

Abstract Algebra

MATH1530

Professor Jordan Kostiuk

Brown University

EDITED BY
RICHARD TANG

Contents

1	\mathbf{Set}	Theory	2
	1.1	Sets	2
		1.1.1 The Well-Ordering Principle	3
	1.2	Functions	4
2	Gro	oups: Part I	6
	2.1	Motivation	6
		2.1.1 Permutations	6
	2.2	(Abstract) Groups	7
		2.2.1 Examples of Groups	9
		2.2.2 Cyclic Groups	10
	2.3	Group Homomorphisms	10
	2.4		13
			15
	2.5	Products of Groups	18
3	Rin	gs: Part I	20
	3.1		20
			20
			21
	3.2		22
	3.3		24
	3.4		26
	3.5		27
			27
			29
	3.6	Ideals and Quotient Rings	30

Set Theory

Set theory forms a basis for all of higher mathematics. We begin with a brief introduction.

§1.1 Sets

Definition 1.1.1: Sets

A set is a (possibly empty) collection of elements. If S is a set and a is some object, then a is either an element of S or not. We write:

- $a \in S$ if a is an element of S.
- $a \notin S$ if a is not an element of S.

The empty set is denoted \varnothing . We use |S| or #S to denote the cardinality (number of elements) in a finite set.

Definition 1.1.2: Natural Numbers

The natural numbers are the set

$$\mathbb{N} = \{1, 2, \ldots\}.$$

Formally, we define \mathbb{N} as follows:

- 1. IN contains an initial element 1.
- 2. $\forall n \in \mathbb{N}$, there is an incremental rule that creates the next element n+1.
- 3. We can reach every element of $\mathbb N$ by starting with 1 and repeatedly adding 1.

Remark 1. \mathbb{N} is totally ordered. We say m is less than n if n appears before n when we start from 1 and add repeatedly. In this case we write m < n or $m \le n$ if m = n.

Example 1. Let

$$\mathbb{Z} = \{\ldots, -1, 0, 1, \ldots\}$$

denote the set of integers, and

$$Q = \{ \frac{a}{b} \mid a, b \in \mathbb{Z}, b \neq 0 \}.$$

the set of rationals.

Definition 1.1.3: Set Operations

Let S, T be sets.

1. S is a **subset** of T if every element of S is an element of T, i.e. $a \in S \rightarrow a \in T$. We write

$$S \subset T$$
.

2. The **union** of S and T is the set of elements that belong to S or belong to T, denoted

$$S \cup T = \{ a \mid a \in S \text{ or } a \in T \}.$$

3. The **intersection** of S and T is the set of elements that belong to both S and T, denoted

$$S \cap T = \{a \mid a \in S \text{ and } a \in T\}.$$

4. If $S \subset T$, the **complement** of S in T is the set of elements in T not in S:

$$S^c = T - S = T\S = \{a \in T \mid a \notin S\}.$$

5. The **product** of S and T is the set of ordered pairs

$$S \times T = \{(a, b) \mid a \in S, b \in T\}.$$

We have projection maps

$$proj_1: S \times T \longrightarrow S$$

 $(a,b) \longmapsto a.$

and

$$proj_2: S \times T \longrightarrow T$$

 $(a,b) \longmapsto b.$

These definitions extend to sets S_1, \ldots, S_n :

$$S_1 \cup \ldots \cup S_n = \bigcup_{i \in I} S_i = \{ a \mid a \in S_1 \text{ and } \ldots \text{ and } a \in S_n \}$$
 (1.1)

§1.1.1 The Well-Ordering Principle

Theorem 1.1.1: Well-Ordering Principle

Let $S \subset N$ be a non-empty subset of $\mathbb N$. Then S has a minimal element. That is,

 $\exists m \in S \text{ s.t. } n \geq m, \forall n \in S.$ Informally, there exists a minimum element that is smaller than all other natural elements.

Proof. Since S is non-empty, we can pick $k \in S$. By definition of \mathbb{N} , we can start with 1 and add 1 repeatedly to get k. So, there are only k elements of \mathbb{N} less than or equal to k:

$$1 < 2 < \ldots < k - 1 < k$$
.

So, we can keep moving down from k, until we find an element $j \notin S$; since there are no smaller elements than $j+1 \in S$, j+1 is the minimal element.

§1.2 Functions

Definition 1.2.1: Functions

A function from S to T is a rule that assigns some element of T to each element of S:

$$f: S \to T, s \mapsto f(s)$$
.

S is the **domain**, and T the **codomain**.

Definition 1.2.2: Composition of Functions

If $f: S \to T$ and $S: T \to U$, then the **composition** of f and g is

$$g \circ f = S \to U, a \mapsto g(f(a)).$$

Definition 1.2.3: Bijectivity

Let $f: S \to T$ be a function.

1. f is **injective** or one-to-one if distinct elements of S go to distinct elements of T. In other words,

$$f(a) = f(b) \rightarrow a = b.$$

2. f is **surjective** or onto if every element of T comes from some element in S:

$$\forall t \in T, \exists s \in S \text{ s.t. } f(s) = t.$$

3. f is **bijective** if it is both injective and surjective.

Definition 1.2.4: Invertibility

Let $f: S \to T$ be a function. f is **invertible** if

$$\exists g: T \to S, (g \circ f)(s) = s, s \in S \text{ and } (f \circ g)(t) = t, t \in T.$$

Theorem 1.2.1: Bijective iff Invertible

Let $f:S \to T$ be a function. Then f is invertible $\iff f$ is bijective.

Proof. Suppose first that f is invertible. Let $g: T \to S$ denote the inverse. We need to prove that f is bijective.

To prove injectivity, suppose f(a) = f(b) for some $a, b \in S$. Applying g to both sides and using the fact that g is the inverse of f, we have

$$g(f(a)) = g(f(b)) \Rightarrow a = b.$$

Thus f is injective.

To prove surjectivity, let $t \in T$; we need to find $s \in S$ such that f(s) = t. Using the inverse, let s = g(t). Then

$$f(s) = f(g(t)) = t.$$

Thus f is surjective.

Since f is both injective and surjective, f is bijective.

Now, suppose that f is bijective. Then $\forall t \in T, !\exists s \in S \text{ s.t. } f(s) = t$. Define a new function $g: T \to S$

$$g(t) :=$$
 "the unique $s \in S$ s.t. $f(s) = t$ ".

We now show that $(g \circ f)(s) = s$ and $(f \circ g)(t) = t$ for $s \in S, t \in T$.

Given $t \in T$, f(g(t)) = t by definition of t. Given $s \in S$, we know that s maps to f(s); so, by definition of g, g(f(s)) = s.

Thus,
$$g$$
 is the inverse of f .

Groups: Part I

Groups are a fundamental baseline for abstract algebra. We start with motivating examples, then move on to a concrete definition.

§2.1 Motivation

§2.1.1 Permutations

Definition 2.1.1: Permutations

Let X be a set. A **permutation** of X is a bijective function

$$\pi:X\to X$$

with the property: $\forall x \in X$, $!\exists x' \in X$ such that $\pi(x') = x$. This allows us to define an inverse π^{-1} to be the permutation

$$\pi^{-1}: X \to X$$

with the rule that $\pi^{-1}(x) = x'$, where $x' \in X$ is the unique element such that $\pi(x') = x$.

The **identity permutation** of X is the identity map

$$e: X \to X, e(x) = x, \ \forall x \in X.$$

In general, a permutation of a set X is a rule that "mixes up" the elements of X.

Example 2. Let $X = \{1, 2, 3, 4\}$. Then a permutation $\sigma : X \to X$ can be thought of as a shuffling of X and visualized as follows:

 $1 \Rightarrow 2$

 $2 \Rightarrow 3$

 $3 \Rightarrow 1$

 $4 \Rightarrow 4$

 σ^{-1} would be defined as

 $1 \Rightarrow 3$

 $2 \Rightarrow 1$

 $3 \Rightarrow 2$

 $4 \Rightarrow 4$

Now, suppose τ is defined as $1 \Rightarrow 1, 2 \Rightarrow 3, 3 \Rightarrow 2, 4 \Rightarrow 4$. Then $\sigma \circ \tau$ is

 $1 \rightarrow 2$

 $2 \Rightarrow 1$

 $3 \Rightarrow 3$

 $4 \Rightarrow 4$

and $\tau \circ \sigma$ is

 $1 \Rightarrow 3$

 $2 \Rightarrow 2$

 $3 \Rightarrow 1$

 $4 \Rightarrow 4$

From this, we gather some observations.

- Given any 2 permutations, we can compose to get a new one.
- There was a permutation that didn't do anything $(\sigma \circ \sigma^{-1})$.
- We can invert any permutation.
- If σ, τ are two permutations, then we don't necessarily have $\tau \circ \sigma = \sigma \circ \tau$ (in other words, the group of permutations with composition is not commutative).

Definition 2.1.2: Transformations

Let X be a figure in \mathbb{R}^2 . Then Trafo(X) is the set of transformations on X.

Consider the symmetries of a square (involving reflections/rotations on a square) as a motivating example of transformations; are they invertible? commutative?

Remark 2. Each transformation gives a permutation of the vertices $\{A, B, C, D\}$.

§2.2 (Abstract) Groups

We now formally define the notion of a **group**.

Definition 2.2.1: Groups

A group $\{X,\cdot\}$ consists of a set X, together with a group rule/law

satisfying the following axioms:

1. (identity) there is an element $e \in G$ such that

$$e \cdot g = g \cdot e = g.$$

for all $g \in G$.

2. (inverse) For all $g \in G$, there is an $h \in G$ such that

$$g \cdot h = h \cdot g = e$$
.

The element h is called g^{-1} , the inverse of g.

3. (associativity) Given g_1, g_2, g_3 , we have

$$g_1(g_2 \cdot g_3) = (g_1 \cdot g_2)g_3.$$

If, in addition, the group satisfies

4. (commutative) Given $g_1, g_2 \in G$, we have

$$g_1 \cdot g_2 = g_2 \cdot g_1.$$

then G is an **Abelian** group.

Now, we observe some interesting properties that follow from the group axioms.

Proposition 2.2.1: Group Properties

Let G be a group.

- 1. The identity element is unique.
- 2. Each element of G has only one inverse.
- 3. If $g, h \in G$, then $(gh)^{-1} = h^{-1}g^{-1}$.
- 4. Given $g \in G$, $(g^{-1})^{-1} = g$.

Proof of (b). Suppose $g \in G$ and that both h_1, h_2 satisfy the inverse axiom. Then

$$g \cdot h_1 = e = g \cdot h_2.$$

By the inverse axiom, we multiply on the left by an inverse of g:

$$e \cdot h_1 = e \cdot h_2$$
$$h_1 = h_2.$$

701

Thus the inverse is unique.

Definition 2.2.2: Order

- The **order** of a group G is denoted #G or |G| is the number of elements in G if finite, and ∞ if infinite.
- If G is a group and $g \in G$, the smallest n in which $g^n = e$ is called **the order**

of g. If no n exists, we say g has infinite order.

Proposition 2.2.2: Individual Order and Group Order

Suppose G is a finite group and suppose $g^n = e$. Then the order of g divides n.

Proof. Let m be the order of $g \in G$; then m is the smallest positive integer such that $g^m = e$. Dividing n by m yields

$$n = mq + r, \ q, r \in \mathbb{Z}, 0 \le r < m.$$

In other words, dividing n by m leaves a quotient q and a remainder r. Using this equality together with $g^n = g^m = e$, we have

$$e = g^n = g^{mq+r} = (g^m)^q \cdot g^r = e^q \cdot g^r = g^r.$$

Hence $g^r = e$, and $r \in [0, m)$. But by definition, m is the smallest integer such that $g^m = e$. Therefore r = 0, and n = mq, and so m, the order of g, divides n.

Proposition 2.2.3: Order of Inverse

Let G be a finite group, and $g \in G$. Then $|g| = |g^{-1}|$.

Proof. Let |g| = n; then $g^n = e$. From this, we get

$$e = (g \cdot g^{-1})^n = g^n \cdot (g^{-1})^n = e \cdot (g^{-1})^n,$$

and so $(g^{-1})^n = e$.

Now we show that $|g^{-1}| = n$. Suppose $|g^{-1}| = m$, and m < n. Then

$$e = q^n \cdot (q^{-1})^m = q^{n-m}$$
.

But we know that |g| = n, or equivalently, n is the smallest positive integer such that $g^n = e$; hence $g^{n-m} = e$ is a contradiction. Thus m = n, and so $|g^{-1}| = n$.

§2.2.1 Examples of Groups

Example 3. $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$ and \mathbb{C} are all Abelian groups with respect to addition. However, \mathbb{Z} is not a group with respect to multiplication, as the multiplicative inverse does not exist. Additionally, \mathbb{Q}, \mathbb{R} , and \mathbb{C} are not groups with respect to multiplication, due to zero; but $\mathbb{Q} \setminus \{0\}, \mathbb{R} \setminus \{0\}$, and $\mathbb{C} \setminus \{0\}$ are all groups under multiplication.

Example 4. Let $\mathbb{Z}/m\mathbb{Z}$ be the set of integers modulo m. Then $\mathbb{Z}/m\mathbb{Z}$ is a group under addition modulo m, $+_m$; $\mathbb{Z}/m\mathbb{Z}$ is finite with order m. We also observe that $\mathbb{Z}/m\mathbb{Z}$ is a cyclic group.

Example 5. Let the set of $n \times n$ matrices be M_n . Then M_n is an Abelian group under addition, but not multiplication (since not all matrices have inverses).

Let

$$GL_n(\mathbb{R}) = \{ M \in M_n \mid \det(M) \neq 0 \}$$

denote the **general linear group**. Then $GL_n(\mathbb{R})$ is a non-Abelian group under matrix multiplication.

§2.2.2 Cyclic Groups

Definition 2.2.3: Cyclic Groups

A group G is **cyclic** if there is a $g \in G$ such that

$$G = \{\dots, g^{-2}, g^{-1}, e \text{ (or } g^0), g, g^2, g^3, \dots\}.$$

We call g a **generator**.

In general, for $n \geq 1$, the abstract cyclic group order n is the set

$$C_n = \{q_0, q_1, \dots, q_{n-1}\}\$$

together with the composition rule

$$g_i \cdot g_j = \begin{cases} g_{i+j}, & i+j < n \\ g_{i+j-n}, & i+j \ge n \end{cases}$$

The identity element of C_n is g_0 , and the inverse of g_i is g_{n-i} (except g_0 , whose inverse is g_0). Further, C_n is an Abelian group, as $g_{i+j} = g_{j+i}$.

Some examples of cyclic groups are \mathbb{Z} and $\mathbb{Z}/m\mathbb{Z}$; both have generators 1. Another one is the permutation group.

Definition 2.2.4: Permutation Groups

Given X a set, let S_X denote the **symmetric group of** X, or the group of permutations of X. If

$$X = \{1, \dots, n\},\$$

we use the notation S_n .

Let P_n be a regular n-gon with vertices $1, \ldots, n$. The group of transformations of D_n (e.g. rotations, reflections, and compositions of such) is called the **dihedral** group D_n . We will later prove that D_n has order 2n.

§2.3 Group Homomorphisms

Suppose that G, G' are groups, and suppose that ϕ is a function

$$\phi: G \longrightarrow G'$$

from elements of G to elements of G'. Many functions exist, but we're interested in the ones that preserve the "structure", or group-i-ness, of G and G'. But what makes a group a group? Specifically, groups are **associative**, and have **identity and inverse elements**. Thus, a function ϕ must preserve these qualities. We call such structure-preserving functions **homomorphisms**.

Definition 2.3.1: Homomorphisms

Let G_1, G_2 be groups. A **homomorphism** from G_1 to G_2 is a function

$$\phi: G_1 \to G_2$$

satisfying:

$$\phi(g_1 \cdot g_2) = \phi(g_1) \cdot \phi(g_2).$$

In other words, the map ϕ preserves the group operations. (Note that the composition law is different on the left and right sides! The left is the composition law of G_1 , while the right is the composition law of G_2 .)

It turns out this property is enough to force the identities and inverses to exist under a function.

Proposition 2.3.1

Let $\phi: G \to G'$ be a homomorphism of groups.

- 1. Let $e \in G$ be the identity element of G. Then $\phi(e) \in G'$ is the identity element of G'.
- 2. Let $g \in G$, and let $g^{-1} \in G$ be its inverse. Then $\phi(g^{-1}) \in G$ is the inverse of $\phi(g)$.

Proof. 1. Observe that $e = e \cdot e$, and that ϕ is a homomorphism (and so $\phi(e) = \phi(e \cdot e) = \phi(e) \cdot \phi(e)$). Let $e' \in G'$ be the identity element of G'. Then

$$e' = \phi(e) \cdot \phi(e)^{-1}$$

$$= (\phi(e) \cdot \phi(e)) \cdot \phi(e)^{-1}$$

$$= \phi(e) \cdot (\phi(e) \cdot \phi(e)^{-1})$$

$$= \phi(e) \cdot e'$$

$$= \phi(e).$$

Hence $e' = \phi(e)$.

2. We have

$$\phi(g^{-1}) \cdot \phi(g) = \phi(g^{-1} \cdot \phi(g))$$
$$= \phi(e)$$
$$= e'.$$

The proof that $\phi(g) \cdot \phi(g^{-1}) = e'$ is similar. Hence $\phi(g^{-1})$ is the inverse of $\phi(g)$.

Example 6. Examples of homomorphisms:

• There exists a homomorphism from the dihedral group to the group ± 1 :

$$\phi: D_n \to \{\pm 1\}$$

, where $\phi(\sigma) = 1$ if rotation, $\phi(\sigma) = -1$ if flip.

• For $n \ge m \ge 1$, there is an injective homomorphism

$$f: S_m \to S_n$$
.

Note that this homomorphism is not surjective. More generally, if $X_1 \subseteq X_2$, then there is an injective homomorphism $f: S_{X_1} \to S_{X_2}$.

• There is a homomorphism

$$\log: (\mathbb{R}, \times) \to (\mathbb{R}, +)$$
.

• There is a homomorphism between the general linear group to the real numbers

$$det: GL_n(\mathbb{R}) \longrightarrow \mathbb{R}$$

 $AB \longmapsto det(AB) = det(A) \cdot det(B).$

Definition 2.3.2: Isomorphisms

Groups G_1, G_2 are **isomorphic** if there exists a **bijective homomorphism** $f: G_1 \to G_2$. In this case, f is called an **isomorphism**.

Interestingly, isomorphic groups are really the same group, but their elements are given different names.

We've now seen two examples of cyclic groups of order n: $\mathbb{Z}/n\mathbb{Z}$ and \mathcal{C}_n . Naturally, we wonder if these groups are actually different (from the perspective of group theory). Equivalently, are these two groups isomorphic?

Example 7. $\mathbb{Z}/n\mathbb{Z}$ is isomorphic to C_n ($\mathbb{Z}/n\mathbb{Z} \cong C_n$). Consider the map

$$\phi: \mathbb{Z}/n\mathbb{Z} \longrightarrow \mathcal{C}_n$$
$$a \longmapsto \phi(a) = g_a.$$

Then $\phi(a+b) = \phi(a) \cdot \phi(b)$ by definition of group operations. So ϕ is a homomorphism. ϕ is surjective since $i \in \{0, \dots, n-1\}$ maps to $g_i \in \{g_0, \dots, g_{n-1}\}$. Since $\mathbb{Z}/n\mathbb{Z}$ and \mathcal{C}_n both have n elements, ϕ is injective as well. So, ϕ is an isomorphism and $\mathcal{C}_n \simeq \mathbb{Z}/n\mathbb{Z}$.

Note that if a group is isomorphic, there isn't necessarily a unique isomorphism. Consider the same isomorphism as above, except map $a \mapsto g_{a+1}$. This is also an isomorphism.

Example 8. Given any group G, and an element $g \in G$, then multiplication by g permutes the elements of G. This gives rise to an injective homomorphism $\phi: G \to S_G$.

This implies that by knowing every symmetric group, one knows much about every other group.

§2.4 Subgroups, Cosets, and Lagrange's Theorem

In all mathematics, a three-step process exists for studying complicated objects.

- 1. Deconstruction: Break your object into smaller and simpler pieces.
- 2. Analysis: Analyze the smaller, simpler pieces.
- 3. Fit the pieces back together.

For a group G, a natural way to form a smaller and simpler piece is by taking subsets $H \subseteq G$ that are themselves groups.

Definition 2.4.1: Subgroups

Let G be a group. A **subgroup of** G is a subset $H \subset G$ that is itself a group under G's group law. Explicitly, H needs to satisfy

- 1. (Closure Under Composition) For every $h_1, h_2 \in H$, $h_1 \cdot h_2 \in H$
- 2. The identity element e is in H.
- 3. For every $h \in H$, its inverse h^{-1} is in H.

This is sometimes denoted H < G.

Note that since H uses G's composition law, associativity is automatically satisfied. If H is finite, the **order** of H is the number of elements in H.

Proposition 2.4.1: Easier Subgroup Checking

Let G be a group, and $H \subseteq G$ a subset. If

- H ≠ Ø
- For every $h_1, h_2 \in H$, the element $h_1 h_2^{-1}$ is in H

then H is a subgroup of G.

Proof. Clearly, $H \neq \emptyset$ (otherwise the identity would not be in H). To show that $e \in H$, let $h_2 = h_1$. Then

$$h_1 \cdot h_2^{-1} = h_1 \cdot h_1^{-1} = e \in H.$$

Thus the identity is in H.

To show that $\forall h \in H, h^{-1} \in H$, let $h_1 = e$. Then

$$h_1 \cdot h_2^{-1} = e \cdot h_2^{-1} = h_2^{-1} \in H.$$

Thus for any $h \in H$, its inverse h^{-1} is in H.

To show closure, observe that for any $h \in H$, $h^{-1} \in H$ (from above), and that $(h^{-1})^{-1} = h$. Let $h_2 = h^{-1}$. Then

$$h_1 \cdot h_2^{-1} = h_1 \cdot (h^{-1})^{-1} = h_1 \cdot h \in H.$$

Thus for any $h1, h \in H$, we have $h_1 \cdot h \in H$. Thus H is closed.

Hence H is a subgroup of G.

Example 9. Every group G has at least two subgroups, the **trivial subgroup** $\{e\}$ consisting of only the identity element, and the entire group G.

Example 10. Let G be a group, and let $g \in G$ be an element of order n. The **cyclic** subgroup of G generated by g, denoted $\langle g \rangle$, is the set

$$\langle g \rangle = \{\dots, g^{-2}, g^{-1}, e, g^1, g^2, g^3, \dots\}.$$

It is isomorphic to the cyclic group C_n .

If g has infinite order, then $\langle g \rangle \cong \mathbb{Z}$ ($\langle g \rangle$ is isomorphic to \mathbb{Z}).

Example 11. More examples of subgroups:

- Let $d \in \mathbb{Z}$; then we can form a subgroup of \mathbb{Z} using multiples of d, or $d\mathbb{Z}$.
- The set of rotations in the dihedral group \mathcal{D}_n is a subgroup of \mathcal{D}_n .

Every group homomorphism has an associated subgroup, the **kernel**, which can be a convenient check to see if the homomorphism is injective.

Definition 2.4.2: Kernel

Let $\phi: G \to G'$ be a group homomorphism. The **kernel of** ϕ , denoted ker (ϕ) , is the set of elements of G that are sent to the identity element of G',

$$\ker (\phi) = \{ g \in G \mid \phi(g) = e' \}.$$

Example 12. The kernel of the determinant homomorphism

$$\det: \mathrm{GL}_n(\mathbb{R}) \longrightarrow \mathbb{R} \setminus \{0\}.$$

is

$$\ker(\det) = \{ A \in \operatorname{GL}_n(\mathbb{R}) \mid \det(A) = 1 \}.$$

We now observe two important properties of the kernel.

Proposition 2.4.2: Kernel Properties

Let $\phi: G \to G'$ be a group homomorphism.

- 1. $\ker(\phi)$ is a subgroup of G.
- 2. ϕ is injective if and only if $\ker(\phi) = \{e\}$.

Proof. We know that $\phi(e) = e'$, so $e \in \ker(\phi)$. Next, let $g_1, g_2 \in \ker(\phi)$. By the homomorphism property,

$$\phi(g_1 \cdot g_2) = \phi(g_1) \cdot \phi(g_2) = e' \cdot e' \in G',$$

so $g_1, g_2 \in \ker(\phi)$. Finally, for $g \in \ker(\phi)$, we know $\phi(g^{-1}) = \phi(g)^{-1} = e'^{-1} = e$, so $g^{-1} \in \ker(\phi)$ Thus, $\ker(\phi)$ is a subgroup of G.

