Macroeconomia Aberta e DSGE: Fundamentos, Estimação e Aplicações

Economias emergentes: o ciclo é a tendência

João Ricardo Costa Filho

Sobre modelos

Good ideas shine far more brightly when supported by good models

Avinash Dixit ("The making of Economic Policy", 1996, p. 17)

All models are wrong.

George Box

Models are to be used, not believed. **Henri Theil** ("Principles of Econometrics", 1971, p. vi) A volatilidade das flutuações macroeconômicas em economias

emergentes

 Com o modelo da aula anterior, conseguirmos reproduzir alguns padrões dos dados de economias pequenas abertas (Schmitt-Grohé and Uribe 2003; Uribe and Schmitt-Grohé 2017).

- Com o modelo da aula anterior, conseguirmos reproduzir alguns padrões dos dados de economias pequenas abertas (Schmitt-Grohé and Uribe 2003; Uribe and Schmitt-Grohé 2017).
- Mas a volatilidade do PIB e do consumo em economias emergentes ainda não está satisfatória.

Flutuações Econômicas (Uribe and Schmitt-Grohé 2017)

Flutuações Econômicas (Uribe and Schmitt-Grohé 2017)

Uma forma de gerar mais volatilidade é aumentar a persistência dos choques de produtividade.

 A função impulso-resposta se torna "hump-shaped" porque agora o investimento reage ainda mais (Uribe and Schmitt-Grohé 2017).

- A função impulso-resposta se torna "hump-shaped" porque agora o investimento reage ainda mais (Uribe and Schmitt-Grohé 2017).
- A persistência da produtividade faz com que as empresas tenham incentivo para aumentar o estoque de capital.

- A função impulso-resposta se torna "hump-shaped" porque agora o investimento reage ainda mais (Uribe and Schmitt-Grohé 2017).
- A persistência da produtividade faz com que as empresas tenham incentivo para aumentar o estoque de capital.
- O problema é que para "acertar" na volatilidade do consumo, a aderência da autocorrelação do PIB é prejudicada.
- Uma solução: inserir um choque adicional ao modelo, de tal forma que tenhamos choques permanentes e choques transitórios na produtividade, como no modelo de Aguiar and Gopinath (2007), analisado no capítulo 5 de Uribe and Schmitt-Grohé (2017).

Intuição em um modelo simples

$$N^{s} = w$$

$$N^{d} = N^{d} \left(\underbrace{w}_{-}, \underbrace{z}_{+}, \underbrace{K}_{+} \right)$$

$$Y^{s} = zF \left(\underbrace{K}_{+}, \underbrace{N}_{+} \right)$$

$$Y^{d} = C^{d} \left(\underbrace{r}_{-}, \underbrace{z}_{+}, \underbrace{K}_{-} \right) + I^{d} \left(\underbrace{r}_{-}, \underbrace{z}_{+}', \underbrace{K}_{-} \right) + NX$$

$$r = r^{w}$$

$$N^s = w$$

$$Y^{s} = zF\left(\underbrace{K}, \underbrace{N}_{+}, \underbrace{N}_{+}\right)$$

$$Y^{d} = C^{d}\left(\underbrace{r}_{-}, \underbrace{z}_{+}, \underbrace{K}_{-}\right) + I^{d}\left(\underbrace{r}_{-}, \underbrace{z}_{+}', \underbrace{K}_{-}\right) + NX$$

$$r = r^{w}$$

$$N^s = w$$

$$Y^{d} = C^{d} \left(\underbrace{r}_{-}, \underbrace{z}_{+}, \underbrace{z'}_{+}, \underbrace{K}_{-} \right) + I^{d} \left(\underbrace{r}_{-}, \underbrace{z'}_{+}, \underbrace{K}_{-} \right) + NX$$

$$r = r^{w}$$

$$N^s = w$$

$$+I^{d}\left(\underbrace{r}_{-},\underbrace{z'}_{+},\underbrace{K}_{-}\right)+NX$$

