Ecuaciones diferenciales ordinarias

EDO de primer orden 2019

Recorrido

- Ecuaciones diferenciales: generalidades
 - Clasificación
 - Definiciones
 - Campos direccionales
- Métodos para resolver edo de primer orden
 - Separación de variables
 - Ecuaciones lineales de primer orden
 - Ecuaciones exactas
 - Ecuación de Bernoulli

P(t): población en tMalthus 1798 P'(t) = kP(t)

T(t): temperatura en t T_m : temperatura del medio $T'(t) = k(T(t) - T_m)$

a) Circuito en serie- LRC

q(t): carga, i(t): corriente.

Caídas de potencial: Li'(t); iR; $\frac{1}{C}q(t)$;

Segunda Ley de Kirchoff: $E(t) = Li'(t) + iR + \frac{1}{C}q(t)$

$$Lq''(t) + Rq'(t) + \frac{1}{C}q(t) = E(t)$$

EJEMPLO 7 Circuito en serie

Una batería de 12 volts se conecta a un circuito en serie en el que el inductor es de $\frac{1}{2}$ henry y la resistencia es de 10 ohms. Determine la corriente i, si la corriente inicial es cero.

$$L\frac{di}{dt} + Ri = E(t)$$

FIGURA 3.1.7 Circuito en serie *LR*.

Definición

Definición

Se llama ecuación diferencial a la ecuación que contiene derivadas de una o más variables con respecto a una o más variables independientes.

Recorrido

- Ecuaciones diferenciales: generalidades
 - Clasificación
 - Definiciones
 - Campos direccionales
- Métodos para resolver edo de primer orden
 - Separación de variables
 - Ecuaciones lineales de primer orden
 - Ecuaciones exactas
 - Ecuación de Bernoulli

Clasificación de las ED:

Clasificación de las ED:

Por tipo: pueden ser ordinarias o pariciales.

Clasificación de las ED:

Por tipo: pueden ser ordinarias o pariciales.

Por orden: orden de la mayor derivada presente.

Clasificación de las ED:

Por tipo: pueden ser ordinarias o pariciales.

Por orden: orden de la mayor derivada presente.

Clasificación de las ED:

Por tipo: pueden ser ordinarias o pariciales.

Por orden: orden de la mayor derivada presente.

$$\frac{d^2y}{dx^2} + 5\left(\frac{dy}{dx}\right)^3 - 4y = e^x$$

Clasificación de las ED:

Por tipo: pueden ser ordinarias o pariciales.

Por orden: orden de la mayor derivada presente.

$$\frac{d^2y}{dx^2} + 5\left(\frac{dy}{dx}\right)^3 - 4y = e^x \qquad \frac{d^2y}{dx^2} + \cos(x)\frac{dy}{dx} - e^xy = \sin^2(x)$$

Clasificación de las ED:

Por tipo: pueden ser ordinarias o pariciales.

Por orden: orden de la mayor derivada presente.

$$\frac{d^2y}{dx^2} + 5\left(\frac{dy}{dx}\right)^3 - 4y = e^x \qquad \frac{d^2y}{dx^2} + \cos(x)\frac{dy}{dx} - e^xy = \sin^2(x)$$

$$\frac{d^2y}{dx^2} + 5\operatorname{sen}(y) = 0$$

Clasificación de las ED:

Por tipo: pueden ser ordinarias o pariciales.

Por orden: orden de la mayor derivada presente.

$$\frac{d^2y}{dx^2} + 5\left(\frac{dy}{dx}\right)^3 - 4y = e^x \qquad \frac{d^2y}{dx^2} + \cos(x)\frac{dy}{dx} - e^xy = \sin^2(x)$$

$$\frac{d^2y}{dx^2} + 5\sin(y) = 0 \qquad \qquad \frac{dy}{dx}y = 1$$

Clasificación de las ED:

Por tipo: pueden ser ordinarias o pariciales.

Por orden: orden de la mayor derivada presente.

$$\frac{d^2y}{dx^2} + 5\left(\frac{dy}{dx}\right)^3 - 4y = e^x \qquad \frac{d^2y}{dx^2} + \cos(x)\frac{dy}{dx} - e^xy = \sin^2(x)$$

$$\frac{d^2y}{dx^2} + 5\sin(y) = 0 \qquad \qquad \frac{dy}{dx}y = 1$$

$$\frac{dy}{dt} + \frac{dx}{dt} = 0$$

Clasificación de las ED:

Por tipo: pueden ser ordinarias o pariciales.

