Lagrangian submanifolds of the standard \mathbf{C}^n Jarek Kędra University of Aberdeen joint with Jonny Evans (UCL)

In this talk I will present some restrictions on the topology of a monotone odd dimensional Lagrangian submanifold of the standard symplectic Euclidean space.

In this talk I will present some restrictions on the topology of a monotone odd dimensional Lagrangian submanifold of the standard symplectic Euclidean space.

$$L \hookrightarrow \mathbf{C}^n$$

In this talk I will present some restrictions on the topology of a monotone odd dimensional Lagrangian submanifold of the standard symplectic Euclidean space.

$$L \hookrightarrow \mathbf{C}^n$$

Essentially, a monotone lagrangian in \mathbf{C}^n cannot have too complicated topology.

In this talk I will present some restrictions on the topology of a monotone odd dimensional Lagrangian submanifold of the standard symplectic Euclidean space.

$$L \hookrightarrow \mathbf{C}^n$$

Essentially, a monotone lagrangian in \mathbf{C}^n cannot have too complicated topology. For example, it can't admit a metric of negative curvature,

In this talk I will present some restrictions on the topology of a monotone odd dimensional Lagrangian submanifold of the standard symplectic Euclidean space.

$$L \hookrightarrow \mathbf{C}^n$$

Essentially, a monotone lagrangian in \mathbf{C}^n cannot have too complicated topology. For example, it can't admit a metric of negative curvature, in dimension three it has to be a product $\mathbf{S}^1 \times \Sigma$ and,

In this talk I will present some restrictions on the topology of a monotone odd dimensional Lagrangian submanifold of the standard symplectic Euclidean space.

$$L \hookrightarrow \mathbf{C}^n$$

Essentially, a monotone lagrangian in \mathbf{C}^n cannot have too complicated topology. For example, it can't admit a metric of negative curvature, in dimension three it has to be a product $\mathbf{S}^1 \times \Sigma$ and, in general, its simplicial volume has to be zero.

- Symplectic vector space and the lagrangian grassmannian
- Symplectic manifolds and Lagrangian immersions

- Symplectic vector space and the lagrangian grassmannian
- Symplectic manifolds and Lagrangian immersions
- $^{\circ}$ Lagrangian submanifolds in ${f C}^n$

- Symplectic vector space and the lagrangian grassmannian
- Symplectic manifolds and Lagrangian immersions
- $^{\circ}$ Lagrangian submanifolds in ${f C}^n$
- The main result and its consequences

- Symplectic vector space and the lagrangian grassmannian
- Symplectic manifolds and Lagrangian immersions
- Lagrangian submanifolds in ${f C}^n$
- The main result and its consequences
- Comments about the proof

- Symplectic vector space and the lagrangian grassmannian
- Symplectic manifolds and Lagrangian immersions
- f Lagrangian submanifolds in ${f C}^n$
- The main result and its consequences
- Comments about the proof
- Examples of monotone embeddings.

 (V, ω) - symplectic vector space:

 (V,ω) - symplectic vector space: V is a real 2n-dimensional vector space

 (V,ω) - symplectic vector space: V is a real 2n-dimensional vector space and ω is a nondegenerate skew-symmetric bilinear form.

- (V,ω) symplectic vector space: V is a real 2n-dimensional vector space and ω is a nondegenerate skew-symmetric bilinear form.
- For example, \mathbf{C}^n and $\omega = \sum dx^i \wedge dy^i$.

- (V,ω) symplectic vector space: V is a real 2n-dimensional vector space and ω is a nondegenerate skew-symmetric bilinear form.
 - For example, \mathbf{C}^n and $\omega = \sum dx^i \wedge dy^i$.
- Every symplectic vector space is isomorphic to the above example.

- (V,ω) symplectic vector space: V is a real 2n-dimensional vector space and ω is a nondegenerate skew-symmetric bilinear form.
 - For example, \mathbb{C}^n and $\omega = \sum dx^i \wedge dy^i$.
- Every symplectic vector space is isomorphic to the above example.
- A subspace $L \subset \mathbb{C}^n$ is called *Lagrangian* if the symplectic form ω vanishes on L and dimL = n.

- (V,ω) symplectic vector space: V is a real 2n-dimensional vector space and ω is a nondegenerate skew-symmetric bilinear form.
 - For example, \mathbf{C}^n and $\omega = \sum dx^i \wedge dy^i$.
- Every symplectic vector space is isomorphic to the above example.
- A subspace $L \subset \mathbb{C}^n$ is called *Lagrangian* if the symplectic form ω vanishes on L and dimL = n.
- For example, every real line on the plane ${f C}$ is Lagrangian.

The space of all Lagrangian subspaces in \mathbf{C}^n is called *Lagrangian grassmannian* and it is denoted by $\Lambda(n)$.

- The space of all Lagrangian subspaces in \mathbb{C}^n is called *Lagrangian grassmannian* and it is denoted by $\Lambda(n)$.
 - Exercise:

- The space of all Lagrangian subspaces in \mathbf{C}^n is called *Lagrangian grassmannian* and it is denoted by $\Lambda(n)$.
- Exercise: $\Lambda_n = U(n)/O(n)$.

- The space of all Lagrangian subspaces in \mathbf{C}^n is called *Lagrangian grassmannian* and it is denoted by $\Lambda(n)$.
- Exercise: $\Lambda_n = U(n)/O(n)$.
- Consequently:

- The space of all Lagrangian subspaces in \mathbf{C}^n is called *Lagrangian grassmannian* and it is denoted by $\Lambda(n)$.
- Exercise: $\Lambda_n = U(n)/O(n)$.
- Consequently:

$$\pi_1(\Lambda_n) = H_1(\Lambda_n; \mathbf{Z}) = H^1(\Lambda_n; \mathbf{Z}) = \mathbf{Z}.$$

- The space of all Lagrangian subspaces in \mathbb{C}^n is called *Lagrangian grassmannian* and it is denoted by $\Lambda(n)$.
- Exercise: $\Lambda_n = U(n)/O(n)$.
- Consequently:

$$\pi_1(\Lambda_n) = H_1(\Lambda_n; \mathbf{Z}) = H^1(\Lambda_n; \mathbf{Z}) = \mathbf{Z}.$$

The square of the determinant:

$$\det^2: \Lambda_n \to \mathbf{S}^1 \subset \mathbf{C}^{\times}$$

defines a bundle $SU(n)/SO(n) \rightarrow \Lambda_n \rightarrow \mathbf{S}^1$

- The space of all Lagrangian subspaces in \mathbb{C}^n is called *Lagrangian grassmannian* and it is denoted by $\Lambda(n)$.
- Exercise: $\Lambda_n = U(n)/O(n)$.
- Consequently:

$$\pi_1(\Lambda_n) = H_1(\Lambda_n; \mathbf{Z}) = H^1(\Lambda_n; \mathbf{Z}) = \mathbf{Z}.$$

The square of the determinant:

$$\det^2: \Lambda_n \to \mathbf{S}^1 \subset \mathbf{C}^{\times}$$

defines a bundle $SU(n)/SO(n) \to \Lambda_n \to \mathbf{S}^1$ and the pullback of the length form on the circle represents a generator $\mu \in H^1(\Lambda_n; \mathbf{Z})$ called the *universal Maslov class*.

 (M, ω) is called a symplectic manifold if M is a smooth manifols and ω is nondegenerate and closed two-form.

- (M, ω) is called a symplectic manifold if M is a smooth manifols and ω is nondegenerate and closed two-form.
- (T_pM,ω_p) is a symplectic vector space.

- (M, ω) is called a symplectic manifold if M is a smooth manifols and ω is nondegenerate and closed two-form.
- (T_pM,ω_p) is a symplectic vector space.
- If $\omega = d\alpha$ then $(M, d\alpha)$ is called *exact*.

- (M, ω) is called a symplectic manifold if M is a smooth manifols and ω is nondegenerate and closed two-form.
- $(T_p M, \omega_p)$ is a symplectic vector space.
- If $\omega = d\alpha$ then $(M, d\alpha)$ is called *exact*.
- For example, $(\mathbf{C}^n, dx^i \wedge dy^i = d(x^i dy^i))$ is exact.

- (M, ω) is called a symplectic manifold if M is a smooth manifols and ω is nondegenerate and closed two-form.
- (T_pM,ω_p) is a symplectic vector space.
- If $\omega = d\alpha$ then $(M, d\alpha)$ is called *exact*.
- For example, $(\mathbf{C}^n, dx^i \wedge dy^i = d(x^i dy^i))$ is exact.
- An immersion $f: L \to M$ is called Lagrangian if $f^*\omega = 0$ and $\dim L = \frac{1}{2} \dim M$.

- (M, ω) is called a symplectic manifold if M is a smooth manifols and ω is nondegenerate and closed two-form.
- (T_pM,ω_p) is a symplectic vector space.
- If $\omega = d\alpha$ then $(M, d\alpha)$ is called *exact*.
- For example, $(\mathbf{C}^n, dx^i \wedge dy^i = d(x^i dy^i))$ is exact.
- An immersion $f: L \to M$ is called Lagrangian if $f^*\omega = 0$ and $\dim L = \frac{1}{2} \dim M$. In such a case, $df(T_x L) \subset T_{f(x)} M$ is a Lagrangian subspace is the symplectic vector space.

Symplectic manifolds and Lagrangian submanifolds

- (M, ω) is called a symplectic manifold if M is a smooth manifols and ω is nondegenerate and closed two-form.
- (T_pM,ω_p) is a symplectic vector space.
- If $\omega = d\alpha$ then $(M, d\alpha)$ is called *exact*.
- For example, $(\mathbf{C}^n, dx^i \wedge dy^i = d(x^i dy^i))$ is exact.
- An immersion $f: L \to M$ is called Lagrangian if $f^*\omega = 0$ and $\dim L = \frac{1}{2} \dim M$. In such a case, $df(T_x L) \subset T_{f(x)} M$ is a Lagrangian subspace is the symplectic vector space.
- For example, any one-dimensional immersion is Lagrangian in a symplectic surface.

Symplectic manifolds and Lagrangian submanifolds

- (M, ω) is called a symplectic manifold if M is a smooth manifols and ω is nondegenerate and closed two-form.
- (T_pM,ω_p) is a symplectic vector space.
- If $\omega = d\alpha$ then $(M, d\alpha)$ is called *exact*.
- For example, $(\mathbf{C}^n, dx^i \wedge dy^i = d(x^i dy^i))$ is exact.
- An immersion $f: L \to M$ is called Lagrangian if $f^*\omega = 0$ and $\dim L = \frac{1}{2} \dim M$. In such a case, $df(T_x L) \subset T_{f(x)} M$ is a Lagrangian subspace is the symplectic vector space.
- For example, any one-dimensional immersion is Lagrangian in a symplectic surface.
- The standard sphere $\mathbf{S}^2 \subset \mathbf{R}^3 \subset \mathbf{C}^2$ is not a Lagranian submanifold.

Lagrangians in \mathbb{C}^n

 $(\mathbf{C}^n, \omega = \sum dx^i \wedge dy^i = d\alpha)$ - the standard symplectic space

$$({\bf C}^n,\omega=\sum dx^i\wedge dy^i=d\alpha)$$
 - the standard symplectic space

 $f: L \rightarrow \mathbf{C}^n$ a Lagrangian immersion.

 $(\mathbf{C}^n, \omega = \sum dx^i \wedge dy^i = d\alpha)$ - the standard symplectic space

- $f: L \to \mathbb{C}^n$ a Lagrangian immersion.
- $0 = f^*\omega =$

 $(\mathbf{C}^n,\omega=\sum dx^i\wedge dy^i=d\alpha)$ - the standard symplectic space

- $f: L \to \mathbb{C}^n$ a Lagrangian immersion.
- $0 = f^*\omega = f^*d\alpha =$

 $(\mathbf{C}^n,\omega=\sum dx^i\wedge dy^i=d\alpha)$ - the standard symplectic space

- $f: L \to \mathbb{C}^n$ a Lagrangian immersion.
- $0 = f^* \omega = f^* d\alpha = df^* \alpha$

$$({\bf C}^n,\omega=\sum dx^i\wedge dy^i=d\alpha)$$
 - the standard symplectic space

• $f: L \to \mathbb{C}^n$ a Lagrangian immersion.

$$0 = f^* \omega = f^* d\alpha = df^* \alpha \qquad [f^* \alpha] \in H^1(L; \mathbf{R}).$$

 $(\mathbf{C}^n, \omega = \sum dx^i \wedge dy^i = d\alpha)$ - the standard symplectic space

- $f: L \to \mathbf{C}^n$ a Lagrangian immersion.
- $0 = f^* \omega = f^* d\alpha = df^* \alpha \qquad [f^* \alpha] \in H^1(L; \mathbf{R}).$
- $G_f: L \to \Lambda_n$ the Gauss map

$$(\mathbf{C}^n, \omega = \sum dx^i \wedge dy^i = d\alpha)$$
 - the standard symplectic space

