

FCC RF Test Report

APPLICANT : CORPORATIVO LANIX S.A. DE C.V.

EQUIPMENT: Mobile phone

BRAND NAME : LANIX

MODEL NAME : Ilium S105 FCC ID : ZC4S105

STANDARD : FCC Part 15 Subpart C §15.247

CLASSIFICATION : (DTS) Digital Transmission System

The product was received on Jul. 02, 2013 and completely tested on Jul. 22, 2013. We, SPORTON INTERNATIONAL (SHENZHEN) INC., would like to declare that the tested sample has been evaluated in accordance with the procedures and shown the compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL (SHENZHEN) INC., the test report shall not be reproduced except in full.

Reviewed by: Joseph Lin / Supervisor

Approved by: Jones Tsai / Manager

SPORTON INTERNATIONAL (SHENZHEN) INC.

No. 3 Building, the third floor of south, Shahe River west, Fengzeyuan warehouse, Nanshan District, Shenzhen, Guangdong, P.R.C.

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755- 3320-2398 FCC ID: ZC4S105 Page Number : 1 of 90
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

2353

TABLE OF CONTENTS

RE	VISIO	N HISTORY	3
SU	MMAF	RY OF TEST RESULT	4
1	GEN	ERAL DESCRIPTION	5
	1.1	Applicant	5
	1.2	Manufacturer	5
	1.3	Feature of Equipment Under Test	5
	1.4	Product Specification of Equipment Under Test	5
	1.5	Modification of EUT	6
	1.6	Testing Site	6
	1.7	Applied Standards	6
2	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	7
	2.1	Carrier Frequency Channel	7
	2.2	Pre-Scanned RF Power	8
	2.3	Test Mode	9
	2.4	Connection Diagram of Test System	10
	2.5	Support Unit used in test configuration and system	11
	2.6	Description of RF Function Operation Test Setup	11
	2.7	Measurement Results Explanation Example	12
3	TES1	「RESULT	13
	3.1	6dB Bandwidth Measurement	13
	3.2	Output Power Measurement	21
	3.3	Power Spectral Density Measurement	25
	3.4	Conducted Band Edges and Spurious Emission Measurement	40
	3.5	Radiated Band Edges and Spurious Emission Measurement	57
	3.6	AC Conducted Emission Measurement	82
	3.7	Antenna Requirements	88
4	LIST	OF MEASURING EQUIPMENT	89
5	UNC	ERTAINTY OF EVALUATION	90
ΑP	PEND	OIX A. PHOTOGRAPHS OF EUT	
ΑP	PEND	DIX B. SETUP PHOTOGRAPHS	

TEL: 86-755- 3320-2398 FCC ID: ZC4S105 Page Number : 2 of 90
Report Issued Date : Jul. 23, 2013

Report No.: FR370202C

Report Version : Rev. 01

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR370202C	Rev. 01	Initial issue of report	Jul. 23, 2013

TEL: 86-755- 3320-2398 FCC ID: ZC4S105 Page Number : 3 of 90
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

SUMMARY OF TEST RESULT

Report Section	FCC Rule	Description	Limit	Result	Remark
3.1	15.247(a)(2)	6dB Bandwidth	≥ 0.5MHz	Pass	-
3.2	15.247(b)	Power Output Measurement	≤ 30dBm	Pass	-
3.3	15.247(e)	Power Spectral Density	≤ 8dBm/3kHz	Pass	-
3.4	15 247/4\	Conducted Band Edges	< 20dPa	Pass	-
3.4	15.247(d)	Conducted Spurious Emission	- ≤ 20dBc	Pass	-
3.5	15.247(d)	Radiated Band Edges and Radiated Spurious Emission	15.209(a) & 15.247(d)	Pass	Under limit 1.38 dB at 4824.000 MHz
3.6	15.207	AC Conducted Emission	15.207(a)	Pass	Under limit 6.19 dB at 0.590 MHz
3.7	15.203 & 15.247(b)	Antenna Requirement	N/A	Pass	-

TEL: 86-755- 3320-2398 FCC ID: ZC4S105 Page Number : 4 of 90
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

1 General Description

1.1 Applicant

CORPORATIVO LANIX S.A. DE C.V.

CARRETERA INTERNACIONAL HERMOSILLO-NOGALE KM 8.5 HERMOSILLO MEXICO

Report No.: FR370202C

1.2 Manufacturer

Shanghai Huaqin Telecom Technology Co., Ltd

Building1, 399 Keyuan Road, Pudong district, Shanghai, China

1.3 Feature of Equipment Under Test

Product Feature							
Equipment	Mobile phone						
Brand Name	LANIX						
Model Name	Ilium S105						
FCC ID	ZC4S105						
EUT supports Radios application	GSM/GPRS/WCDMA/WLAN 11bgn/Bluetooth 2.1/4.0						
HW Version	A100P_MB_V2.0						
SW Version	ZA100EA_45A0_V8_1_H						
EUT Stage	Production Unit						

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

1.4 Product Specification of Equipment Under Test

Product Specification subjective to this standard							
Tx/Rx Frequency Range	2412 MHz ~ 2462 MHz						
	802.11b : 9.09 dBm (0.0081 W)						
Maximum Output Power to Antenna	802.11g : 19.18 dBm (0.0828 W)						
Maximum Output Fower to Antenna	802.11n HT20 : 19.84 dBm (0.0964 W)						
	802.11n HT40 : 19.87 dBm (0.0971 W)						
Antenna Type	PIFA Antenna type with gain 1.10 dBi						
Type of Madulation	802.11b: DSSS (DBPSK / DQPSK / CCK)						
Type of Modulation	802.11g/n: OFDM (BPSK / QPSK / 16QAM / 64QAM)						

 SPORTON INTERNATIONAL (SHENZHEN) INC.
 Page Number
 : 5 of 90

 TEL: 86-755- 3320-2398
 Report Issued Date
 : Jul. 23, 2013

 FCC ID: ZC4S105
 Report Version
 : Rev. 01

SPORTON LAB. FCC RF

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

1.6 Testing Site

Test Site	SPORTON II	SPORTON INTERNATIONAL (SHENZHEN) INC.						
No. 3 Building, the third floor of south, Shahe River west, Fe warehouse, Nanshan District, Shenzhen, Guangdong, P.R.C.								
	TEL: +86-755- 3320-2398							
Toot Site No		Sporton Site N	lo.	FCC/IC Registration No.				
Test Site No.	TH01-SZ	03CH01-SZ	CO01-SZ	831040/4086F-1				

The test site complies with ANSI C63.4 2003 requirement.

1.7 Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r01
- ANSI C63.10-2009

Remark:

- All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

TEL: 86-755- 3320-2398 FCC ID: ZC4S105 Page Number : 6 of 90
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

2 Test Configuration of Equipment Under Test

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conducted emission (150 KHz to 30 MHz) and radiated emission (9 KHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (Z plane) were recorded in this report.

The final configuration from all the combinations and the worst-case data rates were investigated by measuring the maximum power across all the data rates and modulation modes under section 2.2.

Based on the worst configuration found above, the RF power setting is set individually to meet FCC compliance limit for the final conducted and radiated tests shown in section 2.3.

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	1	2412	7	2442
	2	2417	8	2447
2400-2483.5 MHz	3	2422	9	2452
2400-2403.5 IVITZ	4	2427	10	2457
	5	2432	11	2462
	6	2437		

TEL: 86-755- 3320-2398 FCC ID: ZC4S105 Page Number : 7 of 90
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

2.2 Pre-Scanned RF Power

Preliminary tests were performed in different data rate as following table and the highest (peak) power data rates were chosen for full test in the following tables.

		2.4GHz 802.11b RF Power (dBm)							
Channel	Frequency		DSSS Data Rate						
		1 Mbps	2 Mbps	5.5 Mbps	11 Mbps				
CH 01	2412 MHz	8.31	8.27	8.25	8.28				
CH 06	2437 MHz	8.59	8.58	8.56	8.53				
CH 11	2462 MHz	9.09	9.04	9.02	9.04				

				2.4GHz	802.11g	RF Powe	r (dBm)		
Channel	Frequency	OFDM Data Rate							
	. ,	6 Mbps	9 Mbps	12 Mbps	18 Mbps	24 Mbps	36 Mbps	48 Mbps	54 Mbps
CH 01	2412 MHz	18.44	18.37	18.31	18.36	18.32	18.43	18.39	18.27
CH 06	2437 MHz	18.29	18.26	18.24	18.16	18.18	18.22	18.25	18.19
CH 11	2462 MHz	<mark>19.18</mark>	19.09	18.92	18.94	18.87	18.98	18.89	18.87

2.4GHz 802.11n HT20 RF Power (d						wer (dBr	n)			
Channel	Frequency	ency OFDM Data Rate								
		6.5 Mbps	13 Mbps	19.5 Mbps	26 Mbps	39 Mbps	52 Mbps	58.5 Mbps	65 Mbps	
CH 01	2412 MHz	19.05	18.97	18.51	18.65	18.49	18.59	18.54	18.47	
CH 06	2437 MHz	18.9	18.44	18.34	18.31	18.36	18.38	18.32	18.41	
CH 11	2462 MHz	<mark>19.84</mark>	18.95	18.87	18.88	18.92	18.86	18.87	18.91	

		2.4GHz 802.11n HT40 RF Power (dBm)								
Channel	Frequency	ency OFDM Data Rate								
		13.5 Mbps	27 Mbps	40.5 Mbps	54 Mbps	81 Mbps	108 Mbps	121.5 Mbps	135 Mbps	
CH 03	2422 MHz	19.31	18.66	18.64	18.35	18.32	18.42	18.43	18.31	
CH 06	2437 MHz	19.5	18.77	18.72	18.56	18.55	18.53	18.52	18.49	
CH 09	2452 MHz	<mark>19.87</mark>	18.92	18.75	18.89	18.73	18.89	18.76	18.77	

TEL: 86-755- 3320-2398 FCC ID: ZC4S105 Page Number : 8 of 90
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

2.3 Test Mode

Final results of test modes, data rates and test channels are shown as following table.

		Test Cases		
	Test Items	Mode	Data Rate	Test Channel
		802.11b	1 Mbps	1/6/11
	6dB BW	802.11g	6 Mbps	1/6/11
	Power Spectral Density	802.11n HT20	6.5 Mbps	1/6/11
		802.11n HT40	13.5 Mbps	3/6/9
		802.11b	1 Mbps	1/6/11
	0.4.15	802.11g	6 Mbps	1/6/11
	Output Power	802.11n HT20	6.5 Mbps	1/6/11
Conducted		802.11n HT40	13.5 Mbps	3/6/9
TCs		802.11b	1 Mbps	1/11
		802.11g	6 Mbps	1/11
	Conducted Band Edge	802.11n HT20	6.5 Mbps	1/11
		802.11n HT40	13.5 Mbps	3/9
		802.11b	1 Mbps	1/6/11
	Conducted Spurious	802.11g	6 Mbps	1/6/11
	Emission	802.11n HT20	6.5 Mbps	1/6/11
		802.11n HT40	13.5 Mbps	3/6/9
		802.11b	1 Mbps	1/11
		802.11g	6 Mbps	1/11
	Radiated Band Edge	802.11n HT20	6.5 Mbps	1/11
Radiated		802.11n HT40	13.5 Mbps	3/9
TCs		802.11b	1 Mbps	1/6/11
	Radiated Spurious	802.11g	6 Mbps	1/6/11
	Emission	802.11n HT20	6.5 Mbps	1/6/11
		802.11n HT40	13.5 Mbps	3/6/9
AC Conducted Emission	Mode 1 : GSM850 ldle + Earphone	Bluetooth Link + WLA	N Link + USB Cable (Cr	narging from Adapter) +

TEL: 86-755- 3320-2398 FCC ID: ZC4S105 Page Number : 9 of 90
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

2.4 Connection Diagram of Test System

<WLAN Tx Mode>

<AC Conducted Emission Mode>

TEL: 86-755- 3320-2398 FCC ID: ZC4S105 Page Number : 10 of 90
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

2.5 Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	System Simulator	Agilent	E5515C	N/A	N/A	Unshielded, 1.8 m
2.	DC Power Supply	TOPWORD	3303DR	N/A	N/A	Unshielded, 1.8 m
3.	WLAN AP	D-Link	DIR-628	KA2DIR628A2	N/A	Unshielded, 1.8 m
4.	Notebook	DELL	P08S	QDS-BRCM1030	N/A	AC I/P: Unshielded, 1.8 m DC O/P: Shielded, 1.8 m
5.	Bluetooth Earphone	Nokia	BH-106	QTLBH-106	N/A	N/A

2.6 Description of RF Function Operation Test Setup

For WLAN RF test items, the engineering test program was provided and enabled to make EUT continuous transmit/receive.

