1

JP-B-S39(1964)-24263

Title

25

The production method of aqueous colloid dispersion of polymer

Detailed disclosure of the invention

The present invention relates to a production method of an aqueous colloid dispersion of polymer and, further, a 10 use of a novel dispersant in producing the aqueous colloid dispersion.

The main purpose of the present invention is to provide a dispersant suitable for the use in polymerization of an ethylenic unsaturated monomer to produce an aqueous 15 colloid dispersion of polymer. Another purpose is to provide a dispersant which facilitate the production and stabilization of colloid polymer particles without adversely affecting the polymerization proportion or degree of the ethylenic monomer and the solubilization of ethylenic monomer to water phase. The other purpose would be explained in the following description.

The purpose of the invention is achieved by carrying out the polymerization of a polymerizable monomeric monoethylene-based unsaturated compound in an aqueous medium containing a water-soluble polymerization initiator and a water-soluble compound having an ionic dispersant represented by the general formula: $F-(CF_2)_m-O-[CF(X)-CF_2-O]_n-CF(X)-COOA$

wherein X represents an element of the class consisted of fluorine and perfluoromethyl group, m represents a integer of 1 to 5 (including 5), n represents an integer of 0 to 10, A represents a hydrophilic group of the class consisted of hydrogen and monovalent acid groups, (Omitted)

26 B 011.4 (16 B 64) (26 B 131) (13 C 122) (26 B 14) (26 B 121) (26 B 151)

特許公報

特 許 出 願 公 告 昭 3 9—24263 公告 昭 39·10·29 (全 6 頁)

重合体の水性コロイド分散体の製造法

節 昭 37 — 3 2 5 2 5

出 顧 日 昭 37.8.6

優先権主張 1961.8.7 (アメリカ国)

発明者 ウイリアム、エメット、ガリソン、ジュ

=7-

アメリカ合衆国デラウエア州ウイルミントン、シヤーウッドパーク、ペックスニッフロード 1210

出 願 人 イー、アイ、デュポン、デ、ニモアス、 エンド、コンパニー

アメリカ合衆国デラウエア州ウイルミントン98、マーケツトストリート 1007

代表者 シー、マーシャル、ダン 代理 人 弁理士 小田島平吉 外1名

発明の詳級な説明

本発明は重合体の水性コロイド分散体の製造、さらに 詳しくは水性コロイド重合体分散体の製造の際の新規な 分散剤の使用に関する。

本発明の主目的は重合体の水性コロイド分散体を生成させるためエチレン系不飽和単量体の重合の際使用するに適する分散剤を提供するにある。他の目的はエチレン系単量体の重合割合または重合度に不利な影響を与えずコロイド重合体粒子の生成および安定化を助け、かつ水性相へのエチレン系単量体の可溶化を助ける分散剤を提供するにある。他の目的は以下の記載で明らかとなろう。

本発明の目的は重合性の単量体状モノエチレン系不飽 和化合物の重合を、水溶性重合開始剤およびイオン化性 分散剤として一般式

F-(OF₂ +mO-{OF(X)-CF₂ -O-n OF(X)-COOA (ただしXは弗索およびパーフルオロメチル基からなる クラスの一員であり、mは1~5 (5を含む)の中の正 の整数で、nは0~10の正の整数で、Aは水素および 1価の塩の基からなるクラスの親水性基である)

を有する水溶性化合物を含有する水性媒体中で行うとと により達成される。

重合体の水性コロイド分散体を得るため、本明細書に 規定するような分散剤と重合開始剤を含有する水性媒体 中での単量体の重合は公知の一般的な方法に従つて行う。 1~3000気圧の圧力および0~200でまたはそれ以 上の温度を使用でき、好適範囲は10~100気圧の圧

力、50~130℃の温度である。重合開始剤は水溶性の遊離基生成開始剤、好適には水溶性のパーオキシ化合物で、これらは無機のもの例えば過硫酸塩、過硼酸塩、過酸酸塩、過酸化水素、または有機のもの例えばジこはく酸パーオキシドでもよい。また水溶性のアゾ開始剤、例えばジナトリウム-ア,アーアゾピス(アーシアノバレレート)またはα,α'-アゾジイソブチルアミジン塩酸塩も使用できる。開始剤は通常使用する重合性単量体の重さを基準にして0.001~5 気の割で使用する。

