Black-Box Optimization Benchmarking for Noiseless Function Testbed using Artificial Bee Colony Algorithm

Draft version *

Mohammed El-Abd American University of Kuwait melabd@auk.edu.kw

ABSTRACT

This paper benchmarks the artificial bee colony (ABC) algorithm using the noise-free BBOB 2010 testbed.

Categories and Subject Descriptors

G.1.6 [Numerical Analysis]: Optimization—global optimization, unconstrained optimization; F.2.1 [Analysis of Algorithms and Problem Complexity]: Numerical Algorithms and Problems

General Terms

Algorithms

Keywords

Benchmarking, Black-box optimization

1. ARTIFICIAL BEE COLONY

The ABC algorithm was first proposed in [7]. The algorithms was inspired by the method adopted of a swarm of honey bees to locate food sources. There are two different honey bee groups that share knowledge in order to successfully locate such sources. First, there are the *employed bees* that are currently exploiting a food source. Second, there are *unemployed bees* that are continually looking for a food source. Unemployed bees are divided into *scout bees* that search around the nest and *onlookers* that wait at the nest and *establish* communication with the employed bees.

This algorithm was applied to multidimensional and multimodal function optimization in [7, 2, 11]. The swarm is divided into employed bees, scouts and onlookers. S_n solutions to the problem are randomly initialized in the function domain and referred to as food sources. A number of employed bees, set as the number of the food sources and half the colony size, are used to find new food sources using the

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.

GECCO'10, July 7–11, 2010, Portland Oregon, United States of America. Copyright 2010 ACM X-XXXXX-XX-X/XX/XX ...\$10.00.

following equation:

$$v_{ij} = x_{ij} + \phi_{ij} \times (x_{ij} - x_{kj}),$$
 (1)

for $j \in \{1...d\}$ where d is the number of dimensions, ϕ_{ij} is a random number uniformly distributed in the range [-1,1], and k is the index of a randomly chosen solution. Both \mathbf{v}_i and \mathbf{x}_i are then compared against each other and the employed bee exploits the better food source.

Onlooker bees next choose a random food source according to the probability given in equation 2. Then, each onlooker bee tries to find a better food source around the selected one using equation 1.

$$p_i = \frac{fit_i}{\sum_{j=1}^{SN} fit_j},$$
 (2)

where fit_i is the fitness of the i^{th} food source.

If a food source cannot be improved for a predetermined number of cycles, referred to as limit, this food source is abandoned. The employed bee that was exploiting this food source becomes a scout that looks for a new food source by randomly searching the problem domain. The ABC algorithm is shown in Algorithm 1.

Algorithm 1 The ABC algorithm

Require: Max_Cycles, ColonySize, S_r , S_e

- 1: Initialize the food sources
- 2: Evaluate the food sources
- 3: Cycle=1
- 4: while $Cycle \leq Max_Cycles$ do
- 5: Produce new solutions using employed bees
- 6: Evaluate the new solutions
- 7: Apply Greedy selection process
- 8: Calculate normalized P
- 9: Calculate the fitness
- 10: Produce new solutions for onlooker bees
- 11: Apply Greedy selection process for onlooker bees
- 12: Determine abandoned solutions
- 13: Memorize the best solution
- 14: Cycle = Cycle + 115: **end while**
- 16: **return** best solution

Previous studies performed to assess the performance ABC included the work in [12] showing that the ABC algorithm performs better than PSO, an evolutionary algorithm (EA) and DE on a small suite of classical benchmark functions. Another study was carried in [10] that compared ABC against PSO, a Genetic Algorithm (GA), DE and an Evolutionary

^{*}Submission deadline: March 25th.

Table 2: ERT loss ratio (see Figure 3) compared to the respective best result from BBOB-2009 for budgets given in the first column. The last row $\mathrm{RL_{US}}/\mathrm{D}$ gives the number of function evaluations in unsuccessful runs divided by dimension. Shown are the smallest, 10%-ile, 25%-ile, 50%-ile, 75%-ile and 90%-ile value (smaller values are better).

