PROJECT REPORT

A NOVEL METHOD FOR

HANDWRITTEN DIGIT RECOGNITION

submitted by

PNT2022TMID05025

NISHANTHINI S - 921319104136 NESIKA P - 921319104134

SABITHA J - 921319104162

SANGEETHA M - 921319104165

TABLE OF CONTENTS

1	INTRODUCTION	1
	1.1 PROJECT OVERVIEW	1
	1.2 PURPOSE	1
2	LITERATURE SURVEY	2
	2.1 EXISTING PROBLEM	2
	2.2 REFERENCES	2
	2.3 PROBLEM STATEMENT DEFINITION	3
3	IDEATION AND PROPOSED SOLUTION	4
	3.1 EMPATHY MAP CANVAS	4
	3.2 IDEATION & BRAINSTORMING	5
	3.3 PROPOSED SOLUTION	6
	3.4 PROBLEM SOLUTION FIT	7
4	REQUIREMENT ANALYSIS	8
	4.1 FUNCTIONAL REQUIREMENTS	8
	4.2 NON FUNCTIONAL REQUIREMENTS	9
5	PROJECT DESIGN	10
	5.1 DATA FLOW DIAGRAM	10
	5.2 SOLUTION & TECHNICAL ARCHITECTURE	11
	5.3 USER STORIES	13

6	PROJECT PLANNING AND SCHEDULING	14
	6.1 SPRINT PLANNING AND ESTIMATION	14
	6.2 SPRINT DELIVERY SCHEDULE	16
7	CODING & SOLUTIONING	17
8	TESTING	18
	8.1 TEST CASES	18
	8.2 USER ACCEPTANCE TESTING	19
	8.2.1 DEFECT ANALYSIS	19
	8.2.2 TEST CASE ANALYSIS	19
9	RESULTS	20
	9.1 PERFORMANCE METRICS	20
10	ADVANTAGES & DISADVANTAGES	21
	ADVANTAGES	21
	DISADVANTAGES	21
11	CONCLUSION	22
12	FUTURE SCOPE	23
	APPENDIX	24
	SOURCE CODE	24
	GITHUB	32
	PROJECT DEMO	32

CHAPTER 1 INTRODUCTION

1.1 PROJECT OVERVIEW

Handwritten Digit Recognition is the ability of computer systems to recognise handwritten digits from various sources, such as images, documents, and so on. This project aims to let users take advantage of machine learning to reduce manual tasks in recognizing digits.

The MNIST data set is widely used for this recognition process and it has 70000 handwritten digits. We use Artificial neural networks to train these images and build a deep learning model. Web application is created where the user can upload an image of a handwritten digit. This image is analyzed by the model and the detected result is returned on to the UI. In the Banking Sector too where more handwritten numbers are involved like account number, figure of cash and checks.

1.2 PURPOSE

Digit recognition systems are capable of recognizing the digits from different sources like emails, bank cheque, papers, images, etc. and in different real-world scenarios for online handwriting recognition on computer tablets or system, recognize number plates of vehicles, processing bank cheque amounts, numeric entries in forms filled up by hand (tax forms) and so on.

CHAPTER 2 LITERATURE SURVEY

2.1 EXISTING PROBLEM

The fundamental problem with handwritten digit recognition is that handwritten digits do not always have the same size, width, orientation, and margins since they vary from person to person. Additionally, there would be issues with identifying the numbers because of similarities between numerals like 1 and 7, 3 and 8, 2 and 5, 2 and 7, etc. Finally, the individuality and variation of each individual's handwriting influence the structure and appearance of the digits.

2.2 REFERENCES

- FaisalTehseen Shah, Kamran Yousaf, Handwritten Digit Recognition Using Image Processing and Neural Networks, Proceedings of the World Congress on Engineering, vol., 2007.
- 2. Dr.Kusumgupta2, "a comprehensive review on handwritten digit recognition using various neural network approaches", international journal of enhanced research in management & computer applications, vol. 5, no. 5, pp. 22-25, 2016.
- 3. Saeed AL-Mansoori,"Intelligent Handwritten Digit Recognition using Artificial Neural Network", Int. Journal of Engineering Research and Applications, vol. 5, no. 5, pp. 46-51, 2015.
- Viragkumar N. Jagtap , Shailendra K. Mishra, "Fast Efficient Artificial Neural Network for Handwritten Digit Recognition", International Journal of Computer Science and Information Technologies, vol. 52, no. 0975- 9646, pp. 2302-2306, 2014.

- 5. Ishani Patel, ViragJagtap and OmpriyaKale."A Survey on Feature Extraction Methods for Handwritten Digits Recognition", International Journal of Computer Applications, vol. 107, no. 12, pp. 11-17, 2014.
- 6. Dutt A, Dutt A (2017) Handwritten digit recognition using deep learning. Int J AdvRes Comput Eng Technol 6(7):990–997

2.3 PROBLEM STATEMENT DEFINITION

Handwriting recognition is one of the compelling research works going on because every individual in this world has their own style of writing. It is the capability of the computer to identify and understand handwritten digits or characters automatically. Because of the progress in the field of science and technology, everything is being digitalized to reduce human effort. Hence, there comes a need for handwritten digit recognition in many real-time applications. The MNIST data set is widely used for this recognition process and it has 70000 handwritten digits. We use Artificial neural networks to train these images and build a deep learning model. Web application is created where the user can upload an image of a handwritten digit. This image is analyzed by the model and the detected result is returned on to the UI. In the Banking Sector too where more handwritten numbers are involved like account number, figure of cash and checks.

CHAPTER 3 IDEATION AND PROPOSED SOLUTION

3.1 EMPATHY MAP CANVAS

3.2 IDEATION & BRAINSTORMING

3.3 PROPOSED SOLUTION

S.No.	Parameter	Description
1.	Problem Statement (Problem to	To recognize the handwritten digits
	be solved)	from a wide variety of sources like
		emails, papers, images, letters etc. It
		can solve more complex problems and
		makes humans' jobs easier.
2.	Idea / Solution description	This system is built by using (CNN)
		Convolutional Neural Network. By using
		this system, we can capture the image
		of handwritten digits and can predict
		the digits.
3.	Novelty / Uniqueness	Here users can upload the handwritten
		digits from anywhere and it gives
		accurate results.
4.	Social Impact / Customer	The feasibility of implementing this idea
	Satisfaction	is moderate neither easy nor tough
		because the system needs to satisfy
		the basic requirements of the customer
		and should give accurate results.
5.	Business Model (Revenue	By using this website, the users can
	Model)	predict and analyze the handwritten
		digits of the user. The website can be
		developed at minimum cost with high
		performance and interactive user
		interface.
6.	Scalability of the Solution	The solution can be made scalable. The
		people can easily understand the digits.
		This system can also be integrated with
		future technologies

3.4 PROBLEM SOLUTION FIT

CHAPTER 4

REQUIREMENT ANALYSIS

4.1 FUNCTIONAL REQUIREMENTS

FR No.	Functional	Sub Requirement (Story/ Sub-Task)					
	Requirement						
	(Epic)						
FR-1	MNIST Dataset	A training set of 60,000 instances and a test set are					
		included in the modified National Institute of					
		Standards and Technology dataset (MNIST) database					
		of handwritten digits.10,000 examples in a set.					
FR-2	Data pre-processing	Enhances the image by applying a few adjustments to					
		the input image to get it ready for segmentation.					
FR-3	Image Data	Handwritten digit recognition refers to a computer's					
		capacity to identify human handwritten digits from a					
		variety of sources, such as photographs, documents,					
		touch screens, etc., and categorise them into ten					
		established classifications (0-9). In the realm of deep					
		learning, this has been the subject of					
		countless studies					
FR-4	Website	Web hosting makes the code, graphics, and other					
		items that make up a website accessible online. A					
		server hosts every website you have ever visited.					
		The type of hosting determineshow much space is					
		allotted to a website on a server. Shared, dedicated,					
		VPS, and reseller hosting are the fourbasic varieties.					
FR-5	Digit Classifier Model	To train a convolutional network to predict the digit					
		from an image, use the MNIST database of					
		handwritten digits. get the					
		training and validation datafirst					
FR-6	Evaluation	Make that the model recognizes the digit correctly					
		and generates the correct result.					
		0					