Por orden: orden de la mayor derivada presente.

$$\frac{d^2y}{dx^2} + 5\left(\frac{dy}{dx}\right)^3 - 4y = e^x \qquad \frac{d^2y}{dx^2} + \cos(x)\frac{dy}{dx} - e^xy = \sin^2(x)$$

$$\frac{d^2y}{dx^2} + 5\sin(y) = 0 \qquad \qquad \frac{dy}{dx}y = 1$$

$$\frac{dy}{dt} + \frac{dx}{dt} = 0 \qquad \qquad \frac{\partial u}{\partial x} = k \frac{\partial^2 u}{\partial t^2}$$

Recorrido

- Ecuaciones diferenciales: generalidades
 - Clasificación
 - Definiciones
 - Campos direccionales
- Métodos para resolver edo de primer orden
 - Separación de variables
 - Ecuaciones lineales de primer orden
 - Ecuaciones exactas
 - Ecuación de Bernoulli

Definición

Se llama solución explícita de una ecuación diferencial en un intervalo I a una función y (suficientemente derivable) que, al ser sustituida en la ecuación, satisface la ecuación para todo $x \in I$.

Definición

Se llama solución explícita de una ecuación diferencial en un intervalo I a una función y (suficientemente derivable) que, al ser sustituida en la ecuación, satisface la ecuación para todo $x \in I$.

Una relación G(x,y) = 0 es una solución implícita de una ecuación diferencial en un intervalo I si ésta define una o más soluciones explícitas de la ecuación en I.

Definición

Dada una ed, una familia paramétrica de soluciones de la misma, es una colección de soluciones de la ecuación cuya expresión contiene uno o varios parámetros.

Definición

Dada una ed, una familia paramétrica de soluciones de la misma, es una colección de soluciones de la ecuación cuya expresión contiene uno o varios parámetros.

Una solución particular de la ecuación es un miembro de la familia que se obtiene dando valores concretos a los parámetros.

Definición

Dada una ed, una familia paramétrica de soluciones de la misma, es una colección de soluciones de la ecuación cuya expresión contiene uno o varios parámetros.

Una solución particular de la ecuación es un miembro de la familia que se obtiene dando valores concretos a los parámetros.

Una solución singular de la ecuación es una solución que no es un miembro de la familia paramétrica de soluciones.

Definición

Dada una ed, una familia paramétrica de soluciones de la misma, es una colección de soluciones de la ecuación cuya expresión contiene uno o varios parámetros.

Una solución particular de la ecuación es un miembro de la familia que se obtiene dando valores concretos a los parámetros.

Una solución singular de la ecuación es una solución que no es un miembro de la familia paramétrica de soluciones.

Distinguir dominio de definición de la función *f* en cuanto solución y como función.

Ejemplo 1: comprobar que $x^2 + y^2 = 25$ es una solución implícita de $y' = -\frac{x}{v}$.

Ejemplo 1: comprobar que $x^2+y^2=25$ es una solución implícita de $y'=-\frac{x}{y}$.

Ejemplo 2: dada la ed $y' = x \sqrt{y}$, una familia uniparamétrica de soluciones de la misma es $y = \left(\frac{1}{4}x^2 + c\right)^2$.

Ejemplo 1: comprobar que $x^2+y^2=25$ es una solución implícita de $y'=-\frac{x}{y}$.

Ejemplo 2: dada la ed $y' = x \sqrt{y}$, una familia uniparamétrica de soluciones de la misma es $y = \left(\frac{1}{4}x^2 + c\right)^2$. Verificar que y(x) = 0 también es solución (singular).

Ejemplo 1: comprobar que $x^2+y^2=25$ es una solución implícita de $y'=-\frac{x}{y}$.

Ejemplo 2: dada la ed $y' = x \sqrt{y}$, una familia uniparamétrica de soluciones de la misma es $y = \left(\frac{1}{4}x^2 + c\right)^2$. Verificar que y(x) = 0 también es solución (singular).

Ejemplo 3: dada la ed xy' + y = 0, una solución es $y = \frac{1}{x}$. Estudiar el dominio.

Problemas con valores iniciales

Condiciones iniciales: condiciones prescritas que debe cumplir la función desconocida y o sus derivadas.

