Efficient and Verified Non-Terminating Programs with Isabelle-LLVM

Rafael Castro G. Silva

rasi@di.ku.dk

Department of Computer Science University of Copenhagen

23/11/2023

Introduction

Context

Context

- Distributed Systems
 - Stream processing frameworks
 - Dataflow models
 - Time-Aware Computations

Context

- Distributed Systems
 - Stream processing frameworks
 - Dataflow models
 - Time-Aware Computations
- Formal Methods
 - Verification using proof assistants
 - Isabelle proofs
 - Verified + executable + efficient code
- Formalization of Time-Aware Stream Processing

Stream Processing

• Stream Processing: Abstraction for processing data when the input is not completely presented in the begging of the computation

Stream Processing

- Stream Processing: Abstraction for processing data when the input is not completely presented in the begging of the computation
- Dataflow Model:
 - Directed graph of interconnected operators that perform event-wise transformations
 - E.g.: Apache Flink, Apache Samza, Apache Spark, Google Cloud Dataflow, and Timely Dataflow

Highly Parallel

Time-Aware Stream Processing (part 1)

- Time-Aware Computations:
 - Timestamps: Metadata associating the data with some data collection
 - An unix timestamp
 - Version of the data
 - Logical grouping
 - Watermarks: Metadata indicating the completion of a data collection
 - e.g.: A watermark 5 says that there is no data associated with timestamp 5 or bellow arriving
 - Are increasingly monotonic (they don't go backwards in time)
 - e.g.:

DT 2 b DT 1 a	WM 1	DT 2 c	DT 3 a	WM 4
---------------	------	--------	--------	------

 $\begin{array}{l} \mathsf{buf} = [] \\ \mathsf{H} = \{\} \end{array}$

```
e. case e of
DT t d => insert(t, d) buf
WM wm =>
if \exists t \in (map fst buf). t < wm
then
  out <- filter (\lambda (t, _) . t \leq wm) buf
   ts <- remdups (map fst out)
   buf <- filter (\lambda (t, _) . t > wm) buf
   H \leftarrow H + (mset (map snd out))
   push (map (\lambda t . DT t (H + (mset (map snd (filter (\lambda (t', _) . t' \leq t) out))))) ts) @ [WM wm]
else
   push [WM wm]
```

DT 1 a WM 1	DT 2 c	DT 3 a	WM 4
-------------	--------	--------	------

$$\begin{array}{l} \mathsf{buf} = [] \\ \mathsf{H} = \{\} \end{array}$$

```
e. case e of
          DT t d => insert(t, d) buf
          WM wm =>
          if \exists t \in (map fst buf). t < wm
          then
DT 2 b
            out <- filter (\lambda (t, _) . t \leq wm) buf
             ts <- remdups (map fst out)
             buf <- filter (\lambda (t, _) . t > wm) buf
             H \leftarrow H + (mset (map snd out))
             push (map (\lambda t . DT t (H + (mset (map snd (filter (\lambda (t', _) . t' \leq t) out))))) ts) @ [WM wm]
          else
             push [WM wm]
```

DT 1 a	WM 1	DT 2 c	DT 3 a	WM 4
--------	------	--------	--------	------

buf =
$$[(2,b)]$$

H = $\{\}$

```
e. case e of
DT t d => insert (t, d) buf
VM wm =>
if \exists t \in (map \text{ fst buf}), t < wm
then
  out <- filter (\lambda (t, _) . t \leq wm) buf
   ts <- remdups (map fst out)
   buf <- filter (\lambda (t, _) . t > wm) buf
   H \leftarrow H + (mset (map snd out))
   push (map (\lambda t . DT t (H + (mset (map snd (filter (\lambda (t', _{-}) . t' \leq t) out))))) ts) @ [WM wm]
else
   push [WM wm]
```

WM 1 DT 2 c DT 3 a WM 4

buf =
$$[(2,b)]$$

H = $\{\}$

```
e. case e of
          DT t d => insert (t, d) buf
          VM wm =>
           if \exists t \in (map \text{ fst buf}), t < wm
           then
DT 1 a
            out <- filter (\lambda (t, _) . t \leq wm) buf
             ts <- remdups (map fst out)
              buf <- filter (\lambda (t, _) . t > wm) buf
             H \leftarrow H + (mset (map snd out))
             push (map (\lambda t . DT t (H + (mset (map snd (filter (\lambda (t', _{-}) . t' \leq t) out))))) ts) @ [WM wm]
           else
             push [WM wm]
```

WM 1	DT 2 c	DT 3 a	WM 4
------	--------	--------	------

$$\begin{array}{l} \mathsf{buf} = [(\mathsf{2},\mathsf{b}),\,(\mathsf{1},\mathsf{a})] \\ \mathsf{H} = \{\} \end{array}$$

```
e. case e of
DT t d => insert (t, d) buf
VM wm =>
if \exists t \in (map \text{ fst buf}), t < wm
then
  out <- filter (\lambda (t, _) . t \leq wm) buf
   ts <- remdups (map fst out)
   buf <- filter (\lambda (t, _) . t > wm) buf
   H \leftarrow H + (mset (map snd out))
   push (map (\lambda t . DT t (H + (mset (map snd (filter (\lambda (t', _{-}) . t' \leq t) out))))) ts) @ [WM wm]
else
   push [WM wm]
```

