

HaQton – Competição de Programação da QtCon Brasil 2020

1. ANÚNCIO DOS VENCEDORES

É com prazer que a organização da QtCon Brasil 2020 anuncia os vencedores do HaQton – competição de desenvolvimento Qt realizada como parte da programação do evento. A competição teve 20 equipes inscritas e 5 destas realizaram a entrega do sistema. Vale ressaltar que todas as 5 equipes entregaram soluções 100% corretas sob o ponto de vista dos requisitos funcionais. Dessa forma, a avaliação foi basicamente guiada pela análise dos requisitos não-funcionais previamente estabelecidos.

Os vencedores do HaQton foram as seguintes equipes:

1º lugar – Julissa Villanueva Llerena e Marcos Tejada Condori – 353 pontos

2º lugar – Matheus Almeida Secundo Gois – 332 pontos

3° lugar – Lucas Gabriel de Souza – 296 pontos

4º lugar – Diego Carrillo – 290 pontos

5° lugar – Alan Valmorbida – 278 pontos

Premiação:

- **1º lugar** R\$ 10.000,00 + 1 kit de desenvolvimento embarcado Toradex (Colibri i.MX7 Dual 1GB + Aster Carrier Board) para cada integrante da equipe + 4h de consultoria B2Open em desenvolvimento embarcado com Ot e Yocto.
- **2º lugar** R\$ 5.000,00 + 1 kit de desenvolvimento embarcado Toradex (Colibri i.MX7 Dual 1GB + Aster Carrier Board) para cada integrante da equipe + 4h de consultoria B2Open em desenvolvimento embarcado com Qt e Yocto.
- **3°, 4° e 5° lugares** 1 kit de desenvolvimento embarcado Toradex (Colibri i.MX7 Dual 1GB + Aster Carrier Board) para cada integrante da equipe + 4h de consultoria B2Open em desenvolvimento embarcado com Qt e Yocto.

2. DETALHAMENTO DA AVALIAÇÃO

A avaliação dos trabalhos submetidos foi realizada com base no barema previamente divulgado como parte do regulamento da competição. Segue a tabela com o detalhamento da pontuação obtida por cada uma das equipes.

Equipe	Compilação Ok?	#build- units	RF1	RF2	RF3	RF4	RF5	RF6	RNF1	RNF2	RNF3	RNF4	Prazo	Total
1	Sim	36	3	3	3	3	3	3	3	3	2	1	3	278
2	Sim	31	3	3	3	3	3	3	3	3	3	1	3	290
3	Sim	26	3	3	3	3	3	3	4	5	4	5	3	353
4	Sim	28	3	3	3	3	3	3	2	2	5	1	3	296
5	Sim	36	3	3	3	3	3	3	5	3	4	5	3	332

Em particular, os requisitos não-funcionais 1 (desempenho) e 3 (manutenibilidade) foram analisados com o auxílio de ferramentas de análise de consumo de memória e de qualidade do codebase tais como o heaptrack e CodeChecker. O objetivo foi tornar o processo o mais objetivo possível já que funcionalmente todas as equipes estavam com um nível de qualidade equivalente. A seguinte tabela apresenta os resultados do heaptrack.

Equipe	#chamadas de alocações	#alocações temporárias	Bytes alocados (MB)	Consumo no pico (MB)	Leaks
				<u> </u>	
1	935988	118227 (13%)	269.79	51.6	7.9
2	1216811	176840 (14.53%)	299.43	44.3	7.3
3	663519	98856 (14.9%)	349.08	89.7	7.4
4	2773455	357350 (12.88%)	430.16	49.7	8.6
5	560497	83916 (14.97%)	148.44	60.4	2.0

A tabela a seguir apresenta os resultados da análise com o CodeChecker¹.

Equipe	#Severidade Baixa	#Severidade Média	#Severidade Alta	Total
1	16	11	1	28
2	7	1	1	9
3	6	1	1	8
4	5	1	1	7
5	6	1	1	8

¹ Ericsson/codechecker: CodeChecker is an analyzer tooling, defect database and viewer extension for the Clang Static Analyzer and Clang Tidy – https://github.com/Ericsson/codechecker