

Protocol Inspection and State Machine Analysis (PRISMA)

Tammo Krueger Hugo Gascon Konrad Rieck

Motivatio

PRISMA

FIXISIVIA

Embedding

Lesting Event Cluster

Markov Model Templates and

Example

Evaluation

Similarity Syntax &

Outlook

Protocol Inspection and State Machine Analysis (PRISMA)

Tammo Krueger Hugo Gascon Konrad Rieck

19.6.2012 University of Göttingen

Proactive Security for Convergent Communication (PROSEC)

Protocol Inspection and State Machine Analysis (PRISMA)

Tammo Krueger Hugo Gascon Konrad Rieck

Motivation

PRISMA

Embedding
Testing
Event Clusterin
Markov Model
Templates and

Example

Evaluation

Syntax & Semantic

Outlook

Proactive protection of services:

- Self-learning protocol analysis
- Deployment of "Honey-Services"
- Proactive protection of communication and attack detection

Motivation

Protocol Inspection and State Machine Analysis (PRISMA)

Tammo Krueger Hugo Gascon Konrad Rieck

Motivation

PRISMA

Preprocess

Testing

Markov Model
Templates and

Example

Evaluation

Similarity Syntax &

Dutlook

Given a pool of client/server communication infer generic messages and abstract state machine

- To emulate services (honeypots)
- 2 Lure attackers
- Gather information about threat potential

Motivation - Top-Down Model of Tasks

Protocol Inspection and State Machine Analysis (PRISMA)

Tammo Krueger Hugo Gascon Konrad Rieck

Motivation

PRISMA

Embedding
Testing
Event Clusterin
Markov Model

Markov Model Templates and Rules

Example

Evaluation

Syntax &

Outlook

By embedding and event clustering approximate abstract state machine and message types:

- Infer Markov model of the behavior
- Find inherent structure of the messages (templates)
- Gather information flow between states (rules)

System Overview

Protocol Inspection and State Machine Analysis (PRISMA)

Tammo Krueger Hugo Gascon Konrad Rieck

Motivation

PRISMA

Preproces

Embeddir

Testing Event Clusteri

Markov Model Templates and Rules

xample

Evaluation

Similarity Syntax &

System Overview - Preprocessing

Protocol Inspection and State Machine Analysis (PRISMA)

Tammo Krueger Hugo Gascon Konrad Rieck

Motivati

PRISIVIA

Preprocessing

Embedding Testing

Event Clusterin Markov Model Templates and

xample

Evaluation

Similarity Syntax &

Preprocessing

Protocol Inspection and State Machine Analysis (PRISMA)

Tammo Krueger Hugo Gascon Konrad Rieck

IVIOLIVALIO

Preprocessing

rieprocessii

Testing
Event Clustering
Markov Model
Templates and
Rules

Example

Evaluation

Similarity Syntax & Semantic

Outlook

- Data acquisition via tcpdump
- Tool chain needed, to process these binary dump files

Derrick assembles packet contents based on the mature libnids library

Harry concatenates packets to messages and extracts session information

- Data available for the next steps:
 - 1 messages as sequence of bytes
 - 2 sessions as sequence of messages
- Point 1 will be used in the *embedding* step
- Outcome of the *embedding* step will be used in the *clustering* step
- Point 2 and outcome of the *clustering* will be used in the *model building* step

System Overview - Embedding

Protocol Inspection and State Machine Analysis (PRISMA)

Tammo Krueger Hugo Gascon Konrad Rieck

Motivation

PRISMA

Preprocessi Embedding

Testing
Event Clusterin
Markov Model
Templates and

xample

Evaluation

Syntax &

Embedding

Protocol Inspection and State Machine Analysis (PRISMA)

Tammo Krueger Hugo Gascon Konrad Rieck

Motivatio

PRISIVI

Embedding

Testing
Event Clusterin
Markov Model
Templates and
Rules

Example

Evaluation

Syntax & Semantic

Outlook

N-grams: Given the set of all possible n-grams over byte sequences $S = \{0, \dots, 255\}^n$, we define the embedding function $\phi : \{0, \dots, 255\}^* \mapsto \mathbb{R}^{|S|}$ as

$$\phi(x) = (\phi_s(x))_{s \in S}$$
 with $\phi_s(x) = \operatorname{occ}_s(x)$.

Example (n = 3):

$$\phi(\text{"Hello"}) = (0, \dots, \overset{\mathsf{Hel}\ \mathsf{ell}\ \mathsf{llo}}{1}, \overset{\mathsf{llo}}{1}, \overset{\mathsf{llo}}{1}, \dots, 0)^{\mathcal{T}} \in \mathbb{R}^{16777216}$$

Tokens: Given a set of seperators Sep we can split the byte sequence into tokens; example $(Sep = \{ _ \})$:

$$\phi(\text{``We'II meet again''}) = (0, \dots, \overset{\text{We'II meet again}}{1}, \overset{\text{again}}{1}, \dots, 0)^{\mathcal{T}} \in \mathbb{R}^?$$

Dimension Reduction via Statistical Testing

Protocol Inspection and State Machine Analysis (PRISMA)

Tammo Krueger Hugo Gascon Konrad Rieck

Motivatio

Preprocessi

Embedding

Testing
Event Cluste
Markov Mod

Example

Evaluation

Similarity Syntax & Semantic

- Embedding space high-dimensional but sparse
- Some dimension do not carry real information:
 - Fixed *protocol* tokens
 - Random, *volatile* tokens (cookies, nonces, . . .)
- Focus the analysis by splitting the feature set F:

$$F = F_{protocol} \cup F_{alphabet} \cup F_{volatile}$$

- Keep features, which are not part of the protocol **and** are not volatile
- How to decide, whether a feature belongs to $F_{protocol}$ or $F_{volatile}$? Use statistical testing!

