MATH 8090: Seasonal Time Series Models

Whitney Huang, Clemson University

10/10-10/12/2023

Contents

Read the data
Plot the time series
Plot sample ACF/PACF
Trying Different Orders of Differencing
Plot ACF and PACF
Show the ACF and PACF for the d=1, D=0 case
A useful function for the model diagnostics (courtesy of Peter Craigmile at OSU) $$ 6
Fitting the SARIMA $(1,1,0) \times (1,0,0)$ model
Fitting the SARIMA $(0,1,0) \times (1,0,0)$ model
Forecasting 1971 Data
Fit the SARIMA(1,1,0) \times (1,0,0) Model
Fit the SARIMA(0, 1, 0) \times (1, 0, 0) Model
Define the forecasting time points
Calculate the predictions and prediction intervals for both models
Evaluating Forecast Performance
SARIMA simulation
Unit root test examples

Read the data

library(TSA)
data(airpass)
plot(airpass)


```
yr <- time(airpass)</pre>
```

Plot the time series

```
par(bty = "L", mar = c(3.6, 3.5, 0.8, 0.6), mgp = c(2.4, 1, 0), las = 1, mfrow = c(2, 1))
## plot the time series.
plot(airpass, xlab = "Year", ylab = "Monthly total (1000s)")
grid()
## take a log (to the base 10) of the air passenger data.
log.airpass <- log10(airpass)
plot(log.airpass, type = "l", xlab = "Year", ylab = "log10(monthly total)")
grid()</pre>
```


Plot sample ACF/PACF

```
log.shortair <- log.airpass[1:132]
shortyears <- yr[1:132]
par(bty = "L", mar = c(3.6, 3.5, 0.8, 0.6), mgp = c(2.4, 1, 0), las = 1, mfrow = c(1, 2))
acf(log.shortair, ylab = "sample ACF", main = "", lag.max = 48, xaxt = "n")
axis(side = 1, at = seq(0, 48, 12))
pacf(log.shortair, ylab = "sample PACF", main = "", lag.max = 48, xaxt = "n")
axis(side = 1, at = seq(0, 48, 12))</pre>
```


Trying Different Orders of Differencing

```
## take the differences Y_t = (1-B) X_t
diff.1.0 <- diff(log.shortair)
## take the seasonal differences Y_t = (1-B^(12)) X_t
diff.0.1 <- diff(log.shortair, lag = 12, diff = 1)
## take the differences Y_t = (1-B^(12)) (1-B) X_t
diff.1.1 <- diff(diff(log.shortair, lag = 12, diff = 1))</pre>
```

Plot ACF and PACF

```
axis(side = 1, at = seq(0, 48, 12))
mtext("Sample PACF", side = 3, line = 0, cex = 0.8)
plot(shortyears[-c(1:12)], diff.0.1, xlab = "", ylab = "d=0, D=1",
     type = "l", ylim = c(-0.1, 0.1), xlim = range(shortyears))
stats::acf(diff.0.1, lag.max = 48, ylab = "", xlab = "", main = "", ylim = c(-0.6, 1), xaxt = "n")
axis(side = 1, at = seq(0, 48, 12))
stats::pacf(diff.0.1, lag.max = 48, ylab = "", xlab = "", main = "", ylim = c(-0.6, 1), xaxt = "n")
axis(side = 1, at = seq(0, 48, 12))
plot(shortyears[-c(1:13)], diff.1.1, xlab = "", ylab = "d=1, D=1",
     type = "l", ylim = c(-0.1, 0.1), xlim = range(shortyears))
mtext("Year", side = 1, line = 1.8, cex = 0.8)
stats::acf(diff.1.1, lag.max = 48, ylab = "", xlab = "", main = "", ylim = c(-0.6, 1), xaxt = "n")
axis(side = 1, at = seq(0, 48, 12))
mtext("lag", side = 1, line = 1.8, cex = 0.8)
stats::pacf(diff.1.1, lag.max = 48, ylab = "", xlab = "", main = "", ylim = c(-0.6, 1), xaxt = "n")
axis(side = 1, at = seq(0, 48, 12))
mtext("lag", side = 1, line = 1.8, cex = 0.8)
                                                         Sample ACF
                                                                                 Sample PACF
 0.10
                                                   1.0
                                                                           1.0
0.05<u>ث</u>
                                                   0.5
                                                                           0.5
_0.00
<u>=</u>0.05
                                                   0.0
                                                                           0.0
                                                  -0.5
                                                                          -0.5
-0.10
      1960
             1962
                                        1970
                                                                                   12 24 36
                    1964
                          1966
                                 1968
                                                          12 24 36 48
                                                                                              48
 0.10
                                                                           1.0
                                                   1.0
<del>_</del>0.05
                                                   0.5
                                                                           0.5
0.00
                                                   0.0
                                                                           0.0
                                                  -0.5
                                                                          -0.5
-0.10
      1960
             1962
                    1964
                           1966
                                  1968
                                        1970
                                                       0
                                                           12 24 36 48
                                                                                   12 24
                                                                                          36
 0.10
                                                   1.0 -
                                                                           1.0 -
<del>,,</del>0.05
                                                   0.5
                                                                           0.5
0.00
                                                   0.0
                                                                           0.0
±0.05
                                                  -0.5
                                                                          -0.5
-0.10
      1960
                                        1970
                                                       0
                                                           12
                                                                  36
                                                                                   12
             1962
                    1964
                          1966
                                  1968
                                                              24
                                                                                          36
                                                                                              48
                        Year
```

