Similarity Search Algorithms: Outline

- Range Query Algorithms
- (k)-Nearest Neighbor Query Algorithms
- Reverse (k)-Nearest Neighbor Query Algorithms
- Skyline Query Algorithms
- Evaluation of Similarity Search Methods

- Reverse (k-)Nearest Neighbor Queries (RkNNQ)
 - Definition
 - Properties:
 - User defines query object q, and k
 - \Box The result contains all objects o in the database DB, where $q \in kNNQ(o,DB)$.
 - □ Ambiguities have been resolved approriately.
 - □ Formal: $RkNN(q,k) = \{o \in DB | q \in kNN(o,k)\}$

1NN-Distance(p)

1NN-Sphere(p)

Objects a,b, and c are RkNN(q,1) results!

- Reverse (k-)Nearest Neighbor Queries (RkNNQ)
 - Basic sequential-scan-based solution:
 - Algorithm:
 - □ For each object o in DB, compute the kNNQ(o) result.
 - ☐ As result report those objects having q in the result of kNNQ(o).
 - Problem:
 - \square Very expensive, complexity $O(N^2)$, N=|DB|
 - Indexed based solutions
 - RNN-Tree [Korn, Muthukrishnan. ACM Int. Conf. Management of Data (SIGMOD), 2000]
 - □ RdNN-Tree [Yang, Lin. IEEE Int. Conf. Data Engineering (ICDE), 2001]
 - □ MRkNNCoP-Tree [Achtert, Böhm, Kröger, Kunath, Pryakhin, Renz. ACM Int. Conf. Management of Data (SIGMOD), 2006]
 - Geometric RkNN approach based on R-Tree [Tao, Papadias, Lian. Int. Conf. Very Large Databases (VLDB), 2004] [Emrich, Kriegel, Kröger, Renz, Züfle. ACM Int. Conf. Management of Data (SIGMOD), 2010].

- Reverse (k-)Nearest Neighbor Queries (RkNNQ)
 - RNN-Baum [Korn, Muthukrishnan. ACM Int. Conf. Management of Data (SIGMOD), 2000]
 - Preprocessing: Compute kNN-Distance for all objects in DB.
 - Use R-Tree to index all kNN-Spheres of all objects

Perform point query on the R-tree, i.e. RkNN result contains all objects for which their kNN-

Sphere interects q.

- Problems:
 - □ k has to be fixed for all queries
 - □ High overlap of page regions of the RNN-Tree
 → bad query performance

- Reverse (k-)Nearest Neighbor Queries (RkNNQ)
 - RdNN-Baum [Yang, Lin. IEEE Int. Conf. Data Engineering (ICDE), 2001]
 - Use standard R-Tree to index all objects.
 - For each object o: Store the precomputed kNN-distance of o.
 - For each page region p: Store the maximum kNN-distance of all objects below p.
 - Query process:
 - □ Compute the minimal distance MINDIST(q,p) to page regions (starting at the root)
 - \square Prune subtree of page p if MINDIST(q,p) > kNN-distance assigned to p

- Reverse (k-)Nearest Neighbor Queries (RkNNQ)
 - Advantage of the RdNN-Tree approach over the RNN-Tree approach
 - Less page region overlap → better query performance
 - The approach can be easily transferred to the M-Tree → can be applied to general metric data
 - General problems with RNN and RdNN approaches:
 - Parameter k has to be fix → No flexibility w.r.t. general RkNN queries
 - High cost for updates, e.g. insert or delete operations → Recomputation of the index
 - □ To cope with the problem that the parameter k has to be fix, one can think about adapting the RdNN-Tree by precomputing and storing all possible kNN distances of all objects for an appropriate range of k, e.g. $1 \le k \le 100$
 - □ Problem: To high storage cost to manage k additional values for each object and each page region
 → bad index performance
 - Solution: Find a good (conservative) approximation of the behavior the k-NN distances for varying k → MRkNNCoP-Tree

- Reverse (k-)Nearest Neighbor Queries (RkNNQ)
 - Using conservative approximations of the kNN distance:
 - Assumption: Instead of having given the exact kNN distance of an object o, we have given
 - □ the lower bounding kNN distance approaximation LB_k-NN-Dist(o)
 - □ the upper bounding kNN distance approaximation UB_k-NN-Dist(o)
 - If dist(o,q) \leq LB_k-NN-Dist(o) => o is a true hit, i.e. o \in RkNN(q, k) In our example: q = q₁
 - If dist(o,q) \ge UB_k-NN-Dist(o) => o is a true drop, i.e. o \notin RkNN(q, k) In our example: q = q₃

