

Beyond the thermodynamic limit

An information-theoretic perspective

Kamil Korzekwa

Centre for Engineered Quantum Systems, School of Physics, University of Sydney, Sydney NSW 2006, Australia

Sydney team

Christopher Chubb
University of Sydney

Marco Tomamichel
University of Technology Sydney

Outline

- 1. Background and motivation
- 2. Thermodynamic setting
- 3. Main result
- 4. Discussion and applications
- 5. Mathematical framework and technical details
- 6. Outlook

Background and motivation

Standard thermodynamics

- Wide applicability
- Statistical nature
- Thermodynamic limit
- Reversible cycles

Our work

- Intermediate regime
- Mixed nature
- Large but finite number of particles
- Irreversibility?

Quantum thermodynamics

- Quantum regime
- Information-theoretic nature
- Single-shot processes
- Inherent irreversibility

Outline

- 1. Background and motivation
- 2. Thermodynamic setting
 - Resource theory of thermodynamics
 - Relevant information-theoretic notions
- 3. Main result
- 4. Discussion and applications
- 5. Mathematical framework and technical details
- 6. Outlook

Resource theory of thermodynamics

Free thermodynamic transformations modelled by thermal operations:

$$\mathcal{E}^{\beta}(\cdot) = \operatorname{Tr}_{B}\left(U\left(\cdot \otimes \gamma_{B}\right)U^{\dagger}\right)$$

Thermal bath at inverse temperature β

$$\gamma_B = e^{-\beta H_B} / \mathcal{Z}_B$$

$$\mathcal{Z}_B = \operatorname{Tr} \left(e^{-\beta H_B} \right)$$

Hamiltonian: H_B

Hamiltonian: H Hamiltonian: H

Resource theory of thermodynamics

General interconversion problem:

For initial and target states, ρ and σ , does there exist \mathcal{E}^{β} such that $\mathcal{E}^{\beta}(\rho) = \sigma$?

Studied interconversion problem:

For initial and target states, ρ and σ , does there exist \mathcal{E}^{β} such that \mathcal{E}^{β} ($\rho^{\otimes n}$) $\approx_{\epsilon} \sigma^{\otimes Rn}$?

What is the optimal interconversion rate R^* for ρ and σ , and error ϵ ?

Error: $\sigma \approx_{\epsilon} \tilde{\sigma}$ means $1 - F(\sigma, \tilde{\sigma}) \leq \epsilon$ with F denoting fidelity.

Restrictions:

Focus on many copies (large but finite n) and energy-incoherent states:

$$[\rho, H] = [\sigma, H] = 0 \implies \text{states represented by: } \mathbf{p} = \text{eig}(\rho), \ \mathbf{q} = \text{eig}(\sigma).$$

Relevant information-theoretic notions

Gibbs state γ of the system at inverse temperature β :

$$\gamma = e^{-\beta H}/\mathcal{Z}, \ \mathcal{Z} = \text{Tr}\left(e^{-\beta H}\right); \qquad [\gamma, H] = 0 \Rightarrow \text{state represented by } \gamma = \text{eig}(\gamma)$$

Relative entropy with the Gibbs state: $D(\mathbf{p}\|\boldsymbol{\gamma}) := \sum_{i=1}^d p_i \log \frac{p_i}{\gamma_i}$

Thermodynamic interpretation as generalised free energy:

$$TD(p||\gamma) = (\langle E \rangle_p - TH(p)) - (-T \log \mathcal{Z})$$
Free energy
 $F = U - TS$
Free energy of the thermal state
 $-T \log \mathcal{Z}$

Note: all results with units such that $k_B = 1$.

Relevant information-theoretic notions

Relative entropy variance with the Gibbs state: $V(\mathbf{p}\|\mathbf{\gamma}) := \sum_{i=1}^{d} p_i \left(\log \frac{p_i}{\gamma_i} - D(\mathbf{p}\|\mathbf{\gamma})\right)^2$

Thermodynamic interpretation as generalised heat capacity:

If $p = \gamma'$, i.e., initial state is a Gibbs state at temperature T', then

$$V(\gamma'||\gamma) = \left(1 - \frac{T'}{T}\right)^2 \cdot c_{T'}$$

Carnot-like factor

Specific heat capacity at temperature T'

$$c_{T'} = \frac{\partial \langle E \rangle_{\gamma'}}{\partial T'}$$

Note: $V(\mathbf{p}||\boldsymbol{\gamma}) = 0$ when \mathbf{p} is sharp ($\boldsymbol{\rho}$ is an energy eigenstate).

