

House Price Predication

Submitted by:

E.Sanjana

ACKNOWLEDGMENT

Following websites are used in completion of the project.

- 1. https://stackoverflow.com
- 2. https://scikit-learn.org
- 3. https://machinelearningmastery.com
- 4. https://www.geeksforgeeks.org
- 5. https://pandas.pydata.org
- 6. https://www.machinelearningplus.com

INTRODUCTION

Business Problem Framing

- Conducting Over all Data Analysis on the given data set and finding Features/Parameters which are highly affecting the selling price of the house.
- Building a model to predict the selling price of a house on the given parameters and determine which model works best, the top 15 features which are being used by the model in predicting the selling price.
- These Predictions made will be help full in setting up an ideal price considering all the factors.

Conceptual Background of the Domain Problem

In General, the Price of a house depends on many factors: Location, Utilities available, Distance from the Major locations of the city, Lot Area (Sq. ft), Type of the house (apartment, stand alone, Etc), These factors will majorly affect the price of the house.

Review of Literature

- In this problem predicting the right Price for the house will be the main objective.
- Which features decide the price.
- Algorithms used in the model building helps us predict the price.
- Removal of outliers and unrealistic values from the dataset helps us in predictions.

Motivation for the Problem Undertaken

- The motive of the problem under taken will be to determine the sale price for the houses with the help of other parameters that can are provided.
- This will further be help full in know which parameters rise or lower the price of a particular house.
- The following Domine Retail Sector will be and has been a very important part of the human life cycle and buying and selling to house determining a right price for both will play an important role.

Analytical Problem Framing

Mathematical/ Analytical Modeling of the Problem

- Following problem is a Regressor problem where we have to determine the price of a house
- The Regressor algorithms used in the following price prediction problem for the project are:

Base Algorithms

- Linear Regression ()
- DecisionTreeRegression ()
- Lasso ()
- Ridge Regression ()
- KNeighborsRegressor ()
- SVR () Support Vector Regressor ()

Ensemble Techniques

- AdaBoost Regressor ()
- GradientBoosting Regressor ()
- Bagging Regressor ()
- ExtraTrees Regressor ()
- RandomForest Regressor ()
- XGBoost Regressor ()

Outlier Removal Techniques

For this Particular problem we are not going to remove outliers as the data that we have contains.

Trian with 1168Rows and Test with 291 Rows which is already very low to build a proper model and as soon as we remove outliers, we will be losing few unique attributes which are numbered very few, like a Pool in the house.

Thus, we will be using the data wholly.

Data Sources and their formats

Train Dataset

	ld	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandContour	Utilities	LotConfig	LandSlope	Neighborhood	Condition1
0	127	120	RL	NaN	4928	Pave	NaN	IR1	LvI	AllPub	Inside	GtI	NPkVill	Norm
1	889	20	RL	95.0	15865	Pave	NaN	IR1	LvI	AllPub	Inside	Mod	NAmes	Norm
2	793	60	RL	92.0	9920	Pave	NaN	IR1	LvI	AllPub	CulDSac	Gtl	NoRidge	Norm
3	110	20	RL	105.0	11751	Pave	NaN	IR1	LvI	AllPub	Inside	GtI	NWAmes	Norm
4	422	20	RL	NaN	16635	Pave	NaN	IR1	LvI	AllPub	FR2	GtI	NWAmes	Norm
1163	289	20	RL	NaN	9819	Pave	NaN	IR1	LvI	AllPub	Inside	GtI	Sawyer	Norm
1164	554	20	RL	67.0	8777	Pave	NaN	Reg	LvI	AllPub	Inside	GtI	Edwards	Feedr
1165	196	160	RL	24.0	2280	Pave	NaN	Reg	LvI	AllPub	FR2	GtI	NPkVill	Norm
1166	31	70	C (all)	50.0	8500	Pave	Pave	Reg	LvI	AllPub	Inside	GtI	IDOTRR	Feedr
1167	617	60	RL	NaN	7861	Pave	NaN	IR1	LvI	AllPub	Inside	GtI	Gilbert	Norm

