Problem

Given an integer N, determine the number of pairs (A,B) such that:

- $1 \le A, B \le N$;
- A+B is odd.

Input Format

- ullet The first line of input will contain a single integer T, denoting the number of test cases.
- ullet Each test case consists of a single integer N.

Output Format

For each test case, output the number of required pairs.

Constraints

- $1 \le T \le 100$
- $1 \le N \le 10^9$

Sample 1:

Input	Output
5	0
1	2
2	4
3	5000
100	19800
199	

Explanation:

 $\textbf{Test case } 1 \hspace{-0.1cm} \textbf{:} \hspace{-0.1cm} \textbf{There are no pairs satisfying the given conditions.}$

Test case 2: The pairs satisfying both conditions are: (1,2) and (2,1).

Test case 3: The pairs satisfying both conditions are: (1, 2), (2, 1), (2, 3), and (3, 2).

Problem

Given an integer N, determine the number of pairs (A,B) such that:

- $1 \le A, B \le N$;
- A+B is odd.

Input Format

- ullet The first line of input will contain a single integer T, denoting the number of test cases.
- ullet Each test case consists of a single integer N.

Output Format

For each test case, output the number of required pairs.

Constraints

- $1 \le T \le 100$
- $1 \le N \le 10^9$

Sample 1:

Input	Output
5	0
1	2
2	4
3	5000
100	19800
199	

Explanation:

 $\textbf{Test case } 1 \hspace{-0.1cm} \textbf{:} \hspace{-0.1cm} \textbf{There are no pairs satisfying the given conditions.}$

Test case 2: The pairs satisfying both conditions are: (1,2) and (2,1).

Test case 3: The pairs satisfying both conditions are: (1,2),(2,1),(2,3), and (3,2).