Lógica para Computação

Aula: Tabelas Verdades, Equivalências e Implicações

Prof.º Me. Paulo César Oliveira Brito

Equivalências Lógicas

P e Q são logicamente equivalentes se, somente se, $p \leftrightarrow q$ for tautologia.

Notação:

$$P \Leftrightarrow Q \text{ ou } P \equiv Q$$

Assim, dadas duas proposições compostas P e Q, dizemos que ocorre uma equivalência lógica entre P e Q quando suas tabelas verdade forem idênticas.

Equivalências Lógicas

Exemplos:

1) Verifique que \sim (p \wedge q) \Leftrightarrow \sim p \vee \sim q.

p	q	pΛq	~(p ∧ q)	~p	~q	~p V ~q	~(p ∧ q) ↔ ~p ∨ ~q
V	V						
V	F						
F	V						
F	F						

Equivalências Lógicas

Exemplos:

1) Verifique que \sim (p \wedge q) \Leftrightarrow \sim p \vee \sim q.

p	q	pΛq	~(p ∧ q)	~p	~q	~p V ~q	~(p ∧ q) ↔ ~p ∨ ~q
V	V	V	F	F	F	F	V
V	F	F	V	F	V	V	V
F	V	F	V	V	F	V	V
F	F	F	V	V	V	V	V

Equivalências Lógicas Importantes

Comutatividade	$p \wedge q \equiv q \wedge p$	$p \lor q \equiv q \lor p$
Associatividade	$(p \wedge q) \wedge r \equiv$	$(p \lor q) \lor r \equiv$
	$p \wedge (q \wedge r)$	$p \lor (q \lor r)$
Distributividade	$p \wedge (q \vee r) \equiv$	$p \lor (q \land r) \equiv$
	$(p \wedge q) \vee (p \wedge r)$	$(p \lor q) \land (p \lor r)$
Identidade	$p \wedge t \equiv p$	$p \lor c \equiv p$
Negação	$p \lor \neg p \equiv t$	$p \land \neg p \equiv c$
Dupla negação	$\neg(\neg p) \equiv p$	
Idempotência	$p \wedge p \equiv p$	$p \lor p \equiv p$
De Morgan	$\neg(p \land q) \equiv$	$\neg (p \lor q) \equiv$
	$\neg p \lor \neg q$	$\neg p \wedge \neg q$
Limite universal	$p \lor t \equiv t$	$p \wedge c \equiv c$
Absorção	$p \lor (p \land q) \equiv p$	$p \wedge (p \vee q) \equiv p$
Negações	$ eg t \equiv c$	$\neg c \equiv t$

Lei da Dupla Negação

Notação: ~(~p) ≡ p

Exemplo:

Não é verdade que Antônio não tem o equipamento ≡

Antônio tem o equipamento.

Notação: ~(p ∧ q) ≡ ~p ∨ ~q

Exemplo:

"O aparelho está velho e danificado."

p: O aparelho está velho.

q: O aparelho está danificado.

Negação:

Notação: ~(p ∧ q) ≡ ~p ∨ ~q

Exemplo:

"Não é verdade que O aparelho está velho e danificado."

p: O aparelho está velho.

q: O aparelho está danificado.

Negação:

O aparelho não está velho ou não está danificado.

Notação: ~(p ∨ q) ≡ ~p ∧ ~q

Exemplo:

"O aparelho está velho ou danificado."

p: O aparelho está velho.

q: O aparelho está danificado.

Negação:

Notação: ~(p ∨ q) ≡ ~p ∧ ~q

Exemplo:

"Não é verdade que O aparelho está velho ou danificado."

p: O aparelho está velho.

q: O aparelho está danificado.

Negação:

O aparelho não está velho e não está danificado.

Aplicação

Notação: ~(p ∨ q) ≡ ~p ∧ ~q

p	q	p∨q	~(p \(\text{q} \)	~p	~q	~p / ~q	~(p ∨ q) ↔ ~p ∧ ~q
V	V	V	F	F	F	F	V
V	F	V	F	F	V	F	V
F	V	V	F	V	F	F	V
F	F	F	V	V	V	V	V

Princípio da Contrapositiva

$$p \rightarrow q \equiv q \rightarrow p$$

Exemplo:

p → q: Se hoje é Páscoa então amanhã é segunda-feira.

¬q → ¬p: Se amanhã não é segunda-feira então hoje não é Páscoa.

Exemplo:

P: "Se está matriculado no curso, então pode participar da palestra". $(p\rightarrow q)$

Contrapositiva de $(p\rightarrow q)$: $\sim q\rightarrow \sim p$.

Exemplo:

Proposição: "Se está matriculado no curso, então pode participar da palestra".

 $(p\rightarrow q)$

p:Está matriculado no curso

q:Pode participar da palestra

Contrapositiva de $(p\rightarrow q)$: $\sim q\rightarrow \sim p$.

P≡ "Se não pode participar da palestra, então não está matriculado no curso".

Exemplo:

P: "Se está matriculado no curso, então pode participar da palestra". $(p \rightarrow q)$ $(p \rightarrow q) \equiv (\sim p \lor q)$

Exemplo:

P: "Se está matriculado no curso, então pode participar da palestra". $(p\rightarrow q)$

$$(p \rightarrow q) \equiv (p \lor q)$$

p:Está matriculado no curso

q:Pode participar da palestra

P≡ "Não está matriculado no curso **ou** pode participar da palestra". (~p∨q)

Exemplo: Negação da condicional:

P: "Se está matriculado no curso, então pode participar da palestra". $(p \rightarrow q)$

Negação da condicional: $(p \rightarrow q) \equiv (p \land q)$.

Exemplo: Negação da condicional:

P: "Se está matriculado no curso, então pode participar da palestra". $(p\rightarrow q)$

Negação da condicional: $(p \rightarrow q) \equiv (p \land q)$.

~P≡ Está matriculado no curso e não pode participar da palestra. (p∧~q)

Exemplo:

Escrever a contrapositiva da seguinte condicional:

"Se a sintaxe de um programa está errada ou se a execução do programa resulta em divisão por zero, então o computador irá gerar uma mensagem de erro".

Exemplo:

Escrever a contrapositiva da seguinte condicional:

"Se <u>a sintaxe de um programa está errada</u> ou se <u>a execução do programa resulta</u> em divisão por zero, então <u>o computador irá gerar uma mensagem de erro</u>".

p: a sintaxe de um programa está errada.

q: a execução do programa resulta em divisão por zero.

r: o computador gera uma mensagem de erro.

$$(p \lor q) \rightarrow r$$

Se a sintaxe de um programa está errada ou se a execução do programa resulta em divisão por zero, então o computador irá gerar uma mensagem de erro.

$$(p \lor q) \rightarrow r \equiv r \rightarrow (p \lor q)$$

Se a sintaxe de um programa está errada ou se a execução do programa resulta em divisão por zero, então o computador irá gerar uma mensagem de erro.

$$(p \lor q) \rightarrow r \equiv r \rightarrow r (p \lor q)$$

Contrapositiva:

Se o computador <u>não</u> gerar mensagem de erro, **então** a sintaxe do programa está <u>correta</u> **ou** a execução do programa <u>não</u> resulta em divisão por zero".