$$r = r^w$$

$$N^s = w$$

$$+NX$$

$$N^s = w$$

$$r = r^w$$

$$N^{s} = w$$

$$N^{d} = N^{d} \left(\underbrace{w}_{-}, \underbrace{z}_{+}, \underbrace{K}_{+} \right)$$

$$Y^{s} = zF \left(\underbrace{K}_{+}, \underbrace{N}_{+} \right)$$

$$Y^{d} = C^{d} \left(\underbrace{r}_{-}, \underbrace{z}_{+}, \underbrace{z}_{+}, \underbrace{K}_{-} \right) + I^{d} \left(\underbrace{r}_{-}, \underbrace{z}_{+}, \underbrace{K}_{-} \right) + NX$$

$$r = r^{w}$$

6

Equilíbrio do modelo

O modelo com prêmio de risco e dois tipos de choques de produtividade

Tomemos como base o modelo com dois choques de produtividade de Aguiar and Gopinath (2007). Trabalharemos com dois tipos de **agentes representativos**:

Tomemos como base o modelo com dois choques de produtividade de Aguiar and Gopinath (2007). Trabalharemos com dois tipos de **agentes representativos**:

Tomemos como base o modelo com dois choques de produtividade de Aguiar and Gopinath (2007). Trabalharemos com dois tipos de **agentes representativos**:

- Famílias
 - Ofertam trabalho.

Tomemos como base o modelo com dois choques de produtividade de Aguiar and Gopinath (2007). Trabalharemos com dois tipos de **agentes representativos**:

- Ofertam trabalho.
- Detêm o capital.

Tomemos como base o modelo com dois choques de produtividade de Aguiar and Gopinath (2007). Trabalharemos com dois tipos de **agentes representativos**:

- Ofertam trabalho.
- Detêm o capital.
- Contraem dívida externa líquida.

Tomemos como base o modelo com dois choques de produtividade de Aguiar and Gopinath (2007). Trabalharemos com dois tipos de **agentes representativos**:

- Ofertam trabalho.
- Detêm o capital.
- Contraem dívida externa líquida.
- Compram os bens e serviços.

Tomemos como base o modelo com dois choques de produtividade de Aguiar and Gopinath (2007). Trabalharemos com dois tipos de **agentes representativos**:

Famílias

- Ofertam trabalho.
- Detêm o capital.
- Contraem dívida externa líquida.
- Compram os bens e serviços.

Empresas

Tomemos como base o modelo com dois choques de produtividade de Aguiar and Gopinath (2007). Trabalharemos com dois tipos de **agentes representativos**:

Famílias

- Ofertam trabalho.
- Detêm o capital.
- Contraem dívida externa líquida.
- Compram os bens e serviços.

Empresas

Recrutam trabalhadores.

Tomemos como base o modelo com dois choques de produtividade de Aguiar and Gopinath (2007). Trabalharemos com dois tipos de **agentes representativos**:

Famílias

- Ofertam trabalho.
- Detêm o capital.
- Contraem dívida externa líquida.
- Compram os bens e serviços.

Empresas

- Recrutam trabalhadores.
- Utilizam o estoque de capital.

Tomemos como base o modelo com dois choques de produtividade de Aguiar and Gopinath (2007). Trabalharemos com dois tipos de **agentes representativos**:

Famílias

- Ofertam trabalho.
- Detêm o capital.
- Contraem dívida externa líquida.
- Compram os bens e serviços.

Empresas

- Recrutam trabalhadores.
- Utilizam o estoque de capital.
- Vendem os bens e serviços.