•	f_{1} - f_{24} in 5-D, maxFE/D=100011						
#FEs/D	best	10%	25%	\mathbf{med}	75%	90%	
2	4.2	5.2	6.9	11	16	27	
10	6.4	9.1	10	14	23	1.4e2	
100	6.6	15	19	28	40	1.1e2	
1e3	4.8	8.2	35	63	1.4e2	2.5e2	
1e4	2.4	12	1.0e2	1.7e2	7.3e2	1.1e3	
1e5	2.9	13	2.2e2	8.7e2	4.9e3	7.6e3	
RL_{US}/D	1e5	1e5	1e5	1e5	1e5	1e5	
	f_{1} - f_{24} in 20-D, maxFE/D=100002						
#FEs/D	best	10%	25%	\mathbf{med}	75%	90%	
2	2.7	15	34	84	1.1e2	1.1e2	
10	12	19	63	4.5e2	5.4e2	5.4e2	
100	2.0	21	29	48	1.3e2	5.4e3	
1e3	0.32	7.1	54	1.2e2	2.6e2	1.1e3	
1e4	0.54	13	1.6e2	3.3e2	1.1e3	2.2e3	
1e5	1.3	13	2.8e2	2.1e3	6.3e3	1.3e4	
1e6	1.3	24	7.3e2	1.4e4	4.3e4	1.2e5	
RL_{US}/D	1e5	1e5	1e5	1e5	1e5	1e5	

Strategy (ES) algorithm on a larger number of functions. It was shown that the performance of ABC is better than or at least similar to those algorithms while having a smaller number of parameters to tune. The work in [9] compared ABC to HS and the Bees Algorithm (BA) proposed in [13]. The comparison was based on a small set of classical functions and the ABC showed superior performance over both algorithms while producing reasonable results for higher dimensions.

2. PARAMETER TUNING

For ABC, the work in [1] indicated that the there is no need to have a huge colony size in order to provide good results. We use 40 bees as our previous experiments conducted on the CEC05 benchmarks [14] and repeated using populations of 20, 40 and 100 bees for different problem sizes showed that this setting provided the best results on average. The recommendations in [10] were followed by setting the limit parameters to $S_n \times D$, although recent research [1] indicated that lower values might be needed for more difficult functions.

3. RESULTS

Results from experiments according to [4] on the benchmark functions given in [3, 6] are presented in Figures 1, 2 and 3 and in Tables 1 and 2. Experiments use the ABC code available at [8].

4. CPU TIMING EXPERIMENT

For the timing experiment, ABC was run on f8 and restarted until at least 30 seconds had passed (according to Figure 2 in [5]). The experiments have been conducted with an Intel Core 2 Quad 2.4 GHz under Windows Vista using the

Figure 3: ERT loss ratio versus given budget FEvals. The target value $f_{\rm t}$ for ERT (see Figure 1) is the smallest (best) recorded function value such that ERT $(f_{\rm t}) \leq$ FEvals for the presented algorithm. Shown is FEvals divided by the respective best ERT $(f_{\rm t})$ from BBOB-2009 for functions f_1-f_{24} in 5-D and 20-D. Each ERT is multiplied by $\exp({\rm CrE})$ correcting for the parameter crafting effort. Line: geometric mean. Box-Whisker error bar: 25-75%-ile with median (box), 10-90%-ile (caps), and minimum and maximum ERT loss ratio (points). The vertical line gives the maximal number of function evaluations in this function subset.