4.2 NON FUNCTIONAL REQUIREMENTS

FR No.	Non-	Description
	Functional	
	Requirement	
NFR-1	Usability	One of the very significant problems in pattern recognition applications is the recognition of handwritten characters. Applications for digit recognition include filling out forms, processing bankcheques, and sorting mail.
NFR-2	Security	1) The system generates a thorough description of the instantiation parameters, which mightreveal information likethe writing style, in addition to a categorization of the digit. 2) The generative models are capable of segmentation drivenby recognition. 3) The procedure uses a relatively.
NFR-3	Reliability	The samples are used by the neural network to automatically deduce rules for reading handwritten digits. Furthermore, the network may learn more about handwriting and hence enhance its accuracy by increasing the quantity of training instances. Numerous techniques and algorithms, such as Deep Learning/CNN, SVM, Gaussian Naive Bayes, KNN, Decision Trees, Random Forests, etc., can be used to recognise handwritten numbers
NFR-4	Performance	Information is restricted to each userslimited access
NFR-5	Availability	Applications for digit recognition include filling out forms, processing bankchecks, and sorting mail.
NFR-6	Scalability	Thesystem should be able to handle 1000 users accessing the website at the sametime

CHAPTER 5 PROJECT DESIGN

5.1 DATA FLOW DIAGRAM

5.2 SOLUTION & TECHNICAL ARCHITECTURE

Technology Architecture

Process Flow Diagram

5.3 USER STORIES

User Type	Functional Requireme nt (Epic)	User StoryNumber	UserStory /Task	Acceptance criteria	Priority	Relea se
Customer (Mobileuser)	Home	USN-1	how to use this application.	software & the	Low	Sprint-
		USN-2	I'm authorized to watch the instructional film to learn how to utilize this application's interface as a user.	use this application through a handson approach.	Low	Sprint- 1
		USN-3	I am able to understand the directions for using thisapplication as a user.	the directions and	Low	Sprint- 2
	Recognize	USN-4	I get to select the image on this prediction page asa user.		High	Sprint-2
	Predict	USN-5	I am permitted to upload and pick the image that willbe submitted as a user.	From the system storage as well as any virtual storage, I may upload and select an image.	Medium	Sprint-
		USN-6	I will train and evaluate the input as a user to ensurethe output is as accurate as possible.	I am able to test and train the application.	High	Sprint- 4
		USN-7	I have access to the MNIST data collection asa user.	To produce the precise output, I may access it.	Medium	Sprint- 3

CHAPTER 6 PROJECT PLANNING AND SCHEDULING

6.1 SPRINT PLANNING AND ESTIMATION

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Poin ts	Priority	Team Members
Sprint-1	Data Collection	USN-1	As a user, I can collect the dataset from various resources with different handwritings.	10	Low	Sabitha J Nesika P
Sprint-1	Data Preprocessing	USN-2	As a user, I can load the dataset, handling the missing data scaling and split data into train and test.	10	Medium	Nishanthini S Sangeetha M
Sprint-2	Model Building	USN-3	As a user, I will get an application with ML model which provides high accuracy of recognized handwritten digit.			Sabitha J Nesika P Nishanthini S Sangeetha M
Sprint-2	Add CNN layers	USN-4	Creating the model and adding the input, hidden, and output layers to it.	5	High	Nishanthini S Sabitha J Nesika P Sangeetha M
Sprint-2	Compiling the model	USN-5	With both the training data defined and model defined, it's time to configure the learning process.		Medium	Nesika P Sangeetha M Nishanthini S

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-2	Train & test the model		As a user, let us train our model with our image dataset.		Medium	Sabitha J Nishanthini S Nesika P
Sprint-2	Save the model		As a user, the model is saved & integrated with an android application or web application in order to predict something.		Low	Sangeetha M
Sprint-3	Building UI Application		As a user, I will upload the handwritten digit image to the application by clicking a upload button.		High	Sabitha J Nesika P Sangeetha M
Sprint-3			As a user, I can know the details of the fundamental usage of the application.		Low	Nishanthini S Sabitha J
Sprint-3		USN-10	As a user, I can see the predicted / recognized digits in the application.		Medium	Nishanthini S Sangeetha M
Sprint-4	Train the model on IBM		As a user, I train the model on IBM and integrate flask/Django with scoring end point.		High	Nesika P Sabitha J Nishanthini S Sangeetha M
Sprint-4	Cloud Deployment		As a user, I can access the web application and make the use of the product from anywhere.	0	High	Sabitha J Nesika P

