

Phase-1 Submission

Student Name: Mohamed Saif

Register Number: 712523205041

Institution: PPG Institute of Technology

Department: B TECH

Date of Submission: 04:05:2025

1.Problem Statement

Stock market forecasting remains a challenging and complex task due to the volatile and non-linear nature of financial markets. Traditional prediction methods often fail to account for temporal dependencies and dynamic patterns. This project aims to develop an AI-driven time series prediction system that:

- Predicts stock prices with high accuracy
- Captures complex market patterns using deep learning models
- Provides interpretable results to support informed investment decisions

2. Objectives of the Project

By the end of the project, we aim to:

- Build a stock price prediction model with high accuracy using time series analysis
- Implement LSTM (Long Short-Term Memory) networks for sequential data forecasting
- Analyze market trends and significant influencing features
- Optionally deploy a Streamlit web app for real-time predictions

3. Scope of the Project

Features Included:

- ✓ Time series analysis of stock data (OHLC and volume)
- ✓ Comparative model evaluation (ARIMA vs. LSTM)
- ✓ Visual dashboards for trend and prediction analysis

Limitations:

- **★** Focused only on select company stocks
- **★** Historical data only (no live API feeds)
- **★** Lightweight local deployment

4.Data Sources

This project will utilize publicly available datasets such as:

- Yahoo Finance historical stock data (CSV via yfinance API)
- Optional: NSE/BSE datasets for Indian stocks (<u>Dataset for Stock Market Prediction</u>)

These datasets provide historical price, volume, and technical indicators required for training time series models.

5.High-Level Methodology

Data Collection

Download stock data using **yfinance** or from Kaggle/NSE

Data Cleaning

Handle missing entries, normalize values, convert time to proper format

Exploratory Data Analysis (EDA)

Plot moving averages, RSI, MACD, and price trends

Feature Engineering

Generate lag features, rolling means, and technical indicators

Model Building

• Baseline: ARIMA/Prophet

• Advanced: LSTM/GRU using TensorFlow or PyTorch

Model Evaluation

Metrics: RMSE, MAE, R² score Train-test split by time sequence

Visualization & Interpretation

Plot actual vs. predicted prices Include model explainability via attention scores (if applicable)

Deployment

Deploy via Streamlit for local web interface

6.Tools and Technologies

Programming Language: Python 3.8

IDE/Notebook: Google Colab

Libraries Used:

• Data Processing: pandas, numpy

• Time Series: statsmodels, yfinance, fbprophet

• Deep Learning: tensorflow, keras

• Visualization: matplotlib, seaborn, plotly

Deployment: Streamlit (for web interface)

7. Team Members and Roles

Team Members and Roles

Name	Role	Responsibilities
Mohamed Saif	Project Lead	Model architecture design and LSTM implementation
Diya Angelin S.P.	Data Engineer	Data acquisition, cleaning, feature engineering
Naveen M	Visualization Specialist	EDA charts, trend visualizations, forecasting graphs

Sanjay M	Deployment Engineer	Streamlit app development and optimization
----------	---------------------	--