Soal dan Solusi UTS Analisis Real I 2017

Wildan Bagus Wicaksono

МАТЕМАТІКА 2022

Question 1

Buktikan \mathbb{Z} terbilang dengan mengkonstruksi terlebih dahulu fungsi bijektif dari \mathbb{Z} ke \mathbb{N} .

Penyelesaian.

Pandang $f: \mathbb{Z} \to \mathbb{N}$ dengan $f(x) = \begin{cases} 2x+1, & x \geq 0 \\ -2x, & x < 0 \end{cases}$ untuk setiap bilangan bulat x. Tinjau bahwa jika x = y, maka akan berakibat $x, y \geq 0$ atau x, y < 0 secara simultan. Ini berarti f(x) = f(y) yang membuktikan f well-defined.

Akan dibuktikan f 1-1. Misalkan x dan y bilangan bulat yang memenuhi f(x) = f(y). Andaikan $x \ge 0$ dan y < 0, maka $2x + 1 = -2y \iff 2(x + y) = 1$ yang mana tidak mungkin karena ruas kiri bernilai genap dan ruas kanan bernilai ganjil. Secara analog apabila x < 0 dan $y \ge 0$. Ini berarti haruslah $x, y \ge 0$ atau x, y < 0. Jika $x, y \ge 0$, maka $2x + 1 = 2y + 1 \iff x = y$. Jika x, y < 0, maka $-2x = -2y \iff x = y$. Jadi, f(x) = f(y) selalu berakibat x = y sehingga x = y sehingga x = y.

Akan dibuktikan f surjektif. Ambil sebarang $a \in \mathbb{N}$. Jika a genap, misalkan a = 2n untuk suatu bilangan asli n. Tinjau bahwa -n < 0 memenuhi $f(-n) = -2(-n) = 2n = a \implies f\left(-\frac{a}{2}\right) = a$. Jika a ganjil, misalkan a = 2m-1 untuk suatu bilangan asli m. Maka $f(m) = 2m+1 = a \implies f\left(\frac{a+1}{2}\right) = a$. Ini berarti untuk setiap $a \in \mathbb{N}$, terdapat $b \in \mathbb{Z}$ yang memenuhi f(b) = a. Jadi, f surjektif.

Karena $f: \mathbb{Z} \to \mathbb{N}$ merupakan pemetaan bijektif (1-1 dan surjektif), maka \mathbb{Z} terbilang.

Question 2

Buktikan sifat Archimedes untuk setiap $x \in \mathbb{R}$ terdapat $n \in \mathbb{N}$ sedemikian sehingga x < n.

Komentar. Pernyataan soal asli: buktikan sifat Archimedes untuk setiap $x \in \mathbb{R}$ dan $n \in \mathbb{N}$, sehingga x < n. Pernyataan soal ini tidak bersesuaian dengan sifat Archimedes.

Penyelesaian.

Misalkan $x \in \mathbb{R}$. Andaikan tidak terdapat bilangan asli $n \in \mathbb{N}$ yang memenuhi x < n. Ini berarti untuk setiap $n \in \mathbb{N}$ berlaku $x \ge n$. Jadi, $\sup(\mathbb{N}) = x$. Ini menunjukkan bahwa x - 1 bukan batas atas untuk \mathbb{N} , maka terdapat bilangan asli k sedemikian sehingga x - 1 < k yang berarti x < k + 1. Namun, $k + 1 \in \mathbb{N}$ yang mana ini bertentangan dengan $\sup(\mathbb{N}) = x$. Kontradiksi.

Jadi, terdapat bilangan asli n yang memenuhi x < n.

Question 3

Misalkan S medan terurut yang mempunyai sifat batas atas terkecil. Jika $A, B \subseteq S$:

- (a). Tuliskan definisi $\sup(A)$.
- (b). Buktikan bahwa $\sup(A+B) = \sup(A) + \sup(B)$.

Penyelesaian.

- (a). Karena $A \subseteq S$ dan S memiliki sifat batas atas terkecil, maka A memiliki batas atas terkecil di S. Didefinisikan $\sup(A) \in S$ dengan $\sup(A)$ merupakan batas untuk sebarang batas atas lain $x \in S$ dari A berlaku $\sup(A) \le x$.
- (b). Karena S medan terurut dengan sifat batas atas terkecil, maka $\sup(A)$ dan $\sup(B)$ ada di S. Misalkan $\sup(A) = a$ dan $\sup(B) = b$. Akan dibuktikan $\sup(A + B) = a + b$. Ambil sebarang $(x + y) \in (A + B)$ di mana $x \in A$ dan $y \in B$. Karena $x \le a$ dan $y \le b$, maka $x + y \le a + b$ sehingga a + b merupakan batas atas dari A + B. Ini menunjukkan $\sup(A + B) \le a + b$. Untuk setiap $\varepsilon > 0$, maka $a \frac{\varepsilon}{2}$ dan $b \frac{\varepsilon}{2}$ berturut-turut bukan batas atas untuk A dan B. Maka terdapat $x' \in A, y' \in B$ yang memenuhi $a \frac{\varepsilon}{2} < x'$ dan $b \frac{\varepsilon}{2} < y'$. Jumlahkan keduanya, maka $a + b \varepsilon < x' + y'$. Karena $x' + y' \in (A + B)$, maka $x' + y' \le \sup(A + B)$. Diperoleh $a + b \varepsilon < x' + y' \le \sup(A + B)$ $\Longrightarrow a + b \varepsilon < \sup(A + B)$. Karena berlaku untuk sebarang $\varepsilon > 0$, maka $a + b \le \sup(A + B)$.

Kondisi $\sup(A+B) \le a+b$ dan $a+b \le \sup(A+B)$ memberikan $\sup(A+B) = a+b$ seperti yang ingin dibuktikan.

•

Question 4

Jika X himpunan tak berhingga anggota dan d(x,y) = 1 untuk $x \neq y$, d(x,x) = 0, dan K subset himpunan tak hingga dari X.

- (a). Apakah K himpunan kompak?
- (b). Jika $E \subset X$, apakah ciri himpunan E agar E kompak? Selidiki/periksa apakah K terbuka/terutup atau tidak keduanya.

Komentar. Soal asli terfoto dengan tidak jelas, sebagian kata hanya dari asumsi saya saja. Penyelesaian.

- (a). Klaim K tidak kompak. Andaikan K kompak, maka K tertutup. Ini artinya setiap $x \in K$ merupakan titik limit bagi K. Namun, dengan $\varepsilon = \frac{1}{2}$ tinjau $[N_{\varepsilon}(x) \cap K] \setminus \{x\} = \{x\} \setminus \{x\} = \emptyset$ yang mana kontradiksi bahwa x titik limit bagi K. Jadi, K tidak kompak.
- (b). Berdasarkan (a), telah dibuktikan bahwa E tak berhingga anggota berakibat E tidak kompak. Sedangkan, jika E berhingga pasti kompak. Jadi, ciri himpunan E agar E kompak adalah harus berhingga.
 - Telah dibuktikan K tidak tertutup pada bagian (a). Klaim bahwa K himpunan terbuka. Ambil sebarang $x \in K$. Pilih $\varepsilon = \frac{1}{2}$, maka $N_{\varepsilon}(x) = \{x\} \subseteq K$. Ini membuktikan bahwa K terbuka.

V