

Lecture 3 Relational Database Design Theory (part 1)

关系数据库设计理论 (第1部分)

Design Theory

- Dependencies 依赖
 - A well developed theory for relational databases
 - How to improve an initial relational schema to become a good design?
 - Problems: Anomalies 异常
 - Functional dependencies 函数依赖
 - Normalization: Normal Form 范式
 - Decomposition 分解
 - Multivalued dependencies 多值依赖
 - Eliminate redundancy

Outline

Functional Dependencies

Relational Database Schema Design

Outline

Functional Dependencies

Relational Database Normal Form

- Functional Dependencies 函数依赖
 - State the constraints that apply to the relation
 - Generalizes the idea of a key for a relation

- We shall see
 - How this theory gives us simple tools to improve our designs by the process of "decomposition"

Functional Dependencies: Definition

- A functional dependency (FD)
 - on a relation R is a statement of the form
 - "If two tuples of R agree on all of the attributes $A_1, A_2, ..., A_n$,
 - then they must also agree on all of another list of attributes $B_1, B_2, ..., B_m$ "

$$A_1A_2...A_n \rightarrow B_1B_2...B_m$$

" $A_1, A_2, ..., A_n$ functionally determine $B_1, B_2, ..., B_m$ "

Functional Dependencies: Definition

- R satisfies the FD F R满足函数依赖F
 - If we can be sure every instance of a relation R
 - will be one in which a given FD F is true
 - Asserting a constraint on R
 - Not just saying something about one particular instance of R

$$A_1A_2...A_n \rightarrow B_1B_2...B_m$$

Is equivalent to the set of FD's:

$$A_1A_2...A_n \rightarrow B_1$$

$$A_1A_2...A_n \rightarrow B_2$$

• • •

$$A_1A_2...A_n \rightarrow B_m$$

Example

```
Movies1 (title, year, length, genre, studioName, starName)
title year → length genre studioName
title year → starName 

✓
```

title	year	length	genre	studioName	starName
Star Wars	1977	124	SciFi	Fox	Carrie Fisher
Star Wars	1977	124	SciFi	Fox	Mark Hamill
Star Wars	1977	124	SciFi	Fox	Harrison Ford
Gone With the Wind	1939	231	drama	MGM	Vivien Leigh
Wayne's World	1992	95	comedy	Paramount	Dana Carvey
Wayne's World	1992	95	comedy	Paramount	Mike Meyers

Keys of Relations

• Key 键

- A set of one or more attributes $\{A_1, A_2, ..., A_n\}$ is a key for a relation R if
 - 1. Those attributes functionally determine all other attributes of the relation.

That is, it is impossible for two distinct tuples of R to agree on all of $A_1, A_2, ..., A_n$

2. No proper subset of $\{A_1, A_2, ..., A_n\}$ functionally determines all other attributes of R;

i.e., a key must be minimal

Keys of Relations

Example

```
Movies1 (title, year, length, genre, studioName, starName)
Key
{title, year, starName}
Not a key
{title, year}
{year, starName}
{title, starName}
```

Primary Key

Primary Key 主键

- Sometime a relation has more than one key
 - Designate one of the keys as the primary key

Superkeys

- Superkey 超键
 - A set of attributes that contains a key
 - Short for "superset of a key"
 - Every superkey satisfies the first condition of a key
 - It functionally determines all other attributes of the relations
 - A superkey need not satisfy the second condition
 - Minimality

Superkeys

Example

Movies1 (title, year, length, genre, studioName, starName)

- Superkeys {title, year, starName}
 - Any superset of this set of attributes

{title, year, starName, length, studioName}

Reasoning About FD's

Example 3.4

R(A, B, C) satisfies the FD's

 $A \rightarrow B$ and $B \rightarrow C$

Does R also satisfy $A \rightarrow C$?

- Proof
 - Let two tuples agreeing on A be (a, b_1, c_1) and (a, b_2, c_2)
 - Since R satisfies $A \rightarrow B$, then $b_1 = b_2$
 - The tuples are really (a, b, c_1) and (a, b, c_2)
 - Since R satisfies $B \rightarrow C$, then $c_1 = c_2$
 - Any two tuples of R that agree on A also agree on C

Several Definitions

Equivalent

等价

Two sets of FD's S and T are equivalent if the set of relation instances satisfying S is exactly the same as the set of relation instances satisfying T.

Follows

推断

A set of FD's S follows from a set of FD's T if
 every relation instance that satisfies all the FD's in
 T also satisfies all the FD's in S.

Two sets of FD's S and T are equivalent if and only if S follows from T, and T follows from S.

The Splitting/Combining Rule

- Splitting rule 分解规则
 - Replace an FD $A_1A_2...A_n \rightarrow B_1B_2...B_m$
 - by a set of FD's $A_1A_2...A_n \rightarrow B_i$ for i=1,2,...,m
- Combing rule 组合规则
 - Replace a set of FD's $A_1A_2...A_n \rightarrow B_i$ for i=1,2,...,m
 - by the single FD $A_1A_2...A_n \rightarrow B_1B_2...B_m$

The Splitting/Combining Rule (Cont'd)

Example

```
title year → length

title year → genre

title year → studioName

- Is equivalent to the single FD

title year → length genre studioName
```

The Splitting/Combining Rule (Cont'd)

Example

```
title year → length
If we try to split the left side into
title → length
year → length
Then we get two false FD's!
```

Trivial Functional Dependencies 平凡函数依赖

- Trivial 平凡
 - A constraint of any kind on a relation is said to be trivial if it holds for every instance of the relation, regardless of what other constraints are assumed.
- Trivial FD's 平凡函数依赖

$$A_1A_2...A_n \rightarrow B_1B_2...B_m$$

- Such that $\{B_1, B_2, ..., B_m\} \subseteq \{A_1, A_2, ..., A_n\}$

Trivial Functional Dependencies (Cont'd)

Trivial-dependency rule

平凡依赖规则

$$A_1A_2...A_n \rightarrow B_1B_2...B_m$$

is equivalent to

$$A_1A_2...A_n \rightarrow C_1C_2...C_k$$

Where the C's are all those B's that are not also A's

Trivial Functional Dependencies (Cont'd)

Trivial-dependency rule

平凡依赖规则

Computing the Closure of Attributes 计算属性的闭包

- Closure of attributes 属性的闭包
 - Suppose $\{A_1, A_2, ..., A_n\}$ is a set of attributes
 - -S is a set of FD's
 - The closure of $\{A_1, A_2, ..., A_n\}$ under the FD's in S
 - is the set of attributes B such that every relation that satisfies all the FD's in set S also satisfies
 - $A_1A_2...A_n \rightarrow B$ - That is $A_1A_2...A_n \rightarrow B$ follows from the FD's of S.
 - Denote the closure of a set of attributes $A_1, A_2, ..., A_n$ by $\{A_1, A_2, ..., A_n\}^+$

Computing the Closure of Attributes

Process

- Starting with the given set of attributes
- Repeatedly expand the set by adding the right sides of FD's as soon as we have included their left sides
- Eventually, we cannot expand the set any further, and the resulting set is the closure.

Algorithm 3.7: Closure of a Set of Attributes

INPUT: A set of attributes $\{A_1, A_2, ..., A_n\}$ and a set of FD's *S* **OUTPUT**: The closure $\{A_1, A_2, ..., A_n\}^+$

- 1. If necessary, split the FD's of *S*, so each FD in *S* has a single attribute on the right.
- 2. Let X be a set of attributes that eventually will become the closure. Initialize X to be $\{A_1, A_2, ..., A_n\}$.
- 3. Repeatedly search for some FD

$$B_1B_2...B_m \rightarrow C$$

such that all of $B_1, B_2, ..., B_m$ are in X, but C is not. Add C to the set X and repeat the search.

