Лабораторная работа 3.7.1

Скин-эффект

Татаурова Юлия Романовна

14 ноября 2024 г.

Цель работы: исследовать явление проникновение переменного магнитного поля в медном полом цилиндре.

Оборудование: генератор сигналов; соленоид, намотанный на полый цилиндрический каркас; медный экран в виде полого цилиндра; измерительная катушка; амперметр; вольтметр; двухканальный осциллограф; RLC-метр.

Теоретические сведения

Магнитное поле внутри и вне экрана

Рис. 1: Поле в тонкостенном цилиндре

Пусть цилиндр достаточно длинный, чтобы в нем можно было пренебречь краевыми эффектами и считать магнитное поле H внутри однородным, направленным вдоль оси OZ, а вихривое поле E будет препендикулярно радиусу. Н и Е - величины колеблющиеся по гармоническому закону с частотой ω , задаваемой частотой колебаний тока в соленоиде: $H_z = H(r)e^{i\omega t}$, $E_{\varphi} = E(r)e^{i\omega t}$.

Пусть полый цилиндр имеет радиус a и толщину стенок $h \ll a$. Тогда поле в цилиндре описывается уравнением:

$$\frac{d^2H}{dx^2} = i\omega\sigma\mu_0H\tag{1}$$

Граничные условия для H:

$$H(0) = H_0, \quad H(h) = H_1$$
 (2)

Решение (1) ищем в виде $H(x)=Ae^{\alpha x}+Be^{-\alpha x}$, где $\alpha=\sqrt{i\omega\sigma\mu_0}=\frac{1+i}{\delta}=\frac{\sqrt{2}}{\delta}e^{i\pi/4}$. Решая уравнение (1) при начальных условиях (2) получаем:

$$\delta = \sqrt{\frac{2}{\omega \sigma \mu_0}} \tag{3}$$

$$\delta = \sqrt{\frac{2}{\omega \sigma \mu_0}}$$

$$H_1 = \frac{H_0}{\operatorname{ch}(\alpha h) + \frac{1}{2} \alpha a \operatorname{sh}(\alpha h)}$$

$$(3)$$

Рассмотрим предельные случаи:

1. При малых частотах $\delta \gg h$ и тогда

$$H_1 \approx \frac{H_0}{1 + i\frac{ah}{\delta}} \tag{5}$$

И тогда отношение модулей амплитуд:

$$\frac{|H_1|}{|H_0|} = \frac{1}{\sqrt{1 + \left(\frac{ah}{\delta^2}\right)^2}} = \frac{1}{\sqrt{1 + \frac{1}{4}(ah\sigma\mu_0\omega)^2}}$$
(6)

А колебания H_1 отстают по фазе от H_0 на угол ψ :

$$tg\psi = \frac{ah}{\delta^2} \tag{7}$$

2. При достаточно больших частотах $\delta \ll h$ и отношение амплитуд выражается как:

$$\frac{H_1}{H_0} = \frac{4}{\alpha a} e^{-\alpha h} = \frac{2\sqrt{2}\delta}{a} e^{-\frac{h}{\delta}} e^{-i\left(\frac{\pi}{4} + \frac{h}{\delta}\right)} \tag{8}$$

Отсюда видно, что поле внутри цилиндра по модулю в $\frac{2\sqrt{2}\delta}{a}e^{-\frac{h}{\delta}}$ раз меньше, чем снаружи и в запаздывает по фазе на:

$$\psi = \frac{\pi}{4} + \frac{h}{\delta} = \frac{\pi}{4} + h\sqrt{\frac{\omega\sigma\mu_0}{2}} \tag{9}$$

Влияние скин-эффектра на индуктивность катушки

На высоких частотах магнитное поле не проникает за экран, поэтому суммарный магнитный поток, пронизывающий катушку, уменьшается, и, соответственно, уменьшается и индуктивность. При низких частотах, когда толщина скин-слоя δ больше толщины медного экрана h, магнитное поле проникает внутрь катушки, однако его амплитуда падает (по формуле (6)) и возникает разность фаз между колебаниями поля за экраном и перед ним (по формуле (7)). Из-за чего также изменяется магнитный поток, а следовательно – и индуктивность.

$$\Phi = \Phi_{out} + \Phi_{in} = H_0 S_0 + H_1 S_1 = LI \tag{10}$$

При этом $L_{min} = \frac{\Phi_{out}}{I}$ и не зависит от частоты. Выразим поток магнитного поля сквозь внутреннюю область Φ_{in} через поток сквозь внешнюю Φ_{out} при произвольном переменном токе I:

$$\Phi_{in} = H_1 S_1 = \frac{H_1 S_1}{H_0 S_0} \Phi_{out} = \frac{\Phi_{out}}{n} \frac{S_1}{S_0}$$
(11)