1168 rows × 81 columns There are 1168 Rows of Data and 81 Columns

		.frame.DataFrame					
		tries, 0 to 1167		58	GarageType	1104 non-null	object
	columns (total		Dture	59	GarageYrBlt	1104 non-null	float64
#	Column	Non-Null Count	Dtype	60	GarageFinish	1104 non-null	object
0	Id	1168 non-null	int64	61	GarageCars	1168 non-null	int64
1	MSSubClass	1168 non-null	int64	62	_		int64
2	MSZoning	1168 non-null	object		GarageArea	1168 non-null	
3	LotFrontage	954 non-null	float64	63	GarageQual	1104 non-null	object
4	LotArea	1168 non-null	int64	64	GarageCond	1104 non-null	object
5	Street	1168 non-null	object	65	PavedDrive	1168 non-null	object
6	Alley	77 non-null	object	66	WoodDeckSF	1168 non-null	int64
7	LotShape	1168 non-null	object	67	OpenPorchSF	1168 non-null	int64
8	LandContour	1168 non-null	object	68	EnclosedPorch	1168 non-null	int64
9	Utilities	1168 non-null	object	69	3SsnPorch	1168 non-null	int64
10	LotConfig	1168 non-null	object	70	ScreenPorch	1168 non-null	int64
11 12	LandSlope Neighborhood	1168 non-null 1168 non-null	object object	71	PoolArea	1168 non-null	int64
13	Condition1	1168 non-null	object	72	PoolQC	7 non-null	object
14	Condition2	1168 non-null	object	73	Fence	237 non-null	object
15	BldgType	1168 non-null	object	74	MiscFeature	44 non-null	object
16	HouseStyle	1168 non-null	object	75	MiscVal	1168 non-null	int64
17	OverallQual	1168 non-null	int64	76	MoSold	1168 non-null	int64
18	OverallCond	1168 non-null	int64				
19	YearBuilt	1168 non-null	int64	77	YrSold	1168 non-null	int64
20	YearRemodAdd	1168 non-null	int64	78	SaleType	1168 non-null	object
21	RoofStyle	1168 non-null	object	79	SaleCondition	1168 non-null	object
22	RoofMat1	1168 non-null	object	80	SalePrice	1168 non-null	int64
23	Exterior1st	1168 non-null	object				
24 25	Exterior2nd MasVnrType	1168 non-null 1161 non-null	object object				
26	MasVnrArea	1161 non-null	float64				
27	ExterQual	1168 non-null	object				
28	ExterCond	1168 non-null	object				
29	Foundation	1168 non-null	object				
30	BsmtQual	1138 non-null	object				
31	BsmtCond	1138 non-null	object				
32	BsmtExposure	1137 non-null	object				
33	BsmtFinType1	1138 non-null	object				
34	BsmtFinSF1	1168 non-null	int64				
35	BsmtFinType2	1137 non-null	object				
36	BsmtFinSF2	1168 non-null	int64				
37	BsmtUnfSF	1168 non-null	int64				
38	TotalBsmtSF	1168 non-null	int64				
39	Heating	1168 non-null	object				
40	HeatingQC	1168 non-null	object				
41	CentralAir	1168 non-null	object				
42	Electrical	1168 non-null	object				
43	1stFlrSF	1168 non-null	int64				
44	2ndFlrSF	1168 non-null	int64				
45	LowQualFinSF	1168 non-null	int64				
46	GrLivArea	1168 non-null	int64				
47	BsmtFullBath	1168 non-null	int64				
48	BsmtHalfBath	1168 non-null	int64				
49	FullBath	1168 non-null	int64				
50 51	HalfBath BedroomAbvGr	1168 non-null 1168 non-null	int64 int64				
52	KitchenAbvGr	1168 non-null	int64				
53	KitchenQual	1168 non-null	object				
54	TotRmsAbvGrd	1168 non-null	int64				
55	Functional	1168 non-null	object				
56	Fireplaces	1168 non-null	int64				
57	FireplaceQu	617 non-null	object				
		_	3				

Following are the Columns and the Datatypes and number of values each column has.