Now, we know again that $e \in \ker(\phi)$ (since $\phi(e) = e'$). If ϕ is injective, by definition $\ker(\phi) = \{e\}$ (at most one element $g \in G$ satisfies $\phi(g) = e'$).

Now, suppose $\ker(\phi) = \{e\}$. Let $\phi(g_1) = \phi(g_2)$ for some $g_1, g_2 \in G$. Observe that $g_2^{-1} \in G$, and $\phi(g_2^{-1}) = \phi(g_2)^{-1}$. Then

$$\phi(g_1) = \phi(g_2) \implies \phi(g_1) \cdot \phi(g_2)^{-1} = \phi(g_2) \cdot \phi(g_2)^{-1} = e',$$

and so $\phi(g_1) \cdot \phi(g_2)^{-1} = \phi(g_1 \cdot g_2^{-1}) = e'$, which means $g_1 \cdot g_2^{-1} \in \ker(\phi) = \{e\}$. Hence $g_1 \cdot g_2^{-1} = e \implies g_1 = g_2$, and so ϕ is injective.

§2.4.1 Cosets

We can use a subgroup H of a group G to break G into pieces, called **cosets of** H.

Definition 2.4.3: Cosets

Let G be a group, and let H < G be a subgroup. For each $g \in G$, the (left) **coset** of H attached to g is the set

$$gH = \{gh \mid h \in H\}.$$

In other words, gH is the resulting set we multiply g by every element $h \in H$.

Note that gH is **not** necessarily a subgroup of H; sometimes $e \notin gH$.

We now prove several properties of cosets that help explain their importance.

Proposition 2.4.3: Properties of Cosets

Let G be a finite group, and let H < G.

- 1. Every element in G is in some coset of H.
- 2. Every coset of H has the same number of elements (namely, |H|).
- 3. Let $g_1, g_2 \in G$. Then the cosets g_1H and g_2H satisfy either

$$g_1H = g_2H$$
 or $g_1H \cap g_2H = \emptyset$.

In other words, g_1H and g_2H are either equal or disjoint.

Proof. 1. Let $g \in G$. Since $e \in H$ for any subgroup H < G, the coset gH contains $g \cdot e = g$.

2. Let $g \in G$. To prove that the cosets gH and H have the same number of elements, we show the map

$$\begin{split} F: H &\longrightarrow gH \\ h &\longmapsto F(h) = gh \end{split}$$

is a bijective map from H to gH.

We first check that F is injective. Suppose $h_1, h_2 \in H$ satisfy $F(h_1) = F(h_2)$. Then $gh_1 = gh_2$, and multiplying by g^{-1} , we get $h_1 = h_2$. Hence F is injective. For surjectivity, observe that every element of gH looks like gh for some $h \in H$, and F(h) = gh, so every element of gH is the image of some element of H. Hence F is surjective.

Thus F is bijective, so H and gH have the same number of elements. Since this is true for any qinnG, every coset of H has the same number of elements.

3. If $g_1H \cap g_2H = \emptyset$, we are done, so assume the two cosets are not disjoint. Then there are some elements $h_1, h_2 \in H$ such that $g_1h_1 = g_2h_2$. Since $h_1^{-1} \in H$, we rewrite this as $g_1 = g_2h_2h_1^{-1}$. Now, take any element $a \in g_1H$. a is of the form g_1h for some $h \in H$. Then

$$a = g_1 h = g_2 h_2 h_1^{-1} h \in g_2 H,$$

as H is a subgroup, so $h_2h_1^{-1}h \in H$. Hence $g_1H \subseteq g_2H$; and from above, every coset has the same number of elements, so $g_1H \subseteq g_2H \implies g_1H = g_2H$.

These properties lead to a fundamental divisibility property for the orders of subgroups.

Theorem 2.4.1: Lagranges Theorem

Let G be a finite group, and let H < G. Then the order of H divides the order of G; or, |G| = k |H|, $k \in \mathbb{Z}$.

Proof. We start by choosing $g_1, \ldots, g_k \in G$ so that g_1H, \ldots, g_kH is a list of every different coset of H. Since every element of G is in some coset of H, we have that G is equal to the union of the cosets of H, namely

$$G = q_1 H \cup \ldots \cup q_k H$$
.

Additionally, we know that distinct cosets share no elements, so if $i \neq j$, then $g_i H \cap g_j H = \emptyset$. Thus the union of cosets is a disjoint union, so the number of elements in G is the sum of the number of elements in each coset:

$$|G| = |g_1H| + \ldots + |g_kH|.$$

But we know that every coset of H has the same number of elements, so $|g_iH| = |H|$. Thus, we get

$$|G| = k |H|$$
.

Thus the order of G is a multiple of the order of H.

Definition 2.4.4: Index

Let G be a group, and H < G. The **index of** H **in** G, denoted (G : H), is the number of distinct cosets of H. In Lagrange's Theorem, the index (G : H) = k; so

$$|G| = (G:H)|H|.$$

Corollary 2.4.1: Extension of Lagrange's Theorem to Finite Groups

Let G be a finite group, and let $g \in G$. Then the order of g divides the order of G.

Proof. The order of the subgroup $\langle g \rangle$ generated by G is equal to the order of the element g, and Lagrange's Theorem tells us that the order of $\langle g \rangle$ divides the order of G.

We now give one application of Lagrange's Theorem, which marks the beginning of a long and ongoing mathematical journey that strives to classify finite groups according to their orders.

Proposition 2.4.4: Prime-Ordered Groups

Let p be a prime, and let G be a finite group of order p. Then G is isomorphic to the cyclic group \mathcal{C}_p .

Proof. Since $p \geq 2$, we know that G contains more than just the identity element, so we choose some non-identity element $g \in G$.

By Lagrange's Theorem, we know that the order of the subgroup $\langle g \rangle$ divides the order of G. But since |G|=p is prime, the order of $\langle g \rangle$ is either 1 or p; and since $\langle g \rangle$ contains both e and g (and so $\langle g \rangle > 1$), we know $|\langle g \rangle| = p = |G|$. Thus the subgroup $\langle g \rangle$ has the same number of elements as the full group, so they are equal: $\langle g \rangle = G$.

Now, we denote the cyclic group $C_p = \{g_0, g_1, \dots, g_{p-1}\}$. We obtain an isomorphism

$$C_p \longrightarrow G$$
 $g_i \longmapsto g^i$.

Thus G is isomorphic to \mathcal{C}_p .

Remark 3. The vast theory of finite groups has many fascinating (and frequently unexpected) results, with easy to understand statements, yet surprisingly intricate proofs. Two such theorems are stated.

Theorem 2.4.2

Let p be a prime number, and let G be a group of order p^2 . Then G is an Abelian group.

On the other hand, we know that there exist non-Abelian groups of order p^3 . For instance, \mathcal{D}_4 and the quaternion group \mathcal{Q} are non-Abelian groups of order $8=2^3$. The next result is a partial converse of Lagrange's Theorem.

Theorem 2.4.3: Sylow's Theorem

Let G be a finite group, let p be a prime, and suppose p^n divides |G| for some power $n \ge 1$. Then G has a subgroup or order p^n .

One might hope, more generally, that if d is any number that divides the order of G, then G has a subgroup of order d. Unfortunately, this is not true; however, we have not yet seen a counterexample.

Both theorems will be proved later.

§2.5 Products of Groups

Subgroups provide a way to break complicated objects (groups) down into smaller, simpler pieces. We now look at a way in which two smaller groups can be used to build a larger group.

Definition 2.5.1: Products of Groups

Let G_1, G_2 be groups. The **product** of G_1 and G_2 is the group whose elements consist of ordered pairs

$$G_1 \times G_2 = \{(a, b) \mid a \in G_1 \text{ and } b \in G_2\},\$$

and whose group operation is performed separately on each component. In other words, if the group operation of $G_1 \times G_2$ is *, the group operation of G_1 is ·, and the group operation of G_2 is \circ , we have

$$(a_1, b_1) * (a_2, b_2) = (a_1 \cdot a_2, b_1 \circ b_2).$$

It is clear that the identity element of $G_1 \times G_2$ is (e_1, e_2) , and the inverse of an element $(a, b) \in G$ is given by

$$(a^{-1}, b^{-1}).$$

More generally, we can take any list of groups G_1, \ldots, G_n and form the product

group

$$G_1 \times \ldots \times G_n$$
.