где n - коэффициент, характеризующий ослабление поля за экраном:

$$n = \frac{H_0}{H_1} = \frac{|H_0|}{|H_1|} \frac{1}{\cos \psi} \tag{12}$$

Максимальная индуктивность катушки достигается при $H_0 = H_1$:

$$\Phi_{max} = H_0(S_0 + S_1) = L_{max}I_m$$
, где $H_0S_0 = L_{min}I_m$ (13)

Тогда получаем:

$$\frac{S_1}{S_0} = \frac{L_{max} - L_{min}}{L_{min}}$$

$$L = L_m i n + \frac{L_{max} - L_{min}}{n}$$
(14)

$$L = L_m in + \frac{L_{max} - L_{min}}{n} \tag{15}$$

$$\frac{L_{max} - L}{L - L_{min}} = (\pi a h \mu_0 \sigma \nu)^2 \tag{16}$$

Экспериментальная установка

Переменное магнитное поле создается с помощью соленоида 1, намотанного на цилиндрический каркас 2, который подключается к генератору сигналов. Внутри каркаса расположен медный экран 3 в виде полого цилиндра.

Действующее значение переменного тока в цепи соленоида измеряется цифровым амперметром «А». Действующее значение переменного напряжения на измерительной катушке 4 измеряется цифровым вольтметром «V».

Для измерения сдвига фаз между током в цепи соленоида и напряжением на измерительной катушке используется двухканальный осциллограф. На один канал осциллографа подается напряжение с измерительной катушки, а на другой — напряжение с резистора R, С помощью вольтметра V измеряется которое пропорционально току в цепи соленоида.

Рис. 2: Схема экспериментальной установки

действующее значение ЭДС индукции, которая возникает в измерительной катушке, находящейся в переменном магнитном поле $H_1e^{i\omega t}$. Комплексная амплитуда ЭДС индукции в измерительной катушке равна:

$$\bar{U} = -SN \frac{dB_1(t)}{dt} = -i\omega \mu_0 SN H_1 e^{i\omega t}$$
(17)

Показания вольтметра:

$$U = \frac{SN\omega}{\sqrt{2}}\mu_0|H_1| \implies |H_1| \propto \frac{U}{\nu} \tag{18}$$

При этом поле вне экрана $|H_0|$ пропорционально току в цепи соленоида. Поэтому

$$\frac{|H_1|}{|H_0|} = const \cdot \frac{U}{\nu I} \tag{19}$$

Экспериментальные данные и обработка результатов

Измерения при низких частотах

a, MM	h, mm	ν_h , к Γ ц	σ , CM/M
45	1.5	2.3	$5 \cdot 10^7$

Таблица 1: Параметры установки

В области низких частот (от $\sim 0.01\nu_h$ до $0.05\nu_h$) измерили силу тока в цепи и напряжение. Получили зависимость $\xi = \frac{U}{I\nu}$ от частоты ν . Согласно формуле (19) график в координатах $1/\xi^2 = f(\nu^2)$ должен быть линейным, что можно наблюдать на 3.

Рис. 3: Гарфик $1/\xi^2 = f(\nu^2)$

ν, Γц	I, MA	U, mB
20	447.66 ± 0.05	124.4 ± 0.1
25	446.68 ± 0.05	154.6 ± 0.1
30	445.03 ± 0.05	183.7 ± 0.1
35	442.96 ± 0.05	212.0 ± 0.1
40	440.57 ± 0.05	239.5 ± 0.1
45	437.94 ± 0.05	265.9 ± 0.1
50	435.08 ± 0.05	291.2 ± 0.1
55	432.14 ± 0.05	315.4 ± 0.1
60	428.73 ± 0.05	338.4 ± 0.1
65	425.51 ± 0.05	360.3 ± 0.1
70	422.23 ± 0.05	381.2 ± 0.1
75	418.96 ± 0.05	400.9 ± 0.1
80	415.64 ± 0.05	419.6 ± 0.1
85	412.34 ± 0.05	437.2 ± 0.1
90	409.08 ± 0.05	453.8 ± 0.1
95	405.87 ± 0.05	469.4 ± 0.1
100	402.71 ± 0.05	484.1 ± 0.1

Таблица 2: Показания вольтметра и амперметра при низких частотах от $0.01\nu_h$ до $0.05\nu_h$

Экстраполируя зависимость к точке $\nu=0$, соответствующей $|H_1|/|H_0|=1$, определяем $\xi_0=71.69\pm0.03$ Γ ц/Ом. По формуле 6 определяем проводимость меди $\sigma=(4.390\pm0.002)\cdot10^7$ См/м.

