

深度强化学习

Multi-arm Bandits 算法总览

Tony Qin (秦志伟)

讲师介绍

Tony Qin (秦志伟)

负责大数据&滴滴研究院 强化学习组

致力于强化学习和机器学习算法的通用化,以及在公司各主要业务方向的实践应用。

多臂老虎机问题

Multi-arm bandits

- 多台老虎机(每台一臂)
- 一次拉一个老虎机
- 执行动作后立即得知结果(赢钱数量)
- 每台老虎机的中奖几率不同,且未知

■目标

- 最大化一定步数内的总奖励期望
- 假设每一步拉一个老虎机
- "只能拉1000次,怎么拉才能获得尽可能多的钱?"

多臂老虎机问题

- 每个老虎机都有自己的奖励概率
- 动作价值:选择一个给定动作能得到的奖励期望
 - $q_*(a) := E[R_t|A_t = a]$:第t步时选择a老虎机的期望收益
- 如果知道动作价值
 - 最优策略就是不断拉价值最高的那个老虎机
- 但是,不知道(确切)动作价值
 - 可能有预估: $Q_t(a) \approx q_*(a)$

多臂老虎机问题

- 和强化学习问题的不同
- 简化版的MDP问题
 - 动作并不会影响老虎机的状态(奖励期望, q*)
 - 策略(动作)也不取决于状态
 - 需要学习的策略仅针对单一状态
- 通过观察奖励预估动作价值
- 大思路:逐渐将执行动作的机会集中在(我们觉得)优质的老虎机上

MAB v.s. RL

■ 强化学习

- 需要学习应对多种情况的策略
- 策略 $\pi(a|s)$ 给出动作或动作分布

MAB的应用

- 广告投放显示
 - 同一广告有不同设计
- 对象人群组成未知
 - K组群,不同人数,每组偏爱特定的设计

- 每次选取一个设计显示给一个随机抽取的顾客看
 - 选取的顾客喜好未知
 - 喜好分布
 - 动作价值:点击率(CTR)

MAB的应用

■ 把显示机会合理分配到更好的设计上

- 线上AB实验?
 - 各种选择只测了一次
 - "多臂"时下结论更难
- 动态 "AB测试"
 - 差的选项逐步减少显示机会 而被自然淘汰

大数据技术部&滴滴研究院 滴滴学院-CTO支持中心 机器学习-深度强化学习

Reward

探索,探索,探索

- 真实动作价值未知
 - 只有估测,有一定的信心范围
 - 当前预估最好的动作不一定长期最好
- 动作价值只能通过观察奖励(反馈)预估
 - 要有足够的探索
- 探索程度取决于价值预估值,预估的不确定性,和剩余步数
 - 如果非常确定A比B好,无需探索
 - 执行过程早期,更倾向于探索

计算动作价值

■ 样本平均

$$Q_t(a) := \frac{\sum_{i=1}^{t-1} R_i 1_{A_i = a}}{\sum_{i=1}^{t-1} 1_{A_i = a}}$$

- t 步前的平均奖励
- 假设环境静态(stationary), 大数定理: $Q_t(a) \rightarrow q_*(a)$, $t \rightarrow \infty$
- 增量计算
 - $Q_{t+1} = Q_t + \frac{1}{t}(R_t Q_t)$
 - 新预估 <-- 旧预估 + 步长*(目标-旧预估)

Non-stationarity

- 老虎机的状态随时间变化
 - 样本平均会很大落后于状态变化
- 用固定步长
 - $Q_{t+1} = Q_t + \alpha (R_t Q_t) = (1 \alpha)^t Q_1 + \sum_{i=1}^t \alpha (1 \alpha)^{t-i} R_i$
 - "忘掉久远的记忆"
- 收敛性
 - $\alpha = \frac{1}{t}$: 收敛到定值
 - 固定步长:不收敛,跟踪最近的奖励变化

