4. Dados los números reales x_1 e y_1 tales $0 < x_1 < y_1$, se define la recurrencia:

$$x_{n+1} = \frac{2x_n y_n}{x_n + y_n}, \qquad y_{n+1} = \frac{x_n + y_n}{2}$$

academia@academiadeimos.es

- a) Demuestre que $x_1 < x_2 < \dots < x_n < y_n < \dots < y_2 < y_1$.
- b) Demuestre que ambas sucesiones convergen a un límite común y calcúlelo.

Este problema figura resuelto en la página 523 del volumen 3 de Problemas de Oposiciones de Editorial Deimos.

SOLUCIÓN:

- a) Se demuestra inmediatamente por inducción que $x_n > 0$ e $y_n > 0$ a partir de que son $0 < x_1 < y_1$.
 - $x_n < y_n$ para todo $n \in \mathbb{N}$.

Razonamos por inducción. Para n=1 es cierto por hipótesis, y si suponemos que $x_n < y_n$ para cierto $n \ge 1$, entonces

academia@academiadeimos.es

y por tanto $x_{n+1} < y_{n+1}$, así que $x_n < y_n$ para todo $n \in \mathbb{N}$.

• $x_n < x_{n+1}$ para todo $n \in \mathbb{N}$.

academiadeimos.es

Como es $x_n < y_n$ para todo $n \in \mathbb{N}$, deducimos que

$$x_{n+1} = \frac{2x_n y_n}{x_n + y_n} > \frac{2x_n y_n}{2y_n} = x_n$$

• $y_{n+1} < y_n$ para todo $n \in \mathbb{N}$.

Como es $x_n < y_n$ para todo $n \in \mathbb{N}$, deducimos que

$$y_{n+1} = \frac{x_n + y_n}{2} < \frac{2y_n}{2} = y_n$$

b) La sucesión (x_n) es estrictamente creciente y está acotada superiormente por y_1 , luego (x_n) es convergente a un número real x. Por su parte, la sucesión (y_n) es estrictamente decreciente y está acotada inferiormente por x_1 , luego (y_n) es convergente a un número real y. Tomando límites cuando $n \to \infty$ en la segunda igualdad recurrente, se tiene que

$$y = \frac{x+y}{2} \quad \Rightarrow \quad x = y$$

Si multiplicamos ambas ecuaciones recurrentes, se tiene que

$$x_n y_n = \frac{2x_{n-1}y_{n-1}}{x_{n-1} + y_{n-1}} \cdot \frac{x_{n-1} + y_{n-1}}{2} = x_{n-1}y_{n-1}$$

y por tanto,

$$x_n y_n = x_{n-1} y_{n-1} = x_{n-2} y_{n-2} = \dots = x_1 y_1 = ab$$

$$x_n y_n = ab$$

es decir,

$$x_n y_n = ab$$

Tomando límites cuando $n \to \infty$ en la última igualdad se sigue que

$$xy = ab \implies x^2 = ab \implies x = y = \sqrt{ab} \pmod{\text{media geométrica de } a \text{ y } b}$$