Computational Engineering und Robotik

Prof. Jan Peters, J. Carvalho, P. Klink, P. Liu, S. Stark

Sommersemester 2020

Lösungsvorschlag der 1. Übung

1 Homogene Transformationen

In der Vorlesung wurde gezeigt, dass jede affine Transformation der Form ${}^a \boldsymbol{p} = {}^a \boldsymbol{r}_b + {}^a \boldsymbol{R}_b {}^b \boldsymbol{p}$ mit Koordinatenvektoren ${}^i \boldsymbol{p} \in \mathbb{R}^3$ eines Punktes P bzgl. Koordinatensystem S_i , Translationsvektor ${}^a \boldsymbol{r}_b \in \mathbb{R}^3$ und Rotationsmatrix ${}^a \boldsymbol{R}_b \in \mathbb{R}^{3 \times 3}$ auch als homogene Transformation in \mathbb{R}^4 darstellt werden kann:

$${}^a\hat{m{p}}=egin{pmatrix} {}^am{p} \ 1 \end{pmatrix}=egin{pmatrix} {}^am{R}_b & {}^am{r}_b \ 0 & 1 \end{pmatrix}egin{pmatrix} {}^bm{p} \ 1 \end{pmatrix}={}^am{T}_b\cdot{}^b\hat{m{p}}$$

Homogene Transformationsmatrizen ${}^a\boldsymbol{T}_b$ haben folgende Eigenschaften:

$$(1) \ ^a\boldsymbol{T}_b^{-1} = \begin{pmatrix} ^a\boldsymbol{R}_b & ^a\boldsymbol{r}_b \\ \boldsymbol{0} & 1 \end{pmatrix}^{-1} = \begin{pmatrix} ^a\boldsymbol{R}_b^T & -^a\boldsymbol{R}_b^T \ ^a\boldsymbol{r}_b \\ \boldsymbol{0} & 1 \end{pmatrix},$$

(2)
$${}^{a}\boldsymbol{T}_{b}^{-1} = {}^{b}\boldsymbol{T}_{a}$$
,

(3)
$${}^aT_b \left({}^bT_c {}^cT_d \right) = \left({}^aT_b {}^bT_c \right) {}^cT_d$$
 (assoziativ) , aber ${}^aT_b {}^bT_c \neq {}^bT_c {}^aT_b$ (nicht kommutativ).

a) Es sei S_O ein festes Koordinatensystem und S_a ein weiteres Koordinatensystem, dessen x_a -Achse in Bezug auf S_O in die Richtung (0,0,1) zeige. Die y_a -Achse zeige in Richtung (-1,0,0). Der Ursprung von S_a liege bei (3,0,0). Gib die Rotationsmatrix ${}^O \mathbf{R}_a$, den Translationsvektor ${}^O \mathbf{r}_a$ und die Transformationsmatrix ${}^O \mathbf{T}_a$ an. Zeichne (qualitativ) das Koordinatensystem S_O und relativ dazu die Lage von S_a .

 O r_a und die Spalten 1 und 2 von O R_a kann man direkt der Aufgabenstellung entnehmen. Spalte 3 muss mit den anderen beiden ein Rechtssystem bilden (mit Rechte-Hand-Regel überlegen oder per Kreuzprodukt ausrechnen).

- b) Ein weiteres Koordinatensystem S_{b_O} liege zunächst deckungsgleich auf S_O . Es werde dann in folgender Weise transformiert:
 - (i) Drehung um π um die y_O -Achse
 - (ii) Translation in Richtung (0, 2, 0)
 - (iii) Drehung um $-\frac{\pi}{2}$ um die z_O -Achse

Abbildung 1: Rechte-Faust-Regel

Trage in deiner Zeichnung aus a) die Koordinatensysteme S_{b_i} , $S_{b_{ii}}$ und $S_b = S_{b_{ii}}$ entsprechend den Teiltransformationen (i), (ii) und (iii) ein.

