| Identifier    | Total Loc | Methods | Type        |
|---------------|-----------|---------|-------------|
| Component H01 | 76        | 1       | I/O         |
| Component H02 | 116       | 4       | Calculation |
| Component H03 | 113       | 7       | I/O         |
| Component H04 | 103       | 5       | Calculation |
| Component H05 | 105       | 4       | I/O         |
| Component H06 | 48        | 7       | Calculation |
| Component H07 | 102       | 2       | I/O         |
| Component H08 | 111       | 4       | I/O         |
| Component H09 | 128       | 3       | Calculation |
| Component H10 | 93        | 3       | I/O         |
| Component H11 | 133       | 2       | I/O         |
| Component H12 | 95        | 8       | Calculation |
| Component H13 | 67        | 4       | Data        |
| Component H14 | 113       | 4       | Data        |
| Component H15 | 102       | 6       | I/O         |
| Component H16 | 106       | 4       | I/O         |
| Component H17 | 83        | 4       | Calculation |
| Component H18 | 25        | 1       | Data        |
| Component H19 | 140       | 7       | Calculation |
| Component H20 | 72        | 3       | Data        |
| Component H21 | 10        | 0       | Data        |

This represents the software components that have been previously written.

| Identifier    | Total Loc     | Methods | LOC/method | In(LOC/method) |          |          |                                  |
|---------------|---------------|---------|------------|----------------|----------|----------|----------------------------------|
| Component H01 | 76            | 1       | 76.0       | 4.33           |          |          | This column LOC/method           |
| Component H02 | 116           | 4       | 29.0       | 3.37           |          |          | normalizes each component to     |
| Component H03 | 113           | 7       | 16.1       | 2.78           |          |          | a standard measurement.          |
| Component H04 | 103           | 5       | 20.6       | 3.03           |          |          |                                  |
| Component H05 | 105           | 4       | 26.3       | 3.27           | average= | 3.23     | 0-1                              |
| Component H06 | 48            | 7       | 6.9        | 1.93           | std=     | 0.56     | Calculate the natural log of the |
| Component H07 | 102           | 2       | 51.0       | 3.93           |          | <b>T</b> | number of LOC per method.        |
| Component H08 | 111           | 4       | 27.8       | 3.32           |          | \        |                                  |
| Component H09 | 128           | 3       | 42.7       | 3.75           |          | \        |                                  |
| Component H10 | 93            | 3       | 31.0       | 3.43           |          | \        |                                  |
| Component H11 | 133           | 2       | 66.5       | 4.20           |          | ,        | Calculate the average            |
| Component H12 | 95            | 8       | 11.9       | 2.47           |          |          | and standard deviation           |
| Component H13 | 67            | 4       | 16.8       | 2.82           |          |          | of the natural log of the        |
| Component H14 | 113           | 4       | 28.3       | 3.34           |          |          | values                           |
| Component H15 | 102           | 6       | 17.0       | 2.83           |          |          |                                  |
| Component H16 | 106           | 4       | 26.5       | 3.28           |          |          |                                  |
| Component H17 | 83            | 4       | 20.8       | 3.03           |          |          |                                  |
| Component H18 | 25            | 1       | 25.0       | 3.22           |          |          |                                  |
| Component H19 | 140           | 7       | 20.0       | 3.00           |          |          |                                  |
| Component H20 | 72            | 3       | 24.0       | 3.18           |          |          |                                  |
| Component H21 | <del>10</del> | 0       |            |                |          |          |                                  |

It is possible to have a component with zero methods (e.g., a class that contains only constants). In such a case, the zero-method component should be ignored.

| Identifier    | Total Loc     | Methods | LOC/method | In(LOC/method) |
|---------------|---------------|---------|------------|----------------|
| Component H01 | 76            | 1       | 76.0       | 4.33           |
| Component H02 | 116           | 4       | 29.0       | 3.37           |
| Component H03 | 113           | 7       | 16.1       | 2.78           |
| Component H04 | 103           | 5       | 20.6       | 3.03           |
| Component H05 | 105           | 4       | 26.3       | 3.27           |
| Component H06 | 48            | 7       | 6.9        | 1.93           |
| Component H07 | 102           | 2       | 51.0       | 3.93           |
| Component H08 | 111           | 4       | 27.8       | 3.32           |
| Component H09 | 128           | 3       | 42.7       | 3.75           |
| Component H10 | 93            | 3       | 31.0       | 3.43           |
| Component H11 | 133           | 2       | 66.5       | 4.20           |
| Component H12 | 95            | 8       | 11.9       | 2.47           |
| Component H13 | 67            | 4       | 16.8       | 2.82           |
| Component H14 | 113           | 4       | 28.3       | 3.34           |
| Component H15 | 102           | 6       | 17.0       | 2.83           |
| Component H16 | 106           | 4       | 26.5       | 3.28           |
| Component H17 | 83            | 4       | 20.8       | 3.03           |
| Component H18 | 25            | 1       | 25.0       | 3.22           |
| Component H19 | 140           | 7       | 20.0       | 3.00           |
| Component H20 | 72            | 3       | 24.0       | 3.18           |
| Component H21 | <del>10</del> | 0       |            |                |

The size matrix characterizes historical components. The "lower" and "upper" columns are used to designate the relative size of existing components; the "mid" column is used to size new components.

|    | Low | Mid | Upper |
|----|-----|-----|-------|
| VS | 0   | 8   | 11    |
| S  | 11  | 14  | 19    |
| M  | 19  | 25  | 33    |
| L  | 33  | 44  | 58    |
| VL | 58  | 77  | big   |
| _  |     | 7   |       |

3.23

0.56

average=

std=

The "lower" column is as follows:

VS=0

S=e^(average-1.5\*std)

M=e^(average-0.5\*std)

L=e^(average+0.5\*std)

VL=e^(average+1.5\*std)

All values are **rounded** to the nearest integer.

The "mid" column is calculated along a Innormal distribution:

VS=e^(average-2\*std)

S=e^(average-std)

M=e^(average)

L=e^(average+std)

VL=e^(average+2\*std)

All values are **rounded** to the nearest integer.

The "upper" column is as follows:

VS=e^(average-1.5\*std)

S=e^(average-0.5\*std)

M=e^(average+0.5\*std)

L=e^(average+1.5\*std)

VL= big

All values are **rounded** to the nearest integer.

| Identifier    | Total Loc     | Methods | Type        | LOC/method | In(LOC/method) | Relative Size | ) |
|---------------|---------------|---------|-------------|------------|----------------|---------------|---|
| Component H01 | 76            | 1       | I/O         | 76.0       | 4.33           | VL            |   |
| Component H02 | 116           | 4       | Calculation | 29.0       | 3.37           | Μĸ            |   |
| Component H03 | 113           | 7       | I/O         | 16.1       | 2.78           | S             |   |
| Component H04 | 103           | 5       | Calculation | 20.6       | 3.03           | M             | è |
| Component H05 | 105           | 4       | I/O         | 26.3       | 3.27           | M             | 5 |
| Component H06 | 48            | 7       | Calculation | 6.9        | 1.93           | VS            |   |
| Component H07 | 102           | 2       | I/O         | 51.0       | 3.93           | L             |   |
| Component H08 | 111           | 4       | I/O         | 27.8       | 3.32           | M             |   |
| Component H09 | 128           | 3       | Calculation | 42.7       | 3.75           | L             |   |
| Component H10 | 93            | 3       | I/O         | 31.0       | 3.43           | M             |   |
| Component H11 | 133           | 2       | I/O         | 66.5       | 4.20           | VL            |   |
| Component H12 | 95            | 8       | Calculation | 11.9       | 2.47           | S             |   |
| Component H13 | 67            | 4       | Data        | 16.8       | 2.82           | S             |   |
| Component H14 | 113           | 4       | Data        | 28.3       | 3.34           | M             |   |
| Component H15 | 102           | 6       | I/O         | 17.0       | 2.83           | S             |   |
| Component H16 | 106           | 4       | I/O         | 26.5       | 3.28           | M             |   |
| Component H17 | 83            | 4       | Calculation | 20.8       | 3.03           | M             | 7 |
| Component H18 | 25            | 1       | Data        | 25.0       | 3.22           | M             | r |
| Component H19 | 140           | 7       | Data        | 20.0       | 3.00           | M             | c |
| Component H20 | 72            | 3       | Data        | 24.0       | 3.18           | M             | e |
| Component H21 | <del>10</del> | Đ       | Data        |            |                |               | ŀ |

|    | Low | Mid | Upper |
|----|-----|-----|-------|
| VS | 1   | 8   | 11    |
| S  | 11  | 14  | 19    |
| M  | 19  | 25  | 33    |
| L  | 33  | 44  | 58    |
| VL | 58  | 77  | big   |
|    |     |     |       |