Outline

- 1. Background and motivation
- 2. Thermodynamic setting
- 3. Main result
- 4. Discussion and applications
- 5. Mathematical framework and technical details
- 6. Outlook

Main result

Optimal interconversion rate for $\rho \xrightarrow{\mathcal{E}^{\beta}} \sigma$:

$$R^*(n,\epsilon) \simeq \underbrace{\frac{D(\mathbf{p}\|\boldsymbol{\gamma})}{D(\mathbf{q}\|\boldsymbol{\gamma})}} \left(1 + \sqrt{\frac{V(\mathbf{p}\|\boldsymbol{\gamma})}{n D(\mathbf{p}\|\boldsymbol{\gamma})^2}} Z_{\nu}^{-1}(\epsilon) \right)$$

Asymptotic rate

Second-order correction

Rayleigh-normal distribution Z_{ν} :

 Z_0 - standard normal distribution Φ

 Z_1 - Rayleigh distribution $(Z_1(x) = 0 \text{ for } x \leq 0)$

Irreversibility parameter:
$$\nu = \frac{V(\boldsymbol{q}\|\boldsymbol{\gamma})/D(\boldsymbol{q}\|\boldsymbol{\gamma})}{V(\boldsymbol{p}\|\boldsymbol{\gamma})/D(\boldsymbol{p}\|\boldsymbol{\gamma})}$$

Outline

- 1. Background and motivation
- 2. Thermodynamic setting
- 3. Main result
- 4. Discussion and applications
 - Finite-size irreversibility
 - Formation-distillation work gap
 - Performance of heat engines
- 5. Mathematical framework and technical details
- 6. Outlook

Finite-size irreversibility

Large but finite n

13/27

Finite-size irreversibility

Optimal reversibility rate (transformation $\rho \xrightarrow{\mathcal{E}^{\beta}} \sigma \xrightarrow{\mathcal{E}^{\beta}} \rho$):

$$R_r^* \simeq 1 + \sqrt{\frac{V(\boldsymbol{p}||\boldsymbol{\gamma})}{nD(\boldsymbol{p}||\boldsymbol{\gamma})^2}} \left(Z_{\nu}^{-1}(\epsilon_1) + Z_{\nu}^{-1}(\epsilon_2)\right)$$

Threshold error: $\epsilon_0 := Z_{\nu}(0)$

Demanding reversibility, $R_r^* = 1$, means:

$$\epsilon \le 4\epsilon_0(1 - \epsilon_0) = 4Z_{\nu}(0)(1 - Z_{\nu}(0))$$

Perfect reversibility, with $\epsilon = 0$, possible if $\nu = 1$.

Formation-distillation work gap

Formation process:

Distillation process:

Formation-distillation work gap

Performance of heat engines

Performance of heat engines

Efficiency of the process heating finite bath from T_c to $T_{c'}$:

$$\eta(T_{\rm c} \to T_{\rm c'}) = \eta_C(T_{\rm c} \to T_{\rm c'}) + f(T_{\rm c}, T_{\rm c'}, T_{\rm h}) \cdot \frac{Z_{\nu}^{-1}(\epsilon)}{\sqrt{n}}$$

Integrated

Second-order correction Carnot efficiency positive $(\epsilon > \epsilon_0)$ or negative $(\epsilon < \epsilon_0)$

Allowing for imperfect work, one can achieve and even surpass Carnot efficiency.

Perfect work extraction at Carnot efficiency allowed for $\nu = 1$.

⇒ Possibility of engineering finite heat-baths in order to minimise undesirable dissipation of free energy.

Outline

- 1. Background and motivation
- 2. Thermodynamic setting
- 3. Main result
- 4. Discussion and applications
- 5. Mathematical framework and technical details
 - Thermal operations and (thermo)majorisation
 - Approximate (thermo)majorisation
 - Sketch of the proof
- 6. Outlook

Thermal operations and (thermo)majorisation

Notation:

 Λ^{β} - Gibbs-preserving (GP) stochastic matrix, $\Lambda^{\beta} \gamma = \gamma$.

 Λ^0 - bistochastic matrix, $\Lambda^0 \boldsymbol{\eta} = \boldsymbol{\eta}$, where $\boldsymbol{\eta} := [1/d, \dots, 1/d]$.

 Γ^{β} - embedding matrix mapping between canonical and microcanonical pictures:

For
$$\gamma = \begin{bmatrix} D_1 \\ D \end{bmatrix}$$
 we have $\hat{\boldsymbol{p}} = \Gamma^{\beta} \boldsymbol{p} = \begin{bmatrix} \frac{p_1}{D_1}, \dots, \frac{p_1}{D_1}, \dots, \frac{p_d}{D_d}, \dots, \frac{p_d}{D_d} \end{bmatrix}$.

Note: $\hat{\gamma} = \eta$ and $\hat{\Lambda}^{\beta} := \Gamma^{\beta} \Lambda^{\beta} (\Gamma^{\beta})^{-1}$ is bistochastic.

 $p \succ q$ - majorisation relation, i.e., $\sum_{i=1}^k p_i^{\downarrow} \ge \sum_{i=1}^k q_i^{\downarrow}$ for all k.

