Advanced Topic in Recommender Systems

Neighborhood Methods

Masoud Mansoury
AMLab, University of Amsterdam
Discovery Lab, Elsevier

Neighborhood-based CF

User-based Collaborative Filtering

The opinions of similar users on a target item is used to predict the rating for a target user.

Item-based Collaborative Filtering

The rating on a target item is predicted based on its similarity to the items that a target user previously rated.

Neighborhood-based CF

Today ...

- We review more **advanced algorithms** that are designed to improve the item-based neighborhood models.
- For this, we focus on ranking problem.

Item-based Method

- Step 1: Similarity computation between all pair of items
 - The similarity value between all pairs of the items are computed
- Step 2: Neighbor selection
 - \triangleright k items with the highest similarity values with the target item are selected.
- Step 3: Rating prediction

• How Item-based method can be used in ranking task?

- How Item-based method can be used in ranking task?
- In ranking problem, we do not necessarily need to know the predicted rating value
 - For example, the predicted rating value does not need to be in the range of 5-star ratings
 - We want to know between items A and B, which one is more relevant to the user's preferences

• Therefore, the equation for predicting the rating value of an item for a user can be simiplified to compute the degree to which the item is relevant to user.

• Therefore, the equation for predicting the rating value of an item for a user can be simiplified to compute the degree to which the item is relevant to user.

$$\hat{r}_{ui} = \frac{\sum_{j \in Q_i(u)} Sim(i,j) \times r_{uj}}{\sum_{j \in Q_i(u)} |Sim(i,j)|}$$

• Therefore, the equation for predicting the rating value of an item for a user can be simiplified to compute the degree to which the item is relevant to user.

$$\hat{r}_{ui} = \sum_{j \in Q_i(u)} Sim(i,j) \times r_{uj}$$

• r_{uj} is the rating value if available, otherwise if the rating is missed, it is set to 0.

• Therefore, the equation for predicting the rating value of an item for a user can be simiplified to compute the degree to which the item is relevant to user.

$$\hat{r}_{ui} = \sum_{j \in Q_i(u)} Sim(i,j) \times r_{uj}$$

- r_{uj} is the rating value if available, otherwise if the rating is missed, it is set to 0.
- Neighbor selection step can be ignored and instead, the prediction can be performed over all items
 - Among all items, the one that user liked would have effect on the prediction
 - The rest of the items will not affect the prediction as $r_{uj} = 0$.

• Therefore, the equation for predicting the rating value of an item for a user can be simiplified to compute the degree to which the item is relevant to user.

$$\hat{r}_{ui} = \sum_{j \in \mathbb{I} \text{tems}} Sim(i,j) \times r_{uj}$$

• r_{uj} is the rating value if available, otherwise if the rating is missed, it is set to 0.

• Therefore, the equation for predicting the rating value of an item for a user can be simiplified to compute the degree to which the item is relevant to user.

$$\hat{r}_{ui} = \sum_{j \in \mathbb{I} \text{tems}} Sim(i,j) \times r_{uj}$$

• r_{uj} is the rating value if available, otherwise if the rating is missed, it is set to 0.

The term "score prediction" is also used instead of "rating prediction".

• User's profile

$$R_{u1} = \begin{bmatrix} \mathbf{i_1} & \mathbf{i_2} & \mathbf{i_3} & \mathbf{i_4} & \mathbf{i_5} \\ 0 & 5 & 0 & 0 & 4 \end{bmatrix}$$

		i_1	i_2	i_3	i_4	i_5
Sim =	i_1	1	0.3	0.4	0.1	0.7
	i_2	0.3	1	0.5	0.6	0.2
	i_3	0.4	0.5	1	0.8	0.9
	i_4	0.1	0.6	0.8	1	0.5
	<i>i</i> ₅	0.7	0.2	0.9	0.5	1

User's profile

$$R_{u1} = \begin{bmatrix} \mathbf{i_1} & \mathbf{i_2} & \mathbf{i_3} & \mathbf{i_4} & \mathbf{i_5} \\ 0 & 5 & 0 & 0 & 4 \end{bmatrix}$$

		i_1	i_2	i_3	i_4	i_5
	i_1	1	0.3	0.4	0.1	0.7
Cian —	i_2	0.3	1	0.5	0.6	0.2
Sim =	i_3	0.4	0.5	1	0.8	0.9
	i_4	0.1	0.6	0.8	1	0.5
	i_5	0.7	0.2	0.9	0.5	1

- To avoid self-recommendation, diagonal entries are set to zero.
 - Target item has the highest similarity to itself and would lead to recommending itself.