• $f: L \to \mathbf{C}^n$ a Lagrangian immersion.

$$0 = f^* \omega = f^* d\alpha = df^* \alpha \qquad [f^* \alpha] \in H^1(L; \mathbf{R}).$$

•
$$G_f: L \to \Lambda_n$$
 - the Gauss map $\mu_f:=f^*\mu \in H^1(L; \mathbf{Z}).$

Lagrangians in \mathbb{C}^n

 $(\mathbf{C}^n, \omega = \sum dx^i \wedge dy^i = d\alpha)$ - the standard symplectic space

• $f: L \to \mathbf{C}^n$ a Lagrangian immersion.

$$0 = f^* \omega = f^* d\alpha = df^* \alpha \qquad [f^* \alpha] \in H^1(L; \mathbf{R}).$$

•
$$G_f: L \to \Lambda_n$$
 - the Gauss map $\mu_f:=f^*\mu \in H^1(L; \mathbf{Z}).$

Monotonicity:

$$[f^*\alpha] = K \cdot \mu_f$$

for some K > 0.

 $(\mathbf{C}^n, \omega = \sum dx^i \wedge dy^i = d\alpha)$ - the standard symplectic space

• $f: L \to \mathbf{C}^n$ a Lagrangian immersion.

$$0 = f^* \omega = f^* d\alpha = df^* \alpha \qquad [f^* \alpha] \in H^1(L; \mathbf{R}).$$

•
$$G_f: L \to \Lambda_n$$
 - the Gauss map $\mu_f:=f^*\mu \in H^1(L; \mathbf{Z}).$

Monotonicity:

$$[f^*\alpha] = K \cdot \mu_f$$

for some K > 0.

If K = 0 then L is called *exact*.

 $(\mathbf{C}^n, \omega = \sum dx^i \wedge dy^i = d\alpha)$ - the standard symplectic space

• $f: L \to \mathbf{C}^n$ a Lagrangian immersion.

$$0 = f^* \omega = f^* d\alpha = df^* \alpha \qquad [f^* \alpha] \in H^1(L; \mathbf{R}).$$

$$G_f: L \to \Lambda_n$$
 - the Gauss map $\mu_f:=f^*\mu \in H^1(L; \mathbf{Z}).$

Monotonicity:

$$[f^*\alpha] = K \cdot \mu_f$$

for some K > 0.

If K = 0 then L is called *exact*.

Gromov proved that there are no exact Lagrangian embeddings into \mathbf{C}^n .

 $(\mathbf{C}^n, \omega = \sum dx^i \wedge dy^i = d\alpha)$ - the standard symplectic space

• $f: L \to \mathbf{C}^n$ a Lagrangian immersion.

$$0 = f^* \omega = f^* d\alpha = df^* \alpha \qquad [f^* \alpha] \in H^1(L; \mathbf{R}).$$

•
$$G_f: L \to \Lambda_n$$
 - the Gauss map $\mu_f:=f^*\mu \in H^1(L; \mathbf{Z}).$

Monotonicity:

$$[f^*\alpha] = K \cdot \mu_f$$

for some K > 0.

If K = 0 then L is called *exact*.

Gromov proved that there are no exact Lagrangian embeddings into \mathbf{C}^n . In particular, there are no Lagrangian embeddings of simply connected manifolds.

Theorem

Theorem [Evans-K.]

Let L be a closed oriented spin odd-dimensional manifold which is a connected sum of aspherical manifolds.

Let L be a closed oriented spin odd-dimensional manifold which is a connected sum of aspherical manifolds. If $f: L \to \mathbf{C}^n$ is a monotone Lagrangian embedding then

Let L be a closed oriented spin odd-dimensional manifold which is a connected sum of aspherical manifolds. If $f: L \to \mathbf{C}^n$ is a monotone Lagrangian embedding then there exists a smooth map

$$\mathbf{S}^1 \times M \to L$$

Let L be a closed oriented spin odd-dimensional manifold which is a connected sum of aspherical manifolds. If $f: L \to \mathbf{C}^n$ is a monotone Lagrangian embedding then there exists a smooth map

$$\mathbf{S}^1 \times M \to L$$

of nonzero degree, where M is an oriented closed manifold.

Let L be a closed oriented spin odd-dimensional manifold which is a connected sum of aspherical manifolds. If $f: L \to \mathbf{C}^n$ is a monotone Lagrangian embedding then there exists a smooth map

$$\mathbf{S}^1 \times M \to L$$

of nonzero degree, where M is an oriented closed manifold.

Let L be a closed oriented spin odd-dimensional manifold which is a connected sum of aspherical manifolds. If $f: L \to \mathbf{C}^n$ is a monotone Lagrangian embedding then there exists a smooth map

$$\mathbf{S}^1 \times M \to L$$

of nonzero degree, where M is an oriented closed manifold.

Corollary

• There exists a surjection $\mathbf{Z} \times \Gamma \to \pi_1(L)$;

Let L be a closed oriented spin odd-dimensional manifold which is a connected sum of aspherical manifolds. If $f: L \to \mathbf{C}^n$ is a monotone Lagrangian embedding then there exists a smooth map

$$\mathbf{S}^1 \times M \to L$$

of nonzero degree, where M is an oriented closed manifold.

Corollary

There exists a surjection $\mathbf{Z} \times \Gamma \to \pi_1(L)$; in particular $\pi_1(L)$ has infinite centre.

Let L be a closed oriented spin odd-dimensional manifold which is a connected sum of aspherical manifolds. If $f: L \to \mathbf{C}^n$ is a monotone Lagrangian embedding then there exists a smooth map

$$\mathbf{S}^1 \times M \to L$$

of nonzero degree, where M is an oriented closed manifold.

- There exists a surjection $\mathbf{Z} \times \Gamma \to \pi_1(L)$; in particular $\pi_1(L)$ has infinite centre.
- $\pi_1(L)$ is not hyperbolic.

Let L be a closed oriented spin odd-dimensional manifold which is a connected sum of aspherical manifolds. If $f: L \to \mathbf{C}^n$ is a monotone Lagrangian embedding then there exists a smooth map

$$\mathbf{S}^1 \times M \to L$$

of nonzero degree, where M is an oriented closed manifold.

- There exists a surjection $\mathbf{Z} \times \Gamma \to \pi_1(L)$; in particular $\pi_1(L)$ has infinite centre.
- $\pi_1(L)$ is not hyperbolic.
- L does not admit a Riemannian metric of negative curvature.

Let L be a closed oriented spin odd-dimensional manifold which is a connected sum of aspherical manifolds. If $f: L \to \mathbf{C}^n$ is a monotone Lagrangian embedding then there exists a smooth map

$$\mathbf{S}^1 \times M \to L$$

of nonzero degree, where M is an oriented closed manifold.

- There exists a surjection $\mathbf{Z} \times \Gamma \to \pi_1(L)$; in particular $\pi_1(L)$ has infinite centre.
- $\pi_1(L)$ is not hyperbolic.
- L does not admit a Riemannian metric of negative curvature. Remark: Eliashberg and Viterbo obtained the last statement without the monotonicity assumption.

Every summand of L has vanishing simplicial volume.

- \circ Every summand of L has vanishing simplicial volume.
- If dim L = 3 then $L = \mathbf{S}^1 \times \Sigma$.

- Every summand of L has vanishing simplicial volume.
- If dim L = 3 then $L = \mathbf{S}^1 \times \Sigma$. Remark: Fukaya obtained the same statement without the monotonicity assumption but assuming that L is prime.

- Every summand of *L* has vanishing simplicial volume.
- If dim L = 3 then $L = \mathbf{S}^1 \times \Sigma$. Remark: Fukaya obtained the same statement without the monotonicity assumption but assuming that L is prime.
- o If $f: L \to \mathbb{C}^3$ is a Lagrangian immersion with k double points then resolving the double points can produce a monotone embedding only if $L = \mathbb{S}^3$ and k = 1.

We have a monotone Lagrangian embedding:

$$f: L \to \mathbf{C}^n$$
.

We have a monotone Lagrangian embedding:

$$f: L \to \mathbf{C}^n$$
.

Let $\mathbf{M}_{0,1}(a,J)$ denote the moduli space of J-holomorphic discs in \mathbf{C}^n

We have a monotone Lagrangian embedding:

$$f: L \to \mathbf{C}^n$$
.

Let $\mathbf{M}_{0,1}(a,J)$ denote the moduli space of J-holomorphic discs in \mathbf{C}^n with the boundary on L

We have a monotone Lagrangian embedding:

$$f: L \to \mathbf{C}^n$$
.

Let $\mathbf{M}_{0,1}(a,J)$ denote the moduli space of J-holomorphic discs in \mathbf{C}^n with the boundary on L and with one marked boundary point

We have a monotone Lagrangian embedding:

$$f: L \to \mathbf{C}^n$$
.

Let $\mathbf{M}_{0,1}(a,J)$ denote the moduli space of J-holomorphic discs in \mathbf{C}^n with the boundary on L and with one marked boundary point such that the boundary represents a free homotopy class a.

We have a monotone Lagrangian embedding:

$$f: L \to \mathbf{C}^n$$
.

Let $\mathbf{M}_{0,1}(a,J)$ denote the moduli space of J-holomorphic discs in \mathbf{C}^n with the boundary on L and with one marked boundary point such that the boundary represents a free homotopy class a. There exists a free homotopy class a of loops in L such that the evaluation map

We have a monotone Lagrangian embedding:

$$f: L \to \mathbf{C}^n$$
.

Let $\mathbf{M}_{0,1}(a,J)$ denote the moduli space of J-holomorphic discs in \mathbf{C}^n with the boundary on L and with one marked boundary point such that the boundary represents a free homotopy class a. There exists a free homotopy class a of loops in L such that the evaluation map

ev:
$$\mathbf{M}_{0,1}(a,J) \rightarrow L$$

We have a monotone Lagrangian embedding:

$$f: L \to \mathbf{C}^n$$
.

Let $\mathbf{M}_{0,1}(a,J)$ denote the moduli space of J-holomorphic discs in \mathbf{C}^n with the boundary on L and with one marked boundary point such that the boundary represents a free homotopy class a. There exists a free homotopy class a of loops in L such that the evaluation map

ev:
$$\mathbf{M}_{0,1}(a,J) \to L$$

has nonzero degree.

We have a monotone Lagrangian embedding:

$$f: L \to \mathbf{C}^n$$
.

Let $\mathbf{M}_{0,1}(a,J)$ denote the moduli space of J-holomorphic discs in \mathbf{C}^n with the boundary on L and with one marked boundary point such that the boundary represents a free homotopy class a. There exists a free homotopy class a of loops in L such that the evaluation map

ev:
$$\mathbf{M}_{0,1}(a,J) \to L$$

has nonzero degree. To obtain this statement we use a result of Damian [Commentari Math. Helv. 87] which implies that for any J and for any $x \in L$ there exists a J-holomorphic dies $u: \mathbf{D}^2 \to \mathbf{C}^n$ with boundary on L passing through x such that

We have a monotone Lagrangian embedding:

$$f: L \to \mathbf{C}^n$$
.

Let $\mathbf{M}_{0,1}(a,J)$ denote the moduli space of J-holomorphic discs in \mathbf{C}^n with the boundary on L and with one marked boundary point such that the boundary represents a free homotopy class a. There exists a free homotopy class a of loops in L such that the evaluation map

ev:
$$\mathbf{M}_{0,1}(a,J) \to L$$

has nonzero degree. To obtain this statement we use a result of Damian [Commentari Math. Helv. 87] which implies that for any J and for any $x \in L$ there exists a J-holomorphic dies $u: \mathbf{D}^2 \to \mathbf{C}^n$ with boundary on L passing through x such that

$$\langle \mu_f, u(\partial \mathbf{D}^2) \rangle = 2.$$

The moduli space $\mathbf{M}_{0,1}(a,J)$ admits a free circle action

The moduli space $\mathbf{M}_{0,1}(a,J)$ admits a free circle action (rotate the source)

The moduli space $\mathbf{M}_{0,1}(a,J)$ admits a free circle action (rotate the source) with the quotient $\mathbf{M}_{0,0}(a,J)$ –

The moduli space $\mathbf{M}_{0,1}(a,J)$ admits a free circle action (rotate the source) with the quotient $\mathbf{M}_{0,0}(a,J)$ – the moduli space of J-holomorphic discs representing a.

