國立清華大學

NATIONAL TSING HUA UNIVERSITY

碩士論文

Temporarily Title

中文標題

所別 資訊工程研究所

學號 104062564

姓名 李紀萱 (Chi-Hsuan Li)

指導教授 黃能富博士 (Dr. Nen-Fu Huang)

中華民國一〇六年七月

Introduction

In recent times, researchers have shown an increasing interest in evolving network infrastructures. Software-defined networking (SDN) and network functions virtualization (NFV) are key roles for this evolution. SDN [1–4] has been widely studied for almost a decade since the first OpenFlow [5,6] article had be presented in 2008. The main concept of SDN is separating data plane and control plane to enable smart control on switch and give a brand-new viewpoint on network research, and makes innovation on industries.

As SDN was developed, NFV [7–9] has been introduced by Telco operators at the same time. The network services offered by operators previously performed by specific hardware appliances and it is difficult to decrease the OPEX and CAPEX on service deployment and management. In this context, NFV is proposed to innovate in the service delivery arena. The concept of NFV is to reduce the coupling between network functions (NFs) and hardware devices. Virtual Customer Premise Equipment (vCPE) [10, 11], in particular virtual residential gateway (vRGW) [12], is one of the network services which benefited from NFV [13].

In the progress of vCPE development, the SDN is not involved at first. Most of previous researches focused on other technology to virtualize and deploy the CPE node [14–19]. Cloud4NFV [20, 21], proposed by Portugal Telecom, started to use SDN

technology on designing virtual CPE management and organization (MANO) platform for Telco cloud. Italy Telecom also proposed NetFATE [22], which is a network function deploy-to-edge model in which the NFs are designed by SDN and perform by SDN switch. Inspired from these two frameworks, our laboratory, High Speed Network Labtory (HSNL), also proposed a vCPE framework and a few network functions, attempting to replace hardware-based CPE [23, 24].

However, these SDN-involved vCPE research most focused on how SDN benefits the design of NFV MANO [25,26] platform or traffic steering between CPE nodes, not the CPE network function itself. When the NFV is deployed at network edge and performed by SDN switch, there will be restriction on the OpenFlow Table [27]. In this paper, we proposed a multiple OpenFlow table mechanism to implement network functions and explain how to use it to resolve the table restriction. We also evaluate the new VNF implemented by the proposed mechanism, and compare with the single-table mechanism and hardware CPE. This new VNF can also be deployed to the network edge by the previous HSNL vCPE framework.

This paper is structured as follows. Chapter 2 briefly introduces SDN technology, NFV architecture, the OpenFlow protocol, related studied of vCPE framework and the previous HSNL vCPE framwork. In Chapter 3, we will review the NF design from the concept of SDN-enabled [28] architecture, and then move on describing our proposed multiple flow table management mechanism, which achieved vRGW functions. Chapter 4 turns to analyze the performance of vCPE network function what we proposed and compare to single table NF and traditional network devices, followed by Conclusion and proposed future works in the last chapter.

Related Work

Chapter 3 System Implementation

Evaluation

Conclusion and Future Work

Bibliography

- [1] N. McKeown, "Software-defined networking," *INFOCOM keynote talk*, vol. 17, no. 2, pp. 30–32, 2009.
- [2] O. N. Fundation, "Software-defined networking: The new norm for networks," *ONF White Paper*, vol. 2, pp. 2–6, 2012.
- [3] N. Feamster, J. Rexford, and E. Zegura, "The road to SDN," *ACM SIGCOMM Computer Communication Review*, vol. 44, no. 2, pp. 87–98, Apr. 2014.
- [4] D. Kreutz, F. M. V. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodolmolky, and S. Uhlig, "Software-defined networking: A comprehensive survey," *Proceedings of the IEEE*, vol. 103, no. 1, pp. 14–76, Jan. 2015.
- [5] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and J. Turner, "OpenFlow," ACM SIGCOMM Computer Communication Review, vol. 38, no. 2, p. 69, Mar. 2008.
- [6] B. Pfaff, B. Lantz, B. Heller *et al.*, "Openflow switch specification, version 1.3. 0," *Open Networking Foundation*, 2012.
- [7] M. Chiosi, D. Clarke, P. Willis, A. Reid, J. Feger, M. Bugenhagen, W. Khan, M. Fargano, C. Cui, H. Deng *et al.*, "Network functions virtualisation: An

