True False $log(n!) = O(log n^2)$ $n^{2/3} + n^3 = O(n^2)$ $5^5 + n \cdot \log n = O(n^{2/3})$ • $5 \cdot 2^{2 \log n} = O\left((\log n)^3\right)$ 0 $\log n = O(n \cdot \log n)$ $(\log n)^3 + 2^{\log n} = O(n^{0.01})$ $n! = O(\sqrt{n})$ • $n^{0.001} = O(1)$ •• $3^n = O\left(2^{3\log n}\right)$ $n^2 = \Theta\left(2^{2\log n}\right)$ \bigcirc • $\sqrt{n} = \Theta(n \cdot \log n)$ $n^2 = \Theta(n^{0.1})$

	True	False
$2^{\log n} + 5n^n = O(\sqrt{n} \cdot \log n)$	0	✓
$n^2 \log n = O(\sqrt{n})$	0	
$\sqrt{n} \cdot \log n = O(n \cdot \log n)$		0
$4n^2 = O\left(n^{0.1}\right)$	0	• 🗸
$n^2 = O\left(\log n^2\right)$	0	● ✓
$2^n = O(n \cdot \log n)$	0	● ✓
$n = O(\log n)$	0	● ✓
$2^{3\log n} = O(n \cdot \log n)$	0	● ✓
$5 = O(n \cdot \log n)$		0
$n^{0.01} = \Theta(\sqrt{n})$	0	⊙ ✓
$\log n^2 = O\left(\sqrt{n}\right)$		0
$n^2 = O\left(2^{\log n}\right)$	0	● ✓

	True	False
$n^2 \log n = O\left(3^3 ight)$	0	● ✓
$\log n^2 = O(1)$	0	
$6\sqrt{n} = O(n\sqrt{n})$		0
$\sqrt{n} + \sqrt{n} = O(n \cdot \log n)$	•	0
$n \cdot \log n = O\left((\log n)^3\right)$	0	● ✓
$2^n = O(\sqrt{n} \cdot \log n)$	0	
$n\sqrt{n} = O\left(n^{3/2}\right)$		0
$8^{\log n} = O\left(n^{2/3}\right)$	0	●
$n \cdot \log n = O\left((\log n)^2\right)$	0	
$n^n = O(3^n)$	0	✓
$7n \cdot \log n = \Theta(\log(n!))$	• 🗸	0
$\sum_{i=1}^{n} i = O(\sqrt{n} \cdot \log n)$	0	

	True	False
$n \log n = O(1)$	0	● ✓
$n^{0.001} = O(\log n)$	0	
$n \cdot \log n = O(\log n)$	0	
$n \cdot \log n = O\left(5^5\right)$	0	● ✓
$\log n + 5n \cdot \log n = O\left(n^3\right)$		0
$\log n = O\left(n^2\right)$	● ✓	0
$n^{0.1} = O(\log n)$	0	● ✓
$6n^3 = O(\sqrt{n})$	0	● ✓
$(\log n)^3 = O\left(8^{\log n}\right)$		0
$n^{2/3} \cdot n^{1/3} = \Theta\left(n^2\right)$	0	● ✓
$n = \Theta\left(n^{2/3} \cdot n^{1/3}\right)$	● ✓	0
$n \cdot \log n = \Theta\left(7n \cdot \log\left(n^2\right)\right)$	◎ ✓	0

	$\Theta\left(n^3\right)$	$\Theta\left((\log n)^2\right)$	$\Theta(\sqrt{n})$	$\Theta\left(n^2\right)$	$\Theta(n \log n)$	$\Theta(n\sqrt{n})$	$\Theta(\log n)$	$\Theta(n)$
loop1	◎ ✓	0	0	0	0	0	0	0
loop4	0	0	0	0	0	○ ✓	0	0
loop2	0	0	0	○ ✓	0	0	0	0
loop3	0	0		0	0	0	0	0

. .

	$\Theta\left(n^3\right)$	$\Theta\left((\log n)^2\right)$	$\Theta(\sqrt{n})$	$\Theta\left(n^2\right)$	$\Theta(n \log n)$	$\Theta(n\sqrt{n})$	$\Theta(\log n)$	$\Theta(n)$
loop3	0	0	0	◎ ✓	0	0	0	0
loop2	0	0	0	⊙ ✓	0	0	0	0
loop4	0	0	0	⊙ ✓	0	0	0	0
loop1	0	0	0	0	0	0	0	• 🗸

Algorithm loop1(n)
$$s = 1$$
 $i = 1$
for $i = 1$ to n while $i \le n$ $i = 2 * i$

Algorithm loop3(n) Algorithm loop4(n)
 $i = 1$ while $i * i \le n$ $i = 1$ while $i \le n$ $i = 1$ while $i \le n$ $j = 0$ while $j \le i$ $j = j + 1$ $i = 2 * i$

	$\Theta\left(n^3\right)$	$\Theta\left((\log n)^2\right)$	$\Theta(\sqrt{n})$	$\Theta\left(n^2\right)$	$\Theta(n \log n)$	$\Theta(n\sqrt{n})$	$\Theta(\log n)$	$\Theta(n)$
loop3	0	0	0	0	0	0	✓	0
loop4	0	0	0	0	0	0	0	◎ ✓
loop1	0	0	0	0	0	0	0	• 🗸
loop2	0	0	0	0	0	0	✓	0

$$\begin{array}{lll} \textbf{Algorithm} \ \text{loop1}(n) & \textbf{Algorithm} \ \text{loop2}(n) \\ s=1 & s=1 \\ \text{for } i=1 \ \text{to} \ n \\ \text{for } j=1 \ \text{to} \ n \\ s=s+1 & s=s+1 \end{array} \qquad \begin{array}{ll} \textbf{algorithm} \ \text{loop3}(n) \\ s=0 \\ \text{for } i=1 \ \text{to} \ n \\ \text{for } j=i \ \text{to} \ n \\ \text{for } k=i \ \text{to} \ j \\ s=s+1 \end{array}$$

	$\Theta\left(n^{3}\right)$	$\Theta\left((\log n)^2\right)$	$\Theta(\sqrt{n})$	$\Theta\left(n^2\right)$	$\Theta(n \log n)$	$\Theta(n\sqrt{n})$	$\Theta(\log n)$	$\Theta(n)$
loop1	0	0	0	◎ ✓	0	0	0	0
loop2	0	0	0	0	0	0	0	• 🗸
loop3	• 🗸	0	0	0	0	0	0	0