(19) Weltorganisation für geistiges Eigentum Internationales Büro

- 1000 BINDON O CONTRACTO DO CARO CARO CARO BINDON DE CONTRACTO DO CONTRACTO DE CONTRACTO DE CONTRACTO DE CONT

(43) Internationales Veröffentlichungsdatum 1. Februar 2001 (01.02.2001)

PCT

(10) Internationale Veröffentlichungsnummer WO 01/07020 A2

(51) Internationale Patentklassifikation7:

A61K 31/00

(21) Internationales Aktenzeichen:

PCT/EP00/07057

(22) Internationales Anmeldedatum:

22. Juli 2000 (22.07.2000)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

199 35 219.4

27. Juli 1999 (27.07.1999) DE

- (71) Anmelder: BOEHRINGER INGELHEIM PHARMA KG [DE/DE]; D-55216 Ingelheim am Rhein (DE).
- (72) Erfinder: HAUEL, Norbert; Marderweg 12, D-88433 Schemmerhofen (DE). PRIEPKE, Henning; Birkenharder Strasse 11, D-88447 Warthausen (DE). DAMM, Klaus; Hochmannweg 2, D-88400 Biberach (DE). SCHNAPP, Andreas; Esterbuch 5, D-88400 Biberach (DE).
- (74) Anwalt: LAUDIEN, Dieter; Boehringer Ingelheim GmbH, B Patente, D-55216 Ingelheim am Rhein (DE).

(81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

(84) Bestimmungsstaaten (regional): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

 Ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts.

Zur Erklärung der Zweibuchstaben-Codes, und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(54) Title: CARBOXYLIC ACID AMIDES, MEDICAMENTS CONTAINING THESE COMPOUNDS AND THE USE AND PRODUCTION THEREOF

(54) Bezeichnung: CARBONSÄUREAMIDE, DIESE VERBINDUNGEN ENTHALTENDE ARZNEIMITTEL, DEREN VERWENDUNG UND HERSTELLUNG

(57) Abstract: The invention relates to the use of carboxylic acid amides of general formula (I) for inhibiting telomerase, wherein A, B and R_1 to R_3 are defined as per claim 1. The invention also relates to novel carboxylic acid amides of general formula (I) according to claim 2, to methods for the production thereof, to medicaments containing these compounds and to the use and production thereof.

(57) Zusammenfassung: Die vorliegende Anmeldung betrifft die Verwendung der Carbonsäureamide der allgemeinen Formel (I), in der A, B und R_1 bis R_5 wie im Anspruch 1 definiert sind, zur Hemmung der Telomerase, neue Carbonsäureamide der allgemeinen Formel (I) gemäss Anspruch 2, Verfahren zu ihrer Herstellung, diese Verbindungen enthaltende Arzneimittel und deren Verwendung sowie deren Herstellung.

- 1 -

Carbonsäureamide, diese Verbindungen enthaltende Arzneimittel, deren Verwendung und Herstellung

Die letzte Dekade der onkologischen Forschung ermöglichte erstmals ein molekulares Verständnis der an der Tumorentstehung beteiligten regulatorischen Mechanismen. Wie zum Beispiel die Funktion von Onkogenen, Tumor-Suppressorgenen, Wachstumsfaktoren, Rezeptoren, Signal-Transduktionskaskaden, pro- und anti-apoptotischer Gene, bei der Kontrolle von Zellwachstum, Differenzierung, Migration und Zelltod. Diese neuen Erkenntnisse zeigten aber auch, daß Krebs auf molekularer Ebene eine multifaktorielle Krankheit ist, während derer Entstehung Gewebe durch unterschiedliche Mechanismen maligne entarten können. Diese Heterogenität der malignen Zellen wiederum erklärt die klinischen Probleme der Tumortherapie.

Schon im Jahr 1965 wurde durch Hayflick (Hayflick, Exp. Cell Res. 37, 614-636 (1965)) postuliert, daß die begrenzte proliferative Lebensdauer normaler somatischer Zellen, die replikative Seneszenz, als Tumorsuppressor-Mechanismus fungieren kann. Diese Hypothese wurde durch experimentelle Arbeiten unterstützt, die zeigten, daß das Überkommen der replikativen Seneszenz eine Voraussetzung für die maligne Transformation von Zellen ist (Newbold et., al. in Nature, 299, 633-636 (1989); Newbold and Overell in Nature, 304, 648-651 (1983)).

Jedoch ergab sich erst in den letzten Jahren ein Verständnis der molekularen Mechanismen aufgrund derer somatische Zellen den Zustand der replikativen Seneszenz erreichen.

Die Enden eukaryotischer Chromosomen, die Telomere, bestehen aus einfachen repetitiven Sequenzen, deren Integrität essentiell für die Funktion und die Struktur der Chromosomen ist. Jedoch verlieren lineare Chromosomen bei jeder Runde der DNA

WO 01/07020

- 2 -

PCT/EP00/07057

Replikation eine bestimmte Länge ihrer Telomere, ein Phänomen das von Watson schon 1972 erkannt wurde (Watson in Nature New Biol. 239, 197-201 (1972)). Der kumulative Verlust telomerer DNA über viele Zellteilungen hinweg stellt den Grund des begrenzten replikativen Potentials somatischer Zellen dar, während mehr als 85% aller Tumore des Menschen ein Enzym, die Telomerase, reaktivieren, um den Verlust von Telomeren zu kompensieren und somit immortal werden (siehe Shay und Bacchetti in European Journal of Cancer, 33, 787-791 (1997)).

Die Telomerase des Menschen ist ein Ribonukleoprotein (RNP) das sich aus mindestens einer katalytischen Untereinheit (hTERT), sowie einer RNA (hTR) zusammensetzt. Beide Komponenten wurden molekular kloniert und charakterisiert. Biochemisch ist Telomerase eine reverse Transkriptase, die einen Sequenzabschnitt in hTR als Matrize verwendet, um einen Strang der telomeren DNA zu synthetisieren (Morin in Cell 59, 521-529 (1989)). Methoden, Telomeraseaktivität zu identifizieren, als auch Methoden für die Diagnose und Therapie replikativer Senenzenz und Immortalität durch Modulation der Telomere und Telomerase wurden beschrieben (Morin in Cell 59, 521-529 (1989); Kim et al. in Science 266, 2011-2014 (1994))

Inhibitoren von Telomerase können zur Tumor-Therapie verwendet werden, da somatische Zellen, im Gegensatz zu Tumorzellen, nicht von Telomerase abhängig sind.

Ferner wird in der US-Patentschrift Nr. 3,940,422 u.a. die Verbindung trans-3,4-Dimethoxy-zimtsäure-N-anthranilsäure-amid beschrieben, welche insbesondere antiallergische Eigenschaften aufweist.

Es wurde nun gefunden, daß die Carbonsäureamide der allgemeinen Formel

WO 01/07020

PCT/EP00/07057

$$\begin{array}{c|c}
R_2 & R_5 & R_3 \\
R_2 & N \longrightarrow B \\
R_4 & R_4
\end{array}$$
(1),

deren Isomere, insbesondere deren trans-Isomere, und deren Salze, insbesondere deren physiologisch verträglichen Salze, überraschenderweise eine Hemmwirkung auf die Telomerase aufweisen.

In der obigen allgemeinen Formel I bedeutet

 R_{1} ein Wasserstoffatom, eine C_{1-3} -Alkyl- oder Trifluormethyl-gruppe,

 R_2 ein Wasserstoff-, Fluor-, Chlor- oder Bromatom, eine C_{1-3} -Alkyl-, C_{3-7} -Cycloalkyl- oder C_{1-3} -Alkoxygruppe oder auch, wenn R_4 und R_5 jeweils ein Wasserstoffatom darstellen, R_1 und R_2 zusammen eine gegebenenfalls durch eine C_{1-3} -Alkylgruppe substituierte $n-C_{1-3}$ -Alkylengruppe,

R₃ ein Wasserstoffatom oder eine C₁₋₅-Alkylgruppe,

 R_4 und R_5 jeweils ein Wasserstoffatom oder zusammen eine weitere Kohlenstoff-Kohlenstoff-Bindung,

A eine durch ein Fluor-, Chlor-, Brom- oder Jodatom, durch eine C_{1-6} -Alkyl-, C_{3-7} -Cycloalkyl-, Phenyl-, C_{1-3} -Alkoxy-, Cyano-, Trifluormethyl- oder Nitrogruppe substituierte Phenyl-, Naphthyl- oder Tetrahydronaphthylgruppe, wobei die vorstehend erwähnten monosubstituierten Phenyl- und Naphthylgruppen zusätzlich durch ein Fluor-, Chlor- oder Bromatom, durch eine C_{1-3} -Alkyl- oder C_{1-3} -Alkoxygruppe und die vorstehend erwähnten disubstituierten Phenylgruppen zusätzlich durch eine C_{1-3} -Alkyl- oder C_{1-3} -Alkoxygruppe substituiert sein können,

- 4 -

PCT/EP00/07057

eine Naphthylgruppe,

WO 01/07020

eine Chroman- oder Chromengruppe, in der eine Methylengruppe durch eine Carbonylgruppe ersetzt sein kann,

eine im Kohlenstoffgerüst gegebenenfalls durch ein Fluor-, Chlor- oder Bromatom, durch eine C_{1-3} -Alkyl- oder C_{1-3} -Alkoxy-gruppe substituierte 5- oder 6-gliedrige Heteroarylgruppe, wobei die 6-gliedrigen Heteroarylgruppen ein, zwei oder drei Stickstoffatome und die 5-gliedrigen Heteroarylgruppen eine gegebenenfalls durch eine C_{1-3} -Alkylgruppe substituierte Iminogruppe, ein Sauerstoff- oder Schwefelatom oder eine gegebenenfalls durch eine C_{1-3} -Alkylgruppe substituierte Iminogruppe und ein Sauerstoff- oder Schwefelatom oder ein oder zwei Stickstoffatome enthalten und zusätzlich an die vorstehend erwähnten monocyclischen Heteroarylgruppen über zwei benachbarte Kohlenstoffatome ein Phenylring ankondensiert sein kann, welcher ebenfalls im Kohlenstoffgerüst durch ein Fluor-, Chloroder Bromatom, durch eine C_{1-3} -Alkyl- oder C_{1-3} -Alkoxygruppe substituiert sein kann,

eine Phenylvinylgruppe oder

 R_1 zusammen mit A und dem dazwischen liegenden Kohlenstoffatom eine C_{5-7} -Cycloalkylidengruppe, an die über zwei benachbarte Kohlenstoffatome ein Phenylring ankondensiert sein kann, welcher zusätzlich durch eine oder zwei C_{1-3} -Alkyl- oder C_{1-3} -Alk-oxygruppen substituiert sein kann, wobei die Substituenten gleich oder verschieden sein können, und

B eine durch eine Carboxygruppe oder durch eine in-vivo in eine Carboxygruppe überführbare Gruppe substituierte 5- oder 6-gliedrige Heteroarylgruppe,

eine Phenyl- oder Naphthylgruppe, die jeweils durch eine Carboxygruppe, durch eine in-vivo in eine Carboxygruppe überführ-

- 5 -

bare Gruppe oder durch eine unter physiologischen Bedingungen negativ geladene Gruppe substituiert sein können, wobei die vorstehend erwähnten Phenylgruppen zusätzlich

durch ein Fluor-, Chlor-, Brom- oder Jodatom,

durch eine C_{1-3} -Alkyl-, Trifluormethyl-, Phenyl-, Hydroxy-, C_{1-3} -Alkoxy-, C_{1-3} -Alkylsulfonyloxy-, Phenylsulfonyloxy-, Carboxy-, C_{1-3} -Alkoxycarbonyl-, Formyl-, C_{1-3} -Alkylcarbonyl-, Carboxy-, Carboxy-, Chenylsulfonyl-, Nitro-, Pyrrolidino-, Piperidino-, Morpholino-, N-(C_{1-3} -Alkyl)-piperazino-, Aminosulfonyl-, C_{1-3} -Alkylaminosulfonyl- oder Di-(C_{1-3} -Alkyl)-aminosulfonylgruppe,

durch eine C_{1-3} -Alkylgruppe, die durch eine Hydroxy-, C_{1-3} -Alkoxy-, Amino-, C_{1-4} -Alkylamino-, Di- $(C_{1-4}$ -Alkyl)- amino-, C_{3-7} -Cycloalkylamino-, Pyrrolidino-, Piperidino-, Morpholino-, Piperazino- oder N- $(C_{1-3}$ -Alkyl)-piperazino-gruppe substituiert ist,

durch eine in 2- oder 3-Stellung durch eine Di- $(C_{1-3}-Alkyl)$ -aminogruppe substituierte n- $C_{2-3}-Alkoxy-$, $C_{2-3}-Alkenyl-$ oder $C_{2-3}-Alkinylgruppe$,

durch eine Aminogruppe, durch eine N-(C₁₋₃-Alkyl)-aminooder N,N-Di-(C₁₋₃-Alkyl)-aminogruppe, in der der Alkylteil
jeweils in 2- oder 3-Stellung bezogen auf das Stickstoffatom durch eine C₁₋₃-Alkoxygruppe substituiert sein kann,
durch eine N-Phenylamino-, N-(Phenyl-C₁₋₃-alkyl)-amino- oder
N-(Pyridyl-C₁₋₃-alkyl)-aminogruppe, in denen jeweils ein
Wasserstoffatom der vorstehend erwähnten Aminogruppen durch
eine C₁₋₃-Alkylsulfonyl-, Phenyl-C₁₋₃-alkylsulfonyl- oder
Phenylsulfonylgruppe oder durch eine C₁₋₃-Alkylgruppe, welche in 2- bis 5-Stellung durch eine C₁₋₃-Alkoxy-, Cyano-,
Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-Alkyl)-amino- oder
Tetrazolylgruppe ersetzt sein kann,

durch eine Aminocarbonyl- oder C_{1-3} -Alkylaminocarbonylgruppe, die jeweils am Aminstickstoffatom

durch eine C_{1-4} -Alkylgruppe, die durch eine Vinyl-, Ethinyl-, Phenyl-, Pyridyl-, Imidazolyl-, Carboxy- oder Trifluormethylgruppe oder mit Ausnahme der 2-Stellung bezogen auf das Aminocarbonylstickstoffatom durch eine Hydroxy-, C_{1-3} -Alkoxy-, C_{1-3} -Alkylthio-, Amino-, C_{1-3} -Alkyl-amino-, Di- $(C_{1-3}$ -Alkyl)-amino-, C_{1-4} -Alkanoylamino- oder C_{1-5} -Alkoxycarbonylaminogruppe substituiert sein kann,

durch eine C_{3-7} -Cycloalkyl-, C_{5-9} -Azabicycloalkyl-, Phenyl-, Pyridyl-, C_{1-3} -Alkoxy- oder Di- $(C_{1-3}$ -Alkyl)-aminogruppe,

durch eine C_{1-3} -Alkylgruppe, die durch eine gegebenenfalls in 1-Stellung durch eine C_{1-3} -Alkyl- oder C_{1-5} -Alkoxycarbonylgruppe substituierte Piperidin-3-yl- oder Piperidin-4-yl-Gruppe substituiert ist, oder

durch eine gegebenenfalls am Aminstickstoffatom durch eine C_{1-4} -Alkanoyl-, C_{1-5} -Alkoxycarbonyl-, Benzoyl-, Pyrrolidino-, Piperidino-, Morpholino- oder N-(C_{1-3} -Alkyl)-piperazinogruppe substituierte Amino-, C_{1-3} -Alkylamino- oder Phenyl- C_{1-3} -alkylaminogruppe substituiert sein kann,

durch eine Pyrrolidino-, Pyrrolino-, Piperidino-, Morpholino- oder $N-(C_{1-3}-Alkyl)$ -piperazinogruppe substituierte Carbonylgruppe,

durch eine Amino-, C_{1-3} -Alkylamino-, Di- $(C_{1-3}$ -Alkyl)-amino-, Pyrrolidino-, Piperidino-, Morpholino- oder N- $(C_{1-3}$ -Alkyl)-piperazinogruppe substituierte Sulfonylgruppe,

durch eine Amino- oder N- $(C_{1-3}$ -Alkyl)-aminogruppe, die jeweils am Aminstickstoffatom durch eine Aminocarbonyl-, C_{1-3} -Alkylaminocarbonyl-, Phenyl- C_{1-3} -alkylaminocarbonyl-,

Phenylaminocarbonyl-, Phenoxyphenylaminocarbonyl-, Pyridyl-aminocarbonyl-, Pyrrolidinocarbonyl-, Piperidinocarbonyl-, Morpholinocarbonyl- oder N- $(C_{1-3}$ -Alkyl)-piperazinocarbonyl-gruppe substituiert ist, wobei in vorstehend erwähnten Aminocarbonylgruppen ein vorhandenes Wasserstoffatom zusätzlich durch eine C_{1-3} -Alkylgruppe substituiert sein kann,

durch eine 5- oder 6-gliedrige Heteroarylgruppe,

durch eine Dihydro-oxazolyl-, Dihydro-imidazolyl-, 2-Oxo-pyrrolidino-, 2-Oxo-piperidino- oder 2-Oxo-hexamethylen-iminogruppe, an die über zwei benachbarte Kohlenstoffatome ein Phenylring ankondensiert sein kann,

durch eine durch eine Phenyl-, Hydroxymethyl- oder Dimethylaminogruppe substituierte Ethinylgruppe substituiert sein können, wobei

zusätzlich die vorstehend erwähnten mono- oder disubstituierten Phenylgruppen durch ein weiteres Fluor-, Chlor- oder Bromatom oder durch eine oder zwei weitere C_{1-3} -Alkyl- oder C_{1-3} -Alkoxygruppen substituiert und zwei o-ständige C_{1-3} -Alkoxygruppen durch eine Methylendioxygruppe ersetzt sein können,

insbesondere R_1 ein Wasserstoffatom, eine $C_{1\text{--}3}\text{-}\text{Alkyl-}$ oder Trifluormethylgruppe,

 R_2 ein Wasserstoff-, Fluor-, Chlor- oder Bromatom, eine C_{1-3} -Al-kyl-, C_{3-7} -Cycloalkyl- oder C_{1-3} -Alkoxygruppe oder auch, wenn R_4 und R_5 jeweils ein Wasserstoffatom darstellen, R_1 und R_2 zusammen eine gegebenenfalls durch eine C_{1-3} -Alkylgruppe substituierte $n-C_{1-3}$ -Alkylengruppe,

 R_3 ein Wasserstoffatom oder eine C_{1-5} -Alkylgruppe,

 R_4 und R_5 jeweils ein Wasserstoffatom oder zusammen eine weitere Kohlenstoff-Kohlenstoff-Bindung,

- 8 -

A eine durch ein Fluor-, Chlor-, Brom- oder Jodatom, durch eine C_{1-6} -Alkyl-, C_{3-7} -Cycloalkyl-, Phenyl-, C_{1-3} -Alkoxy-, Trifluormethyl- oder Nitrogruppe substituierte Phenyl-, Naphthyl- oder Tetrahydronaphthylgruppe, wobei die vorstehend erwähnten monosubstituierten Phenyl- und Naphthylgruppen zusätzlich durch ein Fluor-, Chlor- oder Bromatom, durch eine C_{1-3} -Alkoxygruppe substituiert sein können,

eine Naphthylgruppe,

eine Chroman- oder Chromengruppe, in der eine Methylengruppe durch eine Carbonylgruppe ersetzt sein kann,

eine im Kohlenstoffgerüst gegebenenfalls durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₃-Alkyl- oder C₁₋₃-Alkoxygruppe substituierte 5- oder 6-gliedrige Heteroarylgruppe, wobei die 6-gliedrigen Heteroarylgruppen ein, zwei oder drei Stickstoffatome und die 5-gliedrigen Heteroarylgruppen eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe, ein Sauerstoff- oder Schwefelatom oder eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe und ein Sauerstoff- oder Schwefelatom oder ein oder zwei Stickstoffatome enthalten und zusätzlich an die vorstehend erwähnten monocyclischen Heteroarylgruppen über zwei benachbarte Kohlenstoffatome ein Phenylring ankondensiert sein kann, welcher ebenfalls im Kohlenstoffgerüst durch ein Fluor-, Chloroder Bromatom, durch eine C₁₋₃-Alkyl- oder C₁₋₃-Alkoxygruppe substituiert sein kann,

eine Phenylvinylgruppe oder

 R_1 zusammen mit A und dem dazwischen liegenden Kohlenstoffatom eine C_{5-7} -Cycloalkylidengruppe, an die über zwei benachbarte Kohlenstoffatome ein Phenylring ankondensiert sein kann, wel-

cher zusätzlich durch eine oder zwei C_{1-3} -Alkyl- oder C_{1-3} -Alk-oxygruppen substituiert sein kann, wobei die Substituenten gleich oder verschieden sein können, und

B eine Phenyl-, Naphthyl- oder Heteroarylgruppe, die jeweils durch eine Carboxygruppe, durch eine in-vivo in eine Carboxygruppe überführbare Gruppe oder durch eine unter physiologischen Bedingungen negativ geladene Gruppe substituiert sein können, wobei die vorstehend erwähnten Phenylgruppen zusätzlich

durch ein Fluor-, Chlor-, Brom- oder Jodatom,

durch eine C_{1-3} -Alkyl-, Hydroxy-, C_{1-3} -Alkoxy-, C_{1-3} -Alkylsul-fonyloxy-, Phenylsulfonyloxy-, Carboxy-, C_{1-3} -Alkoxycarbonyl-, Formyl-, C_{1-3} -Alkylcarbonyl-, C_{1-3} -Alkylsulfonyl-, Phenylsulfonyl-, Nitro-, Pyrrolidino-, Piperidino-, Morpholino-, N-(C_{1-3} -Alkyl)-piperazino-, Aminosulfonyl-, C_{1-3} -Alkylaminosulfonyl- oder Di-(C_{1-3} -Alkyl)-aminosulfonylgruppe,

durch eine in 2- oder 3-Stellung durch eine Di- $(C_{1-3}-Alkyl)$ -aminogruppe substituierte $n-C_{2-3}-Alkoxygruppe$,

durch eine Amino-, N- $(C_{1-3}$ -Alkyl)-amino-, N- $(Phenyl-C_{1-3}$ -alkyl)-amino- oder N- $(Pyridyl-C_{1-3}$ -alkyl)-aminogruppe, in denen jeweils ein Wasserstoffatom der Aminogruppe durch eine C_{1-3} -Alkylsulfonyl- oder Phenylsulfonylgruppe oder durch eine C_{1-7} -Alkylgruppe, welche in 2- bis 5-Stellung durch eine C_{1-3} -Alkoxy-, Cyano-, Amino-, C_{1-3} -Alkylamino-, Di- $(C_{1-3}$ -Alkyl)-amino- oder Tetrazolylgruppe substituiert sein kann,

durch eine Amino-, $C_{1.3}$ -Alkylamino-, Di- $(C_{1.3}$ -Alkyl)-amino-, Pyrrolidino-, Piperidino-, Morpholino- oder N- $(C_{1.3}$ -Alkyl)-piperazinogruppe substituierte Carbonyl- oder Sulfonylgruppe,

- 1.0 -

durch eine gegebenenfalls durch eine C_{1-4} -Alkylgruppe substituierte Imidazolyl- oder Pyrazolylgruppe, welche zusätzlich durch eine C_{1-3} -Alkyl-, Phenyl-, Trifluormethyl- oder Furylgruppe substituiert sein können, und

zusätzlich durch ein weiteres Fluor-, Chlor- oder Bromatom, durch eine weitere C_{1-3} -Alkyl- oder C_{1-3} -Alkoxygruppe substituiert sein können,

und die vorstehend erwähnten 6-gliedrigen Heteroarylgruppen ein, zwei oder drei Stickstoffatome und die vorstehend erwähnten 5-gliedrigen Heteroarylgruppen eine gegebenenfalls durch eine C_{1-3} -Alkylgruppe substituierte Iminogruppe, ein Sauerstoffoder Schwefelatom oder eine gegebenenfalls durch eine C_{1-3} -Alkylgruppe substituierte Iminogruppe und ein Sauerstoff- oder Schwefelatom oder ein oder zwei Stickstoffatome enthalten und zusätzlich an die vorstehend erwähnten monocyclischen Heteroarylgruppen über zwei benachbarte Kohlenstoffatome ein Phenylring ankondensiert sein kann, welcher im Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch eine C1-3-Alkyloder C_{1-3} -Alkoxygruppe substituiert sein kann, wobei die vorstehend erwähnten 5-gliedrigen monocyclischen Heteroarylgruppen im Kohlenstoffgerüst zusätzlich durch C_{1-4} -Alkyl-, Trifluormethyl-, Phenyl- oder Furanylgruppe und durch eine wietere C₁₋₃-Alkylgruppe substituiert sein können,

wobei die bei der Definition der vorstehend erwähnten Reste erwähnten Amino- und Iminogruppen zusätzlich durch einen in vivo abspaltbaren Rest substituiert sein können.

Unter einer in-vivo in eine Carboxygruppe überführbaren Gruppe ist beispielsweise eine Hydroxmethylgruppe, eine mit einem Alkohol veresterte Carboxygruppe, in der der alkoholische Teil vorzugsweise ein C_{1-6} -Alkanol, ein Phenyl- C_{1-3} -alkanol, ein C_{3-9} -Cycloalkanol, wobei ein C_{5-8} -Cycloalkanol zusätzlich durch ein oder zwei C_{1-3} -Alkylgruppen substituiert sein kann, ein C_{5-8} -Cycloalkanol, in dem eine Methylengruppe in 3- oder

4-Stellung durch ein Sauerstoffatom oder durch eine gegebenenfalls durch eine C₁₋₃-Alkyl-, Phenyl-C₁₋₃-alkyl-, Phenyl-C₁₋₃-alkoxycarbonyl- oder C₂₋₆-Alkanoylgruppe substituierte Iminogruppe ersetzt ist und der Cycloalkanolteil zusätzlich durch ein oder zwei C₁₋₃-Alkylgruppen substituiert sein kann, ein C₄₋₇-Cycloalkenol, ein C₃₋₅-Alkenol, ein Phenyl-C₃₋₅-alkenol, ein C₃₋₅-Alkinol oder Phenyl-C₃₋₅-alkinol mit der Maßgabe, daß keine Bindung an das Sauerstoffatom von einem Kohlenstoffatom ausgeht, welches eine Doppel- oder Dreifachbindung trägt, ein C₃₋₆-Cycloalkyl-C₁₋₃-alkanol, ein Bicycloalkanol mit insgesamt 8 bis 10 Kohlenstoffatomen, das im Bicycloalkylteil zusätzlich durch eine oder zwei C₁₋₃-Alkylgruppen substituiert sein kann, ein 1,3-Dihydro-3-oxo-1-isobenzfuranol oder ein Alkohol der Formel

$$R_a$$
-CO-O- (R_bCR_c) -OH,

in dem

 R_a eine $C_{1-8}\text{-}Alkyl\text{--},\ C_{5-7}\text{-}Cycloalkyl\text{--},\ Phenyl- oder Phenyl- }C_{1-3}\text{-}alkylgruppe,$

 R_{b} ein Wasserstoffatom, eine $C_{1\text{--}3}\text{-}\text{Alkyl-}$, $C_{5\text{--}7}\text{-}\text{Cycloalkyl-}$ oder Phenylgruppe und

 R_c ein Wasserstoffatom oder eine C_{1-3} -Alkylgruppe darstellen,

unter einer unter physiologischen Bedingungen negativ geladenen Gruppe eine Carboxy-, Hydroxysulfonyl-, Phosphono-, Tetrazol-5-yl-, Phenylcarbonylaminocarbonyl-, Trifluormethylcarbonylaminocarbonyl-, C_{1-6} -Alkylsulfonylamino-, Phenylsulfonylamino-, amino-, Benzylsulfonylamino-, Trifluormethylsulfonylamino-, C_{1-6} -Alkylsulfonylaminocarbonyl-, Phenylsulfonylaminocarbonyl-, Benzylsulfonylaminocarbonyl- oder Perfluor- C_{1-6} -alkylsulfonyl-aminocarbonylgruppe

und unter einem von einer Imino- oder Aminogruppe in-vivo abspaltbaren Rest beispielsweise eine Hydroxygruppe, eine Acyl-

gruppe wie die Benzoyl- oder Pyridinoylgruppe oder eine C_{1-16} -Alkanoylgruppe wie die Formyl-, Acetyl-, Propionyl-, Butanoyl-, Pentanoyl- oder Hexanoylgruppe, eine Allyloxycarbonylgruppe, eine C_{1-16} -Alkoxycarbonylgruppe wie die Methoxy-carbonyl-, Ethoxycarbonyl-, Propoxycarbonyl-, Isopropoxycarbonyl-, Butoxycarbonyl-, tert. Butoxycarbonyl-, Pentoxycarbonyl-, Butoxycarbonyl-, Octyloxycarbonyl-, Nonyloxycarbonyl-, Decyloxycarbonyl-, Undecyloxycarbonyl-, Dodecyloxycarbonyl- oder Hexadecyloxycarbonylgruppe, eine Phenyl- C_{1-6} -alkoxycarbonyl-oder Henylpropoxycarbonylgruppe, eine C_{1-3} -Alkylsulfonyl-oder Phenylpropoxycarbonylgruppe, eine C_{1-3} -Alkylsulfonyl- C_{2-4} -alkoxycarbonyl-, C_{1-3} -Alkoxy- C_{2-4} -alkoxycarbonyl- oder R_a -CO-O- (R_bCR_c) -O-CO-Gruppe, in der R_a bis R_c wie vorstehend erwähnt definiert sind,

zu verstehen.

Desweiteren schließen die bei der Definition der vorstehend erwähnten gesättigten Alkyl- und Alkoxyteile, die mehr als 2 Kohlenstoffatome enthalten, auch deren verzweigte Isomere wie beispielsweise die Isopropyl-, tert.Butyl-, Isobutylgruppe etc. ein.

Gegenstand der vorliegenden Erfindung ist somit die Verwendung der obigen Carbonsäureamide der allgemeinen Formel I bei der Hemmung der Telomerase und die Herstellung eines entsprechenden Arzneimittels.

Ein weiterer Gegenstand der vorliegenden Erfindung sind die neuen Carbonsäureamide der obigen allgemeinen Formel I und deren Salze, insbesondere deren physiologisch verträgliche Salze, welche eine Hemmwirkung auf die Telomerase aufweisen, Verfahren zu ihrer Herstellung, diese Verbindungen enthaltende Arzneimittel und deren Verwendung.

In den neuen Carbonsäureamiden der obigen allgemeinen Formel I bedeutet

 R_1 ein Wasserstoffatom, eine C_{1-3} -Alkyl- oder Trifluormethyl-gruppe,

 R_2 ein Wasserstoff-, Fluor-, Chlor- oder Bromatom, eine C_{1-3} -Alkyl-, C_{3-7} -Cycloalkyl- oder C_{1-3} -Alkoxygruppe oder auch, wenn R_4 und R_5 jeweils ein Wasserstoffatom darstellen, R_1 und R_2 zusammen eine gegebenenfalls durch eine C_{1-3} -Alkylgruppe substituierte n- C_{1-3} -Alkylengruppe,

R₃ ein Wasserstoffatom oder eine C₁₋₅-Alkylgruppe,

 R_4 und R_5 jeweils ein Wasserstoffatom oder zusammen eine weitere Kohlenstoff-Kohlenstoff-Bindung,

A eine durch ein Fluor-, Chlor-, Brom- oder Jodatom, durch eine C_{1-6} -Alkyl-, C_{3-7} -Cycloalkyl-, Phenyl-, C_{1-3} -Alkoxy-, Cyano-, Trifluormethyl- oder Nitrogruppe substituierte Phenyl-, Naphthyl- oder Tetrahydronaphthylgruppe, wobei die vorstehend erwähnten monosubstituierten Phenyl- und Naphthylgruppen zusätzlich durch ein Fluor-, Chlor- oder Bromatom, durch eine C_{1-3} -Alkyl- oder C_{1-3} -Alkoxygruppe und die vorstehend erwähnten disubstituierten Phenylgruppen zusätzlich durch eine C_{1-3} -Alkyl- oder C_{1-3} -Alkoxygruppe substituiert sein können, mit der Maßgabe daß

A keine Phenylgruppe darstellt, die durch ein Halogenatom, durch eine Methyl-, Pentyl-, C_{1-3} -Alkoxy- oder Phenylgruppe oder durch zwei C_{1-3} -Alkoxygruppen substituiert ist, wenn

R₃ ein Wasserstoffatom,

 $R_{4}\ \text{und}\ R_{5}\ \text{jeweils}$ ein Wasserstoffatom oder

 R_4 und R_5 zusammen eine weitere Kohlenstoff-Kohlenstoff-Bindung und

B eine Carboxyphenyl- oder Methoxycarbonylphenylgruppe darstellen,

- 14 -

und A keine Phenylgruppe darstellt, die durch eine Methyloder Phenylgruppe substituiert ist, wenn

 R_1 und R_2 jeweils ein Wasserstoffatom,

R₃ ein Wasserstoffatom,

 $R_{4}\mbox{ und }R_{5}\mbox{ zusammen eine weitere Kohlenstoff-Kohlenstoff-Bindung und}$

B eine Carboxyphenyl- oder Methoxycarbonylphenylgruppe darstellen.

eine Naphthylgruppe,

eine Chroman- oder Chromengruppe, in der eine Methylengruppe durch eine Carbonylgruppe ersetzt sein kann,

eine im Kohlenstoffgerüst gegebenenfalls durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₃-Alkyl- oder C₁₋₃-Alkoxy-gruppe substituierte 5- oder 6-gliedrige Heteroarylgruppe, wobei die 6-gliedrigen Heteroarylgruppen ein, zwei oder drei Stickstoffatome und die 5-gliedrigen Heteroarylgruppen eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe, ein Sauerstoff- oder Schwefelatom oder eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe und ein Sauerstoff- oder Schwefelatom oder ein oder zwei Stickstoffatome enthalten und zusätzlich an die vorstehend erwähnten monocyclischen Heteroarylgruppen über zwei benachbarte Kohlenstoffatome ein Phenylring ankondensiert sein kann, welcher ebenfalls im Kohlenstoffgerüst durch ein Fluor-, Chloroder Bromatom, durch eine C₁₋₃-Alkyl- oder C₁₋₃-Alkoxygruppe substituiert sein kann,

eine Phenylvinylgruppe oder

 R_1 zusammen mit A und dem dazwischen liegenden Kohlenstoffatom eine C_{5-7} -Cycloalkylidengruppe, an die über zwei benachbarte Kohlenstoffatome ein Phenylring ankondensiert sein kann, welcher zusätzlich durch eine oder zwei C_{1-3} -Alkyl- oder C_{1-3} -Alk-

oxygruppen substituiert sein kann, wobei die Substituenten gleich oder verschieden sein können, und

B eine durch eine Carboxgruppe oder durch eine in-vivo in eine Carboxygruppe überführbare Gruppe substituierte 5- oder 6-gliedrige Heteroarylgruppe,

eine Phenyl- oder Naphthylgruppe, die jeweils durch eine Carboxygruppe, durch eine in-vivo in eine Carboxygruppe überführbare Gruppe oder durch eine unter physiologischen Bedingungen negativ geladene Gruppe substituiert sein können, wobei die vorstehend erwähnten Phenylgruppen zusätzlich

durch ein Fluor-, Chlor-, Brom- oder Jodatom,

durch eine C₁₋₃-Alkyl-, Trifluormethyl-, Phenyl-, Hydroxy-, C₁₋₃-Alkoxy-, C₁₋₃-Alkylsulfonyloxy-, Phenylsulfonyloxy-, Carboxy-, C₁₋₃-Alkoxycarbonyl-, Formyl-, C₁₋₃-Alkylcarbonyl-, C₁₋₃-Alkylsulfonyl-, Phenylsulfonyl-, Nitro-, Pyrrolidino-, Piperidino-, Morpholino-, N-(C₁₋₃-Alkyl)-piperazino-, Aminosulfonyl-, C₁₋₃-Alkylaminosulfonyl- oder Di-(C₁₋₃-Alkyl)-aminosulfonylgruppe,

durch eine C₁₋₃-Alkylgruppe, die durch eine Hydroxy-, C₁₋₃-Alkoxy-, Amino-, C₁₋₄-Alkylamino-, Di-(C₁₋₄-Alkyl)- amino-, C₃₋₇-Cycloalkylamino-, Pyrrolidino-, Piperidino-, Morpholino-, Piperazino- oder N-(C₁₋₃-Alkyl)-piperazino-gruppe substituiert ist,

durch eine in 2- oder 3-Stellung durch eine Di- $(C_{1-3}$ -Alkyl)-aminogruppe substituierte n- C_{2-3} -Alkoxy-, C_{2-3} -Alkenyl- oder C_{2-3} -Alkinylgruppe,

durch eine Aminogruppe, durch eine $N-(C_{1-3}-Alkyl)$ -aminooder $N,N-Di-(C_{1-3}-Alkyl)$ -aminogruppe, in der der Alkylteil jeweils in 2- oder 3-Stellung bezogen auf das Stickstoffatom durch eine $C_{1-3}-Alkoxygruppe$ substituiert sein kann, WO 01/07020

- 16 -

PCT/EP00/07057

durch eine N-Phenylamino-, N-(Phenyl- C_{1-3} -alkyl)-amino- oder N-(Pyridyl- C_{1-3} -alkyl)-aminogruppe, in denen jeweils ein Wasserstoffatom der vorstehend erwähnten Aminogruppen durch eine C_{1-3} -Alkylsulfonyl-, Phenyl- C_{1-3} -alkylsulfonyl- oder Phenylsulfonylgruppe oder durch eine C_{1-7} -Alkylgruppe, welche in 2- bis 5-Stellung durch eine C_{1-3} -Alkoxy-, Cyano-, Amino-, C_{1-3} -Alkylamino-, Di- $(C_{1-3}$ -Alkyl)-amino- oder Tetrazolylgruppe ersetzt sein kann,

durch eine Aminocarbonyl- oder C_{1-3} -Alkylaminocarbonylgruppe, die jeweils am Aminstickstoffatom

durch eine C_{1-4} -Alkylgruppe, die durch eine Vinyl-, Ethinyl-, Phenyl-, Pyridyl-, Imidazolyl-, Carboxy- oder Trifluormethylgruppe oder mit Ausnahme der 2-Stellung bezogen auf das Aminocarbonylstickstoffatom durch eine Hydroxy-, C_{1-3} -Alkoxy-, C_{1-3} -Alkylthio-, Amino-, C_{1-3} -Alkyl-amino-, Di- $(C_{1-3}$ -Alkyl)-amino-, C_{1-4} -Alkanoylamino- oder C_{1-5} -Alkoxycarbonylaminogruppe substituiert sein kann,

durch eine C_{3-7} -Cycloalkyl-, C_{5-9} -Azabicycloalkyl-, Phenyl-, Pyridyl-, C_{1-3} -Alkoxy- oder Di- $(C_{1-3}$ -Alkyl)-aminogruppe,

durch eine C_{1-3} -Alkylgruppe, die durch eine gegebenenfalls in 1-Stellung durch eine C_{1-3} -Alkyl- oder C_{1-5} -Alkoxycarbonylgruppe substituierte Piperidin-3-yl- oder Piperidin-4-yl-Gruppe substituiert ist, oder

durch eine gegebenenfalls am Aminstickstoffatom durch eine C_{1-4} -Alkanoyl-, C_{1-5} -Alkoxycarbonyl-, Benzoyl-, Pyrrolidino-, Piperidino-, Morpholino- oder N-(C_{1-3} -Alkyl)-piperazinogruppe substituierte Amino-, C_{1-3} -Alkyl-amino- oder Phenyl- C_{1-3} -alkylaminogruppe substituiert sein kann,

- 17 -

durch eine Pyrrolidino-, Pyrrolino-, Piperidino-, Morpholino- oder N- $(C_{1\cdot3}$ -Alkyl)-piperazinogruppe substituierte Carbonylgruppe,

durch eine Amino-, C_{1-3} -Alkylamino-, $Di-(C_{1-3}-Alkyl)$ -amino-, Pyrrolidino-, Piperidino-, Morpholino- oder N- $(C_{1-3}-Alkyl)$ -piperazinogruppe substituierte Sulfonylgruppe,

durch eine Amino- oder N- $(C_{1-3}-Alkyl)$ -aminogruppe, die jeweils am Aminstickstoffatom durch eine Aminocarbonyl-, $C_{1-3}-Alkylaminocarbonyl-$, Phenyl- C_{1-3} -alkylaminocarbonyl-, Phenylaminocarbonyl-, Phenoxyphenylaminocarbonyl-, Pyridyl-aminocarbonyl-, Pyrrolidinocarbonyl-, Piperidinocarbonyl-, Morpholinocarbonyl- oder N- $(C_{1-3}-Alkyl)$ -piperazinocarbonyl-gruppe, in denen zusätzlich ein vorhandenes Wasserstoffatom einer der vorstehend erwähnten Aminocarbonylgruppen durch eine C_{1-3} -Alkylgruppe substituiert sein kann, substituiert ist,

durch eine 5- oder 6-gliedrige Heteroarylgruppe,

durch eine Dihydro-oxazolyl-, Dihydro-imidazolyl-, 2-0xo-pyrrolidino-, 2-0xo-piperidino- oder 2-0xo-hexamethylen-iminogruppe, an die über zwei benachbarte Kohlenstoffatome ein Phenylring ankondensiert sein kann,

durch eine durch eine Phenyl-, Hydroxymethyl- oder Dimethylaminogruppe substituierte Ethinylgruppe substituiert sein können, wobei

zusätzlich die vorstehend erwähnten mono- oder disubstituierten Phenylgruppen durch ein weiteres Fluor-, Chlor- oder Bromatom oder durch eine oder zwei weitere C_{1-3} -Alkyl- oder C_{1-3} -Alkoxygruppen substituiert und zwei o-ständige C_{1-3} -Alkoxygruppen durch eine Methylendioxygruppe ersetzt sein können,

insbesondere R_i ein Wasserstoffatom, eine C_{i-3} -Alkyl- oder Tri-fluormethylgruppe,

 R_2 ein Wasserstoff-, Fluor-, Chlor- oder Bromatom, eine $C_{1\text{--}3}\text{-Al-kyl-}$, $C_{3\text{--}7}\text{-Cycloalkyl-}$ oder $C_{1\text{--}3}\text{-Alkoxygruppe}$ oder auch, wenn R_4 und R_5 jeweils ein Wasserstoffatom darstellen, R_1 und R_2 zusammen eine gegebenenfalls durch eine $C_{1\text{--}3}\text{-Alkylgruppe}$ substituierte $n\text{-}C_{1\text{--}3}\text{-Alkylengruppe},$

R₃ ein Wasserstoffatom oder eine C₁₋₅-Alkylgruppe,

 R_4 und R_5 jeweils ein Wasserstoffatom oder zusammen eine weitere Kohlenstoff-Kohlenstoff-Bindung,

A eine durch ein Fluor-, Chlor-, Brom- oder Jodatom, durch eine C_{1-6} -Alkyl-, C_{3-7} -Cycloalkyl-, Phenyl-, C_{1-3} -Alkoxy-, Trifluormethyl- oder Nitrogruppe substituierte Phenyl-, Naphthyl- oder Tetrahydronaphthylgruppe, wobei die vorstehend erwähnten monosubstituierten Phenyl- und Naphthylgruppen zusätzlich durch ein Fluor-, Chlor- oder Bromatom, durch eine C_{1-3} -Alkyl- oder C_{1-3} -Alkoxygruppe substituiert sein können, mit der Maßgabe daß

A keine Phenylgruppe darstellt, die durch ein Halogenatom, durch eine Methyl-, Pentyl-, C_{1-3} -Alkoxy- oder Phenylgruppe oder durch zwei C_{1-3} -Alkoxygruppen substituiert ist, wenn

R₃ ein Wasserstoffatom,

 R_4 und R_5 jeweils ein Wasserstoffatom oder

 $R_{4}\mbox{ und }R_{5}\mbox{ zusammen eine weitere Kohlenstoff-Kohlenstoff-Bindung und}$

B eine Carboxyphenyl- oder Methoxycarbonylphenylgruppe darstellen,

und A keine Phenylgruppe darstellt, die durch eine Methyloder Phenylgruppe substituiert ist, wenn

- 19 -

R₁ und R₂ jeweils ein Wasserstoffatom,

R₃ ein Wasserstoffatom,

 $R_{4}\mbox{ und }R_{5}\mbox{ zusammen eine weitere Kohlenstoff-Kohlenstoff-Bindung und}$

B eine Carboxyphenyl- oder Methoxycarbonylphenylgruppe darstellen,

eine Naphthylgruppe,

eine Chroman- oder Chromengruppe, in der eine Methylengruppe durch eine Carbonylgruppe ersetzt sein kann,

eine im Kohlenstoffgerüst gegebenenfalls durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₃-Alkyl- oder C₁₋₃-Alkoxy-gruppe substituierte 5- oder 6-gliedrige Heteroarylgruppe, wobei die 6-gliedrigen Heteroarylgruppen ein, zwei oder drei Stickstoffatome und die 5-gliedrigen Heteroarylgruppen eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe, ein Sauerstoff- oder Schwefelatom oder eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe und ein Sauerstoff- oder Schwefelatom oder ein oder zwei Stickstoffatome enthalten und zusätzlich an die vorstehend erwähnten monocyclischen Heteroarylgruppen über zwei benachbarte Kohlenstoffatome ein Phenylring ankondensiert sein kann, welcher ebenfalls im Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₃-Alkyl- oder C₁₋₃-Alkoxy-gruppe substituiert sein kann,

eine Phenylvinylgruppe oder

 R_1 zusammen mit A und dem dazwischen liegenden Kohlenstoffatom eine C_{5-7} -Cycloalkylidengruppe, an die über zwei benachbarte Kohlenstoffatome ein Phenylring ankondensiert sein kann, welcher zusätzlich durch eine oder zwei C_{1-3} -Alkyl- oder C_{1-3} -Alk-oxygruppe substituiert sein kann, wobei die Substituenten gleich oder verschieden sein können, und

B eine Phenyl-, Naphthyl- oder Heteroarylgruppe, die jeweils durch eine Carboxygruppe, durch eine in-vivo in eine Carboxygruppe überführbare Gruppe oder durch eine unter physiologischen Bedingungen negativ geladene Gruppe substituiert sein können, wobei die vorstehend erwähnten Phenylgruppen zusätzlich

durch ein Fluor-, Chlor-, Brom- oder Jodatom,

durch eine C_{1-3} -Alkyl-, Hydroxy-, C_{1-3} -Alkoxy-, C_{1-3} -Al-kylsulfonyloxy-, Phenylsulfonyloxy-, Carboxy-, C_{1-3} -Alkoxy-carbonyl-, Formyl-, C_{1-3} -Alkylcarbonyl-, C_{1-3} -Alkylsulfonyl-, Phenylsulfonyl-, Nitro-, Pyrrolidino-, Piperidino-, Morpholino-, N-(C_{1-3} -Alkyl)-piperazino-, Aminosulfonyl-, C_{1-3} -Alkylaminosulfonyl- oder Di-(C_{1-3} -Alkyl)-aminosulfonylgruppe,

durch eine in 2- oder 3-Stellung durch eine Di- $(C_{1-3}-Alkyl)$ -aminogruppe substituierte n- $C_{2-3}-Alkoxy-$, $C_{2-3}-Alkenyl-$ oder $C_{2-3}-Alkinylgruppe$,

durch eine Amino-, N- $(C_{1-3}$ -Alkyl)-amino-, N- $(Phenyl-C_{1-3}$ -alkyl)-amino- oder N- $(Pyridyl-C_{1-3}$ -alkyl)-aminogruppe, in denen jeweils ein Wasserstoffatom der Aminogruppe durch eine C_{1-3} -Alkylsulfonyl- oder Phenylsulfonylgruppe oder durch eine C_{1-7} -Alkylgruppe, welche in 2- bis 5-Stellung durch eine C_{1-3} -Alkylgruppe, Cyano-, Amino-, C_{1-3} -Alkylamino-, Di- $(C_{1-3}$ -Alkyl)-amino- oder Tetrazolylgruppe substituiert sein kann,

durch eine durch eine Amino-, C_{1-3} -Alkylamino-, $Di-(C_{1-3}-Al-kyl)$ -amino-, Pyrrolidino-, Piperidino-, Morpholino- oder $N-(C_{1-3}-Alkyl)$ -piperazinogruppe substituierte Carbonyl- oder Sulfonylgruppe,

durch eine gegebenenfalls durch eine C_{1-4} -Alkylgruppe substituierte Imidazolyl- oder Pyrazolylgruppe, welche zu-

sätzlich durch eine C_{1-3} -Alkyl-, Phenyl-, Trifluormethyl- oder Furylgruppe substituiert sein können, und

zusätzlich durch ein weiteres Fluor-, Chlor- oder Bromatom, durch eine weitere C_{1-3} -Alkyl- oder C_{1-3} -Alkoxygruppe substituiert sein können,

und die vorstehend erwähnten 6-gliedrigen Heteroarylgruppen ein, zwei oder drei Stickstoffatome und die vorstehend erwähnten 5-gliedrigen Heteroarylgruppen eine gegebenenfalls durch eine C_{1-3} -Alkylgruppe substituierte Iminogruppe, ein Sauerstoffoder Schwefelatom oder eine gegebenenfalls durch eine C_{1-3} -Alkylgruppe substituierte Iminogruppe und ein Sauerstoff- oder Schwefelatom oder ein oder zwei Stickstoffatome enthalten und zusätzlich an die vorstehend erwähnten monocyclischen Heteroarylgruppen über zwei benachbarte Kohlenstoffatome ein Phenylring ankondensiert sein kann, welcher im Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch eine C1-3-Alkyloder C1-3-Alkoxygruppe substituiert sein kann, wobei die vorstehend erwähnten 5-gliedrigen monocyclischen Heteroarylgruppen im Kohlenstoffgerüst zusätzlich durch C1-4-Alkyl-, Trifluormethyl-, Phenyl- oder Furanylgruppe und durch eine wietere C_{1-3} -Alkylgruppe substituiert sein können,

und die bei der Definition der vorstehend erwähnten Reste erwähnten Amino- und Iminogruppen zusätzlich durch einen in vivo abspaltbaren Rest substituiert sein können,

deren Isomere und deren Salze.

