数字逻辑

第三章 组合逻辑电路分析与设计

北京理工大学 计算机学院

张磊

leizhang@bit.edu.cn

本章内容

- 二. 组合逻辑功能模块
 - □ 1. 组合功能模块
 - □ 2. 基本逻辑函数
 - □ 3. 译码和译码器
 - □ 4. 基于译码器的组合电路
 - □ 5. 编码和编码器
 - □ 6. 选择和复用器
 - □ 7. 基于复用器的组合电路

4. 编码和编码器

□译码

- \rightarrow 输入n位, 输出m $(n \le m \le 2^n)$ 位
- 例子:輸入二进制码,在輸出中将对应位置1
 - **>010→00000100**

□ 编码

- \rightarrow 输入最大m $(n \le m \le 2^n)$ 位,输出n位
- 例子: 输入中某位为1, 输出中编码出位置
 - > 00000100 → 010

□ 译码和编码互逆

4. 编码和编码器

□ 编码

- \rightarrow 输入最大m $(n \le m \le 2^n)$ 位,输出n位
- 例子: 输入中某位为1, 输出中编码出相应位
 - $> 00000100 \rightarrow 010$

□ 编码器

- > 实现编码功能的电路
- ▶ m-n 编码器
- > 例子:
 - 输入: 只有1位是1的输入, 如 00000100
 - 输出: 1的位置的编码,如010

- □ 例子: 十进制-BCD编码器
 - ➤ 输入: 10位代表从0到9, (D₀, ..., D๑)
 - ▶ 輸出: 4位BCD码
 - ▶ 函数: 若输入位 D_i 是1, 则输出(A₃, A₂, A₁, A₀) 是i的BCD码
- □ 如何得到电路?
 - > 真值表 > 卡诺图优化 > 优化
 - ▶ 但是10个输入?

- □ 思考: A_i 什么时候是1?
 - ➤ i的二进制中Ai位是1
 - ➤ 输入D_i 是布尔方程A_i 的一项

十进制符号	BCD码	十进制符号	BCD码
0	0000	5	0101
1	0001	6	0110
2	0010	7	0111
3	0011	8	1000
4	0100	9	1001

- □ 思考: A_i 什么时候是1?
 - ➤ i的二进制中Ai位是1
 - ➤ 输入D_i 是布尔方程A_i 的一项
- □ 布尔方程:
 - $> A_3 = D_8 + D_9$
 - \rightarrow A₂ = D₄ + D₅ + D₆ + D₇
 - $> A_1 = D_2 + D_3 + D_6 + D_7$
 - $> A_0 = D_1 + D_3 + D_5 + D_7 + D_9$

$$A_0 = D_1 + D_3 + D_5 + D_7$$

$$A_1 = 1$$

$$A_2 = ?$$

□例子: 八-二进制编码器

- ▶ 輸入: 八进制数字 (D₀, ..., D₀)
- > 输出: 二进制

	Inputs									Output	s
D ₇	D_6	D_5	D_4	D_3	D_2	D ₁	D_0		A ₂	A 1	A 0
0	0	0	0	0	0	0	1		0	0	0
0	0	0	0	0	0	1	0		0	0	1
0	0	0	0	0	1	0	0		0	1	0
0	0	0	0	1	0	0	0		0	1	1
0	0	0	1	0	0	0	0		1	0	0
0	0	1	0	0	0	0	0		1	0	1
0	1	0	0	0	0	0	0		1	1	0
1	0	0	0	0	0	0	0		1	1	1

- □ 如果输入中不止一位为1
 - > 如01001000
 - > 则编码器输出: 多个位编码的或
 - > 不能正常工作

- □ 如果输入中不止一位为1
 - > 如01001000
 - > 则编码器输出: 多个位编码的或
 - > 不能正常工作
- □ 怎么办?
- □ 思想:选择最重要的输入位编码
 - > 能接受所有的输入组合
 - > 能产生有意义的输出
 - > 优先编码器

□ 例子: 4输入优先编码器

➤ 输入: (D₃, D₂, D₁, D₀)

▶ 输出: A₁, A₀ 和 V, V表示是否有1出现

	Ir	nputs	Outputs			
D_3	D_2	D ₁	D ₀	A ₁	\mathbf{A}_{0}	V
0	0	0	0	X	X	0
0	0	0	1	0	0	1
0	0	1	X	0	1	1
0	1	X	X	1	0	1
1	X	X	X	1	1	1

□ X表示0或1,表条目对应乘积项而不是最小项

□ 例子: 4输入优先编码器

>优化及电路设计

□ 例子: 4输入优先编码器

>优化及电路

□ 例子: 5输入优先编码器

➤ 输入: (D₄, D₃, D₂, D₁, D₀)

▶ 输出: A₂, A₁, A₀ 和 V, V表示是否有1出现

No. of Min-	Inputs					Outputs			
terms/Row	D4	D4 D3 D2 D1 D0			D0	A2	A1	A0	V
1	0	0	0	0	0	X	X	X	0
1	0	0	0	0	1	0	0	0	1
2	0	0	0	1	X	0	0	1	1
4	0	0	1	X	X	0	1	0	1
8	0	1	X	X	X	0	1	1	1
16	1	X	X	X	X	1	0	0	1

□ X表示0或1,表条目对应乘积项而不是最小项

□如何得到电路?

