AMENDMENTS TO THE CLAIMS

- 1. canceled
- 2. canceled
- 3. (currently amended) A process for the racemoselective preparation of silicon-bridged dialkyl-ansa-metallocenes of the formula (I):

$$R^2$$
 T
 R^3
 $Si \quad M^1R^1_2X_{x-2}$ (I)
 T

which comprises reacting a ligand starting compound of the formula (II):

with a transition metal dialkyl compound of the formula (III):

$$M^1X_xR^1_2*D_y$$
 (III), ·

where

- M¹ is an element of group 4, 5 or 6 of the Periodic Table of the Elements;
- R^1 are identical C_1 - C_{20} -alkyl or C_7 - C_{40} -arylalkyl radicals;
- X are identical or different halogens;
- R² are identical or different C₁-C₄₀ radicals;
- R³ are identical or different C₁-C₄₀ radicals;
- T is a divalent C₁-C₄₀ group which together with the cyclopentadienyl ring forms a further saturated or unsaturated ring system which has a ring size of from 5 to 12 atoms, where T may contain the heteroatoms Si, Ge, N, P, O or S in the ring system fused onto the cyclopentadienyl ring;
- M² is Li, Na, K, MgCl, MgBr, MgI, Mg or Ca;
- D is an uncharged Lewis base-ligand;
- x is equal to the oxidation number of M¹ minus 2;
- y is from 0 to 2;

and

p is 1 in the case of doubly positively charged metal ions or 2 in the case of singly positively charged metal ions or metal ion fragments,

wherein the transition metal dialkyl compound of the formula (III) is produced at above – 30° C by combining a compound $M^{1}X_{x+2}$ with from 2 to 2.5 equivalents of a compound $R^{1}M^{3}$ in the presence of a ligand compound D, where

$$M^3$$
 is Li^+ , Na^+ , K^+ , $MgCl^+$, $MgBr^+$, MgI^+ , $\frac{1}{2}$ $[Mg^{++}]$ or $\frac{1}{2}$ $[Zn^{++}]$.

- 4. canceled
- 5. canceled
- 6. (previously presented) The process as claimed in claim 3, wherein the reaction is carried out in an organic solvent or solvent mixture which comprises at least 10% by volume of an ether.
- 7. (canceled)

- 8. (canceled)
- 9. (currently amended) A process for the racemoselective preparation of silicon-bridged dialkyl-ansa-metallocenes of the formula (I):

$$R^{2}$$
 R^{3}
 $Si \quad M^{1}R^{1}_{2}X_{x-2}$ (I)

which comprises reacting a ligand starting compound of the formula (II):

with a transition metal dialkyl compound of the formula (III):

$$M^1X_xR^1_2*D_y$$
 (III),

where

 R^2 are identical or different C_1 - C_{40} radicals;

 R^3 are identical or different C_1 - C_{40} radicals;

M² is Li, Na, K, MgCl, MgBr, MgI, Mg or Ca;

- D is an uncharged Lewis base-ligand;
- x is equal to the oxidation number of M¹ minus 2;
- y is from 0 to 2;
- p is 1 in the case of doubly positively charged metal ions or 2 in the case of singly positively charged metal ions or metal ion fragments,
- T is a 1,3-butadiene-1,4-diyl group which may be unsubstituted or be substituted by from 1 to 4 radicals R⁴, where the two 1,3-butadiene-1,4-diyl groups may be different;
- R⁴ are identical or different C₁-C₂₀ radicals;
- M¹ is titanium, zirconium or hafnium;
- R¹ are identical C₁-C₅-alkyl or C₇-C₂₀-arylalkyl radicals; and
- X is halogen,

wherein the transition metal dialkyl compound of the formula (III) is produced at above – 30° C by combining a compound $M^{1}X_{x+2}$ with from 2 to 2.5 equivalents of a compound $R^{1}M^{3}$ in the presence of a ligand compound D, where

- 10. canceled
- 11. canceled