Отчёт по лабораторной работе №6

Математическое моделирование

Вишняков Александр

1 Цель работы

- Рассмотреть простейшую модель эпидемии.
- Построить модель и визуализировать график изменения числа особей.
- Визуализировать модель с помощью Julia и OpenModelica

2 Задание

Вариант 6.

На одном острове вспыхнула эпидемия. Известно, что из всех проживающих на острове (N=12 000) в момент начала эпидемии (t=0) число заболевших людей (являющихся распространителями инфекции) I(0)=212, А число здоровых людей с иммунитетом к болезни R(0)=12. Таким образом, число людей восприимчивых к болезни, но пока здоровых, в начальный момент времени S(0)=N-I(0)-R(0). Постройте графики изменения числа особей в каждой из трех групп. Рассмотрите, как будет протекать эпидемия в случае: 1) если I(0) <= I(2) если I(0) > I

3 Теоретическое введение

Предположим, что некая популяция, состоящая из N особей, (считаем, что популяция изолирована) подразделяется на три группы.

- S(t) восприимчивые к болезни, но пока здоровые особи
- I(t) это число инфицированных особей, которые также при этом являются распространителями инфекции
- R(t) это здоровые особи с иммунитетом к болезни.

До того, как число заболевших не превышает критического значения I считаем, что все больные изолированы и не заражают здоровых. Когда I(t)>I*, тогда инфицирование способны заражать восприимчивых к болезни особей.

Таким образом, скорость изменения числа S(t) меняется по следующему закону:

Поскольку каждая восприимчивая к болезни особь, которая, в конце концов, заболевает, сама становится инфекционной, то скорость изменения числа инфекционных особей представляет разность за единицу времени между заразившимися и теми, кто уже болеет и лечится, т.е.:

А скорость изменения выздоравливающих особей (при этом приобретающие иммунитет к болезни)

Постоянные пропорциональности:

- коэффициент заболеваемости
- коэффициент выздоровления

Для того, чтобы решения соответствующих уравнений определялось однозначно, необходимо задать начальные условия. Считаем, что на начало эпидемии в момент времени t=0 нет особей с иммунитетом к болезни R(0)=0, а число инфицированных и восприимчивых к болезни особей I(0) и S(0) соответственно. Для анализа картины протекания эпидемии необходимо рассмотреть два случая: $I(0) > I^*$ и $I(0) <= I^*$

4 Выполнение лабораторной работы

Код на OpenVodelica

```
model lab06
constant Real a = 0.01; //коэф заболеваемости
constant Real b = 0.02; //коэф выздоровления
constant Real N = 12000; //общее число популяции

Real R; // здоровые, с иммунитетом
Real I; // заболевшие
Real S; // здоровые, в зоне риска

initial equation
R = 12;
I = 212; //кол-во заболевших в t = 0
S = N-I-R;

equation
//Случай 1: I>I*
```

```
der(S) = - a * S;
der(I) = a * S-b * I;
der(R) = b * I;

//Случай 2: I<=I*

/*
der(S) = 0;
der(I) = -b * I;
der(R) = b * I;
*/
end lab06;</pre>
```

Результат 1 случая(I > I):

Случай 1 OpenModelica

Результат 2 случая(I <= I):

Случай 2 OpenModelica

Код на *Julia*

```
using Plots
using DifferentialEquations

const N = 12000
const I0 = 212
const R0 = 12

const alpha = 0.01
const beta = 0.02

S0 = N - I0 - R0

T = (0, 200)

u0 = [S0, I0, R0]

p1 = (beta)

# I0 < I*

function F1(du, u, p, t)
beta = p</pre>
```

```
du[1] = 0
 du[2] = -beta*u[2]
 du[3] = beta*u[2]
end
prob1 = ODEProblem(F1, u0, T, p1)
sol1 = solve(prob1, dtmax=0.01)
plt = plot(sol1, vars=(0,1), color=:red, label="S(t)", title="Изменения числа
особей в группе S", xlabel="t")
plt2 = plot(sol1, vars=(0,2), color=:blue, label="I(t)", title="Изменения
числа особей в группах I и R", xlabel="t")
plot!(plt2, sol1, vars=(0,3), color=:green, label="R(t)")
savefig(plt, "Julia11.png")
savefig(plt2, "Julia12.png")
# I0 > I*
p2 = (alpha, beta)
function F2(du, u, p, t)
 alpha, beta = p
 du[1] = -alpha*u[1]
 du[2] = alpha*u[1]-beta*u[2]
 du[3] = beta*u[2]
end
prob2 = ODEProblem(F2, u0, T, p2)
sol2 = solve(prob2, dtmax=0.01)
plt = plot(sol2, vars=(0,1), color=:red, label="S(t)", title="Изменения числа
особей в группах", xlabel="t")
plot!(plt, sol2, vars=(0,2), color=:blue, label="I(t)")
plot!(plt, sol2, vars=(0,3), color=:green, label="R(t)")
savefig(plt, "Julia2.png")
```

Результаты сохраняем в два графика, чтобы можно было увидеть изменения в группах R и I. Так как все инфицированные изолированы, количество особей в группе S не изменяется, число особей в группе I уменьшается, а в группе R - растет.

Изменения числа особей в группе S

Программа на Julia

Изменения числа особей в группах I и R

Программа на Julia

Получаем графики изменения численности особей для групп S, I, R. Численность в группе R увеличивается, в группе I сначала растет, потом начинает уменьшаться, а в

группе S уменьшается, то есть особи из группы S сначала переходят в группу I, а затем в группу R.

Программа на Julia

50

5 Вывод

Благодаря данной лабораторной работе познакомился с простейшей моделью эпидемии.

100

t

150

200