EX1

```
In [14]:
```

```
import pandas as pd
import matplotlib.pyplot as plt
```

1. Import Data1.csv file to python. 2. Set first column as the index.

```
In [15]:
```

```
df=pd.read_csv('Data1.csv',index_col=0,parse_dates=True)
```

In [16]:

```
df.head()
```

Out[16]:

	theta_1	theta_2	theta_3	theta_4	theta_5	theta_6
2017-01-01	0.756936	-1.467790	0.096136	-0.115306	-0.447908	0.902579
2017-01-02	0.767089	0.185797	-1.428536	-0.086443	-0.954288	1.930909
2017-01-03	0.404544	1.415887	0.443466	0.000200	-0.892351	2.449691
2017-01-04	1.313957	-1.804471	-0.836986	0.011785	-1.012518	1.182085
2017-01-05	0.209862	1.315868	0.140993	-0.046473	-1.417092	1.742433

3. Plot all columns as time series.

```
In [17]:
```

```
df.plot(subplots=True)
```

Out[17]:

4. Plot histograms of all columns, verify bin size. Plot all on a single, faceted plot.

```
In [18]:
```

```
df.plot.hist(bins=50)
```

```
Out[18]:
```

```
<AxesSubplot:ylabel='Frequency'>
```


5. Plot KDE-s (Kernel Denisty Estimators) for all columns.

In [19]:

```
df.plot.density(subplots=True)
```

Out[19]:

6. Repeat analysis for columns

 $heta_1$ - $heta_4$ in 2018.

In [20]:

```
df2018=df.loc["2018"]
```

In [21]:

```
df2018.head()
```

Out[21]:

	theta_1	theta_2	theta_3	theta_4	theta_5	theta_6
2018-01-01	0.682693	-3.091767	-0.475717	-0.238530	0.036404	4.551359
2018-01-02	-0.283107	-0.979955	1.233933	0.158031	-0.097014	4.623086
2018-01-03	1.572221	-2.033528	2.196317	0.041347	0.009982	4.330249
2018-01-04	-1.042981	0.651530	1.060125	0.064832	0.036592	6.617830
2018-01-05	-1.392614	-2.570905	-0.600063	-0.015025	0.124576	5.577570

```
df2018=df2018.drop(columns=['theta 5', 'theta 6'])
In [23]:
df2018.head()
Out[23]:
             theta_1
                      theta_2
                               theta_3
                                         theta_4
2018-01-01
           0.682693 -3.091767 -0.475717 -0.238530
2018-01-02 -0.283107
                    -0.979955
                              1.233933
                                        0.158031
2018-01-03
           1.572221
                    -2.033528
                              2.196317
                                        0.041347
2018-01-04 -1.042981
                     0.651530
                              1.060125
                                        0.064832
2018-01-05 -1.392614 -2.570905 -0.600063 -0.015025
In [24]:
df2018.plot(subplots=True)
Out[24]:
array([<AxesSubplot:>, <AxesSubplot:>, <AxesSubplot:>],
       dtype=object)
   0.0
                             theta 1
  -2.5
    5
    0
   -5
    0
                                              theta 3
  -10
  0.25
  0.00
           theta 4
 -0.25
  2018
In [25]:
df2018.plot.density(subplots=True)
Out[25]:
array([<AxesSubplot:ylabel='Density'>, <AxesSubplot:ylabel='Density'>,
        <AxesSubplot:ylabel='Density'>, <AxesSubplot:ylabel='Density'>],
       dtype=object)
 Density
                                               theta_1
   0.25
  0.00
 0.0 Density
                                               theta 2
 0.0
0.0
                                               theta_3
 Density
0.0
                                               theta 4
   0.0
      -20
            -15
                   -10
                          -5
                                        Ś
                                              10
```

In [22]:

In [27]:

```
df2018.plot.hist(bins=50)
```

Out[27]:

<AxesSubplot:ylabel='Frequency'>

EX2

1. Install cmdstanpy package 2. Install cmdstan

```
In [29]:
```

```
import cmdstanpy
```

3. Create a cmdstanpy model from bern 1.stan code provided.

```
In [30]:
```

```
b_model=cmdstanpy.CmdStanModel(stan_file='bern_1.stan')
INFO:cmdstanpy:found newer exe file, not recompiling
INFO:cmdstanpy:compiled model file: C:/Users/Studia/LAB1-P~1/bern_1.exe
```

2. Create a dataset (as a dictionary) of F+L binary samples with F zeros and L ones, with F=number of letters in first name, L=number of letters in last name. Dictionary needs to consist of N=F+L, and y = list of samples.

```
In [31]:
```

4. Sample from the model using the dataset and <code>.sample()</code> method

In [32]:

```
bern_fit=b_model.sample(data=b_data,output_dir='sample'#,show_progress=true,,show_progres
s='notebook'
)

INFO:cmdstanpy:start chain 1
INFO:cmdstanpy:finish chain 2
INFO:cmdstanpy:finish chain 3
INFO:cmdstanpy:finish chain 2
INFO:cmdstanpy:finish chain 3
INFO:cmdstanpy:finish chain 3
INFO:cmdstanpy:finish chain 3
INFO:cmdstanpy:finish chain 3
INFO:cmdstanpy:finish chain 4
```

5. Extract

heta variable and create its histogram.

```
In [33]:
```

```
draws_theta=bern_fit.stan_variable(name='theta')
```

In [34]:

```
type(draws_theta)
```

Out[34]:

numpy.ndarray

6. Using summary() method get mean, median and 5% and 95% quantiles of theta, and mark them on the histogram.

In [35]:

```
basic_stats=bern_fit.summary()
basic_stats
```

Out[35]:

Mean MCSE StdDev 5% 50% 95% N_Eff N_Eff/s R_hat

name

lp	-11.00	0.0190	0.69	-12.00	-11.00	-10.00	1400.0	11000.0	1.0
theta	0.54	0.0033	0.12	0.34	0.54	0.75	1400.0	11000.0	1.0

In [36]:

```
type(basic_stats)
```

Out[36]:

pandas.core.frame.DataFrame

In [64]:

```
fix,ax=plt.subplots(1,1)
ax.hist(draws_theta,bins=30,density=True)
ax.fill_betweenx([0, 3.4], 0, 0.34, color='c')
ax.set_yticks([])
ax.set_xlabel('$\\theta$')
plt.title('5% $\\theta$')
plt.show()
```


In [65]:

```
fix ax=nlt subplots(1 1)
```

```
ax.hist(draws_theta,bins=30,density=True)
ax.fill_betweenx([0, 3.4], 0, 0.54, color='c')
ax.set_yticks([])
ax.set_xlabel('$\\theta$')
plt.title('50% $\\theta$')
plt.show()
```


In [66]:

```
fix, ax=plt.subplots(1,1)
ax.hist(draws_theta,bins=30,density=True)
ax.fill_betweenx([0, 3.4], 0, 0.75, color='c')
ax.set_yticks([])
ax.set_xlabel('$\\theta$')
plt.title('95% $\\theta$')
plt.show()
```


In []: