Real Analysis Homework 9

National Taiwan University, Department of Mathematics R06221012 Yueh-Chou Lee

May 22, 2019

EXERCISE 11.12

Let Γ be an outer measure on \mathscr{S} , and let Γ' denote Γ restricted to the Γ -measurable sets. Since Γ' is a measure on an algebra, it induces an outer measure Γ^* . Show that $\Gamma^*(A) \geq \Gamma(A)$ for $A \subset \mathscr{S}$ and that equality holds for a given A if and only if there is a Γ -measurable set E such that $A \subset E$ and $\Gamma(E) = \Gamma(A)$. Thus, $\Gamma = \Gamma^*$ if Γ is regular.

Proof.

Given $A \subset \mathcal{S}$. Let A_1, A_2, \ldots, A_k be a measurable covering of A, then

$$\sum_{k} \Gamma(A_k) \ge \Gamma(\cup_k A_k) \ge \Gamma(A).$$

This shows that

$$\Gamma^*(A) = \inf \sum_k \Gamma'(A_k) = \inf \sum_k \Gamma(A_k) \ge \Gamma(A).$$

 (\Rightarrow)

Given $A \subset \mathscr{S}$ such that $\Gamma^*(A) = \Gamma(A)$.

Let $\{A_k^{(n)}\}_{k=1}^{K_n}$ be a sequence of coverings such that

$$\lim_{n \to \infty} \Gamma'(A_k^{(n)}) = \Gamma^*(A) = \Gamma(A).$$

and

$$\begin{split} \Gamma(A) &< \Gamma\left(\cap_{n=1}^{\infty} \, \cup_{k=1}^{K_n} \, A_k^{(n)}\right) = \Gamma'\left(\cap_{n=1}^{\infty} \, \cup_{k=1}^{K_n} \, A_k^{(n)}\right) \\ &\leq \Gamma'\left(\cup_{k=1}^{K_n} A_k^{(n)}\right) \quad \forall \, n \\ &\leq \sum_{k=1}^{K_n} \, \Gamma'(A_k^{(n)}) \to \Gamma(A). \end{split}$$

Thus, if $E = \bigcap_{n=1}^{\infty} \cup_{k=1}^{K_n} A_k^{(n)}$, then $A \subset E$ and $\Gamma(E) = \Gamma(A)$.

 (\Leftarrow)

Given E is measurable and $A \subset E$ such that $\Gamma(E) = \Gamma(A)$. Thus

$$\Gamma(E) = \Gamma(A) \le \Gamma^*(A) \le \Gamma^*(E) = \Gamma(E).$$

EXERCISE 11.13

Let λ be a measure on an algebra \mathscr{A} , and let λ^* be the corresponding outer measure. Given A, show that there is a set H of the form $\cap_k \cup_j A_{k,j}$ such that $A_{k,j} \in \mathscr{A}$, $A \subset H$ and $\lambda^*(A) = \lambda^*(H)$. Thus, every outer measure that is induced by a measure on an algebra is regular.

Proof.

Given A, let $\{A_{k,j}\}$ be sequence of coverings of A such that $\lim_{k\to\infty}\sum_j\lambda(A_{k,j})=\lambda^*(A)$. Thus

$$\lambda^*(A) \le \lambda^* \left(\cap_k \cup_j A_{k,j} \right) \le \lambda^* \left(\cup_j A_{k,j} \right) \quad \forall \, k$$
$$\le \sum_j \lambda^*(A_{k,j}) \to \lambda^*(A).$$

So if $H = \bigcap_k \bigcup_j A_{k,j}$, then $A \subset H$ and $\lambda^*(A) = \lambda^*(H)$.

EXERCISE 11.15

- (a) Show that the intersection of a family of algebras is an algebra.
- (b) A collection \mathscr{C} of subsets of \mathscr{S} is called a *subalgebra* if it is closed under finite intersections and if the complement of any set in \mathscr{C} is the union of a finite number of disjoint sets in \mathscr{C} . Given an example of a subalgebra. Show that a subalgebra \mathscr{C} generates an algebra by adding \emptyset , \mathscr{S} , and all finite disjoint unions of sets of \mathscr{C} .

Proof.

- (a) Let $\{A_k\}$ be a family of algebras and $A = \cap_k A_k$.
 - (i) Let X be a set and $X \in A$, then

$$X^c = \bigcap_k (X \cap A_k)^c \in \mathscr{A},$$

since A_k is an algebra, $(X \cap A_k)^c \in A_k$ and $A_k \in A$.

(ii) Let X_1, X_2, \ldots, X_N be the sets and $X_1, X_2, \ldots, X_N \in A$, then

$$\bigcup_{i=1}^{N} X_i \in A$$
.

