Annotated SAS Code and Output for Water Heater Data

SAS Code

Here is the SAS Code for three way ANOVA

```
Data;
input Cap$ Flo$ Exp$
                      Eff;
datalines;
high high high 41.6
high high high 41.3
high high low 39.9
high high low 39.7
high low high 51.9
high low high 52.4
high low low 43.0
high low low
                44.9
low high high 39.2
low high high 38.4
low high low 37.5
low high low 35.0
low low high 50.2
low low high 51.3
low low low 41.3
low low low 43.5
proc glm;
class Cap Flo Exp ;
model Eff = Cap Flo Exp Cap*Flo Cap*Exp Flo*Exp Cap*Flo*Exp/ss3;
lsmeans Cap Flo Exp Cap*Flo Cap*Exp Flo*Exp Cap*Flo*Exp/stderr pdiff;
run;
quit;
```

Alternatives for model and Ismeans

Rather that write out all the main effects and interactions, one can simplify the model and Ismeans statements by using vertical lines between the names of the variables as follows:

```
model Eff = Cap|Flo|Exp/ss3;
lsmeans Cap|Flo|Exp/stderr pdiff ;
```

The pdiff option will create a lot of output as pairwise comparisons are done for all 3-way, 2-way, and 1-way means. An alternative approach would be to first do the analysis without the pdiff option or without the Ismeans statement altogether. Then re-run the analysis with the Ismeans statement and pdiff option just for the means that the ANOVA indicates are important. For instance, with the water heater data, the significance of the Cap and Flo*Exp interaction suggest using the following LSMEANS statement:

```
lsmeans Cap Flo*Exp /stderr pdiff;
```

Output

This is information on the class variables and number of observations.

```
The GLM Procedure

Class Level Information
Class Levels Values

Cap 2 high low
Flo 2 high low
Exp 2 high low

Number of Observations Read 16
Number of Observations Used 16
```

This part of the output is equivalent to doing a one-way analysis of variance on the eight treatments. The significant F indicates that there are main effects and/or interactions that are significant.

Dependent V	/ariable: Eff						
				Sum of			
Source		DF	S	quares	Mean Square	F Value	Pr > F
Model		7	441.1	843750	63.0263393	59.56	<.0001
Error		8	8.4	650000	1.0581250		
Corrected Total		15	449.6	493750			
R-Square	Coeff Var	Root	MSE	Eff Mean			
0.981174	2.381484	1.028	8652	43.19375			

The analysis of variance for the components shows that there are significant main effects for Cap, Flo, and Exp, and significant Flo*Exp interaction.

Source	DF	Type III SS	Mean Square	F Value	Pr > F	
Con	4	20.9306250	20.9306250	19.78	0.0021	
Cap	1					
Flo	1	271.4256250	271.4256250	256.52	<.0001	
Exp	1	107.6406250	107.6406250	101.73	<.0001	
Cap*Flo	1	2.6406250	2.6406250	2.50	0.1528	
Cap*Exp	1	0.2756250	0.2756250	0.26	0.6236	
Flo*Exp	1	38.1306250	38.1306250	36.04	0.0003	
Cap*Flo*Exp	1	0.1406250	0.1406250	0.13	0.7249	

Here is the output using the following LSMEANS statement:

```
lsmeans Cap Flo*Exp /stderr pdiff;
```

comparisons should be used.

The main effect means for Cap shows that high capacity gives the highest mean efficiency. Looking at the table of two-way means with p-values, we see that all pairwise differences are significant. However, the low flow and high exposure produces an efficiency that is more than 8% greater than the next largest efficiency.

Сар	Eff LSM	/IEAN	Standa Err		H0 MEAN=0 > t	0:LSMean1= LSMean2 Pr > t	
high	44.3375	5000	0.36368	334	<.0001	0.0021	
low 42.050000		0000	0.3636834		<.0001		
				Standard		LSMEAN	I
Flo	Exp	Eff LSM	EAN	Error	Pr > t	Number	•
high	high	40.1250	000	0.5143260	<.0001	1	
high	low	38.0250	000	0.5143260	<.0001	2	2
low	high	51.4500	000	0.5143260	<.0001	3	3
low	low	43.1750	000	0.5143260	<.0001	4	l .
		•		r effect Flog an(i)=LSMean	•		
					(1)		
		Depende	nt Variak	ole: Eff			
i/j		1	2	;	3	4	
1			0.0203	<.000	1 0.0	0030	
2	0.020	03		<.000	1 0.0	0001	
3	<.000	01	<.0001		<.(0001	
4	0.003	30	0.0001	<.000	1		