Return to Table of Contents

Choose a Lesson

Choosing a Managed Database

Cloud SQL Basics

Importing Data

SQL Query Best Practices

Scaling

High Availability

Database Backups

Software Patches

Database Installs

OS Patches

OS Installation

Server Maintenance

Physical Server

Power-Network-Cooling

Cloud SQL Basics

What is Cloud SQL?

 Direct lift and shift of traditional MySQL/PostgreSQL workloads with the maintenance stack managed for you

What is managed?

- OS installation/management
- Database installation/management
- Backups
- Scaling disk space
- Availability:
 - Failover
 - Read replicas
- Monitoring
- Authorize network connections/proxy/use SSL

Limitations:

- Read replicas limited to the same region as the master:
 - Limited global availability
- Max disk size of 10 TB
- If > 10 TB is needed, or global availability in RDBMS, use Spanner

import/export

CSV file

1 stan

need xs vemove them

Return to Table of Contents

Choose a Lesson

Choosing a Managed Database

Cloud SQL Basics

Importing Data

SQL Query Best Practices

Importing Data

Importing data into Cloud SQL:

- Cloud Storage as a staging ground
- SQL dump/CSV file format

Export/Import process:

- **Export SQL dump/CSV file:**
 - SQL dump file <u>cannot</u> contain triggers, views, stored procedures
- Get dump/CSV file into Cloud Storage
- Import from Cloud Storage into Cloud SQL instance

Best Practices:

- **Use correct flags for dump file (--'flag_name'):**
 - Databases, hex-blob, skip-triggers, set-gtid-purged=OFF, ignore-table
- Compress data to reduce costs:
 - Cloud SQL can import compressed .gz files
- **Use InnoDB for Second Generation instances**

Return to Table of Contents

Choose a Lesson

Choosing a Managed Database

Cloud SQL Basics

Importing Data

SQL Query Best Practices

General SQL efficiency best practices:

- More, smaller tables better than fewer, large tables:
 - Normalization of tables
- Define your SELECT fields instead of using SELECT *:
 - SELECT * acts as a 'select all'
- When joining tables, use **INNER JOIN** instead of WHERE:
 - WHERE creates more variable combinations = more work

Questions: Questions:

Return to Table of Contents

Choose a Lesson

Cloud Datastore Overview

Data Organization

Queries and Indexing

Data Consistency

(loud brackore Data Consistency

of Datostore is a Noops Database

Next

What is data consistency in queries?

- "How up to date are these results?"
- "Does the order matter?"
- Strongly consistent = Parallel processes see changes in same order:
 - Query is guaranteed up to date but may take longer to complete
- Eventually consistent = Parallel process can see changes out of order, will eventually see accurate end state:
 - Faster query, but may *sometimes* return stale results
- Performance vs. accuracy
- Ancestor query/key-value operations = strong
- Global queries/projections = eventual

Use cases:

- Strong financial transaction:
 - Make deposit -- check balance
- Eventual census population:
 - Order not as important, as long as you get eventual result

Return to Table of Contents

Choose a Lesson

Cloud Datastore Overview

Data Organization

Queries and Indexing

Data Consistency

Queries and Indexing

Previous

Danger - Exploding Indexes!

- Default create an entry for every possible combination of property values
- Results in higher storage and degraded performance
- Solutions:
 - Use a custom index.yaml file to narrow index scope
 - Do not index properties that don't need indexing

Return to Table of Contents

Choose a Lesson

Cloud Datastore Overview

Data Organization

Queries and Indexing

Data Consistency

indexes:

- kind: Task properties:

name: tags

name: created

- kind: Task properties:

- name: collaborators

name: created

Queries and Indexing

Next

Query:

- Retrieve an entity from Datastore that meets a set of conditions
- **Query includes:**
 - · Entity kind (table) · Filters where in Gal

 - Sort order
- **Query methods:**
 - Programmatic
 - Web console
 - 4 Google Query Language (GQL)

Indexing:

- **Queries gets results from indexes:**
 - Contain entity keys specified by index properties
 - Updated to reflect changes
 - Correct query results available with no additional computation needed

Index types:

- Built-in default option:
- (if 2 queries) · Allows single property queries at one time
- Composite specified with an index configuration file (index.yaml): gcloud datastore create-indexes index.yaml

Data Consistency

Data Organization

Previous

Simple Collections of Entities

Kind: Orders

ID: 65412

ID: 44568

ID: 94136

Hierarchies (Entity Groups)

Return to Table of Contents

Choose a Lesson

Cloud Datastore Overview

Data Organization

Queries and Indexing

Data Consistency

Data Organization

Next

Short version:

- Entities grouped by kind (category)
- Entities can be hierarchical (nested)
- Each entity has one or more properties
- Properties have a value assigned -

koy. Vo we Stord

Concept	Relational Database	Datastore
Category of object	Table	Kind (Gategory)
Single Object	Row	Entity
Individual data for an object	Column	Property
Unique ID for an object	Primary key	Key