Math 760 HW 5 Jiaxi Huang

Due: Oct 10 Thursday noon

1. Let M be a nonempty smooth compact manifold. Show that there is no smooth submersion $F: M \to \mathbb{R}$.

Proof. If $F: M \to \mathbb{R}$ is a smooth submersion, then F is an open map(Taught in class). So, F(M) is an open set of \mathbb{R} . Since M is compact, and F is continuous, F(M) is compact in \mathbb{R} . This indicating that F(M) is at least a closed set, but \mathbb{R} is connected. So, $F(M) = \mathbb{R}$, since it is not an empty set. This is a contradiction because \mathbb{R} is not compact.

2. Let $M = \mathrm{SL}(n,\mathbb{R}) = \{A \in \mathrm{GL}(n,\mathbb{R}) \mid \det(A) = 1\}$. Show that M is a smooth manifold.

Proof. Let $F = \det(\cdot) : M_{n \times n}(\mathbb{R}) = \mathbb{R}^{n \times n} \to \mathbb{R}$, then F is a polynomial of the entries. So, F is smooth. Since $GL(n,\mathbb{R})$ is an open submanifold of $M_{n \times n}(\mathbb{R})$, F is also smooth on $GL(n,\mathbb{R})$. So, we only need to prove 1 is a regular value of F. Suppose $A \in M$, $A = (a_{ij})$. From the knowledge of linear algebra, we know $\frac{\partial F}{\partial a_{ij}} = C_{ij}$ which is the (i,j)-cofactor of A. Since $\det(A) \neq 0$, there must be a pair of (i,j) such that $\frac{\partial F}{\partial a_{ij}} = C_{ij} \neq 0$. This means dF_A has rank 1, indicating that 1 is a regular value of F, so $M = F^{-1}(1)$ is a submanifold.

3. Show that $F: \mathbb{R} \times \left(-\frac{1}{2}, \frac{1}{2}\right) \to \mathbb{R}^3$ induces a smooth embedding of the Möbius strip in \mathbb{R}^3 .

$$F(u,v) = \left(\left(1 + v \cos \frac{u}{2} \right) \cos u, \ \left(1 + v \cos \frac{u}{2} \right) \sin u, \ v \sin \frac{u}{2} \right)$$
$$= \left(1 + v \cos \frac{u}{2} \right) (\cos u, \ \sin u, \ 0) \ + \ \left(0, \ 0, \ v \sin \frac{u}{2} \right).$$

Note. You can think of the Möbius strip M as a quotient of $\mathbb{R} \times \left(-\frac{1}{2}, \frac{1}{2}\right)$.

Proof. Define a diffeomorphism $\sigma: X = \mathbb{R} \times (-\frac{1}{2}, \frac{1}{2}) \to X = \mathbb{R} \times (-\frac{1}{2}, \frac{1}{2}), \quad \sigma(u, v) = (u + 2\pi, -v).$ Let $\Gamma = \langle \sigma \rangle \cong \mathbb{Z}$ act on X by $(u, v) \cdot n := \sigma^n(u, v)$. Let $\pi: X \longrightarrow X/\Gamma(X) = M$ be the quotient map. We shall build a 2-dimensional smooth structure on M with π being a local diffeomorphism. First, we have following facts: (i) If $\sigma^n(u, v) = (u, v)$, then n = 0: It is bacause from the first coordinate $u + 2\pi n = u$ we get n = 0. (ii) For every compact $K \subset X$, the set $\{n \in \mathbb{Z} \mid \sigma^n(K) \cap K \neq \emptyset\}$ is finite: If $(u', v') \in K$ and $\sigma^n(u', v') \in K$, then $u' + 2\pi n$ lies in the bounded set $\operatorname{proj}_u(K)$, so |n| is uniformly bounded; hence only finitely many n occur. (iii) For each $x \in X$ there exists an open neighborhood $W_x \subset X$ such that $\{\sigma^n(W_x)\}_{n \in \mathbb{Z}}$ are pairwise disjoint: Choose a relatively compact open $K \ni x$. By (ii) only finitely many n satisfy $\sigma^n(K) \cap K \neq \emptyset$. Shrink K to W_x to separate all translates. From (iii) we have $\pi^{-1}(\pi(W_x)) = \bigsqcup_{n \in \mathbb{Z}} \sigma^n(W_x)$, so the restriction $\pi|_{W_x}: W_x \to \pi(W_x)$ is a homeomorphism (its inverse picks the representative in W_x). Consequently:

- π is a local homeomorphism (π is a covering map), which makes it is also an open map.
- M is Hausdorff and second countable (Since π is open and a covering map, and X is Hausdorff, second-countable) Hausdorff, second countable space and π is open).

Now we need to prove the transition map is smooth to prove M is actually a smooth manifold. For each $x \in X$, set $U_x := \pi(W_x)$ and $\varphi_x := \left(\pi|_{W_x}\right)^{-1} \colon U_x \longrightarrow W_x \subset \mathbb{R}^2$. Let $\mathcal{A} = \{(U_x, \varphi_x) : x \in X\}$ \mathcal{A} is a smooth 2-dimensional atlas on M: If (U_x, φ_x) and (U_y, φ_y) overlap, then for every $p \in U_x \cap U_y$ there exists a unique $n \in \mathbb{Z}$ with $\varphi_y \circ \varphi_x^{-1} = \sigma^n \big|_{\varphi_x(U_x \cap U_y)}$. Since $\sigma^n(u,v) = (u+2\pi n, (-1)^n v)$ is an affine diffeomorphism of \mathbb{R}^2 , the transition maps are smooth. So far, we have proved this quotient map gives M a smooth structure. $F(u+2\pi,-v) = \left((1-v\cos(\frac{u}{2}+\pi))\cos(u),\ (1-v\cos(\frac{u}{2}+\pi)),\ -v\sin(\frac{u}{2}+\pi)\right) = \left((1+v\cos\frac{u}{2})\cos u,\ (1+v\cos\frac{u}{2})\sin u,\ v\sin\frac{u}{2}\right) = F(u,v)$. So, F can induce a map $F:M\to\mathbb{R}^3$. Now, we prove F is an smooth immersion. Since π is an open covering quotient map, which induce

the smooth structrue and \tilde{F} is induced by F, we only need to check F on X. First, F is smooth. Let $e_1(u) = (\cos u, \sin u, 0)$, $e_2(u) = (-\sin u, \cos u, 0)$, $e_3 = (0, 0, 1)$. Let E =

$$\begin{pmatrix}
\cos u & -\sin u & 0 \\
\sin u & \cos u & 0 \\
0 & 0 & 1
\end{pmatrix}$$

