Machine Learning

Model Selection

Sarah Jane Delany

What is Model Selection?

- Easy part:
 - What algorithm is best? e.g. k-NN, Decision Trees, Naive Bayes, etc
- Not so easy parts:
 - What preprocessing steps?
 - Data scaling
 - Missing value imputation
 - Preprocessing text data
 - Setting model hyperparameters

What is Model Selection?

Pipeline

- A set of 'canned' steps can be grouped together into a pipeline
 - e.g. StandardScalar + Classifier

Grid Search

- [Hyper]parameter tuning
- Grid is the space of all parameter combinations
 - e.g. 5 x 2 grid:
 - k = [1,3,5,7,10],

- Test data should not be used in parameter tuning So pipelines and grid search used together
- distance = [weighted, unweighted]

BTW: What is a Hyperparameter?

- Model parameters
 - Estimated by the learning algorithm, e.g.
 - Coefficients in linear models
 - Weights in neural net
 - Conditional probabilities in Naive Bayes
 - Support vectors in SVM
- Hyperparameters
 - Set by hand, e.g.
 - ▶ k in k-Nearest Neighbour
 - max_depth in a Decision Tree
 - ▶ [split] criterion: ('gini' or 'entropy') in a Decision Tree.
 - α learning rate in Gradient Descent

In practice: hyper-parameter tuning might be automated

Preprocessing example: Imputation

- Why?
 - A preprocessing step where access to test data can have an impact

Replace with mean for column

Impute from similar examples

```
imp_kNN = KNNImputer(missing_values = np.nan)
imp_kNN.fit(X)
Xi = imp_kNN.transform(X)
```

Imputer should not have access to test data

UCI Mammographic Mass Data

Age	Shape	Margin	Density	Severity
67.0	3.0	5.0	3.0	1
43.0	1.0	1.0	NaN	1
58.0	4.0	5.0	3.0	1
28.0	1.0	1.0	3.0	0
74.0	1.0	5.0	NaN	1
65.0	1.0	NaN	3.0	0
70.0	NaN	NaN	3.0	0
42.0	1.0	NaN	3.0	0
57.0	1.0	5.0	3.0	1
60.0	NaN	5.0	1.0	1

Preprocessing & Data Splitting...

The right way...

X_test not used to 'fit' the Imputer

```
imp_kNN = KNNImputer(missing_values = np.nan)
imp_kNN.fit(X_train)
Xi_train = imp_kNN.transform(X_train)
Xi_test = imp_kNN.transform(X_test)
```

Preprocessing & Data Splitting...

X_test

X

Xi_test

y pred

Pipeline: Hold-out testing

- Pipeline:
 - Two transforms:
 - KNNImputer
 - StandardScaler
 - One Estimator
 - KNeighborsClassifier

```
kNNpipe = Pipeline(steps=[
    ('imputer', KNNImputer(missing_values = np.nan)),
    ('scaler', StandardScaler()),
     ('classifier', KNeighborsClassifier())])
In [150]:
kNNpipe.fit(X_train, y_train)
y_pred = kNNpipe.predict(X_test)
print("Accuracy: {0:4.2f}".format(accuracy_score(y_test,y_pred)))
confusion_matrix(y_test, y_pred)
```

Pipeline: Cross-Validation

- Pipeline object passed to cross_val_score
- All fitting and transforming done automatically
 - New imputer and scaler for each fold

```
kNNpipe = Pipeline(steps=[
    ('imputer', KNNImputer(missing_values = np.nan)),
    ('scaler', StandardScaler()),
    ('classifier', KNeighborsClassifier())])

acc_arr = cross_val_score(kNNpipe, X, y, cv=5)
print("Accuracy: {0:4.2f}".format(sum(acc_arr)/len(acc_arr)))
```

- → Hold-out accuracy: 0.82
- → X-val accuracy: 0.78
- → Why the difference, which is more reliable?

Grid Search

- The grid is the space of all hyperparameter combinations
- KNeighborsClassifier
 - n_neighbors: {1,3,5,10}
 - weights: {'uniform', 'distance'}
 - metric: {'euclidean', 'manhattan'}

```
4 \times 2 \times 2 = 16 combinations
```

Running Grid Search

- Parameter sets are 'scored' based on the default score for the classifier.
 - For KNeighborsClassifier() this is accuracy

```
knn = KNeighborsClassifier()
param grid = {'n neighbors':[1,3,5,10],
              'metric':['manhattan','euclidean'],
             'weights':['uniform','distance']}
In [16]:
knn qs = GridSearchCV(knn, param qrid, cv=10,
                     verbose = 1, n jobs = -1)
knn_gs = (knn_gs.fit(X_trainS,y_train)
Fitting 10 folds for each of 16 candidates, totalling 160 fits
[Parallel(n jobs=-1)]: Using backend LokyBackend with 4 concurrent workers.
[Parallel(n jobs=-1)]: Done 68 tasks
                                       elapsed: 1.7s
[Parallel(n jobs=-1)]: Done 160 out of 160 | elapsed: 2.1s finished
```

Grid Search: using the results - 3 options

The GridSearchCV object IS a classifier

```
y_pred_gs = knn_gs.predict(X_testS)
```

- Explicitly build a classifier with the best parameters
 - best params dictionary

Unpack the best parameters directly

```
knn3 = KNeighborsClassifier(**knn_gs.best_params_)
```


RandomizedSearchCV

- A randomised rather than an exhaustive search
- Suitable when the parameter space is huge
- A parameter search budget can be set
 - Specify the number of states to be checked
- Insensitive to parameters that don't matter

Summary

- What is Model Selection?
- Model Selection support in scikit-learn
 - Pipelines
 - Grid Search
- Work through the two notebooks
- Tackle the Lab exercise