Escolhas intertemporais

As famílias possuem preferências acerca do consumo (C) e das horas trabalhadas (h) de tal forma que desejam maximizar a seguinte utilidade intertemporal:

Escolhas intertemporais

As famílias possuem preferências acerca do consumo (C) e das horas trabalhadas (h) de tal forma que desejam maximizar a seguinte utilidade intertemporal:

$$E_0 \sum_{t=0}^{\infty} \beta^t U(C_t, h_t), \qquad (1)$$

Escolhas intertemporais

As famílias possuem preferências acerca do consumo (C) e das horas trabalhadas (h) de tal forma que desejam maximizar a seguinte utilidade intertemporal:

$$E_0 \sum_{t=0}^{\infty} \beta^t U(C_t, h_t), \qquad (1)$$

onde

Escolhas intertemporais

As famílias possuem preferências acerca do consumo (C) e das horas trabalhadas (h) de tal forma que desejam maximizar a seguinte utilidade intertemporal:

$$E_0 \sum_{t=0}^{\infty} \beta^t U(C_t, h_t), \qquad (1)$$

onde

$$U(C_t, h_t) = \frac{\left[C_t^{\gamma} (1 - h_t)^{1 - \gamma}\right]^{1 - \sigma} - 1}{1 - \sigma}.$$
 (2)

O preço de um título (q_t)

O preço de um título (q_t) possui uma relação inversa com a taxa de juros real (r): $q_t = \frac{1}{1+r_t}$,

O preço de um título (q_t) possui uma relação inversa com a taxa de juros real (r): $q_t = \frac{1}{1+r_t}$, de tal forma que a dinâmica da dívida (D_t) , que depende também da renda (Y), do consumo, do investimento e do estoque de capital (K), pode ser descrita como:

O preço de um título (q_t) possui uma relação inversa com a taxa de juros real (r): $q_t = \frac{1}{1+r_t}$, de tal forma que a dinâmica da dívida (D_t) , que depende também da renda (Y), do consumo, do investimento e do estoque de capital (K), pode ser descrita como:

$$\frac{D_{t+1}}{1+r_t} = D_t + C_t + K_{t+1} - (1-\delta)K_t + \frac{\phi}{2} \left(\frac{K_{t+1}}{K_t} - g\right)^2 K_t - Y_t.$$
(3)

Empresas

Em um ambiente de **concorrência perfeita**, as empresas possuem a seguinte tecnologia de produção:

Em um ambiente de **concorrência perfeita**, as empresas possuem a seguinte tecnologia de produção:

$$Y_t = e^{z_t} K_t^{\alpha} (\Gamma_t h_t)^{1-\alpha}, \tag{4}$$

Em um ambiente de **concorrência perfeita**, as empresas possuem a seguinte tecnologia de produção:

$$Y_t = e^{z_t} K_t^{\alpha} (\Gamma_t h_t)^{1-\alpha}, \tag{4}$$

e estão sujeitas a choques transitórios e permanentes na produtividade.

Os choques transitórios na produtividade são dados por:

$$z_t = \rho_z z_{t-1} + \epsilon_t^z \tag{5}$$

Os choques transitórios na produtividade são dados por:

$$z_t = \rho_z z_{t-1} + \epsilon_t^z \tag{5}$$

Ao definirmos o produto acumulado dos choques, Γ_t , temos que:

$$\Gamma_t = e^{g_t} \Gamma_{t_1} = \prod_{s=0}^t e^{g_s} \tag{6}$$

Os choques transitórios na produtividade são dados por:

$$z_t = \rho_z z_{t-1} + \epsilon_t^z \tag{5}$$

Ao definirmos o produto acumulado dos choques, Γ_t , temos que:

$$\Gamma_t = e^{g_t} \Gamma_{t_1} = \prod_{s=0}^t e^{g_s} \tag{6}$$

cujos choques na tendência são dados por:

$$g_t = (1 - \rho_g)\mu_g + \rho_g g_{t-1} + \epsilon_t^g, \tag{7}$$

com

$$g_t \equiv \frac{\Gamma_t}{\Gamma_{t-1}}.$$
 (8)

Com base nas equações anteriores, pordemos definir a Produtividade Total dos Fatores (TFP) como:

Com base nas equações anteriores, pordemos definir a Produtividade Total dos Fatores (TFP) como:

$$TFP_t \equiv \frac{Y_t}{K_t^{\alpha} h_t^{1-\alpha}},\tag{9}$$

Com base nas equações anteriores, pordemos definir a Produtividade Total dos Fatores (TFP) como:

$$TFP_t \equiv \frac{Y_t}{K_t^{\alpha} h_t^{1-\alpha}},\tag{9}$$

e, portanto,

$$TFP_t = e^{z_t} \Gamma_t^{1-\alpha} \tag{10}$$

A partir das equações (1), (2), (3) e (4):

