## Fast and Interpretable Mixed-Integer Linear Program Solving

## by Learning Model Reduction



Yixuan Li<sup>1</sup>, Can Chen<sup>1</sup>, Jiajun Li<sup>1</sup>, Jiahui Duan<sup>2</sup>, Xiongwei Han<sup>2</sup>, Tao zhong<sup>2</sup>, Vincent Chau<sup>1</sup>, Weiwei Wu<sup>1</sup>, Wanyuan Wang<sup>1\*</sup>.

- School of Computer Science and Engineering, Southeast University, Nanjing, China
- <sup>2</sup> Huawei Noah's Ark Lab, HUAWEI, Shenzhen, China

Email: {yixuanli,cchen,jiajun li,vincentchau,weiweiwu,wywang}@seu.edu.cn, {jiahui.duan,hanxiongwei,zhongtao}@huawei.com



## **Model Reduction: Strategy**

Strategy: Encode the essential information of the solution of MILP, including the values of **integer variables** and **tight constraints** at optimality. [1]



## Preference-based Strategy Learning









|                         | method     | accuracy         | $infeas_{avg}$     | $subopt_{avg}$                   | gain  | accuracy         | $infeas_{avg}$     | $subopt_{avg}$     | gain    | accuracy         | $infeas_{avg}$      | $subopt_{avg}$                 | gain  |
|-------------------------|------------|------------------|--------------------|----------------------------------|-------|------------------|--------------------|--------------------|---------|------------------|---------------------|--------------------------------|-------|
|                         |            | 95.65%<br>91.07% | 0.00035<br>0.00680 | 0.00176<br>0.00836               | 4.58% | 83.04%<br>72.43% | 0.00182<br>0.00685 | 0.03676<br>0.03883 | 10.60%  | 73.88%<br>64.51% | 0.00409<br>0.00705  | 14.33399<br>0.04398            | 9.38% |
|                         | T = 40     |                  |                    |                                  |       | T = 50           |                    |                    |         | T = 60           |                     |                                |       |
|                         | method     | accuracy         | $infeas_{avg}$     | $subopt_{avg}$                   | gain  | accuracy         | $infeas_{avg}$     | $subopt_{avg}$     | gain    | accuracy         | $infeas_{avg}$      | $subopt_{avg}$                 | gain  |
|                         | Ours<br>RF | 73.21%<br>63.62% | 0.00338<br>0.00740 | 0.00477<br>0.01307               | 9.60% | 56.14%<br>41.85% | 0.01250<br>0.02385 | 0.01210<br>0.01668 | 14.29%  | 39.71%<br>32.90% | 0.02029<br>0.01387  | 0.00865<br>0.04394             | 6.82% |
|                         | ont o      | n David          | ring Sar           | nnling                           |       | ====             |                    |                    |         | ===:             | ====                | :::::                          |       |
| Experin                 | ient o     | n Kani           | ang Sar            | припу                            |       |                  |                    |                    |         |                  |                     |                                |       |
| <b>Experim</b> Performa |            |                  |                    | -                                | lo Ra | nking (          | NR) on             | Fuel Ce            | ll Ener | gy Ma            | nageme              | ent wher                       | า k = |
| -                       |            |                  |                    | ersus N                          | lo Ra | nking (          | (NR) on $T =$      | 2000               | ll Ener | gy Ma            | nageme              | rur ger                        | า k = |
| •                       | ince of    | f our m          | nethod v           | ersus N                          |       |                  |                    | 20                 |         |                  | T =                 | 30                             | n k = |
| -                       | method     | f our m          | nethod v           | versus N<br>10<br>$subopt_{avg}$ | gain  |                  | $T = infeas_{avg}$ | 20                 | gain a  | ccuracy i        | $T = nfeas_{avg} s$ | $30$ $subopt_{avg}$ $14,33399$ |       |

T = 20

T = 30

method accuracy  $infeas_{avg} \ subopt_{avg}$  gain accuracy  $infeas_{avg} \ subopt_{avg}$  gain accuracy  $infeas_{avg} \ subopt_{avg}$  gain

T = 10