In our example: $q = q_2$

- Reverse (k-)Nearest Neighbor Queries (RkNNQ)
 - How to find a good conservative approximations of the kNN distance?
 - Using the power law of the relationship between
 - \Box the radius of an hypersphere ε
 - and encl(ε) = the number of objects covered by the hypersphere with radius ε .

$$encl(\varepsilon) \propto \varepsilon^{d_f}$$

- where df = "fractal dimension"
- Now, consider our k-NN-distance spheres:
 - $= \varepsilon = k-NN-Dist(o)$
 - \square encl(ε) = k

 \Rightarrow k approx. depends linear on the k-NN-Dist(o) in the log-log-space: $\log(k - \text{NN} - \text{Dist}(o)) \propto \frac{\log(k)}{d_f}$

- Reverse (k-)Nearest Neighbor Queries (RkNNQ)
 - How to find a good conservative approximations of the kNN distance?
 - In reality, log(k) and log(k-NN-Dist(o)) does not have a perfect linear relationship, but the dependency between k and k-NN-Dist(o) can be quite well approximated by two linear functions in the log(k)-log(k-NN-Dist(o))-space:

- Reverse (k-)Nearest Neighbor Queries (RkNNQ)
 - MRKNNCoP-Tree [Achtert, Böhm, Kröger, Kunath, Pryakhin, Renz. ACM Int. Conf. Management of Data (SIGMOD), 2006]
 - Idea:
 - Manage all objects in a standard R-tree index
 - For each object o:
 - Compute the kNN distances (for $1 \le k \le k_{max}$) and build the optimal UB_k -NN-Dist(o) and LB_k -NN-Dist(o) functions (lines) in the log(k)-log(k-NN-Dist(o))-space.
 - Store these two functions together with the objects in the index.
 - For each page region p:
 - Build optimal conservative approaximations of all UB_k -NN-Dist(o) and LB_k -NN-Dist(o) functions (lines) of all objects covered by p => the result are again two functions in the log(k)-log(k-NN-Dist(o))-space.
 - Store these two linear functions together with the page region p.

- Reverse (k-)Nearest Neighbor Queries (RkNNQ)
 - MRkNNCoP-Tree [Achtert, Böhm, Kröger, Kunath, Pryakhin, Renz. ACM Int. Conf. Management of Data (SIGMOD), 2006]
 - Idea:
 - Query Algorithm:
 - Traverse the R-tree index (starting from the root)
 - Access the node entries:

If entry is a page region p, then load the UB_k -NN-Dist(p) function If MINDIST(q,p) > UB_k -NN-Dist(p)(k), then prune p. else p could contain candidates and has to be accessed and explored.

If entry is an object o, then load the LB_k -NN-Dist(o) and UB_k -NN-Dist(o) functions If $dist(q,o) > UB_k$ -NN-Dist(o)(k), then prune o, If $dist(q,o) < LB_k$ -NN-Dist(o)(k), then report o as result, else o is a candidate and has to be refined in a refinement step.

Refinement:

For all remaining candidates, compute the kNNs If q belongs to the kNNs of a candidate c, c is reported as result.

- Reverse (k-)Nearest Neighbor Queries (RkNNQ)
 - MRkNNCoP-Tree [Achtert, Böhm, Kröger, Kunath, Pryakhin, Renz. ACM Int. Conf. Management of Data (SIGMOD), 2006]
 - Advantages:
 - More flexible w.r.t. parameter k
 - □ Similar idea can be used for M-Tree, i.e. metric data
 - Remaining Problems:
 - Still high cost for updates
 - General problem causing high update cost:
 - □ Up to now, all solutions are based on precomputed k-NN distances. Class of approaches using precomputed k-NN distances are called self pruning approaches.
 - To cope with this problem, we need an approach that is not based on pre-computed k-NN distances.
 - → geometric RkNN-approach.

- Reverse (k-)Nearest Neighbor Queries (RkNNQ)
 - Geometric RkNN Query approach:
 - Basic Idea (k=1):
 - Given a query object q and another object p from DB, all objects on the side of the bisecting hyperplane between p and q that is opposite to q have p closer than q.

