

Theory of Computation (CS F351)

BITS Pilani Hyderabad Campus Prof.R.Gururaj CS&IS Dept.

State Minimization in a Finite Automata (Sec. 2.5 of T1)

BITS Pilani Hyderabad Campus Prof.R.Gururaj CS&IS Dept.

State minimization

Equivalence of two states.

Two states q_i and q_j are equivalent in a DFA means that"From either state precisely the same strings are accepted."

Two states q_i and q_j are equivalent $q_i \equiv q_j$ if both $\delta (q_i, x)$ and $\delta (q_j, x)$ are final states or non-final states, for all $x \in \Sigma^*$

It is difficult to check the result of δ (q_i , x) and δ (q_j , x) for all $x \in \Sigma^*$.

Two states q_i and q_j are k-equivalent ($k \ge 0$) $q_i \equiv q_j$ if both $\delta (q_i, x)$ and $\delta (q_j, x)$ are final states or non-final states, for all $x \in \Sigma^*$ with length $|x| \le k$.

Hence any two final states are 0-equivalent.

Example

	0	125/1 Jours
90	a,	as
9,	26	22
Q2	a _o	92
Q 3	22	200
99	27	9.5
25	A ₂	96
ev6	96	avy (v
77	96	1 Q2

Tranha tel	64	
	0	\
[grogy]	(av, an)	[4385]
[2,27]	$[\hat{v}_6]$	[92]
[92]	[2094]	[92]
[2285]	[92]	[26]
[26]	[26]	[2095]

Final minimal DFA

Summary of Finite Automata (Ch.2 of T1)

- What is Finite Automata (FA)
- Relationship between FA-RL-RE
- Description of FA
- Working principle of FA
- ❖ DFA
- NDFA (with and without null moves)
- Conversion from NDFA to DFA (without null moves)
- Conversion from NDFA to DFA (with null moves)
- Properties of Regular languages
- Constructing FA from RE
- Constructing RE from FA
- State Minimization in DFA