



## INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| (51) International Patent Classification 7 :<br><br>C07H 21/04, C07K 14/00, C12N 15/00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  | A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (11) International Publication Number: <b>WO 00/55178</b><br><br>(43) International Publication Date: 21 September 2000 (21.09.00) |
| (21) International Application Number: PCT/US00/06602                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  | (74) Agent: BRUNELLE, Jan, P.; Exelixis, Inc., 280 East Grand Avenue, South San Francisco, CA 94080 (US).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                    |
| (22) International Filing Date: 13 March 2000 (13.03.00)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                    |
| (30) Priority Data:<br><br>09/268,969 16 March 1999 (16.03.99) US<br>60/184,373 23 February 2000 (23.02.00) US                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  | (81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG). |                                                                                                                                    |
| (71) Applicant: EXELIXIS, INC. [US/US]; 280 East Grand Avenue, South San Francisco, CA 94080 (US).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  | Published<br><i>With international search report.<br/>Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.</i>                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                    |
| (72) Inventors: BUCHMAN, Andrew, Roy; 3119 Epton Avenue, Berkeley, CA 94705 (US). PLATT, Darren, Mark; 929 Pine Street, Apt. 201, San Francisco, CA 94108 (US). OLLMAN, Michael, Martin; 1805 Atschul Avenue, Menlo Park, CA 94025 (US). YOUNG, Lynn, Marie; 250 Baldwin Avenue, #4, San Mateo, CA 94401 (US). DEMSKY, Madelyn, Robin; 1770 Pine Street, 3203, San Francisco, CA 94109 (US). KEEGAN, Kevin, Patrick; 17311 Via Estrella, San Lorenzo, CA 94580 (US). FRIEDMAN, Lori; One Bayside Village Place, Unit 212, San Francisco, CA 94107 (US). KOPCZYNSKI, Casey; 2769 St. James Road, Belmont, CA 94002 (US). LARSON, Jeffrey, S.; 1220 El Camino Real #305, Burlingame, CA 94010 (US). ROBERTSON, Stephanie, A.; 255 Fowler Avenue, San Francisco, CA 94127 (US).          |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                    |
| (54) Title: INSECT p53 TUMOR SUPPRESSOR GENES AND PROTEINS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                    |
| (57) Abstract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                    |
| <p>A family of p53 tumor suppressor nucleic acid and protein isolated from several insect species is described. The p53 nucleic acid and protein can be used to genetically modify metazoan invertebrate organisms, such as insects and worms, or cultured cells, resulting in p53 expression or mis-expression. The genetically modified organisms or cells can be used in screening assays to identify candidate compounds that are potential pesticidal agents or therapeutics that interact with p53 protein. They can also be used in methods for studying p53 activity and identifying other genes that modulate the function of, or interact with, the p53 gene. Nucleic acid and protein sequences for <i>Drosophila</i> p33 and Rb tumor suppressors are also described.</p> |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                    |

***FOR THE PURPOSES OF INFORMATION ONLY***

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

|    |                          |    |                                       |    |                                           |    |                          |
|----|--------------------------|----|---------------------------------------|----|-------------------------------------------|----|--------------------------|
| AL | Albania                  | ES | Spain                                 | LS | Lesotho                                   | SI | Slovenia                 |
| AM | Armenia                  | FI | Finland                               | LT | Lithuania                                 | SK | Slovakia                 |
| AT | Austria                  | FR | France                                | LU | Luxembourg                                | SN | Senegal                  |
| AU | Australia                | GA | Gabon                                 | LV | Latvia                                    | SZ | Swaziland                |
| AZ | Azerbaijan               | GB | United Kingdom                        | MC | Monaco                                    | TD | Chad                     |
| BA | Bosnia and Herzegovina   | GE | Georgia                               | MD | Republic of Moldova                       | TG | Togo                     |
| BB | Barbados                 | GH | Ghana                                 | MG | Madagascar                                | TJ | Tajikistan               |
| BE | Belgium                  | GN | Guinea                                | MK | The former Yugoslav Republic of Macedonia | TM | Turkmenistan             |
| BF | Burkina Faso             | GR | Greece                                | ML | Mali                                      | TR | Turkey                   |
| BG | Bulgaria                 | HU | Hungary                               | MN | Mongolia                                  | TT | Trinidad and Tobago      |
| BJ | Benin                    | IE | Ireland                               | MR | Mauritania                                | UA | Ukraine                  |
| BR | Brazil                   | IL | Israel                                | MW | Malawi                                    | UG | Uganda                   |
| BY | Belarus                  | IS | Iceland                               | MX | Mexico                                    | US | United States of America |
| CA | Canada                   | IT | Italy                                 | NE | Niger                                     | UZ | Uzbekistan               |
| CF | Central African Republic | JP | Japan                                 | NL | Netherlands                               | VN | Viet Nam                 |
| CG | Congo                    | KE | Kenya                                 | NO | Norway                                    | YU | Yugoslavia               |
| CH | Switzerland              | KG | Kyrgyzstan                            | NZ | New Zealand                               | ZW | Zimbabwe                 |
| CI | Côte d'Ivoire            | KP | Democratic People's Republic of Korea | PL | Poland                                    |    |                          |
| CM | Cameroon                 | KR | Republic of Korea                     | PT | Portugal                                  |    |                          |
| CN | China                    | KZ | Kazakhstan                            | RO | Romania                                   |    |                          |
| CU | Cuba                     | LC | Saint Lucia                           | RU | Russian Federation                        |    |                          |
| CZ | Czech Republic           | LI | Liechtenstein                         | SD | Sudan                                     |    |                          |
| DE | Germany                  | LK | Sri Lanka                             | SE | Sweden                                    |    |                          |
| DK | Denmark                  | LR | Liberia                               | SG | Singapore                                 |    |                          |
| EE | Estonia                  |    |                                       |    |                                           |    |                          |

INSECT p53 TUMOR SUPPRESSOR GENES AND PROTEINS

---

REFERENCE TO RELATED APPLICATION

5        This application is a continuation-in-part of U.S. application no. 09/268,969, filed March 16, 1999; and of U.S. application no. 60/184,373 of same title, filed February 23, 2000. The entire contents of both prior applications are incorporated herein by reference.

BACKGROUND OF THE INVENTION

10      The p53 gene is mutated in over 50 different types of human cancers, including familial and spontaneous cancers, and is believed to be the most commonly mutated gene in human cancer (Zambetti and Levine, FASEB (1993) 7:855-865; Hollstein, *et al.*, Nucleic Acids Res. (1994) 22:3551-3555). Greater than 90% of mutations in the p53 gene are missense mutations that alter a single amino acid that inactivates p53 function. Aberrant 15 forms of human p53 are associated with poor prognosis, more aggressive tumors, metastasis, and survival rates of less than 5 years (Koshland, Science (1993) 262:1953).

15      The human p53 protein normally functions as a central integrator of signals arising from different forms of cellular stress, including DNA damage, hypoxia, nucleotide deprivation, and oncogene activation (Prives, Cell (1998) 95:5-8). In response to these 20 signals, p53 protein levels are greatly increased with the result that the accumulated p53 activates pathways of cell cycle arrest or apoptosis depending on the nature and strength of these signals. Indeed, multiple lines of experimental evidence have pointed to a key role for p53 as a tumor suppressor (Levine, Cell (1997) 88:323-331). For example, homozygous p53 "knockout" mice are developmentally normal but exhibit nearly 100% incidence of 25 neoplasia in the first year of life (Donehower *et al.*, Nature (1992) 356:215-221). The biochemical mechanisms and pathways through which p53 functions in normal and cancerous cells are not fully understood, but one clearly important aspect of p53 function is its activity as a gene-specific transcriptional activator. Among the genes with known p53-response elements are several with well-characterized roles in either regulation of the cell 30 cycle or apoptosis, including GADD45, p21/Waf1/Cip1, cyclin G, Bax, IGF-BP3, and MDM2 (Levine, Cell (1997) 88:323-331).

Human p53 is a 393 amino acid phosphoprotein which is divided structurally and functionally into distinct domains joined in the following order from N-terminus to C-terminus of the polypeptide chain: (a) a transcriptional activation domain; (b) a sequence-specific DNA-binding domain; (c) a linker domain; (d) an oligomerization domain; and (e) 5 a basic regulatory domain. Other structural details of the p53 protein are in keeping with its function as a sequence-specific gene activator that responds to a variety of stress signals. For example, the most N-terminal domain of p53 is rich in acidic residues, consistent with structural features of other transcriptional activators (Fields and Jang, *Science* (1990) 249:1046-49). By contrast, the most C-terminal domain of p53 is rich in basic residues, and 10 has the ability to bind single-stranded DNA, double-stranded DNA ends, and internal deletions loops (Jayaraman and Prives, *Cell* (1995) 81: 1021-1029). The association of the p53 C-terminal basic regulatory domain with these forms of DNA that are generated during DNA repair may trigger conversion of p53 from a latent to an activated state capable of site-specific DNA binding to target genes (Hupp and Lane, *Curr. Biol.* (1994) 4: 865-875), 15 thereby providing one mechanism to regulate p53 function in response to DNA damage. Importantly, both the N-terminal activation domain and the C-terminal basic regulatory domain of p53 are subject to numerous covalent modifications which correlate with stress-induced signals (Prives, *Cell* (1998) 95:5-8). For example, the N-terminal activation domain contains residues that are targets for phosphorylation by the DNA-activated protein 20 kinase, the ATM kinase, and the cyclin activated kinase complex. The C-terminal basic regulatory domain contains residues that are targets for phosphorylation by protein kinase-C, cyclin dependent kinase, and casein kinase II, as well as residues that are targets for acetylation by PCAF and p300 acetyl transferases. p53 activity is also modulated by specific non-covalent protein-protein interactions (Ko and Prives, *Genes Dev.* (1996) 10: 25 1054-1072). Most notably, the MDM2 protein binds a short, highly conserved protein sequence motif, residues 13-29, in the N-terminal activation domain of p53 (Kussie *et al.*, *Science* (1996) 274:948-953. As a result of binding p53, MDM2 both represses p53 transcriptional activity and promotes the degradation of p53.

Although several mammalian and vertebrate homologs of the tumor suppressor p53 30 have been described, only two invertebrate homologs have been identified to date in mollusc and squid. Few lines of evidence, however, have hinted at the existence of a p53 homolog in any other invertebrate species, such as the fruit fly *Drosophila*. Indeed, numerous direct attempts to isolate a *Drosophila* p53 gene by either cross-hybridization or PCR have failed to identify a p53-like gene in this species (Soussi *et al.*, *Oncogene* (1990)

5: 945-952). However, other studies of response to DNA damage in insect cells using nucleic cross-hybridization and antibody cross-reactivity have provided suggestive evidence for existence of p53-, p21-, and MDM2-like genes (Bae *et al.*, *Exp Cell Res* (1995) 375:105-106; Yakes, 1994, Ph.D. thesis, Wayne State University). Nonetheless, no isolated 5 insect p53 genes or proteins have been reported to date.

Identification of novel p53 orthologues in model organisms such as *Drosophila melanogaster* and other insect species provides important and useful tools for genetic and molecular study and validation of these molecules as potential pharmaceutical and pesticide targets. The present invention discloses insect p53 genes and proteins from a variety of 10 diverse insect species. In addition, *Drosophila* homologs of p33 and Rb genes, which are also involved in tumor suppression, are described.

### SUMMARY OF THE INVENTION

It is an object of the present invention to provide insect p53 nucleic acid and protein 15 sequences that can be used in genetic screening methods to characterize pathways that p53 may be involved in as well as other interacting genetic pathways. It is also an object of the invention to provide methods for screening compounds that interact with p53 such as those that may have utility as therapeutics.

These and other objects are provided by the present invention which concerns the 20 identification and characterization of insect p53 genes and proteins in a variety of insect species. Isolated nucleic acid molecules are provided that comprise nucleic acid sequences encoding p53 polypeptides and derivatives thereof. Vectors and host cells comprising the p53 nucleic acid molecules are also described, as well as metazoan invertebrate organisms (e.g. insects, coelomates and pseudocoelomates) that are genetically modified to express or 25 mis-express a p53 protein.

An important utility of the insect p53 nucleic acids and proteins is that they can be used in screening assays to identify candidate compounds which are potential therapeutics or pesticides that interact with p53 proteins. Such assays typically comprise contacting a p53 polypeptide with one or more candidate molecules, and detecting any interaction 30 between the candidate compound and the p53 polypeptide. The assays may comprise adding the candidate molecules to cultures of cells genetically engineered to express p53 proteins, or alternatively, administering the candidate compound to a metazoan invertebrate organism genetically engineered to express p53 protein.

The genetically engineered metazoan invertebrate animals of the invention can also be used in methods for studying p53 activity, or for validating therapeutic or pesticidal strategies based on manipulation of the p53 pathway. These methods typically involve detecting the phenotype caused by the expression or mis-expression of the p53 protein. The 5 methods may additionally comprise observing a second animal that has the same genetic modification as the first animal and, additionally has a mutation in a gene of interest. Any difference between the phenotypes of the two animals identifies the gene of interest as capable of modifying the function of the gene encoding the p53 protein.

10

#### BRIEF DESCRIPTION OF THE FIGURE

Figures 1A-1B show a CLUSTALW alignment of the amino acid sequences of the insect p53 proteins identified from *Drosophila*, *Leptinotarsa*, *Tribolium*, and *Heliothis*, with p53 sequences previously identified in human, *Xenopus*, and squid. Identical amino acid residues within the alignment are grouped within solid lines and similar amino acid residues 15 are grouped within dashed lines.

#### DETAILED DESCRIPTION OF THE INVENTION

The use of invertebrate model organism genetics and related technologies can greatly facilitate the elucidation of biological pathways (Scangos, Nat. Biotechnol. (1997) 20 15:1220-1221; Margolis and Duyk, Nature Biotech. (1998) 16:311). Of particular use is the insect model organism, *Drosophila melanogaster* (hereinafter referred to generally as "Drosophila"). An extensive search for p53 nucleic acid and its encoded protein in *Drosophila* was conducted in an attempt to identify new and useful tools for probing the function and regulation of the p53 genes, and for use as targets in drug discovery. p53 25 nucleic acid has also been identified in the following additional insect species: *Leptinotarsa decemlineata* (Colorado potato beetle, hereinafter referred to as *Leptinotarsa*), *Tribolium castaneum* (flour beetle, hereinafter referred to as *Tribolium*), and *Heliothis virescens* (tobacco budworm, hereinafter referred to as *Heliothis*).

The newly identified insect p53 nucleic acids can be used for the generation of 30 mutant phenotypes in animal models or in living cells that can be used to study regulation of p53, and the use of p53 as a drug or pesticide target. Due to the ability to rapidly carry out large-scale, systematic genetic screens, the use of invertebrate model organisms such as *Drosophila* has great utility for analyzing the expression and mis-expression of p53 protein. Thus, the invention provides a superior approach for identifying other components involved

in the synthesis, activity, and regulation of p53 proteins. Systematic genetic analysis of p53 using invertebrate model organisms can lead to the identification and validation of compound targets directed to components of the p53 pathway. Model organisms or cultured cells that have been genetically engineered to express p53 can be used to screen 5 candidate compounds for their ability to modulate p53 expression or activity, and thus are useful in the identification of new drug targets, therapeutic agents, diagnostics and prognostics useful in the treatment of disorders associated with cell cycle, DNA repair, and apoptosis. The details of the conditions used for the identification and/or isolation of insect p53 nucleic acids and proteins are described in the Examples section below. Various non- 10 limiting embodiments of the invention, applications and uses of the insect p53 genes and proteins are discussed in the following sections. The entire contents of all references, including patent applications, cited herein are incorporated by reference in their entireties for all purposes. Additionally, the citation of a reference in the preceding background section is not an admission of prior art against the claims appended hereto.

15

### p53 Nucleic Acids

The following nucleic acid sequences encoding insect p53 are described herein: SEQ ID NO:1, isolated from *Drosophila*, and referred to herein as DMp53; SEQ ID NO:3, isolated from *Leptinotarsa*, and referred to herein as CPBp53; SEQ ID NO:5 and SEQ ID 20 NO:7, isolated from *Tribolium*, and referred to herein as TRIB-Ap53 and TRIB-Bp53, respectively; and SEQ ID NO:9, isolated from *Heliothis*, and referred to herein as HELIOp53. The genomic sequence of the DMp53 gene is provided in SEQ ID NO:18.

In addition to the fragments and derivatives of SEQ ID NOs:1, 3, 5, 7, 9, and 18, as described in detail below, the invention includes the reverse complements thereof. Also, 25 the subject nucleic acid sequences, derivatives and fragments thereof may be RNA molecules comprising the nucleotide sequences of SEQ ID NOs:1, 3, 5, 7, 9, and 18 (or derivative or fragment thereof) wherein the base U (uracil) is substituted for the base T (thymine). The DNA and RNA sequences of the invention can be single- or double-stranded. Thus, the term "isolated nucleic acid sequence" or "isolated nucleic acid 30 molecule", as used herein, includes the reverse complement, RNA equivalent, DNA or RNA single- or double-stranded sequences, and DNA/RNA hybrids of the sequence being described, unless otherwise indicated.

Fragments of the p53 nucleic acid sequences can be used for a variety of purposes. Interfering RNA (RNAi) fragments, particularly double-stranded (ds) RNAi, can be used to

generate loss-of-function phenotypes. p53 nucleic acid fragments are also useful as nucleic acid hybridization probes and replication/amplification primers. Certain "antisense" fragments, i.e. that are reverse complements of portions of the coding sequence of any of SEQ ID NO:1, 3, 5, 7, 9, or 18 have utility in inhibiting the function of p53 proteins. The 5 fragments are of length sufficient to specifically hybridize with the corresponding SEQ ID NO:1, 3, 5, 7, 9, or 18. The fragments consist of or comprise at least 12, preferably at least 24, more preferably at least 36, and more preferably at least 96 contiguous nucleotides of any one of SEQ ID NOs:1, 3, 5, 7, 9, and 18. When the fragments are flanked by other nucleic acid sequences, the total length of the combined nucleic acid sequence is less than 10 15 kb, preferably less than 10 kb or less than 5kb, more preferably less than 2 kb, and in some cases, preferably less than 500 bases. Preferred p53 nucleic acid fragments comprise regulatory elements that may reside in the 5' UTR and/or encode one or more of the following domains: an activation domain, a DNA binding domain, a linker domain, an oligomerization domain, and a basic regulatory domain. The approximate locations of these 15 regions in SEQ ID Nos 1, 3, and 5, and in the corresponding amino acid sequences of SEQ ID Nos 2, 4, and 6, 8, are provided in Table 1.

TABLE 1

| <b>Insect Genus</b>            | <b>SEQ ID NOs</b>          |                            |                            |
|--------------------------------|----------------------------|----------------------------|----------------------------|
|                                | <b>1/2</b>                 | <b>3/4</b>                 | <b>5/6</b>                 |
| <b>5' UTR</b>                  | na 1-111                   | na 1-120                   | na 1-93                    |
| <b>Activation Domain</b>       | na 112-257<br>aa 1-48      | na 121-300<br>aa 1-60      | na 94-277<br>aa 1-60       |
| <b>DNA Binding Domain</b>      | na 366-954<br>aa 85-280    | na 321-936<br>aa 67-271    | na 280-892<br>aa 62-265    |
| <b>Linker Domain</b>           | na 999-1056<br>aa 296-314  | na 937-999<br>aa 272-292   | na 893-958<br>aa 266-287   |
| <b>Oligomerization Domain</b>  | na 1065-1170<br>aa 318-352 | na 1000-1113<br>aa 293-330 | na 959-1075<br>aa 288-326  |
| <b>Basic Regulatory Domain</b> | na 1179-1269<br>aa 356-385 | na 1114-1182<br>aa 331-353 | na 1076-1147<br>aa 327-350 |

20 Further preferred are fragments of bases 354-495 of SEQ ID NO:7 and bases 315-414 of SEQ ID NO:9 of at least 12, preferably at least 24, more preferably at least 36, and most preferably at least 96 contiguous nucleotides.

The subject nucleic acid sequences may consist solely of any one of SEQ ID NOs:1, 3, 5, 7, 9, or 18, or fragments thereof. Alternatively, the subject nucleic acid sequences and fragments thereof may be joined to other components such as labels, peptides, agents that facilitate transport across cell membranes, hybridization-triggered cleavage agents or intercalating agents. The subject nucleic acid sequences and fragments thereof may also be joined to other nucleic acid sequences (i.e. they may comprise part of larger sequences) and are of synthetic/non-natural sequences and/or are isolated and/or are purified, i.e. unaccompanied by at least some of the material with which it is associated in its natural state. Preferably, the isolated nucleic acids constitute at least about 0.5%, and more preferably at least about 5% by weight of the total nucleic acid present in a given fraction, and are preferably recombinant, meaning that they comprise a non-natural sequence or a natural sequence joined to nucleotide(s) other than that which it is joined to on a natural chromosome.

Derivative nucleic acid sequences of p53 include sequences that hybridize to the nucleic acid sequence of SEQ ID NOs:1, 3, 5, 7, 9, or 18 under stringency conditions such that the hybridizing derivative nucleic acid is related to the subject nucleic acid by a certain degree of sequence identity. A nucleic acid molecule is "hybridizable" to another nucleic acid molecule, such as a cDNA, genomic DNA, or RNA, when a single stranded form of the nucleic acid molecule can anneal to the other nucleic acid molecule. Stringency of hybridization refers to conditions under which nucleic acids are hybridizable. The degree of stringency can be controlled by temperature, ionic strength, pH, and the presence of denaturing agents such as formamide during hybridization and washing. As used herein, the term "stringent hybridization conditions" are those normally used by one of skill in the art to establish at least about a 90% sequence identity between complementary pieces of DNA or DNA and RNA. "Moderately stringent hybridization conditions" are used to find derivatives having at least about a 70% sequence identity. Finally, "low-stringency hybridization conditions" are used to isolate derivative nucleic acid molecules that share at least about 50% sequence identity with the subject nucleic acid sequence.

The ultimate hybridization stringency reflects both the actual hybridization conditions as well as the washing conditions following the hybridization, and it is well known in the art how to vary the conditions to obtain the desired result. Conditions routinely used are set out in readily available procedure texts (e.g., Current Protocol in Molecular Biology, Vol. 1, Chap. 2.10, John Wiley & Sons, Publishers (1994); Sambrook *et al.*, Molecular Cloning, Cold Spring Harbor (1989)). A preferred derivative nucleic acid is

capable of hybridizing to any one of SEQ ID NOs:1, 3, 5, 7, 9, or 18 under stringent hybridization conditions that comprise: prehybridization of filters containing nucleic acid for 8 hours to overnight at 65° C in a solution comprising 6X single strength citrate (SSC) (1X SSC is 0.15 M NaCl, 0.015 M Na citrate; pH 7.0), 5X Denhardt's solution, 0.05% sodium pyrophosphate and 100 µg/ml herring sperm DNA; hybridization for 18-20 hours at 65° C in a solution containing 6X SSC, 1X Denhardt's solution, 100 µg/ml yeast tRNA and 0.05% sodium pyrophosphate; and washing of filters at 65° C for 1 h in a solution containing 0.2X SSC and 0.1% SDS (sodium dodecyl sulfate).

Derivative nucleic acid sequences that have at least about 70% sequence identity 10 with any one of SEQ ID NOs:1, 3, 5, 7, 9, and 18 are capable of hybridizing to any one of SEQ ID NO:1, 3, 5, 7, 9, and 18 under moderately stringent conditions that comprise: pretreatment of filters containing nucleic acid for 6 h at 40° C in a solution containing 35% formamide, 5X SSC, 50 mM Tris-HCl (pH 7.5), 5 mM EDTA, 0.1% PVP, 0.1% Ficoll, 1% BSA, and 500 µg/ml denatured salmon sperm DNA; hybridization for 18-20 h at 40° C in a 15 solution containing 35% formamide, 5X SSC, 50 mM Tris-HCl (pH 7.5), 5 mM EDTA, 0.02% PVP, 0.02% Ficoll, 0.2% BSA, 100 µg/ml salmon sperm DNA, and 10% (wt/vol) dextran sulfate; followed by washing twice for 1 hour at 55° C in a solution containing 2X SSC and 0.1% SDS.

Other preferred derivative nucleic acid sequences are capable of hybridizing to any 20 one of SEQ ID NOs:1, 3, 5, 7, 9, and 18 under low stringency conditions that comprise: incubation for 8 hours to overnight at 37° C in a solution comprising 20% formamide, 5 x SSC, 50 mM sodium phosphate (pH 7.6), 5X Denhardt's solution, 10% dextran sulfate, and 20 µg/ml denatured sheared salmon sperm DNA; hybridization in the same buffer for 18 to 20 hours; and washing of filters in 1 x SSC at about 37° C for 1 hour.

As used herein, "percent (%) nucleic acid sequence identity" with respect to a 25 subject sequence, or a specified portion of a subject sequence, is defined as the percentage of nucleotides in the candidate derivative nucleic acid sequence identical with the nucleotides in the subject sequence (or specified portion thereof), after aligning the sequences and introducing gaps, if necessary to achieve the maximum percent sequence identity, as generated by the program WU-BLAST-2.0a19 (Altschul *et al.*, J. Mol. Biol. 30 (1997) 215:403-410; <http://blast.wustl.edu/blast/README.html>; hereinafter referred to generally as "BLAST") with all the search parameters set to default values. The HSP S and HSP S2 parameters are dynamic values and are established by the program itself depending upon the composition of the particular sequence and composition of the particular database

against which the sequence of interest is being searched. A percent (%) nucleic acid sequence identity value is determined by the number of matching identical nucleotides divided by the sequence length for which the percent identity is being reported.

Derivative p53 nucleic acid sequences usually have at least 50% sequence identity,  
5 preferably at least 60%, 70%, or 80% sequence identity, more preferably at least 85% sequence identity, still more preferably at least 90% sequence identity, and most preferably at least 95% sequence identity with any one of SEQ ID NOs:1, 3, 5, 7, 9, or 18, or domain-encoding regions thereof.

In one preferred embodiment, the derivative nucleic acid encodes a polypeptide  
10 comprising a p53 amino acid sequence of any one of SEQ ID NOs:2, 4, 6, 8, or 10, or a fragment or derivative thereof as described further below under the subheading "p53 proteins". A derivative p53 nucleic acid sequence, or fragment thereof, may comprise 100% sequence identity with any one of SEQ ID NOs:1, 3, 5, 7, 9, or 18, but be a derivative thereof in the sense that it has one or more modifications at the base or sugar moiety, or  
15 phosphate backbone. Examples of modifications are well known in the art (Bailey, Ullmann's Encyclopedia of Industrial Chemistry (1998), 6th ed. Wiley and Sons). Such derivatives may be used to provide modified stability or any other desired property.

Another type of derivative of the subject nucleic acid sequences includes corresponding humanized sequences. A humanized nucleic acid sequence is one in which  
20 one or more codons has been substituted with a codon that is more commonly used in human genes. Preferably, a sufficient number of codons have been substituted such that a higher level expression is achieved in mammalian cells than what would otherwise be achieved without the substitutions. The following list shows, for each amino acid, the calculated codon frequency (number in parentheses) in humans genes for 1000 codons  
25 (Wada *et al.*, Nucleic Acids Research (1990) 18(Suppl.):2367-2411):

Human codon frequency per 1000 codons:

|      |                                                                      |
|------|----------------------------------------------------------------------|
| ARG: | CGA (5.4), CGC (11.3), CGG (10.4), CGU (4.7), AGA (9.9), AGG (11.1)  |
| LEU: | CUA (6.2), CUC (19.9), CUG (42.5), CUU (10.7), UUA (5.3), UUG (11.0) |
| SER: | UCA (9.3), UCC (17.7), UCG (4.2), UCU (13.2), AGC (18.7), AGU (9.4)  |
| THR: | ACA (14.4), ACC (23.0), ACG (6.7), ACU (12.7)                        |
| PRO: | CCA (14.6), CCC (20.0), CCG (6.6), CCU (15.5)                        |
| ALA: | GCA (14.0), GCC (29.1), GCG (7.2), GCU (19.6)                        |
| GLY: | GGA (17.1), GGC (25.4), GGG (17.3), GGU (11.2)                       |
| VAL: | GUU (10.4), GUA (5.9), GUC (16.3), GUG (30.9)                        |
| LYS: | AAA (22.2), AAG (34.9)                                               |
| ASN: | AAC (22.6), AAU (16.6)                                               |
| GLN: | CAA (11.1), CAG (33.6)                                               |

HIS: CAC (14.2), CAU (9.3)  
GLU: GAA (26.8), GAG (41.4)  
ASP: GAC (29.0), GAU (21.7)  
TYR: UAC (18.8), UAU (12.5)  
5 CYS: UGC (14.5), UGU (9.9)  
PHE: UUU (22.6), UUC (15.8)  
ILE: AUA (5.8), AUC (24.3), AUU (14.9)  
MET: AUG (22.3)  
TRP: UGG (13.8)  
10 TER: UAA (0.7), AUG (0.5), UGA (1.2)

Thus, a p53 nucleic acid sequence in which the glutamic acid codon, GAA has been replaced with the codon GAG, which is more commonly used in human genes, is an example of a humanized p53 nucleic acid sequence. A detailed discussion of the 15 humanization of nucleic acid sequences is provided in U.S. Pat. No. 5,874,304 to Zolotukhin *et al.* Similarly, other nucleic acid derivatives can be generated with codon usage optimized for expression in other organisms, such as yeasts, bacteria, and plants, where it is desired to engineer the expression of p53 proteins by using specific codons chosen according to the preferred codons used in highly expressed genes in each organism.  
20 More specific embodiments of preferred p53 proteins, fragments, and derivatives are discussed further below in connection under the subheading "p53 proteins".

Nucleic acid encoding the amino acid sequence of any of SEQ ID NOs:2, 4, 6, 8, and 10, or fragment or derivative thereof, may be obtained from an appropriate cDNA library prepared from any eukaryotic species that encodes p53 proteins such as vertebrates, 25 preferably mammalian (*e.g.* primate, porcine, bovine, feline, equine, and canine species, *etc.*) and invertebrates, such as arthropods, particularly insects species (preferably *Drosophila*, *Tribolium*, *Leptinotarsa*, and *Heliothis*), *acarids*, *crustacea*, *molluscs*, *nematodes*, and other worms. An expression library can be constructed using known methods. For example, mRNA can be isolated to make cDNA which is ligated into a 30 suitable expression vector for expression in a host cell into which it is introduced. Various screening assays can then be used to select for the gene or gene product (*e.g.* oligonucleotides of at least about 20 to 80 bases designed to identify the gene of interest, or labeled antibodies that specifically bind to the gene product). The gene and/or gene product can then be recovered from the host cell using known techniques.

35 Polymerase chain reaction (PCR) can also be used to isolate nucleic acids of the p53 genes where oligonucleotide primers representing fragmentary sequences of interest amplify RNA or DNA sequences from a source such as a genomic or cDNA library (as

described by Sambrook *et al.*, *supra*). Additionally, degenerate primers for amplifying homologs from any species of interest may be used. Once a PCR product of appropriate size and sequence is obtained, it may be cloned and sequenced by standard techniques, and utilized as a probe to isolate a complete cDNA or genomic clone.

5 Fragmentary sequences of p53 nucleic acids and derivatives may be synthesized by known methods. For example, oligonucleotides may be synthesized using an automated DNA synthesizer available from commercial suppliers (*e.g.* Biosearch, Novato, CA; Perkin-Elmer Applied Biosystems, Foster City, CA). Antisense RNA sequences can be produced intracellularly by transcription from an exogenous sequence, *e.g.* from vectors that contain  
10 antisense p53 nucleic acid sequences. Newly generated sequences may be identified and isolated using standard methods.

An isolated p53 nucleic acid sequence can be inserted into any appropriate cloning vector, for example bacteriophages such as lambda derivatives, or plasmids such as PBR322, pUC plasmid derivatives and the Bluescript vector (Stratagene, San Diego, CA).  
15 Recombinant molecules can be introduced into host cells via transformation, transfection, infection, electroporation, *etc.*, or into a transgenic animal such as a fly. The transformed cells can be cultured to generate large quantities of the p53 nucleic acid. Suitable methods for isolating and producing the subject nucleic acid sequences are well-known in the art (Sambrook *et al.*, *supra*; DNA Cloning: A Practical Approach, Vol. 1, 2, 3, 4, (1995)  
20 Glover, ed., MRL Press, Ltd., Oxford, U.K.).

The nucleotide sequence encoding a p53 protein or fragment or derivative thereof, can be inserted into any appropriate expression vector for the transcription and translation of the inserted protein-coding sequence. Alternatively, the necessary transcriptional and translational signals can be supplied by the native p53 gene and/or its flanking regions. A  
25 variety of host-vector systems may be utilized to express the protein-coding sequence such as mammalian cell systems infected with virus (*e.g.* vaccinia virus, adenovirus, *etc.*); insect cell systems infected with virus (*e.g.* baculovirus); microorganisms such as yeast containing yeast vectors, or bacteria transformed with bacteriophage, DNA, plasmid DNA, or cosmid DNA. If expression in plants is desired, a variety of transformation constructs, vectors and  
30 methods are known in the art (see U.S. Pat. No. 6,002,068 for review). Expression of a p53 protein may be controlled by a suitable promoter/enhancer element. In addition, a host cell strain may be selected which modulates the expression of the inserted sequences, or modifies and processes the gene product in the specific fashion desired

To detect expression of the p53 gene product, the expression vector can comprise a promoter operably linked to a p53 gene nucleic acid, one or more origins of replication, and, one or more selectable markers (*e.g.* thymidine kinase activity, resistance to antibiotics, *etc.*). Alternatively, recombinant expression vectors can be identified by assaying for the 5 expression of the p53 gene product based on the physical or functional properties of the p53 protein in *in vitro* assay systems (*e.g.* immunoassays or cell cycle assays). The p53 protein, fragment, or derivative may be optionally expressed as a fusion, or chimeric protein product as described above.

Once a recombinant that expresses the p53 gene sequence is identified, the gene 10 product can be isolated and purified using standard methods (*e.g.* ion exchange, affinity, and gel exclusion chromatography; centrifugation; differential solubility; electrophoresis). The amino acid sequence of the protein can be deduced from the nucleotide sequence of the chimeric gene contained in the recombinant and can thus be synthesized by standard 15 chemical methods (Hunkapiller *et al.*, *Nature* (1984) 310:105-111). Alternatively, native p53 proteins can be purified from natural sources, by standard methods (*e.g.* immunoaffinity purification).

### p33 and Rb Nucleic Acids

The invention also provides nucleic acid sequences for *Drosophila* p33 (SEQ ID 20 NO:19), and Rb (SEQ ID NO:21) tumor suppressors. Derivatives and fragments of these sequences can be prepared as described above for the p53 sequences. Preferred fragments and derivatives comprise the same number of contiguous nucleotides or same degrees of percent identity as described above for p53 nucleic acid sequences. The disclosure below regarding various uses of p53 tumor suppressor nucleic acids and proteins (*e.g.* transgenic 25 animals, tumor suppressor assays, *etc.*) also applies to the p33 and Rb tumor suppressor sequences disclosed herein.

### p53 Proteins

The CLUSTALW program (Thompson, *et al.*, *Nucleic Acids Research* (1994) 30 22(22):4673-4680) was used to align the insect p53 proteins described herein with p53 proteins from human (Zakut-Houri *et al.*, *EMBO J.* (1985) 4:1251-1255; GenBank gi:129369), *Xenopus* (Sousi *et al.*, *Oncogene* (1987) 1:71-78; GenBank gi:129374), and squid (GenBank gi:1244762). The alignment generated is shown in Figure 1 and reveals a number of features in the insect p53 proteins that are characteristic of the previously-

identified p53 proteins. With respect to general areas of structural similarity, the DMp53, CPBp53, and TRIB-Ap53 proteins can be roughly divided into three regions: a central region which exhibits a high degree of sequence homology with other known p53 family proteins and which roughly corresponds to the DNA binding domain of this protein family  
5 (Cho *et al.*, Science (1994) 265:346-355), and flanking N-terminal and C-terminal regions which exhibit significantly less homology but which correspond in overall size to other p53 family proteins. The fragmentary polypeptide sequences encoded by the TRIB-Bp53 and HELIOp53 cDNAs are shown by the multiple sequence alignment to be derived from the central region – the conserved DNA-binding domain. Significantly, the protein sequence  
10 alignment allowed the assignment of the domains in the DMp53, CPBp53, and TRIB-A p53 proteins listed in Table 1 above, based on sequence homology with previously characterized domains of human p53 (Sousi and May, J. Mol Biol (1996) 260:623-637; Levine, *supra*; Prives, Cell (1998) 95:5-8).

Importantly, the most conserved central regions of the DMp53, CPBp53, and TRIB-  
15 A p53 proteins correspond almost precisely to the known functional boundaries of the DNA binding domain of human p53, indicating that these proteins are likely to exhibit similar DNA binding properties to those of human p53. A detailed examination of the conserved residues in this domain further emphasizes the likely structural and functional similarities between human p53 and the insect p53 proteins. First, residues of the human p53 known to  
20 be involved in direct DNA contacts (K120, S241, R248, R273, C277, and R280) correspond to identical or similar residues in the DMp53 protein (K113, S230, R234, K259, C263, and R266), and identical residues in the CPBp53 protein (K92, S216, R224, R249, C253, and R256), and the TRIB-Ap53 protein (K88, S213, R220, R245, C249, and R252). Also, with regard to the overall folding of this domain, it was notable that four key residues that  
25 coordinate the zinc ligand in the DNA binding domain of human p53 (C176, H179, C238, and C242) are precisely conserved in the DMp53 protein (C156, H159, C227, and C231), the CPBp53 protein (C147, H150, C213, and C217), and the TRIB-A p53 protein (C144, H147, C210, C214). Furthermore, it was striking that the mutational hot spots in human p53 most frequently altered in cancer (R175, G245, R248, R249, R273, and R282), are  
30 either identical or conserved amino acid residues in the corresponding positions of the DMp53 protein (R155, G233, R234, K235, K259, and R268), the CPBp53 protein (R146, G221, R224, R225, R249, and K258), and the TRIB-Ap53 protein (R143, G217, R220, R221, R245, and K254).

Interestingly, the insect p53s also have distinct differences from the Human, *Xenopus*, and squid p53s. Specifically, insect p53s contain a unique amino acid sequence within the DNA recognition domain that has the following sequence: (R or K)(I or V)C(S or T)CPKRD. Specifically, amino acid residues 259 to 267 of DMp53 have the sequence:

5 KICTCPKRD; residues 249 to 257 of CPBp53 have the sequence: RICSCPKR; and residues 245-253 of TRIB-Ap53 have the sequence: RVCSCPKR. This is in distinct contrast to the Human, *Xenopus*, and squid p53s which have the following corresponding sequence: R(I or V)CACPGRD.

Another region of insect p53s that distinctly differs from previously identified p53s lies in the zinc coordination region of the DNA binding domain. The following sequence is conserved within the insect p53s: FXC(K or Q)NSC (where X = any amino acid). Specifically, residues 225-231 of DMp53 have the sequence: FVCQNSC; residues 211-217 of CPBp53 and residues 208-214 of TRIB-Ap53 have the sequence FVCKNSC; and the corresponding residues in Helio-p53, as shown in Figure 1, have the sequence: FSCKNSC.

15 In contrast, the corresponding sequence in Human and *Xenopus* p53 is YMCNSSC, and in squid it is FMCLGSC.

The high degree of structural homology in the presumptive DNA binding domain of the insect p53 proteins has important implications for engineering derivative (e.g. mutant) forms of these p53 genes for tests of function *in vitro* and *in vivo*, and for genetic dissection or manipulation of the p53 pathway in transgenic insects or insect cell lines. Dominant negative forms of human p53 have been generated by creating altered proteins which have a defective DNA binding domain, but which retain a functional oligomerization domain (Brachman *et al.*, Proc Natl Acad Sci USA (1996) 93:4091-4095). Such dominant negative mutant forms are extremely useful for determining the effects of loss-of-function of p53 in assays of interest. Thus, mutations in highly conserved positions within the DNA binding domain of the insect p53 proteins, which correspond to residues known to be important for the structure and function of human p53 (such as R175H, H179N, and R280T of human p53), are likely to result in dominant negative forms of insect p53 proteins. For example, specific mutations in the DMp53 protein to create dominant negative mutant forms of the protein include R155H, H159N, and R266T and for the TRIB-A p53 protein include R143H, H147N, and R252T.

Although other domains of the insect p53 proteins, aside from the DNA binding domain, exhibit significantly less homology compared to the known p53 family proteins, the sequence alignment provides important information about their structure and potential

function. Notably, just as in the human p53 protein, the C-terminal 20-25 amino acids of the protein comprise a putative region that extends beyond the oligomerization domain, suggesting an analogous function for this region of the insect p53 proteins in regulating activity of the protein. Since deletion of the C-terminal regulatory domain in human p53

5 has been shown to generate constitutively activated forms of the protein (Hupp and Lane, *Curr. Biol.* (1994) 4:865-875), it is expected that removal of most or all of the corresponding regulatory domain from the insect p53 proteins will generate an activated protein form. Thus preferred truncated forms of the insect p53 proteins lack at least 10 C-terminal amino acids, more preferably at least 15 amino acids, and most preferably at least

10 20 C-terminal amino acids. For example, a preferred truncated version of DMp53 comprises amino acid residues 1-376, more preferably residues 1-371, and most preferably residues 1-366 of SEQ ID NO:2. Such constitutively activated mutant forms of the protein are very useful for tests of protein function using *in vivo* and *in vitro* assays, as well as for genetic analysis.

15 The oligomerization domain of the insect p53 proteins exhibit very limited skeletal sequence homology with other p53 family proteins, although the length of this region is similar to that of other p53 family proteins. The extent of sequence divergence in this region of the insect proteins raises the possibility that the insect p53 protein may be unable to form hetero-oligomers with p53 proteins from vertebrates or squid. And, although the

20 linker domain located between the DNA binding and oligomerization domains also exhibits relatively little sequence conservation, this region of any of the DMp53, CPBp53, and TRIB-A p53 proteins contains predicted nuclear localization signals similar to those identified in human p53 (Shaulsky *et al.*, *Mol Cell Biol* (1990) 10:6565-6577).

The activation domain at the N-terminus of the insect p53 proteins also exhibits

25 little sequence identity with other p53 family proteins, although the size of this region is roughly the same as that of human p53. Nonetheless, an important feature of this domain is the relative concentration of acidic residues in the insect p53 proteins. Consequently, it is likely that this N-terminal domain of any of the DMp53, CPBp53, and TRIB-Ap53 proteins will similarly exert the functional activity of a transcriptional activation domain to that of

30 the human p53 domain (Thut *et al.*, *Science* (1995) 267:100-104). Interestingly, the DMp53, CPBp53 and TRIB-A p53 proteins do not appear to possess a highly conserved sequence motif, FxxLWxxL, found at the N-terminus of vertebrate and squid p53 family proteins. In the human p53 gene, these conserved residues in this motif participate in a

specific interaction between human p53 proteins and mdm2 (Kussie *et al.*, *Science* (1996) 274:948-953).

It is important to note that, although there is no sequence similarity between the insect p53s and other p53 family members in the C- and N-termini, these regions of p53  
5 contain secondary structure characteristic of p53-related proteins. For example, the human p53 binds DNA as a homo-tetramer and self-association is mediated by a  $\beta$ -sheet and amphipathic  $\alpha$ -helix located in the C-terminus of the protein. A similar  $\beta$ -sheet-turn- $\alpha$ -helix is predicted in the C-terminus of DMp53. Further, the N-terminus of the human p53 is a region that includes a transactivation domain and residues critical for binding to the mdm-2  
10 protein. The N-terminus of the DMp53 also include acidic amino acids and likely functions as a transactivation domain.

p53 proteins of the invention comprise or consist of an amino acid sequence of any one of SEQ ID NOs:2, 4, 6, 8, and 10 or fragments or derivatives thereof. Compositions comprising these proteins may consist essentially of the p53 protein, fragments, or  
15 derivatives, or may comprise additional components (*e.g.* pharmaceutically acceptable carriers or excipients, culture media, *etc.*). p53 protein derivatives typically share a certain degree of sequence identity or sequence similarity with any one of SEQ ID NOs:2, 4, 6, 8, and 10 or fragments thereof. As used herein, "percent (%) amino acid sequence identity" with respect to a subject sequence, or a specified portion of a subject sequence, is defined as  
20 the percentage of amino acids in the candidate derivative amino acid sequence identical with the amino acid in the subject sequence (or specified portion thereof), after aligning the sequences and introducing gaps, if necessary to achieve the maximum percent sequence identity, as generated by BLAST (Altschul *et al.*, *supra*) using the same parameters discussed above for derivative nucleic acid sequences. A % amino acid sequence identity  
25 value is determined by the number of matching identical amino acids divided by the sequence length for which the percent identity is being reported. "Percent (%) amino acid sequence similarity" is determined by doing the same calculation as for determining % amino acid sequence identity, but including conservative amino acid substitutions in addition to identical amino acids in the computation. A conservative amino acid  
30 substitution is one in which an amino acid is substituted for another amino acid having similar properties such that the folding or activity of the protein is not significantly affected. Aromatic amino acids that can be substituted for each other are phenylalanine, tryptophan, and tyrosine; interchangeable hydrophobic amino acids are leucine, isoleucine, methionine, and valine; interchangeable polar amino acids are glutamine and asparagine;

interchangeable basic amino acids arginine, lysine and histidine; interchangeable acidic amino acids aspartic acid and glutamic acid; and interchangeable small amino acids alanine, serine, cystine, threonine, and glycine.

In one preferred embodiment, a p53 protein derivative shares at least 50% sequence identity or similarity, preferably at least 60%, 70%, or 80% sequence identity or similarity, more preferably at least 85% sequence similarity or identity, still more preferably at least 90% sequence similarity or identity, and most preferably at least 95% sequence identity or similarity with a contiguous stretch of at least 10 amino acids, preferably at least 25 amino acids, more preferably at least 40 amino acids, still more preferably at least 50 amino acids, 10 more preferably at least 100 amino acids, and in some cases, the entire length of any one of SEQ ID NOS:2, 4, 6, 8, or 10. Further preferred derivatives share these % sequence identities with the domains of SEQ ID NOS 2, 4 and 6 listed in Table I above. Additional preferred derivatives comprise a sequence that shares 100% similarity with any contiguous stretch of at least 10 amino acids, preferably at least 12, more preferably at least 15, and 15 most preferably at least 20 amino acids of any of SEQ ID NOS 2, 4, 6, 8, and 10, and preferably functional domains thereof. Further preferred fragments comprise at least 7 contiguous amino acids, preferably at least 9, more preferably at least 12, and most preferably at least 17 contiguous amino acids of any of SEQ ID NOS 2, 4, 6, 8, and 10, and preferably functional domains thereof.

20 Other preferred p53 polypeptides, fragments or derivatives consist of or comprise a sequence selected from the group consisting of RICSCP KRD, KICSCP KRD, RVCSCP KRD, KVCSCP KRD, RICTCP KRD, KICTCP KRD, RVCTCP KRD, and KVCTCP KRD (i.e. sequences of the formula: (R or K)(I or V)C(S or T)CPKRD). Additional preferred p53 polypeptides, fragments or derivatives, consist of or comprise a 25 sequence selected from the group consisting of FXCKNSC and FXCQNSC, where X = any amino acid.

The fragment or derivative of any of the p53 proteins is preferably "functionally active" meaning that the p53 protein derivative or fragment exhibits one or more functional activities associated with a full-length, wild-type p53 protein comprising the amino acid sequence of any of SEQ ID NOS:2, 4, 6, 8, or 10. As one example, a fragment or derivative may have antigenicity such that it can be used in immunoassays, for immunization, for inhibition of p53 activity, etc, as discussed further below regarding generation of antibodies to p53 proteins. Preferably, a functionally active p53 fragment or derivative is one that displays one or more biological activities associated with p53 proteins such as regulation of

the cell cycle, or transcription control. The functional activity of p53 proteins, derivatives and fragments can be assayed by various methods known to one skilled in the art (Current Protocols in Protein Science (1998) Coligan *et al.*, eds., John Wiley & Sons, Inc., Somerset, New Jersey). Example 12 below describes a variety of suitable assays for assessing p53 function.

P 53 derivatives can be produced by various methods known in the art. The manipulations which result in their production can occur at the gene or protein level. For example, a cloned p53 gene sequence can be cleaved at appropriate sites with restriction endonuclease(s) (Wells *et al.*, Philos. Trans. R. Soc. London SerA (1986) 317:415), followed by further enzymatic modification if desired, isolated, and ligated *in vitro*, and expressed to produce the desired derivative. Alternatively, a p53 gene can be mutated *in vitro* or *in vivo*, to create and/or destroy translation, initiation, and/or termination sequences, or to create variations in coding regions and/or to form new restriction endonuclease sites or destroy preexisting ones, to facilitate further *in vitro* modification. A variety of mutagenesis techniques are known in the art such as chemical mutagenesis, *in vitro* site-directed mutagenesis (Carter *et al.*, Nucl. Acids Res. (1986) 13:4331), use of TAB<sup>®</sup> linkers (available from Pharmacia and Upjohn, Kalamazoo, MI), *etc.*

At the protein level, manipulations include post translational modification, *e.g.* glycosylation, acetylation, phosphorylation, amidation, derivatization by known protecting/blocking groups, proteolytic cleavage, linkage to an antibody molecule or other cellular ligand, *etc.* Any of numerous chemical modifications may be carried out by known technique (*e.g.* specific chemical cleavage by cyanogen bromide, trypsin, chymotrypsin, papain, V8 protease, NaBH<sub>4</sub>, acetylation, formylation, oxidation, reduction, metabolic synthesis in the presence of tunicamycin, *etc.*). Derivative proteins can also be chemically synthesized by use of a peptide synthesizer, for example to introduce nonclassical amino acids or chemical amino acid analogs as substitutions or additions into the p53 protein sequence.

Chimeric or fusion proteins can be made comprising a p53 protein or fragment thereof (preferably comprising one or more structural or functional domains of the p53 protein) joined at its N- or C-terminus via a peptide bond to an amino acid sequence of a different protein. A chimeric product can be made by ligating the appropriate nucleic acid sequences encoding the desired amino acid sequences to each other in the proper coding frame using standard methods and expressing the chimeric product. A chimeric product may also be made by protein synthetic techniques, *e.g.* by use of a peptide synthesizer.

### p33 and Rb Proteins

The invention also provides amino acid sequences for *Drosophila* p33 (SEQ ID NO:20), and Rb (SEQ ID NO:22) tumor suppressors. Derivatives and fragments of these 5 sequences can be prepared as described above for the p53 protein sequences. Preferred fragments and derivatives comprise the same number of contiguous amino acids or same degrees of percent identity or similarity as described above for p53 amino acid sequences.

### p53 Gene Regulatory Elements

10 p53 gene regulatory DNA elements, such as enhancers or promoters that reside within the 5' UTRs of SEQ ID NOs 1, 3, and 5, as shown in Table I above, or within nucleotides 1-1225 of SEQ ID NO:18, can be used to identify tissues, cells, genes and factors that specifically control p53 protein production. Preferably at least 20, more preferably at least 25, and most preferably at least 50 contiguous nucleotides within the 5' 15 UTRs are used. Analyzing components that are specific to p53 protein function can lead to an understanding of how to manipulate these regulatory processes, for either pesticide or therapeutic applications, as well as an understanding of how to diagnose dysfunction in these processes.

Gene fusions with the p53 regulatory elements can be made. For compact genes that 20 have relatively few and small intervening sequences, such as those described herein for *Drosophila*, it is typically the case that the regulatory elements that control spatial and temporal expression patterns are found in the DNA immediately upstream of the coding region, extending to the nearest neighboring gene. Regulatory regions can be used to construct gene fusions where the regulatory DNAs are operably fused to a coding region for 25 a reporter protein whose expression is easily detected, and these constructs are introduced as transgenes into the animal of choice. An entire regulatory DNA region can be used, or the regulatory region can be divided into smaller segments to identify sub-elements that might be specific for controlling expression a given cell type or stage of development. One suitable method to decipher regions containing regulatory sequences is by an *in vitro* CAT 30 assay (Mercer. Crit. Rev. Euk. Gene Exp. (1992) 2:251-263; Sambrook *et al.*, *supra*; and Gorman *et al.*. Mol. Cell. Biol. (1992) 2:1044-1051). Additional reporter proteins that can be used for construction of these gene fusions include *E. coli* beta-galactosidase and green fluorescent protein (GFP). These can be detected readily *in situ*, and thus are useful for histological studies and can be used to sort cells that express p53 proteins (O'Kane and

Gehring PNAS (1987) 84(24):9123-9127; Chalfie *et al.*, Science (1994) 263:802-805; and Cumberledge and Krasnow (1994) Methods in Cell Biology 44:143-159). Recombinase proteins, such as FLP or cre, can be used in controlling gene expression through site-specific recombination (Golic and Lindquist (1989) Cell 59(3):499-509; White *et al.* 5 Science (1996) 271:805-807). Toxic proteins such as the reaper and hid cell death proteins, are useful to specifically ablate cells that normally express p53 proteins in order to assess the physiological function of the cells (Kingston. In Current Protocols in Molecular Biology (1998) Ausubel *et al.*. John Wiley & Sons, Inc. sections 12.0.3-12.10) or any other protein where it is desired to examine the function this particular protein specifically in cells that 10 synthesize p53 proteins.

Alternatively, a binary reporter system can be used, similar to that described further below, where the p53 regulatory element is operably fused to the coding region of an exogenous transcriptional activator protein, such as the GAL4 or tTA activators described below, to create a p53 regulatory element "driver gene". For the other half of the binary 15 system the exogenous activator controls a separate "target gene" containing a coding region of a reporter protein operably fused to a cognate regulatory element for the exogenous activator protein, such as UAS<sub>G</sub> or a tTA-response element, respectively. An advantage of a binary system is that a single driver gene construct can be used to activate transcription from preconstructed target genes encoding different reporter proteins, each with its own 20 uses as delineated above.

p53 regulatory element-reporter gene fusions are also useful for tests of genetic interactions, where the objective is to identify those genes that have a specific role in controlling the expression of p53 genes, or promoting the growth and differentiation of the tissues that expresses the p53 protein. p53 gene regulatory DNA elements are also useful in 25 protein-DNA binding assays to identify gene regulatory proteins that control the expression of p53 genes. The gene regulatory proteins can be detected using a variety of methods that probe specific protein-DNA interactions well known to those skilled in the art (Kingston, *supra*) including *in vivo* footprinting assays based on protection of DNA sequences from chemical and enzymatic modification within living or permeabilized cells; and *in vitro* 30 footprinting assays based on protection of DNA sequences from chemical or enzymatic modification using protein extracts, nitrocellulose filter-binding assays and gel electrophoresis mobility shift assays using radioactively labeled regulatory DNA elements mixed with protein extracts. Candidate p53 gene regulatory proteins can be purified using a combination of conventional and DNA-affinity purification techniques. Molecular cloning

strategies can also be used to identify proteins that specifically bind p53 gene regulatory DNA elements. For example, a *Drosophila* cDNA library in an expression vector, can be screened for cDNAs that encode p53 gene regulatory element DNA-binding activity. Similarly, the yeast "one-hybrid" system can be used (Li and Herskowitz, *Science* (1993) 262:1870-1874; Luo *et al.*, *Biotechniques* (1996) 20(4):564-568; Vidal *et al.*, *PNAS* (1996) 93(19):10315-10320).

#### Assays for tumor suppressor genes

The p53 tumor suppressor gene encodes a transcription factor implicated in regulation of cell proliferation, control of the cell cycle, and induction of apoptosis. Various experimental methods may be used to assess the role of the insect p53 genes in each of these areas.

##### **Transcription activity assays**

Due to its acidic region, wild type p53 binds both specifically and non-specifically to DNA in order to mediate its function (Zambetti and Levine, *supra*). Transcriptional regulation by the p53 protein or its fragments may be examined by any method known in the art. An electrophoretic mobility shift assay can be used to characterize DNA sequences to which p53 binds, and thus can assist in the identification of genes regulated by p53. Briefly, cells are grown and transfected with various amounts of wild type or mutated transcription factor of interest (in this case, p53), harvested 48 hr after transfection, and lysed to prepare nuclear extracts. Preparations of *Drosophila* nuclear extracts for use in mobility shift assays may be done as described in Dignam *et al.*, *Nucleic Acids Res.* (1983) 11:1475-1489. Additionally, complementary, single-stranded oligonucleotides corresponding to target sequences for binding are synthesized and self-annealed to a final concentration of 10-15 ng/ $\mu$ l. Double stranded DNA is verified by gel electrophoretic analysis (*e.g.*, on a 7% polyacrylamide gel, by methods known in the art), and end-labeled with 20  $\mu$ Ci [32P]  $\gamma$ -dATP. The nuclear extracts are mixed with the double stranded target sequences under conditions conducive for binding and the results are analyzed by polyacrylamide gel electrophoresis.

Another suitable method to determine DNA sequences to which p53 binds is by DNA footprinting (Schmitz *et al.*, *Nucleic Acids Research* (1978) 5:3157-3170).

##### **Apoptosis assays**

A variety of methods may be used to examine apoptosis. One method is the terminal deoxynucleotidyl transferase-mediated digoxigenin-11-dUTP nick end labeling

(TUNEL) assay which measures the nuclear DNA fragmentation characteristic of apoptosis (Lazebnik *et al.*, Nature (1994) 371:346-347; White *et al.*, Science (1994) 264:677-683).

Additionally, commercial kits can be used for detection of apoptosis (ApoAlert® available from Clontech (Palo Alto, CA).

5 Apoptosis may also be assayed by a variety of staining methods. Acridine orange can be used to detect apoptosis in cultured cells (Lucas *et al.*, Blood (1998) 15:4730-41) and in intact *Drosophila* tissues, which can also be stained with Nile Blue (Abrams *et al.*, Development (1993) 117:29-43). Another assay that can be used to detect DNA laddering employs ethidium bromide staining and electrophoresis of DNA on an agarose gel (Civielli 10 *et al.*, Int. J. Cancer (1995) 27:673-679; Young, J. Biol. Chem. (1998) 273:25198-25202).

#### **Proliferation and cell cycle assays**

Proliferating cells may be identified by bromodeoxyuridine (BRDU) incorporation into cells undergoing DNA synthesis and detection by an anti-BRDU antibody (Hoshino *et al.*, Int. J. Cancer (1986) 38:369; Campana *et al.*, J. Immunol. Meth. (1988) 107:79). This 15 assay can be used to reproducibly identify S-phase cells in *Drosophila* embryos (Edgar and O'Farrell, Cell (1990) 62:469-480) and imaginal discs (Secombe *et al.*, Genetics (1998) 149:1867-1882). S-phase DNA syntheses can also be quantified by measuring [<sup>3</sup>H]-thymidine incorporation using a scintillation counter (Chen, Oncogene (1996) 13:1395-403; Jeoung, J. Biol. Chem. (1995) 270:18367-73). Cell proliferation may be measured by 20 counting samples of a cell population over time, for example using a hemacytometer and Trypan-blue staining.

The DNA content and/or mitotic index of the cells may be measured based on the DNA ploidy value of the cell using a variety of methods known in the art such as a propidium iodide assay (Turner *et al.*, Prostate (1998) 34:175-81) or Feulgen staining using 25 a computerized microdensitometry staining system (Bacus, Am. J. Pathol. (1989) 135:783-92).

The effect of p53 overexpression or loss-of-function on *Drosophila* cell proliferation can be assayed *in vivo* using an assay in which clones of cells with altered gene expression are generated in the developing wing disc of *Drosophila* (Neufeld *et al.*, Cell (1998) 30 93:1183-93). The clones coexpress GFP, which allows the size and DNA content of the mutant and wild-type cells from dissociated discs to be compared by FACS analysis.

#### **Tumor formation and transformation assays**

A variety of *in vivo* and *in vitro* tumor formation assays are known in the art that can be used to assay p53 function. Such assays can be used to detect foci formation (Beenken,

J. Surg. Res. (1992) 52:401-5), *in vitro* transformation (Ginsberg, Oncogene. (1991) 6:669-72), tumor formation in nude mice (Endlich, Int. J. Radiat. Biol. (1993) 64:715-26), tumor formation in *Drosophila* (Tao *et al.*, Nat. Genet. (1999) 21:177-181), and anchorage-independent growth in soft agar (Endlich, *supra*). Loss of indicia of differentiation may be indicate transformation, including loss of differentiation markers, cell rounding, loss of adhesion, loss of polarity, loss of contact inhibition, loss of anchorage dependence, protease release, increased sugar transport, decreased serum requirement, and expression of fetal antigens.

10 **Generation and Genetic Analysis of Animals and Cell Lines with Altered Expression of p53 Gene**

Both genetically modified animal models (i.e. *in vivo* models), such as *C. elegans* and *Drosophila*, and *in vitro* models such as genetically engineered cell lines expressing or mis-expressing p53 genes, are useful for the functional analysis of these proteins. Model systems that display detectable phenotypes, can be used for the identification and characterization of p53 genes or other genes of interest and/or phenotypes associated with the mutation or mis-expression of p53. The term "mis-expression" as used herein encompasses mis-expression due to gene mutations. Thus, a mis-expressed p53 protein may be one having an amino acid sequence that differs from wild-type (i.e. it is a derivative of the normal protein). A mis-expressed p53 protein may also be one in which one or more N- or C-terminal amino acids have been deleted, and thus is a "fragment" of the normal protein. As used herein, "mis-expression" also includes ectopic expression (e.g. by altering the normal spatial or temporal expression), over-expression (e.g. by multiple gene copies), underexpression, non-expression (e.g. by gene knockout or blocking expression that would otherwise normally occur), and further, expression in ectopic tissues.

The *in vivo* and *in vitro* models may be genetically engineered or modified so that they 1) have deletions and/or insertions of a p53 genes, 2) harbor interfering RNA sequences derived from a p53 gene, 3) have had an endogenous p53 gene mutated (e.g. contain deletions, insertions, rearrangements, or point mutations in the p53 gene), and/or 4) contain transgenes for mis-expression of wild-type or mutant forms of a p53 gene. Such genetically modified *in vivo* and *in vitro* models are useful for identification of genes and proteins that are involved in the synthesis, activation, control, etc. of p53, and also downstream effectors of p53 function, genes regulated by p53, etc. The model systems can be used for testing potential pharmaceutical and pesticidal compounds that interact with

p53, for example by administering the compound to the model system using any suitable method (e.g. direct contact, ingestion, injection, etc.) and observing any changes in phenotype, for example defective movement, lethality, etc. Various genetic engineering and expression modification methods which can be used are well-known in the art,

5 including chemical mutagenesis, transposon mutagenesis, antisense RNAi, dsRNAi, and transgene-mediated mis-expression.

#### **Generating Loss-of-function Mutations by Mutagenesis**

Loss-of-function mutations in an insect p53 gene can be generated by any of several mutagenesis methods known in the art (Ashburner. In *Drosophila melanogaster: A Laboratory Manual* (1989), Cold Spring Harbor, NY. Cold Spring Harbor Laboratory Press: pp. 299-418; Fly pushing: The Theory and Practice of *Drosophila melanogaster Genetics* (1997) Cold Spring Harbor Press, Plainview, NY. hereinafter "Fly Pushing"). Techniques for producing mutations in a gene or genome include use of radiation ( e.g., X-ray, UV, or gamma ray); chemicals (e.g., EMS, MMS, ENU, formaldehyde, etc.); and insertional mutagenesis by mobile elements including dysgenesis induced by transposon insertions, or transposon-mediated deletions, for example, male recombination, as described below. Other methods of altering expression of genes include use of transposons (e.g., P element, EP-type "overexpression trap" element, mariner element, *piggyBac* transposon, hermes, minos, sleeping beauty, etc.) to misexpress genes; antisense: double-stranded RNA interference; peptide and RNA aptamers; directed deletions; homologous recombination; dominant negative alleles; and intrabodies.

Transposon insertions lying adjacent to a p53 gene can be used to generate deletions of flanking genomic DNA, which if induced in the germline, are stably propagated in subsequent generations. The utility of this technique in generating deletions has been demonstrated and is well-known in the art. One version of the technique using collections of P element transposon induced recessive lethal mutations (P lethals) is particularly suitable for rapid identification of novel, essential genes in *Drosophila* (Cooley *et al.*, *Science* (1988) 239:1121-1128; Spradling *et al.*, *PNAS* (1995) 92:0824-10830). Since the sequence of the P elements are known, the genomic sequence flanking each transposon insert is determined either by plasmid rescue (Hamilton *et al.*, *PNAS* (1991) 88:2731-2735) or by inverse polymerase chain reaction (Rehm, <http://www.fruitfly.org/methods/>). A more recent version of the transposon insertion technique in male *Drosophila* using P elements is known as P-mediated male recombination (Preston and Engels, *Genetics* (1996) 144:1611-1638).

### Generating Loss-of-function Phenotypes Using RNA-based Methods

p53 genes may be identified and/or characterized by generating loss-of-function phenotypes in animals of interest through RNA-based methods, such as antisense RNA (Schubiger and Edgar, *Methods in Cell Biology* (1994) 44:697-713). One form of the 5 antisense RNA method involves the injection of embryos with an antisense RNA that is partially homologous to the gene of interest (in this case the p53 gene). Another form of the antisense RNA method involves expression of an antisense RNA partially homologous to the gene of interest by operably joining a portion of the gene of interest in the antisense orientation to a powerful promoter that can drive the expression of large quantities of 10 antisense RNA, either generally throughout the animal or in specific tissues. Antisense RNA-generated loss-of-function phenotypes have been reported previously for several *Drosophila* genes including cactus, pecanex, and Krüppel (LaBonne *et al.*, *Dev. Biol.* (1989) 136(1):1-16; Schuh and Jackle, *Genome* (1989) 31(1):422-425; Geisler *et al.*, *Cell* (1992) 71(4):613-621).

15 Loss-of-function phenotypes can also be generated by cosuppression methods (Bingham, *Cell* (1997) 90(3):385-387; Smyth, *Curr. Biol.* (1997) 7(12):793-795; Que and Jorgensen, *Dev. Genet.* (1998) 22(1):100-109). Cosuppression is a phenomenon of reduced gene expression produced by expression or injection of a sense strand RNA corresponding to a partial segment of the gene of interest. Cosuppression effects have been employed 20 extensively in plants and *C. elegans* to generate loss-of-function phenotypes. Cosuppression in *Drosophila* has been shown, where reduced expression of the Adh gene was induced from a white-Adh transgene (Pal-Bhadra *et al.*, *Cell* (1997) 90(3):479-490).

Another method for generating loss-of-function phenotypes is by double-stranded 25 RNA interference (dsRNAi). This method is based on the interfering properties of double-stranded RNA derived from the coding regions of gene, and has proven to be of great utility in genetic studies of *C. elegans* (Fire *et al.*, *Nature* (1998) 391:806-811), and can also be used to generate loss-of-function phenotypes in *Drosophila* (Kennerdell and Carthew, *Cell* (1998) 95:1017-1026; Misquitta and Patterson PNAS (1999) 96:1451-1456).

Complementary sense and antisense RNAs derived from a substantial portion of a gene of 30 interest, such as p53 gene, are synthesized *in vitro*, annealed in an injection buffer, and introduced into animals by injection or other suitable methods such as by feeding, soaking the animals in a buffer containing the RNA, etc. Progeny of the dsRNA treated animals are then inspected for phenotypes of interest (PCT publication no. WO99/32619).

dsRNAi can also be achieved by causing simultaneous expression *in vivo* of both sense and antisense RNA from appropriately positioned promoters operably fused to p53 sequences. Alternatively, the living food of an animal can be engineered to express sense and antisense RNA, and then fed to the animal. For example, *C. elegans* can be fed 5 engineered *E. coli*, *Drosophila* can be fed engineered baker's yeast, and insects such as *Leptinotarsa* and *Heliothis* and other plant-eating animals can be fed transgenic plants engineered to produce the dsRNA.

