Department of Electrical Engineering Indian Institute of Technology, Kanpur

EE 210 Assignment #5 Assigned: 8.2.21

- 1. Consider the 4-resistor bias network for BJTs, as discussed in class. Assume $V_{CC}=12~V,~\beta=100,~R_C=4~k\Omega,~R_E=4~k\Omega,$ and the current through R_1 is 20 times the base current of the transistor
 - a) Using the simple analysis given in class, choose the required values of R_1 and R_2 such that the dc collector current is 1 mA. What is the value of V_{CE} ?
 - b) Now, using the values of R_1 and R_2 chosen in part a), perform an exact analysis of the circuit, and determine the actual values of I_C and V_{CE} . How do they compare with the results of part a)?
- 2. For the circuit shown in Fig.1, transistors Q_1 ($\beta_1 = 100$) and Q_2 ($\beta_2 = 50$) are operating in the forward active region. Find all the currents marked in the figure. Calculate V_{01} and V_{02} . Hence, determine V_{CE1} and V_{CE2} . Comment on the biasing.
- 3. Consider the four resistor bias network for MOSFETs, as discussed in class. Assume $V_{DD} = 5 \text{ V}$, $R_S = 8 \text{ k}\Omega$, and the body is tied to $V_B = -1 \text{ V}$. The required dc quiescent drain current $I_{DQ} = 200 \, \mu\text{A}$, the dc quiescent power dissipation should not exceed 2 mW, and the circuit should be under

the *best biasing*. Determine the required values of R_1 , R_2 , and R_D . Data: $V_{TN0}=1$ V, (W/L)=10, $k_N'=40~\mu\text{A/V}^2$, $\gamma=0.4~\text{V}^{1/2}$, and $2\varphi_F=0.6$ V. Neglect the channel length modulation effect.

- 4. Perform a self-consistent analysis (i.e., without assuming that $V_{BE}=0.7~V$) of the simple BJT current mirror discussed in class, and determine the reference current I_{REF} and the output current I_0 , neglecting the base width modulation effect, and assuming $V_{CC}=5~V$ and $R=4.3~k\Omega$. Assume that the transistor saturation currents $I_{S1}=I_{S2}=10^{-16}~A$, and the current gains $\beta_1=\beta_2=50$. Now, assuming that the Early voltage V_{A2} of transistor V_{A2} is 100 V, determine V_{A2} and the corresponding value of the output resistance V_{A2} 0 of the mirror.
- Design (i.e., calculate the required values of the aspect ratios of the two transistors) a simple MOSFET current mirror discussed in class, and find the value of the resistor R, such that the output current is at least 50 μ A for V_0 as low as 0.1 V, and the current in the reference branch is 100 μ A: i) neglecting body effect, and ii) assuming that the bodies of M_1 and M_2 are connected to -1 V and -2 V respectively. Comment on the answers. Assume $V_{DD}=5$ V, the transistors are otherwise perfectly matched with $k_N'=40$ μ A/V², $\gamma=0.4$ V^{1/2}, $2\phi_F=0.6$ V, and $V_{TN0}=0.7$ V. For both parts, neglect the channel length modulation effect.