

AIML CZG557

M1: Introduction

&

M2: Problem Solving Agent using Search

Dr. Sudheer Reddy

Pilani Campus

Course Plan

M1	Introduction to Al
M2	Problem Solving Agent using Search
M3	Game Playing
M4	Knowledge Representation using Logics
M5	Probabilistic Representation and Reasoning
M6	Reasoning over time
M7	Ethics in Al

Reflex Agent

function SIMPLE-REFLEX-AGENT(percept) returns an action persistent: rules, a set of condition—action rules
state←INTERPRET-INPUT(percept)
rule←RULE-MATCH(state, rules)
action ←rule.ACTION
return action

function REFLEX-VACUUM-AGENT([location,status]) returns an action

if *status* = *Dirty* **then return** Suck

else if location = A then return Right

else if location = B then return Left

Simple Reflex Agents

Model based Agent

Simple Reflex Agents

Model Based Agents

Model based Agent

function MODEL-BASED-REFLEX-AGENT(percept) returns an action

persistent: state, the agent's current conception of the world state

transition model, a description of how the next state depends on the current state and action sensor model, a description of how the current world state is reflected in the agent's percepts

rules, a set of condition-action rules

action, the most recent action, initially none

state←UPDATE-STATE(state, action, percept, transition model, sensor model)

rule←RULE-MATCH(state, rules)

 $action \leftarrow rule.ACTION$

return action

Simple Reflex Agents

Model Based Agents

Goal Based Agents

Goal Based Agents

Utility Based Agents

Learning Agents

Agents that improve their performance by learning from their own experiences

Input Percept

Possible Actions

Brake
Change Gear to Lower
Change Gear to Higher
Accelerate
Steer left
Steer right

Selected Action

Random

Change Gear to Lower

<u>Performance Element</u> – Takes decision on action based on percept

```
f(red \ signal, \ distance) = 15k \ N \ brake

distance = f'(percept \ sequence)

f(percepts, distance, raining)
```

- $f(state_0, action A) = 0.83,$
- $f(state_0, actionB) = 0.45$

<u>Critic</u> – Provides feedback on the actions taken

Learning:

Supervised Vs Unsupervised Vs Reinforcement

Highe Utility

Utilit

Role of Learning

<u>Performance Element</u> – Takes decision on action based on percept

 $f(red \ signal, \ distance) = 15k \ N \ brake$ $distance = f'(percept \ sequence)$ f(percepts, distance, raining)

Goal

- $f(state_0, action A) = 0.83,$
- $f(state_0, actionB) = 0.45$

<u>Critic</u> – Provides feedback on the actions taken

<u>Problem Generator</u> – Make the Performance Element select sub-optimal actions such that you would learn from unseen actions

Next Class Plan

- Problem Solving Agents
- Uninformed Search Algorithms
 - ➤ BFS vs DFS An overview
 - Uniform Cost Search
 - ➤ Iterative Depth First Search
 - > Notion of Bi-Directional Search

Required Reading: AIMA - Chapter #1, 2

Thank You for all your Attention

Note: Some of the slides are adopted from AIMA TB materials