See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/270652598

Site and chirality selective chemical modifications of boron nitride nanotubes (BNNTs) via Lewis acid-base interactions

ARTICLE in PHYSICAL CHEMISTRY CHEMICAL PHYSICS •	JANUARY 2015
Impact Factor: 4.49 · DOI: 10.1039/c4cp04790g · Source: PubMed	
CITATION	READS
1	20

4 AUTHORS, INCLUDING:

Steve Scheiner
Utah State University

366 PUBLICATIONS 11,032 CITATIONS

SEE PROFILE

Tapas Kar Utah State University

137 PUBLICATIONS 3,820 CITATIONS

SEE PROFILE

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2014

Site and chirality selective chemical modifications of boron nitride nanotubes (BNNTs) via Lewis acid/base interactions

Rajashabala Sundaram^{1,2}, Steve Scheiner², Ajit K. Roy³ and Tapas Kar^{2*}

Table S1. Comparison of B3LYP/6-31G* and B3LYP/6-31+G* adsorption energies of BNNT-NH₃ and BNNT-BH₃ (see Figure 1-4 for structures). All energies are in kcal/mol.

	E_{ad}	
(4,4)-BNNT-NH ₃	6-31G*	6-31+G*
1A	9.86	7.58
1B	9.70	7.64
1C	9.65	7.49
1D	9.34	7.20
(8,0)-BNNT-NH ₃		
2A	16.60	14.03
2B	10.18	7.68
2C	9.72	7.28
2D	3.25	1.29
(4,4)-BNNT-BH ₃		
3A	22.96	21.05
3B	10.57	9.28
3C	10.04	8.39
3D	9.20	7.85
(8,0)-BNNT-BH ₃		
4A	17.06	15.80
4B	17.01	15.53
4C	9.71	8.04
4D	9.25	7.71

¹School of Physics, Madurai Kamaraj University, Madurai-625021, Tamilnadu, India

²Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, USA

³Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, OH 45433, United States

Table S2. Bond distances and changes in distances (δR) of BH₃ adsorbed BN-nanotubes at the adsorption sites as well as at their neighbors. All distances are in Å.

Bond distance (R)							
Name of the System	6-31+G* (BSSE)	6-31+G* (δR)	6-31G* (δR)	Name of the System	6-31+G* (BSSE)	6-31+G* (δR)	6-31G* (δR)
(4,4)-BNNT-N 83 84 81 14 22 22				(8,0)-BNNT-N 82 84 81 71 13 12 68 7	H ₃ (2A)	-> => =>	
N81-H84	1.021	-0.001	0.000	N81-H84	1.020	-0.001	-0.001
N81-H83	1.021	-0.001	-0.001	N81-H83	1.023	-0.001	-0.001
N81-H82	1.021	-0.001	-0.001	N81-H82	1.020	0.001	0.002
B21-N81	1.724	0.006	0.000	N81-B13	1.691	0.007	0.005
B21-N14	1.526	0.000	0.003	B13-N12	1.534	0.000	0.001
B21-N28	1.518	0.000	0.002	B13-H71	1.204	0.001	0.001
B21-N22	1.530	0.000	0.002	H68-B7	1.192	0.000	0.000
(4,4)-BNNT-N 82 81 83 84 11 18				(8,0)-BNNT-N 84 82 13 14 30 69 9	8 3		
N81-H84	1.021	-0.001	-0.001	N81-H84	1.021	0.000	0.000
N81-H83	1.022	-0.001	0.000	N81-H83	1.023	0.000	0.000
N81-H82	1.021	-0.001	0.000	N81-H82	1.021	-0.001	0.000
B11-N81	1.727	0.010	0.001	N81-B30	1.725	0.009	0.005
B11-N4	1.510	0.000	0.004	B30-N31	1.525	0.000	0.001
B11-N18	1.517	0.000	0.001	B30-N14	1.513	0.000	0.002
B11-N12	1.535	-0.001	0.002	H69-B9	1.193	0.001	0.000

Table S3. Bond distances and changes in distances (δR) of BH₃ adsorbed BN-nanotubes at the adsorption sites as well as at their neighbors. All distances are in Å.

