Opravná písomná skúška predmetu "Algebra a diskrétna matematika" konaná dňa 2. 2. 2009

1. príklad. Dokáže výrok, že "ak n je kladné celé číslo, potom n je nepárne vtedy a len vtedy, ak 5n+6 je nepárne".

2. príklad. Dokáže pomocou úplnej indukcie množinovú identitu

$$\overline{A_1 \cup A_2 \cup ... \cup A_n} = \overline{A_1} \cap \overline{A_2} \cap ... \cap \overline{A_n}.$$

3. príklad.

Nech A_i je množina bitových reťazcov, ktorých dĺžka nie je väčšia ako i, pre i=1, 2, ..., n. Nájdite

- (a) $A_1 \cap A_2 \cap ... \cap A_n$,
- (b) $A_1 \cup A_2 \cup ... \cup A_n$,

4. príklad.

Pre každú z nasledujúcich relácií R nad množinou $\{1,2,3,4\}$ zistite, či je alebo, či nie je reflexívna, symetrická, antisymetrická, alebo tranzitívna.

- (a) $\{(2,2),(2,3),(2,4),(3,2),(3,3),(3,4)\}$,
- (b) $\{(1,1),(1,2),(2,1),(2,2),(3,3),(4,4)\}$
- (c) $\{(2,4),(4,2)\}$

5. príklad

Nech f(x) = ax + b a g(x) = cx + d, kde a, b, c a d sú konštanty, zistite, za akých podmienok platí f(g(x)) = g(f(x)).

6. príklad.

Koľko elementov obsahuje zjednotenie $A_1 \cup A_2$, ak $|A_1| = 12$, $|A_2| = 18$, pre tieto rôzne prípady

- (a) $A_1 \cap A_2 = \emptyset$,
- (b) $|A_1 \cap A_2| = 1$,
- (c) $A_1 \subseteq A_2$,

7. príklad.

Nech X je neprázdna množina a binárna operácia definovaná vzťahom x * y = x, pre každé $x, y \in X$.

- (a) Dokážte, že algebraická štruktúra (X,*) je pologrupa.
- (b) Rozhodnite, či táto algebraická štruktúra je monoid.

8. príklad

Pomocou Quinovej a McCluskeyho metódy nájdite optimálne výrazy k Boolovej funkcii $wxy\overline{z} + wx\overline{y}z + w\overline{x}yz + \overline{w}x\overline{y}z + \overline{w}\overline{x}y\overline{z} + \overline{w}\overline{x}y\overline{z} + \overline{w}\overline{x}y\overline{z}$,

9. príklad.

Pre ktoré hodnoty parametrov p a q má matica

$$A = \begin{pmatrix} 1 & 0 & 2 & -1 \\ 2 & 1 & -1 & 2 \\ p & -1 & 3 & -3 \\ q & 1 & 1 & 1 \end{pmatrix}$$

hodnosť 2.

- **10. príklad.** Existuje obyčajný graf o piatich vrcholoch nasledujúcich stupňov? Keď áno, nakreslite ich, ak neexistuje, zdôvodnite prečo.
 - a) 3,3,3,3,2
 - b) 1,2,3,4,5
 - c) 1,2,3,4,4
- **11. príklad.** Zostrojte strom riešení pre hru odoberania zápaliek, kedy máte na začiatku hry 5 zápaliek, každý hráč môže odobrať alebo jednu, alebo 2 zápalky, a kto odoberie poslednú zápalku, tak vyhral. Aká je víťazná stratégie pre prvého hráča? Aká je víťazná stratégie pre druhého hráča?

Poznámka: Každý príklad je hodnotený 5 bodmi, maximálny počet bodov je 55. Nezabudnite na písomku napísať meno a priezvisko, číslo krúžku a ročník. Čas na písomku je 90 min.

Riešenie

1. príklad. Ak n je kladné celé číslo, potom n je nepárne vtedy a len vtedy, ak 5n+6 je nepárne.

(1)
$$np(n) \Rightarrow np(5n+6)$$
, $n = 2k+1 \Rightarrow 5n+6 = 10k+11 = 2(5k+5)+1$,

(2)
$$np(5n+6) \Rightarrow np(n)$$
, $5n+6=2(5k+5)+1 \Rightarrow n=2k+1$.

2. príklad. Dokáže pomocou úplnej indukcie množinovú identitu

$$\overline{A_1 \cup A_2 \cup ... \cup A_n} = \overline{A_1} \cap \overline{A_2} \cap ... \cap \overline{A_n}.$$

Táto identita platí pre n = 2, budeme predpokladať, že táto identita platí pre n, potom ju dokážeme pre n+1

$$\frac{A_1 \cup A_2 \cup ... \cup A_n \cup A_{n+1}}{A_1 \cup A_2 \cup ... \cup A_n} = \overline{\left(A_1 \cup A_2 \cup ... \cup A_n\right) \cup A_{n+1}} = \overline{A_1 \cup A_2 \cup ... \cup A_n} \cap \overline{A}_{n+1} = \overline{\left(\overline{A_1} \cap \overline{A_2} \cap ... \cap \overline{A_n}\right) \cap \overline{A}_{n+1}} = \overline{A_1} \cap \overline{A_2} \cap ... \cap \overline{A_n} \cap \overline{A}_{n+1}$$

3. príklad.

Nech A_i je množina bitových reťazcov, ktorých dĺžka nie je väčšia ako i, pre i=1, 2, ..., n. Nájdite

(a)
$$A_1 \cap A_2 \cap ... \cap A_n$$
, $A_1 \cap A_2 \cap ... \cap A_n = A_1$

(b)
$$A_1 \cup A_2 \cup ... \cup A_n$$
, $A_1 \cup A_2 \cup ... \cup A_n = A_n$.

4. príklad.

Pre každú z nasledujúcich relácií R nad množinou $\{1,2,3,4\}$ zistite, či je alebo, či nie je reflexívna, symetrická, antisymetrická, alebo tranzitívna.

(a)
$$\{(2,2),(2,3),(2,4),(3,2),(3,3),(3,4)\}$$
,

nie je reflexína, nie je symetrická, nie je antisymetrická, je tranzitívna

(b)
$$\{(1,1),(1,2),(2,1),(2,2),(3,3),(4,4)\}$$
,

je reflexívna, je symetrická, nie je antisymetrická, je tranzitívna

(c)
$$\{(2,4),(4,2)\}$$

nie je reflexívna, je symetrická, nie je antisymetrická, nie je tranzitívna

5. príklad

Nech f(x) = ax + b a g(x) = cx + d, kde a, b, c a d sú konštanty, zistite, za akých podmienok platí f(g(x)) = g(f(x)).

$$f(g(x)) = a g(x) + b = a(cx+d) + b = acx + ad + b$$

 $g(f(x)) = c f(x) + d = c(ax+b) + d = acx + bc + d$

Aby platilo f(g(x)) = g(f(x)), musí platiť ad+b=bc+d.

6. príklad.

Koľko elementov obsahuje zjednotenie $A_1 \cup A_2$, ak $|A_1| = 12$, $|A_2| = 18$, pre tieto rôzne prípady

(a)
$$A_1 \cap A_2 = \emptyset$$
, $|A_1 \cup A_2| = |A_1| + |A_2| = 30$

(b)
$$|A_1 \cap A_2| = 1$$
, $|A_1 \cup A_2| = |A_1| + |A_2| - |A_1 \cap A_2| = 29$

(c)
$$A_1 \subseteq A_2$$
, $|A_1 \cup A_2| = |A_2| = 18$

7. príklad.

Nech X je neprázdna množina a binárna operácia definovaná vzťahom x*y=x, pre každé $x,y\in X$.

- (c) Dokážte, že algebraická štruktúra (X,*) je pologrupa.
- (d) Rozhodnite, či táto algebraická štruktúra je monoid.

Riešenie:

(a) K tomu, aby algebraická štruktúra (X,*) bola pologrupou, binárna operácia '* musí byť asociatívna.

$$x*(y*z) = x*y = x$$

 $(x*y)*z = x*z = x$

týmto sme dokázali asociatívnosť binárnej operácie, čiže algebraická štruktúra (X,*) je pologrupa.

(b) Ak pologrupa (X,*) má neutrálny prvok, potom je monoid. Nech $e \in X$ je hypotetický neutrálny prvok, potom z definície binárnej operácie vyplýva x*e=x a e*x=e, to znamená, že nemôže existovať neutrálny prvok, ktorý by vyhovoval podmienke x*e=e*x=x. Algebraická štruktúra (X,*) nie je monoid.

