Name: Exam #2: 4-2-2020: Please show all work for credit, Don't Panic

Important: This exam must be turned in handwritten. It can be on lined paper.

It must be turned in as a single PDF. Image files for each page will not be accepted.

You can download Adobe Scan on your phone to make the PDF. https://acrobat.adobe.com/us/en/mobile/scanner-app.html

Who did you work with?

a. David DeLuca (me)

b. Gabrielle Singh

c. Kylee McDonald

d. Victoria Savino

Who else did you ask for help?

· Brooke Butler

1. The decarboxylation of pyruvic acid occurs via the following reaction:

 $CH_3COCOOH(l) \longrightarrow CH_3CHO(g) + CO_2(g)$

Given the following thermodynamic data

 $\Delta_f H(25 \text{ C})_{\text{CH,COCOOH}} = -584 \text{ kJ mol}^{-1}$ $\Delta_f G(25 \text{ C})_{\text{CH,COCOOH}} = -463 \text{ kJ mol}^{-1}$ $\Delta_f G(25 \text{ C})_{\text{CH}_2\text{CHO}} = -133 \text{ kJ mol}^{-1}$ $\Delta_f H(25 \text{ C})_{\text{CH,CHO}} = -166 \text{ kJ mol}^{-1}$

 $\Delta_f H(25 \text{ C})_{CO_2} = -394 \text{ kJ mol}^{-1}$ $\Delta_f G(25 \text{ C})_{CO_2} = -394 \text{ kJ mol}^{-1}$

a. Calculate ΔG_{rm}° . Is this reaction spontaneous under standard state conditions? Justify DGan = 2 DG+ probads - EDGFreadents your answer.

DGrxn = (-133ttJ/m + -394ttJ/m) - (-463ttJ/m) AGERXN = (-527 KJ/m) - (-463 KJ/m)

NGOCKA = -64 KJ/m

Since AGOran is regulare the readion is sportaneous

b. Calculate the equilibrium constant, K_P , for this reaction at 80.0 K.

DAHrx= 2 DAH polices - J. DAH readon's KP=p-DG°/RT $lnkp(TF) = \frac{\Delta G}{RT} - \frac{\Delta H}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right) \qquad \Delta FH(x_n = (-166 \text{ kJ/m} + -394 \text{kJ/mu}) - (-584 \text{kJ/m}) - (-584 \text{kJ/m}) - (-584 \text{kJ/m}) - (-584 \text{kJ/m}) - (-584 \text{kJ/mu}) - (-584 \text{kJ/m}) - (-584 \text{kJ/mu}) - (-584 \text{kJ/mu}$ Introver= 64,000 - 24,000 J/m (80k - 298K)

Introp = 25.832 - 26.3968 KP=0.568

c. At the lower temperature, does the reaction favor the reactants or the products?

Because top LI for the lower temperature the reaction favors the reactants

Exam #2: 4-2-2020: Please show all work for credit, Don't Panic

2. For a pure substance

a. Derive the following expression

1)
$$ds = \frac{1}{7} \partial v + \frac{\rho}{7} \partial v$$

$$\left(\frac{\partial S_m}{\partial V}\right)_T = \frac{\beta}{n\kappa}$$
5) $ds = \frac{\omega}{7} \partial T$, constant v

2) $ds = \left(\frac{\partial S}{\partial T}\right)_V \partial T + \left(\frac{\partial S}{\partial V}\right)_T \partial v$

7) $\left(\frac{\partial}{\partial V}\left(\frac{\partial S}{\partial T}\right)_V\right)_T = \frac{1}{7}\left(\frac{\partial}{\partial V}\left(\frac{\partial S}{\partial T}\right)_V\right)_T$

3) $ds = \frac{1}{7}\left(\omega_0 T + \left(\frac{\partial V}{\partial V}\right)_T \partial V\right) + \frac{1}{7}\left(\frac{\partial V}{\partial V}\right)_T \partial V$

8) $\left(\frac{\partial}{\partial T}\left(\frac{\partial S}{\partial V}\right)_T\right)_V = \frac{1}{7}\left(\frac{\partial^2}{\partial V}\left(\frac{\partial V}{\partial V}\right)_V\right)_T$

