

AMPLIACIÓN DE SISTEMAS OPERATIVOS Y REDES

Grado en Ingeniería Informática / Doble Grado Universidad Complutense de Madrid

TEMA 1.5. Encaminamiento en Internet

PROFESORES:

Rubén Santiago Montero Eduardo Huedo Cuesta Luis M. Costero

El problema del encaminamiento

 En una red de conmutación de paquetes, el encaminamiento consiste en encontrar un camino, desde el origen al destino, a través de nodos de conmutación o encaminadores (routers) intermedios

Caminos alternativos

- Es necesario decidir cuál es el mejor camino posible (camino más corto)
- El camino más corto minimiza una métrica de encaminamiento

Métricas de encaminamiento

- Número de saltos: tiene en cuenta el número de encaminadores y/o redes intermedias que tiene que atravesar el paquete para alcanzar el destino
- o Retardo promedio: tiene en cuenta el retardo de las líneas
- Ancho de banda: tiene en cuenta la velocidad de transmisión de las líneas por las que tiene que circular el paquete
- Nivel de tráfico: tiene en cuenta el nivel de uso de las líneas, para intentar utilizar aquellas líneas con menor nivel de saturación
- Combinación lineal de varias métricas

Tipos de Encaminamiento

Encaminamiento estático

- Las tablas de encaminamiento se construyen manualmente considerando la topología de la red
- No se adapta a los cambios de la red

Encaminamiento dinámico

- Las tablas de encaminamiento se construyen de forma automática, mediante el intercambio periódico de información entre los encaminadores
- Se adapta a los cambios de la red
- Las técnicas más comunes son:
 - Encaminamiento por vector de distancias (ej. RIP)
 - Encaminamiento por estado de los enlaces (ej. OSPF)

Encaminamiento y Reenvío

- Plano de control: Decide el mejor camino para los paquetes
- Plano de datos: Reenvía los paquetes por el interfaz adecuado

IP dst 10.0.0.23

```
# vtysh -c "show ip rip"

Codes: R - RIP, C - connected, S - Static, O - OSPF, B - BGP

...

Network

Next Hop

Metric From

Tag Time

C(i) 172.16.0.0/16 0.0.0.0 1 self

R(n) 172.17.0.0/16 172.16.0.2 2 172.16.0.2 0 02:31

R(n) 172.18.0.0/16 172.19.0.4 2 172.19.0.4 0 02:43

C(i) 172.19.0.0/16 0.0.0.0 1 self

0
```

Plano de control

Plano de datos (o de forwarding)

```
# ip route
172.16.0.0/16 dev eth0 proto kernel scope link src 172.16.0.1
172.17.0.0/16 via 172.16.0.2 dev eth0 proto rip metric 20
172.18.0.0/16 via 172.19.0.4 dev eth1 proto rip metric 20
172.19.0.0/16 dev eth1 proto kernel scope link src 172.19.0.1
```

Encaminamiento por Siguiente Salto

- Se basa en el principio de optimalidad de Bellman: Si el camino más corto entre dos encaminadores A y B es a través de C, entonces el camino más corto de C a B es a través de la misma ruta
- Para encaminar un paquete a lo largo del camino más corto, sólo es necesario conocer la identidad del siguiente encaminador inmediato a lo largo del camino

b. Routing tables based on next hop

Encaminamiento Escalable

- El encaminamiento escalable depende de controlar el tamaño de las tablas de rutas de los encaminadores
 - El encaminamiento con clase no es viable debido al gran número de redes (y, por tanto, entradas en las tablas) en Internet
- El encaminamiento en Internet se basa en:
 - CIDR, que permite agregación de direcciones y resumir las entradas
 - Encaminamiento jerárquico, que limita la información intercambiada

Mask	Network address	Next-hop address	Interface
/26	140.24.7.0		m0
/26	140.24.7.64		m1
/26	140.24.7.128		m2
/26	140.24.7.192		m3
/0	0.0.0.0	default router	m4
Routing table for R1			

