STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2019 LECTURE 9

1. BACK SUBSTITUTION AND TRIDIAGONAL SOLVE

- backsolve or back substitution refers to a simple, intuitive way of solving linear systems of the form $R\mathbf{x} = \mathbf{b}$ or $L\mathbf{x} = \mathbf{b}$ where R is upper-triangular and L is lower-triangular
- take $R\mathbf{x} = \mathbf{b}$ for illustration

$$\begin{bmatrix} r_{11} & \cdots & r_{1n} \\ & \ddots & \vdots \\ & & r_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix}$$

• start at the bottom and work our way up

$$b_{n} = r_{nn}x_{n}$$

$$b_{n-1} = r_{n-1,n}x_{n} + r_{n-1,n-1}x_{n-1}$$

$$\vdots$$

$$b_{1} = r_{11}x_{1} + r_{12}x_{2} + \dots + r_{1n}x_{n}$$

• we get

$$x_n = \frac{b_n}{r_{nn}}$$

$$x_{n-1} = \frac{b_{n-1} - r_{n-1,n}(b_n/r_n)}{r_{n-1,n-1}}$$
:

- this requires that $r_{kk} \neq 0$ for all k = 1, ..., n, which is guaranteed if R is nonsingular
- for example we could use QR factorization
- given $A \in \mathbb{C}^{n \times n}$ nonsingular and $\mathbf{b} \in \mathbb{C}^n$
 - step 1: find QR factorization A = QR
 - step 2: form $\mathbf{b} = Q^* \mathbf{b}$
 - step 3: backsolve $R\mathbf{x} = \mathbf{y}$ to get \mathbf{x}
- it is easy to solve $A\mathbf{x} = \mathbf{b}$ if
 - A is unitary or orthogonal (includes permutation matrices)
 - A is upper- or lower-triangular (includes diagonal matrices)
 - $-A\mathbf{x} = \mathbf{b}$ with such A can be solved with $O(n^2)$ flops
 - if A represents a special orthogonal matrix like the discrete Fourier or wavelet transforms, then $A\mathbf{x} = \mathbf{b}$ can in fact be solved in $O(n \log n)$ flops using algorithms like fast Fourier or fast wavelet transforms
- if A is not one of these forms, we factorize A into a product of matrices of these forms
- this may be viewed as the basic impetus for matrix factorizations like LU, Cholesky, QR, SVD, EVD
- actually to the above list, we could also add

- A is bidiagonal/tridiagonal (or banded, i.e., $a_{ij} = 0$ if |i j| > b for some bandwidth $b \ll n$)
- A is Toeplitz or Hankel, i.e., $a_{ij} = a_{i-j}$ or $a_{ij} = a_{i+j}$ constant on the diagonals or the opposite diagonals
- -A is semiseparable
- $-A\mathbf{x} = \mathbf{b}$ with bidiagonal or tridiagonal A can be solved in O(n) flops
- $-A\mathbf{x} = \mathbf{b}$ with Toeplitz or Hankel A can be solved in $O(n^2 \log n)$ flops
- these are often called structured matrices
- for example, a tridiagonal system

$$\begin{bmatrix} b_1 & c_1 & & & 0 \\ a_2 & b_2 & c_2 & & & \\ & a_3 & b_3 & \ddots & & \\ & & \ddots & \ddots & c_{n-1} \\ 0 & & & a_n & b_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} d_1 \\ d_2 \\ d_3 \\ \vdots \\ d_n \end{bmatrix}$$

may be solved by first computing

$$c'_{i} = \begin{cases} \frac{c_{i}}{b_{i}} & i = 1, \\ \frac{c_{i}}{b_{i} - a_{i}c'_{i-1}} & i = 2, 3, \dots, n-1, \end{cases}$$

and

$$d'_{i} = \begin{cases} \frac{d_{i}}{b_{i}} & i = 1, \\ \frac{d_{i} - a_{i}d'_{i-1}}{b_{i} - a_{i}c'_{i-1}} & i = 2, 3, \dots, n, \end{cases}$$

followed by back substitution

$$x_n = d'_n,$$

 $x_i = d'_i - c'_i x_{i+1}, \qquad i = n - 1, n - 2, \dots, 1$

- in this course we will just restrict ourselves to unitary and triangular factors
- but we will discuss a general principle for solving linear systems and least squares problems based on rank-retaining factorizations that works with any structured matrices

