

UNIVERSIDADE ESTADUAL PAULISTA "JÚLIO DE MESQUITA FILHO"

Câmpus de São José do Rio Preto

Fluxograma para um domingo

Ciência da Computação

Prof. Dr. Leandro Alves Neves

Acordar Tomar café Sim Dia de Sol? Vou à praia. Ir ao cinema. Fazer refeição. Ir dormir. Fim do domingo.

Aula 07

§ Sumário

- Estruturas de Controle de Fluxo
 - Repetição
 - Enquanto (Teste no início)
 - Faça Enquanto (Teste no final)
 - Para (Uso de contador variável de controle)
 - Exemplos em Linguagem: C

Estrutura de Controle: Problema

 Calcular a média e indicar aprovação ou reprovação

```
media_aprovacao_exemplo2.cpp
    //Diretivas de Pré-processamento (Obrigatórias)
     #include <stdio.h>
     #include <stdlib.h>
     //Obrigatório. Função principal: indica o início da execução do programa
                                                                  E se temos 1000 alunos?
     int main ()
         float n1, n2, n3, media;
         printf ("\nDigite três notas:\n");
         scanf("%f %f %f", &n1, &n2, &n3);
10
        media= (n1+n2+n3)/3;
         printf ("Média: %f", media);
11
         if (media >= 5)
12
13
             printf ("\nAprovado");
14
         else
15
             printf ("\nUhhh, não deu");
16
         //Opcional. Comando para interromper momentaneamente o programa
17
         printf("\n");
         system("PAUSE"):
         //Retorno ao SO o status do programa
19
         return 0:
     }//Indica o final do programa.
```

- Solução: Estruturas de Repetição
 - Repetir instruções: comportamento padrão
 - Instrução escrita uma única vez
 - Executada várias vezes (laços de repetições)
 - Controle pode ser:
 - Condição
 - Contador

Controle por Condição

- Dependente de uma expressão lógica (condição)
 - Interrupção: controlada pelo resultado da expressão
 - Portanto, é obrigatório:
 - Instrução no bloco de repetição para alterar o valor da expressão lógica.

- Controle por Condição: enquanto
 - TESTE NO INÍCIO (Características)
 - Verifica, ANTES de cada execução, se é permitido executar um bloco de instruções do algoritmo.
 - Número de repetições (Aplicação): Não conhecido previamente
 - Instruções executadas (repetidas) enquanto condição verdadeira
 - Condição falsa: repetição é interrompida
 - IMPORTANTE:
 - Se o primeiro teste fornecer resultado falso, os comandos não são executados

Controle por Condição: ENQUANTO

TESTE NO INÍCIO (Estrutura)


```
#include <stdio.h>
                                              Controle por Condição: ENQUANTO
   int main()
      float n1, n2, n3, media;
                                                TESTE NO INÍCIO (EXEMPLO 1)
      int num aluno;
      printf("\nDigite o total de alunos: ");
      scanf("%d", &num_aluno);//Inicialização da variável de controle
      printf("\n Entrada de Notas para Alunos");
      while (num_aluno > 0) { //Condição para definir o número de repetições
           printf("\nDigite 3 Notas para o Aluno (%d)\n", num_aluno);
           scanf("%f %f %f", &n1, &n2, &n3);
           media=(n1+n2+n3)/3;
           printf("\nMedia: %f", media);
           if (media >= 5)
               printf ("\n Aluno Aprovado");
Bloco 1
           else
               printf ("\n Uhh, não deu");
           num_aluno--; //Alteração do valor da variável (testada na condição de repetição)
        //system("PAUSE");
                            Bloco 2
        return 0;
```

```
#include <stdio.h>
    int main()
                                               Controle por Condição: ENQUANTO
    { float n1, n2, n3, media;
       char resp;
                                                  TESTE NO INÍCIO (EXEMPLO 2)
       resp='s'; //Inicialização da variável de controle
       while (resp=='s') // Condição para definir o número de repetições
           printf("\nDigite 3 Notas para um Aluno \n");//Quantidade indefinida
           scanf("%f %f %f", &n1, &n2, &n3);
           media=(n1+n2+n3)/3;
           printf("\nMedia: %f", media);
           if (media >= 5)
Bloco 1
               printf ("\n Aluno Aprovado");
           else
                printf ("\n Uhh, não deu");
            printf ("\nDeseja continuar <s>im ou <n>ão? ");
            scanf (" %c", &resp); //Alteração do valor da variável (testada na condição de
                                 repetição)
        //system("PAUSE");
        return 0;
                               Bloco 2
```

Controle por Condição: do while

- TESTE NO FINAL (Características)
 - Verificação APÓS execução de um bloco de instruções do algoritmo.
 - Número de repetições: Não conhecido previamente
 - Instruções executadas (repetidas) enquanto condição Verdadeira
 - Condição FALSA: repetição é interrompida
 - IMPORTANTE:
 - Instruções são executadas pelo menos uma vez.

Controle por Condição: Do While

TESTE NO FINAL (Estrutura)


```
#include <stdio.h>
                                                Controle por Condição: do-While
     int main()
     { float n1, n2, n3, media;
                                                   TESTE NO FINAL (EXEMPLO 3)
        int num aluno;
        printf("\nDigite o total de alunos: ");
        scanf ("%d", &num_aluno) //Inicialização da variável de controle
        printf("\n Entrada de Notas para Alunos");
        do {
            printf("\nDigite 3 Notas para o Aluno (%d) \n", num aluno);
            scanf("%f %f %f", &n1, &n2, &n3);
            media=(n1+n2+n3)/3;
            printf("Media: %f", media);
Bloco 1
            if (media >= 5)
                printf ("\n Aluno Aprovado");
            else
                printf ("\n Uhh, não deu");
           um_aluno--; //Alteração do valor da variável (testada na condição de repetição)
         }while (num_aluno > 0); //Condição para definir o número de repetições
         //system("PAUSE");
                               Bloco 2
         return 0;
```

12

#include <stdio.h>

```
Controle por Condição: Do-While
    int main()
    { float n1, n2, n3, media;
                                                  TESTE NO FINAL (EXEMPLO 4)
       char resp;
       resp='s'; //Inicialização da variável de controle
       do {
           printf("\nDigite 3 Notas para um Aluno: \n");//Quantidade indefinida
            scanf("%f %f %f", &n1, &n2, &n3);
           media=(n1+n2+n3)/3;
            printf("Media: %f", media);
            if (media >= 5)
Bloco 1
                printf ("\n Aluno Aprovado");
            else
                printf ("\n Uhh, não deu");
            printf ("\nDeseja continuar <s>im ou <n>ão? ");
            scanf (" %c", &resp) ;//Alteração do valor da variável (testada na condição de
                                repetição)
         } while (resp == 's');//Condição para definir o número de repetições
         //system("PAUSE");
                              Bloco 2
        return 0;
```

- Controle por Condição: para
 - VARIÁVEL DE CONTROLE (Características)
 - Número de repetições: conhecido previamente
 - Instruções executadas (repetidas) até número (limite) definido
 - Número definido ou LIMITE: controlado por um contador
 - Pode ser armazenado em uma variável
 - LINGUAGEM C: Flexível para determinar o incremento.

Controle por Condição: para

VARIÁVEL DE CONTROLE (Estrutura)

para (variável= <valor inicial> Até <valor final>; incremento)

```
instrução 1;
   instrução 2;
                                                                 Falso
                                       variável= <valor inicial>,
   instrução 3;
                   Bloco 1
                                        <valor final>, incremento
                                          Verdadeiro ↓
   instrução n;
                                      < Instruções bloco 1>
fim_para
instrução n+1;
                   Bloco 2
instrução n+2;
                                      < Instruções bloco 2>
```

```
#include <stdio.h>
                                                Controle por Condição: para
   int main()
                                                   Contador (EXEMPLO 5)
      float n1, n2, n3, media;
       int i, num aluno;
      printf("\nDigite o total de alunos: ");
       scanf("%d", &num_aluno) //Quantidade definida
        printf("\n Entrada de Notas para Alunos"); [//Inicialização da variável, condição
                                                     para definir o número de repetições,
        for (i=0; i< num aluno; i++)</pre>
                                                     alteração do valor da variável
        {
           printf("\nDigite 3 Notas para o Aluno %d: \n", i);
           scanf("%f %f %f", &n1, &n2, &n3);
           media=(n1+n2+n3)/3;
Bloco 1
           printf("\nMedia: %f", media);
           if (media >= 5)
               printf ("\n Aluno Aprovado");
           else
               printf ("\n Uhh, não deu");
        }
                               Bloco 2
        //system("PAUSE"
        return 0;
```

- Exemplo usando: for
 - Valor inicial <= valor final</p>
 - Resultado: incrementos de 1 em 1 (i++)
 - Mas, e se valor inicial >= valor final?
 - Nesse caso, incrementos de -1 em -1 (i--)

Diferenças entre os tipos de incrementos

```
Diferença_incremento.cpp
    #include <stdio.h>
    int main()
4 □ {
      int i=0, aux;
      printf("\nApresentação de --i");
      printf("\n valor de i: %d",i);
      aux=i++;
      printf("\n valor retornado por i++ via aux: %d",aux);
10
11
      printf("\n i depois i++: %d \n", i);
12
      printf("\n-----");
13
      printf("\nApresentação de --i");
14
15
      i=0;
      printf("\n valor de i: %d",i);
16
17
      aux=++i;
18
      printf("\n valor retornado por ++i via aux: %d",aux);
19
      printf("\n i depois ++i: %d \n", i);
20
21
      return 0;
```

```
E:\New_data\Recovered data 04-21 11_40_43\Resu

Apresentabòo de --i
valor de i: 0
valor retornado por i++ via aux: 0
i depois i++: 1

Apresentabòo de --i
valor de i: 0
valor retornado por ++i via aux: 1
i depois ++i: 1
```

#include <stdio.h>

```
Controle por Condição: para
    int main()
       float n1, n2, n3, media;
                                                 Contador (EXEMPLO 6)
       int i, num aluno;
       printf("\nDigite o total de alunos: ");
       scanf("%d", &num aluno);
        printf("\n Entrada de Notas para Alunos");
        for (i=num aluno; i> 0; i--)
           printf("\nDigite 3 Notas para o Aluno %d: \n", i);
           scanf("%f %f %f", &n1, &n2, &n3);
           media=(n1+n2+n3)/3;
           printf("\nMedia: %f", media);
Bloco 1
           if (media >= 5)
               printf ("\n Aluno Aprovado");
           else
               printf ("\n Uhh, não deu");
        //system("PAUSE");
                             Bloco 2
        return 0;
```

- Exemplo usando: for
 - Mas, e se o incremento for diferente de -1 ou +1?
 - Nesse caso, incrementos de -n ou +n (em que n representa o valor desejado)
 - Exemplos: i+=2; i-=2; i+=3; i-=3; ...; i+=n; ...i-=n;

- Controle por Condição: para
 - Contador (EXEMPLO 7)

```
#include <stdio.h>
int main()
{    int i, total;
    printf("\nDigite um numero: ");
    scanf("%d",&total);
    printf("\nNúmeros ímpares no intervalo de 1 a %d: \n", total);

for (i=1; i < total; i+=2)
{    printf("\n%d: ", i);
    //system("PAUSE");
    return 0;
}</pre>
Bloco 2
```

Até aqui vimos o seguinte:

- Estruturas de Controle de Fluxo:
 - REPETIÇÃO
 - Teste no Início (ENQUANTO)
 - Teste no Final (FAÇA ENQUANTO)
 - Controlado por contador (PARA)

- Próximo Conteúdo:
 - Estrutura de Dado Homogênea Unidimensional (Vetor)

Bibliografia Complementar

- SCHILDT, H. C Completo e Total, 3^a ed., Pearson 1996. 852p.
 - Páginas 74 a 85

- SALES, André Barros de; AMVAME-NZE, Georges Daniel. Linguagem C: roteiro de experimentos para aulas práticas [recurso eletrônico]. Florianópolis: UFSC, 2016. Disponível em: http://repositorio.unb.br/handle/10482/21540.
 - Páginas 57 a 88
 - Realizar os Experimentos e Atividades de Fixação