Mask	Network address	Next-hop address	Interface
/24	140.24.7.0		m0
/0	0.0.0.0	default router	m1

Routing table for R2

Encaminamiento en Internet

- Internet está organizado en Sistemas Autónomos (Autonomous Systems, AS)
 - Conjunto de redes y encaminadores gestionados por una misma autoridad
 - Se identifican mediante un número de AS (AS Number, ASN)
 - Hay más de 54.000 AS
- Los encaminadores internos del AS interconectan redes dentro del propio AS
 - Sólo conocen en detalle la organización del AS local
 - Protocolos IGP (Interior Gateway Protocol), como RIP y OSPF
- Los encaminadores externos o frontera (border router) del AS se conectan a otros AS
 - Conocen la ruta a otros AS
 - Protocolos EGP (Exterior Gateway Protocol), como BGP

AMPLIACIÓN DE SISTEMAS OPERATIVOS Y REDES

Grado en Ingeniería Informática / Doble Grado Universidad Complutense de Madrid

Vector de Distancias: RIP (Routing Information Protocol)

Fundamentos

- Cada encaminador mantiene una tabla de encaminamiento con una entrada por cada posible destino en la red
- Cada entrada de la tabla contiene:
 - El destino (normalmente una red)
 - El siguiente salto (nodo o encaminador) para alcanzar dicho destino
 - La distancia o métrica para el destino, que suele ser el número de saltos
- Para construir la tabla de encaminamiento, los nodos intercambian periódicamente sus vectores de distancias (destinos y distancias) con sus vecinos
 - La distancia total al destino es la anunciada por el encaminador más la distancia al encaminador (normalmente, un salto)
 - Si la distancia total es menor que la actual, se sustituye la entrada
 - Si el siguiente salto de la entrada es el encaminador, se actualiza la entrada
 - La distancia total puede ser mayor debido a un cambio en la red
- El proceso iterativo de intercambio converge idealmente a los caminos óptimos
 - Este método también recibe el nombre de algoritmo de Bellman-Ford

Vector de Distancias: Ejemplo

Inicialmente los encaminadores sólo conocen sus rutas directas

Vector de Distancias: Ejemplo

Tras varios intercambios de todos los vectores de distancias

	A	
Dest	Cost	Next
Net1	1	_
Net2	1	_
Net3	2	В
Net4	1	_
Net5	1	_
Net6	2	С
Net7	2	С

Cost	Next	
2	Α	
1	—	
1	_	
2	Α	
2	Α	
1	—	
2	С	
	2 1 1 2 2 1	

R

	_		
Dest	Cost	Next	
Net1	2	Α	
Net2	2	Α	
Net3	2	В	
Net4	2	Α	
Net5	1	_	
Net6	1	_	
Net7	1	_	

Α

Α

D			
Dest	Cost	Next	
Net1	2	Α	
Net2	2	Α	
Net3	3	Α	
Net4	1	_	
Net5	1	Α	
Net6	3	Α	
Net7	3	Α	

Dest	Cost	Next
Net1	3	С
Net2	3	С
Net3	3	С
Net4	3	С
Net5	2	С
Net6	2	С
Net7	1	_

E

Problemas de convergencia: Cuenta a infinito

- Los cambios en la topología de la red deben propagarse a todos los encaminadores
- Cuando un enlace aumenta su distancia estos cambios tardan en propagarse
- Las actualizaciones para comunicar un enlace caído pueden no converger

