Treść

Jakie minimalne pole może mieć sześciokąt opisany na okręgu o promieniu 1 w \mathbb{R}^2 ?

Rozwiązanie

Aby uprościć rozumowanie, w tym zadaniu będziemy myśleć o sześciokątach opisanych na okręgu jednostkowym jako o uporządkowanych szóstkach kątów $\alpha_1, \alpha_2, \dots, \alpha_6$, takich że

$$\alpha_1 + \alpha_2 + \ldots + \alpha_6 = 2\pi \text{ oraz dla } i = 1, 2, \ldots, 6 \text{ mamy } 0 < \alpha_i < \pi. \tag{1}$$

Najpierw pokażemy, że takie uproszczenie jest poprawne.

• Dowolna szóstka kątów spełniajaca 1 wyznacza sześciokąt opisany na okręgu jednostkowym. Ustalmy kąty $\alpha_1, \alpha_2, \ldots, \alpha_6$ spełniające 1. Niech

$$x_i = \left(\cos\left(\sum_{j=1}^i \alpha_j\right), \sin\left(\sum_{j=1}^i \alpha_j\right)\right),$$

a l_i niech będzie prostą styczną do okręgu jednostkowego przechodzącą przez x_i . Niech a_1 będzie punktem przecięcia prostej l_1 z prostą l_2 , a_2 – punktem przecięcia prostej l_2 z prostą l_3 , ..., a_6 – punktem przecięcia prostej l_6 z prostą l_1 (dla każdego i punkt a_i istnieje, ponieważ $0 < \alpha_i < \pi$). Wówczas punkty a_1, a_2, \ldots, a_6 wyznaczają wierzchołki sześciokąta opisanego na okręgu.

• Dowolny sześciokąt opisany na okręgu jednostkowym może zostać wyznaczony przez szóstkę kątów spełniających 1. Ustalmy dowolny sześciokąt opisany na okręgu – niech a_1, a_2, \ldots, a_6 będą jego wierzchołkami (w kolejności odwrotnej do ruchu wskazówek zegara), a x_1, x_2, \ldots, x_6 punktami styczności znajdującymi się odpowiednio na boku pomiędzy a_1 a a_2 , a_2 a a_3 , ..., a_6 a a_1 . Bez straty ogólności możemy przyjąć, że $x_1 = (0,0)$. Wówczas wystarczy, że za α_1 przyjmiemy kąt pomiędzy x_1 a x_2 , za α_2 kąt pomiędzy x_2 a x_3 , ..., za α_6 kąt pomiędzy x_6 a x_1 . Oczywiście spełniają one 1.

Zauważmy teraz, że pole sześciokąta wyznaczonego przez $\alpha_1, \alpha_2, \dots, \alpha_6$ spełniające 1 wyraża się następującym wzorem:

$$f(\alpha_1, \alpha_2, \dots, \alpha_6) = \operatorname{tg} \frac{\alpha_1}{2} + \operatorname{tg} \frac{\alpha_2}{2} + \dots + \operatorname{tg} \frac{\alpha_6}{2}.$$

Niech

$$g(\alpha_1, \alpha_2, \dots, \alpha_6) = \alpha_1 + \alpha_2 + \dots + \alpha_6$$

oraz

$$U = \left\{ (\alpha_1, \alpha_2, \dots, \alpha_6) \in \mathbb{R}^6 : 0 < \alpha_1, \alpha_2, \dots, \alpha_6 < \pi \right\}.$$

Oczywiście U jest otwarty. Oznaczmy

$$S = \{(\alpha_1, \alpha_2, \dots, \alpha_6) \in U : g(\alpha_1, \alpha_2, \dots, \alpha_6) = 2\pi\}.$$

Zastosujemy twierdzenie o mnożnikach Lagrange'a.

$$\nabla f(\alpha_1, \alpha_2, \dots, \alpha_6) = \left(\frac{1}{2\cos^2\left(\frac{\alpha_1}{2}\right)}, \frac{1}{2\cos^2\left(\frac{\alpha_2}{2}\right)}, \dots, \frac{1}{2\cos^2\left(\frac{\alpha_6}{2}\right)}\right)$$
$$= \lambda \cdot \nabla g(\alpha_1, \alpha_2, \dots, \alpha_6) = \lambda(1, 1, 1, 1, 1, 1)$$

Wobec tego dla dowolnych i, j mamy

$$\cos^2\left(\frac{\alpha_i}{2}\right) = \cos^2\left(\frac{\alpha_j}{2}\right).$$

Zauważmy, że $0 < \frac{\alpha_i}{2}, \frac{\alpha_j}{2} < \frac{\pi}{2}$. Zatem mamy $\alpha_i = \alpha_j$.

Otrzymujemy ostatecznie $\alpha_1=\alpha_2=\ldots=\alpha_6=\frac{\pi}{3}$ oraz $f\left(\frac{\pi}{3},\frac{\pi}{3},\frac{\pi}{3},\frac{\pi}{3},\frac{\pi}{3},\frac{\pi}{3},\frac{\pi}{3}\right)=6$ tg $\frac{\pi}{6}=6\frac{\sqrt{3}}{3}=2\sqrt{3}$.

Dlaczego jest to minimum? Rozważmy zbiór

$$P = \left\{ (\alpha_1, \alpha_2, \dots, \alpha_6) \in \mathbb{R}^6 : 0 \leqslant \alpha_1, \alpha_2, \dots, \alpha_6 \leqslant 2 \arctan\left(2\sqrt{3}\right), g(\alpha_1, \alpha_2, \dots, \alpha_6) = 2\pi \right\}.$$

Jest on domknięty i ograniczony, a zatem jest zwarty. Wobec tego funkcja f obcięta do zbioru P przyjmuje kresy. Poza zbiorem P funkcja f jest większa niż $2\sqrt{3}$. Natomiast na zbiorze P funkcja przyjmuje jakieś maksimum oraz minimum. Wystarczy zbadać, czy minimum nie jest przyjęte na brzegu. Rozważmy przypadki.

- Gdy $\alpha_i = 2 \arctan(2\sqrt{3})$ dla pewnego i, to wartość funkcji f jest równa co najmniej $2\sqrt{3}$.
- Gdy dokładnie jeden kąt jest równy 0, to przeprowadzając rozumowanie analogiczne do powyższego, otrzymujemy $f\left(0,\frac{2\pi}{5},\frac{2\pi}{5},\frac{2\pi}{5},\frac{2\pi}{5},\frac{2\pi}{5},\frac{2\pi}{5}\right)=5$ tg $\frac{\pi}{5}\approx 3.6327126>2\sqrt{3}$.
- Podobnie dla dokładnie dwóch i dokładnie trzech kątów równych 0 otrzymujemy odpowiednio $f\left(0,0,\frac{\pi}{2},\frac{\pi}{2},\frac{\pi}{2},\frac{\pi}{2}\right)=4$ tg $\frac{\pi}{4}=4>2\sqrt{3}$ oraz $f\left(0,0,0,\frac{2\pi}{3},\frac{2\pi}{3},\frac{2\pi}{3}\right)=3$ tg $\frac{\pi}{3}=3\sqrt{3}>2\sqrt{3}$.
- Gdy co najmniej 4 kąty są równe 0, to mamy $\alpha_i \geqslant \pi$ dla pewnego i, czyli sprzeczność takie przypadki nie należą do zbioru P.

Wobec tego $2\sqrt{3}$ jest najmniejszą wartością funkcji f. \square