Test Dataset

	ld	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandContour	Utilities	LotConfig	LandSlope	Neighborhood	Condition1
0	337	20	RL	86.0	14157	Pave	NaN	IR1	HLS	AllPub	Corner	Gtl	StoneBr	Norm
1	1018	120	RL	NaN	5814	Pave	NaN	IR1	LvI	AllPub	CulDSac	GtI	StoneBr	Norm
2	929	20	RL	NaN	11838	Pave	NaN	Reg	LvI	AllPub	Inside	GtI	CollgCr	Norm
3	1148	70	RL	75.0	12000	Pave	NaN	Reg	Bnk	AllPub	Inside	GtI	Crawfor	Norm
4	1227	60	RL	86.0	14598	Pave	NaN	IR1	LvI	AllPub	CulDSac	Gtl	Somerst	Feedr
287	83	20	RL	78.0	10206	Pave	NaN	Reg	LvI	AllPub	Inside	Gtl	Somerst	Norm
288	1048	20	RL	57.0	9245	Pave	NaN	IR2	LvI	AllPub	Inside	GtI	CollgCr	Norm
289	17	20	RL	NaN	11241	Pave	NaN	IR1	LvI	AllPub	CulDSac	GtI	NAmes	Norm
290	523	50	RM	50.0	5000	Pave	NaN	Reg	LvI	AllPub	Corner	GtI	BrkSide	Feedr
291	1379	160	RM	21.0	1953	Pave	NaN	Reg	LvI	AllPub	Inside	GtI	BrDale	Norm

292 rows × 80 columns

Data Pre-processing Done

The House price data has some missing values to be handled with we are going fill the data according to the understanding and analysis made on the data.


```
#Test Data Cleaning and filling the Nan Values

df_test['LotFrontage'].fillna(df_test['LotFrontage'].median(),inplace= True)#Filling missing values with Median of the data

df_test['Alley'].fillna('NA',inplace= True) #Filling missing values with NA Catagory

df_test['MasVnrType'].fillna(df_test['MasVnrType'].mode()[0],inplace= True) #Filling missing values with Mode of the data

df_test['MasVnrArea'].fillna(df_test['MasVnrArea'].mean(),inplace= True) #Filling missing values with Mean of the data

df_test['BsmtQual'].fillna('NA',inplace= True) #Filling Nan Values with NA Catagory

df_test['BsmtExposure'].fillna('NA',inplace= True) #Filling Nan Values with NA Catagory

df_test['BsmtFinType1'].fillna('NA',inplace= True) #Filling Nan Values with NA Catagory

df_test['BsmtFinType2'].fillna('NA',inplace= True) #Filling Nan Values with NA Catagory
 11 df_test['FireplaceQu'].fillna('NA',inplace= True)
                                                                                                                                                                                                                           #Filling Nan Values with NA Catagory
 13 #Filling Garage Null Values with NA and Year with 0.0
           df_test['GarageType'].fillna('NA',inplace= True)
                                                                                                                                                                                                                             #Filling Nan Values with NA Catagory
df_test['GarageFinish'].fillna('NA',inplace= True)
df_test['GarageQual'].fillna('NA',inplace= True)
df_test['GarageCond'].fillna('NA',inplace= True)
                                                                                                                                                                                                                        #Filling Nan Values with NA Catagory
#Filling Nan Values with NA Catagory
                                                                                                                                                                                                                    #Filling Nan Values with NA Catagory
 19 #GarageYrBlt
            # And 0 in the place of the year in Following GarageYrBlt
 21 df_test['GarageYrBlt'].fillna(0.0,inplace= True)
 23 df test['PoolOC'].fillna('NA',inplace= True)
                                                                                                                                                                                                        #Filling Nan values with NA
           df_test['Fence'].fillna('NA',inplace= True)
                                                                                                                                                                                                     #Filling Nan values with NA
            df_test['MiscFeature'].fillna('NA',inplace= True)
                                                                                                                                                                                             #Filling Nan values with NA
           df_test['Electrical'].fillna('SBrkr',inplace= True) #Single missing value in the Electrical is replaced with Mode of the dat
```

The following columns had missing values in the dataset, that are filled using multiple techniques.

- ➤ LotFrontage is filled with Median of the column
- Median of LotForntage: 70.0
- Mean of LotForntage: 70.98846960167715
- As the Median and Mean of the data are closer, we are filling the Nan values with Median
- MasVnrType Is filled with Mode of the column
- MasVnrArea Is filled with Mean of the column
- Mean of the Data: 102.31007751937983
- Columns Alley, BsmtQual, BsmtCond, BsmtExposure, BsmtFinType1, BsmtFinType2, FireplaceQu, PoolQC, Fence, MiscFeature are Filled with NA (Not Available) which is a Category not been filled in the dataset
- ➤ GarageType, GarageFinish, GarageQual, GarageCond all the columns have same number of missing values and had NA category so we Considered there is no Garage and Filled NA in All the missing places.
- ➤ GarageYrBlt Is filled with 0.0 in the place of year the Garage is built as there is no Garage in the following houses.

Encoding the Data

Discreet Categorical Columns Encoding

We Have considered following Columns as Discreet Categorical values and used Onehot Encoding using get_dummies() Method to them

['MSZoning','Street','Alley','Utilities','LotConfig','Neighborhood','Condition1','C ondition2','BldgType','HouseStyle','RoofStyle','RoofMatl','Exterior1st','Exterior2 nd','MasVnrType','Foundation','Heating','CentralAir','GarageType','MiscFeature ','SaleType','SaleCondition']

Ordinal Categorical Columns Encoding

We have Encoded Following columns using ordinal encoding and modified them to int values

['LotShape','LandContour','LandSlope','ExterQual','ExterCond','BsmtQual','BsmtCond','BsmtExposure','BsmtFinType1','BsmtFinType2','HeatingQC','Electrical','K itchenQual','Functional','FireplaceQu','GarageFinish','GarageQual','GarageCond','PavedDrive','PoolQC','Fence']

We have Reindexed the Teat data to Trains Data's Index and started the model building.

Data Inputs- Logic- Output Relationships

The inputs which play an important role in predicting the house price are the following with hight negative and positive co-relation

Features Co- Relation OverallQual 0.789185 0.707300 GrLivArea GarageCars - 0.628329 GarageArea 0.619000 TotalBsmtSF 0.595042 GarageFinish -0.424922 KitchenQual -0.592468 **BsmtQual** -0.601307 ExterQual -0.624820

These inputs will help the model in predicting the house price

The Logic Algorithms used in this particular project are mentioned above where as the best output we received is from Gradient Boost regressor followed with XG Boost Regressor with 93% and 91% R2 Scores respectively.

Following are the Top15 Inputs Considered by the Algorithm in building the model and predicting the House price accurately.

Gradient Boost Important features.

XG Boost Important Features.

- State the set of assumptions (if any) related to the problem under consideration
- ❖ Following are the assumptions made to in Data cleaning and Encoding
- LotFrontage is filled with Median of the column
- Median of LotForntage: 70.0
- Mean of LotForntage: 70.98846960167715
- As the Median and Mean of the data are closer, we are filling the Nan values with Median
- MasVnrType Is filled with Mode of the column
- ➤ MasVnrArea Is filled with Mean of the column
- Mean of the Data: 102.31007751937983
- Columns Alley, BsmtQual, BsmtCond, BsmtExposure, BsmtFinType1, BsmtFinType2, FireplaceQu, PoolQC, Fence, MiscFeature- are Filled with NA (Not Available) which is a Category not been filled in the dataset
- ➤ GarageType, GarageFinish, GarageQual, GarageCond all the columns have same number of missing values and had NA category so we Considered there is no Garage and Filled NA in All the missing places.
- ➤ GarageYrBlt Is filled with 0.0 in the place of year the Garage is built as

there is no Garage in the following houses.

Encoding the Data

Discreet Categorical Columns Encoding

 We Have considered following Columns as Discreet Categorical values and used Onehot Encoding using get_dummies() Method to them

['MSZoning','Street','Alley','Utilities','LotConfig','Neighborhood','Condition1','Condition2','BldgType','HouseStyle','RoofStyle','RoofMatl','Exterior1st','Exterior2nd','MasVnrType','Foundation','Heating','CentralAir','GarageType','MiscFeature','SaleType','SaleCondition']

Ordinal Categorical Columns Encoding

 We have Encoded Following columns using ordinal encoding and modified them to int values