Cuenta a infinito: Soluciones

- Infinito pequeño (small infinity)
 - Por ejemplo, en RIP el infinito se establece en 16 saltos (una distancia de 16 se considera inalcanzable y, por tanto, las rutas tienen un límite de 15 saltos)
- Horizonte dividido (split horizon)
 - Los destinos aprendidos a través de un determinado enlace nunca se difunden a través de dicho enlace
 - Ejemplo: El nodo B no enviará al nodo A información sobre el destino X
- Horizonte dividido con ruta inversa envenenada (poisoned reverse)
 - Los destinos aprendidos a través de un determinado enlace sí se difunden a través de dicho enlace, pero con distancia infinita
 - Ejemplo: El nodo B anunciará al nodo A que el destino X está a distancia infinita
- Actualizaciones forzadas (triggered updates)
 - Cuando un encaminador detecta una modificación en su tabla de rutas inmediatamente difunde esta información a sus vecinos
 - De esta forma, los cambios en la topología se propagan de forma rápida

Problemas de convergencia: Bucles

- En redes con bucles el algoritmo puede no converger
- Las técnicas de horizonte dividido no evitan el problema en este caso
- Las actualizaciones forzadas aceleran la convergencia

Routing Information Protocol (RIP)

- Protocolo de encaminamiento interior (IGP) por vector de distancias
- Versiones y RFCs
 - o RIP-1 → RFC 1058 (1993)
 - o RIP-2 → RFC 2453 (1998)
 - RIPng (para IPv6) → RFC 2080 (1997)
- El vector de distancias incluye la siguiente información de encaminamiento:
 - La lista de destinos (redes) que son alcanzables por cada encaminador
 - La distancia a la que se encuentran dichos destinos, como número de saltos
- Los mensajes se encapsulan en datagramas UDP dirigidos al puerto 520
- El infinito se establece en 16 saltos y se pueden utilizar los siguientes mecanismos
 - Horizonte dividido
 - Horizonte dividido con ruta inversa envenenada
 - Actualizaciones forzadas
- La versión 2 añade:
 - Soporte para direcciones sin clase
 - Soporte para direccionamiento multicast (224.0.0.9)
 - Soporte para autenticación

RIP: Formato del Mensaje

		Command	Version	Reserved
78		Fan	nily	Route tag
		Network address		
Repeated	Subnet mask			
Re		Next-hop address		
			Dist	ance

- Command (8 bits): Request (1) o Response (2)
- **Version** (8 bits): RIP-1 (1) o RIP-2 (2)
- Family (16 bits): TCP/IP (2) o entrada de autenticación (0xFFFF)
- Route tag (16 bits): Información adicional de ruta (ej. ASN, para separar rutas internas y externas) o algoritmo de autenticación, que puede ser una contraseña (2) o un resumen del mensaje con clave (3)
- Network address y Subnet mask (32 bits): Dirección de red sin clase
- Next-hop address (32 bits): Normalmente, es 0.0.0.0 para usar la dirección del remitente del mensaje, pero podría ser otro encaminador que no soporte RIP
- **Distance** (32 bits): Número de saltos al destino

RIP: Mensajes

Mensajes de solicitud (REQUEST)

- Enviados cuando se conecta a la red → Network address = 0.0.0.0 (todas las entradas)
- Enviados cuando una entrada en la tabla expira → Network address = entrada expirada

Mensajes de respuesta (RESPONSE)

- Difundidos periódicamente (broadcast o multicast) con el vector de distancias
- Enviados en respuesta a una solicitud
- Enviados cuando la distancia a la red cambia (actualización forzada)

RIP: Ejemplo

¿Qué mensaje RIP (RESPONSE) enviará R1 a R2?

RIP: Ejemplo

RIP: Temporizadores

Temporizador periódico (25-35 s)

- Intervalo de envío de mensajes RESPONSE para anunciar el vector de distancias
- El protocolo RIP establece un valor de 30 s para este temporizador
 - En la práctica, se usa un valor aleatorio entre 25 y 35 s

Temporizador de expiración (180 s)

- Controla el periodo de validez de una entrada de la tabla de encaminamiento
- Si no se recibe actualización de la entrada durante un intervalo de 180 s, la entrada deja de considerarse válida

Temporizador de "recolección de basura" (120 s)

