7' Esercitazione https://politecnicomilano.webex.com/meet/gianenrico.conti 3 maggio 2021

Gian Enrico Conti MIPS architecture (pipelined)

Architettura dei Calcolatori e Sistemi Operativi 2020-21

Recap

Architettura a singolo ciclo

- Funzionamento
- Segnali di controllo

Architettura a singolo ciclo

Schema semplificato dell'architettura MIPS a singolo ciclo

Architettura a singolo ciclo

Schema semplificato dell'architettura MIPS a singolo ciclo

Outline

Architettura pipelined

- Funzionamento
- Esecuzione sequenziale vs pipelined
- Conflitti all'interno della pipeline
 - Conflitti strutturali
 - Conflitti sui dati
 - Conflitti di controllo

Architettura pipelined: Zone (single cycle)

Esecuzione sequenziale vs pipelined

 Nell'esecuzione sequenziale ogni istruzione inizia la propria esecuzione solo al termine della precedente

Esecuzione sequenziale vs pipelined

 Nell'esecuzione sequenziale ogni istruzione inizia la propria esecuzione solo al termine della precedente

 Nell'esecuzione pipelined si migliorano le prestazioni basata sulla sovrapposizione dell'esecuzione di più istruzioni appartenenti ad un flusso di esecuzione sequenziale.

CPI

 Per misurare l'efficienza di una certa architettura si utilizza un indicatore chiamato CPI (Cycles Per Instruction)

$$\square CPI = \frac{\# TOTALE \ CICLI}{\# TOTALE \ ISTRUZIONI}$$

 Intuitivamente il CPI rappresenta il numero medio di cicli necessari per completare un istruzione

Attenzione!

– CPI ≥ 1 al massimo termina un istruzione per ciclo se non ci sono stalli

Terminologia

- Five stage "RISC" load-store architecture:
- 1. Instruction fetch (IF)
 - get instruction from memory, increment PC
- 2. Instruction Decode (ID)
 - translate opcode into control signals and read registers
- 3. Execute (EX)
 - perform ALU operation, compute jump/branch targets
- 4. Memory (MEM)
 - access memory if needed
- 5. Writeback (WB)
 - update register file

Conflitti all'interno della pipeline

- I conflitti sorgono nelle architetture con pipelining quando non è possibile eseguire un'istruzione nel ciclo immediatamente successivo
 - Conflitti strutturali
 - Tentativo di usare la stessa risorsa hardware da parte di diverse istruzioni in modi diversi nello stesso ciclo di clock
 - Conflitti sui dati
 - Tentativo di usare un risultato prima che sia disponibile
 - Conflitti di controllo
 - Nel caso di salti, decidere quale prossima istruzione da eseguire prima che la condizione sia valutata

Conflitto strutturali

Nell'architettura MIPS pipeline non abbiamo conflitti strutturali

- Memoria dati separata dalla memoria istruzioni
- Banco dei registri progettato per evitare conflitti tra la lettura e la scrittura nello stesso ciclo
 - Scrittura del banco dei registri nella prima metà del ciclo di clock
 - Lettura del banco dei registri nella seconda metà del ciclo di clock

Conflitti sui dati

 Un'istruzione dipende dal risultato di un'istruzione precedente che è ancora nella pipeline

Istruzione add \$s0, \$t0, \$t1 sub \$t2, \$s0, \$t3

Nella pipeline queste istruzioni vengono rappresentate come

add \$s0, \$t0, \$t1 sub \$t2, \$s0, \$t3

- Due possibili soluzioni a questo tipo di conflitti sono
 - NOP

Inserimento di istruzioni NOP per evitare il conflitto

Scheduling

Cambiamento dell'ordine di esecuzione delle istruzioni mantenendo equivalenza funzionale

Soluzioni ai conflitti sui dati

Soluzioni di tipo hardware

- Inserimento di bolle (bubble) o stalli nella pipeline
 - Si inseriscono dei tempi morti
 - Peggiora il throughput
- Propagazione o scavalcamento (forwarding o bypassing)
 - Si propagano i dati in avanti appena sono disponibili verso le unità che li richiedono

