TD de COptimale 1

Mettre une croix « X » dans la bonne case

Exercice 1	$Q(x,y) = 4x^2 + 14y^2 + 10xy$
la forme quadratique Q(x,y) associée à la matrice $A = \begin{bmatrix} 4 & 7 \\ 7 & 10 \end{bmatrix}$	$Q(x,y) = 4x^{2} + 10y^{2} + 7xy$ $Q(x,y) = 4x^{2} + 10y^{2} + 14xy$
[]	$Q(x,y) = 4x^2 + 10y^2 + 14xy$
Exercice 2	$A = \begin{bmatrix} 7 & 8 \\ 0 & 10 \end{bmatrix}$
la matrice A associée à la forme quadratique $P(x,y) = 7x^2 + 8y^2 + 10xy$	$A = \begin{bmatrix} 7 & 5 \\ 5 & 8 \end{bmatrix}$
	$A = \begin{bmatrix} 7 & 25 \\ 0 & 8 \end{bmatrix}$
Exercice 3	$H(x,y,z) = 5x^2 - 3y^2 + z^2 + 7xy + 16x^2z - 2z$
Corriger 3 erreurs dans la forme quadratique $H(x,y,z) = 5x^2 - 3y^2 + z^2 + 7xyz + 16x^2z - 2z$	$H(x,y,z) = 5x^{2} - 3y^{2} + z^{2} + 7xy + 16xz - 2yz$ $H(x,y,z) = 5x^{2} - 3y^{2} + z^{2} + 7xyz + 16xz - 2z$
Exercice 4 le Type de Problème de CO	Régulation d'état à horizon fini Poursuite de sortie à horizon fini
Système $\begin{cases} \dot{x} = 1.3x + 3u , x(0) = 20 \\ y = 1.7 x \end{cases}$ Critère à minimiser $J = \frac{1}{2} \int_{0}^{\infty} (3y^{2} - 4y^{2}) dy$	+5u²)dt Régulation de sortie à horizon infini
Exercice 5 le critère J à minimiser du Problème de Régulation d'état	$J = \frac{1}{2} \int_0^\infty (2y^2 + 3u^2) dt$
à horizon infini du système : $\dot{x} = 0.2x + 3u$, $x(0) = 10$ est :	$J = \frac{1}{2} \int_0^{10} (2x^2 + 3u^2) dt$
a nonzon mini da dystanie i i z	$J = \frac{1}{2} \int_0^\infty (2x^2 + 3u^2) dt$

[000 010] July 70	$\alpha = -10$	
Compléter $\alpha = ?$ du gain de Riccati $K = \begin{bmatrix} 0.02 & 0.19 \\ 0.19 & \alpha \end{bmatrix}$	$\alpha = 2.5$	I V
Exercice 7	$\alpha = -2.5$	1
	K=10	-
Le gain statique K du système $H(p) = \frac{10}{(p+5)(p+2)}$ est:	K=5	-
$n(p) = \frac{1}{(p+5)(p+2)}$ est:	K=1	
xercice 8	T= 8	V
a constante de temps T du système	T= 0.25	
a constante de temps T du système $G(p) = \frac{8}{p+4}$ est :	T= 4	V
xercice 9 l'équation de Riccati du Problème de CO	VA: ATV VDD: DTV: O	
Système $\begin{cases} \dot{x} = 2x + 7u , x(0) = 2 \\ v = 2.8 x \end{cases}$ Critère à minimiser $J = \frac{1}{2} \int_0^{\infty} (5y^2 + 4u^2) dx$	$KA+A^TK-KBR^{-1}B^TK+Q=0$	
$y = 2.8 \text{ x}$ Critere a minimiser $J = \frac{1}{2} \int_0^{\pi} (5y^2 + 4u^2) dx$		
versice 10 l'équation de Directi L. D. L. II.	$KA+A^{T}K-KBR^{-1}B^{T}K+C^{T}QC=0$	V
xercice 10 l'équation de Riccati du Problème de CO	$P_{k} = Q + A^{T} P_{k+1} A - A^{T} P_{k+1} B (R + B^{T} P_{k+1} B)^{-1} B^{T} P_{k+1} A$	
Système $\begin{cases} x_{k+1} = Ax_k + Bu_k \\ y_k = Cx_k \end{cases}$	$P_{k} = Q + \frac{A^{T}}{r} P_{k+1} \frac{A}{r} - \frac{A^{T}}{r} P_{k+1} \frac{B}{r} (R + \frac{B^{T}}{r} P_{k+1} \frac{B}{r})^{-1} \frac{B^{T}}{r} P_{k+1} \frac{A}{r}$	
Prities a minimiser $J = \frac{1}{2} \sum_{k=0}^{\infty} (0.5)^{-2k} \left(\mathbf{x}_k^T \mathbf{Q} \mathbf{x}_k + \mathbf{u}_k^T \mathbf{R} \mathbf{u}_k \right)$	$P=Q+\frac{A^{T}}{r}P\frac{A}{r}-\frac{A^{T}}{r}P\frac{B}{r}(R+\frac{B^{T}}{r}P\frac{B}{r})^{-1}\frac{B^{T}}{r}P\frac{A}{r}$	V

