ANOVA example

Example: Body temperature of squirrels in low, medium and hot environments

Squirrel body temperature data (Celsius)

• <u>Cold:</u> 30.4, 31.0, 31.2, 31.0, 31.5, 30.4, 30.6, 31.1, 31.3, 31.9, 31.4, 31.6, 31.5, 31.4, 30.3, 30.5, 30.3, 30.0, 30.8, 31.0

• Warm: 36.3, 37.5, 36.9, 37.2, 37.5, 37.7, 37.5, 37.7, 38.0, 38.0, 37.6, 37.4, 37.9, 37.2, 36.3, 36.2, 36.4, 36.7, 36.8, 37.0, 37.7

Hot: 40.7, 40.6, 40.9, 41.1, 41.5, 40.8, 40.5, 41.0, 41.3, 41.5, 41.3, 41.2, 40.7, 40.3, 40.2, 41.3, 40.7, 41.6, 41.5, 40.5

H₀: Mean body temperature is the same for all three groups of squirrels

H_A: At least one of the three is different from the others

H₀: Mean body temperature is the same for all three groups of squirrels

H_A: At least one of the three is different from the others

GROUP	\overline{X}	S	n
Cold	31.0	0.551	20
Warm	37.2	0.582	21
Hot	41.0	0.430	20

$$N = \sum_{i=0}^{n} n = 20 + 21 + 20 = 61$$

Squirrel Mean square error:

$$SS_{error} = \sum df_i s_i^2$$

= 19(0.551)² + 20(0.582)²+19(0.430)²
= 16.1

$$df_{error} = 19 + 20 + 19 = 58$$

$$MS_{error} = 16.1/58 = 0.277$$

Squirrel mean squares groups:

$$\overline{X}_T = \frac{20(31.0) + 21(37.2) + 20(41.0)}{20 + 21 + 20} = 36.4$$

$$SS_{groups} = \sum n_i (\overline{X}_i - \overline{X})^2$$

$$SS_{groups} = 20(31.0 - 36.4)^2 + 21(37.2 - 36.4)^2 + 20(41.0 - 36.4)^2$$

= 1015.7

Squirrels mean squares group

$$df_{groups} = k - 1 = 3 - 1 = 2$$

$$MS_{groups} = SS_{groups} / df_{groups} = 1015.7/2 = 507.9$$

The test statistic for ANOVA is F:

$$F = MS_{groups} / MS_{error}$$

= 507.9/0.277
= 1834.7

$$F_{0.05(1),2,58} = 3.15$$

Since 1835 >> 3.15, we know that P<0.05 and we can reject H_0 .

The variance in the sample group means is bigger than expected given the variance within sample groups so at least one of the groups has a population mean different from another group

Results are presented in ANOVA Table:

Source of	Sum of	df	Mean	F-ratio	P
variation	Squares	.	Squares		•
Groups	1015.7	2	507.9	1834.7	<0.0001
(treatment)					
Error	16.1	58	0.277		
Total	1031.8	60			

$$R^2 = SS_{groups}/SS_{error} = 0.984$$