Homework 2

Sean Eva

June 15, 2024

Problem 1. Say whether or not the following the following subsets of \mathbb{R}^2 are connected:

$$A = \{(x,y) \in \mathbb{R}^2, ||x|| \le 1, ||y|| \le 1\}, \quad B = \{(x,y) \in \mathbb{R}^2, xy = 1\} \cup \{(0,y) \in \mathbb{R}^2, y \in \mathbb{R}\},$$
$$C = \mathbb{R}^2 - \mathbb{Q}^2, \quad D = \{(x,y) \in \mathbb{R}^2; ||x|| > 1, ||y|| > 1\}.$$

Claim. A is connected.

Proof. Let $(a,b), (c,d) \in A$. We will construct a path between them that lies entirely in A. Without loss of generality, assume that $a \leq c$ and $b \leq d$. Let us then define the continuous function $f: [0,1] \to \mathbb{R}^2$ by f(x) = ((1-x)a + xc, (1-x)b + xd) for $0 \leq x \leq 1$. Then for f(0) = (a,b) and f(1) = (c,d), and since f(x) is in A for all x and we have that A is path-connected implying that A is connected as desired.

Claim. B is not connected.

Proof. By definition of B, we know that (1,1) and (-1,-1) are in B but there is no path that lies entirely in B. Suppose for the sake of contradiction that there does exists a path $f:[0,1]\to B$ that connects (1,1) and (-1,-1). Then f(t)=(x(t),y(t)) for some continuous functions x(t),y(t). Since f(t) lies on the xy=1 for all t, we have that x(t)y(t)=1 for all t. This then implies that $y(t)=\frac{1}{x}(t)$. Now consider this as t approaches 0. Since x(t) approaches 1 and y(t) approaches infinity, we have that the path f cannot be continuous at t=0. Therefore, we find that B is not connected.

Claim. C is connected.

Proof. Suppose for the sake of contradiction that C is not connected. That is to say then that there exists open sets $U, V \in \mathbb{R}^2$ such that $C \in U \cup V, C \cap U \neq \emptyset, C \cap V \neq \emptyset, U \cap V = \emptyset$. Let $(a,b) \in U, (c,d) \in V$. Since the rationals are dense in \mathbb{R} , we can choose a rational point (q,r) that is close to (a,b), and an irrational point (p,s) close to (c,d). Then we have that $(q,r) \in U, (p,s) \in V$ and $(q,r), (p,s) \in C$. This contradicts the fact that U,V are disjoint. Thus we have that C is connected.

Claim. D is connected.

Proof. Let $(a,b), (c,d) \in D$. We will construct a path between these two points that lies entirely in D. Without loss of generality, assume that |a| < |c| and |b| < |d|. Let us define a continuous function $f: [0,1] \to \mathbb{R}^2$ by f(t) = ((1-t)a+tc, (1-t)b+td) for $0 \le t \le 1$. Then we have that f(0) = (a,b), f(1) = (c,d), and since we have that |f(t)| > 1 for all t, we know that f(t) is in D for all t. Thus, we know that D is path-connected and similarly, is connected.

Problem 2. Show that S^1 , [0,1], [0,1), \mathbb{R} , and \mathbb{R}^2 are not homeomorphic to each other.

- *Proof.* $(S^1, [0, 1])$: If you remove a point from S^1 we will still have a connected space. However, if we remove a point from [0, 1] say $\{1/2\}$ the set is no longer connected. Thus, we know they are not homeomorphic.
- $(S^1, [0, 1))$: If you remove a point from S^1 we will still have a connected space. However, if we remove a point from [0, 1) say $\{1/2\}$ the set is no longer connected. Thus, we know they are not homeomorphic.
- (S^1, \mathbb{R}) : If you remove a point from S^1 we will still have a connected space. However, if we remove a point from \mathbb{R} say $\{0\}$ the set is no longer connected. Thus, we know they are not homeomorphic. (S^1, \mathbb{R}^2) : If we remove two distinct points from S^1 , it will not necessarily be connected anoymore. However, if you remove two distinct points from \mathbb{R}^2 then it will still be connected. Thus, we know they are not homeomorphic.
- ([0,1],[0,1)): Suppose these two are homeomorphic, which implies that we can construct a homeomorphism $g:[0,1)\to [0,1]$. Then if we let $B=[0,1)-\{g^{-1}(0),g^{-1}(1),g_B:B\to (0,1)$ is a homeomorphism. However, $g^{-1}(0)\neq g^{-1}(1)$ so at most one of these can be 1 meaning one must lie in the interval (0,1). Suppose without the loss of generality that $g^{-1}(0)\in (0,1)$. Then it follows that $B=(0,g^{-1}(0))\cup (g^{-1}(0),1]-\{g^{-1}(1)\}$ is not connected, whereas (0,1) is connected, so the two cannot be homeomorphic. From this contradiction, then, we conclude that (0,1] and [0,1] are not homeomorphic.
- $([0,1],\mathbb{R})$: Suppose we have a continuous bijection $f:\mathbb{R}\to [0,1]$. Let $a\in\mathbb{R}$ be such that f(a)=0. Then if we consider x=a-1 and y=a+1. Since f is injective, it follows that $f(x),f(y)\neq 0$. Let $0< c<\min\{f(x),f(y)\}$. By the Intermediate Value Theorem, it follows that f(x')=c for some x< x'< a and f(y')=c for some a< y'< y; but then $x'\neq y'$ but f(x')=f(y'), so f is not injective which is a contradiction. Thus we have that they are not homeomorphic.
- $([0,1],\mathbb{R}^2)$: To show this, it is simple to see that if we remove a point from the range [0,1], for example $\{1/2\}$, this set then becomes unconnected. However, if we remove a point, let's say the origin, from \mathbb{R}^2 , the set is still connected. Therefore, we find that these are not homeomorphic.
- $([0,1),\mathbb{R})$: Let us specifically choose to remove the point $\{0\}$ from [0,1). However, if we remove any point from \mathbb{R} the result will always be disconnected. Thus, we know that they are not homeomorphic.
- $([0,1),\mathbb{R}^2)$: To show this, it is simple to see that if we remove a point from the range [0,1), for example $\{1/2\}$, this set then becomes unconnected. However, if we remove a point, let's say the origin, from \mathbb{R}^2 , the set is still connected. Therefore, we find that these are not homeomorphic.
- $(\mathbb{R}, \mathbb{R}^2)$: To show this, it is simple to see that if we remove a point from \mathbb{R} take for example $\{0\}$, then the space \mathbb{R} would no longer be connected. However, if we remove the origin from \mathbb{R}^2 , then the space would still be connected because we could simply go around the hole. Therefore, these two are not homeomorphic.