1/29P

1+p2

TD1 212

TD de COptimale 2

Mettre une croix « X » dans la bonne case

la forme quadratique Q(x y) associée à la matrice [2 9]	$Q(x,y) = 2x^2 + 19y^2 + 15xy$	
la forme quadratique Q(x,y) associée à la matrice $A = \begin{bmatrix} 2 & 9 \\ 10 & 15 \end{bmatrix}$	$Q(x, y) = 2x^2 + 15y^2 + 19xy$	\ \
Exercice 2	$Q(x,y) = 15x^2 + 2y^2 + 19xy$	*
[2 0 5]	$H(x, y, z) = 2x^2 + 6y^2 + 18z^2 + xy + 7xz$	V
a forme quadratique H(x,y,z) associée à la matrice $\mathbf{B} = \begin{bmatrix} 2 & 0 & 5 \\ 1 & 6 & 0 \\ 2 & 0 & 18 \end{bmatrix}$	$H(x,y,z) = 2x^2 + 6y^2 + 18z^2 + 3xy + 5xz$	
Exercice 3	$H(x,y,z) = 2x^2 + 6y^2 + 18z^2 + xy + 3yz$	-
a matrice A associée à la forme quadratique $P(x,y) = 3x^2 + 2y^2 + 6xy$	$A = \begin{bmatrix} 3 & 1 \\ 1 & 6 \end{bmatrix}$	
	$A = \begin{bmatrix} 3 & 3 \\ 3 & 2 \end{bmatrix}$	V
	$A = \begin{bmatrix} 3 & 3 \\ 2 & 2 \end{bmatrix}$	
		+

	Exercice 4 Ia matrice B associée à la forme quadratique $Q(x,y,z) = 2x^2 + 3y^2 + 4z^2$	z² + 5xy +	9yz	$B = \begin{bmatrix} 2 & 2.5 & 4.5 \\ 4.5 & 3 & 0 \\ 2.5 & 0 & 4 \end{bmatrix}$ $B = \begin{bmatrix} 2 & 2.5 & 0 \\ 2.5 & 3 & 9 \\ 0 & 0 & 4 \end{bmatrix}$ $B = \begin{bmatrix} 2 & 2.5 & 0 \\ 2.5 & 3 & 9 \\ 0 & 9 & 4 \end{bmatrix}$	V
,	Exercice 5	H(x,y	,z)=	$\frac{1}{x^2 + y^2 + z^2 + 5x + 6y + 7z}$	
1	Corriger la forme quadratique			$x^2 + y^2 + z^2 + 5xy + 6xz + 7$	
Ē	$H(x,y,z) = x^2 + y^2 + z^2 + 5xy + 6xz^2 + 7z$			$x^2 + y^2 + z^2 + 5xy + 6xz + 7yz$	V
	Exercice 6	G(x,y)=22	$x^2 + 3y^2 + 4xy$	V
C	Corriger la forme quadratique $G(x,y) = 2x^2 + 3xy^2 + 4xy + 5$ $G(x,y)$		$(x^2 + 3y^2 + 4xy + 5)$		
-				$x^2 + 3y^2 + 4x + 5y$	
E	Exercice 7 le Type de Problème de CO			Régulation d'état à horizon fini	
Le	Système $\begin{cases} \dot{x} = 6x + 3u, x(0) = 8 \end{cases}$	2		Poursuite de sortie à horizon infini	
	Système $\begin{cases} \dot{x} = 6x + 3u , x(0) = 8 \\ y = 7x \end{cases}$ Critère à minimiser $J = \frac{1}{2} \int_0^{15} (3y^2 + 5)^{15} dy$	u-)at		Régulation de sortie à horizon fini	V
E	Exercice 8 le Type de Problème de CO		Rég	gulation d'état à horizon fini avec degré de	
Le	Système $\begin{cases} \dot{x} = 3x + 2u &, x(0) = 2 \\ y = 8x \end{cases}$ Critère à minimiser $J = \frac{1}{2} \int_0^\infty e^{5t} (2y^2) dt$	+7u²)dt	_	gulation de sortie à horizon fini	
	(y = 8 x)		Rég	gulation de sortie à horizon infini avec degré de	V
_					

Exercice 9		
le critère J à minimiser du Problème de Régulation d'état	$J = \frac{1}{2} \int_0^\infty (2x^2 + 8u^2) dt$	
à horizon fini du système : $\dot{x} = 5x + 30u$, $x(0) = 5$	$J = \frac{1}{2} \int_0^{65} (7y^2 + 5u^2) dt$	-
le critère J à minimiser du Problème de Dé	$J = \frac{1}{2} \int_0^{65} (5x^2 + 7u^2) dt$	1
le critère J à minimiser du Problème de Régulation d'état avec degré de stabilité 5 à horizon infini du système : $\dot{x} = 12x + 31u$, $x(0) = 7$		V
	$J = \frac{1}{2} \int_0^{40} e^{5t} (3x^2 + 5u^2) dt$ $J = \frac{1}{2} \int_0^{\infty} (2x^2 + 3u^2) dt$	-
Exercice 11		
Compléter le gain de Riccati $K = \begin{bmatrix} 2 & a \\ a & 2.5 \end{bmatrix}$	a=1 a=5	V
xercice 12	a=3	:
compléter le gain de Riccati $K = \begin{bmatrix} b & 2 \\ 2 & 3 \end{bmatrix}$	b=-5	
	b=5 b=1	V
xercice 13	K=10	_
gain statique K du système $H(p) = \frac{10}{(5p+1)(2p+1)}$	K=5	V
ercice 14	K=1	
gain statique K du système $G(p) = \frac{10}{(5p+1)(p^2+p+2)}$	K=10	,
$(5p+1)(p^2+p+2)$	K=1	12.5
	02	8
		4