- (b) Let $\mathscr{C}' = \mathscr{C} \cup \emptyset \cup \mathscr{S} \cup \{\text{all finite disjoint union of sets of } \mathscr{C} \}$. We need to show that $A^c \in \mathscr{C}'$, if $A \in \mathscr{C}'$.
 - (i) Given $A \in \mathcal{C}$, then

$$A^c = \bigcup_{k=1}^K A_k \in \mathscr{C}'$$
 where $A_k \in \mathscr{C}$.

(ii) Given $A \in \mathcal{C}' \setminus \mathcal{C}$, may assume that $A = \bigcup_{k=1}^K A_k$, where $A_k \in \mathcal{C}$, then

$$\begin{split} A^c &= \left(\cup_{k=1}^K A_k \right)^c = \cap_{k=1}^K A_k^c \\ &= \cap_{k=1}^K \cup_{l=1}^{L_k} A_{k,l} \quad \text{where } A_{k,l} \in \mathscr{C} \\ &= \cup_l \left(\cap_{k=1}^K A_{k,l} \right) \in \mathscr{C}'. \end{split}$$

(iii) Given $A_1, \ldots, A_n \in \mathscr{C}'$. W.L.O.G., we can assume $A_1, \ldots, A_m \in \mathscr{C}$ and $A_{m+1}, \ldots, A_n \in \mathscr{C}' \setminus \mathscr{C}$, then

$$\bigcap_{j=1}^{n} A_{j} = (\bigcap_{j=1}^{m} A_{j}) \cup (\bigcap_{j=m+1}^{n} A_{j})
= (\bigcap_{j=1}^{m} A_{j}) \cap (\bigcap_{j=m+1}^{n} \bigcup_{k=1}^{K_{j}} A_{k,j})
= (\bigcap_{j=1}^{m} A_{j}) \cap (\bigcup_{k} \bigcap_{j=m+1}^{n} A_{k,j})$$

and

$$\bigcap_{j=1}^{m} A_j \in \mathscr{C}, \quad \cup_k \cap_{j=m+1}^{n} A_{k,j} \in \mathscr{C}'.$$

It remains to show that

$$A \in \mathscr{C}, B \in \mathscr{C}' \Rightarrow A \cap B \in \mathscr{C}',$$

since

$$A \cap B = A \cap (\bigcup_{k=1}^K B_k) = \bigcup_{k=1}^K (A \cap B_k) \in \mathscr{C}'.$$

Example of a subalgebra:

The 2×2 -matrices over the reals form a unital algebra in the obvious way.

The 2×2 -matrices for which all entries are zero, except for the first one on the diagonal, form a subalgebra.

EXERCISE 11.16

If μ is a finite Borel measure on \mathbb{R}^1 , show that $\mu(B) = \sup \mu(F)$ for every Borel set B, where the sup is taken over all closed subsets F of B.

Proof.

This is to show that μ is inner regular.

Define the collection \mathscr{C} by

$$B \in \mathscr{C} \iff \mu(B) = \sup\{\mu(F) : F \subset B, F \text{ is closed}\}\$$

Let $B \in \mathscr{C}$, let $\varepsilon > 0$.

Take F closed with $F \subset B$ and $\mu(B) < \mu(F) + \varepsilon$. Then $B^c \subset F^c$, F^c is open and

$$\mu(B^c) = \mu(\mathbb{R}) - \mu(B) > \mu(\mathbb{R}) - \mu(B) - \varepsilon = \mu(F^c) - \varepsilon.$$

Hence $B^c \in \mathscr{C}$.

Let $B_1, B_2, \dots \in \mathscr{C}$ and let $\varepsilon > 0$. Take for each i, F_i is closed with

$$F_i \subset B$$
, $\mu(B_i) - \mu(F_i) < \frac{\varepsilon}{2^{i+1}}$.

So $\bigcup_i F_i \subset \bigcup_i B_i$ and $\mu(\bigcup_i F_i) = \lim_{k \to \infty} \mu(\bigcup_{i=1}^k F_i)$, hence for some large N, we have

$$\mu(\cup_i F_i) - \mu(\cup_{i=1}^k F_i) < \frac{\varepsilon}{2}.$$

Then $F := \bigcup_{i=1}^k F_i \subset \bigcup_i B_i$, F is closed and

$$\mu(\cup_{i} B_{i}) - \mu(F) < \mu(\cup_{i} B_{i}) - \mu(\cup_{i} F_{i}) + \frac{\varepsilon}{2}$$

$$\leq \mu(\cup_{i} B_{i} \setminus \cup_{i} F_{i}) + \frac{\varepsilon}{2}$$

$$\leq \mu(\cup_{i} (B_{i} \setminus F_{i})) + \frac{\varepsilon}{2}$$

$$\leq \sum_{i} \mu(B_{i} \setminus F_{i}) + \frac{\varepsilon}{2}$$

$$= \sum_{i} (\mu(B_{i}) - \mu(F_{i})) + \frac{\varepsilon}{2}$$

$$\leq \varepsilon.$$

$$\mu(B) = \sup \mu(F).$$

EXERCISE 11.17

Show that the conclusions of **Theorems 10.48** and **10.49**, and therefore also the conclusion of **Corollary 10.50**, remain true without the assumption (ii) stated before **Lemma 10.47**. (Show that without this assumption, the conclusions of **Lemma 10.47** are true with μ replaced by μ^* ; for example,

