Hall Ti	cket l	Num	ber:	
120	$\neg \tau$			

I/IV B.Tech (Regular) DEGREE EXAMINATION

April, 2019 Second Semester

Common to all branches Numerical Methods & Advanced Calculus

		ee Hours Maximum: 50 M (10X1 = 10 Maximum)							
15W	er Qı	uestion No.1 compulsorily. (4X10=40 Ma							
15W	er O	WE question from each unit. (10X1=10 Mar							
١. ا	Ans	swer all duestions	1M						
	a)	Develop Newton's iterative formula to find cube root of a natural number. (CLO2)							
	b)	Decompose $A = \begin{bmatrix} 4 & 1 \\ 3 & -5 \end{bmatrix}$ as LU. Here L and U are lower and upper triangular	1M						
		matrices. (CLO2)	13.4						
	c)	Write Newton's divided difference formula. (CLO1)	1M 1M						
	d)	Give the Simpson's 1/3 rd rule of integration. (CLO1)							
	e)	Write the general formula to find y_1 for the initial value problem $\frac{dy}{dx} = f(x, y), y(x_0) = y_0$							
		in Ruge-Kutta method of 4 th order. (CLO1							
	f)	Change $\iint (x^2 + y^2)^{n/2} dx dy$ over the positive quadrant of the circle $x^2 + y^2 = 4$ to polar							
_		coordinates. (No need to evaluate)							
	g)	Evaluate $\int_{0}^{1} \int_{z^{2}}^{1-x} \int_{0}^{1-x} x dx dy dz$ (CLO1)	1M						
-	h)	(CLO2)							
	1	For $\phi = xy + yz$, find its gradient. (CLO2)							
	(i)	Find $V \times F$, for $F = (-x + yz)T + (4y - z + x)U + (2xz - z)U$							
	j)	State Green's theorem. (CLO1)							
		TINITE I							
_		UNIT I Let : Paralle Fals; method find a root of $xe^x = 2$ correct to three decimal places. (CLO2)	5M						
2.	(a)	Using Regula-Paisi method find a root of xe^{-2} correctes the second							
	b)	2x+17y+4z=35, x+3y+10z=24, 28x+4y-z=32 with (0,0,0) as initial approximation							
	1	correct to four decimal places. (CLO2)							
3.	10)	Find a root of $e^x = 4 \sin x$ using bisection method correct to four decimal places. (CLO2)	5N						
٥.	-	Using Gauss elimination find a solution of							
	b)	Osing Gauss eminiation find a solution $3 - 2x_1 + 4x_2 + x_3 = 3$, $3x_1 + 2x_2 - 2x_3 = -2$, $x_1 - x_2 + x_3 = 6$ (CLO2)	5N						
	1	$2x_1 + 4x_2 + x_3 - 3$, $3x_1 + 2x_2 - 2x_3 - 2$, $x_1 - x_2 - x_3 - x_1 - x_2 - x_2 - x_2 - x_3 - x_1 - x_2 - x_2 - x_3 - x_1 - x_2 - x_2 - x_3 - x_1 - x_2 - x_2 - x_2 - x_2 - x_2 - x_3 - x_2 - x_2 - x_3 - x_2 - x_3 - x_2 - x_3 - x_2 - x_3 - x$							
		UNIT II							
1	10)	Ca' to a far the data							
4.	(a)	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
G	1	θ 184 204 226 250 276 304	5N						
		Also find the values of θ at $x = 43$ (CLO2)							
-	b)	o t ' D' 12							
		$\frac{dy}{dx} = y, \ y(0) = 1 \tag{CLO2}$	5N						
12	61 100	dx (OR)							