Then e_1, e_2, e_3 forms a new basis of \mathbb{R}^3 because $\det(E) = -1 \neq 0$. Now we can calculate that $F_u =$ $(1+v\cos(\frac{u}{2}))e_2(u) - \frac{v}{2}\sin(\frac{u}{2})e_1(u) + \frac{v}{2}\cos(\frac{u}{2})e_3$, $F_v = \cos(\frac{u}{2})e_1(u) + \sin(\frac{u}{2})e_3$. If F_u, F_v is linear dependent, then there are $\alpha, \beta \in \mathbb{R}$ such that $\alpha F_u + \beta F_v = 0 \Rightarrow \alpha (1 + v \cos \frac{u}{2}) = 0, \beta (\cos \frac{u}{2} e_1 + \sin \frac{u}{2} e_3) = 0 \Rightarrow$ $\alpha = \beta = 0$, because $-\frac{1}{2} < v < \frac{1}{2}$; $-1 \le \cos \frac{u}{2} \le 1$ and $\cos \frac{u}{2}$; $\sin \frac{u}{2}$ cannot be zero at the same time. So the jacobian matrix of F at (u, v) has contant rank 2, which indicates \tilde{F} is an immersion. Now we prove \tilde{F} is a topological embedding. Suppose we have $\tilde{F}(m) = \tilde{F}(m')$; $m, m' \in M \Rightarrow F(u, v) = F(u', v')$ $\Rightarrow (1 + v\cos\frac{u}{2})^{2}\cos^{2}u + (1 + v\cos\frac{u}{2})^{2}\sin^{2}u = (1 + v'\cos\frac{u'}{2})^{2}\cos^{2}u' + (1 + v'\cos\frac{u'}{2})^{2}\sin^{2}u' \Rightarrow$ $(1 + v\cos\frac{u}{2})^2 = (1 + v'\cos\frac{u'}{2})^2. \text{ If } (1 + v\cos\frac{u}{2}) = (1 + v'\cos\frac{u'}{2}) \Rightarrow u = u' + 2\pi \Rightarrow v = -v' \Rightarrow m = m'.$ If $((1+v\cos\frac{u}{2})=-(1+v'\cos\frac{u'}{2})) \Rightarrow -2=v\cos\frac{u}{2}+v'\cos\frac{u'}{2}$ which is impossible. So, \tilde{F} is injective and continuous, because we have shown \tilde{F} is smooth. Now, we calculating the inverse of \tilde{F} . Define $G: \bar{F}(M) \longrightarrow M,$ $G(x,y,z) := \pi \left(u = \theta, v = \cos \frac{\theta}{2} (r-1) + \sin \frac{\theta}{2} z \right)$, where $r = \sqrt{x^2 + y^2}$ and $\theta = \operatorname{atan2}(y, x)$. First, we show it is well defined. Changing the branch $\theta \mapsto \theta + 2\pi$ gives $\cos \frac{\theta + 2\pi}{2} = -\cos \frac{\theta}{2}$, $\sin \frac{\theta + 2\pi}{2} = -\sin \frac{\theta}{2}$, hence $v \mapsto -v$ and $(\theta, v) \sim (\theta + 2\pi, -v)$ in M. Therefore G does not depend on the choice of the branch of θ . Let $\pi(u,v) \in M$ and set $(x,y,z) = \bar{F}(\pi(u,v)) = F(u,v)$. Then $r-1=v\cos\frac{u}{2}$, $z=v\sin\frac{u}{2}$, so $\cos\frac{u}{2}(r-1)+\sin\frac{u}{2}z=v(\cos^2\frac{u}{2}+\sin^2\frac{u}{2})=v$. Since $\theta\equiv u\pmod{2\pi}$, we get $G(x,y,z)=\pi(u,v)$ and thus $G\circ\bar{F}=\mathrm{id}_M$. Conversely, for $(x,y,z)\in\bar{F}(M)$ we have $\bar{F} \circ G(x,y,z) = (x,y,z)$ by construction, hence $\bar{F} \circ G = \mathrm{id}_{\bar{F}(M)}$. Now we prove G is continuous. On the open set $\{(x,y): r>0\}$, atan 2(y,x) is continuous. On overlaps of regions where different continuous branches of θ are chosen, the formulas differ by $(u,v) \sim$ $(u+2\pi,-v)$, which identifies the same point of M. Therefore the locally defined continuous expressions glue to a global continuous map G. Since \overline{F} is continuous, bijective onto its image, and admits a continuous inverse G, it is a homeomorphism onto $\overline{F}(M)$. Hence \overline{F} is a topological embedding. By now, we have shown that \tilde{F} is an immersion and a topological embedding, so it is a smooth embedding.

4. Note that $P(X,Y,Z,W) = X^2 + Z^2 - Y^2 - W^2$ is a homogeneous polynomial. Consider the hypersurface $S \subset \mathbb{RP}^3$ defined by P(X,Y,Z,W) = 0 (this makes sense since P is homogeneous). Prove that S is an embedded torus. *Hint*. Start with $\widetilde{S} \subset S^3 \subset \mathbb{R}^4$ defined by the same polynomial.

