

INFORMS San Jose 2002

New Multiple Pairs Shortest Paths Algorithms

By

I-Lin Wang

Prof. Ellis Johnson Prof. Joel Sokol

ISyE, GA Tech

Nov 19, 2002

Overview of this talk

- Path Algebra
- Review SSSP, APSP algorithms
 - SSSP: LC, LS
 - APSP: FW, Carré
- Propose 3 new MPSP algorithms
 - SLU
 - DLU1
 - DLU2
 - Implementation issues
- Discussion
 - General arc cost, Negative cycle
 - Complexity

Shortest Path Problem/Algorithm

- Single Source Shortest Path (SSSP)
 - Nonnegative Arc Cost
 - General Arc Cost

0				
	0			
		0		
			0	
				0

- All Pairs Shortest Paths (APSP)
 - Combinatorial Type Algorithms
 - Algebraic Type Algorithms
 - LP Type Algorithms

Multiple Pairs Shortest Paths (MPSP)

Path Algebra

- Problem: Given a measure matrix C
 - NO (1) multiple arcs, (2) loops (C_{ii} =0), (3) negative cycles
 - C_{ij} =arc length of (i,j) if it exists, or ∞ o.w.
 - What is the distance matrix D?
 - D_{ij} =distance from i to j, or ∞ if i can't reach j
- Define path algebra

Original definition	a⊕b	a⊗b	е	0(Null)
Path algebra	min{a,b}	a+b	0	∞

$$D_{ij} = \begin{cases} \min_{k \neq i, j} \left(C_{ik} + D_{kj} \right), i \neq j \\ 0, i = j \end{cases}$$

 $D = C \otimes D \oplus I_n$

ALL-ALL SP Algorithm

- Solving $D = C \otimes D \oplus I_n$ is like solving system of linear equations
- Jacobi : Bellman-Ford O(n²m)
- Gauss-Seidel: Ford-Fulkerson
- Gauss-Jordan: Floyd-Warshall Algorithm O(n³)
- Gauss : O(n³) : Carré , DLU
 - LU factorization (once)
 - forward elimination (for each node)
 - backward substitution (for each node)
 - Same # iterations as Floyd-Warshall, but can decompose to solve some-some shortest path problem

Floyd-Warshall Algorithm

 Idea: update C_{ij} by min{C_{ij}, C_{ik}+C_{kj}} where k≠i, j (triple comparison)

Total # triple comparison = n(n-1)(n-2)It is $O(n^3) \rightarrow$ not good for sparse graph.

 $Q=\{(1,4),(2,3),(5,2)\}$

Note:

• In the beginning of the last iteration, we already got optimal solution for [n]-ALL and ALL-[n]

Illustration of Carré's Algorithm

Forward() $\frac{n(n-1)(n-2)}{6}$

Backward() $\frac{n(n-1)(n-2)}{2}$

ALL-[1]

ALL-[2] (5,2)

2] ALL-[3] (2,3)

ALL-[4] (1,4)

ALL-[5]

Definitions for Algorithm DLU

Algorithm DLU₁(Q)

Get x^*_{st} for OD pairs (s,t): $s \ge k_0$ $t \ge j_0$ or $s \ge i_0$ $t \ge i_0$ where $i_0 = \min_i s_i$, $j_0 = \min_i t_i$, $k_0 = \min_i \{\max\{s_i, t_i\}\}$

```
Algorithm DLU_{I}(Q=\{(s_{i},t_{i}),i=1,...,q\})
begin
LU;
Acyclic_L(j_{0});
Acyclic_U(i_{0});
Reverse_LU(k_{0});
end
```



```
Q={(1,4),(2,3),(5,2)}

i_0=1

j_0=2

k_0=\min \{4,3,5\}=3
```

```
LU: \forall (s,t), get x^*_{st} in H( [1,min{s,t}] ), construct Augmented Graph G' Acyclic_L(j_0): \forall (s,t) s>t\geqj_0, get x^*_{st} in H( [1,s] ), compute shortest path in G'_L Acyclic_U(i_0): \forall (s,t) t>s\geqi_0, get x^*_{st} in H( [1,t] ), compute shortest path in G'_U Reverse_LU(k_0): \forall (s,t) satisfying s\geqk_0 t\geqj_0, or s\geqi_0 t\geqi_0 get x^*_{st} in H( [1,max{s,t}] \cup r ), r=(max{s,t}+1),...,n compare with x^*_{st} obtained in H( [1,max{s,t}] ), done!
```


Operations of Algorithm DLU₁

ALL-ALL

$$i_0=1$$
, $j_0=1$, $k_0=2$

LU
$$\frac{n(n-1)(n-2)}{3}$$

Acyclic_L
Acyclic_U

$$\frac{n(n-1)(n-2)}{3}$$

Reverse_LU

$$\frac{n(n-1)(n-2)}{3}$$

Example of Algorithm DLU₁

Q={
$$(1,4),(2,3),(5,2)$$
}
 $i_0=1, j_0=2$
 $k_0=min \{4,3,5\}=3$

- **x** Requested OD pair
- Updated entries by G_LU
- Updated entries by *Acyclic_L*
- Updated entries by Acyclic_U
- Updated entries by Reverse_LU
- Optimal entries