Измерения при средних и высоких частотах

Теперь повторим измерения, но для средних (от $0.05\nu_h$ до $0.1\nu_h$) и высоких (от $0.5\nu_h$ до $15\nu_h$) частот.

По грфику $tg\psi(\nu)$, опираясь на формулы 3 и 7 определим проводимость материала экрана $\sigma=(5\pm1.5)\cdot 10^7~{\rm Cm/m}.$

По грфику $\psi - \pi/4 = f(\sqrt{\nu})$, опираясь на формулу 9 определим проводимость материала экрана $\sigma = (4.9 \pm 0.5) \cdot 10^7 \; \text{Cm/m}$.

ν , Γ ц	I, MA	U, mB	ψ , рад
100	400.57 ± 0.05	482.4 ± 0.1	0.56 ± 0.13
120	388.75 ± 0.05	532.8 ± 0.1	0.56 ± 0.13
140	378.32 ± 0.05	571.9 ± 0.1	0.69 ± 0.13
160	369.26 ± 0.05	602.1 ± 0.1	0.75 ± 0.13
180	361.48 ± 0.05	625.5 ± 0.1	0.81 ± 0.13
200	354.82 ± 0.05	643.7 ± 0.1	0.87 ± 0.13
300	332.83 ± 0.05	689.8 ± 0.1	1.06 ± 0.13
400	320.33 ± 0.05	702.4 ± 0.1	1.19 ± 0.13
500	311.3 ± 0.05	702.1 ± 0.1	1.25 ± 0.13
600	303.54 ± 0.05	695.5 ± 0.1	1.31 ± 0.13
700	296.25 ± 0.05	685.4 ± 0.1	1.38 ± 0.13
800	288.98 ± 0.05	672.8 ± 0.1	1.44 ± 0.13
900	281.78 ± 0.05	658.6 ± 0.1	1.44 ± 0.13
1000	274.45 ± 0.05	643.2 ± 0.1	1.50 ± 0.13

Таблица 3: Показания вольтметра и амперметра при средних частотах от $0.05\nu_h$ до $0.1\nu_h$

Рис. 4: График зависимости фазового сдвига от частоты

ν , Γ ц	I, MA	U, mB	ψ , рад
1000	274.65 ± 0.05	643.2 ± 0.1	1.413 ± 0.314
1200	259.69 ± 0.05	610.9 ± 0.1	1.57 ± 0.314
1440	242.52 ± 0.05	570.7 ± 0.1	1.57 ± 0.314
1728	222.73 ± 0.05	523.7 ± 0.1	1.57 ± 0.314
2070	201.74 ± 0.05	472.9 ± 0.1	1.727 ± 0.314
2480	179.95 ± 0.05	419.3 ± 0.1	1.727 ± 0.314
2980	157.53 ± 0.05	364.6 ± 0.1	1.884 ± 0.314
3580	136.33 ± 0.05	311.8 ± 0.1	1.884 ± 0.314
4300	116.73 ± 0.05	262.6 ± 0.1	1.884 ± 0.314
5160	99.14 ± 0.05	218.0 ± 0.1	2.041 ± 0.314
6190	83.6 ± 0.05	178.2 ± 0.1	2.198 ± 0.314
7430	70.04 ± 0.05	143.2 ± 0.1	2.355 ± 0.314
8920	58.18 ± 0.05	112.7 ± 0.1	2.512 ± 0.314
10700	47.9 ± 0.05	87.1 ± 0.1	2.826 ± 0.314
12840	38.578 ± 0.005	65.3 ± 0.1	2.826 ± 0.314
15410	30.735 ± 0.005	48.6 ± 0.1	3.297 ± 0.314
18490	23.64 ± 0.005	36.0 ± 0.1	3.768 ± 0.314
22190	17.046 ± 0.005	27.2 ± 0.1	4.239 ± 0.314
26630	10.724 ± 0.005	20.7 ± 0.1	4.396 ± 0.314

Таблица 4: Показания вольтметра и амперметра при высоких частотах от $0.5\nu_h$ до $15\nu_h$

Рис. 5: График зависимости фазового сдвига от квадрата частоты

Измерение индуктивности катушки

	T D
ν , Гц	L , м Γ н
50	9.88 ± 0.05
150	7.25 ± 0.05
250	5.36 ± 0.05
400	4.08 ± 0.05
500	3.69 ± 0.05
600	3.46 ± 0.05
800	3.21 ± 0.05
1500	2.97 ± 0.05
4000	2.89 ± 0.05
7500	2.92 ± 0.01
12000	3.05 ± 0.01
16200	3.31 ± 0.01
20000	3.71 ± 0.01

Таблица 5: Зависимость индуктивности катушки от частоты

Рис. 6: Гарфик зависимости индуктивности от частоты