Anatomy of a Statistical Testing Procedure

Protocol Inspection and State Machine Analysis (PRISMA)

Tammo Krueger Hugo Gascon Konrad Rieck

Motivatio

PRISM/

Embedding

Testing

Markov Mode Templates and Rules

Example

Evaluation

Syntax & Semantic

- Given measurements decide, whether we can accept or reject a hypotheses (H_0) in favor to an alternative (H_1) in a statistical sense
- Distribution assumption (parametric/non-parametric)
- Predefined significance level ($\alpha \in 0.01, 0.05, 0.1$)
- Test statistic
- lacktriangle p-value: probability to observe a value for the test statistic at least as extreme as the value that was actually observed given H_0 is true
- Decision rule: reject H_0 if p-value is smaller than the significance level

Statistical Test – Example I

Protocol Inspection and State Machine Analysis (PRISMA)

Tammo Krueger Hugo Gascon Konrad Rieck

Motivatio

Preprocess

Embedding

Testing

Markov Model
Templates and

Example

Evaluation

Syntax &

- Measure impact of fertilizer A on grain shaft size:
 - Collect N samples from several fields treated with fertilizer A
 - 2 record the mean size of these N samples per field
 - 3 plot the distribution and calculate mean μ_A and standard deviation σ_A
- Outcome: $\mu_A = 100$ *cm*, $\sigma_A = 4$ *cm*

Statistical Test - Example I

Protocol Inspection and State Machine Analysis (PRISMA)

Tammo Krueger Hugo Gascon Konrad Rieck

Motivatio

Preprocess

Embedding Testing

Event Clus

Markov Model Templates and Rules

Example

Evaluation

Syntax & Semantic

- Given a new measurement of a field x, can we determine with a given error level of α , whether it was treated with fertilizer A?
- Assume normal distribution \rightarrow $(1 \alpha) = 95\%$ of the data lies in the interval [92.16, 107.83]!

Statistical Test - Example I

Protocol Inspection and State Machine Analysis (PRISMA)

Tammo Krueger Hugo Gascon Konrad Rieck

Motivatio

Preprocess

Embedding

Testing Event (

Markov Model Templates and Rules

Example

Evaluation

Syntax & Semantic

- Different question: has new field x a bigger grain shaft size than the fields treated with fertilizer A?
- Assume normal distribution \rightarrow $(1 \alpha) = 95\%$ of the data lies in the interval $[-\infty, 106.57]!$

Statistical Test - Example I

Protocol Inspection and State Machine Analysis (PRISMA)

Tammo Krueger Hugo Gascon Konrad Rieck

Motivatio

PRISMA

Embedding

Testing

Markov Model
Templates and
Rules

=xample

Evaluation

Syntax & Semantic

- Different question: has new field x a smaller grain shaft size than the fields treated with fertilizer A?
- Assume normal distribution \rightarrow $(1 \alpha) = 95\%$ of the data lies in the interval $[93.42, +\infty]!$

Statistical Testing: What Can Go Wrong?

Protocol Inspection and State Machine Analysis (PRISMA)

Tammo Krueger Hugo Gascon Konrad Rieck

Motivatio

Proprocess

Embodding

Testing

Markov Model Templates and Rules

Example

Evaluation

Syntax &

Jutlook

	H_0 is true H_1 is true	
Accept H ₀	Right decision	Type II Error (β)
Reject H ₀	Type I Error (α)	Right decision

- lacktriangle Type I error controlled by significance level lpha
- Type II error is used to describe the *power* (1β) , i.e. the probability of correctly rejecting H_0

Statistical Test - Example II

Protocol Inspection and State Machine Analysis (PRISMA)

Tammo Krueger Hugo Gascon Konrad Rieck

Motivatio

Preprocess

Embedding

Testing Event C

Markov Model Templates and Rules

Example

Evaluation

Syntax &

- Measure impact of new fertilizer B on grain shaft size:
 - $\begin{array}{c} \textbf{1} \quad \text{collect N samples from several fields treated with fertilizer} \\ \textbf{B} \end{array}$
 - 2 record the mean size of these N samples per field
 - 3 plot the distribution and calculate mean μ_B and standard deviation σ_B
- Outcome: $\mu_B = 110$ cm, $\sigma_B = 4$ cm

Statistical Test – Example II

Protocol Inspection and State Machine Analysis (PRISMA)

Tammo Krueger Hugo Gascon Konrad Rieck

Motivatio

Preprocess

Embedding Testing

Event Clusteri Markov Model

Markov Model Templates and Rules

LAdilipic

Evaluation

Syntax & Semantic

- Different question: has new field x been treated with fertilizer A or fertilizer B?
- Power 1β of test is directly connected to the significance level α !

Statistical Test – Example II

Protocol Inspection and State Machine Analysis (PRISMA)

Tammo Krueger Hugo Gascon Konrad Rieck

Motivatio

FIXISIVIA

Preprocess

Testing

Event Clustering Markov Model Templates and Rules

Example

Evaluation

Similarity Syntax &

- How can we improve the power of the test?
- Increase the sample size N to lower the standard deviations σ_A and σ_B !

Statistical Testing: What Can Go Wrong? – Part 2

Protocol Inspection and State Machine Analysis (PRISMA)

Tammo Krueger Hugo Gascon Konrad Rieck

Motivatio

Preprocess

Testing

Event Clusterin Markov Model Templates and Rules

Example

Evaluation

Syntax & Semantic

Statistical Testing: What Can Go Wrong? – Part 2

Protocol Inspection and State Machine Analysis (PRISMA)

Tammo Krueger Hugo Gascon Konrad Rieck

Motivatio

PRISMA

Embeddin

Testing

Markov Model
Templates and

Example

Evaluation

Syntax & Semantic

Outlook

WE FOUND NO LINK BETWEEN GREY JELLY BEANS AND ACNE (P>0.05).

WE FOUND NO LINK BETWEEN TAN JELLY BEANS AND AONE (P>0.05)

WE FOUND NO LINK BETWEEN CYAN JELLY BEANS AND ACNE (P>0.05).

WE FOUND A
LINK BETWEEN
GREEN JELLY
BEANS AND ACNE
(P < 0.05).
WHOA!

WE FOUND NO

LINK BETWEEN

BEANS AND ACNE

MAUVE JEILY

WE FOUND NO LINK BETWEEN BEIGE JELLY BEANS AND ACNE (P > 0.05).

WE FOUND NO LINK BETWEEN LILAC JELLY BEANS AND ACNE (P>0.05).

WE FOUND NO LINK BETWEEN BLACK JELLY BEANS AND ACNE (P>0.05).

WE FOUND NO LINK BETWEEN PEACH JELLY BEANS AND ACNE (P>0.05)

WE FOUND NO LINK BETWEEN ORANGE JELLY BEANS AND ACNE (P > 0.05)

Statistical Testing: What Can Go Wrong? – Part 2

Protocol Inspection and State Machine Analysis (PRISMA)

Tammo Krueger Hugo Gascon Konrad Rieck

Motivatio

PRISIVIA

Preprocess

Testing

Markov Model
Templates and
Rules

Example

Evaluation

Syntax &

Jutlook

Multiple Testing

Protocol Inspection and State Machine Analysis (PRISMA)

Tammo Krueger Hugo Gascon Konrad Rieck

Motivatio

Preprocess

Embedding

Testing

Markov Model
Templates and

Example

Evaluation

Syntax &

- In explorative data studies (e.g. micro-array experiments) a lot of tests are made in parallel
- For each of these k tests an error of type I can occur with probability α :

$$P(\text{at least one type I error})$$

$$= 1 - P(\text{no type I error})$$

$$= 1 - (1 - \alpha)^k$$

Multiple Testing – α Correction

Protocol Inspection and State Machine Analysis (PRISMA)

Tammo Krueger Hugo Gascon Konrad Rieck

Motivatio

Proprocessi

Embedding

Testing Testing

Markov Model
Templates and
Rules

Example

Evaluation

Syntax & Semantic

Outlook

■ Use adjusted $\hat{\alpha}$ (Sidak Correction):

$$P(\text{at least one type I error}) = \alpha$$

$$1 - (1 - \hat{\alpha})^k = \alpha$$

$$\hat{\alpha} = 1 - (1 - \alpha)^{1/k}$$

■ Bonferroni Correction: use $\hat{\alpha} = \alpha/k \approx 1 - (1 - \alpha)^{1/k}$.

Dimension Reduction via Statistical Testing

Protocol Inspection and State Machine Analysis (PRISMA)

Tammo Krueger Hugo Gascon Konrad Rieck

Motivatio

PRISM

Embedding

Testing

Markov Mode Templates and

Example

Evaluation

Similarity
Syntax &
Semantic

Outlook

■ Embedding space high-dimensional but sparse

■ Some dimension do not carry real information:

■ Fixed *protocol* tokens

■ Random, *volatile* tokens (cookies, nonces, ...)

■ Focus the analysis by splitting the feature set F:

$$F = F_{protocol} \cup F_{alphabet} \cup F_{volatile}$$

■ Calculate frequency *f* of each feature and test via aproximated binomial test:

$$p_{protocol} = binom.test(H_0: f \approx 1.0)$$

$$p_{volatile}$$
 = $binom.test(H_0: f \approx 0.0)$

- lacktriangle Adjust significance level lpha for multiple testing
- Keep features, which are not part of the protocol **and** are not volatile: $p_{protocol} \leq \hat{\alpha} \wedge p_{volatile} \leq \hat{\alpha}$

System Overview - Event Clustering

Protocol Inspection and State Machine Analysis (PRISMA)

Tammo Krueger Hugo Gascon Konrad Rieck

Motivatio

PRISMA

Preproces

EIIIDec

Event Clustering

Markov Mode Templates an

Evample

Eustrodia

Evaluation

Syntax &

Clustering – Introduction

Protocol Inspection and State Machine Analysis (PRISMA)

Tammo Krueger Hugo Gascon Konrad Rieck

Motivatio

PRISMA

Embedding Testing

Event Clustering Markov Model Templates and

=xample

Evaluation

Syntax & Semantic

- Vectorial representation of messages allows application of geometrical concepts
- Example *k*-means: find *k* cluster *centers*, which exhibit the minimal squared *distance* to their assigned observations
- Other methods from machine learning readily applicable

Event Clustering - Application in PRISMA

Protocol Inspection and State Machine Analysis (PRISMA)

Tammo Krueger Hugo Gascon Konrad Rieck

Motivatio

PRISMA

D

Embe

Testing

Event Clustering Markov Model Templates and

Example

Evaluation

Syntax & Semantic

Outlook

■ Clustering as factorization of embedding matrix $X \in \mathbb{R}^{k,N}$ with $B \in \mathbb{R}^{k,e}$, $C \in \mathbb{R}^{e,N}$, $b_i \in \mathbb{R}^{k,1}$, $c_i \in \mathbb{R}^{e,1}$, $\underline{e} \ll \underline{k}$:

$$X \approx BC = \overbrace{\begin{bmatrix} b_1 & \dots & b_e \end{bmatrix}}^{\text{event basis}} \underbrace{\begin{bmatrix} c_1 & \dots & c_N \end{bmatrix}}_{\text{event assignments}}$$

via Non-Negative Matrix Factorization:

$$\begin{array}{rcl} (B,C) & = & \displaystyle \mathop{\arg\min}_{B,C} \|X - BC\| \\ & & \text{s.t. } b_{ij} \geqslant 0, \ c_{jn} \geqslant 0 \,. \end{array}$$

■ Other techniques (e.g. hierarchical clustering, expert knowledge) can be incorporated easily

System Overview – Markov Model

Protocol Inspection and State Machine Analysis (PRISMA)

Tammo Krueger Hugo Gascon Konrad Rieck

Motivatio

PRISMA

Embed

Testing

Markov Model

Tuies

Evaluation

Cimilarity

Syntax & Semantic

Markov Model - Introduction

Protocol Inspection and State Machine Analysis (PRISMA)

Tammo Krueger Hugo Gascon Konrad Rieck

Motivatio

PRISMA

Embedding
Testing
Event Clusterin
Markov Model
Templates and

Evample

Evaluation

Syntax & Semantic

Outlook

■ Probabilistic model to describe process evolving over time

■ Formally, the process is a sequence of random variables:

$$S_1^T = [S(1), S(2), \dots, S(T-1), S(T)]$$

■ ... which fullfill the *Markov Assumption*:

$$\forall t \in 1, \ldots, T : P_{S(t)|S(1),S(2),\ldots,S(t-2),S(t-1)} = P_{S(t)|S(t-1)}.$$

- lacksquare S(i) represents the internal state of the system
- Examples and notation from *Hidden Markov Models and Dynamical Systems* by Andrew M. Fraser (SIAM, 2008)

Markov Model – Example

Protocol Inspection and State Machine Analysis (PRISMA)

Tammo Krueger Hugo Gascon Konrad Rieck

Motivatio

PRISMA

D

Embe

Testi

Event Clustering Markov Model

Templates a Rules

Example

Evaluation

Syntax &

$$P_{S(1)} = \begin{bmatrix} \frac{1}{3}, & \frac{1}{3}, & \frac{1}{3} \end{bmatrix},$$
 (1)

Protocol

Inspection and

Markov Model – Example

State Machine Analysis (PRISMA)

Krueger Hugo Gascon Konrad Rieck

Motivation

FINISIVIA

Preprocessir

Testing

Markov Model
Templates and

Example

Evaluation

Syntax &

Outlook

■ Calculate the probability of $s_1^4 = [u, v, w, v]$:

$$P(u, v, w, v) = P(v|u, v, w) \cdot P(w|u, v) \cdot P(v|u) \cdot P(u)$$
 (3)

$$= P(v|w) \cdot P(w|v) \cdot P(v|u) \cdot P(u) \tag{4}$$

$$= \frac{1}{2} \cdot \frac{1}{2} \cdot 1 \cdot \frac{1}{3} = \frac{1}{12}.$$
 (5)

- Eqn. (3): Conditional probability $(P_{A,B} = P_{B|A}P_A)$
- Eqn. (4): Markov assumption
- Eqn. (5): Eqn. (1) and Eqn. (2)
- General case for s_1^T :

$$P(s_1^T) = P(s(1)) \prod_{\tau=2}^{T} P(s(\tau)|s_1^{\tau-1})$$

= $P(s(1)) \prod_{\tau=2}^{T} P(s(\tau)|s(\tau-1))$

Hidden Markov Model - Introduction

Protocol Inspection and State Machine Analysis (PRISMA)

Tammo Krueger Hugo Gascon Konrad Rieck

Motivatio

FIXISIVIA

Embedding
Testing
Event Clusterin
Markov Model
Templates and
Rules

Example

Evaluation

Syntax & Semantic

Outlook

■ Again, the process is a sequence of (unobservable) random variables $S_1^T = [S(1), S(2), \dots, S(T-1), S(T)]$, which generate a sequence of random variable $Y_1^T = [Y(1), Y(2), \dots, Y(T-1), Y(T)]$

■ The observations are just dependent on the current *hidden* state:

$$P_{Y(t)|S_1^t,Y_1^{t-1}} = P_{Y(t)|S(t)}. (6)$$

■ The *hidden* state sequence is generated according to the *Markov assumption*:

$$P_{S(t+1)|S_1^t,Y_1^t} = P_{S(t+1)|S(t)}. (7)$$

Hidden Markov Model - Introduction

Protocol Inspection and State Machine Analysis (PRISMA)

Tammo Krueger Hugo Gascon Konrad Rieck

Motivatio

DDICMA

Embedding
Testing
Event Clusterir
Markov Model

Rules

Evaluation

Similarity Syntax &

- Hidden Markov model as a Bayes' net
- Edges indicate dependence relations, i.e. for all $t \in 1,...,T$:
 - Y(t) just depends on S(t)
 - lacksquare S(t) just depends on S(t-1)

Hidden Markov Model – Example

Protocol Inspection and State Machine Analysis (PRISMA)

Tammo Krueger Hugo Gascon Konrad Rieck

Motivatio

PRISMA

Preprocessir

Testing

Markov Model
Templates and

Example

Evaluation

Syntax &

Hidden Markov Model – Example

Protocol Inspection and State Machine Analysis (PRISMA)

Tammo Krueger Hugo Gascon Konrad Rieck

Motivatio

PRISMA

Preproces

Embed

Event Clustering

Markov Model Templates and

Example

Evaluation

Syntax &

Outlook

- Calculate the probability $y_1^4 = [d, e, f, e]$
- Possible state sequences, which could generate the observation: [u, v, v, v], [u, v, v, w], and [u, v, w, v]

s_1^4	$P(s_1^4)$	$P(y_1^4 s_1^4)$	$P(y_1^4, s_1^4)$
uvvv	$\tfrac{1}{3}\cdot 1 \cdot \tfrac{1}{2} \cdot \tfrac{1}{2}$	$1 \cdot \tfrac{1}{3} \cdot \tfrac{2}{3} \cdot \tfrac{1}{3}$	$\frac{2}{324}$
uvvw	$\tfrac{1}{3}\cdot 1\cdot \tfrac{1}{2}\cdot \tfrac{1}{2}$	$1 \cdot \tfrac{1}{3} \cdot \tfrac{2}{3} \cdot \tfrac{2}{3}$	$\frac{4}{324}$
uvwv	$\tfrac{1}{3}\cdot 1\cdot \tfrac{1}{2}\cdot \tfrac{1}{2}$	$1 \cdot \tfrac{1}{3} \cdot \tfrac{1}{3} \cdot \tfrac{1}{3}$	$\frac{1}{324}$

■ Now:

$$P(y_1^4) = \sum_{s_1^4} P(y_1^4, s_1^4) = \sum_{s_1^4} P(y_1^4 | s_1^4) P(s_1^4) = \frac{2+4+1}{324}.$$

Protocol Inspection and

Hidden Markov Model – Example

State Machine Analysis (PRISMA)

Krueger Hugo Gascon Konrad Rieck

IVIOTIVATIO

PRISMA

Preprocessi

Embeddin

Event Clusterii Markov Model

Rules

Evaluation

Similarity
Syntax &

Outlool

Assumptions of Eqn. (6) and Eqn. (7):

$$P(s_1^T) = P(S(1)) \prod_{t=2}^{I} P(s(t)|s(t-1))$$

$$P(y_1^T|s_1^T) = \prod_{t=1}^{I} P(y(t)|s(t))$$

Single calculation:

$$\begin{split} P(y_1^T, s_1^T) &= P(s_1^T) \, P(y_1^T | s_1^T) \\ &= P(s(1)) \prod^T P(s(t) | s(t-1)) \, \prod^T P(y(t) | s(t)). \end{split}$$

Iterate over all possible state sequences:

$$P(y_1^T) = \sum_{s^T \in S^T} P(y_1^T, s_1^T)$$

Hidden Markov Model – Algorithms

Protocol Inspection and State Machine Analysis (PRISMA)

Tammo Krueger Hugo Gascon Konrad Rieck

Motivatio

PRISMA

Embedding
Testing
Event Clustering
Markov Model
Templates and
Rules

Example

Evaluation

Syntax & Semantic

Outlook

■ The Viterbi Algorithm: Given a model θ and a sequence of observations y_1^T , finds the most probable state sequence \hat{s}_1^T :

$$\hat{\mathbf{s}}_{1}^{T} = \arg\max_{\mathbf{s}_{1}^{T}} P\left(\mathbf{s}_{1}^{T} | \mathbf{y}_{1}^{T}, \theta\right)$$

■ The Baum-Welch Algorithm: Given a sequence of observations y_1^T and an initial set of model parameters θ_0 , calculates a new set of parameters θ_1 that has higher likelihood:

$$P\left(y_1^T|\theta_1\right) \geqslant P\left(y_1^T|\theta_0\right)$$

Hidden Markov Model – Viterbi Algorithm

Protocol Inspection and State Machine Analysis (PRISMA)

Tammo Krueger Hugo Gascon Konrad Rieck

Motivation

PRISIVIA

Embedding
Testing
Event Clusterin
Markov Model

Templates and

Example

Evaluation

Syntax & Semantic

Outlook

■ Find the *best* sequence \hat{s}_1^T that maximizes the probability $P\left(s_1^T|y_1^T\right)$

■ Equivalent to maximizing $\log (P(y_1^T, s_1^T))$, since $P(y_1^T)$ is just a constant:

$$\begin{split} \hat{\mathbf{s}}_{1}^{T} &\equiv \operatorname*{arg\,max}_{\mathbf{s}_{1}^{T}} P(\mathbf{s}_{1}^{T}|\mathbf{y}_{1}^{T}) \\ &= \operatorname*{arg\,max}_{\mathbf{s}_{1}^{T}} \left(P(\mathbf{s}_{1}^{T}|\mathbf{y}_{1}^{T}) \cdot P(\mathbf{y}_{1}^{T}) \right) \\ &= \operatorname*{arg\,max}_{\mathbf{s}_{1}^{T}} \left(P(\mathbf{y}_{1}^{T}, \mathbf{s}_{1}^{T}) \right). \end{split}$$

■ Trick for numerical stability: use log

Hidden Markov Model – Viterbi Algorithm: Definitions

Protocol Inspection and State Machine Analysis (PRISMA)

Tammo Krueger Hugo Gascon Konrad Rieck

Motivatio

PRISIVIA

Preprocessi

Embedding

Event Cluster

Markov Model Templates and

Example

B(s',t)

Evaluation

Syntax &

Outlook

$$\begin{array}{ll} u(s_1^t) & \text{Utility of state sequence } s_1^t \\ & \equiv \log \left(P(y_1^t, s_1^t) \right) \\ \nu(s,t) & \text{Utility of best sequence ending with } s(t) = s \\ & \equiv \max_{s_1^t: s(t) = s} u(s_1^t) \\ \omega(s,s',t) & \text{Utility of best sequence with } s(t-1), s(t) = s, s' \\ & \equiv \max_{s_1^t: s(t-1) = s \wedge s(t) = s'} u(s_1^t) \end{array}$$

Best predecessor state given s(t) = s'

 \equiv arg max $\omega(s, s', t)$

Hidden Markov Model – Viterbi Algorithm: Overview

Protocol Inspection and State Machine Analysis (PRISMA)

Tammo Krueger Hugo Gascon Konrad Rieck

Motivatio

PRISMA

Embedding
Testing
Event Clustering
Markov Model

Evample

Evaluation

Syntax & Semantic

- *Initialize* utility $\log (P_{Y(1),S(1)}(y(1),s))$ for each state $s \in \mathcal{S}$.
- Forward step: for each successive time step $t: 1 < t \leq T$
 - for each state s determine the best predecessor for that state and store it in B(s,t)
 - lacktriangle calculate utility of the best state sequence ending in that state and store it in u(s,t)
- Backtrack step:
 - identify the best final state as $\hat{s}(T) = \arg \max_{s} \nu(s, T)$
 - for t from T-1 to 1 backtrack through B array to find the other states in the sequence $\hat{\mathbf{s}}_1^T$, i.e., $\hat{\mathbf{s}}(t) = B(\hat{\mathbf{s}}(t+1), t+1)$

Hidden Markov Model – Viterbi Algorithm: Iteration

```
Protocol
Inspection and
State Machine
Analysis
(PRISMA)
Tammo
Krueger
Hugo Gascon
```

```
Konrad Rieck
```

Motivation

```
PRISMA
Preprocessing
Embedding
Testing
Event Clusterin
Markov Model
```

Example

Evaluation

Syntax & Semantic

Outloo

```
Initialize: for each s \nu_{\mathsf{next}}(s) = \log\left(P_{Y(1),S(1)}\left(y(1),s\right)\right) Iterate: for t from 2 to T \# \nu_{\mathsf{old}}(\cdot) = \nu(\cdot,t-1); \nu_{\mathsf{next}}(\cdot) = \nu(\cdot,t)
```

 $u_{\text{old}} = \nu_{\text{next}}$ for each s_{next} for each s_{old}

Find best predecessor $B(s_{\text{next}}, t) = \arg\max_{s_{\text{old}}} \omega(s_{\text{old}}, s_{\text{next}})$ # Undate

Update ν $\nu_{\mathsf{next}}(s_{\mathsf{next}}) = \omega(B(s_{\mathsf{next}}, t), s_{\mathsf{next}})$

 $+\log\left(P(v(t)|s_{\text{next}})\right)$

 $\omega(s_{\text{old}}, s_{\text{next}}) = \nu_{\text{old}}(s_{\text{old}}) + \log(P(s_{\text{next}}|s_{\text{old}}))$

Hidden Markov Model – Viterbi Algorithm: Backtrack

Protocol Inspection and State Machine Analysis (PRISMA)

