ACTIVITÉ 1 📐

Soient *a* et *b* deux nombres positifs. On considère le grand carré ci-contre, que l'on a découpé.

- 1. a. Combien mesure un côté de ce grand carré?
 - b. En déduire une expression de l'aire du grand carré.
- 2. a. Quelle est l'aire du carré de taille moyenne (colorié en)?
 - **b.** Quelle est l'aire des deux rectangles (coloriés en)?
 - c. Quelle est l'aire du petit carré (colorié en)?
 - d. En déduire une nouvelle expression pour l'aire du grand carré.
- 3. Développer l'expression trouvée à la question 1. b.. Que constate-t-on?

ACTIVITÉ 2 📐

1. Dans chacun des cas, déterminer quatre couples de nombres (a;b) qui vérifient l'égalité demandée.

a.
$$a \times b = 2$$

b.
$$a + b = 0$$

c.
$$a \times b = 0$$

- **2.** Que remarque-t-on pour les couples qui vérifient $a \times b = 0$?
- 3. Compléter la règle qui semble s'appliquer ici.

$$Si\ a \times b = 0$$
, $alors$

4. Utiliser la règle précédente pour résoudre l'équation (x+5)(x-1)=0.

ACTIVITÉ 3 📐

Soit a un nombre. Le but de cette activité est de donner une méthode permettant de résoudre des équations de la forme $x^2 = a$, et de la prouver.

- 1. On suppose a < 0. Existe-t-il des nombres (réels) tels que $x^2 = a$? Justifier.
- **2.** On suppose $a \ge 0$.
 - **a.** Quel est le nombre qui, mis au carré, donne *a*?
 - **b.** À l'aide de la question précédente, et en utilisant la règle du produit nul, donner les solutions de l'équation $x^2 = a$.

Dans ce Sudoku, chaque nombre de 1 à 9 doit être présent une et une seule fois sur les lignes, les colonnes et les régions. Il faut d'abord remplir la grille avec les indications ci-dessous.

	A	В	С	D	Е	F	G	Н	I
1									
2									
3									
4									
5									
6									
7									
8									
9									

- A1 Solution de 3x = 9.
- 5) = 0.
- C1 Coefficient constant dans le dévelop- F4 $4x^2 4x + 1 = (...x 1)^2$. pement de 3(x+3).
- **D1** $2x + 4 = \dots (x + 2)$.
- A2 Coefficient de x dans le développement de $(x+1)^2$.
- **E2** Opposé de la solution de $(x+4)^2 = 0$.
- **F2** Solution positive de $x^2 = 1$.
- **H2** $x^2 25 = (x ...)(x + ...).$
- **A3** Antécédent de 7 par la fonction $x \rightarrow$ 2x - 1.
- **D3** Solution non nulle de $x^2 = 7x$.
- F3 Opposé de la solution négative de $x^2 = 9$.
- 13 La somme de 9 et du nombre de solutions de $-2x^2 = 10$.

- **B4** Solution de l'équation $\frac{x-3}{x-2} = 0$.
- **B1** Plus grande solution de (2x-3)(x-4) Chiffre des centièmes de la solution 17 $25x^2-36+(2-x)(5x-6)=(5x-6)$ de 7x = 6,68.

 - **H4** Plus grande solution de (x-1)(2x-1)3)(81x - 9) = 0.
- **G1** Exposant de $x \times x \times x$. **C5** Nombre de solutions de 5(x-1)(x-1)(2)(x-3)(x-4) = 0.
 - **B6** Coefficient de x^2 dans le développement de $(1 - \sqrt{6}x)$.
 - **C6** Solution de $\frac{10}{28}x = 2, 5$.
 - D6 Nombre de solutions positives de $x^2 - \pi = 0$.
 - G6 Coefficient constant du numérateur $\det \frac{1}{1-x} - \frac{x}{3x+2}$.
 - **H6** Solution de $x 2^3 = 0$.
 - **D7** Plus grande valeur interdite de $\frac{x}{r^2-9}$.
 - F7 $(x+1)^2 64 = (x-7)(x+...)$.

- H7 $25x^2 36 = (5x ...)(5x + ...)$.
- 6)(4x + ...).
- **D8** $(x ...)^2 = x^2 12x + 36.$
- E8 Nombre de solutions d'une équation du type $x^2 = a$ pour a > 0.
- **H8** Coefficient de x dans $10x^3 + 5x + 2 4x - 3 - 8x^2$.
- **I8** Nombre premier solution de (7x -1)(25x-5)(1-x)=0.
- **A9** Inverse de la solution de 6x = 1.
- **C9** Solution de $1 = \frac{8}{r}$.
- E9 Coefficient constant de la forme développée de l'aire d'un carré de côté x+1.
- G9 Plus petite valeur interdite de $\frac{4x-5}{(3x-9)(x-9)}-2.$
- **H9** $x + x + x + x + x + x + x = \dots x$.