

I 粪便状态与健康

一、从大便形状来判断健康

形状	判断	
第一型:	一颗颗硬球(很难通过)	便秘
第二型:	香肠状,但表面凹凸	便秘
第三型:	香肠状,但表面有裂痕	理想的便型
第四型:	像香肠或蛇一样,且表面很光滑	理想的便型
第五型:	断边光滑的柔软块状(容易通过)	可能腹泻
第六型:	粗边蓬松块,糊状大便	可能腹泻
第七型:	水状,无固体块(完全液体)	腹泻

注: 本表格编译自布里斯托大便分类法 (Bristol stool scale)

二、从大便颜色和便中物质来判断健康

颜色	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
第一型: 棕色	浅棕色至深棕色均为正常的粪便颜色(棕色深浅与粪胆素有关,粪胆素由 粪胆原氧化生成)
第二型: 4色 绿色	可能与食用绿色蔬菜有关,如菠菜等
第三型: 红色	提示下消化道出血
第四型: 黄色	可能与脂肪消化吸收障碍、鞭毛虫感染、肠蠕动过快有关
第五型: 蓝色	可能与食用蓝色食物有关;婴幼儿在生病时粪便也可能呈蓝色
第六型: 白色	通常与肝胆系统有关,因胆总管受损,胆汁无法排到肠道里,形成白色 大便;也可能与服用某些药物相关
第七型: 📤 黑色	可能与上消化道出血或者食用动物血等食物相关

温馨提示:

- 1. 粪便颜色通常由您所摄入的食物和粪便中胆汁的含量所决定,一般情况下,健康人的粪便颜色为浅至中等棕色。如果您摄入大量的深色食物(如菠菜、蓝莓、火龙果),可能会使粪便颜色发生相应的改变,这是正常现象,请您不必过分担心。但如果您的粪便颜色长期处于异常颜色范畴或者颜色、质地突然改变,提示您的肠道健康可能出现问题,建议您及时到医院进行专科检查、诊治。
- 2. 多种因素均能引起粪便颜色改变,限于篇幅限制,本表格中仅列举了部分原因。

Ⅱ 肠道菌群与微生态制剂

一、什么是肠道菌群

肠道菌群是人体肠道中存在的微生物的统称。肠道菌群构成复杂,细菌种类繁多,主要划分为以下三种类型:

有益菌

有益菌是有益于人体健康的一类细菌,包括大家最熟悉的益生菌(乳杆菌、双歧杆 菌、嗜热链球菌等),以及科学研究发现的其它对人体健康有利的细菌。它们通常能 够产生一些利于人体健康的物质如短链脂肪酸、维生素等,改善肠道环境,调节免 疫,抑制有害菌的生长。

中性菌

中性菌,又称共生菌,是肠道环境中存在数量最多的细菌,他们维持着肠道菌群的结 构,对人体并无害处。但在人体免疫能力低下的情况下,其中一些被称为机会致病菌 的细菌得到大量繁殖的机会,也会对人体健康造成危害,特别是它们通过血液循环扩 散到身体的其它部位的情况下。

有害菌是危害肠道健康的细菌,它们的大量繁殖,会破坏肠道系统的生态平衡, 它们还能够分泌各种毒素,引起腹泻、呕吐、便秘等各种病症。肠道中的有害菌 通过血液循环到达身体的其它部位,则可能会造成一些更严重的感染,甚至危及 生命。

二、补充微生态制剂可优化肠道菌群组成

微生态制剂是指运用微生态学原理,利用能够促进宿主肠道生态健康的益生菌以及能够促进益生菌生长的营养物质如益生元等,合理搭配,通过特殊工艺制成的制剂。微生态制剂具有调整微生态失调,保持生态平衡,提高人体健康水平的作用。

益生菌

益生菌是一类对宿主有益的活性微生物,是定植于人体肠道、生殖系统内,能产生确切健康功效从而改善宿主微生态平衡、发挥有益作用的活性有益微生物的总称。常见益生菌包括双歧杆菌属菌类、乳杆菌属菌类等。目前益生菌产品主要是以上各类微生物组成的复合制剂。益生菌具有预防和改善腹泻、增强免疫力、预防感染、降低胆固醇、促进肠道消化系统健康、帮助吸收营养成分等作用。

