Байесовы нейронные сети

Басов Дмитрий Константинович

1 Обозначения и сокращения

 $N(\mu, \sigma^2)$ — нормальное распределение

 $\mathbf{x} \cdot \mathbf{y}$ — поэлементное произведение (произведение Адамара)

 \mathcal{L} — Evidence Lower Bound (ELBO)

$$KL(q||p) = \int q(\mathbf{Z}) \cdot \ln \frac{q(\mathbf{Z})}{p(\mathbf{Z})} d\mathbf{Z}$$
 — расстояние Кульбака — Лейблера

 \mathbf{x} — вектор признаков

y — таргет

D — датасет — пары значений $\{\mathbf{x_i}, \mathbf{y_i}\}$, где $i = 1, \dots, L$

 \mathbf{W} — параметры модели — случайная величина размерности \mathbf{M}

$$p(D|\mathbf{W}) = \prod_{i=1}^{L} p(\mathbf{y_i}|\mathbf{x_i}, \mathbf{W})$$
 — правдоподобие (likelihood)

 $p(\mathbf{W})$ — априорное распределение параметров модели (prior)

 $p(\mathbf{W}|D)$ — апостериорное распределение параметров модели (posterior)

p(D) — маргинальная вероятность датасета (evidence)

 $q(\mathbf{W})$ — аппроксимация апостериорного распределения параметров модели

 $p(\mathbf{W}, D) = p(D|\mathbf{W}) \cdot p(\mathbf{W}) = p(\mathbf{W}|D) \cdot p(D)$ — совместная вероятность параметров и данных

2 Постановка задачи

Постановка задачи следующая: у нас есть датасет D и наша цель — смоделировать распределение $p(\mathbf{y}|\mathbf{x},D)$. То есть мы хотим получить распределение вероятностей таргета \mathbf{y} для неразмеченных \mathbf{x} , используя датасет \mathbf{D} . Сделаем следующие преобразования:

$$p(\mathbf{y}|\mathbf{x}, D) = \int p(\mathbf{y}, \mathbf{W}|\mathbf{x}, D) d\mathbf{W} = \int p(\mathbf{y}|\mathbf{W}, \mathbf{x}, D) \cdot p(\mathbf{W}|\mathbf{x}, D) d\mathbf{W} = \int p(\mathbf{y}|\mathbf{W}, \mathbf{x}) \cdot p(\mathbf{W}|D) d\mathbf{W}$$

Получим выражение для $p(\mathbf{W}|D)$, используя формулу Байеса:

$$p(\mathbf{W}|D) = \frac{p(\mathbf{W},D)}{p(D)} = \frac{p(\mathbf{W},D)}{\int p(\mathbf{W},D)d\mathbf{W}} = \frac{p(D|\mathbf{W}) \cdot p(\mathbf{W})}{\int p(D|\mathbf{W}) \cdot p(\mathbf{W})d\mathbf{W}}$$

Для аппроксимации распределения ответов модели можно воспользоваться методом Монте — Карло: взять сэмпл весов $\hat{\mathbf{W}}$ из $p(\mathbf{W}|D)$, прогнать их через модель и получить $\hat{\mathbf{y}}$. Однако для этого необходимо уметь сэмплировать из распределения $p(\mathbf{W}|D)$.

Получить аналитическое решение можно только в очень ограниченном числе случаев. Существует возможность сэмплировать из $p(\mathbf{W}|D)$, используя методы Монте — Карло для марковских цепей (МСМС). Однако для больших датасетов и большого числа параметров это становится технически сложно. Альтернативный подход к решению таких задач — аппроксимация распределения $p(\mathbf{W}|D)$ распределением $q(\mathbf{W})$, из которого сэмплировать намного проще.

3 Вариационный вывод для нейронной сети

Запишем выражение ELBO для распределения $q(\mathbf{W})$ и преобразуем его, используя тождество $p(\mathbf{W}, D) = p(\mathbf{W}|D) \cdot p(D)$:

$$\mathcal{L}(q(\mathbf{W})) = \int q(\mathbf{W}) \cdot \ln \frac{p(\mathbf{D}, \mathbf{W})}{q(\mathbf{W})} d\mathbf{W} = \int q(\mathbf{W}) \cdot \ln \frac{p(\mathbf{W}|D) \cdot p(D)}{q(\mathbf{W})} d\mathbf{W} = \ln p(D) \cdot \int q(\mathbf{W}) d\mathbf{W} - \int q(\mathbf{W}) \cdot \ln \frac{q(\mathbf{W})}{p(\mathbf{W}|D)} d\mathbf{W} = \ln p(D) - KL(q(\mathbf{W})||p(\mathbf{W}|D))$$

Из равенства $\mathcal{L}(q(\mathbf{W})) = ln(p(D)) - KL(q(\mathbf{W})||p(\mathbf{W}|D))$ видно, что максимизируя $\mathcal{L}(q(\mathbf{W}))$, мы не только максимизируем ln(D), но и минимизируем $KL(q(\mathbf{W})||p(\mathbf{W}|D))$. То есть распределение $q(\mathbf{W})$ будет приближаться к распределению $p(\mathbf{W}|D)$.

