I am going to provide two .csv files , you are supposed to work on them and have to provide solutions to the following

import necessary libraries

```
In [11]:
          import pandas as pd
```

merge those two csv files (after getting as dataframes, get them as a single dataframe)

```
In [20]:
          df = pd.concat(
              map(pd.read_csv, ['college_1.csv', 'college_2.csv']), ignore_index=True)
          print(df)
                         Name
                               python
                                        mysql Previous Geekions
                                                                    CodeKata Score
          0
                    A.Dharani
                                  82.0
                                         20.0
                                                             24500
                                                                              24500
          1
                 V.JEEVITHA
                                  82.0
                                         20.0
                                                             21740
                                                                              21740
          2
                 HEMAVATHI.R
                                 100.0
                                        100.0
                                                             19680
                                                                              19680
          3
                 Mugunthan S
                                 100.0
                                         47.0
                                                             10610
                                                                              10610
          4
                 Sathammai.S
                                 100.0
                                          8.0
                                                              8980
                                                                               8980
                                  . . .
                                          . . .
                                                                                . . .
               praveen raj j
                                  24.0
                                          0.0
                                                              2380
                                                                               2380
          114
          115
                  AMARNATH D
                                                              1890
                                                                               1890
                                  -1.0
                                         12.0
          116
                         bala
                                  32.0
                                          0.0
                                                              1720
                                                                               1720
          117
                         XY Z
                                  -1.0
                                         -1.0
                                                                 0
                                                                                  0
          118
                    Hariharan
                                  -1.0
                                         -1.0
                                                                 0
                                                                                  0
                                                 Department Rising
                                                                      python_en
          0
                         Computer Science and Engineering
                                                                   0
                                                                             NaN
          1
                         Computer Science and Engineering
                                                                   0
                                                                             NaN
          2
                         Computer Science and Engineering
                                                                   0
                                                                             NaN
          3
                         Computer Science and Engineering
                                                                   0
                                                                             NaN
          4
                         Computer Science and Engineering
                                                                   0
                                                                             NaN
                                                                             . . .
                                                                 . . .
                         Computer Science and Engineering
          114
                                                                   0
                                                                            -1.0
          115
               Electronics and Communication Engineering
                                                                   0
                                                                            52.0
               Electronics and Communication Engineering
                                                                   0
                                                                            49.0
          116
          117
                         Computer Science and Engineering
                                                                   0
                                                                            20.0
          118
                         Computer Science and Engineering
                                                                   0
                                                                            -1.0
               computational_thinking
          0
                                    NaN
          1
                                    NaN
          2
                                    NaN
          3
                                    NaN
          4
                                    NaN
                                    . . .
          114
                                    0.0
          115
                                   -1.0
          116
                                   -1.0
          117
                                   -1.0
```

[119 rows x 9 columns]

118

Take each csv file, split that csv file into multiple categories (example csv files are added in the repo)

consider if the codekata score exceeds 15000 points(present week) then make a csv on those observations as Exceeded expectations.csv

if 10000 < codekata score < 15000 (Reached expectations.csv)

0.0

if 7000 < codekata score < 10000 (Needs_Improvement.csv)

if codekate score < 7000 (Unsatisfactory.csv)

In [13]: ['Unsatisfactory.csv' if i < 7000 else 'Needs_Improvement.csv' if i > 10000 else 'Reached_expecta

```
Out[13]: ['Needs_Improvement.csv',
           'Needs Improvement.csv',
           'Needs Improvement.csv',
           'Needs_Improvement.csv',
           'Reached expectations.csv',
           'Reached_expectations.csv',
           'Reached_expectations.csv',
           'Reached expectations.csv',
           'Unsatisfactory.csv',
           'Unsatisfactory.csv',
```

```
'Unsatisfactory.csv',
'Needs_Improvement.csv',
'Needs_Improvement.csv',
'Needs_Improvement.csv',
'Needs_Improvement.csv',
'Reached_expectations.csv',
'Unsatisfactory.csv',
'Unsatisfactory.csv']
```

Average of previous week geekions vs this week geekions (i.e Previous Geekions vs CodeKata Score)

```
In [14]: df.groupby(['python','mysql','python_en','computational_thinking']).mean()
```

C:\Users\Karthi\AppData\Local\Temp\ipykernel_10424\4187661029.py:1: FutureWarning: The default v alue of numeric_only in DataFrameGroupBy.mean is deprecated. In a future version, numeric_only w ill default to False. Either specify numeric_only or select only columns which should be valid f or the function.

df.groupby(['python','mysql','python_en','computational_thinking']).mean()

