

Multicore Computing Lecture 10 - LU Factorization

남 범 석 bnam@skku.edu

Drawback of Gaussian Elimination

- Drawback of Gaussian Elimination → lots of computations
 - n³/3 additions and multiplications
 - n²/2 divisions.
 - Equations, especially {b}, have to be changed in each step
 - What if we want to solve the equation for a different b?
 - Can we do better?

LU Decomposition (a.k.a. LU Factorization)

- Let A be an n x n matrix
- Let L be a lower triangular matrix with a unit diagonal
 - $l_{ii} = 1$ for all i and $l_{ij} = 0$ for all i < j
- Let *U* be an upper triangular matrix
 - $u_{ij} = 0$ for all i > j.
- LU decomposition is the factorization of A into A = LU, with L unit lower triangular and U upper triangular.

Lower and upper triangular matrices

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} = \begin{bmatrix} 1 \\ l_{21} & 1 \\ l_{31} & l_{32} & 1 \\ l_{41} & l_{42} & l_{43} & 1 \end{bmatrix} \cdot \begin{bmatrix} u_{11} & u_{12} & u_{13} & u_{14} \\ u_{22} & u_{23} & u_{24} \\ u_{33} & u_{34} \\ u_{44} \end{bmatrix}$$

Example

$$A = \begin{bmatrix} 1 & 4 & 6 \\ 2 & 10 & 17 \\ 3 & 16 & 31 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 4 & 6 \\ 0 & 2 & 5 \\ 0 & 0 & 3 \end{bmatrix} = LU.$$

Sequential LU decomposition

• Find x_0 , x_1 , x_2 such that

$$x_0 + 4x_1 + 6x_2 = 16$$

 $2x_0 + 10x_1 + 17x_2 = 44$
 $3x_0 + 16x_1 + 31x_2 = 78$

■ In matrix, solve

$$A\mathbf{x} = \mathbf{b}$$

where
$$A = \begin{bmatrix} 1 & 4 & 6 \\ 2 & 10 & 17 \\ 3 & 16 & 31 \end{bmatrix}$$
, $\mathbf{x} = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} 16 \\ 44 \\ 78 \end{bmatrix}$

Lower and upper triangular matrices

- Triangular systems are easier to solve
- Let A = LU. Then

$$Ax = b$$

 $L(Ux) = b$
 $Ly = b$ and $Ux = y$

Ly = b
$$\begin{vmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{vmatrix}$$

Backward Substitution

$$Ux = y \qquad \begin{bmatrix} 1 & 4 & 6 \\ 0 & 2 & 5 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 16 \\ 12 \\ 6 \end{bmatrix} \xrightarrow{} \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$$

Algorithm for LU decomposition

Some simple algebra:

$$A = LU \iff a_{ij} = \sum_{r=0}^{n-1} I_{ir} u_{rj} \quad \text{for all } i, j.$$

■ Assume $i \le j$. Then:

$$a_{ij} = \sum_{r=0}^{n-1} l_{ir} u_{rj} = \sum_{r=0}^{i} l_{ir} u_{rj} \text{ (because } l_{ir} = 0 \text{ for } r > i\text{)}$$

$$= \sum_{r=0}^{i-1} l_{ir} u_{rj} + l_{ii} u_{ij} = \sum_{r=0}^{i-1} l_{ir} u_{rj} + u_{ij}$$

$$\iff$$

$$u_{ij} = a_{ij} - \sum_{r=0}^{i-1} l_{ir} u_{rj}.$$

Computing lij and uij

- \blacksquare l_{ij} and u_{ij} in terms of previously computed a_{ij} , l_{ir} and u_{rj} .
- We have obtained

$$u_{ij} = a_{ij} - \sum_{r=0}^{i-1} I_{ir} u_{rj} \quad \text{for } i \leq j.$$

Similarly,

$$l_{ij} = \frac{1}{u_{jj}} \left(a_{ij} - \sum_{r=0}^{j-1} l_{ir} u_{rj} \right) \quad \text{for } i > j.$$

Modifying the matrix A in stages

■ For $0 \le k \le n$, define the intermediate matrix A(k) of stage k:

$$a_{ij}^{(k)} = a_{ij} - \sum_{r=0}^{k-1} I_{ir} u_{rj}.$$

In this notation,

$$u_{ij} = a_{ij} - \sum_{r=0}^{i-1} l_{ir} u_{rj} \iff u_{ij} = a_{ij}^{(i)}$$

$$l_{ij} = \frac{1}{u_{jj}} \left(a_{ij} - \sum_{r=0}^{j-1} l_{ir} u_{rj} \right) \iff l_{ij} = \frac{a_{ij}^{(j)}}{u_{jj}}$$

• We retrieve values u_{ij} ($i \le j$) in stage i and l_{ij} (i > j) in stage j.

