Sécurisation des communications

Table des matières

Sécurisation des communications	1
1. Introduction	
2. Chiffrement symétrique	
Principe	
Exemple : Chiffrement de César	
3. Chiffrement asymétrique	
Principe	
Exemple d'échange : Alice → Bob	
4. Hachage et intégrité	2
Fonction de hachage	
Intégrité	
5. Signature numérique	
Principe	
Étapes du processus	
6. Certificats numériques	
7. Protocoles sécurisés : HTTPS et TLS.	
TLS assure :	

1. Introduction

La sécurité des communications numériques est essentielle pour protéger les échanges sur internet. Elle repose sur plusieurs objectifs :

- Confidentialité : seuls les destinataires autorisés peuvent lire le message.
- Authenticité : le message vient bien de la personne annoncée.
- **Intégrité** : le contenu du message n'a pas été modifié.

2. Chiffrement symétrique

Principe

Une **même clé secrète** est utilisée à la fois pour chiffrer et déchiffrer le message. Cette clé doit être connue à l'avance par les deux parties.

Exemple : Chiffrement de César

Chaque lettre est décalée d'un certain nombre de positions dans l'alphabet.

Ex. : avec un décalage de +3 → ABCD devient DEFG

- Avantage : rapide et simple
- Inconvénient : la clé doit être échangée **de manière sécurisée, très simple à casser** avec les moyens actuels

3. Chiffrement asymétrique

Principe

Chaque utilisateur possède deux clés :

- Une **clé publique** (diffusée librement),
- Une **clé privée** (gardée secrète).

Ce système repose sur le fait qu'un message chiffré avec la clé publique ne peut être déchiffré qu'avec la clé privée correspondante.

Exemple d'échange : Alice → **Bob**

- 1. Bob génère une paire de clés (publique / privée).
- 2. Il envoie sa **clé publique** à Alice.
- 3. Alice chiffre le message avec la **clé publique de Bob**.
- 4. Bob déchiffre le message avec sa **clé privée**.
- => Ainsi, **seul Bob** peut lire le message, même si quelqu'un intercepte le message chiffré.

4. Hachage et intégrité

Fonction de hachage

Une **fonction de hachage** est un algorithme qui transforme un message de taille quelconque en une **empreinte numérique unique** de taille fixe appelée **haché** ou **digest**.

Exemples de fonctions : SHA-256, SHA-1, MD5 (obsolète)

Propriétés importantes :

- Deux messages différents doivent produire des empreintes différentes (propriété de collision).
- Il est **impossible de retrouver** le message original à partir de son haché.
- Une **petite modification** du message entraîne un haché **totalement différent**.

Intégrité

Le haché permet de vérifier que le message n'a pas été modifié :

- L'expéditeur calcule le haché du message et l'envoie avec celui-ci.
- Le destinataire recalcule le haché à partir du message reçu.
- S'ils sont identiques : le message est intact.

5. Signature numérique

Principe

Une **signature numérique** permet de :

- vérifier l'identité de l'expéditeur (authenticité),
- garantir l'intégrité du message.

Étapes du processus

- 1. Hachage du message (ex : SHA-256).
- 2. L'expéditeur **chiffre le haché** avec **sa propre clé privée** : c'est la signature.
- 3. Il envoie **le message en clair + la signature**.
- 4. Le destinataire :
 - **Recalcule le haché** du message reçu.
 - Déchiffre la signature avec la clé publique de l'expéditeur.
 - Compare les deux hachés :
 - S'ils sont identiques → message authentique et non modifié.
 - Sinon → message modifié ou signature fausse.

=> La signature permet donc de **certifier l'émetteur** et de **garantir que le message n'a pas été altéré**.

6. Certificats numériques

Un **certificat numérique** associe une identité à une clé publique. Il est délivré et signé par une **autorité de certification (CA)**.

Il contient:

- Le nom du propriétaire (ex : un site web),
- Sa clé publique,
- La signature de l'autorité.

7. Protocoles sécurisés : HTTPS et TLS

- HTTP: pas de sécurité (données en clair).
- **HTTPS** = HTTP + **TLS** (Transport Layer Security)

TLS assure:

- La confidentialité : les messages sont chiffrés.
- L'authentification : via les certificats numériques.
- L'intégrité : grâce au hachage et à la signature.
- => Utilisé dans tous les sites web sérieux (banques, messagerie, achats...).

Si vous désirez une explication en vidéo, consultez :

https://youtu.be/7W7WPMX7arI?si=ERZxK1VZK0VbucVM