Aaron (Jiaxun) Li

(+1) 510-520-5351 aaronjli@berkeley.edu Berkeley, CA Google Scholar Github LinkedIn

Education

University of California, Berkeley

August 2025 - Present

Ph.D. in Computer Science

Advisors: Prof. Bin Yu and Prof. Ion Stoica

Harvard University

September 2023 - May 2025

M.E. in Computational Science and Engineering (Thesis Track)

Cross-Registered at MIT EECS

GPA: 3.91/4.00

University of California, Berkeley

August 2019 - May 2023

B.A. in Computer Science (EECS Honors), GPA: 3.92/4.00

B.A. in Psychology, GPA: 3.90/4.00

Research Interests

LLM Evaluation, AI Safety, Trustworthy Machine Learning, Interpretability

Publications

[1] Interpretability Illusions with Sparse Autoencoders: Evaluating Robustness of Concept Representations

Aaron J. Li, Suraj Srinivas, Usha Bhalla, Himabindu Lakkaraju **Preprint**, **2025**

- [2] More RLHF, More Trust? On the Impact of Preference Alignment on Trustworthiness Aaron J. Li, Satyapriya Krishna, Himabindu Lakkaraju ICLR 2025 (Oral Presentation), Top 1.8%
- [3] Improving Prototypical Visual Explanations with Reward Reweighing, Reselection, and Retraining Aaron J. Li, Robin Netzorg, Zhihan Cheng, Zhuoqin Zhang, Bin Yu ICML 2024
- [4] Certifying LLM Safety Against Adversarial Prompting Aounon Kumar, Chirag Agarwal, Suraj Srinivas, Aaron J. Li, Soheil Feizi, Himabindu Lakkaraju COLM 2024

Research Experience

Berkeley Artificial Intelligence Research (BAIR) Lab

Aug. 2025 - Present

Graduate Student Researcher, advised by Prof. Bin Yu and Prof. Ion Stoica

• Probing LLM Knowledge Boundaries via Sycophancy

AI4LIFE Research Group, Harvard University

Sep. 2023 - May 2025

Graduate Student Researcher, advised by Prof. Himabindu Lakkaraju

\bullet RLHF's Impact on Language Model Trustworthiness

Conducted the first systematic evaluation of RLHF's impact on trustworthiness, revealing conflicts between alignment goals and dataset limitations; introduced a novel influence function-based data attribution method for RLHF, which enables downstream data-level mitigation.

• Unified Evaluation for Robustness of Sparse Autoencoders

Explored the limitations of sparse autoencoders by evaluating the robustness of their generated concept-level interpretations of pretrained LLMs; working on efficient input-level attacks that manipulate the neuron activation patterns in the sparse latent representations.

• Certified LLM Defense

Provided certified robustness guarantees for empirical defense procedures against adversarial prompting targeting LLMs; developed efficient variants of certifiable safety-checking algorithms.

Extended Course Project, Harvard University

Oct. 2023 - May 2024

Advised by Prof. Finale Doshi-Velez

• Interpretable Inverse Reinforcement Learning via Reward Decomposition

Designed an interpretable inverse reinforcement learning framework with reward decomposition, enabling transparent decision-making explanations and allowing users to evaluate and critique the trustworthiness of model outputs in high-stakes scenarios.

Yu Group, UC Berkeley

Aug. 2022 - Aug. 2023

Undergraduate Researcher, advised by Prof. Bin Yu

• Efficient Concept-level Debugging for Prototype-based Neural Networks

Improved the model interpretability of widely used prototype-based CNNs by aligning generated visual explanations with collected human preferences; proposed the Reward-Reweighing, Reselecting, and Retraining (R3) debugging framework, which uses reward models trained with human feedback to perform corrective updates, improving both predictive performance and interpretability.

Teaching Experience

Course Staff @ UC Berkeley EECS Department

CS 170: Efficient Algorithms and Intractable Problems (Fall 2021)

CS 188: Introduction to Artificial Intelligence (Summer 2021)

CS 70: Discrete Mathematics and Probability Theory (Summer 2020)

Skills

Programming Languages: Python, Java, C++, C, MATLAB, R Frameworks: PyTorch, CUDA, TensorFlow, Keras, Gym, Ray, etc. Tools & Utilities: Git, Slurm, Conda, Bash, Jupyter, tmux, SQL, etc.

Coursework

Undergraduate: Machine Learning, Deep Learning, Computer Vision, Reinforcement Learning, Probability and Random Processes, Convex Optimization, Signal Processing, Efficient Algorithms, Human Neuroanatomy, Neuroimaging, Computational Models of Cognition

Graduate: Inverse Reinforcement Learning, Sensorimotor Learning, Spoken Language Processing, Geometric Machine Learning, Efficient Machine Learning