Exercice 15		T= 8	
to constante de temps T du suntino		T= 1	
La constante de temps T du système $R(p) = \frac{8}{4p+1}$ est		T= 4	V
Exercice 16		T= 7	
7		T= 1	V
La constante de temps T du système $L(p) = \frac{7}{4p+4}$ est :		T= 4	
Exercice 17 l'équation de Riccati du Problème de CO		$KA+A^{T}K-KBR^{-1}B^{T}K+Q=0$	
Système $\begin{cases} \dot{x} = 5x + 17u , x(0) = 20 \\ y = 8x \end{cases}$ Critère à minimiser $J = \frac{1}{2} \int_{0}^{20} (5y) dy$	² +6u ²)dt	\dot{K} +KA+A ^T K-KBR-1B ^T K+C ^T QC=0	V
y = 8 x		$KA+A^{T}K-KBR^{-1}B^{T}K+C^{T}QC=0$	F
xercice 18 l'équation de Riccati du Problème de CO		\dot{K} +KA+A ^T K-KBR-1B ^T K+C ^T QC=0	
ystème $\begin{cases} \dot{x} = 12x + 17u , x(0) = 1 \\ y = 2x \end{cases}$ Critère à minimiser $J = \frac{1}{2} \int_0^{\infty} (9x^2 - 1)^{-1} dx$	+14u²)dt	\dot{K} +KA+A ^T K-KBR-1B ^T K+Q=0	
y = 2 x		$KA+A^{T}K-KBR^{-1}B^{T}K+C^{T}QC=0$	13
xercice 19 l'équation de Riccati du Problème de CO	$P_k = C^T$	$QC+A^{T}P_{k+1}A-A^{T}P_{k+1}B(R+B^{T}P_{k+1}B)^{-1}B^{T}P_{k+1}A$	
ystème $\begin{cases} x_{k+1} = Ax_k + Bu_k \\ y_k = Cx_k \end{cases}$	P _k =Q-	$+A^{T}P_{k+1}A-A^{T}P_{k+1}B(R+B^{T}P_{k+1}B)^{-1}B^{T}P_{k+1}A$	1
$(\mathbf{y_k} = \mathbf{C}\mathbf{x_k})$ itère à minimiser $\mathbf{J} = \frac{1}{2} \sum_{k=0}^{60} (\mathbf{x_k^T} \mathbf{Q} \mathbf{x_k} + \mathbf{u_k^T} \mathbf{R} \mathbf{u_k})$	P=Q+-	$\frac{A^{T}}{r} P \frac{A}{r} - \frac{A^{T}}{r} P \frac{B}{r} (R + \frac{B^{T}}{r} P \frac{B}{r})^{-1} \frac{B^{T}}{r} P \frac{A}{r}$	
ercice 20 l'équation de Riccati du Problème de CO	P _k =Q-	$+A^{T}P_{k+1}A-A^{T}P_{k+1}B(R+B^{T}P_{k+1}B)^{-1}B^{T}P_{k+1}A$	
stème $\begin{cases} x_{k+1} = Ax_k + Bu_k \\ y_k = Cx_k \end{cases}$	$P_k = C^T$	$QC + \frac{A^{T}}{r} P_{k+1} \frac{A}{r} - \frac{A^{T}}{r} P_{k+1} \frac{B}{r} (R + \frac{B^{T}}{r} P_{k+1} \frac{B}{r})^{-1} \frac{B^{T}}{r} P_{k+1} \frac{A}{r}$	1
tère à minimiser $\mathbf{J} = \frac{1}{2} \sum_{k=0}^{79} (0.6)^{-2k} \left(\mathbf{y}_k^T \mathbf{Q} \mathbf{y}_k + \mathbf{u}_k^T \mathbf{R} \mathbf{u}_k \right)$	$P_k = C^{\gamma}$	$^{T}QC+A^{T}P_{k+1}A-A^{T}P_{k+1}B(R+B^{T}P_{k+1}B)^{-1}B^{T}P_{k+1}A$	
e e e saluen de Aleman de l'étain. Le compressionnitzeur de la compression della compression de la compression de la compression della com			

<u>E</u>

Ξχ

TD3 de C.Optimale 3

Mettre une croix « X » dans la bonne case

Exercice 1 Le système $H_1(p) = \frac{5}{(1+p)(1+3p)}$ a deux pôles réels $(z > 1)$	oui	X
(1+p)(1+3p)	non	
Exercice 2 Le système $H_2(p) = \frac{4}{5p^2 + p + 1}$ a deux pôles complexes (z < 1)	oui	X
$5p^2 \div p \div 1$	non	
Exercice 3 Le système $H_3(p) = \frac{15}{(1+5p)(1+3p)}$ est Oscillatoire amorti (z < 1)	oui	
(1 ÷ 5p)(1 ÷ 3p)	non	X
Exercice 4 Le système $H_{\star}(p) = \frac{10}{p^2 + p + 2}$ est Hyper amorti $(z > 1)$	oui	
$p^2 + p + 2$ \Rightarrow (3) Le state	non	X
Exercice 5 La constante de temps T et le gain statique K de $G_1(p) = \frac{6}{2+3p}$ sont	K=6, T= 3	
2 + 3p	K=3, T= 1.5	X
	K=3, T=3	
Exercice 6 La constante de temps T et le gain statique K de $G_2(p) = \frac{25}{5 \div 10p}$ sont	K=5, T=2	X
$5 \div 10p$	K=25, T= 10	
	K=5, T= 10	
[2 1 3]	$H(x,y,z) = 2x^2 + 18y^2 + 6z^2 + 2xy + 10xz$	V
Exercice 7 la forme quadratique H(x,y,z) associée à la matrice $A = \begin{bmatrix} 1 & 18 & 0 \\ 7 & 0 & 6 \end{bmatrix}$	$H(x,y,z) = 2x^2 + 18y^2 + 6z^2 + 4xy + 8xz$	
Exercice 8 la forme quadratique $Q(x \vee z)$ associée à la matrice $R = \begin{bmatrix} 2 & 3 & 0 \\ 1 & 6 & 0 \\ 0 & 7 & 10 \end{bmatrix}$	$Q(x,y,z) = 2x^{2} + 6y^{2} + 18z^{2} + 4xy + 7xz$	
[61 £ 67]		

