MATEMÁTICA

Questão 156 enem2021 -

Utiliza-se o termo download para designar o processo pelo qual um arquivo é transferido de algum sítio da internet para o dispositivo do usuário (computador, tablet, celular). Quando a transferência é interrompida, diz-se que o download travou. O esboço do gráfico representa a evolução do download de um arquivo que demorou 16 segundos para ser concluído.

Por quanto tempo, em segundo, esse download ficou travado?

- 9
- 3
- 3
- 0 2
- (3) 0

Questão 178 enem2021 -

Descenso noturno fisiológico é definido como uma redução maior ou igual a 10% da medida da pressão arterial (PA) sistólica registrada entre o período de vigília e o período de sono. O exame para avaliar se um indivídua apresenta ou não descenso fisiológico é chamado de MAPA e consiste no monitoramento da evolução da PA sistólica do indivíduo ao longo de 24 horas. O resultado desse exame consiste em um gráfico no qual a região correspondente ao período de sono está hachurada em cinza.

Cinco pacientes foram submetidos a esse exame, e os resultados mostram que apenas um paciente apresentou ausência de descenso noturno.

MELO, R. O. V. et al. Ausência de descenso noturno se associa a acidente vascular cerebral e infarto do miocárdio. Arq. Bras. Cardiol., n. 94, 2010.

O gráfico que indica o resultado do exame do paciente que apresentou ausência de descenso noturno é

N3 - Q180:2021 - H15 - Proficiência: 638.0

RESOLUÇÃO

Questão 180 =

enem2020

O quadro representa a relação entre o preço de um produto (R) e seu respectivo imposto devido (I).

Preço do produto (R) Imposto devido (I)		
R ≤ 5 000	isento	
5 000 < R ≤ 10 000	0 < R ≤ 10 000 10% de (R − 5 000)	
10 000 < R ≤ 15 000	500 + 30% de (R - 10 000)	

O gráfico que melhor representa essa relação é

5 000 10 000 15 000

Questão 137 (2020enem/2020enem

O valor cobrado por uma corrida de táxi é calculado somando-se a bandeirada, um valor fixo que é cobrado em qualquer corrida, a um valor variável que depende da distância percorrida.

Uma empresa de táxi cobra pela bandeirada o valor de R\$ 4,50. Para corridas de até 200 metros, é cobrada somente a bandeirada, e para corridas superiores a 200 metros é cobrado o valor de R\$ 0,02 para cada metro adicional percorrido.

Para analisar o valor cobrado, em real, em função da distância percorrida, em metro, a empresa elaborou um gráfico, com uma simulação para uma distância de 600 metros.

O gráfico que representa o valor da corrida, em real, em função da distância percorrida, em metro, é

	N5 - Q179:2020 - H15 - Proficiência: 709.87	RESOLUÇÃ
· · · · · · · · ·		
	Questão 179 MARACETERRAMACETERRAMACETERRA	
	O consumo de espumantes no Brasil tem aumentado nos últimos anos. Uma das etapas do	
	aumentado nos utilmos anos. Uma das etapas do seu processo de produção consiste no envasamento da bebida em garrafas semelhantes às da imagem.	
	Nesse processo, a vazão do líquido no interior da garrafa é constante e cessa quando atinge o nível de	
	envasamento.	
	Nível de envasamento	
	da garrafa	
• • • • • •		• • • • •
	Qual esboço de gráfico melhor representa a variação da altura do líquido em função do tempo, na garrafa indicada	
	aitura do liquido em runção do tempo, na garrara indicada na imagem? altural	
	o //	
	tempo	
	altura	
	0	
	ellurat	
	•	
	eltura	
	0	
	0 tempo	
• • • • •	• • • • • • · · · · · · · · · · ·	
	0 tempo	

Questão 138

Para certas molas, a constante elástica (C) depende do diâmetro médio da circunferência da mola (D), do número de espirais úteis (N), do diâmetro (d) do fio de metal do qual é formada a mola e do módulo de elasticidade do material (G). A fórmula evidencia essas relações de dependência.

$$C = \frac{G \cdot d^4}{8 \cdot D^3 \cdot N}$$

O dono de uma fábrica possui uma mola M_1 em um de seus equipamentos, que tem características D_1 , d_1 , N_1 e G_1 , com uma constante elástica C_1 . Essa mola precisa ser substituída por outra, M_2 , produzida com outro material e com características diferentes, bem como uma nova constante elástica C_2 , da seguinte maneira: I) $D_2 = \frac{D_1}{3}$; II) $d_2 = 3d_1$; III) $N_2 = 9N_1$. Além disso, a constante de elasticidade G_2 do novo material é igual a $4G_1$.

