

UNIVERSIDADE FEDERAL DO VALE DO SÃO FRANCISCO COLEGIADO DE ENGENHARIA ELETRICA

LUCIVANIO DE SOUZA OLIVEIRA JUNIOR TAYLA DE SOUZA MIRANDA

IMPLEMENTAÇAO DA APROXIMAÇÃO DE DERIVADA DE FUNÇÃO UTLIZANDO DIFERENÇAS FINITAS

Trabalho apresentado no curso de bacharelado em Engenharia Eletrica na Universidade Federal do Vale do São Francisco.

Professor: Carlos Freitas

Juazeiro-BA

1. Oque é a Aproximação de Derivadas usando Diferenças Finitas

A aproximação de derivada usando diferenças finitas é uma técnica utilizada para estimar a derivada de uma função quando não é possível calcular a derivada exata de forma analítica. Nesse método, escolhemos um valor pequeno, e usamos fórmulas aproximadas baseadas nessas definições. Essa teoria é usada em métodos computacionais (podendo ser: tabelas e experimentos), simulações numéricas e na resolução de equações diferenciais no ramo da engenharia.

2. Exemplos utilizados na pratica

CODIGO:

```
Spaces ♦ 4 ♦ No wrap ♦
 Edit Preview
     import math
 1
    def derivada_diferencas_finitas(f, x, h=1e-5, tipo='centrada'):
       if tipo == 'progressiva':
           return (f(x + h) - f(x)) / h
        elif tipo == 'regressiva':
           return (f(x) - f(x - h)) / h
8
       elif tipo == 'centrada':
9
           return (f(x + h) - f(x - h)) / (2 * h)
       else:
10
11
            raise ValueError("Tipo inválido")
12
13
     def func(x):
14
        return math.sin(x) # exemplo: sin(x)
15
    x = math.pi / 4
16
17
18
19
    resultado = derivada_diferencas_finitas(func, x, h, tipo='centrada')
20
21
     print(resultado)
```

Link Github: https://github.com/LucivanioJunior/Codigos-de-Calculo1/blob/main/Diferen%C3%A7as%20Finitas

2.2 Testes usados nos Códigos:

2.2.1

 $f(x) = x^3$ x = 2

Resultado Esperado: 12

Alterações Usadas:

Pontos: Função Matemática:

h: 0,0001

Resultado Obtido: 12.00000001000845

f(x) = In(x) x = 1

Resultado Esperado: 1

Alterações Usadas:

Pontos: Função Matemática:

 \mathbf{x} : 1 math.log(x)

h: 0,0001

Resultado Obtido: 1.0000000033332233

```
f(x) = \cos(x^2) \qquad x = 1
```

Resultado Esperado: -1,683

Alterações Usadas:

Pontos: Função Matemática:

h: 0,0001

Resultado Obtido: -1.6829419692016012

IMPLEMENTAÇÃO DA SOMA DE RIEMMAN PARA CALCULO DE INTEGRAL

Trabalho apresentado no curso de bacharelado em Engenharia Eletrica na Universidade Federal do Vale do São Francisco.

Professor: Carlos Freitas

Juazeiro-BA

3. Oque é a Soma de RIEMMAN e sua utilização no calculo de derivadas

A soma de Riemman é o método numérico que utilizado para aproximar integrais definidas de uma função em um intervalo [a,b], você a implementa com um loop somando área por área dos retângulos. Entre suas principais funções estão: calcular a área sob a curva de uma função; Estimar integrais definidas numericamente e Aplicar Física, Economia, Estatísticas e cálculos no ramo das Engenharias. Não sendo utilizada diretamente para calcular derivadas, a soma de Riemann esta mais para um técnica de integração, que difere da derivada, por estar relacionada a taxa de variação.

4. Exemplos utilizados na pratica

```
Code Blame 26 lines (22 loc) - 583 Bytes
                                                                                           8 Raw □ 4 Ø - •
   def soma_riemann(f, a, b, n, metodo='meio'):
          largura = (b - a) / n
          for i in range(n):
            if metodo == 'esquerda':
         x = a + i * largura
            elif metodo == 'direita':
                 x = a + (i + 1) * largura
  10
                 x = a + (i + 0.5) * largura
  11
                 raise ValueError("Método inválido")
  12
  13
              soma += f(x)
          return soma * largura
  14
  15
        import math
  16
  17
       def funcao(x):
  18
  19
           return math.sin(x)
  20
       a = 0
  21
       b = math.pi
  22
       n = 1000
  23
  24
  25
       resultado = soma_riemann(funcao, a, b, n, metodo='meio')
       print(resultado)
```

Link do Github: https://github.com/LucivanioJunior/Codigos-de-Calculo1/blob/main/Soma%20de%20RIEMANN

4.2 Testes usados nos Códigos

4.2.1

 $f(x) = x^2$ de 0 a 2

Resultado Esperado: 2,6667

Alterações Usadas

Pontos:

Função Matemática:

a: 0

x**2 (X²)

b: 2

n: 1000

Resultado Obtido: 2.666665999999998

4.2.1

f(x) = sen(x) de 0 a π

Resultado Esperado: 2

Alterações Usadas

Pontos:

Função Matemática:

a: 0

math.sin(x)

b: math.pi (valor de pi)

n: 1000

Resultado Obtido: 2.0000008224672676

4.2.3

```
f(x) = e^{-x^2} de -2 a 2
```

Resultado Esperado: 1,7640

Alterações Usadas:

Pontos:

Função Matemática:

a: -2

math.exp(-x**2)

b: 2

n: 1000

Resultado Obtido: 1.7641628792077948

5. CONCLUSÃO

Diferenças Finitas: Usada para aproximar derivadas.

Soma de Riemann : Usada para aproximar integrais (Áreas sob curvas).