





Houdini

## THE GRAPH LAPLAGIAN

## L = D - A





#### SO MANY APPLICATIONS...

SPECTRAL CLUSTERING CONNECTIVITY CONTROL

DONATH-HUFFMAN + FIEDLER

**ZAVLANOS-PAPPAS** 

**FLOCKING** 

TANNER-JADBABAIE-PAPPAS + OLFATI

CONSENSUS/COOPERATION

OLFATI

**OPINION DYNAMICS** 

**HEGSELMANN-KRAUSS** 

GRAPH SIGNAL PROCESSING

SHUMAN + MANY OTHERS

GRAPH NEURAL NETWORKS GAMA-MARQUES-LEUS-RIBERD

**SCALAR DIFFUSION** 



## THE GRAPH CONNECTION LAPLACIAN

$$L = D_{1} - A_{1}$$

$$= \begin{bmatrix} 2I & -O_{13} & -O_{14} \\ 2I & -O_{23} & -O_{24} \\ -O_{13}^{\mathsf{T}} & -O_{23}^{\mathsf{T}} & 3I & -O_{35} \\ -O_{14}^{\mathsf{T}} & -O_{24}^{\mathsf{T}} & 3I & -O_{45} \\ & & -O_{35}^{\mathsf{T}} & -O_{45}^{\mathsf{T}} & 2I \end{bmatrix}$$

$$O_{ij}^T O_{ij} = O_{ij} O_{ij}^\mathsf{T} = I$$



## THE GRAPH CONVECTION LAPLACIAN

### SOME LESSER-KNOWN APPLICATIONS...

DIMENSIONALITY REDUCTION SINGER-WU

GRAPH NEURAL NETWORKS BRONSTEIN et AL

SHAPE MATCHING DVSJANIKOV + OTHERS

SHAPE RETRIEVAL BRONSTEIN + MANY OTHERS

SYNCHRONIZATION SINGER + MANY OTHERS

**VECTOR DIFFUSION** 





Let  $\mathbb{M}$  be a Riemannian manifold in  $\mathbb{R}^n$ ...

### LAPLACE-BELTRAMI OPERATOR

(Belkin-Niyogi 2008)

## **HODGE LAPLACIAN**

(cf. de Rham's Theorem)

## **CONNECTION LAPLACIAN**

(Singer-Wu 2012, Singer-Wu 2017)



#### Let M be a Riemannian manifold in $\mathbb{R}^n$ ...

#### **DEFINITION:**

Parallel transport along a path  $\, \gamma \colon [0,1] o \mathbb{M} \,$  is a map

$$\mathcal{P}_{\gamma}: T_{\gamma(0)}\mathbb{M} \to T_{\gamma(1)}\mathbb{M}$$

satisfying the property

$$\langle u, v \rangle_{T_{\gamma(0)}\mathbb{M}} = \langle \mathcal{P}_{\gamma} u, \mathcal{P}_{\gamma} v \rangle_{T_{\gamma(1)}\mathbb{M}}$$

and such that for all composable paths  $\gamma_1$  and  $\gamma_2$ ,

$$\mathcal{P}_{\gamma_1 \cdot \gamma_2} = \mathcal{P}_{\gamma_2} \circ \mathcal{P}_{\gamma_1}$$









### LATTICES are PARTIALLY ORDERED SETS with a PAIR of OPERATIONS

 $V:\Lambda$ 

COMMUTATIVE

**ASSOCIATATIVE** 

**IDEMPOTENT** 

**ABSORBATIVE** 



## EXAMPLES OF LATTICES

### SO MANY...

POWERSETS PARTITIONS/SUBPARTITIONS

SUBSPACES INVARIANT SUBSPACES

FORMAL CONCEPTS PREFERENCE RELATIONS

MAX-PLUS VECTOR SPACES BOOLEAN/HEYTING ALGEBRAS

CONDITIONAL ENTROPY (CO)CLOSURE SYSTEMS

STABLE MATCHINGS M-V LOGICS

## LATTICE CONVEGIOUS

## LATTICE (GALDIS) CONNECTIONS COME IN PAIRS



## LATTICE CONNECTIONS

## LATTICE (GALDIS) CONNECTIONS COME IN PAIRS



## LATTICE (GALDIS) CONNECTIONS COME IN PAIRS





## EXAMPLES OF LATTICE CONNECTIONS

SO MANY...

f.

