ALGEBRA 2 TEST 1

Name Directions: Complete as m		Date n in the 30 minutes allott	ed to you. No calculator	s!
_	ung problems us you can	in the commutes unou	ed to your 110 carculator	S•
1. $5^6 \times 5^2 =$ (A) 25^8	(B) 25 ¹²	(C) 5 ⁸	(D) 5^{12}	(E) 5^{36}
2. Simplify $aba^2ab^3ab^{-2}$ (A) a^5b^2	$\mathbf{B}) \ a^4b^2$	(C) a^5b	(D) a^2b^2	(E) a^2b
3. Double the year that you	were born. Now subtract	4 years from this product	and then take half of this d	lifference. Add 2003
years to your answer and sub	otract out the year in which	you were born. What ye	ar would it be?	
(A) 1998	B) 1999	(C) 2000	(D) 2001	(E) 2002
4. Solve $4x+10 = -2+5x$ (A) -12	(B) −10	(C) -8	(D) 8	(E) 12
5. Solve $30 = \frac{3}{5}a$				
(A) 18	(B) $28\frac{1}{3}$	(C) $29\frac{2}{5}$	(D) $31\frac{2}{3}$	(E) 50
6. Twice the opposite of a n	number is 6 less than 4 time	es the number. Find the n	umber.	
(A) −1	(B) 1	(C) 3	(D) $\frac{4}{3}$	$(\mathbf{E}) \ \frac{8}{5}$
7. $2q + 5$ quarters equals ho			3	5
(A) $10q + 5$	(B) $10q + 10$	(C) $10q + 25$	(D) $\frac{2q+5}{2}$	(E) $\frac{2q+5}{5}$
8. Solve $\frac{a}{1\frac{1}{4}} = 20$			2	J
(A) $18\frac{3}{4}$	(B) $21\frac{1}{4}$	(C) 16	(D) 24	(E) 25
9. It took you <i>w</i> weeks to m the machine?	anually seal the envelopes	but it took a machine only	y d days. How many week	ss would it save to use
$(\mathbf{A}) w - d$	(B)	(C) $7w-d$	$(\mathbf{D}) w - \frac{d}{7}$	$(\mathbf{E}) \ \frac{d}{7} - w$
10. Solve $2.7877 - 10^8 + 0.1$	$11\% + c + 4\frac{2}{3} - \frac{7}{8} = -10^8 +$	$-4.7877 - \frac{7}{8} + \frac{14}{2} - c + 0.11$	1% .	
(A) 2	(B) 1	(C) 0	(D) −1	(E) −2
$11. c^{\sqrt{z}} + c^{\sqrt{z}} =$				
(A) c^z	(B) $c^{2\sqrt{z}}$	(C) $2c^z$	$(\mathbf{D}) \ 2c^{\sqrt{z}}$	$(\mathbf{E}) \ 2c^{2\sqrt{z}}$
12. $\frac{b^2}{4} + \frac{b^2}{6} =$				
(A) $\frac{b^2}{5}$	(B) $\frac{5b^2}{12}$	(C) $\frac{5b^4}{12}$	(D) $\frac{5b^2}{24}$	(E) $\frac{5b^4}{24}$
13. If $w < x < 0 < y < z$, wh	nich of the following has th	ne smallest value?		
(A) $\frac{x^{32}}{w^3}$	(B) $\frac{w+x}{w-x}$	(C) $z^2 - y^2$	$(\mathbf{D}) wx - wy$	(E) answer unknown
This test is property	of Mathfax. Permission	is granted to copy for you GEBRA 2 TEST 1 PAGE	r school only for the 2017	-2018 school year.

(A) $-3y-28$	(B) $3y + 28$	(C) $-2y-14$	(D) $-3y-16$	(E) $-5y-16$
15. Simplify $\sqrt{\frac{9x-9z+5}{5z+x+y}}$	$\frac{9y}{-6z} \text{ if } x + y \neq z.$			
(A) 1	(B) 3	$(\mathbf{C}) \ \ 3(x-z+y)$	$(\mathbf{D}) 6\big(x-z+y\big)$	$\mathbf{(E)} \ 9\big(x-z+y\big)$
16. The ratio of wins to lo of games played?	osses was a to b. Which of	the following would not b	be equivalent to the ratio of	of losses to the total number
$(\mathbf{A}) \ \frac{b}{a+b}$	(B)	$(\mathbf{C}) \ \frac{-ab^2}{-a^2b - ab^2}$	$(\mathbf{D}) \ \frac{ba^3}{a^5 + ba^3}$	$\mathbf{(E)} \ \frac{-b^3 a^2}{-a^3 b^2 - b^3 a^2}$
17. What is the difference	e between the two areas of t	he following two rectangl	les? Assume $y > 3$.	
	y-3 $y+3$	y	y + 4	
(A) 4y+9	(B) 4 <i>y</i> −9	(C) $4y+6$	(D) 4 <i>y</i> – 6	(E) not enough information given
18. If $\frac{3}{4}y = 16$, then $\frac{3}{8}y$	-5 equals			
(A) 2	(B) 3	(C) 4	(D) 4.5	(E) 5
19. If $ab = c$ and $b \neq 0$,	then $\frac{a}{b}$ =			
(A) <i>cb</i>	(B) cb^2	(C) $\frac{c}{b}$	$(\mathbf{D}) \ \frac{2c}{b}$	$(\mathbf{E}) \ \frac{c}{b^2}$
20. Simplify $\frac{-16}{-4^2+4^2}$				
(A) -16	(B) $-\frac{1}{2}$	(C) 0	(D) $\frac{1}{2}$	(E) undefined
21. If $7(\sqrt{2x} - 3\pi) = \frac{2}{3}$, what is the value of $\frac{\sqrt{2x}}{x^2}$	$\frac{1}{3}$?		
(A) $\frac{2}{63}$	(B) $\frac{1}{21}$	(C) $\frac{2}{21}$	(D) $\frac{4}{21}$	(E) $\frac{6}{21}$
	full after you add 10% of wh		•	
$(\mathbf{A}) \ \frac{8}{9}$	(B) $\frac{9}{10}$	(C) $\frac{10}{11}$	(D) $\frac{11}{12}$	(E) $\frac{12}{13}$
23. How long would it tal	ke a car traveling at $(2t-3)$) miles per hour to travel	(2tr+2tp-3r-3p) mile	s?
$(\mathbf{A}) r+p$	$(\mathbf{B}) r-p$	(C) $p-r$	(D) $r+2p$	(E) $2r+p$
24. How many 32 cent sta	amps can be purchased with	x dollars?		
$(\mathbf{A}) \ \frac{x}{32}$	$\mathbf{(B)} \ \frac{32}{x}$	(C) 32 <i>x</i>	(D) $\frac{32}{100x}$	(E) $\frac{100x}{32}$
25. If n is an odd integer,	which is the next consecuti	ive odd integer?		