Bevorzugte Verbindungen der obigen allgemeinen Formel I sind diejenigen, in denen

B und R_2 bis R_5 wie vorstehend erwähnt definiert sind,

 R_1 ein Wasserstoffatom oder eine C_{1-3} -Alkylgruppe und

A eine durch ein Fluor-, Chlor-, Brom- oder Jodatom, durch eine C_{1-6} -Alkyl-, C_{3-7} -Cycloalkyl-, Phenyl-, C_{1-3} -Alkoxy-, Trifluormethyl- oder Nitrogruppe substituierte Phenyl-, Naphthyl- oder Tetrahydronaphthylgruppe, wobei die vorstehend erwähnten monosubstituierten Phenyl- und Naphthylgruppen zusätzlich durch ein Fluor-, Chlor- oder Bromatom, durch eine C_{1-3} -Alkyl- oder C_{1-3} -Alkoxygruppe substituiert sein können, mit der Maßgabe daß

A keine Phenylgruppe, die durch Halogenatome, C_{1-4} -Alkyl-oder C_{1-3} -Alkoxygruppen mono- oder disubstituiert sein kann, wobei die Substituenten gleich oder verschieden sein können, keine 4-Biphenyl- oder Pentylphenylgruppe darstellt, wenn

 R_1 und R_2 jeweils ein Wasserstoffatom oder eine C_{1-4} -Alkylgruppe,

R₃ ein Wasserstoffatom,

 $R_{\text{\tiny 4}}$ und $R_{\text{\tiny 5}}$ jeweils ein Wasserstoffatom oder

 $\ensuremath{R_4}$ und $\ensuremath{R_5}$ zusammen eine weitere Kohlenstoff-Kohlenstoff-Bindung und

B eine Carboxyphenyl- oder Methoxycarbonylphenylgruppe darstellen,

eine Naphthylgruppe,

eine Chroman- oder Chromengruppe, in der eine Methylengruppe durch eine Carbonylgruppe ersetzt sein kann,

eine im Kohlenstoffgerüst gegebenenfalls durch ein Fluor-, Chlor- oder Bromatom, durch eine C_{1-3} -Alkyl- oder C_{1-3} -Alkoxygruppe substituierte 5- oder 6-gliedrige Heteroarylgruppe, wobei die 6-gliedrigen Heteroarylgruppen ein, zwei oder drei Stickstoffatome und die 5-gliedrigen Heteroarylgruppen eine gegebenenfalls durch eine C_{1-3} -Alkylgruppe substituierte Iminogruppe, ein Sauerstoff- oder Schwefelatom oder eine ge-

- 23 -

gebenenfalls durch eine C_{1-3} -Alkylgruppe substituierte Iminogruppe und ein Sauerstoff- oder Schwefelatom oder ein oder zwei Stickstoffatome enthalten und zusätzlich an die vorstehend erwähnten monocyclischen Heteroarylgruppen über zwei benachbarte Kohlenstoffatome ein Phenylring ankondensiert sein kann, welcher ebenfalls im Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch eine C_{1-3} -Alkyl- oder C_{1-3} -Alkoxy-gruppe substituiert sein kann, bedeuten,

deren Isomere und deren Salze.

Besonders bevorzugte neue Verbindungen der obigen allgemeinen Formel I sind diejenigen, in denen

 R_1 ein Wasserstoffatom oder eine C_{1-3} -Alkylgruppe,

 R_2 ein Wasserstoffatom oder eine Methylgruppe oder auch, wenn R_4 und R_5 jeweils ein Wasserstoffatom darstellen, R_1 und R_2 zusammen eine Methylenbrücke,

R, ein Wasserstoffatom oder eine C1-5-Alkylgruppe,

 R_4 und R_5 zusammen eine weitere Kohlenstoff-Kohlenstoff-Bindung,

A eine durch ein Fluor-, Chlor-, Brom- oder Jodatom, durch eine C₁₋₅-Alkyl-, Cyclohexyl-, Phenyl-, Methoxy-, Cyano- oder Trifluormethylgruppe substituierte Phenylgruppe,

eine durch Fluor-, Chlor- oder Bromatome, durch Methyl- oder Methoxygruppen substituierte Phenylgruppe, wobei die Substituenten gleich oder verschieden sein können, oder

eine C₁₋₃-Alkylphenylgruppe, die durch Fluor-, Chlor- oder Bromatome disubstituiert ist, wobei die Substituenten gleich oder verschieden sein können, mit der Maßgabe daß

- 24 -

A keine Phenylgruppe darstellt, die durch ein Halogenatom, durch eine Methyl-, Pentyl-, C_{1-3} -Alkoxy- oder Phenylgruppe oder durch zwei C_{1-3} -Alkoxygruppen substituiert ist, wenn

R₃ ein Wasserstoffatom,

 $R_{4}\ \text{und}\ R_{5}\ \text{jeweils}$ ein Wasserstoffatom oder

 $R_{4}\mbox{ und }R_{5}\mbox{ zusammen eine weitere Kohlenstoff-Kohlenstoff-Bindung und}$

B eine Carboxyphenyl- oder Methoxycarbonylphenylgruppe darstellen,

und A keine Phenylgruppe darstellt, die durch eine Methyloder Phenylgruppe substituiert ist, wenn

 R_1 und R_2 jeweils ein Wasserstoffatom,

R₃ ein Wasserstoffatom,

 $\ensuremath{R_4}$ und $\ensuremath{R_5}$ zusammen eine weitere Kohlenstoff-Kohlenstoff-Bindung und

B eine Carboxyphenyl- oder Methoxycarbonylphenylgruppe darstellen,

eine gegebenenfalls durch durch ein Fluor-, Chlor- oder Bromatom, durch eine Methyl- oder Methoxygruppe substituierte Naphthylgruppe,

eine Tetrahydronaphthylgruppe,

eine Chromengruppe, in der eine Methylengruppe durch eine Carbonylgruppe ersetzt ist,

eine gegebenenfalls durch eine Methylgruppe substituierte Pyridyl-, Benzofuryl-, Benzothienyl-, Chinolyl- oder Isochinolylgruppe und

B eine durch eine Carboxygruppe substituierte Cyclohexyl-, Trimethoxyphenyl-, Methylendioxyphenyl-, Naphthyl-, Pyridyl-, Thienyl-, Pyrazolyl-, Chinolyl- oder Isochinolylgruppe,

eine durch eine Carboxy-, Methoxycarbonyl-, Ethoxycarbonyl-, Hydroxymethyl-, Sulfo-, Tetrazolyl-, Methylsulfonylaminocarbonyl- oder Phenylsulfonylaminocarbonylgruppe substituierte Phenylgruppe, die zusätzlich

durch ein Fluor-, Chlor-, Brom- oder Jodatom,

durch eine Methyl-, Trifluormethyl-, Phenyl-, Hydroxymethyl-, Hydroxy-, Methoxy-, Methylsulfonyloxy-, 2-Dimethylamino-ethoxy-, Carboxy-, Nitro-, Methylsulfonylamino-, Phenylsulfonylamino-, Aminosulfonyl-, Pyrrolidino-, Piperidino- oder Morpholinogruppe,

durch eine Methylgruppe, die durch eine Amino-, C_{1-3} -Alkylamino-, Cyclopentylamino-, Pyrrolidino- oder Piperidino-gruppe substituiert ist,

durch eine Amino-, N-Methyl-amino- oder N-(2-Methoxy-ethyl)-aminogruppe, die jeweils am Aminstickstoffatom

durch eine C1-7-Alkyl- oder Phenylgruppe,

durch eine Ethylgruppe, die in 1- oder 2-Stellung durch eine Phenyl- oder Pyridylgruppe substituiert ist,

durch eine C_{2-4} -Alkylgruppe, die endständig durch eine Methoxy-, Cyano-, Dimethylamino- oder Tetrazolylgruppe substituiert ist,

durch eine Acetyl-, Benzoyl-, C₁₋₅-Alkoxycarbonyl-, Amino-carbonyl- oder Methylaminocarbonylgruppe, wobei der Aminocarbonylteil der vorstehend erwähnten Gruppen jeweils zusätzlich durch eine gegebenenfalls durch eine Phenyl-gruppe substituierte C₁₋₃-Alkylgruppe, durch eine Phenyl-, Phenoxyphenyl- oder Pyridylgruppe substituiert sein kann,

durch eine Methylsulfonyl-, Phenylsulfonyl- oder Benzylsulfonylgruppe substituiert sein kann,

durch eine Aminocarbonyl- oder Methylaminocarbonylgruppe, die jeweils am Aminstickstoffatom

durch eine C_{1-4} -Alkyl-, C_{3-6} -Cycloalkyl-, Phenyl-, Benzyl-, Pyridyl-, Pyridylmethyl- oder Methoxygruppe,

durch eine Methylgruppe, die durch eine Vinyl-, Ethinyl-, Trifluormethyl-, C₇₋₉-Azabicycloalkyl-, Carboxy- oder Imidazolylgruppe oder durch eine gegebenenfalls in 1-Stellung durch eine Methyl- oder C₁₋₅-Alkoxycarbonyl-gruppe substituierte Piperidin-4-yl-Gruppe substituiert ist,

durch eine geradkettige oder verzweigte C_{2-3} -Alkylgruppe, die in 2- oder 3-Stellung durch eine Hydroxy-, Methoxy-, Methylthio-, Amino-, Acetylamino-, C_{1-5} -Alkoxycarbonyl-amino-, Carboxy-, C_{1-5} -Alkoxycarbonyl oder Dimethylamino-gruppe substituiert ist,

durch eine Pyrrolidino-, Piperidino-, Morpholino-, 4-Methyl-piperazino-, Amino- oder Methylaminogruppe substituiert sein kann, wobei die vorstehend erwähnte Amino- und Methylaminogruppe jeweils am Aminstickstoffatom zusätzlich durch eine Methyl-, Acetyl-, Benzoyl- oder C₁₋₅-Alk-oxycarbonylgruppe substituiert sein können.

durch eine Dihydro-oxazolyl-, Dihydro-imidazolyl-, 2-Oxo-pyrrolidino-, 2-Oxo-piperidino- oder 2-Oxo-hexamethylen-iminogruppe, an die über zwei benachbarte Kohlenstoffatome ein Phenylring ankondensiert sein kann,

durch eine gegebenenfalls durch eine Methyl-, Ethyl- oder Phenylgruppe substituierte Imidazolyl- oder 4-MethylWO 01/07020

imidazolylgruppe, an die zusätzlich über zwei benachbarte Kohlenstoffatome ein Phenylring ankondensiert sein kann,

eine gegebenenfalls durch eine C_{1-4} -Alkyl- oder Furanyl- gruppe substituierte Pyrazolylgruppe, die zusätzlich durch eine Methyl- oder Trifluormethylgruppe substituiert sein kann,

durch eine durch eine Phenyl-, Hydroxymethyl- oder Dimethylaminogruppe substituierte Ethinylgruppe, wobei

zusätzlich die vorstehend erwähnten mono- oder disubstituierten Phenylgruppen durch ein weiteres Fluor-, Chlor- oder Bromatom oder durch eine oder zwei weitere Methyl- oder Methoxygruppen substituiert sein können,

insbesondere diejenigen Verbindungen, in denen

 R_1 ein Wasserstoffatom oder eine C_{1-3} -Alkylgruppe,

 R_2 ein Wasserstoffatom oder R_1 und R_2 zusammen eine Methylengruppe, wenn R_4 und R_5 gleichzeitig jeweils ein Wasserstoffatom darstellen,

R₃ ein Wasserstoffatom,

 R_4 und R_5 zusammen eine weitere Kohlenstoff-Kohlenstoff-Bindung,

A eine durch ein Fluor-, Chlor-, Brom- oder Jodatom, durch eine C_{1-6} -Alkyl-, C_{3-7} -Cycloalkyl- oder Trifluormethylgruppe mono- oder disubstituierte Phenyl- oder Naphthylgruppe, wobei die Substituenten gleich oder verschieden sein können, mit der Maßgabe, daß

A keine Phenylgruppe, die durch Halogenatome oder C_{1-4} -Alkylgruppen mono- oder disubstituiert sein kann, wobei die

Substituenten gleich oder verschieden sein können, keine 4-Biphenyl- oder Pentylphenylgruppe darstellt, wenn

 R_1 ein Wasserstoffatom oder eine C_{1-3} -Alkylgruppe,

R₂ ein Wasserstoffatom,

R₃ ein Wasserstoffatom,

 R_4 und R_5 jeweils ein Wasserstoffatom oder

 $\ensuremath{R_4}$ und $\ensuremath{R_5}$ zusammen eine weitere Kohlenstoff-Kohlenstoff-Bindung und

B eine Carboxyphenyl- oder Methoxycarbonylphenylgruppe darstellen,

eine Naphthylgruppe,

eine Chromengruppe, in der eine Methylengruppe durch eine Carbonylgruppe ersetzt ist,

eine Benzothienylgruppe und

B eine Phenyl-, Naphthyl-, Thienyl- oder Pyridinylgruppe, die jeweils durch eine Carboxygruppe substituiert sind, wobei die vorstehend erwähnten Phenylgruppen zusätzlich

durch ein Fluor-, Chlor- oder Bromatom,

durch eine C_{1-3} -Alkyl-, Hydroxy-, C_{1-3} -Alkoxy-, C_{1-3} -Al-kylsulfonyloxy-, Pyrrolidino-, Piperidino-, Morpholino-oder N-(C_{1-3} -Alkyl)-piperazinogruppe,

durch eine in 2- oder 3-Stellung durch eine Di- $(C_{1-3}-Alkyl)$ -aminogruppe substituierte $n-C_{2-3}-Alkoxygruppe$,

durch eine in 2- oder 3-Stellung durch eine Di- $(C_{1-3}-Alkyl)$ -aminogruppe substituierte N-Methyl-N- $(n-C_{2-3}-alkyl)$ -aminogruppe,

durch eine Di-(C1-3-Alkyl)-aminogruppe,

durch eine gegebenenfalls durch eine C_{1-4} -Alkylgruppe substituierte Imidazolyl- oder Pyrazolylgruppe,

durch eine C_{1-4} -Alkylaminocarbonyl-, N-(Pyridinylmethyl)-aminocarbonyl-, Pyrrolidinoaminocarbonyl- oder Piperidinoaminocarbonylgruppe und

zusätzlich durch ein weiteres Fluoratom, durch eine weitere C_{1-3} -Alkyl- oder C_{1-3} -Alkoxygruppe substituiert sein können,

bedeuten, deren Isomere und deren Salze.

Ganz besonders bevorzugte Verbindungen der allgemeinen Formel I sind diejenigen, in denen

 R_{i} eine Methylgruppe,

R₂ ein Wasserstoffatom,

R, ein Wasserstoffatom,

 R_4 und R_5 zusammen eine weitere Kohlenstoff-Kohlenstoff-Bindung,

A eine durch zwei Chlor- oder Bromatome oder durch ein Chloratom und ein Bromatom substituierte Phenylgruppe, eine Naphthyl-, 2-Oxo-chromen- oder Benzothienylgruppe mit der Maßgabe, daß

A keine Phenylgruppe, die durch Halogenatome disubstituiert ist, darstellt, wenn

- R₁ eine Methylgruppe,
- R₂ ein Wasserstoffatom,
- R₃ ein Wasserstoffatom,
- $R_{4}\ \text{und}\ R_{5}\ \text{jeweils}$ ein Wasserstoffatom oder

 R_4 und R_5 zusammen eine weitere Kohlenstoff-Kohlenstoff-Bindung und

B eine Carboxyphenyl- oder Methoxycarbonylphenylgruppe darstellen,

und B eine 2-Carboxy-phenyl-, 2-Carboxy-thienyl- oder 2-Carboxy-pyridinylgruppe bedeuten, wobei die vorstehend erwähnte 2-Carboxy-phenylgruppe zusätzlich im Phenylkern

durch ein Fluor-, Chlor- oder Bromatom,

durch eine C_{1-3} -Alkyl-, Hydroxy-, C_{1-3} -Alkoxy-, C_{1-3} -Al-kylsulfonyloxy- oder Morpholinogruppe,

durch eine in 2- oder 3-Stellung durch eine $Di-(C_{1-3}-Alkyl)$ aminogruppe substituierte $n-C_{2-3}-Alkoxygruppe$,

durch eine in 2- oder 3-Stellung durch eine Di- $(C_{1-3}-Alkyl)$ -aminogruppe substituierte N-Methyl-N- $(n-C_{2-3}-alkyl)$ -aminogruppe,

durch eine gegebenenfalls durch eine C_{1-4} -Alkylgruppe substituierte Imidazolyl- oder Pyrazolylgruppe,

durch eine C_{1-4} -Alkylaminocarbonyl-, N-(Pyridinylmethyl)- aminocarbonyl-, Pyrrolidinoaminocarbonyl- oder Piperidinoaminocarbonylgruppe und

zusätzlich durch ein weiteres Fluoratom oder durch eine weitere Methoxygruppe substituiert sein kann,

deren Isomere und deren Salze.

Als besonders bevorzugte Verbindungen seien beispielsweise folgende erwähnt:

- (1) trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-carboxy-phenyl)-amid,
- (2) trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-carboxy-4,5-di-methoxy-phenyl)-amid,
- (3) trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-carboxy-4-fluor-phenyl)-amid,
- (4) trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-carboxy-4,5-di-fluor-phenyl)-amid,
- (5) trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-carboxy-5-fluor-phenyl)-amid,
- (6) trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-carboxy-4-meth-oxy-5-methyl-phenyl)-amid,
- (7) trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-carboxy-4-(morpholin-4-yl)-phenyl]-amid,
- (8) trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-carboxy-4-dime-thylamino-phenyl)-amid,
- (9) trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-carboxy-4-hy-droxy-phenyl)-amid,
- (10) trans-3-(Naphth-2-yl)-but-2-ensäure-N-(3-carboxy-thio-phen-4-yl)-amid,
- (11) trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-carboxy-4-(imi-dazol-1-yl)-phenyl]-amid,
- (12) trans-3-(2-0xo-2H-chromen-3-yl)-but-2-ensäure-N-(2-carb-oxy-phenyl)-amid,

- 32 -

WO 01/07020 PCT/EP00/07057

- (13) trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-carboxy-4-(imi-dazol-1-yl)-5-fluor-phenyl]-amid,
- (14) trans-3-(Benzthiophen-2-yl)-but-2-ensäure-N-(2-carboxy-phenyl)-amid,
- (15) trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-carboxy-4-me-thansulfonyloxy-phenyl)-amid,
- (16) trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-carboxy-4-(2-N,N-dimethylamino-ethyloxy)-phenyl]-amid,
- (17) trans-3-(Naphth-2-yl)-but-2-ensäure-N-(4-carboxy-pyridin-3-yl)-amid,
- (18) trans-3-(3,4-Dichlorphenyl)-but-2-ensäure-N-(2-carboxy-4,5-dimethoxy-phenyl)-amid,
- (19) trans-3-(3-Chlor-4-bromphenyl)-but-2-ensäure-N-(2-carb-oxy-phenyl)-amid,
- (20) trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-carboxy-6-me-thyl-phenyl)-amid,
- (21) trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-carboxy-6-fluor-phenyl)-amid,
- (22) trans-3-(Naphth-2-yl)-but-2-ensaure-N-[2-carboxy-5-(pro-pylaminocarbonyl)-phenyl]-amid,
- (23) trans-3-(Naphth-2-yl)-but-2-ensaure-N-[2-carboxy-5-(pyr-rolidin-1-yl-aminocarbonyl)-phenyl]-amid,
- (24) trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-carboxy-5-(N-(pyridin-3-yl-methyl)-aminocarbonyl)-phenyl]-amid,

(25) trans-3-(Naphth-2-yl)-but-2-ensaure-N-(2-carboxy-6-chlor-phenyl)-amid

- 33 -

sowie deren Salze.

Die Carbonsäureamide der obigen allgemeinen Formel I erhält man beispielsweise nach folgenden an und für sich bekannten Verfahren:

a. Acylierung eines Amins der allgemeinen Formel

$$N \longrightarrow B$$
 (II)

in der

 R_{1} und B wie eingangs erwähnt definiert sind, mit einer Carbonsäure der allgemeinen Formel

$$\begin{array}{c} R_2 \\ R_2 \\ CO \\ R_4 \end{array}$$

in der

 R_1 , R_2 , R_4 , R_5 und A wie eingangs erwähnt definiert sind, oder deren reaktionsfähigen Derivate.

Die Acylierung wird zweckmäßigerweise mit einem entsprechenden Halogenid oder Anhydrid in einem Lösungsmittel wie Methylenchlorid, Chloroform, Tetrachlorkohlenstoff, Ether, Tetrahydrofuran, Dioxan, Benzol, Toluol, Acetonitril oder Sulfolan gegebenenfalls in Gegenwart einer anorganischen oder organischen Base wie Triethylamin, N-Ethyl-diisopropylamin, N-Methylmorpholin oder Pyridin bei Temperaturen zwischen -20 und 200°C, vorzugsweise jedoch bei Temperaturen zwischen -10 und 160°C, durchgeführt.

Die Acylierung kann jedoch auch mit der freien Säure gegebenenfalls in Gegenwart eines die Säure aktivierenden Mittels oder eines wasserentziehenden Mittels, z.B. in Gegenwart von Chlorameisensäureisobutylester, Thionylchlorid, Trimethylchlorsilan, Chlorwasserstoff, Schwefelsäure, Methansulfonsäure, p-Toluolsulfonsäure, Phosphortrichlorid, Phosphorpentoxid, N,N'-Dicyclohexylcarbodiimid, N,N'-Dicyclohexylcarbodiimid/N-Hydroxysuccinimid oder 1-Hydroxy-benztriazol, N,N'-Carbonyldiimidazol oder N,N'-Thionyldiimidazol oder Triphenylphosphin/Tetrachlorkohlenstoff, bei Temperaturen zwischen -20 und 200°C, vorzugsweise jedoch bei Temperaturen zwischen -10 und 160°C, durchgeführt werden.

b. Zur Herstellung eines Carbonsäureamids der allgemeinen Formel I, das eine Carboxygruppe enthält:

Überführung einer Verbindung der allgemeinen Formel

$$\begin{array}{c|c}
R_2 & R_5 & N \longrightarrow B \\
R_2 & R_4 & R_1
\end{array}$$
(IV)

in der

 R_1 bis R_5 , A und B mit der Maßgabe wie eingangs erwähnt definiert sind, daß A oder B oder A und B eine in eine Carboxygruppe überführbare Gruppe enthalten, in eine Verbindung der allgemeinen Formel I, die eine Carboxygruppe enthält.

Als eine in eine Carboxygruppe überführbare Gruppe kommt beispielsweise eine durch einen Schutzrest geschützte Carboxylgruppe wie deren funktionelle Derivate, z. B. deren unsubstituierte oder substituierte Amide, Ester, Thioester, Trimethylsilylester, Orthoester oder Iminoester, welche zweckmäßiger-

- 35 -

weise mittels Hydrolyse in eine Carboxylgruppe übergeführt werden,

deren Ester mit tertiären Alkoholen, z.B. der tert. Butylester, welche zweckmäßigerweise mittels Behandlung mit einer Säure oder Thermolyse in eine Carboxylgruppe übergeführt werden, und

deren Ester mit Aralkanolen, z.B. der Benzylester, welche zweckmäßigerweise mittels Hydrogenolyse in eine Carboxylgruppe übergeführt werden, in Betracht.

Die Hydrolyse wird zweckmäßigerweise entweder in Gegenwart einer Säure wie Salzsäure, Schwefelsäure, Phosphorsäure, Essigsäure, Trichloressigsäure, Trifluoressigsäure oder deren Gemischen oder in Gegenwart einer Base wie Lithiumhydroxid, Natriumhydroxid oder Kaliumhydroxid in einem geeigneten Lösungsmittel wie Wasser, Wasser/Methanol, Wasser/Ethanol, Wasser/Isopropanol, Methanol, Ethanol, Wasser/Tetrahydrofuran oder Wasser/Dioxan bei Temperaturen zwischen -10 und 120°C, z.B. bei Temperaturen zwischen Raumtemperatur und der Siedetemperatur des Reaktionsgemisches, durchgeführt.

Die Überführung einer tert. Butyl- oder tert.Butyloxycarbonylgruppe in eine Carboxygruppe kann auch durch Behandlung mit
einer Säure wie Trifluoressigsäure, Ameisensäure, p-Toluolsulfonsäure, Schwefelsäure, Salzsäure, Phosphorsäure oder Polyphosphorsäure gegebenenfalls in einem inerten Lösungsmittel wie
Methylenchlorid, Chloroform, Benzol, Toluol, Diethylether, Tetrahydrofuran oder Dioxan vorzugsweise bei Temperaturen zwischen -10 und 120°C, z.B. bei Temperaturen zwischen 0 und 60°C,
oder auch thermisch gegebenenfalls in einem inerten Lösungsmittel wie Methylenchlorid, Chloroform, Benzol, Toluol, Tetrahydrofuran oder Dioxan und vorzugsweise in Gegenwart einer katalytischen Menge einer Säure wie p-Toluolsulfonsäure, Schwefelsäure, Phosphorsäure oder Polyphosphorsäure vorzugsweise bei
der Siedetemperatur des verwendeten Lösungsmittels, z.B. bei
Temperaturen zwischen 40 und 120°C, durchgeführt werden.

- 36 -

Die Überführung einer Benzyloxy- oder Benzyloxycarbonylgruppe in eine Carboxygruppe kann auch hydrogenolytisch in Gegenwart eines Hydrierungskatalysators wie Palladium/Kohle in einem geeigneten Lösungsmittel wie Methanol, Ethanol, Ethanol/Wasser, Eisessig, Essigsäureethylester, Dioxan oder Dimethylformamid vorzugsweise bei Temperaturen zwischen 0 und 50°C, z.B. bei Raumtemperatur, und einem Wasserstoffdruck von 1 bis 5 bar durchgeführt werden.

Erhält man erfindungsgemäß eine Verbindung der allgemeinen Formel I, die eine Hydroxygruppe enthält, so kann diese mittels eines Sulfonylhalogenids in eine entsprechende Sulfonyloxyverbindung übergeführt werden, oder

eine Verbindung der allgemeinen Formel I, die eine Cyanogruppe enthält, so kann diese mittels Stickstoffwasserstoffsäure in eine entsprechende Tetrazolylverbindung übergeführt werden, oder

eine Verbindung der allgemeinen Formel I, die eine Amino- oder Iminogruppe mit einem basischen Wasserstoffatom enthält, so kann diese mittels Acylierung oder Sulfonylierung in eine entsprechend acylierte Verbindung oder in eine entsprechende Pro-Drug-Verbindung übergeführt werden, oder

eine Verbindung der allgemeinen Formel I, die eine Carboxygruppe enthält, so kann diese in eine Verbindung, die eine in-vivo in eine Carboxygruppe überführbare Gruppe enthält, übergeführt werden, oder

eine Verbindung der allgemeinen Formel I, die eine oder zwei Carboxygruppen enthält, so kann diese mittels Reduktion mit einem komplexen Metallhydrid in eine Verbindung, die eine oder zwei Hydroxymethylgruppen enthält, übergeführt werden.

- 37 -

Die nachträgliche Sulfonylierung wird zweckmäßigerweise mit einem entsprechenden Halogenid in einem Lösungsmittel wie Methylenchlorid, Chloroform, Tetrachlorkohlenstoff, Ether, Tetrahydrofuran, Dioxan, Benzol, Toluol, Acetonitril oder Sulfolan gegebenenfalls in Gegenwart einer anorganischen oder organischen Base wie Triethylamin, N-Ethyl-diisopropylamin, N-Methyl-morpholin oder Pyridin bei Temperaturen zwischen -20 und 200°C, vorzugsweise jedoch bei Temperaturen zwischen -10 und 160°C, durchgeführt.

Die nachträgliche Herstellung einer Verbindung der allgemeinen Formel I, die eine Tetrazolgruppe enthält, wird vorzugsweise in einem Lösungsmittel wie Benzol, Toluol oder Dimethylformamid bei Temperaturen zwischen 80 und 150°C, vorzugsweise bei 120 und 130°C, durchgeführt. Hierbei wird zweckmäßigerweise die erforderliche Stickstoffwasserstoffsäure während der Umsetzung aus einem Alkaliazid, z.B. aus Natriumazid, in Gegenwart einer schwachen Säure wie Ammoniumchlorid freigesetzt. Die Umsetzung kann auch mit einem anderen Salz oder Derivat der Stickstoffwasserstoffsäure, vorzugsweise mit Aluminiumazid oder Tributylzinnazid, erfolgen, wobei man dann die gegebenenfalls so erhaltene Tetrazolverbindung aus dem im Reaktionsgemisch enthaltenem Salz durch Ansäuern mit einer verdünnten Säure wie 2N Salzsäure oder 2N Schwefelsäure freisetzt.

Die nachträgliche Acylierung oder Sulfonylierung oder die nachträgliche Überführung in eine entsprechende Pro-Drug-Verbindung wird vorzugsweise mit einem entsprechenden Säurehalogenid in einem Lösungsmittel wie Methylenchlorid, Chloroform, Tetrachlorkohlenstoff, Ether, Tetrahydrofuran, Dioxan, Benzol, Toluol, Acetonitril oder Sulfolan gegebenenfalls in Gegenwart einer anorganischen oder organischen Base wie Triethylamin, N-Ethyl-diisopropylamin, N-Methyl-morpholin oder Pyridin bei Temperaturen zwischen -20 und 200°C, vorzugsweise jedoch bei Temperaturen zwischen -10 und 160°C, durchgeführt.

Die nachträgliche Überführung einer Carboxygruppe in eine in-vivo in eine Carboxygruppe überführbare Gruppe wird vorzugsweise durch Veresterung mit einem entsprechenden Alkohol oder durch Alkylierung der Carboxygruppe durchgeführt. Hierbei wird die Veresterung zweckmäßigerweise in einem Lösungsmittel oder Lösungsmittelgemisch wie Methylenchlorid, Benzol, Toluol, Chlorbenzol, Tetrahydrofuran, Benzol/Tetrahydrofuran oder Dioxan, vorzugsweise jedoch in einem Überschuß des eingesetzten Alkohols in Gegenwart eines wasserentziehenden Mittels, z.B. in Gegenwart von Salzsäure, Schwefelsäure, Chlorameisensäureisobutylester, Thionylchlorid, Trimethylchlorsilan, Salzsäure, Schwefelsäure, Methansulfonsäure, p-Toluolsulfonsäure, Phosphortrichlorid, Phosphorpentoxid, 2-(1H-Benzotriazol-1-yl)-1,1,3,3-tetramethyluronium-tetrafluorborat, N,N'-Dicyclohexylcarbodiimid, N,N'-Dicyclohexylcarbodiimid/N-Hydroxysuccinimid, N, N'-Carbonyldiimidazol- oder N, N'-Thionyldiimidazol, Triphenylphosphin/Tetrachlorkohlenstoff oder Triphenylphosphin/-Azodicarbonsäurediethylester gegebenenfalls in Gegenwart einer Base wie Kaliumcarbonat, N-Ethyl-diisopropylamin oder N, N-Dimethylamino-pyridin zweckmäßigerweise bei Temperaturen zwischen 0 und 150°C, vorzugsweise bei Temperaturen zwischen 0 und 80°C, und die Alkylierung mit einem entsprechenden Halogenid zweckmäßigerweise in einem Lösungsmittel wie Methylenchlorid, Tetrahydrofuran, Dioxan, Dimethylsulfoxid, Dimethylformamid oder Aceton gegebenenfalls in Gegenwart eines Reaktionsbeschleunigers wie Natrium- oder Kaliumiodid und vorzugsweise in Gegenwart einer Base wie Natriumcarbonat oder Kaliumcarbonat oder in Gegenwart einer tertiären organischen Base wie N-Ethyl-diisopropylamin oder N-Methyl-morpholin, welche gleichzeitig auch als Lösungsmittel dienen können, oder gegebenenfalls in Gegenwart von Silberkarbonat oder Silberoxid bei Temperaturen zwischen -30 und 100°C, vorzugsweise jedoch bei Temperaturen zwischen -10 und 80°C, durchgeführt.

Die anschließende Reduktion wird vorzugsweise in Gegenwart eines komplexen Metallhydrids wie Lithiumaluminiumhydrid oder Lithiumtriethylborhydrid in einem Lösungsmittel wie Tetrahydro-

WO 01/07020

- 39 -

PCT/EP00/07057

furan zweckmäßigerweise bei der Siedetemperatur des verwendeten Lösungsmittel durchgeführt.

Bei den vorstehend beschriebenen Umsetzungen können gegebenenfalls vorhandene reaktive Gruppen wie Hydroxy-, Carboxy-, Amino-, Alkylamino- oder Iminogruppen während der Umsetzung durch übliche Schutzgruppen geschützt werden, welche nach der Umsetzung wieder abgespalten werden.

Beispielsweise kommt als Schutzrest für eine Hydroxygruppe die Trimethylsilyl-, Acetyl-, Benzoyl-, Methyl-, Ethyl-, tert-Butyl-, Trityl-, Benzyl- oder Tetrahydropyranylgruppe,

als Schutzreste für eine Carboxygruppe die Trimethylsilyl-, Methyl-, Ethyl-, tert-Butyl-, Benzyl- oder Tetrahydropyran-ylgruppe, und

als Schutzreste für eine Amino-, Alkylamino- oder Iminogruppe die Formyl-, Acetyl-, Trifluoracetyl-, Ethoxycarbonyl-, tert.Butoxycarbonyl-, Benzyloxycarbonyl-, Benzyl-, Methoxybenzyl- oder 2,4-Dimethoxybenzylgruppe und für die Aminogruppe zusätzlich die Phthalylgruppe in Betracht.

Die gegebenenfalls anschließende Abspaltung eines verwendeten Schutzrestes erfolgt beispielsweise hydrolytisch in einem wässrigen Lösungsmittel, z.B. in Wasser, Isopropanol/Wasser, Essigsäure/Wasser, Tetrahydrofuran/Wasser oder Dioxan/Wasser, in Gegenwart einer Säure wie Trifluoressigsäure, Salzsäure oder Schwefelsäure oder in Gegenwart einer Alkalibase wie Natriumhydroxid oder Kaliumhydroxid oder aprotisch, z.B. in Gegenwart von Jodtrimethylsilan, bei Temperaturen zwischen 0 und 120°C, vorzugsweise bei Temperaturen zwischen 10 und 100°C.

Die Abspaltung eines Benzyl-, Methoxybenzyl- oder Benzyloxycarbonylrestes erfolgt jedoch beispielsweise hydrogenolytisch, z.B. mit Wasserstoff in Gegenwart eines Katalysators wie Pal-

WO 01/07020

- 40 -

PCT/EP00/07057

ladium/Kohle in einem geeigneten Lösungsmittel wie Methanol, Ethanol, Essigsäureethylester oder Eisessig gegebenenfalls unter Zusatz einer Säure wie Salzsäure bei Temperaturen zwischen 0 und 100°C, vorzugsweise jedoch bei Raumtemperaturen zwischen 20 und 60°C, und bei einem Wasserstoffdruck von 1 bis 7 bar, vorzugsweise jedoch von 3 bis 5 bar. Die Abspaltung eines 2,4-Dimethoxybenzylrestes erfolgt jedoch vorzugsweise in Trifluoressigsäure in Gegenwart von Anisol.

Die Abspaltung eines tert.-Butyl- oder tert.-Butyloxycarbonylrestes erfolgt vorzugsweise durch Behandlung mit einer Säure wie Trifluoressigsäure oder Salzsäure oder durch Behandlung mit Jodtrimethylsilan gegebenenfalls unter Verwendung eines Lösungsmittels wie Methylenchlorid, Dioxan, Methanol oder Diethylether.

Die Abspaltung eines Trifluoracetylrestes erfolgt vorzugsweise durch Behandlung mit einer Säure wie Salzsäure gegebenenfalls in Gegenwart eines Lösungsmittels wie Essigsäure bei Temperaturen zwischen 50 und 120°C oder durch Behandlung mit Natronlauge gegebenenfalls in Gegenwart eines Lösungsmittels wie Tetrahydrofuran bei Temperaturen zwischen 0 und 50°C.

Die Abspaltung eines Phthalylrestes erfolgt vorzugsweise in Gegenwart von Hydrazin oder eines primären Amins wie Methylamin, Ethylamin oder n-Butylamin in einem Lösungsmittel wie Methanol, Ethanol, Isopropanol, Toluol/Wasser oder Dioxan bei Temperaturen zwischen 20 und 50°C.

Die als Ausgangsstoffe verwendeten Verbindungen der allgemeinen Formeln II bis IV sind teilweise literaturbekannt, dies können jedoch nach literaturbekannten Verfahren hergestellt werden (siehe beispielsweise Fulton et al. in J.chem.Soc. 1939, Seite 200, S.Sano et al. in Chem.Commun. 6, Seite 539 (1997) und D.H.Klaubert et al. in J.Med.Chem. 24, 742-748 (1981)).

- 41 -

Ferner können die erhaltenen Verbindungen der allgemeinen Formel I, wie bereits eingangs erwähnt wurde, in ihre Enantiomeren und/oder Diastereomeren aufgetrennt werden. So können beispielsweise Verbindungen mit mindestens einem optisch aktiven Kohlenstoffatom in ihre Enantiomeren aufgetrennt werden.

So lassen sich beispielsweise die erhaltenen Verbindungen der allgemeinen Formel I, welche in Racematen auftreten, nach an sich bekannten Methoden (siehe Allinger N. L. und Eliel E. L. in "Topics in Stereochemistry", Vol. 6, Wiley Interscience, 1971) in ihre optischen Antipoden und Verbindungen der allgemeinen Formel I mit mindestes 2 stereogenen Zentren auf Grund ihrer physikalisch chemischen Unterschiede nach an sich bekannten Methoden, z.B. durch Chromatographie und/oder fraktionierte Kristallisation, in ihre Diastereomeren auftrennen, die, falls sie in racemischer Form anfallen, anschließend wie oben erwähnt in die Enantiomeren getrennt werden können.

