Models of Lambek calculus with subexponentials

Daniel Rogozin^{1,2}

¹Lomonosov Moscow State University ²Serokell OÜ

Abstract

1 The Lambek Calculus with subexponentials

Definition 1. A subexponential signature is an ordered quintuple: $\Sigma = \langle \mathcal{I}, \leq, \mathcal{W}, \mathcal{C}, \mathcal{E} \rangle$,

where $I = \{s_1, \ldots, s_n\}, \mathcal{I}, \leq \rangle$ is a preorder. W, C, E are upwardly closed subsets of I and $W \cap C \subseteq \mathcal{E}$.

Definition 2.

$$\mathcal{F}_{\Sigma} ::= Tp \mid (\mathcal{F}_{\Sigma}/\mathcal{F}_{\Sigma}) \mid (\mathcal{F}_{\Sigma} \setminus \mathcal{F}_{\Sigma}) \mid (\mathcal{F}_{\Sigma} \bullet \mathcal{F}_{\Sigma}) \mid (\mathcal{F}_{\Sigma} \vee \mathcal{F}_{\Sigma}) \mid (\mathcal{F}_{\Sigma} \wedge \mathcal{F}_{\Sigma}) \mid (!_{s}\mathcal{F}_{\Sigma})_{s \in \Sigma}$$

Definition 3. Noncommutative linear logic with subexponentials $(SMALC_{\Sigma})$, where Σ is a subexponential signature.

$$\frac{\Gamma \to A \qquad \Delta, B, \Theta \to C}{\Delta, \Gamma, A \backslash B, \Theta \to C} \backslash \to \qquad \qquad \frac{A, \Pi \to B}{\Pi \to A \backslash B} \to \backslash$$

$$\frac{\Gamma \to A \qquad \Delta, B, \Theta \to C}{\Delta, B / A, \Gamma, \Theta \to C} / \to \qquad \qquad \frac{\Pi, A \to B}{\Pi \to B / A} \to /$$

$$\frac{\Gamma, A, B, \Delta \to C}{\Gamma, A \bullet B, \Delta \to C} \bullet \to \qquad \qquad \frac{\Gamma \to A \qquad \Delta \to B}{\Gamma, \Delta \to A \bullet B} \to \bullet$$

$$\frac{\Gamma, A_1 \& A_2, \Delta \to B}{\Gamma, A_1 \& A_2, \Delta \to B} \&, i = 1, 2 \to \qquad \qquad \frac{\Gamma \to A \qquad \Gamma \to B}{\Gamma \to A \& B} \to \&$$

$$\frac{\Gamma, A, \Delta \to C \qquad \Gamma, B, \Delta \to C}{\Gamma, A \lor B, \Delta \to C} \lor \to \qquad \qquad \frac{\Gamma \to A_i}{\Gamma \to A_1 \lor A_2} \to \lor, i = 1, 2$$

$$\frac{\Gamma, A \to A}{\Gamma, 1, \Delta \to A} 1 \to \qquad \qquad \frac{\Gamma, A \to A}{\Gamma, 1, \Delta \to A} \to C ! \to A$$

$$\frac{\Gamma, A, \Delta \to C}{\Gamma, I^s A, \Delta \to C} ! \to \qquad \frac{I^{s_1} A_1, \dots, I^{s_n} A_n \to A}{I^{s_1} A_1, \dots, I^{s_n} A_n \to I^{s_n}} \to !, \forall j, s_j \ge s$$

Structural rules:

$$\frac{\Gamma, !^s A, \Delta, !^s A, \Theta \to B}{\Gamma, !^s A, \Delta, \Theta \to B} \quad \mathbf{ncontr}_1, s \in C \qquad \qquad \frac{\Gamma, !^s A, \Delta, !^s A, \Theta \to B}{\Gamma, \Delta, !^s A, \Theta \to B} \quad \mathbf{ncontr}_2, s \in C$$

$$\frac{\Gamma, \Delta, !^s A, \Theta \to B}{\Gamma, !^s A, \Delta, \Theta \to A} \quad \mathbf{ex}_1, s \in E \qquad \qquad \frac{\Gamma, !^s A, \Delta, \Theta \to B}{\Gamma, \Delta, !^s A, \Theta \to A} \quad \mathbf{ex}_2, s \in E$$

$$\frac{\Gamma, \Delta \to B}{\Gamma, !^s A, \Delta \to B} \quad \mathbf{weak}_!, s \in C \qquad \qquad \frac{\Gamma \to A}{\Gamma, \Pi, \Delta \to B} \quad \mathbf{cut}$$

Theorem 1.

