Max HR
                                  object
     Avg Speed
                                  object
     Max Speed
                                  object
     Elev Gain
                                  float64
     Elev Loss
                                  float64
     Avg Bike Cadence
                                  object
     Max Bike Cadence
                                  object
     Normalized Power® (NP®)
                                  object
     Training Stress Score®
                                 float64
     Max Avg Power (20 min)
                                  object
     Avg Power
                                  object
     Max Power
                                  object
     Total Strokes
                                  object
     Avg. Swolf
                                  object
     Avg Stroke Rate
                                  object
     Number of Laps
                                  object
     dtype: object
[19]: eddy['Distance'] = eddy['Distance'].str.replace(',', '')
      eddy['Distance'] = eddy['Distance'].astype(float)
[20]: eddy['Distance'] = pd.to_numeric(eddy['Distance'])
      print(eddy.dtypes)
     Activity Type
                                  object
                                  object
     Date
     Title
                                  object
     Distance
                                 float64
     Calories
                                  object
     Time
                                  object
     Avg HR
                                  object
     Max HR
                                  object
     Avg Speed
                                  object
     Max Speed
                                  object
     Elev Gain
                                  float64
     Elev Loss
                                 float64
     Avg Bike Cadence
                                  object
     Max Bike Cadence
                                  object
     Normalized Power® (NP®)
                                  object
     Training Stress Score®
                                  float64
     Max Avg Power (20 min)
                                  object
     Avg Power
                                  object
     Max Power
                                  object
     Total Strokes
                                  object
     Avg. Swolf
                                  object
     Avg Stroke Rate
                                  object
```

```
Number of Laps
                                  object
     dtype: object
[21]: eddy['Calories'] = eddy['Calories'].str.replace(',', '')
      eddy['Calories'] = eddy['Calories'].astype(float)
[22]: eddy['Calories'] = pd.to_numeric(eddy['Calories'])
      print(eddy.dtypes)
                                  object
     Activity Type
     Date
                                  object
     Title
                                  object
     Distance
                                 float64
                                 float64
     Calories
     Time
                                  object
     Avg HR
                                  object
     Max HR
                                  object
     Avg Speed
                                  object
     Max Speed
                                  object
     Elev Gain
                                 float64
     Elev Loss
                                 float64
     Avg Bike Cadence
                                  object
     Max Bike Cadence
                                  object
     Normalized Power® (NP®)
                                  object
     Training Stress Score®
                                 float64
     Max Avg Power (20 min)
                                  object
     Avg Power
                                  object
                                  object
     Max Power
     Total Strokes
                                  object
     Avg. Swolf
                                  object
     Avg Stroke Rate
                                  object
     Number of Laps
                                  object
     dtype: object
[23]: eddy['Max Power'] = eddy['Max Power'].str.replace(',', '')
      eddy['Max Power'] = eddy['Max Power'].astype(float)
      eddy['Max Power'] = pd.to_numeric(eddy['Max Power'])
      print(eddy.dtypes)
     Activity Type
                                  object
     Date
                                  object
     Title
                                  object
                                 float64
     Distance
     Calories
                                 float64
     Time
                                  object
     Avg HR
                                  object
     Max HR
                                  object
     Avg Speed
                                  object
```

```
Max Speed
                                  object
     Elev Gain
                                 float64
     Elev Loss
                                 float64
     Avg Bike Cadence
                                  object
     Max Bike Cadence
                                  object
     Normalized Power® (NP®)
                                  object
     Training Stress Score®
                                 float64
     Max Avg Power (20 min)
                                  object
     Avg Power
                                  object
     Max Power
                                 float64
     Total Strokes
                                  object
     Avg. Swolf
                                  object
     Avg Stroke Rate
                                  object
     Number of Laps
                                  object
     dtype: object
[24]: eddy['Avg Power'] = eddy['Avg Power'].astype(str)
      eddy['Avg Power'] = eddy['Avg Power'].str.replace(',', '')
      eddy['Avg Power'] = eddy['Avg Power'].astype(float)
```

eddy['Avg Power'] = eddy['Avg Power'].str.replace(',', '')
eddy['Avg Power'] = eddy['Avg Power'].astype(float)
eddy['Avg Power'] = pd.to_numeric(eddy['Avg Power'])
print(eddy.dtypes)

object

Date object Title object Distance float64 Calories float64 Time object Avg HR object Max HR object Avg Speed object Max Speed object Elev Gain float64 Elev Loss float64 Avg Bike Cadence object Max Bike Cadence object Normalized Power® (NP®) object Training Stress Score® float64 Max Avg Power (20 min) object Avg Power float64 Max Power float64 Total Strokes object Avg. Swolf object Avg Stroke Rate object Number of Laps object

dtype: object

Activity Type

```
[25]: eddy.loc[eddy['Avg Speed'].str.contains(":", na=False),'Avg Speed']=np.nan
      eddy['Avg Speed'] = pd.to_numeric(eddy['Avg Speed'])
[26]: eddy.loc[eddy['Max Speed'].str.contains(":", na=False),'Max Speed']=np.nan
      eddy['Max Speed'] = pd.to_numeric(eddy['Max Speed'])
      print(eddy.dtypes)
                                  object
     Activity Type
     Date
                                  object
     Title
                                  object
     Distance
                                 float64
     Calories
                                 float64
     Time
                                  object
     Avg HR
                                  object
     Max HR
                                  object
     Avg Speed
                                 float64
     Max Speed
                                 float64
     Elev Gain
                                 float64
     Elev Loss
                                 float64
     Avg Bike Cadence
                                  object
     Max Bike Cadence
                                  object
     Normalized Power® (NP®)
                                  object
     Training Stress Score®
                                 float64
     Max Avg Power (20 min)
                                  object
     Avg Power
                                 float64
     Max Power
                                 float64
     Total Strokes
                                  object
     Avg. Swolf
                                  object
     Avg Stroke Rate
                                  object
     Number of Laps
                                  object
     dtype: object
[27]: eddy[['Max Avg Power (20 min)', 'Avg Power', 'Avg Stroke Rate', 'Avg HR', 'Max_
       →HR','Total Strokes','Avg. Swolf','Avg Bike Cadence','Max Bike⊔
       →Cadence', 'Normalized Power® (NP®)', 'Number of Laps']] = eddy[['Max Avg_
       →Power (20 min)','Avg Power','Avg Stroke Rate','Avg HR', 'Max HR','Total
       \hookrightarrowStrokes','Avg. Swolf','Avg Bike Cadence','Max Bike Cadence','Normalized
       →Power® (NP®)' ,'Number of Laps']].apply(pd.to_numeric)
      print(eddy.dtypes)
     Activity Type
                                  object
     Date
                                  object
     Title
                                  object
     Distance
                                 float64
     Calories
                                 float64
     Time
                                  object
```

float64

Avg HR

```
Max HR
                            float64
Avg Speed
                            float64
Max Speed
                            float64
Elev Gain
                            float64
Elev Loss
                            float64
Avg Bike Cadence
                            float64
Max Bike Cadence
                            float64
Normalized Power® (NP®)
                            float64
Training Stress Score®
                            float64
Max Avg Power (20 min)
                            float64
Avg Power
                            float64
Max Power
                            float64
Total Strokes
                            float64
Avg. Swolf
                            float64
Avg Stroke Rate
                            float64
Number of Laps
                            float64
dtype: object
```

```
[28]: #Translating DateTime into Date and Time
eddy['Date_extracted']=pd.to_datetime(eddy["Date"]).dt.normalize()
eddy['Time_extracted']=pd.to_datetime(eddy["Date"]).dt.time
eddy['Date']=pd.to_datetime(eddy['Date'])
```

```
[29]: #Converting Time into sec for future analysis eddy['Time_sec']=pd.to_timedelta(pd.to_datetime(eddy["Time"]).dt.strftime('%H:
→%M:%S')).dt.total_seconds()
```

[30]: print(eddy.dtypes)

Activity Type object Date datetime64[ns] Title object Distance float64 Calories float64 Time object Avg HR float64 Max HR float64 Avg Speed float64 Max Speed float64 Elev Gain float64 Elev Loss float64 Avg Bike Cadence float64 Max Bike Cadence float64 Normalized Power® (NP®) float64 Training Stress Score® float64 Max Avg Power (20 min) float64 Avg Power float64 Max Power float64

```
Total Strokes
                                        float64
     Avg. Swolf
                                        float64
     Avg Stroke Rate
                                        float64
     Number of Laps
                                        float64
     Date extracted
                               datetime64[ns]
     Time extracted
                                         object
     Time sec
                                        float64
     dtype: object
[31]: #handling irregular data
      # select numeric columns
      def func_numeric():
          eddy_numeric = eddy.select_dtypes(include=[np.number])
          numeric_cols = eddy_numeric.columns.values
          return numeric_cols,eddy_numeric
      numeric_cols,eddy_numeric = func_numeric()
      print(numeric_cols)
     ['Distance' 'Calories' 'Avg HR' 'Max HR' 'Avg Speed' 'Max Speed'
      'Elev Gain' 'Elev Loss' 'Avg Bike Cadence' 'Max Bike Cadence'
      'Normalized Power® (NP®)' 'Training Stress Score®'
      'Max Avg Power (20 min)' 'Avg Power' 'Max Power' 'Total Strokes'
      'Avg. Swolf' 'Avg Stroke Rate' 'Number of Laps' 'Time_sec']
[32]: def func categoric():
          eddy_categoric= eddy.select_dtypes(exclude=[np.number])
          categoric_cols = eddy_categoric.columns.values
          return eddy_categoric,categoric_cols
      eddy_categoric,categoric_cols = func_categoric()
      print(categoric_cols)
     ['Activity Type' 'Date' 'Title' 'Time' 'Date_extracted' 'Time_extracted']
[33]: def find_missing_percent(data):
          Returns dataframe containing the total missing values and percentage of \Box
       \hookrightarrow total
          missing values of a column.
          miss_eddy = pd.DataFrame({'ColumnName':[],'TotalMissingVals':
       →[], 'PercentMissing':[]})
          for col in data.columns:
              sum_miss_val = data[col].isnull().sum()
              percent_miss_val = round((sum_miss_val/data.shape[0])*100,2)
              miss_eddy = miss_eddy.append(dict(zip(miss_eddy.
       →columns, [col, sum miss val, percent miss val])), ignore index=True)
          return miss eddy
```

```
miss_eddy = find_missing_percent(eddy)
'''Columns with missing values'''

print(f"Number of columns with missing values:

$\inspec \{\text{str(miss_eddy[miss_eddy['PercentMissing']>0.0].shape[0])}\}\])

display(miss_eddy[miss_eddy['PercentMissing']>0.0])

#'''Drop the columns with more than 90% of missing values'''

#drop_cols = miss_df[miss_df['PercentMissing'] >90.0].ColumnName.tolist()

#eddy = eddy.drop(drop_cols,axis=1)
```

Number of columns with missing values: 18

	ColumnName	${\tt TotalMissingVals}$	PercentMissing
3	Distance	1.0	0.09
4	Calories	25.0	2.19
6	Avg HR	581.0	50.96
7	Max HR	574.0	50.35
8	Avg Speed	776.0	68.07
9	Max Speed	812.0	71.23
10	Elev Gain	502.0	44.04
11	Elev Loss	580.0	50.88
12	Avg Bike Cadence	884.0	77.54
13	Max Bike Cadence	884.0	77.54
14	Normalized Power® (NP®)	969.0	85.00
16	Max Avg Power (20 min)	985.0	86.40
17	Avg Power	969.0	85.00
18	Max Power	969.0	85.00
19	Total Strokes	681.0	59.74
20	Avg. Swolf	857.0	75.18
21	Avg Stroke Rate	855.0	75.00
22	Number of Laps	176.0	15.44

```
[34]: # In[51]:

def missingno_bar():
    graph = msno.bar(eddy)
    return graph
    print(missingno_bar())
    #msno.bar(eddy)
```

AxesSubplot(0.125,0.125;0.775x0.755)


```
[36]: #def missingno_matrix():
    # matrix = msno.matrix(eddy)
    #return matrix
#print(missingno_matrix())
#msno.matrix(eddy)#for visulaising the locations of the missing data