Desweiteren können die erhaltenen Verbindungen der Formel I in ihre Salze, insbesondere für die pharmazeutische Anwendung in ihre physiologisch verträglichen Salze mit anorganischen oder organischen Säuren, übergeführt werden. Als Säuren kommen hierfür beispielsweise Salzsäure, Bromwasserstoffsäure, Schwefelsäure, Methansulfonsäure, Phosphorsäure, Fumarsäure, Bernsteinsäure, Milchsäure, Zitronensäure, Weinsäure oder Maleinsäure in Betracht.

Außerdem lassen sich die so erhaltenen neuen Verbindungen der Formel I, falls diese eine saure Gruppe wie eine Carboxygruppe enthalten, gewünschtenfalls anschließend in ihre Salze mit anorganischen oder organischen Basen, insbesondere für die pharmazeutische Anwendung in ihre physiologisch verträglichen Salze, überführen. Als Basen kommen hierbei beispielsweise Natriumhydroxid, Kaliumhydroxid, Arginin, Cyclohexylamin, Ethanolamin, Diethanolamin und Triethanolamin in Betracht.

- 42 -

Wie bereits eingangs erwähnt, weisen die Carbonsäureamide der allgemeinen Formel I und deren Salze, insbesondere deren physiologisch verträglichen Salze, eine Hemmungwirkung auf die Telomerase auf.

Die Hemmungwirkung der Carbonsäureamide der allgemeinen Formel I auf die Telomerase wurde wie folgt untersucht:

Material und Methoden:

1 Herstellung von Kernextrakten aus HeLa Zellen: Die Herstellung von Kernextrakten erfolgte in Anlehnung an Dignam (Dignam et al. in Nucleic Acids Res. 11, 1475-1489 (1983)). Alle Arbeitsschritte wurden bei 4°C durchgeführt, alle Geräte sowie Lösungen waren auf 4°C vorgekühlt. Mindestens 1 x 10° in Suspensionskultur wachsende HeLa-S3 Zellen (ATCC Katalognummer CCL-2.2) wurden durch Zentrifugation für 5 Minuten bei 1000 x g geerntet und einmal mit PBS Puffer gewaschen (140 mM KCl; 2.7 mM KCl; 8.1 mM Na₂HPO₄; 1.5 mM KH₂PO₄). Nach Bestimmen des Zellvolumens wurden die Zellen im 5-fachen Volumen hypotonischen Puffer (10 mM HEPES/KOH, pH 7.8; 10 mM KCl; 1.5 mM MgCl2) suspendiert und anschließend für 10 Minuten bei 4°C belassen. Nach Zentrifugation für 5 Minuten bei 1000 x g wurde das Zellpellet im 2-fachen Volumen hypotonischen Puffer in Gegenwart von 1 mM DTE und 1 mM PMSF suspendiert und mit einem Dounce-Homogenisator aufgebrochen. Das Homogenat wurde mit 0.1 Volumen 10-fach Salzpuffer (300 mM HEPES/KOH, pH 7.8; 1.4 M KCl; 30 mM MgCl2) isotonisch eingestellt. Die Zellkerne wurden mittels Zentrifugation von den Bestandteilen des Zytoplasmas abgetrennt und anschließend im 2-fachen Volumen Kernextraktionspuffer (20 mM HEPES/KOH, pH 7.9; 420 mM KCl; 1.5 mM MgCl₂; 0.2 mM EDTA; 0.5 mM DTE; 25% Glyzerin) suspendiert. Die Kerne wurden mit einem Dounce-Homogenisator aufgebrochen und für 30 Minuten bei 4°C unter schwachem Rühren inkubiert. Nicht-lösliche Bestandteile wurden durch Zentrifugation für 30 Minuten bei 10.000 UPM (SS-34 Rotor) abgetrennt. Anschließend wurde der Kernextrakt für 4-5 Stunden gegen Puffer AM-100

(20 mM Tris/HCl, pH 7.9; 100 mM KCl; 0.1 mM EDTA; 0.5 mM DTE; 20% Glyzerin) dialysiert. Die erhaltenen Kernextrakte wurden in flüssigem Stickstoff eingefroren und bei -80°C gelagert.

2. Telomerase Test: Die Aktivität von Telomerase in Kernextrakten aus HeLa Zellen wurde in Anlehnung an Morin bestimmt (Morin in Cell <u>59</u>, 521-529 (1989)). Der Kernextrakt (bis zu 20 μ l pro Reaktion) wurde in einem Volumen von 40 μ l in Gegenwart von 25 mM Tris/HCl pH 8.2, 1.25 mM dATP, 1.25 mM TTP, 6.35 μM dGTP; 15 μCi $\alpha\text{-}^{32}\text{P-dGTP}$ (3000 Ci/mmol), 1 mM MgCl₂, 1 mM EGTA, 1.25 mM Spermidin, 0.25 U RNasin, sowie 2.5 $\mu \mathrm{M}$ eines Oligonukleotid-Primers (zum Beispiel TEA-fw [CAT ACT GGC GAG CAG AGT T], oder TTA GGG TTA GGG TTA GGG) für 120 Minuten bei 30°C inkubiert (= Telomerasereaktion). Sollte die Inhibitionskonstante potentieller Telomerase-Inhibitoren bestimmt werden, so wurden diese noch zusätzlich jeweils im Konzentrationsbereich von 1 nM bis 100 μM zur Telomerasereaktion zugesetzt. Anschließend wurde die Reaktion durch Zusatz von 50 μ l RNase Stop Puffer (10 mM Tris/HCL, pH 8.0; 20 mM EDTA; 0.1 mg/ml RNase A 100 U/ml RNase T1; 1000 cpm eines α -32P-dGTP markierten, 430 bp DNA-Fragmentes) beendet und für weitere 15 Minuten bei 37°C inkubiert. Im Reaktionsansatz vorhandene Proteine wurden durch Zusatz von 50 μ l Proteinase K Puffer (10 mM Tris/HCL, pH 8.0; 0.5% SDS; 0.3 mg/ml Proteinase K) und einer anschließenden Inkubation für 15 min bei 37°C gespalten. Die DNA wurde durch 2-fache Phenol-Chloroform Extraktion gereinigt und durch Zusatz von 2.4 M Ammoniumacetat; 3 μg tRNA und 750 μ l Ethanol gefällt. Anschließend wurde die präzipitierte DNA mit 500 μ l 70% Ethanol gewaschen, bei Raumtemperatur getrocknet, in 4 μ l Formamid Probenpuffer (80% (V/V) Formamid; 50 mM Tris-Borat, pH 8.3; 1 mM EDTA; 0.1 (w/v) Xylen Cyanol; 0.1% (w/V) Bromphenolblau) aufgenommen und auf einem Sequenzgel (8% Polyacrylamid, 7 M Harnstoff, 1 x TBE Puffer) elektrophoretisch aufgetrennt. Die durch Telomerase in Abwesenheit oder Anwesenheit potentieller Inhibitoren synthetisierte DNA wurde mittels Phospho-Imager Analyse (Molecular Dynamics) identifiziert und quantifiziert und auf diese Weise die Inhi- 44 -

bitorkonzentration ermittelt, die die Telomerase-Aktivität zu 50% inhibiert (IC $_{50}$). Hierbei diente das mit dem RNase Stop Puffer zugesetzte, radioaktiv markierte, DNA Fragment als interne Kontrolle für die Ausbeute.

In der folgenden Tabelle sind beispielhaft die ${\rm IC}_{50}\text{-Werte}$ einiger Inhibitoren aufgeführt:

Beispiel-Nr.	IC_{50} [μ M]
10	5.0
. 17	1.0
18	0.04
28	0.035
29	0.55
31	0.10

Vorstehend wurden folgende Abkürzungen verwendet:

bp	Basenpaare
DNA	Desoxyribonucleinsäure
DTE	1,4-Dithioerythrit
datp	Desoxyadenosintriphosphat
dGTP	Desoxyguanosintriphosphat
EDTA	Ethylendiamin-tetraessigsäure
EGTA	Ethylenglykol-bis-(2-aminoethyl)-tetraessigsäure
HEPES	4-(2-Hydroxyethyl)-piperazin-1-ethansulfonsäure
PMSF	Phenylmethansulfonylfluorid
RNase	Ribonuclease
Rnasin®	Ribonuclease-Inhibitor (Promega GmbH, Mannheim)
tRNA	transfer-Ribonucleinsäure
TTP	Thymidintriphosphat
TRIS	Tris-(hydroxymethyl)-aminomethan
TBE	TRIS-borat-EDTA
UpM	Umdrehungen pro Minute

- 45 -

Auf Grund ihrer biologische Eigenschaften eignen sich die Carbonsäureamide der allgemeinen Formel I zur Behandlung pathophysiologischer Prozesse, die durch eine erhöhte Telomerase-Aktivität gekennzeichnet sind. Das sind z.B. Tumorerkrankungen wie Karzinome, Sarkome sowie Leukämien einschließlich Hautkrebs (z.B. Plattenepithelkarzinom, Basaliom,, Melanom), Kleinzelliges Bronchialkarzinom, Nicht-kleinzelliges Bronchialkarzinom, Speicheldrüsenkarzinom, Speiseröhrenkarzinom, Kehlkopfkarzinom, Mundhöhlenkarzinom, Schilddrüsenkarzinom, Magenkarzinom, Kolorektales Karzinom, Pankreaskarzinom, Bauchspeicheldrüsenkarzinom Leberkarzinom, Brustkarzinom, Uteruskarzinom, Vaginalkarzinom, Ovarialkarzinom, Prostatakarzinom, Hodenkarzinom, Blasenkarzinom, Nierenkarzinom, Wilms Tumor, Retinoblastom, Astrocytom, Oligodendrogliom, Meningiom, Neuroblastom, Myelom, Medulloblastom, Neurofibrosarkom, Thymom, Osteosarkom, Chondrosarkom, Ewing Sarkom, Fibrosarkom, Histiozytom, Dermatofibrosarkom, Synovialom, Leiomyosarkom, Rhabdomyosarkom, Liposarkom, Hodgkin Lymphom, Non-Hodgkin Lymphom, chronische myeloische Leukämie, chronische lymphatische Leukämie, akute promyelozytische Leukämie, akute lymphoblastische Leukämie und akute myeloische Leukämie.

Außerdem können die Verbindungen auch zur Behandlung anderer Krankheiten verwendet werden, die eine erhöhte Zellteilungsrate bzw. erhöhte Telomerase-Aktivität aufweisen, wie z.B. epidermale Hyperproliferation (Psoriasis), entzündliche Prozesse (Rheumatoide Arthritis), Erkrankungen des Immunsystems etc.

Die Verbindungen sind auch nützlich zur Behandlung von parasitischen Erkrankungen in Mensch und Tier, wie z.B. Wurm- oder Pilzerkrankungen sowie Erkrankungen, die durch protozoische Pathogene hervorgerufen werden, wie z.B. Zooflagellata (Trypanosoma, Leishmania, Giardia), Rhizopoda (Entamoeba spec.), Sporozoa (Plasmodium spec., Toxoplasma spec.), Ciliata etc.

Hierzu können die Carbonsäureamide der allgemeinen Formel I gegebenenfalls in Kombination mit anderen pharmakologisch

- 46 -

wirksamen Verbindungen und Therapieformen, die eine Verminderung der Tumorgröße erzielen, angewendet und in die üblichen galenischen Anwendungsformen eingearbeitet werden. Diese können beispielsweise in der Tumortherapie in Monotherapie oder in Kombination mit Bestrahlung, chirurgischen Eingriffen oder anderen Anti-Tumor Therapeutika, beispielsweise in Kombination mit Topoisomerase-Inhibitoren (z.B. Etoposide), Mitoseinhibitoren (z.B. Paclitaxel, Vinblastin), Zellzyklusinhibitoren (z.B. Flavopyridol), Inhibitoren der Signaltransduktion (z.B. Farnesyltransferase Inhibitoren), mit Nukleinsäure interagierenden Verbindungen (z.B. cis-Platin, Cyclophosphamid, Adriamycin), Hormon-Antagonisten (z.B. Tamoxifen), Inhibitoren metabolischer Prozesse (z.B. 5-FU etc.), Zytokinen (z.B. Interferonen), Tumorvakzinen, Antikörpern etc. verwendet werden. Diese Kombinationen können entweder simultan oder sequentiell verabreicht werden.

Die Tagesdosis beträgt hierbei 20 bis 600 mg per os oder intrvenös, verteilt auf ein bis viermal täglich. Hierzu lassen sich die Verbindungen der allgemeinen Formel I, gegebenenfalls in Kombination mit den oben erwähnten anderen Wirksubstanzen zusammen mit einem oder mehreren inerten üblichen Trägerstoffen und/oder Verdünnungsmitteln, z.B. mit Maisstärke, Milchzucker, Rohrzucker, mikrokristalliner Zellulose, Magnesiumstearat, Polyvinylpyrrolidon, Zitronensäure, Weinsäure, Wasser, Wasser/Ethanol, Wasser/Glycerin, Wasser/Sorbit, Wasser/Polyäthylenglykol, Propylenglykol, Cetylstearylalkohol, Carboxymethylcellulose oder fetthaltigen Substanzen wie Hartfett oder deren geeigneten Gemischen, in übliche galenische Zubereitungen wie Tabletten, Dragées, Kapseln, Pulver, Suspensionen oder Zäpfchen einarbeiten.

Die nachfolgende Beispiele sollen die Erfindung näher erläutern:

- 47 -

Beispiel 1

trans-3-Nitrozimtsäure-N-(2-methoxycarbonyl-phenyl)-amid 965 mg (5.0 mMol) trans-3-Nitrozimtsäure werden in 3 ml Thionylchlorid nach Zugabe von einem Tropfen Dimethylformamid 20 Minuten lang unter Rückfluß erhitzt. Anschließend wird bis zur Trockne im Vakuum eingedampft und das so erhaltene Säurechlorid in 10 ml Dioxan gelöst. Diese Lösung wird unter Rühren bei Raumtemperatur langsam zu einer Lösung von 756 mg (5.0 mMol) Anthranilsäuremethylester und 1.5 ml Triethylamin in 10 ml Dioxan getropft. Nach einer Stunde wird das Lösungsmittel im Vakuum abgedampft, der Rückstand in ca. 10 ml Wasser aufgerührt, dann abfiltriert und das so erhaltene Rohprodukt durch Säulenchromatographie über Kieselgel gereinigt (Elutionsmittel: Dichlormethan/Petrolether = 2:1). Ausbeute: 990 mg (61 % der Theorie), $C_{17}H_{14}N_{2}O_{5}$ (326.32) R_f -Wert: 0.20 (Kieselgel; Dichlormethan/Petrolether = 2:1)

Beispiel 2

Massenspektrum: M⁺ = 326

trans-3-Nitrozimtsäure-N-(2-carboxy-phenyl)-amid

 R_f -Wert: 0.88 (Kieselgel; Dichlormethan/Ethanol = 9:1)

500 mg (1.53 mMol) trans-3-Nitrozimtsäure-N-(2-methoxycarbon-yl-phenyl)-amid werden in einer Mischung aus 20 ml Methanol und 8 ml 2N Natronlauge zwei Stunden lang bei 50°C gerührt. Dann wird das Methanol im Vakuum abdestilliert, der Rückstand mit ca. 150 ml Wasser verdünnt und unter Rühren auf ca. pH 2.5 eingestellt. Das danach ausgefallene Produkt wird abgesaugt, mit ca. 10 ml Wasser gewaschen und getrocknet.

Ausbeute: 420 mg (88 % der Theorie),

 $C_{16}H_{12}N_2O_5$ (312.29)

 R_t -Wert: 0.39 (Kieselgel; Dichlormethan/Ethanol = 9:1)

Massenspektrum: $(M-H)^{-} = 311$

PCT/EP00/07057

WO 01/07020

Beispiel 3

trans-3-(3,4-Dichlorphenyl)-but-2-ensaure-N-(3-ethoxycarbonyl-phenyl)-amid

- 48 -

Hergestellt analog Beispiel 1 aus trans-3-(3,4-Dichlorphenyl)-but-2-ensäure und 3-Amino-benzoesäure-ethylester.

Ausbeute: 29 % der Theorie,

 $C_{19}H_{17}Cl_2NO_3$ (378.27)

R_f-Wert: 0.84 (Kieselgel; Petrolether/Essigester = 2:1)

Massenspektrum: $M^* = 377/379/381$

Beispiel 4

trans-3-(3,4-Dichlorphenyl)-but-2-ensäure-N-(3-carboxy-phe-nyl)-amid

Hergestellt analog Beispiel 2 aus trans-3-(3,4-Dichlorphenyl)-but-2-ensäure-N-(3-ethoxycarbonyl-phenyl)-amid und Natronlauge in Ethanol.

Ausbeute: 69 % der Theorie,

 $C_{17}H_{13}Cl_2NO_3$ (350.21)

R_f-Wert: 0.21 (Kieselgel; Dichlormethan/Ethanol = 19:1)

Massenspektrum: $M^{\dagger} = 349/351/353$

Beispiel 5

trans-3-(3,4-Dichlorphenyl)-but-2-ensäure-N-(4-ethoxycarbonyl-phenyl)-amid

Hergestellt analog Beispiel 1 aus trans-3-(3,4-Dichlorphenyl)but-2-ensäure und 4-Aminobenzoesäureethylester.

Ausbeute: 16 % der Theorie,

 $C_{19}H_{17}Cl_2NO_3$ (378.27)

 R_t -Wert: 0.46 (Kieselgel; Petrolether/Essigester = 2:1)

Massenspektrum: $M^* = 377/379/381$

- 49 -

Beispiel 6

trans-3-(3,4-Dichlorphenyl)-but-2-ensäure-N-(4-carboxy-phenyl)-amid

Hergestellt analog Beispiel 2 aus trans-3-(3,4-Dichlorphenyl)-but-2-ensäure-N-(4-ethoxycarbonyl-phenyl)-amid und Natronlauge in Ethanol.

Ausbeute: 78 % der Theorie,

 $C_{17}H_{13}Cl_2NO_3$ (350.21)

R_f-Wert: 0.24 (Kieselgel; Dichlormethan/Ethanol = 19:1)

Massenspektrum: $M^{+} = 349/351/353$

Beispiel 7

trans-3-(3,4-Dichlorphenyl)-but-2-ensäure-N-(5-chlor-2-meth-oxycarbonyl-phenyl)-amid

Hergestellt analog Beispiel 1 aus trans-3-(3,4-Dichlorphenyl)but-2-ensäure und 2-Amino-4-chlor-benzoesäuremethylester. Ausbeute: 33 % der Theorie.

 $C_{18}H_{14}Cl_3NO_3$ (398.69)

 R_f -Wert: 0.43 (Kieselgel; Petrolether/Essigester = 2:1)

Massenspektrum: $M^* = 397/399/401$

Beispiel 8

trans-3-(3,4-Dichlorphenyl)-but-2-ensäure-N-(2-carboxy-5-chlor-phenyl)-amid

Hergestellt analog Beispiel 2 aus trans-3-(3,4-Dichlorphenyl)-but-2-ensäure-N-(5-chlor-2-methoxycarbonyl-phenyl)-amid und Natronlauge in Ethanol.

Ausbeute: 69 % der Theorie,

 $C_{17}H_{12}Cl_3NO_3$ (384.66)

 R_f -Wert: 0.27 (Kieselgel; Dichlormethan/Ethanol = 19:1)

Massenspektrum: $M^* = 383/385/387$

- 50 .-

Beispiel 9

trans-3-(3,4-Dichlorphenyl)-but-2-ensäure-N-(2-methoxycarbo-nyl-phenyl)-amid

Hergestellt analog Beispiel 1 aus trans-3-(3,4-Dichlorphenyl)-but-2-ensäure und 2-Amino-benzoesäuremethylester.

Ausbeute: 73 % der Theorie,

 $C_{18}H_{15}Cl_2NO_3$ (364.23)

 R_f -Wert: 0.39 (Kieselgel; Petrolether/Essigester = 2:1)

Massenspektrum: $M^* = 363/365/367$

Beispiel 10

trans-3-(3,4-Dichlorphenyl)-but-2-ensäure-N-(2-carboxy-phenyl)-amid

Hergestellt analog Beispiel 2 aus trans-3-(3,4-Dichlorphenyl)-but-2-ensäure-N-(2-methoxycarbonyl-phenyl)-amid und Natron-lauge in Ethanol.

Ausbeute: 76 % der Theorie,

 $C_{17}H_{13}Cl_2NO_3$ (350.20)

 R_f -Wert: 0.25 (Kieselgel; Dichlormethan/Ethanol = 19:1)

Massenspektrum: M' = 349/351/353

Beispiel 11

trans-4-n-Pentylzimtsäure-N-(2-carboxy-5-chlor-phenyl)-amid Hergestellt analog Beispiel 2 aus trans-4-n-Pentylzimtsäure-N-(5-chlor-2-methoxycarbonyl-phenyl)-amid und Natronlauge in Ethanol.

Ausbeute: 71 % der Theorie,

 $C_{21}H_{22}ClNO_3$ (371.86)

 R_f -Wert: 0.33 (Kieselgel; Dichlormethan/Ethanol = 19:1)

Massenspektrum: M' = 371/373

Beispiel 12

trans-4-n-Pentylzimtsäure-N-(2-carboxy-phenyl)-amid Hergestellt analog Beispiel 2 aus trans-4-n-Pentylzimtsäure-N-(2-methoxycarbonyl-phenyl)-amid und Natronlauge in Methanol. Ausbeute: 77 % der Theorie, $C_{21}H_{23}NO_3$ (337.42) R_f -Wert: 0.30 (Kieselgel; Dichlormethan/Ethanol = 19:1) Massenspektrum: M' = 337 Beispiel 13 trans-3-(4-Trifluormethylphenyl)-but-2-ensäure-N-(2-carboxyphenyl)-amid Hergestellt analog Beispiel 2 aus trans-3-(4-Trifluormethylphenyl)-but-2-ensäure-N-(2-methoxycarbonyl-phenyl)-amid und Natronlauge in Methanol. Ausbeute: 31 % der Theorie, $C_{18}H_{14}F_3NO_3$ (349.32) R_t -Wert: 0.25 (Kieselgel; Dichlormethan/Ethanol = 19:1) Massenspektrum: $M^{+} = 349$ Beispiel 14 trans-3-(Biphenyl-4-yl)-but-2-ensäure-N-(2-carboxy-phenyl)-Hergestellt analog Beispiel 2 aus trans-3-(Biphenyl-4-yl)-but-2-ensäure-N-(2-methoxycarbonyl-phenyl)-amid und Natronlauge in Ethanol. Ausbeute: 11 % der Theorie, $C_{23}H_{19}NO_3$ (357.41) R_f -Wert: 0.38 (Kieselgel; Dichlormethan/Ethanol = 19:1) Massenspektrum: $M^* = 357$

- 52 -

Beispiel 15

trans-3-(3,4-Dichlorphenyl)-but-2-ensäure-N-(2-carboxy-4-me-thyl-phenyl)-amid

Hergestellt analog Beispiel 2 aus trans-3-(3,4-Dichlorphenyl)-but-2-ensäure-N-(2-methoxycarbonyl-4-methyl-phenyl)-amid und Natronlauge in Ethanol.

Ausbeute: 20 % der Theorie,

 $C_{18}H_{15}Cl_2NO_3$ (364.24)

 R_f -Wert: 0.30 (Kieselgel; Dichlormethan/Ethanol = 19:1)

Massenspektrum: $M^{+} = 363/365/367$

Beispiel 16

trans-3-(3,4-Dichlorphenyl)-but-2-ensäure-N-(2-carboxy-4,5-dimethoxy-phenyl)-amid

Hergestellt analog Beispiel 2 aus trans-3-(3,4-Dichlorphenyl)-but-2-ensäure-N-(4,5-dimethoxy-2-methoxycarbonyl-phenyl)-amid und Natronlauge in Ethanol.

Ausbeute: 54 % der Theorie,

 $C_{19}H_{17}Cl_2NO_5$ (410.27)

R_f-Wert: 0.31 (Kieselgel; Dichlormethan/Ethanol = 19:1)

Massenspektrum: $M^{+} = 409/411/413$

Beispiel 17

trans-3-(3,4-Dichlorphenyl)-but-2-ensäure-N-(2-carboxy-4-methoxy-5-methyl-phenyl)-amid

Hergestellt analog Beispiel 2 aus trans-3-(3,4-Dichlorphenyl)-but-2-ensäure-N-(4-methoxy-2-methoxycarbonyl-5-methyl-phenyl)-amid und Natronlauge in Methanol.

Ausbeute: 44 % der Theorie,

 $C_{19}H_{17}Cl_2NO_4$ (394.26)

 R_t -Wert: 0.32 (Kieselgel; Dichlormethan/Ethanol = 19:1)

Massenspektrum: $M^* = 393/395/397$

- 53 -

Beispiel 18

trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-carboxy-phenyl)-amid Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-methoxycarbonyl-phenyl)-amid und Natronlauge in Ethanol.

Ausbeute: 18 % der Theorie,

 $C_{21}H_{17}NO_3$ (331.38)

 R_f -Wert: 0.30 (Kieselgel; Dichlormethan/Ethanol = 19:1)

Massenspektrum: $M^* = 331$

Beispiel 19

trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-carboxy-5-(methoxy-aminocarbonyl)-phenyl]-amid

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-methoxycarbonyl-5-(methoxyaminocarbonyl)-phenyl]-amid und Lithiumhydroxid in Methanol/Wasser.

Ausbeute: 52 % der Theorie,

 $C_{23}H_{20}N_2O_5$ (404.42)

Massenspektrum: $(M-H)^- = 403$ $(M+Na)^+ = 427$

Beispiel 20

trans-3-(3,4-Dichlorphenyl)-but-2-ensäure-N-(4-brom-2-carboxy-6-methyl-phenyl)-amid

Hergestellt analog Beispiel 2 aus trans-3-(3,4-Dichlorphenyl)-but-2-ensäure-N-(4-brom-2-methoxycarbonyl-6-methyl-phenyl)-amid und Natronlauge in Methanol.

Ausbeute: 43 % der Theorie.

 $C_{18}H_{14}BrCl_2NO_3$ (443.15)

 R_{t} -Wert: 0.31 (Kieselgel; Dichlormethan/Ethanol = 19:1)

Massenspektrum: $M^* = 441/443/445$

Beispiel 21

trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-carboxy-5-(2-acetyl-hydrazino-carbonyl)-phenyl]-amid

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-methoxycarbonyl-5-(2-acetylhydrazino-carbonyl)-phenyl]-amid und Lithiumhydroxid in Methanol/Wasser.

Ausbeute: 35 % der Theorie, $C_{24}H_{21}N_3O_5$ (431.45) R_f -Wert: 0.18 (Kieselgel; Dichlormethan/Ethanol = 3:1)

Massenspektrum: (M-H) = 430 $(M+Na)^+ = 454$

Beispiel 22

trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-carboxy-5-(N-pyridin-3-yl-aminocarbonyl)-phenyll-amid

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-methoxycarbonyl-5-(N-pyridin-3-yl-aminocarbonyl)-phenyl]-amid und Lithiumhydroxid in Methanol/Wasser.

Ausbeute: 62 % der Theorie,

C₂₇H₂₁N₃O₄ (451.48)

Massenspektrum: (M-H) = 450

Beispiel 23

trans-3-(3,4-Dichlorphenyl)-but-2-ensäure-N-(2-carboxy-5-ni-tro-phenyl)-amid

Hergestellt analog Beispiel 2 aus trans-3-(3,4-Dichlorphenyl)-but-2-ensäure-N-(2-methoxycarbonyl-5-nitro-phenyl)-amid und

Natronlauge in Methanol.

Ausbeute: 16 % der Theorie,

C₁₇H₁₂Cl₂N₂O₅ (395.21)

R_f-Wert: 0.24 (Kieselgel; Dichlormethan/Ethanol = 9:1)

Massenspektrum: M* = 394/396/398

- 55 -

Beispiel 24

trans-3-(3,4-Dichlorphenyl)-but-2-ensaure-N-(3-carboxy-naphth-2-yl)-amid

Hergestellt analog Beispiel 2 aus trans-3-(3,4-Dichlorphenyl)-but-2-ensäure-N-(3-methoxycarbonyl-naphth-2-yl)-amid und Natronlauge in Methanol.

Ausbeute: 14 % der Theorie,

 $C_{21}H_{15}Cl_2NO_3$ (400.27)

 R_f -Wert: 0.29 (Kieselgel; Dichlormethan/Ethanol = 19:1)

Massenspektrum: $M^* = 399/401/403$

Beispiel 25

trans-4-Chlorzimtsäure-N-(2-carboxy-phenyl)-amid

Hergestellt analog Beispiel 2 aus trans-4-Chlorzimtsäure-N-(2-methoxycarbonyl-phenyl)-amid und Natronlauge in Methanol. Ausbeute: 53 % der Theorie,

 $C_{16}H_{12}ClNO_3$ (301.73)

 R_t -Wert: 0.26 (Kieselgel; Dichlormethan/Ethanol = 19:1)

Massenspektrum: M⁺ = 301/303

Beispiel 26

trans-3-(3,4-Dichlorphenyl)-but-2-ensäure-N-(2-carboxy-4-jod-phenyl)-amid

Hergestellt analog Beispiel 2 aus trans-3-(3,4-Dichlorphenyl)-but-2-ensäure-N-(2-methoxycarbonyl-4-jod-phenyl)-amid und Natronlauge in Methanol.

Ausbeute: 23 % der Theorie,

 $C_{17}H_{12}Cl_2INO_3$ (476.11)

 R_f -Wert: 0.23 (Kieselgel; Dichlormethan/Ethanol = 19:1)

Massenspektrum: $M^{+} = 475/477/479$

- 56 -

Beispiel 27

```
trans-3-(3,4-Dichlorphenyl)-but-2-ensäure-N-(2-carboxy-
4-chlor-phenyl)-amid
Hergestellt analog Beispiel 2 aus trans-3-(3,4-Dichlorphenyl)-
but-2-ensäure-N-(2-methoxycarbonyl-4-chlor-phenyl)-amid und
Natronlauge in Methanol.
Ausbeute: 18 % der Theorie,
C_{17}H_{12}Cl_3NO_3 (384.66)
R_f-Wert: 0.31 (Kieselgel; Dichlormethan/Ethanol = 9:1)
Massenspektrum: M^* = 383/385/387
Beispiel 28
trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-carboxy-4,5-dimeth-
oxy-phenyl)-amid
Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-
2-ensäure-N-(2-methoxycarbonyl-4,5-dimethoxy-phenyl)-amid und
Natronlauge in Methanol.
Ausbeute: 59 % der Theorie,
C_{23}H_{21}NO_5 (391.43)
R_t-Wert: 0.30 (Kieselgel; Dichlormethan/Ethanol = 19:1)
Massenspektrum: M<sup>+</sup> = 391
Beispiel 29
trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-carboxy-5-chlor-
phenyl)-amid
Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-
2-ensäure-N-(2-methoxycarbonyl-5-chlor-phenyl)-amid und Na-
tronlauge in Ethanol.
Ausbeute: 13 % der Theorie,
C_{21}H_{16}C1NO_3 (365.82)
R_t-Wert: 0.26 (Kieselgel; Dichlormethan/Ethanol = 19:1)
Massenspektrum: M^* = 365/367
```

- 57 -

Beispiel 30

trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-carboxy-4-methoxy-phenyl)-amid

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-methoxycarbonyl-4-methoxy-phenyl)-amid und Natronlauge in Methanol.

Ausbeute: 56 % der Theorie,

 $C_{22}H_{19}NO_4$ (361.40)

 $R_{\rm f}$ -Wert: 0.25 (Kieselgel; Dichlormethan/Ethanol = 19:1)

Massenspektrum: M' = 361

Beispiel 31

trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-carboxy-4-fluor-phe-nyl)-amid_____

577 mg (2.5 mMol) trans-3-(Naphth-2-yl)-but-2-ensäurechlorid, gelöst in 10 ml Tetrahydrofuran, werden bei Raumtemperatur langsam unter Rühren in eine Lösung von 388 mg (2.5 mMol) 2-Amino-5-fluor-benzoesäure und 303 mg Triethylamin in 20 ml Tetrahydrofuran getropft. Es wird weitere 17 Stunden bei Raumtemperatur gerührt, dann das Lösungsmittel im Vakuum abgedampft und das so erhaltene Rohprodukt durch Säulenchromatographie über Kieselgel gereinigt (Elutionsmittel: Dichlormethan mit 1 bis 2 % Ethanol).

Ausbeute: 180 mg (21 % der Theorie),

 $C_{21}H_{16}FNO_3$ (349.37)

 R_t -Wert: 0.21 (Kieselgel; Dichlormethan/Ethanol = 19:1)

Massenspektrum: M* = 349

Beispiel 32

trans-3-(Naphth-2-yl)-but-2-ensäure-N-(3-carboxy-naphth-2-yl)-amid

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-(3-methoxycarbonyl-naphth-2-yl)-amid und Natron-lauge in Methanol.

- 58 -

Ausbeute: 50 % der Theorie,

 $C_{25}H_{19}NO_3$ (381.44)

 R_t -Wert: 0.31 (Kieselgel; Dichlormethan/Ethanol = 19:1)

Massenspektrum: $M^* = 381$

Beispiel 33

trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-carboxy-4-chlor-phe-nyl)-amid

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-methoxycarbonyl-4-chlor-phenyl)-amid und Natronlauge in Methanol.

Ausbeute: 27 % der Theorie,

 $C_{21}H_{16}ClNO_3$ (365.82)

 R_t -Wert: 0.24 (Kieselgel; Dichlormethan/Ethanol = 19:1)

Massenspektrum: $M^+ = 365/367$

Beispiel 34

trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-carboxy-4-methyl-phenyl)-amid

Hergestellt analog Beispiel 31 aus trans-3-(Naphth-2-yl)-but-2-ensäurechlorid und 2-Amino-5-methyl-benzoesäure in Tetrahydrofuran unter Zusatz von Triethylamin.

Ausbeute: 34 % der Theorie,

 $C_{22}H_{19}NO_3$ (345.40)

 R_t -Wert: 0.34 (Kieselgel; Dichlormethan/Ethanol = 19:1)

Massenspektrum: M* = 345

Beispiel 35

trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-carboxy-4-acetyl-amino-phenyl)-amid

Hergestellt analog Beispiel 31 aus trans-3-(Naphth-2-yl)-but-2-ensäurechlorid und 2-Amino-5-acetylamino-benzoesäure in Tetrahydrofuran unter Zusatz von Triethylamin.

Ausbeute: 29 % der Theorie,

- 59 -

 $C_{23}H_{20}N_2O_4$ (388.43)

R_f-Wert: 0.14 (Kieselgel; Dichlormethan/Ethanol = 19:1)

Massenspektrum: M⁺ = 388

Beispiel 36

trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-carboxy-4-brom-phe-nyl)-amid

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-methoxycarbonyl-4-brom-phenyl)-amid und Natronlauge in Methanol.

Ausbeute: 10 % der Theorie,

 $C_{21}H_{16}BrNO_{3}$ (410.28)

 R_f -Wert: 0.27 (Kieselgel; Dichlormethan/Ethanol = 19:1)

Massenspektrum: $M^{+} = 409/411$ $(M-H)^{-} = 408/410$

Beispiel 37

trans-3-(Naphth-2-yl)-but-2-ensaure-N-(3-carboxy-pyridin-2-yl)-amid

Hergestellt analog Beispiel 31 aus trans-3-(Naphth-2-yl)-but-2-ensäurechlorid und 2-Aminonicotinsäure in einer Mischung aus Tetrahydrofuran und N,N'-Dimethyl-imidazolidinon unter Zusatz von Triethylamin.

Ausbeute: 18 % der Theorie,

 $C_{20}H_{16}N_2O_3$ (332.36)

 R_f -Wert: 0.17 (Kieselgel; Dichlormethan/Ethanol = 9:1)

Massenspektrum: M* = 332

Beispiel 38

trans-3-(3,4-Dichlorphenyl)-pent-2-ensäure-N-(2-carboxy-4,5-dimethoxy-phenyl)-amid

Hergestellt analog Beispiel 2 aus trans-3-(3,4-Dichlorphenyl)-pent-2-ensäure-N-(4,5-dimethoxy-2-methoxycarbonyl-phenyl)-amid und Natronlauge in Ethanol.

Ausbeute: 12 % der Theorie,

 $C_{20}H_{19}Cl_2NO_5$ (424.29)

 R_t -Wert: 0.33 (Kieselgel; Dichlormethan/Ethanol = 19:1)

Massenspektrum: $M^{+} = 423/425/427$

Beispiel 39

trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-carboxy-4,5-difluor-phenyl)-amid

Hergestellt analog Beispiel 31 aus trans-3-(Naphth-2-yl)-but-2-ensäurechlorid und 2-Amino-4,5-difluor-benzoesäure in Tetra-hydrofuran unter Zusatz von Triethylamin.

Ausbeute: 11 % der Theorie,

 $C_{21}H_{15}F_{2}NO_{3}$ (367.36)

 R_t -Wert: 0.24 (Kieselgel; Dichlormethan/Ethanol = 19:1)

Massenspektrum: $M^{\dagger} = 367$

Beispiel 40

trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-carboxy-3-fluor-phe-nyl)-amid

Hergestellt analog Beispiel 31 aus trans-3-(Naphth-2-yl)-but-2-ensäurechlorid und 2-Amino-6-fluor-benzoesäure in Tetrahydrofuran unter Zusatz von Triethylamin.

Ausbeute: 16 % der Theorie,

 $C_{21}H_{16}FNO_3$ (349.37)

R_f-Wert: 0.23 (Kieselgel; Essigester)

Massenspektrum: $M^+ = 349$

Beispiel 41

trans-3-(6-Methoxy-naphth-2-yl)-but-2-ensäure-N-(2-carboxy-4-fluor-phenyl)-amid

Hergestellt analog Beispiel 31 aus trans-3-(6-Methoxy-naphth-2-yl)-but-2-ensäurechlorid und 2-Amino-5-fluor-benzoesäure in Tetrahydrofuran unter Zusatz von Triethylamin.

Ausbeute: 8 % der Theorie,

- 61 -

 $C_{22}H_{18}FNO_4$ (379.39)

 R_f -Wert: 0.25 (Kieselgel; Dichlormethan/Ethanol = 19:1)

Massenspektrum: $M^+ = 379$

Beispiel 42

trans-3-(6-Methoxy-naphth-2-yl)-but-2-ensäure-N-(2-carboxy-4.5-dimethoxy-phenyl)-amid

Hergestellt analog Beispiel 2 aus trans-3-(6-Methoxy-naphth-2-yl)-but-2-ensäure-N-(4,5-dimethoxy-2-methoxycarbonyl-phenyl)-amid und Natronlauge in Methanol.

Ausbeute: 10 % der Theorie,

 $C_{24}H_{23}NO_6$ (421.46)

 R_f -Wert: 0.27 (Kieselgel; Dichlormethan/Ethanol = 19:1)

Massenspektrum: M = 421

Beispiel 43

trans-3-(Benzofuran-2-yl)-but-2-ensäure-N-(2-carboxy-4-fluor-phenyl)-amid

Hergestellt analog Beispiel 31 aus trans-3-(Benzofuran-2-yl)-but-2-ensäurechlorid und 2-Amino-5-fluor-benzoesäure in Tetrahydrofuran unter Zusatz von Triethylamin.

Ausbeute: 19 % der Theorie,

 $C_{19}H_{14}FNO_4$ (339.33)

 R_f -Wert: 0.21 (Kieselgel; Dichlormethan/Ethanol = 19:1)

Massenspektrum: $M^* = 339$

Beispiel 44

trans-3-(Benzofuran-2-yl)-but-2-ensäure-N-(2-carboxy-4,5-di-methoxy-phenyl)-amid

Hergestellt analog Beispiel 2 aus trans-3-(Benzofuran-2-yl)-but-2-ensäure-N-(4,5-dimethoxy-phenyl-2-methoxycarbonyl)-amid und Natronlauge in Methanol.

Ausbeute: 27 % der Theorie,

- 62 - ·

PCT/EP00/07057

 $C_{21}H_{19}NO_6$ (381.39)

 R_{t} -Wert: 0.29 (Kieselgel; Dichlormethan/Ethanol = 19:1)

Massenspektrum: M' = 381

Beispiel 45

WO 01/07020

trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-(tetrazol-5-yl)-phenvll-amid

a) trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-cyanophenyl)-amid Hergestellt analog Beispiel 31 aus trans-3-(Naphth-2-yl)-but-2-ensäurechlorid und 2-Amino-benzonitril in Tetrahydrofuran unter Zusatz von Triethylamin.

Ausbeute: 21 % der Theorie,

 $C_{21}H_{16}N_2O$ (312.38

 R_t -Wert: 0.49 (Kieselgel; Petrolether/Essigester = 4:1)

b) trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-(tetrazol-5-yl)phenyll-amid

312 mg (1.0 mMol) trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-cyanophenyl)-amid werden zusammen mit 0.98 g (15 mMol) Natriumazid und 0.8 Ammoniumchlorid in 20 ml Dimethylformamid 16 Stunden lang bei 120°C gerührt. Das Reaktionsgemisch wird nach dem Abkühlen in ca. 300 ml Wasser eingerührt und diese Lösung mit Natriumchlorid gesättigt. Das dabei auskristallisierte Produkt wird abgesaugt, mit ca. 10 ml Wasser gewaschen und getrocknet.

Ausbeute: 300 mg (84 % der Theorie),

 $C_{21}H_{17}N_5O$ (355.41)

 R_f -Wert: 0.18 (Kieselgel; Dichlormethan/Ethanol = 19:1)

Massenspektrum: M⁺ = 355

- 63 -

Beispiel 46

trans-3-(6,7,8,9-Tetrahydro-naphth-2-yl)-but-2-ensäure-N-(2-carboxy-4-fluor-phenyl)-amid_____

Hergestellt analog Beispiel 31 aus trans-3-(6,7,8,9-Tetra-hydro-naphth-2-yl)-but-2-ensäurechlorid und 2-Amino-5-fluor-benzoesäure in Tetrahydrofuran unter Zusatz von Triethylamin. Ausbeute: 16 % der Theorie,

 $C_{21}H_{20}FNO_3$ (353.40)

 R_f -Wert: 0.26 (Kieselgel; Dichlormethan/Ethanol = 19:1)

Massenspektrum: M⁺ = 353

Beispiel 47

trans-2-Methyl-3-(naphth-2-yl)-acrylsäure-N-(2-carboxy-4-fluor-phenyl)-amid

Hergestellt analog Beispiel 31 aus trans-2-Methyl-3-(naphth-2-yl)-acrylsäurechlorid und 2-Amino-5-fluor-benzoesäure in Tetrahydrofuran unter Zusatz von Triethylamin.

Ausbeute: 17 % der Theorie,

 $C_{21}H_{16}FNO_3$ (349.37)

 R_f -Wert: 0.26 (Kieselgel; Dichlormethan/Ethanol = 19:1)

Massenspektrum: $M^+ = 349$

Beispiel 48

trans-3-(3-Bromphenyl)-but-2-ensäure-N-(2-carboxy-4-fluor-phenyl)-amid

Hergestellt analog Beispiel 31 aus trans-3-(3-Bromphenyl)-but-2-ensäurechlorid und 2-Amino-5-fluor-benzoesäure in Tetrahydrofuran unter Zusatz von Triethylamin.

Ausbeute: 35 % der Theorie,

 $C_{17}H_{13}BrFNO_3$ (378.20)

 R_f -Wert: 0.20 (Kieselgel; Dichlormethan/Ethanol = 19:1)

Massenspektrum: $M^{+} = 377/379$

Beispiel 49

trans-3-(3,4-Dimethyl-phenyl)-but-2-ensäure-N-(2-carboxy-4-fluor-phenyl)-amid

Hergestellt analog Beispiel 31 aus trans-3-(3,4-Dimethyl-phenyl)-but-2-ensäurechlorid und 2-Amino-5-fluor-benzoesäure in Tetrahydrofuran unter Zusatz von Triethylamin.

