The LNM Institute of Information Technology Jaipur, Rajasthan

MATH-III

Practice Problems Set #2

1. If $\lim_{z\to z_0} f(z)$ exist, prove that it must be unique.

Hint: Use method of contradiction, If possible assume that two limits l_1 and l_2 exist, then $|l_1 - l_2| = |l_1 - f(z) + f(z) - l_2| \le |l_1 - f(z)| + |f(z) - l_2| < \epsilon + \epsilon = 2\epsilon.$

- 2. If f(z) and g(z) are continuous at $z = z_0$, so also are
- (a) f(z) + g(z), (b) f(z)g(z), (c) $\frac{f(z)}{g(z)}$ if $g(z_0) \neq 0$.

Hint: (a) For $\epsilon > 0$, there exist δ_1 , δ_2 for which $|f(z) - f(z_0)| < \epsilon$ for $|z - z_0| < \delta_1$, $|g(z) - g(z_0)| < \epsilon$ for $|z - z_0| < \delta_2$. Let $\delta = \text{Minimum } (\delta_1, delta_2)$. Then for all z satisfying $|z - z_0| < \delta$, $|f(z) + g(z) - f(z_0) - g(z_0)| \le |f(z) - f(z_0)| + |g(z) - g(z_0)| < \epsilon + \epsilon = 2\epsilon$

(b) If $|f(z) - f(z_0)| < 1$ for $|z - z_0| < \delta_3$, then $|f(z)| - |f(z_0)| < |f(z) - f(z_0)| < 1$ i.e. $|f(z)| < |f(z_0)| + 1 = P$, a positive constant. For $\epsilon > 0$, there exist δ_1 , δ_2 for which $|f(z) - f(z_0)| < \frac{\epsilon}{2(1 + |g(z_0)|)}$ for $|z-z_0| < \delta_1$, and $|g(z)-g(z_0)| < \frac{\epsilon}{2P}$ for $|z-z_0| < \delta_2$. Let $\delta = \text{Minimum } (\delta_1, \delta_2, \delta_3)$. Then for all z satisfying $|z-z_0| < \delta, |f(z)g(z)-f(z_0)g(z_0)| = |f(z)g(z)-f(z)g(z_0)+f(z)g(z_0)-f(z_0)g(z_0)| \le |g(z)-g(z_0)||f(z)| + |g(z_0)||f(z)-f(z_0)|| < \frac{\epsilon}{2} + \frac{\epsilon}{2}$

(c) Since $g(z) \to g(z_0)$ as $z \to z_0$, $|g(z) - g(z_0)| < \frac{1}{2}|g(z_0)|$ for $|z - z_0| < \delta_2$. Then $|g(z_0)| \le |g(z_0)| < |g(z$ $|g(z)-g(z_0)|+|g(z)|$ i.e. $|g(z)| \ge \frac{1}{2}|g(z_0)|$. For $\epsilon > 0$, there exist δ_1 for which $|g(z)-g(z_0)| < \frac{\epsilon|g(z_0)|^2}{2}$. Let $\delta = \text{Minimum } (\delta_1, \delta_2)$ Then for all z satisfying $|z-z_0| < \delta$, $|\frac{1}{g(z)} - \frac{1}{g(z_0)}| = \frac{|g(z)-g(z_0)|}{|g(z)g(z_0)}| < \epsilon$. $\frac{1}{g(z)} \to \frac{1}{g(z_0)}$. Hence $\frac{f(z)}{g(z)} \to \frac{f(z_0)}{g(z_0)}$

- 3. For what value of z each of the following functions are continuous? (a) $f(z)=\frac{1}{z},$ (b) $g(z)=\frac{z}{z^2+1}.$

Ans (a) on entire complex plane except z=0 (b) on entire complex plane except $z=\pm i$.

- 4. Using the definition of limit, prove that
 - (a) $\lim_{z \to 1} (z^2 3z + 3) = 1$ (b) $\lim_{z \to -i} \frac{iz}{3} = \frac{1}{3}$.

Hint: (a) $0 < |z-1| < \delta$. If $\delta \le 1$, then $|(z^2 - 3z + 3) - 1| = |(z-1)(z-2)| \le 2\delta$. Choose $\delta = \min(1, \frac{2}{\delta})$. Then for all $\epsilon > 0$, there exist δ such that for all z satisfying $0 < |z - 1| < \delta$, $|(z^2 - 3z + 3) - 1| < \epsilon$ (b) $0 < |z+i| < \delta$. If $\delta \le 1$, $|\frac{iz}{3} - \frac{1}{3}| = \frac{1}{3}|z+i|$ Choose $\delta = \min(1, 3\epsilon)$. Then for all $\epsilon > 0$, there exist δ such that for all z satisfying $0<|z+i|<\delta,\,|\frac{iz}{3}-\frac{1}{3}|<\epsilon.$

- 5. Check the existence of
- $(a) \quad \lim_{z \to z_0} \frac{\overline{z}}{z} \qquad (b) \quad \lim_{z \to z_0} \frac{z^2}{|z|^2}, \qquad (c) \quad \lim_{z \to z_0} \frac{[Rez Imz]^2}{|z|^2}.$