Geometric pruning of a page region (k=1):

e "behind" the hyperplane => no object in e can have q in it's NNs => prune e

- Reverse (k-)Nearest Neighbor Queries (RkNNQ)
 - Geometric RkNN Query approach:
 - Basic Idea (k>1):
 - Given a query object q and another object p from DB, all objects on the side of the bisecting hyperplane between p and q that is opposite to q have p closer than q.

Example: k = 3

Geometric pruning of a page region (k>1):

e "behind" k hyperplanes => no object in e can have q in it's kNNs => prune e

- Reverse (k-)Nearest Neighbor Queries (RkNNQ)
 - Geometric RkNN Query approach:
 - Algorithm RkNN-Geom(q,DB):
 - Initialize an empty list of candidate objects CND.
 - Perform an R-tree based ranking query on DB analog to NN-Index-HS(pa,q) with APL.
 - □ Filter-Step: For each object o retrieved from the ranking do
 - If o cannot be pruned by k candidates in CND \\ use hyperplans between q and c in CND to prune objects then
 - insert o in CND;
 - prune all entries in APL based on the hyperplanes between q and candidates in CND;
 - Refinement-Step:
 - Compute k-NN query for each candidate c in CND and report c as result if q is in the k-NN result of c.

- Reverse (k-)Nearest Neighbor Queries (RkNNQ)
 - Geometric RkNN Query approach:
 - Example: RkNN-Geom(q,DB,k=1)

APL status:

1: root

2: p2, p1

3: p21, p23, p1, p22

4: A, p23, p1, p22, B, C

(object A prunes ...)

APL entries pruned:

CND:

- Reverse (k-)Nearest Neighbor Queries (RkNNQ)
 - Geometric RkNN Query approach:
 - Example: RkNN-Geom(q,DB,k=1)


```
APL status:
1: root
2: p2, p1
3: p21, p23, p1, p22
4: A, p23, p1, p22, B, C
(object A prunes p22, B, C)
5: p23, p1
6: D, p1, E, F, G
(object D prunes ...)

APL entries pruned: p22, B, C
```

- Reverse (k-)Nearest Neighbor Queries (RkNNQ)
 - Geometric RkNN Query approach:
 - Example: RkNN-Geom(q,DB,k=1)


```
APL status:
                             CND:
                                      APL entries pruned:
1: root
                                      p22, B, C
                             Α
2: p2, p1
                             D
                                      E.F. G
3: p21, p23, p1, p22
4: A, p23, p1, p22, B, C
(object A prunes p22, B, C)
5: p23, p1
6: D, p1, E, F, G
(object D prunes E, F, G)
7: p1
8: p11, p12
9: H, I, p12, J, K
(object H prunes ...)
```

- Reverse (k-)Nearest Neighbor Queries (RkNNQ)
 - Geometric RkNN Query approach:
 - Example: RkNN-Geom(q,DB,k=1)


```
APL status:
                             CND:
                                      APL entries pruned:
1: root
                                      p22, B, C
                             Α
2: p2, p1
                                      E,F, G
                             D
3: p21, p23, p1, p22
                                      I, J, K, p12
4: A, p23, p1, p22, B, C
(object A prunes p22, B, C)
5: p23, p1
6: D, p1, E, F, G
(object D prunes E, F, G)
7: p1
8: p11, p12
9: H, I, p12, J, K
(object H prunes I, J, K, p12)
10: empty → start refinement of candidates in CND
```

- Reverse (k-)Nearest Neighbor Queries (RkNNQ)
 - Geometric RkNN Query approach:
 - Advantages:
 - □ Totally flexible w.r.t. parameter k.
 - Supports DB updates efficiently.
 - Problems:
 - □ Can not be used for general metric data.
 - Cost for refinement could become high if many candidates remain.
 (Problem in particular for higher dimensional spaces.)

- Reverse (k-)Nearest Neighbor Queries (RkNNQ)
 - Overview:
 - Approaches based on self-pruning: RNN, RdNN, MRkNNCoP
 - pruning concept: precomputed kNN distances of objects used to prune themselves.
 - pros: very efficient pruning, applicable for general metric data (except RNN approach)
 - cons: fix k; high update cost
 - Approaches based on mutual pruning: RkNN-Geom (TPL)
 - pruning concept: hyperplane between an object and the query object is used to prune other objects.
 - pros: total flexibility w.r.t. k; no precomputation; efficient updates
 - cons: refinement can become expensive (for high dimensional spaces); not applicable for general metric
 data