Figure 1: Expected Running Time (ERT, ullet) to reach $f_{\mathrm{opt}}+\Delta f$ and median number of f-evaluations from successful trials (+), for $\Delta f=10^{\{+1,0,-1,-2,-3,-5,-8\}}$ (the exponent is given in the legend of f_1 and f_{24}) versus dimension in log-log presentation. For each function and dimension, $\mathrm{ERT}(\Delta f)$ equals to $\#\mathrm{FEs}(\Delta f)$ divided by the number of successful trials, where a trial is successful if $f_{\mathrm{opt}}+\Delta f$ was surpassed. The $\#\mathrm{FEs}(\Delta f)$ are the total number (sum) of f-evaluations while $f_{\mathrm{opt}}+\Delta f$ was not surpassed in the trial, from all (successful and unsuccessful) trials, and f_{opt} is the optimal function value. Crosses (×) indicate the total number of f-evaluations, $\#\mathrm{FEs}(-\infty)$, divided by the number of trials. Numbers above ERT-symbols indicate the number of successful trials. Y-axis annotations are decimal logarithms. The thick light line with diamonds shows the single best results from BBOB-2009 for $\Delta f=10^{-8}$. Additional grid lines show linear and quadratic scaling.

$\Delta f \mid f_1 \text{ in 5-D}, \text{ N=15, mFE=3980} \mid f_1 \text{ in 5-D}, \text{ N=15, mFE=3980} \mid f_2 \text{ M=15}, $	F ₁ in 20-D, N=15, mFE=18380 ERT 10% 90% RT _{succ}	$\Delta f \mid f \text{2 in 5-D}, \text{ N=15, mFE=7022} \mid f \text{ A} f \mid \# \text{ ERT } 10\% 90\% \text{ RT}_{\text{Succ}} \mid \# \text{ ERT } 10\% 90\% \text{ RT}_{\text{Succ}} \mid \# \# $	2 in 20-D, N=15, mFE=30621 ERT 10% 90% RT _{succ}
10 15 1.4e2 9.0e0 3.1e2 1.4e2 15	5 1.6e3 6.5e2 2.5e3 1.6e3	10 15 9.3 e2 5.7 e2 1.5 e3 9.3 e2 1	5 4.6e3 2.8e3 5.5e3 4.6e3
	5 2.8e3 1.1e3 4.6e3 2.8e3 5 4.1e3 1.4e3 6.2e3 4.1e3		5 6.4e3 5.2e3 8.2e3 6.4e3 5 9.1e3 7.0e3 1.1e4 9.1e3
	5 7.6e3 3.8e3 9.7e3 7.6e3 5 1.3e4 1.2e4 1.3e4 1.3e4		5 1.6e4 1.3e4 1.9e4 1.6e4 5 2.2e4 2.0e4 2.4e4 2.2e4
1e-8 15 3.6e3 3.4e3 3.9e3 3.6e3 15	5 1.7e4 1.6e4 1.8e4 1.7e4	1e-8 15 6.3e3 5.8e3 6.8e3 6.3e3 1	5 2.9e4 2.7e4 3.1e4 2.9e4
	B in 20-D, N=15, mFE=73315 ERT 10% 90% RT _{succ}		4 in 20-D, N=15, mFE=121198 ERT 10% 90% RT _{succ}
10 15 7.4e2 4.1e2 1.2e3 7.4e2 15	7.4e3 3.9e3 1.3e4 7.4e3	10 15 8.6 e2 5.8 e2 1.3 e3 8.6 e2 13	5 9.3e3 3.8e3 1.5e4 9.3e3
	2.1e4 7.8e3 2.8e4 2.1e4 2.3e4 9.4e3 3.1e4 2.3e4		5 3.2e4 1.5e4 4.3e4 3.2e4 5 4.3e4 1.4e4 4.9e4 4.3e4
	2.7e4 1.3e4 3.7e4 2.7e4 3.2e4 2.2e4 3.9e4 3.2e4		5 4.9e4 1.7e4 8.4e4 4.9e4 5 5.7e4 3.9e4 1.0e5 5.7e4
1e-8 15 8.0e3 7.1e3 9.4e3 8.0e3 15	$4.0\mathrm{e}4\ 3.5\mathrm{e}4\ 4.5\mathrm{e}4\ 4.0\mathrm{e}4$	1e-8 15 1.2e4 9.5e3 1.6e4 1.2e4 1	5 6.6e4 5.3e4 1.1e5 6.6e4
	5 in 20-D, N=15, mFE=5940 ERT 10% 90% RT _{succ}	$\Delta f \mid f6 \text{ in 5-D}, \text{ N=15, mFE=}500058 \mid f$ $\Delta f \mid \# \text{ ERT } 10\% 90\% \text{ RT}_{\text{Succ}} \mid \#$	6 in 20-D, N=15, mFE=2.00e6 ERT 10% 90% RT _{SUCC}