4) $\left(\frac{\partial S}{\partial T}\right)_V = \frac{\omega^2}{T} \cos\left(\frac{\partial S}{\partial V}\right)_T = \frac{1}{7}\left(\frac{\partial^2}{\partial V}\left(\frac{\partial V}{\partial V}\right)_T\right)_V = \frac{1}{7}\left(\frac{\partial^2}{\partial V}\right)_T \partial V$

1) $\left(\frac{\partial S}{\partial V}\right)_T = \frac{\omega^2}{T}\left(\frac{\partial S}{\partial V}\right)_T - \frac{1}{7}\left(\frac{\partial V}{\partial V}\right)_T \partial V$

1) $\left(\frac{\partial S}{\partial V}\right)_T = \left(\frac{\partial S}{\partial V}\right)_T - \frac{1}{7}\left(\frac{\partial S}{\partial V}\right)_T \partial V$

1) $\left(\frac{\partial S}{\partial V}\right)_T = \left(\frac{\partial S}{\partial V}\right)_T - \frac{1}{7}\left(\frac{\partial S}{\partial V}\right)_T \partial V$

1) $\left(\frac{\partial S}{\partial V}\right)_T = \left(\frac{\partial S}{\partial V}\right)_T - \frac{1}{7}\left(\frac{\partial S}{\partial V}\right)_T \partial V$

1) $\left(\frac{\partial S}{\partial V}\right)_T = \left(\frac{\partial S}{\partial V}\right)_T - \frac{1}{7}\left(\frac{\partial S}{\partial V}\right)_T \partial V$

1) $\left(\frac{\partial S}{\partial V}\right)_T = \left(\frac{\partial S}{\partial V}\right)_T - \frac{1}{7}\left(\frac{\partial S}{\partial V}\right)_T \partial V$

1) $\left(\frac{\partial S}{\partial V}\right)_T = \left(\frac{\partial S}{\partial V}\right)_T - \frac{1}{7}\left(\frac{\partial S}{\partial V}\right)_T \partial V$

1) $\left(\frac{\partial S}{\partial V}\right)_T = \left(\frac{\partial S}{\partial V}\right)_T - \frac{1}{7}\left(\frac{\partial S}{\partial V}\right)_T \partial V$

1) $\left(\frac{\partial S}{\partial V}\right)_T = \left(\frac{\partial S}{\partial V}\right)_T - \frac{1}{7}\left(\frac{\partial S}{\partial V}\right)_T \partial V$

1) $\left(\frac{\partial S}{\partial V}\right)_T = \left(\frac{\partial S}{\partial V}\right)_T \partial V$

1) $\left(\frac{\partial S}{\partial V}\right)_T = \left(\frac{\partial S}{\partial V}\right)_T \partial V$

1) $\left(\frac{\partial S}{\partial V}\right)_T = \left(\frac{\partial S}{\partial V}\right)_T \partial V$

2) $\left(\frac{\partial S}{\partial V}\right)_T = \left(\frac{\partial S}{\partial V}\right)_T \partial V$

1) $\left(\frac{\partial S}{\partial V}\right)_T = \left(\frac{\partial S}{\partial V}\right)_T \partial V$

1) $\left(\frac{\partial S}{\partial V}\right)_T \partial V$

2) $\left(\frac{\partial S}{\partial V}\right)_T \partial V$

3) $\left(\frac{\partial S}{\partial V}\right)_T \partial V$

3) $\left(\frac{\partial S}{\partial V}\right)_T \partial V$

4) $\left(\frac{\partial S}{\partial V}\right)_T \partial V$

3) $\left(\frac{\partial S}{\partial V}\right)_T \partial V$

4) $\left(\frac{\partial S}{\partial V}\right)_T \partial V$

4) $\left(\frac{\partial S}{\partial V}\right)_T \partial V$

3) $\left(\frac{\partial S}{\partial V}\right)_T \partial V$

4) $\left(\frac{\partial S}{\partial V}\right)_T \partial V$

4) $\left(\frac{\partial S}{\partial V}\right)_T \partial V$

4) $\left(\frac{\partial S}{\partial V}\right)_T \partial V$

5) $\left(\frac{\partial S}{\partial V}\right)_T \partial V$

6) $\left(\frac{\partial S}{\partial V}\right)_T \partial V$

6) $\left(\frac{\partial S}{\partial V}\right)_T \partial V$

6) $\left(\frac{\partial S}{\partial V}\right)_T \partial V$

7) $\left(\frac{\partial S}{\partial V}\right)_T \partial V$

7) $\left(\frac{\partial S}{\partial V}\right)_$

For a mixture of substances, $n_1, n_2, n_3 \dots$

c. Show that the pressure dependence of the chemical potential is related to the volume as follows

