X-552-72-368 PREPRINT

NASA TM X- 66/4/

GODDARD BROUWER ORBIT BULLETIN

D. B. MORGAN R. A. GORDON

> NATIONAL TECHNICAL INFORMATION SERVICE US Department of Commerce Springfield, VA. 22151

JULY 1971

GODDARD SPACE FLIGHT CENTER GREENBELT: MARYLAND

GODDARD BROUWER ORBIT 200 p HC \$12.00 (NASA-TM-X-66141) BULLETIN (NASA) CSCL 22C unclas

N73-15869

GODDARD BROUWER ORBIT BULLETIN

D. B. Morgan

R. A. Gordon

July 1971

ACKNOWLEDGEMENT

The authors wish to gratefully acknowledge the guidance and technical advice given by Mr. William N. Weston from the Trajectory and Dynamics Branch, Trajectory Analysis and Geodynamics Division.

GODDARD BROUWER ORBIT BULLETIN

D. B. Morgan R. A. Gordon

ABSTRACT

The Goddard Brouwer Orbit Bulletin provides operational support for earth space research and technological missions by producing a tape containing pertinent spacecraft orbital information which is provided to a number of cities around the world in support of individual missions. This document presents a program description of the main and associated subroutines, and a complete description of the input, output and requirements of the Bulletin program.

TABLE OF CONTENTS

		,	Page
I.	INT	PRODUCTION	1
П.	PR	OGRAM DESCRIPTION	2
	Α.	PURPOSE	2
,	В.	FLOW CHARTS AND FUNCTIONAL DESCRIPTIONS	
		OF MAIN AND ASSOCIATED SUBROUTINES	2
		MAIN	3.
		BRWORB	6
		CHANPL	21
		CKSUM	23
		DAF	25
		DATANO	36
		DATE	37
		DAYCT	40
		DMSTOR	42
		DRAG	44
		DRAGLD	47
		DREFOD	50
		ELCON0	52 :
		ELEMLD	60
		GTRACE	65
		HMSTOR	70
		INTPL0	72
		JDSCUT	76
		JULHMS	78
		KEPLRI	80
		LAGRN0	83
		NODALX	85
		NSPT	89
		PAGE1	93
		PERTF0	9.7
		POOL	101
		PQUV	104
		PREDS	107
		PRINT	114
		REDUCE	118
		SDFWOE	120

TABLE OF CONTENTS (Continued)

			Page
		SPACEL	124
		SSPTHT	129
		TIMETB	133
		UTGST	136
		UVIJK	139
		VECTOR	142
		WMAPLD	147
		ZERO	150
		BPOOL	152
	c.	COMMON BLOCK VARIABLE DESCRIPTION	154
		1. BULLETIN COMMON Blocks	154
		2. BULLETIN COMMON Block Cross Reference Table	161
	D.	ABBREVIATIONS	163
	E.	REFERENCES	165
ш.	OP	ERATING INSTRUCTIONS	166
	Α.	REQUIREMENTS AND OPTIONS	166
	В.	INPUT	167
		1. Limitations	167
		2. Card Order	167
		3. Card Format	168
		4. Perturbation Observation Tape Format	181
	C.	SET UP AND RUNNING PROCEDURE	182
		1. Requirements	182
		2. Tape Assignments	183
		3. Card Reader	183
		4. On-Line Printer	183
	•	5. IBM S/360 Job Control Language Cards	184
	D.	OUTPUT	184
		1. On-Line Printer	184
		2. Output Tape Format	187

LIST OF FIGURES

Figure		Page
1	Flow Chart Symbols	2
2	Listing of Sample Input Data	180
3	Sample On-Line Printout	185
4	Listing of Sample Output Tape	189

LIST OF TABLES

Table		Page
1	Perturbation Observation Tape Format	181
2	Tape Assignments	183
3	Normal Statements	184
4	Error Statements	186

GODDARD BROUWER ORBIT BULLETIN

I. INTRODUCTION

Goddard Brouwer Orbit Bulletin is an economical means of providing operational support for earth space research and technological missions. The Bulletin routine accepts as input a set of orbital elements generated by the Definitive Orbit Determination System (DODS) and produces an output tape containing pertinent spacecraft orbital information. This information is provided to a number of cities around the world in support of missions such as International Satellite for Ionospheric Studies (ISIS). The Bulletin information includes the following:

- 1. The mean characteristics of the orbit of the satellite at epoch
- 2. Prediction space elements for use when approximate satellite positions are needed
- 3. Osculating space elements
- 4. Ascending nodal crossings during a requested time period
- 5. An ephemeris which furnishes the positions of the satellite at regular intervals
- 6. Brouwer data acquisition facility parameters to be used by each data acquisition facility to generate its topocentric predictions for satellite acquisition

Section II is a program description of the main and associated subroutines. A complete description of the input, output and requirements is given in Section III, Operating Instructions.

II. PROGRAM DESCRIPTION

A. PURPOSE

This program provides an economical means of disseminating pertinent space-craft orbital information to observing stations and other interested parties.

B. FLOW CHARTS AND FUNCTIONAL DESCRIPTIONS

The following pages contain flow charts and functional descriptions of the main routine and associated subroutines. Flow charts and corresponding descriptions are grouped alphabetically, with the main routine presented first and the block data last.

igore ii i iow chair cymbon

MAIN Flowchart

MAIN Flowchart (continued)

MAIN Flowchart (continued)

BRWORB

Brouwer Orbit Generator

PURPOSE

Given a time t, referenced to some epoch, the subroutine determines a set of osculating elements corresponding to this time with the Brouwer Orbit Theory.

METHOD

Brouwer (59) made use of Von Zeipel's procedure to modify Delaunay's method in the development of an artificial satellite theory. The subroutine "BRWORB" is a faithful coding of Brouwer's formulas as they appear in Sec. 9 "Formulas for Computation", Brouwer, D., "Solution of the Problem of Artificial Satellite Theory Without Drag," Astronomical Journal, 64 (November 1959), 378-397., except for modifications made to include the perturbation (pert) tape option.

FORMULATION

- I. Compute Brouwer epoch elements corrections:
 - 1. Without Pert tape

- 2. With Pert tape
 - a. For i calculation

$$a'' = a_0 + \Delta a$$

6

$$e'' = e_0 + \Delta e$$

$$i'' = i_0 + \Delta i$$

$$n_0 = \sqrt{\frac{\mu}{(a'')^3}}$$

b. For \dot{g}^{\shortparallel} and \dot{h}^{\shortparallel} calculation

$$a'' = a_0 + \frac{\Delta a}{2}, \quad n_0 = \sqrt{\frac{\mu}{(a'')^3}}$$

$$e'' = e_0 + \frac{\Delta e}{2}$$

$$i_0'' = i_0 + \frac{\Delta i}{2}$$

c. Correction to ℓ_0 , g_0 , and h_0 (epoch angular elements)

$$\varrho_{0} d1 = \varrho_{0} + \Delta \varrho$$

$$g_0 = g_0 + \Delta g$$

$$h_0 = h_0 + \Delta h$$

$$\ell_0 = \ell''$$
 at $(t = t_0)$

II. Calculation of abbreviated notation to simplify formulas:

$$\eta \equiv \sqrt{1 - e^{"2}}$$

$$\theta = \cos i'$$

$$\gamma_2 = \frac{k_2}{a''^2}$$

$$\gamma_4 = \frac{k_4}{a''^4}$$

$$\gamma_2' = \frac{\gamma_2}{n^4}$$

$$\gamma_4' = \frac{\gamma_4}{\eta^8}$$

III. Compute the first time derivative of the secular terms:

1. Mean Mean anomaly derivative, Anomalistic Mean Motion and period;

$$\dot{\ell} = \frac{d1''}{dt} - n_0 t = n_0 \eta \left\{ \gamma_2' \left[\frac{3}{2} (3\theta^2 - 1) + \frac{3}{32} \gamma_2' \left[25\eta^2 + 16\eta - 15 \right] \right. \\
+ (30 - 96\eta - 90\eta^2) \theta^2 + (105 + 144\eta + 25\eta^2) \theta^4 \right] \right\} \\
+ \frac{15}{16} \gamma_4' e''^2 (3 - 30\theta^2 + 35^4) \right\} \\
1_0 D = n_0' + i, \quad n = k l_0 D, \quad P = \frac{2\pi}{n}, \quad i_0 = n_0' + i \quad \text{at } (t = t_0)$$

2. Mean Argument of Perigee derivative;

$$\dot{g} = \frac{dg''}{dt} = n_0 \left\{ \gamma_2' \left[\frac{3}{2} (5\theta^2 - 1) + \frac{3}{32} \gamma_2' \left[25\eta^2 + 24\eta - 35 \right] \right. \\ \left. + (90 - 192\eta - 126\eta^2) \theta^2 + (385 + 360\eta + 45\eta^2) \theta^4 \right] \right\}$$

$$\left. + \frac{15}{16} \gamma_4' \left[21 - 9\eta^2 + (126\eta^2 - 270) \theta^2 + (385 - 189\eta^2) \theta^4 \right] \right\}$$

3. Mean longitude of ascending node derivative:

$$\dot{h} = \frac{dh''}{dt} = n_0 \left\{ \gamma_2' \left[\frac{3}{8} \gamma_2' \left[(9\eta^2 + 12\eta - 5) \theta + (-35 - 36\eta - 5\eta^2) \theta^3 \right] - 3\theta \right] + \frac{5}{4} \gamma_4' \left(5 - 3\eta^2 \right) \theta \left(3 - 7\theta^2 \right) \right\}$$

IV. Compute constants for long-period terms;

$$\gamma_3 = \frac{k}{a''^3}$$

$$\gamma_5 = \frac{k_5}{a''^5}$$

$$\gamma_5' = \frac{\gamma_5}{\eta^{10}}$$

$$(1 - 5\theta^2)^{-1}$$

Compute $\ell P_1 - \ell P_{15}$

$$\begin{aligned}
& \ell P_{1}^{\perp} = 40\theta^{4} (1 - 5\theta^{2})^{-1} \\
& \ell P_{1} = \frac{1}{8} \gamma_{2}^{\perp} \eta^{2} (1 - 11\theta^{2} - \ell P_{2}^{\perp}) \\
& \ell P_{2} = \frac{5}{12} \frac{\gamma_{4}^{\perp}}{\gamma_{2}^{\perp}} \eta^{2} [1 - 3\theta^{2} - 8\theta^{4} (1 - 5\theta^{2})^{-1}] \\
& \ell P_{3} = \frac{1}{4} \frac{\gamma_{3}^{\perp}}{\gamma_{2}^{\perp}} \eta^{2} \sin i^{\parallel} \\
& \ell P_{4}^{\perp} = [1 - 9\theta^{2} - 24\theta^{4} (1 - 5\theta^{2})^{-1}] \\
& \ell P_{4} = \frac{5}{64} \frac{\gamma_{5}^{\perp}}{\gamma_{2}^{\perp}} \eta^{2} \ell P_{4}^{\perp} \sin i^{\parallel} \\
& \ell P_{5}^{\perp} = 1 - 5\theta^{2} - 16\theta^{4} (1 - 5\theta^{2})^{-1} \\
& \ell P_{5} = \frac{35}{384} \frac{\gamma_{5}^{\perp}}{\gamma_{2}^{\perp}} e^{\parallel 2} \eta^{2} \sin i^{\parallel} \ell P_{5} \\
& \ell P_{6}^{\perp} = \ell P_{1} (1 - 5\theta^{2})^{-1}
\end{aligned}$$

$$\ell P_6 = 3 + 16\theta^2 (1 - 5\theta^2)^{-1} + \ell P_6$$

$$\ell P_7 \equiv 4 + 3e^{-2}$$

$$\ell P_8 = \frac{35}{576} \frac{\gamma_5'}{\gamma_2'} e^{-3\theta} \sin i \left(5 + 32\theta^2 (1 - 5\theta^2)^{-1} + 2\ell P_6'\right)$$

$$\ell P_9 \equiv \frac{e'' \theta}{\sin i''}$$

$$\ell P_{10} = \frac{35}{1152} \frac{\gamma_5'}{\gamma_2'} e^{-2} \ell P_9 \ell P_5'$$

$$\ell P_{11} = \frac{\sin i''}{e''}$$

$$\ell P_{12} \equiv 2 + e^{-2}$$

$$\ell P_{13} \equiv (2 + 3e^{-2}) \theta^2$$

$$\ell P_{14} = 8 (2 + 5e^{-2}) \theta^4 (1 - 5\theta^2)^{-1}$$

$$\ell P_{15} = \frac{e''}{\eta^2 \tan i''}$$

Compute A₁ - A₁₁

$$A_1 = e''(\ell P_1 - \ell P_2)$$

$$A_2 = \ell P_3 + (4 + 3e''^2) \ell P_4$$

$$\mathbf{A_3} = \eta (\ell \mathbf{P_1} - \ell \mathbf{P_2})$$

$$A_4 = \frac{\eta}{e''} [\ell P_5 + (4 + 9e''^2) \ell P_4]$$

$$\begin{split} A_5 &= \frac{\eta}{e^{"}} \, \ell P_5 \\ A_6 &= \frac{1}{16} \, \gamma_2^{+} \, \left(\ell P_{12} - 11 \ell P_{13} - 5 \ell P_{14} - 10 \, e^{"2} \, \theta^2 \, \ell P_6^{+} \right) \\ &\quad + \frac{5}{24} \, \frac{\gamma_4^{+}}{\gamma_2^{+}} \, \left(\ell P_{12} - 3 \ell P_{13} - \ell P_{14} - 2 \, e^{"2} \, \theta^2 \, \ell P_6^{+} \right) \\ A_7 &= \frac{1}{4} \, \frac{\gamma_3^{+}}{\gamma_2^{+}} \, \left(\ell P_{11} - \theta \, \ell P_9 \right) + \frac{5}{64} \, \frac{\gamma_5^{+}}{\gamma_2^{+}} \, \left[\left(\eta^2 \, \ell P_{11} - \theta \, \ell P_9 \right) \, \ell P_7 \right. \\ &\quad + e^{"} \, \sin i^{"} \, \left(26 + 9 \, e^{"2} \right) \right] \, \ell P_4^{+} - \frac{15}{32} \, \frac{\gamma_3^{+}}{\gamma_2^{+}} \, e^{"} \, \theta^2 \, \sin i \, \ell P_7 \, \ell P_6 \\ A_8 &= - \, \frac{35}{1152} \, \frac{\gamma_5^{+}}{\gamma_2^{+}} \, \left[e^{"} \, \sin i^{"} \, \left(3 + 2 \, e^{"2} \right) - e^{"2} \, \theta \, \ell P_9 \right] \, \ell P_5^{+} + \theta \, \ell P_8 \\ A_9 &= - \, \frac{1}{8} \, \gamma_2^{+} \, e^{"2} \, \theta \, \left[11 + 80 \, \theta^2 \, \left(1 - 5 \, \theta^2 \right)^{-1} + 5 \, \ell P_6^{+} \right] + \frac{5}{12} \, \frac{\gamma_4^{+}}{\gamma_2^{+}} \, e^{"2} \, \theta \, \ell P_6 \\ A_{10} &= \ell P_9 \left[\frac{1}{4} \, \frac{\gamma_3^{+}}{\gamma_2^{+}} + \frac{5}{64} \, \frac{\gamma_5^{+}}{\gamma_2^{+}} \, \ell P_7 \, \ell P_4^{+} \right] \\ A_{11} &= \ell P_{10} + \ell P_8 \end{split}$$

V. Compute constants for short-period terms included:

Compute SP₁ - SP₆

$$SP_{1} = \frac{\eta^{2}}{2e^{"}}$$

$$SP_{3} = \frac{1}{2} \gamma_{2}^{'}$$

$$SP_{2} = \gamma_{2}^{'} (1 - \theta^{2})$$

$$SP_{4} = 2 (-1 + 3\theta^{2})$$

$$SP_5 = 6(-1 + 5\theta^2)$$
 $SP_6 = \theta SP_3(1 - \theta^2)^{1/2}$

VI. Call DRAG Subroutine to compute $\Delta 1_{drag}$ at Observation time t.

$$\Delta \ell_{drag} = \sum_{q=0}^{m} \sum_{P=2}^{3} N_{P,q} (t - t_q)^{P}$$

where

$$m = 0, 1, 2, ..., 19$$

VII. Compute Secular Terms:

1. $\ell'' = \underline{\text{mean}} \text{ mean anomaly};$

$$\ell_0 \, \mathrm{d} g L = (\ell_0 + \Delta \ell_{\mathrm{drag}})$$
 $\ell_0 \, \mathrm{d} g P t = \mathrm{mod} (\ell_0 \, \mathrm{d} \ell + \Delta \ell_{\mathrm{drag}}, 2\pi)$

$$\ell'' = \text{mod}(n_0't, 2\pi) + \text{mod}(\dot{\ell}t, 2\pi) + \text{mod}(\ell_0 d\ell + \Delta \ell_{drag}, 2\pi)$$

2. g" = mean argument of Perigee;

$$g'' = mod(\dot{g}t + g_0, 2\pi)$$

3. h" = mean longitude of Ascending node;

$$h'' = mod(\dot{h}t + h_0, 2\pi)$$

VIII. Test for Critical Inclination:

$$\Delta i = |i'' - i_c|$$

where

$$i_c = 63.43^{\circ}$$

if

$$\triangle i < 1.5$$

then

$$\delta_1 e = \delta_1 I = I' = g' = h'$$

IX. Compute Long-Period terms:

1. $\ell' = \text{mean anomaly};$

$$\hat{\ell}' = \ell'' + A_3 \sin 2g'' - A_4 \cos g'' + A_5 \cos 3g''$$
, mod $(\ell', 2\pi)$

$$\ell_1 = \ell' - \dot{\ell}_0 t + \ell_0 + \Delta \ell_{\text{drag}} \qquad , \mod (\ell_1, 2\pi)$$

2. g' = Argument of Perigee;

$$g' = g'' + A_6 \sin 2g'' + A_7 \cos g'' + A_8 \cos 3g''$$
, $mod(g', 2\pi)$

3. h' = longitude of Ascending node;

$$h' = h'' + A_0 \sin 2g'' + A_{10} \cos g'' - A_{11} \cos 3g''$$
, mod $(h', 2\pi)$

4. Call KEPLR1 Subroutine to determine E' and compute f' from

$$f' = tan^{-1} \left(\frac{\sqrt{1 - e''^2} \sin(E')}{\cos E' - e''} \right)$$

$$\frac{a_0''}{r'} = \frac{1}{1 - e'' \cos E'}$$

X. Compute Short-Period terms included:

Compute $B_1 - B_6$

$$B_1 = \gamma_2 \left[(-1 + 3\theta^2) \left(\frac{a^{"3}}{r^{"3}} - \eta^{-3} \right) + 3(1 - \theta^2) \frac{a^{"3}}{r^{"3}} \cos(2g' + 2f') \right]$$

$$B_2 = 3e'' \cos(2g' + f') + e'' \cos(2g' + 3f')$$

$$B_3 = \frac{a''^2}{r'^2} \eta^2 + \frac{a''}{r'}$$

$$B_4 \equiv SP_4(B_3 + 1) \sin f'$$

+ 3(1 -
$$\theta^2$$
) $\left[(-B_3 + 1) \sin(2g' + f') + \left(B_3 + \frac{1}{3} \right) \sin(2g' + 3f') \right]$

$$B_5 \equiv f' - l' + e'' \sin f'$$

$$B_6 = 3 \sin(2g' + 2f') + 3e'' \sin(2g' + 2f')$$

XI. Compute Osculating Elements:

1. Compute a (semi-major axis)

$$a = a'' (1 + B_1)$$

2. Compute e (eccentricity)

$$e = e'' + \delta_1 e + SP_1 (B_1 - \gamma_2 \eta^{-4} \cos(2g' + 2f') 3(1 - \theta^2) - SP_2B_2)$$

3. Compute i (inclination)

$$i = i'' + \delta_1 i + SP_6 [3 \cos(2g' + 2f') + B_2]$$
, mod(i, 2π)

4. Compute g (argument of Perigee)

$$g = g' + SP_1SP_3B_4 + \frac{SP_3}{2}[SP_5B_5 + (3 - 5\theta^2)B_6]$$
, $mod(g, 2\pi)$

5. Compute h (longitude of ascending node)

$$h = h' - \theta SP_3 (6B_5 - B_6)$$
, $mod (h, 2\pi)$

6. Compute 1 (mean anomaly)

$$\ell = \ell' - \eta SP_1SP_3B_4 , \mod (\ell, 2\pi)$$

- 7. Call KEPLR1, to compute E (eccentric anomaly)
- 8. Compute f (true anomaly)

$$f = \tan^{-1} \left(\frac{\sqrt{1 - e^2} \sin E}{\cos E - e} \right)$$

XII. Compute Position and Velocity Vectors:

Call the UVIJK Routine to perform the mapping, (osculating keplerian elements to rectangular cartesian)

a, e, i, g, h,
$$\ell \rightarrow x$$
, y, z, \dot{x} , \dot{y} , \dot{z}

CALLING SEQUENCE

CALL BRWORB (T0, T, DRG, NQ, F, EA, R, DR, RMAG, DRMAG, N, PD, PASS, K, SATID)

INPUT/OUTPUT

Arguments

I/O	Variable	Description	
I I I	T0 T DRG(60)	Epoch time and date Observation time DRG(1) $ \downarrow \qquad \qquad$	

Arguments (continued)

I/O	Variable	Description
		$ \begin{array}{c} DRG(41) \\ \downarrow \\ DRG(60) \end{array}\} N_{3,0}, N_{3,1}, \dots, N_{3,19} $
I	NQ	Number of drag inputs
0	\mathbf{F}	True Anomaly
0	EA	Eccentric Anomaly
0	R(3)	x, y, z Satellite Position Vector
0	DR (3)	x, y, z Satellite Velocity Vector
0	RMAG	r — magnitude of Position Vector
0	DRMAG	v — magnitude of Velocity Vector
0	N	Anomalistic mean motion
0	PD	Anomalistic Period
I	PASS	PASS = 1 Compute constants (at t_0) needed in computation of osculating elements
		PASS = 2 Update osculating elements to observation time t
I	$K = \sqrt{GM}$	Gravitational Constant (length) ^{3/2} /time
I	SATID(11)	, , , , , , , , , , , , , , , , , , ,
	`	SATID(2) = reference year
		SATID(11) = day count of reference date

Common

I/O	Block	Variable
I 0 0	BPOOL SECPRM DOTELE	TABLE(12) - TABLE(15) = J_2 , J_3 , J_4 , J_5 TABLE(16) = Deg./rad. TABLE(22) = r_e TABLE(31) = TOL TABLE(41) = μ TABLE(61) - TABLE(64) = K_2 , K_3 , K_4 , K_5 DPELE(6) = a", e", i", g", h", 1" LODOT = $\dot{\ell}_0$ LDOT = $\dot{\ell}_0$ GDOT = \dot{g} HDOT = \dot{h}

Common

I/O	Block	Variable
0 0 0 0 0 0	OSCELE ETAP THETA GMPR UVPQ DGPRM DAFPRM	DEL1E = $\delta_1 e$ DEL1I = $\delta_1 i$ L1 = ℓ_1 LP = ℓ' GP = g' HP = h' ORBPRM(6) = a, e, i, g, h, ℓ η^3 , η^6 , η^4 M1P3T2 = $3\theta^2$ - 1, THETA = θ = cos i γ_2 U, V, P, Q L0DGL = ℓ_0 + $\Delta \ell_{drag}$ LDAF(1) = A ₁ LDAF(2) = A ₂ LDAF(3) = $-\ell_{e}$ LDAF(4) = A ₃ LDAF(5) = $-A_4$ LDAF(6) = A ₅ LDAF(7) = A ₆ LDAF(8) = A ₇ LDAF(9) = A ₈ LDAF(10) = A ₉ LDAF(11) = A ₁₀ LDAF(12) = $-A_{11}$
_	DIND	$LDAF(13) = \ell P_{15}$ NPT
I	PIND	
O	PERTL	$L0DGPT = \ell_0 + \Delta \ell + \Delta \ell_{drag}$ E_0
0	DELKEP	$DKEP(6) = \Delta a, \Delta e, \Delta i, \Delta g, \Delta h, \Delta \ell$
0	PRTKEP	$PKEP(3) = g_0 + \Delta g, h_0 + \Delta h, \ell_0 + \Delta \ell$
0	NOD	$L0D = \ell_0 D$

CALLED BY CALL	\mathbf{S}
----------------	--------------

DAF	PQ
ELEMLD	PERTF0
PREDS	DRAG
SPACEL	KEPLR1
GTRACE	REDUCE
NODALX	UVIJK
NSPT	

BRWORB Flowchart

BRWORB Flowchart (continued)

BRWORB Flowchart (continued)

CHANPL

Change of Constants

PURPOSE

To change any constant that is in the BLOCK DATA or POOL Subroutine.

