AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1	1. (Currently amended) A method for using a computer system to solve a
2	global inequality constrained optimization problem specified by a function f and a
3	set of inequality constraints $p_i(\mathbf{x}) \leq 0$ $(i=1,,m)$, wherein f and p_i are scalar
4	functions of a vector $\mathbf{x} = (x_1, x_2, x_3, \dots x_n)$, the method comprising:
5	receiving a representation of the function f and the set of inequality
6	constraints at the computer system;
7	storing the representation in a memory within the computer system;
8	performing an interval inequality constrained global optimization process
9	to compute guaranteed bounds on a globally minimum value of the function $f(\mathbf{x})$
10	subject to the set of inequality constraints;
11	wherein performing the interval global optimization process involves,
12	applying term consistency to the set of inequality
13	constraints over a sub-box X, and
14	excluding any portion of the sub-box X that is proved to be
15	in violation of at least one member of the set of inequality
16	constraints; and
17	recording the guaranteed bounds in the computer system memory;
18	wherein applying term consistency involves:
19	symbolically manipulating an equation within the computer
20	system to solve for a term, $g(x_j)$, thereby producing a modified

21	equation $g(x'_j) = h(x)$, wherein the term $g(x'_j)$ can be analytically
22	inverted to produce an inverse function $g^{-l}(\mathbf{y})$;
23	substituting the sub-box X into the modified equation to
24	produce the equation $g(X'_j) = h(X)$;
25	solving for $X_j = g^{-l}(h(X))$; and
26	intersecting X_j with the j-th element of the sub-box X to
27	produce a new sub-box X +:
28	wherein the new sub-box X^+ contains all solutions of the
29	equation within the sub-box X, and wherein the size of the new
30	sub-box \mathbf{X}^+ is less than or equal to the size of the sub-box \mathbf{X} .
1	2. (Previously presented) The method of claim 1, further comprising:
2	linearizing the set of inequality constraints to produce a set of linear
3	inequality constraints with interval coefficients that enclose the nonlinear
4	constraints;
5	preconditioning the set of linear inequality constraints through additive
6	linear combinations to produce a preconditioned set of linear inequality
7	constraints;
8	applying term consistency to the set of preconditioned linear inequality
9	constraints over the sub-box X, and
10	excluding any portion of the sub-box X that violates any member of the ser
11	of preconditioned linear inequality constraints.
1	3. (Original) The method of claim 2, further comprising:
2	keeping track of a least upper bound f_bar of the function $f(\mathbf{x})$ at a feasible
3	point x wherein $p_i(\mathbf{x}) \leq 0$ ($i=1,,m$); and
4	including $f(\mathbf{x}) \leq f_bar$ in the set of inequality constraints prior to
5	linearizing the set of inequality constraints.

- 1 4. (Original) The method of claim 2, further comprising removing from
- 2 consideration any inequality constraints that are not violated by more than a
- 3 specified amount for purposes of applying term consistency prior to linearizing
- 4 the set of inequality constraints.
- 5. (Previously presented) The method of claim 1, wherein performing the
- 2 interval global optimization process involves:
- keeping track of a least upper bound f_bar of the function $f(\mathbf{x})$ at a feasible
- 4 point x;
- removing from consideration any sub-box for which $f(\mathbf{x}) > f_bar$;
- applying term consistency to the f_bar inequality $f(\mathbf{x}) \le f_bar$ over the sub-
- 7 box X; and
- 8 excluding any portion of the sub-box \mathbf{X} that violates the f_bar inequality.
- 6. (Previously presented) The method of claim 1, wherein if the sub-box X
- 2 is strictly feasible $(p_i(\mathbf{X}) < 0 \text{ for all } i=1,...,n)$, performing the interval global
- 3 optimization process involves:
- determining a gradient g(x) of the function f(x), wherein g(x) includes
- 5 components $g_i(\mathbf{x})$ (i=1,...,n);
- removing from consideration any sub-box for which g(x) is bounded away
- 7 from zero, thereby indicating that the sub-box does not include an extremum of
- 8 $f(\mathbf{x})$; and
- applying term consistency to each component $g_i(\mathbf{x})=0$ (i=1,...,n) of $\mathbf{g}(\mathbf{x})=0$
- 10 over the sub-box X; and
- excluding any portion of the sub-box X that violates any component of
- 12 g(x)=0.

