Cálculo I - C

Slides de apoio às aulas

Complementos de funções reais de variável real

Departamento de Matemática Universidade de Aveiro

Slides com ligeiras adaptações de outros já existentes fortemente baseados nos textos da Prof.

Doutora Virgínia Santos (indicados na bibliografia).

O objetivo deste capítulo é complementar o estudo de **funções reais de variável real** (f.r.v.r). Em particular, iremos estudar as funções trigonométricas inversas, as funções hiperbólicas e os Teoremas de Bolzano-Cauchy, Weierstrass, Fermat, Rolle, Lagrange e Cauchy. Iremos também usar a Regra de Cauchy no cálculo de limites e fazer uma breve referência à fórmula de Taylor e à aproximação linear de uma dada função.

Nota: Iremos supor que os estudantes conhecem as definições de limite, continuidade e diferenciabilidade estudadas no ensino secundário. Para recordar estes conceitos, podem consultar os Apontamentos "Cálculo I - Cálculo com funções de uma variável", Virgínia Santos (2009) e os Slides 0 de Cálculo I-C (disponíveis em elearning.ua.pt)

Domínio, contradomínio, gráfico e restrição de uma f.r.v.r.

Definição: Seja $\emptyset \neq A \subseteq \mathbb{R}$. Uma função real f definida em A é uma correspondência que a cada elemento $x \in A$ associa um único elemento $f(x) \in \mathbb{R}$. Escrevemos $f: A \to \mathbb{R}$ e, sendo $a \in A$, chamamos a b = f(a) a imagem de a por f. O conjunto A é chamado de domínio de f e representa-se habitualmente por D_f . O conjunto das imagens $f(A) := \{f(x) : x \in A\}$ é designado por contradomínio de f e denota-se por CD_f .

Definição: Chama-se gráfico da função $f: D_f \subseteq \mathbb{R} \to \mathbb{R}$ ao subconjunto de \mathbb{R}^2 definido por $G_f := \{(x, f(x)) \in \mathbb{R}^2 : x \in D_f\}.$

Definição: Seja $f: D_f \subseteq \mathbb{R} \to \mathbb{R}$ e $\emptyset \neq B \subseteq D_f$. Definimos a restrição de f a B como sendo a função $g: B \to \mathbb{R}$ tal que g(x) = f(x), para todo o $x \in B$, e escrevemos $g = f|_{\mathbb{R}}$

UA 2024/2025 Cálculo I - C Slides 1 3 / 67

Função composta

Definição: Dadas duas funções $f:D_f \subseteq \mathbb{R} \to \mathbb{R}$ e $g:D_g \subseteq \mathbb{R} \to \mathbb{R}$, define-se a função composta de g após f como sendo a função

$$g \circ f : D_{g \circ f} \to \mathbb{R}$$

onde

$$D_{g \circ f} = \{ x \in \mathbb{R} : x \in D_f \land f(x) \in D_g \}$$

e

$$(g \circ f)(x) = g(f(x)).$$

Função inversa

Definição: $f: D_f \subseteq \mathbb{R} \longrightarrow \mathbb{R}$ diz-se uma função injetiva se, para todo o $x_1, x_2 \in D_f$,

$$f(x_1) = f(x_2) \Longrightarrow x_1 = x_2$$

ou, equivalentemente, se

$$x_1 \neq x_2 \Longrightarrow f(x_1) \neq f(x_2).$$

Definição: Seja $f\colon D_f\subseteq \mathbb{R} \to \mathbb{R}$ uma função injetiva. A função

$$f^{-1}: CD_f \to \mathbb{R}$$
$$y \mapsto x$$

onde x é tal que f(x) = y, é designada por função inversa de f.

Dizemos que uma função é invertível se admite inversa.

UA 2024/2025 Cálculo I - C Slides 1 5 / 67

Função inversa

Consequências da definição:

- f é invertível sse f é injetiva;
- O domínio de f^{-1} é CD_f (isto é, $D_{f^{-1}} = CD_f$);
- O contradomínio de f^{-1} é D_f (isto é, $CD_{f^{-1}} = D_f$);
- $\bullet \ \forall x \in D_f \quad f^{-1} \circ f(x) = x;$
- $\bullet \ \forall y \in CD_f \quad f \circ f^{-1}(y) = y;$
- $\forall x \in D_f \ \forall y \in CD_f \ f(x) = y \Leftrightarrow x = f^{-1}(y);$
- Os gráficos de f e f^{-1} são simétricos relativamente à reta y = x.

Função inversa

Algumas propriedades das funções invertíveis:

Proposição: Se $f:D_f\subseteq\mathbb{R}\longrightarrow\mathbb{R}$ é estritamente monótona em D_f , então f é injetiva.

Proposição: Se $f:D_f\subseteq\mathbb{R}\longrightarrow\mathbb{R}$ é estritamente crescente (resp. estritamente decrescente) em D_f , então f^{-1} é estritamente crescente (resp. estritamente decrescente) em CD_f .