METHOD

Constants from the BLOCK DATA or POOL subroutine are changed according to the values on the change of constants cards. Each card permits change of one to three constants. The first forty constants, which are in the BLOCK DATA, can be changed by the first change of constants card(s). The remaining forty constants, which are defined in the POOL subroutine, can be changed by the second change of constants card(s). All eighty constants are stored in COMMON BPOOL.

CALLING SEQUENCE

CALL CHANPL

INPUT/OUTPUT

Common

I/O	Block	Variable	Description
I/O	BPOOL	TABLE(80)	Frequently used constants that are previously set in the program but may be changed by the change of constants cards.

CALLED BY

MAIN

CHANPL Flowchart

CKSUM

Check Sum

PURPOSE

To sum the digits of a line of data to modulo ten.

METHOD

A data line in SPACEL contains ten numbers which will be summed modulo ten in CKSUM.

CALLING SEQUENCE

CALL CKSUM (NCK, NX)

INPUT/OUTPUT

Arguments

I/O	Variable	Description	
I O	NCK(10) NX	Array of ten numbers from a line of data Sum of all digits from NCK modulo ten	

CALLED BY

SPACEL

CKSUM Flowchart

DAF

Data Acquisition Facility Parameters

PURPOSE

To compute Brouwer parameters to be used by each data acquisition facility to generate its topocentric predictions for satellite acquisition.

METHOD

The following quantities are computed by Brouwer Satellite Theory Orbit Generator (BRWORB). They are defined here using Brouwer's Terminology.

LDOT =
$$\left\{ 1 + \frac{3}{2} \gamma_2' \eta'(-1 + 3\theta^2) + \frac{3}{32} \gamma_2'^2 \eta \left[-15 + 16\eta + 25\eta^2 \right] \right.$$

+
$$(30 - 96\eta - 90\eta^2)\theta^2$$
 + $(105 + 144\eta + 25\eta^2)\theta^4$]

$$+\frac{15}{16} \gamma_{4}' \eta e''^{2} [3 - 30\theta^{2} + 35\theta^{4}]$$

GDOT =
$$\left\{ \frac{3}{2} \gamma_2' \left(-1 + 50\theta^2 \right) + \frac{3}{32} \gamma_2'^2 \left[-35 + 24\eta + 25\eta^2 \right] \right\}$$

+
$$(90 - 192\eta - 126\eta^2)\theta^2 + (385 + 360\eta + 45\eta^2)\theta^4$$

$$+\frac{5}{16} \gamma_{4}^{1} \left[21-9 \eta^{2}+\left(-270+126 \eta^{2}\right) \theta^{2}+\left(385-189 \eta^{2}\right) \theta^{4}\right]\right\}$$

HDOT =
$$\left\{ -3\gamma_{2}^{!}\theta + \frac{3}{8}\gamma_{2}^{!2} \left[(-5 + 12\eta + 9\eta^{2})\theta + (-35 - 36\eta - 5\eta^{2})\theta^{3} \right] + \frac{5}{4}\gamma_{4}^{!} (5 - 3\eta^{2})\theta (3 - 7\theta^{2}) \right\}$$

$$LDAF_{1} = \left\{ \frac{1}{8} \gamma_{2}^{!} e^{"} \eta^{2} \left[1 - 11\theta^{2} - 40\theta^{4} \left(1 - 5\theta^{2} \right)^{-1} \right] - \frac{5}{12} \frac{\gamma_{4}^{!}}{\gamma_{2}^{!}} e^{"} \eta^{2} \left[1 - 3\theta^{2} - 8\theta^{4} \left(1 - 5\theta^{2} \right)^{-1} \right] \right\}$$

$$LDAF_2 = \left\{ \frac{1}{4} \frac{\gamma_3'}{\gamma_2'} \eta^2 \sin I'' \right\}$$

$$+\frac{5}{64}\frac{\gamma_5'}{\gamma_2'\eta^2}\sin I''(4+3e''^2)\left[1-9\theta^2-24\theta^4(1-5\theta^2)^{-1}\right]$$

LDAF₃ =
$$-\frac{35}{384} \frac{\gamma_5'}{\gamma_2'} e^{-2} \eta^2 \sin I'' [1 - 5\theta^2 - 16\theta^4 (1 - 5\theta^2)^{-1}]$$

LDAF₄ =
$$\left\{ \frac{1}{8} \gamma_2^1 \eta^3 \left[1 - 11\theta^2 - 40\theta^4 \left(1 - 5\theta^2 \right)^{-1} \right] \right\}$$

$$-\frac{5}{12}\frac{\gamma_{4}^{'}}{\gamma_{2}^{'}}\eta^{3}\left[1-3\theta^{2}-8\theta^{4}\left(1-5\theta^{2}\right)^{-1}\right]\right\}$$

$$LDAF_{5} = \left\{ -\frac{1}{4} \frac{\gamma_{3}^{'}}{\gamma_{2}^{'}} \frac{\eta^{3}}{e^{"}} \sin I^{"} - \frac{5}{64} \frac{\gamma_{5}^{'}}{\gamma_{2}^{'}} \frac{\eta^{3}}{e^{"}} \sin I^{"} (4 + 9e^{"2}) \left[1 - 9\theta^{2} - 24\theta^{4} (1 - 5\theta^{2})^{-1} \right] \right\}$$

LDAF₆ =
$$\frac{35}{384} \frac{\gamma_5'}{\gamma_2'} \eta^3 e'' \sin I'' [1 - 5\theta^2 - 16\theta^4 (1 - 5\theta^2)^{-1}]$$

$$LDAF_{7} = \begin{cases} -\frac{1}{16} \gamma_{2}^{!} \left[+ (2 + e^{"2}) - 11 (2 + 3e^{"2}) \theta^{2} - 40 (2 + 5e^{"2}) \theta^{4} (1 - 5\theta^{2})^{-1} \right] \\ -400 e^{"2} \theta^{6} (1 - 5\theta^{2})^{-2} + \frac{5}{24} \frac{\gamma_{4}^{!}}{\gamma_{2}^{!}} \left[2 + e^{"2} - 3 (2 + 3e^{"2}) \theta^{2} \right] \end{cases}$$

$$-8(1+5e^{-2})\theta^{4}(1-5\theta^{2})^{-1}-80e^{-2}\theta^{6}(1-5\theta^{2})^{-2}]$$

$$LDAF_{8} = \left\{ \frac{1}{4} \frac{\gamma_{3}^{'}}{\gamma_{2}^{'}} \left(\frac{\sin I''}{e''} - \frac{e'' \theta^{2}}{\sin I''} \right) + \frac{5}{64} \frac{\gamma_{5}^{'}}{\gamma_{2}^{'}} \right\}$$

$$\times \left[\left(\frac{\eta^{2} \sin I''}{e''} - \frac{e'' \theta^{2}}{\sin I''} \right) (4 + 3e''^{2}) + e'' \sin I'' (26 + 9e''^{2}) \right] [1 - 9\theta^{2}]$$

 $-24\theta^4 (1-5\theta^2)^{-1}] - \frac{15}{32} \frac{\gamma_5}{\gamma_2'} e'' \theta^2 \sin I'' (4+3e''^2)$

$$[3 + 16\theta^{2} (1 - 5\theta^{2})^{-1} + 40\theta^{4} (1 - 5\theta^{2})^{-2}]$$

$$LDAF_{9} = \left\{ -\frac{35}{1152} \frac{\gamma_{5}^{'}}{\gamma_{2}^{'}} \left[e^{"} \sin I^{"} (3 + 2e^{"^{'}2}) - \frac{e^{"^{3}} \theta^{2}}{\sin I^{"}} \right] [1 - 5\theta^{2} - 16\theta^{4} (1 - 5\theta^{2})^{-1}] + \frac{35}{576} \frac{\gamma_{5}^{'}}{\gamma_{2}^{'}} e^{"^{3}} \theta^{2} \sin I^{"} [5 + 32\theta^{2} (1 - 5\theta^{2})^{-1} + 80\theta^{4} (1 - 5\theta^{2})^{-2}] \right\}$$

$$LDAF_{10} = \left\{ -\frac{1}{8} \gamma_2' e^{-2} \theta \left[11 + 80\theta^2 \left(1 - 5\theta^2 \right)^{-1} + 200\theta^4 \left(1 - 5\theta^2 \right)^{-2} \right] \right.$$

$$\left. + \frac{5}{12} \frac{\gamma_2'}{\gamma_2'} e^{-2} \theta \left[3 + 16\theta^2 \left(1 - 5\theta^2 \right)^{-1} + 40\theta^4 \left(1 - 5\theta^2 \right)^{-2} \right] \right\}$$

$$LDAF_{11} = + \left\{ \frac{1}{4} \frac{\gamma_3^i}{\gamma_2^i} \frac{e^{ii} \theta}{\sin I^{ii}} + \frac{5}{64} \frac{\gamma_5^i}{\gamma_2^i} \frac{e^{ii} \theta}{\sin I^{ii}} (4 + 3e^{ii2}) \left[1 - 9\theta^2 - 24\theta^4 (1 - 5\theta^2)^{-1} \right] + \frac{15}{32} \frac{\gamma_5^i}{\gamma_2^i} e^{ii} \theta \sin I^{ii} (4 + 3e^{ii2}) \right\}$$

$$[3 + 16\theta^{2} (1 - 5\theta^{2})^{-1} + 40\theta^{4} (1 - 5\theta^{2})^{-2}]$$

LDAF₁₂ =
$$\left\{-\frac{35}{1152} \frac{\gamma_5'}{\gamma_2'} \frac{e^{-3}\theta}{\sin \Gamma} \left[1 - 5\theta^2 - 16\theta^4 (1 - 5\theta^2)^{-1}\right]\right\}$$

$$-\frac{35}{576}\frac{\gamma_{5}^{'}}{\gamma_{2}^{'}}e^{-3\theta}\sin I^{-1}\left[5+32\theta^{2}(1-5\theta^{2})^{-1}+80\theta^{4}(1-5\theta^{2})^{-2}\right]$$

$$LDAF_{13} = \frac{e''}{\eta^2 \tan I''}$$

where

e" = eccentricity

I" = inclination

 $\theta = \cos i_0$

 i_0 = inclination at epoch

$$\eta = \sqrt{1 - e^{"2}}$$

$$\gamma_n^1 = \gamma_n / \eta^{2n}$$

$$\gamma_n = K_n/a^n$$

a = semimajor axis

K_n = Brouwer's representation of the harmonics of the earth's potential

CALLING SEQUENCE

CALL DAF (TO, DRG, JDTO, ETIME, SATID, ELEMO, NQ)

INPUT/OUTPUT

Arguments

I/O	Variable	Description
I	то	Epoch date and time in CUT
I	DRG(60)	DRG(1)
		$ \begin{array}{c} \downarrow \\ DRG(20) \end{array} \right\} t_0, t_1, \ldots, t_{19} $
		DRG(21)
		$ \begin{array}{c} DRG(21) \\ \downarrow \\ DRG(40) \end{array} $ $N_{2,0}, N_{2,1}, \ldots, N_{2,19}$
		D1(a(10))
		DRG(41))
		$ \begin{array}{c} \downarrow \\ DRG(60) \end{array} \} N_{3,0}, N_{3,1}, \ldots, N_{3,19} $
I	JDT0	No. of days from reference to epoch
I	ETIME	Epoch hours, minutes, and seconds converted to seconds
I	SATID(11)	SATID(1) = satellite identification number
	}	SATID(2) = reference year
		SATID(11) = day count of reference date
I	ELEM0(6)	Orbital elements (a, e, i, ω , Ω , M)
I	NQ	Number of drag inputs

Common

I/O	Block	Variable
I	BPOOL	TABLE(2) = KMCUL
		TABLE(24) = BK
		TABLE(35) = MINDAY
İ		TABLE(41) = MU
		$TABLE(49) = \omega_{e}$
		TABLE(59) = MINCUT
Ì		TABLE(61) = K2
I	DAFPRM	LDAF(13)
I	DOTELE	LDOT
		GDOT
		HDOT
I	THETAP	THETA
I	RADIAN	AMBDA .

TAPE OUTPUT

The output from the Brouwer DAF parameters function is written on tape. Two lines of identifying information precede the six lines of output parameters.

Line 1 — Title

Col. 1	Blank
Col. 2-24	'Brouwer DAF Parameters'
Col. 25-80	Blank

Line 2 — DAF Parameters Request Card Printout

•
ons begin
ions begin
,

If the satellite number of the Brouwer DAF request card agrees with the input satellite number then Col. 24-80 are blank. If not — Col. 30-52 of line 2 contain **ERROR IN DAF SAT ID**.

Lines 3-8 contain the requested output parameters in the following floating point decimal form:

Col. No.	Format
1-15	SXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
16	Blank
17-31	SXXXXXXXXXXDSXX
32	Blank
33-47	SXXXXXXXXXXDSXX
48	Blank

The order of the parameters is as follows:

Line 3 — LDAF
$$_4/2 \pi$$
LDAF $_5/2 \pi$
LDAF $_6/2 \pi$
LDAF $_7$
LDAF $_8$
LDAF $_9$
LDAF $_{10}$

Line 4 — LDAF $_{11}$
LDAF $_1$
LDAF $_2$
LDAF $_3$
cos I"
e"

Line 5 — GDOT/13.4472
HDOT/13.4472
 \bar{g}_0 "
 \bar{h}_0 "
 \bar{l}_0 "/2 π
I"/2 π

 $\lambda_{\rm g} (t_{\rm p\,i})/2\pi$

Line 6 —
$$-\text{LDAF}_{13}/2\pi$$
 d
h
m
a
 $N_2/2\pi (13.4472)^2$
 $n_0 + S_1/2\pi (13.4472)$
Line 7 — K_2
 K_3
 $-K_8$
 $1/4 \gamma_2'$
 $K_9/2\pi$
 K_1
 K_4
Line 8 — $-K_5$
 $-K_6$
 $\eta/4 \, \text{e}'' \, \gamma_2'$
 $t_{\text{pi}} - t_0$

CALLED BY

MAIN

CALLS

DREFOD JDSCUT BRWORB REDUCE DAYCT

DAF Flowchart (continued)

DATANO

Double Precision Arctangent (Y/X)

PURPOSE

To compute a value for the arctangent between 0 and 2PI where the tangent is defined by the two input arguments as ARG1/ARG2.

CALLING SEQUENCE

DATANO (ARG1, ARG2)

Note that DATANO is a function.

CALLED BY

PRINT

DATANO Flowchart

DATE

Calendar Date

PURPOSE

To convert year and day count (number of days from January 0 of given year to a given date) to year, month and day.

CALLING SEQUENCE

CALL DATE (IYR, IDY, IY, IM, ID)

INPUT/OUTPUT

Arguments

Variable	Description	
IYR	Year Number of days from January 0 of year IVR	
1		
i =-		
ID	Day	,
	IYR IDY IY IM	Variable Description IYR Year IDY Number of days from January 0 of year IYR IY Year IM Month

CALLED BY

MAIN

SATOR

TIMETB

DATE Flowchart

DATE Flowchart (continued)

DAYCT

Day Count

PURPOSE

To convert year, month and day to the number of days from January 0 of a given year to the given date.

CALLING SEQUENCE

CALL DAYCT (IY, IM, ID, IDAYS)

INPUT/OUTPUT

Arguments

I/O	Variab <u>l</u> e	Description
I I O	IY IM ID IDAYS	Year Month Day Number of days from January 0 of given year to given date

CALLED BY

MAIN

DAF

DREFOD

DAYCT Flowchart

DMSTOR

Degrees, Minutes, Seconds to Radians

PURPOSE

To convert degrees, minutes and seconds to radians.

METHOD

Radians = $((\sec/60 + \min tes)/60 + \deg)/\deg tes$ per rad.

CALLING SEQUENCE

CALL DMSTOR (DEG, FM, SS, RAD)

INPUT/OUTPUT

Arguments

I/O	Variable	Description
I	DEG	Degrees
I	FM	Minutes
I	SS	Seconds
0	RAD	Radians

Common

I/O	Block	Variable
I	BPOOL	TABLE(16) = DEGRAD (deg/rad)

CALLED BY

MAIN

POOL

DRAG

Compute Drag

PURPOSE

To compute $\Delta \ell_{\tt drag}$ which provide corrections for the Brouwer Orbit Generator.

METHOD

$$\Delta \ell_{drag} = \sum_{q=0}^{m} \sum_{p=2}^{3} N_{p,q} (t - t_q)^{p}$$

where

 $m = 0, 1, 2, 3, \ldots, 19$

t = observation time

t_q = drag time

 $N_{P,q} = drag parameters$

CALLING SEQUENCE

CALL DRAG (DRG, PI2, DRAGL, T0, T, KMULT, N0)

INPUT/OUTPUT

Arguments

I/O	Variable	Description
I	DRG(60)	$ \left(\begin{array}{c} DRG(1) \\ \downarrow \\ DRG(20) \end{array}\right) t_0, t_1, \dots, t_{19} $

Arguments (continued)

I/O	Variable	Description
I	DRG(60)	$ \begin{array}{c} DRG(21) \\ \downarrow \\ DRG(40) \end{array} \begin{array}{c} N_{2,0}, N_{2,1}, \dots, N_{2,19} \\ DRG(41) \\ \downarrow \\ DRG(60) \end{array} \begin{array}{c} N_{3,0}, N_{3,1}, \dots, N_{3,19} \end{array} $
I	PI2	2π radians
0	DRAGL	$\Delta {f L}$
I	Т0	Epoch time
I	Т	Observation time - T0
I	KMULT	K multiplier
I	NQ	Number of drag inputs

CALLED BY

BRWORB

CALLS

REDUCE

DRAG Flowchart

DRAGLD

Drag Load

PURPOSE

To load $N_{(P,\,q)}^{}$ data for the computation of $\,\triangle L$ drag.

CALLING SEQUENCE

CALL DRAGLD (SATID, DRAGDT, DRG, NQ, NERROR)

INPUT/OUTPUT

Arguments

I/O	Variable	Description
I	SATID(11)	SATID(1) = reference satellite ID number
0	DRAGDT(40)	SATID(2) = reference year SATID(11) = day count of reference date DRAGDT(1) DRAGDT(3) packed drag date
0	DRG(60)	$\begin{array}{c} \text{DRAGDT(30)} \\ \text{DRAGDT(2)} \\ \text{DRAGDT(4)} \\ \\ \text{DRAGDT(40)} \\ \\ \text{DRG(1)} \\ \\ \text{DRG(20)} \\ \\ \text{DRG(21)} \\ \\ \text{DRG(40)} \\ \\ \\ \text{DRG(41)} \\ \\ \\ \text{DRG(41)} \\ \\ \\ \text{DRG(42)} \\ \\ \end{array} \right\} \begin{array}{c} \text{packed drag time} \\ \\ \text{t}_0, t_1, \dots, t_{19} \\ \\ \text{t}_0, t_1, \dots, t_{19} \\ \\ \\ \text{N}_{2,0}, N_{2,1}, \dots, N_{2,19} \\ \\ \\ \text{DRG(41)} \\ \\ \\ \\ \end{array}$
О	NQ	DRG(60) Number of drag inputs

Arguments (continued)

I/O	Variable	Description
0	NERROR	Error indicator = 0 no error = -1 wrong Sat. ID number on drag card

CALLED BY

MAIN

CALLS

DRE FOD JDSCUT

DRAGLD Flowchart

DREFOD

Day Count from Reference Date to Observation

PURPOSE

To compute the number of days from the reference date to the observation date.

CALLING SEQUENCE

CALL DREFOD (IYREF, IDC, IOY, IOM, IOD, IDAYS)

INPUT/OUTPUT

Arguments

I/O	Variable	Description
· I	IYREF	Year of reference date
I	IDC	Number of days from January 0 of the year to the day of reference
I	IOY	Year of observation date
I	IOM	Month of observation date
I	IOD	Day of observation date
0	IDAYS	Number of days from the reference date to the observation date

CALLED BY

MAIN

DAF

DRAGLD

ELEMLD

PERTFO

PRINT

TIMETB

WMAPLD

CALLS

DAYCT

DREFOD Flowchart

ELCON0

Elements Conversion

PURPOSE

- To convert position and velocity vectors to Keplerian elements.
- To convert Keplerian elements to position and velocity vectors.

METHOD

ELOSC - Convert position and velocity vectors to osculating elements.

Let r be the magnitude of the position vector $\underline{r} = (x, y, z)$ and v be the magnitude of the velocity vector $\dot{\underline{r}} = (\dot{x}, \dot{y}, \dot{z})$.

Compute

$$\underline{h} = (h_x, h_y, h_z) = \underline{r} \times \underline{r}.$$

Compute the semi-major axis of the orbit:

$$a = \frac{\mu r}{2\mu - r v^2}.$$

Compute the inclination angle:

$$i = tan^{-1} \left[\frac{(h_x^2 + h_y^2)^{\frac{1}{4}}}{h_z} \right],$$

where

$$0 \leq i \leq \pi$$
.

Compute the eccentricity:

$$e = \left[\frac{\mu a - h^2}{\mu a}\right]^{\frac{1}{2}},$$

where

$$h^2 = h_x^2 + h_y^2 + h_z^2$$
.

Compute longitude of ascending node:

$$\Omega = \tan^{-1} \left[\frac{h_x}{-h_y} \right] \text{ for } i \neq 0.$$

where

$$0 < \Omega < 2\pi$$

and

$$\Omega = 0$$
 for $i = 0$.

Compute argument of perigee:

$$\omega = u - \nu$$
, for $e \neq 0$,

where:

$$\nu = \tan^{-1} \left[\frac{h(\underline{r} \cdot \underline{\dot{r}})}{h^2 - \mu r} \right],$$

$$u = tan^{-1} \left[\frac{z}{\sin i (x \cos \Omega + y \sin \Omega)} \right] \text{ for } i \neq 0,$$

$$u = tan^{-1} \left[\frac{y}{x} \right]$$
 for $i = 0$,

and

$$0 \le \omega < 2\pi$$
. $\omega = 0$, for $e = 0$.

Compute mean anomaly:

$$M = E - e \sin E$$
, for $e \neq 0$,

where

$$E = 2 \tan^{-1} \left[\left(\frac{1-e}{1+e} \right)^{\frac{\nu}{2}} \frac{\sin \nu}{(1+\cos \nu)} \right].$$

and

$$0 \le M < 2\pi$$
.
 $M = u$, for $e = 0$.

ELIRV - Convert osculating elements to position and velocity vectors.

Call subroutine KEPLR1 to compute the eccentric anomaly, E, given the mean anomaly, M, and the eccentricity, e.

Compute the true anomaly, ν :

$$\nu = 2 \tan^{-1} \left[\left(\frac{1+e}{1-e} \right)^{\frac{1}{2}} \frac{\sin E}{(1+\cos E)} \right].$$

Compute the position magnitude, r:

$$r = a(1 - e \cos E)$$
.

Compute the radial and horizontal components of $\dot{\underline{r}}$, V_r and V_p , respectively:

$$V_r = \frac{\sqrt{\mu a}}{r} (e \sin E)$$

$$V_{p} = \frac{\sqrt{\mu a}}{r} \cdot \sqrt{1 - e^2}$$

Compute the position and velocity vectors, $\underline{\mathbf{r}} = (\mathbf{x}, \mathbf{y}, \mathbf{z})$ and $\underline{\dot{\mathbf{r}}} = (\dot{\mathbf{x}}, \dot{\mathbf{y}}, \dot{\mathbf{z}})$, respectively:

$$\mathbf{x} = \mathbf{r} \left[\cos \Omega \cos (\omega + \nu) - \sin \Omega \cos \mathbf{i} \sin (\omega + \nu) \right]$$

$$\mathbf{y} = \mathbf{r} \left[\sin \Omega \cos (\omega + \nu) + \cos \Omega \cos \mathbf{i} \sin (\omega + \nu) \right]$$

$$\mathbf{z} = \mathbf{r} \sin \mathbf{i} \sin (\omega + \nu)$$

$$\dot{\mathbf{x}} = \frac{\mathbf{V_r}}{\mathbf{r}} \cdot \mathbf{x} - \mathbf{V_p} \left[\cos \Omega \sin (\omega + \nu) + \sin \Omega \cos \mathbf{i} \cos (\omega + \nu) \right]$$

$$\dot{\mathbf{y}} = \frac{\mathbf{V_r}}{\mathbf{r}} \cdot \mathbf{y} + \mathbf{V_p} \left[-\sin \Omega \sin (\omega + \nu) + \cos \Omega \cos \mathbf{i} \cos (\omega + \nu) \right]$$

$$\dot{\mathbf{z}} = \frac{\mathbf{V_r}}{\mathbf{r}} \cdot \mathbf{z} + \mathbf{V_p} \sin \mathbf{i} \cos (\omega + \nu).$$

CALLING SEQUENCE

Subroutine ELCONO is accessed through one of its entry points, ELOSC or ELIRV.

CALL ELOSC (INPUT, OUTPUT); convert position and velocity vectors $(x, y, z, \dot{x}, \dot{y}, \dot{z})$ to osculating elements $(a, e, i, \omega, \Omega, M)$.

CALL ELIRV (INPUT, OUTPUT, IERR); convert osculating elements (a, e, i, ω , Ω , M) to position and velocity vectors (x, y, z, \dot{x} , \dot{y} , \dot{z}).

INPUT/OUTPUT

Arguments

I/O	Variable	Description
From	entry point EI	LOSC
I O	INPUT(6) OUTPUT(6)	Position and velocity vectors $(x, y, z, \dot{x}, \dot{y}, \dot{z})$ Osculating elements $(a, e, i, \omega, \Omega, M)$
From	entry point EI	LIRV
I	INPUT(6)	Osculating elements
0	OUTPUT(6)	Position and velocity vectors
0	IERR	Error return from KEPLR1
		= 0, convergence of eccentric anomaly
		> 0, no convergence

Common

I/O	Block	Variable
I	BPOOL	TABLE(34) = PI TABLE(4) = MU

CALLED BY

ELEMLD

CALLS

VECTOR

VMAG

VCROSS

VDOT

KEPLR1

ELOSC Flowchart

ELOSC Flowchart (continued)

ELOSC Flowchart (continued)

ELEMLD

Elements Load

PURPOSE

To load the epoch and element data.

CALLING SEQUENCE

CALL ELEMLD (SATID, EPOCH, T0, ETIME, JDT0, ELEM0, JDT0, ELEM0, OSC0, PV, OUTPUT, NERROR, XINPUT, IFLAG, DRG, NQ)

INPUT/OUTPUT

Arguments

I/O	Variable	Description
I	SATID(11)	SATID(1) = reference satellite identification number
		SATID(2) = reference year
		SATID(11) = day count of reference date
Ο	EPOCH(10)	EPOCH(1) = epoch satellite identification number
•		EPOCH(2) = year of epoch
		EPOCH(3) = month of epoch
		EPOCH(4) = day of epoch
		EPOCH(5) = hours of epoch
		EPOCH(6) = minutes of epoch
1		EPOCH(7) = seconds of epoch
		EPOCH(8) = type of input epoch elements code
		= 1, position and velocity vectors
		= 2, osculating elements
		EPOCH(9) = pass number
i		EPOCH(10) = perturbation indicator
		= 0, no perturbation
		= 1, use perturbation tape
0	TO	Epoch date and time in Canonical Unit of Time
o	ETIME	Epoch time (hr, min, sec) in seconds

Arguments (continued)

I/O	Variable	Description
0	JDT0	Number of days from the date of reference to the date of epoch
0	ELEM0(6)	Epoch elements in CUL
0	XINPUT(6)	Epoch elements in KM
	- 1	(ELEM0(6) and XINPUT(6) may be Keplerian
		elements — a, e, i, ω , Ω , M, or position and
		velocity vectors, x, y, z, x, y, z, according to the
		elements input type)
0	OSC0(6)	Brouwer osculating elements at epoch
0	PV(6)	Position and velocity vectors at epoch
0	OUTPUT(6)	Converted ELEMØ elements
0	NERROR	Error indicator
		= 0 no error
		> 0 elements sat. ID does not agree with reference sat. ID
0	IFLAG	Elements unit indicator
		= 0 input elements in CUL
		= 1 input elements in Km
I	DRG(60)	Drag parameters table
I	NQ	Number of drag inputs

Common

I/O	Block	Variable
O I I	SECPRM OSCELE BPOOL	DPELE(6) = Brouwer input mean elements ORBPRM(6) = Brouwer osculating elements TABLE(24) = BK TABLE(34) = PI TABLE(41) = MU EA0 = eccentric anomaly at epoch
o	PIND	NPT = pertape logical number

CALLED BY

MAIN

CALLS

DREFOD JDSCUT ELCON0 ELIRV ELOSC BRWORB

ELEMLD Flowchart

ELEMLD Flowchart (continued)

GTRACE

PURPOSE

Routine to generate a one orbit ephemeris by advancing the satellite with equal intervals in geodetic latitude.

METHOD

Given a value for the geodetic latitude we wish to determine the corresponding time. A two body analysis leads to the following computational scheme.

Given: ϕ_s (geodetic latitude)

Compute geocentric latitude from

$$\phi_{S}' = \tan^{-1} [(1 - f)^2 \tan \phi_{S}]$$

$$r_c = a_e \left[\frac{1 - (2f - f^2)}{1 - (2f - f^2) \cos^2 \phi_s'} \right]$$

Compute the height above the reference ellipsoid,

$$H_{S} = [r^{2} - r^{2} \sin^{2}(\phi_{S} - \phi_{S}')]^{\frac{1}{2}} - r_{c} \cos(\phi_{S} - \phi_{S}')$$

$$\Delta \phi_{S}^{\prime} = \sin^{-1} \left[\frac{H_{S}}{r} \sin (\phi_{S} - \phi_{S}^{\prime}) \right], -\frac{\pi}{2} \leq \Delta \phi_{S}^{\prime} \leq \frac{\pi}{2}$$

with the declination given by,

$$d = \phi_{S}' + \Delta \phi_{S}'$$

and from spherical trigonometry we have for the argument of latitude

$$u = \sin^{-1}\left(\frac{\sin d}{\sin i}\right),$$

thus we have for the true anomaly

$$\nu = u - g$$

where the time of the geodetic latitude is determined from Brouwer (1959) p. 395. With the time we update the g and the process is continued until;

$$/g_{i+1} - g_i / \leq \epsilon$$

where ϵ is some preassigned, small positive number.

CALLING SEQUENCE

CALL GTRACE (TA0, T0, REV, GDL, DLONG, HT, TGDL, DGDL, KGDL, ADGDL, NSGDL, DRG, NQ, SATID, STAR, TAR)

INPUT/OUTPUT

Arguments

I/O	Variable	Description	
I	TA0	T _O - start time of reference ellipsoid	
I	Т0	t _o – epoch time	
I	REV	Number of orbital revolutions	
0	GDL(360)	Geodetic latitudes (ϕ)	
0	DLONG(360)	Longitude of geodetic meridian east of ascending nodal meridian (λ_{α})	
0	HT(360)	Height above meridian of satellites geodetic meridian ($\operatorname{Ht}_{\alpha}$)	
0	TGDL(360)	Time of geodetic latitude (t_{ϕ})	
I	DGDL	Increment in geodetic latitude by degrees $(\Delta \phi)$	
0	KGDL	Number of GDL's in the interval ascending node to	
0	ADGDL(6)	north point ADGDL(1-3) $-t_{\mathcal{U}}$, $\lambda_{\mathcal{U}}$, ht _{\mathcal{U}} , ADGDL(4-6) $-t$, λ , ht	

Arguments (continued)

I/O	Variable	Description
0	NSGDL(6)	NSGDL(1-3) $-t_N$, λ_N , ht _N , NSGDL(4-6) $-t_S$, λ_S , ht _S
I	DRG(1) DRG(20) DRG(21) DRG(40) DRG(41) DRG(60)	
I	NQ	Number of drag inputs
I	SATID(11)	SATID(1) = satellite identification number SATID(2) = reference year SATID(11) = day count of reference date
О	STAR(300)	'*' indicates satellites in sunlight, ' ' not in sunlight
0	TAR(6)	TAR = BLANK, or TAR = *, indicates if ascending, descending nodal crossings, or north and south points are in or out of shadow

Data Statements

Variable	Definition
IT TG ASTRX BLANK	IT /10/ max. no. of iterations tg /0.0/ Greenwich epoch time /'*'/ /' '/

Common

I/O	Block	Variable
I	POOL	TABLE(9) = 1/f, TABLE(24) = 2, TABLE(31) = t_0 l TABLE(69) = ω_e , TABLE(59) = min/cut
I	OSCELE	ORB(6) = a, e, i, g, h, 1
I	SECPRM	DPELE(6) = a'', e'', i'', g'', h'', 1''
I	PERTL	$LDGPT = ldgPt, E_0, t_0$
I	NSMAP	T_{minN} , λ_{N} , λ_{EN} , ϕ_{N} , Ht_{N} , t_{minS} , λ_{S} , λ_{ES} , ϕ_{S} , Ht_{S}
I	DHMNS	min _N , min _S , hr _N , hr _S , Dy _N , Dy _S
· I	DOTELE	l _o dot
I	NOD	$LOD = l_0D$
I	NODMAP	$\mathbf{t_{min\Omega}}$, λ_{Ω} , $\lambda_{\mathbf{E}\Omega}$, $\mathbf{h}\mathbf{t}_{\Omega}$, $\mathbf{t_{minU}}$, λ_{U} , $\lambda_{\mathbf{E}U}$, $\mathbf{h}\mathbf{t}_{U}$, \mathbf{E}_{U}
I	DHMNOD	\min_{Ω} , $\min_{\mathcal{O}}$, \ker_{Ω} , $\ker_{\mathcal{O}}$, $\det_{\mathcal{O}}$, $\det_{\mathcal{O}}$

CALLED BY

MAIN

CALLS

CALL BRWORB CALL SSPTHT CALL SDFWOE

HMSTOR

Hours, Minutes, Seconds to Radians

PURPOSE

To convert hours, minutes and seconds to radians.

METHOD

Rad = $(\sec/60 + \text{minutes})/60 + \text{hours}$ * radians per hour

CALLING SEQUENCE

CALL HMSTOR (HH, FM, SS, RAD)

INPUT/OUTPUT

Arguments

I/O	Variable	Description
I I O	HH FM SS RAD	Hours Minutes Seconds Radians

Common

I/O	Block	Variable
I	BPOOL	TABLE(65) = RADPHR (rad/hr)

CALLED BY

MAIN

INTPL0

Backward Difference Interpolation

PURPOSE

To interpolate for the elements a_p , e_p , i_p , l_p , g_p , h_p when given an observation time between two times on the perturbation tape.

METHOD

Backward Difference Interpolation

 $\left.\begin{array}{c} t_6 \\ t_5 \\ t_4 \\ t_3 \\ t_2 \\ t_1 \end{array}\right\} \ \ times \ from \ the \ perturbation \ tape$

 $\begin{cases}
f(t_6) \\
f(t_5)
\end{cases}$ elements from the perturbation tape at time t_i , i.e., if we are interpolating for a pert then $f(t_6) = a_6$, $f(t_5) = a_5$, $f(t_4) = a_4$,

t = observation or request time

 Δt = time increment from perturbation tape

 $\Delta^{K} f(t_{i})$ = the K^{th} difference of the elements

$$\triangle^{K-1} f(t_{i+1}) - \triangle^{K-1} f(t_i)$$

where

$$\triangle^0 f(t_i) \equiv f(t_i)$$

Difference Table

$$\begin{split} (\text{elements})_{\phi} &= f(t_6) + \Delta f(t_5) \, (\text{tt0}) + \Delta^2 \, f(t_4) \, \bigg[\frac{(\text{tt0}) \, (\text{tt1})}{2} \bigg] \\ &+ \Delta^3 \, f(t_3) \, \bigg[\frac{(\text{tt0}) \, (\text{tt1}) \, (\text{tt2})}{6} \bigg] + \Delta^4 \, f(t_2) \, \bigg[\frac{(\text{tt0}) \, (\text{tt1}) \, (\text{tt2}) \, (\text{tt3})}{24} \bigg] \\ &+ \Delta^5 \, f(t_1) \, \bigg[\frac{(\text{tt0}) \, (\text{tt1}) \, (\text{tt2}) \, (\text{tt3}) \, (\text{tt4})}{120} \bigg] \end{split}$$

where

$$tt0 = t - t_6$$

$$tt1 = \Delta t + tt0$$

$$tt2 = \Delta t + tt1$$

$$tt3 = \Delta t + tt2$$

$$tt4 = \Delta t + tt3$$

CALLING SEQUENCE

CALL INTPLO (TIME, A, B, TSUBO, DELTA)

INPUT/OUTPUT

Arguments

I/O	Variable	Description
I	TIME	Observation time
I	A(6,7)	Array of observation times and elements from the perturbation tape
0	B(6)	Interpolated elements from perturbation tape for observation time $-a_p$, e_p , i_p , l_p , g_p , h_p
I	TSUB0	Sixth time in the time element array A
I	DELTA	Time increment between 5 times on the perturbation tape

Definition of Array A (I, J)

JI	1	2	3	4	5	6
1	t 1	t 2	t ₃	t 4	t 5	t ₆
2	$\mathbf{a_1}$	$\mathbf{a_2}$	a_3	a_4	a_5	a_{6}
3	e ₁	$\mathbf{e_2}$	e ₃	$\mathbf{e_4}$	$\mathbf{e_{5}}$	e_{6}
4	i 1	i ₂	i ₃	i 4	i ₅	i 6
5	1,	1 2	1 3	1 4	15	1 6
6	g_1	$\mathbf{g_2}$	g_3	$\mathbf{g_4}$	g_5	g_6
7	h 1	h_2	h ₃	h_4	h_5	h_6

CALLED BY

PERTF0

INTPLO Flowchart

JDSCUT

Julian Day - Seconds to Canonical Unit of Time

PURPOSE

To convert Julian days (number of days from date of reference to date of observation) and seconds to canonical units of time.

METHOD

CUT = DAYJ * SECDAY/SECCUT + SS/SECCUT

CALLING SEQUENCE

CALL JDSCUT (DAYJ, SS, CUT)

INPUT/OUTPUT

Argument

I/O	Variable	Description	
I	DAYJ	Julian days	
I	SS	Seconds	
0	CUT	Julian days and seconds in canonical units of time	

Common

I/O	Block	Variable
I	BPOOL	TABLE(5) = SECCUT TABLE(30) = SECDAY

CALLED BY

DRAGLD TIMETB

JULHMS

Julian Days — Seconds to Julian Hours, Minutes and Seconds

PURPOSE

To convert Julian days (number of days from date of reference to date of observation) and seconds to Julian days, hours, minutes and seconds.

CALLING SEQUENCE

CALL JULHMS (DAYS, SEC, RF, DAY, HH, FM, SS)

INPUT/OUTPUT

Arguments

I/O	Variable	Description
I	DAYJ	Julian days
I	SEC	Seconds
I	RF	Rounding factor (added to SEC)
0	DAY	Julian days
0	НН	Hours
0	FM	Minutes
0	SS	Seconds

CALLED BY

SATOR TIMETB

KEPLRI

Solution of Kepler's Equation for Eccentric Anomaly

PURPOSE

To solve Kepler's equation for eccentric anomaly given mean anomaly and eccentricity by the Miles Standish algorithm.

METHOD

Kepler's equation for eccentric anomaly $M = E + e \sin E$ is solved using the Miles Standish algorithm. It is an iterative process dependent upon a tolerance value and a maximum number of iterations. Given the mean anomaly, M, and the eccentricity, e, the algorithm for computing the eccentric anomaly, E, will be:

- Set error code = 0
 Set limit of number of iterations, MAX = 10
- 2. Set E = 0 If M = 0, go to Step 13 If M \neq 0, go to Step 3
- 3. $E_0 = M + e \sin M$ Set number of iterations = 1
- 4. $F = E_0 (e \sin E_0) M$
- 5. $D = 1.0 [e cos (E_0 0.5F)]$
 - 6. $E = E_0 F/D$
 - 7. If $|E_0 E| TOL \le 0$, go to Step 13; otherwise continue to Step 8
 - 8. Add 1 to number of iterations
 - 9. If (number of iterations MAX) < 0, continue; otherwise go to Step 12
- 10. $E_0 = E$

- 11. Return to Step 4
- 12. Set error code = 4
- 13. Modulo E by 2π
- 14. Return to calling program

The limit of iterations through Steps 4 to 11 is 10. Thus MAX = 10. If this number is exceeded, the error code is set to 4.

TOL is the tolerance at which the last significant digit of the difference between the previous calculated eccentric anomaly and the present calculated anomaly is allowed. TOL allows an error of $\pm .05 \times 10^{-10}$.

CALLING SEQUENCE

CALL KEPLRI (MA, ECC, ERRC, E2)

INPUT/OUTPUT

Arguments

I/O	Variable	Description
I I O	MA ECC ERRC	Mean anomaly Eccentricity Error code = 0, convergence \neq 0, no convergence
О	E2	Eccentric anomaly

CALLED BY

BRWORB

ELCON0

KEPLR1 Flowchart

LAGRN0

Lagrange's 3-Point Interpolation

PURPOSE

To interpolate using Lagrange's three-point interpolation.

METHOD

Term 1 =
$$Y0 * (X - X1) * (X - X2) / (X0 - X1) * (X0 - X2)$$

Term
$$2 = Y1 * (X - X0) * (X - X2) / (X1 - X0) * (X1 - X2)$$

Term
$$3 = Y2 * (X - X0) * (X - X1) / (X2 - X0) * (X2 - X1)$$

Y = Term 1 + Term 2 + Term 3

CALLING SEQUENCE

CALL LAGRNO (X, Y, X0, Y0, X1, Y1, X2, Y2)

INPUT/OUTPUT

Arguments

I/O	Variable	Description
I	X	Input request variable
О	Y	Computed F(X) for output
I	X0	First input variable
I	Y0	F (X0)
I	X1	Second input variable
I	Y1	F (X1)
I	X2	Third input variable
I	Y2	F (X2)

CALLED BY

SATOR

LAGRN0 Flowchart

NODALX

PURPOSE

To determine nodal crossing times of an earth satellite.

METHOD

A two body solution is determined for the nodal crossing, the Brouwer theory is then used to update the now perturbed two-body elements in order to obtain the osculating elements corresponding to the two-body solution.

FORMULATION

The argument of perigee (g) is the angle between the direction of perigee and the ascending node.

The true anomaly F, is the angle between the direction of perigee and the radius vector of the body.

From these definitions it follows that:

$$f_{i} = \begin{cases} 2\pi - g_{i} & \text{at the ascending node} \\ \pi - g_{i} & \text{at the descending node} \end{cases}$$
 (1)

and the eccentric anomaly (E) can be obtained from the relations:

$$\cos E_i = \frac{\cos \nu + e}{1 + e \cos f_i}, \quad \sin E_i = \frac{\sqrt{1 - e^2} \sin f_i}{1 + e \cos f_i}$$
 (2)

where the time of the event is determined from Brouwer [2] p. 395. with this time we update the g in Equation (1) and the process is continued until:

$$|g_{i+1} - g_i| \leq \epsilon \tag{3}$$

where ϵ is some preassigned, small positive number.

CALLING SEQUENCE

CALL NODALX (REV, DRG, NQ, TACUT, SATID, T0, IDAD)

INPUT/OUTPUT

Arguments

I/O	Variable	Description
I	REV	Number of orbital revolutions from epoch
I	DRG(1) DRG(20) DRG(21) DRG(40) DRG(41)	$ \begin{cases} & t_0, t_1, \dots, t_{19} \\ & N_{2,0}, N_{2,1}, \dots, N_{2,19} \\ & N_{3,0}, N_{3,1}, \dots, N_{3,19} \end{cases} $
ļ	DRĞ(60)	3,0,-3,1,000,3,19
I	NQ	Number of drag inputs
0	TACUT	Time of ascending nodal crossing from epoch
I	SATID(11)	SATID(1) = Satellite identification number SATID(2) = reference year SATID(11) = day count of reference date
I	Т0	Epoch time
I	IDAD	 = 0, time of ascending and descending nodal crossing determined = 1, time of ascending node determined
		= 2, time of descending node determined

Common

I/O	Block	Variable
I	BPOOL	TABLE(16) = deg/rad TABLE(23) = 2π TABLE(34) = π TABLE(31) = TOL

Common (continued)

I/O	Block	Variable
I	BPOOL	TABLE(69) = ω_e TABLE(59) = min/cut TABLE(24) = μ^2
I	OSCELE	ORB(6) = a, e, i, g, h, l
I	SECPRM	DPELE(6) = a'', e'', i'', g'', h'', 1''
I	N0D	$L0D = 1_0D$
I	PERTL	$LDGPT = 1_{dg}Pt$
0	NODMAP	$T_{\min\Omega}$, λ_{Ω} , $\lambda_{E\Omega}$, ht_{Ω} , $t_{\min\Omega}$, λ_{σ} , $\lambda_{E\sigma}$, ht_{σ} , E_{Ω}
0	DHMNOD	\min_{Ω} , \min_{\mho} , \ker_{Ω} , \ker_{\mho} , $\operatorname{Dy}_{\Omega}$, Dy_{\mho}
	DATA	IT = 10
		tg = 0.0D0

CALLED BY

MAIN GTRACE

CALLS

CALL BRWORB CALL SSPTHT

NSPT

PURPOSE

Routine to determine north point (maximum satellite geodetic latitude), and south point (minimum satellite geodetic latitude).

METHOD

A two body solution is determined for the north-south point crossing, the Brouwer theory is then used to update the now perturbed two-body elements in order to obtain the osculating elements corresponding to the times of the north-south point crossing.

