Data Model for Astronomical DataSet Characterisation

Cristopher Arenas

carenas@csrg.inf.utfsm.cl

Computer Systems Research Group, Universidad Técnica Fedrico Santa María

August 8, 2013

Overview

Objetivos

Aspectos Generales

Estructura y estrategia de desarrollo

El enfoque de los Ejes

El enfoque de las Propiedades

Presentación de la información por capas

El modelo de datos

Serialización XMI

Objetivos

 Definir un modelo de datos que permita describir observaciones astronómicas y satisfacer requerimientos de descubrimiento, análisis y procesamiento de datos.

Al considerar una observación astronómica se identifican varias *Propiedades*:

- Cobertura (Coverage).
- Precisión de Muestreo (Sampling Precision).
- Resolución (Resolution).
- Precisión (Accuracy).

Cobertura (Coverage)

- Describe la dirección en que estaba apuntando el telescopio, en cuales longitudes de onda y cuando y/o la región cubierta por cada eje.
- Descrito por niveles crecientes de detalle:
 - Ubicación (Location)
 - Límites (Bounds)
 - □ Soporte (Support)
 - Sensibilidad (Sensitivity)
 - □ Factor de llenado (Filling factor).

Precisión de muestreo (Sampling Precision)

Describe los intervalos de muestreo de cada eje.

Resolución (Resolution)

Describe la resolución física efectiva (PSF, LSF, etc).

Precisión (Accuracy)

Describe la precisión de la medición.

Interacción entre Observation y Characterisation

Tres direcciones independientes:

- El enfoque de los ejes.
- El enfoque de las propiedades.
- Presentación de la información por capas.

El enfoque de los ejes

Dimensiones físicas para los datos descritas por ejes tales como:

- Spatial.
- Spectral.
- Time.
- Velocity.
- Visibility.
- Polarisation.
- Observable.

El enfoque de los ejes

- Se recomiendan los nombres anteriores.
- Nombres FITS pueden ser usados también.
- El proveedor de datos deberá proporcionar un UCD y unidades para cada eje.
- No hay límite en la cantidad de ejes y pueden ser dependientes o superpuestos.

El enfoque de los ejes

- Algunos ejes son implícitos al ser presentados con una palabra clave.
- Se utilizan flags para indicar propiedades de calificación booleanas:
 - Variable dependiente.
 - Estado de calibración.
 - Datos bajo muestreo.
- La precisión carateriza alguna incertidumbre asociada con cada eje.

El enfoque de las propiedades

Las propiedades principales necesarias para la descripción y recuperación de datos están categorizadas por:

- Cobertura
- Límites
- Resolución
- Precisión de Muestreo

El enfoque de las propiedades

- La cobertura está descrita por cuatro capas, las cuales entregan una visión jerárquica de detalle incremental:
 - Location: posición de un punto en un parámetro espacio N-dimensional.
 - Bounds: un rango en cada parámetro, proporcionando el límite inferior y superior de una caja N-dimensional.
 - Support: describe cuantitativamente el subconjunto de espacio, tiempo, frecuencia u otros dominios en los cuales hay datos válidos.
 Puede incluir uno o varios rangos en cada eje.
 - Sensitivity: provee valores numéricos indicando la variación de la función de respuesta en cada eje.

El enfoque de las propiedades

Niveles de detalle en 1D y 2D

El enfoque de las propiedades

- Los límites pueden incluir como sub-nivel el factor de llenado.
- La resolución es usualmente el mínimo intervalo independiente de medición en cada eje.
- El muestreo, también llamado pixelación, precisión o cualtización, describe el truncamiento de valores de datos.

Presentación de la información por capas

- Permite tareas para recuperar solo los metadatos requeridos.
- Los niveles más bajos pueden estar muy detallados. Esto puede tener varias formas:
 - Un valor simple o un rango.
 - □ Una función analítica de otros valores de *propiedad*.
 - □ Un *variance map* para datos 2D.
 - Una tabla de consulta para la corrección de paso de banda para datos espectrales 1D.
- Propiedades más complejas pueden ser proporcionadas utilizando punteros a datos auxiliares.

- Diagramas UML describen la organización de los metadatos de Characterisation siguiendo la perspectiva Propiedades/Ejes/Niveles.
- Otros elementos incluyen el número de bins presentes en el eje Observable o ejes que representen fenómenos medidos por medio de otros ejes.
- Para la calibración, se provee un flag de estado CharacterisationStatus por cada eje que entrega información acerca de la calibración de los datos con alguno de los valores:
 - □ Uncalibrated
 - □ Calibrated
 - □ Relative
 - NORMALIZED

- Para el estado de muestreo se proveen flags para Undersampling y para el muestreo regular.
- La clase Accuracy provee flags que sirven como indicadores de calidad con múltiples niveles de detalle, análogo a Coverage.
- Characterisation es el elemento raíz del modelo. Puede ser serializado utilizando dos conjuntos alternativos de elementos primarios:
 - □ Propiedades, con las clases correspondientes para cada eje adjuntas.
 - Ejes, factorizando cada descripción en los niveles multi-capas de las propiedades.

Implementación utilizando elementos de STC

- Location implementa STC:AstroCoords.
- Bounds implementa tipos básicos de STC. Algunos elementos de STC:Interval y STC:Coords en una estructura similar a STC:AstroCoordArea.
- Support usa STC:AstroCoordArea.
- Resolution ResolutionRefVal puede ser implementado usando elementos STC:Resolution.
- SamplingPeriod y SampleExent encapsulan elementos de STC:CPixSize.

- Serialización basasa en un árbol.
- Elementos apropiados son tomados de STC.
- El elemento raíz, Characterisation, es la agregación de un conjunto de elementos CharacterisationAxis por cada eje.
- CharacterisationAxis contiene información de los ejes, coordenadas del sistema, unidades, etc.
- Coverage implementa distintos elementos acorde a los cuatro niveles de descripción.

- Los niveles más bajos de estas propiedades pueden reusar parámetros de ejes de niveles superiores para redefinir sus propios parámetros de ejes localmente.
- La mayor parte de coordenadas de información reutiliza definiciones y estructuras de las coordenadas STC.
- Para construir el esquema se considera una jerarquía desde el concepto más general bajando a los más específicos.
- Las clases agregadas son traducidas en elementos agregados.
- Los atributos de una clase UML son codificados como elementos de subniveles.

Utypes

- Son identificadores que permiten reconocer un concepto en varios modelos o serializaciones.
- Se construyen mediante la navegación en la representación del esquema XML, siguiendo los enlaces lógicos provistos.
- La idea es que puedan ser entendidos por cualquier herramienta de un OV fuera del modelo.

Data Model for Astronomical DataSet Characterisation

Cristopher Arenas

carenas@csrg.inf.utfsm.cl

Computer Systems Research Group, Universidad Técnica Fedrico Santa María

August 8, 2013