本発明において使用される分散剤はポリエーテル酸類 および塩類であり、これらはテトラフルオロエチレンエ ポキンドまたはヘキサフルオロプロピレンエポキシドの 重合、ついで加水分解により得ることができる。ヘキサ フルオロプロピレンエポキシドはヘキサフルオロプロピ レンと水性アルカリ性過酸水素との反応でつくられる。 テトラフルオロエチレンエポキンドは分子状酸素、紫外 線輻射線および臭素のようなハロゲンの痕跡を用いてテトラフルオロエチレンを酸化してつくられる。

テトラフルオロエチレンエポキンドまたはヘキサフルオロブロビレンエポキンドの重合はこのエポキンドを適当な遊離基生成触媒、例えば活性炭と接触させることにより行うことができる。特別の重合法は次の通りである。すなわち乾燥窒素雰囲気中で、500mlのステンレン鋼のシリンダに、減圧中で400℃において12時間乾燥させた「ダルコ(Darco)」12×20活性炭28.6gを仕込み、そのシリンダを液体窒素の温度まで冷却し、そのシリンダ中へヘキサフルオロブロビレンエポキシド400gを仕込む。この反応混合物を自己発生圧力下に室温にならしめ、ここにはぼ3日間維持する。ついでこの反応混合物を適当な条件下に塔を通して蒸留する。一般式

 $CF_3 - CF_2 - CF_2 - O(CF(CF_3) - CF_2 - O)_{ii} CF(CF_3)$ -COF

〔ただしnは反覆する−CF(CF_s)−CF₂−O- 単位の数を表わす〕

を有し、かつ重合度(n+2)が異なるポリエーテルの 種々の留分を得る。

上記の方法を用いる特別の実施例において、二量体 (n-0)への転化は約12%、三量体 (n-1)は約5%、圧力 Hg 0·12㎞で285 とまでの沸点の重合体 (n-2-35)へは約50%、圧力 Hg 0·12㎞で285以上の沸点の重合体 (n>35)へは約8%である。約25%の未反応のヘキサフルオロプロピレンエポキシトが回収される。テトラフルオロエチレンエポキシ

M. B.

ドは実質的に同じ方法で重合して一般式

OF₃-OF₂-O-(CF₂-OF₂-O-)_nOF₂OOF (ただしnは-OF₂-OF₂-O-基の数を表わし、n+ 2は重合度である)

を有するポリエーテルを生成する。この生成物を蒸留して重合度の異る各種の留分を単離することができる。

ポリエーテル酸のパーフルオロアルキル末端の変性は パーフルオロアルキル酸朝化物の存在下に重合を行うこ とにより達成される。こうして、この朝化カルポニルが 存在する結果としてヘキサフルオロブロビレンエポキシ ドの重合の際パーフルオロメチル末端基を生じ、パーフ ルオロアセチルフルオリドの存在はパーフルオロエチル 基を生する。

前の記載に示すように、酸弗化物からの酸または塩の 生成は酸の場合には加水分解により、塩の場合には塩基 性化合物との同時または引続いての反応により、または 塩基性化合物とポリエーテル酸弗化物の直接反応により 容易に達成される。

本発明の方法において使用される分散剤はパーフルオロポリエーテル酸基および観水性基を包含する。上記のように、反覆する2価のポリエーテル基の数は二量体の場合の0から約10までとなることができるが、好適には11-5である。特別の観水性基はそれがその化合物に全体として100でにおいて少くとも01gの水への溶解度を与えるならば限界的ではない。この溶解度は分散剤が水性重合系において満足できるようにはたらくのに必要である。この分散剤に対し本明細書で適用される「水溶性」という語は100℃において01gの水への最低溶解度をあらわす。遊離酸も使用できるけれども

その溶解底はかなり低い。この理由により、これらの酸を塩の形で使用するのが好ましい。ボリエーテル酸のこれらの塩には例えばアンモニウムおよびアルカリ金属 (例えばナトリウム、カリウムまたはリチウム)塩が包含され、好適には炭素原子1ー4個の飽和アルキルアミンとこれらの酸の塩、すなわち置換アンモニウム塩も第4級アンモニウム塩を、例えばテトラメチルアンモニウム ヒドロキンドの塩と同よう有利に使用することができる。単離した個々の酸の塩を使う必要はない。これとは反対に、出発のボリエーテルは一般に種々の重合度のポリエーテルの混合物として得られるから、混合物を使うのがより経済的である。

重合性エチレン系単遺体の重合の際使用する分散剤の量は単量体自体ならびに重合条件に依る。一般に分散剤の濃度は水性媒体の0.001-10重量多、好適には0.05-0.3 多である。ハロゲン化エチレン類の重合の時には後者の範囲が特に適当である。