[37]: def heat_map():
    heatmap=msno.heatmap(eddy)
    return(heatmap)
print(heat_map())
#msno.heatmap(eddy)
```

AxesSubplot(0.125,0.125;0.62x0.755)


```
[32]: def deno_gram():
    dendogram = msno.dendrogram(eddy)
    return(dendogram)
print(deno_gram())
#msno.dendrogram(eddy)# for grouping highly corelated variable
```

AxesSubplot(0.125,0.125;0.775x0.755)


```
pandas_profiling.ProfileReport(eddy)#not working with function
[38]:
      #mean imputation
      def mean_imputation(eddy_numeric2):
          for col in eddy_numeric2.columns:
               mean = eddy_numeric2[col].mean()
               eddy_numeric2[col] = eddy_numeric2[col].fillna(mean)
          return eddy numeric2
      #eddy_numeric, numeric_cols=func_numeric()
      eddy_numeric2=eddy[numeric_cols]
      eddy_mean_imp = mean_imputation(eddy_numeric2)
      eddy_mean_imp.head(10)
[38]:
                                                                     Max Speed
          Distance
                     Calories
                                    Avg HR
                                                          Avg Speed
                                                 Max HR
                                                          36.600000
                                                                      56.500000
      0
              27.56
                        479.0
                                136.146691
                                             165.222615
      1
                                                                      30.200000
              14.08
                        398.0
                                136.146691
                                             165.222615
                                                          23.300000
      2
              23.22
                        431.0
                                136.146691
                                             165.222615
                                                          34.300000
                                                                      54.100000
      3
              50.56
                        838.0
                                136.146691
                                             165.222615
                                                          31.500000
                                                                      59.000000
      4
              10.32
                        218.0
                                136.146691
                                             165.222615
                                                          31.800000
                                                                      68.100000
      5
              7.77
                        129.0
                                136.146691
                                             165.222615
                                                          32.400000
                                                                      52.300000
      6
              8.12
                        191.0
                                136.146691
                                             165.222615
                                                          37.900000
                                                                      51.900000
      7
              16.77
                        315.0
                                136.146691
                                             165.222615
                                                          37.000000
                                                                      63.100000
      8
              30.96
                        527.0
                                152.000000
                                             177.000000
                                                          37.000000
                                                                      56.300000
      9
              8.02
                        468.0
                                146.000000
                                             167.000000
                                                          27.778022
                                                                      49.810366
      10
              27.58
                        498.0
                                136.146691
                                             165.222615
                                                          36.600000
                                                                      64.000000
      11
              36.45
                        598.0
                                136.146691
                                             165.222615
                                                          36.300000
                                                                      55.300000
                                             197.000000
      12
                        654.0
                                161.000000
                                                          27.700000
              30.08
                                                                      71.100000
      13
              17.09
                        334.0
                                158.000000
                                             183.000000
                                                          36.900000
                                                                      57.200000
      14
                        374.0
              20.96
                                136.146691
                                             165.222615
                                                          29.800000
                                                                      57.300000
      15
              0.00
                        223.0
                                115.000000
                                             152.000000
                                                          27.778022
                                                                      49.810366
      16
              12.16
                        235.0
                                151.000000
                                             172.000000
                                                          35.500000
                                                                      49.100000
      17
              15.03
                        982.0
                                159.000000
                                             181.000000
                                                          27.778022
                                                                      49.810366
      18
              30.30
                        537.0
                                158.000000
                                             174.000000
                                                          36.000000
                                                                      55.000000
      19
              2.35
                        161.0
                                148.000000
                                             159.000000
                                                          27.778022
                                                                      49.810366
      20
                                                          27.778022
              8.67
                        518.0
                                145.000000
                                             165.000000
                                                                      49.810366
      21
              20.20
                        356.0
                                136.146691
                                             165.222615
                                                          33.900000
                                                                      53.800000
      22
              8.05
                        469.0
                                143.000000
                                             171.000000
                                                          27.778022
                                                                      49.810366
      23
              54.42
                       1121.0
                                150.000000
                                             187.000000
                                                          28.700000
                                                                      55.100000
      24
              26.12
                        393.0
                                142.000000
                                             168.000000
                                                          34.600000
                                                                      52.900000
      25
              17.21
                        267.0
                                150.000000
                                             193.000000
                                                          34.000000
                                                                      59.100000
      26
               2.01
                        117.0
                                138.000000
                                             155.000000
                                                          27.778022
                                                                      49.810366
      27
              0.00
                        197.0
                                 97.000000
                                             147.000000
                                                          27.778022
                                                                      49.810366
```

163.000000

27.778022

49.810366

28

5.17

352.0

149.000000

```
29
        7.70
                  734.0
                          111.000000
                                       166.000000
                                                    27.778022
                                                                49.810366
30
       58.74
                  647.0
                          142.000000
                                       176.000000
                                                    28.900000
                                                                48.900000
31
        0.00
                  212.0
                          102.000000
                                       149.000000
                                                    27.778022
                                                                49.810366
32
        0.00
                  174.0
                           95.000000
                                       139.000000
                                                    27.778022
                                                                49.810366
33
     2200.00
                  537.0
                          136.146691
                                                    27.778022
                                       165.222615
                                                                49.810366
34
     3800.00
                  873.0
                          136.146691
                                       165.222615
                                                    27.778022
                                                                49.810366
       11.01
                  628.0
                          146.000000
                                       164.000000
                                                    27.778022
35
                                                                49.810366
36
       70.53
                  950.0
                          137.000000
                                       175.000000
                                                    28.100000
                                                                45.300000
                           92.000000
                                       141.000000
                                                    27.778022
37
        0.00
                  175.0
                                                                49.810366
        0.00
                           90.000000
                                       143.000000
                                                                49.810366
38
                  142.0
                                                    27.778022
                          136.146691
                                                    27.778022
39
     3300.00
                  760.0
                                       165.222615
                                                                49.810366
40
        8.01
                  439.0
                          144.000000
                                       158.000000
                                                    27.778022
                                                                49.810366
41
     3300.00
                  833.0
                          136.146691
                                       165.222615
                                                    27.778022
                                                                49.810366
42
        0.00
                  259.0
                          107.000000
                                       142.000000
                                                    27.778022
                                                                49.810366
                          145.000000
                                       162.000000
43
        6.58
                  398.0
                                                    27.778022
                                                                49.810366
44
        3.60
                  226.0
                          143.000000
                                       157.000000
                                                    27.778022
                                                                49.810366
45
       15.03
                   26.0
                          127.000000
                                       150.000000
                                                    26.800000
                                                                34.700000
       47.21
                 1749.0
                          136.146691
                                                    25.200000
46
                                       165.222615
                                                                44.600000
47
        5.50
                  407.0
                          153.000000
                                       165.000000
                                                    27.778022
                                                                49.810366
48
        5.01
                  283.0
                          148.000000
                                       167.000000
                                                    27.778022
                                                                49.810366
49
     4850.00
                 1186.0
                          136.146691
                                       165.222615
                                                    27.778022
                                                                49.810366
                              Avg Bike Cadence
                                                 Max Bike Cadence
     Elev Gain
                  Elev Loss
                                                        111.000000
0
     80.000000
                 164.817857
                                      87.000000
1
    158.619122
                 164.817857
                                      89.000000
                                                        127.000000
2
     89.000000
                 164.817857
                                      85.000000
                                                        111.000000
                 164.817857
3
    158.000000
                                      84.000000
                                                        125.000000
4
     92.000000
                 164.817857
                                      92.000000
                                                        116.000000
5
     24.000000
                 164.817857
                                      84.000000
                                                        123.000000
     37.000000
                                      87.000000
6
                 164.817857
                                                        105.000000
7
    136.000000
                                      84.000000
                 164.817857
                                                         98.000000
8
    102.000000
                 164.817857
                                      80.00000
                                                        100.000000
9
     40.000000
                  36.000000
                                      80.796875
                                                        120.796875
10
     80.000000
                 164.817857
                                      89.000000
                                                        113.000000
    106.000000
                                      89.000000
                                                        127.000000
11
                 164.817857
12
    262.000000
                 164.817857
                                      86.000000
                                                        122.000000
13
    134.000000
                                      88.00000
                                                        106.000000
                 164.817857
                 164.817857
14
    219.000000
                                      91.000000
                                                        113.000000
15
    158.619122
                 164.817857
                                      80.796875
                                                        120.796875
16
     31.000000
                 164.817857
                                      81.000000
                                                        111.000000
17
    148.000000
                 164.000000
                                      80.796875
                                                        120.796875
18
    102.000000
                 164.817857
                                      85.000000
                                                        130.000000
                                      80.796875
19
     20.000000
                                                        120.796875
                   4.000000
20
     50.000000
                  62.000000
                                      80.796875
                                                        120.796875
21
    121.000000
                 164.817857
                                      81.000000
                                                        121.000000
22
     31.000000
                  29.000000
                                      80.796875
                                                        120.796875
23
    220.000000
                 239.000000
                                      82.000000
                                                        115.000000
```

24	82.000000	164.817857	84.000000	118.000000	
25	36.000000	164.817857	84.000000	135.000000	
26	21.000000	9.000000	80.796875	120.796875	
27	158.619122		80.796875	120.796875	
28	24.000000	34.000000	80.796875	120.796875	
29	312.000000		80.796875	120.796875	
30	212.000000		82.000000	115.000000	
31	158.619122		80.796875	120.796875	
32	158.619122		80.796875	120.796875	
33	158.619122		80.796875	120.796875	
34	158.619122		80.796875	120.796875	
35	82.000000		80.796875	120.796875	
36	209.000000		80.000000	121.000000	
37	158.619122		80.796875	120.796875	
38	158.619122		80.796875	120.796875	
39	158.619122		80.796875	120.796875	
40	11.000000		80.796875	120.796875	
41	158.619122		80.796875	120.796875	
42	158.619122		80.796875	120.796875	
43	40.000000		80.796875	120.796875	
44	11.000000		80.796875	120.796875	
45	36.000000	28.000000	80.00000	101.000000	
46	184.000000	197.000000	80.796875	120.796875	
47	52.000000	74.000000	80.796875	120.796875	
48	11.000000	19.000000	80.796875	120.796875	
49	158.619122	164.817857	80.796875	120.796875	
	Normalized	Power® (NP®)	Training Stress Score®	Max Avg Power (20 min)	\
0		191.000000	0.0	197.000000	
1		195.000000	43.2	195.000000	
2		192.000000	0.0	198.000000	
3		167.000000	0.0	166.000000	
4		189.000000	0.0	174.567742	
5		179.000000	0.0	174.567742	
6		234.000000	0.0	174.567742	
7		205.000000	0.0	210.000000	
8		188.000000	0.0	189.000000	
9		173.923977	0.0	174.567742	
10		194.000000	0.0	208.000000	
11		181.000000	0.0	182.000000	
12		185.000000	0.0	199.000000	
13		222.000000	0.0	220.000000	
14		173.000000	0.0	170.000000	
15			0.0	174.567742	
		1/3.923977	() ()	1/4:00//4/	
		173.923977 215.000000			
16		215.000000	0.0	200.000000	

19		173.923977		0.0	174.567742
20		173.923977		0.0	174.567742
21		201.000000		0.0	188.000000
22		173.923977		0.0	174.567742
23		189.000000		128.5	188.000000
24		156.000000		0.0	158.000000
25		214.000000		0.0	160.000000
26		173.923977		0.0	174.567742
27		173.923977		0.0	174.567742
28					
		173.923977		0.0	174.567742
29		173.923977		0.0	174.567742
30		145.000000		80.4	167.000000
31		173.923977		0.0	174.567742
32		173.923977		0.0	174.567742
33		173.923977		0.0	174.567742
34		173.923977		0.0	174.567742
35		173.923977		0.0	174.567742
36		148.000000		103.9	143.000000
37		173.923977		0.0	174.567742
38		173.923977		0.0	174.567742
39		173.923977		0.0	174.567742
40		173.923977		0.0	174.567742
41		173.923977		0.0	174.567742
42		173.923977		0.0	174.567742
43		173.923977		0.0	174.567742
44		173.923977		0.0	174.567742
45		39.000000		1.6	12.000000
46		173.923977		0.0	174.567742
47		173.923977		0.0	174.567742
48		173.923977		0.0	174.567742
49		173.923977		0.0	174.567742
	Avg Power	Max Power	Total Strokes	Avg. Swolf	Avg Stroke Rate \
0	181.000000	445.000000	4174.936819	62.190813	27.308772
1	183.000000	623.000000	3179.000000	62.190813	27.308772
2	180.000000	620.000000	4174.936819	62.190813	27.308772
3	152.000000	737.000000	4174.936819	62.190813	27.308772
4	183.000000	647.000000	4174.936819	62.190813	27.308772
5	157.000000	699.000000	4174.936819	62.190813	27.308772
6	228.000000	580.000000	4174.936819	62.190813	27.308772
7	200.000000	383.000000	4174.936819	62.190813	27.308772
8	178.000000	420.000000	4174.936819	62.190813	27.308772
9	148.894737	681.853801	4174.936819	62.190813	27.308772
10	189.000000	672.000000	4174.936819	62.190813	27.308772
11	171.000000	855.000000	4174.936819	62.190813	27.308772
12	175.000000	744.000000	4174.936819	62.190813	27.308772
13	208.000000	565.000000	4174.936819	62.190813	27.308772
10	200.000000	555.00000	4114.300013	02.130013	21.500112

14	154.000000	566.000000	4174.936819	62.190813	27.308772
15	148.894737	681.853801	4174.936819	62.190813	27.308772
16	196.000000	740.000000	4174.936819	62.190813	27.308772
17	148.894737	681.853801	4174.936819	62.190813	27.308772
18	183.000000	708.000000	4174.936819	62.190813	27.308772
19	148.894737	681.853801	4174.936819	62.190813	27.308772
20	148.894737	681.853801	4174.936819	62.190813	27.308772
21	171.000000	812.000000	4174.936819	62.190813	27.308772
22	148.894737	681.853801	4174.936819	62.190813	27.308772
23	164.000000	1039.000000	8772.000000	62.190813	27.308772
24	149.000000	654.000000	4174.936819	62.190813	27.308772
25	154.000000	944.000000	4174.936819	62.190813	27.308772
26	148.894737	681.853801	4174.936819	62.190813	27.308772
27	148.894737	681.853801	4174.936819	62.190813	27.308772
28	148.894737	681.853801	4174.936819	62.190813	27.308772
29	148.894737	681.853801	4174.936819	62.190813	27.308772
30	89.000000	1062.000000	9431.000000	62.190813	27.308772
31	148.894737	681.853801	4174.936819	62.190813	27.308772
32	148.894737	681.853801	4174.936819	62.190813	27.308772
33	148.894737	681.853801	840.000000	63.000000	26.000000
34	148.894737	681.853801	1762.000000	73.000000	28.000000
35	148.894737	681.853801	4174.936819	62.190813	27.308772
36	106.000000	889.000000	10859.000000	62.190813	27.308772
37	148.894737	681.853801	4174.936819	62.190813	27.308772
38	148.894737	681.853801	4174.936819	62.190813	27.308772
39	148.894737	681.853801	1422.000000	70.000000	27.000000
40	148.894737	681.853801	4174.936819	62.190813	27.308772
41	148.894737	681.853801	1285.000000	64.000000	26.000000
42	148.894737	681.853801	4174.936819	62.190813	27.308772
43	148.894737	681.853801	4174.936819	62.190813	27.308772
44	148.894737	681.853801	4174.936819	62.190813	27.308772
45	14.000000	477.000000	2487.000000	62.190813	27.308772
46	148.894737	681.853801	4174.936819	62.190813	27.308772
47	148.894737	681.853801	4174.936819	62.190813	27.308772
48	148.894737	681.853801	4174.936819	62.190813	27.308772
49	148.894737	681.853801	1044.000000	35.000000	27.000000

	Number of	Laps	Time_sec
0		1.0	2714.0
1		2.0	2177.0
2		1.0	2438.0
3		1.0	5779.0
4		1.0	1168.0
5		1.0	864.0
6		1.0	771.0
7		1.0	1633.0
8		1.0	3013.0