FORMULATION

Two body analysis leads us to write

$$f_i = \begin{cases} \frac{\pi}{2} - g_i & \text{at the North point} \\ \frac{3\pi}{2} - g_i & \text{at the South point} \end{cases}$$
 (1)

and the eccentric anomaly (E) can be obtained from the relations:

$$\cos E_i = \frac{\cos \nu + e}{1 + e \cos f_i}, \quad \sin E_i = \frac{\sqrt{1 - e^2} \sin f_i}{1 + e \cos f_i}$$
 (2)

where the time of the event is determined from Brouwer (1959) p. 395. With this time we update the g in Equation (1) and the process is continued until:

$$|g_{i+1} - g_i| \leq \epsilon$$

where ϵ is some preassigned, small positive number.

CALLING SEQUENCE

CALL NSPT (REV, DRG, NQ, SATID, T0, IDNS)

INPUT/OUTPUT

Arguments

I/O	Variable	Description
I	REV	Number of orbital revolutions
I I	DRG(1) DRG(20) DRG(21)	
	DRG(40)	N _{2,0} , N _{2,1} ,, N _{2,19}
	DRG(41) DRG(60)	} N _{3,0} , N _{3,1} ,, N _{3,19}
I	NQ	Number of drag inputs
I	SATID(11)	SATID(1) = Satellite identification number SATID(2) = reference year SATID(11) = den equation reference data
	 mo	SATID(11) = day count of reference date
I	T0	Epoch time
1	IDNS	 = 0, time of north point and south point determined = 1, time of north point determined = 2, time of south point determined

Common

I/O	Block	Variable
I	BPOOL	TABLE(31) = TOL TABLE(69) = ω_e TABLE(59) = min/cut TABLE(24) = μ^2
I	OSCELE	ORB(6) = a, e, i, g, h, l
I	SECPRM	DPELE(6) = a'', e'', i'', g'', h'', 1''
I	PERTL	$LDGPT = 1_{dg}Pt, E_0, 1_0$
0	NSMAP	T_{minN} , λ_N , λ_{EN} , ϕ_N , Ht_N , t_{minS} , λ_S , λ_{ES} , ϕ_S , Ht_S

Common (continued)

I/O	Block	Variable
0	DHMNS DATA	min_N , min_S , hr_N , hr_S , Dy_N , Dy_S IT = 10 tg = 0.0D0

CALLED BY

MAIN GTRACE

CALLS

CALL BRWORB CALL SSPTHT

NSPT Flowchart

North/South Point

PAGE1

First Page Print

PURPOSE

To write elements, drags, earth constants, and harmonics on tape.

CALLING SEQUENCE

CALL PAGE1 (EPOCH, SRNAME, SATID, OUTPUT, NQ, DRAGDT, DRG, NTPQ, DATTIM, CDRAG, KDELT, NJ, ELEMO, RUNID)

INPUT/OUTPUT

Arguments

I/O	Variable	Description
I	EPOCH(10)	EPOCH(1-7) — epoch satellite ID and time
	, ,	EPOCH(8) = type of the epoch elements
		EPOCH(9) = pass number
		EPOCH(10) = perturbation option
		= 0 no perturbation
		= 1 use perturbation tape
I	SRNAME(3)	Name of satellite
I	SATID(10)	Reference sat ID and time
Í	OUTPUT(6)	Converted epoch elements
Ι	NQ	Number of drag inputs
I	DRAGDT(40)	Array of packed drag date and time
Ι	DRG(60)	Array of drag time and parameters
Ι	NTPQ	Number of column times (or cards)
I	DATTIM(112)	Array of packed column date and time
Ι	CDRAG(112)	Array of column drag parameters
I	KDELT(4)	KDELT(1) and (3) = number of columns to be
	}	computed per card
	1	KDELT(2) and (4) = column $\triangle t$ in minutes
I	NJ	Number of column times plus one
I	ELEM0(6)	Epoch elements
I	RUNID(8)	Run identification

Common

I/O	Block	Variable
I	BPOOL	TABLE(22) = RAD TABLE(41) = Mu TABLE(42) = FLAT TABLE(49) = ROT TABLE(58) = J TABLE(61) = K2 TABLE(62) = K3 TABLE(63) = K4 TABLE(64) = K5

CALLED BY

MAIN

PAGE1 Flowchart

PAGE1 Flowchart (continued)

PERTF0 Complementary Perturbations

PURPOSE

To read the complementary perturbation tape for the Brouwer Orbit Generator.

CALLING SEQUENCE

CALL PERTFO (PLN, SATID, TIME, KMULT, B, IERR)

INPUT/OUTPUT

Arguments

I/O	Variable	Description
I	PLN	Perturbation tape logical input unit
		> 0 read pert tape on that unit
		< 0 do no read pert tape
		= 0 error
I	SATID(11)	SATID(1) = reference satellite ID
	į.	SATID(2) = year of reference
		SATID(3) = day count of reference date
I	TIME	Observation time
I/O	KMULT	K multiplier for $\triangle \mathbf{L}$ drag computation
0	B(6)	Array of elements from perturbation tape for
		observation time $-a_p, e_p, i_p, l_p, g_p, h_p$
Ο	IERR	Error
		= 0 no error
		= 37 error in reading pert tape
		= 38 wrong satellite ID on pert tape

Common

I/O	Block	Variable
I	BPOOL	TABLE(5) = SECCUT TABLE(45) = CUTDAY

CALLED BY

BRWORB

CALLS

DREFOD JDSCUT INTPL0

PERTF0 Flowchart

PERTF0 Flowchart (continued)

POOL

Constants Pool

PURPOSE

To compute frequently used constants.

CALLING SEQUENCE

CALL POOL

INPUT/OUTPUT

Common

I/O	Block	Variable
I	BPOOL	TABLE(1) = meters/ft
	(BLOCK	TABLE(2) = km/CUL
	DATA)	TABLE(4) = km/A.U.
	•	TABLE(5) = sec/CUT
	, , , , , , , , , , , , , , , , , , ,	TABLE(9) = 1/flattening coefficient
		TABLE(11) = ω_e (earth rotation in rad/sec)
		$TABLE(12) = J_2$
		$TABLE(13) = J_3$
		$TABLE(14) = J_{\Delta}$
		$TABLE(15) = J_5$
		TABLE(16) = deg/rad
		TABLE(17) = deg) obliquity
		TABLE(18) = min of
	Į į	TABLE(19) = sec eccliptic
		TABLE(21) = km/mi
		TABLE(22) = radius of earth in CUL
		$TABLE(24) = GM = \mu^2$
		TABLE(30) = sec/day
		TABLE(32) = sec/hr
		TABLE(33) = deg/hr
0	BPOOL	$TABLE(41) = \mu$
		TABLE(42) = Flattening coefficient

Common (continued)

I/O	Block	Variable
О	BPOOL	TABLE(43) = B (polar radius of the earth)
		TABLE(44) = CUL/A.U.
		TABLE(45) = CUT/Day
		TABLE(46) = CUT/hr
		TABLE(47) = Convert CUL/CUT to km/sec
		TABLE(48) = Convert CUL/CUT to km/hr
		TABLE(49) = $\omega_{\rm e}$ (earth rotation) in rad/CUT
		TABLE(50) = mi/CUL
		TABLE(51) = Convert CUL/CUT to mi/hr
		$TABLE(52) = e^{2}$
		TABLE(53) = e (eccentricity of earth)
		TABLE(54) = X component of U_2
		TABLE(55) = Y component of U_2
	ł	TABLE(56) = Z component of U_2
		U ₂ is an orthogonal unit vector in the ecliptic
		plane expressed in the inertial coordinate system.
		${\rm U_2}$ is perpendicular to ${\rm U_1}$ in the direction of
		positive $ au$.
		TABLE(57) = TAUDOT (mean longitude in rad/CUT)
		TABLE(58) = J
		TABLE(59) = min/CUT
		TABLE(60) = Convert CUL/CUT to m/sec
	į	TABLE(61) = K2
		TABLE(62) = K3
		TABLE(63) = K4
		TABLE(64) = K5
		TABLE(65) = rad/hr
		TABLE(66) = km/ft
		TABLE(67) = Obliquity of ecliptic in rad
İ		TABLE(68) = KMULT for Drag
		TABLE(69) = ω_e (earth rotation) in deg/min
		TABLE(70) = CUT/min
		TABLE(71) = X component of U_1
		TABLE(72) = Y component of U_1
	ľ	TABLE(73) = Z component of U_1
		U ₁ is an orthogonal unit vector in the ecliptic
	1	plane, expressed in the inertial coordinate
		system. U_1 is directed to the vernal equinox.

Common (continued)

I/O	Block	Variable
0	BPOOL	TABLE(74) = Tolerance for R* · U TABLE(75) = Tolerance for magnitude of RXU TABLE(76)-(80) — Not used

CALLED BY

MAIN

CALLS

DMSTOR

PQUV

PURPOSE

Introduction of the orthogonal unit vector set P,Q or U,V into the orbit plane coordinate system.

METHOD

Aligning both fundamental triads and performing the rotations through Ω , i, ω , yields the direction cosines of P,Q; substitution of u for ω yields the direction cosines for the set U,V.

FORMULATION

The direction cosines of P, and Q are given by:

and the directional cosines of U, and V are obtained by the substitution of $u = \nu + \omega$ for ω into the above equations, that is, $U = P(i, \Omega, u)$ and $V = Q(i, \Omega, u)$.

CALLING SEQUENCE

```
CALL PQUV (I, H, G, NU, P, Q, U, V)
CALL UV (I, G, H, NU, U, V)
CALL PQ (I, G, H, P, Q)
```

INPUT/OUTPUT

Arguments

I/O	Variable	Description
I	I	(i) Orbital Inclination
I	G	(ω) Argument of Perigee
I	H	(Ω) Longitude of the Ascending Node
I	NU	(ν) True Anomaly
0	U(i)	$U(1)$, $U(2)$, $U(3) = U = P(i, \Omega, \omega)$
0	V(i)	$V(1), V(2), V(3) \equiv V(i, \Omega, \omega)$
0	P(i)	P, Unit Vector taken as pointing Towards Perifocus
0	Q(i)	Q, Unit Vector in the orbit plane advanced to P by a
		right angle in the direction of increasing true anomaly.

Common

I/O	Block	Variable
I	BPOOL	TABLE(31) = $\epsilon = .1 \times 10^{-11}$

CALLED BY

BRWORB

CALLS

VDOT

PREDS

Brouwer Prediction Table Bulletin

PURPOSE

To calculate precise prediction information for the orbit of a satellite.

METHOD

The satellite position can be determined approximately by means of a method based on the assumption that the quantities a (t), e (t), I (t), g (t), h (t) and n (t) are osculating elements. It is necessary to have a set of mean Brouwer elements, the epoch of such elements, a set of times (t_i) with a constant Δt , and corresponding ($N_{2,i}$)'s whose value may be zero or a non-zero quantity. Other associated parameters at epoch time are computed.

For i = 0, compute

$$a(t_0) = a'' \left[1 + \gamma_2(3\theta^2 - 1) \left(\frac{1 - \eta^3}{\eta^6}\right)\right]$$

$$n(t_0) = \sqrt{\frac{\mu}{a_0^3}}$$

$$e(t_0) = e'' + \delta_1 e(t_0) + \frac{\gamma_2}{2e''} (3\theta^2 - 1) \left(\frac{1 - \eta^3}{\eta^4}\right)$$

$$M(t_0) = l_0'' + l_1(t_0)$$

$$K = \frac{4a(t_0)}{3n(t_0)}$$

$$W = \frac{4 \left(1 - e(t_0)\right)}{3n(t_0)}$$

For i > 0, compute

$$\begin{split} \tau_{1,\,i} &= t_{i+1} - t_i \\ \tau_{2,\,i} &= \frac{\tau_{1,\,i}}{2} \\ C_1 &= \ell_1(t_{i+1}) - \ell_1(t_i) \\ C_2 &= \ell_1(t_i + \tau_{2,\,i}) - \ell_1(t_i) \\ \delta \ell_{11,\,i} &= \frac{[C_1\tau_{2,\,i}^2 - C_2\tau_{1,\,i}^2]}{[\tau_{1,\,i}^{i}\tau_{2,\,i}\,(\tau_{2,\,i} - \tau_{1,\,i})]} \\ M_i(t) &= M_{2,\,i}\,(t - t_i)^2 + M_{1,\,i}\,(t - t_i) + M_{0,\,i} \\ M_{0,\,i} &= \ell_i^{\prime\prime\prime} + \ell_1(t_i); \quad \text{for } i = 0 \quad M(t_i) = M_{0,\,i} \\ M_{1,\,i} &= \delta_0^{\prime\prime\prime} + \delta \ell_{11,\,i} + 2 \sum_{j=1}^{i} N_{2,\,j-1}\,(t_j - t_{j-1}) \\ a(t_{i+1}) &= a(t_0) - K \sum N_{2,\,i}\,\tau_{1,\,i} + \Delta a \\ e(t_{i+1}) &= e(t_0) + \delta_1 e(t_{i+1}) - \delta_1 e(t_0) - W \sum N_{2,\,i}\,\tau_{1,\,i} + \Delta e \\ I(t_{i+1}) &= I^{\prime\prime\prime} + \delta_1 I(t_{i+1}) \\ g(t_{i+1}) &= g^{\prime\prime}(t_{i+1}) \\ h(t_{i+1}) &= h^{\prime\prime}(t_{i+1}) \\ \dot{\omega}(t_i) &= \frac{1}{2(t_{i+1} - t_i)} - 3\omega(t_0) + 4\omega(t_1) - \omega(t_2) \end{split}$$

$$\dot{\Omega}(t_i) = \frac{1}{2(t_{i+1} - t_i)} - 3\Omega(t_0) + 4\Omega(t_1) - \Omega(t_2)$$

Period, nodal
$$(t_0) = \frac{2\pi}{M_{1,\phi} + \dot{\omega}(t_{\phi})}$$

• Period, anomalistic (t_i) = $\frac{2\pi}{M_{1,i}}$

$$\dot{\mathbf{P}}_{\mathbf{a}, \mathbf{i}} = \frac{-\mathbf{M}_{\mathbf{2}, \mathbf{i}} \mathbf{P}_{\mathbf{a}, \mathbf{i}}^{2}}{\pi}$$

Height of perigee = a(1 - e) - 1

Height of apogee = a(1 + e) - 1

Velocity of perigee =
$$\frac{\mu}{\sqrt{a}} \left(\sqrt{\frac{1+e}{1-e}} \right)$$

Velocity of apogee =
$$\frac{\mu}{\sqrt{a}} / \sqrt{\frac{1+e}{1-e}}$$

TP =
$$\frac{t_2 + [2(2\pi - M_{0,2})]}{\left[M_{1,2}\left(1 + \sqrt{1 + [4M_{2,2}(2\pi - M_{0,2})] / M_{1,2}^2}\right)\right]}$$

From BRWORB, compute

$$\ell_1$$
 at $(t_i + T_{2,i})$ δ_1 e, δ_1 I, ℓ_1 , g', h', Δ a, Δ e at (t_{i+1})

CALLING SEQUENCE

CALL PREDS (TO, TPQ, NJ, CDRAG, DRG, EL, PA, PADOT, PNA, TP, NN, MI, ELEMO, NQ, SATID)

INPUT/OUTPUT

Arguments

I/O	Variable	Description
I	T0	Epoch time
I	TPQ(56)	Column elements times
I	NJ	Number of columns to be computed
I	CDRAG(112)	Column drag table
I	DRG(60)	Brouwer drag time and parameters table
0	EL(8, 56)	Array of Bulletin prediction elements $-a_i$, e_i , I_i ,
		Ω_i , ω_i , $M_{0,i}$, $M_{1,i}$, $M_{2,i}$ where $i = 1-56$
0	PA(56)	Array of Bulletin prediction anomalistic periods
0	PADOT(56)	Array of prediction anomalistic period derivatives
0	PNA(8)	PNA(1) = nodal period
İ		PNA(2) = prediction $\dot{\omega}$
<u> </u>		$PNA(3) = prediction \hat{\Omega}$
		PNA(4) = perigee height
		PNA(5) = apogee height
		PNA(6) = geocentric latitude of perigee
		PNA(7) = perigee velocity
		PNA(8) = apogee velocity
0	TP	Time of perigee
O	NN	Index for column times
0	MI	Index for column prediction elements
I	NQ	Number of drag inputs
I	SATID(11)	SATID(1) = reference satellite ID
		SATID(2) = year of reference
		SATID(11) = day count of reference date

Common

I/O	Block	Description
I	BPOOL	TABLE(24) = BK
		$TABLE(34) = \pi$
		$TABLE(41) = \mu$
l I	ETAP	ETA3 – η^3)
	İ	$ETA4 - \eta^4$)
		ETA6 - η^6)
I	GMPR	$GM2 - \gamma_2$)
I	LPPRM	$DEL1E - \delta_1 e$
		DEL1I - δ_1 i
		$L_i - L_1$
	ļ	$\hat{GP} - \hat{g'}$
		HP - h'
I	SECPRM	DPELE(6) - Brouwer mean elements
I	DOTELE	$ t L0DOT - \dot{ t L}_0$
I	THETAP	M1P3T2 - $3\theta^2$ - 1
I,	DELKEP	DKEP(1) - Δa_{pert}
		DKEP(2) - $\triangle e_{pert}$
I	PRTKEP	PKEP(3) - ℓ_0 + $\Delta \ell$

TAPE OUTPUT

Prediction Space Elements

Epoch: Calendar Date				
Epoch: Julian Date for Space		t'1	t_2	t ₃
Period	minutes	P_1	P_2	P_3
Period derivative	microdays/day	$\dot{\mathbf{P}}_{\mathbf{i}}$	\dot{P}_2	\dot{P}_3
Eccentricity		e 1	\mathbf{e}_{2}	$\mathbf{e_3}$
Inclination	degrees	i 1	i ₂	i ₃ ′
Right ascension of ascending node	degrees	Ω_{1}	Ω_{2}	$\Omega_{ {f 3}}$
Argument of perigee	degrees	ω_{1}	ω_{2}	ω_{3}
Mean anomaly	degrees	M 1	M_2	M_3
Semi-major axis	earth radii	a 1	$\mathbf{a_{2}}$	$\mathbf{a_3}$

CALLED BY

MAIN

CALLS

BRWORB REDUCE

PREDS Flowchart

PRINT

Brouwer Prediction Print

PURPOSE

To write pertinent prediction information for the orbit of a satellite.

CALLING SEQUENCE

CALL PRINT (NC, NQ, SRNAME, EPOCH, ETIME, NN, MI, PA, PADOT, EL, PNA, TPQ, SATID, SECDRG, DATTIM, DRG, OSCO, PV, ISSUE, NEPASS, TO, ELEMO)

INPUT/OUTPUT

Arguments

I/O	Variable	Description
I	NC	Number of columns to be printed
I	NQ	Number of drag inputs
I	SRNAME(3)	Satellite name
I	EPOCH(10)	Epoch time and information
I	ETIME	Epoch hours, minutes, seconds in seconds
I	NN	Index for column times
I	MI	Index for column prediction elements
I	PA(56)	Array of anomalistic periods
I	PADOT(56)	Array of anomalistic period derivatives
I	EL(8, 56)	Array of Bulletin prediction elements $-a_i$, e_i , I_i ,
I	PNA(8)	Ω_i , ω_i , $M_{0,i}$, $M_{1,i}$, $M_{2,i}$ where $i = 1,56$ PNA(1) = nodal period
	(,- /	$PNA(2) = prediction \hat{\Omega}$
ļ		$PNA(3) = prediction \dot{\omega}$
		PNA(4) = perigee height
		PNA(5) = apogee height
:		PNA(6) = geocentric latitude of perigee
		PNA(7) = perigee velocity
		PNA(8) = apogee velocity
I	TPQ(56)	Array of column elements times

Arguments (continued)

I/O	Variable	Description
I	SATID(11)	SATID(1) = reference satellite ID
	, ,	SATID(2) = year of reference
		SATID(11) = day count of reference date
I	SECDRG(112)	SECDRG(1),(3),,(111) = seconds from columns
		time SECDBC(2) (4) (112) - total column time
		SECDRG(2), (4),, (112) = total column time (hours, minutes, seconds) in seconds
_	D 4 (7 (1 1 0)	
I	DATTIM(112)	Packed column date and time
I	DRG(60)	Drag time and parameters table
I	OSC0(6)	Epoch Brouwer osculating elements
I	PV(6)	Epoch Brouwer position and velocity vectors
I	ISSUE(4)	Date of issue
I	NBPASS	Initial pass number
I	Т0	Epoch in Canonical Unit of Time
I	ELEM0(6)	Epoch elements — a, e, i, g, h, m

Common

I/O	Block	Variable
I	BPOOL	TABLE(1) = meters/ft TABLE(2) = km/CUL
		TABLE(5) = sec/CUT
		TABLE(16) = deg/rad
		TABLE(23) = 2π
		TABLE(25) = knots/mi/hr
	-	TABLE(26) = km/N.M.
		TABLE(28) = GM (km3/sec2)
		TABLE(30) = sec/day
		$TABLE(34) = \pi$
		TABLE(35) = min/day
		$TABLE(41) = \mu$
		TABLE(45) = cut/day
		TABLE(49) = $\omega_{\rm e}$ (earth rotation) in rad/CUT
		TABLE(50) = mi/CUL
		TABLE(51) = CUL/CUT to mi/hr
		TABLE(57) = TAUDOT

Common (continued)

I/O	Block	Variable
I	BPOOL	TABLE(59) = min/CUT TABLE(60) = CUL/CUT to m/sec TABLE(65) = rad/hr TABLE(66) = km/ft TABLE(67) = obliquity of ecliptic in rad
I	RADIAN	TAU = τ , satellite degrees, minutes, seconds in rad AMBDA = λ , satellite hour, minutes, seconds in rad

CALLED BY

MAIN

CALLS

DREFOD REDUCE DATANO

SPACEL

PRINT Flowchart

REDUCE

Reduce Angle

PURPOSE

To reduce an angle between 0 and 2π .

CALLING SEQUENCE

REDUCE (Z, PI2)

Note that REDUCE is a function.

INPUT/OUTPUT

Arguments

I/O	Variable	Description
I I O	Z PI2 REDUCE	Angle to be reduced 2π - 360° in radians Reduced-angle Z

CALLED BY

BRWORB

DAF

DRAG

PREDS

PRINT

SATOR

SDFWOE

Sunlight Determination

PURPOSE

To determine whether a satellite is in sunlight or darkness (due to the earth's shadow) at a given time. An option is available to consider the effects of an oblate earth in making this determination.

METHOD

Given:

<u>r</u> = the position vector of the satellite in the inertial coordinate system, measured in CUL, and having components X, Y, and Z.

 τ = the longitude of the sun on reference date, in radians.

 $\dot{\tau}$ = the motion of tau, in radians per CUT.

TIME = $t - t_0$ = the time in CUT, measured from reference date, at which the sunlight determination is to be made.

 U_1 and U_2 = orthogonal unit vectors in the ecliptic plane, expressed in the inertial coordinate system. U_1 is directed to the vernal equinox and U_2 is perpendicular to U_1 in the direction of positive τ (U_1 = 1, 0, 0; U_2 = 0, $\cos \epsilon$, $\sin \epsilon$ where ϵ = obliquity of ecliptic).

f = the flattening coefficient of the ellipsoid of reference.

Compute:

 $\underline{\underline{r}}^*$ = the unit satellite position vector

 $T = \tau + \dot{\tau} (t - t_0)$

 $\underline{U} = \underline{U}_1 \cos T + U_2 \sin T$, having coordinates u, v, w

If $|\underline{r} \times \underline{U}| < T_1$, where $T_1 = 1 - f(Z + W/\overline{r^2 - 1})^2$, or a constant, and if $\underline{r}^* \cdot \underline{U} < T_2$, then the satellite is in darkness. Otherwise, it is in sunlight.

