

f) 4 e 62;

CURSO DE INFORMÁTICA

COMUNICAÇÃO DE DADOS E REDES I

FOLHA DE EXERCÍCIOS Nº 2

1.	Se a m	áscara 255.255.255.128 for utilizada com uma rede classe B, quantas sub-redes e
	quanto	s hosts por sub-rede podem existir, respetivamente?
	a)	256 e 254;
	b)	254 e 256;
	c)	64 e 1022;
	d)	1022 e 64;
	e)	512 e 126;
	f)	126 e 512;
2.		áscara 255.255.255.224 for utilizada com uma rede classe C, quantas sub-redes e s hosts por sub-rede podem existir, respetivamente?
	a)	<mark>8 e 30</mark> ;
	b)	16 e 14;
	c)	32 e 6;
	d)	6 e 32;
	e)	16 e 16;

3. Uma empresa recebeu a gama de endereços que inclui o endereço 209.85.135.100 /26. Diga como pode ser dividir o espaço de endereçamento referido em 5 sub-redes diferentes, de modo a utilizar a totalidade dos endereços IP disponíveis.

```
      Rede A: End. rede:
      209.85.135.64
      Máscara:
      /27
      End. broadcast:
      209.85.135.95

      Rede B: End. rede:
      209.85.135.96
      Máscara:
      /29
      End. broadcast:
      209.85.135.103

      Rede C: End. rede:
      209.85.135.104
      Máscara:
      /29
      End. broadcast:
      209.85.135.111

      Rede D: End. rede:
      209.85.135.112
      Máscara:
      /29
      End. broadcast:
      209.85.135.119

      Rede E: End. rede:
      209.85.135.120
      Máscara:
      /29
      End. broadcast:
      209.85.135.127
```


- 4. Considere o seguinte endereço IP 172.16.56.1 com a máscara 255.255.240.0.
 - a) Indique o endereço de rede, o endereço de difusão e o número total de endereços disponíveis. Rede 172.16.48.0 | Difusão/broadcast 172.16.63.255 | 4094 endereços disponíveis
 - b) Considere que se pretende dividir a rede calculada na alínea a) em 5 redes de A a E de forma a suportar o seguinte número de máquinas: A) 1500, B) 590, C) 255, D) 128, E) 120. Para cada sub-rede indique o seu endereço de rede, a respectiva máscara e o endereço de difusão.

 Rede A: End. rede: 172.16.48.0
 Máscara:/21
 End. broadcast: 172.16.55.255

 Rede B: End. rede: 172.16.56.0
 Máscara: /22
 End. broadcast: 172.16.59.255

 Rede C: End. rede: 172.16.60.0
 Máscara: /23
 End. broadcast: 172.16.61.255

 Rede D: End. rede: 172.16.62.0
 Máscara: /24
 End. broadcast: 172.16.62.255

 Rede E: End. rede: 172.16.63.0
 Máscara: /25
 End. broadcast: 172.16.63.127

5. O diagrama apresentado de seguida define a rede da empresa XPTO. Sabendo que:

- número de *hosts* por departamento/rede:
 - o departamento A rede A 60 hosts
 - o departamento B rede B 30 hosts
 - o departamento C rede C 20 hosts
 - departamento D rede D 14 hosts
- é obrigatório a criação de uma rede de interligação IP distinta, por cada ligação entre routers;
- é obrigatório que cada router tenha um endereço de loopback/system;
- cada rede de departamento deverá pertencer a um domínio de difusão distinto;
- a classes C disponível para a resolução do exercício são 192.168.100.0;
- a utilização de sub-redes de classe C é permitida;
- a primeira e a última sub-rede IP são válidas para utilização;

Proponha uma solução para resolver o problema de endereçamento, usando o **menor número** possível de endereços e apresentando para cada rede planeada:

- a) o endereço IP de rede/sub-rede;
- b) a máscara de rede/sub-rede usada;
- c) o endereço IP de broadcast para cada rede/sub-rede planeada;
- d) Para cada *router*, apresente o endereço IP e respetiva máscara de rede para cada uma das suas interfaces.
- 6. Considere a seguinte topologia que ilustra o número de máquinas (incluindo as interfaces dos routers) que são necessárias configurar em cada rede.

 a) Calcule os endereços IP para cada rede e faça uma optimização de acordo com os requisitos indicados (hosts) e de forma a que fique com o máximo número de endereços livres.

O endereço IP a ser usado para distribuição é o 192.168.1.0/24.

Preencha a tabela abaixo.

Rede	Endereço Rede	Máscara	Nº endereços livres.
1	192.168.1.0	255.255.255.192 ou /26	16
2	192.168.1.64	255.255.255.224 ou /27	14
3	192.168.1.96	255.255.255.240 ou /28	4
4	192.168.1.112	255.255.255.252 ou /30	0
5	192.168.1.116	255.255.255.252 ou /30	0

b) Quantos endereços ficaram por atribuir? 136 endereços

7. O diagrama da Figura apresentada de seguida define a rede da empresa XPTO.

Sabendo que:

- número de equipamentos terminais por departamento/rede é respetivamente:
 - o departamento A rede A 126
 - o departamento B rede B 62
 - o departamento C rede C 30
- cada rede de departamento deverá ter um prefixo de rede distinto;
- é obrigatória a criação de redes de interligação entre routers;
- os endereços disponíveis para a resolução do exercício são:
 - o 10.10.0.0/23 para as redes de departamentos
 - o 172.16.1.0/28 para as redes de interligação entre routers;
- a utilização de sub-redes é permitida;
- <u>não</u> é possível a utilização de máscaras de rede /31;

Proponha uma solução para resolver o problema de endereçamento usando o menor número possível de endereços em cada situação.

a) Por cada rede planeada apresente o endereço de rede (ID de rede), a máscara e o endereço IP de *broadcast*;

b) Para cada router presente na topolgia, indique o endereço IP e a respetiva mascara de rede, para cada uma das suas interfaces.

c) Apresente a tabela de *routing* dos *routers* para que exista conetividade entre todos os hosts da rede.