DT 2 c DT 3 a WM 4

$$\begin{array}{l} \mathsf{buf} = [(\mathsf{2},\mathsf{b}),\,(\mathsf{1},\mathsf{a})] \\ \mathsf{H} = \{\} \end{array}$$

```
e. case e of
          DT t d => insert (t, d) buf
          VM wm =>
          if \exists t \in (map \text{ fst buf}), t < wm
           then
WM 1
            out <- filter (\lambda (t, _) . t \leq wm) buf
             ts <- remdups (map fst out)
             buf <- filter (\lambda (t, _) . t > wm) buf
             H \leftarrow H + (mset (map snd out))
             push (map (\lambda t . DT t (H + (mset (map snd (filter (\lambda (t', _{-}) . t' \leq t) out))))) ts) @ [WM wm]
          else
             push [WM wm]
```

DT 2 c DT 3 a WM 4

 $\begin{aligned} \mathsf{buf} &= [(2,\mathsf{b})] \\ \mathsf{H} &= \{\mathsf{a}\} \end{aligned}$

```
e. case e of
DT t d => insert(t, d) buf
VM vm =>
if \exists t \in (map fst buf). t < wm
then
  out <- filter (\lambda (t, _) . t \leq wm) buf
   ts <- remdups (map fst out)
   buf <- filter (\lambda (t, _) , t > wm) buf
   H \leftarrow H + (mset (map snd out))
   push (map (\lambda t . DT t (H + (mset (map snd (filter (\lambda (t', _) . t' \leq t) out))))) ts) @ [WM wm]
else
   push [WM wm]
```

DT 1 {a} WM 1

WM 4

buf =
$$[(2,b), (2,c), (3,a)]$$

H = $\{a\}$

```
e. case e of
DT t d => insert(t, d) buf
VM vm =>
if \exists t \in (map fst buf). t < wm
then
  out <- filter (\lambda (t, _) . t \leq wm) buf
   ts <- remdups (map fst out)
   buf <- filter (\lambda (t, _) , t > wm) buf
   H \leftarrow H + (mset (map snd out))
   push (map (\lambda t . DT t (H + (mset (map snd (filter (\lambda (t', _) . t' \leq t) out))))) ts) @ [WM wm]
else
   push [WM wm]
```

DT 1 {a} WM 1


```
\begin{array}{l} buf = [] \\ H = \{a,a,b,c\} \end{array}
```

```
DT t d => insert(t, d) buf
VM vm =>
if \exists t \in (map \text{ fst buf}). t < wm
then
  out <- filter (\lambda (t, _) . t \leq wm) buf
   ts <- remdups (map fst out)
   buf <- filter (\lambda (t, _) . t > wm) buf
   H \leftarrow H + (mset (map snd out))
   push (map (\lambda t . DT t (H + (mset (map snd (filter (\lambda (t', _) . t' \leq t) out))))) ts) @ [WM wm]
else
   push [WM wm]
```

DT 1 {a} WM 1 DT 2 {a,b,c} DT 3 {a,a,b,c} WM 4

Preliminaries

Isabelle/HOL

• Classical higher-order logic (HOL): Simple Typed Lambda Calculus + (Hilbert) axiom of choice + axiom of infinity + rank-1 polymorphism

Isabelle/HOL

- Classical higher-order logic (HOL): Simple Typed Lambda Calculus + (Hilbert) axiom of choice + axiom of infinity + rank-1 polymorphism
- Isabelle: A generic proof assistant

• Isabelle/HOL: Isabelle's flavor of HOL

Isabelle/HOL: (Co)datatypes

• Datatypes and Codatatypes

```
\label{eq:codatatype} \begin{array}{l} \mathbf{codatatype} \ (\mathsf{lset:} \ 'a) \ \mathit{llist} = \mathsf{Inull:} \ \mathsf{LNil} \ | \ \mathsf{LCons} \ (\mathsf{Ihd:} \ 'a) \ (\mathsf{Itl:} \ 'a \ \mathit{llist}) \\ \mathbf{for} \ \mathsf{map:} \ \mathsf{lmap} \ \mathbf{where} \ \mathsf{Itl} \ \mathsf{LNil} = \mathsf{LNil} \end{array}
```

- Examples:
 - LNil
 - LCons 1 (LCons 2 (LCons 3 LNil))
 - LCons 0 (LCons 0 (LCons 0 (...)))
- Proofs by induction
- Proofs by coinduction

State of this work

What have I formalized so far? (part 1)

- Formalization stream processing (model)
 - Using Isabelle/HOL: (co)datatypes, (co)recursion, and (co)induction
 - Streams are lazy lists, and operators as a codatatype
 - Semantics: a produce :: 'i llist \Rightarrow ('i, 'o) op \Rightarrow 'o llist function that runs an operator throughout a lazy lists
 - Mix of recursion and corecursion: inductive and coinductive principles
 - Sequential composition
 - Correctness!