CALLING SEQUENCE

CALL SDFWOE (TIME, R, IX, RMAG)

INPUT/OUTPUT

Arguments

I/O	Variable	Description
I I O	TIME R(3) IX	Time at which sunlight determination is made Position vector of the satellite — X, Y, Z Sunlight Determination = 0, satellite is in darkness = 1, satellite is in sunlight
I	RMAG	Magnitude of position vector R

Common

ľ/O	Block	Variable
I I I I I I I I I I I I	BPOOL	TABLE(42) = F TABLE(54) = X component of U_2 TABLE(55) = Y component of U_2 TABLE(56) = Z component of U_2 TABLE(57) = TAUDOT $(\dot{\tau})$ TABLE(71) = X component of U_1 TABLE(72) = Y component of U_1 TABLE(73) = Z component of U_1 TABLE(74) = T2 (tolerance for $R^* \cdot U$) TABLE(75) = T1 (tolerance for magnitude of RXU) TAU (τ)

CALLED BY

GTRACE

CALLS

VECTOR
VADD
VDOT
VMAG
VPROD
VUNIT
VCROSS

SDFWOE Flowchart

SPACEL

Spacel Bulletin

PURPOSE

To provide key space element information in a condensed form.

CALLING SEQUENCE

CALL SPACEL (ISSUE, SPAC, DRG, NQ, T0, TPQ, NBPASS, NSPACE, SATID)

INPUT/OUTPUT

Arguments

I/O	Variable	Description
I	ISSUE(4)	Issue Date
Ī	SPAC(487)	May consist of 54 of the following set of elements
		depending on the number of elements columns to
		be computed
		SPAC(1) = time
	[SPAC(2) = anomalistic period
	1	SPAC(3) = derivative of anomalistic period
		SPAC(4) = perigee height
		SPAC(5) = apogee height
		SPAC(6) = inclination
1		SPAC(7) = right ascension of ascending node
		SPAC(8) = argument of perigee
		SPAC(9) = mean anomaly
		Last SPAC(N) = $99999999999999999999999999999999999$
I	DRG(60)	Drag time and parameters table
I	NQ	Number of drag inputs
I	T0	Epoch time
I	TPQ(56)	Table of column elements times
I	NBPASS	Request pass number
I	NSPACE	Number of days from space reference date (Sept. 18, 1957) to issue date

Arguments (continued)

I/O	Variable	Description
I	SATID(11)	SATID(1) - satellite ID number SATID(2) - year of reference SATID(11) - day count of reference date

Common

I/O	Block	Variable
I I	OSCELE BPOOL	OS(6) = Brouwer osculating elements TABLE(2) = Km/CUL TABLE(16) = deg/rad TABLE(23) = 2π TABLE(24) = BK TABLE(34) = π TABLE(40) = NSPAC = 0, no spacel osculating epoch elements output = 1, spacel osculating epoch elements output TABLE(41) = μ TABLE(59) = min/CUT

TAPE OUTPUT

GODDARD SPACE FLIGHT CEMTER SPACEL BULLETIN MAR 3.1971 J.D.S. 4914

SATCESC NAME SL NRDN SBDAT INJ.D.S. RVNEI OMAG KG/M2 RFDK.CMFCW CONC J.D.S. PERAN MOD PER CERI PHTEQR APHTEQR INMOD RAANOD AKGPER MANCH C UT2W 10.000 MIN MICROD/D KMX10 KMX10 100DG DEGRS DEGRS DEGRS S X100 X1.COC.CCC X1C.GOC 258.25 6378166 X1COO X1COO X1COO C

68C6602 INJUN5 Uh 3338 4914 3914 397 112921292
490600 0118288893-C0C004C5 CC6701 C025327 8C668 345393 092857 2075214
491300 C118288484-C0C0C428 CC6703 C025325 80668 340103 078814 2850103
492CCC C118288C42-G0C0C467 CC67C9 CC25318 8C668 334814 064753 0026103
49C600 C118161211-C000C353 CC6618 0025348C80665S345391C09127U2072374

The first line of data contains the satellite identification number, satellite name and other information from the Spacel input card.

The following lines of data each contain:

- 1. Date measured from the Julian Date of Space
- 2. Anomalistic period in minutes, modulo 10,000, X 10⁶
- 3. Period derivative, microdays/day, X104
- 4. Perigee height relative to equatorial radius, kilometers, X10. Flattening = 1/298.25
- 5. Apogee height relative to equatorial radius, kilometers, X10. Equatorial radius = 6378.166
- 6. Inclination in degrees, modulo 100, X1000
- 7. Right ascension of ascending node in degrees, X1000
- 8. Argument of perigee in degrees, X1000
- 9. Mean anomaly in degrees, X1000
- 10. Check sum of line (last digit), modulo 10.

The last test line is computed by using the osculating elements at the start request time.

CALLED BY

PRINT

CALLS

CKSUM ZERO BRWORB

SPACEL Flowchart

SPACEL Flowchart (continued)

SSPTHT

PURPOSE

This routine determines sub-satellite point and height, i.e., a transformation from cartesian coordinates to position in the latitude-longitude coordinate system.

METHOD

As a first approximation the geocentric latitude is set equal to the satellite's declination, an iterative procedure is then employed to determine the geodetic latitude and height.

FORMULATION

Sin
$$\delta = \frac{Z}{r}$$
, $-\frac{\pi}{2} \le \delta \le \frac{\pi}{2}$

$$\lambda_{\mathbf{E}}^{\prime} = \mathbf{a} - \theta \, \mathbf{g} - \omega_{\mathbf{e}} \, \mathbf{t} \,, \quad \lambda_{\mathbf{E}}^{\prime} = \mod(\lambda_{\mathbf{E}}^{\prime}, 2\pi), \quad 0 \leq \lambda_{\mathbf{E}}^{\prime} \leq 2\pi$$

Set $\phi_{\mathsf{S}}^{\mathsf{I}} = \delta$, where δ has already been determined, and continue calculating with

$$r_c = a_e \left[\frac{1 - (2f - f^2)}{1 - (2f - f^2) \cos^2 \phi_S^1} \right]^{\frac{1}{2}}$$
 (1)

$$\phi_{S} = \tan^{-1} \left[\frac{\tan \phi_{S}'}{(1-f)^{2}} \right], -\frac{\pi}{2} \leq \phi_{S} \leq \frac{\pi}{2}$$

$$H_{S} = [r^{2} - r_{c}^{2} \sin^{2}(\phi - \phi_{S}^{\prime})]^{\frac{1}{2}} - r_{c} \cos(\phi_{S} - \phi_{S}^{\prime})$$

$$\Delta \phi_{S}' = \sin^{-1} \left[\frac{H_{S}}{r} \sin (\phi_{S} - \phi_{S}') \right], \quad -\frac{\pi}{2} \leq \Delta \phi_{S}' \leq \frac{\pi}{2}.$$

Recalculate $\phi_S' = \delta - \Delta \phi_S'$ and return to Eq. (1). Repeat this loop until ϕ_S' no longer varies. This process is exact and rapidly convergent, and at the same time yields the ground trace geodetic latitude, ϕ .

CALLING SEQUENCE

CALL SSPTHT (WEDT, R, RMAG, RTASC, DEC, GEODL, GEOCL, LONG, ELONG, HEIGHT)

INPUT/OUTPUT

Arguments

I/O	Variable	Description
I	WEDT	$\omega_{\rm e}$ (t - t ₀) Earth's Rotation from Start Date
I	R(3)	X, Y, Z Satellite Position Vector
I	RMAG	Magnitude of Sat. Radial Vector
0	RTASC	Right Ascension — Deg.
0	DEC	Declination — Deg.
0	GEODL	Geodetic Latitude — Deg.
0	GEOCL	Geocentric Latitude - Deg.
0	LONG	Longitude - $\pi \leq LONG \leq \pi$ measured from the
		Greenwich Meridian
0	ELONG	East Longitude ($\lambda_{\rm E}$) - Deg. 0, 2 π measured
:		Eastward from Greenwich Meridian
O	HEIGHT	HEIGHT — Above the reference ellipsoid in km

Common

I/O	Block	Variable
I	SDT BPOOL	GST — Greenwich Sidereal Time TABLE(31) = $\epsilon = .1 \times 10^{-11}$ TABLE(9) = 1/f TABLE(2) = km/E.R. TABLE(42) = f TABLE(52) = 2f - f ²

CALLED BY

GTRACE NODALX NSPT

CALLS

None

TIMETB Brouwer Column Elements Time Table and Drag Load

PURPOSE

To handle the input of the column elements times and drags.

CALLING SEQUENCE

CALL TIMETB (SATID, NTPQ, KDELT, DATTIM, SECDRG, TPQ, CDRAG, NERROR, NJ)

INPUT/OUTPUT

Arguments

I/O	Variable	Description
I	SATID(11)	SATID(1) = satellite ID number
	, ,	SATID(2) = year of reference
		SATID(11) = day count of reference date
О	NTPQ	Number of column times (or cards)
0	KDELT(4)	KDELT(1) and (3) - Number of columns to be
		computed per card (maximum of 2 cards)
		KDELT(2) and (4) - Column \triangle T in minutes \times 100
0	DATTIM(112)	DATTIM(1,3,5 111) - Packed column date
		DATTIM(2, 4, 6 112) - Packed column time
О	SECDRG(112)	SECDRG(1,3,5 111) - Column seconds
	, ,	SECDRG(2, 4, 6 112) - Column hr, min, sec in
		seconds
0	TPQ(56)	Column times in CUT
0	CDRAG(112)	Column drag parameters (N _{2,q} , N _{3,q})
0	NERROR	Error indicator
		= 0 no error
		= -1 error on column card
0	NJ	Number of column times plus one

Common

I/O	Block	Variable
I	BPOOL	TABLE(5) = sec/CUT TABLE(30) = sec/day

CALLED BY

MAIN

CALLS

DREFOD JDSCUT JULHMS DATE

TIMETB Flowchart

UTGST

PURPOSE

This routine calculates the Greenwich sidereal time.

METHOD

Calculate the Greenwich sidereal time at 0^{hr} U.T. of Date and add the amount of rotation in the hours, minutes, and seconds elapsed since 0^{hr} U.T. of Date.

FORMULATION

The Greenwich sidereal time at 0^{hr} U.T. is given by

$$\theta g_0 = 99.6909833 + 36000.7689 T_u + 0.00038708 T_u^2$$

where the time is measured in centurie as

$$T_u = \frac{J.D. - 2415020.0}{36525}$$

and we have for the Greenwich sidereal time

$$\theta g = \theta g_0 + \omega_e (t - t_0)$$

where $\omega_{\rm e}$ is the earth's rotation in deg/min

(t - t_0) is the number of minutes elapsed since $0^{\rm hr}$ U.T.

CALLING SEQUENCE

CALL UTGST (YY, MM, DY, HR, MIN, SEC)

INPUT/OUTPUT

Arguments

I/O	Variable	Description
I	YY	Year
· I	MM	Month
I	DY	Day
I	HR	Hour
I	MIN	Minute
I	SEC	Second

Common

I/O	Block	Variable
O	SDT BPOOL	GST, GST0 - $(\theta$ g, θ g ₀) TABLE(69) - ω _e

CALLED BY

MAIN

CALLS

None

UVIJK

PURPOSE

Maps the radius vector to the satellite from the orbital (orthogonal set u, v, w) to the equatorial coordinate system.

ME THOD

Call subroutine UV (I, G, H, NU, U, V) to obtain u, v unit vectors in the orbital plane then calculate the positional vector and the velocity vector in the inertia system.

FORMULATION

$$\mathbf{r} = \mathbf{r} \mathbf{u}, \mathbf{r} = \mathbf{a} (1 - \mathbf{e} \cos \mathbf{E})$$

$$\mathbf{v}_{\mathbf{r}} = \sqrt{\mu \mathbf{a}} / \mathbf{r} e \sin \dot{\mathbf{E}}, \mathbf{v}_{\mathbf{T}} = \frac{\sqrt{\mu \mathbf{a} (1 - \mathbf{e}^2)}}{\mathbf{r}}$$

$$\dot{\mathbf{r}} = \mathbf{v}_{\mathbf{r}} \mathbf{u} + \mathbf{v}_{\mathbf{T}} \mathbf{v}$$

CALLING SEQUENCE

CALL UVIJK (A, ECC, I, G, H, F, E, R, DR, U, V, RMAG, DRMAG)

INPUT/OUTPUT

Arguments

I/O	Variable	Description
I I I I I I I	A ECC I G H F E	Semimajor axis (e.r.) Eccentricity Orbital inclination Argument of perigee Longitude of the ascending node True anomaly Eccentric anomaly

Arguments (continued)

I/O	Variable	Description
0 0 0 0 0	R DR U V RMAG DRMAG	Sat. radial vector Sat. vel. vector P(I, G & F, H) = r/r Q(I, G & F, H) r magnitude of radial vector v magnitude of vel. vector

Common

I/O	Block	Variable
I	BPOOL	TABLE(31) = $\epsilon \equiv .1 \times 10^{-11}$
I	BPOOL	TABLE(41) $\equiv \mu$
O	VTVR	VT(3) Transverse velocity component vector
O	VTVR	VR(3) Radial velocity component vector

CALLED BY

BRWORB

CALLS

VDOT

VECTOR

Vector Operations Package

PURPOSE

VECTOR performs the following vector operations:

- Performs addition of two vectors.
- Computes the cross product of two vectors.
- Computes the dot product of two vectors.
- Computes the magnitude of a vector.
- Computes the product of a scalar and a vector.
- Performs subtraction of two vectors.
- Computes the unit vector along a given vector.

METHOD

VADD - Performs addition of two vectors.

The vector sum, $\underline{S} = (S_1, S_2, S_3)$, of the two given vectors, $\underline{A} = (A_1, A_2, A_3)$ and $\underline{B} = (B_1, B_2, B_3)$, is computed as follows:

$$S_1 = A_1 + B_1$$

$$S_2 = A_2 + B_2$$

$$S_3 = A_3 + B_3$$

VCROSS - Computes the cross product of two vectors.

The cross product vector, $\underline{C} = (C_1, C_2, C_3)$, of the two given vectors, $\underline{A} = (A_1, A_2, A_3)$ and $\underline{B} = (B_1, B_2, B_3)$, is computed as follows:

$$C_1 = A_2B_3 - A_3B_2$$

$$C_2 = A_3B_1 - A_1B_3$$

$$C_3 = A_1B_2 - A_2B_1$$

VDOT - Computes the dot product of two vectors.

The dot product, $\underline{A} \cdot \underline{B}$, of the two given vectors, $\underline{A} = (A_1, A_2, A_3)$ and $\underline{B} = (B_1, B_2, B_3)$, is given by:

$$A \cdot B = A_1 B_1 + A_2 B_2 + A_3 B_3$$

VMAG - Computes the magnitude of a vector.

The magnitude A of the given vector, $\underline{A} = (A_1, A_2, A_3)$, is computed as follows:

$$A = (A_1^2 + A_2^2 + A_3^2)^{\frac{1}{2}}$$

VPROD - Computes the product of a scalar and a vector.

The product vector, $P = (P_1, P_2, P_3)$, of the scalar, a, and the vector, $A = (A_1, A_2, A_3)$, is computed as follows:

$$P_1 = a A_1$$

$$P_2 = a A_2$$

$$P_3 = a A_3$$

VSUB - Performs subtraction of two vectors.

The vector difference, $\underline{D} = (D_1, D_2, D_3)$, of the two given vectors, $\underline{A} = (A_1, A_2, A_3)$ and $\underline{B} = (\overline{B}_1, \overline{B}_2, \overline{B}_3)$, is computed as follows:

$$D_1 = A_1 - B_1$$

$$D_2 = A_2 - B_2$$

$$D_3 = A_3 - B_3$$

VUNIT - Computes the unit vector along a given vector.

The unit vector $\underline{A}^* = (A_1^*, A_2^*, A_3^*)$ along the vector $\underline{A} = (A_1, A_2, A_3)$ is given by:

$$A_1^* = \frac{A_1}{|A|}$$

$$A_2^* = \frac{A_2}{|\underline{A}|}$$

$$A_3^* = \frac{A_3}{|A|}$$

where

$$|\underline{A}| = (A_1^2 + A_2^2 + A_3^2)^{\frac{1}{2}}$$

CALLING SEQUENCE

CALL VADD (A, B, APLUSB)

CALL VCROSS (A, B, ACRSSB)

CALL VDOT (A, B, ADOTB)

CALL VMAG (A, AMAG)

CALL VPROD (A, SCALAR, PROD)

CALL VSUB (A, B, AMNSB)

CALL VUNIT (A, AUNIT)

INPUT/OUTPUT

Arguments

I/O	Variable	Description
I	A(3)	Input vector on which a vector operation is to be performed
I	B(3)	Input vector on which vector operation is to be performed
0	APLUSB	Vector sum of A and B
0	ACRSSB	Cross product of vectors A and B
О	ADOTB	Dot product of vectors A and B
0	AMAG	Magnitude of A
I	SCALAR	Scalar input to be multiplied by the vector A
0	PROD	Product of the scalar and vector A
0	AMNSB	Vector difference of A and B
0	AUNIT	Unit vector along vector A

CALLED BY

ELCON0 PQIJK PQUV

SDFWOE UVIJK

VECTOR Flowchart

WMAPLD

World Map Request Load

PURPOSE

To handle input for the world map (equator crossings and one orbit ephemeris).

CALLING SEQUENCE

CALL WMAPLD (REQUST, START, END, SATID, JDREQ, RUNID, NERROR)

INPUT/OUTPUT

Arguments

I/O	Variable	Description	
0	REQUST(15)	REQUST(1) = Year REQUST(2) = Month REQUST(3) = Day REQUST(4) = Hour REQUST(5) = Minutes Start Time of WMAP Request	
		REQUST(6) = Seconds REQUST(7) = Year REQUST(8) = Month REQUST(9) = Day REQUST(10) = Hour REQUST(11) = Minutes REQUST(12) = Seconds REQUST(13) = Latitude increment	
		REQUST(14) = Inclination	
		REQUST(15) = Pass number	
О	START	Start time of request in CUT	
0	END	End time of request in CUT	
I	SATID(11)	SATID(2) = Reference year SATID(11) = Day count of reference date	
О	JDREQ	Number of days from date of reference to start date of request	
0	NERROR	Error indicator = 0 no error = -1 latitude increment > inclination	

CALLED BY

MAIN

CALLS

DREFOD JDSCUT

WMAPLD Flowchart

ZERO

Zero Print

PURPOSE

To print leading zeroes of an integer on the IBM 360 computer.

CALLING SEQUENCE

CALL ZERO (N, IIN, AREA)

INPUT/OUTPUT

Arguments

I/O	Variable	Description
I	N	Number of output digits (including the sign) that is desired — maximum is 8
I O	IIN AREA(8)	Input number AREA(1) = Sign of the output number AREA(2)-(8) = digits of output number including leading zeroes.

CALLED BY

SPACEL

ZERO Flowchart

BLOCK DATA

PURPOSE

To assign values to frequently used constants which do not have to be computed.

OUTPUT

Common

Block	Variable
BPOOL	TABLE(1) ₹ meter/ft
	TABLE(2) = km/CUL
	TABLE(3) = mile/nautical mile
	TABLE(4) = km/A.U.
	TABLE(5) = sec/CUT
	TABLE(6) = velocity of light (km/sec)
	TABLE(7) = sun mass/earth mass
	TABLE(8) = earth mass/moon mass
	TABLE(9) = $1/f$ (flattening coefficient)
	TABLE(10) = Pressure of sunlight
	TABLE(11) = ω_e - earth rotation (rad/sec)
	$TABLE(12) = J_2$
•	$TABLE(13) = J_3$
	$TABLE(14) = J_4$
	$TABLE(15) = J_5$
`	TABLE(16) = deg/rad
	TABLE(17) = Deg
	TABLE(18) = Min Obliquity of Ecliptic
	TABLE(19) = Sec
	TABLE(20) = Mean long. of sun (deg/day)
	TABLE(21) = km/mile
,	TABLE(22) = Radius of earth in CUL
	$TABLE(23) = 2\pi$
	TABLE(24) = GM = μ^2
	TABLE(25) = knots/mi/hr
	TABLE(26) = km/n.m.
	TABLE(27) = Lunar distance (CUL)
	TABLE(28) = GM (km^3/sec^2)

Common (continued)

Block	Variable
BPOOL	TABLE(29) = Solar distance (CUL) TABLE(30) = sec/day TABLE(31) = Tolerance for orbit generator TABLE(32) = sec/hr TABLE(33) = deg/hr TABLE(34) = \pi TABLE(35) = \min/day TABLE(36) = ID for sator code TABLE(37) = Radio frequency TABLE(38) = Radio frequency TABLE(39) = Radio frequency TABLE(40) = SPACEL osculating epoch elements output option = 0 do not compute SPACEL osculating elements
	= 1 compute SPACEL osculating elements

C. COMMON BLOCK VARIABLE DESCRIPTION

The following section contains the COMMON block descriptions of the COMMON areas used in the Goddard Brouwer Orbit Bulletin program. These descriptions include the variables contained in these areas, their meaning, and the subroutine which defines each variable.

1. BULLETIN COMMON Blocks

This section contains a description of all the COMMON areas used in the BULLETIN program.

/BPOOL/
COMMON/BPOOL/TABLE(80)

Variable	Value	Description	Program Where Defined
TABLE		Table of Constants	
TABLE(1)	.30480	meters/foot	BLOCK DATA
TABLE(2)	.6378.1660	kilometers/Canonical Unit of Length	BLOCK DATA
TABLE(3)	1852.0	meters/nautical mile	BLOCK DATA
TABLE(4)	149598600.0	kilometers/astronomical unit	BLOCK DATA
TABLE(5)	806.812418099482	seconds/Canonical Unit of Time	BLOCK DATA
TABLE(6)	299792.5	velocity of light in km/sec	BLOCK DATA
TABLE(7)	332948.55	ratio of sun mass/earth mass	BLOCK DATA
TABLE(8)	81.3	ratio of earth mass/moon mass	BLOCK DATA
TABLE(9)	298,250	1/flattening coefficient (f)	BLOCK DATA
TABLE(10)	.000045	pressure of sunlight	BLOCK DATA
TABLE(11)	.0000729211510	$\omega_{\rm e}$ - earth rotation in rad/sec	BLOCK DATA
TABLE(12)	.001082480	J_2	BLOCK DATA
TABLE(13)	00000256	J_3	BLOCK DATA
TABLE(14)	00000184	J_4	BLOCK DATA
TABLE(15)	00000006	J_5	BLOCK DATA
TABLE(16)	57.29577951308232	degrees/radian	BLOCK DATA
TABLE(17)	23.0	degrees	BLOCK DATA
TABLE(18)	26.0	minutes of	BLOCK DATA
TABLE(19)	34.795	seconds Ecliptic	BLOCK DATA
TABLE(20)	.9856470	mean longitude of sun in deg/day	BLOCK DATA
TABLE(21)	1.609344	kilometers/mile	BLOCK DATA
TABLE(22)	1.0	R - radius of the earth in CUL (e.r.)	BLOCK DATA
TABLE(23)	6.283185307179586	2π (360° in radians)	BLOCK DATA

/BPOOL/ (continued)

Variable	Value	Description	Program Where Defined
TABLE(24)	1.0	$GM = \mu^2$ (Gaussian constant)	BLOCK DATA
TABLE(25)	1.152	knots/mile/hr	BLOCK DATA
TABLE(26)	1.852	kilometers/nautical mile	BLOCK DATA
TABLE(27)	60.266011	lunar distance in CUL	BLOCK DATA
TABLE(28)	398603.2	GM* (km ³ /sec ²)	BLOCK DATA
TABLE(29)	234658.04	solar distance in CUL	BLOCK DATA
TABLE(30)	86400.0	seconds/day	BLOCK DATA
TABLE(31)	.000000000001	tolerance	BLOCK DATA
TABLE(32)	3600.0	seconds/hour	BLOCK DATA
TABLE(33)	15.0	degrees/hour	BLOCK DATA
TABLE(34)	3.141592653589793	п (180° in radians)	BLOCK DATA
TABLE(35)	1440.0	minutes/day	BLOCK DATA
TABLE(36)	0.0	<pre>indicator for sater code = 0 compute sater code > 0 no sator code</pre>	BLOCK DATA
TABLE(37)	0.0	radio frequency	BLOCK DATA
TABLE(38)	0.0	radio frequency	BLOCK DATA
TABLE(39)	0.0	radio frequency	BLOCK DATA
TABLE(40)	1.0	indicator for SPACEL osculating elements = 1 compute osculating elements = 0 no SPACEL osculating elements	BLOCK DATA
TABLE(41)	1.0	μ	POOL
TABLE(42)	f	flattening coefficient	POOL
TABLE(43)	(1 - f) * R	B - polar radius of the earth	POOL
TABLE(44)	(km/A.U.)/(km/CUL)	CUL/astronomical unit	POOL
TABLE(45)	(sec/day)/(sec/CUT)	CUT/day	POOL
TABLE(46)	(sec/hr)/(sec/CUT)	CUT/hr	POOL
TABLE(47)	(km/CUL)/(sec/CUT)	Convert CUL/CUT to kilometers/second	POOL
TABLE(48)	(km/CUL)/(sec/CUT) * (sec/hr)	Convert CUL/CUT to kilometers/hour	POOL
TABLE (49)	$\omega_{ m e}$ in rad/sec * (sec/CUT)	earth rotation in rad/CUT	POOL
TABLE(50)	· (km/CUL)/(km/mi)	miles/CUL	POOL
TABLE(51)	(mi/CUL) * (CUT/hr)	Convert CUL/CUT to miles/hour	POOL
TABLE(52)	2f - f ²	e ² - eccentricity of the earth squared	POOL
TABLE(53)	e	e - eccentricity of the earth	POOL
TABLE(54)	0.0	X component of U2	POOL
TABLE(55)	COS ε	Y component of U2	POOL

/BPOOL/ (continued)

Variable	Value	Description	Program Where Defined
TABLE(56)	sin ε	Z component of U2	POOL
TABLE(57)	rate of change of the mean long. of sun in rad/CUT	$\dot{ au}$ - rate of change of the mean longitude of sun in rad/CUT	POOL
TABLE(58)	$J_2 * R^2 * 3/2$	J	POOL
TABLE(59)	(sec/CUT)≠60	minutes/CUT	POOL
TABLE(60)	(km/CUL)/(sec/CUT) * 1000	Convert CUL/CUT to meters/second	POOL
TABLE(61)	$J_2 * R^2/2$	K ₂	POOL
TABLE(62)	-J ₃ * R ³	K ₃	POOL
TABLE(63)	-J ₄ * R ⁴ * (3/8)	K ₄	POOL
TABLE(64)	-J ₅ * R ⁵	K _s	POOL
TABLE(65)	(deg/hr)/(deg/rad)	radian/hour	POOL
TABLE(66)	(meters/ft) * 1000	kilometers/foot	POOL
TABLE(67)	.40915751	ϵ - obliquity of ecliptic in radians	POOL
TABLE(68)	1.0	KMULT for drag	POOL
TABLE(69)	ω_e in rad/sec * (deg/rad) * 60	earth rotation in degrees/minutes	POOL
TABLE(70)	1/(min/CUT)	CUT/minute	POOL
TABLE(71)	1.0	X component of U1	POOL
TABLE(72)	0.0	Y component of U1	POOL
TABLE(73)	0.0	Z component of U1	POOL
TABLE(74)	0.0	tolerance for R · U	POOL
TABLE(75)	1.0	tolerance for magnitude RXU	POOL
TABLE(76)-(80)	0.0	not used	POOL

/DAFPRM/ COMMON/DAFPRM/LDAF(13)

Variable	Description	Program Where Defined
LDAF(13)	Intermediate values from BRWORB used in computing the Data Acquisition Facility Parameters	BRWORB

$$LDAF_{1} = \left\{ \frac{1}{8} \gamma_{2}^{'} e^{"} \eta^{2} \left[1 - 11\theta^{2} - 40\theta^{4} (1 - 5\theta^{2})^{-1} \right] - \frac{5}{12} \frac{\gamma_{4}^{'}}{\gamma_{2}^{'}} e^{"} \eta^{2} \left[1 - 3\theta^{2} - 8\theta^{4} (1 - 5\theta^{2})^{-1} \right] \right\}$$

$$LDAF_2 = \left\{ \frac{1}{4} \frac{\gamma_3'}{\gamma_2'} \eta^2 \sin I'' \right\}$$

$$+\frac{5}{64}\frac{\gamma_5'}{\gamma_2'\eta^2}\sin I''(4+3e''^2)\left[1-9\theta^2-24\theta^4(1-5\theta^2)^{-1}\right]$$

LDAF₃ =
$$-\frac{35}{384} \frac{\gamma_5'}{\gamma_2'} e^{-2} \eta^2 \sin I'' [1 - 5\theta^2 - 16\theta^4 (1 - 5\theta^2)^{-1}]$$

LDAF₄ =
$$\left\{ \frac{1}{8} \gamma_2' \eta^3 \left[1 - 11\theta^2 - 40\theta^4 (1 - 5\theta^2)^{-1} \right] \right\}$$

$$-\frac{5}{12}\frac{\gamma_{4}^{'}}{\gamma_{2}^{'}}\eta^{3}\left[1-3\theta^{2}-8\theta^{4}\left(1-5\theta^{2}\right)^{-1}\right]\right\}$$

$$LDAF_5 = \left\{ -\frac{1}{4} \frac{\gamma_3'}{\gamma_2'} \frac{\eta^3}{e''} \sin I'' \right\}$$

$$-\frac{5}{64} \frac{\gamma_5'}{\gamma_2'} \frac{\eta^3}{e''} \sin I'' (4 + 9e''^2) \left[1 - 9\theta^2 - 24\theta^4 (1 - 5\theta^2)^{-1}\right]$$

LDAF₆ =
$$\frac{35}{384} \frac{\gamma_5'}{\gamma_2'} \eta^3 e'' \sin I'' [1 - 5\theta^2 - 16\theta^4 (1 - 5\theta^2)^{-1}]$$

$$\begin{split} \text{LDAF}_7 &= \left\{ -\frac{1}{16} \, \gamma_2^i \, \big[+ (2 + \mathrm{e}^{-2}) - 11 \, (2 + 3\mathrm{e}^{-2}) \, \theta^2 - 40 \, (2 + 5\mathrm{e}^{-2}) \, \theta^4 \, (1 - 5\theta^2)^{-1} \right. \\ &- 400 \, \mathrm{e}^{-2} \, \theta^6 \, (1 - 5\theta^2)^{-2} \big] + \frac{5}{24} \, \frac{\gamma_4^i}{\gamma_2^i} \, \big[2 + \mathrm{e}^{-2} - 3 \, (2 + 3\mathrm{e}^{-2}) \, \theta^2 \\ &- 8 \, (1 + 5\mathrm{e}^{-2}) \, \theta^4 \, (1 - 5\theta^2)^{-1} - 80 \, \mathrm{e}^{-2} \, \theta^6 \, (1 - 5\theta^2)^{-2} \big] \bigg\} \\ \text{LDAF}_8 &= \left\{ \frac{1}{4} \, \frac{\gamma_3^i}{\gamma_2^i} \, \left(\frac{\sin I^n}{\mathrm{e}^n} - \frac{\mathrm{e}^n \, \theta^2}{\sin I^n} \right) + \frac{5}{64} \, \frac{\gamma_5^i}{\gamma_2^i} \right. \\ &\times \left[\left(\frac{\gamma^2 \, \sin I^n}{\mathrm{e}^n} - \frac{\mathrm{e}^n \, \theta^2}{\sin I^n} \right) + \frac{5}{32} \, \frac{\gamma_5^i}{\gamma_2^i} \, \mathrm{e}^n \, \sin I^n \, (26 + 9\, \mathrm{e}^{-2}) \right] \, \big[1 - 9\theta^2 \, \mathrm{e}^{-2} \, \mathrm{e$$

$$LDAF_{10} = \left\{ -\frac{1}{8} \gamma_2' e^{-2} \theta \left[11 + 80\theta^2 \left(1 - 5\theta^2 \right)^{-1} + 200\theta^4 \left(1 - 5\theta^2 \right)^{-2} \right] + \frac{5}{12} \frac{\gamma_4'}{\gamma_2'} e^{-2} \theta \left[3 + 16\theta^2 \left(1 - 5\theta^2 \right)^{-1} + 40\theta^4 \left(1 - 5\theta^2 \right)^{-2} \right] \right\}$$

$$LDAF_{11} = +\left\{\frac{1}{4} \frac{\gamma_3^{'}}{\gamma_2^{'}} \frac{e^{"}\theta}{\sin I"} + \frac{5}{64} \frac{\gamma_5^{'}}{\gamma_2^{'}} \frac{e^{"}\theta}{\sin I"} (4 + 3e^{"2}) \left[1 - 9\theta^2\right] - 24\theta^4 (1 - 5\theta^2)^{-1} + \frac{15}{32} \frac{\gamma_5^{'}}{\gamma_2^{'}} e^{"}\theta \sin I" (4 + 3e^{"2})\right\}$$

$$LDAF_{12} = \begin{cases} -\frac{35}{1152} \frac{\gamma_5'}{\gamma_2'} \frac{e^{-3}\theta}{\sin I''} & [1 - 5\theta^2 - 16\theta^4 (1 - 5\theta^2)^{-1}] \end{cases}$$

 $[3 + 16\theta^2 (1 - 5\theta^2)^{-1} + 40\theta^4 (1 - 5\theta^2)^{-2}]$

$$-\frac{35}{576}\frac{\gamma_{5}^{'}}{\gamma_{2}^{'}}e^{-3\theta}\sin I^{-1}\left[5+32\theta^{2}(1-5\theta^{2})^{-1}+80\theta^{4}(1-5\theta^{2})^{-2}\right]$$

$$LDAF_{13} = \frac{e''}{\eta^2 \tan I''}$$

/DELKEP/ COMMON/DELKEP/DKEP(6)

Variable	Description	Program Where Defined
DKEP(6)	Perturbation $\triangle a$, $\triangle e$, $\triangle i$, $\triangle g$, $\triangle h$, $\triangle 1$	BRWORB
	$\triangle X = X_{t0} - X_{obs}$	
	where	
	X_{t0} = value of X on the pert tape at epo	ch
	X _{obs} = value of X on the pert tape at the requested time	

/PIND/ .

COMMON/PIND/NPT

Variable	Description	Program Where Defined
NPT	Perturbation tape logical number	MAIN - Initializes
	> 0 read pert tape	ELEMLD
	< 0 do not read pert tape	
	= 0 error	

/PRTKEP/
COMMON/PRTKEP/PKEP(3)

Variable	Description	Program Where Defined
PKEP(1)	$\mathbf{g_0} + \Delta \mathbf{g}$	BRWORB
PKEP(2)	$\mathbf{h_0} + \Delta \mathbf{h}$	
PKEP(3)	$1_0 + \Delta 1$	
	where	
•	X_0 = value of X at epoch	
	$\Delta X = X_{t0} - X_{obs}$	
	X_{t0} = value of X on the pert tape	at epoch
	X _{obs} = value of X on the pert tape a requested time	at the

/RADIAN/ COMMON/RADIAN/TAU, AMBDA

Variable	Description	Program Where Defined
TAU	τ - longitude (in radians) of the sun on reference date	MAIN
AMBDA	λ - hour angle (in radians) of the first point of Aries on reference date	MAIN

2. BULLETIN COMMON Block Cross Reference Table

This section contains a cross reference table describing the COMMON area structure in the BULLETIN program.

BULLETIN COMMON CROSS REFERENCE TABLE

SUBROUTINES

	M A I N	B R ₩ O R B	CHAZPL	C K S U M	D A F	D A T A N Ø	D A T E	D A Y C T	D M S T O R	D R A G	D R A G L D	D R E F O D	ELCOZø	ELEMLD	G T R A C E	H M S T O R	INTPLØ	J D S C U T	J U L H M S	KEPLRI	LAGRNØ	N O D A L X	N S P T	P A G E I	P E R T F Ø	P 0 0 L	P Q U V	P R E D S	P R I N T	REDUCE	S D F ₩ O E	S P A C E L	S S P T H T	T M E T B	U T G S T	U V I	V E C T O R	₩ M A P L D	Z E R O	BLOCK DATA
BPOOL	Χ	Х	х		Х				Х				Х	Х	Х	Х		Х				Х	Х	Х	Х	Х	Χ	Х	Х		Х	Х	Х	Х	Х	Х				Х
DAFPRM		Х			Х			ļ															Г																	П
DELKEP		Х																										Х												コ
DHMNOD	Χ					Ì	Ī								Х							Χ																		
DHMNS															X								X																	П
DOTELE		Х			Х										Х							Х	Х					Х												
ETAP		Х												·														Х							,					П
GMPR		Х																										Х												
LPPRM		Х													Χ													Х												\Box
NOD		Х						<u> </u>			L			L.,	Χ							Х	Х																	
NODMAP	X														Х							Х																Ш	Ш	
NSMAP	Ш								<u> </u>						X								Х															Ш		
OSCELE		Х												Х	Х							Х	Х					Х				X								
PERTL		Х									L			Х	Х							Χ	X																	
PIND	Х	Х												Х																										
PRTKEP		Х																										Х												
RADIAN	Х																												Х		X									\exists
SDT																																	X		Х					П
SECPRM		Х												Х	X							X	Х					X												
THETAP		Х			X					L																		Х		\Box								\Box		

D. ABBREVIATIONS

The following abbreviations and symbols are used in this program.

a	Semi-major Axis
В	Polar Radius of Earth
CUL	Canonical Unit of Length (CUL = earth radius)
CUT	Canonical Unit of Time
e	Eccentricity
E	Eccentricity Anomaly
${f f}$	Flattening Coefficient (1/295.25)
g	Brouwer's Notation for Argument of Perigee
h	Brouwer's Notation for Right Ascension of Ascending Node
i	Inclination
K	Brouwer's Notation for Zonal harmonics
Q	Brouwer's Notation for Mean Anomaly
△ ℓ	Correction to Brouwer's Mean Anomaly
M	Mean Anomaly
N (2,Q)	First Order Drag Coefficients
N (3, Q)	Second Order Drag Coefficients
P_a	Anomalistic Period
$\dot{ ext{P}}_{ ext{a}}$	Derivative of Anomalistic Period
<u>r</u>	Satellite Position Vector
<u>r</u> *	Unit Satellite Position Vector
T_{0}	Epoch — Time of Elements
	Time of Drags
$\begin{pmatrix} X \\ Y \\ Z \end{pmatrix}$	Satellite Position Vectors

```
Satellite Velocity Vectors
Ω
         Right Ascension of Ascending Node
\dot{\Omega}
         Derivative of Right Ascension of Ascending Node
         Argument of Perigee
ω
         Derivative of Argument of Perigee
         Rotation of Earth
         True Anomaly
         Hour Angle (in radians)
         Longitude (in radians) of Sun on Reference Date
\tau
\dot{\tau}
         Motion of \tau
θ
         Elevation
         180° in radians
\pi
         Gravitational Constant \times Mass of Earth (Usually = 1)
μ
```

E. REFERENCES

- 1. Method of Orbit Determination Escobal, Pedro Ramon: John Wiley and Sons, Inc., 1965.
- 2. Mathematics of Orbit Determination Siry, Joseph W.: GSFC Publication X-547-64-151, June 1964.
- 3. Brouwer-Lyddane Orbit Generator Routine Galbreath, E. A.: GSFC Publication X-553-70-223, June 1970.
- 4. Definitive Orbit Determination System: Module Performance and Design Descriptions, Volume II IBM Corporation, under NASA Contract No. NAS 5-10022, November 1968.

BROUWER BULLETIN ROUTINE

III. OPERATING INSTRUCTIONS

This routine provides an economical means of disseminating pertinent spacecraft orbital information to observing stations and other interested persons. The Bulletin information includes the general characteristics of the orbit of the satellite, revolution numbers, as well as data useful for certain prediction purposes. An ephemeris is furnished to those who utilize the spacecraft for scientific, technological, and other purposes. Sufficient information from which the pointing angles may be determined from standard transformations is also included.

The Bulletin routine reads input data from cards and, optionally, from the complementary perturbation tape. An output tape is produced containing pertinent spacecraft orbital information.

A. REQUIREMENTS AND OPTIONS

A production run requires a program tape containing the Bulletin and ancillary routines in the object module. The program tape is compiled using the appropriate source deck and the Fortran H compiler of an IBM S/360 model 75 or model 95. Other requirements include three 9-track tape drives or two 9-track tape drives and one 7-track tape drive, a card reader, and an on-line printer. Data cards are prepared as specified in Section III B-2 (Input Card Format).

Options are available in the program to load drag data from cards, to use the complementary perturbation tape, and to add the data acquisition facility parameters. In addition, this program has a change of constants capability. By use of the change of constant cards, any of the eighty values in TABLE can be changed if the user desires. The first forty values in TABLE must be changed by the first change of constant card and the last forty values by the second change of constant card. TABLE(80) is listed in COMMON/BPOOL/ in Section II C-1.

There are special options which may be indicated by the change of constant cards.

- 1. The sator output is suppressed by setting TABLE(36) equal to +1.
- 2. The radio frequencies are stored in TABLE(37), (38) and (39). These locations are now set to zero but any or all may be changed.

- 3. The SPACEL osculating epoch elements output is suppressed by setting TABLE(40) equal zero.
- 4. When creating the perturbation tape, drag can be included in the computation of the elements. Drag data can also be loaded from card to provide corrections to the Brouwer elements. The Bulletin user may desire to use drag from card only if no drag is on the perturbation tape or he may desire to use drag from tape and card. This option is controlled by TABLE(68), delta M drag multiplier. TABLE(68) is presently set equal to +1, which causes the drag data from card to be used whether or not drag is included on the pert tape. If TABLE(68) is set to 0, drag data from card is used only when drag is not included on the pert tape. If KMULT, which is on the pert tape equals +1, no drag is included on tape, and if KMULT equals 0, drag is included.

B. INPUT

Two types of input data are provided.

- 1. Fixed formatted cards are used to input values of the epoch elements, observation times and various options.
- 2. The complementary perturbation tape provides corrections used by the Brouwer Orbit Generator; its optional use is controlled by the PERT option on the elements time card.

1. Limitations

There are two limitations on the card input.

- a. 27 is the maximum number of columns to be computed from a single column card (see option 1 for card h). If the user inputs a number larger than 27, an error will not be generated but the number will be reduced to 27.
- b. For SPACEL elements output, column elements time must be equal to a multiple of 0.05 day.

2. Input Card Order

a. Run identification

- b. Change of constant card(s) followed by blank, or blank if no constant is to be changed
- c. Satellite identification
- d. Drag card(s) followed by blank, or blank if no drag is used
- e. Change of constant card(s) followed by blank, or blank if no constant is to be changed
- f. Elements time (Epoch)
- g. Elements (2)
- h. Column elements time and drag data card(s) followed by a blank.

Option 1 - 1 or 2 cards specifying the number of columns and the delta T desired for each card

Option 2 - 3K + 1 cards spaced at equal time interval, K = 1 to 18

- i. Date of issue
- j. Remarks
- k. Bulletin request
- 1. Spacel bulletin
- n. Data Acquisition Facility (DAF) parameters card or blank if not requesting DAF parameters

3. Card Format

Format Specification Interpretation

Format Code	Interpretation
In	digits with no decimal point right adjusted in a field of n columns
	example: 35 in an I3 format: b35

Format Code

Interpretation

Fn.m

digits with a decimal point anywhere in a field of n columns or digits punched with no decimal point, in which case the point will be assumed between the m-1th and mth column of the field

example: 40.1 in an F5.2 format: b40.1 or 40.1b or b401b

Dn. m

digits with a decimal point anywhere in a field of n columns or digits right justified in a field of n columns with an exponent of the form $D \pm XX$, where XX is the power of 10 to which the number is raised. If there is no decimal point it will be assumed to be m places to the left of the "D".

example: 40.1 in a D8.5 format: b40.1bbb or 40.1 D + 00 or 401.D - 01, etc.