Bond distance(R)							
Name of the	6-31+G*	6-31+G*	6-31G*	Name of the	6-31+G*	6-31+G*	6-31G*
System	(BSSE)	(δR)	(δR)	System	(BSSE)	(δR)	(δR)
(4,4)-BNNT-BH ₃	₃ (3A)			(8,0)-BNNT-B	H ₃ (4A)		
B81-H84	1.194	81 81 82 83 76 74 0.001	0.001	84 83 81 78 59 60 58 73 49 B81-H84	1.212	0.000	0.001
B81-H83		0.001	0.001	B81-H83		0.000	0.001
B81-H82	1.197	-0.001	-0.001	B81-H82	1.212	0.000	0.001
N8-B81	1.326 1.585	0.002	0.003	N59-B81	1.207	0.000	0.001
B7-H74	1.383	0.002	0.003	N59-B60	1.740	0.004	0.002
B7-B14	1.190	0.000	0.000	N59-B60 N59-B58	1.503	0.000	0.001
N8-H76	1.493	0.000	0.001	N59-H78	1.019	0.000	0.001
N8-B15	1.484	0.000	0.000	N49-H73	1.015	0.000	0.001
B7-N8	1.590	0.000	0.000	-	1.013	-	0.001
(4,4)-BNNT-BH ₃ (3B) 84 83 82 14 7			(8,0)-BNNT-B 82 81 70 11 84 12 28 7113		3		
B81-H84	1.204	0.003	0.002	B81-H84	1.315	-0.001	-0.001
B81-H83	1.210	0.000	0.000	B81-H83	1.196	0.000	0.001
B81-H82	1.208	0.000	-0.001	B81-H82	1.195	0.001	0.001
N14-B81	1.804	0.008	0.010	N12-B81	1.610	0.002	0.004
N14-B7	1.500	0.000	0.002	N12-B11	1.610	0.003	0.004
N14-B21	1.501	0.000	0.002	H71-B13	1.192	0.000	0.000
N14-B13	1.501	0.000	0.002	N12-B28	1.488	0.000	0.000
-	-	-	-	H70-B11	1.187	0.000	0.000
-	-	-	-	N12-B13	1.606	0.000	0.000

Fig. S4. B3LYP/6-31+G* optimized structures of L-(8, 0)-BNNT-NH $_3$ /BH $_3$. Blue, yellow and grey colors represent N, B and H atoms, respectively. m and e stand for middle and edge site respectively. Bond lengths are in Å. BSSE corrected adsorption energies (in kcal/mol) are given in parenthesis and a positive value indicates attractive interaction between two units,

Fig. S5. B3LYP/6-31+G* optimized structures of (12, 0)-BNNT-NH₃/BH₃. Blue, yellow and grey colors represent N, B and H atoms, respectively. m and e stand for middle and edge site respectively. Bond lengths are in Å. BSSE corrected adsorption energies (in kcal/mol) are given in parenthesis and a positive value indicates attractive interaction between two units,

Fig. S6. Hybridization angle (ϕ in degree) of BH₃ (sp²), NH₃ (sp³) and H₃BNH₃.(sp³). The dummy atom (pink) is used to show angles.

Fig. S7. Approximate hybridization angles (ϕ in degree) of B (Lewis acid centers) and N (Lewis base centers) sites in (4,4) and (8,0) BNNTs, The dummy atom (pink) is used to show angles.

Fig. S8. Hybridization angles (φ in degree) of BNNT-NH₃ complexes.

Fig. S9. Hybridization angles (ϕ in degree) of BNNT-BH₃ complexes.

Fig. S10. Natural bond orbitals (NBO) of B-N and B-H-B 3c-2e bonds of most stable BNNT-NH $_3$ /BH $_3$ complexes. NBO representing multi-center B-H-B bond of B $_2$ H $_6$ are shown in the last diagram.

Fig. S11. Density difference plots of most stable BNNT-NH₃/BH₃ structures. Blue and red regions indicate gain and loss of electron density, respectively, upon complex formation. Contour value is 0.005 au. Electron transfer from or to BNNTs are shown by arrow with number of electron.

Density difference plots clearly indicate charge gain (blue) or loss (red) is localized in the vicinity of the active site only. In all complexes, electron density builds between B and N atoms of host and guest, indicated by blue region and some gain is also noted on nitrogen of NH₃ in 1A and 2A. However, boron of BH₃ in 3A and 4A loses some density. Formation of 3c-2e bond in 3A (also in 4B, not shown) causes gain in density between H(BH₃) and B(NT), while weakening of H₂B-H bond is reflected by the loss of density.

Table S12. Electron exchange between BN-nanotubes and NH_3/BH_3 in complexes. Natural (NPA) group charges are obtained from B3LYP/6-31G* calculations.

