# 07. Выбор узлов интерполирования. Интерполяционный полином Ньютона для равно- и неравноотстоящих узлов.

Андрей Бареков Ярослав Пылаев По лекциям Устинова С.М.

January 15, 2020

# 1 Выбор узлов интерполирования

Реально повлиять на величину погрешности можно только минимизируя величину  $|\omega(x)|$ , что делается выбором узлов интерполирования.

$$|\omega(x)| = |(x - x_0)(x - x_1)\dots(x - x_m)| \to \min$$

# 1.1 Случай 1

- Задана степень полинома т
- Есть таблица большой длины (> (m+1))
- $3a\partial a + a$  точка  $x^*$ , в которой оценивается погрешность

Очевидно, что лучший выбор - узлы, ближайшие к  $x^*$ .

## 1.2 Случай 2

- Задан промежуток интерполирования [a, b]
- Задана степень полинома т
- Точка  $x^*$  заранее неизвестна

Требуется выбрать узлы так, чтобы в худшем случае погрешность была бы минимальной.

$$\max |\omega(x)| \to \min, x \in [a, b]$$

Интуитивно ясно, что узлы следует располагать симметрично относительно середины промежутка.

Рассмотрим случай равноотстоящих узлов:



Для уменьшения погрешности узлы интерполирования необходимо сместить ближе краям  $\mathbf{K}$ чтобы промежутка, "колокольчики" стали примерно одинаковой высоты. Оптимальный выбор отвечает узлов нулям ортогональных полиномов Чебышёва.

#### 1.3 Как на практике оценивается погрешность

Непосредственно оценивают погрешность по формуле выше редко, т.к. трудно оценивать производную. В инженерной практике часто используется следующий пример:

- 1. Строим  $Q_m(x)$
- 2. Добавляем  $x_{m+1}$ , ещё один узел
- 3. Строим  $Q_{m+1}(x)$
- 4. Оцениваем погрешность по разности значений этих полиномов в нужной точке

Использовать для этих целей полином Лагранжа неэффективно. На практике хотелось бы построить интерполяционный полином так, чтобы полином степени m+1 получался добавлением к нему какого-то слагаемого степени m, как это происходило в построении степенного ряда Тейлора.

# 2 Полином Ньютона

Рассмотрим первую разделённую разность:

$$f(x;x_0) = \frac{f(x) - f(x_0)}{x - x_0}$$

$$f(x) = \underbrace{f(x_0)}_{Q_0} + \underbrace{(x - x_0)(f(x;x_0))}_{R_0}$$
(1)

Рассмотрим вторную разделенную разность:

$$f(x; x_0; x_1) = \frac{f(x; x_0) - f(x_0; x_1)}{x - x_1}$$

Выразим первую разделённую разность через вторую и подставим в формулу (1):

$$f(x) = \underbrace{f(x_0)}_{Q_0} + (x - x_0)f(x_0; x_1) + \underbrace{(x - x_0)(x - x_1)f(x; x_0; x_1)}_{R_1}$$

Продолжая этот процесс, и выражая вторую разделённую разность через третью, третью через четвертую и т.д., получаем:

$$f(x) = Q_m(x) + \underbrace{(x - x_0)(x - x_1) \dots (x - x_m) f(x; x_0; x_1; \dots; x_m)}_{R_m}$$

$$Q_m(x) = f(x_0) + (x - x_0)f(x_0; x_1) + (x - x_0)(x - x_1)f(x_0; x_1; x_2) + \cdots + (x - x_0)\dots(x - x_{m-1})f(x_0; x_1; \dots; x_m)$$
(2)

## Полином Ньютона для неравноотстоящих узлов

Если узлы интерполирования равноотстоящие, то в формуле (2) можно заменить разделённые разности на конечные. С этой целью выполним замену переменных:

$$\begin{cases} x = x_0 + ht \\ x_k = x_0 + kh \end{cases}$$
, в узлах  $t$  - целое

$$f(x_0; \dots; x_m) = \frac{\Delta^m f(x_0)}{m! \ h^m}$$

$$(x - x_k) = h(t - k)$$
(3)

Знаем, что 
$$x = x_0 + ht$$
  $x - x_1 = x - x_0 - h = th - h = h(t-1)$  Тогда  $x - x_k = h(t-k)$   $\Rightarrow (x - x_0)(x - x_1) = t(t-1)h^2$ 

Тогда формула (2) при подставновке (3) принимает следующий вид:

$$Q_m(x_0 + ht) = f(x_0) + \frac{t}{1!} \Delta f(x_0) + \frac{t(t-1)}{2!} \Delta^2 f(x_0) + \cdots + \frac{t(t-1)\dots(t-m+1)}{m!} \Delta^m f(x_0)$$

#### Полином Ньютона для равноотстоящих узлов

Полиномы строятся последовательно в соответствии со следующей таблицей:

| x     | f(x)                 | $\Delta f(x)$   | $\Delta^2 f(x)$ |
|-------|----------------------|-----------------|-----------------|
| $x_0$ | $f(x_0)$             | $\Delta f(x)$   | $\Delta^2 f(x)$ |
| $x_1$ | $\underline{f(x_1)}$ | $\Delta f(x_1)$ |                 |
| $x_2$ | $\underline{f(x_2)}$ |                 |                 |

Каждая новая степень полинома требует построения очередной диагонали в таблице.