Algebra II, Sheet 5

Remarks and Solutions

Jendrik Stelzner

Exercise 2.

A missing proof

We will give two proof of the following lemma from linear algebra which we used in the tutorial:

Lemma 1. Let M be an R-module and let $P \subseteq N \subseteq M$ be submodules. If a submodule $C \subseteq M$ is a direct complement of P in M, then $C \cap N$ is a direct complement of P in N, i.e. if $M = P \oplus C$ then $N = P \oplus (C \cap N)$.

First Proof

For the first proof we use linear algebra.

Recall 2. Let M be an R-module and let $P \subseteq N \subseteq M$ be submodules. Then

$$P + (C \cap N) = (P + C) \cap N$$

for every submodule $C \subseteq M$.

Remark 3. Recall 2 states that the lattice of submodules of M is modular.

First proof. It holds that

$$P \cap (C \cap N) = P \cap C \cap N = 0 \cap N = 0$$
,

and it holds by Recall 2 that

$$P + (C \cap N) = (P + C) \cap N = M \cap N = N.$$

Hence $N = P \oplus (C \cap N)$.

Second Proof

For the second proof we will also use some linear algebra:

Definition 4. If X is a set then a map $e: X \to X$ is idempotent if $e^2 = e$.

Definition 5. Let M be an R-module and let $P, C \subseteq M$ be two submodules for which $M = P \oplus C$. Then the map $e: M \to M$ given by

$$e(p+c) = p$$

for all $p \in P$ and $c \in C$ is the projection onto P along(side) C.

Recall 6. Let M be an R-module.

- 1) Let $P, C \subseteq M$ be submodules with $M = P \oplus C$. Then the projection $e_{P,C} \colon M \to M$ onto P along C is an idempotent endomorphisms with $\operatorname{im}(e) = P$ and $\ker(e) = C$.
- 2) If $e: M \to M$ is any idempotent endomorphism then

$$M = \operatorname{im}(e) \oplus \ker(e)$$
.

3) The above constructions yield a one-to-one correspondence

$$\left\{ (P,C) \middle| \begin{array}{c} \text{submodules} \\ P,C \subseteq M \\ \text{with } M = P \oplus C \end{array} \right\} \longleftrightarrow \left\{ \begin{array}{c} \text{idempotent} \\ \text{endomorphisms} \\ e \colon M \to M \end{array} \right\},$$

$$(P,C) \longmapsto e_{P,C}\,,$$

$$(\text{im}(e), \text{ker}(e)) \longleftrightarrow e\,.$$

Second proof. Let $e \colon M \to M$ be the projection onto P along C. The image of e is the submodule P of N, and hence we can restrict the endomorphism e to an endomorphism $e' \colon N \to N$. This restriction e' is again idempotent and therefore leads to a direct sum decomposition

$$N = \operatorname{im}(e') \oplus \ker(e')$$
.

The first summand is given by e'(N) = P. Indeed, the inclusion $e'(N) \subseteq P$ holds by construction of e, and the inclusion $P \subseteq e'(N)$ follows from $P \subseteq N$. The second summand is given by $\ker(e') = \ker(e) \cap N = C \cap N$. We thus find that $N = P \oplus (C \cap N)$, as desired.

A Remark Regarding Nakayama

We have seen the following lemma in the tutorial.

Lemma 7. Every nonzero fininitely generated R-module M contains a maximal submodule.

We give a short proof Nakayama's lemma which is based on this lemma.

Definition 8.

- 1) The radical of an R-module M is the intersection of all of its maximal submodules; it is denoted by rad(M).
- 2) The Jacobson radical of M is J(R) := rad(R).

Remark 9. One may call J(R) the *left Jacobson radical* of R, as it is the intersection of all maximal left¹ ideals of R. One can then also define the *right Jacobson radical* of R. But it turns out that both notions of Jacobson radical coincide. We will not need this here and will therefore not prove this.²

We get from Lemma 7 the following corollary:

Corollary 10. If M is a nonzero finitely generated R-module then its radical rad(M) is a proper submodule of M.

The radical of a module is functorial in the following sense:

Lemma 11. Let M and N be R-modules and lets $f: M \to N$ be a homomorphism of R-modules. Then $f(\operatorname{rad}(M)) \subseteq \operatorname{rad}(N)$.

Proof. If $P \subseteq N$ is any maximal submodule then its preimage $P' := f^{-1}(P)$ is the kernel of the composition $M \xrightarrow{f} N \to N/P$. The homomorphism f therefore induces an injective homomorphism

$$M/P' \hookrightarrow N/P$$
.

The quotient module N/P is simple because P is maximal. It follows that M/P' = 0 or $M/P' \cong N/P$. The submodule P' is therefore either the whole of M or maximal in M. In both cases the radical rad(M) is contained in P'.

This shows that $\operatorname{rad}(M) \subseteq f^{-1}(P)$ for every maximal submodule $P \subseteq N$, and hence that $f(\operatorname{rad}(M)) \subseteq P$. It follows that $f(\operatorname{rad}(M)) \subseteq \operatorname{rad}(N)$.

Corollary 12. Let M be an R-module. Then $J(R)M \subseteq rad(M)$.

Proof. Consider for $x \in M$ the map

$$\rho_x \colon R \to M \,, \quad r \mapsto rx \,.$$

The map ρ_x is a homomorphism of R-modules, and so it follows that

$$J(R)x = \rho_x(J(R)) = \rho_x(rad(R)) \subseteq rad(M)$$

We are now ready to state and prove Nakayama's lemma.

Lemma 13 (Nakayama). If M is a finitely generated R-module with J(R)M=M then M=0.

Proof. If M were nonzero then it would follow from Corollary 10 and Corollary 12 that $J(R)M \subseteq rad(M) \subsetneq M$.

¹Because for us, "module" means "left module".

²The author also doesn't know a good proof. of this

Exercise 3.

We instead show the following more general lemma, from which we then deduce the equivalence from the exercise:

Lemma 14. Let $A = \bigoplus_{d \geq 0} A_d$ be a graded, commutative k-algebra. Then for a family $(x_i)_{i \in I}$ of homogeneous elements x_i of degree $\deg(x_i) \geq 1$ the following conditions are equivalent:

- 1) The elements $(x_i)_{i \in I}$ generate the ideal $A^+ := \bigoplus_{d > 1} A_d$ of A.
- 2) The elements $(x_i)_{i \in I}$ generate A as an A_0 -algebra.

Proof. Suppose that the ideal A^+ is generated by $(x_i)_{i \in I}$ and let $A' := A_0[x_i \mid i \in I]$ be the A_0 -subalgebra of A generated by $(x_i)_{i \in I}$. We show that $A_d \subseteq A'$ for all $d \ge 0$ by induction.

For d=0 we have $A_0 \subseteq A'$ by definition of A'. Suppose that $d \geq 1$ and that $A_0, \ldots, A_{d-1} \subseteq A'$. It then holds that $A_d \subseteq A^+$ and hence for $x \in A_d$ that $x \in A^+$. We may therefore write

$$x = \sum_{i \in I} a_i x_i$$

for some coefficients $a_i \in A$ (where $a_i = 0$ for all but finitely many i). We can then decompose every coefficient a_i as $a_i = \sum_{d' \geq 0} a'_{i,d'}$ with $a'_{i,d'}$ homogeneous of degree d'. We get that

$$x = \sum_{i \in I} a_i x_i = \sum_{d' \ge 0} \sum_{i \in I} a'_{i,d'} x_i$$
.

The element x on the left-hand side is homogeneous of degree d, and the summand $a_{i,d'}x_i$ on the right-hand side is homogeneous of degree $d' + \deg(x_i)$. We therefore find by comparing homogeneous components that

$$x = \sum_{i \in I} a'_{i,d-\deg(x_i)} x_i$$

where we set $a'_{i,d'} = 0$ for d' < 0. Hence we may assume that the coefficients a_i are homogeneous of degree $d - \deg(x_i) < d - 1$. It then follows by induction hypothesis that the coefficients a_i are contained in A'. Hence

$$x = \sum_{i \in I} a_i x_i \in \sum_{i \in I} A' x_i \subseteq \sum_{i \in I} A' = A'.$$

This shows that also $A_d \subseteq A'$.

Suppose on the other hand that A_0 is generated by $(x_i)_{i\in I}$ as an A_0 -algebra. Then the monomials $x_{i_1}\cdots x_{i_r}$ with $i_1,\ldots,i_r\in I$ generate A as an A_0 -module. These generators are homogeneous, and hence the A_0 -submodule A^+ is generated by those monomials of degree ≥ 1 , which are those monomials with $r\geq 1$. We have for these monomials that

$$x_{i_1}\cdots x_{i_r} = x_{i_1}\cdots x_{i_{r-1}}x_{i_r} \in Ax_{i_r}.$$

This shows that A^+ is generated by $(x_i)_{i \in I}$ as an ideal.

We now show how the exercise follows from the above lemma:

If A^+ is generated by finitely many elements x_1, \ldots, x_n , then we may replace each generator x_i by all of its homogeneous components to assume that x_1, \ldots, x_n are homogeneous; these generators are necessarily of homogeneous degree $\deg(x_i) \geq 1$ because $x_i \in A^+$. It then follows from the above lemma that A is generated by x_1, \ldots, x_n as an A_0 -algebra.

Suppose on the other hand A is generated by finitely many elements x_1, \ldots, x_n as an A_0 -algebra We may replace each generator x_i by all of its homogeneous components to assume that x_1, \ldots, x_n are homogeneous. We may then also remove the generators of degree 0, as they are not needed. It then follows from the above lemma that x_1, \ldots, x_n generate A^+ as an ideal.

Remark 15. If it not needed that A_0 is noetherian. But if A_0 is notherian, then one can given a shorter proof of one of the impliciation:

If A_0 is noetherian and A is finitely generated as an A_0 -algebra then A is also noetherian by Hilbert's basis theorem. It then follows that the ideal A^+ of A is finitely generated.