# Angle-based control of directed acyclic formations with three-leaders

Minh Hoang Trinh, Kwang-Kyo Oh and Hyo-Sung Ahn School of Mechatronics Gwangju Institute of Science and Technology (GIST) Distributed Control and Autonomous System Laboratory (DCASL) June 3-5, 2014





## Outline

- **Preliminaries**
- Main Results
  - Control Strategy
  - System Dynamics
  - Stability Analysis
  - Simulation Results
- Conclusion

# Formation Control And Bearing Measurements

- Formation control [1]:
  - A research topic in the realm of cooperative control.
  - Goal: Achieve a prescribed geometric formation without a centralized sensing and processing unit.
  - ► Classification: based on measured and controlled variables. (position-, displacement-, and distance-based schemes)
  - ► Background: graph theory, matrix theory, control theory, etc.
- Bearing measurements:



Figure 1: Agent *i* senses the bearing angles  $\beta_{ij}$ ,  $\beta_{ik}$ ,  $\beta_{il}$  [2] and composes corresponding bearing vectors  $\hat{u}_{ij}$ ,  $\hat{u}_{ik}$ ,  $\hat{u}_{il}$  w.r.t. the three agents j, k, l.

# Graph Theory [4]

- Directed graph: a pair  $\mathcal{G} := (\mathcal{V}, \mathcal{E})$ , where  $\mathcal{V}$ : a set of nodes,  $\mathcal{E}$ : a set of ordered pairs of the nodes, called edges.
  - ▶ A directed edge  $(i,j) \in \mathcal{E}$  exists if agent i measures agent j's bearing angle. Agent j is a neighbor of agent i.  $\mathcal{N}_i$ : the neighbor set of i.
  - ▶ Directed path: a sequence of edges  $(i_1, i_2), (i_2, i_3), ..., (i_{k-1}, i_k),$  where  $i_1, ..., i_k \in \mathcal{V}$ . Directed cycle: a directed path with the same start vertex and end vertex.
  - Acyclic directed graph: a directed graph with no directed cycle.



Figure 2: An acyclic directed graph representing the sensing topology of a system of ten agents

# Input-to-State Stability for Cascaded System

Consider the system

$$\dot{x} = f(x, u), \tag{1}$$

where  $f: D_x \times D_u \mapsto \mathbb{R}^n$  is locally Lipschitz in x and u, and  $D_x \subset \mathbb{R}^n$ and  $D_u \subseteq \mathbb{R}^m$  are domains containing x = 0 and u = 0, respectively.

## Definition 1 ([5])

The system (1) is locally input-to-state stable (ISS) if there exist a class  $\mathcal{KL}$  function  $\gamma$ , and positive constants  $k_x$  and  $k_y$  s.t. for any initial state x(0) with  $||x(0)|| < k_x$  and any input u(t) with sup  $||u(\tau)|| < k_x$ , the  $0 \le \tau \le t$ 

solution x(t) exists and satisfies

$$||x(t)|| \le \beta(||x(0)||, t) + \gamma(\sup_{0 \le \tau \le t} ||u(\tau)||), t \ge 0.$$
 (2)



# Input-to-State Stability for Cascaded System

# Lemma 2 ([5])

If there exists a neighborhood U of (x = 0, u = 0) s.t. f(x, u) in (1) is continuously differentiable and the unforced system  $\dot{x} = f(x, 0)$  is asymptotically stable (a.s.) in U, then the system (1) is locally ISS.

# Lemma 3 ([5])

For the cascade system

$$\dot{x}_1 = f_1(x_1, x_2),$$
 (3a)

$$\dot{x}_2 = f_2(x_2),$$
 (3b)

where  $f_1: D_1 \times D_2 \mapsto \mathbb{R}^{n_1}$  and  $f_2: D_2 \mapsto \mathbb{R}^{n_2}$  are locally Lipschitz in  $x_1$  and  $x_2$ , if the system (3a), with  $x_2$  as input, is locally ISS and the origin of the system (3b) is locally a.s., the origin of the cascade system (3) is locally a.s.

