Niveaux: SM PC SVT | Matière: Physique

PROF:Zakaryae Chriki | Résumé N:11

Chute verticale d'un corps solide

I. CHUTE VERTICALE AVEC FROTTEMENT

1. Rappel

Le mobile est soumis à trois forces

 $\vec{P} = m.\vec{g} = m.g.\vec{k}$ Poids:

Poussée d'Archimède : $\vec{F}_A = -m_f.\,g.\,\vec{k}$ avec m_f : masse du fluide déplacé Forces de frottements fluide : $\vec{f} = -k.\,v_G^n.\,\vec{k}$ avec k est une constante

Caractéristiques des forces :

		Direction:	Sens:	Intensité:
	\vec{P}	La verticale (parallèle à l'axe Oz)	Vers le bas	P = m.g
	\vec{F}_A		Vers le haut	$F_A = m_f.g$
	f		Vers le haut	$f = k.V^n$

$P_z = m.g$ $F_{Az} = -m_f.g$ $fz = -k.V^n$	Composante sur Oz			
	$P_z = m.g$			
$fz = -k.V^n$	$F_{Az} = - m_f.g$			
	$fz = -k.V^n$			

2. Equation différentielle vérifiée par la vitesse:

On applique alors la deuxième loi de Newton : $\sum F = \bar{m} \cdot \vec{a}_G$

$$\vec{P} + \vec{F}_A + \vec{f} = m.\vec{a}_C$$

$$\vec{P} + \vec{F}_A + \vec{f} = m. \vec{a}_G$$
 En projetant la relation vectorielle sur l'axe vertical, Oz dirigé vers le bas :
$$P_z + F_{Az} + f_z = m.a_z \quad \text{et} \quad P - F_{A} - f = m.a_z \quad \text{d'où} \quad m.g - m_f.g - k.V^n = m.a_z$$

On obtient alors l'expression :
$$m g - m_f g - k v^n = m \frac{dv}{dt}$$

g.
$$(m - m_f) - k.v^n = m \frac{dv}{dt}$$
 et par suite $\frac{dv}{dt} = g.\frac{m - m_f}{m} - \frac{k}{m}.v^n$: Equation différentielle

g. $(m - m_f) - k.v^n = m\frac{dv}{dt}$ et par suite $\frac{dv}{dt} = g.\frac{m - m_f}{m} - \frac{k}{m}.v^n$: Equation différentielle L'équation différentielle s'écrit sous la forme $\frac{dv}{dt} = B - A.v^n$ avec $A = g.\frac{m - m_f}{m} = g.(1 - \frac{m_f}{m})$ et $B = \frac{k}{m}$

Remarque:

On considère une sphère de masse volumique ρ , de volume V (m= ρ .V) en mouvement dans un fluide de masse volumique ρ_0 $(m_f = \rho_0.V)$

$$A = g. \frac{m - m_f}{m} = g. \left(1 - \frac{m_f}{m}\right) = g \left(1 - \frac{\rho_0}{\rho}\right)$$

Au cours d'une chute verticale avec frottement, le mouvement du centre d'inertie G du solide peut se décomposer en deux phase:

- Le régime initial ou transitoire, pendant lequel :
 - La vitesse v_G augmente.
 - La valeur f de la force de frottement fluide augmente
 - L'accélération as diminue.
- Le régime asymptotique ou permanent, pendant lequel
 - La vitesse v₆ est égale à une vitesse constante v_ℓ.
 - La valeur f de la force de frottement fluide est constante
 - L'accélération a₆ est nulle.

Le régime initial

$$v_G = 0$$
 et $\frac{dv}{dt} = A - B$. $v_G^n = A$

Le régime permanent

La vitesse
$$v_G = v_\ell = C^{te}$$
.

$$\frac{dv}{dt} = A - B. v_\ell^n = 0$$

d'où
$$A = B. v_{\ell}^n$$

et
$$v_{\ell}^{n} = \frac{A}{B}$$
 et $v_{\ell} = \sqrt[n]{\frac{A}{B}}$

Graphiquement

A $\underline{t} = \underline{\tau}$, La tangente à la courbe v(t) à t=0 et l' asymptote $v = v_{\ell}$ se croisent donc $V_{\ell} = a_0.\tau$ a₀ : le coefficient directeur de la tangente à la courbe v(t) à l'instant t=0 alors $a_0 = A$

3. La solution de l'equation differentielle par la éthode D'EULER

La méthode d'Euler est une méthode numérique itérative qui permet d'évaluer, à intervalles de temps réguliers, différentes valeurs approchées à partir des conditions initiales.