An

n alphanumeric characters

a. Run Identification Card

,			
	FIRST LINE OF RUN IDENTIFICATION	SECOND LINE OF RUN IDENTIFICATION	
		000000000000000000000000000000000000000	0000000000
1 2 3 4 5 6 7 8 9 10 11 1	12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 4	41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 68 70	71 72 73 74 75 76 77 78 79 80
	RUN IDENTIFIC		111111111
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		222222222
3.3 3 3 3 3 3 3 3	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3 3 3 3 3 3 3 3 3 3
4 4 4 4 4 4 4 4 4 4 4 4	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	44444444
5 5 5 5 5 5 5 5 5 5 5	555555555	555555555555555555555555555555555555555	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

Card Col.	Format	Field Description
1-8	bbbb	Leave blank
9-40	A40	First line of run identification
41-70	A40	Second line of run identification
71-80	·	Not used

b and e. Change of Constant Card

Card Col.	Format	Field Description
1-2	I2	Table location to be changed
3-25	D23.16	Constant to be inserted in above location
26-27	I2	Table location to be changed
28-50	D23.16	Constant to be inserted in above location
51-52	I2	Table location to be changed
58-75	D23.16	Constant to be inserted in above location
76-80		Not used

c. Satellite Identification Card

4	4														Į																		Ī																																		I	I		l		I					ı			Ì	1
						Α				L	D	ΑT	ΓE	:		Н	οι	JR	. ,	_	_	LE	=		L	0	N	31																				S				_	IT.	Έ																											77.77
						IE				-		М	_	D	1	Н	_	M	1	_	E(_		0	2	М				SE	L																				A٨		_														"										1			"	7
		0	()	0	0	0	0			-		ш		- 1						н.	0 21					. 1				0	0 31 :	0	0 i 13 :	0	O 35.	0	0	0 1	0	0	0 1	0	0	0	0	0	0 1) [0 1	0 1	0 1	0 1	0 (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
		i		1	1	1	1	i	1	i	i	1	1	1	i	1	Ī	1	լի	1	Ī	1	1	1	1	1	ĭ	1	1	٠.	ĭ	•	.[•	•	1	•	•	-	•			-	-								i	1	1	1 1	1	ĭ	1	1	ì	ì	i	1	ī	i	1	ï	1	1	1	ï	ì	1	1	1	1	1	ı	1	1	ı
1		2	:	2	2	2	2	2	2	2	2	2 :	2	2 :	2 2	2 2		2 2	2 2	2 2	2	2	2	2	2	2	2	2	ړ										E]	2 :	2 :	2 2	, ,	١,	,	2	2	2	2	,	2	2	2	2	2	2	2	,	2	2	2	2	2	,	2	2	2	ı
	I	•		•	•	,	. 1		•	,	,	,		,	, .		١,		, ا		١,	3	,	,	,	•	,	•	•	,	,	•		,	,	•	•	,	•	•	•	,	•	•	2	•	1	,	,	•	•	•	2					•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	ı
	ı										-								ł		ı				1		١			١			ı																			•					ľ	_	Ī	Ī	-	Ī	-	Ť	Ī	•	•	•	-	-	-	-	•	•	-	•	-	-	-	•	ı
1		4	4	1	4	4	1	4	4	4	4	4 4	1	4 4	١ķ	1 4	4	. 4	4	4	4	4	4	4	4	4	4	4	4	4	4	4 .	١	1	4	4	4	4 4	4	4	4	4 4	4	4	4	4	4	4 4	1	4	4 4	4	4 4	1 4	1 4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4 .	4	4	4	4	4	4	4	4 .	4	ł
		5	•	5	5	5	5	5	5	5	او	لدة	ı	-	1	_	۰	_	_									_	_	4	-	_	J			5	5	5 !	5 :	5	5 :	5 !	5	5	5	5	5 :	5 5	زز	رز	-	_			_		_	4	5	5	5	5	5	5	5	5	5	5	5	5 !	5	5	5	5	٤.	-	-	_	_	-	1
L		9	_	_	_	_	_	_																														_	_		-	-	_	_	1	_	_													`	_		-	_	-	_	_	-	_	_											

Card Col.	Format	Field Description
1-7	17	Satellite identification number
8-13	I 6	Date of reference: year, month, day
14-22	19	Hour angle of the first point of Aries on above date (λ): hours, minutes, seconds
23-32	I10	Longitude of Sun (τ): degrees, minutes, seconds
33-44	b	Leave blank
45-56	A12	Satellite name
57-80		Not used

d. Drag Card

1																																		Į																ļ															Į					1
		ΑI			_	A	•	_		L	_	_	TI	_	_	-	_	_										١	1	(2,	Q))																	ì	4 ((3,	Q)																	
1		ID		ı		М	- 1		1	•		М		М.	Sį	•		1	Ĭ																	_																										u		7						1
	000	0 (0	0 0	0	0 (0 0	0	0	0	0	Ō	0 (0	0	0	0	G	oli	0 () (0	0	0	0	0	0	0	0	0	0	0 1) () (0 1) (0	0	0	0	0	0	0 (0 (0	0	0	0	C	C	0	0 0	0	0	0	0	0 (0 (0	0	0	0	0	Ō	O () (3 0	0	j	ı
	1 2 3	4	6	7 4	9	10 1	ոի	2 13	14	15	16	17	8 1	12	8 21	22	23 :	24	25 2	16 2	7 21	¥ 29	30	31	32	33	34	35	36	37 :	18 3	9 4	0 4	1 4	2 4	34	4:	46	47	48	49 :	50 5	51 5	2 5	3 54	1 55	56	57	58	59 (60 E	61 62	2 63	1 64	65	56	G7 6	8 6	8 X) 71	"	n	74	75	75 7	<i>ח</i> 1	87			ı
ì	111	1	1	1 1	1	1	1 1	1	١,	1	ij	1	1	יווי	1	1	1	1	1	1	1 1	1	1	1	1	1	1	Ì	÷	÷		÷	_			╗	i	1	1	1	1	1	}	1	1 1	1	1	.1	1	1	ı	1	1	1	1	1	ī)	1 1	ļ	יו	1	1	1	1	1	H	1 1	ŀ	ŀ
	2 2 2	, ,	, ,	٦,		١,	ا,	, ,	١,	,	٦	,	, ,	١,	, ,	١,	,	ار	, .	, ,	, ,	, ,	,	2	,	,	,					; (, ,	, ,	2	,	,	2	,	, :	2 2	, ,	,	,	2	2	,	2 2	, ,	, ,	2	,	,	,	, ,	, ,	,	2	,	,	,	,	, ,	, ,	,	l
	""	٠,		"	-	٠ ا	"		ľ	ľ	'	•	' '	ľ	٠.	ľ	•	'	1	• •			٠	•	-	•	•	٠	٠	•	•	•		• •	•		٠.	•	٠	٠	•	٠	•		٠.	•	٠	٠	٠	٠	•	٠.	•		٠	٠	•	•		٠	۴	٠	٠	٠	•		•	• •		ı
	3 3 3	3 :	3 3	3	3	3	3 3	3 3	3	3	3	3	3	ıls	1 3	3	3	3	3	3 :	3 3	3	3	3	3	3	3	3	3	3	3	3	3 :	3 :	3 .	3 :	3	3	3	3	3	3	3 :	3 3	3 3	3	3	3	3	3	3	3 3	3 3	3	3	3	3	3 :	3 3	3	3	3	3	3	3	3 :	3 3	3 3	j	ı
1	1			1			١		ı	l			1	1		١.		١														_																													l.									ı
1	4 4 4	4	1 4	4	4	4	4 4	1 4	4	4	4	4	4 4	1	4	4	4	4	4	4 4	4 4	4	4	4	4	4	4	4	4	4	4	4	4 4	4 4	4 4	4	4	4	4	4	4	4	4 4	4 4	4 4	4	4	4	4	4	4	4 4	1 4	4	4	4	4	4 4	4	4	4	4	4	4	4		• •	4	,	ı
	1			١.			راء		L	L	_	_	÷	_		_		_	-	-	-	-	_	_	_		E		_			. .							5	E		_	_		_	-	-		_	È					5	۵.	5		5 5	. 5	5	5	5	ے	ب	_	_	_	_	ı
i	5 5 5	3	ט ט	<u>"</u>	٤	ستبا																				•	•	4	-	_	ن -	J :	J :	, ;	J	, ;	, 3	J	٥	ر									_	4	<u>ٺ</u>	_	, ,	, ,	J	J	J .	٠.		_	خا	*	•		-					
	سسل	_																													_	_	-	-	-	_	_															_		_	-	_	_													

Card Col.	Format	Field Description
1-7	17	Satellite Identification number
8-13	I 6	Date of Drag: year, month, day
14	b	Leave blank
15-18	I4	Time of Drag: hours, minutes
19	b	Leave blank
20-24	I5	Seconds
25	b	Leave blank
26-48	D23.16	N(2,Q) First Brouwer drag parameter
49-71	D23.16	N(3,Q) Second Brouwer drag parameter
72-80		Not used

f. Element Time Card

	SAT	DATE .	TIME Y	PASS E	
	ID	YMDHM	SEC E	NO. OF	
	0000000	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		00000000000
	hiiiiiii			33 4 33 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4	11111111111
	,,,,,,,	22 22 22 22 22 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ELEMENT TIME CARD 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
ı					
	3 3 3 3 3 3 3	3 3 3 3 3 3 3 3 3 3	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3 3 3 3 3 3 3 3 3 3 3
ŀ	4444144	4 4 4 4 4 4 4 4 4 4 4	6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	444444444
l	5 5 5 5 5 5 5	المسلسلمة والأوا		555555555555555555555555555555555555555	55555
Ì.					

Card Col.	Format	Field Description
1-7	17	Satellite Identification Number
8	b	Leave blank
9-14	I6	Date of elements: year, month, day
15-18	I4	Time of elements: hours, minutes
19-24	F6.3	Seconds
25	I1	Input element type code: 1 = type 1 elements on next 2 cards 2 = type 2 elements on next 2 cards
26-62	bbbb	Leave blank
63-67	I 5	Pass number of elements
68	b	Leave blank
69	I1	Perturbation tape option 1 = pert tape is used blank = no perturbation
70-80	Not used	

g. Elements Card 1

4				
	1ST ELEMENT	2ND ELEMENT	3RD ELEMENT	
		6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
1	1 2 3 4 5 8 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23		85 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 68 70 71	72 73 74 75 76 77 78 79 80
	1111111111111111111111111111	ELEMENTS CARD 1		
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	22222222222222222222222222	22222222
	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3 3 3 3 3 3 3 3
	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4444444
	55555555555	555555555555555555555555555555555555555	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

Card Col.	Format	Field l	Description
		Type 1	Type 2
1-23	D23.16	X (CUL or km)	a (CUL or km)
24	b		
25-47	D23.16	Y (CUL or km)	e
48	b		
49-71	D23.16	Z (CUL or km)	i (radians or degrees)
72-80		Not u	sed

g. Element Card 2

Card Col.	Format	Field D	Description
		Type 1	Type 2
1-23	D23.16	X (CUL/CUT or km/sec)	M (radians or degrees)
24	b		
25-47	D23.16	Ý (CUL/CUT or km/sec)	ω (radians or degrees)
48	b		
49-71	D23.16	Ż (CUL/CUT or km/sec)	Ω (radians or degrees)
72-80		Not	used

Cards 1 and 2 will have one of the above two formats (type 1 or type 2) depending on the type specified in column 25 of the elements time card.

Elements on card 1 and card 2 must be of the same units (CUL - radians or km - degrees).

h. Column Elements Time and Drag Data Card

1				S	4	1					D.	ΑT	Ē		Ī			T	М	E																				,,	•									Ī				_			ļ			_						•									N (11111	י
				Ī	D	_				γ	_1	М	1	D	1	Н	١	_	L		E			1																Ċ	2,																		:0						_	_								j	01 C0	4				۲ ک	•	_			(
Ţ	-	_	-	•	•	-	-	٠,	71	_	- 1		П.		1.	-	0		1-		1			1) (0	0	0	0	0) (0	0	0	0	0	I	0 1	3	0	0	0	0	0	1	0 (1	0 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0) () () (
ı	1	1	1	1	:	1	•	1	;	9	10	11 1 1 1	: ו י	3 14 1 1	1	1	"	18	;	20	1	22	23	ľ	6 2: 1 1	5 ZI	5 Z	1	1	29 1	30 1	1	2	2 3	1	34	35	36	3	73	18 3 1	9 4	.0	1	42	43	4		5 4	1	17 4	18 4	15 :	50 1	1	57 1	53	54	55 1	56 1	1	58	1 52	9 61	3 6 1 1	16	2 6 1	3 6 1	4 1	1	1	5/	1	1	70 1	"	7Z :	13	1	ו	7	ï	,	".	ľ
	2	2	2	2	2	2	2	2	2	2	2	2 2	2	2 2	2	2	2	2	2	2	2	2	2	2	2 2	2 2	2 2	2 :	2	2	2																		A			Į	2	2	2	2	2	2	2	2	2	2	2	2	? 2	· ? :	2 :	2 .	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	
ŀ	3	3	1	3	3	3	3	3	3	3	3	3 :	3	3 3	1	3	3	3	3	• 3	3	3	3	1	3	3	3 :	3	3	3	3	3	1 3	3 .	3	3	3	3	3	3	3	3	3	3	3	3	3	1 :	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1 3	3	3 :	3 :	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
ŀ	4	4	4	4	4	1	4	4	4	4	4	4 4	1	4 4	4	4	4	4	4	4	4	4	4	4	4	4	4	1	4	4	4	4	4	,	4	4	4	4	4	ļ	4	4	4	4	4	4	4	1	4	١	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	1	1	1	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	
1	E				_		E	١	۰		اء	-	l	_	L	_	_	-	_	_	_	_	-	•	-	-	-	-	-	-	_	_	_		_					: 1	5 !	. :	£	_	E								E		_	_		-	-	_	_										c				l.	اء				٤.	١		ل	Ц	ļ

Card Col.	Format	Field Description
1-7	17	Satellite Identification Number
8	b	Leave blank
9-14	16	Date of column elements: year, month, day
15-23	19	Time of column elements: hours, minutes, seconds
24-46	D23.16	N(2,Q) First column drag parameter
47-69	D23.16	N(3,Q) Second columns drag parameter
70-71*	I2	Number of columns to be computed
72-78	I7	Column delta T in minutes
79	b	Leave blank
80	ľ1	Punch if two cards are to be read. Blank if only one card is to be read.

Note: For spacel elements, column time must be equal to a multiple of 0.05 day.

^{*}Columns 70-80 are optional.

Option 1 - If columns 70-80 are used, one or two cards are needed, specifying the number of columns and delta T desired for each card. If two cards are used, column 80 of the first card must be punched.

Option 2 – If columns 70-80 are not used, 3K + 1 column cards, spaced at equal time interval, must be loaded (K = 1, 18).

i. Issue Date of Bulletin Card

	A		Į													Į	Į						Ī						ļ					Į								,,																										,,,	111			"	ıı.	"	
1	'		D/	A 7	Έ																																																																						
ı		Υ	ı	М	1	D	0		'''	$^{\prime\prime}$	"	"	"	${\it "}$	"	7),	7),	7	7),		II	"			"	"	"	"	"	"	"	7	"	"	l)	Ш	Ш	"	"	u	Ш		Ш	77	<u></u>	<u> </u>	<u></u>	<u></u>	Ш	Ш	Ш	"	Ш	Ш	m	///	Ш	m	<u> </u>	<u> </u>	"	"	77	"	<i>"</i>	7)	77	7)	77)	77.	77,	ñ	Ť,	'n	7
Г		0 0	110	n n	10	10	Г	0	0	0 1	0	0	0	0	0	Ū	0	0	ō	0	0	0 1	G) () () () () () (Ĭ) (0 1	0	0	Ō	0	0 () () (0	0	G	0	0	0	0	0 1	0 (0 () (0	0	0	0	0 1	0 (0	0	0	Ð	0 () (0	0	0	0	Ç	0	0	0 () Q	U	0	Ū	ı
1	- 1		,	3 4	ı١,		5	i	9 1	10 1	1 12	2 13	14	15	16	17	18	19	20	21	22 :	23 2	4 2	5 2	6 2	12	8 2	9 3	0 3	1 3	2 3	13 :	34 :	15 3	86 :	37 2	18 3	9 4	0 4	42	2 43	4	45	46	47	48	15 5	0 5	51 5	2 5	3 54	55	56	57	58 5	8 6	0 61	€2	63	64 1	5 6	6 6	1 61	8 65	30	71	72	73	74	15 7	6 T	1 78	8 78	80	1
ı		1	1	1 1	ψ	1	þ	1	1	1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	ı	1	· 	55	·	· IE	·	A	TI	<u></u>	C	۸F	·	j	1	1	1	1	1	1 1	1 1	1	1	1	1	1	1 1	1	1	1	1	1 1	1 1	1 1	1	1	1	1	1	1	1 1	l 1	. 1	1	I
ı		2 :	2/2	2 2	2 2	2	2	2	2	2 :	2 2	2	2	2	2	2	2	2	2	2	2	2	2 :	2 :	2 :	2 :	? :	2 2	? ?	2 :	? :	21			_		-							ب	2	2	2	2 :	2 :	2 2	2 2	2	2	2	2	2 :	2 2	? 2	2	2	2	2 2	2 2	2 2	2	2	2	2	2	2 :	2 2	! 2	? ?	2	ı
l		3 :	3	3 :	3	3	3	3	3	3	3 3	3	3	3	3	3	3	3	3	3	3	3	3 .	3 :	3 :	3 :	3 :	3 :	3 :	3 :	3	3	3	3	3	3	3	3 :	3 3	3	3	3	3	3	3	3	3	3 :	3 :	3 3	3 3	3	3	3	3	3 :	3 3	3	3	3	3	3 :	3 3	3 3	3	3	3	3	3	3	3 3	3	3	. 3	1
١		4	4	4 4	,	۱ 4	4	4	4	4	4 4	۱ 4	4	4	4	4	4	4	4	4	4	4	4		1	1 4	, 4	4 4	1		ļ	4	4	4	4	4	4 4	1 4	1 4	1 4	4	4	4	4	4	4	4	4 4	4 4	4 4	1 4	4	4	4	4 .	4 4	1 4	4	4	4	4	4 4	1 4	1 4	4	4	4	4	4	4	4 4	4	4	4	I
I		5 !	إ	5 1	, ا	. 5	5	5	4	5	٠	_	_	_	_	-	_	_	_	_	_	_	-	_	-	-	-	-	-	_			5	5	5	5	5 :	i :	i 5	i 5	i 5	5	5	5	5	5	رو	-	_	_	_	_	_	•	٤	5 :	5 5	5	5	5	5 :	5 5	5 5	5 5	5	5	5	5	5	نو	-	_	_	_	4
1		ן י	٦,	•	Ϊ	_	۲	۲	*																									_		-	-	_					٠	۰												`	-	-	_	_	_		_	_	_	-									
L	_	۔ما	•	-																																				_																																			

Card Col.	Format	Field Description
1-6	I6	Issue Date of Bulletin: year, month, day
7-80		Not used

j. Bulletin Remarks Card

Card Col.	Format	Field Description
1-8	bbb b	Leave blank
9-40	A40	Line 1 of Remarks
41-72	A40	Line 2 of Remarks
73-80		Not used

k. Bulletin Request Card

						İ																																																										
	w	M,	ΑP						R1			;		A F					EN A	D				E TI	NE MI			1	∆ . A 1			11	4C																															
	0	0	0 0	0	·O	0	0	0	0	0	0	0 1	0	0	0	οŢ	0	0	0 (0	0	0	0	0 0	0	ß	0 (10	0	0 0	0	0	0	0 0	C	Đ	0 (0 0	0	0	0 (0 0	0	0	0 (0	0	0 0	0 (0	0	0 0	0	0	0 0	ŋ	ō	0 1	0 (0 0	Ō	0	0 (П
	١	2	3 4	h	6	7		9 1	0 1	1 12	13	14 1	5 11	17	18	19 2	0 2	22	23 2	4 25	26	27	28 2	9 30	31	22	33 3	4 3:	35						4	45 4	16 4	7 48	45	50	51 5	7 53	54	55 :	66 5	7 58	59 (60 6	1 62	63	64 (i5 64	i 67	68	69 <i>1</i> (0 77	12	73 1	14 7	15 71	5 17	78	79 8	•
	1	1	1 1	1	1	1	1	1	1 1	1	비	1	1 1	1	1	ᅦ	1 1	1	1	1 1	ᅦ	ᅦ	1	1 1	1	1	۱li	-						• •		1	1	1 1	1	1	1	1 1	1	1	1	1	1	1	1 1	1	1	1 1	i	1	1.1	1	1	1	1 1	1 1	1	1	1	ı
1	L	_		l.		l.	_	_			L	_			_		J.	_	_				_		_	_	اا۔							AR																														- 1
	2	2	2 2	2	2	2	2	2 :	2 2	? 2	[2]	2	2 2	2	2	2 2	2 2	2	2 :	2 2	2	2	2 :	2 2	2	2	2 :	7	ī	٠١٠	Ŧ	-	-		1-		2 :	2 2	2	2	2 2	2 2	2	2	2 2	? ?	2	2 2	2 2	2	2	2 2	2	2	2 2	! 2	2	2	2 2	2 2	<i>l</i> 2	2	2 2	'
	3	3	3 3	3	3	3	3	3 :	3 3	3	3	3	3 3	3	3	3	3 3	3	3 :	3 3	3	3	3	3 3	3	3	3 3	3	3	3	3 3	3	3	3 3	3	3	3 :	3 3	3	3	3 :	3 3	3	3	3 3	3	3	3 3	3 3	3	3	3 3	3	3	3 3	1 3	3	3 :	3 3	3 3	3	3	3 3	,
	4	4	4 4	1	4	4	4	4	1 4	4	4	4	4	4	4	4	1 4	4	4 4	4	4	4	4 4	4 4	4	4	4 4	4	4	4 4	1 4	4	4	4 4	4	4	4 4	1 4	4	4	4 4	1 4	4	4 .	4 4	4	4	4 4	1 4	4	4 .	4 4	4	4	4 4	4	4	4 /	4 4	1 4	4	4	4 4	. 1
	5	5 !	5 5	5	5	5	5	5_	خرة	عسا			-			1	1.	-	_	-		_	_	_		_	_	5	5	5 5	5	5	5 !	5 5	5	5	5 5	5 5	٤	<i>-</i>	_	_	_		7	4	٤	5 5	5	5	5 !	5 5	5	5	5 5	5	5	5.5	3_5	-	_	_		Ĺ

Card Col.	Format	Field Description
1-4	A4	The word WMAP
5-6	bb	Leave blank
7-12	I 6	Starting Date: year, month, day
13	b	Leave blank
14-19	I 6	Starting Time: hours, minutes, seconds
20	b	Leave blank
21-26	I6	Ending Date: year, month, day
27	b	Leave blank
28-33	I 6	Ending Time: hours, minutes, seconds
34	b	Leave blank
35-37	I 3	Latitude increment (degrees)
38	b	Leave blank
39-43	I 5	Inclination (.01 degrees)
44	b	Leave blank
45-49	I 5	Pass number
50-80		Not used

1. Spacel Bulletin

Card Col.	Format	Field Description
1-7	· 17	Satellite Identification Number
8	b	Leave blank
9-14	A6	Abbreviation of popular name of spacecraft
15	b	Leave blank
16	A1	Source of spacecraft
17	A1	Launching site
18	b	Leave blank
19-22	A4	Norad number of object
23-29	bbbb	Leave blank
30-37	F8.3	Initial Julian Date of Space associated with
		the first time the spacecraft achieved its
		orbit
38-44	b	Leave blank
45-48	A4	Brightness
49	b	Leave blank
50-54	A5	Ratio of spacecraft weight to reference
		weight in kilograms per square meters
55	b	Leave blank
56-60	A5	Radio frequency in decakilocycles
61	A1	Type of modulation
62-64	A3	Transmitted Power in Centiwatts
65-66	b	Leave blank
67	A1	Center of Attraction
68-69	A3	Orbit number
70-80		Not used

m. Data Acquisition Facility Parameter Request Card

	SAT	DATE TIME		
<u> </u>	ID	YMDHM		
1	00000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00000000000000000000000000000000
1			DAF CARD	11111111111111111111111111111
	2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	222222222222222222222222222222222222222	2222222222222222222222222
1	3 3 3 3 3 3 3	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3333333333333333333333333333	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
	4 4 4 4 1 4 4	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	444444444444444444444	4444444444444444444
	5 5 5 5 5 5 5	555	55555555555555555	65555555555555555

Card Col.	Format	Field Description
1-7	17	Satellite Identification Number
8	b	Leave blank
9-14	16	Date of observation: year, month, day
15	b	Leave blank
16-19	I 4	Time of observation: hours, minutes
20-80		Not used

INJUN-5 BROUWER BULLETIN	RUN ID
05+0 •8068124200000000p+03	CONST
	BLANK
68066027102010842116633112826600 INJUN-5	SAT ID
680 6602710220 0000 -00000 +0.1603900000000000000000000000000000000000	DRAG
	BLANK
6806602 710220000000.0002	CONS T
	EPOCH
+0.1251084511940000D+01 +0.1157617002230000D+00 +0.1407937930540000D+01 +0.1727337869180000D+01 +0.6067807041530000D+01	ELEM 1
+0.1727337869180000D+01 +0.6067807041520000DD01 +0.3487079298330000D+00 6806602 71022300000000+0.1603900000000D-08	
033	1008000
710 303	BLANK
INJUN-5 BROUWER BULLETIN	I SSUE
WMAP 710223 000000 710302 081500 010 04090 11292	REMARKS
6806602 INJUN5 UW 3338 4914 3914 3977.842 11292	REQUEST
- 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	SPACEL
	DAF

Figure 2. Listing of Sample Input Data

4. Perturbation Observation Tape Format

The complementary perturbation tape provides corrections used by the Brouwer Orbit Generator and the Bulletin Prediction. Its optional use is controlled by the PERT option on the elements time card (card f). A punch in column 69 indicates that the tape is to be used. The pert tape is a 9-track binary tape consisting of one header record followed by seven or more data records.

See Section III-C for the job control language cards required in a production run of the Bulletin including perturbations.