The moduli space $\mathbf{M}_{0,1}(a,J)$ admits a free circle action (rotate the source) with the quotient $\mathbf{M}_{0,0}(a,J)$ – the moduli space of J-holomorphic discs representing a. There exists a finite cover $\overline{\mathbf{M}_{0,0}(a,J)} \to \mathbf{M}_{0,0}(a,J)$ such that

The moduli space $\mathbf{M}_{0,1}(a,J)$ admits a free circle action (rotate the source) with the quotient $\mathbf{M}_{0,0}(a,J)$ – the moduli space of J-holomorphic discs representing a. There exists a finite cover $\overline{\mathbf{M}_{0,0}(a,J)} \to \mathbf{M}_{0,0}(a,J)$ such that

The moduli space $\mathbf{M}_{0,1}(a,J)$ admits a free circle action (rotate the source) with the quotient $\mathbf{M}_{0,0}(a,J)$ – the moduli space of J-holomorphic discs representing a. There exists a finite cover $\overline{\mathbf{M}_{0,0}(a,J)} \to \mathbf{M}_{0,0}(a,J)$ such that

The composition of the maps in the top row gives the required map of nonzero degree.

Monotone Lagrangian immersions obey the h-principle.

Monotone Lagrangian immersions obey the h-principle.0 Theorem

If $f: L \to \mathbb{C}^n$ is a K-monotone Lagrangian immersion and $e: K \to \mathbb{C}^m$ be a K-monotone Lagrangian embedding.

Monotone Lagrangian immersions obey the h-principle.0 Theorem

If $f: L \to \mathbf{C}^n$ is a K-monotone Lagrangian immersion and $e: K \to \mathbf{C}^m$ be a K-monotone Lagrangian embedding. Then there is a monotone Lagrangian embedding

$$K \times L \rightarrow \mathbf{C}^{m+n}$$
.

Example

Monotone Lagrangian immersions obey the h-principle.0 Theorem

If $f: L \to \mathbf{C}^n$ is a K-monotone Lagrangian immersion and $e: K \to \mathbf{C}^m$ be a K-monotone Lagrangian embedding. Then there is a monotone Lagrangian embedding

$$K \times L \rightarrow \mathbf{C}^{m+n}$$
.

Example

• Let Σ be a closed oriented surface.

Monotone Lagrangian immersions obey the h-principle.0 Theorem

If $f:L\to {\bf C}^n$ is a K-monotone Lagrangian immersion and $e:K\to {\bf C}^m$ be a K-monotone Lagrangian embedding. Then there is a monotone Lagrangian embedding

$$K \times L \rightarrow \mathbf{C}^{m+n}$$
.

Example

Let Σ be a closed oriented surface. It admits a monotone Lagrangian immersion into \mathbf{C}^2 and hence

Monotone Lagrangian immersions obey the h-principle.0 Theorem

If $f: L \to \mathbf{C}^n$ is a K-monotone Lagrangian immersion and $e: K \to \mathbf{C}^m$ be a K-monotone Lagrangian embedding. Then there is a monotone Lagrangian embedding

$$K \times L \rightarrow \mathbf{C}^{m+n}$$
.

Example

Let Σ be a closed oriented surface. It admits a monotone Lagrangian immersion into \mathbf{C}^2 and hence $\Sigma \times \mathbf{S}^1$ admits a monotone Lagrangian embedding into \mathbf{C}^3 .

Monotone Lagrangian immersions obey the h-principle.0 Theorem

If $f: L \to \mathbf{C}^n$ is a K-monotone Lagrangian immersion and $e: K \to \mathbf{C}^m$ be a K-monotone Lagrangian embedding. Then there is a monotone Lagrangian embedding

$$K \times L \rightarrow \mathbf{C}^{m+n}$$
.

Example

- Let Σ be a closed oriented surface. It admits a monotone Lagrangian immersion into \mathbf{C}^2 and hence $\Sigma \times \mathbf{S}^1$ admits a monotone Lagrangian embedding into \mathbf{C}^3 .
- If M is a closed oriented three manifold then $M \times \mathbf{S}^1$ admits a monotone Lagrangian embedding into \mathbf{C}^4 .

Monotone Lagrangian immersions obey the h-principle.0 Theorem

If $f: L \to \mathbf{C}^n$ is a K-monotone Lagrangian immersion and $e: K \to \mathbf{C}^m$ be a K-monotone Lagrangian embedding. Then there is a monotone Lagrangian embedding

$$K \times L \rightarrow \mathbf{C}^{m+n}$$
.

Example

- Let Σ be a closed oriented surface. It admits a monotone Lagrangian immersion into \mathbf{C}^2 and hence $\Sigma \times \mathbf{S}^1$ admits a monotone Lagrangian embedding into \mathbf{C}^3 .
- If M is a closed oriented three manifold then $M \times \mathbf{S}^1$ admits a monotone Lagrangian embedding into \mathbf{C}^4 .