User's profile

$$R_{u1} = \begin{bmatrix} \mathbf{i_1} & \mathbf{i_2} & \mathbf{i_3} & \mathbf{i_4} & \mathbf{i_5} \\ 0 & 5 & 0 & 0 & 4 \end{bmatrix}$$

		i_1	i_2	i_3	i_4	i_5
	i_1	0	0.3	0.4	0.1	0.7
Cian —	i_2	0.3	0	0.5	0.6	0.2
Sim =	i_3	0.4	0.5	0	0.8	0.9
	i_4	0.1	0.6	0.8	0	0.5
	i_5	0.7	0.2	0.9	0.5	0

- To avoid self-recommendation, diagonal entries are set to zero.
 - Target item has the highest similarity to itself and would lead to recommending itself.

User's profile

$$R_{u1} = \begin{bmatrix} \mathbf{i_1} & \mathbf{i_2} & \mathbf{i_3} & \mathbf{i_4} & \mathbf{i_5} \\ 0 & 5 & 0 & 0 & 4 \end{bmatrix}$$

$$Sim = \begin{bmatrix} i_1 & i_2 & i_3 & i_4 & i_5 \\ 0 & 0.3 & 0.4 & 0.1 & 0.7 \\ i_2 & 0.3 & 0 & 0.5 & 0.6 & 0.2 \\ i_3 & 0.4 & 0.5 & 0 & 0.8 & 0.9 \\ i_4 & 0.1 & 0.6 & 0.8 & 0 & 0.5 \\ i_5 & 0.7 & 0.2 & 0.9 & 0.5 & 0 \end{bmatrix}$$

$$\hat{r}_{u1i1} = ?$$

User's profile

$$Sim = \begin{bmatrix} i_1 & i_2 & i_3 & i_4 & i_5 \\ 0 & 0.3 & 0.4 & 0.1 & 0.7 \\ i_2 & 0.3 & 0 & 0.5 & 0.6 & 0.2 \\ 0.4 & 0.5 & 0 & 0.8 & 0.9 \\ i_4 & 0.1 & 0.6 & 0.8 & 0 & 0.5 \\ i_5 & 0.7 & 0.2 & 0.9 & 0.5 & 0 \end{bmatrix}$$

$$\hat{r}_{u1i1} = ?$$

User's profile

$$R_{u1} = \begin{bmatrix} \mathbf{i_1} & \mathbf{i_2} & \mathbf{i_3} & \mathbf{i_4} & \mathbf{i_5} \\ 0 & 5 & 0 & 0 & 4 \end{bmatrix}$$

$$Sim = \begin{bmatrix} i_1 & i_2 & i_3 & i_4 & i_5 \\ \hline 0 & 0.3 & 0.4 & 0.1 & 0.7 \\ \hline i_2 & 0.3 & 0 & 0.5 & 0.6 & 0.2 \\ \hline i_3 & 0.4 & 0.5 & 0 & 0.8 & 0.9 \\ \hline i_4 & 0.1 & 0.6 & 0.8 & 0 & 0.5 \\ \hline i_5 & 0.7 & 0.2 & 0.9 & 0.5 & 0 \\ \hline \end{cases}$$

$$\hat{r}_{u1i1} = 0 \times 0 + 5 \times 0.3 + 0 \times 0.4 + 0 \times 0.1 + 4 \times 0.7 = 4.3$$