Tammo Krueger Hugo Gascon Konrad Rieck

Motivation

PRISMA

Embedding

Event Clusterii Markov Model

Templates an Rules

Example

Evaluation

Syntax &

Outlook

Backtrack:

$$\begin{split} \overline{s} &= \operatorname{arg\,max}_s \nu_{\operatorname{next}}(s) \\ \widehat{s}(T) &= \overline{s} \\ \text{for } t \text{ from } T-1 \text{ to } 1 \\ \overline{s} &= B(\overline{s}, t+1) \\ \widehat{s}(t) &= \overline{s} \end{split}$$

- A lot more to learn about Markov models:
 - forward/backward algorithm
 - Baum-Welch algorithm
 - Kalman filter
- So consult: *Hidden Markov Models and Dynamical Systems* by Andrew M. Fraser (SIAM, 2008)

Markov Model - Application in PRISMA

Protocol Inspection and State Machine Analysis (PRISMA)

Tammo Krueger Hugo Gascon Konrad Rieck

Motivatio

PRISMA

Preprocess

Embed

Event Cluster

Markov Model
Templates and

Example

Evaluation

Syntax & Semantic

- Each message is assigned to an *event* from the event space E, so a session $S = [e_1, e_2, \dots e_{|S|}], e_{1,2,\dots,|S|} \in E$
- Represent the dynamics for the system by a Markov model of order $m \ge 2$:
 - 1 Estimate the frequencies of the initial events (i.e. $P(e), e \in E$)
 - 2 Estimate the frequencies of an event given the m predecessors in time (i.e. $P(e_t|e_{t-m},\ldots,e_{t-2},e_{t-1})$)
- Resulting networks can be big (potentially $|E|^m$ nodes):
 - Markov model can be transformed in a DFA
 - Compress structure via DFA minimization algorithm
- Reduced network can be described by a hidden Markov model

System Overview – Templates and Rules

Protocol Inspection and State Machine Analysis (PRISMA)

Tammo Krueger Hugo Gascon Konrad Rieck

Motivatio

PRISMA

Preproces

Testing

Event Clusterin Markov Model Templates and

Rules

Example

Evaluation

Syntax &

Templates and Rules

Protocol Inspection and State Machine Analysis (PRISMA)

Tammo Krueger Hugo Gascon Konrad Rieck

Motivatio

FINISIVIA

Preprocess

Testing

Event Clustering Markov Model Templates and

Rules

Evaluatio

Syntax & Semantic

Outlook

	State A	State B	State C
Session 1	GO 1	OBJECT A	CARRY A O
Session 2	GO 2	OBJECT D	CARRY D 0
	:	:	:
Session n	GO O	OBJECT B	CARRY B 0
Template	GO	OBJECT	CARRY 0

- Template generation:
 - Assign each message to its corresponding state
 - Align messages and find static and changing parts (fields)
- Rules between templates:

Exact copy the content of one field

Sequence increment the number of a field

CopyCompl. copy field and add parts before/after

CopyPartial copy parts of the field

Data pick a value from a data pool

Demo – Robot example

Protocol Inspection and State Machine Analysis (PRISMA)

Tammo Krueger Hugo Gascon Konrad Rieck

Motivatio

Droprococ

Embedding

Event Clustering Markov Model Templates and

Example

Evaluation

Syntax & Semantic

Outlook

■ Goal: *learn* the control of a robot, which collects goods inside a contaminated room, from network traffic

■ The robot communicates with the environment by a simple protocol:

■ GO <dir>

■ CARRY <object> <dir>

■ The environment responds with the following status messages after each action of the robot:

WALL

FREE

■ BASE

■ OBJECT <object>

■ Hands-on example. . .

Demo – Robot example

Protocol Inspection and State Machine Analysis (PRISMA)

Tammo Krueger Hugo Gascon Konrad Rieck

Motivation

Preprocessi

Embedding

Event Clustering Markov Model Templates and

Example

Evaluation

Similarity
Syntax &

Outlook

File	Edit	View	Search Terminal Tabs Help	
tam	nmok@	robert:	~/src/tam × tammok@robert: ~/src/PRO	. ×
6				
		h	[
			.mMI	
			g@jj	
			0	
			.fEK	
			n.q	
		a	Ub	
			рН	
(d			
		.\	CQk.RB	

tammok@robert: ~/src/PRO.

Demo - Robot example

Protocol Inspection and State Machine Analysis (PRISMA)

Tammo Krueger Hugo Gascon Konrad Rieck

Motivatio

Preproces

Embedding
Testing
Event Clustering

Markov Model Templates and Rules

Example Evaluation

Similarity

Syntax & Semantic

Outlook

WALL |
GO O |
OBJECT E |
CARRY E O |
FREE |

GO 2 |

CARRY E 3 | FREE |

CARRY E O | WALL |

CARRY E 3 |

FREE | CARRY E 3 |

BASE |

GO O I

Demo - Robot Model before Minimization

Protocol Inspection and State Machine Analysis (PRISMA)

Tammo Krueger Hugo Gascon Konrad Rieck

Motivatio

PRISMA

Embedding
Testing
Event Clusto
Markov Moo

Markov Mode Templates an Rules

Example

Evaluation

Syntax &

Demo - Robot Model after Minimization

Protocol Inspection and State Machine Analysis (PRISMA)

