

Examen

28 de Noviembre de 2016 Profesores: Gabriel Diéguez - Fernando Suárez

Instrucciones

- En cada parte del examen debe contestar al menos dos preguntas. Si contesta las tres, se considerarán las dos mejores en el cálculo de su nota.
- Use lápiz pasta. Por el uso de lápiz mina usted pierde el derecho a recorreción.
- Rellene sus datos en cada hoja de respuesta que utilice.
- Cada pregunta debe responderse en hojas separadas.
- Entregue al menos una hoja por pregunta.
 - Si entrega la pregunta **completamente en blanco**, tiene nota mínima 1.5 en vez de 1.0 en la pregunta entregada.

Parte A (50%)

1. a) Sea $P = \{p, q, r, s\}$. Considere las siguientes fórmulas en L(P):

$$\varphi_1: (\neg p \land \neg q) \to r$$

$$\varphi_2 \colon \neg s \to \neg p$$

$$\varphi_3$$
: $s \vee \neg q$

$$\varphi_4: \neg s \to \neg r$$

$$\psi$$
: s

Demuestre que $\{\varphi_1, \varphi_2, \varphi_3, \varphi_4\} \vDash \psi$.

b) Demuestre que

$$\{\forall x \exists y R(x,y), \forall x \forall y (R(x,y) \to R(y,x)), \forall x \forall y \forall z (R(x,y) \land R(y,z)) \to R(x,z)\} \models \forall x R(x,x)$$

2. Sea G = (V, E) un grafo tal que el grado de cada vértice es mayor o igual a 2. Demuestre que G tiene al menos un ciclo.

3. a) Sea $\mathbb Z$ el conjunto de los números enteros. Definimos la relación $\sim \subseteq \mathbb Z \times \mathbb Z$:

$$n_1 \sim n_2 \Leftrightarrow 3 \mid (2n_1 + n_2)$$

Demuestre que \sim es de equivalencia y determine el índice 1 de la relación.

b) Resuelva la siguiente recurrencia y verifique su resultado utilizando el teorema maestro:

$$T(n) = \begin{cases} 1 & n = 1\\ 8T(\frac{n}{2}) + n^2 & n > 1 \end{cases}$$

Puede asumir que el largo del input esta en POTENCIA₂.

Parte B (50%)

- Demuestre que existe un número cuyos dígitos son sólo unos que es divisible por 2017.
 Hint: 2017 es primo.
- 2. Decimos que un árbol es ternario completo si todos sus nodos internos tienen exactamente tres hijos y todas sus hojas están a la misma profundidad.
 - a) Demuestre que un árbol ternario completo de altura h tiene exactamente 3^h hojas.
 - b) Demuestre que un árbol ternario completo de altura h tiene exactamente $\frac{3^{h+1}-1}{2}$ vértices.
- 3. Considere el siguiente problema:

SAT-3CNF=
$$\{\varphi \mid \varphi \in L(P) \text{ en 3-CNF satisfacible.}\}$$

En otras palabras, las instancias $I_{\rm SAT-3CNF}$ son todas las fórmulas de la lógica proposicional en 3-CNF y el lenguaje $L_{\rm SAT-3CNF}$ son todas las fórmulas que tienen por lo menos una valuación que las satisfacen. Demuestre que SAT-3CNF es NP-completo.

¹Cardinalidad del conjunto cuociente inducido por la relación.