For AC power line conducted emissions, the EUT was set to connect with the WLAN AP under large package sizes transmission.

TEL: 86-755- 3320-2398 FCC ID: ZC4S105 Page Number : 11 of 90
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

2.7 Measurement Results Explanation Example

For conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and 10dB attenuator between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and 10dB attenuator factor.

Offset = RF cable loss + attenuator factor.

Following table shows an offset computation example with cable loss 7.5 dB.

$$Offset(dB) = RF \ cable \ loss(dB) + attenuator \ factor(dB).$$

= 7.5 + 10 = 17.5 (dB)

TEL: 86-755- 3320-2398 FCC ID: ZC4S105 Page Number : 12 of 90
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

3 Test Result

3.1 6dB Bandwidth Measurement

3.1.1 Limit of 6dB Bandwidth

The minimum 6 dB bandwidth shall be at least 500 KHz.

3.1.2 Measuring Instruments

See list of measuring instruments of this test report.

3.1.3 Test Procedures

- The testing follows the Measurement Procedure of FCC KDB No. 558074 D01 DTS Meas. Guidance v03r01.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6 dB bandwidth must be greater than 500 KHz.
- 5. Measure and record the results in the test report.

3.1.4 Test Setup

FCC ID : ZC4S105

Page Number : 13 of 90
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

FCC RF Test Report

3.1.5 Test Result of 6dB Bandwidth

Test Mode :	802.11b	Temperature :	24~26 ℃
Test Engineer :	Fly Chen	Relative Humidity :	50~53%

Channel	Frequency (MHz)	802.11b 6dB Bandwidth (MHz)	6dB Bandwidth Min. Limit (MHz)	Pass/Fail
01	2412	10.04	0.5	Pass
06	2437	10.04	0.5	Pass
11	2462	10.04	0.5	Pass

Test Mode :	802.11g	Temperature :	24~26 ℃
Test Engineer :	Fly Chen	Relative Humidity :	50~53%

Channel	Frequency (MHz)	802.11g 6dB Bandwidth (MHz)	6dB Bandwidth Min. Limit (MHz)	Pass/Fail
01	2412	16.32	0.5	Pass
06	2437	16.36	0.5	Pass
11	2462	16.32	0.5	Pass

Test Mode :	802.11n HT20	Temperature :	24~26 ℃
Test Engineer :	Fly Chen	Relative Humidity :	50~53%

Channel	Frequency (MHz)	2.4GHz 802.11n HT20 6dB Bandwidth (MHz)	6dB Bandwidth Min. Limit (MHz)	Pass/Fail
01	2412	17.60	0.5	Pass
06	2437	17.60	0.5	Pass
11	2462	17.60	0.5	Pass

Test Mode :	802.11n HT40	Temperature :	24~26 ℃
Test Engineer :	Fly Chen	Relative Humidity :	50~53%

Channel	Frequency (MHz)	2.4GHz 802.11n HT40 6dB Bandwidth (MHz)	6dB Bandwidth Min. Limit (MHz)	Pass/Fail
03	2422	35.12	0.5	Pass
06	2437	35.04	0.5	Pass
09	2452	35.12	0.5	Pass

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755- 3320-2398 FCC ID: ZC4S105 Page Number : 14 of 90
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

Report No.: FR370202C

3.1.6 Test Result of 6dB Bandwidth Plots

6 dB Bandwidth Plot on 802.11b Channel 01

Date: 15.JUL.2013 21:45:45

6 dB Bandwidth Plot on 802.11b Channel 06

Date: 15.JUL.2013 21:50:12

TEL: 86-755- 3320-2398 FCC ID: ZC4S105

Page Number : 15 of 90 Report Issued Date: Jul. 23, 2013 Report Version : Rev. 01

Report No.: FR370202C

6 dB Bandwidth Plot on 802.11b Channel 11

Date: 15.JUL.2013 21:55:48

6 dB Bandwidth Plot on 802.11g Channel 01

Date: 8.JUL.2013 00:26:07

TEL: 86-755- 3320-2398 FCC ID: ZC4S105

Page Number : 16 of 90 Report Issued Date: Jul. 23, 2013 Report Version : Rev. 01

ort Report No. : FR370202C

6 dB Bandwidth Plot on 802.11g Channel 06

Date: 8.JUL.2013 00:32:58

6 dB Bandwidth Plot on 802.11g Channel 11

Date: 8.JUL.2013 00:39:54

TEL: 86-755- 3320-2398 FCC ID: ZC4S105 Page Number : 17 of 90
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

Report No. : FR370202C

6 dB Bandwidth Plot on 2.4GHz 802.11n HT20 Channel 01

Date: 8.JUL.2013 00:47:30

6 dB Bandwidth Plot on 2.4GHz 802.11n HT20 Channel 06

Date: 8.JUL.2013 00:53:13

TEL: 86-755- 3320-2398 FCC ID : ZC4S105 Page Number : 18 of 90
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

Report No.: FR370202C

6 dB Bandwidth Plot on 2.4GHz 802.11n HT20 Channel 11

Date: 8.JUL.2013 00:58:43

6 dB Bandwidth Plot on 2.4GHz 802.11n HT40 Channel 03

Date: 8.JUL.2013 01:07:59

TEL: 86-755- 3320-2398 FCC ID: ZC4S105 Page Number : 19 of 90
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

6 dB Bandwidth Plot on 2.4GHz 802.11n HT40 Channel 06

Date: 8.JUL.2013 01:14:10

6 dB Bandwidth Plot on 2.4GHz 802.11n HT40 Channel 09

Date: 8.JUL.2013 01:19:38

TEL: 86-755- 3320-2398 FCC ID : ZC4S105 Page Number : 20 of 90
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

3.2 Output Power Measurement

3.2.1 Limit of Output Power

For systems using digital modulation in the 2400-2483.5MHz, the limit for peak output power is 30dBm. If transmitting antenna of directional gain greater than 6dBi are used the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

3.2.2 Measuring Instruments

See list of measuring instruments of this test report.

3.2.3 Test Procedures

- The testing follows the Measurement Procedure of FCC KDB No. 558074 D01 DTS Meas. Guidance v03r01.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power and record the results in the test report.

3.2.4 Test Setup

TEL: 86-755- 3320-2398 FCC ID: ZC4S105 Page Number : 21 of 90
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

3.2.5 Test Result of Peak Output Power

Test Mode :	802.11b	Temperature :	24~26 ℃
Test Engineer :	Fly Chen	Relative Humidity :	50~53%

Channel	Frequency (MHz)	802.11b Peak Output Power (dBm)	Max. Limits (dBm)	Pass/Fail
01	2412	8.31	30	Pass
06	2437	8.59	30	Pass
11	2462	9.09	30	Pass

Test Mode :	802.11g	Temperature :	24~26 ℃
Test Engineer :	Fly Chen	Relative Humidity :	50~53%

Channel	Frequency (MHz)	802.11g Peak Output Power (dBm)	Max. Limits (dBm)	Pass/Fail
01	2412	18.44	30	Pass
06	2437	18.29	30	Pass
11	2462	19.18	30	Pass

Test Mode :	802.11n HT20	Temperature :	24~26 ℃
Test Engineer :	Fly Chen	Relative Humidity :	50~53%

Channel	Frequency (MHz)	2.4GHz 802.11n HT20 Peak Output Power (dBm)	Max. Limits (dBm)	Pass/Fail
01	2412	19.05	30	Pass
06	2437	18.9	30	Pass
11	2462	19.84	30	Pass

Test Mode :	2.4GHz 802.11n HT40	Temperature :	24~26 ℃
Test Engineer :	Fly Chen	Relative Humidity :	50~53%

Channel	Frequency (MHz)	2.4GHz 802.11n HT40 Peak Output Power (dBm)	Max. Limits	Pass/Fail
03	2422	19.31	30	Pass
06	2437	19.5	30	Pass
09	2452	19.87	30	Pass

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755- 3320-2398 FCC ID: ZC4S105 Page Number : 22 of 90
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

3.2.6 Test Result of Average output Power (Reporting Only)

Test Mode :	802.11b	Temperature :	24~26℃
Test Engineer :	Fly Chen	Relative Humidity :	50~53%
Duty Cycle:	98.59%	Duty Factor:	0.06dB

Channel	Frequency (MHz)	802.11b Average Output Power (dBm)
01	2412	5.45
06	2437	5.65
11	2462	6.30

Test Mode :	802.11g	Temperature :	24~26℃
Test Engineer :	Fly Chen	Relative Humidity :	50~53%
Duty Cycle:	93.71%	Duty Factor:	0.28dB

Channel	Frequency (MHz)	802.11g Average Output Power (dBm)
01	2412	8.00
06	2437	7.76
11	2462	8.70

Test Mode :	802.11n HT20	Temperature :	24~26℃
Test Engineer :	Fly Chen	Relative Humidity :	50~53%
Duty Cycle:	92.19%	Duty Factor:	0.35dB

Channel	Frequency (MHz)	802.11n HT20 Average Output Power (dBm)
01	2412	7.97
06	2437	7.78
11	2462	8.78

TEL: 86-755- 3320-2398 FCC ID: ZC4S105 Page Number : 23 of 90
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

FCC RF Test Report

Test Mode :	802.11n HT40	Temperature :	24~26℃
Test Engineer :	Fly Chen	Relative Humidity :	50~53%
Duty Cycle:	85.64%	Duty Factor:	0.67dB

Channel	Frequency (MHz)	802.11n HT40 Average Output Power (dBm)
03	2422	7.87
06	2437	7.99
09	2452	8.64

TEL: 86-755- 3320-2398 FCC ID: ZC4S105 Page Number : 24 of 90
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

The peak power spectral density shall not be greater than 8dBm in any 3KHz band at any time interval of continuous transmission.

3.3.2 Measuring Instruments

See list of measuring instruments of this test report.

3.3.3 Test Procedures

- The testing follows Measurement Procedure 10.2 Method PKPSD of FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r01
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz. Video bandwidth VBW = 10 kHz In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW)
- 5. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.
- 6. Measure and record the results in the test report.
- 7. The Measured power density (dBm)/ 100KHz is a reference level and used as 20dBc down limit line for Conducted Band Edges and Conducted Spurious Emission.

3.3.4 Test Setup

FCC ID: ZC4S105

SPORTON INTERNATIONAL (SHENZHEN) INC.
TEL: 86-755- 3320-2398

Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

: 25 of 90

Page Number

FCC RF Test Report

3.3.5 Test Result of Power Spectral Density

Test Mode :	802.11b	Temperature :	24~26 ℃
Test Engineer :	Fly Chen	Relative Humidity :	50~53%

Channal	Frequency	802.11b Po	wer Density	Max. Limits	
Channel	(MHz)	PSD/100KHz (dBm)	PSD/3KHz (dBm)	(dBm/3KHz)	Pass/Fail
01	2412	-3.47	-17.91	8	Pass
06	2437	-3.24	-17.12	8	Pass
11	2462	-2.74	-14.66	8	Pass

Test Mode :	802.11g	Temperature :	24~26 ℃
Test Engineer :	Fly Chen	Relative Humidity :	50~53%

Channal	Frequency	802.11g Power Density		Max. Limits	Dage/Fail
Channel	(MHz)	PSD/100KHz (dBm)	PSD/3KHz (dBm)	(dBm/3KHz)	Pass/Fail
01	2412	-3.64	-16.90	8	Pass
06	2437	-4.14	-18.12	8	Pass
11	2462	-3.92	-17.38	8	Pass

Test Mode :	802.11n HT20	Temperature :	24~26 ℃
Test Engineer :	Fly Chen	Relative Humidity :	50~53%

Channal		Frequency	802.11n HT20 Power Density		Max. Limits	Dage/Fail
Channel	(MHz)	PSD/100KHz (dBm)	PSD/3KHz (dBm)	(dBm/3KHz)	Pass/Fail	
	01	2412	-4.10	-17.81	8	Pass
	06	2437	-4.05	-18.57	8	Pass
	11	2462	-3.29	-16.92	8	Pass

SPORTON INTERNATIONAL (SHENZHEN) INC. TEL: 86-755- 3320-2398

FCC ID: ZC4S105

Page Number : 26 of 90
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

FCC RF Test Report

Test Mode :	802.11n HT40	Temperature :	24~26 ℃
Test Engineer :	Fly Chen	Relative Humidity :	50~53%

Channal	Frequency	802.11n HT40	Power Density	Max. Limits	Dage/Fail
Channel	(MHz)	PSD/100KHz (dBm)	PSD/3KHz (dBm)	(dBm/3KHz)	Pass/Fail
03	2422	-5.96	-20.17	8	Pass
06	2437	-5.93	-19.99	8	Pass
09	2452	-5.01	-18.33	8	Pass

Note:

- 1. Measured power density (dBm) has offset with cable loss.
- 2. The Measured power density (dBm)/ 100KHz is reference level and used as 20dBc down for Conducted Band Edges and Conducted Spurious Emission limit line.