- 1. Cut-rule is admissable;
- 2. $SMALC_{\Sigma}$ is undecidable, if $C \neq \emptyset$;
- 3. If C is empty, then the decidability problem of SMALC_{Σ} belongs to PSPACE.

2 Semantics

Definition 4. Quantale

A quantale is a triple $Q = \langle A, \bigvee, \cdot \rangle$, such that $\langle A, \bigvee \rangle$ is a complete lattice and $\langle A, \cdot \rangle$ is a semigroup, such that for all indexing set I:

1.
$$a \cdot \bigvee_{i \in I} b_i = \bigvee_{i \in I} (a \cdot b_i);$$

2.
$$\bigvee_{i \in I} a_i \cdot b = \bigvee_{i \in I} (a_i \cdot b)$$

A quantate is called unital, if $\langle A, \cdot \rangle$ is a monoid.

Some example of quantales:

- Let A be a semigroup (monoid), then $\langle \mathcal{P}(A), \cdot, \subseteq \rangle$ is a free (unital) quantale.
- Let R be a ring and Sub(R) be a set of additive subgroups of R. We define $A \cdot B$ as an additive subgroup generated by finite sums of products ab and order is defined by inclusion.
- Any locale is a quantale with $\cdot = \wedge$.

It is easy to see, that any (unital) quantale is a residual (monoid) semigroup. We define divisions as follows:

1.
$$a \setminus b = \bigvee \{c \mid a \cdot c \leq b\}$$

2.
$$b/a = \bigvee \{c \mid c \cdot a \leq b\}$$

Definition 5. Let Q_1 , Q_2 be quantales. A quantale homomorphism is a map $f: Q_1 \to Q_2$, such that:

1. for all
$$a, b \in \mathcal{Q}_1$$
, $f(a \cdot b) = f(a) \cdot f(b)$;

2. for all indexing set
$$I$$
, $f(\bigvee_{i \in I} a_i) = \bigvee_{i \in I} f(a_i)$.

If Q_1 , Q_2 are unital quantales, then a unital homomorphism if a quantale homomorphism, such that $f(\varepsilon) = \varepsilon$.

Definition 6.

Let $Q = \langle A, \bigvee, \cdot \rangle$ be a quantale. $S \subseteq Q$ is said to be a subquantale, if S is closed under multiplication and sups.

There occurs the following simple statement:

Proposition 1.

Let Q_1 , Q_2 be quantales and $S \subseteq Q_1$ is a subquantale of Q_1 .

Then, if $f: \mathcal{Q}_1 \to \mathcal{Q}_2$ is a quantale homomorphism, then $f(\mathcal{S}) \subseteq \mathcal{Q}_2$ is a subquantale of \mathcal{Q}_2 . In other words, a homomorphic image of subquantale is a subquantale.

Proof.

It is clearly that $f(S) \subseteq Q_2$ is a submonoid of Q_2 . Let $a_i \in S$ for each $i \in I$, so $\bigvee_{i \in I} a_i \in S$, but $f(a_i) \in f(S)$ for any $i \in I$, so $f(\bigvee_{i \in I} a_i) = \bigvee_{i \in I} (f(a)) \in f(S)$, so f(S) is closed under joins, so f(S) is a subquantale of Q_2

Definition 7.

Let $Q = \langle A, \bigvee, \cdot \rangle$ be a quantale. The center of a quantale is the subquantale $\mathcal{Z}(Q) = \{a \in A \mid \forall b \in A, a \cdot b = b \cdot a\}$

Definition 8.

An open modality (or quantic conucleus) on quantale Q is a map $\Box: Q \to Q$, such that

- 1. $\Box x \leq x$;
- $2. \ \Box x = \Box \Box x;$
- 3. $x \leq y \Rightarrow \Box x \leq \Box y$;
- $4. \ \Box x \cdot \Box y = \Box (\Box x \cdot \Box y).$

For unital quantale, we require that $\Box e = e$.

Note that, we may replace the last condition on equivalent condition $\Box(x) \cdot \Box(y) \leq \Box(x \cdot y)$.

Definition 9.

