30

CLAIMS

- 1. A conjugate for transferring a nucleic acid molecule into a cell, characterized in that it comprises a nucleic acid molecule, a translocation domain and an antibody specific for a surface antigen of said cell, such that said nucleic acid molecule, said translocation domain and said antibody are conjugated by means of at least one bridging agent and such that said conjugate is transfected effectively into said cell.
- 2. The conjugate as claimed in claim 1, characterized in that it also comprises a peptide which can be cleaved with at least one glycolytic and/or proteolytic enzyme, said antibody being attached to said translocation domain via said cleavable peptide.
- 20 3. The conjugate as claimed in claim 2, characterized in that said antibody and said cleavable peptide are attached covalently via a bridging agent preferably selected from the group composed of benzoquinone, EDC and APDA.
 - 4. The conjugate as claimed in claim 2, characterized in that said antibody and said cleavable peptide are attached to a molecule of the avidin type by means of a bridging agent, which may be identical or different, and which is preferably selected from the group composed of biotin, benzoquinone, EDC and APDP.
- 5. The conjugate as claimed in claim 3 or 4, characterized in that said translocation domain is attached to said cleavable peptide via a covalent chemical bond.

- 6. The conjugate as claimed in claim 5, characterized in that said translocation domain is attached to a nucleic acid molecule by means of a bridging agent.
- 7. The conjugate as claimed in claim 6, characterized in that said bridging agent is APDP.

- 8. The conjugate as claimed in either of claims 6 and 7, characterized in that said antibody is attached to said cleavable peptide via a covalent bond by means of said bridging agent EDC, said cleavable peptide being attached to said translocation domain via a covalent bond by means of chemical attachment, said translocation domain being attached to said nucleic acid via a covalent bond by means of said bridging agent APDP.
- 9. The conjugate as claimed in claim 5, characterized in that the attachment between said translocation domain and said nucleic acid molecule is produced by means of a nucleic acid-binding molecule, said nucleic acid-binding molecule being attached to said translocation domain via a covalent bond by means of a bridging agent.
 - 10. The conjugate as claimed in claim 9, characterized in that said bridging agent is APDP.
- The conjugate as claimed in either of claims 9 and 11. 30 that said antibody is characterized in attached to said cleavable deptide via a covalent bond by means of said bridging agent EDC, attached to said being cleavable peptide translocation domain via a covalent bond by means 35 of chemical attachment, said {ranslocation domain said nucleic acid-binding attached to molecule via a covalent bond by means of said

bridging agent APDP, said nucleic acid-binding molecule binding said nucleic acid via noncovalent attachment.

- 5 12. The conjugate as claimed in claim 1, characterized in that it also comprises a nucleic acid-binding molecule, such that said translocation domain, said antibody and said nucleic acid-binding molecule are attached to a molecule of the avidin type by means of a bridging agent, which may be identical or different, said nucleic acid-binding molecule binding said nucleic acid molecule.
- 13. The conjugate as claimed in claim 1, characterized 15 in that it also comprises a nucleic acid-binding molecule and a peptide which can be cleaved with at least one glycolytic and/or proteolytic enzyme, such that said translocation domain, said antibody and said cleavable peptide are attached to a molecule of the avidin type by means of a bridging 20 agent, which may be identidal or different, said nucleic acid-binding molecule being bound to said nucleic acid molecule, said nucleic acid-binding molecule being attached to said cleavable peptide and bound to said nucleic acid molecule. 25
- 14. A conjugate for transferring a nucleic acid molecule into a cell, characterized in that it comprises a nucleic acid molecule, an antibody specific for a cell surface antigen and a nucleic acid-binding molecule, such that said conjugate is transfected effectively into said cell.
- 15. The conjugate as claimed in claim 14, characterized in that it also comprises a peptide which can be cleaved with at least one glycolytic and/or proteolytic enzyme, said antibody being

attached to said nucleic acid-binding molecule via said cleavable peptide.