User's profile

$$R_{u1} = \begin{bmatrix} \mathbf{i_1} & \mathbf{i_2} & \mathbf{i_3} & \mathbf{i_4} & \mathbf{i_5} \\ 0 & 5 & 0 & 0 & 4 \end{bmatrix}$$

$$Sim = \begin{bmatrix} i_1 & i_2 & i_3 & i_4 & i_5 \\ 0 & 0.3 & 0.4 & 0.1 & 0.7 \\ i_2 & 0.3 & 0 & 0.5 & 0.6 & 0.2 \\ i_3 & 0.4 & 0.5 & 0 & 0.8 & 0.9 \\ i_4 & 0.1 & 0.6 & 0.8 & 0 & 0.5 \\ i_5 & 0.7 & 0.2 & 0.9 & 0.5 & 0 \end{bmatrix}$$

$$\hat{r}_{u1i1} = 0 \times 0 + 5 \times 0.3 + 0 \times 0.4 + 0 \times 0.1 + 4 \times 0.7 = 4.3$$

$$\hat{r}_{u1i3} = ?$$

User's profile

$$R_{u1} = \begin{bmatrix} \mathbf{i}_1 & \mathbf{i}_2 & \mathbf{i}_3 & \mathbf{i}_4 & \mathbf{i}_5 \\ 0 & 5 & 0 & 0 & 4 \end{bmatrix}$$

$$Sim = \begin{bmatrix} i_1 & i_2 & i_3 & i_4 & i_5 \\ 0 & 0.3 & 0.4 & 0.1 & 0.7 \\ i_2 & 0.3 & 0 & 0.5 & 0.6 & 0.2 \\ i_3 & 0.4 & 0.5 & 0 & 0.8 & 0.9 \\ i_4 & 0.1 & 0.6 & 0.8 & 0 & 0.5 \\ i_5 & 0.7 & 0.2 & 0.9 & 0.5 & 0 \end{bmatrix}$$

$$\hat{r}_{u1i1} = 0 \times 0 + 5 \times 0.3 + 0 \times 0.4 + 0 \times 0.1 + 4 \times 0.7 = 4.3$$

 $\hat{r}_{u1i3} = 0 \times 0.4 + 5 \times 0.5 + 0 \times 0 + 0 \times 0.8 + 4 \times 0.9 = 6.1$

User's profile

$$R_{u1} = \begin{bmatrix} \mathbf{i_1} & \mathbf{i_2} & \mathbf{i_3} & \mathbf{i_4} & \mathbf{i_5} \\ 0 & 5 & 0 & 0 & 4 \end{bmatrix}$$

$$Sim = \begin{bmatrix} i_1 & i_2 & i_3 & i_4 & i_5 \\ 0 & 0.3 & 0.4 & 0.1 & 0.7 \\ i_2 & 0.3 & 0 & 0.5 & 0.6 & 0.2 \\ i_3 & 0.4 & 0.5 & 0 & 0.8 & 0.9 \\ i_4 & 0.1 & 0.6 & 0.8 & 0 & 0.5 \\ i_5 & 0.7 & 0.2 & 0.9 & 0.5 & 0 \end{bmatrix}$$

$$\hat{r}_{u1i1} = 0 \times 0 + 5 \times 0.3 + 0 \times 0.4 + 0 \times 0.1 + 4 \times 0.7 = 4.3$$

$$\hat{r}_{u1i3} = 0 \times 0.4 + 5 \times 0.5 + 0 \times 0 + 0 \times 0.8 + 4 \times 0.9 = 6.1$$

$$\hat{r}_{u1i4} = ?$$

User's profile

$$R_{u1} = \begin{bmatrix} i_1 & i_2 & i_3 & i_4 & i_5 \\ 0 & 5 & 0 & 0 & 4 \end{bmatrix}$$

$$Sim = \begin{bmatrix} i_1 & i_2 & i_3 & i_4 & i_5 \\ 0 & 0.3 & 0.4 & 0.1 & 0.7 \\ i_2 & 0.3 & 0 & 0.5 & 0.6 & 0.2 \\ i_3 & 0.4 & 0.5 & 0 & 0.8 & 0.9 \\ i_4 & 0.1 & 0.6 & 0.8 & 0 & 0.5 \\ i_5 & 0.7 & 0.2 & 0.9 & 0.5 & 0 \end{bmatrix}$$

