STA 314: Statistical Methods for Machine Learning I

Lecture 9 - Multi-class Logistic Regression, Discriminant Analysis

Xin Bing

Department of Statistical Sciences University of Toronto

Review

In the last lecture, we have learned the logistic regression for binary classification with $Y \in \{0,1\}$.

- Estimating the Bayes rule at any observation $x \in \mathbb{R}^p$ is equivalent to estimate the conditional probability $\mathbb{P}(Y = 1 \mid X = x)$.
- Logistic regression parametrizes the conditional probability by

$$\mathbb{P}(Y = 1 \mid X = x) = \frac{e^{\beta_0 + x^{\top} \beta}}{1 + e^{\beta_0 + x^{\top} \beta}}.$$

 We estimate the coefficients by using MLE which can be solved by (stochastic) gradient descent.

Extension to multi-class classification

When $Y \in \{0, 1, ..., K\}$ for $K \ge 2$, we need to estimate

$$p_k(x) := \mathbb{P}(Y = k \mid X = x), \quad \forall 1 \le k \le K.$$

We assume

$$\log\left(\frac{p_{1}(x)}{p_{0}(x)}\right) = \beta_{0}^{(1)} + \beta_{1}^{(1)}x_{1} + \dots + \beta_{p}^{(1)}x_{p}$$

$$\log\left(\frac{p_{2}(x)}{p_{0}(x)}\right) = \beta_{0}^{(2)} + \beta_{1}^{(2)}x_{1} + \dots + \beta_{p}^{(2)}x_{p}$$

$$\vdots$$

$$\log\left(\frac{p_{K}(x)}{p_{0}(x)}\right) = \beta_{0}^{(K)} + \beta_{1}^{(K)}x_{1} + \dots + \beta_{p}^{(K)}x_{p}$$

Choice of the baseline is arbitrary.

Classification

Equivalently,

$$\begin{split} p_0(x) &= \frac{1}{1 + \sum_{k=1}^K e^{x^\top \beta^{(k)}}}, \\ p_k(x) &= \frac{e^{x^\top \beta^{(k)}}}{1 + \sum_{k=1}^K e^{x^\top \beta^{(k)}}}, \qquad \forall 1 \le k \le K. \end{split}$$

So classification can be done immediately once $\beta^{(k)}$'s are estimated,

How to estimate coefficients?

A naive approach: separate binary logistic regressions

$$\log\left(\frac{p_{k}(x)}{p_{0}(x)}\right) = \beta_{0}^{(k)} + \beta_{1}^{(k)}x_{1} + \dots + \beta_{p}^{(k)}x_{p}$$

Split the data into $\mathcal{D}^{train}_{(1)}, \dots, \mathcal{D}^{train}_{(K)}$ with $\mathcal{D}^{train}_{(k)}$ containing all data with $y \in \{0, k\}$.

1. For each $1 \le k \le K$, use $\mathcal{D}^{train}_{(k)}$ to perform binary logistic regression to estimate $\beta^{(k)}$ and estimate

$$\frac{p_k(x)}{p_0(x)}$$

2. Assign class label by comparing

$$1, \frac{p_1(x)}{p_0(x)}, \frac{p_2(x)}{p_0(x)}, \dots, \frac{p_K(x)}{p_0(x)}$$

Why naive?

- Estimation of $\beta^{(k)}$
 - only uses $\mathcal{D}^{train}_{(k)}$, data points in class $\{0, k\}$
 - ▶ ignore all data points in other classes
- The label $1\{y_i = k\}$ is **dependent** on all other $1\{y_i = k'\}$ for $k' \neq k$. Intuitively, this dependence can aid estimation of $\beta^{(k)}$ by using data from all classes.
- What should we use instead?

MLE for multi-class logistic regression

For $(y_1, \mathbf{x}_1), \dots, (y_n, \mathbf{x}_n)$, the log-likelihood of $(\boldsymbol{\beta}^{(1)}, \dots, \boldsymbol{\beta}^{(K)})$ is proportional to

$$\sum_{i=1}^{n} \log \left(\prod_{k=0}^{K} p_{k}(\mathbf{x}_{i})^{1\{y_{i}=k\}} \right)$$

$$= \sum_{i=1}^{n} \sum_{k=0}^{K} 1\{y_{i} = k\} \log (p_{k}(\mathbf{x}_{i}))$$

$$= \sum_{i=1}^{n} \left[1\{y_{i} = 0\} \log (p_{0}(\mathbf{x}_{i})) + \sum_{k=1}^{K} 1\{y_{i} = k\} \log (p_{k}(\mathbf{x}_{i})) \right]$$

$$= \sum_{i=1}^{n} \left[\sum_{k=1}^{K} 1\{y_{i} = k\} \mathbf{x}_{i}^{\top} \boldsymbol{\beta}^{(k)} - \sum_{k=0}^{K} 1\{y_{i} = k\} \log \left(1 + \sum_{k=1}^{K} e^{\mathbf{x}_{i}^{\top} \boldsymbol{\beta}^{(k)}} \right) \right]$$

$$= \sum_{i=1}^{n} \left[\sum_{k=1}^{K} 1\{y_{i} = k\} \mathbf{x}_{i}^{\top} \boldsymbol{\beta}^{(k)} - \log \left(1 + \sum_{k=1}^{K} e^{\mathbf{x}_{i}^{\top} \boldsymbol{\beta}^{(k)}} \right) \right]$$

Gradient of $\ell(\beta^{(k)})$

For any $1 \le k \le K$,

$$\frac{\partial \ell(\boldsymbol{\beta}^{(1)}, \dots, \boldsymbol{\beta}^{(K)})}{\partial \boldsymbol{\beta}^{(k)}} = \sum_{i=1}^{n} \left[1\{y_i = k\} \ \mathbf{x}_i - \frac{\mathbf{x}_i e^{\mathbf{x}_i^{\mathsf{T}} \boldsymbol{\beta}^{(k)}}}{1 + \sum_{k=1}^{K} e^{\mathbf{x}_i^{\mathsf{T}} \boldsymbol{\beta}^{(k)}}} \right] \\
= \sum_{i=1}^{n} \left[1\{y_i = k\} - \frac{e^{\mathbf{x}_i^{\mathsf{T}} \boldsymbol{\beta}^{(k)}}}{1 + \sum_{k=1}^{K} e^{\mathbf{x}_i^{\mathsf{T}} \boldsymbol{\beta}^{(k)}}} \right] \mathbf{x}_i.$$

C.f. for binary case

$$\frac{\partial \ell(\beta)}{\partial \beta} = \sum_{i=1}^{n} \left[1\{y_i = 1\} - \frac{e^{\mathbf{x}_i^{\mathsf{T}} \beta}}{1 + e^{\mathbf{x}_i^{\mathsf{T}} \beta}} \right] \mathbf{x}_i$$
$$= \sum_{i=1}^{n} \left[y_i - \frac{e^{\mathbf{x}_i^{\mathsf{T}} \beta}}{1 + e^{\mathbf{x}_i^{\mathsf{T}} \beta}} \right] \mathbf{x}_i.$$

Gradient descent

Therefore, for $1 \le k \le K$, we update

$$\hat{\beta}_{(t+1)}^{(k)} = \hat{\beta}_{(t)}^{(k)} + \alpha \sum_{i=1}^{n} \left[1\{y_i = k\} - \frac{e^{\mathbf{x}_i^{\top} \hat{\beta}_{(t)}^{(k)}}}{1 + \sum_{k=1}^{K} e^{\mathbf{x}_i^{\top} \hat{\beta}_{(t)}^{(k)}}} \right] \mathbf{x}_i.$$

Remark:

- the gradient update uses data points from all classes!
- better estimation than the naive approach

An alternative to Logistic Regression

- When the classes are well-separated, the parameter estimates for the logistic regression model are surprisingly unstable¹.
 - ▶ Discriminant analysis does not suffer from this problem.
- When n is small and we know more about the data, such as the distribution of $X \mid Y = k$
 - Discriminant analysis has better performance than the logistic regression model.
- Logistic Regression sometimes does not handle multi-class classification well
 - ▶ Discriminant analysis is more suitable for **multi-class** classification problems.