2. RANK-RETAINING FACTORIZATIONS

• let $A \in \mathbb{C}^{m \times n}$ with rank(A) = r, a rank-retaining factorization is a factorization of A into

$$A = GH$$

where $G \in \mathbb{C}^{m \times r}$ and $H \in \mathbb{C}^{r \times n}$ and

$$\operatorname{rank}(G) = \operatorname{rank}(H) = r$$

- example: condensed SVD $A = U\Sigma V^*, U \in \mathbb{C}^{m\times r}, \Sigma \in \mathbb{C}^{r\times r}, V \in \mathbb{C}^{n\times r}$ where we could pick $G = U\Sigma$ and $H = V^*$ or G = U and $H = \Sigma V^*$
- example: condensed QR $A\Pi = QR$, $Q \in \mathbb{C}^{m \times r}$, $R \in \mathbb{C}^{r \times n}$, where we could pick G = Q and $H = R\Pi^{\mathsf{T}}$
- example: condensed LU $\Pi_1 A \Pi_2 = LU$, $L \in \mathbb{C}^{m \times r}$, $U \in \mathbb{C}^{r \times n}$, where we could pick $G = \Pi_1^{\mathsf{T}} L$ and $H = U \Pi_2^{\mathsf{T}}$
- easy facts: if A = GH is rank-retaining, then
 - (i) $G^*G \in \mathbb{C}^{r \times r}$ is nonsingular

- (ii) $HH^* \in \mathbb{C}^{r \times r}$ is nonsingular
- (iii) im(A) = im(G)
- (iv) $\ker(A^*) = \ker(G^*)$
- (v) $\ker(A) = \ker(H)$
- (vi) $im(A^*) = im(H^*)$
- prove these as exercises

3. GENERAL PRINCIPLE FOR LINEAR SYSTEMS AND LEAST SQUARES

- we will discuss a general principle for solving linear systems and least squares problems via matrix factorization
- given $A \in \mathbb{C}^{m \times n}$ and $\mathbf{b} \in \mathbb{C}^m$, two of the most common problems are
 - if $A\mathbf{x} = \mathbf{b}$ is consistent and A is full column rank, we want the unique solution
 - if $A\mathbf{x} = \mathbf{b}$ is inconsistent and A is full column rank, we want the unique least squares solution
- the trouble is that when A is rank deficient, i.e., not full rank, then the solution is not unique and so we want the minimum length solution instead
 - if $A\mathbf{x} = \mathbf{b}$ is consistent and A is rank deficient, we want the minimum length solution

$$\min\{\|\mathbf{x}\|_2 : A\mathbf{x} = \mathbf{b}\}\tag{3.1}$$

– if $A\mathbf{x} = \mathbf{b}$ is inconsistent and A is rank deficient, we want the minimum length least squares solution

$$\min\{\|\mathbf{x}\|_2 : \mathbf{x} \in \operatorname{argmin}\|\mathbf{b} - A\mathbf{x}\|_2\}$$
(3.2)

- if we can solve the min length versions then we can solve the full column rank versions, so let's focus on the min length version
 - 4. MIN LENGTH LINEAR SYSTEMS VIA RANK-RETAINING FACTORIZATION
- we start from the consistent case: $\mathbf{b} \in \mathrm{im}(A)$ and so $\mathbf{b} = A\mathbf{x}$ for some $\mathbf{x} \in \mathbb{C}^n$
 - recall the Fredholm alternative that we proved in the homework:

$$\mathbb{C}^n = \operatorname{im}(A^*) \oplus \ker(A)$$

 $-\mathbf{x} \in \mathbb{C}^n$ can be written uniquely as

$$\mathbf{x} = \mathbf{x}_0 + \mathbf{x}_1, \quad \mathbf{x}_0 \in \ker(A), \ \mathbf{x}_1 \in \operatorname{im}(A^*), \ \mathbf{x}_0^* \mathbf{x}_1 = 0$$