- introduction, benefits, enablers, challenges and call for action," in *SDN and OpenFlow World Congress*, 2012, pp. 22–24.
- [8] NFV ISG, "Network Functions Virtualisation (NFV); Virtual Network Functions Architecture," ETSI, Tech. Rep. GS NFV-SWA 001 V1.1.1, Dec. 2014.
- [9] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. D. Turck, and R. Boutaba, "Network function virtualization: State-of-the-art and research challenges," *IEEE Communications Surveys & Tutorials*, vol. 18, no. 1, pp. 236–262, 2016.
- [10] NEC/Netcracker, "Nec's vcpe solution." [Online]. Available: http://www.nec.com/en/global/solutions/tcs/vcpe/
- [11] P. Minoves, O. Frendved, B. Peng, A. Mackarel, and D. Wilson, "Virtual CPE: Enhancing CPE's deployment and operations through virtualization," in 4th IEEE International Conference on Cloud Computing Technology and Science Proceedings. IEEE, Dec. 2012.
- [12] Z. Bronstein and E. Shraga, "NFV virtualisation of the home environment," in 2014 IEEE 11th Consumer Communications and Networking Conference (CCNC). IEEE, Jan. 2014.
- [13] NFV ISG, "Network functions virtualisation (NFV); use cases," ETSI, Tech. Rep. GS NFV 001 V1.1.1, Oct. 2013.
- [14] M. Ibanez, N. M. Madrid, and R. Seepold, "Virtualization of residential gateways," in 2007 Fifth Workshop on Intelligent Solutions in Embedded Systems. IEEE, Jun. 2007.

- [15] —, "Security management with virtual gateway platforms," in 2009 Third International Conference on Emerging Security Information, Systems and Technologies. IEEE, 2009.
- [16] B. Zamaere, L. Da, and E. Kullberg, "On the design and implementation of a virtualized residential gateway," in 2012 2nd International Conference on Consumer Electronics, Communications and Networks (CECNet). IEEE, Apr. 2012.
- [17] N. Herbaut, D. Negru, G. Xilouris, and Y. Chen, "Migrating to a NFV-based home gateway: Introducing a surrogate vNF approach," in 2015 6th International Conference on the Network of the Future (NOF). IEEE, Sep. 2015.
- [18] F. Sanchez and D. Brazewell, "Tethered linux CPE for IP service delivery," in Proceedings of the 2015 1st IEEE Conference on Network Softwarization (NetSoft). IEEE, Apr. 2015.
- [19] R. Bonafiglia, S. Miano, S. Nuccio, F. Risso, and A. Sapio, "Enabling NFV services on resource-constrained CPEs," in 2016 5th IEEE International Conference on Cloud Networking (Cloudnet). IEEE, Oct. 2016.
- [20] J. Soares, M. Dias, J. Carapinha, B. Parreira, and S. Sargento, "Cloud4nfv: A platform for virtual network functions," in 2014 IEEE 3rd International Conference on Cloud Networking (CloudNet). IEEE, Oct. 2014.
- [21] J. Soares, C. Goncalves, B. Parreira, P. Tavares, J. Carapinha, J. P. Barraca, R. L. Aguiar, and S. Sargento, "Toward a telco cloud environment for service functions," IEEE Communications Magazine, vol. 53, no. 2, pp. 98–106, Feb. 2015.

- [22] A. Lombardo, A. Manzalini, G. Schembra, G. Faraci, C. Rametta, and V. Riccobene, "An open framework to enable NetFATE (network functions at the edge)," in Proceedings of the 2015 1st IEEE Conference on Network Softwarization (NetSoft). IEEE, Apr. 2015.
- [23] C.-W. Lin, "A Novel Virtual CPE Architecture and Service for Enterprises with SDN Network Technologies," Master's thesis, National Tsing Hua University, No.101, Sec. 2, Guangfu Rd., East Dist., Hsinchu City 300, Taiwan, 2016.
- [24] N.-F. Huang, C.-W. Lin, S.-J. Wu, C.-H. Li, and I.-J. Liao, "A novel virtual cpe architecture and service for enterprises with sdn network technologies," in *PROCEEDINGS OF THE 9TH IEEE INTERNATIONAL CONFERENCE ON UBI-MEDIA COMPUTING*" *UMEDIA-2016*", 2016, pp. 104–109.
- [25] NFV ISG, "Network Functions Virtualisation (NFV); Management and Orchestration," ETSI, Tech. Rep. GS NFV-MAN 001 V1.1.1, Dec. 2014.
- [26] —, "Network Functions Virtualisation (NFV); Ecosystem; Report on SDN Usage in NFV Architectural Framework," ETSI, Tech. Rep. GS NFV-EVE 005 V1.1.1, Dec. 2015.
- [27] Open Networking Fundation, "The benefits of multiple flow tables and ttps," ONF, Tech. Rep., 2015.
- [28] J. Matias, J. Garay, N. Toledo, J. Unzilla, and E. Jacob, "Toward an SDN-enabled NFV architecture," *IEEE Communications Magazine*, vol. 53, no. 4, pp. 187–193, Apr. 2015.