ALGEBRAIC GEOMETRY: HOMEWORK 1

The homework is due on Friday, August 2 by 5pm.

- (1) Let $U \subset \mathbb{A}^1_{\mathbb{C}}$ be the unit circle; that is, $U = \{z \mid |z| = 1\}$. Is U an affine algebraic subset of $\mathbb{A}^1_{\mathbb{C}}$? Why or why not?
- (2) Let *I* be an ideal of a ring *R*. The radical of *I*, denoted \sqrt{I} , is defined as the subset of *R* consisting of elements *a* such that $a^n \in I$ for some positive integer *n*. Show that \sqrt{I} is an ideal of *R*, and $\sqrt{\sqrt{I}} = I$.
- (3) Let $k = \mathbb{C}$. Consider the map $f \colon \mathbb{A}^2 \to \mathbb{A}^2$ given by $(x, y) \mapsto (x, xy)$. Is the image of f closed? Open? Dense?

Often, we can identify the points of an affine space with some other objects of interest. With such an identification, we can ask if a subset of the set of objects forms a closed or open set in the Zariski topology. The next problem is an example.

- (4) Let n be a positive integer. You may take $k = \mathbb{C}$ if that helps. Identify the set $M_n(k)$ of k-valued $n \times n$ matrices with $\mathbb{A}_k^{n^2}$ by writing the n^2 entries of an $n \times n$ matrix as a n^2 -tuple. With this identification, determine whether the following subsets of $\mathbb{A}_k^{n^2}$ are Zariski closed, open, or neither.
 - (a) The set of invertible matrices.
 - (b) The set of nilpotent matrices.
 - (c) For every r, the set of matrices of rank at most r.
 - (d) The set of diagonalisable matrices.