التذبذبات الحرة في دارة RLC متوالية

I ـ تفريغ مكثف في وشيعة

1_ النشاط التحريبي1

ننجز التركيب الكهربائي الممثل جانبه حيث نستعمل وسيط معلوماتي وحاسوب وبرنم يعالج المعطيات أو راسم التذبذب ذاكراتي .

+ نضبط التوتر المستمر الذي يعطيه المولد على القيمة

 $r'=0\Omega$ ومقاومة الموصل الأومي على E=3V

+نؤرجح قاطع التيار إلى الموضع (1) لمدة زمنية كافية لشحن

المكثف كليا .

+نؤرجح قاطع التيار إلى الموضع (2) فنحصل على دارة RLC متوالية مقاومتها الكلية 'R=r+r حيث r مقاومة الو شيعة .

بين مربطي المكثف $u_c(t)$ بين التوتر +نعاين التوتر

+نعيد التجربة عدة مرات برفع المقاومة 'r

النتائج:

الاستثمار:

-1يمثل الرسم التذبذبي الممثل باللون الأزرق في الشكل (2) نموذجا للمنحنى المحصل عليه -1

دالة دورية ? $u_c(t)$ كيف يتغير وسع التوتر $u_c(t)$ ؟ هل $u_c(t)$

عند وضع K في الموضع (1) يشحن المكثف وعند وضعه في الموضع (2) نحصل على دارة RLC متوالية حيث في هذه الحالة يفرغ المكثف في الوشيعة .

. ويكون التوتر $u_c(t)$ بين مربطي المكثف متناوبا $u_c(t)$ ليست بدالة دورية

-وسع التوتر (u_c(t يتناقص مع الزمن t نقول **أن التذبذبات مخمدة**

بما أن الذبذبات تتم دون أن نزود الدارة RLC بالطاقة غير الطاقة المخزونة في المكثف ، نقول أف سنينا

الذبذبات حرة .

خلاصة:

يؤدي تفريغ مكثف ، مشحون ، في وشيعة دارة RLC متوالية ، إلى ظهور تذبذبات حرة ومخمدة .

نقول أن الدارة RLC المتوالية تكون متذبذبا كهربائيا حرا ومخمدا .

أنظمة الذبذبات الحرة :

T نسمي شبه الدور $u_c(t)$ المدة الزمنية الفاصلة بين قيمتين قصويتين متتاليين للتوتر $u_c(t)$.عين مبيانيا $u_c(t)$ من خلال المبيان يمكن أن نعين شبه الدور وهو المدة الزمنية الفاصلة بين قيمتين قصويتين متتاليتين للتوتر $u_c(t)$.

ـ تعریف بشبه الدور T

نسمي شبه الدور Tالمدة الزمنية الفاصلة بين قيمتين قصويتين متتاليين للتوتر (u_c(t.

2 _ ما تأثير المقاومة R على :

2-1 وسع التذبذبات ؟

عندما نغير المقاومة الكلية للدارة يتغير وسع الذبذبات.

2-2 شبه الدور T ؟

بالنسبة لقيم المقاومة صغيرة جدا يلاحظ أن شبه الدور لا يتعلق بقيمة R

3-عندما تأخذ المقاومة r' قيمة كبيرة جدا : هل التوتر $u_c(t)$ المعاين تذبذبي ؟

. عندما تأخذ R قيم كبيرة جدا $u_c(t)$ توتر غير تذبذبي أي أن الذبذبات تزول يكون لدينا خمود مهم

4-حسب قيم المقاومة الكلية R للدارة RLC يلاحظ تجريبيا وجود نظامين للذبذبات : نظام شبه دوري ونظام لا دوري .

تعرف على هاذين النظامين من خلال الشكل 2

النظام شبه الدوري يحدث إذا كانت قيمة المقاومة R صغيرة .

النظام لا دوري عندما تكون R كبيرة جدا حيث تزول الذبذبات نظرا لوجود خمود مهم .

5- نضبط من جديد r' على القيمة 0

في مرحلة أولى نأخذ L=11mH و C=1μF ونقيس شبه الدور Τ .

في مرحلة ثانية : نأخذ L=11mH و C=0,22μF ونقيس Τ .

هل يتعلق شبه الدور بكل من L و C ؟

نعم يتعلق شبه الدور بقيم L و C ولا يتعلق بقيم R

_ أنظمة الذبذبات الحرة

حسب مقاومة الدارة RLC نحصل على ثلاثة أنظمة

<u>أ-نظام شبه دوري</u>

R صغيرة نحصل على ذبذبات يتناقص وسعها تدريجيا مع الزمن

<u>ں- نظام لا دوري</u>

R كبيرة جدا = تزول الذبذبات نظرا لوجود خمود مهم ونسمي هدا النظام نظام لا دوري

<u>ج- نظام حرج</u>

في الذبذبات الحرة توجد قيمة معينة للمقاومة نرمز لها ب $R_{\rm C}$ وتسمى مقاومة حرجة وهي مقاومة تفصل بين النظام شبه الدوري والنظام اللا دوري ونسمي النظام في هده الحالة بالنظام الحرج وفي هده الحالة يرجع التوتر $u_{\rm c}(t)$ إلى صفر بسرعة ودون تذبذب وتتعلق $R_{\rm C}$ ب $R_{\rm C}$ و $R_{\rm C}$

2 ـ المعادلة التفاضلية لدارة RLC متوالية .

نعتبر الدارة المتوالية الممثلة في الشكل جانبه : نطبق قانون إضافية التوترات بين F و D فنجد :

$$u_c + u_R + u_L = 0 \qquad (1)$$

$$u_R = r'.i$$
 $u_L = ri + L\frac{di}{dt}$ $i = C.\frac{du_C}{dt}$

$$u_R = r'.C \frac{du_c}{dt}$$
 $u_L = rC \frac{du_C}{dt} + LC \frac{d^2u_C}{dt^2}$

نعوض في المعادلة (1)

$$u_{c} + r'.C \frac{du_{c}}{dt} + rC \frac{du_{C}}{dt} + LC \frac{d^{2}u_{C}}{dt^{2}} = 0$$

$$LC \frac{d^{2}u_{C}}{dt^{2}} + (r + r')C \frac{du_{C}}{dt} + u_{C} = 0$$

$$r + r' = R$$

$$LC \frac{d^{2}u_{C}}{dt^{2}} + RC \frac{du_{C}}{dt} + u_{C} = 0$$

$$\frac{d^{2}u_{C}}{dt^{2}} + \frac{R}{L} \frac{du_{C}}{dt} + \frac{1}{LC} u_{C} = 0 \quad (2)$$

: متوالية التي يحققها التوتر $u_{C}(t)$ بين مربطي المكثف هي

$$\frac{d^2u_C}{dt^2} + \frac{R}{L}\frac{du_C}{dt} + \frac{1}{LC}u_C = 0 \qquad (2)$$

. يعبر المقدار $\frac{R}{L} \frac{du_C}{dt}$ عن ظاهرة خمود الذبذبات ، ويحدد حسب قيم R يعبر المقدار

II ــ الذبذبات غير المخمدة في دارة مثالية IC ـ

 q_0 تتكون الدارة من مكثف سعته C وشحنته البدئية

ووشيعة معامل تحريضها L ومقاومتها الداخلية r ونعتبرها مهملة . تنعث هذه الدارة بالمثالية لاستحالة تحقيقها تجريبيا لكون أن كل الوشيعات تتوفر على مقاومة داخلية .

. $\mathbf{u}_{\mathrm{c}}(\mathbf{t})$ المعادلة التفاضلية التي يحققها التوتر \mathbf{L}

حسب قانون إضافية التوترات لدينا:

$$u_c + u_L = 0$$
 (1)
$$u_L = L \frac{di}{dt} \quad i = C. \frac{du_C}{dt}$$

$$u_L = LC \frac{d^2 u_C}{dt^2}$$
 (1) نعوض في المعادلة
$$LC \frac{d^2 u_C}{dt^2} + u_C = 0$$

$$\frac{d^2 u_C}{dt^2} + \frac{1}{LC} u_C = 0$$
 (2)

خلال الذبذبات الكهربائية الحرة غير المخمدة لدارة LC ، يحقق التوتر $u_{\mathbb{C}}(t)$ بين مربطي المكثف المعادلة التفاضلية التالية :

$$\frac{d^2u_C}{dt^2} + \frac{1}{LC}u_C = 0$$

2 ـ حل المعادلة التفاضلية :

المعادلة التفاضلية ، رياضيا حلها يكتب على $\frac{d^2u_C}{dt^2} + \frac{1}{LC}u_C = 0$ على التالى :

$$u_C(t) = U_m \cos\left(\frac{2\pi}{T_0}t + \varphi\right)$$

. وسع الذبذبات U_m

. t الطور في اللحظة ذات التاريخ
$$\left(rac{2\pi}{T_0} + arphi
ight)$$
 _

. الدور الخاص للذبذبات T_0

رور (t=0) الطور عند أصل التواريخ ϕ

أ ــ تحديد تعبير الدور الخاص :

: نعوض الحل $u_{\scriptscriptstyle C}(t) = U_{\scriptscriptstyle m} \cos \left(\frac{2\pi}{T_{\scriptscriptstyle 0}} t + \varphi \right)$ نعوض الحل

$$\begin{split} \frac{d^2 u_C}{dt^2} &= -U_m \left(\frac{2\pi}{T_0}\right)^2 \cos\left(\frac{2\pi}{T_0}t + \varphi\right) = -\left(\frac{2\pi}{T_0}\right)^2 u_C(t) \\ -\left(\frac{2\pi}{T_0}\right)^2 u_C(t) &= -\frac{1}{LC}u_C(t) \\ \left(\frac{2\pi}{T_0}\right)^2 &= \frac{1}{LC} \Rightarrow T_0 = 2\pi\sqrt{LC} \end{split}$$

يتعلق الدور الخاص للذبذبات الحرة غير المخمدة بمعامل التحريض L وبسعة المكثف

$$T_0 = 2\pi\sqrt{LC}$$

وحدة الدور الخاص T_0 في النظام العالمي للحدات هي الثانية . T_0 تمرين تطبيقي :

, بين من خلال معادلة الأبعاد أن وحدة T_0 هي الثانية

ب ـ تحدید φ و U_m :

لتحديد قيم φ و U_{m} نحدد الشروط البدئية عند تفريغ المكثف في الوشيعة . أي نعبر عن المقدارين $u_{c}(t)$ و $u_{c}(t)$ في اللحظة t=0 باعتبار أن هاتين الدالتين متصلتين كيف ما كانت t

$$i(t) = C.\frac{du}{dt}$$
 \Rightarrow $i(t) = -\frac{2\pi}{T_0}.C.\sin\left(\frac{2\pi}{T_0}t + \varphi\right)$ لدينا

عند اللحظة t=0 لدينا i(0)=0 الوشيعة لا يمر فيها أي تيار كهربائي

$$i(0) = -\frac{2\pi}{T_0} \cdot C \cdot \sin(\varphi) = 0 \Rightarrow \sin \varphi = 0 \Rightarrow \varphi = 0 \text{ ou } \varphi = \pi$$

. $u_c(0)=E$: في البداية شحنة المكثف مشحون

$$\cos(\varphi) > 0 \Rightarrow \varphi = 0$$
 وبما أن $= 0$ وبما أن $= 0$ وبما أن $= U_m \cos(\varphi) = U_m \cos(\varphi)$

وبالتالي فإن :

$$u_C(t) = E \cos\left(\frac{2\pi}{T_0}t\right)$$

ج ـ تعبير الشحنة (q(t) و (i(t

نعلم أن شحنة المكثف هي :

$$q(t) = C.u_C(t) = CU_m \cos\left(\frac{2\pi}{T_0}t + \varphi\right) = q_m \cos\left(\frac{2\pi}{T_0}t + \varphi\right)$$
$$q_m = CU_m$$

شدة التيار الكهربائي :

$$i(t) = \frac{dq}{dt} = -q_m \omega_0 \sin(\frac{2\pi}{T_0}t + \varphi)$$

$$= q_m \frac{2\pi}{T_0} \cos(\frac{2\pi}{T_0}t + \varphi + \frac{\pi}{2}) = I_m \cos(\frac{2\pi}{T_0}t + \varphi + \frac{\pi}{2})$$

نقول أن (u(t و q(t) على تربيع في الطور التمثيل المبياني ل q(t) و(u(t

 $\varphi = 0$ و $q = Q_m$ في اللحظة t=0 في اللحظة

$$q(t) = Q_m \cos \frac{2\pi}{T_0} t$$

$$i(t) = I_m \cos(\frac{2\pi}{T_0}t + \frac{\pi}{2})$$

ملحوضة : عندما تكون شحنة المكثف قصوية تكون شدة التيار الكهربائي منعدمة .

III ـ انتقالات الطاقة بين المكثف والوشيعة .

توصلنا في الدروس السابقة أن المكثف بإمكانه أن يخزن طاقة كهربائية $\xi_e = \frac{1}{2} C u_C^2$ وأن الوشيعة كذلك

. $\xi_{\scriptscriptstyle m} = \frac{1}{2} L i^2$ بإمكانها أن تخزن طاقة مغنطيسية

1 ـ الطاقة في الدارة LC مثالية :

. مثالية RL منحنيات تغير الطاقات ξ_ι, ξ_e, ξ_m بدلالة الزمن في دارة

الطاقة الكلية في المخزونة في الدارة LC هي في كل لحظة مجموع الطاقة الكهربائية في المكثف . $\xi_m = \frac{1}{2} L i^2$ والطاقة المخزونة في الوشيعة $\xi_e = \frac{1}{2} C u_c^2$

$$\xi_t = \xi_e + \xi_m = \frac{1}{2}Cu_C^2 + \frac{1}{2}Li^2$$

تمثل الشكل جانبه تغيرات $\xi_{\scriptscriptstyle t}, \xi_{\scriptscriptstyle e}, \xi_{\scriptscriptstyle m}$ بدلالة الزمن .

1 ـ كيف تتغير الطاقة ξ_m عندما تنقص الطاقة المخزونة في المكثف ؟

2 ـ كيف تتغير الطاقة ξ_e عندما تنقص الطاقة المخزونة في الوشيعة ؟

كيف تتغير الطاقة الكلية $\xi_{\scriptscriptstyle t}$ ؟ أكتب 3

تعبير الطاقة الكلية بطريقتين .

4 _ أثبت رياضيا أن الطاقة الكلية لدارة مثالية LC ثابتة خلال الزمن t . بطريقتين ، استعمال حل المعادلة التفاضلية واستعمال المعادلة التفاضلية مباشرة .

خلاصة :

تكون الطاقة الكلية لدارة مثالية LC ثابتة خلال الزمن وتساوي الطاقة البدئية المخزونة في المكثف .

خلال الذبذبات غير المخمدة تتحول الطاقة الكهربائية في المكثف إلى طاقة مغنطيسية في الوشيعة والعكس صحيح .

$$\xi_{t} = \xi_{e} + \xi_{m} = \frac{1}{2}Cu_{C}^{2} + \frac{1}{2}Li^{2} = \frac{1}{2}CU_{m}^{2} = \frac{1}{2}Li_{m}^{2}$$

2 ــ الطاقة في الدارة RLC المتوالية .

متوالية RLC دراسة منحنيات تغير الطاقة ξ_ι, ξ_e, ξ_m بدلالة الزمن في

خلال دراسة تجريبية لدارة RLC متوالية حيث المقاومة الكلية R غير منعدمة نعاين بواسطة جهاز ملائم لهذا الغرض منحنيات تغيرات الطاقة ξ_ι, ξ_e, ξ_m بدلالة الزمن فنحصل على المنحنيات الممثلة في الشكل جانبه :

 ξ_m عند تزاید عند الطاقة ξ_e عند تزاید ξ_m

نفس السؤال عند تناقص ξ_m ماذا تستنتج ؟

عندما تنقص الطاقة في المكثف تزداد الطاقة المخزونة في الوشيعة والعكس صحيح . أي أن هناك تبادل طاقي بين المكثف والوشيعة

? كيف تتغير بصفة عامة الطاقة الكلية $\xi_{\scriptscriptstyle t}$ المخزونة في الدارة بدلالة الزمن 2

يلاحظ أن خلال كل تبادل طاقي بين المكثف والوشيعة تتناقص الطاقة الكلية نتيجة وجود المقاومة R .

2 _ ما الظاهرة المسؤولة عن هذا التغيير ؟

ظاهرة خمود نتيجة تحول جزء من الطاقة الكلية بمفعول جول إلى طاقة حرارية .

4 ـ ما المقدار الذي يحول دون الحصول على ذبذبات غير مخمدة ؟

$$\xi_{t} = \xi_{e} + \xi_{m} = \frac{1}{2} \frac{q^{2}}{C} + \frac{1}{2} L i^{2}$$

$$\frac{d\xi_{t}}{dt} = L i \frac{di}{dt} + \frac{q}{C} \cdot \frac{dq}{dt} = i \left(L \frac{d^{2}q}{dt^{2}} + \frac{q}{C} \right)$$

$$L \frac{d^{2}q}{dt^{2}} + \frac{q}{C} = -R \frac{dq}{dt}$$

$$\frac{d\xi_{t}}{dt} = -R i^{2}$$

من خلال هذه النتيجة يتيبن أن الطاقة الكلية تناقصية :

. R ويعزى هذا التناقص إلى وجود المقاومة
$$rac{d\xi_{\scriptscriptstyle t}}{dt}$$
 = $-Ri^2$ < 0

خلاصة :

تتناقص الطاقة الكلية لدارة RLC متوالية تدريجيا بسبب مفعول جول .

VI _ صيانة الذبذبات .

في كل لحظة يمكن كتابة

$$u_{AM} = u_{AB} + u_{BM}$$

$$ki = Ri + L\frac{di}{dt} + \frac{q}{c}$$

$$i = \frac{dq}{dt} = C\frac{du}{dt}et \quad u = u_{BM}$$

$$LC\frac{d^{2}u}{dt^{2}} + (R - k)C\frac{du}{dt} + u = 0$$

بالنسبة لk=R نحصل على المعادلة التفاضلية

التالية
$$u=0$$
 التالية $\frac{d^2u}{dt^2} + \frac{1}{LC}u = 0$ وهي المعادلة

للمتذبذب (L,C) ذي مقاومة غير مهملة .

إذن فالتركيب المدروس يمكن من صيانة التذبذبات

إنجاز المولد G

. . . . المضخم العملياتي كاملا ويشتغل في النظام الخطي .

$$u_{AB}=0 \text{ e } i=i^+=0$$

$$u_g=u_{AM}=u_{AS}+u_{SB}+u_{BM}$$

$$=-R_1i+R_1i'+R_0i'$$

$$u_{AS}=u_{AB}+u_{BS}$$

$$-R_1i=0-R_1i'\Leftrightarrow i=i'$$

$$u_g=R_0i\Leftrightarrow u_g=ki$$

$$k=R_0$$

معاينة التوتر بين مربطي مكثف الدارة (L,C) الذي يوجد بها المولد G عند معاينة التوتر بين مربطي مكثف نلاحظ : $R_0 < R$ لاتكون هناك تذبذبات $R_0 > R$ تكون هناك تذبذبات لا جيبية $R_0 > R$ أكبر بقليل من $R_0 > R$ تكون التذبذبات جيبية

