En Uzun Seyahat

IOI 2023 organizatörlerinin başı büyük derttedir! Önümüzdeki gün için Ópusztaszer gezisini planlamayı unuttular. Ama belki de henüz çok geç değildir...

Ópusztaszer'de 0'dan N-1'a kadar indislenmiş N tane turistlik bölge vardır. Bu bölgelerin bazı çiftleri *çift yönlü* **yollarla** birbirine bağlıdır. Her bir bölge çifti en fazla bir yolla birbirine bağlıdır. Organizatörler hangi bölgelerin birbirine bağlı olduğunu *bilmiyor*.

Ópusztaszer'deki yol ağı **yoğunluğu**, herhangi 3 farklı bölgenin arasında en az δ yolun olduğu durumda **en az** δ olarak ifade edilir. Başka bir deyişle, $0 \le u < v < w < N$ koşulunu sağlayan her üçlü bölge (u,v,w) için (u,v),(v,w) ve (u,w) bölge çiftleri arasında en az δ çift birbirine bağlıdır.

Organizatörler, yol ağı yoğunluğunun en az D olduğu pozitif bir D tamsayısını biliyor.

D değerinin 3 'den büyük olamayacağını unutmayın.

Organizatörler, belirli bölgeler arasındaki yol bağlantıları hakkında bilgi toplamak için Ópusztaszer'deki merkezi **arayabilir**. Her çağrıda, $[A[0],\ldots,A[P-1]]$ ve $[B[0],\ldots,B[R-1]]$ bölgelerinin boş olmayan iki dizisi belirtilmelidir. Turistik bölgeler ikili olarak farklı olmalıdır, yani

- Her i ve j için $A[i] \neq A[j]$ öyle ki $0 \leq i < j < P$;
- Her i ve j için $B[i] \neq B[j]$ öyle ki $0 \le i < j < R$;
- $0 \le i < P$ ve $0 \le j < R$ olacak şekilde her i ve j için $A[i] \ne B[j]$.

Her çağrı için merkez, A bölgesini B bölgesine bağlayan bir yol olup olmadığını bildirir. Yani, $0 \le i < P$ ve $0 \le j < R$ olacak şekilde A[i] ve B[j]'yi bağlayacak i ve j varsa merkez true değerini döner. Aksi taktirde merkez false değerini döner.

l uzunluğundaki bir **yolculuk**, $t[0], t[1], \ldots, t[l-1]$ farklı bölgelerden oluşan bir seridir; burada 0 ve l-2 arasında (sınırlar dahil) her i için bölge t[i] ile bölge t[i+1] bir yolla birbirine bağlıdır. l uzunluğundaki bir yolculuğa, eğer en az l+1 uzunluğunda bir yolculuk yoksa, **en uzun yolculuk** adı verilir.

Göreviniz, merkeze çağrı yaparak organizatörlerin Ópusztaszer'deki en uzun yolculuğu bulmalarına yardımcı olmaktır.

Kodlama Detayları

Aşağıdaki prosedürü kodlamalısınız:

```
int[] longest_trip(int N, int D)
```

- *N*: Ópusztaszer'daki turistik bölge sayısı.
- *D*: Yol ağının garanti edilen minimum yoğunluğu.
- Bu prosedür en uzun yolculuğu temsil eden $t = [t[0], t[1], \dots, t[l-1]]$ dizisini dönmelidir.
- Bu prosedür her bir test senaryosunda birden fazla çağrılabilir.

Yukarıdaki prosedür aşağıdaki prosedürü çağırabilir:

```
bool are_connected(int[] A, int[] B)
```

- A: Turistik bölgeleri içeren dizi. Bu dizi boş değildir.
- B: Turistik bölgeleri içeren dizi. Bu dizi boş değildir.
- A ve B ayrık olmalıdır.
- ullet Eğer A'daki bir bölge ve B'deki bir bölge bir yol ile birbirine bağlı ise bu prosedür true döner. Diğer türlü false döner.
- Bu prosedür, her longest_trip çağrısında en fazla $32\,640$ kez ve toplamda en fazla $150\,000$ kez çağrılabilir.
- $\bullet\,$ Bu prosedüre tüm çağrıları boyunca iletilen A ve B dizilerinin toplam uzunluğu $1\,500\,000$ 'u aşamaz.

Grader **adaptif(uyarlanabilir) değildir**. Her gönderim aynı test senaryoları seti üzerinden puanlandırılır. Yani, N ve D değerlerinin yanı sıra yollarla birbirine bağlanan bölge çiftleri, her test senaryosu içindeki her longest_trip çağrısı için sabitlenir.

Örnekler

Örnek 1

 $N=5,\,D=1$ olan ve yol bağlantılarının aşağıdaki şekilde gösterildiği gibi olduğu bir senaryoyu düşünün:

longest_trip prosedürü aşağıdaki şekilde çağrılır:

Bu prosedür aşağıdaki gibi are_connected 'a çağrı yapabilir.

Çağrı	Yol ile bağlı çiftler	Return değeri
are_connected([0], [1, 2, 4, 3])	(0,1) ve $(0,2)$	true
are_connected([2], [0])	(2,0)	true
are_connected([2], [3])	(2,3)	true
are_connected([1, 0], [4, 3])	hiçbiri	false

Dördüncü çağrıdan sonra, (1,4), (0,4), (1,3) ve (0,3) çiftlerinden *hiçbirinin* bir yol ile bağlı olmadığı ortaya çıkar. Ağın yoğunluğu en az D=1 olduğundan, (0,3,4) üçlüsünden (3,4) çiftinin bir yolla bağlanması gerektiğini görüyoruz. Buna benzer şekilde, 0 ve 1 bölgeleri bağlanmalıdır.

