Problem Set 4

Problems marked (T) are for discussions in Tutorial sessions.

- 1. Determine whether the following sets of vectors are linearly independent or not
 - (a) $\{(1,0,0),(1,1,0),(1,1,1)\}\$ of \mathbb{R}^3
 - (b) $\{(1,0,0,0),(1,1,0,0),(1,2,0,0),(1,1,1,1)\}$ of \mathbb{R}^4
 - (c) $\{(1,0,2,1),(1,3,2,1),(4,1,2,2)\}$ in \mathbb{R}^4 .
- 2. Find a maximal linearly independent subset of

$$S = \left\{ \begin{bmatrix} 1\\2\\-1\\0\\1 \end{bmatrix}, \begin{bmatrix} -1\\0\\1\\2\\2 \end{bmatrix}, \begin{bmatrix} 0\\2\\2\\2\\1 \end{bmatrix}, \begin{bmatrix} 1\\-1\\-1\\-3\\1 \end{bmatrix}, \begin{bmatrix} 0\\0\\0\\2\\1 \end{bmatrix}, \begin{bmatrix} 2\\1\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 2\\3\\0\\1\\1 \end{bmatrix}, \begin{bmatrix} -1\\-2\\-1\\0\\1 \end{bmatrix} \right\}.$$

Find another. And another. Do they have the same cardinality?

- 3. Give 2 bases for the trace 0 real symmetric matrices of size 3×3 . Extend these bases to bases of the real matrices of size 3×3 .
- 4. Consider $\mathbb{W} = \{ \mathbf{v} \in \mathbb{R}^6 : \mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_3 = 0, \mathbf{v}_2 + \mathbf{v}_3 + \mathbf{v}_4 = 0, \mathbf{v}_5 + \mathbf{v}_6 = 0 \}$. Supply a basis for \mathbb{W} and extend it to a basis of \mathbb{R}^6 .
- 5. Let M be the vector space of all 2×2 matrices and let $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, B = \begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix}$.
 - (a) Give a basis of M.
 - (b) Describe a subspace of M which contains A and does not contain B.
 - (c) True (give a reason) or False (give a counter example): If a subspace of M contains A and B, it must contain the identity matrix.
- 6. [T] Let $\{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_n\}$ be a basis of the finite dimensional vector space \mathbb{V} . Let \mathbf{v} be any non zero vector in \mathbb{V} . Show that there exists \mathbf{w}_i such that if we replace \mathbf{w}_i by \mathbf{v} then we still have a basis.
- 7. Show that $\{\mathbf{u}, \mathbf{v}\}$ is linearly independent if and only if $\{\mathbf{u} + \mathbf{v}, \mathbf{u} \mathbf{v}\}$ is linearly independent.
- 8. (T) Show that $\mathbf{u}_1, \dots, \mathbf{u}_k \in \mathbb{R}^n$ are linearly independent if and only if $A\mathbf{u}_1, \dots, A\mathbf{u}_k$ are linearly independent for any invertible matrix $A_{n \times n}$.

That is, suppose we have an $n \times n$ invertible matrix A and consider the map $f : \mathbb{R}^n \to \mathbb{R}^n$ defined by $f(\mathbf{x}) = A\mathbf{x}$. Then, ' $\mathbf{u}_1, \dots, \mathbf{u}_k$ are linearly independent if and only if their images are also linearly independent'.

- 9. Show that $\mathbf{u}_1, \dots, \mathbf{u}_k \in \mathbb{V}$ is linearly independent if and only if $\sum_{i=1}^k a_{i1} \mathbf{u}_i, \dots, \sum_{i=1}^k a_{ik} \mathbf{u}_i$ are linearly independent for any invertible matrix $A_{k \times k}$. This means: In $\mathrm{LS}(\mathbf{u}_1, \dots, \mathbf{u}_k)$ the set $\{\mathbf{u}_1, \dots, \mathbf{u}_k\}$ are linearly independent if and only if the vectors $\mathbf{w}_j = \sum_{i=1}^k a_{ij} \mathbf{u}_i$ (which are nothing but some linear combinations of \mathbf{u}_i 's given by the matrix A) are linearly independent.
- 10. **(T)** If $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_d$ is a basis for a vector space \mathbb{V} , then show that any set of n vectors in \mathbb{V} with n > d, say $\{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_n\}$, is linearly dependent.
- 11. Suppose \mathbb{V} is a vector space of dimension d. Let $S = \{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_n\}$ be a set of vectors from \mathbb{V} . Then show that S does not span \mathbb{V} if n < d.
- 12. (T) Determine if the set $T = \{1, x^2 x + 5, 4x^3 x^2 + 5x, 3x + 2\}$ spans the vector space of polynomials with degree 4 or less.
- 13. Let \mathbb{W} be a proper subspace of \mathbb{V} .
 - (a) Show that there is a subspace \mathbb{U} of \mathbb{V} such that $\mathbb{W} \cap \mathbb{U} = \{0\}$ and $\mathbb{U} + \mathbb{W} = \mathbb{V}$.
 - (b) Show that there is no subspace \mathbb{U} such that $\mathbb{U} \cap \mathbb{W} = \{0\}$ and dim $\mathbb{U} + \dim \mathbb{W} > \dim \mathbb{V}$.
- 14. (T) Describe all possible ways in which two planes (passing through origin) in \mathbb{R}^3 could intersect.
- 15. Construct a matrix with the required property or explain why this is impossible:
 - (a) Column space contains $\begin{bmatrix} 1\\1\\0 \end{bmatrix}$, $\begin{bmatrix} 0\\0\\1 \end{bmatrix}$, row space contains $\begin{bmatrix} 1\\2 \end{bmatrix}$, $\begin{bmatrix} 2\\5 \end{bmatrix}$.
 - (b) Column space has basis $\left\{\begin{bmatrix}1\\1\\3\end{bmatrix}\right\}$, null-space has basis $\left\{\begin{bmatrix}3\\1\\1\end{bmatrix}\right\}$. What if $\begin{bmatrix}3\\1\\1\end{bmatrix}$ belongs to the null space (but not necessarily forms a basis)?
 - (c) The dimension of null-space is one more than the dimension of left null-space.
 - (d) Left null-space contains $\begin{bmatrix} 1 \\ 3 \end{bmatrix}$, row space contains $\begin{bmatrix} 3 \\ 1 \end{bmatrix}$.
- 16. Suppose A is a 3 by 4 matrix and B is a 4 by 5 matrix with AB = 0. Show that

$$rank(A) + rank(B) \le 4$$
.

17. (T) Let A be an m by n matrix and B be an n by p matrix with rank(A) = rank(B) = n. Show that rank(AB) = n.