Floating Point Instructions and Stack

Topics

- Floating Point Instructions
- Shallow Stack

Announcements

Buffer Lab is due Monday Oct 27 (note extension)

Note it is due by 8 am Monday

Recitation Exercises #3 on floating point due next Monday Oct 20 in recitation

Midterms graded, return in TA office hours & recitation next Monday

Can pick them up in TA office hours Thursday & Friday

Essential that you read the textbook in detail & do the practice problems

- Chapter 2.4 Floating Point
- Then move on to Chapter 4, but Skip 4.2, 4.3.4, 4.5.9-4.5.11 (skip the PIPE implementation), 4.5.13. Overall, skipping these sections will save you about 50 pages of reading

Midterm #1 Results

The mean & median are 69, stddev is 14.3

- Hand back either in TA office hours or recitation
- Solutions available on moodle later Thursday
- Final is worth 20%, midterm is worth 12.5%

IEEE Floating Point Summary

- MSB s is sign bit
- exp field encodes E, and is e bits wide
- frac field encodes M, and is f bits wide

Bias = 2^{e-1}-1, where e is # of exponent bits.

Floating point Value = $(-1)^S * M * 2^E$, except special cases.

3 Encoding cases:

```
If (exp!=all 0's && exp!=all 1's):  // Normalized case

E = exp-Bias, M = 1.frac, i.e. Value = (-1)<sup>S</sup> * (1.frac)* 2<sup>exp-Bias</sup>

Else if (exp==all 1's):  // Special cases

if (frac==all 0's): Value = +/-∞ (infinity)

else Value = NAN

Else if (exp==all 0's):  // De-normalized case for extra precision near 0

E = 1-Bias, M = 0.frac, i.e. Value = (-1)<sup>S</sup> * (0.frac) * 2<sup>1-Bias</sup>
```

Floating Point Arithmetic Operations

Rounding modes

- Round to zero, Round down, Round up, Round-to-nearesteven
- Needed in floating point multiplication and addition due to finite # of frac bits

Floating Point Multiplication

 $(-1)^{s1} M1 2^{E1} * (-1)^{s2} M2 2^{E2}$

Exact Result

 $(-1)^s M 2^E$

■ **Sign** *s*: *s*1 ^ *s*2

■ Significand M: M1 * M2

■ Exponent *E*: *E*1 + *E*2

Floating Point Addition

 $(-1)^{s1} M1 2^{E1} + (-1)^{s2} M2 2^{E2}$

■ **Assume** *E1* > *E2*

Exact Result

 $(-1)^s M 2^E$

- Sign *s*, significand *M*:
 - Result of signed align & add
- Exponent E: E1

FP Addition - 8 bit example

```
 9/512 + 224

• 9/512 = 1.001 * 2<sup>-6</sup> =
                                 0.000001001
• 224 = 1.110 * 2^7 = 11100000.

    9/512+224

                     = 11100000.000001001
                     = 1.1100000000001001 * 2<sup>7</sup>
                                                * 2<sup>7</sup> (3 bits frac)
                     = 1.110
                                 (9/512 is rounded away!)
                     = 224
```

Implication of this rounding effect:

Suppose you added 9/512 50,000 times to 224: Then 9/512 + 9/512 + ... + 9/512 + 224 > 224But 9/512 + (9/512 + (... + (9/512 + 224)))))))) = 224 !!!

So floating point addition is not associative!

FP Arithmetic and Associativity

Floating addition is not associative:

Example: single-precision (3.14+1e10)-1e10 ≠ 3.14+(1e10-1e10)

$$= 0.0 = 3.14$$

Floating point multiplication is not associative:

Example: single-precision

 $=+\infty$

= 1e20

■ Largest positive 32-bit single precision # is about 10^37, so 10^40 will overflow as positive infinity.

Floating Point in C

C Guarantees Two Levels

float single precision double double precision

Conversions

- Casting between int, float, and double changes numeric values and bit representations, unlike casting between signed/unsigned ints, shorts and longs
- Double or float to int
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range
 - » Generally saturates to TMin or TMax
- int to double
 - Exact conversion, as long as int has ≤ 53 bit word size
- int to float
 - Will round according to rounding mode

Ariane 5

- Exploded 37 seconds after liftoff
- Cargo worth \$500 million

Why

- Computed horizontal velocity as floating point number
- Converted to 16-bit integer
- Worked OK for Ariane 4
- Overflowed for Ariane 5
 - Used same software, which was OK for lower velocities
 - Ariane 5 had 5X horizontal velocity of Ariane 4
- Software was written in Ada, which allows protection for overflows
 - Protections explicitly not used

IA32 Floating Point – from 3.14 too

History

- 8086: first computer to implement IEEE FP
 - separate 8087 FPU (floating point unit)
- 486: merged FPU and Integer Unit onto one chip

Summary

- Hardware to add, multiply, and divide
- Floating point data registers
- Various control & status registers

Floating Point Formats

- single precision (C float): 32 bits
- double precision (C double): 64 bits
- extended precision (C long double): 80 bits

FPU Data Register Stack

FPU register format (extended precision)

"Top"

FPU registers

- 8 registers
- Logically forms shallow stack
- Top called %st(0)
- When push too many, bottom values disappear

FPU instructions

Large number of floating point instructions and formats

- ~50 basic instruction types
- load, store, add, multiply
- sin, cos, tan, arctan, and log!

