

Тригонометрические функции

В этом уроке

- Тригонометрические функции: свойства и их графики
- Формулы приведения
- Тригонометрические уравнения

Основные тригонометрические функции

 $y = \sin(x)$

Свойства синуса

- ① Область определения функции множество всех действительных чисел: $D(y) = \mathbb{R}.$
- $m{Q}$ Множество значений интервал [-1;1]: E(y) = [-1;1].
- Функция периодическая, самый маленький неотрицательный период соответствует 2π : $\sin(\alpha+2\pi)=\sin(\alpha)$.
- **⑤** График функции пересекает ось Ox при $\alpha=\pi n$, $n\in\mathbb{Z}$.

Свойства синуса

- **6** Промежутки знакопостоянства: y > 0 при $\alpha \in (2\pi n; \pi + 2\pi n)$, $n \in \mathbb{Z}$ и y < 0 при $\alpha \in (\pi + 2\pi n; 2\pi + 2\pi n)$, $n \in \mathbb{Z}$.
- $m{\phi}$ Функция является непрерывной, и у нее есть производная с любым значением аргумента: $(\sin lpha)' = \cos lpha$.
- $m{ 0}$ Функция $y=\sinlpha$ возрастает при $lpha\in (-\pi/2+2\pi n;\pi/2+2\pi n)$, $n\in\mathbb{Z}$, и убывает при $lpha\in (\pi 2+2\pi n;3\pi 2+2\pi n)$, $n\in\mathbb{Z}$.
- $oldsymbol{0}$ Минимум функции при $lpha=-\pi/2+2\pi n$, $n\in\mathbb{Z}$, а максимум при $lpha=\pi/2+2\pi n$, $n\in\mathbb{Z}$.

Основные тригонометрические функции

 $y = \cos(x)$

Свойства косинуса

- ① Область определения функции множество всех действительных чисел: $D(y) = \mathbb{R}.$
- $m{Q}$ Множество значений интервал [-1;1]: E(y) = [-1;1].
- **4** Функция периодическая, самый маленький неотрицательный период соответствует 2π : $\cos(\alpha+2\pi)=\cos(\alpha)$.
- $footnote{\circ}$ График функции пересекает ось Ox при $lpha=\pi/2+\pi n$, $n\in\mathbb{Z}.$

Свойства косинуса

- **6** Промежутки знакопостоянства: y>0 при $\alpha\in (-\pi/2+2\pi n;\pi/2+2\pi n)$, $n\in\mathbb{Z}$ и y<0 при $\alpha\in (\pi/2+2\pi n;3\pi/2+2\pi n)$, $n\in\mathbb{Z}$.
- $m{\phi}$ Функция является непрерывной, у нее есть производная с любым значением аргумента: $(\cos \alpha)' = -\sin \alpha$.
- $m{0}$ Функция $y=\coslpha$ возрастает при $lpha\in(-\pi+2\pi n;2\pi n)$, $n\in\mathbb{Z}$, и убывает при $lpha\in(2\pi n;\pi+2\pi n)$, $n\in\mathbb{Z}$.
- $oldsymbol{\circ}$ У функции есть минимум при $lpha=\pi+2\pi n$, $n\in\mathbb{Z}$, а максимум при $lpha=2\pi n$, $n\in\mathbb{Z}$.

Основные тригонометрические функции

y = tg(x)

Свойства тангенса

- ① Область определения функции множество действительных чисел: D(y) = R, исключая числа $\alpha = \pi/2 + \pi n$.
- $oldsymbol{arrho}$ Множество значений множество действительных чисел: $E(y)=\mathbb{R}.$
- $\mathbf{3}$ Функция $y=\mathrm{tg}(\alpha)$ нечётная: $\mathrm{tg}(-\alpha)=-\mathrm{tg}\,\alpha$.
- Функция периодическая, самый маленький неотрицательный период соответствует $\pi\colon \mathrm{tg}(\alpha+\pi)=\mathrm{tg}(\alpha).$

