Package 'edm1'

February 20, 2024

Title edm **Version** 1.0

Author person('Julien', 'Larget-Piet', role = c('aut', 'cre'))

Description What the package does (one paragraph).
License GPL-2
description Set of tools to manage mostly dataframe and character.
Encoding UTF-8
Roxygen list(markdown = TRUE)
RoxygenNote 7.2.3
Imports openxlsx, stringr, stringi,
NeedsCompilation no
Maintainer Julien Larget-Piet < julien.larget-piet@edu.univ-eiffel.fr>
R topics documented:
11 topics documented.
all_stat
any_join_df
append_row
appndr
calc_occu_v
can_be_num
change_date
chr_removr
closer_ptrn
closer_ptrn_adv
closest_date
clusterizer_v
cost_and_taxes
data_gen
data meshup

 diff_xlsx
 18

 equalizer_v
 19

 extrm_dates
 19

44

Index

extrt_only_v	20
file_rec	20
file_rec2	21
fillr	21
fittr_v	22
fixer_nest_v	22
format_date	23
geo_min	23
get_rec	24
globe	24
groupr_df	25
incr_fillr	26
insert_df	26
inter_max	27
inter_min	27
letter_to_nb	28
list_files	28
lst_flatnr	29
match_n	29
match_n2	30
multitud	30
nb_to_letter	31
nestr_df1	31
nestr_df2	32
nest_v	32
occu	33
paste_df	33
pattern_generator	34
pattern_gettr	34
pattern_tuning	35
ptrn_switchr	36
ptrn_twkr	36
rearangr_v	37
see_df	38
see_file	38
see_idx	39
see_inside	39
unique_ltr_from_v	10
unique_pos	10
until_stnl	11
val_replacer	11
vec_in_df	12
vlookup_df4	12
v_to_df	13

all_stat 3

all_stat all_stat

Description

Allow to see all the main statistics indicators (mean, median, variance, standard deviation, sum, max, min, quantile) of variables in a dataframe by the modality of a variable in a column of the input datarame. In addition to that, you can get the occurrence of other qualitative variables by your chosen qualitative variable, you have just to precise it in the vector "stat_var" where all the statistics indicators are given with "occu-var_you_want/".

Usage

```
all_stat(inpt_v, var_add = c(), stat_var = c(), inpt_df)
```

Arguments

```
inpt_v is the modalities of the variables
var_add is the variables you want to get the stats from
stat_var is the stats indicators you want
inpt_df is the input dataframe
```

Examples

any_join_df

any_join_df

Description

Allow to perform SQL joints with more features

```
any_join_df(
  inpt_df_l,
  join_type = "inner",
  join_spe = NA,
  id_v = c(),
  excl_col = c(),
  rtn_col = c(),
  d_val = NA
)
```

4 any_join_df

Arguments

inpt_df_l is a list containing all the dataframe is the joint type. Defaults to inner but can be changed to a vector containing all join_type the dataframes you want to take their ids to don external joints. can be equal to a vector to do an external joints on all the dataframes. In this join_spe case, join_type should not be equal to "inner" id_v is a vector containing all the ids name of the dataframes. The ids names can be changed to number of their columns taking in count their position in inpt_df_1. It means that if my id is in the third column of the second dataframe and the first dataframe have 5 columns, the column number of the ids is 5 + 3 = 8is a vector containing the column names to exclude, if this vector is filled so excl col "rtn_col" should not be filled. You can also put the column number in the manner indicated for "id_v". Defaults to c() is a vector containing the column names to retain, if this vector is filled so rtn_col "excl col" should not be filled. You can also put the column number in the manner indicated for "id v". Defaults to c() is the default val when here is no match d_val

```
df1 \leftarrow data.frame("val"=c(1, 1, 2, 4), "ids"=c("e", "a", "z", "a"),
"last"=c("oui", "oui", "non", "oui"),
"second_ids"=c(13, 11, 12, 8))
 df2 <- \ data.frame("val"=c(3, 7, 2, 4, 1, 2), "ids"=c("a", "z", "z", "a", "a"), \\
"bool"=c(T, F, F, F, T, T),
"second_ids"=c(13, 12, 8, 34, 22, 12))
df3 \leftarrow data.frame("val"=c(1, 9, 2, 4), "ids"=c("a", "a", "z", "a"),
"last"=c("oui", "oui", "non", "oui"),
"second_ids"=c(13, 11, 12, 8))
print(any_join_df(inpt_df_l=list(df1, df2, df3), join_type="inner",
id_v=c("ids", "second_ids"),
                excl_col=c(), rtn_col=c()))
ids val ids last second_ids val ids bool second_ids val ids last second_ids
3 z12 2
                         12 7 z FALSE
                                                12 2
                                                         z non
          z non
print(any_join_df(inpt_df_l=list(df1, df2, df3), join_type="inner", id_v=c("ids"),
excl_col=c(), rtn_col=c()))
ids val ids last second_ids val ids bool second_ids val ids last second_ids
                         11 3 a TRUE
                                                 13 1 a oui
  а
          a oui
                              7
3
       2
                          12
                                  z FALSE
                                                  12
                                                       2
                                                             non
                                                                         12
   Z
           Z
              non
                                                          Z
                              4 a FALSE
          a oui
                                                         a oui
                                                                         11
   а
       4
                          8
                                                  34
                                                      9
print(any_join_df(inpt_df_l=list(df1, df2, df3), join_type=c(1), id_v=c("ids"),
                excl_col=c(), rtn_col=c()))
ids val ids last second_ids val ids bool second_ids val ids last
1
   е
      1
          e oui
                        13 <NA> <NA> <NA>
                                             <NA> <NA> <NA> <NA>
          a oui
                         11
                             3 a TRUE
                                                  13 1 a oui
   а
       2 z non
                         12
                               7
                                  z FALSE
                                                  12
                                                       2
```

append_row 5

```
4 a oui
                        8 4 a FALSE
                                                34
                                                     9
   а
                                                            a oui
second_ids
1
       <NA>
2
        1.3
3
         12
4
         11
print(any_join_df(inpt_df_l=list(df2, df1, df3), join_type=c(1, 3), id_v=c("ids", "second
               excl_col=c(), rtn_col=c()))
 ids val ids bool second_ids val ids last second_ids val ids last
        3
                            13 <NA> <NA> <NA>
1 a13
             a TRUE
                                                   <NA>
                                                            a oui
  z12
        7
            z FALSE
                            12
                                 2 z non
                                                    12
                                                          2
3
   z8
       2
            z FALSE
                             8 <NA> <NA> <NA>
                                                   <NA> <NA> <NA> <NA>
4 a34
        4
           a FALSE
                            34 <NA> <NA> <NA>
                                                   <NA> <NA> <NA> <NA>
5
        1
                            22 <NA> <NA> <NA>
  a22
            a TRUE
                                                   <NA> <NA> <NA> <NA>
6 a12
         2 a TRUE
                            12 <NA> <NA> <NA>
                                                   <NA> <NA> <NA> <NA>
  a13 <NA> <NA> <NA>
                          <NA> <NA> <NA> <NA>
                                                   <NA> <NA> <NA> <NA>
8 all \langle NA \rangle \langle NA \rangle
                                                        9 a oui
                          <NA>
                                1 a oui
                                                    11
9 z12 <NA> <NA> <NA>
                          <NA> <NA> <NA> <NA>
                                                   <NA> <NA> <NA> <NA>
10 a8 <NA> <NA> <NA>
                          <NA> 4 a oui
                                                     8
                                                         4
 second_ids
1
          13
2
          12
3
        <NA>
4
        <NA>
5
        <NA>
6
        <NA>
7
        <NA>
8
         11
9
        <NA>
10
           8
print(any_join_df(inpt_df_l=list(df1, df2, df3), join_type=c(1), id_v=c("ids"),
               excl_col=c(), rtn_col=c()))
ids val ids last second_ids val ids bool second_ids val ids last
                   13 <NA> <NA> <NA>
                                                <NA> <NA> <NA> <NA>
      1 e oui
                                                     1
                         11 3 a TRUE
                                                 13
   а
       1
          а
             oui
                                                            a oui
3
                         12
                              7
                                                        2.
       2
                                   z FALSE
                                                  12
   Z
         Z
             non
                                                            z non
4
       4
             oui
                         8
                            4
                                 a FALSE
                                                  34
                                                               0111
   а
          а
second ids
1
       <NA>
3
         12
4
         11
```

