

# Principal Component Analysis

Lecture "Mathematics of Learning"

Andreas Bärmann Friedrich-Alexander-Universität Erlangen-Nürnberg





### Principal Component Analysis PCA

### Principal Component Analysis (PCA):

- first idea by Karl Pearson in 1906
- improvements by Harold Hotelling in the 1930s
- widespread use since raise of computers

#### Applications:

- Multivariate statistics
- Cluster analysis
- Data reduction
- Feature extraction
- Image processing
- ...



### **Prelimininaries**

- general approach from multivariate statistics
- structures large data sets through eigenvalues and covariances
- represents data through principal components, i.e. linear combinations of statistical variables

### What is given?

- input data set with  $N \in \mathbb{N}$  points  $x^{(1)}, \dots, x^{(N)} \in \mathbb{R}^M$
- no a-priori knowledge about data needed (e.g. cluster label)
- statistically interpretable as *N* observations of *M* random variables (e.g. we have measured *M* so-called *features* for *N* people / objects.)



## Objectives of PCA



### What is the goal?

- Structure identification in the data
- Extraction of meaningful features
- Data reduction to most expressive information,
  i.e. project data points in k-dimensional space, with k < M,</li>
  such that no or not much information is lost.



## Objectives of PCA



### What is the goal?

- Structure identification in the data
- Extraction of meaningful features
- Data reduction to most expressive information,
  i.e. project data points in k-dimensional space, with k < M,</li>
  such that no or not much information is lost.



## Objectives of PCA



### What is the goal?

- Structure identification in the data
- Extraction of meaningful features
- Data reduction to most expressive information,
  i.e. project data points in k-dimensional space, with k < M,</li>
  such that no or not much information is lost.



## Computing PCA: Data centering

#### Centering the data in the origin

ightarrow Computation of mean value  $\overline{X} = \frac{1}{N} \sum_{i=1}^{N} x^{(i)}$ 

In the following:  $y^{(i)} = x^{(i)} - \overline{X}$ , i = 1, ..., N centred data





## Computing PCA: Covariance matrix

### Computation of covariance matrix $C \in \mathbb{R}^{M \times M}$ :

$$C := \frac{1}{N} \sum_{i=1}^{N} y^{(i)} y^{(i)^T}$$

$$C_{k,l} = \frac{1}{N} \sum_{i=1}^{N} y_k^{(i)} y_l^{(i)} = \frac{1}{N} \sum_{i=1}^{N} (y_k^{(i)} - 0) (y_l^{(i)} - 0)$$
$$= \frac{1}{N} \sum_{i=1}^{N} (y_k^{(i)} - \overline{Y_k}) (y_l^{(i)} - \overline{Y_l}) =: Cov(y_k, y_l)$$



## Recall Linear Algebra Lectures: Diagonalisation of C

**Aim:** Alternative data representation:  $y^{(i)} \in \mathbb{R}^M \to z^{(i)} \in \mathbb{R}^k$ ,

- based on orthogonal vectors ('principal components')
- vectors should be aligned with directions of highest variance
- data representation should be uncorrelated
  - $\rightarrow Cov(z_j, z_l) = 0 \text{ for } j \neq l$
  - $\rightarrow$  diagonalisation of matrix C

### (Finite-dimensional) spectral theorem from Linear Algebra:

Let  $C \in \mathbb{R}^{M \times M}$  be a real, symmetric matrix. Then there exists an orthogonal matrix S such that:

$$S^TCS = \begin{pmatrix} \lambda_1 & 0 \\ & \ddots & \\ 0 & \lambda_M \end{pmatrix},$$

for which  $\lambda_1, \ldots, \lambda_M \in \mathbb{R}$  are the eigenvalues of C. The columns of S are orthonormal eigenvectors of C.



We get the wanted alternative data representation by computing **eigenvalues** and respective **eigenvectors** of *C*.

Thus, we need to (numerically) solve the eigenvalue problem:

$$\lambda \mathbf{v} = \mathbf{C} \mathbf{v}$$

Recall: A solution can be found by various methods:

- roots of characteristic polynomial
- QR algorithm
- Jacobi eigenvalue algorithm
- singular value decomposition
- etc.

#### Observations:

- C positive semi-definite ⇒ only non-negative eigenvalues
- $\lambda_i \equiv$  data variance along direction of eigenvector  $v^{(j)}$
- eigenvectors form a new local coordinate system



#### A simple example:

- Data is distributed within hyperplane parallel to plane span(e<sub>1</sub>, e<sub>2</sub>)
  → no variance in direction e<sub>3</sub> (no depth)
- easy to recognize from eigenvalue  $\lambda_3$ , because  $S^TCS$  leads to

$$D = egin{pmatrix} \lambda_1 > 0 & 0 & 0 \ 0 & \lambda_2 > 0 & 0 \ 0 & 0 & \lambda_3 = 0 \end{pmatrix}$$

• Selection of eigenvalues  $\lambda_1, \lambda_2 > 0$  leads to dimension reduction.





