Quicksort

7.1 Quicksort

Quicksort(A[p..r])

Divide: partition A[p..r] into A[p..q-1] and A[q+1..r]

Conquer: recursively sort A[p..q-1] and A[q+1..r] **Combine**: no work is needed.

Quicksort(A, p, r)

- 1 If p < r then
- 2 $q \leftarrow Partition(A, p, r)$ /* **divide** */
- 3 Quicksort(A, p, q-1) /* conquer */
- 4 Quicksort(A, q+1, r) /* conquer */

Partition(A, p, r)

 $\begin{array}{c}
1 \ x \leftarrow A[r] \\
2 \ i \leftarrow p-1;
\end{array}$

3 for $j \leftarrow p$ to r-1

4 do if $A[j] \leq x$

5 then $i \leftarrow i+1$

6 exchange *A[i]↔A[j*]

7 exchange $A[i+1] \leftrightarrow A[r]$

8 **return** *i*+1

Meaning of *i* and *j*:

How *i* and *j* changes:

Example: (Partition, x=A[r]=4)

7.4 Analysis

Worst-case: $\Theta(n^2)$ (occurs for sorted input)

$$T(n) = \max_{1 \le q \le n} \{T(q-1) + T(n-q)\} + \Theta(n)$$

=
$$\max_{0 \le k \le n-1} \{T(k) + T(n-k-1)\} + \Theta(n)$$

Guessing: $T(n) \le c n^2 = O(n^2)$ Substituting:

$$T(n) \le \max_{0 \le k \le n-1} \{ck^2 + c(n-k-1)^2\} + \Theta(n)$$

$$\le c \max_{0 \le k \le n-1} \{k^2 + (n-k-1)^2\} + \Theta(n)$$

$$\le c(n-1)^2 + \Theta(n)$$

$$\le cn^2 - c(2n-1) + \Theta(n)$$

$$\le cn^2 \text{ (by picking } c \text{ large enough)}$$

•
$$T(n)=\Omega(n^2)$$

Average-case: $\Theta(n \lg n)$

(Assume that all elements are distinct.)

- T(n)=O(n+X), where X is the total # of comparisons performed in Line 4 of Partition.
- For each call to Partition, A[i] and A[j] will not be further compared if A[i]<x<A[j] or A[j]<x<A[i].

Example: Let $A=\{3, 9, 2, 7, 5\}$. After 1st round, $A=\{3, 2, 5, 7, 9\}$. Then, $\{3, 2\}$ won't be compared with $\{7, 9\}$ anymore.

- Rename the elements of A as z₁, z₂, ..., z_n with z_i being the i-th smallest element. Also define the set Z_{ij}={z_i, z_{i+1}, ..., z_i}.
- z_i : z_j iff the first pivot chosen from Z_{ij} is either z_i or z_j .
- For any i,j, the probability of z_i : z_j is 2/(j-i+1). Therefore,

$$X = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1}$$

$$= \sum_{i=1}^{n-1} \sum_{k=1}^{n-i} \frac{2}{k+1}$$

$$< \sum_{i=1}^{n-1} \sum_{k=1}^{n} \frac{2}{k}$$
 (Using Harmonic Series)

$$= \sum_{i=1}^{n-1} O(\lg n)$$

$$= O(n \lg n)$$

 $\Theta(n \lg n)$

Another analysis

$$E(n) = (n-1) + \frac{1}{n} \sum_{q=1}^{n} \{E(q-1) + E(n-q)\}$$
$$= (n-1) + \frac{2}{n} \sum_{k=1}^{n-1} E(k)$$

For simplicity, assume

$$E(n) = n+1 + \frac{2}{n} \sum_{k=1}^{n-1} E(k)$$

$$\Rightarrow nE(n) = n^2 + n + 2 \sum_{k=1}^{n-1} E(k) -----(1)$$

$$\Rightarrow (n-1)E(n-1) = (n-1)^2 + (n-1) + 2 \sum_{k=1}^{n-2} E(k) -----(2)$$
(replacing n by $n-1$ in (1))

(1)–(2), we have

$$nE(n) = (n+1)E(n-1) + 2n$$

$$\Rightarrow E(n) = \frac{n+1}{n}E(n-1)+2$$

(Applying iteration method)

$$= \frac{n+1}{n} \left\{ \frac{n}{n-1} E(n-2) + 2 \right\} + 2$$

$$=\frac{n+1}{n-1}E(n-2)+2\frac{n+1}{n}+2$$

$$= \frac{n+1}{n-2}E(n-3) + 2\frac{n+1}{n-1} + 2\frac{n+1}{n} + 2$$

= • • • •

$$= \frac{n+1}{2}E(1) + 2(n+1)(\frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{n}) + 2$$

$$= \Theta(n) + \Theta(n) \sum_{k=3}^{n} \frac{1}{k} + 2$$

= $\Theta(n)+\Theta(n)\times\Theta(\lg n)+2$ (Using Harmonic Series)

 $= \Theta(n \log n)$

7.3 Randomized version of quicksort

Randomized Algorithm:

An algorithm uses *random-number* generator.

Pseudorandom-number generator:

A deterministic algorithm that returns numbers that "look" statistically random.

Randomized-Partition(A, p, r)

 $i \leftarrow \text{Random}(p, r);$ exchange(A[r], A[i]); return Partition(A, p, r)

Homework: Ex. 7.1-2, 7.2-4, 7.4-2 and Pro. 7-1, 7-4