Ausbeute: 52 % der Theorie,

 $C_{19}H_{18}FNO_3$ (327.36)

 R_f -Wert: 0.25 (Kieselgel; Dichlormethan/Ethanol = 19:1)

Massenspektrum: M* = 327

Beispiel 50

trans-3-(3-Pyridyl)-but-2-ensäure-N-(2-carboxy-4-fluor-phe-nyl)-amid

Hergestellt analog Beispiel 31 aus trans-3-(3-Pyridyl)-but-2-ensäurechlorid und 2-Amino-5-fluor-benzoesäure in Tetrahydrofuran unter Zusatz von Triethylamin.

Ausbeute: 8 % der Theorie,

 $C_{16}H_{13}FN_2O_3$ (300.29)

 R_f -Wert: 0.12 (Kieselgel; Dichlormethan/Ethanol = 9:1)

Massenspektrum: $(M-H)^{-} = 299$

Beispiel 51

trans-3-(4-Bromphenyl)-but-2-ensäure-N-(2-carboxy-4-fluor-phenyl)-amid

Hergestellt analog Beispiel 31 aus trans-3-(4-Bromphenyl)-but-2-ensäurechlorid und 2-Amino-5-fluor-benzoesäure in Tetrahydrofuran unter Zusatz von Triethylamin.

Ausbeute: 35 % der Theorie,

 $C_{17}H_{13}BrFNO_3$ (378.20)

 R_t -Wert: 0.45 (Kieselgel; Dichlormethan/Ethanol = 9:1)

Massenspektrum: M⁺ = 377/379

- 65 -

Beispiel 52

trans-3-(2,4-Dimethyl-phenyl)-but-2-ensäure-N-(2-carboxy-4-fluor-phenyl)-amid

Hergestellt analog Beispiel 31 aus trans-3-(2,4-Dimethyl-phenyl)-but-2-ensäurechlorid und 2-Amino-5-fluor-benzoesäure in Tetrahydrofuran unter Zusatz von Triethylamin.

Ausbeute: 22 % der Theorie,

 $C_{19}H_{18}FNO_3$ (327.36)

 R_f -Wert: 0.40 (Kieselgel; Dichlormethan/Ethanol = 9:1)

Massenspektrum: $M^{+} = 327$

Beispiel 53

trans-3-(Naphth-1-yl)-but-2-ensäure-N-(2-carboxy-4-fluor-phe-nyl)-amid

Hergestellt analog Beispiel 31 aus trans-3-(Naphth-1-yl)-but-2-ensäurechlorid und 2-Amino-5-fluor-benzoesäure in Tetrahydrofuran unter Zusatz von Triethylamin.

Ausbeute: 24% der Theorie,

 $C_{21}H_{16}FNO_3$ (349.37)

R_f-Wert: 0.15 (Kieselgel; Dichlormethan/Ethanol = 19:1)

Massenspektrum: $M^+ = 349$

Beispiel 54

trans-2-Methyl-3-(naphth-2-yl)-acrylsäure-N-(2-carboxy-4,5-di-methoxy-phenyl)-amid

Hergestellt analog Beispiel 2 aus trans-2-Methyl-3-(naphth-2-yl)-acrylsäure-N-(4,5-dimethoxy-2-methoxycarbonyl-phenyl)-amid und Natronlauge in Methanol.

Ausbeute: 47 % der Theorie,

 $C_{23}H_{21}NO_5$ (391.43)

 R_f -Wert: 0.21 (Kieselgel; Dichlormethan/Ethanol = 19:1)

Massenspektrum: $M^* = 391$

Beispiel 55

```
trans-3-(4-Cyclohexyl-phenyl)-but-2-ensäure-N-(2-carboxy-
 4-fluor-phenyl)-amid
 Hergestellt analog Beispiel 31 aus trans-3-(4-Cyclohexyl-phe-
nyl)-but-2-ensäurechlorid und 2-Amino-5-fluor-benzoesäure in
 Tetrahydrofuran unter Zusatz von Triethylamin.
 Ausbeute: 22 % der Theorie,
 C_{23}H_{24}FNO_{3} (381.45)
R<sub>f</sub>-Wert: 0.19 (Kieselgel; Dichlormethan/Ethanol = 19:1)
Massenspektrum: M^* = 381
Beispiel 56
trans-3-(4-Cyclohexyl-phenyl)-but-2-ensäure-N-(2-carboxy-
4.5-dimethoxy-phenyl)-amid
Hergestellt analog Beispiel 2 aus trans-3-(4-Cyclohexyl-phe-
nyl)-but-2-ensäure-N-(4,5-dimethoxy-phenyl-2-methoxycarbonyl)-
amid und Natronlauge in Methanol.
Ausbeute: 38 % der Theorie,
C_{25}H_{29}NO_5 (423.50)
R_f-Wert: 0.42 (Kieselgel; Dichlormethan/Ethanol = 19:1)
Massenspektrum: M^* = 423
Beispiel 57
trans-3-(Naphth-2-yl)-but-2-ensäure-N-methyl-N-(2-carboxy-phe-
nyl)-amid____
Hergestellt analog Beispiel 31 aus trans-3-(Naphth-2-yl)-but-
2-ensäurechlorid und N-Methyl-anthranilsäure in Tetrahydro-
furan unter Zusatz von Triethylamin.
Ausbeute: 14 % der Theorie,
C_{22}H_{19}NO_3 (345.40)
R_t-Wert: 0.20 (Kieselgel; Dichlormethan/Ethanol = 19:1)
Massenspektrum: M = 345
```

- 67 -

Beispiel 58

trans-3-(Naphth-2-yl)-acrylsäure-N-(2-carboxy-4-fluor-phenyl)-amid____

Hergestellt analog Beispiel 31 aus trans-3-(Naphth-2-yl)-acrylsäurechlorid und 2-Amino-5-fluor-benzoesäure in Tetrahydrofuran unter Zusatz von Triethylamin.

Ausbeute: 26 % der Theorie,

 $C_{20}H_{14}FNO_3$ (335.34)

R_f-Wert: 0.18 (Kieselgel; Dichlormethan/Ethanol = 19:1)

Massenspektrum: M⁺ = 335

Beispiel 59

trans-3-(Naphth-2-yl)-acrylsäure-N-(2-carboxy-4,5-dimethoxy-phenyl)-amid

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-acryl-säure-N-(4,5-dimethoxy-2-methoxycarbonyl-phenyl)-amid und Natronlauge in Methanol.

Ausbeute: 34 % der Theorie,

 $C_{22}H_{19}NO_5$ (377.40)

 R_f -Wert: 0.23 (Kieselgel; Dichlormethan/Ethanol = 19:1)

Massenspektrum: M* = 377

Beispiel 60

trans-(4-Methyl-indan-1-yliden)-essigsäure-N-(2-carboxy-4-fluor-phenyl)-amid

a) trans-(4-Methyl-indan-1-yliden)-essigsäureethylester
6.73 g (30 mMol) Phosphonoessigsäuretriethylester werden in
60 ml Dimethylformamid gelöst, dann 3.37 g (30 mMol) Kaliumtert.butylat hinzugefügt und 15 Minuten bei Raumtemperatur
gerührt. Danach werden 4.39 g (30 mMol) 4-Methylindan hinzugegeben und weitere zwei Tage bei Raumtemperatur gerührt. Das
Reaktionsgemisch wird auf ca. 200 ml Wasser gegossen, mit Natriumchlorid gesättigt und dreimal mit Essigester extrahiert.

- 68 -

Der Extrakt wird mit Wasser gewaschen, über Natriumsulfat getrocknet und eingeengt. Das so erhaltene Rohprodukt wird durch Säulenchromatographie über Kieselgel (Elutionsmittel: Petrolether mit 2 % Essigester) gereinigt.

Ausbeute: 1.7 g (26 % der Theorie),

 $C_{14}H_{16}O_2$ (216.28)

 R_f -Wert: 0.78 (Kieselgel; Petrolether/Essigester = 4:1)

b) trans-(4-Methyl-indan-1-yliden)-essigsäure

Hergestellt analog Beispiel 2 aus trans-(4-Methyl-indan-1-yliden)-essigsäureethylester und Natronlauge in Methanol. Ausbeute: 91 % der Theorie.

 $C_{12}H_{12}O_2$ (188.23)

 R_f -Wert: 0.22 (Kieselgel; Dichlormethan/Ethanol = 19:1)

c) trans-(4-Methyl-indan-1-yliden)-essigsäurechlorid 941 mg (5 mMol) trans-(4-Methyl-indan-1-yliden)-essigsäure werden in 10 ml Thionylchlorid nach Zusatz von einem Tropfen

Dimethylformamid 15 Minuten zum Rückfluß erhitzt. Danach wird zur Trockne eingedampft und das so erhaltene Säurechlorid roh weiter umgesetzt.

d) trans-(4-Methyl-indan-1-yliden)-essigsäure-N-(2-carboxy-4-fluor-phenyl)-amid

Hergestellt analog Beispiel 31 aus trans-(4-Methyl-indan-1-yliden)essigsäurechlorid und 2-Amino-5-fluor-benzoesäure in Tetrahydrofuran unter Zusatz von Triethylamin.

Ausbeute: 28 % der Theorie,

 $C_{19}H_{16}FNO_3$ (325.35)

 R_f -Wert: 0.24 (Kieselgel; Dichlormethan/Ethanol = 19:1)

Massenspektrum: $M^+ = 325$

- 69 -

Beispiel 61

trans-(4-Methyl-indan-1-yliden)-essigsäure-N-(2-carboxy-4.5-dimethoxy-phenyl)-amid

Hergestellt analog Beispiel 2 aus trans-(4-Methyl-indan-1-yliden)-essigsäure-N-(4,5-dimethoxy-phenyl-2-methoxycarbonyl)-amid und Natronlauge in Methanol.

Ausbeute: 64 % der Theorie,

 $C_{21}H_{21}NO_5$ (367.41)

R_f-Wert: 0.27 (Kieselgel; Petrolether/Essigester = 19:1)

Massenspektrum: M⁺ = 367

Beispiel 62

trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-carboxy-5-fluor-phe-nyl)-amid

Hergestellt analog Beispiel 31 aus trans-3-(Naphth-2-yl)-but-2-ensäurechlorid und 2-Amino-4-fluor-benzoesäure in Tetrahydrofuran unter Zusatz von Triethylamin.

Ausbeute: 11 % der Theorie,

 $C_{21}H_{16}FNO_{3}$ (349.37)

 R_f -Wert: 0.22 (Kieselgel; Dichlormethan/Ethanol = 19:1)

Massenspektrum: $M^* = 349$

Beispiel 63

trans-3-(3,4-Dimethoxy-phenyl)-but-2-ensäure-N-(2-carboxy-4-fluor-phenyl)-amid

Hergestellt analog Beispiel 31 aus trans-3-(3,4-Dimethoxy-phenyl)-but-2-ensäurechlorid und 2-Amino-5-fluor-benzoesäure in Tetrahydrofuran unter Zusatz von Triethylamin.

Ausbeute: 27 % der Theorie,

 $C_{19}H_{18}FNO_5$ (359.36)

 R_t -Wert: 0.20 (Kieselgel; Dichlormethan/Ethanol = 19:1)

Massenspektrum: M* = 359

- 70 -

Beispiel 64

trans-3-(4-Isobutyl-phenyl)-but-2-ensaure-N-(2-carboxy-4-fluor-phenyl)-amid

Hergestellt analog Beispiel 31 aus trans-3-(4-Isobutyl-phe-nyl)-but-2-ensäurechlorid und 2-Amino-5-fluor-benzoesäure in Tetrahydrofuran unter Zusatz von Triethylamin.

Ausbeute: 38 % der Theorie,

 $C_{21}H_{22}FNO_3$ (355.42)

 R_f -Wert: 0.31 (Kieselgel; Dichlormethan/Ethanol = 19:1)

Massenspektrum: M* = 355

Beispiel 65

trans-3-(4-Isobutyl-phenyl)-but-2-ensäure-N-(2-carboxy-4,5-di-methoxy-phenyl)-amid

Hergestellt analog Beispiel 2 aus trans-3-(4-Isobutyl-phenyl)-but-2-ensäure-N-(4,5-dimethoxy-2-methoxycarbonyl-phenyl)-amid und Natronlauge in Methanol.

Ausbeute: 22 % der Theorie,

 $C_{23}H_{27}NO_{5}$ (397.48)

 R_f -Wert: 0.30 (Kieselgel; Dichlormethan/Ethanol = 19:1)

Massenspektrum: M⁺ = 397

Beispiel 66

trans-3-(Benzthiophen-3-yl)-but-2-ensäure-N-(2-carboxy-4-fluor-phenyl)-amid

Hergestellt analog Beispiel 31 aus trans-3-(Benzthiophen-3-yl)-but-2-ensäurechlorid und 2-Amino-5-fluor-benzoesäure in Tetrahydrofuran unter Zusatz von Triethylamin.

Ausbeute: 19 % der Theorie,

 $C_{19}H_{14}FNO_3S$ (355.40)

R_f-Wert: 0.24 (Kieselgel; Dichlormethan/Ethanol = 19:1)

Massenspektrum: $M^+ = 355$

- 71 -

Beispiel 67

trans-3-(Benzthiophen-3-yl)-but-2-ensäure-N-(2-carboxy-4,5-di-methoxy-phenyl)-amid

Hergestellt analog Beispiel 2 aus trans-3-(Benzthiophen-3-yl)-but-2-ensäure-N-(4,5-dimethoxy-2-methoxycarbonyl-phenyl)-amid und Natronlauge in Methanol.

Ausbeute: 27 % der Theorie,

C₂₁H₁₉NO₅S (397.46)

R_f-Wert: 0.24 (Kieselgel; Dichlormethan/Ethanol = 19:1)

Massenspektrum: M⁺ = 397

Beispiel 68

trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-carboxy-4-methoxy-5-methyl-phenyl)-amid

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-methoxycarbonyl-4-methoxy-5-methyl-phenyl)-amid und Natronlauge in Methanol.

Ausbeute: 40 % der Theorie,

 $C_{23}H_{21}NO_4$ (375.43)

 R_f -Wert: 0.37 (Kieselgel; Dichlormethan/Ethanol = 9:1)

Massenspektrum: $M^* = 375$

Beispiel 69

trans-(5,7-Dimethyl-3,4-dihydro-2H-naphthalin-1-yliden)-essig-säure-N-(2-carboxy-4-fluor-phenyl)-amid

a) trans-(5,7-Dimethyl-3,4-dihydro-2H-naphthalin-1-yliden)-essigsäureethylester

Hergestellt analog Beispiel 60a aus Phosphonoessigsäuretriethylester und 5,7-Dimethyl-1-tetralon.

Ausbeute: 22 % der Theorie,

 $C_{16}H_{20}O_{2}$ (244.34)

R_f-Wert: 0.70 (Kieselgel; Petrolether/Essigester = 19:1)

- 72 -

PCT/EP00/07057

b) trans-(5,7-Dimethyl-3,4-dihydro-2H-naphthalin-1-yliden)-essigsäure

Hergestellt analog Beispiel 2 aus trans-(5,7-Dimethyl-3,4-di-hydro-2H-naphthalin-1-yliden)-essigsäureethylester und Natron-lauge in Methanol.

Ausbeute: 96 % der Theorie,

 $C_{14}H_{16}O_2$ (216.28)

 R_f -Wert: 0.30 (Kieselgel; Dichlormethan/Ethanol = 19:1)

c) trans-(5,7-Dimethyl-3,4-dihydro-2H-naphthalin-1-yliden)-essigsäurechlorid

Hergestellt analog Beispiel 60c aus trans-(5,7-Dimethyl-3,4-dihydro-2H-naphthalin-1-yliden)-essigsäure und Thionylchlorid. $C_{14}H_{15}Clo~(234.73)$

d) trans-(5,7-Dimethyl-3,4-dihydro-2H-naphthalin-1-yliden)-essigsäure-N-(2-carboxy-4-fluor-phenyl)-amid

Hergestellt analog Beispiel 31 aus trans-(5,7-Dimethyl-3,4-di-hydro-2H-naphthalin-1-yliden)-essigsäurechlorid und 2-Amino-5-fluor-benzoesäure in Tetrahydrofuran unter Zusatz von Triethylamin.

Ausbeute: 12 % der Theorie,

 $C_{21}H_{20}FNO_3$ (353.40)

 R_f -Wert: 0.28 (Kieselgel; Dichlormethan/Ethanol = 19:1)

Massenspektrum: M⁺ = 353

Beispiel 70

trans-3-(Chinolin-2-yl)-but-2-ensäure-N-(2-carboxy-4-fluor-phenyl)-amid

Hergestellt analog Beispiel 31 aus trans-3-(Chinolin-2-yl)-but-2-ensäurechlorid und 2-Amino-5-fluor-benzoesäure in Tetrahydrofuran unter Zusatz von Triethylamin.
Ausbeute: 13 % der Theorie.

- 73 -

```
C_{20}H_{15}FN_2O_3 (350.35)
R<sub>f</sub>-Wert: 0.14 (Kieselgel; Dichlormethan/Ethanol = 19:1)
Massenspektrum: M<sup>+</sup> = 350
                 (M+H)^* = 351
                 (M-H)^{-} = 349
Beispiel 71
trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-carboxy-4-(morpholin-
4-yl)-phenyll-amid
Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-
2-ensäure-N-[2-ethoxycarbonyl-4-(morpholin-4-yl)-phenyl]-amid
und Natronlauge in Ethanol.
Ausbeute: 64 % der Theorie,
C_{25}H_{24}N_2O_4 (416.48)
R_f-Wert: 0.32 (Kieselgel; Dichlormethan/Ethanol = 9:1)
Massenspektrum: M' = 416
Beispiel 72
```

```
trans-3-(3,4-Dichlor-phenyl)-but-2-ensäure-N-[2-carboxy-
 4-(morpholin-4-yl)-phenyll-amid
 Hergestellt analog Beispiel 2 aus trans-3-(3,4-Dichlor-phe-
 nyl)-but-2-ensäure-N-[2-ethoxycarbonyl-4-(morpholin-4-yl)-
 phenyl] -amid und Natronlauge in Ethanol.
Ausbeute: 73 % der Theorie,
 C_{21}H_{20}Cl_2N_2O_4 (435.31)
 R_f-Wert: 0.46 (Kieselgel; Dichlormethan/Ethanol = 9:1)
 Massenspektrum: M^* = 434/436
                 (M+H)^{+} = 435/437
                 (M-H)^{-} = 433/435
```

- 74 -

Beispiel 73

trans-3-(6-Methyl-naphth-2-yl)-but-2-ensäure-N-(2-carboxy-phenyl)-amid

Hergestellt analog Beispiel 31 aus trans-3-(6-Methyl-naphth-2-yl)-but-2-ensäurechlorid und Anthranilsäure in Tetrahydrofuran unter Zusatz von Triethylamin.

Ausbeute: 23 % der Theorie, $C_{22}H_{19}NO_3$ (345.40) R_f -Wert: 0.18 (Kieselgel; Dichlormethan/Ethanol = 19:1)

Massenspektrum: M^+ = 345 $(M+H)^+$ = 346 $(M-H)^-$ = 344

Beispiel 74

trans-3-(6-Methyl-naphth-2-yl)-but-2-ensäure-N-(2-carboxy-4-fluor-phenyl)-amid

Hergestellt analog Beispiel 31 aus trans-3-(6-Methyl-naphth-2-yl)-but-2-ensäurechlorid und 2-Amino-5-fluor-benzoesäure in Tetrahydrofuran unter Zusatz von Triethylamin.

Ausbeute: 18 % der Theorie,

 $C_{22}H_{18}FNO_3$ (363.39)

 R_f -Wert: 0.20 (Kieselgel; Dichlormethan/Ethanol = 19:1)

Massenspektrum: M' = 363

Beispiel 75

trans-3-(6-Methyl-naphth-2-yl)-but-2-ensäure-N-(2-carboxy-5-fluor-phenyl)-amid

Hergestellt analog Beispiel 31 aus trans-3-(6-Methyl-naphth-2-yl)-but-2-ensäurechlorid und 2-Amino-4-fluor-benzoesäure in Tetrahydrofuran unter Zusatz von Triethylamin.

Ausbeute: 32 % der Theorie,

 $C_{22}H_{18}FNO_3$ (363.39)

 R_{t} -Wert: 0.22 (Kieselgel; Dichlormethan/Ethanol = 19:1)

Massenspektrum: $M^* = 363$

- 75 -

Beispiel 76

```
trans-3-(6-Methyl-naphth-2-yl)-but-2-ensäure-N-(2-carboxy-4.5-dimethoxy-phenyl)-amid

Hergestellt analog Beispiel 2 aus trans-3-(6-Methyl-naphth-2-yl)-but-2-ensäure-N-(4.5-dimethoxy-methoxycarbonyl-phenyl)-amid und Natronlauge in Methanol.

Ausbeute: 67 % der Theorie,

C<sub>24</sub>H<sub>23</sub>NO<sub>5</sub> (405.45)

R<sub>f</sub>-Wert: 0.21 (Kieselgel; Dichlormethan/Ethanol = 19:1)

Massenspektrum: M* = 405

(M+Na)* = 428

(M-H)* = 404
```

Beispiel 77

```
trans-3-(3,4-Dichlor-phenyl)-but-2-ensäure-N-(2-carboxy-4-di-methylamino-phenyl)-amid

Hergestellt analog Beispiel 2 aus trans-3-(3,4-Dichlor-phenyl)-but-2-ensäure-N-(2-ethoxycarbonyl-4-dimethylamino-phenyl)-amid und Natronlauge in Ethanol.

Ausbeute: 47 % der Theorie,

C<sub>19</sub>H<sub>18</sub>Cl<sub>2</sub>N<sub>2</sub>O<sub>3</sub> (393.27)

R<sub>f</sub>-Wert: 0.55 (Kieselgel; Dichlormethan/Ethanol = 9:1)

Massenspektrum: M* = 392/394

(M+H)* = 393/395

(M-H)* = 391/393
```

Beispiel 78

```
trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-carboxy-4-dimethyl-mino-phenyl)-amid

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-
2-ensäure-N-(2-ethoxycarbonyl-4-dimethylamino-phenyl)-amid und
Natronlauge in Ethanol.

Ausbeute: 84 % der Theorie,
```

- 76 -

```
C_{23}H_{22}N_2O_3 (374.44) R_f\text{-Wert: 0.59 (Kieselgel; Dichlormethan/Ethanol = 9:1)} Massenspektrum: M^* = 374 (M-H)^- = 373
```

Beispiel 79

trans-3-(Naphth-2-yl)-but-2-ensäure-N-(n-pentyl)-N-(3-carboxy-4-amino-phenyl)-amid

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-(n-pentyl)-N-(3-ethoxycarbonyl-4-amino-phenyl)-amid und Natronlauge in Ethanol.

Ausbeute: 65 % der Theorie,

 $C_{26}H_{28}N_2O_3$ (416.52)

 R_t -Wert: 0.51 (Kieselgel; Dichlormethan/Ethanol = 9:1)

Massenspektrum: $M^{+} = 416$ $(M+H)^{-} = 417$ $(M-H)^{-} = 415$

Beispiel 80

trans-3-(2,4-Dichlorphenyl)-but-2-ensäure-N-(2-carboxy-4-fluor-phenyl)-amid

Hergestellt analog Beispiel 31 aus trans-3-(2,4-Dichlorphen-yl)-but-2-ensäurechlorid und 2-Amino-5-fluor-benzoesäure in Tetrahydrofuran unter Zusatz von Triethylamin.

Ausbeute: 16 % der Theorie,

 $C_{17}H_{12}Cl_2FNO_3$ (368.19)

 R_f -Wert: 0.21 (Kieselgel; Dichlormethan/Ethanol = 19:1)

Massenspektrum: $M^+ = 367/369/371$

- 77 -

Beispiel 81

trans-3-(2,4-Dichlorphenyl)-but-2-ensäure-N-(2-carboxy-4,5-di-methoxy-phenyl)-amid

Hergestellt analog Beispiel 2 aus trans-3-(2,4-Dichlorphenyl)-but-2-ensäure-N-(2-methoxycarbonyl-4,5-dimethoxy-phenyl)-amid und Natronlauge in Methanol.

Ausbeute: 97 % der Theorie,

 $C_{19}H_{17}Cl_{2}NO_{5}$ (410.26)

 R_f -Wert: 0.25 (Kieselgel; Dichlormethan/Ethanol = 19:1)

Massenspektrum: $M^+ = 409/411/413$

Beispiel 82

trans-2-Methyl-3-(naphth-2-yl)-but-2-ensäure-N-(2-carboxy-4-fluor-phenyl)-amid

Hergestellt analog Beispiel 31 aus trans-2-Methyl-3-(naphth-2-yl)-but-2-ensäurechlorid und 2-Amino-5-fluor-benzoesäure in Tetrahydrofuran unter Zusatz von Triethylamin.

Ausbeute: 12 % der Theorie,

 $C_{22}H_{18}FNO_3$ (363.39)

 R_f -Wert: 0.21 (Kieselgel; Dichlormethan/Ethanol = 19:1)

Massenspektrum: $M^+ = 363$ $(M-H)^- = 362$

Beispiel 83

cis-2-Fluor-3-(naphth-2-yl)-but-2-ensäure-N-(2-carboxy-4-fluor-phenyl)-amid

Hergestellt analog Beispiel 31 aus cis-2-Fluor-3-(naphth-2-yl)-but-2-ensäurechlorid und 2-Amino-5-fluor-benzoesäure in Tetrahydrofuran unter Zusatz von Triethylamin.

Ausbeute: 9 % der Theorie,

 $C_{21}H_{15}F_{2}NO_{3}$ (367.36)

 R_f -Wert: 0.18 (Kieselgel; Dichlormethan/Ethanol = 19:1)

- 78 -

Massenspektrum: $M^* = 367$ $(M+H)^* = 368$ $(M-H)^- = 366$

Beispiel 84

trans-2-Methyl-3-(naphth-2-yl)-but-2-ensäure-N-(2-carboxy-4,5-dimethoxy-phenyl)-amid

Hergestellt analog Beispiel 2 aus trans-2-Methyl-3-(naphth-2-yl)-but-2-ensäure-N-(2-methoxycarbonyl-4,5-dimethoxy-phenyl)-amid und Natronlauge in Methanol.

Ausbeute: 48 % der Theorie,

 $C_{24}H_{23}NO_5$ (405.45)

 R_f -Wert: 0.32 (Kieselgel; Dichlormethan/Ethanol = 19:1)

Massenspektrum: $(M+H)^+ = 406$ $(M+Na)^+ = 428$ $(M-H)^- = 404$

Beispiel 85

trans-2-Methoxy-3-(naphth-2-yl)-acrylsäure-N-(2-carboxy-4-fluor-phenyl)-amid

Hergestellt analog Beispiel 31 aus trans-2-Methoxy-3-(naphth-2-yl)-acrylsäurechlorid und 2-Amino-5-fluor-benzoesäure in Tetrahydrofuran unter Zusatz von Triethylamin.

Ausbeute: 29 % der Theorie,

 $C_{21}H_{16}FNO_4$ (365.36)

 R_{t} -Wert: 0.19 (Kieselgel; Dichlormethan/Ethanol = 19:1)

Massenspektrum: $M^{+} = 365$ $(M-H)^{-} = 364$

PCT/EP00/07057

Beispiel 86

WO 01/07020

```
trans-2-Methoxy-3-(naphth-2-yl)-acrylsäure-N-(2-carboxy-
4.5-dimethoxy-phenyl)-amid
Hergestellt analog Beispiel 2 aus trans-2-Methoxy-3-(naphth-
2-yl)-acrylsäure-N-(2-methoxycarbonyl-4,5-dimethoxy-phenyl)-
amid und Natronlauge in Methanol.
Ausbeute: 75 % der Theorie,
C_{23}H_{21}NO_6 (407.43)
R<sub>f</sub>-Wert: 0.46 (Kieselgel; Dichlormethan/Ethanol = 19:1)
Massenspektrum: M = 407
                (M-H)^{-} = 406
Beispiel 87
trans-3-(naphth-2-yl)-but-2-ensäure-N-(cis-2-carboxy-cyclo-
hexyl)-amid
Hergestellt analog Beispiel 2 aus trans-3-(naphth-2-yl)-but-
2-ensäure-N-(cis-2-ethoxycarbonyl-cyclohexyl)-amid und Natron-
lauge in Methanol.
Ausbeute: 96 % der Theorie,
C_{21}H_{23}NO_3 (337.42)
R_f-Wert: 0.31 (Kieselgel; Dichlormethan/Ethanol = 9:1)
Massenspektrum: M* = 337
                (M+Na)^* = 360
                (M-H)^{-} = 336
```

- 79 -

Beispiel 88

```
trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-carboxy-4-(N´-methyl-N´-benzyl-amino)-phenyl]-amid

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-ethoxycarbonyl-4-(N´-methyl-N´-benzyl-amino)-phenyl]-amid und Natronlauge in Ethanol.

Ausbeute: 74 % der Theorie,
```

- 80 -

```
C_{29}H_{26}N_2O_3 (450.54) R_f\text{-Wert: 0.32 (Kieselgel; Dichlormethan/Ethanol = 19:1)} Massenspektrum: M^* = 450  (M-H)^- = 449
```

Beispiel 89

trans-3-(Naphth-2-yl)-but-2-ensäure-N-{2-carboxy-4-[N-methyl- $N-(2-(N',N'-dimethylamino)-ethyl)-aminol-phenyl}-amid$ Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-{2-ethoxycarbonyl-4-[N-methyl-N-(2-(N',N'-dimethylamino)-ethyl)-amino]-phenyl}-amid und Natronlauge in Ethanol.

Ausbeute: 69 % der Theorie, $C_{26}H_{29}N_3O_3 \ (431.54)$ $R_f-Wert: 0.13 \ (Kieselgel; Dichlormethan/Ethanol = 4:1)$ $Massenspektrum: M^* = 431$ $(M+H)^* = 432$ $(M+Na)^* = 454$ $(M-H)^* = 430$

Beispiel 90

```
trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-carboxy-4-(N´-methyl-N´-(2-phenylethyl)-amino)-phenyl]-amid

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-ethoxycarbonyl-4-(N´-methyl-N´-(2-phenylethyl)-amino)-phenyl]-amid und Natronlauge in Ethanol.

Ausbeute: 49 % der Theorie,

C<sub>30</sub>H<sub>28</sub>N<sub>2</sub>O<sub>3</sub> (464.57)

R<sub>f</sub>-Wert: 0.31 (Kieselgel; Dichlormethan/Ethanol = 19:1)

Massenspektrum: M* = 464

(M-H) = 463
```

PCT/EP00/07057

- 81 -

Beispiel 91

trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-carboxy-4-(N´-methyl-N´-n-heptyl-amino)-phenyl]-amid

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-ethoxycarbonyl-4-(N´-methyl-N´-n-heptyl-amino)-phenyl]-amid und Natronlauge in Ethanol.

Ausbeute: 39 % der Theorie,

C₂₉H₃₄N₂O₃ (458.61)

R_f-Wert: 0.39 (Kieselgel; Dichlormethan/Ethanol = 19:1)

Massenspektrum: M* = 458

(M+H)* = 459

(M+Na)* = 481

(M-H) = 457

Beispiel 92

trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-carboxy-4-(N´-methyl- N^- (3-pyridylmethyl)-amino)-phenyl]-amid

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-ethoxycarbonyl-4-(N´-methyl-N´-(3-pyridylme-thyl-amino)-phenyl]-amid und Natronlauge in Ethanol.

Ausbeute: 41 % der Theorie, $C_{28}H_{25}N_3O_3$ (451.53) R_f -Wert: 0.58 (Kieselgel; Dichlormethan/Ethanol = 9:1)

Massenspektrum: M^+ = 451 $(M+H)^+$ = 452 $(M-H)^-$ = 450

Beispiel 93

trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-carboxy-4-(N'-methyl-N'-(2-(pyrid-2-yl)-ethyl)-amino)-phenyll-amid

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-ethoxycarbonyl-4-(N'-methyl-N'-(2-(pyrid-2-yl)-ethyl)-amino)-phenyl]-amid und Natronlauge in Ethanol.

Ausbeute: 75 % der Theorie,

- 82 -

 $C_{29}H_{27}N_3O_3$ (465.56) $R_f\text{-Wert: 0.52 (Kieselgel; Dichlormethan/Ethanol = 9:1)}$ Massenspektrum: $M^*=465$ $(M+H)^*=466$ $(M-H)^-=464$

Beispiel 94

trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-carboxy-4-(N-methyl-N-(3-(N´,N´-dimethylamino)-propyl)-amino)-phenyl]-amid

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-ethoxycarbonyl-4-(N-methyl-N-(3-(N´,N´-dimethylamino)-propyl)-amino)-phenyl]-amid und Natronlauge in Ethanol.

Ausbeute: 56 % der Theorie, $C_{27}H_{31}N_3O_3 \ (445.57)$ $R_f\text{-Wert: 0.11 (Kieselgel; Dichlormethan/Ethanol = 9:1)}$ $Massenspektrum: M^+ = 445$ $(M+H)^+ = 446$ $(M+Na)^+ = 468$

Beispiel 95

trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-carboxy-5-nitro-phe-nyl)-amid

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-methoxycarbonyl-5-nitro-phenyl)-amid und Natronlauge in Ethanol.

Ausbeute: 48 % der Theorie,

 $C_{21}H_{16}N_2O_5$ (376.37)

 R_f -Wert: 0.19 (Kieselgel; Dichlormethan/Ethanol = 19:1)

Massenspektrum: $M^+ = 376$ $(M-H)^- = 375$ - 83 -

Beispiel 96

trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-carboxy-5-methansul-fonylamino-phenyl)-amid

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-methoxycarbonyl-5-methansulfonylamino-phenyl)-amid und Natronlauge in Methanol.

Ausbeute: 87 % der Theorie,

 $C_{22}H_{20}N_2O_5S$ (424.48)

 R_f -Wert: 0.22 (Kieselgel; Dichlormethan/Ethanol = 19:1)

Massenspektrum: $M^+ = 424$ $(M-H)^- = 423$

Beispiel 97

5-Phenyl-penta-2.4-diensäure-N-(2-carboxy-4-fluor-phenyl)-amid Hergestellt analog Beispiel 31 aus 5-Phenyl-penta-2,4-diensäurechlorid und 2-Amino-5-fluor-benzoesäure in Tetrahydrofuran unter Zusatz von Triethylamin.

Ausbeute: 27 % der Theorie,

 $C_{18}H_{14}FNO_3$ (311.32)

 R_f -Wert: 0.24 (Kieselgel; Dichlormethan/Ethanol = 19:1)

Massenspektrum: $M^* = 311$ $(M-H)^- = 310$

Beispiel 98

trans-3-(3,4-Dichlor-phenyl)-but-2-ensäure-N-(2-carboxy-4-fluor-phenyl)-amid

Hergestellt analog Beispiel 31 aus trans-3-(3,4-Dichlor-phenyl)-but-2-ensäurechlorid und 2-Amino-5-fluor-benzoesäure in Tetrahydrofuran unter Zusatz von Triethylamin.

Ausbeute: 16 % der Theorie,

 $C_{17}H_{12}Cl_2FNO_3$ (368.19)

R_f-Wert: 0.21 (Kieselgel; Dichlormethan/Ethanol = 19:1)

Massenspektrum: $(M-H)^{-} = 366/368/370$

- 84 -

PCT/EP00/07057

Beispiel 99

trans-3- (Naphth-2-yl)-but-2-ensäure-N-[2-carboxy-4-(N´-methyl-N´-(2-methoxyethyl)-amino)-phenyl]-amid

Hergestellt analog Beispiel 2 aus trans-3- (Naphth-2-yl)-but-2-ensäure-N-[2-ethoxycarbonyl-4-(N´-methyl-N´-(2-methoxy-ethyl)-amino)-phenyl]-amid und Natronlauge in Ethanol.

Ausbeute: 80 % der Theorie, $C_{25}H_{26}N_2O_4$ (418.50) R_f -Wert: 0.51 (Kieselgel; Dichlormethan/Ethanol = 9:1)

Massenspektrum: M $^+$ = 418 $(M+H)^+$ = 419 $(M+H)^+$ = 441 $(M-H)^-$ = 441

Beispiel 100

trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-carboxy-5-benzolsul-fonylamino-phenyl)-amid

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-methoxycarbonyl-5-benzolsulfonylamino-phenyl)-amid und Natronlauge in Methanol.

Ausbeute: 92 % der Theorie,

 $C_{27}H_{22}N_2O_5S$ (486.55)

 R_{t} -Wert: 0.31 (Kieselgel; Dichlormethan/Ethanol = 19:1)

Massenspektrum: M^{+} = 486

 $(M-H)^{-} = 485$

Beispiel 101

trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-carboxy-5-aminosul-fonyl-phenyl)-amid

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-methoxycarbonyl-5-aminosulfonyl-phenyl)-amid und Natronlauge in Methanol.

Ausbeute: 15 % der Theorie,

- 85 -

```
C_{21}H_{18}N_2O_5S (410.45)
R_t-Wert: 0.11 (Kieselgel; Essigester/Petrolether = 1:1)
Massenspektrum: M<sup>+</sup> = 410
                 (M-H)^{-} = 409
Beispiel 102
3-(Naphth-2-yl)-butansaure-N-(2-carboxy-5-acetylamino-phenyl)-
Hergestellt analog Beispiel 2 aus 3-(Naphth-2-yl)-butansäure-
N-(2-methoxycarbonyl-5-acetylamino-phenyl)-amid und Natron-
lauge in Methanol.
Ausbeute: 46 % der Theorie,
C_{23}H_{22}N_2O_4 (390.44)
R_f-Wert: 0.20 (Kieselgel; Dichlormethan/Ethanol = 50:1)
Massenspektrum: M^{+} = 390
                (M+Na)^{+} = 413
                (M-H)^{-} = 389
Beispiel 103
3-(Naphth-2-yl)-butansäure-N-(2-carboxy-5-benzoylamino-phe-
nyl)-amid
Hergestellt analog Beispiel 2 aus 3-(Naphth-2-yl)-butansäure-
N-(2-methoxycarbonyl-5-benzoylamino-phenyl)-amid und Natron-
lauge in Methanol.
Ausbeute: 96 % der Theorie,
C_{28}H_{24}N_2O_4 (452.51)
R_f-Wert: 0.24 (Kieselgel; Dichlormethan/Ethanol = 19:1)
Massenspektrum: M' = 452
                (M+Na)^+ = 475
```

 $(M-H)^{2} = 451$

Beispiel 104

trans-3-(Chinolin-3-yl)-but-2-ensäure-N-(2-carboxy-4-fluorphenyl)-amid Hergestellt analog Beispiel 31 aus trans-3-(Chinolin-3-yl)but-2-ensäurechlorid und 2-Amino-5-fluor-benzoesäure in Tetrahydrofuran unter Zusatz von Triethylamin. Ausbeute: 19 % der Theorie, $C_{20}H_{15}FN_{2}O_{3}$ (350.35) R_f -Wert: 0.22 (Kieselgel; Dichlormethan/Ethanol = 19:1) Massenspektrum: $(M+Na)^+ = 373$ $(M-H)^{-} = 349$ Beispiel 105 trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2,5-dicarboxy-phenyl)-Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2,5-dimethoxycarbonyl-phenyl)-amid und Natronlauge in Ethanol. Ausbeute: 88 % der Theorie, $C_{22}H_{17}NO_5$ (375.38) R_f-Wert: 0.11 (Kieselgel; Dichlormethan/Ethanol = 9:1) Massenspektrum: M' = 375 $(M-H)^{-} = 374$

Beispiel 106

trans-3-(1-Methoxy-naphth-2-yl)-but-2-ensäure-N-(2-carboxyphenyl)-amid Hergestellt analog Beispiel 2 aus trans-3-(1-Methoxy-naphth-2-yl)-but-2-ensäure-N-(2-methoxycarbonyl-phenyl)-amid und Natronlauge in Ethanol. Ausbeute: 96 % der Theorie, $C_{22}H_{19}NO_4$ (361.40) R_t -Wert: 0.56 (Kieselgel; Dichlormethan/Ethanol = 9:1)

- 87 -

Massenspektrum: $M^* = 361$ $(M+Na)^* = 384$ $(M-H)^* = 360$

Beispiel 107

trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-carboxy-thiophen-3-yl)-amid

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-methoxycarbonyl-thiophen-3-yl)-amid und Natron-lauge in Ethanol.

Ausbeute: 93 % der Theorie,

 $C_{19}H_{15}NO_3S$ (337.40)

 R_f -Wert: 0.53 (Kieselgel; Dichlormethan/Ethanol = 9:1)

Massenspektrum: $M^* = 337$ $(M+Na)^* = 360$ $(M-H)^* = 336$

Beispiel 108

trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-carboxy-4-(N´-methyl-N´-(2-cyanoethyl)-amino)-phenyl]-amid

Hergestellt analog Beispiel 31 aus trans-3-(Naphth-2-yl)-but-2-ensäurechlorid und 2-Amino-5-(N-methyl-N-(2-cyanoethyl)-ami-no)-benzoesäure in Tetrahydrofuran unter Zusatz von Triethyl-amin.

Ausbeute: 16 % der Theorie,

 $C_{25}H_{23}N_3O_3$ (413.48)

 R_t -Wert: 0.50 (Kieselgel; Dichlormethan/Ethanol = 9:1)

Massenspektrum: $M^{+} = 413$ $(M+Na)^{+} = 436$ $(M-H)^{-} = 412$

- 88 -

Beispiel 109

trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-carboxy-4-hydroxy-phenyl)-amid

Hergestellt analog Beispiel 31 aus trans-3-(Naphth-2-yl)-but-2-ensäurechlorid und 5-Hydroxy-anthranilsäure in Tetrahydrofuran unter Zusatz von Triethylamin.

Ausbeute: 34 % der Theorie,

 $C_{21}H_{17}NO_4$ (347.37)

 R_t -Wert: 0.19 (Kieselgel; Dichlormethan/Ethanol = 19:1)

Massenspektrum: $M^* = 347$ $(M+Na)^* = 370$ $(M-H)^- = 346$

Beispiel 110

trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-sulfo-phenyl)-amid Hergestellt analog Beispiel 31 aus trans-3-(Naphth-2-yl)-but-2-ensäurechlorid und 2-Amino-benzolsulfonsäure in Tetrahydrofuran unter Zusatz von Triethylamin.

Ausbeute: 43 % der Theorie,

 $C_{20}H_{17}NO_4S$ (367.43)

R_f-Wert: 0.28 (Kieselgel; Dichlormethan/Ethanol = 19:1)

Massenspektrum: $M^+ = 367$ $(M-H)^- = 366$

Beispiel 111

trans-3-(Naphth-2-yl)-but-2-ensäure-N-(3-carboxy-thiophen-4-yl)-amid

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-(3-methoxycarbonyl-thiophen-4-yl)-amid und Natron-lauge in Ethanol.

Ausbeute: 88 % der Theorie,

 $C_{19}H_{15}NO_3S$ (337.40)

R_f-Wert: 0.41 (Kieselgel; Dichlormethan/Ethanol = 19:1)

- 89 -

Massenspektrum: $M^* = 337$ $(M+Na)^* = 360$ $(M-H)^- = 336$

Beispiel 112

trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-carboxy-4-(N´-methyl-N´-(4-cyanobutyl)-amino)-phenyl]-amid

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-ethoxycarbonyl-4-(N´-methyl-N´-(4-cyanobutyl)-amino)-phenyl]-amid und Natronlauge in Ethanol.

Ausbeute: 90 % der Theorie, $C_{27}H_{27}N_3O_3$ (441.54) R_f -Wert: 0.68 (Kieselgel; Dichlormethan/Ethanol = 9:1)

Massenspektrum: M' = 441 (M-H) = 440

Beispiel 113

trans-3-(Naphth-2-yl)-but-2-ensaure-N-(2-carboxy-5-amino-phe-nyl)-amid

Hergestellt analog Reispiel 2 aug trans-3 (Naphth 2 yl) but

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-methoxycarbonyl-5-amino-phenyl)-amid und Natronlauge in Methanol.