6.2 SPRINT DELIVERY SCHEDULE

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	29 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	20	05 Nov 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	20	12 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	20	19 Nov 2022

CHAPTER 7

CODING & SOLUTIONING

```
import numpy as np
import tensorflow #open source used for both ML and DL for computation
from tensorflow.keras.datasets import mnist #mnist dataset
from tensorflow.keras.models import Sequential #it is a plain stack of layers
from tensorflow.keras import layers #A Layer consists of a tensor- in tensor-out computat ion funct ion
from tensorflow.keras.layers import Dense, Flatten #Dense-Dense Layer is the regular deeply connected r
#faltten -used fot flattening the input or change the dimension
from tensorflow.keras.layers import Conv2D #convolutional Layer
from keras.utils import np_utils #used for one-hot encoding
import matplotlib.pyplot as plt #used for data visualization
```

```
(x_train, y_train), (x_test, y_test)=mnist.load_data () #splitting the mnist data into train and test
```

```
print (x_train.shape) #shape is used for give the dimens ion values #60000-rows 28x28-pixels
print (x_test.shape)
```

(60000, 28, 28)

(10000, 28, 28)

CHAPTER 8 TESTING

8.1 TEST CASES

Test case ID	Feature Type	Component	Test Scenario	Expected Result	Actual Result	Status
HP_TC_0 01	UI	Home Page	elemen ts in	The Home page must be displayed properly	Working as expect ed	PASS
BE_TC_001	Function al		Check if all the routes are working proper ly		Working as expect ed	PASS
RP_TC_001	UI	Result Page	elemen ts in	The Result page must be displayed properly	_	PASS

8.2 USER ACCEPTANCE TESTING

8.2.1 DEFECT ANALYSIS

Resolution	Severity 1	Severity 2	Severity 3	Severity 4	Total
By Design	1	0	1	0	2
Duplicate	0	0	0	0	0
External	0	0	2	0	2
Fixed	4	1	0	1	6
Not Reproduced	0	0	0	1	1
Skipped	0	0	0	1	1
Total	5	1	3	3	12

8.2.2 TEST CASE ANALYSIS

Section	Total Cases	Not Tested	Fail	Pass
Client Application	10	0	3	7
Security	2	0	1	1
Performance	3	0	1	2
Exception Reporting	2	0	0	2

CHAPTER 9 RESULTS

9.1 PERFORMANCE METRICS

CHAPTER 10

ADVANTAGES & DISADVANTAGES

ADVANTAGES

- Reduces manual work
- More accurate than average human
- Capable of handling a lot of data
- Can be used anywhere from any device

DISADVANTAGES

- Cannot handle complex data
- All the data must be in digital format
- Requires a high performance server for faster predictions
- Prone to occasional errors

CHAPTER 11

CONCLUSION

This project demonstrated a web application that uses machine learning to recognise handwritten numbers. Flask, HTML, CSS, JavaScript, and a few other technologies were used to create this project. The model predicts the handwritten digit using a CNN network. During testing, the model achieved a 99.61% recognition rate. The proposed project is scalable and can easily handle a huge number of users. Since it is a web application, it is compatible with any device that can run a browser. This project is extremely useful in real-world scenarios such as recognizing number plates of vehicles, processing bank cheque amounts, numeric entries in forms filled up by hand (tax forms) and so on. There is so much room for improvement, which can be implemented in subsequent versions.

CHAPTER 12 FUTURE SCOPE

This project is far from complete and there is a lot of room for improvement. Some of the improvements that can be made to this project are as follows:

- Add support to detect from digits multiple images and save the results
- Add support to detect multiple digits
- Improve model to detect digits from complex images
- Add support to different languages to help users from all over the world

This project has endless potential and can always be enhanced to become better. Implementing this concept in the real world will benefit several industries and reduce the workload on many workers, enhancing overall work efficiency.

