TRANSITIVE RELATIONS

Transitivity.

For all x ≠ y and y ≠ z, if (x, y) and (y, z) are in R, then (x, z) is in R.
 Put another way, if one can go from x to z in two steps (via some y), then one must be able to go from x to z in one step.

Example.

• The relation below violates the condition for transitivity in 3 ways as indicated:

Two Ways of Making Above R Transitive.

• Enlarge R by adding only the missing pairs or links $\{(a, c), (b, b), (c, c)\}$ as shown below.

• Reduce *R* to eliminate the cause(s) of each missing link, i.e., eliminate at least one link from each pair of links in "because ..." and avoid unnecessary link-elimination. Shown below are two such minimal reductions.

Transitive Closure.

- If R is not transitive, then its transitive closure is obtained by adding the minimum number of links to R to make the enlarged relation, denoted by R^+ , transitive.
- If R is already transitive, then $R^+ = R$.
- Because R^+ is always unique, which may not be the case when we reduce R to make it transitive, the standard way of making R transitive is to form R^+ .

copyRight@2020Kundu 2

Practice Questions.

1. Shown below are the structures of all relations on |X| = 2. Mark those which correspond to a transitive relation; for the others, show the digraph of their transitive closure.

2. Let $S = \{a, b, c\}$ and $X = 2^S$, i.e., the set of all subsets of S. Consider the proper-subset relation " \subset " on X, i.e., for subsets $S_1, S_2 \subseteq S$ we have (S_1, S_2) is in \subset -relation if $S_1 \subset S_2$, i.e., $S_1 \subseteq S_2$ but $S_1 \neq S_2$. Draw the links below between the items of X for \subset -relation.

Is ⊂-relation transitive? How will the digraph change if we consider the subset-relation "⊂" and is ⊂-relation transitive?

- 3. Show the digraph of a largest (in terms of #(links)) transitive relation on a set *X* of size 4. Do the same for a smallest transitive relation.
- 4. Argue that if R is transitive and we have a path $\langle x_1, x_2, \dots, x_{k+1} \rangle$ of length $k \geq 2$ in the digraph of R, then $(x_1, x_{k+1}) \in R$.
 - Likewise, argue that if R is transitive and we have a cycle $\langle x_1, x_2, \dots, x_k, x_1 \rangle$ of length $k \ge 2$ in the digraph of R, then $(x_1, x_1) \in R$.
- 5. Argue that if R is a symmetric relation, then its transitive closure R^+ is also a symmetric relation.

copyRight@2020Kundu 3

TESTING TRANSITIVITY PROPERTY OF A RELATION-MATRIX

Code for $n \times n$ matrix R.

```
for (i = 0; i < n; i++)
for (j = 0; j < n; j++) //all (i, j) pairs
  if (0 == R[i][j]) //possible violation for link (i, j)
  for (k = 0; k < n; k++)
      if (2 == R[i][k] + R[k][j])
          return(false);</pre>
```

Performance.

• Consider the relation shown below.

We write $R_{i,k}$ for R[i][k], etc. The symbol "-" indicates the test is not done.

\overline{i}	j	$R_{i,j}$	$2 == R_{i,0} + R_{0,j}$	$2 == R_{i,1} + R_{1,j}$	$2 == R_{i,2} + R_{2,j}$	Return-value
0	0	0	2 == 0 + 0 (F)	2 == 1 + 0 (F)	2 == 0 + 0 (F)	
0	1	1	_	_	_	
0	2	0	2 == 0 + 0 (F)	2 == 1 + 1 (T)	_	false

• If R is transitive, then for each $(x_i, x_j) \notin R$, all n iterations of k-loop will be done. Thus, the comparison "2 == R[i][k] + R[k][j]" will be done $n(n^2 - |R|)$ times.

copyRight@2020Kundu 4

Practice Questions.

1. Show the table of all comparisons done (and their T/F evaluations) for the relation shown below.

2. Following is a variation of the code for testing transitivity property of a symmetric relation-matrix R, where we only consider the pairs $i \le j$, which makes this code more efficient than the original code.

Show the digraph of a suitable symmetric R for n = 2 to illustrate the need for initializing j = i instead of j = i + 1 in the j-loop.

3. Shown below is a code that creates the transitive closure of a relation-matrix R.

```
for (k = 0; k < n; k++)
for (i = 0; i < n; i++)
  for (j = 0; j < n; j++)
      if (2 == R[i][k] + R[k][j]) R[i][j] = 1;</pre>
```

- (a) There is one source of inefficiency here in that for some (i, j)-pair the assignment R[i][[j]] = 1 may be done more than once. Modify the code to avoid this and explain whether this makes code necessarily more efficient or not.
- (b) Give the digraph of a relation *R* for which the following code does not work to create the transitive closure.

```
for (i = 0; i < n; i++)
for (j = 0; j < n; j++)
  for (k = 0; k < n; k++)
      if (2 == R[i][k] + R[k][j]) R[i][j] = 1;</pre>
```