RNAi has also been successfully used in cultured *Drosophila* cells to inhibit expression of targeted proteins (Dixon lab, University of Michigan, 10 <http://dixonlab.biochem.med.umich.edu/protocols/RNAiExperiments.html>). Thus, cell lines in culture can be manipulated using RNAi both to perturb and study the function of p53 pathway components and to validate the efficacy of therapeutic or pesticidal strategies which involve the manipulation of this pathway. A suitable protocol is described in Example 13.

15 **Generating Loss-of-function Phenotypes Using Peptide and RNA Aptamers**

Another method for generating loss-of-function phenotypes is by the use of peptide aptamers, which are peptides or small polypeptides that act as dominant inhibitors of protein function. Peptide aptamers specifically bind to target proteins, blocking their function ability (Kolonin and Finley, PNAS (1998) 95:14266-14271). Due to the highly 20 selective nature of peptide aptamers, they may be used not only to target a specific protein, but also to target specific functions of a given protein (*e.g.* transcription function). Further, peptide aptamers may be expressed in a controlled fashion by use of promoters which regulate expression in a temporal, spatial or inducible manner. Peptide aptamers act dominantly; therefore, they can be used to analyze proteins for which loss-of-function 25 mutants are not available.

Peptide aptamers that bind with high affinity and specificity to a target protein may be isolated by a variety of techniques known in the art. In one method, they are isolated from random peptide libraries by yeast two-hybrid screens (Xu *et al.*, PNAS (1997) 94:12473-12478). They can also be isolated from phage libraries (Hoogenboom *et al.*, 30 Immunotechnology (1998) 4:1-20) or chemically generated peptides/libraries.

RNA aptamers are specific RNA ligands for proteins, that can specifically inhibit protein function of the gene (Good *et al.*, Gene Therapy (1997) 4:45-54; Ellington. *et al.*, Biotechnol. Annu. Rev. (1995) 1:185-214). *In vitro* selection methods can be used to identify RNA aptamers having a selected specificity (Bell *et al.*, J. Biol. Chem. (1998)

273:14309-14314). It has been demonstrated that RNA aptamers can inhibit protein function in *Drosophila* (Shi *et al.*, Proc. Natl. Acad. Sci USA (1999) 96:10033-10038). Accordingly, RNA aptamers can be used to decrease the expression of p53 protein or derivative thereof, or a protein that interacts with the p53 protein.

5 Transgenic animals can be generated to test peptide or RNA aptamers *in vivo* (Kolonin and Finley, *supra*). For example, transgenic *Drosophila* lines expressing the desired aptamers may be generated by P element mediated transformation (discussed below). The phenotypes of the progeny expressing the aptamers can then be characterized.

#### **Generating Loss of Function Phenotypes Using Intrabodies**

10 Intracellularly expressed antibodies, or intrabodies, are single-chain antibody molecules designed to specifically bind and inactivate target molecules inside cells. Intrabodies have been used in cell assays and in whole organisms such as *Drosophila* (Chen *et al.*, Hum. Gen. Ther. (1994) 5:595-601; Hassanzadeh *et al.*, Febs Lett. (1998) 16(1, 2):75-80 and 81-86). Inducible expression vectors can be constructed with intrabodies that react specifically with p53 protein. These vectors can be introduced into model organisms and studied in the same manner as described above for aptamers.

#### **Transgenesis**

Typically, transgenic animals are created that contain gene fusions of the coding regions of the p53 gene (from either genomic DNA or cDNA) or genes engineered to 20 encode antisense RNAs, cosuppression RNAs, interfering dsRNA, RNA aptamers, peptide aptamers, or intrabodies operably joined to a specific promoter and transcriptional enhancer whose regulation has been well characterized, preferably heterologous promoters/enhancers (i.e. promoters/enhancers that are non-native to the p53 genes being expressed).

Methods are well known for incorporating exogenous nucleic acid sequences into 25 the genome of animals or cultured cells to create transgenic animals or recombinant cell lines. For invertebrate animal models, the most common methods involve the use of transposable elements. There are several suitable transposable elements that can be used to incorporate nucleic acid sequences into the genome of model organisms. Transposable elements are also particularly useful for inserting sequences into a gene of interest so that 30 the encoded protein is not properly expressed, creating a "knock-out" animal having a loss-of-function phenotype. Techniques are well-established for the use of P element in *Drosophila* (Rubin and Spradling, Science (1982) 218:348-53; U.S. Pat. No. 4,670,388). Additionally, transposable elements that function in a variety of species, have been

identified, such as PiggyBac (Thibault *et al.*, Insect Mol Biol (1999) 8(1):119-23), hobo, and hermes.

P elements, or marked P elements, are preferred for the isolation of loss-of-function mutations in *Drosophila* p53 genes because of the precise molecular mapping of these 5 genes, depending on the availability and proximity of preexisting P element insertions for use as a localized transposon source (Hamilton and Zinn, Methods in Cell Biology (1994) 44:81-94; and Wolfner and Goldberg, Methods in Cell Biology (1994) 44:33-80). Typically, modified P elements are used which contain one or more elements that allow 10 detection of animals containing the P element. Most often, marker genes are used that affect the eye color of *Drosophila*, such as derivatives of the *Drosophila white* or *rosy* genes (Rubin and Spradling, *supra*; and Klemenz *et al.*, Nucleic Acids Res. (1987) 15(10):3947-3959). However, in principle, any gene can be used as a marker that causes a reliable and easily scored phenotypic change in transgenic animals. Various other markers include bacterial plasmid sequences having selectable markers such as ampicillin resistance 15 (Steller and Pirrotta, EMBO J. (1985) 4:167-171); and *lacZ* sequences fused to a weak general promoter to detect the presence of enhancers with a developmental expression pattern of interest (Bellen *et al.*, Genes Dev. (1989) 3(9):1288-1300). Other examples of marked P elements useful for mutagenesis have been reported (Nucleic Acids Research (1998) 26:85-88; and <http://flybase.bio.indiana.edu>).  
20 A preferred method of transposon mutagenesis in *Drosophila* employs the "local hopping" method (Tower *et al.* (Genetics (1993) 133:347-359)). Each new P insertion line can be tested molecularly for transposition of the P element into the gene of interest (e.g. p53) by assays based on PCR. For each reaction, one PCR primer is used that is homologous to sequences contained within the P element and a second primer is 25 homologous to the coding region or flanking regions of the gene of interest. Products of the PCR reactions are detected by agarose gel electrophoresis. The sizes of the resulting DNA fragments reveal the site of P element insertion relative to the gene of interest. Alternatively, Southern blotting and restriction mapping using DNA probes derived from genomic DNA or cDNAs of the gene of interest can be used to detect transposition events 30 that rearrange the genomic DNA of the gene. P transposition events that map to the gene of interest can be assessed for phenotypic effects in heterozygous or homozygous mutant *Drosophila*.

In another embodiment, *Drosophila* lines carrying P insertions in the gene of interest, can be used to generate localized deletions using known methods (Kaiser,

Bioassays (1990) 12(6):297-301; Harnessing the power of *Drosophila* genetics, In *Drosophila melanogaster: Practical Uses in Cell and Molecular Biology*, Goldstein and Fyrberg, Eds., Academic Press, Inc: San Diego, California). This is particularly useful if no P element transpositions are found that disrupt the gene of interest. Briefly, flies containing 5 P elements inserted near the gene of interest are exposed to a further round of transposase to induce excision of the element. Progeny in which the transposon has excised are typically identified by loss of the eye color marker associated with the transposable element. The resulting progeny will include flies with either precise or imprecise excision of the P element, where the imprecise excision events often result in deletion of genomic DNA 10 neighboring the site of P insertion. Such progeny are screened by molecular techniques to identify deletion events that remove genomic sequence from the gene of interest, and assessed for phenotypic effects in heterozygous and homozygous mutant *Drosophila*.

Recently a transgenesis system has been described that may have universal applicability in all eye-bearing animals and which has been proven effective in delivering 15 transgenes to diverse insect species (Berghammer *et al.*, Nature (1999) 402:370-371). This system includes: an artificial promoter active in eye tissue of all animal species, preferably containing three Pax6 binding sites positioned upstream of a TATA box (3xP3; Sheng *et al.* Genes Devel. (1997) 11:1122-1131); a strong and visually detectable marker gene, such as GFP or other autofluorescent protein genes (Pasher *et al.*, Gene (1992) 111:229-233; 20 U.S. Pat. No. 5,491,084); and promiscuous vectors capable of delivering transgenes to a broad range of animal species, for example transposon-based vectors derived from *Hermes*, *PiggyBac*, or *mariner*, or vectors based on pantropic VSV<sub>G</sub>-pseudotyped retroviruses (Burns *et al.*, In Vitro Cell Dev Biol Anim (1996) 32:78-84; Jordan *et al.*, Insect Mol Biol (1998) 7: 215-222; US Pat. No. 5,670,345). Since the same transgenesis system can be 25 used in a variety of phylogenetically diverse animals, comparative functional studies are greatly facilitated, which is especially helpful in evaluating new applications to pest management.

In addition to creating loss-of-function phenotypes, transposable elements can be used to incorporate p53, or fragments or derivatives thereof, as an additional gene into any 30 region of an animal's genome resulting in mis-expression (including over-expression) of the gene. A preferred vector designed specifically for misexpression of genes in transgenic *Drosophila*, is derived from pGMR (Hay *et al.*, Development (1994) 120:2121-2129), is 9Kb long, and contains: an origin of replication for *E. coli*; an ampicillin resistance gene; P element transposon 3' and 5' ends to mobilize the inserted sequences; a White marker gene;

an expression unit comprising the TATA region of hsp70 enhancer and the 3' untranslated region of  $\alpha$ -tubulin gene. The expression unit contains a first multiple cloning site (MCS) designed for insertion of an enhancer and a second MCS located 500 bases downstream, designed for the insertion of a gene of interest. As an alternative to transposable elements,

5 homologous recombination or gene targeting techniques can be used to substitute a heterologous p53 gene or fragment or derivative for one or both copies of the animal's homologous gene. The transgene can be under the regulation of either an exogenous or an endogenous promoter element, and be inserted as either a minigene or a large genomic fragment. Gene function can be analyzed by ectopic expression, using, for example,

10 *Drosophila* (Brand *et al.*, Methods in Cell Biology (1994) 44:635-654).

Examples of well-characterized heterologous promoters that may be used to create transgenic *Drosophila* include heat shock promoters/enhancers such as the *hsp70* and *hsp83* genes. Eye tissue specific promoters/enhancers include *eyeless* (Mozer and Benzer, Development (1994) 120:1049-1058), *sevenless* (Bowtell *et al.*, PNAS (1991) 88(15):6853-6857), and *glass*-responsive promoters/enhancers (Quiring *et al.*, Science (1994) 265:785-789). Wing tissue specific enhancers/promoters can be derived from the *dpp* or *vestigial* genes (Staehling-Hampton *et al.*, Cell Growth Differ. (1994) 5(6):585-593; Kim *et al.*, Nature (1996) 382:133-138). Finally, where it is necessary to restrict the activity of dominant active or dominant negative transgenes to regions where p53 is normally active, it

15 may be useful to use endogenous p53 promoters. The ectopic expression of DMp53 in *Drosophila* larval eye using *glass*-responsive enhancer elements is described in Example 12 below.

In *Drosophila*, binary control systems that employ exogenous DNA are useful when testing the mis-expression of genes in a wide variety of developmental stage-specific and

25 tissue-specific patterns. Two examples of binary exogenous regulatory systems include the UAS/GAL4 system from yeast (Hay *et al.*, PNAS (1997) 94(10):5195-5200; Ellis *et al.*, Development (1993) 119(3):855-865), and the "Tet system" derived from *E. coli* (Bello *et al.*, Development (1998) 125:2193-2202). The UAS/GAL4 system is a well-established and powerful method of mis-expression which employs the UAS<sub>G</sub> upstream regulatory

30 sequence for control of promoters by the yeast GAL4 transcriptional activator protein (Brand and Perrimon, Development (1993) 118(2):401-15). In this approach, transgenic *Drosophila*, termed "target" lines, are generated where the gene of interest to be mis-expressed is operably fused to an appropriate promoter controlled by UAS<sub>G</sub>. Other transgenic *Drosophila* strains, termed "driver" lines, are generated where the GAL4 coding

region is operably fused to promoters/enhancers that direct the expression of the GAL4 activator protein in specific tissues, such as the eye, wing, nervous system, gut, or musculature. The gene of interest is not expressed in the target lines for lack of a transcriptional activator to drive transcription from the promoter joined to the gene of interest. However, when the UAS-target line is crossed with a GAL4 driver line, mis-expression of the gene of interest is induced in resulting progeny in a specific pattern that is characteristic for that GAL4 line. The technical simplicity of this approach makes it possible to sample the effects of directed mis-expression of the gene of interest in a wide variety of tissues by generating one transgenic target line with the gene of interest, and crossing that target line with a panel of pre-existing driver lines.

In the "Tet" binary control system, transgenic *Drosophila* driver lines are generated where the coding region for a tetracycline-controlled transcriptional activator (tTA) is operably fused to promoters/enhancers that direct the expression of tTA in a tissue-specific and/or developmental stage-specific manner. The driver lines are crossed with transgenic *Drosophila* target lines where the coding region for the gene of interest to be mis-expressed is operably fused to a promoter that possesses a tTA-responsive regulatory element. When the resulting progeny are supplied with food supplemented with a sufficient amount of tetracycline, expression of the gene of interest is blocked. Expression of the gene of interest can be induced at will simply by removal of tetracycline from the food. Also, the level of expression of the gene of interest can be adjusted by varying the level of tetracycline in the food. Thus, the use of the Tet system as a binary control mechanism for mis-expression has the advantage of providing a means to control the amplitude and timing of mis-expression of the gene of interest, in addition to spatial control. Consequently, if a p53 gene has lethal or deleterious effects when mis-expressed at an early stage in development, such as the embryonic or larval stages, the function of the gene in the adult can still be assessed by adding tetracycline to the food during early stages of development and removing tetracycline later so as to induce mis-expression only at the adult stage.

Dominant negative mutations, by which the mutation causes a protein to interfere with the normal function of a wild-type copy of the protein, and which can result in loss-of-function or reduced-function phenotypes in the presence of a normal copy of the gene, can be made using known methods (Hershkowitz, Nature (1987) 329:219-222). In the case of active monomeric proteins, overexpression of an inactive form, achieved, for example, by linking the mutant gene to a highly active promoter, can cause competition for natural substrates or ligands sufficient to significantly reduce net activity of the normal protein.

Alternatively, changes to active site residues can be made to create a virtually irreversible association with a target.

#### Assays for Change in Gene Expression

5 Various expression analysis techniques may be used to identify genes which are differentially expressed between a cell line or an animal expressing a wild type p53 gene compared to another cell line or animal expressing a mutant p53 gene. Such expression profiling techniques include differential display, serial analysis of gene expression (SAGE), transcript profiling coupled to a gene database query, nucleic acid array technology, 10 subtractive hybridization, and proteome analysis (*e.g.* mass-spectrometry and two-dimensional protein gels). Nucleic acid array technology may be used to determine the genome-wide expression pattern in a normal animal for comparison with an animal having a mutation in the p53 gene. Gene expression profiling can also be used to identify other genes or proteins that may have a functional relation to p53. The genes are identified by 15 detecting changes in their expression levels following mutation, over-expression, under-expression, mis-expression or knock-out, of the p53 gene.

#### Phenotypes Associated With p53 Gene Mutations

After isolation of model animals carrying mutated or mis-expressed p53 genes or 20 inhibitory RNAs, animals are carefully examined for phenotypes of interest. For analysis of p53 genes that have been mutated, animal models that are both homozygous and heterozygous for the altered p53 gene are analyzed. Examples of specific phenotypes that may be investigated include lethality; sterility; feeding behavior, tumor formation, perturbations in neuromuscular function including alterations in motility, and alterations in 25 sensitivity to pharmaceuticals. Some phenotypes more specific to flies include alterations in: adult behavior such as, flight ability, walking, grooming, phototaxis, mating or egg-laying; alterations in the responses of sensory organs, changes in the morphology, size or number of adult tissues such as, eyes, wings, legs, bristles, antennae, gut, fat body, gonads, and musculature; larval tissues such as mouth parts, cuticles, internal tissues or imaginal 30 discs; or larval behavior such as feeding, molting, crawling, or puparian formation; or developmental defects in any germline or embryonic tissues.

Genomic sequences containing a p53 gene can be used to engineer an existing mutant insect line, using the transgenesis methods previously described, to determine whether the mutation is in the p53 gene. Briefly, germline transformants are crossed for

complementation testing to an existing or newly created panel of insect lines whose mutations have been mapped to the vicinity of the gene of interest (Fly Pushing, *supra*). If a mutant line is discovered to be rescued by the genomic fragment, as judged by complementation of the mutant phenotype, then the mutant line likely harbors a mutation in 5 the p53 gene. This prediction can be further confirmed by sequencing the p53 gene from the mutant line to identify the lesion in the p53 gene.

### Identification of Genes That Modify p53 Genes

The characterization of new phenotypes created by mutations or misexpression in 10 p53 genes enables one to test for genetic interactions between p53 genes and other genes that may participate in the same, related, or interacting genetic or biochemical pathway(s). Individual genes can be used as starting points in large-scale genetic modifier screens as described in more detail below. Alternatively, RNAi methods can be used to simulate loss-of-function mutations in the genes being analyzed. It is of particular interest to investigate 15 whether there are any interactions of p53 genes with other well-characterized genes, particularly genes involved in regulation of the cell cycle or apoptosis.

#### **Genetic Modifier Screens**

A genetic modifier screen using invertebrate model organisms is a particularly preferred method for identifying genes that interact with p53 genes, because large numbers 20 of animals can be systematically screened making it more possible that interacting genes will be identified. In *Drosophila*, a screen of up to about 10,000 animals is considered to be a pilot-scale screen. Moderate-scale screens usually employ about 10,000 to about 50,000 flies, and large-scale screens employ greater than about 50,000 flies. In a genetic modifier screen, animals having a mutant phenotype due to a mutation in or misexpression of the p53 25 gene are further mutagenized, for example by chemical mutagenesis or transposon mutagenesis.

The procedures involved in typical *Drosophila* genetic modifier screens are well-known in the art (Wolfner and Goldberg, Methods in Cell Biology (1994) 44:33-80; and Karim *et al.*, Genetics (1996) 143:315-329). The procedures used differ depending upon 30 the precise nature of the mutant allele being modified. If the mutant allele is genetically recessive, as is commonly the situation for a loss-of-function allele, then most typically males, or in some cases females, which carry one copy of the mutant allele are exposed to an effective mutagen, such as EMS, MMS, ENU, triethylamine, diepoxyalkanes, ICR-170, formaldehyde, X-rays, gamma rays, or ultraviolet radiation. The mutagenized animals are

crossed to animals of the opposite sex that also carry the mutant allele to be modified. In the case where the mutant allele being modified is genetically dominant, as is commonly the situation for ectopically expressed genes, wild type males are mutagenized and crossed to females carrying the mutant allele to be modified.

5       The progeny of the mutagenized and crossed flies that exhibit either enhancement or suppression of the original phenotype are presumed to have mutations in other genes, called "modifier genes", that participate in the same phenotype-generating pathway. These progeny are immediately crossed to adults containing balancer chromosomes and used as founders of a stable genetic line. In addition, progeny of the founder adult are retested  
10 under the original screening conditions to ensure stability and reproducibility of the phenotype. Additional secondary screens may be employed, as appropriate, to confirm the suitability of each new modifier mutant line for further analysis.

Standard techniques used for the mapping of modifiers that come from a genetic screen in *Drosophila* include meiotic mapping with visible or molecular genetic markers;  
15 male-specific recombination mapping relative to P-element insertions; complementation analysis with deficiencies, duplications, and lethal P-element insertions; and cytological analysis of chromosomal aberrations (*Fly Pushing, supra*). Genes corresponding to modifier mutations that fail to complement a lethal P-element may be cloned by plasmid rescue of the genomic sequence surrounding that P-element. Alternatively, modifier genes  
20 may be mapped by phenotype rescue and positional cloning (Sambrook *et al., supra*).

Newly identified modifier mutations can be tested directly for interaction with other genes of interest known to be involved or implicated with p53 genes using methods described above. Also, the new modifier mutations can be tested for interactions with genes in other pathways that are not believed to be related to regulation of cell cycle or apoptosis.  
25 New modifier mutations that exhibit specific genetic interactions with other genes implicated in cell cycle regulation or apoptosis, and not with genes in unrelated pathways, are of particular interest.

The modifier mutations may also be used to identify "complementation groups". Two modifier mutations are considered to fall within the same complementation group if  
30 animals carrying both mutations in trans exhibit essentially the same phenotype as animals that are homozygous for each mutation individually and, generally are lethal when in trans to each other (*Fly Pushing, supra*). Generally, individual complementation groups defined in this way correspond to individual genes.

When p53 modifier genes are identified, homologous genes in other species can be isolated using procedures based on cross-hybridization with modifier gene DNA probes, PCR-based strategies with primer sequences derived from the modifier genes, and/or computer searches of sequence databases. For therapeutic applications related to the 5 function of p53 genes, human and rodent homologs of the modifier genes are of particular interest.

Although the above-described *Drosophila* genetic modifier screens are quite powerful and sensitive, some genes that interact with p53 genes may be missed in this approach, particularly if there is functional redundancy of those genes. This is because the 10 vast majority of the mutations generated in the standard mutagenesis methods will be loss-of-function mutations, whereas gain-of-function mutations that could reveal genes with functional redundancy will be relatively rare. Another method of genetic screening in *Drosophila* has been developed that focuses specifically on systematic gain-of-function genetic screens (Rorth *et al.*, Development (1998) 125:1049-1057). This method is based 15 on a modular mis-expression system utilizing components of the GAL4/UAS system (described above) where a modified P element, termed an "enhanced P" (EP) element, is genetically engineered to contain a GAL4-responsive UAS element and promoter. Any other transposons can also be used for this system. The resulting transposon is used to randomly tag genes by insertional mutagenesis (similar to the method of P element 20 mutagenesis described above). Thousands of transgenic *Drosophila* strains, termed EP lines, can be generated, each containing a specific UAS-tagged gene. This approach takes advantage of the preference of P elements to insert at the 5'-ends of genes. Consequently, many of the genes that are tagged by insertion of EP elements become operably fused to a 25 GAL4-regulated promoter, and increased expression or mis-expression of the randomly tagged gene can be induced by crossing in a GAL4 driver gene.

Systematic gain-of-function genetic screens for modifiers of phenotypes induced by mutation or mis-expression of a p53 gene can be performed by crossing several thousand *Drosophila* EP lines individually into a genetic background containing a mutant or mis-expressed p53 gene, and further containing an appropriate GAL4 driver transgene. It is also 30 possible to remobilize the EP elements to obtain novel insertions. The progeny of these crosses are then analyzed for enhancement or suppression of the original mutant phenotype as described above. Those identified as having mutations that interact with the p53 gene can be tested further to verify the reproducibility and specificity of this genetic interaction. EP insertions that demonstrate a specific genetic interaction with a mutant or mis-expressed

p53 gene, have a physically tagged new gene which can be identified and sequenced using PCR or hybridization screening methods, allowing the isolation of the genomic DNA adjacent to the position of the EP element insertion.

5    **Identification of Molecules that Interact With p53**

A variety of methods can be used to identify or screen for molecules, such as proteins or other molecules, that interact with p53 protein, or derivatives or fragments thereof. The assays may employ purified p53 protein, or cell lines or a model organism such as *Drosophila* that has been genetically engineered to express p53 protein. Suitable screening methodologies are well known in the art to test for proteins and other molecules that interact with a gene/protein of interest (see e.g., PCT International Publication No. WO 96/34099). The newly identified interacting molecules may provide new targets for pharmaceutical agents. Any of a variety of exogenous molecules, both naturally occurring and/or synthetic (e.g., libraries of small molecules or peptides, or phage display libraries), 10 may be screened for binding capacity. In a typical binding experiment, the p53 protein or fragment is mixed with candidate molecules under conditions conducive to binding, sufficient time is allowed for any binding to occur, and assays are performed to test for bound complexes. A variety of assays to find interacting proteins are known in the art, for example, immunoprecipitation with an antibody that binds to the protein in a complex 15 followed by analysis by size fractionation of the immunoprecipitated proteins (e.g. by denaturing or nondenaturing polyacrylamide gel electrophoresis), Western analysis, non-denaturing gel electrophoresis, etc.

20

**Two-hybrid assay systems**

A preferred method for identifying interacting proteins is a two-hybrid assay system 25 or variation thereof (Fields and Song, *Nature* (1989) 340:245-246; U.S. Pat. No. 5,283,173; for review see Brent and Finley, *Annu. Rev. Genet.* (1997) 31:663-704). The most commonly used two-hybrid screen system is performed using yeast. All systems share three elements: 1) a gene that directs the synthesis of a "bait" protein fused to a DNA 30 binding domain; 2) one or more "reporter" genes having an upstream binding site for the bait, and 3) a gene that directs the synthesis of a "prey" protein fused to an activation domain that activates transcription of the reporter gene. For the screening of proteins that interact with p53 protein, the "bait" is preferably a p53 protein, expressed as a fusion protein to a DNA binding domain; and the "prey" protein is a protein to be tested for ability to interact with the bait, and is expressed as a fusion protein to a transcription activation

domain. The prey proteins can be obtained from recombinant biological libraries expressing random peptides.

The bait fusion protein can be constructed using any suitable DNA binding domain, such as the *E. coli* LexA repressor protein, or the yeast GAL4 protein (Bartel *et al.*,  
5 BioTechniques (1993) 14:920-924; Chasman *et al.*, Mol. Cell. Biol. (1989) 9:4746-4749; Ma *et al.*, Cell (1987) 48:847-853; Ptashne *et al.*, Nature (1990) 346:329-331). The prey fusion protein can be constructed using any suitable activation domain such as GAL4, VP-16, etc. The preys may contain useful moieties such as nuclear localization signals (Ylikomi *et al.*, EMBO J. (1992) 11:3681-3694; Dingwall and Laskey, Trends Biochem.  
10 Sci. Trends Biochem. Sci. (1991) 16:479-481) or epitope tags (Allen *et al.*, Trends Biochem. Sci. Trends Biochem. Sci. (1995) 20:511-516) to facilitate isolation of the encoded proteins. Any reporter gene can be used that has a detectable phenotype such as reporter genes that allow cells expressing them to be selected by growth on appropriate medium (*e.g.* HIS3, LEU2 described by Chien *et al.*, PNAS (1991) 88:9572-9582; and  
15 Gyuris *et al.*, Cell (1993) 75:791-803). Other reporter genes, such as LacZ and GFP, allow cells expressing them to be visually screened (Chien *et al.*, *supra*).

Although the preferred host for two-hybrid screening is the yeast, the host cell in which the interaction assay and transcription of the reporter gene occurs can be any cell, such as mammalian (*e.g.* monkey, mouse, rat, human, bovine), chicken, bacterial, or insect 20 cells. Various vectors and host strains for expression of the two fusion protein populations in yeast can be used (U.S. Pat. No. 5,468,614; Bartel *et al.*, Cellular Interactions in Development (1993) Hartley, ed., Practical Approach Series xviii, IRL Press at Oxford University Press, New York, NY, pp. 153-179; and Fields and Sternglanz, Trends In Genetics (1994) 10:286-292). As an example of a mammalian system, interaction of 25 activation tagged VP16 derivatives with a GAL4-derived bait drives expression of reporters that direct the synthesis of hygromycin B phosphotransferase, chloramphenicol acetyltransferase, or CD4 cell surface antigen (Fearon *et al.*, PNAS (1992) 89:7958-7962). As another example, interaction of VP16-tagged derivatives with GAL4-derived baits drives the synthesis of SV40 T antigen, which in turn promotes the replication of the prey 30 plasmid, which carries an SV40 origin (Vasavada *et al.*, PNAS (1991) 88:10686-10690).

Typically, the bait p53 gene and the prey library of chimeric genes are combined by mating the two yeast strains on solid or liquid media for a period of approximately 6-8 hours. The resulting diploids contain both kinds of chimeric genes, i.e., the DNA-binding domain fusion and the activation domain fusion. Transcription of the reporter gene can be

detected by a linked replication assay in the case of SV40 T antigen (Vasavada *et al.*, *supra*) or using immunoassay methods (Alam and Cook. Anal. Biochem. (1990)188:245-254).

The activation of other reporter genes like URA3, HIS3, LYS2, or LEU2 enables the cells to grow in the absence of uracil, histidine, lysine, or leucine, respectively, and hence serves

5 as a selectable marker. Other types of reporters are monitored by measuring a detectable signal. For example, GFP and lacZ have gene products that are fluorescent and chromogenic, respectively.

After interacting proteins have been identified, the DNA sequences encoding the proteins can be isolated. In one method, the activation domain sequences or DNA-binding 10 domain sequences (depending on the prey hybrid used) are amplified, for example, by PCR using pairs of oligonucleotide primers specific for the coding region of the DNA binding domain or activation domain. If a shuttle (yeast to *E. coli*) vector is used to express the fusion proteins, the DNA sequences encoding the proteins can be isolated by transformation of *E. coli* using the yeast DNA and recovering the plasmids from *E. coli*. Alternatively, the 15 yeast vector can be isolated, and the insert encoding the fusion protein subcloned into a bacterial expression vector, for growth of the plasmid in *E. coli*.

#### **Antibodies and Immunoassay**

p53 proteins encoded by any of SEQ ID NOS:2, 4, 6, 8, or 10 and derivatives and fragments thereof, such as those discussed above, may be used as an immunogen to 20 generate monoclonal or polyclonal antibodies and antibody fragments or derivatives (*e.g.* chimeric, single chain, Fab fragments). For example, fragments of a p53 protein, preferably those identified as hydrophilic, are used as immunogens for antibody production using art-known methods such as by hybridomas: production of monoclonal antibodies in germ-free animals (PCT/US90/02545); the use of human hybridomas (Cole *et al.*, PNAS (1983) 25 80:2026-2030; Cole *et al.*, in Monoclonal Antibodies and Cancer Therapy (1985) Alan R. Liss, pp. 77-96), and production of humanized antibodies (Jones *et al.*, Nature (1986) 321:522-525; U.S. Pat. 5,530,101). In a particular embodiment, p53 polypeptide fragments provide specific antigens and/or immunogens, especially when coupled to carrier proteins. For example, peptides are covalently coupled to keyhole limpet antigen (KLH) and the 30 conjugate is emulsified in Freund's complete adjuvant. Laboratory rabbits are immunized according to conventional protocol and bled. The presence of specific antibodies is assayed by solid phase immunoassay using immobilized corresponding polypeptide. Specific activity or function of the antibodies produced may be determined by convenient *in vitro*, cell-based, or *in vivo* assays: *e.g.* *in vitro* binding assays, *etc.* Binding affinity may be

assayed by determination of equilibrium constants of antigen-antibody association (usually at least about  $10^7 \text{ M}^{-1}$ , preferably at least about  $10^8 \text{ M}^{-1}$ , more preferably at least about  $10^9 \text{ M}^{-1}$ ). Example 11 below further describes the generation of anti-DMP53 antibodies.

Immunoassays can be used to identify proteins that interact with or bind to p53 protein. Various assays are available for testing the ability of a protein to bind to or compete with binding to a wild-type p53 protein or for binding to an anti-p53 protein antibody. Suitable assays include radioimmunoassays, ELISA (enzyme linked immunosorbent assay), immunoradiometric assays, gel diffusion precipitin reactions, immunodiffusion assays, *in situ* immunoassays (e.g., using colloidal gold, enzyme or radioisotope labels), western blots, precipitation reactions, agglutination assays (e.g., gel agglutination assays, hemagglutination assays), complement fixation assays, immunofluorescence assays, protein A assays, immunoelectrophoresis assays, etc.

### Identification of Potential Drug Targets

Once new p53 genes or p53 interacting genes are identified, they can be assessed as potential drug or pesticide targets using animal models such as *Drosophila* or other insects, or using cells that express endogenous p53, or that have been engineered to express p53.

#### **Assays of Compounds on Insects**

Potential insecticidal compounds can be administered to insects in a variety of ways, including orally (including addition to synthetic diet, application to plants or prey to be consumed by the test organism), topically (including spraying, direct application of compound to animal, allowing animal to contact a treated surface), or by injection. Insecticides are typically very hydrophobic molecules and must commonly be dissolved in organic solvents, which are allowed to evaporate in the case of methanol or acetone, or at low concentrations can be included to facilitate uptake (ethanol, dimethyl sulfoxide).

The first step in an insect assay is usually the determination of the minimal lethal dose (MLD) on the insects after a chronic exposure to the compounds. The compounds are usually diluted in DMSO, and applied to the food surface bearing 0-48 hour old embryos and larvae. In addition to MLD, this step allows the determination of the fraction of eggs that hatch, behavior of the larvae, such as how they move /feed compared to untreated larvae, the fraction that survive to pupate, and the fraction that eclose (emergence of the adult insect from puparium). Based on these results more detailed assays with shorter exposure times may be designed, and larvae might be dissected to look for obvious

morphological defects. Once the MLD is determined, more specific acute and chronic assays can be designed.

In a typical acute assay, compounds are applied to the food surface for embryos, larvae, or adults, and the animals are observed after 2 hours and after an overnight 5 incubation. For application on embryos, defects in development and the percent that survive to adulthood are determined. For larvae, defects in behavior, locomotion, and molting may be observed. For application on adults, behavior and neurological defects are observed, and effects on fertility are noted. Any deleterious effect on insect survival, motility and fertility indicates that the compound has utility in controlling pests.

10 For a chronic exposure assay, adults are placed on vials containing the compounds for 48 hours, then transferred to a clean container and observed for fertility, neurological defects, and death.

#### **Assay of Compounds using Cell Cultures**

Compounds that modulate (*e.g.* block or enhance) p53 activity may be tested on 15 cells expressing endogenous normal or mutant p53s, and/or on cells transfected with vectors that express p53, or derivatives or fragments of p53. The compounds are added at varying concentration and their ability to modulate the activity of p53 genes is determined using any of the assays for tumor suppressor genes described above (*e.g.* by measuring transcription activity, apoptosis, proliferation/cell cycle, and/or transformation). Compounds that 20 selectively modulate p53 are identified as potential drug candidates having p53 specificity.

Identification of small molecules and compounds as potential pharmaceutical compounds from large chemical libraries requires high-throughput screening (HTS) methods (Bolger, Drug Discovery Today (1999) 4:251-253). Several of the assays mentioned herein can lend themselves to such screening methods. For example, cells or 25 cell lines expressing wild type or mutant p53 protein or its fragments, and a reporter gene can be subjected to compounds of interest, and depending on the reporter genes, interactions can be measured using a variety of methods such as color detection, fluorescence detection (*e.g.* GFP), autoradiography, scintillation analysis, *etc.*

30 **Agricultural uses of insect p53 sequences**

Insect p53 genes may be used in controlling agriculturally important pest species. For example, the proteins, genes, and RNAs disclosed herein, or their fragments may have activity in modifying the growth, feeding and/or reproduction of crop-damaging insects, or insect pests of farm animals or of other animals. In general, effective pesticides exert a

disabling activity on the target pest such as lethality, sterility, paralysis, blocked development, or cessation of feeding. Such pests include egg, larval, juvenile and adult forms of flies, mosquitos, fleas, moths, beetles, cicadas, grasshoppers, aphids and crickets.

The functional analyses of insect p53 genes described herein has revealed roles for these 5 genes and proteins in controlling apoptosis, response to DNA damaging agents, and protection of cells of the germline. Since overexpression of DMp53 induces apoptosis in *Drosophila*, the insect p53 genes and proteins in an activated form have application as "cell death" genes which if delivered to or expressed in specific target tissues such as the gut, nervous system, or gonad, would have a use in controlling insect pests. Alternatively, since 10 DMp53 plays a role in response to DNA damaging agents such as X-rays, interference with p53 function in insects has application in sensitizing insects to DNA damaging agents for sterilization. For example, current methods for controlling pest populations through the release of irradiated insects into the environment (Knipling, J Econ Ent (1955) 48: 459-462; Knipling (1979) U.S. Dept. Agric. Handbook No. 512) could be improved by causing 15 expression of dominant negative forms of p53 genes, proteins, or RNAs in insects and most preferably germline tissue of insects, or by exposing insects to chemical compounds which block p53 function.

Mutational analysis of insect p53 proteins may also be used in connection with the control of agriculturally-important pests. In this regard, mutational analysis of insect p53 20 genes provides a rational approach to determine the precise biological function of this class of proteins in invertebrates. Further, mutational analysis coupled with large-scale systematic genetic modifier screens provides a means to identify and validate other potential pesticide targets that might be constituents of the p53 signaling pathway.

Tests for pesticidal activities can be any method known in the art. Pesticides comprising 25 the nucleic acids of the insect p53 proteins may be prepared in a suitable vector for delivery to a plant or animal. Such vectors include *Agrobacterium tumefaciens* Ti plasmid-based vectors for the generation of transgenic plants (Horsch *et al.*, Proc Natl Acad Sci U S A. (1986) 83(8):2571-2575; Fraley *et al.*, Proc. Natl. Acad. Sci. USA (1983) 80:4803) or recombinant cauliflower mosaic virus for the inoculation of plant cells or plants (U.S. Pat 30 No. 4,407,956); retrovirus based vectors for the introduction of genes into vertebrate animals (Burns *et al.*, Proc. Natl. Acad. Sci. USA (1993) 90:8033-37); and vectors based on transposable elements for incorporation into invertebrate animals using vectors and methods already described above. For example, transgenic insects can be generated using a transgene comprising a p53 gene operably fused to an appropriate inducible promoter, such

as a tTA-responsive promoter, in order to direct expression of the tumor suppressor protein at an appropriate time in the life cycle of the insect. In this way, one may test efficacy as an insecticide in, for example, the larval phase of the life cycle (e.g., when feeding does the greatest damage to crops).

5 Recombinant or synthetic p53 proteins, RNAs or their fragments, in wild-type or mutant forms, can be assayed for insecticidal activity by injection of solutions of p53 proteins or RNAs into the hemolymph of insect larvae (Blackburn, *et al.*, *Appl. Environ. Microbiol.* (1998) 64(8):3036-41; Bowen and Ensign, *Appl. Environ. Microbiol.* (1998) 64(8):3029-35). Further, transgenic plants that express p53 proteins or RNAs or their  
10 fragments can be tested for activity against insect pests (Estruch *et al.*, *Nat. Biotechnol.* (1997) 15(2):137-41).

Insect p53 genes may be used as insect control agents in the form of recombinant viruses that direct the expression of a tumor suppressor gene in the target pest. A variety of suitable recombinant virus systems for expression of proteins in infected insect cells are  
15 well known in the art. A preferred system uses recombinant baculoviruses. The use of recombinant baculoviruses as a means to engineer expression of toxic proteins in insects, and as insect control agents, has a number of specific advantages including host specificity, environmental safety, the availability of vector systems, and the potential use of the recombinant virus directly as a pesticide without the need for purification or formulation of  
20 the tumor suppressor protein (Cory and Bishop, *Mol. Biotechnol.* (1997) 7(3):303-13; and U.S. Pat. Nos. 5,470,735; 5,352,451; 5,770,192; 5,759,809; 5,665,349; and 5,554,592). Thus, recombinant baculoviruses that direct the expression of insect p53 genes can be used for both testing the pesticidal activity of tumor suppressor proteins under controlled laboratory conditions, and as insect control agents in the field. One disadvantage of wild  
25 type baculoviruses as insect control agents can be the amount of time between application of the virus and death of the target insect, typically one to two weeks. During this period, the insect larvae continue to feed and damage crops. Consequently, there is a need to develop improved baculovirus-derived insect control agents which result in a rapid cessation of feeding of infected target insects. The cell cycle and apoptotic regulatory roles  
30 of p53 in vertebrates raises the possibility that expression of tumor suppressor proteins from recombinant baculovirus in infected insects may have a desirable effect in controlling metabolism and limiting feeding of insect pests.

Insect p53 genes, RNAs, proteins or fragments may be formulated with any carrier suitable for agricultural use, such as water, organic solvents and/or inorganic solvents. The

pesticide composition may be in the form of a solid or liquid composition and may be prepared by fundamental formulation processes such as dissolving, mixing, milling, granulating, and dispersing. Compositions may contain an insect p53 protein or gene in a mixture with agriculturally acceptable excipients such as vehicles, carriers, binders, UV blockers, adhesives, hemecants, thickeners, dispersing agents, preservatives and insect attractants. Thus the compositions of the invention may, for example, be formulated as a solid comprising the active agent and a finely divided solid carrier. Alternatively, the active agent may be contained in liquid compositions including dispersions, emulsions and suspensions thereof. Any suitable final formulation may be used, including for example, 5 granules, powder, bait pellets (a solid composition containing the active agent and an insect attractant or food substance), microcapsules, water-dispersible granules, emulsions and emulsified concentrates. Examples of adjuvant or carriers suitable for use with the present invention include water, organic solvent, inorganic solvent, talc, pyrophyllite, synthetic fine silica, attapugus clay, kieselguhr chalk, diatomaceous earth, lime, calcium carbonate, 10 bentonite, fuller's earth, cottonseed hulls, wheat flour, soybean flour, pumice, tripoli, wood flour, walnut shell flour, redwood flour, and lignin. The compositions may also include conventional insecticidal agents and/or may be applied in conjunction with conventional insecticidal agents.

15

20 **EXAMPLES**

The following examples describe the isolation and cloning of the nucleic acid sequence of SEQ ID NOs: 1, 3, 5, 7, 9, and 18, and how these sequences, derivatives and fragments thereof, and gene products can be used for genetic studies to elucidate mechanisms of the p53 pathway as well as the discovery of potential pharmaceutical agents 25 that interact with the pathway.

These Examples are provided merely as illustrative of various aspects of the invention and should not be construed to limit the invention in any way.

**Example 1: Preparation of *Drosophila* cDNA Library**

30 A *Drosophila* expressed sequence tag (EST) cDNA library was prepared as follows. Tissue from mixed stage embryos (0-20 hour), imaginal disks and adult fly heads were collected and total RNA was prepared. Mitochondrial rRNA was removed from the total RNA by hybridization with biotinylated rRNA specific oligonucleotides and the resulting RNA was selected for polyadenylated mRNA. The resulting material was then used to

construct a random primed library. First strand cDNA synthesis was primed using a six nucleotide random primer. The first strand cDNA was then tailed with terminal transferase to add approximately 15 dGTP molecules. The second strand was primed using a primer which contained a NotI site followed by a 13 nucleotide C-tail to hybridize to the G-tailed  
5 first strand cDNA. The double stranded cDNA was ligated with BstX1 adaptors and digested with NotI. The cDNA was then fractionated by size by electrophoresis on an agarose gel and the cDNA greater than 700 bp was purified. The cDNA was ligated with NotI, BstX1 digested pCDNA-sk+ vector (a derivative of pBluescript, Stratagene) and used to transform *E. coli* (XL1blue). The final complexity of the library was  $6 \times 10^6$   
10 independent clones.

The cDNA library was normalized using a modification of the method described by Bonaldo *et al.* (Genome Research (1996) 6:791-806). Biotinylated driver was prepared from the cDNA by PCR amplification of the inserts and allowed to hybridize with single stranded plasmids of the same library. The resulting double-stranded forms were removed  
15 using streptavidin magnetic beads, the remaining single stranded plasmids were converted to double stranded molecules using Sequenase (Amersham, Arlington Hills, IL), and the plasmid DNA stored at -20°C prior to transformation. Aliquots of the normalized plasmid library were used to transform *E. coli* (XL1blue or DH10B), plated at moderate density, and the colonies picked into a 384-well master plate containing bacterial growth media using a  
20 Qbot robot (Genetix, Christchurch, UK). The clones were allowed to grow for 24 hours at 37° C then the master plates were frozen at -80° C for storage. The total number of colonies picked for sequencing from the normalized library was 240,000. The master plates were used to inoculate media for growth and preparation of DNA for use as template in sequencing reactions. The reactions were primarily carried out with primer that initiated at  
25 the 5' end of the cDNA inserts. However, a minor percentage of the clones were also sequenced from the 3' end. Clones were selected for 3' end sequencing based on either further biological interest or the selection of clones that could extend assemblies of contiguous sequences ("contigs") as discussed below. DNA sequencing was carried out using ABI377 automated sequencers and used either ABI FS, dRhodamine or BigDye  
30 chemistries (Applied Biosystems, Inc., Foster City, CA).

Analysis of sequences was done as follows: the traces generated by the automated sequencers were base-called using the program "Phred" (Gordon, Genome Res. (1998) 8:195-202), which also assigned quality values to each base. The resulting sequences were

trimmed for quality in view of the assigned scores. Vector sequences were also removed. Each sequence was compared to all other fly EST sequences using the BLAST program and a filter to identify regions of near 100% identity. Sequences with potential overlap were then assembled into contigs using the programs "Phrap", "Phred" and "Consed" (Phil 5 Green, University of Washington, Seattle, Washington; <http://bozeman.mbt.washington.edu/phrap.docs/phrap.html>). The resulting assemblies were then compared to existing public databases and homology to known proteins was then used to direct translation of the consensus sequence. Where no BLAST homology was available, the statistically most likely translation based on codon and hexanucleotide preference was 10 used. The Pfam (Bateman *et al.*, Nucleic Acids Res. (1999) 27:260-262) and Prosite (Hofmann *et al.*, Nucleic Acids Res. (1999) 27(1):215-219) collections of protein domains were used to identify motifs in the resulting translations. The contig sequences were archived in an Oracle-based relational database (FlyTag™, Exelixis Pharmaceuticals, Inc., South San Francisco, CA).

15

#### Example 2: Other cDNA libraries

A *Leptinotarsa* (Colorado Potato Beetle) library was prepared using the Lambda ZAP cDNA cloning kit from Stratagene (Stratagene, La Jolla, CA, cat#200450), following manufacturer's protocols. The original cDNA used to construct the library was oligo-dt 20 primed using mRNA from mixed stage larvae *Leptinotarsa*.

A *Tribolium* library was made using pSPORT cDNA library construction system (Life Technologies, Gaithersburg, MD), following manufacturer's protocols. The original cDNA used to construct the library was oligo-dt primed using mRNA from adult *Tribolium*.

25

#### Example 3: Cloning of the p53 nucleic acid from *Drosophila* (DMp53)

The TBLASTN program (Altschul *et al.*, *supra*) was used to query the FlyTag™ database with a squid p53 protein sequence (GenBank gi:1244762), chosen because the squid sequence was one of only two members of the p53 family that had been identified previously from an invertebrate. The results revealed a single sequence contig, which was 30 960 bp in length and which exhibited highly significant homology to squid p53 (score=192, P=5.1x10<sup>-12</sup>). Further analysis of this sequence with the BLASTX program against GenBank protein sequences demonstrated that this contig exhibited significant homology to the entire known family of p53-like sequences in vertebrates, and that it contained coding

sequences homologous to the p53 family that encompassed essentially all of the DNA-binding domain, which is the most conserved region of the p53 protein family. Inspection of this contig indicated that it was an incomplete cDNA, missing coding regions C-terminal to the presumptive DNA-binding domain as well as the 3' untranslated region of the mRNA.

5       The full-length cDNA clone was produced by Rapid Amplification of cDNA ends (RACE; Frohman *et al.*, PNAS (1988) 85:8998-9002). A RACE-ready library was generated from Clontech (Palo Alto, CA) *Drosophila* embryo poly A<sup>+</sup> RNA (Cat#694-1) using Clontech's Marathon cDNA amplification kit (Cat# K1802), and following manufacturer's directions. The following primers were used on the library to retrieve full-length clones:

|              |                                 |              |
|--------------|---------------------------------|--------------|
| 3'373        | CCATGCTGAAGCAATAACCACCGATG      | SEQ ID NO:11 |
| 3'510        | GGAACACACGCAAATTAAAGTGGTTGGATGG | SEQ ID NO:12 |
| 3'566        | TGATTTGACAGCGGACCACGGG          | SEQ ID NO:13 |
| 15     3'799 | GGAAGTTCTTTGCCCGATACACGAG       | SEQ ID NO:14 |
| 5'164        | GGCACAAAGAAAGCACTGATTCCGAGG     | SEQ ID NO:15 |
| 5'300        | GGAATCTGATGCAGTTCAGCCAGCAATC    | SEQ ID NO:16 |
| 5'932        | GGATCGCATCCAAGACGAACGCC         | SEQ ID NO:17 |

20       RACE reactions to obtain additional 5' and 3' sequence of the *Drosophila* p53 cDNA were performed as follows. Each RACE reaction contained: 40 µl of H<sub>2</sub>O, 5 µl of 10XAdvantage PCR buffer (Clontech), 1 µl of specific p53 RACE primer at 10 µM, 1 µl of AP1 primer (from Clontech Marathon kit) at 10 µM, 1 µl of cDNA, 1 µl of dNTPs at 5 mM, 1 µl of Advantage DNA polymerase (Clontech). For 5' RACE, the reactions contained either the 3'373, 3'510, 3'566, or 3'799 primers. For 3' RACE, the reactions contained either the 5'164 or 5'300 primers. The reaction mixtures were subjected to the following thermocycling program steps for touchdown PCR: (1) 94°C 1 min, (2) 94°C 0.5 min, (3) 72°C 4 min. (4) repeat steps 2-3 four times. (5) 94°C 0.5 min, (6) 70°C 4 min, (7) repeat steps 5-6 four times, (8) 94°C 0.33 min. (9) 68°C 4 min. (10) repeat steps 8-9 24 times, (11) 68°C 4 min. (12) remain at 4°C.

Products of the RACE reactions were analyzed by gel electrophoresis. Discrete DNA species of the following sizes were observed in the RACE products produced with each of the following primers: 3'373, approx. 400 bp; 3'510, approx. 550 bp, 3'566, approx. 600 bp; 3'799, approx. 850 bp; 5'164, approx. 1400 bp, 5'300 approx. 1300 bp. The RACE

DNA products were cloned directly into the vector pCR2.1 using the TOPO TA cloning kit (Invitrogen Corp., Carlsbad, California) following the manufacturers directions. Colonies of transformed *E. coli* were picked for each construct, and plasmid DNA prepared using a QIAGEN tip 20 kit (QIAGEN, Valencia, California). Sequences of the RACE cDNA 5 inserts in within each clone were determined using standard protocols for the BigDye sequencing reagents (Applied Biosystems, Inc. Foster City, California) and either M13 reverse or BigT7 primers for priming from flanking vector sequences, or 5'932 or 3'373 primers (described above) for priming internally from *Drosophila* p53 cDNA sequences. The products were analyzed using ABI 377 DNA sequencer. Sequences were assembled 10 into a contig using the Sequencher program (Gene Codes Corporation), and contained a single open reading frame encoding a predicted protein of 385 amino acids, which compared favorably with the known lengths of vertebrate p53 proteins, 363 to 396 amino acids (Soussi *et al.*, Oncogene (1990) 5:945-952). Analysis of the predicted *Drosophila* p53 protein using the BLASTP homology searching program and the GenBank database 15 confirmed that this protein was a member of the p53 family, since it exhibited highly significant homology to all known p53 related proteins, but no significant homology to other protein families.

**Example 4: Cloning of p53 Nucleic Acid Sequences from other insects**

20 The PCR conditions used for cloning the p53 nucleic acid sequences comprised a denaturation step of 94° C, 5 min; followed by 35 cycles of: 94° C 1 min, 55° C 1 min 72° C 1 min; then, a final extension at 72° C 10 min. All DNA sequencing reactions were performed using standard protocols for the BigDye sequencing reagents (Applied Biosystems, Inc.) and products were analyzed using ABI 377 DNA sequencers. Trace data 25 obtained from the ABI 377 DNA sequencers was analyzed and assembled into contigs using the Phred-Phrap programs.

The DMp53 DNA and protein sequences were used to query sequences from *Tribolium*, *Leptinotarsa*, and *Heliothis* cDNA libraries using the BLAST computer program, and the results revealed several candidate cDNA clones that might encode p53 30 related sequences. For each candidate p53 cDNA clone, well-separated, single colonies were streaked on a plate and end-sequenced to verify the clones. Single colonies were picked and the plasmid DNA was purified using Qiagen REAL Preps (Qiagen, Inc., Valencia, CA). Samples were then digested with appropriate enzymes to excise insert from

vector and determine size. For example, the vector pOT2, ([www.fruitfly.org/EST/pOT2vector.html](http://www.fruitfly.org/EST/pOT2vector.html)) can be excised with XhoI/EcoRI; or pBluescript (Stratagene) can be excised with BssH II. Clones were then sequenced using a combination of primer walking and *in vitro* transposon tagging strategies.

5 For primer walking, primers were designed to the known DNA sequences in the clones, using the Primer-3 software (Steve Rozen, Helen J. Skaletsky (1998) Primer3. Code available at [http://www-genome.wi.mit.edu/genome\\_software/other/primer3.html](http://www-genome.wi.mit.edu/genome_software/other/primer3.html)). These primers were then used in sequencing reactions to extend the sequence until the full sequence of the insert was determined.

10 The GPS-1 Genome Priming System *in vitro* transposon kit (New England Biolabs, Inc., Beverly, MA) was used for transposon-based sequencing, following manufacturer's protocols. Briefly, multiple DNA templates with randomly interspersed primer-binding sites were generated. These clones were prepared by picking 24 colonies/clone into a Qiagen REAL Prep to purify DNA and sequenced by using supplied primers to perform  
15 bidirectional sequencing from both ends of transposon insertion.

Sequences were then assembled using Phred/Phrap and analyzed using Consed. Ambiguities in the sequence were resolved by resequencing several clones. This effort resulted in several contiguous nucleotide sequences. For *Leptinotarsa*, a contig was assembled of 2601 bases in length, encompassing an open reading frame (ORF) of 1059  
20 nucleotides encoding a predicted protein of 353 amino acids. The ORF extends from base 121-1180 of SEQ ID NO:3. For *Tribolium*, a contig was assembled of 1292 bases in length, encompassing an ORF of 1050 nucleotides, extending from base 95-1145 of SEQ ID NO:5, and encoding a predicted protein of 350 amino acids. The analysis of another candidate  
25 *Tribolium* p53 clone also generated a second contig of 509 bases in length, encompassing a partial ORF of 509 nucleotides (SEQ ID NO: 7), and encoding a partial protein of 170 amino acids. For *Heliothis*, a contig was assembled of 434 bases in length, encompassing a partial ORF of 434 nucleotides (SEQ ID NO:9), and encoding a partial protein of 145 amino acids.

30 **Example 5: Northern Blot analysis of DMp53**

Northern blot analysis using standard methods was performed using three different poly(A)+ mRNA preparations. 0-12 h embryo, 12-24 h embryo, and adult, which were fractionated on an agarose gel along with size standards and blotted to a nylon membrane. A DNA fragment containing the entire *Drosophila* p53 coding region was excised by

HincII digestion, separated by electrophoresis in an agarose gel, extracted from the gel, and  $^{32}$ P-labeled by random-priming using the Rediprime labeling system (Amersham, Piscataway, NJ). Hybridization of the labeled probe to the mRNA blot was performed overnight. The blot was washed at high stringency (0.2x SSC/0.1% SDS at 65°C) and 5 mRNA species that specifically hybridized to the probe were detected by autoradiography using X-ray film. The results showed a single cross-hybridizing mRNA species of approximately 1.6 kilobases in all three mRNA sources. This data was consistent with the observed sizes of the 5' and 3' RACE products described above.

10 **Example 6: Cytogenetic mapping of the DMp53 gene**

It was of interest to identify the map location of the DMp53 gene in order to determine whether any existing *Drosophila* mutants correspond to mutations in the DMp53 gene, as well as for engineering new mutations within this gene. The cytogenetic location of the DMp53 gene was determined by *in situ* hybridization to polytene chromosomes 15 (Pardue, Meth Cell Biol (1994) 44:333-351) following the protocol outlined below (steps A-C).

(A) Preparation of polytene chromosome squashes: Dissected salivary glands were placed into a drop of 45% acetic acid. Glands were transferred to drop of 1:2:3 mixture of lactic acid: water:acetic acid. Glands were then squashed between a cover slip and a slide 20 and incubated at 4°C overnight. Squashes were frozen in liquid N<sub>2</sub> and the coverslip removed. Slides were then immediately immersed in 70% ethanol for 10 min. and then air dried. Slides were then heat treated for 30 min. at 68°C in 2x SSC buffer. Squashes were then dehydrated by treatment with 70% ethanol for 10 min. followed by 95% ethanol for 5 min.

25 (B) Preparation of a biotinylated hybridization probe: a solution was prepared by mixing: 50  $\mu$ l of 1 M Tris-HCl pH 7.5, 6.35  $\mu$ l of 1 M MgCl<sub>2</sub>, 0.85  $\mu$ l of beta-mercaptoethanol, 0.625  $\mu$ l of 100 mM dATP, 0.625  $\mu$ l of 100 mM dCTP, 0.625  $\mu$ l of 100 mM dGTP, 125  $\mu$ l of 2 M HEPES pH 6.6, and 75  $\mu$ l of 10 mg/ml pd(N)<sub>6</sub> (Pharmacia, Kalamazoo, MI). 10  $\mu$ l of this solution was then mixed with 2  $\mu$ l 10 mg/ml bovine serum albumin, 33  $\mu$ l containing (0.5  $\mu$ g) DMp53 cDNA fragment denatured by quick boiling, 5  $\mu$ l of 1 mM biotin-16-dUTP (Boehringer Mannheim, Indianapolis, IN), and 1  $\mu$ l of Klenow 30 DNA polymerase (2 U) (Boehringer Mannheim). The mixture was incubated at room temperature overnight and the following components were then added: 1  $\mu$ l of 1 mg/ml sonicated denatured salmon sperm DNA, 5.5  $\mu$ l 3 M sodium acetate pH 5.2, and 150  $\mu$ l

ethanol (100%). After mixing the solution was stored at -70°C for 1-2 hr. DNA precipitate was collected by centrifugation in a microcentrifuge and the pellet was washed once in 70% ethanol, dried in a vacuum, dissolved in 50 µl TE buffer, and stored at -20°C.

(C) Hybridization and staining was performed as follows: 20 µl of the probe added  
5 to a hybridization solution (112.5 µl formamide; 25 µl 20x SSC, pH 7.0; 50 µl 50% dextran sulfate; 62.5 µl distilled H<sub>2</sub>O) was placed on the squash. A coverslip (22 mm<sup>2</sup>) was placed on the squash and sealed with rubber cement and placed on the airtight moist chamber overnight at 42°C. Rubber cement was removed by peeling off cement, then coverslip removed in 2x SSC buffer at 37°C. Slides were washed twice 15 min each in 2x SSC buffer  
10 at 37°C. Slides were then washed twice 15 min each in PBS buffer at room temperature. A mixture of the following "Elite" solution was prepared by mixing: 1 ml of PBT buffer (PBS buffer with 0.1% Tween 20), 10 µl of Vectastain A (Vector Laboratories, Burlingame, CA), and 10 µl of Vectastain B (Vector Laboratories). The mixture was then allowed to incubate for 30 min. 50 µl of the Elite solution was added to the slide then drained off. 75 µl of the  
15 Elite solution was added to slide and a coverslip was placed onto the slide. The slide was incubated in moist chamber 1.5-2 hr at 37°C. The coverslip was then removed in PBS buffer, and the slide was washed twice 10 min each in PBS buffer.

A fresh solution of DAB (diaminobenzidine) in PBT buffer was made by mixing  
1 µl of 0.3% hydrogen peroxide with 40 µl 0.5 mg/ml DAB solution. 40 µl of the  
20 DAB/peroxide solution was then placed onto each slide. A coverslip was placed onto the slide and incubated 2 min. Slides were then examined under a phase microscope and reaction was stopped in PBS buffer when signal was determined to be satisfactory. Slides were then rinsed in running H<sub>2</sub>O for 10 min. and air dried. Finally, slides were inspected under a compound microscope to assign a chromosomal location to the hybridization signal.  
25 A single clear region of hybridization was observed on the polytene chromosome squashes which was assigned to cytogenetic bands 94D2-6.

**Example 7: Isolation and sequence analysis of a genomic clone for the DMp53 gene**

PCR was used to generate DNA probes for identification of genomic clones  
30 containing the DMp53 gene. Each reaction (50 µl total volume) contained 100 ng *Drosophila* genomic DNA, 2.5 µM each dNTP, 1.5 mM MgCl<sub>2</sub>, 2 µM of each primer, and 1 µl of TAKARA exTaq DNA polymerase (PanVera Corp., Madison, WI). Reactions were set up with primer pair 5'164 & 3'510 (described above), and thermocycling conditions used were as follows (where 0:00 indicates time in minutes:seconds): initial denaturation of

94°C, 2:00; followed by 10 cycles of 94°C, 0:30, 58°C 0:30, 68°C, 4:00; followed by 20 cycles of 94°C, 0:30, 55°C, 0:30, 68°C, 4:00 + 0:20 per cycle. PCR products were then fractionated by agarose gel electrophoresis, <sup>32</sup>P-labeled by nick translation, and hybridized to nylon membranes containing high-density arrayed P1 clones from the Berkeley Drosophila Genome Project (University of California, Berkeley, and purchased from Genome Systems, Inc., St. Louis, MO). Four positive P1 clones were identified: DS01201, DS02942, DS05102, and DS06254, and each clone was verified using a PCR assay with the primer pair described above. To prepare DNA for sequencing, *E. coli* containing each P1 clone was streaked to single colonies on LB agar plates containing 25 µg/ml kanamycin, and grown overnight at 37°C. Well-separated colonies for each P1 clone were picked and used to inoculate 250 ml LB medium containing 25 µg/ml kanamycin and cultures were grown for 16 hours at 37°C with shaking. Bacterial cells were collected by centrifugation, and DNA purified with a Qiagen Maxi-Prep System kit (QIAGEN, Inc., Valencia, California). Genomic DNA sequence from the P1 clones was obtained using a strategy that combined shotgun and directed sequencing of a small insert plasmid DNA library derived from the P1 clone DNAs (Ruddy *et al.* Genome Research (1997) 7:441-456). All DNA sequencing and analysis were performed as described before, and P1 sequence contigs were analyzed using the BLAST sequence homology searching programs to identify those that contained the DMp53 gene or other coding regions. This analysis demonstrated that the DMp53 gene was divided into 8 exons and 7 introns. In addition, the BLAST analysis indicated the presence of two additional genes that flank the DMp53 gene; one exhibited homology to a human gene implicated in nephropathic cystinosis (labeled CTNS-like gene) and the second gene exhibited homology to a large family of oxidoreductases. Thus, we could operationally define the limits of the DMp53 gene as an 8,805 bp corresponding to the DNA region lying between the putative CTNS-like and oxidoreductase-like genes.

#### Example 8: Analysis of p53 Nucleic Acid Sequences

Upon completion of cloning, the sequences were analyzed using the Pfam and Prosite programs, and by visual analysis and comparison with other p53 sequences. Regions of cDNA encoding the various domains of SEQ ID Nos 1-6 are depicted in Table I above. Additionally, Pfam predicted p53 similarity regions for the partial TRIB-Bp53 at amino acid residues 118-165 (SEQ ID NO:8) encoded by nucleotides 354-495 (SEQ ID NO:7), and for the partial HELIOp53 at amino acid residues 105-138 (SEQ ID NO:10) encoded by nucleotides 315-414 (SEQ ID NO:9).

Nucleotide and amino acid sequences for each of the p53 nucleic acid sequences and their encoded proteins were searched against all available nucleotide and amino acid sequences in the public databases, using BLAST (Altschul *et al.*, *supra*). Tables 2-6 below summarize the results. The 5 most similar sequences are listed for each p53 gene.

