Proof by contradiction

- 1. Prove that $\sqrt{3}$ is irrational.
- 2. If a and b are positive real numbers, then $a+b \geq 2\sqrt{ab}$.

Other types of proofs

- 1. Prove that $a \equiv b \pmod{10}$ if and only if $a \equiv b \pmod{2}$ and $a \equiv b \pmod{5}$.
- 2. Prove that there exists an integer $n \in \mathbb{N}$ for which $11|(2^n-1)$.

Problems to try

- 1. Prove that the product of any five consecutive integers is divisible by 120.
- 2. Prove that the project of any n consecutive integers is divisible by n!.
- 3. Prove that, for all integers $n \in \mathbb{Z}$, the greatest common divisor of n and n+1 is 1.