Thermal operations and (thermo)majorisation

1. Equivalence between thermal and GP interconversion (energy-incoherent states):

$$\mathcal{E}^{\beta}(\rho) = \sigma \iff \Lambda^{\beta} \boldsymbol{p} = \boldsymbol{q}$$

2. Equivalence between GP and embedded bistochastic interconversion:

$$\Lambda^{oldsymbol{eta}} oldsymbol{p} = oldsymbol{q} \iff \Lambda^0 \hat{oldsymbol{p}} = \hat{oldsymbol{q}}$$

3. Equivalence between embedded bistochastic interconversion and majorisation:

$$\Lambda^0 \hat{\boldsymbol{p}} = \hat{\boldsymbol{q}} \iff \hat{\boldsymbol{p}} \succ \hat{\boldsymbol{q}}$$

4. Equivalence between embedded majorisation and thermomajorisation:

$$\hat{\boldsymbol{p}} \succ \hat{\boldsymbol{q}} \iff \boldsymbol{p} \succ^{\beta} \boldsymbol{q}$$

Distance between distributions: $\delta(\mathbf{p}, \tilde{\mathbf{p}}) := 1 - F(\mathbf{p}, \tilde{\mathbf{p}})$

Thermomajorisation: $p \succ^{\beta} q$

Distance between distributions: $\delta(\mathbf{p}, \tilde{\mathbf{p}}) := 1 - F(\mathbf{p}, \tilde{\mathbf{p}})$

 ϵ -pre-thermomajorisation: $\mathbf{p}_{\epsilon} \succ^{\beta} \mathbf{q}$

 $\tilde{\boldsymbol{p}} \succ^{\boldsymbol{\beta}} \boldsymbol{q} \text{ and } \delta(\boldsymbol{p}, \tilde{\boldsymbol{p}}) \leq \epsilon.$

Distance between distributions: $\delta(\mathbf{p}, \tilde{\mathbf{p}}) := 1 - F(\mathbf{p}, \tilde{\mathbf{p}})$

 ϵ -post-thermomajorisation: $\mathbf{p} \succ_{\epsilon}^{\beta} \mathbf{q}$

 $p \succ^{\beta} \tilde{q}$ and $\delta(q, \tilde{q}) \leq \epsilon$.

Relations between different notions of approximate majorisation

Sketch of the proof

Our goal is to find optimal $R^*(n,\epsilon)$ such that: $\mathcal{E}^{\beta}(\rho^{\otimes n}) \approx_{\epsilon} \sigma^{\otimes Rn}$

Adding Gibbs states is free, so equivalently:

$$\mathcal{E}^{eta}(
ho^{\otimes n} \otimes \gamma^{\otimes Rn}) pprox_{\epsilon} \sigma^{\otimes Rn} \otimes \gamma^{\otimes n}$$

Introducing: $P^n := p^{\otimes n} \otimes \gamma^{\otimes Rn}$, $Q^n := q^{\otimes Rn} \otimes \gamma^{\otimes n}$

$$\hat{P}^n := \hat{oldsymbol{p}}^{\otimes n} \otimes oldsymbol{\eta}^{\otimes Rn}, \quad \hat{Q}^n := \hat{oldsymbol{q}}^{\otimes Rn} \otimes oldsymbol{\eta}^{\otimes n}$$

For energy-incoherent states the condition is: $P^n \succ_{\epsilon}^{\beta} Q^n$

Embedded post-majorisation \Leftrightarrow post-thermo-majorisation, so: $\hat{P}^n \succ_{\epsilon} \hat{Q}^n$

Post-majorisation \Leftrightarrow pre-majorisation, so: $\hat{P}^n {}_{\epsilon} \succ \hat{Q}^n$

Sketch of the proof

We need to look at majorisation curves of \hat{P}^n and \hat{Q}^n .

Recall:

$$\hat{P}^n = \hat{oldsymbol{p}}^{\otimes n} \otimes oldsymbol{\eta}^{\otimes Rn} \ \hat{Q}^n = \hat{oldsymbol{q}}^{\otimes Rn} \otimes oldsymbol{\eta}^{\otimes n}$$

Focus on distillation:

$$\mathbf{q} = [1, 0, \dots, 0]$$

Optimal majorising curve: cut tail and rescale

Sketch of the proof

For general \boldsymbol{q} majorisation curve of \hat{Q}^n is piece-wise linear.

Idea: divide the support into boxes and construct a distribution \hat{P}^n with the same shape as \hat{P}^n (so that it is close to \hat{P}^n) and the same mass as \hat{Q}^n (so that it majorises \hat{Q}^n) within each box.

Tools: Variations of central limit theorem used to obtain majorisation curves for \hat{P}^n and \hat{Q}^n when $n \to \infty$.

Final step: unembed the solution, obtained in terms of $D(\hat{\cdot} || \boldsymbol{\eta})$ and $V(\hat{\cdot} || \boldsymbol{\eta})$, to express it using $D(\cdot || \boldsymbol{\gamma})$ and $V(\cdot || \boldsymbol{\gamma})$.

Outlook

- Apply the results to other thermodynamic problems involving finite-size baths, e.g. Landauer's erasure, fluctuation theorems, the third law of thermodynamics.
- Clarify the notion of imperfect work (construct a comparison platform to continuously distinguish between work-like and heat-like forms of energy).
- Investigate conditions for which Carnot efficiency can be achieved with finite-size baths (or with finite-size working body).
- Extend to general quantum states with coherence.

Details: arXiv:1711.01193

Thank you!