Product Version 19.1 June 2020

© 2003–2020 Cadence Design Systems, Inc. All rights reserved.

Printed in the United States of America.

Cadence Design Systems, Inc. (Cadence), 2655 Seely Ave., San Jose, CA 95134, USA.

MMSIM contains technology licensed from, and copyrighted by: C. L. Lawson, R. J. Hanson, D. Kincaid, and F. T. Krogh © 1979, J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson © 1988, J. J. Dongarra, J. Du Croz, I. S. Duff, and S. Hammarling © 1990; University of Tennessee, Knoxville, TN and Oak Ridge National Laboratory, Oak Ridge, TN © 1992-1996; Brian Paul © 1999-2003; M. G. Johnson, Brisbane, Queensland, Australia © 1994; Kenneth S. Kundert and the University of California, 1111 Franklin St., Oakland, CA 94607-5200 © 1985-1988; Hewlett-Packard Company, 3000 Hanover Street, Palo Alto, CA 94304-1185 USA © 1994, Silicon Graphics Computer Systems, Inc., 1140 E. Arques Ave., Sunnyvale, CA 94085 © 1996-1997, Moscow Center for SPARC Technology, Moscow, Russia © 1997; Regents of the University of California, 1111 Franklin St., Oakland, CA 94607-5200 © 1990-1994, Sun Microsystems, Inc., 4150 Network Circle Santa Clara, CA 95054 USA © 1994-2000, Scriptics Corporation, and other parties © 1998-1999; Aladdin Enterprises, 35 Efal St., Kiryat Arye, Petach Tikva, Israel 49511 © 1999 and Jean-loup Gailly and Mark Adler © 1995-2005; RSA Security, Inc., 174 Middlesex Turnpike Bedford, MA 01730 © 2005.

All rights reserved. Associated third party license terms may be found at <install dir>/doc/OpenSource/*

Open SystemC, Open SystemC Initiative, OSCI, SystemC, and SystemC Initiative are trademarks or registered trademarks of Open SystemC Initiative, Inc. in the United States and other countries and are used with permission.

Trademarks: Trademarks and service marks of Cadence Design Systems, Inc. contained in this document are attributed to Cadence with the appropriate symbol. For queries regarding Cadence's trademarks, contact the corporate legal department at the address shown above or call 800.862.4522. All other trademarks are the property of their respective holders.

Restricted Permission: This publication is protected by copyright law and international treaties and contains trade secrets and proprietary information owned by Cadence. Unauthorized reproduction or distribution of this publication, or any portion of it, may result in civil and criminal penalties. Except as specified in this permission statement, this publication may not be copied, reproduced, modified, published, uploaded, posted, transmitted, or distributed in any way, without prior written permission from Cadence. Unless otherwise agreed to by Cadence in writing, this statement grants Cadence customers permission to print one (1) hard copy of this publication subject to the following conditions:

- 1. The publication may be used only in accordance with a written agreement between Cadence and its customer.
- 2. The publication may not be modified in any way.
- 3. Any authorized copy of the publication or portion thereof must include all original copyright, trademark, and other proprietary notices and this permission statement.
- 4. The information contained in this document cannot be used in the development of like products or software, whether for internal or external use, and shall not be used for the benefit of any other party, whether or not for consideration.

Disclaimer: Information in this publication is subject to change without notice and does not represent a commitment on the part of Cadence. Except as may be explicitly set forth in such agreement, Cadence does not make, and expressly disclaims, any representations or warranties as to the completeness, accuracy or usefulness of the information contained in this document. Cadence does not warrant that use of such information will not infringe any third party rights, nor does Cadence assume any liability for damages or costs of any kind that may result from use of such information.

Restricted Rights: Use, duplication, or disclosure by the Government is subject to restrictions as set forth in FAR52.227-14 and DFAR252.227-7013 et seq. or its successor

Envelope Following Analysis (envlp)
Harmonic Balance Steady State Analysis (hb)
HB AC Analysis (hbac)
HB Noise Analysis (hbnoise)
HB S-Parameter Analysis (hbsp)
HB Stability Analysis (hbstb)
HB XF Analysis (hbxf)
<u>Circuit Information (info)</u>
Loopfinder Analysis (lf)
Load Pull Analysis (loadpull)
Monte Carlo Analysis (montecarlo) 166
Noise Analysis (noise)
Immediate Set Options (options)
Periodic AC Analysis (pac)
Periodic Noise Analysis (pnoise)
Periodic S-Parameter Analysis (psp)
Periodic Steady-State Analysis (pss)
Periodic STB Analysis (pstb)
Periodic Transfer Function Analysis (pxf)
PZ Analysis (pz)
Quasi-Periodic AC Analysis (qpac)
Quasi-Periodic Noise Analysis (qpnoise)
Quasi-Periodic S-Parameter Analysis (qpsp)
Quasi-Periodic Steady State Analysis (qpss)
Quasi-Periodic Transfer Function Analysis (qpxf)
Reliability Analysis (reliability)
Deferred Set Options (set)
Shell Command (shell)
S-Parameter Analysis (sp)
Stability Analysis (stb) 400
Reliability Stress Analysis (stress)
Sweep Analysis (sweep)
Time-Domain Reflectometer Analysis (tdr)
THERMAL Analysis (thermal)
Transient Analysis (tran)
Special Current Saving Options (uti)

Transfer Function Analysis (xf)446
<u>4</u>
Other Simulation Topics 453
AHDL Linter Usage (ahdllint)
Using analogmodel for Model Passing (analogmodel)
Behavioral Source Use Model (bsource)
Checkpoint - Restart (checkpoint) 470
Configuring CMI Shared Objects (cmiconfig)472
Built-in Mathematical and Physical Constants (constants) 474
Convergence Difficulties (convergence)476
The dcopt command line option (dcopt) 478
encryption (encryption)
Expressions (expressions)
The fastdc command line option (fastdc) 486
Fault List for Transient Fault Analysis (faults)
<u>User Defined Functions (functions)</u> 489
Global Nodes (global) 490
IBIS Component Use Model (ibis)
Initial Conditions (ic)
The Structural if-statement (if)
<u>Include File (include)</u> 501
Spectre Netlist Keywords (keywords)503
<u>Library - Sectional Include (library)</u> 506
Tips for Reducing Memory Usage (memory)
Multi-Technology Simulation Mode (mts) 509
Node Sets (nodeset)
Parameter Soft Limits (param limits) 511
Netlist Parameters (parameters)514
Parameter Set - Block of Data (paramset) 517
The postlayout command line option (postlayout)
Pspice_include File (pspice_include)519
Tips for Reducing Memory Usage with SpectreRF (rfmemory)
Output Selections (save)525
Savestate - Recover (savestate) 528

Sensitivity Analyses (sens) SpectreRF Summary (spectrerf) Stitch Flow Use Model (stitch) Subcircuit Definitions (subckt) Vec/Vcd/Evcd Digital Stimulus (vector) Verilog-A Usage and Language Summary (veriloga)	534 535 541 546
Volling / Codago di la Edingadgo Odiminary (Vollinga)	0 10
<u>5</u>	
Circuit Checks	561
Dynamic Subckt Instance Activity Check (dyn_activity)	
Dynamic Active Node Check (dyn_actnode)	
Dynamic Capacitor Voltage Check (dyn_capv)	
Dynamic DC Leakage Path Check (dyn_capv)	
Dynamic Delay Check (dyn_delay)	
Dynamic Diode Voltage Check (dyn_diodev)	
Dynamic Excessive Element Current Check (dyn_exi)	
Dynamic Excessive Rise, Fall, Undefined State Time Check (dyn_exrf)	
Dynamic Floating Node Induced DC Leakage Path Check (dyn_floatdcpath)	
Dynamic Floating Node Statistical Check (dyn float tran stat)	
Dynamic Glitch Check (dyn_glitch)	597
Dynamic HighZ Node Check (dyn_highz)	600
Dynamic MOSFET Voltage Check (dyn mosv)	605
Dynamic Node Capacitance Check (dyn_nodecap)	607
Dynamic Noisy Node Check (dyn_noisynode)	609
Dynamic Pulse Width Check (dyn pulsewidth)	612
Dynamic Resistor Voltage Check (dyn_resv)	615
Dynamic Setup and Hold Check (dyn_setuphold)	
Dynamic Statistical HighZ Node Check (dyn_stahighz)	620
Dynamic Subckt Port Voltage/Current Check (dyn_subcktport)	
Dynamic Subckt Port Power Check (dyn_subcktpwr)	
Static Capacitor Check (static_capacitor)	
Static Capacitor Voltage Check (static_capv)	
Static Coupling Impact Check (static_coupling)	
Static DC Leakage Path Check (static dcpath)	
Static Diode Voltage Check (static_diodev)	637

Static ERC Check (static erc)
Static Highfanout Check (static_highfanout)
Static HighZ Node Check (static_highz)
Static MOSFET Voltage Check (static mosv)
Static NMOS to vdd count (static_nmos2vdd)
Static NMOS Forward Bias Bulk Check (static_nmosb)
Static Always Conducting NMOSFET Check (static nmosvgs)
Static PMOS to gnd count (static_pmos2gnd)
Static PMOS Forward Bias Bulk Check (static_pmosb)
Static Always Conducting PMOSFET Check (static pmosvgs)
Static RCDelay Check (static_rcdelay)
Static Resistor Check (static_resistor)
Static Resistor Voltage Check (static resv)
Static Subckt Port Voltage Check (static_subcktport)
Static Transmission Gate Check (static_tgate)
Static Voltage Domain Conflict Check (static vconflict)
Static Voltage Domain Device Check (static_voltdomain)
<u>A</u>
References 681
<u></u>
<u>Index</u> 683

Preface

This manual assumes that you are familiar with the development, design, and simulation of integrated circuits and that you have some familiarity with SPICE simulation. It contains information about the Spectre[®] circuit simulator.

Spectre is an advanced circuit simulator that simulates analog and digital circuits at the differential equation level. The simulator uses improved algorithms that offer increased simulation speed and greatly improved convergence characteristics over SPICE. Besides the basic capabilities, the Spectre circuit simulator provides significant additional capabilities over SPICE. Verilog[®]-A uses functional description text files (modules) to model the behavior of electrical circuits and other systems. Spectre RF Simulation option adds several new analyses that support the efficient calculation of the operating point, transfer function, noise, and distortion of common RF and communication circuits, such as mixers, oscillators, sample holds, and switched-capacitor filters.

This preface discusses the following topics:

- Related Documents on page -12
- Typographic and Syntax Conventions on page -12
- References on page 13

Related Documents

The following can give you more information about the Spectre circuit simulator and related products:

- To learn more about the equations used in the Spectre circuit simulator, consult the Spectre Circuit Simulator Components and Device Models Reference manual.
- The Spectre circuit simulator is often run within the Cadence[®] analog circuit design environment, under the Cadence[®] design framework II. To see how the Spectre circuit simulator is run under the analog circuit design environment, read the *Virtuoso ADE Explorer User Guide*.
- For more information about using the Spectre circuit simulator with Verilog-A, see the *Verilog-A Language Reference* manual.
- If you want to see how SpectreRF is run under the analog circuit design environment, read *SpectreRF Simulation Option User Guide*.
- For more information about RF theory, see <u>SpectreRF Simulation Option Theory</u>.
- For more information about how you work with the design framework II interface, see Design Framework II Help.
- For more information about specific applications of Spectre analyses, see *The Designer's Guide to SPICE & Spectre*¹.

Typographic and Syntax Conventions

This list describes the syntax conventions used for the Spectre circuit simulator.

literal

Nonitalic words indicate keywords that you must enter literally. These keywords represent command (function, routine) or option names, file names and paths, and any other sort of type-in commands.

^{1.} Kundert, Kenneth S. *The Designer's Guide to SPICE & Spectre*. Boston: Kluwer Academic Publishers, 1995.

Preface

argument	Words in italics indicate user- defined arguments for which you must substitute a name or a value. (The characters before the underscore (_) in the word indicate the data types that this argument can take. Names are case sensitive.
Vertical bars (OR-bars)	separate possible choices for a single argument. They take precedence over any other character.
[]	Brackets denote optional arguments. When used with ORbars, they enclose a list of choices. You can choose one argument from the list.
{}	Braces are used with OR-bars and enclose a list of choices. You must choose one argument from the list.
	Three dots () indicate that you can repeat the previous argument. If you use them with brackets, you can specify zero or more arguments. If they are used without brackets, you must specify at least one argument, but you can specify more.

/Important

The language requires many characters not included in the preceding list. You must enter required characters exactly as shown.

References

Text within brackets ([]) are references. See Appendix A, "References" for more information.

Additional Learning Resources

Cadence provides various <u>Rapid Adoption Kits</u> that you can use to learn how to employ Virtuoso applications in your design flows. These kits contain workshop databases, designs, and instructions to run the design flow.

Cadence offers the following training courses on the Spectre circuit simulator:

- Spectre Circuit Simulator
- Spectre Simulations Using Virtuoso ADE

For further information on the training courses available in your region, visit the <u>Cadence Training</u> portal. You can also write to training_enroll@cadence.com.

Note: The links in this section open in a new browser. The course links initially display the requested training information for North America, but if required, you can navigate to the courses available in other regions.

1

Introducing the Spectre Circuit Simulator

This chapter discusses the following topics:

- Spectre Circuit Simulator on page 16
 - Spectre Circuit Simulator Features on page 17
 - □ Spectre Netlist Format on page 21
 - □ Benefits of Using the Spectre Circuit Simulator on page 23
- Spectre Accelerated Parallel Simulator on page 25
 - Benefits of Spectre APS on page 25
- Spectre eXtensive Partitioning Simulator on page 26
 - Benefits of Spectre XPS on page 26

Spectre Circuit Simulator

The Spectre[®] circuit simulator is a modern circuit simulator that provides high-precision SPICE simulation for pre- and post-layout analog RF and mixed-signal designs. Spectre is fully integrated with the Virtuoso custom design platform and provides a comprehensive set of detailed transistor-level analyses in multiple domains for faster convergence on the design goals. The advance architecture of Spectre enables low memory consumption and high-capacity analysis.

In addition to baseline simulation functionalities, Spectre supports the Accelerated Parallel Simulator (APS), and the eXtensive Partitioning Simulator (XPS) technologies that utilize the same Spectre simulation infrastructure — netlist format, analysis and options syntax, device models, output formats, feature functions, and so on.

Spectre Spectre APS Spectre XPS Spectre RF Analog and RF-IC Accurate, high High speed, high performance noise analysis capacity full-chip simulation analysis Spectre Infrastructure Common infrastructure, advanced simulation database, versatile front-end parser, robust device library **Spectre Applications** Comprehensive coverage, integrated with Virtuoso, Litho Electrica Analyzer, Liberate, Allegro, and **Encounter Timing System Technologies**

Introducing the Spectre Circuit Simulator

Spectre Circuit Simulator Features

The Spectre circuit simulator provides the following features.

Proven Circuit Simulation Techniques

Spectre uses proprietary techniques — including adaptive time step control, sparse matrix solving, and multi-processing of MOS models — to provide high performance while maintaining sign-off accuracy. It includes native support for both Spectre and SPICE syntax, providing you the flexibility to use the Spectre technology for any design flow without worrying about the design format. In addition, it converges to results that are "silicon-accurate" by modeling extensive physical effects in devices for deep sub-micron processes.

Comprehensive Statistical Analysis

Spectre bridges the gap between manufacturability and time to market nodes by providing a comprehensive set of statistical analysis tools tailored to IC design at advanced process nodes. Advanced Monte Carlo algorithms enable smart selection of process and design parameters to characterize the yield with significantly reduced simulation runs. The DC Match capability efficiently analyzes local process mismatch effects and identifies the yield-limiting devices and parameters. Tight integration between the Spectre Circuit Simulator and the Virtuoso Analog Design Environment offers user-friendly interactive setup and advanced visualization of statistical results.

Transient Noise Analysis

Spectre provides transient noise analysis for accurate calculation of the large signal noise in nonlinear non-periodic circuits. All noise types are supported, including thermal, shot, and flicker.

Built-in Verilog-A and MDL

The Spectre Circuit Simulator offers design abstraction for faster convergence on results, including behavioral modeling capabilities in full compliance with Verilog-A 2.0. The compiled Verilog-A implementation is optimized for compact device models, thus offering comparable performance to built-in device models.

In addition to supporting standard SPICE measurement functions (.measure), it offers a measurement description language (MDL) to automate cell and library characterization. Spectre MDL enables the designer to post-process the results and tune the simulator to provide the best performance/accuracy trade-off for a specific measurement.

Introducing the Spectre Circuit Simulator

Advanced Device Modeling and Support

The Spectre Circuit Simulator supports MOS, BJT, specialty transistor models, resistors, capacitors, inductors, transformers and magnetic cores, lossy and lossless transmission lines, independent and controlled voltage and current sources, and Z and S domain sources.

The Spectre Circuit Simulator provides a user-defined compiled model interface (CMI). It allows for the rapid inclusion of user-defined models for a "model once, use everywhere" capability. It offers curve tracer analysis capability for rapid model development and debugging.

The Spectre circuit simulator supports the following models:

- MOSFET models, including the latest versions of BSIM3, BSIM4, PSP, HISIM, MOS9, MOS11, and EKV
- Silicon-on-insulator (SoI), including the latest versions of BTASOI, SSIMSOI BSIMSOI, BSIMSOI PD, and BSIM-IMG
- High-voltage MOSFET models, including the latest versions of HVMOS, LDMOS, and HiSim HV
- TMI models from TSMC
- Bipolar junction transistor (BJT) models, including latest versions of VBIC, HICUM L0, HICUM L2, Mextram, HBT, and Gummel-Poon models
- GaAS MESFET models, including the latest versions of GaAs, TOM2, TOM3, and Angelov
- Rensselaer Polytechnic Institute (RPI)'s Poly and Amorphous Silicon Thin-Film models
- Diode, JFET, FinFET, and flash cell models
- Verilog-A compact device models
- Specialized reliability models (AgeMOS) for HCI and NBTI analysis

RF Simulation

Spectre RF, an option to the Spectre Circuit Simulator, provides a set of comprehensive RF analyses built on two production-proven simulation engines: harmonic balance and shooting-Newton. Spectre RF supports all industry-standard models. Spectre RF provides the following capabilities:

 Harmonic balance-based analyses, optimized for high dynamic range, high-capacity circuits with distributed components

Introducing the Spectre Circuit Simulator

- Shooting-Newton-based analysis, optimized for strongly non-linear circuits
- Advanced fast envelope analysis supporting all analog and digital modulation techniques
- Rapid IP2 and IP3 calculation based on perturbation technology
- Periodic noise analysis for accurate calculation of noise in nonlinear time variant circuits with detailed analysis options including modulated noise, sampled noise, and jitter
- Full spectrum periodic noise that provides a fast and silicon-accurate Pnoise analysis for circuits with sharp transitions
- Noise and distortion summary to identify the contribution of each device to the total output noise, harmonic, or inter-modulation distortion
- Small signal analysis that includes AC, transfer function, S-Parameters, and stability based on a periodic or quasiperiodic operating point
- Monte Carlo, corner-case, and parametric sweep analysis

Advanced Transmission Line Library

Signal-integrity issues can be difficult and time consuming to identify, analyze, and resolve for high-speed designs. The Spectre RF rftline (RF transmission line) library enables the designer to perform signal-integrity analysis of the design in context of the package and PCB trace.

Spectre rfTlineLib provides a comprehensive set of multi-layer transmission lines and models. Spectre rftline models are based on rigorous 2-D electromagnetic simulations and include state-of-the-art descriptions of dielectric and conductor losses, delivering accurate models that are tightly integrated into Virtuoso ADE. An intuitive and easy-to-use graphical editor provides the ability to accurately define and graphically capture the substrates.

Wireless Analysis

The modern mobile platform with exponentially evolving wireless standards is increasing the complexity of wireless RFIC designs. To meet specification requirements and productivity goals, you must evaluate the system-level performance metrics in an integrated, automated, and easy-to-use simulation-based flow.

Spectre RF wireless analysis feature provides a fully automated flow integrated in Virtuoso ADE, enabling you to apply the standard-compliant modulation sources and measure the output to calculate system-level performance.

Introducing the Spectre Circuit Simulator

The simulation is based on an advanced, accurate, and fast envelope following algorithm in Spectre RF. The wire analysis is designed with the RFIC designer in mind. It provides an automated setup of simulation parameters and standard-specific post-processing, eliminating the hassle and tedious nature of working with changing wireless standard sources. Spectre RF wireless analysis provides a rich set of visualization that includes EVM, BER, and spectrum. A broad set of wireless standards-compliant library sources is supported.

Co-simulation with Simulink

The MathWorks Simulink interface to Spectre Circuit Simulator offers system and circuit designers a unique integrated environment for design and verification. Designers can insert their analog and RF schematics and post-layout netlist directly in the system-level block diagram and run a co-simulation between Simulink and Spectre technologies. Designers can reuse the same Simulink testbench from system-level design to post-layout verification, minimizing unnecessary format conversion while maintaining accuracy throughout the design flow.

Multi-Mode Simulation Toolbox for MATLAB

Multi-Mode Simulation toolbox for MathWorks MATLAB reads PSF and SST2 files directly in MATLAB. You benefit from the set of MATLAB mathematical functions to post-process simulation results from Spectre Circuit Simulator, Spectre APS, Spectre XPS, and AMS Designer. All sweep types are supported in the toolbox, including Monte Carlo and parametric. Special data structures are used to store RF signals and harmonics resulting from PSS and QPSS analysis. Furthermore, the Spectre Simulation toolbox complements the rich MATLAB libraries with communication product-specific post-processing functions such as Fast Fourier Transform, third-order intercept point, and 1dB gain compression point.

Post-layout Simulation

The Spectre Circuit Simulator enables analog and RF block and subsystem post-layout verification with speed near that of pre-layout simulation. An accurate parasitic reduction technique enhances the simulation performance of parasitic-dominant circuits by a significant amount over traditional SPICE-level simulation.

The technology enables designers to trade off accuracy and performance using a simple user-friendly setup.

Introducing the Spectre Circuit Simulator

Spectre Netlist Format

A netlist is an ASCII file that lists the components in a circuit, the nodes that the components are connected to, and the parameter values. The netlist is created in a text editor such as vi or emacs or from one of the environments that support the Spectre simulator. The Spectre simulator uses a netlist to simulate a circuit.

Sample Netlist

Introducing the Spectre Circuit Simulator

Elements of a Spectre Netlist

The following table briefly explains the components, models, analyses, and control statements in a Spectre netlist.

Netlist Element	Description
Title Line	The first line is taken to be the title. It is used verbatim when labeling output. Any statement you place in the first line is ignored as a comment.
Simulation Language	The second line of the sample netlist indicates that the netlist is in the Spectre Netlist Language, instead of SPICE.
Instance Statements	The next section in the sample netlist consists of instance statements. To specify a single component in a Spectre netlist, you place all the necessary information for the component in a netlist statement. Netlist statements that specify single components are called instance statements.
	To specify single components within a circuit, you must provide the following information:
	■ A unique component name for the component
	The names of nodes to which the component is connected
	 The master name of the component (identifies the type of component)
	The parameter values associated with the component
Control Statements	The next section of the sample netlist contains a control statement, which sets initial conditions.

Introducing the Spectre Circuit Simulator

Model Statements

Some components allow you to specify parameters common to many instances using the model statement. The only parameters you need to specify in the instance statement are those that are generally unique for a given instance of a component.

You need to provide the following for a model statement:

- The keyword model at the beginning of the statement
- A unique name for the model (reference by master names in instance statements)
- The master name of the model (identifies the type of model)
- The parameter values associated with the model

Analysis Statements

The last section of the sample netlist has the analysis statement. An analysis statement has the same syntax as an instance statement, except that the analysis type name replaces the master name. To specify an analysis, you must include the following information in a netlist statement:

- A unique name for the analysis statement
- Possibly a set of node names
- The name of the type of analysis you want
- Any additional parameter values associated with the analysis

Refer to the <u>Spectre Classic Simulator</u>, <u>Spectre APS</u>, <u>Spectre X</u>, <u>and Spectre XPS</u> <u>User Guide</u> for detailed information about the elements of the Spectre Netlist.

Benefits of Using the Spectre Circuit Simulator

The Spectre Circuit Simulator provides the following benefits:

■ Provides high-performance, high-capacity SPICE-level analog and RF simulation with out-of-the-box tuning for accuracy and faster convergence.

Introducing the Spectre Circuit Simulator

- Facilitates the trade-off between accuracy and performance through user-friendly simulation setup applicable to most complex analog and custom-digital ICs.
- Enables accurate and efficient post-layout simulation.
- Supports out-of-the-box S-Parameter models, enabling simulation of complex n-port devices.
- Delivers signal integrity analysis capability with an advanced transmission line library and graphical editor.
- Provides a platform to measure and analyze system-level performance metric.
- Performs application-specific analysis of RF performance parameters (spectral response, gain compression, intermodulation distortion, impedance matching, stability, and isolation).
- Offers advanced statistical analysis to help design companies improve the manufacturability and yield of ICs at advanced process nodes without sacrificing time to market.
- Delivers fast interactive simulation setup, cross-probing, visualization, and postprocessing of simulation results through tight integration with the Virtuoso Analog Design Environment.
- Ensures higher design quality using silicon-accurate, industry-standard, foundry-certified device models shared across the simulation engines.

Introducing the Spectre Circuit Simulator

Spectre Accelerated Parallel Simulator

The Spectre Accelerated Parallel Simulator (Spectre APS) maintains baseline Spectre simulation accuracy. It fully supports all Spectre functionalities and provides advanced performance for the next generation of analog and RF simulations. It delivers significant scalable performance and capacity with accurate results across a broad range of complex analog, RF, and mixed-signal blocks. It also provides accurate results for sub-systems with sizes up to millions of transistors and passive parasitic elements. Spectre APS provides all the transistor-level analysis capabilities available in Spectre Circuit Simulator.

In addition, its proprietary parallel simulation technology delivers scalable multi-core processing capability on modern multi-core compute platforms. Spectre APS:

- Supports all analysis capabilities offered in Spectre Circuit Simulator.
- Offers advanced parallel simulation on a single multi-core compute platform.
- Supports distributed, advanced parallel simulation across a cluster of multi-core computer platforms.
- Enables parasitic stitching and reduction for post-layout design and verification, providing additional performance gain for analog and RF designs dominated by parasitics.
- Supports multi-core harmonic balance, shooting-Newton, and envelope analysis.
- Supports Electromigration and IR drop analysis.
- Supports static and dynamic circuit checks.

Benefits of Spectre APS

Spectre APS provides the following benefits:

- Provides significant single-core performance with an identical use model and full Spectre accuracy for everyday simulation of complex and/or large block designs, leading to faster convergence.
- Enables high-precision simulation for large post-layout analog and RF designs and subsystems dominated by parasitic devices.
- Delivers scalable performance leveraging a single machine or cluster of machines with multi-core architectures, allowing higher levels of analog design integration and verification and a quick turnaround time on simulation.

Introducing the Spectre Circuit Simulator

Enables fast and accurate analysis of complete transceivers and large post-layout RF IC blocks by significantly improving the performance and capacity of harmonic balance analysis using a multi-core compute platform.

Spectre eXtensive Partitioning Simulator

Spectre[®] eXtensive Partitioning Simulator (Spectre XPS) is a newer generation transistor-level circuit simulator emphasizing high simulation performance and large simulation capacity, with a vision to fundamentally address the design and verification needs of full-chip low-power designs at advanced process nodes.

Spectre XPS incorporates a completely new circuit partitioning and multi-rate technology, and further extends the simulation performance and simulation capacity to effectively enable full-chip simulation at advanced process nodes. In particular, Spectre XPS supports a variation analysis capability to provide circuit designers practical assessment on design robustness.

The Spectre XPS simulation technology is integrated into the Spectre binary, sharing the same product infrastructure with Spectre and Spectre APS. The Spectre XPS use model is identical to that of Spectre and Spectre APS, with the netlist syntax, device models, analysis setups, and output formats being fully compatible. It provides transient simulation capability for SRAM timing and power analysis, EM/IR analyses with an advanced power network solver, advanced parasitic reduction for faster post-layout simulation, and a set of circuit-checking features.

Benefits of Spectre XPS

Spectre XPS provides the following benefits:

- Provides high performance and capacity pre-and post-layout simulation for design and IP characterization at the block and chip level.
- Provides a comprehensive set of transistor-level electrical rule checks.
- Delivers advanced EM and IR drop analysis for optimal throughput.
- Supports large and complex post-layout designs delivering a significant reduction in simulation runtime compared to the traditional FastSPICE simulator.
- Uses proven Spectre use-model for simplified setting up and post processing of results.
- Fully integrated into the Virtuoso Analog Design Environment (ADE).

Command Options

This chapter lists the options you can use with the spectre command and gives a brief description of each. It also discusses the following topics:

Default Values on page 41

Default Parameter Values on page 41

The spectre command takes the following syntax at the command line:

spectre options inputfile

If no options are specified, the Spectre® circuit simulator saves the .print file in the current working directory, and saves the .measure and .mt0 files in the .raw subdirectory of the netlist directory.

The Spectre circuit simulator reads default values for all the command line arguments marked with a dagger (†) from the UNIX environment variable %S_DEFAULTS.

-help	Lists the Spectre command options and their descriptions. In addition, lists the available components, analyses, and design checks. You can use -h as an abbreviation of -help.
-help <i>name</i>	Displays help information for the specified component or analysis name. If name is all, the help information for all components and analyses is displayed. You can use -h as an abbreviation of -help.
-helpsort <i>name</i>	Displays the help information for the specified component or analysis $name$ and sorts all the parameters alphabetically. You can use -hs as an abbreviation of -helpsort.

-helpfull <i>name</i>	Displays detailed information for the specified component or analysis <i>name</i> , including parameter types and range limits. You can use -hf as an abbreviation of -helpfull.
-helpsortfull <i>name</i>	Displays detailed information for the specified component or analysis $name$, including parameter types and range limits. In addition, it sorts all parameters by name. You can use $-hsf$ as an abbreviation of $-helpsortfull$.
-param	Ignores the file containing the suggested parameter range limits. You can use -p as an abbreviation of -param.
+param file	Reads the specified $file$ for suggested parameter range limits. You can use +p as an abbreviation of +param.
+paramdefault file	Reads the default values of the parameters from the specified $file$ and applies them. However, if same parameters are specified in the netlist, their values override the default values in the specified file. This option can be set multiple times. Each line in the parameter file should contain three entries: primitive name, parameter name, and value. For example:
	tran start 2e-3
	The primitive name is limited to analyses primitives, which includes the options analysis. The value should be a constant. Expressions are not allowed.
=paramdefault file	Reads the specified file and ignores all previously specified files. Refer to +paramedefault for details.
-paramdefault	Disables the reading of any parameter defaults that have been specified.
-log	Displays the log information on the standard output (shell) only and does not copy it to a log file. You can use -1 as an abbreviation of -log.
+log file	Displays the log information on the standard output (shell) and copies it to the specified log $file$. You can use +1 as an abbreviation of +log.

=log file	Sends the log informaion to the specified $file$ only and does not display it on the standard output (shell). You can use =1 as an abbreviation of =log.
-raw <i>raw</i>	Saves the simulation results in the specified file or directory named raw . In raw , %C, which is specified in the directory or file name is replaced by a circuit name. You can use $-r$ as an abbreviation of $-raw$.
-format <i>fmt</i>	Generates raw data in the format fmt. You can use -f as an abbreviation of -format. Possible values for fmt are nutbin, nutascii, psfbin, psfascii, psfbinf, psfxl, sst2, fsdb, fsdb5, wdf, uwi, and tr0ascii.
+rtsf	Enables the fast waveform viewing mode for psf output. You can use this option only if you have specified the -f psfbin, -f psfbinf or -f psfxl format options.
-outdir path	Changes the default location of Spectre output files. It does not change the location of raw directory if explicitly specified with the -raw option, and of files that contain slashes in the name.
-uwifmt <i>name</i>	Specifies a user defined output format. To specify multiple formats use: as a delimiter. This option is valid only when waveform format is defined as uwiusing the -format option.
-uwilib <i>lib</i>	Absolute path to the user-defined output format library. This option is used together with -uwifmt. Use: to specify more than one library.
+checkpoint	Turns on the checkpoint capability. You can use $+cp$ as an abbreviation of $+checkpoint$.
-checkpoint	Turns off the checkpoint capability. You can use -cp as an abbreviation of -checkpoint.
+savestate	Turns on the savestate capability. You may use +ss as an abbreviation of +savestate.
-savestate	Turns off the savestate capability. You may use -ss as an abbreviation of -savestate.

-recover	Does not restart the simulation, even if a checkpoint file exists. You can use -rec as an abbreviation of -recover.
+recover[=filename]	Restarts the simulation from a checkpoint or savestate file. Savestate file will be used if both files exist. You can use +rec[=filename] as an abbreviation of +recover[=filename].
-cols N	Sets screen width (in characters) to N . This is needed only if the simulator cannot determine screen width automatically, and if default value of 80 is not acceptable. Spectre cannot determine screen width if output is redirected to a file or a pipe. You can use $-c$ as an abbreviation of $-cols$.
	Note: Spectre cannot determine the screen width if the output is redirected to a file or a pipe.
-colslog N	Sets the log-file width based on the number of characters specified. The default is 80 characters.
-%X	In quoted strings within the netlist, replaces $\$X$ with nothing where X is any uppercase or lowercase letter.
+%X string	In quoted strings within the netlist, replaces X with $string$, where X is an uppercase or lowercase letter. You can modify the string by using the X operators.
+error	Prints error messages.
-error	Does not print error messages.
+varedefnerror	Prints error messages if Verilog-A modules are redefined.
+warn	Prints warning messages on the screen.
-warn	Does not print warning messages on the screen.
-maxwarns N	Maximum number of times a particular type of warning message will be issued per analysis. You may use -maxw as an abbreviation of -maxwarns.
-maxnotes N	Maximum number of times a particular type of notice message will be issued per analysis. You can use - maxn as an abbreviation of -maxnotes.

-maxwarnstolog N	Maximum number of times a particular type of warning message will be printed to log file per analysis. You can use -maxwtl as an abbreviation of -maxwarnstolog.
-maxnotestolog N	Maximum number of times a particular type of notice message will be printed to log file per analysis. You may use -maxntl as an abbreviation of -maxnotestolog.
+note	Prints notices on the screen.
-note	Does not print notices on screen.
+info	Prints informational messages.
-info	Does not print informational messages.
+debug	Prints debugging messages.
-debug	Does not print debugging messages.
+diagnose	Enables diagnostic mode that provides debugging information to help you resolve simulation issues related to performance or convergence.
+diagnose_minstep=1e-12	Prints debugging information if the step size is less than the specified value, while running transient analysis in diagnostic mode.
+transteps	Prints all transient steps in diagnostic mode.
+diagnose_top=N	Prints top N (N>=2) signals that limit step size or cause convergence failures in diagnostic mode.
+diagnose_fpe	Identify devices that cause floating point exceptions and print the bias voltages of the devices during dc and transient analyses in diagnostic mode. This option enforces single thread simulation.
+detect_negcap	Identify negative capacitance when convergence difficulty happens during transient analysis in diagnostic mode.
+fix_bad_pivot	Reorder matrix when a bad pivot is detected during matrix factorization in transient analysis.
-slave <cmd></cmd>	Starts the attached simulator using the command cmd .

-slvhost <hostname></hostname>	Runs the attached simulator on machine hostname. Defaults to local machine.
-V	Prints version information.
-W	Prints subversion information.
-cmiversion	Prints CMI version information.
-cmiconfig file	Reads the specified $file$ for information to modify the existing CMI configuration.
-alias <name></name>	Gives <i>name</i> to the license manager as the name of the simulator invoked.
-E	Runs the C preprocessor on an input file. In SPICE mode, the first line in the file must be a comment.
-D <x></x>	Defines string x and runs the C preprocessor.
-D< <i>x</i> = <i>y</i> >	Defines string x to be y and runs the C preprocessor.
-U <x></x>	Clears string x and runs the C preprocessor.
-I <dir></dir>	Runs the C preprocessor and searches the directory dir for include files.
+sensdata <file></file>	Sends the sensitivity analyses data to file.
+multithread	Enables the multithreading capability. Spectre automatically detects the number of processors and selects the proper number of threads to use. (See note on the options help page about using multithreading). +mt can be used as an abbreviation of +multithread.
+multithread=N	Enables the multithreading capability. N is the specified number of threads. A maximum of 64 threads are allowed. +mt can be used as an abbreviation of +multithread.
-multithread	Disables the multithreading capability. By default, multithreading is disabled for Spectre. However, it is enabled for Spectre APSmt can be used as an abbreviation of -multithread.
+mtmode <value></value>	Selects the multithreading mode. Possible values are passive and active.

-processor	Sets the CPU affinity of a process similar to Linux taskset command. It specifies a numerical list of processors that may contain multiple items, separated by comma, for example, -processor 0-3,5,7. Specification of numerical value out of range for current system results in the process termination with <i>Invalid argument</i> error message. You can use -proc as an abbreviation of -processor.
-interactive	Runs Spectre in the non-interactive mode, that is, process the input file and then return. You can use – inter as an abbreviation of –interactive.
+interactive	Runs Spectre in the interactive mode based on the type specified. You can use +inter as an abbreviation of +interactive.
+interactive= <i>type</i>	Runs in the interactive mode of the type specified. You can use +inter as an abbreviation of +interactive. Possible values for $type$ are skill or mpsc.
+mpssession= <i>sessionName</i>	Specifies the sessionName for running an interactive session using multiprocess SKILL (MPS). This option must be specified when using the +interactive=mpsc setting.
+mpshost=sessionHost	Specifies the name of the <code>sessionHost</code> that will be used for an interactive session using MPS.
-64	Runs the 64-bit Spectre binary.
-32	Runs the 32-bit Spectre binary.
-mdlcontrol	Ignores the MDL control file. You can use -mdl as an abbreviation of -mdlcontrol.
+mdlcontrol	Runs Spectre with the default MDL control file. You can use -mdl as an abbreviation of -mdlcontrol.
+mdlcontrole	Runs Spectre with the default MDL control file. You can use -mdle as an abbreviation of -mdlcontrole.
=mdlcontrol file	Specifies the location of the MDL control file. You can use =mdl as an abbreviation of =mdlcontrol.

=mdlcontrole file	Specifies the location of the MDL control file. You can use =mdle as an abbreviation of =mdlcontrole.
-checklimitfile file	Writes assert violations to file. In file, %C is replaced by the circuit name. You can use -cl as an abbreviation of -checklimitfile.
-dochecklimit	Disables the checklimit capability. You can use -docl as an abbreviation of -dochecklimit.
+dochecklimit	Enables the checklimit capability. You can use +docl as an abbreviation of +dochecklimit.
-dynchecks	Disables the dynchecks capability.
+lqtimeout <i>value</i>	Specifies the duration (in seconds) for which Spectre should wait to retrieve a license. When set to 0, Spectre waits until license is available. You can use +1qt as an abbreviation of +1qtimeout.
+lqsleep <i>value</i>	Specifies the wait duration between two attempts made by Spectre to check out a license when queuing. Setting the value to a positive number overrides the default wait duration of 30 seconds. You can use +1qs as an abbreviation of +1qs1eep.
+lqmmtoken	Enables queuing for the token license capability. When specified, Spectre registers the token request with the license server and waits for authorization. In addition, Spectre ignores all non-token licenses during the wait time since only token licenses are queued.
+lsuspend	Enables the license suspend/resume capability. When Spectre receives SIGTSTP it checks in all the licenses before it gets suspended. The licenses are checked out again when SIGCONT is received. You may use +1susp as an abbreviation of +1suspend.

Command Options

. 7	$m \circ d \circ$	TTO .	1,,,
+ 1	mode	va	1110

Checks out the licenses according to the specified value during initialization phase. Possible values are < num > and RF. < num > is a numeric value greater than 1, which specifies the number of token licenses to be checked out together. For example, to run Spectre APS with the multi-core option, specify $+1 \mod 4$. RF checks out the required licenses for the RF functionality. This value is case insensitive. If a simulation requires more licenses than the value specified using $+1 \mod e$, the additional licenses are checked out after the initialization phase.

+lorder value

Specifies the license check out order. Values are case insensitive. Possible values are:

PRODUCT: Spectre attempts to check out the product+options combination licenses only.

MMSIM: Spectre attempts to check out Virtuoso_Multi_Mode_Simulation (Spectre MMSIM) tokens only.

PRODUCT: MMSIM: Spectre attempts to check out the product licenses first and then Spectre MMSIM tokens.

MMSIM:PRODUCT: Spectre attempts to check out the Spectre MMSIM tokens first and then product licenses.

Default is PRODUCT: MMSIM.

-ahdlcom value

Determines the Ahdl compiled C flow. Use 0 for fast compilation but potentially slower simulation and 1 for slow compilation but potentially faster simulation. Default value is 1. This option will be ignored in Spectre APS. You may use -ac as an abbreviation of -ahdlcom.

Note: Starting with MMSIM15.1, support for the -ahdlcom option has been removed.

-va,define MACRO[=value]

Defines a macro with higher priority than the one defined in Verilog-A files.

-rf_ahdl_functionality	Specifies the value for AHDL functionality in RF analysis. Possible values are 141 and 151. Default value is 151.
-ahdllint[=value]	Enables Verilog-A linter check. Possible values are no, warn, static, error, and force. The default value is warn. This option is not available in Spectre base. It is available only in Spectre APS and Spectre XPS.
-ahdllint_maxwarn[=value]	Specifies the maximum number of Verilog-A linter warning messages to be reported by the simulator for each message ID. The default value is 5.
-ahdllint_summary_maxentri	es[=value]
	Specifies the maximum number of messages to display in dynamic linter summary. The default value is 25.
-ahdllint_warn_id= <i>value</i>	Specifies a message ID and applies the -ahdllint_maxwarn option only to the specified ID. This option should always be used with the ahdllint_maxwarn option and should be directly specified after it at the command line, otherwise, the option will be ignored.
-ahdllint_log <file></file>	Specifies the file name to which the Verilog-A linter messages need to be written. By default, the Verilog-A linter messages are written to the output log file.
-ahdllibdir path	Redirects the library files generated by AHDL to the specified path. If both <code>-ahdllibddir</code> and <code>-outdir</code> options are specified, the library files generated by AHDL are stored under the path specified by the <code>-ahdllibdir</code> option and other output files are stored in the path specified by the <code>-outdir</code> option.
-ahdlsourceramp	Disables source ramping for Verilog-A models. Source ramping of Verilog-A models is enabled by default because it helps with convergence for most designs. However, in certain corner cases, the default behavior could lead to convergence difficulties, which can be avoided by using this option.

Command Options

-ahdlshipdbdir=sharing_path

Specifies the sharing directory for Verilog-A library compilation. If this option is specified, the simulator

will search for reusable library in the

sharing_path. If library is found, reuse it, otherwise, compile a new library in the local

directory.

-ahdlshipdbmode=read_only

Indicates whether to create or update the library

under sharing_path specified by -

ahdlshipdbdir. Possible values are read_only and create_or_update. read_only is the default behavior for -ahdlshipdbdir appearing alone. create_or_update will copy the newly-built library in local directory to <code>sharing_path</code> if no any library already or if the library is outdated.

+errpreset=value

Selects a predetermined collection of parameter

settings. Possible values are liberal, moderate,

and conservative.

+aps

Enables Spectre APS mode.

+aps=value

Enables Spectre APS mode and overrides the errpreset value in all transient analyses to apply the specified value. Possible values are liberal,

moderate, or conservative.

++aps

Enables ++aps mode. Unlike the +aps mode, the ++aps mode uses a different time-step control algorithm as compared to Spectre. This results in improved performance, while satisfying error

tolerances and constraints.

++aps=value

Enables the ++aps mode and overrides the

errpreset value in all transient analyses to apply the specified value. Possible values are liberal.

moderate, or conservative.

+preset=value

Enables Spectre X. The most accurate mode is 'cx',

and the highest performing mode is 'vx'. Possible

values are 'cx', 'ax', 'mx', 'lx', 'vx'.

Spectre Circuit Simulator Reference Command Options

+postlpreset= <i>value</i>	Defines parasitic optimization in Spectre X. If not set, Spectre X enables parasitic optimization if post-layout content is detected. If set, parasitic optimization is enforced. The most accurate parasitic optimization is cx , and the highest performing parasitic optimization is vx . Parasitic optimization can be disabled with off. Possible values are off, cx , ax , mx , lx , vx .
-preset_override	Spectre X by default ignores solver options defined in the netlist. The option <code>-preset_override</code> forces Spectre X to honor solver options defined in the netlist. The option can also be used to honor individual solver options: <code>-preset_override=reltol,method.</code>
+xdp=value	Enables Spectre X distributed, multi-processing simulation. Supports RSH/SSH in manual mode: +xdp=rsh ssh +hosts="host1:1 host2:3". In farm mode, +xdp needs to be set and the job distribution system controls the host/core usage.
+hosts" <hostname>: number of cores"</hostname>	Defines the machine specifications that are used for distributed processing. When rsh or ssh are used to spawn sub-processes, the list of machines must be provided using this option. The format of the machine specification is the same for both rsh and ssh and contains a space-delimiter set of machine specifications. Each machine specification contains the name of the machine and number of cores to be used on the machine, separated by a colon (:). For example: +hosts "hostA:4 hostB:4".
	The above setting specifies that four cores can be used for both hostA and hostB to perform simulation.
+ms	Enables Spectre XPS MS mode.
+xps	Enables the Spectre XPS mode.
+xps=s[value]	Enables Spectre XPS SPICE accuracy mode. The optional value is the speed setting.
+speed= <i>value</i>	The simulation group speed setting. The lower number means conservative setting.

Command Options

+query=value	Queries the recommended number of threads or the licenses that are required to run the simulation on the current machine or on one with similar configuration. Possible values are mtinfo, meminfo, all, alllic and tokenlic.mtinfo prints the number of threads required to run the simulation. meminfo prints an estimate of the memory that will be required to run the simulation. all prints the number of threads and the amount of memory required to run the simulation. While alllic prints all possible license combinations for the design used for simulation, and tokenlic prints the number of MMSIM tokens required. The default value is tokenlic.
+liclog	Writes the license check-in and check-out information in the log file.
+disk_check [=value]	Suspend the simulation when available disk storage is less than $\mathbb N$ bytes. Here, $\mathbb N$ is the value specified using the optional [= $value$] of +disk_check or netlist option disk_check_thresh. For example, +disk_check=1e10.
-clearcache	Clears the Spectre cache directory /home/ <username>/.cadence/mmsim. You can use -cc as an abbreviation for -clearcache.</username>
-disableCPP	Disable CPP preprocesses in situations where Spectre implicitly calls CPP, such as -I and -D. However, if -E is specified, -disableCPP has no effect.
+dcopt[=value]	Speeds up the simulation in Spectre and Spectre APS for post-layout circuits that consist of a large number of parasitic resistors and capacitors, which require significant time in DC simulation. This option can also be used to solve the non-convergence issues in DC simulations of any other circuit.

Note: In some cases, the DC solution obtained using the dcopt may not be as accurate as the true DC solution.

Command Options

+lite	Enables a lightweight simulation session where most
+11Ce	or all of the computationally intensive features (device check asserts, info analysis, current probing, power probing, instance preservation, and so on) are disabled. By default, ++aps is used as the simulation engine. This can be a useful tool in isolating the computational time used by simulation engine during a simulation performance debugging.
+config <file></file>	Enables the user to append all Spectre commands defined in $file$ to the netlist. $file$ may contain one or more Spectre netlist lines. Multiple $+config$ on the same Spectre command line are supported. They are incrementally processed.
=config <file></file>	Enables the user to append all Spectre commands defined in $file$ to the netlist. All +config statements on the same Spectre command line are ignored.
-config	Disable all +config statements on the same Spectre command line. Disables all preceding =config statements on the same Spectre command line.
+pre_config <file></file>	Enables the user to prepend all Spectre commands defined in $\langle file \rangle$ to the netlist. $\langle file \rangle$ may contain one or more Spectre netlist lines. Multiple +pre_config on the same Spectre command line are supported. They are incrementally processed.
+top <value></value>	When specified with a subcircuit name, all elements, models, and so on will be exposed to the top level and the subcircuit will not exist anymore. As a result, instantiation from this subcircuit will be illegal. Instances inside the subcircuit will automatically connect to the instance at the top level if they connect to the same node.
-hpc	Disables the hpc option.

If you do not specify an input file, the Spectre simulator reads from standard input. When +/ - pairs of spectre command options are available, the default is the first value given in the previous list. For further information about the percent code options, +% and -%, see *Chapter 15, "Managing Files*, in the *Spectre Classic Simulator, Spectre APS, Spectre X, and Spectre XPS User Guide.*

Command Options

Default Values

The Spectre simulator reads default values for all the command line arguments marked with a dagger (†) from the UNIX environment variable <code>%S_DEFAULTS</code>. The name of the simulator as called replaces <code>%S</code>. Typically, this name is <code>spectre</code>, and the Spectre simulator looks for <code>spectre_DEFAULTS</code>. However, the name can be different if you move the executable to a file with a different name or if you call the Spectre simulator through a symbolic or hard link with a different name. This feature lets you set different default values for each name you use to call the Spectre simulator.

If the variable <code>%S_DEFAULTS</code> does not exist, <code>SPECTRE_DEFAULTS</code> is used instead. The command line arguments always override any specifications from the <code>options</code> statement in the circuit file. The <code>options</code> statement specifications, in turn, override any specifications in the environment variable.

Default Parameter Values

Many Spectre parameters have default values, and sometimes you will need to know them so you can determine whether they are acceptable for your simulation. You can find the default values for component, analysis, and control statement parameters by consulting the documentation for the statement in Spectre online help (spectre -h). Values given for parameters in the online help are the default values.

The following examples show some defaults for different types of parameters from the Spectre online help:

nf=1.0	Forward emission coefficient.
etchc	Narrowing due to etching for capacitances.
homotopy=all	Method used when no convergence occurs on initial attempt of DC analysis. You can specify methods and their orders by specifying a vector setting such as homotopy=[source ptrangmin]. Possible values are none, gmin, source, dptran, ptran, arclength, tranrampup, and all

For more information about percent codes and colon modifiers, see <u>"Description of Spectre Predefined Percent Codes,"</u> <u>"Customizing Percent Codes,"</u> and <u>"Creating Filenames from Parts of Input Filenames"</u> in the Spectre Classic Simulator, Spectre APS, Spectre X, and Spectre XPS User Guide.

Spectre Circuit Simulator Reference Command Options

Analysis Statements

This chapter discusses the following topics:

- AC Analysis (ac) on page 45
- ACMatch Analysis (acmatch) on page 51
- Alter a Circuit, Component, or Netlist Parameter (alter) on page 56
- Alter Group (altergroup) on page 58
- Check Parameter Values (check) on page 61
- Checklimit Analysis (checklimit) on page 62
- Setting for Simulink-MATLAB co-simulation (cosim) on page 65
- DC Analysis (dc) on page 66
- DC Device Matching Analysis (dcmatch) on page 72
- Envelope Following Analysis (envlp) on page 78
- Harmonic Balance Steady State Analysis (hb) on page 92
- HB AC Analysis (hbac) on page 113
- HB Noise Analysis (hbnoise) on page 121
- HB S-Parameter Analysis (hbsp) on page 132
- HB Stability Analysis (hbstb) on page 140
- HB XF Analysis (hbxf) on page 144
- Circuit Information (info) on page 151
- Loopfinder Analysis (If) on page 157
- Load Pull Analysis (loadpull) on page 163
- Monte Carlo Analysis (montecarlo) on page 166

Analysis Statements

- Noise Analysis (noise) on page 182
- Immediate Set Options (options) on page 188
- Periodic AC Analysis (pac) on page 251
- Periodic Noise Analysis (pnoise) on page 259
- Periodic S-Parameter Analysis (psp) on page 270
- Periodic Steady-State Analysis (pss) on page 278
- Periodic STB Analysis (pstb) on page 304
- Periodic Transfer Function Analysis (pxf) on page 309
- PZ Analysis (pz) on page 318
- Quasi-Periodic AC Analysis (qpac) on page 324
- Quasi-Periodic Noise Analysis (qpnoise) on page 329
- Quasi-Periodic S-Parameter Analysis (qpsp) on page 337
- Quasi-Periodic Steady State Analysis (qpss) on page 345
- Quasi-Periodic Transfer Function Analysis (qpxf) on page 362
- Reliability Analysis (reliability) on page 368
- <u>Deferred Set Options (set)</u> on page 386
- Shell Command (shell) on page 393
- S-Parameter Analysis (sp) on page 394
- Stability Analysis (stb) on page 400
- Sweep Analysis (sweep) on page 413
- <u>Time-Domain Reflectometer Analysis (tdr)</u> on page 418
- Transient Analysis (tran) on page 423
- Special Current Saving Options (uti) on page 444
- Transfer Function Analysis (xf) on page 446

AC Analysis (ac)

Description

AC analysis linearizes the circuit about the DC operating point and computes the response to a given small sinusoidal stimulus.

Spectre can perform AC analysis while sweeping a parameter. The parameter can be frequency, temperature, component instance parameter, component model parameter, or netlist parameter. If changing a parameter affects the DC operating point, the operating point is recomputed at each step. You can sweep the circuit temperature by giving the parameter name as temp, without a dev or mod parameter. In addition, you can sweep a netlist parameter by giving the parameter name without a dev or mod parameter. After the analysis is complete, the modified parameter returns to its original value.

Definition

Name ac parameter=value ...

Parameters

analysis. Possible values are no and yes.	1	prevoppoint=no	Use the operating point computed in the previous analysis. Possible values are no and yes.
---	---	----------------	--

Sweep interval parameters

2	start=0	Start sweep limit.
3	stop	Stop sweep limit.
4	center	Center of sweep.
5	span=0	Sweep limit span.
6	step	Step size, linear sweep.
7	lin=50	Number of steps, linear sweep.
8	dec	Points per decade.
9	log=50	Number of steps, log sweep.

Analysis Statements

10	values=[]	Array of sweep values.
11	valuesfile	Name of the file containing the sweep values.

Sweep variable parameters

12	dev	Device instance whose parameter value is to be swept.
13	mod	Model whose parameter value is to be swept.
14	param	Name of parameter to sweep.
15	freq (Hz)	Frequency when a parameter other than frequency is being swept.

State-file parameters

16	readns	File that contains an estimate of the DC solution (nodeset).
17	write	DC operating point output file at the first step of the sweep.
18	writefinal	DC operating point output file at the last step of the sweep.

Initial condition parameters

19	force=none	The set of initial conditions to use. Possible values are none, node, dev, and all.
20	readforce	File that contains initial conditions.
21	skipdc=no	Skip DC analysis. Possible values are no and yes.
22	useprevic=no	If set to yes or ns , use the converged initial condition from previous analysis as ic or ns . Possible values are no , yes , and ns .

Analysis Statements

Output parameters

23	save	Signals to output. Possible values are all, lvl, allpub, lvlpub, selected, none, and nooutput.
24	nestlvl	Levels of subcircuits to output.
25	oppoint=no	Determines whether operating point information should be computed. If yes, where should it be printed (screen or file). Operating point information is not printed if the operating point computed in the previous analysis remains unchanged. Possible values are no, screen, logfile, and rawfile.

Convergence parameters

26	restart=yes	Restart the DC solution from scratch if any condition has changed. If not, use the previous solution as an initial
		guess. Possible values are no and yes.

Annotation parameters

27	annotate=sweep	Degree of annotation. Possible values are no, title, sweep, status, and steps.
28	title	Analysis title.
29	perturbation=linear	<u>-</u>
		The type of AC analysis. Default is linear for normal AC analysis. im2ds is for im2 distortion summary and ds is for distortion summary. Possible values are linear, ds, ip3, ip2, im2ds, multiple_beat, and triple_beat.
30	flin_out=0 Hz	Frequency of linear output signal.
31	fim_out=0 Hz	Frequency of IM output signal.
32	out1="NULL"	Output signal 1.
33	out2="NULL"	Output signal 2.

Analysis Statements

34	contriblist="NULL"	Array of device names for distortion summary. When contriblist=[""], distortion from each non-linear device is calculated.
35	maxharm_nonlin=4	Maximum harmonics of input signal frequency induced by non-linear effect.
36	rfmag=0	RF source magnitude.
37	rfdbm=0	RF source dBm.
38	rf1_src="NULL"	Array of RF1 source names for IP3/IP2/IM2DistortionSummary.
39	rf2_src="NULL"	Array of RF2 source names for IP3/IP2/ IM2DistortionSummary.

You can define sweep limits by specifying the end points or the center value and span of the sweep. Steps can be linear or logarithmic, and you can specify the number of steps or the size of each step. You can specify a step size parameter (step, lin, log, or dec) to determine whether the sweep is linear or logarithmic. If you do not specify a step size parameter, the sweep is linear when the ratio of stop to start values is less than 10 and logarithmic when this ratio is 10 or greater. All frequencies are in Hertz.

The small-signal analysis begins by linearizing the circuit about an operating point. By default, this analysis computes the operating point if it is not known, or recomputes it if any significant component or circuit parameter has changed. However, if an operating point was computed during a previous analysis, you can set prevoppoint=yes to avoid recomputing it. For example, if prevoppoint=yes and the previous analysis was a transient analysis, the operating point is the state of the circuit at the final time point.

Nodesets help find the DC or the initial transient solution. You can specify nodesets in the circuit description file with nodeset statements, or in a separate file using the readns parameter. When nodesets are specified, Spectre computes an initial guess of the solution by performing DC analysis while forcing the specified values on to nodes by using a voltage source in series with a resistor whose resistance is rforce. Spectre then removes these voltage sources and resistors, and computes the required solution from this initial guess.

Nodesets have two important uses. First, if a circuit has two or more solutions, nodesets can bias the simulator towards computing the required solution. Second, these are a convergence aid. By estimating the solution of the largest possible number of nodes, you might be able to eliminate a convergence problem or significantly speed up convergence.

When you simulate the same circuit multiple times, it is recommended that you use both write and readns parameters and assign the same file name to both parameters. DC

Analysis Statements

analysis then converges quickly even if the circuit has changed since the last simulation, and the nodeset file is automatically updated.

During the initial operating point DC analysis, you may force certain circuit variables to use the values given in the ic file, ic statements, or ic parameter on the capacitors and inductors. The ic parameter controls the interaction of various methods of setting the force values. The effects of individual settings are as follows:

force=none: All initial conditions are ignored.

force=node: The ic statements are used, and the ic parameters on the capacitors and inductors are ignored.

force=dev: The ic parameters on the capacitors and inductors are used, and the ic statements are ignored.

force=all: Both ic statements and ic parameters are used, with the ic parameters overriding the ic statements.

If you specify an ic file with the readforce parameter, force values from the file are used and any ic statements are ignored.

After you specify the initial conditions, Spectre computes the DC operating point with the specified nodes forced to the given value by using a voltage source in series with a resistor whose resistance is rforce (see options).

Parameter Index

In the following index, the number corresponding to each parameter name indicates where to find the description of that parameter.

annotate 27	log 9	readforce 20	start 2
center 4	maxharm_nonlin 35	readns 16	step 6
contriblist 34	mod 13	restart 26	stop 3
dec 8	nestlvl 24	rf1_src 38	title 28
dev 12	oppoint 25	rf2_src 39	useprevic 22
fim_out 31	out1 32	rfdbm 37	values 10

Analysis Statements

flin_out 30	out2 33	rfmag 36	valuesfile 11
force 19	param 14	save 23	write 17
freq 15	perturbation 29	skipdc 21	writefinal 18
lin 7	prevoppoint 1	span 5	

ACMatch Analysis (acmatch)

Description

ACMatch analysis linearizes the circuit about the DC operating point and computes the variations of AC responses due to the statistical parameters defined in statistical blocks. Only mismatch parameters are taken into account. For more information on the output generated by the acmatch analysis refer to the <u>ACMatch Analysis</u> section in the Spectre Classic Simulator, Spectre APS, Spectre X, and Spectre XPS User Guide.

Definition

Name ([node1] [node2]) acmatch parameter=value ...

Parameters

Analysis parameters

		_
1	mth=1e-3	Threshold of the relative contribution to be exported in output file. The ratio is determined by individual contribution divided by total contribution. Both magnitude and phase are taken into account.
2	oprobe	The mismatch variations of the current signal through this component is chosen as the output. It can be one of the following: vsource, inductor, switch, tline, iprobe, ccvs, vcvs, pccvs, and pvcvs.

AC frequency sweeping parameters

3	start=0	Start sweep limit.
4	stop	Stop sweep limit.
5	center	Center of sweep.
6	span=0	Sweep limit span.
7	step	Step size, linear sweep.

Analysis Statements

8	lin=50	Number of steps, linear sweep.
9	dec	Points per decade.
10	log=50	Number of steps, log sweep.
11	values=[]	Array of sweep values.
12	valuesfile	Name of the file containing the sweep values.

Output parameters

13	groupby=param	Specifies the method to group total sigma. Total sigma of each contributor can be grouped either by statistics parameters or by subcircuit instances. Possible values are param and inst.
14	where=screen	Specifies where the results should be printed. Possible values are screen, logfile, file, and rawfile.
15	file	The name of the file in which the results are printed, if where=file.
16	save	Signal levels in output. Possible values are all, lvl, allpub, lvlpub, selected, none, and nooutput.
17	oppoint=no	Determines whether operating point information should be computed. If yes, specifies where should it be printed (screen or file). Operating point information is not printed if the operating point computed in the previous analysis remains unchanged. Possible values are no, screen, logfile, and rawfile.
18	write	DC operating point output file at the first step of the sweep.
19	writefinal	DC operating point output file at the last step of the sweep.

Initial condition parameters

20	readns	File that contains an estimate of DC solution (nodeset).
----	--------	--

Analysis Statements

21	prevoppoint=no	Determines whether to use the operating point computed in the previous analysis. Possible values are ${\tt no}$ and ${\tt yes}$.
22	force=none	The set of initial conditions to use. Possible values are none, node, dev, and all.
23	readforce	File that contains the initial conditions.
24	skipdc=no	Skip DC analysis. Possible values are no and yes.
25	useprevic=no	If set to yes or ns, use the converged initial condition from the previous analysis as ic or ns. Possible values are no, yes, and ns.
26	restart=yes	Restart the DC solution from scratch if any condition has changed. If not, use the previous solution as an initial guess. Possible values are no and yes.

Annotation parameters

27	annotate=sweep	Degree of annotation. Possible values are no, title, sweep, status, and steps.
28	title	Analysis title.

ACMatch takes each parameter defined in the statistics blocks and applies variation one at a time to find the sensitivity of the output with respect to the parameter. Based on the sensitivities computed by this procedure, the total variation of the output is computed by adding up variation contributions from each parameter, assuming that the parameters are mutually independent.

You can define sweep limits by specifying the end points, or the center value and span of the sweep. Steps can be linear or logarithmic, and you can specify the number of steps or the size of each step. You can specify a step size parameter (step, lin, log or dec) to determine whether the sweep is linear or logarithmic. If you do not specify a step size parameter, the sweep is linear when the ratio of stop to start values is less than 10 and logarithmic when this ratio is 10 or greater. All frequencies are in Hertz.

The small-signal analysis begins by linearizing the circuit about an operating point. By default, this analysis computes the operating point, if it is not known, or recomputes it if any significant component or circuit parameter has changed. However, if an operating point was computed during a previous analysis, you can set prevoppoint=yes to avoid recomputing it. For example, if prevoppoint=yes and the previous analysis was a transient analysis, the operating point is the state of the circuit at the final time point.

Analysis Statements

Nodesets help find the DC or the initial transient solution. You can specify nodesets in the circuit description file with nodeset statements, or in a separate file using the readns parameter. When nodesets are specified, Spectre computes an initial guess of the solution by performing DC analysis while forcing the specified values on to nodes by using a voltage source in series with a resistor whose resistance is rforce. Spectre then removes these voltage sources and resistors, and computes the required solution from this initial guess.

Nodesets have two important uses. First, if a circuit has two or more solutions, nodesets can bias the simulator towards computing the required solution. Second, this is a convergence aid. By estimating the solution of the largest possible number of nodes, you might be able to eliminate a convergence problem or significantly speed up convergence.

When you simulate the same circuit multiple times, it is recommended that you use both write and readns parameters and assign the same file name to both parameters. DC analysis then converges quickly even if the circuit has changed since the last simulation, and the nodeset file is automatically updated.

During the initial operating point DC analysis, you may force some of the circuit variables to the values given in the ic file, ic statements, or ic parameter on the capacitors and inductors. The ic parameter controls the interaction of various methods of setting the force values. The effects of individual settings are as follows:

force=none: All initial conditions are ignored.

force=node: The ic statements are used, and the ic parameters on the capacitors and inductors are ignored.

force=dev: The ic parameters on the capacitors and inductors are used, and the ic statements are ignored.

force=all: Both ic statements and ic parameters are used, with the ic parameters overriding the ic statements.

If you specify an ic file with the readforce parameter, force values from the file are used and any ic statements are ignored.

After you specify the initial conditions, Spectre computes the DC operating point with the specified nodes forced to the given value by using a voltage source in series with a resistor whose resistance is rforce (see spectre -h options).

Analysis Statements

Parameter Index

In the following index, the number corresponding to each parameter name indicates where to find the description of that parameter.

annotate 27	log 10	restart 24	title 27
center 5	mth 1	save 16	useprevic 25
dec 9	oppoint 17	skipdc 23	values 11
file 15	oprobe 2	span 6	valuesfile 12
force 22	prevoppoint 21	start 3	where 14
groupby 13	readforce 23	step 7	write 18
lin 8	readns 20	stop 4	writefinal 19

Alter a Circuit, Component, or Netlist Parameter (alter)

Description

The alter statement changes the value of any modifiable component or netlist parameter for any analyses that follow. The parameter to be altered can be circuit temperature, a device instance parameter, a device model parameter, a netlist parameter, or a subcircuit parameter for a particular subcircuit instance. You can:

- alter the circuit temperature by giving the parameter name as param=temp without a dev, mod, or sub parameter.
- alter a top-level netlist parameter by giving the parameter name without a dev, mod, or sub parameter.
- alter a subcircuit parameter for a particular subcircuit instance by specifying the subcircuit instance name with the sub parameter, and the subcircuit parameter name with the param parameter.
- Each alter statement can change only one parameter.

More more information, refer to the <u>The Alter and Altergroup Statements</u> section in the Spectre Classic Simulator, Spectre APS, Spectre X, and Spectre XPS User Guide.

Definition

Name alter parameter=value ...

Parameters

1	mod	Device model.
2	dev	Device instance.
3	sub	Subcircuit instance.
4	param	Name of parameter to be altered.
5	value	New value for parameter.
6	annotate	Degree of annotation. Possible values are no and title.

Analysis Statements

7	reelaborate=yes	Activates the re-elaboration process, which triggers a related expression evaluation throughout the circuit. To speed up the simulation, disable this parameter by setting it to no in successive alter statements. Possible values are no and yes.
8	subckt	Subcircuit definition.
9	vary	Variation parameter name used to set the value for the specified instance, similar to mismatch value. The specified value will be held until changed by any another vary parameter or a montecarlo analysis.
10	justignore	Ignores dangling instance.
11	component	Component instance.

Parameter Index

In the following index, the number corresponding to each parameter name indicates where to find the description of that parameter.

annotate 6	justignore 10	reelaborate 7	value 5
component 11	mod 1	sub 3	vary 9
dev 2	param 4	subckt 8	

Analysis Statements

Alter Group (altergroup)

Description

The altergroup statement changes the values of any modifiable model, instance or netlist parameter for any analyses that follow. Within an alter group, you can specify model statements, instance statements, parameter statements and options statements (only supports temp, thom, and scale). These statements should be bound within braces. The opening brace is required at the end of the line defining the altergroup. Altergroups cannot be specified within subcircuits. The following statements are not allowed within altergroups (analyses, export, paramset, save, and sens).

Within an altergroup, each device (instance or model) is first set to default and then the device parameters are updated. For netlist parameters, the expressions are updated and evaluated.

For subcircuit within altergroup, all instances of the subcircuits are modified when running altergroup. There are strict checks that do not allow changes to topology.

You can include files into the altergroup and can use the simulator lang=spice directive. See spectre -h include for more information. A model defined in the netlist should have the same model name and primitive type (bsim2, bsim3, bjt) in the altergroup. An instance defined in the netlist, should have the same instance name, terminal connections, and primitive type. For model groups, you can change the number of models in the group. However, you cannot change from a model to a model group and vice versa. See spectre -h bsim3v3 for details on model groups.

More more information, refer to the <u>The Alter and Altergroup Statements</u> section in the Spectre Classic Simulator, Spectre APS, Spectre X, and Spectre XPS User Guide.

58

Definition

Name altergroup parameter=value ...

Analysis Statements

Parameters

1	annotate	Degree of annotation. Possible values are no and title.
2	title	Altergroup title

Example

```
FastCorner altergroup {
    parameters p2=1 p3=p1+2
    myopt options temp=27
    model myres resistor r1=1e3 af=1
    model mybsim bsim3v3 lmax=p1 lmin=3.5e-7
    m1 (n1 n2 n3 n4) mybsim w=0.3u l=1.2u
}
```

The list of public devices supported by altergroup is as follows:

```
ngelov angelov gan asm gan assert
bht bht0 bjt bjt301
bjt500 bjt500t bjt503 bjt504
bjt504t bjt505 bjt505t bjt3500
bjt3500t bjtd504 bjtd504t bjtd505
bjtd505t bjtd3500 bjtd3500t bsim1
bsim2 bsim3 bsim3v3 bsim4
bsim6 bsimbulk bsimcmg bsimimg
bsimsoi bsource resistor capacitor capq
cccs ccvs dcblock dcfeed
delta gate dio500 diode diode cmc
ekv ekv3 ekv3_nqs ekv3_r4
ekv3_rf ekv3_s fracpole gaas
hbt hemt hisim2 hisim2_va
hisim_diode isimhv hisim_igbt hisimhmg
hisimhv va hisimsoi hisimsoi bt hisimsoi fb
hvmos igbt0 inductor intcap
isource jfet jfet100 jfet100q
jfetidg jfetidgt jj juncap
juncap200 juncap eldo ldmos mos1
mos2 mos3 mos30 mos40
mos40t mos705 mos902 mos903
mos903c mos903e mos903t mos1000
mos1100 mos1100e mos1101e mos1101et
mos1102e mos1102et mos2001 mos2001e
mos2001et mos2001t mos2002 mos2002e
mos2002et mos2002t mos3002 mos3100
mos3100t mos11010 mos11010t mos11011
mos11011t mos11020 mos11020t mos11021
mos11021t mosvar msline mutual inductor
mvsg gan nodcap ovcheck ovchec\overline{k}6
pattern pcccs pccvs phy_res
port print psitft psp102
psp102e psp10 psp103t psp1020
```

Analysis Statements

psp1021 pspnqs102e pspnqs103 pspnqs1020
pspnqs1021 pvccs pvcvs r2
r3 rdiff resistor rlck_matrix
spmos ssim_mbc tline tom2
tom3 tom3v1 transformer ucsd_hbt
utsoi2 vbic vccs vcvs
vsource wprobe wsource

For detailed information about the supported device models, refer to the <u>Spectre Circuit</u> <u>Simulator Components and Device Models Reference</u> manual

The list of public devices not supported by altergroup is as follows:

a2d atft b3soipd bend
bend2 bit cktrom conductor
core corner cross curve
d2a delay dielectric ibis_buffer
iprobe iswitch jitterevent loc mos0
mos15 mtline nport
relay scccs sccvs
stackup step svccs svcvs
switch tee vswitch winding
zcccs zccvs zvccs zvcvs

Analysis Statements

Check Parameter Values (check)

Description

The check analysis checks the values of component parameters to ensure that they are reasonable. This analysis reduces the cost of data entry errors. Various filters specify which parameters are checked. You can perform checks on input, output, or operating-point parameters. Use this analysis in conjunction with the +param command-line argument, which specifies a file that contains component parameter soft limits.

For additional information, refer to *The Check Statement* section in the Spectre Classic Simulator, Spectre APS, Spectre X, and Spectre XPS User Guide.

Definition

Name check parameter=value ...

Parameters

1	what=all	The parameters that should be checked. Possible values are none, inst, models, input, output, all, and
		oppoint.

Analysis Statements

Checklimit Analysis (checklimit)

Description

A checklimit analysis allows the enabling or disabling of individual or group of asserts specified in the netlist. Use this analysis in conjunction with the assert statements in the netlist to perform checks on parameters of device instances, models, subcircuits or expressions.

Multiple checklimit analyses can be defined in the netlist. The enabled checks will be applied to all subsequent analyses until the next checklimit analysis is encountered.

For additional information refer to <u>The Checklimit Statement</u> in the Spectre Classic Simulator, Spectre APS, Spectre X, and Spectre XPS User Guide.

Definition

Name checklimit parameter=value ...

Parameters

1	enable=[]	Array of checks to be enabled. The patterns can have wildcard symbols. Default is all.
2	disable=[]	Array of checks to be disabled. The patterns can have wildcard symbols. Default is none.
3	severity	Severity of the checks. Possible values are none, notice, warning, error, and fatal.
4	title	Analysis title.
5	checkallasserts=yes	5
		Specifies whether all checks should be enabled or disabled. checkallasserts=no disables all checks. Possible values are no and yes.
6	asserts=[]	Specifies a group of asserts whose parameters (specified using the param parameter) and values (specified using the value parameter) need to be changed.

Analysis Statements

7	param	Specifies the parameter setting for an individual assert or a group of asserts specified using the asserts parameter. Possible values are max, min, check_windows, maxvio_perinst, maxvio_all, duration, level, extreme, and skip_dev_inside_subckt.
8	value	Specifies the value of the parameter (specified using the param parameter) for the assert (specified using the asserts parameter) that needs to be changed.
9	filter=none	Set filter=progressive to report less assertion violations by omitting less severe repetitions. Set filter=extreme to only report top peak/duration/area violations for each assert. Possible values are none, progressive, and extreme.

Boundary parameters

10	boundary_type=time	Boundary type. Possible values are time and sweep.
11	start	Start time or sweep boundary of the checks.
12	stop	Stop time or sweep boundary of the checks.
13	check_windows=[]	
		Boundary time or sweep windows of the checks. Array should have an even number of values [b_begin1 b_end1 b_begin2 b_end2].

Parameter Index

In the following index, the number corresponding to each parameter name indicates where to find the description of that parameter:

asserts 6		disable	2	severity 3	value	8
boundary_type	10	enable	1	start 11		
check windows	13	filter	9	stop 12		

Analysis Statements

checkallasserts param 7 title 4

Analysis Statements

Setting for Simulink-MATLAB co-simulation (cosim)

Description

Setting for Simulink-MATLAB co-simulation.

For more information, refer to the <u>Cosimulation with MATLAB and Simulink</u> chapter in the Spectre Circuit Simulator and Accelerated Parallel Simulator RF Analysis User Guide.

Definition

Name cosim parameter=value ...

Parameters

1	server	MATLAB/Simulink server name.
2	port=38520	Co-simulink listen port.
3	timeout=60 s	Socket timeout in seconds. Default is 60s.
4	inputs=[]	Array of input names.
5	outputs=[]	Array of output node names.
6	design	MATLAB/Simulink design name. If the design name is specified, MATLAB is launched automatically.
7	silent=yes	Launch MATLAB with parameter -nodesktop. Possible values are no and yes.
8	ratio=0	Hold time ratio between two sample points. Default is 0.

