Моисеев Владислав ПИН-22 Электроника лаб 1

ИССЛЕДОВАНИЕ МАЛОМОЩНОГО ВЫПРЯМИТЕЛЯ

Цель работы: Исследование однофазных одно- и двухполупериодных схем выпрямления; построение вольтамперных характеристик выпрямителей.

Hомер по списку N = 15

Задание 1 Работа однополупериодного выпрямителя на активную нагрузку

Задать амплитуду генератора Er = 4 + N (в вольтах), где N — номер по списку. Запустить моделирование с нижнем положением ключа J1 (емкость фильтра отключена). Перенести в отчёт полученную осциллограмму.

Задание 2 Подключение емкостного фильтра

Подключить емкость фильтра C1 = 10 мкФ (ключ J1 в верхнем положении) и также перенести в отчёт полученную осциллограмму. При изменении сопротивления активной нагрузки заполнить таблицу 1 и построить нагрузочную характеристику выпрямителя.

/ /	U	_	U	_		J
Rn	400	500	600	700	800	Om
Uo	14,30	14,80	15,16	15,45	15,67	В
lo	35,76	29,60	25,27	22,07	19,59	mA

Задание 3 Определение внутреннего сопротивления выпрямителя

$$r_{\rm BH}$$
 $r_{\rm BH} = \frac{\Delta U_o}{\Delta I_o}$, при $R_1 = 500~{
m OM}$ и 600 Ом.

Задание 4 Определение коэффициента пульсации

Заполнить таблицу 2 и построить по полученным значениям зависимость коэффициента пульсации (Рпул) от ёмкости фильтра (Сф).

	Сф	10	20	50	100	150	500
	Uпул	0,7	0,36	0,14	0,07	0,048	0,026
$U_n = U_n$	Uo	14	14,93	14,96	14,97	14,97	14,97
$P_{nyn} = \frac{U_0}{U_0} \times 100\%$	Рпул	5	2,411253	0,935829	0,467602	0,320641	0,173681

Заполнить таблицу 3 и построить зависимость величины пульсирующего напряжения (Uпул) от частоты выпрямляющего напряжения. UПУЛ = f(FF) при $C\Phi = 10$ мк Φ и RH = 500 Oм

Fг, гЦ	400	500	600	700	800	900	1000
Uпул	1,706	1,395	1,176	1,013	0,888	0,789	0,709

Выпрямитель при RH = 500 Ом и Сф = 500 мкФ.

Из-за диода ток может колебаться только в одном направлении, и, проходя через конденсатор, он заряжает его, что не дает току резко падать. Вследствие этого сигнал тока выпрямляется.

Задание 5 Работа двухполупериодного выпрямителя на активную нагрузку

Задать амплитуду генератора Er = 4 + N (в вольтах), где N — номер по списку. Запустить моделирование с нижнем положением ключа II (емкость фильтра отключена). Перенести в отчёт полученную осциллограмму.

Задание 6 Подключение емкостного фильтра

Подключить емкость фильтра C1 = 10 мкФ (ключ J1 в верхнем положении) и также перенести в отчёт полученную осциллограмму. При изменении сопротивления активной нагрузки заполнить таблицу 4 и построить нагрузочную характеристику выпрямителя.

Задание 7 Определение внутреннего сопротивления двухполупериодного выпрямителя

$$r_{\mbox{\tiny вH}} = rac{\Delta U_o}{\Delta I_o}$$
, где ΔU_0 и : 500 Ом и 600 Ом. $\mbox{\tiny гвн}$ -0,04564

Задание 8 Определение коэффициента пульсации

Заполнить таблицу 5 и построить по полученным значениям зависимость коэффициента пульсации (Рпул) от ёмкости фильтра (Сф).

$$P_{nyn} = \frac{U_n}{U_o} \times 100 \%$$

+							
5	Сф	10	20	50	100	150	500
5	Uпул	0,323	0,162	0,065	0,032	0,028	0,008
7	Uo	15,56	15,6	15,62	15,62	15,62	15,62
3	Рпул	2,075835	1,038462	0,416133	0,204866	0,179257	0,051216

Заполнить таблицу 6 и построить зависимость величины пульсирующего напряжения (Uпул) от частоты выпрямляющего напряжения. UПУЛ = f(FF) при $C\Phi = 10$ мк Φ и RH = 500 Om

Fг, гЦ 400 500 600 700 800 900	1000
	1000
Uпул 0,827 0,666 0,556 0,473 0,411 0,362	0,323

Выводы по работе: Мы частично разобрались в работе выпрямителей тока и получили зависимости рабочих величин. По полученным данным можно сказать, что выпрямление сигнала у второй схемы лучше, так как конденсатор не успевает разрядиться, в следствии чего во втором полупериоде сигнал не скачет.