Il faut pour cela connaître:

- L'équation différentielle du mouvement $\frac{dv}{dt} = A B. v_G^n$.
- Les conditions initiales v_0 .
- Le pas de résolution Δt ; $\Delta t = t_{i+1} t_i$.

On peut déterminer les grandeurs cinétiques (vitesses et accélérations) par :

- \checkmark L'équation différentielle à l'instant t_i : $a_i = \frac{dv}{dt} = A B$. v_i^n (pour le même point : connaître la vitesse d'un point c'est déterminer son accélération et réciproquement).
- ✓ L'expression de la vitesse : $V_{i+1} = V_i + a_i \Delta t$ (d'un point M_i vers un autre M_{i+1} : Connaître la vitesse et l'accélération d'un point M_i on peut déterminer la vitesse du point suivant M_{i+1}).

$$t_0 = 0$$
 $V_0 = 0$ $a_0 = A - B.(V_0)^n = A$
 $t_1 = t_0 + \Delta t$ $V_1 = V_0 + a_0 \Delta t$ $a_1 = A - B.(V_1)^n$
 $t_2 = t_1 + \Delta t$ $V_2 = V_1 + a_1 \Delta t$ $a_2 = A - B.(V_2)^n$

II. La chute libre d'un corps solide

- Le projectile est soumis à l'unique action de son poids $\vec{P} = m.\vec{g}$
- Les deux vecteurs \vec{P} et \vec{g} ont le même sens et la même direction (les deux vecteurs sont colinéaires)
- La 2^{eme} loi de newton $\sum \vec{F} = \text{m.} \vec{a}_G$ d'où $\vec{P} = \text{m.} \vec{g} = \text{m.} \vec{a}_G$ donc $\vec{a}_G = \vec{g}$
- Les deux vecteurs \vec{a}_G et \vec{g} ont les mêmes caractéristiques

1. Caractéristique du vecteur accélération \vec{a}_{G}

Origine: Le point G

Direction: - La droite verticale

- La même direction que $\vec{\mathbf{g}}$ (même direction que le poids $\vec{\mathbf{P}}$)

Sens:

- Le même sens que $\vec{\mathbf{g}}$ (même sens que le poids $\vec{\mathbf{P}}$)

<u>Intensité :</u>

2. Coordonnées de \vec{a}_{G} vecteur accélération : $a_{y} = \textbf{-}g = C^{te}$

$$\mathbf{a}_{y} = -\mathbf{g} = \mathbf{C}^{te}$$

A l'instant t=0

$$y_0=h$$
 et $V_{0y}=V_0$

3. Nature du mouvement sur l'axe Oy

a_y= -g = C^{te} : Le mouvement est rectiligne uniformément varié sur l'axe Oy

$$y = -\frac{1}{2} \cdot g \cdot t^2 + V_0 \cdot t + y_0$$

 $V_y = -g \cdot t + V_0$

4. La flèche :

La flèche est l'altitude H la plus élevée atteinte par le projectile

- Au point H la composante de la vitesse est nulle V_{Hy}=0

 $\mathbf{V}\mathbf{y} = -\mathbf{g.t_H} + \mathbf{V_0} = \mathbf{0}$ d'où $\mathbf{t_H} = \frac{\mathbf{v_0}}{\mathbf{g}}$: l'instant d'arrivée au point H et o remplace dans y(t)

$$y_{\rm H} = -\frac{1}{2} \cdot g \cdot \left(\frac{V_0}{g}\right)^2 + V_0 \cdot \frac{V_0}{g} + y_0 = \frac{1}{2} \cdot \frac{V_0^2}{g} + y_0$$

 y_H : Ordonnée du point H d'où AH = $y_H - y_0 = \frac{1}{2} \cdot \frac{V_0^2}{g}$

** Exploiter les équations horaires avec une ou plusieurs informations

Au point A •
$$y(A)=h$$

- L'instant de passage par le point A est $t_A = 2$. $t_H = \frac{2.V_0}{g}$
- La vitesse de passage par le point A est V_0

Au point O •
$$y(O) = 0$$