

Universidade do Minho Departamento de Matemática

Cálculo para Engenharia

— folha 10 — 2021'22 — 2021'2 —

Séries numéricas.

- **1.** Considere a sucessão $1, 3, 8, 19, 42, \cdots$
 - (a) Qual o 6.º termo da sucessão? E o 100.º?
 - (b) Defina o termo geral da sucessão.
- 2. Estude a monotonia, a limitação e a convergência das sucessões definidas por

(a)
$$a_n = \sqrt[n]{n}$$

(b)
$$b_n = \operatorname{sen}\left(\frac{n\pi}{2}\right)$$

(c)
$$c_n = \frac{\cos(n\pi)}{n}$$

(d)
$$u_n = r^n$$
, $\operatorname{com} r \in \mathbb{R}$

(e)
$$v_n = 1 + \frac{(-1)^n}{n}$$

(f) (recursivamente) $w_1 = \sqrt{6}$ e, para $n \ge 1$,

$$w_{n+1} = \sqrt{6 + w_n}$$

3. Escreva na forma $\sum_{n=3}^{10} u_n$ e $\sum_{k=0}^{7} u_{k+3}$ as seguintes somas:

(a)
$$\frac{1}{2^3} + \frac{1}{2^4} + \cdots + \frac{1}{2^{10}}$$
;

(b)
$$\frac{3}{4} - \frac{4}{5} + \cdots - \frac{10}{11}$$
.

- **4.** Considere a série definida por $\sum_{n=2}^{+\infty} \cos(n\pi)$.
 - (a) Quais os primeiros quatro termos da série?
 - (b) Será possível definir-se o termo geral da série de outra forma? Qual?
- **5.** Escreva na forma $\sum_{n\geq 1}u_n$ as séries cujos primeiros termos são:

(a)
$$1 + \frac{1}{10} + \frac{1}{100} + \frac{1}{1000} + \cdots$$
;

(b)
$$\frac{3}{5} - \frac{4}{25} + \frac{5}{125} - \frac{6}{625} + \frac{7}{3125} \cdots$$

6. Escreva os primeiros quatro termos, da sucessão das somas parciais, para cada uma das seguintes séries.

(a)
$$1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \cdots$$

(c)
$$\frac{1}{5} - \frac{1}{5^2} + \frac{1}{5^3} - \frac{1}{5^4} + \frac{1}{5^5} \cdots$$

(b)
$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \cdots$$

(d)
$$\sum_{i=0}^{+\infty} \frac{3}{2^{i+1}}$$

7. Determine, se possível, a natureza das séries:

(a)
$$1 + \frac{1}{2} + \underbrace{\frac{1}{4} + \frac{1}{4}}_{2 \text{ termos}} + \underbrace{\frac{1}{8} + \frac{1}{8} + \frac{1}{8}}_{4 \text{ termos}} + \underbrace{\frac{1}{16} + \frac{1}{16} + \cdots}_{8 \text{ termos}} + \cdots$$

(b)
$$1 + \underbrace{\frac{1}{4} + \frac{1}{4}}_{2 \text{ termos}} + \underbrace{\frac{1}{16} + \frac{1}{16} + \frac{1}{16}}_{4 \text{ termos}} + \underbrace{\frac{1}{64} + \frac{1}{64} + \cdots}_{8 \text{ termos}} + \cdots$$

- (c) geométricas: $\sum_{i\geq 1} a.r^{i-1},$ com a constante real e $r\in \mathbb{R}$
- (d) de Riemann*1: $\sum_{n\geq 1} \frac{1}{n^r}$, com $r\in\mathbb{R}$
- 8. Expresse 0, 555555... na forma de um número racional.

9. Prove que
$$\sum_{n>1} \left(\frac{5}{2^n} - \frac{26}{(n+1)(n+2)} \right) = -8$$

- **10.** Considere a soma $\sum_{k=1}^n \frac{a_k}{10^k}$, $n \in \mathbb{N}$, onde cada a_k é um número inteiro entre 0 e 9.
 - (a) Escreva a soma anterior, com n=3, na forma de uma fração decimal.
 - (b) Comente a afirmação "A convergência de séries geométricas de razão 1/10 permite atribuir um significado preciso a dízimas infinitas".
 - (c) Escreva as seguintes dízimas na forma de uma série e expresse a soma dessa série como quociente de dois números naturais:

11. Estude a natureza da série e, no caso de ser convergente, encontre a sua soma.

(a)
$$1 + \frac{1}{3} - \frac{1}{9} + \frac{1}{27} - \frac{1}{81} + \frac{1}{243} \cdots$$

(g)
$$\sum_{n=1}^{+\infty} n$$
. sen $\left(\frac{1}{n}\right)$

(b)
$$\sum_{i=0}^{+\infty} \frac{1}{6^{\frac{i}{2}}}$$

(h)
$$1\frac{1}{2} + 3\frac{3}{4} + 7\frac{7}{8} + 15\frac{15}{16} + \cdots$$

(c)
$$\sum_{n>1} \frac{3^n-2^n}{6^n}$$

(i)
$$1+2+3+4+\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+\frac{1}{4^4}+\cdots$$

(d)
$$\sum_{n=1}^{+\infty} \frac{1}{3^{n+1}n}$$

$$(j) \sum_{i=1}^{+\infty} \frac{i}{1+i}$$

(e)
$$\sum_{n=1}^{+\infty} \frac{1}{n+1}$$

(k) *2
$$\sum_{n>1} \frac{(n!)^2}{(2n)!}$$

(f)
$$\sum_{n=1}^{+\infty} \operatorname{sen}\left(\frac{1}{n}\right)$$

(I)
$$1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots$$

(m)
$$\sum_{n>1} \frac{2}{7^{n+1}}$$

¹Já Resolvida nas aulas teóricas, da semana de 3 a 10 de janeiro.

²Já Resolvida nas aulas teóricas, da semana de 3 a 10 de janeiro.

(n)
$$\sum_{n\geq 1} (-1)^n \left(rac{3}{e}
ight)^n$$

(o)
$$\sum_{n\geq 1} \left(\frac{n^2}{n^3 + 3n}\right)^n$$

(p)
$$\sum_{n\geq 1} \frac{2^{n-1}+3^n}{6^{n-1}}$$

(q)
$$\sum_{n\geq 1} \frac{1}{3^{5n}}$$

(r)
$$\sum_{n\geq 1} \frac{\pi^{n-1}}{3^{2n}}$$

(s)
$$\sum_{n>1} \frac{(-1)^{n+1} + 2^{2n}}{3^{n-1}}$$

(t)
$$\sum_{i>1} \left[\left(\frac{1}{2}\right)^i + \left(\frac{1}{3}\right)^{2i} + \left(\frac{1}{4}\right)^{3i+1} \right]$$

$$\text{(u) } \sum_{n\geq 1} \frac{1}{n^4 + e^n}$$

$$(\mathsf{v}) \ \sum_{n \geq 2} \frac{1}{n \, (\ln n)^2}$$

(w)
$$\sum_{n\geq 1} (-1)^n \left(\frac{\pi}{2} - \operatorname{arctg} n\right)$$