Data Warehousing

Lecture-2
Online Analytical Processing
(OLAP)

DWH & OLAP

Relationship between DWH & OLAP

Data Warehouse & OLAP go together.

Analysis supported by OLAP

Supporting the human thought process

THOUGHT PROCESS

An enterprise wide fall in profit

Profit down by a large percentage consistently during last quarter only. Rest is OK

What is special about last quarter ?

Products alone doing OK, but North region is most problematic.

OK. So the problem is the high cost of products purchased in north.

QUERY SEQUENCE

What was the quarterly sales during last year ??

What was the quarterly sales at regional level during last year ??

What was the quarterly sales at product level during last year?

What was the monthly sale for last quarter group by products

What was the monthly sale for last quarter group by region

What was the monthly sale of products in north at store level group by products purchased

How many such query sequences can be programmed in advance?

Analysis of last example

- Analysis is Ad-hoc
- Analysis is interactive (user driven)
- Analysis is iterative
 - Answer to one question leads to a dozen more
- Analysis is directional

Challenges...

- Not feasible to write predefined queries.
 - Fails to remain user_driven (becomes programmer driven).
 - Fails to remain ad_hoc and hence is not interactive.
- Enable ad-hoc query support
 - Business user can not build his/her own queries (does not know SQL, should not know it).
 - On the go SQL generation and execution too slow.

Challenges

Contradiction

 Want to compute answers in advance, but don't know the questions

Solution

- Compute answers to "all" possible "queries". But how?
- NOTE: Queries are multidimensional aggregates at some level

OLAP: Facts & Dimensions

- FACTS: Quantitative values (numbers) or "measures."
 - e.g., units sold, sales \$, Co, Kg etc.

- DIMENSIONS: Descriptive categories.
 - e.g., time, geography, product etc.
 - DIM often organized in hierarchies representing levels of detail in the data (e.g., week, month, quarter, year, decade etc.).

Where Does OLAP Fit In?

- It is a classification of applications, <u>NOT</u> a database design technique.
- Analytical processing uses <u>multi-level aggregates</u>, instead of <u>record level access</u>.

- Objective is to support very
 - I. fast
 - II. iterative and
 - III. ad-hoc decision-making.

Where does OLAP fit in?

OLTP vs. OLAP

Feature	OLTP	OLAP
Level of data	Detailed	Aggregated
Amount of data per transaction	Small	Large
Views	Pre-defined	User-defined
Typical write operation	Update, insert, delete	Bulk insert
"age" of data	Current (60-90 days)	Historical 5-10 years and also current
Number of users	High	Low-Med
Tables	Flat tables	Multi-Dimensional tables
Database size	Med (10 ⁹ B – 10 ¹² B)	High (10 ¹² B – 10 ¹⁵ B)
Query Optimizing	Requires experience	Already "optimized"
Data availability	High	Low-Med

OLAP FASMI Test

<u>Fast:</u> Delivers information to the user at a fairly constant rate. Most queries answered in under five seconds.

Analysis: Performs basic numerical and statistical analysis of the data, pre-defined by an application developer or defined ad-hocly by the user.

Shared: Implements the security requirements necessary for sharing potentially confidential data across a large user population.

Multi-dimensional: The essential characteristic of OLAP.

<u>Information:</u> Accesses all the data and information necessary and relevant for the application, wherever it may reside and not limited by volume.

...from the OLAP Report by Pendse and Creeth.

OLAP Implementations

- **1.MOLAP:** OLAP implemented with a multi-dimensional data structure.
- 2. ROLAP: OLAP implemented with a relational database.
- **3.HOLAP:** OLAP implemented as a hybrid of MOLAP and ROLAP.

4.<u>DOLAP:</u> OLAP implemented for desktop decision support environments.

Multidimensional OLAP (MOLAP)

MOLAP Implementations

OLAP has historically been implemented using a multi_dimensional data structure or "cube".

- Dimensions are key business factors for analysis:
 - Geographies (city, district, division, province,...)
 - Products (item, product category, product department,...)
 - Dates (day, week, month, quarter, year,...)
- Very high performance achieved by O(1) time lookup into "cube" data structure to retrieve pre_aggregated results.

MOLAP Implementations

- ② No standard query language for querying MOLAP
 - No SQL!
- Vendors provide proprietary languages allowing business users to create queries that involve pivots, drilling down, or rolling up.
 - E.g. MDX of Microsoft
 - Languages generally involve extensive visual (click and drag) support.
 - Application Programming Interface (API)'s also provided for probing the cubes.