5

TABLE 2 - DMp53

| <b>DNA BLAST of SEQ ID NO:1</b> |                                                                                                                                                                       |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>GI#</b>                      | <b>DESCRIPTION</b>                                                                                                                                                    |
| 6664917=C019980                 | <i>Drosophila melanogaster</i> , *** SEQUENCING IN PROGRESS ***, in ordered pieces                                                                                    |
| 5670489=AC008200                | <i>Drosophila melanogaster</i> chromosome 3 clone BACR17P04 (D757) RPCI-98 17.P.4 map 94D-94E strain y; cn bw sp, *** SEQUENCING IN PROGRESS***, 70 unordered pieces. |
| 4419483=AI516383                | <i>Drosophila melanogaster</i> cDNA clone LD42237 5prime, mRNA sequence                                                                                               |
| 4420516=AI517416                | <i>Drosophila melanogaster</i> cDNA clone GH28349 5prime, mRNA sequence                                                                                               |
| 4419333=AI516233                | <i>Drosophila melanogaster</i> cDNA clone LD42031 5prime, mRNA sequence                                                                                               |

  

| <b>PROTEIN BLAST of SEQ ID NO:2</b> |                                                        |
|-------------------------------------|--------------------------------------------------------|
| <b>GI#</b>                          | <b>DESCRIPTION</b>                                     |
| 1244764= AA98564                    | p53 tumor suppressor homolog [ <i>Loligo forbesi</i> ] |
| 1244762= AA98563                    | p53 tumor suppressor homolog [ <i>Loligo forbesi</i> ] |
| 2828704= AC31133                    | tumor protein p53 [ <i>Xiphophorus helleri</i> ]       |
| 2828706= AC31134                    | tumor protein p53 [ <i>Xiphophorus maculatus</i> ]     |
| 3695098= AC62643                    | DN p63 beta [ <i>Mus musculus</i> ]                    |

TABLE 3 - CPBp53

| <b>DNA BLAST of SEQ ID NO:3</b> |                                                                                                |
|---------------------------------|------------------------------------------------------------------------------------------------|
| <b>GI#</b>                      | <b>DESCRIPTION</b>                                                                             |
| 6468070= AC008132               | <i>Homo sapiens</i> , complete sequence Chromosome 22q11 PAC Clone pac995o6 In CES-DGCR Region |
| 4493931= AL034556               | <i>Plasmodium falciparum</i> MAL3P5, complete sequence                                         |
| 3738114= AC004617               | <i>Homo sapiens</i> chromosome Y, clone 264,M.20, complete sequence                            |
| 4150930= AC005083               | <i>Homo sapiens</i> BAC clone CTA-281G5 from 7p15-p21, complete sequence                       |
| 4006838= AC006079               | <i>Homo sapiens</i> chromosome 17, clone hRPK.855_D_21, complete sequence                      |

  

| <b>PROTEIN BLAST of SEQ ID NO:4</b> |                                                        |
|-------------------------------------|--------------------------------------------------------|
| <b>GI#</b>                          | <b>DESCRIPTION</b>                                     |
| 1244764= AA98564                    | p53 tumor suppressor homolog [ <i>Loligo forbesi</i> ] |
| 1244762= AA98563                    | p53 tumor suppressor homolog [ <i>Loligo forbesi</i> ] |
| 4530686=AA03817                     | unnamed protein product [ <i>unidentified</i> ]        |

|                  |                                                      |
|------------------|------------------------------------------------------|
| 4803651=CAA72225 | P73 splice variant [ <i>Cercopithecus aethiops</i> ] |
| 2370177=CAA72219 | first splice variant [ <i>Homo sapiens</i> ]         |

TABLE 4 – TRIB-Ap53

| <b>DNA BLAST of SEQ ID NO:5</b>     |                                                                                                     |
|-------------------------------------|-----------------------------------------------------------------------------------------------------|
| <b>GI#</b>                          | <b>DESCRIPTION</b>                                                                                  |
| 5877734=AW024204                    | wv01h01.x1 NCI_CGAP_Kid3 <i>Homo sapiens</i> cDNA clone IMAGE:2528305 3' mRNA sequence              |
| 16555=X65053                        | <i>A.thaliana</i> mRNA for eukaryotic translation initiation factor 4A-2                            |
| 6072079=AW101398                    | sd79d06.y1 Gm-c1009 Glycine max cDNA clone GENOME SYSTEMS CLONE ID: Gm-c1009-612 5', mRNA sequence  |
| 6070492=AW099879                    | sd17g11.y2 Gm-c1012 Glycine max cDNA clone GENOME SYSTEMS CLONE ID: Gm-c1012-2013 5', mRNA sequence |
| 4105775=AF049919                    | <i>Petunia x hybrida</i> PGP35 (PGP35) mRNA. complete cds.                                          |
| <b>PROTEIN BLAST of SEQ ID NO:6</b> |                                                                                                     |
| <b>GI#</b>                          | <b>DESCRIPTION</b>                                                                                  |
| 1244764=AAA98564                    | p53 tumor suppressor homolog [ <i>Loligo forbesi</i> ]                                              |
| 3273745=AAC24830                    | p53 homolog [ <i>Homo sapiens</i> ]                                                                 |
| 1244762=AAA98563                    | p53 tumor suppressor homolog [ <i>Loligo forbesi</i> ]                                              |
| 3695096=AAC62642                    | N p63 gamma [ <i>Mus musculus</i> ]                                                                 |
| 3695080=AAC62634                    | DN p63 gamma [ <i>Homo sapiens</i> ]                                                                |

5

TABLE 5 – TRIB-Bp53

| <b>DNA BLAST of SEQ ID NO:7</b>     |                                                      |
|-------------------------------------|------------------------------------------------------|
| <b>GI#</b>                          | <b>DESCRIPTION</b>                                   |
| 4689085=AF043641                    | <i>Barbus barbus</i> p73 mRNA. complete cds          |
| 4530689=A64588                      | Sequence 7 from Patent WO9728186                     |
| N/A                                 | No further homologies                                |
| <b>PROTEIN BLAST of SEQ ID NO:8</b> |                                                      |
| <b>GI#</b>                          | <b>DESCRIPTION</b>                                   |
| 4689086=AAD27752                    | p73 [ <i>Barbus barbus</i> ]                         |
| 4530686=CAA03817                    | unnamed protein product [unidentified]               |
| 4803651=CAA72225                    | P73 splice variant [ <i>Cercopithecus aethiops</i> ] |
| 4530690=CAA03819                    | unnamed protein product [unidentified]               |
| 4530684=CAA03816                    | unnamed protein product [unidentified]               |

TABLE 6 – HELIO p53

| <b>DNA BLAST of SEQ ID NO:9</b> |                     |
|---------------------------------|---------------------|
| <b>GI#</b>                      | <b>DESCRIPTION</b>  |
| N/A                             | No homologies found |

| PROTEIN BLAST of SEQ ID NO:10 |                                                  |
|-------------------------------|--------------------------------------------------|
| GI#                           | DESCRIPTION                                      |
| 2781308= 1YCSA                | Chain A, p53-53bp2 Complex                       |
| 1310770= 1TSRA                | Chain A, p53 Core Domain In Complex With Dna     |
| 1310771= 1TSRB                | Chain B, p53 Core Domain In Complex With Dna     |
| 1310772= 1TSRC                | Chain C, p53 Core Domain In Complex With Dna     |
| 1310960= 1TUPA                | Chain A, Tumor Suppressor p53 Complexed With Dna |

BLAST analysis using each of the p53 amino acid sequences to find the number of amino acid residues as the shortest stretch of contiguous novel amino acids with respect to published sequences indicate the following: 7 amino acid residues for DMp53 and for 5 TRIB-Ap53, 6 amino acid residues for CPBp53, and 5 amino acid residues for TRIB-Bp53 and HELIOP53.

BLAST results for each of the p53 amino acid sequences to find the number of amino acid residues as the shortest stretch of contiguous amino acids for which there are no sequences contained within public database sharing 100% sequence similarity indicate the 10 following: 9 amino acid residues for DMp53, CPBp5, TRIB-Ap53, and TRIB-Bp53, and 6 amino acid residues for HELIOP53.

#### Example 9: *Drosophila* genetics

Fly culture and crosses were performed according to standard procedures at 22-25°C 15 (Ashburner, *supra*). GI-DMp53 overexpression constructs were made by cloning a BclI HincII fragment spanning the DMp53 open reading frame into a vector (pExPress) containing glass multiple repeats upstream of a minimal heat shock promoter. The pExPress vector is an adapted version of the pGMR vector (Hay *et al.*, Development (1994) 120:2121-2129) which contains an alpha tubulin 3' UTR for increased protein stabilization 20 and a modified multiple cloning site. Standard P-element mediated germ line transformation was used to generate transgenic lines containing these constructs (Rubin and Spradling, *supra*). For X-irradiation experiments, third instar larvae in vials were exposed to 4,000 Rads of X-rays using a Faxitron X-ray cabinet system (Wheeling, IL).

25 Example 10: Whole-mount RNA *in situ* hybridization, TUNEL, and Immunocytochemistry

*In situ* hybridization was performed using standard methods (Tautz and Pfeifle, Chromosoma (1989) 98:81-85). DMp53 anti-sense RNA probe was generated by digesting DMp53 cDNA with EcoRI and transcribing with T7 RNA polymerase. For

immunocytochemistry, third instar larval eye and wing discs were dissected in PBS, fixed in 2% formaldehyde for 30 minutes at room temperature, permeabilized in PBS+0.5% Triton for 15 minutes at room temperature, blocked in PBS+5% goat serum, and incubated with primary antibody for two hours at room temperature or overnight at 4°C. Anti-phospho-histone staining used Anti-phospho-histone H3 Mitosis Marker (Upstate Biotechnology, Lake Placid, NY) at a 1:500 dilution. Anti-DMp53 monoclonal antibody staining used hybridoma supernatant diluted 1:2. Goat anti-mouse or anti-rabbit secondary antibodies conjugated to FITC or Texas Red (Jackson Immunoresearch, West Grove, PA) were used at a 1:200 dilution. Antibodies were diluted in PBS+5% goat serum. TUNEL assay was performed by using the Apoptag Direct kit (Oncor, Gaithersburg, MD) per manufacturer's protocol with a 0.5% Triton/PBS permeabilization step. Discs were mounted in anti-fade reagent (Molecular Probes, Eugene, OR) and images were obtained on a Leica confocal microscope. BrDU staining was performed as described (de Nooij *et al.*, Cell. (1996)87(7):1237-1247) and images were obtained on an Axioplan microscope (Zeiss, Thornwood, NY).

#### **Example 11: Generation of anti-DMp53 antibodies**

Anti-DMp53 rabbit polyclonal (Josman Labs, Napa, CA) and mouse monoclonal antibodies (Antibody Solutions Inc., Palo Alto, CA) were generated by standard methods using a full-length DMp53 protein fused to glutathione-S-transferase (GST-DMp53) as antigen. Inclusion bodies of GST-DMp53 were purified by centrifugation using B-PER buffer (Pierce, Rockford, IL) and injected subcutaneously into rabbits and mice for immunization. The final boost for mouse monoclonal antibody production used intravenous injection of soluble GST-DMp53 produced by solubilization of GST-DMp53 in 6M GuHCl and dialysis into phosphate buffer containing 1M NaCl. Hybridoma supernatants were screened by ELISA using a soluble 6XHIS-tagged DMp53 protein bound to Ni-NTA coated plates (Qiagen, Valencia, CA) and an anti-mouse IgG Fc-fragment specific secondary antibody.

#### **Example 12: Functional analysis**

The goal of this series of experiments was to compare and contrast the functions of the insect p53s to those of the human p53. The DMp53 was chosen to carry out this set of experiments, although any of the other insect p53s could be used as well.

#### **p53 involvement in the cell death pathway**

To determine whether DMp53 can serve the same functions in vivo as human p53, DMp53 was ectopically expressed in *Drosophila* larval eye discs using *glass*-responsive enhancer elements. The *glass*-DMp53 (gl-DMp53) transgene expresses DMp53 in all cells posterior to the morphogenetic furrow. During eye development, the morphogenetic furrow 5 sweeps from the posterior to the anterior of the eye disc. Thus, gl-DMp53 larvae express DMp53 in a field of cells which expands from the posterior to the anterior of the eye disc during larval development.

Adult flies carrying the gl-DMp53 transgene were viable but had small, rough eyes with fused ommatidia (any of the numerous elements of the compound eye). TUNEL 10 staining of gl-DMp53 eye discs showed that this phenotype was due, at least in part, to widespread apoptosis in cells expressing DMp53. Results were confirmed by the detection of apoptotic cells with acridine orange and Nile Blue. TUNEL-positive cells appeared within 15-25 cell diameters of the furrow. Given that the furrow moves approximately 10 cell diameters per hour, this indicated that the cells became apoptotic 2-3 hours after 15 DMp53 was expressed. Surprisingly, co-expression of the baculovirus cell death inhibitor p35 did not block the cell death induced by DMp53 (Miller, J Cell Physiol (1997) 173(2):178-182; Ohtsubo *et al.*, Nippon Rinsho (1996) 54(7):1907-1911). However, 20 DMp53-induced apoptosis and the rough-eye phenotype in gl-DMp53 flies could be suppressed by co-expression of the human cyclin-dependent-kinase inhibitor p21. Because p21 overexpression blocks cells in the G1 phase of the cell cycle, this finding suggests that transit through the cell cycle sensitizes cells to DMp53-induced apoptosis. A similar effect 25 of p21 overexpression on human p53-induced apoptosis has been described.

#### **p53 involvement in the cell cycle**

In addition to its ability to affect cell death pathways, mammalian p53 can induce 25 cell cycle arrest at the G1 and G2/M checkpoints. In the *Drosophila* eye disc, the second mitotic wave is a synchronous, final wave of cell division posterior to the morphogenetic furrow. This unique aspect of development provides a means to assay for similar effects of DMp53 on the cell. The transition of cells from G1 to S phase can be detected by BrdU incorporation. Eye discs dissected from wild-type third instar larvae displayed a tight band 30 of BrdU-staining cells corresponding to DNA replication in the cells of the second mitotic wave. This transition from G1 to S phase was unaffected by DMp53 overexpression from the gl-DMp53 transgene. In contrast, expression of human p21 or a *Drosophila* homologue, dacapo (de Nooij *et al.*, Cell (1996) 87(7):1237-1247; Lane *et al.*, Cell (1996) 87(7):1225-1235), under control of *glass*-responsive enhancer elements completely blocked DNA

replication in the second mitotic wave. In mammalian cells, p53 induces a cell cycle block in G1 through transcriptional activation of the p21 gene. These results suggest that this function is not conserved in DMp53.

In wild-type eye discs, the second mitotic wave typically forms a distinct band of 5 cells that stain with an anti-phospho-histone antibody. In *gl*-DMp53 larval eye discs, this band of cells was significantly broader and more diffuse, suggesting that DMp53 alters the entry into and/or duration of M phase.

#### **p53 response to DNA damage**

The following experiments were performed to determine whether loss of DMp53 10 function affected apoptosis or cell cycle arrest in response to DNA damage.

In order to examine the phenotype of tissues deficient in DMp53 function, dominant-negative alleles of DMp53 were generated. These mutations are analogous to the R175H (R155H in DMp53) and H179N (H159N in DMp53) mutations in human p53. 15 These mutations in human p53 act as dominant-negative alleles, presumably because they cannot bind DNA but retain a functional tetramerization domain. Co-expression of DMp53 R155H with wild-type DMp53 suppressed the rough eye phenotype that normally results from wild type DMp53 overexpression, confirming that this mutant acts as a dominant-negative allele *in vivo*. Unlike wild type DMp53, overexpression of DMp53 R155H or 20 H159N using the *glass* enhancer did not produce a visible phenotype, although subtle alterations in the bristles of the eye were revealed by scanning electron microscopy.

In mammalian systems, p53-induced apoptosis plays a crucial role in preventing the propagation of damaged DNA. DNA damage also leads to apoptosis in *Drosophila*. To determine if this response requires the action of DMp53, dominant-negative DMp53 was expressed in the posterior compartment of the wing disc. Following X-irradiation, wing 25 discs were dissected. TUNEL staining revealed apoptotic cells and anti-DMp53 antibody revealed the expression pattern of dominant-negative DMp53. Four hours after X-irradiation, wild type third instar larval wing discs showed widespread apoptosis. When the dominant-negative allele of DMp53 was expressed in the posterior compartment of the wing disc, apoptosis was blocked in the cells expressing DMp53. Thus, induction of 30 apoptosis following X-irradiation requires the function of DMp53. This pro-apoptotic role for DMp53 appears to be limited to a specific response to cellular damage, because developmentally programmed cell death in the eye and other tissues is unaffected by expression of either dominant-negative DMp53 allele. The requirement for DMp53 in the

apoptotic response to X-irradiation suggests that DMp53 may be activated by DNA damage. In mammals, p53 is activated primarily by stabilization of p53 protein.

Although DMp53 function is required for X-ray induced apoptosis, it does not appear to be necessary for the cell cycle arrest induced by the same dose of irradiation. In 5 the absence of irradiation, a random pattern of mitosis was observed in 3rd instar wing discs of *Drosophila*. Upon irradiation, a cell cycle block occurred in wild-type discs as evidenced by a significant decrease in anti-phospho-histone staining. The cell cycle block was unaffected by expression of dominant-negative DMp53 in the posterior of the wing disc. Several time points after X-irradiation were examined and all gave similar results, 10 suggesting that both the onset and maintenance of the X-ray induced cell cycle arrest is independent of DMp53.

#### **p53 in normal development**

Similar to p53 in mice, DMp53 does not appear to be required for development because widespread expression of dominant-negative DMp53 in *Drosophila* had no 15 significant effects on appearance, viability, or fertility. Interestingly, *in situ* hybridization of developing embryos revealed widespread early embryonic expression that became restricted to primordial germ cells in later embryonic stages. This expression pattern may indicate a crucial role for DMp53 in protecting the germ line, similar to the proposed role of mammalian p53 in protection against teratogens.

20

#### **Example 13: p53 RNAi experiments in cell culture**

Stable *Drosophila* S2 cell lines expressing hemagglutinin epitope (HA) tagged p53, or vector control under the inducible metallothionein promoter were produced by transfection using pMT/V5-His (Invitrogen, Carlsbad, CA). Induction of DMp53 25 expression by addition of copper to the medium resulted in cell death via apoptosis. Apoptosis was measured by three different methods: a cell proliferation assay; FACS analysis of the cell population in which dead cells were detected by their contracted nuclei; and a DNA ladder assay. The ability to use RNAi in S2 cell lines allowed p53 regulation and function to be explored using this inducible cell-based p53 expression system.

30

**Preparation of the dsRNA template:** PCR primers containing an upstream T7 RNA polymerase binding site and downstream DMp53 gene sequences were designed such that sequences extending from nucleotides 128 to 1138 of the DMp53 cDNA sequence (SEQ ID NO:1) could be amplified in a manner that would allow the generation of a

DMp53-derived dsRNA. PCR reactions were performed using EXPAND High Fidelity (Boehringer Mannheim, Indianapolis, IN) and the products were then purified.

DMp53 RNA was generated from the PCR template using the Promega Large Scale RNA Production System (Madison, WI) following manufacturer's protocols. Ethanol precipitation of RNA was performed and the RNA was annealed by a first incubation at 68°C for 10 min, followed by a second incubation at 37°C for 30 min. The resulting dsRNA was stored at -80°C.

**RNAi experiment in tissue culture:** RNAi was performed essentially as described previously (<http://dixonlab.biochem.med.umich.edu/protocols/RNAiExperiments.html>). On day 1, cultures of Drosophila S2 cells were obtained that expressed pMT-HA-DMp53 expression plasmid and either 15 µg of DMp53 dsRNA or no RNA was added to the medium. On the second day, CuSO<sub>4</sub> was added to final concentrations of either 0, 7, 70 or 700 µM to all cultures. On the fourth day, an alamarBlue (Alamar Biosciences Inc., Sacramento, CA) staining assay was performed to measure the number of live cells in each culture, by measuring fluorescence at 590 nm.

At 7µM CuSO<sub>4</sub>, there was no change in cell number from 0 µM CuSO<sub>4</sub> for RNAi treated or untreated cells. At 70 µM CuSO<sub>4</sub>, there was no change in cell number from 0 µM CuSO<sub>4</sub> for the RNAi-treated category. However, the number of cells that were not treated with RNAi dropped by 30%. At 700 µM CuSO<sub>4</sub>, the number of cells that were treated with RNAi dropped by 30% (as compared with 0µM CuSO<sub>4</sub>), while the number of cells that were not treated with RNAi dropped by 70%.

These experiments showed that p53 dsRNA rescued at least 70% of the cells in the p53 inducible category, since some cell loss might be attributable to copper toxicity. Results of these experiments demonstrate that DMp53 dsRNA rescues cells from apoptosis caused by inducing DMp53 overexpression. Thus, this experimental cell-based system represents a defined and unique way to study the mechanisms of p53 function and regulation.

## WHAT IS CLAIMED IS:

1. An isolated nucleic acid molecule comprising a nucleic acid sequence selected from the group consisting of:
  - 5 (a) a nucleic acid sequence that encodes a polypeptide comprising at least 7 contiguous amino acids of any one of SEQ ID NOS 4, 6, 8, and 10;
  - (b) a nucleic acid sequence that encodes a polypeptide comprising at least 7 contiguous amino acids of SEQ ID NO:2, wherein the isolated nucleic acid molecule is less than 15kb in size;
- 10 (c) a nucleic acid sequence that encodes a polypeptide comprising at least 9 contiguous amino acids that share 100% sequence similarity with 9 contiguous amino acids of any one of SEQ ID NOS 4, 6, 8, and 10;
- (d) a nucleic acid sequence that encodes a polypeptide comprising at least 9 contiguous amino acids that share 100% sequence similarity with 9 contiguous amino acids of SEQ ID NO 2; wherein the isolated nucleic acid molecule is less than 15kb in size;
- 15 (e) at least 20 contiguous nucleotides of any of nucleotides 1-111 of SEQ ID NO:1, 1-120 of SEQ ID NO:3, 1-93 of SEQ ID NO:5, and 1-1225 of SEQ ID NO:18;
- (f) a nucleic acid sequence that encodes a polypeptide comprising an amino acid sequence having at least 80% sequence similarity with a sequence selected from the group consisting of SEQ ID NO:20 and SEQ ID NO:22; and
- 20 (g) the complement of the nucleic acid of any of (a)-(f).

2. The isolated nucleic acid molecule of Claim 1 that is RNA.
- 25 3. The isolated nucleic acid molecule of Claim 1 wherein the nucleic acid sequence has at least 50% sequence identity with a sequence selected from the group consisting of any of SEQ ID NOS:1, 3, 5, 7, 9, 18, 19 and 21.
- 30 4. The isolated nucleic acid molecule of Claim 1 wherein the nucleic acid sequence encodes a polypeptide comprising an amino acid sequence selected from the group consisting of: RICSCPKRD, KICSCPKRD, RVCSCPKRD, KVCSCPKRD, RICTCPKRD, KICTCPKRD, RVCTCPKRD, KVCTCPKRD, FXCKNSC and FXCQNSC, wherein X is any amino acid.

5. The isolated nucleic acid molecule of Claim 1 wherein the nucleic acid sequence encodes at least 17 contiguous amino acids of any of SEQ ID NOs 2, 4, 6, 8, and 10.
- 5 6. The isolated nucleic acid molecule of Claim 1 wherein the nucleic acid sequence encodes a polypeptide comprising at least 19 amino acids that share 100% sequence similarity with 19 amino acids of any of SEQ ID NOs 2, 4, 6, 8, and 10.
- 10 7. The isolated nucleic acid molecule of Claim 1 wherein the nucleic acid sequence encodes a polypeptide having at least 50% sequence identity with any of SEQ ID NOs 2, 4, 6, 8, and 10.
- 15 8. The isolated nucleic acid molecule of Claim 1 wherein the nucleic acid sequence encodes at least one p53 domain selected from the group consisting of an activation domain, a DNA binding domain, a linker domain, an oligomerization domain, and a basic regulatory domain.
- 20 9. The isolated nucleic acid molecule of Claim 1 wherein the nucleic acid sequence encodes a constitutively active p53.
10. The isolated nucleic acid molecule of Claim 1 wherein the nucleic acid sequence encodes a dominant negative p53.
- 25 11. A vector comprising the nucleic acid molecule of Claim 1.
12. A host cell comprising the vector of Claim 11.
- 30 13. A process for producing a p53 polypeptide comprising culturing the host cell of Claim 8 under conditions suitable for expression of the p53 polypeptide and recovering the polypeptide.
14. A purified polypeptide comprising an amino acid sequence selected from the group consisting of:
  - a) at least 7 contiguous amino acids of any one of SEQ ID NOs 2, 4, 6, 8, and 10;

- b) at least 9 contiguous amino acids that share 100% sequence similarity with at least 9 contiguous amino acids of any one of SEQ ID NOs 2, 4, 6, 8, and 10; and
- c) at least 10 contiguous amino acids of a sequence selected from the group consisting of SEQ ID NO:20 and SEQ ID NO:22.

5

- 15. The purified polypeptide of Claim 14 wherein the amino acid sequence is selected from the group consisting of RICSCPKRD, KICSCPKRD, RVCSCPKRD, KVCSCPKRD, RICTCPKRD, KICTCPKRD, RVCTCPKRD, KVCTCPKRD, FXCKNSC and FXCQNSC, wherein X is any amino acid.
- 10 16. The purified polypeptide of Claim 14 wherein the amino acid sequence has at least 50% sequence similarity with a sequence selected from the group consisting of SEQ ID NOs 2, 4, 6, 8, and 10.
- 15 17. A method for detecting a candidate compound or molecule that modulates p53 activity said method comprising contacting a p53 polypeptide, or a nucleic acid encoding the p53 polypeptide, with one or more candidate compounds or molecules, and detecting any interaction between the candidate compound or molecule and the p53 polypeptide or nucleic acid; wherein the p53 polypeptide comprises an amino acid sequence selected from the group consisting of:
  - a) at least 7 contiguous amino acids of any one of SEQ ID NOs 2, 4, 6, 8, and 10; and
  - b) at least 9 contiguous amino acids that share 100% sequence similarity with at least 9 contiguous amino acids of any one of SEQ ID NOs 2, 4, 6, 8, and 10.
- 20 25 18. The method of Claim 17 wherein the candidate compound or molecule is a putative pharmaceutical agent.
- 19. The method of Claim 17 wherein the contacting comprises administering the candidate compound or molecule to cultured host cells that have been genetically engineered to express the p53 protein.

20. The method of Claim 17 wherein the contacting comprises administering the candidate compound or molecule to an insect has been genetically engineered to express the p53 protein.
- 5      21. The method of Claim 20 wherein the candidate compound is a putative pesticide.
22. A first insect that has been genetically modified to express or mis-express a p53 protein, or the progeny of the insect that has inherited the p53 protein expression or mis-expression, wherein the p53 protein comprises an amino acid sequence selected from the group consisting of:
  - 10      a) at least 7 contiguous amino acids of any one of SEQ ID NOs 2, 4, 6, 8, and 10; and
  - b) at least 9 contiguous amino acids that share 100% sequence similarity with at least 9 contiguous amino acids of any one of SEQ ID NOs 2, 4, 6, 8, and 10.
- 15      23. The insect of Claim 22 wherein said insect is *Drosophila* that has been genetically modified to express a dominant negative p53 having a mutation selected from the group consisting of R155H, H159N, and R266T.
- 20      24. A method for studying p53 activity comprising detecting the phenotype caused by the expression or mis-expression of the p53 protein in the first insect of Claim 22.
- 25      25. The method of Claim 24 additionally comprising observing a second insect having the same genetic modification as the first insect which causes the expression or mis-expression of the p53 protein, and wherein the second animal additionally comprises a mutation in a gene of interest, wherein differences, if any, between the phenotype of the first animal and the phenotype of the second animal identifies the gene of interest as capable of modifying the function of the gene encoding the p53 protein.
- 30      26. The method of Claim 24 additionally comprising administering one or more candidate compounds or molecules to the insect or its progeny and observing any changes in p53 activity of the insect or its progeny.

27. A method of modulating p53 activity comprising contacting an insect cell with the isolated nucleic acid molecule of claim 1, wherein the isolated nucleic acid molecule is dsRNA derived from a coding region of a nucleic acid sequence selected from the group consisting of SEQ ID NO:1, 3, 5, 7, and 9.

5

28. The method of Claim 27 wherein cultured insect cells are contacted with the dsRNA and apoptosis of the cultured cells is assayed.

## Fig. 1A

Human\_p53    EEEPOS DPSV EPPLS QETTS DDIW RLPE PENNY-----LSP--LPSQAMD  
 Xeno\_p53    EE-PSS SBTGMDP QETT DLSL P-D-----PLQTVT  
 Squid\_p53    ESO CTS-----PNBQ ET PNL DSE EGD-----PLQTVT  
 CPB\_p53    ES-BQS D-----PLPPD YVONFLAE MEGD-----NMNDLN  
 Trib\_p53A    ES-QQS-----QPSDI IPDV KFEDR-----GLKDDV  
 Trib\_p53B    -----  
 Helio\_p53    -----  
 Dros\_p53    EVISQ P-----MSWHKE SSTDSE DSDSTE VDIK-----EDIPKTV  
 consensus    m    q s    et    1    1e    1    1  
 Human\_p53    DLML SPEDDI-----EQWFTEDPGPDEAFPRMPEAAPRV-----APAPAAPPTPAAPAPAESW  
 Xeno\_p53    CRLDNLS-----EFDPYPLAADMT-----VLEQEGLMGNAVPVT-----  
 Squid\_p53    YRIAQ PDPYGRSESYDLLNPINQI PAPMPIADTQN NPLVNHC PYEDMPVSSTPYSPHDH  
 CPB\_p53    FFKDEPT-----LNDLNSNLL-----SIVANDDSKEMVHLIFEG-----  
 Trib\_p53A    GRIMHEN-----NVHLVNDDGE-----EEKYSNEANYTESI FPP-----  
 Trib\_p53B    RQYKPD-----FSHTFHPIICSIFOLEDFFKENINQSSYLSAPIFPP-----  
 Helio\_p53    -----  
 Dros\_p53    EVSGSELT-----TEPMAFLQQLGNSGN-----LMQFSQSQSVLREMMLQDI  
 consensus    m    p    a    et    v    p  
 Human\_p53    PL--SSSVESQKTYQGSYGERRLGFLH-SGTAKSVTCTYSPATENKMFQOLAKTCPVQLWVD  
 Xeno\_p53    ----SCAVP STDDYAGKXGLQDFQQ-NGTAKSVTCTYSPATENKLFQOLAKTCPLLYRVE  
 Squid\_p53    VQSPQPSVPSNIKYPCEYVEEMSPAQPSKETKSTTWYSEKLKLYVREATTCPVRFKTA  
 CPB\_p53    ---VQTBSVPSNDEXYDGPYEEFEDVHP-----TVAKNSWVYSTTENKVYMTGSPFPVDFRTS  
 Trib\_p53A    ---DQPTNLGTEEYGPFPNFNSVLI SP-----NEOKSPWEEYSEKLNKIEIGINVKFVYAFSVQ  
 Trib\_p53B    ---SEPLELCNTYEPGPFLNFEVYDP-----NVLNKPMEYSPILNKIXIDMKHKFPINE SVK  
 Helio\_p53    -----  
 Dros\_p53    QIQANTLPKLENHNIGGCECSMVLDE-----PKRSLSWMSIPLANKLYIRWNAKAENVNDVQFR  
 consensus    q    svpsq    dy g y f    1    v    k    tw    ys    lkmyv    ma    fpv    f    v  
 Human\_p53    STEP--PGTRVRYAMA IYKQSQHMTETVYRRCPHHERCSD-----SDGLAPPPOHLERVEEGNLR  
 Xeno\_p53    SPBP--RGSLRATAVYKKSEHVAEUVKRCPHHERCSD-----GEDAAPPSPHLARVEGNLR  
 Squid\_p53    RPPP--SGCOIRAMPYMKPEHVOEVVKRCPNHATAKEH-----NEKHPAPLHVRCSEHKL  
 CPB\_p53    HRPP--NPFPIRSTSPVYSAQPQAEQCVYRCLNHEFSHKES-S-DGLKEHRPHIRCHANOA  
 Trib\_p53A    NRPOQNLPLYIYRATPVFSTOHOEDLVHRCVGHEHPODOS-NKGVAPHIFQIHIRCTNDNA  
 Trib\_p53B    KADEERFLVRSEPMFEEDRYVQELVHRCICHEBOLTDT-NHNVSEMYAOHIIIRCDDNNNA  
 Helio\_p53    YOKA-PHMVFURSEVFSDETQAEKVERCVRQFHSSREI GTQG  
 Dros\_p53    SKMFIQPPNLRLVLCFSND-VASAPVYRCNHLSSVEPLT--ANNAKMRESSLRSENPNs  
 consensus    pp    lfvratppv s    nvgevv    rcinhe    d    s    d    i    hirccenna  
 Human\_p53    VEYLDDRN-----F RHHVVVPPYEP-----PEVGS DCTTIIHYNM CNSSCMG-GMNRRREPLTI  
 Xeno\_p53    AYMEEDVNS-----GRHSVCVUPHEM-----G MNRRREPLTI  
 Squid\_p53    AKYBEDKYS-----GROSVEIPHEM-----G MNRRREPLTI  
 CPB\_p53    AYLGDKSKN-----ERLSVVI PFGI-----PQAGCSEWVWNLQEFMLGSCV G-GMNRRREPLTI  
 Trib\_p53A    LYFGDDKNTG-----TRLNTVPLAH-----PQGTGESVREI FEVCKNSCP SPGMNRRREPLTI  
 Trib\_p53B    QYEGDDKRNAG-----KRLS-----PQVGEDVVKEFFQEVCKNSCP L-GMNRRREPLTI  
 Helio\_p53    WYICGG\_VDM-----ADSWISVLF-----MRTSSESCASHAQFSCKNSCAT-GINRRAFAIT  
 Dros\_p53    VYCGNAQGKGISEFSSVUVUNMSRSVTQRLFLAE-----RKE TSLV  
 consensus    vyydk    t svvp e    pq gse    t ynfm nscmg gmnrrri 11

2/2

Fig. 1 B

ITLEDSSGNLLGRNSFEVRVCACPGRDRTEE--NLREKG---EPHHELPGSTKRALP  
 ITLETPOQLLIGRCPEVRVCACPGRDRTEED--NYTKK---RGLKESG--KRELA  
 FTLEK-DNOYLGRRAEVRIACAPGRDRKADEFASLVSK---PPSPKKNGFPQRSLV  
 FTLEDNQGTIVGRATENVRICSCPKRDKEKDONTANT---NLFHG-KKRKME  
 FTLEDNQKGEFGRRLGURVCSCKRDKEER--DMEA---VEPRRKKRKG  
 ECLEKACCDIVGHVTHUKICTGEKEDDIQDERQQLNSKRRKSVPAAEDEPSKVRCIA  
 ffiled g 119r v vrvc cp rdx eek k p g k r 1  
  
 NNTSSSP-QPKK---KPLDGEYFTLQIRGREREMFRELNEA[ELKDAQAG---  
 Xeno\_p53 HPPSSEPPPLPKRLVVDDDEEIFTLRIKGRSRYEMIKKLNDAAELOESLDQQ---  
 Squid\_p53 LTNDITKITTPKK---RKIDDECFTLKVRGRENEYILCKLRDIMEALARIPAERILLYQK  
 CPB\_p53 KPSKKPMOTQAE---NDTRKEFTLTIPLYGRHNEQNVLKYCHD[MAZEILRN---  
 Trib\_p53 A NDERRVVFQGSS---DNRIFALNIHIFGKRNLYQALKMCQDMLANEYLKKQ---  
 Trib\_p53 B  
 Helio\_p53 C  
 Dros\_p53 D  
 IKTEDTESNDSDRCDSSAAEWNVSRTPDGYDYLATTCPNKEWFLQSIEGMIK---  
 consensus k t1 i gr\_f m k1 e 1 d 1  
  
 -KEPG[G---SRAHSSSHLSRKKGG---  
 Xeno\_p53 -KVTKK---CRKCRCDEI[EPKKG---  
 Squid\_p53 RQAPIGRLTSPLSSSSNGSQDGSRSSSTAFTSTSQQNNTQMNQVPHEEETPVT  
 CPB\_p53 ---IG---NGTEGPYRIALN---  
 Trib\_p53 A ---EQG---GD-DSADKNYN---  
 Trib\_p53 B ---  
 Helio\_p53 C  
 Dros\_p53 D  
 EAAAEEVLRNPNQENLRRHAN---  
 consensus g  
 KLSSIKKRAYELP---  
 1mv d  
  
 Human\_p53 ---  
 Xeno\_p53 ---  
 Squid\_p53 KCEPTENTIAQWLTKLGLQAYIDNFQOKGLHNMPQOLDEFTLEDQSMRIGTGHNRKIKWS  
 CPB\_p53 ---  
 Trib\_p53 A ---  
 Trib\_p53 B ---  
 Helio\_p53 C  
 Dros\_p53 D  
 consensus g  
  
 Human\_p53 ---  
 Xeno\_p53 ---  
 Squid\_p53 LLDYRRLSSGTESQALQHAASNASTLVSQNSYCPGFYEVTRYTYXHTISYL  
 CPB\_p53 ---  
 Trib\_p53 A ---  
 Trib\_p53 B ---  
 Helio\_p53 C  
 Dros\_p53 D  
 consensus g

## SEQUENCE LISTING

<110> EXELIXIS, INC

<120> Insect p53 Tumor Suppressor Genes and Proteins

<130> Insect p53 sequences

<140> EX00-015

<141> 2000-03-13

<150> EX99-001

<151> 1999-03-16

<160> 22

<170> PatentIn Ver. 2.1

<210> 1

<211> 1573

<212> DNA

<213> Drosophila melanogaster

<400> 1

aaaatccaaa tagtcgggtgg ccactacgat tctgttagttt tttgttagcg aatttttaat 60  
attttagcctc cttccccaaac aagatcgctt gatcagatata agccgactaa gatgtatata 120  
tcacagccaa tgtcgtggca caaagaaaagc actgattccg aggatgactc cacggaggtc 180  
gatatcaagg aggatattcc gaaaaacggtg gaggtatccg gatcggaaatt gaccacggaa 240  
cccatggcct tcttgcaggg attaaaactcc gggaatctga tgcatgttcg ccagcaatcc 300  
gtgctgcgcg aaatgtatgt gcaggacatt cagatccagg cgaacacgct gcccaagct 360  
gagaatcaca acatcggtgg ttattgcctt agcatggttc tggatgagcc gcccaagtct 420  
ctttggatgt actcgattcc gctgaacaag ctctacatcc ggatgaacaa ggccttcaac 480  
gtggacgttc agttcaagtc taaaatgccc atccaaccac ttaatttgcg tgtgttcctt 540  
tgcttctcca atgatgttag tgctcccggtc gtccgctgtc aaaatcacct tagcgttgag 600  
cctttgacgg ccaataacgc aaaaatgcgc gagagcttgc tgccgcgcga gaatccaaac 660  
agtgtatatt gtggaaatgc tcagggcaag ggaatttccg agcgtttttc cgttgttagtc 720  
ccccctgaaca tgagccggc tgtaacccgc agtgggctca cgcgccagac cctggccttc 780  
aagttcgctc gccaataactc gtgtatcggtt cgaaaagaaa cttcccttagt cttctgcctg 840  
gagaaaagcat gcccgcgat cgtgggacacg catgttatac atgtttaaaat atgtacgtgc 900  
cccaagcggg atcgcatcca agacgaacgc cagctcaata gcaagaagcg caagtccgtg 960  
ccggaaggccg ccgaagaaga tgagccgtcc aaggcgcgc ggtgcattgc tataaagacg 1020  
gaggacacgg agagcaatga tagccgagac tgccgacgact ccggccgcaga gtggAACgtg 1080  
tcgcggacac cggatggcga ttaccgtctg gctattacgt gcccccaataa ggaatggctg 1140  
ctgcagagca tcgagggtcat gattaaggag gccggggctg aagtccgtcg caatccaaac 1200  
caagagaatc tacgtcgcca tgccaacaaa ttgcgtgagcc ttaagaaaacg tgcctacgag 1260  
ctgcccattgtacatc ttctgtatctg gtcgacaatc tcccaggtat cagataccctt taaaatgtgt 1320  
tgcattgtt gggataacta catagctatt agtattttaa gtttgttataa gtccttgcctc 1380  
gtaaggcggtt taacgggtat attcccccttt tggcatgttc gatggccgaa aagaaaacat 1440

ttttatattt ttgatagtagt actgttgtt actgcagttc tatgtgacta cgtaacttt 1500  
 gtctaccaca acaaacatac tctgtacaaa aaaggccaaaa gtgaatttat taaagagttg 1560  
 tcataatttg caa 1573

<210> 2

<211> 385

<212> PRT

<213> Drosophila melanogaster

<400> 2

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Met | Tyr | Ile | Ser | Gln | Pro | Met | Ser | Trp | His | Lys | Glu | Ser | Thr | Asp | Ser |
| 1   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     | 10  | 15  |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |    |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|
| Glu | Asp | Asp | Ser | Thr | Glu | Val | Asp | Ile | Lys | Glu | Asp | Ile | Pro | Lys | Thr |    |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |    |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     | 20  | 25  | 30 |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |    |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|
| Val | Glu | Val | Ser | Gly | Ser | Glu | Leu | Thr | Thr | Glu | Pro | Met | Ala | Phe | Leu |    |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |    |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     | 35  | 40  | 45 |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |    |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|
| Gln | Gly | Leu | Asn | Ser | Gly | Asn | Leu | Met | Gln | Phe | Ser | Gln | Gln | Ser | Val |    |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |    |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     | 50  | 55  | 60 |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |    |    |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|----|
| Leu | Arg | Glu | Met | Met | Leu | Gln | Asp | Ile | Gln | Ile | Gln | Ala | Asn | Thr | Leu |    |    |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |    |    |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     | 65  | 70  | 75 | 80 |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |    |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|
| Pro | Lys | Leu | Glu | Asn | His | Asn | Ile | Gly | Gly | Tyr | Cys | Phe | Ser | Met | Val |    |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |    |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     | 85  | 90  | 95 |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Leu | Asp | Glu | Pro | Pro | Lys | Ser | Leu | Trp | Met | Tyr | Ser | Ile | Pro | Leu | Asn |     |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     | 100 | 105 | 110 |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Lys | Leu | Tyr | Ile | Arg | Met | Asn | Lys | Ala | Phe | Asn | Val | Asp | Val | Gln | Phe |     |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     | 115 | 120 | 125 |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Lys | Ser | Lys | Met | Pro | Ile | Gln | Pro | Leu | Asn | Leu | Arg | Val | Phe | Leu | Cys |     |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     | 130 | 135 | 140 |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Phe | Ser | Asn | Asp | Val | Ser | Ala | Pro | Val | Val | Arg | Cys | Gln | Asn | His | Leu |     |     |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     | 145 | 150 | 155 | 160 |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Ser | Val | Glu | Pro | Leu | Thr | Ala | Asn | Ala | Lys | Met | Arg | Glu | Ser | Leu |     |     |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     | 165 | 170 | 175 |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Leu | Arg | Ser | Glu | Asn | Pro | Asn | Ser | Val | Tyr | Cys | Gly | Asn | Ala | Gln | Gly |     |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     | 180 | 185 | 190 |

Lys Gly Ile Ser Glu Arg Phe Ser Val Val Pro Leu Asn Met Ser

|                                                                 |     |     |
|-----------------------------------------------------------------|-----|-----|
| 195                                                             | 200 | 205 |
| Arg Ser Val Thr Arg Ser Gly Leu Thr Arg Gln Thr Leu Ala Phe Lys |     |     |
| 210                                                             | 215 | 220 |
| Phe Val Cys Gln Asn Ser Cys Ile Gly Arg Lys Glu Thr Ser Leu Val |     |     |
| 225                                                             | 230 | 235 |
| 240                                                             |     |     |
| Phe Cys Leu Glu Lys Ala Cys Gly Asp Ile Val Gly Gln His Val Ile |     |     |
| 245                                                             | 250 | 255 |
| His Val Lys Ile Cys Thr Cys Pro Lys Arg Asp Arg Ile Gln Asp Glu |     |     |
| 260                                                             | 265 | 270 |
| Arg Gln Leu Asn Ser Lys Lys Arg Lys Ser Val Pro Glu Ala Ala Glu |     |     |
| 275                                                             | 280 | 285 |
| Glu Asp Glu Pro Ser Lys Val Arg Arg Cys Ile Ala Ile Lys Thr Glu |     |     |
| 290                                                             | 295 | 300 |
| Asp Thr Glu Ser Asn Asp Ser Arg Asp Cys Asp Asp Ser Ala Ala Glu |     |     |
| 305                                                             | 310 | 315 |
| 320                                                             |     |     |
| Trp Asn Val Ser Arg Thr Pro Asp Gly Asp Tyr Arg Leu Ala Ile Thr |     |     |
| 325                                                             | 330 | 335 |
| Cys Pro Asn Lys Glu Trp Leu Leu Gln Ser Ile Glu Gly Met Ile Lys |     |     |
| 340                                                             | 345 | 350 |
| Glu Ala Ala Ala Glu Val Leu Arg Asn Pro Asn Gln Glu Asn Leu Arg |     |     |
| 355                                                             | 360 | 365 |
| Arg His Ala Asn Lys Leu Leu Ser Leu Lys Lys Arg Ala Tyr Glu Leu |     |     |
| 370                                                             | 375 | 380 |
| Pro                                                             |     |     |
| 385                                                             |     |     |

<210> 3  
<211> 2600  
<212> DNA  
<213> Leptinotarsa decemlineata

<400> 3  
gtgttttagtt attgttcggg ggctgtttt ttaattaaaa atttcacggg taaatctttg 60  
ttgtcttttc ttttctaat tgtatcagaa tagcttttt aacttgtaaa accggaaggg 120  
atgtcttctc agtcagactt tttacctcca gatgttcaaa atttcctctt ggcagaaaatg 180

gaaggggaca atatggataa tctaaaactt ttcaaggacg aaccaactt gaatgattta 240  
 aattattcaa acatcctaaa tggatcaata gttgcataatg atgattcaaa gatgttcat 300  
 cttattttc cgggagtaca aacaagtgc ccataaaatg atgaatacga tggtccatat 360  
 gaatttgaag tagatgtca tcccactgtg gcaaaaaatt cgtgggtgta ctctaccacc 420  
 ctgaataaaag tttatatgac aatgggcagt ccattttctg tagatttcag agtacatcacat 480  
 cgacccccga acccattatt catcaggacg actcccgat acagtgcctcc ccaatttgct 540  
 caagaatgt tttaccggtg cctaaaccat gaattcttc ataaagagtc tgatggagat 600  
 ctcaaggaac acatcgccc tcataatcata agatgtgcca atcagtatgc tgcttactta 660  
 ggtgacaagt ctaaaaaatga acgtctcagc gttgtcatac cattcggtat cccgcagacg 720  
 ggtactgaaa gtgttagaga aattttcgaa tttgtttgca aaaattcttg cccaagtccct 780  
 ggaatgaata gaagagctgt ggaaataata ttcactttgg aggataatca aggaactatc 840  
 tatggacgca aaacattaaa tgtgagaata tgcttgc caaaacgtga taaagagaaa 900  
 gatgaaaagg ataacactgc caacactaat ctgccgcatg gcaaaaaagag aaaaatggag 960  
 aagccatcaa agaaacccat gcagacacag gcagaaaaatg ataccaaaga gtttactctg 1020  
 accataccgc tgggggtcg acataatgaa caaaatgtgt tgaagtatttgc ccatgatttgc 1080  
 atggccgggg aaatctcg aatatcgat aatggtactg aaggggccgta caaaatagct 1140  
 taaaacaaaaa taaacacgtt gatacgtaa agttccgagt gaccttatca attctatgt 1200  
 tatttcttat acaattccat tttcatattt ccatttgata ataagaaaaca ttttagcacc 1260  
 ttttaatcct acactgcagg gaagtcaata tttcttttagt tttttgcattt atattgtttg 1320  
 ttataacatt tttttttca acaacaggtg acttgatttt tgtaaggtat ctcattat 1380  
 atgttaaga cctaaaacac gaaacaaaaa acatgaaatgg tcattgaatt tggctcgata 1440  
 atcaatccaa tgttcttaa agtaatatcg acctgttcac aactttgtg atgcactgaa 1500  
 tggctttta ttattattat ttttcagcat tgtacatcat acttgcatag tttcagttt 1560  
 aaattttca aatgtttcat ttattttcat tcttacacct gaacttggat tttggacaca 1620  
 tggctttcac aatgttctat cacgaacagt atgataagcc aaagtaagag ttgataatag 1680  
 ttcatattaa tatctattgt aacaccgact attgttataat aaatagtctgt tttttgtt 1740  
 cttttcttgc tttattttat acacttgagt caagtgttagt cagtagatgc actatgtgg 1800  
 aaaacctgtt ttgagtttat ttttacttac attcagtctt catcatttgc aattgtttat 1860  
 tttttgtgtg caatatttac gaaaaatggt gcaatactat aataggaaca ttaataaaatg 1920  
 aacttgaaag catagaggtg gtgaattttg tttttgatca actttttgaa atttatgcgc 1980  
 cattctataa gccagtttt tttgataat tcaaaattca cgaataggtt tcaacactgtat 2040  
 tgcattgttta ttctatgtt gtcctaaagc aggtctctat aaaacttctc taaaagttgt 2100  
 gcagagcaaa taacaaataa tttttatgc gattatatca attcatgaac tggtttaatt 2160  
 gaaagagtag attattctat tgggttcaca aaaatataaa taatgtgtt ctatctggat 2220  
 catttggttt ttttcattt agctatattt tgtcattgtt ttgttgaact ttccctaaat 2280  
 cccagtgcca tagtcgacga tcggtctcgc tcccatccat caattattcg aaatctcatt 2340  
 tattttaaag actgaggacg ggggtggact gtcagtgtat ctgtttaatg agaaccatct 2400  
 tgcacttagga ttgatgttgc aatctatgag taggtgcatt tttatataat tatctttatg 2460  
 tttatattgtt attattgtac aggttataatgc ctctagtgaa agaatacata acctaattat 2520  
 tatataatgtt cgttaatata caaattttt acgtttttaa aatataattt ctaaatattc 2580  
 aaaaaaaaaaaaaaaa 2600

&lt;210&gt; 4

&lt;211&gt; 354

&lt;212&gt; PRT

&lt;213&gt; Leptinotarsa decemlineata

&lt;400&gt; 4

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Met | Ser | Ser | Gln | Ser | Asp | Phe | Leu | Pro | Pro | Asp | Val | Gln | Asn | Phe | Leu |
| 1   |     |     |     |     |     |     |     | 10  |     |     |     |     |     |     | 15  |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Leu | Ala | Glu | Met | Glu | Gly | Asp | Asn | Met | Asp | Asn | Leu | Asn | Phe | Phe | Lys |
|     |     |     |     |     |     |     |     | 25  |     |     |     |     |     |     | 30  |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Asp | Glu | Pro | Thr | Leu | Asn | Asp | Leu | Asn | Tyr | Ser | Asn | Ile | Leu | Asn | Gly |
|     |     |     |     |     |     |     |     | 40  |     |     |     |     |     |     | 45  |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Ser | Ile | Val | Ala | Asn | Asp | Asp | Ser | Lys | Met | Val | His | Leu | Ile | Phe | Pro |
|     |     |     |     |     |     |     |     | 55  |     |     |     |     |     |     | 60  |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Gly | Val | Gln | Thr | Ser | Val | Pro | Ser | Asn | Asp | Glu | Tyr | Asp | Gly | Pro | Tyr |
|     |     |     |     |     |     |     |     | 75  |     |     |     |     |     |     | 80  |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Glu | Phe | Glu | Val | Asp | Val | His | Pro | Thr | Val | Ala | Lys | Asn | Ser | Trp | Val |
|     |     |     |     |     |     |     |     | 90  |     |     |     |     |     |     | 95  |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Tyr | Ser | Thr | Thr | Leu | Asn | Lys | Val | Tyr | Met | Thr | Met | Gly | Ser | Pro | Phe |
|     |     |     |     |     |     |     |     | 105 |     |     |     |     |     |     | 110 |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Pro | Val | Asp | Phe | Arg | Val | Ser | His | Arg | Pro | Pro | Asn | Pro | Leu | Phe | Ile |
|     |     |     |     |     |     |     |     | 120 |     |     |     |     |     |     | 125 |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Arg | Ser | Thr | Pro | Val | Tyr | Ser | Ala | Pro | Gln | Phe | Ala | Gln | Glu | Cys | Val |
|     |     |     |     |     |     |     |     | 135 |     |     |     |     |     |     | 140 |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Tyr | Arg | Cys | Leu | Asn | His | Glu | Phe | Ser | His | Lys | Glu | Ser | Asp | Gly | Asp |
|     |     |     |     |     |     |     |     | 150 |     |     |     |     |     |     | 160 |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Leu | Lys | Glu | His | Ile | Arg | Pro | His | Ile | Ile | Arg | Cys | Ala | Asn | Gln | Tyr |
|     |     |     |     |     |     |     |     | 165 |     |     |     |     |     |     | 175 |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Ala | Ala | Tyr | Leu | Gly | Asp | Lys | Ser | Lys | Asn | Glu | Arg | Leu | Ser | Val | Val |
|     |     |     |     |     |     |     |     | 180 |     |     |     |     |     |     | 190 |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Ile | Pro | Phe | Gly | Ile | Pro | Gln | Thr | Gly | Thr | Glu | Ser | Val | Arg | Glu | Ile |
|     |     |     |     |     |     |     |     | 195 |     |     |     |     |     |     | 205 |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Phe | Glu | Phe | Val | Cys | Lys | Asn | Ser | Cys | Pro | Ser | Pro | Gly | Met | Asn | Arg |
|     |     |     |     |     |     |     |     | 215 |     |     |     |     |     |     | 220 |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Arg | Ala | Val | Glu | Ile | Ile | Phe | Thr | Leu | Glu | Asp | Asn | Gln | Gly | Thr | Ile |
|     |     |     |     |     |     |     |     | 225 |     |     |     |     |     |     | 240 |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Tyr | Gly | Arg | Lys | Thr | Leu | Asn | Val | Arg | Ile | Cys | Ser | Cys | Pro | Lys | Arg |
|     |     |     |     |     |     |     |     | 245 |     |     |     |     |     |     | 255 |

Asp Lys Glu Lys Asp Glu Lys Asp Asn Thr Ala Asn Thr Asn Leu Pro  
 260 265 270

His Gly Lys Lys Arg Lys Met Glu Lys Pro Ser Lys Lys Pro Met Gln  
 275 280 285

Thr Gln Ala Glu Asn Asp Thr Lys Glu Phe Thr Leu Thr Ile Pro Leu  
 290 295 300

Val Gly Arg His Asn Glu Gln Asn Val Leu Lys Tyr Cys His Asp Leu  
 305 310 315 320

Met Ala Gly Glu Ile Leu Arg Asn Ile Gly Asn Gly Thr Glu Gly Pro  
 325 330 335

Tyr Lys Ile Ala Leu Asn Lys Ile Asn Thr Leu Ile Arg Glu Ser Ser  
 340 345 350

Glu Trp

<210> 5  
 <211> 1291  
 <212> DNA  
 <213> *Tribolium castaneum*

<400> 5  
 acgcgtccgg ccaacttaac ctaaaaattt gtttcgatg cctactagat ttaaaaacaa 60  
 ttgattcaa tcgtggattt ttattatata aatcatgagc caacaaaagtc aatttcgga 120  
 catcattcct gatgttgata aatttttgga agatcatgga ctcaaggacg atgtggaaag 180  
 aataatgcac gaaaacaacg tccattttagt aaatgacgac ggagaagaag aaaaataactc 240  
 taatgaagcc aattacactg aatcaatttt cccccccgac cagcccacaa acctaggcac 300  
 tgaggaatac ccagggccctt ttaatttctc agtcctgatc agccccaaacg agcaaaaaatc 360  
 gcccctggag tattcgaaa aactgaacaa aatattcata ggcataacg tgaaattccc 420  
 cgtggcccttc tccgtgcaaa accggcccca gaacctgccc ctctacatcc ggcaccc 480  
 cgtgttcagc caaacgcagc acttccaaga cctggtcac cgctgcgtcg gccaccgcca 540  
 cccccaagac cagtccaaaca aaggcgtcgc ccccccacatt ttccagcaca ttattaggtg 600  
 caccaacgac aacgccctat actttggcga taaaaacaca gggacgagac tcaacatcgt 660  
 cctgcctttg gcccaccc 660  
 aggtggggga ggacgtggtc aaggagttt tccagttgt 720  
 gtgcacaaac tccgtccctt tggggatgaa tcggcggccg attgtatgtcg ttttcacccct 780  
 ggaggataat aagggggagg ttttcgggag gaggtggtg ggggtgaggg tgtgtcg 840  
 tccgaagcgt gacaaggaca aggaggagaa ggacatggag agtgcgtgc ctccaaggag 900  
 gaagaagagg aagtgggga atgatgagcg aagggttgtg ccacagggga gctccgataa 960  
 taaaatattt gcgttaataa ttcatattcc tggcaagaag aattatttac aagccctcaa 1020  
 gatgtgtcaa gatatgtgg ctaatgaaat ttgaaaaaaaaa caggaacaag gtggcgcacga 1080  
 ttctgctgat aagaactgtt ataatgagat aactgttctc ttgaacggca cggccgcctt 1140

tgatttagttt a~~t~~tctataat ttaattttat ac~~t~~tgtact tatgcaatat tccagttac 1200  
 ttttgtataa ttttattaa taaattcta cgtttaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa 1260  
 aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa a 1291

<210> 6  
 <211> 350  
 <212> PRT  
 <213> *Tribolium castaneum*

<400> 6  
 Met Ser Gln Gln Ser Gln Phe Ser Asp Ile Ile Pro Asp Val Asp Lys  
 1 5 10 15

Phe Leu Glu Asp His Gly Leu Lys Asp Asp Val Gly Arg Ile Met His  
 20 25 30

Glu Asn Asn Val His Leu Val Asn Asp Asp Gly Glu Glu Glu Lys Tyr  
 35 40 45

Ser Asn Glu Ala Asn Tyr Thr Glu Ser Ile Phe Pro Pro Asp Gln Pro  
 50 55 60

Thr Asn Leu Gly Thr Glu Glu Tyr Pro Gly Pro Phe Asn Phe Ser Val  
 65 70 75 80

Leu Ile Ser Pro Asn Glu Gln Lys Ser Pro Trp Glu Tyr Ser Glu Lys  
 85 90 95

Leu Asn Lys Ile Phe Ile Gly Ile Asn Val Lys Phe Pro Val Ala Phe  
 100 105 110

Ser Val Gln Asn Arg Pro Gln Asn Leu Pro Leu Tyr Ile Arg Ala Thr  
 115 120 125

Pro Val Phe Ser Gln Thr Gln His Phe Gln Asp Leu Val His Arg Cys  
 130 135 140

Val Gly His Arg His Pro Gln Asp Gln Ser Asn Lys Gly Val Ala Pro  
 145 150 155 160

His Ile Phe Gln His Ile Ile Arg Cys Thr Asn Asp Asn Ala Leu Tyr  
 165 170 175

Phe Gly Asp Lys Asn Thr Gly Thr Arg Leu Asn Ile Val Leu Pro Leu  
 180 185 190

Ala His Pro Gln Val Gly Glu Asp Val Val Lys Glu Phe Phe Gln Phe

195

200

205

Val Cys Lys Asn Ser Cys Pro Leu Gly Met Asn Arg Arg Pro Ile Asp  
 210 215 220

Val Val Phe Thr Leu Glu Asp Asn Lys Gly Glu Val Phe Gly Arg Arg  
 225 230 235 240

Leu Val Gly Val Arg Val Cys Ser Cys Pro Lys Arg Asp Lys Asp Lys  
 245 250 255

Glu Glu Lys Asp Met Glu Ser Ala Val Pro Pro Arg Arg Lys Lys Arg  
 260 265 270

Lys Leu Gly Asn Asp Glu Arg Arg Val Val Pro Gln Gly Ser Ser Asp  
 275 280 285

Asn Lys Ile Phe Ala Leu Asn Ile His Ile Pro Gly Lys Lys Asn Tyr  
 290 295 300

Leu Gln Ala Leu Lys Met Cys Gln Asp Met Leu Ala Asn Glu Ile Leu  
 305 310 315 320

Lys Lys Gln Glu Gln Gly Asp Asp Ser Ala Asp Lys Asn Cys Tyr  
 325 330 335

Asn Glu Ile Thr Val Leu Leu Asn Gly Thr Ala Ala Phe Asp  
 340 345 350

&lt;210&gt; 7

&lt;211&gt; 508

&lt;212&gt; DNA

&lt;213&gt; Tribolium castaneum

&lt;400&gt; 7

```
gtacgacaat acaaaccgcc cgattttcc cacacttcc acccaataat ttgctcaatt 60
ttccagttgg aagacttcaa attcaacatc aaccaaagct cgtacctctc agccccatt 120
ttccccccca gcgagccgct cgagctgtgc aacaccgagt acccccggccc cctcaacttc 180
gaggtgtttg tggaccccaa cgtgctaaa aacccttggg aataactcccc aattctcaac 240
aaaatttata tcgatatgaa acacaaattc ccgattaatt ttagcgtcaa gaaggccgat 300
cctgagcgca ggcttttgt cagagttatg ccgatgtttg aggaagacag atatgtgcaa 360
gaattggtgc ataggtgcat ctgtcacgaa caattgacag atccgaccaa tcacaacgtt 420
tcggaaatgg tggctcagca catcattcgg tgtgataaca acaatgctca gtattcggg 480
gataagaacg ctggaaagag actgagta 508
```

&lt;210&gt; 8

&lt;211&gt; 169

&lt;212&gt; PRT

&lt;213&gt; Tribolium castaneum

&lt;400&gt; 8

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Val | Arg | Gln | Tyr | Lys | Pro | Pro | Asp | Phe | Ser | His | Thr | Phe | His | Pro | Ile |
| 1   |     |     |     |     | 5   |     |     |     | 10  |     |     |     |     | 15  |     |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Ile | Cys | Ser | Ile | Phe | Gln | Leu | Glu | Asp | Phe | Lys | Phe | Asn | Ile | Asn | Gln |
|     |     |     |     |     |     | 20  |     |     | 25  |     |     |     | 30  |     |     |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Ser | Ser | Tyr | Leu | Ser | Ala | Pro | Ile | Phe | Pro | Pro | Ser | Glu | Pro | Leu | Glu |
|     |     |     |     |     |     | 35  |     |     | 40  |     |     | 45  |     |     |     |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Leu | Cys | Asn | Thr | Glu | Tyr | Pro | Gly | Pro | Leu | Asn | Phe | Glu | Val | Phe | Val |
|     |     |     |     |     |     | 50  |     |     | 55  |     |     | 60  |     |     |     |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Asp | Pro | Asn | Vai | Leu | Lys | Asn | Pro | Trp | Glu | Tyr | Ser | Pro | Ile | Leu | Asn |
|     |     |     |     |     |     | 65  |     |     | 70  |     |     | 75  |     | 80  |     |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Lys | Ile | Tyr | Ile | Asp | Met | Lys | His | Lys | Phe | Pro | Ile | Asn | Phe | Ser | Val |
|     |     |     |     |     |     | 85  |     |     | 90  |     |     | 95  |     |     |     |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Lys | Lys | Ala | Asp | Pro | Glu | Arg | Arg | Leu | Phe | Val | Arg | Val | Met | Pro | Met |
|     |     |     |     |     |     | 100 |     |     | 105 |     |     | 110 |     |     |     |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Phe | Glu | Glu | Asp | Arg | Tyr | Val | Gln | Glu | Leu | Val | His | Arg | Cys | Ile | Cys |
|     |     |     |     |     |     | 115 |     |     | 120 |     |     | 125 |     |     |     |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| His | Glu | Gln | Leu | Thr | Asp | Pro | Thr | Asn | His | Asn | Val | Ser | Glu | Met | Val |
|     |     |     |     |     |     | 130 |     |     | 135 |     |     | 140 |     |     |     |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Ala | Gln | His | Ile | Ile | Arg | Cys | Asp | Asn | Asn | Asn | Ala | Gln | Tyr | Phe | Gly |
|     |     |     |     |     |     | 145 |     |     | 150 |     |     | 155 |     | 160 |     |

|     |     |     |     |     |     |     |     |     |  |  |  |  |  |  |  |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|--|--|--|--|--|--|--|
| Asp | Lys | Asn | Ala | Gly | Lys | Arg | Leu | Ser |  |  |  |  |  |  |  |
|     |     |     |     |     |     |     | 165 |     |  |  |  |  |  |  |  |

&lt;210&gt; 9

&lt;211&gt; 433

&lt;212&gt; DNA

&lt;213&gt; Heliothis virescens

&lt;400&gt; 9

|            |            |            |            |            |            |     |
|------------|------------|------------|------------|------------|------------|-----|
| gcacgagatg | aagtgcact  | ttagcgtgca | attcaactgg | gactatcaga | aggcgccgca | 60  |
| tatgttcgtg | cggcttaccg | tcgtgttctc | cgatgaaacg | caggcggaga | agcgggtcga | 120 |
| acgatgtgtg | cagcatttcc | atgaaagctc | cacttctgga | atccaaacag | aaattgccaa | 180 |

aaacgtgctc cactcgccc gggagatcg taccaggc gtgtactact gcggaaagg 240  
 ggacatggca gactcggtt actcagtgc ggtggagtt atgaggacca gctcgagtc 300  
 ctgctccat gcgtaccagt tccctgcaa gaactttgt gcaaccggca ttaataggcg 360  
 ggctattgcc attatttta cgctggaaga tgctatggc aacatccacg gccgtcagaa 420  
 agtagggcg agg 433

&lt;210&gt; 10

&lt;211&gt; 144

&lt;212&gt; PRT

&lt;213&gt; Heliothis virescens

&lt;400&gt; 10

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| His | Glu | Met | Lys | Cys | Asn | Phe | Ser | Val | Gln | Phe | Asn | Trp | Asp | Tyr | Gln |
| 1   |     |     |     |     |     |     |     |     | 10  |     |     |     |     | 15  |     |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Lys | Ala | Pro | His | Met | Phe | Val | Arg | Ser | Thr | Val | Val | Phe | Ser | Asp | Glu |
|     |     |     |     |     |     |     |     |     | 25  |     |     |     |     | 30  |     |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Thr | Gln | Ala | Glu | Lys | Arg | Val | Glu | Arg | Cys | Val | Gln | His | Phe | His | Glu |
|     |     |     |     |     |     |     |     |     | 40  |     |     |     |     | 45  |     |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Ser | Ser | Thr | Ser | Gly | Ile | Gln | Thr | Glu | Ile | Ala | Lys | Asn | Val | Leu | His |
|     |     |     |     |     |     |     |     |     | 55  |     |     |     |     | 60  |     |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Ser | Ser | Arg | Glu | Ile | Gly | Thr | Gln | Gly | Val | Tyr | Tyr | Cys | Gly | Lys | Val |
|     |     |     |     |     |     |     |     |     | 65  |     |     |     |     | 80  |     |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Asp | Met | Ala | Asp | Ser | Trp | Tyr | Ser | Val | Leu | Val | Glu | Phe | Met | Arg | Thr |
|     |     |     |     |     |     |     |     |     | 85  |     |     |     |     | 95  |     |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Ser | Ser | Glu | Ser | Cys | Ser | His | Ala | Tyr | Gln | Phe | Ser | Cys | Lys | Asn | Ser |
|     |     |     |     |     |     |     |     |     | 100 |     |     |     |     | 110 |     |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Cys | Ala | Thr | Gly | Ile | Asn | Arg | Arg | Ala | Ile | Ala | Ile | Ile | Phe | Thr | Leu |
|     |     |     |     |     |     |     |     |     | 115 |     |     |     |     | 125 |     |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Glu | Asp | Ala | Met | Gly | Asn | Ile | His | Gly | Arg | Gln | Lys | Val | Gly | Ala | Arg |
|     |     |     |     |     |     |     |     |     | 130 |     |     |     |     | 140 |     |

