Teoria da Computação

Autômatos Finitos e Linguagens Regulares

Aula 02

Prof. Felipe A. Louza

Roteiro

- Autômatos Finitos
 - Autômato Finito Determinístico
 - Formalização de um AFD
 - Linguagens Regulares
- 2 Autômatos finitos não-determinísticos (AFNs)
 - Não-determinismo
 - Formalização de um AFN
 - Equivalência entre AFD e AFN
- 3 Referências

Roteiro

- Autômatos Finitos
 - Autômato Finito Determinístico
 - Formalização de um AFD
 - Linguagens Regulares
- Autômatos finitos não-determinísticos (AFNs)
 - Não-determinismo
 - Formalização de um AFN
 - Equivalência entre AFD e AFN
- Referências

Vamos descrever autômatos finitos (AF) como processadores de cadeias.

Figura: Diagrama de estados.

Componentes

Vamos representar um AF como um grafo direcionado (diagrama de estados).

_

Vamos descrever autômatos finitos (AF) como processadores de cadeias.

Figura: Diagrama de estados.

Componentes:

- Um estado q₀ é definido como inicial
- Para cada símbolo, definimos uma função de transição de saída para outros estados
- Um conjunto de estados são designados como de aceitação ou fina

.

Vamos representar um AF como um grafo direcionado (diagrama de estados).

Vamos descrever autômatos finitos (AF) como processadores de cadeias.

Figura: Diagrama de estados.

Componentes:

- Um estado q₀ é definido como inicial
- Para cada símbolo, definimos uma função de transição de saída para outros estados
- Um conjunto de estados são designados como de aceitação ou final

- 4

Vamos representar um AF como um grafo direcionado (diagrama de estados).

Vamos descrever autômatos finitos (AF) como processadores de cadeias.

Figura: Diagrama de estados.

Componentes:

- Um estado q₀ é definido como inicial
- Para cada símbolo, definimos uma função de transição de saída para outros estados
- Um conjunto de estados são designados como de aceitação ou final

Vamos representar um AF como um grafo direcionado (diagrama de estados).

- p e q são estados
- p estado atua
- a símbolo lido
- q estado novo
- Função de transição: $\delta(p,a)=c$

- p e q são estados
- p estado atual
- a símbolo lido
- q estado novo
- Função de transição: $\delta(p,a)=c$

- p e q são estados
- p estado atual
- a símbolo lido
- q estado novo
- Função de transição: $\delta(p, a) = q$

- p e q são estados
- p estado atual
- a símbolo lido
- q estado novo
- Função de transição: $\delta(p, a) = c$

- p e q são estados
- p estado atual
- a símbolo lido
- q estado novo
- Função de transição: $\delta(p, a) = q$

Figura: Diagrama de estados.

- A saída será aceita ou rejeita a cadeia w.
- O AF começa no estado inicial e $w = w_1 w_2 \dots w_n$ é lida da esquerda para a direita.
- Após ler cada símbolo, o AF move-se de um estado para outro de acordo com função de transição.
- Uma cadeia w é aceita se ao processarmos w₁w₂...w_n o AF chega em um estado de aceitação.

Figura: Diagrama de estados.

- A saída será aceita ou rejeita a cadeia w.
- O AF começa no estado inicial e $w = w_1 w_2 \dots w_n$ é lida da esquerda para a direita.
- Após ler cada símbolo, o AF move-se de um estado para outro de acordo com função de transição.
- Uma cadeia w é aceita se ao processarmos w₁w₂...w_n o AF chega em um estado de aceitação.

Figura: Diagrama de estados.

- A saída será aceita ou rejeita a cadeia w.
- O AF começa no estado inicial e $w = w_1 w_2 \dots w_n$ é lida da esquerda para a direita.
- Após ler cada símbolo, o AF move-se de um estado para outro de acordo com função de transição.
- Uma cadeia w é aceita se ao processarmos w₁w₂...w_n o AF chega em um estado de aceitação.

Figura: Diagrama de estados.

- A saída será aceita ou rejeita a cadeia w.
- O AF começa no estado inicial e $w = w_1 w_2 \dots w_n$ é lida da esquerda para a direita.
- Após ler cada símbolo, o AF move-se de um estado para outro de acordo com função de transição.
- Uma cadeia w é aceita se ao processarmos w₁ w₂ ... w_n o AF chega em um estado de aceitação.

Exemplo:

Figura: Diagrama de estados.

- As cadeias w = ab, aab, aaab, aaaab, b, . . . são aceitas.
- Em outras palavras, todas as cadeias $w = a^n b$, $n \ge 0$ são aceitas

Exemplo:

Figura: Diagrama de estados.

- As cadeias w = ab, aab, aaab, aaaab, b, ... são aceitas.
- Em outras palavras, todas as cadeias $w = a^n b$, $n \ge 0$ são aceitas.

Começaremos com o formalismo de um AF determinístico (AFD):

• O termo "determinístico" se refere ao fato de que, existe somente um estado $\delta(p,a)=q$ ao qual o autômato pode transitar ao ler $w_i=a$.

AF não-determinísticos serão vistos na Seção 1

Começaremos com o formalismo de um AF determinístico (AFD):

• O termo "determinístico" se refere ao fato de que, existe somente um estado $\delta(p,a)=q$ ao qual o autômato pode transitar ao ler $w_i=a$.

AF não-determinísticos serão vistos na Seção 1.

.

Roteiro

- Autômatos Finitos
 - Autômato Finito Determinístico
 - Formalização de um AFD
 - Linguagens Regulares
- Autômatos finitos não-determinísticos (AFNs)
 - Não-determinismo
 - Formalização de um AFN
 - Equivalência entre AFD e AFN
- 3 Referências

Definição

Um autômato finito determinístico (AFD) é uma 5-upla ($Q, \Sigma, \delta, q_0, F$), em que:

- Q é um conjunto finito de estados;
- $\mathbf{Q} \Sigma$ é o alfabeto da cadeia de entrada;
- $\delta: Q \times \Sigma \rightarrow Q$ é a função de transição; $-\delta(p,a)=q$
- $q_0 \in Q$ é o estado inicial; e
- **5** $F \subseteq Q$ é o conjunto de estados de aceitação.

Função transição

• $\delta(p, a) = q$ significa que **quando** o AF está no estado p e **lê** o símbolo 'a', o próximo estado será q.

Tabela: Transições

1

 $[\]delta$ pode não ser total: a função é indefinida (\perp) para alguns elementos de $Q \times \Sigma$

Condições de parada: após processar o último símbolo de $w_1 w_2 \dots w_n$.

- aceita a entrada: ✓
 - se o AF assume um estado de aceitação.
- rejeita a entrada: X
 - se o AF não assume um estado de aceitação.
 - **OU** função não está definida para alguma transição $\delta(q_i, w_j) = \bot$.

O AFD sempre para: (não há loop infinito)

Um novo símbolo é lido a cada aplicação da função de transição

Condições de parada: após processar o último símbolo de $w_1 w_2 \dots w_n$.

- aceita a entrada: ✓
 - se o AF assume um estado de aceitação.
- rejeita a entrada: X
 - se o AF não assume um estado de aceitação.
 - **OU** função não está definida para alguma transição $\delta(q_i, w_j) = \bot$.

O AFD sempre para: (não há loop infinito)

Um novo símbolo é lido a cada aplicação da função de transição.

