Lenguajes Formales y Computabilidad | FAMAF - UNC

Combos de Definiciones, Convenciones Notacionales y Teoremas

Contenido

Contenido

Definiciones y Convenciones Notacionales	1
Combo 1	. 1
Combo 2	. 2
Combo 3	. 3
Combo 4	. 4
Combo 5	. 4
Combo 6	. 4
Combo 7	. 5
Combo 8	. 5
Combo 9	. 6
Combo 10	. 7
Combo 11	. 9
Combo 12	10
Combo 13	11
Combo 14	13
Combo 15	14
Combo 16	15
Combo 17	16
Definiciones Auxiliares	16
Procedimiento efectivo	16
Теогемаѕ	17
Combo 1	17
Combo 2	19
Combo 3	21
Combo 4	22
Combo 5	24
Combo 6	26
Combo 7	29
Combo 8	32
Combo 9	34
Resultados Muy Usados en las Demostraciones	36

DEFINICIONES Y CONVENCIONES NOTACIONALES

Combo 1

1. Defina cuando un conjunto $S \subseteq w^n \times \Sigma^{*m}$ es llamado Σ -recursivo.

Nota: no hace falta que defina "función Σ -recursiva".

با

Definición:

Un conjunto $S \subseteq w^n \times \Sigma^{*m}$ es llamado Σ -recursivo sii su función característica $\chi_S^{w^n \times \Sigma^{*m}}$ es Σ -recursiva.

2. Defina $\langle s_1, s_2, ... \rangle$.

 \downarrow

Definición:

Dada una infinitupla $(s_1,s_2,\ldots)\in\omega^{\lfloor\mathbb{N}\rfloor}$, usamos $\langle s_1,s_2,\ldots\rangle$ para denotar al número $\prod_{i=1}^\infty\operatorname{pr}(i)^{s_i}$

3. Defina "f es una función Σ -mixta".

Definición:

Sea Σ un alfabeto finito. Dada una función f, diremos que f es una función Σ -mixta si cumple las siguientes propiedades:

- Existen $n, m \ge 0$ tales que $D_f \subseteq w^n \times \Sigma^{*m}$
- Además $I_f\subseteq \omega$ o $I_f\subseteq \Sigma^*$
- 4. Defina "familia Σ -indexada de funciones".

 \rightarrow

Definición:

Dado un alfabeto Σ , una **familia \Sigma-indexada de funciones** será una función \mathcal{G} tal que $D_{\mathcal{G}} = \Sigma$ y para cada $a \in D_{\mathcal{G}}$ se tiene que $\mathcal{G}(a)$ es una función.

Notar que para cada $a \in \Sigma$ escribimos \mathcal{G}_a para denotar a la función $\mathcal{G}(a)$.

5. Defina $R(f, \mathcal{G})$.

Nota: haga el caso de valores numéricos.

L

Definición:

Supongamos Σ un alfabeto finito. Sea

$$f: S_1 \times ... \times S_n \times L_1 \times ... \times L_m \to \omega$$

con $S_1,...,S_n\subseteq\omega$ y $L_1,...,L_m\subseteq\Sigma^*$ conjuntos no vacíos y $\mathcal G$ una familia Σ -indexada de funciones tal que

$$\mathcal{G}_a:\omega\times S_1\times\ldots\times S_n\times L_1\times\ldots\times L_m\times\Sigma^*\to\omega$$
 para cada $\ a\in\Sigma$

Definamos $R(f,\mathcal{D})$: $S_1 \times ... \times S_n \times L_1 \times ... \times L_m \times \Sigma^* \to \omega$ de la siguiente manera

- $R(f, \mathcal{G})(\vec{x}, \vec{\alpha}, \varepsilon) = f(\vec{x}, \vec{\alpha})$
- $R(f, \mathcal{G})(\vec{x}, \vec{\alpha}, \alpha a) = \mathcal{G}_{a}(R(f, \mathcal{G})(\vec{x}, \vec{\alpha}, \alpha), \alpha)$

Diremos que $R(f,\mathcal{G})$ es obtenida por recursión primitiva a partir de f y \mathcal{G} .

¹Donde pr(i) es la función que retorna el i-ésimo primo.

1. Defina $d \stackrel{n}{\vdash} d'$ y $d \stackrel{*}{\vdash} d'$

Nota: no hace falta que defina ⊢

 \hookrightarrow

Definición:

Para $d, d' \in \mathbf{Des}$ y $n \geq 0$, escribimos $d \vdash d'$ si existen $d_1, ..., d_{n+1} \in \mathbf{Des}$ tales que

$$\begin{aligned} d &= d_1 \\ d' &= d_{n+1} \\ d_i &\vdash d_{i+1}, \, \text{para} \quad i = 1, \dots, n \end{aligned}$$

Luego definimos $d \stackrel{*}{\vdash} d'$ si y solo si $(\exists n \in \omega) d \stackrel{n}{\vdash} d'$.

2. Defina L(M)

Definición:

Sea M una máquina de Turing. Diremos que una palabra $\alpha \in \Sigma^*$ es aceptada por M por alcance final cuando

$$\lfloor q_0 B \alpha \rfloor \stackrel{*}{\vdash} d$$
, con d tal que $\operatorname{St}(d) \in F$.

El **lenguaje aceptado por** M **por alcance de estado final** se define de la siguiente manera:

 $L(M) = \{\alpha \in \Sigma^* : \alpha \ \text{ es aceptada por } M \text{ por alcance final}\}$

3. Defina "f es una función de tipo (n, m, s)".

L

Definición:

Dada una función Σ -mixta f con $n, m \in \omega$ tales que $D_f \subseteq w^n \times \Sigma^{*m}$ y además $I_f \subseteq \omega$, entonces diremos que f es una función de tipo (n, m, #).

Si en cambio $I_f\subseteq \Sigma^*$, entonces diremos que f es una función de tipo (n,m,*).

4. Defina (x)

Definición:

Dado $x \in \mathbb{N}$, usaremos (x) para denotar a la única infinitupla $(s_1, s_2, ...) \in \omega^{|\mathbb{N}|}$ tal que

$$x = \langle s_1, s_2, \ldots \rangle = \prod_{i=1}^{\infty} \operatorname{pr}(i)^{s_i} \quad \text{donde } \operatorname{pr}(i) \text{ es el i-\'esimo primo}.$$

5. Defina $(x)_i$

Definición:

Para $i \in \mathbb{N}$, usaremos $(x)_i$ para denotar al i-ésimo elemento de la infinitupla (x), es decir, al s_i de la definición anterior. Se le suele llamar la "bajada i-ésima de x" al número $(x)_i$.

(Ya que representa bajar al exponente de pr(i) en la única factorización de x como producto de primos)

1. Defina cuando un conjunto $S \subseteq w^n \times \Sigma^{*m}$ es llamado Σ -recursivamente enumerable. Nota: no hace falta que defina "función Σ -recursiva".

L

Definición:

Un conjunto $S\subseteq w^n\times \Sigma^{*m}$ será llamado Σ -recursivamente enumerable cuando sea vacío o haya una función $F:\omega\to w^n\times \Sigma^{*m}$ tal que $I_F=S$ y $F_{(i)}$ sea Σ -recursiva, para cada $i\in\{1,...,n+m\}$.²

2. Defina s^{\leq}

Definición:

Sea $\Sigma=\{a_1,...,a_n\}$ un alfabeto no vacío, con \leq un orden total sobre Σ dado por $a_1 < a_2 < ... < a_n$. Definimos la función $s^{\leq}:\Sigma^*\to\Sigma^*$ de la siguiente manera

$$\begin{split} s^{\leq}\big((a_n)^m\big) &= (a_1)^{m+1} \quad \text{para cada } m \geq 0 \\ s^{\leq}\big(\alpha a_i(a_n)^m\big) &= \alpha a_{i+1}(a_1)^m \quad \text{cada vez que } \alpha \in \Sigma^*, \text{ con } \ 1 \leq i < n \ \text{ y } \ m \geq 0 \end{split}$$

3. Defina ∗[≤]

Definición:

Sea $\Sigma = \{a_1,...,a_n\}$ un alfabeto no vacío, con \leq un orden total sobre Σ dado por $a_1 < a_2 < ... < a_n$. Definimos la función $*^{\leq} : \omega \to \Sigma^*$ de la siguiente manera

$$*^{\leq}(0)=\varepsilon$$

$$*^{\leq}(i+1)=s^{\leq}(*^{\leq}(i)) \quad (\text{donde } s^{\leq} \text{ es la función definida justo antes})$$

4. Defina $\#^{\leq}$

Definición:

Sea $\Sigma = \{a_1,...,a_n\}$ un alfabeto no vacío, con \leq un orden total sobre Σ dado por $a_1 < a_2 < ... < a_n$. Definimos la función $\#^{\leq}: \Sigma^* \to \omega$ de la siguiente manera

$$\begin{split} &\#^{\leq}(\varepsilon) = 0 \\ &\#^{\leq}\Big(a_{i_k}...a_{i_0}\Big) = i_k n^k + ... + i_0 n^0 \quad \text{ para } i_0, i_1, ..., i_k \in \{1, ..., n\} \end{split}$$

Otra forma (equivalente) de ver el caso recursivo sería

$$\#^{\leq}(\alpha)=i_kn^k+\ldots+i_0n^0\text{ con }\alpha=a_{i_k}\ldots a_{i_0}\text{ tal que }k\in\omega\text{ y }i_0,i_1,\ldots,i_k\in\{1,\ldots,n\}^{\mathbf{3}}$$

²Dados $k, l, n, m \in \omega$ $y F : D_F \subseteq \omega^k \times \Sigma^{*l} \to w^n \times \Sigma^{*m}$ con $n+m \ge 1$. Entonces denotaremos con $F_{(i)}$ a la función $p_i^{n,m} \circ F$, por lo cual las funciones $F_{(i)}$ son Σ-mixtas. Ya que $F_{(i)} : D_F \subseteq \omega^k \times \Sigma^{*l} \to \omega$ para i=1,...,n y $F_{(i)} : D_F \subseteq \omega^k \times \Sigma^{*l} \to \Sigma^*$ para i=n+1,...,n+m. Además notar que $F=\left[F_{(1)},...,F_{(n+m)}\right]$.

³Sabemos que α puede escribirse de esa manera porque $\alpha \neq \varepsilon$ y el lema 2.2 (del apunte) o lema 6 (de la guía 2).

1. Defina cuando una función $f: D_f \subseteq w^n \times \Sigma^{*m} \to \omega$ es llamada Σ -efectivamente computable y defina "el procedimiento $\mathbb P$ que computa a la función f".

Definición:

Una función $f:D_f\subseteq w^n\times \Sigma^{*^m}\to \omega$ es llamada Σ -efectivamente computable si hay un procedimiento efectivo $\mathbb P$ tal que

- (1) El conjunto de datos de entrada de \mathbb{P} es $w^n \times \Sigma^{*m}$.
- (2) El conjunto de datos de salida está contenido en ω .
- (3) Si $(\vec{x}, \vec{\alpha}) \in D_f$, entonces \mathbb{P} se detiene partiendo de $(\vec{x}, \vec{\alpha})$, dando como dato de salida $f(\vec{x}, \vec{\alpha})$.
- (4) Si $(\vec{x}, \vec{\alpha}) \in (w^n \times \Sigma^{*m}) D_f$, entonces $\mathbb P$ no se detiene partiendo de $(\vec{x}, \vec{\alpha})$.

En este caso diremos que \mathbb{P} computa a la función f.

Combo 5

1. Defina cuando un conjunto $S \subseteq w^n \times \Sigma^{*m}$ es llamado Σ -efectivamente computable y defina "el procedimiento efectivo $\mathbb P$ que decide la pertenencia a S".

Definición:

Un conjunto $S \subseteq w^n \times \Sigma^{*m}$ será llamado Σ -efectivamente computable cuando la función característica $\chi_S^{w^n \times \Sigma^{*m}}$ sea Σ -efectivamente computable.

Y el procedimiento efectivo \mathbb{P} que decide la pertenencia a S, con respecto al conjunto $w^n \times \Sigma^{*m}$ es aquel que computa a $\chi_S^{w^n \times \Sigma^{*m}}$, es decir

- El conjunto de datos de entrada de \mathbb{P} es $w^n \times \Sigma^{*m}$, siempre termina y da como dato de salida un elemento de $\{0,1\}$.
- Dado $(\vec{x}, \vec{\alpha}) \in w^n \times \Sigma^{*m}$, \mathbb{P} da como salida el número 1 si $(\vec{x}, \vec{\alpha}) \in S$ y al número 0 si $(\vec{x}, \vec{\alpha}) \notin S$.

Combo 6

1. Defina cuando un conjunto $S \subseteq w^n \times \Sigma^{*m}$ es llamado Σ -efectivamente enumerable y defina "el procedimiento efectivo $\mathbb P$ que enumera a S".

Definición:

Un conjunto $S \subseteq w^n \times \Sigma^{*m}$ será llamado Σ -efectivamente enumerable cuando sea vacío o haya una función $F: \omega \to w^n \times \Sigma^{*m}$ tal que $I_F = S$ y $F_{(i)}$ sea Σ -efectivamente computable, para cada $i \in \{1, ..., n+m\}$.

Y el procedimiento efectivo \mathbb{P} que enumera a S se define como

- (1) El conjunto de datos de entrada de \mathbb{P} es ω .
- (2) \mathbb{P} se detiene para cada $x \in \omega$.
- (3) El conjunto de datos de salida de \mathbb{P} es igual a S. (Es decir, siempre que \mathbb{P} se detiene, da como salida un elemento de S, y para cada elemento $(\vec{x}, \vec{\alpha}) \in S$, hay un $x \in \omega$ tal que \mathbb{P} da como salida a $(\vec{x}, \vec{\alpha})$ cuando lo corremos con x como dato de entrada).

En los combos 4, 5 y 6 usamos la **definición de procedimiento efectivo** que está en <u>definiciones auxiliares</u>.

1. Defina cuando una función $f: D_f \subseteq w^n \times \Sigma^{*m} \to \omega$ es llamada Σ -Turing computable y defina "la máquina de Turing M que computa a la función f".

Definición:

Diremos que una función $f:D_f\subseteq w^n\times \Sigma^{*m}\to \omega$ es Σ -Turing computable si existe una máquina de Turing con unit, $M=(Q,\Sigma,\Gamma,\delta,q_0,B,\mathbf{l},F)$ tal que

- $\begin{array}{l} \text{(1) Si } (\vec{x},\vec{\alpha}) \in D_f \text{, entonces hay un } p \in Q \text{ tal que } \left\lfloor q_0 B \, \mathsf{I}^{x_1} B ... B \, \mathsf{I}^{x_n} B \alpha_1 B ... B \alpha_m \right\rfloor \overset{*}{\vdash} \left\lfloor p B \, \mathsf{I}^{f(\vec{x},\vec{\alpha})} \right\rfloor \\ \text{y } \left\lfloor p B \, \mathsf{I}^{f(\vec{x},\vec{\alpha})} \right\rfloor \not\vdash d \text{, para cada } d \in \text{Des.} \end{array}$
- (2) Si $(\vec{x}, \vec{\alpha}) \in w^n \times \Sigma^{*m} D_f$, entonces M no se detiene partiendo de $\lfloor q_0 B \mathsf{I}^{x_1} B ... B \mathsf{I}^{x_n} B \alpha_1 B ... B \alpha_m \rfloor$ Cuando M y f cumplan los items (1) y (2), diremos que M computa a la función f.

Combo 8

1. Defina M(P)

Definición:

Sea Σ un alfabeto finito y sea $P:D_P\subseteq\omega\times w^n\times\Sigma^{*m}\to\omega$ un predicado. Dado $(\vec x,\vec\alpha)\in w^n\times\Sigma^{*m}$, cuando exista al menos un $t\in\omega$ tal que $P(t,\vec x,\vec\alpha)=1$, usaremos $\min_t P(t,\vec x,\vec\alpha)$ para denotar al menor de tales t's. Esta expresión está definida solo para aquellas (n+m)-uplas $(\vec x,\vec\alpha)$ para las cuales existe al menos un $t\in\omega$ tal que se da $P(t,\vec x,\vec\alpha)=1$ (obviamente también $(t,\vec x,\vec\alpha)\in D_P$).

Ahora sí, definamos

$$M(P) = \lambda \vec{x} \vec{\alpha} \Big[\min_t P(t, \vec{x}, \vec{\alpha}) \, \Big]$$

Es decir que

$$\begin{split} D_{M(P)} &= \{(\vec{x}, \vec{\alpha}) \in w^n \times \Sigma^{*m} : (\exists t \in \omega) P(t, \vec{x}, \vec{\alpha}) = 1\} \\ M(P)(\vec{x}, \vec{\alpha}) &= \min_t P(t, \vec{x}, \vec{\alpha}), \text{ para cada } (\vec{x}, \vec{\alpha}) \in D_{M(P)} \end{split}$$

Diremos que M(P) se obtiene por minimización de variable numérica a partir de P.

