Econometrics May 14, 2023

Topic 15: Sparse Orthogonal Factor Regression

by Sai Zhang

Key points: Sparcity and dimensionality reduction for Multivariate Linear Regression models.

Disclaimer: The note is built on Prof. Jinchi Lv's lectures of the course at USC, DSO 607, High-Dimensional Statistics and Big Data Problems.

15.1 Motivation

Consider a Mutlivariate Linear Regression (MLR) model

$$\mathbf{Y}_{n\times q} = \mathbf{X}_{n\times p} \cdot \mathbf{C}_{p\times q} + \mathbf{E}_{n\times q}$$

How to apply regularization methods to this model? There are several approaches to consider

- Shrinkage: ridge regression to overcome multicollinearity
- sparsity: variable selection in multivariate setting
- Reduced-rank
 - Dimension reduction via reducing rank of C
 - $\min \|\mathbf{Y} \mathbf{XC}\|_F^2$ s.t. $\operatorname{rank}(\mathbf{C}) \le r$
- Combinations
- **Low-rank** plus **sparse decomposition**: robust PCA, latent variable graphical models, covariance estimation
- Regularized matrix or tensor regression

Or, we can introduce a very attractive sparsity structure to achieve simultaneous dimension reduction and variable selection. This structure should be characterized by

- Having a few distinct channels/pathways relating responses and predictors
- Each of such associations may involve only a smaller subset, but not all of the responses and predictors

that is

This way, we can have

- Sparsity: selection of both latent and original variables
- Low-rank SVD: different subsets of responses allowed to be associated with different subsets of predictors

Consider an example:

Example 15.1.1: Dimension Reduction and Variable Selection via Sparse SVD

Consider the case where p = 1000, q = 100, then C, as a $p \times q$ matrix, contains 100000 coefficients. Meanwhile, for a rank-3 SVD model:

$$\mathbf{C} = d_1 \mathbf{u}_1 \mathbf{v}_1' + d_2 \mathbf{u}_2 \mathbf{v}_2' + d_3 \mathbf{u}_3 \mathbf{v}_3'$$

where \mathbf{u}_1 , \mathbf{u}_2 , \mathbf{u}_3 are all $p \times 1$, \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 are all $q \times 1$, d_1 , d_2 , d_3 are all scalars. Hence, there are only $3 \times (1000 + 100 + 1) = 3303$ paramaters to estimate. If futher assume sparcity, the dimension would be even lower.

Now let's develop a scalable procedure for this idea.

15.2 Sparse Orthogonal Factor Regression

Consider the sigular value decomposition of C

$$\mathbf{C} = \mathbf{U}\mathbf{D}\mathbf{V}' = \sum_{k=1}^{r} d_k \mathbf{u}_k \mathbf{v}_k'$$

where U and V are both **orthonormal**: UU' = VV' = I. Then we can achieve dimension reduction via **low-dimensional latent model**

$$\tilde{\mathbf{Y}} = \tilde{\mathbf{X}}\mathbf{D} + \tilde{\mathbf{E}}$$

where

- $\tilde{\mathbf{Y}} = \mathbf{Y}\mathbf{V}$: \mathbf{V} sparsity leads to **response** variable selection
- $\tilde{X} = XU$: U sparsity leads to **predictor** variable selection

How consider

$$(\hat{\mathbf{D}}, \hat{\mathbf{U}}, \hat{\mathbf{V}}) = \arg\min_{\mathbf{D}, \mathbf{U}, \mathbf{V}} \left\{ \frac{1}{2} \|\mathbf{Y} - \mathbf{X}\mathbf{U}\mathbf{D}\mathbf{V}'\|_F^2 + \lambda_d \|\mathbf{D}\|_1 + \lambda_a \rho_a(\mathbf{U}\mathbf{D}) + \lambda_b \rho_b(\mathbf{V}\mathbf{D}) \right\} \quad \text{s.t. } \mathbf{U}'\mathbf{U} = \mathbf{V}'\mathbf{V} = \mathbf{I}_m \quad (15.1)$$

where

- $\rho_a(\cdot)$, $\rho_b(\cdot)$ are penalty functions with regularization parameters λ_d , λ_a , $\lambda_b \ge 0$. These sparsity penalizations on **UD** and **VD** can be thought as **importance weighting**
- $\|\cdot\|_F$ is the nuclear norm, defined as the **sum** of its singular values $\|\mathbf{A}\|_F = \sum_i \sigma_i(\mathbf{A})$. It encourages sparsity among singular values and achieve <u>rank reduction</u>
- The orthgonality on U, V allow a flexible form of sparsity-inducing penalties

If we further enrich this model by introducting an adaptive weighting W matrices

$$(\hat{\boldsymbol{\Theta}}, \hat{\boldsymbol{\Omega}}) = \arg\min_{\boldsymbol{\Theta}, \boldsymbol{\Omega}} \left\{ \frac{1}{2} \|\mathbf{Y} - \mathbf{X} \mathbf{U} \mathbf{D} \mathbf{V}'\|_F^2 + \lambda_d \|\mathbf{W}_d \circ \mathbf{D}\|_1 + \lambda_a \rho_a (\mathbf{W}_a \circ \mathbf{A}) + \lambda_b \rho_b (\mathbf{W}_b \circ \mathbf{B}) \right\}$$

s.t. $U'U = V'V = I_m$, UD = A, VD = B. But why? Singular values and singular vectors of larger magnitude should be less penalized to reduce bias and improve efficiency.

Two applications are

• Biclustering with sparse SVD

$$(\hat{\mathbf{D}}, \hat{\mathbf{U}}, \hat{\mathbf{V}}) = \arg\min_{\mathbf{D}, \mathbf{U}, \mathbf{V}} \left\{ \frac{1}{2} \|\mathbf{X} - \mathbf{U}\mathbf{D}\mathbf{V}'\|_F^2 + \lambda_d \|\mathbf{D}\|_1 + \lambda_a \rho_a(\mathbf{U}\mathbf{D}) + \lambda_b \rho_b(\mathbf{V}\mathbf{D}) \right\} \quad \text{s.t. } \mathbf{U}'\mathbf{U} = \mathbf{V}'\mathbf{V} = \mathbf{I}_m$$

• Sparse PCA (sparsity in loadings of principla components)

$$(\hat{\mathbf{A}}, \hat{\mathbf{V}}) = \arg\min_{\mathbf{A}, \mathbf{V}} \left\{ \frac{1}{2} \|\mathbf{X} - \mathbf{X}\mathbf{A}\mathbf{V}'\|_F^2 + \lambda_a \rho_a(\mathbf{A}) \right\}$$
 s.t. $\mathbf{V}'\mathbf{V} = \mathbf{I}_m$