Exemplo de um autômato finito M_1

Seja
$$M_1 = (Q, \Sigma, \delta, q_0, F)$$
 um AF:

- **1** $Q = \{q_0, q_1\};$
- **2** $\Sigma = \{0, 1\};$

- **5** $F = \{q_1\}.$

Exemplo de um autômato finito M_1

Características do diagrama de estado de M_1 :

- 2 estados, $q_0, q_1 \in Q$
- Estado inicial = q_0
- Estado de aceitação = q₁
- Transições, arcos (arestas direcionadas) de um estado para outro

Exemplo de um autômato finito M_1

Características do diagrama de estado de M_1 :

- 2 estados, $q_0, q_1 \in Q$
- Estado inicial = q_0
- Estado de aceitação = q_1
- Transições, arcos (arestas direcionadas) de um estado para outro

 M_1 aceita ou rejeita entrada?

- Inicia em q₀
- ullet Le 1, transição de $q_0
 ightarrow q_1$
- ullet Le 1, transição de $q_1
 ightarrow q$
- ullet Le 0, transição de $q_1
 ightarrow q_0$
- ullet Le 1, transição de $q_0
 ightarrow q_1$
- Aceita pois M_1 está no estado de aceitação $q_1 \in F$

 M_1 aceita ou rejeita entrada?

- Inicia em q₀
- ullet Le 1, transição de $q_0
 ightarrow q_1$
- ullet Le 1, transição de $q_1 o q$
- ullet Le 0, transição de $q_1
 ightarrow q_0$
- Le 1, transição de $q_0 o q_1$
- Aceita pois M_1 está no estado de aceitação $q_1 \in F$

 M_1 aceita ou rejeita entrada?

- Inicia em q_0
- ullet Le $oldsymbol{1}$, transição de $q_0
 ightarrow q_1$
- ullet Le 1, transição de $q_1
 ightarrow q_1$
- ullet Le 0, transição de $q_1
 ightarrow q_0$
- ullet Le 1, transição de $q_0
 ightarrow q_1$
- Aceita pois M_1 está no estado de aceitação $q_1 \in F$

 M_1 aceita ou rejeita entrada?

- Inicia em q₀
- ullet Le 1, transição de $q_0
 ightarrow q_1$
- ullet Le 1, transição de $q_1
 ightarrow q_1$
- ullet Le 0, transição de $q_1
 ightarrow q_0$
- ullet Le 1, transição de $q_0
 ightarrow q_1$
- Aceita pois M_1 está no estado de aceitação $q_1 \in F$

 M_1 aceita ou rejeita entrada?

- Inicia em q₀
- Le 1, transição de $q_0 o q_1$
- ullet Le 1, transição de $q_1
 ightarrow q_1$
- ullet Le 0, transição de $q_1
 ightarrow q_0$
- ullet Le 1, transição de $q_0
 ightarrow q_1$
- Aceita pois M_1 está no estado de aceitação $q_1 \in F$

 M_1 aceita ou rejeita entrada?

- Inicia em q₀
- ullet Le 1, transição de $q_0
 ightarrow q_1$
- Le 1, transição de $q_1 o q_1$
- ullet Le 0, transição de $q_1
 ightarrow q_0$
- Le 1, transição de $q_0 o q_1$
- Aceita pois M_1 está no estado de aceitação $q_1 \in F$

Autômato finito e linguagens

Linguagem *aceita* por M_1 :

- Cadeias como: 01, 1, 0101, 11, 111, 1111, 1001, 100001111, 10000010101
- Qualquer cadeia $w \in \{0,1\}^+$ que termine com 1.

Rejeita: 0, 10, 111110...

Pergunta: Podemos descrever uma linguagem aceita por M_1 ?

Autômato finito e linguagens

Linguagem *aceita* por M_1 :

- Cadeias como: 01, 1, 0101, 11, 111, 1111, 1001, 100001111, 10000010101
- Qualquer cadeia $w \in \{0,1\}^+$ que termine com 1.

Rejeita: 0, 10, 111110 . . .

Pergunta: Podemos descrever uma linguagem aceita por M_1 ?

Linguagem *aceita* por M_1 :

- Cadeias como:
 01, 1, 0101, 11, 111, 1111, 1001, 100001111, 10000010101
- Qualquer cadeia $w \in \{0,1\}^+$ que termine com 1.

Rejeita: 0, 10, 111110 . . .

Pergunta: Podemos descrever uma linguagem aceita por M_1 ?

Linguagem *aceita* por M_1 :

- Cadeias como:
 01, 1, 0101, 11, 111, 1111, 1001, 100001111, 10000010101
- Qualquer cadeia $w \in \{0,1\}^+$ que termine com 1.

Rejeita: 0, 10, 111110...

Pergunta: Podemos descrever uma linguagem aceita por M_1 ?

Linguagem *aceita* por M_1 :

- Cadeias como:
 01, 1, 0101, 11, 111, 1111, 1001, 100001111, 10000010101
- Qualquer cadeia $w \in \{0,1\}^+$ que termine com 1.

Rejeita: 0, 10, 111110 . . .

Pergunta: Podemos descrever uma linguagem aceita por M_1 ?

Definição

Seja A o conjunto de todas as cadeias (palavras) aceitas por M, dizemos que A é a linguagem aceita por M, e escrevemos

$$L(M) = A$$

Definição

Seja A o conjunto de todas as cadeias (palavras) aceitas por M, dizemos que A é a linguagem aceita por M, e escrevemos

$$L(M) = A$$

- Dizemos que M reconhece ou aceita uma linguagem A.
- A linguagem A é única

Definição

Seja A o conjunto de todas as cadeias (palavras) aceitas por M, dizemos que A é a linguagem aceita por M, e escrevemos

$$L(M) = A$$

- Dizemos que M reconhece ou aceita uma linguagem A.
- A linguagem A é única.

- Inclusive pode ser unicamente a linguagem vazia ∅.

Definição

Seja A o conjunto de todas as cadeias (palavras) aceitas por M, dizemos que A é a linguagem aceita por M, e escrevemos

$$L(M) = A$$

- Dizemos que M reconhece ou aceita uma linguagem A.
- A linguagem A é única.
 - Inclusive pode ser unicamente a linguagem vazia \varnothing .

Linguagem de M₁

$$\mathit{L}(\mathit{M}_1) = \{ w \mid w \text{ termina com } 1, e \Sigma = \{0, 1\} \}$$

podemos dizer que M_1 reconhece $L(M_1)$

Outros exemplos:

Linguagem *aceita* por M_2 :

$$L(M_2) = \{a^n b \mid n \ge 0 \in \Sigma = \{a, b\}\}$$

Outros exemplos:

Linguagem *aceita* por M_2 :

$$L(M_2) = \{a^n b \mid n \ge 0 \text{ e } \Sigma = \{a, b\}\}$$

Outros exemplos:

Linguagem *aceita* por M_3 :

 $L(M_3) = \{ w \mid w \text{ contém um número qualquer de 0s}$ pelo menos um 1 e pelo menos um 0 $\}$

Outros exemplos:

Linguagem *aceita* por M_3 :

```
L(M_3) = \{ w \mid w \text{ contém um número qualquer de 0s,} 

pelo menos um 1 e

pelo menos um 0\}
```

Outros exemplos:

Linguagem *aceita* por M_4 :

$$L(M_4) = \emptyset$$
, ou seja, a linguagem vazia

Outros exemplos:

Linguagem *aceita* por M_4 :

$$L(M_4) = \emptyset$$
, ou seja, a linguagem vazia.

