

STATE OF THE PROPERTY OF THE STATE OF THE ST

MICROCOPY RESOLUTION TEST CHART

AD-A194 469

EFFECTS OF APPLIED STRESS AND TEMPERATURE ON THE NONLINEAR ELASTIC PROPERTIES OF GRAPHITE FIBERS

BY J. M. LIU (NSWC)

P. ARSENOVIC, H. JIANG, R. K. EBY (JOHNS HOPKINS UNIVERSITY)

FOR NAVAL SURFACE WARFARE CENTER

RESEARCH AND TECHNOLOGY DEPARTMENT

1 JULY 1987

Approved for public release; distribution is unlimited.

NAVAL SURFACE WARFARE CENTER

Dahlgren, Virginia 22448-5000
Silver Spring, Maryland 20903-5000

UNCLASSIFIED

SECURITY CLA	SSIFICATION OF	F THIS PAGE			1 11		
			REPORT DOCUM	MENTATION	PAGE		
1a. REPORT SECURITY CLASSIFICATION UNCLASSIFIED			16 RESTRICTIVE MARKINGS				
2a. SECURITY	CLASSIFICATIO	NAUTHORITY	**************************************	•	I/AVAILABILITY OF		
2b DECLASSIF	ICATION / DOW	NGRADING SCHEDU	LE	Approved for is unlimited	or public re ed.	lease; dis	tribution
4. PERFORMIN	G ORGANIZATI	ON REPORT NUMBE	R(S)	5 MONITORING	ORGANIZATION RE	PORT NUMBER	(\$)
				NSWC TR 87	- 252		
6a NAME OF PERFORMING ORGANIZATION The Johns Hopkins University 6b. OFFICE SYMBOL (If applicable)			7a NAME OF MONITORING ORGANIZATION Naval Surface Warfare Center				
	City, State, and				ty, State, and ZIP C	ode)	
	and 34th ce, MD 21			White Oak 1 10901 New 1	Laboratory Hampshire Av	enue	
				Silver Spr	ing, MD 209	03-5000	
8a. NAME OF ORGANIZA	FUNDING / SPO TION	NSORING	8b. OFFICE SYMBOL (If applicable)	9. PROCUREMEN	T INSTRUMENT IDE	ENTIFICATION N	JMBER
				N60921-86-1			
8c. ADDRESS (City, State, and	ZIP Code)			FUNDING NUMBER	s	
				PROGRAM ELEMENT NO.	PROJECT NO.	TASK NO	WORK UNIT ACCESSION NO.
				62334N	NS2A	RS34T52	8K4TSP
			Temperature on	the Nonline	ar Elastic P	roperties o	of .
		rsenovic. Pet	ar; Jiang, Hao;	and Eby. Ro	onald K. (Jol	hns Honkins	: University)
			(Naval Surface W				
13a TYPE OF Final Re		13b. TIME CO FROM <u>86</u> /	OVERED 19/1 TO <u>87/2/2</u> 8	4. DATE OF REPO 87/7/1	PRT (Year, Month, L	Day) 15 PAGE 3	COUNT 0
16. SUPPLEME ——	NTARY NOTAT	ION					
17	COSATI (CODES	18 SUBJECT TERMS (C		e if necessary and	identify by bloc	k number)
FIELD	GROUP	SUB-GROUP	Pitch-based Gr	-		rature Depe	
<u> 11</u>	<u>02</u>	01	Young's Modulu Stress Depende		Laser-	-Generated	Ultrasound
The nonlinear elastic behavior of a series of pitch-based graphite fiber bundles was determined by using a new measurement method that uses laser-generated ultrasound over ranges of temperature and static tensile stress. From these data, plots are presented of the Young's modulus versus stress and temperature. The modulus increases with static tensile stress and decreases with temperature. These results are important for characterizing the elastic behavior of composites in which these fibers are used. Some possible mechanisms for explaining the observed effects are discussed.							
		LITY OF ABSTRACT	IPT. DTIC USERS	21. ABSTRACT SE UNCLASSIE	CURITY CLASSIFICA	ATION	
22a NAME O	RESPONSIBLE		C One Oseks		Include Area Code)	R34	MBOL
John M.		93 40	Redition may be used up		1704	1 534	