['LotShape','LandContour','LandSlope','ExterQual','ExterCond','BsmtQual','BsmtCond','BsmtExposure','BsmtFinType1','BsmtFinType2','HeatingQC','Electrical','KitchenQual','Functional','FireplaceQu','GarageFinish','GarageQual','GarageCond','PavedDrive','PoolQC','Fence']

❖ Hardware and Software Requirements and Tools Used

- Laptop- Windows 10 i5 processor 8 GB RAM.
- Anaconda Python3.
- NumPy, Pandas, Seaborn.
- Base Algorithms Linear Regression, DecisionTreeRegression, Lasso, Ridge Regression, KNeighborsRegressor, SVR Support Vector Regressor.
- Ensemble Techniques AdaBoost Regressor, GradientBoosting Regressor, Bagging Regressor, ExtraTrees Regressor, RandomForest Regressor, XGBoost Regressor.
- Zscore, StandardScaler.
- Model Selection train_test_split, KFold, cross_val_score, GridSearchCV
- Metrics r2_score, Mean Absolute Error, Mean Squared Error

Model/s Development and Evaluation

- Identification of possible problem-solving approaches (methods)
- > Following algorithms are used for estimating the best possible way to get better predictions
- Base Algorithms Linear Regression, DecisionTreeRegression, Lasso, Ridge Regression, KNeighborsRegressor, SVR Support Vector Regressor.
- Ensemble Techniques AdaBoost Regressor, GradientBoosting Regressor, Bagging Regressor, ExtraTrees Regressor, RandomForest Regressor, XGBoost Regressor.
- > Following Metrices are used to analyse the best algorithm which fits the data.
- Metrics -R2_Score, Mean Absolute Error, Mean Squared Error
- StandardScaler is used to scale the data Which Did not Result is Best Score So the data has be used with out scaling
- > Following are used to split the data and select the best possible parameters for algorithms.
- Model Selection train_test_split, KFold, GridSearchCV, RandomizedSearchCV
- > Following modules are used to plot and analyse the data.
- Plotting Modules Seaborn, Matplotlib.
- Testing of Identified Approaches (Algorithms)
- Base Algorithms -

Linear Regression, DecisionTreeRegression, Lasso, Ridge Regression, KNeighborsRegressor, SVR – Support Vector Regressor.

• Ensemble Techniques -

AdaBoost Regressor, GradientBoosting Regressor, Bagging Regressor, ExtraTrees Regressor, RandomForest Regressor, XGBoost Regressor.

* Run and Evaluate selected models

Following as the Base line algorithms used and the R2 Scores.

```
models= [
    ("Lasso",Lasso()),
    ("Linear Regression",LinearRegression()),
    ("Decision Tree", DecisionTreeRegressor()),
    ("Ridge Regression",Ridge()),
    ("KNearest Neighbors",KNeighborsRegressor(1)),
    ("SVR",SVR())
    ]
```

```
results = []
   names = []
   for name, model in models:
3
4
       model.fit(x_train,y_train)
       y_pred = model.predict(x_test)
6
       R2 = r2_score(y_test,y_pred)
       results.append(R2)
8
       names.append(name)
       msg = "R2 Score with ""%s: %f " % (name, R2*100)
9
10
       print(msg)
```

```
R2 Score with Lasso: 89.741707
R2 Score with Linear Regression: 89.574228
R2 Score with Decision Tree: 80.109223
R2 Score with Ridge Regression: 87.949643
R2 Score with KNearest Neighbors: 57.744550
R2 Score with SVR: -4.589531
```

#Lasso and Linear Regression have performed best let's go ahead with parameter tuning.

Linear Regressor Scores

Ensembling Techniques used

Gradient Boost with Parameters

Mean Absolute Error: 15642.27

Mean Squared Error: 511314033.51

GB Score: 93.14

XG Boost Parameter

```
xgb_model = XGBRegressor(
    objective = 'reg:squarederror',
    colsample_bytree = 0.7,
    learning_rate = 0.1,
    max_depth = 3,
    min_child_weight = 1,
    n_estimators = 500,
    subsample = 0.5)

xgb_model.fit(x_train,y_train, early_stopping_rounds=5,|
    eval_set=[(x_test, y_test)], verbose=False)

y_pred_xgb = xgb_model.predict(x_test)
    XGB_R2Score = round(r2_score(y_test,y_pred_xgb),4)
    XGB_MAE = round(MAE(y_test, y_pred_xgb),2)
    XGB_MSE = round(MSE(y_test, y_pred_xgb),2)

print(f" XGB Score: {XGB_R2Score*100}\n")
    print(f" Mean Absolute Error: {XGB_MSE}\n")
    print(f" Mean Squared Error: {XGB_MSE}\n")
```