¹A paper on this.

Discriminant Analysis

Logistic regression directly parametrizes

$$\mathbb{P}(Y = k \mid X = x), \quad \forall k \in C.$$

By contrast, Discriminant Analysis parametrizes the distribution of

$$X \mid Y = k, \quad \forall k \in C.$$

Normal distributions are oftentimes used.

Discriminant Analysis

What does parametrizing $X \mid Y = k$ buy us?

By Bayes' theorem,

$$\mathbb{P}(Y=k\mid X=x)=\frac{\mathbb{P}(X=x\mid Y=k)\mathbb{P}(Y=k)}{\mathbb{P}(X=x)}.$$

Thus, to compare two classes $k \neq k' \in C$,

$$\mathbb{P}(Y = k \mid X = x) \ge \mathbb{P}(Y = k' \mid X = x)$$

$$\iff \mathbb{P}(X = x \mid Y = k)\mathbb{P}(Y = k) \ge \mathbb{P}(X = x \mid Y = k')\mathbb{P}(Y = k')$$

Notation for discriminant analysis

Suppose we have K classes, $C = \{0, 1, 2, ..., K - 1\}$. For any $k \in C$,

We write

$$\pi_k := \mathbb{P}(Y = k)$$

as the **prior** probability that a randomly chosen observation comes from the kth class.

Write

$$f_k(X) := \mathbb{P}(X = x \mid Y = k)$$

as the **density function** of X = x from class k.

• In discriminant analysis, parametric assumption is assumed on $f_k(X)$.

The Bayes rule

By the Bayes' theorem,

$$p_k(x) := \mathbb{P}(Y = k \mid X = x) = \frac{\pi_k f_k(x)}{\sum_{\ell \in C} \pi_\ell f_\ell(x)}$$

is called **posterior** probability, i.e. the probability that an observation belongs to the *k*th class given its feature.

 According to the Bayes classifier, we should classify a new point x according to

$$\arg\max_{k\in C} \ p_k(x) = \arg\max_{k\in C} \ \frac{\pi_k f_k(x)}{\sum_{\ell\in C}^K \pi_\ell f_\ell(x)} = \arg\max_{k\in C} \ \pi_k f_k(x).$$

Discriminant Analysis for p = 1

Assume that

$$X \mid Y = k \sim N(\mu_k, \sigma_k^2), \quad \forall k \in C,$$

namely,

$$f_k(x) = \frac{1}{\sqrt{2\pi}\sigma_k} e^{-\frac{1}{2\sigma_k^2}(x-\mu_k)^2}.$$

• Linear Discriminant Analysis (LDA) further assumes

$$\sigma_0^2 = \sigma_1^2 = \dots = \sigma_{K-1}^2 = \sigma^2.$$

Linear Discriminant Analysis for p = 1

As a result,

$$p_k(x) = \frac{\pi_k f_k(x)}{\sum_{\ell \in C}^K \pi_\ell f_\ell(x)} = \frac{\pi_k e^{-\frac{1}{2\sigma^2}(x - \mu_k)^2}}{\sum_{\ell \in C} \pi_\ell e^{-\frac{1}{2\sigma^2}(x - \mu_\ell)^2}}.$$

• The Bayes rule classifies X = x to

$$\arg \max_{k \in C} p_k(x) = \arg \max_{k \in C} \log (p_k(x))$$

$$= \arg \max_{k \in C} \underbrace{\frac{\mu_k}{\sigma^2} x - \frac{\mu_k^2}{2\sigma^2} + \log \pi_k}_{\delta_k(x)} \quad \text{(verify!)}$$

The name LDA is due to the fact that the discriminant function $\delta_k(x)$ is a linear function in x.

Linear Discriminant Analysis for p = 1

For binary case, i.e. K = 2,

$$\arg \max_{k \in \{0,1\}} \ p_k(x) = \arg \max_{k \in \{0,1\}} \left[\frac{\mu_k}{\sigma^2} x - \frac{\mu_k^2}{2\sigma^2} + \log \pi_k \right]$$

• If the priors are equal $\pi_0 = \pi_1$ and suppose $\mu_1 \ge \mu_0$, then the Bayes classifier assigns X = x to

$$\begin{cases} 0 & \text{if } x < \frac{\mu_0 + \mu_1}{2} \\ 1 & \text{if } x \ge \frac{\mu_0 + \mu_1}{2} \end{cases}$$

The line $x = (\mu_0 + \mu_1)/2$ is called the Bayes decision boundary.

Example of LDA in binary classification

Consider $\mu_0 = -1.5$, $\mu_1 = 1.5$, and $\sigma = 1$. The curves are $p_0(x)$ (green) and $p_1(x)$ (red). The dashed vertical lines are the Bayes decision boundary.

$$f^*(x) = \begin{cases} 0 & \text{if } x < \frac{\mu_0 + \mu_1}{2} = 0\\ 1 & \text{if } x \ge \frac{\mu_0 + \mu_1}{2} = 0 \end{cases}$$

$$\pi_1$$
=.5, π_2 =.5

$$\pi_1 = .3$$
, $\pi_2 = .7$

Compute the Bayes classifier

• If we know μ_0, \ldots, μ_{K-1} , σ^2 and π_0, \ldots, π_{K-1} , then we can construct the Bayes rule

$$\arg\max_{k\in C} \delta_k(x) = \arg\max_{k\in C} \ \left\{ \frac{\mu_k}{\sigma^2} x - \frac{\mu_k^2}{2\sigma^2} + \log \pi_k \right\}.$$

 However, we typically don't know these parameters. We need to use the training data to estimate them!

Estimation under LDA

Given training data $(x_1, y_1), \ldots, (x_n, y_n)$, for all $k \in C$,

We have

$$n_k = \sum_{i=1}^n 1\{y_i = k\}.$$

• We estimate π_k by

$$\hat{\pi}_k = \frac{n_k}{n}.$$

• We estimate μ_k and σ^2 by

$$\hat{\mu}_k = \frac{1}{n_k} \sum_{i: y_i = k} x_i$$

$$\hat{\sigma}^2 = \frac{1}{n - K} \sum_{k=1}^K \sum_{i: y_i = k} (x_i - \hat{u}_k)^2.$$

These are actually the MLEs.

The LDA classifier

• We estimate $\delta_k(x)$ by the plug-in estimator

$$\hat{\delta}_k(x) = \frac{\hat{\mu}_k}{\hat{\sigma}^2} x - \frac{\hat{\mu}_k^2}{2\hat{\sigma}^2} + \log \hat{\pi}_k.$$

The LDA classifier assigns x to

$$\arg\max_{k\in C} \ \hat{\delta}_k(x).$$

• How about the case when p > 1?

Linear Discriminant Analysis for p > 1

• Recall that the posterior probability has the form

$$P(Y = k \mid X = x) = \frac{\pi_k f_k(x)}{\sum_{\ell \in C} \pi_\ell f_\ell(x)},$$

Now, we assume

$$X \mid Y = k \sim N_p(\mu_k, \Sigma), \quad \forall k \in C,$$

that is,

$$f_k(x) = \frac{1}{(2\pi)^{p/2} |\Sigma|^{1/2}} e^{-\frac{1}{2}(x-\mu_k)^T \Sigma^{-1}(x-\mu_k)}.$$

The discriminant function becomes

$$\delta_k(x) = x^T \Sigma^{-1} \mu_k - \frac{1}{2} \mu_k^T \Sigma^{-1} \mu_k + \log \pi_k.$$

C.f.

$$\delta_k(x) = \frac{\mu_k}{\sigma^2} x - \frac{\mu_k^2}{2\sigma^2} + \log \pi_k$$

for the univariate case.

