2 Let $z, w \in \mathbb{C}$ with $z = z_1 + iz_2, w = w_1 + iw_2, z_1, z_2, w_1, w_2 \in \mathbb{R}$. Additionally, let $\langle z, w \rangle = z_1 w_1 + z_2 w_2, (z, w) = z \overline{w}, Re(z, w) = Re(z \overline{w})$. First I must demonstrate that $\frac{1}{2}[(z, w) + (w, z)] = \langle z, w \rangle$:

$$\begin{split} \frac{1}{2}[(z,w)+(w,z)] &= \frac{1}{2}(z\bar{w}+\bar{z}w) \\ &= \frac{1}{2}[(z_1+iz_2)(w_1-iw_2)+(z_1-iz_2)(w_1+iw_2)] \\ &= \frac{1}{2}(z_1w_1-iz_1w_2+iz_2w_1+z_2w_2+z_1w_1+iz_1w_2-iz_2w_1+z_2w_2) \\ &= \frac{1}{2}(2z_1w_1+2z_2w_2) \\ &= z_1w_1+z_2w_2 \\ &= \langle z,w \rangle. \end{split}$$

Next I must demonstrate that $Re(z, w) = \langle z, w \rangle$:

$$Re(z, w) = Re(z\overline{w})$$

$$= Re((z_1 + iz_2)(w_1 - iw_2))$$

$$= Re(z_1w_1 - iz_1w_2 + iz_2w_1 + z_2w_2)$$

$$= z_1w_1 + z_2w_2$$

$$= \langle z, w \rangle.$$

Thus $\langle z, w \rangle = \frac{1}{2}[(z, w) + (w, z)] = Re(z, w)$

- 3 Let $\omega = se^{i\phi}, s \geq 0, \phi \in [0, 2\pi)$. To solve $z^n = \omega$ where $z \in \mathbb{C}$ we must note that the polar form of $z = re^{i\theta}$, thus the equation is actually $r^n e^{in\theta} = se^{i\phi}$. Note that by the polar form of complex numbers $r \geq 0$. Therefore $r = \sqrt[n]{|s|}$. Now to divide out we're left with the equation $e^{i\phi} = e^{in\theta}$. Since $e^{i\theta} = e^{i\theta+2\pi i}$ then to solve this equation we have to solve that $\phi \mod n\theta \mod 2\pi$. Note that if we add a multiple of $2\pi/n$ to θ then we have that $n(\theta + \frac{2\pi}{n}) = n\theta + 2\pi \equiv n\theta \equiv \phi \mod 2\pi$. Note that $\theta + \frac{2\pi}{n} \neq \theta \mod 2\pi$. Thus $\frac{\phi+2\pi a}{n}$ where $a \in \mathbb{Z}$ are all solutions. But which are unique? Note that if a = n + b then $\frac{\phi+2\pi a}{n} = \frac{\phi+2\pi b}{n} + 2\pi \equiv \frac{\phi+2\pi b}{n} \mod 2\pi$. Therefore we have n solutions, where $a \in \{0, \dots, n-1\}$.
- 7 (a) Let $z, w \in \mathbb{C}$ such that $z = re^{i\theta}$, $\bar{z}w \neq 1$, r = |z| < 1, |w| < 1. Then we have that

$$1 \le \frac{1}{r^2}$$

$$r^2 + |w|^2 \le \frac{1}{r^2} (r^2 + |w|^2)$$

$$r^2 + |w|^2 \le 1 + r^2 |w|^2$$

$$r^2 - rw - r\bar{w} + |w|^2 \le 1 + -rw - r\bar{w} + r^2 |w|^2$$

$$r^2 - rw - r\bar{w} + (-w)(-\bar{w}) \le 1 + -rw - r\bar{w} + (-rw)(-r\bar{w})$$

$$(r - w)(r - \bar{w}) \le (1 - rw)(1 - r\bar{w})$$

Note the inequality is strict if one assumes that $r^2 < 1$ which implies that r < 1. Thus

$$\frac{r-w}{1-r\bar{w}}\frac{r-\bar{w}}{1-rw} < 1$$

$$\begin{split} \frac{r-w}{1-r\bar{w}}\frac{r-\bar{w}}{1-rw} &< 1\\ \|\frac{r-w}{1-r\bar{w}}\|^2 &< 1\\ \|\frac{r-w}{1-r\bar{w}}\| &< 1\\ \|\frac{r-w}{1-r\bar{w}}\| &< 1 \end{split}$$