2. Defina Lt

 $\begin{array}{l} \textit{Definición:} \\ \text{La función } \textit{Lt}: \mathbb{N} \rightarrow \omega \text{ se define de la siguiente manera } \textit{Lt}(x) = \begin{cases} \max_{i}{(x)_{i}} \neq 0 & \text{si } x \neq 1 \\ 0 & \text{si } x = 1 \end{cases}$

3. Defina Conjunto rectangular

Definición:

Un conjunto Σ -mixto S será llamado **rectangular** si es de la forma $S_1 \times ... \times S_n \times L_1 \times ... \times L_m$ con $S_1,...,S_n \subseteq \omega$ y $L_1,...,L_m \subseteq \Sigma^*$.

4. Defina "S es un conjunto de tipo (n, m)" \hookrightarrow

Definición:

Dado un conjunto Σ -mixto S, si $n, m \in \omega$ son tales que $S \subseteq w^n \times \Sigma^{*m}$, entonces diremos que S es un conjunto de tipo (n, m).

1. Defina "I es una instrucción de S^{Σ} "

Definición:

Una instrucción de S^{Σ} es ya sea una instrucción básica de S^{Σ} , o una instrucción de la forma αI , donde $\alpha \in \{L\overline{n} : n \in \mathbb{N}\}$ e I es una instrucción básica de S^{Σ} .

(Usamos $\operatorname{Ins}^{\Sigma}$ para denotar al conjunto de todas las instrucciones de S^{Σ}).

2. Defina " \mathcal{P} es programa de S^{Σ} "

Definición:

Un **programa de S^{\Sigma}** es una palabra de la forma

$$I_1 I_2 ... I_n$$

donde $n \geq 1, I_1, ..., I_n \in \operatorname{Ins}^{\Sigma}$ y además cumple la siguiente propiedad llamada ley de los GOTO

Para cada
$$i \in \{1, ..., n\}$$
, si GOTO $L\overline{m}$ es tramo final de I_i , entonces existe $j \in \{1, ..., n\}$ tal que I_i tiene label $L\overline{m}$.

(Usamos $\operatorname{Pro}^{\Sigma}$ para denotar al conjunto de todos los programas de S^{Σ}).

3. Defina
$$I_i^{\mathcal{P}}$$

Definición:

Dado $i \in \omega$ y $\mathcal{P} \in \text{Pro}^{\Sigma}$, definimos $I_i^{\mathcal{P}}$ como

$$I_i^{\mathcal{P}} = \begin{cases} \text{i-\'esima instrucci\'on del programa } \mathcal{P} & \text{si } 1 \leq i \leq n(\mathcal{P}) \\ \varepsilon & \text{caso contrario} \end{cases}$$

Notar que está bien definido gracias al Lema 4.40 del apunte⁴.

4. Defina $n(\mathcal{P})$

Definición:

Dado $\mathcal{P} \in \operatorname{Pro}^{\Sigma}$ definimos $n(\mathcal{P})$ como el número de instrucciones que tiene el programa \mathcal{P} . Notar que $n(\mathcal{P}) \in \mathbb{N}$ y está univocamente determinado por \mathcal{P} gracias al Lema 4.40 del apunte⁴.

5. Defina la función Bas

Definición:

La función $\mathit{Bas}: \operatorname{Ins}^\Sigma \to \left(\Sigma \cup \Sigma_p\right)^*$ se define de la siguiente manera

$$Bas(I) = \begin{cases} J & \text{si } I \text{ es de la forma } L\overline{k}J, \text{ con } k \in \mathbb{N} \text{ y } J \in \mathrm{Ins}^{\Sigma} \\ I & \text{caso contrario} \end{cases}$$

⁴El lema 4.40 del apunte dice

⁽a) Si $I_1,...I_n=J_1,...,J_m$ con $I_1,...,I_n,J_1,...,J_m\in \mathrm{Ins}^\Sigma$, entonces n=m y $I_i=J_i$ para cada $i\geq 1$. (b) Si $\mathcal{P}\in \mathrm{Pro}^\Sigma$, entonces existe una única sucesión de instrucciones $I_1,...,I_n$ tal que $\mathcal{P}=I_1I_2...I_n$.

1. Defina relativo al lenguaje S^{Σ} , "estado"

 \downarrow

Definición:

Un **estado** es un par $(\vec{s}, \vec{\sigma}) = ((s_1, s_2, ...), (\sigma_1, \sigma_2, ...)) \in \omega^{[\mathbb{N}]} \times \Sigma^{*[\mathbb{N}]}$ tal que si $i \geq 1$, entonces diremos que s_i es el contenido o valor de la variable $N\bar{i}$ en el estado $(\vec{s}, \vec{\sigma})$ y σ_i es el contenido o valor de la variable $P\bar{i}$ en el estado $(\vec{s}, \vec{\sigma})$.

(i.e, un estado es un par de infinituplas que contiene la información de los valores guardados en las variables)

2. Defina relativo al lenguaje S^{Σ} , "descripción instantánea"

 \hookrightarrow

Definición:

Una **descripción instantánea** es una terna $(i, \vec{s}, \vec{\sigma})$ tal que $(\vec{s}, \vec{\sigma})$ es un estado e $i \in \omega$. (Es decir que el $\omega \times \omega^{\lfloor \mathbb{N} \rfloor} \times \Sigma^{* \lfloor \mathbb{N} \rfloor}$ es el conjunto formado por todas las descripciones instantáneas).

3. Defina relativo al lenguaje S^{Σ} la función $S_{\mathcal{P}}$

Definición:

Dado un programa $\mathcal{P} \in \operatorname{Pro}^{\Sigma}$, definimos $S_{\mathcal{P}} : \omega \times \omega^{\lfloor \mathbb{N} \rfloor} \times \Sigma^{*\lfloor \mathbb{N} \rfloor} \to \omega \times \omega^{\lfloor \mathbb{N} \rfloor} \times \Sigma^{*\lfloor \mathbb{N} \rfloor}$ tal que $S_{\mathcal{P}}(i, \vec{s}, \vec{\sigma}) = \text{descripción instantánea que resulta luego de realizarp}^{5} I_{i}^{\mathcal{P}}, \text{estando en el estado } (\vec{s}, \vec{\sigma})$

Para definirla formalmente damos los siguientes casos

Cuando $i \in \{1,...,n(\mathcal{P})\}$ entonces

- Caso $\mathrm{Bas}ig(I_i^{\mathcal{P}}ig) = N\overline{k} \leftarrow N\overline{k} \doteq 1$. Entonces $S_{\mathcal{P}}(i,\vec{s},\vec{\sigma}) = ig(i+1,ig(s_1,...,s_{k-1},s_k \doteq 1,s_{k+1},...ig), \vec{\sigma}ig)$
- Caso $\mathrm{Bas}(I_i^{\mathcal{P}}) = N\overline{k} \leftarrow N\overline{k} + 1$. Entonces $S_{\mathcal{P}}(i,\vec{s},\vec{\sigma}) = (i+1,(s_1,...,s_{k-1},s_k+1,s_{k+1},...),\vec{\sigma})$
- Caso $\mathrm{Bas}(I_i^{\mathcal{P}}) = N\overline{k} \leftarrow N\overline{n}$. Entonces $S_{\mathcal{P}}(i,\vec{s},\vec{\sigma}) = (i+1,(s_1,...,s_{k-1},s_n,s_{k+1},...),\vec{\sigma})$
- Caso Bas $(I_i^{\mathcal{P}})=N\overline{k}\leftarrow 0$. Entonces $S_{\mathcal{P}}(i,\vec{s},\vec{\sigma})=(i+1,(s_1,...,s_{k-1},0,s_{k+1},...),\vec{\sigma})$
- Caso $\mathrm{Bas}ig(I_i^{\mathcal{P}}ig)=\mathrm{IF}\ N\overline{k} \neq 0$ GOTO $L\overline{m}$. Sea s_k el valor de $N\overline{k}$ en $(\vec{s},\vec{\sigma})$, entonces

$$S_{\mathcal{P}}(i,\vec{s},\vec{\sigma}) = \begin{cases} \left(\min \left\{l: I_l^{\mathcal{P}} \text{ tiene label } L\overline{m}\right\}, \vec{s}, \vec{\sigma}\right) & \text{si } s_k \neq 0 \\ (i+1,\vec{s},\vec{\sigma}) & \text{si } s_k = 0 \end{cases}$$

- $\bullet \ \ \text{Caso Bas}\big(I_i^{\mathcal{P}}\big) = P\overline{k} \leftarrow {}^{\curvearrowright}\!P\overline{k} \qquad \text{. Entonces } S_{\mathcal{P}}(i,\vec{s},\vec{\sigma}) = \big(i+1,\vec{s},\big(\sigma_1,...,\sigma_{k-1},{}^{\curvearrowright}\!\sigma_k,\sigma_{k+1},...\big)\big)$
- Caso $\mathrm{Bas}ig(I_i^{\mathcal{P}}ig) = P\overline{k} \leftarrow P\overline{k}$.a . Entonces $S_{\mathcal{P}}(i,\vec{s},\vec{\sigma}) = ig(i+1,\vec{s},ig(\sigma_1,...,\sigma_{k-1},\sigma_k a,\sigma_{k+1},...ig)ig)$
- Caso $\mathrm{Bas}(I_i^{\mathcal{P}}) = P\overline{k} \leftarrow P\overline{n}$. Entonces $S_{\mathcal{P}}(i,\vec{s},\vec{\sigma}) = (i+1,\vec{s},(\sigma_1,...,\sigma_{k-1},\sigma_n,\sigma_{k+1},...))$
- Caso $\mathrm{Bas} \big(I_i^{\mathcal{P}} \big) = P \overline{k} \leftarrow \varepsilon$. Entonces $S_{\mathcal{P}}(i, \vec{s}, \vec{\sigma}) = \big(i+1, \vec{s}, \big(\sigma_1, ..., \sigma_{k-1}, \varepsilon, \sigma_{k+1}, ... \big) \big)$
- Caso $\mathrm{Bas}ig(I_i^{\mathcal{P}}ig) = \mathrm{IF}\ P\overline{k}$ BEGINS a GOTO $L\overline{m}$. Sea σ_k el valor de $P\overline{k}$ en $(\vec{s},\vec{\sigma})$, entonces

$$S_{\mathcal{P}}(i,\vec{s},\vec{\sigma}) = \begin{cases} \left(\min \left\{l: I_l^{\mathcal{P}} \text{ tiene label } L\overline{m}\right\}, \vec{s}, \vec{\sigma}\right) & \text{si } \sigma_k \text{ comienza con a} \\ (i+1,\vec{s},\vec{\sigma}) & \text{si } \sigma_k \text{ no comienza con a} \end{cases}$$

- Caso $\mathrm{Bas} \left(I_i^{\mathcal{P}} \right) = \mathrm{GOTO} \ L\overline{m} \quad$. Entonces $S_{\mathcal{P}}(i,\vec{s},\vec{\sigma}) = \left(\min \left\{ l : I_l^{\mathcal{P}} \ \mathrm{tiene \ label} \ L\overline{m} \right\}, \vec{s}, \vec{\sigma} \right)$
- Caso $\mathrm{Bas}ig(I_i^{\mathcal{P}}ig)=\mathrm{SKIP}$. Entonces $S_{\mathcal{P}}(i,\vec{s},\vec{\sigma})=(i+1,\vec{s},\vec{\sigma})$

Pero cuando $i \notin \{1,...,n(\mathcal{P})\}$ simplemente, $S_{\mathcal{P}}(i,\vec{s},\vec{\sigma}) = (i,\vec{s},\vec{\sigma})$.

⁵El verbo "realizarp" una actividad es realizarla si se puede.

4. Defina relativo al lenguaje S^{Σ} , "estado obtenido luego de t pasos, partiendo del estado $(\vec{s}, \vec{\sigma})$ "

Definición:

Diremos que

$$\overbrace{S_{\mathcal{P}}(...S_{\mathcal{P}}(S_{\mathcal{P}}(1,\vec{s},\vec{\sigma})))}^{\text{t veces}} = (j,\vec{u},\vec{\eta})$$

es la descripción instantánea obtenida luego de t pasos, partiendo del estado $(\vec{s}, \vec{\sigma})$ y $(\vec{u}, \vec{\eta})$ es el estado obtenido luego de t pasos, partiendo del estado $(\vec{s}, \vec{\sigma})$.

5. Defina relativo al lenguaje S^{Σ} , " \mathcal{P} se detiene (luego de t pasos), partiendo del estado $(\vec{s}, \vec{\sigma})$ "

Definición:

Cuando la primera coordenada de

$$\overbrace{S_{\mathcal{P}}(...S_{\mathcal{P}}(S_{\mathcal{P}}(1,\vec{s},\vec{\sigma})))}^{\text{t veces}}$$

sea igual a $n(\mathcal{P})+1$ diremos que \mathcal{P} se detiene (luego de t pasos), partiendo del estado $(\vec{s}, \vec{\sigma})$.

1. Defina $\Psi_{\mathcal{P}}^{n,m,\#}$

 \hookrightarrow

Definición:

 $\text{Dados} \ \ x_1,...,x_n \in \omega \ \ \text{y} \ \ \sigma_1,...,\sigma_m \in \Sigma^*, \ \ \text{usaremos} \ \ \|x_1,...,x_n,\sigma_1,...,\sigma_m\| \ \ \text{para} \ \ \text{denotar} \ \ \text{el estado} \ \ ((x_1,...,x_n,0,...),(\sigma_1,...,\sigma_m,...)).$

Ahora sí, dado $\mathcal{P} \in \operatorname{Pro}^{\Sigma}$, definamos para cada par $n, m \in \omega$, la función $\Psi_{\mathcal{P}}^{n,m,\#}$ de la siguiente manera

$$\begin{split} D_{\Psi^{n,m,\#}_{\mathcal{P}}} = \{(\vec{x},\vec{\alpha}) \in w^n \times \Sigma^{*^m} : \mathcal{P} \text{ termina}, \\ \text{partiendo del estado } \|x_1,...,x_n,\sigma_1,...,\sigma_m\| \} \end{split}$$

 $\Psi_{\mathcal{P}}^{n,m,\#}(\vec{x},\vec{\alpha}) = \text{valor de N1 en el estado obtenido cuando } \mathcal{P} \text{ termina, partiendo de } \|x_1,...,x_n,\sigma_1,...,\sigma_m\|$

2. Defina "f es Σ -computable"

Definición:

Una función Σ -mixta $f:D_f\subseteq w^n\times \Sigma^{*m}\to \omega$ es llamada Σ -computable si hay un programa $\mathcal P$ de S^Σ tal que $f=\Psi^{n,m,\#}_{\mathcal P}$.

Análogamente una función Σ -mixta $f:D_f\subseteq w^n\times \Sigma^{*m}\to \Sigma^*$ es llamada Σ -computable si hay un programa $\mathcal P$ de S^Σ tal que $f=\Psi^{n,m,*}_{\mathcal P}$.

3. Defina " \mathcal{P} computa a f"

 \downarrow

Definición:

Sea \mathcal{P} un programa de S^{Σ} .

Dada una función Σ-mixta $f: D_f \subseteq w^n \times \Sigma^{*m} \to \omega$ diremos que $\mathcal P$ computa f si $f = \Psi^{n,m,\#}_{\mathcal P}$. Análogamente, si $f: D_f \subseteq w^n \times \Sigma^{*m} \to \Sigma^*$, también diremos que $\mathcal P$ computa a f si $f = \Psi^{n,m,*}_{\mathcal P}$.

4. Defina $M^{\leq}(P)$

L

Definición:

Sea Σ un alfabeto no vacío, \leq un orden total sobre Σ^6 y $P:D_P\subseteq w^n\times \Sigma^{*m}\times \Sigma^*\to \Sigma^*$ un predicado. Dado $(\vec{x},\vec{\alpha})\in w^n\times \Sigma^{*m}$, cuando exista al menos un $\alpha\in \Sigma^*$ tal que $P(\vec{x},\vec{\alpha},\alpha)=1$, usaremos

$$\min_{\alpha} P(\vec{x}, \vec{\alpha}, \alpha)$$

para denotar al menor de tales $\alpha's$. Esta expresión está definida solo para aquellas (n+m)-uplas $(\vec{x},\vec{\alpha})$ para las cuales existe al menos un $\alpha \in \Sigma^*$ tal que se da $P(\vec{x},\vec{\alpha},\alpha)=1$ (obviamente también $(\vec{x},\vec{\alpha},\alpha) \in D_p$). Ahora sí, definamos

$$M^{\leq}(P) = \lambda \vec{x} \vec{\alpha} [\min_{\alpha} P(\vec{x}, \vec{\alpha}, \alpha)]$$

Es decir que

$$\begin{split} D_{M^{\leq}(P)} &= \{(\vec{x},\vec{\alpha}) \in w^n \times \Sigma^{*^m} : (\exists \alpha \in \Sigma^*) P(\vec{x},\vec{\alpha},\alpha) = 1\} \\ M^{\leq}(P)(\vec{x},\vec{\alpha}) &= \min_{\alpha} P(\vec{x},\vec{\alpha},\alpha), \text{ para cada } (\vec{x},\vec{\alpha}) \in D_{M^{\leq}(P)} \end{split}$$

Diremos que $M^{\leq}(P)$ se obtiene por minimización de variable alfabética a partir de P.