Aggregations in MOLAP

- Sales volume as a function of (i) product, (ii) time, and (iii) geography
- A cube structure created to handle this.

Dimensions: Product, Geography, Time

Cube operations

- Drill down: get more details
 - e.g., given summarized sales as above, find breakup of sales by city within each region, or within Sindh
- Rollup: summarize data
 - e.g., given sales data, summarize sales for last year by product category and region
- Slice and dice: select and project
 - e.g.: Sales of soft-drinks in Karachi during last quarter
- Pivot: change the view of data

Querying the cube

Querying the cube: Pivoting

MOLAP evaluation

Advantages of MOLAP:

- Instant response (pre-calculated aggregates).
- Impossible to ask question without an answer.
- Value added functions (ranking, % change).

MOLAP evaluation

Drawbacks of MOLAP:

- •Long load time (pre-calculating the cube may take days!).
- Very sparse cube (wastage of space) for high cardinality (sometimes in small hundreds).

MOLAP Implementation issues

Maintenance issue: Every data item received must be aggregated into <u>every</u> cube (assuming "to-date" summaries are maintained). Lot of work.

Storage issue: As dimensions get less detailed (e.g., year vs. day) cubes get much smaller, but storage consequences for building hundreds of cubes can be significant. Lot of space.

Partitioned Cubes

- To overcome the space limitation of MOLAP, the cube is partitioned.
- The divide&conquer cube partitioning approach helps alleviate the scalability limitations of MOLAP implementation.
- One logical cube of data can be spread across multiple physical cubes on separate (or same) servers.
- Ideal cube partitioning is completely invisible to end users.
- Performance <u>degradation does occurs</u> in case of a join across partitioned cubes.

Partitioned Cubes: How it looks Like?

Sales data cube partitioned at a major cotton products sale outlet

Virtual Cubes

Used to query two dissimilar cubes by creating a third "virtual" cube by a join between two cubes.

- Logically similar to a relational view i.e. linking two (or more) cubes along common dimension(s).
- Biggest advantage is saving in space by eliminating storage of redundant information.

<u>Example:</u> Joining the store cube and the list price cube along the product dimension, to calculate the sale price without redundant storage of the sale price data.

Relational OLAP (ROLAP)

The necessary of ROLAP

Issue of scalability i.e. curse of dimensionality for MOLAP

- Deployment of significantly large dimension tables as compared to MOLAP using secondary storage.
- Aggregate awareness allows using pre-built summary tables by some front-end tools.
- Star schema designs usually used to facilitate ROLAP querying (in next lecture).

ROLAP as a "Cube"

- OLAP data is stored in a relational database (e.g. a star schema)
- The fact table is a way of visualizing as a "un-rolled" cube.
- 2 So where is the cube?
 - It's a matter of perception
 - ②Visualize the fact table as an elementary cube.

Fact Table

Month	Product	Zone	Sale K Rs.
M1	P1	Z1	250
M2	P2	Z1	500

How to create "Cube" in ROLAP

- Cube is a logical entity containing values of a certain fact at a certain aggregation level at an intersection of a combination of dimensions.
- The following table can be created using 3 queries

Month_ID

	SUM	M1	M2	M3	ALL
	(Sales_Amt)				
<u>ID</u>	P1				
Product_	P2				
rodi	P3				
Ь	Total				

How to create "Cube" in ROLAP using SQL

Por the table entries, without the totals

? For the row totals

```
SELECT S.Product_Id, SUM (Sales_Amt)
FROM Sales
GROUP BY S.Product Id;
```

? For the column totals

```
SELECT S.Month_Id, SUM (Sales)
FROM Sales
GROUP BY S.Month Id;
```

Problem With Simple Approach

- Number of required queries increases exponentially with the increase in number of dimensions.
 - Its wasteful to compute all queries.
 - In the example, the first query can do most of the work of the other two queries
 - If we could save that result and aggregate over Month_Id and Product Id, we could compute the other queries more efficiently

CUBE Clause

- The CUBE clause is part of SQL:1999
 - GROUP BY CUBE (v1, v2, ..., vn)
 - Equivalent to a collection of GROUP BYs, one for each of the subsets of v1, v2, ..., vn

ROLAP & Space Requirement

If one is not careful, with the increase in number of dimensions, the number of summary tables gets very large

Consider the example discussed earlier with the following two dimensions on the fact table...

