PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Burcau

(51) International Patent Classification 6:		JNDER THE PATENT COOPERATION TREATY (PCT) (11) International Publication Number: WO 99/60161	
C12Q 1/68, G01N 33/53, 33/574	A1		
0124 200, 0011 0012, 0010		(43) International Publication Date: 25 November 1999 (25.11.99)	
(21) International Application Number: PCT/US		Massey Licata, 66 E. Main Street, Marlton, NJ 08053 (US).	
(22) International Filing Date: 12 May 1999 (12.05.9	9)	
(30) Priority Data: 60/086,266 21 May 1998 (21.05.98)	ι	(81) Designated States: CA, JP, US, European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).	
(63) Related by Continuation (CON) or Continuation-in (CIP) to Earlier Application US 60/086,2 Filed on 21 May 1998 (266 (CI		
(71) Applicant (for all designated States except US): DL LLC [US/US]; 3303 Octavius Drive, Santa Clara, ((US).			
(72) Inventors; and (75) Inventors/Applicants (for US only): MACINA, Ro [AR/US]; 4118 Crescendo Avenue, San Jose, C (US). YANG, Fei [CN/US]; Apartment 204, 18375 Cantilena, San Diego, CA 92128 (US). SUN, Y [CN/US]; Apartment 260, 869 S. Winchester Boule Jose, CA 92128 (US).	A 951 Camin ongmi	36 ito ng	
(54) Title: A NOVEL METHOD OF DIAGNOSING M	ONITO	RING AND STAGING COLON CANCER	
(54) Title: A NOVEL METHOD OF DIAGNOSING, MONITORING, AND STAGING COLON CANCER			
	(57) Abstract The present invention provides a new method for detecting, diagnosing, monitoring, staging, and prognosticating colon cancer.		
•			
		·	

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia	
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia	
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal	
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland	
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad	
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo	
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan	
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan	
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey	
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago	
ВJ	Benin	ΙE	Ireland	MN	Mongolia	UA	Ukraine	
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda	
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America	
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan	
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam	
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia	
CH	Switzerland	ΚĞ	Kyrgyzstan	NO	Norway	ZW	Zimbabwe	
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand			
CM	Cameroon		Republic of Korea	PL	Poland			
CN	China	KR	Republic of Korea	PT	Portugal			
CU	Cuba	KZ	Kazakstan	RO	Romania			
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation			
DE	Germany	LI	Liechtenstein	SD	Sudan			
DK	Denmark	LK	Sri Lanka	SE	Sweden			
EE	Estonia	LR	Liberia	SG	Singapore			

WO 99/60161

A NOVEL METHOD OF DIAGNOSING, MONITORING, AND STAGING COLON CANCER

- 1 -

FIELD OF THE INVENTION

This invention relates, in part, to newly developed assays for detecting, diagnosing, monitoring, staging, and prognosticating cancers, particularly colon cancer.

BACKGROUND OF THE INVENTION

Colon cancer is the second most frequently diagnosed the United States. Cancer malignancy in gastrointestinal tract, especially colon cancer, is a highly treatable and often a curable disease when localized to the However, currently colon cancer is the second most common cause of cancer death. Surgery is the primary treatment and results in cure in approximately 50% of patients. Recurrence following surgery is a major problem and often is the ultimate cause of death. The prognosis of colon cancer is clearly related to the degree of penetration of the tumor through the bowel wall and the presence or absence of nodal involvement. These two characteristics form the basis for all staging systems developed for this disease. Bowel obstruction and bowel perforation are indicators of poor prognosis. Elevated pretreatment serum carcinoembryonic antigen (CEA) and carbohydrate antigen 19-9 (CA 19-9) also have negative prognostic significance.

Because of the frequency of the disease (approximately 160,000 new cases of colon cancer per year), identification of high-risk groups, the demonstrated slow growth of primary lesions, the better survival of early-stage lesions, and the relative simplicity and accuracy of screening tests, screening for colon cancer should be a part of routine

care for all adults starting at age 50, especially those with first-degree relatives with colorectal cancer.

- 2 -

Procedures used for detecting, diagnosing, monitoring, staging, and prognosticating colon cancer are of critical importance to the outcome of the patient. For example, patients diagnosed with early colon cancer generally have a much greater five-year survival rate as compared to the survival rate for patients diagnosed with distant metastasized colon cancer. Treatment decisions are usually made in reference to the older Dukes or the Modified Astler-Coller (MAC) classification schema for staging. However, new diagnostic methods which are more sensitive and specific for detecting early colon cancer are clearly needed.

Further, colon cancer patients must be closely monitored following initial therapy and during adjuvant therapy to determine response to therapy and to detect persistent or recurrent disease of metastasis. Thus, there is clearly a need for a colon cancer marker which is more sensitive and specific in detecting colon cancer recurrence.

Another important step in managing colon cancer is to determine the stage of the patient's disease. determination has potential prognostic value and provides designing optimal therapy. Currently, criteria for pathological staging of colon cancer is preferable over clinical staging as pathological staging provides a more However, clinical staging would be accurate prognosis. preferred were the method of clinical staging at least as accurate as pathological staging because it does not depend on an invasive procedure to obtain tissue for pathological Staging of colon cancer would be improved by evaluation. detecting new markers in cells, tissues, or bodily fluids which could differentiate between different stages invasior.

In the present invention, methods are provided for detecting, diagnosing, monitoring, staging, and

- 3 -

prognosticating colon cancers, particularly colon, stomach, and small intestine cancer, via nine (9) Colon Specific Genes (CSGs). The nine CSGs refer, among other things, to native proteins expressed by the genes comprising the polynucleotide sequences of any of SEQ ID NO:1, 2, 3, 4, 5, 6, 7, 8 or 9. In the alternative, what is meant by the nine CSGs as used herein, means the native mRNAs encoded by the genes comprising any of the polynucleotide sequences of SEQ ID NO:1, 2, 3, 4, 5, 6, 7, 8 or 9 or levels of the genes comprising any of the polynucleotide sequences of SEQ ID NO:1, 2, 3, 4, 5, 6, 7, 8 or 9.

Other objects, features, advantages and aspects of the present invention will become apparent to those of skill in the art from the following description. It should be understood, however, that the following description and the specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only. Various changes and modifications within the spirit and scope of the disclosed invention will become readily apparent to those skilled in the art from reading the following description and from reading the other parts of the present disclosure.

SUMMARY OF THE INVENTION

Toward these ends, and others, it is an object of the present invention to provide a method for diagnosing the presence of colon cancer in a patient which comprises measuring levels of CSG in a sample of cells, tissue or bodily fluid from the patient and comparing the measured levels of CSG with levels of CSG in preferably the same cells, tissue, or bodily fluid type of a control, wherein an increase in the measured CSG levels in the patient versus levels of CSG in the control is associated with colon cancer.

Another object of the present invention is to provide a method of diagnosing metastatic colon cancer in a patient which comprises measuring CSG levels in a sample of cells,

tissue, or bodily fluid from the patient and comparing the measured CSG levels with levels of CSG in preferably the same cells, tissue, or bodily fluid type of a control, wherein an increase in measured CSG levels in the patient versus levels of CSG in the control is associated with a cancer which has metastasized.

- 4 -

Another object of the present invention is to provide a method of staging colon cancer in a patient which comprises identifying a patient having colon cancer, measuring levels of CSG in a sample of cells, tissues, or bodily fluid obtained from the patient, and comparing the measured CSG levels with levels of CSG in preferably the same cells, tissue or bodily fluid type of a control. An increase in measured CSG levels in the patient versus CSG levels in the control can be associated with a cancer which is progressing while a decrease or equivalent level of CSG measured in the patient versus the control can be associated with a cancer which is regressing or in remission.

Another object of the present invention is to provide a method of monitoring colon cancer in a patient for the onset of metastasis. The method comprises identifying a patient having colon cancer that is not known to have metastasized, periodically measuring levels of CSG in a sample of cells, tissues, or bodily fluid obtained from the patient, and comparing the measured CSG levels with levels of CSG in preferably the same cells, tissue, or bodily fluid type of a control, wherein an increase in measured CSG levels versus control CSG levels is associated with a cancer which has metastasized.

Yet another object of the present invention is to provide a method of monitoring the change in stage of colon cancer in a patient which comprises identifying a patient having colon cancer, periodically measuring levels of CSG in a sample of cells, tissue, or bodily fluid obtained from the patient, and comparing the measured CSG levels with levels of

- 5 -

CSG in preferably the same cells, tissues, or bodily fluid type of a control wherein an increase in measured CSG levels versus the control CSG levels is associated with a cancer which is progressing and a decrease in the measured CSG levels versus the control CSG levels is associated with a cancer which is regressing or in remission.

Other objects, features, advantages and aspects of the present invention will become apparent to those of skill in the art from the following description. It should be understood, however, that the following description and the specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only. Various changes and modifications within the spirit and scope of the disclosed invention will become readily apparent to those skilled in the art from reading the following description and from reading the other parts of the present disclosure.

DESCRIPTION OF THE INVENTION

The present invention relates to diagnostic assays and methods, both quantitative and qualitative for detecting, diagnosing, monitoring, staging, and prognosticating cancers by comparing levels of CSG with those of CSG in a normal human control. What is meant by "levels of CSG" as used herein, means levels of the native protein expressed by the genes comprising the polynucleotide sequence of any of SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8 or 9. In the alternative, what is meant by "levels of CSG" as used herein, means levels of the native mRNA encoded by any of the genes comprising any of the polynucleotide sequences of SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8 or 9 or levels of the gene comprising any of the polynucleotide sequence of SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8 or 9. Such levels are preferably measured in at least one of, cells, tissues and/or bodily fluids, including determination Thus, for instance, a of normal and abnormal levels. diagnostic assay in accordance with the invention for diagnosing over-expression of any one of the CSG proteins compared to normal control bodily fluids, cells, or tissue samples may be used to diagnose the presence of cancers, including colon cancer. Any of the nine CSGs may be measured alone in the methods of the invention, or all together or any combination of the nine.