XGB Score: 91.66

Mean Absolute Error: 16941.96

Mean Squared Error: 622205607.68

- Key Metrics for success in solving problem under consideration
- ➤ Following are the Metrices used to evaluate the models and their respective scores.

S.no	Algorithm	R2 Score	MAE(Absolute)	MSE(Squared)
1	GradientBoostRegressor	92.83	15372.12	534544208.02
2	XGBRegressor	91.84	15388.96	609304374.75
3	RandomForestRegressor	89.60	19313.62	775762889.76
4	Lasso Regressor	89.8	19682.35	760473931.95
5	Linear Regressor	89.57	19896.38	777392877.26

- ➤ R2 Score- "Total variance explained by model/ Total variance". So, if it is 100%, the two variables are perfectly correlated, i.e., with no variance at all. A low value would show a low level of correlation, meaning a regression model that is not valid.
- ➤ MAE Mean Absolute error is the average of the errors. The larger the number greater the error.
- ➤ **MSE** Mean square error is the average of the square of the errors. The larger the number the larger the error.
- Visualizations
- Following Graph shows the missing values and their count

 Following columns have been filled using different techniques according to the analysis

Distribution of the Sale Prices

- From the Graph we can observe that most of the houses are prices between 10,000\$
 25,000\$
- There are few outliers in the data but in the interest of having diversity rows have not been dropped.

> Distribution of Living Area

- From the Scatterplot we can observe that the majority of the Dataset Contains Live Area from 800Sq Ft 2500Sq Ft
- Houses with Live Area greater than 3000Sq Ft are mostly priced above 20,000\$

Overall Quality to the Sale price of the house

- From this we can observe that as the Quality rating increases the house price is also have a positive effect where the average price of house's rated 10 is above 40,000\$.
- Houses Rated 1-2 with OverallQual as priced less than 10,000\$.

> Year Built to the Sale Price of the house

Year to Livearea

Observations made from comparing both the Graphs

- Older Houses are mostly under 20,000\$ with few exceptions which can be because of the Live area which we can observe comparing both Graphs.
- We can say that the Year of Building the house is positively affecting the price of the house even without gear difference in live area.
- Effect of each Variable on Sale price of the house

Features Correlation OverallQual 0.789185 GrLivArea 0.707300 GarageCars 0.628329 GarageArea 0.619000 TotalBsmtSF 0.595042 GarageFinish - -0.424922 KitchenQual - -0.592468

• BsmtQual - -0.601307

• ExterQual - -0.624820

Following show the Correlation of the feature to the House price

Model Visualizations

Following are the Visualizations made to view results from each model

Following are Best 2 Model which are able to predict the house prices with above 91% accuracy.

Following graph shows us the comparison between Random Forest, XG Boost, Gradient Boost Regressors where Gradient boost performed best with 93% R2 Score.

Interpretation of the Results

> Interpretations made from Visualization, Model building.

> Distribution of the Sale Prices

- From the Graph we can observe that most of the houses are prices between 10,000\$
 25.000\$
- There are few outliers in the data but in the interest of having diversity rows have not been dropped.

Distribution of Living Area

- From the Scatterplot we can observe that the majority of the Dataset Contains Live
 Area from 800Sq Ft 2500Sq Ft
- Houses with Live Area greater than 3000Sq Ft are mostly priced above 20,000\$.

Overall Quality to the Sale price of the house

- From this we can observe that as the Quality rating increases the house price is also have a positive effect where the average price of house's rated 10 is above 40,000\$.
- Houses Rated 1-2 with OverallQual as priced less than 10,000\$.