Outros exemplos:

Linguagem *aceita* por M_5 :

$$L(M_5) = \Sigma^*$$

Outros exemplos:

Linguagem *aceita* por M_5 :

$$L(M_5) = \Sigma^*$$

Para descrever formalmente o comportamento de um AF, vamos estender a função de transição $\delta(p,a)$

Definição

A função de transição estendida (ou programa) de M, denotada por

$$\delta^*: Q \times \Sigma^* \to Q$$

é a função $\delta: \mathbf{Q} \times \mathbf{\Sigma}$ estendida para palavras, definida como:

$$\delta^*(q, \mathcal{E}) = q$$

 $\delta^*(q, aw) = \delta^*(\delta(q, a), w)$

ou seja, δ^* é a sucessiva aplicação da função de transição para cada símbolo da palavra.

Para descrever formalmente o comportamento de um AF, vamos estender a função de transição $\delta(p,a)$

Definição

A função de transição estendida (ou programa) de M, denotada por

$$\delta^*: Q \times \Sigma^* \to Q$$

é a função δ : $Q \times \Sigma$ estendida para palavras, definida como:

$$\delta^*(q, \mathcal{E}) = q$$

 $\delta^*(q, aw) = \delta^*(\delta(q, a), w)$

ou seja, δ^* é a sucessiva aplicação da função de transição para cada símbolo da palavra.

Notação $\delta = \delta^*$

Para simplificar a notação, muitas vezes denotaremos ambas, a função δ e a função de transição estendida δ^* , com o mesmo símbolo δ .

$$\delta(q, w) = p$$
, quando $w \in \Sigma^*$, $\delta = \delta^*$

Definição

Uma cadeia w é aceita pelo AF $M = (Q, \Sigma, \delta, q_0, F)$ se

$$\delta^*(q_0, w) = p$$
, tal que $p \in F$

- ② $\delta(r_i, w_{i+1}) = r_{i+1}$, para i = 0, ..., n-1, e
- \bullet $r_n \in F$

Definição

Uma cadeia w é aceita pelo AF $M = (Q, \Sigma, \delta, q_0, F)$ se

$$\delta^*(q_0, w) = p$$
, tal que $p \in F$

- $0 r_0 = q_0,$
- $\delta(r_i, w_{i+1}) = r_{i+1}$, para i = 0, ..., n-1, e

Definição

Uma cadeia w é aceita pelo AF $M = (Q, \Sigma, \delta, q_0, F)$ se

$$\delta^*(q_0, w) = p$$
, tal que $p \in F$

- **1** $r_0 = q_0$,
- ② $\delta(r_i, w_{i+1}) = r_{i+1}$, para i = 0, ..., n-1, e
- \circ $r_n \in F$

Definição

Uma cadeia w é aceita pelo AF $M = (Q, \Sigma, \delta, q_0, F)$ se

$$\delta^*(q_0, w) = p$$
, tal que $p \in F$

- **1** $r_0 = q_0$,
- ② $\delta(r_i, w_{i+1}) = r_{i+1}$, para i = 0, ..., n-1, e

Definição

Uma cadeia w é aceita pelo AF $M = (Q, \Sigma, \delta, q_0, F)$ se

$$\delta^*(q_0, w) = p$$
, tal que $p \in F$

- **1** $r_0 = q_0$,
- ② $\delta(r_i, w_{i+1}) = r_{i+1}$, para i = 0, ..., n-1, e
- \circ $r_n \in F$.

Explicando...

- A máquina começa no estado inicial
- A máquina avança para os próximos estados de acordo com a função de transição
- 3 A máquina aceita a entrada se termina num estado de aceitação

Aceitação

• Dizemos que *M* reconhece a linguagem *A* se

$$A = \{ w \mid M \text{ aceita } w \}$$

Explicando...

- A máquina começa no estado inicial
- A máquina avança para os próximos estados de acordo com a função de transição
- 3 A máquina aceita a entrada se termina num estado de aceitação

Aceitação:

Dizemos que M reconhece a linguagem A se

$$A = \{w \mid M \text{ aceita } w\}$$

Exemplo

Considere o AFD $M_6 = (\{q_0, q_1, q_2, q_f\}, \{a, b\}, \delta, q_0, \{q_f\}) \text{ com } \delta_1$:

$$\begin{array}{c|ccccc}
\delta & a & b \\
\hline
\rightarrow q_0 & q_1 & q_2 \\
q_1 & q_f & q_2 \\
q_2 & q_1 & q_f \\
\star q_f & q_f & q_f
\end{array}$$

Tabela: Função δ_1 (função programa) do AFD M_6 .

Calcule o resultado da computação da palavra w = abaa a partir de q_0 .

Aplicação da palavra w = abaa a partir de q_0 .

```
\delta^*(q_0, \text{ abaa}) = \\ \delta^*(\delta(q_0, a), \text{ baa}) = \\ \delta^*(q_1, \text{ baa}) = \\ \delta^*(\delta(q_1, b), \text{ aa}) = \\ \delta^*(q_2, \text{ aa}) = \\ \delta^*(\delta(q_2, a), \text{ a}) = \\ \delta^*(\delta(q_1, a), \mathcal{E}) = \\ \delta^*(\delta(q_1, a), \mathcal{E}) = \\ \delta^*(q_1, \mathcal{E}) = q_f  função estendida sobre abaa função estendida sobre baa função estendida sobre abaa função estendida sobre abaaa função
```

Aplicação da palavra w = abaa a partir de q_0 .

$$\delta^*(q_0, \operatorname{abaa}) = \\ \delta^*(\delta(q_0, a), \operatorname{baa}) = \\ \delta^*(q_1, \operatorname{baa}) = \\ \delta^*(\delta(q_1, b), \operatorname{aa}) = \\ \delta^*(q_2, \operatorname{aa}) = \\ \delta^*(\delta(q_2, a), \operatorname{a}) = \\ \delta^*(\delta(q_1, a)) = \\ \delta^*(\delta(q_1, a)) = \\ \delta^*(\delta(q_1, a), \mathcal{E}) = \\ \delta^*(\delta(q_1, a), \mathcal{E}) = \\ \delta^*(q_1, \mathcal{E}) = q_f$$
 função estendida sobre a
$$\delta^*(q_1, a) = \\ \delta^*(\delta(q_1, a), \mathcal{E}) = \\ \delta^*(q_1, a) \in \mathcal{E}$$
 função estendida sobre \mathcal{E}

Aplicação da palavra w = abaa a partir de q_0 .

$$\delta^*(q_0, \operatorname{abaa}) = \\ \delta^*(\delta(q_0, a), \operatorname{baa}) = \\ \delta^*(q_1, \operatorname{baa}) = \\ \delta^*(q_1, b), \operatorname{aa}) = \\ \delta^*(q_2, \operatorname{aa}) = \\ \delta^*(\delta(q_2, a), \operatorname{a}) = \\ \delta^*(\delta(q_1, a), \mathcal{E}) = \\ \delta^*(\delta(q_1, a), \mathcal{E}) = \\ \delta^*(q_1, \mathcal{E}) = q_f$$
 função estendida sobre abaa função estendida sobre baa função estendida sobre abaa função estendida