- > 真值表 > 卡诺图优化 > 优化
- > 但是5个输入?
- □ 可以直接从表中读出方程,并进行优化.
- □ 观察法

No. of Min-	Inputs					Outputs			
terms/Row	D4	D3	D2	D1	D0	A2	A1	A0	V
1	0	0	0	0	0	X	X	X	0
1	0	0	0	0	1	0	0	0	1
2	0	0	0	1	X	0	0	1	1
4	0	0	1	X	X	0	1	0	1
8	0	1	X	X	X	0	1	1	1
16	1	X	X	X	X	1	0	0	1

$$A_{2} = D_{4}$$

$$A_{1} = \overline{D}_{4}D_{3} + \overline{D}_{4}\overline{D}_{3}D_{2} = \overline{D}_{4}F_{1}, F_{1} = (D_{3} + D_{2})$$

$$A_{0} = \overline{D}_{4}D_{3} + \overline{D}_{4}\overline{D}_{3}\overline{D}_{2}D_{1} = \overline{D}_{4}(D_{3} + \overline{D}_{2}D_{1})$$

$$V = D_{4} + F_{1} + D_{1} + D_{0}$$

6. 多路复用器

- □选择
 - > 计算机系统的关键功能模块
- □ 执行选择的电路:
 - > 输入
 - >一组待选择的数据
 - >一组用来进行选择的选择信号
 - > 一个输出
- □ 执行选择的逻辑电路被称为多路复用器

□ 多路复用器: 从输入选择信息并输出

- > 输入
 - ▶ 待选择数据: 最多 2ⁿ 个输入 (I₂ⁿ _{- 1}, ... I₀)
 - ▶ 选择信号: n个, (S_{n-1}, ... S₀)
- ▶ 1个输出: Y
 I₀
 I₁
 I₂
 I₂
 I₂
 I₂
 I₃
 I₄
 I₄
 I₂
 I₂
 I₃
 I₄
 I₄
 I₄
 I₈
 I₈
 I₈
 I₉
 I₁
 I₂
 I₂
 I₃
 I₄
 I₄
 I₅
 I₈
 I₈
 I₉
 I₉

- □ 例子: 2-1多路复用器
- □ 输入:
 - □ 待选择数据: 2¹个, I₀, I₁
 - □ 选择信号: n = 1个, S₀
 - \square $S_0 = 0$ 选择输入 I_0
 - □ S₀ = 1 选择 I₁
- □ 输出: Y
- □ 方程:

$$Y = \overline{S}I_0 + SI_1$$

□ 电路:

□ 例子: 2-1多路复用器

- □ 2ⁿ-1 多路复用器
 - □ n-2ⁿ 译码器
 - □ 2ⁿ 使能 (2输入与门)
 - □ 2ⁿ 输入或门
- □ 后面两个看作2n ×2与或门
 - □ 2 表示与门输入数量
 - □ 2ⁿ 表示与门的数量
 - □ 1个2ⁿ 输入的或门

- □ 2²-1 多路复用器
 - □ 2-22 译码器
 - □ 2² × 2与-或门

$$Y = \overline{S}_{1}\overline{S}_{0}I_{0} + \overline{S}_{1}\overline{S}_{0}I_{1} + S_{1}\overline{S}_{0}I_{2} + S_{1}S_{0}I_{3}$$

X	Υ	Z	Product Term	Symbol	m _o	m₁	m ₂	m ₃	m₄	m ₅	m ₆	m ₇
0	0	0	$\overline{X}\overline{Y}\overline{Z}$	m_0	1	0	0	0	0	0	0	0
0	0	1	$\overline{X}\overline{Y}Z$	m_1	0	1	0	0	0	0	0	0
0	1	0	$\overline{X}Y\overline{Z}$	m_2	0	0	1	0	0	0	0	0
0	1	1	$\overline{X}YZ$	m_3	0	0	0	1	0	0	0	0
1	0	0	$X\overline{Y}\overline{Z}$	m_4	0	0	0	0	1	0	0	0
1	0	1	$X\overline{Y}Z$	m_5	0	0	0	0	0	1	0	0
1	1	0	$XY\overline{Z}$	m_6	0	0	0	0	0	0	1	0
1	1	1	XYZ	m_7	0	0	0	0	0	0	0	1

- □ 2²-1 多路复用器
 - □ 2-22 译码器
 - □ 2² × 2与-或门

- □ 位宽展开: 4-1 四位多路复用器
 - □选择位向量而不是单个位
 - □ 平行的使用四个2ⁿ× 2 与-或

7. 基于复用器的组合电路

□ 实现m个函数,包含n个变量

□ 方法1: m位宽 2ⁿ-1 多路复用器

□ 方法2: m位宽2ⁿ⁻¹-1多路复用器

- □ 方法1: m位宽 2ⁿ-1 多路复用器
 - □ 得到函数的真值表
 - □根据真值表
 - □ 将函数输入S_{n-1}, ..., S₀ 作为选择信号
 - □ 真值表中的值作为多路复用器的待选择数据
 - □ 将多路复用器的输出标识成函数输出