$$\begin{array}{lll}
5) 4 = -\rho 3 \sqrt{-705} + \frac{1}{2}, \rho_1 3 \rho_1 & (\rho - \rho^2) \\
6) \rho_1 = -\rho 3 \sqrt{-705} + \frac{1}{2}, \rho_1 3 \rho_1 & (\rho - \rho^2) \\
6) \rho_2 = -\rho 3 \sqrt{-705} + \frac{1}{2}, \rho_1 3 \rho_1 & (\rho - \rho^2) \\
6) \rho_1 = -\rho 3 \sqrt{-705} + \frac{1}{2}, \rho_1 3 \rho_1 & (\rho - \rho^2) \\
6) \rho_2 = -\rho 3 \sqrt{-705} + \frac{1}{2}, \rho_1 3 \rho_1 & (\rho - \rho^2) \\
7) 3 6 2 \sqrt{3\rho} - 5 3 \sqrt{-705} + \frac{1}{2}, \rho_1 3 \rho_1 & (\rho - \rho^2) \\
8) \rho_1 = -\rho 3 \sqrt{-705} + \frac{1}{2}, \rho_1 3 \rho_1 & (\rho - \rho^2) \\
8) \rho_2 = -\rho 3 \sqrt{-705} + \frac{1}{2}, \rho_1 3 \rho_1 & (\rho - \rho^2) \\
8) \rho_1 = -\rho 3 \sqrt{-705} + \frac{1}{2}, \rho_2 3 \rho_1 & (\rho - \rho^2) \\
8) \rho_2 = -\rho 3 \sqrt{-705} + \frac{1}{2}, \rho_1 3 \rho_1 & (\rho - \rho^2) \\
8) \rho_1 = -\rho 3 \sqrt{-705} + \frac{1}{2}, \rho_2 3 \rho_1 & (\rho - \rho^2) \\
8) \rho_2 = -\rho 3 \sqrt{-705} + \frac{1}{2}, \rho_1 3 \rho_1 & (\rho - \rho^2) \\
8) \rho_1 = -\rho 3 \sqrt{-705} + \frac{1}{2}, \rho_2 3 \rho_1 & (\rho - \rho^2) \\
8) \rho_2 = -\rho 3 \sqrt{-705} + \frac{1}{2}, \rho_1 3 \rho_2 & (\rho - \rho^2) \\
8) \rho_1 = -\rho 3 \sqrt{-705} + \frac{1}{2}, \rho_2 3 \rho_1 & (\rho - \rho^2) \\
8) \rho_2 = -\rho 3 \sqrt{-705} + \frac{1}{2}, \rho_3 3 \rho_1 & (\rho - \rho^2) \\
8) \rho_1 = -\rho 3 \sqrt{-705} + \frac{1}{2}, \rho_2 3 \rho_1 & (\rho - \rho^2) \\
8) \rho_2 = -\rho 3 \sqrt{-705} + \frac{1}{2}, \rho_3 3 \rho_1 & (\rho - \rho^2) \\
8) \rho_1 = -\rho 3 \sqrt{-705} + \frac{1}{2}, \rho_2 3 \rho_1 & (\rho - \rho^2) \\
8) \rho_2 = -\rho 3 \sqrt{-705} + \frac{1}{2}, \rho_3 3 \rho_1 & (\rho - \rho^2) \\
8) \rho_1 = -\rho 3 \sqrt{-705} + \frac{1}{2}, \rho_2 3 \rho_1 & (\rho - \rho^2) \\
9) \rho_2 = -\rho 3 \sqrt{-705} + \frac{1}{2}, \rho_3 3 \rho_1 & (\rho - \rho^2) \\
9) \rho_3 = -\rho 3 \sqrt{-705} + \frac{1}{2}, \rho_3 3 \rho_1 & (\rho - \rho^2) \\
9) \rho_3 = -\rho 3 \sqrt{-705} + \frac{1}{2}, \rho_3 3 \rho_1 & (\rho - \rho^2) \\
9) \rho_3 = -\rho 3 \sqrt{-705} + \frac{1}{2}, \rho_3 3 \rho_1 & (\rho - \rho^2) \\
9) \rho_3 = -\rho 3 \sqrt{-705} + \frac{1}{2}, \rho_3 3 \rho_1 & (\rho - \rho^2) \\
9) \rho_3 = -\rho 3 \sqrt{-705} + \frac{1}{2}, \rho_3 3 \rho_1 & (\rho - \rho^2) \\
9) \rho_3 = -\rho 3 \rho_1 & (\rho - \rho^2) \\
9) \rho_3 = -\rho 3 \rho_1 & (\rho - \rho^2) \\
9) \rho_3 = -\rho 3 \rho_1 & (\rho - \rho^2) \\
9) \rho_3 = -\rho 3 \rho_1 & (\rho - \rho^2) \\
9) \rho_3 = -\rho 3 \rho_1 & (\rho - \rho^2) \\
9) \rho_3 = -\rho 3 \rho_1 & (\rho - \rho^2) \\
9) \rho_3 = -\rho 3 \rho_1 & (\rho - \rho^2) \\
9) \rho_3 = -\rho 3 \rho_1 & (\rho - \rho^2) \\
9) \rho_3 = -\rho 3 \rho_1 & (\rho - \rho^2) \\
9) \rho_3 = -\rho 3 \rho_1 & (\rho - \rho^2) \\
9) \rho_3 = -\rho 3 \rho_1 & (\rho - \rho^2) \\
9) \rho_3 = -\rho 3 \rho_1 & (\rho - \rho^2) \\
9) \rho_3 =$$

