Introduction to Game Theory

B. Nebel, R. Mattmüller T. Schulte, K. Heinold Summer semester 2020 University of Freiburg Department of Computer Science

Exercise Sheet 7

Due: Friday, July 3, 2020

Exercise 7.1 (Repeated Games, 1 + 1 + 3 + 3 points)

Consider the following instance of the infinitely repeated prisoner's dilemma. The payoff matrix of the stage game is given below.

		Player 2	
		C	D
Player 1	C	3, 3	0, 10
	D	10,0	1, 1

- (a) Let t be the tit-for-tat strategy as defined in the lecture. Specify the unique run O(t,t) that results from playing t against t.
- (b) Compute the discounted payoff $v_1(O(t,t))$ of player 1 for the strategy profile (t,t) for general $0 < \delta < 1$ and for $\delta = \frac{1}{2}$ in particular.
- (c) Under the discounting preference criterium, for which discount factor $0 < \delta < 1$ is (Grim, Grim) a Nash equilibrium? Justify your answer. (*Hint:* The Grim strategy starts with playing C. After any play of D it plays D forever.)
- (d) Consider the following three payoff profiles under the limit-of-means preference criterium: 1. (2, 2), 2. (10, 10), and 3. (3, 0). For each payoff profile, either construct two automata that form a Nash equilibrium or argue that no Nash equilibrium with the given payoffs exists.