## **Problem Formulation**

Consider the single-integrator modeled agents

$$\dot{p}_i = u_i, i = 1, \dots, N. \tag{4}$$

Let  $p_i^* \in \mathbb{R}^2$  be given for leader i (i=1,2,3), and  $\hat{u}_{ij}^*$ ,  $j \in \mathcal{N}_i$  be given to follower i ( $i=4,\ldots,N$ ). The objective of the agents is to achieve  $p_i \to p_i^*$  for  $i=1,\ldots,N$ .

## Assumption 1

- Leader  $i \in \{1,2,3\}$  measures  $p_i$
- Follower i ∈ {4,5,..., N} measures the bearing angle of its three neighbors.
- The bearing angle measuring topology is modeled by a directed acyclic graph G
- Let agents j, k, and l be the neighbors of agent i. Then any three of  $p_i^*$ ,  $p_i^*$ ,  $p_k^*$ , and  $p_l^*$  are not collinear.

### **Problem Formulation**

#### **Problem**

Consider the single-integrator modeled agents (4). Let  $p_i^*$  be given to leader i and  $\hat{u}_{ij}^*$ ,  $j \in \mathcal{N}_i$  be given to follower i. Under the Assumption 1, design control laws for the leaders and followers such that  $p^* = [p_1^{*T} \cdots p_N^{*T}]^T$  is asymptotically stable with respect to (4).

# **Proposed Control Strategy**

- The control law
  - for leaders:

$$u_i = k_L(p_i^* - p_i) = k_L \tilde{p}_i, \tag{5}$$

where  $k_L > 0$ .

for followers [3]:

$$u_{i} = -\sum_{j \in \mathcal{N}_{i}} (\hat{u}_{ij}^{*T} \hat{u}_{ij}^{\perp}) \hat{u}_{ij}^{\perp}, \tag{6}$$

where

$$\hat{u}_{ij} := \frac{oldsymbol{
ho}_{ij}}{\|oldsymbol{
ho}_{ij}\|} = \mathbf{1} \angle eta_{ij},$$
 (7)

$$\hat{u}_{ij}^{\perp} := \left[ egin{array}{cc} 0 & -1 \ 1 & 0 \end{array} 
ight] \hat{u}_{ij}.$$

# System Dynamics

• For  $1 \le i \le j \le N$ , let

$$V_{[i:j]} := \{i,...,j\}, p_{[i:j]} = [p_i^T ... p_j^T]^T.$$

• Let  $\tilde{p}_i := p_i$  and consider  $p_i^* = const$ . The position error dynamics of the agents is

$$\tilde{p}_i = -k_L \tilde{p}_i, i \in \mathcal{V}_{[1:3]}$$
 (8a)

$$\dot{\tilde{p}}_{i} = f_{i}(\tilde{p}_{i}, \tilde{p}_{[1:i-1]}), i \in \mathcal{V}_{[4:N]},$$
 (8b)

where

$$f_i(\tilde{
ho}_i, \tilde{
ho}_{[1:i-1]}) := \sum_{i \in \mathcal{N}_i} (\hat{u}_{ij}^{*T} \hat{u}_{ij}^{\perp}) \hat{u}_{ij}^{\perp}.$$



# Stability Analysis

Follower i can be described as

$$\dot{\tilde{p}}_i = f_i(\tilde{p}_i, \tilde{p}_{[1:i-1]}), \tag{9a}$$

$$\dot{\tilde{p}}_{i} = f_{i}(\tilde{p}_{i}, \tilde{p}_{[1:i-1]}),$$

$$\dot{\tilde{p}}_{[1:i-1]} = f_{[1:i-1]}(\tilde{p}_{[1:i-1]}),$$
(9a)

where

$$f_{[1:i-1]}(\tilde{p}_{[1:i-1]}) := \begin{bmatrix} -k_L \tilde{p}_{[1:3]} \\ f_4(\tilde{p}_4, \tilde{p}_{[1:3]}) \\ \vdots \\ f_{i-1}(\tilde{p}_{i-1}, \tilde{p}_{[1:i-2]}) \end{bmatrix}$$
(10)