1	7. (Previously presented) The method of claim 1, wherein if the sub-box X
2	is strictly feasible $(p_i(\mathbf{X}) < 0 \text{ for all } i=1,,n)$, performing the interval global
3	optimization process involves:
4	determining diagonal elements $H_{ii}(\mathbf{x})$ ($i=1,,n$) of the Hessian of the
5	function $f(\mathbf{x})$;
6	removing from consideration any sub-box for which $H_{ii}(\mathbf{x})$ a diagonal
7	element of the Hessian over the sub-box \mathbf{X} is always negative, indicating that the
8	function f is not convex over the sub-box X and consequently does not contain a
9	global minimum within the sub-box X ;
10	applying term consistency to each inequality $H_{ii}(\mathbf{x}) \ge 0$ ($i=1,,n$) over the
11	sub-box X; and
12	excluding any portion of the sub-box \mathbf{X} that violates a Hessian inequality.
1	8. (Previously presented) The method of claim 1, wherein if the sub-box X
2	is strictly feasible $(p_i(\mathbf{X}) < 0 \text{ for all } i=1,,n)$, performing the interval global
3	optimization process involves:
4	performing the Newton method, wherein performing the Newton method
5	involves,
6	computing the Jacobian $J(x,X)$ of the gradient of the
7	function f evaluated with respect to a point \mathbf{x} over the sub-box \mathbf{X} ,
8	computing an approximate inverse B of the center of
9	J(x,X),
10	using the approximate inverse B to analytically determine
11	the system $\mathbf{Bg}(\mathbf{x})$, wherein $\mathbf{g}(\mathbf{x})$ is the gradient of the function $f(\mathbf{x})$,
12	and wherein $\mathbf{g}(\mathbf{x})$ includes components $g_i(\mathbf{x})$ ($i=1,,n$);
13	applying term consistency to each component $(\mathbf{Bg}(\mathbf{x}))_i = 0$ $(i=1,,n)$ for
14	each variable x_i ($i=1,,n$) over the sub-box \mathbf{X} ; and

15	excluding any portion of the sub-box X that violates a component.
1	9 (Canceled).
1	10. (Original) The method of claim 1, further comprising performing the
2	Newton method on the John conditions.
1	11. (Currently amended) A computer-readable storage medium storing
2	instructions that when executed by a computer cause the computer to perform a
3	method for using a computer system to solve a global inequality constrained
4	optimization problem specified by a function f and a set of inequality constraints
5	$p_i(\mathbf{x}) \le 0$ $(i=1,,m)$, wherein f is a scalar function of a vector $\mathbf{x} = (x_1, x_2, x_3, x_n)$
6	the method comprising:
7	receiving a representation of the function f and the set of inequality
8	constraints at the computer system;
9	storing the representation in a memory within the computer system;
10	performing an interval inequality constrained global optimization process
11	to compute guaranteed bounds on a globally minimum value of the function $f(\mathbf{x})$
12	subject to the set of inequality constraints;
13	wherein performing the interval global optimization process involves,
14	applying term consistency to the set of inequality
15	constraints over a sub-box X, and
16	excluding any portion of the sub-box X that is proved to be
17	in violation of at least one member of the set of inequality
18	constraints; and
19	recording the guaranteed bounds in the computer system memory;
20	wherein applying term consistency involves:

21	symbolically manipulating an equation within the computer
22	system to solve for a term, $g(x'_j)$, thereby producing a modified
23	equation $g(x'_j) = h(x)$, wherein the term $g(x'_j)$ can be analytically
24	inverted to produce an inverse function $g^{-l}(y)$;
25	substituting the sub-box X into the modified equation to
26	produce the equation $g(X_j) = h(X)$;
27	solving for $X_{i} = g^{-l}(h(\mathbf{X}))$; and
28	intersecting X'_{j} with the j-th element of the sub-box X to
29	produce a new sub-box X ⁺ ;
30	wherein the new sub-box X + contains all solutions of the
31	equation within the sub-box X, and wherein the size of the new
32	sub-box \mathbf{X}^+ is less than or equal to the size of the sub-box \mathbf{X} .
!	
1	12. (Previously presented) The computer-readable storage medium of
2	claim 11, wherein the method further comprises:
3	linearizing the set of inequality constraints to produce a set of linear
4	inequality constraints with interval coefficients that enclose the nonlinear
5	constraints;
6	preconditioning the set of linear inequality constraints through additive
7	linear combinations to produce a preconditioned set of linear inequality
8	constraints;
9	applying term consistency to the set of preconditioned linear inequality
10	constraints over the sub-box X, and
11	excluding any portion of the sub-box X that violates any member of the set
12	of preconditioned linear inequality constraints.
1	13. (Original) The computer-readable storage medium of claim 12,

wherein the method further comprises:

2

- keeping track of a least upper bound f_bar of the function f(x) at a feasible
- 4 point **x** wherein $p_i(\mathbf{x}) \le 0$ (i=1,...,m); and
- 5 including $f(\mathbf{x}) \le f_b ar$ in the set of inequality constraints prior to
- 6 linearizing the set of inequality constraints.
- 1 14. (Original) The computer-readable storage medium of claim 12,
- 2 wherein the method further comprises removing from consideration any inequality
- 3 constraints that are not violated by more than a specified amount for purposes of
- 4 applying term consistency prior to linearizing the set of inequality constraints.
- 1 15. (Previously presented) The computer-readable storage medium of
- 2 claim 11, wherein performing the interval global optimization process involves:
- keeping track of a least upper bound f_bar of the function $f(\mathbf{x})$ at a feasible
- 4 point x;
- removing from consideration any sub-box for which $f(\mathbf{x}) > f_bar$;
- applying term consistency to the f_bar inequality $f(\mathbf{x}) \le f_bar$ over the sub-
- 7 box X; and
- 8 excluding any portion of the sub-box \mathbf{X} that violates the f_bar inequality.
- 1 16. (Previously presented) The computer-readable storage medium of
- claim 11, wherein if the sub-box X is strictly feasible $(p_i(X) < 0 \text{ for all } i=1,...,n)$,
- 3 performing the interval global optimization process involves:
- determining a gradient g(x) of the function f(x), wherein g(x) includes
- 5 components $g_i(\mathbf{x})$ (i=1,...,n);
- removing from consideration any sub-box for which g(x) is bounded away
- 7 from zero, thereby indicating that the sub-box does not include an extremum of
- 8 $f(\mathbf{x})$; and

9	applying term consistency to each component $g_i(\mathbf{x}) = 0$ $(i=1,,n)$ of $\mathbf{g}(\mathbf{x}) = 0$
10	over the sub-box X ; and
11	excluding any portion of the sub-box X that violates any component of
12	$\mathbf{g}(\mathbf{x})=0.$
1	17. (Previously presented) The computer-readable storage medium of
2	claim 11, wherein if the sub-box X is strictly feasible $(p_i(X) < 0 \text{ for all } i=1,,n)$,
3	performing the interval global optimization process involves:
4	determining diagonal elements $H_{ii}(\mathbf{x})$ ($i=1,,n$) of the Hessian of the
5	function $f(\mathbf{x})$;
6	removing from consideration any sub-box for which $H_{ii}(\mathbf{x})$ a diagonal
7	element of the Hessian over the sub-box X is always negative, indicating that the
8	function f is not convex over the sub-box X and consequently does not contain a
9	global minimum within the sub-box X;
10	applying term consistency to each inequality $H_{ii}(\mathbf{x}) \ge 0$ $(i=1,,n)$ over the
11	sub-box X ; and
12	excluding any portion of the sub-box X that violates a Hessian inequality.
1	18. (Previously presented) The computer-readable storage medium of
2	claim 11, wherein if the sub-box X is strictly feasible $(p_i(\mathbf{X}) < 0 \text{ for all } i=1,,n)$,
3	performing the interval global optimization process involves:
4	performing the Newton method, wherein performing the Newton method
5	involves,
6	computing the Jacobian $J(x,X)$ of the gradient of the
7	function f evaluated with respect to a point \mathbf{x} over the sub-box \mathbf{X} ,
8	computing an approximate inverse B of the center of
9	J(x,X),