Hint: Check the limit along the path y = mx

6. Show that the following functions are not continuous at z=0

(a)
$$\begin{cases} \frac{Im(z)}{|z|}, & \text{if } z \neq 0 \\ 0, & \text{if } z = 0. \end{cases}$$
 (b)
$$\begin{cases} \frac{Re(z^2)}{|z|^2}, & \text{if } z \neq 0 \\ 0, & \text{if } z = 0. \end{cases}$$
 (c)
$$\begin{cases} |z|^2, & \text{if } z \neq 0 \\ 1, & \text{if } z = 0. \end{cases}$$

Hint: in (a) and (b) limit does not exist; in (c) limiting vale is not equal to the value at the point.

7. Consider the following functions:

(a)
$$f(z) = \frac{x^3(1+i) - y^3(1-i)}{x^2 + y^2}$$
, $(z \neq 0)$, $f(0) = 0$, (b) $f(z) = \sqrt{|xy|}$, $\forall z \in \mathbb{C}$, (c)
$$\begin{cases} f(z) = \frac{\overline{z}^2}{z}, & \text{if } z \neq 0 \\ 0, & \text{if } z = 0. \end{cases}$$

(c)
$$\begin{cases} f(z) = \frac{\overline{z}^2}{z}, & \text{if } z \neq 0 \\ 0, & \text{if } z = 0. \end{cases}$$

Show that the above functions are continuous and satisfied CR equations at the origin but are not differentiable there.

- Hint Use the definition of differentiability and C-R equations, to show that the function is not differentiable at z = 0.
 - 8. f(z) is analytic in a domain D and |f(z)| is a nonzero constant in D, than f(z) is constant in D.
- Hint $uu_x + vv_x = 0$, $uu_y + vv_y = 0$. Using C-R equation, $uu_x vu_y = 0$, $uu_y + vu_x = 0$. Multiplying u, v respectively and then adding, we get $(u^2 + v^2)u_x = 0$, i.e. $u_x = 0$. similarly show that $u_y = 0$. So u is a constant c_1 . Similarly make equations for v_x , v_y and show that $v_x = 0$, $v_y = 0$. That is v is a constant c_2 . Hence f(z) is a constant $c_1 + ic_2$.
 - 9. Prove that $|z|^4$ is differentiable, but not analytic at z=0.

Hint Use C - R equations to prove that $|z|^4$ is differentiable, but not analytic at z = 0.

- 10. Let f(z) = u + iv be an analytic function defined in a domain D. Then, f(z) must be constant if one of the following statements is true for all $z \in D$.
 - (a) f(z) is real valued, (b) v is constant(c) u is constant(d) arg(f(z)) is constant.
- Hint (a) v = 0. Then using C-R equation $v_x = 0 = -u_y$ and $v_y = 0 = u_x$. So u is constant c. Hence f(z) = u + iv = c
 - (b) If v is constant, using C-R equation $v_x = 0 = -u_y$ and $v_y = 0 = u_x$. So u is constant. Hence f(z) = u + iv is constant $(c_1 + ic_2)$
 - (c) If u is constant, using C-R equation $u_x = 0 = v_y$ and $u_y = 0 = -v_x$. So v is constant. Hence f(z) = u + iv is constant $(c_1 + ic_2)$
 - (d) If $\arg(f(z))$ is constant, then $\tan^{-1}\frac{v}{u}$ is constant. Them $\frac{uv_x-vu_x}{u^2+v^2}=0$ and $\frac{uv_y-vu_y}{u^2+v^2}=0$. Then following Q.8, we can show $u_x=0=u_y$ and $v_x=0=v_y$.
 - 11. Prove that $f(z) = \sin x \cosh y i \cos x \sinh y$ is nowhere analytic.
- Hint Use C-R equations. It will be sufficient to show that $f(z) = \sin x \cosh y i \cos x \sinh y$ nowhere satisfies C-R equations.
 - 12. Show that the following functions u(x, y) are harmonic functions. Determine their harmonic conjugate and find the corresponding analytic functions f(z) in terms of z.

(a)
$$u = 2x(1-y)$$
 (b) $u = e^{-x}(x\sin y - y\cos y)$ (c) $u = \cos x \cosh y$

Ans (a)
$$v = x^2 - y^2 + 2y$$
 (b) $f(z) = ize^{-z}$ (c) $f(z) = \cos z$

- 13. If f(z) = u + iv is an analytic function of z = x + iy and $u v = e^x(\cos y \sin y)$, then find f(z) in terms of z.
- Hint $u_x v_x = e^x(\cos y \sin y)$, $u_y v_y = e^x(-\cos y \sin y)$. Using C-R equation $u_x v_x = u_x + u_y = e^x(\cos y \sin y)$, $u_y v_y = u_y u_x = e^x(-\cos y \sin y)$. Then $u = e^x\cos y + c_1$. Using conjugate harmonic of $u, v = e^x\sin y + c_2$. So $f(z) = u + iv = e^z + c_1 + ic_2$