14.		$Q(x,y,z) = 2x^{2} + 6y^{2} + 18z^{2} + 4xy + 7yz$	V
Exercice 9 Ia matrice C associée à la forme quadratique $R(x,y,z) = x^2 + 2y^2 + 3z^2 + 3z^$	+ 6xy	$\mathbf{C} = \begin{bmatrix} 1 & 3 & 0 \\ 3 & 2 & 1 \\ 0 & 1 & 3 \end{bmatrix}$ $\mathbf{C} = \begin{bmatrix} 1 & 3 & 0 \\ 3 & 2 & 1 \end{bmatrix}$	
Exercice 10	E(** ** 5)	$\mathbf{C} = \begin{bmatrix} 1 & 3 & 0 \\ 3 & 2 & 1 \\ 0 & -1 & 3 \end{bmatrix}$ $= \mathbf{x}^2 + \mathbf{y}^2 + 2\mathbf{z}^2 + 5\mathbf{x}\mathbf{y} + 9\mathbf{x}\mathbf{z}$	
Corriger la forme quadratique $F(x, y, z) = x^2y + y^2 + 2z^2 + 5xy + 9xz$		$= x^{2}y + y^{2}x + 2z^{2}y + 5xyz$ $= x^{2}y + y^{2}x + 2z^{2}y + 5xyz$	1
Exercice 11 le Type de Problème de CO $ \text{Système} \begin{cases} \dot{x} = 6x + 3u \ , \ x(0) = 8 \\ y = 7x \end{cases} $	+5u²)dt	Régulation de sortie à horizon fini Poursuite de sortie à horizon fini -	V
Exercice 12 le Type de Problème de CO Système $\begin{cases} \dot{x} = 3x + 2u , x(0) = 2 \\ y = 8x \end{cases}$ Critère à minimiser $J = \frac{1}{2} \int_{0}^{\infty} e^{i2t} (2x^2 - 2x^2) dt$		Régulation d'état à horizon infini avec degré de stabilité Poursuite d'état à horizon infini	V
Exercice 13 le critère J à minimiser du Problème de Régulation d'état avec perturba	ation	$J = \frac{1}{2} \int_0^\infty (2x^2 + 8u^2) dt$	V
du système: $\dot{x} = 5x + 30u + 0.2$, $x(0) = 0.2$		$J = \frac{1}{2} \int_0^{90} (6y^2 + 5u^2) dt$	
Exercice 14 le critère J à minimiser du Problème de poursuite d'état avec degré de	stabilité 1.5	$J = \frac{1}{2} \int_0^\infty e^{3t} (2(x-3)^2 + 5u^2) dt$	V
du système: $\dot{x} = 1.5 x + 9u$, $x(0) = 1.5$		$J = \frac{1}{2} \int_0^\infty 1.5(2(x-3)^2 + 5u^2) dt$	

