Potenciais de Eletrodo e Sua Determinação

$$Cu(s) + 2Ag^{+}(aq)$$

$$Cu^{2+}(aq) + 2Ag(s)$$

Cu(s) + Zn²⁺(aq)

Não há reação

opyright © 2007 Pearson Prentice Hall, Inc.

Uma Meia-Célula Eletroquímica

Copyright © 2007 Pearson Prentice Hall, Inc.

Uma Célula Eletroquímica

Copyright © 2007 Pearson Prentice Hall, Inc.

Terminologia

- Força eletromotriz, E_{cel} .
 - A voltagem da célula ou o potencial da célula.
- Diagrama da célula.
 - Mostra os componentes da célula de maneira simbólica.
 - Anodo (onde ocorre a oxidação) na esquerda.
 - Catodo (onde ocorre a redução) na direita.
 - Fronteira entre fases representada por |.
 - Fronteira entre meias-células (geralmente a ponte salina) representada por ||.

Terminologia

 $Zn(s) | Zn^{2+}(aq) | | Cu^{2+}(aq) | Cu(s)$

$$E_{\rm cel} = 1,103 \text{ V}$$

Terminologia

- Células Galvânicas.
 - Produzem eletricidade como resultado de reações espontâneas.
- Células Eletrolíticas.
 - Mudança química não-espontânea movida por eletricidade.
- **♦** Par, M|Mⁿ⁺
 - Um par de espécies relacionadas por uma variação no número de elétrons, também chamado de "par redox".

Potenciais Padrão de Eletrodo

- ◆ A "voltagem" de células, ou seja, as *diferenças* de potencial entre eletrodos, estão entre as medidas científicas mais precisas.
- ◆ Porém, é difícil determinar o potencial de um eletrodo individual.
- ♦ Escolhe-se, portanto, um zero arbitrário.

O Eletrodo Padrão de Hidrogênio, (EPH), ou Standard Hydrogen Electrode (SHE)

Eletrodo Padrão de Hidrogênio

$$2 \text{ H}^+(a = 1) + 2 e^- \iff \text{H}_2(g, 1 \text{ bar}) \qquad E^\circ = 0 \text{ V}$$

Copyright © 2007 Pearson Prentice Hall, Inc.

Potencial de Eletrodo Padrão, E°

- E° é definido por acordo internacional.
- ♦ É a tendência de um processo de *redução* ocorrer em um eletrodo.
 - Todas as espécies iônicas presentes com a = 1 (aproximadamente 1 mol/L).
 - Todos os gases com pressão de 1 bar (aproximadamente 1 atm).
 - Quando não houver indicação de substância metálica, o potencial é estabelecido sobre um eletrodo metálico inerte (Pt, por exemplo).

Pares de Redução

$$Cu^{2+}(1M) + 2 e^{-} \rightarrow Cu(s)$$
 $E^{\circ}_{Cu^{2+}/Cu} = ?$

$$Pt|H_2(g, 1 \text{ bar})|H^+(a = 1) || Cu^{2+}(1 \text{ M})|Cu(s) || E_{cell}^{\circ} = 0,340 \text{ V}$$

anodo

catodo

Potencial padrão de célula: a differença de potencial de uma célula construída com dois eletrodos *padrão*.

$$E_{\text{cel}}^{\circ} = E_{\text{catodo}}^{\circ} - E_{\text{anodo}}^{\circ}$$

Potencial Padrão de Célula

$$Pt|H_2(g, 1 \text{ bar})|H^+(a = 1) || Cu^{2+}(1 \text{ M})|Cu(s) || E_{cel}^{\circ} = 0.340 \text{ V}$$

$$E_{\text{cel}}^{\circ} = E_{\text{catodo}}^{\circ} - E_{\text{anodo}}^{\circ}$$

$$E^{\circ}_{\text{cell}} = E^{\circ}_{\text{Cu}^{2+}/\text{Cu}} - E^{\circ}_{\text{H}^{+}/\text{H}_{2}}$$

$$0.340 \text{ V} = E^{\circ}_{\text{Cu}^{2+}/\text{Cu}} - 0 \text{ V}$$

$$E^{\circ}_{Cu^{2+}/Cu} = +0.340 \text{ V}$$

$$H_2(g, 1 \text{ atm}) + Cu^{2+}(1 \text{ M}) \rightarrow H^+(1 \text{ M}) + Cu(s)$$
 $E_{cel}^{\circ} = 0.340 \text{ V}$

Determinação do Potencial de Redução Padrão

Numa célula galvânica, o anodo é sempre o eletrodo do qual os elétrons partem.

TABELA DE POTENCIAIS PADRÃO DE REDUÇÃO

Poder redutor do elemento

-0,76

Alguns potenciais padrão de eletrodo (redução) a 25°C

Semi-reação de redução

E°, V

Solução ácida

$F_2(g) + 2e^- \longrightarrow 2F^-(aq)$	+2.866
$O_3(g) + 2 H^+(aq) + 2 e^- \longrightarrow O_2(g) + H_2O(l)$	+2.075
$S_2O_8^{2-}(aq) + 2e^- \longrightarrow 2SO_4^{2-}(aq)$	+2.01
$H_2O_2(aq) + 2 H^+(aq) + 2 e^- \longrightarrow 2 H_2O(1)$	+1.763
$MnO_4^-(aq) + 8 H^+(aq) + 5 e^- \longrightarrow Mn^{2+}(aq) + 4 H_2O(l)$	+1.51
$PbO_2(s) + 4 H^+(aq) + 2 e^- \longrightarrow Pb^{2+}(aq) + 2 H_2O(l)$	+1.455
$Cl_2(g) + 2e^- \longrightarrow 2Cl^-(aq)$	+1.358
$Cr_2O_7^{2-}(aq) + 14 H^+(aq) + 6 e^- \longrightarrow 2 Cr^{3+}(aq) + 7 H_2O(l)$	+1.33
$MnO_2(s) + 4 H^+(aq) + 2 e^- \longrightarrow Mn^{2+}(aq) + 2 H_2O(l)$	+1.23
$O_2(g) + 4 H^+(aq) + 4 e^- \longrightarrow 2 H_2O(l)$	+1.229
$2 IO_3^-(aq) + 12 H^+(aq) + 10 e^- \longrightarrow I_2(s) + 6 H_2O(l)$	+1.20
$Br_2(l) + 2e^- \longrightarrow 2Br^-(aq)$	+1.065

Copyright © 2007 Pearson Prentice Hall, Inc.

Alguns potenciais padrão de eletrodo (redução) a 25°C (cont.)

Semi-reação de redução	E°, V
$NO_3^-(aq) + 4 H^+(aq) + 3 e^- \longrightarrow NO(g) + 2 H_2O(l)$	+0.956
$Ag^{+}(aq) + e^{-} \longrightarrow Ag(s)$	+0.800
$Fe^{3+}(aq) + e^{-} \longrightarrow Fe^{2+}(aq)$	+0.771
$O_2(g) + 2 H^+(aq) + 2 e^- \longrightarrow H_2O_2(aq)$	+0.695
$I_2(s) + 2e^- \longrightarrow 2I^-(aq)$	+0.535
$Cu^{2+}(aq) + 2e^{-} \longrightarrow Cu(s)$	+0.340
$SO_4^{2-}(aq) + 4 H^+(aq) + 2 e^- \longrightarrow 2 H_2O(l) + SO_2(g)$	+0.17
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2 \operatorname{e}^{-} \longrightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.154
$S(s) + 2 H^{+}(aq) + 2 e^{-} \longrightarrow H_2S(g)$	+0.14
$2 H^{+}(aq) + 2 e^{-} \longrightarrow H_{2}(g)$	0
$Pb^{2+}(aq) + 2e^{-} \longrightarrow Pb(s)$	-0.125
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2 \operatorname{e}^{-} \longrightarrow \operatorname{Sn}(\operatorname{s})$	-0.137
$Fe^{2+}(aq) + 2e^{-} \longrightarrow Fe(s)$	-0.440

Alguns potenciais padrão de eletrodo (redução) a 25°C (cont.)

Semi-reação de redução	E°, V
$Zn^{2+}(aq) + 2e^{-} \longrightarrow Zn(s)$	-0.763
$Al^{3+}(aq) + 3e^{-} \longrightarrow Al(s)$	-1.676
$Mg^{2+}(aq) + 2e^{-} \longrightarrow Mg(s)$	-2.356
$Na^{+}(aq) + e^{-} \longrightarrow Na(s)$	-2.713
$Ca^{2+}(aq) + 2e^{-} \longrightarrow Ca(s)$	-2.84
$K^+(aq) + e^- \longrightarrow K(s)$	-2.924
$Li^+(aq) + e^- \longrightarrow Li(s)$	-3.040
Solução básica	
$O_3(g) + H_2O(l) + 2e^- \longrightarrow O_2(g) + 2OH^-(aq)$	+1.246
$OCl^{-}(aq) + H_2O(l) + 2e^{-} \longrightarrow Cl^{-}(aq) + 2OH^{-}(aq)$	+0.890
$O_2(g) + 2 H_2O(l) + 4 e^- \longrightarrow 4 OH^-(aq)$	+0.401
$2 H_2O(1) + 2 e^- \longrightarrow H_2(g) + 2 OH^-(aq)$	-0.828

Usando Potenciais Padrão, Eº

Qual é o melhor agente oxidante:

$$O_2$$
, H_2O_2 , ou Cl_2 ?

$$H_2O_2$$

Qual é o melhor agente redutor:

Al ou Sn?

Al

Potenciais Redox Padrão, Eº

$$Cu^{2+} + 2e^{-} \rightarrow Cu +0,34$$

 $2 H^{+} + 2e^{-} \rightarrow H_{2} 0,00$
 $Zn^{2+} + 2e^{-} \rightarrow Zn -0,76$

Qualquer substância à direita irá reduzir uma substância mais alta do que ela à esquerda.

Regra noroeste-sudeste: reações produtofavorecidas ocorrem entre um agente redutor no canto sudeste (anodo) e um agente oxidante no canto noroeste (catodo).

Potenciais Redox Padrão, Eº

E ^o (V)
+0.34
0.00
-0.76

Poder redutor

do metal

Qualquer substância à direita irá reduzir qualquer substância mais alta do que ela à esquerda.

- ◆ Zn pode reduzir H+ e Cu²+.
- → H₂ pode reduzir Cu²⁺ mas não Zn²⁺
- Cu não pode reduzir H+ ou Zn²⁺.

$E_{\rm cel}$, ΔG , e $K_{\rm eq}$

- Células realizam trabalho elétrico. $\omega_{\rm elet} = -nFE$
 - Movimento de cargas elétricas.
- Constante de Faraday, $F = 96,485 \text{ C mol}^{-1}$

$$\Delta G = -nFE$$

$$\Delta G^{\circ} = -nFE^{\circ}$$

Copyright © 2007 Pearson Prentice Hall, Inc.