How To Prove It Chapter 04 - Summary & Exercises

Math 2155

3.1

- 3.2
- 3.3
- 3.4

3.5 Existence and Uniqueness Proofs

1. **Theorem.** $\forall x \exists y (x^2y = x - y)$

Proof. Let x be an arbitrary real number, and suppose $y = \frac{x}{x^2+1}$ (Existence) Substitute in the new value of yint othe first equation and verify. (Uniqueness) Suppose zsatisfied the constraints. For this, z must equally. Hence done. \Box

2. **Theorem.** Let $a, b \in \mathbb{R}$. If a < b < 0, then $a^2 > b^2$.

Proof. Suppose a < b < 0. Then |a| > |b|. Multiplying the inequality by |a| gives $a^2 > ab$. Multiplying the inequality by |b| gives $ab > b^2$. Therefore, $a^2 > ab > b^2$, so $a^2 > b^2$, as required. Thus, if a < b < 0 then $a^2 > b^2$.

3. **Theorem.** Let $a, b \in \mathbb{R}$. If 0 < a < b, then $\frac{1}{b} < \frac{1}{a}$.

Proof. Suppose 0 < a < b. Multiplying the inequality by $\frac{1}{ab}$ gives $\frac{1}{b} < \frac{1}{a}$, as required. \square

4. **Theorem.** Let $a \in \mathbb{R}$. If $a^3 > a$ then $a^5 > a$.

Proof. Suppose $a^3 > a$. Then $a^3 - a > 0$. Multiplying the inequality by $a^2 + 1$ gives

$$(a^3 - a)(a^2 + 1) > 0$$

$$\implies a^5 - a^3 + a^3 - a > 0$$

$$\implies a^5 - a > 0$$

Thus we have $a^5 > a$, as required.

5. **Theorem.** Let $A \setminus B \subseteq B \cap D$ and $x \in A$. If $x \notin D$ then $x \in B$.

Proof. From $A \setminus B \subseteq B \cap D$ we have $\forall y (y \in A \land y \notin B \rightarrow y \in C \land y \in D)$. Suppose y = x and $x \notin D$. Then, $x \in C \land x \notin D$ is false which implies $x \in A \land x \notin B$ is false. Since $x \in A$, $x \in A$ is true and so $x \in B$ must be false, as required.

6. **Theorem.** Let $a, b \in \mathbb{R}$. If a < b then $\frac{a+b}{2} < b$.

Proof. Suppose a < b. Adding b to the inequality gives a + b < 2b. Dividing the inequality by 2 gives $\frac{a+b}{2} < b$, as required.

7. **Theorem.** Let $x \in \mathbb{R}$ and $x \neq 0$. If $\frac{\sqrt[3]{x}+5}{x^2+6} = \frac{1}{x}$ then $x \neq 8$.

Proof. We prove the contrapositive. Suppose x=8. Then, $\frac{\sqrt[3]{x}+5}{x^2+6}=\frac{7}{70}=\frac{1}{10}\neq\frac{1}{x}=\frac{1}{8}$. Therefore, if $\frac{\sqrt[3]{x}+5}{x^2+6}=\frac{1}{x}$ then $x\neq 8$.

8. **Theorem.** Let $a, b, c, d \in \mathbb{R}$, 0 < a < b, and d > 0. If $ac \ge bd$ then c > d.

Proof. We prove the contrapositive. Suppose $c \leq d$. Then, multiplying this inequality by a gives $ac \leq ad$. Also, multiplying the inequality by b gives $bc \leq bd$. Since a < b, $ac < bc \leq bd$ and ac < bd. Therefore, if $ac \geq bd$ then c > d.

9. **Theorem.** Let $a, b, c, d \in \mathbb{R}$, 0 < a < b, and d > 0. If $ac \ge bd$ then c > d.

Proof. We prove the contrapositive. Suppose $c \leq d$. Then, multiplying this inequality by a gives $ac \leq ad$. Also, multiplying the inequality by b gives $bc \leq bd$. Since a < b, $ac < bc \leq bd$ and ac < bd. Therefore, if $ac \geq bd$ then c > d.