40

Exercice 15	a=0	
Compléter le gain de Riccati $K = \begin{bmatrix} 5.2 & 2.1 \\ 2.1 & a \end{bmatrix}$	a=1.8	V
Exercice 16 le critère associé au Problème de Poursuite d'état du Système $\begin{cases} x_{k+1} = Ax_k + Bu_k \\ y_k = Cx_k \end{cases}$	$\mathbf{J} = \frac{1}{2} \sum_{k=0}^{999} \mathbf{r}^{-2k} \left[(\mathbf{x}_k - 8)^{T} \mathbf{Q} (\mathbf{x}_k - 8) + \mathbf{u}_k^{T} \mathbf{R} \mathbf{u}_k \right]$	
	$\mathbf{J} = \frac{1}{2} \sum_{k=0}^{\infty} \left[(\mathbf{x}_k - 8)^{T} \mathbf{Q} (\mathbf{x}_k - 8) + \mathbf{u}_k^{T} \mathbf{R} \mathbf{u}_k \right]$	V
Exercice 17 l'équation de Commande Auxiliaire du Problème de CO Sustème $(\dot{x} = 2x + 7u + 0.5)$, $x(0) = 10$	$\dot{q}+[A^T-KBR^{-1}B^T]q+Kv=0$	V
Système $\begin{cases} \dot{x} = 2x + 7u + 0.5 & , \ x(0) = 10 \\ y = 9x \end{cases}$ Critère à minimiser $J = \frac{1}{2} \int_{0}^{80} (6x^{2} + 6u^{2}) dx$	$\dot{q} + [A^T - KBR^{-1}B^T]q + C^TQy_d = 0$	
Exercice 18 l'équation de Riccati du Problème de CO	\dot{K} +KA+A ^T K-KBR ⁻¹ B ^T K+C ^T QC=0	
Système $\begin{cases} \dot{x} = 12x + 17u , x(0) = 1 \\ v = 2x \end{cases}$ Critère à minimiser $J = \frac{1}{2} \int_0^\infty (9x^2 + 14u^2) dt$	$\dot{K}+KA+A^TK-KBR^{-1}B^TK+Q=0$	
(y = 2x)	$KA+A^{T}K-KBR^{-1}B^{T}K+Q=0$	V
xercice 19 l'équation de Riccati du Problème de CO		-
$\begin{cases} x_k Q x_k + u_k R u_k \end{cases} $	$P_{k} = Q + A^{T}P_{k+1}A - A^{T}P_{k+1}B(R + B^{T}P_{k+1}B)^{-1}B^{T}P_{k+1}A$	
$\{\mathbf{y}_{\mathbf{k}} = \mathbf{C}\mathbf{x}_{\mathbf{k}} $	$P_{k} = Q + \frac{A^{T}}{r} P_{k+1} \frac{A}{r} - \frac{A^{T}}{r} P_{k+1} \frac{B}{r} (R + \frac{B^{T}}{r} P_{k+1} \frac{B}{r})^{-1} \frac{B^{T}}{r} P_{k+1} \frac{A}{r}$	V
xercice 20 le Type de Problème de CO	Régulation d'état avec degré de stabilité 7	
,	Poursuite de sortie désirée 7 à horizon fini	\ \

TD Commande Optimale - 4

Garder la bonne réponse

et

Justifier brièvement votre réponse

			[2/49]
	la matrice A associée à la forme quadratique		0 14
1	Exercice 1	Q(x,	$(x,y) = 4x^2 - 2y^2 + 10xy$
-	la forme quadratique Q(x,y) associée à la matrice	Q(x,	$(x,y) = 4x^2 + 10y^2 + 6xy$
 	$A = \begin{bmatrix} 4 & -2 \\ 8 & 10 \end{bmatrix}.$	Q(x,	$(x,y) = 4x^2 + 10y^2 - 16xy$
			$A = \begin{bmatrix} 7 & 14 \\ 0 & 7 \end{bmatrix}$
			$A = \begin{bmatrix} 7 & 7 \\ 7 & 7 \end{bmatrix}$
	Exercice 3 Corriger 3 erreurs dans la forme quadratique	H(x,y,z	$z) = 5x^2 - 3y^2 + z^2 - 8xy - 2x$
	H(x,y,z) = $2 + 5x^2 - 3y^2 + z^2 - 8xy - 2xzy$	H(x,y,z	$z) = 5x^2 - 3y^2 + z^2 - 8xy - 2zy$
			$z) = 2 + 5x^2 - 3y^2 + z^2 - 8xy$
	Exercice 4 le Type de Problème de CO		Régulation d'état à horizon fini
	Système avec le Critère à minimiser		Poursuite de sortie à horizon fini
	$\begin{cases} \dot{x} = 2x + 3u , x(0) = 3 \\ J = \frac{1}{2} \int_{0}^{80} 5(y^{2} + u^{2}) dt \end{cases}$		/ 54/54/10
	$\begin{cases} y = 5 x \end{cases}$		Régulation de sortie à horizon infini
	Exercice 5 le critère J à minimiser du Problème de Poursusortie à horizon infini du système	uite de	$J = \frac{1}{2} \int_0^\infty (2x^2 + 3u^2) dt$
	$\dot{x} = 2x + 3.8u$, $x(0) = 20$ est:		$\mathbf{J} = \frac{1}{2} \sum_{k=0}^{\infty} (0.5)^{-2k} \left(\mathbf{x}_{k}^{T} \mathbf{Q} \mathbf{x}_{k} + \mathbf{u}_{k}^{T} \mathbf{R} \mathbf{u}_{k} \right)$
		÷	$J = \frac{1}{2} \int_0^{\infty} 5((y-7)^2 + u^2) dt \times$
		1/4 TOU	

