(hoffentlich kurze) Einführung:

Neuronale Netze

Dipl.-Inform. Martin Lösch

martin.loesch@kit.edu

(0721) - 60845944

Überblick

- Einführung
- Perzeptron
- Multi-layer Feedforward Neural Network
- MLNN in der Anwendung

EINFÜHRUNG

Vorbild Gehirn

- Gehirn des Menschen
 - Neuron Schaltzeit: > 0.001 sec
 - Anzahl Neuronen: 1010
 - Verbindungen (Synapsen) pro Neuron: 104-105
 - Szenenerkennung: 0.1 sec
- Auffallende Eigenschaften
 - hochparallele Berechnung
 - verteilte Repräsentation von Wissen

Vergleich: Gehirn ←→ serieller Rechner

Eigenschaft	Parallelität	Präzision	Fehler- toleranz	Speicher- zugriff	Erkennen v. Mustern u. Ähnlichkeiten
Gehirn	hoch	mäßig	hoch	global	gut
ser. Rechner	noch mäßig	hoch	niedrig	lokal	mäßig

Eigenschaft	Numerische präzise Be- rechnungen	Speichern		_	Selbst- organisation
Gehirn	schlecht	schlecht	gut	gut	ja
ser. Rechner	gut	gut	schlecht	schlecht	bisher nicht

Was ist "konnektionistisches Rechnen"?

- Rechnerarchitekturen, Rechenmodelle und Lernmodelle, die in Anlehnung an natürliche Neuronenmodelle entwickelt werden.
- kennzeichnende Eigenschaften solcher Systeme
 - Große Anzahl einfacher Recheneinheiten (Künstliche Neuronen)
 - Durch gewichtete Kanäle verbunden (Netz)
 - Kein Rechnen mit symbolisch kodierten Nachrichten
 - Wissen wird in der Struktur der Verbindungen repräsentiert
 - Massiver Parallelismus

PERZEPTRON

Perzeptron: Idee [Rosenblatt 1960]

Grundidee:

Anlehnung an das Funktionsprinzip der natürlichen Wahrnehmung/Reaktion im Tierreich

Biologie

Perzeptron: Aufbau [Rosenblatt 1960]

Aufbau eines Perzeptrons

x – Eingabevektor

t − Target (Soll-Ausgabe)

w - Gewichtsvektor

o − Output (Ist-Ausgabe)

Perzeptron: Geometrische Interpretation

- "Positive und Negative" Daten (P,N)
- Erweiterung der Dimension durch x_0
- Trennhyperebene (in \mathbb{R}^2 : Gerade), definiert durch Gewichte (Normalen der Ebene)
- Gewichtete Summe = Skalarprodukt

Lernen = Anpassen der Gewichte → Gesucht wird die beste Trennebene

Lernen - Geometrische

Interpretation

Hilfsmenge

$$N' = \{x' \mid x' = -x, \forall x \in N\}$$

Neues Lernproblem

$$xw > 0$$
 , $\forall x \in N' \cup P$

 \rightarrow Im Beispiel: alle x_i aus P

Perzeptron – Lernalgorithmus

Start: Gegeben Lerndatenmenge $P \cup N$

Der Gewichtsvektor w(0) wird zufällig generiert.

Setze t = 0.

Testen: Ein Punkt x in $P \cup N$ wird zufällig gewählt.

Falls $x \in P$ und w(t) : x > 0 gehe zu *Testen*

Falls $x \in P$ und $w(t) x \le 0$ gehe zu Addieren

Falls $x \in N$ und w(t) x < 0 gehe zu *Testen*

Falls $x \in N$ und $w(t) x \ge 0$ gehe zu *Subtrahieren*

Addieren: Setze w(t+1) = w(t) + x.

Setze t = t+1. Gehe zu *Testen*.

Subtrahieren: Setze w(t+1) = w(t)-x.

Setze t = t+1. Gehe zu *Testen*.

Perzeptron: Kapazität

Bsp. Logik:

$$x_1 \text{ OR } x_2$$
: $0.5x_1 + 0.5 x_2 > 0.3$ $x_1 \text{ AND } x_2$: $0.5x_1 + 0.5 x_2 > 0.8$

$$x_1 \text{ AND } x_2 : 0.5x_1$$

$$0.5x_1 + 0.5 x_2 > 0.8$$

→ Durch Kombination von Perzeptronen sind viele Funktionen möglich

XOR: ???

NICHT MÖGLICH!

