

SPLEX PROJECT PRESENTATION

Data exploration
Propose and Develop an optimal method
A Pokémon analysis

LEGOFFIC Liam, ZHONG Yann 28/01/2022

TABLE OF CONTENTS

- 1.Introduction: the data of Pokémon
- 2.Non-supervised learning
- 3.Supervised learning
- 4.Discussion

TABLE OF CONTENTS

- 1.Introduction: the data of Pokémon
- 2. Non-supervised learning
- 3. Supervised learning
- 4.Discussion

The data of Pokémon

- Source: <u>kaggle.com/alopez247/pokemon</u> and <u>kaggle.com/rounakbanik/pokemon</u>
- ♦ Motivation → 8 "generations" of creatures, all with unique features

Type: Electric Attack: 55 Abilities: Lightning Rod Static Sp. Atk: 50 Fier: NFE Speed: 90 Arceus-Fairy Type: Fairy Attack: 120 Defense: 120 Defense: 120 Sp. Atk: 120 Fier: Uber Sp. Atk: 120 Speed: 120 Speed: 120 Speed: 120

- Attack
- Defense
- Sp. Atk
- Sp. Def
- Speed
- Total
- Exp. Growth
- Typing
- . . .

The data of Pokémon

- Source: kaggle.com/rounakbanik/pokemon
- ♦ Motivation → 8 "generations" of creatures, all with unique features

Type: Elactric Attack: 55 Abilities: Lightning Rod Defense: 40 Abilities: Static Sp. Atk: 50 Tier: NFE Speed: 90

- Special class :Legendaries
- Characterized by higher base stats, rare type combinations
- "Outliers"?

The data of Pokémon

The data of Pokémon

TABLE OF CONTENTS

1.Introduction: the data of Pokémon

- 2. Non-supervised learning
- 3. Supervised learning
- 4.Discussion

Clustering

	D	E	F	G	Н	I	J	K L	М	N	0	Р	Q	R	S	T	U	V
1	Total	capture_rate	classfic	Defense	experience	height_m	HP	japanese name	percentag	#	Sp. Atk	Sp. Def	Speed	Гуре 1	Type 2	weight_kg	Generatio	Legendary
2	318	45	Seed Po	49	1059860	0.7	45	Fushigida Bulbasaur	88.1	1	65	65	45	grass	poison	6.9	1	FALSE
3	405	45	Seed Po	63	1059860	1	60	Fushigiso Ivysaur	88.1	2	80	80	60	grass	poison	13	1	FALSE
4	625	45	Seed Po	123	1059860	2	80	Fushigiba Venusaur	88.1	3	122	120	80	grass	poison	100	1	FALSE
5	309	45	Lizard F	43	1059860	0.6	39	Hitokage Charmand	88.1	4	60	50	65	fire		8.5	1	FALSE

- ❖ Class → Legendary (last column)
- ❖ Pairwise clustering on numerical columns
 - > Total vs Sp. Atk
 - Capture_rate vs SpeedHP vs weight_kg

 $\frac{11!}{2!9!} = 55$ possible pairwise clusters \rightarrow unrealistic and waste of time

> ...

Clustering

Clustering

Good results on K-means and hierarchical. Data is quite easily separable with few outliers.

Clustering

Bad results all around. Cluster sizes presumed equal, so clustering is inaccurate.

- What about integrating all features then reduce dimensions by PCA?
- Kept all numerical features, besides Generation, Pokédex number, and non integers

- What about integrating **all** features then reduce dimensions by PCA?
- Kept all numerical features, besides Generation, Pokédex number, and non integers

- Homogeneity score: 0.17068970092477653
- Completeness score: 0.06757183768305883
- V Measure score: 0.09681643820862626
- Adjusted rand score:
 0.012093226860007383
- Silhouette score: 0.03649374784562871

- Homogeneity score: 0.38232846481160215
- Completeness score: 0.43283834067599347
- V Measure score: 0.4060185404710326
- Adjusted rand score:
 0.6136722882689195
- Silhouette score: 0.37644693014139285

- Homogeneity score: 0.10268463671385511
- Completeness score: 0.04361430713995888
- V Measure score: 0.06122421893446118
- Adjusted rand score:
 -0.04584396494822646
- Silhouette score: -0.0277771761195507

Clustering - PCA

Does PCA work?

- → Hierarchical clustering performs decently
- → Still a far cry from clustering only "relevant" features

Why?

→ Likely due to certain features being much more **important** (higher weight)

TABLE OF CONTENTS

1.Introduction: the data of Pokémon

2. Non-supervised learning

3.Supervised learning

4.Discussion

Decision tree + Forest

Logistic regression

- Logistic Regression disappointing
 - High accuracy but low precision
 - Feature weights do not correspond to feature correlation

```
Average accuracy : 0.9063540372670807

Average precision : 0.2316011904761905

Average Theta : [-0.42456532  0.23226571 -0.30397868 -0.55889356]
```

New idea: directly link the correlation and the predictions

[0.48543982279986336, 0.873488340399458, -0.4131077637494285, 0.36103808795276837]

Correlation based method

- Weight of feature = correlation with legendary classification Y
- Matrix product of weights and features
 - → single value output per feature
 - If greater than threshold: Legendary
 - If not: Common

How to calculate the best threshold value?

→ k-fold cross-validation

Correlation based method

Metrics on all features (left)

Metrics on 4 best features (right)

Correlation based method

TABLE OF CONTENTS

- 1.Introduction: the data of Pokémon
- 2. Non-supervised learning
- 3. Supervised learning
- 4.Discussion

DISCUSSION

Dataset is small – only a dozen of features → testing and training was limited.

Unsupervised:

- Pairwise clustering: effective once most prominent features identified
- All features + PCA: not irrelevant, but not as effective

❖ Supervised:

- Decision tree: feature importance confirms clustering conclusions
- Logistic regression: poor results
- Correlation weight method: good results after k-fold cross validation

DISCUSSION

*Access?

github.com/LiamLeGoffic/SPLEX Project

Thank you for listening!