Задача А. Ферзя в угол

Имя входного файла: **стандартный ввод** Имя выходного файла: **стандартный вывод**

Ограничение по времени: 1 секунда Ограничение по памяти: 64 мегабайта

64 мегабайта

В левом нижнем углу доски $M \times N$ стоит ферзь. Двое игроков по очереди ходят ферзем, перемещая его на любое число клеток по вертикали вверх, по горизонтали вправо, или по диагонали вправо-вверх. Выигрывает тот, кто поставит ферзя в правый верхний угол доски. Определите, какой из игроков имеет выигрышную стратегию. Гарантируется, что нужно сделать хотя бы один ход.

Формат входных данных

На вход программе подается два натуральных числа M и N, не превосходящих 100.

Формат выходных данных

Программа должна вывести номер игрока (1 или 2), который имеет выигрышную стратегию.

Пример

стандартный ввод	стандартный вывод
3 4	1

Задача В. Монетки

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2.2 секунд Ограничение по памяти: 256 мегабайт

64 мегабайта

В Волшебной стране используются монетки достоинством A_1, A_2, \ldots, A_M . Волшебный человечек пришел в магазин и обнаружил, что у него есть ровно по две монетки каждого достоинства. Ему нужно заплатить сумму N. Напишите программу, определяющую, сможет ли он расплатиться без сдачи.

Формат входных данных

Сначала вводится целое число N $(1 \leqslant N \leqslant 10^9)$, затем — целое число M $(1 \leqslant M \leqslant 10)$ и далее M попарно различных целых чисел A_1, A_2, \ldots, A_M $(1 \leqslant A_i \leqslant 10^9)$.

Формат выходных данных

Выведите сначала K — количество монет, которое придется отдать Волшебному человечку, если он сможет заплатить указанную сумму без сдачи. Далее выведите K чисел, задающих достоинства монет. Если решений несколько, выведите вариант, в котором Волшебный человек отдаст наименьшее возможное количество монет. Если таких вариантов несколько, выведите любой из них.

Если без сдачи не обойтись, то выведите одно число 0. Если же у Волшебного человечка не хватит денег, чтобы заплатить указанную сумму, выведите одно число –1 (минус один).

Примеры

стандартный ввод	стандартный вывод
5 2	3
1 2	1 2 2
7 2	-1
1 2	
5 2	0
3 4	

Задача С. Разложение Фибоначчи

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

$$F_0 = F_1 = 1$$

$$F_n = F_{n-1} + F_{n-2}$$

Дано натуральное число X. Требуется посчитать количество способов представить его как произведение F_n , каждое из которых больше 1. Наборы, отличающиеся друг от друга порядком множителей, считаются одинаковыми.

Обратите внимание, что в задаче данные имеют 64-битный тип.

Формат входных данных

Первая строка ввода содержит целое число t — количество вопросов в одном тесте $(1 \le t \le 50)$ Следующие t строк содержат вопросы, каждая строка содержит одно целое число X $(2 \le X6 \le 10^{18})$.

Формат выходных данных

Выведите t строк — для каждого из X выведите количество способов представить X как произведение чисел Фибоначчи.

Пример

стандартный ввод	стандартный вывод
5	1
2	0
7	2
8	2
40	3
64	

Задача D. Разбиения на слагаемые

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 64 мегабайта

Перечислите все разбиения целого положительного числа N на целые положительные слагаемые. Разбиения должны обладать следующими свойствами:

- Слагаемые в разбиениях идут в невозрастающем порядке.
- Разбиения перечисляются в лексикографическом порядке.

Формат входных данных

Во входном файле находится единственное число N $(1 \le N \le 40)$.

Формат выходных данных

В выходной файл выведите искомые разбиения по одному на строку.

Пример

стандартный ввод	стандартный вывод
4	1 1 1 1
	2 1 1
	2 2
	3 1
	4
	3 1 4

Задача Е. Альфа Дерево

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 0.5 секунд Ограничение по памяти: 256 мегабайт

У вас есть полное бинарное дерево глубины $n \ (0 \le n \le 30)$.

В дереве 2^n листьев, они пронумерованы слева направо числами от 0 до 2^n-1 .

В *i*-м листе записано число $x_i = (ai^2 + bi + c) \mod m$.

Есть фишка, которая изначально находится в корне дерева. Двое играют в игру, двигая фишку вниз по дереву. Когда фишка достигает листа дерева, игра заканчивается. Цель первого игрока — максимизировать число в листе, цель второго — минимизировать.

От вас требуется найти оптимальный результат игры для первого игрока, который делает первый ход из корня дерева.

Поскольку дерево содержит очень много листьев, то у вас не получится рассмотреть всю игру, потребуется сделать отсечения неинтересных переходов с помощью $\alpha\beta$ -отсечения.

Формат входных данных

Числа n, a, b, c, m. При этом $10 \le m \le 10^9$.

Все a, b, c сгенерированы равномерным распределением на [0, m).

Формат выходных данных

Выведите результат игры при оптимальной игре обоих.

Пример

стандартный ввод	стандартный вывод
3 10 7 9 20	11

Замечание

Взятие остатка по модулю — небыстрая операция. Чем их меньше, тем лучше.