Fundamentos de bancos de dados

Lúbia Vinhas

Fundamentos de bancos de dados

- Um banco de dados é uma coleção de dados organizada de forma que um computador possa armazená-los e recuperá-los de maneira eficiente
- É um repositório de dados logicamente relacionados
- Um banco de dados é criado e mantido através de um software de propósito geral chamado Sistema Gerenciador de Banco de Dados (SGBD)

Bancos de dados

- Antes dos bancos de dados, a função principal dos computadores era converter dados entre diferentes formatos
 - entrada saída processamento
 - O computador é uma calculadora gigante
- Bancos de dados transformam os computadores em repositórios de dados
 - O computador é um repositório de dados
- A maioria das aplicações (SIG inclusive)
 precisam de um balanço entre
 processamento e armazenamento

Bancos de Dados

- Para que possam ser úteis, bancos de dados devem oferecer:
 - Confiabilidade
 - Integridade
 - Segurança
 - Visões
 - Interface
 - Independência de dados
 - Auto-descrição
 - Concorrência
 - Capacidade de rodar de forma distribuída
 - Alta performance
- Todas essas funções são executadas pelos SGBD Sistemas Gerenciadores de Bancos de Dados

Ex: Encomendas para festa

- Podemos escrever um programa para organizar o estoque de alguém que aceita encomendas para festa
- Com o tempo esse
 programa irá se tornar
 muito complexo, com
 muitas funções

Ex: Encomendas para festa 2

- Principais problemas da abordagem anterior:
 - Perda de integridade
 - Perda de independência
 - Perda de segurança
- Estágio 3, o banco de dados, resolve esses problemas

Algumas aplicações de banco de dados

- Bancos de dados caseiros
 - Aplicações simples (ex. encomendas para festa)
- Bancos de dados comerciais
 - Armazena todas as informações relativas ao negócio (ex. fornecedores, clientes, empregados)
- Bancos de dados de engenharia
 - Armazena informações sobre projetos de engenharia (ex. CAD)
- Bancos de dados multi-media
 - Armazena imagens, áudio e vídeo
- Bancos de dados geográficos
 - Armazenam combinações de dados espaciais e não espaciais

Um SGBD oferece:

- Interfaces baseadas em modelo de dados de alto nível tanto para a definição da estrutura da base quanto para sua consulta
- Mecanismos que garantem restrições de integridade (ex. triggers, assertions)
- Atomicidade-consistência-integridadedurabilidade) (ex. controle de concorrência, susbsistema de recuperação)
- Controle de acesso
- Métodos de acesso e armazemento eficientes (ex. otimização de consultas)

SGBD's tem vários níveis

- nível externo:
 - especificação da organização conceitual do BD, vista por um grupo de usuários
- nível conceitual:
 - especificação da organização conceitual do BD, ou seja, o quê o BD armazena
- nível físico ou interno:
 - especificação das estruturas de armazenamento do BD, ou seja, como o BD está armazenado

Vantagens da especificação em níveis

- Facilidade de manutenção
- Independência física (dos dados)
 - Permite modificar as estruturas de armazenamento sem impactar as aplicações
- Independência lógica (dos dados)
 - Separação entre esquema externo e esquema conceitual permite modificar a organização conceitual com impacto mínimo nas aplicações.
 - As aplicação são construídas sobre o nível externo

Modelos de dados

- Conjunto de conceitos usados para representar os dados, os relacionamentos entre esses dados e as restrições de consistência da base
- No processo de modelagem é necessário construir uma abstração dos objetos e fenômenos do mundo real

Abstração de dados

- Nível de visões (de usuário)
 - Descreve como um usuário vê o banco de dados
 - Diferentes usuários podem ter diferentes visões do BD
- Nível lógico ou conceitual
 - Descreve quais dados estão armazenados e as relações entre eles
- Nível físico
 - Descreve como os dados estão armazenados
 - Baixo nível de abstração
 - Estruturas complexas e detalhadas

Abstração de dados – Exemplo

Projeto de um Banco de Dados

- Começa com um levantamento de requisitos
- Modelagem conceitual
- Modelagem lógica
- Refinamento e projeto físico
- Termina com o projeto físico do banco

Modelo Entidade-Relacionamento (E-R)

- Introduzido em 1976 por Peter Chen, é a abordagem mais adotada para modelagem conceitual de dados. Objetivo é facilitar o projeto do banco de dados representando sua estrutura lógica
- Definição: modelo baseado na percepção do mundo real como um conjunto de objetos chamados entidades e pelo conjunto de relacionamentos entre esses objetos
- Ao longo do tempo diferentes versões de do modelo E-R foram sendo propostas para representar diferentes conceitos

Conceitos básicos do Modelo E-R

Entidades

- Objetos básicos do mundo real
- Um conjunto de entidades agrupa entidades do mesmo tipo

Relacionamentos

Associação entre conjuntos de entidades

Atributos

- Associados a entidades e a relacionamentos
- Uma entidade é representada por um conjunto de atributos
- Cada atributo possui um domínio

Representação Gráfica do Modelo E-R

Retângulos: conjunto de entidades

Elipses: atributos

Losangos: relacionamentos

- Atributo identificador
 - Atributo que vai identificar unicamente cada instância da entidade
 - Devem ser sublinhados

Cardinalidade:

 expressa o número de outras entidades as quais uma pode estar estar associada: 1:1, 1:n, n:1, n:n

Exemplos de cardinalidade: 1:1

Relação correta

Relação incorreta

Exemplos de cardinalidade: 1:N

Exemplos de cardinalidade: N:N

Relação correta

Modelo de Dados Geográficos

- Modelagem de dados convencional
 - abstração de entidades e relacionamentos do mundo real com propriedades alfanuméricas
- Modelagem de dados geográficos é mais complexa
 - entidades com propriedades espaciais
 - entidades com múltiplas representações
 - várias geometrias para uma mesma entidade
 - podem estar associadas a determinadas faixas de escala
 - relacionamentos com semântica espacial
 - conectividade, cobertura, ...

Outros requisitos de um Modelo de Dados Geográficos

- Representar e diferenciar os diversos tipos de dados envolvidos nas aplicações geográficas, tais como ponto, linha, área, imagem, etc.
- Representar tanto as relações espaciais e suas propriedades como também as associações simples e de rede
- Ser capaz de especificar regras de integridade espacial
- Suportar classes georreferenciadas e classes convencionais, assim como os relacionamentos entre elas

Requisitos de um Modelo de Dados Geográficos

- Ser adequado aos conceitos que temos sobre dados espaciais, tanto discretos quanto contínuos
- Ser de fácil visualização e compreensão
- Representar o conceito de camada de informação
- Representar as múltiplas visões de uma mesma entidade geográfica, tanto com base em variações de escala, quanto nas várias formas de percebê-las
- Ser capaz de expressar versões e séries temporais, assim como relacionamentos temporais

Modelos de Dados Geográficos

- Modelos que possuem conceitos ou primitivas para a representação de dados geográficos:
 - IFO para aplicações geográficas (Worboys et al., 1990)
 - MODUL-R (Bédard, 1996)
 - GeoOOA (Kösters, 1997)
 - GMOD (Oliveira, 1997)
 - GISER (Shekhar, 1997)
 - MADS (Parent, 1999)
 - GeoFrame (Lisboa and lochpe, 1999)
 - OMT-G (Borges, 2001)

Modelo OMT - Object Modeling Technique

- Método de projeto orientado a objetos: classes, relacionamentos e operações
- Conceitos:
 - objeto entidade do mundo real
 - classe de objetos representa entidades de mesma característica (atributos, operações)
 - associações relacionamento entre objetos
 - generalização hierarquia entre classes
 - agregação combinação de outras partes

Modelo OMT – diagrama de classes

Modelo OMT-G

Classes convencionais

- objetos com comportamento semelhantes
- nome, atributos, e operações

Classes georeferenciadas

- objetos com representações espaciais (geo-campos e geoobjetos)
- nome, atributos gráficos e convencionais, operações

Geo-campos:

Rede Triangular Irregular	Isolinha	Polígonos Adjacentes	Tesselação	Amostragem
Nome	Nome	Nome	Nome	Nome
Atributos Gráficos	Atributos Gráficos	Atributos Gráficos	Atributos Gráficos	Atributos Gráficos
Atributos	Atributos	Atributos	Atributos	Atributos
Operações	Operações	Operações	Operações	Operações
Ex: TIN	Ex: Curvas de nível	Ex: Divisão de bairros	Ex: Imagem	Ex: Pontos Cotados

