Algorithme p-1 de Pollard

Nous avons vu en cours que la factorisation d'entiers RSA quelconques est un problème difficile, néanmoins solvable en temps *subexponentiel* à l'aide des algorithmes de crible. Toutefois, si l'entier RSA est mal généré, il existe des cas plus faciles.

Soit N=PQ un module RSA où P et Q sont premiers et de même taille. Soit B une borne à choisir plus tard. L'algorithme P-1 de Pollard s'exécute selon les étapes suivantes :

- 1. Calculer $M = \prod_{\text{premiers } q \leq B} q^{\left\lfloor \log_q B \right\rfloor}$ (i.e., calculer le produit des puissances de nombres premiers inférieures à B)
- 2. Sélectionner a au hasard premier avec N
- 3. Calculer $G = GCD(a^M 1, N)$
- 4. Si G < N renvoyer G; sinon renvoyer « échec »

Question 1. On suppose que P-1 est B-ultrafriable (B-powersmooth), c'est-à-dire que toutes les puissances de nombres premiers p^{ν} dans sa décomposition en facteurs premiers sont plus petites que B. Montrer que M est multiple de P-1.

Question 2. On suppose aussi que Q n'est pas B-powersmooth. Montrer que l'algorithme renvoie P avec bonne probabilité.

Question 3. Donner une borne sur la complexité de l'algorithme, à B fixé, puis à B variable.

Lors de la génération de « bons » nombres premiers on impose ainsi que P-1 ait au moins un « grand » facteur premier. Toutefois, la méthode de factorisation ECM (basée sur les courbes elliptiques) a rendu l'algorithme P-1 obsolète, et fonctionne aussi bien lorsque P-1 est powersmooth ou ne l'est pas.

Dans la méthode ECM, on utilise en effet le groupe des points d'une courbe elliptique quelconque définie sur \mathbb{Z}_N . Ce groupe est d'ordre variable, mais proche de N. Cette variabilité permet de tomber avec forte probabilité sur un ordre friable (smooth), contrairement à l'algorithme P-1 dans lequel le choix du groupe est contraint. On calcule donc les multiples d'un point de la courbe jusqu'à tomber sur un élément non-inversible, qui doit apparaître assez tôt à cause du petit théorème de Fermat. Cet algorithme est de complexité subexponentielle.

Autour de RSA

On rappelle le schéma de chiffrement RSA basique.

```
 \begin{split} \mathsf{KeyGen}(1^n) \text{ choisir un module } N \text{ qui est le produit de deux premiers de } n \text{ bits, avec deux} \\ \text{entiers } e \text{ et } d \text{ tels que } ed = 1 \mod \phi(N). \text{ pk} = (N, e) \text{ ; sk} = (N, d) \\ \mathsf{Enc}(m \in \mathbb{Z}_N^*, (N, e)) \text{ renvoie } c = m^e \pmod N \\ \mathsf{Dec}(c \in \mathbb{Z}_N^*, (N, d)) \text{ renvoie } m = c^d \pmod N \end{split}
```

Nous avons déjà vu que ce RSA basique n'est pas IND-CPA. Dans cet exercice nous explorons quelques autres attaques sur ce schéma.

Question 4. Soit N = PQ un produit de deux premiers distincts. Montrer que si $\phi(N)$ et N sont connus, alors on peut retrouver p, q en temps polynomial.

Question 5. Montrer que si $m \in [0, N^{1/e}]$ alors on peut facilement décrypter (retrouver le message sans connaître la clé privée).

Question 6. Une racine de l'unité modulo N est un entier x tel que $x^2 = 1 \mod N$.

1. Combien y a-t-il de racines de l'unité modulo N?

- 2. Supposons que l'on connaisse (N, e, d) (mais pas la factorisation de N). Montrer qu'on peut calculer une racine de l'unité modulo N. On admet qu'elle est non-triviale avec bonne probabilité.
- 3. En déduire qu'on peut factoriser N.

Question 7. Fixons un module N et supposons qu'un serveur centralisé donne aux utilisateurs des paires (e_1, d_1) et (e_2, d_2) formant des clés RSA valides (exposants privés et publics). Pourquoi est-ce une mauvaise idée ?

Question 8. Soit $(N_1, e), \ldots, (N_e, e)$ les clé publiques de e utilisateurs différents. Un même message m est chiffré e fois, avec chacune de ces clés publiques. Montrer qu'un attaquant peut retrouver m à partir de l'observation des chiffrés $c_i := \operatorname{Enc}(m, (N_i, e))$.

Question 9. On essaie maintenant d'éviter l'attaque de la question précédente. On a $m < \sqrt{N_i}$ mais on force chaque utilisateur à utiliser une modification de son message m, sous la forme d'un décalage δ_i connu. L'attaquant n'observe donc plus que les chiffrés de $m + \delta_1$, $m + \delta_2$, ..., $m + \delta_e$.

On admet le théorème de Coppersmith :

Theorem 1. Soit $f \in \mathbb{Z}[X]$ un polynôme unitaire de degré e et N un entier. S'il existe une racine x_0 de f modulo N telle que $|x_0| \leq N^{1/e-\varepsilon}$, alors il est possible de retrouver x_0 en temps polynomial en $\log N$ et $1/\varepsilon$.

Montrer comment retrouver m.

Fonction Indicatrice d'Euler

On rappelle que l'indicatrice d'Euler est définie par $\phi(N) = |\mathbb{Z}_N^*|$, l'ordre du groupe \mathbb{Z}_N^* . Dit autrement, c'est le nombre d'entiers de [1; N] qui sont premiers avec N.

Question 10. Soit p un nombre premier, montrer que $\phi(p) = p - 1$.

Question 11. Soient p, q premiers entre eux. Montrer que $\phi(qp) = \phi(p)\phi(q)$.

Question 12. Soit p un premier et $e \ge 1$ un entier. Montrer que $\phi(p^e) = p^{e-1}(p-1)$.

Question 13. Soit $N = \prod_i p_i^{c_i}$ où les p_i sont des premiers distincts, $c_i \geq 1$. Montrer que $\phi(N) = \prod_i p_i^{c_i-1}(p_i-1)$;