```
9
                9.0
                        2524.0
10
                1.0
                        2714.0
11
                1.0
                        3619.0
12
                1.0
                        3908.0
13
                1.0
                        1668.0
14
                1.0
                        2533.0
15
                1.0
                        2096.0
16
                1.0
                        1233.0
17
                        4825.0
               16.0
18
                1.0
                        3028.0
19
                         778.0
                3.0
20
                9.0
                        2858.0
21
                        2143.0
                1.0
22
                9.0
                        2558.0
23
                6.0
                        6834.0
24
                        2715.0
                1.0
25
                1.0
                        1820.0
26
                3.0
                         641.0
27
                1.0
                        2730.0
28
                6.0
                        1705.0
29
                1.0
                        7823.0
                        7324.0
30
                6.0
31
                1.0
                        2503.0
32
                        2499.0
                1.0
33
                2.0
                        2382.0
34
                4.0
                        4058.0
35
               12.0
                        3482.0
36
                8.0
                        9025.0
37
                        2766.0
                1.0
38
                1.0
                        2298.0
39
                6.0
                        3324.0
                9.0
40
                        2448.0
41
                3.0
                        3299.0
42
                1.0
                        2871.0
43
                7.0
                        2099.0
44
                4.0
                        1177.0
                        2015.0
45
                4.0
46
                5.0
                        6749.0
47
                6.0
                        1954.0
48
                6.0
                        1394.0
49
                3.0
                        2780.0
```

```
\#mean\_imputation.iloc[:,:] = mean\_imputer.fit\_transform(mean\_imputation)
```

```
[39]: #regression imputation
      '''Select all the numeric columns for regression imputation'''
     eddy_numeric_regr = eddy[numeric_cols]
      '''Numeric columns with missing values which acts as target in training'''
     target_cols = ['Distance', 'Calories', 'Avg HR', 'Max HR', 'Elev Gain', 'Elev_
      →Loss','Avg Bike Cadence']
      '''Predictors for regression imputation'''
     predictors = eddy_numeric_regr.drop(target_cols, axis =1)
     def find_missing_index(eddy_numeric_regr, target_cols):
         miss_index_dict = {}
         for tcol in target cols:
              index = eddy_numeric_regr[tcol] [eddy_numeric_regr[tcol].isnull()].index
             miss_index_dict[tcol] = index
         return miss_index_dict
     def regression_imputation(eddy_numeric_regr, target_cols, miss_index_dict):
         for tcol in target_cols:
              y = eddy_numeric_regr[tcol]
              '''Initially impute the column with mean'''
              y = y.fillna(y.mean())
              xgb = xgboost.XGBRegressor(objective="reg:squarederror",
       →random state=42)
              '''Fit the model where y is the target column which is to be imputed'''
              xgb.fit(predictors, y)
              predictions = pd.Series(xgb.predict(predictors),index= y.index)
              index = miss_index_dict[tcol]
              '''Replace the missing values with the predictions'''
              eddy_numeric_regr[tcol].loc[index] = predictions.loc[index]
         return eddy_numeric_regr
     miss_index_dict = find_missing_index(eddy_numeric_regr, target_cols)
     eddy_numeric_regr = regression_imputation(eddy_numeric_regr, target_cols,_
      →miss_index_dict)
     eddy_numeric_regr.head(10)
```