> Year Built to the Sale Price of the house and Livearea

Observations made from comparing both the Graphs

- Older Houses are mostly under 20,000\$ with few exceptions which can be because of the Live area which we can observe comparing both Graphs.
- We can say that the Year of Building the house is positively affecting the price of the house even without gear difference in live area.

> Effect of each Variable on Sale price of the house

Positive Correlation

Features	Correlation
OverallQual	0.789185
GrLivArea	0.707300
GarageCars	0.628329
GarageArea	0.619000
TotalBsmtSF	0.595042
1stFlrSF	0.587642
FullBath	0.554988
YearBuilt	0.514408

Negative Correlation

Features	Correlation
HeatingQC	-0.406604
GarageType	-0.415370
GarageFinish	-0.424922
KitchenQual	-0.592468
BsmtQual	-0.601307
ExterQual	-0.624820

Following show the Correlation of the feature to the House price

CONCLUSION

Key Findings and Conclusions of the Study

- Following are Features which had a highest effect of the model in predicting the house prices.
- From the initial analysis the columns which effect the house price are mostly present in the final model as well.
- Features Correlation
- OverallQual 0.789185
- GrLivArea 0.707300
- GarageCars 0.628329
- GarageArea 0.619000
- TotalBsmtSF 0.595042
- GarageFinish -0.424922
- KitchenQual -0.592468
- BsmtQual -0.601307
- ExterQual -0.624820
- From this we can observe that as the Quality rating increases the house price is also have a positive effect where the average price of house's rated 10 is above 40,000\$.
- Houses Rated 1-2 with OverallQual as priced less than 10,000\$.
- Older Houses are mostly under 20,000\$ with few exceptions which can be because of the Live area which we can observe comparing both Graphs.
- From the Scatterplot we can observe that the majority of the Dataset Contains Live Area from 800Sq Ft 2500Sq Ft
- We are able to interpret that Gradient Boost regressor worked best in building a model to predict the house price, with an R2 score of 93.14% and Mean Absolute error of 15642.62.

S.no	Algorithm	R2 Score	MAE(Absolute)	MSE(Squared)
1	GradientBoostRegressor	93.14	15642.27	511314033.51

Learning Outcomes of the Study in respect of Data Science

Visualization tools and the metrices used help me attain the best possible model to choose with from the various other models used.

Following are the Metrices used and the Visualization used to choose the gradient boost regressor.

S.no	Algorithm	R2 Score	MAE(Absolute)	MSE(Squared)
1	GradientBoostRegressor	92.83	15372.12	511314033.51
2	XGBRegressor	91.84	15388.96	609304374.75
3	RandomForestRegressor	89.60	19313.62	775762889.76
4	Lasso Regressor	89.8	19682.35	760473931.95
5	Linear Regressor	89.57	19896.38	777392877.26

Challenges:

- The main challenge face with this particular data set was of the missing values which
 has been solved by using multiple techniques like Visualization, Value counts,
 Unique.
- General scaling technique used which is standard scalar did not help the model in predicting the prices well. I tried without scaling the data which worked out well with better scores.
- Removal of outliers will result in a situation where we will lose few unique features
 so the model has been built with out removing outliers, for a reference a model built
 with outliers removes resulted in similar or less R2 score but with a positive of low
 MAE value. I Choose for the diversity in model so went ahead with data with outliers
 as the final model.

Limitations of this work and Scope for Future Work

Limitations of the solution

- An R2 score of 93% is Good But not perfect which can be improved with a greater number of diversified rows.
- MAE or the Final model is 15672 which is high as the Sale price of the data is from less than 10,000\$ the main reason for the higher MAE is decision of diversity I took to build the model without removal of outliers.
- However, the results of the dataset with removal of outliers have been able to decrease the MAE to 13632 with a R2 score of 92.6% which is a considerable decrease in MAE with about 1800.
- Following is the Score of the Gradient Boost Regressor model after the outliers are removed.

Mean Absolute Error: 13632.91

Mean Squared Error: 351362319.88

GB Score: 92.62

S.no	Algorithm	R2 Score	MAE(Absolute)	MSE(Squared)
With outliers	GradientBoostRegressor	92.83	15372.27	534544208.02
With the outliers removed	GradientBoostRegressor	92.62	13632.91	351362319.88

Following are my conclusion over the improvement of the model.