Série de fonctions

Exercice 1

- 1) Par comparaison à des séries de Riemann, ζ converge simplement sur $]1, +\infty[$.
- 2) S'il y avait convergence uniforme en 1, alors $\sum \lim_{x\to 1} \frac{1}{n^x}$ convergerait, ce qui n'est pas le cas.
- 3) Posons $f_n: x \mapsto \frac{1}{n^x}$. Les fonctions f_n sont de classe \mathscr{C}^{∞} sur $]1, +\infty[$ et

$$f_n^{(k)}(x) = \frac{(-\ln n)^k}{n^x}.$$

Sur $[a, b] \subset]1, +\infty[$,

$$\forall s \in [a, b], \ \left| f_n^{(k)}(x) \right| \leqslant \frac{(\ln n)^k}{n^a}.$$

Soit $\rho \in]1, a[$, on a

$$n^{\rho} \times \frac{(\ln n)^k}{n^a} \xrightarrow[n \to +\infty]{} 0$$

et il y a donc convergence de la série $\sum \frac{(\ln n)^k}{n^a}$.

Par majoration uniforme, la série de fonctions $\sum u_n^{(k)}$ converge normalement sur [a,b].

Par convergence uniforme sur tout segment de]1, $+\infty$ [, on peut affirmer que ζ est de classe \mathscr{C}^{∞} sur]1, $+\infty$ [et

$$\zeta^{(p)}(x) = \sum_{n=1}^{+\infty} \frac{(-\ln n)^p}{n^x}.$$

4) Monotonie:

$$\zeta'(x) = \sum_{n=1}^{+\infty} \frac{-\ln n}{n^x} \leqslant 0$$

donc ζ est décroissante.

Convexité:

$$\zeta''(x) = \sum_{n=1}^{+\infty} \frac{(\ln n)^2}{n^x} \ge 0$$

donc ζ est convexe.

5) Limite en $+\infty$:

$$\lim_{x \to +\infty} \frac{1}{n^x} = \begin{cases} 0 & \text{si } n > 1\\ 1 & \text{si } n = 1 \end{cases}.$$

Pour appliquer le théorème de la double limite, observons la convergence uniforme au voisinage de $+\infty$.

Pour $x \ge 2$

$$|f_n(x)| \leqslant \frac{1}{n^2}$$

Or $\sum \frac{1}{n^2}$ converge normalement, donc $\sum u_n$ converge normalement et donc uniformément sur $[2, +\infty[$. Par le théorème de la double limite

$$\lim_{x \to +\infty} \zeta(x) = \sum_{n=1}^{+\infty} \lim_{x \to +\infty} \frac{1}{n^x} = 1 + 0 + 0 + \dots = 1.$$

6) La fonction $t \mapsto \frac{1}{t^x}$ est décroissante donc

$$\int_{n}^{n+1} \frac{\mathrm{d}t}{t^{x}} \leqslant \frac{1}{n^{x}} \leqslant \int_{n-1}^{n} \frac{\mathrm{d}t}{t^{x}}$$

On en déduit

$$\int_{1}^{+\infty} \frac{\mathrm{d}t}{t^{x}} \leqslant \zeta(x) \leqslant 1 + \int_{1}^{+\infty} \frac{\mathrm{d}t}{t^{x}}$$

i.e.

$$\frac{1}{x-1} \leqslant \zeta(x) \leqslant 1 + \frac{1}{x-1}.$$

Par suite

$$\zeta(x) \underset{x \to 1}{\sim} \frac{1}{x-1}.$$

Exercice 2 Introduisons les fonctions $f_n : \mathbb{R}_+^* \to \mathbb{R}$ définies par

$$f_n(x) = \frac{(-1)^n}{n+x}.$$

Elles sont toutes définies sur \mathbb{R}_+^* , mais pas plus pour la fonction f_0 , donc S ne peut être définie en dehors de \mathbb{R}_+^* .

Soit x > 0. La série numérique $\sum f_n(x)$ converge en vertu du CSSA.

La série de fonctions $\sum f_n$ converge alors simplement sur \mathbb{R}_+^* et sa somme S

est donc bien définie sur \mathbb{R}^*_{\perp} .

De plus f_n est de classe \mathcal{C}^1 et pour tout $x \in \mathbb{R}_+^*$,

$$f'_n(x) = \frac{(-1)^{n+1}}{(n+x)^2}.$$

Soit x > 0. La série numérique $\sum f_n'(x)$ converge en vertu du CCSA. On a

$$|R_n(t)| \le \frac{1}{(n+1+x)^2} \le \frac{1}{(n+1)^2} \xrightarrow[n \to +\infty]{} 0.$$

Ainsi la série de fonctions $\sum f'_n$ converge uniformément sur \mathbb{R}_+^* . On peut alors affirmer que S est de classe \mathscr{C}^1 et pour tout $x \in \mathbb{R}_+^*$,

$$S'(x) = \sum_{n=0}^{+\infty} \frac{(-1)^{n+1}}{(x+n)^2}$$

Par le CSSA, S'(x) est du signe de son premier terme $\frac{(-1)^{0+1}}{x^2} \le 0$.

La fonction S est donc décroissante.

Pour compléter le tableau de variation de S, exploitons le CSSA pour encadrer S par deux sommes partielles consécutives :

$$\frac{1}{x} - \frac{1}{x+1} \leqslant S(x) \leqslant \frac{1}{x}$$

On peut alors affirmer que $S \xrightarrow[+\infty]{} 0$ et $S \xrightarrow[-0+]{} +\infty$.

Exercice 3 Commençons par observer que

$$\frac{\sin t}{e^t - 1} = \sin t \times \frac{e^{-t}}{1 - e^{-t}}$$
$$= \sum_{n=1}^{+\infty} \sin t \times e^{-nt}.$$

De plus $t\mapsto \sin t \times \mathrm{e}^{-nt}$ est intégrable sur $]0,+\infty[$ par comparaison à une série exponentielle, et

$$\int_0^{+\infty} |\sin t| e^{-nt} dt \le \int_0^{+\infty} t e^{-nt} dt$$
$$\le \frac{1}{n^2}$$

et ce dernier terme est le terme général d'une série convergente, donc $t\mapsto \frac{\sin t}{\mathrm{e}^t-1}$ est intégrable sur $]0,+\infty[$.

Enfin, nous pouvons utiliser le théorème d'intégration terme à terme sur un intervalle quelconque, et ainsi

$$\int_0^{+\infty} \frac{\sin t}{e^t - 1} dt = \sum_{n=1}^{+\infty} \int_0^{+\infty} \sin t \cdot e^{-nt} dt.$$
Or
$$\int_0^{+\infty} \sin t \cdot e^{-nt} dt = \operatorname{Im} \int_0^{+\infty} e^{(-n+i)t} dt$$

$$= \frac{1}{n^2 + 1}.$$

Finalement

$$\int_0^{+\infty} \frac{\sin t}{e^t - 1} dt = \sum_{n=1}^{+\infty} \frac{1}{n^2 + 1}.$$

Exercice 4 Commençons par remarquer que $\frac{\pi}{4} = \int_0^1 \frac{1}{1+t^2} dt$.

Par sommation géométrique on peut écrire $\frac{1}{1+t^2} = \sum_{n=0}^{+\infty} (-1)^n t^{2n}$ sur [0,1[.

Par suite
$$\int_0^1 \frac{dt}{1+t^2} = \int_{[0,1[} \sum_{n=0}^{+\infty} f_n \text{ avec } f_n(t) = (-1)^n t^{2n} \text{ définie sur } [0,1[.$$

Ici $\sum f_n$ ne converge pas en 1 donc on ne peut pas utiliser ??, et $\sum \int_{[0,1[} |f_n| =$

 $\sum \frac{1}{2n+1}$ diverge et on ne peut pas appliquer ?? non plus. Transitons alors par les sommes partielles.

On pose
$$S_n(t) = \sum_{k=0}^{n} (-1)^k t^{2k}$$
.

On a $S_n \xrightarrow{CS} S$ sur [0,1[, avec $S(t) = \frac{1}{1+t^2}$.

Les fonctions S_n et S sont continues par morceaux, et

$$|S_n(t)| = \frac{\left|1 - (-1)^{n+1}t^{2n+2}\right|}{1 + t^2} \leqslant \frac{2}{1 + t^2} = \varphi(t)$$

avec φ intégrable.

Par convergence dominée
$$\int_0^1 S_n(t) dt \xrightarrow[n \to +\infty]{} \int_0^1 S(t) dt$$
. Or

$$\int_0^1 S_n(t) dt = \int_0^1 \sum_{k=0}^n (-1)^k t^{2k} dt$$
$$= \sum_{k=0}^n \int_0^1 (-1)^k t^{2k} dt$$
$$= \sum_{k=0}^n \frac{(-1)^k}{2k+1}$$

donc

$$\sum_{n=0}^{+\infty} \frac{(-1)^n}{2n+1} = \int_0^1 \frac{\mathrm{d}t}{1+t^2} = \frac{\pi}{4}.$$