乳杆菌属

乳杆菌是一群杆状或球状的革兰氏阳性菌,可发酵碳水化合物(主要指葡萄糖)并产生大量乳酸,在自然界分布广泛,是人体肠道具有重要生理活性的菌群之一。该菌属细菌绝大多数对人体无毒、无害,并担负着人体内重要的生理功能。乳杆菌可阻止病原菌对肠道的入侵和定植、抑制病原菌生长、抑制内毒素的产生、维持肠道微生态平衡、促进消化吸收、促进肠道蠕动、预防和抑制肿瘤的发生、增强机体免疫力、合成氨基酸和维生素、降低胆固醇、降低血脂等。常见的乳杆菌属的菌种包括嗜乳杆菌、唾液乳杆菌、鼠李糖乳杆菌、干酪乳杆菌、格氏乳杆菌、保加利亚乳杆菌等。服用乳杆菌制剂可改善便秘、腹泻、炎症性肠病、肝性脑病等病症。

双歧杆菌属

双歧杆菌是1899年由法国学者Tissier从母乳营养儿的粪便中分离出的一种厌氧的革兰氏阳性杆菌,末端常常分叉,故名双歧杆菌。双歧杆菌存在于人的肠道、口腔、阴道,该菌能发酵葡萄糖、乳糖、半乳糖和果糖等糖类,产生乙酸、L(+)-乳酸、乙醇和甲酸等。双歧杆菌属菌类可阻止病原菌对肠道的入侵和定植、抑制病原菌生长、抑制内毒素的产生、维持肠道的微生态平衡、促进消化吸收、促进钙吸收、促进肠道蠕动、预防和抑制肿瘤的发生、增强机体免疫力、合成氨基酸和维生素、降低胆固醇、降低血脂等。常见的双歧杆菌包括:长双歧杆菌、链状双歧杆菌、青春双歧杆菌、假链状双歧杆菌、短双歧杆菌、婴儿双歧杆菌、两歧双歧杆菌等。服用双歧杆菌制剂可改善便秘、腹泻、炎症性肠病、肝性脑病等症状。

- 益生元 ·

通过选择性的刺激一种或几种菌落中的细菌生长与活性而对宿主产生有益的影响,从而改善宿主健康状况的不能被消化的食物成分。常见益生元:包括菊粉、低聚果糖、低聚半乳糖、低聚异麦芽糖等。

菊粉

菊粉(inulin) 广泛存在于各种植物,菊芋和菊苣含量最高,鲜重可高达20%(干重80%),菊粉的主要成分是一类结构相似的果聚糖,不易为人体直接吸收,在结肠被肠道微生物利用、降低肠道pH、促进双歧杆菌、乳酸杆菌等的生长、抑制有害菌生长、促进肠蠕动。服用菊粉,有利于人体控制血脂、降低血糖、促进钙吸收、改善便秘、增强免疫力等。

低聚果糖

低聚果糖又称蔗果低聚糖,是由 $1\sim3$ 个果糖基通过 β (2—1)糖苷键与蔗糖中的果糖基结合生成的蔗果三糖、蔗果四糖和蔗果五糖等的混合物。低聚果糖不易为人体吸收,在结肠中被肠道微生物利用,促进双歧杆菌的生长,抑制有害菌的生长。口服低聚果糖,有利于控制血脂、降低血糖、促进吸收、改善便秘或腹泻、促进钙吸收、增强免疫力等。

低聚半乳糖

低聚半乳糖是一种具有天然属性的功能性低聚糖,其分子结构一般是在半乳糖或葡萄糖分子上连接1~7个半乳糖基。低聚半乳糖不易被人体吸收,是肠道内乳酸杆菌与双歧杆菌良好的生长因子,抑制有害菌的生长、促进肠蠕动。口服低聚半乳糖,有利于矿物质的吸收、预防龋齿、控制血脂、预防肥胖、降低血糖、改善便秘或腹泻、促进吸收、增强免疫力等。

- 膳食纤维·

一般分为可溶性膳食纤维和不可溶性膳食纤维,可溶性膳食纤维来源于果胶、藻胶、魔芋等。 主要成分为葡甘聚糖,能量很低,吸水性强。可溶性纤维在胃肠道内和淀粉等碳水化合物交织 在一起,并延缓后者的吸收,起到降低餐后血糖的作用。不可溶性纤维对人体的作用,一方面 可以促进胃肠道蠕动,加快食物通过胃肠道,减少营养素的吸收;另一方面,不可溶性纤维在 大肠中吸收水分软化粪便,可以防治便秘。