#### A simple example:

- Data is distributed within hyperplane parallel to plane  $span(e_1, e_2)$ 
  - $\rightarrow$  no variance in direction  $e_3$  (no depth)
- easy to recognize from eigenvalue  $\lambda_3$ , because  $S^TCS$  leads to

$$D = egin{pmatrix} \lambda_1 > 0 & 0 & 0 \ 0 & \lambda_2 > 0 & 0 \ 0 & 0 & \lambda_3 = 0 \end{pmatrix}$$

• Selection of eigenvalues  $\lambda_1, \lambda_2 > 0$  leads to dimension reduction.





#### A simple example:

- Data is distributed within hyperplane parallel to plane  $span(e_1, e_2)$ 
  - $\rightarrow$  no variance in direction  $e_3$  (no depth)
- easy to recognize from eigenvalue  $\lambda_3$ , because  $S^TCS$  leads to

$$D = egin{pmatrix} \lambda_1 > 0 & 0 & 0 \ 0 & \lambda_2 > 0 & 0 \ 0 & 0 & \lambda_3 = 0 \end{pmatrix}$$

• Selection of eigenvalues  $\lambda_1, \lambda_2 > 0$  leads to dimension reduction.





### The actual PCA

#### **Define transformation matrix:**

$$T := (\mathbf{v}^{(1)}, \dots, \mathbf{v}^{(k)}) \in \mathbb{R}^{M \times k},$$

for which  $v^{(1)}, \ldots, v^{(k)}$  are the respective eigenvectors of the  $1 \le k \le M$  largest eigenvalues.

### Principal component analysis:

- transform the data:  $z^{(i)} := T^T y^{(i)} = T^T (x^{(i)} \overline{X})$  for i = 1, ..., N
- $z^{(i)} \in \mathbb{R}^k$  contains the most relevant information (features) of the input data
- The components  $z_i^{(i)}, j = 1, ..., k$  are called **principal components**
- If T is quadratic  $(k = M) \Rightarrow PCA$  is simply a rotation in  $\mathbb{R}^M$

The principal components of the input data are typically used as (cluster) representatives in **clustering tasks**.



## Summary of PCA

For given input data  $x^{(1)}, \dots, x^{(N)} \in \mathbb{R}^M$  the PCA can be computed as

### The (linear) PCA algorithm

- 1. Compute mean value of data  $\overline{X} = \frac{1}{N} \sum_{i=1}^{N} x^{(i)}$
- 2. Center data via  $y^{(i)} = x^{(i)} \overline{X}$
- 3. Compute covariance matrix  $C = \frac{1}{N} \sum_{i=1}^{N} y^{(i)} y^{(i)}^T$
- 4. Determine the *M* eigenvalues and eigenvectors of *C* numerically
- 5. Select  $1 \le k \le M$  respective eigenvectors  $v^{(1)}, \dots, v^{(k)}$  of the k largest non-vanishing eigenvalues
- 6. Assemble selected eigenvectors  $v^{(1)}, \ldots, v^{(k)}$  columnwise to matrix  $T \in \mathbb{R}^{M \times k}$
- 7. Compute principal components for each centred input point  $y^{(i)} \in \mathbb{R}^M$  via:

$$T^T y^{(i)} = z^{(i)} \in \mathbb{R}^k$$



## Properties of the PCA

#### Data reconstruction

Reconstructing the centred input data from its principal components is (partially) possible via:

$$Tz^{(i)} = \tilde{y}^{(i)}, \text{ for } i = 1, ..., N$$

It is clear that  $\tilde{y}^{(i)} = y^{(i)}$  iff  $\lambda_i = 0$  for k < j < M

Otherwise: Loss of information

#### Additional problems:

- computational complexity is:  $\mathcal{O}(M^3)$  for eigenvalue decomposition +  $\mathcal{O}(NM^2)$ for calculation of covariance matrix
  - $\rightarrow$  numerically expensive for large M (dimension of data space)
- number of principal components (and hence possible features) is bounded by M
  - example:  $x \in \mathbb{R}^2 \Rightarrow \text{max}$ . two principal components
- (linear) PCA does not allow for extraction of non-linear features



### Conclusions and Outlook

- PCA is a good tool for dimension reduction and feature extraction
- can be used for clustering
- can be interpreted as **linear transformation** of input data to a feature space
- computational complexity mainly depends on dimension *M* of data space
- PCA is restricted to linear features

Thank you for your attention!