Chapitre IV Géométrie

- 1. Projection orthogonale
- 2. Symétrie
- 3. Rotation

Projection dans le plan

On considère une droite Δ vectorielle (c'est-à-dire passant par l'origine) et de vecteur directeur unitaire $\mathbf{n}=(a,b)^T$ (c'est-à-dire $\mathbf{n}^T\mathbf{n}=\|\mathbf{n}\|^2=a^2+b^2=1$):

$$\Delta: y = (\tan \theta)x$$

Soit ${\bf u}$ un vecteur du plan et ${\bf v}$ sa projection orthogonale sur la droite Δ :

$$\begin{cases} \mathbf{v} \text{ est colinéaire à } \mathbf{n} \\ \mathbf{u} - \mathbf{v} \text{ est orthogonal à } \mathbf{n} \end{cases} \Leftrightarrow \begin{cases} \mathbf{v} = \alpha \mathbf{n} \\ \mathbf{n}^T (\mathbf{u} - \mathbf{v}) = 0 \end{cases}$$

Projection dans le plan

Donc:

$$\mathbf{n}^T \mathbf{v} = \mathbf{n}^T \mathbf{u} \Leftrightarrow \mathbf{n}^T \alpha \mathbf{n} = \mathbf{n}^T \mathbf{u} \Leftrightarrow \alpha = \mathbf{n}^T \mathbf{u}$$

$$\mathbf{v} = (\mathbf{n}^T \mathbf{u})\mathbf{n} = \mathbf{n}(\mathbf{n}^T \mathbf{u}) = \mathbf{n}\mathbf{n}^T \mathbf{u}$$

$$\alpha \text{ (scalaire)} \qquad \text{matrice}$$

L'image d'un vecteur \mathbf{u} par la projection orthogonale sur une droite de vecteur directeur unitaire \mathbf{n} s'obtient donc en multipliant \mathbf{u} par la matrice $\mathbf{P} = \mathbf{n}\mathbf{n}^T$:

$$\mathbf{v} = \mathbf{P}\mathbf{u}$$
 avec $\mathbf{P} = \mathbf{n}\mathbf{n}^T = \begin{pmatrix} a^2 & ab \\ ab & b^2 \end{pmatrix}$

Projection dans le plan

Remarques importantes

- Si on projette \mathbf{v} sur Δ alors on obtient encore le vecteur \mathbf{v} , c'està-dire $\mathbf{v} = \mathbf{P}\mathbf{v} = \mathbf{P}^2\mathbf{u}$, donc :

$$P^2 = P$$

En effet : $\mathbf{P}^2 = (\mathbf{n}\mathbf{n}^T)(\mathbf{n}\mathbf{n}^T) = \mathbf{n}(\mathbf{n}^T\mathbf{n})\mathbf{n}^T = \mathbf{n}\mathbf{n}^T = \mathbf{P}$

- Les vecteurs colonnes de **P** sont proportionnels au vecteur $\mathbf{n} = (a, b)^T$ donc :

$$Im P = Vect(n) = \Delta$$

Projection dans le plan

Remarques importantes (suite)

- Les vecteurs colonnes \mathbf{c}_1 et \mathbf{c}_2 vérifient $b\mathbf{c}_1 - a\mathbf{c}_2 = \mathbf{0}$ donc :

$$b\mathbf{P}\mathbf{\varepsilon}_1 - a\mathbf{P}\mathbf{\varepsilon}_2 = \mathbf{0} \quad \Leftrightarrow \quad \mathbf{P}(b\mathbf{\varepsilon}_1 - a\mathbf{\varepsilon}_2) = \mathbf{0}$$

Donc
$$b\mathbf{\varepsilon}_1 - a\mathbf{\varepsilon}_2 = (b, -a)^T \in \text{Ker } \mathbf{P}$$
 et:

Ker
$$\mathbf{P} = \text{Vect}((b, -a)^T)$$
 = droite vectorielle orthogonale à Δ

- Ker $\mathbf{P} \neq \{\mathbf{0}\}$, on en déduit que la matrice $\mathbf{P} = \mathbf{n}\mathbf{n}^T$ n'est pas inversible.

Intuivivement cohérent : on ne peut déterminer le vecteur \mathbf{u} à partir du vecteur \mathbf{v} car \mathbf{v} a une infinité d'antécédents.

Projection dans le plan

Orthodiagonalisation de $P = nn^T$

La matrice P est symétrique, on peut donc l'orthodiagonaliser :

- Pn = n donc:
 - 1 est une valeur propre de P
 - Le sous-espace propre associé est $\operatorname{Im} \mathbf{P} = \operatorname{Vect}(\mathbf{n}) = \Delta$
- Soit ${f n}'=(-b,a)^T$ un vecteur unitaire orthogonal à ${f n}$ alors ${f Pn}'={f 0}_{\mathbb{R}^3}=0{f n}'$ donc :
 - 0 est une valeur propre de P
 - Le sous-espace propre associé est $\text{Ker } \mathbf{P} = \text{Vect}(\mathbf{n}')$

L'orthodiagonalisation de la matrice $P = nn^T$ s'écrit donc :

$$\mathbf{P} = \begin{pmatrix} a^2 & ab \\ ab & b^2 \end{pmatrix} = \begin{pmatrix} -b & a \\ a & b \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} -b & a \\ a & b \end{pmatrix}$$
axe de projection

173

Projection dans l'espace : projection orthogonale sur une droite

On considère une droite Δ vectorielle (c'est-à-dire passant par l'origine) et de vecteur directeur unitaire $\mathbf{n}=(a,b,c)^T$ ($\mathbf{n}^T\mathbf{n}=\|\mathbf{n}\|^2=a^2+b^2+c^2=1$).

Soit ${\bf u}$ un vecteur de l'espace ${\mathbb R}^3$ et ${\bf v}$ sa projection orthogonale sur la droite Δ . Le raisonnement fait précédemment pour la projection sur une droite du plan reste valable :

$$\mathbf{v} = \mathbf{P}\mathbf{u} \text{ avec } \mathbf{P} = \mathbf{n}\mathbf{n}^T = \begin{pmatrix} a^2 & ab & ac \\ ab & b^2 & bc \\ ac & bc & c^2 \end{pmatrix}$$

Projection dans l'espace : projection orthogonale sur une droite

Remarques importantes

- Les vecteurs colonnes \mathbf{c}_1 , \mathbf{c}_2 et \mathbf{c}_3 vérifient $bc\mathbf{c}_1 = ac\mathbf{c}_2 = ab\mathbf{c}_3$ donc :

$$\begin{cases} bc\mathbf{P}\mathbf{\varepsilon}_1 - ac\mathbf{P}\mathbf{\varepsilon}_2 = \mathbf{0} & \Leftrightarrow & \mathbf{P}(bc\mathbf{\varepsilon}_1 - ac\mathbf{\varepsilon}_2) = \mathbf{0} \\ bc\mathbf{P}\mathbf{\varepsilon}_1 - ab\mathbf{P}\mathbf{\varepsilon}_3 = \mathbf{0} & \Leftrightarrow & \mathbf{P}(bc\mathbf{\varepsilon}_1 - ab\mathbf{\varepsilon}_3) = \mathbf{0} \end{cases}$$

Donc:

$$\begin{cases} b\mathbf{\varepsilon}_1 - a\mathbf{\varepsilon}_2 = (b, -a, 0)^T \in \text{Ker } \mathbf{P} \\ c\mathbf{\varepsilon}_1 - a\mathbf{\varepsilon}_3 = (c, 0, -a)^T \in \text{Ker } \mathbf{P} \end{cases}$$

Finalement:

Ker **P** = Vect
$$((b, -a, 0)^T, (c, 0, -a)^T)$$
 = plan vectoriel orthogonal à Δ

Ker $\mathbf{P} \neq \{\mathbf{0}\}$, donc $\mathbf{P} = \mathbf{n}\mathbf{n}^T$ n'est pas inversible.

Projection dans l'espace : projection orthogonale sur une droite

Remarques importantes (suite)

- Les vecteurs colonnes sont proportionnels au vecteur $\mathbf{n}=(a,b,c)^T$ donc :

$$Im \mathbf{P} = Vect(\mathbf{n}) = \Delta$$

- Comme en dimension 2 on a $\mathbf{P}^2 = \mathbf{P}$.

- La matrice **P** est symétrique, elle est donc orthodiagonalisable.