By "control" it is meant a human patient without cancer and/or non cancerous samples from the patient, also referred to herein as a normal human control; in the methods for diagnosing or monitoring for metastasis, control may also include samples from a human patient that is determined by reliable methods to have colon cancer which has not metastasized.

All the methods of the present invention may optionally include measuring the levels of other cancer markers as well as CSG. Other cancer markers, in addition to CSG, useful in the present invention will depend on the cancer being tested and are known to those of skill in the art.

Diagnostic Assays

The present invention provides methods for diagnosing the presence of colon cancer by analyzing for changes in levels of CSG in cells, tissues or bodily fluids compared with levels of CSG in cells, tissues or bodily fluids of preferably the same type from a normal human control, wherein an increase in levels of CSG in the patient versus the normal human control is associated with the presence of colon cancer. Without limiting the instant invention, typically, for a quantitative diagnostic assay a positive result indicating the patient being tested has cancer is one in which cells, tissues, or bodily fluid levels of the cancer marker, such as CSG, are at least two times higher, and most preferably are at least five times higher, than in preferably the same cells, tissues, or bodily fluid of a normal human control.

The present invention also provides a method of diagnosing metastatic colon cancer in a patient having colon

WO 99/60161

- 7 -

PCT/US99/10498

cancer which has not yet metastasized for the onset of metastasis. In the method of the present invention, a human cancer patient suspected of having colon cancer which may have metastasized (but which was not previously known to have metastasized) is identified. This is accomplished by a variety of means known to those of skill in the art. For example, in the case of colon cancer, patients are typically diagnosed with colon cancer following traditional detection methods.

In the present invention, determining the presence of CSG level in cells, tissues, or bodily fluid, is particularly useful for discriminating between colon cancer which has not metastasized and colon cancer which has metastasized. Existing techniques have difficulty discriminating between colon cancer which has metastasized and colon cancer which has not metastasized and proper treatment selection is often dependent upon such knowledge.

In the present invention, the cancer marker levels measured in such cells, tissues, or bodily fluid is CSG, and are compared with levels of CSG in preferably the same cells, tissue, or bodily fluid type of a normal human control. That is, if the cancer marker being observed is just CSG in serum, this level is preferably compared with the level of CSG in serum of a normal human patient. An increase in the CSG in the patient versus the normal human control is associated with colon cancer which has metastasized.

Without limiting the instant invention, typically, for a quantitative diagnostic assay a positive result indicating the cancer in the patient being tested or monitored has metastasized is one in which cells, tissues, or bodily fluid levels of the cancer marker, such as CSG, are at least two times higher, and most preferable are at least five times higher, than in preferably the same cells, tissues, or bodily fluid of a normal patient.

Normal human control as used herein includes a human patient without cancer and/or non cancerous samples from the patient; in the methods for diagnosing or monitoring for metastasis, normal human control may also include samples from a human patient that is determined by reliable methods to have colon cancer which has not metastasized.

- 8 -

Staging

The invention also provides a method of staging colon cancer in a human patient.

The method comprises identifying a human patient having such cancer; analyzing a sample of cells, tissues, or bodily fluid from such patient for CSG. Then, the method compares CSG levels in such cells, tissues, or bodily fluid with levels of CSG in preferably the same cells, tissues, or bodily fluid type of a normal human control sample, wherein an increase in CSG levels in the patient versus the normal human control is associated with a cancer which is progressing and a decrease in the levels of CSG is associated with a cancer which is regressing or in remission.

Monitoring

Further provided is a method of monitoring colon cancer in a human having such cancer for the onset of metastasis. The method comprises identifying a human patient having such cancer that is not known to have metastasized; periodically analyzing a sample of cells, tissues, or bodily fluid from such patient for CSG; comparing the CSG levels in such cells, tissue, or bodily fluid with levels of CSG in preferably the same cells, tissues, or bodily fluid type of a normal human control sample, wherein an increase in CSG levels in the patient versus the normal human control is associated with a cancer which has metastasized.

Further provided by this inventions is a method of monitoring the change in stage of colon cancer in a human having such cancer. The method comprises identifying a human patient having such cancer; periodically analyzing a sample

- 9 -

of cells, tissues, or bodily fluid from such patient for CSG; comparing the CSG levels in such cells, tissue, or bodily fluid with levels of CSG in preferably the same cells, tissues, or bodily fluid type of a normal human control sample, wherein an increase in CSG levels in the patient versus the normal human control is associated with a cancer which is progressing in stage and a decrease in the levels of CSG is associated with a cancer which is regressing in stage or in remission.

Monitoring such patient for onset of metastasis is periodic and preferably done on a quarterly basis. However, this may be more or less frequent depending on the cancer, the particular patient, and the stage of the cancer.

Assay Techniques

Assay techniques that can be used to determine levels of gene expression, such as CSG of the present invention, in a sample derived from a host are well-known to those of skill in the art. Such assay methods include radioimmunoassays, (RT-PCR) PCR transcriptase reverse immunohistochemistry assays, in situ hybridization assays, competitive-binding assays, Western Blot analyses and ELISA Among these, ELISAs are frequently preferred to assays. diagnose a gene's expressed protein in biological fluids. An ELISA assay initially comprises preparing an antibody, if not readily available from a commercial source, specific to CSG, preferably a monoclonal antibody. In addition a reporter antibody generally is prepared which binds specifically to The reporter antibody is attached to a detectable CSG. reagent such as radioactive, fluorescent or enzymatic reagent, example horseradish peroxidase enzyme or phosphatase.

To carry out the ELISA, antibody specific to CSG is incubated on a solid support, e.g., a polystyrene dish, that binds the antibody. Any free protein binding sites on the dish are then covered by incubating with a non-specific

protein such as bovine serum albumin. Next, the sample to be analyzed is incubated in the dish, during which time CSG binds to the specific antibody attached to the polystyrene dish. Unbound sample is washed out with buffer. A reporter antibody specifically directed to CSG and linked to horseradish peroxidase is placed in the dish resulting in binding of the reporter antibody to any monoclonal antibody bound to CSG. Unattached reporter antibody is then washed out. Reagents for peroxidase activity, including a colorimetric substrate are then added to the dish. Immobilized peroxidase, linked to CSG antibodies, produces a colored reaction product. The amount of color developed in a given time period is proportional to the amount of CSG protein present in the sample. Quantitative results typically are obtained by reference to a standard curve.

A competition assay may be employed wherein antibodies specific to CSG attached to a solid support and labeled CSG and a sample derived from the host are passed over the solid support and the amount of label detected attached to the solid support can be correlated to a quantity of CSG in the sample. Nucleic acid methods may be used to detect CSG mRNA as a marker for colon cancer. Polymerase chain reaction (PCR) and other nucleic acid methods, such as ligase chain reaction (LCR) and nucleic acid sequence based amplification (NASABA), can be used to detect malignant cells for diagnosis and monitoring of various malignancies. For example, reversetranscriptase PCR (RT-PCR) is a powerful technique which can be used to detect the presence of a specific mRNA population in a complex mixture of thousands of other mRNA species. RT-PCR, an mRNA species is first reverse transcribed to complementary DNA (cDNA) with use of the enzyme reverse transcriptase; the cDNA is then amplified as in a standard PCR RT-PCR can thus reveal by amplification the reaction. presence of a single species of mRNA. Accordingly, if the mRNA is highly specific for the cell that produces it, RT-PCR can be used to identify the presence of a specific type of cell.

Hybridization to clones or oligonucleotides arrayed on a solid support (i.e., gridding) can be used to both detect the expression of and quantitate the level of expression of that gene. In this approach, a cDNA encoding the CSG gene is fixed to a substrate. The substrate may be of any suitable type including but not limited to glass, nitrocellulose, nylon or plastic. At least a portion of the DNA encoding the CSG gene is attached to the substrate and then incubated with the analyte, which may be RNA or a complementary DNA (cDNA) copy of the RNA, isolated from the tissue of interest.

Hybridization between the substrate bound DNA and the analyte can be detected and quantitated by several means including but not limited to radioactive labeling or fluorescence labeling of the analyte or a secondary molecule designed to detect the hybrid. Quantitation of the level of gene expression can be done by comparison of the intensity of the signal from the analyte compared with that determined from known standards. The standards can be obtained by *in vitro* transcription of the target gene, quantitating the yield, and then using that material to generate a standard curve.

The above tests can be carried out on samples derived from a variety of patients' cells, bodily fluids and/or tissue extracts (homogenates or solubilized tissue) such as from tissue biopsy and autopsy material. Bodily fluids useful in the present invention include blood, urine, saliva, or any other bodily secretion or derivative thereof. Blood can include whole blood, plasma, serum, or any derivative of blood.

EXAMPLES

The present invention is further described by the following examples. These examples are provided solely to illustrate the invention by reference to specific embodiments.

- 12 -

These exemplifications, while illustrating certain specific aspects of the invention, do not portray the limitations or circumscribe the scope of the disclosed invention.

- 13 -

Example 1: CSGs

Searches were carried out and CSGs identified using the following Search Tools as part of the LIFESEQ® database available from Incyte Pharmaceuticals, Palo Alto, CA:

- 1. Library Comparison (compares one library to one other library) allows the identification of clones expressed in tumor and absent or expressed at a lower level in normal tissue.
 - 2. Subsetting is similar to library comparison but allows the identification of clones expressed in a pool of libraries and absent or expressed at a lower level in a second pool of libraries.
 - 3. Transcript Imaging lists all of the clones in a single library or a pool of libraries based on abundance. Individual clones can then be examined using Electronic Northerns to determine the tissue sources of their component ESTs.
 - 4. Protein Function: Incyte has identified subsets of ESTs with a potential protein function based on homologies to known proteins. Some examples in this database include Transcription Factors and Proteases. We identified some leads by searching in this database for clones whose component ESTs showed disease specificity.

Electronic subtractions, transcript imaging and protein function searches were used to identify clones, whose component ESTs were exclusively or more frequently found in libraries from specific tumors. Individual candidate clones were examined in detail by checking where each EST originated.

