Detecting Unsafe Updates in Software Ecosystems

Yao-Wen Chang

September 22, 2023

Supervised by: Christoph Treude Co-supervised by: Behnaz Hassanshahi (Oracle Labs, Australia)

BACKGROUND

- ▶ SolarWind's Orion platform is polluted.
- ► Malicious action against **Esline-Scope**.

OBJECTIVE

- Introduce a new framework.
- Evaluate the effectiveness of the framework.
- Automate the unsafe update explore process.

Research Questions

- 1. What is the scope of the impact of the risks that exist within our target Python and Java repositories?
- 2. What are the results if these suspicious updates from contributors in open source projects compromise the target?
- 3. To what extent does this work enhance the security of CI/CD pipelines based on the findings and recommendations from our research?

OUTLINE

- Related Works
- ► Research Methods
 - Data Source
 - Framework
 - Pipeline
 - Metric
- Summary
- ► QA

RELATED WORKS

Regex Introduce papers....

Machine Learning Introduce papers....

CI / CD Based Introduce papers....

RESEARCH METHODS I

Data

- ► Fetch Data
- Clean Data

Deployments 198

github-pages 3 years ago
+ 197 deployments

Python 92.6% Makefile 7.4%

► Third item

RESEARCH METHODS II

Framework Introduce papers....

Pipeline

Introduce papers....

RESEARCH METHODS III

Metric

$$SM = (W_p \cdot P) * (W_{tf} \cdot TF) * (\frac{W_{tc}}{TC}) * (W_s \cdot S)$$
 (1)

SM = Security Scanner Metric

P =Precision (as a decimal)

 W_p = Weight for Precision

TF = Total Findings (TP + FP)

 $W_{tf} = \text{Weight for Total Findings}$

TC = Time Cost

 W_{tc} = Weight for Time Cost

S = Normalized Severity Score

 $W_s = \text{Weight for Severity}$

SUMMARY

This is the first slide of your presentation.

REFERENCES I