Description

append_row

Append the last row from dataframe to the another or same dataframe

append_row

```
append_row(df_in, df, hmn = 1, na_col = c(), unique_do_not_know = NA)
```

6 calc_occu_v

Arguments

df_in is the dataframe from which the row will append to another or the same dataframe df is the dataframe to which the row will append hmn is how many time the last row will be appended is a vector containing the columns that won't append and will be replaced by na_col another value (unique_do_not_know)

unique_do_not_know

is the value of the non appending column in the appending row

appndr appndr

Description

Append to a vector "inpt_v" a special value "val" n times "mmn". The appending begins at "strt" index.

Usage

```
appndr(inpt_v, val = NA, hmn, strt = "max")
```

Arguments

inpt_v is the input vector is the special value val

is the number of special value element added hmn

is the index from which appending begins, defaults to max which means the end strt

of "inpt_v"

calc_occu_v calc_occu_v

Description

Rearanges the index of a vector "w_v" to match the occurences of the common elements in another vector "f_v"

Usage

```
calc_occu_v(f_v, w_v, nvr_here = NA)
```

```
print(calc_occu_v(f_v=c("e", "a", "z", NA, "a"), w_v=c("a", "a", "z")))
[1] 1 3 2
```

can_be_num 7

```
can_be_num can_be_num
```

Description

Return TRUE if a variable can be converted to a number and FALSE if not (supports float)

Usage

```
can_be_num(x)
```

Arguments

Х

is the input value

change_date

change_date

Description

Allow to add to a date second-minute-hour-day-month-year

Usage

```
change_date(
  date_,
  sep_,
  day_ = NA,
  month_ = NA,
  year_ = NA,
  hour_ = NA,
  min_ = NA,
  second_ = NA,
  frmt = "snhdmy"
)
```

Arguments

```
is the input date
date_
                  is the date separator
sep_
                  is the day to add (can be negative)
day_
                  is the month to add (can be negative)
month_
                  is the year to add (can be negative)
year_
                  is the hour to add (can be negative)
hour_
                  is the minute to add (can be negative)
min_
second_
                  is the second to add (can be negative)
frmt
```

is the format of the input date, (deault set to "snhdmy" (second, minute, hour, day, month, year), so all variable are taken in count), if you only want to work

with standard date for example change this variable to "dmy"

8 closer_ptrn

chr_removr

chr_removr

Description

Allow to remove certain characters contained in a vector "ptrn_v" from elements in a another vector "inpt_v".

Usage

```
chr_removr(inpt_v, ptrn_v)
```

Arguments

inpt_v is the input vector containing all the elements that may have the characters to be
removed

ptrn_v is the vector containing all the characters that will be removed

Examples

```
print (chr_removr(inpt_v=c("oui?", "!oui??", "non", "!non"), ptrn_v=c("?")))
[1] "oui" "!oui" "non" "!non"

print (chr_removr(inpt_v=c("oui?", "!oui??", "non", "!non"), ptrn_v=c("?", "!")))
[1] "oui" "oui" "non" "non"
```

closer_ptrn

closer_ptrn

Description

Take a vector of patterns as input and output each chosen word with their closest patterns from chosen patterns.

```
closer_ptrn(
   inpt_v,
   base_v = c("?", letters),
   excl_v = c(),
   rtn_v = c(),
   sub_excl_v = c(),
   sub_rtn_v = c()
)
```

closer_ptrn 9

Arguments

inpt_v	is the input vector containing all the patterns
base_v	must contain all the characters that the patterns are succeptible to contain, defaults to c("?", letters). "?" is necessary because it is internally the default value added to each element that does not have a sufficient length compared to the longest pattern in inpt_v. If set to NA, the function will find by itself the elements to be filled with but it may takes an extra time
excl_v	is the vector containing all the patterns from inpt_v to exclude for comparing them to others patterns. If this parameter is filled, so "rtn_v" must be empty.
rtn_v	is the vector containing all the patterns from inpt_v to keep for comparing them to others patterns. If this parameter is filled, so "rtn_v" must be empty.
sub_excl_v	is the vector containing all the patterns from inpt_v to exclude for using them to compare to another pattern. If this parameter is filled, so "sub_rtn_v" must be empty.
sub_rtn_v	is the vector containing all the patterns from inpt_v to retain for using them to compare to another pattern. If this parameter is filled, so "sub_excl_v" must be empty.

```
print(closer_ptrn(inpt_v=c("bonjour", "lpoerc", "nonnour", "bonnour", "nonjour", "aurevoi
[[1]]
[1] "bonjour"
[[2]]
[1] "lpoerc" "nonnour" "bonnour" "nonjour" "aurevoir"
[[3]]
[1] 1 1 2 7 8
[[4]]
[1] "lpoerc"
[1] "bonjour" "nonnour" "bonnour" "nonjour" "aurevoir"
[[6]]
[1] 7 7 7 7 7
[[7]]
[1] "nonnour"
[1] "bonjour" "lpoerc" "bonnour" "nonjour" "aurevoir"
[[9]]
[1] 1 1 2 7 8
[[10]]
[1] "bonnour"
[[11]]
[1] "bonjour" "lpoerc" "nonnour" "nonjour" "aurevoir"
```

10 closer_ptrn

```
[[12]]
[1] 1 1 2 7 8
[[13]]
[1] "nonjour"
[[14]]
[1] "bonjour" "lpoerc" "nonnour" "bonnour" "aurevoir"
[[15]]
[1] 1 1 2 7 8
[[16]]
[1] "aurevoir"
[[17]]
[1] "bonjour" "lpoerc" "nonnour" "bonnour" "nonjour"
[[18]]
[1] 7 8 8 8 8
print(closer_ptrn(inpt_v=c("bonjour", "lpoerc", "nonnour", "bonnour", "nonjour", "aurevoi
                sub_excl_v=c("nonnour")))
[1] 3 5
[[1]]
[1] "bonjour"
[[2]]
[1] "lpoerc" "bonnour" "nonjour" "aurevoir"
[[3]]
[1] 1 1 7 8
[[4]]
[1] "lpoerc"
[[5]]
[1] "bonjour" "bonnour" "nonjour" "aurevoir"
[[6]]
[1] 7 7 7 7
[[7]]
[1] "bonnour"
[[8]]
[1] "bonjour" "lpoerc" "bonnour" "nonjour" "aurevoir"
[[9]]
[1] 0 1 2 7 8
[[10]]
[1] "aurevoir"
[1] "bonjour" "lpoerc" "nonjour" "aurevoir"
```

closer_ptrn_adv 11

```
[[12]]
[1] 0 7 8 8
```

```
closer_ptrn_adv closer_ptrn_adv
```

Description

Allow to find how patterns are far or near between each other relatively to a vector containing characters at each index ("base_v"). The function gets the sum of the indexes of each pattern letter relatively to the characters in base_v. So each pattern can be compared.

