Answer for Homework 4

P272, 24:

$$a \lor (a' \land b) = (a \lor a') \land (a \lor b) = I \land (a \lor b) = a \lor b$$
$$a \land (a' \lor b) = (a \land a') \lor (a \land b) = 0 \lor (a \land b) = a \land b$$

P272, 34:

$$a'=e$$
,

$$b'=c$$
,

$$c' = b \& d$$
,

$$d' = c$$
,

$$e' = a$$

P278-279, 1 - 10:

- 1. No
- 2. No
- 3. No
- 4. No
- 5. Yes
- 6. No
- 7. Yes
- 8. Yes

9. Yes

10.No

P278-279, 12:

If $a \le b$, $b' = (a \lor b)' = a' \land b'$ and therefore, $b' \le a'$.

If $b' \le a'$, $b = (a' \land b')' = a \lor b$ and therefore, $a \le b$.

P278-279, 20:

$$((a \lor c) \land (b' \lor c))' = (a \lor c) \ ' \lor (b' \lor c) \ ' = (a' \land c') \ \lor (b \land c') = (a' \lor b)$$
 \land c'.

1.

(1) Since $a \le b$ and $b \le c$, $a \lor b = b = b \land c$.

(2)
$$(a \land b) \lor (b \land c) = a \lor b = b \land c = (a \lor b) \land (a \lor c)$$
.

2.

- (1) Neither a nor f has any complement.
- (2) No.

3.

Obviously, I is one complement of θ' .

Assume that there exists at least one element $E \neq I$ which is also a

complement of θ , and then E < I because I is the greatest element. However, since θ is the least element, it follows that $\theta \lor E = E < I$, contradicting the fact that $\theta \lor E = I$. Therefore, the only complement of θ is I.