import pandas as pd import numpy as np

 $from \ sklearn.model_selection \ import \ train_test_split$

 $from \ sklearn.tree \ import \ DecisionTreeClassifier$

from sklearn import tree import matplotlib.pyplot as plt

import seaborn as sns

data = pd.read_csv("/content/iris.csv")

data

	Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa
145	146	6.7	3.0	5.2	2.3	Iris-virginica
146	147	6.3	2.5	5.0	1.9	Iris-virginica
147	148	6.5	3.0	5.2	2.0	Iris-virginica
148	149	6.2	3.4	5.4	2.3	Iris-virginica
149	150	5.9	3.0	5.1	1.8	Iris-virginica

150 rows × 6 columns

data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149 Data columns (total 6 columns):

#	Column	Non-Null Count	Dtype				
0	Id	150 non-null	int64				
1	SepalLengthCm	150 non-null	float64				
2	SepalWidthCm	150 non-null	float64				
3	PetalLengthCm	150 non-null	float64				
4	PetalWidthCm	150 non-null	float64				
5	Species	150 non-null	object				
<pre>dtypes: float64(4), int64(1), object(1)</pre>							
memory usage: 7.2+ KB							

data.describe()

	Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
count	150.000000	150.000000	150.000000	150.000000	150.000000
mean	75.500000	5.843333	3.054000	3.758667	1.198667
std	43.445368	0.828066	0.433594	1.764420	0.763161
min	1.000000	4.300000	2.000000	1.000000	0.100000
25%	38.250000	5.100000	2.800000	1.600000	0.300000
50%	75.500000	5.800000	3.000000	4.350000	1.300000
75%	112.750000	6.400000	3.300000	5.100000	1.800000
max	150.000000	7.900000	4.400000	6.900000	2.500000

data.isnull()

	Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	False	False	False	False	False	False
1	False	False	False	False	False	False
2	False	False	False	False	False	False
3	False	False	False	False	False	False
4	False	False	False	False	False	False
145	False	False	False	False	False	False
146	False	False	False	False	False	False
4 1	1/1	/ \				

data.isnull().sum()

Id 0
SepalLengthCm 0
SepalWidthCm 0
PetalLengthCm 0
PetalWidthCm 0
Species 0
dtype: int64

data.head(10)

	Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa
5	6	5.4	3.9	1.7	0.4	Iris-setosa
6	7	4.6	3.4	1.4	0.3	Iris-setosa
7	8	5.0	3.4	1.5	0.2	Iris-setosa
8	9	4.4	2.9	1.4	0.2	Iris-setosa
9	10	4.9	3.1	1.5	0.1	Iris-setosa

data.columns

data.rename(columns={'id':'id','SepalLengthCm':'sepal_length','SepalWidthCm':'sepal_width','PetalLengthCm':'petal_length','PetalWidthCm':

```
plt.scatter(data['Species'], data['petal_length'])
plt.title("iris")
plt.xlabel('Species')
plt.ylabel('petal_length')
plt.show()
```

```
iris
print(data["Species"].unique())
     ['Iris-setosa' 'Iris-versicolor' 'Iris-virginica']
         ٦ -
data['Species'].value_counts()
     Iris-setosa
     Iris-versicolor
     Iris-virginica
                        50
     Name: Species, dtype: int64
           1
plt.figure(figsize=(12, 6))
sns.histplot(data.sepal_length)
plt.xlabel('no')
plt.ylabel('Sepal Length')
plt.title('Histogram of Sepal Length (Cm)', size=16)
```

Text(0.5, 1.0, 'Histogram of Sepal Length (Cm)')

Histogram of Sepal Length (Cm) 25 20 Sepal Length 51 10 5 0 -4.5 5.0 5.5 6.5 7.0 7.5 8.0 6.0 no

correlation = data.corr()
correlation

<ipython-input-25-521f87fcc686>:1: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a f
correlation = data.corr()

	Id	sepal_length	sepal_width	petal_length	petal_width
ld	1.000000	0.716676	-0.397729	0.882747	0.899759
sepal_length	0.716676	1.000000	-0.109369	0.871754	0.817954
sepal_width	-0.397729	-0.109369	1.000000	-0.420516	-0.356544
petal_length	0.882747	0.871754	-0.420516	1.000000	0.962757
petal_width	0.899759	0.817954	-0.356544	0.962757	1.000000

sns.heatmap(data.corr(),annot=True,cmap='inferno')

<ipython-input-26-c46cf576d981>:1: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a f
 sns.heatmap(data.corr(),annot=True,cmap='inferno')
<Axes: >

sns.pairplot(data)

```
150
      125
      100
     <u>□</u> 75
       25
from wordcloud import WordCloud
text = " ".join(data.Species)
# Creating word_cloud with text as argument in .generate() method
word_cloud = WordCloud(collocations = False, background_color = 'white').generate(text)
# Display the generated Word Cloud
plt.imshow(word_cloud, interpolation='bilinear')
plt.axis("off")
plt.show()
₽
                                Iris solor
      versicolor
virginica
X = data.iloc[:, :-1]
y = data.iloc[:, -1]
#X = data.drop('species', axis=1)
#y = data['species']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
clf = DecisionTreeClassifier()
clf.fit(X_train, y_train)
     ▼ DecisionTreeClassifier
```

_ = tree.plot_tree(clf, feature_names=X.columns, class_names=y.unique(), filled=True)

<seaborn.axisgrid.PairGrid at 0x7efce1df3d00>

DecisionTreeClassifier()

fig = plt.figure(figsize=(10, 8))

y_pred = clf.predict(X_test)