以下の実施例においてさらに詳細に本発明を説明する。 この実施例においては別段断らない限り部は<u>重量</u>で表わ す。

実施例 1~18

2 ガロンの攪拌された水平オートクレープ中へパラフ インワツクス 200 g、鉄粉0.0065 g、脱酸素した 蒸留水 2500 mℓ および表に記載の量および種類の分散 剤を仕込んだ。オートクレープを排気し、テトラフルオ・ ロエチレンで加圧して 25 psigとし、70 でに加熱し た。ついで、蒸留し、脱酸素した水 750 πℓ中のジこ はく酸パーオキシド1.623 8の溶液を加え、その系を 攪拌し、85 Cに加熱した。テトラフルオロエチレンの 圧力を 390 - 400 psig に増した。この系の最後 の3つの実施例(すなわち16-18)においては、液 体ヘキサフルオロプロピレン7.7 加しをテトラフルオロ エチレンと共に反応帯へ喧射した。テトラフルオロエチ レンの圧力を重合中連続的添加によりその水準に維持し た。希望量のテトラフルオロエチレンが吸収されるまで 重合を続行した。生成分散体の機度(すなわち固体の多) 生成する全重合体、生成する凝固物、生成重合体の比重、 空間時間収率を測定し、第1表に示す。比重はASTM -D-1475-56T に従って測定した。平均粒度は 表に示すように光線透過および(または) 超遠心分離に より測定した。

- 本林樹	· · · · · · · · · · · · · · · · · · ·	分散剤の	空間時間収	分散され	生成重合	概固物の乾	粒子の直径	と シロン)		
N N N N N N N N N N N N N N N N N N N		重さ (위)	率(9/時間)	た固体(%)	体 (9)	換重量 (9)	光觀透過	母寬心分離	田田	
÷	\circ GP $_{2}$ GF $_{2}$ GP $_{3}$ -0 GF (GF $_{3}$) GOONH, $\tau \nearrow v = \tau_{A} - 3.6 - \cancel{\cancel{5}} \cancel{\cancel{4}} + \cancel{\cancel{5}} \cancel{\cancel{4}} + \cancel{\cancel{5}} \cancel{\cancel{6}} + \cancel{\cancel{5}} (+1) \nearrow 1 \cancel{\cancel{4}} + \cancel{\cancel{6}} \cancel{\cancel{6}} \cancel{\cancel{6}} + \cancel{\cancel{5}} \cancel{\cancel{6}} \cancel{\cancel{6}} + \cancel{\cancel{6}} \cancel{\cancel{6}} \cancel{\cancel{6}} \cancel{\cancel{6}} + \cancel{\cancel{6}} \cancel{\cancel{6}} \cancel{\cancel{6}} + \cancel{\cancel{6}} \cancel{\cancel{6}} \cancel{\cancel{6}} \cancel{\cancel{6}} + \cancel{\cancel{6}} \cancel{\cancel{6}} \cancel{\cancel{6}} \cancel{\cancel{6}} + \cancel{\cancel{6}} \cancel{$	4.9	347	35.0	1710	浜 跡	0.245	1	2.216	
61	GF ₃ GF ₂ OOF (GF ₃) GF ₂ OGF (GF ₃)COONH ₄ Tンモニウム - 3,6 -ジオキサ - 2,4 -ジ(トリフ ルオロメチル)ノナフルゴロオクタノエート	4.9	324	32.9	1577	痕 跡	0.208	0.222	2.207	
3	$CP_3 - OOF (CP_3) CF_2 OOF (CP_3) COONH,$ $T \nearrow T = f \searrow L - 3,6 - \cancel{j} \nearrow T \implies T = 2,4 - \cancel{j} (+1)$ $\nearrow T \nearrow T \implies T \nearrow T \implies T \implies T \nearrow T \implies T \implies T \implies T $	4.9	414	35.4	1744	旗路	0.224	Ι.	2.208	
*	OF, OF, OF (OF,)OF, OCF (OF,) COONH, OH,	4.9	318	34.1	1700.	痕跡	0.275	1	2.210	
9	OF ₃ OF ₂ OF ₂ OOF (GF ₃) OF ₂ OOF (CF ₃) OOONH ₂ (CH ₃) ₂	4.9	345	35.1	1711	痕跡	0.262	1	2.22.2	
ø	OF ₃ CF ₂ OF (CF ₃) OF ₂ OOF (CF ₃) COONH (CH ₃) ₃	4.9	403	35.0	1679	填跡	0.299	0.300	2.216	(
L	OF ₃ CF ₂ OFF (GF ₃) OF ₂ OOF (GF ₃) COON (CH ₈) ₄	4.9	336	33.0.	1650	類跡	0.283	1	2.228	(3)
8	OF, CF, CF, OCF (CF,) OF, OOF (CF,) COONH, CH, OH	4.9	333	3 5.1	1711	痕跡	0.262	1	2.220	
6	OF, OF, OF, O-GF (OF,) OF, OOF (OF,) COONA	4.9	400	3 5.0	1730	痕跡.	0.245		2.216	
01	OF, OF, OF, O (OF (OF,)OF, O), OF (OF,) GOONH,	4.9	255	33.9	1597	痕 跡	0.254	ı	1	
11	OF3 OF2 OF2 O (OF3) OF2 O)3 OF (OF3) GOONH,	4,9	1	20:4		009	0.262		1	
12	GF ₃ GF ₂ GF (GF ₃) COOH	5.0	312	20.7	1243	200	0.250	1	2.217	
13	OF, OF, OF, OCF (OF,) OF, O-OF (OF,) COOH	4.9	423	33.7	1610	5.0	0.263	0.280	2.216	
74	OF, OF, CF, O(CF (OF,) OF, O), OF (OF,) COOH	8.0	368	28.3	1252	2.9	0.272	1	2.206	
12	CF ₃ CF ₂ CF ₂ O(CF (OF ₃) CF ₂ O) ₃ CF (CF ₃) COOH	8.0	417	20.2	1143	417	0.288	ı	2.210	犄
16	GF ₃ GF ₂ O (GF ₂ GF ₂ O) ₁ GF ₂ GOONH ₄	1.8	243	34.4	1733	113	0.176	1	2.220	公
11	GF ₃ GF ₂ O(GF ₂ GF ₂ O) ₂ GF ₂ GOONH,	2.5	290	34.0	1645	痕 跡	0.152	0.195	2.217	相。
18	OF, OF, OF, OF (OF,) OF, OGF (OF,) COONH,	2.5	191	33.6	1630	痕跡	0.152	-	2.2 18	
										24