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755- 3320-2398 FCC ID: ZC4S105 Page Number : 27 of 90
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

3.3.6 Test Result of Power Spectral Density Plots (100kHz)

PSD 100kHz Plot on 802.11b Channel 01

Date: 15.JUL.2013 21:46:15

PSD 100kHz Plot on 802.11b Channel 06

Date: 15.JUL.2013 21:50:43

TEL: 86-755- 3320-2398 FCC ID: ZC4S105 Page Number : 28 of 90
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

Report No. : FR370202C

PSD 100kHz Plot on 802.11b Channel 11

Date: 15.JUL.2013 21:56:19

PSD 100kHz Plot on 802.11g Channel 01

Date: 8.JUL.2013 00:26:58

TEL: 86-755- 3320-2398 FCC ID: ZC4S105 Page Number : 29 of 90
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

Report No.: FR370202C

PSD 100kHz Plot on 802.11g Channel 06

Date: 8.JUL.2013 00:34:48

PSD 100kHz Plot on 802.11g Channel 11

Date: 8.JUL.2013 00:40:39

TEL: 86-755- 3320-2398 FCC ID: ZC4S105 Page Number : 30 of 90
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

PSD 100kHz Plot on 802.11n HT20 Channel 01

Date: 8.JUL.2013 00:48:23

PSD 100kHz Plot on 802.11n HT20 Channel 06

Date: 8.JUL.2013 00:53:58

TEL: 86-755- 3320-2398 FCC ID: ZC4S105 Page Number : 31 of 90
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

Report No.: FR370202C

PSD 100kHz Plot on 802.11n HT20 Channel 11

Date: 8.JUL.2013 00:59:35

PSD 100kHz Plot on 802.11n HT40 Channel 03

Date: 8.JUL.2013 01:08:50

TEL: 86-755- 3320-2398 FCC ID: ZC4S105 Page Number : 32 of 90
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

Report No.: FR370202C

PSD 100kHz Plot on 802.11n HT40 Channel 06

Date: 8.JUL.2013 01:15:07

PSD 100kHz Plot on 802.11n HT40 Channel 09

Date: 8.JUL.2013 01:20:23

TEL: 86-755- 3320-2398 FCC ID: ZC4S105

Page Number : 33 of 90 Report Issued Date: Jul. 23, 2013 : Rev. 01 Report Version

3.3.7 Test Result of Power Spectral Density Plots (3kHz)

PSD 3kHz Plot on 802.11b Channel 01

Date: 15.JUL.2013 21:46:06

PSD 3kHz Plot on 802.11b Channel 06

Date: 15.JUL.2013 21:50:34

TEL: 86-755- 3320-2398 FCC ID: ZC4S105 Page Number : 34 of 90
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

PSD 3kHz Plot on 802.11b Channel 11

Date: 15.JUL.2013 21:56:10

PSD 3kHz Plot on 802.11g Channel 01

Date: 8.JUL.2013 00:26:36

TEL: 86-755- 3320-2398 FCC ID: ZC4S105 Page Number : 35 of 90
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

Report No.: FR370202C

PSD 3kHz Plot on 802.11g Channel 06

Date: 8.JUL.2013 00:33:33

PSD 3kHz Plot on 802.11g Channel 11

Date: 8.JUL.2013 00:40:22

TEL: 86-755- 3320-2398 FCC ID: ZC4S105

Page Number : 36 of 90 Report Issued Date: Jul. 23, 2013 Report Version : Rev. 01

PSD 3kHz Plot on 802.11n HT20 Channel 01

Date: 8.JUL.2013 00:48:02

PSD 3kHz Plot on 802.11n HT20 Channel 06

Date: 8.JUL.2013 00:53:40

TEL: 86-755- 3320-2398 FCC ID: ZC4S105 Page Number : 37 of 90
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

Report No. : FR370202C

PSD 3kHz Plot on 802.11n HT20 Channel 11

Date: 8.JUL.2013 00:59:14

PSD 3kHz Plot on 802.11n HT40 Channel 03

Date: 8.JUL.2013 01:08:33

TEL: 86-755- 3320-2398 FCC ID: ZC4S105 Page Number : 38 of 90
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

Report No.: FR370202C

PSD 3kHz Plot on 802.11n HT40 Channel 06

Date: 8.JUL.2013 01:14:58

PSD 3kHz Plot on 802.11n HT40 Channel 09

Date: 8.JUL.2013 01:20:07

TEL: 86-755- 3320-2398 FCC ID: ZC4S105

Page Number : 39 of 90 Report Issued Date: Jul. 23, 2013 Report Version : Rev. 01

3.4 Conducted Band Edges and Spurious Emission Measurement

3.4.1 Limit of Conducted Band Edges and Spurious Emission Measurement

In any 100 kHz bandwidth outside of the authorized frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dB / 30dB relative to the maximum PSD level in 100 kHz by RF conducted measurement and radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

3.4.2 Measuring Instruments

See list of measuring instruments of this test report.

3.4.3 Test Procedures

- The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r01.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- Set to the maximum power setting and enable the EUT transmit continuously.
- 4. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval.
- 5. Set RBW = 100 KHz, VBW=300 KHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d).
- 6. Measure and record the results in the test report.
- 7. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.4.4 Test Setup

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755- 3320-2398 FCC ID: ZC4S105 Page Number : 40 of 90
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

3.4.5 Test Plots of Conducted Spurious at Band Edges

Test Mode :	802.11b	Temperature :	24~26 ℃
Test Band :	Low and High	Relative Humidity :	50~53%
Test Channel :	01 and 11	Test Engineer :	Fly Chen

Low Band Edge Plot on 802.11b Channel 01

Date: 15.JUL.2013 21:46:29

High Band Edge Plot on 802.11b Channel 11

Date: 15.JUL.2013 21:56:32

TEL: 86-755- 3320-2398 FCC ID: ZC4S105 Page Number : 41 of 90
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

Test Mode :	802.11g	Temperature :	24~26 ℃
Test Band :	Low and High	Relative Humidity :	50~53%
Test Channel :	01 and 11	Test Engineer :	Fly Chen

Low Band Edge Plot on 802.11g Channel 01

Date: 8.JUL.2013 00:27:27

High Band Edge Plot on 802.11g Channel 11

Date: 8.JUL.2013 00:41:06

TEL: 86-755- 3320-2398 FCC ID: ZC4S105 Page Number : 42 of 90
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

Test Mode :	802.11n HT20	Temperature :	24~26℃
Test Band :	Low and High	Relative Humidity :	50~53%
Test Channel :	01 and 11	Test Engineer :	Fly Chen

Low Band Edge Plot on 802.11n HT20 Channel 01

Date: 8.JUL.2013 00:49:02

High Band Edge Plot on 802.11n HT20 Channel 11

Date: 8.JUL.2013 01:00:03

TEL: 86-755- 3320-2398 FCC ID: ZC4S105 Page Number : 43 of 90
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

Test Mode :	802.11n HT40	Temperature :	24~26℃
Test Band :	Low and High	Relative Humidity :	50~53%
Test Channel :	03 and 09	Test Engineer :	Fly Chen

Low Band Edge Plot on 802.11n HT40 Channel 03

Date: 8.JUL.2013 01:09:18

High Band Edge Plot on 802.11n HT40 Channel 09

Date: 8.JUL.2013 01:21:17

TEL: 86-755- 3320-2398 FCC ID: ZC4S105 Page Number : 44 of 90
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

3.4.6 Test Result of Conducted Spurious Emission

Test Mode :	802.11b	Temperature :	24~26℃
Test Band :	30MHz-3GHz and 2G-25GHz	Relative Humidity :	50~53%
Test Channel :	01, 06, 11	Test Engineer :	Fly Chen

802.11b 30 MHz~3 GHz

Conducted Spurious Emission Plot on Channel 01

Date: 15.JUL.2013 21:46:48

802.11b 2 GHz~25 GHz

Conducted Spurious Emission Plot on Channel 01

Date: 15.JUL.2013 21:47:07

TEL: 86-755- 3320-2398 FCC ID: ZC4S105 Page Number : 45 of 90
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

Report No.: FR370202C

802.11b 30 MHz~3 GHz

Conducted Spurious Emission Plot on Channel 06

Date: 15.JUL.2013 21:51:02

802.11b 2 GHz~25 GHz

Conducted Spurious Emission Plot on Channel 06

Date: 15.JUL.2013 21:51:20

TEL: 86-755- 3320-2398 FCC ID: ZC4S105

Page Number : 46 of 90 Report Issued Date: Jul. 23, 2013 : Rev. 01 Report Version

Report No.: FR370202C

802.11b 30 MHz~3 GHz

Conducted Spurious Emission Plot on Channel 11

Date: 15.JUL.2013 21:56:52

802.11b 2 GHz~25 GHz

Conducted Spurious Emission Plot on Channel 11

Date: 15.JUL.2013 21:57:10

TEL: 86-755- 3320-2398 FCC ID: ZC4S105

Page Number : 47 of 90 Report Issued Date: Jul. 23, 2013 : Rev. 01 Report Version

Test Mode :	802.11g	Temperature :	24~26 ℃	
Test Band :	30MHz-3GHz and 2G-25GHz	Relative Humidity :	50~53%	
Test Channel :	01, 06, 11	Test Engineer :	Fly Chen	

802.11g 30 MHz~3 GHz

Conducted Spurious Emission Plot on Channel 01

Date: 8.JUL.2013 00:28:01

802.11g 2 GHz~25 GHz

Conducted Spurious Emission Plot on Channel 01

Date: 8.JUL.2013 00:28:19

TEL: 86-755- 3320-2398 FCC ID: ZC4S105 Page Number : 48 of 90
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

Report No.: FR370202C

802.11g 30 MHz~3 GHz

Conducted Spurious Emission Plot on Channel 06

Date: 8.JUL.2013 00:35:26

802.11g 2 GHz~25 GHz

Conducted Spurious Emission Plot on Channel 06

Date: 8.JUL.2013 00:35:45

TEL: 86-755- 3320-2398 FCC ID: ZC4S105

Page Number : 49 of 90 Report Issued Date: Jul. 23, 2013 : Rev. 01 Report Version

Report No.: FR370202C

802.11g 30 MHz~3 GHz

Conducted Spurious Emission Plot on Channel 11

Date: 8.JUL.2013 00:41:40

802.11g 2 GHz~25 GHz

Conducted Spurious Emission Plot on Channel 11

Date: 8.JUL.2013 00:41:59

TEL: 86-755- 3320-2398 FCC ID: ZC4S105

Page Number : 50 of 90 Report Issued Date: Jul. 23, 2013 Report Version : Rev. 01

Test Mode :	802.11n HT20	Temperature :	24~26℃
Test Band :	30MHz-3GHz and 2G-25GHz	Relative Humidity :	50~53%
Test Channel :	01, 06, 11	Test Engineer :	Fly Chen

802.11n HT20 30 MHz~3 GHz

Conducted Spurious Emission Plot on Channel 01

Date: 8.JUL.2013 00:49:39

802.11n HT20 2 GHz~25 GHz

Conducted Spurious Emission Plot on Channel 01

Date: 8.JUL.2013 00:49:57

TEL: 86-755- 3320-2398 FCC ID: ZC4S105 Page Number : 51 of 90
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

Report No. : FR370202C

802.11n HT20 30 MHz~3 GHz

Conducted Spurious Emission Plot on Channel 06

Date: 8.JUL.2013 00:55:15

802.11n HT20 2 GHz~25 GHz

Conducted Spurious Emission Plot on Channel 06

Date: 8.JUL.2013 00:55:33

TEL: 86-755- 3320-2398 FCC ID: ZC4S105 Page Number : 52 of 90
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

Report No.: FR370202C

802.11n HT20 30 MHz~3 GHz

Conducted Spurious Emission Plot on Channel 11

Date: 8.JUL.2013 01:00:31

802.11n HT20 2 GHz~25 GHz

Conducted Spurious Emission Plot on Channel 11

Date: 8.JUL.2013 01:00:50

TEL: 86-755- 3320-2398 FCC ID: ZC4S105

Page Number : 53 of 90 Report Issued Date: Jul. 23, 2013 : Rev. 01 Report Version

Test Mode :	802.11n HT40	Temperature :	24~26 ℃
Test Band :	30MHz-3GHz and 2G-25GHz	Relative Humidity :	50~53%
Test Channel :	03, 06, 09	Test Engineer :	Fly Chen

802.11n HT40 30 MHz~3 GHz

Conducted Spurious Emission Plot on Channel 03

Date: 8.JUL.2013 01:09:44

802.11n HT40 2 GHz~25 GHz

Conducted Spurious Emission Plot on Channel 03

Date: 8.JUL.2013 01:10:03

TEL: 86-755- 3320-2398 FCC ID: ZC4S105 Page Number : 54 of 90
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

802.11n HT40 30 MHz~3 GHz Conducted Spurious Emission Plot on Channel 06

Date: 8.JUL.2013 01:15:37

802.11n HT40 2 GHz~25 GHz

Conducted Spurious Emission Plot on Channel 06

Date: 8.JUL.2013 01:15:56

TEL: 86-755- 3320-2398 FCC ID: ZC4S105 Page Number : 55 of 90
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

802.11n HT40 30 MHz~3 GHz

Conducted Spurious Emission Plot on Channel 09

Date: 22.JUL.2013 16:57:43

802.11n HT40 2 GHz~25 GHz

Conducted Spurious Emission Plot on Channel 09

Date: 8.JUL.2013 01:22:02

TEL: 86-755- 3320-2398 FCC ID: ZC4S105 Page Number : 56 of 90
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

3.5 Radiated Band Edges and Spurious Emission Measurement

3.5.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 KHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device was measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the FCC section 15.209 limits as below.

Frequency	Field Strength	Measurement Distance		
(MHz)	(microvolts/meter)	(meters)		
0.009 - 0.490	2400/F(KHz)	300		
0.490 – 1.705	24000/F(KHz)	30		
1.705 – 30.0	30	30		
30 – 88	100	3		
88 – 216	150	3		
216 - 960	200	3		
Above 960	500	3		

3.5.2 Measuring Instruments

See list of measuring instruments of this test report.

TEL: 86-755- 3320-2398 FCC ID: ZC4S105 Page Number : 57 of 90
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

3.5.3 Test Procedures

- 1. The testing follows the guidelines in ANSI C63. 10-2009
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.

Report No.: FR370202C

- 3. The EUT was placed on a turntable with 0.8 meter above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 6. For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
- 7. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 KHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold;
 - (3) Set RBW = 1 MHz, VBW= 3MHz for $f \ge 1$ GHz for peak measurement. For average measurement:
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

Band	Duty Cycle(%)	T(ms)	1/T(KHz)	VBW Setting
802.11b	98.592	-	-	10Hz
802.11g	93.708	1.400	0.714	1kHz
2.4G 802.11n HT20	92.188	1.298	0.770	1kHz
2.4G 802.11n HT40	85.638	0.644	1.553	3kHz

Note: For average measurement with duty cycle < 98%, use reduced VBW measurement method 4.2.3.2.3 in ANSI C63.10.

 SPORTON INTERNATIONAL (SHENZHEN) INC.
 Page Number
 : 58 of 90

 TEL: 86-755- 3320-2398
 Report Issued Date
 : Jul. 23, 2013

 FCC ID: ZC4S105
 Report Version
 : Rev. 01

Date: 6.JUL.2013 18:20:43

Note:

The total loss is 17.5dB of the RF cable and attenuator, and has been compensated to the spectrum analyzer by setting into the amplitude level offset. That means the measured result shown on the spectrum analyzer has added the total loss and been compliance with the limit line.

TEL: 86-755- 3320-2398 FCC ID: ZC4S105 Page Number : 59 of 90
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

Date: 6.JUL.2013 18:23:27

Note:

The total loss is 17.5dB of the RF cable and attenuator, and has been compensated to the spectrum analyzer by setting into the amplitude level offset. That means the measured result shown on the spectrum analyzer has added the total loss and been compliance with the limit line.

TEL: 86-755- 3320-2398 FCC ID: ZC4S105 Page Number : 60 of 90
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

Date: 6.JUL.2013 18:29:19

Note:

The total loss is 17.5dB of the RF cable and attenuator, and has been compensated to the spectrum analyzer by setting into the amplitude level offset. That means the measured result shown on the spectrum analyzer has added the total loss and been compliance with the limit line.

TEL: 86-755- 3320-2398 FCC ID: ZC4S105 Page Number : 61 of 90
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

2.4GHz 802.11n HT40 Duty Cycle

Date: 6.JUL.2013 18:34:59

Note:

The total loss is 17.5dB of the RF cable and attenuator, and has been compensated to the spectrum analyzer by setting into the amplitude level offset. That means the measured result shown on the spectrum analyzer has added the total loss and been compliance with the limit line.

TEL: 86-755- 3320-2398 FCC ID: ZC4S105 Page Number : 62 of 90
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

3.5.4 Test Setup

For radiated emissions below 30MHz

For radiated emissions from 30MHz to 1GHz

TEL: 86-755- 3320-2398 FCC ID: ZC4S105 Page Number : 63 of 90
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

For radiated emissions above 1GHz

3.5.5 Test Results of Radiated Spurious Emission (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

TEL: 86-755- 3320-2398 FCC ID: ZC4S105 Page Number : 64 of 90
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

Report No.: FR370202C

Spectrum Analyzer / Receiver

3.5.6 Test Result of Radiated Band Edges

Test Mode :	802.11b	Temperature :	23~25℃
Test Band :	Low	Relative Humidity :	49~53%
Test Channel :	01	Test Engineer :	Gavin Zhang

Report No.: FR370202C

	ANTENNA POLARITY : HORIZONTAL									
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2387.67	46.78	-27.22	74	38.84	32.14	5.59	29.79	138	51	Peak
2386.14	35.1	-18.9	54	27.16	32.14	5.59	29.79	138	51	Average

	ANTENNA POLARITY: VERTICAL											
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark		
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos			
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)			
2320.17	46.64	-27.36	74	38.86	32.05	5.53	29.8	100	250	Peak		
2313.69	34.38	-19.62	54	26.63	32.02	5.53	29.8	100	250	Average		

Test Mode :	802.11b	Temperature :	23~25 ℃
Test Band :	High	Relative Humidity :	49~53%
Test Channel :	11	Test Engineer :	Gavin Zhang

	ANTENNA POLARITY : HORIZONTAL											
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark		
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos			
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)			
2485.96	48.54	-25.46	74	40.32	32.27	5.71	29.76	132	47	Peak		
2483.5	36.94	-17.06	54	28.72	32.27	5.71	29.76	132	47	Average		

	ANTENNA POLARITY : VERTICAL											
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark		
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos			
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)			
2487.1	47.89	-26.11	74	39.67	32.27	5.71	29.76	119	272	Peak		
2483.5	36.02	-17.98	54	27.8	32.27	5.71	29.76	119	272	Average		

 SPORTON INTERNATIONAL (SHENZHEN) INC.
 Page Number
 : 65 of 90

 TEL: 86-755- 3320-2398
 Report Issued Date
 : Jul. 23, 2013

 FCC ID: ZC4S105
 Report Version
 : Rev. 01

Test Mode :	802.11g	Temperature :	23~25 ℃
Test Band :	Low	Relative Humidity :	49~53%
Test Channel :	01	Test Engineer :	Gavin Zhang

	ANTENNA POLARITY : HORIZONTAL											
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark		
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos			
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)			
2389.74	56.16	-17.84	74	48.22	32.14	5.59	29.79	109	324	Peak		
2388.84	43.06	-10.94	54	35.12	32.14	5.59	29.79	109	324	Average		

	ANTENNA POLARITY: VERTICAL											
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark		
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos			
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)			
2388.66	51.29	-22.71	74	43.35	32.14	5.59	29.79	100	344	Peak		
2388.93	38.93	-15.07	54	30.99	32.14	5.59	29.79	100	344	Average		

Test Mode :	802.11g	Temperature :	23~25 ℃
Test Band :	High	Relative Humidity :	49~53%
Test Channel :	11	Test Engineer :	Gavin Zhang

	ANTENNA POLARITY : HORIZONTAL											
Frequency	Frequency Level Over Limit Read Antenna Cable Preamp Ant Table Remark											
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos			
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)			
2484.49	57.24	-16.76	74	49.02	32.27	5.71	29.76	134	323	Peak		
2483.59	45.43	-8.57	54	37.21	32.27	5.71	29.76	134	323	Average		

	ANTENNA POLARITY : VERTICAL												
Frequency	Frequency Level Over Limit Read Antenna Cable Preamp Ant Table Remark												
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos				
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)				
2484.16	52.88	-21.12	74	44.66	32.27	5.71	29.76	100	338	Peak			
2483.62	40.51	-13.49	54	32.29	32.27	5.71	29.76	100	338	Average			

SPORTON INTERNATIONAL (SHENZHEN) INC. TEL: 86-755- 3320-2398

FCC ID: ZC4S105

Page Number : 66 of 90
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

Test Mode :	802.11n HT20	Temperature :	23~25 ℃
Test Band :	Low	Relative Humidity :	49~53%
Test Channel :	01	Test Engineer :	Gavin Zhang

	ANTENNA POLARITY : HORIZONTAL											
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark		
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos			
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)			
2389.92	52.22	-21.78	74	44.24	32.14	5.62	29.78	200	333	Peak		
2389.83	40.74	-13.26	54	32.76	32.14	5.62	29.78	200	333	Average		

	ANTENNA POLARITY: VERTICAL												
Frequency	ncy Level Over Limit Read Antenna Cable Preamp Ant Table Remark												
	Limit Line Level Factor Loss Factor Pos Pos												
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)				
2388.3	50.97	-23.03	74	43.03	32.14	5.59	29.79	118	336	Peak			
2389.92	38.48	-15.52	54	30.5	32.14	5.62	29.78	118	336	Average			

Test Mode :	802.11n HT20	Temperature :	23~25 ℃
Test Band :	High	Relative Humidity :	49~53%
Test Channel :	11	Test Engineer :	Gavin Zhang

	ANTENNA POLARITY : HORIZONTAL												
Frequency	uency Level Over Limit Read Antenna Cable Preamp Ant Table Remark												
	Limit Line Level Factor Loss Factor Pos Pos												
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)				
2483.86	56.71	-17.29	74	48.49	32.27	5.71	29.76	164	313	Peak			
2483.56	44.29	-9.71	54	36.07	32.27	5.71	29.76	164	313	Average			

	ANTENNA POLARITY : VERTICAL												
Frequency	ency Level Over Limit Read Antenna Cable Preamp Ant Table Remar												
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos				
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)				
2483.59	58.39	-15.61	74	50.17	32.27	5.71	29.76	121	282	Peak			
2483.5	44.35	-9.65	54	36.13	32.27	5.71	29.76	121	282	Average			

SPORTON INTERNATIONAL (SHENZHEN) INC. TEL: 86-755- 3320-2398

FCC ID: ZC4S105

Page Number : 67 of 90
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

Test Mode :	802.11n HT40	Temperature :	23~25 ℃
Test Band :	Low	Relative Humidity :	49~53%
Test Channel :	03	Test Engineer :	Gavin Zhang

