10. Процессорные архитектуры, ч. 4. Наборы инструкций MIPS, ARM.

MIPS

MIPS (англ. Microprocessor without Interlocked Pipeline Stages) — микропроцессор, разработанный компанией MIPS Computer Systems (в настоящее время MIPS Technologies) в соответствии с концепцией проектирования процессоров RISC (то есть для процессоров с упрощенным набором команд). Ранние модели процессора имели 32-битную структуру, позднее появились его 64-битные версии. Существует множество модификаций процессора, включая MIPS I, MIPS II, MIPS III, MIPS IV, MIPS V, MIPS32 и MIPS64, из них действующими являются MIPS32 (для 32-битной реализации) и MIPS64 (для 64-битной реализации). MIPS32 и MIPS64 определяют как набор регистров управления, так и набор команд.

В настоящее время различные реализации MIPS используются в основном во встроенных системах, например, в смартфонах, маршрутизаторах, шлюзах, а также в игровых консолях, таких, как Sony PlayStation 2 и Sony PlayStation Portable.

Формат инструкций MIPS I

Инструкции делятся на три типа: R, I и J. Каждая инструкция начинается с 6-битного кода. В дополнение к коду, инструкции R-типа определяют три регистра, область размера сдвига регистра, и область функции; инструкции I-типа определяют два регистра и непосредственное значение; инструкции J-типа состоят из кода операции и 26-битного адреса перехода.

Далее приведена таблица применения трех форматов инструкции в архитектуре ядра:

Тип		-31- формат (в битах) -0-				
R	код (6)	rs (5)	rt (5)	rd (5)	shamt (5)	функция (6)
1	код (6)	rs (5)	rt (5)	непосредственное (16)		нное (16)
J	код (6)	адрес (26)				

Язык ассемблера MIPS

1)Целочисленные операции

МІРЅ имеет 32 регистра для целочисленных операций. Для выполнения арифметических вычислений данные должны находиться в регистрах. Регистр \$0 всегда хранит 0, а регистр \$1 резервируется для сборки (для хранения псевдоинструкций и больших констант). Нижеприведенная таблица показывает, какие биты каким частям инструкции соответствуют. Дефис (-) обозначает нейтральное состояние. (полная таблица по ссылке wiki)

рия	ние	ксис	ние	ат/код/функц	ечания/Кодирование
		инструкци		ия	
		И			
иетическая],\$s,\$t	s + \$t	R 0 20 ₁₆	ывает два регистра, выполняет прерывание при переполнении
ача данных	vord	(\$s)	emory[\$s + C]	I 23 ₁₆ -	ает word из: MEM[\$s+C] и следующих 3 байтов.
эская		.,\$s,\$t	s & \$t	R 0 24 ₁₆	овая конъюнкция
ый сдвиг	ft logical	s,C	<< C	R 0 0	ет С битов влево
ное ветвление	on equal	,\$t,C	= \$t) go to PC+4+4 °C	I 4 ₁₆ -	одит к инструкции по указанному адресу, если два регистра равны.
товный переход			PC+4[31:28] . C*4	J 2 ₁₆ -	няет безусловный переход к инструкции по указанному адресу.

2) Операции над числами с плавающей запятой

MIPS имеет 32 регистра с плавающей запятой. Регистры соединены по 2 для двойной точности вычислений. Регистры с нечетными номерами не могут быть использованы для арифметических операций или ветвления, они могут лишь частично указывать двойную точность в паре регистров (табл по ссылке)

3) Псевдоинструкции

Эти инструкции принимаются языком ассемблера MIPS, однако они не являются реальными. Ассемблер переводит их в последовательности настоящих инструкций

Название	Синтаксис инструкции	Трансляция в обычную инструкцию	значение
Load Address	la \$1, LabelAddr	lui \$1, LabelAddr[31:16]; ori \$1,\$1, LabelAddr[15:0]	\$1 = Маркировка адреса
Load Immediate	li \$1, IMMED[31:0]	lui \$1, IMMED[31:16]; ori \$1,\$1, IMMED[15:0]	\$1 = 32-битное прямое значение
Branch if greater than	bgt \$rs,\$rt,Label	sit \$at,\$rt,\$rs; bne \$at,\$zero,Label	if(R[rs]>R[rt]) PC=Label
Branch if less than	blt \$rs,\$rt,Label	sit \$at,\$rs,\$rt; bne \$at,\$zero,Label	if(R[rs] <r[rt]) pc="Label</td"></r[rt])>
Branch if greater than or equal	bge	etc.	if(R[rs]>=R[rt]) PC=Label
Branch if less than or equal	ble		if(R[rs]<=R[rt]) PC=Label
Branch if greater than unsigned	bgtu		if(R[rs]=>R[rt]) PC=Label
Branch if greater than zero	bgtz		if(R[rs]>0) PC=Label
Multiplies and returns only first 32 bits	mul \$1, \$2, \$3	mult \$2, \$3; mflo \$1	\$1 = \$2 * \$3