Note that our choice of z doesn't matter since if we define $w'=we^{i\theta} \mid \frac{w-re^{i\theta}}{1-\bar{w}re^{i\theta}} \mid =$ $|e^{i\theta}||\frac{w-re^{i\theta}}{1-\bar{w}re^{i\theta}}|=|\frac{we^{i\theta}-r}{1-\bar{w}'r}=|\frac{\bar{w}-r}{1-\bar{w}'r}|$. Thus we have proven the desired inequality.

- (b) For a fixed $w \in \mathbb{D}$ let $F(z) = \frac{w-z}{1-\bar{w}z}$
 - i. We know that F maps from $\mathbb{D} \to \mathbb{D}$ by the proof above. F being holomorphic is equivalent to $\frac{\partial F}{\partial \bar{z}} = 0$ since

$$\frac{\partial F}{\partial \bar{z}} = \frac{0 \cdot (1 - \bar{w}z) - 0 \cdot (w - z)}{(1 - \bar{w}z)^2} = 0$$

then F is holomorphic.

- ii. To show that F swaps 0 and w:

 - $F(0) = \frac{w-0}{1-0\bar{w}} = \frac{w}{1} = w$. $F(w) = \frac{w-w}{1-\bar{w}w} = 0$. Note that |w| < 1 thus $1 \bar{w}w \neq 0$.
- iii. Note by the proof in a equality is attained when r=1, which implies if |z|=1then |F(z)|=1.
- iv. Note that

$$F \circ F(z) = \frac{w - \frac{w - z}{1 - \bar{w}z}}{1 - \bar{w}\frac{w - z}{1 - \bar{w}z}}$$

$$= \frac{w - |w|^2 z - w + z}{1 - |w|^2}$$

$$= \frac{z - |w|^2 z}{1 - |w|^2}$$

$$= z.$$

which holds if $|z| \leq 1$ since |w| < 1 and $|\bar{w}^{-1}| > 1$, thus ensuring the denominator is never 0. Furthermore this implies that F is bijective since we have found an inverse.

9 Let $f(z) = f(r,\theta) = u(r,\theta) + iv(r,\theta) = u(x(r,\theta),y(r,\theta)) + iv(x(r,\theta),y(r,\theta))$ where $z = re^{i\theta}$. with $-\pi < \theta < \pi$. Note if we treat f as a function from $\mathbb{R}^2 \to \mathbb{R}^2$ then by the multivariable chain rule we have that

$$\begin{bmatrix} \partial_r u & \partial_\theta u \\ \partial_r v & \partial_\theta v \end{bmatrix} = \begin{bmatrix} \partial_x u & \partial_y u \\ \partial_x v & \partial_y v \end{bmatrix} \begin{bmatrix} \partial_r x & \partial_\theta x \\ \partial_r y & \partial_\theta y \end{bmatrix}$$

$$= \begin{bmatrix} \partial_x u & \partial_y u \\ \partial_x v & \partial_y v \end{bmatrix} \begin{bmatrix} \cos(\theta) & -r\sin(\theta) \\ \sin(\theta) & r\cos(\theta) \end{bmatrix}$$

$$= \begin{bmatrix} \partial_x u \cos(\theta) + \partial_y u \sin(\theta) & -\partial_x u r\sin(\theta) + \partial_y u r\cos(\theta) \\ \partial_x v \cos(\theta) + \partial_y v \sin(\theta) & -\partial_x v r\sin(\theta) + \partial_y v r\cos(\theta) \end{bmatrix}$$

Therefore

$$\partial_r u = \partial_x u \cos(\theta) + \partial_y u \sin(\theta)$$

$$= \partial_y v \cos(\theta) - \partial_x v \sin(\theta)$$

$$= \frac{1}{r} (\partial_y v r \cos(\theta) - \partial_x v r \sin(\theta))$$

$$= \frac{1}{r} \partial_\theta v$$

and

$$\frac{1}{r}\partial_{\theta}u = \frac{1}{r}(-\partial_{x}ur\sin(\theta) + \partial_{y}ur\cos(\theta))$$
$$= -\partial_{x}u\sin(\theta) + \partial_{y}u\cos(\theta)$$
$$= -\partial_{y}v\sin(\theta) - \partial_{x}v\cos(\theta)$$
$$= -\partial_{r}v$$

Note that by the requirements above on z we ensure that z is uniquely determined. Using this fact we can observe that $\log(z) = \log(r) + i\theta = u + iv$, and we have that $\partial_r \log(r) = \frac{1}{r} = \frac{1}{r} 1 = \frac{1}{r} \partial_\theta \theta$ and $\frac{1}{r} \partial_\theta u = \frac{1}{r} 0 = 0 = -\partial_r \theta$. Thus $\log(z)$ is holomorphic on the spe

10 Note that

$$4\partial_z \partial_{\bar{z}} = 4\frac{1}{2}(\partial_x - i\partial_y)\frac{1}{2}(\partial_x + i\partial_y)$$

$$= \partial_x^2 + \partial_y^2 - i\partial_y \partial_x + i\partial_x \partial_y$$

$$= \partial_x^2 + \partial_y^2 - i\partial_x \partial_y + i\partial_y \partial_x$$

$$= (\partial_x + i\partial_y)(\partial_x - i\partial_y)$$

$$= 4\frac{1}{2}(\partial_x + i\partial_y)\frac{1}{2}(\partial_x - i\partial_y)$$

$$= 4\partial_{\bar{z}}\partial_z$$

Thus
$$4\partial_z\partial_{\bar{z}} = 4\frac{1}{2}(\partial_x - i\partial_y)\frac{1}{2}(\partial_x + i\partial_y) = \partial_x^2 + \partial_y^2 - i\partial_y\partial_x + i\partial_x\partial_y = \partial_x^2 + \partial_y^2 - i\partial_y\partial_x + i\partial_y\partial_x = \partial_x^2 + \partial_y^2$$

13 Assume $f:\Omega\to\mathbb{C}$ is holomorphic and Ω is an open set. Let $F:\mathbb{R}^2\to\mathbb{C}$ where f(x+iy)=F(x,y)=u(x,y)+iv(x,y).

- (a) If Re(f) is constant then u is constant. Thus $\partial_x u = \partial_y u = 0$. This implies by Cauchy-Riemann that $\partial_x v = \partial_y v = 0$. This implies that v is constant. Thus f is constant
- (b) If Im(f) is constant then v is constant. Thus $\partial_x v = \partial_y v = 0$. This implies by Cauchy-Riemann that $\partial_x u = \partial_y u = 0$. This implies that u is constant. Thus f is constant
- (c) If |f| is constant than $u^2 + v^2$ is constant. Thus $\partial_x(u^2 + v^2) = \partial_y(u^2 + v^2) = 0$ giving us the equations

$$2u\partial_x u + 2v\partial_x v = 0$$
$$2u\partial_y u + 2v\partial_y v = 0$$

Note that this can be expressed in the form

$$\begin{bmatrix} \partial_x u & \partial_x v \\ \partial_y u & \partial_y v \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Observe that the matrix being used is the transpose of the jacobian, and we have found an element in it's null space. Thus det $J_F = 0$. Therefore |f'(z)| = 0. Thus f is constant.

