MATH 405: Assignment 4

Micah Sherry

March 7, 2025

1. Find the smallest positive solution to the system of congruences.

$$x \equiv 4 \bmod 7$$

$$x \equiv 5 \bmod 11$$

$$x \equiv 2 \bmod 16$$

$$x \equiv 1 \bmod 19$$

$$\begin{split} M &= 7 \cdot 11 \cdot 16 \cdot 19 = 23408 \\ M_1 &= 11 \cdot 16 \cdot 19 = 3344 \\ M_2 &= 7 \cdot 16 \cdot 19 = 2128 \\ M_3 &= 7 \cdot 11 \cdot 19 = 1463 \\ M_4 &= 7 \cdot 11 \cdot 16 = 1232 \end{split}$$

$$M_1b_1 \equiv 1 \bmod 7$$
 $M_3b_3 \equiv 1 \bmod 16$ $5b_1 \equiv 1 \bmod 7$ $7b_3 \equiv 1 \bmod 16$ $1 = 3(5) - 2(7)$ $1 = 7(7) - 3(16)$ Therefore $b_1 \equiv 3 \bmod 7$ Therefore $b_3 \equiv 7 \bmod 16$ $M_2b_2 \equiv 1 \bmod 11$ $M_4b_4 \equiv 1 \bmod 19$ $1 = -2(5) - (11)$ $1 = 6(16) - 5(19)$ Therefore $b_2 \equiv -2 \equiv \bmod 11$ Therefore $b_4 \equiv 6 \bmod 19$

$$x_0 = 4M_1b_1 + 5M_2b_2 + 2M_3b_3 + 1M_4b_4$$

= 4(3344)(3) + 5(2128)(9) + 2(1463)(7) + 1(1232)(6)
= 163762

 $x_k = x_0 + kM$ (where k is some integer) $x_{-6} = 23314$ is the smallest positive value for x.

2. Consider the set $\mathbb{Z}_3[i] = \{a + bi | a, b \in \mathbb{Z}_3\}$ where $i = \sqrt{-1}$.

- (a) find all the elements of $\mathbb{Z}_3[i]$. How many are there? Notice there are 3 choices for a and 3 for b, so $\mathbb{Z}_3[i]$ has 9 elements. 0, 1, 2, i, 1+i, 2+i, 2i, 1+2i, 2+2i
- (b) $1 + 2i \in \mathbb{Z}_3[i]$ has a multiplicative inverse in find it.

$$(1+2i)(2+2i) = = 2+4i+2i+4i^2 = 2-4 = -2 = 1$$

Therefore (2+2i) is the multiplicative inverse of (1+2i).

(c) Classify each nonzero element of $\mathbb{Z}_3[i]$ as a unit, a zero divisor or neither.

Number	Inverse	classification
0	NA	Neither
1	1	unit
2	2	unit
i	2i	unit
1+i	2+i	unit
2+i	1+i	unit
2i	i	unit
1 + 2i	2i+2	unit
2+2i	1+2i	unit

3. let R be a ring and let S and T be subrings or R. Let $M = S \cap T$. Show that M is a subring of R

Proof. Let S and T be subrings of a Ring R. And Let $M = S \cap T$.

To show M is a subring we need to show that $0, 1 \in M$, M is closed under addition and multiplication, and if $a \in M$ then $-a \in M$

Since S is a subring $0 \in S$. Similarly, T is a subring $0 \in T$. Therefore $0 \in M$.

Since S is a subring $1 \in S$. Similarly, T is a subring $1 \in T$. Therefore $1 \in M$.

Let $a, b \in M$. Since, $a, b \in S$ since S is a subring $a + b \in S$

Similarly, $a, b \in T$ since T is a subring $a + b \in T$

Therefore $a + b \in M$ Thus M is closed under addition.

Let $a, b \in M$. Since, $a, b \in S$ since S is a subring $a \cdot b \in S$

Similarly, $a, b \in T$ since T is a subring $a \cdot b \in T$

Therefore $a \cdot b \in M$ Thus M is closed under multiplication.

Let $a \in M$. Since, $a \in S$ since S is a subring $-a \in S$

Similarly, $a \in T$ since T is a subring $-a \in T$

Therefore if $a \in M$ then $-a \in M$.

Therefore M is a Subring of R

4. Let R be a ring (not necessarily commutative). Let $a, b \in R$, prove that $(a \cdot b)^{-1} = b^{-1} \cdot a^{-1}$

Proof. Let R be a ring and let $a, b \in R$. And assuming a^{-1}, b^{-1} exist. Consider:

$$(a \cdot b) \cdot (b^{-1} \cdot a^{-1}) = a \cdot (b \cdot b^{-1}) \cdot a^{-1}$$
 (by associativity of R)
$$= a \cdot 1 \cdot a^{-1}$$
 (by definition of multiplicative inverse)
$$= a \cdot a^{-1}$$
 (by definition of multiplicative identity)
$$= 1$$
 (by definition of multiplicative inverse)

Therefore $(b^{-1} \cdot a^{-1})$ is the multiplicative inverse of $(a \cdot b)$

Extra Credit: let R be a ring (not necessarily commutative).

If for any $a, b \in R$, $(a \cdot b)^{-1} = a^{-1} \cdot b^{-1}$ then show that R is commutative.

Proof. Let $a, b \in R$. Assume a^{-1}, b^{-1} exist and $(a \cdot b)^{-1} = (a^{-1} \cdot b^{-1})$. from proof of problem 4 we have $(a \cdot b)^{-1} = (b^{-1} \cdot a^{-1})$. So,

$$(a^{-1} \cdot b^{-1}) = (b^{-1} \cdot a^{-1})$$

$$b^{-1} = a \cdot (b^{-1} \cdot a^{-1})$$

$$1 = b \cdot a \cdot (b^{-1} \cdot a^{-1})$$

$$a = b \cdot a \cdot b^{-1}$$

$$a \cdot b = b \cdot a$$
(left multiply by a)
(right multiply by a)
(right multiply by b)

Therefore since $b \cdot a = a \cdot b$, R is commutative.