Proposição: Seja f uma função contínua e estritamente crescente (resp. estritamente decrescente) num intervalo [a,b]. Sejam $c,d\in\mathbb{R}$ tais que f(a)=c e f(b)=d. Então:

- (i) f^{-1} é estritamente crescente em [c,d] (resp. estritamente decrescente em [d,c]);
- (ii) f^{-1} é contínua.

Função exponencial de base *e*

Função exponencial de base *e*:

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
$$x \longmapsto e^{x}$$

onde e é o número de Neper, i.e., $\lim_{n\to+\infty} \left(1+\frac{1}{n}\right)^n = e$.

f é estritamente crescente e, portanto, invertível. A sua inversa é a função

$$f^{-1}: \mathbb{R}^+ \longrightarrow \mathbb{R}$$
$$x \longmapsto y = \ln x$$

onde $y = \ln x$ se e só se $e^y = x$, para todo o $y \in \mathbb{R}$ e todo o $x \in \mathbb{R}^+$.

8 / 67

Função logaritmo neperiano

Nota: $\ln x$ lê-se logaritmo de x ou logaritmo neperiano de x ou logaritmo natural de x.

Propriedades do logaritmo neperiano: Para todos $x, y \in \mathbb{R}^+$ e todo $\alpha \in \mathbb{R}$,

Função exponencial de base a

Função exponencial de base a (para a > 0 e $a \neq 1$):

$$g: \mathbb{R} \longrightarrow \mathbb{R}$$
$$x \longmapsto a^x$$

Se a > 1, g é estritamente crescente, e se a < 1, g é estritamente decrescente. Nos dois casos, g é portanto invertível. A inversa de g é a função

$$g^{-1}: \mathbb{R}^+ \longrightarrow \mathbb{R}$$
 $x \longmapsto y = \log_a x$

onde $y = \log_a x$ se e só se $a^y = x$, para todo o $y \in \mathbb{R}$ e todo o $x \in \mathbb{R}^+$.

Nota: $\log_a x$ lê-se logaritmo de x na base a.

UA 2024/2025 Cálculo I - C Slides 1 10 / 67

Função exponencial e logarítimica de base a

Ilustração gráfica das funções exponencial e logarítmica de base a:

Caso a > 1:

Caso 0 < a < 1:

Propriedades dos logaritmos

Propriedades dos logaritmos: Para todos $x, y \in \mathbb{R}^+$ e todo $\alpha \in \mathbb{R}$

$$\bullet \log_a x = \frac{\log_b x}{\log_b a},$$

onde
$$a, b \in \mathbb{R}^+ \setminus \{1\}$$
.

12 / 67

Função seno

Função seno:

Algumas propriedades da função seno:

- Domínio: R;
- Contradomínio: [-1, 1];
- Função periódica de período 2π , isto é,

$$\operatorname{sen} x = \operatorname{sen} (x + 2k\pi)$$
, qualquer que seja $x \in \mathbb{R}$ e $k \in \mathbb{Z}$;

Função ímpar.

UA 2024/2025 Cálculo I - C Slides 1 13 / 67

Esboço gráfico da função seno:

14 / 67

Função arco seno

A função seno não é injetiva em \mathbb{R} , mas a restrição

$$f: \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \longrightarrow \mathbb{R}$$

$$x \longmapsto \operatorname{sen} x$$

já é injetiva. f é a chamada restrição principal da função seno.

A inversa de f é chamada de função arco seno, denota-se por arcsen, e define-se do seguinte modo

$$arcsen : [-1,1] \longrightarrow \mathbb{R}$$

$$x \longmapsto y = arcsen x$$

onde

$$y = arcsen x$$
 sse $sen y = x,$ para todos os $x \in [-1, 1]$ e $y \in [-\frac{\pi}{2}, \frac{\pi}{2}].$

Nota: $\arcsin x$ lê-se arco cujo seno é x.

UA 2024/2025 Cálculo I - C Slides 1 15 / 67

Função arco seno

•
$$arcsen(sen x) = x$$
, $\forall x \in [-\frac{\pi}{2}, \frac{\pi}{2}]$

•
$$\operatorname{sen}(\operatorname{arcsen} x) = x$$
, $\forall x \in [-1, 1]$

Esboço gráfico da função arco seno

16 / 67

Função cosseno

Função cosseno:

$$\cos: \mathbb{R} \longrightarrow \mathbb{R}$$
$$x \longmapsto \cos x$$

Algumas propriedades da função cosseno:

- Domínio: R;
- Contradomínio: [-1, 1];
- Função periódica de período 2π , isto é,

$$\cos x = \cos(x + 2k\pi)$$
, qualquer que seja $x \in \mathbb{R}$ e $k \in \mathbb{Z}$;

Função par.

Esboço gráfico da função cosseno:

UA 2024/2025 Cálculo I - C Slides 1

18 / 67

Função arco cosseno:

A função cosseno não é injetiva em \mathbb{R} , mas a restrição

$$h: [0,\pi] \longrightarrow \mathbb{R}$$
$$x \longmapsto \cos x$$

já é injectiva. h é a chamada restrição principal da função cosseno. A inversa de h é chamada função arco cosseno, denota-se por arccos, e define-se do seguinte modo

$$\begin{array}{ccc}
\operatorname{arccos} & : & [-1,1] & \longrightarrow & \mathbb{R} \\
 & x & \longmapsto & y = \arccos x
\end{array}$$

onde

$$y = \arccos x \text{ sse } \cos y = x, \text{ para todos os } x \in [-1, 1] \text{ e } y \in [0, \pi].$$

Nota: $\arccos x$ lê-se arco cujo cosseno é x.

