P 1. Prove that

$$\sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} (\hat{y}_i - y_i)^2 + \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$$
 (1)

P 2. Express (1) as

$$\mathbf{y}'\mathbf{y} = \mathbf{y}'\mathbf{A}_1\mathbf{y} + \mathbf{y}'\mathbf{A}_2\mathbf{y} + \mathbf{y}'\mathbf{A}_3\mathbf{y},\tag{2}$$

where $\mathbf{y}' \mathbf{A}_1 \mathbf{y} = \sum_{i=1}^n (\hat{y}_i - y_i)^2 = RSS$, $\mathbf{y}' \mathbf{A}_2 \mathbf{y} = \sum_{i=1}^n (\hat{y}_i - \bar{y})^2 = SS_R$ and $\mathbf{A}'_i s$ are appropriate matrices for i = 1, 2, 3.

P 3. Verify the Cochran theorem for (2) and deduce the distributions of RSS/σ^2 and SS_R/σ^2 .

P 4. Show that

$$S_{(i)}^2 = \frac{(n-p)MS_{\text{Res}} - e_i^2/(1 - h_{ii})}{n-p-1}.$$

P 5. Prove that

$$(1 - h_{ii})^2 + \sum_{j \neq i} h_{ij} = (1 - h_{ii}).$$

P 6. Consider a full rank model with usual assumptions

$$y_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_{p-1} x_{i,p-1} + \epsilon_i$$
 $i = 1, \dots, n$.

Suppose that $\sum_{i} x_{ij} = 0$ and $\sum_{i} x_{ij}^{2} = c$ for $j = 1, \dots, p-1$. Prove that

$$\frac{1}{p} \sum_{j=0}^{p-1} \operatorname{Var}[\widehat{\beta}_j]$$

is minimized when the columns of X are mutually orthogonal.

P 7. Given $\mathbf{y} = \boldsymbol{\theta} + \boldsymbol{\epsilon}$, where $\boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I}_4)$ and $\sum_{i=1}^4 \theta_i = 0$, show that the *F*-statistics for testing $H: \theta_1 = \theta_3$ is

$$\frac{2(y_1 - y_3)^2}{(\sum_{i=1}^4 y_i)^2}.$$

P 8. Suppose that $\beta_1 = \cdots = \beta_{p-1} = 0$. Find the distribution of \mathbb{R}^2 and hence prove that

$$\mathbb{E}[R^2] = \frac{p-1}{n-1}.$$