探索方法: ϵ -greedy

- 每次选预估价值最高的老虎机
 - Greedy, 永远exploit
- 探索
 - є的概率随机执行动作
- 在步数极限
 - 每个老虎机都被拉了无数次
 - $Q_t(a) \rightarrow q_*(a)$

A simple bandit algorithm

```
Initialize, for a = 1 to k:
    Q(a) \leftarrow 0
    N(a) \leftarrow 0
Repeat forever:
               \underset{\text{a random action}}{\operatorname{arg max}_a} Q(a) with probability 1 with probability \varepsilon
                                              with probability 1 - \varepsilon
                                                                                     (breaking ties randomly)
    R \leftarrow bandit(A)
    N(A) \leftarrow N(A) + 1
    Q(A) \leftarrow Q(A) + \frac{1}{N(A)} [R - Q(A)]
```

对比实验

- 10臂老虎机
 - 每个臂真值价值q*(a)
 - $q_*(a) \sim \text{Gaussian}(0,1)$
 - 2000个独立10臂问题
- 在时间点t 选择动作A_t
 - $R_t \sim Gaussian(q_*(A_t), 1)$
- 每个10臂问题1000步

ϵ -greedy 不同探索程度

UCB (Upper Confidence Bound)

- ϵ -greedy 做的是无区分性的探索
 - 对于动作价值确定的选项效率不高
- 根据需要自动控制探索程度
 - Upper Confidence Bound:综合考虑已知价值和不确定性

预估价值 信心度 不确定性

- A被选, 计数增加, 不确定性降低
- A没被选,t增加,不确定性上升,但越来越慢

滴滴学院-CTO支持中心 大数据技术部&滴滴研究院

ϵ -greedy v.s. UCB 对比

■ 相同的10臂老虎机问题

Thompson Sampling

- 基于贝叶斯统计的方法
 - 和UCB一样,都是有区分性的探索方法
 - UCB:显示的计算不确定性;TS:用抽样
- 设每个老虎机的奖励要么是0,要么是1
 - 估计每一个老虎机的出钱概率是多少
- 怎么估计?
 - 认为每一个老虎机的出钱概率服从Beta分布
 - Beta分布:一枚硬币,抛了a次正面,b次反面,则抛一次为正面的概率为Beta(a, b)

Thompson Sampling

• 对于每个老虎机:

- 有a次给了奖励, b次没有给奖励
- 那么认为其出钱概率服从beta分布: $p \sim Beta(a, b)$
- "概率的概率分布"

• 要做决定的时候:

- 从每一台老虎机的beta分布中sample一个它的出钱概率
- 选择出钱概率最大的那个老虎机
- ·观察是否给了奖励:a+1或者b+1,更新它的beta分布

Contextual Bandits

- 能从环境观察到更多信息
 - 状态信息
 - 奖励分布和状态相关
 - 动作任然不会影响状态

State: s

Reward: r

- 动作价值不再只由动作决定
 - $\mathbf{Q}(s,a)$
 - 状态-动作价值
- 环境是非静态

应用举例

- 老虎机
 - 能观察到额外一盏灯,不同颜色代表老虎机们中奖概率变化了
 - 策略需要根据灯颜色不同而改变
- 广告显示 / 新闻个性化推送
 - 目标:最大化CTR
 - 能得知当前访问用户的信息
 - 男性少年更偏爱苹果产品而不是退休金计划