- Cuando una entrada de la tabla de rutas expira, el encaminador no la elimina inmediatamente de la tabla de encaminamiento
- La entrada se sigue anunciando con métrica 16 (destino inalcanzable) durante un periodo adicional de 120 s

RIP: Limitaciones

- Puede generar gran cantidad de tráfico broadcast o multicast, debido a la difusión periódica de los vectores de distancias (mensajes RESPONSE)
- No admite métricas alternativas al número de saltos
- Una vez calculadas las tablas, no se admiten caminos alternativos para equilibrar la carga de la red
- Cuando la red crece, los cambios pueden tardar bastante tiempo en propagarse hasta todos los puntos de la red
- El infinito se establece en 16 saltos
 - Redes grandes pueden necesitar más saltos

RIPng: RIP para IPv6

- RIPng (RIP next generation) es la adaptación del protocolo RIP-2 para IPv6
- Los mensajes RIPng se encapsulan en datagramas UDP dirigidos al puerto 521 y se envían a la dirección IPv6 multicast FF02::9
- El vector de distancias contenido en los mensajes de tipo RESPONSE anuncia prefijos de red IPv6, en lugar de direcciones de red IPv4
- La información de ruta contenida en un vector de distancias no incluye el campo Next Hop (ya que casi duplicaría el tamaño de cada entrada)
 - En su lugar, se puede incluir una entrada especial (con 0xFF en el campo Metric) que afecta a las entradas siguientes
- No implementa autenticación, sino que utiliza los mecanismos de cifrado y autenticación disponibles en IPv6

RIPng: Formato del Mensaje

Campos:

- Command Type (8 bits): Request (1) o Response (2), como en RIP-2
- Version Number (8 bits): 1 (nuevo protocolo, no nueva versión de RIP)
- IPv6 Prefix (128 bits): Prefijo de red IPv6 de la red destino anunciada
- Route Tag (16 bits): Información adicional de la ruta, como en RIP-2
- Prefix Length (8 bits): Longitud del prefijo de red anunciado
- o Metric (8 bits): Número de saltos al destino, como en RIP-2

AMPLIACIÓN DE SISTEMAS OPERATIVOS Y REDES

Grado en Ingeniería Informática / Doble Grado Universidad Complutense de Madrid

Estado de los Enlaces: OSPF (Open Shortest Path First)

Estado de Enlaces

Fundamentos

- Cada encaminador mantiene una base de datos (*link state database*) con la información sobre la topología exacta de la red
- Para construir esta base de datos, cada encaminador:
 - Identifica sus nodos vecinos y su distancia (estado de enlace)
 - Distribuye esta información a <u>todos</u>
 los nodos de la red (inundación)
- Con la información completa de la red (grafo), cada nodo construye un mapa de rutas mínimas (árbol) con él mismo como origen (raíz) usando el algoritmo de Dijsktra

Estado de Enlaces: Ejemplo

Calcular las rutas desde el nodo A y derivar la tabla de encaminamiento

Open Shortest Path First (OSPF)

- Protocolo de encaminamiento interno (IGP) por estado de los enlaces
- Se desarrolló como alternativa a RIP para aliviar sus limitaciones:
 - Equilibrado de carga entre caminos equivalentes
 - Particionado lógico de la red para reducir la cantidad de información anunciada
 - Convergencia más rápida, por propagar inmediatamente los cambios en la red
 - Soporte para máscaras de longitud variable (VLSM) y CIDR
 - Soporte para autenticación de cualquier nodo que anuncie rutas
- Utiliza un protocolo propio de encapsulado (89) y direcciones *multicast*:
 - 224.0.0.5 o FF02::5 para todos los encaminadores OSPF de una red
 - 224.0.0.6 o FF02::6 para los encaminadores designados OSPF de una red
- Versiones y RFCs
 - OSPF version 2 → RFC 2328 (1998)
 - OSPF version 3 (para IPv6) → RFC 5340 (2008)