Exercice 6		$\alpha = -2$
Compléter α = ? du gain de Riccati		
$K = \begin{bmatrix} \alpha & 0.5 \\ 0.5 & 1 \end{bmatrix}$		$\alpha = 0.3$
		$\alpha = 0.2$
Exercice 7 l'équation de Riccati du Problème o	de CO	$\dot{K}+KA+A^TK-KBR^{-1}B^TK+Q=0$
Système $\begin{cases} \dot{x} = 1.2 x + 7.5 u , x(0) = 20 \\ y = 2 x \end{cases}$		\dot{K} +KA+A ^T K-KBR- ¹ B ^T K+C ^T QC=0 \bigvee
		$KA+A^{T}K-KBR^{-1}B^{T}K+C^{T}QC=0$
Avec Critère à minimiser $J = \frac{1}{2} \int_0^{90} (2y^2 + 6u^2) dt$	Ē	KATA K-KBK B K.O QO V
Exercice 8 l'équation de Riccati du Problème	$P_k = Q + A$	$A^{T}P_{k+1}A - A^{T}P_{k+1}B(R + B^{T}P_{k+1}B)^{-1}B^{T}P_{k+1}A$
de CO		
Système $\begin{cases} x_{k+1} = Ax_k + Bu_k \\ y_k = Cx_k \end{cases}$	$P_k = Q + \frac{A}{r}$	$\frac{A^{T}}{r} P_{k+1} \frac{A}{r} - \frac{A^{T}}{r} P_{k+1} \frac{B}{r} (R + \frac{B^{T}}{r} P_{k+1} \frac{B}{r})^{-1} \frac{B^{T}}{r} P_{k+1} \frac{A}{r}$
Critère à minimiser		
$\mathbf{J} = \frac{1}{2} \sum_{k=0}^{189} (1)^{-2k} \left(\mathbf{x}_k^T \mathbf{Q} \mathbf{x}_k + \mathbf{u}_k^T \mathbf{R} \mathbf{u}_k \right)$	$P=Q+\frac{A}{r}^{T}$	$\frac{1}{r} P \frac{A}{r} - \frac{A}{r} P \frac{B}{r} (R + \frac{B}{r} P \frac{B}{r})^{-1} \frac{B}{r} P \frac{A}{r}$
Exercice 9		K=20
Le gain statique K du système :		
G(n) = 20		K=1
$G(p) = \frac{2}{(3p+4)(p^2+p+2.5)}$		
		K=2
Exercice 10		T= 3 nigr
La constante de temps T du système H(p) =	$\frac{12}{3p+3}$	est T= 1
		T= 4

