

Contexte du projet

Objectif global:

L'entreprise souhaite renforcer sa capacité à prendre des décisions stratégiques en exploitant efficacement ses données internes.

En tant que spécialiste des données, vous êtes chargé de :

- · Collecter et structurer les données pertinentes
- Mettre en place un entrepôt de données (Data Warehouse)
- Créer des dashboards interactifs pour les utilisateurs métiers à l'aide de Power B

Pourquoi un entrepôt de données ?

- · Centralisation des données hétérogènes
- · Amélioration de la qualité, cohérence et traçabilité des informations
 - · Facilitation de l'analyse multidimensionnelle

Objectifs du projet:

Choix du thème: Cybersécurité

Pourquoi la cybersécurité?

- · Sujet d'actualité critique face à la montée des cyberattaques mondiales
- · Risques croissants : phishing, ransomwares, DDoS, fuites de données
- · Fortes implications économiques, juridiques et organisationnelles

Intérêt analytique

- Données riches et multidimensionnelles
- · Permet des analyses croisées : type d'attaque, secteur touché, localisation, pertes financières
- · Sujet idéal pour démontrer la puissance d'un projet de Business Intelligence

infographie sur la cybersécurité mondiale.

Jeux de données utilisés

Source principale

- Plateforme : Kaggle
- Nom du dataset: Global Cybersecurity Threats (2015–2024)
- · Format : Fichier CSV structuré et prêt à intégrer dans Power BI / SSIS

Contenu du dataset

- · Pays: localisation des incidents
- · Année : période de survenue
- · Type d'attaque : phishing, malware, ransomware, etc.
- · Secteur ciblé : finance, santé, industrie...
- · Pertes financières estimées (en millions \$)
- · Utilisateurs affectés, origine de l'attaque, durée de résolution
- **✓** Critères de sélection
- Dataset structuré et cohérent
- Richesse analytique
- · Pertinent pour un entrepôt de données et l'analyse stratégique

data set

Nettoyage et préparation des données

Étapes de prétraitement appliquées

- 1. Suppression des doublons
- → Pour éviter les biais statistiques
- 2. Traitement des valeurs manquantes
- → Suppression ou imputation selon le contexte
- 3. Normalisation des formats
- → Uniformisation des noms (majuscules, minuscules, accents...)
- 4. Conversion des types de données
- → Montants financiers → float, années → int
- 5. Création de colonnes dérivées
- → ID pour pays, année, secteur, type d'attaque, etc.

Objectif : garantir la qualité, la cohérence et la compatibilité des données avec le Data Warehouse.

Architecture du Data Warehouse

modèle en étoile avec les noms des tables et leurs liens

Modèle de données adopté : Modèle en étoile

Le modèle en étoile a été choisi pour sa simplicité, sa lisibilité et son efficacité en analyse décisionnelle.

Structure principale

- Table de faits : Fact_Incident
- → Contient les mesures quantitatives (coûts, utilisateurs impactés)

· Tables de dimensions :

→ Dim_Country : Pays

→ Dim_Date : Année

→ Dim_Industry : Secteur

→ Dim_AttackType : Type d'attaque

Relations

- · Clés primaires dans les dimensions
- · Clés étrangères dans la table de faits
- · Relations de type 1:N

Processus ETL avec SSIS

ETL: Extraction, Transformation, Chargement

Le processus ETL a été développé avec SQL Server Integration Services (SSIS), dans Visual Studio.

Étapes réalisées :

- Extraction
- → Lecture des fichiers CSV via composant Flat File Source
 - Transformation
 - → Nettoyage : doublons, conversion des types
 - → Colonnes dérivées : identifiants, formats normalisés
- → Lookup vers les dimensions (pays, secteur, attaque...)
 - Chargement
- → Envoi des données nettoyées vers les tables SQL Server via OLE DB Destination

Organisation du projet SSIS

Chaque table a un Data Flow Task dédié:

- DFT_Load_Dim_Country
- DFT_Load_Dim_AttackType
 - · DFT Load Dim Date
 - DFT_Load_Dim_Industry
 - DFT_Load_Fact_Incident

Création des tables SQL

Implémentation dans SQL Server (SSMS)

Les tables du modèle en étoile ont été créées à l'aide de scripts SQL exécutés dans SQL Server Management Studio.

