

Scalable Construction of Text Indexes with Thrill

Timo Bingmann, Simon Gog, and Florian Kurpicz · IEEE Big Data · December 12th, 2018

i	$T_{\rm i}$													
0	t	0	b	е	0	r	n	0	t	t	0	b	е	\$
1	0	b	е	0	r	n	0	t	t	0	b	е	\$	
2	b	е	0	r	n	0	t	t	0	b	е	\$		
3	е	0	r	n	0	t	t	0	b	е	\$			
4	0	r	n	0	t	t	0	b	е	\$				
5	r	n	0	t	t	0	b	е	\$					
6	n	0	t	t	0	b	е	\$						
7	0	t	t	0	b	е	\$							
8	t	t	0	b	е	\$								
9	t	0	b	е	\$									
10	0	b	е	\$										
11	b	е	\$											
12	е	\$												
13	\$													

SA_i	LCP_{i}	Ts	SΑ _i	.n											
13	1	\$													
11	0	b	е	\$											
2	2	ъ	е	0	r	n	0	t	t	0	b	е	\$		
12	0	е	\$												
3	1	е	0	r	n	0	t	t	0	b	е	\$			
6	0	n	0	t	t	0	b	е	\$						
10	0	0	b	е	\$										
1	3	0	b	е	0	r	n	0	t	t	0	b	е	\$	
4	1	0	r	n	0	t	t	0	b	е	\$				
7	1	0	t	t	0	b	е	\$							
5	0	r	n	0	t	t	0	b	е	\$					
9	1	t	0	b	е	\$									
0	4	t	0	b	е	0	r	n	0	t	t	0	b	е	\$
8	1	t	t	0	b	е	\$								

Big Data Batch Processing

Big Data Batch Processing

Thrill's Goal and Current Status

An easy way to program fast distributed algorithms in C++.

Current Status:

- Open-source prototype at http://github.com/thrill/thrill.
- \approx 60 K lines of C++14 code, written by \geq 12 contributors.
- Published at IEEE Conference on Big Data
 [B, et al. '16]
- Faster than Apache Spark and Apache Flink on five micro benchmarks: WordCount1000, WordCountCC, PageRank, TeraSort, and K-Means.

Case Studies:

- Five suffix sorting algorithms [B, Gog, Kurpicz, this presentation]
- Louvain graph clustering algorithm [Hamann et al. Euro-Par'18]
- Process scientific data on HPC (poster) [Karabin et al. SC'18]
- More examples: stochastic gradient descent, triangle counting, etc.
- Future: fault tolerance, scalability, and more applications.

Distributed Immutable Array (DIA)

User Programmer's View:

- DIA<T> = distributed array of items T on the cluster
- Cannot access items directly, instead use small set of scalable primitives, for example: Map, Sort, ReduceByKey, Zip, Window, etc.

Distributed Immutable Array (DIA)

User Programmer's View:

- DIA<T> = distributed array of items T on the cluster
- Cannot access items directly, instead use small set of scalable

Distributed Immutable Array (DIA)

User Programmer's View:

- DIA<T> = distributed array of items T on the cluster
- Cannot access items directly, instead use small set of scalable

Framework Designer's View:

- Goals: distribute work, optimize execution on cluster, add redundancy where applicable. \Rightarrow build data-flow graph.
- DIA<T> = pipelined chain of computations

Distributed Suffix Sorting

Prior Work on Distributed Algorithms:

- Early research with distributed sorting algorithms and using "pruned suffixes" and "sistrings" with additional characters. [KRRNZ, ICAPP'97]
- Emulation of sequential suffix sorting algorithms. [KN, SPIRE'99]
- With assumption that the entire text is on each processor. [FAK, '01]
- First MPI implementation of DC3 using sample sort. [KS, PVM/MPI'06]
- Hadoop implementation of simple algorithms. [MBS, MapReduce'11]
- Implementation of [FAK01] named cloudSACA for Amazon Web Services. [AKA, MECBME'14]
- Implementation of prefix doubling using MPI.

