Caleidoscoop Hoofdstuk 3

3 Equivalentierelaties

Opgave 3.1

- a) Stel de volgende equivalentierelatie \mathcal{R} op, waarbij $a \sim b \Longleftrightarrow a = b$.
 - 1 Reflexief: Bekijk $a\mathcal{R}a \implies a = a$
 - 2 Symmetrie: Bekijk $(a\mathcal{R}b \implies b\mathcal{R}a) \implies a = b \implies b = a$
 - 3 Transitiviteit: Bekijk $((a\mathcal{R}b \wedge b\mathcal{R}c) \implies a\mathcal{R}c) \implies (a=b \wedge b=c) \implies a=c$
- b) Neem de volgende equivalentierelatie \mathcal{R} op, waarbij $a \sim b \iff a \mod 42 = b \mod 42$.
 - 1 Reflexief: $a \mod 42 = a \mod 42$
 - 2 Symmetrie: $(a \mod 42 = b \mod 42) \implies b \mod 42 = a \mod 42$
 - 3 Transitiviteit: $(a \mod 42 = b \mod 42 \land b \mod 42 = c \mod 42) \iff a \mod 42 = c \mod 42$
- c) Bewijs. X **Aanname**: Ik stel dat A een verzameling is waarbij $A \neq \emptyset$, en $A/_{\sim} = \emptyset$. Aangezien $A \neq \emptyset$ bestaat er een $a \in A$, maar als we een equivalentierelatie hebben, dan volgt vanuit reflexiviteit dat $a \sim a$. Als $a \sim a$ dan moet er een equivalentieklasse $\overline{a} = \{b \in A : b \sim a\}$ bestaan waarbij $a \in \overline{a}$, maar $\overline{a} \in A/_{\sim}$. Dit is een tegenspraak want we stelde dat $A/_{\sim} = \emptyset$, en dus kan $A/_{\sim}$ niet leeg zijn.

Opgave 3.2

- a) X wordt gepartioneerd in $X/_{\sim}$, omdat $|X/_{\sim}| = \infty = \text{zit}$ in elke equivalentieklasse minstens 1 represetant die in X moet liggen. Dit betekent dus dat $|X| \ge |X/_{\sim}| = \infty$.
- b) Geval 1: $(|X/_{\sim}|) = (n \wedge |X| = \infty)$: Neem $X = \mathbb{Z}$ met $x \sim y$ als $x \equiv y \mod n$, dan heeft $|X/_{\sim}|$ precies n elmenten namelijk: $\{\overline{0}, \overline{1}, \overline{2}, \dots, \overline{n-1}\}$. Hieruit volgt dus dat $|X| = \infty$, en $|X/_{\sim}| = n$.
 - Geval 2: $(|X/_{\sim}| = n) \wedge (|X| = n)$: Laat $X = \mathbb{Z}_k$ en maak een equivalentie relatie waarbij $x \sim y \iff x = y$. Dan heeft onder reflexiviteit iedere $x \in X$ een equivalentieklasse, namelijk: $X/_{\sim} = \{\overline{0}, \overline{1}, \dots, \overline{k-1}\}$. Dit betekent dus dat |X| = k en $|X/_{\sim}| = k$.
- c) Dan moet $X = \emptyset$,

Bewijs. Stel dat |X| = n en $|X/_{\sim}| = 0$ dan geldt $\forall x \in X$ dat $x \in \overline{x}$, maar dit kan niet want $|X/_{\sim}| = 0$, en dus moet |X| = 0.

Opgave 3.3

- a) 1 Reflexief: a a = 0 en $0 \in W$, dus reflexief. $(: 0 \in W)$
 - 2 Symmetrie: als $a b \in W$ dan $(-1)(a b) \in W \iff b a \in W$ $(\because v \in W \implies \lambda v \in W)$
 - 3 Transitiviteit: $a-b+b-c=a-c\in W$ $(\because v,w\in W\implies v+w\in W)$
- b) Neem een $a \in V$ dan geldt voor alle $b \in V$, dat hij equivalent is aan a, en dus heeft de $V/_{\sim}$ slechts één equivalentieklasse.
- c) Neem een willekeurige $\overline{a} \in V/_{\sim}$, dan moet \overline{a} zichzelf bevatten, want $a \sim b \Leftrightarrow a b \in \{0\} = W$, en dus a = b. Dit betekent dat elk element in V een eigen equivalentieklasse heeft met zichzelf.