Neural Network

Chen-Yu Wei

Naïve Bayes and Logistic Regression

 $Y \in \{0, ..., 9\}$: class $X_1, ..., X_{64}$: features

Naïve Bayes

Logistic Regression

Bayes Net representation

Modeling

 $P(X_1, \dots, X_{64} \mid Y) \qquad P(Y)$

 $P(Y | X_1, ..., X_{64}) = \frac{P(X_1, ..., X_{64})}{P(X_1, ..., X_{64})}$

Assumption

 $P(X_1, ..., X_{64} | Y)$ = $P(X_1 | Y) P(X_2 | Y) ... P(X_{64} | Y)$ $P(Y \mid X_1, ..., X_{64})$ $\propto \exp(f_w(X, Y)) = \exp(w^{(Y)} \cdot X)$

Type of model

Generative model

Discriminative model

Naïve Bayes and Logistic Regression

 W_{ij} : the weight between F_i and C_j

Naïve Bayes

Logistic Regression

"Neural Net" representation

$$\underline{F_i} = \sum_{j=0}^9 W_{ij} C_j \quad - \quad \text{Wis}$$

The meaning of C_j

The meaning of F_i

Class =
$$j \Leftrightarrow (C_0, \dots, C_9) = (0, \dots, 1, \dots, 0)$$

The expected value of *i*-th feature given the input class

$$C_j = \sum_{i=1}^{64} W_{ij} \underline{F_i}$$

ss j

The score between class *j* and the input features

The *i*-th feature

Neural network (NN)

A general tool to model the relation between two real-valued vectors

X, Y here are general vectors and do not need to correspond to feature and label

This neural network describes the relation

$$Y_i = \sum_{j=1}^M W_{ij} X_j \qquad \forall i = 1, \dots, N$$
 or, more succinctly,
$$Y = WX$$

X	Υ	
Pixel values	Scores	(LR)
Digit label in one-hot representation	Expected pixel value (if pixels value ∈ {0,1})	(NB)
Digit label in one-hot representation	Pixel value (if pixels value ∈ [0,1])	
Spam/ham in one-hot representation	Word frequency	(NB)

Logistic Regression (1-Layer NN for Classification)

output to be a distribution)

Find W that minimizes $\sum_{s=1}^{|S|} -\log P_W(y_s \mid x_s)$ using Stochastic Gradient Descent

Logistic Regression (1-Layer NN for Classification)

Higher Z_2

Lower Z_2

$$W_2 = (W_{2,1}, W_{2,2,...}, W_{2,64})$$

 Z_2 will be high if the input pattern X matches W_2 (i.e., $X \cdot W_2$ is large)

The weight associated with an output node acts like a "filter" that recognizes a particular pattern on the input.

The Weights Produced by Logistic Regression

The Weights Produced by Naïve Bayes

2-Layer NN for Classification

 H_1 : recognize wheels

 H_2 : recognize windows

 H_3 : recognize handlebar

$$H_i = g\left(\sum_j W_{ij}^{(in)} X_j\right) \qquad H = g(W^{(in)} X)$$

g = nonlinear activation function

$$Z_i = \sum_{i} W_{ij}^{(\text{out})} H_j \qquad \qquad Z = W^{(\text{out})} H$$

Multi-Layer NN for Classification

$$H_i^{(0)} \coloneqq X_i \qquad H^{(0)} \coloneqq X$$
 Input layer
$$H_i^{(\ell)} = g\left(\sum_j W_{ij}^{(\ell,\ell-1)} H_j^{(\ell-1)}\right) \quad \forall \ell = 1, \dots, L \qquad H^{(\ell)} = g(W^{(\ell,\ell-1)} H^{(\ell-1)})$$

$$Z_i = \sum_j W_{ij}^{(\text{out})} H_j^{(L)} \qquad Z = W^{(\text{out})} H^{(L)}$$
 Output layer

Training Multi-Layer Neural Network

$$P_W(y_s|x_s) = \frac{\exp(Z_{y_s})}{\sum_y \exp(Z_y)} \bigg|_{\text{input} = x_i} = \frac{\exp(f_W(x_s, y_s))}{\sum_y \exp(f_W(x_s, y))}$$

We can expand $f_W(x, y)$ as

$$f_{W}(x,y) = e_{y}^{\top} W^{(\text{out})} H^{(L)}$$

$$= e_{y}^{\top} W^{(\text{out})} g(W^{(L,L-1)} H^{(L-1)})$$

$$= e_{y}^{\top} W^{(\text{out})} g(W^{(L,L-1)} g(W^{(L-1,L-2)} H^{(L-2)}))$$

$$= e_{y}^{\top} W^{(\text{out})} g(W^{(L,L-1)} g(W^{(L-1,L-2)} g(\dots g(W^{(1,0)} x))))$$

A quite complicated **non-linear** function of $W = (W^{(\text{out})}, W^{(L,L-1)}, ..., W^{(1,0)})$

Nevertheless, we use the same idea (Maximum Likelihood + Stochastic Gradient Descent) to find a good W

Training Multi-Layer Neural Network

- Get dataset consisting of (X, Y) pairs: $(x_1, y_1), (x_2, y_2), ..., (x_S, y_S) \in \mathbb{R}^d \times \{1, 2, ..., C\}$
- Define the objective function / loss function:

$$\frac{1}{S} \sum_{s=1}^{S} -\log P_W(y_s | x_s) = \frac{1}{S} \sum_{s=1}^{S} -\log \left(\frac{\exp(f_W(x_s, y_s))}{\sum_{s=1}^{S} \exp(f_W(x_s, y_s))} \right)$$

$$\frac{1}{S} \sum_{s=1}^{S} -\log P_W(y_s | x_s) = \frac{1}{S} \sum_{s=1}^{S} -\log \left(\frac{\exp(f_W(x_s, y_s))}{\sum_{s=1}^{S} \exp(f_W(x_s, y_s))} \right)$$

Use stochastic gradient descent to minimize the loss

For
$$t=1,2,...$$
 Randomly sample a minibatch $B\subset\{(x_1,y_1),(x_2,y_2),...,(x_S,y_S)\}$ of size $|B|=b$
$$W_t=W_{t-1}-\eta\cdot\frac{1}{b}\sum_{(x_S,y_S)\in B}\nabla L_S(W_{t-1})$$

Multi-Layer Pattern Recognition

The machine can automatically discover **useful patterns** through maximum likelihood / loss minimization.

hidden in W

