近世代数 (H) 第八周作业

涂嘉乐 PB23151786

2025年4月20日

Exercise 1 证明 $|\operatorname{Aut}(\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q})| < \dim_{\mathbb{Q}}\mathbb{Q}(\sqrt[3]{2})$

Proof 因为 $\sqrt[3]{2}$ 在 \mathbb{Q} 上的最小多项式为 x^3-2 , 所以 $\dim_{\mathbb{Q}}\mathbb{Q}(\sqrt[3]{2})=3$; 另一方面,因为 x^3-2 在 $\mathbb{Q}(\sqrt[3]{2})$ 上的根只有一个 $\sqrt[3]{2}$, 所以 $\mathrm{Id}_{\mathbb{Q}}$ 只有一种延拓(本质上是因为 $\mathbb{Q}(\sqrt[3]{2})$ 不是 x^3-2 的分裂域)

$$\sigma: \mathbb{Q}(\sqrt[3]{2}) \longrightarrow \mathbb{Q}(\sqrt[3]{2})$$
$$\sqrt[3]{2} \longmapsto \sqrt[3]{2}$$
$$q \longmapsto q, \forall q \in \mathbb{Q}$$

即 $\sigma = \mathrm{Id}_{\mathbb{Q}(\sqrt[3]{2})}$,因此 $\mathrm{Aut}(\mathbb{Q}(\sqrt[3]{2}/\mathbb{Q})) = \mathrm{Aut}(\mathbb{Q}[\sqrt[3]{2}]) = \{\mathrm{Id}_{\mathbb{Q}(\sqrt[3]{2})}\} = 1 < 3$

Exercise 2 证明不存在 $\delta: \mathbb{Q}(\sqrt[4]{2}) \to \mathbb{Q}(\sqrt[4]{2})$ 使得图交换

$$\mathbb{Q}(\sqrt[4]{2}) \xrightarrow{\frac{\pi}{\delta}} \mathbb{Q}(\sqrt[4]{2})$$

$$\theta \downarrow \qquad \qquad \theta \downarrow$$

$$\mathbb{Q}(\sqrt{2}) \xrightarrow{\sigma} \mathbb{Q}(\sqrt{2})$$

其中 $\sigma(a+b\sqrt{2})=a-b\sqrt{2}$

Proof 假设存在这样的 δ , 设 $\delta(\sqrt[4]{2}) = a$, 则 $\delta(\sqrt{2}) = \delta(\sqrt[4]{2})^4 = a^4$, 但是 δ 为 σ 的延拓, 即 $\delta(\sqrt{2}) = \sigma(\sqrt{2}) = -\sqrt{2}$, 故 $a^4 = -\sqrt{2}$, 但是任意一个实数的四次方均为正数, 矛盾!

注记 不存在 δ 的原因是 $\sqrt[4]{2}$ 在 $\mathbb{Q}(\sqrt{2})$ 上的最小多项式为 $x^4-\sqrt{2}$, 而 $\sigma(x^4-\sqrt{2})=x^4+\sqrt{2}$, 它 在 $\mathbb{Q}(\sqrt[4]{2})$ 上无根!

Exercise 3 设 $k = \mathbb{F}_p(t), f(x) = x^p - t \in k[x]$ 不可约,但有重根

Proof 因为 $\mathbb{F}_p(t) = \operatorname{Frac}(\mathbb{F}_p[t])$,所以 $x^p - t$ 在 $\mathbb{F}_p(t)[x]$ 中不可约 $\iff x^p - t$ 在 $\mathbb{F}_p[t][x]$ 中不可约,由 \mathbb{F}_p 为 UFD 知, $\mathbb{F}_p[t]$ 为 UFD,且 t 为 $\mathbb{F}_p[t]$ 中素元,由 Eisenstein 判别法,取 p = t 即有 $x^p - t$ 在 $\mathbb{F}_p[t][x]$ 中不可约

设 E 为 $x^p - t$ 的分裂域,则 $\exists \alpha \in E \setminus k, \text{s.t. } f(\alpha) = 0$,即 $\alpha^p = t$,所以

$$x^p - t = x^p - \alpha^p = (x - \alpha)^p$$

这就说明 $x^p - t$ 有重根, 且为 p 重根

Exercise 4 证明 $\operatorname{Aut}(\mathbb{F}_9) = \{\operatorname{Id}_{\mathbb{F}_9}, \sigma\}$