Problemas con valores iniciales

Condiciones iniciales: condiciones prescritas que debe cumplir la función desconocida y o sus derivadas. Dada

$$\frac{d^n y}{dx^n} = f(x, y, y', ..., y^{(n-1)})$$

Condiciones iniciales

$$y(x_0) = y_0, \ y'(x_0) = y_1, ..., y^{(n-1)}(x_0) = y_{n-1}$$

$$\begin{cases} y'(x) = y(x) \\ y(0) = 3 \end{cases}$$

$$\begin{cases} y'(x) = y(x) \\ y(0) = 3 \end{cases} \qquad \begin{cases} y'(x) = y(x) \\ \text{Que pase por el punto (1,2)} \end{cases}$$

$$\begin{cases} y'(x) = y(x) \\ y(0) = 3 \end{cases} \qquad \begin{cases} y'(x) = y(x) \\ \text{Que pase por el punto (1,2)} \end{cases}$$

$$y(x) = c e^x$$

PVI

$$\begin{cases} y'(x) = y(x) \\ y(0) = 3 \end{cases} \qquad \begin{cases} y'(x) = y(x) \\ \text{Que pase por el punto (1,2)} \end{cases}$$

$$y(x) = c e^x$$

$$y(x) = c e^x$$
$$y_1(x) = 3 e^x,$$

$$\begin{cases} y'(x) = y(x) \\ y(0) = 3 \end{cases} \qquad \begin{cases} y'(x) = y(x) \\ \text{Que pase por el punto (1,2)} \end{cases}$$

$$y(x) = c e^x$$

$$y_1(x)=3\,e^x,$$

$$y_2(x) = \frac{2}{e} e^x$$

Ejemplo: resolver los PVI

$$\begin{cases} y'(x) = y(x) \\ y(0) = 3 \end{cases}$$

$$\begin{cases} y'(x) = y(x) \\ y(0) = 3 \end{cases} \qquad \begin{cases} y'(x) = y(x) \\ \text{Que pase por el punto (1,2)} \end{cases}$$

$$y(x) = c e^x$$

$$y_1(x) = 3 e^x$$
,

$$y_2(x) = \frac{2}{e} e^x$$

Soluciones de los dos PVI.

Ejemplo: PVI de segundo orden

$$\begin{cases} y''(x) + 16y(x) = 0 \\ y\left(\frac{\pi}{2}\right) = -2 \\ y'\left(\frac{\pi}{2}\right) = 1 \end{cases}$$

Ejemplo: PVI de segundo orden

$$\begin{cases} y''(x) + 16y(x) = 0 \\ y\left(\frac{\pi}{2}\right) = -2 \\ y'\left(\frac{\pi}{2}\right) = 1 \end{cases}$$

$$y(x) = c_1 \cos(4x) + c_2 \sin(4x)$$

Ejemplo: PVI de segundo orden

$$\begin{cases} y''(x) + 16y(x) = 0 \\ y\left(\frac{\pi}{2}\right) = -2 \\ y'\left(\frac{\pi}{2}\right) = 1 \end{cases}$$
$$y(x) = c_1 \cos(4x) + c_2 \sin(4x)$$

 $y(x) = -2\cos(4x) + \frac{1}{4}\sin(4x)$

PVI con más de una solución: Ejemplo 2.

PVI con más de una solución: Ejemplo 2.

$$\begin{cases} y' = x\sqrt{y} \\ y(0) = 0 \end{cases}$$

PVI con más de una solución: Ejemplo 2.

$$\begin{cases} y' = x\sqrt{y} \\ y(0) = 0 \end{cases}$$

Una familia uniparamétrica de soluciones de la ed es $y = (\frac{1}{4}x^2 + c)^2$.

PVI con más de una solución: Ejemplo 2.

$$\begin{cases} y' = x\sqrt{y} \\ y(0) = 0 \end{cases}$$

Una familia uniparamétrica de soluciones de la ed es $y = \left(\frac{1}{4}x^2 + c\right)^2$. y(x) = 0 es solución singular de la ed.

PVI con más de una solución: Ejemplo 2.

$$\begin{cases} y' = x\sqrt{y} \\ y(0) = 0 \end{cases}$$

Una familia uniparamétrica de soluciones de la ed es $y = \left(\frac{1}{4}x^2 + c\right)^2$. y(x) = 0 es solución singular de la ed. Soluciones del PVI:

PVI con más de una solución: Ejemplo 2.

$$\begin{cases} y' = x\sqrt{y} \\ y(0) = 0 \end{cases}$$

Una familia uniparamétrica de soluciones de la ed es $y = \left(\frac{1}{4}x^2 + c\right)^2$. y(x) = 0 es solución singular de la ed. Soluciones del PVI:

$$y(x) = \frac{1}{16}x^4$$

PVI con más de una solución: Ejemplo 2.

$$\begin{cases} y' = x\sqrt{y} \\ y(0) = 0 \end{cases}$$

Una familia uniparamétrica de soluciones de la ed es $y = \left(\frac{1}{4}x^2 + c\right)^2$. y(x) = 0 es solución singular de la ed. Soluciones del PVI:

$$y(x) = \frac{1}{16}x^4 \qquad y(x) = 0$$

Teorema

Problema con valor inicial de primer orden:

$$\begin{cases} y' = f(x, y) \\ y(x_0) = y_0 \end{cases}$$
 (1

Teorema

Problema con valor inicial de primer orden:

$$\begin{cases} y' = f(x, y) \\ y(x_0) = y_0 \end{cases} \tag{1}$$

Teorema (Teorema de existencia y unicidad de solución para PVI de primer orden)

Sea R una región rectangular en el plano xy definida por $a \le x \le b$, $c \le y \le d$, y sea (x_0, y_0) un punto interior a R. Si f y $\frac{\partial f}{\partial y}$ son cotinuas en R, entonces existe un intervalo $I = (x_0 - h, x_0 + h)$, h > 0, contenido en [a,b] y existe una única función y definida en I que es solución del problema con valores iniciales (1).

