Pretest: Integration of solids from rotation

1a. Let $f(x)=2\ln(x-3)$, for x>3 . The following diagram shows part of the graph of f .

Find the equation of the vertical asymptote to the graph of f.

[2 marks]

1b. Find the x-intercept of the graph of f.

[2 marks]

1c. The region enclosed by the graph of f, the x-axis and the line x=10 is rotated 360° about the x-axis. Find the volume of the solid formed. [3 marks]

2a. Let $f(x) = -x^4 + 2x^3 - 1$, for $0 \le x \le 2$.

Sketch the graph of f.

[3 marks]

2b. Solve f(x) = 0

[2 marks]

2c. The region enclosed by the graph of f and the x-axis is rotated $360\degree$ about the x-axis.

Find the volume of the solid formed.

[3 marks]

3a. Let
$$f(x) = x^2$$
.

[no calculator on this problem]

$$\operatorname{Find} \int_{1}^{2} \left(f(x) \right)^{2} \mathrm{d}x.$$

[4 marks]

3b. The following diagram shows part of the graph of f.

The shaded region R is enclosed by the graph of f, the x-axis and the lines x=1 and x=2. Find the volume of the solid formed when R is revolved 360° about the x-axis. [2 marks]

4a. Let $f(x) = 5 - x^2$. Part of the graph of f is shown in the following diagram.

The graph crosses the x-axis at the points A and B.

Find the x-coordinate of A and of B.

[3 marks]

4b. The region enclosed by the graph of f and the x-axis is revolved 360° about the x-axis.

Find the volume of the solid formed.

[3 marks]

5a. The graph of $y=(x-1)\sin x$, for $0\leq x\leq \frac{5\pi}{2}$, is shown below.

The graph has x-intercepts at 0, 1, π and k .

Find k. [2 marks]

5b. The shaded region is rotated 360° about the *x*-axis. Let *V* be the volume of the solid formed.

Write down an expression for *V* . [3 marks]

5c. Find *V* . [2 marks]

6. The graph of $f(x)=\sqrt{16-4x^2}$, for $-2\leq x\leq 2$, is shown below. [no calculator on this problem]

The region enclosed by the curve of f and the x-axis is rotated 360° about the x-axis.

Find the volume of the solid formed.

[6 marks]

7a. Let $f(x) = \sqrt{x}$. Line L is the normal to the graph of f at the point (4, 2) . J

[no calculator]

Show that the equation of L is y=-4x+18 .

[4 marks

7b. Point A is the *x*-intercept of *L* . Find the *x*-coordinate of A.

[2 marks]

7c. In the diagram below, the shaded region R is bounded by the x-axis, the graph of f and the line L.

Find an expression for the area of R.

[3 marks]

7d. The region *R* is rotated 360° about the *x*-axis. Find the volume of the solid formed, giving your answer in terms of π .

8a. Let $f(x) = x^2$ and $g(x) = 3 \ln(x+1)$, for x > -1.

Solve
$$f(x) = g(x)$$
.

8b. Find the area of the region enclosed by the graphs of f and g.

[3 marks]