	ANTENNA POLARITY : HORIZONTAL												
Frequency	y Level Over Limit Read Antenna Cable Preamp Ant Table Ren												
	Limit Line Level Factor Loss Factor Pos Pos												
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)				
2389.74	57.52	-16.48	74	49.58	32.14	5.59	29.79	161	319	Peak			
2390	43.98	-10.02	54	36	32.14	5.62	29.78	161	319	Average			

	ANTENNA POLARITY: VERTICAL												
Frequency	uency Level Over Limit Read Antenna Cable Preamp Ant Table Remark												
	Limit Line Level Factor Loss Factor Pos Pos												
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)				
2389.92	56.99	-17.01	74	49.01	32.14	5.62	29.78	100	261	Peak			
2389.38	42.7	-11.3	54	34.76	32.14	5.59	29.79	100	261	Average			

Test Mode :	802.11n HT40	Temperature :	23~25 ℃
Test Band :	High	Relative Humidity :	49~53%
Test Channel :	09	Test Engineer :	Gavin Zhang

	ANTENNA POLARITY : HORIZONTAL												
Frequency	quency Level Over Limit Read Antenna Cable Preamp Ant Table Remark												
	Limit Line Level Factor Loss Factor Pos Pos												
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)				
2484.43	59.91	-14.09	74	51.69	32.27	5.71	29.76	104	353	Peak			
2483.71	47.94	-6.06	54	39.72	32.27	5.71	29.76	104	353	Average			

	ANTENNA POLARITY: VERTICAL												
Frequency	quency Level Over Limit Read Antenna Cable Preamp Ant Table Remark												
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos				
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)				
2488.39	54.87	-19.13	74	46.63	32.29	5.71	29.76	100	57	Peak			
2484.58	42.01	-11.99	54	33.79	32.27	5.71	29.76	100	57	Average			

 $\begin{array}{l} \textbf{SPORTON INTERNATIONAL (SHENZHEN) INC.} \\ \textbf{TEL: } 86\text{-}755\text{-} 3320\text{-}2398 \end{array}$

FCC ID: ZC4S105

Page Number : 68 of 90
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

3.5.7 Test Result of Radiated Spurious Emission (30 MHz $\sim 10^{th}$ Harmonic)

Note: Below 1GHz for radiated emission measurement, pre-scanned all test modes and only choose the worst case mode was recorded in the report.

Test Mode :	802.11b	Temperature :	23~25 ℃				
Test Channel :	01	Relative Humidity :	49~53%				
Test Engineer :	Gavin Zhang	Polarization :	Horizontal				
	1. 2412 MHz is fundamer	1. 2412 MHz is fundamental signal which can be ignored.					
Remark :	2. 7236 MHz is not within	7236 MHz is not within a restricted band, and its limit line is 20dB below t					
	highest emission level.	For example, 90.93 dB	μ V/m - 20dB = 70.93 dB μ V/m.				

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)	$(dB\mu V/m)$	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
62.67	27.26	-12.74	40	51.42	5.53	0.85	30.54	-	-	Peak
105.6	33.59	-9.91	43.5	51.26	11.8	1.18	30.65	100	120	Peak
186.33	26.79	-16.71	43.5	46.84	9	1.33	30.38	-	-	Peak
352.5	27.86	-18.14	46	41.09	14.77	1.83	29.83	-	-	Peak
531.7	24.22	-21.78	46	33.22	18.1	2.19	29.29	-	-	Peak
696.9	36.23	-9.77	46	43.49	19.38	2.43	29.07	-	-	Peak
2412	90.93	-	-	82.92	32.17	5.62	29.78	138	51	Peak
2412	88.8	-	-	80.79	32.17	5.62	29.78	138	51	Average
4824	54.01	-19.99	74	69.23	33.68	8.36	57.26	114	315	Peak
4824	51.31	-2.69	54	66.53	33.68	8.36	57.26	114	315	Average
7236	39.71	-31.22	70.93	51.69	35.29	9.97	57.24	100	0	Peak

TEL: 86-755- 3320-2398 FCC ID: ZC4S105 Page Number : 69 of 90
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

Test Mode :	802.11b	Temperature :	23~25℃			
Test Channel :	01	Relative Humidity :	49~53%			
Test Engineer :	Gavin Zhang	Polarization :	Vertical			
	1. 2412 MHz is fundament	2412 MHz is fundamental signal which can be ignored.				
Remark :	2. 7236 MHz is not within a restricted band, and its limit line is 20dB below					
	highest emission level.					

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
84	24.22	-15.78	40	45.66	8.1	1.08	30.62	-	-	Peak
95.88	31.31	-12.19	43.5	50.41	10.4	1.16	30.66	-	-	Peak
172.56	31.61	-11.89	43.5	51.12	9.63	1.28	30.42	120	210	Peak
353.9	28.66	-17.34	46	41.87	14.77	1.84	29.82	-	-	Peak
533.1	25.37	-20.63	46	34.37	18.1	2.19	29.29	-	-	Peak
898.5	29.93	-16.07	46	34.81	21.22	2.71	28.81	-	-	Peak
2412	87.95	-	-	79.94	32.17	5.62	29.78	100	258	Peak
2412	85.46	-	-	77.45	32.17	5.62	29.78	100	258	Average
4824	55.77	-18.23	74	70.99	33.68	8.36	57.26	103	278	Peak
4824	52.62	-1.38	54	67.84	33.68	8.36	57.26	103	278	Average
7236	40.2	-27.75	67.95	52.18	35.29	9.97	57.24	100	360	Peak

TEL: 86-755- 3320-2398 FCC ID: ZC4S105 Page Number : 70 of 90
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

Test Mode :	802.11b	Temperature :	23~25 ℃		
Test Channel :	06	Relative Humidity :	49~53%		
Test Engineer :	Gavin Zhang	Polarization :	Horizontal		
	1. 2437 MHz is fundament	al signal which can be	ignored.		
Remark :	2. Average measurement was not performed if peak level went lower th				
	average limit.				

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2437	91.61	-	-	83.51	32.22	5.65	29.77	137	294	Peak
2437	89.4	-	-	81.3	32.22	5.65	29.77	137	294	Average
4874	54.62	-19.38	74	69.58	33.8	8.41	57.17	102	17	Peak
4874	52.04	-1.96	54	67	33.8	8.41	57.17	102	17	Average
7311	40.37	-33.63	74	52.23	35.31	9.99	57.16	100	0	Peak

Test Mode :	802	.11b	Temperature :	23~25℃		
Test Channel :	06		Relative Humidity :	49~53%		
Test Engineer :	Gav	vin Zhang	Polarization :	Vertical		
	1.	2437 MHz is fundamental signal which can be ignored.				
Remark :	2.	2. Average measurement was not performed if peak level went lower than the				
		average limit.				

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)		(dB)	(dB)	(dB)	(cm)	(deg)	
2437	86.79	-	-	78.69	32.22	5.65	29.77	126	360	Peak
2437	84.59	-	-	76.49	32.22	5.65	29.77	126	360	Average
4874	54.91	-19.09	74	69.87	33.8	8.41	57.17	103	280	Peak
4874	52.29	-1.71	54	67.25	33.8	8.41	57.17	103	280	Average
7311	40.14	-33.86	74	52	35.31	9.99	57.16	100	360	Peak

TEL: 86-755- 3320-2398 FCC ID: ZC4S105 Page Number : 71 of 90
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

Test Mode :	802.11b	Temperature :	23~25℃				
Test Channel :	11	Relative Humidity :	49~53%				
Test Engineer :	Gavin Zhang	Polarization :	Horizontal				
	1. 2462 MHz is fundament	2462 MHz is fundamental signal which can be ignored.					
Remark :	2. Average measurement was not performed if peak level went lower th						
	average limit.						

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2462	93.45	-	-	85.29	32.24	5.68	29.76	132	47	Peak
2462	91.21	-	-	83.05	32.24	5.68	29.76	132	47	Average
4924	55.21	-18.79	74	69.91	33.92	8.46	57.08	100	18	Peak
4924	52.17	-1.83	54	66.87	33.92	8.46	57.08	100	18	Average
7386	41.18	-32.82	74	52.86	35.35	10.02	57.05	100	0	Peak

Test Mode :	802	2.11b	Temperature :	23~25℃
Test Channel :	11		Relative Humidity :	49~53%
Test Engineer :	Ga	vin Zhang	Polarization :	Vertical
	1.	2462 MHz is fundament	al signal which can be	ignored.
Remark :	2.	Average measurement	was not performed if	peak level went lower than the
		average limit.		

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)		(dB)	(dB)	(dB)	(cm)	(deg)	
2462	90.19	-	-	82.03	32.24	5.68	29.76	119	272	Peak
2462	88.12	-	-	79.96	32.24	5.68	29.76	119	272	Average
4924	54.26	-19.74	74	68.96	33.92	8.46	57.08	100	284	Peak
4924	51.56	-2.44	54	66.26	33.92	8.46	57.08	100	284	Average
7386	40.3	-33.7	74	51.98	35.35	10.02	57.05	100	360	Peak

TEL: 86-755- 3320-2398 FCC ID: ZC4S105 Page Number : 72 of 90
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

Test Mode :	802.11g	Temperature :	23~25 ℃				
Test Channel :	01	Relative Humidity :	49~53%				
Test Engineer :	Gavin Zhang	Polarization :	Horizontal				
	1. 2412 MHz is fundament	al signal which can be	ignored.				
Remark :	2. 7236 MHz is not within a restricted band, and its limit line is 20dB below the						
	highest emission level.						

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2412	99.11	-	-	91.1	32.17	5.62	29.78	109	324	Peak
2412	90.66	-	-	82.65	32.17	5.62	29.78	109	324	Average
4824	58.73	-15.27	74	73.95	33.68	8.36	57.26	148	360	Peak
4824	47.01	-6.99	54	62.23	33.68	8.36	57.26	148	360	Average
7236	40.6	-38.51	79.11	52.58	35.29	9.97	57.24	120	150	Peak

Test Mode :	802	2.11g	Temperature :	23~25℃				
Test Channel :	01		Relative Humidity :	49~53%				
Test Engineer :	Ga	vin Zhang	Polarization :	Vertical				
	1.	2412 MHz is fundament	al signal which can be	ignored.				
Remark :	2.	7236 MHz is not within	a restricted band, and	I its limit line is 20dB below the				
		highest emission level.						

Frequency	Level	Over Limit	Limit Line	Read	Antenna Factor	Cable	Preamp	Ant	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	Level (dBµV)	(dB)	Loss (dB)	Factor (dB)	Pos (cm)	(deg)	
2412	93.76	-	-	85.75	32.17	5.62	29.78	100	344	Peak
2412	85.01	-	-	77	32.17	5.62	29.78	100	344	Average
4824	56.39	-17.61	74	71.61	33.68	8.36	57.26	100	360	Peak
4824	44.09	-9.91	54	59.31	33.68	8.36	57.26	100	360	Average
7236	40.87	-32.89	73.76	52.85	35.29	9.97	57.24	120	145	Peak

Page Number : 73 of 90
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

Test Mode :	802.11g	Temperature :	23~25 ℃					
Test Channel :	06	Relative Humidity :	49~53%					
Test Engineer :	Gavin Zhang	Polarization :	Horizontal					
	1. 2437 MHz is fundament	al signal which can be	ignored.					
Remark :	2. Average measurement	was not performed if	peak level went lower than the					
	average limit.	average limit.						

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2437	100.37	-	-	92.27	32.22	5.65	29.77	109	325	Peak
2437	91.55	-	-	83.45	32.22	5.65	29.77	109	325	Average
4874	59.54	-14.46	74	74.5	33.8	8.41	57.17	100	360	Peak
4874	46.84	-7.16	54	61.8	33.8	8.41	57.17	100	360	Average
7311	41.36	-32.64	74	53.22	35.31	9.99	57.16	120	140	Peak

Test Mode :	802.11g	Temperature :	23~25℃				
Test Channel :	06	Relative Humidity :	49~53%				
Test Engineer :	Gavin Zhang	Polarization :	Vertical				
	1. 2437 MHz is fundament	tal signal which can be	ignored.				
Remark :	2. Average measurement	was not performed if	peak level went lower than the				
	average limit.	average limit.					