14. The average of three algebraic expressions is y-6. If the first algebraic expression is 4y+2, and the second algebraic

expression is 2y+8, find the third algebraic expression.

(A) n+1

(B) n+2

(C) n+3

(D) n+4

(E) n+5

ALGEBRA 2 TEST 1 ANSWERS

1. C	2. A	3. D	4. E	5. E
6. B	7. C	8. E	9. D	10. B
11. D	12. B	13. A	14. A	15. B
16. D	17. A	18. B	19. E	20. E
21. A	22. C	23. A	24. E	25. B

1.
$$5^6 \cdot 5^2 = 5^8$$

2.
$$aba^2ab^3ab^{-2} = a^5b^2$$

1.
$$3 \cdot 3 = 3$$

2. $aba^2ab^3ab^{-2} = a^5b^2$
3. $\frac{1}{2}(2y-4) + 2003 - y = y - 2 + 2003 - y = 2001$
4. $y = 12$

4.
$$x = 12$$

5.
$$\frac{5}{3} \cdot 30 = \frac{5}{3} \cdot \frac{3}{5} a \rightarrow 50 = a$$

6.
$$-2n = 4n - 6 \rightarrow n = 1$$

7.
$$5(2q+5) = 10q+25$$

8.
$$1\frac{1}{4} \left(\frac{a}{1\frac{1}{4}} \right) = \frac{5}{4} \cdot 20 \rightarrow a = 25$$

9.
$$d \text{ days} = \frac{d}{7} \text{ weeks. Therefore } w - \frac{d}{7}$$

10.
$$2c = 2 \rightarrow c = 1$$

11.
$$c^{\sqrt{z}} + c^{\sqrt{z}} = 2c^{\sqrt{z}}$$

12.
$$\frac{b^2}{4} + \frac{b^2}{6} = \frac{3b^2}{12} + \frac{2b^2}{12} = \frac{5b^2}{12}$$

13. Choice A is the only choice that is negative.

14.
$$\frac{(4y+2)+(2y+8)+x}{3} = y-6 \to 6y+10+x = 3y-18 \to x = -3y-28$$

15.
$$\sqrt{\frac{9x-9z+9y}{5z+x+y-6z}} = \sqrt{\frac{9(x-z+y)}{x-z+y}} = \sqrt{9} = 3$$

16. Choice D is the only choice that does not reduce to $\frac{b}{a+b}$.

17.
$$y(y+4)-(y-3)(y+3)=y^2+4y-y^2+9=4y+9$$

18. If
$$\frac{3}{4}y = 16$$
, then $\frac{3}{8}y = \frac{1}{2}\left(\frac{3}{4}y\right) = \frac{1}{2} \cdot 16 = 8$. Therefore $\frac{3}{8}y - 5 = 8 - 5 = 3$

19.
$$\frac{ab}{b^2} = \frac{c}{b^2} = \frac{a}{b}$$
 20. $\frac{-16}{-16+16} = \frac{-16}{0}$ undefined

21. To obtain a denominator of 3, multiply both sides of $7(\sqrt{2x} - 3\pi) = \frac{2}{3}$ by $\frac{1}{21}$ and simplify.

This will produce
$$\frac{\sqrt{2x} - 3\pi}{3} = \frac{2}{3} \cdot \frac{1}{21} = \frac{2}{63}$$

22.
$$x + 0.1x = 1$$
 $x = \frac{1}{1.1} = \frac{10}{11}$

23. time =
$$\frac{d}{r} = \frac{2tr + 2tp - 3r - 3p}{2t - 3} = \frac{2t(r+p) - 3(r+p)}{2t - 3} = \frac{(2t-3)(r+p)}{2t - 3} = r + p$$

24.
$$\frac{100x}{32}$$

25. n+2 because consecutive odd integers differ by two.