Applying Polya's Theorem: Counting Unlabled Graphs

Scribe: Connor Mooney

Date: 14 May 2019

Definition. A graph is a pair of sets (V,E) where V is the set of vertices and $E \subseteq V \times V$

Definition. Two graphs are isomorphic if there is a map $\pi: (V, E) \to (V_2, E_2)$ such that $\pi(E) \equiv \{(\pi(v_1), \pi(v_2)) \forall (v_1, v_2) \in V\} = E_2$ and $\pi(V) = V_2$.

Example 0.1. These two graphs are isomorphic under the transformation $\pi = (1)(2)(34)$.

Exercise 1. Apply Polya's theorem to count all graphs for n=3, 4

Example 0.2. find the cycle index for S_3

π	monomial	Action on edges
(1)(2)(3)	x_1^3	$(\overline{12})(\overline{13})(\overline{23})$
(1)(23)	x_1x_2	$(\overline{12}\overline{13})(\overline{23})$
(2)(13)	x_1x_2	$(\overline{2123})(\overline{13})$
(3)(12)	x_1x_2	$(\overline{3132})(\overline{12})$
(123)	x_3	$(\overline{122331})$
(132)	x_3	$(\overline{133221})$

$$P_{S_3^{(2)}} = \frac{1}{6}(x_1^3 + 3x_1x_2 + 2x_3)$$

To enumerate, let the weight of an edge be r, and the weight of a lack of edge be b, Thus, plugging in in accordance with the enumeration theorem,

$$P_{S_3} = \frac{1}{6}((r+b)^3 + 3(r+b)(r^2+b^2) + 2(r^3+b^3)).$$

Because we don't care about lack of edges, let b = 1. Then this simplifies to

$$r^3 + r^2 + r + 1$$
.

Next, let r = 1 so $x_i = 2$.

$$P_3 = \frac{1}{6}(2^3 + 3 \cdot 4 + 2 \cdot 2) = 4.$$

Now, let's do this for S_4 :

Number	form of π	$S_4^{(2)}$ monomial	Action on edges
$\binom{4}{0}(1-1)!$	(1)(2)(3)(4)	x_1^6	$(\overline{12})(\overline{13})(\overline{14})(\overline{23})(\overline{24})(\overline{34})$
$\binom{4}{2}(2-1)!$	(1)(2)(34)	$x_1^2 x_2^2$	$(\overline{12})(\overline{1314})(\overline{2324})(\overline{34})$
$\binom{4}{3}(3-1)!$	(1)(234)	x_3^2	$(\overline{121314})(\overline{233442})$
$\binom{4}{2} \cdot \frac{1}{2}$	(12)(34)	$x_1^2 x_2^2$	$(\overline{12})(\overline{2314})(\overline{2413})(\overline{34})$
(4-1)!	(1234)	$\mathbf{x}_2 x_4$	$(\overline{12233441})(\overline{1324})$

Thus,

$$P_{S_4^{(2)}} = \frac{1}{24} (x_1^6 + 9x_1^2 + 8x_3^2 + 6x_2x_4).$$

Then, to enumerate, we let the weight of no edge be 1, and the weight of an edge be x, and get

$$x^6 + x^5 + 2x^4 + 3x^3 + 2x^2 + x + 1$$
.

When we let x = 1, this simplifies to 11.

Also covered in class was this same procedure for n = 5.