

Correto

Atingiu 3,00 de 3,00

Média Aritmética, Ponderada e Harmônica

Escreva um <u>programa</u> que leia 3 números inteiros positivos e efetue o cálculo das médias Aritmética (A), Ponderada (P) e Harmônica (H) dependendo da letra dada pelo usuário, mostre qual o tipo de média e qual o valor da média. No caso do usuário digitar qualquer outro caractere, apresente a mensagem 'Operacao inexistente'.

A Entrada consiste de:

- Linha contendo as três notas que são três números reais positivos.
- Linha contendo um caractere (para determinar qual a média), sendo (P) Ponderada, (H) Harmônica e (A) Aritmética
- Caso o caractere seja 'P', deve-se solicitar os três pesos de cada nota enviada, que são números positivos inteiros.

A Saída deve apresentar:

- Na primeira linha, o tipo de média que ele fez ("Harmonica", "Ponderada", "Aritmetica" ou "Operacao inexistente")
- Na segunda linha, caso tenha sido digito um caractere válido, o resultado da média com precisão de 2 casas decimais.

Observações:

• Não é necessário validar se os valores de entrada estão dentro dos intervalos e tipos definidos.

Descrição dos Exemplos:

• Os exemplos são autoexplicativos.

For example:

Input	Result	
1 2 3 P 5 6 7	Ponderada 2.11	
1 4 3 G	Operacao inexistente	
5 3 8 H	Harmonica 4.56	

Answer: (penalty regime: 0, 0, 10, 20, ... %)

```
1 ▼ def medP(x1,x2,x3,a,b,c):
        return (x1*a+x2*b+x3*c)/(a+b+c)
 2
3 ▼
    def medA(x1,x2,x3):
4
       return medP(x1,x2,x3,1,1,1)
 5 \neq def medH(x1,x2,x3):
        return 3/(1/x1 + 1/x2 + 1/x3)
6
8
    x1,x2,x3 = input().split()
    x1,x2,x3 = float(x1),float(x2),float(x3)
9
10
    opcao = input()
11
12 v if opcao == "A":
13
       print("Aritmetica")
        print(f"{medA(x1,x2,x3):.2f}")
14
    elif opcao == "P"
15 🔻
16
        a,b,c = input().split()
17
        a,b,c = int(a),int(b),int(c)
        print("Ponderada")
18
19
        print(f"{medP(x1,x2,x3,a,b,c):.2f}")
20 v elif opcao == "H":
        print("Harmonica")
21
22
        print(f"{medH(x1,x2,x3):.2f}")
23 ▼ else:
24
        print("Operacao inexistente")
25
```

PRECHECK VERIFICAR

	Input	Expected	Got	
~	1 2 3 P 5 6 7	Ponderada 2.11	Ponderada 2.11	~
~	1 4 3 G	Operacao inexistente	Operacao inexistente	~
~	5 3 8 H	Harmonica 4.56	Harmonica 4.56	~
~	5 6 7 A	Aritmetica 6.00	Aritmetica 6.00	~
~	10 15 20 C	Operacao inexistente	Operacao inexistente	~
~	80 38 54 P 4 7 2	Ponderada 53.38	Ponderada 53.38	~

Passou em todos os teste! ✔

Correto

Notas para este envio: 3,00/3,00.

h

