Théorème de projection sur un convexe fermé :

I Le développement

Le but de ce développement est de montrer qu'il est possible de définir une projection sur un convexe fermé non vide d'un espace hilbertien $(H, < \cdot; \cdot >_H)$.

Théorème 1 : [Hassan, p.489]

Soit C un convexe fermé non vide de $(H, \langle \cdot; \cdot \rangle_H)$ un espace hilbertien.

Pour tout $x \in H$, il existe un unique $c \in C$ tel que $d(x, C) = ||x - c||_H$ avec pour tout $z \in C$, $\text{Re}(\langle z - c; x - c \rangle_H) \leq 0$.

De plus, en notant P_C la projection sur C, on a P_C 1-lipschitzienne (donc continue).

Preuve:

Soient C un convexe fermé non vide de $(H, <\cdot; \cdot>_H)$ un espace hilbertien et $x \in H$.

* Existence de c:

Par définition de $\delta = \inf \{ \|x - z\|_H^2, \ z \in C \}$, il existe une suite $(c_n)_{n \in \mathbb{N}} \in C^{\mathbb{N}}$ telle que pour tout $n \in \mathbb{N}, \|x - c_n\|_H^2 \le \delta + \frac{1}{n}$.

Par l'identité du parallélogramme, on a pour tout $(n,p) \in (\mathbb{N}^*)^2$:

$$\left\| x - \frac{c_n + c_p}{2} \right\|_H^2 + \left\| \frac{c_n - c_p}{2} \right\|_H^2 = \frac{1}{2} \left(\left\| x - c_n \right\|_H^2 + \left\| x - c_p \right\|_H^2 \right) \quad (*)$$

Donc:

$$\left\|\frac{c_n - c_p}{2}\right\|_H^2 \le \frac{1}{2}\left(\delta + \frac{1}{n} + \delta + \frac{1}{p}\right) - \delta = \frac{1}{2}\left(\frac{1}{n} + \frac{1}{p}\right)$$

Ainsi, $(c_n)_{n\in\mathbb{N}}$ est une suite de Cauchy dans $(H, \|\cdot\|_H)$ qui est complet, donc $(c_n)_{n\in\mathbb{N}}$ a une limite $c\in C$ (car C est fermé). Donc en passant à la limite dans la première inégalité, on a $\|x-c\|_H^2 = \delta$.

\ast Unicité de c :

S'il existe $c, c' \in C$ qui atteignent δ , alors on a d'après $(*): \left\|\frac{c-c'}{2}\right\|_H^2 \leq 0$. Donc $\left\|\frac{c-c'}{2}\right\|_H^2 = 0$, soit c = c' et on en déduit l'unicité.

* Montrons la caractérisation du projeté :

On note c l'unique point de C tel que pour tout $x \in H$, $d(x,C) = ||x-c||_H$. Soit $z \in C$.

Pour tout $t\in]0;1],\, (1-t)c+tz\in C$ (car C est convexe). On a alors :

$$\begin{aligned} \|x - ((1-t)c + tz)\|_H^2 &\geq \|x - c\|_H^2 \implies \|x - c + t(c-z)\|_H^2 \geq \|x - c\|_H^2 \\ &\Rightarrow \|x - c\|_H^2 + 2t\operatorname{Re}(\langle x - c; c - z \rangle_H) + \\ t^2 \|c - z\|_H^2 &\geq \|x - c\|_H^2 \\ &\Rightarrow 2t\operatorname{Re}(\langle x - c; z - c \rangle_H) \leq t^2 \|c - z\|_H^2 \\ &\Rightarrow \operatorname{Re}(\langle x - c; z - c \rangle_H) \leq \frac{t}{2} \|c - z\|_H^2 \end{aligned}$$

Donc en faisant tendre t vers 0, on a Re($\langle z-c, x-c \rangle_H$) ≤ 0 .

