Logic practical

Answer: Solutions

James Cussens

March 6, 2017

1 Logic exercises

- 1. Consider a vocabulary (sometimes called a *propositional language*) with 4 propositional symbols: A, B, C and D.
 - (a) How many models are there for this language? Answer: $2^4 = 16$
 - (b) How many models for the formula $A \vee \neg C$? **Answer: Consider** how many models there are for the negation: $\neg (A \vee \neg C)$. This is equivalent to $\neg A \wedge C$ which has 4 models. So $A \vee \neg C$ has 16-4=12 models.
 - (c) How many models for the formula $A \wedge \neg C$? Answer: $2^2 = 4$. We need A true and C false. It doesn't matter about B and D so consider all choices for B and D.
 - (d) How many models for the formula $A \vee \neg A$? **Answer: 16, it is true** in all models.
 - (e) How many models for the formula $A \wedge \neg A$? **Answer: 0, this is true in no model.**
 - (f) How many *literals* are there for this language? **Answer: There are 8 possible literals:** $A, B, C, D, \neg A, \neg B, \neg C$ and $\neg D$.
- 2. Which of the following are correct?
 - (a) $\models A \lor \neg A$ (This statement is equivalent to True $\models A \lor \neg A$, i.e. it asserts that $A \lor \neg A$ is valid). **Answer: Correct. In any model** A must have a truth-value: either true or false.
 - (b) $\models A$ Answer: Wrong. Consider a model where A is false.
 - (c) $A \models B$ Answer: Wrong. Consider a model where A is true, but B is false.
 - (d) $A \wedge B \models B$ Answer: Correct. In any model where both A and B are true, B is obviously true.

- (e) $A \wedge \neg A \models B$ Answer: Correct. There are no models where $A \wedge \neg A$, so we can say 'in any model where $A \wedge \neg A$ is true so is B (because there aren't any!)'. Everything follows from a contradition. Weird eh?
- (f) $A \Leftrightarrow B \models A \lor B$ Answer: Wrong. The LHS is true in any model where A = B = false, but the RHS would be false in any such model.
- (g) $A \Leftrightarrow B \models \neg A \lor B$ Answer: Correct. The LHS is true if and only if A = B = false or A = B = true. Either way $\neg A \lor B$ will be true.
- 3. (*) (The Deduction theorem). Prove that for any two propositional formulae α and β :
 - $\alpha \models \beta$ if and only if $\models \alpha \Rightarrow \beta$

Answer: 'Only if' direction: Suppose $\alpha \models \beta$. Now consider all possible models. If $\alpha = false$ in a model M then M satisfies $\alpha \Rightarrow \beta$. If $\alpha = true$ in a model M' then β is also true in M' since we are assuming $\alpha \models \beta$. So $\alpha \Rightarrow \beta$ is true in M'. Since either $\alpha = false$ or $\alpha = true$ in all models we are done. 'If' direction: Suppose $\models \alpha \Rightarrow \beta$. Then in any model either a = false or b = true. So whenever a = true, we must have b = true. This is enough to prove that $\alpha \models \beta$.

- 4. Convert each of the following formulae into CNF:
 - (a) $A \wedge B$ Answer: Already in CNF! Two unit clauses.
 - (b) $A \Leftrightarrow B$ Answer: $A \Leftrightarrow B \equiv (A \Rightarrow B) \land (B \Rightarrow A) \equiv (\neg A \lor B) \land (\neg B \lor A)$
 - (c) $A \wedge \neg B \Rightarrow C$ **Answer:** $\neg A \vee B \vee C$
- 5. For each of the following inference procedures for propositional logic, decide (i) whether they are sound and (ii) whether they are complete.
 - (a) For any KB and any α : $KB \vdash \alpha$ (i.e. any formula can be derived from any knowledge base.) **Answer: Unsound, but complete**
 - (b) For any KB and any α : $KB \wedge (\beta \wedge \neg \beta) \vdash \alpha$ Answer: Sound, but incomplete. Inference says that if you are prepared to add a contradiction to your KB (i.e. 'believe the impossible') you can infer anything. This is true, but doesn't help you infer formula from consistent KBs.
 - (c) For any KB and any α construct all possible models of KB. Derive α from KB if and only if α is true in at least one of these models. Answer: Unsound. An empty KB is satisfied by any model (since it rules nothing out) but α will be false in exactly

half of them. Incomplete. Suppose $KB = \beta \wedge \neg \beta$. This has no models and so, using this inference rule nothing can be inferred. In fact everything follows from this KB.

(d) For any KB and any α construct all possible models of KB. Derive α from KB if and only if α is true in all of these models. Answer: Sound and complete. This just basically follows from the definitions of soundness and completeness.

2 Graph colouring

Here's the obvious approach which is easily extended to many colours. Let the two 'colours' be called 1 and 2. Create 6 propositional symbols: A_1 , A_2 , B_1 , B_2 , C_1 , C_2 , where e.g. A_1 says that vertex A has colour 1. Each vertex has exactly one colour so we have these clauses:

- 1. $A_1 \vee A_2$
- $2. \neg A_1 \lor \neg A_2$
- 3. $B_1 \vee B_2$
- 4. $\neg B_1 \lor \neg B_2$
- 5. $C_1 \vee C_2$
- 6. $\neg C_1 \lor \neg C_2$

A and B cannot be the same colour so, we have:

- 1. $\neg A_1 \lor \neg B_1$
- $2. \neg A_2 \lor \neg B_2$

Same deal for B and C

- 1. $\neg B_1 \lor \neg C_1$
- 2. $\neg B_2 \lor \neg C_2$

However, since there are only 2 colours we can get away with just 3 symbols: A_1 , B_1 and C_1 and think of $\neg A_1$ as standing for A_2 . In this encoding we just need the following clauses:

- 1. $\neg A_1 \lor \neg B_1$
- 2. $A_1 \vee B_1$
- 3. $\neg B_1 \lor \neg C_1$
- 4. $B_1 \vee C_1$

Sticking with the compact encoding, if we add the A-C edge we need to add these clauses:

- 1. $\neg A_1 \lor \neg C_1$
- $2. \ A_1 \vee C_1$