Parameter Index

In the following index, the number corresponding to each parameter name indicates where to find the description of that parameter:

design	6	outputs 5	ratio 8	silent 7
inputs	4	port 2	server 1	timeout 3

DC Analysis (dc)

Description

DC analysis finds the DC operating-point or DC transfer curves of the circuit. To generate transfer curves, specify a parameter and a sweep range. The swept parameter can be circuit temperature, a device instance parameter, a device model parameter, a netlist parameter, or a subcircuit parameter for a particular subcircuit instance. You can:

- sweep the circuit temperature by giving the parameter name as param=temp without a dev, mod or sub parameter.
- sweep a top-level netlist parameter by giving the parameter name without a dev, mod or sub parameter.
- sweep a subcircuit parameter for a particular subcircuit instance by specifying the subcircuit instance name with the sub parameter, and the subcircuit parameter name with the param parameter.

After the analysis is complete, the modified parameter returns to its original value.

More additional information, refer to the <u>DC Analysis</u> section in the <u>Spectre Classic Simulator</u>, <u>Spectre APS</u>, <u>Spectre X</u>, and <u>Spectre XPS User Guide</u>.

Definition

Name dc parameter=value ...

Parameters

Sweep interval parameters

1	start=0	Start sweep limit.
2	stop	Stop sweep limit.
3	center	Center of sweep.
4	span=0	Sweep limit span.
5	step	Step size, linear sweep.

Analysis Statements

6	lin=50	Number of steps, linear sweep.
7	dec	Points per decade.
8	log=50	Number of steps, log sweep.
9	values=[]	Array of sweep values.
10	valuesfile	Name of the file containing the sweep values.
11	hysteresis=no	Perform DC hysteresis sweep. When set to yes , a reverse sweep will automatically be added to the DC sweep. Possible values are no and yes .

Sweep variable parameters

12	dev	Device instance whose parameter value is to be swept.
13	mod	Model whose parameter value is to be swept.
14	param	Name of parameter to sweep.

State-file parameters

15	force=none	Determine whether to force values for DC. Uses the values from the device and node ICs. Possible values are none, node, dev, and all.
16	readns	File that contains estimate of DC solution (nodeset).
17	readforce	File that contains force values.
18	write	File to which solution at first step in sweep is written.
19	writefinal	File to which solution at last step in sweep is written.
20	useprevic=no	If set to yes or ns , use the converged initial condition from previous analysis as ic or ns . Possible values are no , yes , and ns .

Analysis Statements

Output parameters

21	save	Signals to output. Possible values are all, lvl, allpub, lvlpub, selected, none, and nooutput.
22	nestlvl	Levels of subcircuits to output.
23	print=no	Print node voltages. Possible values are no and yes.
24	oppoint=no	Should operating point information be computed; if yes, where should it be printed (screen or file). Operating point information is not printed if sweep parameter param is set. Possible values are no, screen, logfile, and rawfile.
25	check=yes	Check operating point parameters against soft limits. Possible values are ${\tt no}$ and ${\tt yes}.$

Convergence parameters

26	homotopy=all	Method used when no convergence occurs on initial attempt of DC analysis. You can specify methods and their orders by specifying a vector setting such as homotopy=[source ptran gmin]. Possible values are none, gmin, source, dptran, ptran, arclength, tranrampup, and all.
27	newton=normal	You can specify newton methods, such as newton=none and newton=normal. Possible values are none and normal.
28	restart=yes	Restart from scratch if any condition has changed. If not, use the previous solution as initial guess. Possible values are no and yes .
29	maxiters=150	Maximum number of iterations.
30	maxsteps=10000	Maximum number of steps used in homotopy method.

Analysis Statements

Annotation parameters

31	annotate=sweep	Degree of annotation. Possible values are no, title, sweep, status, estimated, steps, iters, detailed, rejects, and alliters.
32	title	Analysis title.

Emir output parameters

33	emirformat=none	Format of the EM/IR database file. Possible values are none and vavo.
34	emirfile	Name of the EM/IR database file. The default is '%A_emir_vavo.db'. The file is printed to a raw directory.
35	swpuseprevic=yes	DC sweep uses the solution of previous point as starting point. Possible values are no, yes and ns .

You can define sweep limits by specifying the end points or the center value and span of the sweep. Steps can be linear or logarithmic, and you can specify the number of steps or the size of each step. In addition, you can specify a step size parameter (step, lin, log, or dec) and determine whether the sweep is linear or logarithmic. If you do not specify a step size parameter, the sweep is linear when the ratio of stop to start values is less than 10 and logarithmic when this ratio is 10 or greater. If you specify the oppoint parameter, Spectre computes and prints the linearized model for each nonlinear component.

Nodesets help find the DC or the initial transient solution. You can specify nodesets in the circuit description file with nodeset statements, or in a separate file using the readns parameter. When nodesets are specified, Spectre computes an initial guess of the solution by performing DC analysis while forcing the specified values on to nodes by using a voltage source in series with a resistor whose resistance is rforce. Spectre then removes these voltage sources and resistors, and computes the required solution from this initial guess.

Nodesets have two important uses. First, if a circuit has two or more solutions, nodesets can bias the simulator towards computing the required solution. Second, this is a convergence aid. By estimating the solution of the largest possible number of nodes, you might be able to eliminate a convergence problem or significantly speed up convergence.

When you simulate the same circuit multiple times, it is recommended that you use both write and readns parameters and assign the same file name to both parameters. DC

Analysis Statements

analysis then converges quickly even if the circuit has changed since the last simulation, and the nodeset file is automatically updated.

You can set the force parameter and specify the values to force the DC analysis. The values used to force signals are specified by using the force file, the ic statement, or the ic parameter on the capacitors and inductors. The force parameter controls the interaction of various methods of setting the force values. The effects of individual settings are as follows:

force=none: All initial conditions are ignored.

force=node: The ic statements are used, and the ic parameter on the capacitors and inductors are ignored.

force=dev: The ic parameters on the capacitors and inductors are used, and the ic statements are ignored.

force=all: Both the ic statements and the ic parameters are used, with the ic parameters overriding the ic statements.

If you specify a force file with the readforce parameter, force values read from the file are used, and any ic statements are ignored.

After you specify the force conditions, Spectre performs DC analysis with the specified nodes forced to the given value by using a voltage source in series with a resistor whose resistance is rforce (see options).

Parameter Index

In the following index, the number corresponding to each parameter name indicates where to find the description of that parameter:

annotate 31	hysteresis 11	param 14	stop 2
center 3	lin 6	print 23	swpuseprevic 33
check 25	log 8	readforce 17	title 32
dec 7	maxiters 29	readns 16	useprevic 20
dev 12	maxsteps 30	restart 28	values 9
emirfile 34	mod 13	save 21	valuesfile 10

Spectre Circuit Simulator Reference Analysis Statements

emirformat 33	nestlvl 22	span 4	write 18
force 15	newton 27	start 1	writefinal 19
homotopy 26	oppoint 24	step 5	

Analysis Statements

DC Device Matching Analysis (dcmatch)

Description

DCMATCH analysis performs device matching analysis on the operating point for a specified output. It computes the deviation in the operating point of the circuit due to processing or environmental variation in modeled devices. If method=standard is specified, a set of dcmatch parameters in the model cards is required for each supported device contributing to the deviation. The analysis applies device matching models to construct equivalent mismatch current sources to all the devices that are modeled. These current sources are assumed to have zero mean and certain variance. The variance of the current sources is computed according to device matching models. Next, the 3-sigma variance of DC voltages or currents (due to the mismatch current sources) is computed at the specified outputs. The simulation result displays the devices rank ordered by their contribution to the outputs. In addition, for MOSFET devices, it displays threshold voltage mismatch, current factor mismatch, gate voltage mismatch, and drain current mismatch. For bipolar devices, it displays base-emitter junction voltage mismatch. For resistors, it displays resistor mismatches.

The analysis replaces multiple simulation runs that determine changes in accuracy with any changes in size. It automatically identifies the set of critical matched components during circuit design. For example, when there are matched pairs in the circuit, the contribution of two matched transistors is equal in magnitude but opposite in sign. Typical usage is to simulate the output offset voltage of operational amplifiers, estimate the variation in bandgap voltages, and predict the accuracy of current steering DACS.

For method=standard, DCMATCH analysis can be applied to following devices: BSIM3V3, BSIM4, BSIMSOI, EKV, PSP102, PSP103, BJT, VBIC, BHT, RESISTOR, PHY_RES, R3, and resistor-type becource. If method=statistics is specified, a statistics block is required to list the parameters that are considered as randomly varying. By default, all statistics parameters found in the statistics block are considered in computation, unless the option variations is explicitly specified. Device matching models are not used in this case and dematch model parameters are not required.

More more information, refer to the <u>DCMatch Analysis</u> section in the <u>Spectre Classic Simulator</u>, <u>Spectre APS</u>, <u>Spectre X</u>, and <u>Spectre XPS User Guide</u>.

Definition

Name ... dcmatch parameter=value ...

Analysis Statements

Parameters

1	mth	Relative mismatch contribution threshold value.
2	where=screen	Where DC-Mismatch analysis results should be printed. Possible values are screen, logfile, file, and rawfile.
3	file	File name for results to be printed if where=file is used.

Probe parameters

4	oprobe	Compute mismatch at the output defined by this
		component.

Port parameters

5	portv	Voltage across this probe port is output of the analysis.
6	porti	Current through this probe port is output of the analysis.

Sweep interval parameters

7	start=0	Start sweep limit.
8	stop	Stop sweep limit.
9	center	Center of sweep.
10	span=0	Sweep limit span.
11	step	Step size, linear sweep.
12	lin=50	Number of steps, linear sweep.
13	dec	Points per decade.
14	log=50	Number of steps, log sweep.
15	values=[]	Array of sweep values.

Analysis Statements

	16	valuesfile	Name of the file containing the sweep values.
--	----	------------	---

Sweep variable parameters

17	dev	Device instance whose parameter value is to be swept.
18	mod	Model whose parameter value is to be swept.
19	param	Name of parameter to sweep.

State-file parameters

20	readns	File that contains an estimate of the DC solution (nodeset).
21	useprevic=no	If set to yes or ns , use the converged initial condition from previous analysis as ic or ns . Possible values are no , yes , and ns .

Output parameters

22	save	Signals to output. Possible values are all, lvl, allpub, lvlpub, selected, none, and nooutput.
23	nestlvl	Levels of subcircuits to output.
24	oppoint=no	Determines whether the operating point information should be computed. If yes, where should it be printed (screen or file). Operating point information is not printed in case of the following conditions: (1) operating point is computed in the previous analysis and is unchanged (2) sweep parameter param is set. Possible values are no, screen, logfile, and rawfile.

Analysis Statements

Convergence parameters

25	prevoppoint=no	Use operating point computed on the previous analysis. Possible values are no and yes.
26	restart=yes	Restart the DC solution from scratch if any condition has changed. If not, use the previous solution as initial guess. Possible values are no and yes .

Annotation parameters

27	annotate=sweep	Degree of annotation. Possible values are no, title, sweep, status, and steps.
28	title	Analysis title.

Miscellaneous parameters

29	version=0	Use BSIM short-channel mismatch equation for BSIM3 and BSIM4 devices, if the value is set to 1 and 3. If set to 0 and 2, do not use BSIM short-channel mismatch equation. Values 2 and 3 are compatible with Monte Carlo analysis while 0 and 1 are not. This option works only when method=standard. Possible values are 0 to 3.
303	method=standard	Proceed with standard device mismatch models, or utilize the parameters defined in statistics blocks to compute output variation. Possible values are standard and statistics.
31	nsigma=3	Specifies the variation of each statistics parameter (in the number of sigma). This option works only if method= statistics.
32	variations=all	Selects the type of statistical parameters that are involved in dcmatch. The option is valid only if method=statistics. Possible values are process, mismatch, and all.

Analysis Statements

33	deltascale=1	Scaling factor of offset applied to mismatch and process
		parameters.

The dcmatch analysis will find a DC operating point first. If the DC analysis fails, the dcmatch analysis also fails. The parameter mth is a threshold value relative to maximum contribution. Any device contribution less than (mth * maximum) is not reported, where maximum is the maximum contribution among all the devices of a given type.

Examples:

```
dcmm1 dcmatch mth=1e-3 oprobe=vd porti=1
dcmm2 dcmatch mth=1e-3 oprobe=r3 portv=1
dcmm3 n1 n2 dcmatch mth=1e-3 where=rawfile stats=yes
dcmm4 n3 0 dcmatch mth=1e-3 where=file file="%C:r.info.what"
sweep1 sweep dev=mp6 param=w start=80e-6 stop=90e-6 step=2e-6 {
dcmm5 dcmatch oprobe=vd mth=1e-3 where=rawfile }
dcmm6 n3 0 dcmatch mth=0.01 dev=x1.mp2 param=w start=15e-6 stop=20e-6 step=1e-6
dcmm7 n3 0 dcmatch mth=0.01 param=temp start=25 stop=100 step=25
```

Note: porti allows you to select a current associated with a specific device given in oprobe as an output. All types of devices are supported for oprobe. For inductor, vsource, switch, tline, controlled voltage source, iprobe, etc., porti can only be set to one, because these devices are two-terminal devices (one port); and for tline porti can be set to one or two, because it is a four-terminal device (two ports).

Parameter Index

In the following index, the number corresponding to each parameter name indicates where to find the description of that parameter:

annotate 27	mod 18	prevoppoint 25	useprevic 21
center 9	mth 1	readns 20	values 15
dec 13	nestlvl 23	restart 26	valuesfile 16
deltascale 33	nsigma 31	save 22	variations 32
dev 17	oppoint 24	span 10	version 29
file 3	oprobe 4	start 7	where 2

Spectre Circuit Simulator Reference Analysis Statements

lin	12	param	19	stop	8
log	14	porti	6p	step	11
meth	od 30	ortv	5	title	28

Analysis Statements

Envelope Following Analysis (envlp)

Description

This analysis computes the envelope response of a circuit based on the specified analysis <code>clockname</code>, <code>period</code>, or <code>fund</code>. If <code>clockname</code> is specified, the simulator automatically determines the clock period by looking through all the sources with the specified name. The envelope response is computed over the interval from <code>start</code> to <code>stop</code>. If the interval is not a multiple of the clock period, it is rounded off to the nearest multiple before the stop time. The initial condition is taken to be the DC steady-state solution, if not given.

Envelope following analysis is most efficient for circuits where the modulation bandwidth is orders of magnitude lower than the clock frequency. This is typically the case, for example, in circuits where the clock is the only fast varying signal and other input signals have a spectrum whose frequency range is orders of magnitude lower than the clock frequency. The down conversion of two closely placed frequencies can also generate a slow-varying modulation envelope.

Envelope following analysis is capable of handling both autonomous (non-driven) and driven (non-autonomous) circuits. Autonomous circuits are time-invariant circuits that have time-varying responses. Therefore, autonomous circuits generate non-constant waveforms even though they are not driven by a time-varying stimulus. Driven circuits require time-varying stimulus to generate a time-varying response. The most common example of an autonomous circuit is an oscillator.

When applied to autonomous circuits, envelope following analysis requires you to specify a pair of nodes, p and p. In fact, this is how envelope following analysis determines whether it is being applied to an autonomous or a driven circuit. If the pair of nodes is supplied, envelope assumes the circuit is autonomous; if not, the circuit is assumed to be driven.

The analysis generates two types of output files, a voltage versus time (td) file and an amplitude/phase versus time (fd) file for each of the specified harmonics of the clock fundamental.

Fast mode envelope analysis is used to simulate RF power amplifier (PA) with I/Q orthogonal modulation. Like normal envelope analysis, the time scale difference between I/Q signals and carrier is large. Fast envelope analysis has larger speed up performance than normal envelope. Fast envelope has two modes, level1 and level2. Level1 is used to simulate the circuit without memory effect. Level2 has been discontinued. If selected, the simulator will automatically switch to Level1. If the circuit has strong nonlinear-memory effect, fast envelope can be inaccurate. In this situation, the only accurate way is to use regular envelope analysis. Fast envelope only outputs the fd result of specified nodes (assigned by the parameter output) at harmonic 1 of carrier.

Analysis Statements

Fast mode envelope analysis is not supported in the Shooting engine; its parameters apply only to the harmonic balance engine.

For information on how to run Envelope Analysis from ADE, see <u>Envelope (ENVLP)</u>
<u>Analysis</u> chapter in the <u>Spectre Circuit Simulator and Accelerated Parallel Simulator</u>
<u>RF Analysis User Guide.</u>

Definition

```
Name [p] [n] envlp parameter=value ...
```

Parameters

Envelope fundamental parameters

1	clockname	Name of the clock fundamental.
2	modulationbw (Hz)	Modulation bandwidth.
3	resolutionbw (Hz)	Resolution bandwidth; if set, overwrites the stoptime to be at least 1/resolutionbw.

Simulation interval parameters

4	stop (s)	Stop time.
5	start=0 s	Start time.
6	tstab=0 s	Initial stabilization time; can be used to change the phase that envelope starts shooting.
7	period (s)	Period of the clock fundamental; if set, clockname can be ignored. It is the estimated period for autonomous circuits.
8	fund (Hz)	Alternative to period. Frequency of the clock fundamental frequency.
9	outputstart=start s	Output is saved only after this time is reached.

Analysis Statements

Time-step parameters

10	maxstep (s)	Maximum time step for inner transient integration. Default is derived from errpreset.
11	envmaxstep (s)	Maximum outer envelope step size. Default is derived from errpreset.
12	fixstepsize=no	Use this option to fix envelope step size for speeding up envelope analysis. Possible values are ${\tt no}$ and ${\tt yes}.$
13	stepsize=4	The number of cycles skipped between two steps when fixstepsize is yes. The time interval between the two steps will be (stepsize+1) *Tc, where Tc is the clock period. For shooting, autonomous, and fm envelope, it is rounded off to an integer.
14	stepperiod	The interval (in seconds of envelope following time) between two steps when fixstepsize is yes. Should be greater than period of clock. For autonomous FM or shooting envelope, it is rounded off to the nearest integer multiple of clock period.

Initial-condition parameters

15	ic=all	What should be used to set initial condition. Possible values are dc, node, dev, and all.
16	skipdc=no	If set to yes , there will be no DC analysis for initial transient. Possible values are no and yes .
17	readic	File that contains initial transient condition.
18	useprevic=no	If set to yes or ns , use the converged initial condition from previous analysis as ic or ns . Possible values are no , yes and ns .

Convergence parameters

19	readns	File that contains estimate of initial DC solution.
20	cmin=0 F	Minimum capacitance from each node to ground.

Analysis Statements

State-file parameters

21	write	File to which initial transient solution is to be written.
22	writefinal	File to which final transient solution is to be written.
23	swapfile	Temporary file that holds the matrix information used by Newton's method. It tells Spectre to use a regular file, rather than virtual memory, to hold the matrix information. Use this option if Spectre does not have enough memory to complete this analysis, This parameter is now valid only for shooting. It does not apply to harmonic balance.

Envelope Integration method parameters

24	envmethod=gear2only	Envelope Integration method. Possible values are
		euler, trap, traponly, gear2, gear2only, and trapgear2.

Integration method parameters

25	method=gear2only	Inner transient integration method. Possible values are euler, trap, traponly, gear2, gear2only, and trapgear2.
26	oscic=default	Oscillator IC method. It determines how the starting values for the oscillator are determined. Possible values are default and lin.

Accuracy parameters

27	errpreset=moderate	Selects a reasonable collection of parameter settings. Possible values are liberal, moderate, and
		conservative.

Analysis Statements

28	relref	Reference used for the relative convergence criteria. Default is derived from errpreset. Possible values are pointlocal, alllocal, sigglobal, and allglobal.
29	lteratio	Ratio used to compute LTE tolerances from Newton tolerance. Default is derived from errpreset.
30	smoothcheck=yes	When set to no, the smoothness of the envelope is not checked. The skip cycles are as many as possible. If fixstepsize=yes, smoothcheck is set to no automatically. Possible values are no and yes.
31	itres=1e-2	Relative tolerance for linear solver.
32	inexactNewton=no	Inexact Newton method. Possible values are no and yes .
33	steadyratio	Ratio used to compute steady-state tolerances from LTE tolerance. Default is derived from errpreset.
34	envlteratio	Ratio used to compute envelope LTE tolerances. Default is derived from errpreset.

Annotation parameters

35	annotate=sweep	Degree of annotation. Possible values are no, title, sweep, status, and steps.
36	title	Analysis title.

Output parameters

37	harms	If harmonicbalance is set to no, it is the number of clock harmonics to output and the default value is 1. If harmonicbalance is set to yes, it is the maxharm of the clock fundamental and the default value is 3.
38	harmsvec=[]	Array of desired output clock harmonics. Alternative form of harms that allows selection of specific harmonics. For multi-carrier envelope, each group of elements with size equal to that of funds is a selection of specific harmonic combinations of fundamental frequencies.

Analysis Statements

outputtype=both	Output type. Possible values are both, envelope and spectrum.
save	Signals to output. Possible values are all, lvl, allpub, lvlpub, selected, none, and nooutput.
nestlvl	Levels of subcircuits to output.
compression=no	Perform data compression on output. Possible values are no and yes .
strobeperiod (s)	The output strobe interval (in seconds) of envelope following time. For Shooting Envelope, the actual strobe interval is rounded off to an integer multiple of the clock period.
transtrobeperiod (s	5)
	The output strobe interval (in seconds) of envelope time. The value of the parameter must be less than the cycle period. Those strobe timepoints in all cycles will output when the parameter is working. It is valid for shooting and HB.
	save nestlvl compression=no

Newton parameters

45	maxiters=5	Maximum number of Newton iterations per transient integration time step.
46	envmaxiters	Maximum number of Newton iterations per envelope step. For time domain Shooting envelope, the default is 3. For Harmonic Balance Envelope, the default is 40.
47	restart=no	Restart the DC solution from scratch if any condition has changed. If not, use the previous solution as initial guess. Possible values are no and yes.

Circuit age

48 circuitage (Years) Stress time. Age of the circuit used to simulate hotelectron degradation of MOSFET and BSIM circuits.

Analysis Statements

49	fmspeedup=0	The level to speed up the envelope analysis for frequency modulated signal. Default is 0 for standard envelope following and 1 for fmmod sources speed up.
50	saveinit=no	If set, the waveforms for the initial transient (tstab) before envelope are saved. Possible values are no and yes .

Fast envelope parameters

51	fastmode=off	This parameter controls the accuracy of envelope
		analysis. When fastmode=off, a rigorous transistor-level envelope algorithm is used. When fastmode=level1, a faster fast envelope algorithm is used. Fast envelope is more efficient but its usefulness is limited to (near)-memoryless systems. The level2 algorithm is obsolete and is automatically switched to level1, when set. Possible values are off, level1, and level2.
52	fastmethod=passband	
		This parameter applies only in fast envelope mode. The passband method models only magnitude-dependent (AM-AM and AM-PM) effects. The baseband method includes both magnitude- and phase-dependent (PM-AM and PM-PM) effects. Use the passband method when you model PAs. Use the baseband method when the circuit includes transistor-level modulators, demodulators, and whenever the output depends both on the magnitude and phase of the input signal. Possible values are passband and baseband.
53	writeenv	The file to which fast mode envelope data is written. It can be reused by readenv if the circuit remains unchanged, except for the decrease in srci or srcq scale. Can only be used in fast envelope.
54	readenv	File from which fast mode envelope data is read. It can be used only if the circuit remains unchanged after the file is created, except for the decrease in srci or srcq scale. Can only be used in fast envelope.

Analysis Statements

55	srci=[]	I branch baseband modulation source, whose signal corresponds to the real part of baseband signal. If two sources are assigned, it means that the inputs are differential signals and the first source is positive. Only the pwl type of source is supported. Can only be used in fast envelope.
56	srcq=[]	Q branch baseband modulation source, whose signal corresponds to the imaginary part of baseband signal. If two sources are assigned, it means that the inputs are differential signals and the first source is positive. Only the pwl type of source is supported and can be used only in fast envelope.
57	srcw=[]	Wireless source. Can be used only in fast envlp currently.
58	sweepmethod=coarse	This parameter controls the sweep algorithm during the fast envelope circuit characterization. When sweepmethod is coarse, fine, or userdefined, it uses a fixed number of sweep points. When sweepmethod is adaptive, it determines the number of sweep points automatically. coarse uses 7 magnitude points (plus 12 phase points when fastmethod=baseband); fine uses 10 magnitude points (plus 16 phase points when fastmethod=baseband); when sweepmethod=userdefined, use the sweepnum parameter to define the grid. Possible values are coarse, fine, userdefined, and adaptive.

Analysis Statements

59	sweepnum=[]	This parameter controls the number of sweep points for fast envelope characterization when sweepmethod=userdefined. When fastmethod=passband, sweepnum is a one-element integer array which sets the number of magnitude sweep points. When fastmethod=baseband, it is a two-element integer array which sets the number of magnitude and phase sweep points. In passband mode, default sweepnum=[7]. In baseband mode, default sweepnum=[7]. In most cases, default values are adequate to capture the main and adjacent channel power accurately. Nevertheless, it is recommended to increase sweepnum gradually to ensure that the results do not change. A reasonable strategy is to start at sweepnum=[7 12] and increase to [10 16] until results converge. The upper limit of the magnitude and phase sweep points is [49 48].
60	output=[]	Fast mode envelope output nodes. Fast mode envelope only generates fd result (complex solution of a certain harmonic versus time) and can be used only in fast envelope.
61	outputharmonic=1	Output harmonic in fast mode envelope analysis.
62	outputallharms=no	By default, fast mode envlp analysis outputs only one harmonic, as determined by the outputharmonic parameter. When outputallharms is set to yes, all harmonics are calculated and sent to output. In addition, when outputallharms is set to yes and the input excitation is single-tone, SpectreRF also calculates and stores the output time domain waveform. This parameter applies to fast mode envlp analysis only. Possible values are no and yes.

Analysis Statements

Fast envelope noise model parameters

noisemethod=off	This parameter controls the noise model in fast envelope mode. noisemethod does not apply in regular envelope (when fastmode=off). By default, noisemethod=off and the circuit is treated as noiseless. If noisemethod=level1, the noise model is generated from linear noise analysis performed about the DC operating point. If noisemethod=level2, the noise model is calculated from a more rigorous periodic noise analysis. The root-mean-square value of the magnitude of the input signal and the mean of the phase of the input signal are used as the operating point in periodic noise analysis. The level2 model is preferred in almost all the practical situations. The level1 model is faster to extract and may be useful in certain situations under nearly-linear operating conditions. Possible values are off, level1, and level2.
fstart=1k	This parameter sets the starting sweep frequency for the fast envelope noise sweep.
dec=3	This parameter controls the noise frequency sweep for the fast envelope noise model. It is applicable when noisemethod= level2. When set, the simulator performs a linear or periodic noise analysis around output harmonic, using dec log steps per decade in the frequency interval given by $[fstart, 1/(2*Tstep)]$. If lin and dec are both specified, log sweep is used and the parameter lin is ignored.
lin=10	This parameter controls the noise frequency sweep for the fast envelope noise model. It is applicable when noisemethod= level2. When set, the simulator performs a linear or periodic noise analysis around output harmonic, using lin equal steps in the frequency interval given by $[fstart, \ 1/(2*Tstep)]$.
	fstart=1k dec=3

Wireless fundamental parameters

67	wsource	Wireless source in envlp analysis. It must be selected
		within wsource instances.

Analysis Statements

68	wprobe=[]	The wprobe vector in envlp analysis. It is designed to measure evm or ber, and so on.
		measure evin or ber, and so on.

Harmonic Balance Envelope parameters

69	funds=[]	Array of fundamental frequency names for fundamentals that will be used for Harmonic Balance Envelope.
70	maxharms=[]	Array of number of harmonics of each fundamental that will be considered for Harmonic Balance Envelope.
71	freqdivide	Large signal frequency division.
72	fundfreqs=[]	Array of fundamental frequencies to use in multi-carrier envelope.
73	harmonicbalance=no	Use Harmonic Balance Envelope. Possible values are ${\tt no}$ and ${\tt yes}.$
74	flexbalance=no	The same parameter as harmonicbalance. Possible values are no and yes.
75	oversamplefactor=1	Oversample sample device evaluations for Harmonic Balance Envelope.
76	oversample=[]	Array of oversample factors for each tone for Harmonic Balance Envelope.

Tstab save/restart parameters

77	saveperiod	Save the tran analysis periodically on the simulation time.
78	saveclock=1800 s	Save the tran analysis periodically on the wall clock time.
79	savetime=[]	Save the analysis states into files on the specified time points.
80	savefile	Save the analysis states into the specified file.
81	recover	Specify the file to be restored.

Analysis Statements

envlp-PAC parameters

82	pacnames=[]	Names of pac, pnoise, psp, or pxf analyses to be performed at each time point in the pactimes array. Not for AMS.
83	pactimes=[] s	Times when analyses specified in pacnames array are performed. Not for AMS.

If period or fund is not specified, the simulator examines all the sources whose name matches the clock name specified in the analysis line by the clockname parameter to determine the clock frequency. If more than one frequency is found, the greatest common factor of these frequencies is used as the clock frequency.

The maximum envelope step size is affected by many parameters. It can be directly limited by envmaxstep. It is also limited by modulationbw. You provide an estimate of the modulation bandwidth. The simulator puts at least eight points within the modulation period. It is recommended that you use strobeperiod to get equally spaced envelope points, which will improve the noise floor in power spectrum density computation.

The harms and harmsvec parameters affect the simulation time in an insignificant way. The spectrum is calculated for all the specified harmonics for all sampled integration cycles as the envelope following analysis marches on. For each harmonic, a file is generated. If harmonicbalance is no, harms is typically set to 1 or 2 because the high-order harmonics are not accurate.

Most parameters of this analysis are inherited from either transient or PSS analysis and their meanings are consistent. However, a few of them need to be clarified. The effect of errpreset on certain envelope following analysis parameters is shown in the following table.

For conservative autonomous envelope, default values for method and envmethod are set to traponly to avoid numerical damping of the oscillator.

In this table, T is the period of the clock.

Table 3-1 Parameter defaults as a function of errpreset

errpreset	maxstep	envmaxstep	reltol	relref	steadyratio	envlteratio
liberal	T/20	Interval/10	0.01	siggloba 1	0.1	0.35

Analysis Statements

moderate	Т/20	Interval/25 0.001	siggloba 0.1 1	3.5
conservative	T/50	Interval/50 0.0001	alllocal 1.0	35.0

The default value for compression is no. The output file stores data for every signal at every timepoint for which Spectre calculates a solution. Spectre saves the X-axis data only once, because every signal has the same x value. If compression=yes, Spectre writes data to the output file only if the signal value changes by at least two times the convergence criteria. To save data for each signal independently, X-axis information corresponding to each signal must be saved. If the signals stay at constant values for large periods of the simulation time, setting compression=yes results in a smaller output data file. If the signals in your circuit move around a lot, setting compression=yes results in a larger output data file.

Parameter Index

In the following index, the number corresponding to each parameter name indicates where to find the description of that parameter:

annotate 36	harms 38	oversample 77	srcq 57
circuitage 49	harmsvec 39	oversamplefactor 76	srcw 58
clockname 1	ic 15	pacnames 83	start 5
cmin 20	pactimes 84	steadyratio 34	compression 43
inexactNewton 33	period 7	stepperiod 14	dec 66
itres 31	readenv 55	stepsize 13	envlteratio 35
lin 67	readic 17	stop 4	envmaxiters 47
lnsolver 32	readns 19	strobeperiod 44	envmaxstep 11
lteratio 29	recover 82	swapfile 23	envmethod 24
maxharms 71	relref 28	sweepmethod 59	errpreset 27
maxiters 46	sweepnum 60	fastmethod 53	maxstep 10

Analysis Statements

resolutionbw 3	title 37	fastmode 52	method 25
restart 48	fixstepsize 12	modulationbw 2	save 41
transtrobeperiod 45	flexbalance 75	nestlvl 42	saveclock 79
tstab 6	fmspeedup 50	noisemethod 64	savefile 81
useprevic 18	freqdivide 72	oscic 26	saveinit 51
wprobe 69	fstart 65	output 61	saveperiod 78
write 21	fund 8	outputallharms 63	savetime 80
writeenv 54	fundfreqs 73	outputharmonic 62	skipdc 16
writefinal 22	funds 70	outputstart 9	smoothcheck 30
wsource 68	harmonicbalance 74	outputtype 40	srci 56

Analysis Statements

Harmonic Balance Steady State Analysis (hb)

Description

This analysis uses harmonic balance (in the frequency domain) to compute the response of circuits with one fundamental frequency (periodic steady-state, PSS) or multiple fundamental frequencies (quasi-periodic steady-state, QPSS). The simulation time required for an HB analysis is independent of the time-constants of the circuit. This analysis also determines the circuit's periodic or quasi-periodic operating point, which can then be used during a periodic or quasi-periodic time-varying small-signal analysis, such as HBAC, HBSP, or HBNOISE.

Usually, harmonic balance (HB) analysis is an efficient way to simulate weak nonlinear circuits. In addition, HB analysis works better than shooting analysis (in the time domain) for frequency-dependent components, such as delay, transmission line, and S-parameter data.

An HB analysis consists of two phases. The first phase calculates an initial solution, which the second phase then uses to compute the periodic or quasi-periodic steady-state solution, by using the Newton method.

The two most important parameters for HB analysis are funds and maxharms. The funds parameter accepts a list of names of fundamentals that are present in the sources. These names are specified in the sources by the fundname parameter. If only one name appears, the analysis is an HB PSS analysis. On the other hand, if more than one name appears, the analysis is an HB QPSS analysis. The maxharms parameter accepts a list of numbers of the harmonics that are required to adequately model the responses due to the different fundamentals.

The annotate parameter has two values specific to HB analysis: detailed_hb and internal_hb. When annotate is set to detailed_hb or internal_hb, additional analysis debug information is printed to the log files. In the case of internal_hb, encrypted debug information is stored in the internal log file. Both options are valid for pss and qpss analyses with flexbalance=yes.

For information on how to run hb analysis from ADE, see <u>Frequency Domain Analysis:</u> <u>Harmonic Balance</u> chapter in the <u>Spectre Circuit Simulator and Accelerated Parallel Simulator RF Analysis User Guide.</u>

Definition

Name [p] [n] hb parameter=value ...

Analysis Statements

Parameters

HB fundamental parameters

1	funds=[]	Array of fundamental frequency names for fundamentals to use in analysis.
2	<pre>fundfreqs=[]</pre>	Array of fundamental frequencies to use in analysis.
3	maxharms=[]	Array of number of harmonics of each fundamental to consider for each fundamental.
4	autoharms=no	Activates automatic harmonic number calculation in harmonic balance. Applies only if tstab>0 or if autotstab=yes. If a steady-state is reached, Spectre does a spectrum analysis to calculate the optimal number of harmonics for HB. The minimum number of harmonics is specified by maxharms. If steady-state is not reached to sufficient tolerance, autoharms may be disabled. Possible values are no and yes.
5	selectharm	Name of harmonics selection methods. Default is diamond when maximorder or boundary is set; otherwise, default is box. Possible values are box, diamond, funnel, axis, widefunnel, crossbox, crossbox_hier, and arbitrary.
6	evenodd=[]	Array of even, odd, or all strings for moderate tones to select harmonics.
7	maximorder	Maximum intermodulation order of harmonics in diamond, funnel, widefunnel, crossbox and crossbox_hier cuts. For example, in a two-tone case, a harmonic, [hx hy], is in the diamond, funnel or widefunnel harmonic set when $ hx + hy <=$ maximorder. And it is in the crossbox or crossbox_hier set when $ hx <=$ maximorder and $ hy <=$ maximorder.
8	mappingfft=no	This parameter is valid only for funnel harmonic cut. Setting this parameter to yes may save more memory but can hamper accuracy expense. Possible values are no and yes .

Analysis Statements

9	axisbw	The width of the band part of wide funnel harmonic cut along axis.
10	minialiasorder	The order of mini aliasing harmonic order.
11	selharmvec=[]	Array of harmonics indexes.
12	freqdivide	Large signal frequency division.
13	freqdividevector=[.]
		Array of frequency division factors for each tone. This parameter overrides freqdivide.

Simulation interval parameters

14	tstab=0.0 s	Extra stabilization time after the onset of periodicity for independent sources.	
15	autotstab=no	Activates the automatic initial transient (tstab) in harmonic balance and PSS shooting. If set to yes , the simulator decides whether to run tstab and for how long. Typically, the initial length of tstab is 50 periods; however, it could be longer depending on the type of circuit and its behavior. If steady-state is reached (or nearly reached), tstab terminates early. Possible values are no and yes .	
16	autosteady=no	Activates the automatic steady state detection during initial transient (tstab) in harmonic balance and PSS shooting. When steady state is reached (or nearly reached), tstab terminates early. This parameter applies only when tstab>0 or when autotstab=yes. Possible values are 0, 1, 2, no and yes.	
		■ autosteady=no 0 deactivates this feature	
		■ autosteady=yes 1 activates this feature	
		autosteady=2 runs autosteady with lower steady state tolerance than autosteady=1	
		autosteady=2 may help pss convergence but with higher tstab costs	

Analysis Statements

Time-step parameters

17	maxstep	(s)	Maximum time step. The default is derived from
			errpreset.

Initial-condition parameters

18	ic=all	The value to be used to set the initial condition. Possible values are dc, node, dev, and all.
19	skipdc=no	If set to yes, there is no DC analysis for initial transient. Possible values are no, yes and sigrampup.
20	readic	File that contains initial condition.
21	oscic=default	Oscillator IC method. It determines how the starting values for the oscillator are calculated. oscic=lin provides you an accurate initial value, but it takes time. oscic=lin_ic, which is an older version of oscic=lin is used for shooting analysis for backward compatibility and is not recommended. oscic=fastic is fast, but it is less accurate. oscic=skip directly uses the frequency you provided as the initial guess frequency. It is only for two-tier method. Possible values are default, lin, lin_ic, fastic, and skip.
22	useprevic=no	If set to yes or ns , use the converged initial condition from previous analysis as ic or ns . Possible values are no , yes and ns .
23	tone_homotopy=[]	
		Array of homotopy options for convergence assistance with multi-divider cases when hbhomotopy=aggregation. The number of entries should be equal to that of tones. The possible values for each entry are 0, 1 and 2. 0 means no convergence assistance is applied for that tone. 1 means only transient stabilization (tstab) is run for that tone and 2 means that both tstab and a single-tone HB simulation should be run to obtain the initial guess for multi-tone HB simulation.

Analysis Statements

Convergence parameters

24	readns	File that contains an estimate of the initial transient solution.
25	cmin=0 F	Minimum capacitance from each node to ground.
26	hbhomotopy=tone	Name of Harmonic Balance homotopy selection methods. Possible values are tstab, source, gsweep, tone, inctone, and aggregation.
27	gstart=1.e-7	Start conductance for hbhomotopy of gsweep.
28	gstop=1.e-12	Stop conductance for hbhomotopy of gsweep.
29	glog=5	Number of steps; log sweep for hbhomotopy of gsweep.
30	sweepic=none	IC extrapolation method in sweep HB analysis. Possible values are none, linear and log.
31	oscmethod	Osc Newton method for autonomous HB. Possible values are onetier and twotier.
32	pinnode	Node to pin during autonomous HB simulation.
33	pinnoderank	Harmonic rank to pin during autonomous HB simulation.
34	pinnodemag	This parameter gives an estimate of the magnitude of the pin node voltage. Default value is 0.01.
35	pinnodeminus	Second node to pin during autonomous HB simulation. Needed only when differential nodes exist in oscillator.
36	backtracking=yes	Activate the backtracking utility of Newton's method. The default value is yes . Possible values are no, yes , and forced.

Output parameters

37	save	Signals to output. Possible values are all, 1vl, allpub, 1vlpub, selected, none, and nooutput.
38	nestlvl	Levels of subcircuits to output.
39	saveinit=no	If set to yes , the waveforms for the initial transient before steady state are saved. Possible values are no and yes .

Analysis Statements

Integration method parameters

40	tstabmethod	Integration method used in stabilization time. The default is traponly for autonomous circuits, or is derived from errpreset for driven circuits. Possible values are
		euler, trap, traponly, gear2, and gear2only.

Accuracy parameters

41	errpreset	Selects a reasonable collection of parameter settings. Possible values are liberal, moderate, and conservative.
42	maxperiods	Maximum number of iterations allowed before convergence is reached in shooting or harmonic balance Newton iteration. For PSS and QPSS, the default is 20 for driven circuits, and 50 for oscillators. For HB, the default is 100.
43	max_innerkrylov_siz	ze=20
		The maximum iteration number allowed in inner gmres solver in two-level gmres linear solver. The default value is 12 for large signal and 20 for small signal analysis.
44	max_outerkrylov_siz	ze=4
		The maximum iteration number allowed in inner gmres solver in two-level gmres linear solver. The default value is 4.
45	itres-1e-/ for shooting	na 0.9 for HB

45 itres=1e-4 for shooting, 0.9 for HB

Controls the residual for iterative solution of linearized matrix equation at each Newton iteration. Tightening the parameter can help with the Newton convergence, but does not affect the result accuracy. The value should be between [0, 1]. Default value for shooting APS flow is 1e-3.

Analysis Statements

46	krylov_size=10	The minimum iteration count of the linear matrix solver used in HB large-signal analysis. After reaching krylov_size iterations, the iteration is forced to terminate because of the poor rate of convergence. Increase krylov_size if the simulation reports insufficient norm reduction errors in GMRES.
47	oversamplefactor=1	Oversample device evaluations.
48	oversample=[]	Array of oversample factors for each tone. This parameter overrides oversamplefactor.
49	excludeconvgwithBK=	-yes
		Possible values are no and yes.
51	<pre>hbpartition_defs=[]</pre>	Define HB partitions.
50	hbpartition_fundrat	cios=[]
		Specify HB partition fundamental frequency ratios.
52	hbpartition_harms=	[]
		Specify HB partition harmonics.
53	hbprecond_solver=ba	asicsolver
		Choose a linear solver for the GMRES preconditioner. Possible values are basicsolver, blocksolver, autoset, blockdense, and blocksolver2.
54	lowmem=0	Harmonic balance low memory mode. Possible values are $0, 1$, or number (>=10). The default value is 0 , it indicates that the low memory mode is turned off; if 1 is set, the standard low memory mode is turned on; if a number greater than or equal to 10 is set, Spectre interprets the value as memory requested in Gigabytes.

Annotation parameters

55	annotate=sweep	Degree of annotation. Possible values are no, title,
		sweep, status, estimated, steps, iters,
		detailed, rejects, alliters, detailed_hb, and
		internal_hb.

Analysis Statements

56	title	Analysis title.
		•
New	ton parameters	
57	restart=no	Restart the DC/PSS/QPSS solution if set to yes; if set to no, reuse the previous solution as an initial guess; if set to firstonly, restart if it is the first point of sweep (supported only in HB). The default value is no for HB and yes for shooting. Possible values are no, yes and
		firstonly.
<i>Circ</i> 58	uit age circuitage (Years)	Stress time. Age of the circuit used to simulate hot-
50	circuitage (rears)	electron degradation of MOSFET and BSIM circuits.
State	e-file parameters	
State 59	e-file parameters writehb	File to which final harmonic balance steady-state solution is to be written. Small-signal analyses, such as hbac, hbsp, and hbnoise can read the steady-state solution from this file directly instead of running the hb analysis again.
		solution is to be written. Small-signal analyses, such as hbac, hbsp, and hbnoise can read the steady-state solution from this file directly instead of running the hb
59	writehb	solution is to be written. Small-signal analyses, such as hbac, hbsp, and hbnoise can read the steady-state solution from this file directly instead of running the hb analysis again. File from which final harmonic steady-state solution is to be read. Small signal analyses such as hbac, hbsp, and hbnoise can read in the steady-state solution from this

Analysis Statements

Tstab save/restart parameters

63	saveperiod	Save the transient analysis periodically on the simulation time.
64	saveperiodhistory=no	
		Maintains the history of saved files. If yes , maintains all the saved files. Possible values are no and yes .
65	saveclock (s)	Save the transient analysis periodically on the wall clock time. The default is 1800s for Spectre. By default, this parameter is disabled in the Spectre APS mode.
66	savetime=[]	Save the analysis states into files on the specified time points.
67	savefile	Save the analysis states into the specified file.
68	recover	Specify the file to be restored.

Compression parameters

69 xdbcompression="no"

Sets the automatic gain compression analysis. In automatic gain compression analysis, Spectre automatically sweeps the input excitation until the gain, as defined by the analysis parameter xdbgain, compresses by the amount specified by the analysis parameter xdblevel. In gain compression analysis, Spectre outputs the hb solution at the calculated compression point only. Dependent analyses, such as hbnoise and hbac, are supported and calculated about the calculated compression level. Auxiliary output includes the gain and voltage/power compression curves. These outputs are available for analysis and post-processing in ADE. The possible values are yes and no. Default is no.

70 xdblevel=[...]

Sets the gain compression level for compression analysis. The reference point for gain compression is the small-signal gain of the circuits, or as specified by the analysis parameter xdbref. Default is 1.

Analysis Statements

71	xdbgain="power"	Chooses between the voltage gain and transducer power gain as the target for compression point calculation. When $xdbgain=power$, the gain is defined as $G(dB)=Pload(dBm)-Pavailable(dBm)$. When $xdbgain=voltage$, the gain is defined as $G(dB)=dB20(Vload / Vsource)$. In both cases, Spectre sweeps the excitation source until $xdbref-G=xdblevel$, where the analysis parameter $xdbref$ defines the reference level for compression calculation. Possible values are power and $voltage$. Default is power.
72	xdbref="linear"	Sets the reference point for gain compression calculations. When xdbref=linear, spectre uses the small-signal gain as the reference. When xdbref=max, spectre uses the maximum observed gain as the reference. Possible values are linear and max. Default is linear.
73	xdbsource	The instance name of the excitation source, which is swept automatically to reach the compression level. When xdbgain=power, the excitation source must be a port instance. When xdbgain=voltage, the excitation source must be a vsource instance.
74	xdbload	The instance name of the load termination. When xdbgain is power, xdbload can be a port, a resistor, or a current probe.
75	xdbnodep	The output terminals for voltage gain calculation when xdbgain=voltage. If either is left unspecified, the terminal is assumed to be the global ground.
76	xdbnoden	The output terminals for voltage gain calculation when xdbgain=voltage. If either is left unspecified, the terminal is assumed to be the global ground.
77	xdbrefnode	The reference node when $xdbload$ is a current probe. The default is the ground node.
78	xdbharm=[]	The Integer array which specifies the harmonic indexes of the output voltage or power component.
79	xdbsteps=100	The maximum number of steps for the compression point search. The simulator terminates if xdbsteps exceeds before the compression point is found. The default is 100.

Analysis Statements

80	xdbmax	The maximum input power (or voltage) for the compression point search. Default is 30 dBm when xdbgain=power, and 2.0 V when xdbgain=voltage.
81	xdbstart	The starting input power (or voltage) for the compression point search. Default is (xdbmax-70) dBm when xdbgain=power, and xdbmax/20000 when xdbgain=voltage.
82	xdbtol=0.01	Sets the tolerance for compression analysis. This tolerance is used in compression curve fitting and calculating the compression point.
83	xdbrapid="no"	Sets the automatic gain compression analysis in rapid mode. In this mode, Spectre does not trace the compression curve and calculates only the compression point.
84	xdbcpi	Sets the estimated input-referred compression point for rapid compression analysis.
85	backoff=0.0	The backoff point. If defined, an addition harmonic balance analysis will be performed after the compression analysis is done. Default is 0 dBm when xdbgain=power, and 0 V when xdbgain=voltage.

Memory estimation parameters

86 memoryestimate="no"

Analysis Statements

Sets the memory usage estimate for Harmonic Balance. If yes, a memory estimate is printed in the log file. You can use this memory estimate to plan the computing resources before submitting harmonic balance runs. In memory estimate mode, a short simulation is performed first, and the engine exits after printing the estimate in the log file without saving any results. If set to no, the simulation continues after the memory estimate is printed. Memory estimation is not recommended for simulations that require less than 500MB approximately. For PSS analysis, memory estimate mode does not apply unless flexbalance=yes.memoryestimate=1 estimates the memory usage for large-signal analysis and memoryestimate=2 estimates both large-signal analysis and small-signal simulations.

Possible values are no, and yes.

Oscillator tuning mode parameters

87	tuneparam	When set, tuneparam enables the tuning mode oscillator analysis. In the tuning mode analysis, a circuit parameter is automatically varied to reach the oscillation frequency specified by the fundfreqs parameter. The tuning parameter can be a device instance parameter (as determined by the parameters tunedev) or a netlist parameter. This mode applies only to autonomous circuits (oscillators).
88	tunedev	Sets the instance name of a device whose parameter (identified by tuneparam) will be varied such that the circuit oscillates at the specified frequency. Applies only in tuning mode autonomous analysis. Tunedev must be used with tuneparam.
89	tunerange=[]	The tuning range of the parameter identified by tuneparam. Although tunerange is not required, it can aid in convergence, if set. It can also be used with tunestep or tunelin to decide the acceptable discrete parameter set.
90	tunestep	Specify the step size between two adjacent discrete tuning points. Must be used with 'tunerange'.

Analysis Statements

91	tunelin	Specify the numbers of discrete tuning points. Must be used with 'tunerange'.
92	tunevalues=[]	Specify the values of discrete tuning points.

LSSP parameters

93	lsspports=[]	Specifies the list of ports on which the large-signal 2-port S-parameters are calculated.
94	lsspharms=[]	Specifies the output harmonic for large-signal S- parameter calculations. The input harmonic is defined by the frequency parameters on the input port instance.
95	lsspfile	Identifies the file name for large-signal S-parameter output.
96	lsspdatafmt="touch tone"	Sets the file format of the large-signal S-parameter output. Possible values are spectre and touchstone. Default is touchstone.
97	lsspdatatype="magp hase"	Sets the data format or the large-signal S-parameter output. Possible values are realimag, magphase, and phase. Default is magphase.

Dynamic parameters

98	param	Name of the parameter to be updated during pss/hb analysis (tstab stage). When param=paramName and param_vec=[t1 value1 t2 value2 valuen tn], paramName is set to value1 at t1, value2 at t2, and so on. Pss/hb analysis uses the last value in the param_vec(valuen) to find the steady state.		
99	paramset	Name of dynamic parameter set.		
100	param_vec=[]	The time_value points to param=name.		
101	param_file	The file that contains the time_value points to param=name.		
102	sub	Name of the subcircuit instance parameter specified in param=name.		

Analysis Statements

103	mod	Name of the device model parameter specified in paramename.
104	dev	Name of the device instance parameter specified in param=name.
105	param_step	Defines the frequency of updating the dynamic parameter values. If param_step=0, it updates the parameter value at a given time point.

Osc macro source parameters

106	oscmacrogene=no	If set to yes , harmonic balance steady-state solution is saved. Possible values are no and yes .
107	oscmacroprobe	Specifies the probe for which the current data is to be saved.
108	oscmacroout=[]	Specifies the nodes for which the voltage data is to be saved.
109	oscmacrosave	File to which harmonic balance steady-state solution is to be written.

The initial transient analysis provides a flexible mechanism to direct the circuit to a particular steady-state solution of interest and to avoid undesired solutions. The initial transient simulation also helps convergence by eliminating the large but fast decaying modes that are present in many circuits.

In some circuits, the linearity of the relationship between the initial and final states depends on when HB analysis begins. In practice, starting at a good point can improve convergence, and starting at a bad point can degrade convergence and slow down the analysis.

When HB analysis simulates oscillators, initialization is performed to obtain an initial guess of the steady-state solution and of the oscillating frequency. Two initialization methods are implemented, based on transient and linear analysis. When oscic=default is specified, transient initialization is used and the length of the transient is specified by tstab. You must start the oscillator by using initial conditions or by using a brief impulsive stimulus, just as you would if you were simulating the turn-on transient of the oscillator by using transient analysis. Initial conditions would be provided for the components of the oscillator's resonator. If an impulsive stimulus is used, it should be applied so as to couple strongly into the oscillatory mode of the circuit and poorly into any other long-lasting modes, such as those associated with bias circuitry. The Designers Guide to Spice and Spectre [K. S. Kundert, Kluwer

Analysis Statements

Academic Publishers, 1995] describes in depth some techniques for starting oscillators. When oscic=lin is specified, linear initialization is used. In this method both oscillation frequency and amplitude are estimated based on linear analysis at DC solution. No impulsive stimulus or initial conditions are needed. Linear initialization is suitable for linear type of oscillators, such as LC and crystal oscillators.

Note: tstab transient is still performed after linear initialization, though it can be significantly shortened or skipped. Either way, specifying a non-zero tstab parameter can improve convergence.

For the funds parameter, the frequencies associated with fundamentals are figured out automatically by the simulator. An important feature is that each input signal can be a composition of more than one source. However, these sources must have the same fundamental name. For each fundamental name, the fundamental frequency is the greatest common factor of all frequencies associated with the name. Omitting a fundamental name in the funds parameter is an error that stops the simulation. If maxharms is not given, a warning message is issued, and the number of harmonics defaults to 1 for each of the fundamentals in multi-tone simulation and 10 in single-tone simulation.

HB signal partition is a method of decomposing a circuit so that multi-rate behavior can be exploited to increase simulation performance. If every part of a circuit has the same spectrum structure, such as fundamental frequency and bandwidth, there is no need to apply signal partition. However, if the RF circuit has multiple tones, the signals in different parts can have various spectrum structures, such as different fundamental frequency and number of harmonics. With HB signal partition, you can divide the circuit into several parts based on the signals contained in them. The parameter hbpartition_defs defines the partitions. Each partition can be made up of one or more instances. For example,

```
hbpartition defs = ["I9 I10" "I11 I12" "I13 I14"]
```

defines three partitions. The first partition consists of instance "I9" and "I10" while the second partition consists of instances "I11" and "I12". The third one has "I13" and "I14".

The number of instances for each partition should not be less than 1 and there is no upper limit for the number.

The principle for dividing a circuit is that the subcircuits or instances with the same spectrum properties should be put into one partition. The parameter hbpartition_harms specifies the maximum number of positive harmonics of each tone for every partition. For example:

```
hbpartition harms=["10 0 0" "5 3 3" "3 3 3"]
```

So, the maximum number of positive harmonics for the first partition is 10, 0 and 0, respectively. For the second partition, it is 5, 3 and 3. For the last one, it is 3, 3 and 3.

Analysis Statements

The parameter hbpartition_fundratios indicates the fundamental frequency ratio of each tone for each partition. With these ratios, it is easy to know the fundamental frequencies of each tone of the partitions. For example:

```
hbpartition fundratios=["2 1 1" "1 1 1" "1 1 1"]
```

If three global fundamental frequencies are defined as: LO=1GHz, RF1=1.1GHz and RF2=1.13GHz, it indicates the fundamental frequencies of each tone of the first partition is 2*LO, 1*RF1, and 1*RF2, respectively. The second and third partition has the same frequencies for their each tone: 1*LO, 1*RF1 and 1*RF2. However, you have to make sure that the global fundamental frequencies for each tone are the smallest among all the partitions and the ratios are integers.

The parameter maxperiods default value is set to 50 for HB.

The errpreset parameter lets you adjust the simulator parameters to fit your needs quickly. In most cases, it should also be the only parameter you need to adjust. If you want a fast simulation with reasonable accuracy, you can set errpreset to liberal (it is not recommended to use liberal on an RF circuit). If you have some concern for accuracy, you can set errpreset to moderate. If accuracy is your main interest, you can set errpreset to conservative.

The following table shows the effect of errpreset on other parameters in HB with One-tone Driven Circuits, Multi-tone Driven Circuits and Autonomous Circuits:

Parameter defaults as a function of errpreset with different circuits

	One-tone Driven Circuits		Multi-tone Driven Circuits and Autonomous Circuits	
errpreset	reltol (max)	Iteratio	reltol (max)	Iteratio
liberal	1e-3	3.5	1e-3	3.5
moderate	1e-3	3.5	1e-4	3.5
conservative	1e-4	*	1e-5	*

^{*:} Iteratio=10.0 for conservative errpreset by default. However, when the option reltol <= 1e-4*10.0/3.5, Iteratio is set to 3.5 for one-tone driven circuits and when the option reltol <= 1e-5*10.0/3.5, Iteratio is set to 3.5 for multi-tone driven circuits and autonomous circuits.

The values of reltol are usually different in the tstab interval and in the hb interval. During tstab, reltol is set to the option reltol, whose default value is 1e-3. This part is not impacted by errpreset. If you want to change the value, set reltol in Spectre options. Any value more than 1e-3 is ignored.

Analysis Statements

The value of reltol in the hb interval is affected by both errpreset and the option reltol. errpreset sets the maximum value of reltol (as shown in the table above). If the option reltol is less than the maximum value, it is set to the option reltol. Otherwise, the maximum value is used. reltol value that is more than 1e-3 is ignored.

If errpreset is not specified in the netlist, moderate settings is used.

If the circuit you are simulating has infinitely fast transitions (for example, a circuit that contains nodes with no capacitance), Spectre might have convergence problems. To avoid this, you must prevent the circuit from responding instantaneously. You can accomplish this by setting cmin, the minimum capacitance to ground at each node, to a physically reasonable nonzero value. This often significantly improves Spectre convergence.

You can specify the initial condition for the transient analysis by using the ic statement or the ic parameter on the capacitors and inductors. If you do not specify the initial condition, the DC solution is used as the initial condition. The ic parameter on the transient analysis controls the interaction of various methods of setting the initial conditions. The effects of individual settings are as follows:

ic=dc: All initial conditions are ignored, and the DC solution is used.

ic=node: The ic statements are used, and the ic parameter on the capacitors and inductors is ignored.

ic=dev: The ic parameters on the capacitors and inductors are used, and the ic statements are ignored.

ic=all: Both ic statements and ic parameters are used, and the ic parameters override the ic statements.

If you specify an initial condition file with the readic parameter, initial conditions from the file are used, and any ic statements are ignored.

After you specify the initial conditions, Spectre computes the initial state of the circuit by performing a DC analysis. During this analysis, Spectre forces the initial conditions on nodes by using a voltage source in series with a resistor whose resistance is rforce (see options).

With the ic statement, it is possible to specify an inconsistent initial condition (one that cannot be sustained by the reactive elements). Examples of inconsistent initial conditions include setting the voltage on a node with no path of capacitors to ground or setting the current through a branch that is not an inductor. If you initialize Spectre inconsistently, its solution jumps; that is, it changes instantly at the beginning of the simulation interval. You should avoid such changes because Spectre can have convergence problems while trying to make the jump.

Analysis Statements

You can skip DC analysis entirely by using the parameter <code>skipdc</code>. If DC analysis is skipped, the initial solution is trivial or is given in the file that you specified by using the <code>readic</code> parameter, or if the <code>readic</code> parameter is not specified, by the values specified on the <code>ic</code> statements. Device-based initial conditions are not used for <code>skipdc</code>. Nodes that you do not specify with the <code>ic</code> file or <code>ic</code> statements start at zero. You should not use this parameter unless you are generating a nodeset file for circuits that have trouble in the DC solution; it usually takes longer to follow the initial transient spikes that occur when the DC analysis is skipped than it takes to find the real DC solution. The <code>skipdc</code> parameter might also cause convergence problems in the transient analysis.

The possible settings of parameter skipdc and their descriptions are as follows:

skipdc=no: Initial solution is calculated using normal DC analysis (default).

skipdc=yes: Initial solution is given in the file specified by the readic parameter or the values specified on the ic statements.

skipdc=sigrampup: Independent source values start at 0 and ramp up to their initial values in the first phase of the simulation. The waveform production in the time-varying independent source is enabled after the rampup phase. The rampup simulation is from time=0 s, and the main simulation is from time=0 s to tstab. If the tstart parameter is not specified, the default tstart time is set to -0.1*tstab.

Nodesets help the simulator find the DC or initial transient solution. You can specify nodesets in the circuit description file with nodeset statements, or in a separate file using the readns parameter. When nodesets are specified, Spectre computes an initial guess of the solution by performing DC analysis, while forcing the specified values on to nodes by using a voltage source in series with a resistor whose resistance is rforce. Spectre then removes these voltage sources and resistors and computes the true solution from this initial guess.

Nodesets have two important uses. First, if a circuit has two or more solutions, nodesets can bias the simulator towards computing the desired solution. Second, they are a convergence aid. By estimating the solution of the largest possible number of nodes, you might be able to eliminate a convergence problem or significantly speed up convergence.

Nodesets and initial conditions have similar implementation, but produce different effects. Initial conditions define the solution, whereas nodesets only influence it. When you simulate a circuit with a transient analysis, Spectre forms and solves a set of differential equations. Because differential equations have an infinite number of solutions, a complete set of initial conditions must be specified to identify the required solution. Any initial conditions that you do not specify are computed by the simulator to be consistent. The transient waveforms then start from initial conditions. Nodesets are usually used as a convergence aid and do not affect the final results. However, in a circuit with more than one solution, such as a latch, nodesets bias the simulator towards finding the solution closest to the nodeset values.

Analysis Statements

With parameter hbhomotopy, you can specify harmonic balance homotopy selection methods. The possible values of parameter hbhomotopy and their descriptions are as follows:

hbhomotopy=tstab: Simulator runs a transient analysis and generates an initial guess for harmonic balance analysis; it is recommended for nonlinear circuits or circuits with frequency dividers.

hbhomotopy=source: For driven circuit, the simulator ignores tstab and accordingly increases the source power level; for oscillators, the simulator accordingly adjusts the probe magnitude until the probe has no effect on the oscillators. It is recommended for strongly nonlinear or high Q circuits.

hbhomotopy=tone: This method is valid only for multi-tone circuit. The simulator first solves a single-tone circuit by turning off all the tones, except the first one, and then solves the multi-tone circuit by restoring all the tones and using the single-tone solution as its initial guess. It is recommended for multi-tone simulation with a strong first tone.

hbhomotopy=inctone: The simulator first solves a single tone, then turns on moderate tones incrementally till all tones are enabled. It is recommended for circuits with one strong large tone.

hbhomotopy=gsweep: A resistor, whose conductance is g, is connected with each node, and the sweep of g is controlled by gstart, gstop, and glog. It is recommended for circuits containing high-impedance or quasi-floating nodes.

Parameter Index

In the following index, the number corresponding to each parameter name indicates where to find the description of that parameter:

annotate 55	lowmem 54	param_vec 100	tstabmethod 40
autoharms 4	lsspdatafmt 96	paramset 99	tunedev 88
autosteady 16	lsspdatatype 97	pinnode 32	tunelin 91
autotstab 15	lsspfile 95	pinnodemag 34	tuneparam 87
axisbw 9	lsspharms 94	pinnodeminus 35	tunerange 89

Analysis Statements

backoff 85	lsspports 93	pinnoderank 33	tunestep 90
backtracking 36	mappingfft 8	readhb 60	tunevalues 92
circuitage 58	max_innerkrylov_s ize 43	readic 20	useprevic 22
cmin 25	max_outerkrylov_s ize 44	readns 24	writehb 59
dev 104	maxharms 3	recover 68	xdbcompression
errpreset 41	maximorder 7	restart 57	xdbcpi 84
evenodd 6	maxperiods 42	save 37	xdbgain 71
excludeconvgwithB K 49	maxstep 17	saveclock 65	xdbharm 78
freqdivide 12	memoryestimate 86	savefile 67	xdblevel 70
freqdividevector	minialiasorder 10	saveinit 39	xdbload 74
fundfreqs 2	mod 103	saveperiod 63	xdbmax 80
funds 1	nestlvl 38	saveperiodhistory 64	xdbnoden 76
glog 29	oscic 21	savetime 66	xdbnodep 75
gstart 27	oscmacrogene 106	selectharm 5	xdbrapid 83
gstop 28	oscmacroout 108	selharmread 61	xdbref 72
hbhomotopy 26	oscmacroprobe	selharmvec 11	xdbrefnode 77

Analysis Statements

hbpartition_defs	oscmacrosave 109	selharmwrite 62	xdbsource 73
hbpartition_fundratios 51	oscmethod 31	skipdc 19	xdbstart 81
hbpartition_harms	oversample 48	sub 102	xdbsteps 79
hbprecond_solver	oversamplefactor 47	sweepic 30	xdbtol 82
ic 18	param 98	title 56	
itres 45	param_file 101	tone_homotopy 23	
krylov_size 46	param_step 105	tstab 14	

Analysis Statements

HB AC Analysis (hbac)

Description

The harmonic balance AC (HBAC) analysis computes transfer functions for circuits that exhibit single or multi-tone frequency translation. Such circuits include mixers, switched-capacitor filters, samplers, phase-locked loops, and so on. HBAC is a small-signal analysis like AC analysis, except that the circuit is first linearized about a periodically or quasi-periodically varying operating point, rather than about a simple DC operating point. Linearizing about a periodically or quasi-periodically time-varying operating point allows transfer-functions that include frequency translation, which is not the case when linearizing about a DC operating point because linear time-invariant circuits do not exhibit frequency translation. In addition, the frequency of the sinusoidal stimulus is not constrained by the period of the large periodic solution.

Computing the small-signal response of a periodically or quasi-periodically varying circuit is a two-step process. First, the small stimulus is ignored and the periodic or quasi-periodic steady-state response of the circuit to possibly large periodic stimulus is computed using HB analysis. As part of the HB analysis, the periodically or quasi-periodically time-varying representation of the circuit is computed and saved for later use. The second step is to apply the small stimulus to the periodically or quasi-periodically varying linear representation to compute the small signal response. This is done using the HBAC analysis. An HBAC analysis cannot be used independently; it must follow an HB analysis. However, any number of periodic or quasi-periodic small-signal analyses, such as HBAC, HBSP, or HBNOISE, can follow an HB analysis.

Modulated small signal measurements are possible using the Analog Design Environment (ADE). The modulated option for HBAC and other modulated parameters are set by ADE. HBAC analyses with this option produce results that can have limited use outside ADE. Direct Plot is configured to analyze these results and combine several wave forms to measure AM and PM response due to single sideband or modulated stimuli. For details, see *Spectre Circuit Simulator and Accelerated Parallel Simulator RF Analysis User Guide*.

Note: Unlike other analyses in Spectre, the HBAC analysis can only sweep frequency.

For information on how to run HBAC analysis from ADE, see <u>Harmonic Balance AC</u>
<u>Analysis (hbAC)</u> in the <u>Spectre Circuit Simulator and Accelerated Parallel Simulator</u>
<u>RF Analysis User Guide</u>.

Definition

Name ... hbac parameter=value ...

Analysis Statements

Parameters

Sweep interval parameters

1	start=0	Start sweep limit.
2	stop	Stop sweep limit.
3	center	Center of sweep.
4	span=0	Sweep limit span.
5	step	Step size, linear sweep.
6	lin=50	Number of steps, linear sweep.
7	dec	Points per decade.
8	log=50	Number of steps, log sweep.
9	values=[]	Array of sweep values.
10	valuesfile	Name of the file containing the sweep values.
11	sweeptype=unspecified	Specifies if the sweep frequency range is the absolute frequency of input or if it is relative to the port harmonics. When the unspecified value is used, Spectre RF sweeps using relative when autonomous simulation is performed or when the analysis is PSP; for other cases Spectre RF sweeps the absolute value of the input. Possible values are absolute, relative, and unspecified.
12	relharmvec=[]	Sideband - vector of HB harmonics to which relative frequency sweep should be referenced.

Sampled analysis parameters

13	ptvtype=timeaverag ed	Specifies whether the PTV analysis will be traditional or sampled under certain conditions. Possible values are timeaveraged and sampled.
14	sampleprobe	The crossing event at this port triggers the sampled small signal computation.

Analysis Statements

15	thresholdvalue=0	Sampled measurement is done when the signal crosses this value.
16	crossingdirection= all	Specifies the transitions for which sampling must be done. Possible values are all, rise, fall, and ignore.
17	maxsamples=16	Maximum number of sampled events to be processed during the sampled analysis.
18	<pre>extrasampletimepoi nts=[]</pre>	Additional time points for sampled PTV analysis.

Output parameters

19	sidevec=[]	Array of relevant sidebands for the analysis.
20	maxsideband=7	An alternative to the sidebands array specification, which automatically generates the array: [-maxsideband 0 +maxsideband]. For shooting analysis, the default value is 7. For HB small-signal analysis, the default value is the harms/maxharms setting in the HB large signal analysis. It is ignored in HB small signal when it is more than the harms/maxharms value of large signal.
21	freqaxis	Specifies whether the results should be printed as per the input frequency, the output frequency, or the absolute value of the output frequency. Default is absout. Possible values are absout, out and in.
22	save	Signals to output. Possible values are all, lvl, allpub, lvlpub, selected, none, and nooutput.
23	nestlvl	Levels of subcircuits to output.

Convergence parameters

24	tolerance	Tolerance for the linear solver. The default value is 1.0e-9 for shooting-based solver and 1.0e-4 for harmonic balance-based solver.
25	relativeTol	Relative tolerance for harmonic balance-based linear solver. The default value is 1.0e-2.

Analysis Statements

26	resgmrescycle=shor t	Restarts GMRES cycle. Possible values are instant, short, long, recycleinstant, recycleshort, recyclelong, and custom.
27	hbprecond_solver=a utoset	Select a linear solver for the GMRES preconditioner. Default is autoset. With autoset, the simulator will automatically select the appropriate preconditioner. The preconditioner affects the rate of convergence of the linear matrix solver used in periodic small-signal analysis. When autoset is selected, the simulator may decide to switch to a different preconditioner after the analysis begins. When that happens, the simulator may issue a warning instructing you to choose a different preconditioner during subsequent runs. Although not required, choosing a different preconditioner according to the simulator's instructions may speed up subsequent analyses. Possible values are basicsolver, blocksolver, autoset, blockdense, and blocksolver2.
28	lowmem=0	Harmonic balance low memory mode. Possible values are $0, 1$, or number (>=10). The default value is 0 , it indicates that the low memory mode is turned off; if 1 is set, the standard low memory mode is turned on; If a number greater that or equal to 10 is set, Spectre interprets the value as memory requested in Gigabytes.
29	krylov_size=200	The maximum iteration count of the linear matrix solver used in periodic small-signal analysis. After reaching 1.25*krylov_size iterations, the iteration is forced to terminate because of the poor rate of convergence. Increase the krylov_size if the simulation reports insufficient norm reduction errors in GMRES.

Annotation parameters

30	annotate=sweep	Degree of annotation. Possible values are no, title, sweep, status, steps, and detailed_hb.
31	title	Analysis title.

Analysis Statements

Modulation conversion parameters

32	modulated=no	Compute transfer functions/conversion between modulated sources and outputs. Possible values are single, first, second, and no.
33	inmodharmnum=1	Harmonic value for the PAC input source modulation.
34	<pre>outmodharmvec=[]</pre>	Harmonic list for the PAC output modulations.
35	moduppersideband=1	Index of the upper sideband included in the modulation of an output for PAC or an input for PXF.
36	modsource	Refer the output noise to this component.
37	perturbation=linea r	The type of PAC analysis. The default is linear for normal PAC analysis. im2ds stands for im2 distortion summary and ds stands for distortion summary. Possible values are linear, ds, ip3, ip2, im2ds, multiple_beat, and triple_beat.
38	flin_out=0 Hz	Frequency of linear output signal.
39	fim_out=0 Hz	Frequency of IM output signal.
40	out1="NULL"	Output signal 1.
41	out2="NULL"	Output signal 2.
42	contriblist="NULL"	Array of device names for distortion summary. When contriblist=[""], distortion from each non-linear device is calculated.
43	maxharm_nonlin=4	Maximum harmonics of input signal frequency induced by non-linear effect.
44	rfmag=0	RF source magnitude.
45	rfdbm=0	RF source dBm.
46	rf1_src="NULL"	Array of RF1 source names for IP3/IP2/IM2.
47	rf2_src="NULL"	Array of RF2 source names for IP3/IP2/IM2.
48	rf_src="NULL"	Array of RF source names for triple beat analysis. Triple beat is not supported in shooting engine, PSS must be run before PAC with flexbalance=yes or harmonicbalance=yes.

Analysis Statements

49	freqs=NULL	Array of RF source frequencies for triple beat analysis. Triple beat is not supported in shooting engine, PSS must be run before PAC with flexbalance=yes or harmonicbalance=yes.
50	rfampls=NULL	RF source amplitudes; the units are dBm for ports, Voltage for v-sources and Ampere for i-sources.

You can select the set of periodic small-signal output frequencies of interest by setting either the maxsideband or the sidevec parameter. When there is only one tone in HB analysis, sidebands are n integer numbers, K1, K2, ..., Kn, and the output frequency at each sideband is computed as follows:

```
f(out) = f(in) + Ki * fund(hb)
```

where f (in) represents the (possibly swept) input frequency and fund (hb) represents the fundamental frequency used in the corresponding HB analysis. Thus, when analyzing a down-converting mixer, while sweeping the RF input frequency, the most relevant sideband for IF output is Ki= -1. When simulating an up-converting mixer, while sweeping IF input frequency, the most relevant sideband for RF output is Ki= 1. By setting the maxsideband value to Kmax, all 2 * Kmax + 1 sidebands from -Kmax to +Kmax are generated.

When there are multiple tones in HB analysis, sidebands are vectors. Consider that you have one large tone and one moderate tone in HB. A sideband, K1, is represented as [K1_1 K1_2]. Corresponding frequency is as follows:

```
K1_1 * fund(large tone of HB) + K1_2 * fund(moderate tone of HB)
```

The assumption is that there are L large and moderate tones in HB analysis and a given set of n integer vectors representing the sidebands, $K1 = \{ K1_1, ..., K1_j, ..., K1_L \}$, K2, ..., Kn. The output frequency at each sideband is computed as follows:

```
f(out) = f(in) + SUM_j = 1_to_L\{Ki_j * fund_j(hb)\},
```

where f (in) represents the (possibly swept) input frequency, and fund_j (hb) represents the fundamental frequency used in the corresponding HB analysis. Therefore, when analyzing a down-converting mixer, while sweeping the RF input frequency, the most relevant sideband for IF output is { -1, 0}. When simulating an up-converting mixer, while sweeping IF input frequency, the most relevant sideband for RF output is { 1, 0}. You enter sidevec as a sequence of integer numbers, separated by spaces. The set of vectors {1 1 0} {1 -1 0} {1 1 1} becomes sidevec=[1 1 0 1 -1 0 1 1 1]. For maxsideband, only the large tone, which is the first fundamental, is affected by this entry. All the other tones, which are the moderate tones, are limited by maxharms specified for an HB analysis. Given maxharms=[k1max k2max]

Analysis Statements

```
... knmax] in HB and maxsideband=Kmax, all (2*Kmax + 1)*(2*k2max+1)*(2*k3max+1) *...*(2*knmax+1) sidebands are generated.
```

The number of requested sidebands changes the simulation time substantially.

With HBAC, the frequency of the stimulus and of the response are usually different (this is an important area in which HBAC differs from AC). The freqaxis parameter is used to specify whether the results should be output versus the input frequency (in), the output frequency (out), or the absolute value of the output frequency (absout).

