

¹ Detailed List of Subjects for the Midterm Examination — English translation starts on

Page 6

7. IFT2015 Structures de données: Liste détaillée de sujets¹

FO Introduction

LE BUT DE CE DOCUMENT est de définir les compétences et connaissances requises dans le cours IFT2015 à l'examen intra. L'examen constitue également la première partie de l'examen pré-doctorale en structures de données (sous sigle IFT6002).

- ★ Les notes marginales sont des références aux ouvrages suivants
 - S Sedgewick, R. Algorithmes en Java, 3e édition (2004)
 - SW Sedgewick, R. et K. Wayne. Algorithms, 4e édition (2011)
 - CLR Cormen, T., E. L. Leiserson, R. L. Rivest, et C. Stein. Algorithmique, 3^e édition.
- Les notes de cours, présentations, et des liens vers ressources en-ligne sont affichés sur le site http://ift2015a17.wordpress.com/.
- * Aucune documentation ne sera permise à l'examen intra.

Principes d'analyse d'algorithmes F1

Références

- ▷ Sedgewick chapitre 2
- Sedgewick & Wayne §1.4²
- ▷ Cormen, Leiserson, Rivest & Stein chapitres 1–3
- Notes sur les fondations : handout01-recursion.pdf.
- ▶ Notes sur l'analyse d'algorithmes : handout05-analysis.pdf.

Sujets

- * Principes de base : pire cas, meilleur cas, moyen cas.
- * Croissance de fonctions communes : constantes, logarithmiques, polynomiales, exponentielles. Factorielle(n!), approximation de Stirling³ nombres Fibonacci⁴, nombres harmoniques⁵.
- * Notation asymptotique⁶: définitions de grand O(f), petit o(f), $\Theta(f)$ et $\Omega(f)$.

Asymptotiques exactes $f \sim g$. Expressions avec O() ou o(), règles d'arithmétique : O(f) + O(g), $O(f) \cdot O(g)$. Relations avec la limite

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = c > 0 \qquad \Rightarrow \qquad f(n) = O(g(n));$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0 \qquad \Leftrightarrow \qquad f(n) = o(g(n));$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 1 \qquad \Leftrightarrow \qquad f(n) \sim g(n)$$

- * Application de la définition pour démontrer f = O(g) ou f = o(g).
- * Détermination du temps de calcul et d'usage de mémoire pour algorithmes (itératifs) simples, et pour algorithmes récursifs (comme expression récursive).
- * Récurrences simples.

$$f(n) = f(n-1) + O(1)$$
 $f(n) = O(n);$
 $f(n) = f(n/2) + O(1)$ $f(n) = O(\log n);$
 $f(n) = 2f(n/2) + O(1)$ $f(n) = O(n\log n);$
 $f(n) = 2f(n/2) + O(n)$ $f(n) = O(n\log n);$

- ** Preuve par induction pour récurrences asymptotiques.
- ★ Notion de temps amorti.
- ** Preuves de résultats sur le coût amorti d'opérations. Principe d'analyse crédit/débit⁷.
- * Validation expérimentale de temps de calcul

² http://algs4.cs.princeton.edu/14analysis/

S§2.1,2.2,2.7; CLR 1 S§2.3 3 $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^{n}$ $^{4}F_{0}=0;F_{1}=1;F_{n}=F_{n-1}+F_{n-2}\{n>$ $^{5}H_{n} = \sum_{i=1}^{n} 1/i = \ln n + \gamma + o(1)$ ⁶ W_(fr):comparaison asymptotique S§2.4; CLR 3

CLR 2 S§2.5,2.6

CLR§17.4

 7 W_(en):accounting method

F2 Structures élémentaires et types abstraits

Références

Sujets

⊳ Sedgewick chapitres 3 et 4

 \triangleright Sedgewick & Wayne §1.1⁸, §1.2⁹, §1.3¹⁰

▷ Cormen, Leiserson, Rivest & Stein \$10.1, \$10.2

Notes sur les types abstraits : handout02-tad.pdf.

Notes sur les tableaux : handout03-tableaux.pdf.

Notes sur les listes : handout04-chaining.pdf.

* Blocs de construction pour programmes Java.

* Notions de type abstrait, interface, implantation, client.

* Types abstraits de files généralisées, piles et queues/files FIFO.