$$\mu^* \left\{ \mathbf{x} \in E : \sup_{h>0} \frac{\nu(Q_{\mathbf{x}}(h))}{\mu(Q_{\mathbf{x}}(h))} > \alpha \right\} \le c \frac{\nu(\mathbb{R}^n)}{\alpha}.$$

Proof.

It's sufficient to show that without this assumption, the conclusions of **Lemma 10.47** are true with μ replaced by μ^* .

(a) To show

$$\mu^* \left\{ \mathbf{x} \in \mathbb{R}^n : \sup_{h>0} \frac{\nu(Q_{\mathbf{x}}(h))}{\mu(Q_{\mathbf{x}}(h))} > \alpha \right\} \le c \frac{\nu(\mathbb{R}^n)}{\alpha}$$

Fix $\alpha > 0$, and let

$$S = \left\{ \mathbf{x} \in \mathbb{R}^n \, : \, \sup_{h > 0} \frac{\nu(Q_{\mathbf{x}}(h))}{\mu(Q_{\mathbf{x}}(h))} > \alpha \right\}.$$

If B is any bounded Borel set and $\mathbf{x} \in S \cap B$, there is a cube $Q_{\mathbf{x}}$ with center \mathbf{x} such that $\frac{\nu(Q_{\mathbf{x}})}{\mu(Q_{\mathbf{x}})} > \alpha$.

Using Besicovitch's lemma, select $\{Q_{\mathbf{x}_k}\}$ and c such that $\nu(Q_{\mathbf{x}_k}) > \alpha \mu(Q_{\mathbf{x}_k})$, $S \cap B \subset \cup Q_{\mathbf{x}_k}$, and $\sum \chi_{Q_{\mathbf{x}_k}} \leq c$.

We then have

$$\mu^*(S \cap B) \le \mu(S \cap B) \le \mu(\cup Q_{\mathbf{x}_k}) \le \sum \mu(Q_{\mathbf{x}_k}) < \frac{1}{\alpha} \sum \nu(Q_{\mathbf{x}_k}),$$

$$\sum \nu(Q_{\mathbf{x}_k}) = \sum \int_{\cup Q_{\mathbf{x}_k}} \chi_{Q_{\mathbf{x}_k}} d\nu \leq c \int_{\cup Q_{\mathbf{x}_k}} d\nu = c \, \nu(\cup Q_{\mathbf{x}_k}).$$

Therefore,

$$\mu^*(S \cap B) \le \frac{c}{\alpha} \nu(\cup Q_{\mathbf{x}_k}),$$

so that

$$\mu^*(S \cap B) \le \frac{c}{\alpha} \nu(\mathbb{R}^n).$$

Letting $B \nearrow \mathbb{R}^n$, we obtain $\mu^*(S) \le \frac{c}{\alpha} \nu(\mathbb{R}^n)$, as desired.

(b) To show

$$\mu^* \left\{ \mathbf{x} \in E \ : \ \limsup_{h \to 0} \frac{\nu(Q_{\mathbf{x}}(h))}{\mu(Q_{\mathbf{x}}(h))} > \alpha \right\} \le c \frac{\nu(E)}{\alpha}$$

Fix $\alpha > 0$, and let

$$T = \left\{ \mathbf{x} \in E \, : \, \limsup_{h \to 0} \frac{\nu(Q_{\mathbf{x}}(h))}{\mu(Q_{\mathbf{x}}(h))} > \alpha \right\}.$$

If $\nu(E) = +\infty$, there is nothing to prove.

Otherwise, choose an open set $G \supset E$ with $\nu(G) < \nu(E) + \varepsilon$, and let B be a bounded Borel set. If $\mathbf{x} \in T \cap B$, there is a cube $Q_{\mathbf{x}}$ such that

$$Q_{\mathbf{x}} \subset G$$
 and $\frac{\nu(Q_{\mathbf{x}})}{\mu(Q_{\mathbf{x}})} > \alpha$.

By again using Besicovitch's lemma, there exists $\{Q_{\mathbf{x}_k}\},\,Q_{\mathbf{x}_k}\subset G,$ such that

$$\mu^*(T \cap B) \le \mu(T \cap B) \le \frac{c}{\alpha} \nu(G) \le \frac{c}{\alpha} [\nu(E) + \varepsilon]$$

The result now follows by first letting $\varepsilon \to 0$ and then letting $B \nearrow \mathbb{R}^n$.