

Programa del curso EE-0508

Laboratorio de manufactura

Escuela de Ingeniería Electromecánica Carrera de Ingeniería Electromecánica (tronco común)

I parte: Aspectos relativos al plan de estudios

1. Datos generales

Nombre del curso: Laboratorio de manufactura

Código: EE-0508

Tipo de curso: Práctico

Obligatorio o electivo: Obligatorio

Nº de créditos: 2

Nº horas de clase por semana: 4

Nº horas extraclase por semana: 2

Ubicación en el plan de estudios: Curso de 5^{to} semestre en Ingeniería Electromecánica (tronco co-

mún)

Requisitos: Ninguno

Correquisitos: EE-0507 Manufactura

El curso es requisito de: EE-0609 Dibujo industrial

Asistencia: Obligatoria

Suficiencia: No

Posibilidad de reconocimiento: Sí

Aprobación y actualización del pro-

grama:

01/01/2026 en sesión de Consejo de Escuela 01-2026

2. Descripción general

El curso de *Laboratorio de manufactura* aporta en el desarrollo de los siguientes rasgos del plan de estudios: evaluar las caracteristicas de los materiales y seleccionar los procesos de manufactura adecuados para el desarrollo y la producción de sistemas electromecánicos; y aplicar principios de metrología para medir variables físicas en sistemas electromecánicos.

Los aprendizajes que los estudiantes desarrollarán en el curso son: explorar, mediante demostraciones y prácticas dirigidas, el funcionamiento y aplicación de los procesos de manufactura más relevantes en la industria electromecánica, y su relación con las características de los materiales; evaluar los datos obtenidos de los procesos de manufactura para comprender su impacto en la calidad, eficiencia y viabilidad del producto final; y relacionar los procesos de manufactura con las etapas de diseño e inspección, destacando su influencia en la optimización y mejora del desarrollo de productos.

Para desempeñarse adecuadamente en este curso, los estudiantes deben poner en práctica lo aprendido en los cursos de: Dibujo técnico, y Ciencia de los materiales.

Una vez aprobado este curso, los estudiantes podrán emplear algunos de los aprendizajes adquiridos en los cursos de: Dibujo industrial, Elementos de máquinas, Robótica, y Manufactura en la cadena de valor aeroespacial.

3. Objetivos

Al final del curso la persona estudiante será capaz de:

Objetivo general

Comprender los principales procesos de manufactura en la industria electromecánica mediante demostraciones, prácticas dirigidas y análisis de datos, resaltando su relación con las características de los materiales y las etapas de diseño e inspección.

Objetivos específicos

- Explorar, mediante demostraciones y prácticas dirigidas, el funcionamiento y aplicación de los procesos de manufactura más relevantes en la industria electromecánica, y su relación con las características de los materiales.
- Evaluar los datos obtenidos de los procesos de manufactura para comprender su impacto en la calidad, eficiencia y viabilidad del producto final.
- Relacionar los procesos de manufactura con las etapas de diseño e inspección, destacando su influencia en la optimización y mejora del desarrollo de productos.

4. Contenidos

En el curso se desarrollaran los siguientes laboratorios:

- 1. Introducción a la planta de manufactura
 - 1.1. Conceptos básicos de una planta de manufactura
 - 1.2. Seguridad
- 2. Procesos de manufactura
 - 2.1. Procesos de conformado: fundición e inyección y moldeo

- 2.2. Procesos de maquinado: torneado, fresado, taladrado, rectificado, electro-erosionado
- 2.3. Procesos de unión: soldadura por fusión (de partes y tuberías)
- 2.4. Procesos de corte: por plasma, electro-erosionado y corte laser
- 2.5. Procesos de manufactura aditiva: Deposición fundida (FDM), sinterizado láser selectivo (SLS), fusión selectiva por láser (SLM), impresión por inyección de aglutinante
- 3. Automatización en manufactura
 - 3.1. CNC y su programación básica (lenguajes de programación)
 - 3.2. Robótica en manufactura
 - 3.3. Celdas de manufactura
- 4. Metrología dimensional
 - 4.1. Metrología de contacto: calibrador Vernier, micrómetro, reloj comparador, máquina de medición por coordenadas (CMM), galgas de espesores y bloques patrón
 - 4.2. Metrología sin contacto: metrología óptica
 - 4.3. Tolerancias geométricas y dimensionales
 - 4.4. Medición de rugosidades y acabados superficiales
 - 4.5. Control estadístico de procesos (CEP)
- 5. Diseño para manufactura y ensamblaje (DFMA)
 - 5.1. Manufacturabilidad y ensamblabilidad
- 6. Micromanufactura
 - 6.1. Deposición de películas
 - 6.2. Litografía
 - 6.3. Placas de circuitos impresos
- 7. Manufactura sostenible
 - 7.1. Manejo de desechos
 - 7.2. Impacto ambiental y estrategias de manufactura verde
 - 7.3. Reciclaje y reutilización de materiales

Il parte: Aspectos operativos

5. Metodología

En este curso, se utilizará la investigación práctica aplicada mediante técnicas como el modelado, simulación, prototipado, experimentación controlada e ingeniería inversa.