You can specify sweep limits by specifying the end points or the center value and span of the sweep. Steps can be linear or logarithmic, and you can specify the number of steps or the size of each step. You can specify a step size parameter (step, lin, log, or dec) to determine whether the sweep is linear or logarithmic. If you do not specify a step size parameter, the sweep is linear when the ratio of stop to start values is less than 10 and logarithmic when this ratio is 10 or greater. Alternatively, you can use the values parameter to specify the values that the sweep parameter should take. If you provide both a specific set of values and a set specified using a sweep range, the two sets are merged and collated before being used. All frequencies are in Hertz.

Parameter Index

In the following index, the number corresponding to each parameter name indicates where to find the description of that parameter:

annotate 30	lin 6	perturbation 37	sidevec 19
center 3	log 8	ptvtype 13	span 4
contriblist 42	lowmem 28	relativeTol 25	start 1
crossingdirection 16	maxharm_nonlin 43	relharmvec 12	step 5
dec 7	maxsamples 17	resgmrescycle 26	stop 2
extrasampletimepo ints 18	maxsideband 20	rf1_src 46	sweeptype 11
fim_out 39	modsource 36	rf2_src 47	thresholdvalue

Spectre Circuit Simulator Reference Analysis Statements

flin_out 38	modulated 32	rf_src 48	title 31
freqaxis 21	moduppersideband 35	rfampls 50	tolerance 24
freqs 49	nestlvl 23	rfdbm 45	values 9
hbprecond_solver	out1 40	rfmag 44	valuesfile 10
inmodharmnum 33	out2 41	sampleprobe 14	
krvlov size 29	outmodharmvec 34	save 22	

HB Noise Analysis (hbnoise)

Description

The Periodic or Quasi-Periodic Noise (HBNOISE) analysis is similar to the conventional noise analysis, except that HBNOISE analysis includes frequency conversion effects. Hence, it is useful for predicting the noise behavior of mixers, switched-capacitor filters, and other periodically or quasi-periodically driven circuits. It is particularly useful for predicting the phase noise of autonomous circuits, such as oscillators.

HBNOISE analysis linearizes the circuit about the periodic or quasi-periodic operating point computed in the prerequisite HB analysis. It is the periodically or quasi-periodically time-varying nature of the linearized circuit that accounts for the frequency conversion. In addition, the effect of a periodically or quasi-periodically time-varying bias point on the noise generated by the various components in the circuit is also included.

The time-average of the noise at the output of the circuit is computed in the form of a spectral density versus frequency. The output of the circuit is specified with either a pair of nodes or a probe component. To specify the output of a circuit with a probe, specify it using the oprobe parameter. If the output is voltage (or potential), choose a resistor or port as the output probe. If the output is current (or flow), choose a vsource or iprobe as the output probe.

If the input-referred noise or noise figure is desired, specify the input source using the iprobe parameter. For input-referred noise, use either a vsource or isource as the input probe; for noise figure, use a port as the probe. Currently, only a vsource, an isource, or a port can be used as an input probe. If the input source is noisy, as is a port, the noise analysis computes the noise factor (F) and noise figure (NF). To match the IEEE definition of noise figure, the input probe must be a port with no excess noise and its noisetemp must be set to 16.85C (290K). In addition, the output load must be a resistor or port and must be identified as the oprobe.

If port is specified as the input probe, both input-referred noise and gain are referred back to the equivalent voltage source inside the port. S-parameter analysis calculates those values in traditional sense.

The reference sideband (refsideband) specifies which conversion gain is used when computing input-referred noise, noise factor, and noise figure. The reference sideband specifies the input frequency relative to the output frequency with:

```
|f(input)| = |f(out) + refsideband frequency shift|.
```

For periodic noise (only one tone in HB analysis), refsideband is a number. Use refsideband=0 when the input and output of the circuit are at the same frequency, such as

Analysis Statements

with amplifiers and filters. When refsideband differs from 0, the single side-band noise figure is computed.

While for quasi-periodic noise (multiple tones in HB analysis), reference sidebands are vectors. Assume that there is one large tone and one moderate tone in HB. A sideband Ki is a vector [Ki_1 Ki_2]. It gives the frequency at:

```
Ki 1 * fund(large tone of HB) + Ki 2 * fund(moderate tone of HB)
```

Use refsideband=[0 0 ...] when the input and output of the circuit are at the same frequency, such as with amplifiers and filters.

The reference sideband option (refsidebandoption) specifies whether to consider the input at the frequency or the input at the individual quasi-periodic sideband specified.

Note: Different sidebands can lead to the same frequency.

The noise analysis always computes the total noise at the output, which includes contributions from the input source and the output load. The amount of the output noise that is attributable to each noise source in the circuit is also computed and output individually. If the input source is identified (using iprobe) and is a vsource or isource, the input-referred noise is computed, which includes the noise from the input source itself. Finally, if the input source is identified (using iprobe) and is noisy, as is the case with ports, the noise factor and noise figure are computed. Therefore, if:

No = total output noise

Ns = noise at the output due to the input probe (the source)

Nsi = noise at the output due to the image harmonic at the source

Nso = noise at the output due to harmonics other than input at the source

NI = noise at the output due to the output probe (the load)

IRN = input referred noise

G = gain of the circuit

F = noise factor

NF = noise figure

Fdsb = double sideband noise factor

NFdsb = double sideband noise figure

Analysis Statements

Fieee = IEEE single sideband noise factor

NFieee = IEEE single sideband noise figure

Then:

 $IRN = sqrt(No^2/G^2)$

 $F = (No^2 - NI^2)/Ns^2$

NF = 10*log10(F)

 $Fdsb = (No^2 - NI^2)/(Ns^2 + Nsi^2)$

NFdsb = 10*log10(Fdsb)

 $Fieee = (No^2 - NI^2 - Nso^2)/Ns^2$

NFieee = 10*log10(Fieee).

When the results are output, No is named out, IRN is named in, G is named gain, F, NF, Fdsb, NFdsb, Fieee, and NFieee are named F, NF, Fdsb, NFdsb, Fieee, and NFieee respectively.

The computation of gain and IRN for quasi-periodic noise in HBNOISE assumes that the circuit under test is impedance-matched to the input source. This can introduce inaccuracy into the gain and IRN computation.

An HBNOISE analysis must follow an HB analysis.

Note: Unlike other analyses in Spectre, this analysis can only sweep frequency.

For information on how to run HB noise analysis from ADE, see <u>Harmonic Balance Noise</u> <u>Analysis (hbnoise)</u> in the <u>Spectre Circuit Simulator and Accelerated Parallel Simulator RF Analysis User Guide</u>.

Definition

```
Name [p] [n] ... hbnoise parameter=value ...
```

The optional terminals (p and n) specify the output of the circuit. If you do not specify the terminals, you must specify the output with a probe component.

Parameters

Analysis Statements

Sweep interval parameters

		·
1	start=0	Start sweep limit.
2	stop	Stop sweep limit.
3	center	Center of sweep.
4	span=0	Sweep limit span.
5	step	Step size, linear sweep.
6	lin=50	Number of steps, linear sweep.
7	dec	Points per decade.
8	log=50	Number of steps, log sweep.
9	values=[]	Array of sweep values.
11	valuesfile	Name of the file containing the sweep values.
11	sweeptype=unspecifi	Led
		Specifies if the sweep frequency range is the absolute frequency of input or if it is relative to the port harmonics. When the unspecified value is used, Spectre RF sweeps using relative when autonomous simulation is performed or when the analysis is PSP; for other cases Spectre RF sweeps the absolute value of the input. Possible values are absolute, relative, and unspecified.
12	relharmvec=[]	Sideband - vector of HB harmonics to which relative frequency sweep should be referenced.

Probe parameters

13	oprobe	Compute total noise at the output defined by this component.
14	iprobe	Refer the output noise to this component.
15	refsideband=[]	Conversion gain associated with this sideband is used when computing input-referred noise or noise figure.
16	refsidebandoption= individual	Whether to view the sideband as a specification of a frequency or a specification of an individual sideband. Possible values are freq and individual.

Analysis Statements

Sampled analysis parameters

17	ptvtype=timeaverag ed	Specifies whether the PTV analysis will be traditional or sampled under certain conditions. Possible values are timeaveraged and sampled.
18	<pre>extrasampletimepoi nts=[]</pre>	Additional time points for sampled PTV analysis.
19	sampleprobe	The crossing event at this port triggers the sampled small signal computation.
20	noiseskipcount=-1	Calculate time-domain noise on only one of every noiseskipcount time points. When < 0, the parameter is ignored. When >=0, the simulator uses this parameter and ignores numberofpoints.
21	<pre>noisetimepoints=[]</pre>	Additional time points for time-domain noise analysis.
22	numberofpoints=5	Number of time points of interest in the period where time domain PSD is calculated. Simulator divides the period evenly into N segments (N=numberofpoints) and calculates time domain PSD on the starting time point of each segment. When < 0, the parameter is ignored.
23	thresholdvalue=0	Sampled measurement is done when the signal crosses this value.
24	crossingdirection= all	'Specifies the transitions for which sampling must be done. Possible values are all, rise, fall, and ignore.
25	maxsamples=16	Maximum number of sampled events to be processed during the sampled analysis.
26	measurement=NULL	Specifies the jitter event list that will be measured.

Output parameters

27	noisetype=timeaver age	Specifies the computation of time-averaged or time- sampled noise information. Possible values are
		timeaverage, correlations, timedomain,
		pmjitter, and sampled.

Analysis Statements

28	maxsideband=7	This parameter determines the maximum sideband included when computing noise, that is, either upconverted or down-converted to the output by the periodic drive signal. This parameter also determines the size of the small signal system when hbnoise is performed. This parameter is critical for the accuracy of hbnoise analysis. Using a small maxsideband may cause accuracy loss. The default value is the harms/maxharms setting in the HB large signal analysis.
29	noiseout=usb	Specify the noise output. You can set a vector like noiseout=[usb am pm]. All of these use the single sideband (SSB) convention, which is half of the total power. Possible values are usb, lsb, am, and pm.
30	sidevec=[]	Array of relevant sidebands for the analysis.
31	save	Signals to output. This option specifies the signals to be saved in the result. Possible values are all, lvl , allpub, $lvlpub$, and $selected$.
		allpub saves all signals at all levels of hierarchy in the schematic, including the internal signals of device models.
		■ all works like allpub.
		■ lvl saves all signals through the level of hierarchy set in nestlvl option.
		■ lvlpub works like lvl.
		■ selected is not recommended to use here.
32	nestlvl	Levels of subcircuits to output.
33	saveallsidebands=no	
		Save noise contributors by sideband. Possible values are no and ${\tt yes.}$
34	output_xf=no	If set to no , there are no xf results output in hbnoise. Possible values are no and yes .
35	stimuli=sources	Stimuli used for XF analysis in hbnoise. Possible values are sources and nodes_and_terminals.
36	separatenoise=no	Separate noise into sources and transfer functions. Possible values are no and yes.

Analysis Statements

37		Output cyclo-stationary noise to text file as input source
37	cyclo2txtfile=no	· · · · · · · · · · · · · · · · · · ·
		of next stage. Possible values are no and yes.

Convergence parameters

38	tolerance	Tolerance for linear solver. The default value is 1.0e-9 for shooting-based solver and 1.0e-4 for harmonic balance-based solver.
39	relativeTol	Relative tolerance for harmonic balance-based linear solver. The default value is 1.0e-2.
40	resgmrescycle=shor t	Restarts GMRES cycle. Possible values are instant, short, long, recycleinstant, recycleshort, custom and recyclelong.
41	hbprecond_solver=au	ıtoset
		Select a linear solver for the GMRES preconditioner. Default is autoset. With autoset, the simulator will automatically select the appropriate preconditioner. The preconditioner affects the rate of convergence of the linear matrix solver used in periodic small-signal analysis. When autoset is selected, the simulator may decide to switch to a different preconditioner after the analysis begins. When that happens, the simulator may issue a warning instructing you to choose a different preconditioner during subsequent runs. Although not required, choosing a different preconditioner according to the simulator's instructions may speed up subsequent analyses. Possible values are basicsolver, blocksolver, autoset, blockdense, and blocksolver2.
42	lowmem=0	Harmonic balance low memory mode. Possible values are $0, 1$, or number (>=10). The default value is 0 , it indicates that the low memory mode is turned off; if 1 is set, the standard low memory mode is turned on; If a number greater that or equal to 10 is set, Spectre interprets the value as memory requested in Gigabytes.
43	ppv=no	If set to yes , save the oscillator PPV after performing noise analysis. Possible values are no and yes .

Analysis Statements

44	augmented=yes	If set to yes, the frequency-aware PPV method is used to calculate the total noise of the oscillator; if set to pmonly, only the PM part of the oscillator noise is calculated; if set to amonly, only the AM part of the oscillator noise is calculated. The output of AM/PM noise uses the double sideband convention. Possible values are no, yes, pmonly, and amonly.
		Note: This parameter will be removed in a future release. It is recommended to use the noiseout parameter.
45 lorentzian=cornerfreqonly		regonly
		This option determines if the Lorentzian plot is used in the oscillator noise analysis. Possible values are no, cornerfreqonly and yes.
46	krylov_size=200	The maximum iteration count of the linear matrix solver used in periodic small-signal analysis. After reaching 1.25*krylov_size iterations, the iteration is forced to terminate because of the poor rate of convergence. Increase the krylov_size if the simulation reports insufficient norm reduction errors in GMRES.

Annotation parameters4

47	annotate=sweep	Degree of annotation. Possible values are no, title, sweep, status, steps, and detailed_hb.
48	title	Analysis title.
49	oscmacrogene=no	If set to yes , harmonic balance steady-state and phase noise data are saved. Applies only if there is pm noise out. Possible values are no and yes .
50	oscmacrosave	File to which harmonic balance steady-state solution and phase noise data are to be written.

In practice, noise can mix with each of the harmonics of the periodic drive signal applied in the HB analysis and end up at the output frequency. However, the HBNOISE analysis includes only the noise that mixes with a finite set of harmonics that are typically specified using the maxsideband parameter.

If Ki represents sideband i, then for periodic noise:

Analysis Statements

```
f(noise_source) = f(out) + Ki * fund(hb)
```

For quasi-periodic noise with multi-tone in HB analysis, assuming that there is one large tone and one moderate tone, Ki is represented as [Ki_1 Ki_2]. Corresponding frequency shift is as follows:

```
Ki_1 * fund(large tone of HB) + Ki_2 * fund(moderate tone of HB)
```

If there are L large and moderate tones in HB analysis and a set of n integer vectors representing the sidebands, then:

```
f(noise_source) = f(out) + SUM_j=1_to_L{ Ki_j * fund_j(hb) }
```

The maxsideband parameter specifies the maximum IKil included in the HBNOISE calculation. For quasi-periodic noise, only the large tone, which is the first fundamental, is affected by this entry. All the other tones, which are the moderate tones, are limited by maxharms specified for an HB analysis.

The number of requested sidebands changes the simulation time substantially.

You can designate a voltage to be the output by specifying a pair of nodes on the HBNOISE analysis statement or by using the oprobe parameter. Any component with two or more terminals can be a voltage probe. When there are more than two terminals, they are grouped in pairs, and you use the porty parameter to select the appropriate pair.

Any component that naturally computes current as an internal variable can be a current probe. If the probe component computes more than one current, you use the portiparameter to select the appropriate current. You must not specify both porty and porti. If you specify neither, the probe component provides a reasonable default.

You can use the stimuli parameter to specify what serves as the inputs for the transfer functions. There are two choices: stimuli=sources and stimuli=nodes_and_terminals.

stimuli=sources indicates that the sources present in the circuit are to be used. You can use the xfmag parameters provided by the sources to adjust the computed gain to compensate for gains or losses in a test fixture. You can limit the number of sources in hierarchical netlists by using the save and nestlvl parameters.

stimuli=nodes_and_terminals indicates that all possible transfer functions are to be computed. This is useful when it is not known in advance which transfer functions are interesting. Transfer functions for nodes are computed assuming that a unit magnitude flow (current) source is connected from the node to ground. Transfer functions for terminals are computed assuming that a unit magnitude value (voltage) source is connected in series with the terminal. By default, the transfer functions from a small set of terminals are computed. If

Analysis Statements

you want transfer functions from specific terminals, specify the terminals in the save statement. You must use the :probe modifier (for example, Rout:1:probe), or specify useprobes=yes on the options statement. If you want transfer functions from all terminals, specify currents=all and useprobes=yes on the options statement.

You can specify sweep limits by specifying the end points, or the center value and span of the sweep. Steps can be linear or logarithmic, and you can specify the number of steps or the size of each step. You can specify a step size parameter (step, lin, log, or dec) to determine whether the sweep is linear or logarithmic. If you do not specify a step size parameter, the sweep is linear when the ratio of stop to start values is less than 10 and logarithmic when this ratio is 10 or greater. Alternatively, you can use the values parameter to specify the values that the sweep parameter should take. If you provide both a specific set of values and a set specified using a sweep range, the two sets are merged and collated before being used. All frequencies are in Hertz.

Parameter Index

In the following index, the number corresponding to each parameter name indicates where to find the description of that parameter:

annotate 47	lowmem 42	output_xf 34	span 4
augmented 44	maxsamples 25	ppv 43	start 1
center 3	maxsideband 28	ptvtype 17	step 5
crossingdirection 24	measurement 26	refsideband 15	stimuli 35
cyclo2txtfile 37	nestlvl 32	refsidebandoption 16	stop 2
dec 7	noiseout 29	relativeTol 39	sweeptype 11
extrasampletimepo ints 18	noiseskipcount 20	relharmvec 12	thresholdvalue
hbprecond_solver	noisetimepoints 21	resgmrescycle 40	title 48
iprobe 14	noisetype 27	sampleprobe 19	tolerance 38

Analysis Statements

krylov_size 46	numberofpoints 22	save 31	values 9
lin 6	oprobe 13	saveallsidebands 33	valuesfile 10
log 8	oscmacrogene 49	separatenoise 36	
lorentzian 45	oscmacrosave 50	sidevec 30	

Analysis Statements

HB S-Parameter Analysis (hbsp)

Description

The periodic or quasi-periodic SP (HBSP) analysis is used to compute scattering and noise parameters for n-port circuits such as mixers that exhibit frequency translation. It is a small-signal analysis similar to SP analysis, except that in HBAC and HBNOISE, the circuit is first linearized about a periodically varying operating point as opposed to a simple DC operating point. Linearizing about a periodically or quasi-periodically time-varying operating point allows the computation of S-parameters between circuit ports that convert signals from one frequency band to another. HBSP can also calculate noise parameters in frequency-converting circuits. In addition, HBSP computes noise figure (both single-sideband and double-sideband), input referred noise, equivalent noise parameters, and noise correlation matrices. Similar to HBNOISE, but unlike SP, the noise features of the HBSP analysis include noise folding effects due to the periodic time-varying nature of the circuit.

Computing the n-port S-parameters and noise parameters of a periodically varying circuit is a two-step process. First, the small stimulus is ignored and the periodic or quasi-periodic steady-state response of the circuit to possibly large periodic stimulus is computed using HB analysis. As part of the HB analysis, the periodically time-varying representation of the circuit is computed and saved for later use. The second step is to apply small-signal excitations to compute the n-port S-parameters and noise parameters. This is done using the HBSP analysis. HBSP analysis cannot be used independently; it must follow HB analysis. However, any number of periodic small-signal analyses such as HBAC, HBSP, HBNOISE, can follow an HB analysis.

Note: Unlike other analyses in Spectre, this analysis can only sweep frequency.

For information on how to run HB noise analysis from ADE, see <u>hbSP Analysis</u> in the Spectre Circuit Simulator and Accelerated Parallel Simulator RF Analysis User Guide.

Definition

Name hbsp parameter=value ...

Parameters

Analysis Statements

Sweep interval parameters

1	start=0	Start sweep limit.
2	stop	Stop sweep limit.
3	center	Center of sweep.
4	span=0	Sweep limit span.
5	step	Step size, linear sweep.
6	lin=50	Number of steps, linear sweep.
7	dec	Points per decade.
8	log=50	Number of steps, log sweep.
9	values=[]	Array of sweep values.
10	valuesfile	Name of the file containing the sweep values.
11	sweeptype=unspecified	
		Specifies if the sweep frequency range is the absolute frequency of input or if it is relative to the port harmonics. When the unspecified value is used, Spectre RF sweeps using relative when autonomous simulation is performed or when the analysis is PSP; for other cases Spectre RF sweeps the absolute value of the input. Possible values are absolute, relative, and unspecified.

Port parameters

12	ports=[]	List of active ports. Ports are numbered in the specified order. For noise figure computation, the input is considered as port 1 and the output as port 2.
13	portharmsvec=[]	List of harmonics that are active on specified list of ports. Must have a one-to-one correspondence with the ports vector.
14	harmsvec=[]	List of harmonics, in addition to the ones associated with specific ports by portharmsvec, that are active.

Analysis Statements

Output parameters

15	freqaxis	Specifies whether the results should be printed as per the input frequency, the output frequency, or the absolute value of the input frequency. Default is in. Possible values are absin, in, and out.
16	file	Name of the output file. It just supports S-parameters in PSP, HBSP, and QPSP analyses.
17	datafmt=spectre	Data format of the S-parameter output file. Possible values are spectre, touchstone, and touchstone2.
18	datatype=realimag	Data type of the S-parameter output file. Possible values are realimag, magphase, and dbphase.

Noise parameters

19	donoise=yes	Perform noise analysis. If oprobe is specified as a valid port, this parameter is set to yes, and a detailed noise output is generated. Possible values are no and yes.
		output is generated. Possible values are no and yes.

Probe parameters

Spectre Circuit Simulator Reference Analysis Statements

Convergence parameters

tolerance	Tolerance for linear solver. The default value is 1.0e-9 for shooting-based solver and 1.0e-4 for harmonic balance-based solver.
relativeTol	Relative tolerance for harmonic balance-based linear solver. Default value is 1.0e-2.
hbprecond_solver=au	toset
	Select a linear solver for the GMRES preconditioner. Default is autoset. With autoset, the simulator automatically selects the appropriate preconditioner. The preconditioner affects the rate of convergence of the linear matrix solver used in periodic small-signal analysis. When autoset is selected, the simulator may decide to switch to a different preconditioner after the analysis begins. When that happens, the simulator may issue a warning instructing you to choose a different preconditioner during subsequent runs. Although not required, choosing a different preconditioner according to the simulator's instructions may speed up subsequent analyses. Possible values are basicsolver, blocksolver, autoset, blockdense, and blocksolver3.
lowmem=0	Harmonic balance low memory mode. Possible values are $0, 1$, or number (>=10). The default value is 0 , it indicates that the low memory mode is turned off; if 1 is set, the standard low memory mode is turned on; If a number greater that or equal to 10 is set, Spectre interprets the value as memory requested in Gigabytes.
krylov_size=200	The maximum iteration count of the linear matrix solver used in periodic small-signal analysis. After reaching 1.25*krylov_size iterations, the iteration is forced to terminate because of the poor rate of convergence. Increase the krylov_size if the simulation reports insufficient norm reduction errors in GMRES.
	relativeTol hbprecond_solver=au lowmem=0

135

Analysis Statements

Annotation parameters

26	annotate=sweep	Degree of annotation. Possible values are no, title, sweep, status, steps, and detailed_hb.
27	title	Analysis title.

To specify the HBSP analysis, the port and port harmonic relations must be specified. You can select the ports of interest by setting the port parameter, and select the set of periodic small-signal output frequencies of interest by setting portharmsvec or harmsvec parameters. For a given set of n integer numbers representing the harmonics K1, K2, ... Kn, the scattering parameters at each port are computed at the following frequencies:

For periodic SP in one-tone HB analysis, frequency is:

```
f(scattered) = f(rel) + Ki * fund(HB)
```

For quasi-periodic noise with multi-tone in HB analysis, sidebands are vectors. Consider that you have one large tone and one moderate tone in HB. Then, the above sideband K1 will be represented as [K1_1 K1_2]. In this case, the corresponding frequency is:

```
K1_1 * fund(large tone of HB) + K1_2 * fund(moderate tone of HB) =
SUM_j=1_to_L{Ki_j * fund_j(HB)}
```

If there are L (1 large plus L-1 moderate) tones in HB analysis and a given set of n integer vectors representing the sidebands:

```
K1 = \{ K1_1, ..., K1_j, ..., K1_L \} , K2, ..., Kn
```

If you specify the relative frequency, the scattering parameters at each port are computed at the frequencies:

```
f(scattered) = f(rel) + SUM_j=1_to_L{Ki_j * fund_j(hb)},
```

where f(rel) represents the relative frequency of a signal incident on a port, f(scattered) represents the frequency to which the relevant scattering parameter represents the conversion, and $fund(one-tone\ HB)$ or $fund_j(multi-tone\ HB)$ represents the fundamental frequency used in the corresponding HB analysis.

During analysis of a down-converting mixer with a blocker and the signal in the upper sideband, we sweep the input frequency of the signal coming into RF port. In case of periodic SP with one-tone HB, the most relevant harmonic for RF input is Ki= 1 and for IF output Ki= 0. Therefore, we can associate K2=0 with the IF port and K1=1 with the RF port. S21 represents the transmission of signal from the RF to IF, and S11 represents the reflection of

Analysis Statements

signal back to the RF port. If the signal was in the lower sideband, a choice of K1=-1 is more appropriate. For quasi-periodic SP with multi-tone HB, the most relevant sideband for this input is $Ki = \{1, 0\}$ and for IF output $Ki = \{0, 0\}$. Therefore, we can associate $K1 = \{1, 0\}$ with the RF port and $K2 = \{0, 0\}$ with the IF port. If the signal was in the lower sideband, then a choice of $K1 = \{-1, 0\}$ is more appropriate.

The parameter portharmsvec or harmsvec can be used to specify the harmonics of interest. If portharmsvec is specified, the harmonics must be in one-to-one correspondence with the ports, with each harmonic associated with a single port. If harmonics are specified in the optional harmsvec parameter, all possible frequency-translating scattering parameters associated with the specified harmonics are computed.

With HBSP, the frequencies of the input and of the response are usually different (this is an important area in which HBSP differs from SP). Because the HBSP computation involves inputs and outputs at frequencies that are relative to multiple harmonics or sidebands, the freqaxis and sweeptype parameters behave differently in HBSP than in HBAC and HBNOISE.

The sweeptype parameter controls the way the frequencies in the HBSP analysis are swept. Specifying a relative sweep indicates the sweep to be relative to the analysis harmonics or port sideband (not the HB fundamental) and specifying an absolute sweep indicates the sweep of the absolute input source frequency.

For example, in case of periodic SP with one-tone HB and HB fundamental of 100MHz, portharmsvec is set to [9 1] to examine a downconverting mixer. Using sweeptype=relative and a sweep range of f(rel)=0->50MHz, S21 represents the strength of signal transmitted from the input port in the range 900->950MHz to the output port at frequencies 100->150MHz. Using sweeptype=absolute and sweeping the frequency from 900->950MHz calculates the same quantities, because f(abs)=900->950MHz, f(rel) = f(abs) - K1 * fund(hb) = 0->50MHz, with K1=9, and fund(hb) = 100MHz.

For quasi-periodic noise with multi-tone HB and HB fundamentals of 1000MHz (LO) and 966MHz (blocker in RF channel), portharmsvec could be set to [0 1 -1 1] to examine a downconverting mixer. Consider setting <code>sweeptype=relative</code> and a sweep range of f(rel)=-10MHz, S21 represents the strength of the signal transmitted from the input port in the range 956->976MHz to the output port at the frequencies 24<->44MHz. Using <code>sweeptype=absolute</code> and <code>sweeping</code> the frequency from 966<->976MHz calculates the same quantities, because f(abs)=956<->976MHz, f(rel) = f(abs) - (K1_1 * fund_1(hb) + K1_2 * fund_2(hb)) = -10MHz<->10MHz, with K1_1=0, K1_2=1, fund_1(hb) = 1000MHz, and fund_2(hb) = 966MHz.

The freqaxis parameter is used to specify whether the results should be output versus the scattered frequency at the input port (in), the scattered frequency at the output port (out), or the absolute value of the frequency swept at the input port (absin).

Analysis Statements

HBSP analysis also computes noise figures, equivalent noise sources, and noise parameters. The noise computation, which is skipped only when <code>donoise=no</code>, requires additional simulation time. If:

No = total output noise at frequency f

Ns = noise at the output due to the input probe (the source)

Nsi = noise at the output due to the image harmonic at the source

Nso = noise at the output due to harmonics other than input at the source

NI = noise at the output due to the output probe (the load)

IRN = input referred noise

G = gain of the circuit

F = noise factor (single side band)

NF = noise figure (single side band)

Fdsb = double sideband noise factor

NFdsb = double sideband noise figure

Fieee = IEEE single sideband noise factor

NFieee = IEEE single sideband noise figure

Then:

 $IRN = sqrt(No^2/G^2)$

 $F = (No^2 - NI^2)/Ns^2$

NF = 10*log10(F)

 $Fdsb = (No^2 - NI^2)/(Ns^2 + Nsi^2)$

NFdsb = 10*log10(Fdsb)

 $Fieee = (No^2 - NI^2 - Nso^2)/Ns^2$

NFieee = 10*log10(Fieee).

Analysis Statements

When the results are output, IRN is named in, G is named gain, F, NF, Fdsb, NFdsb, Fieee, and NFieee are named F, NF, Fdsb, NFdsb, Fieee, and NFieee, respectively.

Note: The gain computed by HBSP is the voltage gain from the actual circuit input to the circuit output, not the gain from the internal port voltage source to the output.

To ensure accurate noise calculations, the maxsideband or sidebands parameters must be set to include the relevant noise folding effects. maxsideband is only relevant to the noise computation features of HBSP.

You can specify sweep limits by specifying the end points or by specifying the center value and span of the sweep. Steps can be linear or logarithmic, and you can specify the number of steps or the size of each step. You can specify a step size parameter (step, lin, log, or dec) to determine whether the sweep is linear or logarithmic. If you do not specify a step size parameter, the sweep is linear when the ratio of stop to start values is less than 10, and logarithmic when this ratio is 10 or greater. Alternatively, you can use the values parameter to specify the values that the sweep parameter should take. If you provide both a specific set of values and a set specified using a sweep range, the two sets are merged and collated before being used. All frequencies are in Hertz.

Parameter Index

In the following index, the number corresponding to each parameter name indicates where to find the description of that parameter:

annotate 26	freqaxis 15	maxsideband 20	stop 2
center 3	harmsvec 14	portharmsvec 13	sweeptype 11
datafmt 17	hbprecond_solver	ports 12	title 27
datatype 18	krylov_size 25	relativeTol 22	tolerance 21
dec 7	lin 6	span 4	values 9
donoise 19	log 8	start 1	valuesfile 10
file 16	lowmem 24	step 5	

Analysis Statements

HB Stability Analysis (hbstb)

Description

The HBSTB analysis is used to evaluate the local stability of a periodically varying feedback circuit. It is a small-signal analysis like STB analysis, except that the circuit is first linearized about a periodically varying operating point as opposed to a simple DC operating point. Linearizing about a periodically time-varying operating point allows the stability evaluation to include the effect of the time-varying operating point.

Evaluating the stability of a periodically varying circuit is a two-step process. In the first step, the small stimulus is ignored and HB analysis is used to compute the periodic steady-state response of the circuit to a possibly large periodic stimulus. As part of the HB analysis, the periodically time-varying representation of the circuit is computed and saved for later use. In the second step, a probe is used to compute the loop gain of the zero sideband. The local stability can be evaluated using gain margin, phase margin, or a Nyquist plot of the loop gain. To perform HBSTB analysis, a probe instance must be specified as probe parameter.

The loop-based algorithm requires that a probe be placed on the feedback loop to identify and characterize the particular loop of interest. The introduction of the probe component should not change any of the circuit characteristics. For the time-varying property of the circuit, the loop gain at different places can be different, but all values can be used to evaluate the stability. The loop-based algorithm provides stability information for single-loop circuits and for multi-loop circuits in which a probe component can be placed on a critical wire to break all loops. For a typical multi-loop circuit, such a critical wire may not be available. The loop-based algorithm can be used only on individual feedback loops to ensure that they are stable.

The device based algorithm requires the probe be a gain instant, such as a bit transistor or a mos transistor. The device-based algorithm evaluates the loop gain around the probe, which can be involved in mutiloops.

Note: Note: Unlike other analyses in Spectre, this analysis can only sweep frequency.

For information on how to run HBSTB analysis from ADE, see <u>Harmonic Balance Stability</u> <u>Analysis (HBSTB)</u>in the <u>Spectre Circuit Simulator and Accelerated Parallel Simulator RF Analysis User Guide</u>.

Definition

Name hbstb parameter=value ...

Analysis Statements

Parameters

Sweep interval parameters

1	start=0	Start sweep limit.
2	stop	Stop sweep limit.
3	center	Center of sweep.
4	span=0	Sweep limit span.
5	step	Step size, linear sweep.
6	lin=50	Number of steps, linear sweep.
7	dec	Points per decade.
8	log=50	Number of steps, log sweep.
9	values=[]	Array of sweep values.
10	valuesfile	Name of the file containing the sweep values.

Probe parameters

11	probe	Probe instance around which the loop gain is calculated.
12	localgnd	Node name of local ground. If not specified, the probe is referenced to global ground.

Output parameters

13	save	Signals to output. Possible values are all, 1v1,
		allpub, lvlpub, selected, none, and nooutput.
14	nestlvl	Levels of subcircuits to output.

Analysis Statements

Convergence parameters

15	tolerance	Tolerance for linear solver. The default value is 1.0e-9 for shooting-based solver and 1.0e-4 for harmonicbalance-based solver.
16	relativeTol	Relative tolerance for harmonic balance-based linear solver. Default value is 1.0e-2.
17	gear_order=2	Gear order used for small-signal integration.
18	solver=turbo	Solver type. Possible values are std, turbo, std_hh, and turbo_hh.
19	oscsolver=turbo	Oscillator solver type. It is recommended that you use ira for huge circuits. Possible values are std, turbo, ira, and direct.
20	resgmrescycle=shor t	Restarts GMRES cycle. Possible values are instant, short, long, recycleinstant, recycleshort, custom, and recyclelong.
21	hbprecond_solver=a utoset	Select a linear solver for the GMRES preconditioner. Default is autoset. With autoset, the simulator will automatically select the appropriate preconditioner. The preconditioner affects the rate of convergence of the linear matrix solver used in periodic small-signal analysis. When autoset is selected, the simulator may decide to switch to a different preconditioner after the analysis begins. When that happens, the simulator may issue a warning instructing you to choose a different preconditioner during subsequent runs. Although not required, choosing a different preconditioner according to the simulator's instructions may speed up subsequent analyses. Possible values are basicsolver, blocksolver, autoset, blockdense,, and blocksolver2.
22	krylov_size=200	The maximum iteration count of the linear matrix solver used in periodic small-signal analysis. After reaching 1.25*krylov_size iterations, the iteration is forced to terminate because of the poor rate of convergence. Increase the krylov_size if the simulation reports insufficient norm reduction errors in GMRES.

Analysis Statements

Annotation parameters

23	annotate=sweep	Degree of annotation. Possible values are no, title, sweep, status, steps, and detailed_hb.
24	title	Analysis title.

You can specify sweep limits by specifying the end points, or by specifying the center value and span of the sweep. Steps can be linear or logarithmic, and you can specify the number of steps or the size of each step. You can specify a step size parameter (step, lin, log, or dec) to determine whether the sweep is linear or logarithmic. If you do not specify a step size parameter, the sweep is linear when the ratio of stop to start values is less than 10, 10 and logarithmic when this ratio is 10 or greater. Alternatively, you can use the values parameter to specify the values that the sweep parameter should take. If you provide both a specific set of values and a set specified using a sweep range, the two sets are merged and collated before being used. All frequencies are in Hertz.

Parameter Index

In the following index, the number corresponding to each parameter name indicates where to find the description of that parameter.

annotate 23	lin 6	relativeTol 16	step 5
center 3	localgnd 12	resgmrescycle 20	stop 2
dec 7	log 8	save 13	title 24
gear_order 17	nestlvl 14	solver 18	tolerance 15
hbprecond_solver	oscsolver 19	span 4	values 9
krylov_size 22	probe 11	start 1	valuesfile 10

HB XF Analysis (hbxf)

Description

A conventional transfer function analysis computes the transfer function from every source in the circuit to a single output. Unlike a conventional AC analysis that computes the response from a single stimulus to every node in the circuit, the Harmonic Balance Transfer Function or HBXF analysis computes the transfer functions from any source at any frequency to a single output at a single frequency. Thus, like HBAC analysis, HBXF analysis includes frequency conversion effects.

The HBXF analysis directly computes such useful quantities as conversion efficiency (transfer function from input to output at required frequency), image and sideband rejection (input to output at undesired frequency), and LO feed-through and power supply rejection (undesired input to output at all frequencies).

As with a HBAC, HBSP, and HBNoise analyses, a HBXF analysis must follow a HB analysis.

Note: Note: Unlike other analyses in Spectre, this analysis can only sweep frequency.

Definition

```
Name [p] [n] ... hbxf parameter=value ...
```

The optional terminals (p and n) specify the output of the circuit. If you do not specify the terminals, you must specify the output with a probe component.

For information on how to run HB noise analysis from ADE, see <u>Harmonic Balance</u> <u>Transfer Function Analysis (HBXF)</u> in the <u>Spectre Circuit Simulator and Accelerated Parallel Simulator RF Analysis User Guide</u>.

Parameters

Sweep interval parameters

			-
1	start=0	Start sweep limit.	
2	stop	Stop sweep limit.	
3	center	Center of sweep.	

Analysis Statements

4	span=0	Sweep limit span.
5	step	Step size, linear sweep.
6	lin=50	Number of steps, linear sweep.
7	dec	Points per decade.
8	log=50	Number of steps, log sweep.
9	values=[]	Array of sweep values.
10	valuesfile	Name of the file containing the sweep values.
11	sweeptype=unspecified	Specifies if the sweep frequency range is the absolute frequency of input or if it is relative to the port harmonics. When the unspecified value is used, Spectre RF sweeps using relative when autonomous simulation is performed or when the analysis is PSP; for other cases Spectre RF sweeps the absolute value of the input. Possible values are absolute, relative, and unspecified.
12	relharmvec=[]	Sideband - vector of HB harmonics - to which relative frequency sweep should be referenced.

Probe parameters

13	probe	Compute every transfer function to this probe
		component.

Sampled analysis parameters

14	ptvtype=timeaverag ed	Specifies whether the PTV analysis will be traditional or sampled under certain conditions. Possible values are timeaveraged and sampled.
15	sampleprobe	The crossing event at this port triggers the sampled small signal computation.
16	thresholdvalue=0	Sampled measurement is done when the signal crosses this value.

Analysis Statements

17	crossingdirection= all	Specifies the transitions for which sampling must be done. Possible values are all, rise, fall, and ignore.
18	maxsamples=16	Maximum number of sampled events to be processed during the sampled analysis.
19	<pre>extrasampletimepoi nts=[]</pre>	Additional time points for sampled PTV analysis.
20	sampleratio=1	The ratio between sampled frequency and fund frequency (sampled frequency/fund frequency).

Output parameters

21	sidevec=[]	Array of relevant sidebands for the analysis.
22	maxsideband	This parameter determines the maximum sideband that is included when computing noise, that is either upconverted or down-converted to the output by the periodic drive signal. This parameter also determines the size of the small signal system when hbnoise is performed. It is critical for the accuracy of hbnoise analysis. Using a small maxsideband may cause accuracy loss. The default value is the harms/maxharms setting in the HB large signal analysis.
23	freqaxis	Specifies whether the results should be printed as per the input frequency, the output frequency, or the absolute value of the input frequency. The default is absin. Possible values are absin, in, and out.
24	save	Signals to output. Possible values are all, lvl, allpub, lvlpub, selected, none, and nooutput.
25	nestlvl	Levels of subcircuits to output.
26	stimuli=sources	Stimuli used for XF analysis in hbnoise. Possible values are sources and nodes_and_terminals.

Analysis Statements

Convergence parameters

27	tolerance	Tolerance for linear solver. The default value is 1.0e-9 for shooting-based solver and 1.0e-4 for harmonicbalance-based solver.
28	relativeTol	Relative tolerance for harmonic balance-based linear solver. Default value is 1.0e-2.
29	resgmrescycle=shor t	Restarts GMRES cycle. Possible values are instant, short, long, recycleinstant, recycleshort, custom, and recyclelong.
30	hbprecond_solver=au	itoset
		Select a linear solver for the GMRES preconditioner. Default is autoset. With autoset, the simulator will automatically select the appropriate preconditioner. The preconditioner affects the rate of convergence of the linear matrix solver used in periodic small-signal analysis. When autoset is selected, the simulator may decide to switch to a different preconditioner after the analysis begins. When that happens, the simulator may issue a warning instructing you to choose a different preconditioner during subsequent runs. Although not required, choosing a different preconditioner according to the simulator's instructions may speed up subsequent analyses. Possible values are basicsolver, blocksolver, autoset, blockdense, and blocksolver2.
31	lowmem=0	Harmonic balance low memory mode. Possible values are $0, 1$, or number (>=10). The default value is 0 , it indicates that the low memory mode is turned off; if 1 is set, the standard low memory mode is turned on; If a number greater that or equal to 10 is set, Spectre interprets the value as memory requested in Gigabytes.
32	lorentzian=cornerfreqonly	

June 2020 147 Product Version 19.1 © 2003-2020 All Rights Reserved.

cornerfreqonly, and yes.

This option determines if the Lorentzian plot is used in the oscillator noise analysis. Possible values are no,

Analysis Statements

33	krylov_size=200	The maximum iteration count of the linear matrix solver used in periodic small-signal analysis. After reaching 1.25*krylov_size iterations, the iteration is forced to terminate because of the poor rate of convergence. Increase the krylov_size if the simulation reports
		insufficient norm reduction errors in GMRES.

Annotation parameters

34	annotate=sweep	Degree of annotation. Possible values are no, title, sweep, status, steps, and detailed_hb.
35	title	Analysis title.

The variable of interest at the output can be voltage or current, and its frequency is not constrained by the period of the large periodic solution. While sweeping the selected output frequency, you can select the periodic small-signal input frequencies of interest by setting either the maxsideband or the sidevec parameter. For a given set of n integer numbers representing the sidebands K1, K2, ... Kn, the input signal frequency at each sideband is computed as f(in)= f(out) + Ki * fund(pss), where, f(out) represents the (possibly swept) output signal frequency and funds(HB) represents the fundamental frequencies used in the corresponding HB analysis. Thus, when analyzing a down-converting mixer and sweeping the IF output frequency, Ki= +1 for the RF input represents the first upper-sideband, while Ki= -1 for the RF input represents the first lower-sideband. By setting the maxsideband value to Kmax, all 2 * Kmax + 1 sidebands from -Kmax to +Kmax are selected.

The number of requested sidebands does not change substantially the simulation time. However, the maxacfreq of the corresponding HB analysis should be set to guarantee that I max{f(in)} I is less than maxacfreq; otherwise, the computed solution might be contaminated by aliasing effects. The HBXF simulation is not executed for I f(out) I greater than maxacfreq. Diagnostic messages are printed for those extreme cases, indicating how maxacfreq should be set in the HB analysis. In majority of simulations, however, this is not an issue, because maxacfreq is never allowed to be smaller than 40x the HB fundamental.

With HBXF, the frequency of the stimulus and of the response are usually different (this is an important area in which HBXF differs from XF). The freqaxis parameter is used to specify whether the results should be output versus the input frequency (in), the output frequency (out), or the absolute value of the input frequency (absin).

You can specify the output with a pair of nodes or a probe component. Any component with two or more terminals can be a voltage probe. When there are more than two terminals, they are grouped in pairs, and you use the porty parameter to select the appropriate pair of

Analysis Statements

terminals. Alternatively, you can specify a voltage to be the output by giving a pair of nodes on the HBXF analysis statement.

Any component that naturally computes current as an internal variable can be a current probe. If the probe component computes more than one current, you use the portiparameter to select the appropriate current. It is an error to specify both porty and portiparameter is specified, the probe component provides a reasonable default.

The stimuli parameter specifies the inputs for the transfer functions. There are two choices. stimuli=sources indicates that the sources present in the circuit should be used. The xfmag parameters provided by the sources may be used to adjust the computed gain to compensate for gains or losses in a test fixture. One can limit the number of sources in hierarchical netlists by using the save and nestlvl parameters. stimuli=nodes_and_terminals indicates that all possible transfer functions should be computed.

This is useful when it is not known in advance which transfer functions are interesting. Transfer functions for nodes are computed assuming that a unit magnitude flow (current) source is connected from the node to ground. Transfer functions for terminals are computed assuming that a unit magnitude value (voltage) source is connected in series with the terminal. By default, the transfer functions from a small set of terminals are computed. If transfer functions from specific terminals are required, specify the terminals in the save statement. You must use the <code>:probe</code> modifier (for example, Rout:1:probe) or specify useprobes=yes on the options statement. If transfer functions from all terminals are required, specify <code>currents=all</code> and <code>useprobes=yes</code> on the options statement.

You can specify sweep limits by specifying the end points, or the center value and span of the sweep. Steps can be linear or logarithmic, and you can specify the number of steps or the size of each step. You can specify a step size parameter (step, lin, log, or dec) to determine whether the sweep is linear or logarithmic. If you do not specify a step size parameter, the sweep is linear when the ratio of stop to start values is less than 10 and logarithmic when this ratio is 10 or greater. Alternatively, you can use the values parameter to specify the values that the sweep parameter should take. If you provide both a specific set of values and a set specified using a sweep range, the two sets are merged and collated before being used. All frequencies are in Hertz.

Parameter Index

In the following index, the number corresponding to each parameter name indicates where to find the description of that parameter.

annotate 34 log 8 relharmvec 12 stimuli 26

Analysis Statements

center 3	lorentzian 32	resgmrescycle 29	stop 2
crossingdirection 17	lowmem 31	sampleprobe 15	sweeptype 11
dec 7	maxsamples 18	sampleratio 20	thresholdvalue 16
extrasampletimepo ints 19	maxsideband 22	save 24	title 35
freqaxis 23	nestlvl 25	sidevec 21	tolerance 27
hbprecond_solver	probe 13	span 4	values 9
krylov_size 33	ptvtype 14	start 1	valuesfile 10
lin 6	relativeTol 28	step 5	

Analysis Statements

Circuit Information (info)

Description

The circuit information analysis outputs several types of information about the circuit and its components. You can use various filters to specify what information is output. You can create a listing of model, instance, temperature-dependent, input, output, and operating point parameters. You can also generate a summary of the minimum and maximum parameter values (by using extremes=yes or only). Finally, you can request that Spectre provides a node-to-terminal map (by using what=terminals) or a terminal-to-node map (by using what=nodes).

The following are brief descriptions of the types of parameters you can request with the info statement:

- Input parameters: Parameters that you specify in the netlist, such as the given length of a MOSFET or the saturation current of a bipolar transistor (use what=inst, models, input, or all)
- Output parameters: Parameters that are computed by Spectre, such as temperaturedependent parameters and the effective length of a MOSFET after scaling (use what=output or all)
- Operating-point parameters: Parameters that depend on the solution computed (use what=oppoint)

Initial condition file creation writes node voltages and source currents into a file that can be read by the transient analysis readic/readns statement.

For additional information, refer to <u>The info Statement</u> in the Spectre Classic Simulator, Spectre APS, Spectre X, and Spectre XPS User Guide.

Definition

Name info parameter=value ...

Analysis Statements

Parameters

1	what=oppoint	The parameters that should be printed. Possible values are none, inst, models, input, output, nodes, all, terminals, oppoint, captab, parameters, primitives, subckts, assert, allparameters, netlist, options, dumpall, bridges, opens, customreplace, custominsert, customopen, faultparam, allcap, netcap, and moscap.
2	where=logfile	Where the parameters should be printed. Asserts can only be written to rawfile. Possible values are nowhere, screen, file, logfile, and rawfile.
3	<pre>file="%C:r.info.wh at"</pre>	File name when where=file.
4	save	Signals to output. Possible values are all, lvl, allpub, lvlpub, selected, none, and nooutput.
5	nestlvl	Levels of subcircuits to output.
6	extremes=yes	Print minimum and maximum values. Possible values are no, yes, and only.
7	title	Analysis title.
8	descriptions=no	Print descriptions. Possible values are no and yes.

Analysis Statements

Operating point parameters

9 oppoint=all

Operating point type when what=oppoint. Possible values are all, node, dev, alldev, and subckt.

- all- operating point for devices, stacked devices, node voltages, and source currents.
- node- operating point for node voltages, and source currents.
- dev- operating point for devices.
- subckt-operating point for stacked devices.
- alldev- operating point for regular and stacked devices. Stacked device parameter reporting requires Spectre option subcktoppoint=yes, and save statement for stacked device parameters of interest.

Initial condition file creation

10 optype=ic

Prints Spectre format operating point file which can be read with readic/readns in transient statement. Time for writing operating point file needs to be defined in infotimes statement.

Possible values are ic and nodeset.

Fault generation parameters

11	faultblock	Name of the fault block to be generated when what=bridges, or what=opens.
12	faultdev=[]	Fault devices defined by primitive names, subckt names, or model names.
13	faultcustom=[]	Custom fault subcircuit defined by subckt model name from the netlist.
14	faultres=10	Resistance value for bridges or opens (default is 10 $$ Ohm for bridges and 1G $$ Ohm for opens).
15	faultcap=0	Capacitance value for open faults.

Analysis Statements

16	<pre>faultterminals=[]</pre>	List of device terminals to be considered for fault generation (default is all terminals of faultdev).
17	subckt=[]	When what=bridges or what=opens, faults are generated for all instances of specified subcircuits.
18	inst=[]	Faults are generated for specified subcircuit instances.
19	xsubckt=[]	Faults are not generated for all instances of specified subcircuits.
20	xinst=[]	Faults are not generated for all specified subcircuit instances.
21	faultrule=none	Comply with IEEE 2427 requirements for fault list generation. Possible values are none and 2427.
22	faultcollapse=yes	If yes, only one fault will be included into the fault list for each set of equivalent faults having the same topology. Possible values are no and yes.
23	Weight_expr	Expression to define fault weighting function.
24	weight_factor=1	Value to define weighting factor for given block in the fault list.
25	faultduplicate=yes	
		If set to n_0 , duplicated faults will be excluded from the fault lists when several info analyses specified for fault generation. Possible values are n_0 and y_0 es.
26	faultdeviter=no	If set to yes in +aps flow, a separate fault will be generated for each iterated instance that contains < number [: number] > in its name. Possible values are no and yes.
27	faultparam	Parameter's name to generate fault list when what=faultparam.
28	faultvalues=[]	Parameter values for fault generation when what=faultparam.
29	faultfile	File name containing parameter values when what=faultparam.

Analysis Statements

30	faultstart=0	File name containing parameter values when what=faultparam.
31	faultstep=0	Step size to sweep parameter's value for fault generation when what=faultparam.
32	faultstop=0	Final value of the parameter for fault generation when what=faultparam.

Captab parameters

33	detail=node	How detailed should the capacitance table be. Possible values are node, nodetoground, and nodetonode.	
34	sort=name	How to sort the capacitance table. Possible values are name and value.	
35	filter	If set to rc, nodes within the RC net will be dropped. Possible values are none and rc.	
36	threshold=0 F	Threshold value for printing capacitances (ignore capacitances smaller than this value).	
37	skip_ground	Whether the capacitance be skipped to ground. Possible values are yes and no.	
38	node=[]	Nodes for which captab analysis needs to be performed.	
39	intrinsic_cap_merge=no		
		Merge the internal captab node to external node. Possible values are ${\tt no}$ and ${\tt yes}.$	

Example initial condition file creation

tran1 tran stop=10n infotimes=[3n 4n] infonames=[myinfo1 myinfo2]
myinfo1 info what=oppoint optype=ic where=file file='3n.ic'
myinfo2 info what=oppoint optype=nodeset where=file file='4n.ic'

Analysis Statements

Parameter Index

In the following index, the number corresponding to each parameter name indicates where to find the description of that parameter:

descriptions 8	faultfile 29	filter 35	subckt 17
detail 33	faultparam 27	inst 18	threshold 36
extremes 6	faultres 14	intrinsic_cap_mer ge 39	title 7
faultblock 11	faultrule 21	nestlvl 5	weight_expr 23
faultcap 15	faultstart 30	node 38	weight_factor 24
faultcollapse 22	faultstep 31	oppoint 9	what 1
faultcustom 13	faultstop 32	optype 10	where 2
faultdev 12	faultterminals 16	save 4	xinst 20
faultdeviter 26	faultvalues 28	skip_ground 37	xsubckt 19
faultduplicate 25	file 3	sort 34	

Loopfinder Analysis (If)

Description

The loopfinder analysis begins by linearizing the circuit about an operating point. This analysis detects poles that may potentially cause stability problems, and identifies the loops associated with the potentially problematic poles.

For additional information, refer to *LoopFinder Analysis* in the Spectre Classic Simulator, Spectre APS, Spectre X, and Spectre XPS User Guide.

Definition

Name If parameter=value ...

Parameters

Sweep interval parameters

1	start=0	Start sweep limit.
2	stop	Stop sweep limit.
3	center	Center of sweep.
4	span=0	Sweep limit span.
5	step	Step size, linear sweep.
6	lin=50	Number of steps, linear sweep.
7	dec	Points per decade.
8	log=50	Number of steps, log sweep.
9	values=[]	Array of sweep values.
10	valuesfile	Name of the file containing the sweep values.

Sweep variable parameters

11 dev Device instance whose parameter value is to be swept.

Spectre Circuit Simulator Reference Analysis Statements

		•
10		Model because of a fatebase of
12	mod	Model whose parameter value is to be swept.
13	param	Name of parameter to sweep.
State	e-file parameters	
14	readns	File that contains an estimate of DC solution (nodeset).
15	write	DC operating point output file at the first step of the sweep.
16	writefinal	DC operating point output file at the last step of the sweep.
Outp	out parameters	
17	oppoint=no	Determines whether operating point information should be computed. If set to yes, where should it be printed (screen or file). Operating point information is not printed if the operating point computed in the previous analysis remains unchanged. Possible values are no, screen, logfile, and rawfile.
Con	vergence parameters	
18	restart=yes	Restart the DC solution from scratch if any condition has changed. If not, use the previous solution as initial guess Possible values are no and yes.
Anno	otation parameters	
19	annotate=sweep	Degree of annotation. Possible values are no, title, sweep, status, and steps.

Analysis Statements

Miscellaneous parameters

-00	_	Onder of companion and a little of
20	order	Order of expansion around each pole to generate residue information. This option is used for model order reduction in node impedance computation.
21	sensitivity=3	Sensitivity of the krylov method of pole detection and the accuracy of impedance computation. Higher values increase runtime while reduce the chance of missing a pole and improve the accuracy of impedance values. Possible values are 1, 2, 3, 4, and 5.
22	solver_method=auto	
		If set to krylov, the modified rational krylov method is used for pole detection; if set to direct, QZ method is used. If set to auto, loopfinder analysis automatically chooses the method for pole detection. Possible values are auto, direct, and krylov.
23	romsize=6000	Minimum number of nodes required for applying the krylov method. This option is used if solver_method=auto.
24	zmin=0.1 Ω	Minimum DC impedance of interest in loop identification.
25	dampmax=0.7	Maximum damping ratio, that is, the negative value of cos (phi) where phi is the argument of the corresponding pole, for targeting loops. This option is used in pole detection.
26	freqtol (Hz)	Relative error tolerance for natural frequencies of loops if modified rational \texttt{krylov} method is used for pole detection.
27	freqmax=1e10 Hz	Maximum natural frequency for targeting loops.
28	freqmin=1e-2 Hz	Minimum natural frequency for targeting loops.
29	emptyloop=yes	If set to yes , empty loops, if any, are printed in the output; if set to no , only non-empty loops are printed. Possible values are no and yes .
30	doublekrylov	If set to n_0 , krylov flow searches the region of interest once; if set to yes , krylov flow searches the region of interest twice to minimize the chances of missing poles. Possible values are n_0 and yes .

Analysis Statements

31	print_all_poles=no	If set to yes , print full list of poles to the log file; if set to no , do not print full list of poles. This option is used in the direct solver method. Possible values are no and yes .
32	prevoppoint=no	Use the operating point computed from the previous analysis. Possible values are ${\tt no}$ and ${\tt yes}.$
33	force=none	The set of initial conditions to use. Possible values are none, node, dev and all.
34	readforce	File that contains initial conditions.
35	skipdc=no	Skip DC analysis. Possible values are no and yes.
36	useprevic=no	If set to yes or ns, use the converged initial condition from previous analysis as ic or ns. Possible values are no, yes and ns.

By default, this analysis computes the operating point, if it is not known, or recomputes it if any significant component or circuit parameter has changed. However, if an operating point was computed during a previous analysis, you can set prevoppoint=yes to avoid recomputing it. For example, if prevoppoint=yes and the previous analysis was a transient analysis, the operating point is the state of the circuit at the final time point.

Nodesets help find the DC or the initial transient solution. You can specify nodesets in the circuit description file with nodeset statements or in a separate file by using the readns parameter. When nodesets are specified, Spectre computes an initial guess of the solution by performing DC analysis, while forcing the specified values on to nodes by using a voltage source in series with a resistor whose resistance is rforce. Spectre then removes these voltage sources and resistors and computes the required solution from this initial guess.

Nodesets have two important uses. First, if a circuit has two or more solutions, nodesets can bias the simulator towards computing the required solution. Second, these are a convergence aid. By estimating the solution of the largest possible number of nodes, you might be able to eliminate a convergence problem or significantly speed up convergence.

When you simulate the same circuit multiple times, it is recommended that you use both write and readns parameters and assign the same file name to both parameters. DC analysis then converges quickly even if the circuit has changed since the last simulation, and the nodeset file is automatically updated.

The loopfinder analysis does not work properly with frequency-defined or distributed devices. If there are frequency-defined or distributed devices, poles and node impedances are

Analysis Statements

computed by approximating those devices as equivalent conductances and capacitances evaluated at 1Hz.

The default value of options freqtol, order, and doublekrylov are controlled by the option sensitivity. The effect of sensitivity on other parameters is shown in the following table.

sensitivity	freqtol	order	doublekrylov
5	1.0e-6	7	yes
4	1.0e-4	5	no
3	1.0e-3	3	no
2	3.0e-3	2	no
1	3.0e-3	2	no

Parameter Index

In the following index, the number corresponding to each parameter name indicates where to find the description of that parameter.

annotate 19	freqmin 28	<pre>print_all_poles 31</pre>	start 1
center 3	freqtol 26	readforce 34	step 5
dampmax 25	lin 6	readns 14	stop 2
dec 7	log 8	restart 18	useprevic 36
dev 11	mod 12	romsize 23	values 9
doublekrylov 30	oppoint 17	sensitivity 21	valuesfile 10
emptyloop 29	order 20	skipdc 35	write 15
force 33	param 13	solver_method 22	writefinal 16

Analysis Statements

freqmax 27 prevoppoint 32 span 4 zmin 24

Analysis Statements

Load Pull Analysis (loadpull)

Description

Loadpull sweeps the magnitude (rho) and phase (phi) of the load instance over a specified range, to detect potentially unstable amplifier load impedances.

The component in the netlist that is used to set the magnitude and phase of the reflection coefficient of the loadpull simulation is called the load instance and is different for shooting and harmonic balance. For harmonic balance, the load instance must be either a port or a portAdapter. For shooting pss, the load instance must be a portAdapter.

In the loadpull statement, you can define the sweeps for the magnitude and phase (in degrees) for the reflection coefficient of the load instance. To calculate the amplifier output, either hb or pss is required. The hb or pss statement is enclosed in curly brackets after the loadpull statement. Harmonic balance is likely to be faster than shooting PSS for most amplifiers.

For additional information, see <u>loadpull</u> in the <u>Spectre Circuit Simulator and Accelerated</u> Parallel Simulator RF Analysis User Guide.

Definition

Name loadpull parameter=value ...

Parameters

1	rho	Name of parameter to rho sweep. The name is arbitrary and must be specified in the parameter list. When a portAdapter is used as the load instance, the parameter must be used in the portAdapter to set the reflection coefficient magnitude.
2	rhostart=0	Start sweep limit of rho.
3	rhostop	Stop sweep limit of rho.
4	rhostep	Step size, linear sweep of rho.
5	rholin=50	Number of steps, linear sweep of rho.
6	rhovalues=[]	Array of sweep values of rho.

Analysis Statements

7	phi	Name of parameter to phi sweep. The name is arbitrary and must be specified in the parameter list. When a portAdapter is used as the load instance, the parameter must be used in the portAdapter to set the reflection coefficient angle.
8	phistart=0	Start sweep limit of phi.
9	phistop	Stop sweep limit of phi.
10	phistep	Step size, linear sweep of phi.
11	philin=50	Number of steps, linear sweep of phi.
12	phivalues=[]	Array of sweep values of phi.
13	inst	Used only in harmonic balance when the load instance is a port. This is the instance name for the port that loads the amplifier. When a portAdapter is used as the load instance, the portAdapter that uses the rho and phi values in the netlist is assumed to be the load instance.
14	z0=50	Used only in harmonic balance when the load instance is a port and sets the impedance of the load port. When portAdapter is used as the load instance, this value is set in the portAdapter instance.

Examples

Harmonic Balance:

```
lphb loadpull inst=PORT4 rho=mag rhostart=0.001 rhostop=0.991
+ rhostep=0.11 phi=theta phistart=-180 phistop=160 phistep=20
+ z0=50 {
  hb hb tstab=0 oversample=[1] fundfreqs=[(2.45G)] maxharms=[6]
+ errpreset=moderate annotate=status
}

Shooting PSS:
lppss loadpull rho=mag rhostart=0.001 rhostop=0.991
+ rhostep=0.11 phi=theta phistart=-180 phistop=160 phistep=20 {
  pss pss fund=2.45G harms=7 errpreset=moderate tstab=3n
+ annotate=status
```

}

Analysis Statements

Parameter Index

In the following index, the number corresponding to each parameter name indicates where to find the description of that parameter.

inst 13	phistep 10	rholin 5	rhovalues 6
phi 7	phistop 9	rhostart 2	z0 14
philin 11	phivalues 12	rhostep 4	
phistart 8	rho 1	rhostop 3	

Monte Carlo Analysis (montecarlo)

Description

The montecarlo analysis is a swept analysis with associated child analyses similar to the sweep analysis (see spectre -h sweep.) The Monte Carlo analysis refers to "statistics blocks" where statistical distributions and correlations of netlist parameters are specified (detailed information about statistics blocks is given below). For each iteration of the Monte Carlo analysis, new pseudo-random values are generated for the specified netlist parameters (according to their specified distributions) and the list of child analyses are then executed.

Expressions are associated with the child analyses. These expressions, which you constructed as scalar calculator expressions during Monte Carlo analysis setup, can be used to measure circuit metrics, such as the slew-rate of an op-amp. For each iteration during a Monte Carlo analysis, the expression results vary with the netlist parameters. Therefore, Monte Carlo analysis allows you to examine and predict circuit performance variations, which affect yield.

The statistics blocks allow you to specify batch-to-batch (process) and per-instance (mismatch) variations for netlist parameters. These statistically-varying netlist parameters can be referenced by models or instances in the main netlist and may represent IC manufacturing process variation or component variations for board-level designs. The following description gives a simplified example of the Monte Carlo analysis flow:

```
perform nominal run if requested
if any errors in nominal run then stop
foreach Monte Carlo iteration {
  if process variations specified then
    apply process variation to parameters
  if mismatch variations specified then
    foreach subcircuit instance {
       apply mismatch variation to parameters
    }
  foreach child analysis {
```

Analysis Statements

```
run child analysis
    evaluate expressions
}
```

Definition

Name montecarlo parameter=value ...

Parameters

Analysis parameters

1	numruns=100	Number of Monte Carlo iterations to perform (does not include the nominal run).
2	firstrun=1	Starting iteration number.
3	runpoints=[]	Specifies a set of iteration indexes to be simulated. indexes can be any positive integer value, or values specified using the range function.
4	variations=process	Level of statistical variation to apply. Possible values are process, mismatch, and all.
5	sampling=standard	Method of statistical sampling to apply. Possible values are standard, lhs, orthogonal, and lds.
6	numbins=0	Number of bins for latin-hypercube(lhs) and orthogonal method. The number is checked against numruns + firstrun - 1, and Max(numbins, numruns + firstrun - 1) is used.
7	seed	Optional starting seed for random number generator.
8	scalarfile	Output file that contains output scalar data.
9	paramfile	Output file that contains output scalar data labels.

Analysis Statements

10	dut=[]	If set, the specified subcircuit instance have process and mismatch variations applied and the unspecified instance only have process variations applied. All subcircuits instantiated under this instance also have process and mismatch enabled. By default, mismatch is applied to all subcircuit instances in the design and process is applied globally. This parameter allows the test-bench to change and not affect the variations seen by the actual design.
11	ignore=[]	If set, no variation is applied to specified subcircuit instances. In addition, all subcircuits instantiated under this instance do not have variation enabled. By default, the mismatch is applied to all subcircuit instances in the design and the process is applied globally.
12	dutparams=[]	If set, only the specified statistical parameters have process and mismatch variations applied.
13	ignoreparams=[]	If set, the specified statistical parameters are excluded from applying process and mismatch variation.
14	json=no	Output JSON files and save the variations and analysis settlings. Possible values are yes and no .
15	accuracyaware=summ	Specifies the mode of run-time monitoring and early-termination of a montecarlo simulation. In summary mode, the statistics of measurement is only listed after the Monte-Carlo analysis finishes. In iteration mode, the statistics is printed after each step of Monte-Carlo analysis. In autostop mode, analysis is terminated based on the criteria specified by the options minmaxpairs, and smooththresh. Possible values are summary, iteration, and autostop.
16	minmaxpairs=[]	Pairs of values that are used to specify the min and max of each measurement defined in ocean expressions. Simulation is terminated when the current iteration generates a measurement that resides outside the region of [min, max]. It is not necessary that the number of pairs equals the number of measurement. However, each defined pair must be aligned with the corresponding ocean measurement. Extra number of pairs or measurement wil be ignored when deciding upon early termination. This option is only active when accuracyaware=autostop.

Analysis Statements

17	smooththresh=0.0	Specifies the smoothness threshold of an averaged ocean measurement. The average takes place within consecutive non-overlapping 200-iteration windows. Suggested value is 1e-4 for a reasonably converged signal-average. This test of smoothness is only active when accuracyaware=autostop.
18	method=standard	Method used to run montecarlo analysis. standard is the regular montecarlo analysis with varying netlist parameters. VADE is variation aware design with directly varying device parameters. Possible values are standard and vade.

Saving Process Parameters

19	saveprocessparams	Whether to save scalar data for statistically varying process parameters that are subject to process variation. Possible values are no and yes.
20	processscalarfile	Output file that contains process parameter scalar data.
21	processparamfile	Output file that contains process parameter scalar data labels.
22	<pre>saveprocessvec=[]</pre>	Array of statistically varying process parameters (which are subject to process variation) to save as scalar data in processscalarfile.

Saving Mismatch Parameters

23	savemismatchparams =no	Whether to save scalar data for statistically varying mismatch parameters that are subject to mismatch variation. Possible values are no and yes.
24	mismatchscalarfile	Output file that contains mismatch parameter scalar data.
25	mismatchparamfile	Output file that contains mismatch parameter scalar data labels.
26	dumpdependency=non e	Whether to save a dependency map. Possible values are none and mismatch.

Spectre Circuit Simulator Reference Analysis Statements

27	dependencymapfile	Specify the name of the output file that contains a dependency map, which indicates the pairing of mismatch parameters and subcircuit instances.
28	dependencyscalarfi le	Output the random numbers that are used by mismatch parameters to a file.
29	dependencyparamfil e	Output the mapping from mismatch parameters to corresponding subcircuit instances to a file.

Flags

		·
30	donominal=yes	Whether to perform nominal run. Possible values are no and yes.
31	addnominalresults= no	Whether to add nominal run results to MC run results. Possible values are no and yes.
32	paramdumpmode=no	Whether to fully dump process/mismatch parameters information. Possible values are ${\tt no}$ and ${\tt yes}.$
33	dumpseed=no	Whether to dump seed parameters information. Possible values are ${\tt no}$ and ${\tt yes}.$
34	nullmfactorcorrela tion=no	Whether to set 0% correlation mismatch devices with m-factor. Possible values are no and yes.
35	appendsd=no	Whether to append scalar data. Possible values are ${\tt no}$ and ${\tt yes}.$
36	savefamilyplots=no	Whether to save data for family plots. If yes , this could require considerable disk space. Possible values are no and yes .
37	savedatainseparate dir=no	Whether to save data for each plot in a separate directory. If yes , this could require considerable disk space. Possible values are no and yes .
38	evaluationmode=no	If set to yes , dump random numbers assigned to statistical parameters without running enclosed analyses. Possible values are no and yes .
39	diskstorage=no	If set to yes, mismatch data is stored on disk instead of memory while running a montecarlo analysis. Possible values are ${\tt no}$ and ${\tt yes}.$

Analysis Statements

40	wfseparation=no	If set to yes, a separated directory by the name of nom is created for the nominal run and the directory names of individual iterations are simplified by removing the leading analysis names. Possible values are no and yes .
41	seedscramble=no	If set to yes, a scrambling procedure is applied to the seed value to generate a better random number sequence in the sense of randomness. Possible values are no and yes.
42	distribute	Distribute a Monte Carlo analysis to reduce simulation time by using more computer cores across multiple computers. Possible values are no, fork, rsh, ssh, 1sf, sge, nc, and auto.
43	numprocesses	Specifies the number of jobs in distributed mode.
44	usesamesequence=no	If set to yes, the random number sequence is maintained for a seed, even if there is a non-empty dut/ignore list. Possible values are no and yes.
45	rngversion	Version of random number generator. Possible values are default and $v151$.

Annotation Parameters

46	annotate=sweep	Degree of annotation. Possible values are no, title, sweep, and status.
47	title	Analysis title.
48	stdscale=default	Scale the standard deviation by the specified value. The default value is 1.0.
49	dist=default	Force all MonteCarlo random variation distributions to the specified type.
		Possible values are default, unif, and gauss.
50	ignore_type=[]	If set, no variation is applied to the specified types. Default is none. Possible values are none and memcell.

Analysis Statements

Detailed Description and Examples

```
sampling=[standard | lhs]
```

Determines the sampling behavior. This parameter can be set to standard, the default value, or lhs. lhs invokes latin-hypercube (LHS) method, while standard defaults to the existing standard sampling behavior.

```
numbins=value
```

Controls the number of subdivisions used in the LHS method.

If numbins is not specified, the number of subdivisions of the sampling space in LHS will be numruns + firstrun - 1. This parameter is active only when sampling is 1hs. If numbins is set to a non-zero integer, the number of subdivisions will be assigned to the greater of the two values numbins or numruns + firstrun -1.

```
numruns: (default=100)
```

Specifies the number of Monte Carlo iterations to perform. The simulator performs a loop, running the specified child analyses, and evaluating any expressions numruns times.

```
runpoints:(no default)
```

Specifies the iteration indexes to be simulated. Two types of settings are accepted: integers, and ranges. For example, runpoints=[10 range(15, 18) 20] is an acceptable setting, which is translated to perform the simulation of 10th, 15th, 16th, 17th, 18th, and 20th iterations.

```
seed:(no default)
```

Specifies the seed for the random number generator. By always specifying the same seed, you can reproduce a previous experiment. If you do not specify a seed, each time you run the analysis, you will get different results, that is, a different stream of pseudo-random numbers is generated.

```
scalarfile="filename"
```

Allows you to specify an ASCII file in which scalar data (results of expressions that resolve to scalar values) is written. The data from this file can be read and plotted in histograms by ADE. For each iteration of each Monte Carlo child analyses, Spectre (through Artil) writes a line to this ASCII file, which contains scalar data (one scalar expression per column, for example, slewrate or bandwidth). The default name for this file is of the form name.mcdata, where name is the name of the Monte Carlo analysis instance. This file contains only the matrix of numeric values. If you are an ADE Monte Carlo user, you will be more familiar with the term

Analysis Statements

mcdata file for the scalar file. Additionally, when the ADE Monte Carlo tool is used to generate the Spectre netlist file, Spectre merges the values of the statistically varying process parameters into this file that contains the scalar data (results of expressions). This means that ADE can later read the data and create scatter plots of the statistically varying process parameters against each other, or against the results of the expressions. In this way, you can see correlations between process parameter variations and circuit performance variations. This data merging occurs whenever the scalarfile and processscalarfile are written in the same directory.

```
paramfile="filename"
```

Contains the titles, sweep variable values, and the full expression for each of the columns in the scalarfile. If you are an ADE Monte Carlo user, you will be more familiar with the term mcparam file for the paramfile. This file is created in the psf directory by default, unless you specify an alternative path with the file name.

```
processscalarfile="filename"
```

If saveprocessparams is set to yes, the process (batch-to-batch) values of all statistically varying parameters are saved to this scalar data file. You can use saveprocessvec to filter out a subset of parameters in which case Spectre will save only the parameters specified in saveprocessvec to the processscalarfile). processscalarfile is equivalent to scalarfile, except that the data in the scalarfile contains the values of the scalar expressions, whereas the data in processscalarfile contains the corresponding process parameter values. The default name for this file is of the form <code>instname.process.mcdata</code>, where <code>instname</code> is the name of the Monte Carlo analysis instance. This file is created in the psf directory by default, unless you specify an alternative path in the filename. You can load processscalarfile and processparamfile into the ADE statistical post-processing environment to plot/verify the process parameter distributions. If you later merge the processparamfile with the data in the scalarfile, you can then plot scalar expressions values against the corresponding process parameters by loading this merged file into the ADE statistical post-processing environment.

```
processparamfile="filename"
```

Contains the titles and sweep variable values for each of the columns in processscalarfile. These titles are the names of the process parameters.

processparamfile is equivalent to the paramfile, except that paramfile contains the name of the expressions, whereas processparamfile contains the names of the process parameters. The default name for this file is of the form instname.process.mcparam, where instname is the name of the Monte Carlo analysis instance. This file is created in the psf directory by default, unless you specify an alternative location with filename.

```
firstrun:(default=1)
```

Analysis Statements

Specifies the index of the first iteration. If the first iteration is specified as some number n greater than one, then the beginning n-1 iterations are <code>skipped</code>, that is, the Monte Carlo analysis behaves as if the first n-1 iterations were run, but without performing the child analyses for these iterations. The subsequent stream of random numbers generated for the remaining iterations will be the same as if the first n-1 iterations were run. By specifying the first iteration number and the same value for seed, you can reproduce a particular run or sequence of runs from a previous experiment (for example, to examine an outlier case in more detail).

```
variations={process,mismatch,all} (defaults to process)
```

Determines whether to apply only process (batch-to-batch) variations, or only mismatch (perinstance) variations, or both. This parameter assumes that you have specified appropriate statistical distributions in the statistics block. You cannot request that mismatch variations be applied unless you have specified mismatch statistics in the statistics block. You cannot request that process variations be applied unless you have specified process statistics in the statistics block.

```
saveprocessvec=[rshsp TOX ...]
```

If saveprocessparams is set to yes, this parameter saves the process (batch-to-batch) values of only those parameters that are listed in saveprocessvec to the processparamfile. This acts as a filter so that you do not save all process parameters to the file. If you do not want to filter the list of process parameters, do not specify this parameter.

```
donominal={yes, no} (defaults to yes)
```

Controls whether Spectre should perform a nominal run before starting the main Monte Carlo loop of iterations. If any errors are encountered during the nominal run (for example, convergence problems, incorrect expressions, and so on) then Spectre issues an appropriate error message and immediately abandons the Monte Carlo analysis.