Table 1
Format of Perturbation Observation Tape

Header Record

Word Number	Word Contents
0	Fortran word count
1	Time increment — days
2	Month
3	Day
4	Year
5	Satellite Identification Number
6	Input semi-major axis — e.r.
7	Input eccentricity
8	Input inclination
9	Input right ascension of the ascending node — degrees
10	Input argument of perigee — degrees
11	Input mean anomaly — degrees
. 12	Input time from midnight — days
13	Input period — minutes
14	Number of records on tape excluding header and trailer records
15	Delta mean anomaly option indicator (KMULT) (1 — delta drag mean anomaly not computed on tape 0 — delta drag mean anomaly computed on tape)

Table 1 (continued)

Date Record

Word Number	Word Contents		
0	Fortran word count	-	
1	Time in seconds from epoch		
2	a (semi-major axis) — e.r.		
3	e (eccentricity)		
4	i (inclination) $-\pi/2 \le i \le \pi/2$		
5	\triangle M (delta mean anomaly change from T_0)	$\phi \leq \Delta M \leq 2\pi$	
6	ω (argument of perigee) $\phi \leq \omega \leq 2\pi$		
7	Ω (right ascension of the ascending node)	$\phi \leq \Omega \leq 2\pi$	

Sentinel Record

Word Number	Word Contents
0	Fortran word count
1	.999999999999999999999999999999999999
2-8	Irrelevant

End of File after sentinel record.

C. SET UP AND RUNNING PROCEDURE

1. Requirements

IBM S/360 model 75 or model 95, three tape drives including three 9-track or two 9-track and one 7-track, on-line card reader, and on-line printer.

2. Tape Assignments

Table 2
Tape Assignments

Tape Function	Tape Description		
Read Only Tapes			Program Tape* Perturbation Tape (Optional)
Generated Tape to be Saved	7T or 9T	Unit 9	Bulletin Output Tape

^{*}The program tape contains the Bulletin and ancillary routines in the object module. Presently the tape contains two sequential data sets, the source file and the object module which was compiled from the source coding using the Fortran H compiler of an IBM S/360 model 75 or model 95.

3. Card Reader

Reads input data cards and required JCL cards.

4. On-Line Printer

Indicates whether a constant has been changed or not and writes the initial conditions and error messages. (Refer to Section III D.)

No special paper, loop, or board requirements.

See Section III B for a detailed description of the data cards and perturbation tape required.

5. IBM S/360 Job Control Language Cards

```
//G5DBMBUL JOB
// EXEC LINKGO, REGION.GO=300K
//LINK.SYSLIN DD UNIT=2400-9,DISP=(OLD,PASS),LABEL=(2,BLP),
               DCB=(RECFM=FB, LRECL=80, BLKSIZE=3200, DEN=2),
//
11
               VOLUME=SER=1647G
//GO.FT04F001 DD UNIT=2400-9, DISP=(OLD, PASS), LABEL=(,BLP),
               DCB=(RECFM=VS,BLKSIZE=128,LRECL=124,DEN=2,
//
               VOLUME = SER = XXXXX
//GO.FT09F001 DD UNIT=2400-7, DISP=(NEW, PASS), LABEL=(, BLP),
//
               DCB = (RECFM=FA, BLKSIZE=120, TRTCH=ET, DEN=1),
11
               VOLUME=SER=
//GO.SYSUDUMP DD SYSOUT=A
//GO.DATA5 DD *
                          ** DATA CARDS **
                          ** DATA CARDS **
/*
.//
```

D. OUTPUT

The Bulletin output is generated on an on-line printer and a 9-track or 7-track tape which is assigned to tape unit 9. The initial conditions, changed constants, and error messages are printed on both the on-line printer and tape.

1. On-Line Printer

The on-line printer is used to write run identification data, initial conditions data, changed constants, and error messages. A sample on-line printout is shown in Figure 3. Tables 3 and 4 list normal statements and error statements, respectively.

Table 3
Normal Statements

Statement	Explanation		
No DAF Parameters Computed In This Run	User does not desire to print DAF parameters and has blank input DAF card.		
TABLE(XX) = YYYY	Specified location XX of TABLE now equals indicated value YYYY.		
End Bulletin Run	Program has followed normal path.		

TABLE(5)= 0.80681242000000000 03

R163 D.P. BROUWER BULLETIN FOLTINE INJUN-5 BROUWER BULLETIN

INJUN-5 BROUMER EULLETIN

ID.NO. REF.DATE LAMBDA HMS TAU DMS SATELLITE 6806602 71 2 1 8 42 11663 311 28 26600 INJUN-5

INPUT QUANTITIES FROM CARDS

EPOCH 71 2 20 0 0

A E I S CMEGA C OMEGA M 0.12510845D 01 0.11576170D 00 0.14079379D 01 0.17273379C 01 0.60678070D 01 0.34870793D 00

CONVERTED QUANTITIES

X Y Z XCOT YDOT ZDOT -0.58119192D 00 0.28055751D 00 0.91206554D 00-0.84603389C CO 0.98460400D-01-0.51502878D 00

DRAG EFFECTS T (P.Q) N (2.Q) N (3.C) 710220 0 0.16039000D-08 0.0

COLUMN TABLE T(P.Q) N(2.Q) N(3.Q) K(I) MIN*100 710223 C C.16039000D-08 0.0 3 1008000

FARTH CONSTANTS ML ROTATION RACIUS FLATNESS 0-160606000 01 0-58833690D-01 0-100000000 01 0-33528919D-02

HARMON ICS

K2 K3 K4 K5 0.54124000D-03 0.2560000D-05 0.69000000C-06 0.6000000D-07

0.162372C0D-C2 C.0 0.0 K

INPUT UNITS -- CUL AND RADIANS

A E 1
0.1251084511940000D 01 0.1157617002230000D 00 0.1407937930540000D 01
S DMEGA C DMEGA M
0.1727337869180000D 01 0.6667807041520000D 01 0.3487072298330000D 00

CONVERTED QUANTITIES -- KM AND DEGREES

A E I
0.7979624697182301D 04 0.1157617002230000D 00 0.8066890123632524D 02
S OMEGA C CMEGA M
0.9896916966713470D 02 0.3476567343788582D 03 0.1997949266217495D 02

BROUWER DAF PARAMETERS NO DAF PARAMETERS COMPLTED IN THIS RUN

END BULLETIN RUN

Figure 3. Sample On-Line Printout

Table 4
Error Statements

Statement	Explanation	
Incorrect Elements SAT. ID.	Input satellite ID does not agree with elements time satellite ID.*	
Wrong SAT, ID, on Drag Card Drag Load Unsuccessful	Input satellite ID does not agree with drag satellite ID.	
Error in Column Elements Request Card Column Time Table Load Unsuccessful	The format of the column elements time and drag data card is incorrect. When using option 2 for the format, columns 70-80 must be used.	
Wrong SAT. ID. on Column Elements Card Column Time Table Load Unsuccessful	Input satellite ID does not agree with column elements time satellite ID.	
Elements Type Equals Zero	The element type on the elements time card must be either 1 or 2 to indicate the type of elements used. Refer to Section III B-3 for the format and description of the elements time card.	
Latitude Increment Exceeds Inclination	The latitude increment can not exceed the inclination on the Bulletin request card.	
Tape Check on Perturbation Tape	An uncorrectable error occurred when reading the perturbation tape. If tape is the correct tape to be used, rerun job.	
Perturbation SAT. ID.	Input satellite ID does not agree with pert tape satellite ID.	
Incorrect Data to CHANPL	The location of the constant to be changed is not in the range of the Table (0 thru 80).	
Error in DAF SAT. ID.	Input satellite ID does not agree with DAF satellite ID.	

Table 4 (Continued)

Statement	Explanation
Error, Year of Reference, XXXX, Greater Than Observation Year, XXXX No SPACEL Bulletin Output For This Run SPACEL Elements Do Not Have Accuracy of Column Elements	Error occurred in subroutine DREFOD. The year of reference must always be less than or equal to the observation year. The column elements time is not equal to a multiple of 0.05 day.

2. Output Tape Format

The Bulletin tape output consists of the following sections:

- 1. Title Page
- 2. Initial Conditions
- 3. Space Elements
- 4. Spacel Bulletin
- 5. Equator Crossings
- 6. One Orbit Ephemeris
- 7. Sator Code
- 8. Data Acquisition Facility Parameters

The Spacel Bulletin, Sator Code and Data Acquisition Facility Parameters are printed according to user option. The other sections are always printed.

A listing of the sample BCD output tape is shown in Figure 4. The title page contains the satellite identification, start and end times for computing equator crossings and user remarks.

Input values of some of the pertinent parameters appear in the initial conditions as listed in Figure 4a. If the PERT tape is used, the first line printed is "Complementary Perturbations".

Figure 4b contains space elements which indicate mean characteristics of the orbit at the epoch. The subsection entitled "Descriptive Space Elements" contains various derived quantities which are of interest to observers at the earth's surface. "Prediction Space Elements" provides elements for use when approximate satellite positions are needed.

Osculating Space Elements and their Cartesian equivalents are listed in Figure 4c. The Cartesian equivalents are obtained using the given values of GM and the value of the earth's equatorial radius. The double prime elements at the epoch are also listed and the position and velocity vectors are computed in several units.

Key space element information contained in Figures 4b and 4c is combined and furnished in condensed form in the Spacel Bulletin, Figure 4d. Note that the last digit of each line is a counter to be used by observation stations and other interested persons. The counter is the sum of all digits in its line modulo ten. The last line of the Spacel Bulletin contains osculating space elements at the first requested time of the prediction space elements.

The subsection entitled "Equator Crossings" contains each ascending nodal crossing from the requested start time to the end time, its revolution number, its date and time, and its west longitude in degrees as indicated in Figure 4e.

Figure 4f contains a one orbit ephemeris for the middle nodal crossing shown in Figure 4e. The ephemeris gives the satellite positions at regular intervals according to the requested latitude increment. Time is specified in terms of minutes from the time of the ascending nodal crossing. Longitude is given in degrees and decimal fractions. Height above the ellipsoid is given in terms of a decimal fraction of a kilometer. Times when the satellite is not in the earth's shadow are indicated by means of an asterisk following the height.

Figure 4g contains the Brouwer Data Acquisition Facility Parameters.

R183 D.P. BROUWER BULLETIN

6806602

INJUN-5

FROM 710223 710302 81500 TO

INJUN-5 BROUWER BULLETIN

Figure 4. Listing of Sample Output Tape

Reproduced tromcopy.

INJUN-5 BROUWER BULLETIN

ID.NO. REF.DATE LAMBDA HMS TAU DMS SATELLITE 6806602 71 2 1 8 42 11663 311 28 26600

INJUN-5

INPUT QUANTITIES FROM CARDS

EPOCH 71 2 20 0 0

S DMEGA C OMEGA 0.12510845D 21 2.11576170D 00 0.14079379D 01 0.17273379D 01 C.60678070D 01 0.34870793D 00

CONVERTED QUANTITIES

XDQ**T** YOUT -0.58119192D 30 0.28055751D 00 0.91206554D 00-0.34693388D 00 0.98469400D-01-0.51502878D 00

DRAG EFFECTS T (P,Q) N (2,Q) N (3,Q) 710220 C 0.16039000D-08 0.0

K(I) MIN*100 COLUMN TABLE T(P,Q)N(2,Q) N(3,Q) 710223 7.16639000D-08 0.0

MU EARTH CONSTANTS ROTATION RADIUS FLATNESS

HARMONICS

Κ5 K 3 0.54124000D-03 0.256000000-05 0.6900000000-06 0.6000000000-07

0.16237200D-C2 0.0 0.0 0.0

INPUT UNITS -- CUL AND RADIANS

Λ 0.12510845119433000 (1 9.115761730223339000 0/ 0.14)79379365460000 (1 S OMEGA C CMEGA 0.17273378691800000 01 0.60678070415200000 01 0.34870792983306000 00

CONVERTED QUANTITIES -- KM AND DEGREES

0.7979624697182301D 04 0.115761700223000CD 00 0.8056890123632524D 02 S OMEGA C OMEGA 0.9896916969713470D 02 0.3476597343788582D 03 0.1997949266217495D 02

Figure 4a

GODDARD SPACE FLIGHT CENTER GODDARD ORBIT BULLETIN MAR 3,1971

SATELLITE

INJUN-5

SPACE ELEMENTS

E POC H	YRMODYHRMMSS.SSSS	
CAL ENDAR DATE	71 220 0 0 0. 0	UT2W
JULIAN DATE FOR SPACE	4903. 00	UT2W
PERIOD, ANOMALISTIC	118.289055	MIN
PERIOD DERIVATIVE	-0.03807	MICRODAYS/DAY
ECCENTRICITY	0.11669938	
INCL INATION	80.66783	DEG
RIGHT ASCENSION OF ASCENDING NODE	347.65948	DEG
RT.ASC.OF ASC. NODE DERIVATIVE	-0.25188	DEG/DAY
ARGUMENT OF PERIGEE	98.88999	DEG
ARGUMENT OF PERIGEE DERIVATIVE	-0.28681	DEGDAY
MEAN ANOMALY	20.05704	DEG
SEMI MAJOR AXIS 1.2510762 ER	0.79795717	DECAMEGAMETERS

DESCRIPTIVE SPACE ELEMENTS

EPOCH	YRMODYHRMMSS.SSSS	
CAL DAT	71 220 9 0 0. 0	UT2W
J.O.S.	4903. 00	UT2W
PERIOD, NODAL	118.296797	MIN
PERIGEE HEIGHT 670.1946 KM	416.4396	ST MI
APOGEE HEIGHT 2532.6167 KM	1573.6951	ST MI
NODE-SUN-ANGLE, RAA NODE MINUS RA SUN	15.37707	DEG
LONGITUDE OF ASCENDING NODE	161.61571	DEG
LATITUDE OF PERIGEE, GEOCENTRIC	77.138428	DEG
VELOCITY AT PERIGEE 7.946854 KM/SC	17776.606	ST MI/HR
VELOCITY AT APOGEE 6.285900 KM/SC	14061.159	ST MI/HR

PREDICTION SPACE ELEMENTS

EPOCH	τ- 1	T- 2	T - 3
	YRMODYHRMMSS.SSSS	YRMODYHRMMSS.SSSS	YRMODYHRMMSS.SSSS
CAL DAT UTZW			7103)9 C. 0
J.D.S. UT2W	4906.00000000	4913.000000000	4920.000000000
PERIOD MI	N 118.288893	118.288484	118.288042
PERIOD DER MD/	D -0.04053	-0.04385	-0.04674
ECCENTRICITY	0.11671034	0.11668890	0.11660359
INCLINATION DE	G 80.657821	80.667843	80.667935
RA ASC NODE DE	G 345.392596	340.103199	334.813777
ARG PERIGEE DE	G 92.867035	78.813560	64.752881
MEAN ANOM DE	G 207.520943	285.010408	2.610200
SEMIMAJ AXIS E	R 1.2510750	1.2510722	1.2510694

Figure 4b

OSCULATING SPACE ELEMENTS

EPOCH CAL J.D.	DAT		YRMODYHRMMSS.SSSS 71 220 C O O. C 4903. DO	UT2W			
OSCUL	ATING SPACE E	LEMENTS					
PERI	OD		118.11675)	MIN			
ECCE	NTRICITY		0.1159741				
INCL	INATION		80.66564	DEG			
RIGH	T ASCENSION O	F ASCENDING NODE	347.65290	DE G			
ARGU	MENT OF PERIG	EE	98.50309	DE G			
MEAN	ANOMALY	42	20.39206	DE G			
OSCULATING CARTESIAN QUANTIES							
X	-0.37110174	DECAMEGAME TERS	-0.58183142	ER			
Y	0.17920367	DECAMEGAMETERS	0.28065069	ER			
Z	0.58105528	DECAMEGAME TERS	0.91100684	ER			
٧X	-0.57792410	DMM/CENTIDAY	-0.84612362	ER/CUT			
VY	0.06723921	DMM/CENTIDAY	0.09853102	ER/CUT			
٧Z	-0.35185586	DMM/CENTIDAY	-0.51515764	ER/CUT			
GM	0.29755569	DMM3/CD2	1.14678185	ER3/CD2			

MEAN ELEMENTS OF MODIFIED BROUWER TYPE

EPOCH CAL DAT J.D.S.	YRMODYHRMMSS.SSSS 71 220 C G D. D UT2W 4903. OO UT2W
A DOUBLE PRIME(SEMI-MAJOR AXIS CONSTA E DOUBLE PRIME(ECCENTRICITY CONSTANT) I DOUBLE PRIME(INCLINATION CONSTANT) L ZERO DOUBLE PRIME(MEAN MEAN ANOMAL) G ZERO DOUBLE PRIME(MEAN ARG PERIGEE) H ZERO DOUBLE PRIME(MEAN RT ASC ASC)	0.1157617CD 00 0.14079379D 01 RAD 0.34870793D 00 RAD 0.17273379D 01 RAD
N (2,Q)	0.16039000D-08 RAD/CUT2

OSCULATING ELEMENTS OF MODIFIED BROUWER TYPE

EPOCH CAL DAT		YRMODYHRMMSS. 71 220 0 0 0.	O UT2W					
J.D.S.		4903.	00 UT2W					
	POSITI	ON VECTOR						
UNITS	X COMPUNENT	Y COMPONENT	Z COMPONENT					
STATUTE MILES	-0.23059193D 04	0.111227720 04	0.36105101D 04					
KILOMETERS	-0.37110174D 04	0.17900367D 04	0.58105528D 04					
NAUTICAL MILES	-0.20037891D 04	0.96654249D 03	0.31374475D 04					
FEET	-0.12175254D 08	0.58728238D 07	0.199634940 08					
VELOCITY VECTOR								
UNITS	X COMPONENT	Y COMPONENT	Z COMPONENT					
SM/HOUR	-0.14962725D 05	0.17424079D 04	-0.91099711D 04					
KM/HOUR	-0.24080171D C5	0.280413370 04	-0.14661077D 05					
KNOTS	-0.12988476D (·5	0.15125068D 04	-0.7907961CD 04					
METERS/SECOND	-0.66899364D N4	0.77892602D 03	-0.40725215D 04					
FEET/SECOND	-0.21945329D 05	0.25555315D 04	-0.13361291D 05					

Figure 4c

GODDARD SPACE FLIGHT CENTER SPACEL BULLETIN MAR 3,1971

Reproduced from best available copy. J.D.S. 4914

SATDESG NAME SE NRON SBOAT INJ.D.S. RVNEI OMAG KG/M2 RFDKCMPCW CCNC J.D.S. PERAN MUD. PER DERT PHIEGR APHIEGR INMOD RAANOD ARGPER MANOM C 10.000 MIN MICRODAD KMX10 KMX10 1000 DEGRS DEGRS DEGRS S UT2W x1,000,000 x10,000 298.25 6378166 X1000 X1000 X1000 D X100

6806602 INJUN5 UW 3338 4914 3914 397 112921292 490600 0118283893-03000405 (C6701 0025327 80668 345393 092867 2075214 491300 0118289484-00000438 006703 0025325 80668 340103 078814 2850103 492000 0118298042-00000467 006709 0025318,80668 334814 064753 0026103 490600 0118161311-00000 393 0C6618 0025348080665S345391C093127U2072374

Figure 4d

FQUATOR CROSSINGS

NORTHBOUND

EQUAT TIME	LONG W	EQUAT		LUNG W	EQUAT		LONG W
XING UT2W		XING	UT2W		X I NG	UTZW	
NO. HHMM	DEG	NO.	HHMM	DEG	NO.	ннмм	DEG
23 FEB 71	170 04						
	172.86		222.34			420.68	
	262.05		817.36			1015.71	
11299 1214.05			1412.39			1610.73	
11302 18 9.08 24 FEB 71	80.42	11303	20 7.42	110.15	11304	22 5.76	139.88
11305 0 4.10	140 40	11204	2 2.44	100 22	11262	(5 70	220 04
	258.79		757.47			4 2.79	
11311 1154.15			1352.50			955.81 1550.84	
11314 1749.18			1947.52			2145.86	
11317 2344.27		11313	1941.52	100.09	11319	2145.00	130.02
25 FEB 71	100.33						
11318 142.55	196.08	11319	340.89	225 80	11320	539.23	255 53
11321 737.57			935.91			1134.25	
11324 1332.60			1530.94			1729.28	
11327 1927.62			2125.96			2324.30	
26 FEB 71	103.03	11720	2127.70	133.30	11727	2324.30	103.09
	192.82	11331	320.98	222.55	11332	519.32	252.27
11333 717.67		11334		311.73		1114.35	
11336 1312.69			1511.03			17 9.37	
11339 19 7.71			21 6.05			23 4.39	
27 FEB 71						23 (03)	177003
11342 1 2.73	189.56	11343	3 1.07	219.29	11344	459.41	249.01
	278.74	11346		308.47		1054.44	
11348 1252.78			1451.12			1649.46	
11351 1847.8)	97.11		2046.14			2244.48	
28 FEB 71							
11354 042.82	186.3C	11355	241.16	216.02	11356	439.50	245.75
11357 637.84	275.48	11358	836.18	305.21	11359	1034.52	334.94
11360 1232.86	4.66	11361	1431.20	34.39	11362	1629.54	64.12
11363 1827.88	93.85	11364	2026.22	123.58	11365	2224.56	153.30
1 MAR 71							
	183.C3		221.24		11368	419.58	242.49
	272.22	11370	816.26	301.94	11371	1014.60	331.67
11372 1212.94	1.40		1411.27		11374	16 9.61	60.86
11375 18 7.95	90.58	11376	20 6.29	120.31	11377	22 4.63	150.04
2 MAR 71							
	179.77			209.50	11380	359.65	239.22
11381 557.99	268.95	11382	756.33	298.68			

Figure 4e

ONE ORBIT EPHEMERIS

REVOLUTION NO. 11337

LAT	MINUTES	LONG	HE I:GHT	LAT .	MINUTES	LONG	HEIGHT
N	PLUS	INCREM	KM	S	PLUS	INCREM	KM
SN (iii)	2000.20	000.00	1427.8*	NS DO	50.43	192.68	1570.8
SN 10		359.13	1275.1*	NS-10	53.80	191.87	1736.8
SN 20		358.13	1135.5*	NS-20	57.32	191.00	1903.3
SN 32		356.86	1012.6 **	NS-30	60.99	189.92	2064.4
SN 40		355.11	906.4*	NS-40	64.82	188.41	2213.6*
SN 50	14.67	352.46	820.4*	NS-50	68.81	186.07	2344.1*
SN 60	17.45	347.95	755.2*	NS-60	72.98	181.91	2449.3*
SN 70	20.30	338.44	711.7*	NS-70	77.42	172.79	2523.0*
SN 80	23.95	298.15	693.0*	NS-8.0	83.24	133.07	2556.4*
NPT	24.93	276.27	695.3*	S PT	84.80	111.31	2552.8*
C8 2N	25.91	254.38	700.6*	SN-80	86.35	89.54	2544.1*
NS 70	29.59	214.10	747.3	SN-70	92.13	49.80	2466.4*
NS 60	32.47	204.60	812.0	SN-60	96.49	40.67	2362.3*
NS 50		200.10	8.96.7	SN-50	100.57	36.49	2232.8*
NS 40		197.47	1000.5	SN-40	104.45	34.12	2083.9*
NS 30		195.74	1122.2	SN-30	108.16	32.58	1922.5*
NS 20		194.49	1259.7	SN-20	111.70	31.47	1754.9*
NS 10		193.51	1410.3	SN-10	115.09	30.56	1587.4*
NS OO		192.68	1576.8	SN D	118.34	29.73	1425.2*

Figure 4f

BROUWER CAF PARAMETERS NO DAF PARAMETERS COMPUTED IN THIS RUN

Figure 4g