

მონაცემთა ანალიტიკა Python

ლექცია 14: კლასიფიკაცია. ერთ-ცვლადიანი ლოჯისტიკური რეგრესია. მრავალ-ცვლადიანი ლოჯისტიკური რეგრესია

ლექცია 15: კლასიფიკაცია. გადაწყვეტილების ხე

ლიკა სვანაძე lika.svanadze@btu.edu.ge

Machine learning Models

Based on the tasks performed and the nature of the output, you can **classify** machine learning models into three types:

- 1. Regression: where the output variable to be predicted is a continuous variable
- **2. Classification:** where the output variable to be predicted is a categorical variable
- 3. Clustering: where there is no pre-defined notion of a label allocated to the groups/clusters formed.

Simple linear Regression

Multiple linear Regression

Logistic Regression

Logistic Regression

 Unlike linear regression which outputs continuous number values, logistic regression uses the logistic sigmoid function to transform its output to return a probability value which can then be mapped to two or more discrete classes.

Types of Logistic Regression

- 1. Binary (true/false, yes/no)
- 2. Multi-class (sheep, cats, dogs)
- 3. Ordinal (Job satisfaction level dissatisfied, satisfied, highly satisfied)

Non-Separable Case: Deterministic Decision

Non-Separable Case: Probabilistic Decision

How to get probabilistic decisions?

Perceptron scoring: $z = w \cdot f(x)$

If $z = w \cdot f(x)$ very positive \rightarrow want probability going to 1

If $z = w \cdot f(x)$ very negative \rightarrow want probability going to 0

Sigmoid function

$$\phi(z) = \frac{1}{1 + e^{-z}}$$

A 1D Example

Separable Case: Probabilistic Decision – Clear Preference

Best w?

Maximum likelihood estimation:

$$\max_{w} \ ll(w) = \max_{w} \ \sum_{i} \log P(y^{(i)}|x^{(i)};w)$$

with:

$$P(y^{(i)} = +1|x^{(i)}; w) = \frac{1}{1 + e^{-w \cdot f(x^{(i)})}}$$

$$P(y^{(i)} = -1|x^{(i)}; w) = 1 - \frac{1}{1 + e^{-w \cdot f(x^{(i)})}}$$

= Logistic Regression

მონაცემთა ანალიტიკა Python

ლექცია 15: კლასიფიკაცია. გადაწყვეტილების ხე. მრავალი გადაწყვეტილების ხე.

ლიკა სვანაძე lika.svanadze@btu.edu.ge

Decision Trees

Classification Trees

Regression Trees

Decision Tree - Regression

Predictors			Target	
Outlook	Temp.	Humidity	Windy	Hours Played
Rainy	Hot	High	Falce	26
Rainy	Hot	High	True	30
Overoast	Hot	High	Falce	48
Sunny	Mild	High	Falce	46
Sunny	Cool	Normal	Falce	62
Sunny	Cool	Normal	True	23
Overoast	Cool	Normal	True	43
Rainy	Mild	High	Falce	36
Rainy	Cool	Normal	Falce	38
Sunny	Mild	Normal	Falce	48
Rainy	Mild	Normal	True	48
Overoast	Mild	High	True	62
Overoast	Hot	Normal	Falce	44
Sunny	Mild	High	True	30

In contrast, a **Regression Tree** easily accommodates the additional predictors.

Dosage	Age	Sex	Etc.	Drug Effect.	
10	25	Female		98	
20	73	Male		0	
35	54	Female		100	
5	12	Male		44	
etc	etc	etc	Activate Wir	dows activa etc ws	

Decision Trees

Reminder: Features

Features, aka attributes

Sometimes: TYPE=French

• Sometimes: $f_{\text{TYPE=French}}(x) = 1$

Example	Attributes									Target	
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
X_1	T	F	F	T	Some	\$\$\$	F	T	French	0–10	T
X_2	T	F	F	Τ	Full	\$	F	F	Thai	30–60	F
X_3	F	T	F	F	Some	\$	F	F	Burger	0–10	T
X_4	T	F	T	Τ	Full	\$	F	F	Thai	10–30	T
X_5	T	F	T	F	Full	<i>\$\$\$</i>	F	T	French	>60	F
X_6	F	T	F	Τ	Some	<i>\$\$</i>	T	T	Italian	0–10	T
X_7	F	T	F	F	None	\$	T	F	Burger	0–10	F
X_8	F	F	F	Τ	Some	\$\$	T	T	Thai	0–10	T
X_9	F	T	T	F	Full	\$	T	F	Burger	>60	F
X_{10}	T	T	T	Τ	Full	\$\$\$	F	T	Italian	10–30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0–10	F
X_{12}	T	T	T	T	Full	\$	F	F	Burger	30–60	T

Decision Trees

Compact representation of a function:

- Truth table
- Conditional probability table
- Regression values

True function

 \circ Realizable: in H

Choosing an Attribute

Idea: a good attribute splits the examples into subsets that are (ideally) "all positive" or "all negative"

So: we need a measure of how "good" a split is, even if the results aren't perfectly separated out

Entropy and Information

Information answers questions

- The more uncertain about the answer initially, the more information in the answer
- Scale: bits
 - Answer to Boolean question with prior <1/2, 1/2>?
 - Answer to 4-way question with prior <1/4, 1/4, 1/4, 1/4>?
 - Answer to 4-way question with prior <0, 0, 0, 1>?
 - Answer to 3-way question with prior <1/2, 1/4, 1/4>?

A probability p is typical of:

- A uniform distribution of size 1/p
- A code of length log 1/p

Entropy

General answer: if prior is $\langle p_1, ..., p_n \rangle$:

Information is the expected code length

$$H(\langle p_1, \dots, p_n \rangle) = E_p \log_2 1/p_i$$
$$= \sum_{i=1}^n -p_i \log_2 p_i$$

Also called the entropy of the distribution

- More uniform = higher entropy
- More values = higher entropy
- More peaked = lower entropy
- Rare values almost "don't count"

Information Gain

Back to decision trees!

For each split, compare entropy before and after

- Difference is the information gain
- Problem: there's more than one distribution after split!

Solution: use expected entropy, weighted by the number of examples

Next Step: Recurse

Now we need to keep growing the tree!

Two branches are done (why?)

What to do under "full"?

See what examples are there...

Example		Attributes									Target
1	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
X_1	T	F	F	T	Some	\$\$\$	F	T	French	0–10	T
X_2	T	F	F	T	Full	\$	F	F	Thai	30–60	F
X_3	F	T	F	F	Some	\$	F	F	Burger	0–10	T
X_4	T	F	T	T	Full	\$	F	F	Thai	10–30	T
X_5	T	F	T	F	Full	\$\$\$	F	T	French	>60	F
X_6	F	T	F	T	Some	\$\$	T	T	Italian	0–10	T
X_7	F	T	F	F	None	\$	T	F	Burger	0–10	F
X_8	F	F	F	Τ	Some	\$\$	T	T	Thai	0–10	T
X_9	F	T	T	F	Full	\$	T	F	Burger	>60	F
X_{10}	T	T	T	T	Full	\$\$\$	F	T	Italian	10–30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0–10	F
X_{12}	T	T	T	T	Full	\$	F	F	Burger	30–60	T

Example: Learned Tree

Decision tree learned from these 12 examples:

Substantially simpler than "true" tree

• A more complex hypothesis isn't justified by data

Also: it's reasonable, but wrong

Python implementation (See python files)