タイトル

pollenJP

2019年1月21日

目次(もくじだよ)

目)	次			Page
Preface				1
		Preface		. 1
1	TableOfConten	nts		1
2	環の定義			1
3	Who is pollenJ	P?		2
		3.1	list	. 2
			3.1.1 pollenJPJPJP	. 2
			3.1.2 pollenJPJPJP2	. 3
		3.2	pollenJPJP2	. 3
4	表			3
		4.1	Normal	. 3
		4.2	subtable	. 3
		4.3	斜線	. 4
		4.4	p 次元データ(共分散・相関係数)	. 4
5	図			5
6	TIKZ-NETWO	RK - 描画		5
課題 7	セクションタイ	′トル替え		5
		課題 7.1	サブタイトルも変える	. 5
			課題 7.1.1 subsub	. 5
		課題 7.2	次のセクションでタイトルを戻す	. 5
8	URL を使用			5

9	数式		5
	9.1	Show inline math as if it were display math	5
	9.2	実験内容	6
	9.3	行列のスケーリング・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6
10	プログラミングコード		6

1. TableOfContents

- https://tex.stackexchange.com/questions/33841/how-to-modify-the-space-between-the-numbers-and-33842
- https://en.wikibooks.org/wiki/LaTeX/Document_Structure
- https://cmry.github.io/notes/latextoc

2. 環の定義

1 [問]

R を環とする. $0 \in R$ を零元とすると, $\forall a \in R$ に対して,

$$a \cdot 0 = 0 \cdot a = 0$$

となることを示せ.

[解答]

$$0 = 0 + 0$$

 $(\because$ 零元の定義)
 $\Leftrightarrow a \cdot 0 = a \cdot (0 + 0)$
(左から a をかける)
 $\Leftrightarrow a \cdot 0 = a \cdot 0 + a \cdot 0$
 $(\because$ 分配則)
 $\Leftrightarrow a \cdot 0 - a \cdot 0 = a \cdot 0 + a \cdot 0 - a \cdot 0$
 $(\because$ 両辺に加法逆元を加える)
 $\Leftrightarrow 0 = a \cdot 0$
 $(\because$ 結合則と加法逆元の性質)

同様に

$$\Leftrightarrow 0 \cdot a = (0+0) \cdot a$$
(右から a をかける)
 $\Leftrightarrow 0 \cdot a = 0 \cdot a + 0 \cdot a$
(∵分配則)
 $\Leftrightarrow 0 \cdot a - 0 \cdot a = 0 \cdot a + 0 \cdot a - 0 \cdot a$
(∵ 両辺に加法逆元を加える)
 $\Leftrightarrow 0 = 0 \cdot a$
(∵ 結合則と加法逆元の性質)

よって, $a \cdot 0 = 0 \cdot a = 0$

2 [問]

環Rにおいて乗法の単位元は一意であることを示せ.

[解答]

 $e^*, e^{'*} \in R$ がともに環R の乗法の単位元であるとする.

$$e^* = e^* \cdot e^{'*}$$
 $(\because e^{'*}$ は単位元)
$$= e^{'*}$$
 $(\because e^*$ は単位元)

3 [問]

R を環とする. $a \in R$ に対して左逆元 b と右逆元 c が存在するとき, b = c であることを示せ. また, それらを a の逆元というが, a の逆元が一意であることを示せ. [解答]

- 左逆元・右逆元の定義 ―

hello

3. Who is pollenJP?

hhh

- 3.1 list
- 3.1.1 pollenJPJPJP
 - 1. <mark>ハイライト</mark>
 - 2. カラー変更
 - 3. ccc
 - 4. ddd

- 9. aaa
- 10. bbb
- 11. ccc
- 12. https://tex.stackexchange.com/questions/142/how-can-i-make-an-enumerate-list-start-at-something

Block のパラメータの設定 Gaussian Noise Generator

- 平均値 (Mean Value)=0
- 分散 (Variance)=0.8
- サンプル時間=0.01 秒

シミュレーション時間

● 終了時間 10 秒

その他

• Signal To Workspace, Display は, 設定の変更は必要ない.

hello

あいうえお

$3.1.2 \quad pollen JP JP JP 2$

hello

3.2 pollenJPJP2

hello

4. 表

4.1 Normal

以下の表 2a を示す.

表 1: 課題 1.2: M=2 の表

シンボル	ビット
0	0
1	1

4.2 subtable

以下の表 2c

(a) M=2 の表

シンボル	ビット			
0	0			
1	1			

(b) M=4 の表

シンボル	ビッ
0	00
1	01
2	10
3	11

(c) 課題

	Μ	M=2					M=4					
時間	0	1	2	3	4	5	0	1	2	3	4	5
シンボル列	1	0	0	0	1	1	2	0	0	1	2	3
ビット列	1	0	0	0	1	1	10	00	00	01	10	11

4.3 斜線

表 3: 課題 2.1: 雑音の統計値 (平均値と分散)

分散 (設)	定値)	9
統計値		2
平均値	-0.0247	-0.0349
分散	0.9850	1.97

4.4 p次元データ(共分散・相関係数)

偏差積和

$$S_{ij} = \frac{1}{n} \sum_{i=1}^{n} (x_{j_1 j_2} - \bar{x_{j_1}}) (x_{ij_2} - \bar{x_{j_2}})$$

