Практикум № 4

Підвищення узгодженості експертних оцінок в задачах оцінювання альтернатив за одиничним критерієм

Мета роботи:

- Порівняти результати, отримані різними методами знаходження найбільш неузгоджених експертних оцінок парних порівнянь:
 - СІ для укороченої МПП,
 - кореляції між рядками і стовпчиками МПП,
 - метод, що використовує критерій Хі-квадрат,
 - метод транзитивностей,
 - метод потоків M OutFlow.
- Дослідити методи із зворотнім зв'язком з експертом і автоматичного (без участі експертів) коригування експертних оцінок парних порівнянь:
 - автоматичного коригування експертних оцінок WGMM,
 - автоматичного коригування експертних оцінок WAMM.
- Дослідити методи розрахунку коефіцієнтів відносних важливостей (ваг), які стійкі до викидів в експертних оцінках парних порівнянь.

1 Теоретичні відомості

Методи знаходження найбільш неузгоджених експертних оцінок парних порівнянь

Відомо, що експертні оцінки з високим рівнем неузгодженості не можуть бути використані для розрахунку ваг альтернатив і прийняття рішення. Неузгодженість може виникати внаслідок неточного вводу чи випадкових помилок. Однією з причин появи може бути неправильне розміщення отриманих від експерта оцінок в симетричні позиції матриці парних порівнянь. Постає необхідність у розробці методів підвищення

узгодженості експертної інформації. Розглянемо методи знаходження найбільш неузгоджених експертних оцінок парних порівнянь. Розглядається наступна задача: як знайти окремі найбільш неузгоджені елементи (в подальшому – викиди) в матриці парних порівнянь і зменшити їх вплив на результуючі ваги.

Приклад

Нехай за результатами експертного оцінювання чотирьох альтернатив за певним критерієм сформована наступна матриця парних порівнянь (МПП):

$$D = \begin{pmatrix} 1 & 2 & \frac{1}{2} & 1 \\ \frac{1}{2} & 1 & 3 & \frac{1}{4} \\ 2 & \frac{1}{3} & 1 & \frac{1}{6} \\ 1 & 4 & 6 & 1 \end{pmatrix}.$$

Відношення узгодженості цієї МПП дорівнює CR = 0.344, воно перевищує порогове значення 0.08 для n = 4 і тому МПП D сильно неузгоджена. Ця МПП задає нетранзитивні ранжування альтернатив: $a_1 \succ a_2$ (оскільки $d_{12} > 1$), $a_2 \succ a_3$ ($d_{23} > 1$), але $a_1 \prec a_3$ ($d_{13} < 1$). Як буде показано нижче, викидом в цій МПП є елемент $d_{13} = \frac{1}{2}$, Після коригування d_{13} (нове значення, наприклад, дорівнює $d_{13} = 5$) D стає допустимо неузгодженою, CR = 0.024.

Розглянемо декілька методів знаходження найбільш неузгоджених елементів в МПП.

Метод *СІ* для укороченої МПП базується на обчисленні індексу узгодженості *СІ* для укороченої МПП, отриманої з початкової МПП послідовним виключенням з розгляду одного з її рядків (стовпчиків).

Метод кореляцій між рядками і стовпчиками МПП

Цей метод базується на факті, що зі збільшенням узгодженості МПП кореляція між її рядками (і стовпчиками) прямує до одиниці. Метод складається з наступних кроків:

1. Розраховуються математичні сподівання $M(R_i^r)$ коефіцієнтів кореляції між i-м та всіма іншими рядками МПП D, а також математичні сподівання $M(R_j^c)$ коефіцієнтів кореляції між j-м та всіма іншими стовпчиками D. Нагадаємо, що коефіцієнт кореляції для двох векторів x і y розраховується за формулою

$$r_{xy}=rac{rac{1}{n-1}\sum\limits_{i=1}^{n}(x_i-\overline{x})(y_i-\overline{y})}{\sigma_x\sigma_y}$$
, де $\overline{x},\overline{y}$ - вибіркові середні, $\overline{x}=rac{1}{n}\sum\limits_{i=1}^{n}x_i$,

$$\sigma_x, \sigma_y$$
 - стандартні відхилення, $\sigma_x^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2$.