The "upper" and "lower" columns of the size matrix are used to tag each historical component with a relative size. For example, "M" components are those that have greater than or equal to 19 lines of code per method and less than 33 lines of code per method. Since ComponentH01 has 76 lines of code per method, it is considered VL.

3.23

0.56

average= std=

Note that the "upper" lip of L and the "lower" lip of VL are the same. We are taking a conservative approach to estimation and thus always going with the larger size in cases where the historical part falls exactly on the lip. For example, a 33 LOC/method component would be considered L, not M.

## Architecture

Component Name: Design Approach: Parent Component: Component Type: Collaborators: Operations: Component1
Functional

Calculation
Component2, Component3, Component4
Component1

Component Name: Design Approach: Parent Component: Component Type: Collaborators: Operations: Component2
Object-oriented

Calculation
op1, op2

Component Name: Design Approach: Parent Component: Component Type: Collaborators: Operations: Component3
Object-oriented
Component5
I/O
op1 op2 op3

Component Name: Design Approach: Parent Component: Component Type: Collaborators: Operations: Component4
Object-oriented
Component5
I/O
op1 op2 op3

Component Name: Design Approach: Parent Component: Component Type: Collaborators: Operations: Component5
Object-oriented
I/O
op1

This represents an architectural design consisting of five components.

If you were to sketch the components as class diagrams, they would like like this. Note that we aren't using UML; this is provided just to illustrate the relationship among the CRC cards.



## Architecture

Component Name: Design Approach: Parent Component: Component Type: Collaborators: Operations:

Component Name: Design Approach: Parent Component: Attributes (optional): Component Type: Collaborators: Operations:

Component Name: Design Approach: Parent Component: Attributes (optional): Component Type: Collaborators: Operations:

Component Name: Design Approach: Parent Component: Attributes (optional): Component Type: Collaborators: Operations:

Component Name: Design Approach: Parent Component: Attributes (optional): Component Type: Collaborators: Operations:

| Component1                         |  |
|------------------------------------|--|
| Functional                         |  |
|                                    |  |
| Calculation                        |  |
| Component2, Component3, Component4 |  |
| Component1                         |  |

Component2 Object-oriented Calculation op1, op2

Component3 Object-oriented Component5 I/O op1 op2 op3

Component4 Object-oriented Component5 I/O op1 op2 op3

Component5 Object-oriented I/O

|              | -                | _             | Changes to existing code |           |             |          |             | New Code    |         |    |
|--------------|------------------|---------------|--------------------------|-----------|-------------|----------|-------------|-------------|---------|----|
| Architecture | Estimation Basis | Relative Size | Modified LOC             | Added LOC | Deleted LOC | Base LOC | New Methods | LOC/ method | New LOC |    |
| Component1   | Compontent H19   | M             | 5                        | 10        | 14          | 15       | 0           | 0           | 0       | 15 |
| Component2   | Component H12    | S             | 0                        | 15        | 25          | 15       | 1           | 14          | 14      | 29 |
| Component3   |                  |               |                          |           |             |          |             |             |         |    |
| Component4   |                  |               |                          |           |             |          |             |             |         |    |
| Component5   |                  |               |                          |           |             |          |             |             |         |    |
| /            |                  |               | •                        |           |             |          |             |             | LOCr =  | 11 |

Let's suppose that Component1 and Component2 have been identified as having been previously built (and are thus considered coming from "base" code).

Suppose further that we have identified ComponentH19 as being the base code for Component1. After looking over ComponentH19, we expect the we will remove 14 LOC, modify 5 LOC, and add 10 LOC. Although we record the number of lines deleted, this is for completeness only. We will count the number of added and modified lines as contrtibuting to effort.

