定义	名 称
(常数项) 无穷级数	如果给定一个数列 $u_1, u_2, u_3, \dots, u_n, \dots$,则由这数列构成的表达式 $u_1 + u_2 + \dots + u_n + \dots$ 叫作(常数项) 无穷级数,记为 $\sum_{n=1}^{\infty} u_n u_n$ 叫作一般项.
部分和	作级数 $\sum_{n=1}^{\infty} u_n$ 的前 n 项的和 $S_n = \sum_{i=1}^n u_i$, S_n 称为级数 $\sum_{n=1}^{\infty} u_n$ 的部分和.
级数的收敛和发散	如果级数 $\sum_{n=1}^{\infty} u_n$ 的部分和数列 $\{S_n\}$ 有极限 S ,即 $\lim_{n\to\infty} S_n = S$,则称无穷级数 $\sum_{n=1}^{\infty} u_n$ 收敛,这时极限 S 叫作这级数的和,并写成 $S = u_1 + u_2 + \dots + u_n + \dots$;如果 $\{S_n\}$ 没有极限,则称无穷级数 $\sum_{n=1}^{\infty} u_n$ 发散.

性质	说 明
线性性	若 $\sum_{n=1}^{\infty} u_n$ 与 $\sum_{n=1}^{\infty} v_n$ 分别收敛于和 S 与 σ ,则 $\sum_{n=1}^{\infty} (ku_n + \lambda v_n)$ 也收敛,且其和为 $kS + \lambda \sigma$,其中 k ,入为常数.
有限项性	在级数中去掉、加上或改变有限项,不会改变级数的收敛性.
加括号性	收敛级数加括号后所成的级数仍收敛于原级数的和;但加括号后所成的级数收敛,去括号后原来的级数未必收敛.
必要条件	若 $\sum_{n=1}^{\infty} u_n$ 收敛,则 $\lim_{n\to\infty} u_n = 0$.其逆不成立.但若 $\lim_{n\to\infty} u_n \neq 0$,则 $\sum_{n=1}^{\infty} u_n$ 必发散.
* 柯西审 敛原理	级数 $\sum_{n=1}^{\infty} u_n$ 收敛 \Leftrightarrow 对 $\forall \varepsilon > 0$, $\exists N$,使: $\exists n > N$ 时,对于任意的正整数 p ,都有 $ u_{n+1} + u_{n+2} + \cdots + u_{n+p} < \varepsilon$ 成立.

【例 1】 用定义验证级数 $\sum_{n=2} \ln \left(1 - \frac{1}{n^2}\right)$ 是否收敛.

解:因为
$$u_n = \ln\left(1 - \frac{1}{n^2}\right) = \ln\left(1 + \frac{1}{n}\right) + \ln\left(1 - \frac{1}{n}\right) = \ln(n+1) + \ln(n-1) - 2\ln n$$
,

所以
$$S_n = \sum_{k=2}^n u_k = (\ln 3 + \ln 1 - 2\ln 2) + (\ln 4 + \ln 2 - 2\ln 3) + \cdots + [\ln(n+1) + \ln(n-1) - 2\ln n]$$

$$= \ln(n+1) - \ln n - \ln 2 = \ln\left(1 + \frac{1}{n}\right) - \ln 2.$$

故 $\lim_{n\to\infty} S_n = -\ln 2$,所以原级数收敛.

② 燎原高數

利用级数的基本性质判别下列级数的敛散性. 【例 2】

(1)
$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{\sqrt[n]{n}}$$

(2)
$$\sum_{n=1}^{\infty} \frac{1}{3n}$$
;

(1)
$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{\sqrt[n]{n}};$$
 (2) $\sum_{n=1}^{\infty} \frac{1}{3n};$ (3) $\sum_{n=1}^{\infty} \left(\frac{1}{3^n} - \frac{4^{n+1}}{5^n}\right).$

解:(1) 由于 $\lim_{n\to\infty} \sqrt[n]{n} = 1$,所以 $\lim_{n\to\infty} u_n = \lim_{n\to\infty} (-1)^n \frac{1}{\sqrt[n]{n}} \neq 0$,故级数发散.

(2) 由
$$\sum_{n=1}^{\infty} \frac{1}{n}$$
 发散 $\Rightarrow \sum_{n=1}^{\infty} \frac{1}{3n}$ 也发散.

(3) 由于
$$\sum_{n=1}^{\infty} \left(\frac{1}{3}\right)^n$$
 收敛, $\sum_{n=1}^{\infty} \left(\frac{4}{5}\right)^n$ 收敛, $\sum_{n=1}^{\infty} \left(\frac{4}{5}\right)^n$ 也收敛,故 $\sum_{n=1}^{\infty} \left(\frac{1}{3^n} - \frac{4^{n+1}}{5^n}\right)$ 也收敛。

(金) 燎原高數

定义	若 $u_n \ge 0$,则 $\sum_{n=1}^{\infty} u_n$ 称为正项级数.	
收敛准则	正项级数收敛⇔部分和数列有界.	(金) 際原高数

Sec.	
比较审敛法	设 $\sum_{n=1}^{\infty} u_n$ 和 $\sum_{n=1}^{\infty} v_n$ 都是正项级数,且 $u_n \leq v_n (n = 1, 2, \cdots)$. 若 $\sum_{n=1}^{\infty} v_n$ 收敛,则 $\sum_{n=1}^{\infty} u_n$ 收敛;反之,若 $\sum_{n=1}^{\infty} u_n$ 发散,则 $\sum_{n=1}^{\infty} v_n$ 发散.
比较审敛法的极限形式	设 $\sum_{n=1}^{\infty} u_n$, $\sum_{n=1}^{\infty} v_n$ 都是正项级数 , 若 $\lim_{n\to\infty} \frac{u_n}{v_n} = l(0 < l < +\infty)$, 则 $\sum_{n=1}^{\infty} u_n$ 与 $\sum_{n=1}^{\infty} v_n$ 同时 收敛或同时发散. 特别地 , 若 $\lim_{n\to\infty} u_n = l(l > 0$ 或 l 为 $+\infty$) , 则 $\sum_{n=1}^{\infty} u_n$ 发散; 若 $\lim_{n\to\infty} u_n = l(0 < l < +\infty)$, $p > 1$, 则 $\sum_{n=1}^{\infty} u_n$ 收敛.
比值审敛法 (达朗贝尔 判别法)	设 $\sum_{n=1}^{\infty} u_n$ 为正项级数,如果 $\lim_{n\to\infty} \frac{u_{n+1}}{u_n} = \rho$,则当 ρ <1时级数收敛; ρ > 1 (或 $\lim_{n\to\infty} \frac{u_{n+1}}{u_n} = \infty$) 时级数发散; ρ = 1 时级数可能收敛也可能发散.
* 根值审敛法(柯西判别法)	设 $\sum_{n=1}^{\infty} u_n$ 为正项级数,如果 $\lim_{n\to\infty} \sqrt[n]{u_n} = \rho$,则当 ρ <1时级数收敛; ρ > 1(或 $\lim_{n\to\infty} \sqrt[n]{u_n} = +\infty$) 时级数发散; ρ = 1 时级数可能收敛也可能发散.

定义	$u_n \ge 0$, $\sum_{n=1}^{\infty} (-1)^n u_n$ 或 $\sum_{n=1}^{\infty} (-1)^{n+1} u_n$ 称为交错级数.
莱布尼茨 判别法	如果交错级数 $\sum_{n=1}^{\infty} (-1)^{n-1} u_n$ 满足 ① $u_n \ge u_{n+1}$, $n=1,2,\cdots$; ② $\lim_{n\to\infty} u_n=0$, 则交错级数 收敛 , 且其和 $S \le u_1$, 其余项 r_n 的绝对值 $ r_n \le u_{n+1}$.

定	义	若 u_n 是任意实数, $\sum_{n=1}^{\infty} u_n$ 称为任意项级数.
绝对收	敛	若 $\sum_{n=1}^{\infty} u_n $ 收敛,则 $\sum_{n=1}^{\infty} u_n$ 必收敛,并称 $\sum_{n=1}^{\infty} u_n$ 为绝对收敛.
条件收	敛	若 $\sum_{n=1}^{\infty} u_n $ 发散,而 $\sum_{n=1}^{\infty} u_n$ 收敛,则称 $\sum_{n=1}^{\infty} u_n$ 为条件收敛.
审敛:	法	一般的,若 $\lim_{n\to\infty} \left \frac{u_{n+1}}{u_n} \right = l(或 \lim_{n\to\infty} \sqrt[n]{ u_n } = l)$,则当 $l < 1$ 时级数绝对收敛;当 $l > 1$ 时级数发散;当 $l = 1$ 时级数可能收敛也可能发散.

调和级数	$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} + \dots, $ 该级数发散.
几何级数 (等比级数)	$\sum_{n=1}^{\infty} aq^{n-1} = a + aq + aq^2 + \dots + aq^{n-1} + \dots,$ ① 当 q $<$ 1 时,级数收敛; ② 当 q \geq 1 时,级数发散.
p ─ 级数	$\sum_{n=1}^{\infty} \frac{1}{n^{p}} = 1 + \frac{1}{2^{p}} + \frac{1}{3^{p}} + \dots + \frac{1}{n^{p}} + \dots (p > 0),$ ① 当 $p > 1$ 时,级数收敛; ② 当 $p \leqslant 1$ 时,级数发散.

【例 3】用比较判别法判断级数 $\sum_{n=1}^{\infty} \left(\frac{1}{n} - \ln \frac{n+1}{n}\right)$ 的敛散性.

【思路探索】 与(1) 不同,此题中一般项里含有 $\ln \frac{n+1}{n}$ 的形式,要与 $\frac{1}{n^x}$ 作比较,于是联想到

$$\ln \frac{n+1}{n} < \frac{1}{n}, \text{ $|$ } \text{ $|$ } \text{ $|$ } \text{ $|$ } \frac{n}{n} = -\ln \frac{n}{n+1} = -\ln \left(1 - \frac{1}{n+1}\right) > \frac{1}{n+1}, \text{ $|$ } \text{ $|$ }$$

解:已知 $\ln(1+x) < x(x \neq 0, -1 < x < +\infty)$,于是有 $\ln \frac{n+1}{n} = \ln \left(1 + \frac{1}{n}\right) < \frac{1}{n}$,

同时
$$\ln \frac{n+1}{n} = -\ln \frac{n}{n+1} = -\ln \left(1 - \frac{1}{n+1}\right) > \frac{1}{n+1}$$
, $0 < \frac{1}{n} - \ln \frac{n+1}{n} < \frac{1}{n} - \frac{1}{n+1} = \frac{1}{n(n+1)}$,

【例 4】 设
$$a_1 = 2, a_{n+1} = \frac{1}{2} \left(a_n + \frac{1}{a_n} \right), n = 1, 2, \cdots$$

证明:(1)
$$\lim_{n\to\infty} a_n$$
 存在; (2) 级数 $\sum_{n=1}^{\infty} \left(\frac{a_n}{a_{n+1}} - 1\right)$ 收敛.

证明:(1) 由于 $a_{n+1} = \frac{1}{2} \left(a_n + \frac{1}{a} \right), a_1 = 2, 可知 a_n > 0, 且$

$$a_{n+1} = \frac{1}{2} \left(a_n + \frac{1}{a_n} \right) \geqslant \sqrt{a_n \cdot \frac{1}{a_n}} = 1, a_{n+1} - a_n = \frac{1}{2} \left(a_n + \frac{1}{a_n} \right) - a_n = \frac{1 - a_n^2}{2a_n} \leqslant 0.$$

因此{a_n}为单调减少且有下界的数列,由极限存在的准则可知lima_n存在.

(2) 由于 $\{a_n\}$ 为单调减少数列,目

$$0 \leqslant \frac{a_n}{a_{n+1}} - 1 = \frac{a_n - a_{n+1}}{a_{n+1}} \leqslant a_n - a_{n+1}, S_n = \sum_{k=1}^n (a_k - a_{k+1}) = a_1 - a_{n+1}.$$

由于 $\lim_{n\to\infty} a_n$ 存在,可知 $\lim_{n\to\infty} S_n$ 存在,由级数收敛的定义可知 $\sum_{n\to\infty} (a_n - a_{n+1})$ 收敛,由正项级数比较判

别法可知
$$\sum_{n=1}^{\infty} \left(\frac{a_n}{a_{n+1}} - 1 \right)$$
 收敛.

第原高数

名 称	定义
幂级数	如果函数项级数的各项都是幂函数,即形如 $\sum_{n=0}^{\infty} a_n x^n$ 或 $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ 的函数项级数 称为幂级数,其中 a_0 , a_1 ,…, a_n ,… 叫幂级数的系数.
收敛半径	若幂级数不是仅在 $x=0$ 点收敛,也不是在整个数轴上都收敛,则必有一个确定的正数 R 存在,使得 ① 当 $ x < R$ 时,幂级数绝对收敛;② 当 $ x > R$ 时,幂级数发散;③ 当 $x=R$ 与 $x=-R$ 时,幂级数可能收敛也可能发散. R 称为幂级数的收敛半径.
	(金) 燎原高数

设幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 的收敛半径为R,其系数满足条件 $\lim_{n\to +\infty} \left| \frac{a_{n+1}}{a_n} \right| = l$,或 $\lim_{n\to +\infty} \sqrt[n]{|a_n|} = l$,则当 $l \neq 0$ 时, $R = \frac{1}{l}$;当 l = 0 时, $R = +\infty$,当 $l = +\infty$ 时,R = 0.

【例 1】 求幂级数 $\sum_{n=1}^{\infty} \frac{1}{3^n + (-2)^n} \frac{x^n}{n}$ 的收敛区间,并讨论区间端点处的收敛性.

解:收敛半径为
$$R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \lim_{n \to \infty} \left[\left(\frac{1}{3^n + (-2)^n} \cdot \frac{1}{n} \right) / \left(\frac{1}{3^{n+1} + (-2)^{n+1}} \cdot \frac{1}{n+1} \right) \right]$$

$$= \lim_{n \to \infty} \frac{3^{n+1} + (-2)^{n+1}}{3^n + (-2)^n} \cdot \frac{n+1}{n} = 3,$$

收敛区间为(-3,3).

当 x = 3 时,幂级数为正项级数 $\sum_{n=1}^{\infty} \frac{3^n}{3^n + (-2)^n} \cdot \frac{1}{n}$. 因 $\frac{3^n}{3^n + (-2)^n} \cdot \frac{1}{n} \sim \frac{1}{n}$,且 $\sum_{n=1}^{\infty} \frac{1}{n}$ 发散,故原级数在 x = 3 处发散.

当
$$x = -3$$
 时,幂级数为 $\sum_{n=1}^{\infty} \frac{(-1)^n 3^n}{3^n + (-2)^n} \cdot \frac{1}{n} \cdot \frac{(-1)^n 3^n}{3^n + (-2)^n} \cdot \frac{1}{n} = (-1)^n \frac{1}{n} - \frac{2^n}{3^n + (-2)^n} \frac{1}{n}$, $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n}$ 收敛; $\lim_{n \to \infty} \left[\frac{2^n}{3^n + (-2)^n} \frac{1}{n} / (\frac{2}{3})^n \right] = 0$,由于 $\sum_{n=1}^{\infty} (\frac{2}{3})^n$ 收敛,得 $\sum_{n=1}^{\infty} \frac{2^n}{3^n + (-2)^n} \cdot \frac{1}{n}$ 收敛,故原级数在 $x = -3$ 处收敛.

性 质	定理
绝对收敛性 (阿贝尔定理)	若幂级数在 $x = x_1 \neq 0$ 时收敛,则它在 $ x < x_1 $ 处绝对收敛; 若幂级数在 $x = x_2$ 时发散,则它在 $ x > x_2 $ 处也发散.
和函数的 连续性	若幂级数的收敛半径 $R > 0$,则和函数 $S(x) = \sum_{n=0}^{\infty} a_n x^n$ 在收敛区间 $(-R,R)$ 内连续.
逐项求积分	若幂级数的收敛半径 $R > 0$,则和函数 $S(x) = \sum_{n=0}^{\infty} u_n x^n$ 在收敛区间 $(-R,R)$ 内可积,且可逐项积分,即 $\int_0^x S(t) dt = \int_0^x (\sum_{n=0}^{\infty} a_n t^n) dt = \sum_{n=0}^{\infty} \int_0^x a_n t^n dt (x \in (-R,R)).$
逐项求导数	若幂级数的收敛半径 $R > 0$,则和函数 $S(x) = \sum_{n=0}^{\infty} a_n x^n$ 在收敛区间($-R$, R) 内可导,且可逐项求导,即 $S'(x) = (\sum_{n=0}^{\infty} a_n x^n)' = \sum_{n=0}^{\infty} (a_n x^n)' = \sum_{n=1}^{\infty} m_n x^{n-1}$.
收敛半径不变性	(1) 若幂级数的收敛半径 $R > 0$,则对此级数逐项积分或逐项求导后所得到的新幂级数有相同的收敛半径. (2) 若幂级数的收敛半径 $R > 0$,则和函数 $S(x) = \sum_{n=0}^{\infty} a_n x^n$ 在收敛区间($-R$, R) 内有任意阶导数,它们可由逐项求导求得,即 $S^{(k)}(x) = (\sum_{n=0}^{\infty} a_n x^n)^{(k)} = \sum_{n=k}^{\infty} n(n-1)(n-2)\cdots(n-k+1)a_n x^{n-k}$ 且收敛半径仍为 R .
幂级数和函 数的性质	设幂级数的收敛半径 $R > 0: ① 若 \sum_{n=0}^{\infty} a_n x^n$ 在区间 $(-R,R)$ 左端点 $x = -R$ 处收敛,则和函数 $S(x)$ 在闭区间 $[-R,0]$ 上连续;② 若 $\sum_{n=0}^{\infty} a_n x^n$ 在右端点 $x = R$ 处收敛,则和函数 $S(x)$ 在闭区间 $[0,R]$ 上连续.

【例2】 求数值级数 $\sum_{n=2}^{\infty} \frac{1}{(n^2-1)2^n}$.

解:令
$$S(x) = \sum_{n=2}^{\infty} \frac{x^n}{n^2 - 1} \quad (\mid x \mid < 1), \text{则 } S(x) = \sum_{n=2}^{\infty} \frac{1}{2} (\frac{1}{n - 1} - \frac{1}{n + 1}) x^n,$$
 其中 $\sum_{n=2}^{\infty} \frac{x^n}{n - 1} = x \cdot \sum_{n=2}^{\infty} \frac{x^{n-1}}{n - 1} = x \sum_{n=1}^{\infty} \frac{x^n}{n}, \sum_{n=2}^{\infty} \frac{x^n}{n + 1} = \frac{1}{x} \sum_{n=3}^{\infty} \frac{x^n}{n} (x \neq 0).$ 设 $g(x) = \sum_{n=1}^{\infty} \frac{x^n}{n}, \text{则 } g'(x) = \sum_{n=1}^{\infty} x^{n-1} = \frac{1}{1 - x} \quad (\mid x \mid < 1),$
$$g(x) = g(x) - g(0) = \int_0^x g'(t) \, dt = \int_0^x \frac{dt}{1 - t} = -\ln(1 - x),$$

$$S(x) = \frac{x}{2} \left[-\ln(1 - x) \right] - \frac{1}{2x} \left[-\ln(1 - x) - x - \frac{x^2}{2} \right]$$

$$= \frac{2 + x}{4} + \frac{1 - x^2}{2x} \ln(1 - x) \quad (\mid x \mid < 1, x \neq 0),$$

因此
$$\sum_{n=2}^{\infty} \frac{1}{(n^2-1)2^n} = S(\frac{1}{2}) = \frac{5}{8} - \frac{3}{4} \ln 2.$$

(金) 燎原高数

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + \dots + x^n + \dots \qquad |x| < 1$$

$$\frac{1}{1+x} = \sum_{n=0}^{\infty} (-1)^n x^n = 1 - x + x^2 + \dots + (-1)^n x^n + \dots \qquad |x| < 1$$

$$\ln(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^n}{n} = x - \frac{1}{2} x^2 + \frac{1}{3} x^3 + \dots + \frac{(-1)^{n-1}}{n} x^n + \dots \qquad x \in (-1,1]$$

$$\ln(1-x) = -\sum_{n=1}^{\infty} \frac{1}{n} x^n = -x - \frac{1}{2} x^2 - \dots - \frac{1}{n} x^n - \dots \qquad x \in [-1,1)$$

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{1}{2!} x^2 + \dots + \frac{1}{n!} x^n + \dots \qquad x \in (-\infty, +\infty)$$

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!} = x - \frac{1}{3!} x^3 + \frac{1}{5!} x^5 - \dots \qquad x \in (-\infty, +\infty)$$

$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!} = 1 - \frac{1}{2!} x^2 + \frac{1}{4!} x^4 - \dots \qquad x \in (-\infty, +\infty)$$

$$(1+x)^a = 1 + \sum_{n=0}^{\infty} C_n^a x^n \quad x \in (-1,1), (\alpha \in \mathbb{R})$$

利用函数的幂级数展开式进行近似计算,就是在展开式有效的区间上,函数值可以近似地利用这个级数按精确度要求计算出来. 首先作函数的幂级数展开,再估计误差,即取前n项可使余项 r_n 小于所要求的误差.

用 e^z 表示在整个复平面上的复变量指数函数,则 $e^z = 1 + z + \frac{1}{2!}z^2 + \dots + \frac{1}{n!}z^n + \dots (|z| < + \infty)$. 因而能够得到欧拉公式的两个形式:

形式一:
$$e^{ix} = \cos x + i\sin x$$
; 形式二:
$$\begin{cases} \cos x = \frac{e^{ix} + e^{-ix}}{2}, \\ \sin x = \frac{e^{ix} - e^{-ix}}{2i}. \end{cases}$$
 您原愿數

【例 3】 将函数 $f(x) = \arctan \frac{1+x}{1-x}$ 展开为含x 的幂级数.

解:由
$$f'(x) = \frac{1}{1+x^2} = \sum_{n=0}^{\infty} (-1)^n x^{2n}, -1 < x < 1$$
,得

$$f(x) - f(0) = \int_0^x f'(t) dt = \int_0^x \sum_{n=0}^\infty (-1)^n t^{2n} dt = \sum_{n=0}^\infty \frac{(-1)^n}{2n+1} x^{2n+1},$$

而
$$f(0) = \arctan 1 = \frac{\pi}{4}$$
,所以 $\arctan \frac{1+x}{1-x} = \frac{\pi}{4} + \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} x^{2n+1}$ (-1 < x < 1). 燎原高数

【例4】 求函数 $\sin x$ 在指定点 $x = \frac{\pi}{6}$ 处的幂级数.

解: 记 $y = x - \frac{\pi}{6}$,则

$$\sin x = \sin\left(y + \frac{\pi}{6}\right) = \sin y \cos \frac{\pi}{6} + \cos y \sin \frac{\pi}{6} = \frac{\sqrt{3}}{2} \sin y + \frac{1}{2} \cos y$$

$$= \frac{\sqrt{3}}{2} \left(\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{(2n-1)!} y^{2n-1}\right) + \frac{1}{2} \left(\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2n)!} y^{2n}\right)$$

$$= \frac{1}{2} \left[\sqrt{3} \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{(2n-1)!} \left(x - \frac{\pi}{6}\right)^{2n-1} + \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2n)!} \left(x - \frac{\pi}{6}\right)^{2n}\right]$$

$$= \frac{1}{2} \left[1 + \sqrt{3} \left(x - \frac{\pi}{6}\right) - \frac{1}{2} \left(x - \frac{\pi}{6}\right)^{2} - \frac{\sqrt{3}}{3!} \left(x - \frac{\pi}{6}\right)^{3} + \cdots + \frac{\sqrt{3}(-1)^{n-1}}{(2n-1)!} \left(x - \frac{\pi}{6}\right)^{2n-1} + \frac{(-1)^{n}}{(2n)!} \left(x - \frac{\pi}{6}\right)^{2n} + \cdots\right] \quad (|x| < +\infty).$$

② 燎原高數

【例 5】 求 $\int_0^1 e^{-x^2} dx$ 的近似值,使误差小于 0.01.

解:利用 e^x 在 x = 0 处的幂级数展开式 $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$ (| $x \mid < +\infty$),可知

$$e^{-x^2} = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{n!} \quad (|x| < +\infty),$$

从而有
$$\int_0^1 e^{-x^2} dx = \int_0^1 \sum_{n=0}^\infty (-1)^n \frac{x^{2n}}{n!} dx = \sum_{n=0}^\infty \frac{(-1)^n}{n!} \int_0^1 x^{2n} dx = \sum_{n=0}^\infty (-1)^n \frac{1}{n!(2n+1)}$$

这是一个交错级数,且 $|r_n| \le |u_{n+1}| = \frac{1}{(n+1)!(2n+3)}$,计算得 $|u_3| \approx 0.0238$, $|u_4| = \frac{1}{216}$

$$<$$
 0.01,故 $\int_{0}^{1} e^{-x^{2}} dx \approx 1 - \frac{1}{3} + \frac{1}{10} - \frac{1}{42} \approx 0.74$.

(金) 燎原高數

正交系	三角函数 $1,\cos x,\sin x,\cdots,\cos m$, $\sin nx,\cdots$ 中任何不同的两个函数的乘积在区间 $[-\pi,\pi]$ 上 积分等于零,称该三角函数系为区间 $[-\pi,\pi]$ 上的正交系.
傅里叶 系数	设函数 $f(x)$ 在 $\left[-\pi,\pi\right]$ 上可积,则 $a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx (n=0,1,2,\cdots),$ $b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx (n=1,2,3,\cdots)$ 称为函数 $f(x)$ 的傅里叶系数.
傅里叶 级数	由 $f(x)$ 的傅里叶系数所构成的三角级数 $\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$ 称为函数 $f(x)$ 的傅里叶级数,记为 $f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$.
收敛 定理	若周期为 2π 的函数 $f(x)$ 满足: (1) 在一个周期 $[-\pi,\pi]$ 内连续或只有有限个第一类间断点; (2) 在一个周期 $[-\pi,\pi]$ 内只有有限个极值点. 则 $f(x)$ 的傅里叶级数收敛,且和函数为 $S(x) = \begin{cases} f(x), & x \to f(x) \text{ 的连续点,} \\ \frac{1}{2}[f(x^-) + f(x^+)], & x \to f(x) \text{ 的间断点.} \end{cases}$ (2) 原原高数.

名称	定理
正弦级数	设函数 $f(x)$ 是周期为 2π 的周期函数,在一个周期上可积,则当 $f(x)$ 为奇函数时,它的傅里叶系数为 $a_n = 0 (n = 0, 1, 2, \cdots), b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin nx dx (n = 1, 2, 3, \cdots).$
	设函数 $f(x)$ 在 $(0,\pi]$ 上满足收敛定理的条件,对 $f(x)$ 作奇延拓,则可将 $f(x)$ 在 $(0,\pi]$ 上 展开成正弦级数 $\sum_{n=1}^{\infty} b_n \sin nx = \begin{cases} f(x), & x \to f(x) \text{ 的连续点}, \\ \frac{1}{2} [f(x^-) + f(x^+)], & x \to f(x) \text{ 的间断点}. \end{cases}$
	设函数 $f(x)$ 是周期为 2π 的周期函数,在一个周期上可积,则当 $f(x)$ 为偶函数时,它的傅里叶系数为 $a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos nx \mathrm{d}x (n=0,1,2,\cdots), b_n = 0 (n=1,2,3,\cdots).$
余弦级数	设函数 $f(x)$ 在 $(0,\pi]$ 上满足收敛定理的条件,对 $f(x)$ 作偶延拓,则可将 $f(x)$ 在 $(0,\pi]$ 上 展开成余弦级数 $\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx = \begin{cases} f(x), & x \to f(x) \text{ 的连续点}, \\ \frac{1}{2} [f(x^-) + f(x^+)], & x \to f(x) \text{ 的间断点}. \end{cases}$ 您 燎原高数

【例 1】 设
$$x^2 = \sum_{n=0}^{\infty} a_n \cos nx (-\pi \leqslant x \leqslant \pi)$$
,则 $a_2 = \underline{\hspace{1cm}}$.

解:依条件 a_n 是偶函数 x^2 在区间 $[-\pi,\pi]$ 上周期为 2π 的傅里叶系数.

$$a_{2} = \frac{2}{\pi} \int_{0}^{\pi} x^{2} \cos 2x dx = \frac{1}{\pi} \left[x^{2} \sin 2x \Big|_{0}^{\pi} - \int_{0}^{\pi} 2x \sin 2x dx \right] = \frac{1}{\pi} \left[x \cos 2x \Big|_{0}^{\pi} - \int_{0}^{\pi} \cos 2x dx \right] = 1.$$

【例 2】 将函数 $f(x) = 1 - x^2 (0 \le x \le \pi)$ 展开成余弦级数,并求级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2}$ 的和.

解:由于

$$a_0 = \frac{2}{\pi} \int_0^{\pi} (1 - x^2) dx = 2 - \frac{2\pi^2}{3},$$

$$a_n = \frac{2}{\pi} \int_0^{\pi} (1 - x^2) \cos nx dx = \frac{4}{n^2} (-1)^{n+1}, n = 1, 2, \dots,$$

所以
$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx = 1 - \frac{\pi^2}{3} + 4 \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2} \cos nx$$
, $0 \leqslant x \leqslant \pi$.