Projection dans l'espace : projection orthogonale sur une droite

Exemple

Calculer la projection orthogonale du vecteur $\mathbf{u}=(-5,3,2)^T$ sur la droite vectorielle d'équation :

$$\begin{cases} x = t \\ y = -2t, & t \in \mathbb{R} \\ z = 2t \end{cases}$$

Solution

Un vecteur directeur de la droite $\mathbf{n}' = (1, -2, 2)^T$ donc un vecteur directeur unitaire est :

$$\mathbf{n} = \frac{\mathbf{n}'}{\|\mathbf{n}'\|} = \frac{1}{3}(1, -2, 2)^T$$

La projection orthogonale de ${f u}$ est donc :

$$\mathbf{v} = \mathbf{P}\mathbf{u}$$
 avec $\mathbf{P} = \mathbf{n}\mathbf{n}^T = \frac{1}{9} \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix} (1, -2, 2) = \frac{1}{9} \begin{pmatrix} 1 & -2 & 2 \\ -2 & 4 & -4 \\ 2 & -4 & 4 \end{pmatrix}$

Finalement:

$$\mathbf{v} = \frac{1}{9} \begin{pmatrix} 1 & -2 & 2 \\ -2 & 4 & -4 \\ 2 & -4 & 4 \end{pmatrix} \begin{pmatrix} -5 \\ 3 \\ 2 \end{pmatrix} = \frac{1}{9} \begin{pmatrix} -7 \\ 14 \\ -14 \end{pmatrix} = \frac{7}{9} \begin{pmatrix} -1 \\ 2 \\ -2 \end{pmatrix}$$

Projection dans l'espace : projection orthogonale sur un plan

On considère un plan Π vectoriel (c'est-à-dire passant par l'origine) défini par deux vecteurs orthogonaux et unitaires \mathbf{n}_1 et \mathbf{n}_2 . On note \mathbf{n} un vecteur normal unitaire au plan Π :

$$\begin{cases} & \mathbf{n}_1 = (a_1, b_1, c_1)^T & \text{avec} \quad a_1^2 + b_1^2 + c_1^2 = 1 \\ & \mathbf{n}_2 = (a_2, b_2, c_2)^T & \text{avec} \quad a_2^2 + b_2^2 + c_2^2 = 1 \\ & \mathbf{n}_1^T \mathbf{n}_2 = \mathbf{n}_2^T \mathbf{n}_1 = 0 \end{cases}$$

 $\begin{array}{c|c}
\mathbf{n} \text{ (vecteur normal à }\Pi\text{)} \\
\mathbf{v}_1 & \mathbf{v}_2 \\
\mathbf{v}_1 & \mathbf{v} = \mathbf{v}_1 + \mathbf{v}_2
\end{array}$

On cherche à déterminer la projection orthogonale d'un vecteur ${\bm u} \text{ de } \mathbb{R}^3 \text{ sur le plan } \Pi. \text{ On note :}$

- ${f v}_1$: projection orthogonale de ${f u}$ sur la droite de vecteur directeur ${f n}_1 \ m \to \ {f v}_1 = {f n}_1 {f n}_1^T {f u}$
- \mathbf{v}_2 : projection orthogonale de \mathbf{u} sur la droite de vecteur directeur $\mathbf{n}_2 \ \longrightarrow \ \mathbf{v}_2 = \mathbf{n}_2 \mathbf{n}_2^T \mathbf{u}$

Projection dans l'espace : projection orthogonale sur un plan

On a alors :
$$\mathbf{v}_1 + \mathbf{v}_2 = (\mathbf{n}_1 \mathbf{n}_1^T + \mathbf{n}_2 \mathbf{n}_2^T) \mathbf{u}$$

$$= \left[\begin{pmatrix} a_1 \\ b_1 \\ c_1 \end{pmatrix} (a_1, b_1 c_1) + \begin{pmatrix} a_2 \\ b_2 \\ c_2 \end{pmatrix} (a_2, b_2 c_2) \right] \mathbf{u}$$

$$= \begin{bmatrix} \begin{pmatrix} a_1^2 & a_1b_1 & a_1c_1 \\ a_1b_1 & b_1^2 & b_1c_1 \\ a_1c_1 & b_1c_1 & c_1^2 \end{pmatrix} + \begin{pmatrix} a_2^2 & a_2b_2 & a_2c_2 \\ a_2b_2 & b_2^2 & b_2c_2 \\ a_2c_2 & b_2c_2 & c_2^2 \end{pmatrix} \end{bmatrix} \mathbf{u}$$

$$= \begin{pmatrix} a_1^2 + a_2^2 & a_1b_1 + a_2b_2 & a_1c_1 + a_2c_2 \\ a_1b_1 + a_2b_2 & b_1^2 + b_2^2 & b_1c_1 + b_2c_2 \\ a_1c_1 + a_2c_2 & b_1c_1 + b_2c_2 & c_1^2 + c_2^2 \end{pmatrix} \mathbf{u}$$

$$= \begin{pmatrix} a_1 & a_2 \\ b_1 & b_2 \\ c_1 & c_2 \end{pmatrix} \begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{pmatrix} \mathbf{u}$$

On aurait pu aussi directement appliquer un résultat du calcul par blocs vu au chapitre I.

Finalement:

$$\mathbf{v}_1 + \mathbf{v}_2 = \mathbf{M}\mathbf{M}^T\mathbf{u}$$
 avec $\mathbf{M} = \begin{pmatrix} a_1 & a_2 \\ b_1 & b_2 \\ c_1 & c_2 \end{pmatrix}$ et $\mathbf{M}\mathbf{M}^T = \mathbf{n}_1\mathbf{n}_1^T + \mathbf{n}_2\mathbf{n}_2^T$

Projection dans l'espace : projection orthogonale sur un plan

Les vecteurs colonnes de M forme une base orthonormale donc $\mathbf{M}^T \mathbf{M} = \mathbf{I}$.

On peut le vérifier par un simple calcul par blocs :

$$\mathbf{M}^T \mathbf{M} = \begin{pmatrix} \mathbf{n}_1^T \\ \mathbf{n}_2^T \end{pmatrix} (\mathbf{n}_1 \ \mathbf{n}_2) = \begin{pmatrix} \mathbf{n}_1^T \mathbf{n}_1 & \mathbf{n}_1^T \mathbf{n}_2 \\ \mathbf{n}_2^T \mathbf{n}_1 & \mathbf{n}_2^T \mathbf{n}_2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Attention! M n'est pas pour autant une matrice orthogonale (M n'est pas carrée et $MM^T \neq I$)

Projection dans l'espace : projection orthogonale sur un plan

Vérifions maintenant que la matrice ${\bf P}={\bf M}{\bf M}^T$ est bien celle de la projection orthogonale sur le plan Π :

- $\mathbf{P}^2 = (\mathbf{M}\mathbf{M}^T)(\mathbf{M}\mathbf{M}^T) = \mathbf{M}(\mathbf{M}^T\mathbf{M})\mathbf{M}^T = \mathbf{M}\mathbf{M}^T = \mathbf{P}$ donc \mathbf{P} est bien une projection
- On pose ${\bf v}={\bf v}_1+{\bf v}_2={\bf Pu}$ montrons que ${\bf u}-{\bf v}$ est orthogonal au plan Π On remarque d'abord que ${\bf v}_1=({\bf n}_1^T{\bf u}){\bf n}_1$ et que ${\bf v}_2=({\bf n}_2^T{\bf u}){\bf n}_2$ ainsi :

$$\begin{cases} \mathbf{n}_1^T(\mathbf{u} - \mathbf{v}) = \mathbf{n}_1^T\mathbf{u} - \mathbf{n}_1^T(\mathbf{v}_1 + \mathbf{v}_2) = \mathbf{n}_1^T\mathbf{u} - (\mathbf{n}_1^T\mathbf{u})\mathbf{n}_1^T\mathbf{n}_1 - (\mathbf{n}_2^T\mathbf{u})\mathbf{n}_1^T\mathbf{n}_2 = 0 \\ \Rightarrow \mathbf{u} - \mathbf{v} \text{ orthogonal à } \mathbf{n}_1 \end{cases}$$

$$\mathbf{n}_2^T(\mathbf{u} - \mathbf{v}) = \mathbf{n}_2^T\mathbf{u} - \mathbf{n}_2^T(\mathbf{v}_1 + \mathbf{v}_2) = \mathbf{n}_2^T\mathbf{u} - (\mathbf{n}_1^T\mathbf{u})\mathbf{n}_2^T\mathbf{n}_1 - (\mathbf{n}_2^T\mathbf{u})\mathbf{n}_2^T\mathbf{n}_2 = 0$$

$$\Rightarrow \mathbf{u} - \mathbf{v} \text{ orthogonal à } \mathbf{n}_2$$

 $\mathbf{P} = \mathbf{M}\mathbf{M}^T$ est bien la matrice de projection orthogonale sur le plan Π .