Along a similar vein, we have determined that Component2 can be built from ComponentH12 by removing 25 LOC and adding 15 LOC. Suppose further that an entirely new method has to be written. Since ComponentH12 is small, we can estimate the size of the new method as being small, meaning, 14 lines of code. The total added amount of code is 15 + 14 = 29

## Architecture

Component Name: Design Approach: Parent Component: Component Type: Collaborators: Operations:

Component Name: Design Approach: Parent Component: Attributes (optional): Component Type: Collaborators: Operations:

Component Name: Design Approach: Parent Component: Attributes (optional): Component Type: Collaborators: Operations:

Component Name: Design Approach: Parent Component: Attributes (optional): Component Type: Collaborators: Operations:

Component Name: Design Approach: Parent Component: Attributes (optional): Component Type: Collaborators: Operations:

| Component1                         |
|------------------------------------|
| Functional                         |
|                                    |
| Calculation                        |
| Component2, Component3, Component4 |
| Component1                         |

Component2
Object-oriented

Calculation
op1, op2

Component3
Object-oriented
Component5
I/O
op1 op2 op3

Component4
Object-oriented
Component5
I/O
op1 op2 op3

Component5
Object-oriented

I/O
op1

|              | -                | _             | Changes to existing code |           |             |          |             | New         | Code    |     |
|--------------|------------------|---------------|--------------------------|-----------|-------------|----------|-------------|-------------|---------|-----|
| Architecture | Estimation Basis | Relative Size | Modified LOC             | Added LOC | Deleted LOC | Base LOC | New Methods | LOC/ method | New LOC |     |
| Component1   | Compontent H19   | M             | 5                        | 10        | 14          | 15       | 0           | 0           | 0       | 15  |
| Component2   | Component H12    | S             | 0                        | 15        | 25          | 15       | 1           | 14          | 14      | 29  |
| Component3   | Component H03    | S             | 0                        | 0         | 0           | 0        | 3           | 14          | 42      | 42  |
| Component4   | Component H15    | S             | 0                        | 0         | 0           | 0        | 3           | 14          | 42      | 42  |
| Component5   | Component H08    | M             | 0                        | 0         | 0           | 0        | 1           | 25          | 25      | 25  |
|              |                  |               |                          |           |             |          |             |             | LOCr =  | 153 |

Suppose that the first totally new part has been identified as being most similar to ComponentH03. Since ComponentH03 is a small component, the new component is likely to be small as well. According to the size matrix, small components have 14 lines of code per method, therefore the new component is estimated to have 3\*14-42 lines of code.

This concept is repeated for the other components.

We can see from this that we estimate that we are going to put 153 line of code worth of effort into the project.

| Identifier | LOCr | LOCp | LOCa | Ea   |
|------------|------|------|------|------|
| Project1   | 163  | 163  | 200  | 600  |
| Project2   | 301  | 301  | 240  | 840  |
| Project3   | 134  | 134  | 150  | 420  |
| Project4   | 293  | 240  | 350  | 2100 |
| Project5   | 63   | 106  | 107  | 360  |
| Project6   | 122  | 154  | 178  | 420  |
| Project7   | 63   | 114  | 40   | 120  |
| Project8   | 183  | 199  | 201  | 960  |
| Project9   | 210  | 224  | 175  | 600  |
| Project10  | 249  | 251  | 280  | 780  |
| Project11  | 161  | 177  | 283  | 780  |
| Project12  | 210  | 230  | 227  | 600  |
| Project13  | 105  | 136  | 89   | 300  |
|            |      |      |      |      |
| LOCr=      |      | 153  |      |      |

LOCr is the estimated number of lines of code. It represents all the new code that is to be written. It is the sum of the new parts, code added to base components, and code modified from the base.

Size Calculation

sum(LOCa)/sum(LOCr)= LOCp=

1.12 171

We hypothesize that the relationship between our historical estimated lines of code and our historical actual lines of code is our best indicator of how to adjust LOCr to be more realistic. This is calcuated as sum(LOCa)/sum(LOCr). This represents an approximation of the slope of the line that models LOCr x LOCa.

LOCp, the planned size, is calculated as LOCr\*sum(LOCa)/sum(LOCr), ceiling'ed up to the next integer.