Ссылки

https://ru.wikipedia.org/wiki/MIPS_(%D0%B0%D1%80%D1%85%D0%B8%D1%82%D0%B5 %D0%BA%D1%82%D1%83%D1%80%D0%B0)

ARM

Архитектура ARM (от англ. Advanced RISC Machine — усовершенствованная RISC-машина; иногда — Acorn RISC Machine) — семейство лицензируемых 32-битных и 64-битных микропроцессорных ядер разработки компании ARM Limited.

Среди лицензиатов - AMD, Apple, Analog Devices, Atmel, Xilinx, Cirrus Logic, Intel, Marvell, NXP, STMicroelectronics, Samsung, LG, MediaTek, Qualcomm, Sony, Texas Instruments, Nvidia, Freescale, Миландр, ЭЛВИС, HiSilicon.

Процессоры ARM

В настоящее время значимыми являются несколько семейств процессоров ARM:

- ARM7 (с тактовой частотой до 60-72 МГц), предназначенные, например, для недорогих мобильных телефонов и встраиваемых решений средней производительности. В настоящее время активно вытесняется новым семейством Cortex.
- ARM9 (англ.)русск., ARM11 (с частотами до 1 ГГц) для более мощных телефонов, карманных компьютеров и встраиваемых решений высокой производительности.
- Cortex A новое семейство процессоров на смену ARM9 и ARM11.
- Cortex M новое семейство процессоров на смену ARM7, также призванное занять новую для ARM нишу встраиваемых решений низкой производительности. В семействе присутствуют четыре значимых ядра:
- Cortex-M0, Cortex-M0+ (более энергоэффективное) и Cortex-M1 (оптимизировано для применения в ПЛИС) с архитектурой ARMv6-M;
- Cortex-M3 с архитектурой ARMv7-M;

- Cortex-M4 (добавлены SIMD-инструкции, опционально FPU) и Cortex-M7 (FPU с поддержкой чисел одинарной и двойной точности) с архитектурой ARMv7E-M;
- Cortex-M23 и Cortex-M33 с архитектурой ARMv8-M ARMv8-M.

В 2010 году производитель анонсировал процессоры Cortex-A15 под кодовым названием Eagle, ARM утверждает, что ядро Cortex A15 на 40 процентов производительнее на той же частоте, чем ядро Cortex-A9 при одинаковом числе ядер на чипе. Изделие, изготовленное по 28-нанометровому техпроцессу, имеет 4 ядра, может функционировать на частоте до 2,5 ГГц и будет поддерживаться многими современными операционными системами.

Архитектура

Уже давно существует справочное руководство по архитектуре ARM, которое разграничивает все типы интерфейсов, которые поддерживает ARM, так как детали реализации каждого типа процессора могут отличаться. Архитектура развивалась с течением времени, и начиная с ARMv7 были определены 3 профиля:

- A (application) для устройств, требующих высокой производительности (смартфоны, планшеты);
- R (real time) для приложений, работающих в реальном времени;
- M (microcontroller) для микроконтроллеров и недорогих встраиваемых устройств.

Профили могут поддерживать меньшее количество команд (команды определенного типа).

Режимы

Процессор может находиться в одном из следующих операционных режимов:

- User mode обычный режим выполнения программ. В этом режиме выполняется большинство программ.
- Fast Interrupt (FIQ) режим быстрого прерывания (меньшее время срабатывания).
- Interrupt (IRQ) основной режим прерывания.
- System mode защищённый режим для использования операционной системой.
- Abort mode режим, в который процессор переходит при возникновении ошибки доступа к памяти (доступ к данным или к инструкции на этапе prefetch конвейера).
- Supervisor mode привилегированный пользовательский режим.

• Undefined mode — режим, в который процессор входит при попытке выполнить неизвестную ему инструкцию.

Переключение режима процессора происходит при возникновении соответствующего исключения, или же модификацией регистра статуса.

Набор команд ARM

Режим, в котором исполняется 32-битный набор команд.

ARM Base Instruction Set:

ADC, ADD, AND, B/BL, BIC, CMN, CMP, EOR, LDM, LDR/LDRB, MLA, MOV, MUL, MVN, ORR, RSB, RSC, SBC, STM, STR/STRB, SUB, SWI, SWP, TEQ, TST

Регистры

ARM предоставляет 31 регистр общего назначения разрядностью 32 бит. В зависимости от режима и состояния процессора пользователь имеет доступ только к строго определённому набору регистров. В ARM state разработчику постоянно доступны 17 регистров:

- 13 регистров общего назначения (r0..r12).
- Stack Pointer (r13) содержит указатель стека выполняемой программы.
- Link register (r14) содержит адрес возврата в инструкциях ветвления.
- Program Counter (r15) биты [31:1] содержат адрес выполняемой инструкции.
- Current Program Status Register (CPSR) содержит флаги, описывающие текущее состояние процессора. Модифицируется при выполнении многих инструкций: логических, арифметических, и др.

Во всех режимах, кроме User mode и System mode, доступен также Saved Program Status Register (SPSR). После возникновения исключения регистр CPSR сохраняется в SPSR. Тем самым фиксируется состояние процессора (режим, состояние; флаги арифметических, логических операций, разрешения прерываний) на момент непосредственно перед прерыванием.

Краткое описание инструкций ARM (некраткое)

Операции		Синтаксис Ассемблера
Пересылка	Пересылка	MOV {cond}{S} Rd, <oprnd2></oprnd2>
	Пересылка NOT	MVN {cond}{S} Rd, <oprnd2></oprnd2>

SPSR в регистр СPSR в регистр регистра SPSR СPSR константы во флаги SPSR константы во флаги CPSR с переносом	MRS {cond} Rd, SPSR MRS {cond} Rd, CPSR MSR {cond} SPSR{field}, Rm MSR {cond} CPSR{field}, Rm MSR {cond} CPSR{field}, Imm MSR {cond} SPSR_f, #32bit_Imm MSR {cond} CPSR_f, #32bit_Imm
регистра SPSR СPSR константы во флаги SPSR константы во флаги CPSR	MSR {cond} SPSR{field}, Rm MSR {cond} CPSR{field}, Rm MSR {cond} SPSR_f, #32bit_Imm MSR {cond} CPSR_f, #32bit_Imm
CPSR константы во флаги SPSR константы во флаги CPSR	MSR {cond} CPSR{field}, Rm MSR {cond} SPSR_f, #32bit_Imm MSR {cond} CPSR_f, #32bit_Imm
константы во флаги SPSR константы во флаги CPSR	MSR {cond} SPSR_f, #32bit_Imm MSR {cond} CPSR_f, #32bit_Imm
константы во флаги CPSR	MSR {cond} CPSR_f, #32bit_Imm
с переносом	ADD (
с переносом	ADD {cond}{S} Rd, Rn, <oprnd2></oprnd2>
	ADC {cond}{S} Rd, Rn, <oprnd2></oprnd2>
	SUB {cond}{S} Rd, Rn, <oprnd2></oprnd2>
с переносом	SBC {cond}{S} Rd, Rn, <oprnd2></oprnd2>
обратного вычитания	RSB {cond}{S} Rd, Rn, <oprnd2></oprnd2>
обратного вычитания с переносом	RSC {cond}{S} Rd, Rn, <oprnd2></oprnd2>
	MUL {cond}{S} Rd, Rm, Rs
е-накопление	MLA {cond}{S} Rd, Rm, Rs, Rn
е длинных беззнаковых чисел	UMULL {cond}{S} RdLo, RdHi, Rm, Rs
е - беззнаковое накопление длинных значений	UMLAL {cond}{S} RdLo, RdHi, Rm, Rs
е знаковых длинных	SMULL {cond}{S} RdLo, RdHi, Rm, Rs
е - знаковое накопление длинных значений	SMLAL {cond}{S} RdLo, RdHi, Rm, Rs
	CMP {cond} Rd, <oprnd2></oprnd2>
отрицательное	CMN {cond} Rd, <oprnd2></oprnd2>
	TST {cond} Rn, <oprnd2></oprnd2>
на эквивалентность	TEQ {cond} Rn, <oprnd2></oprnd2>
	AND {cond}{S} Rd, Rn, <oprnd2></oprnd2>
	EOR {cond}{S} Rd, Rn, <oprnd2></oprnd2>
	ORR {cond}{S} Rd, Rn, <oprnd2></oprnd2>
	BIC {cond}{S} Rd, Rn, <oprnd2>></oprnd2>
a	B {cond} label
	Y

