ELEMENTARY MATRICES (PART I)

Discussion

Recall that there are three types of elementary row operations.

- (1) Multiplying the i^{th} row by a non zero constant c. (cR_i)
- (2) Interchanging the i^{th} and j^{th} row. $(R_i \leftrightarrow R_j)$
- (3) Adding k times the i^{th} row to the j^{th} row. $(R_j + kR_i)$

What happens when these elementary row operations were performed on an identity matrix I_m ?

First type of E.R.O.

(1) Multiplying the i^{th} row by a non zero constant c. (cR_i)

What if we pre-multiply E_1 to a $m \times n$ matrix B?

First type of E.R.O.

(1) Multiplying the i^{th} row by a non zero constant c. (cR_i)

First type of E.R.O.

It seems like we can 'represent' performing the elementary row operation cR_i on \boldsymbol{B} by pre-multiplying a suitable matrix to \boldsymbol{B} .

$$B \xrightarrow{cR_i} C_1$$

$$I_m \xrightarrow{cR_i} E_1$$

Then we have $E_1B = C_1$.

Second type of E.R.O.

(2) Interchanging the i^{th} and j^{th} row. $(R_i \leftrightarrow R_j)$

What if we pre-multiply E_2 to a $m \times n$ matrix B?

Second type of E.R.O.

(2) Interchanging the i^{th} and j^{th} row. $(R_i \leftrightarrow R_j)$

Second type of E.R.O.

It seems like we can 'represent' performing the elementary row operation $R_i \leftrightarrow R_j$ on \boldsymbol{B} by pre-multiplying a suitable matrix to \boldsymbol{B} .

$$\begin{array}{ccc}
& R_i \leftrightarrow R_j \\
& R_i \leftrightarrow R_j \\
& I_m & E_2
\end{array}$$

Then we have $E_2B = C_2$.

(3) Adding k times the i^{th} row to the j^{th} row. $(R_j + kR_i)$

What if we pre-multiply E_3 to a $m \times n$ matrix B?

(3) Adding k times the i^{th} row to the j^{th} row. $(R_j + kR_i)$

What if we pre-multiply E_3 to a $m \times n$ matrix B?

(3) Adding k times the i^{th} row to the j^{th} row. $(R_j + kR_i)$

(3) Adding k times the i^{th} row to the j^{th} row. $(R_j + kR_i)$

It seems like we can 'represent' performing the elementary row operation $R_j + kR_i$ on \boldsymbol{B} by pre-multiplying a suitable matrix to \boldsymbol{B} .

$$\begin{array}{c}
R_{j} + kR_{i} \\
R_{j} + kR_{i}
\end{array}$$

$$\begin{array}{c}
R_{j} + kR_{i} \\
E_{3}
\end{array}$$

Then we have $E_3B = C_3$.

In summary

Let \mathbf{B} be a $m \times n$ matrix. For each of the three types of elementary row operations we can perform on \mathbf{B} :

there are matrices E_i (i = 1, 2, 3) such that $E_i B = C_i$ for i = 1, 2, 3.

Definition

A square matrix is an elementary matrix if it can be obtained from an identity matrix by performing a single elementary row operation.

Summary

1) For each elementary row operation X there is a corresponding square matrix E (of order m) such that performing X on a $m \times n$ matrix B produces the same effect as pre-multiplying E to B.

In other words,
$$B \xrightarrow{X} EB$$

2) The matrix E, defined as an elementary matrix is obtained by performing the corresponding elementary row operation X on I_m .

$$I_m \xrightarrow{X} E$$