Table 1: CSGs

SEQ ID	Clone ID #	Gene ID #	
NO:			
1	238330	242807	Transcript Imaging
2	1285234	239588	Subsetting
3	1341701	29634	Transcript Imaging
4	816257	233421	Subsetting
5	775133	245080	Subsetting
6	1335450	245811	Subsetting
7	2348122	233711	Transcript Imaging
8	3228674	230273	Subsetting
9	1632174	229022	Transcript Imaging

The following example was carried out using standard techniques, which are well known and routine to those of skill in the art, except where otherwise described in detail. Routine molecular biology techniques of the following example can be carried out as described in standard laboratory manuals, such as Sambrook et al., MOLECULAR CLONING: A LABORATORY MANUAL, 2nd Ed.; Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989).

Example 2: Relative Quantitation of CSG Gene Expression

Real-Time quantitative PCR with fluorescent Taqman probes is a quantitation detection system utilizing the 5'-3' nuclease activity of Taq DNA polymerase. The method uses an internal fluorescent oligonucleotide probe (Taqman) labeled with a 5' reporter dye and a downstream, 3' quencher dye. During PCR, the 5'-3' nuclease activity of Taq DNA polymerase releases the reporter, whose fluorescence can then be detected by the laser detector of the Model 7700 Sequence Detection System (PE Applied Biosystems, Foster City, CA, USA).

PCT/US99/10498

Amplification of an endogenous control is used to standardize the amount of sample RNA added to the reaction and normalize for Reverse Transcriptase (RT) efficiency. Either cyclophilin, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) or 18S ribosomal RNA (rRNA) is used as this endogenous control. To calculate relative quantitation between all the samples studied, the target RNA levels for one sample are used as the basis for comparative results (calibrator). Quantitation relative to the "calibrator" can be obtained using the standard curve method or the comparative method (User Bulletin #2: ABI PRISM 7700 Sequence Detection System).

To evaluate the tissue distribution, and the level of CSGs in normal and tumor tissue, total RNA was extracted from normal tissues, tumor tissues, and from tumors and the corresponding matched normal tissues. Subsequently, first strand cDNA was prepared with reverse transcriptase and the polymerase chain reaction was done using primers and Taqman probe specific to the CSG. The results were analyzed using the ABI PRISM 7700 Sequence Detector. The absolute numbers are relative levels of expression of the CSG compared to the calibrator.

Comparative Examples

Similar mRNA expression analysis for genes coding for the diagnostic markers PSA (Prostate Specific Antigen) and PLA2 (Phospholipase A2) was performed for comparison. PSA is currently the only cancer screening marker available in When the panel of normal pooled clinical laboratories. tissues was analyzed, PSA was expressed at very high levels in prostate, with a very low expression in breast and testis. After analysis of more than 55 matching samples from 14 corroborated the tissues, the data different specificity seen with normal tissue samples. PSA expression was compared in cancer and normal adjacent tissue for 12 matching samples of prostate tissue. The relative levels of PSA were higher in 10 cancer samples (83%). Clinical data recently obtained support the utilization of PLA2 as a staging marker for late stages of prostate cancer. mRNA expression data described herein showed overexpression of the mRNA in 8 out of the 12 prostate matching samples analyzed (66%). PLA2 had high levels of mRNA expression in small intestine, prostate, liver, and pancreas.

Measurement of SEQ ID NO:3; Clone ID 1341701; Gene ID 29634 (Cln106)

Absolute numbers are depicted in Table 2 as relative levels of expression of Cln106 (SEQ ID NO:3) in 12 normal different tissues. All the values are compared to normal testis (calibrator). These RNA samples are commercially available pools, originated by pooling samples of a particular tissue from different individuals.

Table 2: Relative levels of Cln106 Expression in Pooled Samples

Tissue	NORMAL
Colon-Ascending	110
Endometrium	0
Kidney	0
Liver	0
Ovary	0
Pancreas	0
Prostate	16
Small Intestine	0
Spleen	0
Stomach	0
Testis	1
Uterus	0

The relative levels of expression in Table 2 show for the CSG Cln106 (SEQ ID NO:3), mRNA expression is more than 6 fold higher in the pool of normal ascending colon (110) compared with prostate (16). Testis, the calibrator, with a relative expression level of 1, is the only other tissue expressing the mRNA for Cln106 (SEQ ID NO:3). These results demonstrate that mRNA expression of this CSG is highly specific for colon.

The absolute numbers in Table 2 were obtained analyzing pools of samples of a particular tissue from different individuals. They can not be compared to the absolute numbers originated from RNA obtained from tissue samples of a single individual in Table 3.

- 17 -

The absolute numbers in Table 3 are relative levels of expression of Cln106 (SEQ ID NO:3) in 57 pairs of matching samples. All the values are compared to normal testis (calibrator). A matching pair is formed by mRNA from the cancer sample for a particular tissue and mRNA from the normal adjacent sample for that same tissue from the same individual.

Table 3: Relative levels of Cln106 Expression in Individual Samples

Damp 200			
Sample ID	Tissue	Cancer	Matching Normal Adjacent
Sto AC93	Stomach 1	4	96
Sto AC99	Stomach 2	0.4	0.5
Sml 21XA	Small Intestine 1	0	0
Sml H89	Small Intestine 2	0.93	1.28
Cln B56	Colon-Cecum(A)1	317	101
Cln AS45	Colon-Ascending(A)2	316.3	146.5
Cln CM67	Colon-Cecum(B)3	481.0	217.5
Cln AS67	Colon-Ascending(B)4	858.1	220.6
Cln AS43	Colon-Ascending(C)5	1370	98
Cln AS46	Colon-Ascending(C)6	3051	375
Cln AS98	Colon-Ascending(C)7	26	42
Cln AS89	Colon-Ascending(D)8	524.6	11.0
Cln TX01	Colon-Transverse(B)9	2886.3	1992.0
Cln TX89	Colon-Transverse(B)10	146.0	35.9
Cln TX67	Colon-Transverse(C)11	2.9	421.7
Cln MT38	Colon-Splenic Flexture(M)12	1681	187

on-Sigmoid(B)13	1063.8	31.1
on-Sigmoid(C)14	8.5	9.4
on-Sigmoid(C)15	264	549
on-Sigmoid(D)16	580.0	114.6
on-Rectosigmoid(A)17	97	244
on-Rectum(A)18	45.1	273.4
on-Rectum(B)19	2.7	20.0
on-Rectosigmoid(C)20	609	460
on-Rectosigmoid(C)21	472.8	144.0
on-Rectum(C)22	568	129
on-Rectum(D)23	4.6	322.91
dder 1	0.2	0
dder 2	1	1
dder 3	0.0	0.0
ney 1	0	0
lney 2	0	0
lney 3	0.0	1.0
lney 4	0.0	0.0
lney 5	0.4	0.0
er 1	0.0	0.0
rer 2	0.0	0.0
rer 3	0.0	0.0
ig 1	2	0
ıg 2	0	0
ng 3	0	0
nmary Gland 1	0	0
nmary Gland 2	0	0
nmary Gland 3	0	0
ary 1	0.04	2.08
ary 2	0.1	2.76
	on-Sigmoid(B)13 on-Sigmoid(C)14 on-Sigmoid(C)15 on-Sigmoid(D)16 on-Rectosigmoid(A)17 on-Rectum(A)18 on-Rectum(B)19 on-Rectosigmoid(C)20 on-Rectosigmoid(C)21 on-Rectum(C)22 on-Rectum(D)23 dder 1 dder 2 dder 3 dney 1 dney 2 dney 3 dney 4 dney 5 ver 1 ver 2 ver 3 ng 1 ng 2 ng 3 mmary Gland 1 mmary Gland 2 mmary Gland 3 ary 1	on-Sigmoid(C)14

Pancreas 1	4.08	0.1
Pancreas 2	0	0
Prostate 1	0.3	0
Prostate 2	3	4
Prostate 3	2	7
Prostate 4	0.54	4.01
Prostate 5	4.8	4.3
Prostate 6	0.7	1.3
Testis 1	2.78	0
Endometrium 1	0	0.2
Uterus 1	1.26	0
	Pancreas 2 Prostate 1 Prostate 2 Prostate 3 Prostate 4 Prostate 5 Prostate 6 Testis 1 Endometrium 1	Pancreas 2 0 Prostate 1 0.3 Prostate 2 3 Prostate 3 2 Prostate 4 0.54 Prostate 5 4.8 Prostate 6 0.7 Testis 1 2.78 Endometrium 1 0

0= Negative

When matching samples were analyzed, the higher levels of expression were in the colon, showing a high degree of tissue specificity for this tissue. These results confirm the tissue specificity results obtained with the panel of normal pooled samples (Table 2). Furthermore, the level of mRNA expression in cancer samples and the isogenic normal adjacent tissue from the same individual were compared. comparison provides an indication of specificity for the cancer stage (e.g. higher levels of mRNA expression in the cancer sample compared to the normal adjacent). Table 3 shows overexpression of Cln106 (SEQ ID NO:3) in 15 colon cancer tissues compared with their respective normal adjacent (colon samples #1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 13, 16, 20, 21, and 22). There is overexpression in the cancer tissue for 65% of the colon matching samples tested (total of 23 colon matching samples). The matching sample Pan 71XL is a secondary cancer in pancreas, the primary cancer in that individual was a duodenal cancer.

Altogether, the high level of tissue specificity, plus the mRNA overexpression in 65% of the colon matching samples

- 20 -

tested are demonstrative of CSG Cln106 (SEQ ID NO:3) being a diagnostic marker for colon cancer.

Measurement of SEQ ID NO:4; Clone ID 816257; Gene ID 406452 (Cln107)

Absolute numbers as depicted in Table 4 are relative levels of expression of CSG Cln107 (SEQ ID NO:4) in 12 normal different tissues. All the values are compared to normal small intestine (calibrator). These RNA samples are commercially available pools, originated by pooling samples of a particular tissue from different individuals.

Table 4: Relative levels of Cln107 Expression in Pooled Samples

Tissue	NORMAL
Colon-Ascending	3.2
Endometrium	0
Kidney	0.2
Liver	0
Ovary	0
Pancreas	0
Prostate	0.1
Small Intestine	1
Spleen	0
Stomach	0.3
Testis	0
Uterus	0

The relative levels of expression in Table 4 show that mRNA expression of the CSG Cln107 (SEQ ID NO:4) is more than 10 fold higher in the pool of normal ascending colon (3.2), five fold higher in small intestine (1), and 1.5 fold higher in stomach (0.3), compared with the next higher expressor (0.2 for kidney). Seven of the pooled tissues samples analyzed were negative and prostate showed a relative expression of 0.1 for Cln107 (SEQ ID NO:4). These results demonstrate that Cln107 mRNA expression is highly specific for colon, small intestine, and in a lower degree for stomach.