⁶Recordar que \leq puede ser naturalmente extendido a un orden total sobre $\Sigma^* \, \hookrightarrow \,$

1. Defina cuando un conjunto $S \subseteq w^n \times \Sigma^{*m}$ es llamado Σ -computable.

 \downarrow

Definición:

Un conjunto $S\subseteq w^n\times \Sigma^{*m}$ será llamado Σ -computable cuando la función $\chi_S^{w^n\times \Sigma^{*m}}$ sea Σ -computable.

2. Defina cuando un conjunto $S \subseteq w^n \times \Sigma^{*m}$ es llamado Σ -enumerable.

 \downarrow

Definición:

Un conjunto $S \subseteq w^n \times \Sigma^{*m}$ será llamado Σ -enumerable cuando sea vacío o haya una función $F : \omega \to w^n \times \Sigma^{*m}$ tal que $I_F = S$ y $F_{(i)}$ sea Σ -computable, para cada $i \in \{1, ..., n+m\}$.

3. Defina "el programa \mathcal{P} que enumera a S".

4

Definición:

Diremos que **el programa** $\mathcal{P} \in S^{\Sigma}$ **enumera a** S cuando cumple lo siguiente

- Para cada $x \in \omega$, tenemos que $\mathcal P$ se detiene partiendo del estado $\|x\|$ y llega a un estado $((x_1,...,x_n,y_1,...),(\sigma_1,...,\sigma_m,\beta_1,...))$, donde $(\vec x,\vec\sigma) \in S$.
- Para cada $(x_1,...,x_n,\sigma_1,...,\sigma_m)\in S$, hay un $x\in\omega$ tal que $\mathcal P$ se detiene partiendo del estado $\|x\|$ y llega a un estado $((x_1,...,x_n,y_1,...),(\sigma_1,...,\sigma_m,\beta_1,...))$.

(Notar que en los estados se agregan y_1,\dots y β_1,\dots para representar "datos extra" que el programa puede haber producido además de los datos de salida relevantes $(x_1,...,x_n,\sigma_1,...,\sigma_m)$)

1, 2 y 3. Defina las funciones
$$i^{n,m}$$
 , $E^{n,m}_{\#}$ y $E^{n,m}_{*}$

Definiciónes:

Sean $n,m\in\omega$ fijos. Definimos

$$i^{n,m}: \omega \times w^n \times \Sigma^{*m} \times \operatorname{Pro}^{\Sigma} \to \omega$$

$$E^{n,m}_{\#}: \omega \times w^n \times \Sigma^{*m} \times \operatorname{Pro}^{\Sigma} \to \omega^{\lfloor \mathbb{N} \rfloor}$$

$$E^{n,m}: \omega \times w^n \times \Sigma^{*m} \times \operatorname{Pro}^{\Sigma} \to \Sigma^{*\lfloor \mathbb{N} \rfloor}$$

de la siguiente manera

$$\begin{split} \left(\,\, i^{n,m}(0,\vec{x},\vec{\alpha},\mathcal{P}) \,\,, \, E^{n,m}_{\#}(0,\vec{x},\vec{\alpha},\mathcal{P}) \,\,, \, E^{n,m}_{*}(0,\vec{x},\vec{\alpha},\mathcal{P}) \,\,\right) &= \left(\,\, 1 \,\,, \, (x_{1},...,x_{n},0,...) \,\,, \, (\alpha_{1},...,\alpha_{m},\varepsilon,...) \,\,\right) \\ &= \left(\,\, i^{n,m}(t+1,\vec{x},\vec{\alpha},\mathcal{P}) \,\,, \, E^{n,m}_{\#}(t+1,\vec{x},\vec{\alpha},\mathcal{P}) \,\,, \, E^{n,m}_{*}(t+1,\vec{x},\vec{\alpha},\mathcal{P}) \,\,\right) &= \\ & S_{\mathcal{P}} \Big(\,\, i^{n,m}(t,\vec{x},\vec{\alpha},\mathcal{P}) \,\,, \, E^{n,m}_{\#}(t,\vec{x},\vec{\alpha},\mathcal{P}) \,\,, \, E^{n,m}_{*}(t,\vec{x},\vec{\alpha},\mathcal{P}) \,\,, \, E^{n,m}_{*}(t,\vec{x},\vec{\alpha},\mathcal{P}) \,\,\right) \end{split}$$

Notar que $\left(i^{n,m}(t,\vec{x},\vec{\alpha},\mathcal{P}),E^{n,m}_{\#}(t,\vec{x},\vec{\alpha},\mathcal{P}),E^{n,m}_{*}(t,\vec{x},\vec{\alpha},\mathcal{P})\right)$ es la descripción instantánea luego de correr \mathcal{P} una cantidad t de pasos, partiendo de $\|x_1,...,x_n,\alpha_1,...,\alpha_m\|$. Y además $i^{n,m}$ es $\left(\Sigma\cup\Sigma_p\right)$ -mixta pero $E^{n,m}_{\#}$ y $E^{n,m}_{*}$ no.

4 y 5. Defina las funciones
$$E_{\#j}^{n,m}$$
 y $E_{*j}^{n,m}$

Definiciónes:

Definimos para cada $j \in \mathbb{N}$, las funciones

$$E_{\#j}^{n,m}: \omega \times w^n \times \Sigma^{*m} \times \operatorname{Pro}^{\Sigma} \to \omega$$
$$E_{*j}^{n,m}: \omega \times w^n \times \Sigma^{*m} \times \operatorname{Pro}^{\Sigma} \to \Sigma^{*m}$$

de la siguiente manera

$$E_{\#j}^{n,m}(t,\vec{x},\vec{\alpha},\mathcal{P})=j$$
-ésima coordenada de $E_{\#}^{n,m}(t,\vec{x},\vec{\alpha},\mathcal{P})$
$$E_{*j}^{n,m}(t,\vec{x},\vec{\alpha},\mathcal{P})=j$$
-ésima coordenada de $E_{*}^{n,m}(t,\vec{x},\vec{\alpha},\mathcal{P})$

Es claro que estas funciones son $(\Sigma \cup \Sigma_p)$ -mixtas.

 $^{^{7}}$ Osea que para el paso t podemos pensar que $i^{n,m}$ representa "número de instrucción", $E_{\#}^{n,m}$ representa "los valores numéricos" y $E_{*}^{n,m}$ representa "los valores alfabéticos".

6 y 7. Defina las funciones $Halt^{n,m}$ y $T^{n,m}$

Definiciónes:

Dados $n, m \in \omega$, definimos

$$Halt^{n,m} = \lambda t \vec{x} \vec{\alpha} [i^{n,m}(t, \vec{x}, \vec{\alpha}) = n(\mathcal{P}) + 1]$$

Notar que $D_{Halt^{n,m}} = \omega \times w^n \times \Sigma^{*m} \times \operatorname{Pro}^{\Sigma}$ (ojo, la notación lambda es respecto al alfabeto $(\Sigma \cup \Sigma_p)$).

Dado que $Halt^{n,m}$ es un predicado podemos definir $T^{n,m}=M(Halt^{n,m})$. Osea, dado $(\vec{x},\vec{lpha},\mathcal{P})\in D_{T^{n,m}}$

$$T^{n,m}(\vec{x},\vec{\alpha},\mathcal{P})=$$
 cantidad de pasos necesarios para que \mathcal{P} se detenga partiendo de $\|x_1,...,x_n,\alpha_1,...,\alpha_m\|$

Notar que $D_{T^{n,m}} = \{(\vec{x}, \vec{\alpha}, \mathcal{P}) : \mathcal{P} \text{ se detiene partiendo de } \|x_1, ..., x_n, \alpha_1, ..., \alpha_m\|\}.$

8. Defina $AutoHalt^{\Sigma}$

 \hookrightarrow

Definición:

Cuando $\Sigma_p \subseteq \Sigma$, podemos definir

$$\boldsymbol{AutoHalt^{\Sigma}} = \lambda \mathcal{P}[(\exists t \in \omega) Halt^{0,1}(t,\mathcal{P},\mathcal{P})]$$

Pensándolo de otra manera, podemos decir que para cada $\mathcal{P} \in \operatorname{Pro}^\Sigma$ tenemos que

 $AutoHalt^{\Sigma}(\mathcal{P}) = 1$ si y solo si \mathcal{P} se detiene partiendo del estado \mathcal{P} (i.e de sí mismo)

9. Defina los conjuntos A y N

L

Definición:

Dado $\Sigma_p \subseteq \Sigma$, definimos

$$\boldsymbol{A} = \left\{ \mathcal{P} \in \mathrm{Pro}^{\Sigma} : AutoHalt^{\Sigma}(\mathcal{P}) = 1 \right\}$$

$$\boldsymbol{N} = \left\{ \mathcal{P} \in \mathrm{Pro}^{\Sigma} : AutoHalt^{\Sigma}(\mathcal{P}) = 0 \right\}$$

1. Explique en forma detallada la notación lambda.

 \rightarrow

Definición:

Definamos primero cuándo una expresión E será llamada lambdificable con respecto a Σ . Dado que no es un concepto matemáticamente preciso, daremos características que se deben cumplir

- (1) Puede involucrar variables:
 - (i) Numéricas, valuadas en ω y seleccionadas de

$$x_1, x_2, ...$$

$$y_1, y_2, \dots$$

etc

(ii) Alfabéticas, valuadas en Σ^* y seleccionadas de

$$\alpha, \beta, \gamma, \eta, \dots$$

$$\alpha_1, \alpha_2, \dots$$

$$\beta_1, \beta_2, \dots$$

etc

- (2) Puede no involucrar variables, por lo tanto produce un valor constante.
- (3) Para ciertas valuaciones de sus variables E puede no estar definida. (Por ejemplo Pred(x) con x=0)
- (4) Cuando E esté definida al valuar sus variables numéricas en ω y alfabéticas en Σ^* deberá producir siempre un elemento de ω o de Σ^* .
- (5) Se pueden usar expresiones del lenguaje natural. (Por ejemplo "es x un número primo")
- (6) Las expresiones booleanas toman valores en $\{0,1\} \in \omega$.

Ahora definamos la **notación lambda**. Dada una expresión E que sea lambdificable con respecto a un alfabeto fijo Σ y $x_1,...,x_n,\alpha_1,...,\alpha_m$ las variables numéricas y alfabéticas que ocurren en E. Entonces

$$\lambda x_1...x_n\alpha_1...\alpha_m[E]$$

denota la función definida por

$$\begin{split} D_{\lambda x_1 \dots x_n \alpha_1 \dots \alpha_m[E]} &= \left\{ (k_1, \dots, k_n, \beta_1, \dots, \beta_m) \in w^n \times \Sigma^{*m} : E \text{ est\'a definida cuando se asignan } k_i \neq x_i \neq \beta_j \neq \alpha_j \right\} \\ & \lambda x_1 \dots x_n \alpha_1 \dots \alpha_m[E](k_1, \dots, k_n, \beta_1, \dots, \beta_m) = \text{valor que toma } E \text{ cuando se asignan } k_i \neq x_i \neq \beta_j \neq \alpha_j \end{split}$$

Notar que por (4) $\lambda x_1...x_n\alpha_1...\alpha_m[E]$ es Σ -mixta de tipo (n,m,s) con $s\in\{\#,*\}$ según corresponda.

1. Dada una función $f: D_f \subseteq \omega \times \Sigma^* \to \omega$, describa qué tipo de objeto es y que propiedades debe tener el macro $[V2 \leftarrow f(V1, W1)]$

Definición:

Dada una función $f:D_f\subseteq\omega\times\Sigma^*\to\omega$, el macro

$$[V2 \leftarrow f(V1, W1)]$$

es de tipo palabra y cumple las siguientes propiedades

- (1) Las variables oficiales son V1, V2 y W1.
- (2) No tiene labels oficiales.
- (3) Si reemplazamos
 - (a) Las variables oficiales (i.e. V1, V2, W1) por las variables concretas $N\overline{k_1}$, $N\overline{k_2}$ y $P\overline{j_1}$ con $k_1, k_2, j_1 \in \mathbb{N}$.
 - (b) Las variables auxiliares por variables concretas (distintas dos a dos) y distintas de $N\overline{k_1}$, $N\overline{k_2}$, $P\overline{j_1}$.

Entonces la palabra así obtenida es un programa de S^{Σ} que denotaremos con

$$\left[\mathbf{N}\overline{k_2} \leftarrow f \Big(\mathbf{N}\overline{k_1}, \mathbf{P}\overline{j_1} \Big) \right]$$

el cual debe tener la siguiente propiedad:

Si lo hacemos correr partiendo de un estado e que le asigne a las variables $N\overline{k_1}$, $N\overline{k_2}$ y $P\overline{j_1}$ valores x_1, x_2 y α_1 , entonces independientemente de los valores que les asigne e al resto de las variables se dará que

- (i) Si $(x_1, \alpha_1) \notin D_f$ entonces $\left[N\overline{k_2} \leftarrow f\left(N\overline{k_1}, P\overline{j_1} \right) \right]$ no se detiene.
- (ii) Si $(x_1, \alpha_1) \in D_f$, entonces $\left[N\overline{k_2} \leftarrow f\left(N\overline{k_1}, P\overline{j_1}\right) \right]$ se detiene (i.e. intenta realizar la siguiente a su última instrucción) y llega a un estado e' el cual cumple
 - (a) e' le asigna a $N\overline{k_2}$ el valor $f(x_1, \alpha_1)$.
 - (b) e' solo puede diferir de e en los valores que le asigna a $N\overline{k_2}$ o a las variables que fueran a reemplazar a las variables auxiliares, al resto de las variables, no las modifica.

Finalmente el programa $\left[N\overline{k_2} \leftarrow f\left(N\overline{k_1}, P\overline{j_1}\right)\right]$ es llamado la **expansión del macro** $\left[V2 \leftarrow f(V1, W1)\right]$ con respecto a la elección de variables y labels realizada.

1. Dado un predicado $P: D_f \subseteq \omega \times \Sigma^* \to \omega$, describa qué tipo de objeto es y qué propiedades debe tener el macro [IF P(V1, W1) GOTO A1]

Definición:

Dado un predicado $P:D_f\subseteq\omega\times\Sigma^*\to\omega$, el macro

[IF
$$P(V1, W1)$$
 GOTO A1]

es de tipo palabra y cumple las siguientes propiedades

- (1) Las variables oficiales son V1 y W1.
- (2) A1 es el único label oficial.
- (3) Si reemplazamos
 - (a) Las variables oficiales (i.e. V1, W1) por las variables concretas $N\overline{k_1}$ y $P\overline{j_1}$ con $k_1, j_1 \in \mathbb{N}$.
 - (b) El label oficial A1 por el label concreto $L\overline{k}$ con $k \in \mathbb{N}$.
 - (c) Las variables auxiliares por variables concretas (distintas dos a dos) y distintas de $N\overline{k_1}$, $P\overline{j_1}$.
 - (d) Los labels auxiliares por labels concretos (distintos dos a dos) y distintos de $L\bar{k}$.

Entonces la palabra así obtenida es un programa de S^{Σ} , salvo por la ley de los GOTO respecto de $L\overline{k}$. Este programa lo denotaremos con

$$\left[\text{IF } P \Big(\mathbf{N} \overline{k_1}, \mathbf{P} \overline{j_1} \Big) \text{ GOTO } \mathbf{L} \overline{k} \right]$$

el cual debe tener la siguiente propiedad:

Si lo hacemos correr partiendo de un estado e que le asigne a las variables $N\overline{k_1}$ y $P\overline{j_1}$ valores x_1 y α_1 , entonces independientemente de los valores que les asigne e al resto de las variables se dará que

- (i) Si $(x_1, \alpha_1) \notin D_P$ entonces $[IF P(N\overline{k_1}, P\overline{j_1}) GOTO L\overline{k}]$ no se detiene.
- (ii) Si $(x_1, \alpha_1) \in D_P$ entonces luego de una cantidad finita de pasos de $\left[\text{IF } P\left(N\overline{k_1}, P\overline{j_1} \right) \text{ GOTO } L\overline{k} \right]$ (a) Si $P(x_1, \alpha_1) = 1$, **direcciona al label L** \overline{k} .
 - (b) Si $P(x_1, \alpha_1) = \mathbf{0}$, se detiene. (i.e. intenta realizar la siguiente a su última instrucción)

En ambos casos quedándose en un estado e' el cual solo puede diferir de e en los valores que le asigna a las variables que fueran a reemplazar a las variables auxiliares, al resto de las variables, no las modifica.

Finalmente, el programa $\left[\text{IF } P \left(N\overline{k_1}, P\overline{j_1} \right) \text{ GOTO L}\overline{k} \right]$ es llamado la **expansión del macro** $\left[\text{IF } P (\text{V1}, \text{W1}) \text{ GOTO A1} \right]$ con respecto a la elección de variables y labels realizada.

⁸El punto (ii) en el apunte está así

⁽ii) Si $(x_1, \alpha_1) \in D_P$ y $P(x_1, \alpha_1) = 1$, entonces luego de una cantidad finita de pasos $\left[\text{IF } P\left(N\overline{k_1}, P\overline{j_1} \right) \text{ GOTO } L\overline{k} \right]$ direcciona al label $L\overline{k}$ quedándose en un estado e' el cual solo puede diferir de e en los valores que le asigna a las variables que fueran a reemplazar a las variables auxiliares, al resto de las variables, no las modifica.

⁽iii) Si $(x_1, \alpha_1) \in D_P$ y $P(x_1, \alpha_1) = 0$, entonces luego de una cantidad finita de pasos $\left[\text{IF }P\left(N\overline{k_1}, P\overline{j_1}\right) \text{ GOTO }L\overline{k}\right]$ se detiene quedando en un estado e' el cual solo puede diferir de e en los valores que le asigna a las variables que fueran a reemplazar a las variables auxiliares, al resto de las variables, no las modifica.

Defina el concepto de función y desarrolle las tres Convenciones Notacionales asociadas a dicho concepto.
 Nota: de la Guía 1

Definición:

Una **función** es un conjunto f de pares ordenados con la siguiente propiedad

Si
$$(x, y) \in f$$
 y $(x, z) \in f$, entonces $y = z$

Además, dada una función f definimos

$$D_f = \text{dominio de } f = \{x: (x,y) \in f \text{ para algún } y\}$$

$$I_f = \text{imagen de } f = \{y: (x,y) \in f \text{ para algún } x\}$$

A veces escribimos Dom(f) y Im(f) en lugar de D_f e I_f , respectivamente.

Las convenciones notacionales son

- (1) Dado $x \in D_f$ usaremos f(x) para denotar el único $y \in I_f$ tal que $(x, y) \in f$.
- (2) Escribimos $f:S\subseteq A\to B$ para expresar que f es una función tal que $D_f=S\subseteq A$ y $I_f\subseteq B$. Escribimos $f:A\to B$ para expresar que f es una función tal que $D_f=A$ y $I_f\subseteq B$. En ese contexto llamaremos a B conjunto de llegada (B no está determinado por f, ya que $I_f\subseteq B$).
- (3) Muchas veces, para definir una función f, lo que haremos es dar su dominio y su regla de asignación. Básicamente daremos precisamente el conjunto que es D_f y quién es f(x) para cada $x \in D_f$. Esto determina por completo a f, ya que $f = \left\{ (x, f(x)) : x \in D_f \right\}$. Algunos ejemplos son

Básico Con conjunto de llegada y flechas Con flechas y por casos
$$D_f = \omega \qquad \qquad f: \omega \to \omega \qquad \qquad f: \mathbb{N} \to \omega$$

$$f(x) = 23 \cdot x \qquad \qquad x \to 23 \cdot x \qquad \qquad x \to \begin{cases} x+1 & \text{si x es par} \\ x+2 & \text{si x es impar} \end{cases}$$

Definiciones Auxiliares

Aux. Procedimiento efectivo \mathbb{P} .

 \downarrow

Definición:

Llamaremos **procedimientos efectivos** P a aquellos que posean las siguientes características

- (1) El ejecutante de $\mathbb P$ es una persona que trabajará con papel y lápiz disponibles en forma ilimitada.
- (2) Cada paso o tarea de ℙ debe ser simple y fácil de realizar en forma efectiva por cualquier persona.
- (3) El procedimiento P comienza con cierto dato de entrada y sigue uno de dos posibles comportamientos
 - (a) P luego de cierta cantidad de pasos realizados, se detiene y da cierto dato de salida.
 - (b) \mathbb{P} nunca se detiene, generando tareas sucesivamente sin fin.

Diremos que \mathbb{P} se detiene (caso a) o no se detiene (caso b) partiendo del dato de entrada en cuestión.

(4) Hay $n, m \in \omega$ y un alfabeto Σ tales que el conjunto de datos de entrada de \mathbb{P} es $w^n \times \Sigma^{*m}$. Para ciertas (n+m)-uplas de $w^n \times \Sigma^{*m}$ el procedimiento \mathbb{P} se detendrá y para otras no.

Esta definición está con otras palabras. (Definición original en el apunte)

Teoremas

Combo 1

1. Proposición (Caracterización de conjuntos Σ -p.r.).

Un conjunto S es Σ -p.r. sii S es el dominio de alguna función Σ -p.r.

Nota: en la inducción de la prueba hacer solo el caso de la composición.

Demostración:

 $(\Longrightarrow) \ \text{Notar que } S = D_{\operatorname{Pred} \circ \chi_S^{w^n \times \Sigma^{*^m}}} \circ \text{y Pred} \circ \chi_S^{w^n \times \Sigma^{*^m}} \text{ es claramente Σ-p.r. ya que S lo es.}$

(⇐) Probaremos por inducción sobre k que para cada $F \in PR_k^{\Sigma}$, D_F es Σ -p.r.

El caso k=0, es fácil ya que $\mathrm{PR}_0^\Sigma=\left\{\mathrm{Suc},\mathrm{Pred},C_0^{0,0},C_\varepsilon^{0,0}\right\}\cup\{d_a:a\in\Sigma\}\cup\left\{p_j^{n,m}:1\leq j\leq n+m\right\}$ y $D_{\mathrm{Suc}}=\omega,D_{\mathrm{Pred}}=\mathbb{N},D_{C_0^{0,0}}=D_{C_\varepsilon^{0,0}}=\{\lozenge\}$ y $D_{p_j^{n,m}}=w^n\times\Sigma^{*m}$, que claramente son todos Σ -p.r. Por lo tanto supongamos que vale para un k fijo y veamos que se cumple también para $F\in\mathrm{PR}_{k+1}^\Sigma$.

Here varies cases. Vectors all case are $F = a_0 [a_0 - a_1]$ and $a_0 \in DD^{\Sigma}$

Hay varios casos. Veamos el caso que $F=g\circ [g_1,...,g_r]$ con $g,g_1,...,g_r\in \mathrm{PR}_k^\Sigma.$

Si $F = \emptyset$, entonces es claro que D_F es Σ -p.r.

Si $F \neq \emptyset$, tenemos entonces que r es de la forma n + m y

$$\begin{split} g:D_g \subseteq w^n \times \Sigma^{*m} &\to O \\ g_i:D_{g_i} \subseteq \omega^k \times \Sigma^{*l} &\to \omega \ \ , \, \text{para cada} \, \, i=1,...,n \\ g_i:D_{g_i} \subseteq \omega^k \times \Sigma^{*l} &\to \Sigma^*, \, \text{para cada} \, \, i=n+1,...,n+m \end{split}$$

con $O \in \{\omega, \Sigma^*\}$ y $k, l \in \omega$. Por el <u>Lema (1)</u>, hay funciones Σ -p.r. $\overline{g}_1, ..., \overline{g}_{n+m}$ las cuales son Σ -totales y

$$g_i = \overline{g}_i \mid_{g_i} \text{ para } i = 1, ..., n + m$$

Por hipótesis inductiva los conjuntos $D_g, D_{g_i},$ con i=1,...,n+m, son Σ -p.r. y por lo tanto también

$$S = \bigcup_{i=1}^{n+m} D_{g_i}$$

 $\text{Notar que} \quad \chi_{D_F}^{\omega^k \times \Sigma^{*l}} = \left(\chi_{D_g}^{w^n \times \Sigma^{*m}} \circ \left[\overline{g}_1, ..., \overline{g}_{n+m} \wedge \chi_S^{\omega^k \times \Sigma^{*l}}\right]\right) \quad \text{lo cual nos dice que D_F es Σ-p.r.} \quad \blacksquare$

 $\text{\it Lema (1): Sea } O = \{\omega, \Sigma^*\} \text{ y } n, m \in \omega. \text{ Si } f: D_f \subseteq w^n \times \Sigma^{*m} \to O \text{ es } \Sigma\text{-p.r., entonces existe una función } \Sigma\text{-p.r. } \overline{f}: w^n \times \Sigma^{*m} \to O \text{ tal que } f = \overline{f}\mid_f. \text{(En la guía 5, es el lema 18 y en el } \underline{\text{apunte el }}4.17\text{)}$

[°]El truco está en que $D_{\mathrm{Pred}} = \omega - \{0\}$ por lo tanto cada vez que $(\vec{x}, \vec{\alpha}) \notin S$ (i.e. $\chi_S^{w^n \times \Sigma^{*m}}(\vec{x}, \vec{\alpha}) = 0$), $(\vec{x}, \vec{\alpha}) \notin D_{\mathrm{Pred}} = 0$

2. **Teorema** (Neumann vence a Gödel) . Si h es Σ -recursiva, entonces h es Σ -computable.

Nota: en la inducción de la prueba hacer solo el caso $h = R(f, \mathcal{G})$, con $I_h \subseteq \omega$

با

Demostración:

Esto será probado por inducción en k que $si\ h\in R_k^\Sigma$, entonces h es Σ -computable .

El caso k=0, es fácil ya que $R_0=\mathrm{PR}_0$, entonces hay que hacer programas que computen

 $\left\{\operatorname{Suc},\operatorname{Pred},C_0^{0,0},C_\varepsilon^{0,0}\right\} \cup \left\{d_a:a\in\Sigma\right\} \cup \left\{p_j^{n,m}:1\leq j\leq n+m\right\}, \quad \text{los} \quad \text{cuales} \quad \text{son} \quad \text{todos} \quad \text{triviales}$

Suc	Pred	$C_0^{0,0}$	$C_{\varepsilon}^{0,0}$	d_a	$\overline{p_j^{n,m}}$
$N1 \leftarrow N1 + 1$	IF N1 \neq 0 GOTO L2	$N1 \leftarrow 0$	$P1 \leftarrow \varepsilon$	$P1 \leftarrow P1.a$	$N1 \leftarrow N\overline{j}$
	L1 GOTO L1				0
	$L2~N1 \leftarrow N1 \div 1$				$\mathrm{P1} \leftarrow \mathrm{P}\overline{j}$

Supongamos que la propiedad se cumple para un k fijo y veamos que se cumple también para $h \in R_{k+1}^{\Sigma}$. Hay varios casos. Veamos el caso que $h = R(f, \mathcal{G})$ con $f \in R_k^{\Sigma}$ y $\mathcal{G} \in R_k^{\Sigma}$ que son

$$\begin{split} f: S_1 \times \ldots \times S_n \times L_1 \times \ldots \times L_m &\to \omega \\ \mathcal{G}_a: \omega \times S_1 \times \ldots \times S_n \times L_1 \times \ldots \times L_m \times \Sigma^* &\to \omega, a \in \Sigma \end{split}$$

Sea $\Sigma=\{a_1,...,a_r\}$. Por hipótesis inductiva, las funciones f,\mathcal{G}_a con $a\in\Sigma$, son Σ -computables y por lo tanto tenemos las macros

$$\begin{split} \left[\mathbf{V}\overline{n+1} \leftarrow f \left(\mathbf{V}\overline{1}, ..., \mathbf{V}\overline{n}, \mathbf{W}\overline{1}, ..., \mathbf{W}\overline{m} \right) \right] \\ \left[\mathbf{V}\overline{n+2} \leftarrow \mathcal{G}_{a_i} \left(\mathbf{V}\overline{1}, ..., \mathbf{V}\overline{n+1}, \mathbf{W}\overline{1}, ..., \mathbf{W}\overline{m+1} \right) \right] \text{ con } i = 1, ..., r \end{split}$$

Podemos entonces hacer el siguiente programa (tener en cuenta que $P\overline{m+2}=\varepsilon$ al iniciar)

es fácil ver que el programa computa h^{10} , por lo tanto h es Σ -computable. (El resto de casos no los pide)

 $^{^{\}text{10}}$ Recordar que $R(f,\mathcal{G})(\vec{x},\vec{\alpha},\alpha a)=\mathcal{G}_a(\ R(f,\mathcal{G})(\vec{x},\vec{\alpha},\alpha),\vec{x},\vec{\alpha},\alpha)$. La idea es que, por ejemplo para $\vec{x},\vec{\alpha}$ y $\alpha=a_1a_2a_3$ tenemos que $\mathcal{G}_{a_3}\big(\mathcal{G}_{a_2}\big(\mathcal{G}_{a_1}(f(\vec{x},\vec{\alpha}),\vec{x},\vec{\alpha},\varepsilon),\vec{x},\vec{\alpha},a_1\big),\vec{x},\vec{\alpha},a_1a_2\big)$ por esto calculamos primero f y después en Pm+1 vamos llevando los $\varepsilon,a_1a_2,a_1a_2a_3$

Combo 2

1. Lema (Lema de división por casos para funciones Σ -p.r.) . Supongamos $f_i:D_{f_i}\subseteq w^n\times \Sigma^{*m}\to \Sigma^*$, con i=1,...,k, son funciones Σ -p.r. tales que $D_{f_i}\cap D_{f_j}=\emptyset$ para $i\neq j$. Entonces $f_1\cup...\cup f_k$ es Σ -p.r. Nota: hacer el caso k=2, n=2 y m=1

Demostración:

Supongamos k = 2, n = 2 y m = 1. Por lo tanto tenemos que

$$\overline{f}_i: \omega \times \omega \times \Sigma^* \to \Sigma^*, i = 1, 2$$

son funciones Σ -p.r. tales que $f_i=\overline{f}_i\mid_{D_{f_i}}, i=1,2$ por el <u>Lema (1)</u>. Luego por la <u>Proposición (Caracterización de Conjuntos Σ -p.r.), los conjuntos D_{f_1} y D_{f_2} son Σ -p.r. y por lo tanto por el <u>Lema (o.p de Conjuntos Σ -p.r.), $D_{f_1}\cup D_{f_2}$ también. Finalmente dado que</u></u>

$$f_1 \cup f_2 = \left(\lambda \alpha \beta [\alpha \beta] \circ \left[\quad \lambda x \alpha [\alpha^x] \circ \left[\chi_{D_{f_1}}^{w^n \times \Sigma^{*^m}}, \overline{f}_1 \right] \quad , \quad \lambda x \alpha [\alpha^x] \circ \left[\chi_{D_{f_2}}^{w^n \times \Sigma^{*^m}}, \overline{f}_2 \right] \quad \right] \right) \mid_{D_{f_1} \cup D_{f_2}} \left[\left(\frac{\lambda x \alpha [\alpha^x]}{\lambda x \alpha [\alpha^x]} \right) \circ \left[\frac{\lambda x \alpha [\alpha^x]}{\lambda x \alpha [\alpha^x]} \right] \right] \mid_{D_{f_1} \cup D_{f_2}} \left[\frac{\lambda x \alpha [\alpha^x]}{\lambda x \alpha [\alpha^x]} \right] \left[\frac{\lambda x \alpha [\alpha^x]}{\lambda x \alpha [\alpha^x]} \right] \right] = 0$$

y el <u>Lema (Restricción de Dominios Σ -p.r.</u>) , tenemos que $f_1 \cup f_2$ es Σ -p.r..

 $\label{eq:lema} \textit{Lema (1)}: \ \ \text{Sea} \ O = \{\omega, \Sigma^*\} \ \text{y} \ n, m \in \omega. \ \text{Si} \ f : D_f \subseteq w^n \times \Sigma^{*m} \to O \ \text{es} \ \Sigma\text{-p.r., entonces existe una función} \\ \Sigma\text{-p.r.} \ \overline{f} : w^n \times \Sigma^{*m} \to O \ \text{tal que} \ f = \overline{f} \mid_f. \ (\text{En la guía 5, es el lema 18 y en el } \underline{\text{apunte el }}4.17\)$

2. Proposición (Caracterización básica de conjuntos Σ -enumerables).

Sea $S \subseteq w^n \times \Sigma^{*m}$ un conjunto no vacío. Entonces son equivalentes

- (1) S es Σ -enumerable.
- (2) Hay un programa $\mathcal{P} \in \operatorname{Pro}^{\Sigma}$ tal que
 - (a) Para cada $x \in \omega$, tenemos que \mathcal{P} se detiene partiendo desde el estado ||x||| y llega a un estado de la forma $((x_1,...,x_n,y_1,...),(\alpha_1,...,\alpha_m,\beta_1,...))$ donde $(x_1,...,x_n,\alpha_1,...,\alpha_m) \in S$.
 - (b) Para cada $(x_1,...,x_n,\alpha_1,...,\alpha_m) \in S$ hay un $x \in \omega$ tal que \mathcal{P} se detiene partiendo desde el estado $\|x\|$ y llega a un estado de la forma $((x_1,...,x_n,y_1,...),(\alpha_1,...,\alpha_m,\beta_1,...))$.

Nota: hacer el caso n = 2 y m = 1

4

Demostración:

Haremos el caso n=2 y m=1, es decir $S\subseteq\omega\times\omega\times\Sigma^*$.

$$(1) \Longrightarrow (2)$$

Ya que S es no vacío, por definición hay una $F:\omega\to\omega\times\omega\times\Sigma^*$ tal que $I_F=S$ y $F_{(i)}$ es Σ -computable, para cada i=1,2,3. Entonces por el <u>Primer Manantial</u> existen las macros

$$\begin{bmatrix} \text{V2} \leftarrow F_{(1)}(\text{V1}) \end{bmatrix} \qquad \begin{bmatrix} \text{V2} \leftarrow F_{(2)}(\text{V1}) \end{bmatrix} \qquad \begin{bmatrix} \text{W1} \leftarrow F_{(3)}(\text{V1}) \end{bmatrix}$$

$$\text{Y damos el programa } \mathcal{P} \qquad \qquad \begin{bmatrix} \text{P1} \leftarrow F_{(3)}(\text{N1}) \end{bmatrix} \\ \begin{bmatrix} \text{N2} \leftarrow F_{(2)}(\text{N1}) \end{bmatrix} \\ \begin{bmatrix} \text{N1} \leftarrow F_{(1)}(\text{N1}) \end{bmatrix}$$

Primero notar que para cada $x \in \omega$, \mathcal{P} siempre se detiene partiendo de un estado ||x|| porque las $F_{(i)}$ son Σ -totales, entonces sus macros siempre se detienen. Luego es fácil ver que **cumplen las condiciones**

- (a) Porque ya sabemos que para cada $x \in \omega$, \mathcal{P} se detiene partiendo desde el estado $\|x\|$ y además como $F(x) = \left(F_{(1)}(x), F_{(2)}(x), F_{(3)}(x)\right) = (x_1, x_2, \alpha_1) \in S$ entonces \mathcal{P} se detiene con un estado de la forma $((x_1, x_2, y_1), (\alpha_1, \beta_1, \ldots))$ donde $(x_1, x_2, \alpha_1) \in S$.
- (b) Porque para cada $(x_1,x_2,\alpha_1)\in S$, sabemos por definición que existe un $x\in\omega$ tal que $F(x)=\left(F_{(1)}(x),F_{(2)}(x),F_{(3)}(x)\right)=(x_1,x_2,\alpha_1)$. Y como $\mathcal P$ siempre se detiene, incluso partiendo del estado $\|x\|$, llegará a un estado de la forma $((x_1,x_2,y_1),(\alpha_1,\beta_1,\ldots))$.
- $(1) \Leftarrow (2)$

Supongamos $\mathcal{P} \in \operatorname{Pro}^{\Sigma}$ que cumple (a) y (b) de (2).

Sean

$$\mathcal{P}_1 = \mathcal{P} \text{ N1} \leftarrow \text{N1} \qquad \qquad \mathcal{P}_2 = \mathcal{P} \text{ N2} \leftarrow \text{N2} \qquad \qquad \mathcal{P}_3 = \mathcal{P} \text{ P1} \leftarrow \text{P1}$$

definamos las funciones

$$F_1 = \Psi^{0,1,\#}_{\mathcal{P}_1}$$
 $F_2 = \Psi^{0,1,\#}_{\mathcal{P}_2}$ $F_3 = \Psi^{0,1,*}_{\mathcal{P}_3}$

Notar que cada F_i es Σ -computable y tienen dominio igual a ω . Sea $F=[F_1,F_2,F_3]$, por definición $D_F=\omega$ y ya que $F_i=F_{(i)}$, para cada i=1,2,3 tenemos que cada $F_{(i)}$ es Σ -computable. Resta ver que $F_i=F_{(i)}$

- $I_F\subseteq S$ Por (a) tenemos que $\mathcal P$ para todo $x\in\omega$ partiendo de $\|x\|$ llega a un estado de la forma $((x_1,x_2,y_1),(\alpha_1,\beta_1,\ldots))$ donde $(x_1,x_2,\alpha_1)\in S$. Por lo tanto $F(x)=(F_1(x),F_2(x),F_3(x))=(x_1,x_2,\alpha_1)\in S$ entonces $I_F\subseteq S$.
- $S\subseteq I_F$ Por (b) tenemos que para cada $(x_1,x_2,\alpha_1)\in S$, hay un $x\in\omega$ tal que $\mathcal P$ partiendo de $\|x\|$ llega a un estado de la forma $((x_1,x_2,y_1),(\alpha_1,\beta_1,\ldots))$. Por lo tanto $F(x)=(F_1(x),F_2(x),F_3(x))=(x_1,x_2,\alpha_1)\in I_F$ entonces $S\subseteq I_F$.

Entonces finalmente $I_F = S$ y por lo tanto S es Σ -enumerable.

Combo 3

1. Teorema (Gödel vence a Neumann).

Si
$$f:D_f\subseteq w^n imes \Sigma^{*m} o \Sigma^*$$
 es Σ -computable, entonces f es Σ -recursiva.

 \rightarrow

Demostración:

Sea \mathcal{P}_0 un programa que compute a f. Primero veamos que f es $(\Sigma \cup \Sigma_p)$ -recursiva. Notar que 11

$$f = E_{*\,1}^{n,m} \circ \left[T^{n,m} \circ \left[p_1^{n,m},...,p_{n+m}^{n,m},C_{\mathcal{P}_0}^{n,m} \right] \right., p_1^{n,m},...,p_{n+m}^{n,m},C_{\mathcal{P}_0}^{n,m} \right]$$

donde $p_1^{n,m},...,p_{n+m}^{n,m}$ y $C_{\mathcal{P}_0}^{n,m}$ son respecto al alfabeto $\Sigma \cup \Sigma_p$, es decir que tienen dominio $\omega^n \times (\Sigma \cup \Sigma_p)^{*m}$. Esto nos dice que f es $(\Sigma \cup \Sigma_p)$ -recursiva. Osea que el <u>Teorema (Independencia del Alfabeto)</u> nos dice que f es Σ -recursiva.

2. **Teorema** (Caracterización de conjuntos Σ -efectivamente computable).

Sea $S \subseteq w^n \times \Sigma^{*m}$. Son equivalentes

- (a) S es Σ -efectivamente computable.
- (b) $S y (w^n \times \Sigma^{*m}) S son \Sigma$ -enumerables

Nota: haga solo $(b) \Longrightarrow (a)$. La prueba está al final de la Guía 3

 \hookrightarrow

Demostración:

$$(b) \Longrightarrow (a)$$

11

Si $S = \emptyset$ o $S = w^n \times \Sigma^{*m}$ es claro que se cumple (a).

Así que supongamos que $S \neq \emptyset$ y $S \neq w^n \times \Sigma^{*m}$ por lo cual $(w^n \times \Sigma^{*m}) - S \neq \emptyset$.

Además sea \mathbb{P}_1 un procedimiento efectivo que enumere a S y \mathbb{P}_2 un procedimiento efectivo que enumere a $(w^n \times \Sigma^{*m}) - S$. Ahora sí es fácil ver que el siguiente procedimiento efectivo \mathbb{P} computa $\chi_S^{w^n \times \Sigma^{*m}}$

Sea
$$(\vec{x}, \vec{\alpha}) \in w^n \times \Sigma^{*m}$$
.

Etapa 1

Darle a la variable T el valor 0.

Etapa 2

Realizar \mathbb{P}_1 con el valor T como entrada para obtener de salida la ulpa $\left(\vec{y}, \vec{eta}\right)$.

Etapa 3

Realizar \mathbb{P}_2 con el valor T como entrada para obtener de salida la ulpa $(\vec{z}, \vec{\gamma})$.

Etapa 4

Si $(\vec{y}, \vec{\beta}) = (\vec{x}, \vec{\alpha})$, entonces detenerse y dar como dato de salida el valor 1.

Si $(\vec{z}, \vec{\gamma}) = (\vec{x}, \vec{\alpha})$, entonces detenerse y dar como dato de salida el valor 0.

Si no sucede ninguna de las dos, aumentar T en 1 y volver a la Etapa 2.

ya que, los procedimientos \mathbb{P}_1 y \mathbb{P}_2 siempre terminan y además para todo $(\vec{x}, \vec{\alpha}) \in w^n \times \Sigma^{*m}$ se cumple que $(\vec{x}, \vec{\alpha}) \in S$ o $(\vec{x}, \vec{\alpha}) \notin S$, o análogamente $(\vec{x}, \vec{\alpha}) \in (w^n \times \Sigma^{*m} - S)$. Osea que siempre existe algún $t \in \omega$ tal que haga detenerse a \mathbb{P} dando como dato de salida 1 o 0 respectivamente.

Entonces S es Σ -efectivamente computable.

$$f = \underbrace{E_{*\,1}^{n,m}}_{\text{resultado de P1, importante }(^*)} \circ \left[\underbrace{T^{n,m} \circ \left[p_1^{n,m}, \ldots, p_{n+m}^{n,m}, C_{\mathcal{P}_0}^{n,m}\right]}_{\text{cantidad de pasos para que termine}}, \underbrace{p_1^{n,m}, \ldots, p_{n+m}^{n,m}}_{\text{input}}, \underbrace{C_{\mathcal{P}_0}^{n,m}}_{\text{programa}}\right] \right]$$

Combo 4

1. Proposición (misma que la del combo 2).

L

2. Lema (Lema de la sumatoria).

Sea
$$\Sigma$$
 un alfabeto finito. Si $f:\omega\times S_1\times...\times S_n\times L_1\times...\times L_m\to\omega$ es Σ -p.r. , con $S_1,...,S_n\subseteq\omega$ y $L_1,...,L_m\subseteq\Sigma^*$ no vacíos, entonces la función $\lambda xy\vec{x}\vec{\alpha}\left[\sum_{t=x}^{t=y}f(t,\vec{x},\vec{\alpha})\right]$ es Σ -p.r. Nota: hacer el caso $n=2$ y $m=1$

Demostración:

Haremos el caso n=2 y m=1, osea que $f:\omega\times S_1\times S_2\times L_1\to\omega$, con $S_1,S_2\subseteq\omega$ y $L_1\subseteq\Sigma^*$. Sea $G=\lambda txx_1x_2\alpha_1\left[\sum_{i=x}^{i=t}f(i,x_1,x_2,\alpha_1)\right]$. Ya que (es un simple cambio de lugar las variables)

$$\lambda xyx_1x_2\alpha_1\left[\sum_{t=x}^{t=y}f(t,x_1,x_2,\alpha_1)\right]=G\circ\left[p_2^{2+2,1},p_1^{2+2,1},p_3^{2+2,1},p_4^{2+2,1},p_5^{2+2,1}\right]$$

basta probar que G es Σ -p.r. Primero notar que

$$\begin{split} G(0,x,x_1,x_2,\alpha_1) &= \begin{cases} 0 & \text{si } x > 0 \\ f(0,x_1,x_2,\alpha_1) & \text{si } x = 0 \end{cases} \\ G(t+1,x,x_1,x_2,\alpha_1) &= \begin{cases} 0 & \text{si } x > t+1 \\ G(t,x,x_1,x_2,\alpha_1) + f(t+1,x_1,x_2,\alpha_1) & \text{si } x \leq t+1 \end{cases} \end{split}$$

osea que si definimos

$$\begin{split} h: \omega \times S_1 \times S_2 \times L_1 &\to \omega \\ (x, x_1, x_2, \alpha_1) &\to \begin{cases} 0 & \text{si } x > 0 \\ f(0, x_1, x_2, \alpha_1) & \text{si } x = 0 \end{cases} \\ g: \omega^3 \times S_1 \times S_2 \times L_1 &\to \omega \\ (A, t, x, x_1, x_2, \alpha_1) &\to \begin{cases} 0 & \text{si } x > t+1 \\ A + f(t+1, x_1, x_2, \alpha_1) & \text{si } x \leq t+1 \end{cases} \end{split}$$

tenemos que G = R(h, g). Es decir que sólo nos falta probar que h y g son Σ -p.r. Sean así

$$\begin{split} D_1 &= \{(x,x_1,x_2,\alpha_1) \in \omega \times S_1 \times S_2 \times L_1 : x > 0\} \\ D_2 &= \{(x,x_1,x_2,\alpha_1) \in \omega \times S_1 \times S_2 \times L_1 : x = 0\} \\ H_1 &= \{(z,t,x,x_1,x_2,\alpha_1) \in \omega^3 \times S_1 \times S_2 \times L_1 : x > t + 1\} \\ H_2 &= \{(z,t,x,x_1,x_2,\alpha_1) \in \omega^3 \times S_1 \times S_2 \times L_1 : x \leq t + 1\} \end{split}$$

Notar que

$$\begin{split} h &= C_0^{2+1,1} \mid_{D_1} \cup \lambda x x_1 x_2 \alpha_1 [f(0,x_1,x_2,\alpha_1)] \mid_{D_2} \\ g &= C_0^{2+3,1} \mid_{H_1} \cup \lambda A t x x_1 x_2 \alpha_1 [A + f(t+1,x_1,x_2,\alpha_1)] \mid_{H_2} \end{split}$$

Para probarlo, vamos a ver que todas las funciones y conjuntos que aparecen en h y g son Σ -p.r.

Trivialmente $C_0^{2+1,1}$ y $C_0^{2+3,1}$ son Σ -p.r. Luego como f es Σ -p.r. y

$$\lambda x x_1 x_2 \alpha_1[f(0,x_1,x_2,\alpha_1)] = f \circ \left[C_0^{2+1,1}, p_2^{2+1,1}, p_3^{2+1,1}, p_4^{2+1,1} \right]$$

$$\lambda A t x x_1 x_2 \alpha_1[A + f(t+1,x_1,x_2,\alpha_1)] = \lambda x y [x+y] \circ \left[p_1^{2+3,1}, f \circ \left[\operatorname{Suc} \circ p_2^{2+3,1}, p_4^{2+3,1}, p_5^{2+3,1}, p_6^{2+3,1} \right] \right]$$

tenemos que ambas funciones son Σ -p.r. Resta ver que los conjuntos D_1, D_2, H_1 y H_2 son Σ -p.r. Primero notar que como f es Σ -p.r. por la <u>Proposición (Caracterización de Conjuntos Σ -p.r.)</u>, tengo que D_f también es Σ -p.r., por lo tanto $\chi_{D_1}^{2+1,1}$ es Σ -p.r. Ahora sí, por el <u>Lema (o.p de Predicados Σ -p.r.)</u>

$$\chi_{D_1}^{2+1,1} = \left(\chi_{D_f}^{2+1,1} \wedge \lambda x x_1 x_2 \alpha_1 [x > 0]\right)$$
$$\chi_{D_2}^{2+1,1} = \left(\chi_{D_f}^{2+1,1} \wedge \lambda x x_1 x_2 \alpha_1 [x = 0]\right)$$

tenemos que D_1 y D_2 son Σ -p.r.

Pero además, como dijimos, $D_f = \omega \times S_1 \times S_2 \times L_1$ también es Σ -p.r., nos dice que S_1, S_2, L_1 también son Σ -p.r. Entonces $R = \omega^3 \times S_1 \times S_2 \times L_1$ también es Σ -p.r., todo gracias al <u>Lema (Caracterización de Conjuntos Rectangulares Σ -p.r.)</u>. Y de nuevo por el <u>Lema (o.p de Predicados Σ -p.r.)</u>

$$\begin{split} \chi_{H_1}^{2+3,1} &= \left(\chi_R^{2+3,1} \wedge \lambda z t x x_1 x_2 \alpha_1 [x > t+1]\right) \\ \chi_{H_2}^{2+3,1} &= \left(\chi_R^{2+3,1} \wedge \lambda z t x x_1 x_2 \alpha_1 [x \leq t+1]\right) \end{split}$$

tenemos que H_1 y H_2 son Σ -p.r.

Juntando todo por el <u>Lema (Restricción de Dominios Σ -p.r.</u>), todas las funciones usadas en h y g son Σ -p.r., pero notar que $D_1 \cap D_2 = \emptyset$ y $H_1 \cap H_2 = \emptyset$, entonces por el <u>Lema (División por Casos para funciones Σ -p.r.</u>), tenemos que h y g son Σ -p.r. Por lo tanto G = R(h,g) es Σ -p.r.