Sequential Algorithm for LU decomposition

- input: $A^{(0)}$: n × n matrix.
- **output**: L : n × n lower triangular matrix, U : n × n upper triangular matrix, such that $LU = A^{(0)}$.

for
$$k := 0$$
 to $n - 1$ do
for $j := k$ to $n - 1$ do
 $u_{kj} := a_{kj}^{(k)};$
for $i := k + 1$ to $n - 1$ do
 $l_{ik} := a_{ik}^{(k)} / u_{kk};$
for $i := k + 1$ to $n - 1$ do
for $j := k + 1$ to $n - 1$ do
 $a_{ij}^{(k+1)} := a_{ij}^{(k)} - l_{ik} u_{kj};$

Memory-efficient sequential LU decomposition

■ input: $A: n \times n$ matrix, $A = A^{(0)}$.

• output: A : $n \times n$ matrix, $A = L - I_n + U$, with

L: $n \times n$ lower triangular matrix,

 $U: n \times n$ upper triangular matrix,

 I_n : n × n identity matrix,

such that $LU = A^{(0)}$.

for
$$k := 0$$
 to $n - 1$ do
for $i := k + 1$ to $n - 1$ do
 $a_{ik} := a_{ik}/a_{kk};$
for $i := k + 1$ to $n - 1$ do
for $j := k + 1$ to $n - 1$ do
 $a_{ij} := a_{ij} - a_{ik}a_{kj};$

Transformations of A by LU decomposition

$$A = \begin{bmatrix} 1 & 4 & 6 \\ 2 & 10 & 17 \\ 3 & 16 & 31 \end{bmatrix} \xrightarrow{(0)} \begin{bmatrix} 1 & 4 & 6 \\ 2 & 2 & 5 \\ 3 & 4 & 13 \end{bmatrix} \xrightarrow{(1)} \begin{bmatrix} 1 & 4 & 6 \\ 2 & 2 & 5 \\ 3 & 2 & 3 \end{bmatrix}$$

Hence,

$$L = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{bmatrix}, \quad U = \begin{bmatrix} 1 & 4 & 6 \\ 0 & 2 & 5 \\ 0 & 0 & 3 \end{bmatrix}.$$

Transformations of A by LU decomposition

$$A = \begin{bmatrix} 3 & -7 & -2 & 2 \\ -3 & 5 & 1 & 0 \\ 6 & -4 & 0 & -5 \\ -9 & 5 & -5 & 12 \end{bmatrix} \qquad (0) \begin{bmatrix} 3 & -7 & -2 & 2 \\ -1 & -2 & -1 & 2 \\ 2 & 10 & 4 & -9 \\ -3 & -16 & -11 & 18 \end{bmatrix} \qquad (1) \begin{bmatrix} 3 & -7 & -2 & 2 \\ -1 & -2 & -1 & 2 \\ 2 & -5 & -1 & 1 \\ -3 & 8 & -3 & 2 \end{bmatrix}$$

Storing L, U, A^(k) in the space of A

• At the start of stage k = 3: rows 0, 1, 2 of U and columns 0, 1, 2 of L below the diagonal have already been computed.

LU decomposition breaks down immediately in stage 0 for

$$A = \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right],$$

because we try to divide by 0.

- A solution is to permute the rows suitably (pivot element=largest).
- Thus, we compute a permuted LU decomposition,

$$PA = LU.$$

- P is a permutation matrix, obtained by permuting the rows of I_n .
- Output of LU decomposition of A: L, U, P.

Find the PA = LU factorization

- The first permutation step is trivial since the pivot element 10 is already the largest.
- The first elimination step is:
- 1st elimination step:
 - row 2 \leftarrow row 2 (-3/10)(row 1)
 - row 3 ← row3 − (5/10) (row1)

$$\begin{bmatrix}
 10 & -7 & 0 \\
 -3 & 2 & 6 \\
 5 & -1 & 5
 \end{bmatrix}
 =
 \begin{bmatrix}
 1 & 0 & 0 \\
 -3/10 & 1 & 0 \\
 1/2 & 0 & 1
 \end{bmatrix}
 \begin{bmatrix}
 10 & -7 & 0 \\
 0 & -1/10 & 6 \\
 0 & 5/2 & 5
 \end{bmatrix}$$

