

FAST School of Computing

Quiz-I, Fall 2021 -- Solution 07th October 2021

Course Code: CS1005	ourse Name: Discrete Structures			
nstructors: Mr. Shoaib Raza				
Student Roll No:	Section:			

Time Allowed: 50 minutes. Maximum Points: 30 points

NOTE: Each question carries equal points. In order to get maximum marks, step-by-step solutions are required.

Question #1:

Let p, q, r and s be the propositions.

p: Ali works hard. q: Ali is a dull boy. r: Ali will get the job. s: Ali is ambitious.

Write these propositions using p, q, r and s and logical connectives (including negations):

a) Ali works hard and he is ambitious.
b) Ali is a dull boy if he works hard.
c) Ali is a dull boy only if he does not get the job.
Solution: p → q
Solution: q → ¬r

Question #2:

Using the premises(statements) from Question #1, apply rules of inference to obtain conclusion from those premises. Solution:

Now we can write the premises as, $(p \land s) \land (p \rightarrow q) \land (q \rightarrow \neg r)$

 $\equiv \underline{(p \land q)} \land (p \rightarrow q) \land (q \rightarrow \neg r)$ Simplification $\equiv \underline{p \land (p \rightarrow q)} \land (q \rightarrow \neg r)$ Modus Ponen $\equiv q \land (q \rightarrow \neg r)$ Modus Ponen

≡ ¬r Hence, the conclusion is "Ali will not get the job."

Question #3:

Prove or disprove the following logical equivalence using the laws of logic: $p \leftrightarrow q \cong (p \land q) \lor (\neg p \land \neg q)$ Solution:

```
p \leftrightarrow q
\equiv (p \to q) \land (q \to p)
                                                  Definition of bi-implication
\equiv (\neg p \vee q) \wedge (\neg q \vee p)
                                                  Definition of implication
                                                                          Distributive
\equiv [(\neg p \lor q) \land \neg q] \lor [(\neg p \lor q) \land p]
\equiv [(\neg p \land \neg q) \lor (q \land \neg q)] \lor [(\neg p \land p) \lor (q \land p)]
                                                                          Distributive
\equiv [(\neg p \land \neg q) \lor F] \lor [F \lor (q \land p)]
                                                                          Negation
\equiv (\neg p \wedge \neg q) \vee (q \wedge p)
                                                                          Identity
\equiv (\neg p \wedge \neg q) \vee (p \wedge q)
                                                                          Commutative
                                                                          Commutative
\equiv (p \land q) \lor (\neg p \land \neg q)
```

Question #4:

Use truth table to prove that the given statement $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$ is a Tautology OR Contradiction. Solution: It's a tautology.

р	q	r	$(p \rightarrow q)$	$(q \rightarrow r)$	$(p \rightarrow q) \land (q \rightarrow r)$	(p →r)	$((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$
T	T	T	T	T	T	T	T
T	T	F	T	F	F	F	T
T	F	T	F	T	F	T	T
T	F	F	F	T	F	F	T
F	T	T	T	T	T	T	T
F	T	F	T	F	F	T	T
F	F	T	T	T	T	T	Т
F	F	F	T	T	T	T	Т

Question #5:

- (a) Translate the statement into English, where the domain for each variable consists of all real numbers. $\exists x \ \forall y \ (xy = y)$ Solution: There exists a real number x such that for every real number y, xy = y.
- (b) Use quantifiers to express the statements. "For every real numbers x, y, there exist a real number z such that x = y + z." Solution: $\forall x \forall y \exists z (x = y + z)$

Question #6:

Let f(p, q) means "p + q = 0", where p and q are integers. Determine the truth value of the statement.

(a) $\exists q \forall p f(p, q)$

Solution: False Let q=1 p+q=-1+1=0 but $0+1=1\neq 0$ and $1+1=2\neq 0$

(b) $\forall q \exists p f(p, q)$

Solution: True Let q=1 p+q=-1+1=0 or 0+0=0 and 2+-2=0

Question #7:

Use set-builder notation and logical equivalences to establish the given expression. $(X - Y) \cup (X \cap Y) = X$

 $\equiv \{x \mid ((x \in X) \land (x \notin Y)) \lor ((x \in X) \land (x \in Y))\}$

 $\equiv \{x \mid (x \in X) \land ((x \notin Y) \lor (x \in Y))\}$ Distributive Law

 $\equiv \{x \mid (x \in X) \land (x \in U)\}$ Complement or Negation Law

 $\equiv \{x/ (x \in X)\} \equiv R.H.S$

Question #8:

In a class of 100 students, 35 like science and 45 like math. 10 like both. How many like either of them and how many like neither? Also draw Venn diagram.

Solution:

Total number of students, $n(\mu) = 100$

Number of science students, n(S) = 35

Number of math students. n(M) = 45

Number of students who like both, $n(M \cap S) = 10$

Number of students who like either of them,

 $n(M \cup S) = n(M) + n(S) - n(M \cap S) = 45+35-10 = 70$

Question #9:

Determine whether the function from R to Z is Injective OR Surjective. $f(n) = \lceil \frac{n}{2} \rceil$

Solution:

It is Surjective (onto function). This can be shown by an example; f(1) = 1, and f(2) = 1.

Question #10:

Let f be the function from $\{w, x, y, z\}$ to $\{1,2,3,4\}$ such that f(w) = 2, f(x) = 3, f(y) = 4 and f(z) = 1. Is f invertible and if so, what is its inverse?

Solution:

The function f is invertible because it is a one-to-one correspondence. The inverse function f^{-1} reverses the correspondence given by f, so $f^{-1}(1) = z$, $f^{-1}(2) = w$, $f^{-1}(4) = y$ and $f^{-1}(3) = x$.