If set to n_0 , Spectre runs only the Monte Carlo iteration, and does not perform nominal analysis. If any errors are encountered during the Monte Carlo iterations, Spectre issues a warning and continues with the next iteration of the Monte Carlo loop.

```
addnominalresults={yes, no} (defaults to no).
```

Controls whether Spectre should append nominal run results after the Monte Carlo run results in the data files.

```
paramdumpmode={yes, no} (defaults to no).
```

Controls whether Spectre should dump out each process/mismatch parameter distribution type, mean value, s.t.d value, and correlation information into additional parameter files. The

Analysis Statements

names for these files are instname.process_full.param,

instname.mismatch_full.param, instname.process.correlate.param and instname.mismatch.correlate.param, where instname is the name of the Monte Carlo analysis instance.

```
dumpseed={yes,no} (defaults to no)
```

Controls whether Spectre should dump out seed parameter and iteration number into the instname. seed file, where instname is the name of the Monte Carlo analysis instance.

```
nullmfactorcorrelation={yes,no} (defaults to no)
```

Controls whether Spectre should emulate a 0% correlation for mismatch devices with m-factor.

```
appendsd={yes,no} (defaults to no)
```

Specifies whether to append scalar data to an existing scalarfile, or to overwrite the existing scalarfile. This flag applies to both the scalar file and the processscalarfile.

```
savefamilyplots={yes,no}
```

If set to $_{Yes}$, a data file (for example, psf) is saved for each analysis for each Monte Carlo iteration, in addition to the expressions scalar results that are saved to the ASCII scalar data file at the end of each iteration. Saving the full data files between runs enables the cloud plotting feature (overlaid waveforms) in ADE. It also enables you to define/evaluate new calculator measurements after the simulation has been run using the ViVA XL calculator. This feature could result in a huge amount of data being stored to disk, and it is advised that you use this feature with care. If you do decide to use this feature, it is advisable to keep the saved data to a minimum. If this parameter is set to $_{10}$, data files are overwritten by each Monte Carlo iteration.

```
savedatainseparatedir={yes,no}
```

If set to yes, a data file (for example, psf) is saved for each analysis for each Monte Carlo iteration in a separate directory, in addition to the expressions scalar results that are saved to the ASCII scalar data file at the end of each iteration. This feature can result in a huge amount of data being stored to the disk. Therefore, it is recommended that you use this feature with care and keep the saved data to a minimum. If this parameter is set to no, data files are overwritten by each Monte Carlo iteration.

```
annotate={no,title,sweep,status}
```

Specifies the degree of annotation. Use the maximum value of status to print a summary of the runs that did not converge, had problems evaluating expressions, and so on.

Analysis Statements

Examples:

```
// do a Monte Carlo analysis, with process variations only
// useful for looking at absolute performance spreads
mc1 montecarlo variations=process seed=1234 numruns=200 {
                // a child analysis
  dcop1 dc
  tran1 tran start=0 stop=1u
                              // another child analysis
  // expression calculations are sent to the scalardata file
  export slewrate=oceanEval("slewRate(v("vout"),10n,t,30n,t,10,90)")
}
// do a Monte Carlo analysis, with mismatch variations only
// useful for detecting spreads in differential circuit
// applications, etc. Do not perform a nominal run.
mc2 montecarlo donominal=no variations=mismatch seed=1234 numruns=200 {
  dcop2 dc
  tran2 tran start=0 stop=1u
  export slewrate=oceanEval("slewRate(v("vout"),10n,t,30n,t,10,90)")
// do both together...
mc3 montecarlo saveprocessparams=yes variations=all numruns=200 {
  dcop3 dc
  tran3 tran start=0 stop=1u
  export slewrate=oceanEval("slewRate(v("vout"),10n,t,30n,t,10,90)")
}
```

Specifying Parameter Distributions Using Statistics Blocks

The statistics blocks are used to specify the input statistical variations for a Monte Carlo analysis. A statistics block may contain one or more process blocks (which represent batch-to-batch type variations) and/or one or more mismatch blocks (which represent on-chip or device mismatch variations), in which the distributions for parameters are specified. Statistics blocks may also contain one or more correlation statements to specify the correlations between specified process parameters, and/or to specify correlated device instances (for example matched pairs). Statistics blocks may also contain a truncate statement that may be used for generating truncated distributions. The distributions specified in the process block are sampled once per Monte Carlo iteration and are typically used to represent batch-to-batch or process variations, whereas the distributions specified in the mismatch block are sampled on a per subcircuit instance basis and are typically used to represent device-to-device mismatch for devices on the same chip. In the case where the same parameter is subject to both process and mismatch variations, the sampled process value becomes the mean for the mismatch random number generator for that particular parameter.

Analysis Statements

Note: Multiple statistics blocks can exist and in that case the blocks either accumulate or overlay. Typically, process variations, mismatch variations, and correlations between process parameters are specified in one statistics block. A second statistics block should be specified where actual device instance correlations are specified (that is, specification of matched pairs).

Statistics blocks can be specified using combinations of the Spectre keywords statistics, process, mismatch, vary, truncate, and correlate. Braces {} are used to delimit blocks.

The following example shows statistics blocks, which are discussed below along with syntax requirements.

```
// define some netlist parameters to represent process parameters
// such as sheet resistance and mismatch factors
parameters rshsp=200 rshpi=5k rshpi std=0.4K xisn=1 xisp=1 xxx=20000 uuu=200
// define statistical variations, to be used
// with a MonteCarlo analysis.
statistics {
   process { // process: generate random number once per MC run
        vary rshsp dist=gauss std=12 percent=yes
        vary rshpi dist=qauss std=rshpi std // rshpi std is a parameter
        vary xxx dist=lnorm std=12
        vary uuu dist=unif N=10 percent=yes
    truncate tr=2.0 // +/- 2 sigma
        . . .
   mismatch { // mismatch: generate a random number per instance
        vary rshsp dist=gauss std=2
        vary xisn dist=gauss std=0.5
        vary xisp dist=gauss std=0.5
        truncate tr=7.0 // +/- 7 sigma
    }
    // some process parameters are correlated
    correlate param=[rshsp rshpi] cc=0.6
    // specify a global distribution truncation factor
   truncate tr=6.0 // +/- 6 sigma
// a separate statistics block to specify correlated (i.e. matched) components
// where m1 and m2 are subckt instances.
statistics {
    correlate dev=[m1 m2] param=[xisn xisp] cc=0.8
```

Analysis Statements

```
// a separate statistics block to specify correlation with wildcard, where
// I*.M3 matches multiple subckt instances, for examples, I1.M3, I2.M3, I3.M3, etc..
// Only the asterisk (*) is recognized as a valid wildcard symbol.
statistics {
    correlate dev=[m1 m2[ I*.M3 ] param=[xisn xispmisx mixy] cc=0.8
```

Specifying Distributions

Parameter variations are specified using the following syntax:

```
vary PAR NAME dist=<type> {std=<value> | N=<value>} {percent=yes|no}
```

Three types of parameter distributions are available: gaussian, lognormal, and uniform, corresponding to the keywords gauss, lnorm and unif, respectively. For both gauss and the lnorm distributions, you specify a standard deviation using the std keyword.

Gaussian Distribution

For the gaussian distribution, the mean value is taken as the current value of the parameter being varied, giving a distribution denoted by Normal (mean,std). Using the example above, parameter rshpi is varied with a distribution of Normal (5k,0.4k)

Lognormal Distribution

The lognormal distribution is denoted by:

```
log(x) = Normal(log(mean), std)
```

where, x is the parameter being specified as having a lognormal distribution.

Note: log() is the natural logarithm function.

For parameter xxx in the example, the process variation is according to:

```
log(xxx) = Normal(log(20000), 12)
```

Uniform Distribution

The uniform distribution for parameter x is generated according to:

```
x = unif(mean-N, mean+N)
```

The mean value is the nominal value of the parameter x, and the parameter is varied about the mean with a range of \pm 1. The standard deviation is not specified for the uniform distribution, but its value can be calculated by using the formula $\pm d = N/sqrt(3)$.

Analysis Statements

Values as Percentages

The percent flag indicates whether the standard deviation std or uniform range N are specified in absolute terms (percent=no) or as a percentage of the mean value (percent=yes). For parameter uuu in the example above, the mean value is 200, and the variation is 200 +/- 10%*(200) i.e. 200 +/- 20. For parameter rshsp, the process variation is given by Normal (200, 12%*(200)), that is, Normal (200, 24). It is recommended that you do not use percent=yes with the lognormal distribution.

Process and Mismatch Variations

The statistics specified in a process block are applied at global scope, and the distributions are sampled once per Monte Carlo iteration. The statistics specified in a mismatch block are applied on a per-subcircuit instance basis, and are sampled once per subcircuit instance. If you place model cards and/or device instances in subcircuits, and add a mismatch block to your statistics block you can effectively model device-to-device mismatch for these devices/ models.

Correlation Statements

There are two types of correlation statements that you can use: process parameter correlation statements and instance correlation statements.

Process Parameter Correlation

The syntax of the process parameter correlation statement is:

```
correlate param=[list of parameters] cc=<value>
```

This allows you to specify a correlation coefficient between multiple process parameters. You can specify multiple process parameter correlation statements in a statistics block to build a matrix of process parameter correlations. During a Monte Carlo analysis, process parameter values are randomly generated according to the specified distributions and correlations.

Mismatch Correlation (Matched Devices)

The syntax of the instance or mismatch correlation statements are:

where, the device or subcircuit instances to be matched are listed in the list of subcircuit instances or regular expressions with asterisk (*), and the list of parameters specifies which parameters with mismatch variations are to be correlated.

Analysis Statements

The instance mismatch correlation statement is used to specify correlations for particular subcircuit instances. If a subcircuit contains a device, you can effectively use the instance correlation statements to specify that certain devices are correlated (that is, matched) and give the correlation coefficient. You can optionally specify which parameters are to be correlated by giving a list of parameters (each of which must have had distributions specified for it in a mismatch block), or specify no parameter list, in which case all parameters with mismatch statistics specified are correlated with the given correlation coefficient. The correlation coefficients are specified in the <value> field and must be between +/- 1.0.

Note: Correlation coefficients can be constants or expressions, as can std and N when specifying distributions.

Truncation Factor

The default truncation factor for gaussian distributions (and for the gaussian distribution underlying the lognormal distribution) is 4.0 sigma. Randomly generated values that are outside the range of mean +/- 4.0 sigma are automatically rejected and regenerated until they fall inside the range. You can change the truncation factor using the truncate statement. The syntax is:

truncate tr=<value>

The following conditions should be considered while setting the truncate factor:

- The value of the truncation factor can be a constant or an expression.
- Parameter correlations can be affected by using small truncation factors.
- There are different truncate for process and mismatch blocks. If a truncate for process or mismatch block is not given, it will be set to the value of truncate in statistic block.

Hints to Improve Performance

To get better run performance on small-sized designs, it is recommended to use the following settings:

- Set the global option narrate=compact to reduce the annotation messages
- Reduce the number of saved signals, or use the save=nooutput option
- Use just the measure statement to measure the simulation results

Analysis Statements

Parameter Index

In the following index, the number corresponding to each parameter name indicates where to find the description of that parameter.

accuracyaware 15	dut 10	numbins 6	saveprocessparams 19
addnominalresults 31	dutparams 12	numprocesses 43	saveprocessvec 22
annotate 46	evaluationmode 38	numruns 1	scalarfile 8
appendsd 35	firstrun 2	paramdumpmode 32	seed 7
dependencymapfile 27	ignore 11	paramfile 9	seedscramble 41
dependencyparamfi le 29	ignore_type 50	processparamfile 21	smooththresh 17
dependencyscalarf ile 28	ignoreparams 13	processscalarfile 20	stdscale 48
diskstorage 39	json 14	rngversion 45	title 47
dist 49	method 18	runpoints 3	usesamesequence 44
distribute 42	minmaxpairs 16	sampling 5	variations 4
donominal 30	mismatchparamfile 25	savedatainseparat edir 37	wfseparation 40
dumpdependency 26	mismatchscalarfil e 24	savefamilyplots 36	
dumpseed 33	nullmfactorcorrel ation 34	savemismatchparam s 23	

Analysis Statements

Noise Analysis (noise)

Description

Noise analysis linearizes the circuit about the operating point and computes the noise spectral density at the output. If you identify an input source, the transfer function and the input-referred noise for an equivalent noise-free network are computed. If the input source is noisy, the noise figure is also computed.

The noise is computed at the output of the circuit. The output is specified with either a pair of nodes or a probe component. To specify the output of a circuit with a probe, specify it with the oprobe parameter. If the output is voltage (or potential), choose a resistor or a port as the output probe. If the output is current (or flow), choose a vsource or iprobe as the output probe.

If the input-referred noise is desired, specify the input source by using the iprobe parameter. Currently, only a vsource, an isource, or a port may be used as an input probe. If the input source is noisy, as is a port, the noise analysis computes the noise factor (F) and noise figure (NF). To match the IEEE definition of noise figure, the input probe must be a port with no excess noise and its noisetemp must be set to 16.85C (290K). In addition, the output load must be a resistor or port and must be identified as the oprobe.

If port is specified as the input probe, both input-referred noise and gain are referred back to the equivalent voltage source inside the port. S-parameter analysis calculates those values in traditional sense.

The noise analysis always computes the total noise at the output, which includes contributions from the input source and the output load. The amount of output noise that is attributable to each noise source in the circuit is also computed and output individually. If the input source is identified, the input-referred noise is computed, which include

s the noise from the input source itself. Finally, if the input source is identified and is noisy, the noise factor and noise figure are computed. Therefore, if:

No = total output noise

Ns = noise at the output due to the input probe (the source)

NI = noise at the output due to the output probe (the load)IRN = input referred noise

G = gain of the circuit

F = noise factor

Analysis Statements

NF = noise figure

Then:

 $IRN = sqrt(No^2 / G^2)$

 $F = (No^2 - NI^2)/Ns^2$

NF = 10*log10(F)

When the results are output, No is named out, IRN is named in, G is named gain, F is named F, and NF is named NF.

Spectre can perform noise analysis while sweeping a parameter. The parameter can be frequency, temperature, component instance parameter, component model parameter, or netlist parameter. If changing a parameter affects the DC operating point, the operating point is recomputed at each step. You can sweep the circuit temperature by giving the parameter name as temp, without a dev or mod parameter. In addition, you can sweep a netlist parameter by giving the parameter name without a dev, or mod parameter. After the analysis is complete, the modified parameter returns to its original value.

Definition

```
Name [p] [n] noise parameter=value ...
```

The optional terminals (p and n) specify the output of the circuit. If you do not specify the terminals, you must specify the output with a probe component.

Parameters

1	prevoppoint=no	Use the operating point computed in the previous
		analysis. Possible values are no and yes.

Sweep interval parameters

2	start=0	Start sweep limit.
3	stop	Stop sweep limit.
4	center	Center of sweep.
5	span=0	Sweep limit span.

Analysis Statements

6	step	Step size, linear sweep.
7	lin=50	Number of steps, linear sweep.
8	dec	Points per decade.
9	log=50	Number of steps, log sweep.
10	values=[]	Array of sweep values.
11	valuesfile	Name of the file containing the sweep values.

Sweep variable parameters

12	dev	Device instance whose parameter value is to be swept.
13	mod	Model whose parameter value is to be swept.
14	param	Name of parameter to sweep.
15	freq (Hz)	Frequency when parameter other than frequency is being swept.

Probe parameters

16	oprobe	Compute total noise at the output defined by this component.
17	iprobe	Input probe. Refer the output noise to this component.

State-file parameters

18	readns	File that contains an estimate of the DC solution (nodeset).
19	write	DC operating point output file at the first step of the sweep.
20	writefinal	DC operating point output file at the last step of the sweep.

Analysis Statements

Initial condition parameters

21	force=none	The set of initial conditions to use. Possible values are none, node, dev, and all.
22	readforce	File that contains initial conditions.
23	skipdc=no	Skip DC analysis. Possible values are no and yes.
24	useprevic=no	If set to yes or ns , use the converged initial condition from previous analysis as ic or ns . Possible values are no , yes , and ns .

Output parameters

25	save	Signals to output. Possible values are all, lvl, allpub, lvlpub, and selected.
26	nestlvl	Levels of subcircuits to output.
27	oppoint=no	Determines whether operating point information should be computed; if yes, where should it be printed (screen or file). Operating point information is not printed if the operating point computed in the previous analysis remains unchanged. Possible values are no, screen, logfile, and rawfile.
28	separatenoise=no	Separate noise into sources and transfer functions. Possible values are ${\tt no}$ and ${\tt yes}.$

Convergence parameters

29	restart=yes	Restart the DC solution from scratch if any condition has changed. If not, use the previous solution as an initial guess. Possible values are no and yes.
----	-------------	---

Analysis Statements

Annotation parameters

30	annotate=sweep	Degree of annotation. Possible values are no, title, sweep, status, and steps.
31	title	Analysis title.

You can define sweep limits by specifying the end points or the center value and span of the sweep. Steps can be linear or logarithmic, and you can specify the number of steps or the size of each step. You can specify a step size parameter (step, lin, log, or dec) to determine whether the sweep is linear or logarithmic. If you do not specify a step size parameter, the sweep is linear when the ratio of stop to start values is less than 10, and logarithmic when this ratio is 10 or greater. All frequencies are in Hertz.

The small-signal analysis begins by linearizing the circuit about an operating-point. By default this analysis computes the operating-point, if it is not known, or recomputes it if any significant component or circuit parameter has changed. However, if an operating point was computed during a previous analysis, you can set prevoppoint=yes to avoid recomputing it. For example, if prevoppoint=yes and the previous analysis was a transient analysis, the operating point is the state of the circuit at the final time point.

Nodesets help find the DC or the initial transient solution. You can specify nodesets in the circuit description file with nodeset statements, or in a separate file by using the readns parameter. When nodesets are specified, Spectre computes an initial guess of the solution by performing DC analysis, while forcing the specified values on to nodes by using a voltage source in series with a resistor whose resistance is rforce. Spectre then removes these voltage sources and resistors and computes the required solution from this initial guess.

Nodesets have two important uses. First, if a circuit has two or more solutions, nodesets can bias the simulator towards computing the required solution. Second, these are a convergence aid. By estimating the solution of the largest possible number of nodes, you might be able to eliminate a convergence problem or significantly speed up convergence.

When you simulate the same circuit multiple times, it is recommended that you use both write and readns parameters and assign the same file name to both parameters. DC analysis then converges quickly even if the circuit has changed since the last simulation, and the nodeset file is automatically updated.

During the initial operating point DC analysis, you may force certain circuit variables to use the values given in the ic file, ic statements, or ic parameter on the capacitors and inductors. The ic parameter controls the interaction of various methods of setting the force values. The effects of individual settings are as follows:

Analysis Statements

force=none: All initial conditions are ignored.

force=node: The ic statements are used, and the ic parameters on the capacitors and inductors are ignored.

force=dev: The ic parameters on the capacitors and inductors are used, and the ic statements are ignored.

force=all: Both ic statements and ic parameters are used, with the ic parameters overriding the ic statements.

If you specify an ic file with the readforce parameter, force values from the file are used, and any ic statements are ignored.

After you specify the initial conditions, Spectre computes the DC operating point with the specified nodes forced to the given value by using a voltage source in series with a resistor whose resistance is rforce (see options).

Parameter Index

In the following index, the number corresponding to each parameter name indicates where to find the description of that parameter:

annotate 30	log 9	readns 18	stop 3
center 4	mod 13	restart 29	title 31
dec 8	nestlvl 26	save 25	useprevic 24
dev 12	oppoint 27	separatenoise 28	values 10
force 21	oprobe 16	skipdc 23	valuesfile 11
freq 15	param 14	span 5	write 19
iprobe 17	prevoppoint 1	start 2	writefinal 20
lin 7	readforce 22	step 6	

Immediate Set Options (options)

Description

The immediate set options statement sets or changes various program control options. These options take effect immediately and are set while the circuit is read. For more options, see the description of individual analyses.

Note: Options that are dependent on netlist parameter values do not maintain their dependencies on those netlist parameters.

In many cases, a particular option can be controlled by either a command-line or netlist specification. In the situation where both are used, the command-line option takes priority over the setting in the netlist options statement.

Definition

Name options parameter=value ...

Parameters

Tolerance parameters

1	reltol=0.001	Relative convergence criterion.
2	residualtol=1.0	Tolerance ratio for residual (multiplies reltol).
3	vabstol=1.0e-6 V	Convergence criterion for absolute voltage tolerance.
4	iabstol=1.0e-12 A	Convergence criterion for absolute current tolerance.
5	chargeabstol=1.0e-2	21 Coul
		Convergence criterion for absolute charge tolerance.

Temperature parameters

6 temp=27 C Temperature.

Analysis Statements

7	tnom=27 C	Temperature measurement of the default component parameter.
8	tempeffects=all	Temperature effect selector. If tempeffects = vt, only thermal voltage varies with temperature; if tempeffects = tc, parameters that start with tc are active and thermal voltage is dependent on temperature; and if tempeffect = all, all built-in temperature models are enabled. Possible values are vt, tc, and all.

Output parameters

9	save=selected
-	Dave Defected

Defines node voltage waveforms to be saved. Possible values are all, lvl, allpub, lvlpub, selected, none and nooutput.

- selected voltage waveforms for nodes saved by the user are created, if no node voltage is saved, then allpub is used.
- allpub all node voltages, voltage source currents, inductor currents, and iprobe currents are saved.
- lvlpub all node voltages, voltage source currents, inductor currents, and iprobe currents down nestlvl levels are saved.
- none no node voltage is saved except one randomly selected node voltage.
- nooutput disables any waveform writing.
- all same as allpub, additionally saves internal nodes of active devices.
- 1v1 same as 1v1pub, additionally saves internal nodes of active devices.

10 nestlyl=infinity

Defines hierarchical level when save=lvl or lvlpub is used. nestlvl=1 refers to top level and nestlvl=2 includes top level and one level below.

Analysis Statements

<pre>11 currents=selecte</pre>

Defines element, device, and inline subckt current waveforms to be saved. Possible values are all, nonlinear, selected, and none.

- all save all element, device and inline subckt currents on all hierarchy levels.
- nonlinear save currents for all nonlinear elements on all hierarchy levels.
- selected waveforms for element, device, and inline subckt currents saved by the user are created.
- none no currents are saved, but individually saved currents are not disabled.

12 subcktprobelv1=0

Defines the level up to which the subcircuit terminal current waveforms are automatically saved.

- 0 no subcircuit currents are saved.
- 1 current through top level subcircuit instance terminals are saved.
- 2 current through terminals of subcircuit instances in the top two levels of hierarchy are saved.

13 pwr=none

Defines element, subcircuit, and total design power waveforms (extension:pwr, unit W) to be saved. Possible values are all, subckts, devices, total, and none.

- all all element, subcircuit, and total power.
- subckt all subcircuit and total power.
- devices all element and total power.
- total total power.
- none no power.

Analysis Statements

14	subcktiprobes=yes

Defines whether subckt terminal currents saved are calculated by summing up branch currents, or by inserting iprobe elements. Possible values are no, save, all, and yes.

- all Uses iprobes for both, individual subckt port current save and subcktprobelvl statements (Spectre default).
- save Only inserts iprobes for individual subckt port current save statements but not for subcktprobelvl statements (APS default).
- no Does not insert any iprobe.
- yes Maintains backward compatibility by using all for Spectre, and save for APS.

15 useprobes=no

Defines whether element current saved is taken from element or from inserted iprobe element. Possible values are no and yes.

- yes Inserts iprobes for individual element current save, and currents statement.
- no Uses element current, no iprobes inserted.

16 useterms=default

Defines whether device/subckt port index (M1:1) or name (M1:d) is saved when using currents or subcktprobelvl options. Does not apply to individual save statements, that is, save M1:d.

Possible values are default, name, and index.

- default saves device terminal currents with terminal name and subckt terminal currents with terminal index.
- index saves both with terminal index.
- name saves both with terminal name.

17	usenodes=name	Defines how to identify last part of the hier name with digital in save statement, as device/subckt terminal index first or as terminal/node name first. Possible values are name and index.
		Example
		save mn.4 name
		Here, 4 is the node/terminal name. If there is no node or terminal named 4, it is used as index.
		If index was specified here, then 4 would be identified as terminal index first. If no fourth terminals are found, then 4 will be identified as name.
18	savefilter=none	Option defines whether global or wildcard save statements create waveforms for all nodes (none), or exclude nodes being only RC connected (rc). This option only impacts waveform creation but not reduction or node preservation inside Spectre.
		Possible values are none, rc and colon.
19	saveports=no	If set to yes, subckt ports will be saved when nodes inside subckts are saved with wildcards, i.e. "save * subckt=abc".
20	save_time_window=0	
		Specifies the time window for all saved waveforms. Multiple time windows are supported:
		save_time_window=[1u 2u 5u 6u]
		If a waveform is saved with an individual time_window argument, then the save_time_window option is ignored for this signal.
21	wfdebug=none	Flag to store the measurement signal in a raw file. Possible values are none and measure.
22	saveahdlvars=select	ced
		AHDL variables to output. Possible values are all, selected, and allwithnodes.

23	<pre>spfprobenode=net_o nly</pre>	When net_only is selected, it is the only net name in SPF file that is used to match the wild card in .probe/.ic statements. The hierarchical structure of the net name is restored like pre-layout netlist. When all, the net name in SPF file is stored as pre-layout node name, and the nodes in SPF file are preserved like the current behavior. The wild card in .probe/.ic will match all the nodes and net names.
		Possible values are net_only and all.
24	<pre>dspf_nodename=orig inal</pre>	When original is selected, the current behavior, .connect is created for nodes cut by DSPF translator. When net_only, it is the only net name in DSPF file that is used to match the wild card in .probe/.ic statements. The hierarchical structure of the net name is restored like prelayout netlist. When all, the net name in DSPF file is stored as pre-layout node name, and the nodes in DSPF file are preserved like the current behavior. The wild card in .probe/.ic will match all the nodes and net names.
		Possible values are original, net_only, and all.
25	sine_sync_period=n o	If set to yes, sine-type source proposes time points exactly at 0, 30, 60, 90, 120, degree Possible values are no and yes.
26	<pre>pwl_ignore_error_m sg=no</pre>	If set to yes, will ignore pwl source error message if the time of two points are same Possible values are no and yes.
27	<pre>disable_check_nf=n o</pre>	If set to yes, disable node folding checking Possible values are no and yes.
28	<pre>src_allbrkpts=no</pre>	If set to yes, sets all user-defined points for a pwl-type source as breakpoints in transient analysis. When both the global option and the allbrkpts option of individual sources are set, the latter take precedence. Possible values are no and yes.
29	redundant_currents =no	If set to yes , save both currents through two terminal devices. Possible values are no and yes .

30	ahdldomainerror=warning	AHDL domain error handling selector. If ahdldomainerror=error, incorrect AHDL domain input is treated as an error. If ahdldomainerror=warning, incorrect AHDL domain input is treated as warning. If ahdldomainerror=none, AHDL domain error is ignored. Possible values are error, warning, none, erroriter, and warniter.
31	rawfmt=psfxl	Output raw data file format. Possible values are nutbin, nutascii, psfbin, psfxl, sst2, fsdb, wdf, uwi, and tr0ascii.
32	rawfile="%C:r.raw"	Output raw data file name.
33	precision="%g"	Format specification of double for psfascii. Example: "%15.12g" outputs 12 decimal digits in mantissa. The default value "%g" prints 6 decimal digits.
34	psfversion	Version of psfxl format to use. Default is 1.2.
35	uwifmt	User-defined output format. To specify multiple formats, use: as a delimiter. The option is valid only when waveform format is defined as uwi.
36	uwilib	Absolute path to the user-defined output format library. This option is used along with $uwifmt$. Use: as a delimiter to specify more than one library.
37	exportfile	oceanEval output file name.
38	wfmaxsize=infinity	Limits the maximum size of the output waveform. This option is valid when uwi format is set.
39	disk_check_thresh= 1E8	The threshold of disk space check
40	<pre>disk_check_autores ume=no</pre>	Automatically resume the simulation once the available disk space is larger than the specified threshold. Possible values are no and yes.
41	gennetlistdir=no	Output netlist directory in logfile. Possible values are ${\tt no}$ and ${\tt yes}.$
42	procopt=no	Fix affinity for the simulation run. Possible values are ${\tt no}$ and ${\tt yes.}$

Analysis Statements

Convergence parameters

43	homotopy=all	Method used when there is no convergence on initial attempt of DC analysis. You can specify methods and their orders by defining vector setting such as homotopy=[source ptran gmin]. Possible values are none, gmin, source, dptran, ptran, arclength, tranrampup, and all.
44	newton=normal	Method used on DC analysis. You can specify methods newton=[nonelnormal], and the default value is normal. Possible values are none and normal.
45	noiseon_type=all	Defines the noise sources that are enabled by the noiseon/off_inst option. The default value is all. Possible values are thermal, flicker, shot, ign, and all.
46	noiseoff_type=all	Defines the noise sources that are disabled by the noiseon/off_inst option. The default value is all. Possible values are thermal, flicker, shot, ign, and all.
47	limit=dev	Limiting algorithms to aid DC convergence. Possible values are delta, log, dev, 12, newton and none.
48	device_limit=dev	Limiting method for nonlinear device to aid DC convergence. Possible values are dev, delta and dev_delta.
49	maxdeltav=0.3 V	Maximum change in voltage allowed per Newton iteration when limit=delta (default 0.3 V) or limit=l2 (default 10 $^{\circ}$ V).
50	automaxdeltav=no	Automatically set maxdeltav according to simVDD. Possible values are no and yes.
51	automaxdeltavscale=	=0.1
		Scale for maxdeltav calculation when automaxdeltav=yes, must be larger than 0 and less than 1.
52	maxvdddc=3.0 V	Maximum value of Vdd for DC simulation.
53	maxphysicalv=infini	Lty V
		Maximum physical voltage allowed in solution.
54	maxphysicali=infini	Lty A
		Maximum physical current allowed in solution.

55	maxphysicalmmf=infinity A	
		Maximum physical magnetomotive force allowed in solution.
56	maxphysicalflux=in	Einity Wb
		Maximum physical flux allowed in solution.
57	maxphysicalunitless	s=infinity
		Maximum physical unitless signals allowed in solution.
58	ahdl_device_limit=0	dev
		Limiting method for AHDL device to aid DC convergence. Possible values are dev, delta and dev_delta.
59	ahdl_maxdeltav=1.0	V
		Maximum change in voltage allowed for AHDL devices per Newton iteration when ahdl_de-vice_limit=delta. (default 1.0 V).
60	gmethod=dev	Stamp gdev, gnode, or both in the homotopy methods (other than dptran). See the detailed description below the parameter descriptions for more information. Possible values are dev, node, and both.
61	dptran_gmethod=node	2
		Stamp gdev, gnode, or both in the dptran (homotopy) methods. Possible values are dev, node, and both.
62	gmin_start=1.0	Initial gmin in gmin-stepping (homotopy) methods.
63	gmin_converge=1.0e-	-13
		Maximum DC gmin value allow DC to converge.
64	try_fast_op=yes	Speed up the DC solution. For hard-to-converge designs, this feature fails and other methods are applied. In corner cases, this feature may have negative effects. If the DC analysis is unusually slow, the memory usage of the processes keeps increasing, or if DC analysis gets stuck even before homotopy methods start, set this option to no. Possible values are no and yes.
65	icversion=1	Convert initial condition to initial guess, when .ic statements exist in the netlist and there are no other options to set IC or nodeset.

66	dcmaxiters=5	Maximum number of Newton iterations in DC simulation.
67	stackfet_dcmaxiters=100	
		Maximum number of Newton iterations in DC simulation for StackFET.
68	dc_diagnose_steps=5	50
		Number of non-convergence steps for printing out diagnose information in DC simulation.
69	dc_diagnose_element	cs=10
		Number of elements connected to non-converged nodes in printing diagnose information in DC simulation.
70	ptranmaxsteps=200	Maximum number of steps for ptran phase in DC simulation.
71	dptranmaxsteps=300	Maximum number of steps for dptran in fast DC simulation.
72	ptranmaxsteps1=500	Maximum number of steps for ptran phase in 1st-stage DC simulation.
73	dptranmaxsteps1=500	
		Maximum number of steps for dptran phase in 1st-stage DC simulation.
74	dcoptmaxsteps=300	Maximum number of steps for dcopt in DC simulation.
75	dcoptautoptransteps	3
		Initial number of steps for ptran phase in DC simulation with dcoptmaxsteps=auto.
76	dcoptautodptranster	ps=100
		Initial number of steps for dptran phase in DC simulation with dcoptmaxsteps=auto.
77	dcoptic=aps1	Initial condition of dcopt in DC simulation.
78	dcoptictype=nodeset	
		Initial condition type for dcopt in DC simulation.
79	reusedc=no	Reuse dcopt results from second analysis. Possible values are no, dcopt and previc.

80	icpriority=netlist	Set the ic priority order. If set to netlist, the order from lowest to highest is readNS, netlist NS, readIC, netlist IC. If set to file, the order from lowest to highest is netlist NS, readNS, netlist IC readIC. Possible values are file and netlist.
81	subcktoppoint=no	Generate operating point parameters for sub-circuit instances. Possible values are no and yes.
82	out_dev_stack	Dump expanded stacked device macro netlist in a separate file and dump complete DC OP output in a separate file.
83	fastmcmethod	Enable sss standalone running.
84	detect_path_vpn	Define vpn for detecting path.
85	detect_path_vgnd=[.]
		Define vgnd nodes for detecting path
00		
86	detect_path_clock=	
		Define clock for detecting path.
87	subcktcap=0	Select the sub-circuit capacitance output mode. If set to 0, then the sum of the four capacitances is 0. For example, $cgg + cgs + cgd + cgb = 0$. If set to 1, the diagonal capacitance is equal to the sum of off-diagonal capacitances. For example, $cgg = cgs + cgd + cgb$.
88	subcktopfreq=0.1591	L55 Hz
		This parameter is used to set the frequency used in AC analyses run as part of sub-circuit operating point parameter calculations. The default value is $1/(2*pi)$ Hz.

Analysis Statements

Multithreading parameters

89	multithread=off	Enable or disable multithreading capability. When multi- threading is enabled but the number of threads (nThreads) is not specified, Spectre will automatically detect the number of processors and select the proper number of threads to use. (See important note about using multithreading in the detailed description below the parameter descriptions). Possible values are off and on.
90	forcemt=no	Force the multithread behaviour, no is to choose number of threads automatically according to circuit size, yes is to use the number of threads specified by user strictly, exit is when number of threads specified more than needed according to circuit size. Defualt is no. Possible values are no, yes and exit.
91	nthreads	Specifies the number of threads for multithreading.

Analysis Statements

Component parameters

92	rabsshort=0	When this option is set, all fixed value resistors with absolute value of R<=rabsshort are shorted. Default value is 0 for Spectre, and 1m for APS. rabsshort can additionally be applied to variable resistors using the option short_cut_var_elem=yes.
93	rabsclamp=0.0 Ω	All fixed value and variable resistors with absolute value of R<=rabsclamp are clamped to rabsclamp.
94	rcut=infinity Ω	Fixed value resistors with R>rcut are replaced by open. Default is infinity for Spectre and MAX (1/GMIN, 1e12) for APS. For because resistor, default is 1e12 for Spectre and MAX (1/GMIN, 1e12) for APS. If GMIN is not specified, the value of MAX (1/GMIN, 1e12) is 1e12. rcut can additionally be applied to variable resistors using the option short_cut_var_elem=yes.
95	rcut_bsource (Ω)	When rcut_bsource=value is given, all instance bsource resistors with R>value are clamped to value. It has high priority than rcut, if both are set. Default is 1e12 Ohm for bsource resistor.
96	rthresh	All instance resistors with abs(R) < rthresh will use resistance form unless their instance parameter or model parameter overwrites it.
97	cclamp=0.0 F	All capacitors, including beource capacitors, with C<=cclamp are clamped to cclamp.
98	ccut=infinity F	Capacitors with C<=ccut are replaced by open. ccut can additionally be applied to variable capacitors using the option short_cut_var_elem=yes.
99	cgnd=infinity F	Coupling capacitors with C<=cgnd are split into two grounded capacitors with th same C value.
100	cmax=infinity F	All capacitors with C>=cmax are clamped to cmax.
101	kcut=0.0	Fixed value mutual inductors with absolute value of K<=kcut are replaced by an open. kcut can additionally be applied to variable value mutual inductors using the option short_cut_var_elem=yes. Default value is 0 in Spectre and 1m in APS.

102	lshort=0 H	Fixed value inductors with absolute value of L<=kcut are replaced by an open. lshort can additionally be applied to variable value inductors using the option short_cut_var_elem=yes.
103	dcut=[]	Replaces all diode instances using the specified model definitions with an open. dcut=all cuts all diode elements.
104	qcut=[]	Replaces all BJT instances using the specified model definitions with an open. qcut=all cuts all BJT elements.
105	vabsshort	Voltage sources with absolute DC voltage less than or equal to <code>vabsshort</code> are shorted. Spectre by default does not short any voltage source, Spectre APS uses a default value of 1e-9 V.
106	scalem=1.0	Model scaling factor.
107	scale=1.0	Device instance scaling factor.
108	scalefactor=1.0	ScaleFactor for Device Model Technology Scaling. The options parameter scalefactor enables device model providers to scale device technology independent of the design dimension scaling done by circuit designers. The resulting device instance scaling is defined by 'scale * scalefactor'. If the foundry uses a technology scale factor of 0.9 (scalefactor=0.9), and the circuit designer uses a design scale factor of 1e-6 (scale=1e-6), then the compounded scaling of the device instance dimension is 0.9e-6. Unlike options parameter scale, scalefactor cannot be used as a netlist parameter and cannot be altered or used in sweep statements.
109	ishrink=1.0	Ishrink factor.
110	compatible=spectre	Encourage device equations to be compatible with a foreign simulator. This option does not affect input syntax. Possible values are spectre, spice2, spice3, cdsspice, hspice, spiceplus, eldos, spice, mica, tispice, and pspice.
111	approx=no	Use approximate models. Difference between approximate and exact models is less. Possible values are ${\tt no}$ and ${\tt yes}.$

Analysis Statements

112	auto_minductor=no	Automatic insertion of missing mutual inductor coupling. For more information, see detailed description below the parameter descriptions. Possible values are no and yes.
113	kmax=no	Sets 1.0 as the maximum absolute value for coupling coefficient of mutual inductors. Possible values are no and yes.
441	. 11	

114 nport_bbspice_to_linear=yes

When set to yes, if BBSpice fails or generates large fitting errors, and automatically switches nport interpoption from bbspice to linear. This auto-switching depends on analysis when BBSpice generates large fitting errors. If set to no, this feature is disabled. Possible values are no and yes.

115 nport_default_interp=auto_switch

If nport_default_interp is set to auto_switch, nport automatically chooses bbspice for analysis, such as pss and the tstab interval of hb and pss, and linear for analyses, such as ac, dc, tran, and sp.

All nport elements in the netlist that do not have interp set will have interp set to the value specified in the global option nport_default_interp. If an nport instance has the interp option explicitly specified, the instance option will take priority over the global option. Possible values are spline, rational, linear, bbspice, and auto_switch

116 nport_default_passivity=disable

Check and enforce passivity of S-parameter for all nport instances. Default is <code>disable</code>, which means that this global option has no effect. If set to a value other than <code>disable</code>, all nport elements in the netlist, without a value for passivity explicitly set, will have their passivity argument set to the same value as specified in this global option. If an nport instance already has the passivity option specified, the instance option will take priority, if both are present.

Possible values are no, check, enforce, fit_weak_enforce, fit_enforce, and disable.

117 nportbbsfittedfiledir

		The directory to which the BBSpice fitted S-Parameter file will be put. If it is not specified, the file will be in directory named as 'BBSpiceOutput'. If a relative path is specified, the path is relative to the current working directory.
118	nportirreuse=yes	Reuse impulse responses data for all nport instances. If no, disable this feature. Possible values are ${\tt no}$ and ${\tt yes}.$
119	nportirfiledir	The directory to which the nport impulse response file will be written. If it is not specified, the file will be written to /home/ <username>/.cadence/mmsim/. If a relative path is specified, the path is relative to the current working directory.</username>
120	nportcompress=yes	
		Nport compression improves the efficiency of S-parameter simulation of large nport files when a certain percentage of the ports is unused, i.e., open or short circuited. Nport compression does not impact simulation accuracy. This option turns off compression if set to no and attempts to force compression if set to yes. If left unspecified, compression is on if N>=10 and the ratio of used ports is less than or equal to 0.8. Possible values are no, yes and unspecified. Possible values are no and yes.
121	nportunusedportgmir	n=0.0
		Default is 0, which leaves the port open-circuited. A small value loads open-circuited ports with a finite but large resistance. This introduces a small error in the response, but it induces losses which help obtain a passive response.
122	nportunusedportrmin	n=0.0
		Default is 0, which leaves the port short-circuited. A small value will insert a small resistance in place of short circuited ports. This introduces a small error in the response, but it induces losses which help obtain a passive response.
123	nportcompressfiledi	.r
		The directory where the compressed nport S-parameter file is written to. If unspecified, it is stored in outdir.
124	nportbbsmaxwaittime	e=0.5

Analysis Statements

The maximum waiting time of Spectre if another run locks BBSpice fitting on the same S-parameter file, in unit of hour. Once waiting time reaches the specified value, Spectre exits with error.

125 hb_lowmem_default_mode=0

Default lowmem mode for harmonic balance and following small signal analysis. Possible values are 0 and 1. If '0' is set, the low memory mode is turned off in default. If '1' is set, the standard low memory mode is turned on in default. If '1owmem' option is explicitly specified in HB or following small signall analysis, the analysis option will take priority over this global option.

Noise parameters

126	noiseon_inst=[]	The list of instances to be considered as noisy through-
		out noise analysis, which include, noise, sp noise, pnoise
		and tran noise.

127 noiseoff_inst=[...]

The list of instances not to be considered as noisy throughout noise analyses, which include noise, sp noise, pnoise and tran noise.

Error-checking parameters

128	topcheck=full	Check circuit topology for errors. Possible values are no, min, full, fixall, errmin, and errfull.
129	iccheck=all	Check if nodes with initial conditions have capacitive path to ground or connected to ground by vsource. IC for such node is treated as nodeset. Possible values are no, vsource, cap, and all.
130	iccap=0 F	iccap (capacitance) is added to each IC node to prevent discontinuity between OP point and time t=0 in transient analysis.

Analysis Statements

131	ignshorts=no	Silently ignore shorted components. Possible values are no and yes.
132	diagnose=no	Print additional information that might help diagnose accuracy and convergence problems. Possible values are no, yes, and detailed.
133	diagnose_start=0 s	Start time to enable the detailed diagnosis mode.
134	diagnose_end (s)	End time to enable the detailed diagnosis mode. Default is transient stop time.
135	debugstepdrop=no	Generates warnings on dramatic step size drop and notices when step size is recovered. Possible values are no and yes.
136	stepdropsize=100	The threshold size of step drop to report a dramatic change warning.
137	checklimitfile	File to which assert violations are written.
138	dochecklimit=yes	Check asserts in the netlist. Possible values are ${\tt no}$ and ${\tt yes}.$
139	asserts_silent_init=[]	
		Array of asserts or assert groups which don't generate message during initializing.
140	checklimitdest=sqld	lb
		Destination(s) where violations are written. Possible values are file, psf, sqldb, and both.
141	checklimitdetails=no	
		Print detailed information about the expression. Possible values are ${\tt no}$ and ${\tt yes}.$
142	checklimit_full_dur	ration=no
		If set to yes , assert violation includes the duration for which the violation takes place, and uses interpolation when the value exceeds the max/min bound value. Possible values are no and yes .
143	probe_compatible=sp	pectre
		Flag to enable or disable optimization for probe wildcard

statement. Possible values are hapice and spectre.

Analysis Statements

144	rampsource=yes	When performing dc hysteresis sweep, rampsource should be set to no. Possible values are no and yes.
145	devcheck_stat=yes	Enable or disable output device-checking statistics. If set to none, no statistics related to asserts will be written to either screen or logfile. If set to sub, it reports the number of asserts per subckt per assert, which are enabled. If set to inst, it reports full instance name of an assert, which is enabled. It is not recommended when there are many asserts. Possible values are no, yes, none, inst, and sub.
146	opptcheck=yes	Check operating point parameters against soft limits. Possible values are ${\tt no}$ and ${\tt yes}.$

Resistance parameters

147	gmin=1e-12 S	gmin (conductance) is added to each nonlinear branch of the device to prevent simulation non-convergence. Large gmin impacts accuracy of current probe, while a small gmin value may cause circuit convergence issue. For a circuit that is sensitive to leakage current, it is recommended to set gmin to a small value or zero.
148	gmindc=1e-12 S	Minimum conductance across each non-linear device in DC analysis. If gmindc is not specified, the value of gmindc will be equal to gmin. Default value is 1.0e-12.
149	gminfloat=1e-12 S	Minimum conductance added between the dc floating node and the ground node. It is to avoid matrix singular error for dc analysis. If the gminfloat is not specified, its value will be decided by the gminfloatdefault parameter.
150	dcopttol=1e-8 S	Tolerance used for dcopt analysis.
151	gshunt=0.0 S	Minimum conductance added for all nodes in tran analysis.
152	gshuntdc=0.0 S	Minimum conductance added for all nodes in dc analysis.
153	gmindcmax=0 S	The maximum value that gmindc can be increased to during the automatically increasing gmindc method for convergence. The default value is gmindc.

154	dcdampsol=no	Damp DC solution during Newton iteration to assist convergence. Possible values are no and yes.
155	dcfloatno- decheck=no	Relax DC floating node residue check in DC simulation to assist convergence. Possible values are no and yes.
156	dcuseprevic=no	DC use previous analysis OP point as nodeset for the current DC analysis. Possible values are no and yes.
157	dcoptfilter=yes	Filter first-stage DC solution in DCOPT process. Possible values are no and yes
158	dcoptfiltervtol=0 V	7
		The voltage tolerance for first-stage DC solution filtering in DCOPT process.
159	dc_auto_rforce=no	Automatically adjust the rforce value in DC simulation to get accurate IC setting. Possible values are no and yes.
160	ignore_blowup=no	Ignore blowup signal in simulation. Possible values are no and yes.
161	dc_ic_abstol=1.0e-6	5
		IC absolute toleration for DC IC accuracy check.
162	dc_ic_reltol=0.001	IC relative toleration for DC IC accuracy check.
163	dccheck=no	DC solution physical check. If set to yes, DC will be rerun with limit=delta if the solution obtained by the first run is not physical. If set to detail, the solution differences between the two runs will be printed out in the log file. Possible values are no, yes and detail.
164	dc_check_multiple_s	solutions=no
		Check for DC multiple solutions. Possible values are no and yes.
165	dc_solution_vabstol	_=1.0e-3
		DC solution voltage absolute toleration for multiple solution check.
166	dc_solution_vreltol	1=0.1

Analysis Statements

		DC solution voltage relative toleration for multiple solution check.
167	dc_solution_iabstol	=1.0e-6
		DC solution current absolute toleration for multiple solution check.
168	dc_solution_ireltol	=0.1
		DC solution current relative toleration for multiple solution check.
169	gmin_check=max_v_on	ly
		Specifies that effect of gmin should be reported if significant.
		Possible values are no, max_v_only, max_only and all.
170	fix_singular_matrix	=no
		Fix matrix singular issue by inserting gmin. Possible values are no, yes, print, and both.
171	rforce=1 Ω	Resistance used when forcing nodesets and node-based initial conditions.
172	rclamp_bsource=1 Ω	When rclamp_bsource=value is given, all instance bsource resistors with R <value 0.001="" are="" both="" bsource="" clamped="" default="" for="" has="" higher="" if="" is="" it="" ohm="" priority="" rclamp="" resistor.<="" set.="" specified="" th="" than="" the="" to="" value.=""></value>
173	ahdl_exp_limit=1 (n	.0)
		When set to a positive value, ahdl exp() function will use it to limit exp() function arguments.

Quantity parameters

174	value="V"	Default value quantity.
175	flow="I"	Default flow quantity.
176	quantities=no	Print quantities. If quantities=min, the simulator prints out all defined quantities; if quantities=full, the simulator also prints a list of nodes and their quantities. Possible values are no, min, and full.

Analysis Statements

Annotation parameters

	•	
177	audit=detailed	Print time required by various parts of the simulator. Possible values are no, brief, detailed, and full.
178	inventory=detailed	Print summary of components used. Possible values are no, brief, detailed, and full.
179	narrate=yes	Narrate the simulation. Possible values are no, yes, and compact.
180	debug=no	Give debugging messages. Possible values are ${\tt no}$ and ${\tt yes}.$
181	info=yes	Give informational messages. Possible values are ${\tt no}$ and ${\tt yes}.$
182	note=yes	Give notice messages. Possible values are no and yes.
183	maxnotes=5	Maximum number of times a notice is issued per analysis.
		Note: This option has no effect on notices issued as part of parsing the netlist. Use the -maxnotes command-line option to control the number of all notices issued.
184	stver_note=no	Give -stver suggestion warning for invalid parameter. Possible values are no and yes.
185	warn=yes	Display warning messages. Possible values are no and yes.
186	maxwarns=5	Maximum number of times a warning message is issued per analysis.
		Note: This option has no effect on warnings issued as part of parsing the netlist. Use the -maxwarns command-line option to control the number of all warnings issued.
187	maxwarnstolog- file=5	Maximum number of times a warning message is printed to the log file per analysis.
		Note: This option has no effect on warnings printed as part of parsing the netlist. Use the -maxwarnstolog command-line option to control the number of all warnings printed to the log file.

Analysis Statements

188	maxnotestolog- file=5	Maximum number of times a notice message is printed to the log file per analysis.
		Note: This option has no effect on notices printed as part of parsing the netlist. Use the -maxnotestolog command-line option to control the number of all notices printed to the log file.
189	error=yes	Generate error messages. Possible values are ${\tt no}$ and ${\tt yes}.$
190	digits=5	Number of digits used when printing numbers.
191	measdgt=0	Number of decimal digits (in floating point numbers) in measurement output in mt0 format.
192	notation=eng	The notation to be used to display real numbers to the screen. Possible values are eng, sci, and float.
193	cols=80	Width of screen in characters.
194	colslog=80	Width of log-file in characters.
195	title	Circuit title.
196	simstat=basic	Print simulation phase statistics report. Possible values are basic and detailed.

Matrix parameters

197	pivotdc=no	Use numeric pivoting on every iteration of DC analysis. Possible values are no and yes.
198	dc_pivot_check=no	During DC analysis, the numeric pivoting is only performed when bad pivot is detected. Possible values are no and yes.
199	tran_pivot check=no	During Tran analysis, perform numerical pivoting when bad pivot is detected. Possible values are no and yes.
200	tran_pivot_thresh-old=0.00001	When tran_pivot_check=yes, the relative pivot threshold below which the matrix will be reordered.
201	checklimit_skip_suk	os=[]

Analysis Statements

Array of subcircuit masters or subcircuit master patterns to be skipped in device checking. Patterns can have any wildcard symbols.

202 checklimit_skip_file

File which contains the subcircuit masters or subcircuit master patterns to be skipped in device checking. Patterns can have any wildcard symbols.

203 checklimit_skip_insts=[...]

Array of instances to be skipped in device checking. Instances can have any wildcard symbols.

204 checklimit_skip_insts_file

File containing the instances to be skipped in device checking. Instances can have any wildcard symbols.

205 checklimit_skip_ie_connect_devices=0

The devices connected to AMS IE elements (hierarchy level must be lesser than the value specified for this option) will be skipped in device checking.

206 pivrel=0.001 Relative pivot threshold.

207 pivabs=0 Absolute pivot threshold.

208 complexpivrel=1e-5

Relative pivot threshold for small signal analyses.

209 preorder=partial

Try this option when simulation runs out of memory or if the simulation is unreasonably slow for the size of your design. It controls the amount of matrix pre-ordering that is done and may lead to much fewer matrix fill-ins in some cases. Known cases include designs with large number of small resistors and large number of behavioral instances containing voltage based equations. Possible values are partial and full.

210 limit_diag_pivot=yes

If set to yes, there is a limit on the number of matrix fillins when selecting a pivot from a diagonal. For backward compatibility, set this option to no. Possible values are no and yes.

Analysis Statements

211	rebuild_matrix=no	If set to yes, rebuild circuit matrix at the beginning of ac, dc, dcmatch, montecarlo, pz, stb, sweep, tdr, and tran analyses. This is to ensure consistent matrix ordering at
		the beginning of the analyses for consistent results. Notice that rebuild circuit matrix can result in performance overhead. Possible values are no and yes.

Miscellaneous parameters

212	ckptclock=0 (s)	Clock time checkpoint period. Default is 1800s for Spectre.
213	param_top- change=yes	If set to yes, Spectre will support parametric topology change caused by device internal node changes when the device, model, or netlist parameter value is altered. Possible values are no and yes.
214	redefinedpar- ams=error	Specify whether parameters can be redefined in the netlist. When set to warning or ignore, the simulator allows you to redefine parameters in the netlist. However, it honors only the last definition of the redefined parameter. Depending on the value set, the simulator displays warning messages for the redefined parameters or does not display any message. When set to error, the simulator does not allow you to redefine parameters in the netlist and displays an error message. Possible values are error, ignore, warning, and warn.
215	duplicate- ports=error	Specify whether duplicate ports are allowed in the definition of the subcircuit. When set to warning or ignore, the duplicate ports are shorted. Depending on the value that is set, the simulator displays warning messages for the duplicate ports or does not display any message. When set to error, the simulator does not allow duplicate ports in the definition of the subcircuit and displays an error message. Possible values are error, ignore, and warning.

216	duplicate_sub- ckt=error	Specify whether duplicate subcircuit definitions are allowed. When set to warning or ignore, the simulator allows duplicate subcircuit definitions. However, it honors only the last subcircuit definition. Depending on the value that is set, the simulator displays warning messages for the duplicate subcircuit definitions or does not display any message. When set to error, the simulator does not allow duplicate subcircuit definitions and displays an error message. Possible values are error, ignore, and warning.
217	duplicatein- stance=error	Specify whether duplicate instance definitions are allowed. When set to warning or ignore, the simulator allows duplicate instance definitions. However, it honors only the last instance definition. Depending on the value that is set, the simulator displays warning messages for the duplicate instance definitions or does not display any message. When set to error, the simulator does not allow duplicate instance definitions and displays an error message. Possible values are error, ignore, and warning.
218	duplicate- model=error	Specify whether duplicate model definitions are allowed. When set to warning or ignore, the simulator allows duplicate model definitions. However, it honors only the last model definition. Depending on the value that is set, the simulator displays warning messages for the duplicate model definitions or does not display any message. When set to error, the simulator does not allow duplicate model definitions and displays an error message. Possible values are error, ignore, and warning.
219	rmdg_preserve=no	Specifies whether the setting to remove dangling instances should be retained for the masters that have preserve_master=yes. Possible values are no and yes.
220	warning_limit=5	The maximum number of times the warnings specified in immediately following the warning_id parameter should be displayed.
221	use_veriloga=0	Determine whether to take Verilog-A as high priority. If set to '1', the Verilog-A model takes priority over the other subckt/models. If set to '0', the Verilog-A model does not take priority over the other subckt/models

222	warning_change_se- verity=warning	Change the severity of warning messages specified in immediately following warning_id. Possible values are error, warning, and notice.
223	warning_id=[]	Vector of warning message identifiers, such as [SPEC-TRE-16462 SPECTRE-16684]. Used in conjunction with warning_limit or warning_change_severity.
224	<pre>preserve_mas- ter=[]</pre>	Preserve all instances of the specified masters.
225	preserve_inst	Preserve the instances specified in the vector. Use preserve_inst=all to preserve all instances.
226	<pre>preserve_sub- ckt=[]</pre>	Preserve all instances within the specified subcircuits.
227	preserve_as- sert=lazy	Whether to execute the preservation for voltage check for assert statements. If the value is lazy, only execute the preservation for current checking; otherwise it will execute complete preservation. Possible values are lazy and force.
228	soa_warn=yes	If soa_warn is no , SOA checks will be disabled. Possible values are no and yes .
229	idovvdsclamp=1e-9	Option to tune the clamp value of IdovVds, default value is 1e-9.
230	soa_dest=file	Destination(s) where SOA violations are written. If set to file, violations will be written in log. If set to sqldb, violations will be written in sqldb. Possible values are file and sqldb.
231	BHT_New_Eval=1	Option to choose which kind of evaluation function to use, 0 for old version with Vciei derivatives, and 1 for new one without Vciei derivatives.
232	cmi_opts=[]	Option for customer cmi.
233	parasitics	Set parasitics for RC reduction. When used as the scoped option, specify the "+mts" command-line option. The option has higher priority than the value from the command line option, "+parasitics". When used as a global option, the value from the command line, "+parasitics", has a higher priority.

Analysis Statements

Sensitivity parameters

234	sensfile	Output sensitivity data file name.
235	sensformat=tabular	Format of sensitivity data. Possible values are tabular and list.
236	senstype=partial	Type of sensitivity being calculated. Possible values are partial and normalized.
237	sensfileonly=no	Enable or disable raw output of sensitivity. results. Possible values are ${\tt no}$ and ${\tt yes}.$
238	sensbinparam=no	Sensitivity for binning models. Possible values are no, uncorrelated, and correlated.
239	paramrangefile	Parameter range file.

Performance parameters

240	minr=0.0	All parasitic resistors inside devices less than global minr will be removed. The order of checking devices is the follows: 1. Check if resistors are smaller than local minr. If yes, check if it is a MOSFET or BJT. If it is a MOSFET, drop the resistor, if it is BJT, clamp to the minr value, and give a warning message for both cases. 2. Check global minr, All Parasitic resistors less than global minr are removed and a warning message is issued. 3. If the resistor is not removed and is smaller than 0.001, issue a warning.
241	short_bjtr=0.0	All parasitic resistors inside bipolar devices less than global short_bjtr will be removed. This option is applied to all bipolar junction transistors.
242	cscalefactor=1e-3	Scaling factor for large capacitor.

243	cthresh=1e38	Large capacitors can cause transient convergence problems, especially as the time-step shrinks. This is similar to the issues that small resistors cause. There is an alternative exact representation of a capacitor, which does not suffer from this problem, but can introduce an equation to be solved. If a capacitance is greater than cthresh, then the alternative formulation is used. Accuracy is not impacted by the change. The cthresh option has lower priority than cthresh parameter on the capacitor instance definition.
244	highvoltage=no	Enables optimized Spectre settings for high voltage designs including voltage, and current binning, excluding VerilogA and dangling nodes from convergence checks, and optimized large capacitance handling.
		Possible values are no and yes.
245	vrefgnd	Specify reference ground.
246	macro_mode	Specify macro_mode configuration.
247	verilogalang=relax	AHDL Verilog-A language syntax check mode selector. If verilogalang=strict, show archaic syntax input as an error during Verilog-A parsing; If verilogalang=relax, show archaic syntax input as a warning during Verilog-A parsing. Possible values are strict and relax.
248	minstepversion=1	Minstep algorithm flow control. If minstepversion=0, desperate big jump is taken when minstep is reached. If minstepversion=1, a forward/backward search algorithm is taken to find a converged solution at small step size. By default, minstepversion=1.
249	<pre>max_minstep_non- conv=200</pre>	The maximum number of convergence failures allowed below minstep within 5% of stop time.
250	<pre>max_approach_min- step=300</pre>	The maximum number of times allowed to approach minstep within 5% of stop time.
251	max_consecu- tive_minstep=1000	The maximum number of consecutive steps allowed to be less than 10*minstep.
252	discontinuity=no	Detect device discontinuity and enable robust transient simulation. Possible values are no and robust.

Analysis Statements

253	autostop=no	If yes, tran analysis is terminated when all event-type measurement expressions have been evaluated. Event-type expressions use thresholding, event, or delay type functions. If the value is spice, autostop is consistent with spice simulator. Possible values are no, yes, and spice.
254	large_newton_reject	c=1
		Reject Newton iteration when large residue or delta solution occurs during transient analysis.

Model parameters

255	soft_bin=singlemode	ls
		If set to singlemodels, it is used only on non-binned models. Possible values are singlemodels, no and allmodels.
256	xpssdc_disable_outpu	ut=1
		When set to 1, disable waveform output for xpssdc child process.
257	filter_wildcard_cold	on_ic=0
		When set to 1, ignore colon node in ic wildcard expansion.
258	filter_wildcard_term	minal_ic=0
		When set to 1, ignore terminal in ic wildcard expansion
259	sram_macro_model=0	
		When set to 1, the 6T mosfets in a cell will be replaced by sramCell instance.
260	sram_macro_model_div	verge_at_large_wl=1
		When set to 1, diverge the cell when wl > 0.3 vdd.
261	sram_macro_model_ad	ljust_monotonic=0
		When set to 1, adjust vp voltage to confirm monotonic.
262	sram_macro_model_ke	ep_tbl_coeff=0
		When set to 1, store the cube resolved coeff.
263	<pre>sram_macro_model_re</pre>	set_cell_group_prop_at_each_iter=0
		When set to 1, reset the cell group prop as unevaluated at each iteration, instead of at each partition's transoad.

Spectre Circuit Simulator Reference Analysis Statements

264	sram_macro_model_wl_d	dynamic_switch=1
		When set to 1, use bbd tran solve for sram cell when wl > .3 vdd.
265	sram_macro_model_fix_	_state_in_dc=1
		When set to 1, we add rforce to miniSolver's state node to proce ic.
266	sram_macro_model_elim	ninate_osc=0
	e	When set to 1, use fast evaluate type in the oscillation for valuation, when set to 2, use more accurate evaluate type in the oscillation for evaluation.
267	sram_macro_model_elim	ninate_osc_thr=4
		pecify the oscillation threshold to enable oscillation limination.
268	sram_macro_model_adj	ust_monotonic_shift_vp=1
	Т	he value is used to adjust non-monotonic region.
269	sram_macro_model_ite	r_ratio=1
		While sram macro model is used, use the ratio to extend ne maximal iteration limit.
270	<pre>sram_macro_model_lim</pre>	iting=1
	1	he value is used to control limiting method for sram cell, : limited in DC; 2: limited in TRAN; 3: limited in DC and RAN.
271	sram_macro_model_stam	npa_non_newton=0
		When set to 1, the maximal iteration in miniSolver tampA stage will be 1 to force converge.
272	sram_macro_model_grou	np_max_size=301
		he maximal cell number a bit-line group can have for
	9	roup_cells=4.
273	sram_macro_model_st0	• —
2/3	sram_macro_model_st0	• —
273 274	sram_macro_model_st0	_method=0 he option determines how to check st0 as low or high.
	sram_macro_model_st0 T sram_macro_model_grow	_method=0 he option determines how to check st0 as low or high.
	sram_macro_model_st0 T sram_macro_model_grow	_method=0 he option determines how to check st0 as low or high. ap_cells=0 When set to 1, group cells of the same bit-line to reuse nique Prop.
274	sram_macro_model_st0 T sram_macro_model_grou W u sram_macro_model_byp	_method=0 he option determines how to check st0 as low or high. ap_cells=0 When set to 1, group cells of the same bit-line to reuse nique Prop.

		When set to 1, stamp rforce in miniSolver in DC stage.
277	<pre>sram_macro_model_st</pre>	camp_gmin=1 When set to no, skip gmin (1e-14) stamping in miniSolver.
278	sram_macro_model_co	onvert_mtm_to_cmi=0
		When set to 1, convert mtm to cmi for mosfet inside cell.
279	sram_macro_model_nc	de_folding=1
		When set to 1, force node folding for sram macro model.
280	sram_macro_model_me	erge_port_cap=0
		When set to 1, count all cell's connected node into cell's coupling cap candidate.
281	sram_macro_model_st	ampa=1
		When set to 1, stamp G+C/h s.c. for power down stage.
282	<pre>sram_macro_model_di</pre>	sable_bypass_stampa=1
		When set to 1, disables bypass in stampA.
283	sram_macro_model_d	ynamic_switch=0
		When set to 1, don't use table when vp < 0.3 * vdd; when set to 2, use G+C/h and I+dQ/h as cell property, and disable bypass for cell.
284	sram_macro_model_sl	kip_node_set=0
		When set to 1, skip nodeset for state node.
285	sram_macro_model_en	nable_active_cell=0
		When set to 1, set sram macro model on active cells.
286	sram_macro_model_t	ran_solve=0
		When set to 1, the sramCell instance use tran solve for internal state.
287	sram_macro_model_fa	ast_out=0
		When set to 1, enable fast out when sram_macro_model=1.
288	sram_macro_model_bl	om_solve=0
		When set to 1, the sramCell use bbm DC solve to perform S.C.; when set to 0, use st0, st1 as vn, vp.
289	sram_macro_model_pc	wer_down_table=0
		When set to 1, use 4D table in first time point when vp < 0.3vdd.

290	sram_macro_model_bk	om colvo do-O
200	STAM_MACTO_MODEL_DX	When set to 1, the sramCell use bbm DC solve to perform S.C. in DC stage; when set to 0, use st0, st1 as vn, vp.
291	sram_macro_model_er	nable_cplcap_min=0
		When set to 1, split cplcap inside cell based on cplcapmin.
292	sram_macro_model_b	bm_ignore_non_converge=0
		When set to 1, the sramCell use previous state node voltages to stamp G/C/I/Q.
293	sram_macro_model_r	econn_st_cplcap_to_port=0
		When set to 1, reconnect the coupling from idle state node to cell's port, add ground cap on state node; while set to 2, reconnect the coupling cap from idle state node to port, and ignore the cap effect on state node.
294	<pre>sram_macro_model_a</pre>	ssert_active_wl=0
		When set to 1, the sramCell instance asserts while the wordline bias > 0.3.
295	sram_macro_model_b	ucket_count=20000
		When the value is non-zero, use the value to initialize hash table bucket size.
296	sram_macro_model_a	djust_monotonic_bits=264
		The bitwise value denotes which op index to check monotonic for sram macro model.
297	sram_macro_model_de	ebug_ms_level=0
		The bitwise value denotes which debug message to dump for miniSolver.
298	sram_macro_model_u	se_table=0
		When set to 1, the sram cell can reuse prop while the voltages meets equal criteria.
290	sram_macro_model_q	uantity=0.001
		This parameter is used to tune sram macro model voltage key quantity.
300	sram_macro_model_mi	n_ratio=0.3
		This parameter is used to control minimal voltage to enter stamp A region.
301	sram_macro_model_m	ax_ratio=0.35

		This parameter is used to control maximal wl value as vdd * this ratio.
302	sram_macro_model_ts	step=1e-12
		This parameter is used to calculate sram macro model S.C
303	sram_macro_model_de	ebug_start_time=0
		This parameter is used to dump the debug message while the time > the value.
304	sram_macro_model_de	ebug_end_time=0
		This parameter is used to dump the debug message while the time < the value.
305	sram_macro_model_de	ebug_level=0
		This parameter is used to turn on sram macro model debug information.
306	sram_macro_model_le	evel=0
		This parameter is used to tune macro modeling.
307	<pre>sram_macro_model_bk</pre>	pm=1
		This parameter is used to setup bbm value for macro modeling.
308	sram_macro_model_co	mpensate_bulk_current=0
		This parameter is used to control whether to compensate bulk current.
309	rcr_net_vpn	The virtual power node names, globally.
310	rcr_net_vpn_groups	
		The virtual power node groups, globally
311	rcr_net_node_auto_r	es_bump
		The auto res_bump value specified on the value.
312	rcr_net_node_fmax	
		The fmax specified will be applied to the RCR engine of the RC network which contains the node.
313	rcr_net_preserve_pr	n_ports=0
		When set to 1, preserves ports of parasitic networks that are connected to a DC vsource.
314	rcr_net_preserve_gr	round_reg_ports=0
		When set to 1, preserves ports of parasitic networks that are connected to a ground regular type.

315	rcr_net_preserve_vpn_ports=0
	When set to 1, preserves ports of parasitic networks that are connected to a VPN source.
316	rcr_net_preserve_active_word_line_ports=0
	When set to 1, preserves ports of parasitic networks that are connected to an active word-line node.
317	rcr_net_preserve_idle_word_line_ports=0
	When set to 1, preserves ports of parasitic networks that are connected to an idle word-line node.
318	rcr_net_preserve_active_bit_line_ports=0
	When set to 1, preserves ports of parasitic networks that are connected to an active bit-line node.
319	<pre>rcr_net_preserve_idle_bit_line_ports=0</pre>
	When set to 1, preserves ports of parasitic networks that are connected to an idle bit-line node.
320	rcr_net_preserve_active_state_ports=0
	When set to 1, preserves ports of parasitic networks that are connected to an active-state node.
321	rcr_net_preserve_idle_state_ports=0
	When set to 1, preserves ports of parasitic networks that are connected to an idle-state node.
322	rcr_net_preserve_san_to_dout_ports=0
	When set to 1, preserves ports of parasitic networks that are connected to a san-to-dout node.
323	rcr_net_preserve_din_to_bitline_ports=0
	When set to 1, preserves ports of parasitic networks that are connected to a din-to-bitline node.
324	rcr_net_preserve_san_ports=0
	When set to 1, preserves ports of parasitic networks that are connected to a san node.
325	rcr_net_preserve_active_sa_to_gnd_ports
	When set to 1, preserves ports of parasitic networks that are connected to active nodes from sa to gnd.
326	rcr_net_preserve_idle_sa_to_gnd_ports=0
	When set to 1, preserves ports of parasitic networks that are connected to idle nodes from sa to gnd.

372	rcr_net_preserve_active_clk_to_sgc_ports=0
	When set to 1, preserves ports of parasitic networks that are connected to active nodes from clk to sa-to-gnd controlling gate.
328	rcr_net_preserve_idle_clk_to_sgc_ports=0
	When set to 1, preserves ports of parasitic networks that are connected to idle nodes from clk to sa-to-gnd controlling gate.
329	rcr_net_preserve_active_heavy_load_ports=0
	When set to 1, preserves ports of parasitic networks that are connected to active heavy load nodes.
330	rcr_net_preserve_idle_heavy_load_ports=0
	When set to 1, preserves ports of parasitic networks that are connected to idle heavy load nodes
331	rcr_net_preserve_drain_source_signals=0
	When set to 1, preserves ports of parasitic networks that are connected to a source and drain device terminals, when set to 2, preserves drain/source on idle reg network, preserves on all ports for other no type network, when set to 3, preserves drain/source ports, when set to 4, do not preserve port for idle REG network, preserve all ports or drain/source port on other no type networks.
332	rcr_net_preserve_idle_reg_drain_source=0
	When set to 1, preserves drain/source on idle reg network.
333	rcr_net_preserve_active_reg_drain_source=0
	When set to 1, preserves drain/source on idle reg network.
334	rcr_net_merge_pn_idle_state_ports=0
	When set to 1, allows merging of those ports of power or vpn parasitic networks, that are connected to idle state nodes.
335	rcr_net_active_word_line_conly=0
	When set to 1, short all resistors of the parasitic networks that are connected to an active word-line.
336	rcr_net_idle_word_line_conly=0
	When set to 1, short all resistors of the parasitic networks that are connected to an idle word-line.

Spectre Circuit Simulator Reference Analysis Statements

007		
337	rcr_net_active_bit_	_
		When set to 1, short all resistors of the parasitic networks that are connected to an active bit-line.
338	rcr_net_idle_bit_li	ne_conly=0
		When set to 1, short all resistors of the parasitic networks that are connected to an idle bit-line.
339	rcr_net_active_stat	e_conly=0
		When set to 1, short all resistors of the parasitic networks that are connected to an active state.
340	rcr_net_idle_reg_cd	only=0
		When set to 1, short all resistors of the parasitic networks that are connected to an idle reg signal.
341	rcr_net_idle_state_	_conly=0
		When set to 1, short all resistors of the parasitic networks that are connected to an idle state.
342	rcr_net_state_idle_	_vpn_conly=0
		When set to 1, short all resistors of VPN parasitic networks that are connected to idle state parasitic networks.
343	rcr_net_floating1_c	conly=0
		When set to 1, short all resistors of FL1 parasitic networks that are connected to idle state parasitic networks.
344	rcr_net_floating2_c	conly=0
		When set to 1, short all resistors of FL2 parasitic networks that are connected to idle state parasitic networks.
345	rcr_net_floating3_c	conly=0
		When set to 1, short all resistors of FL3 parasitic networks that are connected to idle state parasitic networks.
346	rcr_net_ground_conl	_y=0
		When set to 1, short all resistors of ground parasitic networks.
347	rcr_net_ground_reg_	_conly=0
		When set to 1, short all resistors of ground reg parasitic networks.

040		
348	rcr_net_active_sa_t	_
		When set to 1, short all resistors of the parasitic networks that are connected to active nodes from sa to gnd path.
349	rcr_net_idle_sa_to_	_gnd_conly=0
		When set to 1, short all resistors of the parasitic networks that are connected to idle nodes from sa to gnd path.
350	rcr_net_dump_protec	ct=0
		This parameter is used to dump all preserved nodes in RCR flow.
351	rcr_net_option_file	e
		User specified RCR option for each specific node.
352	rcr_fmax=1	This parameter is used to set the max frequency used by rc reduction.
353	rcr_rshort=1.00E-0	3
		This parameter is used to set the minimum value of resistor that should be cut.
354	rcr_cgnd=1.00E-18	
		This parameter is used to set the minimum value of capacitance that should be decoupled to ground.
355	rcr_net_cgnd=1.00E	-18
		This parameter is used by the rc net flow to set the minimum value of capacitance that should be decoupled to ground.
356	mosvar_noscale=0	Enable(0)/Disable(1) scale support for mosvar model.
357	dcmatchscaling=0	Backward compatibility controller for dcmatch scaling behavior.
358	dcmatch_fitting=0	Dcmatch fitting (sigmaOut) for customer.
359	etmiprntfd=0	Output the TMI result file. By default it is closed.
360	dump_global_options	s=0
		Internal option for RelXpert to dump all the global options. By default it is closed.
361	tmiaging_remove_sla	ash=0
		Internal option to remove the slash character before dot in instance name. By default it is closed.
362	output_compact_map	ping=0

		Internal option for RelXpert to output compact mapping file. By default it is closed.
363	tmipath	Location of TMI shared object libraries to be used by tmiBsim4 models.
364	tmiflag=0	Activate TMI flow. By default TMI flow is not activated.
365	omipath	Location of OMI shared object libraries to be used by omi models.
366	omiflag=0	Activate OMI flow. By default OMI flow is not activated.
367	omiage=0	Activate OMI Aging model flow. By default, it is not activated.
368	omisave=1	Enable or disable aging information to be saved.
369	omiinput	Input file name, including the full path to read back TMI information for aging model.
370	omisort	Sort aging information.
371	tmiage=0	Activate TMI Aging model flow. By default, it is not activated.
372	tmiinput	input file name including full path to read back TMI information for aging model.
373	tmisave=1	Enable or disable aging information to be saved.
374	etmiusrinput	This option can be set in model files or netlists.
375	tmisort	Sort aging information.
376	print_including=no	
		Enable Spectre to print including information in include statement. Possible values are no and yes.
377	annotateonalter=ye	S
		Annotate on all alter statements. Possible values are no and yes.
378	reelaborateonalter	=force
		Whether re-elaborate for every alter statement. Possible values are lazy and force.
379	scale_redefined=ig	nore
		Disallow redefining of the option scale in netlist. Possible values are error, ignore and warning.
380	printstep=no	Enable Spectre to print results by equal step defined in .tran statement. Possible values are no and yes.

