

Splay Trees are Binary Search Trees

Searching in a Splay Tree: Starts the Same as in a BST

Search proceeds down the tree to found item or an external node.

Example: Search for time with key 11.

Example Searching in a BST, continued

search for key 8, ends at an internal node.

Splay Trees do Rotations after Every Operation (Even Search)

- new operation: splay
 - splaying moves a node to the root using rotations

■ right rotation

makes the left child x of a node y into y's parent; y becomes the right child of x

■ left rotation

makes the right child y of a node x into x's parent; x becomes the left child of y

© 2013 Goodrich, Tamassia, Goldwasser

Splay Trees

5

Visualizing the Splaying Cases zig-zag zig-zig zig © 2013 Goodrich, Tamassia, Goldwasser **Splay Trees**

Splaying Example

- let x = (8,N)
 - x is the right child of its parent, which is the left child of the grandparent
 - left-rotate around p, then rightrotate around g

(8,N)

(7,P)

(5,G)

(7,T)

(5,H)

(5,I)

(1,Q)

(2,R)

(1,C)

Splaying Example, Continued

Example Result of Splaying

- tree might not be more balanced
- e.g. splay (40,X)
 - before, the depth of the shallowest leaf
 3 and the deepest is 7
 - after, the depth of shallowest leaf is 1 and deepest is 8

Splay Tree Definition

- a splay tree is a binary search tree where a node is splayed after it is accessed (for a search or update)
 - deepest internal node accessed is splayed
 - splaying costs O(h), where h is height of the tree
 which is still O(n) worst-case
 - O(h) rotations, each of which is O(1)

Splay Trees & Ordered Dictionaries

which nodes are splayed after each operation?

method	splay node
Search for k	if key found, use that node if key not found, use parent of ending external node
Insert (k,v)	use the new node containing the entry inserted
Remove item with key k	use the parent of the internal node that was actually removed from the tree (the parent of the node that the removed item was swapped with)

Amortized Analysis of Splay Trees

- Running time of each operation is proportional to time for splaying.
- Define rank(v) as the logarithm (base 2) of the number of nodes in subtree rooted at v.
- ◆ Costs: zig = \$1, zig-zig = \$2, zig-zag = \$2.
- ◆ Thus, cost for playing a node at depth d = \$d.
- Imagine that we store rank(v) cyber-dollars at each node v of the splay tree (just for the sake of analysis).

Cost per zig

- Doing a zig at x costs at most rank' (x) rank(x):
 - cost = rank'(x) + rank'(y) rank(y) rank(x) $\leq rank'(x) - rank(x)$.

Cost per zig-zig and zig-zag

Doing a zig-zig or zig-zag at x costs at most
 3(rank'(x) - rank(x)) - 2

Cost of Splaying

- Cost of splaying a node x at depth d of a tree rooted at r:
 - at most 3(rank(r) rank(x)) d + 2:
 - Proof: Splaying x takes d/2 splaying substeps:

$$cost \le \sum_{i=1}^{d/2} cost_{i}$$

$$\le \sum_{i=1}^{d/2} (3(rank_{i}(x) - rank_{i-1}(x)) - 2) + 2$$

$$= 3(rank(r) - rank_{0}(x)) - 2(d/d) + 2$$

$$\le 3(rank(r) - rank(x)) - d + 2.$$

Performance of Splay Trees

- Recall: rank of a node is logarithm of its size.
- Thus, amortized cost of any splay operation is O(log n)
- In fact, the analysis goes through for any reasonable definition of rank(x)
- This implies that splay trees can actually adapt to perform searches on frequentlyrequested items much faster than O(log n) in some cases

Python Implementation

```
class SplayTreeMap(TreeMap):
                             """Sorted map implementation using a splay tree."""
                             #----- splay operation -----
                             def _splay(self, p):
                               while p != self.root():
                                 parent = self.parent(p)
                                 grand = self.parent(parent)
                                 if grand is None:
                         9
                                   # zig case
                                   self._rotate(p)
                        10
                                 elif (parent == self.left(grand)) == (p == self.left(parent)):
                        11
                                   # zig-zig case
                        12
                                   self._rotate(parent)
                        13
                                                                         # move PARENT up
                                   self._rotate(p)
                                                                         # then move p up
                        14
                        15
                                 else:
                                   # zig-zag case
                        16
                                   self._rotate(p)
                                                                         # move p up
                        17
                        18
                                   self._rotate(p)
                                                                         # move p up again
                        19
                              #----- override balancing hooks -----
                        20
                        21
                             def _rebalance_insert(self, p):
                        22
                               self._splay(p)
                        23
                        24
                             def _rebalance_delete(self, p):
                        25
                               if p is not None:
                                 self._splay(p)
                        26
                        27
                             def _rebalance_access(self, p):
                        28
                        29
                               self._splay(p)
© 2013 Goodrich, Tamassia, Goldwasser
                                                      Splay Trees
```

18