Set - 1

1. Define asymptotic notation and explain its importance in analyzing algarithm efficiency. 3 M

⇒ : Asymptotic notations:-

A function f(n) is said to big o (gin) iff there exists constant c & a constant no s.t:

2000 o ≤ f(n) ≤ Cg(n) ¥ n z ho

A function f(n) is said to big or (g(n)) iff
there exists constants c and no s.t.

 $0 \le cg(n) \le f(n) \quad \forall n \ge n_0$

f(n) = -2(g(n))

SVI

'o' notation (Asymp. tight bound)

A function f(n) is said to be O(g(n)) iff there exists constant c, , c2 & a constant no S.J:

$$0 \le f(n) \le (2g(n))$$

 $0 \le c_1g(n) \le f(n)$

0 < C, g(n) < f(n) < (2 g(n) Y n > ho

$$\Rightarrow$$
 f(n) = 0 (g(n)) Worst care
 \Rightarrow f(n) = -2 (g(n)) Best care

Its importance in Analyzing Algo efficiency.

Analyzing algo means predecting the resources that the algo requires . The primary concern is to measure computational time for an algorithm.

Tail Recursion I In Jail recursion, the recursive call is the last statement in a function. void tail Rec (int n) { if (n = 50) } return ; cont conce"; tailRec (n-1); 11 tail Rec (5) will print 11 5 4 3 2 1 Derive the index farmula for accessing elements in a 2-D array sarted in now majon orden 4 m Suppose we have a 2-D array, A [m] [n] And we want find A [i) [j] ; m = no of nows n = no of cals. In momory elems are stored like

A [0][1], A[0][2], A[0][3] -- A[0][n-1], A[1][0] 5 A[1)[1] - - AB][n-1], A[][0] - - A[][n-1]

Date ___/__/_

Count clems befane Alis[j]

- Each now has melins.

Rows before now i = i nows

so we have to skip nxi elems.

Then with in now we have to move if columns.

so tatal elems before A [i][j]

= j*m+j

let each elms occupies w bytes, so

Address of AcisCis = B + w*(i*m+j);

where B = Base address

w = element size (e.g int +1 bytes)

i j = Acheel now and calumn whose address is & be found.

m = number of dems in a now

or no of calumn in matrix.

if start calumn and now is not from zero

Add A [i]G] = B + w* (m*(i-LR)+(j-LC))

where LRanLC are starting index.

SVI

Date __ /__ /_

Explain the difference blw linear search and binary search with their time complexities. 4 M Linear Search! In Linear search, we the target found or ruched at the end. Algarithm! Start from first element if found, return index or value. if not found till end - element not present. code) for (inte i =0; icn; i++) { if (arr[i] = = key) } neturn i neturo -1; TC: i) Best case O(1) 11 clement present at 11. Starting (i) Worst case O(n) 11 element present at Il last index ber then Il we have it's loop in times. ii) Aug case O(n/2) to O(n). In LS no need sorting

Binary Search! In binary search array must be sarted. We supeatedly divide the search snange in that until the target is found or range becomes compty. Algarith! Find the middle element if middle = = target return middle. if middle & Jarget search in right half. repeat until target found or range becomes compty. { (thi, othi, [] rota tri) 28 tri int first = 0; int last = n-1; while (first & last) { ; c/(terif-test) + terif = bim tri #3 if (arr [mid] = = t) { return mid; } else if (arrifinid] < 1) { first = mid+1; else { last = mid-1; return -1;

T(=> i) O(1) Best case 1/ elemen tanget

1/ present at mid nioner emps s/n noitorati tes 2nd n n/4 n 1
3rd n n/8 n n Let K = no of itetration.

So n = 1 $\log n = \log_2 2^k$ logn = Klog2 K = log n dims. So , for worst and any case T C = O(log, h) Space complexity for both is O(1) LS and B.S

al makes

MAJEL.

3

5. Write the algorithm and explain wanking of insertion nant with example 1 5 marks tot. A[] = {3,1,2,5,4} Algorithm! start from second element. · compare with elements before it. shift all elements that are greater than the key, one position to right. => Insert the key at sits correct position.