Свойства тангенса

- Брафик функции пересекает ось Ox при $\alpha = \pi n, \, n \in \mathbb{Z}.$
- б Промежутки знакопостоянства: y>0 при $\alpha\in(\pi n;\pi/2+\pi n)$, $n\in\mathbb{Z}$ и y<0 при $\alpha\in(-\pi/2+\pi n;\pi n)$, $n\in\mathbb{Z}$.
- Функция является непрерывной, есть производная с любым значением аргумента из области определения: $(\operatorname{tg} x)' = 1/\cos^2 x$.
- $oldsymbol{\otimes}$ Функция $y=\operatorname{tg} \alpha$ возрастает при $\alpha\in (-\pi/2+\pi n;\pi/2+\pi n)$, $n\in \mathbb{Z}.$

Основные тригонометрические функции

 $y = \operatorname{ctg}(x)$

Свойства котангенса

- ① Область определения функции множество действительных чисел: $D(y) = \mathbb{R}$, исключая числа $\alpha = \pi n$.
- ② Множество значений множество действительных чисел: $E(y) = \mathbb{R}$.
- Функция периодическая, самый маленький неотрицательный период равен π : ${\rm ctg}(\alpha+\pi)={\rm ctg}(\alpha).$

Свойства котангенса

- **6** График функции пересекает ось Ox при $\alpha = \pi/2 + \pi n$, $n \in \mathbb{Z}$.
- б Промежутки знакопостоянства: y>0 при $\alpha\in(\pi n;\pi/2+\pi n)$, $n\in\mathbb{Z}$ и y<0 при $\alpha\in(\pi/2+\pi n;\pi(n+1))$, $n\in\mathbb{Z}$.
- Функция является непрерывной, есть производная в любом значении аргумента из области определения: $(\operatorname{ctg} x)' = -1/\sin^2 x$.
- $oldsymbol{\otimes}$ Функция $y=\operatorname{ctg} lpha$ убывает при $lpha\in(\pi n;\pi(n+1))$, $n\in\mathbb{Z}.$

Тождества тригонометрических функций

$$\sin^2 t + \cos^2 t = 1$$

$$2 tg t = \frac{\sin t}{\cos t}, \ t \neq \frac{\pi}{2} + \pi k$$

$$ctg t = \frac{\cos t}{\sin t}, \ t \neq \pi k$$

$$4 \operatorname{tg} t \cdot \operatorname{ctg} t = 1, \ t \neq \frac{\pi k}{2}$$

5
$$1 + \operatorname{tg}^2 t = \frac{1}{\cos^2 t}, \ t \neq \frac{\pi}{2} + \pi k$$

6
$$1 + \operatorname{ctg}^2 t = \frac{1}{\sin^2 t}, \ t \neq \pi k$$

Правило приведения

- Для выражений $\pi + t$, πt , $2\pi + t$, $2\pi t$:
 - В приведенном выражении следует сохранить тригонометрическую функцию преобразуемого выражения.
 - Перед полученной функцией следует поставить тот знак, который имела бы преобразуемая функция при условии, что $0 < t < \pi/2$.
- Для выражений $\pi/2 + t$, $\pi/2 t$, $3\pi/2 + t$, $3\pi/2 t$:
 - В приведенном выражении следует изменить тригонометрическую функцию преобразуемого выражения на противоположную.
 - Перед полученной функцией следует поставить тот знак, который имела бы преобразуемая функция при условии, что $0 < t < \pi/2$.

Формулы приведения

$$\cos(\pi + t) = -\cos t \qquad \cos(2\pi + t) = \cos t \qquad \cos(\pi/2 + t) = -\sin t \qquad \cos(3\pi/2 + t) = \sin t$$

$$\sin(\pi + t) = -\sin t \qquad \sin(2\pi + t) = \sin t \qquad \sin(\pi/2 + t) = \cos t \qquad \sin(3\pi/2 + t) = -\cos t$$

$$tg(\pi + t) = tgt \qquad tg(2\pi + t) = tgt \qquad tg(\pi/2 + t) = -tgt \qquad tg(3\pi/2 + t) = -tgt$$

$$ctg(\pi + t) = ctgt \qquad ctg(2\pi + t) = ctgt \qquad ctg(\pi/2 + t) = -tgt \qquad ctg(3\pi/2 + t) = -tgt$$

$$cos(\pi - t) = -\cos t \qquad \cos(2\pi - t) = \cos t \qquad \cos(\pi/2 - t) = \sin t \qquad \cos(3\pi/2 - t) = -\sin t$$

$$sin(\pi - t) = \sin t \qquad sin(2\pi - t) = -\sin t \qquad \sin(\pi/2 - t) = \cos t \qquad \sin(3\pi/2 - t) = -\cos t$$

$$tg(\pi - t) = -tgt \qquad tg(2\pi - t) = -tgt \qquad tg(\pi/2 - t) = tgt \qquad ctg(3\pi/2 - t) = tgt$$

Пример 1

Найти область определения функции $y = \sin 3x + \operatorname{tg} 2x$.

