Numerical Method – Homework 1

Name: Nguyễn Hoàng Minh

Class: CS (Afternoon)

Student ID: BI11-181

Exercise 1

Determine the real root of

$$f(x) = 4x^3 - 6x^2 + 7x - 2.3$$

Using bisection to locate the root. Employ initial guesses of $x_l=0$ and $x_u=1$ and iterate until the estimated error ε_a falls below a level of $\ \varepsilon_a=10\%$

Solution

We have initiate the computation with guesses of $x_l=0$ and $x_u=1$

So now, we need to verify that $f(x_l)f(x_u) < 0$ for confirm x_l and x_u guesses for the root such that the function changes sign over the interval

$$f(x_l)f(x_u) = f(0) * f(1) = -2.3 * 2.7 = -6.21 < 0$$

Therefore, the initial estimate of the root x_r lies at the midpoint of the interval (1)

$$x_r=rac{0+1}{2}=0.5$$

So now, we have $f(x_l)f(x_r)=f(0)*f(0.5)=0.54>0$, so in the next iteration, we set $x_u=x_r$ (set $x_l=x_r$ when $f(x_l)f(x_r)<0$)

So, repeate from (1) to end, with approximate percent relative error equation

$$arepsilon_a = |rac{x_r^{new} - x_r^{old}}{x_r^{new}}| imes 100\%$$

so, we have below table

Iteration	x_l	x_u	x_r	$arepsilon_a$	$f(x_r)$	Action
1	0	1	0.5		0.2	x_u = x_r
2	0	0.5	0.25	100%	-0.8625	$x_l = x_r$
3	0.25	0.5	0.375	33.33%	-0.307812	$x_l = x_r$
4	0.375	0.5	0.4375	14.286%	-0.050977	$x_l = x_r$
5	0.4375	0.5	0.46875	6.67%	0.074877	x_u = x_r

Because, iterate until the estimated error ε_a falls below a level of $\varepsilon_a=10\%$, so we can see the maximum iteration is 5 and the root of f(x) is $x_r=0.46875$

Exercise 2

Determine the real root of

$$f(x) = -13 - 20x + 19x^2 - 3x^3$$

with bisection use initial guesses of $x_l=-1$ and $x_u=0$, and a stopping criterion of 1%

We have initiate the computation with guesses of $x_l=-1$ and $x_u=0$

So now, we need to verify that $f(x_l)f(x_u) < 0$ for confirm x_l and x_u guesses for the root such that the function changes sign over the interval

$$f(x_l)f(x_u) = f(-1)f(0) = 29 imes -13 = -377 < 0$$

Therefore, the initial estimate of the root x_r lies at the midpoint of the interval (1)

$$x_r = rac{-1+0}{2} = -0.5$$

So now, we have $f(x_l)f(x_r)=f(-1)f(-0.5)=61.625>0$, so in the next iteration, we set $x_u=x_r$ (set $x_l=x_r$ when $f(x_l)f(x_r)<0$)

So, repeate from (1) to end, with approximate percent relative error equation

$$arepsilon_a = |rac{x_r^{new} - x_r^{old}}{x_r^{new}}| imes 100\%$$

so, we have below table

Iteration	x_l	x_u	x_r	$arepsilon_a$	$f(x_r)$	Action
1	0	-1	-0.50		2.125	x_u = x_r
2	-0.5	0	-0.25	100%	-6.765625	$x_l = x_r$
3	-0.5	-0.25	-0.375	33.33%	-2.669922	$x_l = x_r$
4	-0.5	-0.375	-0.4375	14.286%	-0.362061	$x_l = x_r$
5	-0.5	-0.4375	-0.46875	6.67%	0.858795	x_u = x_r
6	-0.46875	-0.4375	-0.453125	3.448%	0.242733	$x_l = x_r$
7	-0.453125	-0.4375	-0.445313	1.7542%	-0.061068	$x_l = x_r$
8	-0.453125	-0.445313	-0.449219	0.869%	0.090481	

Because, iterate until the estimated error $arepsilon_a$ falls below a level of $\ arepsilon_a=1\%$, so we can see the maximum iteration is 8 and the root of f(x) is $x_r=-0.445313$