Будем максимизировать $\mathcal{L}(q(\mathbf{W}))$. Преобразуем выражение для $\mathcal{L}(q(\mathbf{W}))$, используя тождество $p(\mathbf{W}, D) = p(D|\mathbf{W}) \cdot p(\mathbf{W})$:

$$\mathcal{L}(q(\mathbf{W})) = \int q(\mathbf{W}) \cdot \ln \frac{p(\mathbf{D}, \mathbf{W})}{q(\mathbf{W})} d\mathbf{W} = \int q(\mathbf{W}) \cdot \ln \frac{p(D|\mathbf{W}) \cdot p(\mathbf{W})}{q(\mathbf{W})} d\mathbf{W} = \int q(\mathbf{W}) \cdot \ln p(D|\mathbf{W}) d\mathbf{W} - \int q(\mathbf{W}) \cdot \ln \frac{q(\mathbf{W})}{p(\mathbf{W})} = \int q(\mathbf{W}) \cdot \ln p(D|\mathbf{W}) d\mathbf{W} - KL(q(\mathbf{W})||p(\mathbf{W}))$$

Для дальнейшнего вывода положим, что распределения $p(\mathbf{W})$ и $q(\mathbf{W})$ являются нормальными с диагональными матрицами ковариации:

$$p(\mathbf{W}) = N(\mathbf{W}|\mathbf{0}, \sigma_{p(\mathbf{W})}^2 \cdot \mathbf{I})$$
, где $\sigma_{p(\mathbf{W})}$ — вектор длины М $q(\mathbf{W}) = N(\mathbf{W}|\boldsymbol{\mu}, \sigma_{q(\mathbf{W})}^2 \cdot \mathbf{I})$, где $\boldsymbol{\mu}$ и $\sigma_{q(\mathbf{W})}$ — вектора длины М

Так как распределения $p(\mathbf{W})$ и $q(\mathbf{W})$ являются нормальными, то $KL(q(\mathbf{W})||p(\mathbf{W}))$ можно посчитать аналитически:

$$KL(q(\mathbf{W})||p(\mathbf{W})) = \frac{1}{2} \sum_{k=1}^{M} (\frac{\sigma_{q(W)_k}^2}{\sigma_{p(W)_k}^2} + \frac{\mu_k^2}{\sigma_{p(W)_k}^2} - \ln \frac{\sigma_{q(W)_k}^2}{\sigma_{p(W)_k}^2} - 1)$$

Априорное распределение параметров модели определяется параметром $\sigma_{p(\mathbf{W})}$. Воспользуемся техникой эмпирического Байеса — нахождения параметров априорного распределения из данных. Посчитаем $\frac{d\mathcal{L}(q(\mathbf{W}))}{d(\sigma_{p(W)}^{-2})}$:

$$\begin{split} \frac{d\mathcal{L}(q(\mathbf{W}))}{d(\sigma_{p(W)_k}^{-2})} &= \frac{d(\int q(\mathbf{W}) \cdot \ln p(D|\mathbf{W}) d\mathbf{W} - KL(q(\mathbf{W})||p(\mathbf{W})))}{d(\sigma_{p(W)_k}^{-2})} = -\frac{d(KL(q(\mathbf{W})||p(\mathbf{W})))}{d(\sigma_{p(W)_k}^{-2})} \\ \frac{d\mathcal{L}(q(\mathbf{W}))}{d(\sigma_{p(W)_k}^{-2})} &= -\frac{1}{2} \sum_{k=1}^{M} (\sigma_{q(W)_k}^2 + \mu_k^2 - \sigma_{p(W)_k}^2) \end{split}$$

Приравняв производную к нулю, получим:

$$-\frac{1}{2} \sum_{k=1}^{M} (\sigma_{q(W)_k}^2 + \mu_k^2 - \sigma_{p(W)_k}^2) = 0$$
$$(\sigma_{q(W)_k}^2 + \mu_k^2 - \sigma_{p(W)_k}^2) = 0$$
$$\sigma_{p(W)}^2 = \mu^2 + \sigma_{q(W)}^2$$

Подставив полученное выражение в $KL(q(\mathbf{W})||p(\mathbf{W}))$, получим:

$$KL(q(\mathbf{W})||p(\mathbf{W})) = \frac{1}{2} \sum_{k=1}^{M} \ln(1 + \frac{\mu_k^2}{\sigma_{q(W)_k}^2})$$