Usage

```
closer_ptrn_adv(
  inpt_v,
  res = "raw_stat",
  default_val = "?",
  base_v = c(default_val, letters),
  c_word = NA
)
```

Arguments

inpt_v	is the input vector containing all the patterns to be analyzed
res	is a parameter controling the result. If set to "raw_stat", each word in inpt_v will come with its score (indexes of its letters relatively to base_v). If set to something else, so "c_word" parameter must be filled.
default_val	is the value that will be added to all patterns that do not equal the length of the longest pattern in inpt_v. Those get this value added to make all patterns equal in length so they can be compared, defaults to "?"
base_v	is the vector from which all pattern get its result (letters indexes for each pattern relatively to base_v), defaults to c("default_val", letters). "default_val" is another parameter and letters is all the western alphabetic letters in a vector
c_word	is a pattern from which the nearest to the farest pattern in inpt_v will be compared

12 clusterizer_v

```
[1] 117 107 119 37 64
[[2]]
[1] "aurevoir" "bonnour" "nonnour" "fin" "mois"
```

closest_date

closest_date

Description

return the closest dates from a vector compared to the input date

Usage

```
closest_date(
    vec,
    date_,
    frmt,
    sep_ = "/",
    sep_vec = "/",
    only_ = "both",
    head = NA
)
```

Arguments

vec	is a vector containing the dates to be compared to the input date
date_	is the input date
frmt	is the format of the input date, (deault set to "snhdmy" (second, minute, hour, day, month, year), so all variable are taken in count), if you only want to work with standard date for example change this variable to "dmy"
sep_	is the separator for the input date
sep_vec	is the separator for the dates contained in vec
only_	is can be changed to "+" or "-" to repectively only return the higher dates and the lower dates (default set to "both")
head	is the number of dates that will be returned (default set to NA so all dates in vec will be returned)

clusterizer_v

clusterizer_v

Description

Allow to output clusters of elements. Takes as input a vector "inpt_v" containing a sequence of number. Can also take another vector "w_v" that has the same size of inpt_v because its elements are related to it. The way the clusters are made is related to an accuracy value which is "c_val". It means that if the difference between the values associated to 2 elements is superior to c_val, these two elements are in distinct clusters.

clusterizer_v 13

Usage

```
clusterizer_v(inpt_v, w_v = NA, c_val)
```

Arguments

inpt_v is the vector containing the sequence of numberw_v is the vector containing the elements related to inpt_v, defaults to NAc_val is the accuracy of the clusterization

```
print(clusterizer_v(inpt_v=sample.int(20, 26, replace=T), w_v=NA, c_val=0.9))
[[1]]
[[1]][[1]]
[1] "j" "v"
[[1]][[2]]
[1] "x"
[[1]][[3]]
[1] "e" "m" "p" "s" "t" "b" "q" "z" "f"
[[1]][[4]]
[1] "a" "i"
[[1]][[5]]
[1] "c" "n" "o" "g" "u" "y" "h" "l"
[[1]][[6]]
[1] "d" "r" "w" "k"
[[2]]
[1] "1" "2" "-" "4" "4" "-" "6" "10" "-" "12" "12" "-" "14" "16" "-"
[16] "18" "19"
print(clusterizer_v(inpt_v=sample.int(40, 26, replace=T), w_v=letters, c_val=0.29))
[[1]]
[[1]][[1]]
[1] "a" "b" "c" "d" "e" "f" "g" "h"
[[1]][[2]]
[1] "i" "j" "k" "l"
[[1]][[3]]
[1] "m" "n"
[[1]][[4]]
[1] "o" "p" "q" "r" "s" "t" "u" "v" "w" "x" "y" "z"
[[2]]
[1] "1" "5" "-" "8" "10" "-" "12" "13" "-" "15" "20"
```

14 cost_and_taxes

```
cost_and_taxes cost_and_taxes
```

Description

Allow to calculate basic variables related to cost and taxes from a bunch of products (elements) So put every variable you know in the following order:

Usage

```
cost_and_taxes(
   qte = NA,
   pu = NA,
   prix_ht = NA,
   tva = NA,
   prix_ttc = NA,
   prix_tva = NA,
   pu_ttc = NA,
   adjust = NA,
   prix_d_ht = NA,
   prix_d_ttc = NA,
   pu_d = NA,
   pu_d = NA,
   pu_d_ttc = NA
```

Arguments

qte	is the quantity of elements
pu	is the price of a single elements without taxes
prix_ht	is the duty-free price of the whole set of elements
tva	is the percentage of all taxes
prix_ttc	is the price of all the elements with taxes
prix_tva	is the cost of all the taxes
pu_ttc	is the price of a single element taxes included
adjust	is the discount percentage
prix_d_ht	is the free-duty price of an element after discount
prix_d_ttc	is the price with taxes of an element after discount
pu_d	is the price of a single element after discount and without taxes
pu_d_ttc	is the free-duty price of a single element after discount the function return a vector with the previous variables in the same order those that could not be calculated will be represented with NA value

data_gen 15

Description

Allo to generate in a csv all kind of data you can imagine according to what you provide

Usage

Arguments

type_	is a vector for wich argument is a column, a column can be made of numbers ("number"), string ("string") or both ("mixed")
strt_l	is a vector containing for each column the row from which the data will begin to be generated
nb_r	is a vector containing for each column, the number of row full from generated data
output	is the name of the output csv file
properties	is linked to type_distri because it is the parameters ("min_val-max_val") for "random type", ("u-x") for the poisson distribution, ("u-d") for gaussian distribution
type_distri	is a vector which, for each column, associate a type of distribution ("random", "poisson", "gaussian"), it meas that non only the number but also the length of the string will be randomly generated according to these distribution laws
str_source	is the source (vector) from which the character creating random string are (default set to the occidental alphabet)
round_l	is a vector which, for each column containing number, associate a round value
sep_	is the separator used to write data in the csv

Value

new generated data in addition to saving it in the output

16 date_sort

data_meshup data_meshup

Description

Allow to automatically arrange 1 dimensional data according to vector and parameters

Usage

```
data_meshup(
  data,
  cols = NA,
  file_ = NA,
  sep_ = ";",
  organisation = c(2, 1, 0),
  unic_sep1 = "_",
  unic_sep2 = "-"
)
```

Arguments

data	is the data provided (vector) each column is separated by a unic separator and each dataset from the same column is separated by another unic separator (ex: c("", c("d", "-", "e", "-", "f"), "", c("a", "a1", "-", "b", "-", "c", "c1")"_")
cols	is the colnames of the data generated in a csv
file_	is the file to which the data will be outputed
sep_	is the separator of the csv outputed
organisation	is the way variables include themselves, for instance ,resuming precedent example, if organisation= $c(1,0)$ so the data output will be: d, a d, a1 e, c f, c f, c1
unic_sep1	is the unic separator between variables (default is "_")
unic_sep2	is the unic separator between datasets (default is "-")

date_sort

date_sort

Description

Allow to ascendely or desendely sort dates in a vector.

