Name:

The table below is the portion of the periodic table of elements for semiconductor materials:

II	III	IV	V	VI
	В	C	N	
	Al	Si	P	S
Zn	Ga	Ge	As	Se
Zn Cd	In		Sb	Te

Consider a silicon sample that is doped with phosphorous (P):

- 1) Is the material n or p-type? (1 point) N- type
- 2) Justify your answer. (1 points)

Patom has one more electron than Si

The two lines below represent the conduction band and the valence band of a Si semiconductor:

EV Lew KE O high KE

3) Label the conduction band (E_C) and valence band (E_V) (1 point).

Indicate <u>schematically</u> the following:

phosphorous (P)

- 4) The position of the intrinsic level (E_i), the position of the arsenie level (E_D, if it is a donor; E_A, if it is an acceptor). (2 points)
- 5) The energy gap. (1 point)
- 6) The electrons by solid dots
 , and the holes by open dots
 . (2 points)
- 7) A hole with high kinetic energy and a hole with low kinetic energy. (1 point)
- 8) Are there more electrons or holes? Why? (1 points)

more electrons. n-doped with phosphorous.