UA 2024/2025 Cálculo I - C Slides 1 19 / 67

Função arco cosseno

- $\arccos(\cos x) = x$, $\forall x \in [0, \pi]$
- $\cos(\arccos x) = x$, $\forall x \in [-1, 1]$

Esboço gráfico da função arco cosseno

UA 2024/2025 Cálculo I - C Slides 1 20 / 67

Função tangente

Função tangente:

$$\text{tg} : D \subseteq \mathbb{R} \longrightarrow \mathbb{R} \\
 x \longmapsto \text{tg } x = \frac{\sin x}{\cos x}$$

Algumas propriedades da função tangente:

- Domínio: $D = \{x \in \mathbb{R} : x \neq \frac{\pi}{2} + k\pi, \ k \in \mathbb{Z}\};$
- Contradomínio: ℝ;
- Função periódica de período π , isto é,

$$\operatorname{tg} x = \operatorname{tg} (x + k\pi)$$
, qualquer que seja $x \in D$ e $k \in \mathbb{Z}$;

• Função ímpar.

UA 2024/2025 Cálculo I - C Slides 1 21 / 67

Esboço gráfico da função tangente

Função arco tangente

A restrição principal da função tangente

$$\begin{array}{ccc} h : &] - \frac{\pi}{2}, \frac{\pi}{2}[& \longrightarrow & \mathbb{R} \\ & x & \longmapsto & \operatorname{tg} x \end{array}$$

é injetiva. A inversa de *h* é chamada função arco tangente, denota-se por arctg, e define-se do seguinte modo

$$arctg : \mathbb{R} \longrightarrow \mathbb{R}
 x \longmapsto y = arctg x$$

onde

$$y = \operatorname{arctg} x \text{ sse } \operatorname{tg} y = x, \ \operatorname{para todos} \operatorname{os} x \in \mathbb{R} \ \operatorname{e} \ y \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[.$$

Nota: arctg x lê-se arco cuja tangente é x.

UA 2024/2025 Cálculo I - C Slides 1 23 / 67

Função arco tangente

•
$$arctg(tgx) = x$$
, $\forall x \in]-\frac{\pi}{2}, \frac{\pi}{2}[$

•
$$\operatorname{tg}(\operatorname{arctg} x) = x$$
, $\forall x \in \mathbb{R}$

Esboço gráfico da função arco tangente

UA 2024/2025

Função cotangente

Função cotangente:

$$\cot g : D \subseteq \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \longmapsto \cot g \ x = \frac{\cos x}{\sin x}$$

Algumas propriedades da função cotangente:

- Domínio: $D = \{x \in \mathbb{R} : x \neq k\pi, \ k \in \mathbb{Z}\};$
- Contradomínio: R;
- Função periódica de período π , isto é,

$$\cot x = \cot (x + k\pi)$$
, qualquer que seja $x \in D$ e $k \in \mathbb{Z}$;

• Função ímpar.

UA 2024/2025 Cálculo I - C Slides 1 25 / 67

Esboço gráfico da função cotangente

Função arco cotangente

A restrição principal da função cotangente

$$h:]0, \pi[\longrightarrow \mathbb{R}$$
$$x \longmapsto \cot g x$$

é injetiva. A inversa de h é chamada função arco cotangente, denota-se por arccotg, e define-se do seguinte modo

onde

$$y = \operatorname{arccotg} x$$
 sse $\operatorname{cotg} y = x$, para todos os $x \in \mathbb{R}$ e $y \in]0, \pi[$.

Nota: $\operatorname{arccotg} x$ lê-se arco cuja cotangente é x.

UA 2024/2025 Cálculo I - C Slides 1 27 / 67

Função arco cotangente

- $\operatorname{arccotg}(\operatorname{cotg} x) = x, \quad \forall x \in]0, \pi[$
- $\cot g (\operatorname{arccotg} x) = x$, $\forall x \in \mathbb{R}$

Esboço gráfico da função arco cotangente

UA 2024/2025 Cálculo I - C Slides 1 28 / 67

Funções inversas das funções trigonométricas - resumo

Função	Domínio	Contradomínio
arcsen x	[-1, 1]	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$
$\arccos x$	[-1, 1]	$[0,\pi]$
arctg x	\mathbb{R}	$\left]-\frac{\pi}{2},\frac{\pi}{2}\right[$
arccotg x	\mathbb{R}	$]0,\pi[$

Função secante

Função secante:

$$\sec : D \subseteq \mathbb{R} \longrightarrow \mathbb{R}$$
$$x \longmapsto \sec x = \frac{1}{\cos x}$$

Algumas propriedades da função secante:

- Domínio: $D = \{x \in \mathbb{R} : x \neq \frac{\pi}{2} + k\pi, \ k \in \mathbb{Z}\};$
- Contradomínio: $]-\infty,-1] \cup [1,+\infty[;$
- Função periódica de período 2π , isto é,

$$\sec x = \sec(x + 2k\pi)$$
, qualquer que seja $x \in D$ e $k \in \mathbb{Z}$;

Função par.