Show the ACF and PACF for the d=1, D=0 case.

```
par(mfrow = c(1, 2), cex = 0.8, bty = "L", mar = c(3.6, 3, 1, 0.6), mgp = c(2.4, 1, 0), las = 1)
stats::acf(diff.1.0, lag.max = 48, ylab = "", xlab = "", main = "", ylim = c(-0.6, 1), xaxt = "n")
axis(side = 1, at = seq(0, 48, 12))
mtext("Sample ACF", side = 3, cex = 0.8)

stats::pacf(diff.1.0, lag.max = 48, ylab = "", xlab = "", main = "", ylim = c(-0.6, 1), xaxt = "n")
axis(side = 1, at = seq(0, 48, 12))
mtext("Sample PACF", side = 3, cex = 0.8)
```


A useful function for the model diagnostics (courtesy of Peter Craigmile at OSU)

```
}
  if (is.null(lag.max)) {
   lag.max <- floor(10 * log10(length(x)))</pre>
  plot(x, y, type = "1", ...)
  if (mean.line) abline(h = 0, lty = 2)
  qqnorm(y, main = "", las = 1); qqline(y)
  if (is.null(lags)) {
   stats::acf(y, main = "", lag.max = lag.max, xlim = c(0, lag.max), ylim = acf.ylim,
       ylab = "sample ACF", las = 1)
   stats::pacf(y, main = "", lag.max = lag.max, xlim = c(0, lag.max), ylim = acf.ylim,
         ylab = "sample PACF", las = 1)
  }
  else {
    stats::acf(y, main = "", lag.max = lag.max, xlim = c(0, lag.max), ylim = acf.ylim,
       ylab = "sample ACF", xaxt = "n", las = 1)
   axis(side = 1, at = lags)
   stats::pacf(y, main = "", lag.max = lag.max, xlim = c(0, lag.max), ylim = acf.ylim,
         ylab = "sample PACF", xaxt = "n", las = 1)
   axis(side = 1, at = lags)
  }
 Box.test(y, lag.max, type = "Ljung-Box")
}
```

