

GCN-VAE for Knowledge Graph Completion

Karen Yang

Stanford University

Motivation

- Knowledge graphs are useful abstraction for relational data but often have missing links.
- Most methods failed to capture multiple relation semantics when a point vector presentation.
- Few studies have applied generative models for representation learning on knowledge graphs.

Problem Formulation

Input preprocessing

set of triplets { (head entity, relation type, tail entity) }

Input Knowledge Graph: G=(E,A)Entity attribute matrix: $E\in\mathbb{R}^{n\times d_e}$ Relation-specific Adjacency List: $A=\{A_{\tau}, \forall \tau\in R\}$

- Only 50% of edges in input graph are shown to model.
- Latent z: distribution of entity embedding given input graph
- ullet Output: given relation \mathcal{T} predict likelihood of triplets, with learned relation embedding.

Experiments

- Link Prediction
 - Predict whether a relation exists between a pair of entities.
 - Use negative sampling to add a balanced set of positive and negative (false) triplets for training.
- Dataset

Datasets	#entities	#relations	#triplets	#train triplets	#test triplets
FB15K237	14541	237	272115	251649	20466
WN18RR	40943	11	40943	37809	3134

Methods

Relational Graph Convolution Network as Encoder

$$H^{(l)} = \sigma(B_l + \sum_{\tau \in R} A_\tau H^{(l-1)} W_l)$$

- Bilinear diagonal model as decoder: $\langle \mathbf{r}, \mathbf{h}, \mathbf{t} \rangle$ (dot product)
- Objective: $\mathcal{L}(\phi, \theta; G) = -ELBO(\phi, \theta; G) = \mathbb{E}_{q_{\phi}(z|G)}[-\log p_{\theta}(G|z, \tau)] + \mathcal{D}_{KL}[q_{\phi}(z|G)||p(z)]$
- Mixture of Gaussians as prior:

$$p_{\theta}(\mathbf{z}) = \sum_{i=1}^{\kappa} \frac{1}{k} \mathcal{N}(\mathbf{z} | \mu_i, \operatorname{diag}(\sigma_i^2))$$

Inverse Autoregressive Flow to transform posterior:

$$z_i = \frac{x_i - \mu_i(\mathbf{x}_{1:i-1})}{\sigma_i(\mathbf{x}_{1:i-1})} = -\frac{\mu_i(\mathbf{x}_{1:i-1})}{\sigma_i(\mathbf{x}_{1:i-1})} + x_i \odot \frac{1}{\sigma_i(\mathbf{x}_{1:i-1})}$$

 More Informative Latent Codes With Maximum Mean Discrepancy (MMD)

$$\mathbb{E}_{p(z),p(z')}[k(z,z')] + \mathbb{E}_{q(z),q(z')}[k(z,z')] - 2\mathbb{E}_{p(z),q(z')}[k(z,z')]$$

Results

	FB15k-237				
Model	MRR Hits @				
	Raw	1	3	10	
TransE	.144	.147	.263	.398	
DistMult	.241	.155	.263	.419	
RotateE	.338	.241	.375	.533	
R-GCN	.248	.153	.258	.417	
TransG(generative)	.304	.182	.298	.471	
GCN-VAE(k=1)	.279	.189	.300	.465	
GCN-GMVAE(k=10)	.281	.191	.300	.471	
GCN-GMVAE-IAF	.343	.243	.375	.548	

Table 1. Model comparison on Mean reciprocal rank (MRR) and Hits@m on variants of GCN-VAE and other common methods.

Figure 2. Generated neighborhood around entity "Barak Obama". Dotted lines are predicted links that were not in original dataset.

Conclusion

- Learned a powerful representation of knowledge graph's relational structure with VAE and relational graph convolutional network.
- Improve link prediction performance on SOTA baselines.

Reference

Aditya Grover, Aaron Zweig, and Stefano Ermon. Graphite: Iterative generative modeling of graphs. arXiv preprint arXiv:1803.10459, 2018.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan Titov, and Max Welling. Modeling relational data with graph convolutional networks. In *European Semantic Web Conference*, pages 593–607. Springer, 2018.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks? *arXiv preprint arXiv:1810.00826*, 2018.