```
In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

In [2]: df=pd.read_csv("14_Iris.csv")
df

Out[2]: Id SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm **Species** 0 1 5.1 3.5 1.4 0.2 Iris-setosa 1 3.0 0.2 2 4.9 1.4 Iris-setosa 2 3 4.7 3.2 0.2 1.3 Iris-setosa 3 4 4.6 3.1 1.5 0.2 Iris-setosa 4 5 5.0 3.6 1.4 0.2 Iris-setosa **145** 146 6.7 3.0 5.2 2.3 Iris-virginica **146** 147 2.5 Iris-virginica 6.3 5.0 **147** 148 6.5 3.0 5.2 2.0 Iris-virginica **148** 149 6.2 3.4 5.4 2.3 Iris-virginica

3.0

5.1

1.8 Iris-virginica

150 rows × 6 columns

149 150

In [3]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 6 columns):

5.9

#	Column	Non-Null Count	Dtype	
0	Id	150 non-null	int64	
1	SepalLengthCm	150 non-null	float64	
2	SepalWidthCm	150 non-null	float64	
3	PetalLengthCm	150 non-null	float64	
4	PetalWidthCm	150 non-null	float64	
5	Species	150 non-null	object	
d+vn	oc. floa+64(4)	in+64(1) $ohioc+(1)$		

dtypes: float64(4), int64(1), object(1)

memory usage: 7.2+ KB

In [4]: df.describe()

Out[4]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
count	150.000000	150.000000	150.000000	150.000000	150.000000
mean	75.500000	5.843333	3.054000	3.758667	1.198667
std	43.445368	0.828066	0.433594	1.764420	0.763161
min	1.000000	4.300000	2.000000	1.000000	0.100000
25%	38.250000	5.100000	2.800000	1.600000	0.300000
50%	75.500000	5.800000	3.000000	4.350000	1.300000
75%	112.750000	6.400000	3.300000	5.100000	1.800000
max	150.000000	7.900000	4.400000	6.900000	2.500000

In [5]: sns.pairplot(df)

Out[5]: <seaborn.axisgrid.PairGrid at 0x1dc4a902400>

In [6]: sns.displot(df['PetalWidthCm'])

Out[6]: <seaborn.axisgrid.FacetGrid at 0x1dc4cc55640>

In [7]: df1=df.drop(['Species'],axis=1)
 df1

\sim		_	г-	7 7	١.
()	115	г		/	٠.

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
0	1	5.1	3.5	1.4	0.2
1	2	4.9	3.0	1.4	0.2
2	3	4.7	3.2	1.3	0.2
3	4	4.6	3.1	1.5	0.2
4	5	5.0	3.6	1.4	0.2
145	146	6.7	3.0	5.2	2.3
146	147	6.3	2.5	5.0	1.9
147	148	6.5	3.0	5.2	2.0
148	149	6.2	3.4	5.4	2.3
149	150	5.9	3.0	5.1	1.8

150 rows × 5 columns

```
In [8]: sns.heatmap(df1.corr())
```

Out[8]: <AxesSubplot:>


```
In [9]: from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
```

```
In [10]: y=df['PetalWidthCm']
    x=df1.drop(['PetalWidthCm','Id'],axis=1)
    x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
    print(x_train)
```

	SepalLengthCm	SepalWidthCm	PetalLengthCm
42	4.4	3.2	1.3
60	5.0	2.0	3.5
15	5.7	4.4	1.5
148	6.2	3.4	5.4
71	6.1	2.8	4.0
• •			• • •
103	6.3	2.9	5.6
118	7.7	2.6	6.9
70	5.9	3.2	4.8
145	6.7	3.0	5.2
78	6.0	2.9	4.5

[105 rows x 3 columns]

```
In [11]: model=LinearRegression()
    model.fit(x_train,y_train)
    model.intercept_
```

Out[11]: -0.20753362311165136

```
In [12]: | coeff=pd.DataFrame(model.coef_,x.columns,columns=["Coefficient"])
          coeff
Out[12]:
                         Coefficient
          SepalLengthCm
                          -0.223779
           SepalWidthCm
                          0.243197
           PetalLengthCm
                          0.525620
In [13]: prediction=model.predict(x test)
         plt.scatter(y_test,prediction)
Out[13]: <matplotlib.collections.PathCollection at 0x1dc4d25de20>
           2.0
           1.5
           1.0
           0.5
                                       1.5
                                                2.0
             0.0
                      0.5
                              1.0
                                                         2.5
In [14]: model.score(x_test,y_test)
Out[14]: 0.935029363293646
In [15]: from sklearn.linear_model import Ridge,Lasso
In [16]: rr = Ridge(alpha=10)
          rr.fit(x_train,y_train)
Out[16]: Ridge(alpha=10)
In [17]: | rr.score(x_test,y_test)
Out[17]: 0.9265166411152366
In [18]: la = Lasso(alpha=10)
          la.fit(x_train,y_train)
Out[18]: Lasso(alpha=10)
In [19]: la.score(x_test,y_test)
Out[19]: -0.04442071186610397
```

```
In [20]: from sklearn.linear model import ElasticNet
         en=ElasticNet()
         en.fit(x_train,y_train)
         print(en.coef )
         print(en.intercept )
         print(en.predict(x_test))
         print(en.score(x_test,y_test))
         from sklearn import metrics
         print("Mean Absolute Error:", metrics.mean_absolute_error(y_test, prediction))
         print("Mean Squared Error:", metrics.mean_squared_error(y_test, prediction))
         print("Root Mean Squared Error:",np.sqrt(metrics.mean_squared_error(y_test,pred
         [ 0.
                                   0.22233972]
                      -0.
         0.38356605183291725
         [1.36186082 1.73983835 0.69484166 0.73930961 0.71707563 0.69484166
          0.76154358 0.69484166 0.69484166 1.51749863 1.3840948 1.22845699
          1.45079671 0.76154358 1.51749863 1.42856274 1.40632877 1.42856274
          1.47303069 0.73930961 1.29515891 0.73930961 1.58420055 1.51749863
          1.3840948 1.56196657 1.3840948 0.73930961 0.69484166 1.16175508
          1.62866849 0.71707563 1.31739288 1.05058522 0.71707563 0.71707563
          0.71707563 1.49526466 0.71707563 1.3840948 1.42856274 1.49526466
          1.40632877 1.51749863 1.3840948 ]
         0.6985305223464584
         Mean Absolute Error: 0.1469936944918236
         Mean Squared Error: 0.034530369406837694
         Root Mean Squared Error: 0.18582348992212394
```

In []: