Лекция 6

Ilya Yaroshevskiy

22 марта 2021 г.

Содержание

1 Сферические координаты в

1

2 Произведение мер

 $\mathbf{2}$

1 Сферические координаты в \mathbb{R}^m

Пример.

- $r, \varphi_1, \dots \varphi_{m-1}$
- $\mathbb{R}^m\supset\mathbb{R}^{m-1}\supset\cdots\supset\mathbb{R}^2$ В кажои из очередных пространств \mathbb{R}^k фиксируем ортогональное к \mathbb{R}^{k-1}
- φ_1 угол между $\overline{e_1}$ и $Ox \in [0,\pi]$
- φ_2 угол между $\overline{e_2}$ и $P_{2(e_2\ ...\ e_m)}(x) \in [0,\pi]$
- _ :
- φ_{m-1} просто полярный угол в \mathbb{R}^m

$$x_1 = r \cos \varphi_1$$

$$x_2 = r \sin \varphi_1 \cos \varphi_2$$

$$x_3 = 2 \sin \varphi_1 \sin \varphi_2 \cos \varphi_3$$

$$\vdots$$

$$x_{m-1} = r \sin \varphi_1 \dots \sin \varphi_{m-2} \cos \varphi_{m-1}$$

$$x_m = r \sin \varphi_1 \dots \sin \varphi_{m-2} \sin \varphi_{m-1}$$

$$J = r^{m-1} \sin^{m-2} \varphi_1 \sin^{m-3} \varphi_2 \dots \sin \varphi_{m-2}^1$$

Сделаем в цикле эти координаты:

 $^{^{1} {\}rm B} \ {\rm R}^{3}$ "географические" координаты $J=r^{2} \cos \psi$

$$\begin{aligned} & \text{ III ar } \mathbf{1} \ \, x_m = \rho_{m-1} \sin \varphi_{m-1} \\ & x_{m-1} = \rho_{m-1} \cos \varphi_{m-1} \\ & (x_1 \ \dots \ x_n) \leadsto (x_1 \ \dots \ x_{m-2}, \ \rho_{m-1}, \ \varphi_{m-1}) \end{aligned} \\ & \text{ III ar } \mathbf{2} \ \, \rho_{m-1} = \rho(m_2) \sin \varphi_{m-2} \\ & x_{m-2} = \rho_{m-2} \cos \varphi_{m-2} \\ & (x_1 \ \dots \ x_{m-2}, \ \rho_{m-1}, \ \varphi_{m-1}) \leadsto (x_1 \ \dots \ x_{m-3}, \ \rho_{m-2}, \ \varphi_{m-2}, \ \varphi_{m-1}) \end{aligned} \\ & \vdots \\ & \text{ ПОСЛЕДНИЙ III ar } \ \, (x_1, \ \rho_2, \ \varphi_2 \ \dots \ \varphi_{m-1}) \leadsto (r, \ \varphi_1 \ \dots \ \varphi_{m-1}) \\ & \rho_2 = r \sin \varphi_1 \\ & x_1 = r \cos \varphi_1 \end{aligned} \\ & \lambda_m(\Omega) = \int\limits_{\Omega} 1 d\lambda_m \ \, \frac{1}{1 \ \text{III ar }} \int\limits_{\Omega_1} \rho_{m-1} \ \, \frac{1}{2 \ \text{III ar }} \int\limits_{\Omega_2} \rho_{m-2}^2 \sin \varphi_{m-2} \ \, \frac{1}{3 \ \text{III ar }} \int\limits_{\Omega_3} \rho_{m-3}^3 \sin^2 \varphi_{m-3} \sin \varphi_{m-2} d\lambda = 0 \end{aligned}$$

2 Произведение мер

- (X,\mathfrak{A},μ)
- (Y, \mathfrak{B}, ν)

Лемма 1. $\mathfrak{A},\mathfrak{B}-n/\kappa\Rightarrow\mathfrak{A}\times\mathfrak{B}=\{A\times B\subset X\times Y|A\in\mathfrak{A},\ B\in\mathfrak{B}\}$

 Π ример. Ячейки: В $\mathbb{R}^2=\mathbb{R}^1 imes\mathbb{R}^1\ \mathfrak{A}=\mathcal{P}^1,\ \mathfrak{B}\in\mathcal{P}^1$ A imes B— ячейка из \mathcal{P}

Определение. $\mathcal{P}=\mathfrak{A}\times\mathfrak{B}$ — множества из этой системы называются измеримыми прямоуг. $m_o(A\times B)=\mu A\cdot \nu B$

 $= \cdots = \int_{\Omega_{m-1}} r^{m-1} \sin^{n-2} \varphi_1 \dots \sin \varphi_{m-2}$

Теорема 2.1.

