Листок №ГЗ 220.01.2019

Кодирование

Наша цель была научиться говорить о выводимости в РА языком арифметики. В прошлом листке мы поняли, что рекурсивные функции могут быть хорошим подспорьем в этом деле. Осталось эту возможность реализовать.

Пусть Σ не более чем счётная сигнатура, содержащая функциональные символы $\{f_i^n\}$, предикатные символы $\{R_i^n\}$, переменные v_0, v_1, \dots Например, положим = как $R_0^2, 0$ как f_0^0, S есть f_0^1 и так далее. Наша цель приписать гёделевы номера объектам языка, чтобы разным объектам соответствовали разные натуральные числа, а смысл слова мог бы определяться примитивно-рекурсивным образом. Обозначив гёделев номер объекта A как [A], распределим номера, скажем, так:

$$[v_i] := \langle 1, i \rangle, [f_i^n] := \langle 2, \langle n, i \rangle \rangle, [R_i^n] := \langle 3, \langle n, i \rangle \rangle, [\neg] := \langle 4, 0 \rangle, [\rightarrow] := \langle 4, 1 \rangle, [\forall] := \langle 4, 3 \rangle.$$

Задача ГЗ.1. Объясняет почему квантору существования и остальным логическим связкам не нужны отдельные гёделевые номера.

Дальше можно этот язык расширить на более сложные конструкции, например: $[(A \to A)]$ $[B] = \langle [\rightarrow], [A], [B] \rangle, [\forall v_i \quad A] = \langle [\forall], [v_i], [A] \rangle.$

Задача Г3.2. Докажите, что $Tm(x) = \langle x \rangle$ есть гёделев номер терма» является примитивно рекурсивной.

Задача Г3.3. Докажите, что $AtFm(x) = \langle x \rangle$ есть гёделев номер атомарной формулы» является примитивно рекурсивной.

Задача Г3.4. Докажите, что $Fm(x) = \langle x \rangle$ есть гёделев номер формулы» является примитивно рекурсивной.

Определение. Hумерал \underline{n} — это терм $\underbrace{S(\dots S(0)\dots)}_n$ Задача Γ 3.5. Покажите, что $nm(x) \coloneqq [\underline{x}]$ и $\mathrm{Num}(x) = «x$ есть гёделев номер нумерала» примитивно рекурсивны.

Задача Г3.6. Докажите, что Sub(x, i, y) = «результат подстановки в x выражения y вместо свободных вхождений переменной v_i » является примитивно рекурсивной. Другими словами, если $x = [\varphi]$, то выполняется $Sub([\varphi], i, [t]) = [\varphi[v_i/t]]$.

Задача Г3.7. Докажите, что $Free(x,y) = \langle x \rangle$ есть гёделев номер переменной, имеющей свободное вхождение в выражение с номером у» является примитивно рекурсивной.

Задача Γ 3.8. Покажите, что следующие предикаты примитивно рекурсивны «x есть код подформулы формулы с кодом y», «t подстановочен в φ вместо свободного вхождения переменной $v_i \gg$,

Определение. Пусть $Ax_i(x) = \langle x \rangle$ есть код применения i-ой аксиомы $Cl \rangle$, Log(x) $\bigvee Ax_i(x), MP(x,y,z) = (y = \langle [\rightarrow], x, z \rangle \& x, y, z \in Fm)$ (выводимость по modus ponens),

$$B1(x,y) = (x, y \in Fm)\&(\exists A, a, B, v \quad (x = \langle A, [\rightarrow], Sub(B, a, v))\& \\ \&(y = \langle A, [\rightarrow], [\forall] \quad , v, B \rangle)\&(A, B \in Fm)\&v \in Var\&Tm(a))$$

$$(1)$$

 $Gen(x,i,y) = (y = \langle [\forall], [v_i], x \rangle)$ (применение квантора всеобщности).

Задача Г3.9. Покажите, что Ax_i , Log, MP, Gen являются примитивно рекурсивными.

Задача Г3.10. Докажите, что $Prf(x,y) = \langle x \rangle$ есть вывод y в языке предикатов является примитивно рекурсивной.