A partir das equações (1), (2), (3) e (4):

$$\mathcal{L} = \textit{E}_0 \sum_{t=0}^{\infty} \beta^t \left[\frac{\left(\textit{C}_t^{\gamma} (1-\textit{h}_t)^{1-\gamma}\right)^{1-\sigma} - 1}{1-\sigma} + \Lambda_t \left(\frac{\textit{D}_{t+1}}{1+\textit{r}_t} - \textit{D}_t - \textit{C}_t - \textit{K}_{t+1} + (1-\delta) \textit{K}_t - \frac{\phi}{2} \left(\frac{\textit{K}_{t+1}}{\textit{K}_t} - \textit{g} \right)^2 \textit{K}_t + \textit{Y}_t \right) \right]$$

$$C: \quad \gamma C_t^{\gamma(1-\sigma)-1} (1 - h_t)^{(1-\gamma)(1-\sigma)} = \Lambda_t$$
 (11)

$$C: \quad \gamma C_t^{\gamma(1-\sigma)-1} (1 - h_t)^{(1-\gamma)(1-\sigma)} = \Lambda_t$$
 (11)

$$h: \quad \frac{1-\gamma}{\gamma} \frac{C_t}{1-h_t} = (1-\alpha)a_t \Gamma_t \left(\frac{K_t}{\Gamma_t h_t}\right)^{\alpha} \tag{12}$$

C:
$$\gamma C_t^{\gamma(1-\sigma)-1} (1 - h_t)^{(1-\gamma)(1-\sigma)} = \Lambda_t$$
 (11)

$$h: \quad \frac{1-\gamma}{\gamma} \frac{C_t}{1-h_t} = (1-\alpha)a_t \Gamma_t \left(\frac{K_t}{\Gamma_t h_t}\right)^{\alpha}$$
 (12)

$$D_{t+1}: \quad \Lambda_t = \beta(1+r_t)E_t\Lambda_{t+1}$$
 (13)

$$C: \quad \gamma C_t^{\gamma(1-\sigma)-1} (1-h_t)^{(1-\gamma)(1-\sigma)} = \Lambda_t \tag{11}$$

$$h: \quad \frac{1-\gamma}{\gamma} \frac{C_t}{1-h_t} = (1-\alpha)a_t \Gamma_t \left(\frac{K_t}{\Gamma_t h_t}\right)^{\alpha} \tag{12}$$

$$D_{t+1}: \quad \Lambda_t = \beta(1+r_t)E_t\Lambda_{t+1}$$
 (13)

$$K_{t+1}: \quad \Lambda_{t}\left[1+\phi\left(\frac{K_{t+1}}{K_{t}}-g\right)\right] = \beta E_{t}\Lambda_{t+1}\left[1-\delta+\alpha a_{t+1}\left(\frac{K_{t+1}}{\Gamma_{t+1}h_{t+1}}\right)^{\alpha-1}+\phi\frac{K_{t+2}}{K_{t+1}}\left(\frac{K_{t+2}}{K_{t+1}}-g\right)-\frac{\phi}{2}\left(\frac{K_{t+2}}{K_{t+1}}-g\right)^{2}\right] \tag{14}$$

Taxa de juros

Taxa de juros

Assume-se que a taxa de juros é função de um nível de equilíbrio (\bar{r}) e do endividamento:

Taxa de juros

Assume-se que a taxa de juros é função de um nível de equilíbrio (\bar{r}) e do endividamento:

$$r_t = r^* + \psi \left[e^{D_{t+1}/\Gamma_t - \bar{d}} - 1 \right]$$
 (15)

Condição de transversalidade

Condição de transversalidade

Além das C.P.O., precisamos também da condição de transversalidade, que pode ser representada por:

Condição de transversalidade

Além das C.P.O., precisamos também da condição de transversalidade, que pode ser representada por:

$$\lim_{j \to \infty} E_t \frac{D_{t+j+1}}{\prod_{s=0}^{j} (1 + r_{t+s})} \le 0$$
 (16)

Sistema Estacionário

Sistema Estacionário

Para tornar o modelo estacionário, definimos as variáveis normalizadas:

Sistema Estacionário

Para tornar o modelo estacionário, definimos as variáveis normalizadas:

$$c_t \equiv \frac{C_t}{\Gamma_{t-1}}, \quad k_t \equiv \frac{K_t}{\Gamma_{t-1}}, \quad d_t \equiv \frac{D_t}{\Gamma_{t-1}}, \quad \lambda_t \equiv \Gamma_t^{1+(\sigma-1)\gamma} \Lambda_t.$$
(17)

Sistema de Equações – 8 variáveis endógenas (c, h, d, k, y, λ , z e g)

- $r_t = r^* + \psi \left[e^{d_{t+1} \bar{d}} 1 \right]$
- $\gamma c_t^{\gamma(1-\sigma)-1} (1-h_t)^{(1-\gamma)(1-\sigma)} = \lambda_t$

$$r_t = r^* + \psi \left[e^{d_{t+1} - \bar{d}} - 1 \right]$$

$$\lambda_t = \beta(1+r_t)g_t^{\gamma(1-\sigma)-1}E_t\lambda_{t+1}$$

$$r_t = r^* + \psi \left[e^{d_{t+1} - \bar{d}} - 1 \right]$$

$$\lambda_t = \beta(1+r_t)g_t^{\gamma(1-\sigma)-1}E_t\lambda_{t+1}$$

$$\lambda_{t} \left[1 + \phi \left(\frac{g_{t}k_{t+1}}{k_{t}} - g \right) \right] =$$

$$\beta g_{t}^{\gamma(1-\sigma)-1} E_{t} \lambda_{t+1} \left[1 - \delta + \alpha a_{t+1} \left(\frac{k_{t+1}}{g_{t+1}h_{t+1}} \right)^{\alpha-1} + \phi \frac{g_{t+1}k_{t+2}}{k_{t+1}} \left(\frac{g_{t+1}k_{t+1}}{k_{t+1}} \right)^{\alpha-1} \right]$$

 $e^{z_t} k_t^{\alpha} (g_t h_t)^{1-\alpha}$

• $\ln z_t = \rho_z \ln z_{t-1} + \overline{\epsilon}_t^z$

$$\begin{aligned} & \quad r_t = r^* + \psi \left[e^{d_{t+1} - \bar{d}} - 1 \right] \\ & \quad \frac{1 - \gamma}{\gamma} \frac{c_t}{1 - h_t} = (1 - \alpha) e^{\mathbf{z}_t} g_t \left(\frac{k_t}{g_t h_t} \right)^{\alpha} \\ & \quad \gamma c_t^{\gamma (1 - \sigma) - 1} (1 - h_t)^{(1 - \gamma)(1 - \sigma)} = \lambda_t \\ & \quad \lambda_t = \beta (1 + r_t) g_t^{\gamma (1 - \sigma) - 1} E_t \lambda_{t+1} \\ & \quad \lambda_t \left[1 + \phi \left(\frac{g_t k_{t+1}}{k_t} - g \right) \right] = \\ & \quad \beta g_t^{\gamma (1 - \sigma) - 1} E_t \lambda_{t+1} \left[1 - \delta + \alpha a_{t+1} \left(\frac{k_{t+1}}{g_{t+1} h_{t+1}} \right)^{\alpha - 1} + \phi \frac{g_{t+1} k_{t+2}}{k_{t+1}} \left(\frac{g_{t+1} k_{t+1}}{k_{t+1}} \right)^{\alpha} \right] \end{aligned}$$

 $e^{z_t} k_t^{\alpha} (g_t h_t)^{1-\alpha}$

• $\ln z_t = \rho_z \ln z_{t-1} + \epsilon_t^z$

• $g_t = (1 - \rho_\sigma) \mu_\sigma + \rho_\sigma g_{t-1} + \epsilon_t^g$

$$\begin{aligned} & \quad r_t = r^* + \psi \left[e^{d_{t+1} - \bar{d}} - 1 \right] \\ & \quad \cdot \frac{1 - \gamma}{\gamma} \frac{c_t}{1 - h_t} = (1 - \alpha) e^{z_t} g_t \left(\frac{k_t}{g_t h_t} \right)^{\alpha} \\ & \quad \cdot \gamma c_t^{\gamma (1 - \sigma) - 1} (1 - h_t)^{(1 - \gamma)(1 - \sigma)} = \lambda_t \\ & \quad \cdot \lambda_t = \beta (1 + r_t) g_t^{\gamma (1 - \sigma) - 1} E_t \lambda_{t+1} \\ & \quad \cdot \lambda_t \left[1 + \phi \left(\frac{g_t k_{t+1}}{k_t} - g \right) \right] = \\ & \quad \beta g_t^{\gamma (1 - \sigma) - 1} E_t \lambda_{t+1} \left[1 - \delta + \alpha a_{t+1} \left(\frac{k_{t+1}}{g_{t+1} h_{t+1}} \right)^{\alpha - 1} + \phi \frac{g_{t+1} k_{t+2}}{k_{t+1}} \left(\frac{g_{t+1} k_{t+1}}{k_{t+1}} \right)^{\alpha - 1} \right] \end{aligned}$$

Equilíbrio Estacionário

$$\qquad \qquad \quad \quad \quad \quad \frac{\bar{g}\bar{d}}{1+\bar{r}} = \bar{d} + \bar{c} + \bar{g}\bar{k} - (1-\delta)\bar{k} - \bar{k}^{\alpha}(\bar{g}\bar{h})^{1-\alpha}$$

$$\qquad \quad \quad \quad \quad \quad \quad \frac{\bar{g}\bar{d}}{1+\bar{r}} = \bar{d} + \bar{c} + \bar{g}\bar{k} - (1-\delta)\bar{k} - \bar{k}^{\alpha}(\bar{g}\bar{h})^{1-\alpha}$$

 $\bar{r} = r^*$

- $\bar{r} = r^*$

$$\qquad \quad \quad \bullet \quad \frac{\bar{g}\bar{d}}{1+\bar{r}} = \bar{d} + \bar{c} + \bar{g}\bar{k} - (1-\delta)\bar{k} - \bar{k}^{\alpha}(\bar{g}\bar{h})^{1-\alpha}$$

- $\bar{r} = r^*$
- $\quad \boldsymbol{\gamma} \bar{\boldsymbol{c}}^{\gamma(1-\sigma)-1} (1-\bar{\boldsymbol{h}})^{(1-\gamma)(1-\sigma)} = \bar{\boldsymbol{\lambda}}$

- $\bar{r} = r^*$
- $\qquad \qquad \frac{1-\gamma}{\gamma} \frac{\bar{c}}{1-\bar{h}} = (1-\alpha) \bar{g} \left(\frac{\bar{k}}{\bar{g}\bar{h}} \right)^{\alpha}$
- $\quad \mathbf{1} = \beta(1+\bar{r})\bar{\mathbf{g}}^{\gamma(1-\sigma)-1}$

- $\bar{r} = r^*$
- $\qquad \qquad \quad \bullet \quad \frac{1-\gamma}{\gamma} \frac{\bar{c}}{1-\bar{h}} = (1-\alpha) \bar{g} \left(\frac{\bar{k}}{\bar{g}\bar{h}} \right)^{\alpha}$
- $1 = \beta(1 + \bar{r})\bar{g}^{\gamma(1-\sigma)-1}$
- $1 = \beta \bar{g}^{\gamma(1-\sigma)-1} \left[1 \delta + \alpha \left(\frac{\bar{k}}{\bar{g}\bar{h}} \right)^{\alpha-1} \right]$

$$\qquad \quad \quad \bullet \quad \frac{\bar{g}\bar{d}}{1+\bar{r}} = \bar{d} + \bar{c} + \bar{g}\bar{k} - (1-\delta)\bar{k} - \bar{k}^{\alpha}(\bar{g}\bar{h})^{1-\alpha}$$

- $\bar{r} = r^*$
- $\qquad \qquad \quad \bullet \quad \frac{1-\gamma}{\gamma} \frac{\bar{c}}{1-\bar{h}} = (1-\alpha) \bar{g} \left(\frac{\bar{k}}{\bar{g}\bar{h}} \right)^{\alpha}$
- $\gamma \bar{c}^{\gamma(1-\sigma)-1} (1-\bar{h})^{(1-\gamma)(1-\sigma)} = \bar{\lambda}$
- $1 = \beta(1 + \bar{r})\bar{g}^{\gamma(1-\sigma)-1}$
- $\bar{z}=\bar{z}$

$$\bar{r} = r^*$$

$$\qquad \qquad \frac{1-\gamma}{\gamma} \frac{\bar{c}}{1-\bar{h}} = (1-\alpha)\bar{g} \left(\frac{\bar{k}}{\bar{g}\bar{h}}\right)^{\alpha}$$

•
$$\gamma \bar{c}^{\gamma(1-\sigma)-1} (1-\bar{h})^{(1-\gamma)(1-\sigma)} = \bar{\lambda}$$

•
$$1 = \beta(1 + \bar{r})\bar{g}^{\gamma(1-\sigma)-1}$$

$$1 = \beta \bar{\mathbf{g}}^{\gamma(1-\sigma)-1} \left[1 - \delta + \alpha \left(\frac{\bar{k}}{\bar{\mathbf{g}}\bar{h}} \right)^{\alpha-1} \right]$$

$$\bar{z}=\bar{z}$$

•
$$\bar{g} = \mu_g$$

 $com \bar{z} = 1$

Parâmetros do nosso modelo

Quais os parâmetros do modelo em macro aberta RBC com o qual estamos trabalhando?

Parâmetro	Descrição	Definição
β	Fator de desconto.	Calibrado
γ	Elasticidade intertemporal de substituição.	Calibrado
δ	Taxa de depreciação.	Calibrado
ϕ	Custo de ajustamento de capital.	Estimado
α	Participação do capital na função de produção.	Calibrado
ρ_z	Coeficiente AR da produtividade transitória.	Estimado
σ_z^2	Desvio-padrão dos erros do processo da produtividade.	Estimado
$ ho_{ extsf{g}}$	Coeficiente AR da produtividade permanente.	Estimado
σ_g^2 \bar{d}	Desvio-padrão dos erros do processo da produtividade.	Estimado
ā	Passivo externo líquido no equilíbrio estacionário.	Calibrado

Estimador de máxima verossimilhança – uma breve revisão

O estimador de máxima verossimilhança é obtido através da maximização da probabilidade de selecionar a amostra com a qual trabalharemos.

O estimador de máxima verossimilhança é obtido através da maximização da probabilidade de selecionar a amostra com a qual trabalharemos.

Seja S uma A.A.S. com cinco observações, X_1 , X_2 , X_3 , X_4 , X_5 .

O estimador de máxima verossimilhança é obtido através da maximização da probabilidade de selecionar a amostra com a qual trabalharemos.

Seja S uma A.A.S. com cinco observações, X_1, X_2, X_3, X_4, X_5 . A probabilidade de coletar exatamente aquela amostra é dada por: $P(S) = P(X_1) \cdot P(X_2) \cdot P(X_3) \cdot P(X_4) \cdot P(X_5)$.

Como foi exatamente aquela amostra que sorteamos, trabalharemos com a **hipótese** de que ela era a mais provável.

Assuma que tenhamos n ensaios de Bernoulli com probabilide de sucesso igual a p of success, onde 0 .

Assuma que tenhamos n ensaios de Bernoulli com probabilide de sucesso igual a p of success, onde 0 . Queremos o MLE de <math>p.