&lt;210&gt; 11

&lt;211&gt; 26

&lt;212&gt; DNA

&lt;213&gt; Drosophila melanogaster

<400> 11

ccatgctgaa gcaataacca ccgatg

26

<210> 12

<211> 30

<212> DNA

<213> Drosophila melanogaster

<400> 12

ggaacacacg caaattaagt ggttggatgg

30

<210> 13

<211> 23

<212> DNA

<213> Drosophila melanogaster

<400> 13

tgatTTTgac agcggaccac ggg

23

<210> 14

<211> 28

<212> DNA

<213> Drosophila melanogaster

<400> 14

ggaagTTTct tttcgcccga tacacgag

28

<210> 15

<211> 27

<212> DNA

<213> Drosophila melanogaster

<400> 15

ggcacAAAGA aAGCactgat tccgagg

27

<210> 16

<211> 28

<212> DNA

<213> Drosophila melanogaster

<400> 16

ggaATCTGAT gcagTTcAGC cAGCAATC

28

<210> 17  
<211> 23  
<212> DNA  
<213> *Drosophila melanogaster*

<400> 17  
ggatcgcatc caaqacqaac acc

23

<210> 18  
<211> 27425  
<212> DNA  
<213> Drosophila melanogaster

<400> 18  
tagccactcg ctagttata gttcaagggtg aacatacgt aagagtttgc ggcactggac 60  
tggaaatagg ctgctagtcc ttgtgttcg gccatagcgt taaaaattta agccaacgcc 120  
agtcgtcctg cgccccatgtt gctgcaacat tctggcttcg tgtcatgcca ctgaatgttt 180  
cacattattt aacccccctt atttttttt ttgtgtggc actggccaaa ggtccaaagg 240  
ggcgacatgc tgcaaaaaacg tggcctgcag ctgctgcaa cgggcaatta ttgcgcagtt 300  
attgcataatgc gtgtgcaatg cctatgaatt attacgtata cacagtgtt cctcggcaat 360  
aacgaaaatgc cggggggggg cggggccgta ttcatgctgc agttggccat aaattcaacg 420  
aaattgcata agtttttatt tctaattgtact gggcatggta agttaatatg atttttcata 480  
ctgattaagt gctttgtta cttttttat tattcaagta aaaatattaa ttgtgtttc 540  
atgggacttt ttgttagtagt tacccctacta ctacattaaa cattaatttc aaagaagtag 600  
atatacgagt aaatgggcaa tatgaaaatt tgaaaaaggt aaagcttatg atactaacta 660  
atgccaaatgc aaaacttagga gtatgataat aatatgaaga tagcccacca ggctatccc 720  
aaatcgcat caaatccaaat ggtgttcatt aaatttaggtt atcgcatgtg cccttatgtc 780  
aaccatatcg ccgcgtcaacc aagtcatttc ggtcgctgag gcaatcgaga tatggggcgc 840  
caccgacctt ggccaacatg ctccacattt ggctccaagt ggcaaccgca aaggtcacgc 900  
acagttcgcc attgcaatc gcatactgcc aatgaaaact acattgcgtt tctggtgcc 960  
ctttgtatggc gctctaattt aaggctaccc gccaactaattt agtgatagac aatcgctggg 1020  
ggagttcggtt tggcatcgat ggcaggact taacccaaga cagggggggcc aactggcatt 1080  
ggatggccgt ttttgaattt gtatgtcgat agcagtcgtt gcagggttgg gggggatgg 1140  
aacaatgtt gtcaacgcca aaaccactga actgtttaaa gtgccatttga atccaacaag 1200  
gatgctgggc gcaactgtgc aacctaacaa actgtcgaa agacagcagc aacatggca 1260  
tgcatggctt gatactggga gtctgttcga tggatcccac ttgaaccgaa ccgtactgaa 1320  
ccgtgccccg gccagatgag ggcggccacc caacgcact cttggaaaacc ccaagccctt 1380  
tgcacgcgt aaatagttt gtttatttgc cattgaaaacc gagccagcga gcaattccgg 1440  
tggctgctcc ggcgcgcaca cactccagcg atctaatttcaatctcgac gacgaccggg 1500  
ctgacatggg gtttttccata cgctcggtt gacgcgcgtt cgacgctcgat tcgaatattt 1560  
tcccaatgc ctggcagaaa atgtgtggaa gtgtgagatt aagctcataa atttagtagt 1620  
cacttaatgt gaaaaatattt agaaaacaaca gtgaacagttt gattgggttctt cttataattt 1680  
ttattaaatgc ttgaacattt gaagaaaagat attgattttcaacttttgg atgtatacat 1740  
atatataaaaaa aagtatatgc tgactttcat gttgagaggt cataacttttgc taatgtatattt 1800  
ggttcttagtc atcatttcgtt gaaacagctg tgcaagcattt cgattatatttgc tggtatgtaa 1860



tatgcggagg ccaggtattt gggcctctcc caaaaagagg tgtgtccgcc gcgcctcgga 4800  
 tgcgcgcat tatgattgtat atcgaaatgg atggggggtc ggatgatgtt tgatggctt 4860  
 ctacacctcgat attgcagtgt caggcgatgt gctcccacga ggcgaagtt tactgccagg 4920  
 gtgtctcctt ctactatgtat aaccaactct cgctgtccga gtgtctcctc cactcgagg 4980  
 acattgtatc cctgggtccg cgaagcctga agctccgtga aaactcggtt tacatgcgg 5040  
 gggtaaagtgcctggatgtt aagatcttctt gggatgtgg tatgctcaat cttaatcgat 5100  
 tccttattcc gcagtcgggg tttttgcac ccgcgtatgatgatgaccattt agtacaatcc 5160  
 caaggactgg ttcgtcggca agatctatgc cagcatgcac tccaaggact gcctggccag 5220  
 aggatcgggc aatggggatgtt ttctgctgac gctccagatc ggcagcggagg taaaggagaa 5280  
 ccgctgtggc atccgtcgat cctacgaaat gacacaggaa taccaaaggt aagatgaagt 5340  
 ccaatgtcca gtccattttt ttaatttat catttgattt atttagaaatc ttcatatctg 5400  
 ctctgggtgtt catccaaaac aatccaaatgt tgcaaaccacca gggcgaccgg ctcatcaagg 5460  
 ttggctgtat acagagcaat gccaccatcg cgttggcgat ttcgggttcgg gacagcagt 5520  
 tggatagctc agagcctgtt cccagcgccat ttcgtactggat gtccttcattt gagtacacag 5580  
 aacagtgagt gtattcttaa tagaattccctt caaaatgtttt aattctatca caatcgatac 5640  
 ctgcagcatg ttcccacacg agggtgtgtt tcactacaac agcagcactg ggccccatcc 5700  
 gcatcccacgc atctcgcttc agattttggat tctatccac cagcacgaga ccaacgacgt 5760  
 gcagattggat cagaacactgg aactacagat tttggcgagg tacagccac agcagttggc 5820  
 agagcacatg gagttgcagc tggcaccactt acccgactttt cgtgctacccatc cgctgggtggc 5880  
 caagacagcg gacaatgaga actttgtgtt gctgatcgac gaggcgaggat gtccacacaga 5940  
 tgccagtgatgtt tttcccgctt tggaaaagggtt acacacagcc agcaggagca ttttgcgcgc 6000  
 tcgcttcat gcctcaagt tctcaggaac ggccaacgtt agcttcgtat taaagattcg 6060  
 cttctgcgtt gaggcgatgtt cggccacaccaat ttgtattatgt tcatccttcggc aacggagaag 6120  
 gcgacagggat gaccaaccatc atcgtagacc ggaagaccta cgagttcaga accccgtgtt 6180  
 catctccacgc gtgggtggat tggctccgca accagacaaat tttaccagat cgcaggagga 6240  
 attggcccttc aactacaataat tccgggtgc tggccggac cagagcaaca ccaatagttt 6300  
 tctgtacggc gagcggggat tgcgtctcat tgcgtggcata gacgacccgc tgcacccgtt 6360  
 taacgttgc atcaaccaga gcctgtgtat tgcactgttccat tttcttcggc tgcgtgtca 6420  
 agttgccttc ctcttcggat tggaaatgtt gctgcagcgc taccggccggc tggccaaatgt 6480  
 cgaggatgatgatgc tgcacgaggatgtt gtcgttggat gcgaggagatgtt tccactgggc 6540  
 ggatcaaggc ggatacacacatc tctaatttgc ggcgttgcacatc caatcgatgtt aaaaatgcatac 6600  
 ttaatttaat aaacataaaat ctaacataaaat tctaacaaat ttttgcaccc gaggataatgt 6660  
 tcaggatgtt ttcttggat ggttagtgc tccacttcgtt tggtttgcgtt aatttgcatac 6720  
 cgggcgttgc tggcgatgtt tgcgttgcata gtcggacacat ttcgttgcgtt cgggttccgt 6780  
 gcccacggat gatgagccat gacggaaatgg gcgatgttccat tggccaaatgtt tggccat 6840  
 aaggaatgtt cgacggatgtt catcaaaatc gatagtgttgc ttcgttgcgtt attgttgcatac 6900  
 caggcccacatc attacaccaa gcccacccatc gtcgttgcata gtcgttgcgtt cgcacatgcac 6960  
 tgatatcatg gcccacggat ccagatagaa catcacccatc tagttatgtt tactggccac 7020  
 gcccacggat cgcacatccatc cctcgatccat ggcacatgtt gtcgttgcgtt agatgacaaat 7080  
 gtcgtatccatc tcgttgcgtt aagtcagaaaat ctcgttgcgtt tacggacgc ttcgttgcgtt 7140  
 gcccacggat cgcacatccatc cctcgatccat gtcgttgcgtt tagttatgtt ttcgttgcgtt 7200  
 cttcttgcgtt tcacgcggat ggcacatccatc cttgttgcgtt tagttatgtt ttcgttgcgtt 7260  
 cacccatcggat aatagacggat gggatgttgc ttcgttgcgtt cggcgatgtt cggcgatgtt 7320  
 gaagtcgtcg accacttcgtc caatattatc gggcaggatgtt ctcgttgcgtt cgcacatccatc 7380  
 ctctgtggat cccacccatc taagctttaaaat gttggccatc agtccaaatgtt ctcgttgcgtt 7440  
 cacattgtcg gtcgttgcgtt ttcgttgcgtt ttcgttgcgtt ttcgttgcgtt cggcgatgtt 7500  
 agccttaggat gtcgttgcgtt cttgttgcgtt ctcgttgcgtt ctcgttgcgtt ctcgttgcgtt 7560  
 cacccatcggat ttcgttgcgtt ctcgttgcgtt ctcgttgcgtt ctcgttgcgtt ctcgttgcgtt 7620

gtccaccggg tactccttac cactccattt tacaatcact accacttctt tgacctccat 7680  
 cttagcttgt ttcttattccg ctattaattt atcacaccat atatggtaat gtatgtttgt 7740  
 tggatagaat ccagcaagtg gtttgcaata gtgtacctta aagatattaa ctaatttatt 7800  
 agaagaccat ataaaacagtc gagttgtcag aagtgcatacg atactatcga ttgcaacgcc 7860  
 cggcgttatc gatgcatac ggcttgcata aaaaataatg atttttgtat tatattttc 7920  
 agagattatt aaaaaatatt ttaaattttt taaaattata tatttagcaa ttaaagaaag 7980  
 tcatacgaaag acatgaggaa tgcgtccaaag ttgccaatag gcgattgttt cgccagttca 8040  
 ttggccacac tggtcaccag ctgaaaacac aaaaaccgat cgtacagcat aaatttagct 8100  
 cggaaaatgga ctaaacaaaag acagcgatcc ggaatccgag cgaaacata gtctgcatga 8160  
 actatctaac gatcctgctg tgcaaccgaa aaccgacat gctctcgcc cgaaacaagg 8220  
 agaagtcccc gcacaaggag ggcgtgggtgg ggaagtacat gaagaaggac accccaccgg 8280  
 atatttcgtt gatcaatgtg tggagcgatc agcggggccaa gaagaaatcg ctgcagcgct 8340  
 gtgcgagcac ctcgcccagc tgcgagttcc atccgcgcag ctcgagcacc agtcggaaca 8400  
 cctactcctg cacggactcg cagccggact actaccatgc tcgacgagca cagagccaga 8460  
 tgccccctgca gcagcactcc cactcgcatc ctcaactctt gccccacccc tccatccgc 8520  
 atgtgcgttag tcatacctccc ctgcccggcc accagttccg cgccagcagc aatcagttga 8580  
 gtcagaacag cagcaactac gttaaatttcg agcagatcga gcggatgcgc cgtcagcagt 8640  
 cgtcgcccact gtcgcagacc acatcatcgc cggccgggg agccggagga ttccagcgca 8700  
 gctactccac caccaggcg cagcatcatc cccatctggg tggtgacagc tacgatgcag 8760  
 atcagggcct gctaaggcgcc tccttatgcca acatgttgca actgccccag cgcccacact 8820  
 cgccccgtca ctacgcccgtc cccgcgcagc agcagcagca tccacagatt catcaacagc 8880  
 acgcctcgac gccgtttggc tccacgcgtc ggttcgatcg agctgccatg tccatcaggg 8940  
 agcgcacagcc cagttatcag ccaacttaggt aaactgcctc ttgaagtact atatttgaat 9000  
 agatagcgcg cgattgataa agtgggtaga gataatatga gcagctttt attaaaggaa 9060  
 taatccgtaa aaactacata ttgtcaaaaa gtgtttaata ttattataac ttttaaaca 9120  
 tgacaatgca cgaaatgttt tattttcgaa acattttattt ttcaaaagatt ttttattttga 9180  
 taacagattt ttttattttt ttacaataag aaaagttgtat gtacaaaacc gttttctact 9240  
 cgccttacaa taattaaaac aataacacaa tataatgattt tctgtacgag gaatataatg 9300  
 gaatatatat gatataataca acattttaa acacattttc tcttctgtt ccacagctct 9360  
 cccgatgcagc agcaacaaca acaacaacaa cagcagcagc agcagctgca gcacacacaa 9420  
 ctggcagctc acctggggcgg cagctactcc agcgttgcgt acccgatcta cgagaatccg 9480  
 tcccgctca tctcgatgcg cgccacgcag tcgcagcgat cggagtcgccc catctacagc 9540  
 aatacgacgg cctcgctggc cacgctggcc gtgggtccgc agcatcatca tcagggtcac 9600  
 ctggcgtgc catctggaa cggggggagga tccctgagcg gcagcggcgtc tggtggcagt 9660  
 tctggcagtg ttcgcggcgc ctctacctca gtgcataatc tgcgttcc accgcgaact 9720  
 ccccccagtg cggttgcgg agcggggaggc agtgcataatg ggtcgctgca gaaggtacca 9780  
 tcacagcaat cgctcacgga gcccggaggag ctgcctctgc cggccggctg ggccactcag 9840  
 tacacgctac acgggtcgaa atactatatt gatcacaatg cgcataaccac gcactggaa 9900  
 catccgttgg agcgcgaagg tctgcccgtg ggctggcggc ggggtgggtgc caagatgcat 9960  
 ggcacactact atgagaacca gtataccggg cagagccaaatc gtcagcatcc atgcgttgcacc 10020  
 tctctactatg tctacacgcgac gtctgcggag ccacccggaaag cgattcgacc agaggcgtcg 10080  
 ctctatgccc caccacgcac cactcacaat gcactggtgc cggccaaatcc ctatctgctc 10140  
 gaggagatcc ccaagtgggtt ggccgtctac tcggaggcgg actctgtccaa ggaccacctg 10200  
 ctgcagtcac acatgttttag ctgcggggatc tcggaggcgt tcgacagcat gtcgttgcgg 10260  
 ctcttcaagc aggaactggg caccatcgatc ggcttctacg agcgcataccg gtaagtgagc 10320  
 ggccacatgc cgctgcattc tccgctctcc gaaaagccac tactctcttgc ttacaccttt 10380  
 cagtcgcgtt ttgatactcg agaagaatcg acgcgcggc cagaaccaga accaaaacca 10440  
 gtgacccgggt gaccaggta cgactgactc agaccacata ctgcgcagca gctatatgca 10500

catcatagtg ctccgtaat cgacccttaa cttatccaac catcgactca tcgcgaaatc 10560  
agtgccttat acggaaaccag acgagatggt agccaaggcg atccatgaca gttcgaatgc 10620  
cttgcataaaa cgtagaattt tgctacgttc tatataaacct taatgtgatt tgagcttggc 10680  
gttgcgttgc aatgtgagca aagaaaattt aactggttt ctgatcatct tacctgccga 10740  
gcgcattgtt aatcgatgtg ccacctgaaa ccccacaggt atttaacctg ggagtccgat 10800  
tcatcgacgg atgttttggaa aattcagcgc cgcaagtgt aaataaaaggaa caacagttgg 10860  
tggccaagtc ttactcgact tggcttggca catatttccg agttccatgc caagtttgc 10920  
attcgcttgc aaaaattatg cattgggcac aagtgaatcg tggccgattc ttttgc 10980  
aaaaaaaaaaa cagcgctcca atagaaatgt aatcttatgt ttgttttgc ttggctatgc 11040  
ttattttag tcgaacactga taattcattt agtcgctct tatcgaatgc ttataaaaact 11100  
ttatagtcac tgttctgca ggtccctcaa aaacagttt tactgctgt aagaagttt 11160  
cgaagtctgg ggagtattcg gcattggaaa ggccaaaagt ttttttat tatattttga 11220  
acatattaaa cagatacat aaaacgagag ttttagattt taattacatt tgtcatatct 11280  
tttgctaaat tgataagtaa acagaaaata tgactcgatg gatattattt actaataata 11340  
tatattttagg ggtttggat gattacttg tactgtgaga tacaagttcg tttgtcccac 11400  
agatactttt caattcatag cttatccctac agatacattt caattcatag cttatcccgt 11460  
agatacattt ccattcattt cttatccac agatacattt tagcatattt ttttgaaat 11520  
ttgaatttga aaaaaaaatgt tttttttttt ttttgaaatgg agaactactc gtcttgtcaa 11580  
aatattttaac tggcccgac tgaagtcccc acccttttccgg ccggccgggtt ctcaagtgc 11640  
aaaataatgt ataataaaaaa gccaagatac gtcggcggtc cgctctcgcc ccacttgg 11700  
ttgctgtgc cgctgggtgc tcgctgcgc tgccgcgtc gacgtcgact ccatcgctcc 11760  
aatattttaaa cggatccattt ggatcgccca ctcagtcgc ctggagagtc gccatcgcc 11820  
ccatcatcat agcattccat tccacttgc tccatcgccca gtcgctcaat cgctcgttgg 11880  
gacacattat ttaacttcat tcttaacgtg agtgaatttga tttttttttt ggcgatcatg 11940  
catatagcat aggccaaacaa ctgttctaat ccgcattatc ttaatcacaatc taatccggcg 12000  
gcttatacag atgttttgcg ttagcatttgc gcccgggggggcctt gcccacatgc 12060  
cagtgaaatgt tctaattccgg ctcaaacaga cgcacaacaa gcgtatctcg tgcgtggaaat 12120  
catgaatgaa taaatgggtt ttactgtttaa ctaacaatgg acccttttac caatcaatcg 12180  
tcttatctat caccagaattt gaaacagaat tagtgaataa cttatgggtgc atatcagttt 12240  
aaacatgaag attcgtgtga acgatcgatg aagatatgtt gttcgaactt taaattaccc 12300  
ttgttagtttta ccactctcat tagttttgtt ttatgttagaa cccaaatggt gatcgtgact 12360  
tgcgattagt attgcaatcg cagtcatttgc cccaatctat tgattatctcg caacccgttgg 12420  
cagactggccg caataattcg acggacacta tcagcttagt ccattggattt agataagcccc 12480  
gttctcacgc ggttttttac acttcttggc aatcgccaaatcg tcacggccctt ccgcataataa 12540  
aaaatataatgt atgaacaatc gggaatcttt tggttttacg atcgaccgac aaagccccatg 12600  
tatttcctgt tacgtccattt tggccatataa aggacataaa aatgggtgtt ccaacgcctt 12660  
ccgtggggaaa gtgtgctcca attgcaatgt tgtaacatttgc agcgcacattt gatgaagg 12720  
accgactttt atctcgacaa aaacacacac gaattccaga tgaagcgacgt gtgcgttagtt 12780  
tgcactgcaatcg gttttttttt tggacaaat agtttatgtt ttatcatatcata 12840  
ttatattctt tatttgcatttgc gggcattaa attaagaagc aaaaaaaaaaaa 12900  
aagggtgtcgg gaaatgcggc aaggcgtcgg accactttgc tgctcctctt cctggccaca 12960  
gtcaatttgcgtt caatttgcgtt aatttgcgtt ttttgcgtt aatgcgttgc 13020  
ttgttgcgtt aatgcgttgc ttttgcgtt aatgcgttgc 13080  
agcagaatggg atttcagcgc acaccggcttgc accactttgc tgctcctctt cctggccaca 13140  
ggtggatgtt cgcgttgcgtt aatgcgttgc ttttgcgtt aatgcgttgc 13200  
gttgcgttgcgtt gaaatgcggc aaggcgtcgg accactttgc tgctcctctt cctggccaca 13260  
ctgctgttgcgtt gcaacgcgttgc ttttgcgtt aatgcgttgc 13320  
tccaaatccaa aaacatatgg catcgtaaat ctattgtgcc cattacagcg gattgctaga 13380

cagcgacgtg gaagttgcgc tggaaacaga ttccggaggat catttgcgcc tcgatccgc 13440  
aacgttgtg tatccagcgg gcagtactcg aaatcagtcg gtggtgataa ctggcctcaa 13500  
agccggcaac gtcaaaagtgg tcgcagatag cgatgatgcg aacaaaagaga tgtgagtaac 13560  
ttcacggaa tcccaactgt tcccgtaccc aattggaaaa ttcaacttatt ttccagtg 13620  
aaggatgtgt tcgtacgcgt gactgtggcc aaatcgagag ctttgatcta caccctccatc 13680  
atctttggct gggtttactt tggccctgg tcgggtgcct tctatccgc gatctggagc 13740  
aactatcgcc gcaagtccgt cgagggactg aaccttgatt tcctggccct caatatcg 13800  
ggcttcaccc tgtacagcat gttcaactgc ggccctctatt tcacgagga tctgcagaac 13860  
gagtagcagg tgcgatatcc gctgggagtg aatcctgtga tgctcaacga cgtggcttc 13920  
tcactgcattt ccatgttcgc cacctgcatt acgatccctc agtgcctttt ctatcaggta 13980  
ataatatata tagcaaatac cattcaatag ccttatcgcc gaagtggcaa cagttgtcgc 14040  
attgaacact aattgccatc aatcaaaatg ccaaatttcatt tgaatcacag cggatagtt 14100  
cgatatgaag agtagataag gtttgactt gtaaaacatc catactttgt taaatttgc 14160  
cagagagcac agcaaagggt gtcgttcatt gcctacggaa tattggccat cttcgccgt 14220  
gtggtcgtcg tgctgtccgg tttggccggaa ggatccgtca tccattggct ggactttctg 14280  
tactactgca gttacgtcaa gctaaccatt accatcatca agtacgtgcc gcaagctcg 14340  
atgaactatc gccggaagag cacctccggc tggagcatcg gcaacatttc gctggatttc 14400  
acgggaggaa cgctgagcat gtcgaaatg attctgaatg ctcataatta cggtaggata 14460  
tagtctatca atttgtgatt ttcgaatgaa atcgtgtctg gtttccagat gattgggtgt 14520  
cgattttcgg tgatccccacc aaattcggac tgggtctgtt ttccgtgtc ttcatgtgt 14580  
tcttcatgtc gcagcactat gtgtttaca ggtgattgaa acattgtgtg aatatgatac 14640  
ttaatctacg attatgtcat ctccactgta cacttatcat tattgtgtg ctgtttcca 14700  
tttctccccca ggcattcgag ggaatcccg agctctgacc tcaccaccgt gaccgatgtt 14760  
caaaatcgaa caaatgagtc gcccggccg agcgaagtga cgactgagaa atattagagc 14820  
tgcattatca tatgtctgt gtagagaaaag actttgtgc cagtagcgt ttatgtacat 14880  
ttttagaatt gtaaaatatac ccgtatgccg tagctgccta agctttgtat aattcgtgc 14940  
ttttaattga aatttagttt gactaaaatt tggaaatttca ccattaaata aaacttaatt 15000  
ttttgttagga gccagaaatc atacggtaca ttgctcgacc attcaaagggt ctgtgcagt 15060  
aaaccaattt gtcgcatacg ggcgttatt tgcaaactaa taaatagatt gaagtattga 15120  
aaaaatttca aaacagaaat tctaacttgc cgcacaatgg gcagcactgt tcgcactcgg 15180  
ccaaatcctt atcgatagct tatcgatagc catggatata tgacattaag ttagccaatt 15240  
tccggtagt tgacatccct ggagcacgga agattctgc ggacacaaat cgcaactgct 15300  
aaataaaatt tatttatttg agtgcacagc catgagtctt cacaagtccg cgtcgtagt 15360  
cttgacttt aaccagttag gggagatatt ttatcggtc ttacccaaca aaataatgtt 15420  
gcgcctttt gcagaaacac ttcgattgtt tcgcgttagca atagtcgcac aattttgaa 15480  
gctttcaagg agttcctgga ttttggat atcggcaacg aagtttctgc agagtcagca 15540  
gttcgggtct ccagcaacgg agcttcaac ttgccgcaga gtttggcaa cgaatccaac 15600  
gaatatgccc acctggctac gcctgtgat ccagcctacg gaggcaacaa cacgaacaac 15660  
atgatgcagt tcacgaacaa tctggaaatt ttggccaaca ataattccga tggcaataac 15720  
aaaattaatg catgaaccaa attcgtctgc cacaaggggt gagcaaattt aaaacacgcg 15780  
ctccaatcgtaaaacattgg ctacggcgt tggtcgct gcgtggcga tggcaaaatc 15840  
caaatacg gtggccacta cgattctgtt gttttttgtt agcgaatttt taatatttag 15900  
cctcccttccc caacaagatc gcttgcacg atatagccga ctaagatgtt tataatcag 15960  
ccaatgtcgt ggcacaaga aaggtagt gcccacaa attgtatgtc gaacagttaga 16020  
aaccttgcattt gtagcaacac gcttgcattt gcatcatcg cgcggccaaac ttgtttgtt 16080  
ttgtttatcc agccaaggcg cagtttgcac ctaagttttt attcccttt tacacttttag 16140  
caactgattcc gaggatgact ccacggaggt cgatatcaag gaggatattc cggaaacgg 16200  
ggaggtatcg ggatcgaaat tgtgagtttcc tggtcacgtg gtcacatgtg gtttgcctgg 16260

ttgcttaacta ttattgtttt tattattcca ggaccacgga acccatggcc ttcttcagg 16320  
gattaaacgt gagttgtgc ttaatgtgc aaagctatacg cttactaact atttaatatt 16380  
attccccca gtccggaaat ctgatgcagt tcagccaggt gggtaacatc gattagctat 16440  
tgcatcttgc agcgctggaa cagatcgccc tgacgagga tcagcaggaa gctgccacc 16500  
gccgagaaga cattgctgat cagtcgcata tccagctcgat acaagcccaa gggtaatt 16560  
tggtaacttgg tcaccgtgac cagcagagta aagccgtgga ctgcctgacg gtgcggctg 16620  
tccgcatacgat gtagattcat ctccctggaga atgactgcgc atcttcgggt gccaccaat 16680  
aggtgggtgc acaaatgcgt gagcaatgtg atctccgcca gcgcgatggaa gaggaaaacc 16740  
agattgatca gcgatccaag accatcgatc ggcttgcaca tgattaaggt gtccgcata 16800  
gcatagttaca gactgttagaa acccaccgtt attccgagca ggtggcatat gagcgcacaga 16860  
atcatggaca aggacattgg ggtcagatac ttcccgaat gcacatatac caacctata 16920  
cgatacgcca gctggtcgag ttcatccgccc aaggcgcaaa atcgctgat gcggtagtat 16980  
ttagtgtaca actttagctg gtccttcctc tgacgagat tcacccctcg cagctgcgt 17040  
tccagccgtc tgttcagagc gtacagaatc tccttcacca ccaccattgc gccaaagtag 17100  
cagttattga gaaaattcga aataattaag ggaacacagcc ggtacaaggt ccagatcaag 17160  
ctcatctcgg gatgctgccc cctctgttgc agtatacgaaat ccacttcaat tgtagagga 17220  
aaagccacgg tcttgaccag agccaaaacg atggatatgt acagcgaccc gctgtccaga 17280  
cggaattttt ttagggtatac aaagaaggc actttgctca acacccttggc cacatggta 17340  
ctgattatca tttgcgacac atatgttatac acagccaccg taatgttcat atatgttac 17400  
agagtgggg cgtccttcag gttgatctga ccctcttggt actcccttgc gatttgcgc 17460  
ccgtaaacca agctgaatgc aattggccac agcgaagcaaa aggccagatt tgccttgag 17520  
aagcggaaatc tttcacgacg gcccggccga tatcgattgg ccaggagatcc gaagacggc 17580  
ataaaagccta tcagttatgtatc cgtcagaaat ttcaccatac gccgatgcgc gtagtcgt 17640  
gtgaagtcca tttctctcga acaattaata caaaactgtga ggcacttgc cacagcatta 17700  
atatctgtttt aatttttttcaactaccca actgtatgcca tctagaggac ctgtcaagta 17760  
gccggacact atcgggacac atcgcgaaac gcatgtatcc caccggccgt ccagaaacca 17820  
actgagcatg cgttgcgtca ctactagcca caaacaaaag agcataagaa gcgtgaggaa 17880  
agcggcattc cttgcgtgac tcagccgctg cctgcaattt cataagagcg acatgacgtc 17940  
aaagtgcctt cgaagttcac tttcagttgg aggacagaac aaaacactct tatctagccg 18000  
attagcacgg tgcaacttcctt cccgtcgta tcgttttagcg agaatttcaat gcacttgc 18060  
aaaatagaat agaataaaaa acaaatacgcc agtcatttgc taactcgagc aagctggAAC 18120  
atgaagctt atcagctcta tgagcgaaaa gtgtgaaccc ttatatgatt gcgagttaa 18180  
ttgacattca aataatatct tttttttgt tacagcaatc cgtgctgcgc gaaatgtgc 18240  
tgcaggacat tcagatcccg gcaacacgc tgcccaagct agagaatcac aacatcggt 18300  
gttattgtt cagcatgggtt ctggatgagc cgcccaagtc tctttggatg tactcgattc 18360  
cgctgaacaa gctctacatc cggatgaaca aggccctaa cgtggacgtt cagttcaagt 18420  
ctaaaatgcc catccaacca cttatgtc gtgtttccctt ttgcttcctt aatgtatgt 18480  
gtgctccgtt ggtccgtgtt caaaatccatc ttacgttgc gccttgcgtt gtaagataac 18540  
aatacagatc gaacaggatt atttaactat catttgtaca aaccttttagt gacggccaa 18600  
aacgcaaaaaa tgccgcgagag cttgcgtgcgc agcgagaatc ccaacagtgtt atattgtgg 18660  
aatgctcagg gcaaggaaat ttccgagcgtt tttccgttgc tagtccccctt gaacatgagc 18720  
cggtctgtaa cccgcagtgg gctcacgcgc cagaccctgg cttcaagtt cgtctgccaa 18780  
aactcgtgtt tcggcgaaaa agaaaacttcc ttatgttgcgtt gcctggagaa agcatggtaa 18840  
ggtgacagca aaactctaga tggcttagaaac aaagcttaac gtgtttttt tcttcgcgc 18900  
gcgatatcgtt gggacagcat ttatatacatg taaaatatgc tacgtgcacc aagcgggatc 18960  
gcataccaaga cgaacgcccag ctcaatagca agaagcgcaaa gtccgtgcgc gaagccgc 19020  
aagaagatga ggcgtccaag gtgcgtcggtt gcatgtatc aaagacggag gacacggaga 19080  
gcaatgtatc cgcgactccg gacgactccg cgcagactgtt gacgtgtcg cggacaccgg 19140

atggcgatta ccgtctggct attacgtgcc ccaataagga atggctgctg cagagcatcg 19200  
agggcatgat taaggaggcg gcggctgaag tcctgcgcaa tcccaaccaa gagaatctac 19260  
gtcgccatgc caacaaattt ctgagcccta agagtaagca gtgaatcgga ggacaaagag 19320  
attaagcttt acttaccgaa ctttccttc agaacgtgcc tacgagctgc catgacttct 19380  
gatctggtcg acaatctccc aggtatcaga taccccttcaa atgtgttca tctgtgggt 19440  
atactacata gctatttagta tcttaagttt gtattagtcc ttgttcgtaa ggcgtttaac 19500  
ggtgatattc ccctttggc atgttcgatg gccaaaaga aaacattttt atattttga 19560  
tagtatactg ttgttaactg cagttctatg tgactacgt aaccttgc accacaacaa 19620  
acatactctg taaaaaaag ccaaaagtga atttattaaa gagttgtcat attttgc 19680  
catatcctcg tggtgtacgc caatgccag agcctactgt accccccaccg tggagcacat 19740  
gctatgtgac atgtgtggct tgggtcggtt caatgcactc aggtgcaac tcagctagct 19800  
agctgcta atgtcaaaat tgctgcgtcg cattacata ctttatttat acccgatct 19860  
gcacgtcttt ggtttagtt ctatgcttc aaaaaaaaaa aaacaacctc aagcagggcg 19920  
catgcgttgc gccagcgttg cacatgtgcg aggtgcaaa aaagtgcaac aaacaccaga 19980  
tggtgacact gtggcgtgc agctgcaggc gacttttagct tttgccacat gccggcagcta 20040  
aatgtttact ctatcccacc gatcgctgtt cattgaccta gggcaggggc attaagtgc 20100  
ccctaatcgt aacggaatga tagcctctgt gtccaaaaat tcagccaaag cgatgcact 20160  
caacttcatt tggggctgtt ctttctcga ccggctgcca cttccactac cagttggca 20220  
ccacgaaaaat gggtcgttca aagtgcctaa aacccagccg agcaactcactc tcaattctcg 20280  
ttggacgagc gcacagaaaaa gttgtttgg atacgagttt agttcgagag accttctgc 20340  
actgggaaca tacatgcggc tttgtgtaaac agaataataa agtacgcaaa catactgtta 20400  
atacttaaag cacaagaac aatataat gtatcataat ttgtttaattt atttattcga 20460  
ggtttccaaa caagtcatcc tgataacaaa agttgtaaaa ataaaatcca ctAAAattaa 20520  
atatcaccca ctttcagaa taagcacacg tgtatatact tcagttatata ttttttcag 20580  
tgcacttttc ccaagcgatg caatgcctt agaagccaa ttaaatacgt ttctttgatt 20640  
ggcggtgc 3aaaggttga caattcgaaa gttgcgcaca ctggggaggca. gtgactcata 20700  
atttacataa ttatccggg aagatattaa gactcataact atattcaagc agttgtttat 20760  
cattttaaac tggcagatac cccatctta cggaccagat aaaggaaag caaacacggc 20820  
tgggcttta tcggctacga tcttcattccg cagttccac tggcgctgt gggaaaacaa 20880  
tatggccaa acacataaaa aacaacaaaaa aaaggaaaca accacagaaaa gcccggctaa 20940  
gacgtcaggta gaaacgcagt agttcactc gcgcactcggc gcttccactc aaaggtgcta 21000  
ccgctgccc ctcacatctg cagctcgttag atacgaaaac cagatagcgt cgagcggctg 21060  
gcgcatttc ctcacatgggg gggaaatactg ctatagagtc gaaagcttgc acacgtatgtt 21120  
tggcatttcg agtcgttttgc tggcggtttt agtctgctgc ctgatcttcg acgcgtgc 21180  
gctgtttgg agtcgcgcg agtgcctat ttgcgttgc cgccaaaatt tctggctaa 21240  
aaacagagat attttagata cagatacata tatctcatat cacatattag ccaattgtgg 21300  
gtgcaacaag ctgtgagtga tggtgagac ggcaacgaca acgaccataa cccgcaccac 21360  
caccggcgtt ccggctgggt cagtaacggta aacaggaccc actgcctcgg ccacccac 21420  
cgcgacacag gcccgcgcg aggccgcattc caacgatggtag accacccggg ccatcttcaa 21480  
tctgaaagtc atcgctttc tgctcccttgc gcctctggc ctgctggcg tcttctcaa 21540  
gcacctttt gattacctat tcgcgtggg actcaaggag aaggatgtca gtggcaaggt 21600  
ggcaactggta agttgcattc gactgccttgc tgggctaaac aaatggctgc aatgagcg 21660  
tggcaatga gccattataa aggcttagtca gatgcacatc agacatggat gcacttagaa 21720  
aatgcgtcg catttcatttgc taagtactga cattaaaaaa gagatataatg tctgtgttta 21780  
gatacatttt tgggtaccaaa attaggttca gatacttcgt aaagaaattt gtaatggtat 21840  
actttaatcg ttggcttcat gtgaatttgc tttccagta tccgcttca agtgcatttgc 21900  
tatctgacga ctacttagcc aaccagaaac gtcacgcact ttcccttcc agtgcgtgc 21960  
tccgggtttc caccacgccc accttggct caccacaccc ttcccttcc cgcctttct 22020

tttgcgtttta ttctccctct tttttttttt tttgatgtca ctgccattag ggtgcggtcg 22080  
atcgcttagt actgtgttat taatgtaaat atttatgcgt ttggtgccca gcttggttag 22140  
ttgttggcca attgtttagt tgtgtccaca gagccgcgtc ttggtgcca cggacagtta 22200  
atgtgacata atttcgctgt aagcgctgca atcaaagtga atctccagct gaaatcgtc 22260  
tcatggcaac catatcgcc tccaataatc acatatgcat cttggggcgt cgaattatgg 22320  
agaagtcata tgccaatggg cgccaatgcc actggacaag gtcaagtgtat gatgccgtc 22380  
ccgatgtccc atatcgtaaa gaacctgatc gaattcgaa cccattagca tgcttttcag 22440  
gcttttata gtgggcgtgt gccggccata agcgtctcac gtagcgtatt aatgattcac 22500  
agcggcccgaa cttttgtttt agtctcagct tttttttcg atcgccccct cagatatcg 22560  
tttctcagat acagatacac atacagatac attttgtt cggttgacca gtggtatttt 22620  
cgggtggcag ggactggaga attcccatgc caactgttag cagcaactta attataagat 22680  
tgacttcgt tgataagttc tattgacatc atggttgcgg aattcgaattt atttcagtc 22740  
aaaaataccccc ccttttcga caccactggc caacggccaa ctgaaaactg gtttgcgtg 22800  
tgtcgctata ttatattcca agatgaacga aaagagcgca aaaatgaaa cctcagaaaag 22860  
ttcacttttgc ttttcagttc aatgtttgtt ttacaaaaca atagagtgtat gatattcgat 22920  
gggc当地 atctgcaagt gtgttagcatg ccgggtatct ctcagatgcg tagataaaaac 22980  
tcaactactg ttggcgtgt taatttgcattt atgatattga aattcttcgg ctgttctata 23040  
atcacaacaa ctgcgcattt gttattgtt tcccccattgc tagtcgtaa cgtgccaaac 23100  
tctgaattga actcattccg gcttacattt cgattcaccc aactaccgca caccaaaaac 23160  
ggc当地 gtcaacccagg gggcttcaat tacggtaaa agtcaactaa ttgtgccccca 23220  
gagggtcggc ccaccggcgt tatgagtaat gccattata agtgcctct gcccgtgtt 23280  
ctgctgtca cataattgtc cgtaaatgag gttttgtt aatgcgaagt cacattagct 23340  
cgagttgatt gttgcaaat taagctaatt aatttactt agtatacagg tgtaatgtga 23400  
gtaacctgtg atttaaaccc aggtgaccgg cggaggcagt gggctgggtc gcgagatctg 23460  
cttggaaactg gcgcggcggg gctgcaagct gcccgtcggt gatgtcaact ccaaggatg 23520  
ttacgaaacg gtggagctgc tctccaagat tccacgctgc gttgccaagg cctacaaggt 23580  
gagttcaacta gctgcttggaa tatttaatgg tttgataaca agaatctta ttccagaacg 23640  
acgtgtcatc gcctcgccag cttcaactga tggccgcca ggtggagaag gaaactgggtc 23700  
ccgtggacat tctggtaac aatgcctccc tcattgccc gacttcaaca cccagtcgt 23760  
agagcgatga aatcgacaca atactgcagc tcaatctggg ctcctacata atggtagtg 23820  
tgtgcttctg aaaatgggac aaatataaaa cttcttgatt ttgcagacca ccaaggagtt 23880  
cctggccaaatg atgataaaacc gcaagtccgg tcattgttgc gcaagtaatg ctttagcg 23940  
taagcttaact tggtaaaatg gcttaccact tcattgatac ctatgtatat ataactcgca 24000  
tttaggtcta gttccactgc caggagccgg catctacacg gccaccaa atcggatcg 24060  
gggcttcatg gaatcgctgc gagctgagct gcgattgtcc gactgtgact acgttcgcac 24120  
cacgggtggcc aatgcctatc tgatgaggac cagcggagat cttccactgc tcagtgtatgc 24180  
ggggtaagat tggttatag tttggcaga tcacttggc tcattgcggct actacattta 24240  
gcattgccaag gagctatccc ggactgccc caccatatgt ggccgagaag attgtcaagg 24300  
gcgtgttgcgtaac gagcggcgc atggtgatg tgccaaaaat atcgcactc agtgtatggc 24360  
tgctcagggtg agaattgaat tagccccagg aaccagcgat tatttcttaac gattattgtt 24420  
gtgcgccttc ttttagactgt tgcccacca gtggcaggat tacatgctgc ttgccttcta 24480  
ccacttcgat gtgcgcagct cccacccgtt ttacttggaa tagggcacaag gagaaggcac 24540  
atccccaccc agaagcattt actccctgtt gtttccaaat tgcaattttt tattcaactg 24600  
ttgtttaacgc taggtgtaca ttttttagctt tttatatacgaa tcttttaactt aaatataatc 24660  
tataatccaa cattagaatt acgtccgggtt ggcctttctt attttatttc gtataagccg 24720  
aagtgttcg gagtagcaca tccctctggaa ctgctggac caggacccctt gttcgtagtg 24780  
ccaaatgttagt ttcaagtgcc atcgatggac cagcttggag ccacttggagc agtagtagaa 24840  
gtaggcgccag ttccgtggat gtggcataaaa gccatagact ccctcctggc agttqatqat 24900

attctctcgc gtttgcatgc gattgcagga cactagatga gcaggagtagc aggcccttggc 24960  
cagtccagcc ccctcgtagc agaccatata aggataacat ggtccggcat tggtaaaag 25020  
tcgcagggtta atgcccaatg gttccgcctt ctgagctggc ttcttgacca tcgaggggaa 25080  
tttagtggtt atgcctacgg gatcccggca tctcgacacc aactttcgat ccaaacagcg 25140  
ttccaatttt tcgtcgtagt aatgaccatc caagcactcg gcctcaaagg atcctggacc 25200  
ggcacaatat atgtatttgg agcaatttgc agagctggcg acataaaactc ccaatttgtgg 25260  
agcaactggca cactcttcga actccagggc actggatcga tgacccagca aggtcaccaa 25320  
aataattgtt aagaaggta cagctcccat ttcatattt ttttaacga ccgaaatagc 25380  
gggatgactt ctgttagactg acttcatcga tgatgggtt agtatatttt tgcattgtgc 25440  
ccaaactgata aagaagacaa gttattccat cgattactac gctggttatc gtctggtaga 25500  
taccgctaattt gggcacatgg cagtaactgc cacgcccact ctggcggtc tcggtaattt 25560  
gcattttcgt agcataacttc gcagcagcag caaagcaacc gagtattaa tgataccaca 25620  
ccgcagcata atgctcgact gggcgccgg tcaataaaaa ttgaaaatgc actcaattcg 25680  
caattaagtg tcgccacttc cgtacggaca agcggacaaa cggacggaca agcggacaaa 25740  
tggacggata aacggacgga tggatggtcg tcgaacgata ccattcaggg cattcaatcc 25800  
attcatcgca gtcatcctca ttattatttc catcgatcgtc gtggtcgtt ctggtcggag 25860  
ttaagcgatg gccatcgatt taatatccga tgagatattc ataacttgc attaggtttg 25920  
gtggctctgc gcttacgta aatgattgcg tagccgatta atgaagaatt accagtgc当地 25980  
atggctggga tctgtggca ttatccaattt gaccaactac cattgtaccc cactaccatt 26040  
accattaccatc taatgtgcaa tggcccaattt gggctcaat taaaagttt attaattgtc 26100  
aattaaacgc tggccccag cagctgcattt gtggcataat tttgggtca atctgc当地 26160  
ctgattaaca ggttatacccg ctcagtctac tacatatacc atgcaccaga tgccgc当地 26220  
cacagacaac aagaagtaaa agaaaggacc ccataatggc cgcacggctc aagtgattaa 26280  
gtgcacgacg agatcttcaa atgcagtgc acatgtgc acatgc当地 26340  
cacacacaca cacgc当地 26400  
cccccagcac cttgatactt ctgctcaatg cgcattgcgc atgc当地 26460  
agatccataa aaatagctca ctaattattt gtgtgcttagg gttacagttc tcataaaaaaa 26520  
caaacaact gtcgggcgtt ttatggatct tctgcctcta tggcctcaat gccccgc当地 26580  
agttttcgat ccccattcga ttcgaaaccg aagaagagct acgaccaatc actttcaat 26640  
tcctatgagc agttgagcat caattgattt cgatatgaaa ataaaataca tttattttt 26700  
atcacattac gtatcacagc cattgc当地 26760  
catcgccgg accttgc当地 26820  
cccggtccgt tcgagccctcc aggttgc当地 26880  
tgactctggc catcagacgc tccgagttt tggtcagctc gatgaggc当地 26940  
tggcctggcg actctccatc gatatcctgt ccagatccag ctgc当地 27000  
tgtccatctg ggcttaagg gctggaaaac aactttcgat taaaattaa attttttca 27060  
ccctaaatca tgattttcgg tggatatttgc tgccatgc当地 27120  
tgacttgggtt tggttgc当地 27180  
ttaattgtaa ttgcagctaa ctggctttt ggtacttttgc ttttaacgc caaatgtgaa 27240  
atattaagta tatttttattt aagcgatggc acctgtaaaat tgagatattaa ggggtatata 27300  
taaatgggtt aacttgc当地 27360  
aaaaaaaaatga aagtaaatttgc ctgc当地 27420  
ctttt 27425

&lt;210&gt; 19

&lt;211&gt; 1781

&lt;212&gt; DNA

<213> Drosophila melanogaster

<400> 19

gaattcggca cgagacgcca tacaaaaagt tggaaactgag tggaaatcgga gtactatata 60  
 gccagccgat cccttccaga gcccggaaag agtagctcac atccgaaccc acgtccccga 120  
 gcccgtatcg cggcggaaat agagcgattc gcagtcggaaa cacgatgata aaccccatgg 180  
 catccgagtc ggaggccatc aattcggcca cctatgtgga caactatatac gattcggtgg 240  
 aaaatctgcc ggacgacgtg cagcgccagt tgcacgcac ccgcgacata gacgtccagt 300  
 acagaggcct cattcgcgac gtagaccact actacgacact gtatctgtcc ctgcagaact 360  
 cccggatgc cggcgcacgg tctcgaagca tctccaggat gcaccagagt ctcatcagg 420  
 cgcaggaact gggcgcacgaa aaaatgcaga tcgtcaatca tatgcaggag ataatcgacg 480  
 gcaagctgca ccagctggac accgaccacg agaacctgga cctgaaggag gaccgcgatc 540  
 ggtatgcgct cctggacgat ggcacgcctt cgaagctgca acgcctgcag agcccgatga 600  
 gggagcaggg caaccaagcg ggcactggca acggtggcct aaatggaaac ggcctgcctt 660  
 cggccaaaga tctgtacgac ttggccggct atgcaggtgg ttttgtgcct ggttctaattg 720  
 ccatgacctc cggcaacggc ggcggctcaa cgcccaactc ggagcgcctcg agccatgtca 780  
 gtaatggtgg caacagcggc tccaatggca atgccagcgg cggaggaggc ggagaactgc 840  
 agcgcacagg tagcaagcgg tcgaggaggc gaaacgagag ttttgttaac aacggaaagct 900  
 ctctggagat gggcggcaac gagtccaaact cggcaatga agccagtgcc agtgggtgg 960  
 gcagttggcga ggcacaaatcc tcgttggcgt gtgccagttgg agcgggacac ggacgaaagg 1020  
 ccagtctgca gtcggcttct ggcagttgg ctgcggctc tgcaagccacg agcagtggag 1080  
 cagccggagg tgggtgtgcc aacggagccg gcgtagttgg tggcaataat tccggcaaga 1140  
 agaaaaaagcg caaggtacgc gttctgggg cttcaaatgc caatgccagt acgcgagagg 1200  
 agacgcccgc gccggagacc attgatccgg acgagccgac ctactgtgtc tgcaatcaga 1260  
 tctccttgg cgagatgatc ctgtgcgaca atgacctgtc ccccatcgag tggttccatt 1320  
 tttcgtgcgt ctccctggta ctaaaaccaa aaggcaagt gttctgcccc aactgcccgc 1380  
 gagaacggcc aaatgtaatg aaacccaagg cgcagttcct caaagaactg gagcgttaca 1440  
 acaaggaaaa ggaggagaag acctagttca ttaggcccgc ctatccaacc cattgtctcg 1500  
 tgtctaacac caggctctgt aaaatattcg atcctaagat ttaccttaat gtatatttag 1560  
 tgactttctt agacccgatc cttttcgcac tttccctct ttcacccagt ttagatccct 1620  
 cgcttctatg gttataggtc gtcagtttc atttaaagtt tctgtacaaa caatatcttt 1680  
 ctcaatgtaa acacacaaaa actcgtataa ttagagtaca cctaaactta atttatggta 1740  
 ataaaacgtt atattcaaaa aaaaaaaaaa aaaaaactcg a 1781

<210> 20

<211> 433

<212> PRT

<213> Drosophila melanogaster

<400> 20

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Met | Ile | Asn | Pro | Ile | Ala | Ser | Glu | Ser | Glu | Ala | Ile | Asn | Ser | Ala | Thr |
| 1   |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 15  |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Tyr | Val | Asp | Asn | Tyr | Ile | Asp | Ser | Val | Glu | Asn | Leu | Pro | Asp | Asp | Val |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 30  |
| 20  |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |

Gln Arg Gln Leu Ser Arg Ile Arg Asp Ile Asp Val Gln Tyr Arg Gly

|                                                                 |     |     |
|-----------------------------------------------------------------|-----|-----|
| 35                                                              | 40  | 45  |
| Leu Ile Arg Asp Val Asp His Tyr Tyr Asp Leu Tyr Leu Ser Leu Gln |     |     |
| 50                                                              | 55  | 60  |
| Asn Ser Ala Asp Ala Gly Arg Arg Ser Arg Ser Ile Ser Arg Met His |     |     |
| 65                                                              | 70  | 75  |
| Gln Ser Leu Ile Gln Ala Gln Glu Leu Gly Asp Glu Lys Met Gln Ile |     |     |
| 85                                                              | 90  | 95  |
| Val Asn His Met Gln Glu Ile Ile Asp Gly Lys Leu Arg Gln Leu Asp |     |     |
| 100                                                             | 105 | 110 |
| Thr Asp Gln Gln Asn Leu Asp Leu Lys Glu Asp Arg Asp Arg Tyr Ala |     |     |
| 115                                                             | 120 | 125 |
| Leu Leu Asp Asp Gly Thr Pro Ser Lys Leu Gln Arg Leu Gln Ser Pro |     |     |
| 130                                                             | 135 | 140 |
| Met Arg Glu Gln Gly Asn Gln Ala Gly Thr Gly Asn Gly Gly Leu Asn |     |     |
| 145                                                             | 150 | 155 |
| Gly Asn Gly Leu Leu Ser Ala Lys Asp Leu Tyr Ala Leu Gly Gly Tyr |     |     |
| 165                                                             | 170 | 175 |
| Ala Gly Gly Val Val Pro Gly Ser Asn Ala Met Thr Ser Gly Asn Gly |     |     |
| 180                                                             | 185 | 190 |
| Gly Gly Ser Thr Pro Asn Ser Glu Arg Ser Ser His Val Ser Asn Gly |     |     |
| 195                                                             | 200 | 205 |
| Gly Asn Ser Gly Ser Asn Gly Asn Ala Ser Gly Gly Gly Gly Glu     |     |     |
| 210                                                             | 215 | 220 |
| Leu Gln Arg Thr Gly Ser Lys Arg Ser Arg Arg Asn Glu Ser Val     |     |     |
| 225                                                             | 230 | 235 |
| 240                                                             |     |     |
| Val Asn Asn Gly Ser Ser Leu Glu Met Gly Gly Asn Glu Ser Asn Ser |     |     |
| 245                                                             | 250 | 255 |
| Ala Asn Glu Ala Ser Gly Ser Gly Gly Ser Gly Glu Arg Lys Ser     |     |     |
| 260                                                             | 265 | 270 |
| Ser Leu Gly Gly Ala Ser Gly Ala Gly Gln Gly Arg Lys Ala Ser Leu |     |     |
| 275                                                             | 280 | 285 |
| Gln Ser Ala Ser Gly Ser Leu Ala Ser Gly Ser Ala Ala Thr Ser Ser |     |     |

290

295

300

Gly Ala Ala Gly Gly Gly Ala Asn Gly Ala Gly Val Val Gly Gly  
 305                   310                   315                   320

Asn Asn Ser Gly Lys Lys Lys Arg Lys Val Arg Gly Ser Gly Ala  
 325                   330                   335

Ser Asn Ala Asn Ala Ser Thr Arg Glu Glu Thr Pro Pro Pro Glu Thr  
 340                   345                   350

Ile Asp Pro Asp Glu Pro Thr Tyr Cys Val Cys Asn Gln Ile Ser Phe  
 355                   360                   365

Gly Glu Met Ile Leu Cys Asp Asn Asp Leu Cys Pro Ile Glu Trp Phe  
 370                   375                   380

His Phe Ser Cys Val Ser Leu Val Leu Lys Pro Lys Gly Lys Trp Phe  
 385                   390                   395                   400

Cys Pro Asn Cys Arg Gly Glu Arg Pro Asn Val Met Lys Pro Lys Ala  
 405                   410                   415

Gln Phe Leu Lys Glu Leu Glu Arg Tyr Asn Lys Glu Lys Glu Glu Lys  
 420                   425                   430

Thr

<210> 21

<211> 2666

<212> DNA

<213> Drosophila melanogaster

<400> 21

cattttgtac agtctaaacg gggattcgcg taaaactacgc agaaaatataa acaaacaaaaa 60  
 actagtagac tatagaatat aaacagtttc ctaccaatgg agacttgtga agtggaggga 120  
 gaggcggaga cgctggtag acgcttctcc gtcagctgcg agcaattgga gctggaaagcg 180  
 agaattcagc aaagcgctct gtccacctac catcgcttgg atgcggtaa cgggctgtcc 240  
 accagcgagg cagatgccc gggagtggctg tggtgcggc tctacagcga actgcagcgc 300  
 tcgaagatgc gcgatattag ggagtccatc aacgaggcaa acgattcggt ggccaagaac 360  
 tgctgctgga acgtgtcaact aacccgtctg ctgcgcagct ttaagatgaa cgtgtcccag 420  
 tttctacgcc gcatggagca ctggaattgg ctgaccaaaa acgagaacac tttccagctg 480  
 gaggttgagg aactgcgttg tcgacttgtt attacttcga cgctgctgcg gcattataag 540  
 cacatcttc ggagcctgtt cggtcacccg gcaagggtgc ggacccgggt gccgcgaatc 600  
 actaccaacg gctgtatgag ttccggtttgt tgctttccct ggtcattcgc aacgagttac 660  
 ccggtttgc gattacaaac ctgatcaacg gctgtcaggt gctcgttgc acaatggatc 720

tcctttcgt gaacgccta gaggtcccc gatccgtat tatccgcgg gagttctcg 780  
 gagtgccaa gaattggac accgaagact tcaatcctat tttgctaaat aaatatagcg 840  
 tgctagaagc actgggagaa ctgattccc agctaccagc gaagggagtg gtgcaaatga 900  
 agaacgcctt ttccacaaa gcctaataa tgctctatat ggaccatagt ctagttggag 960  
 acgacaccca tatgcgggag atcattaagg agggatgct agatatcaat ctggaaaact 1020  
 taaatcgcaa atacaccaat caagtagccg acattagtga gatggacgag cgtgtgctgc 1080  
 tcagcgtcca gggggcgata gagaccaaag gggactctcc taaaagccca cagctgcct 1140  
 tccaaacaag ctcgtcacct tcgcatacga agctgtccac ccatgatcta ccagcaagtc 1200  
 ttcccctaag cattataaaa gcattccca agaaggaaga cgccagataaa attgtaaatt 1260  
 atttagatca aactctggaa gaaatgaatc ggacctttac catggccgtg aaagatttt 1320  
 tggatgctaa gttgtctgga aaacgatcc gccaggccag aggcccttac tacaaatatt 1380  
 tgcagaaaaat tttgggaccg gagctggtc aaaaaccaca gctgaagatt ggtcagttaa 1440  
 tgaagcagcg caagcttacc gcccctgt tagcttgctg cctggaaactg gcacccacg 1500  
 tccaccacaa actagtggaa ggcctaaggt ttccctttgt cctgcactgc ttttactgg 1560  
 acgcctacga ctttcaaaag attctagatg tgggtgtcg ctacgatcat ggtttctgg 1620  
 gcagagagct gatcaagcac ctggatgtgg tggaggaaat gtgcctggag tcgttgattt 1680  
 tccgcagag ctcacagctg tgggtggagc taaatcaaag acttccccgc tacaaggaag 1740  
 tcgatgcaga aacagaagac aaggagaact tttcaacagg ctcacgcac tgccttcgaa 1800  
 agttctacgg actggcaac cggcggctgc tcctctgtg taagagtctt tgcctcgtgg 1860  
 attcccttcc ccaaataatgg cacctggccg agcactctt caccttagag agtagccgtc 1920  
 tgctccgc当地 tcgcacacctg gaccaactgc tgggtgcgc catacatctt catgttcggc 1980  
 tcgagaagct tcacctact ttcagcatga ttatccagca ctatccgcga cagccgact 2040  
 ttcggagaag cgcttaccga gaggttagct tggcaatgg tcagaccgt gatattatca 2100  
 ctttctacaa cagtgtgtat gtccaaagta tggcaacta tggccgcac ctggagtgtg 2160  
 cggaaacacg caagtcaactg gaagaatcac agagtagcgt tggattctg acggaaaaca 2220  
 acttccaaacg aatttagcat gagagccaaat atcagcatat cttcaccgc ccctcccagg 2280  
 gtatgc当地 gtggctcctg ctccagtcat ccacccatctt cttccgc当地 atcaccactt 2340  
 tccttg当地 gctgc当地 cgtaaagcgt gctgctcga gtaacgactt gatgagagag 2400  
 atcaagc当地 caaacatcct cggcgtcgc cagcttcag tcatcttacc accaatcaa 2460  
 aaaggcttaa atacttggct gcattttacg cagctagctt agtatatttc taaaactcaa 2520  
 aatggtaat taaaatgt taaaattata gatattttat taacttggc aagtaagtta 2580  
 aaagcttttgc ttttgc当地 aataaaggaa taactgc当地 tcgtagttt aataaatttt 2640  
 taaaaaaaaaaaaaaa ctcgag 2666

<210> 22  
 <211> 556  
 <212> PRT  
 <213> Drosophila melanogaster

<400> 22

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Met | Asp | Leu | Leu | Phe | Val | Asn | Ala | Leu | Glu | Val | Pro | Arg | Ser | Val | Val |
| 1   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Ile | Arg | Arg | Glu | Phe | Ser | Gly | Val | Pro | Lys | Asn | Trp | Asp | Thr | Glu | Asp |
| 20  |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Phe | Asn | Pro | Ile | Leu | Leu | Asn | Lys | Tyr | Ser | Val | Leu | Glu | Ala | Leu | Gly |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |

|                                                                 |     |     |
|-----------------------------------------------------------------|-----|-----|
| 35                                                              | 40  | 45  |
| Glu Leu Ile Pro Glu Leu Pro Ala Lys Gly Val Val Gln Met Lys Asn |     |     |
| 50                                                              | 55  | 60  |
| Ala Phe Phe His Lys Ala Leu Ile Met Leu Tyr Met Asp His Ser Leu |     |     |
| 65                                                              | 70  | 75  |
| Val Gly Asp Asp Thr His Met Arg Glu Ile Ile Lys Glu Gly Met Leu |     |     |
| 85                                                              | 90  | 95  |
| Asp Ile Asn Leu Glu Asn Leu Asn Arg Lys Tyr Thr Asn Gln Val Ala |     |     |
| 100                                                             | 105 | 110 |
| Asp Ile Ser Glu Met Asp Glu Arg Val Leu Leu Ser Val Gln Gly Ala |     |     |
| 115                                                             | 120 | 125 |
| Ile Glu Thr Lys Gly Asp Ser Pro Lys Ser Pro Gln Leu Ala Phe Gln |     |     |
| 130                                                             | 135 | 140 |
| Thr Ser Ser Ser Pro Ser His Arg Lys Leu Ser Thr His Asp Leu Pro |     |     |
| 145                                                             | 150 | 155 |
| 160                                                             |     |     |
| Ala Ser Leu Pro Leu Ser Ile Ile Lys Ala Phe Pro Lys Glu Asp     |     |     |
| 165                                                             | 170 | 175 |
| Ala Asp Lys Ile Val Asn Tyr Leu Asp Gln Thr Leu Glu Glu Met Asn |     |     |
| 180                                                             | 185 | 190 |
| Arg Thr Phe Thr Met Ala Val Lys Asp Phe Leu Asp Ala Lys Leu Ser |     |     |
| 195                                                             | 200 | 205 |
| Gly Lys Arg Phe Arg Gln Ala Arg Gly Leu Tyr Tyr Lys Tyr Leu Gln |     |     |
| 210                                                             | 215 | 220 |
| Lys Ile Leu Gly Pro Glu Leu Val Gln Lys Pro Gln Leu Lys Ile Gly |     |     |
| 225                                                             | 230 | 235 |
| 240                                                             |     |     |
| Gln Leu Met Lys Gln Arg Lys Leu Thr Ala Ala Leu Leu Ala Cys Cys |     |     |
| 245                                                             | 250 | 255 |
| Leu Glu Leu Ala Leu His Val His His Lys Leu Val Glu Gly Leu Arg |     |     |
| 260                                                             | 265 | 270 |
| Phe Pro Phe Val Leu His Cys Phe Ser Leu Asp Ala Tyr Asp Phe Gln |     |     |
| 275                                                             | 280 | 285 |
| Lys Ile Leu Glu Leu Val Val Arg Tyr Asp His Gly Phe Leu Gly Arg |     |     |

|                                                                 |     |     |
|-----------------------------------------------------------------|-----|-----|
| 290                                                             | 295 | 300 |
| Glu Leu Ile Lys His Leu Asp Val Val Glu Glu Met Cys Leu Glu Ser |     |     |
| 305                                                             | 310 | 315 |
| Leu Ile Phe Arg Lys Ser Ser Gln Leu Trp Trp Glu Leu Asn Gln Arg |     |     |
| 325                                                             | 330 | 335 |
| Leu Pro Arg Tyr Lys Glu Val Asp Ala Glu Thr Glu Asp Lys Glu Asn |     |     |
| 340                                                             | 345 | 350 |
| Phe Ser Thr Gly Ser Ser Ile Cys Leu Arg Lys Phe Tyr Gly Leu Ala |     |     |
| 355                                                             | 360 | 365 |
| Asn Arg Arg Leu Leu Leu Cys Lys Ser Leu Cys Leu Val Asp Ser     |     |     |
| 370                                                             | 375 | 380 |
| Phe Pro Gln Ile Trp His Leu Ala Glu His Ser Phe Thr Leu Glu Ser |     |     |
| 385                                                             | 390 | 395 |
| Ser Arg Leu Leu Arg Asn Arg His Leu Asp Gln Leu Leu Cys Ala     |     |     |
| 405                                                             | 410 | 415 |
| Ile His Leu His Val Arg Leu Glu Lys Leu His Leu Thr Phe Ser Met |     |     |
| 420                                                             | 425 | 430 |
| Ile Ile Gln His Tyr Arg Arg Gln Pro His Phe Arg Arg Ser Ala Tyr |     |     |
| 435                                                             | 440 | 445 |
| Arg Glu Val Ser Leu Gly Asn Gly Gln Thr Ala Asp Ile Ile Thr Phe |     |     |
| 450                                                             | 455 | 460 |
| Tyr Asn Ser Val Tyr Val Gln Ser Met Gly Asn Tyr Gly Arg His Leu |     |     |
| 465                                                             | 470 | 475 |
| Glu Cys Ala Gln Thr Arg Lys Ser Leu Glu Glu Ser Gln Ser Ser Val |     |     |
| 485                                                             | 490 | 495 |
| Gly Ile Leu Thr Glu Asn Asn Phe Gln Arg Ile Glu His Glu Ser Gln |     |     |
| 500                                                             | 505 | 510 |
| His Gln His Ile Phe Thr Ala Pro Ser Gln Gly Met Pro Lys Trp Leu |     |     |
| 515                                                             | 520 | 525 |
| Leu Leu Gln Ser Ser Thr Phe Ile Ser Arg Arg Ile Thr Thr Phe Leu |     |     |
| 530                                                             | 535 | 540 |
| Ala Lys Leu Ala Gln Arg Lys Ala Cys Cys Phe Glu                 |     |     |

545

550

555

## INTERNATIONAL SEARCH REPORT

International application No.

PCT/US00/06602

**A. CLASSIFICATION OF SUBJECT MATTER**

IPC(7) :C07H 21/04; C07K 14/00; C12N 15/00  
 US CL :435/455; 530/350; 536/23.5; 800/3, 13

According to International Patent Classification (IPC) or to both national classification and IPC

**B. FIELDS SEARCHED**

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 435/455; 530/350; 536/23.5; 800/3, 13

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

WEST

Dialog (file: medicine)

search terms: p53, Rb, tumor suppressor, Drosophila, insect.

**C. DOCUMENTS CONSIDERED TO BE RELEVANT**

| Category* | Citation of document, with indication, where appropriate, of the relevant passages                                                                                             | Relevant to claim No. |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| A         | DONEOWER et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature. 19 March 1992, Vol. 356, pages 215-221, entire document.     | 1-28                  |
| A         | FIELDS et al. Presence of a potent transcription activating sequence in the p53 protein. Science. 31 August 1990, Vol. 249, pages 1046-1049, entire document.                  | 1-28                  |
| A         | KUSSIE et al. Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science. 08 November 1996, Vol. 274, pages 948-953, entire document. | 1-28                  |



Further documents are listed in the continuation of Box C.



See patent family annex.

|                                                                                                                                                                         |     |                                                                                                                                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Special categories of cited documents:                                                                                                                                  | *T* | later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention                                              |
| "A" document defining the general state of the art which is not considered to be of particular relevance                                                                | "X" | document of particular relevance, the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone                                                                     |
| "E" earlier document published on or after the international filing date                                                                                                | "Y" | document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art |
| "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) | "&" | document member of the same patent family                                                                                                                                                                                                    |
| "O" document referring to an oral disclosure, use, exhibition or other means                                                                                            |     |                                                                                                                                                                                                                                              |
| "P" document published prior to the international filing date but later than the priority date claimed                                                                  |     |                                                                                                                                                                                                                                              |

Date of the actual completion of the international search

19 JUNE 2000

Date of mailing of the international search report

09 AUG 2000

Name and mailing address of the ISA/US  
Commissioner of Patents and Trademarks  
Box PCT  
Washington, D.C. 20231

Facsimile No. (703) 305-3230

Authorized officer

ANNE-MARIE BAKER, PH.D.

Telephone No. (703) 308-0196



## INTERNATIONAL SEARCH REPORT

International application No.

PCT/US00/06602

## C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

| Category* | Citation of document, with indication, where appropriate, of the relevant passages                                                                                                  | Relevant to claim No. |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| A         | LEVINE, A. J. p53, the cellular gatekeeper for growth and division. Cell. 07 February 1997, Vol. 88, pages 323-331, entire document.                                                | 1-28                  |
| A         | RAYCROFT et al. Transcriptional activation by wild-type but not transforming mutants of the p53 anti-oncogene. Science. 31 August 1990, Vol. 249, pages 1049-1051, entire document. | 1-28                  |

## CORRECTED VERSION

(19) World Intellectual Property Organization  
International Bureau



(43) International Publication Date  
21 September 2000 (21.09.2000)

(10) International Publication Number  
**WO 00/55178 A1**

PCT

(51) International Patent Classification<sup>7</sup>: **C07H 21/04**,  
C07K 14/00, C12N 15/00

Burlingame, CA 94010 (US). ROBERTSON, Stephanie,  
A.; 255 Fowler Avenue, San Francisco, CA 94127 (US).

(21) International Application Number: PCT/US00/06602

(74) Agent: BRUNELLE, Jan, P.; Exelixis, Inc., 280 East  
Grand Avenue, South San Francisco, CA 94080 (US).

(22) International Filing Date: 13 March 2000 (13.03.2000)

(81) Designated States (*national*): AE, AL, AM, AT, AU, AZ,

(25) Filing Language: English

BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK,

(26) Publication Language: English

DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL,

(30) Priority Data:

IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU,

09/268,969 16 March 1999 (16.03.1999) US  
60/184,373 23 February 2000 (23.02.2000) US

LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT,

(71) Applicant: EXELIXIS, INC. [US/US]; 280 East Grand  
Avenue, South San Francisco, CA 94080 (US).

RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA,

UG, UZ, VN, YU, ZA, ZW.