- 2. Знаходяться $\min_{i} \{M(R_i^r)\}$ і $\min_{j} \{M(R_j^c)\}$. Нехай ці мінімуми досягаються на рядку з номером $i = i^*$ і стовпчику з номером $j = j^*$.
 - 3. Тоді елемент $d_{i^*i^*}$ МПП викид.

Метод, що використовує критерій Хі-квадрат складається з наступних кроків:

- 1. Для кожного елементу заповненої експертом (емпіричної) МПП D обчислюються значення $\Delta_{ij} = \frac{\left(d_{ij} t_{ij}\right)^2}{t_{ij}}$, де $t_{ij} = \left(\sum_{k=1}^n d_{ik}\right) \left(\sum_{l=1}^n d_{lj}\right) / \left(\sum_{k=1}^n \sum_{l=1}^n d_{kl}\right)$.
- 2. Розраховується математичне сподівання і дисперсія Δ_{ij} . Визначається довірчий інтервал для Δ_{ii} .

3. Визначаються ті значення $\Delta_{i^*j^*}$, які лежать за межами довірчого інтервалу. Тоді відповідні елементи $d_{i^*j^*}$ - викиди.

Метод транзитивностей

1) Побудова множини транзитивностей $\Gamma = \{\Gamma_u\}$ u = 1,...,NT

$$\Gamma_{u} = \{d_{ij}, d_{jk}, d_{ik}\} \qquad i, j, k = 1, ..., n \qquad NT = \frac{n!}{(n-3)! \, 3!} \qquad n \geq 3$$

$$i < j < k$$

Обчислення значень визначників цих транзитивностей

$$\det(\Gamma_u) = \frac{d_{ij}d_{jk}}{d_{ik}} + \frac{d_{ik}}{d_{ij}d_{jk}} - 2 \qquad Det = \{\det(\Gamma_u)\}$$

2) Для кожної пари (i,j) розраховуються

$$S_{i,j} = \sum_{k=1}^{n} \left(\frac{d_{ij}d_{jk}}{d_{ik}} + \frac{d_{ik}}{d_{ij}d_{jk}} - 2 \right)$$

3) (i^*, j^*) : $\max_{i} S_{i,j}$

$$d_{i^{st},i^{st}}$$
 – найбільш неузгоджений

Метод потоків M_OutFlow

- 1. Для кожної альтернативи a_i обчислюються: вихідний потік Φ_i^+ кількість альтернатив a_j , таких що $d_{ij} > 1$ вхідний потік Φ_i^- кількість альтернатив a_j , таких що $d_{ii} > 1$
- 2. Найбільш неузгодженим є елемент $d_{i^*i^*}$

$$d_{i^*j^*}: \max_{i,j} (\max(\Phi_j^+ - \Phi_i^+, \Phi_i^- - \Phi_j^-))$$
 $d_{i,j} > 1$

Якщо останній умові задовольняють декілька елементів, то розраховують

$$\max \ \gamma_{ij} = \frac{1}{n-2} \sum_{k=1}^{n} (\ln d_{i,j} - \ln(d_{i,k} d_{k,j})) \qquad k \neq i \neq j$$

Приклад

Знайти викиди в наступній МПП

$$D = \begin{pmatrix} 1 & 5 & 3 & \frac{1}{7} & 6 \\ \frac{1}{5} & 1 & \frac{1}{3} & 1 & \frac{1}{3} \\ \frac{1}{3} & 3 & 1 & 6 & 3 \\ 7 & 1 & \frac{1}{6} & 1 & \frac{1}{3} \\ \frac{1}{6} & 3 & \frac{1}{3} & 3 & 1 \end{pmatrix}.$$

<u>Розв'язання.</u> Для цієї МПП СІ=0.936, CR=0.843. Значення CR перевищує порогове значення, яке для МПП розмірності 5×5 дорівнює 0.1, тому МПП D сильно неузгоджена.

Метод 1. При виключенні альтернатив:

першої CI=0.039

другої CI=1.320

третьої CI=1.043

четвертої CI=0.072

п'ятої CI=1.026.