10	using the approximate inverse B to analytically determine
11	the system $\mathbf{Bg}(\mathbf{x})$, wherein $\mathbf{g}(\mathbf{x})$ is the gradient of the function $f(\mathbf{x})$,
12	and wherein $\mathbf{g}(\mathbf{x})$ includes components $g_i(\mathbf{x})$ $(i=1,,n)$;
13	applying term consistency to each component $(\mathbf{Bg}(\mathbf{x}))_i = 0$ $(i=1,,n)$ for
14	each variable x_i ($i=1,,n$) over the sub-box X ; and
15	excluding any portion of the sub-box \mathbf{X} that violates a component.
1	19 (Canceled).
1	20. (Original) The computer-readable storage medium of claim 11,
2	wherein the method further comprises performing the Newton method on the John
3	conditions.
1	21. (Currently amended) An apparatus for using a computer system to
2	solve a global inequality constrained optimization problem specified by a function
3	f and a set of inequality constraints $p_i(\mathbf{x}) \le 0$ $(i=1,,m)$, wherein f is a scalar
4	function of a vector $\mathbf{x} = (x_1, x_2, x_3, \dots x_n)$, the apparatus comprising:
5	a receiving mechanism that is configured to receive a representation of the
6	function f and the set of inequality constraints at the computer system;
7	a memory within the computer system for storing the representation;
8	a global optimizer that is configured to perform an interval inequality
9	constrained global optimization process to compute guaranteed bounds on a
10	globally minimum value of the function $f(\mathbf{x})$ subject to the set of inequality
11	constraints;
12	a term consistency mechanism within the global optimizer that is
13	configured to,
14	apply term consistency to the set of inequality constraints
15	over a sub-box X, and to

16	exclude any portion of the sub-box \mathbf{X} that is proved to be in
17	violation of at least one member of the set of inequality constraints
18	and
19	a recording mechanism that is configured record the guaranteed bounds in
20	the computer system memory;
21	wherein the term consistency mechanism is configured to:
22	symbolically manipulate an equation within the computer
23	system to solve for a term, $g(x'_j)$, thereby producing a modified
24	equation $g(x'_j) = h(x)$, wherein the term $g(x'_j)$ can be analytically
25	inverted to produce an inverse function $g^{-1}(y)$;
26	substitute the sub-box X into the modified equation to
27	produce the equation $g(X'_j) = h(X)$;
28	solve for $X_j^i = g^{-l}(h(X))$; and
29	intersect X'_j with the j-th element of the sub-box X to
30	produce a new sub-box X ⁺ ;
31	wherein the new sub-box X + contains all solutions of the
32	equation within the sub-box X, and wherein the size of the new
33	sub-box \mathbf{X}^+ is less than or equal to the size of the sub-box \mathbf{X} .
,	
1	22. (Previously presented) The apparatus of claim 21, further comprising:
2	a linearizing mechanism that is configured to linearize the set of inequality
3	constraints to produce a set of linear inequality constraints with interval
4	coefficients that enclose the nonlinear constraints; and
5	a preconditioning mechanism that is configured to precondition the set of
6	linear inequality constraints through additive linear combinations to produce a
7	preconditioned set of linear inequality constraints;
8	wherein the term consistency mechanism is configured to,