$$\hat{r}_{u1i1} = 0 \times 0 + 5 \times 0.3 + 0 \times 0.4 + 0 \times 0.1 + 4 \times 0.7 = 4.3$$

$$\hat{r}_{u1i3} = 0 \times 0.4 + 5 \times 0.5 + 0 \times 0 + 0 \times 0.8 + 4 \times 0.9 = 6.1$$

$$\hat{r}_{u1i4} = 0 \times 0.1 + 5 \times 0.6 + 0 \times 0.8 + 0 \times 0 + 4 \times 0.5 = 5$$

		i_1	i_2	i_3	i_4	i_5
	i_1	0	s_{i1i2}	S_{i1i3}	S_{i1i4}	S _{i1i5}
	i_2	s_{i2i1}	0	S _{i2i3}	s_{i2i4}	S _{i2i5}
Sim =	i_3	s_{i3i1}	s_{i3i2}	0	s_{i3i4}	S _{i3i5}
	i_4	s_{i4i1}	s _{i4i2}	S _{i4i3}	0	S _{i4i5}
	i_5	S_{i5i1}	S _{i5i2}	S _{i5i3}	S _{i5i4}	0

		i_1	i_2	i_3	i_4	i_5
R =	u_1	r_{u1i1}	r_{u1i2}	r_{u1i3}	r_{u1i4}	r_{u1i5}
		1		r_{u2i3}		
	u_3	r_{u3i1}	r_{u3i2}	r_{u3i3}	r_{u3i4}	r_{u3i5}
	u_4	r_{u4i1}	r_{u4i2}	r_{u4i3}	r_{u4i4}	r_{u4i5}

		i_1	i_2	i_3	i_4	i_5
	i_1	0	<i>S</i> _{<i>i</i>1<i>i</i>2}	s_{i1i3}	s_{i1i4}	S _{i1i5}
	i_2	s_{i2i1}	0	s_{i2i3}	s_{i2i4}	S _{i2i5}
Sim =	i_3	s_{i3i1}	S _{i3i2}	0	S _{i3i4}	S _{i3i5}
	i_4	s_{i4i1}	S _{i4i2}	S _{i4i3}	0	S _{i4i5}
	i_5	S_{i5i1}	S _{i5i2}	S_{i5i3}	S _{i5i4}	0

		<i>i</i> ₁	i_2	i_3	i_4	<i>i</i> ₅
R =	u_1	r_{u1i1}	r_{u1i2}	r_{u1i3}	r_{u1i4}	r_{u1i5}
	u_2	r_{u2i1}	r_{u2i2}	r_{u2i3}	r_{u2i4}	r_{u2i5}
	u_3	r_{u3i1}	r_{u3i2}	r_{u3i3}	r_{u3i4}	r_{u3i5}
						r_{u4i5}

		i_1	i_2	i_3	i_4	<i>i</i> ₅
u_1 u_2 $\widehat{R} = u_3$	u_1	?	?	?	?	?
	u_2	?	?	?	?	?
	u_3	?	?	?	?	?
	u_4	?	?	?	?	?

		$/i_1$	i_2	i_3	i_4	i_5
	i_1	0	\$i1i2	s_{i1i3}	s_{i1i4}	S _{i1i5}
	i_2	s_{i2i1}	0	s_{i2i3}	s_{i2i4}	S _{i2i5}
Sim =	i_3	s_{i3i1}	s _{i3i2}	0	s_{i3i4}	S _{i3i5}
	i_4	s_{i4i1}	\$i4i2	s _{i4i3}	0	S _{i4i5}
	i_5	S _{i5i1}	S _{i5i2}	S _{i5i3}	S _{i5i4}	0

