Model Building

Defining Objectives

- Often there are more than one possible objectives:
 - Max profit
 - Min cost
 - Max customer satisfaction
 - Max robustness of operating plan
 - Min redundancy
 - Etc...

Possibly some of these objectives will conflict

Defining Constraints

Some common constraints:

- Productive capacity constraints
- Raw material availabilities
- Market demands and limitations
- Material balance
- Hard and soft constraints

Modeling Techniques

LP: Financial Planning

- A bank makes four kinds of loans to its personal customers and these loans yield the following annual interest rates to the bank:
 - First mortgage 14%
 - Second mortgage 20%
 - Home improvement 20%
 - Personal overdraft 10%

- The bank has a maximum foreseeable lending capability of £250 million and is further constrained by the policies:
- 1. first mortgages must be at least 55% of all mortgages issued and at least 25% of all loans issued (in £ terms)
- 2. second mortgages cannot exceed 25% of all loans issued (in £ terms)
- 3. to avoid public displeasure and the introduction of a new windfall tax the average interest rate on all loans must not exceed 15%.
- Formulate the bank's loan problem as an LP so as to maximize interest income whilst satisfying the policy limitations.

LP: Financial Planning

- x_i = amount loaned in area i in £m (where i=1 corresponds to first mortgages, i=2 to second mortgages etc)
- limit on amount lent:

$$X_1 + X_2 + X_3 + X_4 \le 250$$

policy condition 1:

$$x1 >= 0.55(x_1 + x_2)$$

 $x1 >= 0.25(x_1 + x_2 + x_3 + x_4)$

policy condition 2:

$$x_2 \le 0.25(x_1 + x_2 + x_3 + x_4)$$

policy condition 3:

$$0.14x_1 + 0.20x_2 + 0.20x_3 + 0.10x_4 \le 0.15(x_1 + x_2 + x_3 + x_4)$$

Objective: To maximize interest income:

Maximize
$$0.14x_1 + 0.20x_2 + 0.20x_3 + 0.10x_4$$

Scheduling Postal Workers

 Each postal worker works for 5 consecutive days, followed by 2 days off, repeated weekly.

Day	Mon	Tues	Wed	Thurs	Fri	Sat	Sun
Demand	17	13	15	19	14	16	11

 Minimize the number of postal workers (for the time being, we will permit fractional workers on each day.)

Formulating as an LP

- Select the decision variables
 - Let x₁ be the number of workers who start working on Monday, and work till Friday
 - Let x₂ be the number of workers who start on Tuesday ...
 - Let $x_3, x_4, ..., x_7$ be defined similarly.

The linear program

Day	Mon	Tues	Wed	Thurs	Fri	Sat	Sun
Demand	17	13	15	19	14	16	11

Minimize
$$z = x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7$$

subject to
$$x_1 + x_4 + x_5 + x_6 + x_7 \ge 17$$

 $x_1 + x_2 + x_5 + x_6 + x_7 \ge 13$
 $x_1 + x_2 + x_3 + x_6 + x_7 \ge 15$
 $x_1 + x_2 + x_3 + x_4 + x_5 \ge 19$
 $x_1 + x_2 + x_3 + x_4 + x_5 \ge 14$
 $x_2 + x_3 + x_4 + x_5 + x_6 \ge 16$
 $x_3 + x_4 + x_5 + x_6 + x_7 \ge 11$

Solve it

$$x_j \ge 0$$
 for $j = 1$ to 7

Some Enhancements of the Model

 Suppose that there was a pay differential. The cost of workers who start work on day j is c_i per worker.

Minimize
$$z = c_1 x_1 + c_2 x_2 + c_3 x_3 + ... + c_7 x_7$$

Some Enhancements of the Model

- Suppose that one can hire part time workers (one day at a time), and that the cost of a part time worker on day j is PT_i.
- Let y_i = number of part time workers on day j

What is the Revised Linear Program?

Minimize
$$z = x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7$$

subject to
$$x_1 + x_2 + x_5 + x_6 + x_7 \ge 17$$

 $x_1 + x_2 + x_5 + x_6 + x_7 \ge 13$
 $x_1 + x_2 + x_3 + x_4 + x_5 \ge 15$
 $x_1 + x_2 + x_3 + x_4 + x_5 \ge 19$
 $x_1 + x_2 + x_3 + x_4 + x_5 \ge 14$
 $x_2 + x_3 + x_4 + x_5 + x_6 \ge 16$
 $x_3 + x_4 + x_5 + x_6 + x_7 \ge 11$
 $x_j \ge 0$ for $j = 1$ to 7

Minimize
$$z = x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + PT_1 y_1 + PT_2 y_2 + ... + PT_7 y_7$$

subject to
$$x_1 + x_2 + x_5 + x_6 + x_7 + y_1 \ge 17$$

 $x_1 + x_2 + x_5 + x_6 + x_7 + y_2 \ge 13$
 $x_1 + x_2 + x_3 + x_6 + x_7 + y_3 \ge 15$
 $x_1 + x_2 + x_3 + x_4 + x_5 + x_7 + y_4 \ge 19$
 $x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + y_5 \ge 14$
 $x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + y_7 \ge 11$
 $x_3 + x_4 + x_5 + x_6 + x_7 + y_7 \ge 11$
 $x_1 \ge 0$, $x_1 \ge 0$ for $y \ge 1$ for $y \ge 1$

Another Enhancement

- Suppose that the number of workers required on day j is d_j. Let y_j be the number of workers on day j.
- The "cost" of having too many workers on day j is: $f_j(y_j d_j)$, which is a non-linear function (e.g. if $y_i \le d_i$ is zero otherwise positive)
- What is the minimum cost schedule?
- NOTE: this will lead to a non-linear program, not a linear program.
- We will let $s_j = y_j d_j$ be the excess number of workers on day j.