O valor da constante C2 em função da constante C1 é

$$C_2 = 972 \cdot C_1$$

3
$$C_2 = 108 \cdot C_1$$

$$\mathbf{G} \quad \mathbf{C}_2 = 4 \cdot \mathbf{C}_1$$

$$\mathbf{G} \quad C_2 = \frac{4}{9} \cdot C_1$$

Questão 136

12021

O administrador de um teatro percebeu que, com o ingresso do evento a R\$ 20,00, um show conseguia atrair 200 pessoas e que, a cada R\$ 1,00 de redução no preço do ingresso, o número de pessoas aumentava em 40. Ele sabe que os donos do teatro só admitem trabalhar com valores inteiros para os ingressos, pela dificuldade de disponibilizar troco, e pretende convencê-los a diminuir o preço do ingresso. Assim, apresentará um gráfico da arrecadação em função do valor do desconto no preço atual do ingresso.

O gráfico que mais se assemelha ao que deve ser elaborado pelo administrador é

QUESTAO 150

Para a construção de isolamento acústico numa parede cuja área mede 9 m², sabe-se que, se a fonte sonora estiver a 3 m do plano da parede, o custo é de R\$ 500,00. Nesse tipo de isolamento, a espessura do material que reveste a parede é inversamente proporcional ao quadrado da distância até a fonte sonora, e o custo é diretamente proporcional ao volume do material do revestimento.

Uma expressão que fornece o custo para revestir uma parede de área A (em metro quadrado), situada a D metros da fonte sonora, é

$$\bullet \frac{500 \cdot 81}{A \cdot D^2}$$

$$\mathbf{6} \ \frac{500 \cdot A}{D^2}$$

$$\bullet \frac{500 \cdot D^2}{A}$$

$$\bullet$$
 $\frac{500 \cdot A \cdot D^2}{81}$

$$\bullet \frac{500 \cdot 3 \cdot D^2}{A}$$

QUESTÃO 179

A resistência elétrica R de um condutor homogêneo é inversamente proporcional à área S de sua seção transversal.

Disponíve l em: http://efisica.if.usp.br. Acesso em: 2 ago. 2012.

O gráfico que representa a variação da resistência R do condutor em função da área S de sua seção transversal é

Questão 153 2020enem 2020enem 2020enem

Dois atletas partem de pontos, respectivamente P_1 e P_2 , em duas pistas planas distintas, conforme a figura, deslocando-se no sentido anti-horário até a linha de chegada, percorrendo, desta forma, a mesma distância (L). Os trechos retos dos finais das curvas até a linha de chegada desse percurso têm o mesmo comprimento (I) nas duas pistas e são tangentes aos trechos curvos, que são semicírculos de centro C. O raio do semicírculo maior é R_1 e o raio do semicírculo menor é R_2 .

Sabe-se que o comprimento de um arco circular é dado pelo produto do seu raio pelo ângulo, medido em radiano, subentendido pelo arco.

Nas condições apresentadas, a razão da medida do

ângulo $P_2\widehat{C}P_1$ pela diferença L-I é dada por

$$\mathbf{\Theta} \; \frac{1}{R_1} - \frac{1}{R_2}$$

$$\mathbf{\Theta} \; \frac{1}{R_2} - \frac{1}{R_1}$$

$$\mathbf{0} \; \frac{1}{R_2 - R_1}$$

9
$$\frac{1}{R_1} + \frac{1}{R_2}$$

Questão 177

Uma empresa presta serviço de abastecimento de água em uma cidade. O valor mensal a pagar por esse serviço é determinado pela aplicação de tarifas, por faixas de consumo de água, sendo obtido pela adição dos valores correspondentes a cada faixa.

- Faixa 1: para consumo de até 6 m3, valor fixo de R\$ 12,00;
- Faixa 2: para consumo superior a 6 m³ e até 10 m³, tarifa de R\$ 3,00 por metro cúbico ao que exceder a 6 m³;
- Faixa 3: para consumo superior a 10 m³, tarifa de R\$ 6,00 por metro cúbico ao que exceder a 10 m³.

Sabe-se que nessa cidade o consumo máximo de água por residência é de 15 m^3 por m ês.

O gráfico que melhor descreve o valor P, em real, a ser pago por mês, em função do volume V de água consumido, em metro cúbico, é

0

a

C

OUESTÃO 164

Os guindastes são fundamentais em canteiros de obras, no manejo de materiais pesados como vigas de aço. A figura ilustra uma sequência de estágios em que um guindaste iça uma viga de aço que se encontra inicialmente no solo.

Na figura, o ponto O representa a projeção ortogonal do cabo de aço sobre o plano do chão e este se mantém na vertical durante todo o movimento de içamento da viga, que se inicia no tempo t=0 (estágio 1) e finaliza no tempo t (estágio 3). Uma das extremidades da viga é içada verticalmente a partir do ponto O, enquanto que a outra extremidade desliza sobre o solo em direção ao ponto O. Considere que o cabo de aço utilizado pelo guindaste para içar a viga fique sempre na posição vertical. Na figura, o ponto M representa o ponto médio do segmento que representa a viga.

O gráfico que descreve a distância do ponto M ao ponto O, em função do tempo, entre t=0 e $t_{\rm f},$ é

GABARITO H15 7 - E 4 - D 5 - B 1 - B 2 - E 3 - A 6 - A 8 - B 9 - C 10 - C 11 - A 12 - A