		i_1	i_2	i_3	i_4	i_5	
	<i>u</i> ₁ (r_{u1i1}	r_{u1i2}	r_{u1i3}	r_{u1i4}	r_{u1i5}	
	u_2	r_{u2i1}	r_{u2i2}	r_{u2i3}	r_{u2i4}	r_{u2i5}	
R =	u_3	r_{u3i1}	r_{u3i2}	r_{u3i3}	r_{u3i4}	r_{u3i5}	
	u_4	r_{u4i1}	r_{u4i2}	r_{u4i3}	r_{u4i4}	r_{u4i5}	

		i_1	i_2	i_3	i_4	i ₅
	u_1	\hat{r}_{u1i1}	?	?	?	?
	u_2	?	?	?	?	?
$\widehat{R} =$	u_3	?	?	?	?	?
	u_4	?	?	?	?	?

		i_1	i_2	i_3	i_4	<i>i</i> ₅
	i_1	0	s_{i1i2}	\$i1i3	s_{i1i4}	S _{i1i5}
	i_2	s_{i2i1}	0	S _{i2i3}	s_{i2i4}	S _{i2i5}
Sim =	i_3	s_{i3i1}	s _{i3i2}	0	S_{i3i4}	S _{i3i5}
	i_4	s_{i4i1}	S _{i4i2}	\$i4i3	0	S _{i4i5}
	i_5	s_{i5i1}	S _{i5i2}	S _{i5i3}	S _{i5i4}	0

		i_1	i_2	i_3	i_4	i_5
	<i>u</i> ₁ (r_{u1i1}	r_{u1i2}	r_{u1i3}	r_{u1i4}	r_{u1i5}
_	u_2	r_{u2i1}	r_{u2i2}	r_{u2i3}	r_{u2i4}	r_{u2i5}
R =	u_3	r_{u3i1}	r_{u3i2}	r_{u3i3}	r_{u3i4}	r_{u3i5}
	u_4	r_{u4i1}	r_{u4i2}	r_{u4i3}	r_{u4i4}	r_{u4i5}

$$i_1$$
 i_2 i_3 i_4 i_5
 u_1 \hat{r}_{u1i1} \hat{r}_{u1i2} ? ? ?
 u_2 ? ? ? ? ?
 u_3 ? ? ? ? ?
 u_4 ? ? ? ? ?

		i_1	i_2	$/i_3$	i_4	i_5
	i_1	0	s_{i1i2}	s_{i1i3}	\$i1i4	S _{i1i5}
	i_2	s_{i2i1}	0	S_{i2i3}	S _{i2i4}	S _{i2i5}
Sim =	i_3	s_{i3i1}	s_{i3i2}	0	S _{i3i4}	S _{i3i5}
	i_4	s_{i4i1}	s_{i4i2}	S _{i4i3}	0	S _{i4i5}
	i_5	s_{i5i1}	s_{i5i2}	S _{i5i3}	S _{i5i4}	0

		i_1	i_2	i_3	i_4	i_5
R =	<i>u</i> ₁ (r_{u1i1}	r_{u1i2}	r_{u1i3}	r_{u1i4}	r_{u1i5}
		r_{u2i1}	r_{u2i2}	r_{u2i3}	r_{u2i4}	r_{u2i5}
	u_3	r_{u3i1}	r_{u3i2}	r_{u3i3}	r_{u3i4}	r_{u3i5}
	u_4	r_{u4i1}	r_{u4i2}	r_{u4i3}	r_{u4i4}	r_{u4i5}

<i>i</i> ₁	i_2	i_3	i_4	<i>i</i> ₅
\hat{r}_{u1i1}	\hat{r}_{u1i2}	\hat{r}_{u1i3}	?	?
?	?	?	?	?
?	?	?	?	?
?	?	?	?	?