Usage

```
date_sort(vec, asc = F, sep = "-")
```

Arguments

vec	is the vector containing the dates.
asc	is a boolean variable, that if set to TRUE will sort the dates ascendely and de-
	scendely if set to FALSE
sep	is the separator of the date strings ex: "11-12-1998" the separator is "-"

days_from_month 17

```
days_from_month days_from_month
```

Description

Allow to find the number of days month from a month date, take in count leap year

Usage

```
days_from_month(date_, sep_)
```

Arguments

date_	is the input date
sep_	is the separator of the input date

 df_tuned df_tuned

Description

Allow to return a list from a dataframe following these rules: First situation, I want the vectors from the returned list be composed of values that are separated by special values contained in a vector ex: data.frame(c(1, 1, 2, 1), c(1, 1, 2, 1), c(1, 1, 1, 2)) will return list(c(1, 1), c(1, 1, 1), c(1, 1, 1, 1)) or list(c(1, 1, 2), c(1, 1, 1, 2), c(1, 1, 1, 1, 2)) if i have chosen to take in count the 2. As you noticed here the value to stop is 2 but it can be several contained in a vector Second situation: I want to return a list for every jump of 3. If i take this dataframe data.frame(c(1, 1, 2, 1, 4, 4), c(1, 1, 2, 1, 3, 3), c(1, 1, 1, 2, 3, 3)) it will return list(c(1, 1, 2), c(1, 4, 4), c(1, 1, 2), c(1, 3, 3), c(1, 1, 1), c(2, 3, 3))

Usage

```
df_tuned(df, val_to_stop, index_rc = NA, included = "yes")
```

Arguments

df is the input data.frame

val_to_stop is the vector containing the values to stop

index_rc is the value for the jump (default set to NA so default will be first case)

included is if the values to stop has to be also returned in the vectors (defaultn set to "yes")

18 diff_xlsx

diff_xlsx \quad \text{diff_xlsx}

Description

Allow to see the difference between two datasets and output it into an xlsx file. If the dimensions of the new datasets are bigger than the old one, only the matching cells will be compared, if the dimensions of the new one are lower than the old one, there will be an error.

Usage

```
diff_xlsx(
   file_,
   sht,
   v_old_begin,
   v_old_end,
   v_new_begin,
   v_new_end,
   df2 = NA,
   overwrite = T,
   color_ = "red",
   pattern = "",
   output = "out.xlsx",
   new_val = T,
   pattern_only = T
)
```

Arguments

file_	is the file where the data is
sht	is the sheet where the data is
v_old_begin	is a vector containing the coordinates (row, column) where the data to be compared starts
v_old_end	is the same but for its end
v_new_begin	is the coordinates where the comparator data starts
v_new_end	is the same but for its end If the dimensions of the new datasets are bigger than the old one, only the matching cells will be compared, if the dimensions of the new one are lower than the old one, there will be an error.
df2	is optional, if the comparator dataset is directly a dataframe
overwrite	allow to overwrite differences is (set to T by default)
color_	is the color the differences will be outputed
pattern	is the pattern that will be added to the differences if overwritten is set to TRUE
output	is the name of the outputed xlsx (can be set to NA if no output)
new_val	if overwrite is TRUE, then the differences will be overwritten by the comparator data $% \left(1\right) =\left(1\right) \left(1\right) \left($
pattern_only	will cover differences by pattern if overwritten is set to TRUE

equalizer_v 19

er_v equalizer_v

Description

Takes a vector of character as an input and returns a vector with the elements at the same size. The size can be chosen via depth parameter.

Usage

```
equalizer_v(inpt_v, depth = "max", default_val = "?")
```

Arguments

inpt_v is the input vector containing all the characters
depth is the depth parameter, defaults to "max" which means that it is equal to the character number of the element(s) in inpt_v that has the most
default_val is the default value that will be added to the output characters if those has an inferior length (characters) than the value of depth

Examples

```
print(equalizer_v(inpt_v=c("aa", "zzz", "q"), depth=2))
[1] "aa" "zz" "q?"

print(equalizer_v(inpt_v=c("aa", "zzz", "q"), depth=12))
[1] "aa?????????" "zzz???????" "q?????????"
```

Description

Allow to find the minimum or the maximum of a date in a vector. The format of dates is Year/Month/Day.

Usage

```
extrm_dates(inpt_l, extrm = "min", sep = "-")
```

Arguments

```
inpt_l is the input vector
extrm is either "min" or "max", defaults to "min"
sep is the separator of the dates, defaults to "-"
```

20 file_rec

Description

return the elements from a vector "inpt_v" that are in another vector "pttrn_v"

Usage

```
extrt_only_v(inpt_v, pttrn_v)
```

Arguments

```
inpt_v is the input vector
pttrn_v is the vector contining all the elements that can be in inpt_v
```

Examples

```
print(extrt_only_v(inpt_v=c("oui", "non", "peut", "oo", "ll", "oui", "non", "oui", "oui")
[1] "oui" "oo" "oui" "oui" "oui"
```

file_rec file_rec

Description

Allow to get all the files recursively from a path according to an end and start depth value. If you want to have an other version of this function that uses a more sophisticated algorythm (which can be faster), check file_rec2. Depth example: if i have dir/dir2/dir3, dir/dir2b/dir3b, i have a depth equal to 3

Usage

```
file_rec(xmax, xmin = 1, pathc = ".")
```

Arguments

xmaxis the end depth valuexminis the start depth valuepathcis the reference path

file_rec2

Description

Allow to find the directories and the subdirectories with a specified end and start depth value from a path. This function might be more powerfull than file_rec because it uses a custom algorythm that does not nee to perform a full recursive search before tuning it to only find the directories with a good value of depth. Depth example: if i have dir/dir2/dir3, dir/dir2b/dir3b, i have a depth equal to 3

Usage

```
file_rec2(xmax, xmin = 1, pathc = ".")
```

Arguments

xmax	is the depth value
xmin	is the minimum value of depth
pathc	is the reference path, from which depth value is equal to 1

fillr fillr

Description

Allow to fill a vector by the last element n times

Usage

```
fillr(inpt_v, ptrn_fill = "...\\d")
```

Arguments

inpt_v is the input vector

ptrn_fill is the pattern used to detect where the function has to fill the vector by the last element n times. It defaults to "...\d" where "\d" is the regex for an int value. So this paramater has to have "\d" which designates n.

```
fillr(c("a", "b", "...3", "c"))
```

22 fixer_nest_v

```
fittr_v fittr_v
```

Description

Return the indexes of elements contained in "w_v" according to "f_v"

Usage

```
fittr_v(f_v, w_v, nvr_here = NA)
```

Arguments

f_v is the input vector

w_v is the vector containing the elements that can be in f_v

Examples

```
print(fittr_v(f_v=c("non", "non", "oui"), w_v=c("oui", "non", "non")))
[1] 4 1 2
```

Description

Retur the elements of a vector "wrk_v" (1) that corresponds to the pattern of elements in another vector "cur_v" (2) according to another vector "pttrn_v" (3) that contains the patter felements.