実施例 19

320 ml のステンレス鋼製オートクレープ中へ水 100 ml、過硫酸カリウム0.2g、アンモニウム-3, 6-ジオキサ-2,4-ジ(トリフルオロメチル)ウンデ カフルオロノナノエート1.0gおよびパラフインワック ス2.5gを仕込む。このオートクレープをドライアイス で冷却し、排気し、クロロトリフルオロエチレン50g を噴射する。オートクレープを40cに加熱し、16時 間攪拌する。ポリクロロトリフルオロエチレンの安定な コロイド分散体が得られる。

実施例 20

窒素敷囲気中に維持されたガラス容器中へ水100 mℓ、スチレン25 g、過硫酸カリウム0·1 g およびアンモニウム - 3,6 - ジオキサ ~ 2,4 - ジ(トリフルオロメチル)ウンデカフルオロノナノエート1·0 g を仕込む。この混合物を60 c の温度において10時間おだやかに攪拌する。水蒸気蒸留により未反応スチレンを除去する。ポリスチレンの安定なコロイト分散体が得られる。

実施例 21

ガラス容器中へ窒素気下に水100ml、アクリロニトリル50g、過硫酸カリウム0.1g およびアンモニウム-3,6-ジオキサ-2,4-ジ(トリフルオロメチル)ウンデカフルオロノナノエート1.0gを仕込む。この容器を45℃の温度において16時間選拌する。ポリアクリロニトリルの安定な水性分散体を得る。

実施例 22

320 mlのステンレス鎖製のオートクレープ中へ水100 ml、過硫酸カリウム0.05 g、酢酸ビニル45 g、アンモニウム-3,6-ジオキサ-2,4-ジ(トリフルオロメチル)ウンデカフルオロノナノエート1.0 gを仕込む。45 cの温度においてこのオートクレープを自己発生圧力下に4時間撹拌する。ポリ酢酸ビニルの安定な水性分散体が得られる。

