Graphing Linear Inequalities

Sketch the graph of each linear inequality.

1)
$$y \ge -2x - 2$$

2)
$$y \le -\frac{1}{3}x + 1$$

3)
$$x \ge -2$$

4)
$$y < x - 2$$

5)
$$y \ge x - 2$$

6)
$$y < 6x + 1$$

7) $5x - y \ge 5$

9) $y \ge 5$

11) $8x - 3y \le 12$

Critical thinking questions:

8) $x + 3y \ge 3$

10) $2x - 5y \le 10$

12) $x - y \ge 0$

14) Can you write a linear inequality whose solution contains only points with positive *x*-values and positive *y*-values? Why or why not?

Date______ Period____

Graphing Linear Inequalities

Sketch the graph of each linear inequality.

1)
$$y \ge -2x - 2$$

3)
$$x \ge -2$$

5)
$$y \ge x - 2$$

2)
$$y \le -\frac{1}{3}x + 1$$

4)
$$y < x - 2$$

6)
$$y < 6x + 1$$

7) $5x - y \ge 5$

9) $y \ge 5$

11) $8x - 3y \le 12$

Critical thinking questions:

Any point in the shaded region or boundary. Ex:
$$(0, 0)$$

8) $x + 3y \ge 3$

10) $2x - 5y \le 10$

12) $x - y \ge 0$

13) Name one particular solution to #11

Any point in the shaded region or boundary. Ex: (0, 0)

14) Can you write a linear inequality whose solution contains only points with positive x-values and positive y-values? Why or why not?

No. No line can be in only the 1st quadrant.