

MA3005 Reference

Control Theory (Nanyang Technological University)

Scan to open on Studocu

1. Final value theorem: $\lim_{t\to\infty} f(t) = \lim_{s\to 0} sF(s)$. Poles of F(s) lie in left half s-plane and at most 1 pole on imaginary axis. [Steady state behaviour] 2. Initial value theorem: $f(0^+) = \lim_{s \to \infty} sF(s)$. No restriction on poles location, applicable for sinusoidal functions. 3. Linear System: Principle of superposition is applicable; Time-Invariant System: Then. $u(t-\tau)$ – lf. u(t) – 4. $rac{}{}$ $s = -p_1$ is a *simple* pole when n = 1 (power) Consider TF: $G(s) = \frac{(s+z_1)(s+z_2)}{s^2(s+p_1)(s+p_2)^3}$ G(s) = 0 at $-z_1$ and $-z_2$ (finite zeros) rackless s = 0 is a pole of multiplicity 2 there are 4 infinite zeros $> s = -p_2$ is a pole of multiplicity 3 5. C(s) Open-Loop TF Forward Loop TF For unity feedback system, For negative (positive) feedback system, Forward loop TF $CLTF = \frac{Forward In Forward In$ $\frac{B(s)}{E(s)} = G(s)H(s) \qquad \frac{C(s)}{E(s)} = G(s)$ $CLTF = \frac{Forward loop TF}{I}$ 1 ± Open loop TF 6. Notice directions of forces and displacements; assumptions relating displacements 7. System error [Identify **desired** input and output]: R(s)Y(s)G(s)+G(s)H(s)-G(s) $G_{l}(s)$ H(s) $E_m(s) \neq E(s)$ E(s) = U(s) - C(s) $e_{ss}(t) = \lim e(t) = \lim s \cdot E(s)$ When the complex plane is used to Impulse input 8. Natural response: position & transien (a) Stable Stability, impulse input A system is called stable, if the output of the system converges to a particular value/state for a constant input. (b) Unstable When a system is unstable, the output of the system goes to infinity for finite input (or constant input). (c) Marginally Stable Pole A marginally stable system will have continues oscillatory output for a constant input. RHP=Right Hand Plane 9. Routh-Hurwitz (Closed Loop CE): ..., $a_{n-1}, a_n > 0 \text{ (or } < 0)$ C.E.: $a_0 s^n + a_1 s^{n-1} + a_2 s^{n-2} + ... + a_n = 0$ Refer to the 1st column: Special case None of the coefficient is missing If there is no a From Characteristic changing of sign ⇒ If 1st element in any row is zero, but others are non-zero, closed loop system is Egn. replace 0 with ϵ > 0 and proceed as before s^{n-1} stable How many times the If sign above zero (ϵ) is the same as below, it indicates sign changes in the that there are a pair of imaginary roots 1st column represents If sign above zero (ε) is opposite to that of below it, it the number of poles indicates that there is a sign change ⇒ unstable system Need to be computed in RHP $b_1 = \frac{a_1 \cdot a_2 - a_0 \cdot a_3}{a_1 \cdot a_2 \cdot a_3}$ Occurrence of entire row of zeros i.e. $(-\sigma, +\sigma)$, or $(-j\omega, +j\omega)$ Solution: Form auxiliary polynomial from the row immediately above all zeros row or $(-\sigma \pm j\omega, +\sigma \pm j\omega)$ 10. C(s) =K K/T0 < \(< 1 \) $d^2(ramp) = d(step) = impulse$ $s_{1,2} = -\zeta \omega_n \pm j\omega_n \sqrt{1 - \zeta}$ Ts+1Lower order approx.: Same gain + dominant pole 1000 T is time constant $= -\sigma \pm j\omega$ $(s+20)(s^2+6s+25)$ $(s^2 + 6s + 25)$ 11. 0(1) $%M_{p1}$ $t_r = \frac{1}{\omega_d} \tan^{-1} \left(\frac{\omega_d}{-\sigma} \right)$ (2% criterion) (5% criterion) 2nd order system with $0 < \zeta < 1$ his document is available on Downloaded by bra ther (brather@googl.win)

1	2
	۷.

Effects of increasing a parameter independently[14]

			J 1		
Parameter	Rise time	Overshoot	Settling time	Steady-state error	Stability ^[11]
K_p	Decrease	Increase	Small change	Decrease	Degrade
K_i	Decrease	Increase	Increase	Eliminate	Degrade
K_d	Minor change	Decrease	Decrease	No effect in theory	Improve if K_d small

 $u(t) = K_p e(t) + \frac{K_p}{T_i} \int_0^t e(t)dt + K_p T_d \frac{de(t)}{dt}$

 $\frac{U(s)}{E(s)} = K_p \left(1 + \frac{1}{T_i s} + T_d s \right)$ PI: eliminate steady state error. PD: anticipate error to increase damping, improve transient +

13.

Ë	
ق	
systen	
S	
충	
pac	
0	
ee	
Ť	
₽	
Ξ_	
_	

	Dosirodo	Type 0		Type 1		Type 2	
Input	Desired e _{ss} Steady-state error formula	Static error constant	Error	Static error constant	Error	Static error constant	Error
Step, $u(t) = 1$	$\frac{1}{1+K_p}$	$K_p =$ Constant	$\frac{1}{1+K_p}$	$K_p = \infty$	0	$K_p = \infty$	0
Ramp, $u(t) = t$	$\frac{1}{K_{\nu}}$	$K_{\nu}=0$	∞	$K_{\nu} =$ Constant	$\frac{1}{K_{\nu}}$	$K_{\nu} = \infty$	0
Parabola, $u(t) = \frac{1}{2}t^2$	$\frac{1}{K_a}$	$K_a = 0$	∞	$K_a = 0$	∞	$K_a =$ Constant	$\frac{1}{K_a}$

$$K_p = \lim_{s \to 0} G(s) = G(0)$$

$$K_v = \lim_{s \to 0} sG(s)$$

stability.

$$K_a = \lim_{s \to 0} s^2 G(s)$$

G(s)Fix type 0, 1 or Open loop transfer function

14. Sketching of root locus and its procedure: KN(s) + D(s) = 0

Compute the poles (roots of
$$D$$
) and the zeros (roots of N)
$$n_{\rm poles} - n_{\rm zeros} \qquad \sigma_a = \frac{\sum {\rm poles} - \sum {\rm zeros}}{n_{\rm poles} - n_{\rm zeros}}$$

For each complex pole (resp. zero), compute the departure (resp. arrival) angle by
$$\alpha_{\rm dep}(p) = \pi - \sum_{\rm poles\ p_i} \alpha_{p_i \to p} + \sum_{\rm zeros\ z_i} \alpha_{z_i \to p} \quad \alpha_{\rm arr}(z) = \pi + \sum_{\rm poles\ p_i} \alpha_{p_i \to z} - \sum_{\rm zeros\ z_i} \alpha_{z_i \to z}$$

Compute the poles (roots of D) and the zeros (roots of N) For each complex pole (resp. zero), compute the departure (resp. arrival) angle by $\alpha_{\text{dep}}(p) = \pi - \sum_{\text{poles } p_i} \alpha_{p_i \to p} + \sum_{\text{zeros } z_i} \alpha_{z_i \to p} \alpha_{\text{arr}}(z) = \pi + \sum_{\text{poles } p_i} \alpha_{p_i \to z} - \sum_{\text{zeros } z_i} \alpha_{z_i \to z}$ break-in/break-out points N'(s)D(s) - D'(s)N(s) = 0 recording to the imaginary axis N'(s)D(s) - D'(s)N(s) = 0 recording to the real axis that is on the left of an odd number of poles/zeros belongs to the root locus.

 $\angle \frac{D(s_{\text{desired}})}{N(s_{\text{desired}})} = \angle(-K) = \pi \quad K = \frac{\|D(s_{\text{desired}})\|}{\|N(s_{\text{desired}})\|}$ Validity of 2nd order approximation for a particular value of **K** (CE & CLTF):
• non-dominant poles are far to the left;
• zeros are far to the left;
• zeros that are not far to the left are cancelled by poles

15. [Reshaping root locus] PD controller & Lead Compensator (improve transient behaviour by pass through s_{desired}): $t_s, M_p \downarrow$

PD: $K_D\left(s + \frac{K_P}{K_D}\right) = K(s + z_c)$ $\angle(s_{\text{desired}} + z_c) = \angle D(s_{\text{desired}}) - \angle N(s_{\text{desired}}) - \pi$ $K = \frac{\|D(s_{\text{desired}})\|}{\|s_{\text{desired}} + z_c\| \cdot \|N(s_{\text{desired}})\|}$ V $\angle(s_{\text{desired}} + z_c) - \angle(s_{\text{desired}} + p_c) = \angle D(s_{\text{desired}}) - \angle N(s_{\text{desired}}) - \pi \quad K = \frac{\|s_{\text{desired}} + p_c\| \cdot \|D(s_{\text{desired}})\|}{\|s_{\text{desired}} + p_c\|}$