APPENDIX

SOURCE CODE

MODEL CREATION

```
import numpy as np
 import tensorflow #open source used for both ML and DL for computation
 from tensorflow.keras.datasets import mnist #mnist dataset
 from tensorflow.keras.models import Sequential #it is a plain stack of layers
 from tensorflow.keras import layers #A Layer consists of a tensor- in tensor-out computat ion funct ion
 from tensorflow.keras.layers import Dense, Flatten #Dense-Dense Layer is the regular deeply connected r
 #faltten -used fot flattening the input or change the dimension
 from tensorflow.keras.layers import Conv2D #convolutional Layer
 from keras.utils import np_utils #used for one-hot encoding
 import matplotlib.pyplot as plt #used for data visualization
 (x_train, y_train), (x_test, y_test)=mnist.load_data () #splitting the mnist data into train and test
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz
print (x train.shape) #shape is used for give the dimens ion values #60000-rows 28x28-pixels
print (x_test.shape)
(60000, 28, 28)
(10000, 28, 28)
 #Reshaping to format which CNN expects (batch, height, width, channels)
 x_train=x_train.reshape (60000, 28, 28, 1).astype('float32')
 x test=x test.reshape (10000, 28, 28, 1).astype ('float32')
```

HOME PAGE (HTML)

```
<style>
    body{
     background-image: url('static/images/index6.jpg');
     background-repeat: no-repeat;
    background-size: cover;
    #rectangle{
    width:400px;
     height:150px;
     background-color: #5796a5;
     border-radius: 25px;
     position:absolute;
     top:25%;
     left:50%;
     transform:translate(-50%,-50%);
    }
    #ans{
  text-align: center;
  font-size: 40px;
  margin: 0 auto;
  padding: 3% 5%;
  padding-top: 15%;
  color: white;
    }
</style>
<body>
    <div id="rectangle">
        <h1 id="ans">Predicted Number : {{num}}</h1>
    </div>
</body>
</html>
```

HOME PAGE (CSS)

```
#clear_button{
      margin-left: 15px;
      font-weight: bold;
      color: blue;
    #confidence{
      font-family: 'Josefin Sans', sans-serif;
      margin-top: 7.5%;
    #content{
      margin: 0 auto;
      padding: 2% 15%;
      padding-bottom: 0;
    .welcome{
       text-align: center;
       position: relative;
       color: honeydew;
       background-color: greenyellow;
       padding-top: 1%;
       padding-bottom: 1%;
       font-weight: bold;
        font-family: 'Prompt', sans-serif;
    #team_id{
       text-align: right;
        font-size: 25px;
        padding-right: 3%;
35 #predict_button{
```

```
margin-right: 15px;
      color: blue;
      font-weight: bold;
41 #prediction_heading{
      font-family: 'Josefin Sans', sans-serif;
      margin-top: 7.5%;
    #result{
      font-size: 5rem;
    #title{
      padding: 1.5% 15%;
      margin: 0 auto;
      text-align: center;
    .btn {
        font-size: 15px;
        padding: 10px;
        -webkit-appearance: none;
        background: #eee;
        border: 1px solid #888;
        margin-top: 20px;
        margin-bottom: 20px;
    .buttons_div{
      margin-bottom: 30px;
      margin-right: 80px;
69 }
```

```
.heading{
  font-family: 'Varela Round', sans-serif;
  font-weight: 700;
  font-size: 2rem;
  display: inline;
.leftside{
  text-align: center;
 margin: 0 auto;
  margin-top: 2%;
  /* padding-left: 10%; */
#frame{
  margin-right: 10%;
.predicted_answer{
  text-align: center;
  margin: 0 auto;
 padding: 3% 5%;
  padding-top: 0;
  /* padding-left: 10%; */
p{
  font-family: 'Source Code Pro', monospace, sans-serif;
  margin-top: 1%;
@media (min-width: 720px) {
  .leftside{
    padding-left: 10%;
```

app.py

```
app = Flask(__name__)
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
model = load_model("mnistCNN.h5")
@app.route('/')
def index():
    return render_template('index.html')
@app.route('/predict', methods=['GET', 'POST'])
def upload():
    if request.method == "POST":
        f = request.files["image"]
        filepath = secure_filename(f.filename)
        f.save(os.path.join(app.config['UPLOAD_FOLDER'], filepath))
        upload_img = os.path.join(UPLOAD_FOLDER, filepath)
        img = Image.open(upload_img).convert("L") # convert image to monochrome
        img = img.resize((28, 28)) # resizing of input image
        im2arr = np.array(img) # converting to image
        im2arr = im2arr.reshape(1, 28, 28, 1) # reshaping according to our requirement
       pred = model.predict(im2arr)
        num = np.argmax(pred, axis=1) # printing our Labels
        return render_template('predict.html', num=str(num[0]))
if __name__ == '__main__':
    app.run(debug=True, threaded=False)
```

index.html

```
(head)
       <title>Digit Recognition WebApp</title>
 6 <meta name="viewport" content="width=device-width">
      k href="https://fonts.googleapis.com/css2?family=Prompt:wght@600&display=swap" rel="stylesheet">
      k href="https://fonts.googleapis.com/css2?family=Varela+Round&display=swap" rel="stylesheet">
      k href="https://fonts.googleapis.com/css2?family=Source+Code+Pro:wght@500&display=swap" rel="stylesheet">
      klink href="https://fonts.googleapis.com/css?family=Calistoga|Josefin+Sans:400,700|Pacifico&display=swap" rel="stylesheet">
      < link rel="stylesheet" href="https://stackpath.bootstrap.dn.com/bootstrap/4.3.1/css/bootstrap.min.css" integrity="sha384-gg0yR0iXCbMQv3Xipma34MD+dH/1fQ784/j6cY/iJTQU0hcWh7x9"</p>
       "text/css" href= "{{ url_for('static',filename='css/style.css') }}">
      <!-- fontawesome -->
       <script src="https://kit.fontawesome.com/b3aed9cb07.js" crossorigin="anonymous"></script>
      <script src="https://code.jquery.com/jquery-3.3.1.slim.min.js" integrity="sha384-q8i/X+965Dz00rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH+8abtTEIPi6jizo" crossorigin="anonymous" </p>
      <script src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.7/umd/popper.min.js" integrity="sha384-U02eT0CpHqdSJQ6hJty5KVphtPhzkj9M01c1HTMGa3JDZwrnQg4sF86dIHNDz0M1" c</p>
      <script src="https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/js/bootstrap.min.js" integrity="sha384-JjSmVgyd0p3pXB1rRibZUAY0IIy60rQ6VrjIEaFf/nJGzIxFDsf4x0xIM+807jRV" cros</p>
      <script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@latest"></script>
23 </head>
25 <script>
       function preview() {
        frame.src=URL.createObjectURL(event.target.files[0]);
        $(document).ready(function() {
              $('#clear_button').on('click', function() {
                  $('#image').val('');
                  $('#frame').attr('src',"");
```

```
<h1 class="welcome">IBM PROJECT
<div id="team_id">TEAM ID : PNT2022TMID05025</div>
</h1>
<section id="title">
 <h4 class="heading">Handwritten Digit Recognition Website</h4>
 <br><br><br><
     The website is designed to predict the handwritten digit.
     Handwriting recognition is one of the compelling research works going on because every individual in this world
     has their own style of writing. It is the capability of the computer to identify and understand
      handwritten digits or characters automatically. Because of the progress in the field of science and technology,
     everything is being digitalized to reduce human effort.
    (br)
 Hence, there comes a need for handwritten digit recognition in many real-time applications.
     MNIST data set is widely used for this recognition process and it has 70000 handwritten digits.
     We use Artificial neural networks to train these images and build a deep learning model.
     Web application is created where the user can upload an image of a handwritten digit.
      This image is analyzed by the model and the detected result is returned on to UI\langle /p \rangle
</section>
<section id="content">
      <div class="leftside">
      <form action="/predict" method="POST" enctype="multipart/form-data">
      <label>Select a image:</label>
      <input id="image" type="file" name="image" accept="image/png, image/jpeg" onchange="preview()"><br><br>
       <img id="frame" src="" width="100px" height="100px"/>
       <div class="buttons div">
          <button type="submit" class="btn btn-dark" id="predict_button">Predict</button>
          <button type="button" class="btn btn-dark" id="clear_button">&nbsp Clear &nbsp</button>
```

GITHUB

https://github.com/IBM-EPBL/IBM-Project-8922-1658938041

PROJECT DEMO LINK

https://drive.google.com/file/d/1b8egZ_U12YF5csdvgfOsa56kmNLFX5NV/view?usp=sharing

32