Réciproquement, supposons que $c \in C$ vérifie l'inégalité précédente. On a alors pour tout $z \in C$:

$$||x - z||_H^2 = ||(x - c) + (c - z)||_H^2 = ||x - c||_H^2 + 2\operatorname{Re}(\langle x - c; c - z \rangle_H) + ||c - z||_H^2 \ge ||x - c||_H^2$$

* Montrons que P_C est 1-lipschitzienne :

Soient $x, x' \in H$ et on note $y = P_C(x)$ et $y' = P_C(x')$.

On a alors :

$$||y - y'||_H^2 = \langle y - y'; y - y' \rangle_H = \langle y - y'; y - x \rangle_H + \langle y - y'; x - x' \rangle_H + \langle y - y'; x' - y' \rangle_H$$

Or, on a Re $(< y-y'; y-x>_H) \le 0$ et Re $(< y-y'; x'-y'>_H) \le 0$ par le point précédent. De plus par l'inégalité de Cauchy-Schwarz, on a :

$$\operatorname{Re}(\langle y - y'; x - x' \rangle) \le |\langle y - y'; x - x' \rangle_H| \le ||y - y'||_H ||x - x'||_H$$

D'où:

$$||y - y'||_{H}^{2} = \operatorname{Re}(||y - y'||_{H}^{2})$$

$$= \operatorname{Re}(\langle y - y'; y - x \rangle_{H} + \langle y - y'; x - x' \rangle_{H} + \langle y - y'; x' - y' \rangle_{H})$$

$$\leq ||y - y'||_{H} ||x - x'||_{H}$$

Donc $||P_C(x) - P_C(x')|| \le ||x - x'||$ et ainsi P_C est 1-lipschitzienne (et donc continue).

II Remarques sur le développement

II.1 Pour aller plus loin...

Les hypothèses du résultat peuvent être modifiées en supposant que $(H, < \cdot; \cdot >_H)$ est un espace préhilbertien mais que le convexe C ait la propriété supplémentaire d'être complet. Cependant ces propriétés sont minimales!

Cependant, la projection sur le convexe C n'est pas linéaire! Pour cela, il faut faire une projection sur un sous-espace vectoriel fermé. Enfin, on peut également modifier les hypothèses de ce théorème en supposant que $(H, <\cdot;\cdot>_H)$ est un espace préhilbertien mais que F soit en plus un sous-espace vectoriel complet (en particulier F de dimension finie). On obtient alors les résultats suivants :

Proposition 2: [Hassan, p.489]

Soient F un sous-espace vectoriel de H, $x_0 \in H$ et $x \in F$.

Les assertions suivantes sont équivalentes :

```
* ||x - x_0||_H = d(x, F).
```

 $*x - x_0 \in F^{\perp}$ (autrement dit, pour tout $y \in F$, on $a < x - x_0, y >_H = 0$).

Théorème 3: [Hassan, p.490]

Soit F un sous-espace vectoriel fermé de $(H, < \cdot; \cdot >_H)$.

L'application $P_F: H \longrightarrow F$ est linéaire continue et telle que :

 $*P_F$ est une projection telle que $P_F \circ P_F = P_F$. $*\operatorname{Ker}(P_F) = F^{\perp}$ et $\operatorname{Im}(P_F) = F$.

Corollaire 4: [Hassan, p.491]

Soit F un sous-espace vectoriel fermé de H.

* On a
$$\overline{F}^{\perp} = F^{\perp}$$
, $(F^{\perp})^{\perp} = F$ et $H = \overline{F} \underset{\text{top.}}{\oplus} F^{\perp}$.

* F est dense dans H si, et seulement si, $F^{\perp} = \{0_H\}$.

Enfin, d'autres résultats qui découlent de la projection sur un sous-espace vectoriel sont le théorème de représentation des formes linéaires de Riesz ainsi que l'existence et l'unicité de l'adjoint.

II.2 Recasages

Recasages: 205 - 208 - 213 - 219 - 253.

III Bibliographie

— Nawfal El Hage Hassan, Topologie générale et espaces normés.