381	inlinesubcktcurren	t=subckt
		Save inline subcircuit terminal current as inline device current or subcircuit current. By default, inline subckt current is saved. Possible values are device and subckt.
382	nonconv_topnum=10	1 OSSIBIC VAIGES ATC GEVICE AND SUBCRE.
		Top number of non-convergence nodes to be printed public.
383	dotprobefmt=flat	Print .probe signal with original name or hierarchical name.
		Possible values are flat and hier.
384	hierprobe=hier	Print .probe signal hierarchically or flatten.Possible values are flat and hier.
385	dcmmod=0	DCMismatch analysis version selector. If set to 1 or 3. uses Bsim short-channel mismatch equation for BSIM3 and BSIM4 devices; if set to 2 or 3, provides compatibility with Monte Carlo analysis.
386	vthmod=std	Vth output selector. std outputs model equation Vth; vthcc outputs constant current Vth and may impact simulation performance; vthcc_ext outputs constant current Vth on external nodes. Possible values are std, and vthcc, vthcc_ext.
387	vdsatmod=std	Vdsat output selector. Possible values are std, gds and slow_gds.
388	vdsat_c=0.08	Coefficient for Gds based Vdsat.
389	vdsat_vdl=0.3 V	Coefficient for Gds based Vdsat.
390	vdsat_vadj=0.0 V	Coefficient for Gds based Vdsat.
391	ivthn=0.0 A	NMOS Vth current parameter.
392	ivthp=0.0 A	PMOS Vth current parameter.
393	ivthw=0.0 m	Width offset for constant current Vth.
394	ivth1=0.0 m	Length offset for constant current Vth.
395	ivth_vdsmin=0.05 \	7
		Minimum Vds in constant current Vth calculation public.
396	gform_vcr	Use Gform for VCR device. Specify 1 for yes and 0 for no. Default is no.

Analysis Statements

397	bin_relref=no	When a global relref is used, signals share a common reference value for convergence checks. If there is a large voltage in the circuit this can artificially relax convergence checks for other signals. This option creates voltage bins so that large voltages do not impact nodes with small voltage swings. Possible values are no and yes.
398	optimize_bsource=nc	
		Enable the optimization in bsource evaluation. Default value is res in plus plus aps and no in others. Possible values are no, yes, res, cap, nores and nocap.
399	optimize_diode=no	
		Enable the optimization in diode evaluation. Possible values are no and yes.
400	opt_diode_enhance=n	.0
401	optimize_bsimcmg=nc	
		Enable the optimization in bsimcmg evaluation. Possible values are no and yes.
400		rossible values are no and yes.
402	mdlthresholds=exact	
402	mdlthresholds=exact	
402	mdlthresholds=exact dio_allow_scaling=	When set to exact, certain functions in MDL, for example, cross(), control the transient time-step to place a time-point at a threshold crossing. This can improve accuracy. However for applications such as cell characterization an interpolated value can give the required accuracy with better performance. Possible values are exact and interpolated.

Stitching parameters

404	spf	This option specifies the DSPF file to be stitched and its
		stitching scope. The syntax is spf="scope filename". The
		scope can be a subcircuit or an instance. Use "spectre -h
		stitch" for more information.

405	dpf	This option specifies DPF file to be stitched and its stitching scope. The syntax is dpf="scope filename". The scope can be a subcircuit or an instance. Use "spectre -h stitch" for more information.
406	spef	This option specifies the SPEF file to be stitched and its stitching scope. The syntax is spef="scope filename". The scope can be a subcircuit or an instance. Use "spectre -h stitch" for more information.
407	spfscale=1.0	This option specifies the scaling factor of all the elements in the parasitic files (DSPF/SPEF/DPF). Use "spectre -h stitch" for more details.
408	spfscaler=1	This option specifies the scale factor for parasitic resistors.
409	spfscalec=1	This option specifies the scale factor for parasitic capacitors.
410	spfinstancesec- tion=1	This option controls the backannotation of device parameters in the instance section of the DSPF file. If spfinstancesection is turned off, the instance section is ignored (that is, the device parameters are not changed during stitching). The default is on. Use "spectre -h stitch" for more information.
411	spfxtorprefix	This option specifies the prefix in the device or net names in the DSPF/SPEF/DPF file. The syntax is spfx-torprefix="substring [replace_substring]". Use "spectre -h stitch" for more information.
412	speftriplet=2	This option specifies the value to be used for stitching in the SPEF file. It is effective only when the values in the SPEF file are represented by triplets (for example, 0.325:0.41:0.495). Possible values are 1, 2, and 3.

413	spfbusdelim	This option maps the bus delimiter between schematic netlist and parasitic file (i.e. DSPF, SPEF, or DPF). The option defines the bus delimiter in the schematic netlist, and optionally the bus delimiter in the parasitic file. By default the bus delimiter of the parasitic file is taken from the parasitic file header (that is, *IBUSBIT [], *IBUS_BIT [], or *IBUS_DELIMITER []). If the bus delimiter is not defined in the parasitic file header, you need specify it using the spfbusdelim option in schematic netlist. For example, the option spfbusdelim="<>" is maps A<1> in the schematic netlist to A_1 in the DSPF file, if the bus delimiter header in the DSPF file is "_". The option spfbusdelim="@ []" maps A@1 in the schematic netlist to A[1] in the DSPF file (the bus delimiter in DSPF header will be ignored). See "spectre -h stitch" for more information.
414	spfinstarraydelim	This option specifies the supplemental bus delimiter, if more than one bus delimiter is used in pre-layout netlist (usually for instance array indexing). It is similar to the spfbusdelim option. Use "spectre -h stitch" for more information.
415	spfpost- param=replace	This option specifies the instance parameters sourced for stitched instances. When set to replace, only the post-layout parameters are used and the pre-layout parameters are discarded. When set to append, both pre-layout and post-layout parameters are merged for the stitched instances where the post-layout parameters have higher priority. Possible values are append and replace.
416	spfswapterm	This option specifies the swappable terminals of a subcircuit macro-model. The syntax is spfswapterm="terminal1 terminal2 subcktname". Use "spectre -h stitch" for more information.

417	spfaliasterm	At times, the terminal names of devices in DSPF/SPEF/DPF files are different from those in the simulation model library. This happens in technology nodes that use subcircuits to model devices. The syntax is spfalias-term=" <model subckt><pre>cprelayout_term0>=<spf_alias1> <prelayout_term2>=<spf_alias2> <pre>cprelayout_termN>=<spf_aliasn>". Multiple statements are supported. Use "spectre -h stitch" for more information.</spf_aliasn></pre></spf_alias2></prelayout_term2></spf_alias1></pre></model subckt>
418	spfcnet	This option specifies the net that has its total capacitance stitched. All other parasitic components such as parasitic resistors that are associated with this net are ignored. The complete hierarchical names are required and multiple statements are supported. Wildcards are supported. Use "spectre -h stitch" for more information.
419	spfrcnet	This option specifies the name of the net to be stitched with parasitic resistors and capacitors. The other nets are stitched with lumped total capacitances. Multiple statements are supported. Wildcards are supported and you can specify as many nets as needed. Complete hierarchical net names are required. Use "spectre -h stitch" for more information.
420	spfnetcmin=0	This option allows you to select the net for stitching by the value of its total node capacitance. If a net's total node capacitance exceeds spfnetcmin, all parasitics associated with the net are stitched correctly, otherwise, only the total capacitance is added to the net node. Use "spectre -h stitch" for more information.
421	spfskipnetfile	This option allows you to specify the nets to be skipped as a list in a text file. The syntax is spfskipnetfile="file-name". Only one file can be specified. The format in the file is one line per net. Use "spectre -h stitch" for more information.
422	spfmsglimit	This option specifies the maximum number of messages to be printed in the spfrpt file. The syntax is spfms-glimit="number STITCH-ID_1 STITCH-ID_2". Use "spectre -h stitch" for more details.

423	spfskipnet	This option specifies the net to be skipped for stitching, that is, all parasitic components of the net are not stitched. Wildcards are supported. You can specify multiple spfskipnet statements. Use "spectre -h stitch" for more information.
424	spfcnetfile	This option has the same functionality as spfcnet, except that it accepts a text file in which all the C-only stitched nets are listed. Only one file can be specified. The syntax is spfcnetfile="filename". The format of the file requires you to specify one line per net. Use "spectre -h stitch" for more information.
425	spfrcnetfile	This option has the same functionality as spfrcnet, except that it accepts a text file in which all the RC stitched nets are specified. Only one file can be specified. The syntax is spfrcnetfile="filename". The format of the file requires you to specify one line per net. Use "spectre -h stitch" for more details.
426	spfshortpin="1"	Short pin nodes if set to yes or 1.
427	spf_probe_mode=1	Option to control probe name for spf node. If 0, flattened node name in format <net_name>#<flatten_nodename>, if 1, hierarchical node name following the net. Possible values are 0 and 1.</flatten_nodename></net_name>
428	spfskipinst	This option specifies the instance to be skipped for stitching, that is, the parameters of this instance are not stitched. Wildcards are supported. You can specify multiple spfskipinst statements. Use "spectre -h stitch" for more information.
429	<pre>portmismatch_se- verity=error</pre>	If set ignore/warn/error out when ports number mismatch for subckt. Possible values are error, ignore, and warning.
430	<pre>implicit_subck- t_param=no</pre>	Allows the implicit parameter to be declared for the spectre format. Possible values are ${\tt no}$ and ${\tt yes}.$

Spectre Circuit Simulator Reference Analysis Statements

431	mdltrigtarg- mode=cross	This option specifies how to evaluate the trig and targ of the HSpice and the output format. If mdltrigtargmode = deltax, use the deltax function to evaluate the trig and targ functions. If mdltrigtargmode = cross, use the cross function to evaluate the trig and targ functions. If mdltrigtargmode = details, output the trig and targ middle results. Possible values are deltax, cross, and details.
432	<pre>leaki_times=[]</pre>	Specifies input-steady state time points.
433	macro_mos=[]	The list of subcircuit names, which is a macro model.
434	skip_macro mos[]	List of subcircuit names, which is skipped to be a macro model.
435	hier_delimiter="."	Used to set hierarchical delimiter. Length of hier_delimiter should not be longer than 1, except the leader escape character.
436	missing_icnodeset	Write the node which is not in the ic or nodeset to the file.
437	hier_ambigu- ity=strict	The default value is strict. When set to lower, the simulator will partially flatten the hier name from the back to check if an object can be found. Lower is not recommended. Possible values are strict and lower.
438	skip=none	Skip the simulating specified subckt instances. For now, cut is supported, which will leave the subckt ports disconnected. Possible values are none, load, and cut.
439	podeautovdd=0	When set to ${\tt 1}$, finds the max vdd of each pode automatically.
440	rcnet_save=all	Flag to enable filter internal RC nodes for probe/save statement. Possible values are all and portonly.
441	<pre>mc_scalar- file_stat=default</pre>	Determines how scalarfile statistics data was printed. Default value is default. Possible values are default and transposed.
442	<pre>mc_stat_list=defau lt</pre>	Determines how many scalarfile statistics function was printed. Default value is default. Possible values are default and all.
443	measureterm=pass	If set to error, error out if two measures refer to the same node. Possible values are pass and error.

444	devropt=none	If set to all, diode, or mosfet, connected resistors will be folded to related instances. Possible values are none, all, diode, and mosfet.
445	preservenode=none	If set to all, node in save statement will be preserved. Possible values are none, all, and explicit.
446	probedepth- count=hierarchy	Hierarchy count the instance level, delimiter counts the delimiter level. Possible values are hierarchy and delimiter.
447	subckt_switch=full	If set to simple, complex subckt will be mapped to simple subckt in mapsubckt. Possible values are full and simple.
448	duplicate_module=er	rror
		Specifies whether the duplicate module definitions are allowed. When set to warning or ignore, the simulator allows duplicate module definitions. However, it honors only the last module definition. Depending on the value that is set, the simulator decides whether to display warning messages for the duplicate module definitions or not. When set to error, the simulator does not allow the duplicate module definitions and displays an error message. Possible values are error, ignore, and warning.
449	ms_vpn	The virtual power node names, globally.
450	ms_vpnv=0 V	The voltage value for the virtual power network sources in scope.
451	ms_vgnd	The virtual ground node names, globally.
452	ms_vgndv=0 V	The voltage value for the virtual power network grounds in scope.
453	mtlinereuse=yes	This parameter defines whether to reuse RLGC data for all mtline instances. If no, this feature is disabled. Possible values are no and yes .
454	mtlinecachedir	The directory in which the mtline RLGC data file will be written. If an absolute path is not given, the file will be written to /home/ <username>/.cadence/mmsim/.</username>
455	mtlineemsolver=cpl	EM 2D solver for transmission line. Possible values are lmg and cpl.

456	disable_save_preserve=no	
		Disables preserve by save statements. If no, does not disable the save preserve. If yes, disables the save preserve. Possible values are no and yes .
457	mdlanalysisnames=re	ename
		Flag to indicate whether or not to keep the Spectre analysis name in MDL flow. Possible values are rename and original.
458	check_format=xml	Determines the format of the checker violation report. Possible values are xml, text, and sql.
459	mismatchlevel=0	By default, mismatch parameter is defined based on parameter scope concept: mismatch parameter can only have one value in one scope. For example, if a mismatch parameter appears multiple times in a subcircuit of the netlist, that mismatch parameter has a unique value in that subcircuit for each Monte Carlo run. With mismatchlevel=1, the mismatch parameter is allowed to have a different value for each appearance in the same scope. Possible values are 0 and 1.
460	local_meas=no	Specify whether local measurements definitions are allowed. When set to ignore, the simulator allows local measurements definitions. Depending on the value that is set, the simulator displays warning messages for the local measurements definitions or does not display any message. When set to warning, the simulator does not allow and ignores the local measurement definitions with a warning message. Possible values are no and yes.
461	uwiprecision=dou- ble	Specify the uwi raw file precision. Possible values are double and float.
462	ms_part_report=0	Depth of the ms partition report, default is 0, which means that the report is not generated.
463	tmi_fast_core_data=	=0
		Speed up TMI SOA/Age performance by fast TMI core data evaluation.
464	thermalmap="%C:r.ra	aw"
		Output the name of the raw data file.

465	ose_random_mod=0	Use OSE Random Method. Possible values are 0 and 1.
466	etmiIdsMod=0	Switch to select Ids or total DC drain current for TMI core data ids.
467	osc_output_port	Output raw data file name.
468	passfail_reverse_lo	ogic=no
		Pass fail bisection treats NaN as PASS, and non-NaN value as FAIL. Possible values are no and yes.
469	ms_vpni_start=0.0	MS mode start time to get accurate currents.VPN current feedback is enabled after this time.
470	ms_vpni_stop=0.0	MS mode stop time to get accurate currents.VPN current feedback is disabled after this time.
471	<pre>diagnose_dump_top- num=5</pre>	Top number to dump single device netlist.
472	ignorevaref=no	Flag to exclude va nodes from quantity calculation. Option is set to yes when highvoltage=yes. Possible values are no and yes .
473	ignoredgref=yes	Flag to exclude dangling nodes from quantity calculation. Option is set to yes when highvoltage=yes. Possible values are no and yes.
474	minr_mfactor=scaled	1
		Whether minr should be scaled. Possible values are scaled and ignore.
475	print_section=no	If yes, output sections used in simulations. If no, do not output sections. Possible values are no and yes.
476	rmdgccs=no	If yes, dangling controlled current source will be removed. Default value is no. Possible values are no and yes .
477	sortinstance=no	Sort devices of the netlist. Possible values are ${\tt no}$ and ${\tt yes}.$
478	checktoppinconn=no	Check if the top level subckts have dangling terminals. Possible values are no, warning and error.
479	hsfe=no	If yes, the same as +hsfe in command line. Possible values are no and yes.

480	macrocommand=no	If yes, the same as +mac in command line. Possible values are no and yes.
481	keeprc_conn_termcur	r=yes
		If yes, it functions as the SFE_KEEPRC_CONN_TER-MCUR environment variable is set. Possible values are no and yes.
482	lkmatrix=yes	When enabled, converts inductors and mutual inductors to single instance of rlck_matrix. Possible values are no and yes.
483	detect_path_acc=1	Select a speed method for detecting critical path. Possible values are 1 and 2.
484	mtm_primitive=[]	
		Specify the primitive names which can be worked with +mac.
485	inlinesubcktop=devi	Lce
		Specifies whether inline subcircuit operating point should be saved as inline device operating point or subcircuit operating point. Default is device. Possible values are device and subckt.
486	bjt504ver=504.12	mextram504 avalanche noise version control.
487	mosrcratio=2.0	Set postlayout if #rc/#mos > mosrcratio.
488	check_ahdl_mode=1	
		This option specifies how to handle AHDL in dyn_dcpath, dyn_floatdcpath, dyn_float_tran_stat. When set to 1, all AHDL are considered conducting. When set to 2, only elastic branches are considered conducting. Possible values are 1 and 2.
489	spfr2iprobe=0	Value for resistors to be replaced by iprobe.
490	maxwildcardicrepor	t=0

Analysis Statements

		Limit the number of wildcard ic/nodeset report to log file.
491	bsimcmg_bug_fix=0	Control bsimcmg fix, 1 for only disable dits fix.
492	vlog_search_paramet	zer=yes
		Search parameter in parent for vlog case, the default value is yes. Possible values are no and yes.
493	hbtmodel=hbt	Specify to use ucsd_hbt or hbt. Possible values are hbt and ucsd_hbt.
494	variation_overwrite	e=no
		Support define variation with same name in a block and overwrite previous one. Possible values are no and yes.
495	meastype=no	If set to yes, allow interdependent from/to for trig and targ. Possible values are no and yes.

Important considerations for currents and useprobes options

- Adding probes to circuits that are sensitive to numerical noise might affect the solution. In such cases, accurate solution may be obtained by reducing the value of reltol.
- The following devices always use probes to save currents (even with useprobes=no): port, delay, switch, hbt, transformer, core, winding, fourier, d2a, a2d, a2ao, and a2ai.

senstype parameter

When senstype is set to partial, the sensitivity being calculated is the partial derivative of a differentiable output variable F with respect to a design parameter p:

$$\begin{array}{c} \text{dF} \\ \text{D} \text{ (F w.r.t. p)} = -- \\ \text{dp} \end{array}$$

This definition is not scale free. When senstype is set to normalized, the sensitivity being calculated is the normalized sensitivity:

Analysis Statements

When either \mathbb{F} or \mathbb{p} take a zero value, the above normalized definition no longer provides a useful measure. In this case, the following two semi-normalized sensitivities are used:

dp F dp F

When both \mathbb{F} and \mathbb{p} are zero, partial sensitivity is used.

topcheck parameter

- When topcheck=full, the topology check is performed and gmin is inserted between isolated nodes and ground. A heuristic topology check is also performed to find nodes that may be isolated due to the numerical nature of the circuit. For example, nodes isolated by reverse biased diodes in MOSFETS.
- Use topcheck=fixall to attach gmin to all types of isolated nodes, including the ones detected by the heuristic topology check.
- When topcheck=min, the topology check is performed and gmin is inserted between isolated nodes and ground. A heuristic topology check is not performed.
- When topcheck=no, the topology check is not performed.
- topcheck=errmin (topcheck=errfull) is similar to topcheck=min (topcheck=full) but the simulation will stop if floating nodes are found.

Important considerations for using multithreading

- Multithreading is only available for devices evaluation for BSIM3v3 and BSIM4.
 Multithreading does not work with table model. If there is an instance of a primitive using table model, multithreading is not applied to all instances of that primitive.
- Multithreading can be turned on/off using the command-line option, environment variable SPECTRE_DEFAULTS setting, or by using the multithread parameter in the options statement from the input file. The command-line option takes priority over the SPECTRE_DEFAULTS environment variable setting. In addition, the latter takes priority over the setting in the netlist options statement.

Analysis Statements

- Using multithreading on circuits that are sensitive to numerical noise might affect the solution. The solution should still be within acceptable tolerance specified by the tolerance parameters in the Spectre input file. Because the order of evaluation of devices is different for each multithreading run of the same simulation, this could lead to different round off error in the computation. It is possible that the same result may not be reproducible when multithreading is used.
- Multithreading works best when the following capabilities are not used: useprobes=yes, save-current/SOA/alarm for multithreaded devices.
- When using device multithreading on a hyperthreading enabled system:
 - allows one thread for each physical processor.
 - Because the device evaluation is almost exclusively floating point computation and each physical processor still has one floating point unit, each can handle one device evaluation at a time. Allowing additional thread(s) for device evaluation on the same physical processor will not have any benefit.
 - On a multi-processor system with hyperthreading enabled, device multithreading would allow an extra thread for each additional physical processor. Multithreading performance not only depends on the simulator but also on how well the operating system manages multiple threads and multiple processes.

gmethod parameter

- The parameter controls how conductance is stamped in the homotopy methods (other than dptran).
- If gmethod=gnode the conductance is added from node to ground. In case of gmethod=dev the conductance is stamped in the devices.

dptran_gmethod parameter

This parameter controls how conductance is stamped in the dptran (homotopy) method. See gmethod for more information on how this option affects circuits.

auto_minductor parameter

When this parameter is set to yes, the simulator automatically calculates the missing secondorder coupling by multiplying the two first-order coefficients. This calculation is only an estimation and may not be correct for many geometries.

For example, consider two mutual inductors K1 and K2:

Analysis Statements

```
K1 mutual_inductor coupling=.65 ind1=L1 ind2=L2
K2 mutual inductor coupling=.65 ind1=L2 ind2=L3
```

In this example, Spectre automatically inserts the coupling between L1 and L3, if missing, and the coupling co-efficient is 0.65*0.65=0.4225.

This option can be applied locally to a subckt by defining it inside a subckt definition or by using it with a subckt or inst scope:

```
subckt chip1 ( in out )
   scopedOptions options tnom=27 scale=0.1
   .....
ends chip1
subckt chip2 ( in out )
   scopedOptions options tnom=25 scale=0.2
   .....
ends chip2
o1 options scale=1.2 subckt=chip1
o2 options scale=1.5 subckt=chip2
o3 options scale=1.2 inst=p11
o4 options scale=1.5 inst=receiver
```

Parameter Index

In the following index, the number corresponding to each parameter name indicates where to find the description of that parameter.

BHT_New_Eval 231	gshunt 151	paramrangefile 239	spfcnet 418
ahdl_device_limit 58	gshuntdc 152	parasitics 233	spfcnetfile 424
ahdl_exp_limit	hb_lowmem_default _mode 125	passfail_reverse_ logic 468	spfinstancesectio n 410
ahdl_maxdeltav 59	hbtmodel 493	pivabs 207	spfinstarraydelim 414
ahdldomainerror	hier_ambiguity 437	pivotdc 197	spfmsglimit 422

annotateonalter 377	hier_delimiter 435	pivrel 206	spfnetcmin 420
approx 111	hierprobe 384	podeautovdd 439	spfpostparam 415
asserts_silent_in it 139	highvoltage 244	portmismatch_seve rity 429	spfprobenode 23
audit 177	homotopy 43	precision 33	spfr2iprobe 489
auto_minductor 112	hsfe 479	preorder 209	spfrcnet 419
automaxdeltav 50	iabstol 4	preserve_assert 227	spfrcnetfile 425
automaxdeltavscal e 51	iccap 130	preserve_inst 225	spfscale 407
autostop 253	iccheck 129	preserve_master 224	spfscalec 409
bin_relref 397	icpriority 80	preserve_subckt 226	spfscaler 408
bjt504ver 486	icversion 65	preservenode 445	spfshortpin 426
bsimcmg_bug_fix 491	idovvdsclamp 229	print_including 376	spfskipinst 428
cclamp 97	ignore_blowup 160	print_section 475	spfskipnet 423
ccut 98	ignoredgref 473	printstep 380	spfskipnetfile 421
cgnd 99	ignorevaref 472	probe_compatible 143	spfswapterm 416
chargeabstol 5	ignshorts 131	probedepthcount 446	spfxtorprefix 411
check_ahdl_mode 488	implicit_subckt_p aram 430	procopt 42	sram_macro_model 259

check_format 458	info 181	psfversion 34	sram_macro_model_ adjust_monotonic 261
checklimit_full_d uration 142	inlinesubcktcurre nt 381	ptranmaxsteps 70	<pre>sram_macro_model_ adjust_monotonic_ bits 296</pre>
checklimit_skip_f ile 202	inlinesubcktop 485	ptranmaxsteps1 72	<pre>sram_macro_model_ adjust_monotonic_ shift_vp 268</pre>
checklimit_skip_i e_connect_devices 205	inventory 178	<pre>pwl_ignore_error_ msg 26</pre>	<pre>sram_macro_model_ assert_active_wl 294</pre>
checklimit_skip_i nsts 203	ishrink 109	pwr 13	sram_macro_model_ bbm 307
checklimit_skip_i nsts_file 204	ivth_vdsmin 395	qcut 104	sram_macro_model_ bbm_ignore_non_co nverge 292
checklimit_skip_s ubs 201	ivthl 394	quantities 176	sram_macro_model_ bbm_solve 288
checklimitdest	ivthn 391	rabsclamp 93	sram_macro_model_ bbm_solve_dc 290
checklimitdetails 141	ivthp 392	rabsshort 92	sram_macro_model_ bucket_count 295
checklimitfile	ivthw 393	rampsource 144	sram_macro_model_ bypass 275
checktoppinconn 478	kcut 101	rawfile 32	sram_macro_model_ compensate_bulk_c urrent 308
ckptclock 212	keeprc_conn_termc ur 481	rawfmt 31	sram_macro_model_ convert_mtm_to_cm i 278
cmax 100	kmax 113	rclamp_bsource 172	sram_macro_model_ debug_end_time 304

cmi_opts 232	large_newton_reje ct 254	rcnet_save 440	sram_macro_model_ debug_level 305
cols 193	leaki_times 432	rcr_cgnd 354	sram_macro_model_ debug_ms_level 297
colslog 194	limit 47	rcr_fmax 352	<pre>sram_macro_model_ debug_start_time 303</pre>
compatible 110	limit_diag_pivot 210	rcr_net_active_bit_line_conly 337	
complexpivrel 208	lkmatrix 482	rcr_net_active_sa _to_gnd_conly 348	sram_macro_model_ diverge_at_large_ wl 260
cscalefactor 242	local_meas 460	rcr_net_active_st ate_conly 339	
cthresh 243	lshort 102	rcr_net_active_wo rd_line_conly 335	sram_macro_model_ eliminate_osc 266
currents 11	macro_mode 246	rcr_net_cgnd 355	sram_macro_model_ eliminate_osc_thr 267
dc_auto_rforce 159	macro_mos 433	rcr_net_dump_prot ect 350	sram_macro_model_ enable_active_cel 1 285
dc_check_multiple _solutions 164	macrocommand 480	rcr_net_floating1 _conly 343	sram_macro_model_ enable_cplcap_min 291
dc_diagnose_eleme nts 69	max_approach_mins tep 250	rcr_net_floating2 _conly 344	sram_macro_model_ fast_out 287
dc_diagnose_time 68	max_consecutive_m instep 251	rcr_net_floating3 _conly 345	<pre>sram_macro_model_ fix_state_in_dc 265</pre>
dc_ic_abstol 161	max_minstep_nonco nv 249	rcr_net_ground_co nly 346	sram_macro_model_ group_cells 274

dc_ic_reltol 162	maxdeltav 49	rcr_net_ground_re g_conly 347	<pre>sram_macro_model_ group_max_size 272</pre>
dc_pivot_check 198	maxnotes 183	rcr_net_idle_bit_ line_conly 338	sram_macro_model_ iter_ratio 269
dc_solution_iabst ol 167	maxnotestologfile 188	rcr_net_idle_reg_ conly 340	<pre>sram_macro_model_ keep_tbl_coeff 262</pre>
dc_solution_irelt ol 168	maxphysicalflux 56	rcr_net_idle_sa_t o_gnd_conly 349	sram_macro_model_ level 306
dc_solution_vabst ol 165	maxphysicali 54	rcr_net_idle_stat e_conly 341	sram_macro_model_ limiting 270
dc_solution_vrelt ol 166	maxphysicalmmf 55	rcr_net_idle_word _line_conly 336	<pre>sram_macro_model_ max_ratio 301</pre>
dccheck 163	maxphysicalunitle ss 57	<pre>rcr_net_merge_pn_ idle_state_ports 334</pre>	<pre>sram_macro_model_ merge_port_cap 280</pre>
dcdampsol 154	maxphysicalv 53	rcr_net_node_auto _res_bump 311	<pre>sram_macro_model_ min_ratio 300</pre>
dcfloatnodecheck 155	maxvdddc 52	<pre>rcr_net_node_fmax 312</pre>	<pre>sram_macro_model_ node_folding 279</pre>
dcmatch_fitting 358	maxwarns 186	<pre>rcr_net_option_fi le 351</pre>	<pre>sram_macro_model_ power_down_table 289</pre>
dcmatchscaling 357	maxwarnstologfile 187	<pre>rcr_net_preserve_ active_bit_line_p orts 318</pre>	sram_macro_model_ quantity 299
dcmaxiters 66	maxwildcardicrepo rt 490	rcr_net_preserve_ active_clk_to_sgc _ports 327	
dcmmod 385	mc_scalarfile_sta t 441	rcr_net_preserve_ active_heavy_load _ports 329	<pre>sram_macro_model_ reset_cell_group_ prop_at_each_iter 263</pre>

dcoptautodptranst eps 76	mc_stat_list 442	<pre>rcr_net_preserve_ active_reg_drain_ source 333</pre>	<pre>sram_macro_model_ skip_node_set 284</pre>
dcoptautoptranste ps 75	mdlanalysisnames 457	rcr_net_preserve_ active_sa_to_gnd_ ports 325	sram_macro_model_ st0_method 273
dcoptfilter 157	mdlthresholds 402	rcr_net_preserve_ active_state_port s 320	sram_macro_model_ stamp_gmin 277
dcoptfiltervtol 158	mdltrigtargmode 431	rcr_net_preserve_ active_word_line_ ports 316	<pre>sram_macro_model_ stamp_rforce 276</pre>
dcoptic 77	measdgt 191	rcr_net_preserve_ din_to_bitline_po rts 323	sram_macro_model_ stampa 281
dcoptictype 78	meastype 495	rcr_net_preserve_ drain_source_sign als 331	sram_macro_model_ stampa_non_newton 271
dcoptmaxsteps 74	measureterm 443	rcr_net_preserve_ ground_reg_ports 314	sram_macro_model_ tran_solve 286
dcopttol 150	minr 240	rcr_net_preserve_ idle_bit_line_por ts 319	sram_macro_model_ tstep 302
dcuseprevic 156	minr_mfactor 474	rcr_net_preserve_ idle_clk_to_sgc_p orts 328	sram_macro_model_ use_table 298
dcut 103	minstepversion 248	<pre>rcr_net_preserve_ idle_heavy_load_p orts 330</pre>	sram_macro_model_ wl_dynamic_switch 264
debug 180	mismatchlevel 459	rcr_net_preserve_ idle_reg_drain_so urce 332	src_allbrkpts 28
debugstepdrop 135	missing_icnodeset 436	rcr_net_preserve_ idle_sa_to_gnd_po rts 326	stackfet_dcmaxite rs 67

detect_path_acc 483	mosrcratio 487	rcr_net_preserve_ idle_state_ports 321	stepdropsize 136
detect_path_clock 86	mosvar_noscale 356	rcr_net_preserve_ idle_word_line_po rts 317	stver_note 184
detect_path_vgnd 85	ms_part_report 462	rcr_net_preserve_ pn_ports 313	subckt_switch
detect_path_vpn 84	ms_vgnd 451	rcr_net_preserve_ san_ports 324	subcktcap 87
devcheck_stat 145	ms_vgndv 452	rcr_net_preserve_ san_to_dout_ports 322	subcktiprobes 14
device_limit 48	ms_vpn 449	rcr_net_preserve_ vpn_ports 315	subcktopfreq 88
devropt 444	ms_vpni_start	rcr_net_state_idl e_vpn_conly 342	subcktoppoint 81
diagnose 132	ms_vpni_stop 470	rcr_net_vpn 309	subcktprobelvl 12
diagnose_dump_top num 471	ms_vpnv 450	rcr_net_vpn_group s 310	temp 6
diagnose_end 134	mtlinecachedir 454	rcr_rshort 353	tempeffects 8
diagnose_start 133	mtlineemsolver 455	rcut 94	thermalmap 464
digits 190	mtlinereuse 453	rcut_bsource 95	title 195
dio_allow_scaling	mtm_primitive	rebuild_matrix 211	tmi_fast_core_dat a 463
disable_check_nf 27	multithread 89	redefinedparams 214	tmiage 371
disable_save_pres erve 456	narrate 179	redundant_current s 29	<pre>tmiaging_remove_s lash 361</pre>

discontinuity 252	nestlvl 10	reelaborateonalte r 378	tmiflag 364
disk_check_autore sume 40	newton 44	reltol 1	tmiinput 372
disk_check_thresh 39	noiseoff_inst 127	residualtol 2	tmipath 363
dochecklimit 138	noiseoff_type 46	reusedc 79	tmisave 373
dotprobefmt 383	noiseon_inst 126	rforce 171	tmisort 375
dpf 405	noiseon_type 45	rmdg_preserve 219	tnom 7
dptran_gmethod 61	nonconv_topnum 382	rmdgccs 476	topcheck 128
dptranmaxsteps 71	notation 192	rthresh 96	tran_pivot_check 199
dptranmaxsteps1	note 182	save 9	tran_pivot_thresh old 200
dspf_nodename 24	nport_bbspice_to_ linear 114	save_time_window 20	try_fast_op 64
dump_global_optio ns 360	nport_default_int erp 115	saveahdlvars 22	use_veriloga 221
duplicate_module 448	nport_default_pas sivity 116	savefilter 18	usenodes 17
duplicate_subckt 216	nportbbsfittedfil edir 117	saveports 19	useprobes 15
duplicateinstance 217	nportbbsmaxwaitti me 124	scale 107	useterms 16
duplicatemodel 218	nportcompress	scale_redefined 379	uwifmt 35
duplicateports 215	nportcompressfile dir 123	scalefactor 108	uwilib 36

error 189	nportirfiledir 119	scalem 106	uwiprecision 461
etmildsMod 466	nportirreuse 118	sensbinparam 238	vabsshort 105
etmiprntfd 359	nportunusedportgm in 121	sensfile 234	vabstol 3
etmiusrinput 374	nportunusedportrm in 122	sensfileonly 237	value 174
exportfile 37	nthreads 91	sensformat 235	variation_overwri te 494
fastmcmethod 83	omiage 367	senstype 236	vdsat_c 388
filter_wildcard_c olon_ic 257	omiflag 366	short_bjtr 241	vdsat_vadj 390
filter_wildcard_t erminal_ic 258	omiinput 369	simstat 196	vdsat_vdl 389
fix_singular_matr ix 170	omipath 365	sine_sync_period 25	vdsatmod 387
flow 175	omisave 368	skip 438	verilogalang 247
forcemt 90	omisort 370	skip_macro_mos 434	vlog_search_param eter 492
gennetlistdir 41	opptcheck 146	soa_dest 230	vrefgnd 245
gform_vcr 396	opt_diode_enhance	soa_warn 228	vthmod 386
gmethod 60	optimize_bsimcmg 401	soft_bin 255	warn 185
gmin 147	optimize_bsource 398	sortinstance 477	warning_change_se verity 222
gmin_check 169	optimize_diode 399	spef 406	warning_id 223

gmin_converge 63	osc_output_port 467	speftriplet 412	warning_limit 220
gmin_start 62	ose_random_mod 465	spf 404	wfdebug 21
gmindc 148	out_dev_stack 82	spf_probe_mode 427	wfmaxsize 38
gmindcmax 153	output_compact_ma pping 362	spfaliasterm 417	xpssdc_disable_ou tput 256
gminfloat 149	param_topchange 213	spfbusdelim 413	

Analysis Statements

Periodic AC Analysis (pac)

Description

The periodic AC (PAC) analysis is used to compute transfer functions for circuits that exhibit frequency translation. Such circuits include mixers, switched-capacitor filters, samplers, phase-locked loops, and the like. PAC is a small-signal analysis similar to AC analysis, except that the circuit is first linearized about a periodically varying operating point as opposed to a simple DC operating point. Linearizing about a periodically time-varying operating point allows transfer-functions that include frequency translation, which is not the case when linearizing about a DC operating point because linear time-invariant circuits do not exhibit frequency translation. In addition, the frequency of the sinusoidal stimulus is not constrained by the period of the large periodic solution.

Computing the small-signal response of a periodically varying circuit is a two-step process. First, the small stimulus is ignored and the periodic steady-state response of the circuit to possibly large periodic stimulus is computed using PSS analysis. As part of the PSS analysis, the periodically time-varying representation of the circuit is computed and saved for later use. The second step is to apply the small stimulus to the periodically varying linear representation to compute the small signal response. This is done using the PAC analysis. A PAC analysis cannot be used alone, it must follow a PSS analysis. However, any number of periodic small-signal analyses such as PAC, PSP, PXF, and PNoise, can follow a PSS analysis.

Modulated small signal measurements are possible by using the Analog Design Environment (ADE). The modulated option for PAC and the other modulated parameters are set by Artist. PAC analyses with this option produces results that could have limited use outside such an environment. Direct Plot is configured to analyze these results and combine several wave forms to measure AM and PM response due to single sideband or modulated stimuli. For details, see the *Spectre RF User Guide*.

Unlike AC analysis, PAC analysis can print the time-domain simulation results by specifying the outputperiod parameter. In addition, unlike other analyses in Spectre, this analysis can only sweep frequency.

For information on how to run PAC analysis from ADE, see <u>Periodic AC Analysis (PAC)</u> in the <u>Spectre Circuit Simulator and Accelerated Parallel Simulator RF Analysis User Guide</u>.

Definition

Name ... pac parameter=value ...

Analysis Statements

Parameters

Sweep interval parameters

1	start=0	Start sweep limit.
2	stop	Stop sweep limit.
3	center	Center of sweep.
4	span=0	Sweep limit span.
5	step	Step size, linear sweep.
6	lin=50	Number of steps, linear sweep.
7	dec	Points per decade.
8	log=50	Number of steps, log sweep.
9	values=[]	Array of sweep values.
10	valuesfile	Name of the file containing the sweep values.
11	sweeptype=unspecified	Specifies if the sweep frequency range is the absolute frequency of input or if it is relative to the port harmonics. When the unspecified value is used, Spectre RF sweeps using relative when autonomous simulation is performed or when the analysis is PSP; for other cases Spectre RF sweeps the absolute value of the input. Possible values are absolute, relative and unspecified.
12	relharmnum=1	Harmonic to which relative frequency sweep should be referenced.

Sampled analysis parameters

13	ptvtype=timeaverag ed	Specifies whether the PTV analysis will be traditional or sampled under certain conditions. Possible values are timeaveraged and sampled.
14	sampleprobe	The crossing event at this port triggers the sampled small signal computation.

Analysis Statements

15	thresholdvalue=0	Sampled measurement is done when the signal crosses this value.
16	crossingdirection= all	Specifies the transitions for which sampling must be done. Possible values are all, rise, fall, and ignore.
17	maxsamples=16	Maximum number of sampled events to be processed during the sampled analysis.
18	<pre>extrasampletimepoi nts=[]</pre>	Additional time points for sampled PTV analysis.

Output parameters

19	sidebands=[]	Array of relevant sidebands for the analysis.
20	maxsideband=7	An alternative to the sidebands array specification, which automatically generates the array: [-maxsideband 0 +maxsideband]. For the shooting analysis, the default value is 7. For HB small signal analysis, the default value is the harms/maxharms setting in the HB large signal analysis. It is ignored in HB small signal when it is larger than the harms/maxharms of large signal.
21	freqaxis	Specifies whether the results should be printed as per the input frequency, the output frequency, or the absolute value of the output frequency. Default is absout. Possible values are absout, out, and in.
22	save	Signals to output. Possible values are all, lvl, allpub, lvlpub, selected, none, and nooutput.
23	nestlvl	Levels of subcircuits to output.
24	outputperiod=0.0 (no output)	Time-domain output period. The time-domain small-signal response is computed for the period specified, rounded to the nearest integer multiple of the pss period.

Analysis Statements

Convergence parameters

25	tolerance	Tolerance for linear solver. The default value is 1.0e-9 for shooting-based solver and 1.0e-4 for harmonic balance-based solver.
26	relativeTol	Relative tolerance for harmonic balance-based linear solver. The default value is 1.0e-2.
27	gear_order=2	Gear order used for small-signal integration.
28	solver=turbo	Solver type. Possible values are std, turbo, std_hh, and turbo_hh.
29	oscsolver=turbo	Oscillator solver type. It is recommended to use <code>ira</code> for huge circuits. Possible values are <code>std</code> , <code>turbo</code> , <code>ira</code> , and <code>direct</code> .
30	resgmrescycle=shor t	Restarts GMRES cycle. Possible values are instant, short, long, recycleinstant, recycleshort, custom, and recyclelong.
31	hbprecond_solver=a utoset	Select a linear solver for the GMRES preconditioner. Default is autoset. With autoset, the simulator will automatically select the appropriate preconditioner. The preconditioner affects the rate of convergence of the linear matrix solver used in periodic small-signal analysis. When autoset is selected, the simulator may decide to switch to a different preconditioner after the analysis begins. When that happens, the simulator may issue a warning instructing you to choose a different preconditioner during subsequent runs. Although not required, choosing a different preconditioner according to the simulator's instructions may speed up subsequent analyses. Possible values are basicsolver, blocksolver, autoset, blockdense, and blocksolver2.
32	lowmem=0	Harmonic balance low memory mode. Possible values are $0, 1$, or number (>=10). The default value is 0 , it indicates that the low memory mode is turned off; if 1 is set, the standard low memory mode is turned on; If a number greater that or equal to 10 is set, Spectre interprets the value as memory requested in Gigabytes.

Analysis Statements

33	krylov_size=200	The maximum iteration count of the linear matrix solver used in periodic small-signal analysis. After reaching 1.25*krylov_size iterations, the iteration is forced to terminate because of the poor rate of convergence. Increase krylov_size if the simulation reports insufficient norm reduction errors in GMRES.
34	osc_version=dts	Specifies the method to use in small signal analysis for autonomous circuit. Possible values are floquet, augmented, and dts.
35	osc_accuracy=1	Accuracy control in small signal analysis for autonomous circuit when osc_version=dts. The higher this value, the more iterations GMRES solver will take. Maximum effective value is 5.
36	freqdivide=1	Large signal frequency division. Used for oscillator circuit with divider when osc_version=dts for shooting engine.

Annotation parameters

37	annotate=sweep	Degree of annotation. Possible values are no, title, sweep, status, steps, and detailed_hb.
38	title	Analysis title.

Modulation conversion parameters

39	modulated=no	Compute transfer functions/conversion between modulated sources and outputs. Possible values are single, first, second, and no.
40	inmodharmnum=1	Harmonic value for the PAC input source modulation.
41	<pre>outmodharmvec=[]</pre>	Harmonic list for the PAC output modulations.
42	moduppersideband=1	Index of the upper sideband included in the modulation of an output for PAC, or an input for PXF.
43	modsource	Refer the output noise to this component.

Analysis Statements

Rapid distortion analysis parameters

44	perturbation=linear	
		The type of PAC analysis. Default is linear for normal PAC analysis. im2ds stands for im2 distortion summary and ds stands for distortion summary. Possible values are linear, ds, ip3, ip2, im2ds, multiple_beat, and triple_beat.
45	flin_out=0 Hz	Frequency of linear output signal.
46	fim_out=0 Hz	Frequency of IM output signal.
47	out1="NULL"	Output signal 1.
48	out2="NULL"	Output signal 2.
49	contriblist="NULL"	Array of device names for distortion summary. When contriblist=[""], distortion from each non-linear device is calculated.
50	maxharm_nonlin=4	Maximum harmonics of input signal frequency induced by non-linear effect.
51	rfmag=0	RF source magnitude.
52	rfdbm=0	RF source dBm.
53	rf1_src="NULL"	Array of RF1 source names for IP3/IP2/IM2.
54	rf2_src="NULL"	Array of RF2 source names for IP3/IP2/IM2.
55	rf_src="NULL"	Array of RF source names for triple beat analysis. Triple beat is not supported in shooting engine, PSS must be run before PAC with flexbalance=yes or harmonicbalance=yes.
56	freqs=NULL	Array of RF source frequencies for triple beat analysis. Triple beat is not supported in shooting engine, PSS must be run before PAC with flexbalance=yes or harmonicbalance=yes.
57	rfampls=NULL	RF source amplitudes; the units are dBm for ports, Voltage for v-sources and Ampere for i-sources.

You can select the set of periodic small-signal output frequencies of interest by setting either the maxsideband or the sidebands parameters. For a given set of n integer numbers representing sidebands K1, K2, ... Kn, the output frequency at each sideband is computed

Analysis Statements

as f(out) = f(in) + Ki * fund(pss), where f(in) represent the (possibly swept) input frequency, and fund(pss) represents the fundamental frequency used in the corresponding PSS analysis. Therefore, when analyzing a down-converting mixer, while sweeping the RF input frequency, the most relevant sideband for IF output is Ki= -1. When simulating an up-converting mixer, while sweeping IF input frequency, the most relevant sideband for RF output is Ki= 1. By setting the maxsideband value to Kmax, all 2 * Kmax + 1 sidebands from -Kmax to +Kmax are generated.

The number of requested sidebands does not change substantially the simulation time. However, the maxacfreq of the corresponding PSS analysis should be set to guarantee that I max{f(out)} I is less than maxacfreq; otherwise, the computed solution might be contaminated by aliasing effects. The PAC simulation is not executed for I f(in) I greater than maxacfreq. Diagnostic messages are printed for those extreme cases, indicating how maxacfreq should be set in the PSS analysis. In majority of the simulations, however, this is not an issue, because maxacfreq is never allowed to be smaller than 40x the PSS fundamental.

With PAC, the frequency of the stimulus and of the response are usually different (this is an important area in which PAC differs from AC). The freqaxis parameter is used to specify whether the results should be output versus the input frequency (in), the output frequency (out), or the absolute value of the output frequency (absout).

You can define sweep limits by specifying the end points or by providing the center value and span of the sweep. Steps can be linear or logarithmic, and you can specify the number of steps or the size of each step. In addition, you can specify a step size parameter (step, lin, log, or dec) to determine whether the sweep is linear or logarithmic. If you do not specify a step size parameter, the sweep is linear when the ratio of stop to start values is less than 10, and logarithmic when this ratio is 10 or greater. Alternatively, you may specify the particular values that the sweep parameter should take using the values parameter. If you specify both a specific set of values and a set specified using a sweep range, the two sets are merged and collated before being used. All frequencies are in Hertz.

Parameter Index

In the following index, the number corresponding to each parameter name indicates where to find the description of that parameter.

annotate 3	37 lin 6	(outmodharmvec	41	sideband	ds 1	9
center 3	log 8	(outputperiod	24	solver	28	

Analysis Statements

contriblist 49	lowmem 32	perturbation 44	span 4
crossingdirection 16	maxharm_nonlin 50	ptvtype 13	start 1
dec 7	maxsamples 17	relativeTol 26	step 5
extrasampletimepo ints 18	maxsideband 20	relharmnum 12	stop 2
fim_out 46	modsource 43	resgmrescycle 30	sweeptype 11
flin_out 45	modulated 39	rf1_src 53	thresholdvalue
freqaxis 21	moduppersideband 42	rf2_src 54	title 38
freqdivide 36	nestlvl 23	rf_src 55	tolerance 25
freqs 56	osc_accuracy 35	rfampls 57	values 9
gear_order 27	osc_version 34	rfdbm 52	valuesfile 10
hbprecond_solver	oscsolver 29	rfmag 51	
inmodharmnum 40	out1 47	sampleprobe 14	
krylov_size 33	out2 48	save 22	

Analysis Statements

Periodic Noise Analysis (pnoise)

Description

The Periodic Noise, or PNoise analysis is similar to the conventional noise analysis, except that it includes frequency conversion effects. Hence, it is useful for predicting the noise behavior of mixers, switched-capacitor filters, and other periodically driven circuits. It is particularly useful for predicting the phase noise of autonomous circuits, such as oscillators.

PNoise analysis linearizes the circuit about the periodic operating point computed in the prerequisite PSS analysis. It is the periodically time-varying nature of the linearized circuit that accounts for the frequency conversion. In addition, the affect of a periodically time-varying bias point on the noise generated by the various components in the circuit is also included.

The time-average of the noise at the output of the circuit is computed in the form of spectral density versus frequency. The output of the circuit is specified with either a pair of nodes or a probe component. To specify the output of a circuit with a probe, specify it using the oprobe parameter. If the output is voltage (or potential), choose a resistor or a port as the output probe. If the output is current (or flow), choose a vsource or iprobe as the output probe.

If the input-referred noise or noise figure is desired, specify the input source by using the iprobe parameter. For input-referred noise, use vsource or isource as the input probe; for noise figure, use a port as the probe. Currently, only a vsource, an isource, or a port may be used as an input probe. If the input source is noisy, as is a port, the noise analysis computes the noise factor (F) and noise figure (NF). To match the IEEE definition of noise figure, the input probe must be a port with no excess noise and its noisetemp must be set to 16.85C (290K). In addition, the output load must be a resistor or port and must be identified as the oprobe.

If port is specified as the input probe, both input-referred noise and gain are referred back to the equivalent voltage source inside the port. S-parameter analysis calculates those values in traditional sense.

The reference sideband (refsideband) specifies which conversion gain is used when computing input-referred noise, noise factor, and noise figure. The reference sideband specifies the input frequency relative to the output frequency with:

```
|f(input)| = |f(out) + refsideband * fund(pss)|
```

Use refsideband=0 when the input and output of the circuit are at the same frequency (such as with amplifiers and filters). When refsideband differs from 0, the single side-band noise figure is computed.

Analysis Statements

The noise analysis always computes the total noise at the output, which includes contributions from the input source and the output load. The amount of the output noise that is attributable to each noise source in the circuit is also computed and output individually. If the input source is identified (using iprobe) and is a vsource or isource, the input-referred noise is computed, which includes the noise from the input source itself. Finally, if the input source is identified (using iprobe) and is noisy, as is the case with ports, the noise factor and noise figure are computed. Therefore, if:

No = total output noise

Ns = noise at the output due to the input probe (the source)

Nsi = noise at the output due to the image harmonic at the source

Nso = noise at the output due to harmonics other than input at the source

NI = noise at the output due to the output probe (the load)

IRN = input referred noise

G = gain of the circuit

F = noise factor

NF = noise figure

Fdsb = double sideband noise factor

NFdsb = double sideband noise figure

Fieee = IEEE single sideband noise factor

NFieee = IEEE single sideband noise figure

Then:

 $IRN = sqrt(No^2/G^2)$

 $F = (No^2 - NI^2)/Ns^2$

NF = 10*log10(F)

 $Fdsb = (No^2 - NI^2)/(Ns^2 + Nsi^2)$

NFdsb = 10*log10(Fdsb)

Analysis Statements

 $Fieee = (No^2 - NI^2 - Nso^2)/Ns^2$

NFieee = 10*log10(Fieee).

When the results are output, No is named out, IRN is named in, G is named gain, F, NF, Fdsb, NFdsb, Fieee, and NFieee are named F, NF, Fdsb, NFdsb, Fieee, and NFieee, respectively.

In a phase noise analysis for an oscillator, the line width, which is also known as the corner frequency, is defined as either the full width at half maximum (FWHM), or as twice the half power (-3dB) width (HW). In the absence of 1/f noise and ignoring any noise floor, the phase noise spectrum satisfies the Lorentzian equation:

```
L(f) = (1/pi) * [pi * c * fosc^2] / [(pi * c * fosc^2)^2 + f^2],
```

Where, c is a constant that defines the phase noise characteristics of the oscillator, fosc is the fundamental frequency of the oscillator, and f is the offset frequency of the oscillator. Therefore:

```
line width := FWHM = 2*HW = 2*pi*c*fosc^2.
```

Note: Unlike other analyses in Spectre, this analysis can only sweep frequency.

For information on how to run Pnoise analysis from ADE, see <u>Periodic Noise Analysis</u> (<u>Pnoise</u>) in the <u>Spectre Circuit Simulator and Accelerated Parallel Simulator RF Analysis User Guide</u>.

Definition

```
Name [p] [n] ... pnoise parameter=value ...
```

The optional terminals (p and n) specify the output of the circuit. If you do not specify the terminals, you must specify the output with a probe component.

Parameters

Sweep interval parameters

1	start=0	Start sweep limit.
2	stop	Stop sweep limit.

Analysis Statements

3	center	Center of sweep.
4	span=0	Sweep limit span.
5	step	Step size, linear sweep.
6	lin=50	Number of steps, linear sweep.
7	dec	Points per decade.
8	log=50	Number of steps, log sweep.
9	values=[]	Array of sweep values.
10	valuesfile	Name of the file containing the sweep values.
11	sweeptype=unspecifi	.ed
		Specifies if the sweep frequency range is the absolute frequency of input or if it is relative to the port harmonics. When the unspecified value is used, Spectre RF sweeps using relative when autonomous simulation is performed or when the analysis is PSP; for other cases Spectre RF sweeps the absolute value of the input. Possible values are absolute, relative, and unspecified.
12	relharmnum=1	Harmonic to which relative frequency sweep should be referenced.

Probe parameters

13	oprobe	Compute total noise at the output defined by this component.
14	iprobe	Refer the output noise to this component.
15	refsideband	Conversion gain associated with this sideband; is used when computing input-referred noise or noise figure.

Sampled analysis parameters

16	thresholdvalue=0	Sampled measurement is done when the signal crosses
		this value.

Analysis Statements

17	crossingdirection= all	Specifies the transitions for which sampling must be done. Possible values are all, rise, fall, and ignore.
18	maxsamples=16	Maximum number of sampled events to be processed during the sampled analysis.
19	sampleratio=1	The ratio between sampled frequency and fund frequency (sampled frequency/fund frequency).
20	externalsourcedata	Name of PXF analysis that provides information to compute the contribution of external jitter sources.
21	measurement=NULL	Specifies the jitter event list that will be measured.

Output parameters

22	noisetype=timeaver age	Specifies the computation of time-averaged or time- sampled noise information. Possible values are timeaverage, correlations, timedomain, pmjitter, and sampled.
23	maxsideband=7	In shooting pnoise, the parameter determines the maximum sideband included when computing noise that is either up-converted or down-converted to the output by the periodic drive signal. In HB pnoise, the parameter determines the size of the small signal system when HB pnoise is performed. This parameter is critical for the accuracy of HB pnoise analysis; using a small maxsideband may cause accuracy loss. The default value for the shooting pnoise is 7. For HB pnoise, the default is the harms/maxharms setting in the HB large signal analysis.
24	sidebands=[]	Array of relevant sidebands for the analysis.

Analysis Statements

25	save	Signals to output. This option specifies the signals to be saved in the result. Possible values are all, lvl, allpub, lvlpub, and selected.	
		allpub: saves all signals at all levels of hierarchy in the schematic, including the internal signals of device models.	
		■ all: works like allpub.	
		■ lvl: saves all signals through the level of hierarchy set in the nestlvl option.	
		■ lvlpub: works like lvl.	
		■ selected: is not recommended to be used here.	
26	nestlvl	Levels of subcircuits to output.	
27	maxcycles	Maximum cycle correlation frequency included when computing noise, that is either up-converted or down-converted to the output by the periodic drive signal.	
28	noiseskipcount=-1	Calculate time-domain noise on only one of every noiseskipcount time points. When < 0, the parameter is ignored. When >=0, simulator uses this parameter and ignores numberofpoints.	
29	<pre>noisetimepoints=[]</pre>	Additional time points for time-domain noise analysis.	
30	numberofpoints=5	Number of time points of interest in the period where time domain PSD is calculated. Simulator divides the period evenly into N segments (N=numberofpoints) and calculates time domain PSD on the starting time point of each segment. When < 0, the parameter is ignored.	
31	saveallsidebands=n o	Save noise contributors by sideband. Possible values are no and ${\tt yes}.$	
32	separatenoise=no	Separate noise into sources and transfer functions. Possible values are no and yes.	
33	cyclo2txtfile=no	Output cyclo-stationary noise to text file as input source of next stage. Possible values are ${\tt no}$ and ${\tt yes}.$	

Analysis Statements

34	noiseout=usb	Specify the noise output. You can set a vector like noiseout=[usb am pm]. All of these use the single
		sideband (SSB) convention, which is half of the total power. Possible values are usb, 1sb, am, and pm.

Convergence parameters

35	tolerance	Tolerance for the linear solver. The default value is 1.0e-9 for shooting-based solver, and 1.0e-04 for harmonic balance-based solver.
36	relativeTol	Relative tolerance for harmonic balance-based linear solver. The default value is 1.0e-2.
37	gear_order=2	Gear order used for small-signal integration.
38	solver=turbo	Solver type. Possible values are std, turbo, std_hh, and turbo_hh.
39	oscsolver=turbo	Oscillator solver type. It is recommended to use ira for huge circuits. Possible values are std, turbo, ira, and direct.
40	resgmrescycle=shor t	Restarts GMRES cycle. Possible values are instant, short, long, recycleinstant, recycleshort, custom, and recyclelong.
41	hbprecond_solver=a utoset	Select a linear solver for the GMRES preconditioner. Default is autoset. With autoset, the simulator will automatically select the appropriate preconditioner. The preconditioner affects the rate of convergence of the linear matrix solver used in periodic small-signal analysis. When autoset is selected, the simulator may decide to switch to a different preconditioner after the analysis begins. When that happens, the simulator may issue a warning instructing you to choose a different preconditioner during subsequent runs. Although not required, choosing a different preconditioner according to the simulator's instructions may speed up subsequent analyses. Possible values are basicsolver, blocksolver, autoset, blockdense, and blocksolver2.

Analysis Statements

42	lowmem=0	Harmonic balance low memory mode. Possible values are $0, 1$, or number (>=10). The default value is 0 , it indicates that the low memory mode is turned off; if 1 is set, the standard low memory mode is turned on; If a number greater that or equal to 10 is set, Spectre interprets the value as memory requested in Gigabytes.
43	ppv=no	If set to yes , save the oscillator PPV after performing noise analysis. Possible values are no and yes .
44	ppvfile	File to which the PPV of oscillator is written.
45	augmented=yes	If set to yes, the frequency-aware PPV method is used to calculate the total noise of the oscillator; if set to pmonly, only the PM part of the oscillator noise is calculated; if set to amonly, only the AM part of the oscillator noise is calculated. The output of AM/PM noise uses the double sideband convention. Possible values are no, yes, pmonly, and amonly.
		Note: This parameter will be removed in a future release. It is recommended that you use the noiseout parameter.
46	lorentzian=cornerf reqonly	This option determines if the Lorentzian plot is used in the oscillator noise analysis. Possible values are no, cornerfreqonly, and yes.
47	pnoisemethod=defau lt	This option selects the shooting pnoise method. Possible values are default and fullspectrum.
48	krylov_size=200	The maximum iteration count of the linear matrix solver used in periodic small-signal analysis. After reaching 1.25*krylov_size iterations, the iteration is forced to terminate because of the poor rate of convergence. Increase krylov_size if the simulation reports insufficient norm reduction errors in GMRES.
49	osc_version=dts	Specifies the method to use in small signal analysis for autonomous circuit. Possible values are floquet, augmented, and dts.
50	osc_accuracy=2	Accuracy control in small signal analysis for autonomous circuit when osc_version=dts. The higher this value, the more iterations GMRES solver will take. Maximum effective value is 5.

Analysis Statements

51	freqdivide=1	Large signal frequency division. Used for oscillator circuit with divider when osc_version=dts for shooting engine.

Annotation parameters

52	annotate=sweep	Degree of annotation. Possible values are no, title, sweep, status, steps, and detailed_hb.
53	title	Analysis title.

In practice, noise can mix with each of the harmonics of the periodic drive signal applied in the PSS analysis and end up at the output frequency. However, the PNoise analysis includes only the noise that mixes with a finite set of harmonics that are typically specified using the maxsideband parameter; however, in special circumstances, the harmonics may be specified with the sidebands parameter. If Ki represents sideband i, then:

```
f(noise source) = f(out) + Ki * fund(pss)
```

The maxsideband parameter specifies the maximum |Ki| included in the PNoise calculation. Therefore, noise at frequencies less than f(out)-maxsideband*fund(pss) and greater than f(out)+maxsideband*fund(pss) are ignored. If selected sidebands are specified using the sidebands parameter, then only those specified are included in the calculation. When specifying the sidebands ensure that you include a sideband that contributes significant noise to the output; otherwise, the results will be erroneous.

The number of requested sidebands does not change the simulation time substantially. However, the <code>maxacfreq</code> of the corresponding PSS analysis should be set to guarantee that <code>lmax{f(noise_source)}</code> is less than <code>maxacfreq</code>; otherwise, the computed solution might be contaminated by aliasing effects. The PNoise simulation is not executed for <code>lf(out)l</code> greater than <code>maxacfreq</code>. Diagnostic messages are printed for those extreme cases, indicating which <code>maxacfreq</code> should be set in the PSS analysis. In majority of simulations, however, this is not an issue, because <code>maxacfreq</code> is never allowed to be smaller than 40x the PSS fundamental.

Phase Noise measurements are possible by using the Analog Design Environment (ADE) environment. Two pnoise analyses are pre-configured for this simulation and most of the parameters are set by ADE. The first pnoise analysis named mod1 is a regular noise analysis and can be used independently. The second pnoise correlation analysis named mod2 has limited use outside of the ADE environment. Direct Plot is configured to analyze these results and combine several wave forms to measure AM and PM components of the output noise. For details, see the Spectre RF User Guide.

Analysis Statements

You can define sweep limits by specifying the end points or by providing the center value and span of the sweep. Steps can be linear or logarithmic, and you can specify the number of steps or the size of each step. In addition, you can specify a step size parameter (step, lin, log, or dec) to determine whether the sweep is linear or logarithmic. If you do not specify a step size parameter, the sweep is linear when the ratio of stop to start values is less than 10, and logarithmic when this ratio is 10 or greater. Alternatively, you may specify the particular values that the sweep parameter should take using the values parameter. If you specify both a specific set of values and a set specified using a sweep range, the two sets are merged and collated before being used. All frequencies are in Hertz.

Parameter Index

In the following index, the number corresponding to each parameter name indicates where to find the description of that parameter.

annotate 52	lorentzian 46	osc_version 49	solver 38
augmented 45	lowmem 42	oscsolver 39	span 4
center 3	maxcycles 27	pnoisemethod 47	start 1
crossingdirection 17	maxsamples 18	ppv 43	step 5
cyclo2txtfile 33	maxsideband 23	ppvfile 44	stop 2
dec 7	measurement 21	refsideband 15	sweeptype 11
externalsourcedat a 20	nestlvl 26	relativeTol 36	thresholdvalue
freqdivide 51	noiseout 34	relharmnum 12	title 53
gear_order 37	noiseskipcount 28	resgmrescycle 40	tolerance 35
hbprecond_solver	noisetimepoints 29	sampleratio 19	values 9
iprobe 14	noisetype 22	save 25	valuesfile 10

Analysis Statements

krylov_size 4	48	numberofpoints 30	saveallsidebands 31
lin 6		oprobe 13	separatenoise 32
log 8		osc accuracy 50	sidebands 24

Analysis Statements

Periodic S-Parameter Analysis (psp)

Description

The periodic SP (PSP) analysis is used to compute scattering and noise parameters for n-port circuits that exhibit frequency translation, such as mixers. It is a small-signal analysis like SP analysis, except, as in PAC and PXF, the circuit is first linearized about a quasi-periodically varying operating point as opposed to a simple DC operating point. Linearizing about a periodically time-varying operating point allows the computation of S-parameters between circuit ports that convert signals from one frequency band to another. PSP can also calculate noise parameters in frequency-converting circuits. PSP computes noise figure (both single-sideband and double-sideband), input referred noise, equivalent noise parameters, and noise correlation matrices. Similar to PNoise, but unlike SP, the noise features of the PSP analysis include noise folding effects due to the periodically time-varying nature of the circuit.

Computing the n-port S-parameters and noise parameters of a periodically varying circuit is a two step process. First, the small stimulus is ignored and the periodic steady-state response of the circuit to possibly large periodic stimulus is computed using PSS analysis. As a part of the PSS analysis, the periodically time-varying representation of the circuit is computed and saved for later use. The second step is to apply small-signal excitations to compute the n-port S-parameters and noise parameters. This is done using PSP analysis. PSP analysis cannot be used independently, it must follow a PSS analysis. However, any number of periodic small-signal analyses such as PAC, PSP, PXF, PNoise, can follow a PSS analysis.

Note: Unlike other analyses in Spectre, this analysis can only sweep frequency.

For information on how to run PSP analysis from ADE, see <u>Periodic S-Parameter Analysis</u> (<u>PSP</u>) in the <u>Spectre Circuit Simulator and Accelerated Parallel Simulator RF Analysis User Guide</u>.

Definition

Name psp parameter=value ...

Parameters

Sweep interval parameters

1 start=0 Start sweep limit.

Analysis Statements

2	stop	Stop sweep limit.
3	center	Center of sweep.
4	span=0	Sweep limit span.
5	step	Step size, linear sweep.
6	lin=50	Number of steps, linear sweep.
7	dec	Points per decade.
8	log=50	Number of steps, log sweep.
9	values=[]	Array of sweep values.
10	valuesfile	Name of the file containing the sweep values.
11	sweeptype=unspecified	Specifies if the sweep frequency range is the absolute frequency of input or if it is relative to the port harmonics. When the unspecified value is used, Spectre RF sweeps using relative when autonomous simulation is performed or when the analysis is PSP; for other cases Spectre RF sweeps the absolute value of the input. Possible values are absolute, relative, and unspecified.

Port parameters

12	ports=[]	List of active ports. Ports are numbered in the specified order. For noise figure computation, the input is considered as port 1 and the output as port 2.
13	portharmsvec=[]	List of harmonics that are active on specified list of ports. Must have a one-to-one correspondence with the ports vector.
14	harmsvec=[]	List of harmonics, in addition to the ones associated with specific ports by portharmsvec, that are active.

Analysis Statements

Output parameters

15	freqaxis	Specifies whether the results should be printed as per the input frequency, the output frequency, or the absolute value of the input frequency. The default is in. Possible values are absin, in, and out.
16	file	Name of the output file. It only supports S-parameters in PSP, HBSP, and QPSP analyses.
17	datafmt=spectre	Data format of the S-parameter output file. Possible values are spectre, touchstone, and touchstone2.
18	datatype=realimag	Data type of the S-parameter output file. Possible values are realimag, magphase, and dbphase

Noise parameters

19	onoise=yes	Perform noise analysis. If oprobe is specified as a valid
		port, this parameter is set to yes , and a detailed noise
		output is generated. Possible values are no and yes.

Probe parameters

20	maxsideband=7	In shooting pnoise, the parameter determines the maximum sideband included when computing noise that is either up-converted or down-converted to the output by the periodic drive signal. In HB pnoise, the parameter determines the size of the small signal system when HB pnoise is performed. This parameter is critical for the accuracy of HB pnoise analysis; using a small value for maxsideband might cause accuracy loss. The default value for the shooting pnoise is 7. For the HB pnoise, the default is the harms/maxharms setting in the HB large signal analysis.

Analysis Statements

Convergence parameters

21	tolerance	Tolerance for the linear solver. The default value is 1.0e-9 for shooting-based solver, and 1.0e-4 for harmonic balance-based solver.
22	relativeTol	Relative tolerance for harmonic balance-based linear solver. The default value is 1.0e-2.
23	gear_order=2	Gear order used for small-signal integration.
24	solver=turbo	Solver type. Possible values are std, turbo, std_hh, and turbo_hh.
25	oscsolver=turbo	Oscillator solver type. It is recommended that you use ira for huge circuits. Possible values are std, turbo, ira, and direct.
26	resgmrescycle=shor t	'Restarts GMRES cycle. Possible values are instant, short, long, recycleinstant, recycleshort, custom, and recyclelong.
27	osc_version=dts	Specifies the method to use in small signal analysis for autonomous circuit. Possible values are floquet, augmented, and dts.
28	osc_accuracy=2	Accuracy control in small signal analysis for autonomous circuit when osc_version=dts. The higher this value, the more iterations GMRES solver will take. Maximum effective value is 5.
29	hbprecond_solver=a utoset	Select a linear solver for the GMRES preconditioner. Default is autoset. With autoset, the simulator will automatically select the appropriate preconditioner. The preconditioner affects the rate of convergence of the linear matrix solver used in periodic small-signal analysis. When autoset is selected, the simulator may decide to switch to a different preconditioner after the analysis begins. When that happens, the simulator may issue a warning instructing you to choose a different preconditioner during subsequent runs. Although not required, choosing a different preconditioner according to the simulator's instructions may speed up subsequent analyses. Possible values are basicsolver, blocksolver, and autoset.

Analysis Statements

30	lowmem=0	Harmonic balance low memory mode. Possible values are 0, 1, or number (>=10). The default value is 0, it indicates that the low memory mode is turned off; if 1 is set, the standard low memory mode is turned on; If a number greater that or equal to 10 is set, Spectre interprets the value as memory requested in Gigabytes.
31	krylov_size=200	The maximum iteration count of the linear matrix solver used in periodic small-signal analysis. After reaching 1.25*krylov_size iterations, the iteration is forced to terminate because of the poor rate of convergence. Increase krylov_size if the simulation reports insufficient norm reduction errors in GMRES.

Annotation parameters

32	annotate=sweep	Degree of annotation. Possible values are no, title, sweep, status, steps, and detailed_hb.
33	title	Analysis title.

To specify the PSP analysis, the port and port harmonic relations must be specified. You can select the ports of interest by setting the port parameter, and the set of periodic small-signal output frequencies of interest by setting portharmsvec or the harmsvec parameters. For a given set of n integer numbers representing the harmonics K1, K2, ... Kn, the scattering parameters at each port are computed at the frequencies f(scattered)= f(rel) + Ki * fund(pss), where f(rel) represents the relative frequency of a signal incident on a port, f(scattered) represents the frequency to which the relevant scattering parameter represents the conversion, and fund(pss) represents the fundamental frequency used in the corresponding PSS analysis.

Therefore, when analyzing a down-converting mixer, with signal in the upper sideband, and sweeping the RF input frequency, the most relevant harmonic for RF input is Ki= 1 and for IF output is Ki= 0. Hence, we can associate K2=1 with the IF port and K1=0 with the RF port. S21 represents the transmission of signal from the RF to IF and S11 the reflection of signal back to the RF port. If the signal was in the lower sideband, a choice of K1=-1 would be more appropriate.

Either portharmsvec or harmsvec can be used to specify the harmonics of interest. If portharmsvec is given, the harmonics must be in one-to-one correspondence with the ports, with each harmonic associated with a single port. If harmonics are specified in the

Analysis Statements

optional harmsvec parameter, all possible frequency-translating scattering parameters associated with the specified harmonics are computed.

With PSP, the frequency of the input and of the response are usually different (this is an important area in which PSP differs from SP). Because the PSP computation involves inputs and outputs at frequencies that are relative to multiple harmonics, the freqaxis and sweeptype parameters behave differently in PSP than in PAC and PXF.

The sweeptype parameter controls the way the frequencies in the PSP analysis are swept. A relative sweep is a sweep relative to the analysis harmonics (not the PSS fundamental), and an absolute sweep is a sweep of the absolute input source frequency. For example, with a PSS fundamental of 100MHz, portharmsvec set to [9 1] to examine a down-converting mixer, sweeptype=relative, and a sweep range of f(rel)=0->50MHz, S21 would represent the strength of signal transmitted from the input port in the range 900->950MHz to the output port at frequencies 100->150MHz. Using sweeptype=absolute and sweeping the frequency from 900->950MHz would calculate the same quantities, because f(abs)=900->950MHz, and f(rel)=f(abs)-K1*fund(pss)=0->50MHz, where, K1=9 and fund(pss) = 100MHz.

Usually, it is not necessary to sweep frequency in PSP over more than one fundamental PSS period.

The freqaxis parameter is used to specify whether the results should be output versus the scattered frequency at the input port (in), the scattered frequency at the output port (out), or the absolute value of the frequency swept at the input port (absin). If freqaxis is absin, the S-parameters at negative frequencies are taken conjugate and output at corresponding positive frequencies.

Unlike in PAC/PXF/PNoise, increasing the number of requested ports and harmonics increases the simulation time substantially.

To ensure accurate results in PSP, the maxacfreq of the corresponding PSS analysis should be set to guarantee that I max{f(scattered)} I is less than maxacfreq; otherwise, the computed solution might be contaminated by aliasing effects.

PSP analysis also computes noise figures, equivalent noise sources, and noise parameters. The noise computation, which is skipped only when <code>donoise=no</code>, requires additional simulation time. If:

No = total output noise at frequency f

Ns = noise at the output due to the input probe (the source)

Nsi = noise at the output due to the image harmonic at the source

Analysis Statements

Nso = noise at the output due to harmonics other than input at the source

NI = noise at the output due to the output probe (the load)

IRN = input referred noise

G = gain of the circuit

F = noise factor (single side band)

NF = noise figure (single side band)

Fdsb = double sideband noise factor

NFdsb = double sideband noise figure

Fieee = IEEE single sideband noise factor

NFieee = IEEE single sideband noise figure

Then:

 $IRN = sqrt(No^2/G^2)$

 $F = (No^2 - NI^2)/Ns^2$

NF = 10*log10(F)

 $Fdsb = (No^2 - NI^2)/(Ns^2 + Nsi^2)$

NFdsb = 10*log10(Fdsb)

Fieee = $(No^2 - NI^2 - Nso^2)/Ns^2$

NFieee = 10*log10(Fieee).

When the results are output, IRN is named in, G is named gain, F, NF, Fdsb, NFdsb, Fieee, and NFieee are named F, NF, Fdsb, NFdsb, Fieee, and NFieee, respectively.

Note: The gain computed by PSP is the voltage gain from the actual circuit input to the circuit output, and not the gain from the internal port voltage source to the output.

To ensure accurate noise calculations, the maxsideband or sidebands parameters must be set to include the relevant noise folding effects. maxsideband is only relevant to the noise computation features of PSP.

Analysis Statements

You can define the sweep limits by specifying the end points or by providing the center value and span of the sweep. Steps can be linear or logarithmic, and you can specify the number of steps or the size of each step. In addition, you can specify a step size parameter (step, lin, log, or dec) to determine whether the sweep is linear or logarithmic. If you do not specify a step size parameter, the sweep is linear when the ratio of stop to start values is less than 10, and logarithmic when this ratio is 10 or greater. Alternatively, you may specify the particular values that the sweep parameter should take using the values parameter. If you specify both a specific set of values and a set specified using a sweep range, the two sets are merged and collated before being used. All frequencies are in Hertz.