Remark 4. We observe that $G = G_1 \times G_2$ has order $|G_1| \cdot |G_2|$.

Example 13. For any non-zero numbers m, n, there is a homomorphism

$$\mathbb{Z}/mn\mathbb{Z} \longrightarrow (\mathbb{Z}/m\mathbb{Z}) \times (\mathbb{Z}/n\mathbb{Z})$$
 $a \mod (mn) \longmapsto (a \mod m, a \mod n)$.

We claim that if gcd(m,n) = 1, then it is an isomorphism. To see this, suppose that a mod mn is in the kernel. Then

$$a \equiv 0 \mod m \text{ and } a \equiv 0 \mod n.$$

In other words, a is divisible by both m and n, and then the assumption that $\gcd(m,n)=1$ implies that a is divisible by mn. Thus $a\equiv 0 \mod mn$, which proves that the kernel of the homomorphism is $\{0\}$ (and thus the homomorphism is injective). Further, since the finite set $\mathbb{Z}/mn\mathbb{Z}$ has the same number of elements as $\mathbb{Z}/m\mathbb{Z}\times\mathbb{Z}/n\mathbb{Z}$ ($\mathbb{Z}/mn\mathbb{Z}$ has m elements, while $\mathbb{Z}/m\mathbb{Z}\times\mathbb{Z}/n\mathbb{Z}$ has $m\cdot n=mn$ elements), so it is surjective, and thus the homomorphism is an isomorphism.

One interpretation of this example is that it tells us that if $\gcd(m,n)=1$, then the large group $\mathbb{Z}/mn\mathbb{Z}$ may be broken down into the product of two smaller groups $\mathbb{Z}/m\mathbb{Z}$ and $\mathbb{Z}/n\mathbb{Z}$. Repeated applications demonstrate that any finite cyclic group is isomorphic to the product of cyclic groups of prime power order. The following theorem extends this to all finite Abelian groups.

Theorem 2.5.1: Structure Theorem for Finite Abelian Groups

Let G be a finite Abelian group. Then there are integers m_1, \ldots, m_r) so that

$$G \cong (\mathbb{Z}/m_1\mathbb{Z}) \times (\mathbb{Z}/m_2\mathbb{Z}) \times \ldots \times (\mathbb{Z}/m_r\mathbb{Z}).$$

Example 14. (Projects and Inclusions) Products of groups come with two natural projection homomorphisms

$$p_1: G_1 \times G_2 \longrightarrow G_1,$$
 $p_2: G_1 \times G_2 \longrightarrow G_2,$ $(a,b) \longmapsto a,$ $(a,b) \longmapsto b,$

and two natural inclusion homomorphisms

$$\iota_1: G_1 \longrightarrow G_1 \times G_2$$
 $\iota_2: G_2 \longrightarrow G_1 \times G_2$ $b \longmapsto (e_1, b).$

The inclusion maps are clearly injective, but the projections have kernels

$$\ker(p_1) = \{e_1\} \times G_2 \text{ and } \ker(p_2) = G_1 \times \{e_2\}.$$

Rings: Part I

Unlike groups, which were completely new, the concept of a **ring** is mildly familiar! Some examples of rings include:

- \mathbb{Z} , \mathbb{Q} , \mathbb{R} , and \mathbb{C} are rings (\mathbb{Q} , \mathbb{R} , and \mathbb{C} are actually **fields**, a special type of ring; such is a discussion for later)
- \bullet The set of integers modulo m is a ring

These examples all share something in common: they each have two operations, "addition" and "multiplication", and each operation individually satisfies some axioms, along with the great and powerful distributive law.

In general, a ring is a set with two operations satisfying a bunch of axioms that are modeled after the properties of addition and muliplication of integers. We will later formalize this; but first, a little number theory.

§3.1 Review of Number Theory

§3.1.1 Equivalence Relations

We first introduce the notion of **equivalence relations**; while not strictly related to number theory, equivalence relations will be significant for modular arithmetic.

Definition 3.1.1: Equivalence Relations

An equivalence relation on a set S is a relation " \sim " satisfying

- 1. Reflexivity: For $a \in S$, $a \sim a$
- 2. Symmetry: For $a, b \in S$, $a \sim b$ implies $b \sim a$
- 3. Transitivity: For $a, b, c \in S$, if $a \sim b$ and $b \sim c$, then $a \sim c$.

 $a \sim b$ means a is "related" to b; $a \not\sim b$ means a is "not related" to b. Given an $a \in S$, the **equivalence class** of a is

$$S_a = \{b \in S \mid b \sim a\}.$$

Note that S_a is never empty; it always contains a.

Some examples of equivalence relations are equality (=) and congruence $\mod m$; on the other hand, order (e.g. \leq) is **not** an equivalence relation (symmetry does not hold). We now look further into the congruence $\mod m$ equivalence relation.

Example 15. Given $a \in \mathbb{Z}$, $b \equiv a \mod m$ iff

$$n|b-a \iff b-a=kn, \ k \in \mathbb{Z} \iff b=a+kn.$$

So \mathbb{Z}_a actually forms a coset of $n\mathbb{Z}$:

$$\mathbb{Z}_a = \{ b \in \mathbb{Z} \mid b \equiv a \mod m \}$$
$$= \{ a + kn \mid k \in \mathbb{Z} \}$$
$$= a + n\mathbb{Z}$$

That is, each equivalence class for congruence $\mod m$ is actually a coset of $m\mathbb{Z}$ in \mathbb{Z} :

$$\mathbb{Z}/m\mathbb{Z} = set of cosets of m\mathbb{Z} in \mathbb{Z}$$
.

Theorem 3.1.1

Let S be a set with an equivalence relation \sim . Then

1. If $a, b \in S$, then either

$$S_a \cap S_b = \emptyset$$
 or $S_a = S_b$.

2. Let $\{C_i\}_{i\in I}$ be the disjoint equivalence classes of S. Then

$$S = \coprod_{i \in I} C_i.$$

In particular, if S is finite, then

$$|S| = |C_1| + \ldots + |C_n|.$$

§3.1.2 Modular Arithmetic

We first observe an important characteristic of the gcd:

Proposition 3.1.1

Given integers u, v, there exists integers x, y such that

$$ux + vy = \gcd(u, v).$$

x, y can be found using the **Euclidean algorithm**.

This result leads us to an important proposition that facilitates equivalence relations in $\mathbb{Z}/m\mathbb{Z}$:

Proposition 3.1.2

 $ax \equiv b \mod m$ is solvable if and only if

$$\gcd(a,m)|b.$$

Proof. First, suppose $ax \equiv b \mod m$ is solvable. It follows that

$$m|ax-b$$
.

So, we can find $k \in \mathbb{Z}$ such that ax - b = km is b = ax - km. From this, we get that any integer that divides both a and m must divide b; in particular, $\gcd(a, m)|b$. Conversely, if $\gcd(a, m)|b$, then $b = c\gcd(a, m)$ for some $c \in \mathbb{Z}$. Using the Euclidean algorithm to find x, y with

$$ax + ym = \gcd(a, m),$$

and multiplying by c to get

$$a(cx) + y(mc) = c \gcd(a, m) = b,$$

we have $a(cx) \equiv b \mod m$, so the congruence is solvable.

One natural followup is:

When does $ax \equiv 1 \mod m$ have a solution?

From the proposition above, **only if** gcd(a, m) = 1; that is, only if a and m are relatively prime. Rephrasing, if a and m are relatively prime, then a has a unique multiplicative inverse in $\mathbb{Z}/m\mathbb{Z}$.

§3.2 Abstract Rings and Ring Homomorphisms

Definition 3.2.1: Rings

A ring R is a set with two operations, generally called **addition** and **multiplication** and written

$$\underbrace{a+b}_{ ext{addition}}$$
 and $\underbrace{a\cdot b \text{ or } ab}_{ ext{multiplication}}$

satisfying the following axioms:

- 1. The set R with addition law + is an Abelian group, with identity 0 (or 0_R).
- 2. The set R with multiplication law \cdot is a **monoid** (associative, identity, **but no inverse**), with identity 1 (or $1_R{}^a$).
- 3. **Distributive Law**: For all $a, b, c \in R$, we have

$$a \cdot (b+c) = a \cdot b + a \cdot c$$
 and $(b+c) \cdot a = b \cdot a + c \cdot a$.

4. If, in addition to these three properties, $a \cdot b = b \cdot a$ for all $a, b \in R$, then R is a **commutative** ring.

^ato avoid the trivial ring, we require $1_R \neq 0_R$; however, this is not strictly required

Experience with the integers seems to suggest that $0_R \cdot a = 0_R$, and $(-a) \cdot (-b) = a \cdot b$; yet why are these true? 0_R is the definition of the identity element for *addition*, so why should it say anything about *multiplication*? Similarly, -a relates to the definition of *additive* inverse, but what does that tell us about its product with other elements in R? To show these intuitively obvious claims, we need the distributive law.

Proposition 3.2.1

- 1. $0_R \cdot a = 0_R$ for all $a \in R$.
- 2. $(-a) \cdot (-b) = a \cdot b$ for all $a, b \in R$. In particular, we have $(-1_R) \cdot a = -a$.

Proof. 1. Note that $1_R = 0_R + 0_R$. Then

$$a = 1_R \cdot a$$
 [1_R is the muliplicative identity]
= $(1_R + 0_R) \cdot a$ [from above]
= $1_R \cdot a + 0_R \cdot a$ [from distributivity]
= $a + 0_R \cdot a$.

Adding -a to both sides, we get

$$0_R = 0_R + 0_R \cdot a,$$

and so $0_R \cdot a = 0_R$.

2. First, we show that $(-1_R) \cdot a = -a$:

$$a + (-1_R) \cdot a = 1_R \cdot a + (-1_R) \cdot a$$

= $(1_R + -1_R) \cdot a$
= $0_R \cdot a$
= 0_R .

Hence $(-1_R) \cdot a$ is the inverse of a, and so $-a = (-1_R) \cdot a$.

Now, observe that -ab = (-a)b (this proof is left as an exercise for the reader). Then

$$(-a) \cdot (-b) + -ab = (-a) \cdot (-b) + (-a) \cdot b$$

= $(-a) \cdot (-b + b)$
= $(-a) \cdot 0_R$
= 0_R .

Thus $(-a) \cdot (-b)$ is the inverse of -ab, and so $(-a) \cdot (-b) = ab$.

Just like groups, we want to investigate maps

$$\phi: R \to R'$$

from one ring to another that respect the ring-i-ness of R and R'. Since rings are characterized by their addition and multiplication properties, we get the following definition.

Definition 3.2.2: Ring Homomorphisms

Let R, R' be rings. A **ring homomorphism** from R to R' is a function $\phi: R \to R'$ satisfying^a

- 1. $\phi(1_R) = 1_{R'}$
- 2. $\phi(a+b) = \phi(a) + \phi(b)$ for all $a, b \in R$
- 3. $\phi(a \cdot b) = \phi(a) \cdot \phi(b)$ for all $a, b \in R$

The **kernel** of ϕ is the set of elements that are sent to 0:

$$\ker(\phi) = \{ a \in R \mid \phi(a) = 0_{R'} \}.$$

As with groups, R and R' are **isomorphic** if here is a bijective ring homomorphism $\phi: R \to R'$, and we call such a map an **isomorphism**.

^awe have the first axiom to disallow the boring and trivial zero map $\phi: R \to R'$, $\phi(a) = 0_{R'}$.

§3.3 Interesting Examples of Rings

As described before, we have the four rings

$$\mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$$
;

we say that \mathbb{Z} is a **subring** of \mathbb{Q} , and similarly for the others. Another example is the ring of integers modulo m, $\mathbb{Z}/m\mathbb{Z}$.

Example 16. (Integers Modulo $m \mathbb{Z}/m\mathbb{Z}$) We construct a ring $\mathbb{Z}/m\mathbb{Z}$ with integers, and determining equality if a-b is a multiple of m. Formally, we define an equivalence relation on \mathbb{Z} by the rule

 $a \equiv b$ if a - b = km for some $k \in \mathbb{Z}$. We say a is **congruent** to b modulo m.

While $\mathbb{Z}/m\mathbb{Z}$ is not a subring of \mathbb{C} , there is a natural homomorphism

$$\phi: \mathbb{Z} \longrightarrow \mathbb{Z}/m\mathbb{Z}, \ \phi(a) = a \mod m$$

that assigns the integer a to its equivalence class of all integers congruent to a $\mod m$. This homomorphism ϕ is called the **reduction** $\mod m$ **homomorphism**. The kernel of ϕ is the set of all multiples of m.

Example 17. Another subring of \mathbb{C} is the **ring of Gaussian integers** $\mathbb{Z}[i]$, which consists of

$$\mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\}.$$

The quantity i represents the imaginary number (e.g. $\sqrt{-1} = i$), and addition and multiplication are defined following the usual rules of adding and multiplying complex numbers.

In general, we can define a ring

$$\mathbb{F}[z] = \{a + bz \mid a, b \in \mathbb{F}\}\$$

for an arbitrary field and any number z.

Example 18. Polynomials offer another method of creating bigger rings from already known rings. For any commutative ring R, we use R to build the **ring of polynomials over** R,

 $R[x] = \{ \text{ polynomials } a_0 + a_1x + \ldots + a_dx^d \text{ of all possible degrees with coefficients } a_0, a_1, \ldots, a_d \in R \}.$

A common one we've seen before is $\mathbb{R}[x]$, but the rules of adding and multiplying polynomials hold in any commutative ring. Indeed, the rule for multiplying polynomials is a result of the distributive law!

Now, consider the polynomial

$$f(x) = a_0 + a_1 x + \ldots + a_d x^d \in R[x].$$

Then for any element $c \in R$, we can **evaluate** f **at** c simply by substituting x with c:

$$f(c) = a_0 + a_1 c + \ldots + a_d c^d \in R.$$

When we first studied polynomials, we viewed them as functions, i.e. f(x) defined a function $f: R \to R$. While these polynomial functions are interesting, they are almost never ring homomorphisms!

Thus, we take another approach: using a particular $c \in R$, we define a function from the ring of polynomials R[x] to the ring R:

$$E_c: R[x] \longrightarrow R, \ E_c(f) = f(c).$$

We call E_c the **evaluation at** c **map**. If R is commutative, then E_c is a ring homomorphism, and its kernel is the set of polynomials that have a factor of x - c (since $a_0 + a_1(c-c) + \ldots + a_d(c-c)^d = 0_R$).

Example 19. One famous non-commutative ring is the ring of quaternions,

$$\mathbb{H} = \{ a + b\mathbf{i} + c\mathbf{j} + d\mathbf{k} \mid a, b, c, d \in \mathbb{R} \}.$$

i, j, and k are the different square roots of -1, and although they commute with elements in \mathbb{R} , they don't commute with each other. To multiply two quaternions, we first use the distributive law, and then apply multiplication as specified in the quaternion group. Since Q is a non-commutative group, the ring of quaternions \mathbb{H} is a non-commutative ring.

The ring of quaternions played an important role in the development of math and physics because of the **cancellation law**:

if you know that α and β are real (or complex) numbers satisfying $\alpha\beta=0$, then either $\alpha=0$ or $\beta=0$. It turns out that the same is true with quaternions!

Example 20. (Matrix Rings) There are also rings with matrix elements. Let

$$M_2(\mathbb{R}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid a, b, c, d \in \mathbb{R} \right\}$$

denote the set of 2×2 matrices with real entries. Matrices are added by their corresponding elements, and multiplied using matrix multiplication. With these operations, $M_2(\mathbb{R})$ is a non-commutative ring. However, $M_2(\mathbb{R})$ does not satisfy the cancellation law:

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

More generally, the set of $n \times n$ matrices over a ring R, $M_n(R)$, forms a non-commutative ring.

There are many interesting homomorphisms from rings to matrix rings. For example,

$$\mathbb{C} \hookrightarrow M_2(\mathbb{R}), \ x + yi \mapsto \begin{pmatrix} x & y \\ -y & x \end{pmatrix}$$

is an injective ring homomorphism (proof left as an exercise).

Example 21. For every ring R, there is a unique homomorphism

$$\phi: \mathbb{Z} \longrightarrow R$$
.

To understand why, note that by homomorphism requirements we must have $\phi(1) = 1_R$, and we must also have

$$\phi(n) = \phi(1 + \ldots + 1) = \phi(1) + \ldots + \phi(1).$$

But we also need $\phi(0) = 0_R$, and $\phi(-n) = -\phi(n)$, so there are really no other choices for ϕ . In other words, the requirements that

$$\phi(1) = 1_R$$
 and $\phi: \mathbb{Z} \longrightarrow R$ is a homomorphism

means that there is only one possibility for ϕ . One still needs to check that ϕ is a homo morph ism; such a proof is left as an exercise.

§3.4 Important Properties of Rings

Some rings, such as \mathbb{Q} , \mathbb{R} , \mathbb{C} have the special property that every non-zero element has a multiplicative inverse. These rings are special, and we call them **fields**.

Definition 3.4.1: Fields

A field is a commutative ring R with the property that every non-zero element of R has a multiplicative inverse. In other words, for every non-zero $a \in R$, there is a $b \in R$ satisfying ab = 1.

Example 22. In addition to \mathbb{Z} , \mathbb{R} , and \mathbb{C} , there are also **finite fields**. One important example of a finite field is the ring $\mathbb{Z}/p\mathbb{Z}$, where p is a prime. This follows from number theory: if $p \not | a$, then $\gcd(p,a) = 1$, and so $ax \equiv 1 \mod p$ is solvable, e.g. there is a $b \in \mathbb{Z}/p\mathbb{Z}$ with $ab \equiv 1 \mod p$. We denote this field \mathbb{F}_p .

Many other rings are not fields, such as \mathbb{Z} , $\mathbb{Z}[i]$, and $\mathbb{R}[x]$; however, they do have the nice property of cancellation:

Definition 3.4.2: Cancellation Property

Let R be a commutative ring. R has the **cancellation property** if for every $a,b,c\in R$,

$$ab = ac$$
 with $a \neq 0 \iff b = c$.

Rings that maintain the cancellation property are called **integral domains**:

Definition 3.4.3: Zero Divisors and Integral Domains

Let R be a ring. An element $a \in R$ is a **zero divisor** if $a \neq 0$ and there is some non-zero $b \in R$ such that ab = 0. The ring R is an **integral domain** if it has no zero divisors. Equivalently, the ring R is an integral domain if the only way to get ab = 0 is if either a = 0 or b = 0.

In fact, every field is an integral domain, and a ring R is an integral domain if and only if it has the cancellation property. Moreover, every integral domain is a subring of a field (the reader should verify all of these statements). We will see later that the smallest such field is called the **field of fractions over** R.

§3.5 Unit Groups and Product Rings

In groups, we saw that many interesting subgroups and larger groups could be formed from a group. Similarly, we get the notion in rings that every ring contains an interesting group, and smaller rings can form larger rings.

§3.5.1 Unit Groups

Definition 3.5.1: Unit Groups

Let R be a commutative ring^a. The **group of units of** R is the subset R^* of R defined by

 $R^* = \{a \in R \mid \text{ there exists some } b \in R \text{ satisfying } ab = 1\},$

where group law is ring multiplication. Elements of R^* are called **units**.

^aFor a non-commutative ring R, $a \in R$ is a **unit** if there are elements $b, c \in R$ such that ab = ca = 1, i.e. the element a needs both a left- and right-inverse.

Proposition 3.5.1

The set of units R^* of R is a group, with group law being ring multiplication.

Proof. For each of the group axioms:

• Let $a_1, a_2 \in R^*$, and let $b_1, b_2 \in R^*$ be values such that $a_1b_1 = 1$, $a_2b_2 = 1$ (we can say $b_1, b_2 \in R^*$, not just R, since commutativity ensures that if $a \in R^*$, $b \in R^*$ as well). Then

$$1 = a_1 b_1 a_2 b_2 = a_1 a_2 b_1 b_2,$$

and since $b_1b_2 \in R^*$ (multiplication is closed in monoids), we have $a_1a_2 \in R^*$.

- $1 \in R$ is the identity element.
- By definition, units have inverses.
- Multiplicative associativity is guaranteed by the ring axioms.

Hence R^* is a group.

Example 23. Some unit groups include

$$\mathbb{Z}^* = \{\pm 1\}, \qquad \mathbb{Z}[i]^* = \{\pm 1, \pm i\}, \qquad \mathbb{R}[x]^* = \mathbb{R}^*.$$

Another interesting example is the ring $\mathbb{Z}[\sqrt{2}]$, whose unit group has infinitely many elements. The proofs of these assertions is left as an exercise for the reader.

Example 24. A ring R is a field if and only if

$$R^* = \{a \in R \mid a \neq 0\} = R \setminus \{0\};$$

in other words, every non-zero element has a multiplicative inverse.

We now explore the unit group of the ring $\mathbb{Z}/m\mathbb{Z}$.

Proposition 3.5.2

Let $m \ge 1$ be an integer. Then

$$(\mathbb{Z}/m\mathbb{Z})^* = \{a \mod m \mid \gcd(a, m) = 1\}.$$

In particular if m is a prime number, then $\mathbb{Z}/p\mathbb{Z}$ is a field (often denoted \mathbb{F}_p).

Proof. Suppose that gcd(a, m) = 1. Then by the Euclidean algorithm, we can find $u, v \in \mathbb{Z}$ satisfying au + mv = 1. Hence

$$au = 1 - mv \equiv 1 \mod m$$
.

Thus u is a multiplicative inverse for a in the ring $\mathbb{Z}/m\mathbb{Z}$, so $a \mod m$ is in $(\mathbb{Z}/m\mathbb{Z})^*$. In the other direction, suppose that $a \mod m \in (\mathbb{Z}/m\mathbb{Z})^*$. Then for any $a \in \mathbb{Z}/m\mathbb{Z}$, we can find some $b \mod m \in \mathbb{Z}/m\mathbb{Z}$ such that

$$(a \mod m)(b \mod m) = 1 \mod m.$$

In other words, $ab \equiv 1 \mod (m)$, so ab-1=cm for some c. But then ab-cm=1, and so $\gcd(a,m)=1$, since any number dividing both a,m divides 1, which is only true for 1.

§3.5.2 Product Rings

Now, we inspect building larger rings from smaller rings. Why make things more complicated? It turns out that reversing this process, breaking up complicated rings into smaller, easier rings, can be useful; one such example is the Chinese Remainder Theorem. The building procedure is analogous to building products of groups, as well as constructing vector spaces (e.g. \mathbb{R}^n , making n-tuples from \mathbb{R}).

Definition 3.5.2: Products of Rings

Let R_1, \ldots, R_n be rings. The **product of** R_1, \ldots, R_n is the ring

$$R_1 \times \ldots \times R_n = \{(a_1, \ldots, a_n) \mid a_1 \in R_1, \ldots, a_n \in R_n\}.$$

In other words, the product $R_1 \times ... \times R_n$ is the set of *n*-tuples, where the first entry is chosen from R_1 , second from R_2 , etc. $R_1 \times ... \times R_n$ becomes a ring using coordinate-wise addition and multiplication:

$$(a_1, \ldots, a_n) + (b_1, \ldots, b_n) = (a_1 + b_1, \ldots, a_n + b_n)$$

 $(a_1, \ldots, a_n) \cdot (b_1, \ldots, b_n) = (a_1 \cdot b_1, \ldots, a_n \cdot b_n).$

Proving $R_1 \times \ldots \times R_n$ is a group is left as an exercise for the reader.

Example 25. The product ring $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$ has 6 elements,

$$(0,0), (1,0), (0,1), (0,2), (1,1), (1,2).$$

For example, addition and multiplication look like

$$(1,1) + (1,2) = (0,0), (0,2) \cdot (1,2) = (0,1).$$

It turns out that $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z} \cong \mathbb{Z}/6\mathbb{Z}$.

However, $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$ is **not** isomorphic to $\mathbb{Z}/8\mathbb{Z}$. To see this, if

$$\phi: \mathbb{Z}/8\mathbb{Z} \longrightarrow \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$$

is a homomorphism, then by definition $\phi(1) = (1,1)$, so

$$\phi(4) = \phi(1+1+1+1) = \phi(1) + \phi(1) + \phi(1) + \phi(1) = (1,1) + (1,1) + (1,1) + (1,1) = (0,0).$$

Hence $ker(\phi)$ is non-trivial, so ϕ cannot be injective.

Now, we combine product rings and unit groups.

Proposition 3.5.3

Let R_1, \ldots, R_n be rings. Then the unit groups of the product is isomorphic to the product of the unit groups:

$$(R_1 \times \ldots \times R_n)^* \cong R_1^* \times \ldots \times R_n^*$$
.

Proof. If $(a_1, \ldots, a_n) \in (R_1 \times \ldots \times R_n)^*$, then by definition there is a $(b_1, \ldots, b_n) \in (R_1 \times \ldots \times R_n)^*$ satisfying

$$(a_1, \ldots, a_n) \cdot (b_1, \ldots, b_n) = (1, \ldots, 1).$$

However, this means that $a_ib_i=1$, so $a_i\in R_i^*$. Hence $(a_1,\ldots,a_n)\in R_1^*\times\ldots\times R_n^*$. Now, suppose $(a_1,\ldots,a_n)\in R_1^*\times\ldots\times R_n^*$. Then for $a_i\in R_i^*$, there exists some $b_i\in R_i^*$ such that $a_ib_i=1$. Then

$$(a_1, \ldots, a_n) \cdot (b_1, \ldots, b_n) = (1, \ldots, 1).$$

Hence $(a_1, \ldots, a_n) \in (R_1 \times \ldots \times R_n)^*$.

§3.6 Ideals and Quotient Rings

Recall that in the ring $\mathbb{Z}/m\mathbb{Z}$, we pretend that $a, b \in \mathbb{Z}$ are "identical" if a - b = km for some $k \in \mathbb{Z}$. In other words, we get an equivalence relation

$$a \equiv b \mod m$$
 if $ab = km(a - b)$ is a multiple of m).

We then defined $\mathbb{Z}/m\mathbb{Z}$ to be the set of equivalence classes.

Now, we attempt to generalize this construction to arbitrary (commutative) rings. We first start by generalizing the concept "being a multiple of m". Why would we want this?

- First, it provides us with a new ring to explore; when is $\mathbb{Z}/m\mathbb{Z}$ a field? An integral domain? Moreover, when exploring conjectures, $\mathbb{Z}/m\mathbb{Z}$ provides a testing ground.
- Second, sometimes $\mathbb{Z}/m\mathbb{Z}$ is easier to work with than \mathbb{Z} . Consider the Diophantine equation

$$x^n + y^n = z^n.$$

Solving this can be notoriously difficult (PepeLaugh). However, since $\mathbb{Z}/m\mathbb{Z}$ is finite, we can use the natural ring map $\phi: \mathbb{Z} \longrightarrow \mathbb{Z}/m\mathbb{Z}$ for a variety of m's to learn about the problem.

Definition 3.6.1: Ideals

Let R be a commutative ring. An **ideal** of R is a non-empty subset $I \subseteq R$ with the following two properties:

- If $a \in I$ and $b \in I$, then $a + b \in I$.
- If $a \in I$ and $r \in R$, then $ra \in I$.

Some examples of ideals include $m\mathbb{Z} \subseteq \mathbb{Z}$ (for any $m \in \mathbb{Z}$), $\{0\} \subseteq R$ for any ring R, and R itself.

One way to create an ideal of R is to start with one element in R and take all of its multiples.

Definition 3.6.2: Principal Ideals

Let R be a commutative ring, and let $c \in R$. The **principal ideal generated by** c, denoted cR or (c), is the set of all multiples of c,

$$cR = (c) = \{rc \mid r \in R\}.$$

Verifying that cR is an ideal is straightforward, and left as an exercise.

The above examples still hold: $m\mathbb{Z}$, $\{0\}$, and R are all principal ideals. In some rings (e.g. \mathbb{Z} , $\mathbb{Z}[i]$, $\mathbb{R}[x]$), every ideal is a principal ideal, although this is not immediately obvious. Moreover, this is not true for rings like $\mathbb{Z}[i]$; there exist non-principal ideals.

Example 26. Every ring has at least two ideals:

• the zero ideal

$$(0) = 0R = \{0\}$$

consisting of just the zero element, and the unit ideal

$$(1) = 1R = R$$

consisting of the entire ring.

More generally, if $u \in R$ is a unit, then uR = (u) = R.

Just like products of rings, we can formulate a sense of building multiple ideals. A principal ideal is generated by a single element in R; for a finite list of elements $c_1, \ldots, c_n \in R$, the **ideal generated by** c_1, \ldots, c_n is

$$(c_1, \ldots, c_n) = c_1 R + \ldots + c_n R = \{r_1 c_1 + \ldots + r_n c_n \mid r_1, \ldots, r_n \in R\}.$$

Verifying that this is an ideal is left as an exercise.

Remark 5. (Proof Technique) Let I be an ideal of R. If $1 \in I$, then for every $r \in R$ we have $r \cdot 1 = r \in I$, so I = R is the unit ideal. Conversely, if you can construct an ideal I and prove I = R, we can often exploit this fact by using $1 \in I$.

Now, we can start crafting quotient rings R/I by identifying pairs of R if their difference is in I, just like we did when defining $\mathbb{Z}/m\mathbb{Z}$:

For an element $a \in R$, the set of $b \in R$ that are equivalent to a consists of the set of b such that $a - b \in I$, or equivalently, such that b is in the set a + I.

This parallel to the ring of integers modulo m prompts the following definitions.

Definition 3.6.3: Cosets of Ideals

Let R be a commutative ring, and let I be an ideal of R. Then for every element $a \in R$, the **coset of** a is the set

$$a + I = \{a + c \mid c \in I\}.$$

Note that a is always an element of its coset, since $0 \in I$. If $a, b \in R$ satisfy $b - a \in I$, then people often write

$$b \equiv a \mod I$$

and say "b is congruent to a modulo I."

Given two cosets a+I and b+I, we define their sum and product by the formulas

$$(a+I) + (b+I) = (a+b) + I,$$
 $(a+I) \cdot (b+I) = (a \cdot b) + I,$

and we denote the collection of distinct cosets by R/I.

Like $\mathbb{Z}/m\mathbb{Z}$, we wish to turn R/I into a ring; it turns out that the above definitions successfully define a commutative ring.

Proposition 3.6.1

Let R be a commutative ring, and let I be an ideal of R.

- 1. Let a+I, a'+I be two cosets. Then a+I=a'+I if and only if $a'-a \in I$.
- 2. Addition and multiplication of cosets is well-defined, in that it doesn't matter which element of the coset we use in the definition.
- 3. Addition and multiplication of cosets in R/I turn R/I into a commutative ring.^a

Proof. 1. Suppose a+I=a'+I. Then a'=a+c for some $c\in I$. But then $a'-a=c\in I$, and so $a'-a\in I$.

Now, suppose $a'-a \in I$. Then $a'-a=c \in I$ for some $c \in I$. Let a+b be any element in I; then a+b=a+r(a'-a)=ra'-(r-1)a for some $r \in R$.

^aTo be precise, we must require that $I \neq R$, since if I = R, then R/I only has one element, and we don't allow rings to have 1 = 0.

2. For addition: let $a, b, a', b' \in R$ be elements that satisfy $a \equiv a' \mod I$, $b \equiv b' \mod I$; that is, $a' - a \in I$, $b' - b \in I$. By (1), a + I = a' + I, b + I = b' + I. Then

$$a' = a + s, \ b' = b + t$$

for some $s, t \in I$. But then a' + b' = a + s + b + t = (a + b) + (s + t); and since $s + t \in I$, we have $a' + b' \equiv a + b \mod I$. Alternatively, $(a' + b') - (a + b) \in I$, so by (1) (a + b) + I = (a' + b') + I.

For multiplication: let $a, b, a', b' \in R$ be elements whose cosets satisfy

$$a' + I = a + I$$
 and $b' + I = b + I$.

The assumption that a+I=a'+I means that there is some $c\in I$ such that a'=a+c, and similarly the assumption that b+I=b'+I means that there is some $d\in I$ such that b'=b+d (since $a'\in a+I$ means that a' is of the form a+c for some $c\in I$). It follows that

$$a'b' = (a+c)(b+d) = ab + \underbrace{ad + cb + cd}_{\text{This is in I, since c, $d \in I$.}}.$$

Since $c, d \in I$, ad + cb + cd is also in I, and so $a'b' - ab = ad + cb + cd \in I$; and from (1), we see that ab + I = a'b' + I are equal.