What is the Revised Linear Program?

Minimize
$$z = x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7$$

subject to
$$x_1 + x_4 + x_5 + x_6 + x_7 \ge 17$$

 $x_1 + x_2 + x_5 + x_6 + x_7 \ge 13$
 $x_1 + x_2 + x_3 + x_4 + x_5 \ge 15$
 $x_1 + x_2 + x_3 + x_4 + x_5 \ge 19$
 $x_1 + x_2 + x_3 + x_4 + x_5 \ge 14$
 $x_2 + x_3 + x_4 + x_5 + x_6 \ge 16$
 $x_3 + x_4 + x_5 + x_6 + x_7 \ge 11$
 $x_j \ge 0$ for $j = 1$ to 7

Minimize

$$z = f_1(s_1) + f_2(s_2) + f_3(s_3) + f_4(s_4) + f_5(s_5) + f_6(s_6) + f_7(s_7)$$

subject to
$$x_1 + x_2 + x_5 + x_6 + x_7 - s_1 = 17$$

 $x_1 + x_2 + x_3 + x_5 + x_6 + x_7 - s_2 = 13$
 $x_1 + x_2 + x_3 + x_4 + x_5 - s_4 = 19$
 $x_1 + x_2 + x_3 + x_4 + x_5 - s_5 = 14$
 $x_2 + x_3 + x_4 + x_5 + x_6 - s_6 = 16$
 $x_3 + x_4 + x_5 + x_6 + x_7 - s_7 = 11$
 $x_j \ge 0$, $s_j \ge 0$ for $j = 1$ to 7

A non-linear objective made linear

Suppose that one wants to minimize the maximum of the slacks, that is

minimize
$$z = max (s_1, s_2, ..., s_7)$$
.

This is a non-linear objective.

But we can transform it, so the problem becomes an LP.

The objective ensures that $z = s_j$ for some j.

Minimize z

The new constraint ensures

subject to
$$z \ge s_j$$
 for $j = 1$ to 7. that $z \ge \max(s_1, ..., s_7)$

Another non-linear objective made linear

Suppose that the "goal" is to have d_j workers on day j. Let y_i be the number of workers on day j.

Suppose that the objective is minimize $\Sigma_i \mid y_i - d_i \mid$

This is a non-linear objective.

But we can transform it, so the problem becomes an LP.

The objective ensures that $z_i = |y_i - d_i|$ for each j.

Minimize $\sum_{i} z_{i}$

$$\sum_{j} z_{j}$$

$$z_j \ge d_j - y_j$$
 for $j = 1$ to 7.

The new constraints ensure that $z_i \ge |y_i - d_i|$ $z_i \ge y_i - d_i$ for j = 1 to 7. for each j.

subject to

$$\mathbf{x_1}$$
 +

$$x_4 + x_5 + x_6 + x_7 = y_1$$

$$\mathbf{x_1} + \mathbf{x_2} +$$

$$x_1 + x_2 + x_5 + x_6 + x_7 = y_2$$

$$x_1 + x_2 + x_3 +$$

$$\mathbf{x_6} + \mathbf{x_7} = \mathbf{y_3}$$

$$x_1 + x_2 + x_3 + x_4 +$$

$$\mathbf{x_7} = \mathbf{y_4}$$

$$x_1 + x_2 + x_3 + x_4 + x_5$$
 -

$$= \mathbf{y}_5$$

$$x_2 + x_3 + x_4 + x_5 + x_6 = y_6$$

$$= y_6$$

$$x_3 + x_4 + x_5 + x_6 + x_7 = y_7$$

$$x_i \geq 0$$
,

$$x_j \ge 0$$
, $y_j \ge 0$ for $j = 1$ to 7

A ratio constraint:

Suppose that we need to ensure that at least 30% of the workers have Sunday off.

How do we model this?

$$(x_1 + x_2)/(x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7) \ge .3$$

$$(x_1 + x_2) \ge .3 x_1 + .3 x_2 + .3 x_3 + .3 x_4 + .3 x_5 + .3 x_6 + .3 x_7$$

$$-.7 x_1 - .7 x_2 + .3 x_3 + .3 x_4 + .3 x_5 + .3 x_6 + .3 x_7 <= 0$$

Overview

scheduling problem

- The model
- Practical enhancements or modifications
- Two non-linear objectives that can be made linear
- A non-linear constraint that can be made linear

Other enhancements

- Require that each shift has an integral number of workers
 - integer program
- Consider longer term scheduling
 - model 6 weeks at a time
- Consider shorter term scheduling
 - model lunch breaks
- Model individual workers
 - permit worker preferences