Projection dans l'espace : projection orthogonale sur un plan

Remarque importante

$$\underbrace{\mathbf{n}_{1}\mathbf{n}_{1}^{T} + \mathbf{n}_{2}\mathbf{n}_{2}^{T}}_{\mathbf{P}} + \mathbf{n}\mathbf{n}^{T} = \begin{pmatrix} a_{1} \\ b_{1} \\ c_{1} \end{pmatrix} (a_{1}, b_{1}, c_{1}) + \begin{pmatrix} a_{2} \\ b_{2} \\ c_{2} \end{pmatrix} (a_{2}, b_{2}, c_{2}) + \begin{pmatrix} a \\ b \\ c \end{pmatrix} (a, b, c)$$

$$\underbrace{\begin{pmatrix} a_{1} & a_{2} & a \\ b_{1} & b_{2} & b \\ c & c & c \end{pmatrix}}_{\mathbf{P}} \begin{pmatrix} a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \end{pmatrix}$$
Voir calculations the content of the content of

 $= \mathbf{Q}\mathbf{Q}^T = \mathbf{I}$ car \mathbf{Q} est orthogonale (ses vecteurs colonnes forment une base orthonormée)

On en déduit que la matrice de projection orthogonale sur le plan Π est :

$$\mathbf{P} = \mathbf{I} - \mathbf{n}\mathbf{n}^T$$

où ${\bf n}$ est un vecteur normal unitaire du plan Π

Ou encore :
$$\mathbf{P} = \begin{pmatrix} 1 - a^2 & -ab & -ac \\ -ab & 1 - b^2 & -bc \\ -ac & -bc & 1 - c^2 \end{pmatrix}$$

Projection dans l'espace : projection orthogonale sur un plan

Orthodiagonalisation de $P = I - nn^T$

La matrice P est symétrique, on peut donc l'orthodiagonaliser :

- $\mathbf{P}\mathbf{n} = \mathbf{0}_{\mathbb{R}^3} = 0\mathbf{n}$ donc:
 - 0 est une valeur propre de P
 - Le sous-espace propre associé est Ker P = Vect(n)
- $\mathbf{P}\mathbf{n}_1 = \mathbf{n}_1$ et $\mathbf{P}\mathbf{n}_2 = \mathbf{n}_2$ donc:
 - 1 est une valeur propre (de multiplicité 2) de P
 - Le sous-espace propre associé est Im $P = \Pi$ (plan de projection)

L'orthodiagonalisation de la matrice $\mathbf{P} = \mathbf{I} - \mathbf{n}\mathbf{n}^T$ s'écrit donc :

$$\mathbf{P} = \begin{pmatrix} a_1 & a_2 & a \\ b_1 & b_2 & b \\ c_1 & c_2 & c \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a & b & c \end{pmatrix}$$

Exercice

On considère la matrice suivante :
$$\mathbf{A} = \frac{1}{6} \begin{pmatrix} 5 & -2 & 1 \\ -2 & 2 & 2 \\ 1 & 2 & 5 \end{pmatrix}$$

- 1) La matrice A est-elle celle d'une projection ? (justifier)
- 2) Quelle est la caractéristique de la transformation associée à la matrice **A** ? (c'est-à-dire axe de projection ou plan de projection)
- 3) En déduire une orthodiagonalisation de A.

Solution

Symétrie dans le plan

On considère une droite Δ vectorielle (c'est-à-dire passant par l'origine) et de vecteur directeur unitaire $\mathbf{n}=(a,b)^T$ (c'est-à-dire $\mathbf{n}^T\mathbf{n}=\|\mathbf{n}\|^2=a^2+b^2=1$):

$$\Delta: y = (\tan \theta)x$$

Soient ${\bf u}$ un vecteur du plan, ${\bf v}'$ sa projection orthogonale sur la droite Δ et ${\bf v}$ son image par la symétrie par rapport à Δ :

$$\mathbf{u} + \mathbf{v} = 2\mathbf{v}' \quad \Leftrightarrow \quad \mathbf{v} = 2\mathbf{v}' - \mathbf{u} \quad \Leftrightarrow \quad \mathbf{v} = 2\mathbf{n}\mathbf{n}^T\mathbf{u} - \mathbf{u} \quad \Leftrightarrow \quad \mathbf{V} = (2\mathbf{n}\mathbf{n}^T - \mathbf{I})\mathbf{u}$$

Symétrie dans le plan

La matrice de symétrie par rapport à une droite de vecteur directeur unitaire n s'écrit :

$$\mathbf{S} = 2\mathbf{n}\mathbf{n}^T - \mathbf{I}$$

Ou encore:

$$\mathbf{S} = \begin{pmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{pmatrix}$$

 $\mathbf{n} = (\cos\theta, \sin\theta)^T$

On a utilisé les formules trigonométriques :

$$2\cos^2\theta - 1 = \cos(2\theta)$$

$$2\sin^2\theta - 1 = -\cos(2\theta)$$

$$2\cos\theta\sin\theta = \sin(2\theta)$$

Symétrie dans le plan

Orthodiagonalisation de $S = 2nn^T - I$

La matrice S est symétrique, on peut donc l'orthodiagonaliser :

- $\mathbf{Sn} = \mathbf{n}$ donc:
 - 1 est une valeur propre de **S**
 - Le sous-espace propre associé est $Vect(\mathbf{n}) = \Delta$ (axe de symétrie)
- Soit $\mathbf{n}' = (-b, a)^T$ un vecteur unitaire orthogonal à Δ alors $\mathbf{Sn}' = -\mathbf{n}'$ donc :
 - -1 est une valeur propre de **S**
 - Le sous-espace propre associé est la droite vectorielle orthogonale à Δ

L'orthodiagonalisation de la matrice $\mathbf{S} = 2\mathbf{n}\mathbf{n}^T - \mathbf{I}$ s'écrit donc :

$$\mathbf{S} = \begin{pmatrix} -b & a \\ a & b \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} -b & a \\ a & b \end{pmatrix}$$

$$\stackrel{\uparrow}{axe \ de \ symétrie}$$

Symétrie dans le plan

Remarques importantes

- $\det \mathbf{S} = -1$ (produit des valeurs propres) donc \mathbf{S} est inversible donc $\ker \mathbf{S} = \{\mathbf{0}_{\mathbb{R}^2}\}$ et $\operatorname{Im} \mathbf{S} = \mathbb{R}^2$.

Ces 2 derniers résultats sont assez intuitifs :

- aucun vecteur autre que le vecteur nul n'a de symétrique nul d'où $\operatorname{Ker} \mathbf{S} = \{\mathbf{0}_{\mathbb{R}^2}\}$
- tout vecteur de \mathbb{R}^2 est le symétrique d'un vecteur de \mathbb{R}^2
- Soit \mathbf{v} le symétrique de \mathbf{u} ($\mathbf{v} = \mathbf{S}\mathbf{u}$) alors \mathbf{u} est aussi le symétrique de \mathbf{v} ($\mathbf{u} = \mathbf{S}\mathbf{v}$), donc $\mathbf{S}^2 = \mathbf{I}$.

Ce résultat se démontre aussi de la façon suivante :

$$\left(\mathbf{n}\mathbf{n}^{T}\right)^{2}=\mathbf{n}\mathbf{n}^{T}$$

$$S^2 = (2nn^T - I)(2nn^T - I) = 4(nn^T)^2 - 2nn^T - 2nn^T + I = 4nn^T - 4nn^T + I = I$$

Symétrie dans le plan

Remarques importantes (suite)

- Soit $\mathbf{v} = \mathbf{S}\mathbf{u}$ alors:

$$\|\mathbf{v}\|^2 = \mathbf{v}^T \mathbf{v} = (\mathbf{S}\mathbf{u})^T \mathbf{S}\mathbf{u} = \mathbf{u}^T \mathbf{S}^T \mathbf{S}\mathbf{u} = \mathbf{u}^T \mathbf{S}^2 \mathbf{u} = \mathbf{u}^T \mathbf{u} = \|\mathbf{u}\|^2$$

La symétrie conserve la norme, et même plus généralement le produit scalaire, c'est-à-dire :

Si
$$\mathbf{v}_1 = \mathbf{S}\mathbf{u}_1$$
 et $\mathbf{v}_2 = \mathbf{S}\mathbf{u}_2$ alors $\mathbf{v}_1^T\mathbf{v}_2 = \mathbf{u}_1^T\mathbf{u}_2$

On dit le la symétrie est une **isométrie**.

Symétrie dans l'espace par rapport à une droite

On considère une droite Δ vectorielle (c'est-à-dire passant par l'origine) et de vecteur directeur unitaire $\mathbf{n}=(a,b,c)^T$ ($\mathbf{n}^T\mathbf{n}=\|\mathbf{n}\|^2=a^2+b^2+c^2=1$).

Soit ${\bf u}$ un vecteur de l'espace ${\mathbb R}^3$ et ${\bf v}$ son symétrique par rapport à la droite Δ . Le raisonnement fait précédemment pour la symétrie dans le plan par rapport à une droite reste valable et la matrice de symétrie s'écrit :

$$\mathbf{S} = 2\mathbf{n}\mathbf{n}^T - \mathbf{I}$$

Comme en dimension 2:

- **S** est symétrique
- $S^2 = I$
- S est une isométrie

Attention \mathbf{v} n'est pas dans le plan (0xy)

Symétrie dans l'espace par rapport à une droite

Orthodiagonalisation de $S = 2nn^T - I$

La matrice S est symétrique, on peut donc l'orthodiagonaliser :

- Sn = n donc:
 - 1 est une valeur propre de S
 - Le sous-espace propre associé est ${
 m Vect}({f n})=\Delta$ (axe de symétrie)

• On considère le plan vectoriel orthogonal à l'axe de symétrie Δ .

Soit $\mathbf{n}_1=(a_1,b_1,c_1)^T$ et $\mathbf{n}_2=(a_2,b_2,c_2)^T$ deux vecteurs unitaires orthogonaux appartenant à ce plan alors $\mathbf{S}\mathbf{n}_1=-\mathbf{n}_1$ et $\mathbf{S}\mathbf{n}_2=-\mathbf{n}_2$ donc :

- -1 est une valeur propre (de multiplicité 2) de $\bf S$
- Le sous-espace propre associé est le plan vectoriel orthogonal à Δ

Symétrie dans l'espace par rapport à une droite

L'orthodiagonalisation de la matrice $\mathbf{S} = 2\mathbf{n}\mathbf{n}^T - \mathbf{I}$ s'écrit donc :

$$\mathbf{S} = \begin{pmatrix} a_1 & a_2 & a \\ b_1 & b_2 & b \\ c_1 & c_2 & c \end{pmatrix} \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a & b & c \end{pmatrix}$$
axe de symétrie

Remarque

- $\det \mathbf{S}=1$ (produit des valeurs propres) donc \mathbf{S} est inversible donc $\ker \mathbf{S}=\{\mathbf{0}_{\mathbb{R}^3}\}$ et $\operatorname{Im}\mathbf{S}=\mathbb{R}^3$.

Attention $\det \mathbf{S} = -\mathbf{1}$ en dimension 2

Exemple

On considère la symétrie axiale dont la matrice est la suivante :

$$\mathbf{A} = \frac{1}{7} \begin{pmatrix} -6 & -2 & 3 \\ -2 & -3 & -6 \\ 3 & -6 & 2 \end{pmatrix}$$

Déterminer l'axe de symétrie.

Solution

On sait que **A** peut s'écrire sous la forme $\mathbf{A} = 2\mathbf{n}\mathbf{n}^T - \mathbf{I}$ où $\mathbf{n} = (a, b, c)^T$ est le vecteur directeur (de norme 1) de l'axe de symétrie. Donc :

$$\mathbf{n}\mathbf{n}^{T} = \frac{1}{2}(\mathbf{A} + \mathbf{I}) = \frac{1}{14} \begin{pmatrix} 1 & -2 & 3 \\ -2 & 4 & -6 \\ 3 & -6 & 9 \end{pmatrix}$$

Par ailleurs:

$$\mathbf{n}\mathbf{n}^T = \begin{pmatrix} a^2 & ab & ac \\ ab & b^2 & bc \\ ac & bc & c^2 \end{pmatrix}$$

Donc, par identification : $a^2=\frac{1}{14}$, prenons arbitrairement $a=\frac{1}{\sqrt{14}}$, donc $b=-\frac{2}{\sqrt{14}}$ et $c=\frac{3}{\sqrt{14}}$

L'axe de symétrie a donc pour vecteur directeur : $\mathbf{n} = \frac{1}{\sqrt{14}}(1, -2, 3)^T$

Symétrie dans l'espace par rapport à un plan

On considère un plan Π vectoriel (c'est-à-dire passant par l'origine) défini par deux vecteurs orthogonaux et unitaires \mathbf{n}_1 et \mathbf{n}_2 . On note \mathbf{n} un vecteur normal unitaire au plan Π .

On cherche à déterminer l'image d'un vecteur ${\bf u}$ de ${\mathbb R}^3$ par la symétrie par rapport au plan Π de vecteur normal unitaire ${\bf u}$:

$$\mathbf{u} + \mathbf{v} = 2\mathbf{v}' \iff \mathbf{v} = 2\mathbf{v}' - \mathbf{u} \iff \mathbf{v} = 2(\mathbf{I} - \mathbf{n}\mathbf{n}^T)\mathbf{u} - \mathbf{u}$$

 $\Leftrightarrow \mathbf{v} = (\mathbf{I} - 2\mathbf{n}\mathbf{n}^T)\mathbf{u}$

La matrice de symétrie par rapport au plan de vecteur normal unitaire ${f n}$ s'écrit :

$$\mathbf{S} = \mathbf{I} - 2\mathbf{n}\mathbf{n}^T$$

- **S** est symétrique
- $S^2 = I$
- **S** est une isométrie

Symétrie dans l'espace par rapport à un plan

Attention! Ne pas confondre:

- symétrie dans l'espace par rapport à une droite $\Delta: \mathbf{S} = 2\mathbf{n}\mathbf{n}^T \mathbf{I}$ $\leftarrow \mathbf{n}$ est un vecteur directeur unitaire de Δ
- symétrie dans l'espace par rapport à un plan Π : $\mathbf{S} = \mathbf{I} 2\mathbf{n}\mathbf{n}^T$ \leftarrow \mathbf{n} est un vecteur normal unitaire de Π

Orthodiagonalisation de $S = I - 2nn^T$

La matrice ${\bf S}$ est symétrique, on peut donc l'orthodiagonaliser :

- $\mathbf{Sn} = -\mathbf{n}$ donc:
 - -1 est une valeur propre de **S**
 - Le sous-espace propre associé est $Vect(\mathbf{n})$ (droite vectorielle orthogonale à Π)
- $\mathbf{S}\mathbf{n}_1 = \mathbf{n}_1$ et $\mathbf{S}\mathbf{n}_2 = \mathbf{n}_2$
 - 1 est une valeur propre (de multiplicité 2) de **S**
 - Le sous-espace propre associé est $\mathrm{Vect}(\mathbf{n}_1,\mathbf{n}_2)=\Pi$ (plan de symétrie)

Symétrie dans l'espace par rapport à un plan

L'orthodiagonalisation de la matrice $\mathbf{S} = \mathbf{I} - 2\mathbf{n}\mathbf{n}^T$ s'écrit donc :

$$\mathbf{S} = \begin{pmatrix} a & a_1 & a_2 \\ b & b_1 & b_2 \\ c & c_1 & c_2 \end{pmatrix} \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a & b & c \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{pmatrix}$$

$$\mathbf{A}$$
axe orthogonal au plan symétrie

Remarque

- $\det \mathbf{S} = -1$ (produit des valeurs propres) donc \mathbf{S} est inversible donc $\ker \mathbf{S} = \{\mathbf{0}_{\mathbb{R}^3}\}$ et $\operatorname{Im} \mathbf{S} = \mathbb{R}^3$.

Exercice 1

On considère la matrice suivante : $\mathbf{A} = \frac{1}{3} \begin{pmatrix} -2 & 2 & 1 \\ 2 & 1 & 2 \\ 1 & 2 & -2 \end{pmatrix}$

- 1) La matrice A est-elle celle d'une projection ou celle d'une symétrie ? (justifier)
- 2) Quelle est la caractéristique de la transformation associée à la matrice **A** ? (c'est-à-dire axe de projection ou plan de projection ou axe de symétrie ou plan de symétrie selon le résultat trouvé à la question précédente)
- 3) En déduire une orthodiagonalisation de A.

Solution

2. Symétrie

Exercice 2

On considère la matrice suivante : $\mathbf{A} = -\frac{1}{3} \begin{pmatrix} -1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1 \end{pmatrix}$

- 1) La matrice A est-elle celle d'une projection ou celle d'une symétrie ? (justifier)
- 2) Quelle est la caractéristique de la transformation associée à la matrice **A** ? (c'est-à-dire axe de projection ou plan de projection ou axe de symétrie ou plan de symétrie selon le résultat trouvé à la question précédente)
- 3) En déduire une diagonalisation de A.

Solution

- 1) On remarque que $\mathbf{A}^2 = \frac{1}{9} \begin{pmatrix} 9 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 9 \end{pmatrix} = \mathbf{I}$ donc \mathbf{A} est la matrice d'une symétrie.
- 2) On cherche les vecteurs ${\bf n}$ tels que ${\bf An}={\bf n}$ (cela revient à rechercher le sous-espace propre associé à la valeur propre $\lambda=1$ de ${\bf A}$) : ${\bf An}={\bf n}\Leftrightarrow ({\bf A}-{\bf I}){\bf n}={\bf 0}$

Cela revient donc à calculer le noyau de $\mathbf{B} = \mathbf{A} - \mathbf{I} = -\frac{1}{3} \begin{pmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 & 2 \end{pmatrix}$.

2. Symétrie

On remarque que les colonnes de **B** vérifient ${\bf c}_1={\bf c}_2={\bf c}_3$, en d'autres termes :

$$\begin{cases} \mathbf{c}_1 - \mathbf{c}_2 = \mathbf{0} \\ \mathbf{c}_1 - \mathbf{c}_3 = \mathbf{0} \end{cases} \Leftrightarrow \begin{cases} \mathbf{B}(\mathbf{\epsilon}_1 - \mathbf{\epsilon}_2) = \mathbf{0} \\ \mathbf{B}(\mathbf{\epsilon}_1 - \mathbf{\epsilon}_3) = \mathbf{0} \end{cases}$$

Donc Ker $\mathbf{B} = \text{Vect}(\mathbf{v_1}, \mathbf{v_2})$ où $\mathbf{v_1} = \boldsymbol{\varepsilon}_1 - \boldsymbol{\varepsilon}_2 = (1, -1, 0)^T$ et $\mathbf{v_2} = \boldsymbol{\varepsilon}_1 - \boldsymbol{\varepsilon}_3 = (1, 0, -1)^T$.

Ainsi dim Ker $\mathbf{B}=2$ donc \mathbf{A} est une symétrie par rapport au plan $\Pi=\mathrm{Vect}(\mathbf{v_1},\mathbf{v_2})$.

3) D'après ce qui précède $\mathbf{n}_1 = \frac{1}{\sqrt{2}}(1,-1,0)^T$ et $\mathbf{n}_1 = \frac{1}{\sqrt{2}}(1,0,-1)^T$ sont deux vecteurs propres unitaires (et orthogonaux) associée à la valeur propre $\lambda_1 = 1$. L'autre valeur propre est $\lambda_2 = -1$ et son sous-espace propre est engendré par un vecteur \mathbf{n} (unitaire) normal au plan de symétrie Π . $\mathbf{n} = (a,b,c)^T$ doit être à la fois orthogonal à \mathbf{n}_1 et \mathbf{n}_2 donc :

$$\begin{cases} a - b = 0 \\ a - c = 0 \end{cases} \Leftrightarrow a = b = c = \frac{1}{\sqrt{3}}$$

2. Symétrie

La diagonalisation de A est donc :

$$\mathbf{A} = -\frac{1}{3} \begin{pmatrix} -1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{3}} \\ 0 & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \end{pmatrix}$$

Rotation dans le plan

On considère un vecteur $\mathbf{u}=(u_1,u_2)^T$ et un vecteur $\mathbf{v}=(v_1,v_2)^T$ tel que :

- $\|v\| = \|u\|$
- $(\mathbf{u},\mathbf{v}) = \theta$

On cherche la matrice (isométrie) telle que $\mathbf{v} = \mathbf{R}\mathbf{u}$:

$$\begin{cases} \mathbf{v}_{1} = \|\mathbf{v}\| \cos(\theta + \varphi) \\ \mathbf{v}_{2} = \|\mathbf{v}\| \sin(\theta + \varphi) \end{cases} \Leftrightarrow \begin{cases} \mathbf{v}_{1} = \|\mathbf{u}\| (\cos\theta\cos\varphi - \sin\theta\sin\varphi) \\ \mathbf{v}_{2} = \|\mathbf{u}\| (\sin\theta\cos\varphi + \cos\theta\sin\varphi) \end{cases}$$

$$\Leftrightarrow \begin{cases} \mathbf{v}_{1} = \|\mathbf{u}\| \cos\varphi \times \cos\theta - \|\mathbf{u}\| \sin\varphi \times \sin\theta \\ \mathbf{v}_{2} = \|\mathbf{u}\| \cos\varphi \times \sin\theta + \|\mathbf{u}\| \sin\varphi \times \cos\theta \end{cases}$$

$$\Leftrightarrow \begin{cases} \mathbf{v}_{1} = \mathbf{u}_{1} \times \cos\varphi - \mathbf{u}_{2} \times \sin\theta \\ \mathbf{v}_{2} = \mathbf{u}_{1} \times \sin\theta + \mathbf{u}_{2} \times \cos\theta \end{cases}$$

$$\Leftrightarrow \begin{pmatrix} \mathbf{v}_{1} \\ \mathbf{v}_{2} \end{pmatrix} = \begin{pmatrix} \cos\theta - \sin\theta \\ \sin\theta - \cos\theta \end{pmatrix} \begin{pmatrix} \mathbf{u}_{1} \\ \mathbf{u}_{2} \end{pmatrix}$$

La matrice de rotation d'angle θ s'écrit donc :

$$\mathbf{R} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

Rotation dans le plan

Remarques importantes

- $\det \mathbf{R} = \cos^2 \theta + \sin^2 \theta = 1$
- Les vecteurs colonnes de \mathbf{R} forment une base orthonormée de \mathbb{R}^2 donc \mathbf{R} est une matrice orthogonale : $\mathbf{R}\mathbf{R}^T = \mathbf{R}^T\mathbf{R} = \mathbf{I}$ donc \mathbf{R} est une isométrie ; en effet :

$$(\mathbf{R}\mathbf{u_1})^T \mathbf{R}\mathbf{u_2} = \mathbf{u_1}^T \mathbf{R}^T \mathbf{R}\mathbf{u_2} = \mathbf{u_1}^T \mathbf{u_2}$$
 (conservation du produit scalaire)

- On en déduit que la matrice **R** est inversible donc :

$$\operatorname{Ker} \mathbf{R} = \{\mathbf{0}_{\mathbb{R}^2}\}$$
 et $\operatorname{Im} \mathbf{R} = \mathbb{R}^2$

Ces 2 derniers résultats sont assez intuitifs :

- aucun vecteur, autre que le vecteur nul, n'a pour image le vecteur nul, d'où $\operatorname{Ker} \mathbf{R} = \{\mathbf{0}_{\mathbb{R}^2}\}$
- tout vecteur de \mathbb{R}^2 est l'image d'un autre vecteur de \mathbb{R}^2

Rotation dans le plan

Remarques importantes (suite)

La matrice inverse de R est :

$$\mathbf{R}^{-1} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}^{-1} = \frac{1}{\det \mathbf{R}} \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} = \begin{pmatrix} \cos(-\theta) & -\sin(-\theta) \\ \sin(-\theta) & \cos(-\theta) \end{pmatrix}$$

La matrice inverse de ${f R}$ est donc la matrice de rotation d'un angle - heta :

$$\mathbf{R}_{\theta}^{-1} = \mathbf{R}_{-\theta}$$

Rotation dans le plan

Diagonalisation de $R_{ heta}$

• Les valeurs propres de ${f R}_{ heta}$ vérifient :

$$\begin{cases} \lambda_1 + \lambda_2 = \operatorname{tr} \mathbf{R}_{\theta} \\ \lambda_1 \lambda_2 = \det \mathbf{R}_{\theta} \end{cases} \Leftrightarrow \begin{cases} \lambda_1 + \lambda_2 = 2 \cos \theta \\ \lambda_1 \lambda_2 = 1 \end{cases} \Leftrightarrow \lambda_1^2 - 2 \cos \theta \lambda_1 + 1 = 0$$

Discriminant : $\Delta = 4\cos^2\theta - 4 = -4\sin^2\theta = (2i\sin\theta)^2 < 0$ donc $\lambda_2 = \overline{\lambda_1}$ (complexe conjugué)

$$\lambda_1 = \frac{1}{2}(2\cos\theta - 2i\sin\theta) = e^{-i\theta}$$
 et $\lambda_2 = e^{i\theta}$

Rotation dans le plan

- Vecteurs propres de \mathbf{R}_{θ} :
 - Soit $\mathbf{u}_1 = (x, y)^T$ un vecteur tel que $\mathbf{R}_{\theta} \mathbf{u}_1 = e^{-i\theta} \mathbf{u}_1$ alors :

$$\begin{cases} (\cos \theta - e^{-i\theta})x - \sin \theta \ y = 0 \\ \sin \theta \ x + (\cos \theta - e^{-i\theta})y -= 0 \end{cases} \Leftrightarrow \begin{cases} i \sin \theta \ x - \sin \theta \ y = 0 \\ \sin \theta \ x + i \sin \theta \ y -= 0 \end{cases}$$
$$\Leftrightarrow y = ix \Leftrightarrow \mathbf{u}_1 = (1, i)^T$$

- Soit $\mathbf{u}_2 = (x, y)^T$ un vecteur tel que $\mathbf{R}_{\theta} \mathbf{u}_2 = e^{i\theta} \mathbf{u}_2$ alors :

$$\begin{cases} (\cos \theta - e^{i\theta})x - \sin \theta \ y = 0 \\ \sin \theta \ x + (\cos \theta - e^{i\theta})y -= 0 \end{cases} \Leftrightarrow \begin{cases} -i \sin \theta \ x - \sin \theta \ y = 0 \\ \sin \theta \ x - i \sin \theta \ y -= 0 \end{cases}$$
$$\Leftrightarrow y = -iy \Leftrightarrow \mathbf{u}_2 = (1, -i)^T$$

• Finalement :
$$\mathbf{R}_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ i & -i \end{pmatrix} \begin{pmatrix} e^{-i\theta} & 0 \\ 0 & e^{i\theta} \end{pmatrix} \begin{pmatrix} 1 & 1 \\ i & -i \end{pmatrix}^{-1}$$

Rotation dans le plan

Propriétés de \mathbf{R}_{θ} :

$$\mathbf{R}_{\theta_1 + \theta_2} = \mathbf{R}_{\theta_1} \mathbf{R}_{\theta_2}$$

$$\mathbf{R}_{\theta_1 - \theta_2} = \mathbf{R}_{\theta_1} \mathbf{R}_{-\theta_2} = \mathbf{R}_{\theta_1} \mathbf{R}_{\theta_2}^{-1}$$

Démonstration

On utilise la formule de diagonalisation précédente

$$\begin{split} \mathbf{R}_{\theta_1} \mathbf{R}_{\theta_2} &= \begin{pmatrix} 1 & 1 \\ i & -i \end{pmatrix} \begin{pmatrix} e^{-i\theta_1} & 0 \\ 0 & e^{i\theta_1} \end{pmatrix} \begin{pmatrix} 1 & 1 \\ i & -i \end{pmatrix}^{-1} \begin{pmatrix} 1 & 1 \\ i & -i \end{pmatrix} \begin{pmatrix} e^{-i\theta_2} & 0 \\ 0 & e^{i\theta_2} \end{pmatrix} \begin{pmatrix} 1 & 1 \\ i & -i \end{pmatrix}^{-1} \\ &= \begin{pmatrix} 1 & 1 \\ i & -i \end{pmatrix} \begin{pmatrix} e^{-i\theta_1} e^{-i\theta_2} & 0 \\ 0 & e^{i\theta_1} e^{i\theta_2} \end{pmatrix} \begin{pmatrix} 1 & 1 \\ i & -i \end{pmatrix}^{-1} \\ &= \begin{pmatrix} 1 & 1 \\ i & -i \end{pmatrix} \begin{pmatrix} e^{-i(\theta_1 + \theta_2)} & 0 \\ 0 & e^{i(\theta_1 + \theta_2)} \end{pmatrix} \begin{pmatrix} 1 & 1 \\ i & -i \end{pmatrix}^{-1} = \mathbf{R}_{\theta_1 + \theta_2} \end{split}$$

Rotation dans le plan

Autre propriété de R_{θ} :

Soit $\mathbf{n} = (a, b)^T$ un vecteur unitaire du plan :

• Calculons le produit scalaire de ${\bf n}$ par ${\bf R}_{\theta}{\bf n}$:

$$\mathbf{n}^T \mathbf{R}_{\theta} \mathbf{n} = (a \quad b) \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = (a \quad b) \begin{pmatrix} a \cos \theta - b \sin \theta \\ a \sin \theta + b \cos \theta \end{pmatrix} = a^2 \cos \theta + b^2 \cos \theta = \cos \theta$$

• Calculons le déterminant de la matrice par bloc $(\mathbf{n}|\mathbf{R}_{\theta}\mathbf{n})$:

$$\det(\mathbf{n}|\mathbf{R}_{\theta}\mathbf{n}) = \begin{vmatrix} a & a\cos\theta - b\sin\theta \\ b & a\sin\theta + b\cos\theta \end{vmatrix} = a^2\sin\theta + ab\cos\theta - ba\cos\theta + b^2\sin\theta = \sin\theta$$

On pourra retenir que si \mathbf{R}_{θ} est une rotation du plan d'angle θ et si \mathbf{n} est un vecteur unitaire alors :

$$\cos\theta = \mathbf{n}^T \mathbf{R}_{\theta} \mathbf{n}$$

$$\sin\theta = \det(\mathbf{n}|\mathbf{R}_{\theta}\mathbf{n})$$

Ces formules ne dépendent pas du choix des composantes de **n**

Rotation dans le plan

Rotation et exponentielle matricielle

On considère une rotation d'angle heta :

$$\mathbf{R}_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

On rappelle que:

$$\cos \theta = 1 - \frac{1}{2!}\theta^2 + \frac{1}{4!}\theta^4 - \dots + \frac{(-1)^n}{(2n)!}\theta^{2n} + \dots$$

$$\sin \theta = \theta - \frac{1}{3!}\theta^3 + \frac{1}{5!}\theta^5 - \dots + \frac{(-1)^n}{(2n)! + 1}\theta^{2n+1} + \dots$$

Donc:

$$\mathbf{R}_{\theta} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & -\theta \\ \theta & 0 \end{pmatrix} + \begin{pmatrix} -\theta^2/2! & 0 \\ 0 & -\theta^2/2! \end{pmatrix} + \begin{pmatrix} 0 & \theta^3/3! \\ -\theta^3/3! & 0 \end{pmatrix} + \begin{pmatrix} \theta^4/4! & 0 \\ 0 & \theta^4/4! \end{pmatrix} + \cdots$$

Rotation dans le plan

On introduit la matrice antisymétrique : $\mathbf{J} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$

On remarque que:

•
$$\mathbf{J}^2 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = -\mathbf{I}$$
 (équivalent matriciel de l'imaginaire pur des nombre complexe $i^2 = -1$)

$$\mathbf{J} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} \cos\left(\frac{\pi}{2}\right) & -\sin\left(\frac{\pi}{2}\right) \\ \sin\left(\frac{\pi}{2}\right) & \cos\left(\frac{\pi}{2}\right) \end{pmatrix} = \mathbf{R}_{\pi/2} : \text{rotation d'angle } \frac{\pi}{2} \qquad \text{(\'equivalent matriciel de } i = e^{i\frac{\pi}{2}} \text{)}$$

D'après la formule de diagonalisation :

$$\mathbf{J} = \mathbf{R}_{\pi/2} = \begin{pmatrix} 1 & 1 \\ i & -i \end{pmatrix} \begin{pmatrix} -i & 0 \\ 0 & i \end{pmatrix} \begin{pmatrix} 1 & 1 \\ i & -i \end{pmatrix}^{-1} \quad (\Rightarrow \text{ les valeurs propres de } \mathbf{J} \text{ sont } -i \text{ et } i)$$

• De $J^2 = -I$ on déduit : $J^3 = -J$, $J^4 = I$, $J^5 = J$ etc ...