- since

$$\mathbf{b} = A\mathbf{x} = A\mathbf{x}_0 + A\mathbf{x}_1 = A\mathbf{x}_1$$

 \mathbf{x}_1 is also a solution to the linear system

- by Pythagoras theorem

$$\|\mathbf{x}\|_2^2 = \|\mathbf{x}_0\|_2^2 + \|\mathbf{x}_1\|_2^2 \ge \|\mathbf{x}_1\|_2^2$$

- so for a minimum length solution we set $\mathbf{x}_0 = \mathbf{0}$, i.e., the minimum length solution is given by $\mathbf{x} = \mathbf{x}_1$
- now we will see how to find x_1 using a rank-retaining factorization

$$A = GH \tag{4.1}$$

- since $\mathbf{x}_1 \in \operatorname{im}(A^*) = \operatorname{im}(H^*)$ by easy fact (vi), so for some $\mathbf{v} \in \mathbb{C}^r$,

$$\mathbf{x}_1 = H^* \mathbf{v} \tag{4.2}$$

- by easy fact (iii), $\mathbf{b} \in \operatorname{im}(A) = \operatorname{im}(G)$ and so for some $\mathbf{s} \in \mathbb{C}^r$,

$$\mathbf{b} = G\mathbf{s} \tag{4.3}$$

- so upon substituting (4.1), (4.2), (4.3), $A\mathbf{x}_1 = \mathbf{b}$ becomes

$$GHH^*\mathbf{v} = G\mathbf{s}$$

- now multiply by G^* to get

$$(G^*G)HH^*\mathbf{v} = (G^*G)\mathbf{s}$$

- by easy fact (i), G^*G is nonsingular and so

$$HH^*\mathbf{v} = \mathbf{s}$$

- by easy fact (ii), HH^* is nonsingular and so

$$\mathbf{v} = (HH^*)^{-1}\mathbf{s}$$

- plugging back into (4.2), we get

$$\mathbf{x}_1 = H^* (HH^*)^{-1} \mathbf{s} \tag{4.4}$$

- this gives an algorithm for solving the minimum length linear system (3.1)
 - step 1: compute rank retaining factorization A = GH
 - step 2: solve $G\mathbf{s} = \mathbf{b}$ for $\mathbf{s} \in \mathbb{C}^r$
 - step 3: solve $HH^*\mathbf{z} = \mathbf{s}$ for $\mathbf{z} \in \mathbb{C}^r$
 - step 4: compute $\mathbf{x}_1 = H^*\mathbf{z}$
- this works because

$$A\mathbf{x}_1 = GH\mathbf{x}_1 = GHH^*\mathbf{z} = G(HH^*)(HH^*)^{-1}\mathbf{s} = G\mathbf{s} = \mathbf{b}$$

- note that the system in steps 2 and 3 involve a full-rank G and a nonsingular HH^* both have unique solutions
- example: if $A\Pi = QR$ is the condensed QR, then with G = Q and $H = R\Pi^{\mathsf{T}}$
 - step 2: $Q\mathbf{s} = \mathbf{b}$ is easy to obtain via

$$Q^*Q\mathbf{s} = Q^*\mathbf{b}$$

and so $\mathbf{s} = Q^* \mathbf{b}$

- step 3: $R\Pi^{\mathsf{T}}\Pi R^*\mathbf{z} = \mathbf{s}$ is also easy to obtain via two backsolves

$$\begin{cases} R\mathbf{y} = \mathbf{s} \\ R^*\mathbf{z} = \mathbf{y} \end{cases}$$

- example: if $A = U\Sigma V^*$ is the condensed SVD, then with G = U and $H = \Sigma V^*$
 - step 2: $U\mathbf{s} = \mathbf{b}$ is easy to obtain via

$$U^*U\mathbf{s} = U^*\mathbf{b}$$

and so $\mathbf{s} = U^* \mathbf{b}$

- step 3: $\Sigma V^* V \Sigma \mathbf{z} = \mathbf{s}$ is just

$$\Sigma^2 \mathbf{z} = \mathbf{s}$$

or

$$\begin{bmatrix} \sigma_1^2 & & \\ & \ddots & \\ & & \sigma_r^2 \end{bmatrix} \begin{bmatrix} z_1 \\ \vdots \\ z_r \end{bmatrix} = \begin{bmatrix} s_1 \\ \vdots \\ s_r \end{bmatrix}$$

and so for $k = 1, \ldots, r$,

$$z_k = s_k / \sigma_k^2$$

• note that (4.4) is in terms of \mathbf{s} , if we want an analytic expression, it should involve only quantities we know, i.e., \mathbf{b}, G, H

• to express s in terms of quantities we know, we just multiply (4.3) by G^* to get

$$G^*G\mathbf{s} = G^*\mathbf{b}$$

and using fact (i) to get

$$\mathbf{s} = (G^*G)^{-1}G^*\mathbf{b}$$

• with this and (4.4), we get an analytic expression for the minimum length solution

$$\mathbf{x}_1 = H^*(HH^*)^{-1}(G^*G)^{-1}G^*\mathbf{b}$$
(4.5)

- 5. MIN LENGTH LEAST SQUARES VIA RANK-RETAINING FACTORIZATION
- we now consider the inconsistent case: $\mathbf{b} \notin \text{im}(A)$
 - this time we use the other part of the Fredholm alternative:

$$\mathbb{C}^m = \ker(A^*) \oplus \operatorname{im}(A)$$

– any $\mathbf{b} \in \mathbb{C}^m$ can be written uniquely as

$$\mathbf{b} = \mathbf{b}_0 + \mathbf{b}_1, \quad \mathbf{b}_0 \in \ker(A^*), \ \mathbf{b}_1 \in \operatorname{im}(A), \ \mathbf{b}_0^* \mathbf{b}_1 = 0$$

- since $\mathbf{b}_1 - A\mathbf{x} \in \text{im}(A)$, it must also be orthogonal to \mathbf{b}_0 and by Pythagoras

$$\|\mathbf{b} - A\mathbf{x}\|_{2}^{2} = \|\mathbf{b}_{0} + \mathbf{b}_{1} - A\mathbf{x}\|_{2}^{2} = \|\mathbf{b}_{0}\|_{2}^{2} + \|\mathbf{b}_{1} - A\mathbf{x}\|_{2}^{2} \ge \|\mathbf{b}_{0}\|_{2}^{2}$$

- so for a least squares solution, we must have

$$\|\mathbf{b}_1 - A\mathbf{x}\|_2^2 = 0$$

i.e.,

$$A\mathbf{x} = \mathbf{b}_1 \tag{5.1}$$

- this is always consistent since $\mathbf{b}_1 \in \text{im}(A)$ and we proceed as in the consistent case to get from (4.5),

$$\mathbf{x}_1 = H^* (HH^*)^{-1} (G^*G)^{-1} G^* \mathbf{b}_1 \tag{5.2}$$

– but by easy fact (iv), $ker(A^*) = ker(G^*)$ and so

$$G^*\mathbf{b} = G^*(\mathbf{b}_0 + \mathbf{b}_1) = G^*\mathbf{b}_0 + G^*\mathbf{b}_1 = G^*\mathbf{b}_1 \tag{5.3}$$

- in other words, the \mathbf{b}_1 in (5.2) may be replaced by \mathbf{b} and we get

$$\mathbf{x}_1 = H^* (HH^*)^{-1} (G^*G)^{-1} G^* \mathbf{b}$$
 (5.4)

