CSYE7105 HW1

Instructor: Dr. Handan Liu 2020-09-27

Part 1: 40 points

1.	Give several reasons to use parallel computing.	[4 pts]
2.	On the CPU architecture, how many parallel programming models are there based on	
	memory access methods? List them and explain briefly.	[4 pts]
3.	What is Flynn's Taxonomy? Please explain it.	[4 pts]
4.	What kind of classification in Flynn classification does GPU computing belong to? Please	
	explain.	[4 pts]
5.	What is the embarrassingly parallel?	[4 pts]
6.	Give 3 popular math libraries for high performance computing.	[4 pts]
7.	How can we evaluate the speedup of parallel computing comparing with serial	
	computing? Please explain in detail.	[4 pts]
8.	Provide 6 MPI necessary functions for MPI parallel computing. Only write the function	
	name, no parameters. C is recommended here.	[4 pts]
9.	What are strong scaling and weak scaling? Or what difference between them.	
		[4 pts]
10. Give several possible reasons why sometimes the computation time on multi-CPU on		
	multiple nodes is slower than that of multi-CPU on a single node.	[4 pts]

Part 2: 16 points

Please use OpenMP routines to complete the program hw1-part2.c according to the requirements.

Part 3: 22 points

Part 4: 22 points

A simple serial program of a dot product for two vectors is given as hw1-part4.c Please parallelize it with MPI routines.

Require:

- 1) Each MPI task performs the dot product of a and b based on the serial code to obtain its sum on each processor.
- 2) Print "Starting MPI for dot-product of a and b on <total number of processors> processors." on Master processor. Note: use MPI routine to get total number of processors.
- 3) Then calls MPI_Reduce to obtain the global sum.
- 4) After the dot product on each processor, perform a summation of results from each processor by using MPI_Reduce to obtain the global sum.
- 5) Print "Done. MPI execution to obtain global sum =". You should set a variable of global sum here to finish this formatting print statement. Note: print statement should be implemented on Master processor.

Review and Grade:

TA will review the homework and grade for my reference. No review time in person or on Zoom.

Submission through Canvas.

Deadline is by the end of October 5th.