Prova 1 Turma 2 Solução

Valor total: 25 pontos

Matrícula:	Nome:
------------	-------

[Hillier & Lieberman (2006), p. 90]

A Cia. de Seguros Primo está introduzindo duas novas linhas de produtos: seguro de risco especial e hipotecas. O lucro esperado é de \$5,00 por unidade de seguro de risco especial e \$2,00 por hipotecas. A direção quer estabelecer cotas de vendas para as novas linhas de produtos de modo a maximizar o lucro total esperado. As exigências em termos de trabalho são as seguintes:

	Horas de Trabalh	Horas de Trabalho	
Departamento	Risco Especial	Hipotecas	Disponíveis
Subscrição	3	2	2400
Administração	0	1	800
Pedidos de Indenização	2	0	1200

1. Formule um modelo de PL para o problema de modo a ajudar a Seguros Primo a alcançar seu objetivo.

3 pts.

Considere x1 = unidades de Risco Especial e x2 = unidades de Hipotecas

4 pts.

2. Resolva o modelo graficamente.:

Rascunhos e contas

Solução (variáveis de decisão, folgas e F.O., usando o significado das variáveis):

Vender 600 unidades de Risco Especial e 300 unidades de Hipotecas, dando um lucro máximo de R\$ 3.600,00. Há uma sobra de 500h de trabalho disponíveis para Administração.

3. Monte abaixo o Quadro Simplex inicial para o modelo de PL da Questão 1.

2 pts.

Base	×1	x2	s 1	s 2	s 3	Ь	
-f	5	2	0	0	0	0	Lo
s1	3	2	1	0	0	2400	L ₁
s2	0	1	0	1	0	800	L ₂
s 3	2	0	0	0	1	1200	Lз

3 pts.

4. Descreva abaixo como deverá ser feito o 1º pivoteamento do Simplex: qual variável deve entrar na base, qual deve sair, e quais contas devem ser feitas para se obter o quadro seguinte. Não precisa calcular o 2º quadro efetivamente.

x1 entra na base;

s3 sai da base;

O "pivot" está marcado no quadro acima com um círculo vermelho.

Pivoteamento:
$$L_{3}' = L_{3} / 2$$

 $L_{0}' = -5 L_{3}' + L_{0}$
 $L_{1}' = -3 L_{3}' + L_{1}$

5. Dada a BASE ótima obtida na Questão 2, e considerando a equação matricial correspondente do sistema:

3 pts.

Max
$$f = c_B x_B$$

s.a. $Bx_B = b$
 $x_B \ge 0$

identifique numericamente a matriz B e os vetores x_B , c_B e b.

$$x_{B} = \begin{bmatrix} x_{1} \\ x_{2} \\ s_{2} \end{bmatrix} \quad c_{B} = \begin{bmatrix} 5 & 2 & 0 \end{bmatrix} \quad b = \begin{bmatrix} 2400 \\ 800 \\ 1200 \end{bmatrix} \quad B = \begin{bmatrix} 3 & 2 & 0 \\ 0 & 1 & 1 \\ 2 & 0 & 0 \end{bmatrix}$$

6. Usando o software LINDO para resolver o problema acima, foram obtidos os seguintes valores para os custos reduzidos e os preços duais:

4 pts.

VARIABLE X1 X2	• • • • • • • • • • • • • • • • • • • •	REDUCED COST 0.000000 0.000000
ROW SUBSCR) ADMIN) INDENIZ)		DUAL PRICES 1.000000 0.000000 1.000000

Escreva pelo menos uma interpretação para cada um dos valores não nulos acima:

- s1: 1 → para cada hora de trabalho a menos disponível no setor de <u>Subscrição</u>, a empresa perderá R\$ 1. Esse também é o valor máximo que a empresa deveria pagar por cada hora a mais de trabalho nesse setor, caso queira aumentar ainda mais seu lucro.
- s3: 1 → para cada hora de trabalho a menos disponível no setor de <u>Pedidos de</u>
 <u>Indenização</u>, a empresa perderá R\$ 1. Esse também é o valor máximo que a empresa deveria pagar por cada hora a mais de trabalho nesse setor, caso queira aumentar ainda mais seu lucro.

Obs.: esses valores são válidos apenas dentro dos limites da *Análise de Sensibilidade*, assunto que veremos depois da prova.

7. A VAB – Viação Aérea Brasileira está estudando a compra de três tipos de aviões: Boeing 717 para as pontes aéreas de curta distância, Boeing 737 para voos domésticos e internacionais de média distância, e MD-11 para voos internacionais de longa distância. Alguns dados operacionais estão dispostos na tabela abaixo.

Tipo	Custo (milhões de US\$)	Receita Teórica (milhões de US\$)	Pilotos aptos
Boeing 717	5	330	30
Boeing 737	4	300	20
MD-11	7	420	10

A verba disponível para a compra é de no máximo 220 milhões de dólares. Cada aeronave necessita de dois pilotos para operar. Os pilotos do MD-11 podem pilotar todos os aviões da empresa, mas os demais pilotos somente as aeronaves a que foram aptos. As oficinas de manutenção podem suportar até 40 Boeings 717. Um Boeing 737 equivale, em esforço de manutenção, à metade do 717, e um MD-11, ao dobro de um Boeing 717. Formule um modelo de PL para otimizar a aquisição de aviões de tal forma a maximizar a <u>receita teórica</u>.

```
x_1 = quantidade de aviões Boeing 717 a comprar;

x_2 = quantidade de aviões Boeing 737 a comprar;

x_3 = quantidade de aviões MD-11 a comprar.
```

Maximizar receita f = 330x1 + 300x2 + 420x3 s.a.

Custo total) $5x1 + 4x2 + 7x3 \le 220$ Pilotos total) $2x1 + 2x2 + 2x3 \le 60$ Pilotos 717) $2x1 + 2x3 \le 40$ Pilotos 737) $2x2 + 2x3 \le 30$ Pilotos MD11) $2x3 \le 10$

Mão de obra) $x1 + 0.5x2 + 2x3 \le 40$

6 pts.