(72) Inventors: BUCHMAN, Andrew, Roy; 3119 Epton  
Avenue, Berkeley, CA 94705 (US). PLATT, Darren,  
Mark; 929 Pine Street, Apt. 201, San Francisco, CA  
94108 (US). OLLMAN, Michael, Martin; 1805 Atschul  
Avenue, Menlo Park, CA 94025 (US). YOUNG, Lynn,  
Marie; 250 Baldwin Avenue, #4, San Mateo, CA 94401  
(US). DEMSKY, Madelyn, Robin; 1770 Pine Street,  
3203, San Francisco, CA 94109 (US). KEEGAN, Kevin,  
Patrick; 17311 Via Estrella, San Lorenzo, CA 94580  
(US). FRIEDMAN, Lori; One Bayside Village Place,  
Unit 212, San Francisco, CA 94107 (US). KOPCZYN-  
SKI, Casey; 2769 St. James Road, Belmont, CA 94002  
(US). LARSON, Jeffrey, S.; 1220 El Camino Real #305,

(84) Designated States (*regional*): ARIPO patent (GH, GM,  
KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent  
(AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent  
(AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU,  
MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM,  
GA, GN, GW, ML, MR, NE, SN, TD, TG).

## Published:

— with international search report

(48) Date of publication of this corrected version:

25 April 2002

(15) Information about Correction:

see PCT Gazette No. 17/2002 of 25 April 2002, Section II

*For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.*

WO 00/55178 A1

(54) Title: INSECT p53 TUMOR SUPPRESSOR GENES AND PROTEINS

(57) Abstract: A family of p53 tumor suppressor nucleic acid and protein isolated from several insect species is described. The p53 nucleic acid and protein can be used to genetically modify metazoan invertebrate organisms, such as insects and worms, or cultured cells, resulting in p53 expression or mis-expression. The genetically modified organisms or cells can be used in screening assays to identify candidate compounds that are potential pesticidal agents or therapeutics that interact with p53 protein. They can also be used in methods for studying p53 activity and identifying other genes that modulate the function of, or interact with, the p53 gene. Nucleic acid and protein sequences for *Drosophila* p33 and Rb tumor suppressors are also described.

INSECT p53 TUMOR SUPPRESSOR GENES AND PROTEINS

---

REFERENCE TO RELATED APPLICATION

5 This application is a continuation-in-part of U.S. application no. 09/268,969, filed March 16, 1999; and of U.S. application no. 60/184,373 of same title, filed February 23, 2000. The entire contents of both prior applications are incorporated herein by reference.

BACKGROUND OF THE INVENTION

10 The p53 gene is mutated in over 50 different types of human cancers, including familial and spontaneous cancers, and is believed to be the most commonly mutated gene in human cancer (Zambetti and Levine, FASEB (1993) 7:855-865; Hollstein, *et al.*, Nucleic Acids Res. (1994) 22:3551-3555). Greater than 90% of mutations in the p53 gene are missense mutations that alter a single amino acid that inactivates p53 function. Aberrant 15 forms of human p53 are associated with poor prognosis, more aggressive tumors, metastasis, and survival rates of less than 5 years (Koshland, Science (1993) 262:1953).

The human p53 protein normally functions as a central integrator of signals arising from different forms of cellular stress, including DNA damage, hypoxia, nucleotide deprivation, and oncogene activation (Prives, Cell (1998) 95:5-8). In response to these 20 signals, p53 protein levels are greatly increased with the result that the accumulated p53 activates pathways of cell cycle arrest or apoptosis depending on the nature and strength of these signals. Indeed, multiple lines of experimental evidence have pointed to a key role for p53 as a tumor suppressor (Levine, Cell (1997) 88:323-331). For example, homozygous p53 "knockout" mice are developmentally normal but exhibit nearly 100% incidence of 25 neoplasia in the first year of life (Donehower *et al.*, Nature (1992) 356:215-221). The biochemical mechanisms and pathways through which p53 functions in normal and cancerous cells are not fully understood, but one clearly important aspect of p53 function is its activity as a gene-specific transcriptional activator. Among the genes with known p53-response elements are several with well-characterized roles in either regulation of the cell 30 cycle or apoptosis, including GADD45, p21/Waf1/Cip1, cyclin G, Bax, IGF-BP3, and MDM2 (Levine, Cell (1997) 88:323-331).

Human p53 is a 393 amino acid phosphoprotein which is divided structurally and functionally into distinct domains joined in the following order from N-terminus to C-terminus of the polypeptide chain: (a) a transcriptional activation domain; (b) a sequence-specific DNA-binding domain; (c) a linker domain; (d) an oligomerization domain; and (e) 5 a basic regulatory domain. Other structural details of the p53 protein are in keeping with its function as a sequence-specific gene activator that responds to a variety of stress signals. For example, the most N-terminal domain of p53 is rich in acidic residues, consistent with structural features of other transcriptional activators (Fields and Jang, Science (1990) 249:1046-49). By contrast, the most C-terminal domain of p53 is rich in basic residues, and 10 has the ability to bind single-stranded DNA, double-stranded DNA ends, and internal deletions loops (Jayaraman and Prives, Cell (1995) 81: 1021-1029). The association of the p53 C-terminal basic regulatory domain with these forms of DNA that are generated during DNA repair may trigger conversion of p53 from a latent to an activated state capable of site-specific DNA binding to target genes (Hupp and Lane, Curr. Biol. (1994) 4: 865-875), 15 thereby providing one mechanism to regulate p53 function in response to DNA damage. Importantly, both the N-terminal activation domain and the C-terminal basic regulatory domain of p53 are subject to numerous covalent modifications which correlate with stress-induced signals (Prives, Cell (1998) 95:5-8). For example, the N-terminal activation domain contains residues that are targets for phosphorylation by the DNA-activated protein 20 kinase, the ATM kinase, and the cyclin activated kinase complex. The C-terminal basic regulatory domain contains residues that are targets for phosphorylation by protein kinase-C, cyclin dependent kinase, and casein kinase II, as well as residues that are targets for acetylation by PCAF and p300 acetyl transferases. p53 activity is also modulated by specific non-covalent protein-protein interactions (Ko and Prives, Genes Dev. (1996) 10: 25 1054-1072). Most notably, the MDM2 protein binds a short, highly conserved protein sequence motif, residues 13-29, in the N-terminal activation domain of p53 (Kussie *et al.*, Science (1996) 274:948-953. As a result of binding p53, MDM2 both represses p53 transcriptional activity and promotes the degradation of p53.

Although several mammalian and vertebrate homologs of the tumor suppressor p53 30 have been described, only two invertebrate homologs have been identified to date in mollusc and squid. Few lines of evidence, however, have hinted at the existence of a p53 homolog in any other invertebrate species, such as the fruit fly *Drosophila*. Indeed, numerous direct attempts to isolate a *Drosophila* p53 gene by either cross-hybridization or PCR have failed to identify a p53-like gene in this species (Soussi *et al.*, Oncogene (1990)

5: 945-952). However, other studies of response to DNA damage in insect cells using nucleic cross-hybridization and antibody cross-reactivity have provided suggestive evidence for existence of p53-, p21-, and MDM2-like genes (Bae *et al.*, *Exp Cell Res* (1995) 375:105-106; Yakes, 1994, Ph.D. thesis, Wayne State University). Nonetheless, no isolated 5 insect p53 genes or proteins have been reported to date.

Identification of novel p53 orthologues in model organisms such as *Drosophila melanogaster* and other insect species provides important and useful tools for genetic and molecular study and validation of these molecules as potential pharmaceutical and pesticide targets. The present invention discloses insect p53 genes and proteins from a variety of 10 diverse insect species. In addition, *Drosophila* homologs of p33 and Rb genes, which are also involved in tumor suppression, are described.

#### SUMMARY OF THE INVENTION

It is an object of the present invention to provide insect p53 nucleic acid and protein 15 sequences that can be used in genetic screening methods to characterize pathways that p53 may be involved in as well as other interacting genetic pathways. It is also an object of the invention to provide methods for screening compounds that interact with p53 such as those that may have utility as therapeutics.

These and other objects are provided by the present invention which concerns the 20 identification and characterization of insect p53 genes and proteins in a variety of insect species. Isolated nucleic acid molecules are provided that comprise nucleic acid sequences encoding p53 polypeptides and derivatives thereof. Vectors and host cells comprising the p53 nucleic acid molecules are also described, as well as metazoan invertebrate organisms (e.g. insects, coelomates and pseudocoelomates) that are genetically modified to express or 25 mis-express a p53 protein.

An important utility of the insect p53 nucleic acids and proteins is that they can be used in screening assays to identify candidate compounds which are potential therapeutics or pesticides that interact with p53 proteins. Such assays typically comprise contacting a p53 polypeptide with one or more candidate molecules, and detecting any interaction 30 between the candidate compound and the p53 polypeptide. The assays may comprise adding the candidate molecules to cultures of cells genetically engineered to express p53 proteins, or alternatively, administering the candidate compound to a metazoan invertebrate organism genetically engineered to express p53 protein.

The genetically engineered metazoan invertebrate animals of the invention can also be used in methods for studying p53 activity, or for validating therapeutic or pesticidal strategies based on manipulation of the p53 pathway. These methods typically involve detecting the phenotype caused by the expression or mis-expression of the p53 protein. The 5 methods may additionally comprise observing a second animal that has the same genetic modification as the first animal and, additionally has a mutation in a gene of interest. Any difference between the phenotypes of the two animals identifies the gene of interest as capable of modifying the function of the gene encoding the p53 protein.

10

#### BRIEF DESCRIPTION OF THE FIGURE

**Figures 1A-1B** show a CLUSTALW alignment of the amino acid sequences of the insect p53 proteins identified from *Drosophila*, *Leptinotarsa*, *Tribolium*, and *Heliothis*, with p53 sequences previously identified in human, *Xenopus*, and squid. Identical amino acid residues within the alignment are grouped within solid lines and similar amino acid residues 15 are grouped within dashed lines.

#### DETAILED DESCRIPTION OF THE INVENTION

The use of invertebrate model organism genetics and related technologies can greatly facilitate the elucidation of biological pathways (Scangos, Nat. Biotechnol. (1997) 20 15:1220-1221; Margolis and Duyk, Nature Biotech. (1998) 16:311). Of particular use is the insect model organism, *Drosophila melanogaster* (hereinafter referred to generally as "Drosophila"). An extensive search for p53 nucleic acid and its encoded protein in *Drosophila* was conducted in an attempt to identify new and useful tools for probing the function and regulation of the p53 genes, and for use as targets in drug discovery. p53 25 nucleic acid has also been identified in the following additional insect species: *Leptinotarsa decemlineata* (Colorado potato beetle, hereinafter referred to as *Leptinotarsa*), *Tribolium castaneum* (flour beetle, hereinafter referred to as *Tribolium*), and *Heliothis virescens* (tobacco budworm, hereinafter referred to as *Heliothis*).

The newly identified insect p53 nucleic acids can be used for the generation of 30 mutant phenotypes in animal models or in living cells that can be used to study regulation of p53, and the use of p53 as a drug or pesticide target. Due to the ability to rapidly carry out large-scale, systematic genetic screens, the use of invertebrate model organisms such as *Drosophila* has great utility for analyzing the expression and mis-expression of p53 protein. Thus, the invention provides a superior approach for identifying other components involved

in the synthesis, activity, and regulation of p53 proteins. Systematic genetic analysis of p53 using invertebrate model organisms can lead to the identification and validation of compound targets directed to components of the p53 pathway. Model organisms or cultured cells that have been genetically engineered to express p53 can be used to screen 5 candidate compounds for their ability to modulate p53 expression or activity, and thus are useful in the identification of new drug targets, therapeutic agents, diagnostics and prognostics useful in the treatment of disorders associated with cell cycle, DNA repair, and apoptosis. The details of the conditions used for the identification and/or isolation of insect p53 nucleic acids and proteins are described in the Examples section below. Various non-limiting embodiments of the invention, applications and uses of the insect p53 genes and 10 proteins are discussed in the following sections. The entire contents of all references, including patent applications, cited herein are incorporated by reference in their entireties for all purposes. Additionally, the citation of a reference in the preceding background section is not an admission of prior art against the claims appended hereto.

15

### p53 Nucleic Acids

The following nucleic acid sequences encoding insect p53 are described herein: SEQ ID NO:1, isolated from *Drosophila*, and referred to herein as DMp53; SEQ ID NO:3, isolated from *Leptinotarsa*, and referred to herein as CPBp53; SEQ ID NO:5 and SEQ ID 20 NO:7, isolated from *Tribolium*, and referred to herein as TRIB-Ap53 and TRIB-Bp53, respectively; and SEQ ID NO:9, isolated from *Heliothis*, and referred to herein as HELIOp53. The genomic sequence of the DMp53 gene is provided in SEQ ID NO:18.

In addition to the fragments and derivatives of SEQ ID NOs: 1, 3, 5, 7, 9, and 18, as described in detail below, the invention includes the reverse complements thereof. Also, 25 the subject nucleic acid sequences, derivatives and fragments thereof may be RNA molecules comprising the nucleotide sequences of SEQ ID NOs: 1, 3, 5, 7, 9, and 18 (or derivative or fragment thereof) wherein the base U (uracil) is substituted for the base T (thymine). The DNA and RNA sequences of the invention can be single- or double-stranded. Thus, the term "isolated nucleic acid sequence" or "isolated nucleic acid 30 molecule", as used herein, includes the reverse complement, RNA equivalent, DNA or RNA single- or double-stranded sequences, and DNA/RNA hybrids of the sequence being described, unless otherwise indicated.

Fragments of the p53 nucleic acid sequences can be used for a variety of purposes. Interfering RNA (RNAi) fragments, particularly double-stranded (ds) RNAi, can be used to

generate loss-of-function phenotypes. p53 nucleic acid fragments are also useful as nucleic acid hybridization probes and replication/amplification primers. Certain "antisense" fragments, i.e. that are reverse complements of portions of the coding sequence of any of SEQ ID NO:1, 3, 5, 7, 9, or 18 have utility in inhibiting the function of p53 proteins. The 5 fragments are of length sufficient to specifically hybridize with the corresponding SEQ ID NO:1, 3, 5, 7, 9, or 18. The fragments consist of or comprise at least 12, preferably at least 24, more preferably at least 36, and more preferably at least 96 contiguous nucleotides of any one of SEQ ID NOs:1, 3, 5, 7, 9, and 18. When the fragments are flanked by other nucleic acid sequences, the total length of the combined nucleic acid sequence is less than 10 15 kb, preferably less than 10 kb or less than 5kb, more preferably less than 2 kb, and in some cases, preferably less than 500 bases. Preferred p53 nucleic acid fragments comprise regulatory elements that may reside in the 5' UTR and/or encode one or more of the following domains: an activation domain, a DNA binding domain, a linker domain, an oligomerization domain, and a basic regulatory domain. The approximate locations of these 15 regions in SEQ ID Nos 1, 3, and 5, and in the corresponding amino acid sequences of SEQ ID Nos 2, 4, and 6, 8, are provided in Table 1.

TABLE 1

| Insect Genus            | SEQ ID NOs                 |                            |                            |
|-------------------------|----------------------------|----------------------------|----------------------------|
|                         | 1/2                        | 3/4                        | 5/6                        |
| 5' UTR                  | na 1-111                   | na 1-120                   | na 1-93                    |
| Activation Domain       | na 112-257<br>aa 1-48      | na 121-300<br>aa 1-60      | na 94-277<br>aa 1-60       |
| DNA Binding Domain      | na 366-954<br>aa 85-280    | na 321-936<br>aa 67-271    | na 280-892<br>aa 62-265    |
| Linker Domain           | na 999-1056<br>aa 296-314  | na 937-999<br>aa 272-292   | na 893-958<br>aa 266-287   |
| Oligomerization Domain  | na 1065-1170<br>aa 318-352 | na 1000-1113<br>aa 293-330 | na 959-1075<br>aa 288-326  |
| Basic Regulatory Domain | na 1179-1269<br>aa 356-385 | na 1114-1182<br>aa 331-353 | na 1076-1147<br>aa 327-350 |

20 Further preferred are fragments of bases 354-495 of SEQ ID NO:7 and bases 315-414 of SEQ ID NO:9 of at least 12, preferably at least 24, more preferably at least 36, and most preferably at least 96 contiguous nucleotides.

The subject nucleic acid sequences may consist solely of any one of SEQ ID NOs:1, 3, 5, 7, 9, or 18, or fragments thereof. Alternatively, the subject nucleic acid sequences and fragments thereof may be joined to other components such as labels, peptides, agents that facilitate transport across cell membranes, hybridization-triggered cleavage agents or 5 intercalating agents. The subject nucleic acid sequences and fragments thereof may also be joined to other nucleic acid sequences (i.e. they may comprise part of larger sequences) and are of synthetic/non-natural sequences and/or are isolated and/or are purified, i.e. unaccompanied by at least some of the material with which it is associated in its natural state. Preferably, the isolated nucleic acids constitute at least about 0.5%, and more 10 preferably at least about 5% by weight of the total nucleic acid present in a given fraction, and are preferably recombinant, meaning that they comprise a non-natural sequence or a natural sequence joined to nucleotide(s) other than that which it is joined to on a natural chromosome.

Derivative nucleic acid sequences of p53 include sequences that hybridize to the 15 nucleic acid sequence of SEQ ID NOs:1, 3, 5, 7, 9, or 18 under stringency conditions such that the hybridizing derivative nucleic acid is related to the subject nucleic acid by a certain degree of sequence identity. A nucleic acid molecule is "hybridizable" to another nucleic acid molecule, such as a cDNA, genomic DNA, or RNA, when a single stranded form of the nucleic acid molecule can anneal to the other nucleic acid molecule. Stringency of 20 hybridization refers to conditions under which nucleic acids are hybridizable. The degree of stringency can be controlled by temperature, ionic strength, pH, and the presence of denaturing agents such as formamide during hybridization and washing. As used herein, the term "stringent hybridization conditions" are those normally used by one of skill in the art to establish at least about a 90% sequence identity between complementary pieces of 25 DNA or DNA and RNA. "Moderately stringent hybridization conditions" are used to find derivatives having at least about a 70% sequence identity. Finally, "low-stringency hybridization conditions" are used to isolate derivative nucleic acid molecules that share at least about 50% sequence identity with the subject nucleic acid sequence.

The ultimate hybridization stringency reflects both the actual hybridization 30 conditions as well as the washing conditions following the hybridization, and it is well known in the art how to vary the conditions to obtain the desired result. Conditions routinely used are set out in readily available procedure texts (e.g., Current Protocol in Molecular Biology, Vol. 1, Chap. 2.10, John Wiley & Sons. Publishers (1994); Sambrook *et al.*, Molecular Cloning, Cold Spring Harbor (1989)). A preferred derivative nucleic acid is

capable of hybridizing to any one of SEQ ID NOs:1, 3, 5, 7, 9, or 18 under stringent hybridization conditions that comprise: prehybridization of filters containing nucleic acid for 8 hours to overnight at 65° C in a solution comprising 6X single strength citrate (SSC) (1X SSC is 0.15 M NaCl, 0.015 M Na citrate; pH 7.0), 5X Denhardt's solution, 0.05% sodium pyrophosphate and 100 µg/ml herring sperm DNA; hybridization for 18-20 hours at 65° C in a solution containing 6X SSC, 1X Denhardt's solution, 100 µg/ml yeast tRNA and 0.05% sodium pyrophosphate; and washing of filters at 65° C for 1 h in a solution containing 0.2X SSC and 0.1% SDS (sodium dodecyl sulfate).

Derivative nucleic acid sequences that have at least about 70% sequence identity with any one of SEQ ID NOs:1, 3, 5, 7, 9, and 18 are capable of hybridizing to any one of SEQ ID NO:1, 3, 5, 7, 9, and 18 under moderately stringent conditions that comprise: pretreatment of filters containing nucleic acid for 6 h at 40° C in a solution containing 35% formamide, 5X SSC, 50 mM Tris-HCl (pH 7.5), 5 mM EDTA, 0.1% PVP, 0.1% Ficoll, 1% BSA, and 500 µg/ml denatured salmon sperm DNA; hybridization for 18-20 h at 40° C in a solution containing 35% formamide, 5X SSC, 50 mM Tris-HCl (pH 7.5), 5 mM EDTA, 0.02% PVP, 0.02% Ficoll, 0.2% BSA, 100 µg/ml salmon sperm DNA, and 10% (wt/vol) dextran sulfate; followed by washing twice for 1 hour at 55° C in a solution containing 2X SSC and 0.1% SDS.

Other preferred derivative nucleic acid sequences are capable of hybridizing to any one of SEQ ID NOs:1, 3, 5, 7, 9, and 18 under low stringency conditions that comprise: incubation for 8 hours to overnight at 37° C in a solution comprising 20% formamide, 5 x SSC, 50 mM sodium phosphate (pH 7.6), 5X Denhardt's solution, 10% dextran sulfate, and 20 µg/ml denatured sheared salmon sperm DNA; hybridization in the same buffer for 18 to 20 hours; and washing of filters in 1 x SSC at about 37° C for 1 hour.

As used herein, "percent (%) nucleic acid sequence identity" with respect to a subject sequence, or a specified portion of a subject sequence, is defined as the percentage of nucleotides in the candidate derivative nucleic acid sequence identical with the nucleotides in the subject sequence (or specified portion thereof), after aligning the sequences and introducing gaps, if necessary to achieve the maximum percent sequence identity, as generated by the program WU-BLAST-2.0a19 (Altschul *et al.*, J. Mol. Biol. (1997) 215:403-410; <http://blast.wustl.edu/blast/README.html>; hereinafter referred to generally as "BLAST") with all the search parameters set to default values. The HSP S and HSP S2 parameters are dynamic values and are established by the program itself depending upon the composition of the particular sequence and composition of the particular database

against which the sequence of interest is being searched. A percent (%) nucleic acid sequence identity value is determined by the number of matching identical nucleotides divided by the sequence length for which the percent identity is being reported.

Derivative p53 nucleic acid sequences usually have at least 50% sequence identity,  
5 preferably at least 60%, 70%, or 80% sequence identity, more preferably at least 85% sequence identity, still more preferably at least 90% sequence identity, and most preferably at least 95% sequence identity with any one of SEQ ID NOS:1, 3, 5, 7, 9, or 18, or domain-encoding regions thereof.

In one preferred embodiment, the derivative nucleic acid encodes a polypeptide  
10 comprising a p53 amino acid sequence of any one of SEQ ID NOS:2, 4, 6, 8, or 10, or a fragment or derivative thereof as described further below under the subheading "p53 proteins". A derivative p53 nucleic acid sequence, or fragment thereof, may comprise 100% sequence identity with any one of SEQ ID NOS:1, 3, 5, 7, 9, or 18, but be a derivative thereof in the sense that it has one or more modifications at the base or sugar moiety, or  
15 phosphate backbone. Examples of modifications are well known in the art (Bailey, Ullmann's Encyclopedia of Industrial Chemistry (1998), 6th ed. Wiley and Sons). Such derivatives may be used to provide modified stability or any other desired property.

Another type of derivative of the subject nucleic acid sequences includes corresponding humanized sequences. A humanized nucleic acid sequence is one in which  
20 one or more codons has been substituted with a codon that is more commonly used in human genes. Preferably, a sufficient number of codons have been substituted such that a higher level expression is achieved in mammalian cells than what would otherwise be achieved without the substitutions. The following list shows, for each amino acid, the calculated codon frequency (number in parentheses) in humans genes for 1000 codons  
25 (Wada *et al.*, Nucleic Acids Research (1990) 18(Suppl.):2367-2411):

Human codon frequency per 1000 codons:

|         |                                                                      |
|---------|----------------------------------------------------------------------|
| ARG:    | CGA (5.4), CGC (11.3), CGG (10.4), CGU (4.7), AGA (9.9), AGG (11.1)  |
| LEU:    | CUA (6.2), CUC (19.9), CUG (42.5), CUU (10.7), UUA (5.3), UUG (11.0) |
| SER:    | UCA (9.3), UCC (17.7), UCG (4.2), UCU (13.2), AGC (18.7), AGU (9.4)  |
| 30 THR: | ACA (14.4), ACC (23.0), ACG (6.7), ACU (12.7)                        |
| PRO:    | CCA (14.6), CCC (20.0), CCG (6.6), CCU (15.5)                        |
| ALA:    | GCA (14.0), GCC (29.1), GCG (7.2), GCU (19.6)                        |
| GLY:    | GGA (17.1), GGC (25.4), GGG (17.3), GGU (11.2)                       |
| VAL:    | GUA (5.9), GUC (16.3), GUG (30.9), GUU (10.4)                        |
| 35 LYS: | AAA (22.2), AAG (34.9)                                               |
| ASN:    | AAC (22.6), AAU (16.6)                                               |
| GLN:    | CAA (11.1), CAG (33.6)                                               |

HIS: CAC (14.2), CAU (9.3)  
GLU: GAA (26.8), GAG (41.4)  
ASP: GAC (29.0), GAU (21.7)  
TYR: UAC (18.8), UAU (12.5)  
5 CYS: UGC (14.5), UGU (9.9)  
PHE: UUU (22.6), UUC (15.8)  
ILE: AUA (5.8), AUC (24.3), AUU (14.9)  
MET: AUG (22.3)  
TRP: UGG (13.8)  
10 TER: UAA (0.7), AUG (0.5), UGA (1.2)

Thus, a p53 nucleic acid sequence in which the glutamic acid codon, GAA has been replaced with the codon GAG, which is more commonly used in human genes, is an example of a humanized p53 nucleic acid sequence. A detailed discussion of the 15 humanization of nucleic acid sequences is provided in U.S. Pat. No. 5,874,304 to Zolotukhin *et al.* Similarly, other nucleic acid derivatives can be generated with codon usage optimized for expression in other organisms, such as yeasts, bacteria, and plants, where it is desired to engineer the expression of p53 proteins by using specific codons chosen according to the preferred codons used in highly expressed genes in each organism.  
20 More specific embodiments of preferred p53 proteins, fragments, and derivatives are discussed further below in connection under the subheading "p53 proteins".

Nucleic acid encoding the amino acid sequence of any of SEQ ID NOS:2, 4, 6, 8, and 10, or fragment or derivative thereof, may be obtained from an appropriate cDNA library prepared from any eukaryotic species that encodes p53 proteins such as vertebrates, 25 preferably mammalian (*e.g.* primate, porcine, bovine, feline, equine, and canine species, *etc.*) and invertebrates, such as arthropods, particularly insects species (preferably *Drosophila*, *Tribolium*, *Leptinotarsa*, and *Heliothis*), *acarids*, *crustacea*, *molluscs*, *nematodes*, and other worms. An expression library can be constructed using known methods. For example, mRNA can be isolated to make cDNA which is ligated into a 30 suitable expression vector for expression in a host cell into which it is introduced. Various screening assays can then be used to select for the gene or gene product (*e.g.* oligonucleotides of at least about 20 to 80 bases designed to identify the gene of interest, or labeled antibodies that specifically bind to the gene product). The gene and/or gene product can then be recovered from the host cell using known techniques.

35 Polymerase chain reaction (PCR) can also be used to isolate nucleic acids of the p53 genes where oligonucleotide primers representing fragmentary sequences of interest amplify RNA or DNA sequences from a source such as a genomic or cDNA library (as

described by Sambrook *et al.*, *supra*). Additionally, degenerate primers for amplifying homologs from any species of interest may be used. Once a PCR product of appropriate size and sequence is obtained, it may be cloned and sequenced by standard techniques, and utilized as a probe to isolate a complete cDNA or genomic clone.

5 Fragmentary sequences of p53 nucleic acids and derivatives may be synthesized by known methods. For example, oligonucleotides may be synthesized using an automated DNA synthesizer available from commercial suppliers (*e.g.* Biosearch, Novato, CA; Perkin-Elmer Applied Biosystems, Foster City, CA). Antisense RNA sequences can be produced intracellularly by transcription from an exogenous sequence, *e.g.* from vectors that contain  
10 antisense p53 nucleic acid sequences. Newly generated sequences may be identified and isolated using standard methods.

An isolated p53 nucleic acid sequence can be inserted into any appropriate cloning vector, for example bacteriophages such as lambda derivatives, or plasmids such as PBR322, pUC plasmid derivatives and the Bluescript vector (Stratagene, San Diego, CA).  
15 Recombinant molecules can be introduced into host cells via transformation, transfection, infection, electroporation, *etc.*, or into a transgenic animal such as a fly. The transformed cells can be cultured to generate large quantities of the p53 nucleic acid. Suitable methods for isolating and producing the subject nucleic acid sequences are well-known in the art. (Sambrook *et al.*, *supra*; DNA Cloning: A Practical Approach, Vol. 1, 2, 3, 4, (1995)  
20 Glover, ed., MRL Press, Ltd., Oxford, U.K.).

The nucleotide sequence encoding a p53 protein or fragment or derivative thereof, can be inserted into any appropriate expression vector for the transcription and translation of the inserted protein-coding sequence. Alternatively, the necessary transcriptional and translational signals can be supplied by the native p53 gene and/or its flanking regions. A  
25 variety of host-vector systems may be utilized to express the protein-coding sequence such as mammalian cell systems infected with virus (*e.g.* vaccinia virus, adenovirus, *etc.*); insect cell systems infected with virus (*e.g.* baculovirus); microorganisms such as yeast containing yeast vectors, or bacteria transformed with bacteriophage, DNA, plasmid DNA, or cosmid DNA. If expression in plants is desired, a variety of transformation constructs, vectors and  
30 methods are known in the art (see U.S. Pat. No. 6,002,068 for review). Expression of a p53 protein may be controlled by a suitable promoter/enhancer element. In addition, a host cell strain may be selected which modulates the expression of the inserted sequences, or modifies and processes the gene product in the specific fashion desired

To detect expression of the p53 gene product, the expression vector can comprise a promoter operably linked to a p53 gene nucleic acid, one or more origins of replication, and, one or more selectable markers (*e.g.* thymidine kinase activity, resistance to antibiotics, *etc.*). Alternatively, recombinant expression vectors can be identified by assaying for the expression of the p53 gene product based on the physical or functional properties of the p53 protein in *in vitro* assay systems (*e.g.* immunoassays or cell cycle assays). The p53 protein, fragment, or derivative may be optionally expressed as a fusion, or chimeric protein product as described above.

Once a recombinant that expresses the p53 gene sequence is identified, the gene product can be isolated and purified using standard methods (*e.g.* ion exchange, affinity, and gel exclusion chromatography; centrifugation; differential solubility; electrophoresis). The amino acid sequence of the protein can be deduced from the nucleotide sequence of the chimeric gene contained in the recombinant and can thus be synthesized by standard chemical methods (Hunkapiller *et al.*, *Nature* (1984) 310:105-111). Alternatively, native p53 proteins can be purified from natural sources, by standard methods (*e.g.* immunoaffinity purification).

### p33 and Rb Nucleic Acids

The invention also provides nucleic acid sequences for *Drosophila* p33 (SEQ ID NO:19), and Rb (SEQ ID NO:21) tumor suppressors. Derivatives and fragments of these sequences can be prepared as described above for the p53 sequences. Preferred fragments and derivatives comprise the same number of contiguous nucleotides or same degrees of percent identity as described above for p53 nucleic acid sequences. The disclosure below regarding various uses of p53 tumor suppressor nucleic acids and proteins (*e.g.* transgenic animals, tumor suppressor assays, *etc.*) also applies to the p33 and Rb tumor suppressor sequences disclosed herein.

### p53 Proteins

The CLUSTALW program (Thompson, *et al.*, *Nucleic Acids Research* (1994) 22(22):4673-4680) was used to align the insect p53 proteins described herein with p53 proteins from human (Zakut-Houri *et al.*, *EMBO J.* (1985) 4:1251-1255; GenBank gi:129369), *Xenopus* (Sousi *et al.*, *Oncogene* (1987) 1:71-78; GenBank gi:129374), and squid (GenBank gi:1244762). The alignment generated is shown in Figure 1 and reveals a number of features in the insect p53 proteins that are characteristic of the previously-

identified p53 proteins. With respect to general areas of structural similarity, the DMp53, CPBp53, and TRIB-Ap53 proteins can be roughly divided into three regions: a central region which exhibits a high degree of sequence homology with other known p53 family proteins and which roughly corresponds to the DNA binding domain of this protein family

5 (Cho *et al.*, Science (1994) 265:346-355), and flanking N-terminal and C-terminal regions which exhibit significantly less homology but which correspond in overall size to other p53 family proteins. The fragmentary polypeptide sequences encoded by the TRIB-Bp53 and HELIOP53 cDNAs are shown by the multiple sequence alignment to be derived from the central region – the conserved DNA-binding domain. Significantly, the protein sequence

10 alignment allowed the assignment of the domains in the DMp53, CPBp53, and TRIB-A p53 proteins listed in Table 1 above, based on sequence homology with previously characterized domains of human p53 (Sousi and May, J. Mol Biol (1996) 260:623-637; Levine, *supra*; Prives, Cell (1998) 95:5-8).

Importantly, the most conserved central regions of the DMp53, CPBp53, and TRIB-

15 A p53 proteins correspond almost precisely to the known functional boundaries of the DNA binding domain of human p53, indicating that these proteins are likely to exhibit similar DNA binding properties to those of human p53. A detailed examination of the conserved residues in this domain further emphasizes the likely structural and functional similarities between human p53 and the insect p53 proteins. First, residues of the human p53 known to

20 be involved in direct DNA contacts (K120, S241, R248, R273, C277, and R280) correspond to identical or similar residues in the DMp53 protein (K113, S230, R234, K259, C263, and R266), and identical residues in the CPBp53 protein (K92, S216, R224, R249, C253, and R256), and the TRIB-Ap53 protein (K88, S213, R220, R245, C249, and R252). Also, with regard to the overall folding of this domain, it was notable that four key residues that

25 coordinate the zinc ligand in the DNA binding domain of human p53 (C176, H179, C238, and C242) are precisely conserved in the DMp53 protein (C156, H159, C227, and C231), the CPBp53 protein (C147, H150, C213, and C217), and the TRIB-A p53 protein (C144, H147, C210, C214). Furthermore, it was striking that the mutational hot spots in human p53 most frequently altered in cancer (R175, G245, R248, R249, R273, and R282), are

30 either identical or conserved amino acid residues in the corresponding positions of the DMp53 protein (R155, G233, R234, K235, K259, and R268), the CPBp53 protein (R146, G221, R224, R225, R249, and K258), and the TRIB-Ap53 protein (R143, G217, R220, R221, R245, and K254).

Interestingly, the insect p53s also have distinct differences from the Human, *Xenopus*, and squid p53s. Specifically, insect p53s contain a unique amino acid sequence within the DNA recognition domain that has the following sequence: (R or K)(I or V)C(S or T)CPKRD. Specifically, amino acid residues 259 to 267 of DMp53 have the sequence:

5 KICTCPKRD; residues 249 to 257 of CPBp53 have the sequence: RICSCPCKRD; and residues 245-253 of TRIB-Ap53 have the sequence: RVCSCPCKRD. This is in distinct contrast to the Human, *Xenopus*, and squid p53s which have the following corresponding sequence: R(I or V)CACPGRD.

Another region of insect p53s that distinctly differs from previously identified p53s lies in the zinc coordination region of the DNA binding domain. The following sequence is conserved within the insect p53s: FXC(K or Q)NSC (where X = any amino acid). Specifically, residues 225-231 of DMp53 have the sequence: FVCQNSC; residues 211-217 of CPBp53 and residues 208-214 of TRIB-Ap53 have the sequence FVCKNSC; and the corresponding residues in Helio-p53, as shown in Figure 1, have the sequence: FSCKNSC.

10 15 In contrast, the corresponding sequence in Human and *Xenopus* p53 is YM CNSSC, and in squid it is FMCLGSC.

The high degree of structural homology in the presumptive DNA binding domain of the insect p53 proteins has important implications for engineering derivative (*e.g.* mutant) forms of these p53 genes for tests of function *in vitro* and *in vivo*, and for genetic dissection or manipulation of the p53 pathway in transgenic insects or insect cell lines. Dominant negative forms of human p53 have been generated by creating altered proteins which have a defective DNA binding domain, but which retain a functional oligomerization domain (Brachman *et al.*, Proc Natl Acad Sci USA (1996) 93:4091-4095). Such dominant negative mutant forms are extremely useful for determining the effects of loss-of-function of p53 in assays of interest. Thus, mutations in highly conserved positions within the DNA binding domain of the insect p53 proteins, which correspond to residues known to be important for the structure and function of human p53 (such as R175H, H179N, and R280T of human p53), are likely to result in dominant negative forms of insect p53 proteins. For example, specific mutations in the DMp53 protein to create dominant negative mutant forms of the protein include R155H, H159N, and R266T and for the TRIB-A p53 protein include R143H, H147N, and R252T.

Although other domains of the insect p53 proteins, aside from the DNA binding domain, exhibit significantly less homology compared to the known p53 family proteins, the sequence alignment provides important information about their structure and potential

function. Notably, just as in the human p53 protein, the C-terminal 20-25 amino acids of the protein comprise a putative region that extends beyond the oligomerization domain, suggesting an analogous function for this region of the insect p53 proteins in regulating activity of the protein. Since deletion of the C-terminal regulatory domain in human p53 5 has been shown to generate constitutively activated forms of the protein (Hupp and Lane, Curr. Biol. (1994) 4:865-875), it is expected that removal of most or all of the corresponding regulatory domain from the insect p53 proteins will generate an activated protein form. Thus preferred truncated forms of the insect p53 proteins lack at least 10 C-terminal amino acids, more preferably at least 15 amino acids, and most preferably at least 10 10 C-terminal amino acids. For example, a preferred truncated version of DMp53 comprises amino acid residues 1-376, more preferably residues 1-371, and most preferably residues 1-366 of SEQ ID NO:2. Such constitutively activated mutant forms of the protein are very useful for tests of protein function using *in vivo* and *in vitro* assays, as well as for genetic analysis.

15 The oligomerization domain of the insect p53 proteins exhibit very limited skeletal sequence homology with other p53 family proteins, although the length of this region is similar to that of other p53 family proteins. The extent of sequence divergence in this region of the insect proteins raises the possibility that the insect p53 protein may be unable to form hetero-oligomers with p53 proteins from vertebrates or squid. And, although the 20 linker domain located between the DNA binding and oligomerization domains also exhibits relatively little sequence conservation, this region of any of the DMp53, CPBp53, and TRIB-A p53 proteins contains predicted nuclear localization signals similar to those identified in human p53 (Shaulsky *et al.*, Mol Cell Biol (1990) 10:6565-6577).

25 The activation domain at the N-terminus of the insect p53 proteins also exhibits little sequence identity with other p53 family proteins, although the size of this region is roughly the same as that of human p53. Nonetheless, an important feature of this domain is the relative concentration of acidic residues in the insect p53 proteins. Consequently, it is likely that this N-terminal domain of any of the DMp53, CPBp53, and TRIB-Ap53 proteins will similarly exert the functional activity of a transcriptional activation domain to that of 30 the human p53 domain (Thut *et al.*, Science (1995) 267:100-104). Interestingly, the DMp53, CPBp53 and TRIB-A p53 proteins do not appear to possess a highly conserved sequence motif, FxxLWxxL, found at the N-terminus of vertebrate and squid p53 family proteins. In the human p53 gene, these conserved residues in this motif participate in a

specific interaction between human p53 proteins and mdm2 (Kussie *et al.*, *Science* (1996) 274:948-953).

It is important to note that, although there is no sequence similarity between the insect p53s and other p53 family members in the C- and N-termini, these regions of p53 5 contain secondary structure characteristic of p53-related proteins. For example, the human p53 binds DNA as a homo-tetramer and self-association is mediated by a  $\beta$ -sheet and amphipathic  $\alpha$ -helix located in the C-terminus of the protein. A similar  $\beta$ -sheet-turn- $\alpha$ -helix is predicted in the C-terminus of DMp53. Further, the N-terminus of the human p53 is a region that includes a transactivation domain and residues critical for binding to the mdm-2 10 protein. The N-terminus of the DMp53 also include acidic amino acids and likely functions as a transactivation domain.

p53 proteins of the invention comprise or consist of an amino acid sequence of any one of SEQ ID NOs:2, 4, 6, 8, and 10 or fragments or derivatives thereof. Compositions comprising these proteins may consist essentially of the p53 protein, fragments, or 15 derivatives, or may comprise additional components (*e.g.* pharmaceutically acceptable carriers or excipients, culture media, *etc.*). p53 protein derivatives typically share a certain degree of sequence identity or sequence similarity with any one of SEQ ID NOs:2, 4, 6, 8, and 10 or fragments thereof. As used herein, "percent (%) amino acid sequence identity" with respect to a subject sequence, or a specified portion of a subject sequence, is defined as 20 the percentage of amino acids in the candidate derivative amino acid sequence identical with the amino acid in the subject sequence (or specified portion thereof), after aligning the sequences and introducing gaps, if necessary to achieve the maximum percent sequence identity, as generated by BLAST (Altschul *et al.*, *supra*) using the same parameters discussed above for derivative nucleic acid sequences. A % amino acid sequence identity 25 value is determined by the number of matching identical amino acids divided by the sequence length for which the percent identity is being reported. "Percent (%) amino acid sequence similarity" is determined by doing the same calculation as for determining % amino acid sequence identity, but including conservative amino acid substitutions in addition to identical amino acids in the computation. A conservative amino acid 30 substitution is one in which an amino acid is substituted for another amino acid having similar properties such that the folding or activity of the protein is not significantly affected. Aromatic amino acids that can be substituted for each other are phenylalanine, tryptophan, and tyrosine; interchangeable hydrophobic amino acids are leucine, isoleucine, methionine, and valine; interchangeable polar amino acids are glutamine and asparagine;

interchangeable basic amino acids arginine, lysine and histidine; interchangeable acidic amino acids aspartic acid and glutamic acid; and interchangeable small amino acids alanine, serine, cystine, threonine, and glycine.

In one preferred embodiment, a p53 protein derivative shares at least 50% sequence identity or similarity, preferably at least 60%, 70%, or 80% sequence identity or similarity, more preferably at least 85% sequence similarity or identity, still more preferably at least 90% sequence similarity or identity, and most preferably at least 95% sequence identity or similarity with a contiguous stretch of at least 10 amino acids, preferably at least 25 amino acids, more preferably at least 40 amino acids, still more preferably at least 50 amino acids, 10 more preferably at least 100 amino acids, and in some cases, the entire length of any one of SEQ ID NOS:2, 4, 6, 8, or 10. Further preferred derivatives share these % sequence identities with the domains of SEQ ID NOS 2, 4 and 6 listed in Table I above. Additional preferred derivatives comprise a sequence that shares 100% similarity with any contiguous stretch of at least 10 amino acids, preferably at least 12, more preferably at least 15, and 15 most preferably at least 20 amino acids of any of SEQ ID NOS 2, 4, 6, 8, and 10, and preferably functional domains thereof. Further preferred fragments comprise at least 7 contiguous amino acids, preferably at least 9, more preferably at least 12, and most preferably at least 17 contiguous amino acids of any of SEQ ID NOS 2, 4, 6, 8, and 10, and preferably functional domains thereof.

Other preferred p53 polypeptides, fragments or derivatives consist of or comprise a sequence selected from the group consisting of RICSCP KRD, KICSCP KRD, RVCSCP KRD, KVCSCP KRD, RICTCP KRD, KICTCP KRD, RVCTCP KRD, and KVCTCP KRD (i.e. sequences of the formula: (R or K)(I or V)C(S or T)CP KRD). Additional preferred p53 polypeptides, fragments or derivatives, consist of or comprise a 25 sequence selected from the group consisting of FXCKNSC and FXCQNSC, where X = any amino acid.

The fragment or derivative of any of the p53 proteins is preferably "functionally active" meaning that the p53 protein derivative or fragment exhibits one or more functional activities associated with a full-length, wild-type p53 protein comprising the amino acid sequence of any of SEQ ID NOS:2, 4, 6, 8, or 10. As one example, a fragment or derivative may have antigenicity such that it can be used in immunoassays, for immunization, for inhibition of p53 activity, etc, as discussed further below regarding generation of antibodies to p53 proteins. Preferably, a functionally active p53 fragment or derivative is one that displays one or more biological activities associated with p53 proteins such as regulation of

the cell cycle, or transcription control. The functional activity of p53 proteins, derivatives and fragments can be assayed by various methods known to one skilled in the art (Current Protocols in Protein Science (1998) Coligan *et al.*, eds., John Wiley & Sons, Inc., Somerset, New Jersey). Example 12 below describes a variety of suitable assays for assessing p53 function.

P 53 derivatives can be produced by various methods known in the art. The manipulations which result in their production can occur at the gene or protein level. For example, a cloned p53 gene sequence can be cleaved at appropriate sites with restriction endonuclease(s) (Wells *et al.*, Philos. Trans. R. Soc. London SerA (1986) 317:415), followed by further enzymatic modification if desired, isolated, and ligated *in vitro*, and expressed to produce the desired derivative. Alternatively, a p53 gene can be mutated *in vitro* or *in vivo*, to create and/or destroy translation, initiation, and/or termination sequences, or to create variations in coding regions and/or to form new restriction endonuclease sites or destroy preexisting ones, to facilitate further *in vitro* modification. A variety of mutagenesis techniques are known in the art such as chemical mutagenesis, *in vitro* site-directed mutagenesis (Carter *et al.*, Nucl. Acids Res. (1986) 13:4331), use of TAB<sup>®</sup> linkers (available from Pharmacia and Upjohn, Kalamazoo, MI), *etc.*

At the protein level, manipulations include post translational modification, *e.g.* glycosylation, acetylation, phosphorylation, amidation, derivatization by known protecting/blocking groups, proteolytic cleavage, linkage to an antibody molecule or other cellular ligand, *etc.* Any of numerous chemical modifications may be carried out by known technique (*e.g.* specific chemical cleavage by cyanogen bromide, trypsin, chymotrypsin, papain, V8 protease, NaBH<sub>4</sub>, acetylation, formylation, oxidation, reduction, metabolic synthesis in the presence of tunicamycin, *etc.*). Derivative proteins can also be chemically synthesized by use of a peptide synthesizer, for example to introduce nonclassical amino acids or chemical amino acid analogs as substitutions or additions into the p53 protein sequence.

Chimeric or fusion proteins can be made comprising a p53 protein or fragment thereof (preferably comprising one or more structural or functional domains of the p53 protein) joined at its N- or C-terminus via a peptide bond to an amino acid sequence of a different protein. A chimeric product can be made by ligating the appropriate nucleic acid sequences encoding the desired amino acid sequences to each other in the proper coding frame using standard methods and expressing the chimeric product. A chimeric product may also be made by protein synthetic techniques, *e.g.* by use of a peptide synthesizer.

### p33 and Rb Proteins

The invention also provides amino acid sequences for *Drosophila* p33 (SEQ ID NO:20), and Rb (SEQ ID NO:22) tumor suppressors. Derivatives and fragments of these 5 sequences can be prepared as described above for the p53 protein sequences. Preferred fragments and derivatives comprise the same number of contiguous amino acids or same degrees of percent identity or similarity as described above for p53 amino acid sequences.

### p53 Gene Regulatory Elements

10 p53 gene regulatory DNA elements, such as enhancers or promoters that reside within the 5' UTRs of SEQ ID NOs 1, 3, and 5, as shown in Table I above, or within nucleotides 1-1225 of SEQ ID NO:18, can be used to identify tissues, cells, genes and factors that specifically control p53 protein production. Preferably at least 20, more preferably at least 25, and most preferably at least 50 contiguous nucleotides within the 5' 15 UTRs are used. Analyzing components that are specific to p53 protein function can lead to an understanding of how to manipulate these regulatory processes, for either pesticide or therapeutic applications, as well as an understanding of how to diagnose dysfunction in these processes.

Gene fusions with the p53 regulatory elements can be made. For compact genes that 20 have relatively few and small intervening sequences, such as those described herein for *Drosophila*, it is typically the case that the regulatory elements that control spatial and temporal expression patterns are found in the DNA immediately upstream of the coding region, extending to the nearest neighboring gene. Regulatory regions can be used to construct gene fusions where the regulatory DNAs are operably fused to a coding region for 25 a reporter protein whose expression is easily detected, and these constructs are introduced as transgenes into the animal of choice. An entire regulatory DNA region can be used, or the regulatory region can be divided into smaller segments to identify sub-elements that might be specific for controlling expression a given cell type or stage of development. One suitable method to decipher regions containing regulatory sequences is by an *in vitro* CAT assay (Mercer, Crit. Rev. Euk. Gene Exp. (1992) 2:251-263; Sambrook *et al.*, *supra*; and Gorman *et al.*, Mol. Cell. Biol. (1992) 2:1044-1051). Additional reporter proteins that can be used for construction of these gene fusions include *E. coli* beta-galactosidase and green 30 fluorescent protein (GFP). These can be detected readily *in situ*, and thus are useful for histological studies and can be used to sort cells that express p53 proteins (O'Kane and

Gehring PNAS (1987) 84(24):9123-9127; Chalfie *et al.*, Science (1994) 263:802-805; and Cumberledge and Krasnow (1994) Methods in Cell Biology 44:143-159). Recombinase proteins, such as FLP or cre, can be used in controlling gene expression through site-specific recombination (Golic and Lindquist (1989) Cell 59(3):499-509; White *et al.*, 5 Science (1996) 271:805-807). Toxic proteins such as the reaper and hid cell death proteins, are useful to specifically ablate cells that normally express p53 proteins in order to assess the physiological function of the cells (Kingston. In Current Protocols in Molecular Biology (1998) Ausubel *et al.*. John Wiley & Sons, Inc. sections 12.0.3-12.10) or any other protein where it is desired to examine the function this particular protein specifically in cells that 10 synthesize p53 proteins.

Alternatively, a binary reporter system can be used, similar to that described further below, where the p53 regulatory element is operably fused to the coding region of an exogenous transcriptional activator protein, such as the GAL4 or tTA activators described below, to create a p53 regulatory element "driver gene". For the other half of the binary 15 system the exogenous activator controls a separate "target gene" containing a coding region of a reporter protein operably fused to a cognate regulatory element for the exogenous activator protein, such as UAS<sub>G</sub> or a tTA-response element, respectively. An advantage of a binary system is that a single driver gene construct can be used to activate transcription from preconstructed target genes encoding different reporter proteins, each with its own 20 uses as delineated above.

p53 regulatory element-reporter gene fusions are also useful for tests of genetic interactions. where the objective is to identify those genes that have a specific role in controlling the expression of p53 genes, or promoting the growth and differentiation of the tissues that expresses the p53 protein. p53 gene regulatory DNA elements are also useful in 25 protein-DNA binding assays to identify gene regulatory proteins that control the expression of p53 genes. The gene regulatory proteins can be detected using a variety of methods that probe specific protein-DNA interactions well known to those skilled in the art (Kingston, *supra*) including *in vivo* footprinting assays based on protection of DNA sequences from chemical and enzymatic modification within living or permeabilized cells; and *in vitro* 30 footprinting assays based on protection of DNA sequences from chemical or enzymatic modification using protein extracts, nitrocellulose filter-binding assays and gel electrophoresis mobility shift assays using radioactively labeled regulatory DNA elements mixed with protein extracts. Candidate p53 gene regulatory proteins can be purified using a combination of conventional and DNA-affinity purification techniques. Molecular cloning

strategies can also be used to identify proteins that specifically bind p53 gene regulatory DNA elements. For example, a *Drosophila* cDNA library in an expression vector, can be screened for cDNAs that encode p53 gene regulatory element DNA-binding activity. Similarly, the yeast "one-hybrid" system can be used (Li and Herskowitz, *Science* (1993) 262:1870-1874; Luo *et al.*, *Biotechniques* (1996) 20(4):564-568; Vidal *et al.*, *PNAS* (1996) 93(19):10315-10320).

#### Assays for tumor suppressor genes

The p53 tumor suppressor gene encodes a transcription factor implicated in regulation of cell proliferation, control of the cell cycle, and induction of apoptosis.

Various experimental methods may be used to assess the role of the insect p53 genes in each of these areas.

#### **Transcription activity assays**

Due to its acidic region, wild type p53 binds both specifically and non-specifically to DNA in order to mediate its function (Zambetti and Levine, *supra*). Transcriptional regulation by the p53 protein or its fragments may be examined by any method known in the art. An electrophoretic mobility shift assay can be used to characterize DNA sequences to which p53 binds, and thus can assist in the identification of genes regulated by p53.

Briefly, cells are grown and transfected with various amounts of wild type or mutated transcription factor of interest (in this case, p53), harvested 48 hr after transfection, and lysed to prepare nuclear extracts. Preparations of *Drosophila* nuclear extracts for use in mobility shift assays may be done as described in Dignam *et al.*, *Nucleic Acids Res.* (1983) 11:1475-1489. Additionally, complementary, single-stranded oligonucleotides corresponding to target sequences for binding are synthesized and self-annealed to a final concentration of 10-15 ng/ $\mu$ l. Double stranded DNA is verified by gel electrophoretic analysis (*e.g.*, on a 7% polyacrylamide gel, by methods known in the art), and end-labeled with 20  $\mu$ Ci [32P]  $\gamma$ -dATP. The nuclear extracts are mixed with the double stranded target sequences under conditions conducive for binding and the results are analyzed by polyacrylamide gel electrophoresis.

Another suitable method to determine DNA sequences to which p53 binds is by DNA footprinting (Schmitz *et al.*, *Nucleic Acids Research* (1978) 5:3157-3170).

#### **Apoptosis assays**

A variety of methods may be used to examine apoptosis. One method is the terminal deoxynucleotidyl transferase-mediated digoxigenin-11-dUTP nick end labeling

(TUNEL) assay which measures the nuclear DNA fragmentation characteristic of apoptosis (Lazebnik *et al.*, *Nature* (1994) 371:346-347; White *et al.*, *Science* (1994) 264:677-683).

Additionally, commercial kits can be used for detection of apoptosis (ApoAlert® available from Clontech (Palo Alto, CA)).

5 Apoptosis may also be assayed by a variety of staining methods. Acridine orange can be used to detect apoptosis in cultured cells (Lucas *et al.*, *Blood* (1998) 15:4730-41) and in intact *Drosophila* tissues, which can also be stained with Nile Blue (Abrams *et al.*, *Development* (1993) 117:29-43). Another assay that can be used to detect DNA laddering employs ethidium bromide staining and electrophoresis of DNA on an agarose gel (Civielli *et al.*, *Int. J. Cancer* (1995) 27:673-679; Young, *J. Biol. Chem.* (1998) 273:25198-25202).

10 **Proliferation and cell cycle assays**

15 Proliferating cells may be identified by bromodeoxyuridine (BRDU) incorporation into cells undergoing DNA synthesis and detection by an anti-BRDU antibody (Hoshino *et al.*, *Int. J. Cancer* (1986) 38:369; Campana *et al.*, *J. Immunol. Meth.* (1988) 107:79). This assay can be used to reproducibly identify S-phase cells in *Drosophila* embryos (Edgar and O'Farrell, *Cell* (1990) 62:469-480) and imaginal discs (Secombe *et al.*, *Genetics* (1998) 149:1867-1882). S-phase DNA syntheses can also be quantified by measuring [<sup>3</sup>H]-thymidine incorporation using a scintillation counter (Chen, *Oncogene* (1996) 13:1395-403; Jeoung, *J. Biol. Chem.* (1995) 270:18367-73). Cell proliferation may be measured by counting samples of a cell population over time, for example using a hemacytometer and Trypan-blue staining.

20 The DNA content and/or mitotic index of the cells may be measured based on the DNA ploidy value of the cell using a variety of methods known in the art such as a propidium iodide assay (Turner *et al.*, *Prostate* (1998) 34:175-81) or Feulgen staining using 25 a computerized microdensitometry staining system (Bacus, *Am. J. Pathol.* (1989) 135:783-92).

The effect of p53 overexpression or loss-of-function on *Drosophila* cell proliferation can be assayed *in vivo* using an assay in which clones of cells with altered gene expression are generated in the developing wing disc of *Drosophila* (Neufeld *et al.*, *Cell* (1998) 93:1183-93). The clones coexpress GFP, which allows the size and DNA content of the mutant and wild-type cells from dissociated discs to be compared by FACS analysis.

#### **Tumor formation and transformation assays**

A variety of *in vivo* and *in vitro* tumor formation assays are known in the art that can be used to assay p53 function. Such assays can be used to detect foci formation (Beenken,

J. Surg. Res. (1992) 52:401-5), *in vitro* transformation (Ginsberg, Oncogene. (1991) 6:669-72), tumor formation in nude mice (Endlich, Int. J. Radiat. Biol. (1993) 64:715-26), tumor formation in *Drosophila* (Tao *et al.*, Nat. Genet. (1999) 21:177-181), and anchorage-independent growth in soft agar (Endlich, *supra*). Loss of indicia of  
5 differentiation may be indicate transformation, including loss of differentiation markers, cell rounding, loss of adhesion, loss of polarity, loss of contact inhibition, loss of anchorage dependence, protease release, increased sugar transport, decreased serum requirement, and expression of fetal antigens.

10 **Generation and Genetic Analysis of Animals and Cell Lines with Altered Expression of p53 Gene**

Both genetically modified animal models (i.e. *in vivo* models), such as *C. elegans* and *Drosophila*, and *in vitro* models such as genetically engineered cell lines expressing or mis-expressing p53 genes, are useful for the functional analysis of these proteins. Model  
15 systems that display detectable phenotypes, can be used for the identification and characterization of p53 genes or other genes of interest and/or phenotypes associated with the mutation or mis-expression of p53. The term "mis-expression" as used herein encompasses mis-expression due to gene mutations. Thus, a mis-expressed p53 protein may be one having an amino acid sequence that differs from wild-type (i.e. it is a derivative  
20 of the normal protein). A mis-expressed p53 protein may also be one in which one or more N- or C-terminal amino acids have been deleted, and thus is a "fragment" of the normal protein. As used herein, "mis-expression" also includes ectopic expression (e.g. by altering the normal spatial or temporal expression), over-expression (e.g. by multiple gene copies), underexpression, non-expression (e.g. by gene knockout or blocking expression that would  
25 otherwise normally occur), and further, expression in ectopic tissues.

The *in vivo* and *in vitro* models may be genetically engineered or modified so that they 1) have deletions and/or insertions of a p53 genes, 2) harbor interfering RNA sequences derived from a p53 gene, 3) have had an endogenous p53 gene mutated (e.g. contain deletions, insertions, rearrangements, or point mutations in the p53 gene), and/or 4)  
30 contain transgenes for mis-expression of wild-type or mutant forms of a p53 gene. Such genetically modified *in vivo* and *in vitro* models are useful for identification of genes and proteins that are involved in the synthesis, activation, control, etc. of p53, and also downstream effectors of p53 function, genes regulated by p53, etc. The model systems can be used for testing potential pharmaceutical and pesticidal compounds that interact with

p53, for example by administering the compound to the model system using any suitable method (e.g. direct contact, ingestion, injection, etc.) and observing any changes in phenotype, for example defective movement, lethality, etc. Various genetic engineering and expression modification methods which can be used are well-known in the art, 5 including chemical mutagenesis, transposon mutagenesis, antisense RNAi, dsRNAi, and transgene-mediated mis-expression.

#### Generating Loss-of-function Mutations by Mutagenesis

Loss-of-function mutations in an insect p53 gene can be generated by any of several mutagenesis methods known in the art (Ashburner, In *Drosophila melanogaster: A* 10 *Laboratory Manual* (1989), Cold Spring Harbor, NY, Cold Spring Harbor Laboratory Press: pp. 299-418; Fly pushing: The Theory and Practice of *Drosophila melanogaster Genetics* (1997) Cold Spring Harbor Press, Plainview, NY, hereinafter "Fly Pushing"). Techniques for producing mutations in a gene or genome include use of radiation (e.g., X-ray, UV, or gamma ray); chemicals (e.g., EMS, MMS, ENU, formaldehyde, etc.); and insertional 15 mutagenesis by mobile elements including dysgenesis induced by transposon insertions, or transposon-mediated deletions, for example, male recombination, as described below. Other methods of altering expression of genes include use of transposons (e.g., P element, EP-type "overexpression trap" element, mariner element, *piggyBac* transposon, hermes, minos, sleeping beauty, etc.) to misexpress genes; antisense: double-stranded RNA 20 interference; peptide and RNA aptamers: directed deletions; homologous recombination; dominant negative alleles; and intrabodies.

Transposon insertions lying adjacent to a p53 gene can be used to generate deletions of flanking genomic DNA, which if induced in the germline, are stably propagated in subsequent generations. The utility of this technique in generating deletions has been 25 demonstrated and is well-known in the art. One version of the technique using collections of P element transposon induced recessive lethal mutations (P lethals) is particularly suitable for rapid identification of novel, essential genes in *Drosophila* (Cooley *et al.*, *Science* (1988) 239:1121-1128; Spradling *et al.*, *PNAS* (1995) 92:0824-10830). Since the sequence of the P elements are known, the genomic sequence flanking each transposon 30 insert is determined either by plasmid rescue (Hamilton *et al.*, *PNAS* (1991) 88:2731-2735) or by inverse polymerase chain reaction (Rehm, <http://www.fruitfly.org/methods/>). A more recent version of the transposon insertion technique in male *Drosophila* using P elements is known as P-mediated male recombination (Preston and Engels, *Genetics* (1996) 144:1611-1638).

### Generating Loss-of-function Phenotypes Using RNA-based Methods

p53 genes may be identified and/or characterized by generating loss-of-function phenotypes in animals of interest through RNA-based methods, such as antisense RNA (Schubiger and Edgar, *Methods in Cell Biology* (1994) 44:697-713). One form of the 5 antisense RNA method involves the injection of embryos with an antisense RNA that is partially homologous to the gene of interest (in this case the p53 gene). Another form of the antisense RNA method involves expression of an antisense RNA partially homologous to the gene of interest by operably joining a portion of the gene of interest in the antisense orientation to a powerful promoter that can drive the expression of large quantities of 10 antisense RNA, either generally throughout the animal or in specific tissues. Antisense RNA-generated loss-of-function phenotypes have been reported previously for several *Drosophila* genes including cactus, pecanex, and Krüppel (LaBonne *et al.*, *Dev. Biol.* (1989) 136(1):1-16; Schuh and Jackle, *Genome* (1989) 31(1):422-425; Geisler *et al.*, *Cell* (1992) 71(4):613-621).

15 Loss-of-function phenotypes can also be generated by cosuppression methods (Bingham, *Cell* (1997) 90(3):385-387; Smyth, *Curr. Biol.* (1997) 7(12):793-795; Que and Jorgensen, *Dev. Genet.* (1998) 22(1):100-109). Cosuppression is a phenomenon of reduced gene expression produced by expression or injection of a sense strand RNA corresponding to a partial segment of the gene of interest. Cosuppression effects have been employed 20 extensively in plants and *C. elegans* to generate loss-of-function phenotypes. Cosuppression in *Drosophila* has been shown, where reduced expression of the Adh gene was induced from a white-Adh transgene (Pal-Bhadra *et al.*, *Cell* (1997) 90(3):479-490).

Another method for generating loss-of-function phenotypes is by double-stranded 25 RNA interference (dsRNAi). This method is based on the interfering properties of double-stranded RNA derived from the coding regions of gene, and has proven to be of great utility in genetic studies of *C. elegans* (Fire *et al.*, *Nature* (1998) 391:806-811), and can also be used to generate loss-of-function phenotypes in *Drosophila* (Kennerdell and Carthew, *Cell* (1998) 95:1017-1026; Misquitta and Patterson PNAS (1999) 96:1451-1456).

Complementary sense and antisense RNAs derived from a substantial portion of a gene of 30 interest, such as p53 gene, are synthesized *in vitro*, annealed in an injection buffer, and introduced into animals by injection or other suitable methods such as by feeding, soaking the animals in a buffer containing the RNA, etc. Progeny of the dsRNA treated animals are then inspected for phenotypes of interest (PCT publication no. WO99/32619).

dsRNAi can also be achieved by causing simultaneous expression *in vivo* of both sense and antisense RNA from appropriately positioned promoters operably fused to p53 sequences. Alternatively, the living food of an animal can be engineered to express sense and antisense RNA, and then fed to the animal. For example, *C. elegans* can be fed 5 engineered *E. coli*, *Drosophila* can be fed engineered baker's yeast, and insects such as *Leptinotarsa* and *Heliothis* and other plant-eating animals can be fed transgenic plants engineered to produce the dsRNA.

RNAi has also been successfully used in cultured *Drosophila* cells to inhibit expression of targeted proteins (Dixon lab, University of Michigan, 10 <http://dixonlab.biochem.med.umich.edu/protocols/RNAiExperiments.html>). Thus, cell lines in culture can be manipulated using RNAi both to perturb and study the function of p53 pathway components and to validate the efficacy of therapeutic or pesticidal strategies which involve the manipulation of this pathway. A suitable protocol is described in Example 13.

15 **Generating Loss-of-function Phenotypes Using Peptide and RNA Aptamers**

Another method for generating loss-of-function phenotypes is by the use of peptide aptamers, which are peptides or small polypeptides that act as dominant inhibitors of protein function. Peptide aptamers specifically bind to target proteins, blocking their function ability (Kolonin and Finley, PNAS (1998) 95:14266-14271). Due to the highly 20 selective nature of peptide aptamers, they may be used not only to target a specific protein, but also to target specific functions of a given protein (*e.g.* transcription function). Further, peptide aptamers may be expressed in a controlled fashion by use of promoters which regulate expression in a temporal, spatial or inducible manner. Peptide aptamers act dominantly; therefore, they can be used to analyze proteins for which loss-of-function 25 mutants are not available.

Peptide aptamers that bind with high affinity and specificity to a target protein may be isolated by a variety of techniques known in the art. In one method, they are isolated from random peptide libraries by yeast two-hybrid screens (Xu *et al.*, PNAS (1997) 94:12473-12478). They can also be isolated from phage libraries (Hoogenboom *et al.*, 30 Immunotechnology (1998) 4:1-20) or chemically generated peptides/libraries.

RNA aptamers are specific RNA ligands for proteins, that can specifically inhibit protein function of the gene (Good *et al.*, Gene Therapy (1997) 4:45-54; Ellington. *et al.*, Biotechnol. Annu. Rev. (1995) 1:185-214). *In vitro* selection methods can be used to identify RNA aptamers having a selected specificity (Bell *et al.*, J. Biol. Chem. (1998)

273:14309-14314). It has been demonstrated that RNA aptamers can inhibit protein function in *Drosophila* (Shi *et al.*, Proc. Natl. Acad. Sci USA (1999) 96:10033-10038). Accordingly, RNA aptamers can be used to decrease the expression of p53 protein or derivative thereof, or a protein that interacts with the p53 protein.

5 Transgenic animals can be generated to test peptide or RNA aptamers *in vivo* (Kolonin and Finley, *supra*). For example, transgenic *Drosophila* lines expressing the desired aptamers may be generated by P element mediated transformation (discussed below). The phenotypes of the progeny expressing the aptamers can then be characterized.

#### Generating Loss of Function Phenotypes Using Intrabodies

10 Intracellularly expressed antibodies, or intrabodies, are single-chain antibody molecules designed to specifically bind and inactivate target molecules inside cells. Intrabodies have been used in cell assays and in whole organisms such as *Drosophila* (Chen *et al.*, Hum. Gen. Ther. (1994) 5:595-601; Hassanzadeh *et al.*, Febs Lett. (1998) 16(1, 2):75-80 and 81-86). Inducible expression vectors can be constructed with intrabodies that react specifically with p53 protein. These vectors can be introduced into model organisms and studied in the same manner as described above for aptamers.

#### Transgenesis

Typically, transgenic animals are created that contain gene fusions of the coding regions of the p53 gene (from either genomic DNA or cDNA) or genes engineered to 20 encode antisense RNAs, cosuppression RNAs, interfering dsRNA, RNA aptamers, peptide aptamers, or intrabodies operably joined to a specific promoter and transcriptional enhancer whose regulation has been well characterized, preferably heterologous promoters/enhancers (i.e. promoters/enhancers that are non-native to the p53 genes being expressed).

