SAVOIR FAIRE n⁰1 : Déterminer la nature d'un nombre

Entraînement 1

Correction

Déterminer pour chaque nombre les ensembles auxquels il appartient.

	N	\mathbb{Z}	\mathbb{D}	\mathbb{Q}	\mathbb{R}
-2,5					
1					
$\overline{4}$					
-7,0					
10 ⁴					
1,33333333					
π^2					
$\sqrt{144}$					
121					
<u> </u>					
300×10^{-3}					

Entraînement 2

Correction

Donner la nature des nombres suivants (sans utiliser la calculatrice).

$$2,00 ; -\frac{80}{16} ; \sqrt{0,36} ; 4,750 \times 10^2$$

Entraînement 3

Correction

Donner la nature des nombres suivants (sans utiliser la calculatrice).

$$\sqrt{2} - \frac{2}{\sqrt{2}}$$
; $(\sqrt{7} + 1)(\sqrt{7} - 1)$; $(\frac{\sqrt{10}}{10})^2$; $\frac{\sqrt{5} - \sqrt{20}}{\sqrt{5}}$

SAVOIR FAIRE n⁰2 : Manipuler les différents types de nombre

Entraînement 4

Correction

Les affirmations suivantes sont-elles vraies ou fausses? Justifier.

- a) Tout nombre rationnel est un nombre réel.
- b) Le carré d'un nombre irrationnel est toujours un nombre irrationnel.
- c) Il existe deux nombres rationnels dont la somme est un nombre entier.
- d) Le quotient de deux nombres décimaux (non nuls) est un nombre décimal.
- e) Un nombre réel est forcément un nombre décimal.
- f) L'inverse d'un nombre entier peut être un nombre décimal.
- g) Le quotient de deux nombres réels est un nombre rationnel.
- h) -4 est un nombre réel.
- i) Le produit de deux nombres irrationnels est toujours un nombre rationnel.

Entraînement 5

Correction

Panique relative...

Avant le contrôle, c'est la panique ! Diego affirme que la différence de deux entiers relatifs est un entier négatif puisque par exemple : -3-5=-8 est bien un entier négatif. Mais Sarah lui dit que non puisque par exemple : $-3+5=2\in\mathbb{N}$

Tu entends la conversation, et comme tu es super au point, tu connais la réponse. Alors, qui a raison ?

SAVOIR FAIRE n⁰3 : Démontrer si un nombre appartient ou non à un ensemble donné

Entraînement 6

Correction

- 1. Démontrer que $\frac{1}{11}$ n'est pas un nombre décimal.
- 2. Démontrer que $\frac{9}{7}$ n'est pas un nombre décimal.

- 1. Démontrer que $\sqrt{2}$ est irrationnel \Rightarrow démonstration par l'absurde (à utiliser en particulier lorsqu'on cherche à démontrer « blablabla … n'est pas … blablabla »)
- 2. Sachant que π est irrationnel, démontrer que $\frac{5}{\pi}$ est irrationnel (ou n'est pas rationnel).

SAVOIR FAIRE n^04 : Lire et placer un nombre réel sur une droite graduée

Entraînement 8

Correction

Donner les abscisses des points F, I, E, S, T et A.

Entraînement 9

Correction

Placer les nombres suivants sur la droite graduée ci-dessous :

$$\frac{2}{5}$$
; -3,5; 0,65; 4; π ; $\sqrt{3}$; $-\frac{22}{10}$; $\frac{42}{14}$

SAVOIR FAIRE n⁰5 : Déterminer l'appartenance d'un nombre réel à un intervalle

Entraînement 10

Correction

Compléter avec le symbole ∈ ou le symbole ∉.

$$2,25 \dots \dots [-1;2]$$
 $-4 \dots \dots [-4,1;0[$
 $\sqrt{2} \dots \dots]1,41;3[$
 $\pi \dots \dots [3,141;4[$
 $0,001 \dots \dots [10^{-4};10^{-2}[$

SAVOIR FAIRE n⁰6 : Encadrer un nombre réel

Entraînement 11

Correction

Donner un encadrement des nombres suivants :

- $1,159 \text{ à } 10^{-3} \text{ près}$;
- $0,154159 \text{ à } 10^{-6} \text{ près};$
- $-4,4558 \text{ à } 10^{-4} \text{ près};$
- $0,0095367 \text{ à } 10^{-7} \text{ près.}$

Entraînement 12

Correction

Donner un encadrement des nombres suivants :

- $22,928 \text{ à } 10^{-1} \text{ près}$;
- $-102,1561 \text{ à } 10^{-2} \text{ près};$
- $\frac{1}{2}$ à 10^{-2} près;
- $51456,2 \times 10^{-4} \text{ à } 10^{-4} \text{ près.}$

Entraînement 13

Correction

Donner un encadrement à 10^{-3} près des irrationnels célèbres suivants :

$$\sqrt{2}$$
; π ; e ; $\sqrt{3}$

SAVOIR FAIRE n⁰7 : Faire correspondre les intervalles avec les inéquations et leur représentation sur la droite des réels

Entraînement 14

Correction

Compléter le tableau ci-dessous.

INTERVALLE	REPRÉSENTATION	INÉGALITÉ
[1;3]		
	-4 -3 -2 -1 0 1	
		$-4 < x \le 0$
	-3 -2 -1 0 1 2	
] − ∞ ; 4]		
		$x \ge -1.5$
		<i>x</i> < 0
	-3 -2 -1 0 1	

Entraînement 15

Correction

Traduire les intervalles suivants par une inéquation

$$]-\infty;-4]; [-2;3];]0;+\infty[; [-\frac{1}{2};10[$$

Entraînement 16

Correction

Écrire les inéquations suivantes sous forme d'intervalles

$$x \ge -9$$

$$-\sqrt{5} < x < \sqrt{5}$$

$$x > 3 \text{ et } x \le 10$$

$$-7 \le x \le -3$$

SAVOIR FAIRE n^08 : Simplifier une réunion/intersection d'intervalles de $\mathbb R$

Entraînement 17

Correction

Compléter le tableau suivant :

INTERVALLE I	INTERVALLE J	$I \cup J$	$I \cap J$
[1;3]	[-2;2]		
] – 5; 1]]0;5[
] - ∞ ; 4]	[0;4[
$[\frac{1}{2};6]$	[6;10]		
[-12;3]]3;12]		
[-1 ; +∞[] – ∞ ; 4]		
]4;11[]9; +∞[
[-2;4[R +		

EXERCICE 3:

1. Traduire chaque inégalité par un intervalle :

a)
$$x > 5$$

b)
$$2 < x \le 10$$

2. En s'aidant d'un dessin, déterminer l'ensemble des réels x vérifiant :

a)
$$x > 5$$
 et $x \le -4$.

b)
$$x > 5$$
 ou $x \le -4$.

3. Déterminer l'union puis l'intersection des deux intervalles suivants en utilisant les symboles ∪, ∩ (Le tracé des droites est conseillé)

$$K=]-2;3]$$
 et $L=[3;5]$.

SAVOIR FAIRE n⁰9 : Calculer une valeur absolue

Entraînement 18

Correction

Écrire sans valeur absolue les nombres suivants :

$$|-15,5|$$
; $\left|\frac{-7}{-11}\right|$; $|-10^{-3}|$; $\left|\sqrt{2}-2\right|$

Entrainement 19

Correction

Dans chaque cas, déterminer la distance entre les deux réels donnés :

- a) 13 et 20;
- b) -42 et -55;
- c) -7 et 12.

SAVOIR FAIRE n^010 : Résoudre une équation de type |x - a| = b

Entrainement 20

Correction

Résoudre les équations suivantes :

- a) |x-3|=2;
- b) |x + 8| = 11;
- c) |x+2|=-4;
- d) |x-10| = |x+2|;
- e) |x + 1| = |x 5|;
- f) |x-6| = |x-7|.

SAVOIR FAIRE n°11 : Résoudre une équation de type |x - a| = b

Entrainement 21

Correction

Résoudre les inéquations suivantes :

- a) $|x-5| \le 13$;
- b) |x+3| < 9;
- c) $|x+2| \le 4$;
- d) |x-1| < |x+2|;
- e) $|x + 5| \le |x 1|$;
- f) |x + 7| < |x 12|.

CORRECTIONS

Correction 1

Retour à l'exercice

	N	\mathbb{Z}	\mathbb{D}	Q	\mathbb{R}
-2,5	non	non	oui	oui	oui
1	non	non	oui	oui	oui
$\frac{\overline{4}}{4}$					
-7,0	non	oui	oui	oui	oui
10^{4}	oui	oui	oui	oui	oui
1,33333333	non	non	non	oui	oui
π^2	non	non	non	non	oui
$\sqrt{144}$	oui	oui	oui	oui	oui
121	non	oui	oui	oui	oui
<u></u>					
300×10^{-3}	non	non	oui	oui	oui

Explications:

- $\frac{1}{4} = 0.25 \in \mathbb{D}$: nombre à virgule avec 2 décimales
- $10^4 = 10\,000 \in \mathbb{N}$
- $1,33333... \in \mathbb{Q}$: nombre infini de décimales périodiques
- $\sqrt{144} = 12 \in \mathbb{N}$
- $\bullet \quad -\frac{121}{11} = 11 \in \mathbb{N}$
- $300 \times 10^{-3} = 0.3 \in \mathbb{D}$