Non-periodic Domains

So use algebraic polynomials $p(x) = a_0 + a_1 x + \cdots + a_N x^N$

Problem: Runge phenomenon on equidistant grids

 $p(x) \rightarrow u(x)$ as $N \rightarrow \infty$

Remedy: Chebyshev points

$$x_j = \cos\left(\pi \frac{j}{N}\right)$$

$$P_N(x) \to u(x) \text{ as } N \to \infty$$

Spectral Differentiation:

Given $(u_0, u_1, \dots, u_N) \rightsquigarrow$ interpolating polynomial

Chebyshev Differentiation Matrix:

	$\frac{2N^2+1}{6}$		$2\frac{(-1)^j}{1-x_j}$		$\frac{1}{2}(-1)^N$
$D_N =$	$-\frac{1}{2}\frac{(-1)^i}{1-x_i}$		$\frac{-x_j}{2(1-x_j^2)}$	$\frac{(-1)^{i+j}}{x_i - x_j}$	$\frac{1}{2} \frac{(-1)^{N+i}}{1+x_i}$
		$\frac{(-1)^{i+j}}{x_i - x_j}$			
	$-\frac{1}{2}(-1)^N$		$-2\frac{(-1)^{N+j}}{1+x_j}$		$-\frac{2N^2+1}{6}$

where
$$x_j = \cos(\frac{j\pi}{N}), j = 0, \dots, N$$

 $\vec{w} = D_N \cdot u(\vec{x}) \approx u'(\vec{x})$ with spectral accuracy. $\vec{w} = D_N^2 \cdot u(\vec{x}) \approx u''(\vec{x})$ with spectral accuracy. etc.

Chebyshev Differentiation using FFT:

1. Given
$$u_0, \ldots, u_N$$
 at $x_j = \cos(\frac{j\pi}{N})$.

Extend:
$$\vec{U} = (u_0, u_1, \dots, u_N, u_{N-1}, \dots, u_1)$$

2. FFT:
$$\hat{U}_k = \frac{\pi}{N} \sum_{j=1}^{2N} e^{-ik\theta_j} U_j, \ k = -N+1, \dots, N$$

3.
$$\hat{W}_k = ik\hat{U}_k, \hat{W}_N = 0$$
 (first derivative)

4. Inverse FFT:
$$W_j = \frac{1}{2\pi} \sum_{k=-N+1}^{N} e^{ik\theta_j} \hat{W}_k, \ j = 1, \dots, 2N$$

5.
$$\begin{cases} w_j = -\frac{W_j}{\sqrt{1 - x_j^2}}, & j = 1, \dots, N - 1 \\ w_0 = \frac{1}{2\pi} \sum_{n=0}^{N} {n^2 \hat{u}_n}, & w_N = \frac{1}{2\pi} \sum_{n=0}^{N} {(-1)^{n+1} n^2 \hat{u}_n} \end{cases}$$

$$p(x) = P(\theta), \ x = \cos \theta$$

$$p(x) = \sum_{n=0}^{N} \alpha_n T_n(x)$$

$$P(\theta) = \sum_{n=0}^{N} \alpha_n \cos(n\theta)$$

 $T_n(x) =$ Chebyshev polynomial

$$T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)$$

$$p'(x) = \frac{P'(\theta)}{\frac{dx}{d\theta}} = \frac{-\sum_{n=0}^{N} n\alpha_n \sin(n\theta)}{-\sin\theta}$$
$$= \frac{\sum_{n=0}^{N} n\alpha_n \sin(n\theta)}{\sqrt{1 - x^2}}$$

Visualization for N = 10:

Boundary value problems

$$\underline{\text{Ex.}} \colon \left\{ \begin{array}{l} u_{xx} = e^{4x}, \ x \in]-1,1[\\ u(\pm 1) = 0 \end{array} \right\} \quad \begin{array}{l} \text{Poisson equation with homogeneous} \\ \text{Dirichlet boundary conditions} \end{array}$$

Chebyshev differentiation matrix D_N .