All other editions are obsolete

SECURITY CLASSIFICATION OF THIS PAGE

#U.S. Government Printing Office: 1988—639-012 UNCLASSIFIED

UNCLASSIFIED			
GURITY CLASSIFICATION OF THIS PAGE			
UNCLASSIFIED			
			!
]
			j
			
	ii	UNCLASSIFIED	
		SECURITY CLASSIFICATION OF THIS	
		<u> </u>	

FOREWORD

This report presents data for the dependence on applied stress and temperature of pitch-based graphite fiber bundles, obtained through a novel technique of laser-generated ultrasound. Such data are indispensable for describing the effects of temperature on composites reinforced by these fibers and should assist in the selection of constituents for making composites of high thermal stability.

This work was performed during the period of September 1986 to February 1987. The technical program monitor is Dr. John M. Liu.

Approved by

James F. Goff, Acting Head

Materials Division

1	DEID
	COPA

CONTENTS

	Page
INTRODUCTION	1
EXPERIMENTAL PROCEDURES	2
RESULTS AND DISCUSSION	3
CONCLUSION	5
REFERENCES	18
DISTRIBUTION	(1)

ILLUSTRATIONS

Figure		Page
1	SCHEMATIC DIAGRAM OF EXPERIMENTAL SETUP FOR THE MEASUREMENT OF DYNAMIC YOUNG'S MODULUS OF A FIBER BUNDLE BY LASER-GENERATED ULTRASOUND	6
2	STRESS DEPENDENCE OF THE YOUNG'S MODULUS AT 25°C	7
3	STRESS DEPENDENCE OF THE YOUNG'S MODULUS AT 60°C	8
4	STRESS DEPENDENCE OF THE YOUNG'S MODULUS AT 120°C	9
5	STRESS DEPENDENCE OF THE YOUNG'S MODULUS AT 210°C	10
6	STRESS DEPENDENCE OF THE YOUNG'S MODULUS AT 285°C	11
7	DEPENDENCE OF THE STRESS DERIVATIVE AT 10 MPa OF THE INITIAL YOUNG'S MODULUS ON THE VALUE OF THIS MODULUS	12
8	DEPENDENCE OF THE YOUNG'S MODULUS OF PITCH-BASED GRAPHITE FIBERS ON TEMPERATURE AT ZERO APPLIED STRESS	13
9	DEPENDENCE OF THE YOUNG'S MODULUS OF PITCH- BASED GRAPHITE FIBERS ON TEMPERATURE AT AN APPLIED STRESS OF 100 MPa	14
10	DEPENDENCE OF THE TEMPERATURE DERIVATIVE OF THE INITIAL YOUNG'S MODULUS ON THE VALUE OF THIS MODULUS	15
11	DEPENDENCE OF THE STRESS DERIVATIVES ON THE VALUES OF THE YOUNG'S MODULUS WITHOUT APPLIED STRESS AT 25°C (SOLID CURVE) AND AT 285°C (DASHED CURVE)	16

	esta esta esta esta esta esta esta esta	NSWC TR 87-252 TABLES Page YOUNG'S MODULUS OF PITCH-BASED GRAPHITE FIBERS DETERMINED BY LASER-GENERATED ULTRASOUND AND BY MECHANICAL TESTING	n Christin Shirth State
VX Salas Bana		NOUC TD 97 050	
		NSWC 1R 0/-232	
833			
8			
RX XX		TARIFC	
X.		***************************************	
	<u>Table</u>	<u>Page</u>	
X	1	YOUNG'S MODULUS OF PITCH-BASED GRAPHITE FIBERS DETERMINED BY LASER-GENERATED ULTRASOUND	
8		AND BY MECHANICAL TESTING	
×			
&			
8			
X			\{
88			
C			S.
			; ;
attatai minima atama			•
54.53 1			
X			, ,
			į
m			
2		νi	ļ
8) }
		ŶijŊŶŶŶĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸ	