Ausbeute: 76 % der Theorie,

 $C_{21}H_{18}N_2O_3$ (346.39)

 R_t -Wert: 0.37 (Kieselgel; Dichlormethan/Ethanol = 19:1)

Massenspektrum: $M^* = 346$ $(M-H)^- = 345$

- 90 -

Beispiel 114

trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-carboxy-4-(N'-methyl-N'-(4-(tetrazol-5-yl)-butyl)-amino)-phenyll-amid

a) trans-3-(Naphth-2-yl)-but-2-ensaure-N-[2-ethoxycarbonyl-4-(N´-methyl-N´-(4-(tetrazol-5-yl)-butyl)-amino)-phenyll-amid Eine Lösung von 3.90 g (8.3 mMol) trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-ethoxycarbonyl-4-(N´-methyl-N´-(4-cyanobutyl)amino)-phenyl]-amid, 9.75 g (150 mMol) Natriumazid und 8.02 g (150 mMol) Ammoniumchlorid in 70 ml Dimethylformamid wird sechs Stunden bei 130°C gerührt. Nach dem Abkühlen wird der Reaktionsansatz mit ca. 150 ml Wasser verdünnt, dann mit Essigester extrahiert. Das aus dem Extrakt gewonnene Rohprodukt wird durch Säulenchromatographie über Kieselgel (Elutionsmittel: Dichlormethan mit 1 bis 5 % Ethanol) gereinigt. Ausbeute: 2.30 g (54 % der Theorie),

 $C_{29}H_{32}N_6O_3$ (512.62)

 R_{t} -Wert: 0.48 (Kieselgel; Dichlormethan/Ethanol = 9:1)

Massenspektrum: M⁺ = 512

 $(M-H)^{-} = 511$

b) trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-carboxy-4-(N'-methyl-N'-(4-(tetrazol-5-yl)-butyl)-amino)-phenyll-amid Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-ethoxycarbonyl-4-(N´-methyl-N´-(4-(tetrazol-5-yl)-butyl)-amino)-phenyl]-amid und Natronlauge in Ethanol. Ausbeute: 87 % der Theorie, $C_{27}H_{28}N_6O_3$ (484.56)

 R_t -Wert: 0.22 (Kieselgel; Dichlormethan/Ethanol = 9:1)

Massenspektrum: $(M-H)^{-} = 483$

- 91 -

Beispiel 115

```
trans-3-(1-Brom-naphth-2-yl)-acrylsäure-N-(2-carboxy-phenyl)-
amid
Hergestellt analog Beispiel 2 aus trans-3-(1-Brom-naphth-
2-yl)-acrylsäure-N-(2-methoxycarbonyl-phenyl)-amid und Natron-
lauge in Methanol.
Ausbeute: 87 % der Theorie,
C_{20}H_{14}BrNO_3 (396.24)
R_f-Wert: 0.18 (Kieselgel; Dichlormethan/Ethanol = 50:1)
Massenspektrum: M^{\dagger} = 395/397
                (M-H)^{-} = 394/396
Beispiel 116
trans-3-(3,4-Difluorphenyl)-but-2-ensäure-N-(2-carboxy-phe-
nyl)-amid
Hergestellt analog Beispiel 2 aus trans-3-(3,4-Difluorphenyl)-
but-2-ensäure-N-(2-methoxycarbonyl-phenyl)-amid und Natron-
lauge in Methanol.
Ausbeute: 54 % der Theorie,
C_{17}H_{13}F_{2}NO_{3} (317.30)
R<sub>f</sub>-Wert: 0.41 (Kieselgel; Dichlormethan/Ethanol = 9:1)
Massenspektrum: M^{+} = 317
             (M-H)^{-} = 316
Beispiel 117
trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-carboxy-4-(2-ethyl-
4-methyl-imidazol-1-yl)-phenyl]-amid
Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-
2-ensäure-N-[2-methoxycarbonyl-4-(2-ethyl-4-methyl-imidazol-
1-yl)-phenyl]-amid und Natronlauge in Methanol.
Ausbeute: 89 % der Theorie,
C_{27}H_{25}N_3O_3 (439.52)
R_f-Wert: 0.13 (Kieselgel; Dichlormethan/Ethanol = 9:1)
```

Massenspektrum: M' = 439 $(M-H)^{-} = 438$

Beispiel 118

WO 01/07020

trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-carboxy-4-(imidazol-1-yl)-phenyll-amid

- 92 -

PCT/EP00/07057

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-methoxycarbonyl-4-(imidazol-1-yl)-phenyl]-amid und Natronlauge in Methanol.

Ausbeute: 69 % der Theorie,

 $C_{24}H_{19}N_3O_3$ (397.44)

 R_f -Wert: 0.12 (Kieselgel; Dichlormethan/Ethanol = 9:1)

Massenspektrum: M* = 397 $(M+H)^+ = 398$

 $(M-H)^{-} = 396$

Beispiel 119

trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-carboxy-4-(3,5-dimethyl-pyrazol-1-yl)-phenyll-amid

a) 2-Nitro-5-(3,5-dimethyl-pyrazol-1-yl)-benzoesäuremethyl-

Eine Lösung von 2.84 g (10 mMol) 3-Methoxycarbonyl-4-nitrophenylhydrazin, 1.0 g (10 mMol) Acetylaceton und 3.0 ml Triethylamin in 40 ml Methanol wird über Nacht bei Raumtemperatur gerührt. Danach wird bis zur Trockne eingedampft, der Rückstand in ca. 50 ml Dichlormethan gelöst, die Lösung mit 5%iger Natriumhydrogencarbonat-Lösung gewaschen, getrocknet und erneut eingedampft. Das so erhaltene Rohprodukt wird durch Säulenchromatographie über Kieselgel (Elutionsmittel: Dichlormethan) gereinigt.

Ausbeute: 1.50 g (55 % der Theorie),

 $C_{13}H_{13}N_3O_4$ (275.27)

R_f-Wert: 0.68 (Kieselgel; Dichlormethan/Ethanol = 19:1)

Massenspektrum: $(M+Na)^* = 298$

- 93 -

```
b) 2-Amino-5-(3,5-dimethyl-pyrazol-1-yl)-benzoesäuremethyl-
Hergestellt durch katalytische Reduktion (Palladium, 10%ig auf
Kohle) von 2-Nitro-5-(3,5-dimethyl-pyrazol-1-yl)-benzoesäure-
methylester in Methanol.
Ausbeute: 80 % der Theorie,
C_{13}H_{15}N_3O_2 (245.28)
R_f-Wert: 0.48 (Kieselgel; Dichlormethan/Ethanol = 19:1)
c) trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-methoxycarbonyl-
4-(3.5-dimethyl-pyrazol-1-yl)-phenyll-amid
Hergestellt analog Beispiel 1 aus trans-3-(Naphth-2-yl)-but-
2-ensäurechlorid und 2-Amino-5-(3,5-dimethyl-pyrazol-1-yl)-
benzoesäuremethylester
Ausbeute: 62 % der Theorie,
C_{27}H_{25}N_3O_3 (439.52)
R_f-Wert: 0.55 (Kieselgel; Dichlormethan/Ethanol = 19:1)
Massenspektrum: M^+ = 439
d) trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-carboxy-4-(3,5-di-
methyl-pyrazol-1-yl)-phenyll-amid
Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-
2-ensäure-N-[2-methoxycarbonyl-4-(3,5-dimethyl-pyrazol-1-yl)-
phenyl] -amid und Natronlauge in Methanol.
Ausbeute: 80 % der Theorie,
C_{26}H_{23}N_3O_3 (425.49)
R_f-Wert: 0.19 (Kieselgel; Dichlormethan/Ethanol = 19:1)
Massenspektrum: M<sup>+</sup> = 425
                (M-H)^{-} = 424
```

Beispiel 120

trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-carboxy-4-(3-methyl-5-phenyl-pyrazol-1-yl)-phenyll-amid

Hergestellt analog Beispiel 119 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-methoxycarbonyl-4-(3-methyl-5-phenyl-pyrazol-1-yl)-phenyl]-amid und Natronlauge in Methanol.

Ausbeute: 84 % der Theorie, $C_{31}H_{25}N_3O_3$ (487.56) R_f -Wert: 0.20 (Kieselgel; Dichlormethan/Ethanol = 19:1)

Massenspektrum: M^* = 487 $(M-H)^-$ = 486

Beispiel 121

trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-carboxy-4-(3-tri-fluormethyl-5-(furan-1-yl)-pyrazol-1-yl)-phenyl]-amid

Hergestellt analog Beispiel 119 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-methoxycarbonyl-4-(3-trifluormethyl-5-(furan-1-yl)-pyrazol-1-yl)-phenyl]-amid und Natronlauge in Methanol.

Ausbeute: 81 % der Theorie, $C_{29}H_{20}F_3N_3O_4$ (531.50) R_f -Wert: 0.21 (Kieselgel; Dichlormethan/Ethanol = 19:1)

Massenspektrum: M^+ = 531 $(M-H)^-$ = 530

Beispiel 122

trans-3-(2-0xo-2H-chromen-3-yl)-acrylsäure-N-(2-carboxy-phe-nyl)-amid

Hergestellt analog Beispiel 31 aus trans-3-(2-0xo-2H-chromen-3-yl)-acrylsäurechlorid und Anthronilaäure in Maturk de S

3-yl)-acrylsäurechlorid und Anthranilsäure in Tetrahydrofuran unter Zusatz von Triethylamin.

Ausbeute: 30 % der Theorie,

 $C_{19}H_{13}NO_{5}$ (335.31)

 R_{t} -Wert: 0.33 (Kieselgel; Dichlormethan/Ethanol = 9:1)

- 95 -

Massenspektrum: $M^+ = 335$ $(M-H)^- = 334$

Beispiel 123

trans-3-(2-0xo-2H-chromen-3-yl)-but-2-ensäure-N-(2-carboxy-phenyl)-amid

Hergestellt analog Beispiel 31 aus trans-3-(2-0xo-2H-chromen-3-yl)-but-2-ensäurechlorid und Anthranilsäure in Tetrahydrofuran unter Zusatz von Triethylamin.

Ausbeute: 13 % der Theorie,

 $C_{20}H_{15}NO_5$ (349.35)

 R_t -Wert: 0.35 (Kieselgel; Dichlormethan/Ethanol = 9:1)

Massenspektrum: $M^+ = 349$ $(M+Na)^+ = 372$ $(M-H)^- = 348$

Beispiel 124

trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-carboxy-4-(3-methyl-5-tert_butyl-pyrazol-1-yl)-phenyll-amid

Hergestellt analog Beispiel 119 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-methoxycarbonyl-4-(3-methyl-5-tert.butyl-pyra-zol-1-yl)-phenyl]-amid und Natronlauge in Methanol.

Ausbeute: 66 % der Theorie,

 $C_{29}H_{29}N_3O_3$ (467.57)

R_f-Wert: 0.20 (Kieselgel; Dichlormethan/Ethanol = 19:1)

Massenspektrum: $(M-H)^- = 466$

Beispiel 125

trans-3-(Naphth-2-yl)-but-2-ensäure-N-(3-carboxy-1H-pyrazol-4-yl)-amid

Hergestellt analog Beispiel 31 aus trans-3-(Naphth-2-yl)-but-2-ensäurechlorid und 4-Amino-1H-pyrazol-3-carbonsäure in Dimethylformamid unter Zusatz von Pyridin.

- 96 -

```
Ausbeute: 19 % der Theorie, C_{18}H_{15}N_3O_3 \ (321.34) R_f\text{-Wert: 0.21 (Kieselgel; Dichlormethan/Ethanol = 19:1)} Massenspektrum: M^* = 321   (M-H)^- = 320
```

Beispiel 126

trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-benzolsulfonylamino-carbonyl-phenyl)-amid

Hergestellt analog Beispiel 31 aus trans-3-(Naphth-2-yl)-but-2-ensäurechlorid und 2-Benzolsulfonylaminocarbonyl-anilin in Tetrahydrofuran unter Zusatz von Pyridin.

Ausbeute: 85 % der Theorie,

 $C_{27}H_{22}N_2O_4S$ (470.55)

 R_f -Wert: 0.22 (Kieselgel; Dichlormethan/Ethanol = 19:1)

Massenspektrum: $M^* = 470$ $(M-H)^- = 469$

Beispiel 127

trans-3-(3-Methyl-benzthiophen-2-yl)-but-2-ensäure-N-(2-carb-oxy-phenyl)-amid

Hergestellt analog Beispiel 2 aus trans-3-(3-Methyl-benzthio-phen-2-yl)-but-2-ensäure-N-(2-methoxycarbonyl-phenyl)-amid und Natronlauge in Methanol.

Ausbeute: 71 % der Theorie,

 $C_{20}H_{17}NO_3S$ (351.43)

 R_t -Wert: 0.34 (Kieselgel; Dichlormethan/Ethanol = 9:1)

Massenspektrum: $M^* = 351$ $(M-H)^- = 350$ - 97 -

Beispiel 128

trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-methansulfonylamino-carbonyl-phenyl)-amid

Hergestellt analog Beispiel 126 aus trans-3-(Naphth-2-yl)-but-2-ensäurechlorid und 2-Methansulfonylaminocarbonyl-anilin in

Tetrhydrofuran unter Zusatz von Pyridin. Ausbeute: 68% der Theorie,

 $C_{22}H_{20}N_2O_4S$ (408.48)

R_f-Wert: 0.20 (Kieselgel; Dichlormethan/Ethanol = 19:1)

Massenspektrum: $M^* = 408$ $(M+Na)^* = 431$ $(M-H)^- = 407$

Beispiel 129

trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-carboxy-4-(2-phenyl-imidazol-1-yl)-phenyl]-amid

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-methoxycarbonyl-4-(2-phenyl-imidazol-1-yl)-phenyl]-amid und Natronlauge in Methanol.

Ausbeute: 89 % der Theorie,

 $C_{30}H_{23}N_3O_3$ (473.54)

R_f-Wert: 0.23 (Kieselgel; Dichlormethan/Ethanol = 9:1)

Massenspektrum: $(M + H)^+ = 474$ $(M+Na)^+ = 496$ $(M-H)^- = 472$

Beispiel 130

trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-carboxy-4-(2-methyl-benzimidazol-1-yl)-phenyl]-amid

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-methoxycarbonyl-4-(2-methyl-benzimidazol-1-yl)-phenyl]-amid und Natronlauge in Methanol.

Ausbeute: 87 % der Theorie,

- 98 -

```
C_{29}H_{23}N_3O_3 (461.52) . . R_f\text{-Wert: 0.22 (Kieselgel; Dichlormethan/Ethanol = 9:1)} Massenspektrum: (M+H)^+ = 462 (M+Na)^+ = 484 (M-H)^- = 460
```

Beispiel 131

trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2,3-dicarboxy-phenyl)-amid

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2,3-dimethoxycarbonyl-phenyl)-amid und Natron-lauge in Methanol.

Ausbeute: 80 % der Theorie,

 $C_{22}H_{17}NO_5$ (375.38)

 R_f -Wert: 0.09 (Kieselgel; Dichlormethan/Ethanol = 9:1)

Massenspektrum: $(M+Na)^+ = 398$ $(M-H)^- = 374$

Beispiel 132

trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-carboxy-4-(imidazol-1-yl)-5-fluor-phenyl]-amid

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-methoxycarbonyl-4-(imidazol-1-yl)-5-fluor-phenyl]-amid und Natronlauge in Methanol.

Ausbeute: 62 % der Theorie,

 $C_{24}H_{18}FN_3O_3$ (415.43)

 R_f -Wert: 0.17 (Kieselgel; Dichlormethan/Ethanol = 9:1)

Massenspektrum: M^{+} = 415 $(M-H)^{-}$ = 414 - 99 -

Beispiel 133

trans-3-(Benzthiophen-2-yl)-but-2-ensäure-N-(2-carboxy-phe-nyl)-amid

Hergestellt analog Beispiel 2 aus trans-3-(Benzthiophen-2-yl)-but-2-ensäure-N-(2-methoxycarbonyl-phenyl)-amid und Natron-lauge in Methanol.

Ausbeute: 89 % der Theorie,

 $C_{19}H_{15}NO_3S$ (337.40)

 R_t -Wert: 0.43 (Kieselgel; Dichlormethan/Ethanol = 9:1)

Massenspektrum: $(M+Na)^+ = 360$ $(M-H)^- = 336$

Beispiel 134

trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-carboxy-4-methan-sulfonyloxy-phenyl)-amid

In eine Lösung von 0.21g (0.605 mMol) trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-carboxy-4-hydroxy-phenyl)-amid in 15 ml
1N Natronlauge wurden unter Rühren bei Raumtemperatur langsam
0.5 ml (4.37 mMol) Methansulfonylchlorid zugetropft, wobei die
Lösung durch Zugabe von Natronlauge stets alkalisch gehalten
wurde. Nach vollständiger Umsetzung wurde mit 2N Salzsäure
angesäuert, dann dreimal mit je 20 ml Essigester extrahiert,
die Extrakte über Natriumsulfat getrocknet und im Vakuum zur
Trockne eingedampft. Das so erhaltene Rohprodukt wurde durch
Säulenchromatographie gereinigt (Kieselgel; Elutionsmittel:
Dichlormethan mit 2 bis 3% Ethanol).

Ausbeute: 35 % der Theorie,

 $C_{22}H_{19}NO_6S$ (425.46)

 R_t -Wert: 0.27 (Kieselgel; Dichlormethan/Ethanol = 19:1)

Massenspektrum: $M^* = 425$ $(M-H)^- = 424$

- 100 -

Beispiel 135

Beispiel 136

trans-2-Methyl-3-(6-fluor-naphth-2-yl)-acrylsäure-N-(2-carb-oxy-phenyl)-amid

Hergestellt analog Beispiel 2 aus trans-2-Methyl-3-(6-fluor-naphth-2-yl)-acrylsäure-N-(2-methoxycarbonyl-phenyl)-amid und Natronlauge in Methanol.

Ausbeute: 82 % der Theorie,

 $C_{21}H_{16}FNO_3$ (349.37)

R_f-Wert: 0.24 (Kieselgel; Dichlormethan/Ethanol = 19:1)

Massenspektrum: $M^+ = 349$ $(M-H)^- = 348$

Beispiel 137

trans-3-(6-Fluor-naphth-2-yl)-acrylsäure-N-(2-carboxy-4-fluor-phenyl)-amid

Hergestellt analog Beispiel 31 aus trans-3-(6-Fluor-naphth-2-yl)-acrylsäurechlorid und 4-Fluoranthranilsäure in Tetrahydrofuran unter Zusatz von Pyridin.

Ausbeute: 14 % der Theorie,

 $C_{20}H_{13}F_{2}NO_{3}$ (353.32)

 R_t -Wert: 0.19 (Kieselgel; Dichlormethan/Ethanol = 19:1)

- 101 -

Massenspektrum: $M^+ = 353$ $(M-H)^- = 352$

Beispiel 138

trans-2-Methyl-3-(6-fluor-naphth-2-yl)-acrylsäure-N-(2-carb-oxy-4-fluor-phenyl)-amid

Hergestellt analog Beispiel 31 aus trans-2-Methyl-3-(6-fluornaphth-2-yl)-acrylsäurechlorid und 4-Fluoranthranilsäure in Tetrahydrofuran unter Zusatz von Pyridin.

Ausbeute: 20 % der Theorie,

 $C_{21}H_{15}F_{2}NO_{3}$ (367.36)

 R_f -Wert: 0.20 (Kieselgel; Dichlormethan/Ethanol = 19:1)

Massenspektrum: $M^+ = 367$ $(M-H)^- = 366$

Beispiel 139

trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-carboxy-4-(2-N,N-di-methylamino-ethyloxy)-phenyl]-amid

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-ethoxycarbonyl-4-(2-N,N-dimethylamino-ethyl-oxy)-phenyl]-amid und Natronlauge in Methanol.

Ausbeute: 20 % der Theorie,

 $C_{25}H_{26}N_2O_4$ (418.50)

Massenspektrum: $M^* = 418$ $(M-H)^- = 417$

Beispiel 140

3-(Naphth-2-yl)-butansäure-N-(2-carboxy-phenyl)-amid

Hergestellt analog Beispiel 2 aus 3-(Naphth-2-yl)-butansäure-N-(2-methoxycarbonyl-phenyl)-amid und Natronlauge in Methanol. Ausbeute: 83 % der Theorie,

 $C_{21}H_{19}NO_3$ (333.39)

 R_f -Wert: 0.24 (Kieselgel; Dichlormethan/Ethanol = 19:1)

- 102 -

Massenspektrum: $(M+H)^+ = 334$ $(M+Na)^+ = 456$ $(M-H)^- = 332$

Beispiel 141

trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-carboxy-4,5-methylen-dioxy-phenyl)-amid

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-methoxycarbonyl-4,5-methylendioxy-phenyl)-amid und Natronlauge in Methanol.

Ausbeute: 95% der Theorie,

 $C_{22}H_{12}NO_5$ (375.38)

R_f-Wert: 0.21 (Kieselgel; Dichlormethan/Ethanol = 19:1)

Massenspektrum: $(M-H)^{-} = 374$

Beispiel 142

trans-3-(Naphth-2-yl)-cyclopropancarbonsäure-N-(2-carboxy-phenyl)-amid

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-cyclo-propancarbonsäure-N-(2-methoxycarbonyl-phenyl)-amid und Natronlauge in Methanol.

Ausbeute: 59% der Theorie

 $C_{21}H_{17}NO_{3}$ (331.38)

R_f-Wert: 0.18 (Kieselgel; Dichlormethan/Ethanol = 19:1)

Massenspektrum: $(M-H)^{-} = 330$

Beispiel 143

trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-carboxy-4-jod-phenyl)-amid

Hergestellt analog Beispiel 31 aus trans-3-(Naphth-2-yl)-but-2-ensäurechlorid und 4-Jod-anthranilsäure in Tetrahydrofuran unter Zusatz von Triethylamin.

Ausbeute: 32% der Theorie,

 $C_{21}H_{16}INO_3$ (457.27)

- 103 -

```
R_f-Wert: 0.19 (Kieselgel; Dichlormethan/Ethanol = 50:1) Massenspektrum: (M-H)^- = 456
```

Beispiel 144

trans-3-(Naphth-2-yl)-but-2-ensäure-N-(4-carboxy-pyridin-3-yl)-amid

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-(4-methoxycarbonyl-pyridin-3-yl)-amid und Natron-lauge in Methanol.

Ausbeute: 26 % der Theorie,

 $C_{20}H_{16}N_2O_3$ (332.36)

 R_t -Wert: 0.18 (Kieselgel; Dichlormethan/Ethanol = 9:1)

Massenspektrum: $(M+Na)^+ = 355$ $(M-H)^- = 331$

Beispiel 145

trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-carboxy-5-(morpholin-1-yl-carbonyl)-phenyll-amid

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-methoxycarbonyl-5-(morpholin-1-yl-carbonyl)-phenyl]-amid und Natronlauge in Methanol.

Ausbeute: 90 % der Theorie.

 $C_{26}H_{24}N_2O_5$ (444.49)

 R_{t} -Wert: 0.27 (Kieselgel; Dichlormethan/Ethanol = 9:1)

Massenspektrum: $M^* = 444$ $(M-H)^- = 443$ $(M+Na)^+ = 467$

Beispiel 146

trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-carboxy-5-(N-ethyl-N-methyl-aminocarbonyl)-phenyl]-amid

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-methoxycarbonyl-5-(N-ethyl-N-methyl-aminocarbonyl)-phenyl]-amid und Natronlauge in Methanol.

- 104 -

```
Ausbeute: 71 % der Theorie, C_{25}H_{24}N_2O_4 \ (416.48) R_f\text{-Wert: 0.22 (Kieselgel; Dichlormethan/Ethanol = 19:1)} Massenspektrum: M^+ = 416 \ (M-H)^- = 415
```

Beispiel 147

```
trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-carboxy-5-(piperidin-1-yl-carbonyl)-phenyl]-amid

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-methoxycarbonyl-5-(piperidin-1-yl-carbonyl)-phenyl]-amid und Natronlauge in Methanol.

Ausbeute: 77 % der Theorie

C_{27}H_{26}N_2O_4 (442.51)

R_f-Wert: 0.22 (Kieselgel; Dichlormethan/Ethanol = 19:1)

Massenspektrum: M^+ = 442

(M-H)^- = 441
```

Beispiel 148

```
trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-carboxy-5-(pyrrol-idin-1-yl-carbonyl)-phenyl]-amid

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-methoxycarbonyl-5-(pyrrolidin-1-yl-carbonyl)-phenyl]-amid und Natronlauge in Methanol.

Ausbeute: 80 % der Theorie,

C_{26}H_{24}N_2O_4 (428.49)

R_f-Wert: 0.22 (Kieselgel; Dichlormethan/Ethanol = 19:1)

Massenspektrum: (M-H) = 427

(M+Na)^+ = 451
```

- 105 -

Beispiel 149

```
trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-carboxy-5-(N-iso-
propyl-N-methyl-carbonyl)-phenyll-amid
Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-
2-ensaure-N-[2-methoxycarbonyl-5-(N-isopropyl-N-methyl-car-
bonyl)-phenyl]-amid und Natronlauge in Methanol.
Ausbeute: 69 % der Theorie
C_{26}H_{26}N_2O_4 (430.50)
R_t-Wert: 0.24 (Kieselgel; Dichlormethan/Ethanol = 19:1)
Massenspektrum: (M-H)^- = 429
                (M+Na)^{-} = 453
Beispiel 150
trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-carboxy-5-(4-methyl-
piperazin-1-yl-carbonyl)-phenyll-amid
Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-
2-ensäure-N-[2-methoxycarbonyl-5-(4-methyl-piperazin-1-yl-
carbonyl)-phenyl]-amid und Natronlauge in Methanol.
Ausbeute: 40 % der Theorie,
C_{27}H_{27}N_3O_4 (457.53)
R_f-Wert: 0.19 (Kieselgel; Dichlormethan/Ethanol = 19:1)
Massenspektrum: M'
               (M-H)^{-} = 456
               (M+Na)^+ = 480
Beispiel 151
trans-3-(Naphth-2-yl)-4,4,4-trifluor-but-2-ensäure-N-(2-carb-
oxy-phenyl)-amid
```

```
trans-3-(Naphth-2-yl)-4,4,4-trifluor-but-2-ensäure-N-(2-carb-oxy-phenyl)-amid

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-
4,4,4-trifluor-but-2-ensäure-N-(2-methoxycarbonyl-phenyl)-amid
und Natronlauge in Methanol.

Ausbeute: 76 % der Theorie,

C<sub>21</sub>H<sub>14</sub>F<sub>3</sub>NO<sub>3</sub> (385.34)
```

- 106 -

```
R_f-Wert: 0.22 (Kieselgel; Dichlormethan/Ethanol = 19:1)
Massenspektrum: (M-H)^- = 384
(M+Na)^+ = 408
```

Beispiel 152

trans-3-(3,4-Dibromphenyl)-but-2-ensäure-N-(2-carboxy-phenyl)-

Hergestellt analog Beispiel 31 aus trans-3-(3,4-Dibromphenyl)-but-2-ensäurechlorid und 2-Aminobenzoesäure in Dimethylformamid.

Ausbeute: 16 % der Theorie,

 $C_{17}H_{13}Br_2NO_3$ (439.10)

 R_f -Wert: 0.15 (Kieselgel; Dichlormethan/Ethanol = 50:1)

Massenspektrum: $(M-H)^2 = 438$

Beispiel 153

trans-3-(4-Ethinylphenyl)-but-2-ensäure-N-(2-carboxy-phenyl)-amid

Hergestellt analog Beispiel 2 aus trans-3-(4-Trimethylsilanyl-ethinylphenyl)-but-2-ensäure-N-(2-methoxycarbonyl-phenyl)-amid und Kalilauge in Methanol.

Ausbeute: 53 % der Theorie.

 $C_{19}H_{15}NO_3$ (305.34)

 R_t -Wert: 0.6 (Kieselgel; Dichlormethan/Ethanol = 9:1)

Massenspektrum: $(M-H)^{-} = 304$

Beispiel 154

trans-3-(3-Ethinylphenyl)-but-2-ensäure-N-(2-carboxy-phenyl)-amid

Hergestellt analog Beispiel 2 aus trans-3-(3-Trimethylsilanyl-ethinylphenyl)-but-2-ensäure-N-(2-methoxycarbonyl-phenyl)-amid und Kalilauge in Methanol.

Ausbeute: 60 % der Theorie, $C_{19}H_{15}NO_3$ (305.34)

```
R_f-Wert: 0.5 (Kieselgel; Dichlormethan/Ethanol = 9:1)
Massenspektrum: (M-H) = 304
```

trans-3-(3,4-Dibromphenyl)-but-2-ensäure-N-(2-carboxy-4,5-di-methoxy-phenyl)-amid

Hergestellt analog Beispiel 2 aus trans-3-(3,4-Dibromphenyl)-but-2-ensäure-N-(2-methoxycarbonyl-4,5-dimethoxy-phenyl)-amid und Natronlauge in Methanol/Dichlormethan.

Ausbeute: 40 % der Theorie,

 $C_{19}H_{17}Br_2NO_5$ (499.16)

R_f-Wert: 0.3 (Kieselgel; Dichlormethan/Ethanol = 19:1)

Massenspektrum: M = 497/499/501 (Bromisotope)

Beispiel 156

Beispiel 155

trans-3-(3,4-Dibromphenyl)-but-2-ensaure-N-(2-carboxy-4-meth-oxy-5-methyl-phenyl)-amid

Hergestellt analog Beispiel 2 aus trans-3-(3,4-Dibromphenyl)-but-2-ensäure-N-(2-methoxycarbonyl-4-methoxy-5-methyl-phenyl)-amid und Natronlauge in Methanol/Dichlormethan.

Ausbeute: 59 % der Theorie,

 $C_{19}H_{17}Br_2NO_4$ (483.15)

 R_f -Wert: 0.3 (Kieselgel; Dichlormethan/Ethanol = 19:1)

Massenspektrum: M⁺ = 481/83/85 (Bromisotope)

Beispiel 157

trans-3-(3,5-Dibrom-4-ethylphenyl)-but-2-ensäure-N-(2-carboxy-phenyl)-amid

Hergestellt analog Beispiel 2 aus trans-3-(3,5-Dibrom-4-ethyl-phenyl)-but-2-ensäure-N-(2-methoxycarbonyl-phenyl)-amid und Natronlauge in Methanol.

Ausbeute: 49 % der Theorie,

 $C_{19}H_{17}Br_2NO_3$ (467.16)

 R_{r} -Wert: 0.5 (Kieselgel; Dichlormethan/Ethanol = 19:1)

- 108 -

```
Massenspektrum: M^* = 465/67/69 (Bromisotope)
```

Beispiel 158

```
trans-3-(3-Brom-4-chlorphenyl)-but-2-ensäure-N-(2-carboxy-phenyl)-amid
```

Hergestellt analog Beispiel 2 aus trans-3-(3-Brom-4-chlorphenyl)-but-2-ensäure-N-(2-methoxycarbonyl-phenyl)-amid und Natronlauge in Methanol.

Ausbeute: 36 % der Theorie,

 $C_{17}H_{13}BrClNO_3$ (394.65)

 R_f -Wert: 0.3 (Kieselgel; Dichlormethan/Ethanol = 19:1) Massenspektrum: (M-H) = 392/94/96 (Chlor-Bromisotope)

Beispiel 159

trans-3-(3-Chlor-4-bromphenyl)-but-2-ensäure-N-(2-carboxy-phenyl)-amid

Hergestellt analog Beispiel 2 aus trans-3-(3-Chlor-4-bromphenyl)-but-2-ensäure-N-(2-methoxycarbonyl-phenyl)-amid und Natronlauge in Methanol.

Ausbeute: 36 % der Theorie,

 $C_{17}H_{13}BrClNO_3$ (394.65)

R_f-Wert: 0.4 (Kieselgel; Dichlormethan/Ethanol = 19:1)
Massenspektrum: (M-H) = 392/94/96 (Chlor-Bromisotope)

Beispiel 160

trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-carboxy-6-methyl-phenyl)-amid

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-methoxycarbonyl-6-methyl-phenyl)-amid und Natronlauge in Methanol.

Ausbeute: 76 % der Theorie,

 $C_{22}H_{19}NO_3$ (345.41)

 R_t -Wert: 0.4 (Kieselgel; Dichlormethan/Ethanol = 19:1)

Massenspektrum: $(M-H)^- = 344$

- 109 -

 $(M+Na)^+ = 368$

Beispiel 161

trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-carboxy-6-methoxy-phenyl)-amid

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-methoxycarbonyl-6-methoxy-phenyl)-amid und Natronlauge in Methanol.

Ausbeute: 80 % der Theorie,

 $C_{22}H_{19}NO_4$ (361.40)

 R_t -Wert: 0.3 (Kieselgel; Dichlormethan/Ethanol = 19:1)

Massenspektrum: $(M-H)^- = 360$ $(M+Na)^+ = 384$

Beispiel 162

trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-carboxy-6-chlor-phenyl)-amid_____

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-methoxycarbonyl-6-chlor-phenyl)-amid und Natronlauge in Methanol.

Ausbeute: 67 % der Theorie,

 $C_{21}H_{16}ClNO_{3}$ (365.81)

 R_t -Wert: 0.15 (Kieselgel; Dichlormethan/Ethanol = 19:1)

Massenspektrum: $(M-H)^- = 364/366$ (Chlorisotope)

Beispiel 163

trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-carboxy-4-methyl-amino-phenyl)-amid-trifluoracetat

650 mg (1.4 mMol) trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-carboxy-4-(N-methyl-N-tert.butoxycarbonyl-amino-phenyl]amid werden in 10 ml Dichlormethan und 2 ml Trifluoressigsäure 18 Stunden gerührt. Das Lösungsmittel wird abdestilliert und der Rückstand wird durch Säulenchromatographie über Kiesel-

- 110 -

```
gel(Elutionsmittel: Dichlormethan mit 1 bis 5 % Ethanol) gereinigt. Ausbeute: 79 % der Theorie, C_{22}H_{20}N_2O_3 \times CF_3COOH \ (360.42/474.44) R_f-Wert: 0.7 \ (Kieselgel; Dichlormethan/Ethanol = 9:1) Massenspektrum: (M-H)^- = 359 M^+ = 360
```

Beispiel 164

```
trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-carboxy-4-(bis-2-methoxy-ethyl-amino)-phenyll-amid Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-methoxycarbonyl-4-(bis-2-methoxy-ethyl-amino)-phenyl]-amid und Natronlauge in Methanol. Ausbeute: 79 % der Theorie, C_{27}H_{30}N_2O_5 \ (462.55) R_f-Wert: 0.3 \ (Kieselgel; Dichlormethan/Ethanol = 19:1) Massenspektrum: (M+H)^+ = 463
```

Beispiel 165

```
trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-carboxy-4,5,6-tri-methoxy-phenyl)-amid

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-methoxycarbonyl-4,5,6-trimethoxy-phenyl)-amid und Natronlauge in Methanol.

Ausbeute: 46 % der Theorie,

C<sub>24</sub>H<sub>23</sub>NO<sub>6</sub> (421.45)

R<sub>f</sub>-Wert: 0.2 (Kieselgel; Dichlormethan/Ethanol = 19:1)

Massenspektrum: (M-H) = 420
```

- 111 -

Beispiel 166

trans-3-(Naphth-2-yl)-but-2-ensaure-N-(2-carboxy-4-amino-phenyl)-amid-trifluoracetat

Hergestellt analog Beispiel 163 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-carboxy-4-tert.butoxycarbonylamino-phenyl)-amid und Trifluoressigsäure in Dichlormethan.

Ausbeute: 81 % der Theorie,

 $C_{21}H_{18}N_2O_3 \times CF_3COOH (346.39/460.413)$

 R_f -Wert: 0.3 (Kieselgel; Dichlormethan/Ethanol = 9:1)

Massenspektrum: (M-H) = 345

Beispiel 167

trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-carboxy-4-benzolsul-fonylamino-phenyl)-amid

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-ethoxycarbonyl-4-benzolsulfonylamino-phenyl)-amid und Natronlauge in Methanol.

Ausbeute: 82 % der Theorie,

 $C_{27}H_{22}N_2O_5S$ (486.55)

 R_f -Wert: 0.4 (Kieselgel; Dichlormethan/Ethanol = 9:1)

Massenspektrum: $(M-H)^{-} = 485$

Beispiel 168

trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-carboxy-6-fluor-phenyl)-amid

Hergestellt analog Beispiel 31 aus trans-(Naphth-2-yl)-but-2-ensäurechlorid und 2-Amino-3-fluor-benzoesäure in Tetra-hydrofuran unter Zusatz von Triethylamin.

Ausbeute: 33 % der Theorie,

 $C_{21}H_{16}FNO_{3}$ (349.36)

 R_f -Wert: 0.2 (Kieselgel; Dichlormethan/Ethanol = 19:1)

Massenspektrum: $(M-H)^- = 348$

· Beispiel 169

```
trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-carboxy-4-methan-
sulfonylamino-phenyl)-amid
Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-
2-ensaure-N-(2-ethoxycarbonyl-4-methansulfonylamino-phenyl)-
amid und Natronlauge in Methanol.
Ausbeute: 80 % der Theorie,
C_{22}H_{20}N_2O_5S (424.48)
R_f-Wert: 0.15 (Kieselgel; Dichlormethan/Ethanol = 9:1)
Massenspektrum: (M-H)^- = 423
                 (M+Na)^{+} = 447
Beispiel 170
trans-3-(3-Brom-4-chlorphenyl)-but-2-ensäure-N-(2-carboxy-
4.5-dimethoxy-phenyl)-amid
Hergestellt analog Beispiel 2 aus trans-3-(3-Brom-4-chlorphe-
nyl)-but-2-ensäure-N-(2-methoxycarbonyl-4,5-dimethoxy-phenyl)-
amid und Kalilauge in Methanol/Dichlormethan.
Ausbeute: 15 % der Theorie,
C_{19}H_{17}BrClNO_{5} (454.70)
R_t-Wert: 0.2 (Kieselgel; Dichlormethan/Ethanol = 19:1)
Massenspektrum: (M-H) = 452/54/56 (Brom-Chlorisotope)
Beispiel 171
trans-3-(3-Chlor-4-bromphenyl)-but-2-ensäure-N-(2-carboxy-
4.5-dimethoxy-phenyl)-amid
Hergestellt analog Beispiel 2 aus trans-3-(3-Chlor-4-bromphe-
nyl)-but-2-ensäure-N-(2-methoxycarbonyl-4,5-dimethoxy-phenyl)-
amid und Kalilauge in Methanol.
Ausbeute: 45 % der Theorie.
C_{19}H_{17}BrClNO_{5} (454.70)
R_t-Wert: 0.2 (Kieselgel; Dichlormethan/Ethanol = 19:1)
Massenspektrum: (M-H)^{-} = 452/54/56 (Brom-Chlorisotope)
```

- 113 -

Beispiel 172

trans-3-(4-Iodphenyl)-but-2-ensäure-N-(2-carboxyphenyl)-amid Hergestellt analog Beispiel 2 aus trans-3-(4-Iodphenyl)-but-2-ensäure-N-(2-methoxycarbonylphenyl)-amid und Natronlauge in Methanol/Wasser.

Ausbeute: 16 % der Theorie,

 $C_{17}H_{14}INO_3$ (407.21)

Massenspektrum: $(M-H)^{-} = 406$

Beispiel 173

trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-carboxy-5-methyl-phenyl)-amid

Hergestellt analog Beispiel 31 aus trans-(Naphth-2-yl)-but-2-ensäurechlorid und 2-Amino-4-methyl-benzoesäure in Tetra-hydrofuran unter Zusatz von Triethylamin.

Ausbeute: 4 % der Theorie,

 $C_{22}H_{19}NO_3$ (345.40)

 R_f -Wert: 0.2 (Kieselgel; Dichlormethan/Ethanol = 19:1)

'Massenspektrum: (M-H)' = 344

Beispiel 174

trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-carboxy-4,6-difluor-phenyl)-amid

Hergestellt analog Beispiel 31 aus trans-(Naphth-2-yl)-but-2-ensäurechlorid und 2-Amino-3,5-difluor-benzoesäure in Tetrahydrofuran unter Zusatz von Triethylamin.

Ausbeute: 8 % der Theorie,

 $C_{21}H_{15}F_2NO_3$ (367.35)

 R_f -Wert: 0.1 (Kieselgel; Dichlormethan/Ethanol = 19:1)

Massenspektrum: $(M-H)^{-} = 366$

```
trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-carboxy-5-(isopropyl-
aminocarbonyl)-phenyll-amid
Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-
2-ensäure-N-[2-methoxycarbonyl-5-(isopropylaminocarbonyl)-phe-
nyl]-amid und Kalilauge in Methanol.
Ausbeute: 5 % der Theorie,
C_{25}H_{24}N_2O_4 (416.48)
R<sub>f</sub>-Wert: 0.3 (Kieselgel; Petrolether/Essigester = 1:9)
Massenspektrum: (M-H)^{-} = 415
                 (M+H)^{+} = 417
                 (M+Na)^+ = 439
                  M^{+} = 416
Beispiel 176
trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-carboxy-5-(ethyl-
aminocarbonyl)-phenyll-amid
Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-
2-ensäure-N-[2-methoxycarbonyl-5-(ethylaminocarbonyl)-phenyl]-
amid und Kalilauge in Ethanol.
Ausbeute: 33 % der Theorie,
C_{24}H_{22}N_2O_4 (402.45)
R<sub>f</sub>-Wert: 0.4 (Kieselgel; Dichlormethan/Ethanol = 4:1)
Massenspektrum: (M-H)^{-} = 401
                 (M+Na)^{+} = 425
Beispiel 177
trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-carboxy-4-nitro-phe-
nyl)-amid
Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-
2-ensäure-N-(2-methoxycarbonyl-4-nitro-phenyl)-amid und Li-
thiumhydroxid in Wasser/Tetrahydrofuran.
Ausbeute: 93 % der Theorie,
C_{21}H_{16}N_2O_5 (376.37)
```

 R_f -Wert: 0.2 (Kieselgel; Dichlormethan/Ethanol = 9:1)

Massenspektrum: $(M-H)^{-} = 375$

Beispiel 178

trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-carboxy-5-(propylaminocarbonyl)-phenyll-amid

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-methoxycarbonyl-5-(propylaminocarbonyl)-phenyl]-amid und Kalilauge in Ethanol.

Ausbeute: 58 % der Theorie.

 $C_{25}H_{24}N_{2}O_{4}$ (416.41)

 R_f -Wert: 0.15 (Kieselgel; Dichlormethan/Ethanol = 9:1)

Massenspektrum: $(M-H)^{-} = 415$

Beispiel 179

trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2,5-bis-hydroxymethylphenyl)-amid

1.0 g (2.5 mMol) trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2,5-bis-methoxycarbonyl-phenyl)-amid werden in 70 ml Tetrahydrofuran gelöst, bei -70°C werden 10 ml (10 mMol) Lithium-triethylborhydrid (1 molar in Tetrahydrofuran) zugegeben und langsam auf Raumtemperatur erwärmt. Danach werden 100 ml Wasser zugetropft und mit Essigester extrahiert. Die vereinigten organischen Extrakte werden getrocknet und eingedampft. Der Rückstand wird durch Säulenchromatographie über Kieselgel (Elutionsmittel: Petrolether/Essigester = 7:3) gereinigt.

Ausbeute: 25 % der Theorie,

 $C_{22}H_{21}NO_3$ (347.41)

 R_{t} -Wert: 0.2 (Kieselgel; Petrolether/Essigester = 4:6)

Massenspektrum: $(M-H)^- = 346$ $(M+Na)^+ = 370$ - 116 -

Beispiel 180

```
trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-carboxy-5-(methyl-aminocarbonyl)-phenyl]-amid

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-methoxycarbonyl-5-(methylaminocarbonyl)-phenyl]-amid und Lithiumhydroxid in Methanol/Wasser.

Ausbeute: 30 % der Theorie,

C_{23}H_{20}N_2O_4 (388.42)

R_f-Wert: 0.36 (Kieselgel; Dichlormethan/Ethanol = 3:1)

Massenspektrum: (M-H) = 387

(M+Na) + 411
```

Beispiel 181

```
trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-carboxy-5-(dimethyl-aminocarbonyl)-phenyl]-amid

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-methoxycarbonyl-5-(dimethylaminocarbonyl)-phenyl]-amid und Lithiumhydroxid in Methanol/Wasser.

Ausbeute: 41 % der Theorie,

C_{24}H_{22}N_2O_4 (402.45)

R_f-Wert: 0.43 (Kieselgel; Dichlormethan/Ethanol = 3:1)

Massenspektrum: (M-H) = 401

(M+Na)^+ = 425
```

Beispiel 182

```
trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-carboxy-5-brom-phenyl)-amid

Hergestellt analog Beispiel 31 aus trans-(Naphth-2-yl)-but-2-ensäurechlorid und 2-Amino-4-brom-benzoesäure in Pyridin. Ausbeute: 58 % der Theorie, C_{21}H_{16}BrNO_3 \ (410.27)
R_f-Wert: 0.65 \ (Kieselgel; Dichlormethan/Ethanol = 3:1)
Massenspektrum: (M-H)^- = 408/410
```

trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-hydroxymethyl-phenyl)-amid

1.0 g (1.8 mMol) trans-3-(Naphth-2-yl)-but-2-ensäureN-[2-(tert.butyl-diphenylsilanyloxymethyl)-phenyl]-amid werden
in 30 ml Tetrahydrofuran und 2 ml (2 mMol) Tetrabutylammoniumfluorid (1 molar in Tetrahydrofuran) 6 Stunden gerührt. Das

Lösungsmittel wird abdestilliert, der Rückstand in Essigester/Wasser verteilt, die vereinigten organischen Extrakte getrocknet und eingedampft. Das Rohprodukt wird durch Säulenchromatographie über Kieselgel (Elutionsmittel: Dichormethan/Ethanol 0 bis 2 %) gereinigt.

Ausbeute: 67 % der Theorie,

 $C_{21}H_{19}NO_2$ (317.39)

 R_t -Wert: 0.7 (Kieselgel; Toluol/Essigester/Eisessig = 50:45:5)

Massenspektrum: $(M-H)^- = 316$

 $(M+Na)^{+} = 340$

Beispiel 184

trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-carboxy-5-hydroxyme-thyl-phenyl)-amid

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-methoxycarbonyl-5-hydroxymethyl-phenyl)-amid und Kalilauge in Ethanol.

Ausbeute: 33 % der Theorie,

 $C_{22}H_{19}NO_4$ (361.39)

 R_f -Wert: 0.5 (Kieselgel; Dichlormethan/Ethanol = 9:1)

Massenspektrum: $(M-H)^- = 360$

 $(M+Na)^+ = 384$

trans-3-(Naphth-2-yl)-but-2-ensaure-N-[2-carboxy-4-(N-methyl-N-tert_butoxycarbonylamino)-phenyll-amid Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-ethoxycarbonyl-4-(N-methyl-N-tert.butoxycarbonylamino)-phenyl]-amid und Natronlauge in Methanol. Ausbeute: 77 % der Theorie, $C_{27}H_{28}N_2O_5$ (460.53) R_f -Wert: 0.7 (Kieselgel; Dichlormethan/Ethanol = 9:1) Massenspektrum: (M-H) = 459 $(M+Na)^* = 483$ Beispiel 186 trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-carboxy-4-(N-tert.butoxycarbonylamino)-phenyll-amid Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-ethoxycarbonyl-4-(N-tert.butoxycarbonylamino)phenyl]-amid und Natronlauge in Methanol. Ausbeute: 96 % der Theorie, $C_{26}H_{26}N_2O_5$ (446.50) R_f-Wert: 0.6 (Kieselgel; Dichlormethan/Ethanol = 9:1) Massenspektrum: $(M-H)^{-} = 445$ $(M+Na)^+ = 469$

Beispiel 187

trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-carboxy-4-(phenyl-aminocarbonylamino)-phenyl]-amid

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-ethoxycarbonyl-4-(phenylaminocarbonylamino)-phenyl]-amid und Natronlauge in Methanol.

Ausbeute: 97 % der Theorie,

C₂₈H₂₃N₃O₄ (465.51)

R_t-Wert: 0.3 (Kieselgel; Dichlormethan/Ethanol = 9:1)

Massenspektrum: (M-H) = 464 $(M+Na)^{+} = 488$

Beispiel 188

trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-carboxy-4-(methylaminocarbonylamino)-phenyll-amid

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-ethoxycarbonyl-4-(methylaminocarbonylamino)phenyl]-amid und Natronlauge in Methanol.

Ausbeute: 91 % der Theorie,

 $C_{23}H_{21}N_3O_4$ (403.44)

 R_f -Wert: 0.15 (Kieselgel; Dichlormethan/Ethanol = 9:1)

Massenspektrum: $(M-H)^{-} = 402$ $(M+Na)^+ = 426$

Beispiel 189

trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-carboxy-5-trifluormethyl-phenyl)-amid

Hergestellt analog Beispiel 31 aus trans-(Naphth-2-yl)-but-2-ensäurechlorid und 2-Amino-5-trifluormethyl-benzoesäure in Tetrahydrofuran unter Zusatz von Triethylamin.

Ausbeute: 13 % der Theorie,

 $C_{22}H_{16}F_3NO_3$ (399.37)

R_f-Wert: 0.2 (Kieselgel; Dichlormethan/Ethanol = 19:1)

Massenspektrum: $(M-H)^{-} = 398$

Beispiel 190

trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-carboxy-4-(phenylethylaminocarbonylamino)-phenyll-amid

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-ethoxycarbonyl-4-(phenylethylaminocarbonylamino)-phenyl]-amid und Natronlauge in Methanol. Ausbeute: 95 % der Theorie,

 $C_{30}H_{27}N_3O_4$ (493.56)

```
R_t-Wert: 0.2 (Kieselgel; Dichlormethan/Ethanol = 9:1)
Massenspektrum: (M-H)^{-} = 492
Beispiel 191
trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-carboxy-4-(4-phenoxy-
phenylaminocarbonylamino)-phenyll-amid
Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-
2-ensäure-N-[2-ethoxycarbonyl-4-(4-phenoxyphenylaminocarbo-
nylamino)-phenyl]-amid und Natronlauge in Methanol.
Ausbeute: 98 % der Theorie,
C_{34}H_{27}N_3O_5 (557.61)
R_f-Wert: 0.2 (Kieselgel; Dichlormethan/Ethanol = 9:1)
Massenspektrum: (M-H)^{-} = 556
Beispiel 192
trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-carboxy-4-(benzylsul-
fonylamino)-phenyll-amid
Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-
2-ensäure-N-[2-ethoxycarbonyl-4-(benzylsulfonylamino)-phenyl]-
amid und Natronlauge in Methanol.
Ausbeute: 100 % der Theorie,
C_{28}H_{24}N_2O_5S (500.58)
R_t-Wert: 0.4 (Kieselgel; Dichlormethan/Ethanol = 9:1)
Massenspektrum: (M-H)^- = 499
Beispiel 193
trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-carboxy-4-(pyridin-
3-yl-aminocarbonylamino)-phenyll-amid
Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-
2-ensäure-N-[2-ethoxycarbonyl-4-(pyridin-3-yl-aminocarbonyl-
amino)-phenyl]-amid und Natronlauge in Methanol.
Ausbeute: 53 % der Theorie,
C_{27}H_{22}N_4O_4 (466.50)
R_t-Wert: 0.25 (Kieselgel; Dichlormethan/Ethanol = 4:1)
```

- 121 -

Massenspektrum: $(M-H)^{-} = 465$

Beispiel 194

trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-carboxy-5-(carboxymethyl-aminocarbonyl)-phenyl]-amid

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-methoxycarbonyl-5-(methoxycarbonylmethyl-aminocarbonyl)-phenyl]-amid und Kalilauge in Ethanol.

Ausbeute: 37 % der Theorie,

 $C_{24}^{\prime}H_{20}N_{2}O_{6}$ (432.43)

R_f-Wert: 0.4 (Kieselgel; Dichlormethan/Ethanol = 1:4)

Massenspektrum: $(M-H)^{-} = 431$

Beispiel 195

trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-carboxy-5-(N-methyl-N-carboxymethyl-aminocarbonyl)-phenyll-amid

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-methoxycarbonyl-5-(N-methyl-N-methoxycarbonyl-methyl-aminocarbonyl)-phenyl]-amid und Kalilauge in Ethanol. Ausbeute: 6 % der Theorie,

 $C_{25}H_{22}N_2O_6$ (446.46)

 R_f -Wert: 0.35 (Kieselgel; Dichlormethan/Ethanol = 1:4)

Massenspektrum: (M-H) = 445

Beispiel 196

trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-carboxy-5-(N-benzyl-aminocarbonyl)-phenyl]-amid

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-methoxycarbonyl-5-(N-benzyl-aminocarbonyl)-phenyl]-amid und Kalilauge in Ethanol.

Ausbeute: 100 % der Theorie,

 $C_{29}H_{24}N_{2}O_{4}$ (464.52)

 R_t -Wert: 0.3 (Kieselgel; Dichlormethan/Ethanol = 9:1)

- 122 -

Massenspektrum: $(M-H)^- = 463$ $(M+Na)^+ = 487$

Beispiel 197

trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-carboxy-5-(pyrrolidin-1-yl-aminocarbonyl)-phenyl]-amid

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-methoxycarbonyl-5-(pyrrolidin-1-yl-aminocarbonyl)-phenyl]-amid und Kalilauge in Ethanol.

Ausbeute: 58 % der Theorie, $C_{26}H_{25}N_3O_4$ (443.50) R_f -Wert: 0.3 (Kieselgel; Dichlormethan/Ethanol = 4:1)

Massenspektrum: $(M-H)^- = 442$ $(M+Na)^+ = 466$

Beispiel 198

trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-carboxy-5-(2-amino-ethyl-aminocarbonyl)-phenyll-amid

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-methoxycarbonyl-5-(2-aminoethyl-aminocarbonyl)-phenyl]-amid und Kalilauge in Ethanol.

Ausbeute: 58 % der Theorie,

C₂₄H₂₃N₃O₄ (417.46)

R_f-Wert: 0.15 (Kieselgel; Dichlormethan/Ethanol/Ammoniak = 50:45:5)

Massenspektrum: (M-H) = 416

(M+Na)⁺ = 440

Beispiel 199

trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-carboxy-5-(2-tert.-butoxycarbonylaminoethyl-aminocarbonyl)-phenyl]-amid

Zu einer Lösung aus 0.1 g (0.24 mMol) trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-carboxy-5-(2-aminoethyl-aminocarbonyl)-phenyl]-amid, 0.25 ml 1 molarer Natronlauge und 1 ml Tetrahydro-

- 123 -

furan werden 60 mg (0.27 mMol) Di-tert.butyldicarbonat zugefügt und 2 Stunden gerührt. Das Tetrahydrofuran wird im Vakuum abdestilliert. Der Rückstand wird mit Wasser verdünnt, mit Zitronensäure angesäuert und mit Essigester extrahiert. Die vereinigten organischen Extrakte werden getrocknet und eingedampft.

PCT/EP00/07057

Ausbeute: 64 % der Theorie,

 $C_{29}H_{31}N_3O_6$ (517.58)

 $R_{\rm f}$ -Wert: 0.8 (Kieselgel; Dichlormethan/Ethanol/Ammoniak =

50:45:5)

WO 01/07020

Massenspektrum: (M-H) = 516

 $(M+Na)^+ = 540$

Beispiel 200

trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-carboxy-5-phenyl-aminocarbonyl-phenyl)-amid

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-methoxycarbonyl-5-phenylaminocarbonyl-phenyl)-amid und Kalilauge in Ethanol.

Ausbeute: 83 % der Theorie,

 $C_{28}H_{22}N_2O_4$ (450.49)

 R_t -Wert: 0.15 (Kieselgel; Dichlormethan/Ethanol = 9:1)

Massenspektrum: $(M-H)^{-} = 449$

Beispiel 201

trans-3-(Naphth-2-yl)-but-2-ensäure-N- $\{2\text{-carboxy-5-}[N\text{-}(2\text{-meth-oxy-1-methyl-ethyl})\text{-aminocarbonyl}-phenyl}-amid

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-<math>\{2\text{-methoxycarbonyl-5-}[N\text{-}(2\text{-methoxy-1-methyl-ethyl})\text{-aminocarbonyl}]\text{-phenyl}-amid und Kalilauge in Ethanol.}

Ausbeute: 69 % der Theorie,

<math>C_{26}H_{26}N_2O_5$ (446.50) R_t -Wert: 0.15 (Kieselgel; Dichlormethan/Ethanol = 9:1)

Massenspektrum: $(M\text{-H})^-$ = 445

WO 01/07020

Beispiel 202

trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-carboxy-5-(N-piperidin-1-yl-aminocarbonyl)-phenyl]-amid

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-methoxycarbonyl-5-(N-piperidin-1-yl-aminocarbonyl)-phenyl]-amid und Kalilauge in Ethanol.

Ausbeute: 51 % der Theorie,

C₂₇H₂₇N₃O₄ (457.53)

R_f-Wert: 0.2 (Kieselgel; Toluol/Essigester/Eisessig = 50:45:5)

Massenspektrum: (M-H) = 456

M* = 457

- 124 -

Beispiel 203

trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-carboxy-5-(N-cyclo-pentyl-aminocarbonyl)-phenyl]-amid

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-methoxycarbonyl-5-(N-cyclopentyl-aminocarbonyl)-phenyl]-amid und Kalilauge in Ethanol.

Ausbeute: 58 % der Theorie, $C_{27}H_{26}N_2O_4$ (442.52) R_f -Wert: 0.6 (Kieselgel; Toluol/Essigester/Eisessig = 50:45:5)

Massenspektrum: (M-H) = 441 M^* = 457

Beispiel 204

trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-carboxy-5-(N-cyclo-hexyl-aminocarbonyl)-phenyl]-amid

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-methoxycarbonyl-5-(N-cyclohexyl-aminocarbonyl)-phenyl]-amid und Kalilauge in Ethanol.

Ausbeute: 81 % der Theorie, $C_{28}H_{28}N_2O_4$ (456.54) R_f -Wert: 0.42 (Kieselgel; Dichlormethan/Ethanol = 4:1)

Massenspektrum: (M-H) = 455

trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-carboxy-5-(N-cyclo-propyl-aminocarbonyl)-phenyl]-amid

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-methoxycarbonyl-5-(N-cyclopropyl-aminocarbonyl)-phenyl]-amid und Kalilauge in Ethanol.

Ausbeute: 59 % der Theorie, $C_{25}H_{22}N_2O_4$ (414.46) R_f -Wert: 0.35 (Kieselgel; Dichlormethan/Ethanol = 4:1)

Massenspektrum: $(M-H)^- = 413$

Beispiel 206

trans-3-(Naphth-2-yl)-but-2-ensäure-N- $\{2\text{-}carboxy-5-[N-(2,2,2-trifluorethyl)-aminocarbonyl]-phenyl}-amid

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-<math>\{2\text{-}methoxycarbonyl-5-[N-(2,2,2-trifluorethyl)-aminocarbonyl]-phenyl}-amid und Kalilauge in Ethanol.

Ausbeute: 65 % der Theorie,

<math>C_{24}H_{19}F_3N_2O_4$ (456.42) R_f -Wert: 0.35 (Kieselgel; Dichlormethan/Ethanol = 4:1)

Massenspektrum: (M-H) = 455

Beispiel 207

trans-3-(Naphth-2-yl)-but-2-ensäure-N- $\{2-carboxy-5-[N-(2-di-methylaminoethyl)-aminocarbonyl]-phenyl}-amid Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-<math>\{2-methoxycarbonyl-5-[N-(2-dimethylaminoethyl)-aminocarbonyl]-phenyl}-amid und Kalilauge in Ethanol. Ausbeute: 37 % der Theorie, <math display="block">C_{26}H_{27}N_3O_4 \ (445.52)$ $R_t-Wert: 0.1 \ (Kieselgel; Dichlormethan/Ethanol = 4:1)$ Massenspektrum: $(M-H)^- = 444$

- 126 -

Beispiel 208

trans-3-(Naphth-2-yl)-but-2-ensäure-N- $\{2-carboxy-5-[N-(3-di-methylaminopropyl)-aminocarbonyl]-phenyl}-amid

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-<math>\{2-methoxycarbonyl-5-[N-(3-dimethylaminopropyl)-aminocarbonyl]-phenyl}-amid und Kalilauge in Ethanol.

Ausbeute: 29 % der Theorie,

<math>C_{27}H_{29}N_3O_4$ (459.55) R_t -Wert: 0.1 (Kieselgel; Dichlormethan/Ethanol = 4:1)

Massenspektrum: $(M-H)^- = 458$

Beispiel 209

trans-3-(Naphth-2-yl)-but-2-ensäure-N- $\{2-carboxy-5-[N-(2-meth-oxyethyl)-aminocarbonyl]-phenyl\}-amid$ Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N- $\{2-methoxycarbonyl-5-[N-(2-methoxyethyl)-amino-carbonyl]-phenyl\}-amid und Kalilauge in Ethanol.

Ausbeute: 71 % der Theorie,
<math display="block">C_{25}H_{24}N_2O_5 \ (432.48)$ $R_f-Wert: 0.35 \ (Kieselgel; Dichlormethan/Ethanol = 4:1)$ Massenspektrum: $(M-H)^- = 431$

Beispiel 210

trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-carboxy-5-(N-morpholin-4-yl-aminocarbonyl)-phenyll-amid

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-methoxycarbonyl-5-(N-morpholin-4-yl-aminocarbonyl)-phenyl]-amid und Kalilauge in Ethanol.

Ausbeute: 69 % der Theorie, $C_{26}H_{25}N_3O_5$ (459.50) R_t -Wert: 0.2 (Kieselgel; Dichlormethan/Ethanol = 4:1)

Massenspektrum: (M-H) = 458 $(M+Na)^+$ = 482

trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-carboxy-5-(N-cyclo-butyl-aminocarbonyl)-phenyl]-amid

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-methoxycarbonyl-5-(N-cyclobutyl-aminocarbonyl)-phenyl]-amid und Kalilauge in Ethanol.

Ausbeute: 87 % der Theorie,

C₂₆H₂₄N₂O₄ (428.49)

R_f-Wert: 0.47 (Kieselgel; Dichlormethan/Ethanol = 4:1)

Massenspektrum: (M-H) = 427

Beispiel 212

trans-3-(Naphth-2-yl)-but-2-ensäure-N- $\{2\text{-}carboxy-5\text{-}[N\text{-}(4\text{-}me-thylpiperazin-1-yl)-aminocarbonyl]-phenyl}\}$ -amid

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N- $\{2\text{-}methoxycarbonyl-5\text{-}[N\text{-}(4\text{-}methylpiperazin-1-yl)-aminocarbonyl}]$ -phenyl $\}$ -amid und Kalilauge in Ethanol.

Ausbeute: 36 % der Theorie, $C_{27}H_{28}N_4O_4$ (472.55) R_f -Wert: 0.3 (Kieselgel; Dichlormethan/Ethanol = 3:7)

Massenspektrum: (M-H) = 471 $(M+Na)^+ = 495$ $(M+H)^+ = 473$

Beispiel 213

trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-carboxy-5-(2-methyl-hydrazino-carbonyl)-phenyl]-amid

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but2-ensäure-N-[2-methoxycarbonyl-5-(2-methylhydrazino-carbonyl)phenyl]-amid und Lithiumhydroxid in Tetrahydrofuran/Wasser.

Ausbeute: 62 % der Theorie,

C₂₃H₂₁N₃O₄ (403.44)

Massenspektrum: (M-H) = 402

(M+Na) + = 426

trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-carboxy-5-(2-benzoylhydrazino-carbonyl)-phenyll-amid Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-methoxycarbonyl-5-(2-benzoylhydrazino-carbonyl)-phenyl]-amid und Kalilauge in Ethanol. Ausbeute: 21 % der Theorie, $C_{29}H_{23}N_3O_5$ (493.52) R_t -Wert: 0.55 (Kieselgel; Dichlormethan/Ethanol = 3:1) Massenspektrum: $(M-H)^{-} = 492$ Beispiel 215 trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-carboxy-5-(2,2-dimethyl-hydrazinocarbonyl)-phenyll-amid Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-methoxycarbonyl-5-(N, N-dimethyl-hydrazino-carbonyl)-phenyl]-amid und Lithiumhydroxid in Tetrahydrofuran/-Wasser. Ausbeute: 77 % der Theorie, $C_{24}H_{23}N_3O_4$ (417.46) R_f -Wert: 0.2 (Kieselgel; Dichlormethan/Ethanol = 4:1) Massenspektrum: $(M-H)^- = 416$ $(M+Na)^* = 440$

Beispiel 216

trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-carboxy-5-(1,2-di-methylhydrazino-carbonyl)-phenyl]-amid

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-methoxycarbonyl-5-(1,2-dimethylhydrazino-carbonyl)-phenyl]-amid und Lithiumhydroxid in Tetrahydrofuran/-Wasser.

Ausbeute: 77 % der Theorie,

C₂₄H₂₃N₃O₄ (417.46)

- 129 -

```
R_f-Wert: 0.3 (Kieselgel; Dichlormethan/Ethanol = 4:1)
Massenspektrum: (M-H)^- = 416
(M+Na)^+ = 440
```

Beispiel 217

trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-carboxy-5-(N-prop-2-in-yl-aminocarbonyl)-phenyll-amid

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-methoxycarbonyl-5-(N-prop-2-in-yl-aminocar-bonyl)-phenyl]-amid und Lithiumhydroxid in Methanol/Wasser.

Ausbeute: 65 % der Theorie, $C_{25}H_{20}N_2O_4$ (412.44) R_f -Wert: 0.46 (Kieselgel; Dichlormethan/Ethanol = 3:1)

Massenspektrum: $(M-H)^- = 411$ $(M+Na)^+ = 435$

Beispiel 218

trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-carboxy-5-(N-isobutylaminocarbonyl)-phenyll-amid

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-methoxycarbonyl-5-(N-isobutylaminocarbonyl)-phenyl]-amid und Lithiumhydroxid in Methanol/Wasser.

Ausbeute: 58 % der Theorie, $C_{26}H_{26}N_2O_4$ (430.50) R_f -Wert: 0.41 (Kieselgel; Dichlormethan/Ethanol = 3:1)

Massenspektrum: (M-H) = 429 $(M+Na)^+$ = 453

Beispiel 219

trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-carboxy-5-(N-(pyridin-3-yl-methyl)-aminocarbonyl)-phenyll-amid

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-methoxycarbonyl-5-(N-(pyridin-3-yl-methyl)-

- 130 -

aminocarbonyl)-phenyl]-amid und Lithiumhydroxid in Methanol/-Wasser.
Ausbeute: 39 % der Theorie, $C_{28}H_{23}N_3O_4 \ (465.51)$ $R_f\text{-Wert: 0.21 (Kieselgel; Dichlormethan/Ethanol = 3:1)}$
Massenspektrum: $(M-H)^- = 464$

Beispiel 220

trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-carboxy-5-(N-(2-me-thylthio-ethyl)-aminocarbonyl)-phenyll-amid

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-methoxycarbonyl-5-(N-(2-methylthio-ethyl)-aminocarbonyl)-phenyl]-amid und Lithiumhydroxid in Methanol/-Wasser.

Ausbeute: 45 % der Theorie, $C_{25}H_{24}N_2O_4S$ (448.54) R_f -Wert: 0.41 (Kieselgel; Dichlormethan/Ethanol = 3:1)

Massenspektrum: (M-H) = 447

Beispiel 221

trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-carboxy-5-(N-(2-hydroxy-ethyl)-aminocarbonyl)-phenyl]-amid

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-methoxycarbonyl-5-(N-(2-hydroxy-ethyl)-aminocarbonyl)-phenyl]-amid und Lithiumhydroxid in Methanol/Wasser. Ausbeute: 68 % der Theorie, $C_{24}H_{22}N_2O_5 \ (418.45)$ $R_f\text{-Wert: 0.20 (Kieselgel; Dichlormethan/Ethanol = 3:1)}$ $Massenspektrum: (M-H)^- = 417$

trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-carboxy-5-(2-tert.butoxycarbonylhydrazino-carbonyl)-phenyll-amid Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-methoxycarbonyl-5-(2-tert.butoxycarbonylhydrazino-carbonyl)-phenyl]-amid und Lithiumhydroxid in Methanol/Wasser. Ausbeute: 48 % der Theorie, $C_{27}H_{27}N_3O_5$ (489.53) R_t -Wert: 0.38 (Kieselgel; Dichlormethan/Ethanol = 3:1) Massenspektrum: $(M-H)^{-} = 488$ Beispiel 223 trans-3-(Naphth-2-yl)-but-2-ensaure-N-[2-carboxy-5-(2,5-dihydropyrrol-1-yl-carbonyl)-phenyll-amid Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensaure-N-[2-methoxycarbonyl-5-(2,5-dihydropyrrol-1-yl-carbonyl)-phenyl]-amid und Lithiumhydroxid in Methanol/Wasser. Ausbeute: 73 % der Theorie. $C_{26}H_{22}N_{2}O_{4}$ (426.47) R_f -Wert: 0.48 (Kieselgel; Dichlormethan/Ethanol = 3:1) Massenspektrum: $(M-H)^- = 425$ $(M+Na)^+ = 449$ Beispiel 224

trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-carboxy-5-(allylaminocarbonyl)-phenyll-amid Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-carboxy-5-(allylaminocarbonyl)-phenyl]-amid und Lithiumhydroxid in Methanol/Wasser. Ausbeute: 68 % der Theorie, $C_{25}H_{22}N_2O_4$ (414.46) R_f -Wert: 0.44 (Kieselgel; Dichlormethan/Ethanol = 3:1)

- 132 -

Massenspektrum: $(M-H)^* = 413$ $(M+Na)^* = 437$

Beispiel 225

trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-carboxy-5-(3-hydroxy-1-propin-yl)-phenyl]-amid

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-methoxycarbonyl-5-(3-hydroxy-1-propin-yl)-phenyl]-amid und Lithiumhydroxid in Tetrahydrofuran/Wasser. Ausbeute: 27 % der Theorie,

 $C_{24}H_{19}NO_4$ (385.42)

 R_f -Wert: 0.3 (Kieselgel; Dichlormethan/Ethanol = 9:1)

Massenspektrum: $(M-H)^{-} = 384$

Beispiel 226

trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-carboxy-5-benzyl-amino-phenyl]-amid

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-methoxycarbonyl-5-benzylamino-phenyl]-amid und Kalilauge in Methanol.

Ausbeute: 87 % der Theorie,

 $C_{28}H_{24}N_2O$ (436.51)

 R_{t} -Wert: 0.25 (Kieselgel; Dichlormethan/Ethanol = 49:1)

Massenspektrum: $(M-H)^{-} = 435$

Beispiel 227

trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-carboxy-5-(N-(2-dime-thylamino-ethyl)-amino)-phenyl]-amid

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-methoxycarbonyl-5-(N-(2-dimethylaminoethyl)-amino)-phenyl]-amid und Lithiumhydroxid in Tetrahydrofuran/Wasser.

Ausbeute: 86 % der Theorie,

 $C_{25}H_{27}N_3O_3$ (417.51)

- 133 -

 R_f -Wert: 0.15 (Kieselgel; Dichlormethan/Ethanol = 1:1) Massenspektrum: $(M-H)^- = 416$

Beispiel 228

trans-3-(Naphth-2-yl)-but-2-ensäure-N-(6-carboxy-chinolin-5-yl)-amid

Hergestellt analog Beispiel 31 aus trans-(Naphth-2-yl)-but-2-ensäurechlorid und 5-Amino-6-carboxychinolin in Dimethylformamid unter Zusatz von Triethylamin und anschließender Umsetzung analog Beispiel 2 mit Lithiumhydroxid in Methanol/Wasser.

Ausbeute: 17 % der Theorie,

 $C_{24}H_{18}N_2O_3$ (382.42)

 R_t -Wert: 0.7 (Kieselgel; Dichlormethan/Ethanol = 9:1)

Massenspektrum: $(M-H)^{-} = 381$

Beispiel 229

trans-3-(Naphth-2-yl)-but-2-ensäure-N-(4-carboxy-3-biphenyl)-amid

Hergestellt analog Beispiel 31 aus trans-(Naphth-2-yl)-but-2-ensäurechlorid und 3-Amino-biphenyl-4-carbonsäure in Pyridin unter Zusatz von 2-Dimethylamino-pyridin.

Ausbeute: 29 % der Theorie,

 $C_{27}H_{21}NO_3$ (407.47)

 R_f -Wert: 0.7 (Kieselgel; Dichlormethan/Ethanol = 9:1)

Massenspektrum: $(M-H)^{-} = 406$

Beispiel 230

trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-carboxy-5-isopropyl-aminocarbonylamino)-amid

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-methoxycarbonyl-5-isopropylaminocarbonylamino)-amid und Kalilauge in Ethanol.

Ausbeute: 31 % der Theorie,

- 134 -

 $C_{25}H_{25}N_3O_4$ (431.49)

Massenspektrum: $(M-H)^{-} = 430$

Beispiel 231

trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-carboxy-5-(N-(pyridin-2-yl-methyl)-aminocarbonyl)-phenyl]-amid

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-methoxycarbonyl-5-(N-(pyridin-2-yl-methyl)-aminocarbonyl)-phenyl]-amid und Lithiumhydroxid in Tetrahydrofuran/Wasser.

Ausbeute: 34 % der Theorie,

 $C_{28}H_{23}N_3O_4$ (465.51)

 R_f -Wert: 0.35 (Kieselgel; Dichlormethan/Ethanol = 3:1)

Massenspektrum: $(M-H)^{-} = 464$

Beispiel 232

trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-carboxy-5-(N-(pyridin-4-yl-methyl)-aminocarbonyl)-phenyl]-amid

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-methoxycarbonyl-5-(N-(pyridin-4-yl-methyl)-aminocarbonyl)-phenyl]-amid und Lithiumhydroxid in Tetra-hydrofuran/Wasser.

Ausbeute: 31 % der Theorie,

 $C_{28}H_{23}N_3O_4$ (465.51)

R_f-Wert: 0.2 (Kieselgel; Dichlormethan/Ethanol = 3:1)

Massenspektrum: $(M-H)^{-} = 464$

Beispiel 233

trans-3-(Naphth-2-yl)-but-2-ensäure-N-{2-carboxy-5-[N-(pyridin-3-yl-methyl)-N-methyl-amino)-carbonyll-phenyl}-amid

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-{2-methoxycarbonyl-5-[N-(pyridin-3-yl-methyl)-N-methyl-amino)-carbonyl]-phenyl}-amid und Lithiumhydroxid in Tetrahydrofuran/Wasser.

- 135 -

```
Ausbeute: 51 % der Theorie, C_{29}H_{25}N_3O_4 (479.54) R_f-Wert: 0.3 (Kieselgel; Dichlormethan/Ethanol = 3:1) Massenspektrum: (M-H)^- = 478
```

Beispiel 234

trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-carboxy-5-(N-(pyri-din-4-yl)-aminocarbonyl)-phenyll-amid

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-methoxycarbonyl-5-(N-(pyridin-4-yl)-aminocarbonyl)-phenyl]-amid und Lithiumhydroxid in Tetrahydrofuran/-Wasser.

Beispiel 235

trans-3-(Naphth-2-yl)-but-2-ensäure-N-{2-carboxy-5-[(1-methyl-piperidin-4-yl-methyl)-aminocarbonyl]-phenyl}-amid-hydro-chlorid

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N- $\{2\text{-methoxycarbonyl-5-[(1-methyl-piperidin-4-yl-methyl)-aminocarbonyl]-phenyl}-amid und Lithiumhydroxid in Tetrahydrofuran/Wasser und anschließende Behandlung mit HCl. Ausbeute: 52 % der Theorie, <math display="block">C_{29}H_{31}N_3O_4 \times HCl \ (485.58/522.05)$ $R_f\text{-Wert: 0.2 (Reversed Phase RP 8; Methanol/5% Natriumchlorid = 6:4)}$

Massenspektrum: $(M-H)^{-} = 484$ $(M+H)^{+} = 486$

- 136 -

Beispiel 236

trans-3-(Naphth-2-yl)-but-2-ensäure-N- $\{2\text{-carboxy-}5\text{-}[(1\text{-tert.butoxycarbonyl-piperidin-4-yl-methyl)-amino-carbonyl}-phenyl}-amid
Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-<math>\{2\text{-methoxycarbonyl-5-}[(1\text{-tert.butoxycarbonyl-piperidin-4-yl-methyl)-aminocarbonyl}-phenyl}-amid und Li-thiumhydroxid in Tetrahydrofuran/Wasser.
Ausbeute: 39 % der Theorie,
C_{33}H_{37}N_3O_6$ (571.67)
R_r-Wert: 0.5 (Kieselgel; Dichlormethan/Ethanol = 3:1)
Massenspektrum: (M-H) = 570

Beispiel 237

trans-3-(Naphth-2-yl)-but-2-ensäure-N- $\{2\text{-carboxy-5-}[(1\text{-aza-bicyclo}\{2.2.2\text{loct-3-ylamino}\}\text{-carbonyl}]\text{-phenyl}\}$ -amid

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N- $\{2\text{-methoxycarbonyl-5-}[(1\text{-aza-bicyclo}[2.2.2]\text{oct-3-ylamino}\}\text{-carbonyl}]\text{-phenyl}\}$ -amid und Lithiumhydroxid in Tetrahydrofuran/Wasser.

Ausbeute: 31 % der Theorie, $C_{29}H_{29}N_3O_4$ (483.57) R_f -Wert: 0.2 (Reversed Phase RP 8; Methanol/5% Natriumchlorid = 6:4)

Massenspektrum: (M+H)* = 484

Beispiel 238

trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-carboxy-5-(2-carboxy-ethyl-aminocarbonyl)-phenyl]-amid

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-methoxycarbonyl-5-(2-methoxycarbonyl-ethyl-aminocarbonyl)-phenyl]-amid und Lithiumhydroxid in Tetrahydro-furan/Wasser.

Ausbeute: 80 % der Theorie,

- 137 -

 $C_{25}H_{22}N_2O_6$ (446.46) R_f -Wert: 0.2 (Kieselgel; Dichlormethan/Ethanol = 3:1) Massenspektrum: $(M-H)^- = 445$

Beispiel 239

trans-3-(Naphth-2-yl)-but-2-ensäure-N- $\{2-carboxy-5-[(1H-imida-zol-4-ylmethyl)-aminocarbonyl]-phenyl\}-amid$ Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N- $\{2-methoxycarbonyl-5-[(1H-imidazol-4-ylmethyl)-aminocarbonyl]-phenyl\}-amid und Lithiumhydroxid in Tetra-hydrofuran/Wasser.

Ausbeute: 26 % der Theorie,
<math display="block">C_{26}H_{22}N_4O_4 \quad (454.48)$ $R_f-Wert: 0.7 \quad (Kieselgel; Essigester/Ethanol/Ammoniak = 10:9:1)$

Beispiel 240

Massenspektrum: (M-H) = 453

trans-3-(Naphth-2-yl)-but-2-ensäure-N- $\{2\text{-carboxy-5-}[N\text{-}(2\text{-ace-tylaminoethyl})\text{-aminocarbonyl}]\text{-phenyl}\}$ -amid

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N- $\{2\text{-methoxycarbonyl-5-}[N\text{-}(2\text{-acetylaminoethyl})\text{-aminocarbonyl}]\text{-phenyl}\}$ -amid und Lithiumhydroxid in Tetrahydrofuran/Wasser.

Ausbeute: 100 % der Theorie, $C_{26}H_{25}N_3O_5$ (459.50) R_f -Wert: 0.2 (Kieselgel; Dichlormethan/Ethanol = 3:1)

Massenspektrum: (M-H) = 458

Beispiel 241

trans-3-(Naphth-2-yl)-but-2-ensäure-N-{2-carboxy-5-[N-(piperidin-4-yl-methyl)-aminocarbonyl]-phenyl}-amid-trifluoracetat
Hergestellt analog Beispiel 163 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-{2-carboxy-5-[N-(1-tert.butoxycarbonyl-piperidin-

- 138 -

```
4-yl-methyl)-aminocarbonyl]-phenyl}-amid und Trifluoressig-

säure in Dichlormethan.

Ausbeute: 98 % der Theorie,

C<sub>28</sub>H<sub>29</sub>N<sub>3</sub>O<sub>4</sub> x CF<sub>3</sub>COOH (471.58/585.58)

R<sub>f</sub>-Wert: 0.3 (Kieselgel; Dichlormethan/Ethanol = 4:1)

Massenspektrum: (M-H) = 470

(M+H) + 472
```

trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-carboxy-5-pyrroli-dino-phenyl)-amid

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-methoxycarbonyl-5-pyrrolidino-phenyl)-amid und Kalilauge in Tetrahydrofuran.

Ausbeute: 41 % der Theorie,

 $C_{25}H_{24}N_2O_3$ (400.48)

 R_f -Wert: 0.3 (Kieselgel; Dichlormethan/Ethanol = 49:1)

Massenspektrum: $(M-H)^{-} = 399$

Beispiel 243

trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-carboxy-5-isopropyl-amino-phenyl)-amid

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-methoxycarbonyl-5-isopropylamino-phenyl)-amid und Kalilauge in Tetrahydrofuran.

Ausbeute: 83 % der Theorie,

 $C_{24}H_{24}N_2O_3$ (388.47)

 R_f -Wert: 0.4 (Kieselgel; Dichlormethan/Ethanol = 19:1)

Massenspektrum: $(M-H)^- = 387$

 $M^{\star} = 388$

- 139 -

Beispiel 244

trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-carboxy-5-propylami-no-phenyl)-amid

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-methoxycarbonyl-5-propylamino-phenyl)-amid und Kalilauge in Methanol.

Ausbeute: 74 % der Theorie,

 $C_{24}H_{24}N_2O_3$ (388.47)

 R_f -Wert: 0.4 (Kieselgel; Dichlormethan/Ethanol = 19:1)

Massenspektrum: $(M-H)^{-} = 387$

Beispiel 245

trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-carboxy-5-morpholino-phenyl)-amid

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-methoxycarbonyl-5-morpholino-phenyl)-amid und Kalilauge in Methanol.

Ausbeute: 71 % der Theorie,

 $C_{25}H_{24}N_2O_3$ (416.48)

 R_{t} -Wert: 0.6 (Kieselgel; Dichlormethan/Ethanol = 9:1)

Massenspektrum: $(M-H)^{-} = 415$

Beispiel 246

trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-carboxy-5-phenyl-amino-phenyl)-amid

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-methoxycarbonyl-5-phenylamino-phenyl)-amid und Kalilauge in Methanol.

Ausbeute: 97% der Theorie,

 $C_{27}H_{22}N_2O_3$ (422.49)

 R_f -Wert: 0.79 (Kieselgel; Dichlormethan/Ethanol = 9:1)

Massenspektrum: $(M-H)^{-} = 421$

- 140 -

Beispiel 247

trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-carboxy-5-(3-di-methylamino-prop-1-in-yl)-phenyll-amid

Hergestellt analog Beispiel 2 aus trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-methoxycarbonyl-5-(3-dimethylamino-prop-1-in-yl)-phenyl]-amid und Lithiumhydroxid in einem Gemisch aus Tetrahydrofuran und Wasser.

Ausbeute: 82% der Theorie, $C_{26}H_{24}N_2O_3$ (412.49) R_f -Wert: 0.22 (Kieselgel; Dichlormethan/Ethanol = 4:1)

Massenspektrum: $(M-H)^-$ = 411 $(M+H)^+$ = 413 M^+ = 412

Beispiel 248

trans-3-(Isochinolin-3-yl)-but-2-ensäure-N-(2-carboxy-phenyl)-amid_____

Hergestellt analog Beispiel 2 aus trans-3-(Isochinolin-3-yl)-but-2-ensäure-N-(2-methoxycarbonyl-phenyl)-amid und Lithium-hydroxid in einem Gemisch aus Tetrahydrofuran und Wasser.

Ausbeute: 69% der Theorie,

 $C_{20}H_{16}N_2O_3$ (332.36)

 R_t -Wert: 0.48 (Kieselgel; Dichlormethan/Ethanol = 9:1)

Massenspektrum: $(M-H)^{+} = 331$ $(M+H)^{+} = 333$ $M+Na)^{+} = 355$

Beispiel 249

Tabletten, enthaltend 50 mg Wirkstoff

Wirkstoff 50,0 mg
Calciumphosphat 70,0 mg
Milchzucker 40,0 mg

- 141 -

Maisstärke	35,0	mg
Polyvinylpyrrolidon	3,5	mg
Magnesiumstearat	1.5	mg
	200,0	mg

Herstellung:

Der Wirkstoff, CaHPO₄, Milchzucker und Maisstärke werden mit einer wässrigen PVP-Lösung gleichmäßig befeuchtet. Die Masse wird durch ein 2-mm-Sieb gegeben, im Umlufttrockenschrank bei 50°C getrocknet und erneut gesiebt.

Nach Zumischen des Schmiermittels wird das Granulat auf einer Tablettiermaschine verpresst.

Beispiel 250

Dragées, enthaltend 50 mg Wirkstoff

Wirkstoff	50,0	mg
Lysin	25,0	mg
Milchzucker	60,0	mg
Maisstärke	34,0	mg
Gelatine ·	10,0	mg
Magnesiumstearat	1.0	mg
	180,0	mg

Herstellung:

Der Wirkstoff wird mit den Hilfsstoffen gemischt und mit einer wässrigen Gelatine-Lösung befeuchtet. Nach Siebung und Trocknung wird das Granulat mit Magnesiumstearat vermischt und zu Kernen verpresst.

Die so hergestellten Kerne werden nach bekannten Verfahren mit einer Hülle überzogen. Der Dragiersuspension oder -lösung kann Farbstoff zugegeben werden.

- 142 -

Beispiel 251

Dragees, enthaltend 100 mg Wirkstoff

Wirkstoff	100,0	mg
Lysin	50,0	mg
Milchzucker	86,0	mg
Maisstärke	50,0	mg
Polyvinylpyrrolidon	2,8	mg
Mikrokristalline Cellulose	60,0	mg
Magnesiumstearat	1,2	mg
	350,0	mg

Herstellung:

Der Wirkstoff wird mit den Hilfsstoffen gemischt und mit einer wässrigen PVP-Lösung befeuchtet. Die feuchte Masse wird durch ein 1,5-mm-Sieb gegeben und bei 45°C getrocknet. Nach dem Trocknen wird erneut gesiebt und das Magnesiumstearat zugemischt. Diese Mischung wird zu Kernen verpreßt.

Die so hergestellten Kerne werden nach bekannten Verfahren mit einer Hülle überzogen. Der Dragiersuspension oder -lösung können Farbstoffe zugegeben werden.

Beispiel 252

Kapseln, enthaltend 250 mg Wirkstoff

Wirkstoff	250,0	mg
Maisstärke	68,5	mg
Magnesiumstearat	1,5	mg
	320,0	mg

- 143 -

Herstellung:

Wirkstoff und Maisstärke werden gemischt und mit Wasser befeuchtet. Die feuchte Masse wird gesiebt und getrocknet. Das trockene Granulat wird gesiebt und mit Magnesiumstearat gemischt. Die Endmischung wird in Hartgelatinekapseln Größe 1 abgefüllt.

- 144 -

Patentansprüche

PCT/EP00/07057

1. Verwendung der Carbonsäureamide der allgemeinen Formel

$$\begin{array}{c|c}
R_{2} & R_{5} \\
R_{2} & N - B \\
R_{1} & R_{4}
\end{array}$$

in der

WO 01/07020

 R_1 ein Wasserstoffatom, eine C_{1-3} -Alkyl- oder Trifluormethyl-gruppe,

 R_2 ein Wasserstoff-, Fluor-, Chlor- oder Bromatom, eine C_{1-3} -Alkyl-, C_{3-7} -Cycloalkyl- oder C_{1-3} -Alkoxygruppe oder auch, wenn R_4 und R_5 jeweils ein Wasserstoffatom darstellen, R_1 und R_2 zusammen eine gegebenenfalls durch eine C_{1-3} -Alkylgruppe substituierte $n-C_{1-3}$ -Alkylengruppe,

 R_3 ein Wasserstoffatom oder eine C_{1-5} -Alkylgruppe,

 R_4 und R_5 jeweils ein Wasserstoffatom oder zusammen eine weitere Kohlenstoff-Kohlenstoff-Bindung,

A eine durch ein Fluor-, Chlor-, Brom- oder Jodatom, durch eine C_{1-6} -Alkyl-, C_{3-7} -Cycloalkyl-, Phenyl-, C_{1-3} -Alkoxy-, Cyano-, Trifluormethyl- oder Nitrogruppe substituierte Phenyl-, Naphthyl- oder Tetrahydronaphthylgruppe, wobei die vorstehend erwähnten monosubstituierten Phenyl- und Naphthylgruppen zusätzlich durch ein Fluor-, Chlor- oder Bromatom, durch eine C_{1-3} -Alkyl- oder C_{1-3} -Alkoxygruppe und die vorstehend erwähnten disubstituierten Phenylgruppen zusätzlich durch eine C_{1-3} -Alkyl- oder C_{1-3} -Alkoxygruppe substituiert sein können,

- 145 -

eine Naphthylgruppe,

eine Chroman- oder Chromengruppe, in der eine Methylengruppe durch eine Carbonylgruppe ersetzt sein kann,

eine im Kohlenstoffgerüst gegebenenfalls durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₃-Alkyl- oder C₁₋₃-Alkoxy-gruppe substituierte 5- oder 6-gliedrige Heteroarylgruppe, wobei die 6-gliedrigen Heteroarylgruppen ein, zwei oder drei Stickstoffatome und die 5-gliedrigen Heteroarylgruppen eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe, ein Sauerstoff- oder Schwefelatom oder eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe und ein Sauerstoff- oder Schwefelatom oder ein oder zwei Stickstoffatome enthalten und zusätzlich an die vorstehend erwähnten monocyclischen Heteroarylgruppen über zwei benachbarte Kohlenstoffatome ein Phenylring ankondensiert sein kann, welcher ebenfalls im Kohlenstoffgerüst durch ein Fluor-, Chloroder Bromatom, durch eine C₁₋₃-Alkyl- oder C₁₋₃-Alkoxygruppe substituiert sein kann,

eine Phenylvinylgruppe oder

 R_1 zusammen mit A und dem dazwischen liegenden Kohlenstoffatom eine C_{5-7} -Cycloalkylidengruppe, an die über zwei benachbarte Kohlenstoffatome ein Phenylring ankondensiert sein kann, welcher zusätzlich durch eine oder zwei C_{1-3} -Alkyl- oder C_{1-3} -Alk-oxygruppen substituiert sein kann, wobei die Substituenten gleich oder verschieden sein können, und

B eine durch eine Carboxygruppe oder durch eine in-vivo in eine Carboxygruppe überführbare Gruppe substituierte 5- oder 6-gliedrige Heteroarylgruppe,

eine Phenyl- oder Naphthylgruppe, die jeweils durch eine Carboxygruppe, durch eine in-vivo in eine Carboxygruppe überführbare Gruppe oder durch eine unter physiologischen Bedingungen negativ geladene Gruppe substituiert sein können, wobei die vorstehend erwähnten Phenylgruppen zusätzlich

durch ein Fluor-, Chlor-, Brom- oder Jodatom,

durch eine C_{1-3} -Alkyl-, Trifluormethyl-, Phenyl-, Hydroxy-, C_{1-3} -Alkoxy-, C_{1-3} -Alkylsulfonyloxy-, Phenylsulfonyloxy-, Carboxy-, C_{1-3} -Alkoxycarbonyl-, Formyl-, C_{1-3} -Alkylcarbonyl-, Carboxy-, C_{1-3} -Alkylsulfonyl-, Phenylsulfonyl-, Nitro-, Pyrrolidino-, Piperidino-, Morpholino-, N-(C_{1-3} -Alkyl)-piperazino-, Aminosulfonyl-, C_{1-3} -Alkylaminosulfonyl- oder Di-(C_{1-3} -Alkyl)-aminosulfonylgruppe,

durch eine C_{1-3} -Alkylgruppe, die durch eine Hydroxy-, C_{1-3} -Alkoxy-, Amino-, C_{1-4} -Alkylamino-, Di- $(C_{1-4}$ -Alkyl)- amino-, C_{3-7} -Cycloalkylamino-, Pyrrolidino-, Piperidino-, Morpholino-, Piperazino- oder N- $(C_{1-3}$ -Alkyl)-piperazino-gruppe substituiert ist,

durch eine in 2- oder 3-Stellung durch eine Di- $(C_{1-3}-Alkyl)$ -aminogruppe substituierte n- $C_{2-3}-Alkoxy$ -, $C_{2-3}-Alkenyl$ - oder $C_{2-3}-Alkinyl$ gruppe,

durch eine Aminogruppe, durch eine N- $(C_{1-3}$ -Alkyl)-amino-oder N,N-Di- $(C_{1-3}$ -Alkyl)-aminogruppe, in der der Alkylteil jeweils in 2- oder 3-Stellung bezogen auf das Stickstoff-atom durch eine C_{1-3} -Alkoxygruppe substituiert sein kann, durch eine N-Phenylamino-, N- $(Phenyl-C_{1-3}$ -alkyl)-amino- oder N- $(Pyridyl-C_{1-3}$ -alkyl)-aminogruppe, in denen jeweils ein Wasserstoffatom der vorstehend erwähnten Aminogruppen durch eine C_{1-3} -Alkylsulfonyl-, Phenyl- C_{1-3} -alkylsulfonyl- oder Phenylsulfonylgruppe oder durch eine C_{1-3} -Alkylgruppe, welche in 2- bis 5-Stellung durch eine C_{1-3} -Alkoxy-, Cyano-, Amino-, C_{1-3} -Alkylamino-, Di- $(C_{1-3}$ -Alkyl)-amino- oder Tetrazolylgruppe ersetzt sein kann,

durch eine Aminocarbonyl- oder C_{1-3} -Alkylaminocarbonylgruppe, die jeweils am Aminstickstoffatom

durch eine C_{1-4} -Alkylgruppe, die durch eine Vinyl-, Ethinyl-, Phenyl-, Pyridyl-, Imidazolyl-, Carboxy- oder Trifluormethylgruppe oder mit Ausnahme der 2-Stellung bezogen auf das Aminocarbonylstickstoffatom durch eine Hydroxy-, C_{1-3} -Alkoxy-, C_{1-3} -Alkylthio-, Amino-, C_{1-3} -Alkyl-amino-, Di- $(C_{1-3}$ -Alkyl)-amino-, C_{1-4} -Alkanoylamino- oder C_{1-5} -Alkoxycarbonylaminogruppe substituiert sein kann,

durch eine C_{3-7} -Cycloalkyl-, C_{5-9} -Azabicycloalkyl-, Phenyl-, Pyridyl-, C_{1-3} -Alkoxy- oder Di- $(C_{1-3}$ -Alkyl)-aminogruppe,

durch eine C_{1-3} -Alkylgruppe, die durch eine gegebenenfalls in 1-Stellung durch eine C_{1-3} -Alkyl- oder C_{1-5} -Alkoxycarbonylgruppe substituierte Piperidin-3-yl- oder Piperidin-4-yl-Gruppe substituiert ist, oder

durch eine gegebenenfalls am Aminstickstoffatom durch eine C_{1-4} -Alkanoyl-, C_{1-5} -Alkoxycarbonyl-, Benzoyl-, Pyrrolidino-, Piperidino-, Morpholino- oder N- $(C_{1-3}$ -Alkyl)-piperazinogruppe substituierte Amino-, C_{1-3} -Alkylamino- oder Phenyl- C_{1-3} -alkylaminogruppe substituiert sein kann,

durch eine Pyrrolidino-, Pyrrolino-, Piperidino-, Morpholino- oder N-(C₁₋₃-Alkyl)-piperazinogruppe substituierte Carbonylgruppe,

durch eine Amino-, C_{1-3} -Alkylamino-, Di- $(C_{1-3}$ -Alkyl)-amino-, Pyrrolidino-, Piperidino-, Morpholino- oder N- $(C_{1-3}$ -Alkyl)-piperazinogruppe substituierte Sulfonylgruppe,

durch eine Amino- oder N- $(C_{1-3}$ -Alkyl)-aminogruppe, die jeweils am Aminstickstoffatom durch eine Aminocarbonyl-, C_{1-3} -Alkylaminocarbonyl-, Phenyl- C_{1-3} -alkylaminocarbonyl-,

Phenylaminocarbonyl-, Phenoxyphenylaminocarbonyl-, Pyridyl-aminocarbonyl-, Pyrrolidinocarbonyl-, Piperidinocarbonyl-, Morpholinocarbonyl- oder N- $(C_{1\cdot 3}$ -Alkyl)-piperazinocarbonyl-gruppe substituiert ist, wobei in vorstehend erwähnten Aminocarbonylgruppen ein vorhandenes Wasserstoffatom zusätzlich durch eine $C_{1\cdot 3}$ -Alkylgruppe substituiert sein kann,

durch eine 5- oder 6-gliedrige Heteroarylgruppe,

durch eine Dihydro-oxazolyl-, Dihydro-imidazolyl-, 2-0xo-pyrrolidino-, 2-0xo-piperidino- oder 2-0xo-hexamethylen-iminogruppe, an die über zwei benachbarte Kohlenstoffatome ein Phenylring ankondensiert sein kann,

durch eine durch eine Phenyl-, Hydroxymethyl- oder Dimethylaminogruppe substituierte Ethinylgruppe substituiert sein können, wobei

zusätzlich die vorstehend erwähnten mono- oder disubstituierten Phenylgruppen durch ein weiteres Fluor-, Chlor- oder Bromatom oder durch eine oder zwei weitere C_{1-3} -Alkyl- oder C_{1-3} -Alkoxygruppen substituiert und zwei o-ständige C_{1-3} -Alkoxygruppen durch eine Methylendioxygruppe ersetzt sein können,

und die vorstehend erwähnten 6-gliedrigen Heteroarylgruppen ein, zwei oder drei Stickstoffatome und die vorstehend erwähnten 5-gliedrigen Heteroarylgruppen eine gegebenenfalls durch eine C_{1-3} -Alkylgruppe substituierte Iminogruppe, ein Sauerstoffoder Schwefelatom oder eine gegebenenfalls durch eine C_{1-3} -Alkylgruppe substituierte Iminogruppe und ein Sauerstoff- oder Schwefelatom oder ein oder zwei Stickstoffatome enthalten und zusätzlich an die vorstehend erwähnten monocyclischen Heteroarylgruppen über zwei benachbarte Kohlenstoffatome ein Phenylring ankondensiert sein kann, welcher im Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch eine C_{1-3} -Alkyloder C_{1-3} -Alkoxygruppe substituiert sein kann, wobei die vor-

stehend erwähnten 5-gliedrigen monocyclischen Heteroarylgruppen im Kohlenstoffgerüst zusätzlich durch C_{1-4} -Alkyl-, Trifluormethyl-, Phenyl- oder Furanylgruppe und durch eine wietere C_{1-3} -Alkylgruppe substituiert sein können,

bedeuten, wobei die bei der Definition der vorstehend erwähnten Reste erwähnten Amino- und Iminogruppen zusätzlich durch einen in vivo abspaltbaren Rest substituiert sein können,

deren Isomere und deren Salze, insbesondere deren physiologisch verträglichen Salze, zur Hemmung der Telomerase.

2. Carbonsäureamide der allgemeinen Formel I gemäß Anspruch 1, in der

 R_1 ein Wasserstoffatom, eine C_{1-3} -Alkyl- oder Trifluormethyl-gruppe,

 R_2 ein Wasserstoff-, Fluor-, Chlor- oder Bromatom, eine C_{1-3} -Al-kyl-, C_{3-7} -Cycloalkyl- oder C_{1-3} -Alkoxygruppe oder auch, wenn R_4 und R_5 jeweils ein Wasserstoffatom darstellen, R_1 und R_2 zusammen eine gegebenenfalls durch eine C_{1-3} -Alkylgruppe substituierte n- C_{1-3} -Alkylengruppe,

 R_3 ein Wasserstoffatom oder eine C_{1-5} -Alkylgruppe,

 R_4 und R_5 jeweils ein Wasserstoffatom oder zusammen eine weitere Kohlenstoff-Kohlenstoff-Bindung,

A eine durch ein Fluor-, Chlor-, Brom- oder Jodatom, durch eine C_{1-6} -Alkyl-, C_{3-7} -Cycloalkyl-, Phenyl-, C_{1-3} -Alkoxy-, Cyano-, Trifluormethyl- oder Nitrogruppe substituierte Phenyl-, Naphthyl- oder Tetrahydronaphthylgruppe, wobei die vorstehend erwähnten monosubstituierten Phenyl- und Naphthylgruppen zusätzlich durch ein Fluor-, Chlor- oder Bromatom, durch eine C_{1-3} -Alkyl- oder C_{1-3} -Alkoxygruppe und die vorstehend erwähnten disub-

stituierten Phenylgruppen zusätzlich durch eine C_{1-3} -Alkyl- oder C_{1-3} -Alkoxygruppe substituiert sein können, mit der Maßgabe daß

- 150 -

A keine Phenylgruppe darstellt, die durch ein Halogenatom, durch eine Methyl-, Pentyl-, C_{1-3} -Alkoxy- oder Phenylgruppe oder durch zwei C_{1-3} -Alkoxygruppen substituiert ist, wenn

R, ein Wasserstoffatom,

 R_4 und R_5 jeweils ein Wasserstoffatom oder

 $\ensuremath{R_4}$ und $\ensuremath{R_5}$ zusammen eine weitere Kohlenstoff-Kohlenstoff-Bindung und

B eine Carboxyphenyl- oder Methoxycarbonylphenylgruppe darstellen,

und A keine Phenylgruppe darstellt, die durch eine Methyloder Phenylgruppe substituiert ist, wenn

R₁ und R₂ jeweils ein Wasserstoffatom,

R, ein Wasserstoffatom,

 $\ensuremath{R_4}$ und $\ensuremath{R_5}$ zusammen eine weitere Kohlenstoff-Kohlenstoff-Bindung und

B eine Carboxyphenyl- oder Methoxycarbonylphenylgruppe darstellen,

eine Naphthylgruppe,

eine Chroman- oder Chromengruppe, in der eine Methylengruppe durch eine Carbonylgruppe ersetzt sein kann,

eine im Kohlenstoffgerüst gegebenenfalls durch ein Fluor-, Chlor- oder Bromatom, durch eine $C_{1\cdot3}$ -Alkyl- oder $C_{1\cdot3}$ -Alkoxy-gruppe substituierte 5- oder 6-gliedrige Heteroarylgruppe, wobei die 6-gliedrigen Heteroarylgruppen ein, zwei oder drei Stickstoffatome und die 5-gliedrigen Heteroarylgruppen eine gegebenenfalls durch eine $C_{1\cdot3}$ -Alkylgruppe substituierte Iminogruppe, ein Sauerstoff- oder Schwefelatom oder eine gegebenenfalls durch eine $C_{1\cdot3}$ -Alkylgruppe substituierte Iminogruppe und

ein Sauerstoff- oder Schwefelatom oder ein oder zwei Stickstoffatome enthalten und zusätzlich an die vorstehend erwähnten monocyclischen Heteroarylgruppen über zwei benachbarte Kohlenstoffatome ein Phenylring ankondensiert sein kann, welcher ebenfalls im Kohlenstoffgerüst durch ein Fluor-, Chloroder Bromatom, durch eine C_{1-3} -Alkyl- oder C_{1-3} -Alkoxygruppe substituiert sein kann,

eine Phenylvinylgruppe oder

 R_1 zusammen mit A und dem dazwischen liegenden Kohlenstoffatom eine C_{5-7} -Cycloalkylidengruppe, an die über zwei benachbarte Kohlenstoffatome ein Phenylring ankondensiert sein kann, welcher zusätzlich durch eine oder zwei C_{1-3} -Alkyl- oder C_{1-3} -Alk-oxygruppen substituiert sein kann, wobei die Substituenten gleich oder verschieden sein können, und

B eine durch eine Carboxgruppe oder durch eine in-vivo in eine Carboxygruppe überführbare Gruppe substituierte 5- oder 6-gliedrige Heteroarylgruppe,

eine Phenyl- oder Naphthylgruppe, die jeweils durch eine Carboxygruppe, durch eine in-vivo in eine Carboxygruppe überführbare Gruppe oder durch eine unter physiologischen Bedingungen negativ geladene Gruppe substituiert sein können, wobei die vorstehend erwähnten Phenylgruppen zusätzlich

durch ein Fluor-, Chlor-, Brom- oder Jodatom,

durch eine C₁₋₃-Alkyl-, Trifluormethyl-, Phenyl-, Hydroxy-, C₁₋₃-Alkoxy-, C₁₋₃-Alkylsulfonyloxy-, Phenylsulfonyloxy-, Carboxy-, C₁₋₃-Alkoxycarbonyl-, Formyl-, C₁₋₃-Alkylcarbonyl-, C₁₋₃-Alkylsulfonyl-, Phenylsulfonyl-, Nitro-, Pyrrolidino-, Piperidino-, Morpholino-, N-(C₁₋₃-Alkyl)-piperazino-, Aminosulfonyl-, C₁₋₃-Alkylaminosulfonyl- oder Di-(C₁₋₃-Alkyl)-aminosulfonylgruppe,

PCT/EP00/07057

durch eine C₁₋₃-Alkylgruppe, die durch eine Hydroxy-, C₁₋₃-Alkoxy-, Amino-, C₁₋₄-Alkylamino-, Di-(C₁₋₄-Alkyl)- amino-, C₃₋₇-Cycloalkylamino-, Pyrrolidino-, Piperidino-, Morpholino-, Piperazino- oder N-(C₁₋₃-Alkyl)-piperazino-gruppe substituiert ist,

- 152 -

durch eine in 2- oder 3-Stellung durch eine Di- $(C_{1-3}$ -Alkyl)-aminogruppe substituierte n- C_{2-3} -Alkoxy-, C_{2-3} -Alkenyl- oder C_{2-3} -Alkinylgruppe,

durch eine Aminogruppe, durch eine N-(C₁₋₃-Alkyl)-aminooder N,N-Di-(C₁₋₃-Alkyl)-aminogruppe, in der der Alkylteil
jeweils in 2- oder 3-Stellung bezogen auf das Stickstoffatom durch eine C₁₋₃-Alkoxygruppe substituiert sein kann,
durch eine N-Phenylamino-, N-(Phenyl-C₁₋₃-alkyl)-amino- oder
N-(Pyridyl-C₁₋₃-alkyl)-aminogruppe, in denen jeweils ein
Wasserstoffatom der vorstehend erwähnten Aminogruppen durch
eine C₁₋₃-Alkylsulfonyl-, Phenyl-C₁₋₃-alkylsulfonyl- oder
Phenylsulfonylgruppe oder durch eine C₁₋₃-Alkylgruppe, welche in 2- bis 5-Stellung durch eine C₁₋₃-Alkoxy-, Cyano-,
Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-Alkyl)-amino- oder
Tetrazolylgruppe ersetzt sein kann,

durch eine Aminocarbonyl- oder $C_{1.3}$ -Alkylaminocarbonylgruppe, die jeweils am Aminstickstoffatom

durch eine C_{1-4} -Alkylgruppe, die durch eine Vinyl-, Ethinyl-, Phenyl-, Pyridyl-, Imidazolyl-, Carboxy- oder Trifluormethylgruppe oder mit Ausnahme der 2-Stellung bezogen auf das Aminocarbonylstickstoffatom durch eine Hydroxy-, C_{1-3} -Alkoxy-, C_{1-3} -Alkylthio-, Amino-, C_{1-3} -Alkyl-amino-, Di- $(C_{1-3}$ -Alkyl)-amino-, C_{1-4} -Alkanoylamino- oder C_{1-5} -Alkoxycarbonylaminogruppe substituiert sein kann,

durch eine C_{3-7} -Cycloalkyl-, C_{5-9} -Azabicycloalkyl-, Phenyl-, Pyridyl-, C_{1-3} -Alkoxy- oder Di- $(C_{1-3}$ -Alkyl)-aminogruppe,

durch eine C_{1-3} -Alkylgruppe, die durch eine gegebenenfalls in 1-Stellung durch eine C_{1-3} -Alkyl- oder C_{1-5} -Alkoxycarbonylgruppe substituierte Piperidin-3-yl- oder Piperidin-4-yl-Gruppe substituiert ist, oder

durch eine gegebenenfalls am Aminstickstoffatom durch eine C_{1-4} -Alkanoyl-, C_{1-5} -Alkoxycarbonyl-, Benzoyl-, Pyrrolidino-, Piperidino-, Morpholino- oder N-(C_{1-3} -Al-kyl)-piperazinogruppe substituierte Amino-, C_{1-3} -Alkyl-amino- oder Phenyl- C_{1-3} -alkylaminogruppe substituiert sein kann,

durch eine Pyrrolidino-, Pyrrolino-, Piperidino-, Morpholino- oder N- $(C_{1-3}$ -Alkyl)-piperazinogruppe substituierte Carbonylgruppe,

durch eine Amino-, C_{1-3} -Alkylamino-, Di- $(C_{1-3}$ -Alkyl)-amino-, Pyrrolidino-, Piperidino-, Morpholino- oder N- $(C_{1-3}$ -Alkyl)-piperazinogruppe substituierte Sulfonylgruppe,

durch eine Amino- oder N- $(C_{1-3}$ -Alkyl)-aminogruppe, die jeweils am Aminstickstoffatom durch eine Aminocarbonyl-, C_{1-3} -Alkylaminocarbonyl-, Phenyl- C_{1-3} -alkylaminocarbonyl-, Phenylaminocarbonyl-, Pyridyl-aminocarbonyl-, Pyrrolidinocarbonyl-, Piperidinocarbonyl-, Morpholinocarbonyl- oder N- $(C_{1-3}$ -Alkyl)-piperazinocarbonyl-gruppe, in denen zusätzlich ein vorhandenes Wasserstoffatom einer der vorstehend erwähnten Aminocarbonylgruppen durch eine C_{1-3} -Alkylgruppe substituiert sein kann, substituiert ist,

durch eine 5- oder 6-gliedrige Heteroarylgruppe,

durch eine Dihydro-oxazolyl-, Dihydro-imidazolyl-, 2-Oxo-pyrrolidino-, 2-Oxo-piperidino- oder 2-Oxo-hexamethylen-

- 154 -

iminogruppe, an die über zwei benachbarte Kohlenstoffatome ein Phenylring ankondensiert sein kann,

PCT/EP00/07057

durch eine durch eine Phenyl-, Hydroxymethyl- oder Dimethylaminogruppe substituierte Ethinylgruppe substituiert sein können, wobei

zusätzlich die vorstehend erwähnten mono- oder disubstituierten Phenylgruppen durch ein weiteres Fluor-, Chlor- oder Bromatom oder durch eine oder zwei weitere C_{1-3} -Alkyl- oder C_{1-3} -Alkoxygruppen substituiert und zwei o-ständige C_{1-3} -Alkoxygruppen durch eine Methylendioxygruppe ersetzt sein können,

und die vorstehend erwähnten 6-gliedrigen Heteroarylgruppen ein, zwei oder drei Stickstoffatome und die vorstehend erwähnten 5-gliedrigen Heteroarylgruppen eine gegebenenfalls durch eine C1-3-Alkylgruppe substituierte Iminogruppe, ein Sauerstoffoder Schwefelatom oder eine gegebenenfalls durch eine C1-3-Alkylgruppe substituierte Iminogruppe und ein Sauerstoff- oder Schwefelatom oder ein oder zwei Stickstoffatome enthalten und zusätzlich an die vorstehend erwähnten monocyclischen Heteroarylgruppen über zwei benachbarte Kohlenstoffatome ein Phenylring ankondensiert sein kann, welcher im Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch eine C1-3-Alkyloder C1-3-Alkoxygruppe substituiert sein kann, wobei die vorstehend erwähnten 5-gliedrigen monocyclischen Heteroarylgruppen im Kohlenstoffgerüst zusätzlich durch C_{1-4} -Alkyl-, Trifluormethyl-, Phenyl- oder Furanylgruppe und durch eine wietere C₁₋₃-Alkylgruppe substituiert sein können,

und die bei der Definition der vorstehend erwähnten Reste erwähnten Amino- und Iminogruppen zusätzlich durch einen in vivo abspaltbaren Rest substituiert sein können,

deren Isomere und deren Salze.

- 155 -

PCT/EP00/07057

3. Carbonsäureamide der allgemeinen Formel I gemäß Anspruch 1, in der

B und R₂ bis R₅ wie im Anspruch 2 erwähnt definiert sind,

 R_1 ein Wasserstoffatom oder eine C_{1-3} -Alkylgruppe und

A eine durch ein Fluor-, Chlor-, Brom- oder Jodatom, durch eine C_{1-6} -Alkyl-, C_{3-7} -Cycloalkyl-, Phenyl-, C_{1-3} -Alkoxy-, Trifluormethyl- oder Nitrogruppe substituierte Phenyl-, Naphthyl- oder Tetrahydronaphthylgruppe, wobei die vorstehend erwähnten monosubstituierten Phenyl- und Naphthylgruppen zusätzlich durch ein Fluor-, Chlor- oder Bromatom, durch eine C_{1-3} -Alkyl- oder C_{1-3} -Alkoxygruppe substituiert sein können, mit der Maßgabe daß

A keine Phenylgruppe, die durch Halogenatome, C_{1-4} -Alkyloder C_{1-3} -Alkoxygruppen mono- oder disubstituiert sein kann, wobei die Substituenten gleich oder verschieden sein können, keine 4-Biphenyl- oder Pentylphenylgruppe darstellt, wenn

 R_1 und R_2 jeweils ein Wasserstoffatom oder eine C_{1-4} -Alkylgruppe,

R, ein Wasserstoffatom,

 R_4 und R_5 jeweils ein Wasserstoffatom oder

 $R_{4}\ \text{und}\ R_{5}\ \text{zusammen}$ eine weitere Kohlenstoff-Kohlenstoff-Bindung und

B eine Carboxyphenyl- oder Methoxycarbonylphenylgruppe darstellen,

eine Naphthylgruppe,

eine Chroman- oder Chromengruppe, in der eine Methylengruppe durch eine Carbonylgruppe ersetzt sein kann, - 156 -

WO 01/07020 PCT/EP00/07057

eine im Kohlenstoffgerüst gegebenenfalls durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₃-Alkyl- oder C₁₋₃-Alkoxygruppe substituierte 5- oder 6-gliedrige Heteroarylgruppe, wobei die 6-gliedrigen Heteroarylgruppen ein, zwei oder drei Stickstoffatome und die 5-gliedrigen Heteroarylgruppen eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe, ein Sauerstoff- oder Schwefelatom oder eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe und ein Sauerstoff- oder Schwefelatom oder ein oder zwei Stickstoffatome enthalten und zusätzlich an die vorstehend erwähnten monocyclischen Heteroarylgruppen über zwei benachbarte Kohlenstoffatome ein Phenylring ankondensiert sein kann, welcher ebenfalls im Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₃-Alkyl- oder C₁₋₃-Alkoxy-gruppe substituiert sein kann, bedeuten,

deren Isomere und deren Salze.

4. Carbonsäureamide der allgemeinen Formel I gemäß Anspruch 1, in der

R₁ ein Wasserstoffatom oder eine C₁₋₃-Alkylgruppe,

 R_2 ein Wasserstoffatom oder eine Methylgruppe oder auch, wenn R_4 und R_5 jeweils ein Wasserstoffatom darstellen, R_1 und R_2 zusammen eine Methylenbrücke,

 R_{3} ein Wasserstoffatom oder eine C_{1-5} -Alkylgruppe,

 R_4 und R_5 zusammen eine weitere Kohlenstoff-Kohlenstoff-Bindung,

A eine durch ein Fluor-, Chlor-, Brom- oder Jodatom, durch eine C_{1-5} -Alkyl-, Cyclohexyl-, Phenyl-, Methoxy-, Cyano- oder Trifluormethylgruppe substituierte Phenylgruppe,

eine durch Fluor-, Chlor- oder Bromatome, durch Methyl- oder Methoxygruppen substituierte Phenylgruppe, wobei die Substituenten gleich oder verschieden sein können, oder

eine C_{1-3} -Alkylphenylgruppe, die durch Fluor-, Chlor- oder Bromatome disubstituiert ist, wobei die Substituenten gleich oder verschieden sein können, mit der Maßgabe daß

A keine Phenylgruppe darstellt, die durch ein Halogenatom, durch eine Methyl-, Pentyl-, C_{1-3} -Alkoxy- oder Phenylgruppe oder durch zwei C_{1-3} -Alkoxygruppen substituiert ist, wenn

R₃ ein Wasserstoffatom,

 $\ensuremath{R_4}$ und $\ensuremath{R_5}$ jeweils ein Wasserstoffatom oder

 $\ensuremath{R_4}$ und $\ensuremath{R_5}$ zusammen eine weitere Kohlenstoff-Kohlenstoff-Bindung und

B eine Carboxyphenyl- oder Methoxycarbonylphenylgruppe darstellen,

und A keine Phenylgruppe darstellt, die durch eine Methyloder Phenylgruppe substituiert ist, wenn

 R_1 und R_2 jeweils ein Wasserstoffatom,

R₃ ein Wasserstoffatom,

 R_{4} und R_{5} zusammen eine weitere Kohlenstoff-Kohlenstoff-Bindung und

B eine Carboxyphenyl- oder Methoxycarbonylphenylgruppe darstellen,

eine gegebenenfalls durch durch ein Fluor-, Chlor- oder Bromatom, durch eine Methyl- oder Methoxygruppe substituierte Naphthylgruppe,

eine Tetrahydronaphthylgruppe,

eine Chromengruppe, in der eine Methylengruppe durch eine Carbonylgruppe ersetzt ist,

eine gegebenenfalls durch eine Methylgruppe substituierte Pyridyl-, Benzofuryl-, Benzothienyl-, Chinolyl- oder Isochinolylgruppe und

B eine durch eine Carboxygruppe substituierte Cyclohexyl-, Trimethoxyphenyl-, Methylendioxyphenyl-, Naphthyl-, Pyridyl-, Thienyl-, Pyrazolyl-, Chinolyl- oder Isochinolylgruppe,

eine durch eine Carboxy-, Methoxycarbonyl-, Ethoxycarbonyl-, Hydroxymethyl-, Sulfo-, Tetrazolyl-, Methylsulfonylaminocarbonyl- oder Phenylsulfonylaminocarbonylgruppe substituierte Phenylgruppe, die zusätzlich

durch ein Fluor-, Chlor-, Brom- oder Jodatom,

durch eine Methyl-, Trifluormethyl-, Phenyl-, Hydroxymethyl-, Hydroxy-, Methoxy-, Methylsulfonyloxy-, 2-Dimethylamino-ethoxy-, Carboxy-, Nitro-, Methylsulfonylamino-, Phenylsulfonylamino-, Aminosulfonyl-, Pyrrolidino-, Piperidino- oder Morpholinogruppe,

durch eine Methylgruppe, die durch eine Amino-, C₁₋₃-Alkyl-amino-, Cyclopentylamino-, Pyrrolidino- oder Piperidino-gruppe substituiert ist,

durch eine Amino-, N-Methyl-amino- oder N-(2-Methoxy-ethyl)-aminogruppe, die jeweils am Aminstickstoffatom

durch eine C1-7-Alkyl- oder Phenylgruppe,

durch eine Ethylgruppe, die in 1- oder 2-Stellung durch eine Phenyl- oder Pyridylgruppe substituiert ist,

durch eine $C_{2\cdot 4}$ -Alkylgruppe, die endständig durch eine Methoxy-, Cyano-, Dimethylamino- oder Tetrazolylgruppe substituiert ist.

- 159 -

WO 01/07020

durch eine Acetyl-, Benzoyl-, C_{1-5} -Alkoxycarbonyl-, Aminocarbonyl- oder Methylaminocarbonylgruppe, wobei der Aminocarbonylteil der vorstehend erwähnten Gruppen jeweils zusätzlich durch eine gegebenenfalls durch eine Phenyl-gruppe substituierte C_{1-3} -Alkylgruppe, durch eine Phenyl-, Phenoxyphenyl- oder Pyridylgruppe substituiert sein kann,

PCT/EP00/07057

durch eine Methylsulfonyl-, Phenylsulfonyl- oder Benzylsulfonylgruppe substituiert sein kann,

durch eine Aminocarbonyl- oder Methylaminocarbonylgruppe, die jeweils am Aminstickstoffatom

durch eine C_{1-4} -Alkyl-, C_{3-6} -Cycloalkyl-, Phenyl-, Benzyl-, Pyridyl-, Pyridylmethyl- oder Methoxygruppe,

durch eine Methylgruppe, die durch eine Vinyl-, Ethinyl-, Trifluormethyl-, C_{7-9} -Azabicycloalkyl-, Carboxy- oder Imidazolylgruppe oder durch eine gegebenenfalls in 1-Stellung durch eine Methyl- oder C_{1-5} -Alkoxycarbonyl-gruppe substituierte Piperidin-4-yl-Gruppe substituiert ist,

durch eine geradkettige oder verzweigte C_{2-3} -Alkylgruppe, die in 2- oder 3-Stellung durch eine Hydroxy-, Methoxy-, Methylthio-, Amino-, Acetylamino-, C_{1-5} -Alkoxycarbonyl-amino-, Carboxy-, C_{1-5} -Alkoxycarbonyl oder Dimethylamino-gruppe substituiert ist,

durch eine Pyrrolidino-, Piperidino-, Morpholino-, 4-Methyl-piperazino-, Amino- oder Methylaminogruppe substituiert sein kann, wobei die vorstehend erwähnte Amino- und Methylaminogruppe jeweils am Aminstickstoffatom zusätzlich durch eine Methyl-, Acetyl-, Benzoyl- oder C₁₋₅-Alkoxycarbonylgruppe substituiert sein können,

durch eine Dihydro-oxazolyl-, Dihydro-imidazolyl-, 2-Oxo-pyrrolidino-, 2-Oxo-piperidino- oder 2-Oxo-hexamethylen-iminogruppe, an die über zwei benachbarte Kohlenstoffatome ein Phenylring ankondensiert sein kann,

durch eine gegebenenfalls durch eine Methyl-, Ethyl- oder Phenylgruppe substituierte Imidazolyl- oder 4-Methyl-imidazolylgruppe, an die zusätzlich über zwei benachbarte Kohlenstoffatome ein Phenylring ankondensiert sein kann,

eine gegebenenfalls durch eine C_{1-4} -Alkyl- oder Furanyl- gruppe substituierte Pyrazolylgruppe, die zusätzlich durch eine Methyl- oder Trifluormethylgruppe substituiert sein kann,

durch eine durch eine Phenyl-, Hydroxymethyl- oder Dimethylaminogruppe substituierte Ethinylgruppe, wobei

zusätzlich die vorstehend erwähnten mono- oder disubstituierten Phenylgruppen durch ein weiteres Fluor-, Chlor- oder Bromatom oder durch eine oder zwei weitere Methyl- oder Methoxygruppen substituiert sein können,

bedeuten, deren Isomere und deren Salze.

- 5. Carbonsäureamide der allgemeinen Formel I gemäß Anspruch 1, in der
- R_1 ein Wasserstoffatom oder eine C_{1-3} -Alkylgruppe,

 R_2 ein Wasserstoffatom oder R_1 und R_2 zusammen eine Methylengruppe, wenn R_4 und R_5 gleichzeitig jeweils ein Wasserstoffatom darstellen,

R₃ ein Wasserstoffatom,

- 161 -

 R_4 und R_5 zusammen eine weitere Kohlenstoff-Kohlenstoff-Bindung,

A eine durch ein Fluor-, Chlor-, Brom- oder Jodatom, durch eine C_{1-6} -Alkyl-, C_{3-7} -Cycloalkyl- oder Trifluormethylgruppe mono- oder disubstituierte Phenyl- oder Naphthylgruppe, wobei die Substituenten gleich oder verschieden sein können, mit der Maßgabe, daß

A keine Phenylgruppe, die durch Halogenatome oder C_{1-4} -Alkylgruppen mono- oder disubstituiert sein kann, wobei die Substituenten gleich oder verschieden sein können, keine 4-Biphenyl- oder Pentylphenylgruppe darstellt, wenn

 R_1 ein Wasserstoffatom oder eine C_{1-3} -Alkylgruppe,

R₂ ein Wasserstoffatom,

R₃ ein Wasserstoffatom,

 R_4 und R_5 jeweils ein Wasserstoffatom oder

 $R_{4}\ \text{und}\ R_{5}\ \text{zusammen}$ eine weitere Kohlenstoff-Kohlenstoff-Bindung und

B eine Carboxyphenyl- oder Methoxycarbonylphenylgruppe darstellen,

eine Naphthylgruppe,

eine Chromengruppe, in der eine Methylengruppe durch eine Carbonylgruppe ersetzt ist,

eine Benzothienylgruppe und

B eine Phenyl-, Naphthyl-, Thienyl- oder Pyridinylgruppe, die jeweils durch eine Carboxygruppe substituiert sind, wobei die vorstehend erwähnten Phenylgruppen zusätzlich

durch ein Fluor-, Chlor- oder Bromatom,

durch eine C_{1-3} -Alkyl-, Hydroxy-, C_{1-3} -Alkoxy-, C_{1-3} -Al-kylsulfonyloxy-, Pyrrolidino-, Piperidino-, Morpholino-oder N-(C_{1-3} -Alkyl)-piperazinogruppe,

PCT/EP00/07057

durch eine in 2- oder 3-Stellung durch eine Di- $(C_{1-3}$ -Alkyl)-aminogruppe substituierte n- C_{2-3} -Alkoxy-, C_{2-3} -Alkenyl- oder C_{2-3} -Alkinylgruppe,

durch eine in 2- oder 3-Stellung durch eine Di- $(C_{1-3}-Alkyl)$ -aminogruppe substituierte N-Methyl-N- $(n-C_{2-3}-alkyl)$ -aminogruppe,

durch eine Di-(C1-3-Alkyl)-aminogruppe,

durch eine gegebenenfalls durch eine C_{1-4} -Alkylgruppe substituierte Imidazolyl- oder Pyrazolylgruppe,

durch eine C_{1-4} -Alkylaminocarbonyl-, N-(Pyridinylmethyl)- aminocarbonyl-, Pyrrolidinoaminocarbonyl- oder Piperidinoaminocarbonylgruppe und

zusätzlich durch ein weiteres Fluoratom, durch eine weitere C_{1-3} -Alkyl- oder C_{1-3} -Alkoxygruppe substituiert sein können,

bedeuten, deren Isomere und deren Salze.

- 6. Carbonsäureamide der allgemeinen Formel I gemäß Anspruch 1, in der
- R₁ eine Methylgruppe,
- R₂ ein Wasserstoffatom,
- R₃ ein Wasserstoffatom,
- $R_{4}\mbox{ und }R_{5}\mbox{ zusammen eine weitere Kohlenstoff-Kohlenstoff-Bindung,}$

- 163 -

A eine durch zwei Chlor- oder Bromatome oder durch ein Chloratom und ein Bromatom substituierte Phenylgruppe, eine Naphthyl-, 2-Oxo-chromen- oder Benzothienylgruppe mit der Maßgabe, daß

A keine Phenylgruppe, die durch Halogenatome disubstituiert ist, darstellt, wenn

R₁ eine Methylgruppe,

R2 ein Wasserstoffatom,

R₃ ein Wasserstoffatom,

 R_4 und R_5 jeweils ein Wasserstoffatom oder

 $R_4\,\,{}^{}_4$ und $R_5\,\,$ zusammen eine weitere Kohlenstoff-Kohlenstoff-Bindung und

B eine Carboxyphenyl- oder Methoxycarbonylphenylgruppe darstellen,

und B eine 2-Carboxy-phenyl-, 2-Carboxy-thienyl- oder 2-Carboxy-pyridinylgruppe bedeuten, wobei die vorstehend erwähnte 2-Carboxy-phenylgruppe zusätzlich im Phenylkern

durch ein Fluor-, Chlor- oder Bromatom,

durch eine C_{1-3} -Alkyl-, Hydroxy-, C_{1-3} -Alkoxy-, C_{1-3} -Alkylsulfonyloxy- oder Morpholinogruppe,

durch eine in 2- oder 3-Stellung durch eine Di- $(C_{1-3}$ -Alkyl)-aminogruppe substituierte $n-C_{2-3}$ -Alkoxygruppe,

durch eine in 2- oder 3-Stellung durch eine Di- $(C_{1-3}-Alkyl)$ -aminogruppe substituierte N-Methyl-N- $(n-C_{2-3}-alkyl)$ -aminogruppe,

durch eine gegebenenfalls durch eine C_{1-4} -Alkylgruppe substituierte Imidazolyl- oder Pyrazolylgruppe,

- 164 -

PCT/EP00/07057

durch eine C₁₋₄-Alkylaminocarbonyl-, N-(Pyridinylmethyl)aminocarbonyl-, Pyrrolidinoaminocarbonyl- oder Piperidinoaminocarbonylgruppe und

zusätzlich durch ein weiteres Fluoratom oder durch eine weitere Methoxygruppe substituiert sein kann,

deren Isomere und deren Salze.

- 7. Folgende Verbindungen der allgemeinen Formel I gemäß Anspruch 2:
- (1) trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-carboxy-phenyl)-amid,
- (2) trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-carboxy-4,5-di-methoxy-phenyl)-amid,
- (3) trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-carboxy-4-fluor-phenyl)-amid,
- (4) trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-carboxy-4,5-di-fluor-phenyl)-amid,
- (5) trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-carboxy-5-fluor-phenyl)-amid,
- (6) trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-carboxy-4-meth-oxy-5-methyl-phenyl)-amid,
- (7) trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-carboxy-4-(morpholin-4-yl)-phenyl]-amid,
- (8) trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-carboxy-4-dime-thylamino-phenyl)-amid,

- 165 -

- (9) trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-carboxy-4-hy-droxy-phenyl)-amid,
- (10) trans-3-(Naphth-2-yl)-but-2-ensäure-N-(3-carboxy-thio-phen-4-yl)-amid,
- (11) trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-carboxy-4-(imi-dazol-1-yl)-phenyl]-amid,
- (12) trans-3-(2-0xo-2H-chromen-3-yl)-but-2-ensäure-N-(2-carb-oxy-phenyl)-amid,
- (13) trans-3-(Naphth-2-yl)-but-2-ensaure-N-[2-carboxy-4-(imi-dazol-1-yl)-5-fluor-phenyl]-amid,
- (14) trans-3-(Benzthiophen-2-yl)-but-2-ensäure-N-(2-carboxy-phenyl)-amid,
- (15) trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-carboxy-4-me-thansulfonyloxy-phenyl)-amid,
- (16) trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-carboxy-4-(2-N,N-dimethylamino-ethyloxy)-phenyl]-amid,
- (17) trans-3-(Naphth-2-yl)-but-2-ensäure-N-(4-carboxy-pyridin-3-yl)-amid,
- (18) trans-3-(3,4-Dichlorphenyl)-but-2-ensäure-N-(2-carboxy-4,5-dimethoxy-phenyl)-amid,
- (19) trans-3-(3-Chlor-4-bromphenyl)-but-2-ensäure-N-(2-carb-oxy-phenyl)-amid,
- (20) trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-carboxy-6-methyl-phenyl)-amid,

- (21) trans-3-(Naphth-2-yl)-but-2-ensäure-N-(2-carboxy-6-fluor-phenyl)-amid,
- (22) trans-3-(Naphth-2-yl)-but-2-ensaure-N-[2-carboxy-5-(pro-pylaminocarbonyl)-phenyl]-amid,
- (23) trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-carboxy-5-(pyr-rolidin-1-yl-aminocarbonyl)-phenyl]-amid,
- (24) trans-3-(Naphth-2-yl)-but-2-ensäure-N-[2-carboxy-5-(N-(pyridin-3-yl-methyl)-aminocarbonyl)-phenyl]-amid,
- (25) trans-3-(Naphth-2-yl)-but-2-ensaure-N-(2-carboxy-6-chlor-phenyl)-amid

sowie deren Salze.