					Previous Geekions	CodeKata Score	Rising	
ру	ython	mysql	python_en	computational_thinking				
	-1.0	-1.0	-1.0	0.0	0.000000	0.000000	0.000000	
			20.0	-1.0	0.000000	0.000000	0.000000	
		0.0	-1.0	0.0	4800.000000	6800.000000	2000.000000	
			0.0	0.0	5616.666667	6583.333333	966.666667	
				3.0	7250.000000	8950.000000	1700.000000	
			9.0	0.0	7670.000000	8050.000000	380.000000	
			20.0	0.0	5290.000000	6290.000000	1000.000000	
			40.0	-1.0	5050.000000	5050.000000	0.000000	
			43.0	0.0	3980.000000	5280.000000	1300.000000	
			46.0	0.0	5200.000000	5200.000000	0.000000	
			52.0	0.0	3860.000000	4440.000000	580.000000	
		4.0	0.0	6.0	4020.000000	4020.000000	0.000000	
			6.0	0.0	5300.000000	6640.000000	1340.000000	
			60.0	6.0	8650.000000	8650.000000	0.000000	
		12.0	52.0	-1.0		1890.000000	0.000000	
		20.0	100.0	0.0	6170.000000	8160.000000	1990.000000	
		24.0	55.0	6.0	8790.000000	10790.000000	2000.000000	
			100.0	-1.0	9150.000000	9150.000000	0.000000	
		31.0	63.0	0.0	6710.000000	7550.000000	840.000000	
	3		0.0	-1.0	10040.000000	10040.000000	0.000000	
			55.0	6.0	3220.000000	3220.000000	0.000000	
			72.0	39.0	7310.000000	7630.000000	320.000000	
		62.0	15.0	9.0	7470.000000	8090.000000	620.000000	
		100.0	23.0	-1.0	7170.000000	7730.000000	560.000000	
	0.0	0.0	20.0	0.0	14150.000000	14490.000000	340.000000	
		35.0	78.0	0.0	7210.000000	8970.000000	1760.000000	
	16.0	24.0	20.0	0.0	6060.000000	6090.000000	30.000000	
	24.0	0.0	-1.0	0.0	2380.000000	2380.000000	0.000000	
	32.0	0.0	49.0	-1.0	1720.000000	1720.000000	0.000000	
	58.0	0.0	0.0	0.0	5180.000000	8320.000000	3140.000000	
,	100.0	0.0	0.0	0.0	7340.000000	8030.000000	690.000000	
		31.0	0.0	9.0	19400.000000	19400.000000	0.000000	

Out[14]:

print(df)

Department
Computer Science and Engineering

Computer Science and Engineering 63
Electronics and Communication Engineering 39

Electronics and Electrical Engineering

Name: Department, dtype: int64

#Average completion of python course or my_sql or python english or computational thinking

In [21]: df.groupby(['Previous Geekions','CodeKata Score']).mean()

C:\Users\Karthi\AppData\Local\Temp\ipykernel_10424\556006490.py:1: FutureWarning: The default value of numeric_only in DataFrameGroupBy.mean is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.

17

df.groupby(['Previous Geekions','CodeKata Score']).mean()

Out[21]:			python	mysql	Rising	python_en	computational_thinking
	Previous Geekions	CodeKata Score					

Previous Geekions	CodeKata Score					
0	0	22.000000	3.571429	0.0	9.5	-0.5
40	40	98.333333	36.000000	0.0	NaN	NaN
60	60	82.000000	12.000000	0.0	NaN	NaN
100	100	65.000000	10.000000	0.0	NaN	NaN
120	120	94.875000	6.000000	0.0	NaN	NaN
•••	•••					
14150	14490	0.000000	0.000000	340.0	20.0	0.0
19400	19400	100.000000	31.000000	0.0	0.0	9.0
19680	19680	100.000000	100.000000	0.0	NaN	NaN
21740	21740	82.000000	20.000000	0.0	NaN	NaN
24500	24500	82.000000	20.000000	0.0	NaN	NaN

103 rows × 5 columns

rising star of the week (top 3 candidate who performed well in that particular week)

In [22]: df.sort_values('Rising',ascending=False,inplace=True)
 (df.head(3))

Out[22]:

•		Name	python	mysql	Previous Geekions	CodeKata Score	Department	Rising	python_en	computational_thinking	
	92	shifak N	58.0	0.0	5180	8320	Electronics and Electrical Engineering	3140	0.0	0.0	
1	02	Narasimhan Y L	-1.0	0.0	4800	6800	Computer Science and Engineering	2000	-1.0	0.0	
	86	Ganesh Ramkumar R	-1.0	24.0	8790	10790	Computer Science and Engineering	2000	55.0	6.0	

Shining stars of the week (top 3 candidates who has highest geekions)

```
In [23]: df.sort_values('Previous Geekions',ascending=False,inplace=True)
   (df.head(3))
```

•	Name	python	mysql	Previous Geekions	CodeKata Score	Department	Rising	python_en	computational_thinking
0	A.Dharani	82.0	20.0	24500	24500	Computer Science and Engineering	0	NaN	NaN
1	V.JEEVITHA	82.0	20.0	21740	21740	Computer Science and Engineering	0	NaN	NaN
2	HEMAVATHI.R	100.0	100.0	19680	19680	Computer Science and Engineering	0	NaN	NaN

Department wise codekata performence (pie chart)

Out[23]:

Department wise toppers (horizantal bar graph or any visual representations of your choice)

```
In [25]: import matplotlib.pyplot as plt

pd.pivot_table(index='Department', columns='CodeKata Score').plot(kind='bar', figsize=(15, 8))

plt.xlabel('Department')
 plt.ylabel('CodeKata Score')
 plt.title('Department wise toppers')
```