CTL.SC1x -Supply Chain & Logistics Fundamentals

Time Series Analysis

Demand – Sales By Month

Demand – Sales by Week

Demand – Sales by Day

Demand - Seasonality

Demand Forecast

Agenda

- Time Series Components
- Cumulative Forecasts
- Naïve Forecasts
- Moving Average Forecasts

Time Series Components

Time Series Components

- Level (a)
 - Value where demand hovers around (mean)
 - Captures scale of the time series
 - With no other pattern present its a constant value
- Trend (b)
 - Rate of growth or decline
 - Persistent movement in one direction
 - Typically linear but can be exponential, quadratic, etc.
- Seasonal Variations (F)
 - Repeated cycle around a known and fixed period
 - Hourly, daily, weekly, monthly, quarterly, etc.
 - Can be caused by natural or man-made forces
- Random Fluctuations (e or ε)
 - Remainder of variability after other components

Lesson: Time Series Analysis

Irregular and unpredictable variations, noise

Time Series Components

- Cyclical Movements (C)
 - Periodic movement not of a fixed period
 - Duration can be of different lengths
 - Most often tied to longer term business cycles or economic conditions

Time Series Models

Components can be combined in different ways:

Multiplicative:

Note – we can transform the multiplicative $x_t = bF_tC_te_t$ $x_t = bF_tC_te_t$ to: $ln(x_t)=ln(b)+ln(F_t)+ln(C_t)+ln(e_t)$

- $x_{t} = a + bt + F_{t} + C_{t} + e_{t}$ Additive:
- Mixed: $x_{+} = (a + bt)F_{+} + C_{+} + e_{+}$
 - $x_t = a + btF_t + C_t + e_t$
 - $x_{+} = aF_{+} + bt + C_{+} + e_{+}$

Model depends on how seasonality impacts trend and/or level?

- We will focus on four models
 - Level Model:

 $x_{t} = a + e_{t}$

Trend Model:

 $x_t = a + bt + e_t$

Mix Level-Seasonality Model:

- $x_t = aF_t + e_t$
- Mix Level-Trend-Seasonality Model: $x_t = (a + bt)F_t + e_t$

Notation:

 $x_t = Actual demand in period t$

t = time period (0, 1, 2,...n)

a = Level component

b = linear trend

 F_t = Seasonal index appropriate for period tC_t = Cyclical index for period t

 $e_t = \text{Error} - \text{independent random variable } (\mu = 0) \text{ and constant } \sigma^2$

Cumulative vs. Naïve Forecasts

Time Series Models

- Predominant use of Time Series is for forecasting product demand of . . .
 <u>Mature products at the SKU level</u> over a . . .
 <u>Short time horizon (weeks, months, quarters, year) . . .

 Where demand of items is independent.
 </u>
- So, components used are level, trend, seasonality, and error.
- Simple Procedure
 - 1. Select an appropriate underlying model of the demand pattern over time
 - 2. Estimate and calibrate values for the model parameters
 - 3. Forecast future demand with the models and parameters selected
 - 4. Review model performance and adjust parameters and model accordingly

Time Series Analysis

- Critical assumption: How important is the history?
- Two extreme assumptions: Very Important or Not at All

Cumulative Forecast

- All history matters equally
- Pure stationary demand

Underlying Model:

$$x_t = a + e_t$$

where:

$$e_t \sim iid (\mu=0, \sigma^2=V[e])$$

Forecasting Model:

$$\hat{x}_{t,t+1} = \frac{\sum_{i=1}^{t} x_i}{t}$$

Naïve Forecast

- Most recent dictates next
- Random Walk, Last is Next

Underlying Model:

$$X_t = X_{t-1} + e_t$$

where:

$$e_{+} \sim iid (\mu=0, \sigma^2=V[e])$$

Forecasting Model:

$$\hat{x}_{t,t+1} = x_t$$

 $\hat{x}_{t,t+\tau}$ = Forecast made at end of period t for demand in period t+ τ , for τ =1,2,3 ...

 x_t = Actual demand for period t

Cumulative vs. Naïve Forecasts

Suppose we are at time=10 and want to find forecast for time=11; $x^{\uparrow}_{10,11}$

Cumulative Forecast:

$$\hat{x}_{10,11} = \frac{\sum_{i=1}^{10} x_i}{10} = \frac{995}{10} = 99.5$$

Naïve Forecast:

$$\hat{x}_{10,11} = x_{10} = 96$$

Lets look at "next period" forecasts for cumulative and naïve models . . .

