midterm1WIP

Exercise 3.

Consider the linear regression model from exercise 1. Suppose, that the target of estimation is $h^{\intercal}\theta$ for some determinate non-zero vector $h \in R^p$. Find expression for the LSE of $h^{\intercal}\theta$. Is this estimate optimal in sense of Gauss-Markov theorem, i.e. does it have the smallest variance among all linear unbiased estimators?

Using our findings from exercise 2, we have an unbiased LSE estimator in $\gamma^{\dagger}\hat{\theta}$ since $E[\gamma^{\dagger}\hat{\theta} - \gamma^{\dagger}\theta] = \gamma^{\dagger}E[(XWX^{\dagger})^{-1}XWY] - \gamma^{\dagger}\theta = \gamma^{\dagger}\theta - \gamma^{\dagger}\theta = 0$. Using another finding from exercise 2 we have, $Var(\gamma^{\dagger}\hat{\theta}) = \gamma^{\dagger}Var(\hat{\theta})\gamma = \gamma^{\dagger}(XWX^{\dagger})^{-1}\gamma$.

To show that $\gamma^{\mathsf{T}}\hat{\theta}$ is BLUE, we compare its variance, to another estimator $\tilde{\theta} = ((XWX^{\mathsf{T}})^{-1}XW + D)Y$, where D is another $p \times n$ matrix. The variance of $\gamma^{\mathsf{T}}\tilde{\theta}$ is then:

Section 2.1

Exercise 7. (a) Using the notation from section 2.1, consider $X \sim N(\mu, I_n)$ for some $\mu \in \mathbb{R}^n$. Find E(Q(X)) and Var(Q(X))

For $Q(X) = \sum_{i} \sum_{j} a_{ij} X_i X_j = X^{\mathsf{T}} A X, X \sim N(\mu, I_n)$, we have, using the property of trace operator:

$$E(Q(X)) = tr(E(Q(X)) = E(tr(Q(X))) = E(tr(X^{\mathsf{T}}AX)) = E(tr(AXX^{\mathsf{T}})) = tr(AE(XX^{\mathsf{T}}))$$

Since $E(XX^{\intercal}) = I_n + \mu \mu^{\intercal}$, we have,

$$tr(AE(XX^{\mathsf{T}})) = tr(A(I_n + \mu\mu^{\mathsf{T}})) = trA + tr(A\mu\mu^{\mathsf{T}}) = trA + \mu^{\mathsf{T}}A\mu$$

Var(Q(X)) =

(b) Generalize the results from part (a) to the case $X \sim N(\mu, \Sigma)$ for some positive-definite covariance matrix $\Sigma \in \mathbb{R}^{n \times n}$. For $X \sim N(\mu, \Sigma)$ we have,

$$E(Q(X)) = tr(AE(XX^{\mathsf{T}})) = tr(A(\Sigma + \mu\mu^{\mathsf{T}})) = tr(A\Sigma) + tr(A\mu\mu^{\mathsf{T}}) = tr(A\Sigma) + \mu^{\mathsf{T}}A\mu^{\mathsf{T}}$$

Var(Q(X)) =

Section 2.2

Exercise 11.

Find an elliptical confidence set for the expected response E[Y] in model (3).

For the model $Y = X^{\mathsf{T}}\theta^* + \varepsilon$, $\varepsilon \sim N(0, \sigma^2 I_n)$, $\hat{Y} = X^{\mathsf{T}}\hat{\theta} = X^{\mathsf{T}}(XX^{\mathsf{T}})^{-1}XY = \Pi Y$, we have

$$E(\hat{Y} - Y) = E(\hat{Y}) - Y = E[X^{\mathsf{T}}(XX^{\mathsf{T}})^{-1}X(X^{\mathsf{T}}\theta^* + \varepsilon)] - Y = E[X^{\mathsf{T}}\theta^*] - Y = Y - Y = 0$$

and

$$Var(\hat{Y}-Y) = Var((\Pi-I_n)Y) = (\Pi-I_n)Var(X^\intercal\theta^* + \varepsilon)(\Pi-I_n)^\intercal = (\Pi-I_n)\sigma^2I_n(\Pi-I_n)^\intercal = \sigma^2(I_n-\Pi)$$

and assume that $\hat{Y} - Y \sim N(0, \sigma^2(\Pi - I_n))$, and $\frac{(I_n - \Pi)^{-1/2}(\hat{Y} - Y)}{\sigma} \sim N(0, I_n)$ Using this information we can set up a confidence region for \hat{Y} ,

Exercise 12. Construct simultaneous confidence intervals (e.g., as in Corollary 2.2.1) for the expected responses $E[Y_1], ..., E[Y_n]$ in model (3).