• The Bayes decision boundaries are the set of x for which

$$\delta_k(x) = \delta_\ell(x), \quad \forall k \neq \ell,$$

which are again linear hyperplanes in x.

Example

There are three classes (orange, green and blue) with two features X_1 and X_2 . Dashed lines are the Bayes decision boundaries. Solid lines are their estimates based on the LDA. 2

Estimation under LDA for p > 1

Given the training data $(x_1, y_1), \dots, (x_n, y_n)$, for any $k \in C$,

We have

$$n_k = \sum_{i=1}^n 1\{y_i = k\}.$$

• We estimate π_k by

$$\hat{\pi}_k = \frac{n_k}{n}.$$

The slight difference is to estimate μ_k and Σ by

$$\hat{\mu}_{k} = \frac{1}{n_{k}} \sum_{i:y_{i}=k} x_{i}$$

$$\hat{\Sigma} = \frac{1}{n - K} \sum_{k=1}^{K} \sum_{i:y_{i}=k} (x_{i} - \hat{u}_{k})(x_{i} - \hat{u}_{k})^{\top}.$$

A plugin rule for estimating discriminant functions

• We use the plugin estimator

$$\hat{\delta}_k(x) = x^T \hat{\Sigma}^{-1} \hat{\mu}_k - \frac{1}{2} \hat{\mu}_k^T \hat{\Sigma}^{-1} \hat{\mu}_k + \log \hat{\pi}_k, \quad \forall k \in C.$$

• The resulting LDA classifier is

$$\arg\max_{k\in C}\hat{\delta}_k(x).$$

Logistic Regression v.s. LDA: similarity

For a binary classification problem, one can show that for LDA

$$\log\left(\frac{p_1(x)}{1-p_1(x)}\right) = \log\left(\frac{p_1(x)}{p_0(x)}\right)$$
$$= c_0 + c_1x_1 + \dots + c_px_p,$$

also a linear form as logistic regression.

Logistic Regression v.s. LDA: differences

- 1. LDA makes more assumption by specifying $X \mid Y$.
- 2. The parameters are estimated differently.
 - Logistic regression uses the conditional likelihood based on $\mathbb{P}(Y|X)$ (known as discriminative learning).
 - ▶ LDA uses the full likelihood based on $\mathbb{P}(X, Y)$ (known as generative learning).
- 3. If classes are well-separated, then logistic regression is not advocated.

Other forms of Discriminant Analysis

LDA specifies

$$X \mid Y = k \sim N(\mu_k, \Sigma), \quad \forall k \in C.$$

Other discriminant analyses change the specifications for $X \mid Y = k$.

Quadratic discriminant analysis (QDA) assumes

$$X \mid Y = k \sim N(\mu_k, \Sigma_k), \quad \forall k \in C,$$

by allowing different Σ_k across all classes.

Naive Bayes assumes

$$X_1, \ldots, X_p$$
 are independent given $Y = k$.

For Gaussian density, this means that Σ_k 's are diagonal.

• Many other forms: different density models for $X \mid Y = k$, including non-parametric approaches.

