Gestion des Appliances

M. AIRAJ Ecole Informatique IN2P3 2014-2015

Appliances pour logiciels et infrastructures différentes?

□ Logiciels:

OpenNebula.org

□ Infrastructures:

Déploiement d'une appliance

Appliance : Définition

- Définition
 - Image générique avec un OS
 - Optionnellement contient des services préinstallés/configurés

- Bénéfices
 - Facilite un accès rapide en utilisant les ressources du cloud
 - Le packaging permet d'éviter les complications d'installation

Appliances : pour que ça marche!

- Pour qu'une appliance soit instanciée correctement sur une infrastructure de Cloud, elle doit vérifier ces deux éléments techniques :
 - Son format doit être supporté par l'infrastructure Cloud
 - Outils/scripts de contextualisation doivent être installés dans l'appliance et supportés par l'infrastructure Cloud.

Appliances: Questions?

Existe-t-il un format d'appliance standard?

Existe-t-il un outil de contextualisation standard?

■ Encore plus simple, les infrastructures de Cloud ne peuventelles pas faire les conversions et adaptations nécessaires?

Format des images des appliances

■ Il existe plusieurs formats des images des appliances :

- RAW,
- FVD,
- QCOW2,
- VirtualBox VDI,
- VMware VMDK,
- Microsoft VHD,
- Ovf (standard),
- **-** ...

Contextualisation d'une appliance

- Contextualisation est le processus qui permet à une VM instanciée de connaître son environnement cloud « contexte», permettant à la VM de se configurer et démarrer ses services correctement.
 - par exemple le nom d'hôte, adresse IP, ssh / authorized_keys, les services en cours d'exécution, ...)
- On distingue deux phases principales :
 - Obtenir des données de contexte dans la VM
 - L'utilisation de ces données pour la personnalisation de la VM

Contextualisation: Exemple

- Contextualisation d'une VM dans StratusLab, méthode CDROM :
 - Connexion réseau (DHCP)
 - Authentification/Autorisation (clés SSH)
 - Configuration de services (e.x. Certificats Grille)

Contextualisation d'une appliance

- □ Sources de données possibles pour une VM:
 - serveur de métadonnées (OpenStack)
 - système de fichiers attachés/disque (OpenStack / StratusLab),

Contextualisation d'une appliance : standard de contextualisation?

CloudInit

Le mécanisme CloudInit est un outil de contextualisation qui sait gérer les deux méthodes : serveur web et disque.

Il est assez simple à mettre en oeuvre.

Contextualisation d'une appliance

□ Cloud-init détecte automatiquement la source des données et contextualise suivant une syntaxe bien définie pour les données.

	OpenStack	StratusLab	OpenNebula	AmazonEC2
Disque	✓	✓	✓	✓
Cloud-init	✓	V	✓	✓

Appliances: Questions?

Existe-t-il un format d'appliance standard?

Ovf en est un, mais pas encore largement adopté.

■ Existe-t-il un outil de contextualisation standard?

CloudInit est adopté/supporté par plusieurs infrastructures/logiciels de Cloud. Probablement un futur standard.

Les infrastructures de Cloud ne peuvent-elles pas faire les conversions et adaptations nécessaires?

Quelques unes, partiellement.

Création des appliances

■ Une appliance peut être crée par différents moyens :

- Manuellement
- Utilisation des « Usines »
- Outils de création automatisés en ligne de commande
- **-** ...

Création manuelle d'appliance à partir de zéro

- Peut se faire par plusieurs méthodes : virtualisation desktop, libvirt ...
- Le moyen le plus simple est d'utiliser une solution de virtualisation desktop.
 - Le résultat peut être convertit au format requis par l'infrastructure Cloud.
- La création manuelle d'appliances :
 - prend beaucoup d'effort et de temps,
 - n'est pas automatique,
 - reste un sujet à erreurs,
- Donc à éviter si on a le choix. Ne le faire si vraiment il n y a pas autre alternative!
- Le mieux est d'adapter une appliance existante.

Création des appliances : Les Usines

Les usines à appliances fournissent des appliances préfabriquées prêtes à être déployer.

■ Elles peuvent être utilisées telles quelles ou comme appliances de base que l'utilisateur peut personnaliser avec ses propres logiciels et services.

Exemple d'usine à appliances : Bitnami

Création des appliances : Outils automatiques

Un très grand nombre d'outils en ligne de commande permettent l'automatisation du processus de création d'appliances.

En général, ils suivent un schéma commun de l'installation d'un système d'exploitation de base sur une image disque nouvellement créé, puis la personnalisation de cette image.

En général permettent aussi de faire des changements Incrémentaux aux appliances de base.

Exemple d'outils en ligne de commande : VMBuilder, VeeWee, BoxGrinder , ...

Création des appliances : Bonnes pratiques

Service/règle/package	Recommandations	
Firewall	désactivé	
sécuriser ssh	Arrêt de tous les accès non-clés	
Network boot protocol	Dhcp,	
Outils/scripts de contextualisation	Cloud-init, Hepix,	
udev	rm -f /lib/udev/rules.d/*net-gen* rm -f /etc/udev/rules.d/*net.rules	
selinux	désactivé	
swap	Rajouter le swap disk dans fstab	
acpid	Nécessaire pour l'attache et le détache à chaud de volumes	
Hostname	Supprimer la référence au hostname d'installation de la configuration réseau.	

Création des appliances : Bonnes pratiques

En résumé

- Etre sûr que toutes les informations privées ont été supprimées de l'image
- Inclure les outils/scripts de contextualisation
- Informations réseaux sauvegardées dans le cache : adresse mac, adresse ip , ...
 - → Supprimer toutes ces informations
- Arrêter les services pour éviter des trous de sécurité

Dépôt d'Appliances (Repository)

- Afin d'instancier une VM à partir d'une appliance :
 - Cette appliance doit exister quelque part et est accessible depuis le Cloud.
- Les différentes distributions de Cloud utilisent différents outils pour sauvegarder les appliances :
 - OpenStack fournit un service « Glance » pour enregistrer, rechercher et délivrer une appliance.
 - Une appliance peut être sauvegardée dans un simple système de fichier, comme dans swift un système de stockage objet.
 - Les appliances et leurs meta-données sont proposées via l'API
 Glance
 - StratusLab sauvegarde les appliances dans un endroit accessible via le web.
 - Les métadonnées sur ces appliances contiennent l'information sur leur localisation, et sont publiées dans le Marketplace.
 - Le Marketplace propose une simple interface REST, plus un Web Browser.

Registre d'Appliances

- Un registre d'appliances permet aux utilisateurs de rechercher des appliances existantes sur la base de certains critères.
- Toute distribution de Cloud qui permet aux utilisateurs de partager des appliances doit avoir un registre d'appliances.
 - La plupart des distributions fournissent un tel service, bien que dans beaucoup de cas, il est intégré avec le repository d'appliances...
- Exemple : Le Marketplace de StratusLab
 - Il est au centre du mécanisme de gestion d'appliances dans le Cloud StratusLab.
 - Il contient les métadonnées sur les appliances.
 - Il sert de registre pour les appliances partagées.
 - Pour utiliser et/ou partager une appliance, ses métadonnées doivent être enregistré dans le marketplace.

StratusLab: Marketplace

Identifiant est le fingerprint de l'image. C'est un SHA-1 checksum en base64 encoding.

Search Criteria

Appliance Summary

StratusLab: Details d'une Appliance

Transport d'Appliances

- Dans un environnement de cloud computing fédéré, les appliances sont généralement sauvegardées en dehors d'une infrastructure de cloud particulière.
- → Donc, doivent être transportées vers le cloud avant instanciation.
- Pour la plupart des distributions de cloud computing, l'utilisateur doit le faire manuellement.
- Heureusement, Certains outils existent pour faciliter un transfert automatisé.

Transport d'Appliances : Exemple d'HEPiX

- L'outil vmcaster/vmcatcher développé au sein du Groupe de travail de virtualisation HEPiX, utilise le concept de souscription à une liste d'appliances.
 - Il permet le téléchargement et le transport d'une appliance de la liste comme le fait un système de gestionnaire de paquets.
 - Les appliances téléchargées sont vérifiées (signatures X509) et mises en cache.

Transport d'Appliances : Exemple de StratusLab

■ En StratusLab, les appliances sont transportées à partir d'un serveur web ou de stockage dans le Cloud.

Sur la base de l'identifiant de l'appliance dans le marketplace, le transport de l'appliance est effectué de manière transparente par l'infrastructure de Cloud.

Les appliances téléchargées sont ensuite vérifiées et mises en cache dans le disque persistant, de façon à ce que le transport d'une appliance ne se fait qu'une seule fois.

Autorisation d'appliances

- Démarrez l'instanciation d'une VM via son identifiant. Dans StratusLab, par exemple :
 - stratus-run-instance LwcRbwCalYSysY1wftQdA j6Bwoi

- StratusLab valide l'image avant son déploiement :
 - stratus-policy-image applique une politique définie par l'administrateur
 - Politique peut inclure l'endorser white lists, checksum black lists, etc.

Publier, partager des appliances : différents acteurs.

- Avantages
 - **Utilisateurs**: chercher et utiliser des images existantes
 - □ Créateurs : publier leurs images et attirer plus d'utilisateurs
 - Administrateurs : évaluer la fiabilité des images avec les métadonnées

Acteurs et Workflows : Exemple de StratusLab

Conclusions

- Les appliances se différencient par leur formats d'images et leurs mécanismes de contextualisation
- Le cycle de vie et gestion des appliances contient les étapes suivantes :
 - Création des appliances
 - Stockage des appliances
 - Transport des appliances
 - Enregistrement des appliances (métadonnées)
 - Politique des autorisations des appliances
- Le fédération de Cloud a mené naturellement vers une discussion sur un compromis de :
 - Standarisation des formats des appliances et / ou prise en charge de multiples formats par les infrastructure de Cloud
 - Standarisation d'outils de contextualisation

Questions et Discussion