- 1. m_0 мера на \mathcal{P}
- 2. $\nu, \mu \sigma$ -конечные $\Rightarrow m_0$ тоже σ -конечная

Доказательство.

1. $?m_0$ — счетно аддитивна $?m_0P = \sum m_oP_k$, если

$$A \times B = P = \bigsqcup P_k$$
, где $P_k = A_k \times B_k$

Наблюдение: $\chi_{A\times B}(x,y)=\chi_A(x)\cdot\chi_B(y)$ Тогда $\chi_P=\sum\chi_{P_k},$ т.е.

$$\forall x \in X, y \in Y \quad \chi_A(x)\chi_B(y) = \sum \chi_{A_k}(x)\chi_{B_k}(y)$$

проинтегрируем по y по мере ν :

$$\chi_A(x)\nu B = \sum \chi_A(x) \cdot \nu B_k$$

Интегрируем по x:

$$\mu A \cdot \nu B - \sum \mu A_k \cdot \nu B_k$$

2. Очев. $\mu-\sigma$ -конечная $\Rightarrow X=\bigcup X_k,\ \mu X_k$ — конечная $nu-\sigma$ -конечная $\Rightarrow Y=\bigcup Y_n,\ \nu Y_k$ — конечная

$$X imes Y = \bigcup X_k Y_n \quad m_0 \mu X_k
u Y_n$$
 — конечная

 $\Rightarrow m_0 - \sigma$ -конечная мера

Определение.

- $(X,\mathfrak{A},\mu),(Y,\mathfrak{B},\nu)$ пространства с мерой
- $\mu, \nu \sigma$ -конечные

Пусть m — лебеговское продолжение меры m_0 с п/к $\mathfrak{A} \times \mathfrak{B}$ на σ -алгебра, которую будет обозначать $\mathfrak{A} \otimes \mathfrak{B}$

Определение. $(X \times Y, \mathfrak{A} \otimes \mathfrak{B}, \nu \times \mu)$ — произведение пространств с мерой (X, \mathfrak{A}, μ) и (Y, \mathfrak{B}, ν)

Примечание.

- 1. Это произведение ассоциативно
- 2. σ -конечность нужна для единственности произведения

Теорема 2.2. $\lambda_m \times \lambda_n = \lambda_{n+m}$

Доказательство. Без доказательсва

Определение.

- X, Y множества
- $C \subset X \times Y$

$$C_x := \{ y \in Y | (x, y) \in C \}$$

 $C^y := \{ x \in X | (x, y) \in C \}$

Примечание.

$$\left(\bigcup_{\alpha} C_{\alpha}\right)_{x} = \bigcup_{\alpha} (C_{\alpha})_{x}$$

$$\left(\bigcap_{\alpha} C_{\alpha}\right)_{x} = \bigcap_{\alpha} (C_{\alpha})_{x}$$

$$\left(C \setminus C'\right)_{x} = C_{x} \setminus C'_{x}$$

Теорема 2.3 (Кавальери).

- (X,\mathfrak{A},μ)
- (Y, \mathfrak{B}, ν)
- $\nu, \mu \sigma$ -конечные, полные
- $m := \mu \times \nu$

Пусть $C \in \mathfrak{A} \otimes \mathfrak{B}$

Тогда:

- 1. $C_x \in \mathfrak{B}$ при почти всех x
- 2. $x \mapsto \nu(C_x)$ измеримая функция на X

3.
$$mC = \int_X \nu(C_x) d\mu(x)$$

Аналогичное верно для C^y

Пример. Половину шара сопоставляем с конусом.

 $^{^2}$ функция задана при почти всех x. Она равна почти везде некоторой измеримой функции, которая задана на всем X. Это "не мешает" утверждению 3

- $C_x = \text{круг}$
- $C_x =$ кольцо

$$\lambda(C_x) = \pi(R^2 - x^2)$$

$$\lambda(C_x) = \pi R^2 - \pi x^2$$

$$\nu(\frac{1}{2}\text{шара}) = \nu(\text{цилиндр} - \text{конус}) = \pi R^2 - \frac{1}{3}\pi R^2 = \frac{2}{3}\pi R$$

Доказательство. $\mathcal{D}-$ система множеств, для которых выполнено 1. - 3.

