Supplements:

Table S1. (a). Detailed neural network structural of UNet

Layer (type) Output Shape Param # Connected to
input (InputLayer) (None, 400, 1) 0
conv1d_1 (Conv1D) (None, 400, 32) 384 input[0][0]
batch_normalization_1 (BatchNor (None, 400, 32) 128 conv1d_1[0][0]
conv1d_2 (Conv1D) (None, 400, 32) 11296 batch_normalization_1[0][0]
batch_normalization_2 (BatchNor (None, 400, 32) 128 conv1d_2[0][0]
max_pooling1d_1 (MaxPooling1D) (None, 80, 32) 0 batch_normalization_2[0][0]
conv1d_3 (Conv1D) (None, 80, 64) 22592 max_pooling1d_1[0][0]
batch_normalization_3 (BatchNor (None, 80, 64) 256 conv1d_3[0][0]
conv1d_4 (Conv1D) (None, 80, 64) 45120 batch_normalization_3[0][0]
batch_normalization_4 (BatchNor (None, 80, 64) 256 conv1d_4[0][0]
max_pooling1d_2 (MaxPooling1D) (None, 16, 64) 0 batch_normalization_4[0][0]
conv1d_5 (Conv1D) (None, 16, 128) 90240 max_pooling1d_2[0][0]
batch_normalization_5 (BatchNor (None, 16, 128) 512 conv1d_5[0][0]
conv1d_6 (Conv1D) (None, 16, 128) 180352 batch_normalization_5[0][0]
batch_normalization_6 (BatchNor (None, 16, 128) 512 conv1d_6[0][0]
max_pooling1d_3 (MaxPooling1D) (None, 8, 128) 0 batch_normalization_6[0][0]
conv1d_7 (Conv1D) (None, 8, 256) 360704 max_pooling1d_3[0][0]
batch_normalization_7 (BatchNor (None, 8, 256) 1024 conv1d_7[0][0]
conv1d_8 (Conv1D) (None, 8, 256) 721152 batch_normalization_7[0][0]
batch_normalization_8 (BatchNor (None, 8, 256) 1024 conv1d_8[0][0]
up_sampling1d_1 (UpSampling1D) (None, 16, 256) 0 batch_normalization_8[0][0]
concatenate_1 (Concatenate) (None, 16, 384) 0 batch_normalization_6[0][0] up_sampling1d_1[0][0]
conv1d_9 (Conv1D) (None, 16, 128) 540800 concatenate_1[0][0]
batch_normalization_9 (BatchNor (None, 16, 128) 512 conv1d_9[0][0]
conv1d_10 (Conv1D) (None, 16, 128) 180352 batch_normalization_9[0][0]
batch_normalization_10 (BatchNo (None, 16, 128) 512 conv1d_10[0][0]
up_sampling1d_2 (UpSampling1D) (None, 80, 128) 0 batch_normalization_10[0][0]
concatenate_2 (Concatenate) (None, 80, 192) 0 batch_normalization_4[0][0] up_sampling1d_2[0][0]

conv1d_11 (Conv1D) (None, 80, 64) 135232 concatenate_2[0][0]
batch_normalization_11 (BatchNo (None, 80, 64) 256 conv1d_11[0][0]
conv1d_12 (Conv1D) (None, 80, 64) 45120 batch_normalization_11[0][0]
batch_normalization_12 (BatchNo (None, 80, 64) 256 conv1d_12[0][0]
up_sampling1d_3 (UpSampling1D) (None, 400, 64) 0 batch_normalization_12[0][0]
concatenate_3 (Concatenate) (None, 400, 96) 0 batch_normalization_2[0][0] up_sampling1d_3[0][0]
conv1d_13 (Conv1D) (None, 400, 32) 33824 concatenate_3[0][0]
batch_normalization_13 (BatchNo (None, 400, 32) 128 conv1d_13[0][0]
conv1d_14 (Conv1D) (None, 400, 32) 11296 batch_normalization_13[0][0]
batch_normalization_14 (BatchNo (None, 400, 32) 128 conv1d_14[0][0]
conv1d_15 (Conv1D) (None, 400, 2) 706 batch_normalization_14[0][0]
batch_normalization_15 (BatchNo (None, 400, 2) 8 conv1d_15[0][0]
conv1d_16 (Conv1D) (None, 400, 1) 3 batch_normalization_15[0][0]
Trainable params: 2,381,993 Non-trainable params: 2,820

Table S1. (b). Detailed neural network structural of CNN

Layer (type)	Output Shape	Param #	
conv1d_1 (Conv1D)	(None, 390, 64)	768	
max_pooling1d_1 (N	1axPooling1 (None, 7	8, 64)	0
conv1d_2 (Conv1D)	(None, 72, 128)	5747	2
max_pooling1d_2 (N	laxPooling1 (None, 1	4, 128)	0
flatten_1 (Flatten)	(None, 1792)	0	
dense_1 (Dense)	(None, 256)	459008	
dropout_1 (Dropout)	(None, 256)	0	
dense_2 (Dense)	(None, 400)	102800	
Total params: 620,04 Trainable params: 62 Non-trainable param	0,048	======	

