Keio University

Economic Growth

Quant Macro (Keio - Mita)

Tatsuro Senga 2022 Spring Semester

経済成長:Economic Growth

Quant Macro (Keio - Mita)

目標

- I. 経済成長について、観察事実と理論をレビューする。
- Ⅱ. モデルとデータと使用して、経済成長の要因を定量化する。
 - A. エクセルで計算。
 - B. Rでコードを書く。
- Ⅲ. ディスカッション (経済成長に関して国家間比較)

Growth matters

Anything that affects the long-run rate of economic growth will have huge impacts on living standards in the long run.

Annual growth rate of income per capita	Increase in standard of living after		
	25 years	50 years	100 years
2.0%	64%	169.2%	624.5%
2.5%	85.4%	243.7%	1081.4%

- Production Function
 - $Y_t = A_t F(K_t, N_t)$
 - capital stock variable (accumulated over time)
 - labour flow variable (endowment of labour/time)
 - A_t is exogenous productivity
 - \triangleright $F(\cdot)$ is a function which relates K and N to Y
- Properties
 - $ightharpoonup F_K > 0$ and $F_{KK} < 0$
 - $ightharpoonup F_N > 0$ and $F_{NN} < 0$
 - Constant Returns to Scale (CRS). See seminar 4
 - $F(\gamma K_t, \gamma N_t) = \gamma F(K_t, N_t)$
 - $F(0, N_t) = 0$
 - $F(K_t,0)=0$
 - Example $F(K_t, N_t) = K_t^{\alpha} N_t^{1-\alpha}$, where $0 < \alpha < 1$

- $ightharpoonup F_K > 0$ and $F_{KK} < 0$
- $ightharpoonup F_N > 0$ and $F_{NN} < 0$
- ► How does output and MPK change, when capital changes, holding N_t and α fixed

Firm

$$\max_{K_t, N_t} \Pi_t = AF(K_t, N_t) - \omega_t N_t - R_t K_t$$

- $\triangleright \omega_t$ is real wage
- $ightharpoonup R_t$ is return on capital
- ► FOCs
 - $\sim \omega = AF_N(K_t, N_t)$
 - $ightharpoonup R_t = AF_K(K_t, N_t)$

- Households
 - \triangleright Earn income $\omega_t N_t + R_t K_t$
 - Budget constraint:

$$C_t + I_t \leq \omega_t N_t + R_t K_t + \Pi_t$$

- $\triangleright \omega_t N_t$ earning wages
- R_tK_t receiving rent from capital
- $ightharpoonup \Pi_t$ receiving profit of the firm
- Firms earn zero profit under CRS (see Seminar 4 for proof)
- ► Then

$$C_t + I_t = \omega_t N_t + R_t K_t$$
$$C_t + I_t = Y_t$$

- Investment
 - Capital accumulation equation

$$K_{t+1} = I_t + (1 - \delta)K_t$$

 $ightharpoonup \delta$ is a depreciation rate

- Investment
 - Capital accumulation equation

$$K_{t+1} = I_t + (1 - \delta)K_t$$

- $ightharpoonup \delta$ is a depreciation rate
- Assume that investment is a constant fraction of output

$$I_t = sY_t$$

- Then consumption is a constant fraction of output too
- ightharpoonup Combine $I_t = sY_t$ and $C_t + I_t = Y_t$:

$$C_t = (1-s)Y_t$$

► The Solow model is characterised by the following equations all holding simultaneously:

$$Y_t = A_t F(K_t, N_t)$$
 $Y_t = C_t + I_t$
 $K_{t+1} = (1 - \delta)K_t + I_t$
 $I_t = sY_t$
 $\omega = AF_N(K_t, N_t)$
 $R_t = AF_K(K_t, N_t)$

- ▶ Endogenous variables Y_t , C_t , I_t , K_{t+1} , ω_t and R_t
- ightharpoonup Exogenous variables N_t , K_t and A, parameters s and ω

Combine the following three equations:

$$Y_t = A_t F(K_t, N_t)$$
 $K_{t+1} = (1 - \delta)K_t + I_t$
 $I_t = sY_t$

First, substitute the production function into the last expression:

$$I_t = sA_tF(K_t, N_t)$$

- ▶ Investment is a constant fraction s of output $A_tF(K_t, N_t)$
- Substitute the result into capital accumulation equation

$$K_{t+1} = (1 - \delta)K_t + I_t$$

 $K_{t+1} = (1 - \delta)K_t + sA_tF(K_t, N_t)$

 \triangleright This equation describes the evolution of K_t

$$K_{t+1} = (1 - \delta)K_t + sA_tF(K_t, N_t)$$

▶ Given K_t , A_t , N_t , s and δ the equation describes how much K_{t+1} the economy will have

Lets rewrite this equation in terms of capital per work

$$K_{t+1} = (1 - \delta)K_t + sA_tF(K_t, N_t)$$
 (1)

$$\frac{K_{t+1}}{N_t} = \frac{(1-\delta)K_t}{N_t} + \frac{sA_tF(K_t, N_t)}{N_t}$$
 (2)

(3)

- ▶ Define $k_t \equiv \frac{K_t}{N_t}$ as capital per worker
- ▶ Then Equation (1) becomes:

$$\frac{K_{t+1}}{N_t} = (1-\delta)k_t + \frac{sA_tF(K_t, N_t)}{N_t}$$

$$\frac{K_{t+1}}{N_t} = (1 - \delta)k_t + \frac{sA_tF(K_t, N_t)}{N_t}$$

► Recall the properties of the production function with CRS:

$$\frac{F(K_t, N_t)}{N_t} = \frac{1}{N_t} F(K_t, N_t) = F(\frac{K_t}{N_t}, \frac{N_t}{N_t}) = F(k_t, 1)$$

- ▶ Denote $F(k_t, 1) \equiv f(k_t)$ as per worker production function
- then:

$$\frac{K_{t+1}}{N_t} = (1-\delta)k_t + sA_t f(k_t)$$

$$\frac{K_{t+1}}{N_t} = (1-\delta)k_t + sA_t f(k_t)$$

Finally multiply the RHS by N_{t+1}

$$\frac{K_{t+1}}{N_{t+1}} \frac{N_{t+1}}{N_t} = (1 - \delta)k_t + sA_t f(k_t)$$

Assume that labour is constant $N_{t+1}/N_t = 1$, then

$$k_{t+1} = (1 - \delta)k_t + sA_t f(k_t)$$

Capital accumulation equation in per worker terms:

$$k_{t+1} = (1 - \delta)k_t + sA_t f(k_t)$$

▶ The first derivative of k_{t+1} with respect to k_t

$$\frac{\partial k_{t+1}}{\partial k_t} = (1-\delta) + sA_t f'(k_t)$$

- ▶ Since $(1 \delta) > 0$ and $f'(k_t) > 0$ the slope is positive
- Since $f''(k_t) < 0$, $sA_tf'(k_t)$ gets smaller when capital increases
- Assume Inada Conditions hold

$$\lim_{k \to \infty} f'(k) = 0$$
$$\lim_{k \to 0} f'(k) = \infty$$

Figure: Capital accumulation

Figure: Capital accumulation

Figure: Convergence to Steady State

Growth Accounting

What do empirical data say about determinants of growth?

• Production function: $Y_t = A_t K_t^{\alpha} L_t^{1-\alpha}$

- Y_t : output

- A_t : total factor productivity

- K_t : capital input

- L_t : labor input

- $1 - \alpha$: labor share of income

• Output per worker (working-age pop.) decomposition:

$$\frac{Y_t}{N_t} = A_t^{\frac{1}{1-\alpha}} \left(\frac{K_t}{Y_t}\right)^{\frac{\alpha}{1-\alpha}} \left(\frac{L_t}{N_t}\right)$$

Growth Accounting in Practice

Growth Accounting:
$$\frac{Y_t}{N_t} = A_t^{\frac{1}{1-\alpha}} (\frac{K_t}{Y_t})^{\frac{\alpha}{1-\alpha}} (\frac{L_t}{N_t})$$

- Y_t : real GDP
- N_t : working-age (15-64) population
- *K_t*: real capital input
- L_t : total annual hours worked
- 1α : labor share of income

- We will go over how/where to get the dataset and how to implement this accounting exercise.
 - Using Excel spreadsheets
 - Using R and Penn World Table (PWT)

Growth Accounting for the UK