Methods are well known for incorporating exogenous nucleic acid sequences into 25 the genome of animals or cultured cells to create transgenic animals or recombinant cell lines. For invertebrate animal models, the most common methods involve the use of transposable elements. There are several suitable transposable elements that can be used to incorporate nucleic acid sequences into the genome of model organisms. Transposable elements are also particularly useful for inserting sequences into a gene of interest so that 30 the encoded protein is not properly expressed, creating a "knock-out" animal having a loss-of-function phenotype. Techniques are well-established for the use of P element in *Drosophila* (Rubin and Spradling, Science (1982) 218:348-53; U.S. Pat. No. 4,670,388). Additionally, transposable elements that function in a variety of species, have been

identified, such as PiggyBac (Thibault *et al.*, Insect Mol Biol (1999) 8(1):119-23), hobo, and hermes.

P elements, or marked P elements, are preferred for the isolation of loss-of-function mutations in *Drosophila* p53 genes because of the precise molecular mapping of these 5 genes, depending on the availability and proximity of preexisting P element insertions for use as a localized transposon source (Hamilton and Zinn, Methods in Cell Biology (1994) 44:81-94; and Wolfner and Goldberg, Methods in Cell Biology (1994) 44:33-80). Typically, modified P elements are used which contain one or more elements that allow 10 detection of animals containing the P element. Most often, marker genes are used that affect the eye color of *Drosophila*, such as derivatives of the *Drosophila white* or *rosy* genes (Rubin and Spradling, *supra*; and Klemenz *et al.*, Nucleic Acids Res. (1987) 15(10):3947-3959). However, in principle, any gene can be used as a marker that causes a 15 reliable and easily scored phenotypic change in transgenic animals. Various other markers include bacterial plasmid sequences having selectable markers such as ampicillin resistance (Steller and Pirrotta, EMBO J. (1985) 4:167-171); and *lacZ* sequences fused to a weak general promoter to detect the presence of enhancers with a developmental expression pattern of interest (Bellen *et al.*, Genes Dev. (1989) 3(9):1288-1300). Other examples of marked P elements useful for mutagenesis have been reported (Nucleic Acids Research (1998) 26:85-88; and <http://flybase.bio.indiana.edu>).  
20 A preferred method of transposon mutagenesis in *Drosophila* employs the "local hopping" method (Tower *et al.* (Genetics (1993) 133:347-359). Each new P insertion line can be tested molecularly for transposition of the P element into the gene of interest (e.g. p53) by assays based on PCR. For each reaction, one PCR primer is used that is homologous to sequences contained within the P element and a second primer is  
25 homologous to the coding region or flanking regions of the gene of interest. Products of the PCR reactions are detected by agarose gel electrophoresis. The sizes of the resulting DNA fragments reveal the site of P element insertion relative to the gene of interest. Alternatively, Southern blotting and restriction mapping using DNA probes derived from genomic DNA or cDNAs of the gene of interest can be used to detect transposition events  
30 that rearrange the genomic DNA of the gene. P transposition events that map to the gene of interest can be assessed for phenotypic effects in heterozygous or homozygous mutant *Drosophila*.

In another embodiment, *Drosophila* lines carrying P insertions in the gene of interest, can be used to generate localized deletions using known methods (Kaiser.

Bioassays (1990) 12(6):297-301; Harnessing the power of *Drosophila* genetics, In *Drosophila melanogaster: Practical Uses in Cell and Molecular Biology*, Goldstein and Fyrberg, Eds., Academic Press, Inc. San Diego, California). This is particularly useful if no P element transpositions are found that disrupt the gene of interest. Briefly, flies containing 5 P elements inserted near the gene of interest are exposed to a further round of transposase to induce excision of the element. Progeny in which the transposon has excised are typically identified by loss of the eye color marker associated with the transposable element. The resulting progeny will include flies with either precise or imprecise excision of the P element, where the imprecise excision events often result in deletion of genomic DNA 10 neighboring the site of P insertion. Such progeny are screened by molecular techniques to identify deletion events that remove genomic sequence from the gene of interest; and assessed for phenotypic effects in heterozygous and homozygous mutant *Drosophila*.

Recently a transgenesis system has been described that may have universal applicability in all eye-bearing animals and which has been proven effective in delivering 15 transgenes to diverse insect species (Berghammer *et al.*, Nature (1999) 402:370-371). This system includes: an artificial promoter active in eye tissue of all animal species, preferably containing three Pax6 binding sites positioned upstream of a TATA box (3xP3; Sheng *et al.* Genes Devel. (1997) 11:1122-1131); a strong and visually detectable marker gene, such as GFP or other autofluorescent protein genes (Pasher *et al.*, Gene (1992) 111:229-233; 20 U.S. Pat. No. 5,491,084); and promiscuous vectors capable of delivering transgenes to a broad range of animal species, for example transposon-based vectors derived from *Hermes*, *PiggyBac*, or *mariner*, or vectors based on pantropic VSV<sub>G</sub>-pseudotyped retroviruses (Burns *et al.*, In Vitro Cell Dev Biol Anim (1996) 32:78-84; Jordan *et al.*, Insect Mol Biol (1998) 7: 215-222; US Pat. No. 5,670,345). Since the same transgenesis system can be 25 used in a variety of phylogenetically diverse animals, comparative functional studies are greatly facilitated, which is especially helpful in evaluating new applications to pest management.

In addition to creating loss-of-function phenotypes, transposable elements can be used to incorporate p53, or fragments or derivatives thereof, as an additional gene into any 30 region of an animal's genome resulting in mis-expression (including over-expression) of the gene. A preferred vector designed specifically for misexpression of genes in transgenic *Drosophila*, is derived from pGMR (Hay *et al.*, Development (1994) 120:2121-2129), is 9Kb long, and contains: an origin of replication for *E. coli*; an ampicillin resistance gene; P element transposon 3' and 5' ends to mobilize the inserted sequences; a White marker gene;

an expression unit comprising the TATA region of hsp70 enhancer and the 3'untranslated region of  $\alpha$ -tubulin gene. The expression unit contains a first multiple cloning site (MCS) designed for insertion of an enhancer and a second MCS located 500 bases downstream, designed for the insertion of a gene of interest. As an alternative to transposable elements,  
5 homologous recombination or gene targeting techniques can be used to substitute a heterologous p53 gene or fragment or derivative for one or both copies of the animal's homologous gene. The transgene can be under the regulation of either an exogenous or an endogenous promoter element, and be inserted as either a minigene or a large genomic fragment. Gene function can be analyzed by ectopic expression, using, for example,  
10 *Drosophila* (Brand *et al.*, Methods in Cell Biology (1994) 44:635- 654).

Examples of well-characterized heterologous promoters that may be used to create transgenic *Drosophila* include heat shock promoters/enhancers such as the *hsp70* and *hsp83* genes. Eye tissue specific promoters/enhancers include *eyeless* (Mozer and Benzer, Development (1994) 120:1049-1058), *sevenless* (Bowtell *et al.*, PNAS (1991) 88(15):6853-6857), and *glass*-responsive promoters/enhancers (Quiring *et al.*, Science (1994) 265:785-789). Wing tissue specific enhancers/promoters can be derived from the *dpp* or *vestigial* genes (Staehling-Hampton *et al.*, Cell Growth Differ. (1994) 5(6):585-593; Kim *et al.*, Nature (1996) 382:133-138). Finally, where it is necessary to restrict the activity of dominant active or dominant negative transgenes to regions where p53 is normally active, it  
15 may be useful to use endogenous p53 promoters. The ectopic expression of DMp53 in *Drosophila* larval eye using *glass*-responsive enhancer elements is described in Example 12 below.  
20

In *Drosophila*, binary control systems that employ exogenous DNA are useful when testing the mis-expression of genes in a wide variety of developmental stage-specific and  
25 tissue-specific patterns. Two examples of binary exogenous regulatory systems include the UAS/GAL4 system from yeast (Hay *et al.*, PNAS (1997) 94(10):5195-5200; Ellis *et al.*, Development (1993) 119(3):855-865), and the "Tet system" derived from *E. coli* (Bello *et al.*, Development (1998) 125:2193-2202). The UAS/GAL4 system is a well-established and powerful method of mis-expression which employs the UAS<sub>G</sub> upstream regulatory  
30 sequence for control of promoters by the yeast GAL4 transcriptional activator protein (Brand and Perrimon, Development (1993) 118(2):401-15). In this approach, transgenic *Drosophila*, termed "target" lines, are generated where the gene of interest to be mis-expressed is operably fused to an appropriate promoter controlled by UAS<sub>G</sub>. Other transgenic *Drosophila* strains, termed "driver" lines, are generated where the GAL4 coding

region is operably fused to promoters/enhancers that direct the expression of the GAL4 activator protein in specific tissues, such as the eye, wing, nervous system, gut, or musculature. The gene of interest is not expressed in the target lines for lack of a transcriptional activator to drive transcription from the promoter joined to the gene of interest. However, when the UAS-target line is crossed with a GAL4 driver line, mis-expression of the gene of interest is induced in resulting progeny in a specific pattern that is characteristic for that GAL4 line. The technical simplicity of this approach makes it possible to sample the effects of directed mis-expression of the gene of interest in a wide variety of tissues by generating one transgenic target line with the gene of interest, and crossing that target line with a panel of pre-existing driver lines.

In the "Tet" binary control system, transgenic *Drosophila* driver lines are generated where the coding region for a tetracycline-controlled transcriptional activator (tTA) is operably fused to promoters/enhancers that direct the expression of tTA in a tissue-specific and/or developmental stage-specific manner. The driver lines are crossed with transgenic *Drosophila* target lines where the coding region for the gene of interest to be mis-expressed is operably fused to a promoter that possesses a tTA-responsive regulatory element. When the resulting progeny are supplied with food supplemented with a sufficient amount of tetracycline, expression of the gene of interest is blocked. Expression of the gene of interest can be induced at will simply by removal of tetracycline from the food. Also, the level of expression of the gene of interest can be adjusted by varying the level of tetracycline in the food. Thus, the use of the Tet system as a binary control mechanism for mis-expression has the advantage of providing a means to control the amplitude and timing of mis-expression of the gene of interest, in addition to spatial control. Consequently, if a p53 gene has lethal or deleterious effects when mis-expressed at an early stage in development, such as the embryonic or larval stages, the function of the gene in the adult can still be assessed by adding tetracycline to the food during early stages of development and removing tetracycline later so as to induce mis-expression only at the adult stage.

Dominant negative mutations, by which the mutation causes a protein to interfere with the normal function of a wild-type copy of the protein, and which can result in loss-of-function or reduced-function phenotypes in the presence of a normal copy of the gene, can be made using known methods (Hershkowitz, Nature (1987) 329:219-222). In the case of active monomeric proteins, overexpression of an inactive form, achieved, for example, by linking the mutant gene to a highly active promoter, can cause competition for natural substrates or ligands sufficient to significantly reduce net activity of the normal protein.

Alternatively, changes to active site residues can be made to create a virtually irreversible association with a target.

#### Assays for Change in Gene Expression

5 Various expression analysis techniques may be used to identify genes which are differentially expressed between a cell line or an animal expressing a wild type p53 gene compared to another cell line or animal expressing a mutant p53 gene. Such expression profiling techniques include differential display, serial analysis of gene expression (SAGE), transcript profiling coupled to a gene database query, nucleic acid array technology, 10 subtractive hybridization, and proteome analysis (e.g. mass-spectrometry and two-dimensional protein gels). Nucleic acid array technology may be used to determine the genome-wide expression pattern in a normal animal for comparison with an animal having a mutation in the p53 gene. Gene expression profiling can also be used to identify other genes or proteins that may have a functional relation to p53. The genes are identified by 15 detecting changes in their expression levels following mutation, over-expression, under-expression, mis-expression or knock-out, of the p53 gene.

#### Phenotypes Associated With p53 Gene Mutations

After isolation of model animals carrying mutated or mis-expressed p53 genes or 20 inhibitory RNAs, animals are carefully examined for phenotypes of interest. For analysis of p53 genes that have been mutated, animal models that are both homozygous and heterozygous for the altered p53 gene are analyzed. Examples of specific phenotypes that may be investigated include lethality; sterility; feeding behavior, tumor formation, perturbations in neuromuscular function including alterations in motility, and alterations in 25 sensitivity to pharmaceuticals. Some phenotypes more specific to flies include alterations in: adult behavior such as, flight ability, walking, grooming, phototaxis, mating or egg-laying; alterations in the responses of sensory organs, changes in the morphology, size or number of adult tissues such as, eyes, wings, legs, bristles, antennae, gut, fat body, gonads, and musculature; larval tissues such as mouth parts, cuticles, internal tissues or imaginal 30 discs; or larval behavior such as feeding, molting, crawling, or puparian formation; or developmental defects in any germline or embryonic tissues.

Genomic sequences containing a p53 gene can be used to engineer an existing mutant insect line, using the transgenesis methods previously described, to determine whether the mutation is in the p53 gene. Briefly, germline transformants are crossed for

complementation testing to an existing or newly created panel of insect lines whose mutations have been mapped to the vicinity of the gene of interest (*Fly Pushing, supra*). If a mutant line is discovered to be rescued by the genomic fragment, as judged by complementation of the mutant phenotype, then the mutant line likely harbors a mutation in the p53 gene. This prediction can be further confirmed by sequencing the p53 gene from the mutant line to identify the lesion in the p53 gene.

### Identification of Genes That Modify p53 Genes

The characterization of new phenotypes created by mutations or misexpression in p53 genes enables one to test for genetic interactions between p53 genes and other genes that may participate in the same, related, or interacting genetic or biochemical pathway(s). Individual genes can be used as starting points in large-scale genetic modifier screens as described in more detail below. Alternatively, RNAi methods can be used to simulate loss-of-function mutations in the genes being analyzed. It is of particular interest to investigate whether there are any interactions of p53 genes with other well-characterized genes, particularly genes involved in regulation of the cell cycle or apoptosis.

#### **Genetic Modifier Screens**

A genetic modifier screen using invertebrate model organisms is a particularly preferred method for identifying genes that interact with p53 genes, because large numbers of animals can be systematically screened making it more possible that interacting genes will be identified. In *Drosophila*, a screen of up to about 10,000 animals is considered to be a pilot-scale screen. Moderate-scale screens usually employ about 10,000 to about 50,000 flies, and large-scale screens employ greater than about 50,000 flies. In a genetic modifier screen, animals having a mutant phenotype due to a mutation in or misexpression of the p53 gene are further mutagenized, for example by chemical mutagenesis or transposon mutagenesis.

The procedures involved in typical *Drosophila* genetic modifier screens are well-known in the art (Wolfner and Goldberg, Methods in Cell Biology (1994) 44:33-80; and Karim *et al.*, Genetics (1996) 143:315-329). The procedures used differ depending upon the precise nature of the mutant allele being modified. If the mutant allele is genetically recessive, as is commonly the situation for a loss-of-function allele, then most typically males, or in some cases females, which carry one copy of the mutant allele are exposed to an effective mutagen, such as EMS, MMS, ENU, triethylamine, diepoxyalkanes, ICR-170, formaldehyde, X-rays, gamma rays, or ultraviolet radiation. The mutagenized animals are

crossed to animals of the opposite sex that also carry the mutant allele to be modified. In the case where the mutant allele being modified is genetically dominant, as is commonly the situation for ectopically expressed genes, wild type males are mutagenized and crossed to females carrying the mutant allele to be modified.

5        The progeny of the mutagenized and crossed flies that exhibit either enhancement or suppression of the original phenotype are presumed to have mutations in other genes, called "modifier genes", that participate in the same phenotype-generating pathway. These progeny are immediately crossed to adults containing balancer chromosomes and used as founders of a stable genetic line. In addition, progeny of the founder adult are retested  
10      under the original screening conditions to ensure stability and reproducibility of the phenotype. Additional secondary screens may be employed, as appropriate, to confirm the suitability of each new modifier mutant line for further analysis.

Standard techniques used for the mapping of modifiers that come from a genetic screen in *Drosophila* include meiotic mapping with visible or molecular genetic markers; 15 male-specific recombination mapping relative to P-element insertions; complementation analysis with deficiencies, duplications, and lethal P-element insertions; and cytological analysis of chromosomal aberrations (*Fly Pushing, supra*). Genes corresponding to modifier mutations that fail to complement a lethal P-element may be cloned by plasmid rescue of the genomic sequence surrounding that P-element. Alternatively, modifier genes 20 may be mapped by phenotype rescue and positional cloning (Sambrook *et al.*, *supra*).

Newly identified modifier mutations can be tested directly for interaction with other genes of interest known to be involved or implicated with p53 genes using methods described above. Also, the new modifier mutations can be tested for interactions with genes in other pathways that are not believed to be related to regulation of cell cycle or apoptosis.  
25      New modifier mutations that exhibit specific genetic interactions with other genes implicated in cell cycle regulation or apoptosis, and not with genes in unrelated pathways, are of particular interest.

The modifier mutations may also be used to identify "complementation groups". Two modifier mutations are considered to fall within the same complementation group if 30 animals carrying both mutations in trans exhibit essentially the same phenotype as animals that are homozygous for each mutation individually and, generally are lethal when in trans to each other (*Fly Pushing, supra*). Generally, individual complementation groups defined in this way correspond to individual genes.

When p53 modifier genes are identified, homologous genes in other species can be isolated using procedures based on cross-hybridization with modifier gene DNA probes, PCR-based strategies with primer sequences derived from the modifier genes, and/or computer searches of sequence databases. For therapeutic applications related to the 5 function of p53 genes, human and rodent homologs of the modifier genes are of particular interest.

Although the above-described *Drosophila* genetic modifier screens are quite powerful and sensitive, some genes that interact with p53 genes may be missed in this approach, particularly if there is functional redundancy of those genes. This is because the 10 vast majority of the mutations generated in the standard mutagenesis methods will be loss-of-function mutations, whereas gain-of-function mutations that could reveal genes with functional redundancy will be relatively rare. Another method of genetic screening in *Drosophila* has been developed that focuses specifically on systematic gain-of-function genetic screens (Rorth *et al.*, Development (1998) 125:1049-1057). This method is based 15 on a modular mis-expression system utilizing components of the GAL4/UAS system (described above) where a modified P element, termed an "enhanced P" (EP) element, is genetically engineered to contain a GAL4-responsive UAS element and promoter. Any other transposons can also be used for this system. The resulting transposon is used to randomly tag genes by insertional mutagenesis (similar to the method of P element 20 mutagenesis described above). Thousands of transgenic *Drosophila* strains, termed EP lines, can be generated, each containing a specific UAS-tagged gene. This approach takes advantage of the preference of P elements to insert at the 5'-ends of genes. Consequently, many of the genes that are tagged by insertion of EP elements become operably fused to a 25 GAL4-regulated promoter, and increased expression or mis-expression of the randomly tagged gene can be induced by crossing in a GAL4 driver gene.

Systematic gain-of-function genetic screens for modifiers of phenotypes induced by mutation or mis-expression of a p53 gene can be performed by crossing several thousand *Drosophila* EP lines individually into a genetic background containing a mutant or mis-expressed p53 gene, and further containing an appropriate GAL4 driver transgene. It is also 30 possible to remobilize the EP elements to obtain novel insertions. The progeny of these crosses are then analyzed for enhancement or suppression of the original mutant phenotype as described above. Those identified as having mutations that interact with the p53 gene can be tested further to verify the reproducibility and specificity of this genetic interaction. EP insertions that demonstrate a specific genetic interaction with a mutant or mis-expressed

p53 gene, have a physically tagged new gene which can be identified and sequenced using PCR or hybridization screening methods, allowing the isolation of the genomic DNA adjacent to the position of the EP element insertion.

5    **Identification of Molecules that Interact With p53**

A variety of methods can be used to identify or screen for molecules, such as proteins or other molecules, that interact with p53 protein, or derivatives or fragments thereof. The assays may employ purified p53 protein, or cell lines or a model organism such as *Drosophila* that has been genetically engineered to express p53 protein. Suitable screening methodologies are well known in the art to test for proteins and other molecules that interact with a gene/protein of interest (see e.g., PCT International Publication No. WO 96/34099). The newly identified interacting molecules may provide new targets for pharmaceutical agents. Any of a variety of exogenous molecules, both naturally occurring and/or synthetic (e.g., libraries of small molecules or peptides, or phage display libraries), 10 may be screened for binding capacity. In a typical binding experiment, the p53 protein or fragment is mixed with candidate molecules under conditions conducive to binding, sufficient time is allowed for any binding to occur, and assays are performed to test for bound complexes. A variety of assays to find interacting proteins are known in the art, for example, immunoprecipitation with an antibody that binds to the protein in a complex 15 followed by analysis by size fractionation of the immunoprecipitated proteins (e.g. by denaturing or nondenaturing polyacrylamide gel electrophoresis), Western analysis, non-denaturing gel electrophoresis, etc.

**Two-hybrid assay systems**

A preferred method for identifying interacting proteins is a two-hybrid assay system 25 or variation thereof (Fields and Song, *Nature* (1989) 340:245-246; U.S. Pat. No. 5,283,173; for review see Brent and Finley, *Annu. Rev. Genet.* (1997) 31:663-704). The most commonly used two-hybrid screen system is performed using yeast. All systems share three elements: 1) a gene that directs the synthesis of a "bait" protein fused to a DNA binding domain; 2) one or more "reporter" genes having an upstream binding site for the 30 bait, and 3) a gene that directs the synthesis of a "prey" protein fused to an activation domain that activates transcription of the reporter gene. For the screening of proteins that interact with p53 protein, the "bait" is preferably a p53 protein, expressed as a fusion protein to a DNA binding domain; and the "prey" protein is a protein to be tested for ability to interact with the bait, and is expressed as a fusion protein to a transcription activation

domain. The prey proteins can be obtained from recombinant biological libraries expressing random peptides.

The bait fusion protein can be constructed using any suitable DNA binding domain, such as the *E. coli* LexA repressor protein, or the yeast GAL4 protein (Bartel *et al.*, BioTechniques (1993) 14:920-924; Chasman *et al.*, Mol. Cell. Biol. (1989) 9:4746-4749; Ma *et al.*, Cell (1987) 48:847-853; Ptashne *et al.*, Nature (1990) 346:329-331). The prey fusion protein can be constructed using any suitable activation domain such as GAL4, VP-16, etc. The preys may contain useful moieties such as nuclear localization signals (Ylikomi *et al.*, EMBO J. (1992) 11:3681-3694; Dingwall and Laskey, Trends Biochem. Sci. Trends Biochem. Sci. (1991) 16:479-481) or epitope tags (Allen *et al.*, Trends Biochem. Sci. Trends Biochem. Sci. (1995) 20:511-516) to facilitate isolation of the encoded proteins. Any reporter gene can be used that has a detectable phenotype such as reporter genes that allow cells expressing them to be selected by growth on appropriate medium (e.g. HIS3, LEU2 described by Chien *et al.*, PNAS (1991) 88:9572-9582; and Gyuris *et al.*, Cell (1993) 75:791-803). Other reporter genes, such as LacZ and GFP, allow cells expressing them to be visually screened (Chien *et al.*, *supra*).

Although the preferred host for two-hybrid screening is the yeast, the host cell in which the interaction assay and transcription of the reporter gene occurs can be any cell, such as mammalian (e.g. monkey, mouse, rat, human, bovine), chicken, bacterial, or insect cells. Various vectors and host strains for expression of the two fusion protein populations in yeast can be used (U.S. Pat. No. 5,468,614; Bartel *et al.*, Cellular Interactions in Development (1993) Hartley, ed., Practical Approach Series xviii, IRL Press at Oxford University Press, New York, NY, pp. 153-179; and Fields and Sternglanz, Trends In Genetics (1994) 10:286-292). As an example of a mammalian system, interaction of activation tagged VP16 derivatives with a GAL4-derived bait drives expression of reporters that direct the synthesis of hygromycin B phosphotransferase, chloramphenicol acetyltransferase, or CD4 cell surface antigen (Fearon *et al.*, PNAS (1992) 89:7958-7962). As another example, interaction of VP16-tagged derivatives with GAL4-derived baits drives the synthesis of SV40 T antigen, which in turn promotes the replication of the prey plasmid, which carries an SV40 origin (Vasavada *et al.*, PNAS (1991) 88:10686-10690).

Typically, the bait p53 gene and the prey library of chimeric genes are combined by mating the two yeast strains on solid or liquid media for a period of approximately 6-8 hours. The resulting diploids contain both kinds of chimeric genes, i.e., the DNA-binding domain fusion and the activation domain fusion. Transcription of the reporter gene can be

detected by a linked replication assay in the case of SV40 T antigen (Vasavada *et al.*, *supra*) or using immunoassay methods (Alam and Cook. *Anal. Biochem.* (1990)188:245-254). The activation of other reporter genes like URA3, HIS3, LYS2, or LEU2 enables the cells to grow in the absence of uracil, histidine, lysine, or leucine, respectively, and hence serves 5 as a selectable marker. Other types of reporters are monitored by measuring a detectable signal. For example, GFP and lacZ have gene products that are fluorescent and chromogenic, respectively.

After interacting proteins have been identified, the DNA sequences encoding the proteins can be isolated. In one method, the activation domain sequences or DNA-binding 10 domain sequences (depending on the prey hybrid used) are amplified, for example, by PCR using pairs of oligonucleotide primers specific for the coding region of the DNA binding domain or activation domain. If a shuttle (yeast to *E. coli*) vector is used to express the fusion proteins, the DNA sequences encoding the proteins can be isolated by transformation of *E. coli* using the yeast DNA and recovering the plasmids from *E. coli*. Alternatively, the 15 yeast vector can be isolated, and the insert encoding the fusion protein subcloned into a bacterial expression vector, for growth of the plasmid in *E. coli*.

#### **Antibodies and Immunoassay**

p53 proteins encoded by any of SEQ ID NOs:2, 4, 6, 8, or 10 and derivatives and fragments thereof, such as those discussed above, may be used as an immunogen to 20 generate monoclonal or polyclonal antibodies and antibody fragments or derivatives (*e.g.* chimeric, single chain, Fab fragments). For example, fragments of a p53 protein, preferably those identified as hydrophilic, are used as immunogens for antibody production using art-known methods such as by hybridomas; production of monoclonal antibodies in germ-free animals (PCT/US90/02545); the use of human hybridomas (Cole *et al.*, *PNAS* (1983) 25 80:2026-2030; Cole *et al.*, in *Monoclonal Antibodies and Cancer Therapy* (1985) Alan R. Liss, pp. 77-96), and production of humanized antibodies (Jones *et al.*, *Nature* (1986) 321:522-525; U.S. Pat. 5,530,101). In a particular embodiment, p53 polypeptide fragments provide specific antigens and/or immunogens, especially when coupled to carrier proteins. For example, peptides are covalently coupled to keyhole limpet antigen (KLH) and the 30 conjugate is emulsified in Freund's complete adjuvant. Laboratory rabbits are immunized according to conventional protocol and bled. The presence of specific antibodies is assayed by solid phase immunosorbent assays using immobilized corresponding polypeptide. Specific activity or function of the antibodies produced may be determined by convenient *in vitro*, cell-based, or *in vivo* assays: *e.g.* *in vitro* binding assays, *etc.* Binding affinity may be

assayed by determination of equilibrium constants of antigen-antibody association (usually at least about  $10^7 \text{ M}^{-1}$ , preferably at least about  $10^8 \text{ M}^{-1}$ , more preferably at least about  $10^9 \text{ M}^{-1}$ ). Example 11 below further describes the generation of anti-DMp53 antibodies.

Immunoassays can be used to identify proteins that interact with or bind to p53 protein. Various assays are available for testing the ability of a protein to bind to or compete with binding to a wild-type p53 protein or for binding to an anti-p53 protein antibody. Suitable assays include radioimmunoassays, ELISA (enzyme linked immunosorbent assay), immunoradiometric assays, gel diffusion precipitin reactions, immunodiffusion assays, *in situ* immunoassays (e.g., using colloidal gold, enzyme or radioisotope labels), western blots, precipitation reactions, agglutination assays (e.g., gel agglutination assays, hemagglutination assays), complement fixation assays, immunofluorescence assays, protein A assays, immunoelectrophoresis assays, etc.

#### Identification of Potential Drug Targets

Once new p53 genes or p53 interacting genes are identified, they can be assessed as potential drug or pesticide targets using animal models such as *Drosophila* or other insects, or using cells that express endogenous p53, or that have been engineered to express p53.

#### **Assays of Compounds on Insects**

Potential insecticidal compounds can be administered to insects in a variety of ways, including orally (including addition to synthetic diet, application to plants or prey to be consumed by the test organism), topically (including spraying, direct application of compound to animal, allowing animal to contact a treated surface), or by injection. Insecticides are typically very hydrophobic molecules and must commonly be dissolved in organic solvents, which are allowed to evaporate in the case of methanol or acetone, or at low concentrations can be included to facilitate uptake (ethanol, dimethyl sulfoxide).

The first step in an insect assay is usually the determination of the minimal lethal dose (MLD) on the insects after a chronic exposure to the compounds. The compounds are usually diluted in DMSO, and applied to the food surface bearing 0-48 hour old embryos and larvae. In addition to MLD, this step allows the determination of the fraction of eggs that hatch, behavior of the larvae, such as how they move /feed compared to untreated larvae, the fraction that survive to pupate, and the fraction that eclose (emergence of the adult insect from puparium). Based on these results more detailed assays with shorter exposure times may be designed, and larvae might be dissected to look for obvious

morphological defects. Once the MLD is determined, more specific acute and chronic assays can be designed.

In a typical acute assay, compounds are applied to the food surface for embryos, larvae, or adults, and the animals are observed after 2 hours and after an overnight incubation. For application on embryos, defects in development and the percent that survive to adulthood are determined. For larvae, defects in behavior, locomotion, and molting may be observed. For application on adults, behavior and neurological defects are observed, and effects on fertility are noted. Any deleterious effect on insect survival, motility and fertility indicates that the compound has utility in controlling pests.

For a chronic exposure assay, adults are placed on vials containing the compounds for 48 hours, then transferred to a clean container and observed for fertility, neurological defects, and death.

#### **Assay of Compounds using Cell Cultures**

Compounds that modulate (*e.g.* block or enhance) p53 activity may be tested on cells expressing endogenous normal or mutant p53s, and/or on cells transfected with vectors that express p53, or derivatives or fragments of p53. The compounds are added at varying concentration and their ability to modulate the activity of p53 genes is determined using any of the assays for tumor suppressor genes described above (*e.g.* by measuring transcription activity, apoptosis, proliferation/cell cycle, and/or transformation). Compounds that selectively modulate p53 are identified as potential drug candidates having p53 specificity.

Identification of small molecules and compounds as potential pharmaceutical compounds from large chemical libraries requires high-throughput screening (HTS) methods (Bolger, Drug Discovery Today (1999) 4:251-253). Several of the assays mentioned herein can lend themselves to such screening methods. For example, cells or cell lines expressing wild type or mutant p53 protein or its fragments, and a reporter gene can be subjected to compounds of interest, and depending on the reporter genes, interactions can be measured using a variety of methods such as color detection, fluorescence detection (*e.g.* GFP), autoradiography, scintillation analysis, *etc.*

30           **Agricultural uses of insect p53 sequences**

Insect p53 genes may be used in controlling agriculturally important pest species. For example, the proteins, genes, and RNAs disclosed herein, or their fragments may have activity in modifying the growth, feeding and/or reproduction of crop-damaging insects, or insect pests of farm animals or of other animals. In general, effective pesticides exert a

disabling activity on the target pest such as lethality, sterility, paralysis, blocked development, or cessation of feeding. Such pests include egg, larval, juvenile and adult forms of flies, mosquitos, fleas, moths, beetles, cicadas, grasshoppers, aphids and crickets.

The functional analyses of insect p53 genes described herein has revealed roles for these 5 genes and proteins in controlling apoptosis, response to DNA damaging agents, and protection of cells of the germline. Since overexpression of DMp53 induces apoptosis in *Drosophila*, the insect p53 genes and proteins in an activated form have application as "cell death" genes which if delivered to or expressed in specific target tissues such as the gut, nervous system, or gonad, would have a use in controlling insect pests. Alternatively, since 10 DMp53 plays a role in response to DNA damaging agents such as X-rays, interference with p53 function in insects has application in sensitizing insects to DNA damaging agents for sterilization. For example, current methods for controlling pest populations through the release of irradiated insects into the environment (Knipling, J Econ Ent (1955) 48: 459-462; Knipling (1979) U.S. Dept. Agric. Handbook No. 512) could be improved by causing 15 expression of dominant negative forms of p53 genes, proteins, or RNAs in insects and most preferably germline tissue of insects, or by exposing insects to chemical compounds which block p53 function.

Mutational analysis of insect p53 proteins may also be used in connection with the control of agriculturally-important pests. In this regard, mutational analysis of insect p53 20 genes provides a rational approach to determine the precise biological function of this class of proteins in invertebrates. Further, mutational analysis coupled with large-scale systematic genetic modifier screens provides a means to identify and validate other potential pesticide targets that might be constituents of the p53 signaling pathway. Tests for pesticidal activities can be any method known in the art. Pesticides comprising 25 the nucleic acids of the insect p53 proteins may be prepared in a suitable vector for delivery to a plant or animal. Such vectors include *Agrobacterium tumefaciens* Ti plasmid-based vectors for the generation of transgenic plants (Horsch *et al.*, Proc Natl Acad Sci U S A. (1986) 83(8):2571-2575; Fraley *et al.*, Proc. Natl. Acad. Sci. USA (1983) 80:4803) or recombinant cauliflower mosaic virus for the inoculation of plant cells or plants (U.S. Pat 30 No. 4,407,956); retrovirus based vectors for the introduction of genes into vertebrate animals (Burns *et al.*, Proc. Natl. Acad. Sci. USA (1993) 90:8033-37); and vectors based on transposable elements for incorporation into invertebrate animals using vectors and methods already described above. For example, transgenic insects can be generated using a transgene comprising a p53 gene operably fused to an appropriate inducible promoter, such

as a tTA-responsive promoter, in order to direct expression of the tumor suppressor protein at an appropriate time in the life cycle of the insect. In this way, one may test efficacy as an insecticide in, for example, the larval phase of the life cycle (*e.g.*, when feeding does the greatest damage to crops).

5 Recombinant or synthetic p53 proteins, RNAs or their fragments, in wild-type or mutant forms, can be assayed for insecticidal activity by injection of solutions of p53 proteins or RNAs into the hemolymph of insect larvae (Blackburn. *et al.*, Appl. Environ. Microbiol. (1998) 64(8):3036-41; Bowen and Ensign, Appl. Environ. Microbiol. (1998) 64(8):3029-35). Further, transgenic plants that express p53 proteins or RNAs or their  
10 fragments can be tested for activity against insect pests (Estruch *et al.*, Nat. Biotechnol. (1997) 15(2):137-41).

Insect p53 genes may be used as insect control agents in the form of recombinant viruses that direct the expression of a tumor suppressor gene in the target pest. A variety of suitable recombinant virus systems for expression of proteins in infected insect cells are  
15 well known in the art. A preferred system uses recombinant baculoviruses. The use of recombinant baculoviruses as a means to engineer expression of toxic proteins in insects, and as insect control agents, has a number of specific advantages including host specificity, environmental safety, the availability of vector systems, and the potential use of the recombinant virus directly as a pesticide without the need for purification or formulation of  
20 the tumor suppressor protein (Cory and Bishop, Mol. Biotechnol. (1997) 7(3):303-13; and U.S. Pat. Nos. 5,470,735; 5,352,451; 5,770,192; 5,759,809; 5,665,349; and 5,554,592). Thus, recombinant baculoviruses that direct the expression of insect p53 genes can be used for both testing the pesticidal activity of tumor suppressor proteins under controlled laboratory conditions, and as insect control agents in the field. One disadvantage of wild  
25 type baculoviruses as insect control agents can be the amount of time between application of the virus and death of the target insect, typically one to two weeks. During this period, the insect larvae continue to feed and damage crops. Consequently, there is a need to develop improved baculovirus-derived insect control agents which result in a rapid cessation of feeding of infected target insects. The cell cycle and apoptotic regulatory roles  
30 of p53 in vertebrates raises the possibility that expression of tumor suppressor proteins from recombinant baculovirus in infected insects may have a desirable effect in controlling metabolism and limiting feeding of insect pests.

Insect p53 genes, RNAs, proteins or fragments may be formulated with any carrier suitable for agricultural use, such as water, organic solvents and/or inorganic solvents. The

pesticide composition may be in the form of a solid or liquid composition and may be prepared by fundamental formulation processes such as dissolving, mixing, milling, granulating, and dispersing. Compositions may contain an insect p53 protein or gene in a mixture with agriculturally acceptable excipients such as vehicles, carriers, binders, UV blockers, adhesives, hemecants, thickeners, dispersing agents, preservatives and insect attractants. Thus the compositions of the invention may, for example, be formulated as a solid comprising the active agent and a finely divided solid carrier. Alternatively, the active agent may be contained in liquid compositions including dispersions, emulsions and suspensions thereof. Any suitable final formulation may be used, including for example, 5 granules, powder, bait pellets (a solid composition containing the active agent and an insect attractant or food substance), microcapsules, water dispersible granules, emulsions and emulsified concentrates. Examples of adjuvant or carriers suitable for use with the present invention include water, organic solvent, inorganic solvent, talc, pyrophyllite, synthetic fine silica, attapugus clay, kieselguhr chalk, diatomaceous earth, lime, calcium carbonate, 10 bentonite, fuller's earth, cottonseed hulls, wheat flour, soybean flour, pumice, tripoli, wood flour, walnut shell flour, redwood flour, and lignin. The compositions may also include conventional insecticidal agents and/or may be applied in conjunction with conventional insecticidal agents.

15

20 **EXAMPLES**

The following examples describe the isolation and cloning of the nucleic acid sequence of SEQ ID NOs: 1, 3, 5, 7, 9, and 18, and how these sequences, derivatives and fragments thereof, and gene products can be used for genetic studies to elucidate mechanisms of the p53 pathway as well as the discovery of potential pharmaceutical agents 25 that interact with the pathway.

These Examples are provided merely as illustrative of various aspects of the invention and should not be construed to limit the invention in any way.

**Example 1: Preparation of *Drosophila* cDNA Library**

30 A *Drosophila* expressed sequence tag (EST) cDNA library was prepared as follows. Tissue from mixed stage embryos (0-20 hour), imaginal disks and adult fly heads were collected and total RNA was prepared. Mitochondrial rRNA was removed from the total RNA by hybridization with biotinylated rRNA specific oligonucleotides and the resulting RNA was selected for polyadenylated mRNA. The resulting material was then used to

construct a random primed library. First strand cDNA synthesis was primed using a six nucleotide random primer. The first strand cDNA was then tailed with terminal transferase to add approximately 15 dGTP molecules. The second strand was primed using a primer which contained a NotI site followed by a 13 nucleotide C-tail to hybridize to the G-tailed  
5 first strand cDNA. The double stranded cDNA was ligated with BstX1 adaptors and digested with NotI. The cDNA was then fractionated by size by electrophoresis on an agarose gel and the cDNA greater than 700 bp was purified. The cDNA was ligated with NotI, BstX1 digested pCDNA-sk+ vector (a derivative of pBluescript, Stratagene) and used to transform *E. coli* (XL1blue). The final complexity of the library was  $6 \times 10^6$   
10 independent clones.

The cDNA library was normalized using a modification of the method described by Bonaldo *et al.* (Genome Research (1996) 6:791-806). Biotinylated driver was prepared from the cDNA by PCR amplification of the inserts and allowed to hybridize with single stranded plasmids of the same library. The resulting double-stranded forms were removed  
15 using streptavidin magnetic beads, the remaining single stranded plasmids were converted to double stranded molecules using Sequenase (Amersham, Arlington Hills, IL), and the plasmid DNA stored at -20°C prior to transformation. Aliquots of the normalized plasmid library were used to transform *E. coli* (XL1blue or DH10B), plated at moderate density, and the colonies picked into a 384-well master plate containing bacterial growth media using a  
20 Qbot robot (Genetix, Christchurch, UK). The clones were allowed to grow for 24 hours at 37° C then the master plates were frozen at -80° C for storage. The total number of colonies picked for sequencing from the normalized library was 240,000. The master plates were used to inoculate media for growth and preparation of DNA for use as template in sequencing reactions. The reactions were primarily carried out with primer that initiated at  
25 the 5' end of the cDNA inserts. However, a minor percentage of the clones were also sequenced from the 3' end. Clones were selected for 3' end sequencing based on either further biological interest or the selection of clones that could extend assemblies of contiguous sequences ("contigs") as discussed below. DNA sequencing was carried out using ABI377 automated sequencers and used either ABI FS, dRhodamine or BigDye  
30 chemistries (Applied Biosystems, Inc., Foster City, CA).

Analysis of sequences was done as follows: the traces generated by the automated sequencers were base-called using the program "Phred" (Gordon, Genome Res. (1998) 8:195-202), which also assigned quality values to each base. The resulting sequences were

trimmed for quality in view of the assigned scores. Vector sequences were also removed. Each sequence was compared to all other fly EST sequences using the BLAST program and a filter to identify regions of near 100% identity. Sequences with potential overlap were then assembled into contigs using the programs "Phrap", "Phred" and "Consed" (Phil 5 Green, University of Washington, Seattle, Washington; <http://bozeman.mbt.washington.edu/phrap.docs/phrap.html>). The resulting assemblies were then compared to existing public databases and homology to known proteins was then used to direct translation of the consensus sequence. Where no BLAST homology was available, the statistically most likely translation based on codon and hexanucleotide preference was used. The Pfam (Bateman *et al.*, Nucleic Acids Res. (1999) 27:260-262) and Prosite 10 (Hofmann *et al.*, Nucleic Acids Res. (1999) 27(1):215-219) collections of protein domains were used to identify motifs in the resulting translations. The contig sequences were archived in an Oracle-based relational database (FlyTag™, Exelixis Pharmaceuticals, Inc., South San Francisco, CA).

15

#### Example 2: Other cDNA libraries

A *Leptinotarsa* (Colorado Potato Beetle) library was prepared using the Lambda ZAP cDNA cloning kit from Stratagene (Stratagene, La Jolla, CA, cat#200450), following manufacturer's protocols. The original cDNA used to construct the library was oligo-dt 20 primed using mRNA from mixed stage larvae *Leptinotarsa*.

A *Tribolium* library was made using pSPORT cDNA library construction system (Life Technologies, Gaithersburg, MD), following manufacturer's protocols. The original cDNA used to construct the library was oligo-dt primed using mRNA from adult *Tribolium*.

25 **Example 3: Cloning of the p53 nucleic acid from *Drosophila* (DMp53)**

The TBLASTN program (Altschul *et al.*, *supra*) was used to query the FlyTag™ database with a squid p53 protein sequence (GenBank gi:1244762), chosen because the squid sequence was one of only two members of the p53 family that had been identified previously from an invertebrate. The results revealed a single sequence contig, which was 30 960 bp in length and which exhibited highly significant homology to squid p53 (score=192, P=5.1x10<sup>-12</sup>). Further analysis of this sequence with the BLASTX program against GenBank protein sequences demonstrated that this contig exhibited significant homology to the entire known family of p53-like sequences in vertebrates, and that it contained coding

sequences homologous to the p53 family that encompassed essentially all of the DNA-binding domain, which is the most conserved region of the p53 protein family. Inspection of this contig indicated that it was an incomplete cDNA, missing coding regions C-terminal to the presumptive DNA-binding domain as well as the 3' untranslated region of the mRNA.

5       The full-length cDNA clone was produced by Rapid Amplification of cDNA ends (RACE; Frohman *et al.*, PNAS (1988) 85:8998-9002). A RACE-ready library was generated from Clontech (Palo Alto, CA) *Drosophila* embryo poly A<sup>+</sup> RNA (Cat#694-1) using Clontech's Marathon cDNA amplification kit (Cat# K1802), and following manufacturer's directions. The following primers were used on the library to retrieve full-length clones:

|       |                                   |              |
|-------|-----------------------------------|--------------|
| 3'373 | CCATGCTGAAGCAATAACCACCGATG        | SEQ ID NO:11 |
| 3'510 | GGAACACACGCATAATTAGGGTGGATGG      | SEQ ID NO:12 |
| 3'566 | TGATTTGACAGCGGACCACGGG            | SEQ ID NO:13 |
| 15    | 3'799 GGAAGTTCTTCGCCGATACACGAG    | SEQ ID NO:14 |
|       | 5'164 GGCACAAAGAAAGCACTGATTCCGAGG | SEQ ID NO:15 |
|       | 5'300 GGAATCTGATGCAGTCAGCCAGCAATC | SEQ ID NO:16 |
|       | 5'932 GGATCGCATCCAAGACGAACGCC     | SEQ ID NO:17 |

20       RACE reactions to obtain additional 5' and 3' sequence of the *Drosophila* p53 cDNA were performed as follows. Each RACE reaction contained: 40 µl of H<sub>2</sub>O, 5 µl of 10XAdvantage PCR buffer (Clontech), 1 µl of specific p53 RACE primer at 10 µM, 1 µl of AP1 primer (from Clontech Marathon kit) at 10 µM, 1 µl of cDNA, 1 µl of dNTPs at 5 mM, 1 µl of Advantage DNA polymerase (Clontech). For 5' RACE, the reactions contained either the 3'373, 3'510, 3'566, or 3'799 primers. For 3' RACE, the reactions contained either the 5'164 or 5'300 primers. The reaction mixtures were subjected to the following thermocycling program steps for touchdown PCR: (1) 94°C 1 min, (2) 94°C 0.5 min, (3) 72°C 4 min, (4) repeat steps 2-3 four times, (5) 94°C 0.5 min, (6) 70°C 4 min, (7) repeat steps 5-6 four times, (8) 94°C 0.33 min, (9) 68°C 4 min, (10) repeat steps 8-9 24 times, (11) 68°C 4 min, (12) remain at 4°C.

Products of the RACE reactions were analyzed by gel electrophoresis. Discrete DNA species of the following sizes were observed in the RACE products produced with each of the following primers: 3'373, approx. 400 bp; 3'510, approx. 550 bp, 3'566, approx. 600 bp; 3'799, approx. 850 bp; 5'164, approx. 1400 bp, 5'300 approx. 1300 bp. The RACE

DNA products were cloned directly into the vector pCR2.1 using the TOPO TA cloning kit (Invitrogen Corp., Carlsbad, California) following the manufacturers directions. Colonies of transformed *E. coli* were picked for each construct, and plasmid DNA prepared using a QIAGEN tip 20 kit (QIAGEN, Valencia, California). Sequences of the RACE cDNA inserts in within each clone were determined using standard protocols for the BigDye sequencing reagents (Applied Biosystems, Inc. Foster City, California) and either M13 reverse or BigT7 primers for priming from flanking vector sequences, or 5'932 or 3'373 primers (described above) for priming internally from *Drosophila* p53 cDNA sequences. The products were analyzed using ABI 377 DNA sequencer. Sequences were assembled into a contig using the Sequencher program (Gene Codes Corporation), and contained a single open reading frame encoding a predicted protein of 385 amino acids, which compared favorably with the known lengths of vertebrate p53 proteins, 363 to 396 amino acids (Soussi *et al.*, Oncogene (1990) 5:945-952). Analysis of the predicted *Drosophila* p53 protein using the BLASTP homology searching program and the GenBank database confirmed that this protein was a member of the p53 family, since it exhibited highly significant homology to all known p53 related proteins, but no significant homology to other protein families.

**Example 4: Cloning of p53 Nucleic Acid Sequences from other insects**

The PCR conditions used for cloning the p53 nucleic acid sequences comprised a denaturation step of 94° C, 5 min; followed by 35 cycles of: 94° C 1 min, 55° C 1 min 72° C 1 min; then, a final extension at 72° C 10 min. All DNA sequencing reactions were performed using standard protocols for the BigDye sequencing reagents (Applied Biosystems, Inc.) and products were analyzed using ABI 377 DNA sequencers. Trace data obtained from the ABI 377 DNA sequencers was analyzed and assembled into contigs using the Phred-Phrap programs.

The DMp53 DNA and protein sequences were used to query sequences from *Tribolium*, *Leptinotarsa*, and *Heliothis* cDNA libraries using the BLAST computer program, and the results revealed several candidate cDNA clones that might encode p53 related sequences. For each candidate p53 cDNA clone, well-separated, single colonies were streaked on a plate and end-sequenced to verify the clones. Single colonies were picked and the plasmid DNA was purified using Qiagen REAL Preps (Qiagen, Inc.. Valencia, CA). Samples were then digested with appropriate enzymes to excise insert from

vector and determine size. For example, the vector pOT2, ([www.fruitfly.org/EST/pOT2vector.html](http://www.fruitfly.org/EST/pOT2vector.html)) can be excised with Xho1/EcoRI; or pBluescript (Stratagene) can be excised with BssH II. Clones were then sequenced using a combination of primer walking and *in vitro* transposon tagging strategies.

5 For primer walking, primers were designed to the known DNA sequences in the clones, using the Primer-3 software (Steve Rozen, Helen J. Skaletsky (1998) Primer3. Code available at [http://www-genome.wi.mit.edu/genome\\_software/other/primer3.html](http://www-genome.wi.mit.edu/genome_software/other/primer3.html)). These primers were then used in sequencing reactions to extend the sequence until the full sequence of the insert was determined.

10 The GPS-1 Genome Priming System *in vitro* transposon kit (New England Biolabs, Inc., Beverly, MA) was used for transposon-based sequencing, following manufacturer's protocols. Briefly, multiple DNA templates with randomly interspersed primer-binding sites were generated. These clones were prepared by picking 24 colonies/clone into a Qiagen REAL Prep to purify DNA and sequenced by using supplied primers to perform 15 bidirectional sequencing from both ends of transposon insertion.

Sequences were then assembled using Phred/Phrap and analyzed using Consed. Ambiguities in the sequence were resolved by resequencing several clones. This effort resulted in several contiguous nucleotide sequences. For *Leptinotarsa*, a contig was assembled of 2601 bases in length, encompassing an open reading frame (ORF) of 1059 20 nucleotides encoding a predicted protein of 353 amino acids. The ORF extends from base 121-1180 of SEQ ID NO:3. For *Tribolium*, a contig was assembled of 1292 bases in length, encompassing an ORF of 1050 nucleotides, extending from base 95-1145 of SEQ ID NO:5, and encoding a predicted protein of 350 amino acids. The analysis of another candidate 25 *Tribolium* p53 clone also generated a second contig of 509 bases in length, encompassing a partial ORF of 509 nucleotides (SEQ ID NO: 7), and encoding a partial protein of 170 amino acids. For *Heliothis*, a contig was assembled of 434 bases in length, encompassing a partial ORF of 434 nucleotides (SEQ ID NO:9), and encoding a partial protein of 145 amino acids.

30 **Example 5: Northern Blot analysis of DMp53**

Northern blot analysis using standard methods was performed using three different poly(A)+ mRNA preparations, 0-12 h embryo, 12-24 h embryo, and adult, which were fractionated on an agarose gel along with size standards and blotted to a nylon membrane. A DNA fragment containing the entire *Drosophila* p53 coding region was excised by

HincII digestion, separated by electrophoresis in an agarose gel, extracted from the gel, and  $^{32}$ P-labeled by random-priming using the Rediprime labeling system (Amersham, Piscataway, NJ). Hybridization of the labeled probe to the mRNA blot was performed overnight. The blot was washed at high stringency (0.2x SSC/0.1% SDS at 65°C) and 5 mRNA species that specifically hybridized to the probe were detected by autoradiography using X-ray film. The results showed a single cross-hybridizing mRNA species of approximately 1.6 kilobases in all three mRNA sources. This data was consistent with the observed sizes of the 5' and 3' RACE products described above.

10 **Example 6: Cytogenetic mapping of the DMp53 gene**

It was of interest to identify the map location of the DMp53 gene in order to determine whether any existing *Drosophila* mutants correspond to mutations in the DMp53 gene, as well as for engineering new mutations within this gene. The cytogenetic location of the DMp53 gene was determined by *in situ* hybridization to polytene chromosomes 15 (Pardue, Meth Cell Biol (1994) 44:333-351) following the protocol outlined below (steps A-C).

(A) Preparation of polytene chromosome squashes: Dissected salivary glands were placed into a drop of 45% acetic acid. Glands were transferred to drop of 1:2:3 mixture of lactic acid: water:acetic acid. Glands were then squashed between a cover slip and a slide 20 and incubated at 4°C overnight. Squashes were frozen in liquid N<sub>2</sub> and the coverslip removed. Slides were then immediately immersed in 70% ethanol for 10 min. and then air dried. Slides were then heat treated for 30 min. at 68°C in 2x SSC buffer. Squashes were then dehydrated by treatment with 70% ethanol for 10 min. followed by 95% ethanol for 5 min.

25 (B) Preparation of a biotinylated hybridization probe: a solution was prepared by mixing: 50  $\mu$ l of 1 M Tris-HCl pH 7.5. 6.35  $\mu$ l of 1 M MgCl<sub>2</sub>, 0.85  $\mu$ l of beta-mercaptoethanol, 0.625  $\mu$ l of 100 mM dATP, 0.625  $\mu$ l of 100 mM dCTP, 0.625  $\mu$ l of 100 mM dGTP, 125  $\mu$ l of 2 M HEPES pH 6.6, and 75  $\mu$ l of 10 mg/ml pd(N)<sub>6</sub> (Pharmacia, Kalamazoo, MI). 10  $\mu$ l of this solution was then mixed with 2  $\mu$ l 10 mg/ml bovine serum 30 albumin, 33  $\mu$ l containing (0.5  $\mu$ g) DMp53 cDNA fragment denatured by quick boiling, 5  $\mu$ l of 1 mM biotin-16-dUTP (Boehringer Mannheim, Indianapolis, IN), and 1  $\mu$ l of Klenow DNA polymerase (2 U) (Boehringer Mannheim). The mixture was incubated at room temperature overnight and the following components were then added: 1  $\mu$ l of 1 mg/ml sonicated denatured salmon sperm DNA, 5.5  $\mu$ l 3 M sodium acetate pH 5.2, and 150  $\mu$ l

ethanol (100%). After mixing the solution was stored at -70°C for 1-2 hr. DNA precipitate was collected by centrifugation in a microcentrifuge and the pellet was washed once in 70% ethanol, dried in a vacuum, dissolved in 50 µl TE buffer, and stored at -20°C.

(C) Hybridization and staining was performed as follows: 20 µl of the probe added

5 to a hybridization solution (112.5 µl formamide; 25 µl 20x SSC, pH 7.0; 50 µl 50% dextran sulfate; 62.5 µl distilled H<sub>2</sub>O) was placed on the squash. A coverslip (22 mm<sup>2</sup>) was placed on the squash and sealed with rubber cement and placed on the airtight moist chamber overnight at 42°C. Rubber cement was removed by peeling off cement, then coverslip removed in 2x SSC buffer at 37°C. Slides were washed twice 15 min each in 2x SSC buffer

10 at 37°C. Slides were then washed twice 15 min each in PBS buffer at room temperature. A mixture of the following "Elite" solution was prepared by mixing: 1 ml of PBT buffer (PBS buffer with 0.1% Tween 20), 10 µl of Vectastain A (Vector Laboratories, Burlingame, CA), and 10 µl of Vectastain B (Vector Laboratories). The mixture was then allowed to incubate for 30 min. 50 µl of the Elite solution was added to the slide then drained off. 75 µl of the

15 Elite solution was added to slide and a coverslip was placed onto the slide. The slide was incubated in moist chamber 1.5-2 hr at 37°C. The coverslip was then removed in PBS buffer, and the slide was washed twice 10 min each in PBS buffer.

A fresh solution of DAB (diaminobenzidine) in PBT buffer was made by mixing 1 µl of 0.3% hydrogen peroxide with 40 µl 0.5 mg/ml DAB solution. 40 µl of the

20 DAB/peroxide solution was then placed onto each slide. A coverslip was placed onto the slide and incubated 2 min. Slides were then examined under a phase microscope and reaction was stopped in PBS buffer when signal was determined to be satisfactory. Slides were then rinsed in running H<sub>2</sub>O for 10 min. and air dried. Finally, slides were inspected under a compound microscope to assign a chromosomal location to the hybridization signal.

25 A single clear region of hybridization was observed on the polytene chromosome squashes which was assigned to cytogenetic bands 94D2-6.

**Example 7: Isolation and sequence analysis of a genomic clone for the DMp53 gene**

PCR was used to generate DNA probes for identification of genomic clones

30 containing the DMp53 gene. Each reaction (50 µl total volume) contained 100 ng *Drosophila* genomic DNA, 2.5 µM each dNTP, 1.5 mM MgCl<sub>2</sub>, 2 µM of each primer, and 1 µl of TAKARA exTaq DNA polymerase (PanVera Corp., Madison, WI). Reactions were set up with primer pair 5'164 & 3'510 (described above), and thermocycling conditions used were as follows (where 0:00 indicates time in minutes:seconds): initial denaturation of

94°C, 2:00; followed by 10 cycles of 94°C, 0:30, 58°C 0:30, 68°C, 4:00; followed by 20 cycles of 94°C, 0:30, 55°C, 0:30, 68°C, 4:00 + 0:20 per cycle. PCR products were then fractionated by agarose gel electrophoresis, <sup>32</sup>P-labeled by nick translation, and hybridized to nylon membranes containing high-density arrayed P1 clones from the Berkeley

5     *Drosophila* Genome Project (University of California, Berkeley, and purchased from Genome Systems, Inc.. St. Louis, MO). Four positive P1 clones were identified: DS01201, DS02942, DS05102, and DS06254, and each clone was verified using a PCR assay with the primer pair described above. To prepare DNA for sequencing, *E. coli* containing each P1 clone was streaked to single colonies on LB agar plates containing 25 µg/ml kanamycin,

10    and grown overnight at 37°C. Well-separated colonies for each P1 clone were picked and used to inoculate 250 ml LB medium containing 25 µg/ml kanamycin and cultures were grown for 16 hours at 37°C with shaking. Bacterial cells were collected by centrifugation, and DNA purified with a Qiagen Maxi-Prep System kit (QIAGEN, Inc., Valencia, California). Genomic DNA sequence from the P1 clones was obtained using a strategy that

15    combined shotgun and directed sequencing of a small insert plasmid DNA library derived from the P1 clone DNAs (Ruddy *et al.* Genome Research (1997) 7:441-456). All DNA sequencing and analysis were performed as described before, and P1 sequence contigs were analyzed using the BLAST sequence homology searching programs to identify those that contained the DMp53 gene or other coding regions. This analysis demonstrated that the

20    DMp53 gene was divided into 8 exons and 7 introns. In addition, the BLAST analysis indicated the presence of two additional genes that flank the DMp53 gene; one exhibited homology to a human gene implicated in nephropathic cystinosis (labeled CTNS-like gene) and the second gene exhibited homology to a large family of oxidoreductases. Thus, we could operationally define the limits of the DMp53 gene as an 8,805 bp corresponding the

25    DNA region lying between the putative CTNS-like and oxidoreductase-like genes.

**Example 8: Analysis of p53 Nucleic Acid Sequences**

Upon completion of cloning, the sequences were analyzed using the Pfam and Prosite programs, and by visual analysis and comparison with other p53 sequences.

30    Regions of cDNA encoding the various domains of SEQ ID Nos 1-6 are depicted in Table I above. Additionally, Pfam predicted p53 similarity regions for the partial TRIB-Bp53 at amino acid residues 118-165 (SEQ ID NO:8) encoded by nucleotides 354-495 (SEQ ID NO:7), and for the partial HELIOp53 at amino acid residues 105-138 (SEQ ID NO:10) encoded by nucleotides 315-414 (SEQ ID NO:9).

Nucleotide and amino acid sequences for each of the p53 nucleic acid sequences and their encoded proteins were searched against all available nucleotide and amino acid sequences in the public databases, using BLAST (Altschul *et al.*, *supra*). Tables 2-6 below summarize the results. The 5 most similar sequences are listed for each p53 gene.

5

TABLE 2 - DMp53

| <b>DNA BLAST of SEQ ID NO:1</b> |                                                                                                                                                                       |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>GI#</b>                      | <b>DESCRIPTION</b>                                                                                                                                                    |
| 6664917=C019980                 | <i>Drosophila melanogaster</i> . *** SEQUENCING IN PROGRESS ***, in ordered pieces                                                                                    |
| 5670489=AC008200                | <i>Drosophila melanogaster</i> chromosome 3 clone BACR17P04 (D757) RPCI-98 17.P.4 map 94D-94E strain y; cn bw sp, *** SEQUENCING IN PROGRESS***, 70 unordered pieces. |
| 4419483=AI516383                | <i>Drosophila melanogaster</i> cDNA clone LD42237 5prime, mRNA sequence                                                                                               |
| 4420516=AI517416                | <i>Drosophila melanogaster</i> cDNA clone GH28349 5prime, mRNA sequence                                                                                               |
| 4419333=AI516233                | <i>Drosophila melanogaster</i> cDNA clone LD42031 5prime, mRNA sequence                                                                                               |

  

| <b>PROTEIN BLAST of SEQ ID NO:2</b> |                                                        |
|-------------------------------------|--------------------------------------------------------|
| <b>GI#</b>                          | <b>DESCRIPTION</b>                                     |
| 1244764= AA98564                    | p53 tumor suppressor homolog [ <i>Loligo forbesi</i> ] |
| 1244762= AA98563                    | p53 tumor suppressor homolog [ <i>Loligo forbesi</i> ] |
| 2828704= AC31133                    | tumor protein p53 [ <i>Xiphophorus helleri</i> ]       |
| 2828706= AC31134                    | tumor protein p53 [ <i>Xiphophorus maculatus</i> ]     |
| 3695098= AC62643                    | DN p63 beta [ <i>Mus musculus</i> ]                    |

TABLE 3 - CPBp53

| <b>DNA BLAST of SEQ ID NO:3</b> |                                                                                                |
|---------------------------------|------------------------------------------------------------------------------------------------|
| <b>GI#</b>                      | <b>DESCRIPTION</b>                                                                             |
| 6468070= AC008132               | <i>Homo sapiens</i> , complete sequence Chromosome 22q11 PAC Clone pac995o6 In CES-DGCR Region |
| 4493931= AL034556               | <i>Plasmodium falciparum</i> MAL3P5, complete sequence                                         |
| 3738114= AC004617               | <i>Homo sapiens</i> chromosome Y, clone 264,M.20, complete sequence                            |
| 4150930= AC005083               | <i>Homo sapiens</i> BAC clone CTA-281G5 from 7p15-p21, complete sequence                       |
| 4006838= AC006079               | <i>Homo sapiens</i> chromosome 17, clone hRPK.855_D_21, complete sequence                      |

  

| <b>PROTEIN BLAST of SEQ ID NO:4</b> |                                                        |
|-------------------------------------|--------------------------------------------------------|
| <b>GI#</b>                          | <b>DESCRIPTION</b>                                     |
| 1244764= AA98564                    | p53 tumor suppressor homolog [ <i>Loligo forbesi</i> ] |
| 1244762= AA98563                    | p53 tumor suppressor homolog [ <i>Loligo forbesi</i> ] |
| 4530686=AA03817                     | unnamed protein product [ <i>unidentified</i> ]        |

|                  |                                                      |
|------------------|------------------------------------------------------|
| 4803651=CAA72225 | P73 splice variant [ <i>Cercopithecus aethiops</i> ] |
| 2370177=CAA72219 | first splice variant [ <i>Homo sapiens</i> ]         |

TABLE 4 – TRIB-Ap53

| <b>DNA BLAST of SEQ ID NO:5</b>     |                                                                                                     |
|-------------------------------------|-----------------------------------------------------------------------------------------------------|
| <b>GI#</b>                          | <b>DESCRIPTION</b>                                                                                  |
| 5877734=AW024204                    | wv01h01.x1 NCI_CGAP_Kid3 <i>Homo sapiens</i> cDNA clone IMAGE:2528305 3' mRNA sequence              |
| 16555=X65053                        | <i>A.thaliana</i> mRNA for eukaryotic translation initiation factor 4A-2                            |
| 6072079=AW101398                    | sd79d06.y1 Gm-c1009 Glycine max cDNA clone GENOME SYSTEMS CLONE ID: Gm-c1009-612 5', mRNA sequence  |
| 6070492=AW099879                    | sd17g11.y2 Gm-c1012 Glycine max cDNA clone GENOME SYSTEMS CLONE ID: Gm-c1012-2013 5', mRNA sequence |
| 4105775=AF049919                    | <i>Petunia x hybrida</i> PGP35 (PGP35) mRNA. complete cds.                                          |
| <b>PROTEIN BLAST of SEQ ID NO:6</b> |                                                                                                     |
| <b>GI#</b>                          | <b>DESCRIPTION</b>                                                                                  |
| 1244764=AAA98564                    | p53 tumor suppressor homolog [ <i>Loligo forbesi</i> ]                                              |
| 3273745=AAC24830                    | p53 homolog [ <i>Homo sapiens</i> ]                                                                 |
| 1244762=AAA98563                    | p53 tumor suppressor homolog [ <i>Loligo forbesi</i> ]                                              |
| 3695096=AAC62642                    | N p63 gamma [ <i>Mus musculus</i> ]                                                                 |
| 3695080=AAC62634                    | DN p63 gamma [ <i>Homo sapiens</i> ]                                                                |

5

TABLE 5 – TRIB-Bp53

| <b>DNA BLAST of SEQ ID NO:7</b>     |                                                      |
|-------------------------------------|------------------------------------------------------|
| <b>GI#</b>                          | <b>DESCRIPTION</b>                                   |
| 4689085=AF043641                    | <i>Barbus barbus</i> p73 mRNA. complete cds          |
| 4530689=A64588                      | Sequence 7 from Patent WO9728186                     |
| N/A                                 | No further homologies                                |
| <b>PROTEIN BLAST of SEQ ID NO:8</b> |                                                      |
| <b>GI#</b>                          | <b>DESCRIPTION</b>                                   |
| 4689086=AAD27752                    | p73 [ <i>Barbus barbus</i> ]                         |
| 4530686=CAA03817                    | unnamed protein product [unidentified]               |
| 4803651=CAA72225                    | P73 splice variant [ <i>Cercopithecus aethiops</i> ] |
| 4530690=CAA03819                    | unnamed protein product [unidentified]               |
| 4530684=CAA03816                    | unnamed protein product [unidentified]               |

TABLE 6 – HELIO p53

| <b>DNA BLAST of SEQ ID NO:9</b> |                     |
|---------------------------------|---------------------|
| <b>GI#</b>                      | <b>DESCRIPTION</b>  |
| N/A                             | No homologies found |

| PROTEIN BLAST of SEQ ID NO:10 |                                                  |
|-------------------------------|--------------------------------------------------|
| GI#                           | DESCRIPTION                                      |
| 2781308= 1YCSA                | Chain A, p53-53bp2 Complex                       |
| 1310770= 1TSRA                | Chain A, p53 Core Domain In Complex With Dna     |
| 1310771= 1TSRB                | Chain B, p53 Core Domain In Complex With Dna     |
| 1310772= 1TSRC                | Chain C, p53 Core Domain In Complex With Dna     |
| 1310960= 1TUPA                | Chain A, Tumor Suppressor p53 Complexed With Dna |

BLAST analysis using each of the p53 amino acid sequences to find the number of amino acid residues as the shortest stretch of contiguous novel amino acids with respect to published sequences indicate the following: 7 amino acid residues for DMp53 and for 5 TRIB-Ap53, 6 amino acid residues for CPBp53, and 5 amino acid residues for TRIB-Bp53 and HELIOp53.