Aplicação da palavra w = abaa a partir de q_0 .

```
\delta^*(q_0, \operatorname{abaa}) = \delta^*(\delta(q_0, a), \operatorname{baa}) =  função estendida sobre abaa \delta^*(q_1, \operatorname{baa}) =  função estendida sobre baa função estendida sobre baa \delta^*(\delta(q_1, b), \operatorname{aa}) =  processa baa função estendida sobre a \delta^*(\delta(q_1, a), \mathcal{E}) =  processa a \delta^*(\delta(q_1, a), \mathcal{E}) =  processa a função estendida sobre a \delta^*(\delta(q_1, a), \mathcal{E}) =  processa a função estendida sobre \mathcal{E}
```

Aplicação da palavra w = abaa a partir de q_0 .

```
\delta^*(q_0, \text{ abaa}) = \\ \delta^*(\delta(q_0, a), \text{ baa}) = \\ \delta^*(q_1, \text{ baa}) = \\ \delta^*(\delta(q_1, b), \text{ aa}) = \\ \delta^*(q_2, \text{ aa}) = \\ \delta^*(q_1, a) = \\ \delta^*(q_1, a) = \\ \delta^*(q_1, a) = \\ \delta^*(q_1, a) \in \\ \delta^*
```

Aplicação da palavra w = abaa a partir de q_0 .

```
\delta^*(q_0, \text{ abaa}) = \\ \delta^*(\delta(q_0, a), \text{ baa}) = \\ \delta^*(q_1, \text{ baa}) = \\ \delta^*(\delta(q_1, b), \text{ aa}) = \\ \delta^*(q_2, \text{ aa}) = \\ \delta^*(\delta(q_2, a), \text{ a}) = \\ \delta^*(q_1, a) = \\ \delta^*(q_1, a) = \\ \delta^*(q_1, a), \mathcal{E}) = \\ \delta^*(q_1, a), \mathcal{E}) = \\ \delta^*(q_1, a) = \\ \delta^*(q_1, a), \mathcal{E}) = \\ \delta^*(q_1, a) = \\ \delta^*(q_1, a), \mathcal{E}) = \\ \delta^*(q_1, a), \mathcal{E} = \\ \delta^*(q_1, a), \mathcal{E}) = \\ \delta^*(q_1, a), \mathcal{E}
```

Aplicação da palavra w = abaa a partir de q_0 .

$$\delta^*(q_0, \text{abaa}) = \\ \delta^*(\delta(q_0, a), \text{baa}) = \\ \delta^*(q_1, \text{baa}) = \\ \delta^*(\delta(q_1, b), \text{aa}) = \\ \delta^*(q_2, \text{aa}) = \\ \delta^*(\delta(q_2, a), \text{a}) = \\ \delta^*(q_1, \text{a}) = \\ \delta^*(q_1, \text{a}) = \\ \delta^*(q_1, a), \mathcal{E}) = \\ \delta^*(q_1, \mathcal{E}) = q_1$$
 função estendida sobre abaa processa abaa função estendida sobre baa função estendida sobre abaa função estendida sobre baa função estendida sobre abaa função estendida sob

Aplicação da palavra w = abaa a partir de q_0 .

```
\delta^*(q_0, abaa) =
                            função estendida sobre abaa
\delta^*(\delta(q_0,a), baa) =
                                              processa abaa
\delta^*(q_1, baa) =
                             função estendida sobre baa
\delta^*(\delta(q_1,b),aa)=
                                                processa baa
\delta^*(q_2, aa) =
                               função estendida sobre aa
\delta^*(\delta(q_2,a),a) =
                                                 processa aa
\delta^*(q_1, a) =
                                função estendida sobre a
\delta^*(\delta(q_1,a),\mathcal{E}) =
                                                   processa a
```

Aplicação da palavra w = abaa a partir de q_0 .

```
\delta^*(q_0, \text{abaa}) =
                             função estendida sobre abaa
\delta^*(\delta(q_0,a), baa) =
                                                 processa abaa
\delta^*(q_1, baa) =
                               função estendida sobre baa
\delta^*(\delta(q_1,b),aa)=
                                                  processa baa
\delta^*(q_2, aa) =
                                função estendida sobre aa
\delta^*(\delta(q_2,a),a) =
                                                    processa aa
\delta^*(q_1, a) =
                                  função estendida sobre a
\delta^*(\delta(q_1,a),\mathcal{E}) =
                                                     processa a
\delta^*(q_f, \mathcal{E}) = q_f
                                 função estendida sobre \mathcal{E}
```

Função Programa

Atenção:

A função programa $\delta^*: Q \times \Sigma^* \to Q$ é uma função parcial que a partir do estado corrente e do símbolo lido, determina o novo estado do autômato (pode ser indefinida):

$$\delta(r_i, w_{i+1}) = \begin{cases} r_{i+1} \\ \bot \end{cases}$$
 (indefinido)

Ou seja, nem todas as possibilidades em $\delta^*: Q \times \Sigma^* \to Q$ são necessariamente definidas.

Uma função parcial $f \subseteq A \times B$, não força f mapear todos os elementos do domínio A no contradomínio B, só o subconjunto A' de A.

Função Programa

Atenção:

A função programa $\delta^*: Q \times \Sigma^* \to Q$ é uma função parcial que a partir do estado corrente e do símbolo lido, determina o novo estado do autômato (pode ser indefinida):

$$\delta(r_i, w_{i+1}) = \begin{cases} r_{i+1} \\ \bot \end{cases}$$
 (indefinido)

Ou seja, nem todas as possibilidades em $\delta^*: Q \times \Sigma^* \to Q$ são necessariamente definidas.

20

Uma função parcial $f \subseteq A \times B$, não força f mapear todos os elementos do domínio A no contradomínio B, só o subconjunto A' de A.

Linguagem aceita por um AF

Definição

A linguagem reconhecida pelo AF M, denotada por L(M), é o conjunto de todas as palavras pertencentes a Σ^* aceitas por M a partir de q_0 . Ou seja,

$$L(M) = \{ w \mid \delta^*(q_0, w) \in F \}$$

Analogamente, REJEITA(M) é o conjunto de todas as palavras em Σ^* não aceitas por M.

• $REJEITA(M) = \{ w \mid \delta^*(q_0, w) \notin F \text{ ou } \delta^*(q_0, w) \text{ \'e indefinida} \}$

Linguagem aceita por um AF

Definição

A linguagem reconhecida pelo AF M, denotada por L(M), é o conjunto de todas as palavras pertencentes a Σ^* aceitas por M a partir de q_0 . Ou seja,

$$L(M) = \{ w \mid \delta^*(q_0, w) \in F \}$$

Analogamente, REJEITA(M) é o conjunto de todas as palavras em Σ^* não aceitas por M.

• $REJEITA(M) = \{ w \mid \delta^*(q_0, w) \notin F \text{ ou } \delta^*(q_0, w) \text{ \'e indefinida} \}$

Autômatos Finitos

Algumas relações:

- Dado um AF definido como: $M = (Q, \Sigma, \delta, q_0, F)$
- $L(M) \cup \mathsf{REJEITA}(M) = \Sigma^*$
- $L(M) \cap \mathsf{REJEITA}(M) = \emptyset$
- $\sim L(M) = \text{REJEITA}(M)$
- $\sim \text{REJEITA}(M) = L(M)$

Roteiro

- Autômatos Finitos
 - Autômato Finito Determinístico
 - Formalização de um AFD
 - Linguagens Regulares
- 2 Autômatos finitos não-determinísticos (AFNs)
 - Não-determinismo
 - Formalização de um AFN
 - Equivalência entre AFD e AFN
- 3 Referências

Linguagem Regular

Definição

Uma linguagem L é dita uma Linguagem Regular se existe pelo menos um AF que aceita L.

