Unfolding Gammapy

Noah Biederbeck September 8, 2022

TU Dortmund University

Settings

- True and Reconstructed Energy Range from 1TeV to 100 TeV
- Background Spectrum
 - PowerLaw
 (Idx=-2, Amp=10⁻¹² cm⁻² s⁻¹ TeV⁻¹, Ref=1 TeV)
- · Source Spectrum
 - LogParabola (Amp=10⁻¹² cm⁻² s⁻¹ TeV⁻¹, Ref=1 TeV, α =2, β =1)
- · Unfolding Spectrum
 - PieceWiseNorm · PowerLaw (Idx=0)
 - → Flat Prior
 - Frozen PowerLaw Parameters: only Fitting Norms

I used the poisson likelihood of the counts:

$$\epsilon = 10^{-8}$$

$$\mathcal{L} = \sum_{\text{pred}} n_{\text{pred}} - n_{\text{true}} \cdot \log_{10} (n_{\text{pred}} + \epsilon)$$

I used the tikhonov regularization (flat 2nd derivative, matrix C) on the norm parameters (f) (they represent the bin heights of the unfolding, hence need to be (2nd derivative)-flat?)

$$\frac{1}{2}(\mathsf{C}f)^{\top}(\tau\mathbb{1})^{-1}(\mathsf{C}f)$$

Results

- The following plots show the true spectrum, the start spectrum (i.e. before the unfolding) and the unfolded spectrum.
- Tau=0 means no regularization.
- 10 reconstructed energy bins are used, 80 true energy bins
- Some norms are unfolded to nan, which is of course nonsense and makes for really large error bands
- This was not hand-optimized, just some settings ran. If the fit failed (e.g. unfolding nans), the results are still shown.
- Low Sigma/Bias means 0.01, Higher Sigma/Bias means 0.1 for each

Low Sigma/Bias, 10 Unfolding Bins

Higher Sigma/Bias, 10 Unfolding Bins

