Generative Pretraining from Pixels

Mark Chen, Alec Radford, Rewon Child, Jeff Wu, Heewoo Jun, Prafulla Dhariwal, David Luan, Ilya Sutskever

ICML 2020

Presented by Mingyu Yang

- Unsupervised <u>generative</u> pre-training for images:
 - Popular in <u>mid 2000's</u>
 - A central role in the <u>resurgence of deep learning</u>.
 - Before that, DNNs are very hard to train!
 - People believe that learning p(x) helps supervised modeling of p(y|x)
 - Pre-training + fine-tuning achieves STOA performance and outperforms SVM in MNIST

- Unsupervised <u>generative</u> pre-training for images:
 - Popular in <u>mid 2000's</u>
 - A central role in the <u>resurgence of deep learning</u>.
 - Before that, DNNs are very hard to train!
 - People believe that learning p(x) helps supervised modeling of p(y|x)
 - Pre-training + fine-tuning achieves STOA performance and outperforms SVM in MNIST
 - Example:
 - Deep Belief Network (2006)
 - Denoising Autoencoder (2008)

Digits generated from Deep Belief Networks

Manifold learning perspective of denoising autoencoder

- Unsupervised <u>generative</u> pre-training becomes less popular for images:
 - 1. Deep Neural Networks are much easier to train
 - Better activation functions: ReLU, LeakyReLU, ...
 - Improved initializations: Xavier, Kaiming, ...
 - Normalization strategies: Batch Normalization ...

- Unsupervised <u>generative</u> pre-training becomes less popular for images:
 - 1. Deep Neural Networks are much easier to train
 - Better activation functions: ReLU, LeakyReLU, ...
 - Improved initializations: Xavier, Kaiming, ...
 - Normalization strategies: Batch Normalization ...
 - 2. <u>Supervised pre-training</u> achieves better performance

- Unsupervised <u>generative</u> pre-training becomes less popular for images:
 - People design different <u>self-supervised learning</u> methods model <u>global structures</u> (by solving pretext tasks) instead of the distribution
 - Predict relative positions
 - Mutual Information: AMDIM
 - Contrastive learning: MoCo, SimCLR

Predicting relative positions (Doersch et al., 2015)

SimCLR (Chen et al., 2019)

- Unsupervised generative pre-training <u>flourished in NLP!</u>
 - Learn the language model as pre-training

Predict masked words: Conditional probability

• BERT (2018):
$$L_{BERT} = \underset{x \sim X}{\mathbb{E}} \sum_{M} \sum_{i \in M} \left[-\log p\left(x_i | x_{[1,n] \setminus M}\right) \right]$$

• GPT-2 (2019), GPT-3 (2020): $L_{AR} = \mathop{\mathbb{E}}_{x \sim X} [-\log p(x)]$

$$p(x) = \prod_{i=1}^{n} p(x_{\pi_i} | x_{\pi_1}, ..., x_{\pi_{i-1}}, \theta)$$

Autoregressive model

- Unsupervised generative pre-training <u>flourished in NLP!</u>
 - Fine-tuning for different tasks

0

B-PER

(d) Single Sentence Tagging Tasks: CoNLL-2003 NER

- Unsupervised generative pre-training <u>flourished in NLP!</u>
 - STOA methods benefit from <u>attention mechanism</u>
 - Transformer (2017)
 - Will be introduced later in this course

- Motivation of this paper:
 - Can we do the same to images?
 - Can we get competitive performance?
- Very similar to BigBiGAN presented last class
 - Autoregressive vs GAN

Transformer architecture

Overview

Pre-processing Pre-training Fine-tuning

Pre-processing:

- Context Reduction:
 - Images are <u>so large for transformers</u>
 - ImageNet: 224x224x3
 - Downsampling:
 - Reduce the size to 32x32x3, 48x48x3, or 64x64x3
 - Reduce 3 dimensional (R,G,B) channels to 1 dimensional using K-means
 - 512 clusters
 - Further reduce the size to 32x32, 48x48, or 64x64

Pre-training:

- Autoregressive (AR):
 - Likelihood: $p(x) = \prod_{i=1}^n p(x_{\pi_i} | x_{\pi_1}, ..., x_{\pi_{i-1}}, \theta)$ Minimize log-likelihood: $L_{AR} = \mathop{\mathbb{E}}_{x \sim X} [-\log p(x)]$

 - Raster order
 - Upper triangular mask to zero out the effect of future words (pixels)

Pre-training:

- Autoregressive (AR):
 - Likelihood: $p(x) = \prod_{i=1}^n p(x_{\pi_i} | x_{\pi_1}, ..., x_{\pi_{i-1}}, \theta)$ Minimize log-likelihood: $L_{AR} = \mathop{\mathbb{E}}_{x \sim X} [-\log p(x)]$

 - Raster order
 - Upper triangular mask to zero out the effect of future words (pixels)

Pre-training:

- BERT:
 - Minimize the negative log-likelihood of the masked elements conditioned on the unmasked ones

$$L_{BERT} = \underset{x \sim X}{\mathbb{E}} \underset{M}{\mathbb{E}} \sum_{i \in M} \left[-\log p\left(x_i | x_{[1,n] \setminus M}\right) \right]$$

Fine-tuning:

- At each layer, each pixel gets a <u>d-dimensional</u> feature vector
- Average pooling across the sequence dimension to get a <u>d-dimensional</u> feature vector for the whole image
- Linear Probe & Fine-tuning

Fine-tuning:

- Linear Probe (transfer learning):
 - Treat the transformer as a <u>fixed feature extractor</u>
 - Learn a projection to class logits and minimize the cross entropy loss L_{CLF}
 - Could extract the features at any intermediate layer

Fine-tuning:

- Fine-tuning:
 - Treat the learned transformer as <u>an initialization</u>
 - Learn a projection to class logits and minimize the joint objective $\ L_{GEN} + L_{CLF}$

• More details:

Same model with GPT-2 with slight modification

	# of layers	Embedding size	# of parameters
iGPT-S	24	512	76M
iGPT-M	36	1024	455M
iGPT-L	48	1536	1.4B
iGPT-XL	60	3072	6.8B

Model parameters

Representations at different layers:

- Linear probes for the features at different layers
- Middle layers works the best (Not the last layer?)

- Better generative models learn better representations:
 - Dotted markers denote checkpoints at steps 65K, 131K, 262K, 514K, and 1000K

- Linear probes on CIFAR and STL-10:
 - Pre-trained on ImageNet
 - Outperform STOA unsupervised pre-training methods

	Model	Acc	Unsup Transfer	Sup Transfer
 pre-train with 32x32 down-sampled images linear probes with 32x32 images 	CIFAR-10 ResNet-152 SimCLR iGPT-L	94 95.3 96.3	√ √	√
 pre-train with 224x224 images Transfer learning with 224x224 up-sampled images 	CIFAR-100 ResNet-152 SimCLR iGPT-L	78.0 80.2 82.8	√ √	\checkmark
	STL-10 Amdim-L igpt-L	94.2 95.5	\checkmark	

Linear probes on ImageNet:

- Comparable but not better performance than STOA (at that time)
- Much larger model and longer features

Method	IR	Params (M)	Features	Acc
Rotation	orig.	86	8192	55.4
iGPT-L	$32^2 \cdot 3$	1362	1536	60.3
BigBiGAN	orig.	86	8192	61.3
iGPT-L	$48^2 \cdot 3$	1362	1536	65.2
AMDIM	orig.	626	8192	68.1
MoCo	orig.	375	8192	68.6
iGPT-XL	$64^2 \cdot 3$	6801	3072	68.7
SimCLR	orig.	24	2048	69.3
CPC v2	orig.	303	8192	71.5
iGPT-XL	$64^2 \cdot 3$	6801	15360	72.0
SimCLR	orig.	375	8192	76.5

Full fine-tuning:

- Pre-trained on ImageNet
- Achieve STOA performance on CIFAR-10
- Achieve <u>66.3%</u> on ImageNet with 32x32x3, which is worse than the STOA performance of <u>70.2%</u> (Isometrix Neural Nets)

Model	Acc	Unsup Transfer	Sup Transfer
CIFAR-10			
AutoAugment	98.5		
SimCLR	98.6	$\sqrt{}$	
GPipe	99.0	•	$\sqrt{}$
iGPT-L	99.0	\checkmark	·
CIFAR-100			
iGPT-L	88.5	\checkmark	
SimCLR	89.0	V	
AutoAugment	89.3	•	
EfficientNet	91.7		\checkmark

Evaluations for AR and BERT

BERT vs AR:

Summary

Pros:

- Transformers do work for image pretraining
- Achieves impressive performance on small dataset such as CIFAR-10
- Large potential for future improvements (e.g., combine with CNN for large images, GPT-3, etc)

Cons:

- Difficult to deal with high resolution images.
 Downsampling causes a loss of information
- Huge memory and computation cost
- Ignoring the spatial information