Direct Time-to-Contact Estimation for Unmanned Aerial Vehicle Landing

Zhang-Wei Hong & Tsun-Hsuan Wang

Time-to-contact (TTC) based control for UAV landing

Typical TTC-based control is unscalable

- 1. Expensive
- 2. Imprecise in indoor cases

- 1. Need visual features
- 2. Costly computation

Optical flow

GPS

Typical methods cannot deploy in a scale

https://roboticsandautomationnews.com/

The envision of UAV is large scale deployment in smart cities

https://roboticsandautomationnews.com/

Our method only needs a monocular camera and a cheap computer

Method - overview

Control UAVs via direct TTC estimation [1] from image brightness

[1] B. K. P. Horn, Y. Fang and I. Masaki, "Time to Contact Relative to a Planar Surface," 2007 IEEE Intelligent Vehicles Symposium, Istanbul, 2007, pp. 68-74, doi: 10.1109/IVS.2007.4290093.

Method - TTC estimation

TTC can be connected to image brightness by image motion

$$(U, V, W) = (\frac{dX}{dt}, \frac{dY}{dt}, \frac{dZ}{dt}) \quad (u, v) = (\frac{dx}{dt}, \frac{dy}{dt})$$

Method - TTC estimation

Image motion is constrained by the **constant brightness equation** (BCCE)

$$uE_x + vE_y + E_t = 0$$

E Image brightness

 E_{x} Partial derivative w.r.t. x

 E_u Partial derivative w.r.t. y

 E_{t} Partial derivative w.r.t. t

Method - TTC estimation

Then, TTC can be obtained by the least-square solution of BCCE

$$u = f(\frac{U}{Z} - \frac{x}{f}\frac{W}{Z})$$
 Plug into
$$\min_{u,v} \sum_{x,y} (uE_x + vE_y + E_t)^2$$
 Regroup
$$C = -\frac{W}{Z} = \frac{1}{T}$$

 $G = xE_x + yE_y$

Method - feedback controller

Landing control can be related to TTC by the desired landing trajectory in vertical descending

Distance to the ground at time t:

$$d(t)=rac{1}{2}at^2$$
 (a is the desired acceleration downward)

Relation to TTC:

$$T = -\frac{Z}{W} = -\frac{d(t)}{\frac{dd(t)}{dt}} = -\frac{1}{2}\frac{at^2}{at} = -\frac{1}{2}t$$

Conversion to velocity command:

$$r^* = \frac{dd(t)}{dt} = -at = -2aT$$

Method - feedback controller

Landing control can be related to TTC by the desired landing trajectory in vertical descending

Conversion to velocity command:

$$d(t) = \frac{1}{2}at^2$$
 (a is the desired acceleration downward)

$$T = -\frac{Z}{W} = -\frac{d(t)}{\frac{dd(t)}{dt}} = -\frac{1}{2}\frac{at^2}{at} = -\frac{1}{2}t$$

$$r^* = \frac{dd(t)}{dt} = -at = -2aT$$

Experiments setup

<u>Sensors</u>

Range sensor with operational domain <0.4m

Experiments setup

Vehicle Dynamics

UAV's View

Experiments setup

Weather Conditions

Dust Storm

Cloudy

Rotational Light

Windy

Experimental results

Control with estimated and oracle TTC.

UAV's shadow when very close to ground.

Experimental results

TTC estimates in various weather conditions.

the ground.

cloud motion of cloud

shadow.

estimate due to

UAV's shadow.

Experimental results

Distance to ground and vertical velocity in various weather conditions.

Slide link:

https://docs.google.com/presentation/d/10RkHkvDeMTCSJEANafhsImeJVZhqEMRU9VSqOTVInxw/edit?usp=sharing

Q&A