d. Pure phosphine is allowed to decompose according to the following reaction.

$$COCl_2(g) \rightleftharpoons CO(g) + Cl_2(g)$$

Assuming ideal gas behavior, and using the Maxwell relationship above, derive an expression for
$$\left(\frac{\partial \mu_{\text{COCl}_2}}{\partial P}\right) \frac{\int t_0 t_1}{T_0 C_0 n_{\text{Cl}_2}} = \left(\frac{\int m_1 C_0 t_2}{\partial P}\right) \frac{\int t_0 t_1}{T_0 C_0 n_{\text{Cl}_2}} = \left(\frac{\int m_1 C_0 t_2}{\partial P}\right) \frac{\partial m_1 C_0 t_2}{T_0 C_0 C_0 C_0 C_0} = \frac{\partial m_1 C_0 C_0}{T_0 C_0 C_0 C_0 C_0}$$

Hint: $n = n_{\text{COCl}_2} + n_{\text{CO}} + n_{\text{Cl}_2}$, $dn_{\text{COCl}_2} = -dn_{\text{Co}}$, $dn_{\text{COCl}_2} = -dn_{\text{Cl}_2}$

$$= 7 + \left(\frac{\int m_1 C_0 C_0 C_0}{\int m_1 C_0 C_0 C_0 C_0}\right) \frac{\partial m_1 C_0 C_0 C_0}{\int m_1 C_0 C_0 C_0} = \frac{\partial m_1 C_0 C_0}{\int m_1 C_0 C_0 C_0} = \frac{\partial m_1 C_0 C_0}{\int m_1 C_0 C_0 C_0} = \frac{\partial m_1 C_0 C_0}{\int m_1 C_0 C_0 C_0} = \frac{\partial m_1 C_0 C_0}{\int m_1 C_0 C_0 C_0} = \frac{\partial m_1 C_0 C_0}{\int m_1 C_0 C_0 C_0} = \frac{\partial m_1 C_0 C_0}{\int m_1 C_0 C_0 C_0} = \frac{\partial m_1 C_0 C_0}{\int m_1 C_0 C_0 C_0} = \frac{\partial m_1 C_0 C_0}{\int m_1 C_0 C_0 C_0} = \frac{\partial m_1 C_0 C_0}{\int m_1 C_0 C_0 C_0} = \frac{\partial m_1 C_0 C_0}{\int m_1 C_0 C_0} = \frac{\partial m_1 C_0}{\int m_1 C_0} = \frac$$