Soluzioni di tipo software

- Inserimento di istruzioni nop (no operation)
 - Peggiora il throughput
- Riordino delle istruzioni
 - Spostare istruzioni "innocue" in modo che esse eliminino la criticità

Propagazione

Propagazione di una istruzione aritmetica

Propagazione di un istruzione LW

Architettura con forwarding

Istruzione (15-11)

Architettura con forwarding: U.di Prop. pilota i MUX

Conflitti condizionati

 Nel processore MIPS la decisione sul salto condizionato non viene presa fino al quarto passo (MEM) dell'istruzione beq

Conflitti condizionati

- Per avere un esecuzione corretta da parte del processore si possono attuare due soluzioni:
 - NOP Inserimento di istruzioni NOP finché non conosco il risultato della branch
 - Delay Slot Cambio l'ordine di esecuzione delle istruzioni in modo da mantenere equivalenza funzionale e non inserire le NOP

Soluzioni ai conflitti di controllo

Soluzioni di tipo hardware

- Inserimento di bolle (bubble) o stalli nella pipeline (3 cicli)
 - Si inseriscono dei tempi morti
 - Peggiora il throughput
- Ridurre i ritardi associati ai salti condizionati
 - Comparatore in fase di decode
 - Calcolo dell'indirizzo di destinazione in fase di decode
- Predizione Statica
 - Si assume branch taken o branch not taken
 - In caso di errore si invalida l'instruzione in esecuzione
- Predizione Dinamica
 - Comparatore in fase di decode
 - Tabella della storia dei salti (branch prediction buffer)
 - Predizione a 1 o 2 bit

Esercizi

- Dipendenze
- Uso di:

NOP Stalli

- Calcolo del CPI(clock cycles per instruction)

$$CPI = \frac{\# TOTALE \ CICLI}{\# TOTALE \ ISTRUZIONI}$$

Esercizio 1

Dato il seguente codice assembly:

```
ADD R5, R6, R7
LW R6, 200(R5)
SUB R3, R1, R2
ADD R4, R3, R4
```

- 1. Identificare le dipendenze dati del seguente codice
- 2. Risolvere i conflitti presenti utilizzando le NOP + Calcolare il CPI
- 3. Risolvere i conflitti presenti utilizzando gli STALLI e calcolare il CPI
- 4. Risolvere i conflitti presenti RIORDINANDO le istruzioni e introducendo STALLI dove necessario. Calcolare infine il CPI
- 5.Risolvere i conflitti presenti assumendo che l'architettura supporti la PROPAGAZIONE e calcolare il CPI
- 6. Mostrare i segnali di controllo dell'architettura con propagazione nel ciclo 4

Esercizio 1-1 Identificare le dipendenze dati

```
ADD R5, R6, R7
LW R6, 200(R5)
SUB R3, R1, R2
ADD R4, R3, R4
```

1. Dipendenze dati del codice:

Dipendenza RAW su R5 tra ADD1 e LW2 Dipendenza RAW su R3 tra SUB3 e ADD4 Dipendenza WAR su R6 tra ADD1 e LW2

- 1. Tabella
- 2. Righe: le istruzioni
- 3. Colonne molte... avremo piu cicli...
- 4. "Aspetto" introducendo eventuali "NOP" come righe

CICLO	1	2	3	4				
ADD1								
LW2								
SUB3								
ADD4								

Nota: NOP e' messa lato codice

```
ADD R5, R6, R7
LW R6, 200(R5)
SUB R3, R1, R2
ADD R4, R3, R4
```

1 istruzione ADD:

CICLO	1	2	3	4	5	6	7	8	9	10	11	12
ADD1	F	D	E	М	W							

```
ADD R5, R6, R7
LW R6, 200(R5)
SUB R3, R1, R2
ADD R4, R3, R4
```

2' istruzione LW deve aspettare la W (di R5) per la sua fase D:

Ma dove la metto?

CICLO	1	2	3	4	5	6	7	8	9	10	11	12
ADD1	F	D	E	M	W							
												
					D							
					· NOD							

Nota: posso aggiungere NOP a SX, ma ogni NOP "sposta" in diagonale, dovendo rispettare:

DFEMW

```
ADD R5, R6, R7
LW R6, 200(R5)
SUB R3, R1, R2
ADD R4, R3, R4
```

Qui NON va bene:

CICLO	1	2	3	4	5	6	7	8	9	10	11	12
ADD1	F	D	E	М	W							
NOP		F	D	E	М	W						
			F	???	D							
												-

```
ADD R5, R6, R7
LW R6, 200(R5)
SUB R3, R1, R2
ADD R4, R3, R4
```

Aggiungo F, in diagonale...

CICLO	1	2	3	4	5	6	7	8	9	10	11	12
ADD1	E	D	E	М	W							
NOP		F	D	E	М	W						
NOP			F									

```
ADD R5, R6, R7
LW R6, 200(R5)
SUB R3, R1, R2
ADD R4, R3, R4
```

2.Quindi 2 NOP:

CICLO	1	2	3	4	5	6	7	8	9	10	11	12
ADD1	F	D	E	М	W							
NOP		F	D	E	М	W						
NOP			F	D	E	М	W					
LW2				F	D	E	М	W				
SUB3												
NOP												
NOP												
ADD4												

Esercizio 1-2 Risolvere i conflitti presenti utilizzando le NOP

```
ADD R5, R6, R7
LW R6, 200(R5)
SUB R3, R1, R2
ADD R4, R3, R4
```

2. Risolvere i conflitti presenti utilizzando le NOP

CICLO	1	2	3	4	5	6	7	8	9	10	11	12
ADD1	F	D	E	М	W							
NOP		F	D	E	М	W						
NOP			F	D	E	М	W					
LW2				F	D	E	М	W				
SUB3					F	D	E	М	W			
NOP						F	D	E	М			
NOP							F	D	Е	М	W	
ADD4								F	D	E	М	W

Esercizio 1-2: CPI

Calcolare il CPI:

Dalla tabella precedente... 12 "passi" ...

Ma le istruzioni "vere" sono 4..

$$CPI = \frac{\text{# TOTALE CICLI}}{\text{# TOTALE ISTRUZIONI}} = \frac{12}{4} = 3$$

Risolvere i conflitti presenti utilizzando gli STALLI

Passi:

- 1) Tabella
- 2) Uno stallo e' *interno* al μP
- 3) NON aggiungo righe
- 4) Simbolo X

1 passo:

CICLO	1	2	3	4	5	6	7	8	9	10	11	12
ADD1	F	D	E	M	W							
LW2												
SUB3												
ADD4												

2' riga LW, ma "D" deve attendere "W" della 1:

Ma LW inizia subito dopo..

Quindi il µp avra' due "X" (stalli)

CICLO	1	2	3	4	5	6	7	8	9	10	11	12
ADD1	F	D	E	M	W							
LW2		F	Х	X	D							
SUB3												
ADD4												

Quindi il µp avra' due "X" (stalli) e quindi riga 1 e 2:

CICLO	1	2	3	4	5	6	7	8	9	10	11	12
ADD1	F	D	E	M	W							
LW2		F	X	X	D	E	M	W				
SUB3												
ADD4												

Il Fetch di SUB e' stato fermato dagli stalli...

Sub 3 procede e produce W

CICLO	1	2	3	4	5	6	7	8	9	10	11	12
ADD1	F	D	E	M	W							
LW2		F	Х	X	D	E	M	W				
SUB3					F	D	E	M	W			
ADD4												

Add 4 esegue fetch, ma "D" deve aspettare "W"

CICLO	1	2	3	4	5	6	7	8	9	10	11	12
ADD1	F	D	E	М	W							
LW2		F	X	Х	D	E	M	W				
SUB3					F	D	E	M	W			
ADD4						F	Х	Х	D	E	M	W

Quindi 2 stalli

Esercizio 1-3: CPI

Calcolare il CPI:

Dalla tabella precedente... 12 "passi" ..

Ma le istruzioni "vere" sono 4..

$$CPI = \frac{\text{# TOTALE CICLI}}{\text{# TOTALE ISTRUZIONI}} = \frac{12}{4} = 3$$

4. Risolvere i conflitti presenti RIORDINANDO le istruzioni e introducendo STALLI dove necessario.

```
ADD R5, R6, R7
LW R6, 200(R5)
SUB R3, R1, R2
ADD R4, R3, R4
```

CICLO	1	2	3	4	5	6	7	8	9
ADD1	F	D	E	М	W				
SUB3		F	D	E	M	W			
LW2			F	X	D	Е	М	W	
ADD4					F	D	E	M	W

Spostato SUB.

Esercizio 1-4:CPI

4. Risolvere i conflitti presenti RIORDINANDO le istruzioni e introducendo STALLI dove necessario. Calcolare infine il CPI

$$CPI = \frac{\text{\# TOTALE CICLI}}{\text{\# TOTALE ISTRUZIONI}} = \frac{9}{4} = 2.25$$

Risolvere i conflitti presenti assumendo che l'architettura supporti la PROPAGAZIONE

Logica: non aspetto W, mi basta M...

Risolvere i conflitti presenti assumendo che l'architettura supporti la PROPAGAZIONE

Logica: non aspetto W, mi basta M:

CICLO	1	2	3	4	5	6	7	8
ADD1	F	D	E	M	W			
LW2		F	D	Е	М	W		
SUB3			F	D	E	M	W	
ADD4				F	D	E	М	W

Esercizio 1-5:CPI

Risolvere i conflitti presenti assumendo che l'architettura supporti la PROPAGAZIONE e calcolare il CPI

$$CPI = \frac{\# TOTALE \ CICLI}{\# TOTALE \ ISTRUZIONI} = \frac{8}{4} = 2$$

CICLO	1	2	3	4	5	6	7	8
ADD1	F	D	Е	M	W			
LW2		F	D	E	М	W		
SUB3			F	D	E	M	W	
ADD4				F	D	Е	M	W

Segnali:

EX.ALUSrc
EX.RegDest
M.MemWrite
M.MemRead
M.Branch
WB.MemToReg
WB.RegWrite

	Valore
PropagaA	10
PropagaB	00

Esercizio 2

Dato il seguente codice assembly:

```
ADD R5, R6, R7
LW R6, 200(R5)
SUB R5, R6, R7
```

- 1. Identificare le dipende dati del seguente codice
- 2. Risolvere i conflitti presenti utilizzando le NOP e calcolare il CPI
- 3. Risolvere i conflitti presenti utilizzando gli STALLI e calcolare il CPI
- 4. Risolvere i conflitti presenti RIORDINANDO le istruzioni e introducendo STALLI dove necessario. Calcolare infine il CPI
- 5. Risolvere i conflitti presenti assumendo che l'architettura supporti la PROPAGAZIONE e calcolare il CPI
- 6. Mostrare i segnali di controllo dell'architettura con propagazione nel ciclo 6

Dato il seguente codice assembly:

ADD R5, R6, R7 LW R6, 200(R5) SUB R5, R6, R7

Identificare le dipendenze

Dipendenza RAW su R5 tra ADD1 e LW2 Dipendenza RAW su R6 tra LW2 e SUB3 Dipendenza WAW su R5 tra ADD1 e SUB3 Dipendenza WAR su R6 tra ADD1 e LW2 Dipendenza WAR su R5 tra LW2 e SUB3

Dato il seguente codice assembly:

ADD R5, R6, R7

LW R6, 200(R5)

SUB R5, R6, R7

Risolvere i conflitti presenti utilizzando le NOP e calcolare il CPI

CICLO	1	2	3	4	5	6	7	8	9	10	11
ADD1	F	D	Е	М	W						
NOP		F	D	Е	М	W					
NOP			F	D	Е	М	W				
LW2				F	D	Е	М	W			
NOP					F	D	Е	М	W		
NOP						F	D	E	М	W	
SUB3							F	D	E	М	W

$$CPI = \frac{\# TOTALE \ CICLI}{\# TOTALE \ ISTRUZIONI} = \frac{11}{3} = 3.67$$

Dato il seguente codice assembly:

ADD R5, R6, R7 LW R6, 200(R5) SUB R5, R6, R7

Risolvere i conflitti presenti utilizzando gli STALLI e calcolare il CPI

CICLO	1	2	3	4	5	6	7	8	9	10	11
ADD1	F	D	Е	М	W						
LW2		F	Х	Х	D	Е	М	W			
SUB3					F	Х	Х	D	E	М	W

$$CPI = \frac{\# TOTALE CICLI}{\# TOTALE ISTRUZIONI} = \frac{11}{3} = 3.67$$

Dato il seguente codice assembly:

```
ADD R5, R6, R7
LW R6, 200(R5)
SUB R5, R6, R7
```

Risolvere i conflitti presenti RIORDINANDO le istruzioni e introducendo STALLI dove necessario. Calcolare infine il CPI

Non è possibile introdurre nessun ordinamento per migliorare le prestazioni quindi l'esecuzione rimane identica al punto precedente.

Dato il seguente codice assembly:

ADD R5, R6, R7 LW R6, 200(R5) SUB R5, R6, R7

Risolvere i conflitti presenti assumendo che l'architettura supporti la PROPAGAZIONE e calcolare il CPI

CICLO	1	2	3	4	5	6	7	8
ADD1	F	D	E	M	W			
LW2		F	D	Е	M	W		
SUB3			F	X	D	Е	M	W

$$CPI = \frac{\# TOTALE \ CICLI}{\# TOTALE \ ISTRUZIONI} = \frac{8}{3} = 2.67$$

Dato il seguente codice assembly:

ADD R5, R6, R7 LW R6, 200(R5) SUB R5, R6, R7

CICLO	1	2	3	4	5	6	7	8
ADD1	F	D	E	M	W			
LW2		F	D	Е	M	W		
SUB3			F	Х	D	E	M	W

ISTR		
EX.ALUSrc		
EX.RegDest		
M.MemWrite		
M.MemRead		
M.Branch		
WB.MemToReg		
WB.RegWrite		

Esercizio 3

Dato il seguente codice assembly:

```
ADD R3, R6, R7
SUB R5, R3, R1
LW R6, 100(R3)
SUB R7, R3, R6
```

- 1. Identificare le dipendenze dati del seguente codice
- 2. Risolvere i conflitti presenti utilizzando le NOP e calcolare il CPI
- 3. Risolvere i conflitti presenti utilizzando gli STALLI e calcolare il CPI
- 4. Risolvere i conflitti presenti RIORDINANDO le istruzioni e introducendo STALLI dove necessario. Calcolare infine il CPI
- 5. Risolvere i conflitti presenti assumendo che l'architettura supporti la PROPAGAZIONE e calcolare il CPI
- 6. Risolvere i conflitti presenti assumendo che l'architettura supporti la PROPAGAZIONE e RIORDINO e calcolare il CPI
- 7. Mostrare i segnali di controllo dell'architettura con propagazione nel ciclo 4
- 8. Mostrare i segnali di controllo dell'architettura con propagazione nel ciclo 6

Dato il seguente codice assembly:

```
ADD R3, R6, R7
SUB R5, R3, R1
LW R6, 100(R3)
SUB R7, R3, R6
```

1. Identificare le dipendenze dati del seguente codice

Dipendenza RAW su R3 tra ADD1 e SUB2 Dipendenza RAW su R3 tra ADD1 e LW3 Dipendenza RAW su R3 tra ADD1 e SUB4 Dipendenza RAW su R6 tra LW3 e SUB4 Dipendenza WAR su R6 tra ADD1 e LW3

Dato il seguente codice assembly:

ADD R3, R6, R7 SUB R5, R3, R1 LW R6, 100(R3) SUB R7, R3, R6

Risolvere i conflitti presenti utilizzando le NOP e calcolare il CPI

CICLO	1	2	3	4	5	6	7	8	9	10	11	12
ADD1	F	D	Е	М	W							
NOP		F	D	E	М	W						
NOP			F	D	E	М	W					
SUB2				F	D	E	М	W				
LW3					F	D	E	М	W			
NOP						F	D	Е	М	W		
NOP							F	D	Е	М	W	
SUB4								F	D	Е	М	M

$$CPI = \frac{\# TOTALE \ CICLI}{\# TOTALE \ ISTRUZIONI} = \frac{12}{4} = 3$$

Dato il seguente codice assembly:

ADD R3, R6, R7 SUB R5, R3, R1 LW R6, 100(R3) SUB R7, R3, R6

Risolvere i conflitti presenti utilizzando gli STALLI e calcolare il CPI

CICLO	1	2	3	4	5	6	7	8	9	10	11	12
ADD1	F	D	Е	М	W							
SUB2		F	Х	Х	D	Е	М	W				
LW3					F	D	Е	М	W			
SUB4						F	Х	Х	D	Е	М	W

$$CPI = \frac{\#TOTALECICLI}{\#TOTALEISTRUZIONI} = \frac{12}{4} = 3$$

Dato il seguente codice assembly:

ADD R3, R6, R7 SUB R5, R3, R1 LW R6, 100(R3)

SUB R7, R3, R6

Risolvere i conflitti presenti RIORDINANDO le istruzioni e introducendo STALLI dove necessario. Calcolare infine il CPI

CICLO	1	2	3	4	5	6	7	8	9	10	11
ADD1	F	D	Е	М	W						
LW3		F	Х	Х	D	Е	М	W			
SUB2					F	D	Е	М	W		
SUB4						F	Х	D	E	М	W

$$CPI = \frac{\#TOTALECICLI}{\#TOTALEISTRUZIONI} = \frac{11}{4} = 2.75$$

Dato il seguente codice assembly:

ADD R3, R6, R7 SUB R5, R3, R1 LW R6, 100(R3) SUB R7, R3, R6

Risolvere i conflitti presenti assumendo che l'architettura supporti la PROPAGAZIONE e calcolare il CPI

CICLO	1	2	3	4	5	6	7	8	9
ADD1	F	D	Е	М	W				
SUB2		F	D	Е	М	W			
LW3			F	D	Е	М	W		
SUB4				F	Х	D	Е	М	W

$$CPI = \frac{\#TOTALECICLI}{\#TOTALEISTRUZIONI} = \frac{9}{4} = 2.25$$

Dato il seguente codice assembly:

ADD R3, R6, R7 SUB R5, R3, R1 LW R6, 100(R3) SUB R7, R3, R6

Risolvere i conflitti presenti assumendo che l'architettura supporti la PROPAGAZIONE e RIORDINO e calcolare il CPI

CICLO	1	2	3	4	5	6	7	8
ADD1	F	D	E	M	W			
LW3		F	D	Е	М	W		
SUB2			F	D	E	М	W	
SUB4				F	D	Е	М	W

$$CPI = \frac{\# TOTALE \ CICLI}{\# TOTALE \ ISTRUZIONI} = \frac{8}{4} = 2$$

Dato il seguente codice assembly:

ADD R3, R6, R7 SUB R5, R3, R1 LW R6, 100(R3)

SUB R7, R3, R6

ISTR

Dato il seguente codice assembly:

ADD R3, R6, R7 SUB R5, R3, R1 LW R6, 100(R3) SUB R7, R3, R6

	IF/ID	ID/EX	EX/MEM	MEM/WB
ISTR	Х	SUB4	SUB2	LW3
EX.ALUSrc	_	0	-	-
EX.RegDest	_	1	-	-
M.MemWrite	-	0	0	-
M.MemRead	-	0	0	-
M.Branch	-	0	0	-
WB.MemToReg	-	0	0	1
WB.RegWrite	-	1	1	1

Esercizio 3-8-B

Dato il seguente codice assembly:

ADD R3, R6, R7 SUB R5, R3, R1 LW R6, 100(R3) SUB R7, R3, R6

8. Mostrare i segnali di controllo dell'architettura con propagazione nel ciclo 6

EX/MEM

MEM/WB

ID/EX

Next Session

Es 4 5 6 8