10 15 3.2 e2 1.2 e2 4.5 e2 3.2 e2 15	2.8e3 1.8e3 3.7e3 2.8e3	10 15 5.6e2 2.1e2 9.1e2 5.6e2 1	5 6.0e4 9.7e3 1.5e5 6.0e4
1e-1 15 5.8e2 2.1e2 8.9e2 5.8e2 15	3.7e3 2.0e3 5.0e3 3.7e3 3.8e3 2.0e3 4.7e3 3.8e3		1 1.1e6 1.1e5 3.0e6 3.3e5 8.8e6 1.2e6 1.7e7 8.3e5
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	54e-2 $76e-3$ $14e-1$ $1.1e6$
1e-8 15 5.9 e2 2.1 e2 9.1 e2 5.9 e2 15	3.8e3 2.3e3 5.2e3 3.8e3	1e-8 6 8.8e5 5.9e4 2.8e6 1.3e5 .	
	7 in 20-D, N=15, mFE=2.00e6 ERT 10% 90% RT _{succ}	f 8 in 5-D , N=15, mFE=500057 Δf # ERT 10% 90% RT _{Succ}	f8 in 20-D, N=15, mFE=2.00e6 # ERT 10% 90% RT _{succ}
10 15 4.7e2 2.3e1 1.4e3 4.7e2 15	3.4e5 5.3e4 9.4e5 3.4e5	10 15 4.4e2 1.8e2 8.5e2 4.4e2	15 8.0e3 4.6e3 1.2e4 8.0e3
1 15 5.0e3 1.1e3 1.0e4 5.0e3 0 1e-1 15 7.3e4 2.7e3 1.5e5 7.3e4 .	60e-1 37e-1 83e-1 5.8e5	1 15 3.2e3 9.7e2 6.6e3 3.2e3 1e-1 15 1.8e4 3.6e3 1.5e4 1.8e4	15 2.3 e4 1.3 e4 3.2 e4 2.3 e4 15 4.2 e4 3.3 e4 7.9 e4 4.2 e4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1e-3 6 9.8e5 4.7e4 2.5e6 2.3e5 1e-5 0 10e-4 25e-5 18e-3 1.2e5	11 1.5e6 1.6e5 3.3e6 7.6e5 0 24e-5 47e-6 29e-4 8.0e5
1e-8 1 7.1e6 5.9e5 2.0e7 9.0e4 .		1e-8	
	in 20-D, N=15, mFE=2.00 e6 ERT 10% 90% RT _{succ}	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	f10 in 20-D, N=15, mFE=2.00e6 # ERT 10% 90% RT _{SUCC}
10 15 4.8e2 2.1e2 8.1e2 4.8e2 13 1	1.2e6 9.5e4 1.9e6 8.9e5	10 1 7.4e6 9.2e5 1.6e7 4.2e5	0 50e+2 34e+2 79e+2 1.3e6
1e-1 15 1.5e5 8.0e3 3.5e5 1.5e5 .	92e-1 67e-1 10e+0 2.0e6	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1e-3	
1e-8		1e-8	
	in 20-D, N=15, mFE=2.00e6 ERT 10% 90% RT _{succ}	Δf # ERT 10% 90% RT _{succ}	# ERT 10% 90% RT _{succ}
10 15 2.3 e4 7.4 e2 6.9 e4 2.3 e4 0 9. 1 5 1.2 e6 1.8 e5 2.6 e6 2.3 e5 .	92e+0 $65e+0$ $10e+1$ $5.2e5$	10 15 1.1e4 3.1e3 2.0e4 1.1e4 1 14 1.5e5 2.5e4 2.8e5 1.1e5	15 2.8e4 1.5e4 2.6e4 2.8e4 15 1.3e5 2.6e4 1.7e5 1.3e5
1e-1 1 7.1e6 6.2e5 2.2e7 1.2e5 .		1e-1 3 2.2e6 1.7e5 5.4e6 1.7e5	12 1.2e6 2.3e5 2.5e6 6.8e5
1e-3 0 15e-1 18e-2 28e-1 1.8e5		1e-3 0 29e-2 54e-3 49e-2 2.8e5 1e-5	1 3.0e7 6.0e6 7.4e7 2.0e6 0 18e-3 40e-4 23e-2 1.0e6
1e-8		1e-8	
Δf # ERT 10% 90% RT _{succ} # 1	3 in 20-D, N=15, mFE=2.00e6 ERT 10% 90% RT _{succ}	Δf # ERT 10% 90% RT _{succ}	# ERT 10% 90% RT _{succ}
1 15 3.6 e4 4.2 e3 2.2 e5 3.6 e4 15 1	1.6e4 8.6e3 2.3e4 1.6e4 1.5e5 4.5e4 3.7e5 1.5e5	10 15 3.4e1 1.1e1 7.3e1 3.4e1 1 15 4.5e2 1.7e2 8.3e2 4.5e2	15 1.3e3 5.0e2 2.8e3 1.3e3 15 4.4e3 1.5e3 6.9e3 4.4e3
	1.7e6 4.5e5 4.5e6 7.2e5 2.9e7 2.2e6 6.9e7 1.2e6	1e-1 15 1.1e3 7.1e2 1.5e3 1.1e3 1e-3 15 9.4e4 8.0e3 2.3e5 9.4e4	15 8.6e3 6.6e3 1.1e4 8.6e3 8 3.1e6 1.0e6 6.0e6 1.4e6
	60e-3 $93e-4$ $15e-2$ $1.3e6$	1e-5 0 27e-5 11e-5 89e-5 1.8e5	0 10e-4 82e-5 13e-4 1.8e6