INTRODUCTION

The existence of carbon fibers has been known for many years. used for filaments for incandescent lamps in the latter part of the 19th The first major effort to develop high strength carbon fibers, however, was not undertaken until the early 1950's at Wright Patterson Air Force Base, Dayton, Ohio. 1 Such fibers are now important in many advanced technical applications, especially in aerospace composite materials for which the high specific modulus is valuable. Care must be taken in the design of these composites, as fiber and matrix will have significantly different properties. The fibers exhibit nonlinear elasticity, 2 as well as a negative coefficient of thermal expansion parallel to the fiber axis. 3 These factors can result in important changes in the properties of a composite subjected to wide variations in temperature. For example, the Young's modulus along the fiber direction in a uniaxial lamina can increase rather than decrease with rising temperature.4 stresses that are generated in the composite can lead to yielding at the fibermatrix interface, or possibly in the matrix or the fibers themselves. Furthermore, these effects will lead to variations in both the sign and magnitude of the coefficient of thermal expansion in the fiber direction, depending on the thermal history of the composite. 6

There are two recently published studies on the nonlinear elasticity of pitch-based and PAN-based graphite fibers. In Reference 8, the results for a single filament and an impregnated tow have been used for interpreting the nonlinear behavior in composites reinforced by these fibers.

APPINE SERVICE OF STANDING SERVICES CONTROL SERVICES PROFILES DESCRIPTION DESCRIPTION OF SERVICES DESCRIPTION

A thorough understanding of the nonlinear elastic properties of the fibers, as well as the thermal effects, is vital to the design of composites that will be stable over a wide temperature range. The considerations above are important for structures ranging in size from space stations and aircraft to circuit boards. Nevertheless, there has been no systematic investigation of these effects. This report summarizes the results of research on a series of pitch-based carbon fibers by laser-generated ultrasound. The Young's modulus is determined as a function of applied static tensile stress over a wide range of temperatures for the fibers. The goal is to provide data on the nonlinear elastic property of the graphite fibers and its temperature dependence, as well as to explain these effects in terms of the internal structure of the fibers.

DOMESTIC .

EXPERIMENTAL PROCEDURES

The experimental arrangement is shown in Figure 1. A pulsed laser is used to generate stress waves in the fiber bundle by a rapid deposition of energy in a manner similar to that reported previously for fibers at room temperature without static stress. A Nd-Yag laser is used to produce single pulses of about 15 ns duration and about 20 mJ of energy. The light (532 nm) is focused on the fiber, which is enclosed in a temperature cell. The fiber is mounted vertically, perpendicular to the direction of the laser beam. The ends of the fiber bundle are sandwiched between cardboard squares held together by epoxy. It is held at one end by a clamp. A hole is punched in the bottom square to allow tensile stress to be applied by the addition of weight there.

SECTION PROPERTY MANNEY FORESE, KNEEDS

PRINCES PRESENT STANDARD LINESPER

The stress is determined by dividing force by the cross-sectional area. Force is calculated from the mass loaded onto the fiber bundle. The crosssectional area is found by dividing the mass, M, of a bundle of fibers of length, 1, by the density and the length. A piezoelectric transducer is clamped near the top of the bundle to detect the acoustic wave generated by the interaction of the laser light with the bundle. (Typically, 2000 fiber bundles were used.) A sampling oscilloscope is triggered when the laser is fired by the signal from a photodiode placed near the bundle and facing the beam. from the transducer is amplified, filtered, and recorded at either a 20- or a 50-ns sampling period. From this, a time of flight may be recorded as the difference in time between the triggering of the photodiode and the arrival of the acoustic wave at the transducer. A differential measurement is taken by dividing the difference between two distances from laser impact to transducer by the difference in the corresponding times of flight (i.e., velocity, $C = \Delta 1/\Delta t$). As the ultrasonic wavelength is very large compared to the diameter of the bundle, Young's modulus, E, is equal to the density of the fibers times the square of the ultrascnic velocity. The differential measurement will reduce the error from both end effects and temperature gradients.