We define a partial order on open modalities on Q as $\Box_1 \leq \Box_2 \Leftrightarrow \forall a \in Q, \Box_1(a) \leq \Box_2(a)$.

Lemma 1. $\Box_1 a_1 \cdot \Box_2 a_2 \leqslant \Box(\Box_1 a_1 \cdot \Box_2 a_2)$, where $\Box_i \leqslant \Box$, i = 1, 2.

Proof.

$$\Box_1 a_1 \cdot \Box_2 a_2 \leqslant
\Box_1 (\Box_1 a_1) \cdot \Box_2 (\Box_2 a_2) \leqslant
\Box(\Box_1 a_1) \cdot \Box(\Box_2 a_2) \leqslant
\Box(\Box_1 (a_1) \cdot \Box_2 (a_2))$$

Definition 10.

- 1. An open modality is called central, if for all $a, b \in \mathcal{Q}$, $\Box a \cdot b = b \cdot \Box a$.
- 2. An open modality is called weak square-increasing, if for all $a, b \in \mathcal{Q}, \Box a \cdot b \leq \Box a \cdot b \cdot \Box a$ and $b \cdot \Box a \leq \Box a \cdot b \cdot \Box a$.

3. An open modality is called unital, if $\forall a \in Q, \Box a \leq e$.

Lemma 2.

Let \Box be an open modality on some unital quantale $Q = \langle A, \bigvee, \cdot, e \rangle$. Then, if \Box is unital and weak idempotent, then \Box is central.

Proof.

```
b \cdot \Box a \leqslant Right weak square-increase \Box a \cdot b \cdot \Box a \leqslant Unitality \Box a \cdot b \cdot e \leqslant Identity \Box a \cdot b \leqslant Left weak square-increase \Box a \cdot b \cdot \Box a \leqslant Unitality e \cdot b \cdot \Box a \leqslant Unitality e \cdot b \cdot \Box a \leqslant Identity b \cdot \Box a Hence, b \cdot \Box a = \Box a \cdot b, so for all a \in \mathcal{Q}, \Box a \in \mathcal{Z}(\mathcal{Q}).
```

Proposition 2.

Let \mathcal{Q} be a quantale and $S \subseteq \mathcal{Q}$ a subquantale, then $\square : \mathcal{Q} \to \mathcal{Q}$, such that $\square a = \bigvee \{s \in S \mid s \leq a\}$, is an open modality.

Proof. See Rosenthal. \Box

Proposition 3.

Let Q be a quantale and $S_1 \subseteq S_2 \subseteq Q$. Then $\square_{S_1}(a) \leqslant \square_{S_1}(a)$.

Proof. Immediatly.

Proposition 4.

Let $\mathcal Q$ be a quantale and $\mathcal S\subseteq\mathcal Q$ a subquantale, then the following operations are open modalities:

- 1. $\Box_z(a) = \bigvee \{s \in S \mid s \leqslant a, s \in \mathcal{Z}(\mathcal{Q})\};$
- 2. $\Box_{1}(a) = \bigvee \{s \in S \mid s \leq a, s \leq 1\};$
- $\textit{3.} \ \, \Box_{idem}(a) = \bigvee \{s \in S \ | s \leqslant a, \forall b \in Q, b \cdot s \vee s \cdot b \leqslant s \cdot b \cdot s\};$
- 4. Operations with combinations of conditions above;

Proof. Immediatly.

Proposition 5.

- 1. $\forall a \in \mathcal{Q}, \Box_{1,idem}(a) \leq \Box_z(a)$.
- 2. $\forall a \in \mathcal{Q}, \Box_{z,1,idem} = \Box_{1,idem}(a)$

Definition 11. Interpretation of subexponential signature

Let $\Sigma = \langle I, \leq, W, C, E \rangle$ be a subexponential signature, where |I| = n and $\square_{\mathcal{Q}}$ is a category of open modalities on a quantale \mathcal{Q} . Subexponential interpretation is a contravariant functor $\sigma: I \to \square_{\mathcal{Q}}$ defined as follows:

$$: \overrightarrow{I} \rightarrow \Box_{\mathcal{Q}} \ defined \ as \ follows:$$

$$= \begin{cases} \Box_{i} : \mathcal{Q} \rightarrow \mathcal{Q}, \ s.t. \forall a \in \mathcal{Q}, \Box_{i}(a) = \{s \in S_{i} \mid s \leqslant a\}, \\ if \ s_{i} \notin W \cap C \cap E \\ \Box_{i} : \mathcal{Q} \rightarrow \mathcal{Q}, \ s.t. \forall a \in \mathcal{Q}, \Box_{i}(a) = \{s \in S_{i} \mid s \leqslant a, s \leqslant 1\}, \\ if \ s_{i} \in W \end{cases}$$

$$\sigma(s_{i}) = \begin{cases} \Box_{i} : \mathcal{Q} \rightarrow \mathcal{Q}, \ s.t. \forall a \in \mathcal{Q}, \Box_{i}(a) = \{s \in S_{i} \mid s \leqslant a, s \in \mathcal{Z}(\mathcal{Q})\}, \\ if \ s_{i} \in E \\ \Box_{i} : \mathcal{Q} \rightarrow \mathcal{Q}, \ s.t. \forall a \in \mathcal{Q}, \Box_{i}(a) = \{s \in S_{i} \mid s \leqslant a, \forall b, b \cdot s \vee s \cdot b \leqslant s \cdot b \cdot s\}, \\ if \ s_{i} \in E \\ otherwise, \ if \ s_{i} \ belongs \ to \ some \ intersection \ of \ subsets, \ then \ we \ combine \ the \ relevant \ conditions \end{cases}$$

Definition 12. Let Q be an unital quantale, $f: Tp \to Q$ a valuation and $\sigma: I \to \square_Q$ a subexponential interpretation, then interpretation is defined inductively:

Definition 13. $\Gamma \models A \Leftrightarrow \forall f, \forall \sigma, \llbracket \Gamma \rrbracket \leqslant \llbracket A \rrbracket$

Theorem 2. $\Gamma \to A \Rightarrow \llbracket \Gamma \rrbracket \leqslant \llbracket A \rrbracket$

Proof. We consider the promotion case, the rest modal cases are immediatly shown.

```
Let !_{s_1}A_1, \ldots, !_{s_n}A_n \to A and \forall i, s \leq s_i.

Then \forall a \in Q, \sigma(s_i)(a) \leqslant \sigma(s)(a).

By IH, \sigma(s_1)[\![A_1]\!] \cdot \cdots \cdot \sigma(s_n)[\![A_n]\!] \leqslant [\![A]\!].

Thus, \sigma(s)(\sigma(s_1)[\![A_1]\!] \cdot \cdots \cdot \sigma(s_n)[\![A_n]\!]) \leqslant \sigma(s)([\![A]\!]).

By Lemma 5, \sigma(s_1)[\![A_1]\!] \cdot \cdots \cdot \sigma(s_n)[\![A_n]\!] \leqslant \sigma(s)(\sigma(s_1)[\![A_1]\!] \cdot \cdots \cdot \sigma(s_n)[\![A_n]\!]).

So, \sigma(s_1)[\![A_1]\!] \cdot \cdots \cdot \sigma(s_n)[\![A_n]\!] \leqslant \sigma(s)([\![A]\!]).
```

3 Quantale completeness

Definition 14.

Let $\mathcal{F} \subseteq Fm$, an ideal is a subset $\mathcal{I} \subseteq \mathcal{F}$, such that:

- If $B \in \mathcal{I}$ and $A \to B$, then $A \in \mathcal{I}$;
- If $A, B \in \mathcal{I}$, then $A \vee B \in \mathcal{I}$.

Definition 15.

Let
$$S \subseteq \mathcal{F} \subseteq Fm$$
, then $\bigvee S = \bigcap \{ \mathcal{I} \subseteq \mathcal{F} \mid S \subseteq \mathcal{I} \}$

The following conditions hold similarly to [?]:

Lemma 3.

- 1. $\bigvee S$ is an ideal;
- 2. $A \subseteq Fm$, then $\{B \mid B \to A\} = \bigvee \{A\}$;
- 3. $\bigvee \{A\} \subseteq \bigvee \{B\} \text{ iff } A \to B;$
- 4. Let $Q = \{ \bigvee S \mid S \subseteq Fm \}$ and $\bigvee A \cdot \bigvee B = \bigvee \{ A \bullet B \mid A \in A, B \in B \}$. Then $\langle Q, \subseteq, \cdot, \bigvee \mathbf{1} \rangle$ is a unital quantale.

We extend this construction for polymodal case as follows:

Lemma 4. Let $!_s \in I$ and $A\mathcal{F}_{\Sigma}$, then $\Box_s(\bigvee \{A\}) = \bigvee \{!_s B \mid !_s B \to A\}$ is a quantic conucleus.