Значення СІ ϵ найменшими, коли виключаємо першу або четверту альтернативи, тому викидом ϵ елемент $d_{1,4}$ і обернено симетричний до нього елемент.

<u>Метод 2.</u> Математичні сподівання $M(R_i^r)$ коефіцієнтів кореляції між i-м та всіма іншими рядками МПП D:

$$M(R_i^r) = (-0.182 \quad 0.319 \quad 0.245 \quad -0.456 \quad 0.350).$$

Математичні сподівання $M(R_j^c)$ коефіцієнтів кореляції між j-м та всіма іншими стовпчиками D:

$$M(R_j^c) = (-0.344 \quad 0.349 \quad 0.332 \quad -0.151 \quad 0.383).$$

Найменше значення серед $M(R_i^r)$ відповідає кореляції між четвертим і усіма іншими рядками МПП (значення -0.456). Найменше значення серед $M(R_j^c)$ відповідає кореляції між першим і усіма іншими стовпчиками МПП (значення -0.344).

Отже, елемент d_{41} (і відповідно d_{14}) МПП D – викид.

 $\underline{\text{Метод 3.}}$ Емпірична матриця $T = \{t_{ij}\}$ для даної МПП D дорівнює

$$T = \begin{pmatrix} 2.725 & 4.072 & 1.514 & 3.490 & 3.341 \\ 0.516 & 0.771 & 0.287 & 0.661 & 0.633 \\ 2.400 & 3.586 & 1.333 & 3.073 & 2.942 \\ 1.710 & 2.555 & 0.950 & 2.190 & 2.096 \\ 1.350 & 2.017 & 0.750 & 1.729 & 1.655 \end{pmatrix},$$

Матриця відхилень теоретичної МПП від емпіричної МПП дорівнює

$$\Delta = \begin{pmatrix} 1.092 & 0.211 & 1.459 & 3.211 & 2.116 \\ 0.193 & 0.068 & 0.008 & 0.174 & 0.142 \\ 1.779 & 0.096 & 0.083 & 2.787 & 0.001 \\ 16.370 & 0.946 & 0.646 & 0.646 & 1.482 \\ 1.037 & 0.479 & 0.231 & 0.935 & 0.259 \end{pmatrix}.$$

Математичне сподівання $M(\Delta) = \frac{1}{n^2} \sum_{i=1}^n \sum_{j=1}^n \Delta_{ij} = 1.458$, дисперсія

$$Var(\Delta) = \frac{1}{n^2 - 1} \sum_{i=1}^{n} \sum_{j=1}^{n} (\Delta_{ij} - M(\Delta))^2 = 10.426$$
, стандартне відхилення

$$StdDev(\Delta) = \sqrt{Var(\Delta)} = 3.229.$$

Тому викидом ϵ елемент d_{41} (і відповідно d_{14}) МПП.

Автоматичне коригування узгодженості МПП

Зворотній зв'язок з експертом потребує багато часу і зусиль з боку експертів, тому для підвищення узгодженості, коли це можливо, використовують методи автоматичного коригування МПП без участі експертів.

Ітераційний алгоритм автоматичного підвищення узгодженості МПП D складається з наступних кроків:

- 1. задати значення α , $0 < \alpha < 1$. На першому кроці при k = 0, $D^{(0)} = \left(d_{ij}^{(0)}\right) = \left(d_{ij}\right);$
- 2. розрахувати ваги $w^{(k)} = (w_1^{(k)}, ..., w_n^{(k)})^T$ з МПП $D^{(k)}$;

- 3. розрахувати $CR^{(k)}$. Якщо $CR^{(k)} \le 0.1$, перейти на крок 6, інакше перейти на крок 4;
- 4. розрахувати $D^{(k+1)} = (d_{ij}^{(k+1)})$, використовуючи один з двох методів:

4.1.
$$d_{ij}^{(k+1)} = \left(d_{ij}^{(k)}\right)^{\alpha} \left(\frac{w_i^{(k)}}{w_j^{(k)}}\right)^{1-\alpha}$$
 (зваженої геометричної середньої, WGMM)

