### Лабораторная работа №5

Модель хищник-жертва

Аникин Константин Сергеевич

## Содержание

| 1                 | Цель работы                    | 5  |
|-------------------|--------------------------------|----|
| 2                 | Задание                        | 6  |
| 3                 | Теоретическое введение         | 7  |
| 4                 | Выполнение лабораторной работы | 8  |
| 5                 | Выводы                         | 13 |
| Список литературы |                                | 14 |

# Список иллюстраций

| 4.1 | Код программы на Julia             | 8  |
|-----|------------------------------------|----|
| 4.2 | График зависимости на Julia        | 9  |
| 4.3 | График изменения на Julia          | 10 |
| 4.4 | Код программы на OpenModelica      | 11 |
| 4.5 | График зависимости на OpenModelica | 11 |
| 4.6 | График изменения на OpenModelica   | 12 |

### Список таблиц

### 1 Цель работы

Реализовать жёсткую модель Лотки-Вольтерры в Julia и OpenModelica.

### 2 Задание

#### Вариант 6

Постройте график зависимости численности хищников от численности жертв, а также графики изменения численности хищников и численности жертв при следующих начальных условиях: x0=11, y0=16. Найдите стационарное состояние системы.

### 3 Теоретическое введение

Простейшая модель взаимодействия двух видов типа «хищник — жертва» - модель Лотки-Вольтерры. Данная двувидовая модель основывается на следующих предположениях:

- 1. Численность популяции жертв х и хищников у зависят только от времени (модель не учитывает пространственное распределение популяции на занимаемой территории)
- 2. В отсутствии взаимодействия численность видов изменяется по модели Мальтуса, при этом число жертв увеличивается, а число хищников падает
- 3. Естественная смертность жертвы и естественная рождаемость хищника считаются несущественными
- 4. Эффект насыщения численности обеих популяций не учитывается
- 5. Скорость роста численности жертв уменьшается пропорционально численности хищников

Подробней о модели Лотки-Вольтерры см. в [1]

### 4 Выполнение лабораторной работы

На рис. 4.1 представлен код программы на Julia. На рис. 4.2 представлен график зависимости численности хищников от численности жертв, а на рис. 4.3 представлены графики изменения численности хищников и жертв в зависимости от времени.

Точное стационарное состояние равно (10.88235294117647, 3.695652173913044), и с поправкой на реальность получаем (11, 4).

Рис. 4.1: Код программы на Julia



Рис. 4.2: График зависимости на Julia



Рис. 4.3: График изменения на Julia

На рис. 4.4 представлен код программы на OpenModelica. На рис. 4.5 представлен график зависимости численности хищников от численности жертв, а на рис. 4.6 представлены графики изменения численности хищников и жертв в зависимости от времени.

```
📑 🐧 | Writable | Model | Text View | o4 | C:/Users/kosty/OpenModelica/o4.mo
     model o4
  2
       Real x;
  3
       Real y;
     initial equation
  4
  5
       x = 11;
  6
       y = 16;
  7
     equation
     der(x) = -0.17*x+0.046*x*y;
  8
       der(y) = 0.37*y-0.034*x*y;
 9
      annotation(experiment(StartTime = 0, StopTime = 45));
10
     end o4;
```

Рис. 4.4: Код программы на OpenModelica



Рис. 4.5: График зависимости на OpenModelica



Рис. 4.6: График изменения на OpenModelica

## 5 Выводы

В ходе работы была реализована жёсткая модель хищник-жертва и построены необходимые графики.

### Список литературы

1. Турчин П.В. Лекция № 14. Популяционная динамика. ФИЦ ИВТ, г. Новосибирск, 2020.