Recorrido

- Ecuaciones diferenciales: generalidades
 - Clasificación
 - Definiciones
 - Campos direccionales
- Métodos para resolver edo de primer orden
 - Separación de variables
 - Ecuaciones lineales de primer order
 - Ecuaciones exactas
 - Ecuación de Bernoulli

Definición

Dada una e.d. y' = f(x,y), el conjunto de los elementos lineales que se obtiene al evaluar sistemáticamente a f en una cuadrícula de puntos en el plano xy se llama campo direccional o campo de pendientes.

Definición

Dada una e.d. y' = f(x, y), el conjunto de los elementos lineales que se obtiene al evaluar sistemáticamente a f en una cuadrícula de puntos en el plano xy se llama campo direccional o campo de pendientes.

Ejemplo: y' = sen(x + y)

Definición

Dada una e.d. y' = f(x, y), el conjunto de los elementos lineales que se obtiene al evaluar sistemáticamente a f en una cuadrícula de puntos en el plano xy se llama campo direccional o campo de pendientes.

Ejemplo: y' = sen(x + y)

FIGURA 2.1.2 Las curvas solución siguen el flujo de un campo direccional.

Campos direccionales

Campos direccionales

Ejemplo:

a) Campo directional para dy/dx = 0.2xy.

b) Algunas curvas solución en la familia $y = ce^{0.1x^2}$.

Recorrido

- Ecuaciones diferenciales: generalidades
 - Clasificación
 - Definiciones
 - Campos direccionales
- Métodos para resolver edo de primer orden
 - Separación de variables
 - Ecuaciones lineales de primer orden
 - Ecuaciones exactas
 - Ecuación de Bernoulli

Definición

Una ecuación diferencial ordinaria de primer orden es separable si es de la forma:

$$y'=g(x)h(y).$$

Definición

Una ecuación diferencial ordinaria de primer orden es separable si es de la forma:

$$y'=g(x)h(y).$$

$$y'=y^2xe^{3x+4y}$$

Definición

Una ecuación diferencial ordinaria de primer orden es separable si es de la forma:

$$y' = g(x)h(y).$$

$$y' = y^2 x e^{3x+4y} \qquad y' = y + \operatorname{sen} x$$

Definición

Una ecuación diferencial ordinaria de primer orden es separable si es de la forma:

$$y' = g(x)h(y).$$

$$y' = y^2 x e^{3x+4y}$$
 $y' = y + \sin x$ $(1+x)dy - y dx = 0$

Definición

Una ecuación diferencial ordinaria de primer orden es separable si es de la forma:

$$y'=g(x)h(y).$$

$$y' = y^2 x e^{3x+4y}$$
 $y' = y + \sin x$ $(1+x)dy - y dx = 0$

$$\frac{y'}{h(y)}=g(x)$$

Definición

Una ecuación diferencial ordinaria de primer orden es separable si es de la forma:

$$y' = g(x)h(y).$$

$$y' = y^2 x e^{3x+4y}$$
 $y' = y + \sin x$ $(1+x)dy - y dx = 0$

$$\frac{y'}{h(y)} = g(x)$$
 $\frac{dy}{h(y)} = g(x)dx$

Definición

Una ecuación diferencial ordinaria de primer orden es separable si es de la forma:

$$y'=g(x)h(y).$$

$$y' = y^2 x e^{3x+4y}$$
 $y' = y + \sin x$ $(1+x)dy - y dx = 0$

$$\frac{y'}{h(y)} = g(x) \qquad \frac{dy}{h(y)} = g(x)dx$$

$$\ln|h(y)| = \int g(x)dx + c$$

Definición

Una ecuación diferencial ordinaria de primer orden es separable si es de la forma:

$$y' = g(x)h(y).$$

$$y' = y^2 x e^{3x+4y}$$
 $y' = y + \sin x$ $(1+x)dy - y dx = 0$

$$\frac{y'}{h(y)} = g(x) \qquad \frac{dy}{h(y)} = g(x)dx$$

$$\ln |h(y)| = \int g(x)dx + c$$

$$|h(y)| = e^{\int g(x)dx}e^{c}$$

Ejemplo:
$$(1 + x)dy - y dx = 0$$

Ejemplo:
$$(1+x)dy - y dx = 0$$

Hacer...

Ejemplo:
$$(1 + x)dy - y dx = 0$$

Hacer... $y = 0$

Ejemplo:
$$(1 + x)dy - y dx = 0$$

Hacer... $y = k(1 + x)$

$$y'=y^2-4$$

$$y' = y^2 - 4$$
 $y = 2\frac{ke^{4x} + 1}{1 - ke^{4x}}$

$$y' = y^2 - 4$$
 $y = 2\frac{ke^{4x} + 1}{1 - ke^{4x}}$ $k \in \mathbb{R}$; si $k > 0$, $x \neq \frac{1}{4} \ln \frac{1}{k}$

$$y' = y^2 - 4$$
 $y = 2\frac{ke^{4x} + 1}{1 - ke^{4x}}$ $k \in \mathbb{R}$; si $k > 0$, $x \neq \frac{1}{4} \ln \frac{1}{k}$
 $k = 0 \Rightarrow y \equiv 2$;

Pérdida de una solución

$$y'=y^2-4$$
 $y=2\frac{ke^{4x}+1}{1-ke^{4x}}$ $k \in \mathbb{R}$; si $k>0$, $x \neq \frac{1}{4}\ln\frac{1}{k}$ $k=0 \Rightarrow y \equiv 2$; $y \equiv -2$ es solución singular.

Pérdida de una solución

$$y' = y^2 - 4$$
 $y = 2\frac{ke^{4x} + 1}{1 - ke^{4x}}$ $k \in \mathbb{R}$; si $k > 0$, $x \neq \frac{1}{4} \ln \frac{1}{k}$

 $k = 0 \Rightarrow y \equiv 2$; $y \equiv -2$ es solución singular.

Recorrido

- Ecuaciones diferenciales: generalidades
 - Clasificación
 - Definiciones
 - Campos direccionales
- Métodos para resolver edo de primer orden
 - Separación de variables
 - Ecuaciones lineales de primer orden
 - Ecuaciones exactas
 - Ecuación de Bernoulli

Definición

Una ecuación diferencial ordinaria de primer orden es lineal en la variable dependiente y, si es de la forma

$$a_1(x)y'+a_0(x)y=g(x).$$

Definición

Una ecuación diferencial ordinaria de primer orden es lineal en la variable dependiente y, si es de la forma

$$a_1(x)y' + a_0(x)y = g(x).$$

Algunas ed lineales son separables, otras no:

$$y' = x + 5$$

Definición

Una ecuación diferencial ordinaria de primer orden es lineal en la variable dependiente y, si es de la forma

$$a_1(x)y' + a_0(x)y = g(x).$$

Algunas ed lineales son separables, otras no:

$$y' = x + 5 \qquad \qquad y' + y = x$$

Definición

Una ecuación diferencial ordinaria de primer orden es lineal en la variable dependiente y, si es de la forma

$$a_1(x)y' + a_0(x)y = g(x).$$

Algunas ed lineales son separables, otras no:

$$y' = x + 5 \qquad \qquad y' + y = x$$

FORMA ESTÁNDAR:

$$y' + P(x)y = f(x)$$

(¿qué hemos supuesto?)

$$y'(x) + P(x)y(x) = f(x)$$

<u>Método</u>

$$y'(x) + P(x)y(x) = f(x)$$

Multiplicamos por un factor integrante: $\mu(x)$

$$y'(x) + P(x)y(x) = f(x)$$

Multiplicamos por un factor integrante: $\mu(x)$

$$y'(x)\mu(x) + y(x)P(x)\mu(x) = f(x)\mu(x)$$

$$y'(x) + P(x)y(x) = f(x)$$

Multiplicamos por un factor integrante: $\mu(x)$

$$y'(x)\mu(x) + y(x)P(x)\mu(x) = f(x)\mu(x)$$

Buscamos μ de manera que el primer miembro sea la derivada de un producto:

$$y'(x) + P(x)y(x) = f(x)$$

Multiplicamos por un factor integrante: $\mu(x)$

$$y'(x)\mu(x) + y(x)P(x)\mu(x) = f(x)\mu(x)$$

Buscamos μ de manera que el primer miembro sea la derivada de un producto:

$$P(x)\mu(x) = \mu'(x)$$

$$y'(x) + P(x)y(x) = f(x)$$

Multiplicamos por un factor integrante: $\mu(x)$

$$y'(x)\mu(x) + y(x)P(x)\mu(x) = f(x)\mu(x)$$

Buscamos μ de manera que el primer miembro sea la derivada de un producto:

$$P(x)\mu(x)=\mu'(x)$$

SEPARABLE!