Frequency	Level	Over Limit	Limit Line	Read	Antenna	Cable	Preamp Factor	Ant	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	Level (dBµV)	Factor (dB)	Loss (dB)	(dB)	Pos (cm)	(deg)	
2437	95.34	-	-	87.24	32.22	5.65	29.77	100	338	Peak
2437	86.68	-	-	78.58	32.22	5.65	29.77	100	338	Average
4874	52.99	-21.01	74	67.95	33.8	8.41	57.17	139	352	Peak
4874	41.25	-12.75	54	56.21	33.8	8.41	57.17	139	352	Average
7311	39.64	-34.36	74	51.5	35.31	9.99	57.16	145	250	Peak

Page Number : 74 of 90
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

Test Mode :	802.11g	Temperature :	23~25 ℃				
Test Channel :	11	Relative Humidity :	49~53%				
Test Engineer :	Gavin Zhang	Polarization :	Horizontal				
	1. 2462 MHz is fundament	al signal which can be	ignored.				
Remark :	2. Average measurement	was not performed if	peak level went lower than the				
	average limit.						

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2462	100.11	-	-	91.95	32.24	5.68	29.76	134	323	Peak
2462	91.48	-	-	83.32	32.24	5.68	29.76	134	323	Average
4924	57.51	-16.49	74	72.21	33.92	8.46	57.08	100	360	Peak
4924	46.32	-7.68	54	61.02	33.92	8.46	57.08	100	360	Average
7386	41.41	-32.59	74	53.09	35.35	10.02	57.05	110	140	Peak

Test Mode :	802	2.11g	Temperature :	23~25℃				
Test Channel :	11		Relative Humidity :	49~53%				
Test Engineer :	Gav	vin Zhang	Polarization :	Vertical				
	1.	2462 MHz is fundament	al signal which can be	ignored.				
Remark :	2.	2. Average measurement was not performed if peak level went lower than						
		average limit.						

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)		(dB)	(dB)	(dB)	(cm)	(deg)	
2462	96.61	-	-	88.45	32.24	5.68	29.76	100	338	Peak
2462	87.48	-	-	79.32	32.24	5.68	29.76	100	338	Average
4924	55.97	-18.03	74	70.67	33.92	8.46	57.08	116	312	Peak
4924	43.81	-10.19	54	58.51	33.92	8.46	57.08	116	312	Average
7386	40.32	-33.68	74	52	35.35	10.02	57.05	120	150	Peak

Page Number : 75 of 90
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

Test Mode :	802.11n HT20	Temperature :	23~25℃				
Test Channel :	01	Relative Humidity :	49~53%				
Test Engineer :	Gavin Zhang	Polarization :	Horizontal				
	1. 2412 MHz is fundament	al signal which can be	ignored.				
Remark :	2. 7236 MHz is not within a restricted band, and its limit line is 20dB below the						
	highest emission level.						

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2412	96.21	-	-	88.2	32.17	5.62	29.78	200	333	Peak
2412	87.61	-	-	79.6	32.17	5.62	29.78	200	333	Average
4824	59.64	-14.36	74	74.86	33.68	8.36	57.26	159	329	Peak
4824	46.27	-7.73	54	61.49	33.68	8.36	57.26	159	329	Average
7236	39.2	-37.01	76.21	21.98	35.29	9.97	28.04	52	120	Peak

Test Mode :	802.	.11n HT20	Temperature :	23~25℃				
Test Channel :	01		Relative Humidity :	49~53%				
Test Engineer :	Gav	in Zhang	Polarization :	Vertical				
	1.	2412 MHz is fundament	al signal which can be	ignored.				
Remark :	2.	2. 7236 MHz is not within a restricted band, and its limit line is 20dB below the						
		highest emission level.						

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)		(dB)	(dB)	(dB)	(cm)	(deg)	
2412	92.11	-	-	84.1	32.17	5.62	29.78	118	336	Peak
2412	81.55	-	-	73.54	32.17	5.62	29.78	118	336	Average
4824	53.43	-20.57	74	40.73	33.68	8.36	29.34	148	300	Peak
4824	47.37	-6.63	54	34.67	33.68	8.36	29.34	148	300	Average
7236	41.56	-30.55	72.11	24.34	35.29	9.97	28.04	100	360	Peak

Page Number : 76 of 90
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

Test Mode :	802.11n HT20	Temperature :	23~25 ℃					
Test Channel :	06	Relative Humidity :	49~53%					
Test Engineer :	Gavin Zhang	Polarization :	Horizontal					
	1. 2437 MHz is fundament	al signal which can be	ignored.					
Remark :	2. Average measurement was not performed if peak level went lower than the							
	average limit.	average limit.						

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2437	97.54	-	-	89.44	32.22	5.65	29.77	134	328	Peak
2437	89.05	-	-	80.95	32.22	5.65	29.77	134	328	Average
4874	54.87	-19.13	74	42	33.8	8.41	29.34	100	53	Peak
4874	47.5	-6.5	54	34.63	33.8	8.41	29.34	100	53	Average
7311	42.4	-31.6	74	25.08	35.31	9.99	27.98	150	240	Peak

Test Mode :	802.11n HT20	Temperature :	23~25℃					
Test Channel :	06	Relative Humidity :	49~53%					
Test Engineer :	Gavin Zhang	Polarization :	Vertical					
	1. 2437 MHz is fundamen	2437 MHz is fundamental signal which can be ignored.						
Remark: 2. Average measurement was not performed if peak level went lower to								
	average limit.	average limit.						

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	
2437	96.73	-	-	88.59	32.22	5.68	29.76	100	301	Peak
2437	88	-	-	79.86	32.22	5.68	29.76	100	301	Average
4875	50.87	-23.13	74	38	33.8	8.41	29.34	108	288	Peak
4875	45.62	-8.38	54	32.75	33.8	8.41	29.34	108	288	Average
7311	40.43	-33.57	74	23.11	35.31	9.99	27.98	100	360	Peak

Page Number : 77 of 90
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

Test Mode :	802.11n HT20	Temperature :	23~25℃				
Test Channel :	11	Relative Humidity :	49~53%				
Test Engineer :	Gavin Zhang	Polarization :	Horizontal				
	1. 2462 MHz is fundament	al signal which can be	ignored.				
Remark :	2. Average measurement was not performed if peak level went lower than the						
	average limit.						

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2462	98.41	-	-	90.25	32.24	5.68	29.76	164	313	Peak
2462	88.26	-	-	80.1	32.24	5.68	29.76	164	313	Average
4924	52.9	-21.1	74	39.87	33.92	8.46	29.35	144	3	Peak
4924	40.39	-13.61	54	27.36	33.92	8.46	29.35	144	3	Average
7386	40.71	-33.29	74	23.24	35.35	10.02	27.9	100	0	Peak

Test Mode :	802.11n HT2	0	Temperature :	23~25℃				
Test Channel :	11 F		Relative Humidity :	49~53%				
Test Engineer :	Gavin Zhang		Polarization :	Vertical				
	1. 2462 MH	2462 MHz is fundamental signal which can be ignored.						
Remark: 2. Average measurement was not performed if peak level went lower the								
	average	average limit.						

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
, .	(ID)(()	Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2462	96.9	-	-	88.74	32.24	5.68	29.76	121	282	Peak
2462	88.23	-	-	80.07	32.24	5.68	29.76	121	282	Average
4924	53.8	-20.2	74	40.77	33.92	8.46	29.35	132	356	Peak
4924	43.77	-10.23	54	30.74	33.92	8.46	29.35	132	356	Average
7386	42.09	-31.91	74	24.62	35.35	10.02	27.9	150	240	Peak

Page Number : 78 of 90
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

Test Mode :	802.11n HT40	Temperature :	23~25℃					
Test Channel :	03	Relative Humidity :	49~53%					
Test Engineer :	Gavin Zhang	Polarization :	Horizontal					
	1. 2422 MHz is fundament	al signal which can be	ignored.					
Remark :	2. Average measurement was not performed if peak level went lower than the							
	average limit.							

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2422	95	-	-	86.93	32.19	5.65	29.77	160	319	Peak
2422	87.42	-	-	79.35	32.19	5.65	29.77	160	319	Average
4844	50.7	-23.3	74	37.94	33.72	8.38	29.34	100	350	Peak
4844	44	-10	54	31.24	33.72	8.38	29.34	100	350	Average
7266	43.69	-30.31	74	26.42	35.3	9.98	28.01	100	0	Peak

Test Mode :	802.11n HT40	Temperature :	23~25℃					
Test Channel :	03	Relative Humidity :	49~53%					
Test Engineer :	Gavin Zhang	Polarization :	Vertical					
	1. 2422 MHz is fundament	2422 MHz is fundamental signal which can be ignored.						
Remark :	2. Average measurement was not performed if peak level went lower than the							
	average limit.							

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2422	91.96	-	-	83.89	32.19	5.65	29.77	100	260	Peak
2422	83.89	-	-	75.82	32.19	5.65	29.77	100	260	Average
4844	48.35	-25.65	74	35.59	33.72	8.38	29.34	100	0	Peak
7266	42.45	-31.55	74	25.18	35.3	9.98	28.01	100	360	Peak

Page Number : 79 of 90
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

Test Mode :	802.11n HT40	Temperature :	23~25℃				
Test Channel :	06	Relative Humidity :	49~53%				
Test Engineer :	Gavin Zhang	Polarization :	Horizontal				
	1. 2437 MHz is fundament	al signal which can be	ignored.				
Remark :	2. Average measurement was not performed if peak level went lower than the						
	average limit.						

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2437	97.55	-	-	89.45	32.22	5.65	29.77	103	306	Peak
2437	88.92	-	-	80.82	32.22	5.65	29.77	103	306	Average
4874	52.5	-21.5	74	39.63	33.8	8.41	29.34	100	13	Peak
4874	43.28	-10.72	54	30.41	33.8	8.41	29.34	100	13	Average
7311	38.12	-35.88	74	20.8	35.31	9.99	27.98	200	360	Peak

Test Mode :	802.11n HT40	Temperature :	23~25℃					
Test Channel :	06	Relative Humidity :	49~53%					
Test Engineer :	Gavin Zhang	Polarization :	Vertical					
	1. 2437 MHz is fundamen	2437 MHz is fundamental signal which can be ignored.						
Remark :	2. Average measurement	was not performed if	peak level went lower than the					
	average limit.							

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant		Remark
(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	
2437	92.22	- (ub)	- (ubµv/iii)	84.12	32.22	5.65	29.77	119	272	Peak
	-				-					
2437	84.23	-	-	76.13	32.22	5.65	29.77	119	272	Average
4874	46.49	-27.51	74	33.62	33.8	8.41	29.34	200	320	Peak
7311	39.27	-34.73	74	21.95	35.31	9.99	27.98	100	320	Peak

Page Number : 80 of 90
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

Test Mode :	802.11n HT40	Temperature :	23~25 ℃					
Test Channel :	09	Relative Humidity :	49~53%					
Test Engineer :	Gavin Zhang	Polarization :	Horizontal					
	1. 2452 MHz is fundament	al signal which can be	ignored.					
Remark :	2. Average measurement was not performed if peak level went lower than the							
	average limit.							

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2452	94.88	-	-	86.74	32.22	5.68	29.76	104	353	Peak
2452	87.82	-	-	79.68	32.22	5.68	29.76	104	353	Average
4904	51.1	-22.9	74	38.12	33.88	8.44	29.34	100	17	Peak
4904	41.49	-12.51	54	28.51	33.88	8.44	29.34	100	17	Average
7356	40.32	-33.68	74	22.9	35.33	10.01	27.92	100	320	Peak

Test Mode :	802	2.11n HT40	Temperature :	23~25℃				
Test Channel :	09		Relative Humidity :	49~53%				
Test Engineer :	Ga	vin Zhang	Polarization :	Vertical				
	1.	2452 MHz is fundamental signal which can be ignored.						
Remark :	2.	Average measurement	was not performed if	peak level went lower than the				
		average limit.						

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2452	91	-	-	82.86	32.22	5.68	29.76	100	57	Peak
2452	80.88	-	-	72.74	32.22	5.68	29.76	100	57	Average
4904	47.47	-26.53	74	34.49	33.88	8.44	29.34	200	360	Peak
7356	40.62	-33.38	74	23.2	35.33	10.01	27.92	100	320	Peak

Page Number : 81 of 90
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

3.6 AC Conducted Emission Measurement

3.6.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 KHz to 30 MHz shall not exceed the limits in the following table.