MOULZ (TIP) = MOULZ (T) +AT In Po +ATIN XCOCIZ

Exam #2: 4-2-2020: Please show all work for credit, Don't Panic

3. The following thermodynamic data was measured for a chemical reaction:

1.26

	T (K)	K _P	anvestigi	1(3.53)-126	
005988	167	3.53		1 (3. 1)	1-1.00	
01007100	250	3.67	/ (1 (3.61	121.10	
20.004	333	3.74	1	113.74)=1.32	
= 0.005988 = 0.004 = 0.003 a. Plot the data		1. ADIA		,		
-0.003	/ EL				Service V	
a. Plot the data	on the following	plot			1200pt =	
1.33				11388	11000	
		1 1776			. /	
1.32				Inte	Chi	
-			Blo I		Slot	
1.31		e and a series at a series	rich and a selection of the selection of		1	
		Add others to Settiness	2 3.00 200 3.3	Harris Towns	1	
1.30	1				VT	
X +			1 1 1 1 1			
i 1.29		1		Slop= DX		
-				1,32-	-1.30	
1.28	NING COMPANY		100	510pe=	0.0014=-2	
			11.0	0.007	-0.004	
=			. 58 . 2 - 128	510p= 1.32- 510pe= 0.003	-1.30	

b. Calculate ΔG_r° for this reaction. Is this reaction spontaneous? Justify your answer.

0.0025 0.0030 0.0035 0.0040 0.0045 0.0050 0.0055 0.0060 0.0065

1/T(K)

$$\Delta G_{r}^{2} = \Delta H - r\Delta S$$

$$\Delta G_{r}^{2} = 166.28 \text{ J/m} - (298.15 \text{ K}) (11.473 \text{ J/m K})$$

$$\Delta G_{r}^{2} = 166.28 \text{ J/m} - 3,420.67495 \text{ J/m}$$

$$\Delta G_{r}^{2} = -3,254.395 \text{ J/m}$$

$$\Delta G_{r}^{2} = -3,254.395 \text{ J/m}$$

$$\Delta G_{r}^{2} = -3,254.395 \text{ J/m}$$

c. Is this reaction enthalpically or entropically driven. Justify your answer.

Short Answers:

4. What is the second law of thermodynamics?

Total entropy of isolated system can never decrease over time and only constant if process is reversible.

- 5. What is the third law of thermodynamics? Explain how this makes entropy different than Entropy of pure, perfect crystalline substance (element or compand) is zero at zero telvin. It is different because entrany measures activity while enthalpy measures energy.
- 6. Why can't we build a perpetual motion machine?

It is impossible to make because saying that the machine could to work indefinitely without an energy some millales the first and second laws of thermodynamics.

7. Why is Gibb's free energy usually more useful to chemists than Helmholtz energy?

Gibbs Free energy is important because you can use it to belomine how likely a readrants to occur, which is essential for chemists when constructing on experiment. White Helmholtz measures useful work obtainable from a closed The Modynamic system which is more of a general application. For example, potential for sides free energy, while helmholtz teals with north applied to a system.

8. Give the mathematical definition of chemical potential. Explain why it is called a potential. Include at least one drawing.

nclude at least one drawing.

. chemical possibility is the change in Gibbs energy per mule of substance i added at constant conceiled in the change in Citibs energy and in the change of particle number of other species.

. Chemical possibility absorbed or released energy due to change of particle number of other species.

. Natural direction of change dictated by chemical possibility in absorbed by chemical possibility of themse in an ideal gas spontaneous? Justify your

9. Is the mixing of different types of molecules in an ideal gas spontaneous? Justify your answer using mathematical expressions for the chemical potential. DG 20 spontaneous mi 200 When a molecule is added in ideal DG 20 nonspontaneous mi 201 gas, it will not read with it, and here DG = cenilibrium and This (AG=DH-TDS AG 20 spontaneous MH 20 and D520 DH 20 and DS 20 as a increase in increases, due to inverse in particles.

DH 2755, D6 decrease possibility increase in particles causes decrease in chemical possibility increase, more sonomeous reading. DHLTDS, DG+ DH > TD5 7 06 enthalpitally Puroruble

more product formed or more reactant. Justify your answer using one or more equations.

When DGrxn is greater than 0 the process is endergonic and not sporteness in forward reasons, will proceed sporteneously in reverse director to make more starting materials.

DH 70 and DS 70 and DH TTD5 Then DG+

Exam #2: 4-2-2020: Please show all work for credit, Don't Panic

Extra Credit (5 pts)

Write your favorite equation from this semester and briefly explain the insight into chemistry that it provides.

Chemical Potential, mi = (36) P, T, nj, is my favorite equation

because it represents the energy that can be absorbed or released due to a change in particle number of given species, it helps determines the stubblely of substances, such as chancel species, compands, and solution and their lendency to chamically reach to form new substances, to prossorm to new physical states, or to migrove from one spotal location to another.