CONTROL SYSTEM-2 PRACTICAL FILE

SUBMITTED BY: MANAN MADAN ROLL NUMBER: 2018UIC3087

Branch: Instrumentation and Control Engineering

List of Experiments

S.no.	Aim	Sec 2
1	Practical problems using state space equations in MATLAB	18 August
2	Pole placement and observer design for a given state space model using MATLAB	1 September
3	Modelling and control of Cruise control system using MATLAB	22 September
4	Modelling and control of DC motor using MATLAB	29 September
5	The Frequency design method of a Cruise control system.	17 October
6	Obtain the transfer function of the system defined by the following state space equations: $\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -5 & -25 & -5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 25 \\ -120 \end{bmatrix} u$ $y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ Also obtain the unit step response of the given system.	25 November
7	Step response and impulse response of second order systems for varying damping ratio: (i) $G(s) = \frac{10}{s^2 + 2s + 10}$ (ii) $G(s) = \frac{25}{s^2 + 4s + 25}$	26 November
8	The Frequency design method of DC motor using MATLAB.	27 November

POLE PLACEMENT

Obtain the transfer function of the system-defined by the following state-space equations:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -5 & -25 & -5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 25 \\ -120 \end{bmatrix} u$$

$$y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Step response and impulse response of second-order for varying damping ratio: systems

(i) G(s) =
$$\frac{10}{s^2 + 2s + 10}$$

(ii) G(s) = $\frac{25}{s^2 + 4s + 25}$

(ii) G(s) =
$$\frac{25}{s^2 + 4s + 25}$$

Part 2

The Frequency design method of DC motor using MATLAB.

- Bode Plot:

- For Proportional Gain:

- For Lag Controller