		i_1	i_2	i_3	$/i_4$	i_5
	i_1	0	s_{i1i2}	s_{i1i3}	s_{i1i4}	\$i1i5
	i_2	s_{i2i1}	0	s_{i2i3}	s _{i2i4}	S _{i2i5}
Sim =	i_3	s_{i3i1}	s_{i3i2}	0	S_{i3i4}	S _{i3i5}
	i_4	s_{i4i1}	s _{i4i2}	s_{i4i3}	0	\$i4i5
	i_5	S_{i5i1}	S _{i5i2}	S_{i5i3}	S _{i5i4}	0
			•	•		

		i_1	i_2	i_3	i_4	i_5
R =	<i>u</i> ₁ (r_{u1i1}	r_{u1i2}	r_{u1i3}	r_{u1i4}	r_{u1i5}
					r_{u2i4}	
	u_3	r_{u3i1}	r_{u3i2}	r_{u3i3}	r_{u3i4}	r_{u3i5}
	u_4	r_{u4i1}	r_{u4i2}	r_{u4i3}	r_{u4i4}	r_{u4i5}

$$i_1$$
 i_2 i_3 i_4 i_5
 u_1 \hat{r}_{u1i1} \hat{r}_{u1i2} \hat{r}_{u1i3} \hat{r}_{u1i4} ?
 u_2 ? ? ? ? ?
 u_3 ? ? ? ? ?
 u_4 ? ? ? ? ?

		<i>i</i> ₁	i_2	i_3	i_4	i_5
	i_1	0	S_{i1i2}	s_{i1i3}	s_{i1i4}	S_{i1i5}
	i_2	s_{i2i1}	0	s_{i2i3}	s_{i2i4}	S _{i2i5}
Sim =	i_3	s_{i3i1}	s_{i3i2}	0	S _{i3i4}	S _{i3i5}
	i_4	s_{i4i1}	s_{i4i2}	s_{i4i3}	0	S _{i4i5}
	i_5	S_{i5i1}	S_{i5i2}	s _{i5i3}	S _{i5i4}	0

		i_1	i_2	i_3	i_4	i_5
	<i>u</i> ₁ (r_{u1i1}	r_{u1i2}	r_{u1i3}	r_{u1i4}	r_{u1i5}
				r_{u2i3}		
R =	u_3	r_{u3i1}	r_{u3i2}	r_{u3i3}	r_{u3i4}	r_{u3i5}
	u_4	r_{u4i1}	r_{u4i2}	r_{u4i3}	r_{u4i4}	r_{u4i5}

$$i_1$$
 i_2 i_3 i_4 i_5
 u_1 \hat{r}_{u1i1} \hat{r}_{u1i2} \hat{r}_{u1i3} \hat{r}_{u1i4} \hat{r}_{u1i5}
 u_2 ? ? ? ? ?
 u_3 ? ? ? ? ?

		i_1	i_2	i_3	i_4	i_5
	i_1	0	<i>S</i> _{<i>i</i>1<i>i</i>2}	s_{i1i3}	s_{i1i4}	S _{i1i5}
	i_2	s_{i2i1}	0	S _{i2i3}	s_{i2i4}	S _{i2i5}
Sim =	i_3	s_{i3i1}	s _{i3i2}	0	s_{i3i4}	S _{i3i5}
	i_4	s_{i4i1}	s _{i4i2}	s _{i4i3}	0	S _{i4i5}
	i_5	S _{i5i1}	S _{i5i2}	S _{i5i3}	S _{i5i4}	0

		i_1	i_2	i_3	i_4	i_5
R =	u_1	r_{u1i1}	r_{u1i2}	r_{u1i3}	r_{u1i4}	r_{u1i5}
						r_{u2i5}
	u_3	r_{u3i1}	r_{u3i2}	r_{u3i3}	r_{u3i4}	r_{u3i5}
		1			1	r_{u4i5}

$$\hat{R} = R \times Sim$$

Similarity matrix is the core of the algorithm

		i_1	i_2	i_3	i_4	i_5
R =	u_1	r_{u1i1}	r_{u1i2}	r_{u1i3}	r_{u1i4}	r_{u1i5}
		r_{u2i1}				
	u_3	r_{u3i1}	r_{u3i2}	r_{u3i3}	r_{u3i4}	r_{u3i5}
	u_4	r_{u4i1}	r_{u4i2}	r_{u4i3}	r_{u4i4}	r_{u4i5}