en a processor i courses de essesse i cossesses dividasse i cossessor de la literación dividad de la latitudad

Some simple steps must be taken to ensure accurate results. The fibers must be long enough to eliminate interference in the signal from end reflections. The fibers must be straight, unbroken, and of equal length. The standard deviation for measurements of the modulus is about 3 GPa. This number is comparable to the limit of resolution, which varies a little depending on the sampling rate used and the modulus of the fiber. Over the length of sample used, 1, the maximum temperature differences were +5°C at 285°C, less than 1°C at 60°C, and 0°C at room temperature. The fibers were pitch-based P25, P55, P75, P100, and P120 that were manufactured by the Union Carbide Corporation.

RESULTS AND DISCUSSION

Table 1 lists the results obtained at ambient temperature by both the ultrasonic method and by conventional mechanical testing. Within the limits of error for the two techniques, the results are in agreement. Interestingly, the ultrasonic velocity measured for P120, 19.5 km s $^{-1}$, is greater than that reported for diamond. 10

Figures 2-6 show the values of Young's modulus plotted as a function of static tensile stress at 25, 60, 120, 210 and 285° C, respectively. The data points are averages of several measurements. All the data are reversible for stress and temperature. In general, the nonlinear elasticity decreases with increasing initial modulus in the series from P25 to P120. As a result, the fractional change in the initial modulus E_0 , with respect to stress, evaluated at a stress of 10 MPa for each of the fibers, decreases with increasing initial modulus (as shown in Figure 7). This quantity is one of those that determine the unusual increase with temperature of the axial Young's modulus of a uniaxial lamina. 4

THE PROPERTY OF THE PROPERTY O

When the temperature is increased, the modulus decreases as shown in Figure 8 for zero tensile stress and in Figure 9 for 100 MPa tensile stress. The rate of this decrease is larger for all the fibers at temperatures between about 30 and 150°C rather than at the higher temperatures. The fractional change in the initial modulus with respect to temperature decreases with increasing initial modulus (as shown in Figure 10). This temperature derivative exhibits a dependence on the initial modulus of the fibers that is similar to that exhibited by the stress derivative (as shown previously in Figure 7). This derivative is another of the quantities that determine the unusual thermal behavior of uniaxial laminae. The stress derivative of each of the fibers is a function of temperature. The derivatives at room temperature and at 285°C are significantly different for the fibers of low modulus, but this difference diminishes progressively as the Young's modulus of the fiber increases, as shown in Figure 11.

In general, the initial modulus in the series of fibers studied can be associated with the extent of alignment of the closed-pack planes in graphite towards the fiber axis. Crystal size in the direction of the fiber axis might also play a role. Change in crystal orientation with static tensile stress no doubt contributes to the nonlinear elasticity. However, this idea has not been examined systematically for a series of fibers such as the present ones. The sharp increase in modulus with stress, such as that observed at 30°C for P25 in Figure 2, has been attributed to the motion of dislocations in the basal plane. The large decrease in the modulus of P55 between 60 and 120°C (Figure 8) together with the change in the nature of the curve for this fiber between 60 and 120°C is consistent with the dislocation hypothesis, as are the