f15 in 5-D, N=15, mFE=500055 f15	5 in 20-D, N=15, mFE=2.00e6	f16 in 5-D, N=15, mFE=500057	f16 in 20-D, N=15, mFE=2.00e6
10 15 7.5e3 1.4e3 7.4e3 7.5e3 0 8	ERT 10% 90% RT _{succ} 84e+0 69e+0 99e+0 1.1e6	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	# ERT 10% 90% RT _{succ} 15 1.7e4 1.5e3 4.1e4 1.7e4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1 15 6.4e3 2.8e3 1.0e4 6.4e3 1e-1 13 2.5e5 4.3e4 6.9e5 1.8e5	0 39e-1 28e-1 45e-1 1.2e6
1e-3		1e-3 0 $48e-3$ $17e-3$ $11e-2$ 2.9e5 $1e-5$	
1e-8		1e-8	
	7 in 20-D, N=15, mFE=2.00e6 ERT 10% 90% RT _{SUCC}	Δf # ERT 10% 90% RT _{succ}	# ERT 10% 90% RT _{succ}
10 15 3.4e1 6.0e0 7.5e1 3.4e1 15 2	2.1 e3 5.6 e2 3.6 e3 2.1 e3 40e-1 27e-1 44e-1 1.2 e6	10 15 5.2e2 1.6e2 1.1e3 5.2e2 1 15 1.0e4 2.7e3 1.6e4 1.0e4	1 2.8e7 2.4e6 5.6e7 4.2e5 0 13e+0 10e+0 15e+0 8.9e5
1e-1 15 5.8e4 2.1e4 1.1e5 5.8e4 .		1e-1 5 1.2e6 1.0e5 2.7e6 1.9e5 1e-3 0 14e-2 53e-3 24e-2 2.6e5	
1e-5		1e-5	
1e-8 	9 in 20-D, N=15, mFE=2.00e6	1e-8 f20 in 5-D, N=15, mFE=466095	f20 in 20-D, N=15, mFE=2.00e6
Δf # ERT 10% 90% RT _{succ} # 1	ERT 10% 90% RT _{succ} 2.3e3 1.2e3 3.0e3 2.3e3	$\frac{\Delta f}{10}$ # ERT 10% 90% RT _{SUCC} 10 15 1.2e2 5.7e1 1.8e2 1.2e2	# ERT 10% 90% RT _{SUCC} 15 1.3e3 1.0e3 1.8e3 1.3e3
1 15 2.9e3 9.5e2 5.0e3 2.9e3 0 3	37e-1 $34e-1$ $40e-1$ $1.5e6$	1 15 1.3e3 4.6e2 2.3e3 1.3e3	15 5.4e3 2.4e3 1.0e4 5.4e3
1e-1 6 9.3e5 7.5e4 2.5e6 1.8e5 1e-3 0 12e-2 34e-3 20e-2 3.1e5 .		1e-1 15 2.1e4 4.1e3 4.4e4 2.1e4 1e-3 15 3.2e4 1.1e4 5.4e4 3.2e4	0 23e-2 18e-2 28e-2 1.7e6
1e-5		1e-5 15 8.4e4 2.3e4 1.6e5 8.4e4 1e-8 15 2.1e5 4.6e4 4.5e5 2.1e5	
f21 in 5-D, N=15, mFE=500057 f21	in 20-D, N=15, mFE=2.00e6	f22 in 5-D, N=15, mFE=500058	f22 in 20-D, N=15, mFE=2.00e6
Δf # ERT 10% 90% RT _{succ} # 1 10 15 1.3 e2 6.3 e1 2.2 e2 1.3 e2 15 2	ERT 10% 90% RT _{succ} 2.8e3 1.6e3 4.4e3 2.8e3	$\frac{\Delta f}{10}$ # ERT 10% 90% RT _{Succ} 10 15 3.6e2 9.5e1 6.6e2 3.6e2	# ERT 10% 90% RT _{succ} 15 4.9e3 2.8e3 1.4e4 4.9e3
1 15 2.1e3 5.8e2 5.5e3 2.1e3 15 1	1.4e5 4.7e3 6.6e5 1.4e5	1 15 2.9e3 2.6e2 1.0e4 2.9e3	15 2.6e5 6.4e3 7.6e5 2.6e5
1e-3 15 2.2e4 2.7e3 4.8e4 2.2e4 15 3	3.5e5 1.6e4 8.5e5 3.5e5 3.9e5 4.4e4 9.1e5 3.9e5	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10 1.8e6 2.4e5 3.6e6 8.2e5 0 44e-3 56e-4 69e-2 1.0e6
	5.4e5 1.1e5 1.6e6 5.4e5 2.3e6 2.7e5 6.2e6 5.6e5	1e-5 2 3.4e6 9.6e4 8.8e6 1.9e5 1e-8 0 45e-5 64e-7 17e-3 1.9e5	
f23 in 5-D, N=15, mFE=500054 f23	3 in 20-D, N=15, mFE=2.00e6	f24 in 5-D, N=15, mFE=500059	f24 in 20-D, N=15, mFE=2.00e6
10 15 6.5e0 2.0e0 1.7e1 6.5e0 15 3	ERT 10% 90% RT _{succ} 3.6e0 2.0e0 5.0e0 3.6e0	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	# ERT 10% 90% RT _{succ} 0 12e+1 92e+0 14e+1 1.3e6
	1.3 e5 2.5 e4 2.4 e5 1.3 e5 64e-2 54e-2 79e-2 9.6 e5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
1e-3		1e-3	
1e-5 1e-8		1e-5 1e-8	