**DIRECT IMAGE** (subsets, subspaces)

**EXISTENTIAL QUANTIFICATION** 

**INTENT** (attributes shared by objects)

MAX-PLUS MATRIX MULTIPLICATION INTEGRAL TRANSFORM

f.

**INVERSE IMAGE** (subsets, subspaces)

UNIVERSAL QUANTIFICATION

**EXTENT** (objects instantiating attributes)

MIN-PLUS MATRIX MULTIPLICATION
INVERSE INTEGRAL TRANSFORM

# TARSKI FIXED POINT THEOREM

## THEOREM (TARSKI 1955):

SUPPOSE  $\Phi\colon L\to L$  is an order-preserving operator on a competite lattice. Then, the fixed points

$$Fix(\Phi) = \{x | \Phi(x) = x\}$$

FORMS A COMPLETE LATTICE.

## CONSTRUCTIVE FIXED-POINT THEOREMS POSSIBLE





# GLOBAL SECTIONS

## **DEFINITION:**

LET  $\underline{\mathcal{F}}$  BE A SHEAF OF COMPLETE LATTICES AND JOIN-PRESERVING MAPS OVER A GRAPH. THEN,  $H^0(G;\mathcal{F})=$ 

$$\left\{ \mathbf{x} \in C^0(G; \mathcal{F}) \mid \underline{\mathcal{F}}(i \leq ij)(x_i) = \underline{\mathcal{F}}(j \leq ij)(x_j) \right\}$$

## GLOBAL SECTIONS ARE CONSISTENT ASSIGNMENTS OF DATA

## HARMONIC STATES

$$H^0(G; \underline{\mathcal{F}}) \longrightarrow C^0(G; \underline{\mathcal{F}}) \xrightarrow{\delta_+} C^1(G; \underline{\mathcal{F}}) \longrightarrow H^1(G; \underline{\mathcal{F}})$$

# LATTICE DIFFUSION?





# LATTICE CONSENSUS

CONSENSUS on a LATTICE over a NETWORK is a GLOBAL SECTION of the CONSTANT SHEAF.

#### **CONSENSUS ALGORITHM:**

$$x_i[t+1] = x_i[t] \wedge \left( \bigwedge_{j \in \mathcal{N}_i} x_j[t] \right)$$
 $x_i[0] \in \mathbf{L}$ 

"SLOWER" ALGORITHMS: APPROXIMATIONS of the CONSTANT SHEAF.



## cf. MAX/MIN CONSENSUS

# PARALLEL TRANSPORT

**DEFINITION:** for a NETWORK SHEAF of LATTICES & GALOIS CONENCTIONS  $\mathcal F$  on G and a PATH from NODE i to NODE j, the PARALLEL TRANSPORT along a PATH  $\gamma\colon i\to j$  is an ORDER-PRESERVING MAP

 $\mathcal{P}_{i\to j}\colon \mathcal{F}(i)\to \mathcal{F}(j)$  given by the composition of restriction/corestriction maps along the path.





## DEFINITON: TARSAI LAPLAGIAN



## **DEFINITION:** FOR A SHEAF OF LATTICES ON A GRAPH

and 
$$\mathbf{x} = (x_i)_{i \in V} \in \mathcal{C}^0(G; \underline{\mathcal{F}})$$

$$L: C^0(G; \underline{\mathcal{F}}) \to C^0(G; \underline{\mathcal{F}})$$

$$(L\mathbf{x})_i = \bigwedge_{j \in \mathcal{N}_i} \mathcal{P}_{j \to i}(x_j)$$

WHERE

$$\mathcal{P}_{j\to i}(x_j) = \overline{\mathcal{F}}(i \leq ij)\underline{\mathcal{F}}(j \leq ij)(x_j)$$



THEOREM (Ghrist-Riess 2022): FOR A SHEAF OF COMPLETE LATTICES ON A GRAPH, THE GLOBAL SECTIONS ARE COMPUTED VIA THE TARSKI LAPLACIAN

$$H^{0}(G; \underline{\mathcal{F}}) = Fix(Id \wedge L)$$

$$= \{x | L(x) \wedge x = x\}$$

$$= \{x | L(x) \ge x\}$$

COROLLARY:  $H^0(G; \underline{\mathcal{F}})$  IS A (NONEMPTY) COMPLETE LATTICE.

# HEAT FLOW



