Roots of Nonlinear Functions

Surface Intersections

Fractals in use of Newton Method for complex functions

<u>MatLab</u>

root = fzero('
$$f(x)$$
', x_o)
root = fzero(@ $f(x)$, [x_2 , x_1])

With $c \rightarrow$ coefficient vector for polynomial equation

$$\alpha = \text{roots}(c)$$

Isaac Newton

Roots of Nonlinear Functions

For function f(x), find α such that $f(\alpha) = 0$ and with this condition, α is the root of f.

Remarks

- f(x) is "smooth", finding α 's will be straight forward, and convergence will be fast.
- If α is repeated or complex, convergence is slow or nonexistent.
- If α is sparse, finding all roots will be a difficult task.

Intersection of two functions

With two arbitrary functions f(x) and g(x), their intersection(s) can be found according to

$$h(x) = f(x) - g(x) = 0$$

Roots of h(x) are be intersections of f(x) and g(x).

Optimization or an Infection Point at x

To maximize or minimize f(x)

$$f'(x) = 0$$

At infection point

$$f''(x) = 0$$

- With root finding, these points can be determined
- Discrete differentiation will be covered later

Root finding Methods-Iterations

- Open domain or closed domain
- Bounded or unbounded
- Initial guess
- Real or Complex roots
- One or two-point method
- Convergence time and convergence criteria

Two-point Closed Method

- Bisection
- False Position Method

Bisection method

- For f(x) = 0, points a and b are f(b) > 0 and f(a) < 0, such that f(a)f(b) < 0.
- Distance between a and b is (b-a). Compute point c with $c=\frac{b-a}{2}$
- Determine f(c). If

$$f(a)f(c) < 0.$$
 take $b = c$
 $f(a)f(c) > 0$ take $a = c$

- Iterate with new a and b and find new c until desired convergence.
- Number of iterations (?)

False Position Method

For two points at a and b, set a straight line passing through these two points. Find intersection of line with x axis.

The straight line can be defined as

$$y = f(a) + \frac{y_a - y_b}{a - b} (a - x)$$

At line intersection with axis x, set y = 0 and x = c:

$$c = a - \frac{y_a(a-b)}{y_b - y_a}$$

From f(a)f(c) < 0, you can iterate like Bisection method.

Open Domain Iteration

- Fixed point method
- Newton's method
- Secant method
- Muller's method

Fixed point method

For f(x) = 0, define a function g(x) such that f(x) = x - g(x)

At root, then x - g(x) = 0 or x = g(x)

For iterations, this equality is modified to $x_{k+1} = g(x_k)$

Start with x_o , and $x_1 = g(x_o)$, and continue until convergence.

Convergence Criterion

Differentiate x = g(x) with x1 = g'(x)

Convergence when |g'(x)| < 1

For roots of function $f(x) = x^2 - 3x + e^x - 2$

Determine g(x) and g'(x)

Newton's Method

$$f'(x) = \frac{f(x_{i+1}) - f(x_i)}{x_{i+1} - x_i}$$

Set $f(x_{i+1}) = 0$ and solve for x_{i+1}

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

Convergence

$$|\Delta x_i| = |x_{i+1} - x_i| < \varepsilon$$

- o f'(x) exist in the calculation domain
- o $f'(x) \neq 0$, if $f'(x) \rightarrow 0$, convergence slow as root is double
- o f'(x) is changing sign. Oscillations in calculations and slow convergence.
- o f(x) is defined discretely and not analytically. Define incremental distance $h=10^{-3}$ or smaller,
- \circ and determine f'

$$f'(x_i) = \frac{f(x_i + h) - f(x)}{h}$$

o f'(x) can be approximated from two points x_1 and x_2

$$f'(x) = \frac{f(x_2) - f(x_{1)}}{x_2 - x_1}$$

Error estimation

$$e_i = \alpha - x_i \qquad e_{i+1} = O(e_i^2)$$

For roots of function $f(x) = x^2 - 3x + e^x - 2$

Imaginary Roots

In Newton's method, starting initial point is complex

$$x^o = a + ib$$

Double and Multiple Roots

With *m* repeated roots

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

With this modification, Newton's method converges as e_i^2 , as opposed to e_i

Using Newton's method