

Escuela de Ciencia de la Computación Universidad Nacional de San Agustín Arequipa

Milagros Celia Cruz Mamani Computación paralela y distribuida Laboratorio 3

https://github.com/milagroscm/COMPUATACIO-PARALELA

Trabajo de PThreads 1

Resumen

El alumno debe realizar el informe en formato articulo donde la implementación, resultados y análisis de la ejecución para los siguientes problemas.

1. Ejercicios

1.1. Hardware donde se realizo las pruebas

Las pruebas de los algoritmos se realizaron en ubuntu

```
workspace $ lscpu
Architecture:
                       x86 64
                       32-bit, 64-bit
Little Endian
CPU op-mode(s):
Byte Order:
CPU(s):
On-line CPU(s) list: 0-7
Thread(s) per core:
Core(s) per socket:
Socket(s):
NUMA nodé(s):
Vendor ID:
                       GenuineIntel
CPU family:
Model:
Model name:
                       Intel(R) Xeon(R) CPU @ 2.20GHz
Stepping:
CPU MHz:
                       2200.000
BogoMIPS:
                       4400.00
Hypervisor vendor:
Virtualization type:
                       full
L1i cache:
                       32K
                       256K
   cache:
```

Figura 1: Características de mi ubuntu

- 1.2. Implementar y comparar las técnicas de sincronización Busy-waiting y Mutex, obtener una tabla similar a la Tabla 4.1 del libro.
 - Para compilar mpicc -o pth-pi-bw pth-pi.c -lm

■ Para ejecutar ./pth-pi-bw <numero de hilos><n>

```
Lab3 $ ./pth-pi-bw 1 100000000
                                   Lab3 $ ./pth-pi-mutex 1 100000000
3.141593
                                   3.141593
Tiempo->1.209830
                                   Tiempo->1.552016
Lab3 $ ./pth-pi-bw 2 100000000
                                   Lab3 $ ./pth-pi-mutex 2 100000000
3.141593
                                   3.141593
Tiempo->0.697879
                                   Tiempo->0.790923
Lab3 $ ./pth-pi-bw 4 100000000
                                   Lab3 $ ./pth-pi-mutex 4 100000000
3.141593
                                   3.141593
Tiempo->0.786940
                                   Tiempo->0.816084
Lab3 $ ./pth-pi-bw 8 100000000
                                   Lab3 $ ./pth-pi-mutex 8 100000000
3.141593
                                   3.141593
Tiempo->0.897071
Lab3 $ ./pth-pi-bw 8 100000000
3.141593
                                   Tiempo->0.777936
                                   Lab3 $ ./pth-pi-mutex 16 100000000
Tiempo->0.635424
                                   3.141593
Lab3 $ ./pth-pi-bw 16 100000000 3.141593
                                   Tiempo->0.685544
                                   Lab3 $ ./pth-pi-mutex 32 100000000 3.141593
Tiempo->0.941759
Lab3 $ ./pth-pi-bw 32 100000000
                                   Tiempo->0.707258
3.141593
                                   Lab3 $ ./pth-pi-mutex 64 100000000
Tiempo->1.411979
                                   3.141593
Lab3 $ ./pth-pi-bw 64 100000000
                                   Tiempo->0.845720
```

- (a) Capturas de pantalla con el uso de Busy-waiting
- (b) Capturas de pantalla con el uso de Mutex

1.2.1. Resultados comparativos

Thread	Busy-Wait	Mutex	
1	1.20983	1.552016	
2	0.697879	0.790923	
4	0.78694	0.816084	
8	0.897071	0.777936	
16	0.941759	0.685544	
32	1.411979	0.707258	
64	4.70559	0.84572	

Figura 2: Tablas de tiempo Busy-waiting vs Mutex

Figura 3: Cuadro de comparación de tiempo Busy-waiting vs Mutex

1.2.2. Análisis:

Podemos ver que en Busy-waiting vs Mutex podemos ver como el algoritmo Busy-waiting al inicio mantiene su tiempo menoor al tiempo de mutex pero mientras aumenta mas el numero de threads va ir aumentando su tiempo y crece de gran manera.

En c
mbio con el uso de Mutex, estos tiempos se mantienen en un rango y no suben tan drasticamente como podemos ver en el grafico de esta comparación por ende concluimos que Mutex es
 mas eficiente.

1.3. Basado en la sección 4.7, implementar un ejemplo de productorconsumidor. Explicar porque no se debe utilizar MUTEX.

Productor - Consumidor

- Hay un hilo productor y hay un hilo consumidor
- El hilo productor genera datos que serán utilizados por el hilo consumidor.
- Los datos se almacenan en bloques de memoria compartida entre el productor y el consumidor.
- Este tipo de procesos requiere sincronización ya que si el consumidor utiliza los datos mas rápido que el productor, entonces el consumidor se tendría que estar deteniendo
- Si el productor genera datos mas rápido que la utilización del consumidor, se podrían generar sobre-escritura de buffers de memoria.
- Este modelo también es conocido como Cliente-Servidor

```
Lab3 $ ./produc-consumidor 4
Thread 0 > No hay mensaje de 3
Thread 1 > Hola del thread 1 al thread 0
Thread 2 > Hola del thread 2 al thread 1
Thread 3 > Hola del thread 3 al thread 2
Lab3 $ [
```

Figura 4: Productor-Consumidor con 5 hilos

1.3.1. Análisis:

Como se puede ver, el productor solo produce en este caso procesos, y mediante el ejemplo en donde el productor crea un mensaje y el consumidor procesa ese mensaje se pudo observar que hay un problema a la hora de paralelizarlo es que aveces había procesos de consumidores que se disparaba mas rápido que el mismo productor, y usando mutex se generada un punto muerto

1.4. Implementar y explicar las diferentes formas de barreras en PThreads mostradas en el libro.

Barreras Pthreads

- pthread_barrier_init(barrier, attr, n) Aqui se inicializa la barrera barrier con los atributos attr para que funcione con n hebras.
- pthread_barrier_t Tipo de brrera
- pthread_barrier_wait(barrier)
 Bloquea a la hebra llamadora hasta que n hebras ejecuten
 pthread_barrier_wait(barrier)
- pthread_ barrier_destroy(barrier) Destruye la barrera barrier

Capturas de pantalla de la ejecución de los códigos 1.4.1.

```
Lab3 $ mpicc -o barrera150-pth pth_barreras.c -lpthread
Lab3 $ mpirun -np 1 barrera150-pth 1
Elapsed time = 2.200603e-04 seconds
                                                                                                                                                                                                             Lab3 $ mpicc -o barrera300-pth pth_barreras.c -lpthread
Lab3 $ mpirun -np 1 barrera300-pth 1
Elapsed time = 8.008480e-04 seconds
Lab3 $ mpirun -np 1 barrera150-pth 2

Elapsed time = 6.729126e-03 seconds

Lab3 $ mpirun -np 1 barrera150-pth 3

Elapsed time = 9.931803e-03 seconds
                                                                                                                                                                                                            Elapsed time = 8.008480e-04 seconds Lab3 $ mpirun -np 1 barrera300-pth 2 Elapsed time = 9.064913e-03 seconds Lab3 $ mpirun -np 1 barrera300-pth 4 Elapsed time = 1.297307e-02 seconds Lab3 $ mpirun -np 1 barrera300-pth 8 Elapsed time = 3.944612e-02 seconds Lab3 $ mpirun -np 1 barrera300-pth 16 Elapsed time = 7.512093e-02 seconds Lab3 $ mpirun -np 1 barrera300-pth 32 Elapsed time = 1.217830e-01 seconds Lab3 $ mpirun -np 1 barrera300-pth 64 Labsed time = 1.217830e-01 seconds Lab3 $ mpirun -np 1 barrera300-pth 64
 Lab3 $ mpirun -np 1 barrera150-pth 4
Elapsed time = 9.174109e-03 seconds
Lab3 $ mpirun -np 1 barrera150-pth 8
Elapsed time = 2.956510e-02 seconds
Lab3 $ mpirun -np 1 barrera150-pth 16
Elapsed time = 2.626395e-02 seconds
 Lab3 $ mpirun -np 1 barrera150-pth 32
Elapsed time = 9.348989e-02 seconds
                                                                                                                                                                                                             Lab3 $ mpirun -np 1 barrera300-pth 64
Elapsed time = 3.437879e-01 seconds
 Lab3 $ mpirun -np 1 barrera150-pth 64
Elapsed time = 7.587600e-02 seconds
```

