Московский Авиационный Институт (Национальный Исследовательский Университет)

Факультет Информационных технологий и прикладной математики Кафедра Математической кибернетики №805

Лабораторная работа №1 по курсу «Исследование операций» Тема: «Решение матричной игры в чистых стратегиях»

Работу выполнил студент группы 8О-404Б Сорокин Д. М.

Преподаватель: профессор Короткова Т.И.

Цель работы

Научиться решать матричные игры в чистых стратегиях. Построить формулы, вычислить систему и элементы формулы, а также найти параметр а. По завершении практической часть пройти тестирование, состоящее из 16-и вопросов.

Теоретические сведения

Пусть множества стратегий обеих сторон конечны:

$$M = \{X_i, i = 1,...,n\}; N = \{Y_i, j = 1,...,m\}.$$

Тогда игра представляется платежной матрицей $\|F_{ij}\|$, показывающей, какой платеж F_{ij} получает оперирующая сторона, применяя X_i , когда противник выбрал Y_i .

Дискретные конечные игры называются матричными. Для этих игр максимин получается простым перебором.

Определения седловой точки:

Выбирают произвольно j_1 , находят min F_{i1j} и соответствующую i_1 .

Определяют j_2 из условия min $F_{i1j} = A_{i1}$; если $j_1 = j_2$, то седловая точка найдена.

Определяют i_1 , из условия F_{ij1} ; если $i_1 = i_2$, то седловая точка найдена, в противном случае процедура повторяется.

В таком виде возможно зацикливание процесса. Чтобы это исключить, имеет смысл модифицировать процедуру следующим образом:

Выбирают произвольно j_1 и рассматривают все i_1 , на которых реализуется min $F_{i_1i_1}$.

Для каждого из i_1 определяют все j_2 , на которых реализуется min F_{i1j} ; если при этом какое-то j_2 совпадет с j_1 , то седловой точкой является (i_1 , j_1); если все $j_2 \neq j_1$, то j_1 вычеркивается.

Выбирают какую-нибудь i_1 и рассматривают все $j_2 \neq j_1$, на которых реализуется min F_{i1j} ; для каждого из этих j_2 определяют i_1 , на которых достигается max F_{ij2} ; если среди них есть $i_2 = i_1$, то седловая точка (i_1, j_2) ; если все $j_2 \neq j_1$, то i_1 вычеркивается.

Задача отыскания седловой точки в платежной матрице называется задачей решения игр в чистых стратегиях.

Ход работы

1. Постановка задачи

2. Генерация платёжной матицы

3. Построение формулы

4. Вычисление систем

5. Вычисление элементов формулы

6. Расчет параметра а

7. Вопросы

Результаты

Выводы

В ходе лабораторной работы научились решать матричные игры в чистых стратегиях, строить формулы, вычислять системы и элементы формул, а также нашли параметр а. По завершении практической части успешно ответили на предложенные вопросы.