Combo 5

1. Lema. Sea $\Sigma = \{@, \%, !\}$. Sea $f: S_1 \times S_2 \times L_1 \times L_2 \to \omega$ con $S_1, S_2 \subseteq \omega$ y $L_1, L_2 \subseteq \Sigma^*$ no vacíos y sea $\mathcal G$ una familia Σ -indexada de funciones tal que $\mathcal G_a: \omega \times S_1 \times S_2 \times L_1 \times L_2 \times \Sigma^* \to \omega$ para cada $a \in \Sigma$. Si f y cada $\mathcal G_a$ son Σ -efectivamente computables, **entonces** $R(f, \mathcal G)$ lo es. Nota: es un ej de la Guía 5.

Demostración:

Dado que f, $\mathcal{G}_{@}$, $\mathcal{G}_{\%}$ y $\mathcal{G}_{!}$ son Σ-efectivamente computables, entonces existen programas \mathbb{P}_{f} , $\mathbb{P}_{@}$, $\mathbb{P}_{\%}$ y $\mathbb{P}_{!}$ que las computan respectivamente. Entonces notar que el siguiente procedimiento efectivo \mathbb{P} computa $R(f,\mathcal{G})$

Sea
$$(x_1,x_2,\alpha_1,\alpha_2,\alpha)\in S_1\times S_2\times L_1\times L_2\times \Sigma^*$$
 Etapa 1

Darle a la variable I el valor ε y a la variable J el valor α .

Realizar $\mathbb{P}_{\!f}$ con la entrada $(x_1,x_2,\alpha_1,\alpha_2)$ y guardar la salida en la variable A.

Etapa 2

Si $I = \alpha$, entonces detenerse y dar como dato de salida el valor A.

Etapa 3

Realizar $B = [J]_{|J|}$ y guardar la salida. (notar que es un solo símbolo)

Etapa 4

Si $B=\mathbb{Q}$, realizar $\mathbb{P}_{\mathbb{Q}}$ con la entrada $(A,x_1,x_2,\alpha_1,\alpha_2,I)$ y guardar la salida en la variable A.

Si B=%, realizar $\mathbb{P}_{\!\%}$ con la entrada $(A,x_1,x_2,\alpha_1,\alpha_2,I)$ y guardar la salida en la variable A.

Si B=!, realizar $\mathbb{P}_!$ con la entrada $(A,x_1,x_2,\alpha_1,\alpha_2,I)$ y guardar la salida en la variable A. Etapa 5

Agregar el símbolo B al final de I, realizar $J = {}^{\sim}J$ y volver a la Etapa 2.

y por ello $\mathbf{R}(f,\mathcal{G})$ es Σ -efectivamente computable.

2. Lema (Lema de cuantificación acotada) . Sea Σ un alfabeto finito. Sea $P: S \times S_1 \times ... \times S_n \times L_1 \times ... \times L_m \to \omega$ un predicado Σ -p.r., con $S, S_1, ..., S_n \subseteq \omega$ y $L_1, ..., L_m \subseteq \Sigma^*$ no vacíos. Supongamos $\overline{S} \subseteq S$ es Σ -p.r. Entonces $\lambda x \vec{x} \vec{\alpha} \left[\left(\forall t \in \overline{S} \right)_{(t \leq x)} P(t, \vec{x}, \vec{\alpha}) \right]$ es Σ -p.r. \hookrightarrow

Demostración:

Sea

$$\overline{P} = P \mid_{\overline{S} \times S_1 \times \ldots \times S_n \times L_1 \times \ldots \times L_m} \cup C_1^{1+n,m} \mid_{\left(\omega - \overline{S}\right) \times S_1 \times \ldots \times S_n \times L_1 \times \ldots \times L_m}$$

veamos que es Σ -p.r.

Como $\overline{S} \times S_1 \times ... \times S_n \times L_1 \times ... \times L_m \cap \left(\omega - \overline{S}\right) \times S_1 \times ... \times S_n \times L_1 \times ... \times L_m = \emptyset, \ P \ y \ C_1^{1+n,m}$ son Σ -p.r., por el \underline{Lema} ($\underline{Divisi\'on}$ por \underline{Casos} para funciones Σ -p.r.) y el \underline{Lema} ($\underline{Restricci\'on}$ de $\underline{Dominios}$ Σ -p.r.), alcanza con ver que los siguientes conjuntos son Σ -p.r.

$$\overline{S} \times S_1 \times \ldots \times S_n \times L_1 \times \ldots \times L_m \qquad \text{y} \qquad \left(\omega - \overline{S}\right) \times S_1 \times \ldots \times S_n \times L_1 \times \ldots \times L_m$$

Por la <u>Proposición (Caracterización de Conjuntos Σ -p.r.)</u> sabemos que $D_P = S \times S_1 \times ... \times S_n \times L_1 \times ... \times L_m$ es Σ -p.r. , por lo tanto, por el <u>Lema (Caracterización de Conjuntos Rectangulares Σ -p.r.)</u> , $S_1, ..., S_n, L_1, ..., L_m$ son Σ -p.r. y además como \overline{S} es Σ -p.r., por el <u>Lema (o.p de Conjuntos Σ -p.r.)</u> , $\left(\omega - \overline{S}\right)$ también. Entonces nuevamente por el <u>Lema (Caracterización de Conjuntos Rectangulares Σ -p.r.)</u> , ambos conjuntos son Σ -p.r. Así \overline{P} es Σ -p.r. Notar que $D_{\overline{P}} = \omega \times S_1 \times ... \times S_n \times L_1 \times ... \times L_m$. Además, como

$$\begin{split} \lambda x \vec{x} \vec{\alpha} \left[\left(\forall t \in \overline{S} \right)_{(t \leq x)} P(t, \vec{x}, \vec{\alpha}) \right] &= \lambda x \vec{x} \vec{\alpha} \left[\prod_{t=0}^{t=x} \overline{P}(t, \vec{x}, \vec{\alpha}) \right] \\ &= \lambda x y \vec{x} \vec{\alpha} \left[\prod_{t=x}^{t=y} \overline{P}(t, \vec{x}, \vec{\alpha}) \right] \circ \left[C_0^{1+n,m}, p_1^{1+n,m}, ..., p_{1+n+m}^{1+n,m} \right] \end{split}$$

el <u>Lema de la Sumatoria</u> implica que $\lambda x \vec{x} \vec{\alpha} \left[\left(\forall t \in \overline{S} \right)_{(t \leq x)} P(t, \vec{x}, \vec{\alpha}) \right]$ es Σ -p.r.

Combo 6

1. Lema (Σ -efectivamente computable implica Σ -efectivamente enumerable).

Si $S \subseteq w^n \times \Sigma^{*m}$ es Σ -efectivamente computable entonces S es Σ -efectivamente enumerable.

۲

Demostración:

Si $S = \emptyset$, por definición es Σ -efectivamente enumerable.

Supongamos entonces que $S \neq \emptyset$ y fijamos $(\vec{z}, \vec{\gamma}) \in S$. Sea \mathbb{P}_S el procedimiento efectivo que compute a $\chi_S^{w^n \times \Sigma^{*m}}$. Sea \mathbb{P}_1 un procedimiento efectivo que enumere a $w^n \times \Sigma^{*m}$, usando las bajadas y $*^{\leq}$, que ya sabemos que son Σ -efectivamente computable. Entonces \mathbb{P}_1 sería

```
Sea x\in\omega Etapa 1 Si x=0, entonces detenerse y dar como dato de salida (0,0,0,...,\varepsilon,\varepsilon,\varepsilon,...) Etapa 2 Detenerse y dar como dato de salida \left((x)_1,...,(x)_n,*^{\leq}\left((x)_{n+1}\right),...,*^{\leq}\left((x)_{(n+m)}\right)\right)
```

Entonces el siguiente procedimiento efectivo $\mathbb P$ enumera a S

```
Sea x \in \omega Etapa 1 
Realizar \mathbb{P}_1 con la entrada x para obtener como salida a un (\vec{x}, \vec{\alpha}) \in w^n \times \Sigma^{*m}. Etapa 2 
Realizar \mathbb{P}_S con la entrada (\vec{x}, \vec{\alpha}) para obtener como salida un booleano e. Etapa 3 
Si e=1, entonces detenerse y dar como dato de salida (\vec{x}, \vec{\alpha}). 
Si e=0, entonces detenerse y dar como dato de salida (\vec{z}, \vec{\gamma}).
```

y por ello S es Σ -efectivamente enumerable.

2. Teorema (Caracterización de conjuntos Σ -recursivamente enumerable) .

Dado $S \subseteq w^n \times \Sigma^{*m}$. Son equivalentes

- (1) S es Σ -recursivamente enumerable.
- (2) $S = I_F$, para alguna $F : D_F \subseteq \omega^k \times \Sigma^{*l} \to w^n \times \Sigma^{*m}$ tal que cada $F_{(i)}$ es Σ -recursiva.
- (3) $S = D_f$, para alguna función Σ -recursiva f.

Nota: haga solo la prueba $(2) \Longrightarrow (3)$, caso k = l = 1 y n = m = 2

Demostración:

$$(2) \Longrightarrow (3)$$

Haremos el caso k=l=1 y n=m=2, osea que $S\subseteq\omega^2\times\Sigma^{*2}$ y $F:D_F\subseteq\omega\times\Sigma^*\to\omega^2\times\Sigma^{*2}$ es tal que $I_F=S$ y $F_{(1)},F_{(2)},F_{(3)}$ y $F_{(4)}$ son Σ -recursivas.

 \hookrightarrow

Gracias al <u>Teorema (Neumann vence a Gödel</u>), para cada $i \in \{1, 2, 3, 4\}$, las funciones $F_{(i)}$ son Σ -computable, entonces por definición existen los programas \mathcal{P}_i que las computan. Sea \leq un orden total sobre Σ . Definimos

$$H_i = \lambda t x_1 \alpha_1 \big[\neg \mathrm{Halt}^{1,1}(t,x_1,\alpha_1,\mathcal{P}_i) \big]$$
 (te dice si el programa \mathcal{P}_i no se detiene partiendo de (x_1,α_1) en t pasos)

Notar que $D_{H_i} = \omega \times \omega \times \Sigma^*$ y H_i es Σ -mixta. Además sabemos que $\mathrm{Halt}^{1,1}$ es $\left(\Sigma \cup \Sigma_p\right)$ -p.r. por lo tanto resulta fácil que H_i es $\left(\Sigma \cup \Sigma_p\right)$ -p.r. Entonces por el $\underline{\mathit{Teorema}}$ ($\underline{\mathit{Independencia}}$ del $\underline{\mathit{Alfabeto}}$), H_i es Σ -p.r., lo cual por el $\underline{\mathit{Segundo Manantial}}$ existen las macros

[IF
$$\neg H_i(V2, V1, W1)$$
 GOTO A1]

pero para usarlas de forma más intuitiva, las escribimos como

[IF
$$\neg$$
Halt^{1,1}(V2, V1, W1) GOTO A1]

Luego para i = 1, 2 definimos

$$E_i = \lambda x t x_1 \alpha_1 \left[x \neq E_{\#\,1}^{1,1}(t,x_1,\alpha_1,\mathcal{P}_i) \right]$$
 (te dice si el programa \mathcal{P}_i en t pasos devuelve $x)$

Y para i = 3, 4, definimos

$$E_i = \lambda t x_1 \alpha_1 \alpha \left[\alpha \neq E_{*\,1}^{1,1}(t,x_1,\alpha_1,\mathcal{P}_i) \right]$$
 (te dice si el programa \mathcal{P}_i en t pasos devuelve α)

Notar que los predicados E_i son Σ -mixtos. Además sabemos que $E_{\#\,1}^{1,1}$ y $E_{*\,1}^{1,1}$ son $(\Sigma \cup \Sigma_p)$ -p.r, por lo tanto resulta fácil que los E_i son $(\Sigma \cup \Sigma_p)$ -p.r. Entonces por el <u>Teorema (Independencia del Alfabeto)</u>, cada E_i es Σ -p.r., lo cual por el <u>Segundo Manantial</u> existen las macros

$$\begin{array}{ll} [\text{ IF } E_i(\text{V2, V3, V1, W1}) \text{ GOTO A1}] & [\text{ IF } E_i(\text{V2, V1, W1, W2}) \text{ GOTO A1}] \\ & (\text{para } i=1,2) & (\text{para } i=3,4) \end{array}$$

pero para usarlas de forma más intuitiva, las escribimos como

$$\left[\text{ IF V2} \neq E_{\# \, 1}^{1,1}(\text{V3, V1, W1}, \mathcal{P}_i) \text{ GOTO A1} \right] \qquad \left[\text{ IF W2} \neq E_{* \, 1}^{1,1}(\text{V2, V1, W1}, \mathcal{P}_i) \text{ GOTO A1} \right] \\ \qquad \left(\text{para } i = 1, 2 \right) \qquad \qquad \left(\text{para } i = 3, 4 \right)$$

Ahora ya que las funciones $f_1 = \lambda x[(x)_1]$, $f_2 = \lambda x[(x)_2]$ y $f_3 = \circ \lambda x[*\le ((x)_3)]$ son Σ -p.r., nuevamente por el <u>Teorema (Independencia del Alfabeto</u>), son Σ -p.r., osea que por el <u>Segundo Manantial</u> existen las macros

[V2
$$\leftarrow f_1(V1)$$
] [V2 $\leftarrow f_2(V1)$] [P1 $\leftarrow f_3(V1)$]

pero para usarlas de forma más intuitiva, las escribimos como

$$[V2 \leftarrow (V1)_1] \quad [V2 \leftarrow (V1)_2] \quad [P1 \leftarrow * \leq (V1)_3]$$

Ahora sí, sea $\mathcal P$ el siguiente programa de S^Σ

L1
$$N20 \leftarrow N20 + 1$$

 $[N10 \leftarrow (N20)_1]$
 $[N3 \leftarrow (N20)_2]$
 $[P3 \leftarrow * \leq (N20)_3]$
 $[IF \neg Halt^{1,1}(N10, N3, P3, \mathcal{P}_1) \text{ GOTO L1}]$
 $[IF \neg Halt^{1,1}(N10, N3, P3, \mathcal{P}_2) \text{ GOTO L1}]$
 $[IF \neg Halt^{1,1}(N10, N3, P3, \mathcal{P}_3) \text{ GOTO L1}]$
 $[IF \neg Halt^{1,1}(N10, N3, P3, \mathcal{P}_4) \text{ GOTO L1}]$
 $[IF N1 \neq E_{\#1}^{1,1}(N10, N3, P3, \mathcal{P}_4) \text{ GOTO L1}]$
 $[IF N2 \neq E_{\#1}^{1,1}(N10, N3, P3, \mathcal{P}_2) \text{ GOTO L1}]$
 $[IF P1 \neq E_{*1}^{1,1}(N10, N3, P3, \mathcal{P}_3) \text{ GOTO L1}]$

es fácil entender el programa si lo ves por partes y teniendo en cuenta que toma como entrada $(x_1,x_2,\alpha_1,\alpha_2)$

- La línea 2 genera un candidato t a cantidad de pasos.
- Las líneas 3 y 4 generan un candidato (y_1, γ_2) para la entrada de los $F_{(i)}$.
- Las líneas del 5 al 8 verifican si $F_{(1)}, F_{(2)}, F_{(3)}$ y $F_{(4)}$ se detienen en t pasos, con la entrada (y_1, γ_2) .
- Las líneas del 9 al 12 verifican si $F_{(1)}, F_{(2)}, F_{(3)}$ y $F_{(4)}$ devuelven x_1, x_2, α_1 y α_2 respectivamente.
- Si alguna verificación **no** es cierta, se vuelve a la línea 1 y repite el proceso con nuevos candidatos.

Finalmente, como $F = \left[F_{(1)}, F_{(2)}, F_{(3)}, F_{(4)}\right]$ y $I_F = S$, \mathcal{P} se detiene sólo cuando $(x_1, x_2, \alpha_1, \alpha_2) \in S$. Sabiendo esto, es fácil ver que computa la función $p_1^{2,2}|_S$. Entonces, listo porque $p_1^{2,2}|_S$ es Σ -computable, por lo cual es Σ -recursiva por el <u>Teorema (Gödel vence a Neumann</u>), y trivialmente $\mathrm{Dom}\left(p_1^{2,2}|_S\right) = S$.

Combo 7

1. Lema (Lema de minimización acotada).

Sean $n,m\geq 0$. Sea $P:D_P\subseteq \omega\times w^n\times \Sigma^{*m}\to \omega$ un predicado Σ -p.r. Entonces

- (a) M(P) es Σ -recursiva.
- (b) Si hay una función Σ -p.r. $f: w^n \times \Sigma^{*m}$ tal que $M(P)(\vec{x}, \vec{\alpha}) = \min_t P(t, \vec{x}, \vec{\alpha}), \ para \ cada \ (\vec{x}, \vec{\alpha}) \in D_{M(P)}$ entonces M(P) es Σ -p.r.

 \rightarrow

Demostración:

(a) (Idea básica, hacer que P sea Σ -total y que siga siendo Σ -p.r.)

