Agent based modelling Civil Violence

Benjamin Van Ommen, Ruslan Mushkaev, Michael Blanc, Femke Hurtak

December 9, 2019

Content

- 1 Introduction
- ² Model
- Results
- (4) Reproduction of results
- 5 Extensions
- (6) Conclusion

Civil violence: a broad issue

- Many forms
- Complex dynamics
- Multitude of actors
- Studied here: rebels vs. central authority

3 / 18

Set-up

The model is situated on a square lattice. Agents and cops move around on the lattice and only have information about the lattice points in their proximity.

Agents

Hardship $H_i \in U(0,1)$ Risk aversion

 $R_i \in U(0,1)$

Global

Legitimacy $L \in [0, 1]$

Vision *v*

Threshold T

Agents

Hardship $H_i \in U(0,1)$

Risk aversion

 $R_i \in U(0,1)$

Arrest probability Pr

$$P_i = 1 - e^{-k\left(\frac{C}{A}\right)_v}$$

Global

Legitimacy $L \in [0, 1]$

Vision v

Threshold T

Agent Rule

We define a personal grievance G_i and a net-risk N_i :

$$G_i = H_i(1-L)$$

 $N_i = R_i \cdot P_i$

If $G_i - N_i > T$, be active. Otherwise, be quiet.

Cops

Vision v^*

Cops

Vision v^*

Cop Rule C

Inspect all sites within v^* and arrest a random active agent.

Model by Epstein

Movement rule

Move to a random site within your vision

Expected behaviour

Expected behaviour


```
Why?
```

floor() function

Why?

floor() function

Where?

$$P = 1 - \exp(-k \cdot \frac{c}{A})$$

Why?

floor() function

Where?

$$P = 1 - \exp(-k \cdot \frac{c}{A})$$

How?

• Situation: strike

Why?

floor() function

Where?

$$P = 1 - \exp(-k \cdot \frac{c}{A})$$

How?

- Situation: strike
- Model: legitimacy (L) fluctuations

Corrections

High frequency fluctuations:

Corrections

High frequency fluctuations:

Periodic fluctuations:

Extension: Cop Motion Improvement

Previous movement rule

Move to a random site within your vision

New cop movement rule

Move towards the sub-box that contains the greatest number of active agents

Extension: Cop Motion Improvement

Extension: Cop Motion Improvement

Extension: Agent Reactions

- Jailing of agent raises grievance and renders active a nearby neighbor with probability p
- p-independent saturation
- initial growth corrrelates with p

Conclusion

- Main results replicated (peaked active agent distribution, effect of perceived legitimacy drop)
- 3 extensions (global information access, intelligent copmovement, agents' reactions)
- Potential flaw identified and resolved (cop/agent ratio implementation)

Sources I

Epstein, J. M. (2002). Modeling civil violence: An agent-based computational approach. Proceedings of the National Academy of Sciences, 99(suppl 3), 7243-7250.