```
[39]:
                                Avg HR
                                           Max HR Avg Speed Max Speed \
         Distance Calories
                                                        36.6
     0
            27.56
                     479.0 138.027252 166.677734
                                                                  56.5
            14.08
                     398.0 142.026871 168.428284
                                                        23.3
                                                                  30.2
     1
     2
                                                                  54.1
            23.22
                    431.0 142.530960 173.605377
                                                        34.3
     3
            50.56
                     838.0 135.568985 174.787567
                                                        31.5
                                                                  59.0
            10.32
                     218.0 139.532608 171.437622
                                                        31.8
                                                                  68.1
```

5	7.77	129.0	137.691971	167.769913	32.4	52.3
6	8.12	191.0	139.438995	165.169220	37.9	51.9
7	16.77	315.0	140.636642	165.199066	37.0	63.1
8	30.96	527.0	152.000000	177.000000	37.0	56.3
9	8.02	468.0	146.000000	167.000000	NaN	NaN
10	27.58	498.0	140.914062	169.770004	36.6	64.0
11	36.45	598.0	137.537186	173.755692	36.3	55.3
12	30.08	654.0	161.000000	197.000000	27.7	71.1
13	17.09	334.0	158.000000	183.000000	36.9	57.2
14	20.96	374.0	134.153580	165.311554	29.8	57.3
15	0.00	223.0	115.000000	152.000000	NaN	NaN
16	12.16	235.0	151.000000	172.000000	35.5	49.1
17	15.03	982.0	159.000000	181.000000	NaN	NaN
18	30.30	537.0	158.000000	174.000000	36.0	55.0
19	2.35	161.0	148.000000	159.000000	NaN	NaN
20	8.67	518.0	145.000000	165.000000	NaN	NaN
21	20.20	356.0	136.063156	171.602783	33.9	53.8
22	8.05	469.0	143.000000	171.000000	NaN	NaN
23	54.42	1121.0	150.000000	187.000000	28.7	55.1
24	26.12	393.0	142.000000	168.000000	34.6	52.9
25	17.21	267.0	150.000000	193.000000	34.0	59.1
26	2.01	117.0	138.000000	155.000000	NaN	NaN
27	0.00	197.0	97.000000	147.000000	NaN	NaN
28	5.17	352.0	149.000000	163.000000	NaN	NaN
29	7.70	734.0	111.000000	166.000000	NaN	NaN
30	58.74	647.0	142.000000	176.000000	28.9	48.9
31	0.00	212.0	102.000000	149.000000	NaN	NaN
32	0.00	174.0	95.000000	139.000000	NaN	NaN
33	2200.00	537.0	135.897842	163.389801	NaN	NaN
34	3800.00	873.0	137.205811	167.522812	NaN	NaN
35	11.01	628.0	146.000000	164.000000	NaN	NaN
36	70.53	950.0	137.000000	175.000000	28.1	45.3
37	0.00	175.0	92.000000	141.000000	NaN	NaN
38	0.00	142.0	90.000000	143.000000	NaN	NaN
39	3300.00	760.0	138.311249	166.990326	NaN	NaN
40	8.01	439.0	144.000000	158.000000	NaN	NaN
41	3300.00	833.0	136.122757	164.251465	NaN	NaN
42	0.00	259.0	107.000000	142.000000	NaN	NaN
43	6.58	398.0	145.000000	162.000000	NaN	NaN
44	3.60	226.0	143.000000	157.000000	NaN	NaN
45	15.03	26.0	127.000000	150.000000	26.8	34.7
46	47.21	1749.0	137.213226	168.578659	25.2	44.6
47	5.50	407.0	153.000000	165.000000	NaN	NaN
48	5.01	283.0	148.000000	167.000000	NaN	NaN
49	4850.00	1186.0	134.679672	164.569092	NaN	NaN

Elev Gain Elev Loss Avg Bike Cadence Max Bike Cadence \setminus

0	80.000000	174.789108	87.000000	111.0
1	103.603691	129.713486	89.000000	127.0
2	89.000000	171.989853	85.000000	111.0
3	158.000000	244.408737	84.000000	125.0
4	92.000000	149.043137	92.000000	116.0
5	24.000000	127.447136	84.000000	123.0
6	37.000000	138.524612	87.000000	105.0
7	136.000000	164.594147	84.000000	98.0
8	102.000000	174.789108	80.00000	100.0
9	40.000000	36.000000	80.810928	NaN
10	80.000000	176.479218	89.000000	113.0
11	106.000000	148.219025	89.00000	127.0
12	262.000000	189.500229	86.000000	122.0
13	134.000000	183.228882	88.00000	106.0
14	219.000000	171.715576	91.000000	113.0
15	132.450211	138.289139	80.810928	NaN
16	31.000000	107.926537	81.000000	111.0
17	148.000000	164.000000	80.836647	NaN
18	102.000000	171.989853	85.000000	130.0
19	20.000000	4.000000	80.810928	NaN
20	50.000000	62.000000	80.810928	NaN
	121.000000	142.318970	81.000000	121.0
21				
22	31.000000	29.000000	80.810928	NaN
23	220.000000	239.000000	82.000000	115.0
24	82.000000	160.595642	84.000000	118.0
25	36.000000	149.171524	84.000000	135.0
26	21.000000	9.000000	80.810928	NaN
27	146.762177	150.195847	80.810928	NaN
28	24.000000	34.000000	80.810928	NaN
29	312.000000	293.000000	80.836647	NaN
30	212.000000	232.000000	82.00000	115.0
31	142.465820	150.195847	80.810928	NaN
			80.810928	NaN
32	142.465820	150.195847		
33	159.290817	162.339600	80.810928	NaN
34	140.067200	144.075729	80.810928	NaN
35	82.000000	64.000000	80.810928	NaN
36	209.000000	225.000000	80.00000	121.0
37	146.762177	150.195847	80.810928	NaN
38	132.450211	139.435303	80.810928	NaN
39	119.778580	114.671257	80.810928	NaN
40	11.000000	12.000000	80.810928	NaN
41	152.952972	152.972122	80.810928	NaN
42	146.762177	150.195847	80.810928	NaN N-N
43	40.000000	41.000000	80.810928	NaN
44	11.000000	19.000000	80.810928	NaN
45	36.000000	28.000000	80.000000	101.0
46	184.000000	197.000000	80.531319	NaN

47	52.000000	74.000000	80.810928		NaN		
48	11.000000	19.000000	80.810928		NaN		
49	131.932022	120.576080	80.810928		NaN		
	Normalized	Power® (NP®)	Training Stress So	core® Max	Avg Power	(20 min)	\
0		191.0	-	0.0	_	197.0	
1		195.0		43.2		195.0	
2		192.0		0.0		198.0	
3		167.0		0.0		166.0	
4		189.0		0.0		NaN	
5		179.0		0.0		NaN	
6		234.0		0.0		NaN	
7		205.0		0.0		210.0	
8		188.0		0.0		189.0	
9		NaN		0.0		NaN	
10		194.0		0.0		208.0	
11		181.0		0.0		182.0	
12		185.0		0.0		199.0	
13		222.0		0.0		220.0	
14		173.0		0.0		170.0	
15		NaN		0.0		NaN	
16		215.0		0.0		200.0	
17		NaN		0.0		NaN	
18		190.0		0.0		200.0	
19		NaN		0.0		NaN	
20		NaN		0.0		NaN	
21		201.0		0.0		188.0	
22		NaN		0.0		NaN	
23		189.0		128.5		188.0	
24		156.0	•	0.0		158.0	
25		214.0		0.0		160.0	
26		NaN		0.0		NaN	
27		NaN		0.0		NaN	
28		NaN		0.0		NaN	
29		NaN		0.0		NaN	
30		145.0		80.4		167.0	
31		NaN		0.0		NaN	
32		NaN		0.0		NaN	
33		NaN		0.0		NaN	
34		NaN		0.0		NaN	
35		NaN		0.0		NaN	
36		148.0		103.9		143.0	
37		NaN	•	0.0		NaN	
38				0.0			
		NaN NaN				NaN NaN	
39		NaN		0.0		NaN NaN	
40		NaN		0.0		NaN NaN	
41		NaN		0.0		NaN	

42			aN	0.0		NaN
43			aN	0.0		NaN
44			aN	0.0		NaN
45			.0	1.6		12.0
46			aN	0.0		NaN
47			aN	0.0		NaN
48			aN	0.0		NaN
49		N	aN	0.0		NaN
_	Avg Power	Max Power		Avg. Swolf	Avg Stroke Rate	\
0	181.0	445.0	NaN	NaN	NaN	
1	183.0	623.0	3179.0	NaN	NaN	
2	180.0	620.0	NaN	NaN	NaN	
3	152.0	737.0	NaN	NaN	NaN	
4	183.0	647.0	NaN	NaN	NaN	
5	157.0	699.0	NaN	NaN	NaN	
6	228.0	580.0	NaN	NaN	NaN	
7	200.0	383.0	NaN	NaN	NaN	
8	178.0	420.0	NaN	NaN	NaN	
9	NaN	NaN	NaN	NaN	NaN	
10	189.0	672.0	NaN	NaN	NaN	
11	171.0	855.0	NaN	NaN	NaN	
12	175.0	744.0	NaN	NaN	NaN	
13	208.0	565.0	NaN	NaN	NaN	
14	154.0	566.0	NaN	NaN	NaN	
15	NaN	NaN	NaN	NaN	NaN	
16	196.0	740.0	NaN	NaN	NaN	
17	NaN	NaN	NaN	NaN	NaN	
18	183.0	708.0	NaN	NaN	NaN	
19	NaN	NaN	NaN	NaN	NaN	
20	NaN	NaN	NaN	NaN	NaN	
21	171.0	812.0	NaN	NaN	NaN	
22	NaN	NaN	NaN	NaN	NaN	
23	164.0	1039.0	8772.0	NaN	NaN	
24	149.0	654.0	NaN	NaN	NaN	
25	154.0	944.0	NaN	NaN	NaN	
26	NaN	NaN	NaN	NaN	NaN	
27	NaN	NaN	NaN	NaN	NaN	
28	NaN	NaN	NaN	NaN	NaN	
29	NaN	NaN	NaN	NaN	NaN	
30	89.0	1062.0	9431.0	NaN	NaN	
31	NaN	NaN	NaN	NaN	NaN	
32	NaN	NaN	NaN	NaN	NaN	
33	NaN	NaN	840.0	63.0	26.0	
34	NaN	NaN	1762.0	73.0	28.0	
35	NaN	NaN	NaN	NaN	NaN	
36	106.0	889.0	10859.0	NaN	NaN	

39 NaN NaN 1422.0 70.0 27.0 40 NaN NaN NaN NaN NaN 41 NaN NaN 1285.0 64.0 26.0 42 NaN NaN NaN NaN NaN 43 NaN NaN NaN NaN NaN 44 NaN NaN NaN NaN NaN 45 14.0 477.0 2487.0 NaN NaN NaN 46 NaN NaN NaN NaN NaN NaN 47 NaN NaN NaN NaN NaN NaN	37	NaN	NaN	NaN	NaN	NaN
40 NaN NaN NaN NaN 41 NaN NaN 1285.0 64.0 26.0 42 NaN NaN NaN NaN NaN 43 NaN NaN NaN NaN NaN 44 NaN NaN NaN NaN NaN 45 14.0 477.0 2487.0 NaN NaN NaN 46 NaN NaN NaN NaN NaN NaN 47 NaN NaN NaN NaN NaN NaN	38	NaN	NaN	NaN	NaN	NaN
41 NaN NaN 1285.0 64.0 26.0 42 NaN NaN NaN NaN NaN 43 NaN NaN NaN NaN NaN 44 NaN NaN NaN NaN NaN 45 14.0 477.0 2487.0 NaN NaN NaN 46 NaN NaN NaN NaN NaN NaN 47 NaN NaN NaN NaN NaN NaN	39	NaN	NaN	1422.0	70.0	27.0
42 NaN NaN NaN NaN NaN 43 NaN NaN NaN NaN NaN 44 NaN NaN NaN NaN NaN 45 14.0 477.0 2487.0 NaN NaN NaN 46 NaN NaN NaN NaN NaN NaN 47 NaN NaN NaN NaN NaN NaN	40	NaN	NaN	NaN	NaN	NaN
43 NaN NaN NaN NaN 44 NaN NaN NaN NaN 45 14.0 477.0 2487.0 NaN NaN 46 NaN NaN NaN NaN NaN 47 NaN NaN NaN NaN NaN	41	NaN	NaN	1285.0	64.0	26.0
44 NaN NaN NaN NaN 45 14.0 477.0 2487.0 NaN NaN 46 NaN NaN NaN NaN NaN 47 NaN NaN NaN NaN NaN	42	NaN	NaN	NaN	NaN	NaN
45 14.0 477.0 2487.0 NaN NaN 46 NaN NaN NaN NaN NaN 47 NaN NaN NaN NaN NaN	43	NaN	NaN	NaN	NaN	NaN
46NaNNaNNaNNaN47NaNNaNNaNNaNNaN	44	NaN	NaN	NaN	NaN	NaN
47 NaN NaN NaN NaN Na	45	14.0	477.0	2487.0	NaN	NaN
	46	NaN	NaN	NaN	NaN	NaN
40 NoN NoN NoN NoN NoN	47	NaN	NaN	NaN	NaN	NaN
40 han han han han han	48	NaN	NaN	NaN	NaN	NaN
49 NaN NaN 1044.0 35.0 27.0	49	NaN	NaN	1044.0	35.0	27.0

	Number	of	Laps	Time_sec
0			1.0	2714.0
1			2.0	2177.0
2			1.0	2438.0
3			1.0	5779.0
4			1.0	1168.0
5			1.0	864.0
6			1.0	771.0
7			1.0	1633.0
8			1.0	3013.0
9			9.0	2524.0
10			1.0	2714.0
11			1.0	3619.0
12			1.0	3908.0
13			1.0	1668.0
14			1.0	2533.0
15			1.0	2096.0
16			1.0	1233.0
17			16.0	4825.0
18			1.0	3028.0
19			3.0	778.0
20			9.0	2858.0
21			1.0	2143.0
22			9.0	2558.0
23			6.0	6834.0
24			1.0	2715.0
25			1.0	1820.0
26			3.0	641.0
27			1.0	2730.0
28			6.0	1705.0
29			1.0	7823.0
30			6.0	7324.0
31			1.0	2503.0

```
32
                     1.0
                            2499.0
      33
                     2.0
                            2382.0
      34
                     4.0
                            4058.0
      35
                    12.0
                            3482.0
      36
                     8.0
                            9025.0
                            2766.0
      37
                     1.0
      38
                     1.0
                            2298.0
                     6.0
      39
                            3324.0
      40
                     9.0
                            2448.0
      41
                     3.0
                            3299.0
      42
                     1.0
                            2871.0
      43
                     7.0
                            2099.0
      44
                     4.0
                            1177.0
      45
                     4.0
                            2015.0
      46
                     5.0
                            6749.0
      47
                     6.0
                            1954.0
      48
                     6.0
                            1394.0
      49
                     3.0
                            2780.0
[40]: def mode_imputation(eddy_categoric):
          Mode Imputation
          for col in eddy_categoric.columns:
              mode = eddy_categoric[col].mode().iloc[0]
              eddy_categoric[col] = eddy_categoric[col].fillna(mode)
          return eddy_categoric
      eddy_mode_imp = mode_imputation(eddy_categoric)
      '''Concatenate the mean and mode imputed columns'''
      #eddy_imputed = pd.concat([eddy_mean_imp, eddy_mode_imp], axis = 1)
      #eddy_imputed.head()
      eddy_categoric.head()
「40]:
           Activity Type
                                         Date
      0 virtual cycling 2020-04-06 18:15:01
        indoor cycling 2020-04-05 17:00:02
      2 virtual cycling 2020-04-05 16:00:01
      3 virtual cycling 2020-04-04 06:59:59
      4 virtual cycling 2020-04-03 18:00:28
                                                 Title
                                                            Time Date_extracted \
      0
                  zwift - tbr knights of suburbia (d)
                                                        00:45:14
                                                                      2020-04-06
      1
                                        indoor cycling
                                                        00:36:17
                                                                      2020-04-05
                                  zwift - ahdr bbq (d)
                                                                      2020-04-05
      2
                                                        00:40:38
         zwift - scott d'aucourt's meetup - tick tock
                                                        01:36:19
                                                                      2020-04-04
      3
             zwift - haute route watopia stage 1 (e)
                                                                      2020-04-03
                                                        00:19:28
```

```
Time_extracted
      0
              18:15:01
      1
              17:00:02
      2
              16:00:01
      3
              06:59:59
      4
              18:00:28
[43]: def mice_imputation_numeric(eddy_numeric):
          iter_imp_numeric = IterativeImputer(GradientBoostingRegressor())
          imputed eddy = iter imp numeric.fit transform(eddy numeric)
          eddy_numeric_imp = pd.DataFrame(imputed_eddy, columns = eddy_numeric.
       →columns, index= eddy numeric.index)
          return eddy_numeric_imp
      eddy_numeric_imp = mice_imputation_numeric(eddy_numeric)
```

C:\Users\Spoorthi\AppData\Roaming\Python\Python37\sitepackages\sklearn\impute_iterative.py:638: ConvergenceWarning:
[IterativeImputer] Early stopping criterion not reached.
 " reached.", ConvergenceWarning)