表 4: 多変量データ例

No.	x_{j_1}	x_{j_2}	偏差積
1	x_{1j_1}	x_{1j_2}	$(x_{1j_1} - \bar{x_{j_1}})(x_{1j_2} - \bar{x_{j_2}})$
2	x_{2j_1}	x_{2j_2}	$(x_{2j_1} - \bar{x_{j_1}})(x_{2j_2} - \bar{x_{j_2}})$
:			
i	x_{ij_1}	x_{1j_2}	$(x_{ij_1} - \bar{x_{j_1}})(x_{ij_2} - \bar{x_{j_2}})$
:			
n	x_{nj_1}	x_{nj_2}	$(x_{nj_1} - \bar{x_{j_1}})(x_{nj_2} - \bar{x_{j_2}})$
	$\bar{x_{j_1}}$	$\bar{x_{j_2}}$	$S_{ij} = \frac{1}{n} \sum_{i=1}^{n} (x_{j_1 j_2} - \bar{x_{j_1}}) (x_{ij_2} - \bar{x_{j_2}})$

5. 図

以下の図

- 6. TIKZ-NETWORK 描画
 - ここにいろいろ公開されている https://arxiv.org/abs/1709.06005
 - tikz-network.sty をダウンロードしなければいけない
 - https://ctan.org/tex-archive/graphics/pgf/contrib/tikz-network

課題 7. セクションタイトル替え

実験内容

課題 7.1 サブタイトルも変える

課題 7.1.1 subsub

• https://groups.google.com/forum/#!topic/comp.text.tex/EcAPeYr-ySE

subsub2

課題 7.2 次のセクションでタイトルを戻す

- 8. URL **を使用**
 - https://www.sharelatex.com/learn/Hyperlinks
- 9. 数式
- 9.1 Show inline math as if it were display math

 $\begin{array}{l} \text{https://tex.stackexchange.com/questions/32824/show-inline-math-as-if-it-were-display-math} \\ \frac{1}{n-1} \sum_{i=1}^n (x_{ij} - \bar{x_j})^2 \\ \prod_{j=0}^J k_j \\ \int\limits_{-\infty}^{\infty} f(x) \, \mathrm{d}x \end{array}$

9.2 実験内容

変調とは、伝送媒体である波 (電波、光など) に情報を乗せる操作である. 波は. 振幅と周波数、位相をパラメータとして構成される. 伝送媒体の波を搬送波 (Carrier) と呼ぶ. 搬送波は、次式で表せる.

$$s(t) = r(t) \cdot \cos(2\pi f_c t + \vartheta(t)) \tag{1}$$

 f_c を搬送波周波数と呼ぶ. 携帯電話の代表値では $860 \mathrm{MHz}$ である. 式 (1) を展開すると次式を得る.

$$s(t) = I(t) \cdot \cos(2\pi f_c t) - Q(t) \cdot \sin(2\pi f_c t) \tag{2}$$

式 (1) は式 (2) と等価であり、表現の方法が違うのみである. 式 (2) の表現において I(t) を搬送波の同相成分,Q(t) を直交成分と言う. これは余弦波と正弦波が互いに直交 (1 周期積分してゼロとなる) しているためである. さらに、式 (2) は次のように表せる.

$$s(t) = Re \left\{ (I(t) + j \cdot Q(t)) \cdot e^{j2\pi f_c t} \right\}$$

$$= Re \left\{ u(t) \cdot e^{j2\pi f_c t} \right\}$$

$$u(t) = I(t) + j \cdot Q(t)$$
(3)

9.3 行列のスケーリング

$$X = \begin{bmatrix} \sum_{i=1}^{n} (x_{i1} - \bar{x_1})^2 & \cdots & \sum_{i=1}^{n} (x_{i1} - \bar{x_1})(x_{ip} - \bar{x_p}) \\ \vdots & \ddots & \vdots \\ \sum_{i=1}^{n} (x_{ip} - \bar{x_p})(x_{i1} - \bar{x_1}) & \cdots & \sum_{i=1}^{n} (x_{ip} - \bar{x_p})^2 \end{bmatrix}$$
$$= \begin{bmatrix} \sum_{i=1}^{n} (x_{ip} - \bar{x_p})^i & \cdots & \sum_{i=1}^{n} (x_{ip} - \bar{x_p})^2 \\ \vdots & \ddots & \vdots \\ \sum_{i=1}^{n} (x_{ip} - \bar{x_p})^i & \cdots & \sum_{i=1}^{n} (x_{ip} - \bar{x_p})^2 \end{bmatrix}$$

10. プログラミングコード

以下の Python3 コードによって描画した.

```
import numpy as np
import matplotlib.pyplot as plt

f = np.arange(-5.0, 5.1, 0.1)
print(f.shape)

T = 2
G_f = T * np.sin(np.pi * f * T)
W_f = abs(G_f)**2 / T
P_f = 10 * np.log10(W_f)

fig = plt.figure(figsize=(15, 10))
ax = fig.add_subplot(1,1,1)
ax.plot(f,P_f, label="P(f)")
ax.set_title("Power Spectrum")
```

```
ax.set_xlabel("frequency[Hz]")
ax.set_ylabel("Magnitude-squared [dB]")
ax.legend(loc="lower right", prop={'size': 20})
plt.show()
```

索引

ccc 2