21:13 2020-10-06 page 1 of 4

Mandatory Homework 5 - 6 Stat 220 - H20

OCTOBER 08, 15: 1015 - 1200

Version-I-200823 2020-10-06-21-13-40

Due at the end of October 18

Problem 6.1

$$\mathbb{P} = \begin{array}{ccc} 0 & 1 & 2 \\ 0 & 0.7 & 0.2 & 0.1 \\ 1 & 0.0 & 0.6 & 0.4 \\ 2 & 0.5 & 0.0 & 0.5 \end{array} \right).$$

- a) Calculate $P(X_3 = 1 | X_0 = 0)$ and $P(X_4 = 1 | X_0 = 0)$. Hint: Save time and use R for these calculations.
- b) Also explain why the chain is irreducible and aperiodic. Is it recurrent or transient?

Problem 6.2

An urn initially contains a single red ball and a single green ball. A ball is drawn at random, removed, and replaced by a ball of the opposite color, and this process repeats so that there are always exactly two balls in the urn. Let X_n be the number of red balls in the urn after n draws, with $X_0 = 1$.

- a) Specify the transition probabilities for the Markov chain $\{X_n, n \geq 0\}$.
- b) What is the period for the different states?

PROBLEM 6.3

- a) Make a simple drawing of (1)
- b) Which states are transient and which are recurrent in the Markov chain whose transition probability matrix is

(1)
$$\mathbb{P} = \begin{pmatrix} 0 & 1 & 2 & 3 & 4 & 5 \\ 0 & \begin{pmatrix} \frac{1}{3} & 0 & \frac{1}{3} & 0 & 0 & \frac{1}{3} \\ \frac{1}{2} & \frac{1}{4} & \frac{1}{4} & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & 0 & 0 & \frac{1}{4} \\ 4 & 0 & 0 & 1 & 0 & 0 & 0 \\ 5 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}.$$

21:13 2020-10-06 page 2 of 4

- c) Find all communicating classes; which classes are transient and which are recurrent?
- d) Express \mathbb{P} when the state space is written as $\mathcal{S} = \{1, 3, 0, 2, 4, 5\}$.
- e) Let $T = \min \{n \geq 0 : X_n \in \text{set of recurrent states} \}$. Find $\mathbb{P}_0(X_T = 5)$ and $\mathbb{E}_0 T$. Find \mathbb{P}^{∞} with R.

PROBLEM 6.4

Let \mathbb{P} be a Markov transition matrix

$$\mathbb{P} = \begin{pmatrix} P_{00} & P_{01} & \cdots & P_{0,N-1} & P_{0N} \\ P_{10} & P_{11} & \cdots & P_{0,N-1} & P_{1N} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ P_{i_0-1,0} & P_{i_0-1,1} & \cdots & P_{i_0-1,N-1} & P_{i_0-1,N} \\ P_{i_0,0} & P_{i_0,1} & \cdots & P_{i_0,N-1} & P_{i_0,N} \\ P_{i_0+1,0} & P_{i_0+1,1} & \cdots & P_{i_0+1,N-1} & P_{i_0+1,N} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ P_{N0} & P_{N1} & \cdots & P_{N,N-1} & P_{NN} \end{pmatrix}$$

with state space $S = \{0, ..., N\}$ and let i_0 be a fixed state. Define the taboo matrix, \mathbb{R} , which equals \mathbb{P} except that the *i*th row vector is replaced by zeros. This means that $\mathbb{R} = \{R_{ij}\}$ with

(2)
$$R_{ij} = \begin{cases} 0, & \text{if } i = i_0; \\ P_{ij}, & \text{otherwise,} \end{cases}$$

which is

$$\mathbb{R} = \begin{pmatrix} P_{00} & P_{01} & \cdots & P_{0,N-1} & P_{0N} \\ P_{10} & P_{11} & \cdots & P_{0,N-1} & P_{1N} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ P_{i_0-1,0} & P_{i_0-1,1} & \cdots & P_{i_0-1,N-1} & P_{i_0-1,N} \\ 0 & 0 & \cdots & 0 & 0 \\ P_{i_0+1,0} & P_{i_0+1,1} & \cdots & P_{i_0+1,N-1} & P_{i_0+1,N} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ P_{N0} & P_{N1} & \cdots & P_{N,N-1} & P_{NN} \end{pmatrix}.$$

We see that \mathbb{R} is equal to \mathbb{P} minus a matrix that consists of zeros all places except the i_0 -th row that equals the i_0 -th row of \mathbb{P} . This i_0 -th row defines a probability measure on the state space, and we denote it by

$$\nu \stackrel{\text{def}}{=} (P_{i_0,0}, P_{i_0,1}, \dots, P_{i_0,N}) = \{P_{i_0,j}, j \in \mathcal{S}\}$$
 row vector.

For building the simple matrix described we also need a column vector. Let $s = (0, ..., 0, 1, 0, ..., 0)' = e_{i_0}$, be the i_0 -th unit vector. Then we get an expression for the

21:13 2020-10-06 page 3 of 4

wanted matrix,

$$s\otimes
u\stackrel{\mathrm{def}}{=} s\,
u = egin{pmatrix} 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & \cdots & 0 & 0 \\ dots & dots & \ddots & dots & dots \\ 0 & 0 & \cdots & 0 & 0 \\ P_{i_0,0} & P_{i_0,1} & \cdots & P_{i_0,N-1} & P_{i_0,N} \\ 0 & 0 & \cdots & 0 & 0 \\ dots & dots & \ddots & dots & dots \\ 0 & 0 & \cdots & 0 & 0 \end{pmatrix}.$$

Thus $\mathbb{R} = \mathbb{P} - s \otimes \nu$.

As an example we use the rain transition matrix,

(3)
$$\mathbb{P} = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 0.62 & 0.00 & 0.38 & 0.00 \\ 0.55 & 0.00 & 0.45 & 0.00 \\ 0.00 & 0.24 & 0.00 & 0.76 \\ 0.00 & 0.19 & 0.00 & 0.81 \end{bmatrix} = \begin{bmatrix} a & 0 & 1-a & 0 \\ b & 0 & 1-b & 0 \\ 0 & c & 0 & 1-c \\ 0 & d & 0 & 1-d \end{bmatrix}$$

and here we choose $i_0 = 0$.

a) Put the the matrix \mathbb{P} in R and compute s, ν and $\mathbb{R} = \mathbb{P} - s \otimes \nu$ in R with $i_0 = 0$. (In R the state space is represented as $\{1, 2, 3, 4\}$ and $i_0 = 1$). Write

```
nu<-t(mP[1,])  # The first row vector of mP
mI<-diag(rep(1,4))  # unitmatrix of order 4
s<-mI[,1]  # first unit vector, e_1, in R**4
msnu<-s%*%nu
mR<- mP-msnu</pre>
```

where t() is the function in R that transpose a matrix or a vector and %*% is matrix mulitplication. Print \mathbb{P} , \mathbb{R} , s, ν and $s \otimes \nu$.

b) Choose M > 1 and compute the approximations;

$$\widetilde{\mathbb{G}}_{s,\nu} = \sum_{n=0}^{M} \mathbb{R}^{n} = \mathbb{I} + \mathbb{R} + \mathbb{R}^{2} + \dots + \mathbb{R}^{M},$$

$$\widetilde{\pi}^{(s)} = \nu \, \widetilde{\mathbb{G}}_{s,\nu},$$

$$\widetilde{\pi} = \widetilde{\pi}^{(s)} / \widetilde{\pi}^{(s)} 1,$$

where $\widetilde{\pi}^{(s)}1$ is a normalisation so that we get a probability. In R the normalisation looks like

```
wtpi<- pis/sum(pis)</pre>
```

Compare $\tilde{\pi}$ with the exact π for M large enough. You find π from (3).

c) Use your computer and compute the distribution of the return time for i_0 .

21:13 2020-10-06 page 4 of 4

Problem 6.5

Let \mathbb{P} be a finite transition matrix. Suppose that all P_{ij} 's are strictly positive, i.e. there is a $\delta > 0$ so that $P_{ij} \geq \delta$ for all i, j. We can write this shortly as $\mathbb{P} > 0$.

- a) Show that this implies that n step transition matrix is bounded below in the same way; $P_{ij}^{(n)} \geq \delta$ for all $n \geq 1$ and all (i, j).
- b) Suppose that \mathbb{P} is finite, irreducible and aperiodic. Explian that for some finite n_0 ; $\mathbb{P}^{n_0} > 0$. Hint: Explain first, with reference to known theory, that $\mathbb{P}^n \to \mathbf{1} \otimes \pi$.

Problem 6.6

Let \mathbb{P} be irreducible with state space $\mathcal{S} = \{0, \dots, N\}$ and periodic with period equal to d. Let d = 2. Define

$$E_0 = \{j : \sum_{h>1} P_{0j}^{(hd)} > 0\}, \qquad E_1 = \{j : \sum_{h>1} P_{0j}^{(hd+1)} > 0\}.$$

- a) Explain that $E_0 \cup E_1 = \mathcal{S}$.
- b) Prove that $E_0 \cap E_1 = \emptyset$.

With eventually a possible relabelling of the state space we can write the transition matrix as

$$\mathbb{P} = \begin{array}{cc} E_0 & E_1 \\ E_0 \begin{pmatrix} \mathbb{P}_{00} & \mathbb{P}_{01} \\ \mathbb{P}_{10} & \mathbb{P}_{11} \end{pmatrix}.$$

- c) What do you know about \mathbb{P}_{ii} for i = 0, 1.
- d) If N is finite, is true that $|E_0| = |E_1|$? You may construct an example. Is \mathbb{P}^2 irreducible?

Problem 6.7

Let \mathbb{P} have finite state space of size N+1. Suppose that \mathbb{P} is irreducible. Let (i) and (j) be a fixed and different states.

- a) Prove that $P_{ij}^{(n)} > 0$ for some $n \leq N$.
- b) Prove that $P_{ii}^{(n)} > 0$ for some $n \leq N + 1$.
- c) If \mathbb{P} is periodic, explain that $d \leq N + 1$.

Problem 6.8

Let \mathbb{P} be a transition matrix that contains the classes A and B.

- a) Suppose B is accessible for A. Prove that A is transient.
- b) Let $\{X_t, t \geq 0\}$ be a simple random walk on the non-negative integers with $p = P_{i,i+1} = 1 P_{i,i-1} = 1 q$ for i > 0 and with 0 as an absorbing barrier. Assume that p > q > 0. Classify the equivalence classes for this chain.