実施例 23

長さと直径の比が約1.5で、水の容量約80.7部のかいで攪拌されるステンレス鋼製反応器を排気し、アンモニウム-3.6-ジオキサー2.4-ジ(トリフルオロノチル)ウンデカフルオロノナノエート0.1重量 名を含有する、無機物を除いた水46部を仕込みガスをパージする。脱ガスした仕込物を120℃に加熱し、ヘキサフルオロブロビレンで390 psig に加圧し、過硫酸カリウムの水溶液の添加により過硫酸カリウムに関し2.9×10⁻⁴モルとする。反応器を攪拌し、ついでヘキサフルオロブロビレンとテトラフルオロエチレンの75/25の混合物でさらに加圧して600 psig とし、その間追加的な過硫酸カリウムを射出し、添加15分後に未分解過硫酸塩の計算濃度を7.85×10⁻⁵たらしめる。遊離基の発生を溶液1ℓ当り毎分約2.6×10⁻⁵モルに維持するのに

充分な過硫酸カリウムを連続的に添加する。600 psig の圧力を達成した後 100 分間、反応器内容物の 120 でにおける攪拌および過硫酸カリウムの添加を続行する。この期間中、テトラフルオロエチレンの連続添加により圧力を一定に維持する。 100 分の終りに、攪拌を中止し、反応器からガス抜きし、液体反応混合物を排出する。水中へコロイト状に分散されたテトラフルオロエチレンとヘキサフルオロプロビレンの共重合体 7.3 部を得る。

前記の実施例は単に例示であり、本発明は広く重合体の水性分散体を得るため水性媒体中でのエチレン系不飽和単量体の重合において上記分散剤を使用することからなることが理解されよう。上記の重合、特にテトラフルオロエチレンの重合に関するものは従来の技術に記載の種々の特色を合体した。こうして、パラフインワックスの使用は1952年9月20日登録の8.J.バンコフの米国特許第2612484号に記載され、鉄粉の使用は1956年6月12日登録のA.B.クロルの米国特許第2750350号に記載されている。

本発明は水性媒体中で重合できると技術上立証された エチレン系不飽和単量体の重合に広く適用できるけれど も、普通の分散剤と反応する傾向のあるハロゲン化単量 体の重合またはそのような分散剤により阻止される重合 に特に有用である。

一般に、上記の分散剤を用いて重合させて重合体の水性分散体とされる単量体は末端が不飽和で、一般式

$$A \longrightarrow C = O \longrightarrow E$$

【ただしAとBは水素またはハロゲン(弗素、塩素、臭素または沃素) であり、DとEは水素、ハロゲン、アルキル、ハロアルギル、アリール、アラルギル、シアノ、カルボキシ、カルボアルコキシ、アシルオキシ、アルデヒド、ケトン、アミドおよびイミド、エーテル、バーハロエーテル基および類似物である。】

を有する。このようにして、これらの単量体の特別な例は、エチレン、プロピレン、塩化ビニル、塩化ビニリデン、弗化ビニル、酢酸ビニル、酪酸ビニル、アクリル酸、メタクリル酸、アクリル酸メチル、メタクリル酸エチル、アクリルアミド、メタクリルアミド、アクリロニトリル、メタクロレイン、アクロレイン、メチルビニルケトン、メチルビニルエーテル、エチルビニルエーテル、ビニルピリシン、イタコン酸、フマル酸ジエチル、フマル酸ジメチルおよび類似物である。

上記のように、特に好適なクラスの単量体はハロゲン 化単量体、特に一般式 CF2 = CFR 〔ただしRは塩素、弗素、パーフル时ロアルキル、パー フルオロアルコキシおよびこれらのハロゲン化単量体相 互の共重合体である〕

TO THE MEMBERS OF THE SECOND S

THERE I STORES THE STORE THE STORE OF STREET

を有するものおよび上記の単盤体である。

本発明の方法により得られる分散体、特にパーハロゲン化単量体の重合により得られる分散体は一般に他の弗素化分散剤により得られる分散体とは特に粒子の大きさの点で異る。こうして、従来の技術の重合体分散体は粒子の大きさが約0.2ミクロンで、より小さいが、本発明の方法により得られる分散体の粒子の大きさは一般に0.2ミクロン以上の粒子の大きさを有する。粒子の大きさのこの増加は分散体のある応用の際には極めて有利である。このようにして、分散体を表面に適用する場合「どろひびわれ(mudcracking)」を起すことなく、重合体のより厚い被覆を得ることができる。

本発明の水性分散体には多くの応用がある。このようにして、それらは繊維の紡糸の際、木材、金属、陶磁器、繊維および類似物の被覆の際、および強く可撓性で共接着性の未支持フイルムの流し込みの際に使うことができる。これらの応用はすべて文献に記載されているから、さらに詳細な記述は不要と思う。