4. The set X, after no more attributes can be added to it, is the correct value of $\{A_1, A_2, ..., A_n\}^+$

Example

Example 3.8

```
R(A, B, C, D, E, F)
FD's = \{AB \rightarrow C, BC \rightarrow AD, D \rightarrow E, CF \rightarrow B\}
\{A, B\}^+ = ?
1. Split BC \rightarrow AD into BC \rightarrow A and BC \rightarrow D.
2. X = \{A, B\}
3. AB \rightarrow C, X = \{A, B, C\}
    BC \rightarrow A and BC \rightarrow D, X = \{A, B, C, D\}
    D \rightarrow E, X = \{A, B, C, D, E\}
4. \{A, B\}^+ = \{A, B, C, D, E\}
```

Theorem

```
A_1A_2...A_n \rightarrow B_1B_2...B_m follows from set of FD's S if and only if all of B_1, B_2, ..., B_m are in \{A_1, A_2, ..., A_n\}^+
```

Example

• Example 3.9

```
R(A, B, C, D, E, F)
FD's={AB \rightarrow C, BC \rightarrow AD, D \rightarrow E, CF \rightarrow B}
```

Test whether $AB \rightarrow D$ follows from these FD's?

Solution:

Compute $\{A, B\}^+ = \{A, B, C, D, E\}$

Since D is a member of the closure, $AB \rightarrow D$ does follow.

Question: Test whether $D \rightarrow A$ follows from these FD's?

The Transitive Rule

Transitive Rule

- If
$$A_1A_2...A_n \rightarrow B_1B_2...B_m$$
 and $B_1B_2...B_m \rightarrow C_1C_2...C_k$ hold in relation R , then $A_1A_2...A_n \rightarrow C_1C_2...C_k$ also holds in R .

• If some of the *C*'s are among the *A*'s, we may eliminate them from the right side by the *trivial-dependencies rule*.

The Transitive Rule (Cont'd)

- Why the transitive rule holds
 - Compute the closure $\{A_1, A_2, ..., A_n\}^+$, with respect to the two given FD's
 - $A_1A_2...A_n \rightarrow B_1B_2...B_m$ tells us that all of $B_1, B_2, ..., B_m$ are in $\{A_1, A_2, ..., A_n\}^+$
 - Then, we can use the FD $B_1B_2...B_m \rightarrow C_1C_2...C_k$ to add $C_1, C_2, ..., C_k$ to $\{A_1, A_2, ..., A_n\}^+$
 - We conclude that $A_1A_2...A_n \rightarrow C_1C_2...C_k$ holds

The Transitive Rule (Cont'd)

Example

title	year	length	genre	studioName	studioAddr
Star Wars	1977	124	sciFi	Fox	Hollywood
Eight Below	2005	120	drama	Disney	Buena Vista
Wayne's World	1992	95	comedy	Paramount	Hollywood

```
title year → studioName
studioName → studioAddr
```

The transitive rule

title year → studioAddr

Closure and Keys

Closure and Superkey

 $-\{A_1, A_2, ..., A_n\}^+$ is the set of all attributes of a relation if and only if $A_1, A_2, ..., A_n$ is a superkey for the relation.

Closure and Key

- Test if $A_1, A_2, ..., A_n$ is a key for a relation by checking first that $\{A_1, A_2, ..., A_n\}^+$ is all attributes,
- and then checking that, for no set X formed by removing one attribute from $\{A_1, A_2, ..., A_n\}$, is X^+ the set of all attributes.

Minimal Basis of FD's

Basis of FD's

If we are given a set of FD's S, then any set of FD's equivalent to S is said to be a basis for S

• Minimal Basis 最小基本集

- A basis B that satisfies three conditions
 - All the FD's in B have singleton right sides
 - If any FD is removed from B, the result is no longer a basis
 - If for any FD in B we remove one or more attributes from the left side of it, the result is no longer a basis

Minimal Basis of FD's

Example

- -R(A, B, C)
 - Each attribute functionally determines the other two
- The full set of derived FD's
 - $A \rightarrow B$, $A \rightarrow C$, $B \rightarrow A$, $B \rightarrow C$, $C \rightarrow A$, $C \rightarrow B$
 - $AB \rightarrow C$, $AC \rightarrow B$, $BC \rightarrow A$
 - $A \rightarrow BC$
 - $A \rightarrow A$
- Minimal basis (only shows two of them)
 - $\{A \rightarrow B, B \rightarrow A, B \rightarrow C, C \rightarrow B\}$
 - $\{A \rightarrow B, B \rightarrow C, C \rightarrow A\}$