- note that there is no difference in the expression (4.5) for minimum length linear system and the expression (5.4) for minimum length least squares
- following the previous section, we can write down an algorithm using (5.4) to get the minimum length solution to a least squares problem (3.2) (exercise)
- a consequence of (5.4) is that given a rank-retaining factorization A = GH, the Moore–Penrose pseudoinverse of A is given by

$$A^{\dagger} = H^*(HH^*)^{-1}(G^*G)^{-1}G^* \tag{5.5}$$

• example: if $A = U\Sigma V^*$ is the condensed SVD, then $A^{\dagger} = V\Sigma^{-1}U^*$ since (5.5) with G = U and $H = \Sigma V^*$ yields

$$A^{\dagger} = V \Sigma (\Sigma V^* V \Sigma)^{-1} (U^* U)^{-1} U^* = V \Sigma \Sigma^{-2} U^* = V \Sigma^{-1} U^*$$

• example: if $A\Pi = QR$ is the condensed QR, then $A^{\dagger} = \Pi R^* (RR^*)^{-1} Q^*$ since (5.5) with G = Q and $H = R\Pi^{\mathsf{T}}$ yields

$$A^\dagger = \Pi R^* (R \Pi^\mathsf{T} \Pi R^*)^{-1} (Q^* Q)^{-1} Q^* = \Pi R^* (R R^*)^{-1} Q^*$$

6

6. Other uses of Qr

• the QR decomposition for a square matrix may be used to determine the magnitude of determinant

$$|\det(A)| = |\det(QR)| = |\det(Q)| |\det(R)| = |\det(R)| = \prod_{k=1}^{n} |r_{kk}|$$

- we used two facts: determinant of unitary matrix must have absolute value 1, determinant of triangular (upper or lower) matrix is just product of diagonal elements
- the rank-retaining QR decomposition may be used to determine orthonormal bases for the fundamental subspaces

$$A\Pi = \begin{bmatrix} Q_1, Q_2 \end{bmatrix} \begin{bmatrix} R_1 & S \\ 0 & 0 \end{bmatrix}$$

- the columns of Q_1 form an orthonormal basis for $\operatorname{im}(A)$ (follows from Gram–Schmidt) and the columns of Q_2 form an orthonormal basis for $\ker(A^*)$
- if we need orthonormal bases for $\operatorname{im}(A^*)$ and $\ker(A)$, we find the rank-retaining QR factorization of A^*
- this is a cheaper way than SVD to obtain orthonormal bases for the fundamental subsapces

7. FULL RANK LEAST SQUARES PROBLEM

- ullet the general method for a rank-retaining factorization works for matrices of any rank but there are better alternatives to solve least squares problem when the coefficient matrix A has full column rank
- here we seek to minimize $||A\mathbf{x} \mathbf{b}||_2$ where $A \in \mathbb{C}^{m \times n}$ has $\operatorname{rank}(A) = n \leq m$ and $\mathbf{b} \in \mathbb{C}^m$
- such problems always have unique solution \mathbf{x}^* (why?)
- so there is no question of finding a min length solution since there's only one solution in this case, we don't get to choose
- we consider three methods:
 - (1) QR factorization
 - (2) normal equations
 - (3) augmented system
- mathematically they all give the same solution (i.e., in exact arithmetic) but they have different numerical properties
- so one has to know all three since each is good/bad under different circumstances

8. FULL RANK LEAST SQUARES VIA QR

ullet the first approach is to take advantage of the fact that the 2-norm is invariant under orthogonal transformations, and seek an orthogonal matrix Q such that the transformed problem

$$\min \|A\mathbf{x} - \mathbf{b}\|_2 = \min \|Q^*(A\mathbf{x} - \mathbf{b})\|_2$$

is "easy" to solve

• we could use the QR factorization of A

$$A = Q \begin{bmatrix} R \\ 0 \end{bmatrix} = \begin{bmatrix} Q_1 & Q_2 \end{bmatrix} \begin{bmatrix} R \\ 0 \end{bmatrix} = Q_1 R$$

• then $Q_1^*A = R$ and

$$\min \|A\mathbf{x} - \mathbf{b}\|_2 = \min \|Q^*(A\mathbf{x} - \mathbf{b})\|_2$$
$$= \min \|(Q^*A)\mathbf{x} - Q^*\mathbf{b}\|_2$$
$$= \min \left\| \begin{bmatrix} R \\ 0 \end{bmatrix} \mathbf{x} - Q^*\mathbf{b} \right\|_2$$

• if we partition

$$Q^*\mathbf{b} = \begin{bmatrix} \mathbf{c} \\ \mathbf{d} \end{bmatrix}$$

then

$$\min \|A\mathbf{x} - \mathbf{b}\|_2^2 = \min \left\| \begin{bmatrix} R \\ 0 \end{bmatrix} \mathbf{x} - \begin{bmatrix} \mathbf{c} \\ \mathbf{d} \end{bmatrix} \right\|_2^2 = \min \|R\mathbf{x} - \mathbf{c}\|_2^2 + \|\mathbf{d}\|_2^2$$

• therefore the minimum is achieved by the vector \mathbf{x} such that $R\mathbf{x} = \mathbf{c}$ and therefore

$$\min_{\mathbf{x} \in \mathbb{C}^n} \|A\mathbf{x} - \mathbf{b}\|_2 = \|\mathbf{d}\|_2$$

9. FULL RANK LEAST SQUARES VIA NORMAL EQUATIONS

• the second approach is to define

$$\varphi(\mathbf{x}) = \frac{1}{2} ||A\mathbf{x} - \mathbf{b}||_2^2$$

which is a differentiable function of \mathbf{x}

• we can minimize $\varphi(\mathbf{x})$ by noting that $\nabla \varphi(\mathbf{x}) = A^*(A\mathbf{x} - \mathbf{b})$ which means that $\nabla \varphi(\mathbf{x}) = \mathbf{0}$ if and only if

$$A^*A\mathbf{x} = A^*\mathbf{b} \tag{9.1}$$

- this system of equations is called the *normal equations*, and were used by Gauss to solve least squares problems
- we saw at least two other ways to derive (9.1) in the homeworks
- it is generally a bad idea to solve the normal equations to get the least squares solution, although this is not always the case
- for example, if $n \ll m$ then A^*A is $n \times n$, which is a much smaller system to solve than solving min $||A\mathbf{x} \mathbf{b}||_2^2$ via finding QR of A, and if $\kappa(A^*A)$ is not too large, we can indeed solve (9.1)
- for A of full column rank, the matrix A^*A is positive definite and one should apply Cholesky factorization (to be discussed later) to the matrix A^*A in order to solve (9.1)
- which is the better method?
- this is not a simple question to answer
- the normal equations produce an \mathbf{x}^* whose relative error depends on $\kappa_2(A^{\mathsf{T}}A) = \kappa_2(A)^2$, whereas the QR factorization produces an \mathbf{x}^* whose relative error depends on $\kappa_2(A) + \rho_{\mathrm{LS}}(\mathbf{x}^*)\kappa_2(A)^2$ where

$$\rho_{\text{LS}}(\mathbf{x}) := \frac{\|\mathbf{b} - A\mathbf{x}\|_2}{\|A\|_2 \|\mathbf{x}\|_2}$$

is called the *relative residual* at \mathbf{x}

- so the QR factorization method in the previous section is appealing if $\rho_{LS}(\mathbf{x}^*)$ is small, i.e., \mathbf{b} is very close to $\operatorname{im}(A)$, the span of the columns of A which is more often than not the case (e.g. in linear regression) as the most common reason for wanting to solve $\min \|A\mathbf{x} \mathbf{b}\|_2$ is when we expect $A\mathbf{x}^* \approx \mathbf{b}$
- the normal equations involve much less arithmetic when $n \ll m$ and the $n \times n$ matrix A^*A requires less storage

8

10. FULL RANK LEAST SQUARES VIA AUGMENTED SYSTEM

- we can cast the normal equation in another form
- let $\mathbf{r} = \mathbf{b} A\mathbf{x}$ be the residual
- now by the normal equations

$$A^*\mathbf{r} = A^*\mathbf{b} - A^*A\mathbf{x} = \mathbf{0}$$

• and so we obtain the system

$$\mathbf{r} + A\mathbf{x} = \mathbf{b}$$
$$A^*\mathbf{r} = \mathbf{0}$$

• in matrix form, we get

$$\begin{bmatrix} I & A \\ A^* & 0 \end{bmatrix} \begin{bmatrix} \mathbf{r} \\ \mathbf{x} \end{bmatrix} = \begin{bmatrix} \mathbf{b} \\ \mathbf{0} \end{bmatrix}$$