```
[44]: eddy_numeric_imp.head(10)
```

```
[44]:
                                   Avg HR
          Distance
                    Calories
                                                Max HR
                                                        Avg Speed
                                                                    Max Speed
      0
             27.56
                        479.0
                               149.963530
                                            174.480240
                                                        36.600000
                                                                    56.500000
      1
             14.08
                        398.0
                               149.750049
                                            170.838755
                                                        23.300000
                                                                    30.200000
      2
             23.22
                        431.0
                               150.184801
                                            173.300790
                                                        34.300000
                                                                    54.100000
      3
             50.56
                        838.0
                               137.147297
                                            177.526504
                                                        31.500000
                                                                    59.000000
      4
             10.32
                        218.0
                               151.429885
                                            172.178798
                                                        31.800000
                                                                    68.100000
      5
              7.77
                        129.0
                               139.890536
                                            160.076423
                                                        32.400000
                                                                    52.300000
      6
              8.12
                        191.0
                               155.464285
                                            175.273392
                                                        37.900000
                                                                    51.900000
                                            179.536288
      7
             16.77
                        315.0
                               156.214415
                                                        37.000000
                                                                    63.100000
      8
             30.96
                        527.0
                               152.000000
                                            177.000000
                                                        37.000000
                                                                    56.300000
      9
              8.02
                        468.0
                               146.000000
                                            167.000000
                                                        25.009947
                                                                    37.470998
      10
             27.58
                        498.0
                               152.421547
                                            174.613079
                                                        36.600000
                                                                    64.000000
      11
             36.45
                        598.0
                               147.869685
                                            178.937452
                                                        36.300000
                                                                    55.300000
      12
             30.08
                        654.0
                               161.000000
                                            197.000000
                                                        27.700000
                                                                    71.100000
      13
             17.09
                        334.0
                               158.000000
                                            183.000000
                                                        36.900000
                                                                    57.200000
      14
             20.96
                        374.0
                               154.475216
                                            176.744183
                                                        29.800000
                                                                    57.300000
      15
              0.00
                        223.0
                               115.000000
                                            152.000000
                                                        22.242752
                                                                    33.520983
      16
             12.16
                        235.0
                               151.000000
                                            172.000000
                                                        35.500000
                                                                    49.100000
      17
             15.03
                        982.0
                               159.000000
                                            181.000000
                                                        21.343731
                                                                    41.942773
      18
             30.30
                        537.0
                               158.000000
                                            174.000000
                                                        36.000000
                                                                    55.000000
      19
              2.35
                        161.0
                                            159.000000
                               148.000000
                                                        25.745919
                                                                    40.389172
      20
              8.67
                        518.0
                               145.000000
                                            165.000000
                                                        21.787279
                                                                    36.826110
      21
             20.20
                        356.0
                               145.880431
                                            177.412873
                                                        33.900000
                                                                    53.800000
      22
              8.05
                        469.0
                               143.000000
                                            171.000000
                                                        23.038771
                                                                    36.135163
```

```
23
       54.42
                 1121.0
                          150.000000
                                       187.000000
                                                    28.700000
                                                                55.100000
24
       26.12
                  393.0
                          142.000000
                                       168.000000
                                                    34.600000
                                                                52.900000
25
       17.21
                  267.0
                          150.000000
                                       193.000000
                                                    34.000000
                                                                59.100000
26
        2.01
                  117.0
                          138.000000
                                       155.000000
                                                    25.089648
                                                                41.031486
27
        0.00
                  197.0
                           97.000000
                                       147.000000
                                                    15.061626
                                                                32.910051
28
        5.17
                  352.0
                          149.000000
                                       163.000000
                                                    27.699229
                                                                46.446617
29
        7.70
                          111.000000
                  734.0
                                       166.000000
                                                    22.414017
                                                                43.863097
30
       58.74
                  647.0
                          142.000000
                                       176.000000
                                                    28.900000
                                                                48.900000
                          102.000000
31
        0.00
                  212.0
                                       149.000000
                                                    22.965102
                                                                39.574991
        0.00
                  174.0
                           95.000000
32
                                       139.000000
                                                    21.995880
                                                                37.090371
33
     2200.00
                  537.0
                          107.849410
                                       115.790662
                                                    33.418761
                                                                53.270118
34
     3800.00
                  873.0
                          140.575741
                                       165.901463
                                                    34.866358
                                                                60.694463
35
       11.01
                  628.0
                          146.000000
                                       164.000000
                                                    25.587312
                                                                44.193480
36
       70.53
                  950.0
                          137.000000
                                       175.000000
                                                    28.100000
                                                                45.300000
37
        0.00
                  175.0
                           92.000000
                                       141.000000
                                                    15.172467
                                                                34.438280
38
        0.00
                  142.0
                           90.000000
                                       143.000000
                                                    20.454754
                                                                33.520983
39
     3300.00
                  760.0
                          140.701562
                                       164.514743
                                                    34.439509
                                                                60.861283
40
                  439.0
                          144.000000
        8.01
                                       158.000000
                                                    24.613159
                                                                36.053534
41
     3300.00
                  833.0
                          140.280621
                                       164.520588
                                                    33.087994
                                                                60.861283
42
                  259.0
                          107.000000
                                       142.000000
        0.00
                                                    19.541108
                                                                34.249690
43
        6.58
                  398.0
                          145.000000
                                       162.000000
                                                    27.142091
                                                                46.906383
                          143.000000
                                       157.000000
                                                    23.412964
                                                                37.498884
44
        3.60
                  226.0
                   26.0
                          127.000000
                                       150.000000
                                                    26.800000
                                                                34.700000
45
       15.03
46
       47.21
                 1749.0
                          141.719015
                                       172.539517
                                                    25.200000
                                                                44.600000
                  407.0
                                                                47.833844
47
        5.50
                          153.000000
                                       165.000000
                                                    29.338876
48
        5.01
                  283.0
                          148.000000
                                       167.000000
                                                    28.445677
                                                                49.635744
49
     4850.00
                 1186.0
                          141.863975
                                       160.478879
                                                    34.306358
                                                                60.778102
     Elev Gain
                  Elev Loss
                              Avg Bike Cadence
                                                  Max Bike Cadence
0
     80.000000
                  63.818326
                                      87.000000
                                                         111.000000
1
                                      89.000000
                                                         127.000000
      9.962020
                  11.638373
2
     89.000000
                  77.714031
                                      85.000000
                                                         111.000000
3
    158.000000
                 157.293600
                                      84.000000
                                                         125.000000
4
     92.000000
                  62.952900
                                      92.000000
                                                         116.000000
     24.000000
5
                                      84.000000
                                                         123.000000
                  20.534139
6
     37.000000
                  27.484898
                                      87.000000
                                                         105.000000
7
    136.000000
                                      84.000000
                  97.751029
                                                         98.000000
    102.000000
                                      80.00000
                                                         100.000000
8
                  94.332248
9
     40.000000
                  36.000000
                                      87.638286
                                                         118.855865
10
     80.00000
                  41.660189
                                      89.000000
                                                         113.000000
11
    106.000000
                 105.674302
                                      89.000000
                                                         127.000000
12
    262.000000
                 222.471066
                                      86.000000
                                                         122.000000
13
    134.000000
                 111.107792
                                      88.00000
                                                         106.000000
14
    219.000000
                 201.566641
                                      91.000000
                                                         113.000000
15
     59.459405
                  56.907699
                                      88.110365
                                                         116.845307
16
     31.000000
                  33.743905
                                      81.000000
                                                         111.000000
17
    148.000000
                 164.000000
                                      59.382200
                                                          99.038893
```

18	102.000000	99.443836	85.000000		130.000000		
19	20.000000	4.000000	88.086236		112.028322		
20	50.000000	62.000000	87.898882		119.619542		
21	121.000000	113.161483	81.000000		121.000000		
22	31.000000	29.000000	87.782349		112.342069		
23	220.000000	239.000000	82.000000		115.000000		
24	82.000000	65.304658	84.000000		118.000000		
25	36.000000	35.714088	84.000000		135.000000		
26	21.000000	9.000000	77.323982		97.398333		
27	54.606655	54.027057	72.603103		99.695205		
28	24.000000	34.000000	91.433849		118.626720		
29	312.000000	293.000000	81.148026		129.638151		
30	212.000000	232.000000	82.000000		115.000000		
31	62.514129	53.557044	84.711265		113.440500		
	59.789722	53.557044	89.220055		114.548611		
32	17.842256	19.520512	83.815722		102.596965		
33					95.993992		
34	53.794636	58.316968	79.953787				
35	82.000000	64.000000	88.048948		119.957428		
36	209.000000	225.000000	80.000000		121.000000		
37	54.606655	54.027057	76.287244		103.363495		
38	59.304059	53.557044	89.973125		114.548611		
39	53.794636	56.792723	80.172921		95.993992		
40	11.000000	12.000000	87.578830		121.059698		
41	54.091540	58.382969	80.995568		102.712064		
42	57.750774	54.646943	73.727129		102.901459		
43	40.000000	41.000000	86.882446		121.055062		
44	11.000000	19.000000	78.369187		100.036020		
45	36.000000	28.000000	80.000000		101.000000		
46	184.000000	197.000000	77.581219		102.352431		
47	52.000000	74.000000	88.025064		116.390429		
48	11.000000	19.000000	86.119828		118.179312		
49	52.874905	59.408324	77.232948		90.521635		
	Normalized	Power® (NP®)	Training Stress	Score®	Max Avg Pow	er (20 min)	\
0		191.000000	Č	0.0	J	197.000000	
1		195.000000		43.2		195.000000	
2		192.000000		0.0		198.000000	
3		167.000000		0.0		166.000000	
4		189.000000		0.0		187.722481	
5		179.000000		0.0		161.168372	
6		234.000000		0.0		225.720606	
7		205.000000		0.0		210.000000	
8		188.000000		0.0		189.000000	
9		190.325759		0.0		198.345664	
10		194.000000		0.0		208.000000	
11							
		181.000000		0.0		182.000000	
12		185.000000		0.0		199.000000	

13		222.000000		0.0	220.000000
14		173.000000		0.0	170.000000
15		166.711720		0.0	157.935477
16		215.000000		0.0	200.000000
17		151.260559		0.0	145.216320
18		190.000000		0.0	200.000000
19		176.171439		0.0	173.460274
20		186.001730		0.0	195.603162
21		201.000000		0.0	188.000000
22		191.749302		0.0	197.552215
23		189.000000		128.5	188.000000
24		156.000000		0.0	158.000000
25		214.000000		0.0	160.000000
26		159.191468		0.0	138.770464
27		98.955132		0.0	60.487706
28		209.691909		0.0	207.878251
29		156.079762		0.0	168.644292
30		145.000000		80.4	167.000000
31		154.698627		0.0	157.981895
32		167.484027		0.0	164.062682
33		173.263332		0.0	178.555014
34		174.066312		0.0	181.726086
35		169.749275		0.0	184.329310
36		148.000000		103.9	143.000000
37		98.622069		0.0	57.796188
38		167.204888		0.0	158.193496
39		174.407816			181.896975
				0.0	
40		197.701055		0.0	196.216988
41		173.446961		0.0	181.896975
42		105.752144		0.0	72.206697
43		181.865359		0.0	181.217754
44		175.389803		0.0	164.582384
45		39.000000		1.6	12.000000
46		155.635289		0.0	177.725773
47		204.498035		0.0	
					207.410892
48		195.253527		0.0	187.700323
49		176.218447		0.0	183.894001
	Avg Power	Max Power	Total Strokes	Avg. Swolf	Avg Stroke Rate \
0	181.000000	445.000000	2960.508240	132.138680	31.962284
1	183.000000	623.000000	3179.000000	119.036794	20.539323
2	180.000000	620.000000	2759.521378	128.342000	28.172992
3	152.000000	737.000000	6156.207760	130.895218	23.695961
4	183.000000	647.000000	2049.832566	118.979804	24.735058
5	157.000000	699.000000	1853.213449	124.410299	24.998335
6	228.000000	580.000000	1969.512511	165.408232	32.125085
7	200.000000	383.000000	2386.742740	122.913202	31.716219
			· · · · · - v		· · · · ·

8	178.000000	420.000000	3083.962766	134.864268	31.870291
9	178.764361	498.284441	3766.190849	137.396491	19.977726
10	189.000000	672.000000	2870.696213	127.938412	31.893968
11	171.000000	855.000000	4327.322306	131.285382	31.681410
12	175.000000	744.000000	4226.470815	127.841069	22.426197
13	208.000000	565.000000	2632.426715	125.169338	31.864290
14	154.000000	566.000000	2882.969428	130.188157	22.514978
15	157.105361	401.354164	2797.912428	142.114972	19.652490
16	196.000000	740.000000	1988.389519	121.014855	30.806082
17	103.785243	291.825695	3573.831507	120.448374	12.864848
18	183.000000	708.000000	3172.260825	125.801479	30.991951
19	167.992889	467.570631	2138.075924	139.590650	20.159837
20	174.211711	494.923662	3992.263527	142.795628	19.977295
21	171.000000	812.000000	2776.320954	119.548307	27.363326
22	178.278473	481.474337	3929.558870	138.711188	20.051097
23	164.000000	1039.000000	8772.000000	132.094949	22.080014
24	149.000000	654.000000	3198.762129	133.107473	28.824735
25	154.000000	944.000000	2364.086894	119.053831	27.425183
26	151.971215	232.534682	1914.328260	137.313639	18.137916
27	57.112476	418.397324	1972.948730	117.961021	15.582776
28	199.895527	449.089320	2969.353675	142.871876	20.954748
29	142.255442	537.059595	6937.533508	136.763368	19.684193
30	89.000000	1062.000000	9431.000000	127.674651	21.208859
31	150.473688	494.223859	2711.989075	139.867880	19.663745
32	157.446041	421.922521	2725.876389	137.575201	19.999539
33	161.342410	429.658490	840.000000	63.000000	26.000000
34	161.996149	406.130507	1762.000000	73.000000	28.000000
35	166.099859	489.347507	4855.564371	145.432288	19.980765
36	106.000000	889.000000	10859.000000	137.319118	20.875830
37	57.112476	499.946246	1967.650383	116.238170	16.698779
38	145.373623	384.929688	2760.236641	137.575201	20.024779
39	160.868231	406.130507	1422.000000	70.000000	27.000000
40	178.896611	551.904728	3868.032119	120.669122	20.395557
41	161.280344	482.717784	1285.000000	64.000000	26.000000
42	85.539082	499.946246	2306.329271	121.578501	15.524898
43	170.120722	542.229861	3122.559769	147.846042	20.633188
44	156.714231	336.728090	2242.244391	136.339090	18.632293
45	14.000000	477.000000	2487.000000	162.447764	17.949789
46	145.931017	445.353609	6255.108941	139.126662	19.684589
47	197.384911	434.822191	2843.272288	144.582933	20.884792
48	183.012287	660.486014	2407.016828	112.517329	21.346275
49	162.292287	391.753763	1044.000000	35.000000	27.000000

	Number	of	Laps	Time_sec
0			1.0	2714.0
1			2.0	2177.0
2			1.0	2438.0

_		
3	1.0	5779.0
4	1.0	1168.0
5	1.0	864.0
6	1.0	771.0
7	1.0	1633.0
8	1.0	3013.0
9	9.0	2524.0
10	1.0	2714.0
11	1.0	3619.0
12	1.0	3908.0
13	1.0	1668.0
14	1.0	2533.0
15		
	1.0	2096.0
16	1.0	1233.0
17	16.0	4825.0
18	1.0	3028.0
19	3.0	778.0
20	9.0	2858.0
21	1.0	2143.0
	9.0	2558.0
22		
23	6.0	6834.0
24	1.0	2715.0
25	1.0	1820.0
26	3.0	641.0
27	1.0	2730.0
28	6.0	1705.0
29	1.0	7823.0
30	6.0	7324.0
31	1.0	2503.0
32	1.0	2499.0
33	2.0	2382.0
34	4.0	4058.0
35	12.0	3482.0
36	8.0	9025.0
37	1.0	2766.0
38	1.0	2298.0
39	6.0	3324.0
40	9.0	2448.0
41	3.0	3299.0
42	1.0	2871.0
43	7.0	2099.0
44	4.0	1177.0
45	4.0	2015.0
46	5.0	6749.0
47	6.0	1954.0
48	6.0	1394.0
49	3.0	2780.0