Proof. Here we may view \mathbb{RP}^3 as $S^3/v \sim -v$, $v \in S^3$, the image of an open covering quotient map, which induces the smooth structure of \mathbb{RP}^3 . Also, we may view \mathbb{T}^2 as $(\mathbb{R}/\pi\mathbb{Z}) \times (\mathbb{R}/\pi\mathbb{Z})$, which is also an open covering quotient map inducing a smooth structure of \mathbb{T}^2 . Now, we assume $\pi: S^3 \to \mathbb{RP}^3$ being the quotient map. First, we give a map f from $\mathbb{T}^2 \to S^3$ by sending $(\tilde{\theta}, \tilde{\phi}) \in \mathbb{T}^2$ to $\frac{1}{\sqrt{2}}(\cos\theta, \cos\phi, \sin\theta, \sin\phi) \in S^3$. This map is not well defined, but if we define an map g from $\mathbb{T}^2 \to \mathbb{RP}^3$ by $\pi \circ f$, we know g is well defined. First, we need to verify what is the image of g. We know $\frac{1}{2}(1-1)=0 \Rightarrow f(\mathbb{T}^2) \subset P(X,Y,Z,W)=0$, $(X,Y,Z,W) \in S^3$. On the other hand if P(X,Y,Z,W)=0, $(X,Y,Z,W) \in S^3 \Rightarrow X^2+Z^2=Y^2+W^2=\frac{1}{2} \Rightarrow$ We can find some θ,ϕ such that $X=\cos\theta,Z=\sin\theta,Y=\cos\phi,W=\sin\phi\Rightarrow \{P(X,Y,Z,W)=0,(X,Y,Z,W)\in S^3\}\subset f(\mathbb{T}^2)$ $\Rightarrow \frac{1}{2}(1-1)=0 \Rightarrow f(\mathbb{T}^2)=\{P(X,Y,Z,W)=0,(X,Y,Z,W)\in S^3\}\Rightarrow g(\mathbb{T}^2)=\{P(X,Y,Z,W)=0,(X,Y,Z,W)\in S^3\}\Rightarrow g(\mathbb{T}^2)=\{P(X,Y,Z,W)=0,(X,Y,Z,W)\in S^3\}$. Now we may verify g is injective. Suppose $(\tilde{\theta_1},\tilde{\phi_1}), (\tilde{\theta_2},\tilde{\phi_2})\in \mathbb{T}^2$ make $\pi(\frac{1}{\sqrt{2}}(\cos\theta_1,\cos\phi_1,\sin\theta_1,\sin\phi_1))=\pi(\frac{1}{\sqrt{2}}(\cos\theta_2,\cos\phi_2,\sin\theta_2,\sin\phi_2))\to \theta_1=\theta_2+k\pi, \phi_1=\phi_2+k\pi\Rightarrow (\tilde{\theta_1},\tilde{\phi_1})=(\tilde{\theta_2},\tilde{\phi_2})\to g$ is injective. Now we prove g is immersion. Since π is an open quotient covering map which induces the smooth structure of \mathbb{RP}^3 , by 5. π is a submersion. So, now we may calculate the rank of f. Also, we know $\mathbb{R}^2\to\mathbb{R}/\pi\mathbb{Z}\times\mathbb{R}/\pi\mathbb{Z}=\mathbb{T}^2$ is also an open quotient covering which induces the smooth structure of \mathbb{R}^3 , by 5. π is a submersion. So, now we may calculate the rank of f. Also, we know $\mathbb{R}^2\to\mathbb{R}/\pi\mathbb{Z}\times\mathbb{R}/\pi\mathbb{Z}=\mathbb{T}^2$ is also an open quotient covering which induces the smooth structure of \mathbb{T}^2 . So, we may caculate the rank of f: $(\theta,\phi)\to\frac{1}{\sqrt{2}}(\cos\theta,\cos\phi,\sin\theta,\sin\phi)$. We

can calculate that $F_{\theta} = \frac{1}{\sqrt{2}}(-\sin\theta, 0, \cos\theta, 0); \ F_{\phi} = \frac{1}{\sqrt{2}}(0, \sin\phi, 0, \cos\phi).$ Since $\sin\theta, \cos\theta$ can not be zero at the same time; $\sin\phi, \cos\phi$ can not be zero at the same time, F_{θ}, F_{ϕ} are linear independent. $\Rightarrow f$ has rank 2. $\Rightarrow g$ is immersion. Also, We know \mathbb{T}^2 is compact, so g is acutually a smooth embedding. Since $g(\mathbb{T}^2) = \{P(X, Y, Z, W) = 0, \ (X, Y, Z, W) \in \mathbb{RP}^3\}, \ \{P(X, Y, Z, W) = 0, \ (X, Y, Z, W) \in \mathbb{RP}^3\}$ is an embedded torus in \mathbb{RP}^3 .

- 5. Let $\pi \colon \mathbb{K}^{n+1} \setminus \{0\} \to \begin{cases} \mathbb{RP}^n, & \mathbb{K} = \mathbb{R}, \\ \mathbb{CP}^n, & \mathbb{K} = \mathbb{C} \end{cases}$ be the canonical projection.
 - (a) Prove that π is a submersion.

Proof. (i): Let $\mathbb{K} = \mathbb{R}$. Let $U_i = \{(x_1, \cdots, x_n, x_{n+1}) \in \mathbb{RP}^n | x_i \neq 0\}, \phi_i : (x_1, \cdots, x_i, \cdots, x_{n+1}) \to \frac{1}{x_i}(x_1, \cdots, \hat{x_i}, \cdots, x_{n+1}) \in \mathbb{R}^n$. Let $p = (x_1, \cdots, x_{n+1}) \in \mathbb{R}^{n+1} - 0$, we may assume $x_1 \neq 0$. Then we can find a neighborhood $p \in U \subset \mathbb{R}^{n+1} - 0$ such that $\forall p' = (x_1', \cdots, x_{n+1}') \in U, x_1' \neq 0$ since x_1 is a continuous map. Then we can find an open neighborhood $U_1 \subset \mathbb{RP}^n$ such that $\pi(U) \subset U_1$. Then we calculate the jacobian matrix of $\phi_1 \circ \pi$. It is J = 0

$$\begin{pmatrix} -\frac{x_2}{x_1^2} & \frac{1}{x_1} & 0 & \cdots & 0\\ -\frac{x_3}{x_1^2} & 0 & \frac{1}{x_1} & 0 \cdots & 0\\ \vdots & \vdots & & \ddots & 0\\ -\frac{x_{n+1}}{x_1^2} & 0 & \cdots & \cdots & \frac{1}{x_1} \end{pmatrix}$$

. So J has rank n. Since p is an arbitary point, we have showed π is a submersion.

(ii): $\mathbb{K} = \mathbb{C}$. Let f_i denote the natural homeomorphism from $\mathbb{C}^i \to \mathbb{R}^{2i}$. $U_i = \{(z_1, \cdots, z_n, z_{n+1}) \in \mathbb{CP}^n | Z_i \neq 0\}, \phi_i : (Z_1, \cdots, Z_i, \cdots, Z_{n+1}) \to \frac{1}{z_i}(z_1, \cdots, \hat{z_i}, \cdots, z_{n+1}) \in \mathbb{C}^n$. Then we know $(U_i, f_n \circ \phi_i)$ is a chart. Let $p = (z_1, \cdots, z_{n+1}) \in \mathbb{C}^{n+1} - 0$, we may assume $z_1 \neq 0$. Then we can find a neighborhood $p \in U \subset \mathbb{C}^{n+1} - 0$ such that $\forall p' = (z'_1, \cdots, z'_{n+1}) \in U, z'_1 \neq 0$ since z_1 is a continuous map. Then we can find an open neighborhood $U_1 \subset \mathbb{CP}^n$ such that $\pi(U) \subset U_1$. Then we calculate the jacobian matrix of $\phi_1 \circ \pi$. It is J =

$$\begin{pmatrix} -\frac{z_2}{z_1^2} & \frac{1}{z_1} & 0 & \cdots & 0\\ -\frac{z_3}{z_1^2} & 0 & \frac{1}{z_1} & 0 \cdots & 0\\ \vdots & \vdots & & \ddots & 0\\ -\frac{z_{n+1}}{z_1^2} & 0 & \cdots & \cdots & \frac{1}{z_1} \end{pmatrix}$$

. So J has rank n. Since p is an arbitary point, we have showed $\phi_1 \circ \pi$ has constant rank n, which indicates $f_n \circ \phi_1 \circ \pi \circ f_{n+1}^{-1}$ has constant rank 2n, which indicates π is a submersion.

(b) Let π_0 be the restriction of π to the sphere S^n (for $\mathbb{K} = \mathbb{R}$) or S^{2n+1} (for $\mathbb{K} = \mathbb{C}$). Prove that π_0 is also a submersion.

Hint. To prove (b) using (a), it suffices to show that the kernel of $d\pi$ is not contained in the tangent space to the sphere.

Proof. Suppose $\mathbb{K}=\mathbb{R}$. Here, we consider the map $\pi_0:S^n\to\mathbb{R}P^n$. Let $\iota:S^n\to\mathbb{R}^{n+1}$ be the natural smooth embedding. We know $\pi_0=\pi\circ\iota\Rightarrow d\pi_0=d\pi\circ d\iota$. We may view $T_p(S^n), p\in S^n\subset\mathbb{R}^{n+1}$ as a subspace of $T_p(\mathbb{R}^{n+1})$. Then from the knowledge of linear algebra, we only need to check $T_p(S^n)\cap\ker d\pi_p=0, \ \forall p\in S^n$. We now need to calculate the kernel of $d\pi_p$. Let $p=(x_1\cdots,x_i,\cdots,x_{n+1})\in\mathbb{R}^{n+1}-0$ with $x_i\neq 0$. Then we can find $p\in U\subset\mathbb{R}^{n+1},\ U_i\subset\mathbb{R}\mathbb{P}^n$

such that $\pi(U) \subset U_1$ like what we did in (a). Our caculation shows the jacobian should be

$$\begin{pmatrix} \frac{1}{x_i} & 0 & \cdots & 0 & -\frac{x_1}{x_i^2} & 0 \cdots & 0 \\ 0 & \frac{1}{x_i} & 0 & \cdots & -\frac{x_2}{x_i^2} & 0 & \cdots & 0 \\ \vdots & & \ddots & 0 & \vdots & 0 & \cdots & 0 \\ 0 & \cdots & 0 & \frac{1}{x_i} & -\frac{x_{i-1}}{x_i^2} & 0 & \cdots & 0 \\ \vdots & & & \ddots & \vdots & & \\ 0 & & \cdots & -\frac{x_{n+1}}{x_i^2} & 0 & \cdots & \frac{1}{x_i} \end{pmatrix}$$