Table 1: Shown are, for a given target difference to the optimal function value Δf : the number of successful trials (#); the expected running time to surpass $f_{\rm opt}+\Delta f$ (ERT, see Figure 1); the 10%-tile and 90%-tile of the bootstrap distribution of ERT; the average number of function evaluations in successful trials or, if none was successful, as last entry the median number of function evaluations to reach the best function value (RT_{succ}). If $f_{\rm opt}+\Delta f$ was never reached, figures in *italics* denote the best achieved Δf -value of the median trial and the 10% and 90%-tile trial. Furthermore, N denotes the number of trials, and mFE denotes the maximum of number of function evaluations executed in one trial. See Figure 1 for the names of functions.

Figure 2: Empirical cumulative distribution functions (ECDFs), plotting the fraction of trials versus running time (left subplots) or versus Δf (right subplots). The thick red line represents the best achieved results. Left subplots: ECDF of the running time (number of function evaluations), divided by search space dimension D, to fall below $f_{\rm opt} + \Delta f$ with $\Delta f = 10^k$, where k is the first value in the legend. Right subplots: ECDF of the best achieved Δf divided by 10^k (upper left lines in continuation of the left subplot), and best achieved Δf divided by 10^{-8} for running times of D, 10D, 100D... function evaluations (from right to left cycling black-cyan-magenta). The legends indicate the number of functions that were solved in at least one trial. FEvals denotes number of function evaluations, D and DIM denote search space dimension, and Δf and Df denote the difference to the optimal function value. Light brown lines in the background show ECDFs for target value 10^{-8} of all algorithms benchmarked during BBOB-2009.