```
[45]: def mice_imputation_categoric(eddy_categoric):
          ordinal_dict={}
          for col in eddy_categoric:
              ordinal_dict[col] = OrdinalEncoder()
              nn vals = np.array(eddy_categoric[col][eddy_categoric[col].notnull()]).
       \rightarrowreshape(-1,1)
              nn_vals_arr = np.array(ordinal_dict[col].fit_transform(nn_vals)).
       \rightarrowreshape(-1,)
              eddy_categoric[col].loc[eddy_categoric[col].notnull()] = nn_vals_arr
          '''Impute the data using MICE with Gradient Boosting Classifier'''
          iter_imp_categoric = IterativeImputer(GradientBoostingClassifier(),_
       →max_iter =5, initial_strategy='most_frequent')
          imputed eddy = iter imp categoric.fit transform(eddy categoric)
          eddy_categoric_imp = pd.DataFrame(imputed_eddy, columns =eddy_categoric.

→columns,index = eddy_categoric.index).astype(int)
          '''Inverse Transform'''
          for col in eddy_categoric_imp.columns:
              oe = ordinal dict[col]
              eddy_arr= np.array(eddy_categoric_imp[col]).reshape(-1,1)
              eddy_categoric_imp[col] = oe.inverse_transform(eddy_arr)
          return eddy_categoric_imp
      #eddy_categoric_imp = mice_imputation_categoric(eddy_categoric)
      #'''Concatenate Numeric and Categoric Training and Test set data '''
      #eddy mice imp = pd.join([eddy numeric imp, eddy categoric imp], axis = 1)
      #eddy_mice_imp.head()
[46]: def Linear_interpolation(eddy_numeric):
          for col in eddy numeric.columns:
              numeric = eddy_numeric.interpolate(method='linear',__
       →limit direction='forward', axis=0).ffill().bfill()
          return(numeric)
      eddy_Linearinterpolation = Linear_interpolation(eddy_numeric)
[47]: print(eddy_Linearinterpolation.head())
[47]:
            Distance Calories Avg HR Max HR Avg Speed Max Speed Elev Gain \
      0
                                 152.0
                                                     36.60
               27.56
                         479.0
                                         177.0
                                                                 56.5
                                                                            0.08
      1
               14.08
                         398.0
                                 152.0
                                         177.0
                                                     23.30
                                                                 30.2
                                                                            84.5
      2
               23.22
                         431.0
                                 152.0
                                                     34.30
                                                                 54.1
                                                                            89.0
                                         177.0
               50.56
                                                                 59.0
      3
                         838.0
                                 152.0
                                         177.0
                                                     31.50
                                                                           158.0
      4
               10.32
                         218.0
                                 152.0
                                         177.0
                                                     31.80
                                                                 68.1
                                                                            92.0
      1135
                3.83
                         118.0
                                 144.0
                                         153.0
                                                     24.60
                                                                 31.4
                                                                             2.0
                1.84
                         153.0
                                 168.0
                                                     23.65
                                                                 33.2
                                                                             1.0
      1136
                                         183.0
                                                                 35.0
      1137
                8.13
                         198.0
                                 125.0
                                         147.0
                                                     22.70
                                                                             2.0
      1138
               35.83
                        1725.0
                                 125.0
                                         186.0
                                                     17.40
                                                                 35.0
                                                                           180.0
```

1139	411.00	98.0	125.0	186.	. 0	17.	40	35.0	180	0.0	
	Elev Loss	Avg Bike	Cadence	e Max	Bike	Caden	.ce Noi	rmalized	Power®	(NP®) \
0	36.0	0	87.0			111				191.	
1	36.0		89.0			127				195.	
2	36.0		85.0			111				192.	
3	36.0		84.0			125				167.	
4	36.0		92.0			116				189.	
	50.0		32.0	,		110	.0			105.	O
 1135	 2.5		80.0)	•••	92	0		•••	165.	Λ
1136	3.0		84.0			103				165.	
1137	2.0		88.0			115				165.	
1137	170.0		88.0			115				165.	
1139	10.0		88.0	,		115	.0			165.	U
	Training St	ress Scor	re® Max	. Avg F	Power	(20 m	in) Av	g Power	Max Po	wer	\
0	<u> </u>		0.0	O			7.0	181.0		5.0	
1		43	3.2			19	5.0	183.0		23.0	
2			0.0				8.0	180.0		20.0	
3		(0.0				6.0	152.0		37.0	
4			0.0				7.0	183.0		7.0	
						•••			••		
1135		(0.0			13	6.0	121.0	52	26.0	
1136			0.0				6.0	121.0		26.0	
1137			0.0				6.0	121.0		26.0	
1138			0.0				6.0	121.0		26.0	
1139			0.0				6.0	121.0		26.0	
	Total Stroke	es Avg.	Swolf	Avg St	roke	Rate	Numbei	of Lap	s Time_	sec	
0	3179.00000	00	63.0			26.0		1.0	271	4.0	
1	3179.00000	00	63.0			26.0		2.0	217	7.0	
2	3433.2272	73	63.0			26.0		1.0	243	8.0	
3	3687.45454	45	63.0			26.0		1.0	577	9.0	
4	3941.68183	18	63.0			26.0		1.0		8.0	
•••	•••				•••		•••	•••			
1135	750.0000	00	51.2			23.6		1.0	55	9.0	
1136	1308.50000		52.4			24.2		1.0		27.0	
1137	1867.0000		53.6			24.8		1.0		1.0	
1138	1075.50000		54.8			25.4		1.0		26.0	
1139	284.0000		56.0			26.0		1.0		84.0	

[1140 rows x 20 columns]

[43]: print(eddy_numeric.head())

[43]: Distance Calories Avg HR Max HR Avg Speed Max Speed Elev Gain \
0 27.56 479.0 NaN NaN 36.6 56.5 80.0

1	14.08	398.0	NaN	NaN	23.3		30.2	NaN	I	
2	23.22	431.0	NaN	NaN	34.3		54.1	89.0		
3	50.56	838.0	NaN	NaN	31.5		59.0	158.0		
4	10.32	218.0	NaN	NaN	31.8		68.1	92.0		
	10.02						00.1	02.0	,	
 1135	 3.83	118.0	 144.0	 153.0	 24.6	•••	31.4	2.0	١	
1136	1.84	153.0	168.0	183.0	NaN		NaN	1.0		
1137	8.13	198.0	125.0	147.0	22.7		35.0	2.0		
1137	35.83	1725.0	NaN	186.0	17.4		NaN	180.0		
1139	411.00	98.0	NaN	NaN	NaN		NaN	NaN		
1139	411.00	90.0	IValV	Ivaiv	IValV		IValV	Ivar	1	
	Eler Iegg	Arra Drilea	Codonas	Morr Dilro	Codonas	Mann	alimad	Dorrows (N	וש@/	\
0		Avg bike		Max Bike		NOTIII	arized			١
0	NaN		87.0		111.0				91.0	
1	NaN		89.0		127.0				95.0	
2	NaN		85.0		111.0			19	2.0	
3	NaN		84.0		125.0			16	67.0	
4	NaN		92.0		116.0			18	39.0	
	•••			•••				•••		
1135	NaN		80.0		92.0				NaN	
1136	3.0		NaN		NaN				NaN	
1137	2.0		88.0		115.0				NaN	
1138	170.0		NaN		NaN				NaN	
	10.0		NaN		NaN				NaN	
									IValv	
1139	2000		wan							
1139		trass Sco		Aug Pouer		Λνα	Pouer	May Doug	·r \	
	Training St		re® Max	Avg Power	(20 min)	_				
0		(re® Max	Avg Power	(20 min) 197.0		181.0	445.	0	
0 1		4;	re® Max 0.0 3.2	Avg Power	(20 min) 197.0 195.0		181.0 183.0	445. 623.	0	
0 1 2		4; (re® Max 0.0 3.2	Avg Power	(20 min) 197.0 195.0 198.0		181.0 183.0 180.0	445. 623. 620.	0 0	
0 1 2 3		4; (re® Max 0.0 3.2 0.0	Avg Power	(20 min) 197.0 195.0 198.0 166.0		181.0 183.0 180.0 152.0	445. 623. 620. 737.	0 0 0 0	
0 1 2		4; (re® Max 0.0 3.2	Avg Power	(20 min) 197.0 195.0 198.0		181.0 183.0 180.0	445. 623. 620.	0 0 0 0	
0 1 2 3 4		(4; ((me® Max 0.0 3.2 0.0 0.0	Avg Power	(20 min) 197.0 195.0 198.0 166.0 NaN		181.0 183.0 180.0 152.0 183.0	445. 623. 620. 737. 647.	0 0 0 0	
0 1 2 3 4 		(4; ((re® Max 0.0 3.2 0.0	Avg Power	(20 min) 197.0 195.0 198.0 166.0		181.0 183.0 180.0 152.0	445. 623. 620. 737. 647.	0 0 0 0 0	
0 1 2 3 4		 (1) (1) (1) (1) (1)	me® Max 0.0 3.2 0.0 0.0	Avg Power	(20 min) 197.0 195.0 198.0 166.0 NaN		181.0 183.0 180.0 152.0 183.0	445. 623. 620. 737. 647.	0 0 0 0 0	
0 1 2 3 4 		() 4; () () 	me® Max 0.0 3.2 0.0 0.0 0.0	Avg Power	(20 min) 197.0 195.0 198.0 166.0 NaN 		181.0 183.0 180.0 152.0 183.0 NaN	445. 623. 620. 737. 647.	0 0 0 0 0	
0 1 2 3 4 1135 1136		 ()	me® Max 0.0 3.2 0.0 0.0 0.0 0.0	Avg Power	(20 min) 197.0 195.0 198.0 166.0 NaN 		181.0 183.0 180.0 152.0 183.0 NaN	445. 623. 620. 737. 647.	0 0 0 0 0 0	
0 1 2 3 4 1135 1136 1137		 () () () () () ()	Max 0.0 3.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Avg Power	(20 min) 197.0 195.0 198.0 166.0 NaN NaN		181.0 183.0 180.0 152.0 183.0 NaN NaN	445. 623. 620. 737. 647.	0 0 0 0 0 0 0 an an an	
0 1 2 3 4 1135 1136 1137 1138		 () () () () () ()	Max 0.0 3.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Avg Power	(20 min) 197.0 195.0 198.0 166.0 NaN NaN NaN		181.0 183.0 180.0 152.0 183.0 NaN NaN NaN	445. 623. 620. 737. 647.	0 0 0 0 0 0 0 an an an	
0 1 2 3 4 1135 1136 1137 1138		(Max 0.0 3.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Avg Power	(20 min) 197.0 195.0 198.0 166.0 NaN NaN NaN NaN NaN		181.0 183.0 180.0 152.0 183.0 NaN NaN NaN NaN	445. 623. 620. 737. 647.	0 0 0 0 0 0 0 an an an	
0 1 2 3 4 1135 1136 1137 1138 1139	Training St	4. () () () () () () () () ()	re® Max 0.0 3.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0		(20 min) 197.0 195.0 198.0 166.0 NaN NaN NaN NaN NaN NaN NaN		181.0 183.0 180.0 152.0 183.0 NaN NaN NaN NaN	445. 623. 620. 737. 647	0 0 0 0 0 0 1 1 1 1 1 1 1 1 1	
0 1 2 3 4 1135 1136 1137 1138 1139	Training St	43 () () () () () () () () () () () () ()	re® Max 0.0 3.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0		(20 min) 197.0 195.0 198.0 166.0 NaN NaN NaN NaN NaN NaN NaN		181.0 183.0 180.0 152.0 183.0 NaN NaN NaN NaN	445. 623. 620. 737. 647	0 0 0 0 0 0 an an an an	
0 1 2 3 4 1135 1136 1137 1138 1139	Training St	4: 4: () () () () () () () () () () () () ()	re® Max 0.0 3.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0		(20 min) 197.0 195.0 198.0 166.0 NaN NaN NaN NaN NaN NaN NaN NaN		181.0 183.0 180.0 152.0 183.0 NaN NaN NaN NaN Of Laps 1.0	445. 623. 620. 737. 647	0 0 0 0 0 0 an an an an	
0 1 2 3 4 1135 1136 1137 1138 1139	Training St	4: 4: () () () () () () () () () () () () ()	re® Max 0.0 3.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 NaN NaN NaN		(20 min) 197.0 195.0 198.0 166.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN		181.0 183.0 180.0 152.0 183.0 NaN NaN NaN NaN Of Laps 1.0 2.0	445. 623. 620. 737. 647 Na Na Na Na Na 2714. 0 2177. 2438.	0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	
0 1 2 3 4 1135 1136 1137 1138 1139	Training St	4: 4: 6 6 7 8 8 8 8 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8	re® Max 0.0 3.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0		(20 min) 197.0 195.0 198.0 166.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN		181.0 183.0 180.0 152.0 183.0 NaN NaN NaN NaN Of Laps 1.0 2.0 1.0	445. 623. 620. 737. 647	0 0 0 0 0 0 an an an an an an an an	
0 1 2 3 4 1135 1136 1137 1138 1139	Training St	4: 4: () () () () () () () () () () () () ()	re® Max 0.0 3.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 NaN NaN NaN		(20 min) 197.0 195.0 198.0 166.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN		181.0 183.0 180.0 152.0 183.0 NaN NaN NaN NaN Of Laps 1.0 2.0 1.0	445. 623. 620. 737. 647	0 0 0 0 0 0 an an an an an an an an	
0 1 2 3 4 1135 1136 1137 1138 1139 0 1 2 3 4 	Training St	4: 4: () () () () () () () () () () () () ()	re® Max 0.0 3.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0		(20 min) 197.0 195.0 198.0 166.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN		181.0 183.0 180.0 152.0 183.0 NaN NaN NaN NaN Of Laps 1.0 2.0 1.0 1.0	445. 623. 620. 737. 647 Na	0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0	
0 1 2 3 4 1135 1136 1137 1138 1139 0 1 2 3 4 1135	Training St Total Strol 3179 1 1 1 750	43 44 46 47 48 48 48 48 48 48 48 48 48 48 48 48 48	re® Max 0.0 3.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0		(20 min) 197.0 195.0 198.0 166.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN		181.0 183.0 180.0 152.0 183.0 NaN NaN NaN NaN Of Laps 1.0 2.0 1.0 1.0 NaN	445. 623. 620. 737. 647	0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0	
0 1 2 3 4 1135 1136 1137 1138 1139 0 1 2 3 4 	Training St Total Strol 3179 1 1 1 750	4: 4: 6 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	re® Max 0.0 3.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0		(20 min) 197.0 195.0 198.0 166.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN		181.0 183.0 180.0 152.0 183.0 NaN NaN NaN NaN Of Laps 1.0 2.0 1.0 1.0	445. 623. 620. 737. 647	0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0	

```
[1140 rows x 20 columns]