OSPF: Áreas

- Un área es una agrupación lógica de encaminadores y redes, con un identificador único (Area ID) de 32 bits
 - Los encaminadores mantienen únicamente información de su área
 - Limitan el número de intercambios de información de los enlaces

Autonomous System (AS)

- El área 0 (backbone) existe en toda red OSPF
- La topología se crea conectando áreas adicionales al *backbone*, por lo que conecta todas las áreas

OSPF: Encaminadores y Redes

Encaminadores

- Cada encaminador tiene un identificador único (Router ID) de 32 bits en la red OSPF
- La información que se almacena y se intercambia depende del tipo:
 - Internal Router (IR)
 - Localizado en un área (todos sus interfaces están en el área)
 - Mantiene sólo información de la topología de su área
 - Area Border Router (ABR)
 - Conectado a dos o más áreas (una de ellas tiene que ser la 0)
 - Mantiene una DB para cada una de las áreas a las que está conectado
 - Autonomous System Boundary Router (ASBR)
 - Situado en la frontera del AS, transmite rutas externas a la red OSPF
 - Puede inyectar rutas aprendidas mediante otro protocolo, como RIP

Redes

- Establecen la frecuencia y el tipo de comunicaciones entre los encaminadores
- Entre otras, se definen redes punto-a-punto y multi-acceso

OSPF: Vecindades y Adyacencias

Relación de vecindad

- Se establece entre encaminadores que comparten un enlace común, pertenecen a la misma área OSPF y usan el mismo mecanismo de autenticación
- Descubrimiento de vecinos mediante el protocolo OSPF Hello

Relación de adyacencia

- Se establece entre encaminadores vecinos
 - Dos encaminadores adyacentes sincronizan su base de datos para establecer la adyacencia completa y posteriormente intercambian información de estado de los enlaces
 - Permite limitar la información intercambiada entre los encaminadores, ya que no todos los vecinos se comunican
- Se desarrolla según el tipo de red:
 - Punto-a-punto: entre los dos dispositivos vecinos
 - Multi-acceso (ej. Ethernet): el encaminador designado (DR) y el encaminador designado de respaldo (BDR) son adyacentes al resto de los encaminadores de la red
- Selección de DR y BDR mediante el protocolo OSPF Hello

OSPF: Vecindades y Adyacencias

- El proceso de distribución de la información de estado de los enlaces es una optimización de la estrategia de inundación
- En caso de fallo del DR, el BDR asume sus funciones
- Los anuncios del DR (ej. después de una actualización) no son inmediatos, para solapar el envío de múltiples actualizaciones
- Los mensajes de actualización se confirman para asegurar la fiabilidad

AMPLIACIÓN DE SISTEMAS OPERATIVOS Y REDES

Grado en Ingeniería Informática / Doble Grado Universidad Complutense de Madrid

Vector de Rutas: BGP (Border Gateway Protocol)

Vector de Rutas

- Las técnicas anteriores no pueden aplicarse para el encaminamiento inter-AS
 - El encaminamiento por vector de distancias presenta inestabilidades con pocos saltos entre las redes y problemas de convergencia
 - El encaminamiento por estado de enlaces converge rápidamente pero requiere el intercambio de gran cantidad de información
- El encaminamiento por vector de rutas (Path Vector Routing) se basa en el encaminamiento por vector de distancias, e intenta resolver los problemas de convergencia para el encaminamiento inter-AS
 - A partir de la información sobre los destinos alcanzables en el AS, mediante un proceso de intercambio, cada encaminador obtiene:
 - La lista de destinos (redes) alcanzables
 - La *ruta* completa al destino, como lista de AS que han de atravesarse
 - Detección de bucles sencilla, descartando las rutas en las que el propio AS ya es parte del camino
 - Permite implementar <u>políticas</u> comprobando si un determinado AS es parte de la ruta
 - Uso de CIDR para agregar direcciones de red en las tablas de rutas