III 肠道菌群与健康风险

一、肠道菌群失调

肠道菌群按一定的比例组合,各菌种间互相制约、互相依存、和谐共处,在质和量上形成一种生态平衡,共同维护着肠道内环境的稳定,保持肠道良好的消化吸收功能。而一旦机体内外环境发生变化或长期受到不良刺激,特别是长期应用广谱抗生素,敏感肠菌被抑制,未被抑制的细菌则异常大量繁殖,就有可能破坏肠道内菌群平衡状态,引起菌群失调。菌群正常生理组合被破坏,而产生病理性组合,从而引起一系列临床表现,称为肠道菌群失调症。短期的失调可能会引发消化不良等症状;长期的平衡紊

乱则可能引起严重的消化吸收能力障碍,导致营养不良、面黄肌瘦、免疫力低下和精神体力不佳等一系列亚健康表现,甚至增加相关疾病风险。

肠道菌群失调的危害

二、肠道菌群失调与患病风险

肠道菌群与多种疾病的发生发展直接相关。科学研究发现,喜欢喝酸奶的人群体内的双歧杆菌等益生菌含量比较高,这些益生菌产生许多有益于肠道健康的有益物质,能促进排便和排毒,减少了患肠道疾病的风险;即使是食用高脂肪食物,肠道内脂肪代谢相关的细菌,帮助维持代谢的平衡。而经常熬夜、生活不规律的人群,肠道菌群的多样性降低,有害菌增加,从而增加多种疾病的患病风险!

疾病	相关肠道菌群	临床症状
炎症性肠病	患有炎症性肠病的人群,肠道菌群多样性较低, 某些致病菌增加,而产丁酸菌比例减少,提示炎 症性肠病与肠道菌群失调密切相关。肠道菌群失 调可能引起免疫调节异常、炎症反应异常,进而 促进炎性肠病的发生。	溃疡性结肠炎表现为持续或者反复发作的腹泻、 黏液脓血便伴腹痛、里急后重和不同程度的全身 症状。病程多在4~6周以上,可有关节、皮肤、 眼、口、肝胆等肠外表现。 克罗恩病表现为慢性起病、右下腹痛或脐周痛、 腹泻,可伴腹部肿块、梗阻、肠瘘、肛门病变和 反复口腔溃疡,以及发热、贫血、体重下降等全 身症状。
功能性便秘	功能性便秘与肠道菌失调密切相关,研究表明, 便秘患者肠道菌群失衡,某些有害菌比例增加, 而益生菌如双歧杆菌属、乳杆菌属细菌比例减 少。	表现为排便次数减少、粪便干硬和(或)排便困难。 排便次数减少指每周排便少于3次。排便困难包括 排便费力、排出困难、排便不尽感、排便费时以 及需手法辅助排便。
结直肠癌	结肠癌患者的肠道菌群与健康者相比,存在着明显失调,某些菌如大肠埃希氏菌、具核梭菌、脆弱拟杆菌、粪肠球菌等可通过释放活性氧簇(ROS)、引发炎症反应、释放内毒素、改变局部代谢水平等促进结直肠癌的发生发展。	早期结直肠癌可无明显症状,病情发展到一定程度可出现下列症状: 1.排便习惯改变。2.大便性状改变(变细、血便、黏液便等)。3.腹痛或腹部不适。4.腹部肿块。5.肠梗阻相关症状。6.贫血及全身症状: 如消瘦、乏力、低热等。
2型糖尿病	2型糖尿病患者的肠道菌群存在着明显失调,产丁酸菌下降而某些机会致病菌比例增加。肠道菌群可能通过引发炎症反应、改变代谢水平等促进2型糖尿病的发生发展。	多饮、多食、多尿、体重下降
肥胖症	肥胖者肠道菌群发生明显失调,其厚壁菌门细菌 比例增加而拟杆菌门细菌比例减少,可能通过引 发炎症反应,代谢异常,参与肥胖的发生发展。	BMI 大于28; 轻度肥胖多无症状,中、重度肥胖症可引起气 急、关节痛、肌肉酸痛、体力活动减少以及焦 虑、忧郁等。

