Hidden Markov Model (HMM) based speech classification system

EQ2340 - Pattern Recognition

Lars Kuger & Navneet Agrawal

November 1, 2016

Self Introduction

Lars Kuger

- Exchange Student
- ► RWTH Aachen, Germany
- Wireless Systems program

Navneet Agrawal

- Masters student
- KTH, Stockholm, SE
- Wireless Systems program

Application

- Hands-free Calendar APP
- Based on word (speech) recognition
- ▶ Data: Audio recording of words used by four different people
- ▶ Words: Hello, Bye, Yes, No, Monday, Tuesday ... Sunday

DEMONSTRATION

Data & Feature Extraction

- Data characteristics
 - Audio data, 22,050 Hz bitrate, 16 bit, 1 channel
 - Speakers: 4 (2 Male, 2 Female)
 - Audio clips: 14 clips per speaker per word
 - Duration of clips: 2 sec
 - ▶ Window size: 0.02 sec
- Speech characteristics captured in features
 - Phonemes and Formants for recognizing the word
 - Rate of change of characteristics
 - Speaker independent recognition
- Speech data features used:
 - Mel-Frequency Cepstral coefficients (MFCC)
 - Delta of MFCC
 - Delta-Delta of MFCC
- Continuous scalar data
- Features are robust against
 - Time duration of the word
 - Pitch of different speakers (Male/Female)

HMM design parameters

- Finite Left-Right HMM
- Size of training set: 9, Test set: 5
- ▶ Number of States: $2 \times (Length of word) + 2$
 - ► Each syllable in a word represented by 2 states
 - Noisy Silence represented 2 states
- Cepstral Coefficients used: 10
 - Higher frequency coefficients creates confusion
 - Most important speech data in lower coefficients
- Modeling of Observed Data using GaussD & GaussMixD
 - GaussD : Single speaker
 - GaussMixD : Multiple speakers (2 or 3 Gaussians)

Trained HMM sequences: Similarity and Differences

Classification Error

Table: Classification error of each speaker in different models

$\begin{array}{c} Model \to \\ Speaker \downarrow \end{array}$	Single GaussD	All GaussD	GaussMixD 2Mix	GaussMixD 3Mix
Caroline	32.73%	27.27%	21.82%	10.91%
Lars	10.91%	32.73%	32.73%	21.82%
Madolyn	38.18%	54.55%	60.00%	40.00%
Navneet	30.91%	49.09%	54.55%	29.09%
Total	-	40.91%	42.27%	25.45%

For the best performance model i.e. GMM (mix-3) model:

- ▶ Word Friday gives maximum error (19.64%) in classification
- ► Word Tuesday gives minimum error (0%)

Classification Error (Single Speaker GaussD)

Classification Error (GMM mix:3)

Conclusion

- Works pretty well for single speaker
- GaussMixD model is better for multiple speakers support
- ▶ Some words are difficult to recognize than others
- System works fine with limited number of words
- Performance depends on various factors including amount of training data, complexity of the words and number of different speakers used for training
- Learned to implement HMM based classification scheme
- Got acquainted with features used in speech recognition
- Hands-on experience with designing HMM model parameters to fit data