4.2.
$$d_{ij}^{(k+1)} = \begin{cases} \alpha d_{ij}^{(k)} + (1-\alpha) \frac{w_i^{(k)}}{w_j^{(k)}}, & i = 1, 2, ..., n; \ j = i, i+1, ..., n \\ \frac{1}{\alpha d_{ji}^{(k)} + (1-\alpha) \frac{w_j^{(k)}}{w_i^{(k)}}}, & i = 2, 3, ..., n; \ j = 1, 2, ..., i-1 \end{cases}$$

(зваженої арифметичної середньої, WAMM)

- 5. k := k + 1, перейти на крок 2;
- 6. вивести k, $D^{(k)}$, $CR^{(k)}$. $D^{(k)}$ модифікована МПП з припустимою неузгодженістю ($CR^{(k)} \le 0.1$).

<u>Твердження.</u> (Збіжність алгоритму). Для описаного алгоритму $CR^{(k+1)} < CR^{(k)}$, $\lim_{k \to \infty} CR^{(k)} = 0$.

Критерії ефективності підвищення узгодженості:

1.
$$\delta^{(k)} = \max_{i} \left\{ d_{ij}^{(k)} - d_{ij}^{(0)} \right\};$$

2.
$$\sigma^{(k)} = \frac{1}{n} \sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} \left(d_{ij}^{(k)} - d_{ij}^{(0)} \right)^2}$$
.

Модифікація $D^{(k)}$ МПП D **вважається прийнятною**, якщо $\delta^{(k)} < 0.2$ і $\sigma^{(k)} < 0.1$ [6]. При цих значеннях модифікована МПП зберігає більшу частину інформації початкової МПП.

При виборі параметра α слід враховувати, що кількість ітерацій k збільшується при збільшенні значення α і чим більшим ε α , тим меншим ε

відхилення модифікованої МПП від початкової. Пропонується використовувати $0.5 \le \alpha < 1$ [6].

Методи розрахунку ваг альтернатив за одиничним критерієм, стійкі до викидів в МПП

Один з підходів до зменшення впливу викидів в експертних оцінках на результуючі ваги — це побудова матриці парних пропорцій, яка ϵ менш чутливою до викидів.

Метод 1

1. Перетворити початкову МПП $D = \{(d_{ij}) | i, j = 1,...,n\}$ в матрицю парних пропорцій Z:

$$z_{ij} = \frac{d_{ij}}{1 + d_{ii}};$$

2. Розв'язати систему $(Z + diag(Ze))\hat{w} = n\hat{w}$, знайти вектор ваг \hat{w} , він є оцінкою вектора w невідомих ваг елементів.

Метод 2

- 1. Перетворити початкову МПП $D = \{(d_{ij}) | i, j = 1,...,n\}$ в матрицю парних пропорцій Z: $z_{ij} = \frac{d_{ij}}{1+d_{ii}}$;
- 2. Розв'язати задачу $(diag(Z^TZ)-Z^T*Z)\hat{w}=\lambda\hat{w}$, де операція "*" в $C=Z^T*Z$ означає $c_{ij}=z_{ij}z_{ji}=z_{ij}(1-z_{ij})$. Знайти мінімальне власне число і власний вектор, який йому відповідає. Знайдений власний вектор стійкий до викидів.

2 Порядок виконання роботи

- 2.1 Уважно прочитати теоретичні відомості, наведені в п.1.
- 2.2 Знайти викиди в експертних оцінках, використовуючи наступні методи (згідно з варіантом):

- СІ для укороченої МПП,
- кореляції між рядками і стовпчиками МПП,
- метод, що використовує критерій Xi-квадрат,
- метод транзитивностей,
- метод потоків M OutFlow.

Порівняти результати, отримані різними методами.

2.3 Згідно з варіантом виконати автоматичне коригування узгодженості експертних оцінок за правилами WGMM і WAMM, використовувати різні значення α : 0.5, 0.6, 0.7, 0.8, 0.9. Результати представити в наступному вигляді:

$$\alpha = \dots$$

k=0	$D^{(k)} = \dots$	$CR^{(k)}=\dots$	$w^{(k)} = \dots$	$\delta^{(k)} = \dots, \sigma^{(k)} = \dots$
k=1	$D^{(k)}=\dots$	$CR^{(k)}=\dots$	$w^{(k)} = \dots$	$\delta^{(k)} = \dots, \sigma^{(k)} = \dots$
k=	$D^{(k)} = \dots$	$CR^{(k)}=\dots$	$w^{(k)} = \dots$	$\delta^{(k)} = \dots, \sigma^{(k)} = \dots$

Порівняти результати, отримані при використанні WGMM і WAMM для коригування МПП, а також при застосуванні різних значень α .