Definimos el siguiente predicado, que es Σ -total y pone ceros donde P no estaba definida

$$\overline{P} = P \cup C_0^{1+n,m}|_{(\omega \times w^n \times \Sigma^{*^m}) - D_P}$$

Dado que P es Σ -p.r., por la $\underline{Proposici\'on}$ ($\underline{Caracterizaci\'on}$ de $\underline{Conjuntos}$ Σ - $\underline{p.r.}$), D_P también. Entonces por el \underline{Lema} ($\underline{o.p}$ de $\underline{Conjuntos}$ Σ - $\underline{p.r.}$) tengo que ($\omega \times w^n \times \Sigma^{*m}$) — D_P es Σ -p.r. y por lo tanto, por el \underline{Lema} ($\underline{Restricci\'on}$ de $\underline{Dominios}$ Σ - $\underline{p.r.}$), $C_0^{1+n,m}|_{(\omega \times w^n \times \Sigma^{*m})-D_P}$ también. Como trivialmente $D_P \cap ((\omega \times w^n \times \Sigma^{*m})-D_P) = \emptyset$ por el \underline{Lema} ($\underline{Divisi\'on}$ \underline{por} \underline{Casos} \underline{para} $\underline{funciones}$ Σ - $\underline{p.r.}$) \overline{P} es Σ -p.r.

Ahora es fácil ver que $M(P)=M\left(\overline{P}\right)$ ya que la minimización está definida cuando el predicado es 1. Osea

$$\{t \in \omega : P(t, \vec{x}, \vec{\alpha}) = 1\} = \{t \in \omega : \overline{P}(t, \vec{x}, \vec{\alpha}) = 1\}$$

Esto claramente dice que $D_{M(P)} = D_{M\left(\overline{P}\right)}$ y que $M(P)(\vec{x}, \vec{\alpha}) = M\left(\overline{P}\right)(\vec{x}, \vec{\alpha})$, para cada $(\vec{x}, \vec{\alpha}) \in D_{M(P)}$, por lo cual $M(P) = M\left(\overline{P}\right)$.

Ahora sí con ver que $M(\overline{P})$ es Σ -recursiva, alcanza. Pero esto es fácil, porque si tomamos k tal que $\overline{P} \in \operatorname{PR}_k^\Sigma \subseteq R_k^\Sigma$ y como \overline{P} es Σ -total, tenemos que $M(\overline{P}) \in R_{k+1}^\Sigma$ y por lo tanto $M(\overline{P}) \in R^\Sigma$.

(b)

Ya que $M(P)=M\left(\overline{P}\right)$, basta probar que $M\left(\overline{P}\right)$ es Σ -p.r. (va a ser necesaria la "cota" que nos da f) Primero veremos que $D_{M\left(\overline{P}\right)}$ es un conjunto Σ -p.r. Para ello notar que

$$\chi_{D_{M(\overline{P})}}^{w^n \times \Sigma^{*^m}} = \lambda \vec{x} \vec{\alpha} \big[(\exists t \in \omega)_{t \leq \boldsymbol{f}(\vec{\boldsymbol{x}}, \vec{\boldsymbol{\alpha}})} \, \overline{P}(t, \vec{\boldsymbol{x}}, \vec{\boldsymbol{\alpha}}) \big]$$

lo cual nos dice que

$$\chi_{D_{M(\overline{P})}}^{w^n \times \Sigma^{*m}} = \lambda x \vec{x} \vec{\alpha} \big[(\exists t \in \omega)_{t \leq x} \ \overline{P}(t, \vec{x}, \vec{\alpha}) \big] \circ \big[f, p_1^{n,m}, ..., p_{n+m}^{n,m} \big]$$

Pero dado que \overline{P} es Σ -p.r., por el <u>Lema de cuantificación acotada</u>, nos dice que $\lambda x \vec{x} \vec{\alpha} \left[(\exists t \in \omega)_{t \leq x} \overline{P}(t, \vec{x}, \vec{\alpha}) \right]$ es Σ -p.r. y como f es Σ -p.r. tengo que $\chi_{D_{M(\overline{P})}}^{w^n \times \Sigma^{*m}}$ también. Ahora definamos un predicado que será muy útil

$$P_1 = \lambda t \vec{x} \vec{\alpha} \left[\overline{P}(t, \vec{x}, \vec{\alpha}) \land (\forall j \in \omega)_{j \leq t} \ j = t \lor \neg \overline{P}(j, \vec{x}, \vec{\alpha}) \right]$$
(Te dice si para los $<$ a t no se cumple \overline{P} y para t si se cumple)

Veamos además que es Σ -p.r. Si defino $Q=\lambda jt\vec{x}\vec{\alpha}\big[j=t\vee\neg\overline{P}(j,\vec{x},\vec{\alpha})\big]$ que claramente es Σ -p.r. por el \underline{Lema} (o.p de $\underline{Predicados}\,\Sigma$ -p.r.) . Por el \underline{Lema} de $\underline{cuantificación\ acotada}$, tengo que $\lambda t\vec{x}\vec{\alpha}\big[(\forall j\in\omega)_{j\leq t}\ Q(j,t,\vec{x},\vec{\alpha})\big]$ es Σ -p.r. Pero notar que $P_1=\lambda t\vec{x}\vec{\alpha}\big[\overline{P}(t,\vec{x},\vec{\alpha})\quad \wedge\quad (\forall j\in\omega)_{j\leq t}\ Q(j,t,\vec{x},\vec{\alpha})\big]$ entonces nuevamente por el \underline{Lema} (o.p de $\underline{Predicados}\,\Sigma$ -p.r.) , P_1 es Σ -p.r.

Notar además que P_1 es Σ -total y

$$P_1(t,\vec{x},\vec{\alpha}) = 1 \quad \text{si y solo si} \quad (\vec{x},\vec{\alpha}) \in D_{M\left(\overline{P}\right)} \text{ y } \ t = M\left(\overline{P}\right)(\vec{x},\vec{\alpha})$$

Esto nos dice que

$$M \Big(\overline{P} \Big) = \left(\lambda \vec{x} \vec{\alpha} \left[\prod_{t=0}^{f(\vec{x},\vec{\alpha})} t^{P_1(t,\vec{x},\vec{\alpha})} \right] \right) \mid_{D_{M}(\overline{P})}$$

(como $t^0=1,\,t^1=t$ y un solo tva a cumplir P_1 entonces queda $1\times ...\times 1\times t\times 1...=t)$

por lo cual para probar que $M(\overline{P})$ es Σ -p.r., basta probar que

$$F = \lambda \vec{x} \vec{\alpha} \left[\prod_{t=0}^{f(\vec{x}, \vec{\alpha})} t^{P_1(t, \vec{x}, \vec{\alpha})} \right]$$

lo es, pero

$$F = \lambda x y \vec{x} \vec{\alpha} \left[\prod_{t=x}^{y} t^{P_1(t,\vec{x},\vec{\alpha})} \right] \circ \left[C_0^{n,m}, \boldsymbol{f}, p_1^{n,m}, ..., p_{n+m}^{n,m} \right]$$

y por lo tanto el <u>Lema de la Sumatoria</u> nos dice que F es Σ-p.r., por lo cual $M(\overline{P}) = M(P)$ es Σ-p.r.

Lema (Lema de cuantificación acotada):

Sea Σ un alfabeto finito. Sea $P: S \times S_1 \times ... \times S_n \times L_1 \times ... \times L_m \to \omega$ un predicado Σ -p.r., con $S, S_1, ..., S_n \subseteq \omega$ y $L_1, ..., L_m \subseteq \Sigma^*$ no vacíos. Supongamos $\overline{S} \subseteq S$ es Σ -p.r.

Entonces $\lambda x \vec{x} \vec{\alpha} \left[\left(\exists t \in \overline{S} \right)_{(t \leq x)} P(t, \vec{x}, \vec{\alpha}) \right]$ es Σ -p.r. (Cambiar \forall por \exists y es el Combo 5.2 o el Lema 23 de la guía 5)

2. Lema.

Supongamos $f: D_f \subseteq w^n \times \Sigma^{*m} \to O$ es Σ -recursiva, $O = \{\omega, \Sigma^*\}$ y $S \subseteq D_f$ es Σ -recursivamente enumerable entonces $f|_S$ es Σ -recursiva.

Nota: haga solo el caso S no vacío, n=m=1 y $O=\Sigma^*$

 \hookrightarrow

Demostración:

Haremos el caso n=m=1 y $O=\Sigma^*$, osea que $f:D_f\subseteq\omega\times\Sigma^*\to\Sigma^*$.

Como S es Σ -recursivamente enumerable tenemos que hay una función $F:\omega\to\omega\times\Sigma^*$ tal que $I_F=S$ y $F_{(1)}$ y $F_{(2)}$ son Σ -recursivas. Además f también, entonces por el <u>Segundo Manantial</u>, existen las macros

$$\left[\text{ W2} \leftarrow f(\text{V1}, \text{W1}) \text{ } \right] \quad \left[\text{ V2} \leftarrow F_{(1)}(\text{V1}) \text{ } \right] \quad \left[\text{ W2} \leftarrow F_{(2)}(\text{V1}) \text{ } \right]$$

Y como $D = \lambda xy[x \neq y]$ y $D' = \lambda \alpha \beta[\alpha \neq \beta]$ son Σ-p.r. Por el <u>Segundo Manantial</u>, existen las macros

[IF
$$D(V1, V2)$$
 GOTO A1] [IF $D'(W1, W2)$ GOTO A1]

pero para usarlas de forma más intuitiva, las escribimos como

[IF V1
$$\neq$$
 V2 GOTO A1] [IF W1 \neq W2 GOTO A1]

Ahora sí, sea \mathcal{P} el siguiente programa de S^{Σ} (donde N10 = 0 al iniciar)

$$\begin{split} \text{L1} & \left[\text{ N2} \leftarrow F_{(1)}(\text{N10}) \right] \\ & \left[\text{ P2} \leftarrow F_{(2)}(\text{N10}) \right] \\ & \left[\text{ IF N1} \neq \text{N2 GOTO L2} \right] \\ & \left[\text{ IF P1} \neq \text{P2 GOTO L2} \right] \\ & \left[\text{ P1} \leftarrow f(\text{N1},\text{P1}) \right] \\ & \text{ GOTO L3} \\ \text{L2} & \text{N10} \leftarrow \text{N10} + 1 \\ & \text{ GOTO L1} \\ \text{L3} & \text{SKIP} \end{split}$$

el cual es fácil ver que \mathcal{P} computa $f|_S$. Ya que, si analizamos por líneas

- Las **líneas 1** y 2 generan un elemento $(y, \beta) \in S$.
- Las líneas 3 y 4 comparan el input (x, α) con (y, β) .
 - ▶ Si son iguales, esto implicaría que $(x, \alpha) \in S$. Por eso calculamos $f(x, \alpha)$ y lo retornamos.
 - ▶ Si no son iguales, se incrementa la variable para generar y se vuelve a la **línea 1** para generar un nuevo $(y, \beta) \in S$.

Notar que si $(x, \alpha) \notin S$, entonces \mathcal{P} no se detiene porque la comparación **nunca** va a dar igual. Entonces así \mathcal{P} computa $f|_S$, por lo tanto es Σ -computable y por el <u>Teorema (Neumann vence a Gödel</u>) es Σ -recursiva.

Combo 8

1. Lema. Supongamos que $\Sigma \supseteq \Sigma_p$. Entonces AutoHalt $^{\Sigma}$ no es Σ -recursivo.

 \rightarrow

Demostración:

Lo vamos a demostrar por el absurdo, entonces supongamos que AutoHalt $^{\Sigma}$ sí es Σ -recursivo. Por el <u>Segundo Manantial</u> tenemos que hay un macro

[IF AutoHalt
$$^{\Sigma}$$
(W1) GOTO A1]

Sea \mathcal{P}_0 el siguiente programa de S^{Σ}

L1 [IF AutoHalt
$$^{\Sigma}(P1)$$
 GOTO L1]

Notar que

$$\operatorname{AutoHalt}^\Sigma(\mathcal{P}_0)=0$$
si
i \mathcal{P}_0 se detiene partiendo del estado $\|\mathcal{P}_0\|$

Por otra parte, por definición de Auto Halt^Σ sabemos que para cada $\mathcal{P} \in S^\Sigma$ se cumple que

$$\operatorname{AutoHalt}^\Sigma(\mathcal{P})=1 \text{ sii } \mathcal{P} \text{ se detiene partiendo del estado } \|\mathcal{P}\|.$$

Estas dos afirmaciones se contradicen y el absurdo viene de que supusimos que ${\rm AutoHalt}^\Sigma$ sí es Σ -recursivo.

Otra forma de decir lo mismo, es que si corremos \mathcal{P}_0 partiendo de $\|\mathcal{P}_0\|$, tenemos dos posibilidades

- AutoHalt $^{\Sigma}(\mathcal{P}_0)=0$, osea que se sale del IF y \mathcal{P}_0 termina, por lo tanto AutoHalt $^{\Sigma}(\mathcal{P}_0)=1$. Absurdo.
- AutoHalt $^{\Sigma}(\mathcal{P}_0)=1$, osea entra en bucle y \mathcal{P}_0 no termina, por lo tanto AutoHalt $^{\Sigma}(\mathcal{P}_0)=0$. Absurdo.
- **2. Teorema.** Supongamos que $\Sigma \supseteq \Sigma_p$. Entonces $\mathrm{AutoHalt}^\Sigma$ no es Σ -efectivamente computable. Es decir, no hay ningún procedimiento efectivo que decida si un programa de S^Σ termina partiendo de sí mismo. \hookrightarrow

Demostración:

Si AutoHalt $^{\Sigma}$ fuera Σ -efectivamente computable, la *Tesis de Church* nos diría que es Σ -recursivo, contradiciendo el Lema anterior. *Tesis de Church* : "Toda función Σ -efectivamente computable es Σ -recursiva."

3. Lema. Supongamos que $\Sigma \supseteq \Sigma_p$.

Entonces
$$A = \{ \mathcal{P} \in \operatorname{Pro}^{\Sigma} : \operatorname{AutoHalt}^{\Sigma}(\mathcal{P}) = 1 \}$$
 es Σ -recursivamente enumerable y no Σ -recursivo. Más aún $N = \{ \mathcal{P} \in \operatorname{Pro}^{\Sigma} : \operatorname{AutoHalt}^{\Sigma}(\mathcal{P}) = 0 \}$ no es Σ -recursivamente enumerable. \hookrightarrow

Demostración:

Sea $P=\lambda t \mathcal{P}[\operatorname{Halt}^{0,1}(t,\mathcal{P},\mathcal{P})]^{{\scriptscriptstyle 12}}$. Notar que P es Σ -p.r. (porque $\Sigma\supseteq\Sigma_p$) y por lo tanto M(P) es Σ -recursiva. Además, recordar que se definió $\operatorname{AutoHalt}^\Sigma=\lambda\mathcal{P}[(\exists t\in\omega)\operatorname{Halt}^{0,1}(t,\mathcal{P},\mathcal{P})=1]$, entonces

$$D_{M(P)} = \left\{ \mathcal{P} \in \operatorname{Pro}^{\Sigma} : (\exists t \in \omega) \; P(t, \mathcal{P}) = 1 \right\} = \left\{ \mathcal{P} \in \operatorname{Pro}^{\Sigma} : \operatorname{AutoHalt}^{\Sigma}(\mathcal{P}) = 1 \right\} = A$$

Pero por la $Caracterización de conjuntos \Sigma$ -r.e. (dada en el $\underline{Combo~6.2}$) que entre otras cosas dice: un conjunto es Σ -r.e. sii es el dominio de alguna función Σ -r.e.. Entonces como $D_{M(P)}=A$ tenemos que A sí es Σ -r.e. Supongamos ahora que N es Σ -r.e.. Entonces por el $Lema~de~restricción~de~dominios~de~funciones~\Sigma$ -r. (dado en el $\underline{Combo~7.2}$) la función $C_0^{0,1}\mid_N$ es Σ -recursiva ya que $C_0^{0,1}$ lo es. Además como A es Σ -r.e., también lo es $C_0^{0,1}\mid_A$.

 $^{^{12} \}text{Recordar que Halt}^{n,m} = \lambda t \vec{x} \vec{\alpha} \mathcal{P}[i^{n,m}(t,\vec{x},\vec{\alpha},\mathcal{P}) = n(\mathcal{P}) + 1], \text{ osea te dice si } \mathcal{P} \text{ con entrada } \|\vec{x},\vec{\alpha}\| \text{ luego de } t \text{ pasos termin\'o}.$

Ahora sí, ya que

$$\operatorname{AutoHalt}^{\Sigma} = C_0^{0,1} \mid_A \cup C_0^{0,1} \mid_N \quad , \quad A \cup N = \operatorname{Pro}^{\Sigma} \quad y \quad A \cap N = \emptyset$$

por el <u>Lema (División por Casos para funciones</u> Σ -r.) tenemos que AutoHalt $^{\Sigma}$ es Σ -recursiva, lo cual contradice el Lema anterior. Esto prueba que N no es Σ -r.e.

