Name - Omkar Phansopkar

UID - 2022701007 D3 - CSE-DS

Dataset - Telco customer churn: IBM dataset

https://www.kaggle.com/datasets/yeanzc/telco-customer-churn-ibm-dataset

from google.colab import drive
drive.mount('/content/drive')

Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remount,

!pip install branca plotly scikit-learn scipy imblearn --quiet
!pip install h3 folium --quiet
import numpy as np

from scipy import stats from IPython.display import Image import branca.colormap as cm import pandas as pd import seaborn as sns import plotly.express as px from plotly.offline import init_notebook_mode, iplot import seaborn as sns import matplotlib.pyplot as plt from imblearn.over_sampling import SMOTE from imblearn.pipeline import Pipeline import h3 import matplotlib import imblearn import os import folium

Data Description

CustomerID: A unique ID that identifies each customer.

from sklearn.impute import SimpleImputer

Count: A value used in reporting/dashboarding to sum up the number of customers in a filtered set.

Country: The country of the customer's primary residence.

State: The state of the customer's primary residence.

City: The city of the customer's primary residence.

Zip Code: The zip code of the customer's primary residence.

Lat Long: The combined latitude and longitude of the customer's primary residence.

Latitude: The latitude of the customer's primary residence.

Longitude: The longitude of the customer's primary residence.

Gender: The customer's gender: Male, Female

Senior Citizen: Indicates if the customer is 65 or older: Yes, No

Partner: Indicate if the customer has a partner: Yes, No

Dependents: Indicates if the customer lives with any dependents: Yes, No. Dependents could be children, parents, grandparents, etc.

Tenure Months: Indicates the total amount of months that the customer has been with the company by the end of the quarter specified above.

Phone Service: Indicates if the customer subscribes to home phone service with the company: Yes, No

Multiple Lines: Indicates if the customer subscribes to multiple telephone lines with the company: Yes, No

Internet Service: Indicates if the customer subscribes to Internet service with the company: No, DSL, Fiber Optic, Cable.

Online Security: Indicates if the customer subscribes to an additional online security service provided by the company: Yes, No

Online Backup: Indicates if the customer subscribes to an additional online backup service provided by the company: Yes, No

Device Protection: Indicates if the customer subscribes to an additional device protection plan for their Internet equipment provided by the company: Yes, No

Tech Support: Indicates if the customer subscribes to an additional technical support plan from the company with reduced wait times: Yes, No

Streaming TV: Indicates if the customer uses their Internet service to stream television programing from a third party provider: Yes, No. The company does not charge an additional fee for this service.

Streaming Movies: Indicates if the customer uses their Internet service to stream movies from a third party provider: Yes, No. The company does not charge an additional fee for this service.

Contract: Indicates the customer's current contract type: Month-to-Month, One Year, Two Year.

Paperless Billing: Indicates if the customer has chosen paperless billing: Yes, No

Payment Method: Indicates how the customer pays their bill: Bank Withdrawal, Credit Card, Mailed Check

Monthly Charge: Indicates the customer's current total monthly charge for all their services from the company.

Total Charges: Indicates the customer's total charges, calculated to the end of the quarter specified above.

Churn Label: Yes = the customer left the company this quarter. No = the customer remained with the company. Directly related to Churn Value.

Churn Value: 1 = the customer left the company this quarter. 0 = the customer remained with the company. Directly related to Churn Label.

Churn Score: A value from 0-100 that is calculated using the predictive tool IBM SPSS Modeler. The model incorporates multiple factors known to cause churn. The higher the score, the more likely the customer will churn.

CLTV: Customer Lifetime Value. A predicted CLTV is calculated using corporate formulas and existing data. The higher the value, the more valuable the customer. High value customers should be monitored for churn.

Churn Reason: A customer's specific reason for leaving the company. Directly related to Churn Category.

Source This dataset is detailed in: https://community.ibm.com/community/user/businessanalytics/blogs/steven-macko/2019/07/11/telco-customer-churn-1113

Downloaded from: https://community.ibm.com/accelerators/?

context=analytics&query=telco%20churn&type=Data&product=Cognos%20Analytics

There are several related datasets as documented in: https://community.ibm.com/community/user/businessanalytics/blogs/steven-macko/2018/09/12/base-samples-for-ibm-cognos-analytics

data = pd.read_excel('/content/drive/MyDrive/datasets/fds_customer_churn/Telco_customer_churn.xlsx')
data.sample()

		CustomerID	Count	Country	State	City	Zip Code	Lat Long	Latitude	
	1565	4192-GORJT	1	United States	California	Fremont	94555	37.555473, -122.080312	37.555473	
1 rows		× 33 columns								

data.info()

RangeIndex: 7043 entries, 0 to 7042 Data columns (total 33 columns): # Column Non-Null Count Dtype 0 CustomerID 7043 non-null object 7043 non-null int64 1 Count 2 Country 7043 non-null object 3 7043 non-null object State 4 7043 non-null City object Zip Code 5 7043 non-null int64 6 Lat Long 7043 non-null object Latitude 7043 non-null float64 8 Longitude 7043 non-null float64 q Gender 7043 non-null object 10 Senior Citizen 7043 non-null object 11 Partner 7043 non-null object 12 Dependents 7043 non-null object 13 Tenure Months 6995 non-null float64 14 Phone Service 7043 non-null object 15 7043 non-null Multiple Lines obiect 16 Internet Service 7043 non-null object 17 Online Security 7043 non-null object 18 Online Backup 7043 non-null object 19 Device Protection 7043 non-null object 20 Tech Support 7043 non-null object 21 Streaming TV 7043 non-null object 22 Streaming Movies 7043 non-null object 23 7043 non-null Contract object Paperless Billing 24 7043 non-null object Payment Method 7043 non-null object

<class 'pandas.core.frame.DataFrame'>

```
26 Monthly Charges
                         7043 non-null
                                          float64
                         7043 non-null
 27
     Total Charges
                                           object
 28
    Churn Label
                         7043 non-null
                                           object
 29
     Churn Value
                         7043 non-null
                                           int64
 30
     Churn Score
                         7043 non-null
                                           int64
 31
    CLTV
                         7043 non-null
                                           int64
                         1869 non-null
 32
    Churn Reason
                                          object
dtypes: float64(4), int64(5), object(24) memory usage: 1.8+ MB
```

- · what services customers use,
- · type of contract
- · the lifetime of the client in the service
- · payment method

Churn Label

- the amount of monthly payments of customers and their total costs in the service,
- · customer locations,
- gender and age of the client
- · reason for churn (for clients in the churn)

```
data['Total Charges']
    0
              108.15
    1
              151.65
    2
              820.5
    3
             3046.05
              5036.3
              1419.4
    7038
    7039
              1990.5
    7040
              7362.9
    7041
              346.45
    7042
              6844.5
    Name: Total Charges, Length: 7043, dtype: object
data['Total Charges'] = pd.to_numeric(data['Total Charges'], errors='coerce')
data['Total Charges']
              108.15
              151.65
    1
    2
              820.50
    3
             3046.05
             5036.30
    4
    7038
            1419.40
    7039
             1990.50
    7040
             7362.90
    7041
              346.45
    7042
            6844.50
    Name: Total Charges, Length: 7043, dtype: float64
data.isnull().sum()
    CustomerID
                             0
    Count
                             0
    Country
    State
    City
    Zip Code
    Lat Long
    Latitude
    Longitude
    Gender
                             0
    Senior Citizen
    Partner
    Dependents
    Tenure Months
                            48
    Phone Service
                             0
    Multiple Lines
                             0
    Internet Service
                             0
    Online Security
                             0
    Online Backup
    Device Protection
                             0
    Tech Support
    Streaming TV
    Streaming Movies
                             0
                             0
    Contract
    Paperless Billing
                             0
    Payment Method
                             0
    Monthly Charges
                             0
    Total Charges
                            11
```

