MIDTERM EXAMINATION

November 2016 Duration: 90 minutes

SUBJECT: REAL ANALYSIS	
Deputy head of Dept. of Mathematics:	Lecturer:
Assoc. Prof. Pham Huu Anh Ngoc	Assoc. Prof. Nguyen Ngoc Hai

INSTRUCTIONS: Each student is allowed a scientific calculator and a maximum of two double-sided sheets of reference material (size A4 or similar), stapled together and marked with their name and ID. All other documents and electronic devices are forbidden.

Question 1 (30 marks)

(a) Let E be a nonempty subset of \mathbb{R}^n . Show that E is bounded if and only if there exists a positive number K such that

$$|x_i| \le K$$
 for all $i = 1, 2, ..., n$ and $x = (x_1, x_2, ..., x_n) \in E$.

(b) Apply part (a) to show that the set

$$F = \left\{ x = (x_1, x_2) \in \mathbb{R}^2 : x_1 \ge 0, \ x_2 \ge 0, \ x_1 + x_2 \le 1 \right\}$$

is bounded and that F is compact.

Question 2 (25 marks) Let (X,d) be a metric space and let $f,g:X\to\mathbb{R}$ be continuous functions. Show that the sets $\{x\in X:f(x)>g(x)\}$ and $\{x\in X:f(x)\neq g(x)\}$ are open in X.

----continued on next page-----

Question 3 (20 marks) Let X, Y be nonempty sets and let $f: X \to Y$ be a mapping. Let \mathcal{M} be a σ -algebra in X. Show that

$$\mathcal{N} = \{ F \subset Y : f^{-1}(F) \in \mathcal{M} \}$$

is a σ -algebra in Y.

Question 4 (25 marks) Let (X, \mathcal{M}, μ) be a probability space and let $A \in \mathcal{M}$, $\mu(A) > 0$. Show that the function $P : \mathcal{M} \to \mathbb{R}$ defined by

$$P(E) = \frac{\mu(E \cap A)}{\mu(A)}, \qquad E \in \mathcal{M}$$

is a measure and (X, \mathcal{M}, P) is a probability space.

*** END OF QUESTION PAPER ***

SOLUTIONS

Question 1 (a) Suppose E is bounded. There is a ball $B(x^0, r)$ containing E. Let $K = r + \max\{|x_i^0| : 1 \le n\}$. For each $x \in E$, we have

$$|x_i| \le |x_i - x_i^0| + |x_i^0| \le r + |x_i^0| \le K, \quad 1 \le i \le n.$$

Conversely, suppose $|x_i| \leq K$ for all i = 1, 2, ..., n and $x = (x_1, x_2, ..., x_n) \in E$. We then have, for every $x \in E$,

$$d(x, \mathbf{0}) = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2} \le \sqrt{nK^2} = \sqrt{n} K.$$

Hence $E \subset B(\mathbf{0}, \sqrt{n} K)$, that is, E is bounded.

(b) Since $0 \le x_1, x_2$ and $x_1 + x_2 \le 1$, we must have $0 \le x_1, x_2 \le 1$. By part (a), F is bounded. We now show that F is closed. Suppose $\{x^k = (x_1^k, x_2^k)\}_{k=1}^{\infty} \subset F$ and $x^k \to x^* = (x_1^*, x_2^*)$. Since $0 \le x_1^k, x_2^k$ and $x_1^k + x_2^k \le 1$, letting $k \to \infty$ gives $0 \le x_1^*, x_2^*$ and $x_1^* + x_2^* \le 1$. Thus $x^* \in F$ and F is closed. F is both closed and bounded in \mathbb{R}^2 , it is compact.

Question 2 Let h = f - g. Then h is continuous. Thus,

$$A = \{x \in X : f(x) > g(x)\} = \{x \in X : h(x) > 0\} = h^{-1}(0, \infty)$$

is an open set in X. Similarly, $B = \{x \in X : f(x) < g(x)\}$ is also open. Therefore $\{x \in X : f(x) \neq g(x)\} = A \cup B$ is open in X.

Question 3 Since $f^{-1}(Y) = X \in \mathcal{M}, Y \in \mathcal{N}$.

If $F \in \mathcal{N}$, then $f^{-1}(F) \in \mathcal{M}$, hence $f^{-1}(F^c) = X \setminus f^{-1}(F) \in \mathcal{M}$ since \mathcal{M} is a σ -algebra. Thus $F^c \in \mathcal{M}$.

If $\{F_n\} \subset \mathcal{N}$, then $\{f^{-1}(F_n)\} \subset \mathcal{M}$, so

$$f^{-1}\left(\bigcup_{n=1}^{\infty} F_n\right) = \bigcup_{n=1}^{\infty} f^{-1}(F_n) \in \mathcal{M}.$$

Thus $\bigcup_{n=1}^{\infty} F_n \in \mathcal{N}$. Therefore, \mathcal{N} is a σ -algebra.

Question 4 The partial derivatives of f are

$$f_x = -6x + 6y,$$
 $f_y = 6x + 6y - 6y^2$
 $f_{xx} = -6,$ $f_{xy} = 6,$ $f_{yy} = 6 - 12y.$

The equation $\nabla f(x,y) = \mathbf{0}$ has two solutions (0,0) and (2,2). These are critical points of f.

At (0,0), the Hessian is

$$\boldsymbol{F}(0,0) = \left[\begin{array}{cc} -6 & 6 \\ 6 & 6 \end{array} \right].$$

The eigenvalues of $\mathbf{F}(0,0)$ are $\lambda_1 = -\sqrt{72} < 0$ and $\lambda_2 = \sqrt{72} > 0$. Hence (0,0) is a saddle point of f.

At (2,2),

$$\mathbf{F}(2,2) = \left[\begin{array}{cc} -6 & 6 \\ 6 & -18 \end{array} \right].$$

The eigenvalues are $\lambda = -12 \pm \sqrt{72} < 0$. Thus $\boldsymbol{F}(2,2)$ are negative definite. Hence (2,2) is a local maximum point and the corresponding local maximum is f(2,2) = 8.

Question 5

(a) Matrix **A** is the Hessian of f,

$$\mathbf{A} = \left[\begin{array}{ccc} 3 & 1 & 1 \\ 1 & 0 & 2 \\ 1 & 2 & 0 \end{array} \right].$$

(b) For $\mathbf{x} = \begin{bmatrix} 0 & 1 & 1 \end{bmatrix}^T$, $f(\mathbf{x}) = 4 > 0$ and for $\mathbf{y} = \begin{bmatrix} 0 & 1 & -1 \end{bmatrix}^T$, $f(\mathbf{y}) = -4 < 0$. Thus f and \mathbf{A} are indefinite.