Exemplos

Então, temos que $L_4 = \emptyset$ e $L_5 = \Sigma^*$ são Linguagens Regulares.

Definição: Linguagem Regular

Observações:

- Diferentes AFs podem aceitar uma mesma linguagem.
- M_1 e M_2 são Autômatos Finitos *Equivalentes* se e somente se:

$$L(M_1) = L(M_2)$$

Definição: Linguagem Regular

Observações:

- Diferentes AFs podem aceitar uma mesma linguagem.
- M_1 e M_2 são Autômatos Finitos *Equivalentes* se e somente se:

$$L(M_1) = L(M_2)$$

Hierarquia de Chomsky

Tipos de linguagens:

Figura: Hierarquia de Chomsky

Chomsky definiu estas classes como (potenciais) modelos para ling. naturais.

Hierarquia de Chomsky

Hierarquia de Chomsky

Roteiro

- Autômatos Finitos
 - Autômato Finito Determinístico
 - Formalização de um AFD
 - Linguagens Regulares
- Autômatos finitos não-determinísticos (AFNs)
 - Não-determinismo
 - Formalização de um AFN
 - Equivalência entre AFD e AFN
- 3 Referências

Roteiro

- Autômatos Finitos
 - Autômato Finito Determinístico
 - Formalização de um AFD
 - Linguagens Regulares
- Autômatos finitos não-determinísticos (AFNs)
 - Não-determinismo
 - Formalização de um AFN
 - Equivalência entre AFD e AFN
- Referências

Vamos introduzir o conceito de Autômato finito *não-determinístico* (AFN):

• Vamos considerar um AF que permite zero, uma ou mais transições de um estado p, com o mesmo símbolo $a \in \Sigma$:

$$\delta(p,a) = \{q_1, q_2, \dots q_r\}$$

Várias escolhas podem existir para o próximo estado em qualquer ponto.

Função de transição (mapeamento)

•
$$\delta(p, a) = \{q_1, q_2, \dots q_r\}$$

Exemplo:

Linguagem *aceita* por N_7 :

 $L = \{w | w \in \{0,1\}^* \text{ e w termina com } 01\}$

Exemplo:

Linguagem *aceita* por N_7 :

$$L = \{w | w \in \{0, 1\}^* \text{ e w termina com } 01\}$$

Uma cadeia $w=w_1w_2...w_n$ é **aceita** por um AFN se exister pelo menos uma sequência de transições que leva $\delta^*(q_0,w)$ a um estado de aceitação ao processar w.

 Podemos imaginar que a máquina se divide em múltiplas cópias de si mesma e segue todas as possibilidades em paralelo.

Figura: Considere N_1 e w = 00101

AFNs são uma generalização de AFDs:

- Todo AFD é um AFN.
- Em um AFN podem existir *vários caminhos* para a aceitação de w enquanto que em um AFD, apenas um $\delta^*(q_0, w) \in F$.

AFNs são uma generalização de AFDs:

- Todo AFD é um AFN.
- Em um AFN podem existir *vários caminhos* para a aceitação de w, enquanto que em um AFD, apenas um $\delta^*(q_0, w) \in F$.

Figura: AFN Figura: AFD

Outro exemplo:

Linguagem *aceita* por N_8 :

$$L = \{ w \mid w \in \{0,1\}^* \text{ e } w \text{ possui um } 1 \text{ em } w_{n-2} \}$$

Outro exemplo:

Linguagem *aceita* por N_8 :

$$L = \{ w \mid w \in \{0,1\}^* \text{ e } w \text{ possui um } 1 \text{ em } w_{n-2} \}$$

- Uma outra maneira de ver a computação nesse AFN é dizer que ele permanece em q₀ até que "adivinhe" que está no final de w.
 - $-\,$ Nesse ponto, ele ramifica para o estado q_1 , e segue para q_2 e q_3 .

Outro exemplo:

Linguagem *aceita* por N_8 :

$$L = \{ w \mid w \in \{0,1\}^* \text{ e } w \text{ possui um } 1 \text{ em } w_{n-2} \}$$

- Uma outra maneira de ver a computação nesse AFN é dizer que ele permanece em q₀ até que "adivinhe" que está no final de w.
 - Nesse ponto, ele ramifica para o estado q_1 , e segue para q_2 e q_3 .

AFD equivalente à N_8 :

AFNs podem ser mais simples de planejar

 Além de ocupar mais espaço, entender o funcionamento desse AFD é muito mais complicado.

AFD equivalente à N_8 :

AFNs podem ser mais simples de planejar

 Além de ocupar mais espaço, entender o funcionamento desse AFD é muito mais complicado.

Roteiro

- Autômatos Finitos
 - Autômato Finito Determinístico
 - Formalização de um AFD
 - Linguagens Regulares
- Autômatos finitos não-determinísticos (AFNs)
 - Não-determinismo
 - Formalização de um AFN
 - Equivalência entre AFD e AFN
- 3 Referências

Definição formal de um AFN

Definição

Um autômato finito não-determinístico (AFN) é uma 5-upla $(Q, \Sigma, \delta, q_0, F)$, em que

- Q é um conjunto finito de estados;
- δ : $Q \times \Sigma \rightarrow 2^Q$ é a função de transição que mapeia $Q \times \Sigma$ em 2^Q . $-\delta(p,a) = \{q_1, q_2, \dots, q_r\}$
- $q_0 \in Q$ é o estado inicial; e
- **5** $F \subseteq Q$ é o conjunto de estados de aceitação.

48

Relembrando: 2^Q é o conjunto das partes de Q (o conjunto de todos os subconjuntos).

Definição formal de AFD

Função transição

• $\delta(p, a) = \{q_1, q_2, \dots, q_r\}$ então quando o AFN está no estado p e lê o símbolo 'a', os próximos estados serão $\{q_1, q_2, \dots, q_r\}$.

Tabela: Transições

Função de transição estendida

Definição

A função de transição estendida (ou programa) de N, denotada por

$$\delta^*: Q \times \Sigma^* \to 2^Q$$

é a função $\delta: Q \times \Sigma \to 2^Q$ estendida para palavras definida como:

$$\delta^*(q, \mathcal{E}) = \{q\}$$

$$\delta^*(q, wa) = \{p \mid \text{para algum } r \in \delta^*(q, w), p \text{ está em } \delta(r, a)\}$$

ou seja, é a sucessiva aplicação da função de transição para cada símbolo de w.

E

Na segunda condição, ao processarmos wa, podemos chegar em p se e somente se ao processar w, chegamos em r e podemos ir de r para q.

Função programa estendida

continuação...

A função programa também pode ser estendida para conjuntos de estados $P \in Q$, com argumentos em $2^Q \times \Sigma^*$:

$$\delta^*(P,w) = \bigcup_{(q \in P)} \delta^*(q,w)$$

para cada $P \subseteq Q$

em outras palavras:

$$\delta^*(\{q_1, q_2, \dots, q_r\}, w) = \delta^*(q_1, w) \cup \delta^*(q_2, w) \cup \dots \cup \delta^*(q_r, w)$$

é a união de todas as possibilidades de aplicação da função programa sobre w.

Funcionamento de um AFN

Condições de parada: após processar o último símbolo.

- aceita a entrada:
 - se existir pelo menos um caminho, partindo de q_0 , que leve N até um estado de aceitação.
- rejeita a entrada:
 - se não existir nenhum caminho, partindo de q_0 , que leve N até um estado de aceitação.

