Семинар 12

Векторные пространства

Для того, чтобы определить векторное пространство, в начале надо зафиксировать некоторое поле F. Потому еще говорят векторное пространство над полем F.

Определение. Пусть F — некоторое фиксированное поле. Тогда векторное пространство над полем F — это следующий набор данных $(V,+,\cdot)$, где

- \bullet V множество. Элементы этого множества будут называться векторами.
- $+: V \times V \to V$ бинарная операция, то есть правило действующее так $(v, u) \mapsto v + u$, где $u, v \in V$.
- $: F \times V \to V$ бинарная операция , то есть правило действующее так $(\alpha, v) \mapsto \alpha v$, где $\alpha \in F$ и $v \in V$.

При этом эти данные удовлетворяют следующим 8 аксиомам:

- 1. Ассоциативность сложения Для любых векторов $u, v, w \in V$ верно (u+v)+w=u+(v+w).
- 2. Существование нулевого вектора Существует такой вектор $0 \in V$, что для любого $v \in V$ выполнено 0 + v = v + 0 = v.
- 3. Существование противоположного вектора Для любого вектора $v \in V$ существует вектор $-v \in V$ такой, что v + (-v) = (-v) + v = 0.
- 4. Коммутативность сложения Для любых векторов $u, v \in V$ верно u + v = v + u.
- 5. Согласованность умножения со сложением векторов Для любого числа $\alpha \in F$ и любых векторов $u, v \in V$ верно $\alpha(v + u) = \alpha v + \alpha u$.
- 6. Согласованность умножения со сложением чисел Для любых чисел $\alpha, \beta \in F$ и любого вектора $v \in V$ верно $(\alpha + \beta)v = \alpha v + \beta v$.
- 7. Согласованность умножения с умножением чисел Для любых чисел $\alpha, \beta \in F$ и любого вектора $v \in V$ верно $(\alpha\beta)v = \alpha(\beta v)$.
- 8. **Нетривиальность** Для любого $v \in V$ верно 1v = v.

Давайте обсудим, как сгруппированы эти аксиомы. Аксиомы (1–4) говорят вам о качестве сложения векторов в векторном пространстве. Далее аксиомы (5–7) говорят о том, как умножение векторов связано со сложением векторов, сложением чисел и умножением чисел соответственно. Последняя аксиома (8) – это аксиома нетривиальности, которая исключает всякие дурацкие патологии.

Полезные следствия

- 1. Нулевой элемент из аксиомы (2) обязательно единственный.
- 2. Элемент -v из аксиомы (3) обязательно единственный.
- 3. Для $0 \in F$ и любого вектора $v \in V$ выполнено $0 \cdot v = 0 \in V$.
- 4. Для любого $\lambda \in F$ и $0 \in V$ выполнено $\lambda \cdot 0 = 0 \in V$.
- 5. Для любого вектора $v \in V$ выполнено $(-1) \cdot v = -v$.
- 6. Если $\lambda \in F$ и $v \in V$, то условие $\lambda \cdot v = 0$ выполняется тогда и только тогда, когда либо $\lambda = 0$, либо v = 0.

Если вам хочется что-то формально вывести из аксиом и не мучиться, то аксиомы плюс перечень следствий выше дает вам все, что нужно знать про формальное определение векторного пространства. А интуиция должна быть такая, если что-то верно в \mathbb{R}^n , то оно должно быть верно и в абстрактном случае. А теперь доказательства:

 $^{^1}$ Здесь $1 \in F$.

 $^{^2}$ Тут надо быть аккуратным и не брать сильно специфичные свойства, например, которые отличают пространство \mathbb{R}^n от пространства функций или многочленов или еще какой погани.

- 1. Пусть два нуля 0_1 и 0_2 , тогда $0_1 + 0_2$ равен 0_2 , так как 0_1 играет роль нуля. Аналогично $0_1 + 0_2$ равен 0_1 так как 0_2 играет роль нуля.
- 2. Пусть есть два обратных для вектора v, то есть найдется w и u из пространства V такие, что

$$\begin{cases} v + u = 0 \\ u + v = 0 \end{cases} \quad \text{H} \quad \begin{cases} v + w = 0 \\ w + v = 0 \end{cases}$$

Но тогда

$$w = w + 0 = w + (v + u) = (w + v) + u = 0 + u = u$$

3. Мы знаем, что 0+0=0. Умножим это на v и получим

$$(0+0) \cdot v = 0 \cdot v \Leftrightarrow 0 \cdot v + 0 \cdot v = 0 \cdot v$$

Теперь можно к обеим частям прибавить $-(0 \cdot v)$, получим

$$0 \cdot v + 0 \cdot v + (-(0 \cdot v) = 0 \cdot v + (-(0 \cdot v))$$

Получим

$$0 \cdot v + 0 = 0 \in V \Leftrightarrow 0 \cdot v = 0 \in V$$

4. Аналогично предыдущему, пусть $0 \in V$. Тогда 0 + 0 = 0. Тогда

$$\lambda \cdot (0+0) = \lambda \cdot 0 \Leftrightarrow \lambda \cdot 0 + \lambda \cdot 0 = \lambda \cdot 0$$

Прибавим к обеим частям $-(\lambda \cdot 0)$, получим

$$\lambda \cdot 0 + \lambda \cdot 0 + (-(\lambda \cdot 0)) = \lambda \cdot 0 + (-(\lambda \cdot 0))$$

Или

$$\lambda \cdot 0 + 0 = 0 \in V \Leftrightarrow \lambda \cdot 0 = 0$$

5. Рассмотрим равенство (-1) + 1 = 0. Умножим обе части на $v \in V$, получим

$$((-1)+1)\cdot v = 0\cdot v \Leftrightarrow (-1)\cdot v + 1\cdot v = 0 \in V \Leftrightarrow (-1)\cdot v + v = 0 \in V$$

Прибавим к обеим частям -v, получим

$$(-1) \cdot v + v + (-v) = 0 + (-v)$$

Значит

$$(-1) \cdot v + 0 = -v \Leftrightarrow (-1) \cdot v = -v$$

6. Если $\lambda = 0$, то доказывать нечего. Если же $\lambda \neq 0$ то умножим на $\frac{1}{\lambda}$:

$$\frac{1}{\lambda} \cdot (\lambda \cdot v) = \frac{1}{\lambda} \cdot 0 \Leftrightarrow \left(\frac{1}{\lambda} \cdot \lambda\right) \cdot v = 0 \in V \Leftrightarrow 1 \cdot v = 0 \in V \Leftrightarrow v = 0 \in V$$

Примеры

- 1. Поле F (или кто больше привык к вещественным числам \mathbb{R}) является векторным пространством над F (соответственно над \mathbb{R}).
- 2. Более обще, множество вектор-столбцов F^n является векторным пространством над F.
- 3. Множество матриц $M_{mn}(F)$ является векторным пространством над F.
- 4. Пусть X произвольное множество, тогда множество функций $\{f\colon X\to F\}$ является векторным пространством над F. Надо лишь объяснить как складывать функции и умножать на элементы F. Операции поточечные, пусть $f,g\colon X\to F$, тогда функция $(f+g)\colon X\to F$ действует по правилу (f+g)(x)=f(x)+g(x). Если $\alpha\in F$, то функция $(\alpha f)\colon X\to F$ действует по правилу $(\alpha f)(x)=\alpha f(x)$.
- 5. Множество многочленов $F[x] = \{a_0 + a_1x + \ldots + a_nx^n \mid a_i \in F\}$. Тут надо обратить внимание, что мы подразумеваем под многочленом. Для нас многочлен это НЕ функция, многочлен это картинка вида $a_0 + a_1x + \ldots + a_nx^n$. Складываются и умножаются эти картинки по одинаковым правилам. Важно, что две такие картинки равны тогда и только тогда, когда у них равные коэффициенты. Множество всех многочленов F[x] является векторным пространством над F.

 $^{^3}$ Для любителей формализма, можете считать, что многочлен – это конечная последовательность элементов F вида (a_0,\ldots,a_n) .