$$y'(x) + P(x)y(x) = f(x)$$

Multiplicamos por un factor integrante: $\mu(x)$

$$y'(x)\mu(x) + y(x)P(x)\mu(x) = f(x)\mu(x)$$

Buscamos μ de manera que el primer miembro sea la derivada de un producto:

$$P(x)\mu(x) = \mu'(x)$$

SEPARABLE!

$$\mu(x) = e^{\int P(x) dx}$$
 $\mu(x) = ke^{\int P(x) dx}$

$$y'(x) + P(x)y(x) = f(x)$$

$$y'(x) + P(x)y(x) = f(x)$$
 $\mu(x) = e^{\int P(x) dx}$ $\mu(x) = ke^{\int P(x) dx}$

$$y'(x) + P(x)y(x) = f(x)$$
 $\mu(x) = e^{\int P(x) dx}$ $\mu(x) = ke^{\int P(x) dx}$
$$\frac{d}{dx}(y(x)\mu(x)) = f(x)\mu(x)$$

$$y'(x) + P(x)y(x) = f(x)$$
 $\mu(x) = e^{\int P(x) dx}$ $\mu(x) = ke^{\int P(x) dx}$
$$\frac{d}{dx}(y(x)\mu(x)) = f(x)\mu(x)$$
 $y(x)\mu(x) = \int f(x)\mu(x) dx + C$

$$y'(x) + P(x)y(x) = f(x)$$
 $\mu(x) = e^{\int P(x) dx}$ $\mu(x) = ke^{\int P(x) dx}$
$$\frac{d}{dx}(y(x)\mu(x)) = f(x)\mu(x)$$

 $y(x)\mu(x) = \int f(x)\mu(x) dx + C \qquad y(x)e^{\int P(x) dx} = \int f(x)e^{\int P(x) dx} dx + C$

$$y'(x) + P(x)y(x) = f(x) \qquad \mu(x) = e^{\int P(x) dx} \qquad \mu(x) = ke^{\int P(x) dx}$$

$$\frac{d}{dx}(y(x)\mu(x)) = f(x)\mu(x)$$

$$y(x)\mu(x) = \int f(x)\mu(x) dx + C \qquad y(x)e^{\int P(x) dx} = \int f(x)e^{\int P(x) dx} dx + C$$

$$y(x) = e^{-\int P(x) dx} \int f(x)e^{\int P(x) dx} dx + Ce^{-\int P(x) dx}$$

EJEMPLO 7 Circuito en serie

FIGURA 3.1.7 Circuito en serie *LR*.

$$Li'(t) + Ri(t) = E(t)$$
 $\frac{1}{2}i'(t) + 10i(t) = 12; i(0) = 0.$

EJEMPLO 7 Circuito en serie

FIGURA 3.1.7 Circuito en serie *LR*.

$$Li'(t) + Ri(t) = E(t)$$
 $\frac{1}{2}i'(t) + 10i(t) = 12; i(0) = 0.$

$$i'(t) + 20i(t) = 24$$

EJEMPLO 7 Circuito en serie

FIGURA 3.1.7 Circuito en serie *LR*.

$$Li'(t) + Ri(t) = E(t)$$
 $\frac{1}{2}i'(t) + 10i(t) = 12; i(0) = 0.$

$$i'(t) + 20i(t) = 24$$
 $\mu = e^{\int P(t)dt} = e^{20t}$

EJEMPLO 7 Circuito en serie

FIGURA 3.1.7 Circuito en serie *LR*.

$$Li'(t) + Ri(t) = E(t)$$
 $\frac{1}{2}i'(t) + 10i(t) = 12; i(0) = 0.$

$$i'(t) + 20i(t) = 24$$
 $\mu = e^{\int P(t)dt} = e^{20t}$ $\frac{d}{dt}(e^{20t}i(t)) = 24e^{20t}$

EJEMPLO 7 Circuito en serie

FIGURA 3.1.7 Circuito en serie *LR*.

$$Li'(t) + Ri(t) = E(t)$$
 $\frac{1}{2}i'(t) + 10i(t) = 12; i(0) = 0.$

$$i'(t) + 20i(t) = 24$$
 $\mu = e^{\int P(t)dt} = e^{20t}$ $\frac{d}{dt}(e^{20t}i(t)) = 24e^{20t}$

$$i(t)=\frac{6}{5}+ce^{-20t}$$

EJEMPLO 7 Circuito en serie

FIGURA 3.1.7 Circuito en serie *LR*.