Usage

```
fixer_nest_v(cur_v, pttrn_v, wrk_v)
```

format_date 23

format_date	format_date
-------------	-------------

Description

Allow to convert xx-month-xxxx date type to xx-xx-xxxx

Usage

```
format_date(f_dialect, sentc, sep_in = "-", sep_out = "-")
```

Arguments

f_dialect	are the months from the language of which the month come
sentc	is the date to convert
sep_in	is the separator of the dat input (default is "-")
sep_out	is the separator of the converted date (default is "-")

geo_min geo_min

Description

Return a dataframe containing the nearest geographical points (row) according to established geographical points (column).

Usage

```
geo_min(inpt_df, established_df)
```

Arguments

inpt_df is the input dataframe of the set of geographical points to be classified, its firts column is for latitude, the second for the longitude and the third, if exists, is for the altitude. Each point is one row.

established_df

is the dataframe containing the coordinates of the established geographical points

```
in_ <- data.frame(c(11, 33, 55), c(113, -143, 167))
in2_ <- data.frame(c(12, 55), c(115, 165))
print(geo_min(inpt_df=in_, established_df=in2_))
in_ <- data.frame(c(51, 23, 55), c(113, -143, 167), c(6, 5, 1))
in2_ <- data.frame(c(12, 55), c(115, 165), c(2, 5))
geo_min(inpt_df=in_, established_df=in2_)</pre>
```

24 globe

Description

Allow to get the value of directorie depth from a path.

Usage

```
get_rec(pathc = ".")
```

Arguments

pathc is the reference path example: if i have dir/dir2/dir3, dir/dir2b/dir3b, i have a

depth equal to 3

globe globe

Description

Allow to calculate the distances between a set of geographical points and another established geographical point. If the altitude is not filled, so the result returned won't take in count the altitude.

Usage

```
globe(lat_f, long_f, alt_f = NA, lat_n, long_n, alt_n = NA)
```

Arguments

lat_f	is the latitude of the established geographical point
long_f	is the longitude of the established geographical point
alt_f	is the altitude of the established geographical point, defaults to NA
lat_n	is a vector containing the latitude of the set of points
long_n	is a vector containing the longitude of the set of points
alt_n	is a vector containing the altitude of the set of points, defaults to NA

```
globe(lat_f=23, long_f=112, alt_f=NA, lat_n=c(2, 82), long_n=c(165, -55), alt_n=NA)
```

groupr_df 25

```
groupr_df groupr_df
```

Description

Allow to create groups from a dataframe. Indeed, you can create conditions that lead to a flag value for each cell of the input dataframeaccording to the cell value. This function is based on see_df and nestr_df2 functions.

Usage

```
groupr_df(inpt_df, condition_lst, val_lst, conjunction_lst, rtn_val_pos = c())
```

Arguments

```
interactive()
df1 <- data.frame(c(1, 2, 1), c(45, 22, 88), c(44, 88, 33))
val_lst <- list(list(c(1), c(1)), list(c(2)), list(c(44)))
condition_lst <- list(c(">", "<"), c("%%"), c("=="))
conjunction_lst <- list(c("|"), c(), c())
rtn_val_pos <- c("+", "+", "+")
groupr_df(inpt_df=df1, val_lst=val_lst, condition_lst=condition_lst, conjunction_lst=conjunction_lst, rtn_val_pos=rtn_val_pos)</pre>
```

26 insert_df

```
incr_fillr
```

incr_fillr

Description

Take a vector uniquely composed by double and sorted ascendingly, a step, another vector of elements whose length is equal to the length of the first vector, and a default value. If an element of the vector is not equal to its predecessor minus a user defined step, so these can be the output according to the parameters (see example):

Usage

```
incr_fillr(inpt_v, wrk_v = NA, default_val = NA, step = 1)
```

Arguments

```
inpt_v is the asending double only composed vector
wrk_v is the other vector (size equal to inpt_v), defaults to NA
default_val is the default value put when the difference between two following elements of inpt_v is greater than step, defaults to NA
step is the allowed difference between two elements of inpt_v
```

Examples

```
print(incr_fillr(inpt_v=c(1, 2, 4, 5, 9, 10),
               wrk_v=NA,
                default_val="increasing"))
[1] 1 2 3 4 5 6 7 8 9 10
print(incr_fillr(inpt_v=c(1, 1, 2, 4, 5, 9),
                wrk_v=c("ok", "ok", "ok", "ok", "ok"),
                default_val=NA))
[1] "ok" "ok" "ok" NA "ok" "ok" NA
                                     NA
                                           NA
print(incr_fillr(inpt_v=c(1, 2, 4, 5, 9, 10),
               wrk_v=NA,
               default_val="NAN"))
[1] "1"
          "2"
                "NAN" "4"
                           "5"
                                  "NAN" "NAN" "NAN" "9"
                                                          "10"
```

```
insert_df
```

insert_df

Description

Allow to insert dataframe into another dataframe according to coordinates (row, column) from the dataframe that will be inserted

inter_max 27

Usage

```
insert_df(df_in, df_ins, ins_loc)
```

Arguments

df_in	is the dataframe that will be inserted
df_ins	is the dataset to be inserted
ins_loc	is a vector containg two parameters (row, column) of the begining for the insertion

Description

Takes as input a list of vectors composed of ints or floats ascendly ordered (intervals) that can have a different step to one of another element ex: list(c(0, 2, 4), c(0, 4), c(1, 2, 2.3)) The function will return the list of lists altered according to the maximum step found in the input list.

Usage

```
inter_max(inpt_l, max_ = -1000, get_lst = T)
```

Arguments

inpt_l	is the input list
max_	is a value you are sure is the minimum step value of all the sub-lists
get_lst	is the parameter that, if set to True, will keep the last values of vectors in the return value if the last step exceeds the end value of the vector.

inter_min inter_min

Description

Takes as input a list of vectors composed of ints or floats ascendly ordered (intervals) that can have a different step to one of another element ex: list(c(0, 2, 4), c(0, 4), c(1, 2, 2.3)) This function will return the list of vectors with the same steps preserving the begin and end value of each interval. The way the algorythmn searches the common step of all the sub-lists is also given by the user as a parameter, see how_to paramaters.

```
inter_min(
   inpt_l,
   min_ = 1000,
   sensi = 3,
   sensi2 = 3,
   how_to_op = c("divide"),
   how_to_val = c(3)
)
```

28 list_files

Arguments

inpt_l	is the input list containing all the intervals
min_	is a value you are sure is superior to the maximum step value in all the intervals
sensi	is the decimal accuracy of how the difference between each value n to $n+1$ in an interval is calculated
sensi2	is the decimal accuracy of how the value with the common step is calculated in all the intervals
how_to_op	is a vector containing the operations to perform to the pre-common step value, defaults to only "divide". The operations can be "divide", "substract", "multiply" or "add". All type of operations can be in this parameter.
how_to_val	is a vector containing the value relatives to the operations in hot_to_op, defaults to 3 output from ex:

Examples

```
[[0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, .3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4.0], 5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.9, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4.0], [1, 1.1, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4, 1.2, 1.3, 1.4
```

Description

Allow to get the number of a spreadsheet based column by the letter ex: AAA = 703

Usage

```
letter_to_nb(letter)
```

Arguments

letter is the letter (name of the column)

Description

A list.files() based function addressing the need of listing the files with extension a or or extension $b \dots$

```
list_files(patternc, pathc = ".")
```

lst_flatnr 29

Arguments

patternc is a vector containing all the exensions you want
pathc is the path, can be a vector of multiple path because list.files() supports it.

