Úkol

- 1. Zjistěte závislost proudu vzorkem na přiloženém napětí při nulové magnetické indukci.
- 2. Zjistěte závislost Hallova napětí na magnetické indukci při dvou hodnotách konstantního proudu vzorkem.
- 3. Výsledky měření zpracujte graficky a vyhodnoť te měrnou vodivost a Hallovu konstantu vzorku.
- 4. Vypočtěte pohyblivost a koncentraci nositelů náboje.

Teorie

Hallův jev je důsledkem působení *Lorentzovy síly* na náboje pohybující se v magnetickém poli. Na obrázku 1 je znázorněn měřený vzorek germania. Kontakty 1 a 2 jsou *proudové kontakty*, 3 a 4 jsou *napěťové kontakty*, použité pro čtyřbodovou metodu měření. Kontakty 5 a 6 jsou určeny pro měření Hallova napětí.

Obrázek 1: Znázornění měřeného vzorku s rozměry a kontakty [1]

Vodivost vzorku při nulové magnetické indukci měříme pomocí zapojení 2. Platí vztah

$$\sigma = \frac{l}{td}\frac{I}{U} = \frac{lA}{td},\tag{1}$$

kde A dostaneme jako směrnici regresní přímky závislosti I na U.

Obrázek 2: Zapojení pro měření vodivosti [1]

Zapojení napájení elektromagnetu je vyobrazeno na obrázku 3. Intenzita magnetického pole souvisí s napájecím proudem vztahem

$$B = 0.098I. (2)$$

Hallovo napětí měříme na svorkách 5 a 6 podle obrázku 1. Protože tyto svorky neleží na vzorku symetricky, měříme napětí při obou polaritách magnetické indukce. Hallovo napětí pak získáme jako

$$|U_H| = \frac{|U^+ - U^-|}{2}. (3)$$

Obrázek 3: Obvod pro napájení elektromagnetu [1]

Hallovu konstantu vzorku dostaneme ze vztahu

$$R_H = \frac{tU_H}{IB} = \frac{tC}{I},\tag{4}$$

přičemž C získáme jako směrnici regresní přímky závislosti U_H na B. Koncentraci nositelů náboje lze vyjádřit jako

$$n = \frac{r_h}{eR_H},\tag{5}$$

kde $r_h = \frac{3\pi}{8}$ je Hallův rozptylový faktor [1] a $e \doteq 1,6022 \times 10^{-19}\,\mathrm{C}$ je elementární náboj [2]. Pohyblivost nositelů náboje dostaneme ze vztahu

$$\mu_n = \frac{\sigma}{en}.\tag{6}$$

Výsledky měření

$\acute{\mathrm{U}}\mathrm{kol}\ 1$

Následující tabulka obsahuje naměřené hodnoty napětí a proudu při nulové indukci. Pro měření napětí byl použit multimetr $\mathbf{MY-68}$, jako ampérmetr sloužil multimetr $\mathbf{MY-65}$ v rozsahu $20\,\mathrm{mA}$.

$egin{array}{c} U \ \mathrm{V} \end{array}$	$\sigma_U \ { m V}$	$I_{B=0\mathrm{T}}$ mA	$\sigma_{I_{B=0\mathrm{T}}}$ mA
0,236 0,482	0,003 0,003	0,496 1,016	0,007 0,010
$0,705 \\ 0,964$	$0,004 \\ 0,005$	1,485 $2,038$	$0,012 \\ 0,015$
1,163 1,424	$0,005 \\ 0,006$	2,452 3,011	$0,017 \\ 0,020$
1,637 $1,855$	0,007 0,008	3,469 3,939	$0,022 \\ 0,025$
2,091 2,323	0,008 0,009	4,458 4,967	$0,027 \\ 0,030$

Tabulka 1: Naměřené hodnoty napětí a proudu při nulové indukci

V následujícím grafu jsou vyobrazeny hodnoty z tabulky 1, proložené přímkou se směrnicí $A=(2,129\pm0,005)\times10^{-3}$.

