Sparse-Grid Stochastic Collocation Uncertainty Quantification Convergence for Multigroup Diffusion

Paul W. Talbot¹, Anil K. Prinja¹

¹University of New Mexico

Supported by Idaho National Laboratory

Outline

Discussion Points

- 1 Motivation
- 2 Deterministic Problem
- 3 UQ Methodology
- 4 Results
- 5 Ongoing Work

Motivation

Uncertainty Quantification for Modular Numerical Systems

- Uncertain inputs → Distribution of Qol
- Intrusive/Non-Intrusive
- Monte Carlo
 - Dimension Agnostic
 - Slow Convergence
- Stochastic Collocation
 - Improved Convergence*
 - Curse of Dimensionality
- Stochastic Collocation on Sparse Grids

Low-Enrichment Nuclear Reactor

- Homogenized Multiplying Medium
- Steady State Operation
- Quantity of Interest: k-eigenvalue

5	5	5	5	5	5	5	5	5	5	5
5	5	5	5	5	5	5	5	5	5	5
3	3	3	3	3	3	3	5	5	5	5
3	3	3	3	3	3	3	4	5	5	5
2	1	1	1	1	2	2	3	3	5	5
2	1	1	1	1	2	2	3	3	5	5
1	1	1	1	1	1	1	3	3	5	5
1	1	1	1	1	1	1	3	3	5	5
1	1	1	1	1	1	1	3	3	5	5
1	1	1	1	1	1	1	3	3	5	5
2	1	1	1	1	2	2	3	3	5	5

Neutronics

- Diffusion Approximation
- Multigroup, G = 2
- Neglect Upscatter
- $\chi(g=1)=1$
- Solved using JFNK (GMRES) in trilinos

Uncertainties:

- Aleatoric in interaction probability
- lacktriangle Epistemic in measurements of Σ

Two-Group, Two-Dimension, Diffusion Approximation

$$-\nabla \cdot (D_1(\bar{x})\nabla\phi_1(\bar{x})) + \left(\Sigma_a^{(1)}(\bar{x}) + \Sigma_s^{(1\to 2)}(\bar{x})\right)\phi_1(\bar{x}) = \frac{1}{k(\phi)} \sum_{g'=1}^2 \nu_{g'} \Sigma_f^{(g')}(\bar{x})\phi_{g'}(\bar{x})$$
$$-\nabla \cdot (D_2(\bar{x})\nabla\phi_2(\bar{x})) + \Sigma_a^{(2)}(\bar{x})\phi_2(\bar{x}) = \Sigma_s^{(1\to 2)}(\bar{x})\phi_1(\bar{x})$$

Boundary Conditions

$$-D\left.\frac{\partial\phi^{\text{in}}}{\partial x_i}\right|_{\partial D}=0, \ \ i=1,2, \ \ x\in\partial_{\text{top}}D\cup\partial_{\text{right}}D$$

$$\left. \frac{\partial \phi}{\partial x_i} \right|_{\partial D} = 0, \ \ i = 1, 2, \ \ x \in \partial_{\text{left}} D \cup \partial_{\text{bottom}} D$$

Benchmark

k = 1.00007605445

Region	Group	D_g	$\Sigma_{a,g}$	$\nu \Sigma_{f,g}$	$\Sigma_s^{1,2}$
1	1	1.255	8.252e-3	4.602e-3	2.533e-2
	2	2.11e-1	1.003e-1	1.091e-1	
2	1	1.268	7.181e-3	4.609e-3	2.767e-2
	2	1.902e-1	7.047e-2	8.675e-2	
3	1	1.259	8.002e-3	4.663e-3	2.617e-2
	2	2.091e-1	8.344e-2	1.021e-1	
4	1	1.259	8.002e-3	4.663e-3	2.617e-2
	2	2.091e-1	7.3324e-2	1.021e-1	
5	1	1.257	6.034e-4	0	4.754e-2
	2	1.592e-1	1.911e-2	0	

Introduce 10% Uncertainty

UQ Methods

- Analog Monte Carlo
- Stochastic Collocation on Sparse Grids

Uncertainty space

$$k(D_g^{(m)}, \Sigma_{g,c}^{(m)}, \nu \Sigma_{g,f}^{(m)}, \Sigma_{g' \to g,s}^{(m)}, \ldots) \to u(Y) \equiv u(Y_1, Y_2, \ldots, Y_N),$$

$$Y \in \Omega$$
, span $(Y) = \Omega$.

Compare moments, $P(Y) = \prod_{n=1}^{N} \rho(Y_n)$

$$\mathbb{E}[u^r] \equiv \int_{\Omega} u(Y)^r P(Y) d\Omega$$

Monte Carlo

- Randomly sample $Y^{(m)} \in \Omega$
- Compute statistics

$$\mathbb{E}[u^r] \approx \frac{1}{M} \sum_{m=1}^M u \left(Y^{(m)} \right)^r$$

Stochastic Collocation using Lagrange Polynomials

Interpolate u using Lagrange polynomials at points $Y^{(k)}$

$$u(Y) \approx u_{h,\eta,\Lambda(L)}(Y) = \sum_{k \in \Lambda(L)} u(Y^{(k)}) \mathcal{L}_k(Y)$$

$$\mathcal{L}_{k}(Y) = \prod_{n=1}^{N} \mathcal{L}_{k_{n}}(Y_{n}), \quad \mathcal{L}_{k_{n}}(Y_{n}) = \prod_{j=1}^{i} \frac{Y_{n} - Y_{n}^{(i)}}{Y_{n}^{(k_{n})} - Y_{n}^{(i)}}$$

$$\mathbb{E}[u(Y)] \approx \mathbb{E}[u_h(Y)] = \sum_{k=1}^{\eta} w_k \ u_h(Y^{(k)})$$

Stochastic Collocation: Polynomial Degree Index Set $\Lambda(L)$

■ Tensor Product:

$$\Lambda_{\mathsf{TP}}(L) = \Big\{ \bar{\rho} = [\rho_1, ..., \rho_N] : \max_{1 \leq n \leq N} p_n \leq L \Big\}, \eta = (L+1)^N$$

Total Degree:

$$\Lambda_{TD}(L) = \left\{ \bar{p} = [p_1, ..., p_N] : \sum_{n=1}^{N} p_n \le L \right\}, \eta = {L + N \choose N}$$

Hyperbolic Cross:

$$\Lambda_{HC}(L) = \left\{ \bar{p} = [p_1, ..., p_N] : \prod_{n=1}^N p_n + 1 \le L + 1 \right\}, \eta \le (L+1)(1 + \log(L+1))^{N-1}$$

Stochastic Collocation: Index Set $\Lambda(L)$

Figure : Index Set Examples: N = 2, L = 4

Stochastic Collocation on Sparse Grids

$$u(Y) \approx S_{N,\Lambda(L)}[u](Y) = \sum_{\substack{i \in \Lambda(L)}} c(i) \bigotimes_{n=1}^{N} U_{n,p(i_n)}[u](Y),$$
$$c(i) = \sum_{\substack{j=\{0,1\}^N,\\i+j\in\Lambda(L)}} (-1)^{|j|_1},$$

$$\bigotimes_{n=1}^{N} \mathcal{U}_{n,p(i_n)}[u](Y) \equiv \sum_{k_1=0}^{p(i_1)} \cdots \sum_{k_N=0}^{p(i_N)} u_h \Big(Y^{(k_1)}, \cdots, Y^{(k_N)}\Big) \prod_{n=1}^{N} \mathcal{L}_{k_n}(Y_n),$$

$$= \sum_{k=0}^{p(\vec{i})} u_h \Big(Y^{(k)}\Big) \mathcal{L}_k(Y),$$

Stochastic Collocation on Sparse Grids

Figure : Sparse Grids, N = 2, L = 4, p(i) = i, Legendre points

Stochastic Collocation on Sparse Grids

		TP	TD		HC	
Ν	L	$ \Lambda(L) $	$ \Lambda(L) $	η	$ \Lambda(L) $	η
3	4	125	35	165	16	31
	8	729	165	2,097	44	153
	16	4,913	969	41,857	113	513
	32	35,737	6,545	1,089,713	309	2,181
5	2	293	21	61	11	11
	4	3,125	126	781	31	71
	8	59,049	1,287	28,553	111	481

Table: Index Set and Collocation Size Comparison

Anisotropic Sparse Grids

$$\tilde{\Lambda}_{\mathsf{TD}}(L) = \left\{ \bar{p} = [p_1, ..., p_N] : \sum_{n=1}^{N} \alpha_n p_n \leq |\vec{\alpha}|_1 L \right\}$$

$$\tilde{\Lambda}_{HC}(L) = \left\{ \bar{p} = [p_1, ..., p_N] : \prod_{n=1}^{N} (p_n + 1)^{\alpha_n} \le (L + 1)^{|\vec{\alpha}|_1} \right\}$$

Sample Results

Attenuation, $u(Y) = \prod_{n=1}^{N} \exp(-Y_n)$ (N = 5)

(a) < u > Values

(b) Error in $\langle u \rangle$

Sample Results

Projectile with Drag (N = 8)

(a) < R > Values

(b) Error in $\langle R \rangle$

Cases

$$\begin{split} N &= 5 \\ &\blacksquare \ Y = \left\{ \Sigma_{2,f}^{(1)}, \Sigma_{2,c}^{(1)}, \Sigma_{2,f}^{(4)}, \Sigma_{2,c}^{(4)}, D_2^{(5)} \right\} \\ N &= 14 \\ &\blacksquare \ Y = \left\{ \Sigma_{2,f}^{(1)}, \Sigma_{2,c}^{(1)}, D_2^{(1)}, \Sigma_{2,f}^{(2)}, \Sigma_{2,c}^{(2)}, D_2^{(3)}, \Sigma_{2,f}^{(3)}, \Sigma_{2,c}^{(3)}, D_2^{(3)}, \Sigma_{2,f}^{(4)}, \Sigma_{2,c}^{(4)}, D_2^{(4)}, \Sigma_{2,c}^{(5)}, D_2^{(5)} \right\} \end{split}$$

< k > Values

(a)
$$< k >$$
, N=5

(b)
$$< k >$$
, N=14

< k > Convergence

(a) Error in $\langle k \rangle$, N=5

(b) Error in < k >, N=14

var(k) Values

(a) var(k), N=5

(b) var(k), N=14

var(k) Convergence

(a) Error in var(k), N=5

(b) Error in var(k), N=14

Continuing Efforts

- Increased Material Complexity
- Polynomial Chaos Expansion
- Adaptive Anisotropic Grids
- High-Density Model Reduction (HDMR)
- Multiphysics (Neutronics, Thermal Hydraulics, Materials)