14

$$\sum_{n=M}^{N} a_n b_n = \sum_{n=M}^{N} (B_n - B_{n-1}) a_n$$

$$= \sum_{n=M}^{N} B_n a_n - \sum_{n=M}^{N} B_{n-1} a_n$$

$$= \sum_{n=M}^{N} B_n a_n - \sum_{n=M-1}^{N-1} B_n a_{n+1}$$

$$= B_N a_N - B_{M-1} a_M + \sum_{n=M}^{N-1} B_n (a_n - a_{n+1})$$

- 16 (a) For $a_n = (\log(n))^2$, note that $1 \le \log(n)^2$ for n > 2. Additionally since all polynomials grow faster than \log , then $(\log(n))^2 \le (\sqrt{n})^2 = n$. Thus $1 \le (\log(n))^2 \le n^{\frac{1}{n}} \to 1$ for sufficiently large n. Thus the radius of convergence is 1.
 - (b) For $a_n = n!$, we know that for sufficiently large n that $n! > (n/2)^{n/2}$. Therefore $\sqrt{n/2} = (n/2)^{\frac{n}{2n}} \leq \sqrt[n]{n!}$, which implies that $\sqrt[n]{n!} = \infty$. Therefore the radius of convergence is 0.

- (c) If $a_n = \frac{n^2}{4^n + 3n}$ then $\frac{n^2}{4^n} \ge a_n$ and $\frac{n^2}{2 \cdot 4^n} \le a_n$. Therefore $\frac{1}{4} \le \sqrt[n]{\frac{n^2}{2 \cdot 4^n}} \frac{n^{2/n}}{\sqrt[n]{24}} \le a_n \le \frac{n^{2/n}}{4} \to \frac{1}{4}$. Thus by squeeze theorem $\lim a_n = \frac{1}{4}$ and the radius of convergence is 4.
- 17 Let $\{a_n\}_{n\in\mathbb{N}}\subset\mathbb{C}$ such that $L=\lim\frac{|a_{n+1}|}{|a_n|}$ and let $\epsilon>0$. Note there exists some $N\in\mathbb{N}$ such that for all $n\geq N$ $\left|\frac{|a_{n+1}|}{|a_n|}-L\right|<\epsilon$. Therefore, $|a_n|(L-\epsilon)<|a_{n+1}|<|a_n|(L+\epsilon)$. Additionally, we have that $|a_n|=\left|\frac{a_n}{a_{n-1}}\frac{a_{n-1}}{a_{n-2}}\cdots\frac{a_{N+1}}{a_N}a_N\right|$. Thus, $(L-\epsilon)^{n-N}|a_N|<\left|a_{n+1}|<(L+\epsilon)^{n-N}|a_N|$. Taking the n-th root we find that $(L-\epsilon)^{1-\frac{N}{n}}|a_N|^{1/n}<\left|a_{n+1}|^{1/n}<(L+\epsilon)^{1-\frac{N}{n}}|a_N|^{1/n}$. Note that taking the n-th root of a constant sends it to 1, thus in the limit $L-\epsilon<|a_{n+1}|^{1/n}< L+\epsilon$. Note if we reindex a_n we get that $\lim_{n\to\infty} \sqrt[n]{|a_n|}=L$.
- 19 (a) The power series $\sum nz^n$ has the radius of convergence 0 since $\lim n = \infty$. Thus it doesn't converge for any point on the unit circle
 - (b) The power series converges for every point on the unit circle since $|\sum_{n=1}^{N} \frac{z^n}{n^2}| \le \sum_{n=1}^{N} \frac{|z^n|}{n^2} = \sum_{n=1}^{N} \frac{1}{n^2} \to \frac{\pi^2}{6}$
 - (c) Note if we fix z such that |z|=1 and $z\neq 1$ that $\frac{1}{|1-z|}$ is bounded, and let it equal b. Additionally, $|1-z^n|\leq |1-(-1)|=2$. Now let $\epsilon>0$ be fixed. We know that there exists $N_1\geq M_1\in\mathbb{N}$ such that $\frac{8}{M_1b}<\epsilon$. Furthermore there exists $N_2\geq M_2\in\mathbb{N}$ such that $|\sum_{n=M_2}^{N_2}\frac{1}{n(n+1)}|<\frac{b\epsilon}{4}$. Finally there exists $N_2\geq M_3$ such that $|\sum_{n=M_3}^{N_3}\frac{z^2}{n^2}|<\frac{b\epsilon}{4}$. Now if we take $M=\max M_1,M_2.M_3$ and $N=\min N_1,N_2,N_3$ and that M< N, then