Vector de Rutas: Ejemplo

Tras varios intercambios de todos los vectores de rutas

Path-Vector Routing Table

Path-Vector Routing Table

	THE RESERVE
Network	Path
	AS3, AS2, AS1
130.12.0.0/14	AS3, AS2
16.0.0.0/6	AS3 (This AS)

R3

Path-Vector Routing Table

Border Gateway Protocol (BGP)

- Protocolo de encaminamiento exterior (Inter-AS) por vector de rutas
 - BGP-4 definido en RFC 1654 (1994)... RFC 4271 (2006)...
- La función principal de un sistema BGP es intercambiar información sobre las redes alcanzables (NLRI, Network Layer Reachability Information) con otros sistemas BGP
 - La información incluye la lista de AS atravesados por la propia información
 - Esta información es suficiente para construir un grafo de conectividad de AS para las redes alcanzables, libre de bucles
 - Cada AS puede aplicar ciertas <u>políticas</u> para aceptar y anunciar rutas en función de esa información (las políticas no forman parte de BGP)
- La comunicación entre encaminadores se realiza mediante TCP, puerto 179
- BGP-4 soporta CIDR y agregación de rutas

BGP: Funcionamiento

- Los encaminadores intercambian sus tablas de rutas cuando establecen la conexión inicial y envían actualizaciones incrementales si las tablas cambian
- Mensajes:
 - OPEN: Establecimiento de la sesión BGP (semipermanente)
 - Identificador de AS y de encaminador
 - Parámetros de configuración (tiempo hold y autenticación)
 - UPDATE: Actualización incremental de la información de encaminamiento
 - Cada mensaje puede incluir una red alcanzable en CIDR con sus atributos, incluida la ruta, y una lista de redes retiradas (*withdrawn*)
 - NOTIFICATION: Se envía a los vecinos cuando se detecta un error
 - Se cierra la sesión y se invalidan las rutas asociadas
 - Ejemplos: tiempo *hold* excedido, error en los mensajes, falta de atributos...
 - KEEPALIVE: Para asegurar que la sesión permanezca activa
 - En respuesta a un mensaje OPEN y periódicamente para informar de la presencia del encaminador (no usa *keepalive* de TCP)
 - Si pasado un tiempo (hold) no se recibe información, se cierra la sesión

BGP: Atributos

- Los mensajes UPDATE incluyen las redes alcanzables y atributos de cada ruta
 - Los atributos permiten evaluar caminos alternativos al mismo destino
 - Son generados por cada encaminador, que puede modificar los recibidos
- Tipos de atributos:
 - Bien conocidos (well-known): Deben ser admitidos por todas las implementaciones BGP
 - Pueden ser obligatorios (*mandatory*) o discrecionales (*discretionary*)
 - Los atributos obligatorios se deben incluir en cada actualización
 - Opcionales: Son específicos de cada implementación
 - Pueden ser transitivos (*transitive*) o no
 - Los atributos transitivos se debe incluir en las actualizaciones aunque no sean implementados por el encaminador
- Ejemplos de atributos bien conocidos y obligatorios (*well-known mandatory*):
 - ORIGIN: Origen de la información de ruta (IGP, EGP o INCOMPLETE)
 - No debe modificarse por otro encaminador BGP
 - AS_PATH: La ruta como secuencia de AS
 - NEXT_HOP: Dirección IP del siguiente salto para alcanzar el destino

AMPLIACIÓN DE SISTEMAS OPERATIVOS Y REDES

Grado en Ingeniería Informática / Doble Grado Universidad Complutense de Madrid

Arquitectura de Internet

Interconexión de Sistemas Autónomos

Tier 1 (Backbone de Internet): Infraestructura global de gran tamaño con acceso a cualquier red sin pagar (ej. <u>Telxius</u>, <u>Cogent</u>, <u>cables sub</u>)

