CSCI/MATH 2113 Discrete Structures

6.1 Language: The Set Theory of Strings

Alyssa Motas

March 2, 2021

Contents

1	Definition of an alphabet	3
2	Powers of an alphabet 2.1 Example	3
3	Empty string	3
4	Union of alphabets 4.1 Example	3
5	Equality of sets	4
6	Length	4
7	Concatenation	4
8	Powers of a string	5
9	Proper prefix and suffix	5
10	Substring	5
	Language 11.1 Eyemple	5

1 Definition of an alphabet

An alphabet is a finite nonempty set. We write Σ for an alphabet and we sometimes call the elements of Σ letters. For example, we may have $\Sigma = \{0, 1\}$ or $\Sigma = \{a, b, c, d, e\}$.

2 Powers of an alphabet

If Σ is an alphabet and $n \in \mathbb{Z}^+$, we define the *powers* of Σ recursively as follows:

- 1. $\Sigma^1 = \Sigma$; and
- 2. $\Sigma^{n+1} = \{xy \mid x \in \Sigma, y \in \Sigma^n\}$, where xy denotes the juxtaposition of x and y.

2.1 Example

Let Σ be an alphabet. With $\Sigma = \{0,1\}$, we find that

$$\Sigma^2 = \{00, 01, 10, 11\}$$
 and $|\Sigma^2| = |\Sigma|^2 = 2^2$ two-symbol strings.

In general, we have $|\Sigma^n| = |\Sigma|^n$.

3 Empty string

For an alphabet Σ , we define $\Sigma^0 = \{\lambda\}$, where λ denotes the *empty string*. That is, the string consisting of *no* symbols taken from Σ . Note that even though $\lambda \notin \Sigma$, we do have $\varnothing \subseteq \Sigma$. Also, $\{\lambda\} \neq \varnothing$ because $|\{\lambda\}| = 1 \neq 0 = |\varnothing|$.

4 Union of alphabets

If Σ is an alphabet, then

(a)
$$\Sigma^+ = \bigcup_{n=1}^{\infty} \Sigma^n = \bigcup_{n \in \mathbb{Z}^+} \Sigma^n;$$

(b)
$$\Sigma^* = \bigcup_{n=0}^{\infty} \Sigma^n$$
.

The difference between (a) and (b) is that $\lambda \in \Sigma^n$ only when n = 0. Also, $\Sigma^* = \Sigma^+ \cup \Sigma^0$.

We shall also refer to the elements of Σ^+ or Σ^* as words and sometimes as sentences. Finally, we note that even though the sets Σ^+ and Σ^* are infinite, the elements of these sets are finite strings of symbols.

4.1 Example

- For Σ = {0,1} the set Σ* consists of all finite strings (binary words) of 0's and 1's together with the empty string.
- If $\Sigma = \{+, \times, 0, 1, \dots, 9, (,), \}$ we have $((14+12) \times 3) \times 1009 \in \Sigma^* \text{ or }) + (x)1 + (\times 3) \in \Sigma^*.$

5 Equality of sets

If $w_1, w_2 \in \Sigma^+$, then we may write

$$w_1 = x_1 x_2 \dots x_m$$
 and $w_2 = y_1 y_2 \dots y_n$

for $m, n \in \mathbb{Z}^+$ and $x_1, x_2, \ldots, x_m, y_1, y_2, \ldots, y_n \in \Sigma$. We say that the strings w_1 and w_2 are *equal*, and we write $w_1 = w_2$, if m = n, and $x_i = y_i$ for all 1 < i < m.

6 Length

Let $w = x_1 x_2 \dots x_n \in \Sigma^+$, where $x_i \in \Sigma$ for each $1 \le i \le n$. We define the *length* of w, which is denoted by ||w||, as the value n. For the case of λ , we have $||\lambda|| = 0$.

7 Concatenation

Let $x, y \in \Sigma^+$ with $x = x_1 x_2 \dots x_m$ and $y = y_1 y_2 \dots y_n$, so that each x_i , for $1 \le i \le m$, and each y_j , for $1 \le j \le n$, is in Σ . The *concatenation* of x and y, which we write as xy, is the string

$$x_1x_2\ldots x_my_1y_2\ldots y_n$$
.

The concatenation of x and λ is $x\lambda = x_1x_2...x_m\lambda = x_1x_2...x_m = x$, and the concatenation of λ and x is $\lambda x = \lambda x_1x_2...x_m = x_1x_2...x_m = x$. Finally, the concatenation of λ and λ is $\lambda \lambda = \lambda$.

Here, we have defined a closed binary operation on Σ^* (and Σ^+). This operation is associative but not commutative unless $|\Sigma| = 1$. The λ is also the identity for the operation of concatenation. We also have

$$||xy|| = ||x|| + ||y||,$$
 for all $x, y \in \Sigma^*$.

8 Powers of a string

For each $x \in \Sigma^*$, we define the *powers* of x by $x^0 = \lambda, x^1 = x, x^2 = xx, x^3 = xx^2, \dots, x^{n+1} = xx^n, \dots$, where $n \in \mathbb{N}$.

9 Proper prefix and suffix

If $x, y \in \Sigma^*$ and w = xy, then the string x is called a *prefix* of w, and if $y \neq \lambda$, then x is said to be a *proper prefix*. Similarly, the string y is called a *suffix* of w; it is a *proper suffix* when $x \neq \lambda$.

In general, for an alphabet Σ , if $n \in \mathbb{Z}^+$ and $x_i \in \Sigma$, for all $1 \leq i \leq n$, then each of $\lambda, x_1, x_1x_2, x_1x_2x_3, \ldots$, and $x_1x_2x_3 \ldots x_n$ is a prefix of the string $x = x_1x_2x_3 \ldots x_n$. And $\lambda, x_n, x_{n-1}x_n, x_{n-2}x_{n-1}x_n, \ldots$, and $x_1x_2x_3 \ldots x_n$ are all suffixes of x. So, x has n+1 prefixes, n of which are proper, and the situation is the same for suffixes.

10 Substring

If $x, y, z \in \Sigma^*$ and w = xyz, then y is called a *substring* of w. When at least one of x and z is different from λ (so that y is different from w), we call y a proper substring or subword.

11 Language

For a given alphabet Σ , any subset of Σ^* is called a *language* over Σ . This includes the subset \emptyset , which we call the *empty language*.

11.1 Example

With $\Sigma = \{0, 1\}$, the sets

$$A = \{0, 01, 001\}$$

and

$$B = \{0, 01, 001, 0001, \dots\}$$

are examples of languages over Σ .