Armstrong's Axioms

- Armstrong's Axioms Armstrong公理
 - From which it is possible to derive any FD that follows from a given set
 - 1. Reflexivity 自反律

- If $\{B_1, B_2, ..., B_m\} \subseteq \{A_1, A_2, ..., A_n\}$, then $A_1A_2...A_n \rightarrow B_1B_2...B_m$ (trivial FD's)
- 2. Augmentation 增广律

• If $A_1A_2...A_n \rightarrow B_1B_2...B_m$, then $A_1A_2...A_nC_1C_2...C_k \rightarrow B_1B_2...B_mC_1C_2...C_k$

Armstrong's Axioms

- Armstrong's Axioms Armstrong公理
 - From which it is possible to derive any FD that follows from a given set
 - 3. Transitivity 传递律

• If $A_1A_2...A_n \rightarrow B_1B_2...B_m$ and $B_1B_2...B_m \rightarrow C_1C_2...C_k$ then $A_1A_2...A_n \rightarrow C_1C_2...C_k$

Question?

- Suppose we have a relation R with set of FD's S
- And we project R by computing $R_1 = \pi_L(R)$
- What FD's hold in R_1 ?
- Answer 函数依赖集的投影
 - By computing the projection of functional dependencies S, which is all FD's that:
 - Follow from *S*, and
 - Involve only attributes of R_1

Algorithm 3.12 Projecting a Set of Functional Dependencies

INPUT: A relation R and a second relation R_1 computed by the projection $R_1 = \pi_L(R)$. Also, a set of FD's S that hold in R

OUTPUT: The set of FD's that hold in R_1

METHOD:

- 1. Let *T* be the eventual output set of FD's. Initially, *T* is empty.
- 2. For each set of attributes X that is a subset of the attributes of R_1 , compute X^+ . This computation is performed with respect to the set of FD's S, and may involve attributes that are in the schema of R but not R_1 . Add to T all nontrivial FD's $X \rightarrow A$ such that A is both in X^+ and an attribute of R_1

Algorithm 3.12 Projecting a Set of Functional Dependencies

- 3. Now, T is a basis for the FD's that hold in R_1 , but may not be a minimal basis. We may construct a minimal basis by modifying T as follows:
 - (a) If there is an FD *F* in *T* that follows from the other FD's in *T*, remove *F* from *T*.
- (b) Let $Y \rightarrow B$ be an FD in T, with at least two attributes in Y, and let Z be Y with one of its attributes removed. If $Z \rightarrow B$ follows from the FD's in T (including $Y \rightarrow B$), then replace $Y \rightarrow B$ by $Z \rightarrow B$
- (c) Repeat the above steps in all possible ways until no more changes to *T* can be made

- Suppose R(A, B, C, D) has FD's
- $-A \rightarrow B$, $B \rightarrow C$, and $C \rightarrow D$,
- $-R_1(A, C, D)$
- Find the FD's for R_1 ?
 - $\{A\}^+=\{A, B, C, D\}$
 - $A \rightarrow C$, $A \rightarrow D$ hold in R_1
 - $\{C\}^+ = \{C, D\}$
 - $C \rightarrow D$ hold in R_1

- $\{D\}^+ = \{D\}$
- Add nothing

- Suppose R(A, B, C, D) has FD's
- $-A \rightarrow B$, $B \rightarrow C$, and $C \rightarrow D$,
- $-R_1(A, C, D)$
- Find the FD's for R_1 ?
 - $\{C, D\}^+ = \{C, D\}$
 - Add nothing
 - FD's for $R_1 = \{A \rightarrow C, A \rightarrow D, C \rightarrow D\}$

- Suppose R(A, B, C, D) has FD's
- $-A \rightarrow B$, $B \rightarrow C$, and $C \rightarrow D$,
- $-R_1(A, C, D)$
- Find the FD's for R_1 ?
 - FD's for $R_1 = \{A \rightarrow C, A \rightarrow D, C \rightarrow D\}$
 - $A \rightarrow D$ follows from the other two (by transitivity)
 - Equivalent set of FD's for $R_1 = \{A \rightarrow C, C \rightarrow D\}$
 - A minimal basis for the FD's of R_1