Quadratic Discriminant Analysis: p = 1

Assume that

$$X \mid Y = k \sim N(\mu_k, \sigma_k^2), \quad \forall k \in C,$$

namely,

$$f_k(x) = \frac{1}{\sqrt{2\pi}\sigma_k} e^{-\frac{1}{2\sigma_k^2}(x-\mu_k)^2}.$$

As a result,

$$p_k(x) = \frac{\pi_k f_k(x)}{\sum_{\ell \in C}^K \pi_\ell f_\ell(x)} = \frac{\frac{\pi_k}{\sigma_k} e^{-\frac{1}{2\sigma_k^2} (x - \mu_k)^2}}{\sum_{\ell \in C} \frac{\pi_\ell}{\sigma_\ell} e^{-\frac{1}{2\sigma_\ell^2} (x - \mu_\ell)^2}}.$$

Decision boundary of QDA

The Bayes rule classifies X = x to

$$\arg \max_{k \in C} p_k(x) = \arg \max_{k \in C} \log (p_k(x))$$

$$= \arg \max_{k \in C} \log \left[\frac{\pi_k}{\sigma_k} e^{-\frac{1}{2\sigma_k^2}(x - \mu_k)^2} \right]$$

$$= \arg \max_{k \in C} \underbrace{-\frac{x^2}{2\sigma_k^2} + \frac{\mu_k}{\sigma_k^2} x - \frac{\mu_k^2}{2\sigma_k^2} + \log \pi_k - \log(\sigma_k)}_{\delta_k(x)}$$

The name QDA is due to the fact that $\delta_k(x)$ is quadratic in x.

Quadratic Discriminant Analysis: $p \ge 1$

$$X \mid Y = k \sim N_p(\mu_k, \Sigma_k)$$

The discriminant function becomes

$$\begin{split} \delta_k(x) &= \log \left[\frac{\pi_k}{|\Sigma_k|^{-1/2}} e^{-\frac{1}{2}(x - \mu_k)^T \Sigma_k^{-1}(x - \mu_k)} \right] \\ &= x^T \Sigma_k^{-1} \mu_k - \frac{1}{2} \mu_k^T \Sigma_k^{-1} \mu_k + \log \pi_k - \frac{1}{2} x^T \Sigma_k^{-1} x - \frac{1}{2} \log |\Sigma_k|. \end{split}$$

The **decision boundary** between any class k and class ℓ

$$\left\{x \in \mathbb{R}^p : \delta_k(x) = \delta_\ell(x)\right\}$$

is also quadratic in x

Decision boundaries of LDA and QDA

Decision boundaries of the Bayes classifier (purple dashed), LDA (black dotted), and QDA (green solid) in two scenarios.

Estimation of QDA

Given training data $(x_1, y_1), \dots, (x_n, y_n)$, for any $k \in C$,

We have

$$n_k = \sum_{i=1}^n 1\{y_i = k\}.$$

• We estimate π_k by

$$\hat{\pi}_k = \frac{n_k}{n}.$$

• We estimate μ_k and Σ by

$$\hat{\mu}_{k} = \frac{1}{n_{k}} \sum_{i: y_{i} = k} x_{i}$$

$$\hat{\Sigma}_{k} = \frac{1}{n_{k} - 1} \sum_{i: y_{i} = k} (x_{i} - \hat{u}_{k})(x_{i} - \hat{u}_{k})^{\top}.$$

• Plugin estimator for $\delta(x)$.

Potential problems for LDA and QDA in high dimension

LDA: we have

$$(K-1) + pK + \frac{p(p-1)}{2}$$

number of parameters to estimate.

• QDA: we have

$$(K-1) + pK + \frac{p(p-1)}{2}K$$

number of parameters to estimate.

• The estimation error is large when p is large comparing to n.

Naive Bayes

Naive Bayes assumes that features are independent within each class, but not necessarily Gaussian.

- Useful when p is large, whence QDA and even LDA break down.
- Under Gaussian distributions, naive Bayes assumes

$$\Sigma_k = \operatorname{diag}(\sigma_{k1}^2, \dots, \sigma_{kp}^2), \quad \forall k \in C.$$

The discriminant function is

$$\delta_k(x) = -\frac{1}{2} \sum_{j=1}^p \frac{(x_j - \mu_{kj})^2}{\sigma_{kj}^2} + \log \pi_k.$$

- It is easy to deal with both quantitative and categorical features.
- Despite the strong independence assumption within class, naive Bayes often produces good classification results.