[FA, SC'15]

Paper: Scalable Suffix Sorting with Thrill

Implemented five algorithms for distributed external memory

- Prefix doubling using the inverse suffix array
- Prefix doubling using sorting (DoublingS)
- Prefix doubling with discarding
- DC3
- DC7

(DoublingW)

(Discarding)

i	$\mathcal{T}_{ ext{i}}$													
0	t	0	b	е	0	r	n	0	t	t	0	b	е	\$
1	0	b	е	0	r	n	0	t	t	0	b	е	\$	
2	Ъ	е	0	r	n	0	t	t	0	b	е	\$		
3	е	0	r	n	0	t	t	0	b	е	\$			
4	0	r	n	0	t	t	0	b	е	\$				
5	r	n	0	t	t	0	b	е	\$					
6	n	0	t	t	0	b	е	\$						
7	0	t	t	0	b	е	\$							
8	t	t	0	b	е	\$								
9	t	0	b	е	\$									
10	0	b	е	\$										
11	Ъ	е	\$											
12	е	\$												
13	\$													

i		$T_{\rm i}$													
13	0	\$													
2	1	b	е	0	r	n	0	t	t	0	b	е	\$		
11	!	b	е	\$											
3	3	е	0	r	n	0	t	t	0	b	е	\$			
12	3	е	\$												
6	5	n	0	t	t	0	b	е	\$						
1	6	0	b	е	0	r	n	0	t	t	0	b	е	\$	
4	0	0	r	n	0	t	t	0	b	е	\$				
7		0	t	t	0	b	е	\$							
10		0	b	е	\$										
5	10	r	n	0	t	t	0	b	е	\$					
0	44	t	0	b	е	0	r	n	0	t	t	0	b	е	\$
8	11	t	t	0	b	е	\$								
9		t	0	b	е	\$									

i		$T_{\rm i}$												
13	0	\$												
2	1	b	e 3 5	r	n	0	t	t	0	b	е	\$		
11	!	b	e 3 \$											
3	3	е	o6r	n	0	t	t	0	b	е	\$			
12	3	е	\$0											
6	5	n	o t	t	0	b	е	\$						
1	6	0	b 1e	0	r	n	0	t	t	0	b	е	\$	
4	0	0	r 101	0	t	t	0	b	е	\$				
7		0	t11;	0	b	е	\$							
10		0	b 1e	\$										
5	10	r	n o	t	t	0	b	е	\$					
0	11	t	o6b	е	0	r	n	0	t	t	0	b	е	\$
8	11	t	t11)	b	е	\$								
9		t	o 6b	е	\$									

i		$T_{\rm i}$												
13	0	\$												
2	1	b	e <mark>3</mark> 5	r	n	0	t	t	0	b	е	\$		
11		b	e 3 \$											
12	3	е	\$ <mark>0</mark>											
3	3	е	o6r	n	0	t	t	0	b	е	\$			
6	5	n	o t	t	0	b	е	\$						
1	6	0	b 1 e	0	r	n	0	t	t	0	b	е	\$	
10	O	0	b 1e	\$										
4		0	r 101	0	t	t	0	b	е	\$				
7		0	_t <u>1</u> 1;	0	b	е	\$							
5	10	r	n o	t	t	0	b	е	\$					
0	11	t	0 6 b	е	0	r	n	0	t	t	0	b	е	\$
9	''	t	0 <mark>6</mark> b	е	\$									
8		t	t 11)	b	е	\$								

i		$T_{\rm i}$													
13	0	\$													
2	1	b	е	08	3r	n	0	t	t	0	b	е	\$		
11	!	b	е	\$()										
12	3	е	\$												
3	4	Ф	0	r	n	0	t	t	0	b	е	\$			
6	5	n	0	t	t	0	b	е	\$						
1	6	0	b	e4	10	r	n	0	t	t	0	b	е	\$	
10	0	0	b	e3	3\$										
4	8	0	r	n	0	t	t	0	b	е	\$				
7	9	0	t	t	0	b	е	\$							
5	10	r	n	0	t	t	0	b	е	\$					
0	11	t	0	b	е	0	r	n	0	t	t	0	b	е	\$
9	11	t	0	b	е	\$									
8	13	t	t	0	b	е	\$								

i		$T_{\rm i}$													
13	0	\$													
11	1	b	е	\$0)										
2	2	b	е	30	3r	n	0	t	t	0	b	е	\$		
12	3	е	\$												
3	4	е	0	r	n	0	t	t	0	b	е	\$			
6	5	n	0	t	t	0	b	е	\$						
10	6	0	b	е	\$										
1	7	0	b	е	0	r	n	0	t	t	0	b	е	\$	
4	8	0	r	n	0	t	t	0	b	е	\$				
7	9	0	t	t	0	b	е	\$							
5	10	r	n	0	t	t	0	b	е	\$					
0	11	t	0	b1	е	0	r	n	0	t	t	0	b	е	\$
9	11	t	0	b1	е	\$									
8	13	t	t	0	b	е	\$								