Tammo Krueger Hugo Gascon Konrad Rieck

Motivatio

PRISMA

PRISIMA

Embedding
Testing
Event Clusterin
Markov Model

Example

Evaluation

Syntax &

Demo - Robot Templates and Rules

Protocol Inspection and State Machine Analysis (PRISMA)

Tammo Krueger Hugo Gascon Konrad Rieck

Motivatio

PRISMA

-

Embedding Testing

Markov Model Templates and Rules

Example

Evaluation

Syntax &

Outlook

TEMPLATE id:2 state:FREE.UAS—CARRY.UAC CARRY \(\square\)

TEMPLATE id:5 state:CARRY.UAC—FREE.UAS FREE

RULE transition:2;5;2 srcId:2 srcField:0 dstField:0

RULE transition:2;5;2 srcId:2 srcField:1 dstField:1

Evaluation

Protocol Inspection and State Machine Analysis (PRISMA)

Tammo Krueger Hugo Gascon Konrad Rieck

Motivatio

PRISMA

Embedding
Testing
Event Clustering
Markov Model
Templates and

Example

Evaluation

Similarity Syntax & Semantic

- Split pool into train (90% of the sessions) and testing slice
- For each session in the testing slice simulate both from the perspective of Client and Server (repeat 100 times)
- Message similarity evaluation: for each session and repetition
 - 1 calculate the normalized edit distance of the generated message to the real message
 - 2 collect all distances ≥ 0 attained at a specific position
- Syntactical and semantical correctness evaluation:
 - 1 is message well-formed according to the underlying protocol specification (wireshark)
 - 2 is session information retained, i.e. CallID, from- and to-tag are preserved

Evaluation – Similarity Alcatel-Lucent (8878 Messages)

Protocol Inspection and State Machine Analysis (PRISMA)

Tammo Krueger Hugo Gascon Konrad Rieck

Motivatio

PRISMA

D

Testing
Event Clustering

F.....

English Co.

Similarity

Syntax & Semantic

Evaluation – Syntax & Semantic Alcatel-Lucent (8878 Messages)

Protocol Inspection and State Machine Analysis (PRISMA)

Tammo Krueger Hugo Gascon Konrad Rieck

iviotivatio

PRISMA

Embedding
Testing
Event Clustering
Markov Model
Templates and

Example

Evaluation

Syntax & Semantic

	Syntax		Semantic	
	1 s. Sim.	2 s. Sim.	1 s. Sim.	2 s. Sim.
some Errors	0.03%	0.80%	3.77%	0.00%
100% Correct	99.97%	99.20%	96.23%	100.00%

- Measure the number of correct messages per session
- 1 s. Sim.: Simulate one side of the communication with a PRISMA model and use other side from data set
- 2 s. Sim.: Simulate both sides of the communication with a PRISMA model

Conclusion and Future Work

Protocol Inspection and State Machine Analysis (PRISMA)

Tammo Krueger Hugo Gascon Konrad Rieck

Motivatio

PRISIVIA

Embedding Testing

Event Clustering Markov Model Templates and Rules

Example

Evaluation

Similarity
Syntax &

- Protocol Inspection and State Machine Analysis:
 - 1 Embed messages in a suitable vector space
 - 2 Transform sequences of messages to a sequence of events
 - 3 Learn the event machine with a Markov model
- Application as "Honey-Service"
- Future work:
 - Stateful anomaly detection
 - Deep fuzzing
 - Infiltration of botnets

Protocol Inspection and State Machine Analysis (PRISMA)

Tammo Krueger Hugo Gascon Konrad Rieck

Motivatio

PRISMA

Embedding

Event Clustering Markov Model

Example

Evaluation

Similarity Syntax &

Outlook

Questions? Remarks? Thanks for your attention!

Evaluation – Length

Protocol Inspection and State Machine Analysis (PRISMA)

Tammo Krueger Hugo Gascon Konrad Rieck

Motivatio

PRISMA

Preprocessing
Embedding
Testing
Event Clustering
Markov Model
Templates and
Rules

Example

Evaluation

Syntax &

Evaluation – Syntax & Semantic detailed Alcatel-Lucent (8878 Messages)

Protocol Inspection and State Machine Analysis (PRISMA)

Tammo Krueger Hugo Gascon Konrad Rieck

iviotivatio

Preproce

Embedding Testing

Event Clusterin Markov Model Templates and Rules

Example

Evaluation

Syntax & Semantic

	Syr	ıtax	Semantic		
	1 Side Sim. 2 Side S		1 Side Sim.	2 Side Sim.	
< 80%	0.01%	0.50%	0.30%	0.00%	
8 <i>X</i> %	0.00%	0.20%	1.64%	0.00%	
9 <i>X</i> %	0.02%	0.10%	1.83%	0.00%	
100%	99.97%	99.20%	96.23%	100.00%	

- Measure the frequency of % correct messages per session
- Reading example: For the one side simulation 0.02% of the sessions have between 90% and 99% syntactical correct messages inside the session and 99.97% of the sessions have all messages syntactical correct