Obrázek 4: Závislost proudu na napětí při nulové indukci

Úkol 2

V následujících dvou tabulkách lze nalézt naměřené hodnoty proudu napájejícího elektromagnet, napětí na svorkách 5 a 6 při obou polaritách magnetického pole, jakožto i vypočítané hodnoty magnetické indukce podle (2) a Hallova napětí podle (3). Napětí bylo měřeno multimetrem $\mathbf{MY-65}$ při odpovídajících rozsazích, konstantní proud vzorkem byl kontrolován multimetrem $\mathbf{MY-68}$ a napájecí proud I_B byl měřen analogovým ampérmetrem třídy přesnosti 0,5.

I_B [A]	$\sigma_{I_B} \ [{ m A}]$	U^+ [mV]	σ_{U^+} [mV]	U^- [mV]	$\sigma_{U^-} \ [\mathrm{mV}]$	B [T]	σ_B [T]	U_H [mV]	σ_{U_H} [mV]
0,500	0,006	17,65	0,04	9,05	0,03	0,0490	0,0006	4,300	0,026
1,000 $1,500$	$0,006 \\ 0,030$	22,37 $26,73$	$0,04 \\ 0,04$	4,53 $-0,57$	$0,03 \\ 0,03$	$0,0980 \\ 0,1470$	0,0006 $0,0029$	8,920 $13,650$	$0,026 \\ 0,026$
2,000 2,500	0,030 $0,030$	31,93 36,37	$0.05 \\ 0.05$	-4,58 -8.93	$0.03 \\ 0.03$	0,1960 $0,2450$	0,0029 $0,0029$	18,255 $22,650$	0,028 $0,030$
3,000	0,030	40,75	0,05	-13,12	0,04	0,2940	0,0029	26,935	0,031
3,500 $4,000$	$0,030 \\ 0,030$	44,99 48,63	$0,05 \\ 0,05$	-16,87 $-21,04$	$0.04 \\ 0.04$	0,3430 0,3920	0,0029 $0,0029$	$30,930 \\ 34,835$	$0,033 \\ 0,034$

Tabulka 2: Naměřené a vypočtené hodnoty pro určení Hallova napětí při konstantním proudu $1\,\mathrm{mA}$

_										
	I_B [A]	$\sigma_{I_B} \ [{ m A}]$	U^+ [mV]	$\begin{array}{c} \sigma_{U^+} \\ [\mathrm{mV}] \end{array}$	U^- [mV]	$\sigma_{U^-} \ [\mathrm{mV}]$	B [T]	$\sigma_B \ [{ m T}]$	U_H [mV]	$\sigma_{U_H} \ [\mathrm{mV}]$
	0,500	0,006	87,78	0,07	52,80	0,06	0,0490	0,0006	17,49	0,05
	1,000	0,006	106,90	0,08	$34,\!55$	0,05	0,0980	0,0006	$36,\!18$	0,05
	1,500	0,030	$125,\!57$	0,09	$16,\!15$	0,04	0,1470	0,0029	54,71	0,05
	2,000	0,030	145,95	0,10	-1,250	0,03	$0,\!1960$	0,0029	73,60	0,05
	$2,\!500$	0,030	$164,\!35$	0,11	-19,70	0,04	$0,\!2450$	0,0029	92,02	0,06
	3,000	0,030	184,60	$0,\!12$	-37,75	$0,\!05$	$0,\!2940$	0,0029	$111,\!17$	0,07
	3,500	0,030	202,2	0,5	$-54,\!21$	0,06	0,3430	0,0029	$128,\!20$	$0,\!25$
	4,000	0,030	219,4	0,5	$-71,\!58$	0,07	$0,\!3920$	0,0029	$145,\!49$	$0,\!26$

Tabulka 3: Naměřené a vypočtené hodnoty pro určení Hallova napětí při konstantním proudu $4.5\,\mathrm{mA}$

Následující graf zachycuje lineární závislosti mezi magnetickou indukcí a Hallovým napětím spolu s regresními přímkami se směrnicemi $C_{I=1\,\mathrm{mA}}=(89.9\pm1.2)\times10^{-3}$ a $C_{I=4.5\,\mathrm{mA}}=(380.7\pm1.4)\times10^{-3}$.

Obrázek 5: Závislost Hallova napětí na magnetické indukci

Úkol 3

Hodnoty chyb spočtených veličin v tomto a následujícím úkolu byly určeny metodou přenosu chyb.