9	apply term consistency to the set of preconditioned linear
10	inequality constraints over the sub-box X, and to
11	exclude any portion of the sub-box X that violates any
12	member of the set of preconditioned linear inequality constraints.
1	23. (Original) The apparatus of claim 22, wherein the global optimizer is
2	configured to:
3	keep track of a least upper bound f_bar of the function $f(\mathbf{x})$ at a feasible
4	point x wherein $p_i(\mathbf{x}) \leq \theta$ $(i=1,,m)$; and to
5	include $f(\mathbf{x}) \leq f_bar$ in the set of inequality constraints prior to linearizing
6	the set of inequality constraints.
1	24. (Original) The apparatus of claim 22, wherein the term consistency
2	mechanism is configured to remove from consideration any inequality constraints
3	that are not violated by more than a specified amount for purposes of applying
4	term consistency prior to linearizing the set of inequality constraints.
1	25. (Previously presented) The apparatus of claim 21,
2	wherein the global optimizer is configured to,
3	keep track of a least upper bound f_bar of the function $f(\mathbf{x})$
4	at a feasible point \mathbf{x} , and to
5	remove from consideration any sub-box for which
6	$f(\mathbf{x}) > f_bar;$
7	wherein the term consistency mechanism is configured to,
8	apply term consistency to the f_bar
9	inequality $f(\mathbf{x}) \le f_bar$ over the sub-box \mathbf{X} , and to
0	exclude any portion of the sub-box \mathbf{X} that
1	violates the f_bar inequality.

1	26. (Previously presented) The apparatus of claim 21, wherein if the sub-
2	box X is strictly feasible $(p_i(\mathbf{X}) < 0 \text{ for all } i=1,,n)$:
3	the global optimizer is configured to,
4	determine a gradient $g(x)$ of the function $f(x)$, wherein $g(x)$
5	includes components $g_i(\mathbf{x})$ ($i=1,,n$), and to
6	remove from consideration any sub-box for which $g(x)$ is
7	bounded away from zero, thereby indicating that the sub-box does
8	not include an extremum of $f(\mathbf{x})$; and
9	the term consistency mechanism is configured to,
10	apply term consistency to each component $g_i(\mathbf{x})=0$
11	$(i=1,,n)$ of $\mathbf{g}(\mathbf{x})=0$ over the sub-box \mathbf{X} , and to
12	exclude any portion of the sub-box X that violates any
13	component of $g(x)=0$.
1	27. (Previously presented) The apparatus of claim 21, wherein if the sub-
2	box X is strictly feasible $(p_i(\mathbf{X}) < 0 \text{ for all } i=1,,n)$:
3	the global optimizer is configured to,
4	determine diagonal elements $H_{ii}(\mathbf{x})$ ($i=1,,n$) of the
5	Hessian of the function $f(\mathbf{x})$, and to
6	remove from consideration any sub-box for which $H_{ii}(\mathbf{x})$ a
7	diagonal element of the Hessian over the sub-box X is always
8	negative, indicating that the function f is not convex over the sub-
9	box X and consequently does not contain a global minimum within
10	the sub-box X; and
11	the term consistency mechanism is configured to,
12	apply term consistency to each inequality $H_{ii}(\mathbf{x}) \geq 0$
13	(i=1,,n) over the sub-box X , and to

14	exclude any portion of the sub-box \mathbf{X} that violates a
15	Hessian inequality.
1	28. (Previously presented) The apparatus of claim 21, wherein if the sub-
2	box X is strictly feasible $(p_i(\mathbf{X}) < 0 \text{ for all } i=1,,n)$:
3	the global optimizer is configured to perform the Newton method, whereir
4	performing the Newton method involves,
5	computing the Jacobian $J(x,X)$ of the gradient of the
6	function f evaluated with respect to a point x over the sub-box X ,
7	computing an approximate inverse B of the center of
8	J(x,X), and
9	using the approximate inverse B to analytically determine
10	the system $Bg(x)$, wherein $g(x)$ is the gradient of the function $f(x)$,
11	and wherein $\mathbf{g}(\mathbf{x})$ includes components $g_i(\mathbf{x})$ ($i=1,,n$); and
12	the term consistency mechanism is configured to,
13	apply term consistency to each component $(\mathbf{Bg}(\mathbf{x}))_i = 0$
14	$(i=1,,n)$ for each variable x_i $(i=1,,n)$ over the sub-box X , and to
15	exclude any portion of the sub-box X that violates a
16	component.
1	29 (Canceled).
1	30. (Original) The apparatus of claim 21, wherein the global optimizer is
2	configured to apply the Newton method to the John conditions