$$Li'(t) + Ri(t) = E(t)$$
 $\frac{1}{2}i'(t) + 10i(t) = 12; i(0) = 0.$

$$i'(t) + 20i(t) = 24$$
 $\mu = e^{\int P(t)dt} = e^{20t}$ $\frac{d}{dt}(e^{20t}i(t)) = 24e^{20t}$

$$i(t) = \frac{6}{5} + ce^{-20t}$$
 $i(0) = 0 \Rightarrow c = -\frac{6}{5} \Rightarrow i(t) = \frac{6}{5} - \frac{6}{5} e^{-20t}$

Recorrido

- Ecuaciones diferenciales: generalidades
 - Clasificación
 - Definiciones
 - Campos direccionales
- Métodos para resolver edo de primer orden
 - Separación de variables
 - Ecuaciones lineales de primer order
 - Ecuaciones exactas
 - Ecuación de Bernoulli

Definición

Una ecuación diferencial M(x,y) + N(x,y)y' = 0 o M(x,y)dx + N(x,y)dy = 0 es exacta si M(x,y)dx + N(x,y)dy es una forma diferencial exacta.

Definición

Una ecuación diferencial M(x,y) + N(x,y)y' = 0 o M(x,y)dx + N(x,y)dy = 0 es exacta si M(x,y)dx + N(x,y)dy es una forma diferencial exacta.

Una condición suficiente para que M(x,y)dx + N(x,y)dy sea una forma diferencial exacta es

$$N_x = M_y$$

en una región abierta, conexa y simplemente conexa.

Dada una edo exacta, M(x,y) + N(x,y)y' = 0, propongo una solución implícita S(x,y) = C.

Dada una edo exacta, M(x,y) + N(x,y)y' = 0, propongo una solución implícita S(x,y) = C.

Para hallar S, derivo con respecto a x:

Dada una edo exacta, M(x,y) + N(x,y)y' = 0, propongo una solución implícita S(x,y) = C.

Para hallar *S*, derivo con respecto a *x*:

$$\frac{\partial S}{\partial x}(x,y) + \frac{\partial S}{\partial y}(x,y)y'(x) = 0.$$

Dada una edo exacta, M(x,y) + N(x,y)y' = 0, propongo una solución implícita S(x,y) = C.

Para hallar *S*, derivo con respecto a *x*:

$$\frac{\partial S}{\partial x}(x,y) + \frac{\partial S}{\partial y}(x,y)y'(x) = 0.$$

S = C será una solución implícita de la ed si

$$\frac{\partial S}{\partial x}(x,y) = M(x,y)$$
 y $\frac{\partial S}{\partial y}(x,y) = N(x,y)$

Dada una edo exacta, M(x,y) + N(x,y)y' = 0, propongo una solución implícita S(x,y) = C.

Para hallar *S*, derivo con respecto a *x*:

$$\frac{\partial S}{\partial x}(x,y) + \frac{\partial S}{\partial y}(x,y)y'(x) = 0.$$

S = C será una solución implícita de la ed si

$$\frac{\partial S}{\partial x}(x,y) = M(x,y)$$
 y $\frac{\partial S}{\partial y}(x,y) = N(x,y)$

es decir, si S es una función potencial del campo vectorial $\mathbf{F} = (M, N)$.

Dada una edo exacta, M(x,y) + N(x,y)y' = 0, propongo una solución implícita S(x,y) = C.

Para hallar *S*, derivo con respecto a *x*:

$$\frac{\partial S}{\partial x}(x,y) + \frac{\partial S}{\partial y}(x,y)y'(x) = 0.$$

S = C será una solución implícita de la ed si

$$\frac{\partial S}{\partial x}(x,y) = M(x,y)$$
 y $\frac{\partial S}{\partial y}(x,y) = N(x,y)$

es decir, si S es una función potencial del campo vectorial $\mathbf{F} = (M, N)$.

LA SOLUCIÓN DE LA ED ES S(x,y) = C.

$$y'(x) = \frac{xy^2 - \cos x \sin x}{y(1 - x^2)}$$

$$y'(x) = \frac{xy^2 - \cos x \sec x}{y(1 - x^2)}$$

$$S(x,y) = \frac{\sin^2 x}{2} - \frac{y^2(1-x^2)}{2}$$

$$y'(x) = \frac{xy^2 - \cos x \sec x}{y(1 - x^2)}$$

$$S(x, y) = \frac{\sec^2 x}{2} - \frac{y^2(1 - x^2)}{2}$$

$$\frac{\sec^2 x}{2} - \frac{y^2(1 - x^2)}{2} = C$$

Recorrido

- Ecuaciones diferenciales: generalidades
 - Clasificación
 - Definiciones
 - Campos direccionales
- Métodos para resolver edo de primer orden
 - Separación de variables
 - Ecuaciones lineales de primer order
 - Ecuaciones exactas
 - Ecuación de Bernoulli