Tier 2: Proveedores (*carriers*) de tamaño medio-grande, normalmente a un salto del *backbone* y con puntos de presencia en un solo continente, que pagan para llevar su tráfico a través de algún proveedor (ej. <u>Aire Networks</u>)

Tier 3: Infraestructura a nivel regional o nacional que paga por el tráfico que genera (ej. proveedores de acceso a Internet, ISP)

Stub AS: Conectado únicamente a otro AS, es destino u origen del tráfico (ej. AS9)

Transit AS: Conectado a varios AS, permite tráfico de tránsito, es decir, entre otros otros dos AS (ej. AS de tier 1 y 2)

Multihomed AS: Conectado a varios AS por redundancia y equilibrado, pero no permite tráfico de tránsito (ej. AS8)

Peering entre Sistemas Autónomos

 El peering es la relación que establecen dos AS por la que intercambian información de encaminamiento

Upstream Peering (proveedores)

- El AS consume servicios de tránsito a Internet
- Los AS upstream envían la información de rutas de las redes a las que tienen acceso
- Aceptan las rutas del AS y sus clientes

Public/Private Peering (entre iguales)

- Público: en puntos neutros (*Internet eXchange Points*, IXP) como <u>ESpanix</u>
- Privado: mediante enlaces directos dedicados
- Intercambian prefijos de sus redes y de sus clientes
- Estos prefijos no se redistribuyen *upstream*
- Suelen ser relaciones de beneficio mutuo y gratuitas

Downstream Peering (clientes)

- El AS proporciona servicios de tránsito a Internet
- Debe distribuir los prefijos de sus clientes a sus *peers*

Peering: Ejemplo

Usando la herramienta <u>bapview.io</u>:

- Determinar el AS al que pertenece la red de la UCM (147.96.0.0/16)
- ¿Cuántos proveedores upstream tiene el AS?
- ¿Qué clientes downstream tiene el AS?
- Usando también la <u>herramienta looking-glass</u> de Telxius, determinar los AS y redes atravesados para alcanzar www.ucm.es (147.96.1.15) desde Buenos Aires

```
1 94.142.116.117 28 msec 29 msec 26 msec
2 be9-grtmiana1.net.telefonicaglobalsolutions.com (94.142.119.188) 122 msec
3 be3400.ccr21.mia01.atlas.cogentco.com (154.54.47.17) 122 msec
4 * * *
5 * * *
6 be3482.ccr41.atl01.atlas.cogentco.com (154.54.24.145) 146 msec
7 be2112.ccr41.dca01.atlas.cogentco.com (154.54.7.157) 160 msec
8 be2331.ccr31.bio02.atlas.cogentco.com (154.54.85.242) 228 msec
9 be2324.ccr31.mad05.atlas.cogentco.com (154.54.61.130) 230 msec
10 be2475.rcr51.b015537-1.mad05.atlas.cogentco.com (130.117.0.218) 230 msec
11 149.14.242.226 246 msec
12 redimadrid-cieamt-router.rediris.es (130.206.212.106) 233 msec
13 redimadrid-cieamt-router.rediris.es (130.206.212.106) 233 msec
14 * * *
```


Ejercicios: Preguntas Teóricas

	el protocolo RIP con horizonte dividido, los anuncios del vector de distancias ados por un enlace incluyen Las redes alcanzables y su distancia. Las redes alcanzables y su distancia si ésta es menor que 16. Las redes alcanzables no aprendidas por ese enlace y su distancia.
¿Cu □ □	ál de las siguientes afirmaciones sobre el protocolo BGP es cierta? Los encaminadores construyen un grafo de AS completo de la red. Los encaminadores intercambian la lista de AS a una red destino. Los encaminadores intercambian los AS alcanzables y el número de saltos para llegar a ellos.
En u	una red de encaminadores que usan el protocolo OSPF, el área 0 es… La que interconecta todas las demás áreas de la topología del AS. En la que están los encaminadores de frontera de AS (ASBR). El área del AS en la que están los clientes de red.