Bu noktada t=[1,0,2,3,4]'nin 5 uzunluğunda bir yolculuk olduğu ve 5'den daha uzun bir yolculuğun mevcut olmadığı sonucuna varılabilir. Bu nedenle, longest_trip prosedürü [1,0,2,3,4] değerini dönebilir.

N=4, D=1 olan ve bölgeler arasındaki yolların aşağıdaki şekilde gösterildiği gibi olduğu başka bir senaryoyu düşünün:

longest_trip prosedürü aşağıdaki gibi çağrılır:

longest_trip(4, 1)

Bu senaryoda en uzun yolculuğun uzunluğu 2'dir. Bu nedenle, are_connected prosedürüne yapılan birkaç çağrıdan sonra, longest_trip prosedürü [0,1], [1,0], [2,3] veya [3,2] 'den birini dönebilir.

Örnek 2

Alt görev 0, N=256 bölgeye sahip ek bir örnek test senaryosu içerir. Bu test senaryosu yarışma sisteminden indirebileceğiniz ek pakette yer almaktadır.

Kısıtlar

- $3 \le N \le 256$
- longest_trip 'e yapılan tüm N çağrının toplamı her test senaryosu içinde $1\,024$ 'ü aşmaz.
- $1 \le D \le 3$

Altgörevler

- 1. (5 puan) D = 3
- 2. (10 puan) D=2
- 3. (25 puan) D=1. l^\star en uzun ylol uzunluğunu göstersin. longest_trip prosedürünün l^\star uzunluğunda bir yolculuk dönmesi gerekmez. Bunun yerine, en az $\left\lceil \frac{t^\star}{2} \right\rceil$ uzunluğunda bir yolculuk dönmelidir.
- 4. (60 puan) D=1

Alt görev 4'te puanınız, tek bir $longest_trip$ çağrısı üzerinden are_connected prosedürüne yapılan çağrıların sayısına göre belirlenir. q, bu alt görevin her test senaryosunda tüm $longest_trip$ çağrısı arasındaki maksimum çağrı sayısı olsun. Bu alt göreve ilişkin puanınız aşağıdaki tabloya göre hesaplanır:

Şart	Puan
$2750 < q \leq 32640$	20
$550 < q \leq 2750$	30
$400 < q \leq 550$	45
$q \leq 400$	60

Test senaryolarının herhangi birinde, are_connected prosedürüne yapılan çağrılar Kodlama Detaylarında açıklanan kısıtlamalara uymuyorsa veya longest_trip tarafından dönen dizi yanlışsa, o alt görev için çözümünüz 0 puan alacaktır.

Örnek Değerlendirici (Sample Grader)

C senaryoların sayısını, yani longest_trip 'e yapılan çağrıların sayısını göstersin. Örnek değerlendirici girdiyi aşağıdaki formatta okur:

• satır 1: *C*

C senaryonun açıklamaları takip eder.

Örnek değerlendirici her senaryonun açıklamasını aşağıdaki formatta okur:

- satır 1: ND
- satır 1+i ($1 \leq i < N$): $U_i[0] \; U_i[1] \; \dots \; U_i[i-1]$

Burada, her U_i ($1 \le i < N$), hangi bölge çiftlerinin bir yolla birbirine bağlandığını tanımlayan, i büyüklüğünde bir dizidir. $1 \le i < N$ ve $0 \le j < i$ olacak şekilde her i ve j için:

- j ve i bölgeleri bir yolla birbirine bağlıysa, o zaman $U_i[j]$ değeri 1 olmalıdır;
- j ve i bölgelerini birbirine bağlayan bir yol yoksa, o zaman $U_i[j]$ değeri 0 olmalıdır.

Her senaryoda, longest_trip çağrısını yapmadan önce örnek değerlendirici, yol ağı yoğunluğunun en az D olup olmadığını kontrol eder. Bu koşul sağlanmadığı takdirde Insufficient Density (Yetersiz Yoğunluk) mesajını basar ve sonlanır.

Örnek değerlendirici bir protokol ihlali tespit ederse, örnek değerlendiricinin çıktısı Protocol Violation: <MSG> olur; burada <MSG> aşağıdaki hata mesajlarından biridir:

- invalid array: are_connected cagrisinda, A ve B dizilerinin en az biri
 - o boştur, ya da
 - $\circ 0$ ile N-1 (sınırlar dahil) arasında tam sayı olmayan bir eleman içerir, ya da
 - o aynı elemanı en az iki kere içerir.
- ullet non-disjoint arrays: are_connected çağrısında, A ve B dizileri ayrık değildir.
- too many calls: are_connected 'a yapılan çağrıların sayısı, mevcut longest trip çağrısına göre $32\,640$ 'ı veya toplamda $150\,000$ 'ı aşmaktadır.
- $\bullet\,$ too many elements: tüm çağrılar göz önüne alındığında are_connected 'a gönderilen bölgelerin toplam sayısı $150\,000$ 'ı aşmaktadır.

Aksi takdirde, bir senaryoda longest_trip tarafından dönen dizinin elemanları, negatif olmayan bir l için $t[0],t[1],\ldots,t[l-1]$ olsun. Örnek değerlendirici bu senaryo için aşağıdaki formatta üç satır yazar:

- satır 1: *l*
- satır 2: t[0] t[1] ... t[l-1]
- satır 3: bu senaryoda are_connected 'a yapılan çağrıların sayısı

Son olarak örnek değerlendirici şunları yazar:

•	satır $1+3\cdot C$: longest maksimum çağrı sayısı	_trip 'a yapılan tüm	çağrılar üzerinden	are_connected 'a yapılan	