Parameter Index

In the following index, the number corresponding to each parameter name indicates where to find the description of that parameter:

annotate 32	harmsvec 14	oscsolver 25	stop 2
center 3	hbprecond_solver	portharmsvec 13	sweeptype 11
datafmt 17	krylov_size 31	ports 12	title 33
datatype 18	lin 6	relativeTol 22	tolerance 21
dec 7	log 8	resgmrescycle 26	values 9
donoise 19	lowmem 30	solver 24	valuesfile 10
file 16	maxsideband 20	span 4	
freqaxis 15	osc_accuracy 28	start 1	
gear_order 23	osc_version 27	step 5	

Analysis Statements

Periodic Steady-State Analysis (pss)

Description

This analysis computes the periodic steady-state (PSS) response of a circuit by using harmonic balance (in the frequency domain) or shooting (in the time domain). The simulation time of PSS analysis is independent of the time-constants of the circuit. In addition, PSS analysis determines the periodic operating point for the circuit. The periodic operating point can then be used during a periodic time-varying small-signal analysis, such as PAC, PXF, PNOISE, PSP, or PSTB.

Harmonic balance (HB) is efficient in simulating weak non-linear circuits while shooting is more suitable for highly non-linear circuits with sharply rising and falling signals. HB is also advantageous over shooting in handling frequency dependent components, such as delay, transmission line, and S-parameter data.

PSS analysis can handle both autonomous (non-driven) and driven (non-autonomous) circuits. Autonomous circuits, even though they are not driven by a time-varying stimulus, generate non-constant waveforms. Driven circuits require some time-varying stimulus to generate a time-varying response. The most common example of an autonomous circuit is an oscillator. Common driven circuits include amplifiers, filters, and mixers. When PSS is applied to autonomous circuits, it requires you to specify a pair of nodes, p and n. This is how PSS analysis determines whether it is being applied to an autonomous or a driven circuit. If the pair of nodes is supplied, PSS assumes the circuit is autonomous; if not, the circuit is assumed to be driven.

With driven circuits, specify the analysis period or its corresponding fundamental frequency fund. The period must be an integer multiple of the period of the drive signal or signals. Autonomous circuits have no drive signal, and the actual period of oscillation is not known precisely in advance. Instead, you specify an estimate of the oscillation period and PSS analysis computes the precise period along with the periodic solution waveforms.

PSS analysis consists of two phases, an initial transient phase, which initializes the circuit, and the shooting or harmonic balance phase, which computes the periodic steady-state solution. The transient phase consists of three intervals. The first interval starts at tstart, which is normally 0, and continues through the onset of periodicity tonset for the independent sources. The onset of periodicity, which is automatically generated, is the minimum time for which all sources are periodic. The second interval is an optional user-specified stabilization interval whose length is tstab. The final interval length is period for driven circuits, or four times period for autonomous circuits. This interval has a special use for the autonomous PSS analysis, that is, the PSS analysis monitors the waveforms in the circuit and develops a better estimate of the oscillation period. After the initial transient phase is complete, the shooting or HB phase begins. In this phase, the circuit is iteratively solved

Analysis Statements

using Newton method to find the periodic steady-state solution (and the period when applied to autonomous circuits).

For information on how to run PSS analysis from ADE, see <u>Overview of Periodic Steady-State (pss) Analysis</u> in the <u>Spectre Circuit Simulator and Accelerated Parallel Siumulator RF Analysis User Guide</u>.

Definition

Name [p] [n] pss parameter=value ...

Parameters

Simulation interval parameters

1	period (s)	Steady state analysis period (or its estimate for autonomous circuits).
2	fund (Hz)	Alternative to period specification. Steady state analysis fundamental frequency (or its estimate for autonomous circuits).
3	autofund=no	If the value is yes, the program ignores period/fund value and calculates the fundamental frequency automatically from source information. Possible values are no and yes.
4	harms=9 for shooting, 10 for HB	For shooting, it is the number of solution harmonics to output when outputtype=freq or all; for HB, it directly determines the solution dimension to be solved and impacts the accuracy and convergence of the simulation.
5	autoharms=no	Activates automatic harmonic number calculation in harmonic balance. Applies only if tstab>0 or if autotstab=yes. If a steady-state is reached, Spectre does a spectrum analysis to calculate the optimal number of harmonics for HB. The minimum number of harmonics is specified by maxharms. If steady-state is not reached to sufficient tolerance, autoharms may be disabled. Possible values are no and yes.

Analysis Statements

6	tstab=0.0 s	Extra stabilization time after the onset of periodicity for independent sources.
7	autotstab=no	Activates automatic initial transient (tstab) in harmonic balance and PSS shooting. If set to yes, the simulator decides whether to run tstab and for how long. Typically, the initial length of tstab is 50 periods, however, it could be longer depending on the type of circuit and its behavior. If steady-state is reached (or nearly reached), tstab terminates early. Possible values are no and yes.
8	autosteady=no	Activates automatic steady state detection during initial transient (tstab) in harmonic balance and PSS shooting. When steady state is reached (or nearly reached), tstab terminates early. This parameter applies only when tstab>0 or when autotstab=yes. Possible values are 0, 1, no, and yes.
		■ autosteady=no 0: turns this feature off
		■ autosteady=yes 1: activates this feature
		autosteady=2: runs autosteady with lower steady state tolerance than autosteady=1
		autosteady=2: may help pss convergence but with higher tstab costs
9	tstart=0.0 s	Initial transient analysis start time.
10	tstabenvlp=no	Determines the envelope method to be used for tstab. If the value is set to yes , envelope method will be used for tstab. Default value is no. Possible values are no and yes .
11	envlpname	Name of envelope analysis to be performed at tstab for pss.

Time-step parameters

12	maxstep (s)	Maximum time step. The default is derived from
		errpreset.

Analysis Statements

13	maxacfreq	Maximum frequency requested in a subsequent periodic small-signal analysis. Default is derived from errpreset and harms. This parameter is valid only for shooting.
14	step=0.001 period s	Minimum time step that would be used solely to maintain the aesthetics of the results. This parameter is valid only for shooting.

Initial-condition parameters

15	ic=all	The value to be used to set the initial condition. Possible values are dc, node, dev, and all.
16	skipdc=no	If set to yes, there is no DC analysis for initial transient. Possible values are no, yes, and sigrampup.
17	readic	File that contains initial condition.
18	oscic=default	Oscillator IC method. It determines how the starting values for the oscillator are calculated. oscic=lin provides you an accurate initial value, but it takes time. oscic=lin_ic, which is an older version of oscic=lin is used for shooting analysis for backward compatibility and is not recommended. oscic=fastic is fast, but it is less accurate. oscic=skip directly uses the frequency you provided as the initial guess frequency. It is only for two-tier method. Possible values are default, lin, lin_ic, fastic, and skip.
19	useprevic=no	If set to <code>yes</code> or <code>ns</code> , use the converged initial condition from previous analysis as <code>ic</code> or <code>ns</code> . Possible values are <code>no</code> , <code>yes</code> , and <code>ns</code> .

Convergence parameters

20	readns	File that contains an estimate of the initial transient solution.
21	cmin=0 F	Minimum capacitance from each node to ground.

Analysis Statements

Output parameters

22	harmsvec=[]	Array of desired harmonics. An alternative form of harms that allows selection of specific harmonics. This parameter is valid only for shooting.
23	outputtype= all''	Output type. Possible values are all, time, and freq.
24	save	Signals to output. Possible values are all, lvl, allpub, lvlpub, selected, none, and nooutput.
25	nestlvl	Levels of subcircuits to output.
26	oppoint=no	Should operating point information be computed for initial timestep; if yes, where should it be printed (screen or file). Possible values are no, screen, logfile, and rawfile.
27	skipstart=0 s	The time to start skipping output data.
28	skipstop=stop s	The time to stop skipping output data.
2	skipcount=1	Save only one of every skipcount points.
30	strobeperiod=0 s	The output strobe interval (in seconds) of transient time.
31	strobedelay=0 s	The delay (phase shift) between the skipstart time and the first strobe point.
32	saveinit=no	If set to ${\tt yes},$ the waveforms for the initial transient before steady state are saved. Possible values are ${\tt no}$ and ${\tt yes}.$

State-file parameters

33	write	File to which initial transient solution (before steady- state) is written.
34	writefinal	File to which final transient solution in steady-state is written. This parameter is now valid only for shooting.
35	swapfile	Temporary file to hold steady-state information. It tells Spectre to use a regular file, rather than virtual memory to hold the periodic operating point. Use this option if Spectre complains about not having enough memory to complete the analysis. This parameter is now valid only for shooting.

Analysis Statements

36	writepss	File to which the converged steady-state solution is written. The file of shooting and HB cannot be mutually reused.
37	readpss	File from which a previously converged steady-state solution is read. For shooting method, PSS loads the solution and checks the residue of the circuit equations only. The solution is re-used if the residue is satisfactory. Otherwise, the solution is re-converged using the finite difference method. The results from shooting QPSS cannot be used in HB QPSS analysis and vice-versa.
38	checkpss=yes	If set to yes , the previous PSS results (from readpss file) are checked and PSS+MIC is rerun if any condition has changed. If set to no, the simulator assumes that nothing has changed and uses the solution from the file without checking and running PSS+MIC again. This parameter is now valid only for shooting. Possible values are no and yes .

Integration method parameters

39	method	Integration method. The default is derived from errpreset. This parameter is valid only for shooting. Possible values are euler, trap, traponly, gear2, and gear2only.
40	tstabmethod	Integration method used in stabilization time. The default is traponly for autonomous circuits, or is derived from errpreset for driven circuits. Possible values are euler, trap, traponly, gear2, and gear2only.

Accuracy parameters

41	errpreset	Selects a reasonable collection of parameter settings. Possible values are liberal, moderate, and
		conservative.

Analysis Statements

42	relref	Reference used for the relative convergence criteria. The default is derived from errpreset. Possible values are pointlocal, alllocal, sigglobal, and allglobal.
43	lteratio	Ratio used to compute LTE tolerances from Newton tolerance. The default is derived from errpreset.
44	lteminstep=0.0 s	Local truncation error is ignored if the step size is less than lteminstep.
45	steadyratio	Ratio used to compute steady state tolerances from LTE tolerance. The default is derived from errpreset.
46	maxperiods	Maximum number of iterations allowed before convergence is reached in shooting or harmonic balance Newton iteration. For PSS and QPSS, the default is 20 for driven circuits, and 50 for oscillators. For HB, the default is 100. Default value for shooting APS flow is 1e-3.
47	max_innerkrylov_siz	ze=20
		The maximum iteration number allowed in inner gmres solver in two-level gmres linear solver. The default value is 12 for large signal and 20 for small signal analysis.
48	max_outerkrylov_si	ze=4
		The maximum iteration number allowed in inner gmres solver in two-level gmres linear solver. The default value is 4.
49	itres=1e-4 for shooting, 0.9 for HB	Controls the residual for iterative solution of linearized matrix equation at each Newton iteration. Tightening the parameter can help with the Newton convergence, but does not affect the result accuracy. The value should be between [0, 1].
50	inexactNewton=no	Inexact Newton method. Possible values are ${\tt no}$ and ${\tt yes.}$
51	finitediff	Enable finite difference method refinement for driven circuits after shooting method. Possible values are no, yes, and refine.

Analysis Statements

52	highorder	Perform a high-order refinement after low-order convergence. The Multi-Interval Chebyshev polynomial spectral algorithm is used. This parameter is only valid for shooting. Possible values are no and yes.
53	psaratio=1	Ratio used to compute high-order polynomial spectral accuracy from Newton tolerance. This parameter is only valid for shooting.
54	maxorder	The maximum order of the Chebyshev polynomials used in waveform approximation. Possible values are from 2 to 16. Default value is 16 for driven circuits and 12 for autonomous circuits. This parameter is valid only for shooting.
55	fullpssvec	Use the full vector containing solutions at all PSS time steps in the linear solver. The default is derived from the size of the equation and the property of the PSS time steps. This parameter is valid only for shooting. Possible values are no and yes.
56	fdharms=10	Number of harmonics considered for distributed (frequency-domain) components, such as nport, delay, mtline, and delayed controlled sources. This parameter is valid only for shooting and for those components for which the Fmax parameter of neither model nor instance is set.

Harmonic Balance parameters

57	harmonicbalance=no	Use Harmonic Balance engine instead of time-domain shooting. Possible values are no and yes.
58	flexbalance=no	Same parameter as harmonicbalance. Possible values are no and yes.
59	pinnode	Node to pin during autonomous HB simulation.
60	pinnodeminus	Second node to pin during autonomous HB simulation. Needed only when differential nodes exist in oscillator.
61	pinnoderank	Harmonic rank to pin during autonomous HB simulation.
62	pinnodemag	This parameter gives an estimate of the magnitude of the pin node voltage. Default value is 0.01.

Analysis Statements

63	oversamplefactor=1	Oversample device evaluations.
64	oversample=[]	Array of oversample factors for each tone. This parameter overrides oversamplefactor.
65	oscmethod	Osc Newton method for autonomous HB. Possible values are onetier and twotier.
66	hbhomotopy=tone	Name of Harmonic Balance homotopy selection methods. Possible values are tstab, source, gsweep, tone, inctone, and aggregation.
67	sweepic=none	IC extrapolation method in sweep HB analysis. Possible values are none, linear, and log.
68	gstart=1.e-7	Start conductance for hbhomotopy of gsweep.
69	gstop=1.e-12	Stop conductance for hbhomotopy of gsweep.
70	glog=5	Number of steps, log sweep for hbhomotopy of gsweep.
71	backtracking=yes	This parameter is used to activate the back tracking utility of Newton's Method. Default is yes . Possible values are no, yes , and forced.
72	excludeconvgwithBK =yes	Possible values are no and yes.
73	krylov_size=10	The minimum iteration count of the linear matrix solver used in HB large-signal analysis. After reaching krylov_size iterations, the iteration is forced to terminate because of poor rate of convergence. Increase krylov_size if the simulation reports insufficient norm reduction errors in GMRES.
74	hbprecond_solver=b asicsolver	Choose a linear solver for the GMRES preconditioner. Possible values are basicsolver, blocksolver, autoset, blockdense, and blocksolver2.
75	lowmem=0	Harmonic balance low memory mode; Possible values are $0, 1$, or number (>=10). The default value is 0 , it indicates that the low memory mode is turned off; if 1 is set, the standard low memory mode is turned on; If a number greater that or equal to 10 is set, Spectre interprets the value as memory requested in Gigabytes.

Analysis Statements

Annotation parameters

76	annotate=sweep	Degree of annotation. Possible values are no, title, sweep, status, estimated, steps, iters, detailed, rejects, alliters, detailed_hb, and internal_hb.
77	annotateic=no	Degree of annotation for initial condition. Possible values are no, title, sweep, status, estimated, steps, iters, detailed, rejects, and alliters.
78	title	Analysis title.

Newton parameters

79	maxiters=5	Maximum number of iterations per time step.
80	restart=no	Restart the DC/PSS solution if set to yes; if set to no, reuse the previous solution as an initial guess; if set to firstonly, restart if it is first point of sweep (only supported in HB). The default value is no for HB and yes for shooting. Possible values are no, yes, and firstonly.

Circuit age

81	circuitage	(Years)	Stress time. Age of the circuit used to simulate hot-
			electron degradation of MOSFET and BSIM circuits.

Tstab save/restart parameters

82	saveperiod	Save the tran analysis periodically on the simulation time.
83	saveperiodhistory= no	Maintains the history of saved files. If yes , stores all the saved files. Possible values are no and yes .

Analysis Statements

84	saveclock (s)	Save the tran analysis periodically on the wall clock time. The default is 1800s for Spectre. This parameter is disabled in the Spectre APS mode by default.
85	savetime=[]	Save the analysis states into files on the specified time points.
86	savefile	Save the analysis states into the specified file.
87	recover	Specify the file to be restored.

Oscillator PPV parameters

88	ppv=no	If set to yes , save the oscillators' perturbation projection vector (PPV) representing the oscillators' phase
		sensitivity to perturbations in the voltage or current at the nodes of the oscillator. Possible values are no and yes.

Compression parameters

89	xdbcompression="no"	Sets the automatic gain compression analysis. In automatic gain compression analysis, Spectre automatically sweeps the input excitation until the gain, as defined by the analysis parameter xdbgain, compresses by the amount specified by the analysis parameter xdblevel. In gain compression analysis, Spectre outputs the hb solution at the calculated compression point only. Dependent analyses, such as hbnoise and hbac, are supported and calculated about the calculated compression level. Auxiliary output includes the gain and voltage/power compression curves. These outputs are available for analysis and post-processing in ADE. The possible values are yes and no. Default is no.
90	xdblevel=[]	Sets the gain compression level for compression analysis. The reference point for gain compression is the small-signal gain of the circuits, or as specified by the analysis parameter xdbref. Default is 1.

Analysis Statements

91	xdbgain="power"	Chooses between the voltage gain or transducer power gain as the target for compression point calculation. When $xdbgain=power$, the gain is defined as $G(dB) = Pload(dBm) - Pavailable(dBm)$. When $xdbgain=voltage$, the gain is defined as $G(dB) = dB20(Vload / Vsource)$. In both cases, Spectre sweeps the excitation source until $xdbref - G = xdblevel$, where the analysis parameter $xdbref$ defines the reference level for compression calculation. Possible values are power and $yoltage$. Default is power.
92	xdbref="linear"	Sets the reference point for gain compression calculations. When xdbref=linear, spectre uses the small-signal gain as the reference. When xdbref=max, spectre uses the maximum observed gain as the reference. Possible values are linear and max. Default is linear.
93	xdbsource	The instance name of the excitation source, which is swept automatically to reach the compression level. When xdbgain=power, the excitation source must be a port instance. When xdbgain=voltage, the excitation source must be a vsource instance.
94	xdbload	The instance name of the load termination. When xdbgain is power, xdbload can be a port, a resistor, or a current probe.
95	xdbnodep	The output terminals for voltage gain calculation when xdbgain=voltage. If either is left unspecified, the terminal is assumed to be the global ground.
96	xdbnoden	The output terminals for voltage gain calculation when xdbgain=voltage. If either is left unspecified, the terminal is assumed to be the global ground.
97	xdbrefnode	The reference node when $xdbload$ is a current probe. The default is the ground node.
98	xdbharm=[]	The Integer array which specifies the harmonic indexes of the output voltage or power component.
99	xdbsteps=100	The maximum number of steps for the compression point search. The simulator terminates if $xdbsteps$ exceeds before the compression point is found. The default is 100.

Analysis Statements

100	xdbmax	The maximum input power (or voltage) for the compression point search. Default is 30 dBm when xdbgain=power and 2.0V when xdbgain=voltage.
101	xdbstart	The starting input power (or voltage) for the compression point search. Default is (xdbmax-70) dBm when xdbgain=power, and xdbmax/20000 when xdbgain=voltage.
102	xdbtol=0.01	Sets the tolerance for compression analysis. This tolerance is used in compression curve fitting and calculating the compression point.
103	xdbrapid="no"	Sets the automatic gain compression analysis in rapid mode. In this mode, Spectre does not trace the compression curve and calculates only the compression point.
104	xdbcpi	Sets the estimated input-referred compression point for rapid compression analysis.
105	backoff	The backoff point. If defined, an additional harmonic balance analysis is performed after the compression analysis is done. Default is 0 dBm when xdbgain=power, and 0 V when xdbgain=voltage.

Analysis Statements

Memory estimation parameters

106	memoryestimate="no	Sets the memory usage estimate for Harmonic Balance.
	п	If yes, a memory estimate is printed in the log file. You
		can use this memory estimate to plan the computing
		resources before submitting harmonic balance runs. In
		memory estimate mode, a short simulation is performed
		first, and the engine exits after printing the estimate in
		the log file without saving any results. If set to no, the
		simulation continues after the memory estimate is

printed. Memory estimation is not recommended for simulations that require less than 500MB approximately. For PSS analysis, memory estimate mode does not apply unless flexbalance=yes. Possible values are no and yes. memoryestimate=1 estimates the memory usage for large-signal analysis and memoryestimate=2 estimates both large-signal analysis and small-signal simulations.

Oscillator tuning mode parameters

107	tuneparam	When set, tuneparam enables the tuning mode oscillator analysis. In the tuning mode analysis, a circuit parameter is automatically varied to reach the oscillation frequency specified by the fundfreqs parameter. The tuning parameter can be a device instance parameter (as determined by the parameters tunedev) or a netlist parameter. This mode applies only to autonomous circuits (oscillators).
108	tunedev	Sets the instance name of a device whose parameter (identified by tuneparam) will be varied such that the circuit oscillates at the specified frequency. Applies only in tuning mode autonomous analysis. Tunedev must be used with tuneparam.
109	tunerange=[]	The tuning range of the parameter identified by tuneparam. Although tunerange is not required, it can aid in convergence, if set.
110	tunestep	Specify the step size between two adjacent discrete tuning points. Must be used with 'tunerange'.

Analysis Statements

111	tunelin	Specify the numbers of discrete tuning points. Must be used with 'tunerange'.
112	tunevalues=[]	Specify the values of discrete tuning points.

LSSP parameters

113	lsspports=[]	Specifies the list of ports on which the large-signal 2-port S-parameters are calculated.
114	lsspharms=[]	Specifies the output harmonic for large-signal S- parameter calculations. The input harmonic is defined by the frequency parameters on the input port instance.
115	lsspfile	Identifies the file name for large-signal S-parameter output.
116	lsspdatafmt="touch tone"	Sets the file format of the large-signal S-parameter output. Possible values are spectre and touchstone. Default is touchtone.
117	lsspdatatype="msgp hase"	Sets the data format or the large-signal S-parameter output. Possible values are realimag, magphase and phase. Default is magphase.

Dynamic parameters

118	param	Name of the parameter to be updated during pss/hb analysis (tstab stage). With param=paramName and param_vec=[t1 value1 t2 value2. valuen tn], paramName is set to value1 at t1 and value2 at t2, etc. Pss/hb analysis uses the last value in the param_vec(valuen) to find the steady state.
119	paramset	Name of the dynamic parameter set.
120	param_vec=[]	The time_value points to param=name.
121	param_file	The file that contains the time_value points to param=name.
122	sub	Name of the subcircuit instance parameter specified in param=name.

Analysis Statements

123	mod	Name of the device model parameter specified in paramename.
124	dev	Name of the device instance parameter specified in paramename.
125	param_step	Defines the frequency of updating the dynamic parameter values. If param_step=0, it updates the parameter value at a given time point.

The initial transient analysis provides a flexible mechanism to direct the circuit to a particular steady-state solution of interest, and to avoid undesired solutions. Another use of the initial transient simulation is to help in convergence by eliminating large but fast decaying modes that are present in many circuits. For example, in case of driven circuits, consider the reset signal in the figure below.

In the above figure, the initial transient analysis runs from tstart to tstop. If initial transient results are relevant, you can output them by setting saveinit to yes. The steady-state results are always computed for the specified period, from tinit to tstop. By default, tstart and tstab are set to zero, while tinit, tonset and tstop are always automatically generated.

It happens in some circuits that the linearity of the relationship between the initial and final state depends on when the shooting or HB begins. Conceptually, when shooting or HB begins should not matter, as long as it is after the time when the stimuli have become periodic, because the periodic response repeats endlessly. However, in practice, starting at a good point can improve the convergence, and starting at a bad point can degrade the convergence and slow down the analysis. In general, it is best to try to avoid starting the shooting interval at a point where the circuit is undergoing strong nonlinear behavior. For example, when shooting is used to simulate switch-capacitor filters, it is best if tinit falls at the beginning of a clock transition, preferably a transition that follows a relatively long period of settling. If instead tinit occurred during a clock transition or soon after one, it is likely that the opamps will undergo slew-rate limiting at the start of the shooting interval, which will slow convergence. Switching mixers follow similar rules.

Analysis Statements

When PSS analysis simulates oscillators, either transient or linear initialization is performed to obtain an initial guess of the steady-state solution and the oscillating frequency. Two initialization methods are implemented based on transient and linear analysis, respectively. When oscic=default is specified, transients initialization is used and the length of the transient is specified by tstab. It is necessary to start the oscillator by using initial conditions, or by using a brief impulsive stimulus, just as you would if you were simulating the turn-on transient of the oscillator using transient analysis. Initial conditions would be provided for the components of the oscillators' resonator. If an impulsive stimulus is used, it should be applied so as to couple strongly into the oscillatory mode of the circuit, and poorly into any other longlasting modes, such as those associated with bias circuitry. The Designers Guide to Spice and Spectre [K. S. Kundert, Kluwer Academic Publishers, 1995] describes techniques for starting oscillators in some depth. When oscic=default is specified, oscic=lin, linear initialization is used. In this method, both oscillation frequency and amplitude are estimated based on linear analysis at DC solution. No impulsive stimulus or initial conditions are needed. Linear initialization is suitable for linear type of oscillators, such as LC and crystal oscillators.

Note: tstab transient is still performed after linear initialization though it can be significantly shortened (or skipped in HB). Either way, specifying a non-zero tstab parameter can improve convergence.

By default, only the time-domain results are computed in shooting. If you specify either harms or harmsvec, or set outputtype to freq or all, the frequency-domain results will also be computed. If frequency-domain results are requested, but the desired harmonics are not specified, its default value is 9. The time-domain output waveform generation can be inhibited by setting outputtype to freq.

The accuracy of the results does not depend on the number of harmonics that are requested, but only on the accuracy parameters, which are set in the same fashion as in the transient analysis. Besides a few new parameters, like <code>steadyratio</code> and <code>maxacfreq</code>, all the others parameters work in PSS analysis in the same manner as they work on transient analysis. For HB, besides <code>reltol</code>, <code>abstol</code>, <code>steadyratio</code> and <code>lteratio</code>, the number of harmonics has the most impact on the accuracy of simulation results. When too few harmonics are used, an error occurs due to the aliasing effect. To obtain accurate results, <code>harms</code> should be big enough to cover the signal bandwidth.

Several parameters determine the accuracy of the PSS analysis. reltol and abstol control the accuracy of the discretized equation solution. These parameters determine how well charge is conserved and how accurately steady-state or equilibrium points are computed. You can set the integration errors in the computation of the circuit dynamics (such as time constants), relative to reltol and abstol, by setting the lteratio parameter.

For shooting, the steadyratio parameter adjusts the maximum allowed mismatch in node voltages or current branches from the beginning to the end of the steady-state period. For HB,

Analysis Statements

the steadyratio parameter adjusts the maximum allowed error in the node voltages or in the current branches of the steady-state. This value is multiplied by lteratio and reltol to determine the convergence criterion. The relative convergence norm is printed along with the actual mismatch value at the end of each iteration, indicating the progress of the steady-state iteration.

For shooting, the parameter maxperiods controls the maximum number of shooting iterations for PSS analysis. Its default value is set to 20 for driven PSS and 50 for autonomous PSS. For HB, the parameter maxperiods controls the maximum number of HB iterations for both driven and autonomous HB analysis. Its default value is set to 100.

The finitediff parameter allows the use of finite difference (FD) after shooting. Usually this eliminates the above mismatch in node voltages or current branches. It can also refine the grid of time steps. In some cases, numerical error of the linear solver still introduces a mismatch. You can set steadyratio to a smaller value to activate a tighter tolerance for the iterative linear solver. If finitediff is set to no, FD method is turned off. If it is set to yes, PSS applies FD method and tries to improve the beginning small time steps, if necessary. If it is set to refine, PSS applies FD method and tries to refine the time steps. When the simulation uses second-order method, uniform second order gear is used. finitediff is automatically changed from no to yes when readpss and writepss are specified to reuse PSS results.

The maxacfreq parameter is used to automatically adjust the maxstep and reduce errors due to aliasing in frequency-domain results. By default, the maxacfreq is set to four times the frequency of the largest requested harmonic, but is never set to less than forty times the fundamental.

The parameter relref determines how the relative error is treated. The relref values are as follows:

- relref=pointlocal: Compares the relative errors in quantities at each node to that node alone.
- relref=alllocal: Compares the relative errors at each node to the largest values found for that node alone for all past time.
- relref=sigglobal: Compares relative errors in each circuit signal to the maximum for all signals at any previous point in time.
- relref=allglobal: Same as relref=sigglobal, except that it also compares the residues (KCL error) for each node to the maximum of each node's past history.

The errpreset parameter lets you adjust the simulator parameters to fit your needs quickly. In most cases, it should also be the only parameter you need to adjust.

Guidelines for using errpreset in driven circuits in shooting are as follows:

Analysis Statements

- If the circuit contains only one periodic tone and you are only interested in obtaining the periodic operating point, set errpreset to liberal. This setting provides reasonably accurate result and the fastest simulation speed.
- If the circuit contains more than one periodic tone and you are interested in intermodulation results, set errpreset to moderate. This setting provides accurate results.
- If you want a low noise floor in your simulation result and accuracy is your main interest, set errpreset to conservative.

The effect of errpreset on other parameters for driven circuits is shown in the following table.

Table 3-2 Parameter defaults and estimated numerical noise floor in simulation result as a function of errpreset

errpreset	reltol	relref	method	lteratio	steadyratio	maxstep
liberal	1e-3	sigglobal	traponly	3.5	0.001	period/50
moderate	1e-3	alllocal	gear2only	3.5	0.001	period/200
conservative	1e-4	alllocal	gear2only	*	0.01	period/200

^{*:} Iteratio=10.0 for conservative errpreset. Only if user-specified reltol <= 1e-4 * 10.0/3.5, Iteratio is set to 3.5.

The new errpreset settings include a new default reltol that is the upper limit. An increase of reltol above the default is ignored by the simulator. You can decrease this value in the options statement. The only way to increase reltol is to relax errpreset.

Estimated numerical noise floor for a weak non-linear circuit is -70dB for liberal, -90dB for moderate, and -120dB for conservative settings. For a linear circuit, the noise floor is even lower.Multi-interval Chebyshev (MIC) is activated when you explicitly set highorder=yes, which drops numerical noise floor by at least 30dB. MIC falls back to the original method if it encounters difficulty converging. You can tighten psaratio to further drop numerical noise floor.

Spectre sets the value of maxstep so that it cannot be larger than the value given in the table. Except for reltol and maxstep, errpreset does not change the value of parameters that you explicitly set. The actual values used for the PSS analysis are given in the log file. If errpreset is not specified in the netlist, liberal settings is used. For HB, only reltol is affected by errpreset and the effect is the same as that in shooting. However, lteratio remains 3.5 and steadyratio remains 1 with all values of errpreset.

Analysis Statements

Guidelines for using errpreset in autonomous circuits are as follows:

- If you want a fast simulation with reasonable accuracy, you can set errpreset to liberal.
- If you have some concern for accuracy, you can set errpreset to moderate.
- If accuracy is your main interest, you can set errpreset to conservative.

The effect of errpreset on other parameters for autonomous circuits is shown in the following table.

Table 3-3 Parameter defaults as a function of errpreset

errpreset	reltol	relref	method	lteratio	steadyratio	maxstep
liberal	1e-3	sigglobal	traponly	3.5	0.001	period/50
moderate	1e-4	alllocal	gear2only	3.5	0.01	period/200
conservative	1e-5	alllocal	gear2only	*	0.1	period/400

^{*:} Iteratio=10.0 for conservative errpreset by default. Only if user-specified reltol <= 1e-5*10.0/3.5, Iteratio is set to 3.5.

The value of reltol can be decreased from default in the options statement. The only way to increase reltol is to relax errpreset. Spectre sets the value of maxstep so that it cannot be larger than the value given in the table. Except for reltol and maxstep, errpreset does not change the value of any parameters you have explicitly set. The actual values used for the PSS analysis are given in the log file. If errpreset is not specified in the netlist, liberal settings will be used. Multi-interval Chebyshev (MIC) is activated when you explicitly set highorder=yes, which drops numerical noise floor by at least 30dB. MIC falls back to the original method if it encounters difficulty in converging. You can tighten psaratio to further drop numerical noise floor.

A long stabilization (by specifying a large tstab) can help with PSS convergence. However, it can slow down simulation. By default, in the stabilization stage, the following settings are used: reltol=1e-3, maxstep=period/25, relref=sigglobal, and method=traponly. These settings are overwritten when maxstep, relref, or tstabmethod are specified explicitly in pss statement, or reltol is specified explicitly in options statement.

If the circuit you are simulating has infinitely fast transitions (for example, a circuit that contains nodes with no capacitance), Spectre might have convergence problems. To avoid this, you must prevent the circuit from responding instantaneously. You can accomplish this

Analysis Statements

by setting cmin, the minimum capacitance to ground at each node, to a physically reasonable nonzero value. This often significantly improves Spectre convergence.

You can specify the initial condition for the transient analysis by using the ic statement or the ic parameter on the capacitors and inductors. If you do not specify the initial condition, the DC solution is used as the initial condition. The ic parameter on the transient analysis controls the interaction of various methods of setting the initial conditions. The effects of individual settings are as follows:

- ic=dc: All initial conditions are ignored, and the DC solution is used.
- ic=node: The ic statements are used, and the ic parameter on the capacitors and inductors is ignored.
- ic=dev: The ic parameters on the capacitors and inductors are used, and the ic statements are ignored.
- ic=all: Both ic statements and ic parameters are used, and the ic parameters override the ic statements.

If you specify an initial condition file with the readic parameter, initial conditions from the file are used, and any ic statements are ignored.

After you specify the initial conditions, Spectre computes the actual initial state of the circuit by performing a DC analysis. During this analysis, Spectre forces the initial conditions on nodes by using a voltage source in series with a resistor whose resistance is rforce (see options).

With the ic statement, it is possible to specify an inconsistent initial condition (one that cannot be sustained by the reactive elements). Examples of inconsistent initial conditions include setting the voltage on a node with no path of capacitors to ground, or setting the current through a branch that is not an inductor. If you initialize Spectre inconsistently, its solution jumps, that is, it changes instantly at the beginning of the simulation interval. You should avoid such changes because Spectre can have convergence problems while trying to make the jump.

You can skip DC analysis entirely by using the parameter skipdc. If DC analysis is skipped, the initial solution is trivial or is given in the file that you specified by using the readic parameter, or if the readic parameter is not specified, by the values specified on the ic statements. Device-based initial conditions are not used for skipdc. Nodes that you do not specify with the ic file or ic statements start at zero. You should not use this parameter unless you are generating a nodeset file for circuits that have trouble in the DC solution; it usually takes longer to follow the initial transient spikes that occur when the DC analysis is skipped than it takes to find the real DC solution. The skipdc parameter might also cause convergence problems in the transient analysis.

Analysis Statements

The possible settings of parameter skipdc and their meanings are as follows:

skipdc=no: Initial solution is calculated using normal DC analysis (default).

skipdc=yes: Initial solution is given in the file specified by the readic parameter or the values specified on the ic statements.

skipdc=sigrampup: Independent source values start at 0 and ramp up to their initial values in the first phase of the simulation. The waveform production in the time-varying independent source is enabled after the rampup phase. The rampup simulation is from tstart to time=0 s, and the main simulation is from time=0 s to tstab. If the tstart parameter is not specified, the default tstart time is set to -0.1*tstab.

Nodesets help find the DC or the initial transient solution. You can specify nodesets in the circuit description file with nodeset statements or in a separate file by using the readns parameter. When nodesets are specified, Spectre computes an initial guess of the solution by performing a DC analysis, while forcing the specified values on to nodes by using a voltage source in series with a resistor whose resistance is rforce. Spectre then removes these voltage sources and resistors and computes the required solution from this initial guess.

Nodesets have two important uses. First, if a circuit has two or more solutions, nodesets can bias the simulator towards computing the required solution. Second, they are a convergence aid. By estimating the solution of the largest possible number of nodes, you might be able to eliminate a convergence problem or dramatically speed convergence.

When you simulate the same circuit multiple times, it is recommended that you use both write and readns parameters and assign the same file name to both parameters. DC analysis then converges quickly even if the circuit has changed since the last simulation, and the nodeset file is automatically updated.

Nodesets and initial conditions have similar implementation, but produce different effects. Initial conditions define the solution, whereas nodesets only influence it. When you simulate a circuit with a transient analysis, Spectre forms and solves a set of differential equations. Because differential equations have an infinite number of solutions, a complete set of initial conditions must be specified to identify the required solution. Any initial conditions that you do not specify are computed by the simulator to be consistent. The transient waveforms then start from initial conditions. Nodesets are usually used as a convergence aid and do not affect the final results. However, in a circuit with more than one solution, such as a latch, nodesets bias the simulator towards finding the solution closest to the nodeset values.

The method parameter specifies the integration method. The possible settings and their meanings are as follows:

method=euler: Backward-Euler is used exclusively.

Analysis Statements

method=traponly: Trapezoidal rule is used almost exclusively.

method=trap: Backward-Euler and the trapezoidal rule are used.

method=gear2only: Gear's second-order backward-difference method is used almost exclusively.

method=gear2: Backward-Euler and second-order Gear are used.

The trapezoidal rule is usually the most efficient when you want high accuracy. This method can exhibit point-to-point ringing, but you can control this by tightening the error tolerances. For this reason, though, if you choose loose tolerances to get a quick answer, the backward-Euler or second-order Gear will probably give better results than the trapezoidal rule. Second-order Gear and backward-Euler can make systems appear more stable than they are. This effect is less pronounced with second-order Gear or when you request high accuracy.

Spectre provides two methods for reducing the number of output data points saved: strobing, based on the simulation time, and skipping time points, which saves only every N'th point.

The parameters strobeperiod and strobedelay control the strobing method. strobeperiod sets the interval between the points that you want to save, and strobedelay sets the offset within the period relative to skipstart. The simulator forces a time step on each point to be saved, so that the data is computed, and not interpolated.

The skipping method is controlled by skipcount. If this is set to N, only every N'th point is saved.

The parameters skipstart and skipstop apply to both data reduction methods. Before skipstart and after skipstop, Spectre saves all computed data.

With parameter hbhomotopy, you can specify harmonic balance homotopy selection methods. The possible values of parameter hbhomotopy and their meanings are as follows:

hbhomotopy=tstab: Simulator runs a transient analysis and generates an initial guess for harmonic balance analysis; it is recommended for nonlinear circuits or circuits with frequency dividers.

hbhomotopy=source: For driven circuit, the simulator ignores tstab and accordingly increases the source power level; for oscillators, the simulator accordingly adjusts the probe magnitude until the probe has no effect on the oscillators. It is recommended for strongly nonlinear or high Q circuits

hbhomotopy=tone: This method is valid only for multi-tone circuit. The simulator first solves a single-tone circuit by turning off all the tones, except the first one, and then solves the multi-

Analysis Statements

tone circuit by restoring all the tones and using the single-tone solution as its initial guess; it is recommended for multi-tone simulation with a strong first tone.

hbhomotopy=inctone: Simulator first solves a single tone, then turns on moderate tones incrementally till all tones are enabled. It is recommended for circuits with one strong large tone.

hbhomotopy=gsweep: A resistor, whose conductance is g, is connected with each node, and the sweep of g is controlled by gstart, gstop, and glog. It is recommended for circuits containing high-impedance or quasi-floating nodes.

Parameter Index

In the following index, the number corresponding to each parameter name indicates where to find the description of that parameter:

annotate 76	krylov_size 73	pinnode 59	tstabenvlp 10
annotateic 77	lowmem 75	pinnodemag 62	tstabmethod 40
autofund 3	lsspdatafmt 116	pinnodeminus 60	tstart 9
autoharms 5	lsspdatatype 117	pinnoderank 61	tunedev 108
autosteady 8	lsspfile 115	ppv 88	tunelin 111
autotstab 7	lsspharms 114	psaratio 53	tuneparam 107
backoff 105	lsspports 113	readic 17	tunerange 109
backtracking 71	lteminstep 44	readns 20	tunestep 110
checkpss 38	lteratio 43	readpss 37	tunevalues 112
circuitage 81	max_innerkrylov_s ize 47	recover 87	useprevic 19
cmin 21	max_outerkrylov_s ize 48	relref 42	write 33
dev 124	maxacfreq 13	restart 80	writefinal 34

Analysis Statements

envlpname 11	maxiters 79	save 24	writepss 36
errpreset 41	maxorder 54	saveclock 84	xdbcompression 89
excludeconvgwithB K 72	maxperiods 46	savefile 86	xdbcpi 104
fdharms 56	maxstep 12	saveinit 32	xdbgain 91
finitediff 51	memoryestimate	saveperiod 82	xdbharm 98
flexbalance 58	method 39	saveperiodhistory 83	xdblevel 90
fullpssvec 55	mod 123	savetime 85	xdbload 94
fund 2	nestlvl 25	skipcount 29	xdbmax 100
glog 70	oppoint 26	skipdc 16	xdbnoden 96
gstart 68	oscic 18	skipstart 27	xdbnodep 95
gstop 69	oscmethod 65	skipstop 28	xdbrapid 103
harmonicbalance 57	outputtype 23	steadyratio 45	xdbref 92
harms 4	oversample 64	step 14	xdbrefnode 97
harmsvec 22	oversamplefactor	strobedelay 31	xdbsource 93
hbhomotopy 66	param 118	strobeperiod 30	xdbstart 101
hbprecond_solver	param_file 121	sub 122	xdbsteps 99
highorder 52	param_step 125	swapfile 35	xdbtol 102
ic 15	param_vec 120	sweepic 67	

Analysis Statements

inexactNewton	50	paramset	119	title	78
itres 49		period 1		tstab	6

Analysis Statements

Periodic STB Analysis (pstb)

Description

The periodic STB (PSTB) analysis is used to evaluate the local stability of a periodically varying feedback circuit. It is a small-signal analysis like STB analysis, except that the circuit is first linearized about a periodically varying operating point as opposed to a simple DC operating point. Linearizing about a periodically time-varying operating point allows the stability evaluation to include the effect of the time-varying operating point.

Evaluating the stability of a periodically varying circuit is a two-step process. In the first step, the small stimulus is ignored and PSS analysis is used to compute the periodic steady-state response of the circuit to a possibly large periodic stimulus. As part of the PSS analysis, the periodically time-varying representation of the circuit is computed and saved for later use. In the second step, a probe is used to compute the loop gain of the zero sideband. The local stability can be evaluated using gain margin, phase margin, or a Nyquist plot of the loop gain. To perform PSTB analysis, a probe instance must be specified as probe parameter.

The loop-based algorithm requires that a probe be placed on the feedback loop to identify and characterize the particular loop of interest. The introduction of the probe component should not change any of the circuit characteristics. For the time-varying property of the circuit, the loop gain at different places can be different, but all values can be used to evaluate the stability. The loop-based algorithm provides stability information for single-loop circuits and for multi-loop circuits in which a probe component can be placed on a critical wire to break all loops. For a typical multi-loop circuit, such a critical wire may not be available. The loop-based algorithm can be used only on individual feedback loops to ensure that they are stable.

The device based algorithm requires the probe be a gain instant, such as a bjt transistor or a mos transistor. The device-based algorithm evaluates the loop gain around the probe, which can be involved in multi-loops.

Unlike other analyses in Spectre, this analysis can only sweep frequency.

For information on how to run PSTB analysis from ADE, see <u>Periodic Stability Analysis</u> (<u>PSTB</u>) in the <u>Spectre Circuit Simulator and Accelerated Parallel Siumulator RF Analysis User Guide</u>.

Definition

Name pstb parameter=value ...

Analysis Statements

Parameters

Sweep interval parameters

Probe parameters

11	probe	Probe instance around which the loop gain is calculated.
12	localgnd	Node name of local ground. If not specified, the probe is referenced to global ground.

Output parameters

13	save	Signals to output. Possible values are all, lvl, allpub, lvlpub, selected, none, and nooutput.
14	nestlvl	Levels of subcircuits to output.

Analysis Statements

Convergence parameters

15	tolerance	Relative tolerance for shooting-based linear solver. The default value is 1.0e-9.
16	relativeTol	Relative tolerance for harmonic balance-based linear solver. The default value is 1.0 e -2.
17	gear_order=2	Gear order used for small-signal integration.
18	solver=turbo	Solver type. Possible values are std, turbo, std_hh, and turbo_hh.
19	oscsolver=turbo	Oscillator solver type. It is recommended that you use ira for huge circuits. Possible values are std, turbo, ira, and direct.
20	resgmrescycle=shor t	Restarts GMRES cycle. Possible values are instant, short, long, recycleinstant, recycleshort, custom, and recyclelong.
21	hbprecond_solver=a utoset	Select a linear solver for the GMRES preconditioner. Default is autoset. With autoset, the simulator will automatically select the appropriate preconditioner. The preconditioner affects the rate of convergence of the linear matrix solver used in periodic small-signal analysis. When autoset is selected, the simulator may decide to switch to a different preconditioner after the analysis begins. When that happens, the simulator may issue a warning instructing you to choose a different preconditioner during subsequent runs. Although not required, choosing a different preconditioner according to the simulator's instructions may speed up subsequent analyses. Possible values are basicsolver, blocksolver, autoset, blockdense, and blocksolver2.
22	lowmem=0	Harmonic balance low memory mode. Possible values are $0, 1$, or number (>=10). The default value is 0 , it indicates that the low memory mode is turned off; if 1 is set, the standard low memory mode is turned on; If a number greater that or equal to 10 is set, Spectre interprets the value as memory requested in Gigabytes.

Analysis Statements

23	krylov_size=200	The maximum iteration count of the linear matrix solver used in periodic small-signal analysis. After reaching 1.25*krylov_size iterations, the iteration is forced to terminate because of the poor rate of convergence. Increase krylov_size if the simulation reports insufficient norm reduction errors in GMRES.
24	osc_version=dts	Specifies the method to use in small signal analysis for autonomous circuits. Possible values are floquet, augmented, and dts.
25	osc_accuracy=1	Accuracy control in small signal analysis for autonomous circuits, when osc_version=dts. The higher this value, the more iterations GMRES solver will take. Maximum effective value is 5.

Annotation parameters

26	annotate=sweep	Degree of annotation. Possible values are no, title, sweep, status, steps, and detailed_hb.
27	title	Analysis title.

You can define sweep limits by specifying the end points or by providing the center value and span of the sweep. Steps can be linear or logarithmic, and you can specify the number of steps or the size of each step. In addition, you can specify a step size parameter (step, lin, log, or dec) to determine whether the sweep is linear or logarithmic. If you do not specify a step size parameter, the sweep is linear when the ratio of stop to start values is less than 10 and logarithmic when this ratio is 10 or greater. Alternatively, you may specify the values that the sweep parameter should take by using the values parameter. If you specify both a specific set of values and a set specified using a sweep range, the two sets are merged and collated before being used. All frequencies are in Hertz.

Parameter Index

In the following index, the number corresponding to each parameter name indicates where to find the description of that parameter:

annotate 26 localgnd 12 probe 11 step 5

Analysis Statements

center 3	log 8	relativeTol 16	stop 2
dec 7	lowmem 22	resgmrescycle 20	title 27
gear_order 17	nestlvl 14	save 13	tolerance 15
hbprecond_solver	osc_accuracy 25	solver 18	values 9
krylov_size 23	osc_version 24	span 4	valuesfile 10
lin 6	oscsolver 19	start 1	

Periodic Transfer Function Analysis (pxf)

Description

A conventional transfer function analysis computes the transfer function from every source in the circuit to a single output. Unlike a conventional AC analysis that computes the response from a single stimulus to every node in the circuit, the Periodic Transfer Function or PXF analysis computes the transfer functions from any source at any frequency to a single output at a single frequency. Thus, like PAC analysis, PXF analysis includes frequency conversion effects.

The PXF analysis directly computes such useful quantities as conversion efficiency (transfer function from input to output at required frequency), image and sideband rejection (input to output at undesired frequency), and LO feed-through and power supply rejection (undesired input to output at all frequencies).

As with a PAC, PSP, and PNoise analyses, a PXF analysis must follow a PSS analysis.

Unlike other analyses in Spectre, this analysis can only sweep frequency.

For information on how to run PXF analysis from ADE, see <u>Periodic Transfer Function</u>
<u>Analysis (PXF)</u> in the <u>Spectre Circuit Simulator and Accelerated Parallel Siumulator</u>
<u>RF Analysis User Guide.</u>

Definition

```
Name [p] [n] ... pxf parameter=value ...
```

The optional terminals (p and n) specify the output of the circuit. If you do not specify the terminals, you must specify the output with a probe component.

Parameters

Sweep interval parameters

1	start=0	Start sweep limit.	_
2	stop	Stop sweep limit.	
3	center	Center of sweep.	

Analysis Statements

4	span=0	Sweep limit span.
5	step	Step size, linear sweep.
6	lin=50	Number of steps, linear sweep.
7	dec	Points per decade.
8	log=50	Number of steps, log sweep.
9	values=[]	Array of sweep values.
10	valuesfile	Name of the file containing the sweep values.
11	sweeptype=unspecified	Specifies if the sweep frequency range is the absolute frequency of input or if it is relative to the port harmonics. When the unspecified value is used, Spectre RF sweeps using relative when autonomous simulation is performed or when the analysis is PSP; for other cases Spectre RF sweeps the absolute value of the input. Possible values are absolute, relative, and unspecified.
12	relharmnum=1	Harmonic to which relative frequency sweep should be referenced.

Probe parameters

13	probe	Compute every transfer function to this probe
		component.

Sampled analysis parameters

14	ptvtype=timeaverag ed	Specifies if the PTV analysis will be traditional or sampled under certain conditions. Possible values are timeaveraged and sampled.
15	sampleprobe	The crossing event at this port triggers the sampled small signal computation.
16	thresholdvalue=0	Sampled measurement is done when the signal crosses this value.

Analysis Statements

17	crossingdirection= all	Specifies the transitions for which sampling must be done. Possible values are all, rise, fall, and ignore.
18	maxsamples=16	Maximum number of sampled events to be processed during the sampled analysis.
19	<pre>extrasampletimepoi nts=[]</pre>	
		Additional time points for sampled PTV analysis.
20	sampleratio=1	The multiple times of fund frequency that sample frequency divides into.

Jitter parameters

21	externalsources	Pairs of terminals or nodes corresponding to external jitter sources.
22	extcorrsources1	Pairs of terminals and nodes for the first group of correlated external jitter sources.
23	extcorrsources2	Pairs of terminals and nodes for the second group of correlated external jitter sources.
24	deterministicsourc es	Pairs of terminals or nodes corresponding to deterministic jitter sources.
25	determsourcesfreqs	Frequency list corresponding to the external deterministic jitter sources.

Output parameters

26	stimuli=sources	Stimuli used for pxf analysis. Possible values are sources and nodes_and_terminals.
27	sidebands=[]	Array of relevant sidebands for the analysis.

Analysis Statements

28	maxsideband=7	An alternative to the sidebands array specification, which automatically generates the array: [- maxsideband 0 +maxsideband]. For shooting analysis, the default value is 7. For HB small signal analysis, the default value is the harms/maxharms setting in the HB large signal analysis. It is ignored in HB small signal when it is larger than the harms/maxharms value of large signal.
29	freqaxis	Specifies whether the results should be printed as per the input frequency, the output frequency, or the absolute value of the input frequency. Default is absin. Possible values are absin, in, and out.
30	save	Signals to output. Possible values are all, lvl, allpub, lvlpub, selected, none, and nooutput.
31	nestlvl	Levels of subcircuits to output.

Convergence parameters

32	tolerance	Tolerance for the linear solver. The default value is 1.0e-9 for shooting-based solver, and 1.0e-4 for harmonic balance-based solver.
33	relativeTol	Relative tolerance for harmonic balance-based linear solver. The default value is 1.0 e -2.
34	gear_order=2	Gear order used for small-signal integration.
35	solver=turbo	Solver type. Possible values are std, turbo, std_hh, and turbo_hh.
36	oscsolver=turbo	Oscillator solver type. It is recommended that you use ira for huge circuits. Possible values are std, turbo, ira, and direct.
37	resgmrescycle=shor t	Restarts GMRES cycle. Possible values are instant, short, long, recycleinstant, recycleshort, custom, and recyclelong.

Analysis Statements

38	hbprecond_solver=a utoset	Select a linear solver for the GMRES preconditioner. Default is autoset. With autoset, the simulator will automatically select the appropriate preconditioner. The preconditioner affects the rate of convergence of the linear matrix solver used in periodic small-signal analysis. When autoset is selected, the simulator may decide to switch to a different preconditioner after the analysis begins. When that happens, the simulator may issue a warning instructing you to choose a different preconditioner during subsequent runs. Although not required, choosing a different preconditioner according to the simulator's instructions may speed up subsequent analyses. Possible values are basicsolver, blocksolver, autoset, blockdense, blocksolver2, and blocksolver2.
39	lowmem=0	Harmonic balance low memory mode. Possible values are $0, 1$, or number (>=10). The default value is 0 , it indicates that the low memory mode is turned off; if 1 is set, the standard low memory mode is turned on; If a number greater that or equal to 10 is set, Spectre interprets the value as memory requested in Gigabytes.
40	krylov_size=200	The maximum iteration count of the linear matrix solver used in periodic small-signal analysis. After reaching 1.25*krylov_size iterations, the iteration is forced to terminate because of the poor rate of convergence. Increase krylov_size if the simulation reports insufficient norm reduction errors in GMRES.
41	osc_version=dts	Specifies the method to use in small signal analysis for autonomous circuits. Possible values are floquet, augmented, and dts.
42	osc_accuracy=1	Accuracy control in small signal analysis for autonomous circuits, when osc_version=dts. The higher this value, the more iterations GMRES solver will take. Maximum effective value is 5.
43	freqdivide=1	Large signal frequency division. Used for oscillator circuit with divider when osc_version=dts for shooting engine.

Analysis Statements

Annotation parameters

44	annotate=sweep	Degree of annotation. Possible values are no, title, sweep, status, steps, and detailed_hb.
45	title	Analysis title.

Modulation conversion parameters

46	modulated=no	Compute transfer functions/conversion between modulated sources and outputs. Possible values are single, first, second, and no.
47	outmodharmnum=1	Harmonic for the PXF output modulation.
48	inmodharmvec=[]	Harmonic list for the PXF modulated sources.
49	moduppersideband=1	Index of the upper sideband included in the modulation of an output for PAC or an input for PXF.

The variable of interest at the output can be voltage or current, and its frequency is not constrained by the period of the large periodic solution. While sweeping the selected output frequency, you can select the periodic small-signal input frequencies of interest by setting either the maxsideband or the sidebands parameter. For a given set of n integer numbers representing the sidebands K1, K2, ... Kn, the input signal frequency at each sideband is computed as f(in) = f(out) + Ki * fund(pss), where, f(out) represents the (possibly swept) output signal frequency and fund(pss) represents the fundamental frequency used in the corresponding PSS analysis. Thus, when analyzing a down-converting mixer and sweeping the IF output frequency, Ki= +1 for the RF input represents the first upper-sideband, while Ki= -1 for the RF input represents the first lower-sideband. By setting the maxsideband value to Kmax, all 2 * Kmax + 1 sidebands from -Kmax to +Kmax are selected.

The number of requested sidebands does not change substantially the simulation time. However, the maxacfreq of the corresponding PSS analysis should be set to guarantee that I max{f(in)} I is less than maxacfreq; otherwise, the computed solution might be contaminated by aliasing effects. The PXF simulation is not executed for I f(out) I greater than maxacfreq. Diagnostic messages are printed for those extreme cases, indicating how maxacfreq should be set in the PSS analysis. In majority of simulations, however, this is not an issue, because maxacfreq is never allowed to be smaller than 40x the PSS fundamental.

Analysis Statements

With PXF, the frequency of the stimulus and of the response are usually different (this is an important area in which PXF differs from XF). The freqaxis parameter is used to specify whether the results should be output versus the input frequency (in), the output frequency (out), or the absolute value of the input frequency (absin).

You can specify the output with a pair of nodes or a probe component. Any component with two or more terminals can be a voltage probe. When there are more than two terminals, they are grouped in pairs, and you use the porty parameter to select the appropriate pair of terminals. Alternatively, you can specify a voltage to be the output by giving a pair of nodes on the PXF analysis statement.

Any component that naturally computes current as an internal variable can be a current probe. If the probe component computes more than one current, you use the portiparameter to select the appropriate current. It is an error to specify both porty and portiparameter is specified, the probe component provides a reasonable default.

The stimuli parameter specifies the inputs for the transfer functions. There are two choices. stimuli=sources indicates that the sources present in the circuit should be used. The xfmag parameters provided by the sources may be used to adjust the computed gain to compensate for gains or losses in a test fixture. One can limit the number of sources in hierarchical netlists by using the save and nestlvl parameters. stimuli=nodes_and_terminals indicates that all possible transfer functions should be computed.

This is useful when it is not known in advance which transfer functions are interesting. Transfer functions for nodes are computed assuming that a unit magnitude flow (current) source is connected from the node to ground. Transfer functions for terminals are computed assuming that a unit magnitude value (voltage) source is connected in series with the terminal. By default, the transfer functions from a small set of terminals are computed. If transfer functions from specific terminals are required, specify the terminals in the save statement. You must use the <code>:probe</code> modifier (for example, Rout:1:probe) or specify <code>useprobes=yes</code> on the options statement. If transfer functions from all terminals are required, specify <code>currents=all</code> and <code>useprobes=yes</code> on the options statement.

Modulated small signal measurements are possible by using the Analog Design Environment (ADE) environment. The modulated option for PXF and other modulated parameters are set by ADE. PXF analyses with this option produce results that could have limited use outside such an environment. Direct Plot is configured to analyze these results and combine several wave forms to measure AM and PM transfer function from single sideband or modulated stimuli to the specified output. For details, see Spectre RF User Guide.

You can define sweep limits by specifying the end points or by providing the center value and span of the sweep. Steps can be linear or logarithmic, and you can specify the number of steps or the size of each step. In addition, you can specify a step size parameter (step, lin,

Analysis Statements

log, or dec) to determine whether the sweep is linear or logarithmic. If you do not specify a step size parameter, the sweep is linear when the ratio of stop to start values is less than 10 and logarithmic when this ratio is 10 or greater. Alternatively, you may specify the values that the sweep parameter should take by using the values parameter. If you specify both a specific set of values and a set specified using a sweep range, the two sets are merged and collated before being used. All frequencies are in Hertz.

Parameter Index

In the following index, the number corresponding to each parameter name indicates where to find the description of that parameter:

annotate 44	hbprecond_solver	oscsolver 36	start 1
center 3	inmodharmvec 48	outmodharmnum 47	step 5
crossingdirection 17	krylov_size 40	probe 13	stimuli 26
dec 7	lin 6	ptvtype 14	stop 2
deterministicsour ces 24	log 8	relativeTol 33	sweeptype 11
determsourcesfreq s 25	lowmem 39	relharmnum 12	thresholdvalue 16
extcorrsources1	maxsamples 18	resgmrescycle 37	title 45
extcorrsources2	maxsideband 28	sampleprobe 15	tolerance 32
externalsources 21	modulated 46	sampleratio 20	values 9
extrasampletimepo ints 19	moduppersideband 49	save 30	valuesfile 10
freqaxis 29	nestlvl 31	sidebands 27	

Analysis Statements

freqdivide	43	osc_accuracy	42	solver	35
gear_order	34	osc_version	41	span 4	1

Analysis Statements

PZ Analysis (pz)

Description

The PZ analysis linearizes the circuit about the DC operating point and computes the poles and zeros of the linearized network. To compute zeros, you need to specify input sources and output voltages or currents. If no input or output is given, only poles are computed. If there are frequency-dependent components, poles and zeros are computed by approximating those components as equivalent conductances and capacitances evaluated at 1Hz. The PZ analysis uses the default direct solver (method=qz) for better accuracy. Performance is better on small-to-medium sized circuits. For larger circuits, a Krylov subspace iterative solver (method=arnoldi) can be used for better performance, but, with lesser accuracy.

Note: A frequency-dependent component means that the capacitance or conductance-equivalent representation of the component varies with the frequency. Examples are transmission lines or bjts with excess phases. A linear capacitor is not a frequency-dependent component.

Spectre can perform the analysis while sweeping a parameter. The parameter can be temperature, component instance parameter, component model parameter, or netlist parameter. If changing a parameter affects the DC operating point, the operating point is recomputed at each step. You can sweep the parameter temp or a netlist parameter by specifying the parameter name without a dev or mod parameter. After the analysis is complete, the modified parameter returns to its original value.

Pole-zero cancellation is performed when a neighboring pole-zero pair is located within absdiff distance. The distance is also determined relatively as reldiff times the magnitude of the pole or zero. Spectre uses the larger value of the two distances for cancellation. By default, a lower bound of resistance is enforced. You may remove this limitation by defining the resistor parameter rac. This may affect pz results.

For additional information on pz analysis, see <u>Pole Zero Analysis</u> in the Spectre Circuit Simulator and Accelerated Parallel Simulator User Guide.

Definition

Name ... pz parameter=value ...

Parameters

Analysis Statements

Probe parameters

1	iprobe	Input probe for zeros of the transfer function.
2	oprobe	Output probe for zeros of the transfer function.

Port parameters

3	portv	Voltage across the specified oprobe port is the output of the analysis.
4	porti	Current through the specified oprobe port is the output of the analysis. Should be used when oprobe is a voltage source or a current probe.

Sweep interval parameters

5	start=0	Start sweep limit.	
6	stop	Stop sweep limit.	
7	center	Center of sweep.	
8	span=0	Sweep limit span.	
9	step	Step size, linear sweep.	
10	lin=50	Number of steps, linear sweep.	
11	dec	Points per decade.	
12	log=50	Number of steps, log sweep.	
13	values=[]	Array of sweep values.	
14	valuesfile	Name of the file containing the sweep values.	

Sweep variable parameters

15	dev	Device instance whose parameter value is to be swept.
16	mod	Model whose parameter value is to be swept.

Analysis Statements

17	param	Name of parameter to sweep.
18	freq (Hz)	Frequency at which components will be evaluated in setting up the linearized network.

State-file parameters

19	readns	File that contains estimate of DC solution (nodeset).
20	useprevic=no	If set to yes or ns , use the converged initial condition from previous analysis as ic or ns . Possible values are no , yes and ns .

Output parameters

21	oppoint=no	Should operating point information be computed, and if so, where should it be sent. Possible values are no, screen, logfile, and rawfile.
22	zeroonly=no	If set, only zeros are requested. Possible values are ${\tt no}$ and ${\tt yes}.$

Filtering parameters

23	fmax (Hz)	Maximum pole and zero frequency value to filter out spurious poles and zeros. This parameter is passed to psf outputs for plotting filtering.
24	docancel=yes	If set, pole-zero cancellation is requested. Possible values are ${\tt no}$ and ${\tt yes}.$
25	absdiff=1e-6 Hz	Pole-Zero cancel absolute distance in Hz.
26	reldiff=1e-4	Pole-Zero cancel relative distance.

Analysis Statements

Convergence parameters

27	prevoppoint=no	Use the operating point computed on the previous analysis. Possible values are no and yes.
28	restart=yes	Restart the DC solution from scratch if any condition has changed. If not, use the previous solution as initial guess. Possible values are no and yes.

Annotation parameters

29	annotate=sweep	Degree of annotation. Possible values are no, title, sweep, status, and steps.	
30	title	Analysis title.	

Miscellaneous parameters

31	method=qz	Method to perform pz analysis. Possible values are $\mathtt{q}\mathtt{z}$ and $\mathtt{arnoldi}.$	
32	pole_emphasis=lowfreq		
		If set to lowfreq, calculate low-frequency poles accurately. If set to highfreq, calculate high-frequency poles accurately	
33	numpoles	Maximum number of poles requested, only for arnoldi method.	
34	numzeros	Maximum number of zeros requested, only for arnoldi method.	
35	sigmar=0.1	Root finding control parameter; only for arnoldi method.	
36	sigmai=0.0	Root finding control parameter; only for arnoldi method.	

Examples

mypz pz

Pole analysis is performed.

Analysis Statements

```
mypz2 (n1 n2) pz iprobe=VIN
```

Input is VIN and output is the voltage difference between nodes n1 and n2. Both pole and zero analyses are performed.

```
mypz3 (n1 n2) pz iprobe=I1
```

Input is I1, output is voltage difference between n1 and n2. Both pole and zero analyses will be performed.

```
mypz4 pz iprobe=VIN oprobe=IP1 porti=1
```

Input is VIN, output is current through IP1, where IP1 is an iprobe. Both pole and zero analyses will be performed.

```
mypz5 pz iprobe=VIN oprobe=V3 porti=1
```

Input is VIN, output is current through voltage source V3. Both pole and zero analyses will be performed.

```
mypz6 pz iprobe=VIN oprobe=R3 portv=1
```

Input is VIN, output is the voltage across the resistor R3. Both pole and zero analyses will be performed.

```
mypz7 (n1 n2) pz iprobe=I1 param=temp start=25 stop=100 step=25
```

Sweep temperature from 25 C to 100 C with increment of 25 C.

```
parameters rval=2.0
R2 3 4 resistor r=rval
...
sweep1 sweep param=rval start=1 stop=10 step=1 {
   mypz8 (n1 n2) iprobe=VIN
}
```

External sweep parameter rval from 1 to 10 with increment of 1.

```
mypz9 (n1 n2) pz iprobe=VIN docancel=no
```

Do not perform pole-zero cancellation.

Note: porti allows you to select a current associated with a specific device given in oprobe as an output. This device, however, has to have its terminal currents as network variables. Therefore, to avoid confusion, porti should be used exclusively with voltage sources and current probes and with other components that have voltage-defined branches.

When PZ analysis finishes, a table is printed by default. The table includes values of poles/zeros and a brief notification on the "right-hand side poles", if there are any. This information can also be viewed graphically. In addition to the direct results, "DC gain" is also listed at the end. It calculates the gain of transfer function H(s) given s=0, including the contribution of the

Analysis Statements

excluded poles/zeros (blocked by user-specified fmax). "Constant factor" calculates the ratio of the coefficients of the leading terms in the numerator and denominator of H(s).

Parameter Index

In the following index, the number corresponding to each parameter name indicates where to find the description of that parameter:

absdiff 25	lin 10	pole_emphasis 32	span 8
annotate 29	log 12	porti 4	start 5
center 7	method 31	portv 3	step 9
dec 11	mod 16	prevoppoint 27	stop 6
dev 15	numpoles 33	readns 19	title 30
docancel 24	numzeros 34	reldiff 26	useprevic 20
fmax 23	oppoint 21	restart 28	values 13
freq 18	oprobe 2	sigmai 36	valuesfile 14
iprobe 1	param 17	sigmar 35	zeroonly 22

Analysis Statements

Quasi-Periodic AC Analysis (qpac)

Description

The quasi periodic AC (QPAC) analysis is used to compute transfer functions for circuits that exhibit multitone frequency translation. Such circuits include mixers, switched-capacitor filters, samplers, phase-locked loops, and the like. It is a small-signal analysis like AC analysis, except that the circuit is first linearized about a quasi-periodically varying operating point, as opposed to a simple DC operating point. Linearizing about a quasi-periodically time-varying operating point allows transfer-functions that include frequency translation, whereas linearizing about a DC operating point could not because linear time-invariant circuits do not exhibit frequency translation. In addition, the frequency of the sinusoidal stimulus is not constrained by the period of the large periodic solution.

Computing the small-signal response of a quasi-periodically varying circuit is a two-step process. First, the small stimulus is ignored and the quasi-periodic steady-state response of the circuit to possibly large periodic stimuli is computed using QPSS analysis. As part of the QPSS analysis, the quasi-periodically time-varying representation of the circuit is computed and saved for later use. The second step is to apply the small stimulus to the periodically varying linear representation to compute the small signal response. This is done using the QPAC analysis.

A QPAC analysis cannot be used independently; it must follow a QPSS analysis. However, any number of quasi-periodic small-signal analyses, such as QPAC, QPSP, QPXF, QPNOISE, can follow a QPSS analysis.

For information on how to run QPAC analysis from ADE, see <u>Quasi Periodic AC Analysis</u> (<u>QPAC</u>) in the <u>Spectre Circuit Simulator and Accelerated Parallel Simulator RF Analysis User Guide</u>.

Unlike other analyses in Spectre, this analysis can only sweep frequency.

Definition

Name qpac parameter=value ...

Parameters

Analysis Statements

Sweep interval parameters

1	start=0	Start sweep limit.
2	stop	Stop sweep limit.
3	center	Center of sweep.
4	span=0	Sweep limit span.
5	step	Step size, linear sweep.
6	lin=50	Number of steps, linear sweep.
7	dec	Points per decade.
8	log=50	Number of steps, log sweep.
9	values=[]	Array of sweep values.
10	valuesfile	Name of the file containing the sweep values.
11	sweeptype	Specifies if the sweep frequency range is an absolute frequency, that is, the actual frequency, or if it is relative to the "relharmvec" sideband frequency. Possible values are absolute and relative.
12	relharmvec=[]	Sideband- vector of QPSS harmonics- to which relative frequency sweep should be referenced.

Output parameters

13	sidevec=[]	Array of relevant sidebands for the analysis.
14	clockmaxharm=7	An alternative to the sidevec array specification, which automatically generates the array: [-clockmaxharm 0 +clockmaxharms][-maxharms(QPSS)[2]0maxharms(QPSS)[2]][].
15	freqaxis	Specifies whether the results should be printed as the input frequency, the output frequency, or the absolute value of the output frequency. The default is absout. Possible values are absout, out, and in.
16	save	Signals to output. Possible values are all, lvl, allpub, lvlpub, selected, none, and nooutput.
17	nestlvl	Levels of subcircuits to output.

Analysis Statements

Convergence parameters

18	tolerance	Relative tolerance for linear solver; the default value is 1.0e-9 for shooting-based solver and 1.0e-4 for harmonic balance-based solver.
19	relativeTol	Relative tolerance for harmonicbalance-based linear solver; the default value is 1.0e-2.
20	gear_order=2	Gear order used for small-signal integration, 1 or 2.
21	solver=turbo	Solver type. Possible values are std and turbo.
22	resgmrescycle=shor t	Restarts GMRES cycle. Possible values are instant, short, long, recycleinstant, recycleshort, custom, and recyclelong.
23	hbprecond_solver=a utoset	Select a linear solver for the GMRES preconditioner. Default is autoset. With autoset, the simulator will automatically select the appropriate preconditioner. The preconditioner affects the rate of convergence of the linear matrix solver used in periodic small-signal analysis. When autoset is selected, the simulator may decide to switch to a different preconditioner after the analysis begins. When that happens, the simulator may issue a warning instructing you to choose a different preconditioner during subsequent runs. Although not required, choosing a different preconditioner according to the simulator's instructions may speed up subsequent analyses. Possible values are basicsolver, blocksolver, autoset, blockdense, and blocksolver2.
24	lowmem=0	Harmonic balance low memory mode. Possible values are $0, 1$, or number (>=10). The default value is 0 , it indicates that the low memory mode is turned off; if 1 is set, the standard low memory mode is turned on; If a number greater that or equal to 10 is set, Spectre interprets the value as memory requested in Gigabytes.
25	krylov_size=200	The maximum iteration count of the linear matrix solver used in periodic small-signal analysis. After reaching 1.25*krylov_size iterations, the iteration is forced to terminate because of the poor rate of convergence. Increase krylov_size if the simulation reports insufficient norm reduction errors in GMRES.

Analysis Statements

Annotation parameters

26	annotate=sweep	Degree of annotation. Possible values are no, title, sweep, status, steps, and detailed_hb.	
27	title	Analysis title.	

You can select the set of periodic small-signal output frequencies of interest by setting either the clockmaxharm or the sidevec parameter. Sidebands are vectors in QPAC. Assuming that there is one large tone and one moderate tone in QPSS, a sideband K1 is represented as [K1 1 K1 2]. Corresponding frequency is as follows:

```
K1_1 * fund(large tone of QPSS) + K1_2 * fund (moderate tone of QPSS)
```

If there are L large and moderate tones in QPSS analysis and a given set of n integer vectors representing the sidebands

 $K1 = \{ K1_1, ...K1_j, ..., K1_L \}$, K2, ... Kn, the output frequency at each sideband is computed as follows:

```
f(out) = f(in) + SUM_j=1_to_L{Ki_j * fund_j(qpss)},
```

where, f (in) represents the (possibly swept) input frequency, and fund_j(qpss) represents the fundamental frequency used in the corresponding QPSS analysis. Thus, when analyzing a down-converting mixer while sweeping the RF input frequency, the most relevant sideband for IF output is $\{-1,0\}$. When simulating an up-converting mixer while sweeping IF input frequency, the most relevant sideband for RF output is $\{1,0\}$. You would enter sidevec as a sequence of integer numbers, separated by spaces. The set of vectors $\{1\ 1\ 0\}\{1\ -1\ 0\}\{1\ 1\}$ becomes sidevec=[1 1 0 1 -1 0 1 1 1]. For clockmaxharm, only the large tone- the first fundamental is affected by this entry; the rest- moderate tones- are limited by maxharms, specified for a QPSS analysis. Given maxharms=[k1max k2max ... knmax] in QPSS and clockmaxharm=Kmax all (2*Kmax + 1)*(2*k2max+1)*(2*k3max+1)*...* (2*knmax+1) sidebands are generated.

The number of requested sidebands changes substantially the simulation time.

With QPAC, the frequency of the stimulus and of the response are usually different (this is an important area in which QPAC differs from AC). The freqaxis parameter is used to specify whether the results should be output versus the input frequency (in), the output frequency (out), or the absolute value of the output frequency (absout).

You can specify sweep limits by specifying the end points or the center value and span of the sweep. Steps can be linear or logarithmic, and you can specify the number of steps or the size of each step. You can specify a step size parameter (step, lin, log, or dec) to

Analysis Statements

determine whether the sweep is linear or logarithmic. If you do not specify a step size parameter, the sweep is linear when the ratio of stop to start values is less than 10 and logarithmic when this ratio is 10 or greater. Alternatively, you may specify the values that the sweep parameter should take using the values parameter. If you specify both a specific set of values and a set specified using a sweep range, the two sets are merged and collated before being used. All frequencies are in Hertz.

Parameter Index

In the following index, the number corresponding to each parameter name indicates where to find the description of that parameter:

annotate 26	krylov_size 25	resgmrescycle 22	stop 2
center 3	lin 6	save 16	sweeptype 11
clockmaxharm 14	log 8	sidevec 13	title 27
dec 7	lowmem 24	solver 21	tolerance 18
freqaxis 15	nestlvl 17	span 4	values 9
gear_order 20	relativeTol 19	start 1	valuesfile 10
hbprecond_solver	relharmvec 12	step 5	

Analysis Statements

Quasi-Periodic Noise Analysis (qpnoise)

Description

The Quasi-Periodic Noise, or QPNOISE analysis is similar to the conventional noise analysis, except that it includes frequency conversion and intermodulation effects. Hence, it is useful for predicting the noise behavior of mixers, switched-capacitor filters, and other periodically or quasi-periodically driven circuits.

QPNOISE analysis linearizes the circuit about the quasi-periodic operating point computed in the prerequisite QPSS analysis. It is the quasi-periodically time-varying nature of the linearized circuit that accounts for the frequency conversion and intermodulation. The effect of a quasi-periodically time-varying bias point on the noise generated by the various components in the circuit is also included.