Geo-objetos

GEO-OBJETO com geometria

20 oboži o com geometric

LINHA PONTO

 Nome da Classe
 Nome da Classe

 Atributos Gráficos
 Atributos Gráficos

 Atributos
 Atributos

 Operações
 Operações

Ex: Muro Ex: Árvore

POLÍGONO

Nome
da Classe
Atributos Gráficos

Atributos

Operações

Ex: Lote

GEO-OBJETO com geometria e topologia

LINHA UNI-DIRECIONADA

Nome
da Classe

Atributos Gráficos

Atributos

Operações

Ex: Trecho rede de esgoto

LINHA BI-DIRECIONADA

Nome da Classe
Atributos Gráficos

Atributos

Operações

Ex: Trecho rede de água

NÓ

Nome
da Classe
Atributos Gráficos
Atributos
Operações

Ex:Poço de Visita

OMT-G – Relacionamentos

- Associação simples
 - relacionamentos estruturais entre objetos diferentes
- Relações espaciais
 - topológicas, métricas, direcionais
- Hierarquia espacial
 - classe que representa o domínio espacial é conectada às demais sub-divisões espaciais
- Relacionamento em rede
 - ligam classes do tipo Nó com classes do tipo Linha unidirecionada ou bi-direcionada

OMT-G – Relacionamentos

(c) Arc-node network relationship

(d) Arc-arc network relationship

OMT-G – Relacionamentos

Relacionamentos Espaciais entre polígonos

OMT-G

Relacionamentos espaciais

<u>A</u> <u>B</u>
> <
A, B
√ d→
<mark>∢^d→</mark>
A, B B

	1
LINHA/	
POLIGONO	
Disjunto	A/
Adjacente	
Perto de	\d d →
Dentro de	
Acima/Abaixo	
Cruza	
Atravessa	Ø
Em frente a	
Toca	$\overline{}$

LINHA/PONTO	
Disjunto	A •
Toca/Adjacente	
Perto de	\d →
Sobre	
Acima/Abaixo	•

PONTO/ POLIGONO	
Disjunto	• B
Adjacente/Toca	•
Perto de	● ← d →
Dentro de	•
Acima/Abaixo	
Em frente a	•—

OMT-G – Generalização

Notação p/ Generalização

Generalização

Generalização Espacial

OMT-G – Generalização Espacial

OMT-G – Generalização Espacial

OMT-G – Agregação

Agregação

Agregação espacial. Impõe uma série de restrições de integridade:

Geometrias das partes formam a geometria do todo

Não há interseção entre as geometrias das partes

OMT-G – Agregação Espacial

OMT-G – Generalização Cartográfica

 Pode ser vista como uma série de transformações em algumas representações das informações espaciais, com o objetivo de melhorar a legibilidade e compreensão dos dados

2 tipos : variação pela forma e variação por escala

Diferentes Visões de um Rio

OMT-G – Generalização Cartográfica

Variação pela Forma

OMT-G – Generalização Cartográfica

Variação pela Escala

Exemplo Modelo OMT-G: Hospitais

Exemplo OMT-G: Empresa Cana Açúcar

Projeto de Bancos de dados

- Fase 1: Modelagem conceitual (ER)
- Fase 2: Mapeamento para um modelo lógico
- Fase 3: Definição das estruturas físicas de armazenamento

Modelo Relacional

- Uma banco de dados relacional é uma coleção de relações, muitas vezes chamadas de tabelas
- Cada relação tem um conjunto de atributos
- Os dados de uma relação estão estruturados como um conjunto de linhas, ou tuplas
- Cada tupla contém os dados de cada atributo
- Cada célula em uma tupla contém um valor atômico
- Um Sistema Gerenciador de Dados Relacional (SGBD-Relacional) é um software que gerencia um banco de dados relacional

Exemplos de relações

Relação

Atributo

PROPRIETARIO

CPF	NOME	RUA	NUMERO	BAIRRO
08940256	JOÃO DA SILVA	SAO JOAO	180	CENTRO
03727298	HENRIQUE CARDOSO	IMIGRANTE	1700	VILA 12
97260089	JOSÉ DE SOUZA	SAO JOAO	35	CENTRO

Tupla

LOTE

NUMERO	PROPRIETARIO_CPF	AREA_TOTAL	AREA_CONST
00001	08940256	400.000	0
00003	03727298	150.000	75.00
00039	03727298	500.000	0

Conceito de Relação

- Define uma tabela do banco de dados
 - Domínio de um atributo: conjunto de possíveis valores

Empregado

REG	NOME	IDADE	CARGO	SALARIO
1	João	34	Motorista	1020.30
2	Maria	35	Secretaria	1200.00
3	Joaquim	42	Gerente	2500.00

REG Cadeia de caracteres (texto)

NOME Cadeia de caracteres (texto)

 $D_1 = \{ x \in \Re \mid x \ge -5 \text{ e } x \le 5 \} \text{ ou}$

Podemos restringir ainda mais. Ex:

IDADE Inteiro

 $D_2 = \{ y \in \Re \mid y \ge 0 \}$

CARGO Cadeia de caracteres (texto)

SALARIO Real

Conceito de Relação

 Dados os domínios D₁, D₂, ..., Dₙ não necessariamente distintos, uma relação é definida como:

$$R = \{ (d_1, d_2,..., d_n) \mid d_1 \in D_1, d_2 \in D_2,..., d_n \in D_n \}$$

- O conjunto (d₁, d₂,..., d_n) de valores ordenados define uma tupla
- Uma relação é o conjunto de n-tuplas ordenadas, onde n define o grau da relação
- O esquema de uma relação é o conjunto de nomes e domínios (tipo) para cada atributo

Esquema x Instância

PROPRIETARIO

	CPF	NOME	RUA	NUMERO	BAIRRO
Ī	08940256	JOÃO DA SILVA	SAO JOAO	180	CENTRO
	03727298	HENRIQUE CARDOSO	IMIGRANTE	1700	VILA 12
	97260089	JOSÉ DE SOUZA	SAO JOAO	35	CENTRO

Esquema da relação Proprietário

Instância da relação Proprietário

Chave Primária

- Chave candidata é um atributo or um conjunto mínimo de atributos que são unicamente identificáveis em cada tupla da relação
- Uma chave candidata é usualmente escolhida como uma chave primária
- Exemplos de chaves primárias:

Chave Estrangeira

- Implementa a restrição de integridade referencial
- Coluna ou combinação de colunas, cujos valores aparecem necessariamente na chave primária de uma outra tabela
- Mecanismo que permite a implementação de relacionamentos em um banco de dados relacional.

Chave estrangeira

Curso

CURSOID	TITULO	DURAÇÃO
INFO	Informática Indust.	4
BIO	Biologia	4
ENG	Engenharia Civil	5
MAT	Licenciatura Mat.	4

relacionamento
Aluno

MATRICULA	NOME	CURSO
98765	João	MAT
67765	José	BIO
84562	Maria	ENG
34256	Luis	INFO
3452672	Ana	MAT
34529	Luana	MAT

- Através dos relacionamento, evitamos a repetição de informações
- Uma chave estrangeira não precisa ser uma chave primária na sua relação
- Uma chave estrangeira não precisa ter o mesmo nome do que a chave primária correspondente na outra tabela. Mas dever ter o mesmo domínio

Álgebra Relacional

- O Modelo Relacional também propõe um linguagem de consultas
- Conjunto de operações que usam uma ou duas relações como entrada e geram uma relação de saída
 - operação (REL₁) → REL₂
 - operação (REL₁,REL₂) → REL₃
- Operações básicas:
 - Operações unárias:
 - seleção, projeção, renomeação
- Operações binárias:
 - produto cartesiano, união e diferença

Seleção:

seleciona tuplas que satisfazem um certo predicado ou condição

Clientes

Nome	Registro
João	1
Maria	2
José	3

a) selecionar tuplas cujo nome = João

 $\sigma_{\text{nome="João"}}$ (Clientes)

Nome	Registro
João	1

b) selecionar as tuplas de Clientes cujo registro > 1

$$\sigma_{registro>1}$$
 (Clientes)

Nome	Registro
Maria	2
José	3

C) selecionar as tuplas de Clientes com registro > 1 e registro < 3

$$\sigma_{registro>1 \land registro < 3}$$
 (Clientes)

Nome	Registro
Maria	2

Projeção:

- gera novas relações excluindo alguns atributos
- exemplo: projete o atributo nome sobre a relação Clientes

$$\Pi_{\text{nome}}$$
 (Clientes)

Clientes

Nome	Registro		Nome
João	1		João
Maria	2	─	Maria
José	3		José

União:

- união de atributos do mesmo domínio que estão em relações diferentes
- as relações devem possuir o mesmo número de atributos
- exemplo: encontre todos os clientes da agência que possuem conta corrente ou empréstimo.
 - Relações existentes na agência:
 - ContaCorrente e Emprestimo

• União: Π_{nome} (ContaCorrente) U Π_{nome} (Emprestimo)

ContaCorrente

Nome	Conta
João	1
Maria	2
José	3

Emprestimo

Nome	Empréstimo
Paulo	100
Maria	200
Carlos	300

Resultado da união

Nome
João
Maria
José
Paulo
Carlos

Diferença:

- tuplas que se encontram em uma relação, mas não em outra
- exemplo: encontre todos clientes sem empréstimo

 Π_{nome} (ContaCorrente) - Π_{nome} (Emprestimo)

ContaCorrente

Nome	Conta
João	1
Maria	2
José	3

Emprestimo

Nome	Empréstimo
Paulo	100
Maria	200
Carlos	300

Resultado da diferença

Nome	
João	
José	

Produto Cartesiano

- Faz todas as combinações entre as tuplas de duas relações
- Gera uma nova relação formada pela união dessas combinações
- Exemplo: produto cartesiano entre os clientes e os empréstimos de Maria

σ _{emprestimo.nome = "Maria"} (ContaCorrente X Emprestimo)

Nome _{cc}	Conta	Nome _{emp}	Empréstimo
João	1	Maria	200
Maria	2	Maria	200
José	3	Maria	200

- Operadores derivados:
 - Intersecção
 - Seleciona tudo que está em ambas relações
 - Exemplo: todos os clientes que possuem empréstimo

$$\Pi_{\text{nome}}$$
 (ContaCorrente) Π_{nome} (Emprestimo)

ContaCorrente

Nome	Conta
João	1
Maria	2
José	3

Emprestimo

Nome	Empréstimo
Paulo	100
Maria	200
Carlos	300

Resultado da intersecção

NomeMaria

- Operadores derivados
 - Junção
 - Inclui um produto cartesiano, seguido de uma seleção (pode ter projeção ao final)
 - Exemplo: nomes dos clientes com conta corrente e número de empréstimo:

 $\Pi_{\text{contacorrente.nome, emprestimo.emprestimo}}$

(σ contacorrente.nome = emprestimo.nome (ContaCorrente X Emprestimo))

 $\Pi_{\text{contacorrente.nome, emprestimo.emprestimo}}$

(ContaCorrente | Emprestimo))

Álgebra Relacional - Resumo

SQL

- O que é a SQL?
 - Structured Query Language
 - Permite o acesso e a manipulação de uma base de dados relacional, ou seja, implementa a álgebra relacional do
 - É um padrão ANSI (American National Standards Institute)
- O que é possível fazer com a SQL?
 - Executar consultas, recuperar dados, inserir, atualizar e remover registros, criar novos bancos, criar novas tabelas, criar stored procedures e views, definir permissões sobre tabelas, procedures e views.
- SQL é padrão mas...
 - Existem diferentes versões de SQL. Mas espera-se que a maioria dos comandos sejam suportados de maneira similar

SQL - Structured Query Language

- Linguagem de consulta usada pela maioria de SGBD-R
- Baseada na álgebra e no cálculo relacional
- É divida em:
 - Linguagem de manipulação de dados (SQL DML)
 - Linguagem de definição de dados (SQL DDL)
 - Definição de visões (SQL DDL)
 - Especificação de autorização (SQL DDL)
 - Especificação de integridade (SQL DDL)
 - Controle de transação (SQL DDL)

SQL - Structured Query Language

Comandos	Usado para	Tipo
select	Consultar dados	DML
insert, update, delete	Incluir, alterar e remover dados	DML
commit, rollback	Controlar transações	DDL
create, alter, drop	Definir, alterar e remover esquemas (tabelas)	DDL

SQL - Structured Query Language

CREATE TABLE cliente

(nome CHAR(20) NOT NULL,

endereço CHAR(30),

cidade CHAR(30),

PRIMARY KEY (nome))

ALTER TABLE cliente ADD RG CHAR(10)

SELECT nome, endereco

FROM cliente

WHERE cidade = 'São José dos Campos'

SQL - Básico

Seleção

```
SELECT *

FROM solicitacao_compra

WHERE cod_func = 'func01'
```

Projeção

```
SELECT cod_func
FROM solicitacao_compra
```

Produto Cartesiano

```
SELECT funcionarios.*, solicitacao_compra.*

FROM funcionarios INNER JOIN solicitacao_compra

ON funcionarios.cod_func = solicitacao_compra.cod_func
```

Modelos de SGBD

P-ld	Nome	Sobrenome	Cidade
1	Lais	Costa	SJC
2	Maria	Silva	SP

Cidade	População	Renda
SJC	1000000	32244

Relacional

Modelos de SGBD

P-ld	Nome	Sobrenome	Cidade	Cidade	População	Renda
1	Lais	Costa	SJC	SJC	1000000	32244
	•••					

Relacional

Objeto

ID	XY	DF	ER
56	*	xxx	•
45	•	YYY	③

Objeto-Relacional

Modelagem

Esquema x Instância

Modelagem

Modelagem Aplicação Aplicação Aplicação Mundo Real Esquema Esquema Esquema Externo Externo Externo Modelagem Modelo Conceitual Esquema Lógico Derivação Depende do Independe do SGBD **SGBD** Estrutura Interna **Dados** Armazenados

Ex. Formulário

Sistemas de Informação Geográfica - SIG

- Sistemas que realizam o tratamento computacional de dados geográficos
- Funcionalidades de um SIG:
 - Entrada e validação de dados espaciais
 - Armazenamento e gerenciamento desses dados
 - Saída e apresentação visual desses dados
 - Transformação de dados espaciais
 - Interação com o usuário
 - Combinação de dados espaciais para criar novas representações do espaço geográfico
 - Ferramentas para análise espacial

Visão Geral de um SIG

Organização lógica de dados em um SIG

- Organização por camadas ou planos de informação
 - cada camada trata de um dado específico

Organização lógica de dados em um SIG

- Plano de informação (nível, camada, layer)
 - contém informações referentes a um único tipo de dados
 - restrição: área geográfica definida. Exs:
 - geologia de uma área
 - conjunto de lotes (objetos)

PI com Campo (Geologia)

PI com Objetos (Países)

Evolução das arquiteturas de SIG

- SIG "desktop" (~1983-1990)
 - Ambiente monousuário
 - Ênfase em interfaces amigáveis e funções de análise
- SIG distribuído (~1990-2000)
 - Ambiente multiusuário
 - Compartilhamento de dados
 - Ênfase em controle de acesso e manutenção de integridade
- Servidores Web (~2000)
 - Uso da Internet para disseminar dados
 - Ênfase em eficiência de acesso e interfaces de navegação

Evolução do uso do SIG

Arquitetura dual

 SGBD relacional: armazena dados alfanuméricos

 Arquivos: armazena dados espaciais

Arquitetura dual

CODPAR	CODFAZ	CODPROJ	TALHAG	AREATOT	DTPLAN
5	205017	105	147 /	9,91	31/10/89
5	205017	105	148	25,66	18/12/89
5	205017	068	152	26,34	7/10/93
5	205017	068	153	21,65	14/10/93
5	205017	068	154	27,90	21/10/93
5	205017	068	155	23,52	23/11/93
5	205017	109	162	26,29	5/11/89
5	205017	109	163	27,57	9/11/89

CODPAR = código do parque florestal ; CODFAZ = código da fazenda

CODPROJ = código do projeto; TALHÃO = número do talhão AREATOT = Área total plantada; DTPLAN = Data do plantio

Arquitetura dual - Exemplos

SPRING

- Dados alfanuméricos: SGBD relacional (DBase, Access, MySQL, Oracle, PostgreSQL)
- Dados espaciais: arquivos com formato específico
- ArcView
 - Dados alfanuméricos: SGBD relacional
 - Dados espaciais: "shapefiles"

IDRISI

- Dados alfanuméricos: SGBD relacional
- Dados espaciais: matrizes

Arquitetura dual – Ex. SPRING

Arquitetura dual - Ex. ArcView

Shapefile: Estados.shp, Estados.shx, Estados.dbf

Como consultar a base? Ex. apontamento.

Feito pelo SIG

Feito pelo SGBD

- 1. Capture o ponto da tela
- Transforme em coordenadas
- Busque nos arquivos proprietários qual geometria contém esse ponto
- Recupere o ID do objeto associado a geometria
- Envie consulta ao SGDB:

$$ID = xxx;$$

 Acenda a linha correspondente ao resultado da consulta

Arquitetura dual

- Vantagens
 - Não requer nenhuma capacidade extra do SGDB
- Desvantagens
 - SGBD não controla a geometria:
 - Não há controle de integridade
 - Não permite o ambiente multi-usuário

Apropriada para SIG "desktop"

Usuário corporativo

Perfil típico

- Prefeitura cadastro urbano
- Concessionária de serviços públicos gerenciamento

Requisitos

- Ambiente multiusuário
- Suporte a operação em tempo real
- Integração a bancos de dados não espaciais já existentes
- Coleta de dados em campo

Necessita um SIG "Distribuído"

SIG distribuído

- Baseia-se em uma arquitetura cliente-servidor: vários clientes, um servidor que contém os dados
- Características
 - Permite um ambiente multiusuário
 - Atualizações são visíveis automaticamente para todos os clientes
 - Necessita todos os dados sob o controle do Sistema Gerenciador de Banco de Dados

Arquitetura integrada

Permite armazenar o dado geográfico também no SGBD

Relembrando - SGBD Relacional

 Banco de dados é organizado em uma coleção de relações ou tabelas relacionadas entre si

Aluno

MATRICULA	NOME	CURSOID -			
98765	João	MAT			
67765	José	ВІО			
84562	Maria	ENG			
34256	Luis	INFO			Curso
3452672	Ana	MAT	CURSOID	TITULO	DURAÇÃO
34529	Luana	MAT	INFO	Informática Indust.	4
			BIO	Biologia	4
			ENG	Engenharia Civil	5
			MAT	Licenciatura Mat.	4

Arquitetura Integrada - SGBD Relacional

Como armazenar um polígono em um SGBD-R?

Alternativa 1: tabelas de pontos (x,y)

Arquitetura Integrada - SGBD Relacional

Como armazenar um polígono em um SGBD-R?

Alternativa 2: campo longo binário (BLOB)

Tipo BLOB: uma sequência de bytes sem significado para o SGBD

id	num_coords	num_holes	poligono
pol1	4	0	(xy, xy, xy)
pol2	12	1	(xy, xy, xy)

Arquitetura Integrada - SGBD Relacional

Vantagens

- Facilidade na manutenção de integridade entre a componente espacial e alfanumérica
- Uso dos recursos do SGBD (transação, recuperação de falhas, controle de acesso concorrente, etc.)

Desvantagens

- Perda de semântica dos dados espaciais
- Limitações da SQL para manipular BLOBs
- Métodos de acesso e otimizados de consulta devem ser implementados pelo SIG

Arquitetura Integrada - SGBD-OR

- Utiliza extensões espaciais construídas sobre SGBD-OR para armazenar, gerenciar e acessar dados espaciais
- SGBD-OR: modelo objeto-relacional
 - Combina benefícios do modelo Relacional com a capacidade de modelagem do modelo OO
 - Fornecem suporte para:
 - Criar objetos complexos
 - Executar consultas sobre dados complexos
 - O modelo de dados Objeto Relacional é uma extensão do modelo Relacional

Extensão espacial

- SGBD-OR são estendidos para suportar:
 - Tipos de dados espaciais: polígono, ponto, linha, etc;
 - Operadores e funções utilizados na SQL para manipular dados espaciais (consultas e junção)
 - Métodos eficientes de acesso aos dados espaciais
- Exemplos:
 - Comerciais
 - Oracle Spatial
 - IBM DB2 Spatial Extender
 - Livres de licença
 - PostGIS
 - Extensão espacial para MySQL

Arquitetura em Camadas (Objeto-relacional)

- SGBD
 - Apenas suporte para campos longos (Access)
 - Interface para tipos de dados espaciais (PostGIS)
- Camada de Acesso
 - Bibliotecas de funções
 - TerraLib, ArcSDE
- Interface
 - Integrada com camada de acesso
 - TerraView
 - Cliente-Servidor
 - SIGMUN, ArcGIS 8.0

Interface

Camada de acesso

Banco de Dados

Arquitetura em camadas: componentes

- Exemplos TerraView/TerraLib
- Banco de dados
 - Access

- Camada de Acesso
 - TerraLib

- Interface
 - TerraView

Arquitetura em camadas: componentes

Exemplos – SIGMUN (cadastro urbano para prefeituras)

- Banco de dados
 - ORACLE

- Camada de Acesso
 - TerraLib (com programa servidor)

- Interface
 - SIGMUN (programa separado)

Consulta a bancos de dados geográficos

- Independentemente da arquitetura é uma funcionalidade básica dos SIG's
- Critérios para selecionar objetos:
 - Apontamento
 - Identificação
 - Atributos
 - Por critérios espaciais

- SIG's implementam interfaces que permitem a aplicação direta de consultas em SQL
- Relembrando: SQL: Selecione <u>o quê</u> <u>de onde tal quê</u>
 - O que: representa quais atributos
 - <u>De onde</u>: representa de quais categorias de objetos
 - <u>Tal que</u>: representa os critérios de seleção de objetos

Linguagem natural:

"Selecione todos os atributos das quadras que possuem renda maior que 10000"

SQL:

SELECT * FROM QUADRAS WHERE RENDA > 100000

Quadras

ID	RENDA	NESCOLAS	POP
1	1000	10	1K

Fazendas

Consulta por atributos

Cláusula WHERE

- Selecione <u>colunas</u> de <u>tabelas</u> onde <u>critérió</u>
- Operadores que podem ser usados na cláusula where:
 - Operadores relacionais:

> (maior)	Ex. $1 > 2 : \underline{F} = 12 > 10 : \underline{V}$
< (menor)	Ex. 1 < 2 : <u>V</u> e 12 < 10 : <u>F</u>
>= (maior ou igual)	Ex. $2 >= 2 : \underline{F} \ e \ 2 >= 2 : \underline{V}$
<= (menor or igual)	Ex. $2 \le 2 : \underline{F} = 2 \le 2 : \underline{V}$
= (igual)	Ex. $A = A : \underline{V} e A = B : \underline{F}$
(diferente)	Ex. 1 <> 2 : <u>V</u> e 1 <> 1 : <u>F</u>
like (similar)	Ex. Nome like "Lu%"

Consulta por atributos

• Operadores lógicos booleanos : NOT, AND e OR

Tabela verdade da operação NOT (NÃO)				
V	F			
F	V			

Tabela verdade da operação OR (OU)				
Op1	Op2	Resultado		
V	V	V		
V	F	V		
F	V	V		
F	F	F		

Tabela verdade da operação AND (E)					
Op1	Op2	Resultado			
V	V	V			
V	F	F			
F	V	F			
F	F	F			

Consulta por atributos

Linguagem natural:

Selecione todas as quadras que possuem renda maior que 10000 e mais de 10 escolas

SQL:

SELECT * FROM QUADRAS WHERE RENDA > 100000 AND NESCOLAS > 10

Consultas baseadas em critérios espaciais

- Consultas por critérios restrições espaciais
 - "dê-me todos os países da América do Sul vizinhos ao Chile"
 - "dê-me todos os países por onde passa o Rio Amazonas"

Relações Espaciais

• Relações topológicas: contém, cruza, toca, etc.

Relações métricas

Relações direcionais: ao norte, ao sul, etc.

Relações Topológicas

 Relações topológicas são definidas usando conceitos de topologia como interior e borda. Por exemplo:

 A borda de uma região consiste de um conjunto de curvas que separa a região do resto do espaço de coordenadas

 O interior de uma região consiste de todos os pontos da região que não correspondem a sua borda

- Considerando isso, duas regiões são:
 - Adjacentes se elas compartilham um parte da borda mas não compartilham nem um ponto do seu interior

Relações Topológicas

- Matriz de 4-interseções para relacionamentos topológicos ente regiões
- Definida com base na matriz de interseção entre a borda (b) e o interior (i) de duas regiões A e B

$$\begin{bmatrix} b(A) \cap b(B) & b(A) \cap i(B) \\ i(A) \cap b(B) & i(A) \cap i(B) \end{bmatrix}$$

 Cada entrada da matriz é vazia ou não vazia. No exemplo abaixo, a intersecção entre as bordas de A e B é não vazia o resto é vazia

$$\begin{bmatrix}
\neg \emptyset & \emptyset \\
\emptyset & \emptyset
\end{bmatrix}$$
A toca B

Matriz de 4-intersecções (Egenhofer)

 De todas as possíveis configurações que podem ser obtidas associando valores vazio/não vazio para cada entrada da matriz, 8 delas são possíveis para regiões sem buracos

Matriz de 9-inteseções de Egenhofer

- Matriz de 9-interseções para relacionamentos topológicos entre conjuntos genéricos de entidades espaciais (não apenas região/região): considera interior, borda e exterior
- As entradas da matriz podem ser vazio/não-vazio ou outras propriedades como visto anteriormente

$$\begin{pmatrix} b(A) \cap b(B) & b(A) \cap i(B) & b(A) \cap e(B) \\ i(A) \cap b(B) & i(A) \cap i(B) & i(A) \cap e(B) \\ e(A) \cap b(B) & e(A) \cap i(B) & e(A) \cap e(B) \end{pmatrix}$$

Relacionamentos topológicos

Toca: única interseção é nas bordas

Relacionamentos Topológicos

Dentro de: interseção no interior

Relacionamentos Topológicos

Acesso aos dados: consultas espaciais

- Controle de apresentação
 - combinação de resultados de consulta
 - controle dos objetos apresentados
 - apresentação do contexto espacial

