Extra knot material from Will for the Alma paper

Alba Fernández-Martín, ¹ William J. Henney, ¹ M. Teresa García-Díaz, ² & S. Jane Arthur ¹ Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Apartado Postal 3-72, 58090 Morelia, Michoacán, México

² Instituto de Astronomía, Universidad Nacional Autónoma de México, Km 103 Carretera Tijuana-Ensenada, 22860 Ensenada, Baja California, México

Accepted XXX. Received YYY; in original form ZZZ

New material written by Will in 2016 December, describing methodology, results, and interpretation from new knot measurements and fitting.

Key words: knots – knots – and more knots!

Figure 1. Correlation between $[N II]-H\alpha$ velocity difference, ΔV , versus line ratio, $R_{[N_{II}]}$, for different datasets. The grayscale cloud shows the inner Huygens region of the nebula, obtained from $N \approx 2.5 \times 10^6$ pixels of integral field spectroscopy data from the VLT-MUSE instrument Weilbacher et al. (2015), where the orange dashed line indicates the trend, obtained by averaging the ΔV values within $R_{\mathrm{[N\,II]}}$ bins of width 0.01. Blue points show the results for the best-measured knots in the "fast" velocity class (restricted to [N II] line width $< 30 \,\mathrm{km \ s^{-1}}$, $N = 68 \,\mathrm{knots}$), while the blue line indicates the best-fit quadratic trend, with 95% confidence interval shown by the pale blue band. Green points show results for the (N = 351 positions)

KNOT CLASSIFICATION

2 KNOT ANALYSIS

REFERENCES

Weilbacher P. M., et al., 2015, A&A, 582, A114