Deep Learning With TensorFlow Crash Course

Outline

- Data science, machine learning and deep learning
- TensorFlow vs other deep learning frameworks
- TensorFlow basics
- Deep neural network
- Convolutional neural network
- TensorFlow in deployment
- Current trends
- Resources

The Data Science/Data Analytics Process

Machine Learning Lifecycle

on prodcution data

Overview: Deployment of Quantitative Workflows to Production by Anand Sampat

Typical Goal of Machine Learning

Input

Output

Images /Video

Label: "Motorcycle"
Caption: "Man with black helmet riding a black motorcycle"
Suggest tags
Image search

...

Audio

Speech recognition

Music classification

Speaker recognition

Env. sound classification

...

Text

Fake news classification
Anti-spam
Machine translation
Text search

•••

Feature Representation

You see this

Camera sees this

Expert knowledge required to come up with feature representations: e.g. SIFT, HoG, Textons, etc.

Deep Learning

- Representation learning: Learns feature representations from the data
- Hierarchical representation of features, i.e. deep

Deep Learning Achievements

Object Recognition

ImageNet Large Scale Visual Recognition Competition (ILSVRC)

Deep Learning Achievements

Playing Games

AlphaGo Zero

by DeepMind

Deep Learning Achievements

Natural Conversation

Google I/O Restaurant Booking Demo

Deep Learning Frameworks

theano

Framework	Distributed Execution	Architecture Optimisations	Visualisations	Community Support	Portability
TensorFlow	XX	XX	XX	XX	XX
PyTorch	XX	xx	xx	XX	XX
CNTK	XX	XX	×	-	XX
MXNet	X	XX	×	-	XX
Torch	-	XX	×	X	Х
Caffe2	XX	XX	_	-	XX
Caffe	-	XX	×	X	Х
Theano	_	XX	X	X	Х

+ Support for Production

- Deploy as microservice
- Compress (quantize) your model
- Model versioning
- Serve multiple models
- Mobile/embedded support
- Lots of pre-trained models
- Integrated with Google Cloud ML

About TensorFlow

- Open source library for numerical computation from Google Brain Team
- Version 1.8 recently released
- Written in C++ and CUDA
- Primarily for deep learning research
- Data flow graph-based
- Nodes represent operations
- Tensors flow through the nodes
- Leverages CPUs/Nvidia GPUs/Google TPUs on cloud
- Scalable across computer clusters
- Ecosystem for graph visualisations and serving production models, etc.

TensorFlow Installation

- Instructions: https://www.tensorflow.org/install/
- Nvidia GPUs need latest graphics driver, CUDA Toolkit and cuDNN
- Docker: nvidia-docker (see GitHub repo) for GPUs
- Options:
 - Python (for training/deployment):
 - Ubuntu, MacOS, Windows, From Source
 - CPU support only/with GPU support
 - Virtualenv, pip, Docker, Anaconda
 - Javascript (TensorFlow.js) (for training/deployment):
 - Script tag, NPM
 - CPU/GPU via WebGL
 - Web broswer, Node.js
 - Java (for deployment):
 - Ubuntu, macOS, Windows
 - Maven
 - Go (for deployment):
 - Linux, macOS
 - C/C++ (for deployment):
 - · Linux, macOS

TensorFlow Basics

- What is a tensor?
- What is a computational graph?
- How to use TensorBoard?
- How to train a linear model?

Single Neuron

Activation functions

From Neuron to Neural Network

Stack Layers Like Lego Blocks

VGGNet/ResNet

GoogLeNet

DenseNet

Output Predictions Using Softmax

 Softmax is a function that converts an array of values into an array of probabilities (0 - 1)

Training a Deep Neural Network

Given training set $(x_1, y_1), (x_2, y_2), (x_3, y_3),$

Adjust parameters θ (for every node) to make:

$$h_{\theta}(x_i) \approx y_i$$

(Use gradient descent - "Backpropagation" algorithm)

Deep Neural Network Demo

- A Neural Network Playground
 (https://playground.tensorflow.org/)
- Use TensorFlow to train a deep neural network and TensorBoard for monitoring

Convolutional Neural Network

Convolution

Image

Filter/Kernel

1 _{×1}	1 _{×0}	1,	0	0
O _{×0}	1,	1,0	1	0
0 _{×1}	0 _{×0}	1,	1	1
0	0	1	1	0
0	1	1	0	0

Image

Convolved Feature

Rectified Linear Unit (ReLU)

Pooling

Features From ConvNets

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

Data Augmentation

a. No augmentation (= 1 image)

b. Flip augmentation (= 2 images)

224x224

÷

c. Crop+Flip augmentation (= 10 images)

224x224

+ flips

Convolutional Neural Network Demo

Use Keras to train a ConvNet/CNN Keras

Not covered: Implementation using tf.data for managing data, tf.layers for creating the graph, tf.estimator or eager execution for training and evaluation