BLAST results for each of the p53 amino acid sequences to find the number of amino acid residues as the shortest stretch of contiguous amino acids for which there are no sequences contained within public database sharing 100% sequence similarity indicate the following: 9 amino acid residues for DMp53, CPBp53, TRIB-Ap53, and TRIB-Bp53, and 6 amino acid residues for HELIOp53.

#### Example 9: *Drosophila* genetics

Fly culture and crosses were performed according to standard procedures at 22-25°C (Ashburner, *supra*). GI-DMp53 overexpression constructs were made by cloning a BclI HincII fragment spanning the DMp53 open reading frame into a vector (pExPress) containing glass multiple repeats upstream of a minimal heat shock promoter. The pExPress vector is an adapted version of the pGMR vector (Hay *et al.*, Development (1994) 120:2121-2129) which contains an alpha tubulin 3' UTR for increased protein stabilization and a modified multiple cloning site. Standard P-element mediated germ line transformation was used to generate transgenic lines containing these constructs (Rubin and Spradling, *supra*). For X-irradiation experiments, third instar larvae in vials were exposed to 4,000 Rads of X-rays using a Faxitron X-ray cabinet system (Wheeling, IL).

25 Example 10: Whole-mount RNA *in situ* hybridization, TUNEL, and Immunocytochemistry

*In situ* hybridization was performed using standard methods (Tautz and Pfeifle, Chromosoma (1989) 98:81-85). DMp53 anti-sense RNA probe was generated by digesting DMp53 cDNA with EcoR1 and transcribing with T7 RNA polymerase. For

immunocytochemistry, third instar larval eye and wing discs were dissected in PBS, fixed in 2% formaldehyde for 30 minutes at room temperature, permeabilized in PBS+0.5% Triton for 15 minutes at room temperature, blocked in PBS+5% goat serum, and incubated with primary antibody for two hours at room temperature or overnight at 4°C. Anti-phospho-histone staining used Anti-phospho-histone H3 Mitosis Marker (Upstate Biotechnology, Lake Placid, NY) at a 1:500 dilution. Anti-DMp53 monoclonal antibody staining used hybridoma supernatant diluted 1:2. Goat anti-mouse or anti-rabbit secondary antibodies conjugated to FITC or Texas Red (Jackson Immunoresearch, West Grove, PA) were used at a 1:200 dilution. Antibodies were diluted in PBS+5% goat serum. TUNEL assay was performed by using the Apoptag Direct kit (Oncor, Gaithersburg, MD) per manufacturer's protocol with a 0.5% Triton/PBS permeabilization step. Discs were mounted in anti-fade reagent (Molecular Probes, Eugene, OR) and images were obtained on a Leica confocal microscope. BrDU staining was performed as described (de Nooij *et al.*, Cell. (1996)87(7):1237-1247) and images were obtained on an Axioplan microscope (Zeiss, Thornwood, NY).

**Example 11: Generation of anti-DMp53 antibodies**

Anti-DMp53 rabbit polyclonal (Josman Labs, Napa, CA) and mouse monoclonal antibodies (Antibody Solutions Inc., Palo Alto, CA) were generated by standard methods using a full-length DMp53 protein fused to glutathione-S-transferase (GST-DMp53) as antigen. Inclusion bodies of GST-DMp53 were purified by centrifugation using B-PER buffer (Pierce, Rockford, IL) and injected subcutaneously into rabbits and mice for immunization. The final boost for mouse monoclonal antibody production used intravenous injection of soluble GST-DMp53 produced by solubilization of GST-DMp53 in 6M GuHCl and dialysis into phosphate buffer containing 1M NaCl. Hybridoma supernatants were screened by ELISA using a soluble 6XHIS-tagged DMp53 protein bound to Ni-NTA coated plates (Qiagen, Valencia, CA) and an anti-mouse IgG Fc-fragment specific secondary antibody.

**Example 12: Functional analysis**

The goal of this series of experiments was to compare and contrast the functions of the insect p53s to those of the human p53. The DMp53 was chosen to carry out this set of experiments, although any of the other insect p53s could be used as well.

**p53 involvement in the cell death pathway**

To determine whether DMp53 can serve the same functions in vivo as human p53, DMp53 was ectopically expressed in *Drosophila* larval eye discs using *glass*-responsive enhancer elements. The *glass*-DMp53 (gl-DMp53) transgene expresses DMp53 in all cells posterior to the morphogenetic furrow. During eye development, the morphogenetic furrow  
5 sweeps from the posterior to the anterior of the eye disc. Thus, gl-DMp53 larvae express DMp53 in a field of cells which expands from the posterior to the anterior of the eye disc during larval development.

Adult flies carrying the gl-DMp53 transgene were viable but had small, rough eyes with fused ommatidia (any of the numerous elements of the compound eye). TUNEL  
10 staining of gl-DMp53 eye discs showed that this phenotype was due, at least in part, to widespread apoptosis in cells expressing DMp53. Results were confirmed by the detection of apoptotic cells with acridine orange and Nile Blue. TUNEL-positive cells appeared within 15-25 cell diameters of the furrow. Given that the furrow moves approximately 10 cell diameters per hour, this indicated that the cells became apoptotic 2-3 hours after  
15 DMp53 was expressed. Surprisingly, co-expression of the baculovirus cell death inhibitor p35 did not block the cell death induced by DMp53 (Miller, J Cell Physiol (1997)  
173(2):178-182; Ohtsubo *et al.*, Nippon Rinsho (1996) 54(7):1907-1911). However,  
DMp53-induced apoptosis and the rough-eye phenotype in gl-DMp53 flies could be suppressed by co-expression of the human cyclin-dependent-kinase inhibitor p21. Because  
20 p21 overexpression blocks cells in the G1 phase of the cell cycle, this finding suggests that transit through the cell cycle sensitizes cells to DMp53-induced apoptosis. A similar effect of p21 overexpression on human p53-induced apoptosis has been described.

#### **p53 involvement in the cell cycle**

In addition to its ability to affect cell death pathways, mammalian p53 can induce  
25 cell cycle arrest at the G1 and G2/M checkpoints. In the *Drosophila* eye disc, the second mitotic wave is a synchronous, final wave of cell division posterior to the morphogenetic furrow. This unique aspect of development provides a means to assay for similar effects of DMp53 on the cell. The transition of cells from G1 to S phase can be detected by BrdU incorporation. Eye discs dissected from wild-type third instar larvae displayed a tight band  
30 of BrdU-staining cells corresponding to DNA replication in the cells of the second mitotic wave. This transition from G1 to S phase was unaffected by DMp53 overexpression from the gl-DMp53 transgene. In contrast, expression of human p21 or a *Drosophila* homologue, dacapo (de Nooij *et al.*, Cell (1996) 87(7):1237-1247; Lane *et al.*, Cell (1996) 87(7):1225-1235), under control of *glass*-responsive enhancer elements completely blocked DNA

replication in the second mitotic wave. In mammalian cells, p53 induces a cell cycle block in G1 through transcriptional activation of the p21 gene. These results suggest that this function is not conserved in DMp53.

In wild-type eye discs, the second mitotic wave typically forms a distinct band of 5 cells that stain with an anti-phospho-histone antibody. In *gl*-DMp53 larval eye discs, this band of cells was significantly broader and more diffuse, suggesting that DMp53 alters the entry into and/or duration of M phase.

#### **p53 response to DNA damage**

The following experiments were performed to determine whether loss of DMp53 10 function affected apoptosis or cell cycle arrest in response to DNA damage.

In order to examine the phenotype of tissues deficient in DMp53 function, dominant-negative alleles of DMp53 were generated. These mutations are analogous to the R175H (R155H in DMp53) and H179N (H159N in DMp53) mutations in human p53. These mutations in human p53 act as dominant-negative alleles, presumably because they 15 cannot bind DNA but retain a functional tetramerization domain. Co-expression of DMp53 R155H with wild-type DMp53 suppressed the rough eye phenotype that normally results from wild type DMp53 overexpression, confirming that this mutant acts as a dominant-negative allele *in vivo*. Unlike wild type DMp53, overexpression of DMp53 R155H or H159N using the *glass* enhancer did not produce a visible phenotype, although subtle 20 alterations in the bristles of the eye were revealed by scanning electron microscopy.

In mammalian systems, p53-induced apoptosis plays a crucial role in preventing the propagation of damaged DNA. DNA damage also leads to apoptosis in *Drosophila*. To determine if this response requires the action of DMp53, dominant-negative DMp53 was expressed in the posterior compartment of the wing disc. Following X-irradiation, wing 25 discs were dissected. TUNEL staining revealed apoptotic cells and anti-DMp53 antibody revealed the expression pattern of dominant-negative DMp53. Four hours after X-irradiation, wild type third instar larval wing discs showed widespread apoptosis. When the dominant-negative allele of DMp53 was expressed in the posterior compartment of the wing disc, apoptosis was blocked in the cells expressing DMp53. Thus, induction of 30 apoptosis following X-irradiation requires the function of DMp53. This pro-apoptotic role for DMp53 appears to be limited to a specific response to cellular damage, because developmentally programmed cell death in the eye and other tissues is unaffected by expression of either dominant-negative DMp53 allele. The requirement for DMp53 in the

apoptotic response to X-irradiation suggests that DMp53 may be activated by DNA damage. In mammals, p53 is activated primarily by stabilization of p53 protein.

Although DMp53 function is required for X-ray induced apoptosis, it does not appear to be necessary for the cell cycle arrest induced by the same dose of irradiation. In 5 the absence of irradiation, a random pattern of mitosis was observed in 3rd instar wing discs of *Drosophila*. Upon irradiation, a cell cycle block occurred in wild-type discs as evidenced by a significant decrease in anti-phospho-histone staining. The cell cycle block was unaffected by expression of dominant-negative DMp53 in the posterior of the wing disc. Several time points after X-irradiation were examined and all gave similar results, 10 suggesting that both the onset and maintenance of the X-ray induced cell cycle arrest is independent of DMp53.

#### **p53 in normal development**

Similar to p53 in mice, DMp53 does not appear to be required for development because widespread expression of dominant-negative DMp53 in *Drosophila* had no 15 significant effects on appearance, viability, or fertility. Interestingly, *in situ* hybridization of developing embryos revealed widespread early embryonic expression that became restricted to primordial germ cells in later embryonic stages. This expression pattern may indicate a crucial role for DMp53 in protecting the germ line, similar to the proposed role of mammalian p53 in protection against teratogens.

20

#### **Example 13: p53 RNAi experiments in cell culture**

Stable *Drosophila* S2 cell lines expressing hemagglutinin epitope (HA) tagged p53, or vector control under the inducible metallothionein promoter were produced by transfection using pMT/V5-His (Invitrogen, Carlsbad, CA). Induction of DMp53 25 expression by addition of copper to the medium resulted in cell death via apoptosis. Apoptosis was measured by three different methods: a cell proliferation assay; FACS analysis of the cell population in which dead cells were detected by their contracted nuclei; and a DNA ladder assay. The ability to use RNAi in S2 cell lines allowed p53 regulation and function to be explored using this inducible cell-based p53 expression system.

30

**Preparation of the dsRNA template:** PCR primers containing an upstream T7 RNA polymerase binding site and downstream DMp53 gene sequences were designed such that sequences extending from nucleotides 128 to 1138 of the DMp53 cDNA sequence (SEQ ID NO:1) could be amplified in a manner that would allow the generation of a

DMp53-derived dsRNA. PCR reactions were performed using EXPAND High Fidelity (Boehringer Mannheim, Indianapolis, IN) and the products were then purified.

DMp53 RNA was generated from the PCR template using the Promega Large Scale RNA Production System (Madison, WI) following manufacturer's protocols. Ethanol 5 precipitation of RNA was performed and the RNA was annealed by a first incubation at 68°C for 10 min, followed by a second incubation at 37°C for 30 min. The resulting dsRNA was stored at -80°C.

**RNAi experiment in tissue culture:** RNAi was performed essentially as described previously (<http://dixonlab.biochem.med.umich.edu/protocols/RNAiExperiments.html>). On 10 day 1, cultures of Drosophila S2 cells were obtained that expressed pMT-HA-DMp53 expression plasmid and either 15 µg of DMp53 dsRNA or no RNA was added to the medium. On the second day, CuSO<sub>4</sub> was added to final concentrations of either 0, 7, 70 or 700 µM to all cultures. On the fourth day, an alamarBlue (Alamar Biosciences Inc., Sacramento, CA) staining assay was performed to measure the number of live cells in each 15 culture, by measuring fluorescence at 590 nm.

At 7µM CuSO<sub>4</sub>, there was no change in cell number from 0 µM CuSO<sub>4</sub> for RNAi treated or untreated cells. At 70 µM CuSO<sub>4</sub>, there was no change in cell number from 0 µM CuSO<sub>4</sub> for the RNAi-treated category. However, the number of cells that were not treated with RNAi dropped by 30%. At 700 µM CuSO<sub>4</sub>, the number of cells that were treated with 20 RNAi dropped by 30% (as compared with 0µM CuSO<sub>4</sub>), while the number of cells that were not treated with RNAi dropped by 70%.

These experiments showed that p53 dsRNA rescued at least 70% of the cells in the p53 inducible category, since some cell loss might be attributable to copper toxicity. Results of these experiments demonstrate that DMp53 dsRNA rescues cells from apoptosis 25 caused by inducing DMp53 overexpression. Thus, this experimental cell-based system represents a defined and unique way to study the mechanisms of p53 function and regulation.

## WHAT IS CLAIMED IS:

1. An isolated nucleic acid molecule comprising a nucleic acid sequence selected from the group consisting of:
  - 5 (a) a nucleic acid sequence that encodes a polypeptide comprising at least 7 contiguous amino acids of any one of SEQ ID NOs 4, 6, 8, and 10;
  - (b) a nucleic acid sequence that encodes a polypeptide comprising at least 7 contiguous amino acids of SEQ ID NO:2, wherein the isolated nucleic acid molecule is less than 15kb in size;
- 10 (c) a nucleic acid sequence that encodes a polypeptide comprising at least 9 contiguous amino acids that share 100% sequence similarity with 9 contiguous amino acids of any one of SEQ ID NOs 4, 6, 8, and 10;
- (d) a nucleic acid sequence that encodes a polypeptide comprising at least 9 contiguous amino acids that share 100% sequence similarity with 9 contiguous amino acids of SEQ ID NO 2; wherein the isolated nucleic acid molecule is less than 15kb in size;
- 15 (e) at least 20 contiguous nucleotides of any of nucleotides 1-111 of SEQ ID NO:1, 1-120 of SEQ ID NO:3, 1-93 of SEQ ID NO:5, and 1-1225 of SEQ ID NO:18;
- (f) a nucleic acid sequence that encodes a polypeptide comprising an amino acid sequence having at least 80% sequence similarity with a sequence selected from the group consisting of SEQ ID NO:20 and SEQ ID NO:22; and
- 20 (g) the complement of the nucleic acid of any of (a)-(f).

2. The isolated nucleic acid molecule of Claim 1 that is RNA.
- 25 3. The isolated nucleic acid molecule of Claim 1 wherein the nucleic acid sequence has at least 50% sequence identity with a sequence selected from the group consisting of any of SEQ ID NOs:1, 3, 5, 7, 9, 18, 19 and 21.
- 30 4. The isolated nucleic acid molecule of Claim 1 wherein the nucleic acid sequence encodes a polypeptide comprising an amino acid sequence selected from the group consisting of: RICSCPKRD, KICSCPKRD, RVCSCPKRD, KVCSCPKRD, RICTCPKRD, KICTCPKRD, RVCTCPKRD, KVCTCPKRD, FXCKNSC and FXCQNSC, wherein X is any amino acid.

5. The isolated nucleic acid molecule of Claim 1 wherein the nucleic acid sequence encodes at least 17 contiguous amino acids of any of SEQ ID NOs 2, 4, 6, 8, and 10.
- 5 6. The isolated nucleic acid molecule of Claim 1 wherein the nucleic acid sequence encodes a polypeptide comprising at least 19 amino acids that share 100% sequence similarity with 19 amino acids of any of SEQ ID NOs 2, 4, 6, 8, and 10.
- 10 7. The isolated nucleic acid molecule of Claim 1 wherein the nucleic acid sequence encodes a polypeptide having at least 50% sequence identity with any of SEQ ID NOs 2, 4, 6, 8, and 10.
- 15 8. The isolated nucleic acid molecule of Claim 1 wherein the nucleic acid sequence encodes at least one p53 domain selected from the group consisting of an activation domain, a DNA binding domain, a linker domain, an oligomerization domain, and a basic regulatory domain.
- 20 9. The isolated nucleic acid molecule of Claim 1 wherein the nucleic acid sequence encodes a constitutively active p53.
10. The isolated nucleic acid molecule of Claim 1 wherein the nucleic acid sequence encodes a dominant negative p53.
- 25 11. A vector comprising the nucleic acid molecule of Claim 1.
12. A host cell comprising the vector of Claim 11.
- 30 13. A process for producing a p53 polypeptide comprising culturing the host cell of Claim 8 under conditions suitable for expression of the p53 polypeptide and recovering the polypeptide.
14. A purified polypeptide comprising an amino acid sequence selected from the group consisting of:
  - a) at least 7 contiguous amino acids of any one of SEQ ID NOs 2, 4, 6, 8, and 10;

- b) at least 9 contiguous amino acids that share 100% sequence similarity with at least 9 contiguous amino acids of any one of SEQ ID NOs 2, 4, 6, 8, and 10; and
- c) at least 10 contiguous amino acids of a sequence selected from the group consisting of SEQ ID NO:20 and SEQ ID NO:22.

5

15. The purified polypeptide of Claim 14 wherein the amino acid sequence is selected from the group consisting of RICSCP KRD, KICSCP KRD, RVCSCP KRD, KVCSCP KRD, RICTCP KRD, KICTCP KRD, RVCTCP KRD, KVCTCP KRD, FXCKNSC and FXCQNSC, wherein X is any amino acid.

10

16. The purified polypeptide of Claim 14 wherein the amino acid sequence has at least 50% sequence similarity with a sequence selected from the group consisting of SEQ ID NOs 2, 4, 6, 8, and 10.

15

17. A method for detecting a candidate compound or molecule that modulates p53 activity said method comprising contacting a p53 polypeptide, or a nucleic acid encoding the p53 polypeptide, with one or more candidate compounds or molecules, and detecting any interaction between the candidate compound or molecule and the p53 polypeptide or nucleic acid; wherein the p53 polypeptide comprises an amino acid sequence selected from the group consisting of:

20

- a) at least 7 contiguous amino acids of any one of SEQ ID NOs 2, 4, 6, 8, and 10; and
- b) at least 9 contiguous amino acids that share 100% sequence similarity with at least 9 contiguous amino acids of any one of SEQ ID NOs 2, 4, 6, 8, and 10.

25

18. The method of Claim 17 wherein the candidate compound or molecule is a putative pharmaceutical agent.

30

19. The method of Claim 17 wherein the contacting comprises administering the candidate compound or molecule to cultured host cells that have been genetically engineered to express the p53 protein.

20. The method of Claim 17 wherein the contacting comprises administering the candidate compound or molecule to an insect has been genetically engineered to express the p53 protein.
- 5 21. The method of Claim 20 wherein the candidate compound is a putative pesticide.
22. A first insect that has been genetically modified to express or mis-express a p53 protein, or the progeny of the insect, that has inherited the p53 protein expression or mis-expression, wherein the p53 protein comprises an amino acid sequence selected from the group consisting of:
  - a) at least 7 contiguous amino acids of any one of SEQ ID NOs 2, 4, 6, 8, and 10; and
  - b) at least 9 contiguous amino acids that share 100% sequence similarity with at least 9 contiguous amino acids of any one of SEQ ID NOs 2, 4, 6, 8, and 10.
- 10 23. The insect of Claim 22 wherein said insect is *Drosophila* that has been genetically modified to express a dominant negative p53 having a mutation selected from the group consisting of R155H, H159N, and R266T.
- 15 24. A method for studying p53 activity comprising detecting the phenotype caused by the expression or mis-expression of the p53 protein in the first insect of Claim 22.
- 20 25. The method of Claim 24 additionally comprising observing a second insect having the same genetic modification as the first insect which causes the expression or mis-expression of the p53 protein, and wherein the second animal additionally comprises a mutation in a gene of interest, wherein differences, if any, between the phenotype of the first animal and the phenotype of the second animal identifies the gene of interest as capable of modifying the function of the gene encoding the p53 protein.
- 25 30 26. The method of Claim 24 additionally comprising administering one or more candidate compounds or molecules to the insect or its progeny and observing any changes in p53 activity of the insect or its progeny.

27. A method of modulating p53 activity comprising contacting an insect cell with the isolated nucleic acid molecule of claim 1, wherein the isolated nucleic acid molecule is dsRNA derived from a coding region of a nucleic acid sequence selected from the group consisting of SEQ ID NO:1, 3, 5, 7, and 9.

5

28. The method of Claim 27 wherein cultured insect cells are contacted with the dsRNA and apoptosis of the cultured cells is assayed.

1 / 4

|            |                                                                                              |
|------------|----------------------------------------------------------------------------------------------|
| Human_p53  | MEEPQSDPSVEPPPLSQETESDLWKL <sup>LLPENN</sup> V-----                                          |
| Xeno_p53   | ME-PSSETGMDPPLSQETEFDLWSSL <sup>LP-D</sup> -----                                             |
| Squid_p53  | MSQGT <sup>S</sup> -----PNSQETEFLNLLWDSLEQVTANEYTQIHERGVGYEYHEAEPDQT <sup>SLEISA</sup> ----- |
| CPB_p53    | MS-SQSD-----FLPPDVQNFFLAE <sup>MEGD</sup> -----                                              |
| Trib_p53_A | MS-QQS-----QFSD <sup>D</sup> IPDKFLEDH-----                                                  |
| Trib_p53_B | -----                                                                                        |
| Helio_p53  | MYISQP-----MSWHKE <sup>STDSEDDSTEVDIK</sup> -----                                            |
| Dros_p53   | consensus_m <sup>qs</sup> -----et <sup>1</sup> le-----                                       |

|            |                          |                            |                         |            |
|------------|--------------------------|----------------------------|-------------------------|------------|
| Human_p53  | DLMSPDDI                 | ---EQWFETDPGPDEAPRMPEAAPRV | -----APAPAAPT           | PAAPAPAPSW |
| Xeno_p53   | CRIDNLS                  | -----EFPDYPLAADM           | -----VLOEGLMGNNAVPTV    | T-----     |
| Squid_p53  | YRIAQDPYGRSESYDLINPIINQI | PAPMPIADTQNPNPLVNHC        | PYEDDMPVSSSTPSPHDH      |            |
| CPB_p53    | FFKDEPT                  | -----LNDLNYSNLING          | -----SIVANDDSKMVHLITFPG | -          |
| Trib_p53A  | GRI[MHEN                 | -----NVHLVNDDGE            | -----EEKYSNEANYTES      | TIFPP-     |
| Trib_p53B  | RQYKPPD                  | -----FSHTFHPIICSIQLED      | -----FKFNINQS[SYLSAPI   | I[FPP-     |
| Hellio_p53 |                          | -----TEPMAFLQGLNNSGN       | -----LMQFSQQSVLREMMLQDI |            |
| Dros_p53   | consensus                | -----EVSGSELT              | -----                   |            |
|            | m                        | m                          |                         |            |
|            | p                        | p                          |                         |            |

|           |                                                                 |
|-----------|-----------------------------------------------------------------|
| Human_p53 | PL--SSSSPPSQKTYQGSYGFRLGFLH-SGTAKSVTCTYSPALNKMFQQLAKTCPCVQLWVD  |
| Xeno_p53  | ---SCAVPSTDDYAGKYGLQIDFQQ-NGTAKSVTCTYSPELNKLFQQLAKTCPCVLLVRVE   |
| Squid_p53 | VQSSPQPSWPSNIKYPGYYFEMSEFAQPSKETKSTTWYSEKLDKLYVVRMATTTCPCVRFKTA |
| CBP_p53   | --VOTSVPSNDIDGPIEFEVDVHP---TVAKNSWVISTTLNKKYIMGSPEFPVDFRVS      |
| Trib_p53A | --DOPTNLGTEYPGPFENFSVLESP---NEQKSPWEYSSEKLNKIFIGINVKFPVAFSVQ    |
| Trib_p53B | --SEPLELCNTEXPGPLNFEEVYDPMVNLKNPWEYSSPLNKLYIDMKHKFPINFHSVK      |
| Helio_p53 | --HEMKCNCNSVQFNWD                                               |
| Dros_p53  | QIQANTLPEKLENHNIGGYCFSMVDE---PPKSLWMYSIPLNKLYIRMNKAFTNVDVQFK    |
| consensus | q svpsq dy gy f i v                                             |

FIG. 1A

2 / 4

|           |                                                                                                                |
|-----------|----------------------------------------------------------------------------------------------------------------|
| Human_p53 | STPPP-PGTRV <del>RAMAIIYKOSQHMTEVVRCPHERCS</del> D-----SDGLAPPQH <del>I</del> RVEGNLR                          |
| Xeno_p53  | SPPP-RGSI <del>TRATAVYKSEHVAEVVKRCPHERSVE</del> P-----GEDAAPPSH <del>M</del> RVEGNLQ                           |
| Squid_p53 | RPPP-SGCC <del>TRAMPFYMKEHQEVVKRCPNHATAKE</del> H-----NEKH <del>BAPLHT</del> V <del>C</del> E <del>H</del> KL- |
| CPB_p53   | HRPP-NPLF <del>IRSTPVYSAPOFAQECLNHEFSHKES</del> -DGLKEH <del>T</del> RPHI <del>C</del> ANQYA                   |
| Trib_p53A | NRQNLPLY <del>IRATPVSQTOHFQDLYVHRCVGHRHPQDQS</del> -NKG <del>VAPHIFQH</del> I <del>RCT</del> NDNA              |
| Trib_p53B | KADPERRL <del>ERVMPMEEDRYVQELVYHRCICHEQLT</del> DPT-NHN <del>VSEMVAQH</del> I <del>RCD</del> NNNA              |
| Helio_p53 | YOKA-PHMEV <del>RSTVVSDETAKEKVERCVOHFHESSTS</del> GIQT <del>EIAKNVLEHSSREITG</del> TQG                         |
| Dros_p53  | SKMPIQ <del>OPLNLRVFCLCE</del> SND-VSAPVVRC <del>Q</del> NELSVEPLT-----ANNAKMRESL <del>RSEN</del> PNS          |
| consensus | pp 1fvRatpys nvqevv RClne d s d i hirCenna                                                                     |

  

|           |                                                                                                                                                                                                                   |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Human_p53 | VEYLDDDRNT---FRHSSVVVPPYE <del>P</del> -----PEVGSDCTT <del>I</del> HY <del>N</del> <del>N</del> <del>C</del> NSSC <del>M</del> G-GMNRRPILTI                                                                       |
| Xeno_p53  | AYYMEDVNS---GRHSVCVP <del>YEG</del> -----PQVG <del>T</del> ECT <del>T</del> TY <del>N</del> <del>N</del> <del>C</del> NSSC <del>M</del> G-GMNRRPILTI                                                              |
| Squid_p53 | AKYHE <del>D</del> KYS---GRQSV <del>L</del> IP <del>H</del> EM-----PQAGSEWV <del>V</del> <del>N</del> <del>L</del> <del>Y</del> <del>O</del> <del>M</del> CLGSCVG-GPNRRP <del>I</del> Q <del>V</del>              |
| CPB_p53   | AYLGDKSKN---ERLSVV <del>V</del> IP <del>F</del> GI-----POTGE <del>V</del> CKNSC <del>S</del> PGMNRR <del>A</del> <del>V</del> <del>E</del> <del>T</del>                                                           |
| Trib_p53A | <del>E</del> YEGDKNTG---TRIN <del>IV</del> PLAH---PQVG <del>E</del> V <del>V</del> KE <del>F</del> Q <del>V</del> CKNSC <del>P</del> LI-GMNRRP <del>I</del> D <del>V</del>                                        |
| Trib_p53B | <del>O</del> YEGDKNAG---KRLS-----MRTS <del>S</del> SC <del>S</del> SHAY <del>Q</del> F <del>S</del> C <del>N</del> SCAT-GINRRAIA <del>I</del>                                                                     |
| Helio_p53 | <del>V</del> YCCGGKVDM---ADSMWSVLVE <del>F</del> -----MRTS <del>S</del> SC <del>S</del> SHAY <del>Q</del> F <del>S</del> C <del>N</del> SCAT-GINRRAIA <del>I</del>                                                |
| Dros_p53  | <del>V</del> YCGNAQGKGISERF <del>S</del> VVVPLNMRS <del>S</del> VTRSGLT <del>Q</del> TAEKF <del>V</del> C <del>N</del> SC <del>I</del> G-----R <del>K</del> E <del>T</del> <del>S</del> <del>L</del> <del>V</del> |
| consensus | vyygdk r svvvpe pq gse t ynfmc nsncmg gmnrripi 1i                                                                                                                                                                 |

**FIG.-1B**

3 / 4

Human\_p53 ITLEDSSGNLIGRNSFEEV[ CACPGDRRT[EEE-NLRKKG-----EPHHELPPGSTKRALP  
 Xeno\_p53 ITLETPOGLLGRRCFEV[ CACPGDRRT[EED-NYT[ -RGLKP[S[G-KRELA  
 Squid\_p53 FTLEK-DNQVLGRRAVEV[ CACPGDRKADEKASLVSK-----PPSPKKNGFPORSLV  
 CPB\_p53 FTLEDNQGTIVGRKTIVGRKTIVCSCP[KDKEKDNANT-----NLPHG-KRKME  
 Trib\_p53 A FTLEDNKGEVFGRLVGVRV[CSCP[KDKEEK-DMESA-----VPPRRKRRKG  
 Trib\_p53 B -----  
 Helio\_p53 FTLEDAMGNTHGRQKV[GAR-----  
 Dros\_p53 FCLEKACGGD[VQHV[HVKICTCP[KDRIDQDEROLNSKKRSVPEAAEDEPSKVRCTA  
 consensus ffiled g tigrr v vrvc cp rdr eek k p g kr 1

Human\_p53 NNTSSSP-QPKK---KPLDGEYFT[OIRGRERFEMFRELINEALELKDAQAG-----  
 Xeno\_p53 HPPSEPLPKRLLVVDDEELIFT[LR[IKGRSRYEMI[KLNDALEQEST[DQQ-----  
 Squid\_p53 LTNDITKITPKK---RKIDDECFT[LT[VKVRGRNEYELICKERDIMEALAARTPEAERLYKQE  
 CPB\_p53 KPSKKPMQTQAE---NDTKEFTLTFITLUVGRHNEQNVLYKCHDIMAGEIERN-----  
 Trib\_p53 A NDERRVVPQGSS---DNKIFALNITHIP[GK[NYLQALKMCQDMLANEILKKQ-----  
 Trib\_p53 B -----  
 Helio\_p53 IKTEDTESNDSRDCDDSAE[WNV[SRTPDGDYRLAT[TCPNKEWLLQSIEGMIK-----  
 Dros\_p53 consensus k e t1 i gr f m k1 e 1 d 1

Human\_p53 -KEPGG---SRAHSSH[LKSKKGQ-----  
 Xeno\_p53 -KVTIK---CRKCRCDEIKPKKG-----  
 Squid\_p53 RQAPIGRLLTSLPSSSSNGSODGSRSSTAFTSDSSOVNSSONNTOMVNGQVPHHEETPVT  
 CPB\_p53 ---IG---NGTEGPYKIALN-----KINTLIRESESE  
 Trib\_p53 A --EQG---GD-DSADRN[CYN-----EITVLLNGTAAFD-----  
 Trib\_p53 B -----  
 Helio\_p53 -----  
 Dros\_p53 --EAA[EVIRNPQNEN[RHAN-----KLIS[KKRAYELP-----  
 consensus g k  
 Inv q

FIG.-1C

4 / 4

|           |                                                            |
|-----------|------------------------------------------------------------|
| Human_p53 | ---                                                        |
| Xeno_p53  | ---                                                        |
| Squid_p53 | KCEPENTIAQWLTKLGLQQAYIDNFQQLHNMFQLDEFTLEDLQSMRIGTGHRNKIWKS |
| CPB_p53   | ---                                                        |
| Trib_p53A | ---                                                        |
| Trib_p53B | ---                                                        |
| Helio_p53 | ---                                                        |
| Dros_p53  | ---                                                        |
| consensus | ---                                                        |
| Human_p53 | ---                                                        |
| Xeno_p53  | ---                                                        |
| Squid_p53 | LLDYRRLSSGTESQALQHAASNASTLSVGSQNSYCPGFYEVTRYKHTISYL        |
| CPB_p53   | ---                                                        |
| Trib_p53A | ---                                                        |
| Trib_p53B | ---                                                        |
| Helio_p53 | ---                                                        |
| Dros_p53  | ---                                                        |
| consensus | ---                                                        |

**FIG.- 1D**

## SEQUENCE LISTING

<110> EXELIXIS, INC

<120> Insect p53 Tumor Suppressor Genes and Proteins

<130> Insect p53 sequences

<140> EX00-015

<141> 2000-03-13

<150> EX99-001

<151> 1999-03-16

<160> 22

<170> PatentIn Ver. 2.1

<210> 1

<211> 1573

<212> DNA

<213> Drosophila melanogaster

<400> 1

aaaatccaaa tagtcggtgg ccactacgat tctgttagttt tttgttagcg aatttttaat 60  
atttagcctc cttcccaac aagatcgctt gatcagatat agccgactaa gatgtatata 120  
tcacagccaa tgcgtggca caaagaaaacg actgattccg aggatgactc cacggaggc 180  
gatatcaagg agatattcc gaaaacggtg gaggatccgg gatcggaaatt gaccacggaa 240  
cccatggcct tcttgcaggg attaaactcc gggaatctga tgcagttcag ccagcaatcc 300  
gtgctgcgcg aaatgatgct gcaggacatt cagatccagg cgaacacgct gccaagacta 360  
gagaatcaca acatcggtgg ttattgcttc agcatggttc tggatgagcc gccaagtct 420  
ctttggatgt actcgattcc gctgaacaag ctctacatcc ggatgaacaa ggccttcaac 480  
gtggacgttc agttcaagtc taaaatgccc atccaaaccac ttaatttgcg tgtgttcctt 540  
tgcttctcca atgatgtgag tgctccgtg gtccgctgtc aaaatcacct tagcgttgag 600  
ccttgacgg ccaataacgc aaaaatgccc gagagcttgc tgccgcgcgaaatccaaac 660  
agtgtatatt gtggaaatgc tcagggcaag ggaatttccg agcgaaaaatcgtc 720  
cccctgaaca tgagccggc tgtaacccgc agtggctca cgccgcgcgaaatccaaac 780  
aagttcgctc gccaactc gtgtatcggtgg cgaaaagaaa cttcccttagt cttctgcctt 840  
gagaaagcat gcccgcataat cgtggacag catgttataac atgttaaaat atgtacgtc 900  
cccaagcggg atcgcatcca agacgaacgc cagctcaata gcaagaagcg caagtccgtg 960  
ccggaagccg ccgaagaaga tgagccgtcc aaggtgcgtc ggtgcattgc tataaagacg 1020  
gaggacacgg agacaaatga tagccgagac tgcgacgact ccgcgcgcaga gtggAACGTG 1080  
tcgcggacac cggatggcga ttaccgtctg gctattacgt gccccaaataa ggaatggctg 1140  
ctgcagagca tcgagggcat gattaaggag gcggcggctg aagtccgtcg caatccaaac 1200  
caagagaatc tacgtcgcca tgccaaacaaa ttgcgtgagcc ttaagaaacg tgcctacgag 1260  
ctgccatgac ttctgtatctg gtcgacaatc tcccaggtat cagatacctt tgaaatgtgt 1320  
tgcattctgtg gggtatacta catagctatt agtatctta gtttgtatta gtccttgc 1380  
gtaaggcggtt taacgggtat attcccttt tggcatgttc gatggccgaa aagaaaacat 1440

## SEQUENCE LISTING

<110> EXELIXIS, INC

<120> Insect p53 Tumor Suppressor Genes and Proteins

<130> Insect p53 sequences

<140> EX00-015

<141> 2000-03-13

<150> EX99-001

<151> 1999-03-16

<160> 22

<170> PatentIn Ver. 2.1

<210> 1

<211> 1573

<212> DNA

<213> Drosophila melanogaster

<400> 1

aaaatccaaa tagtcggtgg ccactacgat tctgttagttt tttgttagcg aatttttaat 60  
atttagcctc cttccccaaac aagatcgctt gatcagatata agccgactaa gatgtatata 120  
tcacagccaa tgcgtggca caaagaaagc actgattccg aggatgactc cacggaggc 180  
gatatacagg aggatattcc gaaaacggtg gaggtatccg gatccgaaattt gaccacggaa 240  
cccatggcct tcttcaggg attaaaactcc gggaatctga tgcagttcag ccagcaatcc 300  
gtgctgcgcg aaatgatgct gcaggacatt cagatccagg cgaacacgct gccaagacta 360  
gagaatcaca acatccggtgg ttattgcctc agcatggttc tggatgagcc gccaagtct 420  
ctttggatgt actcgattcc gctgaacaag ctctacatcc ggatgaacaa ggccttcaac 480  
gtggacgttc agttcaagtc taaaatgccc atccaaccac ttaatttgcg tgtgttcctt 540  
tgcttcctca atgatgtgag tgctcccgtg gtccgctgtc aaaatcacct tagcgttgag 600  
ccttgacgg ccaataacgc aaaaatgcgc gagagcttc tgccgacgca gaatccaaac 660  
agtgtatatt gtggaaatgc tcagggcaag ggaatttccg agcgttttc cggttagtc 720  
cccctgaaca tgagccggc tgtaacccgc agtggcgtca cgccgcacg cctggcctt 780  
aagttcgctc gecaaaactc gtgtatccgg cgaaaaagaaa cttccttagt cttctgcctt 840  
gagaaagcat gcggcgatata cgtgggacag catgttatac atgttaaaat atgtacgtgc 900  
cccaagcggg atcgcattca agacgaacgc cagctcaata gcaagaagcgc caagtccgtg 960  
ccggaagcgc ccgaagaaga tgagccgtcc aagggtcggtc ggtgcattgc tataaagacg 1020  
gaggacacgg agagcaatga tagccgagac tgcgacgact ccggccgcaga gtggAACGTG 1080  
tcgcggacac cggatggcga ttaccgtctg gctattacgt gccccaaataa ggaatggctg 1140  
ctgcagagca tcgagggcat gattaaggag gcggccgtc aagtccgtcg caatccaaac 1200  
caagagaatc tacgtcgcca tgccaaacaa ttgctgagcc ttaagaaacg tgccctacgag 1260  
ctgccatgac ttctgatctg gtcgacaatc tcccaaggat cagataccct tgaatgtgt 1320  
tgcattctgtg gggatacta catagctatt agtatctaa gtttgttata gtccttgc 1380  
gtaaggcggtt taacgggtat attccccctt tggcatgttc gatggccgaa aagaaaaat 1440

ttttatattt ttgatagtat actgttgtt aactgcagttc tatgtgacta cgtaactttt 1500  
 gtctaccaca acaaacatac tctgtacaaa aaagccaaaa gtgaatttat taaagagttg 1560  
 tcatttttg caa 1573

<210> 2  
 <211> 385  
 <212> PRT  
 <213> Drosophila melanogaster

<400> 2  
 Met Tyr Ile Ser Gln Pro Met Ser Trp His Lys Glu Ser Thr Asp Ser  
 1 5 10 15  
 Glu Asp Asp Ser Thr Glu Val Asp Ile Lys Glu Asp Ile Pro Lys Thr  
 20 25 30  
 Val Glu Val Ser Gly Ser Glu Leu Thr Thr Glu Pro Met Ala Phe Leu  
 35 40 45  
 Gln Gly Leu Asn Ser Gly Asn Leu Met Gln Phe Ser Gln Gln Ser Val  
 50 55 60  
 Leu Arg Glu Met Met Leu Gln Asp Ile Gln Ile Gln Ala Asn Thr Leu  
 65 70 75 80  
 Pro Lys Leu Glu Asn His Asn Ile Gly Gly Tyr Cys Phe Ser Met Val  
 85 90 95  
 Leu Asp Glu Pro Pro Lys Ser Leu Trp Met Tyr Ser Ile Pro Leu Asn  
 100 105 110  
 Lys Leu Tyr Ile Arg Met Asn Lys Ala Phe Asn Val Asp Val Gln Phe  
 115 120 125  
 Lys Ser Lys Met Pro Ile Gln Pro Leu Asn Leu Arg Val Phe Leu Cys  
 130 135 140  
 Phe Ser Asn Asp Val Ser Ala Pro Val Val Arg Cys Gln Asn His Leu  
 145 150 155 160  
 Ser Val Glu Pro Leu Thr Ala Asn Asn Ala Lys Met Arg Glu Ser Leu  
 165 170 175  
 Leu Arg Ser Glu Asn Pro Asn Ser Val Tyr Cys Gly Asn Ala Gln Gly  
 180 185 190  
 Lys Gly Ile Ser Glu Arg Phe Ser Val Val Pro Leu Asn Met Ser

|                                                                 |     |     |
|-----------------------------------------------------------------|-----|-----|
| 195                                                             | 200 | 205 |
| Arg Ser Val Thr Arg Ser Gly Leu Thr Arg Gln Thr Leu Ala Phe Lys |     |     |
| 210                                                             | 215 | 220 |
| Phe Val Cys Gln Asn Ser Cys Ile Gly Arg Lys Glu Thr Ser Leu Val |     |     |
| 225                                                             | 230 | 235 |
| 240                                                             |     |     |
| Phe Cys Leu Glu Lys Ala Cys Gly Asp Ile Val Gly Gln His Val Ile |     |     |
| 245                                                             | 250 | 255 |
| His Val Lys Ile Cys Thr Cys Pro Lys Arg Asp Arg Ile Gln Asp Glu |     |     |
| 260                                                             | 265 | 270 |
| Arg Gln Leu Asn Ser Lys Lys Arg Lys Ser Val Pro Glu Ala Ala Glu |     |     |
| 275                                                             | 280 | 285 |
| Glu Asp Glu Pro Ser Lys Val Arg Arg Cys Ile Ala Ile Lys Thr Glu |     |     |
| 290                                                             | 295 | 300 |
| Asp Thr Glu Ser Asn Asp Ser Arg Asp Cys Asp Asp Ser Ala Ala Glu |     |     |
| 305                                                             | 310 | 315 |
| 320                                                             |     |     |
| Trp Asn Val Ser Arg Thr Pro Asp Gly Asp Tyr Arg Leu Ala Ile Thr |     |     |
| 325                                                             | 330 | 335 |
| Cys Pro Asn Lys Glu Trp Leu Leu Gln Ser Ile Glu Gly Met Ile Lys |     |     |
| 340                                                             | 345 | 350 |
| Glu Ala Ala Ala Glu Val Leu Arg Asn Pro Asn Gln Glu Asn Leu Arg |     |     |
| 355                                                             | 360 | 365 |
| Arg His Ala Asn Lys Leu Leu Ser Leu Lys Lys Arg Ala Tyr Glu Leu |     |     |
| 370                                                             | 375 | 380 |
| Pro                                                             |     |     |
| 385                                                             |     |     |

<210> 3  
<211> 2600  
<212> DNA  
<213> Leptinotarsa decemlineata

<400> 3  
gtgttttagt attgttcggg ggctgtttt ttaattaaaa atttcacggg taaatcttg 60  
ttgtctttc ttttctaat tgtatcagaa tagcttttt aactgtgaaa accggaagg 120  
atgtcttctc agtcagactt ttacacctca gatgttcaaa atttccttcc ggcagaaatg 180

gaaggggaca atatggataa tctaaactt ttcaaggacg aaccaactt gaatgattta 240  
aattattcaa acatcctaaà tggatcaata gttgctaattt atgattcaaa gatggttcat 300  
cttattttc cgggagtaca aacaagtgtc ccatcaaattt atgaatacga tggccatat 360  
gaatttgaag tagatgttca tcccactgtg gaaaaattt cgtgggtgtt ctctaccacc 420  
ctgaataaaag tttatatgac aatgggcagt ccatttcctg tagatttcag agtacatcat 480  
cgaccccca acccattattt catcaggagc actcccgaaa acagtgtcc ccaatttgct 540  
caagaatgtg tttaccgggtg cctaaaccat gaattctctc ataaagagtc tgatggagat 600  
ctcaaggaac acattcgccc tcataatcata agatgtgcca atcagtatgc tgcttactta 660  
ggtgacaagt ctaaaaatga acgtctcagc gttgtcatac cattcggtat cccgcagacg 720  
ggtactgaaa gtgttagaga aattttcgaa tttgtttgca aaaatttctt cccaaagtcc 780  
ggaatgaata gaagagctgt ggaaataata ttcaattttgg aggataatca aggaactatc 840  
tatggacca aaacattaaa tgtgagaata tgctcttgc caaaacgtga taaagagaaa 900  
gatgaaaagg ataacactgc caacactaat ctgccgcattt gaaaaagag aaaaatggag 960  
aagccatcaa agaaacccat gcagacacag gcagaaaaatg ataccaaaga gtttactctg 1020  
accataccgc tgggtgggtcg acataatgaa caaaatgtgt tgaagtattt ccatgatttg 1080  
atggccgggg aaatcctcg aaatatccggc aatggactt aaggccgtt caaaatagct 1140  
ttaaacaaaaa taaacacgtt gatacgtgaa agtccgagt gaccttatca attctatgtt 1200  
tatttcttat acaattccat tttcatattt ccatttgata ataagaaaaca ttttagcacc 1260  
tttaatcctt acactgcagg gaagtcaata tttcttttagt ttttgcatg atattgtttg 1320  
ttataacatt tttttttca acaacaggtt acttgatttt tgtaaggtt ctcattattt 1380  
atgtttaaga cctaaaacac gaaaccaaaa acatgaatgg tcattgaattt tggctcgata 1440  
atcaatccaa tgttcttaa agtaatatcg acctgttccac aacttttgtt atgcactgaa 1500  
tggctttta ttatttattt tttcagcat tgtacatcat acttgcatac tttcagttt 1560  
aaattttca aatgtttcat ttattttcat tcttacacctt gaaacttggat tttggacaca 1620  
tggctttcac aatgtttcat cacgaacagt atgataagcc aaagtaagag ttgataatag 1680  
ttcatattaa tatctattgt aacaccgactt atttttatattt aaatagtctt tttttgtt 1740  
cttttcttgc tttattttt acacttgagt caagtgttagt cagtagattt actatgtgg 1800  
aaaacctgtt ttgagttt ttttacttac attcagttctt catcattttt aattttttt 1860  
tttttgtgtt caatattttt gaaaaatgtt gcaataactat aataggaaca ttaataaaagt 1920  
aacttgaaag catagaggtt gtgaattttt ttttgcatac actttttgaa atttatgcgc 1980  
cattctataa gccagttttt tttgataaaat tcaaaattca cgaataggta tcaacctgtat 2040  
tgcattgtt ttctatgtt tccctaaagc aggtctctt aaaaacttctc taaaagttgtt 2100  
gcagagccaa taacaaataa ttttttaatg gatttatca attcatgaac tggtttaattt 2160  
gaaagagtag attattctat tgggttcaca aaaaatataaa taatgtttt ctatctggat 2220  
catttggttt tttttcattt agcttatattt tgtcattgtt ttgttgaact ttcctaaat 2280  
cccaagtgcacca tagtcgacga tcggtctcgc tcccatccat caatttatttccaa aatctcatt 2340  
tattttaaag actgaggacg ggggtggact gtcagtgtat ctgtttatg agaaccatct 2400  
tgtacttagga ttgatatgtt aatctatgag taggtgcatt tttatatata tattttatgtt 2460  
tttatttttagt attattgttac aggttatgtt ctcttagtgaa agaatacata acctaatttt 2520  
tatatatgtt cgttaatata caaattttt acgtttttaa aatatattttt ctaaatattt 2580  
aacaaaaaaaaa aaaaaaaaaaa 2600

<210> 4  
<211> 354  
<212> PRT  
<213> Leptinotarsa decemlineata

&lt;400&gt; 4

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Met | Ser | Ser | Gln | Ser | Asp | Phe | Leu | Pro | Pro | Asp | Val | Gln | Asn | Phe | Leu |
| 1   |     |     |     |     |     |     |     | 10  |     |     |     |     |     |     | 15  |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Leu | Ala | Glu | Met | Glu | Gly | Asp | Asn | Met | Asp | Asn | Leu | Asn | Phe | Phe | Lys |
|     |     |     |     |     |     |     |     | 20  |     |     | 25  |     |     | 30  |     |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Asp | Glu | Pro | Thr | Leu | Asn | Asp | Leu | Asn | Tyr | Ser | Asn | Ile | Leu | Asn | Gly |
|     |     |     |     |     |     |     |     | 35  |     |     | 40  |     |     | 45  |     |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Ser | Ile | Val | Ala | Asn | Asp | Asp | Ser | Lys | Met | Val | His | Leu | Ile | Phe | Pro |
|     |     |     |     |     |     |     |     | 50  |     |     | 55  |     |     | 60  |     |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Gly | Val | Gln | Thr | Ser | Val | Pro | Ser | Asn | Asp | Glu | Tyr | Asp | Gly | Pro | Tyr |
|     |     |     |     |     |     |     |     | 65  |     |     | 70  |     |     | 80  |     |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Glu | Phe | Glu | Val | Asp | Val | His | Pro | Thr | Val | Ala | Lys | Asn | Ser | Trp | Val |
|     |     |     |     |     |     |     |     | 85  |     |     | 90  |     |     | 95  |     |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Tyr | Ser | Thr | Thr | Leu | Asn | Lys | Val | Tyr | Met | Thr | Met | Gly | Ser | Pro | Phe |
|     |     |     |     |     |     |     |     | 100 |     |     | 105 |     |     | 110 |     |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Pro | Val | Asp | Phe | Arg | Val | Ser | His | Arg | Pro | Pro | Asn | Pro | Leu | Phe | Ile |
|     |     |     |     |     |     |     |     | 115 |     |     | 120 |     |     | 125 |     |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Arg | Ser | Thr | Pro | Val | Tyr | Ser | Ala | Pro | Gln | Phe | Ala | Gln | Glu | Cys | Val |
|     |     |     |     |     |     |     |     | 130 |     |     | 135 |     |     | 140 |     |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Tyr | Arg | Cys | Leu | Asn | His | Glu | Phe | Ser | His | Lys | Glu | Ser | Asp | Gly | Asp |
|     |     |     |     |     |     |     |     | 145 |     |     | 150 |     |     | 155 |     |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Leu | Lys | Glu | His | Ile | Arg | Pro | His | Ile | Ile | Arg | Cys | Ala | Asn | Gln | Tyr |
|     |     |     |     |     |     |     |     | 165 |     |     | 170 |     |     | 175 |     |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Ala | Ala | Tyr | Leu | Gly | Asp | Lys | Ser | Lys | Asn | Glu | Arg | Leu | Ser | Val | Val |
|     |     |     |     |     |     |     |     | 180 |     |     | 185 |     |     | 190 |     |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Ile | Pro | Phe | Gly | Ile | Pro | Gln | Thr | Gly | Thr | Glu | Ser | Val | Arg | Glu | Ile |
|     |     |     |     |     |     |     |     | 195 |     |     | 200 |     |     | 205 |     |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Phe | Glu | Phe | Val | Cys | Lys | Asn | Ser | Cys | Pro | Ser | Pro | Gly | Met | Asn | Arg |
|     |     |     |     |     |     |     |     | 210 |     |     | 215 |     |     | 220 |     |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Arg | Ala | Val | Glu | Ile | Ile | Phe | Thr | Leu | Glu | Asp | Asn | Gln | Gly | Thr | Ile |
|     |     |     |     |     |     |     |     | 225 |     |     | 230 |     |     | 235 |     |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Tyr | Gly | Arg | Lys | Thr | Leu | Asn | Val | Arg | Ile | Cys | Ser | Cys | Pro | Lys | Arg |
|     |     |     |     |     |     |     |     | 245 |     |     | 250 |     |     | 255 |     |

Asp Lys Glu Lys Asp Glu Lys Asp Asn Thr Ala Asn Thr Asn Leu Pro  
 260                    265                    270

His Gly Lys Lys Arg Lys Met Glu Lys Pro Ser Lys Lys Pro Met Gln  
 275                    280                    285

Thr Gln Ala Glu Asn Asp Thr Lys Glu Phe Thr Leu Thr Ile Pro Leu  
 290                    295                    300

Val Gly Arg His Asn Glu Gln Asn Val Leu Lys Tyr Cys His Asp Leu  
 305                    310                    315                    320

Met Ala Gly Glu Ile Leu Arg Asn Ile Gly Asn Gly Thr Glu Gly Pro  
 325                    330                    335

Tyr Lys Ile Ala Leu Asn Lys Ile Asn Thr Leu Ile Arg Glu Ser Ser  
 340                    345                    350

Glu Trp

<210> 5

<211> 1291

<212> DNA

<213> *Tribolium castaneum*

<400> 5

acgcgtccgg ccaacttaac ctaaaaattt gtttcgatg cctactagat ttaaaaacaa 60  
 ttgattcaaa tcgtggattt ttattattha aatcatgagc caacaaagtc aattttcgga 120  
 catcattcct gatgttgata aatttttgga agatcatgga ctcaaggacg atgtggaaag 180  
 aataatgcac gaaaaacaacg tccattttagt aaatgacgac ggagaagaag aaaaatactc 240  
 taatgaagcc aattacactg aatcaatttt cccccccgac cagcccacaa acctaggcac 300  
 tgaggaatac ccagggccctt ttaatttctc agtcctgatc agccccaaacg agcaaaaatc 360  
 gcccctggag tattcgaaaa aactgaacaa aatattcatac ggcatacag tgaaattccc 420  
 cgtggcccttc tccgtcaaa accggcccca gaacctgccc ctctacatcc ggcacccccc 480  
 cgtgttcagc caaacgcagc acttccaaga cctggtgac cgctgcgtcg gccaccgcca 540  
 cccccaagac cagtccaaca aaggcgtcgc ccccccacatt ttccagcaca ttattaggtg 600  
 caccaacgac aacgcccatac actttggcga taaaaacaca gggacgagac tcaacatcgt 660  
 cctgcctttg gcccccccccc aggtggggga ggacgtggtc aaggagttt tccagtttgt 720  
 gtgcaaaaac tcctgcccctt tggggatgaa tcggcggccg attgatgtcg tttfcaccct 780  
 ggaggataat aagggggagg ttttcggag gaggttggtg ggggtgaggg tgtgttcgtg 840  
 tccgaagcgt gacaaggaca aggaggagaa ggacatggag agtgctgtgc ctccaaggag 900  
 gaagaagagg aagttgggaa atgatgagcg aagggttgtg ccacagggaa gctccgataa 960  
 taaaatattt gcgttaaata ttcatatattcc tggcaagaag aattatttac aagccctcaa 1020  
 gatgtgtcaa gatatgctgg ctaatgaaat tttgaaaaaaaaa caggaacaag gtggcgacga 1080  
 ttctgctgat aagaactgtt ataatgagat aactgttctc ttgaacggca cggccgcctt 1140

tgattagttt atttctatat ttaattttat actttgtact tatgcaatat tccagttac 1200  
 ttttctaata tttttattaa taaatttcta cgttttaaaa aaaaaaaaaa aaaaaaaaaa 1260  
 aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa a 1291

<210> 6  
 <211> 350  
 <212> PRT  
 <213> Tribolium castaneum

<400> 6  
 Met Ser Gln Gln Ser Gln Phe Ser Asp Ile Ile Pro Asp Val Asp Lys  
 1 5 10 15

Phe Leu Glu Asp His Gly Leu Lys Asp Asp Val Gly Arg Ile Met His  
 20 25 30

Glu Asn Asn Val His Leu Val Asn Asp Asp Gly Glu Glu Lys Tyr  
 35 40 45

Ser Asn Glu Ala Asn Tyr Thr Glu Ser Ile Phe Pro Pro Asp Gln Pro  
 50 55 60

Thr Asn Leu Gly Thr Glu Glu Tyr Pro Gly Pro Phe Asn Phe Ser Val  
 65 70 75 80

Leu Ile Ser Pro Asn Glu Gln Lys Ser Pro Trp Glu Tyr Ser Glu Lys  
 85 90 95

Leu Asn Lys Ile Phe Ile Gly Ile Asn Val Lys Phe Pro Val Ala Phe  
 100 105 110

Ser Val Gln Asn Arg Pro Gln Asn Leu Pro Leu Tyr Ile Arg Ala Thr  
 115 120 125

Pro Val Phe Ser Gln Thr Gln His Phe Gln Asp Leu Val His Arg Cys  
 130 135 140

Val Gly His Arg His Pro Gln Asp Gln Ser Asn Lys Gly Val Ala Pro  
 145 150 155 160

His Ile Phe Glp His Ile Ile Arg Cys Thr Asn Asp Asn Ala Leu Tyr  
 165 170 175

Phe Gly Asp Lys Asn Thr Gly Thr Arg Leu Asn Ile Val Leu Pro Leu  
 180 185 190

Ala His Pro Gln Val Gly Glu Asp Val Val Lys Glu Phe Phe Gln Phe

|                                                                 |     |     |
|-----------------------------------------------------------------|-----|-----|
| 195                                                             | 200 | 205 |
| Val Cys Lys Asn Ser Cys Pro Leu Gly Met Asn Arg Arg Pro Ile Asp |     |     |
| 210                                                             | 215 | 220 |
| Val Val Phe Thr Leu Glu Asp Asn Lys Gly Glu Val Phe Gly Arg Arg |     |     |
| 225                                                             | 230 | 235 |
| Leu Val Gly Val Arg Val Cys Ser Cys Pro Lys Arg Asp Lys Asp Lys |     |     |
| 245                                                             | 250 | 255 |
| Glu Glu Lys Asp Met Glu Ser Ala Val Pro Pro Arg Arg Lys Lys Arg |     |     |
| 260                                                             | 265 | 270 |
| Lys Leu Gly Asn Asp Glu Arg Arg Val Val Pro Gln Gly Ser Ser Asp |     |     |
| 275                                                             | 280 | 285 |
| Asn Lys Ile Phe Ala Leu Asn Ile His Ile Pro Gly Lys Lys Asn Tyr |     |     |
| 290                                                             | 295 | 300 |
| Leu Gln Ala Leu Lys Met Cys Gln Asp Met Leu Ala Asn Glu Ile Leu |     |     |
| 305                                                             | 310 | 315 |
| Lys Lys Gln Glu Gln Gly Asp Asp Ser Ala Asp Lys Asn Cys Tyr     |     |     |
| 325                                                             | 330 | 335 |
| Asn Glu Ile Thr Val Leu Leu Asn Gly Thr Ala Ala Phe Asp         |     |     |
| 340                                                             | 345 | 350 |

<210> 7  
<211> 508  
<212> DNA  
<213> *Tribolium castaneum*

<400> 7

```

gtacgacaat acaaaccgcc cgattttcc cacacttcc acccaataat ttgtctcaatt 60
ttccagttgg aagacttcaa attcaacatc aaccaaagct cgtacctctc agccccatt 120
ttccccccca gcgagccgct cgagctgtgc aacaccgagt accccggccc cctcaacttc 180
gaggtgtttg tggaccccaa cgtgctcaa aaccctggg aataactcccc aattctcaac 240
aaaatttaca tcgatatgaa acacaaattc ccgattaatt tcagcgtgaa gaaggccgat 300
cctgagcgca ggcttttgt cagagttatg ccgatgtttg aggaagacag atatgtgcaa 360
gaattggtgc ataggtgcat ctgtcacgaa caattgacag atccgaccaa tcacaacgtt 420
tcggaaatgg tggctcagca catcattcgg tgtgataaca acaatgctca gtatttcggg 480
gataagaacg ctggaaagag actgagta                                508

```

<210> 8

&lt;211&gt; 169

&lt;212&gt; PRT

&lt;213&gt; Tribolium castaneum

&lt;400&gt; 8

Val Arg Gln Tyr Lys Pro Pro Asp Phe Ser His Thr Phe His Pro Ile

1 5 10 15

Ile Cys Ser Ile Phe Gln Leu Glu Asp Phe Lys Phe Asn Ile Asn Gln  
20 25 30Ser Ser Tyr Leu Ser Ala Pro Ile Phe Pro Pro Ser Glu Pro Leu Glu  
35 40 45Leu Cys Asn Thr Glu Tyr Pro Gly Pro Leu Asn Phe Glu Val Phe Val  
50 55 60Asp Pro Asn Val Leu Lys Asn Pro Trp Glu Tyr Ser Pro Ile Leu Asn  
65 70 75 80Lys Ile Tyr Ile Asp Met Lys His Lys Phe Pro Ile Asn Phe Ser Val  
85 90 95Lys Lys Ala Asp Pro Glu Arg Arg Leu Phe Val Arg Val Met Pro Met  
100 105 110Phe Glu Glu Asp Arg Tyr Val Gln Glu Leu Val His Arg Cys Ile Cys  
115 120 125His Glu Gln Leu Thr Asp Pro Thr Asn His Asn Val Ser Glu Met Val  
130 135 140Ala Gln His Ile Ile Arg Cys Asp Asn Asn Asn Ala Gln Tyr Phe Gly  
145 150 155 160Asp Lys Asn Ala Gly Lys Arg Leu Ser  
165

&lt;210&gt; 9

&lt;211&gt; 433

&lt;212&gt; DNA

&lt;213&gt; Heliothis virescens

&lt;400&gt; 9

gcacgagatg aagtgcactt tagcgtgca attcaactgg gactatcaga aggcggcgca 60  
tatgttcgtg cggcttaccg tcgtgttctc cgatgaaacg caggcggaga agcgggtcga 120  
acgatgtgtc cagcatttcc atgaaaagctc cacttctgga atccaaacag aaattgccaa 180

aaacgtgctc cactcgccc gggagatcg taccaggc gtgtactact gcggaaagg 240  
 ggacatggca gactcggtt actcagtctt ggtggagttt atgaggacca gtcggagtc 300  
 ctgcctccat gcgtaccagt ttcctgcaa gaactttgt gcaaccggca ttaataggcg 360  
 ggctattgcc attatttta cgctggaaga tgctatggc aacatccacg gccgtcagaa 420  
 agtagggcg agg 433

<210> 10  
 <211> 144  
 <212> PRT  
 <213> Heliothis virescens

<400> 10  
 His Glu Met Lys Cys Asn Phe Ser Val Gln Phe Asn Trp Asp Tyr Gln  
 1 5 10 15