疾病	相关肠道菌群	临床症状
肝硬化	肝硬化病人肠道菌群发生明显失调,其拟杆菌属、真杆菌属等的比例增加,肠道菌群可能通过 代谢产物影响肝硬化的进程。	代偿性肝硬化,指早期肝硬化,虽可有轻度乏力、食欲减少或腹胀症状,但无明显肝功能衰竭表现。可有门静脉高压症,如轻度食管静脉曲张,但无腹水、肝性脑病或上消化道出血。 失代偿性肝硬化,指中晚期肝硬化,有明显肝功能异常及失代偿征象,患者可出现腹水、肝性脑病及门静脉高压症引起的食管、胃底静脉明显曲张或破裂出血。
心血管疾病	研究表明饮食中的磷脂酰胆碱在肠道中消化成胆碱,然后被某些肠道菌群转化成三甲胺(TMA)后被吸收进入肝脏,在肝脏中经黄素单加氧酶催化生成氧化三甲胺(TMAO),氧化三甲胺可促使动脉粥样硬化斑块生成,增加冠心病、脑卒中等的风险。	冠心病表现为心绞痛,多发于胸骨后或左前胸,可放射到颈部、颌部、上腹部、肩背部、左臂及手指测,常呈紧缩感、绞窄感、压迫感、灼烧感,常常持续数分钟到十余分钟;常常由体力劳动、情绪激动、寒冷、饱餐等诱发。
抑郁症	抑郁症患者肠道菌群发生失调,放线菌门与厚壁菌门细菌比例上升,而拟杆菌门细菌比例下降。 肠道菌群可代谢产生γ-氨基丁酸(GABA)、五羟色胺等神经递质,通过肠脑轴影响人的精神状态。	抑郁症以显著而持久的心境低落为主要临床特征,且心境低落与其处境不相称,严重者可出现自杀念头和行为。多数病例有反复发作的倾向,每次发作大多数可以缓解,部分可有残留症状或转为慢性。
类风湿性 关节炎	类风湿性关节炎患者唾液乳杆菌、缓慢爱格士氏菌、毛螺科菌等丰度增加,肠道菌群可能通过诱导肠道异常炎症反应,产生炎性因子,促进类风湿性关节炎的发生。	类风湿关节炎受累关节的症状表现对称性、持续性关节肿胀和疼痛,常伴有晨僵。受累关节以近端指间关节、掌指关节、腕、肘和足趾关节最为多见;同时,颈椎、颞颌关节、胸锁和肩锁关节也可受累。中、晚期的患者可出现手指的"天鹅颈"及"钮扣花"样畸形,关节强直和掌指关节半脱位,表现掌指关节向尺侧偏斜。
哮喘	哮喘高风险儿童双歧杆菌属、栖粪杆菌属等丰度 降低,而某些真菌如假丝酵母菌属与红酵母菌属 丰度升高,失调的菌群可能通过引起免疫细胞功 能紊乱而诱导哮喘的发生。	反复发作喘息、气急、胸闷、咳嗽等,多与接触 过敏原、冷空气、物理、化学性刺激以及上呼吸 道感染、运动等有关。 症状可经治疗缓解或自行缓解。

IV 肠道菌群与肠道调养

一、肠道调养介绍

以肠道的蠕动功能为例,如果肠道蠕动不正常,就可能引起便秘或腹泻。 有些治疗便秘的药物或保健品,就是通过强力刺激肠道蠕动来实现通便 的,但长期使用这种方式,反而会减弱肠道蠕动功能,进而加重排便障 碍,以致一旦停用就无法排便,形成恶性循环。可见,这种方式既不健 康,也没有恢复肠道的正常蠕动,所以绝不是理想中的肠道调养。