* Listes chaînées¹¹. Variations : listes circulaires, doublement chaînées. Sentinelles¹² pour la tête et/ou la queue. Manipulation d'éléments sur la liste, insertion et suppression. Parcours d'une liste.

 \star Tableaux¹³.

* Implantations de pile et de queue par tableaux ou listes chaînées. Efficacité d'implantations différentes (temps de calcul pour les opérations standardes). Débordement.

8 http://algs4.cs.princeton.edu/11model/

9 http://algs4.cs.princeton.edu/12oop/

10 http://algs4.cs.princeton.edu/13stacks/

S§3.1;SW§1.1

S§4.1;SW§1.2

S§4.2,4.7

11 W_(fr):liste chaînée S§3.3,3.4;CLR§10.2

12 W_(en):sentinel

 13 $W_{(fr)}$:tableau

S§3.2

S§4.4,4.5,4.7;SW§1.3;CLR§10.1

F3 Arbres

Références

- ▶ Sedgewick §4.3, §5.4–5.7
- Notes sur les listes et les arbres : handout04-chaining.pdf.

Sujets

*	Algorithmes récursifs. Diviser pour régner.	S§5.1,5.2
*	Terminologie pour structures arborescentes : arbre k -aire, hauteur,	S§5.4
	niveau, profondeur. Implémentation d'un arbre.	CLR§10.4
*	Propriétés d'arbres binaires (relations entre le nombre de nœuds in-	S§5.5
	ternes et externes ou la hauteur).	
*	Parcours d'un arbre : préfixe/préordre, infixe/dans l'ordre, post-	S§5.6
	fixe/postordre, ordre de niveau.	
*	Arbre syntaxique. Conversions d'expressions arithmétiques : notations	S§4.3
	infixe, postfixe et préfixe.	
*	Algorithmes récursifs sur les arbres : calcul de taille, hauteur ou profon-	S§5.7
	deur de sous-arbres.	

F4 Algorithmes sur graphes

Références

- ▶ Sedgewick §3.7
- Sedgewick & Wayne §4.1¹⁴, §4.2¹⁵
- ▷ CLR chapitre 22
- Notes sur les graphes : handout06-graphes.pdf.

Sujets

- * Représentation d'un graphe : matrice d'adjacence et listes d'adja $cence^{16}$.
- * Parcours d'un graphe par profondeur et par largeur.
- * Applications de parcours : composantes connexes, bipartition, tri topologique, plus courts chemins (à partir d'une source).

14 http://algs4.cs.princeton.edu/41graph/

15 http://algs4.cs.princeton.edu/42digraph/

S§3.7;SW§4.1;CLR§22.1

16 W_(en):adjacency list

S§5.8;SW§4.1;CLR§22.2,§22.3

SW§4.2;CLR§22.4

◀ français

Introduction E0

THIS DOCUMENT defines the skills and knowledge for the midterm examination in IFT2015, which is also the first part of the examen pré-doctoral in data structures (as IFT6002).

- → Topics for a «B/A-» level are denoted by \star ; $\star\star$ denote somewhat more advanced topics for «A+/A» level.
- ★ The margin notes refer to the following books :
 - S Sedgewick, R. Algorithms in Java, Parts 1–4, 3rd edition (2003)
 - SW Sedgewick, R. and K. Wayne. Algorithms, 4th edition (2011)
 - CLR Cormen, T., E. L. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms, 3rd edition.
- * The class notes, presentations, and links to online resources are available on the webpage http://ift2015a17.wordpress.com/.
- * No documentation is allowed at the examen.

E1 Principles of algorithm analysis

References

⊳ Sedgewick chapter 2

⊳ Sedgewick & Wayne §1.4¹⁷

▷ Cormen, Leiserson, Rivest & Stein chapters 1–3

Notes on the foundations: handout01-recursion.pdf.

▶ Notes on algorithm analysis: handout05-analysis.pdf.

Topics

* Basic principles: worst case, best case, average case.

* Growth of common functions: constants, logarithms, polynomials, exponentials. Factorial (n!), Stirling's formula 18, Fibonacci numbers 19, harmonic numbers²⁰.

* Asymptotic notation²¹: definitions of big-Oh O(f), small-oh o(f), $\Theta(f)$, and $\Omega(f)$. Arithmetic expressions involving asymptotics, rules: O(f) + O(g), $O(f) \cdot O(g)$. Connections to lim

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = c > 0 \qquad \Rightarrow \qquad f(n) = O(g(n));$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0 \qquad \Leftrightarrow \qquad f(n) = o(g(n));$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 1 \qquad \Leftrightarrow \qquad f(n) \sim g(n)$$

* Using the definitions to prove f = O(g) or f = o(g).

