

Number Representation & Boolean Function

TD 1

Objectives

- ★ Natural numbers representation
- ★ Basic conversion
- ★ Strings of characters representation
- ★ Boolean Function

1 Numbers Representation

Exercise 1

Fill in the table which might help you for the following exercises.

base 10	base 2	base 16
0		
1		
2		
3		
4		
5		
6		
7		

base 10	base 2	base 16
8		
9		
10		
11		
12		
13		
14		
15		

Exercise 2

Give the representation in binary form on 8 bits of the following decimal numbers:

Decimal	Binary
0	
7	
8	
78	
125	
255	

Exercise 3

Give the hexadecimal representation on 8 bits of the following decimal numbers:

Decimal	Hexadecimal
0	
8	
16	
84	
170	
255	

Exercise 4

Fill the table where the first column contains only positives numbers on 8 bits.

Binary	Decimal	Hexadecimal
0000 0000		
0000 0001		
0000 0101		
0000 1000		
0000 1001		
0000 1010		
0000 1011		
0000 1111		
0001 0000		
0001 1100		
1010 1101		

Exercise 5

Fill the table with two's complement values on 8 bits.

$(x)_{10}$	$(x)_2$	$(-x)_2$	$(-x)_{10}$
0			
	0000 1001		
110			
		1110 1010	
			-42
		0101 0010	
			-1

Exercise 6

Convert the following signed numbers

base 2 (on 8 bits)	base 10	base 16(on 1 byte)
	10_d	
$0000\ 0010_b$		
		10_h
	57_d	
	197	
	127_d	
		17_h
		$5B_h$
$0010\ 1001_b$		
$1010\ 1010_b$		

Exercise 7

How many bits are at least needed to encode the following numbers:

 127_d

 32_d

 -127_{d}

 -32_{d}

How many numbers can be encoded on a binary word of length n? What are the interval of values that can be represented by an unsigned binary word of length n?

Exercise 8

How many numbers can be encoded on a hexadecimal word of length n? What are the interval of values that can be represented by an unsigned hexadecimal word of length n?

Exercise 9

Let suppose that the following words represent natural numbers. Which one is the biggest?

exp1	exp2	winner
$(20)_8$	$(100)_2$	
$(0F0)_{16}$	$(710)_8$	
$(56)_8$	$(56)_{10}$	
$(BDE)_{16}$	$(3038)_{10}$	
$(EC)_{16}$	$(100000000)_2$	

2 Characters representation

Exercise 10

Encode the following letters:

Letter	code ASCII (base 16)
,C,	
'c'	
	$0C_{16}$
'#'	
	64 ₁₆
	$7A_{16}$

Exercise 11

For the following exercises we will consider that each character is encoded in ASCII

- 1. What are the hexadecimal representation of "BIT"?
- 2. Which word is represented by 5444203100_{16} ?

3 Operations

Exercise 12

Let A, B and C 3 numbers in two complement, compute the following operations:

1 2

A: 0110 0011 A: 0110 0011

B: + 0001 1001 B: + 0011 1001

C: = C: =

3

A: 1010 1011 A: 1110 0011

B: + 1001 1001 B: + 0011 1001

C: = C: =

- For which operation the result on 8 bits was correct?
- What does "overflow" means?

Exercise 13

Fill up the following table, where *carry out* is the output carry, *carry* the carry of the preceding rank and *Overflow* specify if the operation has produced a value that is outside of the range that can be represented on 8 bits. Deduce the operation which can compute the overflow.

carry out	carry	Overflow
0	0	
0	1	
1	0	
1	1	

4 Boolean Expressions

Exercise 14 Logic Gates

Let a, b and c be 3 Boolean variables, fill in the following truth table:

• Not:

$$\begin{array}{c|c}
a & \bar{a} \\
\hline
0 & \\
1 & \\
\end{array}$$

And/Nand

a	b	$a \cdot b$	$\overline{a \cdot b}$
0	0		
0	1		
1	0		
1	1		

$$a - b - a \cdot b$$

$$a - b - \overline{a \cdot b}$$

Or/Nor

$$a \longrightarrow a + b$$

$$\begin{array}{c} a \\ b \end{array} \longrightarrow \overline{a+b}$$

Exercise 15

Give the truth table of the following Boolean equation:

$$s = b + \overline{b}.a.c$$

Exercise 16

Does the above expression could be simplified? Justify your answer.