							The control of the second	18MA	002
		Apply Lagrange		ion formula	to find the	value of v w	then $x = 10$ for t	he data	1
5.	a)	Apply Lagrange	s interpolat	5	6	9	11		5M
			$\frac{\lambda}{y}$	12	13	14	16		
						J		(CLO2)	
	b)	Using Trapezoid	lal and Sim	poson's 3/8 th	h rule of inte	egration, fin	$d \int_{4}^{5.2} \ln x dx , \text{fo}$	r h = 0.2. (CLO2)	5M
					UNIT III				5N
6.	a) Evaluate $\iint xy(x+y)dx dy$ over the region bounded by $y=x^2$, $y=x$.					(CLO3)			
	b)	Find the volume of the sphere $x^2 + y^2 + z^2 = a^2$. (CLO3)						5N	
	0)	Find the volume	or the spine						
					(OR)			(CLO3)	5N
7.	a)	Find the are between the parabolas $y^2 = 4x$, $x^2 = 4y$.					2		_
	b)						$-y^{2}=a^{2},$		
		$x^2 + y^2 = z \text{ and}$						(CLO3)	5N
	1				UNIT IV		100		
8.	(a)	Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 - 3$ at the point						point	5N
		(2,-1,2).						(CLO3)	
	b)	(C) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					5N		
		boundary of the	e triangle wi	th vertices (2,0,0), (0,:	3,0,), (0,0,6	5)	(CLO3)	
	e stes				(OR)				
9.	· T	Verify Gauss I bounded by x^2			F = yI + xJ	$I + z^2 K$ ove	r the cylindrica	l region (CLO3)	10

Numerical methods and Advanced Calculus Scheme & Valuation, April, 2019

(1) (a) Cet
$$\alpha = 3\pi$$
 = 1 $x^3 - N = 0$
Cet $f(\alpha) = x^3 - N$ then $f'(\alpha) = 3\alpha^2$
By Newtords Perahve formula, $\alpha_{n+1} = 2n - \frac{f(\alpha_n)}{f'(\alpha_n)}$
=1 $\alpha_{n+1} = \alpha_n - \frac{\alpha_n^3 - N}{3\alpha_n^2} = \frac{2\alpha_n^3 + N}{3\alpha_n^2}$

(b) Cot
$$A = \begin{bmatrix} u & 1 \\ 3 & -5 \end{bmatrix} = \begin{bmatrix} u & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} b & c \\ 0 & d \end{bmatrix}$$

Solving $\omega = 3/u$, $b = u$, $c = 1$, $d = -23/u$.

- By R-k method of furth order $Y_1 = Y_0 + \frac{1}{5} (k_1 + 2k_2 + 2k_3 + k_4)$ $K_1 = h + (20, 40)$ $K_2 = h + (20 + \frac{1}{2}, 40 + \frac{1}{2})$ $K_3 = h + (20 + \frac{1}{2}, 40 + \frac{1}{2})$ $K_4 = h + (20 + h, 40 + k_3)$
- (d) Simplement 1/3rd rule of integration

 notation

 Sotation

 Sota
- (2-20) (2-21) .. (2-2n-1) [20121...2n]

(f) Consider
$$\iint (\lambda^2 + y^2)^{m/2} d\lambda dy$$

By changing to polar form, $\lambda = \lambda \times 0.00$, $\lambda = \lambda \times 0.00$, $\lambda = \lambda \times 0.00$

For positive quadrant $\lambda = 0.000$ $\lambda = 0.00$ $\lambda = 0.00$

(h) Consider
$$\nabla Q = (i \frac{2}{3} + i \frac{2}{3} + k \frac{2}{3})(2y^{2} + yz^{3})$$

$$= y^{2}i + (2xy + z^{3})i + 3yz^{2}k$$

(j) Green's theosem: IG q(a,y),
$$\psi(a,y)$$
, $\phi(a,y)$, $\phi($

Regula falsi mothod.

Cot f(a) = 2e2-2

A root of this ? A between o and 1.

22 = 20 Han - 21 Han Cet 20=0, 21=1.

Them $n_2 = 0.758$, $n_3 = 0.8395$, $n_4 = 0.8512$, $n_5 = 0.8525$ 76=0.8526

(2) (b) Rewailling the given system of equations

282+44-3=32 22+174+48=35 21 + 34 + 108 = 24

Then $\lambda = \frac{1}{28} (32 - 44 + 3)$, $y = \frac{1}{17} (35 - 22 - 43)$, $z = \frac{1}{10} (24 - 2 - 34)$

Cet 20=40=30=0 be an initial approximation

y = 1.9244 21 = 1.1429

31= 1.7084

72 = 0.9289

y2= 1.5476

82= 1.8428

73 = 0.9875

y3 = 1.509

33=1.8485

Ju= 0.9933 2ju= 1.507

34= 1.8485

75= 0.9935 Y5= 1.507

35= 1.8485

716 = 0.9935 Y6 = 1.507

36 = 1.8485

30 Ou Har= Usima-e7 fro=-1, fr=0.64760

A root of tra) is between a and I

curry Bisection method

72=0.5, HA2)=0,26898

73=0375 A73)=0.01009

74 = 03125 f(24) = -0.13037

715 = 0.34315, fras)=

26=0.35937, 27=0.367/8

(3) 6) making form of the given system is
$$\begin{bmatrix}
1 & -1 & 1 & | 6 \\
3 & 2 & -2 & | -2 \\
2 & 4 & 1 & | 3
\end{bmatrix}$$

$$R_3 - R_3 - 6R_1$$

$$\begin{bmatrix}
1 & -1 & 1 & 6 \\
0 & 1 & -1 & -4 \\
0 & 0 & 5 & 15
\end{bmatrix}$$

Then
$$\alpha_1 - \alpha_2 + \alpha_3 = 6$$

 $\alpha_2 - \alpha_3 = -4$
 $5\alpha_3 = 15$
So, $\alpha_1 = 2$, $\alpha_2 = -1$, $\alpha_3 = 3$

Take 2= 20+0h, 71=43, h=10, 20=40 then p=03

By Newton's forward interpolation formular

= 189.79.

(i) (b) Consider
$$\frac{dy}{dx} = y$$
, $y(0) = 1$.

By Picard's method $y_1 = y_0 + \int_0^{\pi} y_0 dx = 1 + \int_0^{\pi} (1 + x) dx = 1 + x$
 $y_2 = y_0 + \int_0^{\pi} y_1 dx = 1 + \int_0^{\pi} (1 + x) dx = 1 + x + \frac{x^2}{2!}$
 $y_3 = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!}$
 $y_4 = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!}$
 $y_4 = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!}$
 $y_4 = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!}$

Cying Cagrange's interpolation formula

Using
$$(0.97801967)$$
 The following $(10-6)(10-9)(10-11)$ + $(10-5)(10-9)(10-11)$ + $(13-6)(10-9)(10-11)$ + $(13-6)(10-9)(10-11)$ + $(13-6)(10-9)(10-11)$ + $(10-5)(10-6)(10-9)$

$$(10-5)(10-6)(10-11)$$
 + $(10-5)(10-6)(10-9)$

$$(10-5)(10-6)(10-11)$$
 + $(10-5)(10-6)(10-9)$

$$(10-5)(10-6)(10-9)$$

$$(10-5)(10-6)(10-9)$$

$$(10-5)(10-6)(10-9)$$

$$(10-5)(10-6)(10-9)$$

$$(10-5)(10-6)(10-9)$$

$$(10-5)(10-6)(10-9)$$

$$(10-5)(10-6)(10-9)$$

= 1.8278

$$= \int_{\lambda=0}^{1} \int_{\lambda=0}^{1} (x^{2}y + \lambda y^{2}) dy dx$$

$$= \int_{\lambda=0}^{1} (x^{2}y^{2} + 2y^{3})^{2} dx$$

$$= \int_{\lambda=0}^{1} (x^{2}y^{2} + 2y^{3})^{2} dx$$

$$= \int_{\lambda=0}^{\infty} \left(\frac{\lambda^{4}}{2} + \frac{\lambda^{3}}{3} \right) \frac{1}{y=x^{2}}$$

$$= \int_{\lambda=0}^{\infty} \left(\frac{\lambda^{4}}{2} + \frac{\lambda^{3}}{3} - \frac{\lambda^{6}}{2} - \frac{\lambda^{7}}{3} \right) dx = \frac{3}{56}$$

8 x volume of the sphere in the first octant

By changing to polar Coorchnates

$$= 8 \int_{0=0}^{11} \int_{0}^{12} \int_{$$

$$= -4 \int_{0=0}^{\pi/2} \frac{(a^2 - x^2)^3}{3l_2} d\theta = -\frac{8}{3} \int_{0=0}^{\pi/2} -a^3 d\theta = \frac{|u|\pi a^3}{3|u|\pi a^3}$$

$$y = x^{1/4}$$
 $x = 0$ = $\frac{3}{4}$ $\frac{16}{3}$

(7) b volume bounded by the sustaces 2249= 07, 2249=8, 8=0 1) Shown in

the figure.

$$= \iint \left(\frac{3^3}{3}\right)^{\frac{3}{3}} dxdy$$

$$23^{\frac{3}{3}} \le a^{\frac{3}{3}} = 0$$

then
$$\nabla f_1 = 2\lambda \hat{i} + 2y \hat{j} + 23k$$
 $\nabla f_2 = 2\lambda \hat{i} + 2y \hat{j} - K$

$$\nabla f_1 = 202 + 201 + 20$$

Cot o be the angle between the two curves, then

Con0 =
$$\frac{\nabla f_1 \cdot \nabla f_2}{17f_1|17f_2|} = \frac{(u_1^2 - 2j + u_1^2) \cdot (u_1^2 - 2j - k)}{|u_1^2 - 2j + u_1^2| \cdot |u_1^2 - 2j - k|}$$

$$= \frac{16 + u - u}{6\sqrt{2}i} = \frac{8}{3\sqrt{2}i}$$

Hence
$$0 = Cos(\frac{8}{3(21)})$$

(0,0,6) (DIBN)

3

$$\frac{71}{2} + \frac{9}{3} + \frac{3}{6} = 1$$
 = 1 $37 + 29 + 3 - 6 = 0$

$$\nabla f = 3i + 2j + k$$

$$N = \frac{3i + 2j + k}{\sqrt{16}}$$

$$\int_{C} F \cdot dR = \iint_{S} (ux)F \cdot N dS = \iint_{S} (2i+k) \cdot \frac{3i+2j+k}{\pi u} ds$$

By Gaus Divergence theosem

Then III du F dv = II | 23 dz dads

Then
$$SF-NOM = JJ u dad = U (Axea & Circle $a^2+y^2=9$)
$$a^2y^2 = u(9\pi) = 36\pi$$$$

$$\nabla f = 2\pi \lambda + 24j$$

$$2\pi \lambda + 24j$$

$$2\pi \lambda + 24j$$

$$2\pi \lambda + 24j$$

Then
$$N = \frac{2\pi i + 24j}{\sqrt{2\pi^2 + 44j}} = \frac{\pi i + 4j}{3}$$

$$= \iint_{S} \frac{2\alpha y}{3} \cdot \frac{d\alpha ds}{y/3} = 2 \int_{S=-2}^{2} 2 \int_{S=0}^{2} ds \cdot d\alpha.$$

$$= 2 \int_{2^{-2}}^{2} a \cdot 2 \cdot dn$$

$$= 2 \int_{2^{-2}}^{2} a \cdot 2 \cdot dn$$

$$= 4 \left(\frac{n^2}{2}\right)_{2}^{2} = 0$$

then
$$\iint_S F. NOUS = \iint_S F. NOUS + \iint_S F. NOUS S_3$$

Hence 5 Gauss presquire theosem vented.

prepared by

ANH prot.

Dept of mathematica

Bapatla Enga Collex,

Bakatla

9247450048