Description

Flatten a list to a vector

Usage

```
lst_flatnr(inpt_l)
```

Arguments

```
lst_flatnr is the input list
```

Examples

```
print(lst_flatnr(inpt_l=list(c(1, 2), c(5, 3), c(7, 2, 7))))
[1] 1 2 5 3 7 2 7
```

match_n

match_n

Description

Allow to get the indexes for the nth occurrence of a value in a vector. Example: c(1, 2, 3, 1, 2), the first occurrence of 1 and 2 is at index 1 and 2 respectively, but the second occurrence is respectively at the 4th and 5th index.

Usage

```
match_n(vec, mc, n = 1, wnb = "#####")
```

Arguments

vec is th input vector

mc is a vector containing the values you want to get the index for the nth occurence

in vec

n is the value of the occurence

wnb is a string you are sure is not in mc

30 multitud

Description

Allow to get the indexes for the nth occurrence of a value in a vector. Example: c(1, 2, 3, 1, 2), the first occurrence of 1 and 2 is at index 1 and 2 respectively, but the second occurrence is respectively at the 4th and 5th index.

Usage

```
match_n2 (vec, mc, n, wnb = "#####")
```

Arguments

vec	is th einput vector
mc	is a vector containing the values you want to get the index for the nth occurence in vec
n	is a vector containing the occurences for each value in mc so if i have mc <- $c(3, 27)$ and n <- $c(1, 2)$, i want the first occurence for 3 and the second for 27 in vec. If the length of n is inferior of the length of mc, m will extend with its last value as new arguments. It means that if mc <- $c(3, 27)$ but n <- $c(1)$ so n will extend to $c(1, 1)$, so we will get the first occurence of 3 and 27 in vec.
wnb	is a string you are sure is not in mc

ultitud <i>multitu</i> d

Description

From a list containing vectors allow to generate a vector following this rule: $list(c("a", "b"), c("1", "2"), c("A", "Z", "E")) \rightarrow c("a1A", "a2A", "b1A", "b2A", "a1Z", ...)$

Usage

```
multitud(l, sep_ = "")
```

Arguments

```
is the list

sep_ is the separator between elements (default is set to "" as you see in the example)
```

nb_to_letter 31

Description

Allow to get the letter of a spreadsheet based column by the number ex: 703 = AAA

Usage

```
nb_to_letter(x)
```

Arguments

х

is the number of the column

```
nestr_dfl nestr_dfl
```

Description

Allow to write a value (1a) to a dataframe (1b) to its cells that have the same coordinates (row and column) than the cells whose value is equal to a another special value (2a), from another another dataframe (2b). The value (1a) depends of the cell value coordinates of the third dataframe (3b). If a cell coordinates (1c) of the first dataframe (1b) do not correspond to the coordinates of a good returning cell value (2a) from the dataframe (2b), so this cell (1c) can have its value changed to the same cell coordinates value (3a) of a third dataframe (4b), if (4b) is not det to NA.

Usage

```
nestr_df1(inptf_df, inptt_pos_df, nestr_df, yes_val = T, inptt_neg_df = NA)
```

Arguments

```
inptf_df is the input dataframe (1b)
inptt_pos_df is the dataframe (2b) that corresponds to the (1a) values
nestr_df is the dataframe (2b) that has the special value (2a)
yes_val is the special value (2a)
inpt_neg_df is the dataframe (4b) that has the (3a) values, defaults to NA
```

32 nest_v

Description

Allow to write a special value (1a) in the cells of a dataframe (1b) that correspond (row and column) to whose of another dataframe (2b) that return another special value (2a). The cells whose coordinates do not match the coordinates of the dataframe (2b), another special value can be written (3a) if not set to NA.

Usage

```
nestr_df2(inptf_df, rtn_pos, rtn_neg = NA, nestr_df, yes_val = T)
```

Arguments

```
inptf_df is the input dataframe (1b)
rtn_pos is the special value (1a)
rtn_neg is the special value (3a)
nestr_df is the dataframe (2b)
yes_val is the special value (2a)
```

Examples

```
\label{lem:nestr_df2} $$ \operatorname{nestr_df_df=data.frame}(c(1,\ 2,\ 1),\ c(1,\ 5,\ 7)),\ \operatorname{rtn_pos="yes",} $$ \operatorname{rtn_neg="no",\ nestr_df=data.frame}(c(\operatorname{TRUE},\ \operatorname{FALSE},\ \operatorname{TRUE}),\ c(\operatorname{FALSE},\ \operatorname{FALSE},\ \operatorname{TRUE})),\ \operatorname{yes\_val=Taule}(\operatorname{FALSE},\ \operatorname{FALSE},\ \operatorname{TRUE})), $$ \operatorname{property}(\operatorname{FALSE},\ \operatorname{FALSE},\ \operatorname{TRUE})),$$ \operatorname{property}(\operatorname{FALSE},\ \operatorname{FALSE},\ \operatorname{FALSE})), $$ \operatorname{property}(\operatorname{FALSE},\ \operatorname{FALSE},\ \operatorname{FALSE})), $$ \operatorname{property}(\operatorname{FALSE},\ \operatorname{FALSE},\ \operatorname{FALSE})), $$ \operatorname{property}(\operatorname{FALSE},\ \operatorname{FALSE},\ \operatorname{FALSE})), $$ \operatorname{property}(\operatorname{FALSE},\ \operatorname{FALSE})), $$ \operatorname{property}(\operatorname{FALSE},\ \operatorname{FALSE})), $$ \operatorname{property}(\operatorname{FALSE},\ \operatorname{FALSE}), $$ \operatorname{property}(\operatorname{FALSE},\ \operatorname{FALSE})), $$ \operatorname{property}(\operatorname{FALSE},\ \operatorname{FALSE})), $$ \operatorname{property}(\operatorname{FALSE},\ \operatorname{FALSE})), $$ \operatorname{property}(\operatorname{FALSE},\ \operatorname{FALSE})), $$ \operatorname{property}(\operatorname{FALSE},\ \operatorname{FALSE}), $$ \operatorname{property}(\operatorname{FALSE},\ \operatorname{FALSE})), $$ \operatorname{property}(\operatorname{FALSE},\ \operatorname{FALSE})), $$ \operatorname{property}(\operatorname{FALSE},\ \operatorname{FALSE})), $$ \operatorname{property}(\operatorname{FALSE},\ \operatorname{FALSE}), $$ \operatorname{property}(\operatorname{FALSE}), $$ \operatorname{property}(\operatorname{FALS
```

```
nest_v nest_v
```

Description

Nest two vectors according to the following parameters.

Usage

```
nest_v(f_v, t_v, step = 1, after = 1)
```

Arguments

f_v	is the vector that will welcome the nested vector t_v
t_v	is the imbriquator vector
step	defines after how many elements of f_v the next element of t_v can be put in the output
after	defines after how many elements of f_v, the begining of t_v can be put

```
print(nest_v(f_v=c(1, 2, 3, 4, 5, 6), t_v=c("oui", "oui2", "oui3", "oui4", "oui5", "oui6"

[1] "1" "2" "oui" "3" "4" "oui2" "5" "6" "oui3" "oui4"
```

occu 33

occu occu

Description

Allow to see the occurence of each variable in a vector. Returns a datafame with, as the first column, the all the unique variable of the vector and , in he second column, their occurence respectively.