Proof 因为 $|\operatorname{Aut}(\mathbb{F}_9/\mathbb{F}_3)| \leq \dim_{\mathbb{F}_3} \mathbb{F}_9 = 2$,且 $\operatorname{Aut}(\mathbb{F}_9/\mathbb{F}_3) = \operatorname{Aut}(\mathbb{F}_9)$,而已知 $\sigma, \operatorname{Id}_{\mathbb{F}_9} \in \operatorname{Aut}(\mathbb{F}_9)$,所以 $\operatorname{Aut}(\mathbb{F}_9/\mathbb{F}_3) = \{\operatorname{Id}_{\mathbb{F}_9}, \sigma\}$

Exercise 5 在 $\mathbb{F}_2[x]$ 中将 $x^8 - x, x^{16} - x$ 分解为不可约多项式的乘积

Solution 因为 $\mathbb{F}_2[x]$ 中,一次不可约多项式为 x,x-1; 二次不可约多项式为 x^2+x+1 ; 三次不可约多项式为 x^3+x^2+1,x^3+x+1 ; 四次不可约多项式为 $x^4+x^3+x^2+x+1,x^4+x^3+1,x^4+x+1$ 所以

$$x^{8} - x = x(x-1)(x^{3} + x^{2} + 1)(x^{3} + x + 1)$$
$$x^{16} - x = x(x-1)(x^{2} + x + 1)(x^{4} + x^{3} + x^{2} + x + 1)(x^{4} + x^{3} + 1)(x^{4} + x + 1)$$

Exercise 6 在 $\mathbb{F}_3[x]$ 中将 x^9-x 分解为不可约多项式的乘积

Solution 因为 $\mathbb{F}_3[x]$ 中,一次不可约多项式为 x, x-1, x-2; 二次不可以多项式为 x^2+1, x^2+x+2, x^2+2x+2 , 所以

$$x^9 - x = x(x-1)(x-2)(x^2+1)(x^2+x+2)(x^2+2x+2)$$

Exercise 7 设 $E \not\equiv p^n$ 元域, $d \mid n$, $K = \text{Root}_E(x^{p^d} - x) = \{a \in E \mid \sigma^d(a) = a\}$, 其中 σ 为 Frobenius 同态,试验证

- $1. x^{p^d} x$ 在 E 上分裂
- $2. x^{p^d} x$ 无重根
- 3. K 是子域

Proof

1. 对 $\forall a \in \text{Root}_E(x^{p^d}-x)$, 若 a=0, 则 $a \in E$; 若 $a \neq 0$,则 $a^{p^d-1}=1$, 因为 $d \mid n$, 可设 kd=n,则

$$p^{n} - 1 = (p^{d} - 1)(p^{(k-1)d} + p^{(k-2)d} + \dots + p^{d} + 1)$$

因此 $a^{p^n-1}=\left(a^{p^d-1}\right)^{p^{(k-1)d}+p^{(k-2)d}+\cdots+p^d+1}=1$,因此 $a\in \mathrm{Root}_E(x^{p^n}-x)$,由 $x^{p^n}-x$ 在 E 上分裂知, $x^{p^d}-x$ 在 E 上分裂

2. 因为 $(x^{p^d}-x)'=-1$, 故

$$\gcd(x^{p^d}-x,-1)=1\Longrightarrow x^{p^d}-x$$
 无重根

3. 首先 $1^{p^d}-1=0$,故 $1\in K$,接下来证明 $\forall a,b\in K\setminus\{0\},a^{-1},a+b,ab\in K$,所以

$$a^{p^d} = a \Longrightarrow a^{-1} = \left(a^{p^d}\right)^{-1} = (a^{-1})^{p^d} \Longrightarrow a^{-1} \in K$$

$$a^{p^d} = a, b^{p^d} = b \Longrightarrow (a+b)^{p^d} = a^{p^d} + b^{p^d} = a + b \Longrightarrow a + b \in K$$

$$a^{p^d} = a, b^{p^d} = b \Longrightarrow (ab)^{p^d} = a^{p^d}b^{p^d} = ab \Longrightarrow ab \in K$$