Modelo:

$$y'(x) = p(x)y(x) + q(x)y^{n}(x)$$

Modelo:

$$y'(x) = p(x)y(x) + q(x)y^{n}(x)$$

$$P_1 + \frac{1}{2}\rho v_1^2 + \rho g h_1 = P_2 + \frac{1}{2}\rho v_2^2 + \rho g h_2$$

Modelo:

$$y'(x) = p(x)y(x) + q(x)y^{n}(x)$$

$$P_1 + rac{1}{2}
ho v_1^2 +
ho g h_1 = P_2 + rac{1}{2}
ho v_2^2 +
ho g h_2$$

$$\frac{dN}{dT} = r_{max} \frac{(K-N)}{K} N$$

Modelo:

$$y'(x) = p(x)y(x) + q(x)y^{n}(x)$$

$$P_1 + rac{1}{2}
ho v_1^2 +
ho g h_1 = P_2 + rac{1}{2}
ho v_2^2 +
ho g h_2$$

$$\frac{dN}{dT} = r_{max} \frac{(K-N)}{K} N$$

Sustitución sugerida: $v = y^{1-n}$

$$xy'+y=x^2y^2$$

$$xy' + y = x^2y^2 \qquad y' + \frac{y}{x} = xy^2$$

$$xy' + y = x^2y^2$$
 $y' + \frac{y}{x} = xy^2$ $x \neq 0$

$$xy' + y = x^2y^2 \qquad y' + \frac{y}{x} = xy^2 \qquad x \neq 0$$
$$v(x) = \frac{1}{y(x)}$$

$$xy' + y = x^2y^2$$
 $y' + \frac{y}{x} = xy^2$ $x \neq 0$
 $v(x) = \frac{1}{y(x)}$ $v'(x) = -\frac{1}{y^2(x)}y'(x)$

$$xy' + y = x^2y^2 \qquad y' + \frac{y}{x} = xy^2 \qquad x \neq 0$$

$$v(x) = \frac{1}{y(x)} \qquad v'(x) = -\frac{1}{y^2(x)}y'(x)$$

$$-v' + \frac{v}{x} = x$$

$$xy' + y = x^2y^2 \qquad y' + \frac{y}{x} = xy^2 \qquad x \neq 0$$
$$v(x) = \frac{1}{y(x)} \qquad v'(x) = -\frac{1}{y^2(x)}y'(x)$$
$$-v' + \frac{v}{x} = x \qquad v' - \frac{v}{x} = -x$$

$$xy' + y = x^2y^2$$
 $y' + \frac{y}{x} = xy^2$ $x \neq 0$
$$v(x) = \frac{1}{y(x)}$$
 $v'(x) = -\frac{1}{y^2(x)}y'(x)$
$$-v' + \frac{v}{x} = x$$
 $v' - \frac{v}{x} = -x$ $\mu = e^{\int -\frac{1}{x}dx} = \frac{1}{x}$

$$xy' + y = x^2y^2 \qquad y' + \frac{y}{x} = xy^2 \qquad x \neq 0$$

$$v(x) = \frac{1}{y(x)} \qquad v'(x) = -\frac{1}{y^2(x)}y'(x)$$

$$-v' + \frac{v}{x} = x \qquad v' - \frac{v}{x} = -x \qquad \mu = e^{\int -\frac{1}{x}dx} = \frac{1}{x}$$

$$\frac{v}{x} = -x + c$$

$$xy' + y = x^{2}y^{2} y' + \frac{y}{x} = xy^{2} x \neq 0$$

$$v(x) = \frac{1}{y(x)} v'(x) = -\frac{1}{y^{2}(x)}y'(x)$$

$$-v' + \frac{v}{x} = x v' - \frac{v}{x} = -x \mu = e^{\int -\frac{1}{x}dx} = \frac{1}{x}$$

$$\frac{v}{x} = -x + c v = -x^{2} + cx = \frac{1}{y}$$

$$xy' + y = x^{2}y^{2} \qquad y' + \frac{y}{x} = xy^{2} \qquad x \neq 0$$

$$v(x) = \frac{1}{y(x)} \qquad v'(x) = -\frac{1}{y^{2}(x)}y'(x)$$

$$-v' + \frac{v}{x} = x \qquad v' - \frac{v}{x} = -x \qquad \mu = e^{\int -\frac{1}{x}dx} = \frac{1}{x}$$

$$\frac{v}{x} = -x + c \qquad v = -x^{2} + cx = \frac{1}{v} \qquad y = \frac{1}{-x^{2} + cx}$$