Usage

```
occu(inpt_v)
```

Arguments

inpt_v the input dataframe

Description

Return a vector composed of pasted elements from the input dataframe at the same index.

Usage

```
paste_df(inpt_df, sep = "")
```

Arguments

```
inpt_df is the input dataframe
sep is the separator between pasted elements, defaults to ""
```

```
print(paste_df(inpt_df=data.frame(c(1, 2, 1), c(33, 22, 55))))
[1] "133" "222" "155"
```

34 pattern_gettr

```
pattern_generator pattern_generator
```

Description

Allow to create patterns which have a part that is varying randomly each time.

Usage

```
pattern_generator(base_, from_, nb, hmn = 1, after = 1, sep = "")
```

Arguments

base_	is the pattern that will be kept
from_	is the vector from which the elements of the random part will be generated
nb	is the number of random pattern chosen for the varying part
hmn	is how many of varying pattern from the same base will be created
after	is set to 1 by default, it means that the varying part will be after the fixed part, set to 0 if you want the varying part to be before
sep	is the separator between all patterns in the returned value

Description

Search for pattern(s) contained in a vector in another vector and return a list containing matched one (first index) and their position (second index) according to these rules: First case: Search for patterns strictly, it means that the searched pattern(s) will be matched only if the patterns containded in the vector that is beeing explored by the function are present like this c("pattern_searched", "other", ..., "pattern_searched") and not as c("other_thing pattern_searched other_thing", "other", ..., "pattern_searched other_thing") Second case: It is the opposite to the first case, it means that if the pattern is partially present like in the first position and the last, it will be considered like a matched pattern

```
pattern_gettr(
  word_,
  vct,
  occ = c(1),
  strict,
  btwn,
  all_in_word = "yes",
  notatall = "###"
)
```

pattern_tuning 35

Arguments

word_	is the vector containing the patterns
vct	is the vector being searched for patterns
occ	a vector containing the occurence of the pattern in word_ to be matched in the vector being searched, if the occurence is 2 for the nth pattern in word_ and only one occurence is found in vct so no pattern will be matched, put "forever" to no longer depend on the occurence for the associated pattern
strict	a vector containing the "strict" condition for each nth vector in word_ ("strict" is the string to activate this option)
btwn	is a vector containing the condition ("yes" to activate this option) meaning that if "yes", all elements between two matched patern in vct will be returned , so the patterns you enter in word_ have to be in the order you think it will appear in vct
all_in_word	is a value (default set to "yes", "no" to activate this option) that, if activated, won't authorized a previous matched pattern to be matched again
notatall	is a string that you are sure is not present in vct REGEX can also be used as pattern

pattern_tuning pattern_tuning

Description

Allow to tune a pattern very precisely and output a vector containing its variations n times.

Usage

```
pattern_tuning(pattrn, spe_nb, spe_l, exclude_type, hmn = 1, rg = c(0, 0))
```

Arguments

pattrn is the character that will be tuned

spe_nb is the number of new character that will be replaced

spe_l is the source vector from which the new characters will replace old ones

exclude_type is character that won't be replaced

hmn is how many output the function will return

rg is a vector with two parameters (index of the first letter that will be replaced, index of the last letter that will be replaced) default is set to all the letters from the source pattern

36 ptrn_twkr

Description

Allow to switch, copy pattern for each element in a vector. Here a pattern is the values that are separated by a same separator. Example: "xx-xxx-xx" or "xx/xx/xxxx". The xx like values can be switched or copied from whatever index to whatever index. Here, the index is like this 1-2-3 etcetera, it is relative of the separator.

Usage

```
ptrn_switchr(inpt_l, f_idx_l = c(), t_idx_l = c(), sep = "-", default_val = NA)
```

Arguments

inpt_l	is the input vector
f_idx_l	is a vector containing the indexes of the pattern you want to be altered.
t_idx_l	is a vector containing the indexes to which the indexes in f_idx_l are related.
sep	is the separator, defaults to "-"
default_val	is the default value, if not set to NA, of the pattern at the indexes in f_idx_l. If it is not set to NA, you do not need to fill t_idx_l because this is the vector containing the indexes of the patterns that will be set as new values relatively to the indexes in f_idx_l. Defaults to NA.

Examples

```
ptrn_switchr(inpt_l=c("2022-01-11", "2022-01-14", "2022-01-21",
"2022-01-01"), f_idx_l=c(1, 2, 3), t_idx_l=c(3, 2, 1))
ptrn_switchr(inpt_l=c("2022-01-11", "2022-01-14", "2022-01-21",
"2022-01-01"), f_idx_l=c(1), default_val="ee")
```

```
ptrn_twkr ptrn_twkr
```

Description

Allow to modify the pattern length of element in a vector according to arguments. What is here defined as a pattern is something like this xx-xx-xx or xx/xx/xxx... So it is defined by the separator

```
ptrn_twkr(inpt_1, depth = "max", sep = "-", default_val = "0", add_sep = T)
```

rearangr_v 37

Arguments

inpt_l is the input vector

depth is the number (numeric) of separator it will keep as a result. To keep the num-

ber of separator of the element that has the minimum amount of separator do depth="min" and depth="max" (character) for the opposite. This value defaults

to "max".

sep is the separator of the pattern, defaults to "-"

default_val is the default val that will be placed between the separator, defaults to "00"

add_sep defaults to TRUE. If set to FALSE, it will remove the separator for the patterns

that are included in the interval between the depth amount of separator and the

actual number of separator of the element.

Examples

```
library("stringr")
v <- c("2012-06-22", "2012-06-23", "2022-09-12", "2022")
ptrn_twkr(inpt_l=v, depth="max", sep="-", default_val="00", add_sep=TRUE)</pre>
```

rearangr_v

rearangr_v

Description

Reanranges a vector "w_v" according to another vector "inpt_v". inpt_v contains a sequence of number. inpt_v and w_v have the same size and their indexes are related. The output will be a vector containing all the elements of w_v rearanges in descending or asending order according to inpt_v

Usage

```
rearangr_v(inpt_v, w_v, how = "increasing")
```

Arguments

WV

 $inpt_v$ is the vector that contains the sequence of number

how is the way the elements of w_v will be outputed according to if inpt_v will be

is the vector containing the elements related to inpt_v

sorted ascendigly or descendingly

```
print(rearangr_v(inpt_v=c(23, 21, 56), w_v=c("oui", "peut", "non"), how="decreasing"))
[1] "non" "oui" "peut"
```

38 see_file

Description

Allow to return a dataframe with special value cells (ex: TRUE) where the condition entered are respected and another special value cell (ex: FALSE) where these are not

Usage

```
see_df(df, condition_l, val_l, conjunction_l = c(), rt_val = T, f_val = F)
```

Arguments

df	is the input dataframe	
condition_l	is the vector of the possible conditions ("==", ">", "<", "!=", " $\%\%$ ") (equal, greater than, lower than, not equal to, is divisible by), you can put the same condition n times.	
val_l	is the list of vectors containing the values related to condition_l (so the vector of values has to be placed in the same order)	
conjunction_l		
	contains the or & conjunctions, so if the length of condition_l is equal to 3, there will be 2 conjunctions. If the length of conjunction_l is inferior to the length of condition_l minus 1, conjunction_l will match its goal length value with its last argument as the last arguments. For example, $c("\&", " ", "\&")$ with a goal length value of $5 \rightarrow c("\&", " ", "\&", "\&", "\&")$	
rt_val	is a special value cell returned when the conditions are respected	
f_val	is a special value cell returned when the conditions are not respected	

Details

This function will return an error if number only comparative conditions are given in addition to having character values in the input dataframe.

Description

Allow to get the filename or its extension

```
see_file(string_, index_ext = 1, ext = T)
```

see_idx 39

Arguments

string_ is the input string

index_ext is the occurence of the dot that separates the filename and its extension

ext is a boolean that if set to TRUE, will return the file extension and if set to FALSE,

will return filename

Description

Allow to find the indexes of the elements of the first vector in the second. If the element(s) is not found, the element returned at the same index will be "FALSE".

Usage

```
see_idx(v1, v2, exclude_val = "######", no_more = F)
```

Arguments

v1 is the first vector v2 is the second vector

exclude_val is a value you know is not present in the 2 vectors

no_more is a boolean that, if set to TRUE, will remove all the first found value in the

second vector after those has been found. It defaults to FALSE.

see_inside see_inside

Description

Return a list containing all the column of the files in the current directory with a chosen file extension and its associated file and sheet if xlsx. For example if i have 2 files "out.csv" with 2 columns and "out.xlsx" with 1 column for its first sheet and 2 for its second one, the return will look like this: c(column_1, column_2, column_3, column_4, column_5, unique_separator, "1-2-out.csv", "3-3-sheet_1-out.xlsx", 4-5-sheet_2-out.xlsx)

```
see_inside(pattern_, path_ = ".", sep_ = c(","), unique_sep = "#####", rec = F)
```

40 unique_pos

Arguments

pattern_ is a vector containin the file extension of the spreadsheets ("xlsx", "csv"...)

path_ is the path where are located the files

sep_ is a vector containing the separator for each csv type file in order following the

operating system file order, if the vector does not match the number of the csv files found, it will assume the separator for the rest of the files is the same as the last csv file found. It means that if you know the separator is the same for all the

csv type files, you just have to put the separator once in the vector.

unique_sep is a pattern that you know will never be in your input files

rec is a boolean allows to get files recursively if set to TRUE, defaults to TRUE If x

is the return value, to see all the files name, position of the columns and possible sheet name associanted with, do the following: Examples: print(x[(grep(unique_sep,

x)1+1: length(x)]) #If you just want to see the columns do the following: print(x1:(grep(unique_sep,

(x) - 1)

```
unique_ltr_from_v unique_ltr_from_v
```

Description

Returns the unique characters contained in all the elements from an input vector "inpt_v"

Usage

```
unique_ltr_from_v(inpt_v, keep_v = c("?", "!", ":", "&", ",", ".", letters))
```

Arguments

inpt_v is the input vector containing all the elements

keep_v is the vector containing all the characters that the elements in inpt_v may contain

Examples

```
print (unique_ltr_from_v(inpt_v=c("bonjour", "lpoerc", "nonnour", "bonnour", "nonjour", "a
    [1] "b" "o" "n" "j" "u" "r" "l" "p" "e" "c" "a" "v" "i"
```

unique_pos

unique_pos

Description

Allow to find indexes of the unique values from a vector.

Usage

```
unique_pos(vec)
```

Arguments

vec

is the input vector

until_stnl 41

Description

Maxes a vector to a chosen length ex: if i want my vector c(1, 2) to be 5 of length this function will return me: c(1, 2, 1, 2, 1)

Usage

```
until_stnl(vec1, goal)
```

Arguments

vec1	is the input vector
goal	is the length to reach

val_replacer

Description

Allow to replace value from dataframe to another one.

Usage

```
val_replacer(df, val_replaced, val_replacor = T, df_rpt = NA)
```

Arguments

```
df is the input dataframe

val_replaced is a vector of the value(s) to be replaced

val_replacor is the value that will replace val_replaced

df_rpt is the replacement matrix and has to be the same dimension as df. Only the indexes that are equal to TRUE will be authorized indexes for the values to be replaced in the input matrix
```

vlookup_df

c_in_df

Description

Allow to see if vectors are present in a dataframe ex: 1, 2, 1 3, 4, 1 1, 5, 8 the vector c(4, 1) with the coefficient 1 and the start position at the second column is contained in the dataframe

Usage

```
vec_in_df(df_, vec_l, coeff_, strt_l, distinct = "NA")
```

Arguments

df_	is the input dataframe
vec_l	is a list the vectors
coeff_	is the related coefficient of the vector
strt_l	is a vector containing the start position for each vector
distinct	is a value you are sure is not in df_, defaults to "NA"

Description

Alow to perform a vlookup on a dataframe

Usage

```
vlookup_df(df, v_id, col_id = 1, included_col_id = "yes")
```

Arguments

df	is the input dataframe
v_id	is a vector containing the ids
col_id	is the column that contains the ids (default is equal to 1)
included_col	_id
	is if the result should return the col_id (default set to yes)

v_to_df

 v_to_df v_to_df

Description

Allow to convert a vector to a dataframe according to a separator.

Usage

```
v_{to} = v_{to} = v_{to}
```

Arguments

inpt_v is the input vector
sep is the separator used to seprate the columns

```
library("stringr")
v <- c("aa-yy-uu", "zz-gg-hhh", "zz-gg-hhh", "zz-gg-hhh")
v_to_df(inpt_v=v, sep="-")</pre>
```

Index

1: (grep(unique_sep, x) - 1),40	inter_min, 27
1,40	letter_to_nb, 28
	list_files, 28
all_stat, 3	lst_flatnr, 29
any_join_df, 3	
append_row, 5	match_n, 29
appndr, 6	match_n2, 30
,	multitud, 30
calc_occu_v, 6	
can_be_num, 7	nb_to_letter,31
change_date, 7	nest_v, 32
chr_removr, 8	nestr_df1,31
closer_ptrn, 8	nestr_df2,32
closer_ptrn_adv, 11	_
closest_date, 12	occu, 33
clusterizer_v, 12	
cost_and_taxes, 14	paste_df, 33
cost_ana_caxes, 14	pattern_generator, 34
data_gen, 15	pattern_gettr,34
data_meshup, 16	pattern_tuning, 35
date_sort, 16	ptrn_switchr, 36
days_from_month, 17	ptrn_twkr,36
df_tuned, 17	_
diff_xlsx, 18	rearangr_v,37
dii_xi3x, 10	
equalizer_v, 19	see_df,38
extrm_dates, 19	see_file,38
extrt_only_v, 20	see_idx, 39
5.1616_6.11, 2 6	see_inside,39
file_rec, 20	1 71 6 40
file_rec2, 21	unique_ltr_from_v, 40
fillr, 21	unique_pos, 40
fittr_v,22	until_stnl,41
fixer_nest_v, 22	v_to_df, 43
format_date, 23	val_replacer, 41
	var_repracer,41 vec_in_df,42
geo_min, 23	
get_rec, 24	vlookup_df,42
globe, 24	
groupr_df, 25	
incr_fillr, 26	
insert_df, 26	
inter_max,27	