(4,4)-B	BNNT-NH ₃	(8,0)-BNNT-NH ₃			
1A	$NH_3 \xrightarrow{0.33 e} (4,4) BNNT$	2A.	$NH_3 \xrightarrow{0.34 e} (8,0)BNNT$		
1B	$NH_3 \xrightarrow{0.32 \text{ e}} (4,4) \text{ BNNT}$	2B	$NH_3 \xrightarrow{0.33 \text{ e}} (8,0)BNNT$		
1C	$NH_3 \xrightarrow{0.33 \text{ e}} (4,4)BNNT$	2C	$NH_3 \xrightarrow{0.33 \text{ e}} (8,0)BNNT$		
1D	$NH_3 \xrightarrow{0.33 \text{ e}} (4,4)BNNT$	2D	$NH_3 \xrightarrow{0.33 e} (8,0)BNNT$		
(4,4)-B	BNNT-BH ₃	(8,0)-BNNT-BH ₃			
3A	$BH_3 \leftarrow 0.11e $ (4,4) BNNT	4A	$BH_3 \xrightarrow{0.30 e} (8,0)BNNT$		
3B	$BH_3 \xrightarrow{0.26 e} (4,4) BNNT$	4B	$BH_3 \leftarrow 0.14 e$ (8,0)BNNT		
3C	$BH_3 \leftarrow 0.10 e$ (4,4) BNNT	4C	$BH_3 \xrightarrow{0.22 e} (8,0)BNNT$		
3D	$BH_3 \xrightarrow{0.23 e} (4,4) BNNT$	4D	$BH_3 \xrightarrow{0.19 e} (8,0)BNNT$		

Fig. S13. B3LYP/6-31+G* optimized structures of H₃N-AlH₃ and corresponding BNNT-AlH₃. Bond lengths are in Å and angles are in degree. e and m stand for edge and middle adsorption sites of the tube, respectively. BSSE corrected adsorption energies (in kcal/mol) are given in bold and a positive value indicates attractive interaction between two units, otherwise interaction is repulsive. Electron transfer from or to BNNTs are shown by arrow with number of electron.

Fig. S14. B3LYP/6-31+G* optimized structures of H₃N-BF₃ and corresponding BNNT- BF₃. Bond lengths are in Å and angles are in degree. e and m stand for edge and middle adsorption sites of the tube, respectively. BSSE corrected adsorption energies (in kcal/mol) are given in bold and a positive value indicates attractive interaction between two units, otherwise interaction is repulsive. Electron transfer from or to BNNTs are shown by arrow with number of electron.

Fig. S15. B3LYP/6-31+G* optimized structures of H₃N- BCl₃ and corresponding BNNT- BCl₃. Bond lengths are in Å and angles are in degree. e and m stand for edge and middle adsorption sites of the tube, respectively. BSSE corrected adsorption energies (in kcal/mol) are given in bold and a positive value indicates attractive interaction between two units, otherwise interaction is repulsive. Electron transfer from or to BNNTs are shown by arrow with number of electron.

Fig. S16. B3LYP/6-31+G* optimized structures of H₃N-BH₂CH₃ and corresponding BNNT- BH₂CH₃. Bond lengths are in Å and angles are in degree. e and m stand for edge and middle adsorption sites of the tube, respectively. BSSE corrected adsorption energies (in kcal/mol) are given in bold and a positive value indicates attractive interaction between two units, otherwise interaction is repulsive. Electron transfer from or to BNNTs are shown by arrow with number of electron.

Table-S17. Effects of BSSE correction on adsorption energies; non-corrected energy (E_{ad}) and CP-corrected adsorption energies ($E_{ad(CP)}$). All energies are in kcal/mol.

	BNNT as Lewis Base (LB)					Models	
	(4,4)		(8,0)		NH ₃	as LB	
Lewis acids	E_{ad}	E _{ad(CP)}	E_{ad}	E _{ad(CP)}	E _{ad}	E _{ad(CP)}	
$\mathrm{BH}_{3}\left(\mathrm{e}\right)$	21.1	20.0	15.8	14.7	30.1	28.3	
$BH_3(m)$	9.3	8.3	8.0	7.0			
$BF_3(e)$	3.9	1.0	10.1	6.9	23.6	20.7	
$BF_3(m)$	3.3	1.1	2.6	0.6			
$BCl_3(e)$	0.8	2.4	8.2	4.6	24.3	21.2	
BCl ₃ (m)	-8.9	-13.1	-10.4	-14.4			
BH ₂ CH ₃ (e)	2.7	1.4	7.7	6.2	23.3	21.3	
AlH ₃ (e)	20.7	19.0	16.8	15.1	27.7	26.0	
AlH ₃ (m)	10.8	8.9	9.9	8.1			
CH ₃ ⁺ (e)	110.5	109.2	115.4	113.8	112.2	109.8	
CH ₃ ⁺ (m)	112.0	110.6	108.7	107.3			
Lewis base	BNNT as Lewis Acid (LA)				BH ₃	as LA	
NH ₃ (e)	7.2	4.6	14.0	11.4	30.1	28.3	
NH ₃ (m)	7.6	4.6	7.7	4.7			
NH ₂ CH ₃ (e)	8.9	6.6	13.9	11.5	33.8	32.4	
NH ₂ CH ₃ (m)	9.6	6.7	10.0	7.1			
NH ₂ COOH					13.4	12.2	
H-Bond							
NH ₂ COOH (e)	5.0	2.8	8.9	7.8	12.8	11.2	
NH ₂ COOH (m)	5.0	4.1	4.0	2.0			
NH ₂ COOH (m1)			2.4	0.9			