- Load the saved model in Python, C++, Java, Go or Javascript applications
- Load the saved model using TensorFlow Mobile for Android apps and iOS apps
- Upcoming: Convert the saved model into a TensorFlow Lite model for Android apps, iOS apps (with CoreML support), or Raspberry Pi

- TensorFlow Serving
 - Training to deployment workflow
 - Publish your saved model through the SavedModelBuilder module
 Outputs:
 - saved_model.pb (Protocol Buffer stores metadata: Signature, Version Number)
 - 2. variables

How Zendesk Serves TensorFlow Models in Production by Wai Chee Yau

- TensorFlow Serving
 - Serve multiple models simultaneously
 - Serve multiple versions of the same model
 - Uses gRPC (Google Remote Procedure Call) to communicate with client

- TensorFlow Serving
 - Serving with REST API adapter

Without TensorFlow Serving

With TensorFlow Serving

On Docker and Kubernetes as a cloud service


```
python client.py
--server=<Service IP>:<Service Port>
--image=./image.jpg
--model_spec='obj_classifier'
--signature_name='model_signature'
--version='2'
```

Proto Request

Proto Response

outputs { key: "scores" value { dtype: DT_FLOAT tensor shape { dim { size: 1 dim { size: 10 float_val: 8.630897802584857e-17 float val: 1.5203355241411032e-09 float val: 0.9999998807907104 float val: 9.070973139291283e-12 float val: 1.5690838628401593e-09 float val: 9.12262028080068e-17 float val: 1.0587883991775016e-07 float val: 1.0302327879685436e-08 gRPC Client

How to deploy Machine Learning models with TensorFlow by Vitaly Bezgachev

Transfer Learning Demo

- Use Keras to deploy a pretrained image recognition model trained on ImageNet data
- Use Keras to fine-tune a pretrained model

- Cloud Services
 - IBM Watson Studio
 - Deep Learning as a Service (DLaaS)

- Cloud Services
 - IBM Watson Studio
 - Open-source Fabric for Deep Learning (FfDL)

- 1. Deep Learning Advances from IBM Research
- Figure 1: FfDL Architecture 2. Scalable Multi-Framework Multi-Tenant Lifecycle Management of Deep Learning Training Jobs by Boag et al.

- Cloud Services
 - IBM Watson Studio Product Demo
 - Supermarket video object detection training using active learning to detect trolleys and persons
 - Tracking the time taken for a person to walk from an MRT gantry to the platform level
 - Counting people in a crowd
 - Car detection in a car park and illegal parking on a roadside

- Cloud Services
 - Google Cloud AutoML Vision
 - Google Cloud Vision API

Key Takeaways

- Democratisation of deep learning
- TensorFlow is built for production
- TensorFlow is just a toolkit: focus on getting clean, labelled data and try out transfer learning

Resources

Online courses with TensorFlow code exercises (materials are free):

- Coursera Deep Learning Specialization by Andrew Ng
- Udacity Deep Learning Nanodegree by Sebastian Thrun and Ian Goodfellow

Theory:

- Stanford CS231n Course Notes and Winter 2016 Lectures by Andrej Karpathy (you can watch Spring 2017 for later research developments but Karpathy explains it best)
- Deep Learning by Ian Goodfellow et al. (All the theoretical basics and good review of research until end 2016)
- Deep Learning Papers Reading Roadmap GitHub repo by floodsung

TensorFlow code examples:

- Official TensorFlow Tutorials (includes new features such as Eager Execution and Keras integration)
- TensorFlow Examples GitHub repo by aymericdamien
- Awesome TensorFlow GitHub repo by jtoy
- Deep Learning GitHub repo by Udacity

Inspirational:

- Siraj Rival on YouTube
- Two Minute Papers on YouTube
- Kaggle blog

Meetup Groups:

- TensorFlow and Deep Learning Singapore (Videos at engineers.sg)
- PyTorch and Deep Learning Singapore

Resources

Deployment:

- How to deploy an Object Detection Model with TensorFlow Serving by Gaurav Kaila
- How to deploy Machine Learning models with TensorFlow by Vitaly Bezgachev
- Creating REST API for TensorFlow models by Vitaly Bezgachev
- How Zendesk Serves TensorFlow Models in Production by Wai Chee Yau
- Introductory Guide To TensorFlow Serving by Weimin Wang
- TensorFlow Serving 101 by Stian Lind Petlund
- The Ultimate Guide on Deep Learning for web developers by zero to deep learning

Machine Learning:

- Coursera Machine Learning by Andrew Ng
- Stanford CS229: Machine Learning
- Kaggle.com

Backpropagation Explanation:

Stanford Winter 2016 CS231n Lecture 4 on YouTube

Free GPU resource for 12 hours at a time to try things out:

Google Colab