* Determination of space and time complexity for simple (iterative) algorithms, and for recursive algorithms (as a recursive expression).

* Basic recurrences.

$$f(n) = f(n-1) + O(1)$$
 $f(n) = O(n);$
 $f(n) = f(n/2) + O(1)$ $f(n) = O(\log n);$
 $f(n) = f(n/2) + O(n)$ $f(n) = O(n);$
 $f(n) = 2f(n/2) + O(1)$ $f(n) = O(n\log n);$
 $f(n) = O(n\log n);$

** Proof by induction for asymptotic recurrences.

* Notion of amortized cost.

** Proving amortized cost. Credit/debit method.

* Experimental validation of running time

17 http://algs4.cs.princeton.edu/14analysis/

S§2.1,2.2,2.7; CLR 1 S§2.3 ¹⁸ $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$ ¹⁹ $F_n = F_{n-1} + F_{n-2}$ $^{20} H_n = \sum_{i=1}^n 1/i = \ln n + \gamma + o(1)$ ²¹ W_(en):big-O notation S§2.4;CLR 3

CLR 2 S§2.5,2.6

CLR §17.4

Elementary structures and abstract data types E2

References

- ⊳ Sedgewick chapters 3 et 4
- ▶ Sedgewick & Wayne §1.1²², §1.2²³, §1.3²⁴
- ▷ Cormen, Leiserson, Rivest & Stein \$10.1, \$10.2
- Notes on linked lists: handout02-linkedlist.pdf.
- Notes on tables: handout03-tableaux.pdf.

Topics

- ★ Java building blocks.
- * Concept of an abstract data type, interface, implementation, client.
- * Abstract types for stacks, queues and generalized queues,
- * Linked lists²⁵. Variations: circular, doubly-linked lists. Sentinels²⁶ for head and/or tail. Manipulation of elements, insertion and deletion. List traversal.
- \star Arrays²⁷.
- * Implementations of stack and queue by tables or linked lists. Running time for standard operations in different implementations. Overflow/underflow.

- ²² http://algs4.cs.princeton.edu/11model/
- ²³ http://algs4.cs.princeton.edu/12oop/
- ²⁴ http://algs4.cs.princeton.edu/13stacks/

S§3.1;SW§1.1

S§4.1;SW§1.2;

S§4.2,4.7

25 W(en):linked list

S§3.3,3.4;CLR§10.2

 26 W_(en):sentinel

27 W_(en):array

S§3.2

S§4.4,4.5,4.7;SW§1.3;CLR§10.1

E3 Trees

References

Sedgewick §4.3, §5.4–5.7

 \triangleright

▶ Notes on lists and trees: handout04-chaining.pdf.

Topics

*	Recursive algorithms. Divide-and-conquer.	S§5.1,5.2
*	Terminology for tree structures: k-ary tree, height, level, depth. Tree	S§5.4
	implementations.	CLR §10.4
*	Mathematical properties of binary trees (relationships between number	S§5.5
	of internal and external nodes, height)	
*	Tree traversal: preorder, inorder, postorder, level-order.	S§5.6
*	Syntax tree. Conversion between arithmetic notations : infix, prefix	S§4.3
	and postfix.	
*	Recursions on trees: computing the size, height, or depth of subtrees.	S§5.7

E4 Graph algorithms

References

▷ Sedgewick §3.7

Sedgewick & Wayne §4.1²⁸, §4.2²⁹

▷ Cormen, Leiserson, Rivest & Stein chapter 22

Notes on graphs: handout06-graphes.pdf.

²⁸ http://algs4.cs.princeton.edu/41graph/

Topics

*	Graph representations by adjacency matrix and adjacency lists ³⁰ .	S§3.7;SW§4.1;CLR§22.1
*	Depth-first and breadth-first search (DFS and BFS) in a graph	$^{30}W_{(en)}$:adjacency list
*	Applications of graph traversal: connected components, bipartite graph,	S§5.8;SW§4.1;CLR§22.2
	topological sort, (single-source) shortest paths	S§4.2;CLR§22.4

²⁹ http://algs4.cs.princeton.edu/42digraph/