Exercícios de Geometria Analítica Prof Carlos Hobold

- 1) Dados os pontos no R^3 como A(-1,4,5), B(-3,2,1)e C(4,3,-1), determinar o vetor $3A\vec{C} 2B\vec{C}$.
- 2) Dados os vetores $\vec{u} = (4,3,2)$, $\vec{v} = (1,-2,1)$ e $\vec{w} = (0,1,4)$, calcule as operações $\vec{u} 2\vec{v} + 3\vec{w}$ e $2(\vec{u} + \vec{v}) (\vec{v} \vec{w})$.
- 4) Sabendo que $|\vec{a}| = \sqrt{22}$, calcule o valor de m no vetor $\vec{a} = 3\vec{i} + m\vec{j} + 2\vec{k}$.
- 5) Qual deve ser o valor de x para que os vetores $\vec{u} = (x,2,3)$ e $\vec{v} = (3,-2x,4)$ sejam ortogonais?
- 6) Considere o triângulo ABC de vértices A(-3,-1,4), B(-4,1,0) e C(3,-2,1). Determine o ângulo interno ao vértice C desse triângulo.
- 7)Dados os vetores $\vec{u} = (-1,0,1)$, $\vec{v} = (2,-1,1)$ e $\vec{w} = (1,-1,3)$, calcule os produtos vetorial e produto misto solicitados em cada item.
- a) $(3\vec{u}) \times (2\vec{v})$
- b) $(\vec{u} + \vec{v}) \bullet (\vec{v} \times \vec{w})$
- c) $(\vec{u} + \vec{v}) \bullet (\vec{v} \vec{u})$
- 8) Determinar um vetor simultaneamente ortogonal aos vetores $\vec{u} = 2\vec{i} + 2\vec{j} 3\vec{k}$ e $\vec{v} = 2\vec{i} \vec{j} + \vec{k}$.
- 9) Calcule a área do triângulo ABC do exercício 6.
- 10) Verificar se os pontos A(1,3,2), B(-1,1,0), C(0,3,0) e D(-2,2,-1) estão no mesmo plano.
- 11) Dados os vetores $\vec{a}=(2,m,-1)$, $\vec{b}=(1,-2,1)$ e $\vec{c}=(1,-1,2)$. Calcular o valor de x para que o volume do paralelepípedo determinado por \vec{a} , \vec{b} e \vec{c} seja igual a 9 u.v. (unidades de volume).