Table S2. (a).VCF files used in the evaluation

Samples	VCF files
Simulation	https://github.com/stat-lab/EvalSVcallers/blob/master/Ref_SV/Sim-A.SV.vcf
NA12878, NA19238, NA19239	ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/integrated_sv_map/ALL.wgs.mergedSV.v8.20130502.svs.genotypes.vcf.gz
HG002	ftp://ftp- trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/analysis/NIST_SVs_Integration_v0.6/HG002_SVs_Tier1_v0.6.vcf.gz

(b). BAM files

Samples	BAM files
NA12878	ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data/NA12878/high_coverage_alignment/NA12878.mapped.ILLUMINA.bwa.CEU.
	high_coverage_pcr_free.20130906.bam
NA19238	ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data/NA12878/high_coverage_alignment/NA19238.mapped.ILLUMINA.bwa.YRI.h
	igh_coverage_pcr_free.20130924.bam
NA19239	ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data/NA12878/high_coverage_alignment/NA19239.mapped.ILLUMINA.bwa.YRI.h
	igh_coverage_pcr_free.20130924.bam
HG002	ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG002_NA24385_son/NIST_HiSeq_HG002_Homogeneity-
	10953946/NHGRI_Illumina300X_AJtrio_novoalign_bams/HG002.hs37d5.60X.1.bam.

Figure S1. Breakpoint change matrix of in-sample enhancement.

- 140

- 120

- 100

- 80

- 60

- 20

CNN

HG002

Figure S2. Breakpoint change matrix of cross-sample enhancement.

Figure S3. Segmentation examples on Simulation the data. Dash line indicates the position of the gold breakpoint. Coordinates in red are the SV related masks.

(a). Examples of positive enhancement by UNet

(b). small SVs totally inside the screening window

Unet

CNN

(c). Negative segmentation of UNet

Table S3: The mean and standard derivation of to-gold-distances of different ranges for real data in-sample evaluation

		mean to-gol	d-distance								std to-gold-o	listance							
		<5	[5,10)	[10,20)	[20,50)	[50,100)	[100,200)	[200,500)	[500,1000)	>=1000	<5	[5,10)	[10,20)	[20,50)	[50,100)	[100,200)	[200,500)	[500,1000)	>=1000
na12878	/	2.61	7.17	14.38	34.84	64.26	138.01	315.54	670.18	7364.78	1.25	1.27	2.78	8.39	11.18	27.46	84.24	128.24	14794.04
	CNN	2.32	7.22	14.42	31.43	68.3	135.27	323.1	673.54	7250.29	1.32	1.31	2.81	8.27	14.08	27.92	88.19	138.21	14643.51
	Unet	1.42	6.95	13.99	32.44	70.69	140.38	314.6	668.66	7383.95	1.26	1.39	2.76	9.15	14.68	27.13	83.37	143.55	14782.42
na19238	/	2.5	7.14	14.94	35.43	65.46	141.07	331.91	684.02	4738.9	1.36	1.32	2.81	8.44	11.58	30.53	100.65	137.68	8350.85
	CNN	2.42	7.08	14.08	32.54	69.63	139.36	318.67	703.58	4928.44	1.27	1.41	2.87	8.54	13.14	28.21	91.73	146.83	8568.06
	Unet	1.39	6.73	14.14	32.07	71.84	140.89	302.6	690.13	4638.67	1.18	1.41	2.73	8.69	14.37	28.95	89.61	146.9	8289.4
na19239	/	2	7.32	14.87	35.6	64.81	140.02	308.49	696	3592.76	1.2	1.38	2.71	8.39	12.04	31.16	89.6	147.07	6264.2
	CNN	2.16	6.97	14.44	30.98	67.77	149.08	307.25	691.74	3498.3	1.21	1.42	2.8	7.98	13.98	31.28	81.62	142.4	6172.19
	Unet	1.11	6.82	13.77	33.29	71.81	140.13	306.04	728.76	3690.94	1.31	1.41	2.64	8.42	13.52	28.75	86.73	150.23	6363.64
HG002	/	2.12	7.2	14.55	34.1	62.53	143.1	302.61	759.22	2026.86	1.38	1.37	2.88	8.51	11.58	28.34	77.88	128.36	1978.93
	CNN	2.1	6.88	14.14	30.98	67.3	142.33	295.96	767.19	2100.7	1.33	1.44	2.87	8.35	13.42	28.08	77.41	126.57	2021.22
	Unet	0.85	6.73	13.49	33.19	68.85	143.94	287.65	753.48	2136.5	1.29	1.48	2.62	9.14	13.06	29.82	74.57	126.1	2038.64

Table S4: derivation of to-gold-distances of different ranges for real data cross-sample evaluation

		mean to-gol	d-distance								std to-gold-o	distance							
		<5	[5,10)	[10,20)	[20,50)	[50,100)	[100,200)	[200,500)	[500,1000)	>=1000	<5	[5,10)	[10,20)	[20,50)	[50,100)	[100,200)	[200,500)	[500,1000)	>=1000
NA19238	/	2.35	7.27	15	35.17	65.55	141.26	329.71	689.41	4553.32	1.39	1.3	3 2.8	8.27	11.61	30.25	97.58	136.66	7581.48
	CNN	2.04	6.66	13.85	32.45	71.26	140.74	314.26	705.37	4709.07	1.24	1.4	2.86	8.28	14.26	28.69	90.31	148.2	7933.48
	Unet	1.29	6.62	13.84	32.44	70.82	143.58	310.9	690.37	4493.61	1.35	1.43	2.79	8.64	13.72	30.29	89.01	140.73	7707.92
NA19239	/	2.06	7.39	15.17	35.65	65.1	140.46	321.27	686.16	3923.15	1.25	1.3	7 2.76	8.41	11.96	31.29	91.95	141.3	6207.5
	CNN	2.13	6.69	13.6	31.83	70.95	141.58	322.54	705.53	3974.33	1.29	1.39	2.72	8.57	13.97	28.4	96.15	145.04	6249.28
	Unet	1.26	7.03	13.86	33.26	70.6	141.97	322.93	708.59	3932.57	1.33	1.4	2.71	8.94	12.88	30.1	92.15	128.35	6207.13

Table S5: Each repeat one result of 5-fold cross validation on the simulation data.

80% train	20% test									
	RunID	AUC	Sensitivity	FDR	Precision	Recall	All-dice	BK-dice	all-IOU	BK-IOU
Unet	1	0.8911	0.8619	0.0837	0.9163	0.8619	0.822	0.8503	0.6979	0.7397
	2	0.8945	0.8588	0.0741	0.9259	0.8588	0.8231	0.8489	0.6995	0.7376
	3	0.8951	0.8544	0.069	0.931	0.8544	0.8268	0.8487	0.7048	0.7372
	4	0.8957	0.8465	0.0604	0.9396	0.8465	0.8247	0.843	0.7018	0.7286
	5	0.8936	0.8513	0.0689	0.9311	0.8513	0.8232	0.8455	0.6996	0.7324
	AVG	0.894	0.85458	0.07122	0.92878	0.85458	0.82396	0.84728	0.70072	0.7351
SVM		0.8661	0.8133	0.0898	0.9102	0.8133				
CNN	1	0.8747	0.8428	0.0988	0.9012	0.8428	0.7957	0.8238	0.6607	0.7004
	2	0.8788	0.8531	0.0996	0.9004	0.8531	0.801	0.8286	0.6681	0.7074
	3	0.8751	0.859	0.111	0.889	0.859	0.7986	0.8293	0.6647	0.7083
	4	0.8751	0.8519	0.1055	0.8945	0.8519	0.7983	0.8281	0.6643	0.7066
	5	0.8758	0.8523	0.1042	0.8958	0.8523	0.7957	0.8252	0.6608	0.7025
	AVG	0.8759	0.85182	0.10382	0.89618	0.85182	0.79786	0.827	0.66372	0.70504

20% train	ı 80% test									
		AUC	Sensitivity	FDR	Precision	Recall	All-dice	BK-dice	all-IOU	BK-IOU
Unet	-	0.8817	0.8514	0.0922	0.9078	0.8514	0.7974	0.8247	0.6631	0.7019
	2	0.8844	0.8511	0.0866	0.9134	0.8511	0.8066	0.8343	0.676	0.7157
	3	0.8831	0.8476	0.0861	0.9139	0.8476	0.8033	0.8337	0.6712	0.7149
	4	0.8802	0.8336	0.078	0.922	0.8336	0.8037	0.8271	0.6719	0.7054
	ĺ	0.883	0.8594	0.0967	0.9033	0.8594	0.8042	0.8356	0.6726	0.7178
	AVG	0.88248	0.84862	0.08792	0.91208	0.84862	0.80304	0.83108	0.67096	0.71114
SVM		0.8576	0.8057	0.0998	0.9002	0.8057				
CNN		0.8432	0.8223	0.1394	0.8606	0.8223	0.7476	0.7853	0.5971	0.6467
		0.8394	0.8363	0.1567	0.8433	0.8363	0.7469	0.7903	0.5964	0.6536
		0.8438	0.8334	0.1461	0.8539	0.8334	0.7504	0.7925	0.6005	0.6565
		0.8424	0.8172	0.1378	0.8622	0.8172	0.7454	0.7848	0.5942	0.646
		0.8445	0.8237	0.1391	0.8609	0.8237	0.7489	0.7883	0.5987	0.6507
	AVG	0.84266	0.82658	0.14382	0.85618	0.82658	0.74784	0.78824	0.59738	0.6507