In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

DATA COLLECTION

In [3]:

```
a=pd.read_csv(r"C:\Users\user\Downloads\Fitness (2).csv")
a
```

Out[3]:

	Row Labels	Sum of Jan	Sum of Feb	Sum of Mar	Sum of Total Sales
0	А	5.62%	7.73%	6.16%	75
1	В	4.21%	17.27%	19.21%	160
2	С	9.83%	11.60%	5.17%	101
3	D	2.81%	21.91%	7.88%	127
4	E	25.28%	10.57%	11.82%	179
5	F	8.15%	16.24%	18.47%	167
6	G	18.54%	8.76%	17.49%	171
7	Н	25.56%	5.93%	13.79%	170
8	Grand Total	100.00%	100.00%	100.00%	1150

In [4]:

```
b=a.head(5)
b
```

Out[4]:

	Row Labels	Sum of Jan	Sum of Feb	Sum of Mar	Sum of Total Sales
0	А	5.62%	7.73%	6.16%	75
1	В	4.21%	17.27%	19.21%	160
2	С	9.83%	11.60%	5.17%	101
3	D	2.81%	21.91%	7.88%	127
4	Е	25.28%	10.57%	11.82%	179

DATA CLEANING AND PRE-PROCESSING

In [5]:

```
b.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5 entries, 0 to 4
Data columns (total 5 columns):
     Column
                         Non-Null Count Dtype
     Row Labels
                         5 non-null
                                         object
 0
     Sum of Jan
                         5 non-null
                                         object
 1
     Sum of Feb
                         5 non-null
                                         object
     Sum of Mar
                        5 non-null
                                         object
     Sum of Total Sales 5 non-null
                                         int64
dtypes: int64(1), object(4)
memory usage: 328.0+ bytes
In [6]:
b.describe()
```

Out[6]:

Sum of Total Sales

count	5.000000
mean	128.400000
std	42.317845
min	75.000000
25%	101.000000
50%	127.000000
75%	160.000000
max	179.000000

In [7]:

b.columns

Out[7]:

EDA AND VISUALIZATION

In [8]:

sns.pairplot(b)

Out[8]:

<seaborn.axisgrid.PairGrid at 0x22519228fa0>

In [11]:

sns.distplot(b['Sum of Total Sales'])

Out[11]:

<AxesSubplot:xlabel='Sum of Total Sales', ylabel='Density'>

In [13]:

```
In [14]:
```

```
sns.heatmap(f.corr())
```

Out[14]:

<AxesSubplot:>

In [19]:

```
x=f[['Sum of Total Sales']]
y=f['Sum of Total Sales']
```

In [20]:

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.5)
```

In [21]:

```
from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)
```

Out[21]:

LinearRegression()

In [22]:

```
print(lr.intercept_)
```

1.4210854715202004e-14

In [23]:

```
r=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
r
```

Out[23]:

Co-efficient

Sum of Total Sales

1.0

In [24]:

```
u=lr.predict(x_test)
plt.scatter(y_test,u)
```

Out[24]:

<matplotlib.collections.PathCollection at 0x2251b622ac0>

In [25]:

```
print(lr.score(x_test,y_test))
```

1.0

In []: