Chapitre 4 : Réciproque du théorème de Thalès

Plan du chapitre

- I. <u>Théorème</u>
- II. <u>Cas de droites parallèles</u>
- III. <u>Cas de droites sécantes</u>

I/ Théorème

Soient (MB) et (NC) deux droites sécantes en A.

Si les points A,M,B d'une part et les points A,N,C d'autre part sont **alignés dans le même ordre**, et si $\frac{AM}{AB} = \frac{AN}{AC}$, alors les droites (BC) et (MN) sont **parallèles**.

II/ Cas de droites parallèles

Ci-contre, les droites (AE) et (DB) sont sécantes en C.

D'une part
$$\frac{CE}{CA} = \frac{6}{18}$$

D'autre part $\frac{CD}{CB} = \frac{3}{9} = \frac{6}{18}$
On constate que $\frac{CE}{CA} = \frac{CD}{CB}$

De plus, les points E,C,A et D,C,B sont alignés dans le même ordre.

Donc, d'après la réciproque du théorème de Thalès, (ED) // (AB).

III/ Cas de droites sécantes

Les points A,N,C respectivement A,M,B sont alignés dans cet ordre.

AM = 8 cm; AN = 11 cm; AB = 10 cm; AC = 15 cm.

D'une part
$$\frac{AN}{AC} = \frac{11}{15} = \frac{22}{30}$$
 et d'autre part $\frac{AM}{AB} = \frac{8}{10} = \frac{24}{30}$

On constate que $\frac{AN}{AC} \neq \frac{AM}{AB}$.

Or, si (MN) // (BC) alors, d'après le théorème de Thalès, il y aurait égalité des rapports.

Ce n'est pas le cas, donc les droites (MN) et (BC) sont sécantes.

<u>Note</u>: ce raisonnement mathématique est appelé « raisonnement par l'absurde ».

