ST790 HW6

Steven Xu

November 5, 2019

1.

(a)

Since the data are linearly separable, there exists β such that

$$\begin{aligned} y_i \boldsymbol{\beta}^T \mathbf{x}_i &> 0, \ \forall i = 1, ..., N \\ y_i \frac{\boldsymbol{\beta}^T \mathbf{x}_i}{||\mathbf{x}_i||} &= y_i \boldsymbol{\beta}^T \mathbf{x}_i^* > 0, \ \forall i = 1, ..., N \end{aligned}$$

further we have

$$y_i \boldsymbol{\beta}^T \mathbf{x}_i^* \ge \min_i (y_i \boldsymbol{\beta}^T \mathbf{x}_i^*), \ \forall i = 1, ..., N$$

Let $m = \min_i (y_i \boldsymbol{\beta}^T \mathbf{x}_i^*)$, then

$$\therefore \frac{1}{m} y_i \boldsymbol{\beta}^T \mathbf{x}_i^* \ge 1, \ \forall i = 1, ..., N$$

It suffice to let $\beta_{sep} = \frac{1}{m}\beta$.

(b)

$$\begin{aligned} ||\boldsymbol{\beta}_{new} - \boldsymbol{\beta}_{sep}||^2 &= \boldsymbol{\beta}_{new}^T \boldsymbol{\beta}_{new} - 2\boldsymbol{\beta}_{new}^T \boldsymbol{\beta}_{sep} + \boldsymbol{\beta}_{sep}^T \boldsymbol{\beta}_{sep} \\ ||\boldsymbol{\beta}_{old} - \boldsymbol{\beta}_{sep}||^2 &= \boldsymbol{\beta}_{old}^T \boldsymbol{\beta}_{old} - 2\boldsymbol{\beta}_{old}^T \boldsymbol{\beta}_{sep} + \boldsymbol{\beta}_{sep}^T \boldsymbol{\beta}_{sep} \\ \therefore ||\boldsymbol{\beta}_{new} - \boldsymbol{\beta}_{sep}||^2 - ||\boldsymbol{\beta}_{old} - \boldsymbol{\beta}_{sep}||^2 &= \boldsymbol{\beta}_{new}^T \boldsymbol{\beta}_{new} - 2\boldsymbol{\beta}_{new}^T \boldsymbol{\beta}_{sep} - \boldsymbol{\beta}_{old}^T \boldsymbol{\beta}_{old} + 2\boldsymbol{\beta}_{old}^T \boldsymbol{\beta}_{sep} \\ &= (\boldsymbol{\beta}_{old} + y_i \mathbf{z}_i)^T \left(\boldsymbol{\beta}_{old} + y_i \mathbf{z}_i\right) - 2 \left(\boldsymbol{\beta}_{old} + y_i \mathbf{z}_i\right)^T \boldsymbol{\beta}_{sep} - \boldsymbol{\beta}_{old}^T \boldsymbol{\beta}_{old} + 2\boldsymbol{\beta}_{old}^T \boldsymbol{\beta}_{sep} \\ &= 2y_i \boldsymbol{\beta}_{old}^T \mathbf{z}_i + ||y_i \mathbf{z}_i||^2 - 2y_i \boldsymbol{\beta}_{sep}^T \mathbf{z}_i \end{aligned}$$

Using the fact that \mathbf{z}_i is misclassified given $\boldsymbol{\beta}_{old}$, we have

$$y_i \boldsymbol{\beta}_{old}^T \mathbf{z}_i < 0$$

$$\therefore y_i \boldsymbol{\beta}_{sep} \mathbf{z}_i \ge 1, |y_i| = 1, ||\mathbf{z}_i||^2 = 1$$

$$\therefore 2y_i \boldsymbol{\beta}_{old}^T \mathbf{z}_i + ||y_i \mathbf{z}_i||^2 - 2y_i \boldsymbol{\beta}_{sep}^T \mathbf{z}_i \le -2 + 1 = -1$$

Suppose $\beta_n = \beta_{sep}$

$$||\beta_n - \beta_{sep}||^2 \le ||\beta_{n-1} - \beta_{sep}||^2 - 1$$

$$||\beta_n - \beta_{sep}||^2 \le ||\beta_{n-2} - \beta_{sep}||^2 - 2$$

$$...$$

$$||\beta_n - \beta_{sep}||^2 \le ||\beta_1 - \beta_{sep}||^2 - n$$

$$\therefore n \le ||\beta_1 - \beta_{sep}||^2$$

where $\beta_1 := \beta_{start}$.

2.

Here I list the best combination of tuning parameters for each kernel selection.

Table 1: Scenario 2

kernel	cost	gamma	degree	coef0	Testing Error
Linear	0.146	N/A	N/A	N/A	0.211
Polynomial	0.125	0.445	5	1.2	0.177
Gaussian	0.197	3.190	N/A	N/A	0.176

Based on these results, the Gaussian kernel with the listed parameter choice should be used as the final model.

3.

Here I list the best combination of tuning parameters for each kernel selection.

Table 2: ZIP data

kernel	cost	gamma	degree	coef0	Testing Error
Linear	0.006	N/A	N/A	N/A	0.027
Polynomial	0.016	0.112	3	1.667	0.016
Gaussian	0.645	0.002	N/A	N/A	0.022

Based on these results, the polynomial kernel with the listed parameter choice should be used as the final model.