UA 2024/2025 Cálculo I - C Slides 1 30 / 67

Esboço gráfico da função secante

Função cossecante

Função cossecante:

Algumas propriedades da função cossecante:

- Domínio: $D = \{x \in \mathbb{R} : x \neq k\pi, \ k \in \mathbb{Z}\};$
- Contradomínio: $]-\infty,-1] \cup [1,+\infty[;$
- Função periódica de período 2π , isto é,

$$\csc x = \csc (x + 2k\pi)$$
, qualquer que seja $x \in D$ e $k \in \mathbb{Z}$;

Função ímpar.

UA 2024/2025 Cálculo I - C Slides 1 32 / 67

Esboço gráfico da função cossecante

Algumas fórmulas trigonométricas

②
$$1 + \operatorname{tg}^2 x = \sec^2 x$$
, para $x \neq \frac{\pi}{2} + k\pi$, $k \in \mathbb{Z}$

$$3 + \cot^2 x = \csc^2 x$$
, para $x \neq k\pi$, $k \in \mathbb{Z}$

$$\cos(2x) = \cos^2 x - \sin^2 x$$

$$\cos^2 x = \frac{1 + \cos(2x)}{2}$$

Funções hiperbólicas

Designa-se por função seno hiperbólico à função definida em $\mathbb R$ por

$$senh x = \frac{e^x - e^{-x}}{2}.$$

Designa-se por função cosseno hiperbólico à função definida em $\mathbb R$ por

$$\cosh x = \frac{e^x + e^{-x}}{2}.$$

Observações: Facilmente se verifica que:

- a função cosseno hiperbólico é uma função par e o seu contradomínio é $[1, +\infty[$.

35 / 67

Funções hiperbólicas

Com o uso destas duas funções podem definir-se as seguintes funções:

- Tangente hiperbólica: $tgh x = \frac{\sinh x}{\cosh x}$
- Cotangente hiperbólica: $\operatorname{cotgh} x = \frac{\cosh x}{\operatorname{senh} x}$, se $x \neq 0$.
- Secante hiperbólica: $\operatorname{sech} x = \frac{1}{\cosh x}$
- Cossecante hiperbólica: $\operatorname{cosech} x = \frac{1}{\operatorname{senh} x}$, se $x \neq 0$.

UA 2024/2025 Cálculo I - C

Funções hiperbólicas

Tal como ocorre com as funções trigonométricas, existem várias relações entre as funções hiperbólicas:

$$1 - tgh^2 x = sech^2 x$$

•
$$\operatorname{cotgh}^2 x - 1 = \operatorname{cosech}^2 x$$

•
$$\operatorname{senh}(x \pm y) = \operatorname{senh} x \cosh y \pm \cosh x \operatorname{senh} y$$

•
$$\cosh(x \pm y) = \cosh x \cosh y \pm \sinh x \operatorname{senh} y$$

•
$$tgh(x \pm y) = \frac{tgh x \pm tgh y}{1 \pm tgh x tgh y}$$

•
$$\operatorname{senh}(2x) = 2 \operatorname{senh} x \cosh x$$

$$\cosh(2x) = \cosh^2 x + \sinh^2 x$$

Teorema de Bolzano-Cauchy

Teorema (Teorema de Bolzano-Cauchy ou Teorema dos valores intermédios): Seja $f: [a,b] \to \mathbb{R}$ uma função. Se f é contínua em [a,b] e $f(a) \neq f(b)$, então, para todo o g entre g e g e g b, existe g e g tal que g contínua em g contínua em g e g contínua em g e

Corolário: Seja $f:[a,b] \longrightarrow \mathbb{R}$ uma função contínua. Se $f(a) \cdot f(b) < 0$, então existe pelo menos um $c \in]a,b[$ tal que f(c)=0.

Corolário: Se f é uma função contínua num dado intervalo I, então f(I) é também um intervalo.

UA 2024/2025 Cálculo I - C Slides 1 38 / 67

Mínimo e máximo de uma função

Definição: Sejam $f: D_f \subseteq \mathbb{R} \longrightarrow \mathbb{R}$ e $a \in D_f$.

• a é um maximizante local (resp. minimizante local) de f se existir $\delta > 0$ tal que

$$f(a) \ge f(x), \ \forall x \in]a - \delta, a + \delta[\cap D_f]$$
(resp. $f(a) \le f(x), \ \forall x \in]a - \delta, a + \delta[\cap D_f]$).

No caso de a ser um maximizante local (resp. minimizante local) de f, f(a) diz-se um máximo local (resp. mínimo local) de f.

• a é um maximizante global (resp. minimizante global) de f se

$$\forall x \in D_f \ f(x) \le f(a) \ \ (\text{resp.} \ \forall x \in D_f \ f(x) \ge f(a)) \ .$$

Caso a seja um maximizante global (resp. minimizante global) de f dizemos que f(a) é o máximo global (resp. o mínimo global) de f.

