Colles - Semaine 1

Exercice 1

- 1. Étudier la fonction f définie sur $[0, +\infty)$, par $f(x) = \frac{4}{3+x}$.
- 2. On considère la suite (u_n) définie par $\begin{cases} u_0 = a \in \mathbb{R}_+^* \\ \forall n \in \mathbb{N}, \ u_{n+1} = \frac{4}{3 + u_n} \end{cases}$
 - a) Montrer que la suite (u_n) est bien définie.
 - b) Déterminer la seule limite possible ℓ de la suite (u_n) .
 - c) Montrer que pour tout $x \ge 0$, $|f'(x)| \le \frac{4}{9}$.
 - **d)** Montrer que pour tout $n \in \mathbb{N}, |u_n \ell| \le \left(\frac{4}{9}\right)^n |a \ell|$.
 - e) Conclure quant à la convergence de la suite (u_n) .

Exercice 2

On considère les fonctions $f_n: x \mapsto x^n + x - 1$ pour $n \in \mathbb{N}^*$.

- 1. Soit $n \in \mathbb{N}^*$. Démontrer que l'équation $f_n(x) = 0$ admet une unique solution $x_n \in]0,1[$. On s'intéresse maintenant à la suite (x_n) .
- 2. Démontrer que, pour tout n > 0 : $f_{n+1}(x_n) < f_{n+1}(x_{n+1})$. En déduire que : $\forall n > 0, \ x_n < x_{n+1}$.
- 3. Démontrer que (x_n) converge et que sa limite ℓ est telle que $0 < \ell \leqslant 1$.
- 4. Démontrer que : $\forall n > 0, \ x_n \leq \ell$.
- 5. En procédant par l'absurde, montrer que $\ell=1$.

Exercice 3

On considère la suite
$$(u_n)$$
 définie par :
$$\begin{cases} u_0 \in \mathbb{R} \\ \forall n \in \mathbb{N}, \ u_{n+1} = \exp(u_n) - 1 \end{cases}$$

On note f la fonction définie par : $f(x) = \exp(x) - 1$.

1. Montrer que l'équation f(x) = x a une unique solution qui est 0. Déterminer le signe de f(x) - x. Préciser le sens de variations de f.

On suppose maintenant que $u_0 = 1$.

- 2. Montrer que pour tout entier $n, 1 \leq u_n \leq u_{n+1}$.
- 3. Montrer que (u_n) n'est pas majorée et en déduire sa limite.
- 4. Monter que si $x \ge 1$ alors $f(x) \ge (e-1)x$.
- 5. En déduire que pour tout entier n, $u_n \ge (e-1)^n$ et retrouver la limite de la suite. On suppose maintenant que $u_0 < 0$.

1

a M .

- 6. Montrer que pour tout entier $n, u_n < 0$.
- 7. En déduire que (u_n) est croissante puis qu'elle converge vers 0.