Where to Begin? Exploring the Impact of Pre-Training and Initialization in Federated Learning

John Nguyen Kshitiz Malik Maziar Sanjabi Michael Rabbat Meta Al {ngjhn,kmalik2,maziars,mikerabbat}@fb.com

How does the initialization (random, or pre-trained) impact the behavior of federated optimization methods?

- Starting from a pre-trained solution can close the gap between training on IID and non-IID data (Section 5.2). Moreover, the simple SGD at the client outperforms more complex local-update methods in the pre-trained setting. (Section 5.1)
- Towards starting to explain this phenomenon, we observe that inter-device gradient/update diversity is higher for random initialized model at the beginning of training, and inter-device cosine similarity is higher when starting from a pre-trained model. (Section 5.4)
- Surprisingly, full-batch gradient descent without any local step can achieve competitive performance against other SOTA local-update methods in the pretrained setting.

Related Work

	4P	\$	CH	AS.
FEDAVG NOVA	✓	✓	Х	X
FEDAVG PROXIMAL	X	✓	X	X
FEDAVG SGD	X	✓	X	X
FEDAVG GD	X	X	X	X
FEDAVGM NOVA	✓	✓	✓	X
FEDAVGM PROXIMAL	X	✓	✓	X
FEDAVGM SGD	X	✓	✓	X
FEDAVGM GD	X	X	✓	X
FEDADAM NOVA	✓	✓	✓	1
FEDADAM PROXIMAL	X	\checkmark	✓	✓
FEDADAM SGD	X	✓	✓	✓
FEDADAM GD	X	X	✓	✓

Algorithm 1 FedOpt framework

- 1: **Input:** initial global model x^0 , server and client step sizes η_s , η_c , local epochs E, rounds T
- 2: **for** each round $t = 1, \ldots, T$ **do**

- Server sends x^{t-1} to all clients $i \in \mathcal{S}^t$. **for** each client $i \in \mathcal{S}^t$ in parallel **do**Initialize local model $y_i^0 \leftarrow x^{t-1}$.
- Each client performs $\overset{\circ}{E}$ epochs of local updates via $y_i^{k+1} = \text{CLIENTOPT}(y_i^k, F_i, \eta_c)$. Let y_i^E denote the result after performing E epochs of local updates. After local training, client i sends $\Delta_i^t = x^{t-1} - y_i^E$ to the server.
- end for
- Server computes aggregate update $\Delta^t = \frac{1}{|\mathcal{S}^t|} \sum_{i \in \mathcal{S}^t} p_i \Delta_i^t$.
- Server updates global model $x^t = SERVEROPT(x^{t-1}, -\Delta^t, \eta_s, t)$.
- 11: end for

1. Pre-training affects how federated optimization algorithms behave.

- Starting from a pre-trained solution can close the gap between training on IID and non-IID data (Section 5.2). Moreover, the simple SGD at the client outperforms more complex local-update methods in the pre-trained setting. (Section 5.1)
- Towards starting to explain this phenomenon, we observe that inter-device gradient/update diversity is higher for random initialized model at the beginning of training, and inter-device cosine similarity is higher when starting from a pre-trained model. (Section 5.4)
- Surprisingly, full-batch gradient descent without any local step can achieve competitive performance against other SOTA local-update methods in the pretrained setting.

2. Pre-training closes the accuracy gap between non-IID and IID

- Starting from a pre-trained solution can close the gap between training on IID and non-IID data (Section 5.2). Moreover, the simple SGD at the client outperforms more complex local-update methods in the pre-trained setting. (Section 5.1)
- Towards starting to explain this phenomenon, we observe that inter-device gradient/update diversity is higher for random initialized model at the beginning of training, and inter-device cosine similarity is higher when starting from a pre-trained model. (Section 5.4)
- Surprisingly, full-batch gradient descent without any local step can achieve competitive performance against other SOTA local-update methods in the pretrained setting.

3. Pre-training reduces the impact of system heterogeneity.

4. Pre-training helps align client updates.

- Starting from a pre-trained solution can close the gap between training on IID and non-IID data (Section 5.2). Moreover, the simple SGD at the client outperforms more complex local-update methods in the pre-trained setting. (Section 5.1)
- Towards starting to explain this phenomenon, we observe that inter-device gradient/update diversity is higher for random initialized model at the beginning of training, and inter-device cosine similarity is higher when starting from a pre-trained model. (Section 5.4)
- Surprisingly, full-batch gradient descent without any local step can achieve competitive performance against other SOTA local-update methods in the pretrained setting.

5. FEDADAM GD is as effective as FEDADAM SGD with pretraining

- Starting from a pre-trained solution can close the gap between training on IID and non-IID data (Section 5.2). Moreover, the simple SGD at the client outperforms more complex local-update methods in the pre-trained setting. (Section 5.1)
- Towards starting to explain this phenomenon, we observe that inter-device gradient/update diversity is higher for random initialized model at the beginning of training, and inter-device cosine similarity is higher when starting from a pre-trained model. (Section 5.4)
- Surprisingly, full-batch gradient descent without any local step can achieve competitive performance against other SOTA local-update methods in the pretrained setting.

Recommendations

- When evaluate FL algorithms, researchers should experiment with both pretrained (if available) and random weights as they have different behaviors.
- When deploying FL to production environment, researchers should use adaptive server optimizers such as FedAdam and SGD at client. This setup works well and should be used a baseline before trying out more complex methods.
- Heterogeneity is not as a big of a problem when there is public data to pretrained a model. We encourage researchers to pay attention other more complex tasks when there is no public data such as recommendation systems or semisupervised learning.

Conclusion

- We find that pre-training on public data can recover most of the accuracy drop from heterogeneity
- We show that client updates starting from pre-trained weights have higher cosine similarity, which explains why initialized with pretrained weights can speed up convergence and achieve high accuracy even in heterogeneous settings.