Решение:

- ullet Выражение $\sin 3x$ имеет смысл при любом значении x.
- Выражение $\operatorname{tg} 2x$ при $2x \neq \frac{\pi}{2} + \pi n$, $n \in \mathbb{Z}$, т.е. $x \neq \frac{\pi}{4} + \frac{\pi n}{2}$, $n \in \mathbb{Z}$.

Ответ:
$$x \neq \frac{\pi}{4} + \frac{\pi n}{2}$$
, $n \in \mathbb{Z}$.

Простейшие тригонометрические уравнения

- \bullet sin x=a при $|a| \leq 1 \Leftrightarrow x=(-1)^n \arcsin a + \pi n, n \in \mathbb{Z}$.
- $\mathbf{2}\cos x=a$ при $|a|\leq 1\Leftrightarrow x=\pm rccos a+2\pi n$, $n\in\mathbb{Z}$.
- 3 $\operatorname{tg} x = a \Leftrightarrow x = \operatorname{arctg} a + \pi n, n \in \mathbb{Z}.$

Алгебраический метод

Пример 2

Решите уравнение: $2\cos^2 x + 5\sin x = 5$.

Решение:

- $2(1-\sin^2 x) + 5\sin x = 5$
- $2\sin^2 x 5\sin x + 3 = 0$
- $\sin x = t \Rightarrow 2t^2 5t + 3 = 0$
- $4 2t^2 5t + 3 = 0 \Rightarrow t_1 = 3/2, t_2 = 1$
- $\sin x = 3/2$ невозможно, поэтому $\sin x = 1$

Ответ: $x = \pi/2 + 2\pi n$, $n \in \mathbb{Z}$.

Разложение на множители

Пример 3

Решите уравнение: $\sin 2x = \cos x$.

Решение:

- $2\sin x \cos x \cos x = 0$
- $\cos x(2\sin x 1) = 0$
- $4\cos x = 0$ или $2\sin x 1 = 0$

Ответ:

$$x_1 = \pi/2 + \pi n, n \in \mathbb{Z}$$

 $x_2 = (-1)^n \pi/6 + \pi n, n \in \mathbb{Z}$

Однородные уравнения

Пример 4

Решите уравнение: $\sin^2 x + 2\sin x \cos x - 3\cos^2 x = 0$.

Решение:

- **①** Разделим обе части уравнения на $\cos^2 x$: $tg^2 x + 2tg x 3 = 0$
- 2 $tg x = t \Rightarrow t^2 + 2t 3 = 0$
- $t^2 + 2t 3 = 0 \Rightarrow t_1 = -3, t_2 = 1$
- $4 \operatorname{tg} x = -3 \Rightarrow x_1 = \operatorname{arctg}(-3) + \pi n, \ n \in \mathbb{Z}$

Ответ:

$$x_1 = \operatorname{arctg}(-3) + \pi n, \ n \in \mathbb{Z}$$

 $x_2 = \pi/4 + \pi n, \ n \in \mathbb{Z}$

Введение дополнительного угла

Пример 5

Решите уравнение: $\sqrt{3}\sin x + \cos x = 2$.

Решение:

$$\cos \frac{\pi}{6} \sin x + \sin \frac{\pi}{6} \cos x = 1$$

3
$$\sin\left(x + \frac{\pi}{6}\right) = 1 \Rightarrow x + \frac{\pi}{6} = \frac{\pi}{2} + 2\pi n$$

4
$$x = \frac{\pi}{3} + 2\pi n, n \in \mathbb{Z}$$

Ответ:
$$x=\frac{\pi}{3}+2\pi n,\ n\in\mathbb{Z}.$$