Problem 3. Classify the letters of the alphabet (in capital) by homeomorphic.

There are five homeomorphism classes for the letters of the alphabet $\alpha = \{A, R\}$, $\beta = \{C, I, K, L, M, N, S, U, V, W, Z\}, = \{D, O\}, \delta = \{E, F, G, T, Y\}, \epsilon = \{H, K\}$. These are decided by simple transformations from one letter to the next to form the homeomorphism.

Problem 4. Show a space X is compact if and only if every collection of closed sets $\{C_{\alpha}\}_{{\alpha}\in I}$ having the finite intersection property has $\cap_{{\alpha}\in I}C_{\alpha}\neq\emptyset$. Hint: Think about the complements of the C_{α} 's

Proof. (\Rightarrow) Assume that X is compact. Let C be a collection of closed subsets of X having the finite intersection property. Let $U = \{c^c : c \in C.$ Then we know that U is a collection of open sets. Suppose for the sake of contradiction that $\cup U = X$, and then since X is compact, we know that there exists some finite subcover U^* of U. Let us label the sets in $U^* = \{c_1^c, ..., c_n^c\}$ for $c_i \in C$ for all i. Since C has the finite intersection property, we have that $c_1 \cap ... \cap c_n \neq X$ which contradicts the fact that U^* is a cover for X. Then it must be that $\cup U \neq X$ and if we take the complements we get $\cup C \neq \emptyset$.

(\Leftarrow) Now we will assume that C is a collection of closed subsets of X having the finite intersection property, that is to say that $\cap C \neq \emptyset$. Let U be an open cover of X and let $C = \{u^c : u \in U\}$, so C is a collection of closed subsets. Since U is an open cover, we have that $\cup U = X$ which implies that $\cap C = \emptyset$. By this assumption, we then have that $u_1^c \cap ... \cap u_n^c = \emptyset$ for some finite subset of C. If we then take the compliments, we get that $U_1 \cup ... \cup U_n = X$ for some finite subset of U. Thus, X is compact as desired.

Therefore, we have show that X is compact if and only if every collection of closed sets having the finite intersection property has $\cap C \neq \emptyset$.

Problem 5. Show that $\{\frac{1}{n}, n \in \mathbb{N}^*\} \cup \{0\}$ is compact.

Proof. Let $S = \{\frac{1}{n} : n \in \mathbb{N}\} \cup \{0\}$ as in the problem statement. We are going to first use that for any $\epsilon > 0$ we have that $\exists n \in \mathbb{N}, m\epsilon \Rightarrow -\epsilon < \frac{1}{m} < \epsilon$. Then, we get that $\frac{1}{m} \in (-\epsilon, \epsilon)$. Thus we have that $(-\epsilon, \epsilon)$ is a neighborhood of 0 that contains a point of S other than 0. This then implies that 0 is the only accumulation point of S. Let us then define $S' = \{x_n : n \in \mathbb{N}, x_n \in S(0, \frac{1}{n}, x_{n+1} \neq x_n\}$. In a similar fashion, we know that 0 is the only accumulation point of S' and for S. Additionally, we know that S is bounded by [0,1]. Therefore, we know that S is compact as desired. \square

Problem 6. Show that $\{\frac{1}{n}, n \in \mathbb{N}^*\} \cup \{0\}$ is not homeomorphic to \mathbb{N}

Proof. If these two sets were homeomorphic to each other, that would imply that the Hausdorff property would be preserved between the two topologies. For the topology $\{\frac{1}{n}, n \in \mathbb{N}\} \cup \{0\}$ it is easy to show that it is Hausdorff with the limit point of 0. However, the set \mathbb{N} is not Hausdorff. Thus, since the Hausdorff property is preserved under homeomorphism, then we know that these two topologies are not homeomorphic.