21-127 Homework 11

Christian Broms Section J

Tuesday 17th April, 2018

Complete the following problems. Fully justify each response.

- 1. Let $(X,0,1,+,\cdot)$ be a field, where X is a finite set. Prove that there is no ordering \leq on X under which X is an ordered field.
- 2. Let $(X, 0, 1, +, \cdot, \leq)$ be an ordered field. Prove each of the following basic ordered field properties, from axioms.
 - (a) For all $x \in X$, $x^2 > 0$.
 - (b) For all $w, x, y, z \in X$, if $w \le x$ and $y \le z$, then $w + y \le x + z$.
 - (c) For all $x, y, z \in X$, if $x \ge 0$ and $y \le z$, then $xy \le xz$.
 - (d) For all $x, y, z \in X$, if $x \le 0$ and $y \le z$, then $xy \ge xz$.
- 3. Let $\vec{x}, \vec{y}, \vec{z} \in \mathbb{R}^n$. Prove that $\|\vec{x} \vec{z}\| \le \|\vec{x} \vec{y}\| + \|\vec{y} \vec{z}\|$.

Proof. Recall the triangle inequality: ||a+b|| = ||a|| + ||b||. Let $a = \vec{x} - \vec{y}$ and let $b = \vec{y} - \vec{z}$. Then we have

$$\|\vec{x} - \vec{y} + \vec{y} - \vec{z}\| \le \|\vec{x} - \vec{y}\| + \|\vec{y} - \vec{z}\|$$
$$\|\vec{x} - \vec{z}\| \le \|\vec{x} - \vec{y}\| + \|\vec{y} - \vec{z}\|$$

and we are done.

4. Let $x_n = \frac{n+2}{n+1}$. Prove that x_n converges to 1.

Proof. Let $\epsilon>0$ and let $N\in\mathbb{N}$ with $N>\frac{1}{\epsilon}-1$. Let $n\geq N$. Then $|\frac{n+2}{n+1}-1|=\frac{1}{n+1}<\frac{1}{N+1}<\frac{1}{\frac{1}{\epsilon}-1+1}=\epsilon$. Therefore, by definition, $(\frac{n+2}{n+1})\to 1$.

5. Let (x_n) and (y_n) be sequences of real numbers, with $(x_n) \to a$ and $(y_n) \to b$. Let $z_n = x_n y_n$ for all $n \in \mathbb{N}$. Prove that $(z_n) \to ab$.

Proof. Let $\epsilon > 0$. Since every convergent sequence of real numbers must be bounded, there exists some M > 0, $N_1 \in \mathbb{N}$, where

$$\forall n \geq N_1, |x_n| < M$$

In addition, since (x_n) and (y_n) both converge, then there exists $N_2, N_3 \in \mathbb{N}$ such that

$$\forall n \ge N_2, |x_n - a| < \frac{\epsilon}{2|b|}$$

$$\forall n \ge N_3, |y_n - b| < \frac{\epsilon}{2M}$$

So $\forall n \geq N, N = \max\{N_1, N_2, N_3\}.$

Now,

$$|(x_n - y_n) - ab| = |x_n y_n - x_n b + x_n b - ab|$$

$$\leq |x_n y_n - x_n b| + |x_n b - ab|$$

$$\leq |x_n (y_n - b)| + |b(x_n - a)|$$

Substituting, we have

$$M \cdot \frac{\epsilon}{|2M|} + |b| \cdot \frac{\epsilon}{|2b|} = \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

Hence, $\forall \epsilon > 0$, $\exists N \in \mathbb{N}$ such that if $n \geq N$, $|x_n y_n - ab| < \epsilon$. Thus, we conclude $x_n y_n \to ab$.

6. Prove that if (x_n) is a monotonically decreasing sequence, having a lower bound, then (x_n) converges.