The absolute numbers in Table 4 were obtained analyzing pools of samples of a particular tissue from different

individuals. They can not be compared to the absolute numbers originated from RNA obtained from tissue samples of a single individual in Table 5.

- 21 -

The absolute numbers in Table 5 are relative levels of expression of Cln107 (SEQ ID NO:4) in 57 pairs of matching samples. All the values are compared to normal small intestine (calibrator). A matching pair is formed by mRNA from the cancer sample for a particular tissue and mRNA from the normal adjacent sample for that same tissue from the same individual.

Table 5: Relative levels of Cln107 Expression in Individual Samples

Sample ID	Tissue	Cancer	Matching Normal Adjacent
Sto AC93	Stomach 1	8.9	13.4
Sto AC99	Stomach 2	6.0	0.9
Sml 21XA	Small Intestine 1	1.07	1.42
Sml H89	Small Intestine 2	0.97	4.13
Cln B56	Colon-Cecum(A)1	2	16
Cln AS45	Colon-Ascending(A)2	0.7	2.1
Cln CM67	Colon-Cecum(B)3	1.6	2.1
Cln AS67	Colon-Ascending(B)4	1.2	6.2
Cln AS43	Colon-Ascending(C)5	13.5	0.5
Cln AS46	Colon-Ascending(C)6	9.7	23.6
Cln AS98	Colon-Ascending(C)7	28.1	1.4
Cln AS89	Colon-Ascending(D)8	0.9	3.1
Cln TX01	Colon-Transverse(B)9	3.0	10.6
Cln TX89	Colon-Transverse (B) 10	4.5	0.6
Cln TX67	Colon-Transverse(C)11	3.6	3.4
Cln MT38	Colon-Splenic Flexture (M) 12	4.0	2.6
Cln SG89	Colon-Sigmoid(B)13	4.7	0.9

- 22 -

Cln SG67	Colon-Sigmoid(C)14	1.0	1.3
Cln SG33	Colon-Sigmoid(C)15	14.2	7.6
Cln SG45	Colon-Sigmoid(D)16	4.8	6.0
Cln B34	Colon-Rectosigmoid(A)17	3	2
Cln CXGA	Colon-Rectum(A)18	4.4	1.9
Cln RC67	Colon-Rectum(B)19	0.1	0.4
Cln C9XR	Colon-Rectosigmoid(C)20	5	3
Cln RS45	Colon-Rectosigmoid(C)21	11.4	4.6
Cln RC01	Colon-Rectum(C)22	1.8	2.3
Cln RC89	Colon-Rectum(D)23	0.1	5.35
Bld 46XK	Bladder 1	0.2	0
Bld 66X	Bladder 2	1	1
Bld 32XK	Bladder 3	0.1	0.1
Kid 126XD	Kidney 1	0	0.02
Kid 12XD	Kidney 2	0.1	0.2
Kid 5XD	Kidney 3	0.3	0.0
Kid 6XD	Kidney 4	0.1	0.1
Kid 106XD	Kidney 5	0.0	0.1
Liv 42X	Liver 1	7.9	0.002
Liv 15XA	Liver 2	0.0	0.0
Liv 94XA	Liver 3	0.0	0.0
Lng AC69	Lung 1	1.6	0.2
Lng BR94	Lung 2	0.4	0
Lng 47XQ	Lung 3	0.78	0.2
Mam 59X	Mammary Gland 1	0.05	0.3
Mam B011X	Mammary Gland 2	0.01	0.004
Mam A06X	Mammary Gland 3	0.22	0
Ovr 103X	Ovary 1	0.01	0.01
Ovr 130X	Ovary 2	0.09	0.1
Pan 71XL	Pancreas 1	2.51	2.81

Pan 82XP	Pancreas 2	0	0.62
Pro 12B	Prostate 1	0.3	0.1
Pro 23B	Prostate 2	0.3	0.2
Pro 13XB	Prostate 3	0	0
Pro 34B	Prostate 4	0.04	0.22
Pro 20XB	Prostate 5	0.4	0.1
Pro 65XB	Prostate 6	0.0	0.1
Tst 39X	Testis 1	0.02	0.01
End 8XA	Endometrium 1	0.01	0.5
Utr 85XU	Uterus 1	0.03	0

0= Negative

When matching samples were analyzed, the higher levels of expression were in colon, stomach, and small intestine, showing a high degree of tissue specificity for colon tissues. These results confirm the tissue specificity results obtained with normal pooled samples (Table 4). Furthermore, the level of mRNA expression in cancer samples and the isogenic normal adjacent tissue from the same individual were compared. This comparison provides an indication of specificity for the cancer stage (e.g. higher levels of mRNA expression in the cancer sample compared to the normal adjacent). Table 5 shows overexpression of Cln107 (SEQ ID NO:4) in 11 colon cancer tissues compared with their respective normal adjacent (colon samples #5, 7, 10, 11, 12, 13, 15, 17, 18, 20, and 21). There is overexpression in the cancer tissue for 48% of the colon matching samples tested (total of 23 colon matching samples). The matching sample Pan 71XL is a secondary cancer in pancreas, the primary cancer in that individual was a duodenal cancer.

Altogether, the high level of tissue specificity, plus the mRNA overexpression in almost half of the colon, stomach, and small intestine matching samples tested are demonstrative of CSG Cln107 (SEQ ID NO:4) being a diagnostic marker for colon cancer.

Measurement of SEQ ID NO:5; Clone ID 775133; Gene ID 24508 (Cln108)

The absolute numbers shown in Table 6 are relative levels of expression of CSG Cln108 (SEQ ID NO:5) in 12 normal different tissues. All the values are compared to normal small intestine (calibrator). These RNA samples are commercially available pools, originated by pooling samples of a particular tissue from different individuals.

Table 6: Relative levels of Cln108 Expression in Pooled Samples

Tissue	NORMAL
Colon-Ascending	2846.5
Endometrium	1
Kidney	5.5
Liver	18.7
Ovary	3.4
Pancreas	198.1
Prostate	1024
Small Intestine	810.8
Spleen	32.2
Stomach	9981.2
Testis	0
Uterus	294.1

The relative levels of expression in Table 6 show that mRNA expression of CSG Cln108 (SEQ ID NO:5) is more than 10 fold higher in the pool of normal ascending colon (2846.5) and almost ten fold higher in stomach (9981.2), compared to the expression level in any other tissue analyzed. These results demonstrate that mRNA expression of this CSG is also highly specific for colon and stomach.

The absolute numbers in Table 6 were obtained analyzing pools of samples of a particular tissue from different individuals. They can not be compared to the absolute numbers originated from RNA obtained from tissue samples of a single individual in Table 7.

The absolute numbers depicted in Table 7 are relative levels of expression of Cln108 (SEQ ID NO:5) in 57 pairs of matching samples. All the values are compared to normal small intestine (calibrator). A matching pair is formed by mRNA from the cancer sample for a particular tissue and mRNA from the normal adjacent sample for that same tissue from the same individual.

Table 7: Relative levels of Cln108 Expression in Individual Samples

	samples		
Sample ID	Tissue	Cancer	Matching Normal Adjacent
Sto AC93	Stomach 1	28696	34842
Sto AC99	Stomach 2	21523	30862
Sml 21XA	Small Intestine 1	2944	964.4
Sml H89	Small Intestine 2	244.5	3513.2
Cln B56	Colon-Cecum(A)1	27242	24637
Cln AS45	Colon-Ascending(A)2	5827.0	8771.0
Cln CM67	Colon-Cecum(B)3	4251.0	4684.0
Cln AS67	Colon-Ascending(B)4	564.0	1949.0
Cln AS43	Colon-Ascending(C)5	50310	10949
Cln AS46	Colon-Ascending(C)6	246044	120073
Cln AS98	Colon-Ascending(C)7	40442	17482
Cln AS89	Colon-Ascending(D)8	5730.0	1581.0
Cln TX01	Colon-Transverse(B)9	22281.0	114784.0
Cln TX89	Colon-Transverse(B)10	11026.0	1639.0
Cln TX67	Colon-Transverse(C)11	17004.0	11654.0
Cln MT38	Colon-Splenic Flexture (M) 12	77589	31620
Cln SG89	Colon-Sigmoid(B)13	140339.0	49617.0
Cln SG67	Colon-Sigmoid(C)14	4951.0	7905.0
Cln SG33	Colon-Sigmoid(C)15	60875	120490

Cln SG45	Colon-Sigmoid(D)16	30437.0	47267.0
Cln B34	Colon-Rectosigmoid(A)17	5848	5861
Cln CXGA	Colon-Rectum(A)18	13877.0	9787.0
Cln RC67	Colon-Rectum(B)19	1703.0	26589.0
Cln C9XR	Colon-Rectosigmoid(C)20	2458	19071
Cln RS45	Colon-Rectosigmoid(C)21	95523	61939
Cln RC01	Colon-Rectum(C)22	98891.0	80047.0
Cln RC89	Colon-Rectum(D)23	17.0	1775
Bld 46XK	Bladder 1	0	8
Bld 66X	Bladder 2	397	44
Bld 32XK	Bladder 3	0.0	16.0
Kid 126XD	Kidney 1	32	22
Kid 12XD	Kidney 2	6	0
Kid 106XD	Kidney 3	4.0	33.0
Liv 42X	Liver 1	4783	0
Liv 15XA	Liver 2	4.0	10.0
Liv 94XA	Liver 3	159.0	21.0
Lng AC69	Lung 1	222	295
Lng BR94	Lung 2	112	0
Lng 47XQ	Lung 3	30	69
Lng AC66	Lung 4	29	137
Mam 59X	Mammary Gland 1	56	0
Mam B011X	Mammary Gland 2	54	31
Mam A06X	Mammary Gland 3	12	0
Ovr 103X	Ovary 1	37	0
Pan 71XL	Pancreas 1	13203	4163
Pan 82XP	Pancreas 2	39.1	0
Pro 12B	Prostate 1	386	8.8
Pro 23B	Prostate 2	250	23
Pro 13XB	Prostate 3	92	731