Linguagem reconhecida

Definição

A linguagem reconhecida pelo AFN $N = (Q, \Sigma, \delta, q_0, F)$:

$$L(N) = \{ w \mid w \in \Sigma^* \in \delta^*(q_0, w) \text{ contém um estado em } F \}$$

De forma análoga, w é aceita por M se $\delta^*(q_0, w) \cap F \neq \emptyset$

Considere N_8 e a cadeia de entrada w = 01001

$$\delta(q_0,0) = \{q_0,q_1\}$$

então

$$\delta^*(q_0,01) = \delta^*(\delta(q_0,0),1) = \delta^*(\{q_0,q_1\},1) = \delta(q_0,1) \cup \delta(q_1,1) = \{q_0,q_2\}$$

$$\delta(q_0, 010) = \{q_0, q_1\}, \delta(q_0, 0100) = \{q_0, q_1\}$$

0

$$\delta(q_0, 01001) = \{q_0, q_2\}$$

Considere N_8 e a cadeia de entrada w = 01001

$$\delta(q_0, 0) = \{q_0, q_1\}$$

então

$$\delta^*(q_0,01) = \delta^*(\delta(q_0,0),1) = \delta^*(\{q_0,q_1\},1) = \delta(q_0,1) \cup \delta(q_1,1) = \{q_0,q_2\}$$

da mesma forma...

$$\delta(q_0, 010) = \{q_0, q_1\}, \delta(q_0, 0100) = \{q_0, q_1\}$$

0

$$\delta(q_0, 01001) = \{q_0, q_2\}$$

Autômatos finitos não-determinísticos

Considere N_8 e a cadeia de entrada w = 01001

$$\delta(q_0, 0) = \{q_0, q_1\}$$

então

$$\delta^*(q_0, 01) = \delta^*(\delta(q_0, 0), 1) = \delta^*(\{q_0, q_1\}, 1) = \delta(q_0, 1) \cup \delta(q_1, 1) = \{q_0, q_2\}$$

da mesma forma.

$$\delta(q_0, 010) = \{q_0, q_1\}, \delta(q_0, 0100) = \{q_0, q_1\}$$

0

$$\delta(q_0, 01001) = \{q_0, q_2\}$$

Autômatos finitos não-determinísticos

Considere N_8 e a cadeia de entrada w = 01001

$$\delta(q_0, 0) = \{q_0, q_1\}$$

então

$$\delta^*(q_0, 01) = \delta^*(\delta(q_0, 0), 1) = \delta^*(\{q_0, q_1\}, 1) = \delta(q_0, 1) \cup \delta(q_1, 1) = \{q_0, q_2\}$$

da mesma forma...

$$\delta(q_0, 010) = \{q_0, q_1\}, \delta(q_0, 0100) = \{q_0, q_1\}$$

$$\delta(q_0, 01001) = \{q_0, q_2\}$$

Autômatos finitos não-determinísticos

Considere N_8 e a cadeia de entrada w = 01001

$$\delta(q_0, 0) = \{q_0, q_1\}$$

então

$$\delta^*(q_0, 01) = \delta^*(\delta(q_0, 0), 1) = \delta^*(\{q_0, q_1\}, 1) = \delta(q_0, 1) \cup \delta(q_1, 1) = \{q_0, q_2\}$$

da mesma forma...

$$\delta(q_0, 010) = \{q_0, q_1\}, \delta(q_0, 0100) = \{q_0, q_1\}$$

е

$$\delta(q_0, 01001) = \{q_0, q_2\}$$

Roteiro

- Autômatos Finitos
 - Autômato Finito Determinístico
 - Formalização de um AFD
 - Linguagens Regulares
- Autômatos finitos não-determinísticos (AFNs)
 - Não-determinismo
 - Formalização de um AFN
 - Equivalência entre AFD e AFN
- 3 Referências

Vamos ver que a classe de linguagens aceitas¹ pelos AFNs é a mesma aceita pelos Autômatos Finitos Determinísticos (AFDs).

O não-determinísmo não adiciona poder computacional aos AFs

Vantagens dos AFNs

¹Linguagens Regulares

Vamos ver que a classe de linguagens aceitas¹ pelos AFNs é a mesma aceita pelos Autômatos Finitos Determinísticos (AFDs).

• O não-determinísmo não adiciona poder computacional aos AFs.

Vantagens dos AFNs

¹Linguagens Regulares

Vamos ver que a classe de linguagens aceitas¹ pelos AFNs é a mesma aceita pelos Autômatos Finitos Determinísticos (AFDs).

• O não-determinísmo não adiciona poder computacional aos AFs.

Vantagens dos AFNs:

- Podem ser mais fáceis de projetar.
- Em geral, são mais sucintos (menor espaço)
- Uteis para provar teoremas.

¹Linguagens Regulares

Vamos ver que a classe de linguagens aceitas¹ pelos AFNs é a mesma aceita pelos Autômatos Finitos Determinísticos (AFDs).

• O não-determinísmo não adiciona poder computacional aos AFs.

Vantagens dos AFNs:

- Podem ser mais fáceis de projetar.
- Em geral, são mais sucintos (menor espaço).
- Uteis para provar teoremas.

¹Linguagens Regulares

Vamos ver que a classe de linguagens aceitas¹ pelos AFNs é a mesma aceita pelos Autômatos Finitos Determinísticos (AFDs).

• O não-determinísmo não adiciona poder computacional aos AFs.

Vantagens dos AFNs:

- Podem ser mais fáceis de projetar.
- Em geral, são mais sucintos (menor espaço).
- Úteis para provar teoremas.

¹Linguagens Regulares

Teorema:

Qualquer linguagem reconhecida por um AFN N também pode ser reconhecida por um AFD M equivalente.

$$L(N) = L(M)$$

Equivalência

- AFD → AFN.
 - Não precisa ser provado, basta $\delta_D(q,a) = p \rightarrow \delta_N(q,a) = \{p\}.$
- ullet AFN o AFD
 - Prova por construção (iremos apresentar um procedimento)

A ideia central é calcular um AFD M' com estados que *simulem* as diversas combinações de estados alternativos no AFN N.

Equivalência

- AFD → AFN.
 - Não precisa ser provado, basta $\delta_D(q, a) = p \rightarrow \delta_N(q, a) = \{p\}.$
- AFN \rightarrow AFD.
 - Prova por construção (iremos apresentar um procedimento).

A ideia central é calcular um AFD M' com estados que *simulem* as diversas combinações de estados alternativos no AFN N.

Equivalência

- AFD → AFN.
 - Não precisa ser provado, basta $\delta_D(q, a) = p \rightarrow \delta_N(q, a) = \{p\}.$
- AFN \rightarrow AFD.
 - Prova por construção (iremos apresentar um procedimento).

A ideia central é calcular um AFD M' com estados que *simulem* as diversas combinações de estados alternativos no AFN N.