Churn Value 0 Churn Score 0 CLTV 0 Churn Reason 5174

dtype: int64

data.isnull().sum() / len(data)

0.000000 CustomerID 0.000000 Count 0.000000 Country State 0.000000 City 0.000000 Zip Code 0.000000 0.000000 Lat Long Latitude 0.000000 0.000000 Longitude 0.000000 Gender Senior Citizen 0.000000 Partner 0.000000 Dependents 0.000000 Tenure Months 0.006815 Phone Service 0.000000 0.000000 Multiple Lines 0.000000 Internet Service Online Security 0.000000 Online Backup 0.000000 Device Protection 0.000000 0.000000 Tech Support Streaming TV 0.000000 0.000000 Streaming Movies 0.000000 Contract Paperless Billing 0.000000 Payment Method 0.000000 Monthly Charges 0.000000 Total Charges Churn Label 0.001562 0.000000 Churn Value 0.000000 Churn Score 0.000000 CLTV 0.000000 Churn Reason 0.734630

dtype: float64

data[data['Tenure Months'].isnull()]

	CustomerID	Count	Country	State	City	Zip Code	Lat Long	Latitude	Longitude	Gender		Contract
217	9944-HKVVB	1	United States	California	King City	93930	36.220761, -120.980777	36.220761	-120.980777	Female		Month-to- month
258	9524-EGPJC	1	United States	California	Walnut Creek	94595	37.862128, -122.075197	37.862128	-122.075197	Female		Month-to- month
332	6818- WOBHJ	1	United States	California	Fulton	95439	38.493888, -122.777141	38.493888	-122.777141	Female		Month-to- month
416	9391-EOYLI	1	United States	California	Lewiston	96052	40.704293, -122.803899	40.704293	-122.803899	Male		Month-to- month
419	3068- OMWZA	1	United States	California	Round Mountain	96084	40.923558, -122.059933	40.923558	-122.059933	Male		Month-to- month
438	2058-DCJBE	1	United States	California	Los Angeles	90012	34.065875, -118.238728	34.065875	-118.238728	Male	•••	Month-to- month
515	9497- QCMMS	1	United States	California	Escondido	92026	33.21846, -117.116916	33.218460	-117.116916	Male		Month-to- month
568	3023-GFLBR	1	United States	California	San Bernardino	92408	34.084909, -117.258107	34.084909	-117.258107	Female		Month-to- month
573	9061-TIHDA	1	United States	California	Murrieta	92563	33.581045, -117.14719	33.581045	-117.147190	Male		Month-to- month
637	9221-OTIVJ	1	United States	California	Dunlap	93621	36.789213, -119.140338	36.789213	-119.140338	Female		Month-to- month
666	0407-BDJKB	1	United States	California	San Francisco	94114	37.758085, -122.434801	37.758085	-122.434801	Male		Month-to- month
669	3269- ATYWD	1	United States	California	San Francisco	94123	37.800254, -122.436975	37.800254	-122.436975	Male		Month-to- month
749	9992- RRAMN	1	United States	California	Riverbank	95367	37.734971, -120.954271	37.734971	-120.954271	Male		Month-to- month
824	5649- ANRML	1	United States	California	Clipper Mills	95930	39.562239, -121.14836	39.562239	-121.148360	Male		Month-to- month
830	8393-DLHGA	1	United States	California	Palermo	95968	39.435756, -121.552071	39.435756	-121.552071	Male		Month-to- month
842	5519- NPHVG	1	United States	California	Klamath River	96050	41.816595, -122.948287	41.816595	-122.948287	Female	•••	Month-to- month
850	5498-TXHLF	1	United States	California	Whitmore	96096	40.637105, -121.906949	40.637105	-121.906949	Female		Month-to- month
937	0133- BMFZO	1	United States	California	Alhambra	91803	34.074736, -118.145959	34.074736	-118.145959	Female		Month-to- month
942	8623- TMRBY	1	United States	California	Chula Vista	91915	32.605012, -116.97595	32.605012	-116.975950	Male		Month-to- month
944	3208-YPIOE	1	United States	California	La Mesa	91942	32.782501, -117.01611	32.782501	-117.016110	Male		Month-to- month
945	2612- RANWT	1	United States	California	Mount Laguna	91948	32.830852, -116.444601	32.830852	-116.444601	Female		Month-to- month
956	3194-ORPIK	1	United States	California	San Diego	92113	32.697098, -117.116587	32.697098	-117.116587	Female		Month-to- month
1055	0618- XWMSS	1	United States	California	Wasco	93280	35.652242, -119.4464	35.652242	-119.446400	Male		Month-to- month
1056	5276- KQWHG	1	United States	California	Woody	93287	35.710244, -118.881679	35.710244	-118.881679	Female		Month-to- month
lah recea	2357-	/drive/1R	United	A LaWMbw	an . do3GAlotklDA	0.400 7	37.454924.	11To-pMa A C	RadnRna&nri	⊏ ı ntMode–tr	TIP.	Month-to-

Paper Bil

data[data['Total Charges'].isna()]

```
City
               CustomerID Count Country
                                                         State
                                                                                                Lat Long Latitu
                                                                                               34.084909,
                                             United
                                                                              San
        2234
                4472-LVYGI
                                                      California
                                                                                     92408
                                                                                                              34.0849
data.dropna(subset=['Country', 'State', 'City'], inplace=True)
                                                                                               36.869584,
                                             United California Indonondones 03536
data['calc_charges'] = data['Monthly Charges'] * data['Tenure Months']
                                             United California
        2568 5700-I VOEO
                                                                       San Maten 04401
data.columns
      'Multiple Lines', 'Internet Service', 'Online Securite',
'Online Backup', 'Device Protection', 'Tech Support', 'Streaming TV',
'Streaming Movies', 'Contract', 'Paperless Billing', 'Payment Method',
'Monthly Charges', 'Total Charges', 'Churn Label', 'Churn Value',
'Churn Score', 'CLTV', 'Churn Reason', 'calc_charges'],
dtype='object')
```

calculating difference between Total Charges and calculated charges

```
data['diff_in_charges'] = data['Total Charges'] - data['calc_charges']
data['diff_in_charges']
    0
               0.45
    1
              10.25
    2
              23.30
    3
             111.65
             -45.00
            -103.40
    7038
    7039
             -44.70
    7040
             -67.50
    7041
              20.85
    7042
            -128.40
    Name: diff_in_charges, Length: 7043, dtype: float64
```

Charges distribution by contract

sns.set(style="whitegrid")

sns.histplot(data=data, x="Total Charges", hue="Contract", element="step", common_norm=False)


```
# How are total charges distributed ?
plt.figure(figsize=(10, 6))
ax = sns.boxplot(data=data, x="Total Charges", color="red")
ax.set_xticks(range(0, 9000, 1000))
plt.subplots_adjust(left=0.1, right=0.9, top=0.9, bottom=0.1)
```


Accounting irregularities?
data.groupby('Contract')[['Total Charges','diff_in_charges']].quantile([.50,.80,.90,.95])

Total Charges diff_in_charges Contract Month-to-month 0.50 679.5500 0.0000 0.80 2485.7300 24.6800 0.90 3844.0600 54.2000 0.95 4966.9200 87.3650 0.50 One year 2657.5500 0.7750 5286.4600 55.0500 0.80 0.90 6341.2500 92.2000 0.95 7072.4725 133.3375 0.50 3623.9500 0.5000 Two year 0.80 6399.2400 61.5300 0.90 7457.6100 97 5700 0.95 7922.3400 139.1800

data['Total Charges'] = np.where(data['Total Charges'].isna() == True,data['calc_charges'], data['Total Charges'])

data.select_dtypes(include=['number']).columns

plt.title('Box Plots for Numerical Columns')

plt.show()

plt.ylabel('Value')


```
data.groupby(['Country','State'])['CustomerID'].count()
```

Country State
United States California 7043
Name: CustomerID, dtype: int64

data['City'].nunique()

1129

Geolocation scatter plot
fig = px.scatter_mapbox(data.groupby(['Latitude','Longitude'])['CustomerID'].count().reset_index(), lat="Latitude", lon="Lo
fig.update_layout(mapbox_style="open-street-map")
fig.update_layout(margin={"r":0,"t":0,"l":0,"b":0})
fig.show()

m

```
# How many customers in each city ?
f, ax = plt.subplots(figsize=(18,5))
plt.bar(
  data.groupby('City')['CustomerID'].count().sort_values(ascending=False).head(
    10).index,
  data.groupby('City')['CustomerID'].count().sort_values(ascending=False).head(10).values,
)
ax.legend(fontsize = 14)
```

WARNING:matplotlib.legend:No artists with labels found to put in legend. Not <matplotlib.legend.Legend at 0x7b729c7ddf00>


```
# Geolocation & number of clients
hex_level = 5
data['hex_id'] = data.apply(lambda x: h3.geo_to_h3(x['Latitude'], x['Longitude'], hex_level), axis=1)
hex_counts = data.groupby('hex_id')['CustomerID'].count().reset_index(name='total_clients')
hex_counts['center'] = hex_counts['hex_id'].apply(lambda x: h3.h3_to_geo(x))
color_range = [hex_counts['total_clients'].min(), hex_counts['total_clients'].max()]
mean\_lat, mean\_lon = hex\_counts['center'].apply(lambda x: x[0]).mean(), hex\_counts['center'].apply(lambda x: x[1]).mean()
map_center = [mean_lat, mean_lon]
m = folium.Map(location=map_center, zoom_start=6, tiles='Stamen Terrain')
for _, row in hex_counts.iterrows():
   folium.Polygon(
       locations=h3.h3_to_geo_boundary(row['hex_id']),
       fill=True,
       fill_color=colormap(row['total_clients']),
       fill_opacity=0.7,
       stroke=False,
       tooltip=f"Number of clients: {row['total_clients']}"
   ).add_to(m)
colormap.caption = 'Number of clients'
m.add_child(colormap)
```

Make this Notebook Trusted to load map: File -> Trust Notebook

churn = data.assign(churn_clients = np.where(data['Churn Label']=='Yes',data['CustomerID'],None)).groupby(['hex_id']).agg({

data.groupby(['hex_id'])['CustomerID'].count()

```
hex_id
85280043fffffff
8528004bfffffff
                    4
8528004ffffffff
                    4
85280207fffffff
8528020 bfffffff\\
                    4
85485b03fffffff
85485b33fffffff
85485b63fffffff
                    5
85485babfffffff
                    5
85485bb7fffffff
                   10
```

Name: CustomerID, Length: 714, dtype: int64

clients = data.groupby(['hex_id'])['CustomerID'].count().reset_index()
clients.sample(5)

	CustomerID	hex_id	
11.	4	8529a227ffffff	481
	8	8528305bfffffff	162
	4	8529ab8bfffffff	629
	4	8529a8b3ffffff	573
	8	85283007ffffff	146

Hex id for plotting purpose
churn_data = clients.join(churn.set_index(['hex_id']), on=['hex_id'])
churn_data

	hex_id	CustomerID	churn_clients	#
0	85280043fffffff	4	1	ıl.
1	8528004bfffffff	4	1	
2	8528004fffffff	4	1	
3	85280207ffffff	4	1	
4	8528020bfffffff	4	1	
709	85485b03fffffff	5	1	
710	85485b33fffffff	5	1	
711	85485b63fffffff	5	0	
712	85485babfffffff	5	3	
713	85485bb7ffffff	10	3	

714 rows \times 3 columns

```
churn_data['churn_rate'] = churn_data['churn_clients']/churn_data['CustomerID']
churn_data['churn_rate']
```

0 0.25

1 0.25

```
2
       0.25
3
       0.25
4
       0.25
709
       0.20
710
       0.20
711
       0.00
712
       0.60
713
       0.30
Name: churn_rate, Length: 714, dtype: float64
```

churn_data

	hex_id	CustomerID	churn_clients	churn_rate	\blacksquare
0	85280043ffffff	4	1	0.25	11.
1	8528004bffffff	4	1	0.25	
2	8528004fffffff	4	1	0.25	
3	85280207ffffff	4	1	0.25	
4	8528020bfffffff	4	1	0.25	
709	85485b03fffffff	5	1	0.20	
710	85485b33fffffff	5	1	0.20	
711	85485b63fffffff	5	0	0.00	
712	85485babffffff	5	3	0.60	
713	85485bb7ffffff	10	3	0.30	

714 rows x 4 columns

```
churn_data['center'] = churn_data['hex_id'].apply(lambda x: h3.h3_to_geo(x))
color_range = [churn_data['churn_rate'].min(), churn_data['churn_rate'].max()]
colormap = cm.LinearColormap(["green","orange","red"],vmin = min(color_range), vmax = max(color_range))
mean_lat, mean_lon = churn_data['center'].apply(lambda x: x[0]).mean(), churn_data['center'].apply(lambda x: x[1]).mean()
map_center = [mean_lat, mean_lon]
m = folium.Map(location=map_center, zoom_start=6, width='100%', height='80%',tiles='Stamen Terrain')
for _, row in churn_data.iterrows():
    folium.Polygon(
        locations=h3.h3_to_geo_boundary(row['hex_id']),
        fill=True,
        fill_color=colormap(row['churn_rate']),
        fill_opacity=0.7,
        stroke=False,
        tooltip=f"Churn rate: {row['churn_rate']}<br/>br>Number of customers: {row['CustomerID']}"
    ).add_to(m)
colormap.caption = 'Churn rate'
m.add_child(colormap)
```


<matplotlib.collections.PathCollection at 0x7b729a390fa0>

fig, ax = plt.subplots()
ax.scatter(churn_data['CustomerID'], churn_data['churn_rate'], s=churn_data['churn_rate']*100, c=churn_data['churn_rate'],
ax.set_xlabel('Customer ID')
ax.set_ylabel('Churn Rate')


```
plt.hist(data['Tenure Months'], bins=50)
plt.legend()
plt.xlabel('Tenure Months')
plt.ylabel('Number of customers')
```