Hinweis: Beachte dabei die Rechte-Faust-Regel aus Abbildung 1: Wenn der Daumen in Richtung der Drehachse zeigt, dann zeigen die gekrümmten Finger in Richtung der positiven Drehrichtung um diese Achse.

Gib die Transformationsmatrizen $\text{Rot}(y_O,\pi)$, Trans(0,2,0) und $\text{Rot}(z_O,-\frac{\pi}{2})$ an und berechne damit ${}^O \boldsymbol{T}_b$. Überprüfe dein Ergebnis anhand der Zeichnung.

Lösungsvorschlag:

$$\operatorname{Rot}(y_O,\pi) = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \quad \operatorname{Trans}(0,2,0) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \quad \operatorname{Rot}(z_O,-\frac{\pi}{2}) = \begin{pmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Da sich alle Teiltransformationen (i)-(iii) auf das **feste Koordinatensystem** S_O beziehen, ist für die Berechnung von ${}^O T_b$ die **Multiplikationsreihenfolge von rechts nach links** zu wählen:

$$\begin{split} {}^{O}\boldsymbol{T}_{b} &= \operatorname{Rot}(z_{O}, -\frac{\pi}{2}) \cdot \operatorname{Trans}(0, 2, 0) \cdot \operatorname{Rot}(y_{O}, \pi) \\ &= \begin{pmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \\ &= \begin{pmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 & 2 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \end{split}$$

Aus der Transformationsmatrix liest man ab:

```
m{x}_b zeigt in positive Richtung von m{y}_O 
ightarrow in Zeichnung erfüllt \checkmark m{y}_b zeigt in positive Richtung von m{x}_O 
ightarrow in Zeichnung erfüllt \checkmark m{z}_b zeigt in negative Richtung von m{z}_O 
ightarrow in Zeichnung erfüllt \checkmark Der Ursprung von m{S}_b liegt bzgl. m{S}_O bei (2,0,0) 
ightarrow in Zeichnung erfüllt \checkmark
```

c) Bestimme ${}^{O}T_a^{-1}$ ohne explizit eine Matrixinverse zu berechnen. Überprüfe dein Ergebnis anhand der Zeichnung.

$$\begin{array}{lll} \textbf{L\"osungsvorschlag:} & {}^{O}\boldsymbol{R}_{a}^{T} \overset{\text{a})}{=} \begin{pmatrix} 0 & 0 & 1 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \end{pmatrix}, & & -{}^{O}\boldsymbol{R}_{a}^{T} {}^{O}\boldsymbol{r}_{a} = \begin{pmatrix} 0 & 0 & -1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 3 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 3 \\ 0 \end{pmatrix}$$

$$\rightarrow \quad {}^{O}\boldsymbol{T}_{a}^{-1} = \begin{pmatrix} {}^{O}\boldsymbol{R}_{a}^{T} & -{}^{O}\boldsymbol{R}_{a}^{T} {}^{O}\boldsymbol{r}_{a} \\ \boldsymbol{0} & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ -1 & 0 & 0 & 3 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Aus der Transformationsmatrix liest man ab:

 $m{x}_O$ zeigt in negative Richtung von $m{y}_a$ ightarrow in Zeichnung erfüllt \slash $m{y}_O$ zeigt in negative Richtung von $m{z}_a$ ightarrow in Zeichnung erfüllt \slash $m{z}_O$ zeigt in positive Richtung von $m{x}_a$ ightarrow in Zeichnung erfüllt \slash Der Ursprung von $m{S}_O$ liegt bzgl. $m{S}_a$ bei (0,3,0) ightarrow in Zeichnung erfüllt \slash

d) Bestimme aus ${}^O T_a$ und ${}^O T_b$ die Transformationsmatrix ${}^a T_b$ ohne explizit eine Matrixinverse zu berechnen. Überprüfe dein Ergebnis anhand der Zeichnung.

$$\textbf{L\"osungsvorschlag:} \quad {}^{a}\boldsymbol{T}_{b} = {}^{a}\boldsymbol{T}_{O} \ {}^{O}\boldsymbol{T}_{b} = {}^{O}\boldsymbol{T}_{a} \ {}^{O}\boldsymbol{T}_{b$$