• this is often a large system since the coefficient matrix has dimension $(m+n) \times (m+n)$, but it preserves the sparsity of A

11. QR FACTORIZATION VERSUS NORMAL EQUATIONS

• assuming a dense A, the following table compares the relative merits of normal equations (NE) method, QR method, and the SVD method discussed a few lectures ago

11.1. Conditioning of least squares.

Theorem 1 (Wedin). Let $A, \widehat{A} \in \mathbb{R}^{m \times n}$ where $\operatorname{rank}(A) = \operatorname{rank}(\widehat{A}) = n \leq m$. Suppose \mathbf{x} and $\widehat{\mathbf{x}} \in \mathbb{R}^n$ are solutions to the respective least squares problems

$$\min \|A\mathbf{x} - \mathbf{b}\|_2 \quad and \quad \min \|\widehat{A}\widehat{\mathbf{x}} - \widehat{\mathbf{b}}\|_2,$$

and let $\mathbf{r} = \mathbf{b} - A\mathbf{x}$ and $\hat{\mathbf{r}} = \hat{\mathbf{b}} - \widehat{A}\hat{\mathbf{x}}$ be the respective residuals. If $\epsilon > 0$ is such that

$$\frac{\|A - \widehat{A}\|_2}{\|A\|_2} \le \epsilon, \quad \frac{\|\mathbf{b} - \widehat{\mathbf{b}}\|_2}{\|\mathbf{b}\|_2} \le \epsilon, \quad \kappa_2(A)\epsilon < 1,$$

then

$$\frac{\|\mathbf{x} - \widehat{\mathbf{x}}\|_2}{\|\mathbf{x}\|_2} \le \frac{\kappa_2(A)\epsilon}{1 - \kappa_2(A)\epsilon} \left(2 + (\kappa_2(A) + 1) \frac{\|\mathbf{r}\|_2}{\|A\|_2 \|\mathbf{x}\|_2} \right),\tag{11.1}$$

and

$$\frac{\|\mathbf{r} - \widehat{\mathbf{r}}\|_2}{\|\mathbf{r}\|_2} \le 1 + 2\kappa_2(A)\epsilon.$$

- recall that for singular or rectangular matrices, $\kappa_2(A) = ||A||_2 ||A^{\dagger}||_2$
- note that if $\mathbf{r} = \mathbf{0}$, i.e., the least squares problem becomes a linear system, (11.1) reduces to the bound we obtained in Homework 2, Problem $\mathbf{6}(\mathbf{e})$
- in other words, for a linear system, the term involving $\kappa_2(A)^2$ vanishes
- a simplification of (11.1) is to assume that $\hat{\mathbf{b}} = \mathbf{b}$ and get

$$\frac{\|\mathbf{x} - \widehat{\mathbf{x}}\|_2}{\|\mathbf{x}\|_2} \le \frac{\kappa_2(A)\epsilon}{1 - \kappa_2(A)\epsilon} \left(1 + \kappa_2(A) \frac{\|\mathbf{r}\|_2}{\|A\|_2 \|\mathbf{x}\|_2} \right)$$

• if we expand the right hand side, we get

$$\frac{\|\mathbf{x} - \widehat{\mathbf{x}}\|_2}{\|\mathbf{x}\|_2} \le \kappa_2(A) \left(1 + \kappa_2(A) \frac{\|\mathbf{r}\|_2}{\|A\|_2 \|\mathbf{x}\|_2} \right) \epsilon + O(\epsilon^2)$$
(11.2)

• the coefficient of ϵ above is sometimes called the least squares condition number

11.2. Accuracy.

• the QR method, if properly implemented (say, using Householder or Givens algorithm that we will discuss next time), is backward stable in the following sense: when we use the method to solve

$$\min \|A\mathbf{x} - \mathbf{b}\|_2,$$

we get the exact solution to a perturbed problem

$$\min \|\widehat{A}\widehat{\mathbf{x}} - \widehat{\mathbf{b}}\|_2,$$

that is near to our original problem in the sense that

$$\frac{\|A - \widehat{A}\|_2}{\|A\|_2} \le \epsilon, \quad \frac{\|\mathbf{b} - \widehat{\mathbf{b}}\|_2}{\|\mathbf{b}\|_2} \le \epsilon$$

for some small ϵ

- in practice, the value of ϵ depends on m, n and the unit roundoff u of the computer/program¹ you use and is typically very small, roughly mnu/(1-mnu)
- this, combined with Theorem 1 allows us to get a bound on the relative error (as long as $\kappa_2(A) < 1/\epsilon$)
- if we use (11.2), we see that the relative error is bounded by $(\kappa_2(A) + \rho_{LS}(\mathbf{x}^*)\kappa_2(A)^2)\epsilon$
- so if $\rho_{LS}(\mathbf{x}^*)$ is small, then QR is good for accuracy
- the normal equations method, given that it relies on solving $A^{\mathsf{T}}A\mathbf{x} = A^{\mathsf{T}}\mathbf{b}$, cannot avoid the condition number $\kappa_2(A^{\mathsf{T}}A) = \kappa_2(A)^2$ no matter which version of Homework 1, Problem 4 we use
- the relative error in this case is therefore always bounded by $\kappa_2(A)^2 \epsilon$, never just $\kappa_2(A) \epsilon$
- as long as A is well-conditioned, it is alright to use the normal equations method, especially if you want to save on computational cost, the QR method is generally preferable
- for very ill-conditioned problem, one would have to use the SVD method discussed a few lectures ago but this is the most expensive

11.3. Computational costs.

- assuming that our matrix $A \in \mathbb{R}^{m \times n}$ is dense (most or all entries nonzero), then the exact flop counts for the two methods described earlier for computing the least squares solution \mathbf{x} are:
 - QR factorization $(A = Q \begin{bmatrix} R \\ 0 \end{bmatrix})$ + orthogonal transformation $(\mathbf{c} = Q^{\mathsf{T}}\mathbf{b})$ + backsolve $(R\mathbf{x} = \mathbf{c})$:

$$2n^2\left(m - \frac{n}{3}\right) \tag{11.3}$$

- normal equations $(C = A^{\mathsf{T}}A, \mathbf{c} = A^{\mathsf{T}}\mathbf{b})$ + Cholesky factorization $(C = R^{\mathsf{T}}R)$ + two backsolves $(R^{\mathsf{T}}\mathbf{y} = \mathbf{c}, R\mathbf{x} = \mathbf{y})$:

$$n^2 \left(m + \frac{n}{3} \right) \tag{11.4}$$

- so both methods have similar computation cost if $m \approx n$ but the normal equations method is up to twice as fast for $m \gg n$
- the flop count in (11.3) assumes that we do Householder QR (discussed later) since the matrix is dense
- the flop count in (11.4) assumes that we do Cholesky factorization (discussed later)

¹The unit roundoff $u = \varepsilon_{\text{machine}}/2$ and is around 10^{-16} for double precision, 10^{-19} for extended precision, 10^{-35} for quadruple precision.

11.4. Roundoff errors.

- another issue with the normal equations is the loss of information when we roundoff
- for example, if

$$A = \begin{bmatrix} 1 & 1 \\ \epsilon & 0 \end{bmatrix}, \qquad A^{\mathsf{T}} A = \begin{bmatrix} 1 + \epsilon^2 & 1 \\ 1 & 1 \end{bmatrix},$$

and ϵ is so small that your computer rounds off $1 + \epsilon^2$ to 1, then you end up with a rank-deficient matrix

$$fl(A^{\mathsf{T}}A) = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

- note that for the QR method, we work directly with A and do not need to form $A^{\mathsf{T}}A$ so we don't face this problem
- \bullet statisticians often use the normal equations because in many statistical problems, the measurement errors in A are much larger than the roundoff errors and so the latter type of errors are relatively insignificant