■ 2nd permutation step:

• -1/10 is smaller than 5/2. So, swap rows 2 and 3

$$\begin{bmatrix}
 10 & -7 & 0 \\
 -3 & 2 & 6 \\
 5 & -1 & 5
 \end{bmatrix}
 =
 \begin{bmatrix}
 1 & 0 & 0 \\
 -3/10 & 1 & 0 \\
 1/2 & 0 & 1
 \end{bmatrix}
 \begin{bmatrix}
 1 & 0 & 0 \\
 0 & 0 & 1 \\
 0 & 1 & 0
 \end{bmatrix}
 \begin{bmatrix}
 10 & -7 & 0 \\
 0 & 5/2 & 5 \\
 0 & -1/10 & 6
 \end{bmatrix}$$

■ 2nd elimination step:

■ row $3 \leftarrow \text{row } 3 - (-1/25)(\text{row } 2)$

$$\begin{pmatrix}
10 & -7 & 0 \\
-3 & 2 & 6 \\
5 & -1 & 5
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
-3/10 & 1 & 0 \\
1/2 & 0 & 1
\end{pmatrix} \begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{pmatrix} \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -1/25 & 1
\end{pmatrix} \begin{pmatrix}
10 & -7 & 0 \\
0 & 5/2 & 5 \\
0 & 0 & 31/5
\end{pmatrix}$$

The operations can be reorganized as follows:

$$PA = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 10 & -7 & 0 \\ -3 & 2 & 6 \\ 5 & -1 & 5 \end{pmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 1/2 & 1 & 0 \\ -3/10 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1/25 & 1 \end{bmatrix} \begin{bmatrix} 10 & -7 & 0 \\ 0 & 5/2 & 5 \\ 0 & 0 & 31/5 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 1/2 & 1 & 0 \\ -3/10 & -1/25 & 1 \end{bmatrix} \begin{bmatrix} 10 & -7 & 0 \\ 0 & 5/2 & 5 \\ 0 & 0 & 31/5 \end{bmatrix} = LU$$

Block-Cyclic Decomposition for Parallel Execution

One approach

- Assume we have a square number of processors
- Divide the matrix into blocks storing one block per processor
- Need to modify LU decomposition algorithm

P0	P1	P2	Р3
P4	P5	Р6	P7
P8	Р9	P10	P11
P12	P13	P14	P15

Constructing the Block LU Factorization

A00	A01	A02
A10	A11	A12
A20	A21	A22

LOO	0	0
L10	1	0
L20	0	1

U00	U01	U02
0	?11	?12
0	?21	?22

- $A_{00} = L_{00}^*U_{00}$ (compute by L_{00} , U_{00} by LU factorization)
- \blacksquare $A_{01} = L_{00}^* U_{01} \rightarrow U_{01} = L_{00}^{-1} A_{01}$
- $A_{02} = L_{00}^* U_{02} \rightarrow U_{02} = L_{00}^{-1} A_{02}$
- $\blacksquare A_{10} = L_{10}^* U_{00} \rightarrow L_{10} = A_{10}^* U_{00}^{-1}$
- $\blacksquare A_{20} = L_{20}^* U_{00} \rightarrow L_{20} = A_{20}^{-1} U_{00}^{-1}$
- $A_{11} = L_{10}^*U_{01} + ?_{11} \rightarrow ?_{11} = A_{11} L_{10}^*U_{01}$

Constructing the Block LU Factorization

 $A_{00} = L_{00}^* U_{00}$ (compute by L_{00} , U_{00} by LU factorization)

$$A_{01} = L_{00}^* U_{01} \rightarrow U_{01} = L_{00}^{-1} A_{01}$$

 $A_{02} = L_{00}^* U_{02} \rightarrow U_{02} = L_{00}^{-1} A_{02}$

$$A_{10} = L_{10}^* U_{00} \rightarrow L_{10} = A_{10} U_{00}^{-1}$$

 $A_{20} = L_{20}^* U_{00} \rightarrow L_{20} = A_{20} U_{00}^{-1}$

$$A_{11} = L_{10}^* U_{01} + ?_{11} \rightarrow ?_{11} = A_{11} - L_{10}^* U_{01}$$

$$A_{12} = L_{10}^* U_{02} + ?_{12} \rightarrow ?_{12} = A_{12} - L_{10}^* U_{02}$$

$$A_{21} = L_{20}^* U_{01} + ?_{21} \rightarrow ?_{21} = A_{21} - L_{20}^* U_{01}$$

$$A_{22} = L_{20}^* U_{02} + ?_{22} \rightarrow ?_{22} = A_{22} - L_{20}^* U_{02}$$

