

Pharos University in Alexandria Faculty of Engineering Computer Engineering Department

EE232&E232!! :Electronics

Chapter 5 Bipolar Junction Transistors

Lecture 9

Transistor Structure:

The Bipolar Junction Transistor (BJT) is constructed with three doped semiconductor regions separated by two PN junctions. The three regions are called emitter, base, and collector

Two Types of BJTs:

- 1. NPN consists of two n regions separated by a p region
- 2. PNP consists of two p regions separated by a n region

Standard BJT Symbols

(a) npn

(b) pnp

BJT Data Sheets

Amplifier Transistors NPN Silicon

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	40	Vdc
Collector-Base Voltage	VCBO	75	Vdc
Emitter-Base Voltage	VEBO	6.0	Vdc
Collector Current — Continuous	I _C	600	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12	Watts mW/°C
Operating and Storage Junction Temperature Range	TJ, Tstg	-55 to +150	ို

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient	R ₀ JA	200	°C/W
Thermal Resistance, Junction to Case	Raic	83.3	°C/W

P2N2222A

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector – Emitter Breakdown Voltage (IC = 10 mAdc, IB = 0)	V(BR)CEO	40	_	Vdc
Collector-Base Breakdown Voltage (I _C = 10 μAdc, I _E = 0)	V(BR)CBO	75	_	Vdc
Emitter-Base Breakdown Voltage (IE = 10 µAdc, IC = 0)	V _{(BR)EBO}	6.0	_	Vdc
Collector Cutoff Current (VCE = 60 Vdc, VEB(off) = 3.0 Vdc)	ICEX	_	10	nAdc
Collector Cutoff Current (V _{CB} = 60 Vdc, I _E = 0) (V _{CB} = 60 Vdc, I _E = 0, T _A = 150°C)	ICBO	-	0.01 10	μAdc
Emitter Cutoff Current (VEB = 3.0 Vdc, IC = 0)	IEBO	-	10	nAdc
Collector Cutoff Current (VCE = 10 V)	ICEO	_	10	nAdc
Base Cutoff Current (V _{CE} = 60 Vdc, V _{EB(off)} = 3.0 Vdc)	I _{BEX}	_	20	nAdc

Transistor casing terminal identification

Gold, Aluminum, Nical, Plastic case

Types

Plastic Cases for Small Signal Tr

(c) SOT-23 or TO-236AB

Metal Cases for Small Signal Tr

(a) TO-18 or TO-206AA

(d) TO-52 or TO-206AC

(b) TO-39 or TO-205AD

(e) TO-72 or TO-206AF

(c) TO-46 or TO-206AB

(f) Pin configuration (bottom view). Emitter is closest to tab.

Typical Multiple Transistor Packages

(a) Dual metal can

(c) Quad small outline (SO) package for surface-mount technology

(b) Quad dual in-line (DIP) and quad flat-pack. Dot indicates pin 1.

(d) Dual ceramic flat-pack

Typical Power Transistor

Typical RF Transistor

Transistor testing:

FOR R.B - BE VBE - 2.6V (RB - BC) e - Broc VBC = 2-6 - Res in [The 7 is it متن نفول ٦٠ بابيط J F.B. R.B ABE = ABC = 5.6 or UBE = VBC = Zero -> Opmuneter F-B -- Law resistance = (our) to few kilohow R.B -> high resistance > Tooks

Transistor Under Bias

E-B	В-С	Mode of operation	Application
Forward	Reverse	Active mode	Amplifier
Forward	Forward	Saturation mode	Switch on (short circuit)
Reverse	Reverse	Cut- off mode	Switch off (open circuit)
Reverse	Forward	No use	No use

BJT O/P Characteristics and its Modes of Operation:

$$\Lambda^{cE}$$
 $\approx 0.5 \Lambda$

3 Cut off reguin

14)

IB=0 IC=IE=0 NO C...ment

DC Solution & operating point (18)

Steps

- @ all Capacitors must be open Circut (o.c)
- ② Assume that BJT in Active mode (F-R) VBE=0.7 C=IE=BIB C=IE=BIB C=IE=BIB
- 3) We have a loops
- D Base Emitter loop (B-E)

 to get IB

 TC = IE = BTB ✓

 TC = IE = BTB ✓

(E) Collector - Emitter Loop (C-E)

it vee > 0.2 ~ our assumption Steeps)

OF-C 600P VCE TOOK -IE

& B-Eroob -> It

The DC Operating Point (Q-point):

BJT Amplifier Configurations:

The BJT amplifier has three circuit configurations:

a. Common Emitter (CE): The emitter is connected to the ground, the i/p signal is applied to the base and the o/p signal is on the collector.

b. Common Base (CB): The base is connected to the ground, the i/p signal is applied to the emitter and the o/p signal is on the collector.

c. Common Collector (CC): The collector is connected to the ground, the i/p signal is applied to the base and the o/p signal is on the emitter.

$$\beta = 100$$

For the shown circuit,

a. Find IB, IE, IC, and sketch the DC load line and locate the operating point

b. Repeat if RC = $11 \text{ k}\Omega$

KVL at B-Eloop 10 - IB * 565 - YBE - IE * 4K RB = 565 1 +1010 10- IB * 565 - 0.7 - 100 * TB * 4410=0

TB = 0.02 mA $TC \sim TE = BIB = 2mA$

KYL at EC loop EV -10 + IC * 1 + VCE + IE *4 - 10 = 0 Co = I E (VCE + SIC = 20 / load line equation A NCE = 0 -> IC= 4WA y Ic = 0 -> VCE = 20/ 1 @ 60.10 to get Q-point I Co IE = BIB= 2mA. from kulat BEl∽P YEQ = 101 201

100 = 101 > 0.5 10E0 + 2 TE0 = 30

Correct assumptions Activa region

(23) (ii) if RC = 11K5C B-E 600P -> NO Change From @ TEB = D.02mA E-C 1006 - 10 + IC * "" + ACE +IE *4K-10 =0 (ACE + 12 IC = DO) road fine to get Q-Point TOO SMA -> VCEQE-10V << 0.2V as Assumptions wrong BJT in saturation JCESMY = 0.2V E-c loop VCESTSTCSW= 20 I C sat = 1.32 mA)

B- E 1000P

10 - IB # 565" - VB 5 - I 5 # 4 K + 10 = 6

IB - 0.0248 MA

1CE +12KIC = 50

J VCE=0 --> IC= 20

In the following fig, VCC= 22V, R1= 39 k Ω , R2 =3.9 k Ω , RE =1.5 k Ω , RC=10 k Ω , β =100.

Determine the dc bias voltage VCE and IC R1 for voltage divider configuration

Solved in lecture

or vollage divider bias configuration " Examples Determine the de bias voltage uce and Ic For voltage divider configuration. must make thevinin voltage divider rule all de sources ground R, 11 RZ

KUL at BE 6004

KVL E-C 600P

Determine the following for feed back configuration IC_Q and VCE_Q

Solved in lecture

Determine the following for fixed bias configuration IB_Q , IC_Q , VCE_Q , VB, VC and VBC

Determine the following for common base configuration IE, IB, VB, VCE and VCB

Solved in lecture