UA 2024/2025 Cálculo I - C Slides 1 39 / 67

Extremos e extremantes

Aos máximos e mínimos locais chamamos extremos locais.
 Ao máximo e mínimo global chamamos extremos globais.

Aos maximizantes e minimizantes locais chamamos extremantes locais.
 Aos maximizantes e minimizantes globais chamamos extremantes globais.

Teorema de Weierstrass

Teorema (Teorema de Weierstrass ou Teorema dos valores máximo e mínimo): Seja $f: D_f \subseteq \mathbb{R} \longrightarrow \mathbb{R}$ uma função contínua. Se D_f é um conjunto fechado e limitado, então f atinge em D_f o máximo e mínimo globais (isto é, existem $x_1, x_2 \in D_f$ tais que $f(x_1) \leq f(x_2), \forall x \in D_f$).

UA 2024/2025 Cálculo I - C Slides 1 41 / 67

Regra da cadeia ou derivada da função composta

Teorema: Sejam $f:D_f\subseteq\mathbb{R}\longrightarrow\mathbb{R}$ e $g:D_g\subseteq\mathbb{R}\longrightarrow\mathbb{R}$ duas funções tais que $g \circ f$ está definida. Se f é diferenciável em a e g é diferenciável em f(a), então $g \circ f$ é diferenciável em a e

$$(g \circ f)'(a) = g'(f(a)) \cdot f'(a).$$

Cálculo I - C Slides 1 42 / 67

Derivadas de algumas funções compostas

Sejam f uma função diferenciável, $p \in \mathbb{R}$ e $a \in \mathbb{R}^+ \setminus \{1\}$

•
$$(f^p(x))' = pf^{p-1}(x)f'(x)$$

•
$$(e^{f(x)})' = f'(x) e^{f(x)}$$

•
$$(a^{f(x)})' = f'(x) a^{f(x)} \ln a$$

$$\bullet \ (\ln|f(x)|)' = \frac{f'(x)}{f(x)}$$

$$\bullet (\operatorname{sen}(f(x)))' = f'(x)\cos(f(x))$$

$$\bullet (\cos(f(x)))' = -f'(x) \operatorname{sen}(f(x))$$

•
$$(\operatorname{tg}(f(x)))' = f'(x) \operatorname{sec}^2(f(x))$$

$$(\cot g(f(x)))' = -f'(x) \operatorname{cosec}^{2}(f(x))$$

$$\bullet (\sec(f(x)))' = f'(x)\sec(f(x))\operatorname{tg}(f(x))$$

•
$$(\operatorname{cosec}(f(x)))' = -f'(x)\operatorname{cosec}(f(x))\operatorname{cotg}(f(x))$$

UA 2024/2025 Cálculo I - C Slides 1 43 / 67

Exemplos

Exemplos:

• A f.r.v.r. definida por $f(x) = e^{x^2} \cos x$ é diferenciável em todo o $x \in \mathbb{R}$ e

$$f'(x) = (e^{x^2})' \cos x - e^{x^2} \sin x$$
$$= 2xe^{x^2} \cos x - e^{x^2} \sin x$$

para todo o $x \in \mathbb{R}$.

• A f.r.v.r. definida por $g(x) = \frac{\ln(3x)}{x}$ é diferenciável em todo o $x \in \mathbb{R}^+$ e $g'(x) = \frac{1 - \ln(3x)}{x^2}, \ x \in \mathbb{R}^+.$

UA 2024/2025 Cálculo I - C Slides 1 44 / 67

Exercícios

Exercício: Determine a derivada das seguintes funções:

(a)
$$f(x) = (x-1)(x^2+3x)$$

(b)
$$f(x) = \frac{\cos x}{1 - \sin x}$$

(c)
$$f(x) = (1 - x^2) \cdot \ln x$$

(d)
$$f(x) = \sqrt[3]{(2x-1)^2}$$

(e)
$$f(x) = x^2 e^{x^2}$$

(f)
$$f(x) = \cos(\ln(x^3))$$

Exercício: Calcule $(g \circ f)'(0)$ sendo $f \in g$ as funções definidas por:

$$f(x) = \begin{cases} x^2 \sin x & \text{se } x < 0 \\ x^2 & \text{se } x \ge 0 \end{cases}$$

e

$$g(x) = \begin{cases} \frac{x}{x-1} & \text{se } x \neq 1\\ 1 & \text{se } x = 1. \end{cases}$$

Teorema da derivada da função inversa

Teorema: Seja $f:[a,b] \longrightarrow \mathbb{R}$ uma função estritamente monótona e contínua. Se f é diferenciável em $x_0 \in]a,b[$ e $f'(x_0) \neq 0$, então f^{-1} é diferenciável em $y_0 = f(x_0)$ e

$$(f^{-1})'(f(x_0)) = \frac{1}{f'(x_0)}$$
.

Nota: Observe-se que o teorema anterior permite determinar a derivada de f^{-1} num dado ponto $f(x_0)$ sem conhecermos a expressão designatória da função f^{-1} , mas conhecendo apenas $f'(x_0)$, no caso em que esta derivada é não nula.

Exercício: Sendo $f: [1,4] \to \mathbb{R}$ contínua e estritamente crescente tal que f(2) = 7 e $f'(2) = \frac{2}{3}$, podemos concluir que existe $(f^{-1})'(7)$? Caso exista, qual é o seu valor?

UA 2024/2025 Cálculo I - C Slides 1 46 / 67

Derivadas das funções trigonométricas inversas

Nota: Resulta do Teorema da derivada da função inversa que:

①
$$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}, \ \forall x \in]-1,1[$$

②
$$(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}, \ \forall x \in]-1,1[$$

$$(\operatorname{arccotg} x)' = -\frac{1}{1+x^2} , \ \forall x \in \mathbb{R}$$

Exercícios: Determine a derivada das funções definidas por:

$$\mathbf{(a)} f(x) = (1 + x^2) \cdot \operatorname{arctg} x$$

(b)
$$g(x) = e^x \cdot \arccos x$$

UA 2024/2025 Cálculo I - C Slides 1

47 / 67

Exercícios

Nota: Resulta do Teorema da derivada da função composta que, sendo f uma função diferenciável,

①
$$(\arcsin(f(x)))' = \frac{f'(x)}{\sqrt{1 - (f(x))^2}}$$

②
$$(\arccos(f(x)))' = -\frac{f'(x)}{\sqrt{1 - (f(x))^2}}$$

$$(arctg (f(x)))' = \frac{f'(x)}{1 + (f(x))^2}$$

$$(\operatorname{arccotg}(f(x)))' = -\frac{f'(x)}{1 + (f(x))^2}$$

Exercícios: Determine a derivada das funções definidas por:

(a)
$$f(x) = \arcsin(\sqrt{x})$$

(b)
$$g(x) = \operatorname{arccotg}(\operatorname{sen}(4x^3))$$

(c)
$$h(x) = \arcsin\left(\frac{1}{x^2}\right)$$

UA 2024/2025 Cálculo I - C

Condição necessária de existência de extremo

Teorema (Teorema de Fermat): Seja $f:]a, b[\longrightarrow \mathbb{R}$ uma função diferenciável em $c \in]a, b[$. Se c é um extremante local de f, então f'(c) = 0.

Definição: Seja $f:]a, b[\longrightarrow \mathbb{R}$ uma função diferenciável em $c \in]a, b[$. Se f'(c) = 0 dizemos que c é ponto crítico de f.

UA 2024/2025 Cálculo I - C Slides 1 49 / 67

Observações

 O recíproco do teorema anterior não é verdadeiro. De facto, existem funções com derivada nula em determinado ponto e esse ponto não é extremante.

Considere-se, por exemplo, $f(x) = x^3$, no ponto x = 0.

• Pode acontecer que a derivada de f não exista num dado ponto x_0 , mas x_0 ser extremante. Veja os seguintes exemplos:

•
$$f(x) = |x|$$
, no ponto $x_0 = 0$.

UA 2024/2025 Cálculo I - C Slides 1 50 / 67

Teorema de Rolle

Teorema (Teorema de Rolle): Seja f uma função contínua em [a,b] e diferenciável em]a,b[. Se f(a)=f(b), então existe $c\in]a,b[$ tal que f'(c)=0.

Corolários: Seja f uma função contínua em [a,b] e diferenciável em]a,b[. Então tem-se que:

- Entre dois zeros de f existe pelo menos um zero de f'.
- Entre dois zeros consecutivos de f' existe, no máximo, um zero de f.

Exercícios:

- **1.** Seja $f(x) = x^3 6x^2 + 9x 1$, $x \in \mathbb{R}$. Mostre que f tem um único zero no intervalo]1, 3[.
- **2.** Verifique que x=0 é raíz da equação $e^x=1+x$. Mostre que esta equação não pode ter outra raiz real.

UA 2024/2025 Cálculo I - C Slides 1 51 / 67

Teorema de Lagrange

Teorema (Teorema de Lagrange): Seja f uma função contínua em [a,b] e diferenciável em]a,b[. Então, existe $c\in]a,b[$ tal que

$$f'(c) = \frac{f(b) - f(a)}{b - a} .$$

UA 2024/2025 Cálculo I - C Slides 1 52 / 67

Exercício

Nota: Observe-se que o Teorema de Rolle é um caso particular do Teorema de Lagrange.

Exercício: Considere a função $f:D_f\to\mathbb{R}$ definida por $f(x)=\arccos{(\ln x)}$.

- (a) Determine o domínio de f, D_f .
- (b) Mostre que existe pelo menos um $c \in]1, e[$ tal que

$$f'(c) = \frac{\pi}{2(e-1)}.$$

UA 2024/2025 Cálculo I - C Slides 1 53 / 67

Consequências do Teorema de Lagrange

Proposição: Sejam $I \subseteq \mathbb{R}$ um intervalo e $f: I \longrightarrow \mathbb{R}$ uma função contínua em I e diferenciável no interior de I (int(I)). Então

- Se f'(x) = 0, para todo o $x \in int(I)$, então f é constante em I.
- Se $f'(x) \ge 0$, para todo o $x \in int(I)$, então f é crescente em I.
- Se $f'(x) \le 0$, para todo o $x \in int(I)$, então f é decrescente em I.
- Se f'(x) > 0, para todo o $x \in int(I)$, então f é estritamente crescente em I.
- Se f'(x) < 0, para todo o $x \in int(I)$, então f é estritamente decrescente em I.

UA 2024/2025 Cálculo I - C Slides 1 54 / 67

Extremos locais

Proposição: Seja $f:[a,b] \longrightarrow \mathbb{R}$ uma função contínua em [a,b] e diferenciável em [a,b[, excepto possivelmente em $c \in]a,b[$. Então,

(i) se

$$f'(x) > 0$$
, para todo o $x < c$ e $f'(x) < 0$, para todo o $x > c$ então,

f(c) é um máximo local de f;

(ii) se

$$f'(x) < 0$$
, para todo o $x < c$ e $f'(x) > 0$, para todo o $x > c$ então,

f(c) é um mínimo local de f.

UA 2024/2025 Cálculo I - C Slides 1 55 / 67

Teorema de Cauchy

Teorema (Teorema de Cauchy): Sejam f e g duas funções contínuas em [a,b] e diferenciáveis em]a,b[. Se $g'(x) \neq 0$, para todo o $x \in]a,b[$, então existe $c \in]a,b[$ tal que

$$\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}.$$

Observação: Para g=id, isto é, se g(x)=x para todo $x\in D_g$, obtemos o Teorema de Lagrange.

Nota: Do Teorema de Cauchy pode estabelecer-se uma regra - Regra de Cauchy - de grande utilidade no cálculo de limites quando ocorrem indeterminações do tipo $\frac{\infty}{\infty}$ ou $\frac{0}{0}$. Nos slides seguintes enunciam-se as várias formas dessa regra.

UA 2024/2025 Cálculo I - C Slides 1 56 / 67

Regra de Cauchy

(A) Sejam f e g funções diferenciáveis em I =]a, b[tais que, para todo o $x \in I, g(x) \neq 0$ e $g'(x) \neq 0$. Se

$$\lim_{x \to a^+} f(x)$$
 e $\lim_{x \to a^+} g(x)$ são ambos nulos ou ambos infinitos

e existe o limite

$$\lim_{x \to a^+} \frac{f'(x)}{g'(x)}$$

então

$$\lim_{x \to a^{+}} \frac{f(x)}{g(x)} = \lim_{x \to a^{+}} \frac{f'(x)}{g'(x)}.$$

Nota: Vale uma regra análoga para o caso em que $x \to b^-$.

UA 2024/2025 Cálculo I - C Slides 1 57 / 67

Regra de Cauchy

(B) Sejam I=]a,b[e $c\in I.$ Sejam f e g funções definidas em I e diferenciáveis em $I\setminus\{c\}$, tais que $g(x)\neq 0$, para todo o $x\in I\setminus\{c\}$. Se

$$g'(x) \neq 0$$
, para todo o $x \in I \setminus \{c\}$,

$$\lim_{x \to c} f(x)$$
 e $\lim_{x \to c} g(x)$ são ambos nulos ou ambos infinitos

e existe o limite

$$\lim_{x \to c} \frac{f'(x)}{g'(x)}$$

então

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}.$$

UA 2024/2025 Cálculo I - C Slides 1 58 / 67

Regra de Cauchy

(C) Sejam f e g funções definidas em $I =]a, +\infty[$ e diferenciáveis em I, com $g(x) \neq 0$, para todo o $x \in I$. Suponhamos que

$$g'(x) \neq 0$$
, para todo o $x \in I$.

Se

$$\lim_{x \to +\infty} f(x)$$
 e $\lim_{x \to +\infty} g(x)$ são ambos nulos ou ambos infinitos

e existe
$$\lim_{x\to +\infty} \frac{f'(x)}{g'(x)}$$
, então

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = \lim_{x \to +\infty} \frac{f'(x)}{g'(x)}.$$

Nota: Vale uma regra análoga para o caso em que $I =]-\infty, b[$ e $x \to -\infty.$

UA 2024/2025 Cálculo I - C Slides 1 59 / 67

Exercícios

Exercício: Calcule os seguintes limites:

- (a) $\lim_{x\to 0^+} x \ln x$
- **(b)** $\lim_{x \to 0^{-}} \frac{\arctan(x^2)}{3x^2}$
- (c) $\lim_{x\to 1} \frac{1-x}{\ln(2-x)}$
- (d) $\lim_{x \to 0} \frac{2 \arcsin x}{3x}$
- (e) $\lim_{x \to 1} \frac{e^{x-1} x}{(x-1)^2}$
- $\mathbf{(f)} \lim_{x \to +\infty} (x+1)^{\frac{1}{\ln x}}$

Exercício: Mostre que existe $\lim_{x \to +\infty} \frac{x - \sin x}{x + \sin x}$ mas não pode aplicar-se para o seu cálculo a Regra de Cauchy.