MATLAB-code provided. The results were 2.0×10^{-4} seconds per function evaluation in dimensions 2 up to 20. A dependency of CPU time on the search space dimensionality is not visible.

5. REFERENCES

- [1] B. Akay and D. Karaboga. Parameter tuning for the artificial bee colony algorithm. In *Proceedings of 1st International Conference on Computational Collective Intelligence*, pages 608–619. Springer-Verlag:Berlin Heidelberg, 2009.
- [2] B. Basturk and D. Karaboga. An artificial bee colony (ABC) algorithm for numeric function optimization. In *Proceedings of the IEEE Swarm Intelligence* Symposium, pages 66–66. IEEE Press, 2006.
- [3] S. Finck, N. Hansen, R. Ros, and A. Auger. Real-parameter black-box optimization benchmarking 2010: Presentation of the noiseless functions. Technical Report 2009/20, Research Center PPE, 2010.
- [4] N. Hansen, A. Auger, S. Finck, and R. Ros. Real-parameter black-box optimization benchmarking 2010: Experimental setup. Technical Report RR-7215, INRIA, 2010.
- [5] N. Hansen, S. Finck, R. Ros, and A. Auger. Real-parameter black-box optimization benchmarking 2009: Noiseless functions definitions. Technical Report RR-6829, INRIA, 2009.
- [6] N. Hansen, S. Finck, R. Ros, and A. Auger. Real-parameter black-box optimization benchmarking 2010: Noiseless functions definitions. Technical Report RR-6829, INRIA, 2010.
- [7] D. Karaboga. An idea based on honey bee swarm for numerical optimization. Technical Report TR06, Engineering Faculty, Computer Engineering Department, Erciyes University, 2005.
- [8] D. Karaboga. Artificial bee colony code. http://mf.erciyes.edu.tr/abc/software.htm, 2008.
- [9] D. Karaboga and B. Akay. Artificial bee colony (abc), harmony search and bees algorithms on numerical optimization. In *Proceedings of Innovative Production Machines and Systems Virtual Conference, IPROMS*, 2009.
- [10] D. Karaboga and B. Akay. A comparative study of artificial bee colony algorithm. Applied Mathematics and Computation, 214:108–132, 2009.
- [11] D. Karaboga and B. Basturk. A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm. *Journal of Global Optimization*, 39(3):459–471, 2007.
- [12] D. Karaboga and B. Basturk. On the performance of artificial bee colony (ABC) algorithm. Applied Soft Computing, 8(1):687–697, 2008.
- [13] D. T. Pham, A. Ghanbarzadeh, E. Koc, S. Otri, S. Rahim, and M. Zaidi. The bees algorithm - a novel tool for complex optimisation problems. In *Proceedings* of Innovative Produxction Machines and Systems Virtual Conference, IPROMS, pages 451–461, 2006.
- [14] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y.-P. Chen, A. Auger, and S. Tiwari. Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization. Technical Report 2005005, ITT Kanpur, India, 2005.