Fitting the SARIMA $(1,1,0) \times (1,0,0)$ model

```
(fit1 \leftarrow arima(diff.1.0, order = c(1, 0, 0), seasonal = list(order = c(1, 0, 0), period = 12)))
##
## Call:
## arima(x = diff.1.0, order = c(1, 0, 0), seasonal = list(order = c(1, 0, 0),
##
       period = 12)
##
## Coefficients:
##
             ar1
                    sar1 intercept
##
         -0.2667 0.9291
                             0.0039
## s.e. 0.0865 0.0235
                             0.0096
##
## sigma^2 estimated as 0.0003298: log likelihood = 327.27, aic = -648.54
Box.test(fit1$residuals, lag = 48, type = "Ljung-Box")
##
## Box-Ljung test
## data: fit1$residuals
## X-squared = 55.372, df = 48, p-value = 0.2164
```

```
par(mfrow = c(2, 2), cex = 0.8, bty = "L", mar = c(3.6, 4, 0.8, 0.6),
    mgp = c(2.8, 1, 0), las = 1)
plot.residuals(shortyears[-1], resid(fit1), lag.max = 48,
                 ylab = "SARIMA residuals", xlab = "Year", lags = seq(0, 48, 12))
  0.06
                                                      0.06
                                                                                              00
0.04
0.02
0.00
0.00
0.02
0.04
                                                   0.04
0.00
0.00
0.00
0.04
                                                                00000
                                                              0
                                                                                0
                                                                                              2
        1960 1962 1964
                            1966
                                  1968 1970
                                                                  -2
                                                                       Theoretical Quantiles
                           Year
    1.0 -
                                                        1.0 -
    8.0
                                                        8.0
                                                   sample PACF
sample ACF
    0.6
                                                        0.6
    0.4
                                                        0.4
    0.2
                                                        0.2
    0.0
                                                       0.0
  -0.2
                                                      -0.2
          0
                                                              0
                   12
                            24
                                     36
                                              48
                                                                       12
                                                                                24
                                                                                         36
                                                                                                  48
                           Lag
                                                                               Lag
##
##
    Box-Ljung test
##
## data: y
## X-squared = 55.372, df = 48, p-value = 0.2164
Fitting the SARIMA(0,1,0) \times (1,0,0) model
```

```
(fit2 <- arima(diff.1.0, seasonal = list(order = c(1, 0, 0), period = 12)))

##
## Call:
## arima(x = diff.1.0, seasonal = list(order = c(1, 0, 0), period = 12))
##
## Coefficients:
## sar1 intercept
## 0.9081 0.0040
## s.e. 0.0278 0.0108</pre>
```

```
##
## sigma^2 estimated as 0.0003616: log likelihood = 322.75, aic = -641.51
Box.test(fit2$residuals, lag = 48, type = "Ljung-Box")
##
    Box-Ljung test
##
##
## data: fit2$residuals
## X-squared = 80.641, df = 48, p-value = 0.002209
par(mfrow = c(2, 2), cex = 0.8, bty = "L", mar = c(3.6, 4, 0.8, 0.6),
    mgp = c(2.8, 1, 0), las = 1)
plot.residuals(shortyears[-1], resid(fit2), lag.max = 48,
                 ylab = "SARIMA residuals", xlab = "Year", lags = seq(0, 48, 12))
  0.06
                                                      0.06
                                                                                              00
0.00 A residuals
0.00 0.00
0.00 0.00
0.004
                                                   0.04
0.00
0.00
0.00
0.00
0.04
                                                                                0
                                                                                       1
                                                                                              2
        1960
              1962 1964
                            1966
                                   1968
                                         1970
                                                                  -2
                                                                      Theoretical Quantiles
                           Year
    1.0 -
                                                       1.0 -
    8.0
                                                       8.0
                                                   sample PACF
sample ACF
    0.6
                                                       0.6
    0.4
                                                       0.4
    0.2
                                                       0.2
    0.0
                                                       0.0
  -0.2
                                                      -0.2
                                               Т
          0
                   12
                            24
                                                              0
                                                                      12
                                     36
                                              48
                                                                                24
                                                                                         36
                                                                                                  48
                           Lag
                                                                               Lag
##
##
    Box-Ljung test
##
## data: y
## X-squared = 80.641, df = 48, p-value = 0.002209
```

Forecasting 1971 Data

Fit the SARIMA $(1,1,0) \times (1,0,0)$ Model

```
(fit1 <- arima(log.shortair, order = c(1, 1, 0),</pre>
                      seasonal = list(order = c(1, 0, 0), period = 12)))
##
## Call:
## arima(x = log.shortair, order = c(1, 1, 0), seasonal = list(order = c(1, 0, 1, 0))
##
       0), period = 12))
##
## Coefficients:
##
                     sar1
             ar1
##
         -0.2665 0.9298
## s.e. 0.0866 0.0233
##
## sigma^2 estimated as 0.0003299: log likelihood = 327.19, aic = -650.38
Fit the SARIMA(0,1,0) \times (1,0,0) Model
(fit2 \leftarrow arima(log.shortair, order = c(0, 1, 0),
                      seasonal = list(order = c(1, 0, 0), period = 12)))
##
## Call:
## arima(x = log.shortair, order = c(0, 1, 0), seasonal = list(order = c(1, 0, 1, 0))
       0), period = 12))
##
##
## Coefficients:
##
           sar1
         0.9088
##
## s.e. 0.0276
## sigma^2 estimated as 0.0003617: log likelihood = 322.69, aic = -643.38
Define the forecasting time points
```

```
fyears <- yr[133:144]
```