$$i_{1} \quad i_{2} \quad i_{3} \quad i_{4} \quad i_{5}$$

$$i_{1} \quad 0 \quad s_{i1i2} \quad s_{i1i3} \quad s_{i1i4} \quad s_{i1i5}$$

$$i_{2} \quad s_{i2i1} \quad 0 \quad s_{i2i3} \quad s_{i2i4} \quad s_{i2i5}$$

$$Sim = i_{3} \quad s_{i3i1} \quad s_{i3i2} \quad 0 \quad s_{i3i4} \quad s_{i3i5}$$

$$i_{4} \quad s_{i4i1} \quad s_{i4i2} \quad s_{i4i3} \quad 0 \quad s_{i4i5}$$

$$i_{5} \quad s_{i5i1} \quad s_{i5i2} \quad s_{i5i3} \quad s_{i5i4} \quad 0$$

		ι_1	ι_2	ι_3	ι ₄	ι_5
	u_1	\hat{r}_{u1i1}	\hat{r}_{u1i2}	\hat{r}_{u1i3}	\hat{r}_{u1i4}	\hat{r}_{u1i5}
	u_2	\hat{r}_{u2i1}	\hat{r}_{u2i2}	\hat{r}_{u2i3}	\hat{r}_{u2i4}	\hat{r}_{u2i5}
$\widehat{R} =$	u_3	\hat{r}_{u3i1}	\hat{r}_{u3i2}	\hat{r}_{u3i3}	\hat{r}_{u3i4}	\hat{r}_{u3i5}
	u_4	\hat{r}_{u4i1}	\hat{r}_{u4i2}	\hat{r}_{u4i3}	\hat{r}_{u4i4}	\hat{r}_{u4i5}

- Computation of item-item similarity matrix is expensive.
 - Similarity value needs to be computed beween all pairs of items.

- Computation of item-item similarity matrix is expensive.
 - Similarity value needs to be computed beween all pairs of items.
 - For example, when number of items is 1 (n = 6):
 - Total entries: $6 \times 6 = 36$

- Computation of item-item similarity matrix is expensive.
 - Similarity value needs to be computed beween all pairs of items.
 - For example, when number of items is 1 (n = 6):
 - Total entries: $6 \times 6 = 36$
 - Main diagonal entries are zero: 36 6 = 30

0					
	0				
		0			
			0		
				0	
					0

- Computation of item-item similarity matrix is expensive.
 - Similarity value needs to be computed beween all pairs of items.
 - For example, when number of items is 1 (n = 6):
 - Total entries: $6 \times 6 = 36$
 - Main diagonal entries are zero: 36 6 = 30
 - Similarity matrix is symmetry: $\frac{30}{2} = 15$

Limitations

- Computation of item-item similarity matrix is expensive.
 - Similarity value needs to be computed beween all pairs of items.
 - For example, when number of items is 1 (n = 6):
 - Total entries: $6 \times 6 = 36$
 - Main diagonal entries are zero: 36 6 = 30
 - Similarity matrix is symmetry: $\frac{30}{2} = 15$
 - \triangleright Therefore, for n items, the number of required computation is

$(n \times n)$	-n
2	

Limitations

- Computation of item-item similarity matrix is expensive.
 - Similarity value needs to be computed beween all pairs of items.
 - For example, when number of items is 1 (n = 6):
 - Total entries: $6 \times 6 = 36$
 - Main diagonal entries are zero: 36 6 = 30
 - Similarity matrix is symmetry: $\frac{30}{2} = 15$
 - \triangleright Therefore, for n items, the number of required computation is

	0					
		0				
I			0			
I				0		
Ī					0	
						0

$$\frac{(n\times n)-n}{2}$$

For example, for 100,000 items, the similarity matrix requires 4,999,950,000 computations.

Limitations

- Similarity computation is sometimes impossible due to *sparsity* issue.
 - Sparsity refers to the percentage of *missing values* in rating matrix.
 - When the rating matrix is highly sparse, sometimes no neighbor can be found for a target item.
 - Therefore, the similarity computation and rating prediction is impossible.