[46]: from sklearn.preprocessing import MinMaxScaler#when imputing a knn data must be
      →normalised to reduce the bias in the imputation
      scaler = MinMaxScaler()
      scaling = pd.DataFrame(scaler.fit transform(eddy numeric), columns = ____
       →numeric_cols)
      eddy.head()
[46]:
           Activity Type
                                         Date
      0 virtual cycling 2020-04-06 18:15:01
        indoor cycling 2020-04-05 17:00:02
      2 virtual cycling 2020-04-05 16:00:01
      3 virtual cycling 2020-04-04 06:59:59
      4 virtual cycling 2020-04-03 18:00:28
                                                 Title Distance Calories
                                                                                 Time \
                                                                      479.0 00:45:14
      0
                  zwift - tbr knights of suburbia (d)
                                                           27.56
      1
                                        indoor cycling
                                                           14.08
                                                                      398.0
                                                                            00:36:17
                                 zwift - ahdr bbg (d)
                                                           23.22
                                                                      431.0 00:40:38
      3 zwift - scott d'aucourt's meetup - tick tock
                                                           50.56
                                                                      838.0 01:36:19
             zwift - haute route watopia stage 1 (e)
      4
                                                           10.32
                                                                      218.0 00:19:28
                        Avg Speed Max Speed Elev Gain Elev Loss
         Avg HR
                 Max HR
                              36.6
                                          56.5
                                                     80.0
                                                                 NaN
      0
            NaN
                    NaN
      1
            NaN
                    NaN
                              23.3
                                          30.2
                                                      NaN
                                                                 NaN
                              34.3
                                          54.1
                                                     89.0
      2
            NaN
                    NaN
                                                                 NaN
      3
            NaN
                    NaN
                              31.5
                                          59.0
                                                    158.0
                                                                 NaN
            NaN
                    NaN
                              31.8
                                          68.1
                                                     92.0
                                                                 NaN
                           Max Bike Cadence Normalized Power® (NP®)
         Avg Bike Cadence
      0
                     87.0
                                       111.0
                                                                 191.0
                     89.0
      1
                                       127.0
                                                                195.0
                     85.0
                                                                 192.0
      2
                                       111.0
      3
                     84.0
                                       125.0
                                                                167.0
      4
                     92.0
                                       116.0
                                                                189.0
         Training Stress Score® Max Avg Power (20 min)
                                                          Avg Power
                                                                    Max Power \
      0
                            0.0
                                                   197.0
                                                              181.0
                                                                          445.0
                           43.2
      1
                                                   195.0
                                                              183.0
                                                                          623.0
      2
                            0.0
                                                   198.0
                                                              180.0
                                                                          620.0
      3
                            0.0
                                                   166.0
                                                              152.0
                                                                          737.0
```

1138

1139

4

NaN

284.0

NaN

56.0

NaN

26.0

NaN

NaN

7426.0

634.0

NaN

183.0

647.0

0.0

```
Total Strokes
                         Avg. Swolf
                                       Avg Stroke Rate
                                                         Number of Laps Date_extracted
      0
                                                                     1.0
                    NaN
                                 NaN
                                                    NaN
                                                                              2020-04-06
      1
                 3179.0
                                 NaN
                                                    NaN
                                                                     2.0
                                                                              2020-04-05
      2
                    NaN
                                 NaN
                                                    NaN
                                                                     1.0
                                                                              2020-04-05
      3
                    NaN
                                 NaN
                                                    NaN
                                                                     1.0
                                                                              2020-04-04
                    NaN
                                 NaN
                                                    NaN
                                                                     1.0
                                                                              2020-04-03
        Time_extracted
                         Time_sec
      0
                            2714.0
               18:15:01
      1
               17:00:02
                            2177.0
      2
               16:00:01
                            2438.0
      3
               06:59:59
                            5779.0
      4
               18:00:28
                            1168.0
[48]: def knn imputation():
           imputer = KNNImputer(n_neighbors = 23)
           imputed_KNN = pd.DataFrame(imputer.fit_transform(eddy_numeric),columns =__
       →numeric cols)
          return imputed_KNN
      knn_imputation().head()
[48]:
                       Calories
                                                                        Max Speed
            Distance
                                       Avg HR
                                                    Max HR
                                                            Avg Speed
      0
                27.56
                                                            36.600000
                                                                        56.500000
                           479.0
                                  141.478261
                                               165.956522
      1
                14.08
                           398.0
                                  144.391304
                                               169.260870
                                                            23.300000
                                                                        30.200000
      2
                23.22
                           431.0
                                  145.652174
                                               168.739130
                                                            34.300000
                                                                        54.100000
      3
                           838.0
                                                            31.500000
                50.56
                                  144.217391
                                               169.173913
                                                                        59.000000
      4
                10.32
                           218.0
                                  146.043478
                                               167.086957
                                                            31.800000
                                                                        68.100000
      1135
                 3.83
                           118.0
                                  144.000000
                                               153.000000
                                                            24.600000
                                                                        31.400000
                           153.0
                                  168.000000
                                               183.000000
                                                            25.752174
      1136
                 1.84
                                                                        42.965217
      1137
                 8.13
                           198.0
                                  125.000000
                                               147.000000
                                                            22.700000
                                                                        35.000000
      1138
                35.83
                          1725.0
                                  144.565217
                                               186.000000
                                                            17.400000
                                                                        47.004348
                                                                        44.665217
      1139
               411.00
                            98.0
                                  142.304348
                                               160.782609
                                                            26.265217
              Elev Gain
                                      Avg Bike Cadence
                                                          Max Bike Cadence
                           Elev Loss
      0
                           51.391304
              80.00000
                                              87.000000
                                                                 111.000000
      1
              71.086957
                           32.826087
                                              89.000000
                                                                 127.000000
      2
              89.000000
                           28.304348
                                              85.000000
                                                                 111.000000
      3
             158.000000
                          156.391304
                                                                 125.000000
                                              84.000000
      4
              92.000000
                           13.478261
                                              92.000000
                                                                 116.000000
      1135
               2.000000
                            4.739130
                                              80.000000
                                                                  92.000000
      1136
                                                                 108.347826
               1.000000
                            3.000000
                                              82.391304
      1137
               2.000000
                            2.000000
                                              88.000000
                                                                 115.000000
      1138
             180.000000
                          170.000000
                                              77.000000
                                                                 118.043478
      1139
              12.478261
                           10.000000
                                              81.565217
                                                                 108.434783
```