3.6 Proofs involving Negations and Conditionals

- 1. (a) *Proof.* Suppose P. Then, since $P \to Q$ it follows that Q. And, since $Q \to R$, it follows that R. Thus, $P \to R$.
 - (b) *Proof.* Suppose P and Q. From the contrapositive of $\neg R \to (P \to \neg Q)$, we have $\neg (P \to \neg Q) \to R$. Since P and Q, it follows that because $\neg (P \to \neg Q)$, we have R. Thus, $P \to (Q \to R)$.
- 2. (a) *Proof.* Suppose P. Then, from $P \to Q$ we have Q and from the contrapositive $Q \to \neg R$ we have $\neg R$. Thus, $P \to \neg R$.
 - (b) *Proof.* Suppose Q. Then, since P, it follows that $\neg(Q \to \neg P)$. Thus, $Q \to \neg(Q \to \neg P)$.
- 3. Proof. Suppose $x \in A$. Since $A \subseteq C$, we have that $x \in C$. Also, since $B \cap C = \emptyset$, $x \notin B$. Thus, $x \in A \to x \notin B$.
- 6. Proof. Suppose $a \notin C$. Since $a \in A$ and $A \subseteq B$, it follows that $a \in B$. Then, it follows that $a \in B \setminus C$. However, this contradicts the given $a \notin B \setminus C$. Therefore, $a \in C$. \square

3.7 Proofs Involving Quantifiers

- 1. Proof. Suppose $\exists x(P(x) \to Q(x))$. Then, we can choose x_0 such that $P(x_0) \to Q(x_0)$. Suppose also that $\forall x P(x) \to \exists x Q(x)$. In particular, we have $P(x_0) \to Q(x_0)$. Since x_0 is a value for x for which $Q(x_0)$ holds, $\exists x Q(x)$, as required.
- 3. Proof. Suppose $x \in A$ and $A \subseteq B \setminus C$. Then, $x \in B$ and $x \notin C$. But, since x is arbitrary, $\forall x (x \in A \to x \notin C)$, or $A \cap C = \emptyset$, as required.
- 7. Proof. Suppose x > 2. Let $y = \frac{x + \sqrt{x^2 4}}{2}$ which is defined since x > 2. Then,

$$y + \frac{1}{y} = \frac{x + \sqrt{x^2 - 4}}{2} + \frac{2}{x + \sqrt{x^2 - 4}}$$
$$= \frac{(x + \sqrt{x^2 - 4})^2 + 4}{2(x + \sqrt{x^2 - 4})}$$
$$= x$$

9. Proof. Suppose $x \in \cap \mathcal{F}$ and $A \in \mathcal{F}$. Since $x \in \cap \mathcal{F}$, x belongs to all the sets in \mathcal{F} , including A. It follows that $x \in A$. Thus, $x \in \cap \mathcal{F} \to x \in A$.

12. Proof. Suppose $\mathcal{F} \subseteq \mathcal{G}$. Let $x \in \cup \mathcal{F}$ and $A \in \mathcal{G}$. Since $x \in \cup \mathcal{F}$, there exists a set $B \in \mathcal{F}$ such that $x \in B$. Also, since $\mathcal{F} \subseteq \mathcal{G}$, $B \in \mathcal{G}$. It follows that $x \in \cup \mathcal{G}$. Since x is arbitrary, $\cup \mathcal{F} \subseteq \mathcal{G}$, as required.

14. Proof. Suppose $X \in \bigcup_{i \in I} \mathscr{P}(A_i)$. Suppose $X \in \mathscr{P}(A_j)$, where $j \in I$. Since $X \in \mathscr{P}(A_j)$, $X \subseteq A_j$. It follows that $X \subseteq \bigcup_{i \in I} A_i$. Thus, $X \in \mathscr{P}(\bigcup_{i \in I} A_i)$. Since X is arbitrary, $\bigcup_{i \in I} \mathscr{P}(A_i) \subseteq \mathscr{P}(\bigcup_{i \in I} A_i)$, as required.

17. Proof. Suppose $x \in \cup \mathcal{F}$. Then, there exists $A \in \mathcal{F}$ where $x \in A$. Suppose $B \in \mathcal{G}$. Then, $A \subseteq B$ as given. It follows that $x \in B$. Since B is arbitrary, $x \in \cap \mathcal{G}$. Since x is arbitrary, $y \in \mathcal{F} \subseteq \mathcal{G}$.

20. The original goal of the proof is to prove $\forall x \in \mathbb{R}(x^2 \geq 0)$. The proof is by contradiction. However, the goal is incorrectly negated as $\forall x \in \mathbb{R}(x^2 < 0)$, when it should be $\exists x \in \mathbb{R}(x^2 < 0)$ (note the change in quantifier).

22. A correct proof must be valid for arbitrary values of y from a given value of x. However, the given proof defines x in terms of y, meaning that the choice of y is no longer arbitrary once the value of x is assigned.

25. Proof. Suppose $x \in \mathbb{R}$. Let y = 2x and $z \in \mathbb{R}$. Then,

$$(x+z)^{2} - (x^{2} + z^{2}) = x^{2} + 2xz + z^{2} - x^{2} - z^{2}$$
$$= 2xz$$
$$= yz$$