Recap förra veckan

Gränsvärden, deriverbarhet $(\lim_{h\to 0} \frac{f(x+h,y)-f(x,y)}{h})$, differentierbarhet (existerar tangentplan).

Kedjeregeln

Jacobianen, jacobi
matrisen $D\bar{f}$

Översikt denna vecka

- Implicit derivering f(x,y) = 0
- Närmaste polynom (av grad m) till en funktionsgraf $p_m \approx f$ nära en punkt.
- Extrempunkter (max/min), kritiska punkter ($\nabla f = 0$)
- Bestämma lokala max/min, Hessianen (andraderivatorna) hjälper kvalificera max vs. min.
- Lagrange multiplikatormetod maximera eller minimera z=f(x,y) då g(x,y)=0, genom $\nabla f + \lambda \nabla g = 0$ i max/minpunkten.

Implicit derivering

1-var

Om vi ska skriva y = y(x) då y ges i relationen f(x, y) = 0, t.ex $e^x \cos(xy) + 2\sin(y) = 0$, kan inte göra explicit i x eller y.

Vi är intresserade av $y'(p_0)$ för en punkt $p_0 = (x_0, y_0)$, hur kan vi hitta $y'(p_0)$?

Om $\nabla f=(a,0),$ dvs. de punkter där $\frac{\partial f}{\partial y}=0$ har vi ingen chans till en graf av typen y=y(x)

Vi ser att y' kan fås då $\frac{d}{dx}f(x,y(x)) = 0 = f_1 + f_2 * y' = 0 \Rightarrow y'(x) = \frac{-f_1}{f_2}$ $f_2 \neq 0$

Exempel

I vilka punkter (x, y) i planet kan z = z(x, y) då f(x, y, z) = 0? Bestäm z_x och z_y i dessa punkter (derivator).

(i vilka punkter kan z skrivas som en funktion av x och y)

$$f(x, y, z) = \sin(zx + y) - x = 0$$

$$z_x = \frac{-f_1}{f_3} = -\frac{((\cos(zx+y))z - 1)}{(\cos(zx+y))x - 0}$$

I de punkter (x, y, z): $(\cos(zx + y))x \neq 0$ så existerar z = z(x, y).

System av ekvationer

$$\begin{cases} f(x, y, z, w) = 0\\ g(x, y, z, w) = 0 \end{cases}$$

Där en del variabler beror på andra/övriga.

Exempel

$$\begin{cases} x = x(z, w) \\ y = y(z, w) \end{cases}$$

Eller (var uppmärksam på vilka variabler som gäller):

$$\begin{cases} y = y(x, z) \\ w = w(x, z) \end{cases}$$

Vi använder en beteckning $(\frac{\partial x}{\partial z})_w$ - detta innebär att x=x(z,w) och y=y(z,w). dvs. när vi deriverar m.a.p. z så är w konstant m.a.p. z, men inte y.

Exempel

$$\left(\frac{\partial x}{\partial z}\right)_y$$
 $x = x(y, z)$ $w = w(y, z)$

Exempel

Ett tredje fall: hur tolkas följande?

$$\left(\frac{\partial w}{\partial x}\right)_y$$
 $w = w(x,y)$ $z = z(x,y)$

Exempel:

Bestäm
$$\left(\frac{\partial x}{\partial z}\right)_w$$
 då
$$\begin{cases} f(x, y, z, w) = 0\\ g(x, y, z, w) = 0 \end{cases}$$

Detta innebär
$$\begin{cases} x = x(z, w) \\ y = y(z, w) \end{cases}$$

Derivera f = 0, q = 0

$$0=f_1x_z+f_2y_z+f_3z_z+f_4w_z$$
 (derivatan av $f=0$ med avseende på $z)$ $\Rightarrow 0=f_1x_z+f_2y_z+f_3$

På samma sätt
$$\frac{\partial g}{\partial z}=0 \Rightarrow 0=g_1x_z+g_2y_z+g_3$$

Lösning:

$$(x_z)_w = \frac{-f_3g_2 - f_2g_3}{f_1g_2 - f_2g_1}$$

Så om $f_1g_2 - f_2g_1 \neq 0$ finns x_z och x = x(w, z) etc.

$$\begin{cases} u = x^2 + xy - y^2 \\ v = 2xy + y^2 \end{cases}$$
 Bestäm a) $(x_u)_v$ och b) $(x_u)_y$ i
$$\begin{cases} x = 2 \\ y = -1 \end{cases}$$

a) Derivera med avseende på
$$u$$
 och behåll v konstant.
$$\frac{\partial}{\partial u}: \begin{cases} 1 = 2x \cdot x_u + (x_u y + x y_u) - 2y \cdot y_u \\ 0 = 2(x_u y + x y_u) + 2y \cdot y_u \end{cases}$$

Om
$$x = 2$$
 och $y = -1$ får vi $(x_u)_v = 1/7$

Gör b) själva hemma.

Jacobideterminanten

Definition

$$\frac{\partial(u,v)}{\partial(x,y)} = \det\begin{pmatrix} u_x & u_y \\ v_x & v_y \end{pmatrix} = u_x v_y - u_y v_x$$

Exempel

Låt $f(x_1, x_2, y_1, y_2) = 0$ och $g(x_1, x_2, y_1, y_2) = 0$. Detta kan ge en representation av y_1, y_2 som funktioner av (x_1, x_2)

dvs.
$$\begin{cases} y_1 = h_1(x_1, x_2) \\ y_2 = h_2(x_1, x_2) \end{cases}$$
 nära $(x_1, x_2, y_1, y_2) = (a_1, a_2, a_3, a_4)$

Villkoret för detta är: jacobideterminanten nollskild.

$$\frac{\partial(f,g)}{\partial(y_1,y_2)} \neq 0$$

Vi får samtidigt:

$$\frac{\partial y_1}{\partial x_1} = -\frac{\frac{\partial (f,g)}{\partial (x_1,y_2)}}{\frac{\partial (f,g)}{\partial (y_1,y_2)}}$$

$$\frac{\partial y_1}{\partial x_2} = -\frac{\frac{\partial (f,g)}{\partial (y_1,x_2)}}{\frac{\partial (f,g)}{\partial (y_1,y_2)}}$$