ዸ፝ቔቖቝቝቔቝቜኇቝቝቜኇቝዀቜኇቝቔፙቔቑቜቔቝቜኇቜኇቜኇቜኇቜኇቜፙቔቝዀጜጚፙቔኇጜዹዂጜዹዄቜኇቜኇቜፙዄቜፙዄቜኇቜኇዀጜዄጜዄጜዹጚጜጚጜጚጜጚጜጚጜጚጜጚጜጜዄጚዹጚጜ

changes in the initial modulus versus temperature shown in Figure 8. The greater slopes of the curves in the 30 to 150° C range are consistent with the effect of dislocation motion on a modulus determined ultrasonically. 12 However, this hypothesis too has not been examined for a series of fibers such as the present ones. In fact, it has been suggested that the initial portion of a curve like that for P25 in Figure 2 or P55 in Figure 4 results from the fibers not being straight. 13 To address such questions, X-ray diffraction measurements will be used to determine orientation, size, and crystal modulus in the axial direction, and if possible, the degree of imperfection in the crystals. The ultrasonic measurements of Young's modulus will also be extended to higher and lower temperatures.

CONCLUSION

A new method has been developed to measure Young's modulus for graphite and other fibers over wide ranges of temperature and static tensile stress. The method is based on laser-generated ultrasound. It was used to measure the Young's modulus of pitch-based graphite fibers (P25, P55, P75, P100, and P120) from 25°C to 285°C with applied static tensile stresses from zero to about 170 MPa. The fibers exhibit nonlinear elasticity which varies in character with the fiber, the temperature, and the applied stress. The nonlinear elasticity combined with the negative axial expansion coefficient of the fibers could lead to some unusual properties in uniaxial laminae, and must be considered in the design of composites. Further sonic measurements over a wider range of temperatures and X-ray diffraction measurements are planned in order to determine the origin of the effects.

COCCEDENT BOOMERCO. FIFTHER SCHOOLS LESSONS UNS

FIGURE 1. SCHEMATIC DIAGRAM OF EXPERIMENTAL SETUP FOR THE MEASUREMENT OF DYNAMIC YOUNG'S MODULUS OF A FIBER BUNDLE BY LASER-GENERATED ULTRASOUND

CONTRACTOR OF THE CONTRACT OF

FIGURE 2. STRESS DEPENDENCE OF THE YOUNG'S MODULUS AT 25°C

FIGURE 3. STRESS DEPENDENCE OF THE YOUNG'S MODULUS AT 60°C

THE STATE OF THE S

FIGURE 4. STRESS DEPENDENCE OF THE YOUNG'S MODULUS AT 120°C

FIGURE 5. STRESS DEPENDENCE OF THE YOUNG'S MODULUS AT 210°C

Boorge Handerson Recorded Besselves Betteres Printerios Recordes Consession Besselves Recordes Recordes Consession

FIGURE 6. STRESS DEPENDENCE OF THE YOUNG'S MODULUS AT 285°C

FIGURE 7. DEPENDENCE OF THE STRESS DERIVATIVE AT 10 MPa OF THE INITIAL YOUNG'S MODULUS ON THE VALUE OF THIS MODULUS

FIGURE 8. DEPENDENCE OF THE YOUNG'S MODULUS OF PITCH-BASED GRAPHITE FIBERS ON TEMPERATURE AT ZERO APPLIED STRESS

FIGURE 9. DEPENDENCE OF THE YOUNG'S MODULUS OF PITCH-BASED GRAPHITE FIBERS ON TEMPERATURE AT AN APPLIED STRESS OF 100 MPa

FIGURE 10. DEPENDENCE OF THE TEMPERATURE DERIVATIVE OF THE INITIAL YOUNG'S MODULUS ON THE VALUE OF THIS MODULUS

STATIC TENSILE STRESS, E. (GPa)

FIGURE 11. DEPENDENCE OF THE STRESS DERIVATIVES ON THE VALUES OF THE YOUNG'S MODULUS WITHOUT APPLIED STRESS AT 25°C (SOLID CURVE) AND AT 285°C (DASHED CURVE)

TABLE 1. YOUNG'S MODULUS OF PITCH-BASED GRAPHITE FIBERS DETERMINED BY LASER-GENERATED ULTRASOUND AND BY MECHANICAL TESTING

Sample	Density (Mg m ⁻³)	Approximate Frequency (MHz)	Ultrasonic Velocity (km s ⁻¹)	Ultrasonic Modulus (GPa)	Test Machine Modulus (GPa)
P-25	1.90*	0.58	9.36	166	160*
P-55	2.00*	0.61	13.3	354	380*
P-75	2.00*	0.51	15.5	480	520*
P-100	2.15*	0.65	18.2	712	724*
P-120	2.18*	0.66	19.5	830	827*

^{*}Values from manufacturer's data sheet

REFERENCES

- 1. Donnet, J. B. and Bansal, R. C., <u>Carbon Fibers</u>, Marcel Dekker, Inc., New York, 1984, p. 1.
- Curtis, G. J., Milne, J. M., and Reynolds, W. N., "Non-Hookean Behavior of Strong Carbon Fibers," <u>Nature</u>, Vol. 220, 1968, pp. 1024-1025.

- 3. Jenkins, G. M. and Kawamura, K., <u>Polymeric Carbons</u>, Cambridge University Press, London, 1976, pp. 83-86.
- 4. Liu, John M., "Temperature Dependence and Hysteresis of Young's Modulus in a Graphite/Aluminum Metal Matrix Composite," <u>Applied Physics Letters</u>, Vol. 48, No. 7, 1986, pp. 469-471.
- 5. Hull, D., <u>An Introduction to Composite Materials</u>, Cambridge University Press, New York, 1981, pp. 36-57.
- 6. Wolff, E. G., Min, B. K., and Kural, M. H., "Thermal Cycling of a Unidirectional Graphite-Magnesium Composite," <u>Journal of Materials Science</u>, Vol. 20, No. 4, 1985, pp. 1141-1149.
- 7. Beetz, C. P., Jr. and Budd, G. W., "Strain Modulation Measurements of Stiffening Effects in Carbon Fibers," <u>Review of Scientific Instruments</u>, Vol. 54, No. 9, 1983, pp. 222-226.

STATISTICS CONTROLLS

- 8. Kowalski, I. M., "Characterizing the Tensile Stress-Strain Nonlinearity of PAN-based Carbon Fibers," <u>Amoco Performance Products, Inc.</u>, Parma Technical Center, Parma, Ohio, 29 April 1986.
- 9. Smith, J. J., Jiang, H., Eby, R. K., and Adams, W. W., "Laser Generation of Ultrasound in High-Modulus Fibers, <u>Polymer Communications</u>, Vol. 28, 1987, pp. 14-15.
- 10. Wentorf, R. H., Devries, R. C., and Bundy, F. P., "Sintered Superhard Materials," <u>Science</u>, Vol. 208, 1980, pp. 873-880.
- Ruland, W., "The Relationship Between Preferred Orientation and Young's Modulus of Carbon Fibers," <u>Applied Polymer Symposia</u>, Vol. 9, 1969, pp. 293-301.

REFERENCES (Cont.)

- 12. Lucke, K. and Granato, A. V., "The Rigid Rod Model of Dislocation Resonance Including Applications to Point Defect Drag," <u>Journal de Physique</u>, Vol. 42, C5, 1981, pp. 327-338.
- 13. Watt, W., Ed., and Perov, B. V., Ed., <u>Strong Fibers</u>, North Holland, Amsterdam, 1985, p. 389.