We see here that we plan to write 171 lines of code.

| Identifier | LOCr          | LOCp        | LOCa       | Ea              | LOCa/LOCr                          |                                                                                     |
|------------|---------------|-------------|------------|-----------------|------------------------------------|-------------------------------------------------------------------------------------|
| Project1   | 163           | 163         | 200        | 600             | 1.23                               |                                                                                     |
| Project2   | 301           | 301         | 240        | 840             | 0.80                               |                                                                                     |
| Project3   | 134           | 134         | 150        | 420             | 1.12                               |                                                                                     |
| Project4   | 293           | 240         | 350        | 2100            | 1.19                               |                                                                                     |
| Project5   | 63            | 106         | 107        | 360             | 1.70                               |                                                                                     |
| Project6   | 122           | 154         | 178        | 420             | 1.46                               |                                                                                     |
| Project7   | 63            | 114         | 40         | 120             | 0.63                               |                                                                                     |
| Project8   | 183           | 199         | 201        | 960             | 1.10                               |                                                                                     |
| Project9   | 210           | 224         | 175        | 600             | 0.83                               |                                                                                     |
| Project10  | 249           | 251         | 280        | 780             | 1.12                               |                                                                                     |
| Project11  | 161           | 177         | 283        | 780             | 1.76                               |                                                                                     |
| Project12  | 210           | 230         | 227        | 600             | 1.08                               |                                                                                     |
| Project13  | 105           | 136         | 89         | 300             | 0.85                               | To determine the confidence we                                                      |
| ,          |               |             | m          | in=             | 0.63                               | can place in our planned size, we                                                   |
| LOCr=      |               | 153         | m          | ax=             | 1.76                               | need to find the biggest overestimate and the biggest                               |
|            | Size Calculat | tion_       |            |                 |                                    | underestimate and the biggest                                                       |
|            | 5             | sum(LOCa)/s | sum(LOCr)= |                 | 1.12                               | didorestimate.                                                                      |
|            | L             | _OCp=       |            |                 | 171                                |                                                                                     |
|            | L             | _PI=        |            |                 | 97                                 |                                                                                     |
|            | l             | JPI=        |            |                 | 269                                | The level we disting interval (LDI) is                                              |
|            | C             | confidence= |            |                 | 0.70 Medium                        | The lower prediction interval (LPI) is calculated as LOCr*min; the upper prediction |
|            |               |             |            |                 | <b>₹</b>                           | interval (UPI) is calculated as LOCr*max.                                           |
|            |               |             |            |                 |                                    | LPI is <b>floor'ed</b> and UPI is <b>ceiling'ed</b> . If                            |
|            |               |             |            |                 |                                    | LPI<0, then LPI is set to 1. If UPI <locp,< td=""></locp,<>                         |
|            |               |             |            | `               |                                    | then UPI is set to LOCp.                                                            |
|            |               |             |            | Confi           | idence is quantifed by calculating | ·                                                                                   |
|            |               |             |            |                 | re of the correlation of LOCr and  |                                                                                     |
|            |               |             |            |                 | assigned a qualitative value as fo |                                                                                     |
|            |               |             |            |                 | .75 = HIGH                         |                                                                                     |
|            |               |             |            | 0.5 <           | r^2 < .75 = MEDIUM                 |                                                                                     |
|            |               |             |            | r^2 <u>&lt;</u> | 0.5 = LOW                          |                                                                                     |
|            |               |             |            |                 |                                    |                                                                                     |
|            |               |             |            |                 |                                    |                                                                                     |

| Identifier         | LOCr                                              | LOCp           | LOCa | Ea         | LOCa/LOCr         | Ea/LOCa                                                                                                                  |                                                                        |  |  |  |  |  |  |
|--------------------|---------------------------------------------------|----------------|------|------------|-------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--|--|--|--|--|--|
| Project1           | 163                                               | 163            | 200  | 600        | 1.23              | 3.00                                                                                                                     |                                                                        |  |  |  |  |  |  |
| Project2           | 301                                               | 301            | 240  | 840        | 0.80              | 3.50                                                                                                                     |                                                                        |  |  |  |  |  |  |
| Project3           | 134                                               | 134            | 150  | 420        | 1.12              | 2.80                                                                                                                     |                                                                        |  |  |  |  |  |  |
| Project4           | 293                                               | 240            | 350  | 2100       | 1.19              | 6.00                                                                                                                     |                                                                        |  |  |  |  |  |  |
| Project5           | 63                                                | 106            | 107  | 360        | 1.70              | 3.36                                                                                                                     |                                                                        |  |  |  |  |  |  |
| Project6           | 122                                               | 154            | 178  | 420        | 1.46              | 2.36                                                                                                                     |                                                                        |  |  |  |  |  |  |
| Project7           | 63                                                | 114            | 40   | 120        | 0.63              | 3.00                                                                                                                     | To determine the confidence we                                         |  |  |  |  |  |  |
| Project8           | 183                                               | 199            | 201  | 960        | 1.10              | 4.78                                                                                                                     | can place in our planned effort, we                                    |  |  |  |  |  |  |
| Project9           | 210                                               | 224            | 175  | 600        | 0.83              | 3.43                                                                                                                     | need to find the worst overestimate and the worst                      |  |  |  |  |  |  |
| Project10          | 249                                               | 251            | 280  | 780        | 1.12              | 2.79                                                                                                                     | underestimate.                                                         |  |  |  |  |  |  |
| Project11          | 161                                               | 177            | 283  | 780        | 1.76              | 2.76                                                                                                                     | underestimate.                                                         |  |  |  |  |  |  |
| Project12          | 210                                               | 230            | 227  | 600        | 1.08              | 2.64                                                                                                                     |                                                                        |  |  |  |  |  |  |
| Project13          | 105                                               | 136            | 89   | 300        | 0.85              | 3.37                                                                                                                     |                                                                        |  |  |  |  |  |  |
|                    | •                                                 |                | m    | in=        | 0.63              | 2.36                                                                                                                     |                                                                        |  |  |  |  |  |  |
| LOCr=              |                                                   | 153            | m    | ax=        | 1.76              | 6.00                                                                                                                     | We hypothesize that the relationship                                   |  |  |  |  |  |  |
|                    | Size Calculation                                  |                |      |            |                   | between historical actual size and time best                                                                             |                                                                        |  |  |  |  |  |  |
|                    | sum(LOCa)/sum(LOCr)=                              |                |      |            | 1.12              |                                                                                                                          | describes the mapping of planned size into                             |  |  |  |  |  |  |
|                    | LOCp=                                             |                |      |            | 171               |                                                                                                                          | planned effort. We obtain planned effort by                            |  |  |  |  |  |  |
|                    | LPI=                                              |                |      |            | 97                |                                                                                                                          | multiplying sum(Ea)/sum(LOCa) by planned size. Put in other words,     |  |  |  |  |  |  |
|                    | UPI=                                              |                |      | 269        |                   | Ep=sum(Ea)/sum(LOCa)*LOCp                                                                                                |                                                                        |  |  |  |  |  |  |
|                    | confidence=                                       |                |      | 0.70 Media | um /              | Ep-sum(La)/sum(LOCa) LOCp                                                                                                |                                                                        |  |  |  |  |  |  |
| Effort Calculation |                                                   |                |      |            |                   |                                                                                                                          |                                                                        |  |  |  |  |  |  |
|                    | Prod=                                             |                |      |            |                   | hr                                                                                                                       |                                                                        |  |  |  |  |  |  |
|                    | sum(Ea)/sum(LOCa)=                                |                |      |            | 3.52              |                                                                                                                          | LPI, UPI, and confidence are calculated in a similar fashion to size   |  |  |  |  |  |  |
|                    | Ep=                                               |                |      |            | 603               |                                                                                                                          | using Ea and LOCa. Because Ep is derived from LOCp, LPI and UPI        |  |  |  |  |  |  |
|                    | LPI=                                              |                |      |            | 403               |                                                                                                                          | for effort should also use LOCp. LPI=floor(min(Ea/LOCa)*LOCp) and      |  |  |  |  |  |  |
|                    | UPI /                                             |                |      |            | 1026              |                                                                                                                          | UPI=ceiling(max(Ea/LOCa)*LOCp). LPI should be set to Ep if LPI is      |  |  |  |  |  |  |
|                    | confidence=                                       |                |      |            | 0.69 Medi         | um                                                                                                                       | originally calculated as being more then Ep, or is calculated as being |  |  |  |  |  |  |
|                    | _                                                 |                |      |            | 7                 |                                                                                                                          | negative. SImilarly, UPI should be set to Ep if it is originally       |  |  |  |  |  |  |
|                    |                                                   | roductivity is |      | /          |                   |                                                                                                                          | calculated as being less than Ep.                                      |  |  |  |  |  |  |
|                    |                                                   | alculated as   |      |            |                   |                                                                                                                          |                                                                        |  |  |  |  |  |  |
|                    | average number of actual LOC per hour             |                |      |            |                   | We start by calculating the square of the correlation of Ea and LOCa. It is assigned a qualitative value as follows:     |                                                                        |  |  |  |  |  |  |
|                    |                                                   |                |      |            |                   | r^2 > .75 = HIGH                                                                                                         |                                                                        |  |  |  |  |  |  |
|                    |                                                   | ver all projec |      |            |                   | $0.5 < r^2 \le .75 = MEDIUM$<br>$r^2 \le 0.5 = LOW$                                                                      |                                                                        |  |  |  |  |  |  |
|                    |                                                   | his value, by  |      |            |                   |                                                                                                                          |                                                                        |  |  |  |  |  |  |
|                    | convention, is expressed in hours, rounded to the |                |      |            |                   |                                                                                                                          |                                                                        |  |  |  |  |  |  |
|                    |                                                   |                |      |            |                   | The confidence level we give is the minimum of the confidences of effort and size. For example, if size confidence       |                                                                        |  |  |  |  |  |  |
|                    | <b>I</b>                                          | earest intege  | -    |            | is low and effort | is low and effort confidence is high, then effort confidence is recorded as low (since we use size to calculate effort). |                                                                        |  |  |  |  |  |  |
|                    |                                                   |                |      |            |                   |                                                                                                                          |                                                                        |  |  |  |  |  |  |
|                    |                                                   |                |      |            |                   |                                                                                                                          |                                                                        |  |  |  |  |  |  |

