МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

УО «ВИТЕБСКИЙ ГОСУДАРСТВЕННЫЙ ОРДЕНА ДРУЖБЫ НАРОДОВ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ»

АКТУАЛЬНЫЕ ВОПРОСЫ СОВРЕМЕННОЙ МЕДИЦИНЫ И ФАРМАЦИИ

Материалы 60 итоговой научно-практической конференции студентов и молодых ученых

24 - 25 апреля 2008 года

ВИТЕБСК, 2008

МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

УО «ВИТЕБСКИЙ ГОСУДАРСТВЕННЫЙ ОРДЕНА ДРУЖБЫ НАРОДОВ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ»

АКТУАЛЬНЫЕ ВОПРОСЫ СОВРЕМЕННОЙ МЕДИЦИНЫ И ФАРМАЦИИ

Материалы 60 итоговой научно-практической конференции студентов и молодых ученых

24- 25 апреля 2008 года

ВИТЕБСК, 2008

УДК 616:615.1:061.3-03 ББК 5я431+52.82я431 А 43 Рецензенты: В.П. Адаскевич, И.И. Бурак, В.С. Глушанко, А.И. Жебентяев, С.П. Кулик, А.М. Литвяков, О.Д. Мяделец, В.И. Новикова, М.Г. Сачек, Л.Я.Супрун.

Актуальные вопросы современной медицины и фармации. Материалы 60 итоговой научно-практической конференции студентов и молодых ученых.-Витебск: ВГМУ, 2008.- 651 с.

Редакционная коллегия: А.П. Солодков (председатель), Н.Г.Луд, С.Н. Занько, В.И. Шебеко, О.В. Матющенко, П.А. Ерашов.

ISBN 978-985-466-268-8

В сборнике представлены материалы докладов, прочитанных на научной конференции студентов и молодых ученых. Сборник посвящен актуальным вопросам современной медицины и включает материалы по следующим направлениям: "Хирургические болезни", "Военная и экстремальная медицина", "Военно-историческая", "Внутренние болезни", "Профилактика и лечение заболеваний сердечно-сосудистой системы", "Лекарственные средства", "Инфекция", "Профилактика алкоголизма, наркомании и психосоматических заболеваний", "Стоматология", "Здоровая мать — здоровый ребенок", "Общественное здоровье и здравоохранение, гигиена и эпидемиология", "Социально-гуманитарные науки", "Иностранные языки".

Сборник предназначен для молодых ученых и студентов медицинских ВУЗов.

УДК 616:615.1:061.3-03 ББК 5я431+52.82я431

государственный

□ УО «Витебский

медицинский университет», 2008

ISBN 978-985-466-268-8

измерения энтальпий смешения проводились при различных соотношениях исходных веществ.

Результаты исследования. Энтальпии смешения кремнийорганических пероксидов со всеми изученными карбаматами отрицательны во всей области концентраций растворов, то есть тепло выделяется. При этом максимальное выделение тепла соответствует мольному соотношению пероксид: карбамат, равному 1:1, что свидетельствует об образовании комплекса состава 1:1.

Константы устойчивости (Кс) комплексов увеличиваются в следующем ряду карбаматов (IV) < (I) < (II) < (III). В этом же ряду карбаматов возрастает электронодонорная способность.

В комплексе пероксид-карбамат центром координации карбамата как электронодонора является атом кремния пероксида и увеличение положительного заряда гетероатома в пероксиде способствует комплексообразованию. Электроноакцепторная способность

(CH3)4-nSi[OOC(CH3)3]n возрастает с увеличением n, то есть последовательное замещение метильных фрагментов в молекуле пероксида на электроноакцепторные (CH3)3COO-группы увеличивает способность пероксида к комплексообразованию с карбаматом.

Выводы. Полученные результаты показывают, что кремнийорганические пероксиды с карбаматами образуют донорно-акцепторные комплексы состава 1:1. Прочность комплексов возрастает с увеличением электронодонорной способности карбамата и электроноакцепторной способности пероксида.

Литература:

- 1. Александров Ю.А., Сульдин Б.В. Элементоорганические пероксидные инициаторы //Труды по химии и химической технологии. 1965. №3. С.228-231.
- 2. Горбатов В.В., Яблокова Н.В. Разложение кремнийорганических пероксидов в присутствии олефинов //Химия элементоорганических соединений. 1976. №4. С.59-61.
- 3. Николаев П.Н., Рабинович И.Б. Энтальпии смешения двухкомпонентных систем //Труды по химии и химической технологии. 1961. №2. C.242-245.

ПРЕДСКАЗАНИЕ СПЕКТРА БИОЛОГИЧЕСКОЙ АКТИВНОСТИ И БЕЗОПАСНОСТИ СМОДЕЛИРОВАННОГО СОЕДИНЕНИЯ

Марцинкевич А.Ф. (3 курс, фармацевтический факультет) Научный руководитель: к.ф.н., доцент Родионова Р.А.

УО «Витебский государственный медицинский университет», г. Витебск

Актуальность. Предсказание биологической активности — немаловажный этап создания нового лекарственного соединения. В ходе компьютерного анализа возможно определение не только его биологической активности, но и токсических, мутагенных и тератогенных свойств.

Цель. Предсказание спектра биологической активности заданного соединения и его фармакологической безопасности.

Материал и методы исследования. В ходе исследования проводился анализ соединения, смоделированного De Novo, и потенциально обладающего антимикробным лействием.

Рисунок 1. Смоделированное соединение, потенциально обладающее противомикробной активностью

Для анализа были использованы модели PASS C&T и FBDLP, которые используют для расчетов активности индивидуальный вклад обнаруженных фармакофоров.

Метод PASS С&Т используется для предсказания различных видов биологической активности (около 400) и использует обучающую выборку в 45000 соединений. Анализ проводится с использованием топологических и стерических дескрипторов. При расчете по данному методу определяются два критерия: ра – показывает вероятность нахождения у соединения заданного свойства и рі – характеризует вероятность того, что искомое свойство проявляться не будет. Высокие значения ра свидетельствуют о том, что известен ряд структур, обладающих заданным свойством.

Mетод FBDL (Fragment Based Druglikeness) использует выборку в 15000 соединений и может использоваться для предсказания негативных качеств исследуемой структуры – токсичности, тератогенных и мутагенных свойств.

Для исследуемого соединения был рассчитан индекс Drug Score, который оказался равен 0,87.

Расчет производился по формуле:

$$ds = \prod \left(\frac{1}{2} + \frac{1}{2}s_i\right) \cdot \prod t_i$$

$$s = \frac{1}{1 + e^{ap+b}}$$

где si – вклад в активность соединения различных параметров (молекулярная масса, липофильность, молекулярная рефракция и др.); ti, a, b – константы.

Результаты исследования. В структуре не обнаружено известных фармакофоров, определяющих токсичность, тератогенность и мутогенность.

При расчетах на PASS была подтверждена противомикробная активность соединения (ра = 0,812, рі = 0,005). Выявлено избирательное антипротозойное действие на токсоплазму (ра = 0,742, рі = 0,029) и трипаносому (ра = 0,685 0,006). Обнаружена альтернативная активность — исследуемое соединение может являться ингибитором оксидазы L-аскорбиновой кислоты (ра = 0,779, рі = 0,008). У соединения возможно радиопротекторное (ра = 0,592, рі = 0,017) и антитуберкулезное действие (ра = 0,570, рі = 0,008).

Выводы.

- 1. теоретически доказана биологическая безопасность смоделированного соединения;
- 2. подтверждена противомикробная активность соединения;
- 3. обнаружены альтернативные виды активности.