Frequency of Emission	Conducted Limit (dBuV)				
(MHz)	Quasi-Peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

^{*}Decreases with the logarithm of the frequency.

3.6.2 Measuring Instruments

See list of measuring instruments of this test report.

3.6.3 Test Procedures

- 1. The testing follows the guidelines in ANSI C63.10-2009.
- 2. The EUT was placed 0.4 meter from the conducting wall of the shielding room, and it was kept at least 80 centimeters from any other grounded conducting surface.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 4. All the support units are connecting to the other LISN.
- 5. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 6. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 7. Both sides of AC line were checked for maximum conducted interference.
- 8. The frequency range from 150 KHz to 30 MHz was searched.
- 9. Set the test-receiver system to Peak Detect Function and specified bandwidth with Maximum Hold Mode.

FCC ID: ZC4S105

Page Number : 82 of 90
Report Issued Date : Jul. 23, 2013

Report No.: FR370202C

Report Version : Rev. 01

3.6.4 Test Setup

TEL: 86-755- 3320-2398 FCC ID: ZC4S105 Page Number : 83 of 90 Report Issued Date : Jul. 23, 2013 Report Version : Rev. 01

3.6.5 Test Result of AC Conducted Emission

TEL: 86-755- 3320-2398 FCC ID: ZC4S105 Page Number : 84 of 90
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

FCC RF Test Report

Test Mode :	Mode 1	Temperature :	24~25℃
Test Engineer :	Leo Liao	Relative Humidity :	48~49%
Test Voltage :	120Vac / 60Hz	Phase :	Neutral
Function Type I	GSM850 Idle + Bluetooth Lir	nk + WLAN Link + USE	Cable (Charging from Adapter)

Function Type : |GSM850 Idle + Bluetooth Link + WLAN Link + USB Cable (Charging from Adapter + Earphone

Site : CO01-SZ Condition: FCC 15C_QP LISN_N_2000601 NEUTRAL

				Over	Limit	Read	LISN	Cable	
		Freq	Level	Limit	Line	Level	Factor	Loss	Remark
	***	MHz	dBu∇	dB	dBuV	dBu∇	dB	dB	
1		0.16	38.07	-17.31	55.38	28.00	0.02	10.05	Average
2		0.16	51.27	-14.11	65.38	41.20	0.02	10.05	QP
3		0.35	37.09	-11.91	49.00	27.00	0.02	10.07	Average
4		0.35	46.89	-12.11	59.00	36.80	0.02	10.07	QP
5		0.43	33.39	-13.81	47.20	23.29	0.02	10.08	Average
6		0.43	42.59	-14.61	57.20	32.49	0.02		
7		0.49	33.40	-12.83	46.23	23.30	0.02	10.08	Average
8		0.49	42.30	-13.93	56.23	32.20	0.02		
9		0.53	38.90	-7.10	46.00	28.79	0.02	10.09	Average
10		0.53	46.20	-9.80	56.00	36.09	0.02	10.09	QP
11	4	0.59	39.81	-6.19	46.00	29.70	0.02	10.09	Average
12		0.59	46.21	-9.79	56.00	36.10	0.02	10.09	QP
13		0.65	36.72	-9.28	46.00	26.60	0.02	10.10	Average
14		0.65	43.62	-12.38	56.00	33.50	0.02		
15		0.70	34.32	-11.68	46.00	24.20	0.02	10.10	Average
16		0.70	42.92	-13.08	56.00	32.80	0.02	10.10	QP
17		0.75	35.32	-10.68	46.00	25.20	0.02	10.10	Average
18		0.75	44.22	-11.78	56.00	34.10	0.02	10.10	QP
19		0.83	34.73	-11.27	46.00	24.60	0.02	10.11	Average
20		0.83	43.63	-12.37	56.00	33.50	0.02		
21		0.88	34.63	-11.37	46.00	24.50	0.02	10.11	Average
22		0.88	43.73	-12.27	56.00	33.60	0.02	10.11	QP
23		0.93	35.23	-10.77	46.00	25.10	0.02	10.11	Average
24		0.93	44.63	-11.37	56.00	34.50	0.02	10.11	QP
25		0.97	33.03	-12.97	46.00	22.90	0.02	10.11	Average
26		0.97	44.13	-11.87	56.00	34.00	0.02	10.11	QP
27		1.03	33.24	-12.76	46.00	23.11	0.02	10.11	Average
28		1.03	44.64	-11.36	56.00	34.51	0.02	10.11	QP
29		1.12	35.94	-10.06	46.00	25.80	0.02	10.12	Average

TEL: 86-755- 3320-2398 FCC ID: ZC4S105 Page Number : 85 of 90
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

FCC RF Test Report

Test Mode :	Mode 1			Tem	nperatu	re:	24~2	24~25 ℃		
Test Engineer :	Leo Liao			Rela	ative Hu	umidity :	48~4	48~49%		
Test Voltage :	120Vac / 60Hz			Pha	se:		Neut	Neutral		
Function Type :	GSM850 Idle + Bluetooth Link + WLAN Link + USB Cable (Charging from Adapter + Earphone									
100 L	evel (dBuV)				7	Da	te: 2013-07	7-08 Time: 16:40:58		
90-										
90										
80		-								
70								Control Control Control		
60	-				3 0	9) 9		FCC 15C_QP		
00	2	_		100				FCC 15C_AVG		
50	AND YM	A 10	Parken	all out where	Mary and Mary	A LANGE TO SERVICE TO		TCC ISC_AVO		
40	9 7	3 AND ALLAN		292399	A THE TOTAL	664	Add Salverson	11/1/14		
00000		57	ID. NATE	75135443	4956	7590 ala	and the same	Market Market 1 1 1 1		
30						-083				
20										
							- 12 (0.90)			
10										
10										
0. Site	15 .2 : COO1-S		1 3N N 2000		2 ency (MHz)	5	10	20 30	0	
0. Site		Z			ency (MHz)	7.5	10	20 30)	
0. Site	: C001-S	Z	5N_N_2000		ency (MHz)		10	20 30	0	
0. Site	: CO01-S	Z C_QP LIS	5N_N_2000	0601 NEU1	ency (MHz) FRAL Read	LISN	Cable	20 30	0	
Site Condition	: COO1-S on: FCC 15 Freq	Z C_QP LIS Level	Over Limit	Limit Line	Read Level	LISN Factor	Cable Loss	Remark	0	
Site Condition	: CO01-S on: FCC 15 Freq MHz 1.12	Z C_QP LIS Level	Over Limit	Limit Line	Read Level	LISN Factor	Cable Loss dB 10.12	Remark	0	
Site Condition	: C001-S on: FCC 15 Freq MHz 1.12 1.18	Z C_QP LIS Level dBuV 46.14 33.84	Over Limit dB -9.86	Limit Line dBuV 56.00	Read Level dBuV 36.00 23.70	LISN Factor dB 0.02 0.02	Cable Loss dB 10.12 10.12	Remark QP Average	0	
Site Condition	: C001-S on: FCC 15 Freq MHz 1.12 1.18 1.18	Z C_QP LIS Level dBuV 46.14 33.84 44.04	Over Limit dB -9.86 -12.16 -11.96	Limit Line dBuV 56.00 46.00 56.00	Read Level dBuV 36.00 23.70 33.90	LISN Factor dB 0.02 0.02 0.02	Cable Loss dB 10.12 10.12	Remark QP Average QP	0	
Site Condition	: C001-S on: FCC 15 Freq MHz 1.12 1.18 1.18 1.30	Z C_QP LIS Level dBuV 46.14 33.84 44.04 35.65	Over Limit -9.86 -12.16 -11.96 -10.35	Limit Line dBuV 56.00 46.00 56.00	Read Level dBuV 36.00 23.70 33.90 25.51	LISN Factor dB 0.02 0.02 0.02 0.02	Cable Loss dB 10.12 10.12 10.12	Remark QP Average QP Average	0	
Site Condition	: C001-S on: FCC 15 Freq MHz 1.12 1.18 1.18 1.30	Z C_QP LIS Level dBuV 46.14 33.84 44.04 35.65 44.25	Over Limit -9.86 -12.16 -11.96 -10.35 -11.75	dBuV 56.00 46.00 56.00 46.00 56.00	Read Level dBuV 36.00 23.70 33.90 25.51	LISN Factor dB 0.02 0.02 0.02 0.02 0.02	Cable Loss dB 10.12 10.12 10.12 10.12 10.12	Remark QP Average QP Average QP	0	
Site Condition	: C001-S on: FCC 15 Freq MHz 1.12 1.18 1.18 1.30 1.30 1.35	Z C_QP LIS Level dBuV 46.14 33.84 44.04 35.65 44.25 31.25	Over Limit -9.86 -12.16 -11.96 -10.35 -11.75	dBuV 56.00 46.00 56.00 46.00 56.00	Read Level dBuV 36.00 23.70 33.90 25.51 34.11 21.10	LISN Factor dB 0.02 0.02 0.02 0.02 0.02 0.02 0.03	Cable Loss dB 10.12 10.12 10.12 10.12 10.12 10.12	Remark QP Average QP Average QP Average QP	0	
Site Condition	: C001-S on: FCC 15 Freq MHz 1.12 1.18 1.30 1.30 1.35 1.35	Z C_QP LIS Level dBuV 46.14 33.84 44.04 35.65 44.25 31.25 42.85	Over Limit -9.86 -12.16 -11.96 -10.35 -11.75 -14.75	dBuV 56.00 46.00 56.00 46.00 56.00 56.00	Read Level dBuV 36.00 23.70 33.90 25.51 34.11 21.10 32.70	LISN Factor dB 0.02 0.02 0.02 0.02 0.02 0.03 0.03	Cable Loss dB 10.12 10.12 10.12 10.12 10.12 10.12 10.12	Remark QP Average QP Average QP Average QP	0	
Site Condition 30 31 32 33 34 35 36	: C001-S on: FCC 15 Freq MHz 1.12 1.18 1.30 1.30 1.35 1.35	Z C_QP LIS Level dBuV 46.14 33.84 44.04 35.65 44.25 31.25 42.85 35.75	Over Limit -9.86 -12.16 -11.96 -10.35 -11.75 -14.75 -13.15	dBuV 56.00 46.00 56.00 46.00 56.00 46.00	Read Level dBuV 36.00 23.70 33.90 25.51 34.11 21.10 32.70 25.60	LISN Factor dB 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.03	Cable Loss dB 10.12 10.12 10.12 10.12 10.12 10.12 10.12	Remark QP Average QP Average QP Average QP Average QP Average	0	
Site Condition 30 31 32 33 34 35 36 37	: CO01-S on: FCC 15 Freq MHz 1.12 1.18 1.30 1.30 1.35 1.35 1.40 1.40	Z C_QP LIS Level dBuV 46.14 433.84 44.04 35.65 44.25 31.25 42.85 35.75 43.75	Over Limit -9.86 -12.16 -11.96 -10.35 -11.75 -14.75 -13.15 -10.25	dBuV 56.00 46.00 56.00 46.00 56.00 46.00 56.00	Read Level dBuV 36.00 23.70 23.51 34.11 21.10 32.70 25.60 33.60	LISN Factor dB 0.02 0.02 0.02 0.02 0.03 0.03 0.03 0.03	Cable Loss dB 10.12 10.12 10.12 10.12 10.12 10.12 10.12 10.12 10.12	Remark QP Average QP Average QP Average QP Average QP Average		
Site Condition	: CO01-S on: FCC 15 Freq MHz 1.12 1.18 1.30 1.30 1.35 1.40 1.40 1.46 1.46	Z C_QP LIS Level dBuV 46.14 33.84 44.04 35.65 44.25 31.25 42.85 35.75 43.75 35.95 43.75	Over Limit -9.86 -12.16 -11.96 -10.35 -11.75 -14.75 -13.15 -10.25 -12.25 -10.05 -12.25	dBuV 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00	Read Level dBuV 36.00 23.70 23.4.11 21.10 32.70 25.60 33.60 25.79 33.59	LISN Factor dB 0.02 0.02 0.02 0.02 0.03 0.03 0.03 0.03	Cable Loss dB 10.12 10.12 10.12 10.12 10.12 10.12 10.13 10.13	Remark QP Average QP Average QP Average QP Average QP Average QP		
Site Condition 30 31 32 33 34 35 36 37 38 39 40 41	Freq MHz 1.12 1.18 1.30 1.30 1.35 1.40 1.40 1.46 1.46 1.62	Z C_QP LIS dBuV 46.14 33.84 44.04 35.65 44.25 31.25 42.85 35.75 43.75 35.95 43.75 33.96	Over Limit -9.86 -12.16 -11.96 -10.35 -11.75 -14.75 -13.15 -10.25 -12.25 -10.05 -12.25 -12.04	dBuV 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00	Read Level dBuV 36.00 23.70 25.51 34.11 21.10 32.70 25.60 33.60 25.79 33.59 23.80	LISN Factor dB 0.02 0.02 0.02 0.03 0.03 0.03 0.03 0.03	Cable Loss dB 10.12 10.12 10.12 10.12 10.12 10.12 10.13 10.13 10.13	Remark QP Average QP Average QP Average QP Average QP Average QP Average	0	
30 31 32 33 34 35 36 37 38 39 40 41	Freq MHz 1.12 1.18 1.18 1.30 1.30 1.35 1.40 1.40 1.46 1.46 1.62 1.62	Z C_QP LIS dBuV 46.14 33.84 44.04 35.65 44.25 31.25 42.85 35.75 43.75 35.95 43.75 33.96 44.56	Over Limit dB -9.86 -12.16 -11.96 -10.35 -11.75 -14.75 -14.75 -12.25 -10.05 -12.25 -10.05 -12.25 -12.04 -11.44	dBuV 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00	Read Level dBuV 36.00 23.70 33.90 25.51 34.11 21.10 32.70 25.60 33.59 23.80 34.40	LISN Factor dB 0.02 0.02 0.02 0.02 0.03 0.03 0.03 0.03	Cable Loss dB 10.12 10.12 10.12 10.12 10.12 10.13 10.13 10.13 10.13	Remark QP Average QP		
Site Condition	Freq MHz 1.12 1.18 1.30 1.30 1.35 1.40 1.40 1.46 1.46 1.62 1.62 1.73	Z C_QP LIS dBuV 46.14 33.84 44.04 35.65 44.25 31.25 42.85 35.75 43.75 35.95 43.75 33.96 44.56 31.57	Over Limit dB -9.86 -12.16 -11.96 -10.35 -11.75 -14.75 -13.15 -10.25 -12.25 -10.05 -12.25 -12.04 -11.44 -14.43	dBuV 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00	Read Level dBuV 36.00 23.70 33.90 25.51 34.11 21.10 32.70 25.60 33.60 25.79 33.59 23.80 34.40 21.40	LISN Factor dB 0.02 0.02 0.02 0.02 0.03 0.03 0.03 0.03	Cable Loss dB 10.12 10.12 10.12 10.12 10.12 10.13 10.13 10.13 10.13 10.13	Remark QP Average		
Site Condition	Freq MHz 1.12 1.18 1.30 1.30 1.35 1.40 1.46 1.46 1.62 1.62 1.73 1.73	Z C_QP LIS dBuV 46.14 33.84 44.04 35.65 44.25 31.25 42.85 35.75 43.75 35.95 43.75 33.96 44.56 31.57 42.67	Over Limit dB -9.86 -12.16 -11.96 -10.35 -11.75 -14.75 -13.15 -10.25 -12.25 -10.05 -12.25 -12.04 -11.44 -14.43 -13.33	dBuV 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00	Read Level dBuV 36.00 23.70 33.90 25.51 34.11 21.10 32.70 25.60 33.60 25.79 33.59 23.80 34.40 21.40 32.50	LISN Factor dB 0.02 0.02 0.02 0.02 0.03 0.03 0.03 0.03	Cable Loss dB 10.12 10.12 10.12 10.12 10.12 10.13 10.13 10.13 10.13 10.14 10.14	Remark QP Average		
Site Condition	Freq MHz 1.12 1.18 1.30 1.35 1.40 1.40 1.46 1.46 1.62 1.73 1.73 1.89	Z C_QP LIS dBuV 46.14 33.84 44.04 35.65 44.25 31.25 42.85 35.75 35.75 43.75 33.96 44.56 31.57 42.67 33.28	Over Limit dB -9.86 -12.16 -11.96 -10.35 -11.75 -14.75 -13.15 -10.25 -12.25 -10.05 -12.25 -12.04 -11.44 -14.43	dBuV 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00	Read Level dBuV 36.00 23.70 33.90 25.51 34.11 21.10 32.70 25.60 33.60 25.79 33.59 23.80 34.40 21.40 32.50 23.11	LISN Factor dB 0.02 0.02 0.02 0.02 0.03 0.03 0.03 0.03	Cable Loss dB 10.12 10.12 10.12 10.12 10.12 10.13 10.13 10.13 10.13 10.14 10.14	Remark QP Average		