Aus der Transformationsmatrix liest man ab:

 $m{x}_b$ zeigt in negative Richtung von $m{z}_a$ ightarrow in Zeichnung erfüllt $\ensuremath{\checkmark}$ $m{y}_b$ zeigt in negative Richtung von $m{y}_a$ ightarrow in Zeichnung erfüllt $\ensuremath{\checkmark}$ $m{z}_b$ zeigt in negative Richtung von $m{x}_a$ ightarrow in Zeichnung erfüllt $\ensuremath{\checkmark}$ Der Ursprung von S_b liegt bzgl. S_a bei (0,1,0) ightarrow in Zeichnung erfüllt $\ensuremath{\checkmark}$

e) Es sei ${}^O \boldsymbol{p} = (2,1,0)^T$ gegeben. Berechne $\hat{\boldsymbol{p}}_1 = {}^O \boldsymbol{T}_a {}^O \hat{\boldsymbol{p}}$ und $\hat{\boldsymbol{p}}_2 = {}^O \boldsymbol{T}_a^{-1} {}^O \hat{\boldsymbol{p}}$. Entscheide und begründe für beide Fälle, ob der Punkt fest bleibt und sich nur das Bezugssystem ändert oder andersherum.

Der Punkt verschiebt sich im Bezugssystem S_O .

$$\hat{m{p}}_2 = \underbrace{{}^{O}m{T}_a^{-1}}_{={}^{a}m{T}_O}{}^{O}\hat{m{p}} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ -1 & 0 & 0 & 3 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ -1 \\ 1 \end{pmatrix} = {}^{a}\hat{m{p}}$$

Der Punkt bleibt fest, das Bezugssystem ändert sich von S_O in S_a .

2 Direkte und inverse Kinematik (8 Punkte)

Den in Abbildung 2 dargestellten Roboter kannst du dich als Modell eines Baggers vorstellen: Das erste Gelenk stellt die horizontal drehbare Basis des Fahrzeugs dar, an dem in einigem Abstand der jeweils vertikal drehbare Ausleger und Löffelstiel angebracht sind.

Abbildung 2: Modell des Baggers

$Gelenk\;i$	θ_i	d_i	a_i	α_i
1	q_1	$l_1=1$ m	l_2 =1m	$\frac{\pi}{2}$
2	q_2	0	l_3 =2m	0
3	q_3	0	l_4 =3m	π

Tabelle 1: Denavit-Hartenberg-Parameter

- a) Zeichne in der Vorlage am Ende dieser Aufgabe alle lokalen Roboterkoordinatensysteme ein. Beachte dafür die zwei bereits eingezeichneten Achsen und die Parameter aus Tabelle 1 und halt dich an die Denavit-Hartenberg-Konvention:
 - Die z_i -Achse liegt entlang der Bewegungsachse des i+1-ten Gelenks. Hinweis: Lass dich davon nicht verwirren: Die Aufzählung der Koordinatensysteme beginnt mit 0, wir sprechen aber vom 1. Gelenk.
 - Die x_i -Achse steht senkrecht zur z_{i-1} und z_i -Achse, zeigt von diesen weg und hat einen Schnittpunkt mit der z_{i-1} -Achse.

• Mit der y_i -Achse ergibt x_i, y_i, z_i ein Rechts-Koordinatensystem.

Lösungsvorschlag: Zunächst wird y_0 so eingezeichnet, dass sich ein Rechts-Koordinatensystem ergibt.