Las personas estudiantes podrán desarrollar actividades en las que:

- Desarrollarán experimentos en condiciones controladas para probar hipótesis derivadas de la teoría de manufactura y validarán los resultados.
- Analizarán casos detallados de manufactura para extraer aprendizajes aplicables a contextos similares.
- Compararán múltiples soluciones de manufactura para un mismo problema con el fin de realizar una evaluación comparativa para la elección del proceso de manufactura óptimo.
- Usarán simuladores computacionales de procesos de manufactura con el fin de validar y optimizar el funcionamiento del equipo antes de su puesta en marcha.
- Evaluarán el impacto ambiental y social de un proceso de manufactura desarrollado en el laboratorio.

Este enfoque metodológico permitirá a la persona estudiante comprender los principales procesos de manufactura en la industria electromecánica mediante demostraciones, prácticas dirigidas y análisis de datos, resaltando su relación con las características de los materiales y las etapas de diseño e inspección

Si un estudiante requiere apoyos educativos, podrá solicitarlos a través del Departamento de Orientación y Psicología.

6. Evaluación

La evaluación se distribuye en los siguientes rubros:

- Reportes: documento técnico que presenta de forma ordenada y estructurada el desarrollo, resultados y análisis de un experimento o práctica de laboratorio.
- Pruebas cortas: evaluaciones breves y frecuentes que sirven para comprobar el dominio de temas específicos. Suelen ser de menor peso en la calificación final y permiten reforzar el aprendizaje continuo.

Reportes (12)	60 %
Pruebas cortas (4)	40 %
Total	100 %

De conformidad con el artículo 78 del Reglamento del Régimen Enseñanza-Aprendizaje del Instituto Tecnológico de Costa Rica y sus Reformas, en este curso la persona estudiante **no** tiene derecho a presentar un examen de reposición.

7. Bibliografía

[1] S. Kalpakjian y S. R. Schmid, *Manufacturing Engineering and Technology*, 9.^a ed. Hoboken, NJ: Pearson, 2025, ISBN: 978-0-13-830847-6.

- [2] M. P. Groover, Fundamentals of Modern Manufacturing: Materials, Processes, and Systems, 7th. Wiley, 2019, ISBN: 978-1-119-47585-7.
- [3] S. Kalpakjian y S. R. Schmid, *Manufacturing Processes for Engineering Materials*, 7th. Pearson, 2013, ISBN: 978-0-13-312874-1.
- [4] M. P. Groover, *Automation, Production Systems, and Computer-Integrated Manufacturing*, 4th. Pearson, 2014, ISBN: 978-0-13-298154-8.

8. Persona docente

El curso será impartido por:

M.Sc. Luis Felipe Córdoba Ramírez

Licenciatura en Ingeniería en Mantenimiento Industrial, Instituto Tecnológico de Costa Rica, Costa Rica

Maestría en Ingeniería Mecanica, Universidad de Utah, Estados Unidos

Correo: Ifcordoba@itcr.ac.cr Teléfono: 25509347

Oficina: 22 Escuela: Ingeniería Electromecánica Sede: Cartago

Lic. Francisco Bonilla Guido

Bachillerato en Ingeniería en Mantenimiento Industrial, Instituto Tecnológico de Costa Rica, Costa Rica

Licenciatura en Ingeniería en Mantenimiento Industrial, Instituto Tecnológico de Costa Rica, Costa Rica

Correo: frbonilla@itcr.ac.cr Teléfono: 25509337

Oficina: 15 Escuela: Ingeniería Electromecánica Sede: Cartago

Lic. Julio César Rojas Gómez

Técnico en Mecánica de Precisión, CTP José Figueres Ferrer, Costa Rica

Licenciatura en Ingeniería en Mantenimiento Industrial, Instituto Tecnológico de Costa Rica, Costa Rica

Correo: jrojas@itcr.ac.cr Teléfono: 25509354

Oficina: 15 Escuela: Ingeniería Electromecánica Sede: Cartago