Sample instructions:

Instruction	Effect	Description
fldz	push 0.0	Load zero
flds Addr	push M[Addr]	Load single precision real
fmuls Addr	%st(0) <- %st(0) *M[Addr]	Multiply
faddp	%st(1) <- %st(0)+%st(1);	pop Add and pop

Floating Point Code Example

Compute Inner Product of Two Vectors

- Single precision arithmetic
- Common computation

```
pushl %ebp
                          # setup
  movl %esp,%ebp
  pushl %ebx
                          # %ebx=&x
  movl 8(%ebp),%ebx
  movl 12(%ebp),%ecx
                          # %ecx=&v
  movl 16(%ebp),%edx
                          # %edx=n
  fldz
                          # push +0.0
  xorl %eax,%eax
                          # i=0
                          # if i>=n done
  cmpl %edx,%eax
  ige .L3
.L5:
  flds (%ebx, %eax, 4) # push x[i]
  fmuls (%ecx, %eax, 4)
                          # st(0) *=y[i]
                          # st(1)+=st(0); pop
  faddp
  incl %eax
                          # i++
  cmpl %edx, %eax
                          # if i<n repeat</pre>
  jl .L5
.L3:
  movl -4(%ebp),%ebx
                          # finish
  movl %ebp, %esp
  popl %ebp
                          # st(0) = result
  ret
```

Inner Product Stack Trace

Initialization

1. fldz
0.0 %st(0)

Iteration 0

2. flds (%ebx, %eax, 4)

3. fmuls (%ecx, %eax, 4)

4. faddp

```
0.0+x[0]*y[0] %st(0)
```

Iteration 1

5. flds (%ebx, %eax, 4)

6. fmuls (%ecx, %eax, 4)

7. faddp

Floating Point Summary

IEEE Floating Point Has Clear Mathematical Properties

- **Represents numbers of form** $M \times 2^{E}$
- Can reason about operations independent of implementation
 - As if computed with perfect precision and then rounded
- Not the same as real arithmetic
 - Violates associativity/distributivity
 - Makes life difficult for compilers & serious numerical applications programmers
- Conversions between float/double and int/long can cause overflow

IA32 Floating Point

Strange "shallow stack" architecture

Major Revelations So Far...

- 1. Two's complement encoding and arithmetic for integers
- 2. Programs in high-level languages are compiled into assembly instructions and executed on the CPU
- 3. Assembly uses a call stack to efficiently manage function calls
- 4. Call stacks can be overflowed on x86 CPUs, resulting in execution of malicious code
- 5. Floating point representation encodes real #s as M*2^E, and x86 FP employs a FP register stack
- 6. How assembly instructions execute on a CPU, and pipelining for efficient execution

Supplementary Slides

Special Properties of Encoding

FP Zero Same as Integer Zero

■ All bits = 0

Can (Almost) Use Unsigned Integer Comparison

- Must first compare sign bits
- Must consider -0 = 0
- NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
- Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity

Mathematical Properties of FP Add

Compare to those of Abelian Group

Closed under addition?

YES

But may generate infinity or NaN

Commutative?

YES

Associative?

NO

Overflow and inexactness of rounding

Example: single-precision, $(3.14+1e10)-1e10 \neq 3.14+(1e10-1e10)$

$$= 0.0$$

$$= 3.14$$

0 is additive identity?

YES

■ Every element has additive inverse ALMOST

Except for infinities & NaNs

Monotonicity

 $\blacksquare a \ge b \Rightarrow a+c \ge b+c$?

ALMOST

- 19 - ■ Except for infinities & NaNs

Math. Properties of FP Mult

Compare to Commutative Ring

- Closed under multiplication?
 YES
 - But may generate infinity or NaN
- Multiplication Commutative? YES
- Multiplication is Associative?
 - Possibility of overflow, inexactness of rounding

- 1 is multiplicative identity? YES
- Multiplication distributes over addition? NO ____ See textbook example
 Possibility of overflow, inexactness of rounding

Monotonicity

$$\blacksquare a \ge b \& c \ge 0 \Rightarrow a * c \ge b * c$$
?

ALMOST

-20 - ■ Except for infinities & NaNs