Time: Day, Week, Month, Quarter, Year, All Days

Product: Item, Sub-Category, Category, All

Products

EXAMPLE: ROLAP & Space Requirement

A naïve implementation will require all combinations of summary tables at each and every aggregation level.

2	2001			2002				
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Orange juice	232	2,432	4,353	354	535	345	7,897	789
Rola-Kola	2,342	243	353	4,535	5,655	4,424	789	798
8-UP	2,424	3,131	1,313	5,675	567	5,675	789	9,797
Pola-Kola	242	3,112	567	646	567	567	789	798
Mango juice	2,342	243	243	4,564	564	1,232	242	4 553
Bubbly-UP	3,453	3,453	535	2,422	2,131	242	1,321	245
Apple juice	253	456	2,433	567	2,442	5,453	4,566	345

2001		2002						
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Soda Drinks	8,461	9,939	2,768	13,278	8,920	10,908	3,688	11,638
Juices	2,827	3,131	7,029	5,485	3,541	7,030	12,705	5,687

4	2001	2002
O rang e juice	7,371	9,566
Mango juice	7,392	6,591
Apple juice	3,709	12,806
Rola-Kola	7 473	11,666
8-UP	12,543	16,828
Bubbly-UP	9,863	3,939
Pola-Kola	4,567	2,721

	2001	2002	
Juices	18,472	28,963	
Soda Drinks	36,447	37,156	

24 summary tables, add in geography, results in 120 tables

ROLAP Issues

- Maintenance.
- Non standard hierarchy of dimensions.
- Non standard conventions.
- Explosion of storage space requirement.
- Aggregation pit-falls.

ROLAP Issue: Maintenance

Summary tables are mostly a maintenance issue (similar to MOLAP) than a storage issue.

- Notice that summary tables get much smaller as dimensions get less detailed (e.g., year vs. day).
- Should plan for twice the size of the unsummarized data for ROLAP summaries in most environments.
- Assuming "to-date" summaries, every detail record that is received into warehouse must aggregate into EVERY summary table.

ROLAP Issue: Hierarchies

<u>Dimensions are NOT always simple hierarchies</u>

Dimensions can be more than simple hierarchies i.e.

item, subcategory, category, etc.

The product dimension might also branch off by trade style that cross simple hierarchy boundaries such as:

- Looking at sales of air conditioners that cross manufacturer boundaries, such as COY1, COY2, COY3 etc.
- Looking at sales of all "green colored" items that even cross product categories (washing machine, refrigerator, split-AC, etc.).
- Looking at a combination of both.

ROLAP Issue: Convention

Conventions are NOT absolute

Example: What is calendar year? What is a week?

• Calendar:

01 Jan. to 31 Dec or

01 Jul. to 30 Jun. or

01 Sep to 30 Aug.

Week:

Mon. to Sat. or Thu. to Wed.

ROLAP Issue: Storage space explosion

Summary tables required for non-standard grouping

Summary tables required along different definitions of year, week etc.

Brute force approach would quickly overwhelm the system storage capacity due to a combinatorial explosion.

ROLAP Issues: Aggregation pitfalls

- Coarser granularity correspondingly decreases potential cardinality.
- Aggregating whatever that can be aggregated.
- Throwing away the detail data after aggregation.

How to Reduce Summary tables?

Many ROLAP products have developed means to reduce the number of summary tables by:

- Building summaries on-the-fly as required by end-user applications.
- Enhancing performance on common queries at coarser granularities.
- Providing smart tools to assist DBAs in selecting the "best" aggregations to build i.e. trade-off between speed and space.

Performance vs. Space Trade-Off

- Maximum performance boost implies using lots of disk space for storing every pre-calculation.
- Minimum performance boost implies no disk space with zero pre-calculation.
- Using meta data to determine best level of preaggregation from which all other aggregates can be computed.

Performance vs. Space Trade-off using Wizard

Hybrid OLAP (HOLAP)

HOLAP

- Target is to get the best of both worlds.
- HOLAP is a combination of ROLAP and MOLAP
- HOLAP (Hybrid OLAP) allow co-existence of pre-built MOLAP cubes alongside relational OLAP or ROLAP structures.
- HOLAP servers allow for storing large data volumes of detailed data

Other Types of OLAP

- Web OLAP (WOLAP)
- Desktop OLAP (DOLAP)
- Mobile OLAP (MOLAP)
- Spatial OLAP (SOLAP)
- Real-time OLAP (ROLAP)
- Cloud OLAP (COLAP)
- Big Data OLAP (BOLAP)
- In-memory OLAP (IOLAP)