# Chapter 4 Hierarchical Models

Xavi Puig Oriol Departament d'Estadística i I.O. <sup>©</sup>Universitat Politècnica de Catalunya 2024

## Chapter 4. Hierarchical Models

Bayesian Model (non-hierarchical)

$$p(\widetilde{y} \mid \theta)$$

 $\pi(\theta)$ 

Hierarchical Bayesian Model

 $\pi(\gamma)$  - 3<sup>rd</sup> Level

The hierarchical Bayesian Model treats the parameters of the prior distribution as random variables. This fact adds a new level to the model.

# Chapter 4. Hierarchical Models

If we take a random sample of size  $n, y_1, ..., y_n$ , then we can write the hierarchical bayesian model as:

$$\begin{aligned}
\widetilde{y}_{i} \mid \theta_{i} \sim p(\widetilde{y}_{i} \mid \theta_{i}) & \text{for } i=1,..,n \\
\theta_{i} \mid \gamma \sim \pi(\theta_{i} \mid \gamma) & \\
\gamma \sim \psi(\gamma) & \end{aligned}$$

- $\widetilde{y}_i$  observable variable  $p(\widetilde{y}_i \,|\, heta_i)$  probability distribution
- $heta_i$  parameter  $\pi( heta_i \,|\, \gamma)$  prior distribution
- ' hyperparameter  $\psi(\gamma)$  hyperprior distribution

# Chapter 4. Hierarchical Models

Bayesian Model (non-hierarchical)

$$\widetilde{y}_i \mid \theta \sim p(\widetilde{y}_i \mid \theta)$$
$$\theta \sim \pi(\theta)$$



The y 's are generated by the probability model  $P(\widetilde{y}_i | \theta)$ 

# Chapter 4. Hierarchical Models

## Hierarchical Bayesian Model

The y 's are generated by the probability model  $p(\widetilde{y}_i \mid \theta_i)$ , and the  $\theta$  's are generated by  $\pi(\theta_i \mid \gamma)$ 

# Chapter 4. Hierarchical Models

# Example: Hospitals

**Exercise 6.2 Surgical: Institutional ranking.** This exercise considers mortality rates in 12 hospitals performing cardiac surgery in babies. The data are shown below:

| Hospital | No of ops | No of deaths |
|----------|-----------|--------------|
| Α        | 47        | 0            |
| В        | 148       | 18           |
| С        | 119       | 8            |
| D        | 810       | 46           |
| E        | 211       | 8            |
| F        | 196       | 13           |
| G        | 148       | 9            |
| Н        | 215       | 31           |
| 1        | 207       | 14           |
| J        | 97        | 8            |
| K        | 256       | 29           |
| L        | 360       | 24           |

The objective of this study is to know the probability of death around all the hospitals in the country, not only in the hospitals that are in the sample.

# Chapter 4. Hierarchical Models

# Example: Hospitals

 $y_i :=$  number of deaths in the *i-th* hospital  $n_i :=$  number of surgeries in the *i-th* hospital for i=1,...,12

#### Model A



Where  $\,\theta$  is the probability of dying, and it is the same for all hospitals

## Chapter 4. Hierarchical Models

# Example: Hospitals

#### Model B

$$\widetilde{y}_i \mid \theta_i \sim Binomial(n_i, \theta_i)$$
  
 $\theta_i \sim Beta(1, 1)$ 



Where  $\theta_i$  is the probability of dying for the *i-th* hospital for i=1,...,12, but we don't know anything about the death probability from other hospitals.

