

PARTICLE SWARM OPTIMIZATION

Dr. Andrés Espinal Jiménez Universidad de Guanajuato

Introducción

- Concebido en 1995 por el doctor en psicología James Kennedy y el doctor en ingeniería Russell C. Eberhart.
- Es un algoritmo de inteligencia colectiva que tiene su inspiración en sistemas donde la inteligencia no reside en individuos sino que está distribuida entre un grupo de muchos individuos; como los cardúmenes de peces o las parvadas de pájaros.

Fundamentos

- Está basado en la observación que grupos de individuos trabajan juntos para mejorar no solo su desempeño colectivo en alguna tarea, sino también en el desempeño individual.
- Algunas ideas en las que se soporta son:
- Inercia
- Influencia de la sociedad y vecinos

Algoritmo [Preámbulo]

- Problema de optimización sobre un dominio continuo de d dimensiones
- N soluciones candidatas $x_i, i \in [1, N]$
- Cada individuo x_i se mueve con una velocidad v_i a través del espacio de búsqueda
- En PSO, un individuo se mueve a través del espacio de búsqueda considerando su inercia y manteniendo cierta velocidad, que puede ser modificada por:
- El recuerdo de su mejor posición histórica (p_i almacena la posición y $pbest_i$ la aptitud de la i-esíma partícula)
- El conocimiento de la mejor posición de sus vecinos (p_g)

Algoritmo[Pseudocódigo]

1. Inicializar una población de *N* partículas con posiciones y velocidades aleatorias *D* dimensionales en el espacio de búsqueda

2. Ciclo

- Para todas las partículas evaluar su aptitud
- Para cada partícula
- Comparar la aptitud actual contra su $pbest_i$, si la aptitud actual es mejor que $pbest_i$, entonces hacer $pbest_i$ igual a la aptitud actual y p_i igual a la posición actual x_i
- Identificar la partícula en el vecindario con la mejor aptitud y asignar su índice a g
- Cambiar la velocidad y posición de las partículas de acuerdo a:

•
$$\begin{cases}
\overrightarrow{v_i} \leftarrow \chi \left(\overrightarrow{v_i} + \overrightarrow{U}(0, \phi_1) \otimes (\overrightarrow{p_i} - \overrightarrow{x_i}) + \overrightarrow{U}(0, \phi_2) \otimes (\overrightarrow{p_g} - \overrightarrow{x_i}) \right), \\
\overrightarrow{x_i} \leftarrow \overrightarrow{x_i} + \overrightarrow{v_i}
\end{cases}$$

 Si el criterio de término es alcanzado salir del ciclo

3. Fin Ciclo

Algoritmo

[Consideraciones]

 La ecuación para actualizar la velocidad se conoce como la constricción de Clerc, donde:

$$\chi = \frac{2}{\phi - 2 + \sqrt{\phi^2 - 4\phi}}$$

- $\phi=\phi_1+\phi_2$, se suele establecer $\phi=4.1, \phi_1=\phi_2$, dejando a $\chi=0.7298$
- Al inicializar las partículas, se recomienda asignar los valores p_i y $pbest_i$ iguales a x_i y $f(x_i)$; respectivamente.

Ejemplo

[Continuo]

Dada la función esfera bidimensional (D = 2):

$$f(x) = \sum_{d=1}^{2} (x_d)^2; x \in \mathbb{R}^D$$

 La evaluación y actualización de la iésima partícula en la k-ésima iteración es:

Componente	x_1	x_2	v_1	v_2	Evaluación
x_i	1.34	0.57	0.10	0.79	$f(x_i) = 2.13$
p_i	0.73	-1.01	-	-	$pbest_i = f(p_i)1.553$

• Dado que la posición actual x_i no es mejor que la mejor posición histórica p_i no hay actualización de p_i ni de $pbest_i$

Ejemplo

[Continuo]

Suponga que la mejor solución en la población es:

Componente	x_1	x_2	v_1	v_2	Evaluación
p_g	0.57	-0.98	-	-	$f(p_g) = 0.9604$

• La actualización de la *i*-ésima partícula se efectúa de la siguiente manera:

$$\begin{cases}
\overrightarrow{v_i} \leftarrow \chi \left(\overrightarrow{v_i} + \overrightarrow{U}(0, \phi_1) \otimes (\overrightarrow{p_i} - \overrightarrow{x_i}) + \overrightarrow{U}(0, \phi_2) \otimes (\overrightarrow{p_g} - \overrightarrow{x_i}) \right), \\
\overrightarrow{x_i} \leftarrow \overrightarrow{x_i} + \overrightarrow{v_i}
\end{cases}$$

- $v_i \leftarrow 0.7298([0.10, 0.79] + [1.3, 0.4] \otimes [0.73 1.34, -1.01 0.57] + [1.9, 1.5] \otimes [0.57 1.34, -0.98 0.57])$
- $v_i \leftarrow 0.7298([0.10, 0.79] + [1.3, 0.4] \otimes [0.61, -1.58] + [1.9, 1.5] \otimes [-0.77, -1.55])$
- $v_i \leftarrow 0.7298([0.10, 0.79] + [0.79, -0.63] + [-1.46, -2.33])$
- $v_i \leftarrow 0.7298([-0.87, -2.17])$
- $v_i \leftarrow [-0.63, -1.58]$
- $x_i \leftarrow [1.34, 0.57] + [-0.63, -1.58]$
- $x_i \leftarrow [0.71, 1.01]$

Ejemplo[Continuo]

Partículas binarias

- El algoritmo canónico de PSO puede operar cadenas de bits en lugar de números reales mediante una adaptación sencilla.
- La velocidad es usada como un umbral de probabilidad para determinar si la d-ésima componente de la i-ésima partícula (x_{id}) debe ser evaluada como 0 o 1:

$$s(v_{id}) = \frac{1}{1 + e^{-v_{id}}}$$

• Entonces se genera un número aleatorio r uniformemente distribuido entre 0 y 1 por cada bit en la cadena y se compara contra $s(v_{id})$. Si r es menor que el umbral, entonces x_{id} es interpretado como 1, de lo contrario como 0.

Ejemplo[Binario]

• Dada la función One-Max bidimensional (D = 2):

$$f(x) = \sum_{d=1}^{2} x_d; x \in \mathfrak{B}^D$$

 La evaluación de la i-ésima partícula en la k-ésima iteración es:

Componente	x_1	x_2	v_1	v_2	f(x)
x_i	1	0	5.7	-2.4	2
$s(v_{id})$	-	-	0.99	0.08	-
r	¿ 0.97 < 0.99?	¿ 0.21 < 0.08?	0.97	0.21	-

 Los valores de x no son generados aleatoriamente, son definidos a partir de v y la función sigmoide; incluso al inicializar las partículas.