Proof.

Lemma 5. Let $A \in \mathcal{F}_{\Sigma}$, then $\Box_s \bigvee \{A\} = \bigvee \{!_s A\}$, for each $s \in \mathcal{I}$.

Proof. Let $A \in Fm$ and $s \in \mathcal{I}$.

Let
$$!_sB \in \square_s \bigvee \{A\}$$
, then $!_sB \to A$, then $!_sB \to !_sA$ by promotion. So, $!_sB \in \bigvee \{!_sA\}$.
 Let $C \in \bigvee \{!_sA\}$, then $C \to !_sA$, so $!_sC \to !_sA$ by dereliction, but $!_sA \to A$, hence $!_sC \to A$ by cut. So, $!_sC \in \square_s \bigvee \{A\}$.

Lemma 6.

Let $i, j \in I$ and $i \leq j$, then for all $A \in \mathcal{F}_{\Sigma}$, $\Box_i(\bigvee \{A\}) \subseteq \Box_i(\bigvee \{A\})$.

Proof.

Let
$$i, j \in I$$
 and $i \leq j$, then for
all $A \in \mathcal{F}_{\Sigma}$, $!_{j}A \to !_{i}A$ by promotion. Then $\bigvee \{!_{j}A\} \subseteq \bigvee \{!_{i}A\}$, so $\Box_{j}(\bigvee \{A\}) \subseteq \Box_{i}(\bigvee \{A\})$.

Lemma 7.

For all $A \in \mathcal{F}_{\Sigma}$,

- 1. Let $s \in W$, then $\Box_s \{A\} \subseteq \{1\}$;
- 2. Let $s \in E$, then $\Box_s(\bigvee \{A\}) \cdot \bigvee \{B\} = \bigvee \{B\} \cdot \Box_s(\bigvee \{A\})$.
- 3. Let $s \in C$, then $(\Box_s \bigvee A \cdot \bigvee B) \cup (\bigvee B \cdot \Box_s \bigvee A) \subseteq \Box_s \bigvee A \cdot \bigvee B \cdot \Box_s \bigvee A$, for all $B \subseteq Fm$.

Proof.

- 1. Follows from $!_s A \to \mathbf{1}$, so $s \in W$;
- 2. Follows from $!_s A \bullet B \leftrightarrow B \bullet !_s A$;
- 3. Follows from $!_s A \bullet B \rightarrow !_s A \bullet B \bullet !_s A$ and similarly for $B \bullet !_s A$.

Definition 16.

Let \mathcal{Q} be a syntactic quantale as proposed above and $\mathcal{I} = \langle I, \leq, W, C, E \rangle$ be a subexponential

We define a map $\Box: \mathcal{I} \to Mod_{\mathcal{Q}}$ as follows:

 $\Box(i)(\bigvee\{A\}) = \{!_i B \mid !_i B \to A\}.$

Lemma 8. \square is a subexponential interpretation.

Proof. Follows from lemmas above.

Lemma 9.

Let Q be a quantale constructed above and $(\square_{s_i})_{s_i \in \Sigma}$ be a family of quantic conuclei on Q. Then there exist a model $\langle Q, [\![.]\!] \rangle$, such that $[\![A]\!] = \bigvee \{A\}, A \in Fm$.

Proof.

We define an interpretaion as follows:

- 1. $[p_i] = \bigvee \{p_i\}$
- 2. $[1] = \{1\}$
- 3. $[A \bullet B] = \bigvee \{A \bullet B\}$
- 4. $[A/B] = \bigvee \{A/B\}$
- 5. $[B \setminus A] = \bigvee \{B \setminus A\}$
- 6. $[A\&B] = \bigvee \{A\&B\}$
- 7. $[A \lor B] = \bigvee \{A \lor B\}$
- 8. $[[!_s A]] = \Box(s)(\bigvee \{A\}) = \bigvee \{!_s A\}.$

Theorem 3. $\Gamma \models A \Rightarrow \Gamma \rightarrow A$.

Proof. Follows from lemmas above.

4 Relational semantics

Definition 17.

Let A be a set. Then relational quantale on A is a triple $Q = \langle A, \bigvee, \mathcal{I} \rangle$ where $A \subseteq 2^{A \times A}$:

- $\langle \mathcal{A}, \bigvee, \subseteq \rangle$ is a complete semi-lattice;
- Multiplication is defined as $R \circ S = \{\langle a, c \rangle \mid \exists b \in A, \langle a, b \rangle \in R \text{ and } \langle b, c \rangle \in S\}$
- $\langle \mathcal{A}, \circ, \mathcal{I} \rangle$ is a monoid;
- For each indexing set J, $R \circ \bigvee_{i \in I} S_i = \bigvee_{i \in I} (R \circ S_i)$ and $\bigvee_{i \in I} R_i \circ S = \bigvee_{i \in I} (R_i \circ S)$.

Theorem 4.

Let $Q = \langle A, \leq, \cdot, \bigvee \rangle$ be a unital quantale and S is a subquantale of Q.

Then $\langle \mathcal{Q}, \square_{\mathcal{S}} \rangle$ is isomorphic to some relational quantale of A wit some quantic conucleus $\hat{\square}$.

```
Proof.
```

Consider a relational quantale proposed by Brown and Gurr. This quantale is 4-tuple $\theta(Q) = \langle \mathcal{R}, \subseteq, \circ, \bigvee \rangle$ defined as follows:

```
1. \theta(a) = \{\langle b, c \rangle \mid b \leq a \cdot c\};
2. \theta(a \cdot b) = \theta(a) \circ \theta(b);
3. \theta(\bigvee_{i \in I} a_i) = \bigvee_{i \in I} \theta(a_i);
 4. \theta(\varepsilon) = \{\langle b, c \rangle \mid b \cdot \varepsilon \leqslant c\} = \{\langle b, c \rangle \mid b \leqslant c\}
 Let S \subseteq Q, so \square_S a := \bigvee \{s \mid s \in S, s \leq a\} is quantic conucleus.
 So, \theta(S) \subseteq \theta(Q) is a subquantale of \theta(Q).
 Let us define \hat{\Box}\theta(a) := \bigvee \{\theta(s) \mid \theta(s) \in \theta(S), \theta(s) \subseteq \theta(a)\}\, so
         \theta(\Box_{\mathcal{S}}a) = \{\langle p, q \rangle \mid p \leqslant \Box_{\mathcal{S}}a \cdot q\} =
         \{\langle p, q \rangle \mid p \leqslant \bigvee \{s \mid s \in \mathcal{S}, s \leqslant a\} \cdot q\} =
             Homomorphism
         \theta(\bigvee_{s \in S, s \leqslant a} s) =
             Homomorphism preserves sups
         \bigvee_{s \in S, s \leqslant a} \theta(s) =
             Unfolding
         \bigvee \{\theta(s) \mid s \in S, s \leqslant a\} =
             Unfolding
         \bigvee \{\theta(s) \mid \theta(s) \in \theta(S), \theta(s) \subseteq \theta(a)\} = \hat{\Box}\theta(a)
 So, \hat{\Box}\theta(a) = \theta(\Box_{\mathcal{S}}a).
```

5 Syntactic concept lattices

Definition 18. Let \mathcal{L} be a finite alphabet and $L \subseteq \mathcal{L}^*$ be a language.

We define maps $[.]^{\triangleright}: \mathcal{P}(\mathcal{L}^*) \to \mathcal{P}(\mathcal{L}^* \times \mathcal{L}^*)$ and $[.]^{\triangleleft}: \mathcal{P}(\mathcal{L}^* \times \mathcal{L}^*) \to \mathcal{P}(\mathcal{L}^*)$ as follows:

1.
$$M \subseteq \mathcal{L}^*$$
, $M^{\triangleright} = \{(x,y) \mid \forall w \in M, xwy \in L\}$;

2.
$$C \subseteq \mathcal{L}^* \times \mathcal{L}^*$$
, $C^{\triangleleft} = \{ w \mid \forall (x, y) \in C, xwy \in L \}$

Note that compositions $[.]^{\lhd \rhd}$ and $[.]^{\rhd \lhd}$ form closure operators, by the way $[.]^{\lhd}$ and $[.]^{\rhd}$ are connected via contravariant Galois connection.

Definition 19. A syntactic concept is a pair $\langle S, C \rangle$, where $S \subseteq \mathcal{L}^*$ and $C \subseteq \mathcal{L}^* \times \mathcal{L}^*$, such that $S^{\triangleright} = C$ and $C^{\triangleleft} = S$.