Чтобы избежать неопределенности $\frac{0}{0}$, и чтобы $\sigma_{q(\mathbf{W})}$ была всегда положительна, сделаем следующую замену переменных:

$$\mu_k = \gamma_k \cdot e^{\rho_k}$$
$$\sigma_{q(W)_k} = |\gamma_k|$$

Тогда:

$$KL(q(\mathbf{W})||p(\mathbf{W})) = \frac{1}{2} \sum_{k=1}^{M} \ln(1 + \frac{\mu_k^2}{\sigma_{q(W)_k}^2}) = \frac{1}{2} \sum_{k=1}^{M} \ln(1 + e^{2 \cdot \rho_k}) = \frac{1}{2} \sum_{k=1}^{M} Softplus(2 \cdot \rho_k)$$

Таким образом, функция потерь будет иметь следующий вид:

$$\begin{split} Loss(\pmb{\rho},\pmb{\gamma}) &= -\frac{\mathcal{L}(q(\mathbf{W}))}{L} = \int N(\mathbf{W}|\pmb{\mu},\pmb{\sigma_{q(\mathbf{W})}}^2 \cdot \mathbf{I}) \cdot NLL \cdot d\mathbf{W} + \frac{KL}{L}, \text{ где:} \\ \pmb{\mu} &= \pmb{\gamma} \cdot \exp(\pmb{\rho}) \\ \pmb{\sigma_{q(\mathbf{W})}} &= |\pmb{\gamma}| \\ NLL &= -\frac{1}{L} \sum_{i=1}^{L} \ln p(\mathbf{y_i}|\mathbf{x_i},\mathbf{W}) \\ KL &= \frac{1}{2} \sum_{k=1}^{M} Softplus(2 \cdot \rho_k) \end{split}$$

4 Алгоритм обучения

Задаем шаг градиентного спуска α и инициализируем параметры распределения $q(\mathbf{W}) - \pmb{\rho}$ и $\pmb{\gamma}$. Затем повторяем, пока не достигнем критерия остановки:

1.
$$\sigma \leftarrow |\gamma|$$

2.
$$\boldsymbol{\mu} \leftarrow \boldsymbol{\gamma} \cdot \exp(\boldsymbol{\rho})$$

3.
$$\hat{\mathbf{W}} \leftarrow N(0,1)$$
 — сэмплируем случайные веса

4.
$$\hat{\mathbf{W}} \leftarrow \hat{\mathbf{W}} \cdot \boldsymbol{\sigma} + \boldsymbol{\mu}$$
 — репараметризация

5.
$$nll \leftarrow -\frac{1}{L} \sum_{i=1}^{L} \ln p(\mathbf{y_i}|\mathbf{x_i}, \hat{\mathbf{W}})$$

6.
$$kl \leftarrow \frac{1}{2} \sum_{k=1}^{M} Softplus(2 \cdot \rho_k)$$

7.
$$l \leftarrow nll + \frac{kl}{L}$$
 — считаем функцию потерь

8.
$$\boldsymbol{\rho} \leftarrow \boldsymbol{\rho} - \alpha \frac{dl}{d\boldsymbol{\rho}}$$

9.
$$\gamma \leftarrow \gamma - \alpha \frac{dl}{d\gamma}$$

5 Эксперименты

Для проверки своей гипотезы я выбрал Alzheimer's Disease Dataset. Данные были разбиты на тренировочную и тестовую часть в пропорции 80 на 20. В качестве архитектуры была выбрана полносвязная нейронная сеть с одним скрытым слоем и функцией активации ReLU. То есть:

$$z = ReLU(matmul(x, W_1))$$

 $y = Sigmoid(matmul(z, W_2))$

Размерность скрытого состояния z варьировалась от 1 до 37. Для каждой размерности обучались 2 модели - классическая (без регуляризации) и байесовская. Для каждой модели производилась оценка ROC-AUC на тренировочной и тестовой выборках. На рисунках 1 и 2 представлены результаты экспериментов

Рис. 1: Зависимость e^{-loss} от размерности скрытого состояния на тренировочных данных

Рис. 2: Зависимость ROC-AUC от размерности скрытого состояния на тренировочных и тестовых данных

6 Выводы

По результатам работы можно сделать следующие выводы:

- с ростом сложности модели байесова нейронная сеть не переобучилась;
- качество на тестовой выборке на всём рассматриваемом диапазоне гиперпараметров у байесовой нейронной сети было выше, чем у классической;
- значение ROC-AUC на тестовой выборке имеет очень высокую корреляцию со значением ELBO на тренировочной выборке (0.89 по Спирмену). Следовательно, для подбора гиперпараметров можно ориентироваться на любые монотонные преобразования от ELBO (например e^{-loss}). Это даёт нам возможность отказаться от деления на тренировочную и валидационную выборки для подбора гиперпараметров.

Так же стоит отметить, что данный подход переносится на другие архитектуры нейронных сетей (рекуррентные, свёрточные, трансформеры).

Имлементация данного подхода была выполнена с использованием PyTorch. Весь исходный код для проведения экспериментов размещён по адресу https://github.com/dimabasow/bayesian-neural-networks.