次に本発明の実施態様を列挙する。

1 重合体のコロイド分散体を得るため、水溶性重合開始剤を用いて水性媒体中で単量体状モノエチレン系不 飽和化合物を重合させるに当り、一般式

$$F-(CF_2)_m-O-(CF(X)-CF_2-O-)_nCF(X)$$

-000A

〔ただしXは弗素およびパーフルオロメチル基からなるクラスの一員であり、mは1-5(5を含む)の正の整数で、nは0-10(10を含む)の正の整数で Aは水素および一価の塩の基からなるクラスから選択される親水性基である〕

を有し、100 ℃において少くとも0.1 多の溶解度を 有する化合物であるイオン化性分散剤の存在下に上記 重合を行う工程。

- 2 分散剤の機度は 0.001 10 %である1 に記載の 方法。
- 3 単量体はハロゲン化エチレンである1に記載の方法。
- 4 単量体はテトラフルオロエチレンである1 に記載の 方法。
- 5 Aは水素である1に記載の方法。
- 6 Aはアンモニウム基である1 に記載の方法。
- 7 Aはアルカリ金属である1 に記載の方法。
- 8 Aは置換アンモニウム基である1に記載の方法。
- 9 重合体のコロイド分散体を得るため、水溶性重合開始剤を用いて、水性媒体中で単量体状モノエチレン系不飽和化合物を重合させるに当り、一般式

$$CF_3 CF_2 CF_2 -O - (CF (OF_3) - CF_2 -O)_n$$
 $-CF (CF_3) COOA$

〔ただしnは0-3(3を含む)の正の整数、Aは水 素と一個の塩の基からなるクラスから選択される親水 性基である)

を有するイオン化性水溶性分散剤の存在下に重合を行 う工程。

- 10 単量体はハロゲン化エチレンである9 に記載の方法。
- 11 単量体はテトラフルオロエチレンである9 K 記載の 方法。
- 12 単量体はテトラフルオロエチレンとヘキサフルオロ プロピレンの組合せである9 に記載の方法。
- 13 一価の塩の基はアルカリ金属、アンモニウムおよび 置換アンモニウム基からなるクラスから選択される9 に記載の方法。
- 14 分散剤はアンモニウムー3,6 ジオキサ 2,4 ジ (トリフルオロメチル) - ウンデカフルオロノナノエ ートである9 に記載の方法。
- 15 分散剤はアンモニウム 3,6 ジオキサ 2,4 ジ (トリフルオロメチル) - ノナフルオロオクタノエートである1 に記載の方法。
- 16 分散剤はアンモニウム 3,6 ジオキサ 2,4 ジ (トリフルオロメチル) - ヘプタフルオロヘプタノエ ートである1 に記載の方法。
- 17 分散剤はアンモニウム-3,6-ジオキサ-ウンデカフルオロオクタノエートである1 に記載の方法。
- 18 分散剤はアンモニウム-3,6,9 -トリオキサーペン タデカフルオロウンデカノエートである1 に記載の方法。
- 19 一般式

 $F(OF_2)_m-O-(OF(X)-OF_2-O-)_n$ -OF(X)COOA

〔ただしXは弗素とパーフルオロメチル基からなるクラスの一員で、mは1-5(5を含む)の正の整数、nは0-10(10を含む)の正の整数、Aは水素と一価の塩の基からなるクラスから選択される親水性基である〕

を有し、100 ℃において少くとも0.1 名の溶解版を 有するイオン化性化合物を分散剤として含有する、モ ノエチレン系不飽和化合物の重合体の安定な水性分散 体。

- 20 水性媒体の0.001 10重量 8の機度で分散剤を使用する19 に記載の分散体。
- 21 Aはアンモニウム基である 19 に記載の分散体。
- 22 単量体はテトラフルオロエチレンである 19 に記載 の分散体。

特許請求の範囲

 水溶性重合開始剤を用いて水性媒体中で単量体状モノエチレン系不飽和化合物を重合させるに当り、一般式 F-(CF₂)_m-O-[CF(X)-CF₂-O-]_nCF(X)

-0004

〔ただしXは弗素およびパーフルオロメチル基からなる

クラスの一員であり、mは1-5(5を含む)の正の整数で、nは0-10(10を含む)の正の整数で、Aは水素および一価の塩の基からなるクラスから選択される 親水性基である]

を有し、100 でにおいて少くとも0.1 名の溶解度を有する化合物であるイオン化性分散剤の存在下に上記重合を行うことを特敵とする重合体の水性コロイド分散体の製造法。