Flowering date prediction for bulbous perennials

Dániel Nagy¹, Imre Jánosi²

 1 Institute for Physics, Eötvös Loránd University, H-1117, Pázmány Péter sétány 1/A. Budapest, Hungary

November 26, 2019

 $^{^2}$ Department of Physics of Complex Systems, Eötvös Loránd University, H-1117, Pázmány Péter sétány $1/{\rm A.~Budapest,~Hungary}$

Abstract

The goal of this project is to efficiently predict the first flowering date of bulbous perennials and to identify, which meteorological parameters affect the flowering dates. The LSCD model is briefly presented, and the hyperparameters of the simpler LSC model are fitted using Gaussian process optimization. A neural network approach for the prediction of flowering dates is presented.

Introduction

The LSCD model

$$\frac{\mathrm{d}\nu}{\mathrm{d}t} = p_{\nu}(L, S, C, D) - s_{\nu}\nu\tag{1}$$

$$\frac{\mathrm{d}V}{\mathrm{d}t} = s_{\nu}\nu - d_{V}V\tag{2}$$

 $p_{\nu}(L, S, C, D) = L \cdot S \cdot C \cdot D$ is the productive transcription, s_{ν} is the splicing rate, and d_{V} is the degradation rate of the spliced VIN3.

$$\frac{\mathrm{d}L}{\mathrm{d}t} = \begin{cases} 1 - d_L L & T < T_L \\ -d_L L & T \ge T_L \end{cases} \tag{3}$$

$$C(T) = \begin{cases} p_{c1} & T \le T_{c1} \\ p_{c1} - p_{c2} \frac{T - T_{c1}}{T_{c2} - T_{c1}} & T_{c1} < T < T_{c2} \\ p_{c2} & T \ge T_{c2} \end{cases}$$

$$(4)$$

$$S(T_m) = \begin{cases} 1, & T < T_S \\ S_1, & T \ge T_S \end{cases}$$
 (5)

$$D(t) = \left[p_D + \sin\left(2\pi\left(t - \frac{t_m - 1}{24}\right)\right) \right]^2 \tag{6}$$

 T_m is the maximum temperature since the last resetting, which was chosen to occur each day at 4pm. t_m is the time at dawn.

Figure 1: L intermediator for a

Results with the LSCD model

Neural network approach

Results of the neural network approach

