The Curse of Dimensionality

Guillaume Lozenguez

@imt-lille-douai.fr

IMT Nord Europe

École Mines-Télécom IMT-Université de Lille

System Difficulty

Directly correlated to the state space:

The number of states: the Cartesian product of variable domains $\left|S\right|$ (minus some unreachable states)

421 game: 3 dice-6 at the horizon 3: $\left(3 \times 6^3 = 648\right)$ but 168 effectives.

Then the branching:

Finnally the number of games:

System Difficulty

Directly correlated to the state space

The number of states: $\left|S\right|$

Then the branching:

The number of possible actions and actions' outcomes.

 \triangleright **421 game:** 2^3 actions, 6^r action outcomes (r, the number of rolled dice).

Finnally the number of games:

The number of all possible succession of states until reaching an end. Potentially $|S|^h$ (h the horizon).

Reminder over Combinatorics

With a Classical 32-card game: Possible distribution $32! = 2.6 \times 10^{35}$

Human life: around 5×10^7 seconds

Probability to play 2 times the same distribution in a human life is very close to 0

The root problem: handle large systems

A first basic solution: reduce the state space definition

Project the states in a smallest space (dimention and size)

By mitigate the negative impact on the resulting built policy.

Project the states in a smallest space (dimention and size)

From evaluated observations.

Project the states in a smallest space (dimention and size)

Group together similar states.

A classical unsupervised learning problem

- Group similar states :
 - close state (in the transition succession)
 - similar reward distributions.

Potentially: a supervised learning problem

- Group similar states :
 - similar Value
 - similar action outcome

(suppose to have some valued states)

With a geometric approach

Principal Component Analysis (PCA)

Searching the hyper-plan that better separate the data, in a given dimension.

K-means

Searching the optimal *k* center positions that better group the data together.

- ▶ Work well with 'linear state transitions' and different states density.
- Suppose a data set (trace)

Based on state variable prevalence

Decision Tree

Nodes: variables ; **Edges:** assignment ; **leaf:** group of states

Expert based Decision tree or learned (<u>ID3 algorithm</u>)

Based on state variable prevalence

Decision Tree

(Example for 421 game)

Learning: an iterative process:

- lacksquare 1 Define a first state reduction $red_0(s)$ with a first Q_0 estimation
- lacksquare 2 Optimise Q_i and learn a behavior accordingly to $red_i(s)$
- ightharpoonup 3 Generate a new reduction $red_{i+1}(s)$ (more accurate)
- ightharpoonup 4 Propagate value from Q_i to Q_{i+1}
- **5** goto **2**

Let's go

Trying state reduction in ZombieDice