Vamos definir o AFD equivalente $M = (\mathbf{Q_D}, \Sigma, \delta_{\mathbf{D}}, \mathbf{q_0'}, \mathbf{F_D})$, tal que:

- $Q_D = 2^Q$, todos os subconjuntos de Q
- $q_0' = q_0$ é o estado inicial
- F_D é o conjunto de estados que contém um estado final do AFN M
- $\delta_D(p_{ij...k}, a) = q_{xy...z} \iff$

$$\delta_N^*(\{p_i, p_j, \dots, p_k\}, a) = \{q_x, q_y, \dots, q_z\}$$

Exemplo:

	0	1
$egin{array}{c} ightarrow \{q_0\} \ \{q_1\} \end{array}$		
$\{q_2\}$		
$\{q_0,q_1\} \ \star \{q_0,q_2\}$		
$\star \{q_1, q_2\} \\ \star \{q_0, q_1, q_2\}$		

 $[|]Q_D| = 2^n - 1$ (em geral, muitos serão descartados)

Vamos definir o AFD equivalente $M = (\mathbf{Q_D}, \Sigma, \delta_{\mathbf{D}}, \mathbf{q_0'}, \mathbf{F_D})$, tal que:

- $Q_D = 2^Q$, todos os subconjuntos de Q- $q_{ij...k} \in Q_D$ representa o subconjunto $\{q_i, q_j, ..., q_k\}$
- $q_0' = q_0$ é o estado inicial.
 - F_D é o conjunto de estados que contém um estado final do AFN Λ
 - $\delta_D(p_{ij...k}, a) = q_{xy...z} \iff$

$$\delta_N^*(\{p_i,p_j,\ldots,p_k\},a)=\{q_x,q_y,\ldots,q_z\}$$

Exemplo:

	0	1
$ o q_0$		
q_1		
⋆q ₂		
q_{01}		
<i>⋆q</i> ₀₂		
* q ₁₂		
<i>⋆q</i> ₀₁₂		

 $[|]Q_D| = 2^n - 1$ (em geral, muitos serão descartados)

Vamos definir o AFD equivalente $M = (\mathbf{Q}_{D}, \Sigma, \delta_{D}, \mathbf{q}'_{0}, \mathbf{F}_{D})$, tal que:

- $Q_D = 2^Q$, todos os subconjuntos de Q- $q_{ij...k} \in Q_D$ representa o subconjunto $\{q_i, q_j, ..., q_k\}$
- $q'_0 = q_0$ é o estado inicial.
- F_D é o conjunto de estados que contém um estado final do AFN N
- $\delta_D(p_{ij...k}, a) = q_{xy...z} \iff \delta_{*}(\{p_i, p_i, \dots, p_k\}, a) = \{q_{xy...z} \in \mathcal{S}_{*}(\{p_i, p_i, \dots, p_k\}, a\} = \{q_{xy}, \dots, q_{xy}\} \}$
 - $\delta_N^*(\{p_i, p_j, \dots, p_k\}, a) = \{q_x, q_y, \dots, q_z\}$

Exemplo:

	0	1
$ o q_0$		
q_1		
⋆q ₂		
q_{01}		
<i>⋆q</i> ₀₂		
* q ₁₂		
<i>⋆q</i> ₀₁₂		

 $[|]Q_D| = 2^n - 1$ (em geral, muitos serão descartados)

Vamos definir o AFD equivalente $M = (\mathbf{Q_D}, \Sigma, \delta_{\mathbf{D}}, \mathbf{q_0'}, \mathbf{F_D})$, tal que:

- $Q_D = 2^Q$, todos os subconjuntos de Q- $q_{ij...k} \in Q_D$ representa o subconjunto $\{q_i, q_j, ..., q_k\}$
- $q'_0 = q_0$ é o estado inicial.
- F_D é o conjunto de estados que contém um estado final do AFN N.

•
$$\delta_D(p_{ij...k}, a) = q_{xy...z} \iff \delta_N^*(\{p_i, p_j, \dots, p_k\}, a) = \{q_x, q_y, \dots, q_z\}$$

Exemplo:

	0	1
$ o q_0$		
q_1		
$\star q_2$		
q_{01}		
$\star q_{02}$		
$\star q_{12}$		
$\star q_{012}$		

 $[|]Q_D| = 2^n - 1$ (em geral, muitos serão descartados)

Vamos definir o AFD equivalente $M = (\mathbf{Q_D}, \Sigma, \delta_D, \mathbf{q'_0}, \mathbf{F_D})$, tal que:

- $Q_D = 2^Q$, todos os subconjuntos de Q- $q_{ij...k} \in Q_D$ representa o subconjunto $\{q_i, q_j, ..., q_k\}$
- $q'_0 = q_0$ é o estado inicial.
- F_D é o conjunto de estados que contém um estado final do AFN N.
- $\delta_D(p_{ij...k}, a) = q_{xy...z} \iff \delta_N^*(\{p_i, p_j, \dots, p_k\}, a) = \{q_x, q_y, \dots, q_z\}.$

Exemplo:

 $[|]Q_D| = 2^n - 1$ (em geral, muitos serão descartados)

Resultado:

-	0	1
$ o q_0$	<i>q</i> ₀₁	q 0
q_1	1	q_2
q_2	1	\perp
q_{01}	q_{01}	q_{02}
* q ₀₂	q_{01}	q_0
$*q_{12}$	Ι Τ	q_2
* q 012	<i>q</i> ₀₁	q 02

Tabela: Transições

Na prática, muitos estados no AFD equivalente não são acessíveis a partir de q_0 :

 Uma boa prática é inserir apenas estados acessíveis partindo de q₀, criando apenas estados alcançaveis

Outro exemplo:

• Seja $N_9 = (Q = \{q_0, q_1\}, \Sigma = \{0, 1\}, \delta, q_0, \{q_1\} \text{ um AFN:}$

• Vamos contruir $M_9 = (Q_D, \Sigma, \delta_D, q_0', F_D)$, tal que $L(N_9) = L(M_9)$

Resultado:

O AFD M simula todas as computações do AFN N?

Prova formal

É fácil ver por indução no tamanho de $w = w_1 w_2 \dots w_n$ que

$$\delta_D(q_0', w) = q_{ij...k}$$

se, e somente se

$$\delta_N(\{q_0\},w)=\{q_i,q_j,\ldots,q_k\}$$

Então, $\delta_D(q_0',w)$ está em F_D quando $\delta_N(q_0,w)$ contém um estado $q\in F$.

O AFD *M* simula todas as computações do AFN *N*?

Prova formal:

É fácil ver por indução no tamanho de $w = w_1 w_2 \dots w_n$ que

$$\delta_D(q_0', w) = q_{ij...k}$$

se, e somente se

$$\delta_N(\{q_0\},w)=\{q_i,q_i,\ldots,q_k\}$$

Então, $\delta_D(q_0', w)$ está em F_D quando $\delta_N(q_0, w)$ contém um estado $q \in F$.

O AFD *M* simula todas as computações do AFN *N*?

Prova formal:

É fácil ver por indução no tamanho de $w = w_1 w_2 \dots w_n$ que

$$\delta_D(q_0', w) = q_{ij...k}$$

se, e somente se

$$\delta_N(\{q_0\},w)=\{q_i,q_j,\ldots,q_k\}$$

Então, $\delta_D(q_0', w)$ está em F_D quando $\delta_N(q_0, w)$ contém um estado $q \in F$.

$$L(M) = L(N)$$

Base da indução: |w| = 0, portanto $w = \mathcal{E}$

$$\delta_D^*(q_0', \mathcal{E}) = q_0 \text{ sse } \delta_N^*(\{q_0\}, w) = \{q_0\}$$

• Verdadeiro, por definição.

Hipótese de indução: |w| = n e $n \ge 1$, suponha que:

$$\delta_D^*(q_0', w) = q_{uv...w}$$
 sse $\delta_N^*(\{q_0\}, w) = \{q_u, q_v, \dots, q_w\}$

Passo: $|wa| = n + 1 \text{ e } n \ge 1$:

$$\delta^*_D(q_0',\mathit{wa}) = \delta^*_D(\delta^*_D(q_0',\mathit{w}),\mathit{a})$$

Base da indução: |w| = 0, portanto $w = \mathcal{E}$

$$\delta_D^*(q_0', \mathcal{E}) = q_0 \text{ sse } \delta_N^*(\{q_0\}, w) = \{q_0\}$$

Verdadeiro, por definição.

Hipótese de indução: |w| = n e $n \ge 1$, suponha que:

$$\delta_D^*(q_0', w) = q_{uv...w} \text{ sse } \delta_N^*(\{q_0\}, w) = \{q_u, q_v, \dots, q_w\}$$

Passo: $|wa| = n + 1 \text{ e } n \ge 1$:

$$\delta^*_D(q_0',\mathit{wa}) = \delta^*_D(\delta^*_D(q_0',\mathit{w}),\mathit{a})$$

Base da indução: |w| = 0, portanto $w = \mathcal{E}$

$$\delta_D^*(q_0', \mathcal{E}) = q_0 \text{ sse } \delta_N^*(\{q_0\}, w) = \{q_0\}$$

• Verdadeiro, por definição.

Hipótese de indução: |w| = n e $n \ge 1$, suponha que:

$$\delta_D^*(q_0', w) = q_{uv...w} \text{ sse } \delta_N^*(\{q_0\}, w) = \{q_u, q_v, \dots, q_w\}$$

Passo: $|wa| = n + 1 \text{ e } n \ge 1$:

$$\delta_D^*(q_0', wa) = \delta_D^*(\delta_D^*(q_0', w), a)$$

Passo: $|wa| = n + 1 \text{ e } n \ge 1$:

$$\delta_D^*(q_0', wa) = \delta_D^*(\delta_D^*(q_0', w), a)$$

Pela HI

$$\delta_D^*(q_0',w)=q_{uv\ldots w}$$
 sse $\delta_N^*(\{q_0\},w)=\{q_u,q_v,\ldots,q_w\}$

Pela definição:

$$\delta_D(q_{uv...w},a)=q_{ij...k}$$
 sse $\delta_N(\{q_u,q_v,\ldots,q_w\},a)=\{q_i,q_j,\ldots,q_k\}$

Então:

$$\delta^*_D(q_0', \mathsf{wa}) = q_{ij\ldots k}$$
 sse $\delta^*_N(q_0, \mathsf{wa}) = \{q_i, q_j, \ldots, q_k\}$

• Se $q \in \{q_i, q_j, \dots, q_k\}$ for estado de aceitação, então $q_{ij\dots k}$ também é.

•
$$L(M) = L(N)$$

Passo: $|wa| = n + 1 \text{ e } n \ge 1$:

$$\delta_D^*(q_0', wa) = \delta_D^*(\delta_D^*(q_0', w), a)$$

Pela HI:

$$\delta_D^*(q_0', w) = q_{uv...w}$$
 sse $\delta_N^*(\{q_0\}, w) = \{q_u, q_v, \dots, q_w\}$

Pela definição

$$\delta_D(q_{uv...w},a)=q_{ij...k}$$
 sse $\delta_N(\{q_u,q_v,\ldots,q_w\},a)=\{q_i,q_j,\ldots,q_k\}$

Então

$$\delta^*_D(q_0', \mathit{wa}) = q_{ij...k}$$
 sse $\delta^*_N(q_0, \mathit{wa}) = \{q_i, q_j, \ldots, q_k\}$

• Se $q \in \{q_i, q_j, \dots, q_k\}$ for estado de aceitação, então $q_{ij\dots k}$ também é.

•
$$L(M) = L(N)$$

Passo: $|wa| = n + 1 \text{ e } n \ge 1$:

$$\delta_D^*(q_0', wa) = \delta_D^*(\delta_D^*(q_0', w), a)$$

Pela HI:

$$\delta_D^*(q_0', w) = q_{uv...w} \text{ sse } \delta_N^*(\{q_0\}, w) = \{q_u, q_v, \dots, q_w\}$$

Pela definição:

$$\delta_D(q_{uv\dots w}, a) = q_{ij\dots k} \text{ sse } \delta_N(\{q_u, q_v, \dots, q_w\}, a) = \{q_i, q_j, \dots, q_k\}$$

Então:

$$\delta^*_{D}(q_0', \mathit{wa}) = q_{ij...k}$$
 sse $\delta^*_{N}(q_0, \mathit{wa}) = \{q_i, q_j, \ldots, q_k\}$

• Se $q \in \{q_i, q_j, \dots, q_k\}$ for estado de aceitação, então $q_{ij\dots k}$ também é.

$$\bullet$$
 $L(M) = L(N)$

Passo: $|wa| = n + 1 \text{ e } n \ge 1$:

$$\delta_D^*(q_0', wa) = \delta_D^*(\delta_D^*(q_0', w), a)$$

Pela HI:

$$\delta_D^*(q_0', w) = q_{uv...w} \text{ sse } \delta_N^*(\{q_0\}, w) = \{q_u, q_v, \dots, q_w\}$$

Pela definição:

$$\delta_D(q_{uv\dots w}, a) = q_{ij\dots k} \text{ sse } \delta_N(\{q_u, q_v, \dots, q_w\}, a) = \{q_i, q_j, \dots, q_k\}$$

Então:

$$\delta_D^*(q_0', wa) = q_{ij...k}$$
 sse $\delta_N^*(q_0, wa) = \{q_i, q_j, ..., q_k\}$

• Se $q \in \{q_i, q_j, \dots, q_k\}$ for estado de aceitação, então $q_{ij\dots k}$ também é.

•
$$L(M) = L(N)$$

Passo: $|wa| = n + 1 \text{ e } n \ge 1$:

$$\delta_D^*(q_0', wa) = \delta_D^*(\delta_D^*(q_0', w), a)$$

Pela HI:

$$\delta_D^*(q_0', w) = q_{uv...w}$$
 sse $\delta_N^*(\{q_0\}, w) = \{q_u, q_v, \dots, q_w\}$

Pela definição:

$$\delta_D(q_{uv\dots w}, a) = q_{ij\dots k} \text{ sse } \delta_N(\{q_u, q_v, \dots, q_w\}, a) = \{q_i, q_j, \dots, q_k\}$$

Então:

$$\delta_D^*(q_0', wa) = q_{ij...k}$$
 sse $\delta_N^*(q_0, wa) = \{q_i, q_j, ..., q_k\}$

• Se $q \in \{q_i, q_j, \dots, q_k\}$ for estado de aceitação, então $q_{ij\dots k}$ também é.

•
$$L(M) = L(N)$$

Fim

Dúvidas?

Roteiro

- Autômatos Finitos
 - Autômato Finito Determinístico
 - Formalização de um AFD
 - Linguagens Regulares
- 2 Autômatos finitos não-determinísticos (AFNs)
 - Não-determinismo
 - Formalização de um AFN
 - Equivalência entre AFD e AFN
- Referências

Referências

Referências:

- 1 "Introdução à Teoria da Computação" de M. Sipser, 2007.
- "Introdução à Teoria de Autômatos, Linguagens e Computação" de J. E. Hopcroft, R. Motwani, e J. D. Ullman, 2003.
- Materiais adaptados dos slides do Prof. Evandro E. S. Ruiz, da USP.