Noticing that \mathbb{R}^{n+1} is a vector space, we have a canonical isomorphism between $T_p\mathbb{R}^{n+1}$ and \mathbb{R}^{n+1} . So, we can caculate that $\ker d\pi_p = \{\lambda(-\frac{x_1}{x_i},\cdots,-\frac{x_{i-1}}{x_i},1,-\frac{x_{i+1}}{x_i},\cdots,-\frac{x_{n+1}}{x_i})|\lambda\in\mathbb{R}\} = \lambda p, \lambda\in\mathbb{R}$. If we also view $T_p(S^n)$ as a subspace of \mathbb{R}^{n+1} , we know $T_p(S^n) = \{v\cdot p = 0|v\in\mathbb{R}^{n+1}\}$. So, we know $T_p(S^n) \perp \ker d\pi_p \Rightarrow T_p(S^n) \cap \ker d\pi_p = 0 \Rightarrow \pi_0$ is submersion, because p is an arbitary point.

(ii) : Suppose $\mathbb{K}=\mathbb{C}$. Let f_i denote the natural homeomorphism between \mathbb{C}^i and \mathbb{R}^i . Let $U_i=\{(z_1,\cdots,z_n,z_{n+1})\in\mathbb{CP}^n|Z_i\neq 0\}, \phi_i:(Z_1,\cdots,Z_i,\cdots,Z_{n+1})\to \frac{1}{z_i}(z_1,\cdots,\hat{z_i},\cdots,z_{n+1})\in\mathbb{C}^n$. Then we know $(U_i,f_n\circ\phi_i)$ is a chart. Let $p=(z_1,\cdots,z_{n+1})\in\mathbb{C}^{n+1}-0$ with $z_i\neq 0$. Then we can find $p\in U\subset C^{n+1}-0$ such that $\pi(U)\subset U_i$. Just like (i), we need to caculate the ker $d\pi_p$ and show that its intersection with $T_p(S^{2n+1})$ is a one dimensional linear subspace of \mathbb{R}^{2n+2} . We have caculated that the jacobian is

$$\begin{pmatrix} \frac{1}{z_i} & 0 & \cdots & 0 & -\frac{z_1}{z_i^2} & 0 \cdots & 0 \\ 0 & \frac{1}{z_i} & 0 & \cdots & -\frac{z_2}{z_i^2} & 0 & \cdots & 0 \\ \vdots & & \ddots & 0 & \vdots & 0 & \cdots & 0 \\ 0 & \cdots & 0 & \frac{1}{z_i} & -\frac{z_{i-1}}{z_i^2} & 0 & \cdots & 0 \\ \vdots & & & \ddots & \vdots & & \\ 0 & & \cdots & -\frac{z_{n+1}}{z_i^2} & 0 & \cdots & \frac{1}{z_i} \end{pmatrix}$$

is a submersion.

This is actually a matrix with entries belong to \mathbb{C} . We first find its kernel in \mathbb{C}^{n+1} , then we can transit it to \mathbb{R}^{2n+2} in a natural way. Just like (i), its kernel in \mathbb{C}^{n+1} is $\{\lambda(-\frac{z_1}{z_i},\cdots,-\frac{z_{i-1}}{z_i},1,-\frac{z_{i+1}}{z_i},\cdots,-\frac{z_{n+1}}{z_i})|\lambda\in\mathbb{C}\}=\lambda p$. Then we know it is a 2 dimensional subspace of \mathbb{R}^{2n+2} with basis p,ip. Just like (i), $T_p(S^{2n+1})=\{v\cdot p=0|v\in\mathbb{R}^{2n+2}\}$. Suppose we have $ap+b(ip)\in T_p(S^{2n+1});\ a,b\in\mathbb{R}$, then $ap+b(ip)\cdot_{\mathbb{R}}p=0\Rightarrow a+bRe\left(\sum\limits_k p_k(-i\overline{p_k})\right)=a=0$. This shows the intersection of $\ker d\pi_p$ and $\mathbb{T}_p(S^{2n+1})$ is one dimensional, which indicates that $\ker d\pi_p$ is not contained in $T_p(S^{2n+1})$. So, π_0