Programme de colle - Semaine 23 du 03/04/2018 au 06/04/2018

Cours: Solides en rotation :

- Moment cinétique d'un solide : $\vec{L}_O = \sum_i \sigma_i$
- Moment cinétique scalaire par rapport à un axe orienté $\Delta: L_\Delta = \vec{L}_{O\in\Delta}\cdot\vec{e}_\Delta$
- $-\;$ Relation avec le moment d'inertie : $L_{\Delta}=J_{\Delta}\Omega$
- Expliquer qualitativement la dépendance du moment d'inertie avec les caractéristique du solide.
- Moment d'une force $\vec{\mathcal{M}}_O = \overrightarrow{OP} \wedge \vec{F}$. Moment par rapport à un axe orienté $\mathcal{M}_\Delta = (\overrightarrow{OP} \wedge \vec{F}) \cdot \vec{e}_\Delta$ Théorème du moment cinétique $\frac{\mathrm{d} L_\Delta}{\mathrm{d} t} = \sum \mathcal{M}_\Delta(\vec{F})$.
- Énergie cinétique : $E_c=\frac{1}{2}J_\Delta\Omega^2$. Loi de l'énergie cinétique : $\frac{\mathrm{d}\,E_c}{\mathrm{d}\,t}=\sum\mathcal{M}_\Delta(\vec{F})\times\Omega$ Magnétisme:
- Champ magnétique, lignes de champ.
- Moment magnétique d'une boucle de courant : $\vec{\mu} = i\vec{S} = iS\vec{n}$. Orientation de \vec{n}
- Force de Laplace sur un fil $d\vec{F} = id\vec{l} \wedge \vec{B}$. Règle de la main droite.
- $-\;$ Force de Laplace sur un moment magnétique. Résultante nulle, couple $\vec{\Gamma}=\vec{\mu}\wedge\vec{B}$

Exercices:

- Exercices sur les solides en rotation (TD13)
- Exercices sur les forces de Laplace (TD14)