# Stability Analysis

- The stability analysis consists of 3 steps [6]:
  - ▶ 1st step: Show that the origin  $\tilde{p}_{[1:3]} = 0$  is exponentially stable wrt.  $\dot{\tilde{p}}_{[1:3]} = -k_L \tilde{p}_{[1:3]}$ .
  - ▶ 2nd Step: Show that (9) is locally ISS with  $\tilde{p}_{[1:i-1]}$  as input. Based on Lemma 3,  $\tilde{p}_{[1:i]}$  is locally a.s. wrt. (9) if  $\tilde{p}_{[1:i-1]} = 0$  is locally a.s. wrt. (9b).
  - ▶ 3rd Step: Finally we show that the origin is locally a.s. wrt.  $\dot{\tilde{p}}_{[1:N]} = f_{[1:N]}(\tilde{p}_i, \tilde{p}_{[1:N]})$  based on mathematical induction.
- The first step is obvious. For the second step, we show local stability of the following unforced dynamics of (9a)

$$\dot{\tilde{p}}_i = f_i(\tilde{p}_i, 0), \ i \in \mathcal{V}_{[4:N]}.$$
 (11)

### Main Results

#### Lemma 4

Let Assumption 1 hold. For  $i \in \mathcal{V}_{[4:N]}$ , the origin  $\tilde{p}_i = 0$  is locally asymptotically stable with respect to (11).

#### Lemma 5

Let Assumption 1 hold. For  $i \in \mathcal{V}_{[4:N]}$ , (9a) is locally input-to-state stable with  $\tilde{p}_{[1:i-1]}$  as input.

#### Theorem 6

Let Assumption 1 hold. The origin  $\tilde{p}=0$  is locally asymptotically stable with respect to (8).

#### Proof.

Please refer to the paper for detailed proofs.



### Simulation

- Ten agents with sensing topology as depicted in Fig. 2.
- The desired positions:  $p_1^* = (0, \frac{3\sqrt{3}}{2}), p_2^* = (-\frac{1}{2}, \sqrt{3}), p_3^* = (\frac{1}{2}, \sqrt{3}), p_4^* = (0, \frac{\sqrt{3}}{2}), p_5^* = (-1, \frac{\sqrt{3}}{2}), p_6^* = (1, \frac{\sqrt{3}}{2}), p_7^* = (-\frac{1}{2}, 0), p_8^* = (\frac{1}{2}, 0), p_9^* = (-\frac{3}{2}, 0), p_{10}^* = (\frac{3}{2}, 0).$



(a) Trajectories of the agents



(b) Position Error

#### Conclusion

#### Main contributions:

- A control strategy for N agents, with three leaders and the other followers. The leaders have position information. The followers only have three bearing measurements.
- Proving the locally asymptotically stable of the origin using mathematical induction.
- Simulation results of a system of ten agents.

## References

- K.-K. Oh et. al., "A survey of multi-agent formation control," provisionally accepted for publication in Automatica, 2013.
- M. Basiri et. al., "Distributed control of triangular formations with angle-only constraints," *Systems and Control Lett.*, vol. 59, no. 2, pp. 147-154, 2010.
- S. Loizou and V. Kumar, "Biologically inspired bearing-only navigation and tracking," *CDC 2007*
- N. Biggs, Algebraic Graph Theory, 2nd ed., CUP 1993.
- H. Khalil, *Nonlinear systems*, 2nd ed., Prentice-Hall, 1996.
- K.-K. Oh et. al. "Directed acyclic formation control of a group of autonomous agents with several leaders," submitted.