二、正确的肠道调养方法

方法		具体措施 ····································
微生态制剂		恢复肠道正常的微生态环境,最好的方法就是服用微生态制剂,微生态制剂不但能帮助调理肠道,改善肠道环境,还能预防和治疗各种肠道疾病。如:慢性肠炎、便秘、溃疡性结肠炎、直肠炎、盲肠炎等疾病。
按摩	T)	部分人群由于肠蠕动偏弱,经常出现腹胀、便秘等不适,这种情况可以采取腹部按摩,帮助刺激肠道蠕动,恢复肠动力。
饮食		 每天早上喝一杯蜂蜜水,既补充水分又有利于润肠通便。 肠道功能不好的人可以每天喝适量酸奶,酸奶可以很好的调理肠胃。 便秘者可适当多吃粗粮和蔬菜水果,并保证喝足量的水,有利于促进肠道清理。 定时定量,少食多餐,避免暴饮暴食,少吃油腻及辛辣刺激性食物。 少喝浓茶,以免影响食物的消化吸收。 防止病从口入。不要吃腐烂变质的食物,尽量不吃剩菜剩饭,避免饮用生水,少吃生食,肉类、奶类和蛋类食品食用前应煮透,水果洗净去皮,坚持餐具勤消毒等,以切断致病菌的感染途径。
运动		避免久坐,静坐一小时后起来活动2~3分钟。坚持体育锻炼,可选择一些有氧运动,如瑜伽、快步走、慢跑等。
心理		精神心理因素也会影响肠道功能,保持心情愉快有利于肠道健康。
生活	6	预防致病菌感染,需养成良好的卫生习惯,如勤洗手。 可以接种疫苗来预防致病菌感染。

参考文献

- Chevalier, C., et al., Gut Microbiota Orchestrates Energy Homeostasis during Cold. Cell, 2015. 163 (6): p. 1360–74.
- 2. Ramirez-Farias, C., et al., Effect of inulin on the human gut microbiota: stimulation of Bifidobacterium adolescentis and Faecalibacterium prausnitzii. Br J Nutr, 2009. 101(4): p. 541–50.
- 3. Koga, Y., et al., Age-associated effect of kestose on Faecalibacterium prausnitzii and symptoms in the atopic dermatitis infants. Pediatr Res, 2016. 80 (6): p. 844-851.
- Sokol, H., et al., Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci U S A, 2008. 105(43): p. 16731–6.
- Machiels, K., et al., A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut, 2014. 63(8): p. 1275–83.
- Dao, M.C., et al., Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut, 2015.
- Everard, A., et al., Cross-talk between Akker-mansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci U S A, 2013. 110(22): p. 9066-71.
- 8. Anhe, F.F., et al., A polyphenol-rich cranberry extract protects from diet-induced obesity, insulin resistance and intestinal inflammation in association with increased Akkermansia spp. population in the gut microbiota of mice. Gut, 2015. 64(6): p. 872–83.
- 9. Walton, G.E., et al., A randomised, double-blind, placebo controlled cross-over study to determine the gastrointestinal effects of consumption of

- arabinoxylan-oligosaccharides enriched bread in healthy volunteers. Nutr J, 2012. 11: p. 36.
- Giovannini, M., et al., Prebiotic effect of an infant formula supplemented with galacto-oligosaccharides: randomized multicenter trial. J Am Coll Nutr, 2014. 33(5): p. 385–93.
- 11. Ottman, N., et al., The function of our microbiota: who is out there and what do they do? Frontiers in Cellular and Infection Microbiology, 2012. 2.
- 12. Conlon, M.A. and A.R. Bird, The impact of diet and lifestyle on gut microbiota and human health. Nutrients, 2014. 7(1): p. 17-44.
- 13. Clemente, J.C., et al., The impact of the gut microbiota on human health: an integrative view. Cell, 2012. 148(6): p. 1258-70.
- 14. Qin, J.J., et al., A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature, 2012. 490(7418): p. 55-60.
- Schwiertz, A., et al., Microbiota and SCFA in Lean and Overweight Healthy Subjects. Obesity, 2010. 18(1): p. 190–195.
- Kasubuchi, M., et al., Dietary Gut Microbial Metabolites, Short-chain Fatty Acids, and Host Metabolic Regulation. Nutrients, 2015. 7(4): p. 2839-2849.
- 17. Le Barz, M., et al., Probiotics as Complementary Treatment for Metabolic Disorders. Diabetes Metab J, 2015. 39(4): p. 291–303.
- Di Gioia, D., et al., Bifidobacteria: their impact on gut microbiota composition and their applications as probiotics in infants. Appl Microbiol Biotechnol, 2014. 98(2): p. 563-77.
- 19. Louis, P., H.J. Flint, and C. Michel, How to Manipulate the Microbiota: Prebiotics. Adv Exp Med Biol, 2016. 902: p. 119–42.
- 20. Isolauri, E., et al., Probiotics in Reducing the Risk of Gestational Diabetes. Diabetes Obes Metab, 2015.

人和未来生物科技有限公司长沙人和未来医学检验所

国家基因检测技术应用示范中心卫 计 委 第 三 方 医 学 检 验 所

基因健康热线

400-6060-610