		Cumul	Naïve	
t	Xt	$\mathbf{X}^{^{\prime}}_{t,t+1}$	$\mathbf{X^{}_{t,t+1}}$	
1	109	109	109	
2	92	100.5	92	
3	98	99.7	98	
4	96	98.8	96	
5	104	99.8	104	
6	98	99.5	98	
7	109	100.9	109	
8	99	100.6	99	
9	94	99.9	94	
10	96	99.5	96	

Lesson: Time Series Analysis

Note:

- Cumulative model is "calm" while the Naïve model is "nervous".
- Naïve model is more responsive than the cumulative model.

Moving Average Forecast

Time Series Models

- Moving Average
 - Only include the last M observations
 - Compromise between cumulative and naïve

Underlying Model:

$$x_t = a + e_t$$

where:

$$e_t \sim iid (\mu=0, \sigma^2=V[e])$$

Forecasting Model:

$$\hat{x}_{t,t+1} = \frac{\sum_{i=t+1-M}^{t} x_i}{M}$$

		1				<u> </u>
t	Xt	Naïve	M2	M4	M6	Cum
1	109	109				109.0
2	92	92	100.5			100.5
3	98	98	95.0			99.7
4	96	96	97.0	98.8		98.8
5	104	104	100.0	97.5		99.8
6	98	98	101.0	99.0	99.5	99.5
7	109	109	103.5	101.8	99.5	100.9
8	99	99	104.0	102.5	100.7	100.6
9	94	94	96.5	100.0	100.0	99.9
10	96	96	95.0	99.5	100.0	99.5

Moving Average Models

$$\hat{x}_{t,t+1} = \frac{\sum_{i=t+1-M}^{t} x_{i}}{M}$$

- Moving Average Model is a general model
 - Cumulative model (M=t)
 - Naïve model (M=1)
- How big should M be?
 - Too small? Overly responsive to noise, very nervous
 - Too big? Averages out noise, misses step changes in demand

- Often use "practical" values of M (4, 6, 12, etc.)
- Note that Moving Average models always lag!
 - Assumes stationary demand
 - The larger the M, the longer the lag

Key Points from Lesson

Key Points from Lessons

- Time Series Analysis
 - Pattern matching of data that is distributed over time
- Five Components (focus on first four)
 - Level (a)
 - Trend (b)
 - Seasonality (F)
 - Error (e)
 - Cyclical (C)
- Decompose the Demand using Models
 - Level Model: $x_t = a + e_t$
 - Trend Model: $x_t = a + bt + e_t$
 - Seasonality Model: $x_t = (a + bt)F_t + e_t$

Key Points from Lessons

 $\hat{X}_{t,t+1} = \frac{\sum_{i=1}^{t} X_i}{t}$

- Three Models
 - Cumulative "everything matters"
 - Naïve "only yesterday matters"
 - Moving Average "select how much matters"

 $\hat{X}_{t,t+1} = \frac{\sum_{i=t+1-M}^{t} X_i}{M}$

Differences

- Level of volatility
 - Naïve (nervous) to Cumulative (calm) with MA in middle
- Required amount of data to store
 - Naïve & Cumulative (1 per SKU)
 - Moving Average (M items for each SKU)

Similarities

Assume level demand – no trends or steps or seasonality

- All of these models lag to some degree
- Equal weighting of observations regardless of time

CTL.SC1x -Supply Chain & Logistics Fundamentals

Questions, Comments, Suggestions? Use the Discussion!

"Dude"
Photo courtesy Yankee Golden
Retriever Rescue (www.ygrr.org)