MULTI LAYER FEEDFORWARD NEURAL NETWORK

Nichtlineare Entscheidungsregionen

- Wie kann man nichtlineare Entscheidungsregionen mit KNN lernen?
- Beispiel: Erkennung von Lauten anhand von 2 Formanten (Teiltönen)

Multi Layer Neural Network (MLNN)

Netzaufbau: mehrere versteckte (innere) Schichten

Lernverfahren: Backpropagation-Algorithmus

[Rumelhart86, Werbos74]

Neuronenaufbau: nichtlineare Aktivierungsfunktion

Aufbau der Neuronen

- $x_{ii} = i$ -te Eingabe des Neurons j
- w_{ii} = das Gewicht zwischen Neuron i und Neuron j
- $net_i = \sum_i w_{ij} x_{ij}$ Propagierungsfunktion
- o_i = Ausgabe des Neurons j
- t_i = Zielausgabe (target) des Ausgabeneurons j
- f(x) = Aktivierungsfunktion
- *output* = Menge der Ausgabeneuronen
- Downstream(j) = direkte Nachfolger des Neurons j

Nichtlineare Aktivierungsfunktionen

Sigmoid:
$$f(x) = \frac{1}{1 + e^{-x}}$$
$$\frac{\partial f}{\partial x} = f(x) (1 - f(x))$$

$$f(x) = \tanh(x)$$

$$\frac{\partial f}{\partial x} = (1 + f(x))(1 - f(x))$$

Backpropagation Algorithmus I

Vorgaben

- Menge T von Trainingsbeispielen (Eingabevektor/ Ausgabevektor)
- Lernrate η
- Netztopologie
 - Anzahl und Ausmaße der Zwischenschichten
 - Schichten sind vollständig vorwärts gerichtet verbunden

Lernziel

 Finden einer Gewichtsbelegung W, die T korrekt wiedergibt

Backpropagation Algorithmus II

- Initialisieren der Gewichte mit kleinen zufälligen Werten
- Wiederhole...
 - Auswahl eines Beispielmusters d
 - Bestimmen der Netzausgabe
 - Bestimmen des Ausgabefehlers (bzgl. Sollausgabe)
 - Sukzessives Rückpropagieren des Fehlers auf die einzelnen Neuronen

$$\delta_{j} = \begin{cases} o_{j}(1 - o_{j}) \sum_{k \in Downstream(j)} \delta_{k}w_{jk}, & j \notin output \\ o_{j}(1 - o_{j})(t_{j} - o_{j}) & , & j \in output \end{cases}$$

- Anpassen der Gewichtsbelegung um $\Delta w_{ij} = \eta \delta_j x_{ij}$
- ... solange ein gewähltes Abbruchkriterium nicht erfüllt ist!

MLNN IN DER ANWENDUNG

Entwurf von Neuronalen Netzen

- Subsymbolische Repräsentation der Ein- und Ausgabe
- Auswahl der Topologie
- Auswahl des Lernverfahrens
- Parametereinstellung
- Implementierung / Realisierung
- Training & Verifikation (Test)

Topologieauswahl

- Zusammenhang zwischen Anzahl der (hidden) layer und Zielfunktion?
 - 3 Layer (1 hidden Layer sigmoid):
 - jede Boolsche Funktion
 - jede kontinuierliche beschränkte Funktion [Cybenko 1989, Hornik et al. 1989]
 - 4 Layer (2 hidden Layer -sigmoid)
 - beliebige Funktionen mit beliebiger Genauigkeit [Cybenko 1988]
- Schon eine geringe Tiefe ist ausreichend

Lernverhalten - Topologieauswahl

- Anzahl der Neuronen pro Schicht im Bezug zu der Anzahl von (stochastisch unabhängigen) Lerndaten ist wichtig
- Aber: allgemeine Aussage nicht möglich

Beispiel: gestrichelte Kurve soll eingelernt werden

Initialisierung der Gewichte

- Gewichte verschieden wählen
 - sonst funktionsgleiche Neuronen
- zufällig, gleichverteilt und klein
 - → keine anfängliche Ausrichtung

Auswahl repräsentativer Trainingsbeispiele

- Lerndaten
 - für die Anpassung der Gewichte
- Verifikationsdaten
 - für das Testen der Generalisierung

- gute Verteilung der Beispiele
 - Klassifikation: Daten aus allen Klassen
 - Regression: gesamter Definitionsbereich
- Beispiele insbesondere aus komplexen Regionen
 - Klassifikation: Randregionen zwischen Klassen
 - Regression: Verlaufsänderungen

Overfitting

 Fehler auf Verifikationsdaten steigt ab einer Anzahl von Lernzyklen

Mögliches Abbruchkriterium für Lernvorgang

Entwurfs- und Optimierungskriterien

- Wiedererkennungs-Fehlerrate
- Trainingszeit
- Wiedererkennungszeit
- Speicherbedarf
- Komplexität der Trainingsalgorithmen
- Leichte Implementierbarkeit
- Gute Anpassungsfähigkeit
- Trade-off zwischen Anforderungen nötig

Literatur

- Tom Mitchell: Machine Learning. McGraw-Hill, New York, 1997.
- M. Berthold, D.J. Hand: Intelligent Data Analysis.
- P. Rojas: Theorie der Neuronalen Netze Eine systematische Einführung. Springer Verlag, 1993.
- C. Bishop: Neural Networks for Pattern Recognition.
 Oxford University Press, 1995.
- Vorlesung "Neuronale Netze 2006": http://isl.ira.uka.de/
- siehe auch Skriptum "Ein kleiner Überblick über Neuronale Netze": http://www.dkriesel.com/