评测结果

■ 学习篮: bandits算法

■ 部署篮:根据当时学到的价值预估做greedy策略

algorithm	size = 100%		size = 30%		size = 20%		size = 10%		size = 5%		size = 1%	
	deploy	learn	deploy	learn	deploy	learn	deploy	learn	deploy	learn	deploy	learn
ε-greedy	1.596	1.326	1.541	1.326	1.549	1.273	1.465	1.326	1.409	1.292	1.234	1.139
	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
ucb	1.594	1.569	1.582	1.535	1.569	1.488	1.541	1.446	1.541	1.465	1.354	1.22
	0%	18.3%	2.7%	15.8%	1.3%	16.9%	5.2%	9%	9.4%	13.4%	9.7%	7.1%
ϵ -greedy (seg)	1.742	1.446	1.652	1.46	1.585	1.119	1.474	1.284	1.407	1.281	1.245	1.072
	9.1%	9%	7.2%	10.1%	2.3%	-12%	0.6%	-3.1%	0%	-0.8%	0.9%	-5.8%
ucb (seg)	1.781	1.677	1.742	1.555	1.689	1.446	1.636	1.529	1.532	1.32	1.398	1.25
	11.6%	26.5%	13%	17.3%	9%	13.6%	11.7%	15.3%	8.7%	2.2%	13.3%	9.7%
ϵ -greedy (disjoint)	1.769	1.309	1.686	1.337	1.624	1.529	1.529	1.451	1.432	1.345	1.262	1.183
	10.8%	-1.2%	9.4%	0.8%	4.8%	20.1%	4.4%	9.4%	1.6%	4.1%	2.3%	3.9%
linucb (disjoint)	1.795	1.647	1.719	1.507	1.714	1.384	1.655	1.387	1.574	1.245	1.382	1.197
	12.5%	24.2%	11.6%	13.7%	10.7%	8.7%	13%	4.6%	11.7%	-3.5%	12%	5.1%

Contextual Bandits的定位

- 介于RL和MAB之间
 - RL: 动作改变状态, 奖励由状态, 动作决定; R(s,a), Q(s,a)
 - CB: 动作不改变状态, 奖励由状态, 动作决定; R(s,a), Q(s,a)
 - MAB:动作不改变状态,奖励只由动作决定; R(a), Q(a)
- 需要学习策略 π(s)

LinUCB

- 与Function Approximator的思想相同,用函数近似期望收益
 - 例如线性函数:t步时做动作a的期望收益 $E[r_{t,a}|x_{t,a}] = x_{t,a}^T \theta_a^*$
 - $x_{t,a}^T$: 做a动作时的状态特征
 - θ_a^{*}:特征权重
- 对于每一个动作,学习一个这样的估计函数
- 当面临新的状态s的时候
 - 先估计每个动作的期望收益 $E[r_{t,a}|x_{t,a}] = x_{t,a}^T \theta_a^*$
 - 再根据UCB算法挑一个动作做(综合考虑探索和贪心)

LinUCB

- 训练估价函数就是线性回归的过程
- D_a : 做动作a时的状态特征
 - 所有推送了广告a的人的{年龄,性别,国籍......}
- b_a:反馈(标签)
 - 点了a这个广告没有? 1=点了,0=没有
- Ridge回归即可得到基于数据的解析解 θ_a
 - $= \min_{\theta} \left| \left| D_a \theta_a b_a \right| \right|^2 + \left| \left| \theta \right| \right|_2^2$
 - $\bullet \widehat{\theta_a} = (D_a^T D_a + I)^{-1} D_a^T b_a$

LinUCB

以至少1 – δ的概率

$$|x_{t,a}^T \widehat{\theta_a} - E[r_{t,a}|x_{t,a}]| \le \alpha \sqrt{x_{t,a}^T (D_a^T D_a + I)^{-1} x_{t,a}}, \ \alpha = 1 + \sqrt{\frac{\ln(\frac{2}{\delta})}{2}}$$

- 误差范围上限
- 动作选取和UCB类似

$$a_t \coloneqq argmax_a(x_{t,a}^T \widehat{\theta_a} + \alpha \sqrt{x_{t,a}^T A_a x_{t,a}})$$
 均值 标准方差

$$\bullet A_a = (D_a^T D_a + I)^{-1}$$

小结

- 多臂老虎机问题
- 探索方法
 - ε-greedy
 - UCB
 - Thompson Sampling
- Contextual Bandits
 - LinUCB
- **应用**

Q&A

THANK YOU

www.xiaojukeji.com

机器学习-深度强化学习 滴滴学院-CTO支持中心 大数据技术部

机器学习-深度强化学习 滴滴学院-CTO支持中心 大数据技术部