

Exploring interactions in Arabidopsis

Graph Based Data Integration: exploring interactions in *Arabidopsis* with contributions from multiple data sources

Artem Lysenko¹, Keywan Hassani-Pak¹, Jan Taubert¹, Charlie Hodgman², Christopher J. Rawlings¹, and Mansoor Saqi¹

Centre for Mathematical and Computational Biology, Rothamsted Research,
Harpenden, Herts, AL5 2JQ, UK
{artem.lysenko, keywan.hassani-pak, jan.taubert, chris.rawlings,
mansoor.saqi}@bbsrc.ac.uk

Centre for Integrative Biology, University of Nottingham, UK

charlie.hodgman@nottingham.ac.uk

Integration of 3 PPI networks

- IntAct
 - 4625 protein interactions (data derived from literature curation or direct user submissions)
- TAIR (The Arabidopsis Information Resource) – 1143 interactions
 - genome sequence, gene structure, gene product information, metabolism, gene expression, DNA and seed stocks, genome maps, genetic and physical markers, publications

Integration of 3 PPI networks

- BioGrid (General Repository for Interaction Datasets)
 - collections of protein and genetic interactions from major model organism species
 - 1223 interactions for Arabidopsis derived from high-throughput studies and conventional focused studies

Ondex Accession-based mapping

- IntAct
- o TAIR
- BioGRID

→ Mapping the 3 databases based on TAIR accessions

Adding 3 sources of evidence

- co-expression
- sequence similarity
- co-occurrence in scientific literature

→ facilitate the identification of functionally related groups of proteins

Co-expression evidence

- ATTED II (<u>Arabidopsis thaliana trans-factor and cis-element prediction database</u>)
 - provides co-regulated gene relationships in Arabidopsis to estimate gene functions
 - gives the Pearson correlation coefficients of co-expressed genes in *Arabidopsis* calculated from available microarray data
 - → Mapping using TAIR accessions

Sequence similarity evidence

- NCBI PSI-BLAST
 - identify similarities between our reference set of proteins
 - Matching against Arabidopsis subset of UNIPROT

Evidence from the literature

- Co-occurrence of protein names
 - 25,900 Medline abstracts related to Arabidopsis Thaliana
 - Integrated Lucene-based mapping method

Integrated Arabidopsis PPI

- Nodes are connected if there is evidence from
 - Interaction
 - co-expression
 - sequence similarity
 - co-occurrence

Evidence networks in isolation

Relations colour = strength of evidence

Added attributes to nodes/edges

- Network stats
 - Betweenness centrality (BWC)
 - → How influential (bridge)
 - Degree centrality (DC)
 - → Hub likeness
- Markov Clustering
 - Identifies strongly connected groups of proteins in the network

three_ppi_added_evidence.xml.gz / ABA_cluster.xml.gz (only 1 cluster)

Example 1:

- Ann → Scale/Colour Relations by Numerical Value (BLAST weight) (size min 4 max 4) [only BLAST network left]
- Ann → Colour Concepts by General Attribute (BLAST Cluster)

• Example 2:

- Ann → Scale/Colour Relations by Numerical Value (interaction weight) (size min 4 max 4)
- Filter → More → Threshold, relations (interaction EBWC)

o Example 3:

- Ann → Scale/Colour Relations by Numerical Value (interaction weight) (size min 4 max 4)
- Ann → Scale/Colour Concepts by Numerical Value (Combined DC) (size min 10 max 100)