What have I formalized so far? (part 2)

- Time-Aware computations
 - Coinductive properties of streams: monotonicity and productivity
 - Building blocks operators:
 - Convenience operators: batching and incremental computations
 - Incremental computing: only update results that are affected by the new input
 - With verified properties: Soundness, Completeness, preservation of monotonicity, and preservation of productivity
 - Compositional reasoning
- Case studies with the building blocks:
 - Incremental histogram operator
 - Relational join

Next Steps

Efficient Stream Processing

- It is executable! But slow!
 - Code generator: functional languages (OCaml, Haskell, SML...)
 - Functional data-structures (often not ideal)

Efficient Stream Processing

- It is executable! But slow!
 - Code generator: functional languages (OCaml, Haskell, SML...)
 - Functional data-structures (often not ideal)
- How do we make efficient and verified programs in Isabelle/HOL?

Efficient Stream Processing

- It is executable! But slow!
 - Code generator: functional languages (OCaml, Haskell, SML...)
 - Functional data-structures (often not ideal)
- How do we make efficient and verified programs in Isabelle/HOL?
- Isabelle-LLVM!
- Let's port this formalization to Isabelle-LLVM then!
- This is a non-terminating program

Isabelle-LLVM

Isabelle Refinement Framework and Isabelle-LLVM

- Isabelle Refinement Framework
 - ullet Framework for step-wise refinement verification (refinement calculus): Specification ullet Abstract Algorithm ullet Less Abstract Algorithm ullet Executable Code
 - Imperative HOL as backend (lowest layer in the refinement)
 - Shallow Embedding of Monadic programs in HOL
 - Separation Logic (heap memory reasoning)
- Isabelle-LLVM is a new backend for the Isabelle Refinement Framework
 - Generates LLVM code (efficient imperative code)

Isabelle Refinement Framework and Isabelle-LLVM

- Isabelle Refinement Framework
 - ullet Framework for step-wise refinement verification (refinement calculus): Specification ullet Abstract Algorithm ullet Less Abstract Algorithm ullet Executable Code
 - Imperative HOL as backend (lowest layer in the refinement)
 - Shallow Embedding of Monadic programs in HOL
 - Separation Logic (heap memory reasoning)
- Isabelle-LLVM is a new backend for the Isabelle Refinement Framework
 - Generates LLVM code (efficient imperative code)
- Can we write and verify non-terminating programs in this framework?

Isabelle Refinement Framework and Isabelle-LLVM

- Isabelle Refinement Framework
 - ullet Framework for step-wise refinement verification (refinement calculus): Specification ullet Abstract Algorithm ullet Less Abstract Algorithm ullet Executable Code
 - Imperative HOL as backend (lowest layer in the refinement)
 - Shallow Embedding of Monadic programs in HOL
 - Separation Logic (heap memory reasoning)
- Isabelle-LLVM is a new backend for the Isabelle Refinement Framework
 - Generates LLVM code (efficient imperative code)
- Can we write and verify non-terminating programs in this framework?
 - Yes and No!

Isabelle-LLVM's Recursion Model

- Knaster–Tarski theorem
 - Standard way to define the semantics of recursive definitions
 - Isabelle/HOL: Partial Function Package
 - Every monotonic function on Complete Chain Partial Order (CCPO) has a fixed point
 - Induction principle
- No need for well-foundness

What the Heck is a CCPO?

- Chain: A set in which all elements are comparable
- Complete Chain Partial Order:
 - 1. A partial order: 'a::order
 - 2. A function that returns the suprimium (least upper bound) from a chain $a::order set \Rightarrow a$

What the Heck is a CCPO?

- Chain: A set in which all elements are comparable
- Complete Chain Partial Order:
 - 1. A partial order: 'a::order
 - 2. A function that returns the suprimium (least upper bound) from a chain $\frac{a::order}{a::order}$ set $\Rightarrow a$
- Isabelle-LLVM's monad:

```
datatype 'a neM = SPEC (the\_spec: 'a \Rightarrow bool) | FAIL
```

- Order: flat (every *SPEC* is greater than *FAIL*, *SPEC*'s are only comparable when they are equal)
- Suprimium from a chain: The SPEC, or the only FAIL
- Bottom: *FAIL*
 - Non-termination

The First Steps

Our CCPO Attempt

• Let's look in Isabelle!

The Other Steps

More Changes to Isabelle-LLVM?

- Separation Logic?
 - Express properties about the trace of the program
- Refinement Calculus?
- LLVM code generator?

Questions, comments and suggestions