- 2.4 Згідно з варіантом розрахувати ваги альтернатив, стійкі до викидів в МПП. Порівняти результати, отримані описаними методами 1 і 2, стійкими до викидів.
 - 2.5 Зробити висновки по роботі.
 - 2.6 Відповісти на контрольні питання, наведені в кінці роботи.

Звіт має містити:

- 1 Текст програми, яка реалізує заданий згідно з варіантом пункт порядку виконання роботи для будь-якої МПП.
- 2 Результати виконання роботи для обраної МПП.
- 3 Висновки по роботі.

Варіанти завдань

No	Завдання порядку роботи	МПП
1	п.2.2	Варіант 1
2	п.2.3	Варіант 2
3	п.2.2	Варіант 3
4	п.2.3	Варіант 4
5	п. 2.2	Варіант 5
6	п. 2.3	Варіант 6
7	п. 2.2	Варіант 7
8	п. 2.3	Варіант 8
9	п. 2.2	Варіант 9
10	п.2.3	Варіант 10
11	п.2.2	Варіант 11
12	п.2.3	Варіант 12
13	п.2.4	Варіант 4
14	п. 2.4	Варіант 5
15	п. 2.4	Варіант 6
16	п. 2.4	Варіант 7
17	п. 2.4	Варіант 8
18	п. 2.4	Варіант 9
19	п. 2.4	Варіант 11
20	п. 2.4	Варіант 12

Варіант 1

Необхідно прийняти рішення щодо придбання деякого обладнання за критерієм «надійність». Результати

парних порівнянь семи варіантів обладнання наступні:

$$a := \begin{pmatrix} 1 & 1 & 0.5 & 4 & 3 & 0.333 & 2 \\ 1 & 1 & 0.5 & 4 & 3 & 0.333 & 2 \\ 2 & 7 & 1 & 8 & 6 & 0.5 & 4 \\ 0.25 & 0.25 & 0.125 & 1 & 1 & 7 & 0.5 \\ 0.333 & 0.333 & 0.167 & 1 & 1 & 0.111 & 1 \\ 3 & 3 & 2 & 0.142 & 9 & 1 & 6 \\ 0.5 & 0.5 & 0.25 & 2 & 1 & 0.167 & 1 \end{pmatrix}$$

Варіант 2

Задача прийняття рішення полягає в оцінюванні семи варіантів деякого інноваційного товару за критерієм

Варіант 3

Задача полягає у виборі оптимальних моделей альянсів між банками і страховими компаніями за критерієм «управління зв'язками з клієнтами». Результати парних порівнянь шести моделей наступні:

$$a = \begin{pmatrix} 1 & 1 & 1/4 & 1/2 & 3 & 4 \\ 1 & 1 & 1/4 & 1/2 & 4 & 4 \\ 4 & 4 & 1 & 2 & 7 & 7 \\ 2 & 2 & 1/2 & 1 & 6 & 8 \\ 1/3 & 1/4 & 1/7 & 1/6 & 1 & 1/6 \\ 1/4 & 1/4 & 1/7 & 1/8 & 6 & 1 \end{pmatrix}$$

Варіант 5

Задача полягає в оцінюванні бізнесдоговорів за критерієм «очікування (заощадження витрат, гнучкість, фокус на основній діяльності тощо)». Результати парних порівнянь семи варіантів наступні:

$$\mathbf{a} := \begin{pmatrix} 1 & 0.5 & 0.25 & 2 & 1 & 0.5 & 2 \\ 2 & 1 & 0.25 & 0.5 & 1 & 0.5 & 2 \\ 4 & 4 & 1 & 2 & 5 & 2 & 0.142 \\ 0.5 & 2 & 0.5 & 1 & 2 & 1 & 4 \\ 1 & 1 & 0.2 & 0.5 & 1 & 0.5 & 2 \\ 2 & 2 & 0.5 & 1 & 2 & 1 & 4 \\ 0.5 & 0.5 & 7 & 0.25 & 0.5 & 0.25 & 1 \end{pmatrix}$$

Варіант 7

Нехай задача полягає в оцінюванні наступних семи варіантів інвестицій за критерієм «надійність»: придбання акцій вітчизняних компаній, придбання

«перспективність попиту». Результати їх парних порівнянь наступні:

$$\mathbf{a} := \begin{pmatrix} 1 & 0.333 & 2 & 0.25 & 1 & 0.5 & 2 \\ 3 & 1 & 0.142 & 0.75 & 3 & 1.5 & 6 \\ 0.5 & 7 & 1 & 0.125 & 0.5 & 0.25 & 1 \\ 4 & 1.333 & 8 & 1 & 4 & 2 & 8 \\ 1 & 0.333 & 2 & 0.25 & 1 & 0.5 & 2 \\ 2 & 0.667 & 4 & 0.5 & 2 & 1 & 4 \\ 0.5 & 0.167 & 1 & 0.125 & 0.5 & 0.25 & 1 \end{pmatrix}$$

Варіант 4

Задача полягає у виборі мультимедійної інформаційної системи за критерієм «задоволення очікувань керівництва: підтримка постачальників». Результати парних порівнянь шести систем наступні:

$$a = \begin{pmatrix} 1 & 2 & 3 & 6 & 1 & 2 \\ 1/2 & 1 & 1 & 2 & 4 & 5 \\ 1/3 & 1 & 1 & 2 & 1/3 & 1 \\ 1/6 & 1/2 & 1/2 & 1 & 1 & 1/6 \\ 1 & 1/4 & 3 & 1 & 1 & 1 \\ 1/2 & 1/5 & 1 & 6 & 1 & 1 \end{pmatrix}$$

Варіант 6

Задача прийняття рішення полягає в оцінюванні варіантів розміщення стратегічного обладнання за критеріями «критичні процеси на підприємствівиробнику». Результати парних порівнянь семи варіантів наступні:

акцій зарубіжних компаній, оформлення депозиту, придбання облігацій, придбання дорогоцінних металів, гра на Форекс, покласти в банку (скляну).

Результати парних порівнянь варіантів інвестицій:

Варіант 8

Задача полягає у виборі оптимального каналу для розміщення реклами на телебаченні за критерієм «популярність

Варіант 9

Інвестор оцінює акції деякої компаній і хоче спрогнозувати, яким буде розподіл ймовірностей зміни ціни на них. Він розглядає наступні можливі варіанти зміни ціни: впаде на 40%, впаде на 20%, впаде на 10%, залишиться незмінною, зросте на 10%, зросте на 15%, зросте на 20%. Використовуючи результати фундаментального аналізу*, парні порівняння варіантів зміни ціни наступні:

$$\mathbf{a} := \begin{pmatrix} 1 & \frac{1}{6} & 2 & \frac{1}{5} & 1 & \frac{1}{7} & 2 \\ 6 & 1 & 7 & 1 & 6 & 1 & 9 \\ \frac{1}{2} & \frac{1}{7} & 1 & 6 & \frac{1}{2} & \frac{1}{9} & 1 \\ 5 & 1 & \frac{1}{6} & 1 & 5 & 1 & 7 \\ 1 & \frac{1}{6} & 2 & \frac{1}{5} & 1 & \frac{1}{7} & 2 \\ 7 & 1 & 9 & 1 & 7 & 1 & 7 \\ \frac{1}{2} & \frac{1}{9} & 1 & \frac{1}{7} & \frac{1}{2} & \frac{1}{7} & 1 \end{pmatrix}$$

* Фундаментальний аналіз включає аналіз коефіцієнта відношення ціни акції до прибутку на неї (price