Finalmente, supongamos que A es Σ -recursivo. Entonces el conjunto $N = (\Sigma^* - A) \cap \operatorname{Pro}^{\Sigma}$ debería serlo, lo cual es absurdo por lo visto anteriormente. Por lo tanto A no es Σ -recursivo.

4. **Teorema** (Neumann vence a Gödel) . Si una función h es Σ -recursiva, entonces h es Σ -computable. Nota: en la inducción, hacer solo el caso h=M(P)

Demostración:

Esto será probado por inducción en k, que $si\ h\in R_k^\Sigma$, entonces h es Σ -computable .

El caso k=0 es fácil ya que $R_0=\operatorname{PR}_0$, entonces hay que hacer programas que computen $\left\{\operatorname{Suc},\operatorname{Pred},C_0^{0,0},C_\varepsilon^{0,0}\right\}\cup\{d_a:a\in\Sigma\}\cup\left\{p_j^{n,m}:1\leq j\leq n+m\right\}$, los cuales son todos triviales

Suc	Pred	$C_0^{0,0}$	$C^{0,0}_{arepsilon}$	d_a	$\overline{p_j^{n,m}}$
$N1 \leftarrow N1 + 1$	IF N1 \neq 0 GOTO L2	$N1 \leftarrow 0$	$P1 \leftarrow \varepsilon$	$P1 \leftarrow P1.a$	$N1 \leftarrow N\overline{j}$
	L1 GOTO L1				0
	$\text{L2 N1} \leftarrow \text{N1} \div \text{1}$				$\mathrm{P1} \leftarrow \mathrm{P}\overline{j}$

Supongamos que la propiedad se cumple para un k fijo y veamos que se cumple también para $h \in R_{k+1}^{\Sigma}$. Hay varios casos. Veamos el caso donde h = M(P), con $P : \omega \times w^n \times \Sigma^{*m} \to \omega$, un predicado en R_k^{Σ} . Por hipótesis inductiva P es Σ -computable, osea que por el <u>Primer Manantial</u> existe el macro

$$\left[\text{ IF } P \left(\mathbf{V1},...,\mathbf{V}\overline{n+1},\mathbf{W1},...,\mathbf{W}\overline{m} \right) \text{ GOTO A1 } \right]$$

El cual nos permite realizar el siguiente programa $\mathcal P$ de S^Σ

L1 [IF
$$P(N\overline{n+1}, N1, ..., N\overline{n}, P1, ..., P\overline{m})$$
 GOTO L2]
 $N\overline{n+1} \leftarrow N\overline{n+1} + 1$
GOTO L1
L2 $N1 \leftarrow N\overline{n+1}$

que es fácil ver que computa M(P). Supongamos que \mathcal{P} inicia de un estado $\|\vec{x}, \vec{\alpha}\|$, entonces hay dos casos

- Si $(\vec{x}, \vec{\alpha}) \notin D_{M(P)}$, entonces el predicado P nunca va a ser 1, incluso al incrementar $\overline{Nn+1}$, por lo tanto $\mathcal P$ nunca se va a detener.
- Si $(\vec{x}, \vec{\alpha}) \in D_{M(P)}$, entonces eventualmente P va a ser 1. Como además Nn + 1 inicia en 0 e incrementa de a 1, cuando P valga 1 entonces va a retornar el mínimo valor, osea $M(P)(\vec{x}, \vec{\alpha})$.

Por esto \mathcal{P} computa M(P) y por lo tanto M(P) es Σ -computable.

Combo 9

1. Lema (Lema división por casos para funciones Σ -recursivas) .

Supongamos $f_i:D_{f_i}\subseteq w^n\times \Sigma^{*m}\to O, i=1,...,k$ son Σ -recursivas. Tales que $D_{f_i}\cap D_{f_j}=\emptyset$ para cada $i\neq j$. Entonces la función $f_1\cup...\cup f_k$ es Σ -recursiva.

Nota: haga el caso
$$k=2, n=m=1$$
 y $O=\omega$

 \hookrightarrow

Demostración:

Haremos el caso k=2, n=m=1 y $O=\omega$. Osea que tenemos $f_i:D_{f_i}\subseteq\omega\times\Sigma^*\to\omega$ con i=1,2. Por el <u>Teorema (Neumann vence a Gödel)</u> las funciones son Σ -computables, osea que existen los programas \mathcal{P}_1 y \mathcal{P}_2 tales que las computan respectivamente. Entonces para i=1,2 definamos

$$H_i = \lambda t x_1 \alpha_1 [\operatorname{Halt}^{1,1}(t, x_1, \alpha_1, \mathcal{P}_i)]$$

notar que $D_{H_i} = \omega \times \omega \times \Sigma^*$ y que H_i es Σ -mixta. Además sabemos que $\mathrm{Halt}^{1,1}$ es $\Sigma \cup \Sigma_p$ -pr. Entonces por el <u>Teorema (Independencia del Alfabeto</u>), H_i es Σ -p.r. y por el <u>Segundo Manantial</u> existe la macro

[IF
$$H_i(V1, V2, W1)$$
 GOTO A1]

pero para usarla de forma más intuitiva, la escribimos como

[IF Halt^{1,1}(V1, V2, W1,
$$\mathcal{P}_i$$
) GOTO A1]

Luego ya que cada f_i es Σ -computable, por el <u>Primer Manantial</u> existen las macros

$$[V2 \leftarrow f_1(V1, W1)] [V3 \leftarrow f_2(V1, W1)]$$

Con todo esto definimos el siguiente programa $\mathcal P$ de S^Σ

$$\begin{split} \text{L1} & \quad \text{N10} \leftarrow \text{N10} + 1 \\ & \quad \left[\text{IF Halt}^{1,1}(\text{N10}, \text{N1}, \text{P1}, \mathcal{P}_{\!\!1}) \text{ GOTO L2} \right] \\ & \quad \left[\text{IF Halt}^{1,1}(\text{N10}, \text{N1}, \text{P1}, \mathcal{P}_{\!\!2}) \text{ GOTO L3} \right] \\ & \quad \text{GOTO L1} \\ \text{L2} & \quad \left[\text{N1} \leftarrow f_1(\text{N1}, \text{N1}) \right] \\ & \quad \text{GOTO L4} \\ \text{L3} & \quad \left[\text{N1} \leftarrow f_2(\text{N1}, \text{N1}) \right] \\ \text{L4} & \quad \text{SKIP} \end{split}$$

el cual claramente computa $f_1 \cup f_2$, ya que si corremos \mathcal{P} partiendo del estado $||x_1, \alpha_1||$, tenemos dos casos

- $(x_1, \alpha_1) \in D_{f_1 \cup f_2}$, entonces en alguna cantidad de pasos se va cumplir alguno de los dos IF (nunca ambos ya que $D_{f_1} \cap D_{f_2} = \emptyset$) y se va a detener retornando $f_1(x_1, \alpha_1)$ o $f_2(x_1, \alpha_1)$, según corresponda.
- $(x_1, \alpha_1) \notin D_{f_1 \cup f_2}$, entonces nunca se van a cumplir los IF, por lo tanto \mathcal{P} nunca va a detenerse.

por lo tanto $f_1 \cup f_2$ es Σ -computable.

2. Teorema (Gödel vence a Neumann).

Si
$$f: D_f \subseteq w^n \times \Sigma^{*m} \to \omega$$
 es Σ -computable, entonces f es Σ -recursiva.

 \rightarrow

Demostración:

Sea \mathcal{P}_0 un programa que compute a f. Primero veamos que f es $(\Sigma \cup \Sigma_p)$ -recursiva. Notar que 13

$$f = E_{\#\,1}^{n,m} \circ \left[T^{n,m} \circ \left[p_1^{n,m},...,p_{n+m}^{n,m},C_{\mathcal{P}_0}^{n,m} \right],,p_1^{n,m},...,p_{n+m}^{n,m},C_{\mathcal{P}_0}^{n,m} \right]$$

donde $p_1^{n,m},...,p_{n+m}^{n,m}$ y $C_{\mathcal{P}_0}^{n,m}$ son respecto al alfabeto $\Sigma \cup \Sigma_p$, es decir, tienen dominio $\omega^n \times \left(\Sigma \cup \Sigma_p\right)^{*m}$. Esto nos dice que f es $\left(\Sigma \cup \Sigma_p\right)$ -recursiva. Osea que el <u>Teorema (Independencia del Alfabeto</u>) nos dice que f es Σ -recursiva.

 $f = \underbrace{E_{\#\,1}^{n,m}}_{\text{resultado de N1, importante }(\#)} \circ \underbrace{\left[\underbrace{T^{n,m} \circ \left[p_1^{n,m}, \ldots, p_{n+m}^{n,m}, C_{\mathcal{P}_0}^{n,m}\right]}_{\text{cantidad de pasos para que termine}}, \underbrace{p_1^{n,m}, \ldots, p_{n+m}^{n,m}}_{\text{input}}, \underbrace{C_{\mathcal{P}_0}^{n,m}}_{\text{programa}}\right]}_{\text{programa}}$

13

TEOREMAS

Resultados Muy Usados en las Demostraciones

Las (★) indican que son un combo y el [n] es la cantidad de veces que se mencionó el resultado (incluso en una misma demo).

Lema (Operaciones con Predicados Σ -p.r.) [4]

Lema (Operaciones con Conjuntos Σ -p.r.) [3]

Si $P: S \subseteq w^n \times \Sigma^{*m} \to \omega$ y $Q: S \subseteq w^n \times \Sigma^{*m} \to \omega$ son predicados Σ -p.r., entonces $P \wedge Q, P \vee Q$ y $\neg P$ también.

Si $S_1, S_2 \subseteq w^n \times \Sigma^{*m}$ son Σ -p.r., entonces $S_1 \cup S_2 , S_1 \cap S_2$ y $S_1 - S_2$ son Σ -p.r.

Lema (Restricción de Dominios Σ -p.r.) [4]

Supongamos $f:D_f\subseteq w^n\times \Sigma^{*m}\to \omega$ es Σ -p.r. Si $S\subseteq D_f$ es Σ -p.r., entonces $f\mid_S$ es Σ -p.r.

Lema (Caracterización de Conjuntos Rectangulares Σ -p.r.) [3]

Supongamos $S_1,...,S_n\subseteq\omega$ y $L_1,...,L_m\subseteq\Sigma^*$ no vacíos. Entonces $S_1\times...\times S_n\times L_1\times...\times L_m$ es Σ -p.r. sii $S_1, ..., S_n, L_1, ..., L_m \text{ son } \Sigma\text{-p.r.}$

Lema (Lema de la Sumatoria) (Combo 4.2) [2]

Sea Σ un alfabeto finito. Si $f:\omega\times S_1\times...\times S_n\times L_1\times...\times L_m\to\omega$ es Σ -p.r., con $S_1,...,S_n\subseteq\omega$ y $L_1,...,L_m\subseteq \Sigma^*$ no vacíos. Entonces $\lambda xy\vec{x}\vec{\alpha}\left[\prod_{t=x}^{t=y}f(t,\vec{x},\vec{\alpha})\right]$ es Σ-p.r.

Proposición (Caracterización de Conjuntos Σ -p.r.) (Combo 1.1) [4] (*****)

Un conjunto S es Σ -p.r. sii S es el dominio de alguna función Σ -p.r.

Proposición (Primer Manantial de Macros) [3]

Proposición (Segundo Manantial de Macros) [7]

(*****)

Sea Σ un alfabeto finito. Si

$$\begin{split} f:D_f \subseteq w^n \times \Sigma^{*m} \to \omega \\ g:D_g \subseteq w^n \times \Sigma^{*m} \to \Sigma^* \\ P:D_P \subseteq w^n \times \Sigma^{*m} \to \{0,1\} \end{split}$$

son Σ -computables, entonces en S^{Σ} hay macros

$$\begin{bmatrix} \overline{\mathrm{V}n+1} \leftarrow f(\mathrm{V}1,...,\mathrm{V}\overline{n},\mathrm{W}1,...,\mathrm{W}\overline{m}) \end{bmatrix}$$
$$\begin{bmatrix} \overline{\mathrm{W}m+1}} \leftarrow f(\mathrm{V}1,...,\mathrm{V}\overline{n},\mathrm{W}1,...,\mathrm{W}\overline{m}) \end{bmatrix}$$
$$\begin{bmatrix} \mathrm{IF}\ P(\mathrm{V}1,...,\mathrm{V}\overline{n},\mathrm{W}1,...,\mathrm{W}\overline{m}) \ \mathrm{GOTO}\ \mathrm{A1} \end{bmatrix}$$

Sea Σ un alfabeto finito. Si

$$\begin{split} f:D_f \subseteq w^n \times \Sigma^{*m} &\to \omega \\ g:D_g \subseteq w^n \times \Sigma^{*m} &\to \Sigma^* \\ P:D_P \subseteq w^n \times \Sigma^{*m} &\to \{0,1\} \end{split}$$

son Σ -recursivas, entonces en S^{Σ} hay macros

$$\begin{bmatrix} \overline{Vn+1} \leftarrow f(V1, ..., \overline{Vn}, W1, ..., W\overline{m}) \end{bmatrix}$$
$$\begin{bmatrix} \overline{Wm+1} \leftarrow f(V1, ..., \overline{Vn}, W1, ..., W\overline{m}) \end{bmatrix}$$
$$\begin{bmatrix} \overline{IF} \ P(V1, ..., \overline{Vn}, W1, ..., W\overline{m}) \ GOTO \ A1 \end{bmatrix}$$

Teorema (Independencia del Alfabeto) [6]

Sea Σ y Γ alfabetos cualquiera y f una función Σ -mixta y Γ -mixta, entonces f es Σ -recursiva sii f es Γ -recursiva.

Teorema (Neumann vence a Gödel) (Combos $\underline{1.2} \mid \underline{8.4}$)(\star)

Teorema (Gödel vence a Neumann) (Combos $3.1 \mid 9.2$)(\star)

Si h es Σ -recursiva, entonces h es Σ -computable. [3]

Si h es Σ -computable, entonces h es Σ -recursiva. [1]

Lema (Lema de división por casos para funciones Σ -p.r.) (Combo 2.1) [3] (*****)

Sea $O=\{\omega,\Sigma^*\}$ y $n,m,k\in\omega$. Supongamos $f_i:D_{f_i}\subseteq w^n\times\Sigma^{*m}\to O, i=1,...,k$ son Σ -p.r. Tales que $D_{f_i}\cap D_{f_i}=\emptyset$ para cada $i\neq j$. Entonces la función $f_1\cup\ldots\cup f_k$ es Σ -p.r.

Lema (Lema de división por casos para funciones Σ -recursivas) (Combo 9.1) [1] (*****)

Sea $O=\{\omega,\Sigma^*\}$ y $n,m,k\in\omega$. Supongamos $f_i:D_{f_i}\subseteq w^n\times\Sigma^{*m}\to O, i=1,...,k$ son Σ -recursivas. Tales que $D_{f_i} \cap D_{f_i} = \emptyset$ para cada $i \neq j$. Entonces la función $f_1 \cup ... \cup f_k$ es Σ -recursiva.

Referencias de los Resultados Anteriores (Están acá para no sobrecargar la página anterior)

- 1. Lema (Operaciones con Predicados Σ -p.r.) es el lema 14 de la Guía 5.
- 2. Lema (Operaciones con Conjuntos Σ -p.r.) es el lema 15 de la Guía 5.
- 3. Lema (Restricción de Dominios $\Sigma\text{-}p.r.)$ es el lema 17 de la Guía 5.
- 4. Lema (Caracterización de Conjuntos Rectangulares Σ-p.r.) es el lema 16 de la Guía 5.
- 5. Lema (Lema de la Sumatoria) es el lema 22 de la Guía 5 y casi es el Combo 4.2.
- 6. Proposición (Caracterización de Conjuntos Σ -p.r.) es la prop 19 de la Guía 5, del apunte la 4.4 y el **Combo 1.1**.
- 7. Proposición (Primer Manantial de Macros) es la proposición 5 de la Guía 7.
- 8. Proposición (Segundo Manantial de Macros) es la proposición 2 de la Guía 8.
- 9. Teorema (Independencia del Alfabeto) es el teorema <u>4.2 del apunte</u>.
- 10. Teorema (Neumann vence a Gödel) es el teorema 1 de la Guía 8, el Combo 1.2 y el Combo 8.4.
- 11. Teorema (Gödel vence a Neumann) del apunte es el 4.3 y el Combo 9.2.
- 12. Lema (Lema de división por casos para funciones Σ -p.r.) es el lema 4.18 del <u>apunte</u> y el <u>Combo 2.1</u>.
- 13. Lema (Lema de división por casos para funciones Σ -recursivas) es el lema 4.56 del apunte y el **Combo 9.1**.