Lys Ala Pro His Met Phe Val Arg Ser Thr Val Val Phe Ser Asp Glu  
 20 25 30

Thr Gln Ala Glu Lys Arg Val Glu Arg Cys Val Gln His Phe His Glu  
 35 40 45

Ser Ser Thr Ser Gly Ile Gln Thr Glu Ile Ala Lys Asn Val Leu His  
 50 55 60

Ser Ser Arg Glu Ile Gly Thr Gln Gly Val Tyr Tyr Cys Gly Lys Val  
 65 70 75 80

Asp Met Ala Asp Ser Trp Tyr Ser Val Leu Val Glu Phe Met Arg Thr  
 85 90 95

Ser Ser Glu Ser Cys Ser His Ala Tyr Gln Phe Ser Cys Lys Asn Ser  
 100 105 110

Cys Ala Thr Gly Ile Asn Arg Arg Ala Ile Ala Ile Ile Phe Thr Leu  
 115 120 125

Glu Asp Ala Met Gly Asn Ile His Gly Arg Gln Lys Val Gly Ala Arg  
 130 135 140

<210> 11  
 <211> 26  
 <212> DNA  
 <213> Drosophila melanogaster

<400> 11  
ccatgctgaa gcaataacca ccgatg 26

<210> 12  
<211> 30  
<212> DNA  
<213> Drosophila melanogaster

<400> 12  
ggaacacacg caaatattaagt ggttggatgg 30

<210> 13  
<211> 23  
<212> DNA  
<213> Drosophila melanogaster

<400> 13  
tgattttgac agcggaccac ggg 23

<210> 14  
<211> 28  
<212> DNA  
<213> Drosophila melanogaster

<400> 14  
ggaagtttct tttcgcccga tacacgag 28

<210> 15  
<211> 27  
<212> DNA  
<213> Drosophila melanogaster

<400> 15  
ggcacaaaaga aagcactgat tccgagg 27

<210> 16  
<211> 28  
<212> DNA  
<213> Drosophila melanogaster

<400> 16  
ggaatctgat gcagttcagc cagcaatc 28

<210> 17  
<211> 23  
<212> DNA  
<213> *Drosophila melanogaster*

<400> 17  
qqatcgcatc caagacgaaq qcc

23

<210> 18  
<211> 27425  
<212> DNA  
<213> Drosophila melanogaster

tttatggg ttaatatatt ttccgcagt tactgcttct gctgcgtcac ttacacattcg 1920  
 ttcatttac atacgcagca ctgcggagtg agtcgctgag tacctggcgc tctgggtct 1980  
 ctggatctc tggctggg gatggatctc cactcgatga tctctccgccc tggagccca 2040  
 gatcatcgctc tgctatggc aagtcgagag tcgcgcgagt cgacgtaca atcccccgag 2100  
 cggaaatcaa tggataaaa gtgaacagaa ctttagccaa gtgcatttg ctaatggaaag 2160  
 tggggcaaa agtcaaagcc acacgttata ctgcattttt aaaaacaata aataatgcat 2220  
 aacaggcga gttgaagta attagcacaa cgatgtgct ggccgcacac tgaccacat 2280  
 cggaaatcg ctctaattca tatttggcgt cgagtgccaggataacag gataacaggaa 2340  
 tactgctggc tcatttgcatttgcata gcaaatagtt cgatctgcag gcgattgagt 2400  
 gaccgaaagt gttggactgt gccaaataca taaccagcta acgggcaaaa agccactgaa 2460  
 taaatggccc ttgttactcg gttcgtgtaa tgcgtctacg agtttagccc gtgttctgac 2520  
 cgagaatcaa taaaattta ttgcacgagc atgcacaaaca attcgccgtt gcagccacaa 2580  
 aaacgcacatc gaaaaacaat gccaccactc caatcacttg tgaccgcaccc ccggctatgc 2640  
 aaatttagcca ttgcagcgat tttgctaatt ctccagctaa acgctagtg tgagttctca 2700  
 gttggctaat atatataat gatatataat gaaatatgaa aaatcgaaa acccccttgc 2760  
 aaacatttgtc ccgcgttag ctcatgtga tgccatttcc gagagcggtt tgaagatgca 2820  
 ctgcattt gcattcaaaa gccaagcgaa taaatggaga agcaaaacca aaactgcata 2880  
 gatcaattta caagtcggca aagggttta ctgcgtgcat gtgcattgtca gctgctatta 2940  
 tagatttatt tattggcaaa caccctgaga acgagtttca ttggggggcc taagtggag 3000  
 aatgacctac acaggaaagt gctcttaact aaccaactaa ctctggaaa agcggaaagt 3060  
 gagagattaa gtactatctt atagatatgc cagaatatca aaaaagtatc taccagatac 3120  
 cttgaaagat ctctgcataatctcaatttgcatttgcata attttgtttaa gttacgtttt 3180  
 ttaatttcca attcaacatttcaatttgcata attttgcata aataacgcacatc ttcctaaacc 3240  
 ccctccctac ttaagggttaa atcccgatga tgcttgatttgcatttgcata tgctcagcta 3300  
 tgcataaaaa tatcatatttatttgcata atttgcata atttgcata tgaaatccat 3360  
 atgactgctc ggcaatttgcata atttgcata atttgcata atttgcata tgaaatccat 3420  
 gaaacccaca ttcatggcat tccgttctgc ccccccagtttgcata tgaaatccat 3480  
 ttgcaccagt tgcatgtgcata gaagatgtc ggattccggc caccgctggat tgatctgaat 3540  
 gcggataatc ggatctacgg accggaaatg gtgagcaact tcaagactcg caacggccaa 3600  
 caggaacttc cggtcagccaa ggtgtgttgcata tgcatgtgcata acgaggatcc cgattgcatt 3660  
 gcctatgtcc atctgttgcata cacggacgatg tgccatggct actcgactt cgagcgaacc 3720  
 tcgcgtatcc tggccatttgcata gggtaacttgcata cctctgttgcata cagacggcga ggcgtcttc 3780  
 tacgaaaaaga cctgcctccg aggtgatgaa ttctccagcc aaacctccgg aagtggccgt 3840  
 gatccgcctc taatccatttgcata cgaccttgcata gttcccgatg cgtgccgttgcata gctgtctgg 3900  
 gcaactgacca aaatccccgg cagcacgttgcata gtctaccaca gcaagaagac catttcgacg 3960  
 ctggtacacgc ggcgtgatgtgcata tgccgagatgcata tgcttcttgcata aaacccagtt ccgtatgcctc 4020  
 tccgcctcccttgcgcctc ctatcgaaac aatcgatgtgcata ggttaatttgcata tatttggatgttgcata 4080  
 ttgttggatgttgcata ctatcgatgttgcata gtttggatgttgcata agtgggttgcata ttttggatgttgcata 4140  
 gctggatgttgcata ggacaaatgtca atagcttttgcata ttgtgcatttgcata ttaatgcacatg gtcgagactt 4200  
 ttgcgcgtatca ttttgcata ggtatgttgcata ggtatgttgcata taggttagga ctattcaaca 4260  
 atgtgttagca agctaataat atgataatat gatattataa tacgaaagaa agatataatcc 4320  
 agaagacatc atcttttgcata agctatgttgcata ttttgcata aaatttttgcata aaaataagat 4380  
 aagtattttt gaaaagttagtgcata atcatcgatgttgcata ttttgcata ctcaagtata 4440  
 tatcgaaatcccttgcata accgaacttgcata cttggatgttgcata atcgacacatc catcgatgttgcata 4500  
 aagttataaa agcaaccccttgcata aaccctcccttgcata ttttgcata tccgcggcga ggcgggttgcata 4560  
 ggccagcgatc cgtctcccccgc cctcggcaga tttatgttgcata ggcacaggaa caagaccgtc 4620  
 cagccggacgc ccttgcgcgc ggctccatc gacgaggatgttgcata acatggagaa ccagtgcac 4680  
 gaacggccca tcgaaaatgtca caactgttgcata tacgagctgttgcata acgccaacag cagtttgcata 4740

tatgcggagg ccaggtattt gggcctctcc caaaaagagg ttgtccgac gcgcctcgga 4800  
tgtcgccat tatgattgt atcgaaatgg atgggggtc ggatgattga ttgatggctt 4860  
ctacccctcg attgcagtgt caggcgatgt gctcccacga ggcgaagtgc tactgccagg 4920  
gtgtctcctt ctactatgt aaccactt cgctgtccga gtgtctcctc cactcgagg 4980  
acattgtatc cctgggtccg cgaaggctga agctccgtga aaactcggtg tacatgcgga 5040  
gggtcaagtg cctggatgtt aagatcttct gggatgtgg tatgctcaat cttaatcgat 5100  
tccttattcc gcagtccggg tttttgcac cgcgatgag atgaccattt agtacaatcc 5160  
caaggactgg ttcgtccgca agatctatgc cagcatgcac tccaaggact gcctggccag 5220  
aggatcgggc aatgggagtg ttctgctgac gctccagatc ggcagcgagg taaaggagaa 5280  
ccgctgtggc atccgtcgat cctacgaaat gacacaggaa taccaaaggt aagatgaagt 5340  
ccaatgtcca gtccatttt ttaatttat cattgcatt atttagaacg ttcatatctg 5400  
ctctgggtgtt catccaaaac aatccaaatg tgcaaaccac gggcgaccgg ctcatcaagg 5460  
ttggctgtat acagagcaat gccaccacat cgctggcgat ttcggttcgg gacagcgtg 5520  
tggatagctc agagcctgtc cccagcgcca ttgcactgga gtccctcattt ggttacacag 5580  
aacagtgagt gtattcttaa tagaatccct caaaatgctt aattctatca caatcgatac 5640  
ctgcagcatg ttcccacacg agggtgtgtt tcactacaac agcagcactg ggccccatcc 5700  
gcatcccacg atctcgcttc agattttggc tctatccac cagcacgaga ccaacgacgt 5760  
gcagatttggc cagaacctgg aactacagat tgtggcgag tacagccac agcagttggc 5820  
agagcacatg gagttgcagc tggcaccact acccgacttt cgtgtcacct cgctgggtggc 5880  
caagacagcg gacaatgaga actttgtgtc gctgatcgac gagcgaggat gtcccacaga 5940  
tgccagttgtc ttcccgctt tggaaagggtt acacacagcc agcaggagca tggcgccgc 6000  
tcgcttcat gcctcaagt tctcaggaac ggccaacgtt agcttcgtat taaagattcg 6060  
cttctgcgtt gaggcgtgtc cgcccgacaa ttgttattttt tcattcctggc aacggagaag 6120  
gccccacatg gaccaaccacg atcgttagacc ggaagaccta cgagttcaga accccgtgtt 6180  
catctccacg gtgggtggatg tggctccgca accagacaac ttaccagat cgccaggagga 6240  
attgccccctc aactacaata tccgggtgtc cggccggac cagagcaaca ccaatagttt 6300  
tctgtacggc gagcggggag tgctgtcat tgctggcata gacgaccgc tgcacctgga 6360  
taacgtttgc atcaaccaga gcctgtgtat tgcaactgtt atcttctggc tggatctgtca 6420  
agttgccctg ctcttcggct gtggaaatggt gctgcagcgc taccggccggc tggcaagct 6480  
cgaggatggc cgacgcggc tgcacggaga gtacctggag gcgaggagag tccactggc 6540  
ggatcaaggc ggatacacac tctaattgac ggctggaaacg caatgcgtat aaaatgcatac 6600  
ttaatttaat aaacataaaat ctaacataaaat tctaacaaat gtttgcaacc gaggataagt 6660  
tcaggagttc ttcttggat ggttagtgcgc ccacttgcga tggtttagcg aattgaaatc 6720  
cgggcagtgg tgagcgtttt tgcgcaaaata gtggacaac ttgagcgtt cgggtccgt 6780  
gccacgggtt agatgagcct gacggaaatgg gggatctt aggccggact ttgggttcat 6840  
aaggaagggtt cgacggatgtt catcaaacat gatagtgttgc ctcgagttgtt attgcttgc 6900  
caggcccacg attacaccaa gcccgtttac gtccaccaca cccgcgtcccg gcacatgaac 6960  
tgatatcatg gcccgtggagt ccagatagaa catcaccttgc tagttatgt tactggccac 7020  
gcccagcagg cgcatctttt cctcgatcca ggcgtatgtc gtggcgacc agatgacaat 7080  
gtcgtagtcc tcgttagggcg aagtcagaaa ctcgtgcaga tacggacca ttagctccgt 7140  
gcctgttca gcaggcgatc ggtgatcgaa taggttatacg tctatgtcca ggacaaggcag 7200  
cttcttggcc tcacgcggcg ggcgtactt cttgatcttgc tagtctcgca cacgacgctg 7260  
caccttggcc aaatagacgg cggagtgtc caccggactt tgcgttcat cggcgatc 7320  
gaagtcgtcg accacttcgc caatattatc gggcaggctg cacgcacccatcgatcg 7380  
ctctgtggag cccaccatca taagctttaaa gttgggttc agctccaaatg cgctgtatctt 7440  
cacattgtcg gctgtgtct ttccctgcaag tcattggatc taaaactgaa aatatcccg 7500  
agccttaggag tgcacgcac ctttgtactt cagggttgcgc agctttgac gttccggacg 7560  
cacctgtgtc ttgcggaaata tctcgatcgac cagcacttcc acgggtgtccctt ggtcggtgag 7620

gtccaccggg tactccttac cactccattt tacaatcact accacttctt tgacctccat 7680  
cttagcttgt ttcttattccg ctattaattt atcacaccat atatgtaat gtatgtttgt 7740  
tggatagaat ccagcaagtg gtttgcaata gtgtaccta aagatattaa ctaatttatt 7800  
agaagaccat ataaacagtc gagttgtcag aagtgcatacg atactatcga ttgcaacgcc 7860  
cggcggttac gattgcaatc ggcttgcata aaaaataatg atttttgtat tatattttc 7920  
agagattatt aaaaaatatt ttaaattttt taaaattata tatttagcaa taaaagaaaag 7980  
tcatgcaaag acatgaggaa tgtccccaaag ttgccaatag gcgattgttt cgccagttca 8040  
ttggccacac tggtcaccag ctgaaaacac aaaaaccgat cgtacagcat aaatttagct 8100  
cgaaaatgga ctaaacaaag acagcgatcc ggaatccgag cggaaacata gtctgcata 8160  
actatctaac gatccctgctg tgcaaccgaa aaccgacgat gctctcgcc cggaaacaagg 8220  
agaagtccca gcacaaggag ggcgtgggtgg ggaagtgacat gaagaaggac acccccacccg 8280  
atatttcgtt gatcaatgtg tggagcgatc agcgggccaa gaagaaatcg ctgcagcgct 8340  
gtgcgagcac ctgcggccagc tgcgagttcc atccgcgcag ctgcagcacc agtgcgaaca 8400  
cctactctg cacggactcg cagccggact actaccatgc tcgacgagca cagagccaga 8460  
tgccccctgca gcagcactcc cactcgcatc ctcactctct gccccacccc tcccatccgc 8520  
atgtgcgttag tcatactccc ctgccccccc accagttccg cgccagcagc aatcagtta 8580  
gtcagaacag cagcaactac gttaatttcg agcagatcga gcgatgcgc cgtcagcagt 8640  
cgtcgcccact gtcgagacc acatcatcgc cggccgggg agccggagga ttccagcgca 8700  
gctactccac caccagcgg cagcatcata cccatctggg tggtgacagc tacgatgcag 8760  
atcagggcct gctaagcgcc tcctatgcca acatgttgca actgccccag cggccacact 8820  
cgccccgtca ctacgcccgtc cggccgcagc agcagcagca tccacagatt catcaacagc 8880  
acgcctcgac gccgtttggc tccacgtgc ggttcgatcg agctgccatg tccatcaggg 8940  
agcgacagcc caggtatcag ccaacttagt aaactgcctc ttgaagtact atatttgaat 9000  
agatagcgcg cgattgataa agtgggtaga gataaatatga gcagcttgcg attaaaggaa 9060  
taatccgtaa aaactacata ttgtcaaaaa gtgcttaata ttattataac ttttaaacaa 9120  
tgacaatgca cgaaatgttt tattttcgaa acatttattt ttcaaaagatt ttttatttga 9180  
taacagattt ctttattttt ttacaataag aaaagttgat gtacaaaacc ggtttctact 9240  
cgcccttacaa taattaaaac aataacacaa tatatgattt tctgtacgag gaatataatg 9300  
gaatatatat gatatataca acatttttaa acacattttc tcttctgttt ccacagctct 9360  
ccgatgcagc agcaacaaca acaacaacaa cagcagcagc agcagctgca gcacacacaa 9420  
ctggcagctc acctggcgcc cagctactcc agcgattcgt acccgatcta cgagaatccg 9480  
tcccgcgtca tctcgatgcg cgccacgcag tcgcagcgtat cggagtgcgc catctacagc 9540  
aatacgacgg cctcgccggc cacgctggcc gtggtccgc agcatcatca tcagggtcac 9600  
ctggcggtgc catctggaaag cgggggagga tccctgagcg gcagcggcgtg tggtggcagt 9660  
tctggcagtg ttgcggcgc ctctacatca gtgcataatc tgcgttccc accgcgaact 9720  
ccgcccagtg cgggtccggc agcgggagggc agtgcataatg gtcgctgca gaaggtacca 9780  
tcacagcaat cgctcacggc gcccggaggag ctgcctctgc cgcccggtcg ggccactcag 9840  
tacacgctac acggctcgaa atactatatt gatcacaatg cgcataaccac gcactggaaat 9900  
catccgttgg agcgcgaagg tctgcccgtg ggctggcggc gggtggtgtc caagatgcac 9960  
ggcacctact atgagaacca gtataccggg cagagccaaac gtcagcatcc atgcttgacc 10020  
tcctactatg tctacacgcgat gtctgcggag ccacccgaaag cgattcgacc agaggcgctg 10080  
ctctatgccc caccacgcgca cactcacaat gcactggtgc cggccatcc ctatctgcctc 10140  
gaggagatcc ccaagtgggtt ggccgtctac tcggaggcgg actcgtccaa ggaccacctg 10200  
ctgcagttca acatgttttag cctgcccggag ctggagggtcg tcgcacagcat gctggtgcgg 10260  
ctcttcaagc aggaactggg caccatcgatc ggcttctacg agcgcataccg gtaagtgcac 10320  
ggccacatgc cgctgcattc tccgtctcc gaaaagccac tactcttgc ttacaccttt 10380  
cagtcgcgtt ttgatactcg agaagaatcg acgcggccggc cagaaccaga accaaaacca 10440  
gtgacccgggt gaccaggtga cgactgactc agaccacata ctcgcccagca gctatatgca 10500

catcatagtg ctccgtataat cgacccttaa cttatccaac catcgactca tcgcgaaatc 10560  
 agtgccttat acgaaaaccag acgagatggt agccaaggcag atccatgaca gttcgaatgc 10620  
 cttgatgaaa cgtagaattg tgctacgttc tatataaacct taatgtgatt tgagcttggc 10680  
 gtttgttgt aatgtgagca aagaaaatta aactggttt ctgatcatct tacctgccga 10740  
 gcgcaattgt aatcgatgtg ccacctgaaa ccccacaggt attaacctg ggagtccgat 10800  
 tcatcgacgg atgaaaaatggaa aattcagccgc cgcaagtgt aaataaaggg caacagttgg 10860  
 tggccaagtc ttactcgact tggcttggca catattccg agttccatgc caagtttgc 10920  
 attcgcttc aaaaattatg cattggccac aagtgaatcg tggccgattc tgtattggca 10980  
 aaaaaaaaaa cagcgctcca atagaaagtg aatcttatgt ttgttttgc ttggctatgc 11040  
 ttattttag tcgaacctga taattcattc agtgcctct tatcgaatgc ttataaaact 11100  
 ttatagtccac tggttctgca ggtccctcaa aaacagttt tactgctgat aagaagttt 11160  
 cgaagtctgg ggagtattcg gcattggaaa ggccaaaagt tgtgttttat tatatttgc 11220  
 acatattaaa caggatacat aaaacgagag ttttagattg taattacatt tgcataatct 11280  
 tttgcttaat tgataagtaa acagaaaata tgactcgatg gatattattg actaataata 11340  
 tatatttagg gggttggat gattacttg tactgtgaga tacaagttcg tttgtcccac 11400  
 agatactttt caattcatag cttatccatc agatacattt caattcatag cttatcccgt 11460  
 agatacattt ccattcattt cttatccac agatacattt tagcatattt ttttggaaat 11520  
 ttgaatttga aaaaaaaaaatgg tttttttttt tttgttttg agaactactc gtcttgc当地 11580  
 aataatttacat tggttccgac tgaagtcccc accctttcg cgcgggggtt ctcaagtgc当地 11640  
 aaaataatgt ataataaaaaa gccaagatac gtcggcggc cgctctcgcc ccacttgc当地 11700  
 ttgcgtctgc cgctggcgc tcgcgtccgc tgccgcagtc gacgtcgact ccacgc当地 11760  
 aataatttaaa cggatccattt ggatcgccca ctcagtcgc当地 ctggagagtc gccatcgccag 11820  
 ccacatcatcat agcattccat tccacttgc当地 gccatcgcc当地 gtcgctcaat cgtcagttgg 11880  
 gacacattat ttaacttcat tcttaacgtg agtgaatttg tttgttgggtt ggcgatcatg 11940  
 catatagcat aggccaaacaa ctgttctaat ccgcattatc ttaatcacaa taatccggcg 12000  
 gcttatacag atgttttgc当地 ttagcagttg gcgctaaaaa gcctctgc当地 gcccacatgc 12060  
 cagtgaatgt tctaattccgg ctcaaacaga cgacacaacaa gcttatctcg tgctggaat 12120  
 catgaatgaa taaatgggtt ttaactgttaa ctaacaatgg acccttttac caatcaatgc 12180  
 tcttatctat caccagaattt gaaacagaat tagtgaataa cttatggc当地 atatcagttg 12240  
 aaacatgaag attcgtgtgaa acgatcgatgaa aagatatggt gttcgaactt taaattaccc 12300  
 ttgttagtttccactctcat tagtttgat ttatgttagaa cccaaatggt gatcgtgact 12360  
 tgcgatttagt attcgaatcg cagtgcattt cccaaatctat tgattatctg caacttgc当地 12420  
 cagactggccg caataattcg acggacacta tcagctagct ccattgattt agataagccc 12480  
 gttctcacgc ggtttttac acttcttggc aatcgccaa tcacggccctt cgc当地 ataaatgg 12540  
 aaaatataatgt atgaacaatc gggatcttt tgggttacg atcgaccgac aaagcccatg 12600  
 tatttccattt tacgtccattt tggccatataa aggacataa aatgggtgc当地 ccaacgc当地 12660  
 ccgtggggaaa gttgtctcca attcgaatgt tgtaacattt agcgacattt gatgaaagggtt 12720  
 accgactttt atctcgacaa aaacacacac gaattccaga tgaagcgagc gtgc当地 tagtgc当地 12780  
 tgcactgcaa gttttttttt tggacacaaat agtttatgt ttatatcattt ttatatcata 12840  
 ttatattccctt tattgttgc当地 gttgtctgc当地 gggcattaa attaagaagc aaaaaaaaaa 12900  
 aagggtgtc当地 gaatttgcattt ccataacttcc acgagtagat atcaatttca cccgatcgctg 12960  
 gtcaatttgc当地 caatttgc当地 aatttgc当地 tgaatcaata caataccata tagggcttca 13020  
 ttgaagaaga tgccagcagg actggatgtt catgc当地 gaa taagttgaaac gttgaacgc当地 13080  
 agcagaatgg atttcagcac acaccgc当地 accactttgc tgctccctt cctggccaca 13140  
 ggtgagatgtt cgcaatccag atatttgc当地 ctaataatgt gggatctt cctggccaca 13200  
 gttggccctgg gaaatggccca aagcagtc当地 ctcaccgtc当地 atccc当地 catcaccgtt 13260  
 ctgctgaaca gcaacgagac ttttcttggc当地 ttcgccaatgagttgccat tgccggaaa 13320  
 tccaaatcca aaacatatgg catcgatgaaat ctatttgc当地 cattacagcg gatttgc当地 13380

cagcgacgtg gaagttgcgc tggaaacaga ttccggaggat catttgcgcc tcgatcccgc 13440  
 aacgtttgtg tatccagcgg gcagtaactcg aaatcagtcg gtgggtataa ctggcctcaa 13500  
 agccggcaac gtcaaagtgg tcgcagatag cgatgtgcg aacaaagaga tgtgagtaac 13560  
 ttcacggaa tcccaactgt tcccgtaccc aattggaaaa ttcaacttatt ttccagtg 13620  
 aaggatgtgt tcgtacgcgt gactgtggcc aaatcagagag ctttgatcta cacctccatc 13680  
 atctttggct gggttactt tgtggcctgg tcgggtgcct tctatccgca gatctggagc 13740  
 aactatcgcc gcaagtccgt cgagggactg aactttgatt tcctggccct caatatcg 13800  
 ggcttcaccc tgtacagcat gttcaactgc ggcctctatt tcacgcgagga tctgcagaac 13860  
 gagtacgagg tgcgatatcc gctggagtg aatcctgtga tgctcaacga cgtggcttc 13920  
 tcactgcattt ccatgttcgc cacctgcattt acgatccttc agtgcctttt ctatcaggta 13980  
 ataatatata tagcaaatac cattcaatag ccttatcgcc gaagtggcaa cagttgtcg 14040  
 attgaacact aattgccatc aatcaaatac ccaaatacatt tgaatcacag cggatagtt 14100  
 cgatatacgaa agtagataag gttttgactt gtaaaacatc catactttgt taaatttgc 14160  
 cagagagcac agcaaagggt gtcgttcattt gcctacggaa tattggccat cttcgccgt 14220  
 gtggcgtcg tgcgtccgg tttggccgg gatccgtca tccattggct ggactttctg 14280  
 tactactgca gttacgtcaa gctaaccattt accatcatca agtacgtgcc gcaagctctg 14340  
 atgaactatac gcccgaagag cacctccggc tggagcatcg gcaacatttc getggatttc 14400  
 acgggagggaa cgctgagcat gctgcaaatac attctgaatg ctcataattt cggtaggata 14460  
 tagtctatca atttgtgatt ttcgaatgaa atcgtgtctg gttccagat gattgggtgt 14520  
 cgattttcgg tgcgtccacc aaattcggac tgggtctgtt ttccgtgctc ttgcgtgt 14580  
 tcttcatgt gcagcactat gtgtttaca ggtgattgaa acattgtgt aatatgatac 14640  
 ttaatctacg attatgtcat ctccactgtt cacttacat tattgctgtg ctgtttcca 14700  
 tttctccca ggcattcgag ggaatcctcg agctctgacc tcaccaccgt gaccgatgtt 14760  
 caaaatcgaa caaatgagtc gcccggccg agcgaatgtg cgactgagaa atattagagc 14820  
 tgcattatca tatgtctgt gtagagaaag acttttgc cagtagcgct ttatgtacat 14880  
 ttttagaatt gtaaatatatac ccgtatggc tagtgccta agctttgtt aattcgtcg 14940  
 ttttaattga aatttagttt gactaaaattt tggaaatttca ccattaaataa aaacttaattt 15000  
 tttttagga gccagaaatc atacggtaca ttgctcgacc attcaaagggt ctgtgcagtg 15060  
 aaaccaattt gctgcatacg ggcgttatt tgcaaaactaa taaatagattt gaagtattga 15120  
 aaaaatttca aaacagaaat tctaacttgc cgacaaatgg gcagcactgt tcgcactcg 15180  
 ccaaattcctt atcgatagct tatcgatagc catggatata tgacattaag ttagccaatt 15240  
 tccggtagt tgacatccct ggagcacgg agattctgc ggacacaaat cgcaactgct 15300  
 aaataaaattt tatttatttg agtgcacagc catgagtctt cacaagtcgg cgtcgtag 15360  
 cttgactttt aaccagttag gggagatatt ttattcggtt ttacccaaca aaataatgtt 15420  
 ggcctttttt gcagaaacac ttcgattgtt tcgcgttagca atagtcgcac aattttgaa 15480  
 gctttcaagg agttcctgg ttttggat atcggcaacg aagtttctgc agagtcagca 15540  
 gttcgggtct ccagcaacgg agctttcaac ttggccgaga gttttggcaa cgaatccaac 15600  
 gaatatgccc acctggctac gcctgtggat ccagcctacg gaggcaacaa cacgaacaac 15660  
 atgatgcagt tcacgaacaa tctggaaattt ttggccaaca ataattccga tggcaataac 15720  
 aaaattaaatg catgcaacaa attcgatcg cacaaggggt gacaaattt aaaaacacgcg 15780  
 ctccaaatcgaa taaacattgg ctacggcgat tgatcgatcg ggcgtggcggaa tggcaaaatc 15840  
 caaatagtcg gtggccacta cgattctgtt gtttttgc agcgaattttt taatatttag 15900  
 cttcccttccc caacaagatc gcttgcgttccg atatagccga ctaagatgtt tataatcag 15960  
 ccaatgtcg ggcacaaaga aaggtagtgc gggcaacaa attgatgtatc gaacagttaga 16020  
 aaccttgcattt gtagcaacac gcttgcattt gcatcattcg cgcggccaaat ttgtttgtgt 16080  
 ttgtttatcc agccaaggcg cagtttgcctt ctaagttttt atttcccttt tacacttttag 16140  
 cactgattcc gaggatgact ccacggaggt cgatatacg gaggatattc cgaaaacgg 16200  
 ggaggtatcg ggatcgaaat tgcgtgttccg tggtcacgtt gtcacatgtt gtttgcctgg 16260

ttgcttaacta ttattgtttt tattattcca ggaccacgga acccatggcc ttcttcgagg 16320  
 gattaaacgt gagttgtgct tttaatgtgc aaagctatacg cttactaact attaatattt 16380  
 attccccgca gtccggaaat ctgatgcagt tcagccaggt gggtaacatc gattagctat 16440  
 tgcatacttga agcgctggaa cagatcgccc tgcaacgagga tcagcaggaa gctggccacc 16500  
 gcccagaaga cattgtgtat cagtcgcatt tccagctcgta caaagccaa gggtttaatt 16560  
 tggtaacttgg tcaccgtgac cagcagatc aagccgtgga ctgcctgacg gtagcggctg 16620  
 tccgcattgtt ggagattcat ctccctggaaa atgactgcgg atcttcgggt ggcaccaat 16680  
 aggtgggtgc acaaattgcgt gagcaatgtg atctccgcca gcgagatgga gagaaaacc 16740  
 agattgtatca gcgatccaa accatcgatc ggcttgcaca tgattaagggt gtccgctatg 16800  
 gcatagtaca gactgttagaa aaccaccgtt attccgagca ggtggcatat gagcgacaga 16860  
 atcatggaca aggacattgg ggtcagatac tttccgaaat gcacatataat caacctatacg 16920  
 cgatacccca gctgggtcgag ttcatccccc aaggcgcaaa atcgctgcatt gcgtagtat 16980  
 ttagtgtaca acttttagctg gtccttcctc tgcaacgat tcacccctcg cagctgcgt 17040  
 tccagccgtc tgttcagagc gtacagaatc tccttcacca ccaccatgc gccaaagtag 17100  
 cagttattga gaaaatttgcg aataattaag gaaacagcc ggtacaagggt ccagatcaag 17160  
 ctcatctcgg gatgtcgccg cctctgttgc agtataaggcc caacttcaat tgtagagga 17220  
 aaagccacgg tcttgaccag agccaaaacg atggatatgt acagcgaccc gctgtccaga 17280  
 cggaaattttt ttagggtatac aaagaaggcc actttgtca acacccctggc cacatggtca 17340  
 ctgattatca tttgcgacac atagttataa acagccaccc taatgttcat atagctgtac 17400  
 agagtgggtgg cgtccttcag gttgatctgaa ccctccgtt actccctgtt gatttgcgc 17460  
 ccgtaaacca agctgaatgc aattgcccac agcgaagcaa aggccagatt tgcctttgag 17520  
 aagcggaaatc ttacgcacg gcccggccga tatcgattgg ccaggagtcc gaagacggc 17580  
 ataaagccta tcagttatcatc cgtcagaaat ttcaccatac gccgatgcgc gtagtcgt 17640  
 gtgaagtcca ttttctcgaa acaattataa caaaactgtgaa ggcacttcc cacagcatta 17700  
 atatctgtttt aattgttttca caactacccaa actgtatgccat tctagaggac ctgtcaagta 17760  
 gccggacact atcgggacac atcgcgaaac gcatgtatcc caccggccgt ccagaaacca 17820  
 actgagcatg cttttgtgcta ctactagccaa caaacaaaag agcataagaa gctgtgggg 17880  
 agcggcattt cttgggtgac tcagccgtcg cctgcaattt cataagagcc acatgacgtc 17940  
 aaagtcgtt cgaagttcac tttcagttgg aggacagaac aaaacactct tatctagccg 18000  
 attagcacgg tgcaactccctt cccgtcgta tcgttttagcg agaatttcaa gcacttgc 18060  
 aaaatagaat agaatacaaa acaaattgcgc agtccatttg taactcgagc aagctggAAC 18120  
 atgaagctct atcagctcta tgagcgcaaa gtgtgaaccc ttatatgatt gcgagttaa 18180  
 ttgacattca aataatatct tgttttgtt tacagcaatc cgtgctgcgc gaaatgatgc 18240  
 tgcaaggacat tcagatcccg gcaacacgc tgcccaagct agagaatcac aacatcggt 18300  
 gttattgtttt cagcatgggtt ctggatgagc cgcccaagtc tctttggatg tactcgattt 18360  
 cgctgaacaa gctctacatc cggatgaaca aggccctcaa cgtggacgtt cagttcaagt 18420  
 ctaaaatgcc catccaacca cttaaatttgc gtgtgttctt ttgcttcctt aatgtatgt 18480  
 gtgctcccggtt ggtccgctgt caaaatcacc tttagcgtaa gccttgcgtt tgaagataac 18540  
 aatacagatc gaacaggatt atttaactat catttgcata aaccccttagt gacggccaaat 18600  
 aacgcaaaaaa tgccgcagag cttgtcgcc agcgagaatc ccaacacgtgtt atattgtgg 18660  
 aatgctcagg gcaagggaaat ttccgagctt tttccgttgc tagtccccctt gaacatgagc 18720  
 cggtctgtaa cccgcagtgg gctcacgcgc cagaccctgg ccttcaagtt cgtctgcac 18780  
 aactcggttca tcgggcgaaa agaaacttcc ttatgttttgccttggagaa agcatggtaa 18840  
 ggtgacagca aaactctaga tggcttagaaac aaagcttaac gtgttttctt tcttgcagcg 18900  
 gcgatatacg tggacagcat gttatacatg ttaaaaatatg tacgtgcacc aagcgggatc 18960  
 gcatccaaga cgaacgcccag ctcaatagca agaagcgcaaa gtccgtgcgc gaaagccccc 19020  
 aagaagatga gccgtccaag gtgcgtcggt gcattgttat aaagacggag gacacggaga 19080  
 gcaatgatag ccgagactgc gacgactcccg ccgcagatgtt gacacgtgtcg cggacaccgg 19140

atggcgatta ccgtctggat attacgtgcc ccaataagga atggctgctg cagagcatcg 19200  
agggcatgat taaggaggcg gcggctgaag tcctgcgcaa tcccaaccaa gagaatctac 19260  
gtcgccatgc caacaaattt ctgagccta agagtaagca gtgaatcggg ggacaaagag 19320  
attaagcttt acttaccgaa ctttccttc agaacgtgcc tacgagctgc catgacttct 19380  
gatctggcg acaatctccc aggtatcaga taccttgaa atgtgttgca tctgtgggt 19440  
atactacata gctatttagta tcttaagttt gtattagtcc ttgttcgtaa ggcgtttaac 19500  
ggtgatattc ccctttggc atgttcgtatg gccgaaaaga aaacattttt atattttga 19560  
tagtatactg ttgttaactg cagttctatg tgactacgta actttgtct accacaacaa 19620  
acatactctg tacaaaaaaag ccaaaaagtga atttattaaa gagttgtcat attttgcaaa 19680  
catatcctcg tgggtacgc caatgccag agcctactgt acccccaccc tggagcacat 19740  
gctatgtac atgtgtggct tggcgccgtt caatgcactc aggtgcac tcagctagct 19800  
agctgctaat atgtcaaaat tgctgcgtcg cattacata ctttattttt acccgtagct 19860  
gcacgtcttt ggtttagtt ctatgcttca aaaaaaaaaaa aaacaacctc aagcagggcg 19920  
catgcgttgc gccagcggtt cacatgtcg aggatgcaaa aaagtgcac aaacaccaga 19980  
tggacact gtggcgctgc agctgcaggc gacttttagct ttggccacat gcggcagcta 20040  
aatgtttact ctggccacc gatcgctgtt cattgaccta gggcaggggc attaagtgcg 20100  
ccctaatcg aacggaatga tagcctctgt gtccaaaaat tcagccaaag cggatgcact 20160  
caactccatt tggggcctgt ccttcttgcg ccggctgcca cttccactac cagttggca 20220  
ccacgaaaat gggtcgttca aagtgcctaa aaccggcggc agcaactcactc tcaattctcg 20280  
ttggacgagc gcacagaaaaa gtggtttgg atacgagttt agttcgagag accttctgc 20340  
actgggaaca tacatgcggc ttgtgttaac agaataataa agtacgcaaa catactgtt 20400  
atacttaaag cacaaagaac aaatataaat gtatcataat ttgtttaattt atttattcga 20460  
ggtttccaaa caagtcatc tgataacaaa agttgtaaaa ataaaatcca ctAAAattaa 20520  
atataccca cttctcagaa taagcacagc tgatataact tcagttataa ttttttcag 20580  
tgcactttc ccaagcgatg caatgcctt agaagccaa taaaatacgt ttctttgatt 20640  
ggcggtgcc AAAAGGTTGA caattcgaaa gtggcgaca ctgggaggca gtgactcata 20700  
atttacataa ttatTCGGG aagatattaa gactcataact atattcaagc agttgtttat 20760  
cattttaaac tggcagatac cccatcttca cgaccaggat aaaggaaag caaacacggc 20820  
tgggcttta tcggctacga tcttcatccg cagttccac tggcgctgt gggaaaacaa 20880  
tatggccaa acacataaaa aacaacaaaaa aaaggaaaca accacgaaaa gccccggctaa 20940  
gacgtcaggt gaaacgcagt agcttcactc gcgactcgcc gcttccactc aaaggtgcata 21000  
ccgctgcccc ctcaaattctg cagctcgtag atacgaaaac cagatagcgt cgagcggctg 21060  
gcgatctca ctcaatgggg ggaaatactg ctatagagtc gaaagcttgc acacgtagtt 21120  
tggcattcgc agtcgttgtt tggcgtttt agtctgtgc ctgatcttgc acgcgctgca 21180  
gctgtttgg agtcgcccgc agtgccatat ttgtttgac cgcaaaaatt tctggctaa 21240  
aaacagagat attttagata cagatacata tatctcatat cacatattag ccaattgtgg 21300  
gtgcaacaag ctgtgagtga tggtgagac ggcaacgaca acgaccataa cccgcaccac 21360  
caccggcgtt ccggctgggt cagtaacggt aacaggaccc actgcctcg ccacgcccac 21420  
cgcgacacag gcccgcgc aggcgcacatcg caacgatgag accacccggg ccattttcaa 21480  
tctgaaagtc atcgctttc tgctccttgc gcctctggc ctgctggccg tctttctcaa 21540  
gcacctgtt gattacctat tcgcgtggg actcaaggag aaggatgtca gtggcaaggt 21600  
ggcactgggt agttgcattc gagtgccat tgggctaaac aaatggctgc aatgagcgtc 21660  
tggcaaatga gccattaata aggctagtc gatgcacatc agacatggat gcacttagaa 21720  
aatgcagtcg catttcattgt taagtactga cattaaaaaa gagatataatg tctgtgttta 21780  
gatacatctt tgggtacca attaggttca gatacttcgt aaagaaaattt gtaatggat 21840  
actttaatcg ttggcttcat gtgaattttt tttccctgtt tccgcttcta agtgatcttgc 21900  
tatctgacga ctacttagcc aaccagaaaac gtcacgcact ttccctttcc agtggctgccc 21960  
tccgggtttc caccacgccc acctttggctt caccacaccc ttccctttcc ccgtttct 22020

ttgttttta tttctcctct tttttttttt tttgatgtca ctgccattag ggtgcggtcg 22080  
 atcgcttagt actgtgttat taatgtaaat atttatgcgt ttggtgccca gctgggttag 22140  
 ttgtggcca attgtttagt tgtgtccaca gagccgcgtc tttggtgccca cggacagtta 22200  
 atgtgacata atttcgctgt aagcgctgca atcaaagtga atctccagct gaaatcgtgc 22260  
 tcatggcaac catatcgcc tccaaaataatc acatatgcac cttggggcgt cgaattatgg 22320  
 agaagtcaat tgccaatggg cgccaaatgcc actggacaag gtcaagtgtat gatgccgctg 22380  
 ccgatgcctc atatcgtaaa gaacctgatc gaattcggaa cccattagca tgctttcag 22440  
 gcttttata gtgggcgtgt gcccggata agcgtctcac gtagcgtatt aatgattcac 22500  
 agcgccccga cttttgtttt agtctcagct tttttttcg atcgttccct cagatatcg 22560  
 tttctcagat acagatacac atacagatac atttttgttgcg cggatgcaca gtggtatttt 22620  
 cgggtggcag ggactggaga attcccatgc caactgttag cagcaacta attataagat 22680  
 tgactttcgt tgataagttc tattgacatc atggttgcgg aattcggat atttcagctc 22740  
 aaaaataccc ccttttoga caccactggc caacggccaa ctgcaaaactg gtttgcgtg 22800  
 tgctgctata tttatttcca agatgaacga aaagagcgc aaaaatgaaaaa cctcagaaag 22860  
 ttcacttttgc tttcagttc aatgtttgtt tttacaaaca atagagtgtat gatattcgat 22920  
 gggccaaagt atctgcaagt gtgttagcatg ccgggtatct ctcagatgcg tagataaaaac 22980  
 tcaactactg ttggcgtgt taatttgcat atgatattga aattcttcgg ctgttctata 23040  
 atcacaacaa ctgcgcattt gttattgtt tcccccattgc tagtcgttca cgtccaaac 23100  
 tctgaattga actcattccg gcttacattt cgattcaccc aactaccgc cacccaaaac 23160  
 ggcggctgag gtcacccagg gggcttcaat tacggtaaaa agtcaactcaa ttgtgcggca 23220  
 gagggctggc ccacccggcgt tatgagtaat gccattcata agtgcctct ggcgtgttg 23280  
 ctgctgctca cataattgtc cgtaaaatgag gttttgttc aatgcgaagt cacattagct 23340  
 cgagttgatt gtttgcataat taagctaatt aatttacttg agtatacgg tgtaatgtga 23400  
 gtaaacctgtt atttaaaccc aggtgacccg cggaggcagt gggctggcgc gcgagatctg 23460  
 cttggaaactg gcgcggcggg gctgcaagct ggcgtcggt gatgtcaact ccaagggatg 23520  
 ttacgaaacg gtggagctgc tctccaaatgat tccacgcgtc gttgccaagg cctacaagg 23580  
 gagttcacta gctgcttggat tatttaatgg tttgataaca agaatcttta ttccagaacg 23640  
 acgtgtcatc gcctcgccgag cttcaactga tggccggccaa ggtggagaag gaactgggtc 23700  
 ccgtggacat tctggtcaac aatgcctccc tcacgcctcat gacttcaaca cccagtctga 23760  
 agagcgtatc aatcgacaca atactgcacgc tcaatctggg ctccctacata atggtgatgt 23820  
 tgtgcttctg aaaatgggac aaatataaaa cttcttgatt ttgcagacca ccaaggatg 23880  
 cctgcccggat atgataaacc gcaagtccgg tcacgcgttg gcagtaaatg ccttagccgg 23940  
 taagcttact tggtaaaagt gcttaccact tcattgatac ctatgtatata ataactcgca 24000  
 tttaggtcta gttccactgc caggagccgg catctacacg gccaccaaact acgaaatcga 24060  
 gggcttcatg gaatcgctgc gagctgagct ggcattgtcc gactgtgact acgttcgcac 24120  
 cacgggtggcc aatgcctatc tgatgaggac cagcggagat cttccactgc tcagtgtatgc 24180  
 ggggttaagat tggttatag tttggcaga tcacttggc tcatgcggct actacattta 24240  
 gcattgccaagat gagctatccc ggactgccc caccatatgt ggccgagaag attgtcaagg 24300  
 gcgtgttgcgat gaacgagcgc atgggtatgc tgccaaaaat attcgcaactc agtgtatggc 24360  
 tgctcaggatc agaattgtatc tagccctggat aaccaggcat tatttcttac gattattgtt 24420  
 gtcgccttgc tttagactgt tgccctaccaat gtggcaggat tacatgcgtc ttgccttcta 24480  
 ccacttcgtatc gtgcgcgtatc cccacctgtt ttactggat tagggcacaag gagaaggcac 24540  
 atccccaccc agaagcattt actcctgttt gttcccaat tgcagttctt tattcaactg 24600  
 ttgcttacgc taggtgtaca tggtttagctt tttatagaa tcttttaactt aaattaaatc 24660  
 tatatcctaa cattagaatt acgtccgggtt ggccttccctt attttatttc gtataagccg 24720  
 aagttgttcg gagtagcaca tccctctggat ctgcgtggacg caggacatcc gttcgtatgt 24780  
 ccaagtgtatc ttcaagtggc atcgatggac cagcttggag ccactggacg agttagtagaa 24840  
 gtaggcgcag ttccgtggat gtggcataaa gccatagact ccctcctggc agttagatgtatgc 24900

tttttagtggtt atgcctacgg gatcccgca tctcgacacc aactttcgat ccaaacagcg 25140  
ttccaatttt tcgtcgtagt aatgaccatc caagcactcg gcctcaaagg atcctggacc 25200  
ggcacaatat atgtatttgg agcaattgct agagctggcg acataaaactc ccaattgtgg 25260  
agcaactggca cactcttcga actccaggc actggatcga tgaccaggca agtcaccaa 25320  
aataattgtt aagaaggta cagctccat ttcatattt ttttaacga ccgaaaatagc 25380  
gggatgactt ctgtagactg acttcatcga tgatgggtt agtatttt tgcatgtgct 25440  
ccaaactgata aagaagacaa gttattccat cgattactac gctggttatc gtctggtaga 25500  
taccgctaatt gggcacatgg cagtaactgc cacgcccact ctgggggtc tcggtaattt 25560  
gcattttcgt agcataacttc gcagcagcag caaagcaacc gagtattta tgataccaca 25620  
ccgcagcata atgctcgact gggcgcggcgt tcaataaaaa ttgaaaatgc actcaattcg 25680  
caattaagtg tcgcccacttc cgtacggaca agcggacaaa cggacggaca agcggacaaa 25740  
tggacggata aacggacgga tggatgtcg tcgaacgata ccattcaggc cattcaatcc 25800  
attcatcgca gtcatcctca ttattatttc catcgctcatc gtggctgtt ctggcggag 25860  
ttaagcgatg gccatcgatt taatatccga ttagatattc ataacttgca attaggttt 25920  
gtggctctgc gcttacgta aatgattgcg tagccgatta atgaagaatt accagtgc当地 25980  
atggctggga tctgtggca ttatccaatt gaccaactac catgctaccc cactaccatt 26040  
accattacca taatgtgcaa tgtgccaatt gggctcaaatt taaaagttt attaattgtc 26100  
aattaaacgc tgtcgcccag cagctcttt gtggcataat tttgggtca atctgcataat 26160  
ctgattaaca ggttataccg ctcagctac tacatatacc atgcaccaga tggcgcgggg 26220  
cacagacaac aagaagttaa agaaaggacc ccatatggtg ccgacggctc aagtgattaa 26280  
gtgcacgacg agatcttcaa atgcagtgc acatgtgcac aaataaaaa cacacacacaca 26340  
cacacacaca cacgcatatt gaaaatgtat gtaaattcta attaagattt tggatgaaga 26400  
cccccagcac cttgatactt ctgctcaatg cgcattgcgc atgcgcagcc ccgcattccga 26460  
agatccataa aaatagctca ctaattattt gtgtgcttagg gttacagttc tcataaaaaaa 26520  
caaacaaact gtcggcggtt ttatggatct tctgcctcta tggcctcaat gccccgcga 26580  
agtttcgtat ccccatcga ttcaaaaccg aagaagagct acgaccaatc actttcaat 26640  
tccttatgagc agttgagcat caattgattt cgatatgaaa ataaaataca ttatatttt 26700  
atcacattac gtatcacagc cattcggccg cctacgcctt ggcattctga tcgccacatc 26760  
catcgccgg accttgcgc ggcatttccg agctgatttag cctccgaatc tcgaccagaa 26820  
cccggtccgt tcgagcctcc aggttgcga gggcggtt tagtcatcc aagctggaat 26880  
tgactctggc catcagacgc tccgagttgt tggcagctc gatgaggctc tcgaaactgc 26940  
tggcctggcg actctccatc gatatcgtt ccagatccag ctgcagctgc tcacccggc 27000  
tgtccatctg ggctttaagg gctggaaaac aactttcgat taaaattaa attttttca 27060  
ccctaaatca tgatttcgg tggatatttgc tgccatgcga tccgaagtgt aaagcaaatt 27120  
tgacttgggtt tgttttgcata tcgaacataa taaaatttgc ttaccataaa ccaatttaat 27180  
ttaattgttaa ttgcagctaa ctggcttttgg ggtacttttgc ttttaacgc caaatgtgaa 27240  
atattaagta tatttttattt aagcgatggc acctgtaaat tgagattaa gggggatataat 27300  
taaatgggtg aacttgcataa tttttttttt tcaccaacg tttttaaaag tctattgctt 27360  
aaaaaaaaatga aagtaaatttgc cttggccattt taggaggata tttttgaaaa atcgttacaa 27420  
ctttt 27425

<210> 19  
<211> 1781  
<212> DNA

<213> Drosophila melanogaster

<400> 19

gaattcggca cgagacgcca tacaaaaagt tggaaactgag tggaaatcgga gtactatata 60  
 gccagccat cccttccaga ggcgcggaaag agtagctcac atccgaaccc acgtccccga 120  
 gccatgtcg cggcggaat agagcgattc gcagtccaaa cacgatgata aaccccattg 180  
 catccgagtc ggaggccatc aattcggcca cctatgtgga caactatac gattcggtgg 240  
 aaaatctgcc ggacgacgtg cagcgcaggat tgtaacgcacat cgcgcacata gacgtccagg 300  
 acagaggcct cattcgcac gttagaccact actacgacact gtatctgtcc ctgcagaact 360  
 cgcggatgc cggcgacgg tctcgaagca tctccaggat gcaccagagt ctcatcagg 420  
 cgcaggaact gggcgacgaa aaaatgcaga tcgtcaatca tatgcaggag ataatcgacg 480  
 gcaagctgcg ccagctggac accgaccagc agaacctgga cctgaaggag gaccgcgatc 540  
 ggtatgcgtc cctggacgt ggcacgcctt cgaagctgca acgcctgcag agcccgatga 600  
 gggagcaggc caaccaagcg ggcactggca acggtggcct aaatggaaac ggctgcttt 660  
 cggccaaaga tctgtacgc ttggcggtc atgcagggtgg tggtgtgcct gggtctaattg 720  
 ccatgaccc cggcaacggt ggccgctcaa cgcccaactc ggagcgcctcg agccatgtca 780  
 gtaatggtgg caacagcggc tccaatggca atgccagcgg cggaggaggc ggagaactgc 840  
 agcgcacagg tagcaagcgg tcgaggaggc gaaacgagag tggtttaac aacgaaagct 900  
 ctctggagat gggcgcaac gagtccaact cggcaaatga agccagtgcc agtgggtgg 960  
 gcagtggcga ggcacaatcc tcgttggcgt gtgccagtg agcgggacag ggacgaaagg 1020  
 ccagtctgca gtcggcttc ggcagttgg ctagcggctc tgccagccacg agcagtggag 1080  
 cagccggagg tgggtgtgcc aacggagccg gcgtagttgg tggcaataat tccggcaaga 1140  
 agaaaaaagcg caaggtacgc ggttctgggg cttcaaatgc caatgccagt acgcgagagg 1200  
 agacgccc gccggagacc attgatccgg acgagccgac ctactgtgtc tgcaatcaga 1260  
 ttcctttgg cgagatgatc ctgtgcgaca atgacctgtg ccccatcgag tggttccatt 1320  
 tttcgtgcgt ctccctggta ctaaaaaccaa aaggcaagtg gttctgcccc aactgccg 1380  
 gagaacggcc aaatgtaatg aaacccaagg cgcagttcct caaagaactg gagcgctaca 1440  
 acaaggaaaa ggaggagaag acctagtcta ttaggcagc statccaaacc cattgctctg 1500  
 tgtctaacac caggctctgt aaaatattcg atcctaagat ttaccttaat gtatatttag 1560  
 tgactttctt agacccgatc cttttcgac tttccctct ttcacccagt ttagatccct 1620  
 cgcttctatg gttataggtc gtcagtttc attaaagtt tctgtacaaa caatatctt 1680  
 ctcaatgtaa acacacaaaa actcgtataa ttagagtaca cctaaactta atttatggta 1740  
 ataaacgtt atattcaaaa aaaaaaaaaa aaaaaactcg a 1781

<210> 20

<211> 433

<212> PRT

<213> Drosophila melanogaster

<400> 20

Met Ile Asn Pro Ile Ala Ser Glu Ser Glu Ala Ile Asn Ser Ala Thr

1

5

10

15

Tyr Val Asp Asn Tyr Ile Asp Ser Val Glu Asn Leu Pro Asp Asp Val

20

25

30

Gln Arg Gln Leu Ser Arg Ile Arg Asp Ile Asp Val Gln Tyr Arg Gly

|                                                                 |     |     |
|-----------------------------------------------------------------|-----|-----|
| 35                                                              | 40  | 45  |
| Leu Ile Arg Asp Val Asp His Tyr Tyr Asp Leu Tyr Leu Ser Leu Gln |     |     |
| 50                                                              | 55  | 60  |
| Asn Ser Ala Asp Ala Gly Arg Arg Ser Arg Ser Ile Ser Arg Met His |     |     |
| 65                                                              | 70  | 75  |
| Gln Ser Leu Ile Gln Ala Gln Glu Leu Gly Asp Glu Lys Met Gln Ile |     |     |
| 85                                                              | 90  | 95  |
| Val Asn His Met Gln Glu Ile Ile Asp Gly Lys Leu Arg Gln Leu Asp |     |     |
| 100                                                             | 105 | 110 |
| Thr Asp Gln Gln Asn Leu Asp Leu Lys Glu Asp Arg Asp Arg Tyr Ala |     |     |
| 115                                                             | 120 | 125 |
| Leu Leu Asp Asp Gly Thr Pro Ser Lys Leu Gln Arg Leu Gln Ser Pro |     |     |
| 130                                                             | 135 | 140 |
| Met Arg Glu Gln Gly Asn Gln Ala Gly Thr Gly Asn Gly Gly Leu Asn |     |     |
| 145                                                             | 150 | 155 |
| 160                                                             |     |     |
| Gly Asn Gly Leu Leu Ser Ala Lys Asp Leu Tyr Ala Leu Gly Gly Tyr |     |     |
| 165                                                             | 170 | 175 |
| Ala Gly Gly Val Val Pro Gly Ser Asn Ala Met Thr Ser Gly Asn Gly |     |     |
| 180                                                             | 185 | 190 |
| Gly Gly Ser Thr Pro Asn Ser Glu Arg Ser Ser His Val Ser Asn Gly |     |     |
| 195                                                             | 200 | 205 |
| Gly Asn Ser Gly Ser Asn Gly Asn Ala Ser Gly Gly Gly Gly Glu     |     |     |
| 210                                                             | 215 | 220 |
| Leu Gln Arg Thr Gly Ser Lys Arg Ser Arg Arg Arg Asn Glu Ser Val |     |     |
| 225                                                             | 230 | 235 |
| 240                                                             |     |     |
| Val Asn Asn Gly Ser Ser Leu Glu Met Gly Gly Asn Glu Ser Asn Ser |     |     |
| 245                                                             | 250 | 255 |
| Ala Asn Glu Ala Ser Gly Ser Gly Gly Ser Gly Glu Arg Lys Ser     |     |     |
| 260                                                             | 265 | 270 |
| Ser Leu Gly Gly Ala Ser Gly Ala Gly Gln Gly Arg Lys Ala Ser Leu |     |     |
| 275                                                             | 280 | 285 |
| Gln Ser Ala Ser Gly Ser Leu Ala Ser Gly Ser Ala Ala Thr Ser Ser |     |     |

|                                                                 |     |     |
|-----------------------------------------------------------------|-----|-----|
| 290                                                             | 295 | 300 |
| Gly Ala Ala Gly Gly Gly Ala Asn Gly Ala Gly Val Val Gly Gly     |     |     |
| 305                                                             | 310 | 315 |
| Asn Asn Ser Gly Lys Lys Lys Arg Lys Val Arg Gly Ser Gly Ala     |     |     |
| 325                                                             | 330 | 335 |
| Ser Asn Ala Asn Ala Ser Thr Arg Glu Glu Thr Pro Pro Pro Glu Thr |     |     |
| 340                                                             | 345 | 350 |
| Ile Asp Pro Asp Glu Pro Thr Tyr Cys Val Cys Asn Gln Ile Ser Phe |     |     |
| 355                                                             | 360 | 365 |
| Gly Glu Met Ile Leu Cys Asp Asn Asp Leu Cys Pro Ile Glu Trp Phe |     |     |
| 370                                                             | 375 | 380 |
| His Phe Ser Cys Val Ser Leu Val Leu Lys Pro Lys Gly Lys Trp Phe |     |     |
| 385                                                             | 390 | 395 |
| Cys Pro Asn Cys Arg Gly Glu Arg Pro Asn Val Met Lys Pro Lys Ala |     |     |
| 405                                                             | 410 | 415 |
| Gln Phe Leu Lys Glu Leu Glu Arg Tyr Asn Lys Glu Lys Glu Glu Lys |     |     |
| 420                                                             | 425 | 430 |

Thr

<210> 21  
<211> 2666  
<212> DNA  
<213> Drosophila melanogaster

<400> 21  
cattttgtac agtctaaacg gggattcgcg taaaactacgc agaaaatataa acaaacaaaaa 60  
actagtagac tatagaatat aaacagtttc ctaccaatgg agacttgta agtggaggga 120  
gaggcggaga cgctggtgag acgcttctcc gtcagctgcg agcaatttggaa gctggaagcg 180  
agaattcagc aaagcgctct gtccacccatc catcgcttgg atgcggtaa cgggctgtcc 240  
accagcgagg cagatgccca ggagtggctg tggcgcggcc tctacagcga actgcagcgc 300  
tcgaagatgc gcgatattag ggagtccatc aacgaggcaa acgattcggt ggccaagaac 360  
tgctgcttggaa acgtgtcaact aacccgtctg ctgcgcagct ttaagatgaa cgtgtcccag 420  
tttctacgcc gcatggagca ctggaattgg ctgacccaaa acgagaacac tttccagctg 480  
gagggttggagg aactgcgttg tcgacttggt attacttcga cgctgctgcg gcattataag 540  
cacatcttcc ggagccctgtt cgttcacccg gcaagggtgc ggacccgggt gccgcgaatc 600  
actaccaagc gctgttatgag ttccgggttggt tgctcttccct ggtcattcgc aacgagttac 660  
cccgttttgc gattacaaac ctgatcaacg gctgtcaggt gctcggttgc acaatggatc 720

tccttttgt gaacgccta gaggtgcccc gatccgtagt tatccgcgg gagttctctg 780  
 gagtgccaa gaattggac accgaagact tcaatcctat tttgctaaat aaatatacg 840  
 tgctagaagc actgggagaa ctgattcccg agtaccagc gaagggagtg gtgcaaatga 900  
 agaacgcctt tttccacaaa gcctaataa tgctctatat ggaccatagt ctagttggag 960  
 acgacaccca tatgcgggag atcattaagg agggtagtgc agatataat ctggaaaaact 1020  
 taaatcgaa atacaccaat caagtagccg acattagtga gatggacgag cgtgtctgc 1080  
 tcagcgtcca gggggcgata gagaccaaag gggactctcc taaaagccca cagctcgct 1140  
 tccaaacaag ctcgtcacct tcgcataagga agctgtccac ccatgatcta ccagcaagtc 1200  
 ttcccctaag cattataaaa gcattccca agaaggaaga cgccagataaa attgtaaatt 1260  
 atttagatca aactctggaa gaaatgaatc ggacctttac catggccgtg aaagattttt 1320  
 tggatgctaa gttgtctgga aaacgattcc gccaggccag aggcccttac tacaaatatt 1380  
 tgcagaaaaat tttgggaccg gagctggtc aaaaaccaca gctgaagatt ggtcagttaa 1440  
 tgaagcagcg caagcttacc gccgcctgt tagcttgctg cctggaactg gcacttcacg 1500  
 tccaccacaa actagtggaa ggcctaaggt ttcctttgt cctgcactgc ttttcaactgg 1560  
 acgcctacga ct当地aaag attctagatg tgggtgtcgct acgcatacat ggtttctgg 1620  
 gcagagagct gatcaagcac ctggatgtgg tggagaaat gtgcctggag tcgttatttt 1680  
 tccgcaagag ctcacagctg tgggtggagc taaatcaaag acttccccgc tacaaggaag 1740  
 tcgatgcaga aacagaagac aaggagaact tttcaacagg ctcaagcatc tgccctcgaa 1800  
 agttctacgg actggccaac cggcggctgc tccttctgtg taagagtctt tgccctcggt 1860  
 attccttcc ccaaataatgg cacctggccg agcactctt caccttagag agtagccgtc 1920  
 tgctccgcaa tcgacacactg gaccaactgc tgggtgtcgct catacatctt catgttcggc 1980  
 tcgagaagct tcacactact ttcagcatga ttatccagca ctatcgccga cagccgact 2040  
 ttcggagaag cgcttaccga gaggttagct tgggcaatgg tcagaccgct gatattatca 2100  
 ct当地tacaa cagtgtgtat gtccaaagta tgggcaacta tggccgcac ctggagtgtg 2160  
 cgcaaacacg caagtcactg gaagaatcac agagtagcgt tggattctg acggaaaaaca 2220  
 acttccaacg aattgagcat gagagccaaatc atcagcatat ct当地accgc ccctcccagg 2280  
 gtatgccaaa gtggctcctg ctccagtcat ccaccttcat ctccgcgc atcaccactt 2340  
 tccttgc当地a gctcgccaa cgtaaagcgt gctgcttcga gtaacgactt gatgagagag 2400  
 atcaagcgcac caaacatctt cggcgtcgct cagcttctg tggattctt accaatcaaa 2460  
 aaaggcttaa atacttggct cgttttacg cagctagctt agtataatttc taaaactcaa 2520  
 aatggtaat taaataatgt taaaattata gatattttt taacttggc aagtaagtta 2580  
 aaagcttttgc ttttgc当地 aataaaggaa taactgccac tcgttagttt aataaatttt 2640  
 taaaaaaaaaaaaaaa aaaaaaaaaaaaaaaa ctgcag 2666

&lt;210&gt; 22

&lt;211&gt; 556

&lt;212&gt; PRT

&lt;213&gt; Drosophila melanogaster

&lt;400&gt; 22

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Met | Asp | Leu | Leu | Phe | Val | Asn | Ala | Leu | Glu | Val | Pro | Arg | Ser | Val | Val |
| 1   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |

5

10

15

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Ile | Arg | Arg | Glu | Phe | Ser | Gly | Val | Pro | Lys | Asn | Trp | Asp | Thr | Glu | Asp |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |

20

25

30

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Phe | Asn | Pro | Ile | Leu | Leu | Asn | Lys | Tyr | Ser | Val | Leu | Glu | Ala | Leu | Gly |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|

|                                                                 |     |     |
|-----------------------------------------------------------------|-----|-----|
| 35                                                              | 40  | 45  |
| Glu Leu Ile Pro Glu Leu Pro Ala Lys Gly Val Val Gln Met Lys Asn |     |     |
| 50                                                              | 55  | 60  |
| Ala Phe Phe His Lys Ala Leu Ile Met Leu Tyr Met Asp His Ser Leu |     |     |
| 65                                                              | 70  | 75  |
| Val Gly Asp Asp Thr His Met Arg Glu Ile Ile Lys Glu Gly Met Leu |     |     |
| 85                                                              | 90  | 95  |
| Asp Ile Asn Leu Glu Asn Leu Asn Arg Lys Tyr Thr Asn Gln Val Ala |     |     |
| 100                                                             | 105 | 110 |
| Asp Ile Ser Glu Met Asp Glu Arg Val Leu Leu Ser Val Gln Gly Ala |     |     |
| 115                                                             | 120 | 125 |
| Ile Glu Thr Lys Gly Asp Ser Pro Lys Ser Pro Gln Leu Ala Phe Gln |     |     |
| 130                                                             | 135 | 140 |
| Thr Ser Ser Ser Pro Ser His Arg Lys Leu Ser Thr His Asp Leu Pro |     |     |
| 145                                                             | 150 | 155 |
| Ala Ser Leu Pro Leu Ser Ile Ile Lys Ala Phe Pro Lys Lys Glu Asp |     |     |
| 165                                                             | 170 | 175 |
| Ala Asp Lys Ile Val Asn Tyr Leu Asp Gln Thr Leu Glu Glu Met Asn |     |     |
| 180                                                             | 185 | 190 |
| Arg Thr Phe Thr Met Ala Val Lys Asp Phe Leu Asp Ala Lys Leu Ser |     |     |
| 195                                                             | 200 | 205 |
| Gly Lys Arg Phe Arg Gln Ala Arg Gly Leu Tyr Tyr Lys Tyr Leu Gln |     |     |
| 210                                                             | 215 | 220 |
| Lys Ile Leu Gly Pro Glu Leu Val Gln Lys Pro Gln Leu Lys Ile Gly |     |     |
| 225                                                             | 230 | 235 |
| Gln Leu Met Lys Gln Arg Lys Leu Thr Ala Ala Leu Leu Ala Cys Cys |     |     |
| 245                                                             | 250 | 255 |
| Leu Glu Leu Ala Leu His Val His His Lys Leu Val Glu Gly Leu Arg |     |     |
| 260                                                             | 265 | 270 |
| Phe Pro Phe Val Leu His Cys Phe Ser Leu Asp Ala Tyr Asp Phe Gln |     |     |
| 275                                                             | 280 | 285 |
| Lys Ile Leu Glu Leu Val Val Arg Tyr Asp His Gly Phe Leu Gly Arg |     |     |

|                                                                 |     |     |
|-----------------------------------------------------------------|-----|-----|
| 290                                                             | 295 | 300 |
| Glu Leu Ile Lys His Leu Asp Val Val Glu Glu Met Cys Leu Glu Ser |     |     |
| 305                                                             | 310 | 315 |
| Leu Ile Phe Arg Lys Ser Ser Gln Leu Trp Trp Glu Leu Asn Gln Arg |     |     |
| 325                                                             | 330 | 335 |
| Leu Pro Arg Tyr Lys Glu Val Asp Ala Glu Thr Glu Asp Lys Glu Asn |     |     |
| 340                                                             | 345 | 350 |
| Phe Ser Thr Gly Ser Ser Ile Cys Leu Arg Lys Phe Tyr Gly Leu Ala |     |     |
| 355                                                             | 360 | 365 |
| Asn Arg Arg Leu Leu Leu Cys Lys Ser Leu Cys Leu Val Asp Ser     |     |     |
| 370                                                             | 375 | 380 |
| Phe Pro Gln Ile Trp His Leu Ala Glu His Ser Phe Thr Leu Glu Ser |     |     |
| 385                                                             | 390 | 395 |
| Ser Arg Leu Leu Arg Asn Arg His Leu Asp Gln Leu Leu Leu Cys Ala |     |     |
| 405                                                             | 410 | 415 |
| Ile His Leu His Val Arg Leu Glu Lys Leu His Leu Thr Phe Ser Met |     |     |
| 420                                                             | 425 | 430 |
| Ile Ile Gln His Tyr Arg Arg Gln Pro His Phe Arg Arg Ser Ala Tyr |     |     |
| 435                                                             | 440 | 445 |
| Arg Glu Val Ser Leu Gly Asn Gly Gln Thr Ala Asp Ile Ile Thr Phe |     |     |
| 450                                                             | 455 | 460 |
| Tyr Asn Ser Val Tyr Val Gln Ser Met Gly Asn Tyr Gly Arg His Leu |     |     |
| 465                                                             | 470 | 475 |
| 480                                                             |     |     |
| Glu Cys Ala Gln Thr Arg Lys Ser Leu Glu Glu Ser Gln Ser Ser Val |     |     |
| 485                                                             | 490 | 495 |
| Gly Ile Leu Thr Glu Asn Asn Phe Gln Arg Ile Glu His Glu Ser Gln |     |     |
| 500                                                             | 505 | 510 |
| His Gln His Ile Phe Thr Ala Pro Ser Gln Gly Met Pro Lys Trp Leu |     |     |
| 515                                                             | 520 | 525 |
| Leu Leu Gln Ser Ser Thr Phe Ile Ser Arg Arg Ile Thr Thr Phe Leu |     |     |
| 530                                                             | 535 | 540 |
| Ala Lys Leu Ala Gln Arg Lys Ala Cys Cys Phe Glu                 |     |     |

**545**

**550**

**555**

## INTERNATIONAL SEARCH REPORT

International application No.

PCT/US00/06602

**A. CLASSIFICATION OF SUBJECT MATTER**

IPC(7) :C07H 21/04; C07K 14/00; C12N 15/00  
 US CL :435/455; 530/350; 536/23.5; 800/3, 13

According to International Patent Classification (IPC) or to both national classification and IPC

**B. FIELDS SEARCHED**

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 435/455; 530/350; 536/23.5; 800/3, 13

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

WEST

Dialog (file: medicine)

search terms: p53, Rb, tumor suppressor, Drosophila, insect.

**C. DOCUMENTS CONSIDERED TO BE RELEVANT**

| Category* | Citation of document, with indication, where appropriate, of the relevant passages                                                                                             | Relevant to claim No. |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| A         | DONEOWER et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature. 19 March 1992, Vol. 356, pages 215-221, entire document.     | 1-28                  |
| A         | FIELDS et al. Presence of a potent transcription activating sequence in the p53 protein. Science. 31 August 1990, Vol. 249, pages 1046-1049, entire document.                  | 1-28                  |
| A         | KUSSIE et al. Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science. 08 November 1996, Vol. 274, pages 948-953, entire document. | 1-28                  |

Further documents are listed in the continuation of Box C.  See patent family annex.

|                                                                                                                                                                        |     |                                                                                                                                                                                                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| * Special categories of cited documents:                                                                                                                               | "T" | later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention                                              |
| "A" document defining the general state of the art which is not considered to be of particular relevance                                                               | "T" | document defining the general state of the art which is not considered to be of particular relevance                                                                                                                                         |
| "E" earlier document published on or after the international filing date                                                                                               | "X" | document of particular relevance, the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone                                                                     |
| "L" document which may throw doubt on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) | "Y" | document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art |
| "O" document referring to an oral disclosure, use, exhibition or other means                                                                                           | "&" | document member of the same patent family                                                                                                                                                                                                    |
| "P" document published prior to the international filing date but later than the priority date claimed                                                                 |     |                                                                                                                                                                                                                                              |

Date of the actual completion of the international search Date of mailing of the international search report

19 JUNE 2000

09 AUG 2000

Name and mailing address of the ISA/US  
Commissioner of Patents and Trademarks  
Box PCT  
Washington, D.C. 20231

Authorized officer

ANNE-MARIE BAKER, PH.D.

Facsimile No. (703) 305-3230

Telephone No. (703) 308-0196



## INTERNATIONAL SEARCH REPORT

International application No.

PCT/US00/06602

## C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

| Category* | Citation of document, with indication, where appropriate, of the relevant passages                                                                                                  | Relevant to claim No. |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| A         | LEVINE, A. J. p53, the cellular gatekeeper for growth and division. Cell. 07 February 1997, Vol. 88, pages 323-331, entire document.                                                | 1-28                  |
| A         | RAYCROFT et al. Transcriptional activation by wild-type but not transforming mutants of the p53 anti-oncogene. Science. 31 August 1990, Vol. 249, pages 1049-1051, entire document. | 1-28                  |