i		$T_{\rm i}$													
13	0	\$													
11	1	b	е	\$											
2	2	b	е	0	r	n	0	t	t	0	b	е	\$		
12	3	е	\$												
3	4	е	0	r	n	0	t	t	0	b	е	\$			
6	5	n	0	t	t	0	b	е	\$						
10	6	0	b	е	\$										
1	7	0	b	е	0	r	n	0	t	t	0	b	е	\$	
4	8	0	r	n	0	t	t	0	b	е	\$				
7	9	0	t	t	0	b	е	\$							
5	10	r	n	0	t	t	0	b	е	\$					
0	11	t	0	b	е	0	r8	3n	0	t	t	0	b	е	\$
9	- 11	t	0	b	е	\$	()							
8	13	t	t	0	b	е	\$								

i		$T_{\rm i}$													
13	0	\$													
11	1	b	е	\$											
2	2	b	е	0	r	n	0	t	t	0	b	е	\$		
12	3	е	\$												
3	4	е	0	r	n	0	t	t	0	b	е	\$			
6	5	n	0	t	t	0	b	е	\$						
10	6	0	b	е	\$										
1	7	0	b	е	0	r	n	0	t	t	0	b	е	\$	
4	8	0	r	n	0	t	t	0	b	е	\$				
7	9	0	t	t	0	b	е	\$							
5	10	r	n	0	t	t	0	b	е	\$					
9	11	t	0	b	е	\$	()							
0	12	t	0	b	е	0	r	3n	0	t	t	0	b	е	\$
8	13	t	t	0	b	е	\$								

Thrill Pseudo-Code for Prefix DoublingS


```
Function PrefixDoublingWithSorting(T \in \langle \Sigma \rangle)
        S := T.Window_2((i, [t_0, t_1]) \mapsto (i, t_0, t_1))
                                                              # Initial triples (i, T[i], T[i+1]).
        for k := 1 to \lceil \log_2 |T| \rceil - 1 do
             N := S.FlatWindow_2((j, [a, b]) \mapsto CmpName(j, a, b)) // Outputs 0 or j.
             if N.Filter((i, n) \mapsto (n = 0)).Size() = 1 then # If all names distinct, then
              return N.Map((i, n) \mapsto i) | return names as suffix array, else
             N := N.\operatorname{PrefixSum}((i, n), (i', n') \mapsto (i', \max(n, n')) | make new names.
                                                                              // Compute ISA<sup>2<sup>k</sup></sup>.
             N := N.Sort((i, n) by i)
             S := N.Window_{2^k+1}((j, [(i, n), \dots, (i', n')]) \mapsto
10
                      \begin{cases} (i, n, n') & \text{if } j + 2^k < |T|, \\ (i, n, 0) & \text{otherwise.} \end{cases} 
Compare names |SA|^{2^k}[i]
and |SA|^{2^k}[i + 2^k].
```

Data-Flow Graph of DC3 with Recursion

Experiments on AWS EC2

Inputs: prefixes of

- Wikipedia XML dump (up to 125.6 GiB)
- **Gutenberg** text document corpus (up to 23 GiB)
- **Pi** digits of π ("3.1415926535...")

Machine:

- up to 32 × i3.4xlarge EC2 instances.
- 16-core Intel Xeon E5-2686 CPUs with 2.30 GHz
- 8 GB of RAM, and 2×1.9 TB NVMe SSDs

Competitors:

- BKS.pDC3 and BKS.pDC7
- - MPI prefix doubling algorithm FA.psac
- also compared against fastest non-distributed algorithms: M.divsufsort, M.divsufsort.par, and M.sais.

MPI difference cover algorithm

Suffix Sorting Wikipedia on AWS EC2

Suffix Sorting Gutenberg on AWS EC2

Weak Scaling and COST on AWS EC2

Current and Future Work

- Open-Source at http://project-thrill.org and Github.
- High quality, very modern C++14 code.
- A K-Mean tutorial is available!

Ideas for Future Work:

- Distributed rank()/select() and succinct bit vectors for text search?
- Beyond DIA<T>? Graph<V,E>? Matrix<T>?
- Fault tolerance in the algorithms and scalability to large clusters.

Thank you for your attention!

Ouestions?