المرازراران المهيها معمانات ممتحده متحدد المعالية

Second Processor Professor Paracect Processor Branch

DISTRIBUTION

THE REPORT OF	\$\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	717 <u>277</u> 71717	ŶŶŶĬĊĬŎŢŎŢŎŢŎŢŎŢŎĬĠĬĠŢŎŢŎŢŎĬĠĬĠŢŎĬŎ ĬŎŢŎĬŎĬ	en e
88		NSWC TR	87-252	
8				
8				
<u> </u>				
18				
8				
S .				
		DISTRIB	SUTION	
		Copies	<u>.</u>	Copies
	Naval Research Laboratory		Air Force Systems Command	
	Attn: S. C. Sanday, Code 6370	1	Mechanical and Surface	
8-	I. Wolock, Code 6383	1	Interaction Branch	
Ø.	J. Chang, Code 5830	1	Attn: S. W. Tsai	1
Ę.	Library Weshington D.C. 20276 5000	1	Wright-Patterson AFB, OH 45433-	6553
<i>[</i>]	Washington, D.C. 20376-5000		Commanding Officer	
	Naval Intelligence Support Cente	r	Air Force Flight Dynamics	
	Attn: M. E. Andrasco	1	Laboratory	
Kr.	Library	1	Attn: D. Roselius	1
	4301 Suitland Road		L. Kelley	1
)	Washington, D.C. 20390		F. Boensch, Code FIBAA	1
			A. Gunderson, Code FIBAA	
6368688 • 6366888	Metal Matrix Composites Information Center		Wright-Patterson AFB, OH 45433-	6553
	Kaman Tempo		Air Force Wright Aeronautical	
X	Attn: L. Gonzalez 816 State Street	2	Laboratory	,
Ž.	P.O. Drawer QQ		Attn: D. R. Beeler, MLTN Wright-Patterson AFB, OH 45433-	⊥ 6553
β.	Santa Barbara, CA 93101		wright-ratterson Arb, on 43433-	0,00
8			Department of the Army	
	Defense Technical Information		Attn: A. Levitt, DRXMR-MMC	1
Q	Center		P. Smoot, DRXMR-SME	1
X.	Cameron Station		Library	1
	Alexandria, VA 22304-6145	12	AMMRC	
X	Defense Advanced Research		Watertown, MA 02172	
K:	Projects Agency		U.S. Army Research Office	
D	Attn: P. Parrish		Associate Director,	
₿	Materials Sciences Division		Metallurgy and Materials	
8	1400 Wilson Blvd.		Science Division	
g .	Arlington, VA 22209		Attn: G. Mayer	1
3	-		P.O. Box 12211	
	Commanding Officer		Triangle Park, NC 27709	
<u> </u>	Air Force Materials Laboratory			
R	Attn: T. M. F. Ronald, Code MLI	•	U.S. Army Mobility Equipment	
	S. Schwenker, Code MLLS	1,	Research and Develop. Command	
K	D. I. G. Jones, Code MLLN Wright-Patterson AFB, OH 45433-6		Attn: G. G. Farmer, Jr., DRDME-VM	•
, D	wright-racterson arb, on 43433-0		Technical Document Cente:	r 7
Ē	Library of Congress		Fort Belvoir, VA 22060	
£.	Attn: Gift and Exchange Divisio		, ,,, ,,,	
F	Washington, D.C. 20540	4		
B. J				