		33.3	265.7
Pro 34B	Prostate 4	33.3	203.7
Pro 20XB	Prostate 5	454.6	1908.9
Pro 65XB	Prostate 6	733.5	922.0
End 8XA	Endometrium 1	5	92
Utr 85XU	Uterus 1	98.9	21.8
Utr 23XU	Uterus 2	35.3	0
Utr 135X0	Uterus 3	39.2	43.8
Utr 141X0	Uterus 4	212.1	55.9

0= Negative

When matching samples were analyzed, the higher levels of expression were in colon and stomach, showing a high degree of tissue specificity for these two tissues. These results confirm the tissue specificity results obtained with normal pooled samples (Table 6). Furthermore, the level of mRNA expression in cancer samples and the isogenic normal adjacent tissue from the same individual were compared. comparison provides an indication of specificity for the cancer stage (e.g. higher levels of mRNA expression in the cancer sample compared to the normal adjacent). Table 7 shows overexpression of CSG Cln108 (SEQ ID NO:5) in 13 colon cancer tissues compared with their respective normal adjacent (colon samples #1, 5, 6, 7, 8, 9, 10, 11, 12, 13, 18, 21, and 22). There is overexpression in the cancer tissue for 56% of the colon matching samples tested (total of 23 colon matching samples). The matching sample Pan 71XL is a secondary cancer in pancreas, the primary cancer in that individual was a duodenal cancer.

Altogether, the high level of tissue specificity, plus the mRNA overexpression in more than half of the colon, stomach, and small intestine matching samples tested are demonstrative of this CSG, Cln108 (SEQ ID NO:5), also being a diagnostic marker for colon cancer.

Measurement of SEQ ID NO:7; Clone ID 2348122; Gene ID 23371 (Cln109)

- 28 -

The absolute numbers depicted in Table 8 are relative levels of expression of CSG Cln109 (SEQ ID NO:7) in 12 normal different tissues. All the values are compared to normal ovary (calibrator). These RNA samples are commercially available pools, originated by pooling samples of a particular tissue from different individuals.

Table 8: Relative levels of Cln109 Expression in Pooled Samples

Tissue	NORMAL
Colon-Ascending	28.8
Endometrium	0.45
Kidney	0.41
Liver	0.72
Ovary	0.07
Pancreas	82.8
Prostate	124.3
Small Intestine	626.4
Spleen	1.2
Stomach	12.05
Testis	1.51
Uterus	52.99

The relative levels of expression in Table 8 show that mRNA expression of CSG Cln109 (SEQ ID NO:7), is more than 5 fold higher in the pool of normal small intestine (626.4) compared to the expression level in any other tissue analyzed. These results demonstrate that Cln109 (SEQ ID NO:7) mRNA expression is highly specific for small intestine

The absolute numbers in Table 8 were obtained analyzing pools of samples of a particular tissue from different individuals. They can not be compared to the absolute numbers originated from RNA obtained from tissue samples of a single individual in Table 9.

The absolute numbers depicted in Table 9 are relative levels of expression of Cln109 (SEQ ID NO:7) in 53 pairs of matching samples. All the values are compared to normal ovary (calibrator). A matching pair is formed by mRNA from the

cancer sample for a particular tissue and mRNA from the normal adjacent sample for that same tissue from the same individual.

Table 9: Relative levels of Cln109 Expression in Individual Samples

Sample ID	Tissue	Cancer	Matching Normal Adjacent
Sto AC93	Stomach 1	2574	1310
Sto AC99	Stomach 2	4153	5
Sml 21XA	Small Intestine 1	2667	13663.8
Sml H89	Small Intestine 2	57.8	904.29
Cln B56	Colon-Cecum(A)1	6794	299
Cln AS45	Colon-Ascending(A)2	814.6	105.8
Cln CM67	Colon-Cecum(B)3	294.6	36.1
Cln AS67	Colon-Ascending(B)4	2.2	26.3
Cln AS43	Colon-Ascending(C)5	111	377
Cln AS46	Colon-Ascending(C)6	1180	352
Cln AS98	Colon-Ascending(C)7	1075	92
Cln AS89	Colon-Ascending(D)8	14022.7	87.5
Cln TX01	Colon-Transverse(B)9	1027.6	282.1
Cln TX89	Colon-Transverse(B)10	2.5	23.7
Cln TX67	Colon-Transverse(C)11	0.1	72.3
Cln MT38	Colon-Splenic Flexture(M)12	372	88
Cln SG89	Colon-Sigmoid(B)13	179.2	33.4
Cln SG67	Colon-Sigmoid(C)14	85.0	94.7
Cln SG33	Colon-Sigmoid(C)15	5461	377
Cln SG45	Colon-Sigmoid(D)16	762.7	15.9
Cln B34	Colon-Rectosigmoid(A)17	460	1
Cln RC67	Colon-Rectum(B)18	64.5	136.2
Cln C9XR	Colon-Rectosigmoid(C)19	441	34
Cln RS45	Colon-Rectosigmoid(C)20	1931	195

Cln RC01	Colon-Rectum(C)21	72.8	19.1
Cln RC89	Colon-Rectum(D)22	4.8	90.2
Bld 46XK	Bladder 1	4	3
Bld 66X	Bladder 2	1	0
Bld 32XK	Bladder 3	0.1	307.6
Kid 126XD	Kidney 1	0	2
Kid 12XD	Kidney 2	3	16
Kid 5XD	Kidney 3	0.0	0.3
Kid 6XD	Kidney 4	18.5	1.2
Liv 42X	Liver 1	21	0.03
Liv 15XA	Liver 2	0.5	0.4
Liv 94XA	Liver 3	0.4	0.0
Lng AC69	Lung 1	0.1	0
Lng BR94	Lung 2	3	0
Lng 60XL	Lung 3	0.1	0
Mam 59X	Mammary Gland 1	0	4
Mam B011X	Mammary Gland 2	8	13
Mam A06X	Mammary Gland 3	4.7	9.6
Pan 71XL	Pancreas 1	8902.5	1428.2
Pan 82XP	Pancreas 2	0.2	9.3
Pro 12B	Prostate 1	9	20
Pro 23B	Prostate 2	191	88
Pro 13XB	Prostate 3	12	460
Pro 34B	Prostate 4	3.2	80.4
Tst 39X	Testis 1	29.9	0
End 8XA	Endometrium 1	0.3	21
Utr 85XU	Uterus 1	244.7	592.2
Ovr 63A	Ovary 1	11.4	0
Ovr AlC	Ovary 2	68.4	0

0= Negative

When matching samples were analyzed, the higher levels of expression were in small intestine, colon and stomach, showing a high degree of tissue specificity for these three colon tissues. These results confirm the tissue specificity results obtained with normal pooled samples for Furthermore, the level of mRNA intestine (Table 8). expression in cancer samples and the isogenic normal adjacent tissue from the same individual were compared. comparison provides an indication of specificity for the cancer stage (e.g. higher levels of mRNA expression in the cancer sample compared to the normal adjacent). Table 9 shows overexpression of CSG, Cln109 (SEQ ID NO:7) in 15 colon cancer tissues compared with their respective normal adjacent (colon samples #1, 2, 3, 6, 7, 8, 9, 12, 13, 15, 16, 17, 19, 20, and There is overexpression in the cancer tissue for 68% of the colon matching samples tested (total of 22 colon matching samples). The matching sample Pan 71XL is a secondary cancer in pancreas, the primary cancer in that individual was a duodenal cancer.

Altogether, the high level of tissue specificity, plus the mRNA overexpression in more than half of the colon, stomach, and small intestine matching samples tested are demonstrative of CSG Cln109 (SEQ ID NO:7) being a diagnostic marker for colon cancer. The amino acid sequence encoded by the open reading frame of Cln109 is depicted in SEQ ID NO:10.

What is claimed is:

1. A method for diagnosing the presence of colon cancer in a patient comprising:

- 32 -

- (a) measuring levels of CSG in a sample of cells, tissue or bodily fluid obtained from the patient; and
- (b) comparing the measured levels of CSG with levels of CSG in a sample of cells, tissue or bodily fluid obtained from a control, wherein an increase in measured levels of CSG in the patient versus the CSG levels in the control is associated with the presence of colon cancer.
- 2. A method of diagnosing metastatic colon cancer in a patient comprising:
- (a) measuring levels of CSG in a sample of cells, tissue, or bodily fluid obtained from the patient; and
- (b) comparing the measured levels of CSG with levels of CSG in a sample of cells, tissue, or bodily fluid obtained from a control, wherein an increase in measured CSG levels in the patient versus the CSG levels in the control is associated with a cancer which has metastasized.
- 3. A method of staging colon cancer in a patient comprising:
 - (a) identifying a patient suffering from colon cancer;
- (b) measuring levels of CSG in a sample of cells, tissue, or bodily fluid obtained from the patient; and
- (c) comparing the measured levels of CSG with levels of CSG in a sample of cells, tissue, or bodily fluid obtained from a control, wherein an increase in the measured levels of CSG versus the levels of CSG in the control is associated with a cancer which is progressing and a decrease in the measured levels of CSG versus the levels of CSG in the control is associated with a cancer which is regressing or in remission.

- 4. A method of monitoring colon cancer in a patient for the onset of metastasis comprising:
- (a) identifying a patient having colon cancer that is not known to have metastasized;
- (b) periodically measuring CSG levels in samples of cells, tissue, or bodily fluid obtained from the patient; and
- (c) comparing the periodically measured levels of CSG with levels of CSG in cells, tissue, or bodily fluid obtained from a control, wherein an increase in any one of the periodically measured levels of CSG in the patient versus the levels of CSG in the control is associated with a cancer which has metastasized.
- 5. A method of monitoring changes in a stage of colon cancer in a patient comprising:
 - (a) identifying a patient having colon cancer;
- (b) periodically measuring levels of CSG in samples of cells, tissue, or bodily fluid obtained from the patient; and
- (c) comparing the measured levels of CSG with levels of CSG in a sample of the same cells, tissue, or bodily fluid of a control, wherein an increase in any one of the periodically measured levels of CSG versus levels of CSG in the control is associated with a cancer which is progressing in stage and a decrease in any one of the periodically measured levels of CSG versus the levels of CSG in the control is associated with a cancer which is regressing in stage or in remission.
- 6. The method of claim 1, 2, 3, 4 or 5 wherein the CSG comprises SEQ ID NO:3, 4, 5 or 7.

