درس الاتصال

(الثانية علوم تجريبية)

1) تذكير: النهايات

$$\lim_{x \to -\infty} x^n = \begin{cases} +\infty & \text{if } n < n \\ -\infty & \text{if } n \end{cases}$$
 و
$$\lim_{x \to +\infty} x^n = +\infty : \text{Light } n$$
 لكل n من n لدينا n لدينا n لدينا n

2. نهاية دالة حدودية عند $\infty +$ أو $\infty -$ هي نهاية حدها الأعلى درجة

3. نهاية دالة جذرية هي خارج نهاية حدها الأعلى درجة في البسط على حدها الأعلى درجة في المقام

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2} \quad \text{if } \lim_{x \to 0} \frac{\tan(ax)}{x} = a \quad \text{if } \lim_{x \to 0} \frac{\sin(ax)}{x} = a \quad .4$$

5. جداول النهايات:

$\lim f$	l	l	l	+8	8	+∞
$\lim g$	<i>l</i> '	+∞	8	+8	-8	8
$\lim f + g$	<i>l</i> + <i>l</i> '	+∞		+∞		شكل غير
						محدد

$\lim f$	l	<i>l</i> > 0	<i>l</i> > 0	<i>l</i> < 0	<i>l</i> < 0	+∞	+∞	-8	-8	±∞
$\lim g$	1'	+∞		+∞	∞	+∞		+∞		0
$\lim f \times g$	l×l'	+∞			+∞	+∞		-8	+∞	شکل غیر
										محدد

$\lim f$	<i>l</i> ≠ 0	0+	0-	+8	8
$\lim \frac{1}{f}$	$\frac{1}{l}$	+8	-8	0	0

$\lim f$	l	<i>l</i> > 0	<i>l</i> > 0	<i>l</i> < 0	<i>l</i> < 0	l	±∞	+∞	+∞	-8	
$\lim g$	l'≠0	0+	0-	0+	0-	<u>+</u> ∞	<u>+</u> ∞	0+	0-	0+	0-
$\lim_{f \to 0} \frac{f}{f}$	$\frac{l}{l}$	+∞		-8	+∞	0	شکل غیر	+∞		-8	+∞
g	ı						محدد				

2) اتصال دالة في عدد:

نعریف 1:

$$\lim_{x \to a} f(x) = f(a) \iff a \text{ a a minus} f$$

$$\begin{cases} f(x) = \frac{x^2 + 6x - 7}{x - 1} & ; x \neq 1 \\ f(1) = 8 \end{cases} ; x \neq 1 : a = 1$$
 عثال الدالة $f(1) = 8$

$$f(1)=8$$
: لدينا

$$\lim_{x\to 1} f(x)$$
 لنحسب

$$\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{x^2 + 6x - 7}{x - 1} = \lim_{x \to 1} \frac{(x - 1)(x + 7)}{x - 1} = \lim_{x \to 1} (x + 7) = 8$$

بما أن
$$f\left(x\right) = f\left(x\right)$$
 فإن $f\left(x\right) = f\left(1\right)$ بما

تعریف 2:

$$\begin{cases} f(x) = \frac{\sin(2x)}{x} & ; x > 0 \\ f(x) = x^2 - x + 2 & ; x \le 0 \end{cases} : a = 0 \text{ leads } f \text{ in the last } \frac{1}{x} = 0$$

$$\lim_{\substack{x \to 0 \\ x > 0}} f(x) = \lim_{\substack{x \to 0 \\ x > 0}} \frac{\sin(2x)}{x} = \lim_{\substack{x \to 0 \\ x > 0}} 2 \cdot \frac{\sin(2x)}{2x} = 2$$

$$\lim_{\substack{x \to 0 \\ x > 0}} f(x) = \lim_{\substack{x \to 0 \\ x > 0}} f(x)$$

$$\lim_{\substack{x \to 0 \\ x < 0}} f(x) = \lim_{\substack{x \to 0 \\ x < 0}} f(x) = \lim_{\substack{x \to 0 \\ x < 0}} f(x) = \lim_{\substack{x \to 0 \\ x < 0}} f(x) = \lim_{\substack{x \to 0 \\ x < 0}} f(x) = \lim_{\substack{x \to 0 \\ x < 0}} f(x) = \lim_{\substack{x \to 0 \\ x < 0}} f(x) = \lim_{\substack{x \to 0 \\ x < 0}} f(x) = \lim_{\substack{x \to 0 \\ x < 0}} f(x) = \lim_{\substack{x \to 0 \\ x < 0}} f(x) = \lim_{\substack{x \to 0 \\ x < 0}} f(x) = \lim_{\substack{x \to 0 \\ x < 0}} f(x) = \lim_{\substack{x \to 0 \\ x < 0}} f(x) = \lim_{\substack{x \to 0 \\ x < 0}} f(x) = \lim_{\substack{x \to 0 \\ x < 0}} f(x) = \lim_{\substack{x \to 0 \\ x < 0}} f(x) = \lim_{\substack{x \to 0 \\ x < 0}} f(x) = \lim_{\substack{x \to 0 \\ x < 0}} f(x) = \lim_{\substack{x \to 0 \\ x < 0}} f(x) = \lim_{\substack{x \to 0 \\ x < 0}} f(x) = \lim_{\substack{x \to 0 \\ x < 0}} f(x) = \lim_{\substack{x \to 0 \\ x < 0}} f(x) = \lim_{\substack{x \to 0 \\ x < 0}} f(x) = \lim_{\substack{x \to 0 \\ x < 0}} f(x) = \lim_{\substack{x \to 0 \\ x < 0}} f(x) = \lim_{\substack{x \to 0 \\ x < 0}} f(x) = \lim_{\substack{x \to 0 \\ x < 0}} f(x) = \lim_{\substack{x \to 0 \\ x < 0}} f(x) = \lim_{\substack{x \to 0 \\ x < 0}} f(x) = \lim_{\substack{x \to 0 \\ x < 0}} f(x) = \lim_{\substack{x \to 0 \\ x < 0}} f(x) = \lim_{\substack{x \to 0 \\ x < 0}} f(x) = \lim_{\substack{x \to 0 \\ x < 0}} f(x) = \lim_{\substack{x \to 0 \\ x < 0}} f(x) = \lim_{\substack{x \to 0 \\ x < 0}} f(x) = \lim_{\substack{x \to 0 \\ x < 0}} f(x) = \lim_{\substack{x \to 0 \\ x < 0}} f(x) = \lim_{\substack{x \to 0 \\ x < 0}} f(x) = \lim_{\substack{x \to 0 \\ x < 0}} f(x) = \lim_{\substack{x \to 0 \\ x < 0}} f(x) = \lim_{\substack{x \to 0 \\ x < 0}} f(x) = \lim_{\substack{x \to 0 \\ x < 0}} f(x) = \lim_{\substack{x \to 0 \\ x < 0}} f(x) = \lim_{\substack{x \to 0 \\ x < 0}} f(x) = \lim_{\substack{x \to 0 \\ x < 0}} f(x) = \lim_{\substack{x \to 0 \\ x < 0}} f(x) = \lim_{\substack{x \to 0 \\ x < 0}} f(x) = \lim_{\substack{x \to 0 \\ x < 0}} f(x) = \lim_{\substack{x \to 0 \\ x < 0}} f(x) = \lim_{\substack{x \to 0 \\ x < 0}} f(x) = \lim_{\substack{x \to 0 \\ x < 0}} f(x) = \lim_{\substack{x \to 0 \\ x < 0}} f(x) = \lim_{\substack{x \to 0 \\ x < 0}} f(x) = \lim_{\substack{x \to 0 \\ x < 0}} f(x) = \lim_{\substack{x \to 0 \\ x < 0}} f(x) = \lim_{\substack{x \to 0 \\ x < 0}} f(x) = \lim_{\substack{x \to 0 \\ x < 0}} f(x) = \lim_{\substack{x \to 0 \\ x < 0}} f(x) = \lim_{\substack{x \to 0 \\ x < 0}} f(x) = \lim_{\substack{x \to 0 \\ x < 0}} f(x) = \lim_{\substack{x \to 0 \\ x < 0}} f(x) = \lim_{\substack{x \to 0 \\ x < 0}} f(x) = \lim_{\substack{x \to 0 \\ x < 0}} f(x) = \lim_{\substack{x \to 0 \\ x < 0}} f(x) = \lim_{\substack{x \to 0 \\ x < 0}} f(x) = \lim_{\substack{x \to 0 \\ x < 0}} f(x) = \lim_{\substack{x \to 0 \\ x < 0}} f(x) = \lim_{\substack$$

3) الإتصال على مجال:

خاصيات:

-]a,b[يعني a,b[يعني a,b[يعني a,b[يعني f
- a متصلة على مجال a,b يعني a متصلة في جميع عناصر المجال a,b و متصلة على يمين a متصلة على يسار a
 - a متصلة على مجال a يعني a متصلة في جميع عناصر المجال a و متصلة على يمين a
 - b يسار على مجال a,b و متصلة على يسار f يعني a,b يعني a,b متصلة على يسار b

4) العمليات على الدوال المتصلة

- الدوال الحدودية متصلة على ™
- الدوال الجذرية متصلة على كل مجال ضمن مجموعة تعريفها
 - الدوال المثلثية sin و cos متصلتان على R
 - دالة tan متصلة على كل مجال ضمن مجموعة تعريفها
- I و g متصلتان على مجال f فإن f+g و f متصلتان على الحالت على f
- . I و g متصلتان على مجال g و $g \neq 0$ على $g \neq 0$ و متصلتان على الم
 - . I متصلة على مجال I و $f \geq 0$ على I فإن f متصة على .
- I اذا کانت f متصلة علی مجال g و متصلة علی g بحیث f فإن $g \circ f$ متصلة علی f

مثلة:

- \mathbb{R} متصلة على $f: x \mapsto x^3 \frac{1}{2}x + 1$.1
- دریة $f:x\mapsto \frac{2x}{x-2}$.2 متصلة علی کل مجال ضمن $f:x\mapsto \frac{2x}{x-2}$.2
 - $f: x \mapsto \cos x + x^2 7x + 3$.3

 \mathbb{R} لدينا : $f_2:x\mapsto x^2-7x+3$ و \mathbb{R} متصلة على متصلة على الدينا

 \mathbb{R} وتن على متصلتين على مجموع لدالتين متصلتين على $f=f_1+f_2$

 $f: x \mapsto (x-1) \times \sin x$.4

 \mathbb{R} لدينا $f_2:x\mapsto \sin x$ و \mathbb{R} متصلة على $f_1:x\mapsto x-1$ لدينا

 ${\mathbb R}$ متصلة على ${\mathbb R}$ كجداء لدالتين متصلتين على $f=f_1{ imes}f_2$

 $f: x \mapsto \sqrt{x-2}$.5

$$f_1(x) \ge 0$$
 : $[2,+\infty[$ و لکل x من $f_1:x\mapsto x-2$ لدينا

$$[2,+\infty[$$
 يذن $f=\sqrt{f_1}$ متصلة على

$$f: x \mapsto \frac{\sqrt{x}}{x^2+1}$$
.6

$$\mathbb{R}^+$$
 لدينا $f_1:x\mapsto \sqrt{x}:$ لدينا

$$f_2(x) \neq 0$$
 : \mathbb{R}^+ متصلة على \mathbb{R} بالخصوص على \mathbb{R}^+ و لكل x منصلة على $f_2: x \mapsto x^2 + 1$

$$\mathbb{R}^+$$
 الذن $f = \frac{f_1}{f_2}$ الذن

$$f: x \mapsto \sin\left(x^2 + \frac{\pi}{7}\right)$$
.7

لدينا
$$f_1:x\mapsto\sin(x)$$
 حدودية متصلة على R بحيث R بحيث $f_1:x\mapsto x^2+\frac{\pi}{7}$ و الدالة $f_2:x\mapsto\sin(x)$ متصلة

$$\mathbb{R}$$
على

$$\mathbb{R}$$
 إذن $f = f_2 \circ f_1$ متصلة على

5) صورة مجال بدالة متصلة و رتيبة قطعا

f(I)	المجال I	
$\left[f\left(a\right),f\left(b\right)\right]$	[a,b]	
$\left[f\left(a\right), \lim_{\substack{x \to b \\ x < b}} f\left(x\right) \right]$	[<i>a</i> , <i>b</i> [
$\lim_{\substack{x \to a \\ x > a}} f(x), f(b)$]a,b]	
$\lim_{\substack{x \to a \\ x > a}} f(x), \lim_{\substack{x \to b \\ x < b}} f(x)$] <i>a,b</i> [تزايدية قطعا f
$\lim_{x \to -\infty} f(x), f(a)$]-∞, <i>a</i>]	
$\lim_{x \to -\infty} f(x), \lim_{\substack{x \to a \\ x < a}} f(x)$]-∞, <i>a</i> [
$\left[f\left(b\right), \lim_{x \to +\infty} f\left(x\right) \right[$	$[b,\!+\!\infty[$	
$\lim_{\substack{x \to b \\ x > b}} f(x), \lim_{x \to +\infty} f(x)$]b,+∞[
$\lim_{x \to -\infty} f(x), \lim_{x \to +\infty} f(x) \Big[$]-∞,+∞[
$\left[f\left(b\right),f\left(a\right)\right]$	[a,b]	
$\lim_{\substack{x \to b \\ x < b}} f(x), f(a)$	[a,b[
$\left[f\left(b\right), \lim_{\substack{x \to a \\ x > a}} f\left(x\right) \right]$]a,b]	
$\lim_{\substack{x \to b \\ x < b}} f(x), \lim_{\substack{x \to a \\ x > a}} f(x)$]a,b[
$\left[f\left(a\right), \lim_{x \to -\infty} f\left(x\right)\right]$]-∞,a]	تناقصية قطعا f
$\lim_{\substack{x \to a \\ x < a}} f(x), \lim_{x \to \infty} f(x)$]-∞, <i>a</i> [
$\lim_{x \to +\infty} f(x), f(b)$	$[b, +\infty[$	
$\lim_{x \to +\infty} f(x), \lim_{\substack{x \to b \\ x > b}} f(x)$]b,+∞[
$\lim_{x \to +\infty} f(x), \lim_{x \to -\infty} f(x)$]-∞,+∞[

مثال 1:

$$f(x) = \frac{2x+1}{x-1}$$
: نعتبر الدالة العددية f المعرفة بما يلي

$$D_f = \big\{x \in \mathbb{R}/x - 1 \neq 0\big\} = \big\{x \in \mathbb{R}/x \neq 1\big\} = \mathbb{R} - \big\{1\big\} = \left] - \infty, 1 \right[\, \cup \, \left]1, + \infty \right[\, : \, \text{Levil }]$$

$$[0;1[\ e]\]1;4]$$
 و $]-\infty;1[\ e]\]1;+\infty[$ و $[2;3]\ :$ النحد صور المجالات التالية : $[2;3]\$ على كل مجال ضمن $[2;3]\$ الدالة $[2;3]\$ الدالة $[2;3]\$

 $: x \in D_{\scriptscriptstyle f}$ ليكن

$$f'(x) = \left(\frac{2x+1}{x-1}\right)' = \frac{(2x+1)'(x-1)-(2x+1)(x-1)'}{(x-1)^2} = \frac{2\cdot(x-1)-(2x+1)\cdot 1}{(x-1)^2} = \frac{2x-2-2x-1}{(x-1)^2} = \frac{-3}{(x-1)^2}$$

إذن :
$$(\forall x \in D_f)$$
 و منه الدالة f تتاقصية قطعا . $(\forall x \in D_f)$ و منه الدالة f تتاقصية قطعا . $(\forall x \in D_f)$

 D_f على

$$f\left(\left[2;3\right]\right) = \left[f\left(3\right);f\left(2\right)\right] = \left[\frac{7}{2};5\right]$$

$$f\left(\left[1;+\infty\right[\right) = \lim_{\substack{x \to +\infty \\ x > 1}} f\left(x\right); \lim_{\substack{x \to 1 \\ x > 1}} f\left(x\right) = \left[2;+\infty\right[$$

$$f\left(\left[-\infty;1\right[\right) = \lim_{\substack{x \to 1 \\ x < 1}} f\left(x\right); \lim_{\substack{x \to 1 \\ x > 1}} f\left(x\right) = \left[-\infty;2\right[$$

$$f\left(\left[1;4\right]\right) = \left[f\left(4\right); \lim_{\substack{x \to 1 \\ x > 1}} f\left(x\right) = \left[3;+\infty\right[$$

$$f\left(\left[0;1\right[\right) = \lim_{\substack{x \to 1 \\ x < 1}} f\left(x\right); f\left(0\right) = \left[-\infty;-1\right]$$

مثال 2:

$$f(x)=x^3+7x-2$$
: نعتبر الدالة العددية f المعرفة بما يلي f المعرفة بما يلي الدالة f قابلة للاشتقاق على f لأنها دالة حدودية f قابلة للاشتقاق على f لأنها دالة حدودية ليكن $f'(x)=(x^3+7x-2)'=3x^2+7:x\in\mathbb{R}$ ليكن f تزايدية قطعا على f

$$[1;3]$$
 و $]-\infty;+\infty[$: التالية $f(]-\infty;+\infty[]=\lim_{x\to-\infty}f(x);\lim_{x\to+\infty}f(x)[]=]-\infty;+\infty[$ $f([1;3])=[f(1);f(3)]=[6;46]$

6) ميرهنة القيم الوسيطية:

إذا كانت
$$f$$
 متصلة على $a;b$ فإنه لكل λ محصور بين f و f و f يوجد على الأقل a من f من f بحيث f f الأقل f من f من f بحيث f بحيث f بحيث f بحيث f بحيث f من f بحيث f

نتائج:

■ مبرهنة القيم الوسيطية (وجودية الحل على [a,b]

إذا كانت
$$f$$
 متصلة على a,b و a,b و f a فإن المعادلة f a فإن المعادلة على الأقل في المجال a,b و a,b

مثال:

]0;2[يقبل حلا على الأقل في
$$x^4+x-3=0$$
 : لنبين أن المعادلة $f(x)=x^4+x-3$: المعرفة ب

- $\lceil 0,2 \rceil$ الدالة f متصلة على r (لأنها دالة حدودية) بالخصوص على المجال r
 - $f(0) \times f(2) < 0$ لدينا f(0) = -2 و f(0) = -2

0;2 في الأقل في f(x)=0: فإن المعادلة فإن المعادلة القيم الوسيطية فإن المعادلة المعادلة و منه حسب مبرهنة القيم الوسيطية فإن المعادلة المعادلة

• مبرهنة القيم الوسيطية بالوحدانية (وجودية ووحدانية الحل على [a,b]

إذا كانت f متصلة و رتيبة قطعا على $\begin{bmatrix} a,b \end{bmatrix}$ و b < b < 0 فإن المعادلة b = a تقبل حلا وحيدا في المجال a,b

مثال:

 $(x^3 + 2x = 1 \Leftrightarrow x^3 + 2x - 1 = 0)$ [0,1] لنبين أن المعادلة $x^3 + 2x = 1$ تقبل حلا وحيدا في المجال $f(x) = x^3 + 2x - 1 = 0$ نعتبر الدالة $f(x) = x^3 + 2x - 1 = 0$

- [0,1] الدالة f متصلة على M (لأنها دالة حدودية) بالخصوص على المجال f
- الدالة f قابلة للاشتقاق على \mathbb{R} (لأنها دالة حدودية) بالخصوص على المجال $f'(x) = (x^3 + 2x 1)' = 3x^2 + 2 : x \in [0;1]$ ليكن $(\forall x \in \mathbb{R}) \ f'(x) > 0 : 1$ إذن $(\forall x \in \mathbb{R}) \ f'(x) > 0 : 1$
 - $f(0) \times f(1) < 0$ إذن f(1) = 2 و f(0) = -1

[0;1] و منه حسب مبرهنة القيم الوسيطية بالوحدانية فإن المعادلة : f(x) = 0 تقبل حلا وحيدا في

■ مبرهنة (وجودية ووحدانية الحل على مجال I)

I إذا كانت f متصلة و رتيبة قطعا على I و f(I)=0 فإن المعادلة f(x)=0 تقبل حلا وحيدا في المجال

مثال:

$$0 < \alpha < 1$$
 نقبل ما نحو نحو المعادلة R نقبل علا وحيدا α نقبل علا نتبين أن المعادلة $2x^3 + 5x - 4 = 0$

$$f(x) = 2x^3 + 5x - 4$$
: نعتبر الدالة f المعرفة ب

- الدالة f متصلة على \mathbb{R} (لأنها دالة حدودية)
- الدالة f قابلة للاشتقاق على \mathbb{R} (لأنها دالة حدودية) $f'(x) = (2x^3 + 5x 4)' = 3x^2 + 5 : x \in \mathbb{R}$ ليكن $f'(x) = (2x^3 + 5x 4)' = 3x^2 + 5 : x \in \mathbb{R}$ إذن f'(x) > 0 و منه f'(x) > 0 و منه f'(x) > 0
- $f\left(\mathbb{R}\right) = f\left(\left]-\infty;+\infty\right[\right) = \lim_{x \to -\infty} f\left(x\right); \lim_{x \to +\infty} f\left(x\right)\left[=\right]-\infty;+\infty\right[=\mathbb{R}:f\left(\mathbb{R}\right)$ لنحسب $0 \in f\left(\mathbb{R}\right)$ إذن :

 \mathbb{R} و بالتالى المعادلة f(x)=0 تقبل حلا وحيدا

: 0 < α < 1 نتحقق أن √</p>

- $\begin{bmatrix} 0,1 \end{bmatrix}$ الدالة f متصلة
- $f(0) \times f(1) < 0$ إذن f(1) = 3 و f(0) = -4

 $0 < \alpha < 1$: إذن حسب مبرهنة القيم الوسيطية فإن

7) الدالة العكسية لدالة متصلة و رتيبة قطعا:

خاصية:

إذا كانت
$$f$$
 دالة متصلة ورتيبة قطعا على مجال I فإن f تقبل دالة عكسية f^{-1} معرفة من مجال I نحو I

نتائج:

(1)
$$\begin{cases} y = f^{-1}(x) \\ x \in J \end{cases} \Leftrightarrow \begin{cases} f(y) = x \\ y \in I \end{cases}$$
(2)
$$\begin{cases} f^{-1} \circ f(x) = x & ; x \in I \\ f \circ f^{-1}(x) = x & ; x \in J \end{cases}$$

خاصيات:

: لتكن f دالة و f^{-1} دالتها العكسية على المجال f

- J متصلة على المجال f^{-1}
- لوتابة f^{-1} لهما نفس الرتابة f
- منحنى y=x هو مماثل لمنحنى f بالنسبة للمستقيم ذي المعادلة y=x هو مماثل لمنحنى f المعادلة للمعادلة الأول المعادلة f

مثال:

$$f(x) = \frac{3x+5}{x+1}$$
 : نعتبر الدالة f المعرفة بما يلي

- لنبين أن g قصور f على المجال g تقبل دالة عكسية g^{-1} معرفة على مجال g يتم تحديده :
 - [0;1] اإذن g متصلة على المجال والمجال معرفة على المجال على g
 - [0;1] وقصور دالة جدرية معرفة على المجال [0;1] إذن g قابلة للاشتقاق على $g'(x) = \left(\frac{3x+5}{x+1}\right)' = \frac{-2}{\left(x+1\right)^2} : x \in [0;1]$ ليكن [0;1] و منه g تناقصية قطعا على [0;1]

و بالتالي
$$g$$
 تقبل دالة عكسية g^{-1} معرفة على مجال J نحو $J=g\left([0;1]\right)=\left[g\left(1\right);g\left(0\right)\right]=\left[4;5\right]$ بحيث : $J=g\left([0;1]\right)=\left[g\left(1\right);g\left(0\right)\right]=\left[4;5\right]$

$$(\forall x \in J) \quad g^{-1}(x)$$
 نحدد $x \in J = [4;5]$ لا خين $x \in J = [4;5]$ ليكن $y = g^{-1}(x) \Leftrightarrow x = g(y) \quad (y \in I = [0;1])$ $\Leftrightarrow x = \frac{3y+5}{y+1}$ $\Leftrightarrow x \cdot (y+1) = 3y+5$

$$\Leftrightarrow xy + x = 3y + 5$$

$$\Leftrightarrow xy - 3y = 5 - x$$

$$\Leftrightarrow y \cdot (x - 3) = 5 - x$$

$$\Leftrightarrow y = \frac{5-x}{x-3}$$

$$(\forall x \in J = [4;5])$$
 $g^{-1}(x) = \frac{5-x}{x-3}$: إذن

$(n \in \mathbb{N}^*)$ <u>الجذر من الرتبة</u> (8

أ. تعريف:

 \mathbb{N}^* اليكن n من

 $x\mapsto \sqrt[n]{x}$: الدالة العكسية للدالة n و نرمز لها ب $x\mapsto x$ على المجال $x\mapsto \sqrt[n]{x}$ تسمى دالة الجدر من الرتبة $x\mapsto x$ على المجال $x\mapsto \sqrt[n]{x}$ الدالة $x\mapsto \sqrt[n]{x}$ متصلة و تزايدية قطعا على $x\mapsto \sqrt[n]{x}$

ب. أمثلة :

$$(n=1) \sqrt[4]{x} = x$$
(الجذرالمربع)
$$(n=2) \sqrt[2]{x} = \sqrt{x}$$
(الجذر المكعب)
$$(n=3) \sqrt[3]{x}$$

ج. <u>خصائص :</u>

لیکن x و y عددان حقیقیان موجبان. لدینا :

$$\sqrt[n]{x^m} = \sqrt[n]{x^m} \qquad \sqrt[m]{\sqrt[n]{x}} = \sqrt[n]{x} \qquad \sqrt[n]{x^n} = x \qquad \left(\sqrt[n]{x}\right)^n = x$$

$$\left(y \neq 0\right) \quad \sqrt[n]{\frac{x}{y}} = \sqrt[n]{x} \qquad \sqrt[n]{x} = \sqrt[n]{x} \cdot \sqrt[n]{y}$$

أمثلة:

أ. لنبسط ما يلي:

$$a = \sqrt[3]{27}$$
 $b = \sqrt[4]{16}$ $c = \sqrt[3]{729}$

$$a = \sqrt[3]{27} = \sqrt[3]{3^3} = 3$$

$$b = \sqrt[4]{16} = \sqrt[4]{2^4} = 2$$

$$c = \sqrt{\sqrt[3]{729}} = \sqrt[2]{\sqrt[3]{729}} = \sqrt[6]{729} = \sqrt[6]{3^6} = 3$$

$$y = \sqrt[4]{5} \quad \text{و} \quad x = \sqrt[3]{4} : 0$$

$$y = \sqrt[4]{5} = \sqrt[4]{5}^3 = \sqrt[12]{125} \quad \text{o} \quad x = \sqrt[3]{4} = \sqrt[3]{4} = \sqrt[3]{4} = \sqrt[3]{256} : 0$$

$$y < x \quad \text{otherwise} \quad y < x \quad \text{otherwise} \quad y < x$$

$$y < x \quad \text{otherwise} \quad \frac{1}{\sqrt[3]{4} - 1} = \sqrt[12]{125} < \sqrt[12]{256} \quad \text{otherwise} \quad \frac{1}{\sqrt[3]{4} - 1} = \sqrt[4]{125} < \sqrt[3]{4} = \sqrt[4]{125} < \sqrt[3]{4} = \sqrt[4]{125} = \sqrt[$$

د. خاصية:

 $n \in \mathbb{N}^*$ لتكن f دالة و

$$\lim_{x \to x_0} \sqrt[n]{f(x)} = +\infty$$
 : فإن $\lim_{x \to x_0} f(x) = +\infty$ إذا كان \mapsto

$$\lim_{x \to x_0} \sqrt[n]{f(x)} = \sqrt[n]{l}$$
 : فإن $l \ge 0$ و $\lim_{x \to x_0} f(x) = l$ إذا كان r

$$I$$
 اذا کانت f متصلة و موجبة على مجال I فإن f متصلة على f

أمثلة:

:
$$\lim_{x \to \infty} \sqrt[3]{x^2 + x - 1}$$
 Liceup. 1

$$\lim_{x \to -\infty} \sqrt[3]{x^2 + x - 1} = +\infty$$
 : إذن $\lim_{x \to -\infty} x^2 + x - 1 = \lim_{x \to -\infty} x^2 = +\infty$ الدينا

$$: \lim_{x \to +\infty} \sqrt[3]{\frac{8x}{x+1}} \quad \text{(2)}$$

$$\lim_{x \to +\infty} \sqrt[3]{\frac{8x}{x+1}} = \sqrt[3]{8} = \sqrt[3]{2^3} = 2 : نين$$
 $\lim_{x \to +\infty} \frac{8x}{x+1} = \lim_{x \to +\infty} \frac{8x}{x} = 8$ لدينا

$$(\forall x \in \mathbb{R}) \ f(x) \ge 0$$
 و $f(x) \ge 0$ متصلة على $f(x) \ge 0$

 \mathbb{R} إذن الدالة $h=\sqrt[3]{f}$ متصلة على

9) القوى الجدرية لعدد حقيقى:

أ. تعريف:

: ليكن
$$n$$
 و $N < \infty$ لدينا n ليكن n و $n < \infty$ لدينا $\sqrt[n]{x^m} = x^{\frac{m}{n}}$ و $\sqrt[n]{x} = x^{\frac{1}{n}}$

$$5^{\frac{3}{4}} = \sqrt[4]{5^3} \quad \bullet$$

$$4^{-\frac{5}{2}} = \frac{1}{4^{\frac{5}{2}}} = \frac{1}{\sqrt[2]{4^5}} = \frac{1}{\sqrt[2]{2^{10}}} = \frac{1}{2^{10}} \quad \bullet$$

ب. خاصية:

 \mathcal{Q}^* من r' و لکل عددین حقیقبین موجبین قطعا x و لکل r و لکل عددین حقیقبین موجبین قطعا

$$(x^r)^{r'} = x^{r.r'} \quad \bullet \qquad \qquad x^r.y^r = (x.y)^r \quad \bullet \qquad \qquad x^{r+r'} = x^r x^{r'} \quad \bullet$$

$$\frac{x^r}{x^{r'}} = x^{r-r'} \quad \bullet \qquad \qquad \frac{x^r}{y^r} = \left(\frac{x}{y}\right)^r \quad \bullet \qquad \qquad \frac{1}{x^r} = x^{-r} \quad \bullet$$

$$A = \frac{\sqrt[3]{\sqrt{8}} \times \sqrt[4]{32}}{\sqrt{2} \times \sqrt[12]{64}} = \frac{\left(8^{\frac{1}{2}}\right)^{\frac{1}{3}} \times \left(32^{\frac{1}{4}}\right)^{\frac{1}{2}}}{2^{\frac{1}{2}} \times 64^{\frac{1}{12}}} = \frac{8^{\frac{1}{6}} \times 32^{\frac{1}{8}}}{2^{\frac{1}{2}} \times 64^{\frac{1}{12}}} = \frac{\left(2^{3}\right)^{\frac{1}{6}} \times \left(2^{5}\right)^{\frac{1}{8}}}{2^{\frac{1}{2}} \times \left(2^{6}\right)^{\frac{1}{12}}} = \frac{2^{\frac{3}{6}} \times 2^{\frac{5}{8}}}{2^{\frac{1}{2}} \times 2^{\frac{5}{8}}} = 2^{\frac{5}{8} \cdot \frac{1}{2}} = 2^{\frac{1}{8}} = \sqrt[8]{2}$$

つづく