$$\begin{split} |\sum_{n=M}^{N} \frac{z^{n}}{n}| &= |\frac{1}{N} \frac{1-z^{N}}{1-z} - \frac{1}{M} \frac{1-z^{M-1}}{1-z} + \sum_{n=M}^{N-1} \left(\frac{1}{n} - \frac{1}{n+1}\right) \frac{1-z^{n}}{1-z}| \\ &\leq \frac{1}{N} \frac{2}{b} + \frac{1}{M} \frac{2}{b} + \frac{1}{b} \left(\sum_{n=M}^{N-1} \frac{1}{n(n+1)} + |\sum_{n=M}^{N-1} \frac{z^{n}}{n(n+1)}|\right) \\ &\leq \frac{\epsilon}{4} + \frac{\epsilon}{4} + \frac{\epsilon}{4} + \frac{1}{b} |\sum_{n=M}^{N-1} \frac{z^{n}}{n^{2}}| \\ &< \frac{\epsilon}{4} + \frac{\epsilon}{4} + \frac{\epsilon}{4} + \frac{\epsilon}{4} = \epsilon \end{split}$$

Therefore the series converges when $z \neq 1$.

23 Let
$$f(x) = \begin{cases} 0 & x \le 0 \\ e^{\frac{-1}{x^2}} & x > 0 \end{cases}$$
. Note that $\frac{d}{dx}f(x) = \begin{cases} 0 & x \le 0 \\ \frac{2}{x^3}e^{\frac{-1}{x^2}} & x > 0 \end{cases}$ and $\frac{d^2}{dx^2}f(x) = \begin{cases} 0 & x \le 0 \\ \frac{4-x^2}{x^6}e^{\frac{-1}{x^2}} & x > 0 \end{cases}$. I claim that $f^{(n)}(x) = \frac{P_n(x)}{x^{3n}}f(x)$ where $\deg(P_n(x)) = 2(n-1)$. Note that the base cases have been demonstrated. Now for my induction step, take $f^{(n)}(x) = \frac{P_n(x)}{x^{3n}}f(x)$.

If $x \leq 0$ then the function should be 0, otherwise if x > 0 then

$$f^{(n+1)}(x) = \frac{d}{dx} \frac{P_n(x)}{x^{3n}} e^{\frac{-1}{x^2}}$$

$$= frac P_n(x) x^{3n} \frac{2}{x^3} e^{\frac{-1}{x^2}} + \frac{P'_n x^{3n} - 3n P_n(x) x^{3n-1}}{x^{6n}} e^{\frac{-1}{x^2}}$$

$$= \frac{2P_n(x) + x^3 P'_n(x) - 3n x^2 P_n(x)}{x^{3n+3}} e^{\frac{-1}{x^2}}$$

which gives us the induction step in the degree of the bottom polynomial, and in the numerator the degree of the polynomial is 2n since $\deg(P'_n)=2(n-1)-1$ and when multiplied by x^3 we get 2(n-1)-1+3=2n. Since the formula holds, then we claim that $\lim_{x\to 0} f^{(n)}(x)=0$. Note that if we approach from the left then we trivially get 0. Therefore we must approach from the right. To do so I will make a change of variables with $x=\frac{1}{y}$. Now our limit becomes $\lim_{y\to\infty} f^{(n)}(\frac{1}{y})=\frac{y^{3n}P_n(\frac{1}{y})}{e^{y^2}}$. Note that since P_n has degree 2(n-1) then $y^{3n}P_n(\frac{1}{y})$ is a polynomial in y with degree n+2. Thus we're taking the limit to infinity of a polynomial over an exponential. Thus the limit goes to 0. Since all derivatives of f vanish at the origin then the power series is just 0. However that implies that f=0, however since $f\neq 0$ then f isn't represented by it's power series, thus implying that f is not analytic.