SEQUENCE LISTING

```
<110> Macina, Roberto A.
     Yang, Fei
     Sun, Yongming
<120> A Novel Method of Diagnosing, Monitoring and Staging
     Colon Cancers
<130> DEX-0035
<140>
<141>
<150> 60/086,266
<151> 1998-05-21
<160> 10
<170> PatentIn Ver. 2.0
<210> 1
<211> 487
<212> DNA
<213> Homo sapiens
<400> 1
tetgeatetg geeeteccag tgeacetgtt caateccage yeeteeetga eetgtacaaa 60
tacacctgag gaccggctcg agcccagact tectgecect getetgeact etcaggtatt 120
ccctgctctt actccaaaaa gatggaccca ggtccgaagg ggcactgcca ctgtgggggg 180
catggccatc ctccaggtca ctgcgggcga acccctggcc atggcccagg gccctgcggg 240
ccacccctg gccatggccc agggccctgc gggcaacccc ctggccatgg cccagggccc 300
tgcgggcctc cccctggcca tggcccaggt cacccaccc ctggtccaca tcactgagga 360
agtagaagaa aacaggacac aagatggcaa gcctgagaga attgcccagc tgacctggaa 420
tgaggectaa accaeaatet tetetteeta ataaacagee teetagagge caeattetat 480
                                                                   487
tctttaa
<210> 2
<211> 739
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> (693)
<220>
<221> unsure
```

```
<222> (698)..(699)
<220>
<221> unsure
<222> (703)..(705)
<220>
<221> unsure
<222> (708)
<220>
<221> unsure
<222> (710)..(716)
<220>
<221> unsure
<222> (718)
<220>
<221> unsure
<222> (723)..(726)
<220>
<221> unsure
<222> (728)
<220>
<221> unsure
<222> (732)
<220>
<221> unsure
<222> (737)
<400> 2
totgaaactg toagttocac cagoactgot tggatactgg taagtttoca gggggotgot 60
ttgcatctga aactgccagc eccagaatgt tgacagtcgc tetectagec ettetetgtg 120
cctcagcctc tggcaatgcc attcaggcca ggtcttcctc ctatagtgga gagtatggaa 180
gtggtggtgg aaagcgatte teteattetg geaaceagtt ggaeggeece ateaeegeee 240
teegggteeg agteaacaca tactacateg taggtettea ggtgegetat ggeaaggtgt 300
ggagcgacta tgtgggtggt cgcaacggag acctggagga gatctttctg caccctgggg 360
aatcagtgat ccaggtttct gggaagtaca agtggtacct gaagaagctg gtatttgtga 420
cagacaaggg cogctatorg tottttggga aagacagtgg cacaagttto aatgccgtcc 480
cettgcaccc caacaccgtg ctccgcttca tcagtggccg gtctggttct ctcatcgatg 540
ccattggcct gcactgggat gtttacccca ctagctgcag cagatgctga gcctcctctc 600
cttggcaggg gcactgtgat gaggagtaag aactccctta tcactaaccc ccatccaaat 660
ggctcaataa aaaaatatgg ttaaggctaa aanaaaanng gannnaanan nnnnnntnca 720
                                                                    739-
aannnnantt cncctgnta
```

```
<210> 3
<211> 428
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> (391)
<400> 3
aattgtoogg ggtoaaacag aggagagoat gaatgagagt catcotogoa agtgtgoaga 60
gtottttgag atgtgggatg atcgtgacto coactgtagg cgccctaagt ttgaagggca 120
tececetgag tettggaagt ggateettge aceggteatt etttatatet gtgaaaggat 180
corceggttt taccgctccc agcagaaggt tgtgattacc aaggttgtta tgcacccate 240
caaagtttig gaattgcaga tgaacaagcg tggcttcagc atggaagtgg ggcagtatat 300
ctttgttaat tgccccccaa tctctctcct gggaatggca tccttttact ttgacctctc 360
ctccagagga agatttotto ttcattcata tncgagcago aggggacttg acagaaaato 420
tataaggg
<210> 4
<211> 1347
<212> DNA
<213> Homo sapiens
<400> 4
ggaaaacccc tgagcacaaa gcaagaggca tcgaagcccc ctcggggatg cccgcaagcc 60
aacaggggtg tegtgeggtg ggagtaette egeetgegte etetgeggtt cagggeecea 120
gacgageece ageaggeeca agteceecat gtetgggget gggaggtgge tggggeecet 180
gcactgaggc tgcagaagtc ccagtcatct gatctgctgg aaagggagag ggagagtgtc 240
ctgcgccggg agcaagaggt ggcagaggag cggagaaatg ctctcttccc agaggtcttc 300
tececaaege cagatgagaa etetgaceag aaeteeagga geteeteeca ggeateegge 360
atcacgggca gttactcggt gtctgagtct cccttcttca gccccatcca cctacactca 420
aacgtggcgt ggacagtgga agatccagtg gacagtgctc ctcccgggca gagaaagaag 480
gagcaatggt acgetggcat caaccecteg gaeggtatea acteagaggt cetggaagee 540
atacgggtga cccgtcacaa gaacgccatg gcagagcgct gggaatcccg catctacgcc 601
agtgaggagg atgactgage etegggatgg ggegeeeace eeetgeeetg eeetgaeeet 660
cgtgggaact gccaagacca tcgccaagcc cccaccctag gaaatgggtc ctaggtccag 720
gatecaagaa ecacagetea tetgecaaca ateccaceat gggeacattt gggaetgttg 780
ggtttttcgt ttccgtttct atcttccttt agaaatgttt ctgcctttgg ggtctaaagc 840
ttttggggat gaaatgggga cccctgctga ttctttctgc ttctaagact ttgccaaatg 901
coctgggtot aagaaagaaa gagacccgot cotcoacttt caggtgtaat ttgottoogo 960
tagtctgagg gcagaggcac cggtcaaaga gggtggcaca gatcgcagca ccttgagggg 1020
ctgcgggtct gagggaggag acactcagct cctccctctg agaagtccca agctgagagg 1080
ggagacctgc ccctttccaa ccctgggaaa ccatccagtc tgagggagga ggccaaactc 1140
ccagtgctgg gggtccctgt gcagccctca aacccttcac cttggtgcac ccagccacac 1200
ctggtggaca caaagctctc acatcgatag gatcccatga ggatggtccc cttcacctgg 1260
gagaaaagtg acccagttta ggagctggag gggggtcttt gtcccccacc cccaaactgc 1320
```

```
1347
cctgaaataa acctggagtg agctgcc
<210> 5
<211> 1249
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> (1034)..(1046)
<400> 5
ggcagageet gegeagggea ggageagetg geceactgge ggeeegeaac acteegtete 60
accetetggg eccaetgeat etagaggagg geegtetgtg aggeeactae eecteeagea 120
actgggaggt gggactgtca gaagstggcc cagggtggtg gtcagstggg tcagggacct 180
aacqqcacct ggctgggacc acctcgcctt ctccatcgaa gcaggggaag tgggagcctc 240
gageceregg gregaagerg acceeaagee accetteace regacagear gagagreera 300
ggtgtgcttc gcctcctggc cctcatcttt gccatagtca cgacatggat gtttattcga 360
agotacatga gottcagoat gaaaaccato ogtotgocac gotggotggo ctogoccaco 420
aaggagatee aggttaaaaa gtacaagtgt ggeeteatea ageeetgeee ageeaactae 480
tttgcgttta aaatctgcag tggggccgcc aacgtcgtgg gccctactat gtgctttgaa 540
gaccgcatga tcatgagtcc tgtgaaaaac aatgtgggca gaggcctaaa catcgccctg 600
gtgaatggaa ccacgggagc tgtgctggga cagaagtcat ttgacatgta ctctggagat 660
gttatgcacc tagtgaaatt ccttaaagaa attccggggg gtgcactggt gctggtggcc 720
tcctacgacg atccagggac caaaatgaac gatgaaagca ggaaactctt ctctgacttg 780
gggagttcct acgcaaaaca actgggcttc cgggacagct gggtcttcat aggagccaaa 840
gaceteaggg gtaaaageee etttgageag ttettaaaga acageeeaga cacaaacaaa 900
tacgagggat gcccagagct gctggagatg gagggctgca tgcccccgaa gccattttag 960
ggtggctgtg gctcttcctc agccaggggc ctgaagaagc tcctgcctga cttaggagtc 1020
agagecegge aggnnnnnn nnnnnnnnn nnnnnntget gegtggaagg tgetgeaggt 1080
cettgeacge tgtgtegege etetecteet eggaaacaga acceteceae ageacateet 1140
accoggaaga ccagootoag agggtootto tggaaccago tgtotgtgga gagaatgggg 1200
                                                                  1249
tgctttcgtc agggactgct gacggctggt cctgaggaag gacaaactg
<210> 6
<211> 1220
<212> DNA
<213> Homo sapiens
<400> 6
gettretgea ceteatteea cateaggage gtttttggag aaagetgeae tetgttgage 60
tocagggogo agtggaggga gggagtgaag gagotototg tacccaagga aagtgcagot 120
gagactcaga caagattaca atgaaccaac tcagcttcct gctgtttctc atagcgacca 180
ccagaggatg gagtacagat gaggctaata cttacttcaa ggaatggacc tgttcttcgt 240
ctccatctct gcccagaagc tgcaaggaaa tcaaagacga atgtcctagt gcatttgatg 300
gcctgtattt tctccgcact gagaatggtg ttatctacca gaccttctgt gacatgacct 360
ctgggggtgg cgcctggacc ctgctggcca gcgtgcacga gaatqacatg cgtgggaagt 420
gcacggtggg cgatcgctgg tccagtcagc agggcagcaa agcagtctac ccagaggggg 480
```

```
acggcaactg ggccaactac aacacctttg gatctgcaga ggcggccacg agcgatgact 540
acaagaaccc tggctactac gacatccagg ccaaggacct gggcatctgg cacgtgccca 600
ataagtcccc catgcagcac tggagaaaca gctccctgct gaggtaccgc acggacactg 660
gettecteca gacactogga cataatetgt ttggeateta ceagaaatat eeagtgaaat 720
atggagaagg aaagtgttgg actgacaacg gcccggtgat ccctgtggtc tatgattttg 780
gcgacgccca gaaaacagca tottattact caccotatgg ccagogggaa ttcactgcgg 840
gatttgttca gttcagggta tttaataacg agagagcagc caacgccttg tgtgctggaa 900
tgagggtcac cggatgtaac actgagcacc actgcattgg tggaggagga tactttccag 960
aggccagtcc ccagcagtgt ggagattttt ctggttttga ttggagtgga tatggaactc 1020
atgttggtta cagcagcagc cgtgagataa ctgaggcagc tgtgcttcta ttctatcgtt 1080
gagagttttg tgggagggaa cccagacete teeteecaae catgagates caaggatgga 1140
gaacaactta cccaçtaget agaatgttaa tggcagaaga gaaaacaata aatcatattg 1200
                                                                  1220
actcaaaaaa aaaaaaaaag
<210> 7
<211> 2796
<212> DNA
<213> Homo sapiens
<400> 7
eggetegagg gacaggatga ggeceggeet eteatttete etagecette tgttetteet 60
tggccaaget gcaggggatt tgggggatgt gggaceteca atteccagee eeggetteag 120
ccctttccca ggtgttgact ccagctccag cttcagctcc agctccaggt cgggctccag 180
ctocagoogo agottaggoa goggaggtto tgtgtoccag ttgttttoca atttcacogg 240
ctccgtggat gaccgtggga cctgccagtg ctctgtttcc ctgccagaca ccacctttcc 300
cgtggacaga gtggaacgct tggaattcac agctcatgtt ctttctcaga agtttgagaa 360
agaactttcc aaagtgaggg aatatgtcca attaattagt gtgtatgaaa agaaactgtt 420
aaacctaact gtccgaattg acatcatgga gaaggatacc atttcttaca ctgaactgga 480
cttcgagctg atcaaggtag aagtgaagga gatggaaaaa ctggtcatac agctgaagga 540
gagttītggt ggaagcīcag aaartgītga ccagctggag gtggagataa gaaatatgac 600
tetettggta gagaagettg agacactaga caaaaacaat greettgeea tregeegaga 660
aatogtggot otgaagacca agotgaaaga gtgtgaggoo totaaagato aaaacaccoo 720
tgtcgtccac cctcctccca ctccagggag ctgtggtcat ggtggtgtgg tgaacatcag 780
caaaccgtct gtggttcagc tcaactggag agggttttct tatctatatg gtgcttgggg 840
tagggattac tetececage atecaaacaa aggaetgtat tgggtggege cattgaatae 900
agatgggaga etgttggagt attatagaet gtacaacaca etggatgatt tgetattgta 960
tataaatgct cgagagttgc ggatcaccta tggccaaggt agtggtacag cagtttacaa 1020
caacaacatg tacgtcaaca tgtacaacac cgggaatatt gccagagtta acctgaccac 1080
caacacgatt getgtgacte aaacteteee taatgetgee tataataace getttteata 1140
tgotaatgtt gottggcaag atattgactt tgotgtggat gagaatggat tgtgggttat 1200
ttattcaact gaagccagca etggtaacat ggtgattagt aaactcaatg acaccacact 1260
teaggtgeta aacaettggt ataccaagea gtataaacea tetgetteta aegeetteat 1320
ggtatgtggg gttctgtatg ccaccogtac tatgaacacc agaacagaag agatttttta 1380
ctattatgac acaaacacag ggaaagaggg caaactagac attgtaatgc ataagatgca 1440
ggaaaaagtg cagagcatta actataaccc ttttgaccag aaactttatg tctataacga 1500
tggttacctt ctgaattatg atctttctgt cttgcagaag ccccagtaag ctgtttagga 1560
gttagggtga aagagaaaat gtttgttgaa aaaatagtot totocactta ottagatato 1620
tgcaggggtg totaaaagtg tgttcatttt gcagcaatgt ttaggtgcat agttctacca 1680
```

```
cactagagat ctaggacatt tgtcttgatt tggtgagttc tcttgggaat catctgcctc 1740
ttcaggcgca ttttgcaata aagtctgtct agggtgggat tgtcagaggt ctaggggcac 1800
tgtgggccta gtgaagccta ctgtgaggag gcttcactag aagccttaaa ttaggaatta 1860
aggaacttaa aactcagtat ggcgtctagg gattctttgt acaggaaata ttgcccaatg 1920
actagtecte atecatgtag caccactaat tettecatge etggaagaaa eetggggaet 1980
tagttaggta gattaatato tggagotoot ogagggacoa aatotocaao ttttttttoo 2040
cctcactaca cctggaatga tgctttgtat gtggcagata agtaaatttg gcatgcttat 2100
atattetaca tetgtaaagt getgagtttt atggagagag geetttttat geattaaatt 2160
gtacatggca aataaatccc agaaggatct gtagatgagg cacctgcttt ttcttttctc 2220
tcattgtcca ccttactaaa agtcagtaga atcttctacc tcataacttc cttccaaagg 2280
cageteagaa gattagaace agaettaeta accaatteea ecceceacea accecettet 2340
actqcctact ttaaaaaaat taatagtttt ctatggaact gatctaagat tagaaaaatt 2400
aattttetti aattteatta tggaetttta titaeatgae tetaagaeta taagaaaate 2460
tgatggcagt gacaaagtgc tagcatttat tgttatctaa taaagacctt ggagcatatg 2520
tgcaacttat gagtgtatca gttgttgcat gtaatttttg cctttgttta agcctggaac 2580
ttgtaagaaa atgaaaattt aattttttt totaggacga gotatagaaa agotattgag 2640
agtatotagt taatcagtgo agtagttgga aacottgotg gtgtatgtga tgtgottotg 2700
tgcttttgaa tgactttate atctagtett tgtetgtttt teetttgatg tteaagteet 2760
agtotatagg artggcagtt taaatgcttt actccc
                                                                  2796
<210> 8
<211> 2331
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> (675)
<400> 8
tttatcacgg gctcaactgc aacaaaacac ttccttgaca gctccacaaa ctcaggccac 60
agtgaggaat caacaatatt ccacagcage ccagatgcaa gtggaacaac acceteatet 120
goccactoca caaceteagg tegtggagaa tetacaacet caegeateag teeaggetea 180
actgaaataa caacgttacc tggcagtacc acaacaccag gcctcagtga ggcatctacc 240
accttctaca gtagccccag atcaccagac caaacactct cacctgccag catgagaage 300
tocagcatca gtggagaacc caccagcttg tatagccaag cagagtcaac acacacaaca 360
gegtteectg ccageaceae caecteagge eteagteagg aateaacaae titeeacagt 420
aagccagget caactgagac aacactgtee eetggcagea teacaactte atettttget 480
caagaattta ccaccectca tagccaacca ggetcagete tgtcaacagt gtcacctgee 540
agcaccacag tgccaggcct tagtgaggaa tctaccacct tctacagcag cccaggctca 600
actgaaacca cagcgttttc tcacagcaac acaatgtcca ttcatagtca acaatctaca 660
coefficient acagnocagg efficactoac acagngthae effecaceet cacaaccaca 720
gacattggtc aggaatcaac agcettecae ageageteag aegeaactgg aacaacaeee 780
ttacctgccc gctccacagc ctcagacctt gttggagaac ctacaacttt ctacatcagc 840
ccatccccta cttacacaac actctttcct gcgagttcca gcacatcagg cctcactgag 900
gaatetacea cettecacae cagtecaage treactteta caattgtgte taetgaaage 960
ctggaaacst tagcaccagg gttgtgccag gaaggacaaa tttggaatgg aaaacaatgs 1020
gtotgtocco aaggotacgt tggttaccag tgottgtoco ototggaato ottocotgta 1080
```

```
gaaaccccgg aaaaactcaa cgccacttta ggtatgacag tgaaactgac ttacagaaat 1140
ttcacagaaa agatgaatga cgcatcctcc caggaatacc agaacttcag taccctcttc 1200
aagaatcgga tggatgtcgt tttgaagggc gacaatcttc ctcagtatag aggggtgaac 1260
attoggagat tgctcaacgg tagcatcgtg gtcaagaacg atgtcatcct ggaggcagac 1320
tacactttag agtatgagga actgtttgaa aacctggcag agattgtaaa ggccaagatt 1380
atgaatgaaa ctagaacaac tottottgat cotgattoot goagaaaggo catactgtgo 1440
tatagtgaag aggacacttt cgtggattca tcggtgactc cgggctttga cttccaggag 1500
caatgcaccc agaaggctgc cgaaggatat acccagttct actatgtgga tgtcttggat 1560
gggaagetgg cetgtgtgaa caagtgeace aaaggaacga agtegeaaat gaactgtaac 1620
ctgggcacat gtcagctgca acgcagtgga cccccgctgc ctgtgcccaa atacgaacac 1680
acactggtac tggggagaga cctgtgaatt caacatcgcc aagagcctcg tgtatgggat 1740
cgtggggget gtgatggcgg tgctgctgct cgcattgatc atcctaatca tcttattcag 1800
cctateccag agaaaacgge acagggaaca gtatgatgtg cctcaagagt ggcgaaagga 1860
aggcacceet ggcatettee agaagaegge catetgggaa gaccagaate tgagggagag 1920
cagattegge ettgagaaeg eetacaaeaa etteeggeee accetggaga etgttgaete 1980
tggcacagag ctccacatcc agaggccgga gatggtagca tccactgtgt gagccaacgg 2040
gggcctccca ccctcatcta gctctgttca ggagagctgc aaacacagag cccaccacaa 2100
gcctccgggg cgggtcaaga ggagaccgaa gtcaggccct gaagccggtc ctgctctgag 2160
ctgacagact tggccagtcc cctgcctgtg ctcctgctgg ggaaggctgg gggctgtaag 2220
cototocato ogggagotto cagactocca gaagootogg caccootgto tootootggg 2280
tggctcccca ctctggaatt tccctaccaa taaaagcaaa tctgaaagct c
                                                                  2331
<210> 9
<211> 909
<212> DNA
<213> Homo sapiens
<400> 9
gaggaggtgg gcgccaacag acaggcgatt aatgcggctc ttacccaggc aaccaggact 60
acagtataca ttgtggacat tcaggacata gattctgcag ctcgggcccg acctcactcc 120
tacctcgatg cctactttg: cttccccaat gggtcagccc tgacccttga tgagctgagt 180
gtgatgatcc ggaatgatca ggactcgctg acgcagctgc tgcagctggg gctggtggtg 240
ctgggctccc aggagagcca ggagtcagac ctgtcgaaac agctcatcag tgtcatcata 300
ggattgggag tggctttgct gctggtcctt gtgatcatga ccatggcctt cgtgtgtgt 360
cggaagaget acaaccggaa getteaaget atgaaggetg ceaaggagge caggaagaca 420
gcagcagggg tgatgccctc agcccctgcc atcccaggga ctaacatgta caacactgag 480
cgagccaacc ccatgctgaa cctccccaac aaagacctgg gcttggagta cctctctccc 540
tecaatgace tggactetgt cagegteaac tecetggacg acaactetgt ggatgtggac 600
aagaacagto aggaaatcaa ggagcacagg ccaccacaca caccaccaga gccagatcca 660
gagecectga gegtggtest gttaggaegg caggeaggeg caagtggaea getggagggg 720
ccatcctaca ccaacgctgg cctggacacc acggacctgt gacaggggcc cccactcttc 780
tggacccctt gaagaggeee taccacacce taactgcace tgtctccctg gagatgaaaa 840
tatatgacgc tgccctgcct cctgcttttg gccaatcacg gcagacaggg gttggggaaa 900
                                                                   909
 tattttatt
 <210> 10
 <211> 510
 <212> PRT
```