Die übrigen Koordinatensysteme lassen sich mit den DH-Parametern und den DH-Konventionen von einem Gelenk zum nächsten über die Transformationsvorschrift

$$^{i-1}\boldsymbol{T}_i = \operatorname{Rot}(z; \theta_i) \cdot \operatorname{Trans}(0, 0, d_i) \cdot \operatorname{Trans}(a_i, 0, 0) \cdot \operatorname{Rot}(x; \alpha_i)$$

eindeutig bestimmen. Dabei beziehen sich die einzelnen Transformationen immer auf das lokale Koordinatensystem S_i und dessen aktuelle Lage, man geht daher in der Multiplikationsreihenfolge von links nach rechts vor. Im Folgenden wird beispielhaft die Transformation von S_0 zu S_1 beschrieben:

- Zunächst liegt S_1 deckungsgleich auf S_0 .
- S_1 wird um die z_1 -Achse um den Winkel θ_1 gedreht, in diesem Fall also um 0° . (Eine Modellzeichnung wie Abbildung 2 ist eine Darstellung des Roboters mit fester Belegung für die variablen Parameter. Üblicherweise stellt man alle Gelenke in der Nullstellung dar, so auch hier, daher $q_i = 0$, i = 1, 2, 3.)
- S_1 wird entlang der z_1 -Achse um d_1 verschoben.
- S_1 wird entlang der x_1 -Achse um a_1 verschoben. Der Ursprung von S_1 liegt nun im zweiten Gelenk, was man den Längenangaben in Tabelle 1 entnehmen kann.
- Zuletzt wird S_1 um die x_1 -Achse um den Winkel $\alpha_1 = \frac{\pi}{2}$ gedreht.

Jetzt sollte man anhand der DH-Konventionen auf Fehler überprüfen: Die z_1 -Achse zeigt aus der Bildebene heraus, was genau der Bewegungsachse des zweiten Gelenks entspricht. x_1 zeigt nach rechts und erfüllt somit die Schnittpunkte mit z_0 und z_1 . y_1 ergibt dann noch das Rechtssystem, damit ist auch das dritte Kriterium erfüllt. Für die übrigen Koordinatensysteme geht man analog vor und es ergibt sich folgende Zeichnung:

(2 Punkte möglich, 0.5 Punkte je richtig eingezeichnetem Koordinatensystem)

b) Berechne die Transformationen 0T_1 , 1T_2 und stelle dann das Vorwärtskinematikmodell 0T_2 auf. Berechne in Hinblick auf die Aufgabenteile c) und d) auch den Positionsvektor 0r_3 des Endeffektors. Beachte hierbei, dass es dafür nicht notwendig ist 0T_3 komplett zu berechnen!

Fasse trigonometrische Ausdrücke so weit wie möglich zusammen! z.B., $\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$

Lösungsvorschlag: Zunächst stellen wir die Matrizen ${}^{0}T_{1}$ und ${}^{1}T_{2}$ mit den DH-Parametern auf:

$${}^{0}\boldsymbol{T}_{1} = \begin{pmatrix} \cos q_{1} & 0 & \sin q_{1} & l_{2} \cos q_{1} \\ \sin q_{1} & 0 & -\cos q_{1} & l_{2} \sin q_{1} \\ 0 & 1 & 0 & l_{1} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
 (0.5 Punkt(e))
$${}^{1}\boldsymbol{T}_{2} = \begin{pmatrix} \cos q_{2} & -\sin q_{2} & 0 & l_{3} \cos q_{2} \\ \sin q_{2} & \cos q_{2} & 0 & l_{3} \sin q_{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
 (0.5 Punkt(e))

Die Transformationsmatrix ${}^{0}T_{2}$ ergibt sich durch die Multiplikation von ${}^{0}T_{1}$ und ${}^{1}T_{2}$:

$${}^{0}\boldsymbol{T}_{2} = {}^{0}\boldsymbol{T}_{1} \cdot {}^{1}\boldsymbol{T}_{2} = \begin{pmatrix} \cos q_{1} \cos q_{2} & -\cos q_{1} \sin q_{2} & \sin q_{1} & l_{3} \cos q_{1} \cos q_{2} + l_{2} \cos q_{1} \\ \sin q_{1} \cos q_{2} & -\sin q_{1} \sin q_{2} & -\cos q_{1} & l_{3} \sin q_{1} \cos q_{2} + l_{2} \sin q_{1} \\ \sin q_{2} & \cos q_{2} & 0 & l_{3} \sin q_{2} + l_{1} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
 (0.5 Punkt(e))