因此 K 是子域

Exercise 8 设 E 为 p^n 元域, $n=q_1^{m_1}\cdots q_s^{m_s}$, $\mathbb{F}_{p^{\frac{n}{q_i}}}\stackrel{\mathrm{def}}{=} K_{\frac{n}{q_i}}$ 证明

$$\left|\bigcup_{i=1}^s K_{\frac{q}{n_i}}\right| < |E|$$

Proof 因为 $\left|K_{\frac{n}{q_i}}\right| = p^{\frac{n}{q_i}}$,所以

$$\left| \bigcup_{i=1}^{s} K_{\frac{q}{n_i}} \right| \le \sum_{i=1}^{s} p^{\frac{n}{q_i}} \le s \cdot p^{\frac{n}{2}} \le \frac{n}{2} p^{\frac{n}{2}} < p^n = |E|$$

Exercise 9 求证 $K_{d_1} \cap K_{d_2} = K_{\gcd(d_1,d_2)}$, 其中 $\mathbb{F}_{p^d} \stackrel{\text{def}}{=} K_d$

Proof 首先 $K_{d_1} \cap K_{d_2}$ 是 K_{d_1}, K_{d_2} 的子域,因为它的任意运算均在 K_{d_1}, K_{d_2} 中成立,因为 p^n 元域的子域一定是 p^d 元域,其中 $d \mid n$,所以可设 $|K_{d_1} \cap K_{d_2}| = p^d$,且 $d \mid d_1, d \mid d_2$,因此 $d \mid \gcd(d_1, d_2)$ 另一方面 $K_{\gcd(d_1, d_2)} \subset K_{d_1}, K_{\gcd(d_1, d_2)} \subset K_{d_2}$,所以 $K_{\gcd(d_1, d_2)} \subset K_{d_1} \cap K_{d_2} = K_d$,这就说明 $\gcd(d_1, d_2) = d$,因此 $K_{d_1} \cap K_{d_2} = K_{\gcd(d_1, d_2)}$

Exercise 10 设 $E = \mathbb{F}_{p^n}$, K_d 为 E 的 p^d 元子域, 记 $K_{d_1} \vee K_{d_2}$ 为包含 $K_{d_1} \cup K_{d_2}$ 的最小子域,则 $K_{d_1} \vee K_{d_2} = K_{\text{lcm}(d_1,d_2)}$

Proof 即证明 $\forall E$ 的包含 $K_{d_1} \cup K_{d_2}$ 的子域,均包含 $K_{\text{lcm}(d_1,d_2)}$,设 F 为 E 的包含 $K_{d_1} \cup K_{d_2}$ 的子域,则 $|F| = p^d$,其中 $d \mid n$,且由 $K_{d_1} \subseteq F$ 知, $d_1 \mid d$,同理 $d_2 \mid d$,因此 $\text{lcm}(d_1,d_2) \mid d$,这就说明 $K_{\text{lcm}(d_1,d_2)} \subseteq F$ (由有限域的结构定理,对任意 d 的因子,此处取 $\text{lcm}(d_1,d_2)$,一定存在唯一的 $p^{\text{lcm}(d_1,d_2)}$ 元子域,即为 $K_{\text{lcm}(d_1,d_2)}$)

Exercise 11 设 k 是域, ω 为 k 中的 d 次本原单位根, 即 $Ord(\omega) = d$, Char(k) = p > 0, 求证 $p \nmid d$ Proof 假设 qp = d, 则

$$\omega^d = 1 \Longrightarrow 0 = \omega^d - 1 = (\omega^q)^p - 1^p = (\omega^q - 1)^p \Longrightarrow \omega^q = 1$$

这与 $Ord(\omega) = d$ 蕴含的 d 的最小性矛盾!

近世代数 (H) 第八周作业

Exercise 12 设 $f(x), g(x) \in \mathbb{Z}[x], g(x)$ 首一,若 $f(x) = g(x)h(x), h(x) \in \mathbb{C}[x]$,求证 $h(x) \in \mathbb{Z}[x]$

Proof 首先 $h(x) \in \mathbb{Q}[x]$, 否则 f(x) 系数中会出现无理数或者虚数。则对 h(x) 进行谨慎通分得 $h(x) = ah_1(x)$, 其中 $h_1(x) \in \mathbb{Z}[x]$ 本原,因此

$$f(x) = ag(x)h_1(x)$$

由于 g(x) 首一,所以它是本原多项式,由 Gauss 引理, $g(x)h_1(x)$ 是本原多项式,由 $f(x) \in \mathbb{Z}[x]$ 和 $g(x)h_1(x)$ 本原知, $a \in \mathbb{Z}$,因此 $h(x) = ah_1(x) \in \mathbb{Z}[x]$