

ANALIZA MATEMATYCZNA I (Lista 5, 31.10.2022)

Granica funkcji w punkcie, ciągłość, asymptoty.

Zad. 1. Obliczyć granice jednostronne funkcji w punkc

a)
$$f(x) = \frac{1}{x}$$
, $x_0 = 0$, b) $f(x) = \begin{cases} x^2 + 5, x \ge 0 \\ \frac{1}{x - 0.2}, x < 0 \end{cases}$ $x_0 = 0$,

c)
$$f(x) = \frac{x^3 + 1}{x^2 - 1}$$
, $x_0 = 1$, $x_0 = -1$. d) $f(x) = \begin{cases} -2, & \text{dla } x < -1, \\ x, & \text{dla } x \ge -1, \end{cases}$ $x_0 = -1$.

Zad. 2. Obliczyć granice jednostronne oraz zbadać istnienie granicy funkcji f w punkcie x_0 :

(a)
$$f(x) = \frac{4-x}{x^2}$$
, $x_0 = 0$; (b) $f(x) = \frac{3x}{1-x}$, $x_0 = 1$; (c) $f(x) = \frac{x+1}{9-x^2}$, $x_0 = \pm 3$;

d)
$$f(x) = e^{\frac{1}{x}}$$
, $x_0 = 0$; e) $f(x) = \arctan \frac{1}{x^2}$, $x_0 = 0$; f) $f(x) = \frac{|x+1|-1}{x^2-4}$, $x_0 = \pm 2$.

Zad. 3. Obliczyć granice:

(a)
$$\lim_{x\to 0} \frac{x^2+x}{x^2-x}$$
, (b) $\lim_{x\to 1} \frac{x^4-1}{x^2-1}$, (c) $\lim_{x\to 1} \frac{x^4-1}{x^2-1}$, (d) $\lim_{x\to 2} \frac{x-2}{x^2-5x+6}$, (l) $\lim_{x\to 3} \frac{27-x^3}{9-x^2}$

$$\lim_{x \to 3} \frac{27 - x^3}{9 - x^2}$$

$$2 - \sqrt{x}$$

(e)
$$\lim_{x \to 3} \frac{x^2 - 2x - 3}{x - 3}$$
, (f) $\lim_{x \to 2} \frac{x^3 - 8}{x - 2}$, (g) $\lim_{x \to \infty} \frac{x}{x + 1}$, (h) $\lim_{x \to -\infty} \frac{x}{x + 1}$

$$\lim_{x \to 4} \frac{2 - \sqrt{x}}{3 - \sqrt{2x + 1}}$$

$$\lim_{x \to 3} x - 3 \qquad \lim_{x \to 2} x - 2 \qquad \lim_{x \to \infty} x + 1 \qquad \lim_{x \to \infty} x - 2 \qquad \lim_{x \to \infty}$$

$$\lim_{x \to \pm \infty} \frac{2^x + 3}{3^x + 2}$$

Zad. 4. Uzasadnić, że nie istnieją granice funkcji w punkcie:

a)
$$\lim_{x\to 0.5} \frac{2x-1}{4x^2-1}$$
, b) $\lim_{x\to 0} 2^{1/x}$, c) $\lim_{x\to 0} \frac{1}{2^x-3^x}$, d) $\lim_{x\to \pi} sgn(sinx)$.
e) $\sin\frac{1}{x}$ $x_0=0$, f) $2^{\frac{1}{1-x}}$, $x_0=1$, g) $\frac{[x]}{x-1}$ $x_0=1$.

$$b) \lim_{x \to 0} 2^{1/x}$$

$$\lim_{x \to 0} \frac{1}{2^x - 3^x},$$

$$\frac{d}{d} \lim_{x \to \pi} sgn(sinx)$$

$$e) \sin \frac{1}{x} x_0 = 0$$

f)
$$2^{\frac{1}{1-x}}$$
, $x_0=1$,

g)
$$\frac{[x]}{x-1}$$
 $x_0=1$

Zad. 5. Zbadać, czy funkcja

$$f(x) = \begin{cases} -2, dla \ x < -1, \\ x, dla \ x \ge -1, \end{cases}$$

jest lewostronnie oraz prawostronnie ciągła w punkcie -1

Zad. 6. Zbadać ciągłość funkcji

a)
$$f(x) =\begin{cases} x^2, dla \ x \ge 2 \\ x + 2, dla \ x < 2 \end{cases}$$
 w $x_0 = 2$. b) $f(x) =\begin{cases} \frac{|x|}{x}e^x, dla \ x \ne 0, \\ 1, dla \ x = 0. \end{cases}$ w $x_0 = 0$.

Zadania pochodzą, między innymi, z podręczników:

^{1.} Gewert M., Skoczylas Z., Analiza matematyczna 1, przykłady i zadania.

^{2.} Krysicki L., Włodarski L., Analiza matematyczna w zadaniach, cz. 1.

Zad. 7 Wyznaczyć zbiór punktów ciągłości funkcji:

a)
$$f(x) = \begin{cases} \frac{x^3 - x^2}{|x - 1|}, & \text{dla } x \neq 1, \\ 1, & \text{dla } x = 1, \end{cases}$$
b) $f(x) = \begin{cases} \frac{5x^2 + 12x}{x^3} & \text{dla } x > 0, \\ \frac{x^3}{x^3} & \text{dla } x \leq 0; \end{cases}$

c)
$$f(x) =\begin{cases} \frac{x^2 - 4x + 3}{x - 1} & \text{dla } x \neq 1, \\ -2 & \text{dla } x = 1; \end{cases}$$
 d) $f(x) =\begin{cases} \frac{x^2 + x + 1}{x^3 - 1} & \text{dla } x \neq 1, \\ 1 & \text{dla } x = 1; \end{cases}$

Zad. 8 Dobrać parametry a,b tak, aby funkcja

$$f(x) = \begin{cases} ax + 1, dla & x \le \pi/2, \\ \sin x + b, dla & x > \pi/2, \end{cases}$$
 była ciągła w punkcie $\pi/2$.

Zad. 9. Zbadać asymptoty funkcji:

Zad. 10. Wykazać, że równanie $x^5 - 3x + 1 = 0$ ma pierwiastek w przedziale (0,1) oraz ma także pierwiastek w przedziale (1,2).

Zad. 11. Uzasadnić, że równanie $x^3 + ax + 1 = 0$ ma dla każdej wartości rzeczywistej parametru a przynajmniej jeden pierwiastek (Wskazówka. Obliczyć granicę przy $x \to \infty$ oraz $x \to -\infty$.

Zad. 12. Uzasadnić, że równania mają tylko jedno rozwiązania we wskazanych przedziałach:

a)
$$4^x = x^2$$
, $(-1,0)$, b) $e^x = \frac{1}{x}$, $(1/2,1)$, c) $x^x = 3$, $(1,2)$, d) $2^x + 4^x = 8^x$, $[0,1]$, e) $x^2 \operatorname{arct} gx = 3$, $[1,2]$.

Zad. 13. Turysta przemierza szlak od podnóża góry na szczyt i z powrotem. Wyrusza w sobotę o 8.00 rano osiąga szczyt o 18.00. Nocuje, a w niedzielę wyrusza w dół o 8.00 rano kończy zejście (w punkcie startu w sobotę) o godzinie 18.00. Wykazać, że o tej samej porze turysta był w tym samym miejscu trasy w sobotę oraz w niedzielę.