# Chapter 4. Hierarchical Models

# Example: Hospitals

## Model C

$$\widetilde{y}_i \mid \theta_i \sim Binomial(n_i, \theta_i)$$
 $\theta_i \mid \alpha, \beta \sim Beta(\alpha, \beta)$ 
 $\alpha \sim Gamma(0.01, 0.001)$ 
 $\beta \sim Gamma(0.01, 0.001)$ 



We can make inference and prediction at different levels

## Chapter 4. Hierarchical Models

## Example: Hospitals

## Model C (hierarchical):

All we know about the probability of dying in the i-th hospital is in :

$$\pi(\theta_i | y)$$

And we can make inference of the probability of dying in a hospitat that is not in the sample using the posterior predictive distribution of the second level:

$$\pi(\widetilde{\theta} \mid y) = \iint \pi(\widetilde{\theta} \mid \alpha, \beta) \pi(\alpha, \beta \mid y) \partial \alpha \partial \beta$$

# Chapter 4. Hierarchical Models

# Example: Hospitals

Posterior probability distribution of the probability of dying for hospital n° 4
Posterior probability distribution of the probability of dying for a new hospital



# Chapter 4. Hierarchical Models

# Example: Hospitals

## Model A

# $\widetilde{y}_i \mid \theta_i \sim Binomial(n_i, \theta)$ $\theta \sim Beta(1, 1)$



## Model B

$$\widetilde{y}_i \mid \theta_i \sim Binomial(n_i, \theta_i)$$
  
 $\theta_i \sim Beta(1, 1)$ 



## Model C

$$\begin{split} \widetilde{y}_i \mid \theta_i \sim Binomial(n_i, \theta_i) \\ \theta_i \mid \alpha, \beta \sim Beta(\alpha, \beta) \\ \alpha \sim Gamma(0.01, 0.001) \\ \beta \sim Gamma(0.01, 0.001) \end{split}$$



# Chapter 4. Hierarchical Models

# Example: Hospitals

#### Model A

 $\widetilde{y}_i \mid \theta_i \sim Binomial(n_i, \theta)$  $\theta \sim Beta(1, 1)$ 

#### Model B

 $\widetilde{y}_i \mid \theta_i \sim Binomial(n_i, \theta_i)$  $\theta_i \sim Beta(1, 1)$ 

## Model C

 $\widetilde{y}_{i} \mid \theta_{i} \sim Binomial(n_{i}, \theta_{i})$   $\theta_{i} \mid \alpha, \beta \sim Beta(\alpha, \beta)$   $\alpha \sim Gamma(0.01, 0.001)$  $\beta \sim Gamma(0.01, 0.001)$ 

#### parameters

 $\begin{array}{c} \theta \\ \theta^{(1)} \\ \theta^{(2)} \\ \vdots \\ \theta^{(M)} \end{array}$ 

#### parameters

#### parameters

# Chapter 4. Hierarchical Models

# Example: Hospitals

 $\widetilde{y}_i \mid \theta_i \sim Binomial(n_i, \theta_i)$ 

 $\theta_i \mid \alpha, \beta \sim Beta(\alpha, \beta)$ 

 $\alpha \sim Gamma(0.01, 0.001)$ 

 $\beta \sim Gamma(0.01, 0.001)$ 

#### parameters

mulations





# Chapter 4. Hierarchical Models

# Example: Hospitals



In each simulation we create a new Ranking variable for each hospital

For example, if in the first simulation after sorting the values of  $\theta$ 's we get:

$$\theta_2^{(1)} < \theta_3^{(1)} < \theta_5^{(1)} < \theta_{12}^{(1)} < \theta_4^{(1)} < \theta_{11}^{(1)} < \theta_9^{(1)} < \dots < \theta_1^{(1)}$$

Then the ranking variable will be: 
$$R_1^{(1)}=12, R_2^{(1)}=1, R_3^{(1)}=2, \ R_4^{(1)}=5, \dots, R_{12}^{(1)}=4$$



# Chapter 4. Hierarchical Models

I encourage you to read chapter 5 (Hierarchical models) and chapter 15 (*Hierarchical Lineal Models* ) from the book:

Gelman A, Carlin J, Stern H, Dunson D, Vehtari A, and Rubin D (2014). Bayesian Data Analysis (3rd ed). London: Chapman & Hall.