První přednáška

NAIL062 Výroková a predikátová logika

Jakub Bulín (KTIML MFF UK) Zimní semestr 2023

Cesta k jistému úspěchu u zkoušky¹

- Studujte průběžně (každý týden), a průběžně také testujte své znalosti: umíte sami napsat(!) definici, větu, důkaz?
- Před každou přednáškou alespoň zběžně projděte příslušné sekce v Zápiscích z přednášky. Ty obsahují vše, co po vás bude vyžadováno. Snažte se pochopit smysl definic a tvrzení.
- Po každé přednášce si skripta podrobně přečtěte. Pokud něčemu nebudete rozumět, využijte konzultačních hodin.
- Snažte se zúčastnit všech přednášek, pokud nemůžete, včas se materiál doučte, případně využijte konzultačních hodin.
- Ujistěte se, že rozumíte nejen myšlenkám, ale umíte pracovat i s formalizmem: ten je neoddělitelnou součástí logiky.
- Stejnou pozornost věnujte i přípravě na cvičení.

¹Podrobnosti o zkoušce včas upřesníme. Základní formát i většina otázek ale pravděpodobně zůstanou stejné, viz loňské informace o zkouškách.

První přednáška

Program

- úvod do logiky
- neformální představení výrokové a predikátové logiky
- syntaxe výrokové logiky

Materiály

Zápisky z přednášky: Kapitola 1 a Sekce 2.1 z Kapitoly 2

Kapitola 1: Úvod do logiky

Co je logika?

Dvě definice:

- soubor principů, které jsou základem uspořádání prvků nějakého systému (např. počítačového programu, elektronického zařízení, komunikačního protokolu)
- 2. věda o uvažování prováděném podle striktních pravidel zachovávajících platnost

V informatice obojí: daný systém nejprve *formálně popíšeme*, a poté o něm *formálně uvažujeme* (automaticky!), tj. odvozujeme platné inference za použití nějakého dokazovacího systému

Historie a aplikace logiky

Filozofie ightarrow Matematika ightarrow Teoretická informatika ightarrow

Aplikovaná informatika

- logic programming
- discrete optimization (SAT solving, scheduling, planning)
- database theory
- verification (software, hardware, protocol)
- automated reasoning and proving
- knowledge-based representation
- artificial intelligence

1.1 Výroková logika

Příklad ze života: Hledání pokladu

Při hledání pokladu jsme narazili na rozcestí dvou chodeb. Víme, že na konci každé chodby je buď poklad, nebo drak, ale ne obojí. Trpaslík nám řekl, že: "Alespoň jedna z těch dvou chodeb vede k pokladu", a že "První chodba vede k drakovi." Je známo, že trpaslíci buď vždy mluví pravdu, nebo vždy lžou. Kterou cestou se máme vydat?

Výroky neformálně

Výrok je tvrzení, kterému lze přiřadit pravdivostní hodnotu:

Prvovýroky (atomické výroky, výrokové proměnné) zkombinované pomocí logických spojek a závorek do složených výroků:

"(Trpaslík lže,) *právě když* (druhá chodba vede k drakovi.)"

```
    "neplatí X", negace
    ∴ "X a Y", konjunkce
    ∴ "X nebo Y", disjunkce (není exkluzivní)
    ∴ "pokud X, potom Y", implikace (čistě logická)
    ∴ "X, právě když Y", ekvivalence
```

Formalizace ve výrokové logice

Volba množiny prvovýroků: bity informace popisující daný systém

```
p_1 = "Poklad je v první chodbě."

p_2 = "Poklad je ve druhé chodbě."
```

Co nejmenší, např. hodnota t= "Trpaslík mluví pravdu." je jednoznačně určená hodnotami $\mathbb{P}=\{p_1,p_2\}$.

- Poklad nebo drak, ale ne obojí: zakódované do volby P (přítomnost draka je absence pokladu)
- "První chodba vede k drakovi." ⇔ ¬p₁
- "Alespoň jedna z chodeb vede k pokladu." ⇔ p₁ ∨ p₂
- Trpaslík buď mluví pravdu, nebo lže:

$$\varphi = (\neg p_1 \land (p_1 \lor p_2)) \lor (\neg (\neg p_1) \land \neg (p_1 \lor p_2))$$

Teorie $T = \{\varphi\}$ v jazyce $\mathbb{P} = \{p_1, p_2\}$, φ je axiom T.

Modely a důsledky

Lze určit, kde je poklad? Je p_1 nebo p_2 důsledkem φ resp. T?

"Svět", ve kterém je např. v první chodbě poklad a ve druhé drak, popíšeme pomocí pravdivostního ohodnocení $p_1=1, p_2=0$, neboli modelu v=(1,0) jazyka $\mathbb P$. Celkem máme 4 "světy" a modely:

$$M_{\mathbb{P}} = \{(0,0), (0,1), (1,0), (1,1)\}.$$

Je "svět" popsaný modelem v=(1,0) konzistentní s tím, co víme, tj. platí v modelu v výrok φ resp. teorie T? Vyhodnotíme podle stromové struktury φ :

$$v(p_1) = 1, \ v(p_2) = 0, \ v(\neg p_1) = 0, \ v(p_1 \lor p_2) = 1, \ \dots, \ v(\varphi) = 0$$

Množina modelů výroku φ (resp. modelů teorie T):

$$\mathsf{M}_{\mathbb{P}}(\varphi) = \mathsf{M}_{\mathbb{P}}(T) = \{(0,1)\}.$$

V každém modelu teorie T platí výrok p_2 , neboli p_2 je důsledek T.

Dokazovací systémy