Учреждение образования Республики Беларусь «Гомельский государственный технический университет им. П. О. Сухого»

Кафедра "Материаловедение в машиностроении"

Лабораторная работа № 1

по теме: «МЕТАЛЛИЧЕСКИЕ ПОРОШКИ ДЛЯ 3D-ПЕЧАТИ»

Выполнил: студент группы ТТ-21 Галицкий И.П. Принял преподаватель: Поздняков Е.П.

Лабораторная работа № 1 **МЕТАЛЛИЧЕСКИЕ ПОРОШКИ ДЛЯ 3D-ПЕЧАТИ**

Цель работы: ознакомить студентов с классификацией, видами и химическим составом порошков для технологий аддитивного синтеза.

Оборудование и материалы: образцы порошковых материалов, микроскоп металлографический, объект-микрометр, фотоаппарат, компьютер.

Теоретическая часть

Под порошками понимают сыпучие материалы с характерным размером частиц до 1,0 мм. Порошки классифицируют по размерам частиц (по условному диаметру d), подразделяя их на:

- нанодисперсные с d<0,001 мкм;
- ультрадисперсные d = 0,01...0,1 мкм;
- высокодисперсные d=0,1...10 мкм;
- мелкие d=10...40 мкм;
- средние d=40...250 мкм;
- крупные d=250...1000 мкм.

В процессе построения детали в зону пятна лазера моментально вводится большое количество энергии: металл вскипает, происходит разбрызгивание расплава и часть металла (строительного материала) вылетает из зоны построения. Если порошок имеет слишком малый размер частиц, то в процессе построения легкие частицы будут «вылетать» из зоны расплава, что приведет к повышенной шероховатости детали, микропористости. Еще один нюанс: для того, чтобы вылетающие из зоны расплава частицы не попадали на соседние, уже сплавленные участки, на поверхность строящегося слоя, внутри рабочей камеры создают направленный «ветер», который сдувает вылетевшие частицы в сторону. Такие порошки (с соответствующими настройками машины) применяют в основном для изготовления микродеталей, которые иным способом получить не представляется возможным. Определенные трудности при работе мелкодисперсными порошками возникают в связи с их свойством – повышенное комкование.

Современные аддитивные технологии используют: инструментальные, нержавеющие, жаропрочные сплавы, алюминиевые и титановые сплавы, медицинские кобальт-хром и титан.

Нержавеющие сплавы: оксид хрома образует на поверхности металла коррозионностойкую пленку, которая может разрушаться под воздействием механических повреждений или химических сред, но восстанавливается в результате реакции с кислородом.

Инструментальные сплавы предназначены для изготовление различных видов инструментов (режущих, измерительных, штамповых и др.), вкладок в прессформы, прессформ для литья под давлением сплавов алюминия, цинка и магния. Эти сплавы обладают повышенной твердостью, износостойкостью, вязкостью, теплопроводностью и прокаливаемостью.

Никелевые сплавы: никель обладает способностью растворять в себе многие другие металлы, сохраняя при этом пластичность, поэтому существует множество никелевых сплавов. Применяются в авиационных двигателях, изготавливают рабочие и сопловые лопатки, диски ротора турбин, детали камеры сгорания и т.п.

Сплав из меди и 6% олова, обладает высокими теплопроводящими свойствами и коррозионной стойкостью и идеален для создания уникальных систем охлаждения.

Алюминиевые сплавы дешевые. К их преимуществам относятся высокая коррозионная стойкость, жидкотекучесть, электро- и теплопроводность. В промышленности используются, как правило, для изготовления крупногабаритных тонкостенных отливок сложной формы.

Кобальт-хром представляет собой высококачественный сплав для модельного литья. Благодаря отличным механическим свойствам он хорошо подходит для изготовления корпусов сложной геометрии в электронике, пищевом производстве, авиа-, ракето- и машиностроении, а также кламмерных протезов.

Ti6Al4V — наиболее распространенный сплав титана с превосходными механическими свойствами. Считается самым прочным и жестким титановым сплавом, отличается особо высокой сложностью обработки. Сплав Ti6Al4V предоставляет неоспоримые преимущества в плане снижения веса изделий.

Практическая часть Медный сплав 1 (мелкодисперсный)

Можно увидеть, что порошок имеет округлые зёрна малой величины (до 100 мкм.) продолговатой или шаровидной формы.

Медный сплав 1 (среднедисперсный)

Можно увидеть, что этот порошок также имеет округлые зёрна средней величины (до 200 мкм.) продолговатой или шаровидной формы.

Медный сплав 1 (крупнодисперсный)

Можно увидеть, что этот порошок также имеет округлые зёрна крупной величины (свыше 200 мкм.) преимущественно произвольной формы.

Медный сплав 2 (мелкодисперсный)

Можно увидеть, что порошок имеет округлые зёрна малой величины (до 100 мкм.) продолговатой или шаровидной формы.

Медный сплав 2 (среднедисперсный)

Можно увидеть, что этот порошок также имеет округлые зёрна средней величины (до 200 мкм.) продолговатой или шаровидной формы.

Медный сплав 2 (крупнодисперсный)

Можно увидеть, что этот порошок также имеет округлые зёрна крупной величины (свыше 200 мкм.) преимущественно произвольной формы.

ПОС-61 (припой; среднедисперсный)

Можно увидеть, что данный порошок имеет средние зёрна (до 140 мкм.) преимущественно игольчатой формы с гладким контуром.

ПОС-61 (припой; крупнодисперсный)

Можно увидеть, что данный порошок имеет крупные зёрна (свыше 200 мкм.) также преимущественно игольчатой формы с гладким контуром.

Электрокорунд белый (мелкодисперсный)

Можно увидеть, что данный порошок обладает мелкими зёрнами (до 40 мкм.) кристаллической формы.

Электрокорунд белый (среднедисперсный)

Можно увидеть, что данный порошок обладает средними зёрнами (до 140 мкм.) также кристаллической формы, напоминающей поваренную соль.

Электрокорунд белый (крупнодисперсный)

Можно увидеть, что данный порошок обладает крупными зёрнами (свыше 200 мкм.) кристаллической произвольной формы.

Карбид бора (среднедисперсный)

Можно увидеть, что данный порошок имеет зёрна средней величины, произвольной формы с гладким контуром.

Карбид бора (крупнодисперсный)

Можно увидеть, что данный порошок имеет зёрна крупной величины, произвольной формы с гладким контуром.

Вывод: рассмотрели виды порошков различных сплавов, применяемых для 3D-печати. Узнали, что для разных порошков разной дисперсии применяют различные 3D-принтеры.