Rx - Routing Table				
Destination Prefix	Next Hop[Interface Name]	Туре		

d) Mantendo as condições da alínea anterior, explique como se processa a comunicação entre um <u>host na rede B</u> e um <u>host na rede C</u>. Refira na sua explicação as mensagens entre os diversos componentes da rede, indicando em cada uma dessas mensagens o MAC origem, o MAC destino, o IP origem e o IP destino (conforme quadro abaixo apresentado).

frame nº				
cabeçalho ethernet	MAC origem			
cabeçamo etnemet	MAC destino			
	IP origem			
cabeçalho IP	IP destino			
	ΠL			

Exercício 5

Alíneas a), b) e C)

Rede	IPs Necessários	Subnet ID	Broadcast	Subnet Mask	Subnet Mask
Α	63	192.168.100.0	192.168.100.63	/26	255.255.255.192
В	33	192.168.100.64	192.168.100.127	/26	255.255.255.192
С	23	192.168.100.128	192.168.100.159	/27	255.255.255.224
D	17	192.168.100.160	192.168.100.191	/27	255.255.255.224
R2-R3-R4	5	192.168.100.192	192.168.100.199	/29	255.255.255.248
R1-R2	2	192.168.100.200	192.168.100.203	/30	255.255.255.252
R1-R3	2	192.168.100.204	192.168.100.207	/30	255.255.255.252
System R1	1	N,	/A	/32	255.255.255.254
System R2	1	N,	/A	/32	255.255.255.254
System R3	1	N,	/A	/32	255.255.255.254
System R4	1	N,	/A	/32	255.255.255.254

Exercício 5

Alínea d)

R1		R2		R3		R4	
Interface	IP	Interface	IP	Interface	IP	Interface	IP
EO	192.168.100.62/26	EO	192.168.100.202/30	EO	192.168.100.206/30	EO	192.168.100.190/27
E1	192.168.100.205/30	E1	192.168.100.126/26	E1	192.168.100.158/27	E1	192.168.100.195/29
E2	192.168.100.201/30	E2	192.168.100.193/29	E2	192.168.100.194/29	System	192.168.100.211/32
System	192.168.100.208/32	System	192.168.100.209/32	System	192.168.100.210/32		

Exercicio 7

Alínea a)

Rede	IPs Necessários	Endereço de Rede	Endereço de Broadcast	Máscara de Rede
Rede A	126+2+1=129	10.10.0.0	10.10.0.254	255.255.255.0 ou /24
Rede B	64+2+1=67	10.10.1.0	10.10.1.127	255.255.255.128 ou /25
Rede C	30+2+1=33	10.10.1.128	10.10.1.191	255.255.255.192 ou /26
R1-R2	2+2=4	172.16.1.0	172.16.1.3	255.255.255.252 ou /30
R1-R3	2+2=4	172.16.1.4	172.16.1.7	255.255.255.252 ou /30
R2-R3	2+2=4	172.16.1.8	172.16.1.11	255.255.255.252 ou /30

Exercicio 7

Alínea b)

R1		R2		R3	
Interface	Endereço IP	Interface	Endereço IP	Interface	Endereço IP
E0	10.10.0.1/24	E0	10.10.1.1/25	E0	10.10.1.129/26
E1	172.16.1.1/30	E1	172.16.1.2/30	E1	172.16.1.6/30
E2	172.16.1.5/30	E2	172.16.1.9/30	E2	172.16.1.10/30

Exercicio 7

Alínea c)

R1					
Prefixo de Rede	Nome da Interface ou IP Next-Hop	Tipo			
10.10.0.0/24	E0	local			
10.10.1.0/25	172.16.1.2	remoto			
10.10.1.128/26	172.16.1.6	remoto			
172.16.1.0/30	E1	local			
172.16.1.4/30	E2	local			
172.16.1.8/30	172.16.1.2	remoto			

R2					
Prefixo de Rede	Nome da Interface ou IP Next-Hop	Tipo			
10.10.0.0/24	172.16.1.1	remoto			
10.10.1.0/25	E0	local			
10.10.1.128/26	172.16.1.10	remoto			
172.16.1.0/30	E1	local			
172.16.1.4/30	172.16.1.1	remoto			
172.16.1.8/30	E2	local			

R3						
Prefixo de Rede	Nome da Interface ou IP Next-Hop	Tipo				
10.10.0.0/24	172.16.1.5	remoto				
10.10.1.0/25	172.16.1.9	remoto				
10.10.1.128/26	E0	local				
172.16.1.0/30	172.16.1.5	remoto				
172.16.1.4/30	E1	local				
172.16.1.8/30	E2	local				