```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import fetch california housing
dataset=fetch_california_housing()
dataset
 → {'data': array([[
                                                    8.3252
                                                                                                                                                                2.5555556.
                                                                                   41.
                                                                                                                      6.98412698, ...,
                                                        , -122.23
                                  37.88
                                                                                         ],
                                  8.3014
                                                                21.
                                                                                                    6.23813708, ...,
                                                                                                                                               2.10984183.
                                                                                         j,
                                  37.86
                                                          , -122.22
                                                               52.
                                  7.2574
                                                                                                    8.28813559, ...,
                                                                                                                                               2.80225989,
                                  37.85
                                                          , -122.24
                                                                                         ],
                                                                  17.
                                                                                                    5.20554273. ....
                                                                                                                                               2.3256351 .
                            Γ
                                                          , -121.22
                                                                                         j,
                                  39.43
                                                          , 18.
                                  1.8672
                                                                                                    5.32951289, ...,
                                                                                                                                               2.12320917,
                            Γ
                                                         , -121.32
                                  39.43
                                                                                          ],
                                                        , 16.
                            [
                                   2.3886
                                                                                                    5.25471698, ...,
                                                                                                                                               2.61698113.
                                                                                          ,
]]),
                                                           , -121.24
                                  39.37
             'target': array([4.526, 3.585, 3.521, ..., 0.923, 0.847, 0.894]),
             'frame': None,
'target_names': ['MedHouseVal'],
              'feature_names': ['MedInc',
               'HouseAge',
               'AveRooms'
                'AveBedrms'
               'Population'.
               'AveOccup'.
                'Latitude'
               'Longitude'],
              'DESCR': '.. _california_housing_dataset:\n\nCalifornia Housing dataset\n-----------\n\n**Data Set
          Characteristics: ** \\ \verb|n|n:Number of Instances: 20640 \\ \verb|n|n:Number of Attributes: 8 numeric, predictive attributes and the attributes and the attributes are attributed at the attributes and the attributes are attributed attributed at the attributed attributed
                                                                                                                                                                                                                                           median house age in block
           target\n\n:Attribute Information:\n - MedInc
                                                                                                                             median income in block group\n

    HouseAge

                                                                  average number of rooms per household\n - AveBedrms
                                                                                                                                                                                             average number of bedrooms per household\n
                                 - AveRooms
               Population block group population\n
                                                                                                       - AveOccup
                                                                                                                                          average number of household members\n
                                                                                                                                                                                                                               - Latitude
                                        - Longitude
                                                                          block group longitude\n\n:Missing Attribute Values: None\nThis dataset was obtained from the
          latitude\n
          StatLib repository.\nhttps://www.dcc.fc.up.pt/~ltorgo/Regression/cal_housing.html\n\nThe target variable is the median house value
          for California districts,\nexpressed in hundreds of thousands of dollars ($100,000).\n\nhis dataset was derived from the 1990 U.S.
          census, using one row per census\nblock group. A block group is the smallest geographical unit for which the U.S.\nCensus Bureau
          publishes sample data (a block group typically has a population\nof 600 to 3,000 people).\n\nA household is a group of people
          residing within a home. Since the average\nnumber of rooms and bedrooms in this dataset are provided per household, these\ncolumns
          be \ downloaded/loaded \ using \ the \ ``sklearn.datasets.fetch\_california\_housing` \ function. \\ \ `n\ `. \ topic:: \ References \ `n\ `n\ 'n' \ '. \ 'n' \ 'n' \ '. \ 'n' \ 'n' \ '. \ 'n' \ '. \ 'n' \ '. \ 'n' \ '. \ 'n' \ 'n' \ '. \ 'n' \ '. \ 'n' 
          R. Kelley and Ronald Barry, Sparse Spatial Autoregressions,\n
                                                                                                                                                         Statistics and Probability Letters, 33 (1997) 291-297\n'}
##make the dataframe of the data
df=pd.DataFrame(dataset.data)
df
 \overline{\Rightarrow}
                                                                     2
                                                                                                                                                            7
                                     0
                                                1
                                                                                         3
                                                                                                                             5
                                                                                                                                           6
                           8.3252 41.0 6.984127 1.023810
                                                                                                 322.0 2.555556 37.88 -122.23
                 0
                 1
                           8.3014 21.0 6.238137 0.971880 2401.0 2.109842 37.86 -122.22
                 2
                           7.2574 52.0 8.288136 1.073446
                                                                                                 496.0 2.802260 37.85 -122.24
                 3
                           5.6431 52.0 5.817352 1.073059
                                                                                                 558.0 2.547945 37.85 -122.25
                 4
                           3 8462 52 0 6 281853 1 081081
                                                                                                 565 0 2 181467 37 85 -122 25
                ...
             20635 1.5603 25.0 5.045455 1.133333
                                                                                                 845.0 2.560606 39.48 -121.09
             20636 2.5568
                                         18.0 6.114035 1.315789
                                                                                                 356.0 3.122807 39.49 -121.21
            20637 1.7000
                                         17.0
                                                    5.205543 1.120092
                                                                                              1007.0 2.325635 39.43 -121.22
            20638 1.8672 18.0 5.329513 1.171920
                                                                                                741.0 2.123209 39.43 -121.32
             20639 2.3886 16.0 5.254717 1.162264 1387.0 2.616981 39.37 -121.24
          20640 rows × 8 columns
##set column name
df.columns=dataset.feature_names
df.head(4)
```