In the general case:

$$A_{nm} = L_{n0}^* U_{0m} + ?_{nm} \rightarrow ?_{nm} = A_{nm} - L_{n0}^* U_{0m}$$

Summary First Stage

A00	A01	A02
A10	A11	A12
A20	A21	A22

LOO	0	0
L10	1	0
L20	0	1

U00	U01	U02
0	?11	?12
0	?21	?22

- First step: LU factorize uppermost block diagonal
- Second step: a) compute $U_{0n} = L_{00}^{-1}A_{0n}$ n>0
- b) compute $L_{n0} = A_{n0}U_{00}^{-1} \text{ n>0}$
- Third step: compute $?_{nm} = A_{nm} L_{n0}^* U_{0m}$, (n,m>0)

Now Factorize Lower Right Corner Blocks

 We repeat the algorithm recursively for two lower right corner blocks.

?11	?12		L11	0	*	U11	U12
?21	?22	Ξ	L21	1	τ	0	??22

End Result

A00	A01	A02
A10	A11	A12
A20	A21	A22

L00	0	0
L10	L11	0
L20	L21	L22

U00	U01	U02
0	U11	U12
0	0	U22

Parallel Algorithm

P0: $A_{00} = L_{00}^* U_{00}$ (compute by L_{00} , U_{00} by LU factorization)

P1:
$$U_{01} = L_{00}^{-1}A_{01}$$

P2:
$$U_{02} = L_{00}^{-1}A_{02}$$

P3:
$$L_{10} = A_{10}U_{00}^{-1}$$

P6:
$$L_{20} = A_{20}U_{00}^{-1}$$

P4:
$$A_{11} \leftarrow A_{11} - L_{10}^* U_{01}$$

P5:
$$A_{12} \leftarrow A_{12} - L_{10}^* U_{02}$$

P7:
$$A_{21} \leftarrow A_{21} - L_{20}^* U_{01}$$

$$P8: A_{22} \leftarrow A_{22} - L_{20}^* U_{02}$$

In the general case:

$$A_{nm} = L_{n0}^* U_{0m} + ?_{nm} \rightarrow ?_{nm} = A_{nm} - L_{n0}^* U_{0m}$$

PO	P1	P2
Р3	P4	P5
Р6	Р7	P8

Parallel Algorithm

P0: $A_{00} = L_{00}^* U_{00}$ (compute by L_{00} , U_{00} by LU factorization)

P1:
$$U_{01} = L_{00}^{-1}A_{01}$$

P2:
$$U_{02} = L_{00}^{-1}A_{02}$$

P3:
$$L_{10} = A_{10}U_{00}^{-1}$$

P6:
$$L_{20} = A_{20}U_{00}^{-1}$$

P4:
$$A_{11} \leftarrow A_{11} - L_{10}^* U_{01}$$

P5:
$$A_{12} \leftarrow A_{12} - L_{10}^* U_{02}$$

P7:
$$A_{21} \leftarrow A_{21} - L_{20}^* U_{01}$$

$$P8: A_{22} \leftarrow A_{22} - L_{20}^* U_{02}$$

$$A_{nm} = L_{n0}^* U_{0m} + ?_{nm} \rightarrow ?_{nm} = A_{nm} - L_{n0}^* U_{0m}$$

Communication Summary

PO	P1	P2
P3	Р4	P5
P6	P7	P8

P0:
$$L_{00}$$
, $U_{00} = Iu(A)$

P1: $U_{01} = L_{00}^{-1}A_{01}$ P2: $U_{02} = L_{00}^{-1}A_{02}$

P3: $L_{10} = A_{10}U_{00}^{-1}$

P6: $L_{20} = A_{20}U_{00}^{-1}$

P4: $A_{11} \leftarrow A_{11} - L_{10}^* U_{01}$

P5: $A_{12} \leftarrow A_{12} - L_{10}^* U_{02}$

P7: $A_{21} \leftarrow A_{21} - L_{20}^* U_{01}$

P8: $A_{22} \leftarrow A_{22} - L_{20}^* U_{02}$

P0: sends L_{00} to P1,P2 sends U_{00} to P3,P6

P1: sends U_{01} to P4,P7 P2: sends U_{02} to P5,P8

P3: sends L₁₀ to P4,P5 P4: sends L₂₀ to P7,P8

