1 Lezione del 02-10-24

1.1 Generatori

I generatori sono i componenti che spostano le cariche attraverso le reti elettriche. Dividiamo i generatori in due macrocategorie, in base alle loro caratteristiche:

- **Indipendenti:** hanno sempre le stesse caratteristiche, e portano energia all'interno del circuito;
- **Dipendenti:** hanno caratteristiche *pilotate* da altri fattori del circuito, non portano energia in esso e quindi non sono diversi dagli altri dipoli passivi già visti.

Inoltre dividiamo entrambe in altre due categorie, in base al tipo di operazione che svolgono:

- Generatori di tensione: mantengono i loro capi a differenza di potenziale costante;
- Generatori di corrente: mantengono una corrente costante al loro interno.

Infine, dividiamo in due ulteriori modalità di operazione:

• Corrente continua: mantengono la corrente costante. Si dicono C.C. (Corrente Continua), o D.C. (Direct Current). Il grafico della corrente sarà:

• Corrente alternata: mantengono la corrente in regime sinousidale. Si dicono C.A. (Corrente Alternata), o A.C. (Alternating Current). Il grafico della corrente alternata è stato già visto all'inizio del corso, ha equazione:

$$i(t) = A \sin\left(\frac{2\pi}{T}t\right)$$

con A ampiezza e T periodo, e grafico:

Esistono poi altri regimi di applicazione della corrente, che vedremo per casi specifici (impulsi, gradini, ecc...).

Riportiamo intanto ogni combinazione delle prime quattro tipologie nel dettaglio.

1.1.1 Generatori di tensione

Un generatore di tensione (o voltaggio) ideale è un componente circuitale che mantiene i suoi capi A e B ad una differenza di potenziale V_{AB} costante, ovvero:

$$v(t) = E(t) = V$$

dove con *E* si indica la forza elettromotrice. Si indica come:

Si nota che a voltaggio nullo, un generatore di tensione equivale a un corto circuito (un filo ideale).

Correlazione con la corrente

La tensione erogata da un generatore di tensione è costante, qualsiasi sia la corrente che lo attraversa:

$$v(i) = \text{const.}$$

Il grafico di correlazione corrente-voltaggio sarà quindi:

Correlazione con la potenza

Tradizionalmente si descrivono i generatori di tensione attraverso riferimenti non associati di corrente e tensione. Resta il fatto che la potenza:

$$p(t) = v(t)i(t) = E(t)i(t)$$

quando è erogata dal generatore, è > 0.

Collegamenti in serie

Per sommare i contributi al voltaggio di più generatori di voltaggio, li disponiamo in serie:

Abbiamo che il contributo totale dei generatori equivale a quello di un singolo generatore E_T di voltaggio:

$$V_T = V_1 + V_2 + \dots + V_n$$

Collegamenti in parallelo

Non si possono collegare generatori di voltaggio in parallelo, a meno che questi non abbiano lo stesso voltaggio (e quindi risultino in movimento nullo di carica):

Dove si ha, dall'applicazione della seconda legge di Kirchoff:

$$V_1 - V_2 = 0 \Rightarrow V_1 = V_2$$

che sarebbe altrimenti violata.

Nella realtà, se si provasse a collegare due generatori di tensione di voltaggio diverso in parallelo, questi proverebbero a imporre la loro differenza di potenziale sui due rami del circuito, creando forti correnti, e probabilmente causando danni termici ad esso o a loro stessi.

1.1.2 Generatori di corrente

Un generatore di corrente ideale è un componente circuitale che mantiene attraverso di sé una corrente costante, ovvero:

$$i(t) = I$$

Si indica come:

Si nota che a corrente nulla, un generatore di corrente equivale a un circuito aperto.

Correlazione con il voltaggio

Un generatore di corrente mantiene la stessa corrente qualsiasi sia il voltaggio.

$$i(v) = \text{const.}$$

Il grafico di correlazione corrente-voltaggio sarà quindi:

Correlazione con la potenza

Come per i generatori di tensione, si descrivono i generatori di corrente attraverso riferimenti non associati di corrente e tensione. Resta comunque il fatto che la potenza:

$$p(t) = v(t)i(t) = v(t)I(t)$$

quando è erogata dal generatore, è > 0.

Collegamenti in serie

Non si possono collegare generatori di corrente in serie, a meno che questi non abbiano la stessa carica (e quindi risultino in movimento uniforme di carica):

Dove si ha, dall'applicazione della prima legge di Kirchoff:

$$I_1 - I_2 = 0 \Rightarrow I_1 = I_2$$

che sarebbe altrimenti violata.

Come prima, questa situazione non è effettivamente modellizzabile nella realtà usando il modello studiato. In verità il generatore di corrente in sé per sé è più uno strumento teorico che serve a modelizzare fenomeni diversi (transistor, amplificatori, ecc...).

Collegamenti in parallelo

Per sommare i contributi alla corrente di più generatori di corrente, li disponiamo in parallelo:

Abbiamo che il contributo totale dei generatori equivale a quello di un singolo generatore ${\cal E}_T$ di corrente:

$$I_T = I_1 + I_2 + \dots + I_n$$

1.1.3 Resistenza interna

Possiamo combinare i componenti visti finora per creare modelli più realistici. Innanzitutto, è improbabile che un generatore reali applichi resistenza nulla alle cariche che vi scorrono dentro. Aggiungiamo quindi una resistenza (solitamente piccola per i generatori di tensione ed elevata per i generatori di corrente) al generatore, che chiameremo **resistenza interna**. Questa resistenza rappresenterà la potenza che viene dissipata per effetto Joule.

La resistenza si disporrà come segue per i diversi tipi di generatore:

• Generatore di tensione: resistenza in serie;

• **Generatore di corrente:** resistenza in parallelo.

Notiamo che i casi visti prima come impossibili, di generatori di tensione in parallelo e di generatori di corrente in serie, sono rappresentabili quando si rilascia l'ipotesi che i generatori siano ideali e si introducono resistenze interne.

1.1.4 Generatori dipendenti

I generatori dipendenti, detti anche controllati o pilotati, sono particolari tipi di generatore il cui voltaggio (o corrente) dipende dal valore del voltaggio (o corrente) di un'altro punto del circuito, scalato di un qualche coefficiente. Si indicano come i generatori indipendenti ma all'interno di un rombo invece che di un cerchio.

Abbiamo quindi 4 tipi fondamentali di generatori dipendenti:

• Generatori di tensione, si indicano come:

- Generatore di tensione pilotato in tensione: comandato dalla funzione:

$$v(t) = \alpha \cdot v(t)$$

su un punto arbitrario dove si calcola i(t).

- Generatore di tensione pilotato in corrente: comandato dalla funzione:

$$v(t) = \alpha \cdot i(t)$$

su un punto arbitrario dove si calcola v(t).

• Generatori di corrente, si indicano come:

- Generatore di corrente pilotato in tensione: comandato dalla funzione:

$$i(t) = \alpha \cdot v(t)$$

su un punto arbitrario dove si calcola v(t).

- Generatore di corrente pilotato in corrente: comandato dalla funzione:

$$i(t) = \alpha \cdot i(t)$$

su un punto arbitrario dove si calcola i(t).

Bisogna notare che, come già riportato, un generatore dipendente non è diverso da un dipolo passivo in termini di potenza: non porta nessuna energia esterna all'interno del circuito. Si può anzi dire che è necessario avere almeno un generatore indipendente per avere spostamento di carica all'interno del circuito.

1.2 Partitore di tensione

Analizziamo il seguente circuito:

Reti di questo tipo prendono il nome di **partitori di tensione**, e hanno lo scopo di partizionare una certa differenza di potenziale in diverse frazioni proprie.

Poniamo di voler calcolare la caduta di potenziale su una particolare resistenza, diciamo la R_J . Avremo allora, dalla seconda legge di Kirchoff:

$$-e(t) + R_1(t)i(t) + R_2(t)i(t) + \dots + R_J(t)i(t) + \dots + R_n(t)i(t) = 0$$

che raccogliendo la corrente comune diventa:

$$e(t) = (R_1 + R_2 + \dots + R_J + R_n)i(t) = i(t)\sum_{i=1}^n R_i$$

somma delle resistenze per corrente. A questo punto possiamo applicare la legge di Ohm per ottenere la caduta di potenziale:

$$V_J(t) = R_J i(t) = e(t) \frac{R_j}{\sum_{i=1}^n R_i}$$

cioè il rapporto fra la resistenza interessata e la resistenza complessiva del circuito, moltiplicata per la tensione.

1.3 Partitore di corrente

Analizziamo quindi il seguente circuito:

Reti di questo tipo hanno uno scopo simile a quello della rete vista prima, solo riguardo alla corrente: prendono infatti il nome di **partitori di corrente**.

Poniamo di voler calcolare la corrente su una singola resistenza. Potremo dire che la corrente complessiva è, dalla prima legge di Kirchoff:

$$I_T(t) = I_1(t) + I_2(t) + \dots + I_J(t) + \dots + I_n(t)$$

Un'altro modo di ottenere queste correnti è dalla legge di Ohm, usando le conduttanze invece delle resistenze:

$$I = \frac{V}{R} \Rightarrow I = GR, \quad I(t) = v(t) \sum_{i=1}^{n} G_i$$

A questo punto, possiamo dire che la corrente nella J-esima resistenza vale:

$$I_J(t) = v(t)G_n = I(t)\frac{G_J}{\sum_{i=1}^n}$$

cioè il rapporto fra la conduttanza (della resistenza) interessata e la conduttanza complessiva del circuito, moltiplicata per la corrente.