

William Stallings
Computer Organization
and Architecture
9th Edition

+ Chapter 4 Cache Memory

- 128 B Cache, 12 bit address
- Direct Mapped, 32 B block
- # of word bit = $\log_2 32 = 5 bit$

• # of lines =
$$\frac{128 B}{32 B}$$
 = 4 # of bits = $\log_2 4$ = 2 bit

- # of tag bits = 12-5-2=5 bits
- 060H =00000 11 00000

Add	Tag	Line	word	1st	2nd
070 H	00000	11	10000	M	H
080 H	00001	00	00000	M	M
068 H	00000	11	01000	Н	Н
190 H	00011	00	10000	M	M
084 H	00001	00	00100	M	M
178 H	00010	11	11000	M	M
08C H	00001	00	01100	Н	Н
F00 H	11110	00	00000	M	M
064 H	00000	11	01000	M	M

1st hit rate =
$$\frac{2}{9}$$
 = 22%

2nd hit rate =
$$\frac{3}{9}$$
 = 33%

- 128 B Cache, 12 bit address
- 2-Way set associative, 32 B block

$$=$$
 # of word bit = $\log_2 32 = 5$ bit

• # of set =
$$\frac{128 B}{32 B * 2}$$
 = 2 set

- # of bit /set=1 bit
- # of tag bits = 12-5-1=6 bits

Add	Tag	set	word	1st	2nd
070 H	000001	1	10000	M	Н
080 H	000010	0	00000	M	Н
068 H	000001	1	01000	Н	Н
190 H	000110	0	10000	M	M
084 H	000010	0	00100	Н	Н
178 H	000101	1	11000	M	Н
08C H	000010	0	01100	Н	Н
F00 H	111100	0	00000	M	M
064 H	000001	1	01000	Н	H

1st hit rate =
$$\frac{4}{9}$$
 = 44%

$$2nd \ hit \ rate = \frac{7}{9} = 77\%$$

- 128 B Cache, 12 bit address
- 2-Way set associative, 16 B block
- \blacksquare # of word bit = $\log_2 16 = 4 bit$

$$= # \text{ of set} = \frac{128 B}{16 B * 2} = 4 \text{ sets} \gg \log_2 4 = 2 \text{ bit}$$

- # of bit /set=2 bit
- # of tag bits = 12-4-2=6 bits