(a) BARRIER COUNT 150

(b) BARRIER COUNT 300

```
Lab3 $ mpicc -o barrera600-pth pth_barreras.c -lpthread
Lab3 $ mpirun -np 1 barrera600-pth 1
Elapsed time = 7.150173e-04 seconds
Lab3 $ mpicc -o barrera450-pth pth_barreras.c -lpthread
Lab3 $ mpirun -np 1 barrera450-pth 1
Elapsed time = 1.001835e-03 seconds
                                                                                                                     Lab3 $ mpirun -np 1 barrera600-pth 2
Elapsed time = 1.916790e-02 seconds
Lab3 $ mpirun -np 1 barrera450-pth 2
Elapsed time = 5.809069e-03 seconds
Lab3 $ mpirun -np 1 barrera450-pth 4
Elapsed time = 1.981592e-02 seconds
                                                                                                                     Lab3 $ mpirun -np 1 barrera600-pth 4
Elapsed time = 4.782581e-02 seconds
Lab3 $ mpirun -np 1 barrera450-pth 8
Elapsed time = 3.202701e-02 seconds
                                                                                                                     Lab3 $ mpirun -np 1 barrera600-pth 8 Elapsed time = 4.711413e-02 seconds
Lab3 $ mpirun -np 1 barrera450-pth 16
Elapsed time = 9.166598e-02 seconds
                                                                                                                     Lab3 $ mpirun -np 1 barrera600-pth 16
Elapsed time = 8.307600e-02 seconds
Lab3 $ mpirun -np 1 barrera450-pth 32
Elapsed time = 2.325270e-01 seconds
                                                                                                                     Lab3 $ mpirun -np 1 barrera600-pth 32
Elapsed time = 1.786270e-01 seconds
Lab3 $ mpirun -np 1 barrera450-pth 64
Elapsed time = 2.151239e-01 seconds
                                                                                                                    Lab3 $ mpirun -np 1 barrera600-pth 64
Elapsed time = 2.723980e-01 seconds
```

(c) BARRIER_COUNT 450

(d) BARRIER COUNT 600

```
Lab3 $ mpicc -o barrera750-pth pth_barreras.c -lpthread
Lab3 $ mpirun -np 1 barrera750-pth 1
Elapsed time = 8.640289e-04 seconds
Lab3 $ mpirun -np 1 barrera750-pth 2
Elapsed time = 5.208969e-03 seconds
Lab3 $ mpirun -np 1 barrera750-pth 4
Elapsed time = 4.221082e-02 seconds
Lab3 $ mpirun -np 1 barrera750-pth 8 Elapsed time = 3.279114e-02 seconds
Lab3 $ mpirun -np 1 barrera750-pth 16
Elapsed time = 1.208611e-01 seconds
Lab3 $ mpirun -np 1 barrera750-pth 32
Elapsed time = 2.776721e-01 seconds
Lab3 $ mpirun -np 1 barrera750-pth 64
Elapsed time = 4.297159e-01 seconds
```

(e) BARRIER COUNT 750

Figura 5: Compilación de barreras con Pthreads.

1.4.2. Resultados Comparativos Pthread

Procesos 1							
Thread	BARRIER_COUNT						
	150	300	450	600	750		
1	0.00022006	0.0008008	0.0010018	0.000715	0.000864		
2	0.006729126	0.0090649	0.0058091	0.0191679	0.005209		
4	0.009174109	0.0129731	0.0198159	0.0478258	0.0422108		
8	0.0295651	0.0394461	0.032027	0.0471141	0.0327911		
16	0.02626395	0.0751209	0.091666	0.083076	0.1208611		
32	0.09348989	0.121783	0.232527	0.178627	0.2776721		
64	0.075876	0.3437879	0.2151239	0.272398	0.4297159		

(a) Barrera con Pthread

Figura 6: Resultados gráficos

```
Lab3 $ mpicc -o barrera-mutex-300 pth_barre_mutex.c -lp
Lab3 $ mpirun -np 1 barrera-mutex-300 1
Elapsed time = 1.080036e-04 seconds
Lab3 $ mpirun -np 1 barrera-mutex-150 1
Elapsed time = 4.618168e-04 seconds
                                                                                                               Lab3 $ mpirun -np 1 barrera-mutex-300 2
Elapsed time = 6.818771e-04 seconds
Lab3 $ mpirun -np 1 barrera-mutex-150 2
Elapsed time = 7.170448e-01 seconds
                                                                                                               Lab3 $ mpirun -np 1 barrera-mutex-300 4
Elapsed time = 5.702431e+00 seconds
Lab3 $ mpirun -np 1 barrera-mutex-150 4
Elapsed time = 2.951136e+00 seconds
Lab3 $ mpirun -np 1 barrera-mutex-150 8
Elapsed time = 4.587369e+00 seconds
Lab3 $ mpirun -np 1 barrera-mutex-150 16
Elapsed time = 7.152640e+00 seconds
Lab3 $ mpirun -np 1 barrera-mutex-150 32
Elapsed time = 1.561842e+01 seconds
                                                                                                               Lab3 $ mpirun -np 1 barrera-mutex-300 8
Elapsed time = 9.111765e+00 seconds
                                                                                                               Lab3 $ mpirun -np 1 barrera-mutex-300 16
Elapsed time = 1.321956e+01 seconds
                                                                                                               Lab3 $ mpirun -np 1 barrera-mutex-300 32
Elapsed time = 2.919284e+01 seconds
Lab3 $ mpirun -np 1 barrera-mutex-150 64
Elapsed time = 3.692263e+01 seconds
                                                                                                               Lab3 $ mpirun -np 1 barrera-mutex-300 64
Elapsed time = 6.779855e+01 seconds
                               (a) BARRIER COUNT 150
                                                                                                                                              (b) BARRIER COUNT 300
                                                                                                                    Lab3 $ mpirun -np 1 barrera-mutex-600
Elapsed time = 1.389980e-04 seconds
Lab3 $ mpicc -o barrera-mutex-450 pth_barre_mutex.c -lpthread
Lab3 $ mpirun -np 1 barrera-mutex-450 1
                                                                                                                    Lab3 $ mpirun -np 1 barrera-mutex-600 2
Elapsed time = 2.151513e-02 seconds
Elapsed time = 4.739761e-04 seconds
Lab3 $ mpirun -np 1 barrera-mutex-450 2
                                                                                                                    Lab3 $ mpirun -np 1 barrera-mutex-600 4
Elapsed time = 9.739628e+00 seconds
Elapsed time = 1.303201e-01 seconds
Lab3 $ mpirun -np 1 barrera-mutex-450 4
Elapsed time = 1.141113e+01 seconds
                                                                                                                     Lab3 $ mpirun -np 1 barrera-mutex-600 8
Lab3 $ mpirun -np 1 barrera-mutex-450 8 Elapsed time = 2.357294e+01 seconds
                                                                                                                     Elapsed time = 1.657961e+01 seconds
                                                                                                                     Lab3 $ mpirun -np 1 barrera-mutex-600 16
Lab3 $ mpirun -np 1 barrera-mutex-450 16
Elapsed time = 3.461493e+01 seconds
                                                                                                                     Elapsed time = 2.736131e+01 seconds
                                                                                                                    Lab3 $ mpirun -np 1 barrera-mutex-600 32 Elapsed time = 5.347492e+01 seconds
Lab3 $ mpirun -np 1 barrera-mutex-450 32
Elapsed time = 9.900186e+01 seconds
                                                                                                                    Lab3 $ mpirun -np 1 barrera-mutex-600 64
Elapsed_time = 1.230497e+02 seconds
```

(c) BARRIER COUNT 450

Lab3 \$ mpirun -np 1 barrera-mutex-450 64

Lab3 \$ mpicc -o barrera-mutex-150 pth_barre_mutex.c -lpthread

(d) BARRIER COUNT 600

```
Lab3 $ mpicc -o barrera-mutex-750 pth_barre_mutex.c -lpthread
Lab3 $ mpirun -np 1 barrera-mutex-750 1
Elapsed time = 1.320839e-04 seconds
Lab3 $ mpirun -np 1 barrera-mutex-750 2
Elapsed time = 3.604698e-02 seconds
Lab3 $ mpirun -np 1 barrera-mutex-750 4
Elapsed time = 1.326402e+01 seconds
Lab3 $ mpirun -np 1 barrera-mutex-750 8
Elapsed time = 2.406984e+01 seconds
 Lab3 $ mpirun -np 1 barrera-mutex-750 16
Elapsed time = 3.144532e+01 seconds
Lab3 $ mpirun -np 1 barrera-mutex-750 32
Elapsed time = 7.268289e+01 seconds
Lab3 $ mpirun -np 1 barrera-mutex-750 64
Elapsed time = 1.692425e+02 seconds
```

(e) BARRIER COUNT 750

Figura 7: Compilación de barreras con Mutex.

1.4.3. Resultados Comparativos Mutex

Procesos 1							
Thread	BARRIER_COUNT						
	150	300	450	600	750		
1	4.62E-04	1.08E-04	4.74E-04	1.39E-04	1.32E-04		
2	7.17E-01	6.82E-04	1.30E-01	2.15E-02	3.60E-02		
4	2.95E+00	5.70E+00	1.14E+01	9.74E+00	1.33E+01		
8	4.59E+00	9.11E+00	2.36E+01	1.66E+01	2.41E+01		
16	7.15E+00	1.32E+01	3.46E+01	2.74E+01	3.14E+01		
32	1.56E+01	2.92E+01	9.90E+01	5.35E+01	7.27E+01		
64	3.69E+01	6.78E+01	1.56E+02	1.23E+02	1.69E+02		

(a) Barrera con Mutex

Figura 8: Resultados gráficos

1.4.4. Análisis:

El uso de barreras es muy importante para el uso en la depuración y para determinar donde se esta produciendo un error.

En este ejercicio se pudo determinar la barrera Pthread es mucho mejor que la barrera con mutex , ya que en el código utiliza el plthread_barrier la cual aumenta el rendimiento