- 8. Physiologisch verträgliche Salze der Verbindungen gemäß den Ansprüchen 2 bis 7.
- 9. Arzneimittel, enthaltend eine Verbindung nach mindestens einem der Ansprüche 2 bis 7 oder ein Salz gemäß Anspruch 8 neben gegebenenfalls einem oder mehreren inerten Trägerstoffen und/oder Verdünnungsmitteln.
- 10. Verwendung einer Verbindung nach mindestens einem der Ansprüche 1 bis 7 oder ein Salz gemäß Ansprüch 8 zur Herstellung eines Arzneimittels mit einer Hemmwirkung auf die Telomerase,
- 11. Verfahren zur Herstellung eines Arzneimittels gemäß Anspruch 9, dadurch gekennzeichnet, daß auf nichtchemischem Wege eine Verbindung nach mindestens einem der Ansprüche 2 bis 7 oder ein Salz gemäß Anspruch 8 in einen oder mehrere inerte Trägerstoffe und/oder Verdünnungsmittel eingearbeitet wird.
- 12. Verfahren zur Herstellung der Verbindungen gemäß den Ansprüchen 2 bis 8, dadurch gekennzeichnet, daß

- 167 -

PCT/EP00/07057

a. ein Amin der allgemeinen Formel

$$\begin{array}{c}
R_3 \\
N \longrightarrow B
\end{array}$$
(II)

in der

WO 01/07020

 R_3 und B wie in den Ansprüchen 2 bis 7 erwähnt definiert sind, mit einer Carbonsäure der allgemeinen Formel

$$\begin{array}{c} R_2 \\ R_2 \\ R_4 \end{array}$$

in der

 R_1 , R_2 , R_4 , R_5 und A wie in den Ansprüchen 2 bis 7 erwähnt definiert sind, oder mit deren reaktionsfähigen Derivaten acyliert wird oder

b. zur Herstellung eines Carbonsäureamids der allgemeinen Formel I, das eine Carboxygruppe enthält, eine Verbindung der allgemeinen Formel

$$\begin{array}{c|c}
R_2 & R_5 & R_3 \\
R_2 & N - B \\
R_4 & R_1
\end{array}$$

in der

 R_1 bis R_5 , A und B mit der Maßgabe wie in den Ansprüchen 2 bis 7 erwähnt definiert sind, daß A oder B oder A und B eine in eine Carboxygruppe überführbare Gruppe enthalten, in eine Verbindung der allgemeinen Formel I, die eine Carboxygruppe enthält übergeführt wird und

- 168 -

PCT/EP00/07057

gewünschtenfalls anschließend eine so erhaltene Verbindung der allgemeinen Formel I, die eine Hydroxygruppe enthält, mittels eines Sulfonylhalogenids in eine entsprechende Sulfonyloxyverbindung übergeführt wird und/oder

eine so erhaltene Verbindung der allgemeinen Formel I, die eine Cyanogruppe enthält, mittels Stickstoffwasserstoffsäure in eine entsprechende Tetrazolylverbindung übergeführt wird und/oder

eine so erhaltene Verbindung der allgemeinen Formel I, die eine Amino- oder Iminogruppe mit einem basischen Wasserstoffatom enthält, mittels Acylierung oder Sulfonylierung in eine entsprechend acylierte Verbindung oder in eine entsprechende Pro-Drug-Verbindung übergeführt wird und/oder

eine so erhaltene Verbindung der allgemeinen Formel I, die eine Carboxygruppe enthält, in eine Verbindung, die eine in-vivo in eine Carboxygruppe überführbare Gruppe enthält, übergeführt wird und/oder

eine Verbindung der allgemeinen Formel I, die eine oder zwei Carboxygruppen enthält, mittels Reduktion in eine Verbindung, die eine oder zwei Hydroxymethylgruppen enthält, übergeführt wird und/oder

erforderlichenfalls ein während der Umsetzungen zum Schutze von reaktiven Gruppen verwendeter Schutzrest abgespalten wird und/oder

eine so erhaltene Verbindung der allgemeinen Formel I in ihre Isomere aufgetrennt wird und/oder

eine so erhaltene Verbindung der allgemeinen Formel I in ihre Salze, insbesondere für die pharmazeutische Anwendung

- 169 -

in ihre physiologisch verträglichen Salze übergeführt wird.

- (19) Weltorganisation für geistiges Eigentum Internationales Büro
- OMP!

(43) Internationales Veröffentlichungsdatum 1. Februar 2001 (01.02.2001)

PCT

(10) Internationale Veröffentlichungsnummer WO 01/007020 A3

(51) Internationale Patentklassifikation7:

A61K 31/00

(21) Internationales Aktenzeichen:

PCT/EP00/07057

(22) Internationales Anmeldedatum:

22. Juli 2000 (22.07.2000)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

199 35 219.4

27. Juli 1999 (27.07.1999) DE

(71) Anmelder: BOEHRINGER INGELHEIM PHARMA KG [DE/DE]; D-55216 Ingelheim am Rhein (DE).

(74) Anwalt: LAUDIEN, Dieter; Boehringer Ingelheim GmbH, B Patente, D-55216 Ingelheim am Rhein (DE).

(81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

(84) Bestimmungsstaaten (regional): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

- mit internationalem Recherchenbericht
- (88) Veröffentlichungsdatum des internationalen
 Recherchenberichts: 19. September 2002

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

- (\$4) Title: CARBOXYLIC ACID AMIDES, MEDICAMENTS CONTAINING THESE COMPOUNDS AND THE USE AND PRODUCTION THEREOF
- (54) Bezeichnung: CARBONSÄUREAMIDE, DIESE VERBINDUNGEN ENTHALTENDE ARZNEIMITTEL, DEREN VERWENDUNG UND HERSTELLUNG

(57) Abstract: The invention relates to the use of carboxylic acid amides of general formula (I) for inhibiting telomerase, wherein A, B and R_1 to R_5 are defined as per claim (1). The invention also relates to novel carboxylic acid amides of general formula (I) according to claim (2), to methods for the production thereof, to medicaments containing these compounds and to the use and production thereof. The compounds of formula (I) are analogous agents and derivatives in the broader sense of N-phenyl cinnamic acid amides. Diseases, which can be treated, with said compounds include tumorous diseases, epidermal hyperproliferation, inflammatory processes (rheumatoid arthritis), diseases of the immune system and parasitic diseases, (helminithic diseases, fungal diseases), infections by protozoic pathogens).

(57) Zusammenfassung: Die vorliegende Anmeldung betrifft die Verwendung der Carbonsäureamide der allgemeinen Formel (I), in der A, B und R₁ bis R₅ wie im Anspruch 1 definiert sind, zur Hemmung der Telomerase, neue Carbonsäureamide der allgemeinen Formel (I) gemäß Anspruch 2, Verfahren zu ihrer Herstellung, diese Verbindungen enthaltende Arzneimittel und deren Verwendung sowie deren Herstellung. Verbindungen der Formel (I) sind Analoge und Derivate im weiteren Sinn der N-Phenyl-Zimtsäureamide. Zu behandelnde Erkrankungen umfassen Tumorerkrankungen, epidermale Hyperproliferation, entzündliche Prozesse (Rheumatoide Arthritis), Erkrankungen des Immunsystems und parasitische Erkrankungen (Wurm- oder Pilzerkrankungen, Infektionen durch protozoische Pathogene).

					L PCT/	EP 00/07057
	FICATION OF SUBJECT I A61K31/165 A61K31/36 A61K31/415 o International Patent Class	A61K31/381 A61K31/44	A61K31/40 A61K31/44) A61K31, I53 A61K31,	/41	A61K31/352 A61K31/4164 A61K31/535
B. FIELDS	SEARCHED					
Minimum do IPC 7	cumentation searched (c) A61K	assification system follow	wed by classification	symbols)		
Documentat	ion searched other than m	inimum documentation t	o the extent that suc	ch documents are inc	aluded in th	ne fleids searched
	ata base consulted during PI Data, EPO-I		•		aí, search t	erms used)
C. DOCUME	ENTS CONSIDERED TO E	BE RELEVANT				
Category *	Citation of document, wit	h Indication, where app	ropriate, of the relev	ant passages		Relevant to claim No.
X	Derwent Pub Class B05, XP002186009 & JP 06 072 YAKUBUTSU K	Week 199416 Tications Ltd AN 1994-1287 866 A (CHUGO	59 KU IGAKUKAG	•		1-6,8-12
X	Derwent Pub Class B05, XP002186010 & JP 60 146	Week 198537 Dications Ltd AN 1985-2266	38 HARM CO LTE	·		1-6,8-12
			-/			
X Furth	ner documents are listed in	the continuation of box	: C.	X Patent family	members	are listed in annex.
"A" docume consid "E" earlier of filling d "L" docume which is cliation	int which may throw doubto is cited to establish the pul n or other special reason (a	te of the art which is no evance or after the international son priority claim(s) or olication date of another as specified)	י al •>> ר-	or priority data as cited to understa invention (* document of partic cannot be consid involve an invent document of partic cannot be consid	nd not in co nd the prind cular releva lered novel live step wh cular releva lered to inv	er the international filing date inflict with the application but ciple or theory underlying the ince; the claimed invention or cannot be considered to ence; the claimed invention once; the claimed invention olve an inventive step when the
other r P" docume	ent referring to an oral disc neans ant published prior to the in an the priority date claims	temational filing date bu	ıt		bination be	one or more other such docu- aing obvious to a person skilled ne patent familiv
	actual completion of the In					ational search report
	0 March 2002			.•		04. 2002
Name and n	NL – 2280 HV Rijswij	ce, P.B. 5818 Patentlaan	12	Authorized officer		
	TeL (+31-70) 340-20 Fax: (+31-70) 340-30	40, Tx. 31 651 epo nl, 316		A. Jak	obs	

		PC1/EP 00/07057
C.(Continu	ation) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
	The state of the s	neleyar w caint No.
X	EP 0 511 477 A (KYOWA HAKKO KOGYO KK) 4 November 1992 (1992-11-04) abstract page 3, line 3-5 page 3, line 30 -page 7, line 27; claims 1-11; table 1	1
X	DATABASE WPI Section Ch, Week 198528 Derwent Publications Ltd., London, GB; Class B03, AN 1985-168505 XP002186011 & JP 60 097946 A (ONO PHARM CO LTD), 31 May 1985 (1985-05-31) abstract	1-6,8-12
X	US 3 940 422 A (HARITA KOZABURO ET AL) 24 February 1976 (1976-02-24) cited in the application column 1, line 50 -column 2, line 18 abstract; claims 1-7; examples 1-10	1-6,8-10
X	YASHIRO, M., ET AL.: "Tranilast (N-(3,4-dimethoxycinnamoyl)anthranilic acid) down-regulates the growth of scirrhous gastric cancer" ANTICANCER RES., vol. 17, no. 2A, 1997, pages 895-900, XP001034866 abstract	1-6,8-10
X	RALPH, R. K. ET AL: "Inhibitors of lipoxygenase have antiproliferative effects on P815 murine mastocytoma cells" CANCER LETT. (SHANNON, IREL.) (1990), 49(3), 181-5, 1990, XP001050403 abstract; table 1	1-6,8-10
X	NAKAI H ET AL: "NEW POTENT ANTAGONISTS OF LEUKOTRIENES C4 AND D4 1. SYNTHESIS AND STRUCTURE—ACTIVITY RELATIONSHIPS" JOURNAL OF MEDICINAL CHEMISTRY, AMERICAN CHEMICAL SOCIETY. WASHINGTON, US, vol. 31, no. 1, 1988, pages 84-91, XP000608223 ISSN: 0022-2623 the whole document	1-6,8-10

on) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with Indication, where appropriate, of the relevant passages	Relevant to claim No.
NIE, L. ET AL.: "Inhibition of proliferation of MCF-7 breast cancer cells by a blocker of Ca2+-permeable channel" CELL CALCIUM, vol. 22, no. 2, 1997, pages 75-82, XP001050575 abstract	1-6,8-10
LIU, Y., ET AL: "Synthesis and antiinflammatory activity of (E)-4-cinnamoyloxystyrene derivatives" ZHONGGUO YAOWU HUAXUE ZAZHI (CHINESE JOURNAL OF MEDICINAL CHEMISTRY), vol. 9, no. 3, 1999, pages 186-191, XP001051016 abstract; figure 1; table 2	1-6,8-10
NISHIZAWA, Y., ET AL.: "Effects of antiallergic drugs on the proliferation of estrogen-sensitive mouse Leydig cell line" ANTICANCER RES., vol. 19, no. 3A, 1996, pages 1241-1245, XP001050577 abstract; figure 2	1-6,8-10
MURAHASHI K ET AL: "The combination therapy of scirrhous gastric carcinoma with tranilast and cisplatin." PROCEEDINGS OF THE AMERICAN ASSOCIATION FOR CANCER RESEARCH ANNUAL, vol. 39, March 1998 (1998-03), page 308 XP001050586 89th Annual Meeting of the American Association for Cancer Research; New Orleans, Louisiana, USA; March 28-April 1, 1998, March, 1998 ISSN: 0197-016X abstract	1-6,8-10
BECKMAN J. K., ET AL.: "Phospholipid peroxidation in tumor promoter-exposed mouse skin." CARCINOGENESIS, vol. 15, no. 12, 1994, pages 2937-2944, XP002186008 abstract; table 3	1-6,8-10
	NIE, L. ET AL.: "Inhibition of proliferation of MCF-7 breast cancer cells by a blocker of Ca2+-permeable channel" CELL CALCIUM, vol. 22, no. 2, 1997, pages 75-82, XP001050575 abstract LIU, Y., ET AL: "Synthesis and antiinflammatory activity of (E)-4-cinnamoyloxystyrene derivatives" ZHONGGUO YAOWU HUAXUE ZAZHI (CHINESE JOURNAL OF MEDICINAL CHEMISTRY), vol. 9, no. 3, 1999, pages 186-191, XP001051016 abstract; figure 1; table 2 NISHIZAWA, Y., ET AL.: "Effects of antiallergic drugs on the proliferation of estrogen-sensitive mouse Leydig cell line" ANTICANCER RES., vol. 19, no. 3A, 1996, pages 1241-1245, XP001050577 abstract; figure 2 MURAHASHI K ET AL: "The combination therapy of scirrhous gastric carcinoma with tranilast and cisplatin." PROCEEDINGS OF THE AMERICAN ASSOCIATION FOR CANCER RESEARCH ANNUAL, vol. 39, March 1998 (1998-03), page 308 XP001050586 89th Annual Meeting of the American Association for Cancer Research; New Orleans, Louisiana, USA; March 28-April 1, 1998, March, 1998 ISSN: 0197-016X abstract BECKMAN J. K., ET AL.: "Phospholipid peroxidation in tumor promoter-exposed mouse skin." CARCINOGENESIS, vol. 15, no. 12, 1994, pages 2937-2944, XP002186008 abstract; table 3

	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	Relevant to claim No.
Category *	Citation of document, with indication, where appropriate, of the relevant passages	नव्यवस्थात । वस्ताः । भवः
X	MURAHASHI K ET AL: "Tranilast, a fibroblasts inhibitor, inhibits the metatasis of gastric cancer cells." PROCEEDINGS OF THE AMERICAN ASSOCIATION FOR CANCER RESEARCH ANNUAL, vol. 40, March 1999 (1999-03), page 704 XP001050587 90th Annual Meeting of the American Association for Cancer Research; Philadelphia, Pennsylvania, USA; April 10-14, 1999, March, 1999 ISSN: 0197-016X abstract	1-6,8-10
x	ISAJI M ET AL: "TRANILAST INHIBITS THE PROLIFERATION, CHEMOTAXIS AND TUBE FORMATIONOF HUMAN MICROVASCULAR ENDOTHELIAL CELLS IN VITRO AND ANGIOGENESIS IN VIVO" BRITISH JOURNAL OF PHARMACOLOGY, BASINGSTOKE, HANTS, GB, vol. 122, no. 6, November 1997 (1997-11), pages 1061-1066, XP000997892 ISSN: 0007-1188 abstract	1-6,8-10
x	KUMAZAWA, T., ET AL.: "(E)-4-{2-''3-(Indol-5-y1)-1-oxo-2-butenyl lamino!phenoxy}butyric Acid Derivatives: A New Class of Steroid 5.alphaReductase Inhibitors in the Rat Prostate. 1" J. MED. CHEM., vol. 38, no. 15, 1995, pages 2887-2892, XP001041884 abstract page 2887, column 1, paragraphs 1-4 table 1	1-6,8-10
X	WO 99 07669 A (AMERICAN HOME PROD) 18 February 1999 (1999-02-18) the whole document	1-6,8-10

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This inte	ernational search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. X	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
	lthough the claim no. 1 relates to a method for the treatment of the human/animal body, a earch was carried out and was based on the indicated effects of the compound/composition.
2. X	Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
	See supplemental sheet FURTHER INFORMATION PCT/ISA/210.
3.	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This Inte	ernational Searching Authority found multiple inventions in this international application, as follows:
	See supplemental sheet.
1.	As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. X	As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
	1-12 (partially)
4.	No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark	The additional search fees were accompanied by the applicant's protest. X No protest accompanied the payment of additional search fees.

FURTHER INFORMATION PCT/ISA/210

The International Searching Authority found that this International Application contains several inventions or groups of inventions, as follows:

1. Claims nos: 1-12 (in part)

Carboxylic acid amides of general formula (I), their production process and use, in which formula A represents an (un)substituted phenyl group and B represents an (un)substituted phenyl group or an (un)substituted heteroaryl group.

2. Claims nos: 1-6, 8-12 (in part)

Carboxylic acid amides of general formula (I), their production process and use, in which formula A represents an (un)substituted phenyl group and B represents an (un)substituted naphthyl group.

3. Claims nos: 1-12 (in part)

Carboxylic acid amides of general formula (I), their production process and use, in which formula A represents an (un)substituted naphthyl group or tetrahydronaphthyl group.

4. Claims nos: 1-12 (in part)

Carboxylic acid amides of general formula (I), their production process and use, in which formula A represents an (un)substituted chromane or chromene group.

5. Claims nos: 1-6, 8-12 (in part)

Carboxylic acid amides of general formula (I), their production process and use, in which formula A represents an (un)substituted heteroaryl group containing nitrogen (e.g. pyridine, chinoline or isochinoline compounds.

6. Claims nos: 1-12 (in part)

Carboxylic acid amides of general formula (I), their production process and use, in which formula A represents an (un)substituted heteroaryl group containing oxygen or sulphur, (e.g. benzofurane, thiophene, or benzothiophene compounds), in as far as said compounds do not form part of invention 4.

7. Claims nos: 1-6, 8-12 (in part)

International application No.

PCT/EP 00/07057

Carboxylic acid amides of general formula (I), their production process and use, in which formula A represents an (un)substituted phenyl vinyl or cyclohexyl group.

8. Claims nos: 1-6, 8-12 (in part)

Carboxylic acid amides of general formula (I), their production process and use, in which formula A represents, together with R1 and the carbon atom located therebetween, a C5-C7 cycloalkylidene compound (covering e.g. naphthalinylidene and indanylidene compounds)

International application No. PCT/EP 00/07057

FURTHER INFORMATION PCT/ISA/210

Continuation of field I.2

The relevant patent claims nos. 1-10 relate to a therapeutic use, defined by the following parameter: inhibition of telomerase.

The use of this parameter appears in the given context to lack clarity under the terms of PCT Article 6. It is impossible to compare the parameters chosen by the applicant with subject matter disclosed thereon in prior art. This lack of clarity is such that a meaningful search becomes impossible. The search therefore focussed on parts of the patent claims that seemed to be clear, supported or disclosed according to the aforementioned terms, namely the parts relating to the therapeutic uses disclosed on page 45.

The relevant patent claims nos. 1-6, 8-12 relate to a disproportionately large number of possible compounds/production methods, of which only a small proportion is supported by the description, according to the terms of PCT Article 6 and/or is disclosed in the patent application, according to the terms of PCT Article 5. In the present case, the patent claims lack the appropriate support and the patent application lacks the required disclosure to such an extent that a meaningful search encompassing the entire scope of protection sought seems impossible.

In addition, the phrase (see definition of B) «a 5 or 6 member heteroaryl group that can be substituted by a group converted in vivo into a carboxy group» is regarded as unclear, as it is not clear which group can be converted in vivo into a carboxy group. The claimed structural elements are insufficiently defined by the declaration of a desired biological behavioural pattern, (see also example 110, which contains a sulpho group).

In addition, with regard to the first invention, it was determined that claim 7 is not formally dependent on claim 2, as the compounds (18), (example 16) and (19), (example 159) satisfy the disclaimer of claim 2.

The search therefore focussed on parts of the patent claims that seemed to be clear, supported or disclosed according to the aforementioned terms, namely the parts relating to the compounds of the description, which come under the first (examples 1-17, 20, 23-27, 38, 48, 49, 51, 52, 55, 56, 63-65, 77, 80, 81, 98, 116, 152, 154-159, 170-172) and third (examples 18, 19, 21, 22,28-37, 39-42, 45-47, 53, 54, 57-59, 62, 68, 69, 71, 73-79, 81-96, 99-103, 105-109, 111-115, 117-121, 124-126, 128-132, 134-151, 160-169, 173-229, 231-247). Example 230 contains an error in the definition of the compound, which makes the search relating to this impossible.

The applicant is therefore advised that patent claims, or sections of patent claims relating to inventions for which no international search report was drafted, cannot normally be the subject of an international preliminary examination (PCT Rule 66.1(e)). EPO policy, when acting as an International Preliminary Examining Authority, is normally not to carry out a preliminary examination of subject matter, for which no search has been conducted. This is also the case, irrespective of whether the claims are amended following receipt of the international search report (PCT Article 19) or during any PCT Chapter II procedure whereby the applicant submits new patent claims.

Information on patent family members

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
JP 6072866	L	15-03-1994	NONE		
JP 60146855	Α	02-08-1985	JP	1716222 C	27-11-1992
			JP	4003377 B	23-01-1992
EP 0511477	Α	04-11-1992	CA	2062587 A1	12-09-1992
			DE	69212058 D1	14-08-1996
			DE	69212058 T2	09-01-1997
			EP	0511477 A1	04-11-1992
			JP	5078315 A	30-03-1993
			US	5239083 A	24-08-1993
JP 60097946	Α	31-05-1985	JP	1710435 C	11-11-1992
			JP	3079336 B	18-12-1991
US 3940422	A	24-02-1976	JP	1096724 C	14-05-1982
			JP	49093335 A	05-09-1974
			JP	56040710 B	22-09-1981
			AT	333726 B	10-12-1976
			AT	44374 A	15-04-1976
			AU	6461374 A	17-07-1975
			BE BG	809935 A1 24538 A3	16-05-1974 10-03-1978
			CH	615152 A5	15-01-1980
			CH	613442 A5	28-09-1979
			DE	2402398 A1	08-08-1974
			DK	139676 B	26-03-1979
			ES	422395 A1	01-08-1976
			FΙ	60555 B	30-10-1981
			FŘ	2214476 A1	19-08-1974
			GB	1446141 A	18-08-1976
			HU	168055 B	28-02-1976
			IT	1054151 B	10-11-1981
			MX	5799 E	25-07-1984
			MX	7251 E	18-02-1988
			NL	7400754 A ,B,	
			NO	142441 B	12-05-1980
			SE	411117 B	03-12-1979
			SU	520041 A3	30-06-1976
			US	4070484 A	24-01-1978
			US 	RE32944 E	06-06-1989
WO 9907669	Α	18-02-1999	AU	8684598 A	01-03-1999
			BR	9811845 A	08-08-2000
			CN	1273579 T	15-11-2000
			EP	1003712 A1	31-05-2000
			JP WO	2001513526 T 9907669 A1	04-09-2001 18-02-1999

Internationales Aktenzeichen

PCT/EP 00/07057 a. Klassifizierung des anmeldungsgegenstandes IPK 7 A61K31/165 A61K31/192 A61K31/18 A61K31/343 A61K31/352 A61K31/36 A61K31/40 A61K31/41 A61K31/4164 A61K31/381 A61K31/415 A61K31/44 A61K31/4453 A61K31/495 A61K31/535 Nach der Internationalen Patentidassifikation (IPK) oder nach der nationalen Klassifikation und der IPK B. RECHERCHIERTE GEBIETE Recherchterter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) IPK 7 A61K Recherchlerte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen Während der Internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe) PAJ, WPI Data, EPO-Internal, CHEM ABS Data, BIOSIS C. ALS WESENTLICH ANGESEHENE UNTERLAGEN Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile Betr. Anspruch Nr. Kategorie* χ 1-6,8-12 DATABASE WPI Section Ch, Week 199416 Derwent Publications Ltd., London, GB; Class B05, AN 1994-128759 XP002186009 & JP 06 072866 A (CHUGOKU IGAKUKAGAKUIN YAKUBUTSU KENKYUSH), 15. März 1994 (1994-03-15) Zusammenfassung χ 1-6,8-12 DATABASE WPI Section Ch, Week 198537 Derwent Publications Ltd., London, GB; Class B05, AN 1985-226638 XP002186010 & JP 60 146855 A (ONO PHARM CO LTD), 2. August 1985 (1985-08-02) Zusammenfassung -/--Siehe Anhang Patentfamilie Weltere Veröffentlichungen sind der Fortsetzung von Feld C zu Spätere Veröffentlichung, die nach dem Internationalen Armeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Besondere Kategorien von angegebenen Veröffentlichungen "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist Erlindung zugrundellegenden Prinzips oder der ihr zugrundellegenden Theorie angegeben ist "E" ätteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden "L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifethaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Racherchenbericht genannten Veröffentlichung beleigt werder soll oder die aus einem anderen besonderen Grund angegeben ist (wie Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfindertscher Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann nahellegend ist soil oder die aus einem anderen besonderen drümd angegesche ("ins ausgeführt)

"O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Berutzung, eine Ausstellung oder andere Maßnahmen bezieht "P" Veröffentlichung, die vor dem Internationalen Anmeldedetum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist "&" Veröffentlichung, die Mitglied derselben Patentfamilie ist Absendedatum des Internationalen Recherchenberichts Datum des Abschlusses der Internationalen Recherche 02 04 2002 20. März 2002

Formblatt PCT/ISA/210 (Bialt 2) (Juli 1992)

Name und Postanschrift der Internationalen Recherchenbehörde

Fax: (+31-70) 340-3016

Europäisches Patentamt, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx, 31 651 epo nl,

Bevollmächtigter Bediensteter

A. Jakobs

Internationales Aktenzeichen
PCT/EP 00/07057

		PC1/EP 00/0/05/
	ung) ALS WESENTLICH ANGESEHENE UNTERLAGEN	
Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommend	en Teile Betr. Anspruch Nr.
X	EP 0 511 477 A (KYOWA HAKKO KOGYO KK) 4. November 1992 (1992-11-04) Zusammenfassung Seite 3, Zeile 3-5 Seite 3, Zeile 30 -Seite 7, Zeile 27; Ansprüche 1-11; Tabelle 1	1
X	DATABASE WPI Section Ch, Week 198528 Derwent Publications Ltd., London, GB; Class B03, AN 1985-168505 XP002186011 & JP 60 097946 A (ONO PHARM CO LTD), 31. Mai 1985 (1985-05-31) Zusammenfassung	1-6,8-12
x	US 3 940 422 A (HARITA KOZABURO ET AL) 24. Februar 1976 (1976-02-24) in der Anmeldung erwähnt Spalte 1, Zeile 50 -Spalte 2, Zeile 18 Zusammenfassung; Ansprüche 1-7; Beispiele 1-10	1-6,8-10
X	YASHIRO, M., ET AL.: "Tranilast (N-(3,4-dimethoxycinnamoyl)anthranilic acid) down-regulates the growth of scirrhous gastric cancer" ANTICANCER RES., Bd. 17, Nr. 2A, 1997, Seiten 895-900, XP001034866 Zusammenfassung	1-6,8-10
X	RALPH, R. K. ET AL: "Inhibitors of lipoxygenase have antiproliferative effects on P815 murine mastocytoma cells" CANCER LETT. (SHANNON, IREL.) (1990), 49(3), 181-5, 1990, XP001050403 Zusammenfassung; Tabelle 1	1-6,8-10
X	NAKAI H ET AL: "NEW POTENT ANTAGONISTS OF LEUKOTRIENES C4 AND D4 1. SYNTHESIS AND STRUCTURE-ACTIVITY RELATIONSHIPS" JOURNAL OF MEDICINAL CHEMISTRY, AMERICAN CHEMICAL SOCIETY. WASHINGTON, US, Bd. 31, Nr. 1, 1988, Seiten 84-91, XP000608223 ISSN: 0022-2623 das ganze Dokument	1-6,8-10

Internationales Aktenzelchen
PCT/EP 00/07057

		PCT/EP 0	00/07057		
	ung) ALS WESENTLICH ANGESEHENE UNTERLAGEN		12.4		
Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht komm	enden Telle	Betr. Anspruch Nr.		
X	NIE, L. ET AL.: "Inhibition of proliferation of MCF-7 breast cancer cells by a blocker of Ca2+-permeable channel" CELL CALCIUM, Bd. 22, Nr. 2, 1997, Seiten 75-82, XP001050575 Zusammenfassung		1-6,8-10		
X	LIU, Y., ET AL: "Synthesis and antiinflammatory activity of (E)-4-cinnamoyloxystyrene derivatives" ZHONGGUO YAOWU HUAXUE ZAZHI (CHINESE JOURNAL OF MEDICINAL CHEMISTRY), Bd. 9, Nr. 3, 1999, Seiten 186-191, XP001051016 Zusammenfassung; Abbildung 1; Tabelle 2		1-6,8-10		
X	NISHIZAWA, Y., ET AL.: "Effects of antiallergic drugs on the proliferation of estrogen-sensitive mouse Leydig cell line" ANTICANCER RES., Bd. 19, Nr. 3A, 1996, Seiten 1241-1245, XP001050577 Zusammenfassung; Abbildung 2		1-6,8-10		
X	MURAHASHI K ET AL: "The combination therapy of scirrhous gastric carcinoma with tranilast and cisplatin." PROCEEDINGS OF THE AMERICAN ASSOCIATION FOR CANCER RESEARCH ANNUAL, Bd. 39, März 1998 (1998-03), Seite 308 XP001050586 89th Annual Meeting of the American Association for Cancer Research; New Orleans, Louisiana, USA; March 28-April 1, 1998, March, 1998 ISSN: 0197-016X Zusammenfassung		1-6,8-10		
X	BECKMAN J. K., ET AL.: "Phospholipid peroxidation in tumor promoter-exposed mouse skin." CARCINOGENESIS, Bd. 15, Nr. 12, 1994, Seiten 2937-2944, XP002186008 Zusammenfassung; Tabelle 3 -/		1-6,8-10		

Internationales Aktenzelchen
PCT/EP 00/07057

C.(Fortest	ung) ALS WESENTLICH ANGESEHENE UNTERLAGEN		00/0/05/
Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht komm	enden Telle	Betr. Anspruch Nr.
X	MURAHASHI K ET AL: "Tranilast, a fibroblasts inhibitor, inhibits the metatasis of gastric cancer cells." PROCEEDINGS OF THE AMERICAN ASSOCIATION FOR CANCER RESEARCH ANNUAL, Bd. 40, März 1999 (1999-03), Seite 704 XP001050587 90th Annual Meeting of the American Association for Cancer Research; Philadelphia, Pennsylvania, USA; April 10-14, 1999, March, 1999 ISSN: 0197-016X Zusammenfassung		1-6,8-10
X	ISAJI M ET AL: "TRANILAST INHIBITS THE PROLIFERATION, CHEMOTAXIS AND TUBE FORMATIONOF HUMAN MICROVASCULAR ENDOTHELIAL CELLS IN VITRO AND ANGIOGENESIS IN VIVO" BRITISH JOURNAL OF PHARMACOLOGY, BASINGSTOKE, HANTS, GB, Bd. 122, Nr. 6, November 1997 (1997-11), Seiten 1061-1066, XP000997892 ISSN: 0007-1188 Zusammenfassung		1-6,8-10
X	KUMAZAWA, T., ET AL.: "(E)-4-{2-''3-(Indol-5-yl)-1-oxo-2-butenyl!amino!phenoxy}butyric Acid Derivatives: A New Class of Steroid 5.alphaReductase Inhibitors in the Rat Prostate. 1" J. MED. CHEM., Bd. 38, Nr. 15, 1995, Seiten 2887-2892, XP001041884 Zusammenfassung Seite 2887, Spalte 1, Absätze 1-4 Tabelle 1		1-6,8-10
X	WO 99 07669 A (AMERICAN HOME PROD) 18. Februar 1999 (1999-02-18) das ganze Dokument		1-6,8-10

Internationales Aktenzeichen
PCT/EP 00/07057

Feld I Bemerkungen zu den Ansprüchen, die sich als nicht recherchierbar erwiesen haben (Fortsetzung von Punkt 2 auf Blatt
Gemäß Artikel 17(2)a) wurde aus folgenden Gründen für bestimmte Ansprüche kein Recherchenbericht erstellt:
Ansprüche Nr. weil sie sich auf Gegenstände beziehen, zu deren Recherche die Behörde nicht verpflichtet ist, nämlich
Obwohl der Anspruch 1 sich auf ein Verfahren zur Behandlung des menschlichen/tierischen Körpers beziehen, wurde die Recherche durchgeführt und gründete sich auf die angeführten Wirkungen der Verbindung/Zusammensetzung.
2. X Ansprüche Nr. weil sie eich auf Teile der internationalen Anmeldung beziehen, die den vorgeschriebenen Anforderungen so wenig entsprechen, daß eine sinnvolle internationale Recherche nicht durchgeführt werden kann, nämlich
siehe Zusatzblatt WEITERE ANGABEN PCT/ISA/210
3. Ansprüche Nr. well es sich dabei um abhängige Ansprüche handelt, die nicht entsprechend Satz 2 und 3 der Regel 6.4 a) abgefaßt sind.
Feld II Bernerkungen bei mangelnder Einheltlichkeit der Erfindung (Fortsetzung von Punkt 3 auf Blatt 1)
Die internationale Recherchenbehörde hat festgestellt, daß diese internationale Anmeldung mehrere Erfindungen enthält:
siehe Zusatzblatt
Da der Anmelder alle erforderlichen zusätzlichen Recherchengebühren rechtzeitig entrichtet hat, erstreckt sich dieser internationale Recherchenbericht auf alle recherchierbaren Ansprüche.
2. Da für alle recherchlerbaren Ansprüche die Recherche ohne einen Arbeitsaufwand durchgeführt werden konnte, der eine zusätzliche Recherchengebühr gerechtfertigt hätte, hat die Behörde nicht zur Zahlung einer solchen Gebühr aufgefordert.
3. Da der Anmelder nur einige der erforderlichen zusätzlichen Recherchengebühren rechtzeitig entrichtet hat, erstreckt sich dieser internationale Recherchenbericht nur auf die Ansprüche, für die Gebühren entrichtet worden sind, nämlich auf die Ansprüche Nr. 1-12 (partially)
Der Anmelder hat die erforderlichen zusätzlichen Recherchengebühren nicht rechtzeitig entrichtet. Der internationale Recherchenbericht beschränkt sich daher auf die in den Ansprüchen zuerst erwähnte Erfindung; diese ist in folgenden Ansprüchen erfaßt:
Bemerkungen hinsichtlich eines Widerspruchs Die zusätzlichen Gebühren wurden vom Anmelder unter Widerspruch gezahlt. X Die Zahlung zusätzlicher Recherchengebühren erfolgte ohne Widerspruch.

WEITERE ANGABEN

PCT/ISA/ 210

Die internationale Recherchenbehörde hat festgestellt, daß diese internationale Anmeldung mehrere (Gruppen von) Erfindungen enthält, nämlich:

1. Ansprüche: 1-12 (teilweise)

Carbonsäureamide der allgemeinen Formel (I), deren Herstellungsprozess und Verwendung und worin A eine (un)substituierte Phenylgruppe darstellt und B eine (un)substituierte Phenylgruppe oder eine (un)substituierte Heteroarylgruppe darstellt.

2. Ansprüche: 1-6,8-12 (teilweise)

Carbonsäureamide der allgemeinen Formel (I), deren Herstellungsprozess und Verwendung und worin A eine (un)substituierte Phenylgruppe darstellt und B eine (un)substituierte Naphthylgruppe darstellt.

3. Ansprüche: 1-12 (teilweise)s

Carbonsäureamide der allgemeinen Formel (I), deren Herstellungsprozess und Verwendung und worin A eine (un)substituierte Naphthylgruppe oder Tetrahydronaphtylgruppe darstellt.

4. Ansprüche: 1-12 (teilweise)

Carbonsäureamide der allgemeinen Formel (I), deren Herstellungsprozess und Verwendung worin A eine (un)substituierte Chroman- oder Chromengruppe darstellt.

5. Ansprüche: 1-6,8-12 (teilweise)

Carbonsäureamide der allgemeinen Formel (I), deren Herstellungsprozess und Verwendung worin A eine (un)substituierte Stickstoff enthaltende Heteroarylgruppe (Beispielsweise Pyridin-, Chinolin- oder Isochinolinverbindungen) darstellt.

6. Ansprüche: 1-12 (teilweise)

Carbonsäureamide der allgemeinen Formel (I), deren Herstellungsprozess und Verwendung worin A eine (un)substituierte Sauerstoff oder Schwefel enthaltende Heteroarylgruppe darstellt (Beispielsweise Benzofuran-, Thiophen- oder Benzothiophenverbindungen) insoweit diese nicht Teil der Erfindung 4 sind.

WEITERE ANGABEN

PCT/ISA/ 210

7. Ansprüche: 1-6,8-12 (teilweise)

Carbonsäureamide der allgemeinen Formel (I), deren Herstellungsprozess und Verwendung worin A eine (un)substituierte Phenylvinyl- oder Cyclohexylgruppe darstellt.

8. Ansprüche: 1-6,8-12 (teilweise)

Carbonsäureamide der allgemeinen Formel (I), deren Herstellungsprozess und Verwendung worin A mit R1 und dem dazwischenliegenden Kohlenstoffatom eine C5-C7-Cycloalkylidenverbindung darstellt (umfassend z.B. Naphtalinyliden- und Indanylidenverbindungen).

WEITERE ANGABEN

PCT/ISA/ 210

Fortsetzung von Feld I.2

Die geltenden Patentansprüche 1-10 sind auf eine therapeutische Verwendung zu beziehen die mittels folgendem Parameter definiert wird: ' Hemmung der Telomerase.

Die Verwendung dieses Parameters muss im gegebenen Zusammenhang als Mangel an Klarheit im Sinne von Art. 6 PCT erscheinen. Es ist unmöglich, die vom Anmelder gewählten Parameter mit dem zu vergleichen, was der Stand der Technik hierzu offenbart. Der Mangel an Klarheit ist dergestalt, daß er eine sinnvolle vollständige Recherche unmöglich macht. Somit wurde die Recherche auf die auf Seite 45 offenbarten therapeutischen Verwendungen gerichtet.

Die geltenden Patentansprüche 1-6,8-12 beziehen sich auf eine unverhältnismäßig große Zahl möglicher

Verbindungen/Herstellungsverfahren, von denen sich nur ein kleiner Anteil im Sinne von Art. 6 PCT auf die Beschreibung stützen und/oder als im Sinne von Art.5 PCT in der Patentanmeldung offenbart gelten kann. Im vorliegenden Fall fehlt den Patentansprüchen die entsprechende Stütze und fehlt der Patentanmeldung die nötige Offenbarung in einem solchen Maße, daß eine sinnvolle Recherche über den gesamten erstrebten Schutzbereich unmöglich erscheint.

Des weiteren muss der Ausdruck (siehe Definition von B) "eine in-vivo in eine Carboxygruppe überführbare Gruppe substituierte 5- oder 6-gliedrige Heteroarylgruppe" als unklar angesehen werden weil nicht völlig klar ist welche Gruppe in-vivo in eine Carboxygruppe überführbar ist. Die so beanspruchten strukturellen Elemente sind durch die Angabe einer erwünschten biologische Verhaltensweise unzureichend definiert (Siehe diesbezüglich auch Beispiel 110, das eine Sulfogruppe enthält).

Des weiteren wurde bezüglich der ersten Erfindung festgestellt, dass Anspruch 7 formell nicht von Anspruch 2 abhängig ist da die Verbindungen (18) (Beispiel 16) und (19) (Beispiel 159) dem Disclaimer von Anspruch 2 entsprechen.

Daher wurde die Recherche auf die Teile der Patentansprüche gerichtet, welche im o.a. Sinne als gestützt und offenbart erscheinen, nämlich die Teile betreffend, die Verbindungen der Beschreibung die unter die erste (Beispiele 1-17, 20, 23-27, 38, 48, 49, 51, 52, 55, 56, 63-65, 77, 80, 81, 98, 116, 152, 154-159, 170-172) und dritte (Beispiele 18, 19, 21, 22, 28-37, 39-42, 45-47, 53, 54, 57-59, 62, 68, 69, 71, 73-79, 81-96, 99-103, 105-109, 111-115, 117-121, 124-126, 128-132, 134-151, 160-169, 173-229, 231-247) Erfindung fallen.

Beispiel 230 enthält einen Fehler in der Definition der Verbindung, der die diesbezügliche Rechersche unmöglich macht.

Der Anmelder wird darauf hingewiesen, daß Patentansprüche, oder Teile von Patentansprüchen, auf Erfindungen, für die kein internationaler Recherchenbericht erstellt wurde, normalerweise nicht Gegenstand einer internationalen vorläufigen Prüfung sein können (Regel 66.1(e) PCT). In seiner Eigenschaft als mit der internationalen vorläufigen Prüfung beauftragte Behörde wird das EPA also in der Regel keine vorläufige Prüfung für Gegenstände durchführen, zu denen keine Recherche vorliegt.

		Internationales Akten	zeichen PCT/EP 00 \(D7057
WEITERE ANGABEN	PCT/ISA/	210	
Dies gilt auch für de internationalen Reche für den Fall, daß der PCT neue Patentansprü	n Fall, daß die Pa rchenberichtes geä Anmelder im Zuge che vorlegt.	tentansprüche nach E ndert wurden (Art. 1 des Verfahrens gemäß	rhalt des 9 PCT), oder Kapitel II

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen PCT/EP 00/07057

				101/21 00/0703/				
	echerchenbericht rtes Patentdokument		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie		Datum der Veröffentlichung	
JP	6072866	A	15-03-1994	KEINE				
JP	60146855	 А	02-08-1985	JP	1716222	C	27-11-1992	
		•		JP	4003377		23-01-1992	
EP	0511477	<u></u> -	04-11-1992	CA	2062587	A1	12-09-1992	
				DE	69212058		14-08-1996	
				DE	69212058		09-01-1997	
				ĒΡ	0511477		04-11-1992	
				ĴΡ	5078315		30-03-1993	
				ÜS	5239083		24-08-1993	
.1P	60097946	— А	31-05-1985	JP	1710435	<u>r</u>	11-11-1992	
٠.	,	•		ĴΡ	3079336		18-12-1991	
			······				10 12 1331	
US	3940422	A	24-02-1976	JP	1096724		14-05-1982	
				JР	49093335		05-09-1974	
				JP	56040710		22-09-1981	
				AT	333726		10-12-1976	
				AT	44374		15-04-1976	
				AU	6461374		17-07-1975	
				BE	809935		16-05-1974	
				BG	24538		10-03-1978	
				CH	615152		15-01-1980	
				CH	613442		28-09-1979	
				DE	2402398		08-08-1974	
				DK	139676		26-03-1979	
				EŞ	422395		01-08-1976	
				FI	60555		30-10-1981	
				FR	2214476	_	19-08-1974	
				GB		A	18-08-1976	
				HU IT	168055		28-02-1976	
				MX	1054151		10-11-1981	
				MX	5799 7251	<u> </u>	25-07-1984	
				NL			18-02-1988	
				NO		A ,B,	22-07-1974	
				SE	411117	B	12-05-1980 03-12-1979	
				SU	520041			
				US	4070484		30-06-1976	
				US	RE32944		24-01-1978 06-06-1989	
	0007660	 A	10_02 1000	ALI	0604500			
WU	9907669	A	18-02-1999	AU	8684598		01-03-1999	
			•	BR	9811845		08-08-2000	
				CN	1273579		15-11-2000	
				EP	1003712		31-05-2000	
					2001513526		04-09-2001	
				WO	9907669	ΝŢ	18-02-1999	