WARNING:matplotlib.legend:No artists with labels found to put in legend. Note that artists whose label start with an Text(0, 0.5, 'Number of customers')

data.groupby('Churn Label')['Tenure Months'].quantile([.50,.75,.90,.95])

Churn Lab	el	
No	0.50	38.0
	0.75	61.0
	0.90	71.0
	0.95	72.0
Yes	0.50	10.0
	0.75	31.0
	0.90	50.0
	0.95	60.0

Name: Tenure Months, dtype: float64

data.groupby('Churn Label')['Tenure Months'].mean()

Churn Label No 37.578893 Yes 18.274855

Name: Tenure Months, dtype: float64

```
Churn Reason CustomerID
        1
                             Attitude of support person
                                                                    192
# What is frequency of each reason for churning out ?
plt.bar(grouped['Churn Reason'], grouped['CustomerID'])
plt.xticks(rotation=90)
      ([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19], [Text(0, 0, 'Attitude\ of\ support\ person'),
         Text(1, 0, 'Competitor offered higher download speeds'),
         Text(2, 0, 'Competitor offered more data'),
         Text(3, 0, "Don't know"),
        Text(4, 0, 'Competitor made better offer'),
         Text(5, 0, 'Attitude of service provider')
                       'Competitor had better devices'),
         Text(6, 0,
         Text(7, 0, 'Network reliability'),
         Text(8, 0,
                       'Product dissatisfaction'),
         Text(9, 0, 'Price too high'),
         Text(10, 0, 'Service dissatisfaction'),
         Text(11, 0, 'Lack of self-service on Website'),
         Text(12, 0,
                         'Extra data charges'),
                         'Moved'),
         Text(13, 0,
        Text(14, 0, 'Limited range of services'),
         Text(15, 0, 'Long distance charges'),
         Text(16, 0, 'Lack of affordable download/upload speed'),
         Text(17, 0, 'Poor expertise of phone support'),
        Text(18, 0, 'Poor expertise of online support'),
        Text(19, 0, 'Deceased')])
        200
        175
        150
        125
        100
         75
         50
         25
          0
                      Competitor offered higher download speeds
                         Competitor offered more data
                                               Product dissatisfaction
                                                  Price too high
                                                          Lack of self-service on Website
                                                                         Long distance charges
                                                                                Poor expertise of phone support
                  Attitude of support person
                             Don't know
                                Competitor made better offer
                                        Competitor had better devices
                                            Network reliability
                                                       Service dissatisfaction
                                                              Extra data charges
                                                                     Limited range of services
                                                                             Lack of affordable download/upload speed
                                                                                    expertise of online support
                                    Attitude of service provider
                                                                  Moved
# number of customers who churned and not churned
exit_counts = data['Churn Value'].value_counts()
exit_percentages = exit_counts
sns.set_style('whitegrid')
plt.figure(figsize=(8,6))
ax = sns.barplot(x=exit_counts.index, y=exit_counts.values, palette='pastel')
ax.set(xlabel='Churn Customers', ylabel='Number of Customers', title='Distribution of Churn Customers')
```

plt.xticks([0, 1], ['Not Churn', 'Churn'])
plt.ylim(top=max(exit_counts.values)*1.1)
add counting number on top of each bar

```
for i, v in enumerate(exit_percentages):
    ax.text(i, exit_counts.values[i]+30, f'{v}', fontsize=14, color='black', ha='center')
plt.tight_layout()
plt.show()
```



```
# Does having partner or being senior citizen affect churns ?
fig, (ax1, ax2) = plt.subplots(ncols=2, figsize=(15,6))
colors = ['#1a237e', '#FFA500']
partner_churn = data.groupby(['Partner', 'Churn Value'])['Churn Value'].count().unstack().plot(ax=ax1, kind='bar', color=co
ax1.set_xlabel('Partner')
ax1.set_ylabel('Count')
ax1.set_title('Customer Churn by Partner')
ax1.legend(['Non-Churn', 'Churn'], title='Churn Value', loc='upper right')
senior_churn = data.groupby(['Senior Citizen', 'Churn Value'])['Churn Value'].count().unstack().plot(ax=ax2, kind='bar', co
ax2.set_xlabel('Senior Citizen')
ax2.set_ylabel('Count')
ax2.set_title('Customer Churn by Senior Citizen')
ax2.legend(['Non-Churn', 'Churn'], title='Churn Value', loc='upper right')
plt.suptitle('Customer Churn by Partner and Senior Citizen', fontsize=16, fontweight='bold')
plt.tight_layout()
plt.show()
```

Customer Churn by Partner and Senior Citizen


```
# Contract wise churned or not ?
churn_labels = data['Churn Label'].unique()
contracts = data['Contract'].unique()
fig, ax = plt.subplots(figsize=(7, 5))
contract_colors = {'Month-to-month': 'lightblue', 'One year': 'lightgreen', 'Two year': 'lightcoral'}
width = 0.2
x = np.arange(len(churn_labels))
for i, contract in enumerate(contracts):
    contract_data = data[data['Contract'] == contract]
    counts = [contract_data[contract_data['Churn Label'] == label]['Churn Label'].count() for label in churn_labels]
   ax.bar(x + i * width, counts, width=width, label=contract, color=contract_colors[contract])
ax.set_xlabel('Churn Label')
ax.set_ylabel('Count')
ax.set_title('Number of customers by contract type')
ax.set_xticks(x + width)
ax.set_xticklabels(churn_labels)
ax.legend(title='Contract', loc='upper right')
plt.tight_layout()
plt.show()
```


Churn rate by contract type

Does contract type affect Tenure months & churn ?
data.groupby(['Contract','Churn Label'])['Tenure Months'].mean()

Contract	Churi	n Label	
Month-to-month	No		21.054141
	Yes		14.350878
One year	No		41.674063
	Yes		44.963855
Two year	No		56.602914
	Yes		61.270833
Name: Tenure M	onths,	dtype:	float64

Total charges

```
plt.hist(data['Total Charges'], bins=50)
```

```
(array([1101.,
                         547.,
                                     404.,
                                                337.,
                                                           312.,
                                                                       270.,
                                                                                  272.,
                                                                                              270.,
                                                                                                         235.,
              180.,
                         190.,
                                    135.,
                                                123.,
                                                           121.,
                                                                       116.,
                                                                                  104.,
                                                                                               93.,
                                                                                                         115.,
               99.,
                           92.,
                                     100.,
                                                 79.,
                                                             99.,
                                                                       100.,
                                                                                    82.,
                                                                                               80.,
                                                                                                           86.,
                         102.,
                                      60.,
                                                  71.,
                                                             75.,
                                                                        93.,
                                                                                    74.,
                                                                                                           62.,
                86.,
                                                                                               83.,
                           62.,
                                                  56.,
                                                                                    44.,
                73.,
                                      58.,
                                                             57.,
                                                                        44.,
                                                                                               44.,
                                                                                                           35.,
               41.,
                                      26.,
                                                               8.]),
                           29.,
                                                  18.,
                             173.696, 347.392,
                                                                                             868.48 ,
 array([
                 0.
                                                             521.088, 694.784,
            1042.176, 1215.872, 1389.568, 1563.264, 1736.96 , 1910.656,
            2084.352, 2258.048, 2431.744, 2605.44, 2779.136, 2952.832, 3126.528, 3300.224, 3473.92, 3647.616, 3821.312, 3995.008, 4168.704, 4342.4, 4516.096, 4689.792, 4863.488, 5037.184, 5210.88, 5384.576, 5558.272, 5731.968, 5905.664, 6079.36, 6253.056, 6426.752, 6600.448, 6774.144, 6947.84, 7121.536, 7305.323, 7469.038, 7642.674, 7216.32, 7306.016, 6163.712
            7295.232, 7468.928, 7642.624, 7816.32 , 7990.016, 8163.712, 8337.408, 8511.104, 8684.8 ]),
 <BarContainer object of 50 artists>)
```