каналу». Результати парних порівнянь семи каналів наступні:

$$a := \begin{pmatrix} 1 & 3 & 2 & 0.2 & 1 & 0.143 & 2 \\ 0.333 & 1 & 0.143 & \frac{1}{9} & 0.333 & 6 & \frac{1}{2} \\ 0.5 & 7 & 1 & \frac{1}{9} & 0.5 & \frac{1}{8} & 1 \\ 5 & 9 & 9 & 1 & 5 & 1 & 9 \\ 1 & 3 & 2 & 0.2 & 1 & 0.143 & 2 \\ 7 & \frac{1}{6} & 8 & 1 & 7 & 1 & 9 \\ 0.5 & 2 & 1 & \frac{1}{9} & 0.5 & \frac{1}{9} & 1 \end{pmatrix}$$

earnings ratio), пропозиції, попиту, принципів компанії тощо.

Варіант 10

Необхідно прийняти рішення про заміщення вакантної посади за критерієм «досвід роботи». Результати парних порівнянь семи кандидатів наступні:

$$a := \begin{pmatrix} 1 & 3 & \frac{1}{3} & \frac{1}{2} & 1 & 4 & 5 \\ \frac{1}{3} & 1 & \frac{1}{9} & 6 & \frac{1}{3} & 1 & 2 \\ 3 & 9 & 1 & 1 & 3 & 9 & 7 \\ 2 & \frac{1}{6} & 1 & 1 & 2 & 8 & 7 \\ 1 & 3 & \frac{1}{3} & \frac{1}{2} & 1 & 4 & 5 \\ \frac{1}{4} & 1 & \frac{1}{9} & \frac{1}{8} & \frac{1}{4} & 1 & 1 \\ \frac{1}{5} & \frac{1}{2} & \frac{1}{7} & \frac{1}{7} & 0.2 & 1 & 1 \end{pmatrix}$$

Задача 11

Задача полягає у виборі оптимальної моделі альянсу між банком і страховими компаніями за критерієм «майбутні економії у зв'язку із зростанням портфеля послуг».

Результати парних порівнянь шести моделей наступні:

$$a = \begin{pmatrix} 1 & 2 & 3 & 6 & 1 & 2 \\ 1/2 & 1 & 1 & 2 & 4 & 5 \\ 1/3 & 1 & 1 & 2 & 1/3 & 1 \\ 1/6 & 1/2 & 1/2 & 1 & 1 & 1/6 \\ 1 & 1/4 & 3 & 1 & 1 & 1 \\ 1/2 & 1/5 & 1 & 6 & 1 & 1 \end{pmatrix}$$

Задача 12 Нехай потрібно порівняти начальників семи відділів деякої фірми за узагальненим критерієм «якість роботи» з метою розподілу премії між ними. Результати парних порівнянь цих семи осіб наступні:

$$a := \begin{pmatrix} 1 & 3 & 0.333 & 5 & 1 & 0.5 & 2 \\ 0.333 & 1 & 0.111 & 2 & 0.333 & 0.167 & 0.5 \\ 3 & 9 & 1 & 0.111 & 3 & 1 & 7 \\ 0.2 & 0.5 & 9 & 1 & 0.2 & 0.142 & 0.5 \\ 1 & 3 & 0.333 & 5 & 1 & 0.5 & 2 \\ 2 & 6 & 1 & 7 & 2 & 1 & 4 \\ 0.5 & 2 & 0.142 & 7 & 0.5 & 0.25 & 1 \end{pmatrix}$$

Контрольні запитання для підготовки до роботи:

- 1 Дати означення викиду в МПП, навести приклади МПП з викидами.
- 2 Описати методи знаходження викидів в МПП.
- 3 Як організовується зворотній зв'язок з експертом для підвищення узгодженості оцінок?
- 4 Описати алгоритм автоматичного (без участі експерта) коригування МПП.
- 5 Сформулювати і довести твердження, на яких базується алгоритм WGMM автоматичного коригування узгодженості.
- 6 Сформулювати і довести твердження, на яких базується алгоритм WAMM автоматичного коригування узгодженості.
- 7 Сформулювати і довести твердження про збіжність алгоритму автоматичного коригування узгодженості МПП.
- 8 Описати основні етапи методу «трикутник».
- 9 Описати методи знаходження ваг, стійкі до викидів в МПП.