	In .		
	Переход по ссылке	BL {cond} label	
	Переход и изменение набора инструкций	BX {cond} Rn	
	слова	LDR {cond} Rd, <a_mode2></a_mode2>	
	слова с преимуществом режима пользователя	LDR {cond}T Rd, <a_mode2p></a_mode2p>	
	байта	LDR {cond}B Rd, <a_mode2></a_mode2>	
	байта с преимуществом режима пользователя	LDR {cond}BT Rd, <a_mode2p></a_mode2p>	
	байта со знаком	LDR {cond}SB Rd, <a_mode3></a_mode3>	
	полуслова	LDR {cond}H Rd, <a_mode3></a_mode3>	
	полуслова со знаком	LDR {cond}SH Rd, <a_mode3></a_mode3>	
Чтение	операции с несколькими блоками данных	-	
	с предварительным инкрементом	LDM {cond}IB Rd{!}, <reglist>{^}</reglist>	
	≤ с последующим инкрементом	LDM {cond}IA Rd{!}, <reglist>{^}</reglist>	
	с предварительным декрементом	LDM {cond}DB Rd{!}, <reglist>{^}</reglist>	
	≤ с последующим декрементом	LDM {cond}DA Rd{!}, <reglist>{^}</reglist>	
		LDM {cond} <a_mode4l> Rd{!}, <reglist></reglist></a_mode4l>	
	■ операция над стеком и восстановление CPSR	LDM {cond} <a_mode4l> Rd{!}, <reglist+pc>^</reglist+pc></a_mode4l>	
	операция над стеком с регистрами пользователя	LDM {cond} <a_mode4l> Rd{!}, <reglist>^</reglist></a_mode4l>	
	слова	STR {cond} Rd, <a_mode2></a_mode2>	
	слова с преимуществом режима пользователя	STR {cond}T Rd, <a_mode2p></a_mode2p>	
	байта	STR {cond}B Rd, <a_mode2></a_mode2>	
	байта с преимуществом режима пользователя	STR {cond}BT Rd, <a_mode2p></a_mode2p>	
22540	полуслова	STR {cond}H Rd, <a_mode3></a_mode3>	
Запись	операции над несколькими блоками данных	-	
	с предварительным инкрементом	STM {cond}IB Rd{!}, <reglist>{^}</reglist>	
	≤ с последующим инкрементом	STM {cond}IA Rd{!}, <reglist>{^}</reglist>	
	≤ с предварительным декрементом	STM {cond}DB Rd{!}, <reglist>{^}</reglist>	
	о с последующим декрементом	STM {cond}DA Rd{!}, <reglist>{^}</reglist>	

	€ операция над стеком	STM {cond} <a_mode4s> Rd{!}, <reglist></reglist></a_mode4s>
	 операция над стеком с регистрами пользователя 	STM {cond} <a_mode4s> Rd{!}, <reglist>^</reglist></a_mode4s>
Обмен	СЛОВ	SWP {cond} Rd, Rm, [Rn]
	байт	SWP {cond}B Rd, Rm, [Rn]
	Операция над данными	CDP {cond} p <cpnum>, <op1>, CRd, CRn, CRm, <</op1></cpnum>
	Пересылка в ARM-регистр из сопроцессора	MRC {cond} p <cpnum>, <op1>, Rd, CRn, CRm, <o< td=""></o<></op1></cpnum>
Сопроцессор	Пересылка в сопроцессор из ARM-регистра	MCR {cond} p <cpnum>, <op1>, Rd, CRn, CRm, <o< td=""></o<></op1></cpnum>
	Чтение	LDC {cond} p <cpnum>, CRd, <a_mode5></a_mode5></cpnum>
	Запись	STC {cond} p <cpnum>, CRd, <a_mode5></a_mode5></cpnum>
Программное п	рерывание	SWI 24bit_Imm

Ссылки

https://ru.wikipedia.org/wiki/%D0%90%D1%80%D1%85%D0%B8%D1%82%D0%B5
%D0%BA%D1%82%D1%83%D1%80%D0%B0_%D0%BF%D1%80%D0%BE%D1%
86%D0%B5%D1%81%D1%81%D0%BE%D1%80%D0%B0

http://www.gaw.ru/html.cgi/txt/doc/micros/arm/arh 7dtmi/insruct.htm