Monthly Charges

plt.hist(data['Monthly Charges'], bins=50)

```
(array([868., 316., 66., 343., 13., 59., 25., 32., 57., 194., 19., 190., 107., 96.,
                                                                25.,
                                                                       74.,
                                                                                8.,
                                                       96., 204.,
                                                                      43., 148.,
         67., 125., 48., 278., 116., 166., 265., 66., 308., 156., 150., 259., 82., 270., 130., 165., 213., 93., 236., 114., 149., 177., 82., 115., 58., 50., 54., 17.]),
 array([ 18.25, 20.26, 22.27,
                                                             28.3 ,
                                         24.28, 26.29,
                                                                       30.31,
                                                                                 32.32,
           34.33,
                                                             44.38,
                                                                                 48.4 ,
                                                                       46.39,
                     36.34,
                               38.35,
                                         40.36,
                                                   42.37,
           50.41,
                                                                                 64.48,
                     52.42,
                               54.43,
                                         56.44,
                                                   58.45,
                                                             60.46,
                                                                       62.47,
           66.49,
                     68.5 ,
                               70.51,
                                         72.52,
                                                   74.53,
                                                             76.54,
                                                                       78.55,
                                                                                 80.56,
           82.57, 84.58, 86.59, 88.6, 90.61, 92.62, 94.63, 96.64,
         98.65, 100.66, 102.67, 104.68, 106.69, 108.7, 110.71, 112.72, 114.73, 116.74, 118.75]),
 <BarContainer object of 50 artists>)
```


data.groupby('Churn Label')['Monthly Charges'].quantile([.50,.75,.95,.99])

```
Churn Label
No
             0.50
                       64.4250
             0.75
                       88.4000
                      108.4175
             0.95
             0.99
                      115.1000
Yes
             0.50
                       79.6500
             0.75
                       94.2000
             0.95
                      105.6100
             0.99
                      111.1320
Name: Monthly Charges, dtype: float64
```

corr_df = data.copy()

```
corr_df['Churn Label'].replace(to_replace='Yes', value=1, inplace=True)
corr_df['Churn Label'].replace(to_replace='No', value=0, inplace=True)
```

df_dummies.head()

	Churn Label	Phone Service_No	Phone Service_Yes			Multiple Lines_Yes	Internet Service_DSL	Internet Service_Fiber optic	Internet Service_No	Online Security_No	
0	1	0	1	1	0	0	1	0	0	0	
1	1	0	1	1	0	0	0	1	0	1	
2	1	0	1	0	0	1	0	1	0	1	
3	1	0	1	0	0	1	0	1	0	1	
4	1	0	1	0	0	1	0	1	0	1	

5 rows × 27 columns

```
# Plot correlation of features
plt.figure(figsize=(9, 7))
sns.heatmap(df_dummies.corr(), annot=False, cmap='coolwarm')
plt.show()
```


Correlation of Churn Label with other variables

```
fig, ax = plt.subplots(figsize=(8, 6))
ax.bar(df_dummies.corr()['Churn Label'].sort_values(ascending=False).index,
      df_dummies.corr()['Churn Label'].sort_values(ascending=False).values)
ax.set_title('Correlation of Churn Label with other variables')
ax.set_xlabel('Variables')
ax.set_ylabel('Correlation')
plt.xticks(rotation=90)
plt.show()
```

e Lines

Customers subscribed to each internet service
internet_services = data.groupby('Internet Service')['CustomerID'].count().reset_index()
plt.bar(internet_services['Internet Service'], internet_services['CustomerID'])
plt.xlabel('Internet Service')
plt.ylabel('Number of customers')

Text(0, 0.5, 'Number of customers')

data.groupby('Gender')['CustomerID'].count().plot(kind='pie')
plt.ylabel('')

Text(0, 0.5, '')

What type of internet was connecte

Tech Support

Internetnementeservice

```
# Assuming 'data' is a DataFrame with the required data
plt.figure(figsize=(12, 6))  # Adjust the figure size as needed

# Create a catplot with two pie charts for each 'Churn Label'
g = sns.catplot(data=data, x='Tech Support', kind='count', hue='Churn Label', aspect=2)
g.set_axis_labels('Tech Support', 'Count')
g.set_titles('Tech support option and churn ({col_name})')
```

plt.show()

Tech support option and churn


```
internet_services = data.groupby('Internet Service')['CustomerID'].count().reset_index()
plt.bar(internet_services['Internet Service'], internet_services['CustomerID'])
```

<BarContainer object of 3 artists>

InternetnementeService

```
Churn Label

No
Yes

Blectronic check

Blectronic check

Grouped = data.groupby(['Payment Method', 'Internet Service'])['CustomerID'].count().reset_index()

plt.figure(figsize=(12, 6))
sns.barplot(data=grouped, x='Payment Method', y='CustomerID', hue='Internet Service')

plt.title("Count of Customers by Payment Method and Internet Service")
plt.xlabel("Payment Method")
plt.ylabel("Count of Customers")

plt.show()
```



```
churn_pm = data.assign(churn_clients = np.where(data['Churn Label']== 'Yes',data['CustomerID'],None))\
    .groupby(['Payment Method','Internet Service']).agg({'churn_clients':'count'}).reset_index()

pm_clients = data.groupby(['Payment Method','Internet Service'])['CustomerID'].count().reset_index()

pm_data = pm_clients.join(churn_pm.set_index(['Payment Method','Internet Service']), on=['Payment Method','Internet Service

pm_data
```

```
Payment Method Internet Service CustomerID churn_clients
      0 Bank transfer (automatic)
                                           DSI
                                                        566
                                                                              th
                                       Fiber optic
                                                                        187
      1 Bank transfer (automatic)
                                                        646
      ..
pm_data['churn_rate,%'] = round(((pm_data['churn_clients']/pm_data['CustomerID']) * 100),2)
# Churn rate % based on internet service & distributed based on payment method
fig = px.bar(pm_data.sort_values('churn_rate,%'),
             x='churn_rate,%',
             y='Payment Method',
             facet_col = 'Internet Service',
             color = 'churn_rate,%',
text = 'churn_rate,%')
fig.show()
```


Churn rate by customer age

data.to_excel('/content/drive/MyDrive/datasets/fds_customer_churn/Telco_customer_churn_working.xlsx')

Could not connect to the reCAPTCHA service. Please check your internet connection and reload to get a reCAPTCHA challenge.

▼ Name - Omkar Phansopkar

```
UID - 2022701007
```

D3 - CSE-DS

Dataset - Telco customer churn: IBM dataset

https://www.kaggle.com/datasets/yeanzc/telco-customer-churn-ibm-dataset

```
from google.colab import drive
drive.mount('/content/drive')
```

Mounted at /content/drive

!pip install xgboost --quiet

import joblib
import numpy as np
import pandas as pd
import seaborn as sns
import seaborn as sns
import matplotlib.pyplot as plt
import imblearn
import os

import folium

from imblearn.over_sampling import SMOTE from imblearn.pipeline import Pipeline from sklearn.preprocessing import LabelEncoder

from sklearn.preprocessing import OneHotEncoder

from sklearn.linear_model import LogisticRegression
from xgboost import XGBClassifier
from sklearn.ensemble import RandomForestClassifier

from collections import Counter

 $from \ sklearn.model_selection \ import \ train_test_split$

from sklearn.metrics import confusion_matrix, classification_report

 $from \ sklearn.metrics \ import \ accuracy_score, \ f1_score, recall_score, \ precision_score \\ from \ sklearn.metrics \ import \ average_precision_score, \ roc_auc_score, \ roc_curve, \ auc$

 $from \ sklearn.metrics \ import \ mean_squared_error, \ mean_absolute_error, \ r2_score$

 $from \ sklearn.preprocessing \ import \ StandardScaler$

 $from \ sklearn.preprocessing \ import \ MinMaxScaler$

 $from \ sklearn.preprocessing \ import \ RobustScaler$

 $from\ statsmodels.stats.outliers_influence\ import\ variance_inflation_factor$

WORKING_DIR = '/content/drive/MyDrive/datasets/fds_customer_churn'

	Unnamed: 0	CustomerID	Count	Country	State	City	Zip Code	Lat Long
3511	3511	5242- UOWHD	1	United States	California	Anaheim	92802	33.807864, -117.923782
1782	1782	6230-BSUXY	1	United States	California	Paramount	90723	33.897122, -118.164432
2116	2116	9498-FIMXL	1	United States	California	Oceanside	92054	33.351059, -117.420557
5479	5479	4393- RYCRE	1	United States	California	Macdoel	96058	41.769709, -121.92063
2240	2240	0505- SPOOW	1	United States	California	Riverside	92508	33.885499, -117.324959

5 rows x 35 columns

data.sample(2)

	Gender	Senior Citizen	Partner	Dependents	Tenure Months	Phone Service	Multiple Lines	Internet Service
1598	Female	No	No	No	1	Yes	No	Fiber optic
4342	Male	No	Yes	Yes	23	Yes	No	No

2 rows × 21 columns

```
data.columns
```

data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7043 entries, 0 to 7042
Data columns (total 21 columns):

#	Column	Non-Null Count	Dtype
0	Gender	7043 non-null	object
1	Senior Citizen	7043 non-null	object
2	Partner	7043 non-null	object
3	Dependents	7043 non-null	object
4	Tenure Months	7043 non-null	int64
5	Phone Service	7043 non-null	object
6	Multiple Lines	7043 non-null	object
7	Internet Service	7043 non-null	object
8	Online Security	7043 non-null	object
9	Online Backup	7043 non-null	object
10	Device Protection	7043 non-null	object
11	Tech Support	7043 non-null	object
12	Streaming TV	7043 non-null	object
13	Streaming Movies	7043 non-null	object
14	Contract	7043 non-null	object
15	Paperless Billing	7043 non-null	object
16	Payment Method	7043 non-null	object
17	Monthly Charges	7043 non-null	float64
18	Total Charges	7043 non-null	float64
19	Churn Label	7043 non-null	object
20	hex_id	7043 non-null	object
dtyp	es: float64(2), int	64(1), object(18)
memo	ry usage: 1.1+ MB		

data['Churn Label'].replace(to_replace='Yes', value=1, inplace=True)
data['Churn Label'].replace(to_replace='No', value=0, inplace=True)

data['Churn Label'].value_counts()

0 5174 1 1869

Name: Churn Label, dtype: int64

data.corr()

<ipython-input-43-c44ded798807>:1: FutureWarning: The default value of numeri
 data.corr()

	Tenure Months	Monthly Charges	Total Charges	Churn Label
Tenure Months	1.000000	0.247900	0.826178	-0.352229
Monthly Charges	0.247900	1.000000	0.651174	0.193356
Total Charges	0.826178	0.651174	1.000000	-0.198324
Churn Label	-0.352229	0.193356	-0.198324	1.000000

....

<ipython-input-44-b1b0091519ea>:1: FutureWarning: The default value of numeri
corr = data.corr()['Churn Label'].sort_values(ascending=False)


```
# Columns to apply nominal encoding
categorical_columns = []
for col in data.columns:
     if data[col].nunique() < 20:</pre>
       categorical_columns.append(col)
       print(col, "->", data[col].unique())
categorical_columns.remove("Churn Label")
categorical_columns
      Gender -> ['Male' 'Female']
      Senior Citizen -> ['No'
                                     'Yes'l
      Partner -> ['No' 'Yes']
      Dependents -> ['No' 'Yes']
     Phone Service -> ['Yes' 'No']
Multiple Lines -> ['No' 'Yes' 'No phone service']
      Internet Service -> ['DSL' 'Fiber optic' 'No']
     Online Security -> ['Yes' 'No' 'No internet service']
Online Backup -> ['Yes' 'No' 'No internet service']
      Device Protection -> ['No' 'Yes' 'No internet service']
     Tech Support -> ['No' 'Yes' 'No internet service']
Streaming TV -> ['No' 'Yes' 'No internet service']
Streaming Movies -> ['No' 'Yes' 'No internet service']
      Contract -> ['Month-to-month' 'Two year' 'One year']
     Paperless Billing -> ['Yes' 'No']
Payment Method -> ['Mailed check' 'Electronic check' 'Bank transfer (automatic)'
       'Credit card (automatic)']
      Churn Label -> [1 0]
```

```
['Gender'
     'Senior Citizen',
     'Partner',
     'Dependents'
     'Phone Service'
     'Multiple Lines'
     'Internet Service',
     'Online Security',
     'Online Backup',
     'Device Protection',
     'Tech Support',
     'Streaming TV'
     'Streaming Movies',
     'Contract',
     'Paperless Billing',
     'Payment Method']
data.columns
   'hex_id'],
dtype='object')
```

data.head(2)

	Gender	Senior Citizen	Partner	Dependents	Tenure Months	Phone Service	Multiple Lines	Internet Service	S
0	Male	No	No	No	2	Yes	No	DSL	
1	Female	No	No	Yes	2	Yes	No	Fiber optic	

2 rows × 21 columns

data.columns

data.sample(3)

	Tenure Months	Monthly Charges	Total Charges	Churn Label	Gender_Male	Senior Citizen_Yes	Partner_Yes	D
3766	71	99.00	7061.65	0	0.0	0.0	1.0	
1199	27	85.25	2287.25	1	0.0	1.0	0.0	
3544	1	49.85	49.85	0	1.0	0.0	0.0	

3 rows × 31 columns

```
data.groupby('Churn Label')['Churn Label'].count()
```

```
Churn Label
0 5174
```

```
1 1869
Name: Churn Label, dtype: int64
```

```
/usr/local/lib/python3.10/dist-packages/statsmodels/stats/outliers_influence.py:198: RuntimeWarning: divide by zero e
       vif = 1. / (1. - r_squared_i)
                                          Feature
                                    Tenure Months
                                                       7.542697
                                 Monthly Charges
Total Charges
    1
2
                                                     865.450546
                                                      10.862958
     3
                                      Churn Label
                                                       1.429089
     4
                                      Gender_Male
                                                       1.002024
                              Senior Citizen_Yes
                                                       1.135728
     5
     6
                                      Partner_Yes
                                                       1.344290
     7
                                  Dependents_Yes
                                                       1.273662
                               Phone Service_Yes
     8
                                                    1771.930567
     9
                Multiple Lines_No phone service
                                                      60.982066
                              Multiple Lines_Yes
                                                       7.281349
     11
                    Internet Service_Fiber optic
                                                     148.398568
     12
                             Internet Service No
                                                            inf
     13
            Online Security_No internet service
                                                            inf
                                                       6.339317
     14
                             Online Security_Yes
     15
              Online Backup_No internet service
                                                            inf
                               Online Backup_Yes
                                                       6.783802
     16
          Device Protection_No internet service
     17
                                                            inf
                                                       6.927119
     18
                           Device Protection Yes
     19
               Tech Support_No internet service
                                                            inf
                                                       6.473185
     20
                                Tech Support_Yes
     21
               Streaming TV_No internet service
                                                            inf
     22
                                Streaming TV_Yes
                                                      24.073788
     23
           Streaming Movies_No internet service
                                                            inf
     24
                            Streaming Movies_Yes
                                                      24.131570
     25
                               Contract_One year
                                                       1.632110
     26
                               Contract_Two year
                                                       2.629070
     27
                           Paperless Billing_Yes
                                                       1.212537
     28
         Payment Method_Credit card (automatic)
                                                       1.560576
                Payment Method Electronic check
                                                       1.983301
     30
                     Payment Method_Mailed check
                                                       1.860244
     11
over = SMOTE(sampling_strategy = 1)
x = data.drop("Churn Label", axis = 1).values
y = data['Churn Label'].values
x,y = over.fit_resample(x,y)
X, V
     (array([[2.00000000e+00, 5.38500000e+01, 1.08150000e+02, ...,
              0.00000000e+00, 0.00000000e+00, 1.00000000e+00],
              [2.00000000e+00, 7.07000000e+01, 1.51650000e+02, ...,
              0.00000000e+00, 1.00000000e+00, 0.00000000e+00],
              [8.00000000e+00, 9.96500000e+01, 8.20500000e+02, ...,
              0.00000000e+00, 1.00000000e+00, 0.00000000e+00],
              [2.00000000e+00, 8.72689071e+01, 1.83367799e+02, ...,
              0.00000000e+00, 8.49336565e-02, 0.00000000e+00],
              [1.00000000e+00, 4.25625192e+01, 4.25625192e+01, ...,
              0.00000000e+00, 1.00000000e+00, 0.00000000e+00],
              [4.62333136e+01, 1.07678530e+02, 4.87392507e+03,
              0.00000000e+00, 1.00000000e+00, 0.00000000e+00]]),
     array([1, 1, 1, ..., 1, 1, 1]))
x_train, x_test, y_train, y_test = train_test_split(x, y, random_state =2, test_size = 0.2)
x_test
     array([[1.70000000e+01, 8.82500000e+01, 1.46065000e+03, ...,
            0.00000000e+00, 1.00000000e+00, 0.00000000e+00], [8.00000000e+00, 5.13000000e+01, 4.11600000e+02, ...,
             1.00000000e+00, 0.00000000e+00, 0.00000000e+00],
            [1.00000000e+00, 7.11070051e+01, 7.11070051e+01, ..., 0.00000000e+00, 1.00000000e+00, 0.00000000e+00],
            [6.90000000e+01, 4.62500000e+01, 3.12140000e+03, ...,
             0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
```

[1.70000000e+01, 5.46000000e+01, 9.34800000e+02, ...,

```
0.00000000e+00, 1.00000000e+00, 0.00000000e+00],
                 [1.00000000e+00, 7.47689188e+01, 7.47689188e+01, .
0.00000000e+00, 1.00000000e+00, 0.00000000e+00]])
x_train
      array([[3.0000000e+00, 2.05500000e+01, 5.74000000e+01, ..., 1.00000000e+00, 0.00000000e+00, 0.00000000e+00], [1.00000000e+00, 4.02000000e+01, 4.02000000e+01, ...,
                0.00000000e+00, 1.00000000e+00, 0.00000000e+00], [1.50000000e+01, 2.54000000e+01, 3.99600000e+02, ..., 1.00000000e+00, 0.00000000e+00],
                 [6.00000000e+00, 1.95500000e+01, 1.24450000e+02, ...,
                0.00000000e+00, 0.00000000e+00, 1.00000000e+00], [5.40000000e+01, 1.04100000e+02, 5.64580000e+03, ...,
                 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], [1.00000000e+00, 2.07741153e+01, 2.07741153e+01, ... 0.00000000e+00, 0.00000000e+00, 1.00000000e+00]])
x_train[0]
      array([ 3. , 20.55, 57.4 , 0. , 0.
                 0. , 0. , 1. , 1. , 0. , 1. , 0.
1. , 0. , 1. , 0. , 1. , 0. , 1.
1. , 0. , 0. ])
from statsmodels.stats.outliers_influence import variance_inflation_factor
# Filter only the numerical columns
numerical_data = data.select_dtypes(include=['number'])
# VIF for each feature
vif = pd.DataFrame()
vif["Feature"] = numerical_data.columns
vif["VIF"] = [variance_inflation_factor(numerical_data.values, i) for i in range(numerical_data.shape[1])]
# Select features with VIF below threshold 6
remove_features = vif[vif["VIF"] < 6]["Feature"].values</pre>
remove_features
      array(['Monthly Charges', 'Churn Label'], dtype=object)
data.drop(columns = remove_features)
```

```
Phone Multiple Internet
                                 Senior
                                                                                  Tenure
                  Gender
                                             Partner Dependents
                               Citizen
                                                                                 Months Service
                                                                                                                   Lines
                                                                                                                               Service
                                                                                                                                       DSI
           0
                      Male
                                       Nο
                                                       Nο
                                                                           Nο
                                                                                          2
                                                                                                      Yes
                                                                                                                       Nο
def test_model(model, x_train, y_train, x_test, y_test):
       model.fit(x_train, y_train)
       scaler = StandardScaler()
       x_train = scaler.fit_transform(x_train)
       predictions = model.predict(x_test)
       c_matrix = confusion_matrix(y_test, predictions)
       percentages = (c_matrix / np.sum(c_matrix, axis=1)[:, np.newaxis]).round(2) * 100
       labels = [[f''(c_matrix[i, j]) (\{percentages[i, j]:.2f\}\%)'' \ for \ j \ in \ range(c_matrix.shape[1])] \ for \ i \ in \ range(c_matrix.shape[1]) \ for \ i \ in \ range(c_matrix.shape[1])] \ for \ i \ in \ range(c_matrix.shape[1]) \ for \ i \ i \ range(c_matrix.shape[1]) \ for \ ra
       labels = np.asarray(labels)
       sns.heatmap(c_matrix, annot=labels, fmt='', cmap='Blues')
       print("ROC AUC: ", '{:.2%}'.format(roc_auc_score(y_test, predictions)))
       print("Model accuracy: ", '{:.2%}'.format(accuracy_score(y_test, predictions)))
       print(classification_report(y_test, predictions))
def predict_sample(model, sample):
      prediction = model.predict([sample])[0]
       scaler = StandardScaler()
       sample = scaler.fit_transform([sample])
       prediction = model.predict(sample)[0]
       return prediction
def save_model(model, filename):
      try:
             joblib.dump(model, filename)
             print(f"Model saved to {filename}")
       except Exception as e:
             print(f"Error saving the model: {str(e)}")
# logistic_reg = LogisticRegression()
# test_model(logistic_reg, x_train, y_train, x_test, y_test)
# print(predict_sample(logistic_reg, x_test[0]))
# print(predict_sample(logistic_reg, x_test[1]))
# Train & test different models
def test_model(model, x_train, y_train, x_test, y_test):
       model.fit(x_train, y_train)
       predictions = model.predict(x_test)
       c_matrix = confusion_matrix(y_test, predictions)
       percentages = (c_matrix / np.sum(c_matrix, axis=1)[:, np.newaxis]).round(2) * 100
       labels = [[f"{c_matrix[i, j]} ({percentages[i, j]:.2f}%)" for j in range(c_matrix.shape[1])] for i in range(c_matrix.shape[1])
       labels = np.asarray(labels)
       sns.heatmap(c matrix, annot=labels, fmt='', cmap='Blues')
       print("ROC AUC: ", '{:.2%}'.format(roc_auc_score(y_test, predictions)))
      print("Model accuracy: ", '{:.2%}'.format(accuracy_score(y_test, predictions)))
       mae = mean_absolute_error(y_test, predictions)
       rmse = np.sqrt(mean_squared_error(y_test, predictions))
       print(f'Mean Absolute Error (MAE): {mae}')
       print("Mean squared error (MSE)", mean_squared_error(y_test, predictions))
       print(f'Root Mean Squared Error (RMSE): {rmse}')
       print("Sum squared error (SSE): ", np.sum((y_test - predictions) ** 2))
       print("Sum squared total (SST): ", np.sum((y_test - np.mean(y_test)) ** 2))
       print("R^2: ", r2_score(y_test, predictions))
       print("\n\n")
       print(classification_report(y_test, predictions))
# Predict single sample
def predict_sample(model, sample):
      prediction = model.predict([sample])[0]
       return prediction
# Save pickle
def save_model(model, filename):
             joblib.dump(model, filename)
```

```
print(f"Model saved to {filename}")
except Exception as e:
   print(f"Error saving the model: {str(e)}")
```

```
logistic_reg = LogisticRegression()
test_model(logistic_reg, x_train, y_train, x_test, y_test)
save_model(logistic_reg, f"{WORKING_DIR}/logistic_reg.pkl")
```

/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_logistic.py:458 STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html

Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regres

n_iter_i = _check_optimize_result(
ROC AUC: 78.47%

Model accuracy: 78.41%

Mean Absolute Error (MAE): 0.21594202898550724 Mean squared error (MSE) 0.21594202898550724 Root Mean Squared Error (RMSE): 0.4646956304781736

Sum squared error (SSE): 447 Sum squared total (SST): 517.4053140096617

R^2: 0.13607381312737532

	precision	recall	f1-score	support
0 1	0.82 0.75	0.73 0.84	0.78 0.79	1049 1021
accuracy macro avg weighted avg	0.79 0.79	0.78 0.78	0.78 0.78 0.78	2070 2070 2070

Model saved to /content/drive/MyDrive/datasets/fds_customer_churn/logistic_re

logistic_reg_high = LogisticRegression(max_iter=4000) test_model(logistic_reg_high, x_train, y_train, x_test, y_test) save_model(logistic_reg_high, f"{WORKING_DIR}/logistic_reg_high.pkl") ROC AUC: 78.24% Model accuracy: 78.16%

Mean Absolute Error (MAE): 0.21835748792270532 Mean squared error (MSE) 0.21835748792270532 Root Mean Squared Error (RMSE): 0.4672873718844811

Sum squared error (SSE): 452 Sum squared total (SST): 517.4053140096617

R^2: 0.12641020924736834

	precision	recall	f1-score	support
0 1	0.82 0.75	0.73 0.84	0.77 0.79	1049 1021
accuracy macro avg weighted avg	0.79 0.79	0.78 0.78	0.78 0.78 0.78	2070 2070 2070

Model saved to /content/drive/MyDrive/datasets/fds_customer_churn/logistic_re

xgb = XGBClassifier(learning_rate= 0.01,max_depth = 3,n_estimators = 1000) test_model(xgb,x_train,y_train,x_test,y_test) save_model(xgb, f"{WORKING_DIR}/xgb.pkl")

ROC AUC: 86.25%

Model accuracy: 86.23%

Mean Absolute Error (MAE): 0.13768115942028986 Mean squared error (MSE) 0.13768115942028986 Root Mean Squared Error (RMSE): 0.3710541192606408

Sum squared error (SSE): 285 Sum squared total (SST): 517.4053140096617

R^2: 0.44917457883960177

support	f1-score	recall	precision	
1049 1021	0.86 0.86	0.85 0.88	0.88 0.85	0 1
2070 2070 2070	0.86 0.86 0.86	0.86 0.86	0.86 0.86	accuracy macro avg weighted avg

Model saved to /content/drive/MyDrive/datasets/fds_customer_churn/xgb.pkl

rf_classifier = RandomForestClassifier(n_estimators=500, random_state=42) $test_model(rf_classifier,x_train,y_train,x_test,y_test)$ save_model(rf_classifier, f"{WORKING_DIR}/rf_classifier.pkl")

```
ROC AUC: 86.12%
Model accuracy: 86.14%
Mean Absolute Error (MAE): 0.1386473429951691
Mean squared error (MSE) 0.1386473429951691
Root Mean Squared Error (RMSE): 0.37235378740543124
Sum squared error (SSE): 287
Sum squared total (SST): 517.4053140096617
R^2: 0.4453091372875989
```

	precision	recall	f1-score	support
0 1	0.86 0.87	0.87 0.85	0.86 0.86	1049 1021
accuracy macro avg weighted avg	0.86 0.86	0.86 0.86	0.86 0.86 0.86	2070 2070 2070

Model saved to /content/drive/MyDrive/datasets/fds_customer_churn/rf_classifi


```
y_test[[3,9,20]]
    array([1, 0, 1])

print(predict_sample(logistic_reg_high, x_test[3]))
print(predict_sample(logistic_reg_high, x_test[9]))
print(predict_sample(logistic_reg_high, x_test[20]))

1
0
1

print(predict_sample(xgb, x_test[3]))
print(predict_sample(xgb, x_test[9]))
print(predict_sample(xgb, x_test[20]))

1
0
1

print(predict_sample(rf_classifier, x_test[3]))
print(predict_sample(rf_classifier, x_test[9]))
print(predict_sample(rf_classifier, x_test[20]))
```

0