Calculate the predictions and prediction intervals for both models

```
preds1 <- predict(fit1, 12)
forecast1 <- preds1$pred
flimits1 <- qnorm(0.975) * preds1$se</pre>
```

```
preds2 <- predict(fit2, 12)
forecast2 <- preds2$pred
flimits2 <- qnorm(0.975) * preds2$se</pre>
```

```
par(mfrow = c(2, 2), cex = 0.8, bty = "L", mar = c(3.6, 4, 1, 0.6),
    mgp = c(2.4, 1, 0), las = 1)
plot(shortyears, log.shortair, type = "l", xlab = "Year",
     ylab = "log10(passenger numbers)", xlim = range(yr), ylim = c(2, 2.9))
mtext("SARIMA(1,1,0) \times (1,0,0)")
## plots the forecasts
lines(fyears, forecast1, lwd = 2, col = "blue")
## plot the 95% prediction intervals.
lines(fyears, forecast1 + flimits1, col = "blue")
lines(fyears, forecast1 - flimits1, col = "blue")
plot(shortyears, log.shortair, type = "l", xlab = "Year",
     ylab = "log10(passenger numbers)", xlim = range(yr), ylim = c(2, 2.9))
mtext("SARIMA(0,1,0) x (1,0,0)")
## plots the forecasts
lines(fyears, forecast2, lwd = 2, col = "red")
## plot the 95% prediction intervals.
lines(fyears, forecast2 + flimits2, col = "red")
lines(fyears, forecast2 - flimits2, col = "red")
plot(shortyears, 10^log.shortair, type = "1", xlab = "Year",
     ylab="1000s of airline passengers", xlim = range(yr), ylim = c(100, 800))
lines(fyears, 10^forecast1, lwd = 2, col = "blue")
lines(fyears, 10^(forecast1 + flimits1), col = "blue")
lines(fyears, 10^(forecast1 - flimits1), col = "blue")
plot(shortyears, 10^log.shortair, type = "l", xlab = "Year",
     ylab="1000s of airline passengers", xlim = range(yr), ylim = c(100, 800))
lines(fyears, 10^forecast2, lwd = 2, col = "red")
lines(fyears, 10^(forecast2 + flimits2), col = "red")
lines(fyears, 10^(forecast2 - flimits2), col = "red")
```


Evaluating Forecast Performance

```
## calculate the root mean square error (RMSE)
sqrt(mean((10^forecast1 - 10^log.airpass[133:144])^2))

## [1] 30.36384

sqrt(mean((10^forecast2 - 10^log.airpass[133:144])^2))

## [1] 31.32376

## calculate the mean relative prediction error.
mean((10^forecast1 - 10^log.airpass[133:144]) / 10^log.airpass[133:144])

## [1] 0.05671086

mean((10^forecast2 - 10^log.airpass[133:144]) / 10^log.airpass[133:144])

## [1] 0.05951677
```

SARIMA simulation

```
library(astsa)
par(las = 1)
sAR = sarima.sim(sar = .9, S = 12, n = 240)
tsplot(sAR)
```



```
tsplot(sarima.sim(d = 1, ar = -.4, D = 1, sar = .9, S = 12, n = 300), ylab = "")
```


Unit root test examples

```
set.seed(123)
rw <- cumsum(rnorm(500))
wn <- rnorm(500)
par(las = 1, mgp = c(2.2, 1, 0), mar = c(3.6, 3.6, 0.8, 0.6), mfrow = c(1, 2))
ts.plot(rw)
ts.plot(wn)</pre>
```



```
##
## Call:
## lm(formula = ys ~ xs)
##
## Residuals:
##
        Min
                    1Q
                         Median
                                        3Q
                                                 Max
   -2.81182 -0.69065 0.00075 0.64461 2.68750
##
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.001138
                              0.045329 -0.025
                                                     0.98
                              0.044843 -22.354
                -1.002420
                                                   <2e-16 ***
## xs
##
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 1.013 on 497 degrees of freedom
## Multiple R-squared: 0.5014, Adjusted R-squared: 0.5004
## F-statistic: 499.7 on 1 and 497 DF, \, p-value: < 2.2e-16
par(las = 1, mgp = c(2.2, 1, 0), mar = c(3.6, 3.6, 0.8, 0.6), mfrow = c(1, 2))
plot(rw[1:length(diff.rw)], diff.rw, xlab = expression(x[t]),
     ylab = expression(paste(nabla, x[t])), cex = 0.25, col = "blue")
abline(ols.rw, col = "red", lwd = 2)
plot(wn[1:length(diff.wn)], diff.wn, xlab = expression(x[t]),
     ylab = expression(paste(nabla, x[t])), cex = 0.25, col = "blue")
abline(ols.wn, col = "red", lwd = 2)
     3
                                                       4
     2
                                                       2
     1
\nabla_{\mathbf{X}_{\mathsf{f}}}
                                                 \nabla_{\mathbf{X}_{\mathbf{1}}}
                                                       0
     0
    -1
                                                      -2
    -2
                                                      -4
          -5
                                                                -2
                                                                                          2
                 0
                        5
                               10
                                      15
                                            20
                                                          -3
                                                                       -1
                                                                             0
                                                                                    1
                           \mathbf{X}_{\mathsf{t}}
                                                                             \mathbf{X}_{\mathsf{t}}
```