Exercise 17

- Explain how do we construct the Disjunctive Normal Form of a function out of its truth table.
- Give the Disjunctive Normal Form of the function f described by the following truth table. f has 3 inputs: a, b and c.

Exercise 18

Give the Conjunctive Normal Form of the function f described by the above truth table

Exercise 19

Using truth table show that in Boolean logic we have:

$$a + (b.c) = (a + b).(a + c)$$

Using distribution on the expression on the right, explain how one could simplify it to get the expression on the left.

Exercise 20

Give the truth table of the function XOR.

Exercise 21

For the XOR truth table, give the conjunctive and disjunctive normal form of that function. Show that both expressions are equivalent.

Exercise 22

Using De Morgan rules, find an expression for the function $(a \times B)$.

Exercise 23 2 Entries Multiplexer

A multiplexer with two entries is an electronic circuit with two bits e_0 and e_1 and a third bit v as inputs. v is a selector which allow to chose the first entry e_0 when v=0 and the second entry e_1 when v=1.

Give the truth table of a two input multiplexer by expressing the output value y ($y = e_0$ or $y = e_1$) with respect of the value of v.

e_0	e_1	$\mid v \mid$	y
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Give the disjunctive normal form of such a multiplexer.

Exercise 24 8 Entries Multiplexer

Now, we want to find the Boolean expression describing an 8 entries multiplexer. The value of the selector is encoded by a set of bits i_0, i_1, \cdots . We decide that i_0 is the least significant bit. That is, the value v of the selector is given by $\mathbf{v} = \sum_k i_k \cdot 2^k$.

Let $f_i(v)$ with $i \in [0, 7]$ be Boolean functions which equals 1 when v = i and 0 otherwise. So, for a given value $v \in [0, 7]$, the function $f_v(v)$ equals 1 and the $f_i(v)$ for $i \neq v$ equals 0.

Give the Boolean expression off the output of a 8 input multiplexer. It a function which equals e_v if and only if $f_i(v) = 1$, for any $v \in [0, 7]$.

Exercise 25

Now, we want to give the expressions for the functions $f_i(v)$. The following table give the decimal value corresponding to the selector value:

i_2	i_1	i_0	$decimale\ value$
0	0	0	0
0	0	1	1
0	1	0	2
0	1	1	3
1	0	0	4
1	0	1	5
1	1	0	6
1	1	1	7

Fill the following truth table with values of functions $f_i(v)$ for each entries:

i_2	i_1	i_0	$decimale\ value$	f_0	f_1	f_2	f_3	f_4	f_5	f_6	f_7
0	0	0	0								
0	0	1	1								
0	1	0	2								
0	1	1	3								
1	0	0	4								
1	0	1	5								
1	1	0	6								
1	1	1	7								

Exercise 26

Give the Boolean expression of each function $f_i(v)$ which depends of v so of i_2 , i_1 and i_0 .

Exercise 27

Starting for the Boolean expression obtained at question 12 and Boolean expressions of function $f_i(v)$, give the Boolean expression for a 8 inputs multiplexer.

5 Annexes

5.1 ASCII table

	ASCII Code Chart															
_	0	1	2	3	4	լ 5	6	7	8	9	ΙA	В	C	D	E	<u> </u>
0	NUL	SOH	STX	ETX	E0T	ENQ	ACK	BEL	BS	HT	LF	VT	FF	CR	S0	SI
1	DLE	DC1	DC2	DC3	DC4	NAK	SYN	ETB	CAN	EM	SUB	ESC	FS	GS	RS	US
2			=	#	\$	%	&	-	()	*	+	,	-	•	/
3	0	1	2	3	4	5	6	7	8	9	••	;	٧	II	۸	?
4	0	Α	В	U	D	Е	F	G	Н	I	J	K	L	М	N	0
5	Р	Q	R	S	Т	J	V	W	X	Υ	Z	[\]	^	
6	`	а	b	С	d	е	f	g	h	i	j	k	ι	m	n	0
7	р	q	r	S	t	u	V	W	Х	У	Z	{		}	~	DEL