Relatório 3º projeto ASA 2024/2025

Grupo: AL010

Alunos: Francisco Silva (110409) e Marta Braga (110034)

Descrição do Problema e da Solução

Para resolver o problema de distribuição de brinquedos, foi definido o seguinte programa linear, utilizando as variáveis $x_{k,i}$, onde $x_{k,i} = 1$ indica que a criança c_k recebe um brinquedo da fábrica f_i , e $x_{k,i} = 0$ caso contrário.

1. Função Objetivo

O objetivo é maximizar o número de crianças que recebem brinquedos das fábricas que elas solicitaram:

Maximizar:
$$\sum_{k=1}^{t} \sum_{i \in F_k} x_{k,i}$$

onde F_k representa o conjunto de fábricas que produzem brinquedos solicitados pela criança c_k .

2. Restrições

O programa linear está sujeito às seguintes restrições:

1. Limite de distribuição por fábrica: Cada fábrica f_i pode distribuir, no máximo, a quantidade de brinquedos disponíveis no seu stock f_i^{max} :

$$\sum_{k=1}^{t} x_{k,i} \le f_i^{\max}, \quad \forall i = 1, \dots, n$$

2. Limite de exportação por país: Cada país p_j pode exportar, no máximo, uma quantidade de brinquedos igual a p_j^{max} :

$$\sum_{x_{k,i} \in \text{Exporta} \in \text{Ges de } p_j} x_{k,i} \leq p_j^{\text{max}}, \quad \forall j = 1, \dots, m$$

3. Mínimo de brinquedos entregues em cada país: Cada país p_j deve entregar, às crianças que lá vivem, no mínimo, uma quantidade de brinquedos igual a p_j^{\min} :

$$\sum_{x_{k,i} \in \text{Importações de } p_j} x_{k,i} \geq p_j^{\min}, \quad \forall j=1,\dots,m$$

4. Máximo de brinquedos por criança: Cada criança c_k pode receber, no máximo, um brinquedo:

$$\sum_{i \in F_k} x_{k,i} \le 1, \quad \forall k = 1, \dots, t$$

1

Relatório 2º projeto ASA 2024/2025

Grupo: AL010

Alunos: Francisco Silva (110409) e Marta Braga (110034)

3. Forma Compacta

Combinando as restrições com a função objetivo, obtemos o programa linear final:

$$\max \sum_{k=1}^t \sum_{i \in F_k} x_{k,i}$$
 sujeito a:
$$\max \text{ para cada } i \in \{1,\dots,n\}: \sum_{k=1}^t x_{k,i} \leq f_i^{\max}$$

$$\max \text{ para cada } j \in \{1,\dots,m\}: \sum_{x_{k,i} \in \text{exporta} \in S} x_{k,i} \leq p_j^{\max}$$

$$\sum_{x_{k,i} \in \text{importa} \in S} x_{k,i} \geq p_j^{\min}$$

$$\max \text{ para cada } k \in \{1,\dots,t\}: \sum_{i \in F_k} x_{k,i} \leq 1$$

$$\sum_{i \in F_k} x_{k,i} \leq 1$$

Análise Teórica

Número de variáveis: $O(n \times t)$. No pior caso todas as crianças t desejam brinquedos de todas as fábricas n.

Número de restrições: O(n+t+m). A restrição 1 é O(n), as restrições 2 e 3 são O(m) e a restrição 4 é O(t).

Total: $O(n \times t + m)$.

Análise Experimental dos Resultados

Ao executar o código desenvolvido com 100 inputs diferentes e um número progressivamente maior de variáveis, obtemos o seguinte gráfico:

