A Genetic Analysis Package with R

Jing Hua Zhao

MRC Epidemiology Unit, Cambridge, UK http://www.mrc-epid.cam.ac.uk

Contents

1	Introduction	1
2	Implementation	1
3	Examples	4
4	Known bugs	4
5	Bibliographic note	4

1 Introduction

This package was initiated to integrate some C/Fortran/SAS programs I have written or used over the years. As such, it would rather be a long-term project, but an immediate benefit would be something complementary to other packages currently available from CRAN, e.g. **genetics**, **hwde**, etc. I hope eventually this will be part of a bigger effort to fulfill most of the requirements foreseen by many, e.g. Guo and Lange (2000), within the portable environment of R for data management, analysis, graphics and object-oriented programming. My view has been outlined more formally in Zhao and Tan (2006b) and Zhao and Tan (2006a) in relation to other package systems. Also reported are Zhao (2005) and Zhao (2006) on package **kinship**.

The number of functions are quite limited and experimental, but I already feel the enormous advantage by shifting to R and would like sooner rather than later to share my work with others. I will not claim this works exclusively done by me, but would like to invite others to join me and enlarge the collections and improve them.

2 Implementation

The following list shows the data and functions currently available.

BFDP Bayesian false-discovery probability FPRP False-positive report probability

SNP Functions for single nucleotide polymorphisms (SNPs)

abc Test/Power calculation for mediating effect

ALDH2 markers and alcoholism aldh2

apoeapoc APOE/APOC1 markers and schizophrenia

Regional association plot asplot

bt Bradley-Terry model for contingency table

Obtain correlation coefficients and their variance-covariances b2r

ccsize Power and sample size for case-cohort design

chow.test Chow's test for heterogeneity in two

regressions

cf Cystic Fibrosis data

comp.score score statistics for testing genetic linkage

of quantitative trait

crohn Crohn's disease data Effect-size plot **ESplot**

fa Friedreich ataxia data

fbsize Sample size for family-based linkage and

association design

A case-control data involving four SNPs with fsnps

missing genotype

Gene counting for haplotype analysis gc.em

gcontrol genomic control

genomic control based on p values gcontrol2 Permutation tests using GENECOUNTING gcp genecounting Gene counting for haplotype analysis Kinship coefficient and genetic index of gif

familiality

hap Haplotype reconstruction

hap.em Gene counting for haplotype analysis

Score statistics for association of traits hap.score

with haplotypes

HLA markers and schizophrenia hla htr Haplotype trend regression

Hardy-Weinberg equilibrium test for a hwe

multiallelic marker

hwe.hardy Hardy-Weinberg equilibrium test using MCMC

kinship matrix for simple pedigree kin.morgan LD statistics for two diallelic markers LD22 LDkl LD statistics for two multiallelic markers

A function to prepare pedigrees in makeped

post-MAKEPED format

A study of Parkinson's disease and MAO gene mao

metap Meta-analysis of p values

Fixed and random effects model for meta-analysis metareg

Manhattan plot of p values mhtplot

multiple imputation analysis for hap miaTransmission/disequilibrium test of a mtdt

multiallelic marker

muvar Means and variances under 1- and 2- locus

(diallelic) QTL model

mvmeta Multivariate meta-analysis based on generalized least squares

nep499 A study of Alzheimer's disease with eight SNPs and APOE

pbsize Power for population-based association design pbsize2 Power for case-control association design pedtodot Converting pedigree(s) to dot file(s)

pfc Probability of familial clustering of disease pfc.sim Probability of familial clustering of disease

pgc Preparing weight for GENECOUNTING

plot.hap.score Plot haplotype frequencies versus haplotype

Score Statistics

print.hap.score Print a hap.score object qqfun Quantile-comparison plots

qqunif Q-Q plot for uniformly distributed random

variable

read.ms.output A utility function to read ms output

s2k Statistics for 2 by K table

snca A study of Parkinson's disease and SNCA markers
tscc Power calculation for two-stage case-control design

twinan90 Classic twin models

whscore Whittemore-Halpern scores for allele-sharing

Assuming proper installation, you will be able to obtain the list by typing library(help=gap) or view the list within a web browser via help.start(). A PDF version of this file can be viewed with command vignette("gap",package="gap").

You can cut and paste examples at end of each function's documentation.

Both genecounting and hap are able to handle SNPs and multiallelic markers, with the former be flexible enough to include features such as X-linked data and the later being able to handle large number of SNPs. But they are unable to recode allele labels automatically, so functions gc.em and hap.em are in haplo.em format and used by a modified function hap.score in association testing.

It is notable that multilocus data are handled differently from that in **hwde** and elegant definitions of basic genetic data can be found in **genetics** package.

Incidentally, I found my C mixed-radixed sorting routine as in Zhao and Sham (2003) is much faster than R's internal function.

With exceptions such as function pfc which is very computer-intensive, most functions in the package can easily be adapted for analysis of large datasets involving either SNPs or multial-lelic markers. Some are utility functions, e.g. muvar and whscore, which will be part of the other analysis routines in the future.

For users, all functions have unified format. For developers, it is able to incorporate their C/C++ programs more easily and avoid repetitive work such as preparing own routines for matrix algebra and linear models. Further advantage can be taken from packages in **Bioconductor**, which are designed and written to deal with large number of genes.

3 Examples

Examples can be found from most function documentations. You can also try several simple examples via demo:

```
library(gap)
demo(gap)
```

4 Known bugs

Unaware of any bug. However, better memory management is expected.

5 Bibliographic note

The main references are Chow (1960), Guo and Thompson (1992), Williams et al. (1992), Gholamic and Thomas (1994), Hartung et al. (2008), Risch and Merikangas (1996), Spielman and Ewens (1996), Risch and Merikangas (1997), Miller (1997), Sham (1997), Elston (1975), Sham (1998), Devlin and Roeder (1999), Zhao et al. (1999), Guo and Lange (2000), Hirotsu et al. (2001), Zhao et al. (2002), Zaykin et al. (2002), Zhao (2004), Wacholder et al. (2004), Wang (2005), Skol et al. (2006), Wakefield (2007).

References

- G. C. Chow. Tests of equality between sets of coefficients in two linear regression. *Econometrica*, 28:591–605, 1960.
- B. Devlin and K. Roeder. Genomic control for association studies. *Biometrics*, 55(4):997–1004, 1999.
- R. C. Elston. On the correlation between correlations. *Biometrika*, 62:133–140, 1975.
- K. Gholamic and A. Thomas. A linear time algorithm for calculation of multiple pairwise kinship coefficients and genetic index of familiality. *Comp Biomed Res*, 27:342–350, 1994.
- S. W. Guo and K. Lange. Genetic mapping of complex traits: promises, problems, and prospects. *Theor Popul Biol*, 57:1–11, 2000.
- S. W. Guo and E. A. Thompson. Performing the exact test of hardy-weinberg proportion for multiple alleles. *Biometrics*, 48:361–372, 1992.
- J. Hartung, G. Knapp, and B. K. Sinha. Statistical Meta-analysis with Applications. Wiley, 2008.

- C. Hirotsu, S. Aoki, T. Inada, and Y. Kitao. An exact test for the association between the disease and alleles at highly polymorphic loci with particular interest in the haplotype analysis. *Biometrics*, 57:769–778, 2001.
- M. B. Miller. Genomic scanning and the transmission/disequilibrium test: analysis of error rates. *Genet Epidemiol*, 14:851–856, 1997.
- N. Risch and K. Merikangas. The future of genetic studies of complex human diseases. *Science*, 273(September):1516–1517, 1996.
- N. Risch and K. Merikangas. Reply to scott el al. Science, 275:1329–1330., 1997.
- P. C. Sham. Transmission/disequilibrium tests for multiallelic loci. Am J Hum Genet, 61: 774–778, 1997.
- P. C. Sham. *Statistics in Human Genetics*. Arnold Applications of Statistics Series. Edward Arnold, London, 1998. 11-1-1999.
- A. D. Skol, L. J. Scott, G. R. Abecasis, and M. Boehnke. Joint analysis is more efficient than replication-based analysis for two-stage genome-wide association studies. *Nat Genet*, 38(2): 209–13, 2006.
- R. S. Spielman and W. J. Ewens. The TDT and other family-based tests for linkage disequilibrium and association. Am J Hum Genet, 59(5):983–9, 1996.
- S. Wacholder, S. Chanock, M. Garcia-Closas, L. El Ghormli, and N. Rothman. Assessing the probability that a positive report is false: an approach for molecular epidemiology studies. J Natl Cancer Inst, 96(6):434–42, 2004.
- J. Wakefield. A bayesian measure of the probability of false discovery in genetic epidemiology studies. Am J Hum Genet, 81:208–226, 2007.
- K. Wang. A likelihood approach for quantitative-trait-locus mapping with selected pedigrees. *Biometrics*, 61:465–473, 2005.
- C. J. Williams, J. C. Christian, and J.A. Jr. Norton. Twinan90: A fortran programfor conducting anova-based and likelihood-based analyses of twin data. Comp Meth Prog Biomed, 38(2-3):167–76, 1992.
- D. V. Zaykin, P. H. Westfall, S. S. Young, M. A. Karnoub, M. J. Wagner, and M. G. Ehm. Testing association of statistically inferred haplotypes with discrete and continuous traits in samples of unrelated individuals. *Hum Hered*, 53(2):79–91, 2002.
- J. H. Zhao. 2LD. GENECOUNTING and HAP: computer programs for linkage disequilibrium analysis. *Bioinformatics*, 20:1325–6, 2004.
- J. H. Zhao. Mixed-effects Cox models of alcohol dependence in extended families. *BMC Genet*, 6(Suppl):S127, 2005.
- J. H. Zhao. Pedigree-drawing with R and graphviz. Bioinformatics, 22(8):1013-4, 2006.
- J. H. Zhao, S. Lissarrague, L. Essioux, and P. C. Sham. GENECOUNTING: haplotype analysis with missing genotypes. *Bioinformatics*, 18(12):1694–5, 2002.

- J. H. Zhao and P. C. Sham. Generic number systems and haplotype analysis. *Comp Meth Prog Biomed*, 70:1–9, 2003.
- J. H. Zhao, P. C. Sham, and D. Curtis. A program for the Monte Carlo evaluation of significance of the extended transmission/disequilibrium test. *Am J Hum Genet*, 64:1484–1485, 1999.
- J. H. Zhao and Q. Tan. Genetic dissection of complex traits in silico: approaches, problems and soluations. *Current Bioinformatics*, 1(3):359–369, 2006a.
- J. H. Zhao and Q. Tan. Integrated analysis of genetic data with R. *Hum Genomics*, 2(4): 258–65, 2006b.