<213> Homo sapiens

225

<400	> 10)													
Met 1	Arg	Pro	Gly	Leu 5	Ser	Phe	Leu	Leu	Ala 10	Leu	Leu	Phe	Phe	Leu 15	Gly
Gln	Ala	Ala	Gly 20	Asp	Leu	Gly	Asp	Val 25	Gly	Pro	Pro	Ile	Pro 30	Ser	Pro
Gly	Phe	Ser 35	Pro	Phe	Pro	Gly	Val 40	Asp	Ser	Ser	Ser	Ser 45	Phe	Ser	Ser
Ser	Ser 50	Arg	Ser	Gly	Ser	Ser 55	Ser	Ser	Arg	Ser	Leu 60	Gly	Ser	Gly	Gly
Ser 65	Val	Ser	Gln	Leu	Phe 70	Ser	Asn	Phe	Thr	Gly 75	Ser	Val	Asp	Asp	Arg 80
Gly	Thr	Cys	Gln	Cys 85	Ser	Val	Ser	Leu	Pro 90	Asp	Thr	Thr	Phe	Pro 95	Val
Asp	Arg	Val	Glu 100	Arg	Leu	Glu	Phe	Thr 105	Ala	His	Val	Leu	Ser 110	Gln	Lys
Phe	Glu	Lys 115	Glu	Leu	Ser	Lys	Val 120	Arg	Glu	Tyr	Val	Gln 125	Leu	Ile	Ser
Val	Tyr 130	Glu	Lys	Lys	Leu	Leu 135	Asn	Leu	Thr	Val	Arg 140	Ile	Asp	Ile	Met
Glu 145	Lys	Asp	Thr	Ile	Ser 150	Tyr	Thr	Glu	Leu	Asp 155	Phe	Glu	Leu	Ile	Lys 160
Val	Glu	Val	Lys	Glu 165	Met	Glu	Lys	Leu	Val 170	Ile	Gln	Leu	Lys	Glu 175	Ser
Phe	Gly	Gly	Ser 180		Glu	Ile	Val	Asp 185		Leu	Glu	Val	Glu 190	Ile	Arg
Asn	Met	Thr 195		Leu	Val	Glu	Lys 200		Glu	Thr	Leu	Asp 205		Asn	Asn
Val	Leu 210		Ile	Arg	Arg	Glu 215		Val	Ala	Leu	Lys 220		Lys	Leu	Lys
Glu	Cys	Glu	Ala	Ser	Lys	Asp	Gln	Asn	Thr	Pro	Val	Val	His	Pro	Pro

230 235 240

Pro	Thr	Pro	Gly	Ser 245	Cys	Gly	His	Gly	Gly 250	Val	Val	Asn	Ile	Ser 255	Lys
Pro	Ser	Val	Val 260	Gln	Leu	Asn	Trp	Arg 265	Gly	Phe	Ser	Tyr	Leu 270	Tyr	Gly
Ala	Trp	Gly 275	Arg	Asp	Tyr	Ser	Pro 280	Gln	His	Pro	Asn	Lys 285	Gly	Leu	Tyr
Trp	Val 290	Ala	Pro	Leu	Asn	Thr 295	Asp	Gly	Arg	Leu	Leu 300	Glu	Tyr	Tyr	Arg
Leu 305	Tyr	Asn	Thr	Leu	Asp 310	Asp	Leu	Leu	Leu	Tyr 315	Ile	Asn	Ala	Arg	Glu 320
Leu	Arç	Ile	Thr	Tyr 325	Gly	Gln	Gly	Ser	Gly 330	Thr	Ala	Val	Tyr	Asn 335	Asn
Asn	Met	Tyr	Val 340	Asn	Met	Tyr	Asn	Thr 345	Gly	Asn	Ile	Ala	Arg 350	Val	Asn
Leu	Thr	Thr 355	Asn	Thr	Ile	Ala	Val 360	Thr	Gln	Thr	Leu	Pro 365	Asn	Ala	Ala
Tyr	Asn 370	Asn	Arg	Phe	Ser	Tyr 375	Ala	Asn	Val	Ala	Trp 380	Gln	Asp	Ile	Asp
Phe 385	Ala	Val	qzA	Glu	Asn 390	Gly	Leu	Trp	Val	Ile 395	Tyr	Ser	Thr	Glu	Ala 400
Ser	Thr	Gly	Asn	Met 405	Val	Ile	Ser	Lys	Leu 410	Asn	Asp	Thr	Thr	Leu 415	Gln
Val	Leu	Asn	Thr 420	Trp	Tyr	Thr	Lys	Gln 425	Tyr	Lys	Pro	Ser	Ala 430	Ser	Asn
Ala	Phe	Met 435	Val	Cys	Gly	Val	Leu 440	Tyr	Ala	Thr	Arg	Thr 445	Met	Asn	Thr
Arg	Thr 450		Glu	Ile	Phe	Tyr 455		Tyr	Asp	Thr	Asn 460		Gly	Lys	Glu
Gly 465		Leu	Asp	Ile	Val 470	Met	His	Lys	Met	Gln 475		Lys	Val	Gln	Ser 480
Ile	Asn	Tyr	Asn	Pro 485		Asp	Gln	Lys	Leu 490		Val	Tyr	Asn	Asp 495	

Tyr Leu Leu Asn Tyr Asp Leu Ser Val Leu Gln Lys Pro Gln 500 505 510

INTERNATIONAL SEARCH REPORT

International application No. PCT/US99/10498

A. CLASSIFICATION OF SUBJECT MATTER IPC(6) :C12Q 1/68; G01N 33/53, 33/574								
110 C1 .435/4 6 7 1	ional classification and IPC							
According to International Patent Classification (IPC) or to both nat B. FIELDS SEARCHED								
B. FIELDS SEARCHED Minimum documentation searched (classification system followed b	y classification symbols)							
U.S. : 435/4, 6, 7.1								
Documentation searched other than minimum documentation to the ex	stent that such documents are included in the fields searched							
Documentation searched other than minimum documentation to the or	CELL HIST SECTION CONTINUES OF THE CONTI							
Electronic data base consulted during the international search (nam	e of data base and, where practicable, search terms used)							
Scisearch, HCAPLUS, medline, biosis, membase, wpids, jicst-epl	us, biobusiness, biotecnos, pain, paie, embai							
C. DOCUMENTS CONSIDERED TO BE RELEVANT								
Category* Citation of document, with indication, where appr	opriate, of the relevant passages Relevant to claim No.							
X WO 96/39419 A1 (HUMAN GENOM	ME SCIENCES, INC.) 12 1-5							
December 1996, see entire document.								
Further documents are listed in the continuation of Box C.	See patent family annex.							
Special categories of cited documents:	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand							
A document defining the general state of the art which is not considered to be of particular relovance	the principle or theory underlying the invention 'X' document of particular relevance; the claimed invention cannot be							
"E" earlier document published on or after the international filing date	considered novel or cannot be considered to involve an inventive step when the document is taken alone							
L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	eye document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is							
O document referring to an oral disclosure, use, exhibition or other								
p document published prior to the international filing date but later than the priority date claimed	*&* document member of the same patent family							
Date of the actual completion of the international search	Date of mailing of the international search report							
16 AUGUST 1999	1 0 SEP 1999							
Name and mailing address of the ISA/US	Authorized-officer							
Commissioner of Patents and Trademarks Box PCT	NANCY JOHNSON JOL							
Washington, D.C. 20231 Facsimile No. (703) 305-3230	Telephone No. (703) 308-0196							
· · · · · · · · · · · · · · · · · · ·								

INTERNATIONAL SEARCH REPORT

International application No. PCT/US99/10498

the court of them I of flow sheet)
Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2. X Claims Nos.: 6 because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
The sequence listing in computer readable form did not comply with required standards. The disc could not be preocessed. Thus, a search of claim 6, drawn to SEQ ID NO:3, 4, 5 or 7, could not be carried out.
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable
claims. 2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest.
No protest accompanied the payment of additional search fees.