PD controller = ideal lead compensator; PD controllers cannot be realized by passive circuits and are sensitive to noises; PD controller yield best steady-state behaviour. Decreasing z_c degrades performance of lead compensators. [e_{ss} increases (at same Q point), slower transient]

16. [Reshaping root locus] PI controller & Lag Compensator (reduce steady state error, yet no major change in root locus):

increases the type of a given system by 1 eliminates steady-state error

Lag: $K \frac{s+z_c}{s+p_c}$ | z_c and p_c are very small close to zero $p_c \ll z_c$ pole/zero cancellation | steady-state error has been reduced by a factor $\frac{p_c}{z_c}$ | K value kept the same before and after compensated, small tolerance on desired roots.

transients specifications -

steady-state specifications

17. PID controller & Lead-Lag Compensator: forward transfer function G(s)

$$K_2 \frac{s + z_{c2}}{s} K_1(s + z_{c1}) G(s)$$

$$K_2 \frac{s + z_{c2}}{s} K_1(s + z_{c1}) G(s)$$
 $K_2 \frac{s + z_{c2}}{s + p_{c2}} K_1 \frac{s + z_{c1}}{s + p_{c1}} G(s)$

18. The steady-state response of a stable linear system with transfer function G(s) to a sinusoidal input of the form $\sin(\omega t)$ $c_{ss}(t) = ||G(j\omega)|| \sin(\omega t + \angle G(j\omega))|$

19. $20\log(\|G(j\omega)\|)$ Y-axis $x = \log(\omega)$ y = ax + b a straight line

Derivative G(s) = s | a straight line with slope +20 | $\angle G(j\omega) = \angle j = \pi/2$ | integral G(s) = 1/s

 $G(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$ $G(j\omega) = \frac{1}{\omega} \rightarrow 0, G(j\omega) \rightarrow 1 \quad y = 0$ $\omega \rightarrow 0, G(j\omega) \simeq -\frac{\omega_n^2}{\omega^2} \quad 20 \log(\|G(j\omega\|) \simeq 40(\log(\omega_n) - \log(\omega)) \quad y = -\pi$ Second-order

20. Bode plots of complex functions (Forward Loop TF, not closed loop):

	Left part $\omega \simeq 0$ to $\omega = 0.1\omega_{\min}$	$\omega = 0.1 \omega_{ m min} \; { m to} \; \omega$		Right part $\omega = 10\omega_{\rm max}$ to $\omega \simeq \infty$
	plots will be represented by their left asymptotes	sampling and numerical evaluations sample more densely around corner frequencies		plots will be represented by their right asymptotes
asymptotes	N(s) $N(0)/L$	$0 \simeq \angle(N(0)/D(0)) - k\angle(j\omega)$ $0(0) > 0 \qquad y = -k\pi/2$ $0(0) < 0 \qquad y = \pi - k\pi/2 \qquad \uparrow$ $0 \log\left(\frac{ N(0) }{ D(0) }\right) - 20k\log(\omega)$	$\angle G(j\omega) \simeq \angle A - n$ $\varepsilon \qquad A > 0 \qquad y = -1$ $\downarrow \qquad A < 0 \qquad y = \pi$ $8 \qquad 20 \log(\ G(j\omega)\ $	3

Refer No.13

21. Bode plot analysis:

 $G(s) = \frac{N(s)}{sD(s)}$

Type-0 $20 \log(|G(0)|) = 20 \log K_p$ Left asymptote's gradient for system type, dient for system order. $K_p = 10^{\frac{y_{\rm asymptote}}{20}} e_{ss} = \frac{1}{1 + K_p}$ $\frac{|N(0)|}{|D(0)|} (x,y) = (0,20\log(|N(0)/D(0)|)$ $K_v = 10^{\frac{y_{\rm intersect}}{20}} e_{ss} = \frac{1}{K_v}$ right asymptote's gradient for system order.

Nyquist stability

TF is G/(1+G) Unity-Feedback System $||G(j\omega)|| < 1$ when $\angle G(j\omega) = \pm \pi \mod 2\pi$ $\angle G(j\omega) > -\pi$ when $||G(j\omega)|| = 1$ $G_M = -20 \log ||G(j\omega^*)||$ $\angle G(j\omega^*) = -\pi$ $\phi_M = \pi + \angle G(j\omega^*)$ $||G(j\omega^*)| = 1$