| Identifier | LOCr           | LOCp         | LOCa      | Ea          | LOCa/LOCr | Ea/LOCa |  |
|------------|----------------|--------------|-----------|-------------|-----------|---------|--|
| Project1   | 163            | 163          | 200       | 600         | 1.23      | 3.00    |  |
| Project2   | 301            | 301          | 240       | 840         | 0.80      | 3.50    |  |
| Project3   | 134            | 134          | 150       | 420         | 1.12      | 2.80    |  |
| Project4   | 293            | 240          | 350       | 2100        | 1.19      | 6.00    |  |
| Project5   | 63             | 106          | 107       | 360         | 1.70      | 3.36    |  |
| Project6   | 122            | 154          | 178       | 420         | 1.46      | 2.36    |  |
| Project7   | 63             | 114          | 40        | 120         | 0.63      | 3.00    |  |
| Project8   | 183            | 199          | 201       | 960         | 1.10      | 4.78    |  |
| Project9   | 210            | 224          | 175       | 600         | 0.83      | 3.43    |  |
| Project10  | 249            | 251          | 280       | 780         | 1.12      | 2.79    |  |
| Project11  | 161            | 177          | 283       | 780         | 1.76      | 2.76    |  |
| Project12  | 210            | 230          | 227       | 600         | 1.08      | 2.64    |  |
| Project13  | 105            | 136          | 89        | 300         | 0.85      | 3.37    |  |
|            |                |              | m         | in=         | 0.63      | 2.36    |  |
| LOCr=      | _OCr= 153      |              |           | ax=         | 1.76      | 6.00    |  |
|            | Size Calculat  | tion_        |           |             |           |         |  |
|            | S              | sum(LOCa)/s  | 1.12      |             |           |         |  |
|            | L              | _OCp=        |           | 171         |           |         |  |
|            | L              | _PI=         |           | 97          | /         |         |  |
|            | ι              | JPI=         | 269       |             |           |         |  |
|            | C              | confidence=  |           | 0.70 Medium |           |         |  |
|            | Effort Calcula | ation        |           |             |           |         |  |
|            | F              | Prod=        | 17 LOC/hr |             |           |         |  |
|            | 8              | sum(Ea)/sum  | n(LOCa)=  | 3.52        |           |         |  |
|            | E              | Ēp=          | 603       | <i>V</i>    |           |         |  |
|            | L              | _PI=         | 403       | /           |           |         |  |
|            | ι              | JPI          | 1026      |             |           |         |  |
|            | C              | confidence=  |           | 0.69 Medium |           |         |  |
|            | E              | Best case LF | PI =      | 229         |           |         |  |
|            | \              | Norst case l | JPI =     | 1614        |           |         |  |

The LPI and UPI represent our primary estimation range.

Our secondary estimation range is bounded in the best case by the biggest overestimation and the fastest development, and in the worst case by the biggest underestimation and the worst development. The actual calculations are

best case LPI = LOCr \* min(LOCa/LOCr) \* min(Ea/LOCa)

worst case UPI = LOCr \* max(LOCa/LOCr) \* max(Ea/LOCa)

## COCOMO: The following values represent COCOMO coefficients of your team.

|                                               | Very Low | Low  | Nominal | High | Very High | Extra High |
|-----------------------------------------------|----------|------|---------|------|-----------|------------|
| Scale Factors                                 |          |      |         |      |           |            |
| Precedent                                     | 6.20     | 4.96 | 3.72    | 2.48 | 1.24      | 0.00       |
| Flexibility                                   | 5.07     | 4.05 | 3.04    | 2.03 | 1.01      | 0.00       |
| Risk resolution                               | 7.07     | 5.65 | 4.24    | 2.83 | 1.41      | 0.00       |
| Team Cohesion                                 | 5.48     | 4.38 | 3.29    | 2.19 | 1.10      | 0.00       |
| Process Level                                 | 7.80     | 6.24 | 4.68    | 3.12 | 1.56      | 0.00       |
| Effort Multipliers                            |          |      |         |      |           |            |
| Product attributes                            |          |      |         |      |           |            |
| Required software reliability                 | 0.75     | 0.88 | 1.00    | 1.15 | 1.40      | 1.40       |
| Size of application database                  | 0.94     | 0.94 | 1.00    | 1.08 | 1.16      | 1.16       |
| Complexity of the product                     | 0.70     | 0.85 | 1.00    | 1.15 | 1.30      | 1.65       |
| Hardware attributes                           |          |      |         |      |           |            |
| Run-time performance constraints              | 1.00     | 1.00 | 1.00    | 1.11 | 1.30      | 1.66       |
| Memory constraints                            | 1.00     | 1.00 | 1.00    | 1.06 | 1.21      | 1.56       |
| Volatility of the virtual machine environment | 0.87     | 0.87 | 1.00    | 1.15 | 1.30      | 1.30       |
| Required turnabout time                       | 0.87     | 0.87 | 1.00    | 1.07 | 1.15      | 1.15       |
| Personnel attributes                          |          |      |         |      |           |            |
| Analyst capability                            | 1.46     | 1.19 | 1.00    | 0.86 | 0.71      | 0.71       |
| Applications experience                       | 1.29     | 1.13 | 1.00    | 0.91 | 0.82      | 0.82       |
| Software engineer capability                  | 1.42     | 1.17 | 1.00    | 0.86 | 0.70      | 0.70       |
| Virtual machine experience                    | 1.21     | 1.10 | 1.00    | 0.90 | 0.90      | 0.90       |
| Programming language experience               | 1.14     | 1.07 | 1.00    | 0.95 | 0.95      | 0.95       |
| Project attributes                            |          |      |         |      |           |            |
| Application of software engineering methods   | 1.24     | 1.10 | 1.00    | 0.91 | 0.82      | 0.82       |
| Use of software tools                         | 1.24     | 1.10 | 1.00    | 0.91 | 0.83      | 0.83       |
| Required development schedule                 | 1.23     | 1.08 | 1.00    | 1.04 | 1.10      | 1.10       |
|                                               |          |      |         |      |           |            |

PM = A x Size<sup>(B + 0.01 x ∑SF)</sup>∏EM where, PM = planned effort Size = LOCp / 1000 SF = scale factors
A = calibration data = 2.94
B = calibration data = 0.91
EM = Effort multipliers