KMP e Suffix Trie/Tree/Array

Laboratório de Programação Competitiva - 2020

Pedro Henrique Paiola

Busca em strings

- O problema substring search ou pattern search consiste em encontrar uma dada string dentro de outra.
- Exemplo:

S = "Que a Força esteja com você"

P = "Força"

A string P pode ser encontrada dentro de S, a partir da posição 6

Busca em strings

Algoritmo ingênuo

```
int search(string S, string P) {
    for(int i = 0; i <= S.size() - P.size(); i++) {
        for(int j = 0; j < P.size(); j++)
            if (S[i+j] != P[j])
                break;
        if (j == P.size())
            return i;
    return -1;
```

Busca em strings

- Esse algoritmo, no pior caso, tem complexidade O(m.n), fazendo m.n
 comparações. Porém, em geral, ele não chega a realizar tantas comparações.
- Usar esse algoritmo é bastante razoável para vários casos, principalmente quando as strings não são muito grandes.
- Mas, existem algoritmos de busca de substrings mais eficientes, que podem ser necessários em alguns casos, como exemplo temos o KMP.

- Knuth Morrit Pratt
- Complexidade: O(n) no pior caso
- No algoritmo ingênuo, sempre que detectamos caracteres diferentes, avançávamos um caracter na string principal (i++) e testamos toda a substring, desde o começo (começando sempre com j = 0).
- O KMP, porém, aproveita as comparações que foram feitas antes de encontrar dois caracteres diferentes, evitando comparar novamente caracteres que já sabemos que são compatíveis.

- A principal ideia deste algoritmo é pré-processar o padrão P, de modo a obter um vetor de inteiros *lps*, que conta o número de caracteres que podem ser "ignorados" em uma nova comparação.
- O nome lps refere-se à "longest proper prefix and suffix", ou seja, o maior prefixo próprio (não pode ser a própria palavra) que também é sufixo.

```
P = "ABABAC"
```

$$lps = \{\}$$

$$lps = {0}$$

$$lps = \{0, 0\}$$

$$P = "ABABAC"$$

$$lps = \{0, 0, 1\}$$

$$lps = \{0, 0, 1, 2\}$$

$$lps = \{0, 0, 1, 2, 3\}$$

$$lps = \{0, 0, 1, 2, 3, 0\}$$

- E como isto ajuda? Isso permite pular comparações desnecessárias, por exemplo:
- Pelo algoritmo ingênuo:

S = ABABABCABABABCABABABC

- E como isto ajuda? Isso permite pular comparações desnecessárias, por exemplo:
- Pelo algoritmo ingênuo:

S = ABABABCABABABCABABABC

- E como isto ajuda? Isso permite pular comparações desnecessárias, por exemplo:
- Pelo algoritmo ingênuo:

S = ABABABCABABABCABABABC

- E como isto ajuda? Isso permite pular comparações desnecessárias, por exemplo:
- Pelo algoritmo ingênuo:

S = ABABABCABABABCABABABC

- E como isto ajuda? Isso permite pular comparações desnecessárias, por exemplo:
- Pelo algoritmo ingênuo:

S = ABABABCABABABCABABABC

- E como isto ajuda? Isso permite pular comparações desnecessárias, por exemplo:
- Pelo algoritmo ingênuo:

S = ABABABCABABABCABABABC

- E como isto ajuda? Isso permite pular comparações desnecessárias, por exemplo:
- Pelo algoritmo ingênuo:

S = ABABABCABABABCABABABC

- E como isto ajuda? Isso permite pular comparações desnecessárias, por exemplo:
- Pelo algoritmo ingênuo:

S = ABABABCABABABCABABABC

- E como isto ajuda? Isso permite pular comparações desnecessárias, por exemplo:
- Pelo KMP:

```
S = ABABABCABABABCABABABC
P = ABABAC
lps = {0, 0, 1, 2, 3, 0}
```

- E como isto ajuda? Isso permite pular comparações desnecessárias, por exemplo:
- Pelo KMP:

$$S = ABABABCABABABCABABABC$$

$$P = ABABAC$$

$$lps = {0, 0, 1, 2, 3, 0}$$

E agora? mantemos o valor de i (ponteiro para posição de S) j = lps[j - 1] = 3

- E como isto ajuda? Isso permite pular comparações desnecessárias, por exemplo:
- Pelo KMP:

```
S = ABABABCABABABCABABABC
P = ABABAC
lps = \{0, 0, 1, 2, 3, 0\}
```

```
int a[MAX], n, m;
char S[MAX], P[MAX];
void calculatePrefix(){
    int i = 0, j = -1;
    a[0] = -1;
    while(i < m){</pre>
        while(j \ge 0 \&\& P[i] != P[j])
             j = a[j];
         i++; j++;
        a[i] = j;
```

```
vector<int> KMP2(){ //retorna todas as ocorrências da substring
    vector<int> resp;
    int i = 0, j = 0;
    calculatePrefix();
    while(i < n){</pre>
        while(j >= 0 \&\& S[i] != P[j]) j = a[j];
        i++; j++;
        if (j == m){
             resp.push_back(i - m);
             j = a[j];
    return resp;
```

Trie

- Uma trie é uma árvore que representa uma coleção de strings com nós únicos prefixos comuns.
- As arestas são rotuladas com letras, e um caminho da raiz até uma folha determina uma string armazenada na trie.
- Comumente usada para implementar um map em que as chaves são strings.

Trie

Key	Value
instant	1
internal	2
internet	3

- Porém, para nós é mais interessante uma variação desta estrutura, que armazena todos os sufixos de uma palavra (ou um conjunto de palavras).
- S = {CAR, CAT, RAT}
- Sufixos de S = {CAR, AR, R, CAT, AT, RAT }
- Sufixos ordenados de S = {AR, AT, CAR, CAT, R, RAT, T}

- Cada vértice possui duas flags booleanas: isSuffix e isWord
- A suffix trie é construída inicialmente contendo apenas o nó raiz. Em seguida, cada sufixo S[i...n-1] é inserido na árvore caractere a caractere
- Ao inserir um sufixo na árvore, se um caractere do sufixo não estiver presente na árvore, cria-se uma nova ramificação

- A suffix trie é uma estrutura de dados eficiente para operações em dicionário.
- Uma vez que ela é construída para um conjunto de strings, é possível determinar se um padrão P está presente no dicionário em tempo O(IPI)

- A Suffix Trie, porém, apresenta uma certa ineficiência de memória. Para cada palavra, muitos vértices podem ser criados.
- A Suffix Tree surge como uma melhoria da Suffix Trie, aplicando uma compressão de caminhos, de forma que vértice com um único filho são contraídos.

Figure 6.3: Suffixes, Suffix Trie, and Suffix Tree of T = 'GATAGACA'

- Além disso, é comum adicionarmos o caractere especial \$ ao final de uma string, com o objetivo de garantir que todos os sufixos sejam terminados por ele e que todos os sufixos sejam folhas na árvore.
- Isto também pode ser aplicado em uma suffix trie

- Assumindo que a árvore de sufixos para uma string S foi construída, é possível utilizá-la para diversas aplicações, dentre elas:
 - Busca de string
 - Máxima substring repetida
 - Máxima substring comum

- Busca de string:
 - Com a árvore de sufixos é possível encontrar todas as ocorrências de um padrão P em uma string S em tempo O(m + c), em que m = |P| e c é o número total de ocorrências de P em S.
 - Uma vez que a árvore de sufixos já foi construída, a busca torna-se independente do tamanho da string S, o que pode ser muito mais eficiente do que o algoritmo KMP, em especial quando se quer realizar várias buscas.

- Máxima substring repetida:
 - Objetivo: encontrar a maior substring de S que tenha pelo menos duas ocorrências em S (LRS - Longest Repeated Substring)
 - O caminho correspondente ao nó interno mais profundo x da árvore é a solução do LRS
 - O fato de x ser um nó interno implica que ele representa mais de um sufixo (do contrário ele entraria na compressão de caminhos)
 - O fato de x ser o nó interno mais profundo implica que seu caminho corresponderá a uma substring de maior comprimento

e.g. T = 'GATAGACA\$'
The longest repeated
substring is 'GA' with
path label length = 2

The other repeated substring is 'A', but its path label length = 1

- Máxima substring comum:
 - Objetivo: determinar a máxima substring comum (LCS Longest Common Substring) de duas ou mais strings
 - Nesse caso, a árvore de sufixos deve ser construída para o conjunto das strings, que devem ser marcadas com caracteres especiais diferentes como terminais de strings
 - O caminho correspondente ao nó interno mais profundo que pertença a todas as strings representadas é a solução do LCS

Suffix Tree

 $S_1 = GATAGACA$ e $S_2 = CATA#$

These are the internal vertices representing suffixes from both strings

The deepest one has path label 'ATA'

Suffix Tree

- Existem algoritmos de tempo linear para a formação de uma árvore de sufixos, como por exemplo, o algoritmo de Ukkonen.
- Este algoritmo é "relativamente" complicado.

- Um vetor de sufixos (suffix array) possui funcionalidade similar à árvore de sufixo, porém com uma construção mais simples e mais eficiente em termos de uso de memória.
- Porém, algumas operações que eram realizadas em uma suffix tree podem ser mais custosas em um suffix array.

- Um suffix array é um vetor que armazena os sufixos de uma string ordenados lexicograficamente
 - Na prática, ele armazena os índices dos sufixos

i.	Suffix
0	GATAGACA\$
1	ATAGACA\$
2	TAGACA\$
3	AGACA\$
4	GACA\$
5	ACA\$
6	CA\$
7	A\$
8	\$

Sort →

i	SA[i]	Suffix				
0	8	\$				
1	7	A\$				
2	5	ACA\$				
3	3	AGACA\$				
4	1	ATAGACA\$				
5	6	CA\$				
6	4	GACA\$				
7	0	GATAGACA\$				
8	2	TAGACAS				

- Um vetor de sufixos continua fortemente atrelado a uma árvore de sufixos.
- Uma busca em profundidade na árvore de sufixos visita os nós terminais (folhas) na ordem definida pelo vetor de sufixos.
- Um **nó interno** da árvore de sufixos corresponde a um **intervalo** do vetor de sufixos (uma coleção de sufixos ordenados com um prefixo em comum).
- Um nó folha da árvore de sufixos corresponde a um único elemento do vetor de sufixos.

- Todas as operações que podiamos fazer em uma suffix tree, podemos fazer também utilizando um suffix array.
- Vamos analisar os exemplos de aplicações que vimos anteriormente

- Busca de string
 - Com a árvore de sufixos, percorríamos a árvore considerando os caracteres do nosso padrão P. Se terminássemos em um nó interno, o número de filhos do nó era o número de ocorrências de P em S. Complexidade: O(m + c)
 - Um nó interno é representado por um intervalo em um suffix array, dessa forma, temos que encontrar o limitante inferior e o limitante superior.
 - Para isso, aplica-se duas buscas binárias. Complexidade: O(m.log(n))

Exemplo: S = BANANA e P = NA

	j	VS[i]	Sufixo
	0	5	Α
	1	3	ANA
	2	1	ANANA
	3	o	BANANA
4-	_ 4	4	NA
	5	2	NANA

 Encontrando o limitante inferior

• Exemplo: S = BANANA e P = NA

_	i	VS[i]	Sufixo
	0	5	Α
	1	3	ANA
	2	1	ANANA
	3	0	BANANA
-	4	4	NA
LLE		2	NANA

 Encontrando o limitante superior

Exemplo: S = BANANA e P = NA

i	VS[i]	Sufixo
o	5	Α
1	3	ANA
2	1	ANANA
3	0	BANANA
4	4	NA
5	2	NANA

Ocorrências em 4 a 2.

- Máxima substring repetida:
 - Precisamos incluir o campo "Maior Prefixo Comum" (mpc) no vetor de sufixos
 - Calculado a cada par de sufixos consecutivos no vetor
 - A posição de maior MPC é a maior substring repetida

i	VS[i]	MPC[i]	Sufixo
О	5	0	Α
1	3	1	ANA
2	1	3	<u>ANA</u> NA
3	0	0	BANANA
4	4	0	NA
5	2	2	<u>NA</u> NA

- T = "BANANA";
- A substring mais comprida repetida é "ANA";
- Outras strings repetidas são "A" e "NA".

- Máxima substring comum
 - Cria-se uma string a partir da concatenação das strings do problema
 - Crie o vetor de sufixos desta nova string
 - Calcule os MPCs
 - Marque qual string é a origem de cada sufixo
 - Retorne o maior valor de MPC cujo sufixo tenha origem em todas as strings do problema

i	VS[i]	MCP[I]	ORIGEM	Sufixo
0	6	0	2	.MANA
1	10	o	2	Α
2	5	1	1	A.MANA
3	8	1	2	<u>A</u> NA
4	3	3	1	ANA.MANA
5	1	3	1	ANANA.MANA
6	0	0	1	BANANA.MANA
7	7	0	2	MANA
8	9	0	2	NA
9	4	2	1	<u>NA</u> .MANA
10	2	2	1	NANA.MANA

- Para gerar o vetor de sufixos ordenados lexicograficamente, é possível aplicar um algoritmo de ordenação por comparação de complexidade O(n.logn).
 Comparar duas strings leva tempo O(n), sendo assim, esta estratégia teria complexidade O(n²logn)
- Um modo mais eficiente O(n.logn) de ordenar os sufixos consiste em uma estratégia iterativa denominada ordenação por pares de ranks.

i	SA[i]	Suffix	RA[SA[i]] RA[S	A[i]+1]	i	SA[i]	Suffix	RA[S	A[i]]	RA[SA	[i]+1]
0	0	GATAGACA\$	71 (6	6	5 (A)	0	8	\$	36	(\$)	00	(-)
1	1	ATAGACA\$	65 (2	1) 8	4 (T)	1	7	A \$	65	(A)	36	(\$)
2	2	TAGACA\$	84 (1	2) 6	5 (A)	2	5	ACA\$	65	(A)	67	(C)
3	3	AGACA\$	65 (Z	7	1 (G)	3	3	AGACA\$	65	(A)	71	(G)
4	4	GACA\$	71 (6	6	5 (A)	4	1	ATAGACA\$	65	(A)	84	(T)
5	5	ACA\$	65 (A	6	7 (C)	5	6	CA\$	67	(C)	65	(A)
6	6	CA\$	67 (0	() 6	5 (A)	6	0	GATAGACA\$	71	(G)	65	(A)
7	7	A \$	65 (A	3	6 (\$)	7	4	GACA\$	71	(G)	65	(A)
8	8	\$	36 (\$	0	0 (-)	8	2	TAGACA\$	84	(T)	65	(A)

Initial ranks RA[i] = ASCII value of T[i] \$ = 36, A = 65, C = 67, G = 71, T = 84 If SA[i] + k >= n (beyond the length of string T), we give a default rank 0 with label -

i	SA[i]	Suffix	RA[SA[i]]	RA[SA[1]+2]	i	SA[i]	Suffix	RA[S	A[i]]	RA[S	A[i]+2]
0	8	\$	0 (\$-)	0 ()	0	8	\$	0 (\$-)	0	()
1	7	A \$	1 (A\$)	0 ()	1	7	A \$	1 (A\$)	0	()
2	5	ACA\$	2 (AC)	1 (A\$)	2	5	ACAŞ	2 (AC)	1	(A\$)
3	3	AGACA\$	3 (AG)	2 (AC)	3	3	AGACA\$	3 (AG)	2	(AC)
4	1	ATAGACA\$	4 (AT)	3 (AG)	4	1	ATAGACA\$	4 (AT)	3	(AG)
5	6	CA\$	5 (CA)	0 (\$-)	5	6	CA\$	5 (CA)	0	(\$-)
6	0	GATAGACA\$	6 (GA)	7 (TA)	6	4	GACA\$	6 (GA)	5	(CA)
7	4	GACA\$	6 (GA)	5 (CA)	7	0	GATAGACA\$	6 (GA)	7	(TA)
8	2	TAGACA\$	7 (TA)	6 (GA)	8	2	TAGACA\$	7 (TA)	6	(GA)

\$- (first item) is given rank 0, then for i = 1 to n-1, compare rank pair of this row with previous row

If SA[i] + k >= n (beyond the length of string T), we give a default rank 0 with label -

i	SA[i]	i] Suffix RA[SA[i]]				RA[SA[1]+4]		
0	8	\$	0	(\$)	0	()		
1	7	A \$	1	(A\$)	0	()		
2	5	ACA\$	2	(ACA\$)	0	()		
3	3	AGACA\$	3	(AGAC)	1	(A\$)		
4	1	ATAGACA\$	4	(ATAG)	2	(ACA\$)		
5	6	CA\$	5	(CA\$-)	0	()		
6	4	GACA\$	6	(GACA)	0	(\$)		
7	0	GATAGACA\$	7	(GATA)	6	(GACA)		
8	2	TAGACA\$	8	(TAGA)	5	(CA\$-)		
	Nov	all suffixes ha	ive (different	rank	ing		

We are done

Referências

S. Halim e F. Halim. Competitive Programming 2.

Fábio L. Usberti. Processamento de Cadeias de Caracteres. Summer School 2019

https://www.geeksforgeeks.org/kmp-algorithm-for-pattern-searching/

https://www.ime.usp.br/~pf/estruturas-de-dados/aulas/kmp.html

https://www.cs.cmu.edu/~ckingsf/bioinfo-lectures/suffixtrees.pdf

http://www.cs.jhu.edu/~langmea/resources/lecture_notes/tries_and_suffix_tries.pdf

https://cp-algorithms-brasil.com/strings/suffixtree.html

https://web.stanford.edu/~mjkay/suffix_tree.pdf

https://www.geeksforgeeks.org/pattern-searching-using-suffix-tree/

http://jeiks.net/wp-content/uploads/2014/08/TEP_Extra-03.pdf