- 16. The conjugate as claimed in claim 15, characterized in that said antibody and said cleavable peptide are attached covalently via a bridging agent preferably selected from the group composed of benzoquinone, EDC and APDP.
- The conjugate claimed in claim 15, 10 17. as that said antibody and characterized in said cleavable peptide are attached to a molecule of the avidin type by \ means of a bridging agent, which may be identidal or different, preferably group 15 selected from the composed of biotin, benzoquinone, EDC and APDP.
- 18. The conjugate as claimed in claim 16 or 17, characterized in that said cleavable peptide is attached to said nucleic acid-binding molecule by means of a bridging agent, said nucleic acid-binding molecule binding said nucleic acid via noncovalent attachment.
- 25 19. The conjugate as claimed in claim 18, characterized in that said bridging agent is APDP.
- 20. A conjugate for transferring a nucleic acid molecule into a cell, characterized in that it comprises a nucleic acid molecule, an antibody specific for a cell surface antigen and a peptide which can be cleaved with at least one glycolytic and/or proteolytic enzyme, such that said conjugate is transfected effectively into said cell.
 - 21. The conjugate as claimed in claim 20, characterized in that said antibody and said

. . . .

25

cleavable peptide are attached covalently via a bridging agent preferably selected from the group composed of benzoquinone, EDC and APDP.

- as claimed in claim 20, 5 22. The conjugate characterized in that said antibody and cleavable peptide are attached to a molecule of the avidin type by means of a bridging agent, which may be identical or different, preferably from the 10 selected group composed of biotin, benzoguinone, EDC and APDP.
- 23. The conjugate as claimed in claim 21 or 22, characterized in that said cleavable peptide is attached to said nucleic acid via a covalent bond by means of a bridging agent.
- 24. The conjugate as claimed in claim 21 or 22, characterized in that the attachment between said cleavable peptide and said nucleic acid molecule is produced by means of a nucleic acid-binding molecule, said nucleic acid-binding molecule being attached to said cleavable peptide via a covalent bond by means of a bridging agent.
 - 25. The conjugate as claimed in claims 23 and 24, characterized in that said pridging agent is APDP.
- 26. The conjugate as claimed in any one of claims 20 to 25, characterized in that said conjugate also comprises a translocation domain.
- 27. The conjugate as claimed in claim 26, characterized in that said translocation domain is attached covalently, by means of a bridging agent, to said nucleic acid molecule and/or to said nucleic acid-binding molecule.

28. The conjugate as claimed in any one of claims 1, 6, 8, 13, 14, 17 and 22, characterized in that said bridging agent is selected from the group composed of benzoquinone, biotin, carbodismides and bridging agents having at least one phenylazide group which reacts to ultraviolet (UV) radiation.

- 29. The conjugate as claimed in claim 1, characterized in that said bridging agent is selected from the group composed of benzoquinone, biotin, EDC and APDP.
- 30. conjugate ****as claimed in claim 12. The characterized in t hat the bridging agent which 15 said translocation domain and attaches antibody to the molecule of the avidin type is biotin and the bridging agent which attaches said nucleic acid-binding \ molecule to the molecule of 20 the avidin type is benzoquinone.
- alaimed 31. conjugate as in claim 13. the bridging agent which characterized in that translocation domain said and said attaches antibody to the molecule of the avidin type is 25 biotin and the bridging agent which attaches said cleavable peptide to the molecule of the avidin type is benzoquinone.
- 30 32. The conjugate as claimed in claim 12, characterized in that the bridging agent which attaches said translocation domain, said antibody and said nucleic acid-binding molecule is biotin.
- 35 33. The conjugate as claimed in claim 13, characterized in that the bridging agent which attaches said translocation domain, said antibody and said cleavable peptide is biotin.

34. The conjugate as claimed in claim 17, characterized in that the bridging agent which attaches said antibody to the molecule of the avidin type is biotin and the bridging agent which attaches said nucleic acid-binding molecule to the molecule of the avidin type is benzoquinone.

5

- 35. The conjugate as claimed in claim 17, characterized in that said bridging agent is biotin.
 - 36. The conjugate as claimed in any one of claims 1 to 35, characterized in that said nucleic acid molecule is chosen from single-stranded DNA, double-stranded DNA, single-stranded RNA, double-stranded RNA and an RNA/DNA hybrid.
- 37. The conjugate as claimed in claim 36, characterized in that said nucleic acid molecule is double-stranded DNA which encodes a protein product of interest which is expressed effectively in said cell.
- 25 claimed in 38. The conjugate as claim 35, characterized in that said protein product of interest is chosen from group composed of chemokines, cytokines, lymphokines, killer gehes which factors, genes, make 30 possible to lift chemoresistance and restriction enzymes.
- 39. The conjugate as claimed in claim 38, characterized in that the protein product of interest is the Bax protein.

- 40. The conjugate as claimed in claim 36, characterized in that said nucleic acid molecule is an antisense RNA.
- 5 41. The conjugate as claimed in any one of claims 8 to 10, 12 to 19, 24, 30, 32 and 34, characterized in that the nucleic acid binding molecule binds said nucleic acid molecule via noncovalent attachment.
- 10 42. The conjugate as claimed in any one of claims 8 to 10, 12 to 19, 24, 30, 32, 34 and 41, characterized in that the nucleic acid-binding molecule is a polycationic polymer or a nucleic acid-binding protein.

25

- 43. The claimed conjugate as in claim 42. characterized in that said polycationic polymer is from poly-1-lysine, poly-D-lysine, polyethylenimine, polyamine, polyamine and 20 free polycations.
 - 44. The conjugate as claimed in claim 43, characterized in that said polycationic polymer is poly-L-lysine.
- 45. claimed The conjugate as in claim 42, characterized in that said nucleic acid-binding chosen from protein is histones, protamine. ornithine, putrescine. sbermidine, spermine. 30 transcription factors and homeobox proteins.
 - 46. The conjugate as claimed in claim 45, characterized in that said nucleic acid-binding protein is selected from the group composed of protamine and histones.
 - 47. The conjugate as claimed in any one of claims 1 to 13, 26, 27 and 30 to 33, characterized in that

said translodation domain derives from a viral toxin, but does not contain the part of the toxin which confers on it its toxic effect.

- 5 48. The conjugate as claimed in claim 47, characterized in that said translocation domain is a fragment of Haemophilus A hemagglutinin.
- 49. The conjugate as claimed in any one of claims 1 to
 10 48, characterized in that said antibody is a
 monoclonal antibody or a polyclonal antibody.
- 50. The conjugate as claimed in claim 49, characterized in that said antibody is specific for a membrane-bound surface antigen.
 - 51. The conjugate as claimed in claim 50, characterized in that said antigen is the G250 antigen.
- 52. The conjugate dlaimed in claim as 50, antibody is the characterized in that 5C5 monoclonal antibody btalined with 5C5 hybridoma deposited at the CNCM under the 25 I-2184.

- 53. The conjugate as claimed in any one of claims 1 to 52, as a medicinal product.
- 30 54. The conjugate as claimed in any one of claims 1 to 52, as a medicinal product for gene therapy.
- 55. The conjugate as claimed in claims 53 and 54, as a medicinal product for the treatment of acquired or constitutional genetic diseases.
 - 56. The conjugate as claimed in claim 55, as a medicinal product for the treatment of acquired

genetic diseases chosen from cancers and infectious diseases.

- 57. The conjugate as claimed in claim 56, as a medicinal product for the treatment of renal cell carcinoma (RCC).
- 58. The conjugate as claimed in any one of claims 1 to 52, as a medicinal product intended to transfer a nucleic acid molecule into a cell, characterized in that said cell is brought into contact with said conjugate so as to transfect said cell with said conjugate.
- 15 59. The conjugate as claimed in claim 58, characterized in that said nucleic acid molecule encodes a protein product of interest which is expressed effectively in said transfected cell.
- 20 60. The conjugate as claimed in claim 58, characterized in that said nucleic acid molecule is maintained in the form of an extrachromosomal replicon in said cell.
- 25 61. The conjugate as claimed in claim 58, characterized in that said nucleic acid molecule integrates into the genomic and/or mitochondrial DNA of said transfected cell.
- 30 62. The conjugate as claimed in claims 58 to 61, characterized in that said cell is a eukaryotic cell.
- 63. A pharmaceutical composition, in particular for the treatment of diseases by gene therapy, which comprises a therapeutically effective amount of a conjugate as claimed in any one of claims 1 to 52 and a pharmaceutically acceptable vehicle.

and A'