```
Normalized Power® (NP®)
                                 Training Stress Score®
                                                           Max Avg Power (20 min)
0
                    191.000000
                                                                        197.000000
1
                    195.000000
                                                     43.2
                                                                        195.000000
2
                    192.000000
                                                      0.0
                                                                        198.000000
3
                                                      0.0
                    167.000000
                                                                        166.000000
4
                    189.000000
                                                      0.0
                                                                        174.782609
1135
                    184.478261
                                                      0.0
                                                                        177.391304
                                                      0.0
1136
                    179.956522
                                                                        169.347826
1137
                                                      0.0
                    192.739130
                                                                        167.173913
                                                      0.0
1138
                    157.000000
                                                                        162.826087
1139
                    183.739130
                                                      0.0
                                                                        180.782609
       Avg Power
                    Max Power
                                Total Strokes
                                                Avg. Swolf
                                                             Avg Stroke Rate
0
      181.000000
                   445.000000
                                  3235.521739
                                                 55.173913
                                                                    25.217391
1
      183.000000
                   623.000000
                                  3179.000000
                                                 45.260870
                                                                    27.173913
2
      180.000000
                   620.000000
                                  2912.086957
                                                 61.869565
                                                                    25.521739
3
      152.000000
                   737.000000
                                  6595.869565
                                                 65.391304
                                                                    25.173913
4
      183.000000
                   647.000000
                                  1620.217391
                                                 60.608696
                                                                    25.217391
1135
      167.304348
                   573.391304
                                   750.000000
                                                 60.608696
                                                                    25.130435
1136
      163.652174
                   554.608696
                                   904.913043
                                                 60.608696
                                                                    25.217391
1137
                                                                    26.913043
      174.130435
                   622.347826
                                  1867.000000
                                                 52.956522
1138
      125.608696
                   772.695652
                                  8286.652174
                                                 63.565217
                                                                    25.434783
1139
      166.956522
                                                 56.000000
                                                                    26.000000
                   565.478261
                                   284.000000
      Number of Laps
                       Time_sec
0
             1.000000
                          2714.0
1
             2.000000
                          2177.0
2
             1.000000
                          2438.0
3
             1.000000
                          5779.0
4
                          1168.0
             1.000000
1135
             2.260870
                           559.0
1136
                           627.0
             2.304348
1137
             3.956522
                          1291.0
                         7426.0
1138
            12.173913
1139
                           634.0
             2.130435
[1140 rows x 20 columns]
```

[IIIO IOWE A 20 COLUMNE]

```
[49]: eddy = knn_imputation()
eddy.isna().any()
```

[49]: Distance False
Calories False
Avg HR False

```
Max HR
                                  False
      Avg Speed
                                  False
      Max Speed
                                  False
      Elev Gain
                                  False
      Elev Loss
                                  False
      Avg Bike Cadence
                                  False
      Max Bike Cadence
                                  False
      Normalized Power® (NP®)
                                  False
      Training Stress Score®
                                  False
      Max Avg Power (20 min)
                                  False
      Avg Power
                                  False
      Max Power
                                  False
      Total Strokes
                                  False
      Avg. Swolf
                                  False
      Avg Stroke Rate
                                  False
      Number of Laps
                                  False
      Time_sec
                                  False
      dtype: bool
[50]: eddy.isna().sum()
                                  0
```

```
[50]: Distance
      Calories
                                   0
      Avg HR
                                   0
      Max HR
                                   0
      Avg Speed
                                   0
      Max Speed
                                   0
      Elev Gain
                                   0
      Elev Loss
                                   0
      Avg Bike Cadence
                                   0
      Max Bike Cadence
                                   0
      Normalized Power® (NP®)
                                   0
      Training Stress Score®
                                   0
      Max Avg Power (20 min)
                                   0
      Avg Power
                                   0
      Max Power
      Total Strokes
                                   0
      Avg. Swolf
                                   0
                                   0
      Avg Stroke Rate
      Number of Laps
                                   0
      Time_sec
                                   0
      dtype: int64
```

```
[64]: plt.figure(figsize = (4,8))
sns.boxplot(y = eddy)
```

[64]: <matplotlib.axes._subplots.AxesSubplot at 0x21c9e01bba8>


```
[51]: def out_iqr(eddy , column):
    global lower,upper
    q25, q75 = np.quantile(eddy[column], 0.25), np.quantile(eddy[column], 0.75)
# calculate the IQR
iqr = q75 - q25
# calculate the outlier cutoff
cut_off = iqr * 1.5
# calculate the lower and upper bound value
lower, upper = q25 - cut_off, q75 + cut_off
```

```
print('The IQR is',iqr)
print('The lower bound value is', lower)
print('The upper bound value is', upper)
# Calculate the number of records below and above lower and above bound_
\top value respectively
df1 = eddy[eddy[column] > upper]
df2 = eddy[eddy[column] < lower]
return print('Total number of outliers are', df1.shape[0]+ df2.shape[0])</pre>
```

```
[52]: out_iqr(eddy,'Distance')
```

The IQR is 434.7225
The lower bound value is -644.80625
The upper bound value is 1094.08375
Total number of outliers are 261

```
[53]: plt.figure(figsize = (10,6))
sns.distplot(eddy.Distance, kde=False)
plt.axvspan(xmin = lower,xmax= eddy.Distance.min(),alpha=0.2, color='red')
plt.axvspan(xmin = upper,xmax= eddy.Distance.max(),alpha=0.2, color='red')
```

[53]: <matplotlib.patches.Polygon at 0x165c256cd30>


```
[]: #Data Frame without outliers
#df_new = eddy[(eddy['Distance'] < upper) | (eddy['Distance'] > lower)]
```

```
[54]: plt.figure(figsize = (10,5))
sns.distplot(eddy['Max Power'])
```

[54]: <matplotlib.axes._subplots.AxesSubplot at 0x165c46e8c88>


```
[56]: def out_std(eddy, column):
    global lower,upper
    # calculate the mean and standard deviation of the data frame
    data_mean, data_std = eddy[column].mean(), eddy[column].std()
    # calculate the cutoff value
    cut_off = data_std * 3
    # calculate the lower and upper bound value
    lower, upper = data_mean - cut_off, data_mean + cut_off
    print('The lower bound value is', lower)
    print('The upper bound value is', upper)
    # Calculate the number of records below and above lower and above bound_
    value respectively
    df1 = eddy[eddy[column] > upper]
    df2 = eddy[eddy[column] < lower]
    return print('Total number of outliers are', df1.shape[0]+ df2.shape[0])</pre>
```

```
[57]: out_std(eddy,'Max Power')
```

The lower bound value is 317.23750802226687 The upper bound value is 1006.5489145559156

Total number of outliers are 18

```
[58]: plt.figure(figsize = (10,5))
    sns.distplot(eddy['Max Power'], kde=False)
    plt.axvspan(xmin = lower,xmax= eddy['Max Power'].min(),alpha=0.2, color='red')
    plt.axvspan(xmin = upper,xmax= eddy['Max Power'].max(),alpha=0.2, color='red')
```

[58]: <matplotlib.patches.Polygon at 0x165c2543a90>


```
[]: #Data Frame without outliers #df_new = eddy[(eddy['Max Power'] < upper) / (eddy['Max Power'] > lower)]
```

```
[59]: #Zscore
plt.figure(figsize = (10,5))
sns.distplot(eddy['Elev Gain'])
```

[59]: <matplotlib.axes._subplots.AxesSubplot at 0x165c4d4c828>


```
[60]: def out_zscore(eddy):
    global outliers,zscore
    outliers = []
    zscore = []
    threshold = 3
    mean = np.mean(eddy)
    std = np.std(eddy)
    for i in eddy:
        z_score= (i - mean)/std
        zscore.append(z_score)
        if np.abs(z_score) > threshold:
            outliers.append(i)
    return print("Total number of outliers are",len(outliers))
```

```
[62]: out_zscore(eddy['Elev Gain'])
```

Total number of outliers are 35

```
[63]: plt.figure(figsize = (10,5))
sns.distplot(zscore)
plt.axvspan(xmin = 3 ,xmax= max(zscore),alpha=0.2, color='red')
```

[63]: <matplotlib.patches.Polygon at 0x165c4d15128>


```
[]: #df_new = eddy[(eddy['Calories'] < 3) / (eddy['Calories'] > -3)]

[64]: #if
#Import necessary libraries
```

```
from sklearn.ensemble import IsolationForest
#The required columns
cols = ['Distance', 'Avg HR', 'Max HR']
#Plotting the sub plot
fig, axs = plt.subplots(1, 3, figsize=(20, 5), facecolor='w', edgecolor='k')
axs = axs.ravel()
for i, column in enumerate(cols):
    isolation_forest = IsolationForest(contamination='auto')
    isolation_forest.fit(eddy[column].values.reshape(-1,1))
    xx = np.linspace(eddy[column].min(), eddy[column].max(), len(eddy)).
 \rightarrowreshape(-1,1)
    anomaly_score = isolation_forest.decision_function(xx)
    outlier = isolation_forest.predict(xx)
    axs[i].plot(xx, anomaly_score, label='anomaly score')
    axs[i].fill_between(xx.T[0], np.min(anomaly_score), np.max(anomaly_score),
                     where=outlier==-1, color='r',
                     alpha=.4, label='outlier region')
    axs[i].legend()
    axs[i].set_title(column)
```



```
[65]: #DB scan
      X = eddy[['Distance','Max HR']].values
      db = DBSCAN(eps=3.0, min_samples=10).fit(X)
      labels = db.labels_
[66]: pd.Series(labels).value_counts()#-1 represents outliers
[66]: -1
            546
       0
            500
       1
             26
       3
             24
       5
             18
       2
             14
       6
              6
              6
      dtype: int64
[67]: plt.figure(figsize=(12,12))#red outliers
      unique_labels = set(labels)
      colors = ['blue', 'red']
      for color,label in zip(colors, unique_labels):
          sample_mask = [True if 1 == label else False for 1 in labels]
          plt.plot(X[:,0][sample_mask], X[:, 1][sample_mask], 'o', color=color);
      plt.xlabel('Distance');
      plt.ylabel('Max HR');
```



```
[69]: #lofLocal Outlier Factor Method
    clf = LocalOutlierFactor(n_neighbors=50, contamination='auto')
    X = eddy[['Avg Speed','Max Speed']].values
    y_pred = clf.fit_predict(X)

[70]: plt.figure(figsize=(12,12)) #red outliers ,blue nrml records
    # plot the level sets of the decision function

    in_mask = [True if l == 1 else False for l in y_pred]
    out_mask = [True if l == -1 else False for l in y_pred]

    plt.title("Local Outlier Factor (LOF)")
    # inliers
    a = plt.scatter(X[in_mask, 0], X[in_mask, 1], c = 'blue',
```


[]:[