A CONTRACTOR	er de la	ŮNERONENSKE KENERONENSKE KONTENTENSKE PORTEN	(*************		MARIAN PER PER
			NSWC TR 87	7-252	
8					
440,600		I	DISTRIBUTION	(Cont.)	
			Copies		Copies
RESSOUR REVERSE		of Deputy Under Secreta	ry	Commander	
		efense for Research and		Naval Ocean Systems Center	1
8	_	neering J. Persh	1	Attn: P. D. Burke, Code 9322 Library	<u>1</u> 1
₩.		Specialist for Materials	-	San Diego, CA 92152	•
QC		Structures			
	Room 3	D1089, The Pentagon Libr	ary	Commander	
S)	Washin	gton, D.C. 20350-3080		Naval Air Development Center	
<u> </u>				Attn: T. E. Hess, Code 6043	1
55		of Naval Technology	_	G. London, Code 606D	1
	Attn:	J. Kelly, ONT 0725	1	Library	1
X		Library	1	Warminster, PA 18974	
		Quincy Street		Commanding Officer	
Č.	Arring	ton, VA 22217-5000		Commanding Officer Naval Underwater Systems Cente	
	Comman	de=		Attn: B. Sandman, Code 3636	1
		Sea Systems Command		Library	1
ζ¥.		M. Kinna, SEA 62R4	1	Newport, RI 02840	• .
83		J. Manon, PMS 407C	ī	nowpoint, the cooks	
₹		Library	ī	NAVPRO, Sunnyvale	
500000 pp. 200000000000000000000000000000	Washin	gton, D.C. 20362-5101		Attn: B. Galligan, SPL 312 Lockheed Bldg. 131	1
	Comman	der ·		Sunnyvale, CA 94086	•
		Air Systems Command			
		Library	1	Ballistic Missile Defense Offi	ce
		gton, D.C. 20361-5000		BMD-ATC Attn: M. L. Whitfield	1
		ment of the Navy		P.O. Box 1500	
i)		gic Systems Project Offi		Huntsville, AL 35807	
\mathcal{R}	Attn:	B. W. Hannah, Code SP27	2 1	Amma Pamaisa Caisara and	
	C=	Library		Army Foreign Science and	
K)		l Mall No. 3 gton, D.C. 20376		Technology Center Attn: J. F. Crider,	
E '	uasiilii	5001, 5.0. 203/0		FSTC/DRXST-MTI	1
Xγ	Office	of Naval Research		220 7th Street	•
322433 26		Y. Rajapakse, Code 1132	SM 1	Charlottesville, VA 22901	
Κ.		S. Fishman, Code 1131	1	,	
X.		Library	1	NASA Headquarters/RTM	
8		Quincy Street		Attn: M. Greenfield	1
	Arling	ton, VA 22217-5000		600 Independence Avenue, SW. Washington, D.C. 20546	
N.	Comman			-	
		W. Taylor Research		NASA/Langley Research Center	
Warren (Cent		_	Attn: D. Tenney, Code MS188A	1_
(C.	Attn:	R. DeNale, Code 2815	1	S. Tompkins, Code 191	
		W. Philliar, Code 1720	1	Research Program Record	iing
γ_{2}		R. Crane, Code 2844	1	Unit, Mail Stop 122	1
E	10000	Library	-	Hampton, VA 23365	
7 2*	viriaño	lis, MD 21402			

DISTRIBUTION (Cont.)

to Markana de	
5888	
	NSWC TR
The Aerospace Corporati Attn: R. A. Meyer J. L. White S. Evanglides P.O. Box 92957 Los Angeles, CA 90009 United Technology Resea Attn: R. W. Reed East Hartford, CT 06108 NASA/Lewis Research Cen Attn: J. A. DiCarlo, Mail Stop 106-1 Library, Mail St 21000 Brookpart Road Cleveland, OH 44135 Internal Distribution: R R30 P301 (I. Goff)	DISTRIBUTIO
S	Copies
The Aerospace Corporati	.on
Attn: R. A. Meyer	1
J. L. White	1
S. Evanglides	1
P.O. Box 92957	
Los Angeles, CA 90009	
United Technology Resea	rch Center
Attn: R. W. Reed	1
East Hartford, CT 06108	l
NASA/Lewis Research Cen	iter
Attn: J. A. DiCarlo,	1
Mail Stop 106-1	
Library, Mail St	op 60-3 1
21000 Brookpart Road	
Cleveland, OH 44135	
Internal Distribution:	
R	1
R30	1
KJUI (J. GULI)	. 1
R31 (J. Augl)	1
R31 (R. Weller)	1
R32 (J. Foltz)	5
R32 (A. Bertram)	1
R34 (C. Anderson)	1
R34 (J. Liu)	10
K22 (E. Becker) K205 (W. Messick)	1
N K2U3 (W. Messick)	1 2
E231 E232	15
K22 (E. Becker) K205 (W. Messick) E231 E232 E342 (GIDEP Office)	13
E22 (D. Johnston)	ī

END DATE FILMED 8-88 DT/C