Rotation dans le plan

Ainsi:
$$\mathbf{R}_{\theta} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \theta \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} + \frac{\theta^2}{2!} \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} + \frac{\theta^3}{3!} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} + \frac{\theta^4}{4!} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \cdots$$

$$\mathbf{R}_{\theta} = \mathbf{I} + \theta \mathbf{J} + \frac{\theta^{2}}{2!} \mathbf{J}^{2} + \frac{\theta^{3}}{3!} \mathbf{J}^{3} + \frac{\theta^{4}}{4!} \mathbf{J}^{4} + \dots = \sum_{n=0}^{+\infty} \frac{1}{n!} (\theta \mathbf{J})^{n} = e^{\theta \mathbf{J}}$$

On retiendra que toute matrice de rotation d'angle heta est l'exponentielle d'une matrice antisymétrique :

$$\mathbf{R}_{ heta} = e^{ heta \mathbf{J}} \quad ext{avec} \quad \mathbf{J} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

On retrouve alors facilement les propriétés vues précédemment :

$$\mathbf{R}_{\theta_1 + \theta_2} = e^{(\theta_1 + \theta_2)\mathbf{J}} = e^{\theta_1 \mathbf{J}} e^{\theta_2 \mathbf{J}} = \mathbf{R}_{\theta_1} \mathbf{R}_{\theta_2}$$

$$\mathbf{R}_{\theta}^{-1} = \left(e^{\theta \mathbf{J}}\right)^{-1} = e^{-\theta \mathbf{J}} = \mathbf{R}_{-\theta}$$

Rotation dans l'espace

Nous avons vu que les rotations dans le plan peuvent s'écrire comme l'exponentielle d'une matrice antisymétrique. Ceci est-il encore vrai pour les rotations dans l'espace ?

Pour répondre à cette question on introduit la matrice $\Lambda_{\mathbf{n}}$ associée au produit vectoriel d'un vecteur unitaire $\mathbf{n} = (a, b, c)^T$ et d'un vecteur quelconque $\mathbf{u} = (x, y, z)^T$:

$$\mathbf{\Lambda_{n}}\mathbf{u} \stackrel{\text{def}}{=} \mathbf{n} \wedge \mathbf{u} = \begin{pmatrix} a \\ b \\ c \end{pmatrix} \wedge \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} bz - cy \\ cx - az \\ ay - bx \end{pmatrix} = \begin{pmatrix} 0 & -c & b \\ c & 0 & -a \\ -b & a & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$\mathbf{\Lambda_{n}} \qquad \mathbf{u}$$

La matrice Λ_n est <u>antisymétrique</u> et vérifie : $\Lambda_n^3 = -\Lambda_n$

Attention $\Lambda_{\mathbf{n}}^2 \neq -\mathbf{I}$ contrairement à $\mathbf{J}^2 = -\mathbf{I}$ en dimension 2

On peut alors montrer, à l'aide du même type de calcul vu pour les rotations du plan (c'est-à-dire en utilisant les formules de Taylor de cos et sin) que toute rotation $\mathbf{R}_{\mathbf{n},\theta}$ d'axe \mathbf{n} et d'angle θ peut s'écrire sous la forme :

$$\mathbf{R}_{\mathbf{n},\theta} = e^{\theta \mathbf{\Lambda}_{\mathbf{n}}}$$
 avec $\mathbf{\Lambda}_{\mathbf{n}} = \begin{pmatrix} 0 & -c & b \\ c & 0 & -a \\ -b & a & 0 \end{pmatrix}$ et \mathbf{n} unitaire

Rotation dans l'espace

Diagonalisation de $\mathbf{R}_{\mathbf{n},\theta}=e^{\, heta\Lambda_{\mathbf{n}}}$

ullet Calculons d'abord les valeurs propres de Λ_n :

On a vu que $\Lambda_n^3+\Lambda_n=0$. Ainsi, d'après le théorème de Cayley-Hamilton, le polynôme caractéristique de Λ_n est :

$$P(x) = x^3 + x = x(x^2 + 1) = x(x + i)(x - i)$$

Les valeurs propres de $\Lambda_{\mathbf{n}}$ sont donc : $\mu_1=0$, $\mu_2=-i$ et $\mu_3=i$

• On en déduit les valeurs propres λ_k de $\mathbf{R}_{\mathbf{n},\theta}=e^{\theta\mathbf{\Lambda}_{\mathbf{n}}}$ $(\lambda_k=e^{\theta\mu_k})$:

$$\lambda_1 = 1$$
, $\lambda_2 = e^{-i\theta}$, $\lambda_3 = e^{i\theta}$

Rotation dans l'espace

- Le vecteur directeur de l'axe de rotation est invariant, c'est-à-dire ${\bf R}_{{\bf n},\theta}{\bf n}={\bf n}$, c'est donc un vecteur propre associé à la valeur propre réelle $\lambda_1=1$ (les vecteurs propres associés aux valeurs propres complexes n'ont pas d'interprétation géométrique).
- On en déduit le déterminant de $\mathbf{R}_{\mathbf{n},\theta}$ (produit des valeurs propres) :

$$\det \mathbf{R}_{\mathbf{n},\theta} = 1$$

ainsi que la trace (somme des valeurs propres) :

$$\operatorname{tr} \mathbf{R}_{\mathbf{n},\theta} = 1 + 2\cos\theta$$

Rotation dans l'espace

Formule de Rodrigues (mathématicien français, 1795 – 1851)

La formule ${f R}_{{f n}, heta}=e^{ heta {f \Lambda}_{f n}}$ est théorique ; dans la pratique on utilisera plutôt la formule de Rodrigues :

$$\mathbf{R}_{\mathbf{n},\theta} = \mathbf{I} + \sin\theta \,\mathbf{\Lambda}_{\mathbf{n}} + (1 - \cos\theta)\mathbf{\Lambda}_{\mathbf{n}}^{2}$$

Formule de Rodrigues

Démonstration

$$\mathbf{R}_{\mathbf{n},\theta} = e^{\theta \Lambda_{\mathbf{n}}} = \sum_{k=0}^{+\infty} \frac{1}{k!} (\theta \Lambda_{\mathbf{n}})^k = \mathbf{I} + \theta \Lambda_{\mathbf{n}} + \frac{1}{2!} (\theta \Lambda_{\mathbf{n}})^2 + \frac{1}{3!} (\theta \Lambda_{\mathbf{n}})^3 + \frac{1}{4!} (\theta \Lambda_{\mathbf{n}})^4 + \frac{1}{5!} (\theta \Lambda_{\mathbf{n}})^5 + \cdots$$

$$= \left(\mathbf{I} + \frac{1}{2!} (\theta \Lambda_{\mathbf{n}})^2 + \frac{1}{4!} (\theta \Lambda_{\mathbf{n}})^4 + \frac{1}{6!} (\theta \Lambda_{\mathbf{n}})^6 + \cdots \right) + \left(\theta \Lambda_{\mathbf{n}} + \frac{1}{3!} (\theta \Lambda_{\mathbf{n}})^3 + \frac{1}{5!} (\theta \Lambda_{\mathbf{n}})^5 + \cdots \right)$$

Rotation dans l'espace

Mais $\Lambda_n^3 = -\Lambda_n$, $\Lambda_n^4 = -\Lambda_n^2$, $\Lambda_n^5 = \Lambda_n$, $\Lambda_n^6 = \Lambda_n^2$ etc ... De façon plus générale :

$$\Lambda_{\mathbf{n}}^{2k} = (-1)^{k+1} \Lambda_{\mathbf{n}}^2$$
 et $\Lambda_{\mathbf{n}}^{2k+1} = (-1)^k \Lambda_{\mathbf{n}}$

Donc:

$$\mathbf{R}_{\mathbf{n},\theta} = \left(\mathbf{I} + \frac{1}{2!}\theta^2 \mathbf{\Lambda}_{\mathbf{n}}^2 - \frac{1}{4!}\theta^4 \mathbf{\Lambda}_{\mathbf{n}}^2 + \frac{1}{6!}\theta^6 \mathbf{\Lambda}_{\mathbf{n}}^2 + \cdots\right) + \left(\theta \mathbf{\Lambda}_{\mathbf{n}} - \frac{1}{3!}\theta^3 \mathbf{\Lambda}_{\mathbf{n}} + \frac{1}{5!}\theta^5 \mathbf{\Lambda}_{\mathbf{n}} + \cdots\right)$$

$$= \mathbf{I} - \mathbf{\Lambda}_{\mathbf{n}}^{2} \sum_{k=1}^{+\infty} \frac{(-1)^{k}}{(2k)!} \theta^{2k} + \mathbf{\Lambda}_{\mathbf{n}} \sum_{k=0}^{+\infty} \frac{(-1)^{k}}{(2k+1)!} \theta^{2k+1}$$

$$\cos \theta - 1 \qquad \sin \theta$$

Rotation dans l'espace

Application

Déterminer la matrice de rotation d'angle $\theta = \frac{2\pi}{3}$ et d'axe $\mathbf{n} = \frac{1}{\sqrt{3}}(1, 1, 1)^T$.

$$\mathbf{R}_{\mathbf{n},\theta} = \mathbf{I} + \sin\theta \,\mathbf{\Lambda}_{\mathbf{n}} + (1 - \cos\theta)\mathbf{\Lambda}_{\mathbf{n}}^{2}$$

$$\mathbf{\Lambda_n} = \begin{pmatrix} 0 & -c & b \\ c & 0 & -a \\ -b & a & 0 \end{pmatrix} \text{ où } (a, b, c)^T = \mathbf{n}$$

$$\mathbf{R}_{\mathbf{n},\theta} = \mathbf{I} + \sin\left(\frac{2\pi}{3}\right) \frac{1}{3} \begin{pmatrix} 0 & -\sqrt{3} & \sqrt{3} \\ \sqrt{3} & 0 & -\sqrt{3} \\ -\sqrt{3} & \sqrt{3} & 0 \end{pmatrix} + \left(1 - \cos\left(\frac{2\pi}{3}\right)\right) \left[\frac{1}{3} \begin{pmatrix} 0 & -\sqrt{3} & \sqrt{3} \\ \sqrt{3} & 0 & -\sqrt{3} \\ -\sqrt{3} & \sqrt{3} & 0 \end{pmatrix}\right]^{2}$$

$$\mathbf{R}_{\mathbf{n},\theta} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + \frac{1}{6} \begin{pmatrix} 0 & -3 & 3 \\ 3 & 0 & -3 \\ -3 & 3 & 0 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

$$\text{ ``V\'erification "}: - \mathbf{R}_{\mathbf{N},\theta} \mathbf{n} = \frac{1}{\sqrt{3}} \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \mathbf{n}$$

$$- \det \mathbf{R}_{\mathbf{n},\theta} = 1$$

Rotation dans l'espace

Image d'un vecteur par la rotation $R_{N,\theta}$

Soit $\mathbf{u} = (x, y, z)^T$, d'après la formule de Rodrigues on a :

$$\mathbf{R}_{\mathbf{n},\theta}\mathbf{u} = \mathbf{u} + \sin\theta \,\mathbf{\Lambda}_{\mathbf{n}}\mathbf{u} + (1 - \cos\theta)\mathbf{\Lambda}_{\mathbf{n}}^{2}\mathbf{u}$$

Attention :
$$\Lambda_n u = n \wedge u$$
 donc

$$\Lambda_n^2 u = \Lambda_n \Lambda_n u = n \wedge (\Lambda_n u) = n \wedge (n \wedge u)$$

$$= \mathbf{u} + \sin \theta \, \mathbf{n} \wedge \mathbf{u} + (1 - \cos \theta) \mathbf{n} \wedge (\mathbf{n} \wedge \mathbf{u})$$

De façon générale :

-
$$\mathbf{u} \wedge (\mathbf{v} \wedge \mathbf{w}) = (\mathbf{u}^T \mathbf{w}) \mathbf{v} - (\mathbf{u}^T \mathbf{v}) \mathbf{w}$$

-
$$(\mathbf{u} \wedge \mathbf{v}) \wedge \mathbf{w} = (\mathbf{u}^T \mathbf{w}) \mathbf{v} - (\mathbf{v}^T \mathbf{w}) \mathbf{u}$$

$$= \mathbf{u} + \sin \theta \, \mathbf{n} \wedge \mathbf{u} + (1 - \cos \theta) [(\mathbf{n}^T \mathbf{u}) \mathbf{n} - (\mathbf{n}^T \mathbf{n}) \, \mathbf{u}]$$

$$= \sin \theta \, \mathbf{n} \wedge \mathbf{u} + (1 - \cos \theta) (\mathbf{n}^T \mathbf{u}) \mathbf{n} + \cos \theta \mathbf{u}$$

Rotation dans l'espace

Finalement:

$$\mathbf{R}_{\mathbf{n},\theta}\mathbf{u} = \cos\theta \,\mathbf{u} + (1 - \cos\theta)(\mathbf{n}^T\mathbf{u})\mathbf{n} + \sin\theta \,\mathbf{n} \wedge \mathbf{u}$$

Cette formule est utile pour déterminer l'image d'un vecteur par une rotation dont l'angle et l'axe sont données mais dont on ne connait pas la matrice.

Rotation dans l'espace

Cas particuliers

Si \mathbf{u} est unitaire ($\mathbf{u}^T\mathbf{u}=1$) et orthogonal à \mathbf{n} ($\mathbf{n}^T\mathbf{u}=\mathbf{u}^T\mathbf{n}=0$), alors la formule précédente devient :

$$\mathbf{R}_{\mathbf{n},\theta}\mathbf{u} = \cos\theta\mathbf{u} + \sin\theta\,\mathbf{n}\wedge\mathbf{u} \quad (*)$$

Schématiquement :

• En multipliant <u>scalairement</u> l'équation (*) par **u** on obtient : $\mathbf{u}^T \mathbf{R}_{\mathbf{n},\theta} \mathbf{u} = \cos\theta \mathbf{u}^T \mathbf{u} + \sin\theta \mathbf{u}^T (\mathbf{n} \wedge \mathbf{u})$

Donc:

 $\cos\theta = \mathbf{u}^T \mathbf{R}_{\mathbf{n},\theta} \mathbf{u}$

On retrouve la formule déjà rencontrée pour les rotations en 2D

Rotation dans l'espace

Cas particuliers (suite)

■ En multipliant <u>vectoriellement</u> l'équation (*) par **u** on obtient :

$$\mathbf{u} \wedge \mathbf{R}_{\mathbf{n},\theta} \mathbf{u} = \cos\theta \underbrace{\mathbf{u} \wedge \mathbf{u}}_{0} + \sin\theta \, \mathbf{u} \wedge (\mathbf{n} \wedge \mathbf{u})$$

$$\mathbf{u} \wedge \mathbf{R}_{\mathbf{n},\theta} \mathbf{u} = \sin \theta \left[(\underbrace{\mathbf{u}^T \mathbf{u}}_{1}) \mathbf{n} - (\underbrace{\mathbf{u}^T \mathbf{n}}_{0}) \mathbf{u} \right] = \sin \theta \ \mathbf{N}$$

Puis en multipliant <u>scalairement</u> l'équation précédente par \mathbf{n} on obtient : $\sin\theta = \left(\mathbf{u} \wedge \mathbf{R}_{\mathbf{n},\theta} \mathbf{u}\right)^T \mathbf{n}$

C'est le produit mixte des 3 vecteurs \mathbf{u} , $\mathbf{R}_{\mathbf{n},\theta}\mathbf{u}$ et \mathbf{n} . De façon générale on montre que le produit mixte des vecteurs \mathbf{u} , \mathbf{v} , \mathbf{w} est égal au déterminant de la matrice dont les vecteurs colonnes sont \mathbf{u} , \mathbf{v} , \mathbf{w} , c'est-à-dire $\det(\mathbf{u}|\mathbf{v}|\mathbf{w})=(\mathbf{u}\wedge\mathbf{v})^T\mathbf{w}$

On retiendra alors que:

$$\sin \theta = \det \left(\mathbf{u} | \mathbf{R}_{\mathbf{n},\theta} \mathbf{u} | \mathbf{n} \right)$$

C'est l'équivalent de la formule $\sin \theta = \det(\mathbf{n}|\mathbf{R}_{\theta}\mathbf{n})$ vue pour les rotations en 2D

Rotation dans l'espace

Application

Les formules $\cos\theta = \mathbf{u}^T \mathbf{R}_{\mathbf{n},\theta} \mathbf{u}$ et $\sin\theta = \det\left(\mathbf{u} \middle| \mathbf{R}_{\mathbf{n},\theta} \mathbf{u} \middle| \mathbf{n}\right)$ permettent de déterminer l'angle d'une rotation lorsqu'on connait son axe \mathbf{n} et sa matrice $\mathbf{R}_{\mathbf{n},\theta}$.

Exercice

Déterminer l'axe \mathbf{n} et l'angle θ de la rotation définie par la matrice : $\mathbf{R} = \frac{1}{3} \begin{pmatrix} -1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1 \end{pmatrix}$

Rotation dans l'espace

Rotation dans l'espace