Um ${}^0\boldsymbol{r}_3$ auszurechnen, werden nur die ersten drei Zeilen von ${}^0\boldsymbol{T}_2$ sowie die letzte Spalte von ${}^2\boldsymbol{T}_3$ benötigt:

$${}^{0}\boldsymbol{T}_{3} = \begin{pmatrix} {}^{0}\boldsymbol{R}_{3} & {}^{0}\boldsymbol{r}_{3} \\ 0 & 1 \end{pmatrix} = {}^{0}\boldsymbol{T}_{2} \cdot {}^{2}\boldsymbol{T}_{3}$$

$$\Rightarrow {}^{0}\boldsymbol{r}_{3} = {}^{0}\boldsymbol{\tilde{T}}_{2} \cdot \begin{pmatrix} {}^{2}\boldsymbol{r}_{3} \\ 1 \end{pmatrix} \quad \text{mit} \quad {}^{0}\boldsymbol{\tilde{T}}_{2} = \begin{pmatrix} {}^{0}\boldsymbol{R}_{2}, {}^{0}\boldsymbol{r}_{2} \end{pmatrix} \quad \text{(0.5 Punkt(e))}$$

$$= \begin{pmatrix} \cos q_{1}\cos q_{2} & -\cos q_{1}\sin q_{2} & \sin q_{1} & l_{3}\cos q_{1}\cos q_{2} + l_{2}\cos q_{1} \\ \sin q_{1}\cos q_{2} & -\sin q_{1}\sin q_{2} & -\cos q_{1} & l_{3}\sin q_{1}\cos q_{2} + l_{2}\sin q_{1} \\ \sin q_{2} & \cos q_{2} & 0 & l_{3}\sin q_{2} + l_{1} \end{pmatrix} \cdot \begin{pmatrix} l_{4}\cos q_{3} \\ l_{4}\sin q_{3} \\ 0 \\ 1 \end{pmatrix}$$

$$= \begin{pmatrix} l_{4}\cos q_{1}\cos q_{2}\cos q_{3} - l_{4}\cos q_{1}\sin q_{2}\sin q_{3} + l_{3}\cos q_{1}\cos q_{2} + l_{2}\cos q_{1} \\ l_{4}\sin q_{1}\cos q_{2}\cos q_{3} - l_{4}\sin q_{1}\sin q_{2}\sin q_{3} + l_{3}\sin q_{1}\cos q_{2} + l_{2}\sin q_{1} \\ l_{4}\sin q_{2}\cos q_{3} - l_{4}\cos q_{2}\sin q_{3} + l_{3}\sin q_{2} + l_{1} \end{pmatrix}$$

$$= \begin{pmatrix} \cos q_{1} \cdot (l_{4}\cos(q_{2} + q_{3}) + l_{3}\cos q_{2} + l_{2}) \\ \sin q_{1} \cdot (l_{4}\cos(q_{2} + q_{3}) + l_{3}\sin q_{2} + l_{1} \end{pmatrix}$$

$$= \begin{pmatrix} \cos q_{1} \cdot (l_{4}\cos(q_{2} + q_{3}) + l_{3}\cos q_{2} + l_{2}) \\ l_{4}\sin(q_{2} + q_{3}) + l_{3}\sin q_{2} + l_{1} \end{pmatrix}$$

(1 Punkt maximal, 0.5 Punkte wenn richtig, aber nicht vollständig zusammengefasst)

Verwendete trigonometrische Formeln:

$$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$$
$$\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$$

c) Bestimme jetzt die Endeffektorposition des Baggerlöffels für $q_1=0, q_2=-\frac{\pi}{4}, q_3=\frac{\pi}{8}$. Gib das Ergebnis auf fünf Dezimalstellen genau an.

Lösungsvorschlag:

$${}^{0}\mathbf{r}_{3} = \begin{pmatrix} 5.1859m \\ 0.0000m \\ -1.5623m \end{pmatrix}$$
 (0.5 Punkt(e))

d) Es sei $q_2 = 0$ gegeben. Bestimme gültige Gelenkparameter q_1 und q_3 um die Endeffektorposition

$$^{0}oldsymbol{r}_{3}=egin{pmatrix}0m\\6m\\1m\end{pmatrix}$$

zu erreichen. Stelle dazu das Inverskinematikmodell auf und löse es zunächst symbolisch nach q_1 und q_3 auf. Setze erst dann konkrete Zahlenwerte für ${}^{0}\mathbf{r}_{3}$ und l_{i} , i=1,2,3,4, ein und runde dein Ergebnis auf fünf Dezimalstellen.

Lösungsvorschlag: Inverskinematikmodell mit $q_2 = 0$:

$${}^{0}\boldsymbol{r}_{3} = \begin{pmatrix} {}^{0}\boldsymbol{r}_{3,x} \\ {}^{0}\boldsymbol{r}_{3,y} \\ {}^{0}\boldsymbol{r}_{3,z} \end{pmatrix} = \begin{pmatrix} \cos q_{1}(l_{4}\cos q_{3} + l_{3} + l_{2}) & I \\ \sin q_{1}(l_{4}\cos q_{3} + l_{3} + l_{2}) & II \\ l_{4}\sin q_{3} + l_{1} & III \end{pmatrix} \quad \text{(0.5 Punkt(e))}$$

Möglicher Lösungsweg:

aus III folgt:
$$q_3 = \arcsin\left(\frac{{}^0r_{3,z}-l_1}{l_4}\right) = \arcsin\left(\frac{1-1}{3}\right) = 0.0000$$
 (0.5 Punkt(e))

aus I folgt:
$$\cos q_1 (l_4 \cos q_3 + l_3 + l_2) = 0$$

$$\cos q_1 \left(l_4 \cos q_3 + l_3 + l_2 \right) = {}^0 r_{3,x}$$

$$\Rightarrow q_1 = \arccos\left(\frac{{}^0 r_{3,x}}{l_4 \cos q_3 + l_3 + l_2} \right) = \arccos\left(\frac{0}{3 \cos(0) + 2 + 1} \right) = \arccos\left(\frac{0}{6} \right) = \frac{\pi}{2}$$

sowie aus II:
$$\sin q_1 (l_4 \cos q_3 + l_3 + l_2) = r_{3,y}$$

$$\sin q_1 \left(l_4 \cos q_3 + l_3 + l_2 \right) = {}^{0} r_{3,y}$$

$$\Rightarrow q_1 = \arcsin \left(\frac{{}^{0} r_{3,y}}{l_4 \cos q_3 + l_3 + l_2} \right) = \arcsin \left(\frac{6}{3 \cos(0) + 2 + 1} \right) = \arcsin \left(\frac{6}{6} \right) = \frac{\pi}{2}$$

e) Überlege und beschreibe anhand der Robotergeometrie (Abbildung 2), wie du die Gelenke einstellen müsstest, um die

Endeffektorposition

$$^{0}\boldsymbol{r}_{3}=egin{pmatrix}0\mathrm{m}\\1\mathrm{m}\\0\mathrm{m}\end{pmatrix}$$

zu erreichen. Warum kannst diese Parameter beim echten Roboter nicht einstellen?

Lösungsvorschlag: Anhand der Grafik kann man sich überlegen, dass das erste Gelenk $\pi/2$ rad dreht, das Glied zwischen Gelenk 2 und 3 direkt nach oben zeigt und das Glied zwischen Gelenk 3 und 4 direkt nach unten zeigt. Die Parameter dafür wären $q_1 = \frac{\pi}{2}$, $q_2 = \frac{\pi}{2}$ und $q_3 = \pi$. (0.5 Punkt(e))

In der Praxis würde eine solche Roboterstellung durch entsprechende Gelenkwinkelbeschränkungen verhindert werden, um eine Kollision von Glied 2 und 3 zu vermeiden. (0.5 Punkt(e))

Vorlage für Aufgabe 2 a)

