KLASIFIKACE ZVUKOVÉHO SIGNÁLU

Tvorba titulků pro neslyšící

Filip Širc Martin Kunz

Automatické využití dat z YouTube

Efektivní klasifikace zvukových dat

Klasifikace pro každou sekundu zvukové stopy

The contraction of the second second

Dál už mi nic neříkejte! Dejte mi papír, tužku a kružidlo a nechte mne na pokoji. Však já na to přijdu sám!

[Zdeněk Jirotka - Saturnin]

TEORETICKÝ ÚVOD

- Zvuk je mechanické vlnění, které se šíří látkovým prostředím
- Jednotlivé zvukové signály se mohou lišit
 - Amplitudou
 - Složením frekvencí
 - Vývojem frekvencí v čase
- Zvuk lze reprezentovat jako waveform či spektrogram
 - o Waveform lépe reflektuje informace o amplitudě
 - o Spektrogram o složení frekvencí

ZÍSKÁVÁNÍ DAT

- Google Audioset 2 100 000 anotovaných videí v mnoha kategoriích
 - o Uloženo formou odkazů na youtube videa se začátkem a koncem
 - Každé video může obsahuje více kategorií
 - o Nejedná se o "čistý" zvuk obsahuje velké množství šumu
 - o Chybovost anotací cca 5 − 10% dle kategorie
- **Yt_dlp** python knihovna pro těžení dat z youtube, pro stažení dat je nutné
 - Otevřít okno v chromiu a odscrollovat až na konec při zohlednění času na load
 - Stáhnou meta data o jednotlivých videích id videa, label, čas začátku a konce zvukového záznamu
 - Stáhnout si vybraná videa podle metadat

Accordion (2,894 annotations in dataset)

Baby cry, infant cry (2,390 annotations in dataset)

Musical instrument (117,343 annotations in dataset)

PLÁN IMPLEMENTACE

"Po částech"

- Naučíme se klasifikovat "čisté" zvukové stopy
- Výslednou stopu rozsekáme na části, které budeme evaluovat

Výhody

Rychlejší učení

Nevýhody

 Horší klasifikace "přechodů" mezi zvuky

"Dohromady"

- Uměle si vytvoříme anotované zvukové stopy spojováním menších celků
- Síť budeme učit na takto anotovaných datech
- Výslednou stopu budeme evaluovat "as is"

Výhody

Vyšší citlivost na změny ve zvuku

Nevýhody

- Větší výpočetní náročnost
- o Větší nároky na čistotu dat

PŘÍPRAVA DAT -SPEKTROGRAMY

- Zvukový signál je důležité očistit a napočítat spektogramy
 - Sampling rate uniformovat
 - Délka signálu
 - Normalizace
- Výpočet spektogramů
 - Rozlišení
 - 128x128x1
 - 256x256x3
 - Typ
 - Klasický
 - Melův

ZÁKLADNÍ MODEL

Konvoluční neuronová síť

- 4 konvoluční vrstvy (32, 64, 128, 256)
- Fully connected klasifikační vrstva

Dataset:

- o 3000 zvukových záznamů ve 3 kategoriích
- o 128x128x1
- Bez augmentace dat

Layer (type)	Output Shape	Param #
conv2d_8 (Conv2D)	(None, 128, 128, 32)	320
batch_normalization_10 (BatchNormalization)	(None, 128, 128, 32)	128
max_pooling2d_8 (MaxPooling2D)	(None, 64, 64, 32)	0
dropout_10 (Dropout)	(None, 64, 64, 32)	0
conv2d_9 (Conv2D)	(None, 64, 64, 64)	18,496
batch_normalization_11 (BatchNormalization)	(None, 64, 64, 64)	256
max_pooling2d_9 (MaxPooling2D)	(None, 32, 32, 64)	0
dropout_11 (Dropout)	(None, 32, 32, 64)	0
conv2d_10 (Conv2D)	(None, 32, 32, 128)	73,856
batch_normalization_12 (BatchNormalization)	(None, 32, 32, 128)	512
max_pooling2d_10 (MaxPooling2D)	(None, 16, 16, 128)	0
dropout_12 (Dropout)	(None, 16, 16, 128)	0
conv2d_11 (Conv2D)	(None, 16, 16, 256)	295,168
batch_normalization_13 (BatchNormalization)	(None, 16, 16, 256)	1,024
max_pooling2d_11 (MaxPooling2D)	(None, 8, 8, 256)	0
dropout_13 (Dropout)	(None, 8, 8, 256)	0
flatten_2 (Flatten)	(None, 16384)	0
dense_4 (Dense)	(None, 256)	4,194,560
batch_normalization_14 (BatchNormalization)	(None, 256)	1,024
dropout_14 (Dropout)	(None, 256)	0
dense_5 (Dense)	(None, 3)	771

Total params: 4,586,115 (17.49 MB)

Trainable params: 4,584,643 (17.49 MB)

Non-trainable params: 1,472 (5,75 KB)

Model má sklony k overfittingu

velké množství parametrů => malý dataset

ZJEDNODUŠENÝ MODEL

Snížení počtu parametrů

- Zmenšení počtu konvolučních filtrů
- Zmenšení / nahrazení fully connected vrstvy

Ztráta schopnosti učit se

- Složitá data (velké množství detailů)
- nutnost velkého množství parametrů pro interpretaci

AUGMENTACE DAT

V případě zvukových dat lze množství dat zvýšit

- Šumem
- o Rozpadnutím signálu na menší části
- Přidáním překryvu

Rozpad signálu na menší části

- Větší detail při malém vzorkování
- Větší množství dat
- Ztráta časové souslednosti!

VÝSLEDKY PO AUGMENTACI

Množství dat: 3000 vzorků => 22000 vzorků

Závěry: Stabilizace učení o 10% vyšší přesnost

VÝSLEDNÁ KLASIFIKACE

DALŠÍ MOŽNOSTI PRO ZLEPŠENÍ

Zvětšení datasetu

- Přidání dalších tříd
- Očištění dat s více třídami

Vyčištění datasetu

- Manuálně
- Zero-shot
- Clap Model

Transfer learning

- EfficientNet
- ResNet
- VGG

TIPY K IMPLEMENTACI

Vizuální kontrola dat :-)

- Bývá dobré si před samostatným učením ověřit, že data vypadají rozumně
- Jinak možná budete podobně nešťastní jako já :-D

Předpříprava dat v samostatném skriptu

- K učení využívat už předpřipravená data (spektrogramy)
- Výrazné zrychlení oproti výpočtům "on-the-fly"

Využívat RAM

- I/O největší bottleneck
- Načtení dat do paměti zvýšilo výpočetní rychlost na GPU 100x
- 6 GB dat, 17 mil parametrů => 43s na epochu na T4

128×128

VLIV ROZLIŠENÍ SPEKTROGRAMU

Zanedbatelný až záporný

Spektogram 256 x 256 neposkytuje výrazně vyšší detail

 256×256

Děkujeme za pozornost!

