Diszkrét matematika I. feladatok

Második alkalom (Komplex számok II.)

1. A sík mely geometriai transzformációjának felelnek meg a következő leképzések?

a) $z \mapsto 3z + 2$; b) $z \mapsto (1+i)z$; c) $z \mapsto 1/\overline{z}$.

2. Legyen z,w két különböző komplex szám! Írd fel az őket összekötő szakasz felezőpontját, valamint annak a két szabályos háromszögnek a harmadik csúcsát, illetve súlypontját, melyeknek z,w csúcsai!

3. Vonjunk négyzetgyököt a következő számokból!

a) 3 - 4i; b) 2i; c) -7 - 24i; d) 8 + 6i.

4. Old
d meg a következő másodfokú egyenletet: $(2+i)x^2 - (5-i)x + (2-2i) = 0!$

5. Számold ki a $z = -16 \cdot \sqrt{3} + 16i$ szám ötödik gyökeit!

6. Add meg a következő egyenletek összes megoldását!

a) $x^3 = 1$; b) $x^3 = 2 + 2i$; c) $x^8 = \sqrt{3} - i$; d) $x^6 = 1 + i$.

7. Vonj negyedik gyököt a $\frac{-4}{(2+i)^3}$ számból!

8. Az alábbi számok közül melyek egységgyökök, mennyi ezek rendje, milyen n-re lesznek ezek n-edik egységgyökök, illetve primitív n-edik egységgyökök?

a) 1; b) -1; c) i; d) 1 + i; e) $\frac{1+i}{\sqrt{2}}$; f) $\frac{1+\sqrt{3}i}{2}$; g) $\frac{-1+\sqrt{3}i}{2}$;

h) $\cos(\sqrt{2}\pi) + i\sin(\sqrt{2}\pi)$; i) $\cos(\frac{\pi}{361}) + i\sin(\frac{\pi}{361})$.

9. Mutassuk meg, hogy ha $\varepsilon^4 = i$, akkor $4 \mid o(\varepsilon)!$

10. Ha $o(\varepsilon) = 128$, akkor mennyi lehet $o(i \cdot \varepsilon)$?

11. Igazold, hogy egy primitívn-edikegységgyök hatványai pontosan az n-edikegységgyökök!

12. Igazold, hogy egy primitív n-edik egységgyök pontosan akkor k-adik egységgyök, ha $n\mid k!$

Szorgalmi feladatok

13. Fejezd ki $\sin(n\alpha)$ illetve $\cos(n\alpha)$ értékét $\sin(\alpha)$, $\cos(\alpha)$ segítségével!