Logique et ensembles

QUESTION 2 DE L'EXERCICE 23

- ► Démontrons la première égalité par double inclusion.
 - Soit tout d'abord $x \in A \cap \left(\bigcup_{i \in I} A_i\right)$.

 Alors $x \in A$, et par ailleurs $x \in \bigcup_{i \in I} A_i$, c'est-à-dire qu'il existe $i \in I$ tel que $x \in A_i$. Ainsi, x appartient simultanément à A et à A_i , donc $x \in (A \cap A_i)$. Ainsi, il existe bien $i \in I$ tel que $x \in (A \cap A_i)$, d'où $x \in \bigcup (A \cap A_i)$.

On a donc l'inclusion directe $A \cap \left(\bigcup_{i \in I} A_i\right) \subset \bigcup_{i \in I} (A \cap A_i)$.

• Soit à présent $x \in \bigcup_{i \in I} (A \cap A_i)$. Alors il existe $i \in I$ tel que $x \in (A \cap A_i)$; on a donc d'une part $x \in A$, et d'autre part $x \in A_i$, donc $x \in \left(\bigcup_{i \in I} A_i\right)$. Ainsi, on a $x \in A \cap \left(\bigcup_{i \in I} A_i\right)$, ce qui établit l'inclusion réciproque

$$A \cap \left(\bigcup_{i \in I} A_i\right) \supset \bigcup_{i \in I} (A \cap A_i).$$

Ainsi, on a bien l'égalité

$$A \cap \left(\bigcup_{i \in I} A_i\right) = \bigcup_{i \in I} (A \cap A_i).$$

- ➤ Démontrons à présent la deuxième égalité.
 - Soit tout d'abord $x \in A \cup \left(\bigcap_{i \in I} A_i\right)$.

De deux choses l'une : soit $x \in A$, soit $x \in \bigcap_{i \in I} A_i$. Dans le premier cas, on a $x \in A \cup A_i$ pour tout $i \in I$, soit $x \in \bigcap_{i \in I} (A \cup A_i)$. Dans le deuxième cas, pour tout $i \in I$ on a $x \in A_i$, donc $x \in A \cup A_i$: ainsi, x appartient à tous les $A \cup A_i$, donc $x \in \bigcap_{i \in I} (A \cup A_i)$.

La conclusion est la même dans les deux cas : on a $x \in \bigcap_{i \in I} (A \cup A_i)$, ce qui

établit l'inclusion directe

$$A \cup \left(\bigcap_{i \in I} A_i\right) \subset \bigcap_{i \in I} (A \cup A_i).$$

• Soit à présent $x \in \bigcap_{i \in I} (A \cup A_i)$. Si $x \in A$, on a bien sûr $x \in A \cup \left(\bigcap_{i \in I} A_i\right)$. Supposons à présent que $x \notin A$. Pour tout $i \in I$, on sait que $x \in A \cup A_i$, donc $x \in A_i$ puisque $x \notin A$. Ainsi, x est dans tous les A_i , c'est-à-dire que $x \in \bigcap_{i \in I} A_i$,

d'où
$$x \in A \cup \left(\bigcap_{i \in I} A_i\right)$$
.

Dans tous les cas, on a $x \in A \cup \left(\bigcap_{i \in I} A_i\right)$, d'où l'inclusion réciproque

$$A \cup \left(\bigcap_{i \in I} A_i\right) \supset \bigcap_{i \in I} (A \cup A_i).$$

Ainsi, on a bien établi l'égalité

$$A \cup \left(\bigcap_{i \in I} A_i\right) = \bigcap_{i \in I} (A \cup A_i).$$