Repeat all elems from I to n-1. Preudo code! Insertion voet (A, n) for i=1 to n-1 Key = ACI]

while A[j] > key and j > 0 A[j+1] = A[j] A[j+1] = Key

shifting it compares an elem with previous or left elements and those cleme are greater than this, shift them right by 1 position. Repeater this till n-1. void insertaionsont (int arre) } for (intied; icn; it+) { int key = arrti];
int j = i-1; while (j>=0 && arrij]> key) { arn [j+t] = arn [j]; 3--; ann [j+1] = key; Dry Run 1 arn = [5, 3, 4, 1, 2] (3) j=0 arrig]=5 gretor than key=3 shift s tight [5 5 4 1 2] and j = -1 avr [4+1] = Key 113 7

(2) j=2: j=1 art (j) = S which is greater than keys 4

Shift 5 stight

15 3 5 5 1 2) and j = 0

art (j+1) - key

in while loop j=0 but arr(j) is \$ key=4',

So annij til * key

now again key is a arrift becz arrift y

So it will again shift 4 at index 2 thin key

putted at index 1.

Similarily repeated till i = 4.

TC: i) O(to) Best course if array already
Souted.

only one companision per elem.

ii) O(12) Worst care it array in revense

ni) O(m) Aug care if mandom array.

 $\int TC = O(h^2)$ SC = O(1)

Ne.

(3)

	Date/				
	6. Discuss how sparse matrices are representation and explain any one representation and 5 m	td			
	> If most of melements of a motrix are				
	> If meet of melements of a matrix are zero then it is called sparse matrix.				
	⇒ If we stare all clements including zero then it is memory inefficient.				
	then it is memory inefficient.				
=	> So instead of storing all elements,				
	so instead of staring all elements, we stare only non-zero values and				
	their positions.				
	A SECTION OF SECTION OF A PROPERTY OF A PROP				
=	> Common Representation method	-			
1	1) Array representation.				
2	Linked List representation.				
	Array Representation method.				
	1 Row Column Value 1				
	e.g 0 0 1				
-	200 = 0 2 1				
	[0 0 0] 1 0 2				
MAIN	the morne to give that will a site				
	→ 0 2 1				
	1 0 2				
	Algarithm				
_	cl of function				
7	initialize a 2-D vector x tolumn row and 3				
=)	to the total of th				
	calemn 11 n 15 humber of non-core extens				
	11 matrix input fim-c.				
	// Maria III par				

initialize 1=0 11 counter for sparse matrix nows. for i = 0 to m-1: of for jou to n-L', 11 two nexted loops. of In Joops check if matrix clim is non 2000 then airign it in surultant matrix. 2. RUS [K] [+] = 1 3. res [K][2] 5 mat[i][j] then K+L'for next now. code. vector & Nector cinto spM (vector Evector cinto 2 mot, int x) } 11 x is no of nonzero elemi. int m = mat size (); int n = matCo] size(); Nector 2 vector 2 into on (n, vector 2 into (3)); int K=0; for (iti = 0; izm; i++) { for (int j=0; j cn; j++) { if (mat [i][i] ! = 0) { JUNEK] [0] 5 1; rus [K] [1] 5+; res [K] [2] 5 mot () [j]; K++; ? netwon nes;

Explain the process of reversing a singly linked list with an example 8 m A singly list is a callection of nedes where each node contains: data -> the value next -> address of next node. Reversing a linked list means changing the direction of links so the first node becomes the last and the last node becomes first. Algorithm! =) Input Node Head. => Create three pointers. prev = null Curs = pointing to head next = null " used to temparary store next node → Repeat until ours becomes null. + save next node, next = cur -> next -> Reverse the link, curr-next = prev > move forward > pres = curs curi = next After prev will point to the new head. Set head = prov.

code

Nod * neverselist (Node * Head) {

Node * prev = NULL; Node * cur = Head; Wode * nent = NULL;

while (curr! = NULL) {

next = curr_s next;

curr = next;

curr = next;

Head = prev;

3

Dry Run! let Lis > 101 -> 20 -> 30 -> Mull

-SJep 1

curs 1 = Null ~

next a how reverse link -> 10 -> Null

Step 2

Curs 520 prev 510

cur! = Nel

nevers link 20 -> 10

Eleps. cours = 30 prev = 20

severse Mnk 30->20->10

head = 30 /

Date ___ /_

8.6) Write a recursive algorithm for the Tower of Hanoi and explain 4m

[Set-40.86)

8(b) Compare the trade offs between secursion and iteration. 40

Recursion: A function calls itself until base condition is named.

Iteration! A loop repeatedly executes a black of code until a a condition becomes false.

	THE RESIDENCE AND A PARTY OF THE PARTY OF		
Aspect	Recursion	Iteration .	
concept	function calls 1 self	Uses loops	Č,
+	repeatedly	for, while, do-while.	
Termination	Base care.	Loop condition	
memory	High Cures call stack	Low Cures single	Ī
1.	for each (all)	loop variables)	
speed	Slower due to funtion	Faster because	
10.98 35	call overhead	no function calls.	l
Complexity	Sharter, cleaner code	Longer code for	Ì
of code	for complex problem	complex logic	Ī
Risk	Stack over flow if	infinite loop	I
	base case missing	if condition missing	I
Usefull	for problems naturally	suitable for	1
	recursive (trees, fact)	simple repetitive	i
	WI CHEN SE	calls.	
Example!	Tower of Hanoi.	sum of numbers,	
E LOS TOP	factorial, fibbonacci	printing list	

Criven an array of integers, design an efficient method using merge sont to sant it. Explain its time complexity and benifits over bubble sart. TOM Menge sont algo, prendocade

set 4 ano 5

codel

void mengeSant(int arric), int left, intright) 5

if (left cright) } int mid = (left+ right)/2; merge Sout (arr, left, mid); merge sort (arr, midtl, right); menge (arr, left, mid, right);

void merge (intaror [], int left, int mid, interght) }

vector cints L (curr +left, ann+midte); vector < into R (an + mid+1, an+ right+1); inti=o; intj=o; int k= left;

While (JZL. 8ize() and jZR. size()) { if (LCI) <= RCj) and [K++] = [[i++]; else ann [K++] = R[j++];

y or	Explain the applications of doubly linked list in polynomial representation. Demonstrate insertion and deletion operation. 10 M.
	Application of doubly LL in palynomial sup:
3 3	A polynomial is a expression like:
	$p(n) = 5n^3 + 4n^2 - 2n + 7$
3	Each term has two parts.
) -	coefficient
> >	Exponent.
	To efficiently supresent, modify, or compute such polynomials in memory, we use a Doubly Sinked List A DLL allows bid inectional traversal Each node stares: coefficient (wef) Exponent (pow) Pointer to next and previous nodes (nex, prev) Structure of Node Structure of Node Structure of Node Node* next; Node* next; Node* prev;

Insertion operation! Algo! Coreate new node with given coef and pow. if the list is empty - make new node as head. else traverse to find the correct position based on exponent. 1 Insert new node! Before a node with a smaller exponent. or cut the end if exponent is smallest. void insert term (Node*& head, int (oet, int pow) } Node * new Node = new Node (coef, pow, NULL, NULL); if (! head | pows head -> pow) { newNode => thext = head; if (head) head -> prov = new Node; head = new Node; return; Node * temp = head; while (temp-) next we temp-) next-> pow >= pow) Jemp = Jemp -> next; newNode -> next = temp -> next; i'f (temp -> next) temp -> next-> prov= new Node; temp -> next = new Wode; New Node -> prev = temp;

Deletion operation!

Algo!

Search for the node with matching exponent.

Adjust prev and next pointers to skip the node.

Delete the node from memory.

Code

Void del(Node*& freed, int pow) {

While (temp && temp -> pow ! = pow) {

Jemp = temp -> next;

If (! temp) return;

J'f (temp -> prev) {

temp -> prev -> next = temp -> n'ext; }

head = Jemp -> next;

if (temp -> next) {

temp -> next -> prev = tem -> prev',

delete temp;