Movie Recommendation System

Lalitha Sumedha Pothineni Computer and Information Sciences University of Michigan-Dearborn Dearborn MI US sumedhap@umich.edu Jaya Shree Jilkara Computer and Information Sciences University of Michigan-Dearborn Dearborn MI US jshree@umich.edu Aishwarya Dongari Computer and Information Sciences University of Michigan-Dearborn Dearborn MI US aishredy@umich.edu

Abstract

We live in a world where technology changes every day, and due to this advancement, we are surrounded by massive data that is unstructured. Data analytics is changing the movie trend: example. for Recommendation systems are one of the fascinating applications of machine learning. Sites like YouTube and Netflix use the recommendation systems extensively to recommend those videos and movies that one may want to watch. For this project, we have implemented a similar recommendation system for movies.

We have built a Simple recommendation system using the dataset based on the popularity of the movie. However, this system gives the same recommendations to everyone. And so, we have implemented content-based filtering. We have done this by taking specific metrics such as the movies that are liked by that user into consideration. This content-based filtering also suffers from several limitations. And so, we have explored them and implemented a Collaborative Filtering to personalize the recommendations. We have also implemented a Hybrid Recommendation system which is a collaboration of both content and collaborative filtering.

Introduction

Recommendation system helps users discover content based on their unique needs and preferences. So, it's all about customization and making it tailored to a person's needs and preferences. A recommendation system learns from a customer and recommends products or data that he/she will find most valuable or might be interested in. It helps in predicting which movie a customer would like, depending on the ratings from him/her and other similar users, for example: If user1 watches same two movies that user 2 has watched, user2 will be recommended the next movie that user1 watches and vice versa.

This project focuses on predicting and recommend movies to users. It is because of these kinds of recommendation systems that people watch movies that they themselves don't know that they like them until an AI, or a machine learning interface uses an algorithm and provides them with that recommendation.

Background/Motivation

Dataset

The dataset we are using contains metadata of nearly 45,000 movies which includes cast, crew, languages, countries, TMBD votes and its averages. This particular dataset also contains 26 million ratings on a scale of 1-5 for all the movies by nearly 270,000 users.

Libraries

Anaconda is a distribution of python.
 Additionally, we are using libraries and tools such as NumPy, SciPy, Pandas, Matplotlib etc.

 Jupyter is a development environment where we are writing the code, exploring and analyzing the data

```
%matplotlib inline
import pandas as pd
import seaborn as sns
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from nltk.corpus import stopwords
from stlpy import stats
from wordcloud import Wordcloud, STOPWORDS
from ast import literal_eval
from sklearn.feature_extraction.text import TfidfVectorizer, CountVector
from sklearn.metrics.pairwise import linear_kernel, cosine_similarity
from nltk.stem.snowball import BnowballStemmer
from nltk.stem.wordnet import WordNetLemmatizer
from nltk.corpus import wordnet
from surprise import Reader, Dataset, SVD
from surprise import Reader, Dataset, SVD
from surprise.model_selection import cross_validate
import warnings; warnings.simplefilter('ignore')
```

Related Work

We have taken the paper 'Towards the next generation of recommender systems: a survey of the state-of-the-art and possible extensions' [1] as a reference for this project. We have learnt about the recommendation systems that are currently in use from this paper. In addition to this, it also gave us an insight on how to improve these recommendation systems in near future.

We also got to know about the most widely used recommendation system from the paper by *F. Hdioud*, *B. Frikh and B. Ouhbi [2]*. In this paper, the author has discussed all the algorithms used in developing recommendation systems besides its shortcomings. Furthermore, the main idea to do this project came from the lectures that were discussed in class on the Topic: *Recommendation Systems [3]*. We got intrigued and have decided to dig deeper into the concept.

Methodology

Simple Recommendation System

It is a recommendation system that recommends to every user based on how popular the movie is. The idea is that it is usually assumed that the more popular movies will be liked by the majority of the people. We have implemented this by sorting our dataset based on ratings as well as popularity. Then we have displayed the movies that topped our list. We have also used TMBD ratings and IMBDs rating formula for constructing the chart.

$$WR = \frac{v}{v+m} \cdot R + \frac{m}{v+m} \cdot C$$

R= Average

v = total no of votes

 $m = \min \text{ no of votes (95\% in our case)}$

C = mean of votes

Evaluation (Simple Recommendation System)

We have evaluated our system by displaying the movies based on a particular genre. In the output below, one can find all the movies having Thriller or Action as their genre. Also, most of the movies have the director in common. Example: 'Inception', 'The Dark Knight', 'Interstellar' has been directed by Christopher Nolan

Out[22]:		title	year	vote_count	vote_average	popularity	genres	wr
	15480	Inception	2010	14075	8	29.1081	[Action, Thriller, Science Fiction, Mystery, A	7.917588
	12481	The Dark Knight	2008	12269	8	123.167	[Drama, Action, Crime, Thriller]	7.905871
	22879	Interstellar	2014	11187	8	32.2135	[Adventure, Drama, Science Fiction]	7.897107
	2843	Fight Club	1999	9678	8	63.8696	[Drama]	7.881753
	4863	The Lord of the Rings: The Fellowship of the Ring	2001	8892	8	32.0707	[Adventure, Fantasy, Action]	7.871787
	292	Pulp Fiction	1994	8670	8	140.95	[Thriller, Crime]	7.868660
	314	The Shawshark Redemption	1994	8358	8	51.6454	[Drama, Crime]	7.864000
	7000	The Lord of the Rings: The Return of the King	2003	8226	8	29.3244	[Adventure, Fantasy, Action]	7.861927
	351	Forrest Gump	1994	8147	8	48.3072	[Comedy, Drama,	7.860656

Content-Based Recommendation System

We have realized that the simple recommendation system recommends the same irrespective of the users, and it may not be liked by many. To overcome this, we have implemented the content-based recommendation system that computes the similarity between movies and recommends the films that are similar to the movies that the user has liked before. To achieve this, we have used the movie descriptions and taglines.

To calculate the similarity between the two movies, we have used cosine similarity.

$$\text{similarity} = \cos(\theta) = \frac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|} = \frac{\sum_{i=1}^{n} A_i B_i}{\sqrt{\sum_{i=1}^{n} A_i^2} \sqrt{\sum_{i=1}^{n} B_i^2}},$$

Evaluation (Content-Based)

We have evaluated this system based on the type of movie. For example: In the output below you can see all the movies related to the Batman saga on trying to get recommendations for the movie 'Batman Forever'

	The Dark Knight Rises
	Batman: Mask of the Phantasm
	The Dark Knight
	Batman Begins
Batman: Th	e Dark Knight Returns, Part 1
	Batman
	Batman & Robin
	Batman Returns
	Batman: Under the Red Hood
	Batman: Year One
Batman: Th	e Dark Knight Returns, Part 2
	Eyes Without a Face
	Cry_Wolf
	Night Falls on Manhattan
	Open Your Eyes
	Hackers
Batma	n v Superman: Dawn of Justice
	JFK
	The Young Savages
	The File on Thelma Jordon
title, dtype	: object

Collaborative Filtering

All the content-based recommendation system does is capturing the movies that are similar to the films the user has liked before. However, it does not take the preference of the user into consideration. In Collaborative Filtering, it doesn't really care what the movie is. It will recommend movies based on how similar other users have predicted it. For this purpose, we have implemented the collaborative filtering in which the tastes of similar users are taken into account.

We have used an algorithm called SVD (Singular Value Decomposition). SVD is a built-in recommendation system that is known to produce very accurate results. It was used widely by Netflix.

Evaluation (Collaborative Filtering)

We have evaluated this using the Root Mean Square Error. For this, the RMSE obtained was 0.89, which is less than 1.

Hybrid Recommendation System

We have combined the content and collaborative filtering which recommends movies based on the ratings calculated for that user.

Evaluation (Hybrid System)

In the output below, you can see that although the movie is the same, the movies recommended to the users are different.