Exercice 11	2 10 0
la matrice C associée à la forme quadratique	$C = \begin{bmatrix} 0 & 3 & 0 \\ 0 & 8 & 4 \end{bmatrix}$
$Q(x,y,z) = 2x^{2} + 3y^{2} + 4z^{2} + 10xy + 8yz$	$C = \begin{bmatrix} 2 & 5 & 0 \\ 5 & 3 & 6 \\ 0 & 2 & 4 \end{bmatrix}$
	$C = \begin{bmatrix} 2 & 5 & 0 \\ 5 & 4 & 6 \\ 0 & 2 & 3 \end{bmatrix}$
Exercice 12 Le système $H_2(p) = \frac{4}{5p^2 + p + 1}$ a deux pôles complexe	Oui alors donner ses pôles : Non , car
(c'est à dire facteur d'amortissement z < 1)	

Exercice 13 I'équation de Commande Auxiliaire du Problème de	$\dot{q}+[A^T-KBR^{-1}B^T]q+Kv=0$
CO Système $\begin{cases} \dot{x} = x + u + 2, & x(0) = 8 \\ y = 3x \end{cases}$	$\dot{q}+[A^T-KBR^{-1}B^T]q+C^TQy_d=0$
Critère à minimiser $J=\frac{1}{2}\int_0^{99} (3x^2+5u^2)dt$	
	$\dot{q}+[A^T-KBR^{-1}B^T]q+KB=0$
Exercice 14 l'équation de Riccati du Problème de CO	24K-18K ² +75=0
Système $\begin{cases} \dot{x} = 12x + 6u , x(0) = 1 \\ y = 5x \end{cases}$ Critère à minimiser $J = \frac{1}{2} \int_0^\infty (3y^2 + 2u^2) dt$	K+24K-18K ² +9=0
Critère à minimiser $J = \frac{1}{2} \int_0^\infty (3y^2 + 2u^2) dt$	24K-18K ² +9=0
Exercice 15 le critère J à minimiser du Problème de poursuite d'état à horizon fini avec degré de stabilité 2	$J = \frac{1}{2} \int_0^{56} e^{2t} ((x-1)^2 + 3u^2) dt$
du système: $\dot{x} = -5x + 2u + 3$, $x(0) = 4$	$J = \frac{1}{2} \int_0^{100} e^{4t} ((x-5)^2 + 2u^2) dt$
	$J = \frac{1}{2} \int_0^\infty 2 ((x-2)^2 + 8u^2) dt$

Exercice 16		
Compléter le gain de Riccati	$K = \begin{bmatrix} 5 \\ b \end{bmatrix}$	ь 2

b=3	V	
b=4		
b=1.5	V	
$\mathbf{J} = \frac{1}{2} \sum_{k=0}^{135} \mathbf{r}^{-2k}$	$(x, -8)^{T} Q(x, -8) + \mathbf{u}_{1}^{T} \mathbf{R} \mathbf{u}_{1}$,

Exercice 17

le critère associé au Problème de Poursuite d'état à horizon fini

Système
$$\begin{cases} x_{k+1} = Ax_k + Bu_k \\ y_k = Cx_k \end{cases}$$

$$J = \frac{1}{2} \sum_{k=0}^{135} r^{-2k} \left[(x_k - 8)^T Q (x_k - 8) + u_k^T R u_k \right]$$

$$J = \frac{1}{2} \sum_{k=0}^{\infty} \left[(x_k - 8)^T Q (x_k - 8) + u_k^T R u_k \right]$$

$$J = \frac{1}{2} \int_{0}^{13.5} ((x-8)^{2} + Ru^{2}) dt$$

Exercice 18 Le système $F(p) = \frac{10}{p^2 + 3p + 2}$	Oui
est Oscillatoire amorti (z < 1) ?	Non
Exercice 19 Le système $H(p) = \frac{5}{p^2 + 2p + 4}$	Ouì
est Hyper amorti (z > 1) ?	Non

Exe	rcice	20

le Type de Problème de CO

Système
$$\begin{cases} x_{k+1} = Ax_k + Bu_k \\ y_k = Cx_k \end{cases}$$

avec min
$$J = \frac{1}{2} \sum_{k=0}^{201} \left[(x_k - 2)^T Q(x_k - 2) + u_k^T R u_k \right]$$

Régulation d'état avec degré de stabilité 2 À horizon infini

Régulation de sortie avec Perturbation 2 à horizon fini

Poursuite d'état désirée 2 à horizon fini

Fin./.