(a) Procedure G_LU

(b) Procedure Acyclic_L(2) and Acyclic_U(1)

(c) Procedure Reverse_LU(3)

Properties of Algorithm DLU₁

Good:

- Efficient if only x*_{st} are requested (if need to trace paths, set i₀=1)
- Work for general arc costs, can detect any negative cycle

- A good node ordering decreases fill-in arcs
 - Preprocessing (Markowitz's rule, MMD, MND..etc)
- Save ½ storage/computation for undirected graphs.
- Acyclic graphs: same as topological ordering

Bad:

- Redundant work on unrequested OD pairs
- Difficulty to trace shortest path

Algorithm DLU₂

```
Algorithm DLU_2(Q=\{(s_i,t_i),i=1,...,q\})

begin

LU;

for i=1\sim q

Get\_D(s_i,t_i);

if x^*_{si,ti}\neq \infty & need to trace path

Get\_P(s_i,t_i);

end
```

- attacks requested OD pairs directly
- fewer operations than DLU1
- easier to trace path

```
Procedure Get_D(s_i, t_i)
begin
Get_D_L(t_i);
Get_D_U(s_i);
Min_add(s_i, t_i);
end
```

```
Procedure Get\_P(s_i, t_i)
begin
let k:=succ_{si,ti}
while k \neq t_i do
Get_D(k, t_i);
let k:=succsi,ti
end
```


Example of Algorithm DLU₂

 $Q = \{(1,4),(2,3),(5,2)\}$

- Requested OD pair
- Updated entries by *G_LU*
- Updated entries by Get_D_L
- Updated entries by Get_D_U
- Updated entries by *Min_add*

(a) Procedure G LU

Get_D(1,4)

 $Get_D(2,3)$

Get D(5,2)

(b) Procedure Get_D(s,t)

Get_P(1,4)

Get_P(2,3)

 $Get_P(5,2)$

 $1 \rightarrow 3 \rightarrow 5 \rightarrow 4$

 $2 \rightarrow 1 \rightarrow 3$

 $5\rightarrow 4\rightarrow 2$

ISyE I-Lin Wang Topics: New SOME-SOME Shortest Paths Algorithm (c) Procedure Get_P(s,t)

Q={
$$(1,4),(2,3),(5,2)$$
}
 $i_0=1, j_0=2$

$$k_0 = min \{4,3,5\} = 3$$

- **x** Requested OD pair
- Updated entries by G_LU
- Updated entries by *Acyclic_L*
- Updated entries by Acyclic_U
- Updated entries by Reverse_LU
- Optimal entries

(a) Procedure G_LU

(b) Procedure Acyclic_L(2) and Acyclic_U(1)

(c) Procedure Reverse_LU(3)

Example of Algorithm DLU₂

Implementation

- Preprocess: 8 pivot rules (MKZ(S,D),MMD,MND,...)
- SLU₁: sparse implementation of Carré's Algorithm
 - Code generation (e.g.: n=1000,m=6000,500MB->200MB->5MB->0MB!)
 - Bucket(slu11), 1 heap(slu12), 2 heaps(slu13)
- SLU₂: sparse implementation of Algorithm DLU₂
 - Bucket(slu21), 1 heap(slu22)

Compare with: (Cherkassky et al. 1996 Math.Program.)

gor1, bfp, thresh, pape, two-q, dikh, dikbd, dikr, dikba

Test cases:

- 4 network generators: spgrid , sprand , netgen , gridgen
- 3 OD generators

Results & Conclusion

Computational Results:

- Depend on topology, node ordering, OD pairs
- In general can not beat Cherkassky et al.
- Markowitz's rule usually gives better ordering
- Definitely much better than Floyd-Warshall Algorithm

Conclusion:

- Simple, efficient for SOM-SOME shortest paths
- 'Ad hoc' code, exploits properties of graphs
- Theoretically suitable for dense graphs
- Need more storages (O(n²))
- Complexity O($\sum_{k=1\sim n} ro(k) li(k) + min\{q*nnz(LU), n^3\}$)
- Iterative methods(stability) vs. direct methods(sparsity)

Thank you

Questions ?

Contact

```
I-Lin Wang (王逸琳)
```

ilin@isye.gatech.edu

http://www.isye.gatech.edu/~ilin

Industrial & System Engineering (ISyE)

Georgia Institute of Technology (GA Tech)

Example of Algorithm SLU₁

- Augmented Graph:
 - Graph obtained by LU operations

Augmented Graph

<mark>•e</mark>.g. ALL-[3]

Node i	3	4	5
Xi	0	6	6
succ(i)	-	2	3

Node i	1	2	4	5
X _i	3	4	6	6
succ(i)	3	1	2	3