In the Name of God, the Merciful, the Compassionate

Introduction to Bioinformatics 11 - Protein Structure Basics

Instructor: Hossein Zeinali
Amirkabir University of Technology

Protein Structure & Function

- Proteins perform most essential biological and chemical functions in a cell.
 - Protein structure primarily determined by sequence
 - Protein function primarily determined by structure
- Globular proteins:
 - compact hydrophobic core & hydrophilic surface
- Membrane proteins: special hydrophobic surfaces
- Folded proteins are only marginally stable
- Predicting protein structure and function can be very hard

4 Basic Levels of Protein Structure

Primary

- Linear sequence of amino acids

- Description of *covalent bonds* linking aa's

4 Basic Levels of Protein Structure

Secondary

- Local spatial arrangement of amino acids
- Description of short-range non-covalent interactions
- Periodic structural patterns: α -helix, β -sheet

Tertiary

- Overall 3-D "fold" of a single polypeptide chain
- Spatial arrangement of 2' structural elements; packing of these into compact "domains"
- Description of *long-range non-covalent* interactions (plus disulfide bonds)

Quaternary

Quaternary

Amirkabir University of Technology

— In proteins with > 1 polypeptide chain, spatial arrangement of subunits

Amino Acids

• Each of 20 different amino acids has different "R-Group" or side chain attached to CαUniversity of Technology

(Tehran Polytechnic)

Peptide Bond is Rigid and Planar

Hydrophobic Amino Acids

• Aliphatic side chains are linear hydrocarbon chains and aromatic side chains are cyclic rings.

Charged Amino Acids

 The hydrophilic amino acids can be subdivided into polar and charged.

• Charged amino acids can be either positively charged (basic) or negatively charged (acidic).

Polar Amino Acids

Loops

- Connect helices and sheets
- Vary in length and 3-D configurations
- Are located on surface of structure
- Are more "tolerant" of mutations
- Are more flexible and can adopt multiple conformations
- Tend to have charged and polar amino acids
- Some fall into distinct structural families (e.g., hairpin loops, reverse turns)

Coils

• Regions of 2' structure that are not helices, sheets, or recognizable turns

• Intrinsically disordered regions appear to play important functional roles

Amirkabir University of Technology (Tehran Polytechnic)

Simple Motifs Combine to Form Domains

6 Main Classes of Protein Structure

- 1. α-Domains
 - Bundles of helices connected by loops
- 2. β-Domains
 - Mainly antiparallel sheets, usually with 2 sheets forming sandwich
- 3. α/β Domains
 - Mainly parallel sheets with intervening helices, also mixed sheets
- 4. $\alpha + \beta$ Domains
 - Mainly segregated helices and sheets
- 5. Multi-domain $(\alpha + \beta)$
 - Containing domains from more than one class
- 6. Membrane & cell-surface proteins (Tehran Polytechnic)

α-Domain Structures: 4-Helix Bundles

β-Sheets: Up-and-Down Sheets & Barrels

α/β Domains

Protein Structure Databases

- **PDB** Protein Data Bank
 - http://www.rcsb.org/pdb/
 - (RCSB) THE protein structure database
- MMDB Molecular Modeling Database
 - <u>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Structure</u>
 - (NCBI Entrez) has "added" value
- MSD Molecular Structure Database
 - http://www.ebi.ac.uk/msd
 - Especially good for interactions & binding sites

PDB (RCSB)

Structure at NCBI

MMDB at NCBI

MSD: Molecular Structure Database

wwPDB: World Wide PDB

References

- Mostly used:
 - Essential bioinformatics, Chapter 12 (Protein Structure Basics)

• IP notice: some slides were selected from Drena Dobbs' slides.

Amirkabir University of Technology (Tehran Polytechnic)

Thanks for your attention