1.
$$C = A \times B \Rightarrow C \in \mathcal{D}$$

(a)
$$C_x = \begin{bmatrix} \emptyset & x \notin A \\ B & x \in A \end{bmatrix}$$

(b)
$$x\mapsto \nu(x)$$
 — это функция $\nu B\cdot\chi_A$

(c)
$$\int \nu(C_x)d\mu = \int_X \nu B \cdot \chi_A d\mu = \nu B \cdot \mu A = mC$$

2.
$$E_i \in D$$
, dis $\Rightarrow \bigsqcup E_i \in D$

 $E_i \in D \Rightarrow (E_i)_X$ — измеримое почти везде \Rightarrow при почти всех x все $(E_i)_X$ — измеримое

- (a) Тогда при этих $x E_X = \bigsqcup (E_i)_X \in \mathfrak{B}$
- (b) $\nu E_X = \sum_{\text{измеримая функция}} \underbrace{\nu(E_i)_X}_{\text{измеримая функция}} \Rightarrow функция <math>x \mapsto \nu E_X$ измеримая

(c)
$$\int_X \nu E_X d\mu = \sum_i \int_X \nu(E_i)_X = \sum_i mE_i = mE$$

3.
$$E_i\in\mathcal{D},\ E_1\supset E_2\supset\ldots,\ E=\bigcap_i E_i,\ \mu E_i<+\infty$$
 Тогда $E\in\mathcal{D}$

$$\int\limits_X \nu(E_i)_X d\mu = mE_i < +\infty \Rightarrow \nu(E_i)_X - \text{конечная при почти всех } x$$

- (a) $\forall x$ верно $(E_1)_X\supset (E_2)_X\supset\dots$, $E_X=\bigcap (E_i)_X$. Тогда E_X измеримое при почти всех x и $\lim_{i\to+\infty}\nu(E_i)_X=\nu E_X$ при почти всех x
- (b) Таким образом $x \mapsto \nu E_X$ измеримая²

(c)

$$\int\limits_X \nu E_X d\mu = \lim \int \nu(E_i)_X d\mu = \lim mE_i = mE$$

Первое равенство по теореме Лебега о предельном переходе под знаком интеграла: $|\nu(E_i)_X| \le$ $\nu(E_1)_X$ — из²

Итог: $A_{ij} \in \mathcal{P} = \mathfrak{A} \times \mathfrak{B}$, то $?? \bigcup A_{ij} \in \mathcal{D}$

4.
$$mE = 0 \Rightarrow E \in \mathcal{D}$$

$$mE = \inf\{\sum m_0 P_k | E \subset \bigcup P_k, P_k \in \mathcal{P}\}$$

— теорема о лебеговском продолжении.

 \exists множества H вида $\bigcap \bigcup P_{ke}$ (т.е. $H \in \mathcal{D}$)

$$E \subset H, mH = mE = 0$$

$$0=mH=\int\limits_X
u H_x d\mu \Rightarrow
u H_X \sim 0 \ (=0$$
 при почти всех $x)$

 $E_X \subset H_x, \nu$ — полная \Rightarrow

- (a) E_X измерима при почти всех x
- (b) $\nu E_X = 0$ почти везде
- (c) $\int \nu E_X d\mu = 0 = mE$
- 5. C-m-измеримо, $mC<+\infty$ тогда $C\in\mathcal{D}$

$$C = H \setminus e$$
, где H — вида ??? $\bigcup P_{ke}$, $me = 0$, $mC = mH$

- (a) $C_x = H_x \setminus e_X$ измерима при почти всех x, т.к. ν полная
- (b) $\nu e_X = 0$ при почти всех $x \Rightarrow \nu C_x = \nu H_x \nu e_X = \nu H_X \Rightarrow$ измерима

(c)
$$\int_X \nu C_x d\mu = \int_X \nu H_x d\mu = mH = mC$$

6. C — произвольное измеримое множество в $X \times Y \Rightarrow C \in \mathcal{D}$

$$X=\bigsqcup X_k,\ \mu X_k<+\infty,\ Y=\bigsqcup Y_j,\ \nu Y_j<+\infty$$

$$C=\bigsqcup (C\cap (X_k\times Y_j)) - \text{используем } 2.$$

Следствие 2.3.1. C — измеримое в $X \times Y$. Пусть $P_q(C) = \{x \in X | C_x \neq 0\}$ — проекция C на X. Если $P_1(C)$ — измеримое, то:

$$mC = \int\limits_{P_1(C)} \nu(C_x) d\mu$$

Доказательство. при $x \notin P_1(C) \ \nu(C_x) = 0$

Примечание.

- 1. измеримое $\not \Rightarrow P_1(C)$ измеримое
- 2. C измеримое $\not\Rightarrow \forall x \ C_x$ измеримо
- 3. $\forall x \forall y \ C_x, C^y$ измеримые $\not\Rightarrow C$ измеримое (пример Серпинского)