CCC Clock Demonstration: Information-Induced Time Dilation

CCC Clock Research Team

September 2025

Slide 1: The Problem

Can Information Processing Affect Spacetime?

Fundamental Question: Does computational complexity create measurable gravitational effects?

Current Status: - Theoretical frameworks exist (CCC theory, holographic principle) - No experimental tests of information-spacetime coupling - Optical clocks achieve unprecedented precision (10^{-18} fractional frequency)

Opportunity: Use co-located atomic clocks to detect information-induced time dilation

Challenge: Distinguish genuine spacetime effects from systematic errors

Slide 2: The Idea

Geometric Demodulation of Information Effects

Core Insight: Information processing creates operational curvature $R_{op} = \dot{K}/(\dot{S}_{e} + \dot{S}_{e})$ loss)

Detection Strategy: - Couple one clock to controlled complexity source - Navigate parameter space in Θ -only loops - Use ABBA protocol to cancel systematics - Look for sign flip under geometric reversal

Key Innovation: Non-commuting geometry preserves CCC signal while rejecting environmental noise

Slide 3: The Model

Single Box Equation

 $(\Delta f/f)$ demod = $\Gamma \theta * R op * A \Sigma + systematics$

Parameters: - **R_op**: Operational curvature (complexity/dissipation ratio) - $\Gamma_{-}\Theta$: Geometric coupling in Θ-space - **A_Σ**: Loop area in (ln r*, θ) coordinates (~10⁻⁶)

Signature: Perfect sign flip (ratio = -1.000) under loop reversal

Falsifiability: Specific geometric predictions distinguish from all known systematics

Slide 4: Simulation Results

Validated Parameter Sets

Parameter Set R_op Detection Time Complexity Rate

A (Aggressive) 9.5 0.8 hours 300 MHz B (Conservative) 4.1×10^{-8} 13.1 hours 100 MHz

Bridge Analysis: ϵ -continuation confirms theoretical predictions - $R^* = 5.80$, $SE = 9.8 \times 10^{-2}$ - Scaling exponent $\alpha = 0.22$ - Linear convergence to commutator floor

Slide 5: Protocol Design

ABBA Demodulation Strategy

Sequence: 1. **A**: Forward Θ -loop with complexity source active 2. **B**: Reverse Θ -loop with complexity source active 3. **B**: Reverse Θ -loop with complexity source active 4. **A**: Forward Θ -loop with complexity source active

Result: Systematics cancel, CCC signal doubles

Modulation: 0.3-0.8 Hz for optimal systematic rejection

Witnesses: Thermal, magnetic, optical power monitoring

Slide 6: Experimental Requirements

Hardware and Infrastructure

Primary Systems: - Dual Sr lattice clocks ($\sigma_0 \le 3 \times 10^{-18} / \sqrt{\tau}$) - Quantum processor (100-300 qubits, MHz operation) - Local coupling (≤ 1 pW dissipation near atoms)

Environment: - Standard optical clock laboratory - Active field compensation - Temperature stabilization

Timeline: 6-month experimental campaign

Slide 7: Risk Assessment

Systematic Mitigation Strategies

Low Risk (Mitigated): - Stark/Zeeman shifts → Field compensation + witnesses - Thermal fluctuations → Stabilization + monitoring - Common-mode noise → ABBA rejection >40 dB

 $\textbf{Medium Risk (Manageable)} : - Servo\ coupling \rightarrow Bandwidth\ optimization\ - Complexity\ source\ stability \rightarrow Quantum\ error\ correction$

Key Advantage: Geometric signature provides robust systematic rejection

Slide 8: Sensitivity Analysis

Detection Feasibility

Current Clock Performance: $\sigma_0 = 3 \times 10^{-18} / \sqrt{\tau}$ (state-of-art Sr clocks)

Predicted Signal Strength: - Parameter Set A: $>3\sigma$ detection in 0.8 hours - Parameter Set B: $>3\sigma$ detection in 13.1 hours

Scaling: Signal increases with complexity rate and loop area

Validation: All acceptance criteria met through simulation

Slide 9: Scientific Impact

Breakthrough Physics Opportunity

 ${\bf Immediate\ Impact:} \ -\ {\bf First\ experimental\ test\ of\ information-spacetime\ coupling\ -\ New\ precision\ measurement\ technique\ -\ Validation/falsification\ of\ CCC\ theory$

Broader Implications: - Quantum gravity phenomenology - Information-theoretic approaches to cosmology - Next-generation precision metrology

Publication: High-impact joint authorship opportunity

Slide 10: Collaboration Ask

Partnership Opportunity

 $\textbf{What We Provide:} \ - \ Complete \ theoretical \ framework \ - \ Validated \ experimental \ protocols \ - \ Real-time \ collaboration \ and \ analysis \ - \ Co-PI \ partnership \ on \ publications$

What We Need: - Dual Sr lattice clock access - Quantum processor integration - 6-month experimental commitment - Joint grant development

Timeline: Seeking partner within 60 days for immediate start

Contact: Ready for technical discussion and proposal development

Ready to make history in fundamental physics?