Aproximação linear

Definição: Seja $f: D_f \subseteq \mathbb{R} \to \mathbb{R}$ uma função diferenciável no ponto x = a. A aproximação linear de f numa vizinhança do ponto a é a função $g: \mathbb{R} \to \mathbb{R}$ definida por

$$g(x) = f(a) + f'(a)(x - a).$$

Nota: Recorde que uma equação da reta tangente ao gráfico de f em x=a é a reta de equação

$$y = f(a) + f'(a)(x - a).$$

Observação: Para valores de x suficientemente próximos de a, f(x) pode ser aproximada por g(x) e escrevemos $f(x) \approx g(x)$.

Exercício: Seja $f: D_f \subseteq \mathbb{R} \to \mathbb{R}$ uma função diferenciável em x=0 e seja h a função dada por $h(x)=(f(x))^3-2f(x)$. Se f(0)=-1 e f'(0)=7, determine a aproximação linear de h numa vizinhança do ponto x=0.

UA 2024/2025 Cálculo I - C Slides 1 61 / 67

Polinómios de Taylor

O conceito de aproximação linear pode ser estendido considerando derivadas de ordem superior.

Definição: Seja f uma f.r.v.r. admitindo derivadas finitas até à ordem $n \in \mathbb{N}$ num dado ponto $c \in \mathbb{R}$. Ao polinómio

$$T_c^n f(x) := \sum_{k=0}^n \frac{f^{(k)}(c)}{k!} (x-c)^k$$

chamamos polinómio de Taylor de ordem n da função f no ponto c. Se c=0, o polinómio $T_0^n f(x)$ passa a ser designado por polinómio de MacLaurin de ordem n da função f.

UA 2024/2025 Cálculo I - C Slides 1 62 / 67

Exemplos

① O polinómio de Taylor de ordem n em c, para c qualquer em \mathbb{R} , de uma função polinomial de grau n é a própria função. Por exemplo, $T_1^3(x^3) = x^3$.

$$T_0^n(e^x) = \sum_{k=0}^n \frac{x^k}{k!} = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!}$$

$$T_0^n \left(\frac{1}{1-x} \right) = \sum_{k=0}^n x^k = 1 + x + x^2 + \dots + x^n$$

$$T_0^{2n}(\cos x) = \sum_{k=0}^n (-1)^k \frac{x^{2k}}{(2k)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!}$$

UA 2024/2025 Cálculo I - C Slides 1 63 / 67

Teorema de Taylor

O **Teorema de Taylor** (também conhecido como **Fórmula de Taylor**) afirma que, sob determinadas condições, uma função pode ser aproximada por um polinómio nas proximidades de um ponto específico. Este polinómio oferece uma estimativa precisa da função, com o erro associado à substituição da função pelo polinómio sendo suficientemente pequeno, dependendo do grau do polinómio e da natureza da função.

Teorema: (Fórmula de Taylor de ordem n da função f no ponto c com resto de Lagrange) Sejam $n \in \mathbb{N}_0$, f uma função real com derivadas contínuas até à ordem (n+1) num intervalo aberto I e $c \in I$. Então, para todo $x \in I \setminus \{c\}$, existe θ entre c e x tal que

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(c)}{k!} (x-c)^{k} + \frac{f^{(n+1)}(\theta)}{(n+1)!} (x-c)^{n+1}.$$

UA 2024/2025 Cálculo I - C Slides 1 64 / 67

Teorema de Taylor (continuação)

Observações:

- Seja $R_c^n f(x) = \frac{f^{(n+1)}(\theta)}{(n+1)!} (x-c)^{n+1}$. A $R_c^n f(x)$ chama-se resto de Lagrange de ordem n de f no ponto c.
- Observe-se que, nas condições do Teorema de Taylor tem-se que:

$$f(x) = T_c^n f(x) + R_c^n f(x)$$

e, portanto, é válida a aproximação

$$f(x) \approx T_c^n f(x)$$

numa vizinhança de x = c.

Notas:

- 1. Se $x=c, f(c)=T_c^n f(c)$ (logo podemos considerar que o erro neste caso é nulo).
- 2. O Teorema de Lagrange é um corolário do Teorema de Taylor (basta tomar n = 0).

UA 2024/2025 Cálculo I - C Slides 1 65 / 67

Majorantes do resto de Lagrange

Nota: O módulo do resto de Lagrange $R_c^n f(x)$ dá-nos o erro absoluto cometido quando tomamos $T_c^n f(x)$ por f(x), uma vez que

$$|R_c^n f(x)| = |f(x) - T_c^n f(x)|.$$

Mesmo que desconheçamos esse erro é possível, em geral, majorá-lo.

Nota: Observe-se que se a (n+1)-ésima derivada de f é contínua num intervalo [a,b] contendo o ponto c, então, pelo Teorema de Weierstrass, existe $\max_{y\in[a,b]}|f^{(n+1)}(y)|$. Tomando

$$M \ge \max_{y \in [a,b]} \left| f^{(n+1)}(y) \right|$$

tem-se que:

$$|R_c^n f(x)| \le M \frac{|x-c|^{n+1}}{(n+1)!} \le M \frac{(b-a)^{n+1}}{(n+1)!}, \quad \text{onde } x \in [a,b].$$

UA 2024/2025 Cálculo I - C Slides 1 66 / 67

Aproximação de uma função usando polinómios de Taylor

Nota: Ver applet, sobre a aproximação de uma função usando polinómios de Taylor:

Clique aqui