Mathematical Theorems

Justin Bromley

January 30, 2024

1 Functions

Theorem 1.1 (Intermediate Value Theorem). Suppose f is a continuous function on the closed interval [a, b]. If V is any number between f(a) and f(b), then there exists at least one number c in the open interval (a, b) such that f(c) = V. [1]

2 Polynomials

Theorem 2.1 (Extreme Value Theorem). If $f: K \to \mathbb{R}$ is continuous on a compact set $K \subseteq \mathbb{R}$, then, f attains a maximum and minimum value. In other words, there exist $x_0, x_1 \in K$ such that $f(x_0) \leq f(x) \leq f(x_1)$ for all $x \in K$. [3]

Proposition 2.2 (Local Extrema of Polynomials). If $P(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$ is a polynomial of degree n, then the graph of P has at most n-1 local extrema. [1]

Theorem 2.3 (Remainder Theorem). If the polynomial P(x) is divided by x - c, then the remainder is the value P(c) [1]

Theorem 2.4 (Factor Theorem). P(c) = 0 if and only if (x - c) is a factor of P(x). [1]

Theorem 2.5 (Rational Zeros Theorem). If the polynomial $P(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$ has integer coefficients (where $a_n \neq 0$ and $a_0 \neq 0$), then every rational zero of P is of the form $\frac{p}{q}$, where p and q are integers and

- p is a factor of the constant coefficient a_0
- q is a factor of the leading coefficient a_n

[1]

Theorem 2.6 (Upper and Lower Bound Theorem). Let P be a polynomial with real coefficients.

- 1. If we divide P(x) by (x b) (with $b \neq 0$) using synthetic division, and if the row that contains the quotient and remainder has no negative entry, then b is an upper bound for the real zeros of P.
- 2. If we divide P(x) by (x-a) (with $a \neq 0$) using synthetic division, and if the row that contains the quotient and remainder has entries that are alternately nonpositive and nonnegative, then a is a lower bound for the real zeros of P.

[1]

Theorem 2.7 (Descartes' Ruel of Signs). Let P(x) be a polynomial with real coefficients.

- 1. The number of positive real zeros of P(x) is either equal to the number of variations in sign in P(x) or is less than that by an even whole number.
- 2. The number of negative real zeros of P(x) is either equal to the number of variations in sign in P(-x) or is less than that by an even whole number.

[1]

Theorem 2.8 (Fundamental Theorem of Algebra). Every polynomial

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 \quad (n \ge 1, a_n \ne 0)$$

with complex coefficients has at least one complex zero. [1]

Theorem 2.9 (Complete Factorisation Theorem). If P(x) is a polynomial of degree $n \ge 1$, then there exist complex numbers a, c_1, c_2, \ldots, c_n (with $a \ne 0$) such that

$$P(x) = a(x - c_1)(x - c_2)...(x - c_n)$$

[1]

Theorem 2.10 (Zeros Theorem). Every polynomial of degree $n \geq 1$ has exactly n zeros, provided that a zero of multiplicity k is counted k times. [1]

Theorem 2.11 (Conjugate Zeros Theorem). If the polynomial P has real coefficients and if the complex number z is a zero of P, then its complex conjugate z is also a zero of P. [1]

Theorem 2.12 (Linear and quadratic factors theorem). Every polynomial with real coefficients can be factored into a product of linear and irreducible quadratic factors with real coefficients. [1]

References

- [1] James Stewart, Lothar Redlin, and Saleem Watson. *Precalculus Mathematics for Calculus*. Cengage Learning, 2015.
- [2] L. K. Williams. Tikz gallery. Accessed on: 2023-12-11.
- [3] Stephen Abbott. Understanding Analysis. Springer, New York, 2015.