observe: 10 = |00 |= 10 | 0 Tul-dif and only if u-o Definition. The direction of a vector it is the associated unit vector (i.e. vector w/ length 1): i.e. birection of a is is the (unit vector) when atto clam: 10 is ajunit vector 1 1 1 1 1 1 1 1 1 (when 1 10) In 12 there are 3 special vectors, called the component vectors: 1: (1,0,0)) "Standard burs 3: (0,1,0) } A 12311 K=20,0,1) Every rector to a sum of scalar multiples of component vectors u= Lu, u2, u2 = 24,00>+20,40>+60,0,40 - U, L1,0,0 > + u, L0, 1,0 > + u, (0,0, 1) 8/30/21 [123] Dot Product (goal connect algebra of rectors to geometry via a new operation or vectors Def: Let a= Lu, uz, us> 7= LV, vz, v3> ER3 dot product of it and is a. (v. w) doesn't make sense Q. V = U, V, + U, V, + U, V, - can't have vector. scalar ((t. 7) i makes sense (vector · vector + Scalar)

Ex: Q= (1)(-3)+(3)(5) + (5)(7) = -3+15+35 = 47

hearen: (Properties of Dot Product)
Let J, J, J & R" and co. R

① $\overrightarrow{V} \cdot \overrightarrow{V} = V_1 V_1 + V_2 V_2 + V_3 V_3 = V_1^2 + V_2^2 + V_3^2$ $= (\sqrt{V_1^2 + V_2^2 + V_3^2})^2 = |\overrightarrow{V}|^2$

Dot product is commutative (not assosptive)

() (()) = (u, u, u, u). ((v, cu, cu, cu)) = u, (cv,) + u, (cv,) + d, (cv,): ((u, v, + u, v, + u, v, v)) = ((),)

6 8.7=0

Theorem: (geometric interpretation of the dot product)

let $\vec{u}, \vec{v} \in \mathbb{R}^n$ and let \vec{v} be the angle bit them. Then

| $\vec{u}, \vec{v} \in \mathbb{R}^n$ and let \vec{v} be the angle bit them. Then

| \vec{v} | \vec{v}

8/30/21 algebra dirtibution of Dot = (2.2-7.2) - (2.7-2.2) = (2.7-7.2) - (2.7-2.2) = u.J+7.7-22.7 (comm. of dot) = | 12 | 2 - 20-2 1012+1712-2101171cost = |2-12/2 = 1212+ 1212-227 2.7 = 10/17/coso complany Supposing I and I are both non-zero 9 = arccos (12/17) Observation: The zero vector has an indefined angle with all other vectors corrolary: If I and I are perpendicular (i.e orthogonal), toen concrety - 2.7 =0 implies it and it are orthogonal Orthogonal Projection Suppose vi, vi & R" To project if or thogonally anto i?: (v).(v)-(v)=0 iff ((v.v) -(2(v.v)=0 e(v.J-c|7|2-0 if einer (=0 or J.v-c|v|2=0 So Assuming 17/ to and cto, c= 3.7 protection Def: Ne orthogonal projection of it on to Vis

Projection of it compy (it) (IT)) anto it compy (it): it Direction angles: (argues whi, i and is) ie- a: arccos () are the angles V makes & Jand & B= arccos (171) 8: arc cos (131) Note: The direction angles determine the world-be location of i'an we unit sphere about the origin. Exercise: show that any two of the direction angles of it determine the third.