Outline

Functional Dependencies

Relational Database Normal Form

Design of Relational Database Schemas

Problem

- Careless selection of a relational database schema
 - Can lead to redundancy and related anomalies.

title	year	length	genre	studioName	starName
Star Wars	1977	124	SciFi	Fox	Carrie Fisher
Star Wars	1977	124	SciFi	Fox	Mark Hamill
Star Wars	1977	124	SciFi	Fox	Harrison Ford
Gone With the Wind	1939	231	drama	MGM	Vivien Leigh
Wayne's World	1992	95	comedy	Paramount	Dana Carvey
Wayne's World	1992	95	comedy	Paramount	Mike Meyers

Anomalies

- Anomalies 异常
 - Redundancy 冗余
 - Information may be repeated unnecessarily in several tuples
 - Update Anomalies 更新异常
 - We may change information in one tuple but leave the same information unchanged in another
 - Deletion Anomalies 删除异常
 - If a set of values becomes empty, we may lose other information as a side effect

Decomposing Relations

- Decomposition 分解
 - Given a relation $R(A_1, A_2, ..., A_n)$
 - decompose R into two relations $S(B_1, B_2, ..., B_n)$ and $T(C_1, C_2, ..., C_k)$ such that
 - 1. $\{A_1, A_2, ..., A_n\} = \{B_1, B_2, ..., B_n\} \cup \{C_1, C_2, ..., C_k\}$

2.
$$S = \pi_{B_1, B_2, ...B_m}(R)$$

3.
$$T = \pi_{C_1, C_2, \dots C_k}(R)$$

Decomposing Relations

Movies1

Example

title	year	length	genre	studioName	starName
Star Wars	1977	124	SciFi	Fox	Carrie Fisher
Star Wars	1977	124	SciFi	Fox	Mark Hamill
Star Wars	1977	124	SciFi	Fox	Harrison Ford
Gone With the Wind	1939	231	drama	MGM	Vivien Leigh
Wayne's World	1992	95	comedy	Paramount	Dana Carvey
Wayne's World	1992	95	comedy	Paramount	Mike Meyers

Movies2

title	year	length	genre	studioName
Star Wars	1977	124	SciFi	Fox
Gone With the Wind	1939	231	drama	MGM
Wayne's World	1992	95	comedy	Paramount

Movies3

title	year	starName
Star Wars	1977	Carrie Fisher
Star Wars	1977	Mark Hamill
Star Wars	1977	Harrison Ford
Gone With the Wind	1939	Vivien Leigh
Wayne's World	1992	Dana Carvey
Wayne's World	1992	Mike Meyers

- BCNF (Boyce-Codd Normal Form) (BC范式)
 - A relation R is in BCNF if and only if
 - whenever there is a nontrivial FD $A_1A_2...A_n \rightarrow B_1B_2...B_m$ for R,
 - it is the case that $\{A_1, A_2, ..., A_n\}$ is a superkey for R

- The left side of every nontrivial FD must contain a key

Example

- Key {title, year, starName}
- title year → length genre studioName

Movies1

title	year	length	genre	studioName	starName
Star Wars	1977	124	SciFi	Fox	Carrie Fisher
Star Wars	1977	124	SciFi	Fox	Mark Hamill
Star Wars	1977	124	SciFi	Fox	Harrison Ford
Gone With the Wind	1939	231	drama	MGM	Vivien Leigh
Wayne's World	1992	95	comedy	Paramount	Dana Carvey
Wayne's World	1992	95	comedy	Paramount	Mike Meyers

Example

- Key {title, year, starName}
- title year → length genre studioName

Movies1

Movies1 is not in BCNF

title	year	length	genre	studioName	starName
Star Wars	1977	124	SciFi	Fox	Carrie Fisher
Star Wars	1977	124	SciFi	Fox	Mark Hamill
Star Wars	1977	124	SciFi	Fox	Harrison Ford
Gone With the Wind	1939	231	drama	MGM	Vivien Leigh
Wayne's World	1992	95	comedy	Paramount	Dana Carvey
Wayne's World	1992	95	comedy	Paramount	Mike Meyers

Example

- Key {title, year}
- title year → length genre studioName

Movies2

title	year	length	genre	studioName
Star Wars	1977	124	SciFi	Fox
Gone With the Wind	1939	231	drama	MGM
Wayne's World	1992	95	comedy	Paramount

Example

- Key {title, year}
- title year → length genre studioName

Movies2 is in BCNF

Movies2

title	year	length	genre	studioName
Star Wars	1977	124	SciFi	Fox
Gone With the Wind	1939	231	drama	MGM
Wayne's World	1992	95	comedy	Paramount

Example

Any two-attribute relation is in BCNF

- -R(A, B)
- 1. $\{A, B\}$ is the only key. There are no nontrivial FD's
- 2. $\{A\}$ is the only key. $A \rightarrow B$
- 3. $\{B\}$ is the only key. $B \rightarrow A$
- 4. Both $\{A\}$ and $\{B\}$ are keys. $A \rightarrow B$ and $B \rightarrow A$

The strategy

- Use the violating FD's to guide our decomposition
- Look for a nontrivial FD $A_1A_2...A_n \rightarrow B_1B_2...B_m$ that violates BCNF

- title year → length genre studioName
 is a BCNF violation
- 1. {title, year, length, genre, studioName}
- 2. {title, year, starName}

- {title, year, studioName, president, presAddr}
 - title year → studioName
 - studioName → president
 - president → presAddr
 - {title, year} the only key
 - The last two FD's above violate BCNF

Example

- {title, year, studioName, president, presAddr}
 - studioName → president presAddr
- {title, year, studioName}

key {title, year}

- title year → studioName
- {studioName, president, presAddr} key{studioName}
 - studioName → president
 - president → presAddr

violate BCNF

Decompose again

Example

```
- {title, year, studioName} key {title, year}
```

- title year → studioName
- {studioName, president} key {studioName}
 - studioName → president
- {president, presAddr} key{president}
 - president → presAddr

All 3 relations in BCNF

Algorithm 3.20: BCNF Decomposition

INPUT: A relation R_0 with a set of FD's S_0 .

OUTPUT: A decomposition of R_0 into a collection of relations, all of which are in BCNF.

METHOD: The following steps can be applied recursively to any relation *R* and set of FD's *S*.

Initially, apply them with $R=R_0$ and $S=S_0$

1. Check whether R is in BCNF. If so, nothing more needs to be done. Return $\{R\}$ as the answer.

Algorithm 3.20: BCNF Decomposition

INPUT: A relation R_0 with a set of FD's S_0 .

OUTPUT: A decomposition of R_0 into a collection of relations, all of which are in BCNF.

METHOD: The following steps can be applied recursively to any relation *R* and set of FD's *S*.

Initially, apply them with $R=R_0$ and $S=S_0$.

2. If there are BCNF violations, let one be $X \rightarrow Y$. Use Algorithm 3.7 to compute X^+ . Choose $R_1 = X^+$ as one relation schema and let R_2 have attributes X and those attributes of R that are not in X^+

Algorithm 3.20: BCNF Decomposition

INPUT: A relation R_0 with a set of FD's S_0 .

OUTPUT: A decomposition of R_0 into a collection of relations, all of which are in BCNF.

METHOD: The following steps can be applied recursively to any relation R and set of FD's S.

Initially, apply them with $R=R_0$ and $S=S_0$.

3. Use Algorithm 3.12 to compute the sets of FD's for R_1 and R_2 ; let these be S_1 and S_2 , respectively.

Algorithm 3.20: BCNF Decomposition

INPUT: A relation R_0 with a set of FD's S_0 .

OUTPUT: A decomposition of R_0 into a collection of relations, all of which are in BCNF.

METHOD: The following steps can be applied recursively to any relation *R* and set of FD's *S*.

Initially, apply then with $R=R_0$ and $S=S_0$.

4. Recursively decompose R_1 and R_2 using the algorithm. Return the union of the result of the decompositions.