Remove boundary points:

$$\begin{bmatrix} w_0 \\ \overline{w_1} \\ \vdots \\ \overline{w_{N-1}} \\ w_N \end{bmatrix} = \underbrace{\begin{bmatrix} \tilde{D}_N^2 \\ \tilde{D}_N^2 \end{bmatrix}} \cdot \underbrace{\begin{bmatrix} v_0[=0] \\ \overline{v_1} \\ \vdots \\ \overline{v_{N-1}} \\ \overline{v_N[=0]} \end{bmatrix}} \right\} \text{ Interior points } \boxed{p13.m}$$

Linear system:

$$\tilde{D}_n^2 \cdot \vec{u} = \vec{f}$$
where $\vec{u} = (u_1, \dots, u_{N-1}), \vec{f} = (e^{4x_1}, \dots, e^{4x_{N-1}})$

Nonlinear Problem

Ex.:
$$\left\{ \begin{array}{l} u_{xx} = e^u, \ x \in]-1,1[\\ u(\pm 1) = 0 \end{array} \right\}$$
 initial guess

Need to iterate: $\vec{u}^{(0)} = 0, \vec{u}^{(1)}, \vec{u}^{(2)}, \dots$

$$\tilde{D}_N^2 \vec{u}^{(k+1)} = \exp(\vec{u}^{(k)}) \quad \leftarrow \text{ fixed point iteration}$$

Can also use Newton iteration...

Eigenvalue Problem

$$\underline{\text{Ex.}}: \left\{ \begin{array}{l} u_{xx} = \lambda u, \ x \in]-1, 1[\\ u(\pm 1) = 0 \end{array} \right\}$$
 [p15.m]

Find eigenvalues and eigenvectors of matrix \tilde{D}_N^2

Matlab:

$$>> [V,L] = eig(D2)$$

Higher Space Dimensions

$$\underline{\text{Ex.}}: \left\{ \begin{array}{l} u_{xx} + u_{yy} = f(x,y) & \Omega =]-1,1[^2 \\ u = 0 & \partial \Omega \end{array} \right\} \quad f(x,y) = 10\sin(8x(y-1))$$

Tensor product grid: $(x_i, y_j) = (\cos(\frac{i\pi}{N}), \cos(\frac{j\pi}{N}))$

p16.m

Matrix approach:

Image by MIT OpenCourseWare.

Matlab: kron, ⊗

$$L_N = I \otimes \tilde{D}_N^2 + \tilde{D}_N^2 \otimes I$$

>> L = kron(I,D20)+kron(d2,I)

Linear system: $L_N \cdot \vec{u} = \vec{f}$

spectral

classical FD

Helmholtz Equation

Wave equation with source

$$-v_{tt} + v_{xx} + v_{yy} = e^{ikt} f(x, y)$$

Ansatz:
$$v(x, y, t) = e^{ikt}u(x, y)$$

 \Rightarrow Helmholtz equation:

$$\begin{cases} u_{xx} + u_{yy} + k^2 u = f(x,y) & \Omega =]-1,1[^2 \\ u = 0 & \partial \Omega \end{cases}$$

p17.m

Fourier Methods

So far spectral on grids (pseudospectral). Can also work with Fourier coefficients directly.

Ex.: Poisson equation

$$\begin{cases} -(u_{xx} + u_{yy}) = f(x, y) & \Omega = [0, 2\pi]^2 \\ \text{periodic boundary conditions} \end{cases}$$

Image by MIT OpenCourseWare

$$f(x,y) = \sum_{k,l \in \mathbb{Z}} \hat{f}_{kl} e^{i(kx+ly)}$$

$$u(x,y) = \sum_{k,l \in \mathbb{Z}} \hat{u}_{kl} e^{i(kx+ly)}$$

$$u_{xx}(x,y) = \sum_{k,l} \hat{u}_{kl} e^{i(kx+ly)} \cdot (-k^2)$$

$$-\nabla^2 u(x,y) = \sum_{k,l} \hat{u}_{kl} (k^2 + l^2) e^{i(kx+ly)} \stackrel{!}{=} f(x,y)$$

$$\Rightarrow \hat{u}_{kl} = \frac{\hat{f}_{kl}}{k^2 + l^2} \, \forall \, (k,l) \neq (0,0)$$

 \hat{u}_{00} arbitrary constant, condition on $f:\hat{f}_{00}=0$

In Fourier basis, differential operators are diagonal.

18.336 Numerical Methods for Partial Differential Equations Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.