8. príklad

Pomocou Quinovej a McCluskeyho metódy nájdite optimálne výrazy k Boolovej funkcii $wxy\overline{z} + w\overline{x}y\overline{z} + w\overline{x}y\overline{z} + \overline{w}\overline{x}y\overline{z} + \overline{w}\overline{x}y\overline{z} + \overline{w}\overline{x}y\overline{z}$,

0. etapa			1. etapa		
1	(1110)	1	(2,4)	(#101)	
2	(1101)	2	(4,6)	(0#01)	
3	(1011)				
4	(0101)				
5	(0010)				
6	(0001)				

9. príklad.

Pre ktoré hodnoty parametrov p a q má matica

$$A = \begin{pmatrix} 1 & 0 & 2 & -1 \\ 2 & 1 & -1 & 2 \\ p & -1 & 3 & -3 \\ q & 1 & 1 & 1 \end{pmatrix}$$

hodnosť 2.

$$A = \begin{pmatrix} 1 & 0 & 2 & -1 \\ 2 & 1 & -1 & 2 \\ p & -1 & 3 & -3 \\ q & 1 & 1 & 1 \end{pmatrix} \Box \begin{pmatrix} 1 & 0 & 2 & -1 \\ 0 & 1 & -5 & 4 \\ 0 & -1 & 3 - 2p & -3 + p \\ 0 & 1 & 1 - 2q & 1 + q \end{pmatrix} \Box \begin{pmatrix} 1 & 0 & 2 & -1 \\ 0 & 1 & -5 & 4 \\ 0 & 1 & -3 + 2p & 3 - p \\ 0 & 1 & 1 - 2q & 1 + q \end{pmatrix}$$

Pretože požadujme, aby 2., 3. a 4. riadok boli ekvivalentné, potom z podmienok

$$(-3+2p=-5) \wedge (3-p=4) \Rightarrow \boxed{p=-1}$$
$$(1-2q=-5) \wedge (1+q=4) \Rightarrow \boxed{q=3}$$

Potom ekvivalentná matica na prvej strane má tvar

$$A = \begin{pmatrix} 1 & 0 & 2 & -1 \\ 2 & 1 & -1 & 2 \\ p & -1 & 3 & -3 \\ q & 1 & 1 & 1 \end{pmatrix} \square \begin{pmatrix} 1 & 0 & 2 & -1 \\ 0 & 1 & -5 & 4 \\ 0 & 1 & -3 + 2p & 3 - p \\ 0 & 1 & 1 - 2q & 1 + q \end{pmatrix} = \begin{pmatrix} 1 & 0 & 2 & -1 \\ 0 & 1 & -5 & 4 \\ \hline 0 & 1 & -5 & 4 \end{pmatrix}$$

To znamená, že pre p=-1 a q=3 má matica hodnosť 2

10. príklad. Existuje obyčajný graf o piatich vrcholoch nasledujúcich stupňov? Keď áno, nakreslite ich, ak neexistuje, zdôvodnite prečo.

Riešenie: neexistuje, nepárny počet vrcholov nepárneho stupňa

f) 1,2,3,4,4

Podľa Havlovej vety nie je postupnosť grafová, pretože nie je grafová ani postupnosť 3,2,1,0

11. príklad. Zostrojte strom riešení pre hru odoberania zápaliek, kedy máte na začiatku hry 5 zápaliek, každý hráč môže odobrať alebo jednu, alebo 2 zápalky, a kto odoberie poslednú zápalku, tak vyhral. Aká je víťazná stratégie pre prvého hráča? Aká je víťazná stratégie pre druhého hráča?

Riešenie: Na obrázku sú vrcholy s počtom zápaliek na hromádke, číslo v kolečku označuje koľko zápaliek odobral daný hráč. Na koncových vrcholoch stromu riešení jedotka (mínus jednotka) vo štvorčeku znamená, že vyhral prvý (druhý) hráč.

Strom riešení

Pre prvého hráča existuje víťazná stratégia: v prvom kroku odoberie 2 zápalky. Pre druhého hráča neexistuje víťazná stratégia.