# In [1]:

```
import pandas as pd
import numpy as np
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import StandardScaler
```

## In [2]:

```
df=pd.read_csv(r"C:\Users\Arshad Shaik\Downloads\archive (1).zip")
df
```

# Out[2]:

|     | 1 | 0 | 0.99539 | -0.05889 | 0.85243  | 0.02306          | 0.83398  | -0.37708 | 1.1     | 0.03760  | <br>-0.5117 |
|-----|---|---|---------|----------|----------|------------------|----------|----------|---------|----------|-------------|
| 0   | 1 | 0 | 1.00000 | -0.18829 | 0.93035  | -0.36156         | -0.10868 | -0.93597 | 1.00000 | -0.04549 | <br>-0.2656 |
| 1   | 1 | 0 | 1.00000 | -0.03365 | 1.00000  | 0.00485          | 1.00000  | -0.12062 | 0.88965 | 0.01198  | <br>-0.4022 |
| 2   | 1 | 0 | 1.00000 | -0.45161 | 1.00000  | 1.00000          | 0.71216  | -1.00000 | 0.00000 | 0.00000  | <br>0.9069  |
| 3   | 1 | 0 | 1.00000 | -0.02401 | 0.94140  | 0.06531          | 0.92106  | -0.23255 | 0.77152 | -0.16399 | <br>-0.6515 |
| 4   | 1 | 0 | 0.02337 | -0.00592 | -0.09924 | -0.11949         | -0.00763 | -0.11824 | 0.14706 | 0.06637  | <br>-0.0153 |
|     |   |   |         |          |          |                  |          |          |         |          |             |
| 345 | 1 | 0 | 0.83508 | 0.08298  | 0.73739  | <b>-</b> 0.14706 | 0.84349  | -0.05567 | 0.90441 | -0.04622 | <br>-0.0420 |
| 346 | 1 | 0 | 0.95113 | 0.00419  | 0.95183  | -0.02723         | 0.93438  | -0.01920 | 0.94590 | 0.01606  | <br>0.0136  |
| 347 | 1 | 0 | 0.94701 | -0.00034 | 0.93207  | -0.03227         | 0.95177  | -0.03431 | 0.95584 | 0.02446  | <br>0.0319  |
| 348 | 1 | 0 | 0.90608 | -0.01657 | 0.98122  | -0.01989         | 0.95691  | -0.03646 | 0.85746 | 0.00110  | <br>-0.020§ |
| 349 | 1 | 0 | 0.84710 | 0.13533  | 0.73638  | -0.06151         | 0.87873  | 0.08260  | 0.88928 | -0.09139 | <br>-0.1511 |

350 rows × 35 columns



```
pd.set_option('display.max_rows',10000000000)
pd.set_option('display.max_columns',10000000000)
pd.set_option('display.width',95)
```

#### In [4]:

```
print('This DataFrame ha %d Rows and %d Columns'%(df.shape))
```

This DataFrame ha 350 Rows and 35 Columns

#### In [5]:

```
df.head(8)
```

## Out[5]:

|   | 1 | 0 | 0.99539 | -0.05889 | 0.85243  | 0.02306          | 0.83398  | -0.37708 | 1.1     | 0.03760  | 0.85243.1 | -0.         |
|---|---|---|---------|----------|----------|------------------|----------|----------|---------|----------|-----------|-------------|
| 0 | 1 | 0 | 1.00000 | -0.18829 | 0.93035  | -0.36156         | -0.10868 | -0.93597 | 1.00000 | -0.04549 | 0.50874   | -0.         |
| 1 | 1 | 0 | 1.00000 | -0.03365 | 1.00000  | 0.00485          | 1.00000  | -0.12062 | 0.88965 | 0.01198  | 0.73082   | 0.          |
| 2 | 1 | 0 | 1.00000 | -0.45161 | 1.00000  | 1.00000          | 0.71216  | -1.00000 | 0.00000 | 0.00000  | 0.00000   | 0.          |
| 3 | 1 | 0 | 1.00000 | -0.02401 | 0.94140  | 0.06531          | 0.92106  | -0.23255 | 0.77152 | -0.16399 | 0.52798   | <b>-</b> 0. |
| 4 | 1 | 0 | 0.02337 | -0.00592 | -0.09924 | -0.11949         | -0.00763 | -0.11824 | 0.14706 | 0.06637  | 0.03786   | -0.         |
| 5 | 1 | 0 | 0.97588 | -0.10602 | 0.94601  | <b>-</b> 0.20800 | 0.92806  | -0.28350 | 0.85996 | -0.27342 | 0.79766   | <b>-</b> 0. |
| 6 | 0 | 0 | 0.00000 | 0.00000  | 0.00000  | 0.00000          | 1.00000  | -1.00000 | 0.00000 | 0.00000  | -1.00000  | -1.         |
| 7 | 1 | 0 | 0.96355 | -0.07198 | 1.00000  | -0.14333         | 1.00000  | -0.21313 | 1.00000 | -0.36174 | 0.92570   | -0.         |
|   |   |   |         |          |          |                  |          |          |         |          |           |             |

# In [6]:

```
features_matrix=df.iloc[:,0:34]
```

### In [7]:

```
target_vector=df.iloc[:,-1]
```

#### In [8]:

```
print('The Features Matrix Has %d Rows And %d Columns'%(features_matrix.shape))
print('The Features Matrix Has %d Rows And %d Columns'%(np.array(target_vector).reshape(-1,1)
```

The Features Matrix Has 350 Rows And 34 Columns The Features Matrix Has 350 Rows And 1 Columns

#### In [9]:

```
features_matrix_standardized=StandardScaler().fit_transform(features_matrix)
```

## In [10]:

```
algorithm = LogisticRegression(penalty=None,dual=False, tol=1e-4,C=1.0, fit_intercept=True,ioution class_weight=None,random_state=None,solver='lbfgs',max_iter=10000,
multi_class='auto',verbose=0, warm_start=False, n_jobs=None,l1_ratio=None)
```

#### In [11]:

```
Logistic_Regression_Model = algorithm.fit(features_matrix_standardized,target_vector)
```

#### In [12]:

```
999999,-0.17755,0.59755,-0.44945,0.60536,-0.38223,0.843560000000001,-0.38542,0.58212,-0.3219
```

#### In [13]:

```
predictions = Logistic_Regression_Model.predict(observation)
print('The Model predicted The observation To Belong To Class %s'%(predictions))
```

The Model predicted The observation To Belong To Class ['g']

## In [14]:

```
print('The Algorithm Was Trained To predict The One Of The Classes: %s'%(algorithm.classes_
```

The Algorithm Was Trained To predict The One Of The Classes: ['b' 'g']

# In [15]:

```
print("""The Model Says The Probability Of The observation We Passed belonging To The Class
  %(algorithm.predict_proba(observation)[0][0]))
print()
print("""The Model Says The Probability Of The observation We Passed belonging To The Class
  %(algorithm.predict_proba(observation)[0][1]))
```

The Model Says The Probability Of The observation We Passed belonging To The C lass ['b'] is 2.5112558470263835e-05

The Model Says The Probability Of The observation We Passed belonging To The C lass ['g'] is 0.9999748874415297

#### In [ ]: