Shreyas Sunil Gaikwad

EDUCATION

University of Texas at Austin

Austin, Texas

Ph.D. in Computational Science, Engineering, and Mathematics, GPA: 4.0/4.0 M.S. in Computational Science, Engineering, and Mathematics, GPA: 4.0/4.0

2020-2025 2019-2021

Indian Institute of Technology (IIT) Bombay

Mumbai, India

B. Tech with Honors in Mechanical Engineering (Minor in Computer Science), GPA: 9.32/10.0

2015-2019

EXPERIENCE

• Graduate Research Assistant, UT Austin

2020-Present

- Developed the adjoint and tangent linear models (equivalent to fast PDE-constrained backpropagation) for the ice sheet model SICOPOLIS by leveraging open-source **Automatic Differentiation** tools. [I][2]
- Developing a computational framework for **PDE-constrained Bayesian inversion** for ice-sheet models. [I]
- Developing a **CUDA-parallelized** ice sheet model in Julia for fast and efficient 2D data assimilation.
- Examining the similarities between adjoint models and **Explainable-AI techniques** (XAI) for deep learning emulators such as **Layerwise Relevance Propagation** (LRP) in the earth system context. [1]
- Visiting Scholar, Scripps Institution of Oceanography

Fall 2023

- Developing **deep learning emulators** to efficiently simulate seaice dynamics in ocean general circulation models.
- Visiting Scholar, Argonne National Laboratory

Summer 202

- Interfaced **Enzyme** and **MPI** for a mountain glacier simulation in Julia.
- Developed first-ever open-source data assimilation framework for ocean circulation model MITgcm, establishing an alternative to proprietary software that costs ∼\$20,000 per year per individual [II]

RESEARCH PROJECTS

• Machine Learning Applications in Geophysics

Spring 2021

- Tested utility of **supervised and unsupervised deep learning** in real geophysical applications.
- Developed pipeline to pick mudrocks from real wireline logs using ML algorithms, with 87% test accuracy.
- Physics-Informed Machine Learning

Spring 2021

- Developed **fast neural network emulator** and data assimilator for a highly non-linear, diffusive glacier model.
- Laplacian 2D Finite Difference (FD) Solver Application

Fall 2020

Features: OOP (C++), Solver (gauss, jacobi, PETSc), tests (bats, Travis CI, docker), 98% code coverage (lcov),
0% memory errors (valgrind), build (autotools), HPC env (SLURM), parser & logger (GRVY).

OPEN-SOURCE CONTRIBUTIONS

- I SICOPOLIS-AD v2, open-source data assimilation framework for the ice sheet model SICOPOLIS.
- II MITgcm-AD, open-source data assimilation framework for the general ocean circulation model MITgcm.
- III ARGOVIS, OOP-style Python tools for community use in interactive plotting and binning of Argo data.

TECHNICAL SKILLS

Languages	Python, Julia, C/C++, Fortran-77/90, MATLAB
HPC toolkit	OpenMP, MPI, CUDA, SLURM, git, docker, shell scripts, CI, autotools, valgrind, lcov, GRVY

HONORS AND AWARDS

• President and Vice President, Austin Chapter of SIAM.

2021-2023

• Recipient of Peter O'Donnell Graduate fellowship worth \$24,000.

2019

• Ranked 509/1,500,000 (99.97 percentile) in nationwide university entrance exams, India.

2015

SELECT COURSEWORK

Data Science	Machine Learning, ML applications in Geophysics, Engineering Data Mining
Algorithms	Differential Equations, Linear Algebra, HPC, Functional Analysis, Data Structures & Algorithms
Modeling	Uncertainty Quantification in Modeling, Mathematical Modeling, Quantum & Statistical Mechanics

CONFERENCE PROCEEDINGS AND PRESENTATIONS

- Gaikwad, Shreyas Sunil et. al "SICOPOLIS-AD v2: Inverse modeling framework for ice sheet modeling", (AGU Fall Meeting 2022, SCAR-OSC 2022, ML for Polar Regions 2022, 24th EuroAD Workshop 2021).
- Gaikwad, Shreyas Sunil et. al "MITgcm-AD: Open Source Inverse Modeling Framework for the oceans", (WCRP Workshop MIT 2023, 14th Joint Laboratory for Extreme Scale Computing (JLESC) Workshop 2022).

JOURNAL ARTICLES

- 1. **SS Gaikwad** et. al "Examining parallels between adjoint models and Explainable AI (XAI) methods in an oceanic and glaciological context", *In Preparation*.
- 2. **SS Gaikwad** et. al "SICOPOLIS-AD v2: tangent linear and adjoint modeling framework for ice sheet modeling enabled by Automatic Differentiation tool Tapenade." *Journal of Open Source Software 8, no. 83 (2023): 4679.*