Question 1

In a system, the analog range is M to N (where N > M) and there is 1 byte in the digital system. If the analog values of the system are presented in Hexadecimal number of $2A_{16}$ and $1C_{16}$ correspond to Gray Codes of 01110010 and 01101111 respectively, determine

- i) maximum of the analog range which is presented in Decimal number.
- ii) if the same of analog range of the system is used and the total number of bits is 128 bits,
 - a) what is the new resolution of converter for the system. With this new resolution of converter, what will happen to the system?
 - b) find out the summation of all bits weight that are in the even number position from left to right.

(25 marks)

Question 2

In a gear box type transmission dynamometer, the input and output shafts are co-axial and rotate in the same direction. The input and output shaft information and its application is shown in **Figure Q2(i)** and **Figure Q2(ii)** respectively. The overall mechanical efficiency is 60%. Find the input power of the system if the forces at point A and B are parallel to each other and point A and D are perpendicular.

Figure Q2(i)

Figure Q2(ii)

(25 marks)

Based on the block diagram in ${\bf Figure}~{\bf Q3},$ obtain the Overall Gain (Y/X). Show your calculation (block by block reduction).

Figure Q3

(25 marks)

Question 4

In the seismic device as shown in **Figure Q4**, the transducer is attached to the object which motion is to be measured. **Figure Q4** consists of the mass, m is supported by a spring of stiffness, k and viscous damper with damping coefficient of c.

i)

- a) Find the equation of input function X(t)
- b) Find the equation of v(t) and draw its graph
- c) Find the equation of a(t) and draw its graph

(10 marks)

- ii) If frequency ratio is 2, damping ratio is 0.3 and static sensitivity is 0.01
 - a) Find m, c and k.
 - b) Find the amplitude of recorded motion.

(10 marks)

iii) The instrument can be used as accelerometer if the error is not to exceed 1%. Using the data in previous question, **Q4(ii)**, and graph analysis in **Figure Q4(iii)**, show the calculation and complete the **Table Q4**.

Table Q4

ζ	0	0.65	0.7
ω_n (rad/s)			
f (Hz)			

(5 marks)

Figure Q4(iii)

)