		idRecommendation(1,	'The Term	inator')					
Out[92]:		title	vote_count	vote_average	year	id	est		
	7488	Avatar	12114.0	7.2	2009	19995	3.018819		
	974	Aliens	3282.0	7.7	1986	679	2.981203		
	522	Terminator 2: Judgment Day	4274.0	7.7	1991	280	2.954099		
	6967	Doomsday	374.0	5.8	2008	13460	2.927908		
	6394	District B13	572.0	6.5	2004	10045	2.819424		
	1376	Titanic	7770.0	7.5	1997	597	2.747625		
	7403	Gamer	778.0	5.6	2009	18501	2.706491		
	7502	The Book of Eli	2207.0	6.6	2010	20504	2.694188		
	5296	Zardoz	106.0	5.8	1974	4923	2.683079		
	7991	In Time	3512.0	6.7	2011	49530	2.658243		
n [93]:	hybridRecommendation(100, 'The Terminator')								
ut[93]:									
ut[93]:		title	vote_count	vote_average					
ut[93]:	974				year 1986	ic 679			
ut[93]:		title	vote_count	vote_average	1986		3.899735		
ut[93]:	974	title Aliens	vote_count	vote_average	1986	679 49530	3.899735 3.727733		
ut[93]:	974 7991	title Aliens In Time	vote_count 3282.0 3512.0	vote_average 7.7 6.7	1986	679 49530	3.899735 3.727733 3.707291		
ut[93]:	974 7991 7502	title Aliens In Time The Book of Eli	vote_count 3282.0 3512.0 2207.0	vote_average 7.7 6.7 6.6	1986 2011 2010	49530 20504 280	3.899735 3.727733 3.707291 3.657294		
ut[93]:	974 7991 7502 522	title Aliens In Time The Book of Eli Terminator 2: Judgment Day	vote_count 3282.0 3512.0 2207.0 4274.0	vote_average 7.7 6.7 6.6 7.7	1986 2011 2010 1991	49530 20504 280	3.899735 3.727733 3.707291 3.657294 3.618038		
ut[93]:	974 7991 7502 522 922	title Aliens In Time The Book of Eli Terminator 2: Judgment Day The Abyss	vote_count 3282.0 3512.0 2207.0 4274.0 822.0	vote_average 7.7 6.7 6.6 7.7 7.1	1986 2011 2010 1991 1989 2006	679 49530 20504 280 2756	3.899735 3.727733 3.707291 3.657294 3.618038 3.599097		
ut[93]:	974 7991 7502 522 922 6622	title Aliens In Time The Book of Eli Terminator 2: Judgment Day The Abyss Children of Men	vote_count 3282.0 3512.0 2207.0 4274.0 822.0 2120.0	vote_average 7.7 6.7 6.6 7.7 7.1 7.4	1986 2011 2010 1991 1989 2006 2004	679 49530 20504 280 2756 9693	3.899735 3.727733 3.707291 3.657294 3.618038 3.599097 3.511455		
ut[93]:	974 7991 7502 522 922 6622 6394	title Aliens In Time The Book of Eli Terminator 2: Judgment Day The Abyss Children of Men District B13	vote_count 3282.0 3512.0 2207.0 4274.0 822.0 2120.0 572.0	vote_average 7.7 6.7 6.6 7.7 7.1 7.4 6.5	1986 2011 2010 1991 1989 2006 2004	679 49530 20504 280 2756 9693 10045	3.899735 3.727733 3.707291 3.657294 3.618038 3.599097 3.511455 3.448091		

Experimental Discussion

We have performed exploratory data analysis on the dataset and played with the data by exploring which word is repeated frequently. We have done this by using the term frequency and inverse document frequency.

The easiest way to analyze data is by representing it in the form of a cloud. The following figure depicts a word cloud that describes the titles for a movie.

In order to know the relationship between multiple variables, we have used seaborn, a library built on top of matplotlib and is integrated with pandas.

Individual Contribution

- Jayashree Jilkara Performed Exploratory
 Data analysis, Implemented Collaborative
 Filtering System, and Hybrid
 Recommendation System, written the report
- Lalitha Sumedha Pothineni Implemented Content-Based Recommendation and contributed to the report
- Aishwarya Dongari Implemented Simple Recommendation System as well as contributed to the report

Conclusion

We have successfully implemented all the recommendation systems we were taught in class based on different ideas and algorithms.

- Simple Recommender system: based on the popularity of the movie.
- content-based filtering: taking specific metrics such as the movies that are liked by that user
- Collaborative Filtering: to personalize the recommendations using SVD
- Hybrid: Combined content and collaborative

References

- 1. Gediminas Adomavicius, Alexander Tuzhilin "Towards the next generation of recommender systems: a survey of the state-of-the-art and possible extensions," IEEE transactions on knowledge and data engineering, 2005
- F. Hdioud, B. Frikh and B. Ouhbi, "A comparison study of some algorithms in Recommender Systems," 2012 Colloquium in Information Science and Technology, Fez, 2012, pp. 130-135.doi: 10.1109/CIST.2012.6388076
- 3. Abouelenien, Mohamed- CIS 5570 Introduction to Big Data Lecture (Chapter 9: *Recommendation Systems*), 2020