SLIM algorithm

- Sparse LInear Method
- SLIM improves item-based neighborhood model in creating item-item similarity matrix by addressing the aforementioned limitations.
- Instead of computing similarity value between each pair of items, it learns the similarity matrix through an optimization process.

• In SLIM, similarity matrix is learned by minimizing the actual rating given by a user on an item with the predicted rating

Original rating matrix = Predicted rating matrix

$$R = R \times Sim$$
 or $R - R \times Sim = 0$
Ideal, but not achievable. Therefore, $R - R \times Sim \approx 0$

minimize
$$R - R \times Sim$$

$$R = R \times Sim$$
 or $R - R \times Sim = 0$
Ideal, but not achievable. Therefore, $R - R \times Sim \approx 0$

minimize
$$(R - R \times Sim)^2 + regularization$$

1) Initialize matrix Sim with some random values

1) Initialize matrix *Sim* with some random values

For each available rating provided by user u on item i in R, iteratively update Sim as follows:

1) Initialize matrix *Sim* with some random values

For each available rating provided by user u on item i in R, iteratively update Sim as follows:

2) Predict the rating value: $\hat{R}_{ui} = R_u \times Sim_i$

1) Initialize matrix *Sim* with some random values

For each available rating provided by user u on item i in R, iteratively update Sim as follows:

- 2) Predict the rating value: $\hat{R}_{ui} = R_u \times Sim_i$
- 3) Compute error by comparing \hat{R}_{ui} and R_{ui}

1) Initialize matrix *Sim* with some random values

For each available rating provided by user u on item i in R, iteratively update Sim as follows:

- Predict the rating value: $\hat{R}_{ui} = R_u \times Sim_i$
- 3) Compute *error* by comparing \hat{R}_{ui} and R_{ui}
- 4) Update matrix Sim based on observed error

- Less computation is needed for building the similarity matrix compared to item-based neighborhood method
 - At most, the number of computation is the number of available ratings
 - Often even less because the learning process is performed on a sample of the available ratings

- Less computation is needed for building the similarity matrix compared to item-based neighborhood method
 - At most, the number of computation is the number of available ratings
 - Often even less because the learning process is performed on a sample of the available ratings
- Unlike item-based neighborhood method, SLIM can approximately compute the similarity value between all items
 - SLIM is able to capture hidden relationships/similarities between items

- Less computation is needed for building the similarity matrix compared to item-based neighborhood method
 - At most, the number of computation is the number of available ratings
 - Often even less because the learning process is performed on a sample of the available ratings
- Unlike item-based neighborhood method, SLIM can approximately compute the similarity value between all items
 - SLIM is able to capture hidden relationships/similarities between items
 - Assume we want to compute the similarity between item A and item C, but there is no neighbor between them

- Less computation is needed for building the similarity matrix compared to item-based neighborhood method
 - At most, the number of computation is the number of available ratings
 - Often even less because the learning process is performed on a sample of the available ratings
- Unlike item-based neighborhood method, SLIM can approximately compute the similarity value between all items
 - SLIM is able to capture hidden relationships/similarities between items
 - Assume we want to compute the similarity between item A and item C, but there is no neighbor between them
 - However, we know the similarity between A to B and C to B

- Less computation is needed for building the similarity matrix compared to item-based neighborhood method
 - At most, the number of computation is the number of available ratings
 - Often even less because the learning process is performed on a sample of the available ratings
- Unlike item-based neighborhood method, SLIM can approximately compute the similarity value between all items
 - SLIM is able to capture hidden relationships/similarities between items
 - Assume we want to compute the similarity between item A and item C, but there is no neighbor between them
 - However, we know the similarity between A to B and C to B
 - Then, can we approximately estimate the similarity between A and B?

Summary

- Item-based neighborhood method showed superior performance.
- SLIM algorithm improves item-based method in two aspects
 - It computes similarity matrix with less computations
 - It does not require neighbors for computing similarity values and can estimate the similarity value between all pair of items.

Advanced Topic in Recommender Systems

Neighborhood Methods

Masoud Mansoury
AMLab, University of Amsterdam
Discovery Lab, Elsevier