- □ 例子: 格雷码到二进制码 转换
- □真值表如图所示
 - \square x=C
 - □ y和z比较复杂

Gray	Binary
A B C	хуz
000	0 0 0
100	0 0 1
110	0 1 0
010	0 1 1
011	100
111	101
101	110
001	111

- □重新排列使得输入按计数顺序
 - □y和z 可以通过一个双位8-1多路复用器 实现
 - □将A, B, C连接到选择信号
 - □将y和z连接到两个输出
 - □将他们各自的真值连接到待选择数据

Gray	Binary
ABC	хуz
000	000
001	111
010	0 1 1
011	100
100	0 0 1
101	110
110	0 1 0
111	101

Gray	Binary
ABC	хуz
000	000
001	111
010	0 1 1
011	100
100	0 0 1
101	110
110	0 1 0
111	101

- □ 方法2: m位宽 2ⁿ⁻¹-1 多路复用器
 - □ 得到函数的真值表
 - □ 基于n-1个变量值,将真值表中的行配对
 - □ n-1个变量一致
 - □ 设剩下的变量为X
 - □ 每一配对中,将输出表达成 $(0, 1, X, \overline{X})$
 - □根据真值表
 - □ 将n-1个变量作为选择信号
 - □ (0, 1, X, x)作为待选择数据
 - □ 将多路复用器的输出标识成函数输出

- □ 例子: 格雷码到二进制码 转换
- □真值表如图所示
 - \square x=C
 - □ y和z比较复杂

Gray	Binary
A B C	хуz
000	0 0 0
100	0 0 1
110	0 1 0
010	0 1 1
011	100
111	101
101	110
001	111

□ 重排真值表,使得输入按照计数升序。

Gray A B C	Binary x y z	Rudimentary Functions of C for y	Rudimentary Functions of C for z
000	000	$\mathbf{F} = \mathbf{C}$	$\mathbf{F} = \mathbf{C}$
010	0 1 1 1 0 0	$\mathbf{F} = \overline{\mathbf{C}}$	$\mathbf{F} = \overline{\mathbf{C}}$
100	0 0 1 1 1 0	$\mathbf{F} = \mathbf{C}$	$\mathbf{F} = \overline{\mathbf{C}}$
110	0 1 0 1 0 1	$\mathbf{F} = \overline{\mathbf{C}}$	$\mathbf{F} = \mathbf{C}$

Gray A B C	Binary x y z	Rudimentary Functions of C for y	Rudimentary Functions of C for z
000	000	$\mathbf{F} = \mathbf{C}$	$\mathbf{F} = \mathbf{C}$
010	0 1 1 1 0 0	$\mathbf{F} = \overline{\mathbf{C}}$	$\mathbf{F} = \overline{\mathbf{C}}$
100	0 0 1 1 1 0	$\mathbf{F} = \mathbf{C}$	$\mathbf{F} = \overline{\mathbf{C}}$
110	0 1 0 1 0 1	$\mathbf{F} = \overline{\mathbf{C}}$	$\mathbf{F} = \mathbf{C}$

Gray A B C	Binary x y z	Rudimentary Functions of C for y	Rudimentary Functions of C for z
0 0 0 0 0 1	000	$\mathbf{F} = \mathbf{C}$	$\mathbf{F} = \mathbf{C}$
010	0 1 1 1 0 0	$\mathbf{F} = \overline{\mathbf{C}}$	$\mathbf{F} = \overline{\mathbf{C}}$
100	0 0 1 1 1 0	$\mathbf{F} = \mathbf{C}$	$\mathbf{F} = \overline{\mathbf{C}}$
110	0 1 0 1 0 1	$\mathbf{F} = \overline{\mathbf{C}}$	$\mathbf{F} = \mathbf{C}$

- □ 方法1VS方法2
 - □ 方法1简单,方法2复杂
 - □ 方法2 的门成本约是方法1的一半

香农展开式定理

 $f(x_1, x_2, ..., x_k) = x_k \cdot f(x_1, x_2, ..., x_{k-1}, 1) + \overline{x}_k \cdot f(x_1, x_2, ..., x_{k-1}, 0)$

- □ 3-42 使用2个8-1多路复用器来构造一个15-1多路复用器。两个多路复用器应该相互连接,这样用于产生选择码0000至1110上的附加逻辑就最少。
- □ 提示:
- □ 两个多路复用器: 1号, 2号
 - □ 1号多路复用器可以选择8个数据: 0000-0111
 - □ 2号多路复用器
 - □ 选择7个数据: 1000-1110
 - □ 1号多路复用器的输出→1111
 - □ 将最高位作为复用器选择信号