Vodivost σ byla určena podle (1) jako

$$\sigma = (5.30 \pm 0.04) \,\mathrm{S} \,\mathrm{m}^{-1}.$$

Hallovu konstantu vzorku jsem spočítal podle (4) pro oba konstantní proudy.

$$R_{H_{I=1\,\mathrm{A}}} = (64.7 \pm 2.7) \times 10^{-3} \,\mathrm{m}^3 \,\mathrm{A}^{-1} \,\mathrm{s}^{-1},$$

 $R_{H_{I=4.5\,\mathrm{A}}} = (60.9 \pm 0.9) \times 10^{-3} \,\mathrm{m}^3 \,\mathrm{A}^{-1} \,\mathrm{s}^{-1}.$

Dále budeme počítat s průměrem těchto hodnot:

$$R_H = (62.8 \pm 1.0) \times 10^{-3} \,\mathrm{m}^3 \,\mathrm{A}^{-1} \,\mathrm{s}^{-1}$$

Úkol 4

Koncentraci nositelů náboje spočítáme z (5)

$$n = (1.171 \pm 0.012) \times 10^{20} \,\mathrm{m}^{-3}$$

a jejich pohyblivost podle (6)

$$\mu_n = (0.2824 \pm 0.0022) \,\mathrm{m}^3 \,\Omega^{-1} \,\mathrm{C}^{-1}.$$

5

Diskuse

V souladu s teoretickou předpovědí jsme v obou měřeních dostali lineární závislost, žádná z hodnot se výrazně z této závislosti nevychyluje. Nejméně přesná je závislost Hallova napětí na indukci pro proud rovný 1 A. Tento fakt se následně projevuje vyšší chybou vypočtené hodnoty Hallovy konstanty. Tato hodnota se v rámci chyby shoduje s hodnotou, dosaženou s využitím směrnice závislosti pro proud 4,5 A.

V celém průběhu měření byly zanedbány odpory vodičů a spojů, které se však mohly v měření mírně projevit. Stejně tak není uvažován vliv prostředí. Vztah mezi napájecím proudem elektromagnetu a intenzitou magnetického pole je považován za dokonale přesný, chyba zaokrouhlení hodnoty elementárního náboje není třeba uvažovat.

Závěr

V úkolu 1 byla zjištěna lineární závislost proudu na přiloženém napětí při nulové magnetické indukci.

V úkolu 2 byla taktéž naměřena lineární závislost Hallova napětí na magnetické indukci. Hodnota konstantního proudu vzorkem se odráží ve strmosti řečené závislosti.

Pomocí lineárních regresí těchto závislostí byly v úkolu 3 určeny hodnoty měrné vodivosti a Hallovy konstanty vzorku jako

$$\sigma = (5,30 \pm 0,04) \,\mathrm{S} \,\mathrm{m}^{-1},$$

$$R_{H_{I=1}\,\mathrm{A}} = (64,7 \pm 2,7) \times 10^{-3} \,\mathrm{m}^{3} \,\mathrm{A}^{-1} \,\mathrm{s}^{-1},$$

$$R_{H_{I=4,5}\,\mathrm{A}} = (60,9 \pm 0,9) \times 10^{-3} \,\mathrm{m}^{3} \,\mathrm{A}^{-1} \,\mathrm{s}^{-1}.$$

V úkolu 4 následně byly spočteny hodnoty pohyblivosti a koncentrace nositelů náboje

$$n = (1.171 \pm 0.012) \times 10^{20} \,\mathrm{m}^{-3},$$

 $\mu_n = (0.2824 \pm 0.0022) \,\mathrm{m}^3 \,\Omega^{-1} \,\mathrm{C}^{-1}.$

Literatura

- [1] Studijní text "Měření elektrické vodivosti a Hallovy konstanty polovodiče", dostupné z http://physics.mff.cuni.cz/vyuka/zfp/_media/zadani/texty/txt_210.pdf, 25.10.2017
- [2] The NIST Reference on Constants, Units and Uncertainty, dostupné z https://physics.nist.gov/cgi-bin/cuu/Value?e, 29. 10. 2017