Assuma que tenhamos n ensaios de Bernoulli com probabilide de sucesso igual a p of success, onde 0 . Queremos o MLE de <math>p. Assuma n = 3 e que temos dois sucessos e um fracasso.

Assuma que tenhamos n ensaios de Bernoulli com probabilide de sucesso igual a p of success, onde 0 . Queremos o MLE de <math>p. Assuma n=3 e que temos dois sucessos e um fracasso. A função de verossimilhança é dada por

Assuma que tenhamos n ensaios de Bernoulli com probabilide de sucesso igual a p of success, onde 0 . Queremos o MLE de <math>p. Assuma n=3 e que temos dois sucessos e um fracasso. A função de verossimilhança é dada por

$$L(p) = P(2 \text{ sucessos and } 1 \text{ fracasso}) = p^2(1-p)$$

Assuma que tenhamos n ensaios de Bernoulli com probabilide de sucesso igual a p of success, onde 0 . Queremos o MLE de <math>p. Assuma n=3 e que temos dois sucessos e um fracasso. A função de verossimilhança é dada por

$$L(p) = P(2 \text{ sucessos and } 1 \text{ fracasso}) = p^2(1-p)$$

Problema de maximização:

Assuma que tenhamos n ensaios de Bernoulli com probabilide de sucesso igual a p of success, onde 0 . Queremos o MLE de <math>p. Assuma n=3 e que temos dois sucessos e um fracasso. A função de verossimilhança é dada por

$$L(p) = P(2 \text{ sucessos and } 1 \text{ fracasso}) = p^2(1-p)$$

Problema de maximização:

$$\max_{p} L(p) = p^{2}(1-p)$$

$$\frac{dL(p)}{dp} = 0$$

$$2p(1-p) - p^{2} = 0$$

$$p(2-3p) = 0$$

Generalização para a binomial:

$$\max_{p} L(p) = p^{x} (1-p)^{n-x}$$
Define $\ln(L(p)) = I(p)$

$$\max_{p} I(p) = x \ln p + (n-x) \ln(1-p)$$

$$\frac{x}{p} + \frac{(n-x)}{1-p} = 0$$

$$\hat{p}_{MLE} = \frac{x}{n}$$

onde x representa o número de sucessos na amostra de tamanho n.

MLE para a distribuição exponencial: seja X uma V.A. tal que $X \sim Exp(\beta)$. A f.d.p. é dada por

$$f(x) = \frac{1}{\beta}e^{-x/\beta}, \forall x \ge 0$$

Queremos estimar β . A função de verossimilhança é, portanto,

$$L(\beta|x) = (\frac{1}{\beta})^n e^{\sum -x/\beta}, \forall x \ge 0$$

e a função de log-verossimilhança é

$$I(\beta|x) = -n\ln\beta - \sum x/\beta$$

Problema de maximização:

$$\max_{\beta} I(\beta|x) = -n \ln \beta - \sum x/\beta$$

$$\frac{-n}{\beta} - (-\frac{1}{\beta^2} \sum x) = 0$$

$$\frac{n}{\beta} = \frac{1}{\beta^2} \sum x$$

$$\beta_{MLE} = \frac{\sum x}{n}$$

Referências i

- Aguiar, Mark, and Gita Gopinath. 2007. "Emerging Market Business Cycles: The Cycle Is the Trend." *Journal of Political Economy* 115 (1): 69–102. http://www.jstor.org/stable/10.1086/511283.
- Duncan, Roberto. 2015. "A Simple Model to Teach Business Cycle Macroeconomics for Emerging Market and Developing Economies." *The Journal of Economic Education* 46 (4): 394–402.
- Schmitt-Grohé, Stephanie, and Martin Uribe. 2003. "Closing Small Open Economy Models." *Journal of International Economics* 61 (1): 163–85.
- Uribe, Martin, and Stephanie Schmitt-Grohé. 2017. *Open Economy Macroeconomics*. Princeton University Press.

Referências ii