 $\label{eq:continuous} \mbox{\tt ## dependent and independent features} \\ \mbox{\tt X=df}$ 

y=dataset.target

X <del>∑</del>\*

| _     |                 |          |          |           |            |          |          |           |
|-------|-----------------|----------|----------|-----------|------------|----------|----------|-----------|
| 7     | MedInc          | HouseAge | AveRooms | AveBedrms | Population | Ave0ccup | Latitude | Longitude |
| 0     | 8.3252          | 41.0     | 6.984127 | 1.023810  | 322.0      | 2.555556 | 37.88    | -122.23   |
| 1     | 8.3014          | 21.0     | 6.238137 | 0.971880  | 2401.0     | 2.109842 | 37.86    | -122.22   |
| 2     | 7.2574          | 52.0     | 8.288136 | 1.073446  | 496.0      | 2.802260 | 37.85    | -122.24   |
| 3     | 5.6431          | 52.0     | 5.817352 | 1.073059  | 558.0      | 2.547945 | 37.85    | -122.25   |
| 4     | 3.8462          | 52.0     | 6.281853 | 1.081081  | 565.0      | 2.181467 | 37.85    | -122.25   |
|       |                 |          |          |           |            |          |          |           |
| 2063  | 1.5603          | 25.0     | 5.045455 | 1.133333  | 845.0      | 2.560606 | 39.48    | -121.09   |
| 20636 | 2.5568          | 18.0     | 6.114035 | 1.315789  | 356.0      | 3.122807 | 39.49    | -121.21   |
| 20637 | 7 1.7000        | 17.0     | 5.205543 | 1.120092  | 1007.0     | 2.325635 | 39.43    | -121.22   |
| 20638 | <b>3</b> 1.8672 | 18.0     | 5.329513 | 1.171920  | 741.0      | 2.123209 | 39.43    | -121.32   |
| 20639 | 2.3886          | 16.0     | 5.254717 | 1.162264  | 1387.0     | 2.616981 | 39.37    | -121.24   |
| 20640 | rows × 8 co     | olumns   |          |           |            |          |          |           |

→ array([4.526, 3.585, 3.521, ..., 0.923, 0.847, 0.894])

## train\_test\_split

from sklearn.model\_selection import train\_test\_split

 $\label{lem:control_control_control} \textbf{X\_train, X\_test,y\_train,y\_test=train\_test\_split(X,y,test\_size=0.30,random\_state=42)}$ 

X\_train



|                        |       | MedInc | HouseAge | AveRooms | AveBedrms | Population | AveOccup | Latitude | Longitude |
|------------------------|-------|--------|----------|----------|-----------|------------|----------|----------|-----------|
|                        | 7061  | 4.1312 | 35.0     | 5.882353 | 0.975490  | 1218.0     | 2.985294 | 33.93    | -118.02   |
|                        | 14689 | 2.8631 | 20.0     | 4.401210 | 1.076613  | 999.0      | 2.014113 | 32.79    | -117.09   |
|                        | 17323 | 4.2026 | 24.0     | 5.617544 | 0.989474  | 731.0      | 2.564912 | 34.59    | -120.14   |
|                        | 10056 | 3.1094 | 14.0     | 5.869565 | 1.094203  | 302.0      | 2.188406 | 39.26    | -121.00   |
|                        | 15750 | 3.3068 | 52.0     | 4.801205 | 1.066265  | 1526.0     | 2.298193 | 37.77    | -122.45   |
|                        |       |        |          |          |           |            |          |          |           |
|                        | 11284 | 6.3700 | 35.0     | 6.129032 | 0.926267  | 658.0      | 3.032258 | 33.78    | -117.96   |
|                        | 11964 | 3.0500 | 33.0     | 6.868597 | 1.269488  | 1753.0     | 3.904232 | 34.02    | -117.43   |
|                        | 5390  | 2.9344 | 36.0     | 3.986717 | 1.079696  | 1756.0     | 3.332068 | 34.03    | -118.38   |
|                        | 860   | 5.7192 | 15.0     | 6.395349 | 1.067979  | 1777.0     | 3.178891 | 37.58    | -121.96   |
|                        | 15795 | 2.5755 | 52.0     | 3.402576 | 1.058776  | 2619.0     | 2.108696 | 37.77    | -122.42   |
| 14448 rows × 8 columns |       |        |          |          |           |            |          |          |           |

14448 rows × 8 columns

##standardisation

from sklearn.preprocessing import StandardScaler
scaler=StandardScaler()

X\_train=scaler.fit\_transform(X\_train)

```
X_train
```

```
[-0.53221805, -0.67987313, -0.42262953, ..., -0.08931585,
             -1.33947268, 1.24526986],
            [ 0.1709897 , -0.36274497, 0.07312833, ..., -0.04480037,
             -0.49664515, -0.27755183],
            [-0.49478713, 0.58863952, -0.59156984, ..., 0.01720102,
             -0.75885816, 0.60119118],
            [ 0.96717102, -1.07628333, 0.39014889, ..., 0.00482125,
            0.90338501, -1.18625198],
[-0.68320166, 1.85715216, -0.82965604, ..., -0.0816717,
0.99235014, -1.41592345]])
X_test=scaler.transform(X_test)
## apply linesr regression algo
from sklearn.linear_model import LinearRegression
## cross validation
from sklearn.model_selection import cross_val_score
##regression object
regression=LinearRegression()
regression.fit(X\_train,y\_train)
      ▼ LinearRegression ① ?
     LinearRegression()
{\tt mse=cross\_val\_score(regression, X\_train, y\_train, scoring='neg\_mean\_squared\_error', cv=10)}
mse
→ array([-0.56799593, -0.52918854, -0.48456478, -0.51627013, -0.54833859,
            -0.47884524, -0.47828648, -0.55465187, -0.55647389, -0.54248888])
np.mean(mse)
-0.5257104326776999
##prediction of the test data
{\tt reg\_pred=regression.predict(X\_test)}
reg_pred
⇒ array([0.72604907, 1.76743383, 2.71092161, ..., 2.07465531, 1.57371395,
           1.82744133])
import seaborn as sns
sns.displot(reg_pred-y_test,kind='kde')
<seaborn.axisgrid.FacetGrid at 0x19a1f1b3680>
        0.7
        0.6
         0.5
        0.4
        0.3
        0.2
         0.1
         0.0
                -4
                       -2
                              0
                                                               10
```

from sklearn.metrics import r2\_score

score=r2\_score(reg\_pred,y\_test)

score

0.3451339380943963

Start coding or generate with AI.