TEL: 86-755- 3320-2398 FCC ID: ZC4S105 Page Number : 86 of 90
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

Test Mode: Mode 1 Temperature: 24~25°C Test Engineer: Leo Liao Relative Humidity: 48~49% Test Voltage: 120Vac / 60Hz Phase: Neutral GSM850 Idle + Bluetooth Link + WLAN Link + USB Cable (Charging from Adapter) Function Type: + Earphone 100 Level (dBuV) Date: 2013-07-08 Time: 16:40:58 90 80 70 FCC 15C_QP 60 FCC 15C AVG 40 30 20 10 .15 .2 5 10 20 30 Frequency (MHz) Site : C001-SZ Condition: FCC 15C QP LISN N 2000601 NEUTRAL Over Limit Read LISN Cable Freq Level Limit Line Level Factor Loss Remark dB dBuV dB dBuV dBuV dB MHz 2.05 34.69 -11.31 46.00 24.51 0.03 10.15 Average 47 2.05 44.19 -11.81 56.00 34.01 2.33 32.21 -13.79 46.00 22.00 2.33 42.81 -13.19 56.00 32.60 48 0.03 10.15 QP 0.04 10.17 Average 0.04 10.17 QP 49 50 51 2.54 31.32 -14.68 46.00 21.10 0.04 10.18 Average 0.04 10.18 QP 0.04 10.18 Average 56.00 31.00 46.00 22.00 2.54 41.22 -14.78 52 2.69 32.22 -13.78 53 2.69 41.82 -14.18 56.00 31.60 0.04 10.18 QP 46.00 20.29 56.00 31.09 0.05 10.19 Average 0.05 10.19 QP 2.92 30.53 -15.47 55 41.33 -14.67 56 2.92 3.28 30.24 -15.76 46.00 20.00 57 0.05 10.19 Average 3.28 41.04 -14.96 56.00 30.80 58 0.05 10.19 QP 59 3.58 29.05 -16.95 46.00 18.80 0.06 10.19 Average 3.58 40.25 -15.75 56.00 30.00 0.06 10.19 QP 60
 4.01
 27.06
 -18.94
 46.00
 16.81

 4.01
 37.26
 -18.74
 56.00
 27.01

 4.31
 26.26
 -19.74
 46.00
 16.00
 61 0.06 10.19 Average 62 0.06 10.19 QP 0.07 63 10.19 Average 4.31 35.76 -20.24 56.00 25.50 0.07 10.19 OP 64

TEL: 86-755- 3320-2398 FCC ID: ZC4S105 Page Number : 87 of 90
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

3.7 Antenna Requirements

3.7.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. For the fixed point-to-point operation, the power shall be reduced by one dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional

radiator shall be considered sufficient to comply with the FCC rule.

3.7.2 Antenna Connected Construction

Non-standard connector used.

3.7.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755- 3320-2398 FCC ID: ZC4S105 Page Number : 88 of 90 Report Issued Date : Jul. 23, 2013

Report No.: FR370202C

Report Version : Rev. 01

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Spectrum Analyzer	R&S	FSP30	101400	9kHz~30GHz	Mar. 28, 2013	Jul. 08, 2013~ Jul. 22, 2013	Mar. 27, 2014	Conducted (TH01-SZ)
Power Meter	Anritsu	ML2495A	1218010	N/A	Mar. 28, 2013	Jul. 08, 2013~ Jul. 22, 2013	Mar. 27, 2014	Conducted (TH01-SZ)
Power Sensor	Anritsu	MA2411B	1207253	N/A	Mar. 28, 2013	Jul. 08, 2013~ Jul. 22, 2013	Mar. 27, 2014	Conducted (TH01-SZ)
ESCI TEST Receiver	R&S	ESCI	100724	9kHz~3GHz	Mar. 28, 2013	Jul. 06, 2013	Mar. 27, 2014	Radiation (03CH01-SZ)
Spectrum Analyzer	R&S	FSP30	101362	9kHz~30GHz	Oct. 11, 2012	Jul. 06, 2013	Oct. 10, 2013	Radiation (03CH01-SZ)
Double Ridge Horn Antenna	ETS Lindgren	3117	00119436	1GHz~18GHz	Oct. 12, 2012	Jul. 06, 2013	Oct. 11, 2013	Radiation (03CH01-SZ)
Bilog Antenna	SCHAFFNER	CBL6112B	2614	30MHz~2GHz	Nov. 03, 2012	Jul. 06, 2013	Nov. 02, 2013	Radiation (03CH01-SZ)
Amplifier	ADVANTEST	BB525C	E9007003	9kHz~3000MHz GAIN 30db	Mar. 28, 2013	Jul. 06, 2013	Mar. 27, 2014	Radiation (03CH01-SZ)
Amplifier	Yiai	AV3860B	04030	2GHz~26.5GHz	Mar. 28, 2013	Jul. 06, 2013	Mar. 27, 2014	Radiation (03CH01-SZ)
SHF-EHF -Horn	Schwarzbeck	BBHA9170	BBHA9170249	14GHz~40GHz	Nov. 23, 2012	Jul. 06, 2013	Nov. 22, 2013	Radiation (03CH01-SZ)
Loop Antenna	R&S	HFH2-Z2	100321	9kHz~30MHz	Oct. 22, 2012	Jul. 06, 2013	Oct. 21, 2013	Radiation (03CH01-SZ)
Turn Table	EM Electronic	EM 1000	N/A	0~360 degree	N/A	Jul. 06, 2013	N/A	Radiation (03CH01-SZ)
Antenna Mast	EM Electronic	EM 1000	N/A	1 m~4 m	N/A	Jul. 06, 2013	N/A	Radiation (03CH01-SZ)
AC LISN	ETS-LINDGRE N	3816/2SH	00103912	0.1MHz~108MHz	Feb. 28, 2013	Jul. 08, 2013	Feb. 27, 2014	Conduction (CO01-SZ)
AC LISN (for auxiliary equipment)	ETS-LINDGRE N	3816/2SH	00103892	0.1MHz~108MHz	Feb. 28, 2013	Jul. 08, 2013	Feb. 27, 2014	Conduction (CO01-SZ)
ESCIO TEST Receiver	R&S	1142.8007.0 3	100724	9kHz~3GHz	Mar. 08, 2013	Jul. 08 2013	Mar. 07, 2014	Conduction (CO01-SZ)
AC Power Source	Chroma	61602	616020000891 N/A	N/A	Oct. 12, 2012	Jul. 08 2013	Oct. 11, 2013	Conduction (CO01-SZ)

TEL: 86-755- 3320-2398 FCC ID: ZC4S105 Page Number : 89 of 90
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

FCC RF Test Report

5 Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150 KHz ~ 30 MHz)

Measuring Uncertainty for a Level of	2.26
Confidence of 95% (U = 2Uc(y))	2.20

<u>Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)</u>

Measuring Uncertainty for a Level of	2.54
Confidence of 95% (U = 2Uc(y))	2.54

Uncertainty of Radiated Emission Measurement (1 GHz ~ 40 GHz)

Measuring Uncertainty for a Level of	4.72
Confidence of 95% (U = 2Uc(y))	7.72

 ${\it SPORTON\ INTERNATIONAL\ (SHENZHEN)\ INC.}$

TEL: 86-755- 3320-2398 FCC ID : ZC4S105 Page Number : 90 of 90
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01

Appendix A. Photographs of EUT

Please refer to Sporton report number EP370202 as below.

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755- 3320-2398 FCC ID: ZC4S105 Page Number : A1 of A1
Report Issued Date : Jul. 23, 2013
Report Version : Rev. 01