Table de faits: Fact_Incident

Clés étrangères vers chaque dimension
Colonnes de mesure : financial_loss,affected_users

Tables de dimensions créées :

Dim_Country (country_id, country_name)

- Dim_AttackType (attack_type_id, attack_type_name)
- · Dim_Date (date_id, year)
- Dim_Industry (industry_id, industry_name)

Respect de l'intégrité référentielle

- · Clés primaires auto-incrémentées
- Contraintes de clés étrangères dans la table de faits
- Vérification par des requêtes SELECT et jointures

Connexion à Power BI & Préparation

Objectif : rendre les données prêtes à l'analyse visuelle tout en assurant la cohérence et la performance

Dashboards Power BI : Vue générale

Objectif des dashboards

- Offrir une vision stratégique claire des cybermenaces
- · Permettre une exploration interactive des données par les décideurs
- · Mettre en lumière les tendances, zones critiques, et secteurs vulnérables

Principaux éléments visuels créés :

- KPI (coûts totaux, nombre d'incidents...)
 - Histogrammes par type d'attaque
 - Courbes d'évolution annuelle
 - Cartes géographiques interactives
 - · Graphiques par secteur d'activité

Interactivité assurée via :

- · Filtres (pays, année, industrie...)
 - Info-bulles dynamiques
- Signets pour navigation fluide entre vues

Répartition géographique des attaques

- · Montrer où se concentrent les cyberattaques dans le monde
 - · Identifier les zones géographiques à risque
 - · Comparer les niveaux d'exposition entre régions

- · Les pays les plus touchés sont généralement les plus numérisés : o États-Unis, Inde, pays européens...
 - · Les pays émergents présentent un risque de sous-détection
- Corrélations possibles avec les contextes géopolitiques et économiques
 →↓↓ Filtrage dynamique
 - · Possibilité de filtrer par type d'attaque, année, ou secteur ciblé

Types d'attaques les plus fréquents

Objectif de la visualisation

- · Identifier les vecteurs d'attaque les plus courants
 - · Quantifier leur fréquence relative
- Comparer l'impact des différents types d'attaques

Observations clés

- · Phishing : attaque la plus répandue sur la période analysée
 - · Suivi par : Ransomware, DDoS, Intrusions internes
- · Certaines attaques moins fréquentes ont un coût unitaire très élevé

Utilité métier

- · Permet de prioriser les ressources de défense
- · Aide à orienter la formation et la sensibilisation interne

Secteurs les plus impactés Objectif de la visualisation

- · Identifier les industries les plus ciblées par les cybermenaces
 - · Estimer les pertes financières sectorielles
 - · Mettre en lumière les secteurs à forte criticité

Secteurs les plus touchés

- · Santé: très ciblée, pertes critiques, données sensibles
 - · Finance : attaques fréquentes, enjeux de réputation
- · Technologie & Industrie : souvent visées pour sabotage ou espionnage
 - · Autres secteurs à surveiller : gouvernement, éducation, commerce

Visualisation croisée

- Nombre d'incidents vs. Coûts totaux
- · Possibilité de filtrer par pays ou type d'attaque

Analyse des résultats

Répartition par type d'attaque

- · Phishing domine largement les incidents signalés
- · Les ransomwares provoquent les pertes les plus lourdes
- · Certaines attaques peu fréquentes sont très destructrices (ex : menaces internes)

Évolution dans le temps

- Augmentation constante entre 2015 et 2023
- · Pics d'incidents liés à des événements mondiaux (COVID-19, tensions géopolitiques)

Répartition géographique

- · Pays les plus touchés : États-Unis, Inde, pays européens
- · Les zones émergentes souffrent d'un manque de détection ou de protection

Impact par industrie

- · Santé et finance : pertes financières très élevées
- · Industrie et technologie : fortement exposées aux cyberattaques

Conclusion stratégique

- · Nécessité d'une veille active en cybersécurité
- · Importance d'une analyse en temps réel des incidents

Conclusion du projet

Résumé de la démarche

- · Création d'un Data Warehouse sur les menaces de cybersécurité
- · Utilisation de SSIS pour l'ETL : extraction, transformation, chargement
 - Construction de dashboards Power BI interactifs et dynamiques
- · Analyse stratégique des types d'attaques, des pays ciblés et des secteurs vulnérables

Résultats atteints

- · Données centralisées, nettoyées et historisées
- · Visualisations claires et utiles à la prise de décision
- · Plateforme évolutive, prête à intégrer d'autres sources de données

Objectif atteint:

Fournir aux décideurs une vision globale et exploitable de la menace cyber pour orienter leurs choix de sécurité.

Recommandations & pistes d'amélioration

Perspectives d'évolution du projet

- 1. Renforcer l'analyse prédictive
- → Intégration d'algorithmes de Machine Learning pour anticiper les menaces
 - 2. Ajouter de nouvelles sources de données
 - → CERTs nationaux, bases de vulnérabilités (CVE), flux RSS spécialisés
 - 3. Mettre en place des alertes automatisées
- → Notifications via Power BI ou services connectés en cas de pics d'incidents
 - 4. Automatiser l'ETL
 - → Utilisation de SQL Server Agent pour les mises à jour régulières
 - 5. Former les utilisateurs métier
- → Sensibilisation à la lecture de dashboards et aux enjeux de cybersécurité

Vision long terme

Faire évoluer le projet vers une plateforme complète de cybersurveillance connectée en temps réel aux données internes et externes.

Merci pour votre attention