Lecture-11 Main Points

• Boolean expression

- constructed from variables and connectives of BA $(\lor, \land, \neg \text{ and derived connective } \rightarrow)$
- Example: $x \lor y \to \neg z$
- Same as propositions, with atomic propositions being called variables.
- can be interpreted in any BA.

• Normal forms

• NNF

- Negation (\neg) appears only in front of a variable.
- Constructed from literals using \vee , \wedge only (no \rightarrow).
- Every Boolean expression is equal to a Boolean expression in NNF.
- Proof yields an algorithm to convert to an equivalent NNF.
 - * Eliminate all occurrences of \rightarrow .
 - * Push negation inward using DeMorgan's laws.
- Can be implemented in linear time.

• CNF

- Conjunction of clauses. Each clause is a disjunction of literals.
- Example: $(x \vee \neg y) \wedge (z \vee w \vee \neg x)$
- Every Boolean expression is equal to a Boolean expression in CNF.
- Proof yields an algorithm to convert to an equivalent CNF.

- * Convert into NNF
- * Use recursion, with distributive law when topmost connective is \vee .
- Blows size of the formula exponentially.

• DNF

- Disjunction of terms. Each disjunct is a conjunction of literals.
- Example: $(x \land \neg y) \lor (z \land w \land \neg x)$
- Every Boolean expression is equal to an equivalent Boolean expression in DNF.
- Proof and algorithm are similar to CNF case.
- NF algorithms yield formulae which are equivalent to the original formulae over all BA. (This is because we use laws of BAs only in our conversion algorithms).