IBM Coursera Advance Data Science Capstone

by

Ashiqur Rahman Khan

Github: https://github.com/ashiqurrahmankhan21st/CapstoneProject

Table of Content

- 1. Data Set https://www.kaggle.com/goyalshalini93/car-data
- 2. Use Case
- 3. Solution to the Use Case
- 4. Architectural Choice
- 5. Data Quality assessment, Data Pre-processing and Feature Engineering
- 6. Model Performance Indicator
- 7. Model Algorithm

DataSet

• DataSet Shape:

• Data types:

float64 - 8, int64 - 8, object - 10 data.head()

	car_ID	symboling	CarName	fueltype	aspiration	doornumber	carbody	drivewheel	enginelocation	wheelbase	
0	1	3	alfa-romero giulia	gas	std	two	convertible	rwd	front	88.6	
1	2	3	alfa-romero stelvio	gas	std	two	convertible	rwd	front	88.6	
2	3	1	alfa-romero Quadrifoglio	gas	std	two	hatchback	rwd	front	94.5	
3	4	2	audi 100 ls	gas	std	four	sedan	fwd	front	99.8	
4	5	2	audi 100ls	gas	std	four	sedan	4wd	front	99.4	

Features

data.info()

as data will be labeled based on the car volume. thats why calculating the car volume.

#cars volume assigned in carSize column:

df['carSize'] = df['carlength']

* df['carwidth']

* df['carheight']

#	Column	Non-Null Count	Dtype
0	car ID	205 non-null	int64
1	symboling	205 non-null	int64
2	CarName	205 non-null	object
3	fueltype	205 non-null	object
4	aspiration	205 non-null	object
5	doornumber	205 non-null	object
6	carbody	205 non-null	object
7	drivewheel	205 non-null	object
8	enginelocation	205 non-null	object
9	wheelbase	205 non-null	float64
10	curbweight	205 non-null	int64
11	enginetype	205 non-null	object
12	cylindernumber	205 non-null	object
13	enginesize	205 non-null	int64
14	fuelsystem	205 non-null	object
15	boreratio	205 non-null	float64
16	stroke	205 non-null	float64
17	compressionratio	205 non-null	float64
18	horsepower	205 non-null	int64
19	peakrpm	205 non-null	int64
20	citympg	205 non-null	int64
21	highwaympg	205 non-null	int64
22	price	205 non-null	float64
$\rightarrow 23$	carSize	205 non-null	float64
dtvp	es: float64(6). in	t64(8). object(10)

Visualization

Cars Volume/Size Column

carSize vs other features

carSize vs other features

Correlation Matrics

highly corelated features
1 > x >= 0.5

- wheelbase
- curbweight
- enginesize
- boreratio
- price

- -0.25

Use Case

- in thes project a car dataset is used with many car's features
- in a car inventory or car showroom cars can be arranged in any manner.

• if the cars are arraned in a random way or without any analysis then it wil inefficient inventory arrangement and verry messy.

Solution to the Use Case

 different cars have different feature measures

here each car wolume/size was measured

as car inventory
 management is all about
 space management so
 significant features should
 be the main focus which
 affects the car size

 then pair wise correlation was measured to identify the significant features for further calculations

Solution to the Use Case

- then highly correlated features were identified which do affect the Car Size. these are:
- then labels were assigned to the data

- 1. wheelbase
- 2. curbweight
- 3. enginesize
- 4. boreratio
- 5. price

 then by applying some ML and NN models best result can be achived

Architectural Choice

• Environment:

Jupyter Notebook

• Frameworks:

Apache Spark (pyspark)

Models

MultiClass Classification - A, B & C:

- 1. LogisticRegression
- 2. RandomForestClassifier
- 3. DecisionTreeClassifier

Binary Classification - A & B:

- 1. LinearSVC
- 2. GBTClassifier
- 3. RandomForestClassifier

Data Quality assessment

• as we saw there is no null value in the dataset and the carSize feature has 2 outliars only and some there were some features had positive correlation with the carSize so the Data Quality is good enough.

Data Pre-processing

- As it is a classification problem we must assign some class/label to the dataset for each row.
- we are solving space related probelm so we must must assign class based on car volume/size.
- so ABC analysis was done based on carSize (car volume) column and each row got a class A,B or C,
- for binary classification model only A and B class was assigned.

Feature Engineering

• Based on the correlation matrics 5 features were selected which have correlation with carSize grater than 0.5 and less than 1.0

• then Class column was assigned as label column and that 5 columns as feature columns.

Model Performance Indicator

Model Performance Indicators

- Accuracy
- Precision
- Recall

	RandomForestMultiClassifier	DecisionTreeClassifier	LogisticRegression	LinearSVC	GBTClassifier	RandomForestBinaryClassifier
TrainAccuracy	1	0.951515	0.5375	0.892374	1	1
TestAccuracy	1	0.975	0.577778	0.909722	1	1
Accuracy	0.711111	0.7	0.577778	0.529412	1	0.960784
Precision	1	1	0.742857	0.529412	1	0.913043
Recall	1	0.863636	1	1	1	1

Model Algorithm

Based on the Model Performance Indicators
DecisionTreeClassifier Algorithm should be
selected as the Model Algorithm.