Primitives usuelles.

 ${\cal F}$ est une primitive de f sur l'intervalle ${\cal I}.$

f(x)	F(x)	I
$x^{\alpha} \ (\alpha \in \mathbb{R}, \ \alpha \neq -1)$		
$\frac{1}{x}$		
e^x		
$\ln x$		
$\cos x$		
$\sin x$		
$\operatorname{ch} x$		
$\operatorname{sh} x$		
$\frac{1}{\cos^2 x} \left(\text{ou } 1 + \tan^2 x \right)$		
$\frac{1}{1+x^2}$		
$\frac{1}{\sqrt{1-x^2}}$		
$e^{\alpha x} \ (\alpha \in \mathbb{C}^*)$		

On repère également très souvent des formes de dérivée de composée :

$$u' \times (g' \circ u)$$

Si u est une fonction dérivable sur un intervalle I :

Forme de $f(x)$	Forme de $F(x)$
$u'(x)e^{u(x)}$	
$\frac{u'(x)}{u(x)}$	
$u'(x)u^{\alpha}(x) \ (\alpha \in \mathbb{R}, \ \alpha \neq -1)$	
$\frac{u'(x)}{2\sqrt{u(x)}}$	
$\frac{u'(x)}{1+u^2(x)}$	