The time-average of the noise at the output of the circuit is computed in the form of spectral density versus frequency. The output of the circuit is specified with a pair of nodes or a probe component. To specify the output of a circuit with a probe, specify it using the oprobe parameter. If the output is voltage (or potential), choose a resistor or a port as the output probe. If the output is current (or flow), choose a vsource or iprobe as the output probe.

If the input-referred noise is required, specify the input source by using the iprobe parameter. Currently, only a vsource, an isource, or a port may be used as an input probe. If the input source is noisy, as is a port, the noise analysis computes the noise factor (F) and noise figure (NF). To match the IEEE definition of noise figure, the input probe must be a port with no excess noise and its noisetemp must be set to 16.85C (290K). In addition, the output load must be a resistor or port and must be identified as the oprobe.

If port is specified as the input probe, both input-referred noise and gain are referred back to the equivalent voltage source inside the port. S-parameter analysis calculates those values in traditional sense.

The reference sideband (refsideband) specifies which conversion gain is used when computing input-referred noise, noise factor, and noise figure. The reference sideband satisfies:

```
|f(input)| = |f(out)| + refsideband frequency shift|.
```

The reference sideband option (refsidebandoption) specifies whether to consider the input at the frequency or at the individual quasi-periodic sideband that is specified.

Note: Different sidebands can lead to the same frequency.

Analysis Statements

Sidebands are vectors in QPNOISE. Assuming one large tone and one moderate tone in QPSS, a sideband Ki is a vector [Ki_1 Ki_2]. It gives the frequency at:

```
Ki_1 * fund(large tone of QPSS) + Ki_2 * fund (moderate tone of QPSS)
```

Use refsideband=[0 0 ...] when the input and output of the circuit are at the same frequency, such as with amplifiers and filters.

The noise analysis always computes the total noise at the output, which includes contributions from the input source and the output load. The amount of the output noise that is attributable to each noise source in the circuit is also computed and output individually. If the input source is identified (using iprobe) and is a vsource or isource, the input-referred noise is computed, which includes the noise from the input source itself. Finally, if the input source is identified (using iprobe) and is noisy, as is the case with ports, the noise factor and noise figure are computed. Thus, if:

No = total output noise

Ns = noise at the output due to the input probe (the source)

Nsi = noise at the output due to the image harmonic at the source

Nso = noise at the output due to harmonics other than input at the source

NI = noise at the output due to the output probe (the load)

IRN = input referred noise

G = gain of the circuit

F = noise factor

NF = noise figure

Fdsb = double sideband noise factor

NFdsb = double sideband noise figure

Fieee = IEEE single sideband noise factor

NFieee = IEEE single sideband noise figure

Then:

 $IRN = sqrt(No^2 / G^2)$

Analysis Statements

 $F = (No^2 - NI^2)/Ns^2$

NF = 10*log10(F)

 $Fdsb = (No^2 - NI^2)/(Ns^2 + Nsi^2)$

NFdsb = 10*log10(Fdsb)

 $Fieee = (No^2 - NI^2 - Nso^2)/Ns^2$

NFieee = 10*log10(Fieee).

When the results are output, No is named out, IRN is named in, G is named gain, F, NF, Fdsb, NFdsb, Fieee, and NFieee are named F, NF, Fdsb, NFdsb, Fieee, and NFieee, respectively.

The computation of gain and IRN in QPNOISE assumes that the circuit under test is impedance-matched to the input source. This can introduce inaccuracy into the gain and IRN computation.

Unlike other analyses in Spectre, this analysis can only sweep frequency.

For information on how to run QPnoise analysis from ADE, see <u>Quasi Periodic Noise</u> <u>Analysis (QPnoise)</u> in the <u>Spectre Circuit Simulator and Accelerated Parallel Simulator RF Analysis User Guide</u>.

Definition

```
Name [p] [n] qpnoise parameter=value ...
```

The optional terminals (p and n) specify the output of the circuit. If you do not specify the terminals, you must specify the output with a probe component.

Parameters

Sweep interval parameters

1	start=0	Start sweep limit.
2	stop	Stop sweep limit.
3	center	Center of sweep.

Analysis Statements

4	span=0	Sweep limit span.
5	step	Step size, linear sweep.
6	lin=50	Number of steps, linear sweep.
7	dec	Points per decade.
8	log=50	Number of steps, log sweep.
9	values=[]	Array of sweep values.
10	valuesfile	Name of the file containing the sweep values.
11	sweeptype	Specifies if the sweep frequency range is an absolute frequency, that is, the actual frequency, or if it is relative to the "relharmvec" sideband frequency. Possible values are absolute and relative.
12	relharmvec=[]	Sideband vector of QPSS harmonics- to which relative frequency sweep should be referenced.

Probe parameters

13	oprobe	Compute total noise at the output defined by this component.
14	iprobe	Refer the output noise to this component.
15	refsideband=[]	Conversion gain associated with this sideband is used when computing input-referred noise or noise figure.
16	refsidebandoption= individual	
		Whether to view the sideband as a specification of a frequency or a specification of an individual sideband. Possible values are freq and individual.

Analysis Statements

Output parameters

17	clockmaxharm=7	In shooting pnoise, the parameter determines the maximum sideband included when computing noise that is either up-converted or down-converted to the output by the periodic drive signal. The default value for the shooting pnoise is 7. In HB pnoise, this parameter determines the size of the small signal system when the HB pnoise is performed. This parameter is critical for the accuracy of the HB pnoise analysis; using small maxsideband may cause accuracy loss. The default value for HB pnoise is the harms/maxharms setting in the HB large signal analysis.	
18	sidevec=[]	Array of relevant sidebands for the analysis.	
19	save	Signals to output. This option specifies the signals to be saved in the result. Possible values are all, lvl , allpub, lvl pub, and selected.	
		allpub: saves all signals at all levels of hierarchy in the schematic, including the internal signals of device models	
		■ all: works like allpub	
		■ lvl: saves all signals through the level of hierarchy set in the nestlvl option	
		■ lvlpub: works like lvl	
		■ selected: is not recommended to use here.	
20	nestlvl	Levels of subcircuits to output.	
21	saveallsidebands=n o	Save noise contributors by sideband. Possible values are no and ${\tt yes.}$	
22	noiseout=usb	Specify noise output. You can set a vector like noiseout=[usb am pm]. And all are using single sideband (SSB) convention, half of the total power. Possible values are usb, 1sb, am and pm.	
23	separatenoise=no	Separate Noise into sources and transfer functions. Possible values are ${\tt no}$ and ${\tt yes}.$	

Analysis Statements

Convergence parameters

24	tolerance	Tolerance for the linear solver. The default value is 1.0e-9 for shooting-based solver, and 1.0e-4 for harmonic balance-based solver.
25	relativeTol	Relative tolerance for harmonicbalance-based linear solver; the default value is 1.0e-2.
26	gear_order=2	Gear order used for small-signal integration, 1 or 2.
27	solver=turbo	Solver type. Possible values are std and turbo.
28	resgmrescycle=shor t	Restarts GMRES cycle. Possible values are instant, short, long, recycleinstant, recycleshort, custom, and recyclelong.
29	hbprecond_solver=a utoset	Select a linear solver for the GMRES preconditioner. Default is autoset. With autoset, the simulator will automatically select the appropriate preconditioner. The preconditioner affects the rate of convergence of the linear matrix solver used in periodic small-signal analysis. At times, when autoset is selected, the simulator may decide to switch to a different preconditioner after the analysis begins. When that happens, the simulator may issue a warning instructing you to choose a different preconditioner during subsequent runs. Although not required, choosing a different preconditioner according to the simulators instructions may speedup subsequent analyses. Possible values are basicsolver, blocksolver, autoset, blockdense, and blocksolver2.
30	lowmem=0	Harmonic balance low memory mode. Possible values are $0, 1$, or number (>=10). The default value is 0 , it indicates that the low memory mode is turned off; if 1 is set, the standard low memory mode is turned on; If a number greater that or equal to 10 is set, Spectre interprets the value as memory requested in Gigabytes.
31	krylov_size=200	The maximum iteration count of the linear matrix solver used in periodic small-signal analysis. After reaching 1.25*krylov_size iterations, the iteration is forced to terminate because of the poor rate of convergence. Increase krylov_size if the simulation reports insufficient norm reduction errors in GMRES.

Analysis Statements

Annotation parameters

32	annotate=sweep	Degree of annotation. Possible values are no, title, sweep, status, steps, and detailed_hb.
33	title	Analysis title.

In practice, noise can mix with each of the harmonics of the quasi-periodic drive signal applied in the QPSS analysis and end up at the output frequency. The QPNOISE analysis includes only the noise that mixes with a finite set of harmonics that are specified using the clockmaxharm and sidevec parameters. Sidebands are vectors in quasi-periodic analyses. For one large tone and one moderate tone in QPSS, a sideband K1 is represented as [K1_1 K1_2]. Corresponding frequency shift is as follows:

```
K1_1 * fund(large tone of QPSS) + K1_2 * fund (moderate tone of QPSS)
```

Assuming that there are L large and moderate tones in QPSS analysis and a given set of n integer vectors representing the sidebands:

```
K1 = \{ K1_1, ..., K1_j, ..., K1_L \}, K2, ..., Kn.
```

If Ki represents sideband i, then:

```
f(noise_source) = f(out) + SUM_j=1_to_L{ Ki_j * fund_j(qpss) },
```

The clockmaxharm parameter affects only clock frequency. It can be less or more than maxharms [1] in QPSS. Moderate tones are limited by maxharms specified in QPSS. Only the selected sidebands specified using the sidevec parameter are included in the calculation. Care should be taken when specifying sidevec or clockmaxharm in QPNOISE and maxharms in QPSS. Noise results are erroneous if you do not include the sidebands that contribute significant noise to the output.

The number of requested sidebands changes substantially the simulation time.

You can specify sweep limits by specifying the end points or the center value and span of the sweep. Steps can be linear or logarithmic, and you can specify the number of steps or the size of each step. You can specify a step size parameter (step, lin, log, or dec) to determine whether the sweep is linear or logarithmic. If you do not specify a step size parameter, the sweep is linear when the ratio of stop to start values is less than 10 and logarithmic when this ratio is 10 or greater. Alternatively, you may specify the values that the sweep parameter should take using the values parameter. If you specify both a specific set of values and a set specified using a sweep range, the two sets are merged and collated before being used. All frequencies are in Hertz.

Analysis Statements

Parameter Index

In the following index, the number corresponding to each parameter name indicates where to find the description of that parameter.

annotate 32	log 8	resgmrescycle 28	stop 2
center 3	lowmem 30	save 19	sweeptype 11
clockmaxharm 17	nestlvl 20	saveallsidebands 21	title 33
dec 7	noiseout 22	separatenoise 23	tolerance 24
gear_order 26	oprobe 13	sidevec 18	values 9
hbprecond_solver	refsideband 15	solver 27	valuesfile 10
iprobe 14	refsidebandoption 16	span 4	
krylov_size 31	relativeTol 25	start 1	
lin 6	relharmvec 12	step 5	

Analysis Statements

Quasi-Periodic S-Parameter Analysis (qpsp)

Description

The quasi-periodic SP (QPSP) analysis is used to compute scattering and noise parameters for n-port circuits that exhibit frequency translation. Such circuits include mixers, switched-capacitor filters, samplers, phase-locked loops, and the like. It is a small-signal analysis like SP analysis, except, as done in QPAC and QPXF, the circuit is first linearized about a quasi-periodically varying operating point as opposed to a simple DC operating point. Linearizing about a quasi-periodically time-varying operating point allows the computation of S-parameters between circuit ports that convert signals from one frequency band to another. QPSP can also calculate noise parameters in frequency-converting circuits. QPSP computes noise figure (both single-sideband and double-sideband), input referred noise, equivalent noise parameters, and noise correlation matrices. As in QPNOISE, but unlike SP, the noise features of the QPSP analysis include noise folding effects due to the periodically time-varying nature of the circuit.

Computing the n-port S-parameters and noise parameters of a quasi-periodically varying circuit is a two-step process. First, the small stimulus is ignored and the quasi-periodic steady-state response of the circuit to possibly large periodic stimulus is computed using QPSS analysis. As part of the QPSS analysis, the quasi-periodically time-varying representation of the circuit is computed and saved for later use. The second step is to apply small-signal excitations to compute the n-port S-parameters and noise parameters. This is done using the QPSP analysis. A QPSP analysis cannot be used independently; it must follow a QPSS analysis. However, any number of periodic small-signal analyses, such as QPAC, QPSP, QPXF, QPNOISE, can follow a single QPSS analysis.

Unlike other analyses in Spectre, this analysis can only sweep frequency.

For information on how to run QPSP analysis from ADE, see <u>QPSP Analysis</u> in the Spectre Circuit Simulator and Accelerated Parallel Siumulator RF Analysis User Guide.

Definition

Name gpsp parameter=value ...

Parameters

Analysis Statements

Sweep interval parameters

1	start=0	Start sweep limit.
2	stop	Stop sweep limit.
3	center	Center of sweep.
4	span=0	Sweep limit span.
5	step	Step size, linear sweep.
6	lin=50	Number of steps, linear sweep.
7	dec	Points per decade.
8	log=50	Number of steps, log sweep.
9	values=[]	Array of sweep values.
10	valuesfile	Name of the file containing the sweep values.
11	sweeptype	Specifies if the sweep frequency range is an absolute frequency, that is, the actual frequency, or if it is relative to the "relharmvec" sideband frequency. In QPSP, relative means relative to the input port frequency. Possible values are absolute and relative.

Port parameters

12	ports=[]	List of active ports. Ports are numbered in the order given. For purposes of noise figure computation, the input is considered port 1 and the output is port 2.
13	portharmsvec=[]	List of the reference sidebands for the specified list of ports. Must have a one-to-one correspondence with the ports vector.
14	harmsvec=[]	List of sidebands, in addition to ones associated with specific ports by portharmsvec, that are active. Call them secondary.

Analysis Statements

Output parameters

14	freqaxis	Specifies whether the results should be printed as per the input port frequency, the output port frequency, or the absolute value of the input frequency. The default is in. Possible values are absin, in, and out.
15	file	Name of the output file. It only supports S-parameters in PSP, HBSP, and QPSP analyses.
16	datafmt=spectre	Data format of the S-parameter output file. Possible values are spectre, touchstone, and touchstone2.
18	datatype=realimag	Data type of the S-parameter output file. Possible values are realimag, magphase, and dbphase

Noise parameters

19	donoise=yes	Perform noise analysis. If oprobe is specified as a valid port, this is set to yes, and a detailed noise output is
		generated. Possible values are no and yes.

Probe parameters

In shooting pnoise, the parameter determines the maximum sideband included when computing noise that is either up-converted or down-converted to the output by the periodic drive signal. The default value for the shooting pnoise is 7. In HB pnoise, this parameter			
determines the size of the small signal system when the HB pnoise is performed. This parameter is critical for the accuracy of the HB pnoise analysis; using small maxsideband may cause accuracy loss. The default value for the HB pnoise is the harms/maxharms setting in the HB large signal analysis.	20	clockmaxharm=7	maximum sideband included when computing noise that is either up-converted or down-converted to the output by the periodic drive signal. The default value for the shooting pnoise is 7. In HB pnoise, this parameter determines the size of the small signal system when the HB pnoise is performed. This parameter is critical for the accuracy of the HB pnoise analysis; using small maxsideband may cause accuracy loss. The default value for the HB pnoise is the harms/maxharms setting

Analysis Statements

Convergence parameters

21	tolerance	Tolerance for the linear solver. The default value is $1.0e-9$ for shooting-based solver, and $1.0e-4$ for harmonic balance-based solver.
22	relativeTol	Relative tolerance for harmonicbalance-based linear solver; the default value is 1.0e-2.
23	gear_order=2	Gear order used for small-signal integration, 1 or 2.
24	solver=turbo	Solver type. Possible values are std and turbo.
25	resgmrescycle=shor t	Restarts GMRES cycle. Possible values are instant, short, long, recycleinstant, recycleshort, custom, and recyclelong.
26	hbprecond_solver=a utoset	Select a linear solver for the GMRES preconditioner. Default is autoset. With autoset, the simulator will automatically select the appropriate preconditioner. The preconditioner affects the rate of convergence of the linear matrix solver used in periodic small-signal analysis. When autoset is selected, the simulator may decide to switch to a different preconditioner after the analysis begins. When that happens, the simulator may issue a warning instructing you to choose a different preconditioner during subsequent runs. Although not required, choosing a different preconditioner according to the simulator's instructions may speed up subsequent analyses. Possible values are basicsolver, blocksolver, autoset, blockdense, and blocksolver2.
27	lowmem=0	Harmonic balance low memory mode. Possible values are $0, 1$, or number (>=10). The default value is 0 , it indicates that the low memory mode is turned off; if 1 is set, the standard low memory mode is turned on; if a number greater that or equal to 10 is set, Spectre interprets the value as memory requested in Gigabytes.
28	krylov_size=200	The maximum iteration count of the linear matrix solver used in periodic small-signal analysis. After reaching 1.25*krylov_size iterations, the iteration is forced to terminate because of the poor rate of convergence. Increase krylov_size if the simulation reports insufficient norm reduction errors in GMRES.

Analysis Statements

Annotation parameters

29	annotate=sweep	Degree of annotation. Possible values are no, title, sweep, status, steps, and detailed_hb.
30	title	Analysis title.

To specify the QPSP analysis, the port and sideband combinations must be specified. You can select the ports of interest by setting the port parameter and the set of periodic small-signal output frequencies of interest by setting portharmsvec or harmsvec parameter. Sidebands are vectors in QPSP. Assuming that there is one large tone and one moderate tone in QPSS, a sideband K1 is represented as $[K1_1 \ K1_2]$. The corresponding frequency is as follows:

```
K1_1 * fund(large tone of QPSS) + K1_2 * fund (moderate tone of QPSS)
= SUM_j=1_to_L{Ki_j * fund_j(qpss)}
```

It is also assumed that there are L (1 large plus L-1 moderate) tones in QPSS analysis and a given set of n integer vectors representing the sidebands

```
K1 = \{ K1_1, ...K1_j ..., K1_L \} , K2, ... Kn.
```

If we specify the relative frequency, the scattering parameters at each port are computed at the following frequencies:

```
f(scattered) = f(rel) + SUM j=1 to L{Ki j * fund j(qpss)},
```

where, f(rel) represents the relative frequency of a signal incident on a port, f(scattered) represents the frequency to which the relevant scattering parameter represents the conversion, and $fund_j(qpss)$ represents the fundamental frequency used in the corresponding QPSS analysis.

In the analysis of a down-converting mixer with a blocker and of the signal in the upper sideband, sweep the input frequency of the signal coming into RF port. The most relevant sideband for this input is $Ki = \{1, 0\}$, and for IF output, it is $Ki = \{0, 0\}$. Hence, you can associate $K1 = \{1, 0\}$ with the RF port and $K2 = \{0, 0\}$ with the IF port. S21 represents the transmission of a signal from RF to IF, and S11 represents the reflection of the signal back to the RF port. If the signal is in the lower sideband, a choice of $K1 = \{-1, 0\}$ would be more appropriate.

Either portharmsvec or harmsvec can be used to specify the sidebands of interest. If portharmsvec is given, the sidebands must be in one-to-one correspondence with the ports, with each sideband associated with a single port. If sidebands are specified in the optional harmsvec parameter, all possible frequency-translating scattering parameters associated with the specified sidebands on each port are computed.

Analysis Statements

With QPSP, the frequency of the input and of the response are usually different (this is an important area in which QPSP differs from SP). Because the QPSP computation involves inputs and outputs at frequencies that are relative to multiple sidebands, the freqaxis and sweeptype parameters behave somewhat differently in QPSP than in QPAC and QPXF.

The sweeptype parameter controls the way the frequencies in the QPSP analysis are swept. A relative sweep is a sweep relative to the port sideband (not the QPSS fundamental), and an absolute sweep is a sweep of the absolute input source frequency. For example, with a QPSS fundamentals of 1000MHz (LO) and 966MHz (blocker in RF channel), portharmsvec could be set to $[0\ 1\ -1\ 1]$ to examine a downconverting mixer. If sweeptype is set to relative with a sweep range of f(rel)=-10MHz<->10MHz, S21 would represent the strength of the signal transmitted from the input port in the range 956->976MHz to the output port to the frequencies 24<->44MHz. Using sweeptype=absolute and sweeping the frequency from 966<->976MHz would calculate the same quantities, because f(abs) = 956 < ->976MHz, and $f(rel) = f(abs) - (K1_1 * fund_1(qpss) + K1_2 * fund_2(qpss)) = -10MHz < ->10MHz, where, K1_1=0, K1_2=1, fund_1(qpss) = 1000MHz, and fund_2(qpss) = 966MHz.$

The freqaxis parameter is used to specify whether the results should be output versus the scattered frequency at the input port (in), the scattered frequency at the output port (out), or the absolute value of the frequency swept at the input port (absin).

An increase in the number of requested ports increases the simulation time substantially. The same happens if you increase the number of sidebands to be included in the noise computations.

QPSP analysis also computes noise figures, equivalent noise sources, and noise parameters. The noise computation, which is skipped only when <code>donoise=no</code>, requires additional simulation time.

If:

No = total output noise at frequency f

Ns = noise at the output due to the input probe (the source)

Nsi = noise at the output due to the image harmonic at the source

Nso = noise at the output due to harmonics other than input at the source

NI = noise at the output due to the output probe (the load)

IRN = input referred noise

G = gain of the circuit

Analysis Statements

F = noise factor (single side band)

NF = noise figure (single side band)

Fdsb = double sideband noise factor

NFdsb = double sideband noise figure

Fieee = IEEE single sideband noise factor

NFieee = IEEE single sideband noise figure

Then:

 $IRN = sqrt(No^2 / G^2)$

 $F = (No^2 - NI^2)/Ns^2$

NF = 10*log10(F)

 $Fdsb = (No^2 - NI^2)/(Ns^2 + Nsi^2)$

NFdsb = 10*log10(Fdsb)

 $Fieee = (No^2 - NI^2 - Nso^2)/Ns^2$

NFieee = 10*log10(Fieee).

When the results are output, IRN is named in, G is named gain, F, NF, Fdsb, NFdsb, Fieee, and NFieee are named F, NF, Fdsb, NFdsb, Fieee, and NFieee, respectively.

Note: The gain computed by QPSP is the voltage gain from the actual circuit input to the circuit output, and not the gain from the internal port voltage source to the output.

To ensure accurate noise calculations, the clockmaxharm parameters must be set to include the relevant noise folding effects. clockmaxharm is relevant only to the noise computation features of QPSP.

You can specify sweep limits by specifying the end points or the center value and span of the sweep. Steps can be linear or logarithmic, and you can specify the number of steps or the size of each step. You can specify a step size parameter (step, lin, log, or dec) to determine whether the sweep is linear or logarithmic. If you do not specify a step size parameter, the sweep is linear when the ratio of stop to start values is less than 10 and logarithmic when this ratio is 10 or greater. Alternatively, you may specify the values that the sweep parameter should take by using the values parameter. If you specify both a specific

Analysis Statements

set of values and a set specified using a sweep range, the two sets are merged and collated before being used. All frequencies are in Hertz.

Parameter Index

In the following index, the number corresponding to each parameter name indicates where to find the description of that parameter.

annotate 29	freqaxis 15	portharmsvec 13	stop 2
center 3	gear_order 23	ports 12	sweeptype 11
clockmaxharm 20	harmsvec 14	relativeTol 22	title 30
datafmt 17	hbprecond_solver 26	resgmrescycle 25	tolerance 21
datatype 18	krylov_size 28	solver 24	values 9
dec 7	lin 6	span 4	valuesfile 10
donoise 19	log 8	start 1	
file 16	lowmem 27	step 5	

Analysis Statements

Quasi-Periodic Steady State Analysis (qpss)

Description

Quasi-periodic steady-state (QPSS) analysis computes circuit response with multiple fundamental frequencies using harmonic balance (in frequency domain) or shooting. QPSS can compute circuit responses with closely spaced or incommensurate fundamentals, which cannot be resolved by PSS efficiently. The simulation time of QPSS analysis is independent of the time-constants of the circuit. In addition, QPSS analysis sets the circuit quasi-periodic operating point, which can then be used during a quasi-periodic time-varying small-signal analysis, such as QPAC, QPXF, QPSP, and QPNOISE.

Harmonic balance (HB) is efficient in simulating weak nonlinear circuits while shooting is more suitable for computing a circuit response to several moderate input signals, in addition to a large signal. The large signal, which represents a LO or clock signal, is usually the one that causes the most nonlinearity or the largest response. A typical example is the intermodulation distortion measurements of a mixer with two closely spaced moderate input signals. HB is more efficient than shooting in handling frequency-dependent components, such as delay, transmission line, and S-parameter data.

QPSS consists of three phases. First, an initial transient analysis with all moderate input signals suppressed is carried out. Second, a number of (at least 2) stabilizing iterations are run with all signals activated. Finally, the Newton method is followed.

When the shooting method is used, QPSS employs the Mixed Frequency Time (MFT) algorithm extended to multiple fundamental frequencies. For details of MFT algorithm, see Steady-State Methods for Simulating Analog and Microwave Circuits, by K. S. Kundert, J.K. White, and A. Sangiovanni-Vincentelli, Kluwer, Boston, 1990.

Similar to shooting in PSS, shooting in QPSS uses Newton method as its backbone. However, instead of doing a single transient integration, each Newton iteration does a number of transient integrations of one large signal period. Each of the integrations differs by a phase-shift in each moderate input signal. The number of integrations is determined by the numbers of harmonics of moderate fundamentals specified by maxharms. Given $maxharms = [k1 \ k2 \ ... \ kn]$, QPSS always treats k1 as the maximum harmonic of the large signal, and the total number of integrations is (2*k2+1)*(2*k3+1)*...*(2*kn+1). One consequence is that the efficiency of the algorithm depends significantly on the number of harmonics required to model the responses of moderate fundamentals. Another consequence is that the number of harmonics of the large fundamental does not significantly affect the efficiency of the shooting algorithm. The boundary conditions of a shooting interval are such that the time domain integrations are consistent with a frequency domain transformation with a shift of one large signal period.

Analysis Statements

QPSS inherits most of the PSS parameters and adds a few new ones. The most important ones are funds and maxharms. They replace the PSS parameter, fund (or period) and harms, respectively. The funds parameter accepts a list of names of fundamentals that are present in the sources. These names are specified in the sources by the fundamental parameter. In both shooting and HB QPSS analysis, the first fundamental is considered as the large signal. A few heuristics can be used for picking the large fundamental.

- (1) Pick the fundamental that is not a sinusoidal.
- (2) Pick the fundamental that causes the most nonlinearity.
- (3) Pick the fundamental that causes the largest response.

The maxharms parameter accepts a list of numbers of harmonics that are required to sufficiently model responses due to different fundamentals.

The semi-autonomous simulation is a special QPSS analysis combining the autonomous simulation and the QPSS. For the semi-autonomous simulation, you need to specify an initial frequency guess for the oscillator inside the circuit, and two oscillator terminals, just like the autonomous simulation in the PSS. For example:

```
myqpss (op on) qpss funds=[1.1GHz frf] maxharms=[5 5] tstab=1u
flexbalance=yes
```

The semi-autonomous simulation is only available in the frequency domain.

For information on how to run QPSS analysis from ADE, see <u>Quasi Periodic Steady-State</u> <u>Analysis (QPSS)</u> in the <u>Spectre Circuit Simulator and Accelerated Parallel</u> <u>Siumulator RF Analysis User Guide</u>.

Definition

```
Name ... qpss parameter=value ...
```

Parameters

QPSS fundamental parameters

1 funds=[...] Array of fundamental frequency names for fundamentals to use in analysis.

Analysis Statements

2	maxharms=[]	Array of number of harmonics of each fundamental to consider for each fundamental.
3	autoharms=no	Activates automatic harmonic number calculation in harmonic balance. Applies only if tstab>0 or if autotstab=yes. If a steady-state is reached, Spectre does a spectrum analysis to calculate the optimal number of harmonics for HB. The minimum number of harmonics is specified by maxharms. If steady-state is not reached to sufficient tolerance, autoharms may be disabled. Possible values are no and yes.
4	selectharm	Name of harmonics selection methods. Default is diamond when maximorder or boundary is set; otherwise, default is box. Possible values are box, diamond, funnel, axis, widefunnel, crossbox, crossbox_hier, and arbitrary.
5	evenodd=[]	Array of even, odd, or all strings for moderate tones to select harmonics.
6	maximorder	Maximum intermodulation order of harmonics in diamond, funnel, widefunnel, crossbox and crossbox_hier cuts. For example, given a two-tone case, a harmonic, [hx hy], is in the diamond, funnel or widefunnel harmonic set when $ hx + hy <=$ maximorder. And it is in the crossbox or crossbox_hier set when $ hx <=$ maximorder and $ hy <=$ maximorder.
7	mappingfft=no	This parameter is valid only for funnel harmonic cut. Setting this parameter to yes may save more memory but can hamper accuracy.
		Possible values are no and yes.
8	axisbw	The width of the band part of wide funnel harmonic cut along axis.
9	minialiasorder	The order of mini aliasing harmonic order.
10	selharmvec=[]	Array of harmonics indexes.
11	harmlist=[]	Array of harmonics indexes for time domain qpss.
12	freqdivide	Large signal frequency division.
13	<pre>freqdividevector=[]</pre>	Array of frequency division factors for each tone. This parameter overrides freqdivide.

Analysis Statements

Simulation interval parameters

14	tstab=0.0 s	Extra stabilization time after the onset of periodicity for independent sources.	
15	autotstab=no	Activates automatic initial transient (tstab) in harmonic balance and PSS shooting. If set to yes, the simulator decides whether to run tstab and for how long. Typically, the initial length of tstab is 50 periods, however, it could be longer depending on the type of circuit and its behavior. If steady-state is reached (or nearly reached), tstab will terminate early. Possible values are no and yes.	
16	autosteady=no	Activates automatic steady state detection during initial transient (tstab) in harmonic balance. When steady state is reached (or nearly reached), tstab will terminate early. This parameter applies only when tstab>0 or when autotstab=yes. Possible values are 0, 1, 2, no and yes.	
		■ autosteady=no 0: turns this feature off;	
		■ autosteady=yes 1: activates this feature;	
		autosteady=2: runs autosteady with lower steady state tolerance than autosteady=1. autosteady=2 may help pss convergence but with higher tstab costs	
17	stabcycles=2	Stabilization cycles with both large and moderate sources enabled.	
18	tstart=0.0 s	Initial transient analysis start time.	

Time-step parameters

19	maxstep (s)	Maximum time step. The default is derived from errpreset.
20	maxacfreq	Maximum frequency requested in a subsequent periodic small-signal analysis. The default is derived from errpreset and harms. This parameter is valid only for shooting.

Analysis Statements

21	step=0.001 period s	Minimum time step that would be used solely to maintain the aesthetics of the results. This parameter is valid only for shooting.

Initial-condition parameters

22	ic=all	The value to be used to set the initial condition. Possible values are dc, node, dev, and all.
23	skipdc=no	If set to yes , there is no DC analysis for initial transient. Possible values are no, yes , and $sigrampup$.
24	readic	File that contains initial condition.
25	useprevic=no	If set to yes or ns, use the converged initial condition from previous analysis as ic or ns. Possible values are no, yes, and ns.
26	oscic=default	Oscillator IC method. It determines how the starting values for the oscillator are calculated. oscic=lin provides you an accurate initial value, but it takes time. oscic=lin_ic, which is an older version of oscic=lin is used for shooting analysis for backward compatibility and is not recommended. oscic=fastic is fast, but it is less accurate. oscic=skip directly uses the frequency you provided as the initial guess frequency. It is only for two-tier method. Possible values are default, lin, lin_ic, fastic, and skip.
27	tone_homotopy=[]	Array of homotopy options for convergence assistance with multi-divider cases, when hbhomotopy=aggregation. The number of entries should be equal to that of tones. The possible values for each entry are 0, 1, and 2. 0 means no convergence assistance is applied for that tone. 1 means only transient stabilization (tstab) is run for that tone. 2 means both tstab and a single-tone HB simulation should be run to obtain the initial guess for multi-tone HB simulation.

Analysis Statements

Convergence parameters

28	readns	File that contains an estimate of the initial transient solution.
29	cmin=0 F	Minimum capacitance from each node to ground.

Output parameters

30	save	Signals to output. Possible values are all, lvl, allpub, lvlpub, selected, none, and nooutput.
31	nestlvl	Levels of subcircuits to output.
32	oppoint=no	Should operating point information be computed for initial timestep; if yes, where should it be printed (screen or file). Possible values are no, screen, logfile, and rawfile.
33	skipstart=0 s	The time to start skipping output data.
34	skipstop=stop s	The time to stop skipping output data.
35	skipcount=1	Save only one of every skipcount points.
36	strobeperiod=0 s	The output strobe interval (in seconds of transient time).
37	strobedelay=0 s	The delay (phase shift) between the skipstart time and the first strobe point.
38	saveinit=no	If set to yes , the waveforms for the initial transient before steady state are saved. Possible values are no and yes .

State-file parameters

39	write	File to which initial transient solution (before steady-state) is written.
40	writefinal	File to which final transient solution in steady-state is written. This parameter is now valid only for shooting.

Analysis Statements

41	swapfile	Temporary file to hold steady-state information. It tells Spectre to use a regular file rather than virtual memory, to hold the periodic operating point. Use this option if Spectre complains about not having enough memory to complete the analysis. This parameter is now valid only for shooting.
42	writeqpss	File to which final quasi-periodic steady-state solution is written. Small signal analyses, such as qpac, qpxf, and qpnoise, can read in the steady-state solution from this file directly, instead of running the qpss analysis again. The file of shooting and HB cant mutually reuse.
43	readqpss	File from which final quasi-periodic steady-state solution is to be read. Small signal analyses, such as qpac, qpxf, and qpnoise, can read in the steady-state solution from this file directly, instead of running the qpss analysis again. The file of shooting and HB cannot be mutually reused.
44	selharmread	File from which arbitrary harmonic data needs to be read.
45	selharmwrite	File to which harmonic data needs to be written.

Integration method parameters

46	method	Integration method. The default is derived from
		errpreset. This parameter is valid only for shooting.
		Possible values are euler, trap, traponly, gear2,
		and gear2only.

Accuracy parameters

47	errpreset	Selects a reasonable collection of parameter settings. Possible values are liberal, moderate, and
		conservative.

Analysis Statements

48	relref	Reference used for the relative convergence criteria. The default is derived from errpreset. Possible values are pointlocal, alllocal, sigglobal, and allglobal.
49	lteratio	Ratio used to compute LTE tolerances from Newton tolerance. The default is derived from errpreset.
50	lteminstep=0.0 s	Local truncation error is ignored if the step size is less than Iteminstep.
51	steadyratio	Ratio used to compute steady-state tolerances from LTE tolerance. The default is derived from errpreset.
52	maxperiods	Maximum number of iterations allowed before convergence is reached in shooting or harmonic balance Newton iteration. For PSS and QPSS, the default is 20 for driven circuits, and 50 for oscillators; For HB, the default is 100.
53	max_innerkrylov_si	ze=20
		The maximum iteration number allowed in inner gmres solver in two-level gmres linear solver.
54	max_outerkrylov_siz	ze=4
		The maximum iteration number allowed in inner gmres solver in two-level gmres linear solver.
55	itres=1e-4 for shooting, 0.9 for HB	Controls the residual for iterative solution of linearized matrix equation at each Newton iteration. Tightening the parameter can help with the Newton convergence, but does not affect the result accuracy. The value should be between [0, 1]. Default value for shooting APS flow is 1e-3.
56	inexactNewton=no	Inexact Newton method. Possible values are ${\tt no}$ and ${\tt yes}.$
57	finitediff	Options for finite difference method refinement after quasi-periodic shooting method. finitediff is changed from no to same grid automatically when readgpss and writegpss are used to reuse QPSS results. Possible values are no, yes, and refine.

Analysis Statements

Harmonic Balance parameters

58	harmonicbalance=no	Use Harmonic Balance engine instead of time-domain shooting. Possible values are no and yes.
59	flexbalance=no	Same parameter as harmonicbalance. Possible values are no and yes.
60	<pre>hbpartition_defs=[]</pre>	Define HB partitions.
61	hbpartition_fundra tios=[]	Specify HB partition fundamental frequency ratios.
62	hbpartition_harms= []	Specify HB partition harmonics.
63	oversamplefactor=1	Oversample device evaluations.
64	oversample=[]	Array of oversample factors for each tone. This parameter overrides oversamplefactor.
65	hbhomotopy=tone	Name of Harmonic Balance homotopy selection methods. Possible values are tstab, source, gsweep, tone, inctone, and aggregation.
66	sweepic=none	IC extrapolation method in sweep HB analysis. Possible values are none, linear, and log.
67	gstart=1.e-7	Start conductance for hbhomotopy of gsweep.
68	gstop=1.e-12	Stop conductance for hbhomotopy of gsweep.
69	glog=5	Number of steps, log sweep for hbhomotopy of gsweep
70	backtracking=yes	This parameter is used to activate the backtracking utility of Newton's Method. Default is yes . Possible values are no, yes , and forced.
71	excludeconvgwithBK =yes	Possible values are no and yes.
72	krylov_size=10	The minimum iteration count of the linear matrix solver used in HB large-signal analysis. After reaching the krylov_size iterations, the iteration is forced to terminate because of poor rate of convergence. Increase krylov_size if the simulation reports insufficient norm reduction errors in GMRES.

Analysis Statements

73	hbprecond_solver=b asicsolver	Choose a linear solver for the GMRES preconditioner. Possible values are basicsolver, blocksolver, autoset, blockdense, and blocksolver2.
74	lowmem=0	Harmonic balance low memory mode. Possible values are $0, 1$, or number (>=10). The default value is 0 , it indicates that the low memory mode is turned off; if 1 is set, the standard low memory mode is turned on; if a number greater that or equal to 10 is set, Spectre interprets the value as memory requested in Gigabytes.

Annotation parameters

75	annotate=sweep	Degree of annotation. Possible values are no, title, sweep, status, estimated, steps, iters, detailed, rejects, alliters, detailed_hb, and internal_hb.
76	annotateic=no	Degree of annotation for initial condition. Possible values are no, title, sweep, status, estimated, steps, iters, detailed, rejects, and alliters.
77	title	Analysis title.

Newton parameters

78	maxiters=5	Maximum number of iterations per time step.
79	restart=no	Restart the DC/PSS/QPSS solution if set to yes; if set to no, reuse the previous solution as initial guess; if set to firstonly, restart if it is first point of sweep; it is supported only in HB. The default value is no for HB and yes for shooting. Possible values are no, yes, and firstonly.

Circuit age

80	circuitage	(Years)	Stress time. Age of the circuit used to simulate hot-	
			electron degradation of MOSFET and BSIM circuits.	

Analysis Statements

Tstab save/restart parameters

81	ckptperiod	Checkpoint the analysis periodically by using the specified period.
82	saveperiod	Save the tran analysis periodically on the simulation time.
83	saveperiodhistory= no	Maintains the history of saved files. If yes , stores all the saved files. Possible values are yes and no .
84	saveclock (s)	Save the tran analysis periodically on the wall clock time. The default is 1800s for Spectre. This parameter is disabled in Spectre APS mode by default.
85	savetime=[]	Save the analysis states into files on the specified time points.
86	savefile	Save the analysis states into the specified file.
87	recover	Specify the file to be restored.

Compression parameters

88	xdbcompression="no"	Sets the automatic gain compression analysis. In automatic gain compression analysis, Spectre automatically sweeps the input excitation until the gain, as defined by the analysis parameter xdbgain, compresses by the amount specified by the analysis parameter xdblevel. In gain compression analysis, Spectre outputs the hb solution at the calculated compression point only. Dependent analyses, such as hbnoise and hbac, are supported and calculated about the calculated compression level. Auxiliary output includes the gain and voltage/power compression curves. These outputs are available for analysis and post-processing in ADE. The possible values are yes and no. Default is no.
89	xdblevel=1.0	Sets the gain compression level for compression analysis. The reference point for gain compression is the small-signal gain of the circuits, or as specified by the analysis parameter xdbref. Default is 1.

Analysis Statements

90	xdbgain="power"	Chooses between the voltage gain or transducer power gain as the target for compression point calculation. When $xdbgain=power$, the gain is defined as $G(dB) = Pload(dBm) - Pavailable(dBm)$. When $xdbgain=voltage$, the gain is defined as $G(dB) = dB20(Vload / Vsource)$. In both cases, Spectre sweeps the excitation source until $xdbref - G = xdblevel$, where the analysis parameter $xdbref$ defines the reference level for compression calculation. Possible values are power and $yoltage$. Default is power.
91	xdbref="linear"	Sets the reference point for gain compression calculations. When xdbref=linear, spectre uses the small-signal gain as the reference. When xdbref=max, spectre uses the maximum observed gain as the reference. Possible values are linear and max. Default is linear.
92	xdbsource	The instance name of the excitation source, which is swept automatically to reach the compression level. When xdbgain=power, the excitation source must be a port instance. When xdbgain=voltage, the excitation source must be a vsource instance.
93	xdbload	The instance name of the load termination. When xdbgain is power, xdbload can be a port, a resistor, or a current probe.
94	xdbnodep	The output terminals for voltage gain calculation when xdbgain=voltage. If either is left unspecified, the terminal is assumed to be the global ground.
95	xdbnoden	The output terminals for voltage gain calculation when xdbgain=voltage. If either is left unspecified, the terminal is assumed to be the global ground.
96	xdbrefnode	The reference node when $xdbload$ is a current probe. The default is the ground node.
97	xdbharm=[]	The Integer array which specifies the harmonic indexes of the output voltage or power component.
98	xdbsteps=100	The maximum number of steps for the compression point search. The simulator terminates if xdbsteps exceeds before the compression point is found. The default is 100.

Analysis Statements

99	xdbmax	The maximum input power (or voltage) for the compression point search. Default is 30 dBm when xdbgain=power and 2.0 V when xdbgain=voltage.
100	xdbstart	The starting input power (or voltage) for the compression point search. Default is (xdbmax-70) dBm when xdbgain=power, and xdbmax/20000 when xdbgain=voltage.
101	xdbtol=0.01	Sets the tolerance for compression analysis. This tolerance is used in compression curve fitting and calculating the compression point.
102	xdbrapid="no"	Sets the automatic gain compression analysis in rapid mode. In this mode, Spectre does not trace the compression curve and calculates only the compression point.
103	xdbcpi	Sets the estimated input-referred compression point for rapid compression analysis.
104	backoff	The backoff point. If defined, an additional harmonic balance analysis is performed after the compression analysis is done. Default is 0 dBm when xdbgain=power, and 0 V when xdbgain=voltage.

Memory estimation parameters

105 memoryestimate="no"

Analysis Statements

Sets the memory usage estimate for Harmonic Balance. If yes, a memory estimate is printed in the log file. You can use this memory estimate to plan the computing resources before submitting harmonic balance runs. In memory estimate mode, a short simulation is performed first, and the engine exits after printing the estimate in the log file without saving any results. If set to no, the simulation continues after the memory estimate is printed. Memory estimation is not recommended for simulations that require less than 500MB approximately. For PSS analysis, memory estimate mode does not apply unless flexbalance=yes. Possible values are no, and yes. memoryestimate=1 estimates the memory usage for large-signal analysis and memoryestimate=2 estimates both large-signal analysis and small-signal simulations.

Most of QPSS analysis parameters are inherited from PSS analysis and their meanings remain essentially unchanged. Two new important parameters are funds and maxharms. They replace and extend the role of fund and harms parameters of PSS analysis. One important difference is that funds accepts a list of fundamental names, instead of actual frequencies. The frequencies associated with fundamentals are figured out automatically by the simulator. An important feature is that each input signal can be a composition of more than one source. However, these sources must have the same fundamental name. For each fundamental name, its fundamental frequency is the greatest common factor of all frequencies associated with the name. Omitting fundamental name in the funds parameter is an error that stops the simulation. If maxharms is not given, a warning message is issued, and the number of harmonics defaults to 1 for each fundamental.

For QPSS analyses, the role of some PSS parameters is extended compared to their role in PSS analysis. In QPSS, the parameter maxperiods that controls the maximum number of shooting iterations for PSS analysis also controls the number of the maximum number of shooting iterations for QPSS analysis. Its default value is set to 50.

The tstab parameter controls both the length of the initial transient integration with only the clock tone activated and the number of stable iterations with moderate tones activated. The stable iterations are run before shooting or HB Newton iterations.

The errpreset parameter lets you adjust several simulator parameters to fit your needs. In most cases, errpreset should be the only parameter you need to adjust. If you want a fast simulation with reasonable accuracy, set errpreset to liberal. If you have some concern for accuracy, set errpreset to moderate. If accuracy is your main interest, set errpreset to conservative.

Analysis Statements

If you do not specify steadyratio, it is always 1.0, and it is not affected by errpreset. The following table shows the effect of errpreset on other parameters in shooting.

Parameter defaults as a function of errpreset					
errpreset	reltol	relref	method	lteratio	maxstep
liberal	1e-3	sigglobal	gear2only	3.5	clock period/80
moderate	1e-4	sigglobal	gear2only	3.5	clock period/100
conservative	1e-5	sigglobal	gear2only	*	clock period/200

^{*:} Iteratio=10.0 for conservative errpreset by default. However, when the specified reltol <= 1e-5*10.0/3.5, Iteratio is set to 3.5.

The new errpreset settings include a new default reltol that is actually an enforced upper limit for appropriate setting. An increase of reltol above the default is ignored by the simulator. You can decrease this value in the options statement. The only way to increase reltol is to relax errpreset. Spectre sets the value of maxstep so that it is no larger than the value given in the table. Except for reltol and maxstep, errpreset does not change the value of any parameters you have explicitly set. The actual values used for the QPSS analysis are given in the log file. If errpreset is not specified in the netlist, liberal settings are used

For HB, only reltol is affected by errpreset, and the effect is the same as that in shooting. However, lteratio remains 3.5 and steadyratio remains 1 with all values of errpreset.

With parameter hbhomotopy, you can specify harmonic balance homotopy selection methods. The possible values of parameter hbhomotopy and their meanings are as follows:

hbhomotopy=tstab: Simulator runs a transient analysis and generates an initial guess for harmonic balance analysis; it is recommended for nonlinear circuits or circuits with frequency dividers.

hbhomotopy=source: For driven circuit, simulator ignores tstab and accordingly increases the source power level; for oscillators, the simulator accordingly adjusts the probe magnitude until the probe has no effect on the oscillators. It is recommended for strongly nonlinear or high Q circuits

hbhomotopy=tone: This method is valid only for multi-tone circuit. The simulator first solves a single-tone circuit by turning off all the tones except the first one, and then solves the multi-tone circuit by restoring all the tones and using the single-tone solution as its initial guess; it is recommended for multi-tone simulation with a strong first tone.

Analysis Statements

hbhomotopy=inctone: Simulator first solves a single tone, then turns on moderate tones incrementally till all tones are enabled. It is recommended for circuits with one strong large tone.

hbhomotopy=gsweep: A resistor, whose conductance is g, is connected with each node, and the sweep of g is controlled by gstart, gstop, and glog. It is recommended for circuits containing high-impedance or quasi-floating nodes.

Parameter Index

In the following index, the number corresponding to each parameter name indicates where to find the description of that parameter.

annotate 75	hbpartition_harms	readns 28	title 77
annotateic 76	hbprecond_solver	readqpss 43	tone_homotopy 27
autoharms 3	ic 22	recover 87	tstab 14
autosteady 16	inexactNewton 56	relref 48	tstart 18
autotstab 15	itres 55	restart 79	useprevic 25
axisbw 8	krylov_size 72	save 30	write 39
backoff 104	lowmem 74	saveclock 84	writefinal 40
backtracking 70	lteminstep 50	savefile 86	writeqpss 42
circuitage 80	lteratio 49	saveinit 38	xdbcompression 88
ckptperiod 81	mappingfft 7	saveperiod 82	xdbcpi 103
cmin 29	max_innerkrylov_s ize 53	saveperiodhistory 83	xdbgain 90

Spectre Circuit Simulator Reference Analysis Statements

errpreset 47	<pre>max_outerkrylov_s ize 54</pre>	savetime 85	xdbharm 97
evenodd 5	maxacfreq 20	selectharm 4	xdblevel 89
excludeconvgwithB K 71	maxharms 2	selharmread 44	xdbload 93
finitediff 57	maximorder 6	selharmvec 10	xdbmax 99
flexbalance 59	maxiters 78	selharmwrite 45	xdbnoden 95
freqdivide 12	maxperiods 52	skipcount 35	xdbnodep 94
freqdividevector 13	maxstep 19	skipdc 23	xdbrapid 102
funds 1	memoryestimate	skipstart 33	xdbref 91
glog 69	method 46	skipstop 34	xdbrefnode 96
gstart 67	minialiasorder 9	stabcycles 17	xdbsource 92
gstop 68	nestlvl 31	steadyratio 51	xdbstart 100
harmlist 11	oppoint 32	step 21	xdbsteps 98
harmonicbalance 58	oscic 26	strobedelay 37	xdbtol 101
hbhomotopy 66	oversample 64	strobeperiod 36	
hbpartition_defs	oversamplefactor	swapfile 41	
hbpartition_fundratios 61	readic 24	sweepic 65	

Quasi-Periodic Transfer Function Analysis (qpxf)

Description

A conventional transfer function analysis computes the transfer function from every source in the circuit to a single output. Unlike a conventional AC analysis that computes the response from a single stimulus to every node in the circuit, the Quasi Periodic Transfer Function or QPXF analysis computes the transfer functions from any source at any frequency to a single output at a single frequency. Thus, like QPAC analysis, QPXF analysis includes frequency conversion effects.

The QPXF analysis directly computes such useful quantities as conversion efficiency (transfer function from input to output at required frequency), image and sideband rejection (input to output at undesired frequency), and LO feed-through and power supply rejection (undesired input to output at all frequencies).

As with a QPAC, QPSP, and QPNOISE analyses, a QPXF analysis must follow a QPSS analysis.

Unlike other analyses in Spectre, this analysis can only sweep frequency.

For information on how to run QPXF analysis from ADE, see *QPXF Analysis* in the *Spectre Circuit Simulator and Accelerated Parallel Simulator RF Analysis User Guide*.

Definition

```
Name [p] [n] qpxf parameter=value ...
```

The optional terminals (p and n) specify the output of the circuit. If you do not specify the terminals, you must specify the output with a probe component.

Parameters

Sweep interval parameters

1	start=0	Start sweep limit.	
2	stop	Stop sweep limit.	
3	center	Center of sweep.	

Analysis Statements

4	span=0	Sweep limit span.
5	step	Step size, linear sweep.
6	lin=50	Number of steps, linear sweep.
7	dec	Points per decade.
8	log=50	Number of steps, log sweep.
9	values=[]	Array of sweep values.
10	valuesfile	Name of the file containing the sweep values.
11	sweeptype	Specifies if the sweep frequency range is an absolute frequency, that is, the actual frequency, or if it is relative to the "relharmvec" sideband frequency. Possible values are absolute and relative.
12	relharmvec=[]	Sideband- vector of QPSS harmonics- to which relative frequency sweep should be referenced.

Probe parameters

13	probe	Compute every transfer function to this probe
		component.

Output parameters

14	stimuli=sources	Stimuli used for xf analysis. Possible values are sources and nodes_and_terminals.
15	sidevec=[]	Array of relevant sidebands for the analysis.
16	clockmaxharm=7	An alternative to the sidevec array specification, which automatically generates the array: [-clockmaxharm 0 +clockmaxharms][-maxharms(QPSS)[2]0maxharms(QPSS)[2]][].
17	freqaxis	Specifies whether the results should be printed as per the input frequency, the output frequency, or the absolute value of the input frequency. The default is absin. Possible values are absin, in, and out.

Analysis Statements

18	save	Signals to output. Possible values are all, lvl,
.0	Save	allpub, lvlpub, selected, none, and nooutput.
19	nestlvl	Levels of subcircuits to output.

Convergence parameters

20	tolerance	Relative tolerance for linear solver; the default value is 1.0e-9 for shooting-based solver and 1.0e-6 for harmonicbalance-based solver.
21	relativeTol	Relative tolerance for harmonicbalance-based linear solver; the default value is 1.0e-2.
22	gear_order=2	Gear order used for small-signal integration, 1 or 2.
23	solver=turbo	Solver type. Possible values are std or turbo.
24	resgmrescycle=short	
		Restarts GMRES cycle. Possible values are instant, short, long, recycleinstant, recycleshort, custom, and recyclelong.
25	hbprecond_solver=a utoset	Select a linear solver for the GMRES preconditioner. Default is autoset. With autoset, the simulator will automatically select the appropriate preconditioner. The preconditioner affects the rate of convergence of the linear matrix solver used in periodic small-signal analysis. When autoset is selected, the simulator may decide to switch to a different preconditioner after the analysis begins. When that happens, the simulator may issue a warning instructing you to choose a different preconditioner during subsequent runs. Although not required, choosing a different preconditioner according to the simulator's instructions may speed up subsequent analyses. Possible values are basicsolver, blocksolver, autoset, blockdense, and blocksolver2.

Analysis Statements

26	lowmem=0	Harmonic balance low memory mode. Possible values are 0, 1, or number (>=10). The default value is 0, it indicates that the low memory mode is turned off; if 1 is set, the standard low memory mode is turned on; if a number greater that or equal to 10 is set, Spectre interprets the value as memory requested in Gigabytes.
27	krylov_size=200	The maximum iteration count of the linear matrix solver used in periodic small-signal analysis. After reaching 1.25*krylov_size iterations, the iteration is forced to terminate because of the poor rate of convergence. Increase krylov_size if the simulation reports insufficient norm reduction errors in GMRES.

Annotation parameters

28	annotate=sweep	Degree of annotation. Possible values are no, title, sweep, status, steps, and detailed_hb.
29	title	Analysis title.

The variable of interest at the output can be voltage or current, and its frequency is not constrained by the period of the large periodic solution. While sweeping the selected output frequency, select the periodic small-signal input frequencies of interest by setting either the clockmaxharm or sidevec parameter. Sidebands are vectors in QPXF. Assuming that there is one large tone and one moderate tone in QPSS, a sideband K1 is represented as [K1_1 K1_2]. The corresponding frequency is as follows:

```
K1_1 * fund (large tone of QPSS) + K1_2 * fund (moderate tone of QPSS)
```

In addition, assume that there are L (1 large plus L-1 moderate) tones in QPSS analysis and a given set of n integer vectors representing the sidebands:

$$K1 = \{ K1 1, ... K1 j..., K1 L \} , K2, ... Kn.$$

The input signal frequency at each sideband is computed as follows:

```
f(in) = f(out) + SUM_j=1_to_L{Ki_j * fund_j(qpss)},
```

where, f(out) represents the (possibly swept) output signal frequency, and fund_j(pss) represents the fundamental frequency used in the corresponding QPSS analysis. Thus, when analyzing a down-converting mixer and sweeping the IF output frequency, Ki= $\{1, 0\}$ for the RF input represents the first upper-sideband, while Ki= $\{-1, 0\}$ for the RF input represents the first lower-sideband.

Analysis Statements

Enter sidevec as a sequence of integer numbers, separated by spaces. The set of vectors {1 1 0} {1 -1 0} {1 1 1} becomes sidevec=[1 1 0 1 -1 0 1 1 1]. For clockmaxharm, only the large tone- the first fundamental is affected; the rest- moderate tones- are limited by maxharms, specified for a QPSS analysis. Given maxharms=[k1max k2max . . . knmax] in QPSS and clockmaxharm=Kmax, all (2*Kmax + 1)*(2*k2max+1)* (2*k3max+1)*...*(2*knmax+1) sidebands are generated.

The number of requested sidebands changes substantially the simulation time.

With QPXF, the frequency of the stimulus and of the response are usually different (this is an important area in which QPXF differs from XF). The freqaxis parameter is used to specify whether the results should be output versus the input frequency (in), the output frequency (out), or the absolute value of the input frequency (absin).

You can specify the output with a pair of nodes or a probe component. Any component with two or more terminals can be a voltage probe. When there are more than two terminals, they are grouped in pairs, and you use the porty parameter to select the appropriate pair of terminals. Alternatively, you can specify a voltage to be the output by giving a pair of nodes on the QPXF analysis statement.

Any component that naturally computes current as an internal variable can be a current probe. If the probe component computes more than one current, you use the portiparameter to select the appropriate current. It is an error to specify both porty and portiparameter is specified, the probe component provides a reasonable default.

The stimuli parameter specifies the inputs for the transfer functions. There are two choices. stimuli=sources indicates that the sources present in the circuit should be used. The xfmag parameters provided by the sources may be used to adjust the computed gain to compensate for gains or losses in a test fixture. You can limit the number of sources in hierarchical netlists by using the save and nestlvl parameters. stimuli=nodes_and_terminals indicates that all possible transfer functions should be computed.

This is useful when it is not known in advance which transfer functions are interesting. Transfer functions for nodes are computed assuming that a unit magnitude flow (current) source is connected from the node to ground. Transfer functions for terminals are computed assuming that a unit magnitude value (voltage) source is connected in series with the terminal. By default, the transfer functions from a small set of terminals are computed. If transfer functions from specific terminals are required, specify the terminals in the save statement. You must use the :probe modifier (for example, Rout:1:probe) or specify useprobes=yes on the options statement. If transfer functions from all terminals are required, specify currents=all and useprobes=yes on the options statement.

Analysis Statements

You can specify sweep limits by specifying the end points or the center value and span of the sweep. Steps can be linear or logarithmic, and you can specify the number of steps or the size of each step. You can specify a step size parameter (step, lin, log, or dec) to determine whether the sweep is linear or logarithmic. If you do not specify a step size parameter, the sweep is linear when the ratio of stop to start values is less than 10 and logarithmic when this ratio is 10 or greater. Alternatively, you may specify the values that the sweep parameter should take by using the values parameter. If you specify both a specific set of values and a set specified using a sweep range, the two sets are merged and collated before being used. All frequencies are in Hertz.

Parameter Index

In the following index, the number corresponding to each parameter name indicates where to find the description of that parameter:

annotate 28	lin 6	save 18	sweeptype 11
center 3	log 8	sidevec 15	title 29
clockmaxharm 16	lowmem 26	solver 23	tolerance 20
dec 7	nestlvl 19	span 4	values 9
freqaxis 17	probe 13	start 1	valuesfile 10
gear_order 22	relativeTol 21	step 5	
hbprecond_solver	relharmvec 12	stimuli 14	
krylov_size 27	resgmrescycle 24	stop 2	

Analysis Statements

Reliability Analysis (reliability)

Description

This analysis computes the reliability for MOSFETs and the circuit. The three reliability modules are:

- MOSFET Hot-Carrier Injection (HCI) module
 - Predicts transistor and circuit performance degradation due to HCI effects
- PMOSFET Negative Bias Temperature Instability (NBTI) module:
 - Predicts PMOSFET and circuit performance degradation due to NBTI and NBTI recovery effects
- NMOSFET Positive Bias Temperature Instability (PBTI) module:
 - Predicts NMOSFET and circuit performance degradation due to PBTI effects

Synopsis:

Note: Starting from MMSIM10.1.0 release version, the <global options> are ignored.

The other four sections should be listed in the specified order.

Also see <u>Spectre Reliability Analysis</u> in the Spectre Classic Simulator, Spectre APS, Spectre X, and Spectre XPS User Guide.

Definition

```
Name reliability parameter=value ...
```

Parameters

1 Analysis parameters

Analysis title

2	age time=[]	The time in the future when the transistor degradation and degraded SPICE model parameters are to be calculated.
3	deltad value=0.0	Specifies the degradation value.
4	deltad mod=[]	Specifies the name of a model whose lifetime is calculated. The model name must be the same as that specified in the .model card.
5	maskdev type=include	
		Includes or excludes the specified devices or the devices that belong to the listed subcircuit or model during reliability analysis. Possible values are include and exclude.
6	deg_ratio type=include	Includes or excludes the specified devices for built-in agemos model. Possible values are include and exclude.
7	deg_ratio dev=[]	Specifies the instances to be included or excluded for degradation ratio for built-in agemos model.
8	maskdev mod=[]	Specifies the models for which the related devices should be included or excluded while performing reliability analysis.
9	maskdev dev=[]	Specifies the instances to be included or excluded during reliability analysis.
10	maskdev sub=[]	Specifies the subcircuits for which the related devices should be included or excluded while performing reliability analysis.
11	report_model_param value=n	0
		Determines whether to print the stress and aged parameters in the.bm# file. Possible values are no and yes.
12	load_external_cmi value=no	Load the external user-defined CMI flag. Possible values are ${\tt no}$ and ${\tt yes}.$
13	load_external_cmi debug=no	The flag of outputting the debug information for loading external customer- defined CMI shared library.

Spectre Circuit Simulator Reference Analysis Statements

14	accuracy level=1	Specifies methods to be used in the reliability simulation when performing integration and substrate current calculation. Possible values are 1 and 2.
15	minage value=0.0	Specifies the smallest age value for which degraded SPICE model parameters are calculated.
16	igatemethod type=calc	
		Specifies the method used for obtaining the gate currents of MOSFETs. Possible values are calc and spice.
17	idmethod type=ids	
		Specifies how the simulator obtains the drain current (Id) of MOSFETs to perform reliability calculations. Possible values are ids (Ids static current), idrain (dynamic gate current), and idstatic (terminal static current).
18	dumpagemodel file	Output file name of dump age model.
19	dumpagemodel dev=[]	Specifies the instances whose aged modelcard will be output.
20	urilib file	Specifies URI library file name.
21	urilib uri_mode=scaleparam	Specifies which method should be used to perform aging simulation.
		appendage mode is not supported in the MMSIM10.1.0 release. Possible values are agemos, appendage, scaleparam, new_appendage, new_appendage1, and appendage2.
22	urilib debug=0	Specifies the debug mode for URI library. The value can be 0 or 1. When specified, a flag is added to the URI library indicating whether the debug information should be printed. debug-Mode=1 prints debug messages. The default value is 0.
23	relxtran start=0.0	Specifies the start time of reliability analysis during transient simulation.

Spectre Circuit Simulator Reference Analysis Statements

24	relxtran stop=0.0	Specifies the stop time of reliability analysis during transient simulation. If stop_time is not specified, the software stops in .tran statement.
25	isubmethod type=calc	Specifies the method used for obtaining the substrate currents of MOSFET. Possible values are calc and spice.
26	opmethod type=calc	Specifies whether the Igate or Isub value should be obtained from the SPICE models (such as, BSIM3 or BSIM4) or whether the internal Igate or Isub equation should be used. Possible values are calc and spice.
27	degsort threshold=0.0	Prints MOS transistors based on the threshold and number settings. The results are sorted in the descending order of degradation.
28	degsort number=0	Prints only the specified number of transistors having the highest degradations. For example, if number=100, the software will print the first 100 transistors with highest degradations.
29	agelevelonly value=[]	
		Sets the level for reliability analysis, which is essentially the age level number of the reliability analysis to be performed.
30	gradual_aging_agestep type	=lin
		Sets the type of agestep, linear or logarithm, the default type is linear. Possible values are lin and log .
31	gradual_aging_agestep star	t=0
		Specifies the start time of agestep in gradual aging flow, the default value is 0.
32	gradual_aging_agestep stop	=0
		Specifies the stop time of agestep in gradual aging flow.
33	gradual_aging_agestep tota	l step=1
		Specifies the total step numbers of agestep in gradual aging flow.

34	<pre>gradual_aging_agepoint points=[]</pre>		
		Specifies points of agepoints.	
35	<pre>gradual_aging_save steps=[</pre>]	
		Save the specified step of gradual aging result files.	
36	gradual_aging_save savedat	ainseparatedir	
		Dump the waveform files in a separate directory for gradual aging result files. Possible values are no or yes.	
37	gradual_aging_alter_times=	[]	
		Set time for gradualAging alter.	
38	gradual_aging_alter_params	=[]	
		Set params for gradualAging alter.	
39	gradual_aging_alter_values	=[]	
		Set values for gradualAging alter.	
40	simmode type	Mode of reliability analysis. Possible values are stress, aging, and all.	
41	simmode file	File of simMode.	
42	simmode tmifile	Input file for TMI Aging flow.	
43	macrodevice sub=[Specifies the instances for macrodevice.	
44	combinedeg value=no	Determines whether to combine the external URI results with internal URI results in the boo file. Possible values are no and yes.	
45	keep_aged_data value=yes	Determines whether to keep the value of the aged model parameters after reliability analysis. Possible values are no and yes.	
46	<pre>check_neg_aging type=error</pre>	Specifies the message type to check the negative value in bt0. Possible values are error, warn, and ignore. Default is error.	
47	check_neg_aging clamp=no	Clamps the negative age value in the bt0 file. Possible values are no and yes .	
48	enable_native_age value=no	Enable the negative age value. Possible values are ${\tt no}$ and ${\tt yes}.$	

49	output_binary_file value=no	Specifies reliability analysis output file format. Possible values are no and yes.
50	deg_ratio hci=1.0	The degradation ratio for HCI effect.
51	deg_ratio nbti=1.0	The degradation ratio for NBTI effect.
52	deg_ratio pbti=1.0	The degradation ratio for PBTI effect.
53	deg_ratio bti=1.0	The degradation ratio for NBTI/PBTI effect.
54	type_urilib append=inline	
		Compatibility with RelXpert. Possible values are inline, sub, and dev.
55	enable_ade_process value=no	0
		Enables reliability in ADE. Possible values are no and yes.
56	output_op_degrad type=agem	os
		Specify the type of output_op_degrad. Possible values are agemos and appendage
56	macrodevice type=appendpara	ams
		Specifies the instances for macrodevice. Possible values are appendparams and agemos.
57	tmi_aging_mode type	Mode of tmi aging flow. Possible values are aging, she, and all.
58	output_region_param value=no	
		Prints the region method of the parameter. Possible values are no and yes.
59	tmi_she_mindtemp value=0.0	The minimun delta temperature of self-heating.
60	enable_tmi_uri value=no	Enable the TMI and URI flow. Possible values are no and yes .
61	fast_aging_mode type	Mode of XPS native reliability. Possible values are agemos and ratio.
62	aging_analysis_name value=	no
		Aging analysis name. Possible values are ${\tt tran}, {\tt dc}, {\tt and} {\tt ac}.$

63	deg_ratio hcin=1.0	The degradation ratio for NMOS HCI effect.
		Note: This option is for TMI aging flow only.
64	deg_ratio hcip=1.0	The degradation ratio for PMOS HCI effect.
		Note: This option is for TMI aging flow only.
65	deg_ratio btin=1.0	The degradation ratio for PBTI effect.
		Note: This option is for TMI aging flow only.
66	deg_ratio btip=1.0	The degradation ratio for NBTI effect.
		Note: This option is for TMI aging flow only.
67	output_device_degrad vdd=[]
		Sets the bias voltage for the device degradation.
68	output_device_degrad tmi_l	.ib_inc
		Sets the TMI library include/section for gm/gds degradation.
69	deltad item	Specifies the electrical parameter for lifetime estimation. It is only available for TMI aging flow. Possible values are didsat, didlin, dvtlin, and lifetime.
70	degsort item=0	Specifies which item is used for sorting. It is only available for TMI aging flow.
71	<pre>output_device_degrad vdlin=[]</pre>	Sets the bias voltage of vdlin for the device degradation.
72	<pre>output_device_degrad vgsat=[]</pre>	Sets the bias voltage of vgsat for the device degradation.
73	<pre>output_device_degrad vglin=[]</pre>	Sets the bias voltage of vglin for the device degradation.
74	degsort phys	Specify which reliability effect should be used for sorting. It is only available for TMI aging flow. Possible values are hci_bti, hci, and bti.
75	<pre>output_inst_param list=[]</pre>	Specify the parameter names to be output into bo0 or psf file.

Spectre Circuit Simulator Reference Analysis Statements

76	<pre>degradation_check_excep- tion file</pre>	Set degradation check exception list.	
77	degradation_check type	Specify the message type(warning or error) for degradation_check. Possible values are warn and error.	
78	degradation_check parame- ter	Specify the degradation_check parameter's name. Possible values are deltad, dvth, didlin, didsat, did, dgm, and dgds.	
79	degradation_check value=DBL_MAX	Specify the degradation_check value.	
80	degradation_check age- level=-1	Specify the degradation_check agelevel.	
81	degradation_check error	Set degradation check error message output file.	
82	<pre>degradation_check_output file</pre>	Set degradation check result output file.	
83	rel_mode type	Specifies the analysis type used for obtaining the device reliability values.	
84	rel_mode tmode	Specifies the temperature mode. Possible values are static and dynamic.	
85	gradual_aging_with_deg value=no		
		Call calcDegradation before calcAge in gradual aging flow. Possible values are no and yes.	
86	<pre>degradation_check sub=[]</pre>	Set subckt for degradation check.	
87	<pre>degradation_check dev=[]</pre>	Set device for degradation check.	
88	<pre>degradation_check mod=[]</pre>	Set model for degradation check.	
89	output_she_power value=no	Output device power in SHE flow. Possible values are no and yes.	
90	enable_tmishe_uri value=no	Enable TMI and URI flow and pass dtemp of TMI into URI. Possible values are no and yes.	

91	skip_tmi_aging_she_tran value	The flag whether to run transient of aging+SHE. Possible values are no and yes.
92	output_device_degrad file	Specifies file included output_device_degrad options.
93	vdsmethod type=external	Specifies to get external or internal voltage of Vds. Possible values are external and internal.
94	output_device_degrad skipa	ging=no
		Output bt0 file and skip aging analysis for saving time. Possible values are no and yes.
95	deg_table_line_break value	=yes
		Specifies whether to break line when device name is too long in degradation table. Possible values are no and yes.
96	param_output_inst_param so	rt
		Specify the parameter name, whose value is used to sort output order.
97	params_output_inst_param s	um=[]
		Specify the parameter names, the sum of them values is output file.
98	output_subckt_degrad vdd=[]
		Sets the bias voltage for the subckt degradation.
99	output_subckt_degrad vdlir	n=[]
		Sets the bias voltage of vdlin for the subckt degradation.
100	output_subckt_degrad vgsat	==[]
		Sets the bias voltage of vgsat for the subckt degradation.
101	output_subckt_degrad vglir	n=[]
		Sets the bias voltage of vglin for the subckt degradation.
102	output_subckt_degrad sub=[]
		Sets the subckt name to do subckt degradation.

Spectre Circuit Simulator Reference Analysis Statements

100	Г 1		
103 output_subckt_degrad node=[]			
	Sets subckt terminal nodes mapping to drain, gate, source and bulk for subckt degradation.		
104 enable_tmi_uri tmishe=no			
	Enable TMI and URI flow and pass dtemp of TMI into URI.Possible values are no and yes .		
105 output_subckt_degrad file	Specifies file included output_subckt_degrad options.		
<pre>106 output_subckt_degrad ivthp=0.0</pre>	Sets PMOS vth current, it has higher priority than ivth defined in global option.		
<pre>107 output_subckt_degrad ivthn=0.0</pre>	Sets NMOS vth current, it has higher priority than ivth defined in global option.		
<pre>108 output_subckt_degrad ivth=[]</pre>	Sets constant vth current for specified model.		
109 degsort value=no	Specifies to enable to sort degradation data in decreasing order. Possible values are no and yes.		
110 agelevelonly type=include			
	Includes or excludes the specified aging levels. Possible values are include and exclude.		
111 preset age=0.0	Specifies age value for preset.		
112 preset agelevel	Specifies age level for preset.		
113 preset mod=[]	Specifies model list for preset.		
114 preset dev=[]	Specifies device list for preset.		
115 preset deg=0.0	Specifies degradation value for preset.		
116 preset lifetime=0.0 s	Specifies lifetime value (unit is second) for preset.		
117 preset sub=[]	Specifies subckt list for preset.		
118 urilib scale_mode=original			

Analysis Statements

Specifies parameter scale mode for URI library. The value can be original or effective. If value is original, send original parameter value to URI for param scale, else send effective value. Possible values are original and effective.

119 gradual_aging_pass_param value=no

Whether to pass URI instance state to next gradual aging step.

Possible values are no and yes.

120 gradual_aging_early_exit value=no

Whether to enable early exit in gradual aging flow.

Possible values are no and yes.

121 win_relxtran mult=[...]

Specifies multiple time windows for reliability analysis.

122 gradual_aging_early_exit time

Gradual aging time from which early exit is triggered.

123 output_subckt_degrad correct_bias_voltage=yes

Specifies whether to correct the sign of voltage bias defined in output_subckt_degrad for reliability analysis.

Possible values are no and yes.

124 output_device_degrad correct_bias_voltage=yes

Specifies whether to correct the sign of voltage bias defined in output_device_degrad for reliability analysis.

Possible values are no and yes.

125 bias voltage output device degrad output=no

Specifies whether to output the model names and their bias conditions defined in output_device_degrad to bt0 and bt0.dpl files. Possible values are no and yes.

Analysis Statements

126 output_device_degrad keep_zero_result

Output all the devices included devices of zero degradation in bt0 file.

Possible values are no and yes.

Detailed Description and Examples:

```
age time=[...]
```

The duration in the future at which the transistor degradation and degraded SPICE model parameters are to be calculated. The degraded SPICE model parameters are used in aged circuit simulation. The calculated transistor degradation can be transconductance, linear or saturation drain current, degradation, threshold voltage shift, and or any other degradation monitor. While specifying the value, attach the suffix y (year), h (hour), or m (minute). There should be no space between the number and the suffix. For example, 10m, 1e-5sec. Note: Currently, specifying multiple time values is not supported.

```
deltad value=<deltad_value>
```

Requests the calculation of lifetime for each transistor under the circuit operating conditions by using the specified degradation value. You can use multiple deltad statements for different types of transistors. The degradation value can be transconductance, linear or saturation drain current degradation, threshold voltage shift, or any other degradation monitor, depending on the definitions of the lifetime parameters H and m. deltad_value can be in decimal notation (xx.xx) or in engineering notation (x.xxe+xx).

```
maskdev type={include | exclude} {sub=<subckt_list> |
mod=<model_list> | dev=<device_list>}
```

Includes or excludes the specified devices or the devices that belong to the listed subcircuit or model during reliability analysis.

Note: Starting from MMSIM10.1, the include and exclude values are mutually exclusive.

```
report_model_param value={yes | no} (defaults to no)
```

Determines whether to print the stress and aged parameters in the.bm# file. Possible values are yes and no. When set to yes, the stress and aged parameters are printed to the .bm# file.

```
accuracy level={1 | 2}(defaults to 1)
```

Specifies methods used in the reliability simulation when performing integration and substrate current calculation. In other words, specifies trapezoidal integration when performing

Analysis Statements

integrations and calculates Isub for Vgs < Vth. When set to 1, the software uses backward Euler integration and sets Isub=0 when Vgs < Vth. When set to 2, the software uses trapezoidal integration and calculates Isub when Vgs < Vth. Setting accuracy to 2 is more accurate, but increases simulation time when compared to when accuracy is set to 1.

```
minage value=<minage_value>
```

Specifies the smallest Age value for which degraded SPICE model parameters are calculated. This statement speeds up aging calculation by using stress SPICE model parameters if the transistor Age value is smaller than the specified minage_value.

minage_value can be in decimal notation (xx.xx) or in engineering notation (x.xxe+xx).

```
igatemethod type={calc | spice}(defaults to calc)
```

Specifies the method used for obtaining the gate terminal current of a MOSFET. During MOSFET HCI simulation, the gate terminal current is required for calculating the degradation value. The simulator can either calculate this value or obtain it from the SPICE output rawfile, if the SPICE simulator in use provides such an option. If this command is not used, the simulator calculates the gate terminal current by using its own model parameters. Possible values are calc (default) and spice. When calc is specified, the gate terminal current is calculated using the model parameters, and when spice is specified, the gate terminal current value is obtained from the SPICE output rawfile.

```
idmethod type={ids | idrain} (defaults to ids)
```

Specifies how the simulator obtains the drain current (Id) to perform reliability calculations. The following types of drain currents, which are available from SPICE, are supported by reliability analysis:

- * Dynamic drain current (also called AC drain current)- the current that flows into the drain node.
- * Static drain current (also called channel drain current, DC drain current, or Ids)- Possible values are ids (Ids static current) or idrain (dynamic drain current). The default is ids.

```
uri_lib file={"filename"} uri_mode={agemos | appendage} debug={0 | 1}
```

Loads the Unified Reliability interface (URI) shared library and specifies which method (uri_mode) should be used to perform aging simulation.

Note: appendage mode is not supported in the MMSIM10.1 release.

```
relx_tran start=<start_time> stop=<stop_time>
```

Analysis Statements

Specifies the start and stop time for reliability analysis during transient analysis. If stop_time is not specified, the software stops in .tran statement.

```
isubmethod type={calc | spice}(defaults to calc)
```

Specifies the method used for obtaining substrate terminal current of a MOSFET. During MOSFET HCI simulation, the substrate terminal current is required for calculating the degradation value. The Spectre RelXpert simulator can either calculate this value or obtain it from the SPICE output rawfile, if the SPICE simulator in use provides such an option. If this command is not used, the simulator calculates the substrate terminal current by using its own model parameters. Possible values are calc (default) and spice. When calc is specified, the substrate terminal current is calculated using the model parameters, and when spice is specified, the substrate terminal current value is obtained from the SPICE output rawfile.

```
opmethod type={calc | spice}(defaults to calc)
```

Specifies whether the Igate or Isub value should be obtained from the SPICE models (for example, BSIM3 or BSIM4) or the internal Igate or Isub equation should be used. Possible values are calc or spice. calc calculates the gate and substrate terminal current by using the Cadence Igate and Isub model equations (default). spice obtains the gate and substrate terminal current value from the SPICE model.

```
degsort {threshold=<threshold_value> | number=<number_value>}
```

Prints MOS transistors based on the threshold value or number settings. The results are sorted in the descending order of degradation.

Note: The threshold and number arguments are mutually exclusive. Therefore, only one of them can be specified with degsort to print the sorted device degradation results. When threshold_value is specified, the transistors that have degradation values greater than the threshold value are printed. The threshold value can be in decimal notation (xx.xx) or in engineering notation (x.xxe+xx). When number_value is specified, only the first <number_value> transistors having the highest degradations are printed. For example, if number=100, the software will print the first 100 transistors with highest degradations.

```
agelevel_only value=[<level_value> <model_list>, <level_value>
<model_list>, ...]
```

Specifies the age level for performing reliability analysis on the specified models. You can specify different age levels for different set of models.

Note: This option also supports the URI-defined agelevel statement. If model names are not specified, the simulation is performed on all the devices at the specified age level. The following levels can be used to specify Cadence internal ageMOS models:

Analysis Statements

- * 1: Specifies HCI reliability analysis.
- * 2: Specifies NBTI reliability analysis.
- * 3: Specifies PBTI reliability analysis.

Example:

```
rel reliability {
   // reliability control statements
    age time = [10h 20y 30y]
    deltad value = 0.1
    accuracy level = 2
    agelevel only value=[0 nch, 1 pch]
    relx tran start=1us stop=10us
    idmethod type=idrain
    maskdev type=include mod=[pch] dev=[mdut6] sub=[inv]
    minage value = 0.00001
    report model param value=yes
    uri lib file="./libURI.so" uri mode=agemos debug=1
    degsort number=100
    igatemethod type=spice
    isubmethod type=spice
    opmethod type=spice
    // stress/stress statements.
    tran stress tran start=0 step=1us stop=10us
    // aging testbench statements.
    change1 alter param=rel temp value=125
    // aging simulation statements.
    tran aged tran start = 0 step = 1us stop = 10us
```

Parameter Index

In the following index, the number corresponding to each parameter name indicates where to find the description of that parameter:

Analysis		degsort number	keep_aged_data	output_subckt_deg
parameters	1	28	value 45	rad vdlin 99

accuracy level	degsort phys 74	load_external_cmi debug 13	output_subckt_deg rad vglin 101
age time 2	degsort threshold 27	load_external_cmi value 12	output_subckt_deg rad vgsat 100
agelevel_only value 29	degsort value 109	macrodevice sub	param_output_inst _param sort 96
agelevelonly type 110	deltad item 69	macrodevice type 56	<pre>params_output_ins t_param sum 97</pre>
aging_analysis_na me value 62	deltad mod 4	maskdev dev 9	preset age 111
bias_voltage_outp ut_device_degrad output 125	deltad value 3	maskdev mod 8	preset agelevel 112
check_neg_aging clamp 47	dumpagemodel dev 19	maskdev sub 10	preset deg 115
check_neg_aging type 46	dumpagemodel file 18	maskdev type 5	preset dev 114
combinedeg value	enable_ade_proces s value 55	minage value 15	preset lifetime 116
deg_ratio bti 53	enable_negative_a ge value 48	opmethod type 26	preset mod 113
deg_ratio btin 65	enable_tmi_uri tmishe 104	output_binary_fil e value 49	preset sub 117
deg_ratio btip 66	enable_tmi_uri value 60	output_device_deg rad correct_bias_volt age 124	rel_mode tmode 84
deg_ratio dev 7	enable_tmishe_uri value 90	output_device_deg rad file 92	rel_mode type 83

deg_ratio hci 50	<pre>fast_aging_mode type 61</pre>	output_device_deg rad keep_zero_result 126	relxtran start 23
deg_ratio hcin 63	gradual_aging_age point points 34	output_device_deg rad skipaging 94	relxtran stop 24
deg_ratio hcip 64	<pre>gradual_aging_age step start 31</pre>	<pre>output_device_deg rad tmi_lib_inc 68</pre>	report_model_para m value 11
deg_ratio nbti 51	<pre>gradual_aging_age step stop 32</pre>	output_device_deg rad vdd 67	simmode file 41
deg_ratio pbti 52	<pre>gradual_aging_age step total_step 33</pre>	output_device_deg rad vdlin 71	simmode tmifile
deg_ratio type 6	<pre>gradual_aging_age step type 30</pre>	output_device_deg rad vglin 73	simmode type 40
deg_table_line_br eak value 95	gradual_aging_alt er param 38	output_device_deg rad vgsat 72	skip_tmi_aging_sh e_tran value 91
degradation_check agelevel 80	gradual_aging_alt er time 37	output_inst_param list 75	tmi_aging_mode type 57
degradation_check dev 87	gradual_aging_alt er value 39	output_region_par am value 58	tmi_she_mindtemp value 59
degradation_check error 81	<pre>gradual_aging_ear ly_exit time 122</pre>	output_she_power value 89	type_urilib append 54
degradation_check mod 88	gradual_aging_ear ly_exit value 120	<pre>output_subckt_deg rad correct_bias_volt age 123</pre>	urilib debug 22

degradation_check parameter 78		output_subckt_deg rad file 105	urilib file 20
degradation_check sub 86	gradual_aging_sav e savedatainseparat edir 36	output_subckt_deg rad ivth 108	urilib scale_mode 118
degradation_check type 77	<pre>gradual_aging_sav e steps 35</pre>	output_subckt_deg rad ivthn 107	
degradation_check value 79	gradual_aging_wit h_deg value 85	output_subckt_deg rad ivthp 106	
<pre>degradation_check _exception file 76</pre>	idmethod type 17	output_subckt_deg rad node 103	_
degradation_check _output file 82		output_subckt_deg rad sub 102	
degsort item 70	isubmethod type	output_subckt_deg rad vdd 98	

Deferred Set Options (set)

Description

The deferred set options statement sets or changes various program control options. You can set the options in any order, and, once set, the options retain their value until reset. The set statement is queued with all analyses and is executed sequentially (The changes made to these options are deferred until the statement setting them is encountered). To set temp, tnom, scalem, or scale, use the alter statement. For further options, see individual analyses.

Also see <u>The set Statement</u> in the Spectre Classic Simulator, Spectre APS, Spectre X, and Spectre XPS User Guide.

Definition

Name set parameter=value ...

Parameters

Tolerance parameters

1	reltol=0.001	Relative convergence criterion.
2	residualtol=1.0	Tolerance ratio for residual (multiplies reltol).
3	vabstol=1.0e-6 V	Voltage absolute tolerance convergence criterion.
4	iabstol=1.0e-12 A	Current absolute tolerance convergence criterion.

Temperature parameters

5 tempeffects=all	Temperature effect selector. If tempeffect = vt, only thermal voltage varies with temperature; if tempeffect = tc, parameters that start with tc are active and thermal voltage is dependent on temperature; and if tempeffect = all, all built-in temperature models are enabled. Possible values are vt, tc, and all.
-------------------	---

Analysis Statements

Convergence parameters

6	homotopy=all	Method used when no convergence on initial attempt of DC analysis. You can specify methods and their orders by giving vector setting such as homotopy=[source ptrangmin]. Possible values are none, gmin, source, dptran, ptran, arclength, tranrampup, and all.	
7	newton=normal	Method used on DC analysis. Users can specify methods newton=[none normal], and the default value is normal. Possible values are none and normal.	
8	limit=dev	Limiting algorithms to aid DC convergence. Possible values are delta, log, dev, and 12.	
9	gmethod=dev	Stamp gdev, gnode or both in the homotopy methods (other than dptran). See below for more information. Possible values are dev, node, and both.	
10	dptran_gmethod=node		
		Stamp gdev, gnode, or both in the dptran (homotopy) methods. Possible values are dev, node, and both.	
11	try_fast_op=yes	This feature often speeds up the DC solution. For hard to converge designs, this feature fails and other methods are applied. In corner cases, this feature may have negative effects. If the DC analysis is unusually slow or if the memory usage of various processes keeps growing or if DC gets stuck even before homotopy methods start, try setting this option to no. Possible values are no and yes.	

Component parameters

12	compatible=spectre	Encourage device equations to be compatible with a foreign simulator. This option does not affect input syntax. Possible values are spectre, spice2, spice3, cdsspice, hspice, spiceplus, eldo, sspice, mica, tispice, and pspice.
13	approx=no	Use approximate models. Difference between approximate and exact models is mostly small. Possible values are ${\tt no}$ and ${\tt yes}.$

Analysis Statements

Error-checking parameters

14	diagnose=no	Print additional information that might help diagnose accuracy and convergence problems. Possible values are no and yes.
15	opptcheck=yes	Check operating point parameters against soft limits. Possible values are no and yes .

Resistance parameters

16	gmin=1e-12 S	Minimum conductance across each nonlinear device.
17	gmin_check=max_v_only	
		Specifies that effect of gmin should be reported if significant. Possible values are no, max_v_only, max_only, and all.
18	gmindc=1e-12 S	Minimum conductance across each nonlinear device in DC analysis. If gmindc is not given explicitly, the value of gmindc will be equal to gmin. Default value is 1.0e-12.
19	rforce=1 Ω	Resistance used when forcing nodesets and node-based initial conditions.

Quantity parameters

prints a list of nodes and their quantities. Possible value are no, min, and full.	20	quantities=no	·
--	----	---------------	---

Annotation parameters

21	narrate=yes	Narrate the simulation. Possible values are no and yes.
22	annotate=no	Degree of annotation. Possible values are no and title.

23	debug=no	Give debugging messages. Possible values are no and yes.	
24	info=yes	Give informational messages. Possible values are no and yes.	
25	note=yes	Give notice messages. Possible values are no and yes.	
26	maxnotes=5	Maximum number of times a notice is issued per analysis.	
		Note: This option has no effect on notices issued as part of parsing the netlist. Use the -maxnotes command-line option to control the number of all notices issued.	
27	warn=yes	Give warning messages. Possible values are ${\tt no}$ and ${\tt yes.}$	
28	maxwarns=5	Maximum number of times a warning message is issued per analysis.	
		Note: This option has no effect on warnings issued as part of parsing the netlist. Use the -maxwarns command-line option to control the number of all warnings issued.	
29	maxwarnstologfile=5	5	
		Maximum number of times a warning message is printed to the log file per analysis.	
		Note: This option has no effect on warnings printed as part of parsing the netlist. Use the -maxwarnstolog command-line option to control the number of all warnings printed to the log file.	
30	maxnotestologfile=5	5	
		Maximum number of times a notice message is printed to the log file per analysis.	
		Note: This option has no effect on notices printed as part of parsing the netlist. Use the -maxnotestolog command-line option to control the number of all notices printed to the log file.	
31	error=yes	Generates error messages. Possible values are no and yes .	
32	digits=5	Number of digits used when printing numbers.	

Analysis Statements

33	measdgt=0	Number of decimal digits in floating point numbers in measurement output in mt0 format.
34	notation=eng	The notation to be used for displaying real numbers to the screen. Possible values are eng, sci, or float.

Matrix parameters

35	pivotdc=no	Use numeric pivoting on every iteration of DC analysis. Possible values are no and yes.		
36	pivrel=0.001	Relative pivot threshold.		
37	pivabs=0	Absolute pivot threshold.		
38	preorder=partial	Try this option when simulation runs out of memory or if the simulation is unreasonably slow for the size of your design. It controls the amount of matrix preordering that is done and may lead to much fewer matrix fill-ins in some cases. Known cases include designs with large number of small resistors and large number of behavioral instances containing voltage based equations. Possible values are partial and full.		
39	limit_diag_pivot=ye	res		
		If set to yes, there is a limit on the number of matrix fillins when selecting a pivot from a diagonal. For backward compatibility set this to no. Possible values are no and yes .		
40	rebuild_matrix=no			
		If yes, rebuild circuit matrix at the beginning of ac, acmatch, dc, dcmatch, montecarlo, pz, stb, sweep, tdr, and tran analyses. This is to ensure consistent matrix ordering at the beginning of the analyses for consistent results. Notice that rebuild circuit matrix can incur performance overhead. Possible values are no and yes.		
41	icversion=1	Convert initial condition to initial guess, when .ic statements exist in netlist and there are no other options to set IC or nodeset.		

Analysis Statements

42	minstepversion=1	Minstep algorithm flow control. If minstepversion=0, desperate big jump is taken when minstep is reached. If minstepversion=1, a forward/backward search algorithm is taken to find a converged solution at small step size. By default, minstepversion=1.
43	try_hard_in_disaste	er=yes
		When minstepversion=1, this option means whether simulator should try hard to search for a converged solution in disaster stage. Possible values are no and yes.

Parameter Index

In the following index, the number corresponding to each parameter name indicates where to find the description of that parameter:

annotate 22	gmindc 18	measdgt 33	quantities 20
approx 13	homotopy 6	minstepversion 42	rebuild_matrix
compatible 12	iabstol 4	narrate 21	reltol 1
debug 23	icversion 41	newton 7	residualtol 2
diagnose 14	info 24	notation 34	rforce 19
digits 32	limit 8	note 25	tempeffects 5
dptran_gmethod 10	limit_diag_pivot 39	opptcheck 15	try_fast_op 11
error 31	maxnotes 26	pivabs 37	try_hard_in_disas ter 43
gmethod 9	maxnotestologfile 30	pivotdc 35	vabstol 3
gmin 16	maxwarns 28	pivrel 36	warn 27

Analysis Statements

392

gmin_check 17 maxwarnstologfile preorder 38 29

Analysis Statements

Shell Command (shell)

Description

The shell analysis passes a command to the operating system command interpreter given in the SHELL environment variable. The command behaves as if it were typed into the command interpreter, except that any %X codes in the command are expanded first.

The default action of the shell analysis is to terminate the simulation.

Definition

Name shell parameter=value ...

Parameters

1	cmd="kill %P"	Shell command.
2	iferror=quit	Action to be taken if the command returns nonzero error status. Possible values are continue and quit.
3	annotate	Degree of annotation. Possible values are ${\tt no}$, title, and ${\tt yes}$.

Analysis Statements

S-Parameter Analysis (sp)

Description

The S-parameter analysis linearizes the circuit about the DC operating point and computes S-parameters of the circuit taken as an N-port. The port statements define the ports of the circuit. Each active port is turned on sequentially, and a linear small-signal analysis is performed. Spectre converts the response of the circuit at each active port into S-parameters and outputs these parameters. There must be at least one active port statement in the circuit.

S-parameter analysis can output an ASCII model file that can later be read-in by a nport component. The file name and the model type can be specified by file and paramtype parameters, respectively. Currently, only paramtype=s and paramtype=y are supported, for the other possible values of paramtype, the file still generates S-parameters. The text format can be either Spectre native or Touchstone.

Spectre supports sprobes in sp analysis. Sprobe is a special testbench to allow in-situ probing of bi-directional impedances. If the sprobes parameter is specified, the parameters S1, S2, Z1, Z2, StabIndex of the specified sprobe will be computed and outputted to rawfile. Here S1 is the scattering parameter looking left from the sprobe; S2 is the scattering parameter looking right from the sprobe; Z1 is the impedance looking left from the sprobe; Z2 is the impedance looking right from the sprobe; StabInex is the stability Index. If sprobes and ports are given, ports are used to compute normal S-param, while 'sprobes' are used to compute sprobe params.

Spectre can perform AC analysis while sweeping a parameter. The parameter can be frequency, temperature, component instance parameter, component model parameter, or netlist parameter. If changing a parameter affects the DC operating point, the operating point is recomputed at each step. You can sweep the circuit temperature by giving the parameter name as temp, without a dev or mod parameter. In addition, you can sweep a netlist parameter by giving the parameter name without a dev or mod parameter. After the analysis is complete, the modified parameter returns to its original value.

Definition

Name sp parameter=value ...

Parameters

1	prevoppoint=no	Use the operating point computed in the previous
		analysis. Possible values are no and yes.

Analysis Statements

Sweep interval parameters

2	start=0	Start sweep limit.
3	stop	Stop sweep limit.
4	center	Center of sweep.
5	span=0	Sweep limit span.
6	step	Step size, linear sweep.
7	lin=50	Number of steps, linear sweep.
8	dec	Points per decade.
9	log=50	Number of steps, log sweep.
10	values=[]	Array of sweep values.
11	valuesfile	Name of the file containing the sweep values.

Sweep variable parameters

12	dev	Device instance whose parameter value is to be swept.
13	mod	Model whose parameter value is to be swept.
14	param	Name of parameter to sweep.
15	freq (Hz)	Frequency when parameter other than frequency is being swept.

Port parameters

16	ports=[]	List of active ports. Ports are numbered in the order
		given.

State-file parameters

17	readns	File that contains an estimate of DC solution (nodeset).
----	--------	--

Analysis Statements

18	write	DC operating point output file at the first step of the sweep.
19	writefinal	DC operating point output file at the last step of the sweep.

Initial condition parameters

20	force=none	The set of initial conditions to use. Possible values are none, node, dev, and all.
21	readforce	File that contains initial conditions.
22	skipdc=no	Skip DC analysis. Possible values are no and yes.
23	useprevic=no	If set to yes or ns , use the converged initial condition from previous analysis as ic or ns . Possible values are no , yes , and ns .

Output parameters

24	file	Output file name.
25	mode="ss"	S-parameters mode selector. Can be \mathtt{mm} for mixed-mode.
26	datafmt=spectre	Data format of the S-parameter output file. Possible values are spectre, touchstone, and touchstone2.
27	paramtype=s	Output parameter type. If set to s, the S-parameters will be output to raw data. If \mathtt{file} is specified, the S-parameters will be output to the file. If set to y, both S-parameters and Y-parameters will be output to raw data. If \mathtt{file} is specified, the normalized Y-parameters will be output to the file. If set to z, the behavior is similar to y. If set to yz, then S-parameters, Y-parameters, and Z-parameters will be output to raw data. However, if \mathtt{file} is specified, only the S-parameters will be output to the file. Possible values are \mathtt{s} , \mathtt{y} , \mathtt{z} , and \mathtt{yz} .
28	datatype=realimag	

Data type of the S-parameter output file. Possible values

are realimag, magphase, and dbphase.

Analysis Statements

29	noisedata=no	Should noise data be saved to the S-parameter output file; if yes, in what format. Possible values are no, twoport, and cy.
30	oppoint=no	Determines whether the operating point information should be computed. If yes, where should it be printed (screen or file). Operating point information is not printed if the operating point computed in the previous analysis remains unchanged. Possible values are no, screen, logfile, and rawfile.

Noise parameters

31	donoise=no	Perform noise analysis. If oprobe is specified as a valid port, this is set to yes, and a detailed noise output is generated. Possible values are no and yes.
32	oprobe	Compute total noise at the output defined by this component.
33	iprobe	Input probe. Refer the output noise to this component.

Convergence parameters

34	restart=yes	Restart the DC solution from scratch if any condition has
		changed. If not, use the previous solution as initial guess.
		Possible values are no and yes.

Annotation parameters

35	annotate=sweep	Degree of annotation. Possible values are no, title, sweep, status, and steps.
36	title	Analysis title.

Analysis Statements

Sprobe parameters

37 sprobes=[] List of s-probes.	
---------------------------------	--

If the list of active ports is specified with the ports parameter, the ports are numbered sequentially from one in the order given. Otherwise, all ports present in the circuit are active, and the port numbers used are those that were assigned on the port statements. If donoise=yes is specified, the noise correlation matrix is computed. If in addition, the output is specified using oprobe, the amount that each noise source contributes to the output is computed. Finally, if an input is also specified (using iprobe), the two-port noise parameters are computed (F, Fmin, NF, NFmin, Gopt, Bopt, and Rn).

When datafmt=touchstone2, Spectre outputs the file in touchstone version 2 format. Network data for y and z parameters in the touchstone version 2 format files is not normalized. However, in Spectre and touchstone version 1 format, it is normalized.

If the mode parameter is set to mm, differential and common-mode S-parameters (denoted as mixed-mode S-parameters) are calculated. When mode=mm, there must be 2N, with N > 1, active port statements in the circuit. The mixed-mode S-parameters are calculated referring to the pairing of the ports, with the port numbers ordered in pair as (1,2) (3,4), and so on in the ports list. With mm, Spectre calculates differential-to-differential, differential-to-common, common-to-differential, and common-to-common S-parameters. A combination of mixed-mode and standard S-parameters is calculated if the mode parameter is set to, say, m12m34s5. Then, additional differential-to-standard, common-to-standard, standard-to-differential, and standard-to-common S-parameters are calculated. In the example of mode=m12m34s5, the standard single-end port is port number 5, the two mixed-mode port pairs are (1,2) and (3,4); with Spectre placing restriction of the number on active ports to 5 given in the port list. [Mixed-Mode Order] keyword is used in the touchstone version 2 format files to describe the order of mixed-mode network parameters. For example, if mode=mode=m12m34s5, [Mixed-Mode Order] is set to D1,2 D3,4 C1,2 C3,4 S5.

You can define sweep limits by specifying the end points or the center value and span of the sweep. Steps can be linear or logarithmic, and you can specify the number of steps or the size of each step. You can specify a step size parameter (step, lin, log, or dec) to determine whether the sweep is linear or logarithmic. If you do not specify a step size parameter, the sweep is linear when the ratio of stop to start values is less than 10 and logarithmic when this ratio is 10 or greater. All frequencies are in Hertz.

The small-signal analysis begins by linearizing the circuit about an operating-point. By default, this analysis computes the operating-point, if it is not known, or recomputes it if any significant component or circuit parameter has changed. However, if an operating point was computed during a previous analysis, you can set prevoppoint=yes to avoid recomputing

Analysis Statements

it. For example, if prevoppoint=yes, and the previous analysis was a transient analysis, the operating point is the state of the circuit at the final time point.

Parameter Index

In the following index, the number corresponding to each parameter name indicates where to find the description of that parameter:

annotate 35	iprobe 33	ports 16	stop 3
center 4	lin 7	prevoppoint 1	title 36
datafmt 26	log 9	readforce 21	useprevic 23
datatype 28	mod 13	readns 17	values 10
dec 8	mode 25	restart 34	valuesfile 11
dev 12	noisedata 29	skipdc 22	write 18
donoise 31	oppoint 30	span 5	writefinal 19
file 24	oprobe 32	sprobes 37	
force 20	param 14	start 2	
freq 15	paramtype 27	step 6	

Stability Analysis (stb)

Description

The STB analysis linearizes the circuit about the DC operating point and computes the loop gain and gain and phase margins (if the sweep variable is frequency) for a feedback loop or a gain device.

Spectre can perform the analysis while sweeping a parameter. The parameter can be frequency, temperature, component instance parameter, component model parameter, or netlist parameter. If changing a parameter affects the DC operating point, the operating point is recomputed at each step. You can sweep the circuit temperature by giving the parameter name as temp, without a dev or mod parameter. You can sweep a netlist parameter by giving the parameter name without a dev or mod parameter. After the analysis is complete, the modified parameter returns to its original value.

For additional information, see <u>Stability Analysis</u> in the <u>Spectre Circuit Simulator and Accelerated Parallel Simulator User Guide</u>.

Definition

Name stb parameter=value ...

Parameters

1	prevoppoint=no	Use the operating point computed on the previous analysis. Possible values are no and yes.
		analysis. I ossible values are no and yes.

Sweep interval parameters

2	start=0	Start sweep limit.
3	stop	Stop sweep limit.
4	center	Center of sweep.
5	span=0	Sweep limit span.
6	step	Step size, linear sweep.
7	lin=50	Number of steps, linear sweep.

Analysis Statements

8	dec	Points per decade.
9	log=50	Number of steps, log sweep.
10	values=[]	Array of sweep values.
11	valuesfile	Name of the file containing the sweep values.

Sweep variable parameters

12	dev	Device instance whose parameter value is to be swept.
13	mod	Model whose parameter value is to be swept.
14	param	Name of parameter to sweep.
15	freq (Hz)	Frequency when parameter other than frequency is being swept.

Probe parameters

15	probe	Probe instance around which the loop gain is calculated.
16	localgnd	Node name of local ground. If not specified, the probe is referenced to global ground.

State-file parameters

18	readns	File that contains estimate of DC solution (nodeset).
19	write	DC operating point output file at the first step of the sweep.
20	writefinal	DC operating point output file at the last step of the sweep.

Analysis Statements

Initial condition parameters

21	force=none	Which set of initial conditions to use. Possible values are none, node, dev, and all.
22	readforce	File that contains initial conditions.
23	skipdc=no	Skip the DC analysis. Possible values are no and yes .
24	useprevic=no	If set to yes or ns , use the converged initial condition from previous analysis as ic or ns . Possible values are no , yes and ns .

Output parameters

25	save	Signals to output. Possible values are all, lvl, allpub, lvlpub, selected, none, and nooutput.
26	nestlvl	Levels of subcircuits to output.
27	oppoint=no	Should operating point information be computed; if yes, where should it be sent. Operating point information would not be output if the operating point computed in the previous analysis remains unchanged. Possible values are no, screen, logfile, and rawfile.

Convergence parameters

28	restart=yes	Restart the DC solution from scratch if any condition has changed. If not, use the previous solution as initial guess. Possible values are no and yes.

Annotation parameters

29	annotate=sweep	Degree of annotation. Possible values are no, title, sweep, status, and steps.
30	title	Analysis title.

You can define sweep limits by specifying the end points or the center value and span of the sweep. Steps can be linear or logarithmic, and you can specify the number of steps or the

Analysis Statements

size of each step. You can specify a step size parameter (step, lin, log, or dec) to determine whether the sweep is linear or logarithmic. If you do not specify a step size parameter, the sweep is linear when the ratio of stop to start values is less than 10 and logarithmic when this ratio is 10 or greater. All frequencies are in Hertz.

The small-signal analysis begins by linearizing the circuit about an operating-point. By default this analysis computes the operating point, if it is not known, or recomputes it if any significant component or circuit parameter has changed. However, if a previous analysis computed an operating point, you can set prevoppoint=yes to avoid recomputing it. For example, if you use this option when the previous analysis was a transient analysis, the operating point is the state of the circuit on the final time point.

Nodesets help find the DC or the initial transient solution. You can specify nodesets in the circuit description file with nodeset statements, or in a separate file by using the readns parameter. When nodesets are specified, Spectre computes an initial guess of the solution by performing DC analysis, while forcing the specified values on to nodes by using a voltage source in series with a resistor whose resistance is rforce. Spectre then removes these voltage sources and resistors and computes the required solution from this initial guess.

Nodesets have two important uses. First, if a circuit has two or more solutions, nodesets can bias the simulator towards computing the required solution. Second, these are a convergence aid. By estimating the solution of the largest possible number of nodes, you might be able to eliminate a convergence problem or significantly speed up convergence.

When you simulate the same circuit multiple times, it is recommended that you use both the write and readns parameters and assign the same file name to both parameters. DC analysis then converges quickly even if the circuit has changed since the last simulation, and the nodeset file is automatically updated.

During the initial operating point DC analysis, you may force some of the circuit variables to the values given in the ic file, ic statements, or ic parameter on the capacitors and inductors. The ic parameter controls the interaction of the various methods for setting the force values. The effects of individual settings are as follows:

force=none: Any initial condition specifiers are ignored.

force=dev: The ic parameters on the capacitors and inductors are used, and the ic statements are ignored.

force=all: Both the ic statements and the ic parameters are used, with the ic parameters overriding the ic statements.

Analysis Statements

If you specify an ic file with the readforce parameter, force values from the file are used, and any ic statements are ignored.

After you specify the initial conditions, Spectre computes the DC operating point with the specified nodes forced to the given value by using a voltage source in series with a resistor whose resistance is rforce (see options).

Understanding Loop-Based and Device-Based Algorithms

Two algorithms- loop-based and device-based are available for small-signal stability analysis. Both algorithms are based on the calculation of Bode's return ratio. Loop gain waveform, gain margin, and phase margin are the analysis output.

The probe parameter must be specified to perform stability analysis. When it points to a current probe or voltage source instance, the loop-based algorithm is run; when the parameter points to a supported active device instance, the device-based algorithm is run.

Loop-Based Algorithm

The loop-based algorithm calculates the true loop gain, which consists of normal loop gain and reverse loop gain. The loop-based algorithm requires the probe being placed on the feedback loop to identify and characterize the particular loop of interest. The introduction of the probe component should not change any of the circuit characteristics.

The loop-based algorithm provides accurate stability information for single loop circuits and also for multi-loop circuits in which a probe component can be placed on a critical wire to break all loops. For a general multi-loop circuit, such a critical wire may not be available. The loop-based algorithm can only be performed on individual feedback loops to ensure that they are stable. Although the stability of all feedback loops is only a necessary condition for the whole circuit to be stable, the multi-loop circuit tends to be stable if all individual loops are associated with reasonable stability margins.

For the loop based algorithm, a probe needs to be placed on the feedback loop. The common way is to insert a current probe or voltage source instance in the netlist, and the probe parameter points to this instance. The second way to insert the probe is by specifying the terminal of some instance.

The syntax format:

probe = X:n

Analysis Statements

x can be an instance or a subcircuit instance and x is the terminal index. The second way has a limitation: We can not specify a branch whose current consists of more than one instance's terminal current. A current probe or voltage source instance needs to be inserted manually.

This can be shown below:

```
|----|___|-----|
|-----||------|
| |<--- probe
| ___ |_-|---||---|
|---|__|--||_ |
=== | | |
```

No instance can specify the probe's location.

Device-Based Algorithm

The device-based algorithm calculates the loop gain around a particular active device. This algorithm is often applied to assess the stability of circuit design in which local feedback loops cannot be neglected; the loop-based algorithm cannot be performed for these applications because the local feedback loops are inside the devices and cannot be accessed from the schematic or netlist level to insert the probe component.

With the probe parameter pointing to a particular active device, the dominant controlled source in the device is nulled during the analysis. The dominant controlled source is defined as by nulling this source renders the active device to be passive. The device-based algorithm produces accurate stability information for a circuit in which a critical active device can be identified, so that nulling the dominant gain source of this device renders the whole network passive.

Stability Analysis of Differential Feedback Circuits

A balanced fully differential feedback circuit is illustrated below:

The feedback loops are broken at X1 and X2, with x1in and x2in being the input side nodes and x1out and x2out being the output side nodes. The following subcircuit connects these four nodes together:

```
subckt diffprobe xlin x2in x1out x2out
   ibranch inout x1out iprobe
   vinj inout xlin iprobe
   evinj x2in x2out x1in x1out vcvs gain=0
   fiinj 0 x2out pcccs probes=[ibranch vinj] coeffs=[0 1 1] gain=0
ends diffprobe
```

If the localgnd parameter is specified, the above subcircuit should be modified as follows:

```
subckt diffprobe x1in x2in x1out x2out localgnd
  ibranch inout x1out iprobe
  vinj inout x1in iprobe
  evinj x2in x2out x1in x1out vcvs gain=0
  fiinj localgnd x2out pcccs probes=[ibranch vinj] coeffs=[0 1 1] gain=0
ends diffprobe
```

Let diffprobe_inst be the instance of subcircuit diffprobe, the following analysis measures the differential-mode loop gain:

```
DMalterv alter dev=diffprobe_inst.evinj param=gain value=-1 DMalteri alter dev=diffprobe_inst.fiinj param=gain value=-1
```

Analysis Statements

DMloopgain stb probe=diffprobe inst.vinj

and, the following analysis measures the common-mode loop gain:

CMalterv alter dev=diffprobe_inst.evinj param=gain value=1 CMalteri alter dev=diffprobe_inst.fiinj param=gain value=1 CMloopgain stb probe=diffprobe inst.vinj

Parameter Index

In the following index, the number corresponding to each parameter name indicates where to find the description of that parameter.

annotate 29	log 9	readns 18	title 30
center 4	mod 12	restart 28	useprevic 24
dec 8	nestlvl 26	save 25	values 10
dev 12	oppoint 27	skipdc 23	valuesfile 11
force 21	param 14	span 5	write 18
freq 15	prevoppoint 1	start 2	writefinal 20
lin 7	probe 16	step 6	
localgnd 17	readforce 22	stop 3	

Reliability Stress Analysis (stress)

Definition

Name stress parameter=value ...

Parameters

1	age_time=[]	The time, in future, when the transistor degradation and degraded SPICE model parameters are to be calculated.
2	deltad=0.0	Specifies the degradation value.
3	deltad_mod=[]	Specifies the name of a model whose lifetime is calculated. The model name must be the same as specified in the model card.
4	deg_ratio_type=incl	ude
		Includes or excludes the specified devices or the device during TMI Aging Simulation flow.
		Possible values are include and exclude.
5	deg_ratio_dev=[]	
		Specifies the instances to be included or excluded for degradation ratio for TMI Aging flow.
6	report_model_param=	-no
		Determines whether to print the stress and aged parameters in the .bm# file. Possible values are no and yes.
7	accuracy=1	Specifies methods used in the reliability simulation when performing integration and substrate current calculation. Possible values are 1 and 2.
8	minage=0.0	Specifies the smallest age value for which degraded SPICE model parameters are calculated.
9	igatemethod=calc	Specifies the method used for obtaining the gate currents of MOSFETs. Possible values are calc and spice.

10	idmethod=ids	Specifies how the simulator obtains the drain current (Id) of MOSFETs to perform reliability calculations. Possible values are ids, idrain, and idstatic.
11	dumpagemodel	Output file name of dump age model.
12	dumpagemodel_dev=[.	1
		Specifies the instances whose aged modelcard will be output.
13	urilib_file	Specifies URI library file name.
14	urilib_mode=agemos	Specifies which method should be used to perform aging simulation.
		Note: Appendage mode is not supported in the MMSIM10.1.0 release.
		Possible values are agemos, scaleparam, appendage, and new_appendage.
15	urilib_debug=0	Specifies the debug mode for URI library. Possible values are 0 and 1.
		When specified, a flag is added to the URI library indicating whether the debug information should be printed. debugMode=1 prints debug messages. Default value is 0.
16	relxtran_start=0.0	Specifies the start time of reliability analysis during transient simulation.
17	relxtran_stop=0.0	Specifies the stop time of reliability analysis during a transient simulation. If stop_time is not specified, the software stops in .tran statement.
18	isubmethod=calc	Specifies the method used for obtaining the substrate currents of MOSFET. Possible values are calc and spice.
19	opmethod=calc	Specifies whether the Igate or Isub value should be obtained from the SPICE models (such as BSIM3 or BSIM4) or whether the internal Igate or Isub equation should be used.
		Possible values are calc and spice.
20	degsort_threshold=0	0.0

		Prints MOS transistors based on the threshold and number settings. The results are sorted in the descending order of degradation.
21	degsort_num=0	Prints only the specified number of transistors having the highest degradations. For example, if number=100, the software will print the first 100 transistors with highest degradations.
22	combine_deg=no	Determines whether to combine the external URI results with internal URI results in the $bo0$ file. Possible values are no and yes.
23	keep_aged_data=yes	Determines whether to keep the value of the aged model parameters after reliability analysis. Possible values are no and yes.
24	check_neg_aging_typ	e=error
		Specifies the message type to check the negative value in bt0. Possible values are error, warn and ignore. Default is error.
25	check_neg_aging_cla	amp=no
		Clamps the negative age value in the <code>bt0</code> file. Possible values are no and <code>yes</code> .
26	tranflag=0	Specifies the reliability transient analysis flag.
27	stress_tran_name=[]	
		Specifies stress transient analysis name.
28	aging_tran_name=[.]
		Specifies aging transient analysis name.
29	enablenativeage=no	Enables negative age value. Possible values are ${\tt no}$ and ${\tt yes}.$
30	output_binary_file=	-no
		Specifies the format of the reliability analysis output file. Possible values are no and yes.
31	deg_ratio_hci=1.0	The degradation ratio for HCI effect.
32	deg_ratio_nbti=1.0	The degradation ratio for NBTI effect.
33	deg_ratio_pbti=1.0	The degradation ratio for PBTI effect.

34	deg_ratio_bti=1.0	The degradation ratio for NBTI/PBTI effect.	
35	resetanalysisparam=tran		
		Reset the analysis parameters in the reliability block. Possible values are tran, dc, and ac.	
36	urilib_type=inline	Compatibility with RelXpert. Possible values are inline, sub, and dev.	
37	enable_ade_process=	-no	
		Enable reliability analysis in ADE. Possible values are $\tt no$ and $\tt yes.$	
38	output_region_param	n=no	
		Prints the region method of the parameter. Possible values are no and yes.	
39	deg_ratio_hcin=1.0	The degradation ratio for NMOS HCI effect.	
40	deg_ratio_hcip=1.0	The degradation ratio for PMOS HCI effect.	
41	deg_ratio_btin=1.0	The degradation ratio for PBTI effect.	
42	deg_ratio_btip=1.0	The degradation ratio for NBTI effect.	
43	deltad_item	Specifies the electrical parameter for lifetime estimation. It is available only for the TMI aging flow.	
		Possible values are didsat, didlin, dvtlin, and lifetime.	
44	degsort_item=0	Specifies which item must be used for sorting. It is available only for the TMI aging flow.	
		Possible values are didsat, didlin, dvtlin, and lifetime.	
45	simmode	Mode of reliability analysis. Possible values are stress, aging, and all.	
46	simmode_file	simMode file.	
47	simmode_tmifile	Input file for TMI Aging flow.	
48	tmi_aging_mode	Mode of tmi aging flow. Possible values are aging, she, and all.	
49	degsort=no	Specifies to enable to sort degradation data in decreasing order. Possible values are no and yes.	

Analysis Statements

Parameter Index

In the following index, the number corresponding to each parameter name indicates where to find the description of that parameter.

accuracy 7	deg_ratio_nbti 32	enablenativeage 29	simmode 45
age_time 1	deg_ratio_pbti 33	idmethod 10	simmode_file 46
aging_tran_name 28	deg_ratio_type 4	igatemethod 9	simmode_tmifile
check_neg_aging_c lamp 25	degsort 49	isubmethod 18	stress_tran_name 27
check_neg_aging_t ype 24	degsort_item 44	keep_aged_data 23	tmi_aging_mode 48
combine_deg 22	degsort_num 21	minage 8	tranflag 26
deg_ratio_bti 34	degsort_threshold 20	opmethod 19	urilib_debug 15
deg_ratio_btin 41	deltad 2	output_binary_fil e 30	urilib_file 13
deg_ratio_btip 42	deltad_item 43	output_region_par am 38	urilib_mode 14
deg_ratio_dev 5	deltad_mod 3	relxtran_start 16	urilib_type 36
deg_ratio_hci 31	dumpagemodel 11	relxtran_stop 17	
deg_ratio_hcin 39	dumpagemodel_dev 12	report_model_para m 6	
deg_ratio_hcip	enable_ade_proces s 37	resetanalysispara m 35	

Sweep Analysis (sweep)

Description

The sweep analysis sweeps a parameter, running the list of analyses (or multiple analyses) for each value of the parameter. The swept parameter can be circuit temperature, a device instance parameter, a device model parameter, a netlist parameter, or a subcircuit parameter for a particular subcircuit instance.

A set of parameters can be swept simultaneously, using the paramset parameter. The other sweep interval or variable parameters cannot be specified with the paramset parameter. Do spectre -h paramset for information on defining a paramset.

Within a sweep statement, you can specify analyses statements. These statements should be bound within braces. The opening brace is required at the end of the line defining the sweep. Sweep statements can be nested.

You can sweep the circuit temperature by giving the parameter name as param=temp, without a dev, mod, or sub parameter. You can sweep a top-level netlist parameter by giving the parameter name without a dev, mod, or sub parameter. You can sweep a subcircuit parameter for a particular subcircuit instance by specifying the subcircuit instance name with the sub parameter and the subcircuit parameter name with the param parameter. The same can be done using dev for the device instance name or mod for the device model name.

After the analysis is complete, the modified parameter returns to its original value.

For additional information, see <u>Sweep Analysis</u> in the <u>Spectre Classic Simulator</u>, <u>Spectre APS</u>, <u>Spectre X</u>, and <u>Spectre XPS User Guide</u>.

Definition

Name sweep parameter=value ...

Parameters

Sweep interval parameters

1	start=0	Start sweep limit.
2	stop	Stop sweep limit.

3	center	Center of sweep.
4	span=0	Sweep limit span.
5	step	Step size, linear sweep.
6	lin=50	Number of steps, linear sweep.
7	dec	Points per decade.
8	log=50	Number of steps, log sweep.
9	values=[]	Array of sweep values.
10	valuesfile	Name of the file containing the sweep values.

Analysis Statements

Sweep variable parameters

11	dev	Device instance whose parameter value is to be swept.
12	sub	Subcircuit instance whose parameter value is to be swept.
13	mod	Model whose parameter value is to be swept.
14	param	Name of parameter to sweep.
15	paramset	Name of parameter set to sweep.

Fault analysis parameters

16	faults=[]	Names of the fault blocks from the list to perform direct fault analysis. This is required parameter for DFA, faults=[*] includes all faults.
17	nominal=yes	Nominal (fault free) simulation will be performed during fault analysis. Possible values are no and yes.
18	faultsid=[]	Indexes of faults from the list to perform fault analysis. If specified, simulation performed for requested subset of fault list.
19	faultsname=[]	Names of faults from the list to perform fault analysis. If specified, simulation performed for requested subset of fault list.
20	faultsinst=[]	List of instances to perform fault analysis. If specified, simulation performed only for faults within given instances.
21	faultsamplenum	Number of samples in simple random sampling of fault list during simulation.
22	faultsampleratio	Value in percent to apply simple random sampling to fault list during simulation.
23	faultseed=1	Optional starting seed for random number generator during fault sampling.
24	faultsamplemethod=r	andom Mathod to be used for fault compling

Method to be used for fault sampling.

Possible values are random, randomweighted, randomuniform and weightsorted.

Analysis Statements

05		
25	faultcollapse=no	Perform bridge fault collapsing in the list before fault simulation. Possible values are no and yes.

Annotation parameters

26	annotate=sweep	Degree of annotation. Possible values are no, title, and sweep.	
27	title	Analysis title.	
28	distribute	Distribute a sweep analysis to reduce simulation time by using more computer cores across multiple computers. Possible values are no, fork, rsh, ssh, lsf, sge, nc, and auto.	
29	numprocesses	Specifies the number of jobs in distributed mode.	
30	savedatainseparated	dir=no	
		Whether to save data for each plot in a separate directory. savedatainseparatedir=name is only used for direct fault analysis (DFA). Possible values are no, yes and name.	

You can specify sweep limits by specifying the end points or the center value and the span of the sweep. Steps can be linear or logarithmic, and you can specify the number of steps or the size of each step. You can specify a step size parameter (step, lin, log, or dec) and determine whether the sweep is linear or logarithmic. If you do not specify a step size parameter, the sweep is linear when the ratio of the stop-to-start values is less than 10 and logarithmic when this ratio is 10 or greater.

Example:

Analysis Statements

Parameter Index

In the following index, the number corresponding to each parameter name indicates where to find the description of that parameter.

annotate 26	faultsamplenum 21	mod 13	step 5
center 3	faultsampleratio	nominal 17	stop 2
dec 7	faultseed 23	numprocesses 29	sub 12
dev 11	faultsid 18	param 14	title 27
distribute 28	faultsinst 20	paramset 15	values 9
faultcollapse 25	faultsname 19	savedatainseparat edir 30	valuesfile 10
faults 16	lin 6	span 4	
faultsamplemethod 24	log 8	start 1	

417

Time-Domain Reflectometer Analysis (tdr)

Description

The time-domain reflectometer analysis linearizes the circuit about the DC operating point and computes the reflection coefficients versus time, looking from the active ports into the circuit.

Definition

Name tdr parameter=value ...

Parameters

1	stop	Stop time.
2	settling=stop	Time required for circuit to settle.
3	start=-0.1 stop	Time output waveforms begin.
4	smoothing=2	Window smoothing parameter (useful range is 0 to 15).
5	vel=1	Propagation velocity of medium normalized to c.
6	points=64	Number of time points.
7	ports=[]	List of active ports. If not given, all ports are used.
8	readns	File that contains estimate of DC solution (nodeset).
9	useprevic=no	If set to yes or ns, use the converged initial condition from previous analysis as ic or ns. Possible values are no, yes, and ns.
10	restart=yes	Restart the DC solution from scratch if any condition has changed. If not, use the previous solution as initial guess. Possible values are no and yes .
11	annotate=sweep	Degree of annotation. Possible values are no, title, sweep, status, and steps.
12	title	Analysis title.

Analysis Statements

13	oppoint=no	Should operating point information be computed; if yes, where should it be sent. Operating point information would not be output if the operating point computed in the previous analysis remains unchanged. Possible values are no, screen, logfile, and rawfile.
14	prevoppoint=yes	Use the operating point computed on the previous analysis. Possible values are ${\tt no}$ and ${\tt yes}.$

Such a small-signal analysis begins by linearizing the circuit about an operating point. By default, this analysis computes the operating point, if it is not yet known, or recomputes it, if any significant component or circuit parameter has changed. However, if a previous analysis computed an operating point, you can set prevoppoint=yes to avoid recomputing it. For example, if you use this command when the previous analysis was a transient analysis, the operating point is the state of the circuit on the final time point.

Parameter Index

In the following index, the number corresponding to each parameter name indicates where to find the description of that parameter:

annotate 11	prevoppoint 14	smoothing 4	useprevic 9
oppoint 13	readns 8	start 3	vel 5
points 6	restart 10	stop 1	
ports 7	settling 2	title 12	

Analysis Statements

THERMAL Analysis (thermal)

Definition

Name thermal parameter=value ...

Parameters

1	title	Analysis title.
2	annotate=sweep	Specifies the degree of annotation. Possible values are no, title, sweep, and status.
3	config	Specifies the name of configured file of electrothermal analysis.
4	sort=trise	Specifies the sorting criteria for the thermal analysis output file. Possible values are $trise$ and pwr .
5	maxinst=all	Specifies the number of sorted device.
6	trise_lmt=300 C	Specifies the maximum Trise.
7	method=steadystate	
		Activates either steady state or dynamic thermal analysis. Possible values are steadystate, and dynamic.
8	numiter=2	Number of electro-thermal iterations to be performed.
9	res_trise_rpt=no	Updates resistor temperature. Only instance temperatures are updated when this option is set to no. Possible values are no and yes.
10	thermal_step=0.0	Thermal time step (seconds) for dynamic thermal solver. Set this parameter to 0 to get identical electrical and thermal time steps.
11	thermal_step_trise=1.0	
		Trise threshold for device temperature update.
12	save_inst=[]	List of device names for which dynamic temperature and power will be reported.

13	dbg_output=no	The flag of generating the .dbg_trise_iter* and .thermal_pwr.iter* files in raw file directory. Possible values are no and yes.	
14	dbg_output_sort=trise		
		Sorting order of devices in debug reports. Possible values are trise, pwr, and index.	
15	probe_output_format=bir	nary	
		Specifies the format of the output by the probe. Possible values are binary, txt, ascii, and both.	
16	chip_bbox=[]	Delimits the boundary of the chip by specifying the value of coordinate. The order of the input value of is left bottom and then top right.	
17	thermal_trise_step=0.0	Trise threshold for using thermal solver.	
18	saveonlylaststepdata	Dump the waveform files in a separate directory for steady-state. Possible values are ${\tt no}$ and ${\tt yes}.$	
19	thermal_windows=[]	Boundary time to execute the thermal analysis. Array should have an even number of values. Note that only one time window is supported.	
20	thermal_db_type=binary	Select thermal data output format. Possible values are binary and txt.	
21	thermal_data_format=bin	ary	
		Select trise data output format. Possible values are none, binary and txt.	
22	frame_freq=3	Specify the time step interval for thermal trise data output.	
23	thermal_ignore_para_rc=no		
		Select whether ignore parasitic RC for thermal analysis. Possible values are no and yes.	
24	save_channelonly=no	Select the output layer for thermal trise data output. Possible values are ${\tt no}$ and ${\tt yes}.$	
25	thermal_LTE_threshold=D	BL_MAX	

Analysis Statements

		Thermal LTE threshold.
26	keep_ori_cap=no	Keep original cap value from tdb file or not. Possible values are no and yes .
27	keep_pkg_grid=no	Keep package grid from tdb file or not.
		Possible values are no and yes.

Parameter Index

In the following index, the number corresponding to each parameter name indicates where to find the description of that parameter.

annotate 2	keep_pkg_grid 27	save_inst 12	thermal_step 10
chip_bbox 16	maxinst 5	saveonlylaststepd ata 18	
config 3	method 7	sort 4	thermal_trise_ste p 17
dbg_output 13	numiter 8	thermal_LTE_thres hold 25	thermal_windows
	<pre>probe_output_form at 15</pre>		title 1
frame_freq 22	res_trise_rpt 9	thermal_db_type 20	trise_lmt 6
keep_ori_cap 26	save_channelonly	thermal_ignore_pa ra_rc 23	

Analysis Statements

Transient Analysis (tran)

Description

This analysis computes the transient response of a circuit over the interval from start to stop. The initial condition is taken to be the DC steady-state solution, if not otherwise given.

Also see <u>Transient Analysis</u> in the Spectre Classic Simulator, Spectre APS, Spectre X, and Spectre XPS User Guide.

Definition

Name tran parameter=value ...

Parameters

Simulation interval parameters

1	stop (s)	Stop time.
2	tpoints=[] s	Multiple of pairs <pstep, stop="">.</pstep,>
3	start=0 s	Start time.
4	pstep (s)	print step.
5	outputstart=start s	5
		Output is saved only after this time is reached.
6	readtime	
7	autostop=no	If yes, the analysis is terminated when all event-type measurement expressions have been evaluated. Event-type expressions use thresholding, event, or delay type functions. If the value is spice, autostop is consistent with spice simulator. Possible values are no, yes, and spice.

Analysis Statements

Time-step parameters

8	maxstep (s)	Maximum time step. The default is derived from errpreset.
9	step=0.001 (stop-st	cart) s
		Minimum time step used by the simulator solely to maintain the aesthetics of the computed waveforms.
10	minstep (s)	Minimum time step. If specified, the error tolerance requirements may be ignored when step size is less than minstep.
11	istep=0.001 (stop-s	start) s
		When step size is greater than istep, the local truncation error checking is enabled for algebraic nodes.

Initial-condition parameters

12	ic=all	The value to be used to set initial condition. Possible values are dc, node, dev, and all.
13	skipdc=no	If set to yes, there is no DC analysis for transient. Possible values are no, yes, useprevic, waveless, rampup, autodc, sigrampup, and dcrampup.
14	rampupratio=0.1	The rampup ratio for skipdc=rampup and sigrampup.
15	rampuptime (s)	The rampup time for skipdc=rampup. The default value is set to rampupratio*stop.
16	readic	File that contains initial condition.
17	useprevic=no	If set to yes or ns, use the converged initial condition from previous analysis as ic or ns. Possible values are no, yes and ns.
18	linearic=no	Enable linear IC method to calculate initial conditions automatically from a type of stability analysis in the range [0.5*oscfreq, 1.5*oscfreq]. Overrides user-defined initial conditions, if instability is detected. Possible values are no and yes.

Analysis Statements

19	oscfreq=0.0	Estimation of the oscillation frequency when linear IC method is enabled.

Convergence parameters

20	readns	File that contains an estimate of the initial transient solution.
21	cmin=0 F	Minimum capacitance from each node to ground.

State-file parameters

22	write	File to which initial transient solution is to be written.
23	writefinal	File to which final transient solution is to be written.
24	ckptperiod	Checkpoint the analysis periodically by using the specified period.
25	saveperiod	Save the tran analysis periodically on the simulation time.
26	saveperiodhis- tory=no	Maintains the history of saved files. If yes , stores all the saved files. Possible values are no and yes .
27	saveclock (s)	Save the tran analysis periodically on the wall clock time. The default is 1800s for Spectre. This parameter is disabled in Spectre APS mode by default.
28	savetime=[]	Save the analysis states into files on the specified time points.
29	savefile	Save the analysis states into the specified file.
30	recover	Specify the file to be restored.

Analysis Statements

Integration method parameters

31	method	Integration method. The default derived from errpreset. Possible values are euler, trap, traponly,
		gear2, gear2only, gear3, gear3only, gear2gear3, trapgear2, and trapeuler.

Emir output parameters

32	emirformat=none	Format of the EM/IR database file. Possible values are none and vavo.
33	emirstart (s)	EM/IR start time.
34	emirstop (s)	EM/IR stop time.
35	emirfile	Name of the EM/IR database file. The default is %A_emir_vavo.db. The file will be output to raw directory.
36	emirtimewin-dows=[]	Time check windows of emir. Array should have an even number of values [b_begin1 b_end1 b_begin2 b_end2]. This option has higher priority than emirstant and emirstop.

Accuracy parameters

37	errpreset	Selects a reasonable collection of parameter settings. Possible values are liberal, moderate, and conservative.
38	relref	Reference used for the relative convergence criteria. The default is derived from errpreset. Possible values are pointlocal, alllocal, sigglobal, and all-global.
39	lteratio	Ratio used to compute LTE tolerances from Newton tolerance. The default is derived from errpreset.
40	fastbreak=no	If yes, VHDLAMS Break statement is handled using faster Verilog method. Possible values are no and yes.

41	d2aminstep=0	Minimum stepsize that can be taken when there is a D2A event. If this is zero, the simulators min step size is chosen.
42	fastcross=discrete	Using limited threshold reject method for fast cross detection. Possible values are no, yes, discrete, and cm.
43	transres=1e-9 stop	S
		Transition resolution. The transient analysis attempts to stop at corners of input waveforms (for example, corners of rising/falling edge of a pulse). If such events occur within a time less than transres, the analysis combines the events into one and forces only one time point. The rest of the steps are determined by error control. This may lead to loss of detail.
44	lteminstep=0.0 s	Local truncation error is ignored if the step size is less than Iteminstep.
45	ltethstep=1e-12 s	LTE tolerance can be relaxed for signal with discontinuity when step size is less than Itethstep.
46	d2atimetol=0	Time tolerance for D2A events. The smaller the value, the closer the time when the analog solver actually executes the d2a event may be to the time when the event gets reported.
47	vrefmax	Upper limit of the voltage reference for relative error calculation.
48	irefmax	Upper limit of the current reference for relative error calculation.
49	vrefbins=[1 3 5 10]	
		Specifies the voltage bins when bin_relref=yes is used. Default setting is vrefbins=[1 3 5 10].
50	irefbins=[1e-6 1e-5	1e-4 1e-3 1e-2 1e-1]
		Specifies the current bins when bin_irelref=yes is used. Default setting is irefbins=[1e-6 1e-5 1e-4 1e-3 1e-2 1e-1].

Analysis Statements

nnotation parameters

51	annotate=sweep	Degree of annotation. Possible values are no, title, sweep, status, estimated, steps, iters, detailed, rejects, alliters, detailed_hb, and internal_hb.
52	annotateic=no	Degree of annotation for initial condition. Possible values are no, title, sweep, status, estimated, steps, iters, detailed, rejects, and alliters.
53	annotatedigits=4	Number of significant dig its to be annotated to the transient time in the simulation log file. Possible values are 0, 1, 216. If set to 0, the number of significant digits is dynamic as per the current time and step. If set to n (where $n = 1, 216$), the number i s equal to n.
54	title	Analysis title.

Output parameters

55	save	Signals to output. Possible values are all, lvl, all-pub, lvlpub, selected, none, and nooutput.
56	nestlvl	Levels of subcircuits to output.
57	oppoint=no	Determines whether the operating point information should be computed for initial timestep; if yes, where should it be printed (screen or file). Possible values are no, screen, logfile, and rawfile.
58	skipstart=0 s	The time to start skipping output data.
59	skipstop=stop s	The time to stop skipping output data.
60	skipcount=1	Save only one of every skipcount points.
61	strobeperiod=0 s	The output strobe interval (in seconds of transient time).
62	strobedelay=0 s	The delay (phase shift) between the skipstart time and the first strobe point.
63	strobeoutput=strob	eonly

		Specifies which time points to output during strobe. Possible values are strobeonly, all, none, and faulttimes.
64	strobestep=0 s	Equivalent to strobeperiod.
65	strobefreq	The reciprocal of strobeperiod (strobestep).
66	strobestart=0 s	Equivalent to skipstart.
67	strobestop=stop s	Equivalent to skipstop.
68	strobetimes=[]	Times in ascending order when strobe output performed.
69	progress_t	Print out the annotate message every interval specified by progress_t in terms of minutes.
		Note: This degrades performance.
70	progress_p	Print out the annotate message every progress_p percent of transient time.
		Note: This degrades performance.
71	compression=no	Perform global waveform compression. Possible values are no, all, wildcardonly and yes.
72	compref=alllocal	Reference used for relative error criteria in waveform compression. Possible values are alllocal, pointlocal, sigglobal, and abstol.
73	compvabstol=1.0e-3	V
		Absolute voltage tolerance for waveform compression.
74	compiabstol=1.0e-12	A A
		Absolute current tolerance for waveform compression.
75	comppwrabstol=1.0e-	15 W
		Absolute power tolerance for waveform compression.
76	compreltol=0.001	Relative tolerance for waveform compression.
77	complvl	Enables waveform compression for specified hierarchy level and below (top level=1). All levels above specified level are not compressed. Complyl has higher priority than global compression statement.

Analysis Statements

78	flushpoints	Flush all unwritten data in the buffer to outputs after number of calculated points.
79	flushtime (s)	Flush unwritten data in the buffer to outputs after real time has elapsed.
80	flushofftime (s)	Real time to stop flushing outputs.
81	flushperiod (s)	
82	infonames=[]	Names of info analyses to be performed at the time point in the infotimes array.
83	infotimes=[] s	Times when the analysis specified by infoname is performed.
84	infotime_pair=yes	If set to yes , there is a 1:1 correspondence between the values in infonames and in infotimes. For example, infonames[0] will be run at infotimes[0], infonames[1] will be run at infotimes[1], etc. If set to no , all analysis in infonames will be run at each infotimes time. Possible values are no and yes .
85	acnames=[]	Names of ac, noise, sp, stb, or xf analyses to be performed at each time point in the actimes array. The named small-signal analyses are not run separately, but only as part of the transient analysis.
86	actimes=[] s	Times when analyses specified in acname array are performed.
87	actime_pair=yes	If set to yes, there is a 1:1 correspondence between the values in acnames and in actimes. For example, acnames[0] will be run at actimes[0], acnames[1] will be run at actimes[1], etc. If set to no, all analysis in acnames will be run at each actimes time. Possible values are no and yes.

Newton parameters

88	maxiters=5	Maximum number of iterations per time step.
89	dcmaxiters=150	Maximum number of dc iterations in tranFindInitialState.

Analysis Statements

90	restart=yes	Restart the DC solution from scratch if any condition has changed. If not, use the previous solution as initial guess. Possible values are no and yes.

Circuit age

91	circuitage	(Years)	Stress time. Age of the circuit used to simulate hot-elec-
			tron degradation of MOSFET and BSIM circuits.

Transient noise parameters

92 trannoisemethod=default		ault
		Use this option to enable the adaptive noise step control. Possible values are default and adaptive.
93	noisefmax=0 Hz	The bandwidth of pseudorandom noise sources. A valid (nonzero) noisefmax turns on the noise sources during transient analysis. The maximum time step of the transient analysis is limited to 0.5/noisefmax.
94	noisescale=1	Noise scale factor applied to all generated noise. Can be used to artificially inflate the small noise to make it visible above transient analysis numerical noise floor, but it should be small enough to maintain the nonlinear operation of the circuit.
95	noiseseed	Seed for the random number generator. Should be positive integer. Specifying the same seed allows you to reproduce a previous experiment.
96	mc_auto_noiseseed=no	
		Regenerate the seed at every monte carlo iteration using same mechanism. Possible values are yes, no. Default is no. Possible values are no and yes .

Analysis Statements

97	noisefmin (Hz)	If specified, the power spectral density of the noise sources depends on the frequency in the interval from noisefmin to noisefmax. Below noisefmin, the noise power density is constant. The default value is noisefmax, so that only white noise is included by default, and noise sources are evaluated only at noisefmax for all models. 1/noisefmin cannot exceed the requested time duration of transient analysis.
98	noiseon=[]	The list of instances to be considered as noisy during transient noise analysis.
99	noiseoff=[]	The list of instances to be considered as not noisy during transient noise analysis.

Dynamic parameters

100	param	Name of the parameter to be updated to a different value with time during tran. You can use param=isnoisy with param_vec=[] to turn On or Off the transient noise in time windows. For example, param=isnoisy param_vec=[0ns 0 100ns 1 500ns 0]. The transient noise is OFF (param value is 0) from time 0 to 100ns and the noise is ON (param value is 1) from 100ns to 500ns and OFF from 500ns to stop time.
101	paramset	Name of dynamic parameter set.
102	param_vec=[]	The time_value points to param=name.
103	param_file	The file that contains the time_value points to param=name.
104	sub	Subcircuit instance for the subckt instance parameter given in paramename.
105	mod	Device model for the model parameter given in paramename.
106	dev	Device instance for the instance parameter given in paramename.
107	param_step	Defines how often to update the dynamic parameter values. If param_step=0, it updates the parameter value on given time point.

Analysis Statements

Fault analysis parameters

analysis is performed. This is a required parameter for TFA, and optional for DFA. faultstart/faultstep/faultstop, faultstop, faultevent, or faultfile can be used as an alternative. 109 faultstep (s) The time interval between the fault times. 110 faultstart=0 s The start time, or the first fault time, of transient fault analysis. 111 faultstop=stop s The stop time, or the last fault time, of transient fault analysis. 112 faultfile Name of a file that contains fault times in ascending time order where transient fault analysis is performed. 113 faultevent=[] s Events to perform transient fault analysis is performed. 114 faultautostop=no Auto stop transient simulation when the fault is detected based on assert violation. Possible values are no, func, check, and all. 115 faultskipdc=yes Enforce skipdc=yes during direct fault analysis when no solution found during IC analysis. Possible values are no and yes. 116 faultstrobe=no Time point strobe will be enabled during fault analysis. Possible values are linear, maxiters, onestep, lead-time, testpoint and timezero. 118 faults=[] Names of faults from the list to be considered during simulation. 120 faultsname=[] Names of faults from the list to be considered during simulation. 121 faultsinst=[] List of instances to be considered during fault simulation. Number of samples in simple random sampling of fault list during simulation.			
The start time, or the first fault time, of transient fault analysis. The stop time, or the last fault time, of transient fault analysis. The stop time, or the last fault time, of transient fault analysis. Name of a file that contains fault times in ascending time order where transient fault analysis is performed. Faultevent=[] s Events to perform transient fault analysis. Auto stop transient simulation when the fault is detected based on assert violation. Possible values are no, func, check, and all. Faultskipdc=yes Enforce skipdc=yes during direct fault analysis when no solution found during IC analysis. Possible values are no and yes. Time point strobe will be enabled during fault analysis. Possible values are linear, maxiters, onestep, lead-time, testpoint and timezero. Names of fault blocks in the fault list to perform the transient fault analysis. Indexes of faults from the list to be considered during simulation. Faultsinst=[] Faultsinst=[] List of instances to be considered during fault simulation. Number of samples in simple random sampling of fault list during simulation. Value in percent to apply simple random sampling to fault	108	faulttimes=[] s	TFA, and optional for DFA. faultstart/faultstep/faultstop, faultevent, or faultfile can be used
analysis. The stop time, or the last fault time, of transient fault analysis. Name of a file that contains fault times in ascending time order where transient fault analysis is performed. Faultevent=[] s Events to perform transient fault analysis. Auto stop transient simulation when the fault is detected based on assert violation. Possible values are no, func, check, and all. Faultskipdc=yes Enforce skipdc=yes during direct fault analysis when no solution found during IC analysis. Possible values are no and yes. Time point strobe will be enabled during fault analysis. Possible values are linear, maxiters, onestep, lead-time, testpoint and timezero. Names of fault blocks in the fault list to perform the transient fault analysis. Indexes of faults from the list to be considered during simulation. Faultsinst=[] Names of faults from the list to be considered during simulation. Aumose of faults from the list to be considered during simulation. List of instances to be considered during fault simulation. Number of samples in simple random sampling of fault list during simulation. Value in percent to apply simple random sampling to fault	109	faultstep (s)	The time interval between the fault times.
analysis. 112 faultfile Name of a file that contains fault times in ascending time order where transient fault analysis is performed. 113 faultevent=[] s Events to perform transient fault analysis. 114 faultautostop=no Auto stop transient simulation when the fault is detected based on assert violation. Possible values are no, func, check, and all. 115 faultskipdc=yes Enforce skipdc=yes during direct fault analysis when no solution found during IC analysis. Possible values are no and yes. 116 faultstrobe=no Time point strobe will be enabled during fault analysis. Possible values are linear, maxiters, onestep, lead-time, testpoint and timezero. 118 faults=[] Names of fault blocks in the fault list to perform the transient fault analysis. 119 faultsid=[] Indexes of faults from the list to be considered during simulation. 120 faultsname=[] Names of faults from the list to be considered during simulation. 121 faultsinst=[] List of instances to be considered during fault simulation. Number of samples in simple random sampling of fault list during simulation. Value in percent to apply simple random sampling to fault	110	faultstart=0 s	
order where transient fault analysis is performed. 113 faultevent=[] s Events to perform transient fault analysis. 114 faultautostop=no Auto stop transient simulation when the fault is detected based on assert violation. Possible values are no, func, check, and all. 115 faultskipdc=yes Enforce skipdc=yes during direct fault analysis when no solution found during IC analysis. Possible values are no and yes. 116 faultstrobe=no Time point strobe will be enabled during fault analysis. Possible values are linear, maxiters, onestep, lead-time, testpoint and timezero. 118 faults=[] Names of fault blocks in the fault list to perform the transient fault analysis. 119 faultsid=[] Indexes of faults from the list to be considered during simulation. 120 faultsname=[] Names of faults from the list to be considered during simulation. 121 faultsinst=[] List of instances to be considered during fault simulation. 122 faultsamplenum Number of samples in simple random sampling of fault list during simulation. 123 faultsampleratio Value in percent to apply simple random sampling to fault	111	faultstop=stop s	•
Auto stop transient simulation when the fault is detected based on assert violation. Possible values are no, func, check, and all. 115 faultskipdc=yes Enforce skipdc=yes during direct fault analysis when no solution found during IC analysis. Possible values are no and yes. 116 faultstrobe=no Time point strobe will be enabled during fault analysis. Possible values are linear, maxiters, onestep, lead-time, testpoint and timezero. 118 faults=[] Names of fault blocks in the fault list to perform the transient fault analysis. 119 faultsid=[] Indexes of faults from the list to be considered during simulation. 120 faultsname=[] Names of faults from the list to be considered during simulation. 121 faultsinst=[] List of instances to be considered during fault simulation. Number of samples in simple random sampling of fault list during simulation. 123 faultsampleratio Value in percent to apply simple random sampling to fault	112	faultfile	<u> </u>
based on assert violation. Possible values are no, func, check, and all. 115 faultskipdc=yes Enforce skipdc=yes during direct fault analysis when no solution found during IC analysis. Possible values are no and yes. 116 faultstrobe=no Time point strobe will be enabled during fault analysis. 117 faultmethod=linear Simulation method used for transient fault analysis. Possible values are linear, maxiters, onestep, leadtime, testpoint and timezero. 118 faults=[] Names of fault blocks in the fault list to perform the transient fault analysis. 119 faultsid=[] Indexes of faults from the list to be considered during simulation. 120 faultsname=[] Names of faults from the list to be considered during simulation 121 faultsinst=[] List of instances to be considered during fault simulation. 122 faultsamplenum Number of samples in simple random sampling of fault list during simulation. 123 faultsampleratio Value in percent to apply simple random sampling to fault	113	faultevent=[] s	Events to perform transient fault analysis.
solution found during IC analysis. Possible values are no and yes. Time point strobe will be enabled during fault analysis. faultmethod=linear Simulation method used for transient fault analysis. Possible values are linear, maxiters, onestep, leadtime, testpoint and timezero. Names of fault blocks in the fault list to perform the transient fault analysis. faultsid=[] Indexes of faults from the list to be considered during simulation. faultsname=[] Names of faults from the list to be considered during simulation. List of instances to be considered during fault simulation. Aumber of samples in simple random sampling of fault list during simulation. faultsamplenum Value in percent to apply simple random sampling to fault	114	faultautostop=no	based on assert violation.
Simulation method used for transient fault analysis. Possible values are linear, maxiters, onestep, leadtime, testpoint and timezero. 118 faults=[] Names of fault blocks in the fault list to perform the transient fault analysis. 119 faultsid=[] Indexes of faults from the list to be considered during simulation. 120 faultsname=[] Names of faults from the list to be considered during simulation. 121 faultsinst=[] List of instances to be considered during fault simulation. 122 faultsamplenum Number of samples in simple random sampling of fault list during simulation. 123 faultsampleratio Value in percent to apply simple random sampling to fault	115	faultskipdc=yes	solution found during IC analysis.
sible values are linear, maxiters, onestep, lead- time, testpoint and timezero. 118 faults=[] Names of fault blocks in the fault list to perform the transient fault analysis. 119 faultsid=[] Indexes of faults from the list to be considered during simulation. 120 faultsname=[] Names of faults from the list to be considered during simulation 121 faultsinst=[] List of instances to be considered during fault simulation. 122 faultsamplenum Number of samples in simple random sampling of fault list during simulation. 123 faultsampleratio Value in percent to apply simple random sampling to fault	116	faultstrobe=no	Time point strobe will be enabled during fault analysis.
sient fault analysis. 119 faultsid=[] Indexes of faults from the list to be considered during simulation. 120 faultsname=[] Names of faults from the list to be considered during simulation 121 faultsinst=[] List of instances to be considered during fault simulation. 122 faultsamplenum Number of samples in simple random sampling of fault list during simulation. 123 faultsampleratio Value in percent to apply simple random sampling to fault	117	faultmethod=linear	
simulation. 120 faultsname=[] Names of faults from the list to be considered during simulation 121 faultsinst=[] List of instances to be considered during fault simulation. 122 faultsamplenum Number of samples in simple random sampling of fault list during simulation. 123 faultsampleratio Value in percent to apply simple random sampling to fault	118	faults=[]	•
ulation 121 faultsinst=[] List of instances to be considered during fault simulation. 122 faultsamplenum Number of samples in simple random sampling of fault list during simulation. 123 faultsampleratio Value in percent to apply simple random sampling to fault	119	faultsid=[]	
 122 faultsamplenum Number of samples in simple random sampling of fault list during simulation. 123 faultsampleratio Value in percent to apply simple random sampling to fault 	120	faultsname=[]	Names of faults from the list to be considered during simulation
list during simulation. 123 faultsampleratio Value in percent to apply simple random sampling to fault	121	faultsinst=[]	List of instances to be considered during fault simulation.
± 117 1 1 0	122	faultsamplenum	
	123	faultsampleratio	Value in percent to apply simple random sampling to fault list during simulation.

Analysis Statements

124	faultseed=1	Optional starting seed for random number generator during fault sampling.				
125	faultsamplemethod=random					
		Method to be used for fault sampling. Possible values are random, randomweighted, randomuniform and weightsorted.				
126	faultcollapse=no	Perform bridge fault collapsing in the list before fault simulation. Possible values are no and yes.				
127	faultsave=testpoint	cs				
		Set of data to be saved during transient fault analysis. Possible values are testpoints and all.				
128	faultddm	File containing the command line options to run 'spectre_ddmrpt' when fault simulation finished.				
129	faultdb	File name to save fault simulation data.				
130	faultfmt	File format to save fault simulation data. Possible values are ${\tt csv}, {\tt xl},$ and ${\tt sql}.$				
131	faultleadtime=0.0	S				
		The lead time intervals where the fault will be injected before the fault time when faultmethod=leadtime.				
132	faultmaxiters	Maximum number of iterations per time step for transient fault analysis. Default is 50 for maxiters, 10 for onestep and 5 for other methods.				
133	faultlimsteps=yes					
		Auto stop slow simulation for the faults taking above average number of time steps. Possible values are no and yes.				
134	faultlimtime	Maximum elapsed time allowed to perform one fault simulation (in hours). Simulation auto-stops if not finished earlier that the specified time.				
135	faultsafecheck=no	Enable auto-stop during the nominal simulation when the assert with 'safecheck' specified has been violated. Possible values are no and yes.				
136	faultrampinterval=0					

Analysis Statements

		The coefficient (between 0 and 1) to define the size of time interval to ramp fault conductance after fault injection when 'faultmethod=leadtime' specified.
137	faultic=no	Perform dc analysis after fault injection as initial conditions for transient fault analysis. Possible values are no and yes.
138	maxstepratio	Maximum time step ratio for custom 'errpreset'.
139	reltolratio	Reltol ratio for custom 'errpreset'.

You can specify the initial condition for the transient analysis by using the ic statement or the ic parameter on the capacitors and inductors. If you do not specify the initial condition, the DC solution is used as the initial condition. The ic parameter on the transient analysis controls the interaction of various methods of setting the initial conditions. The effects of individual settings are as follows:

ic=dc: All initial conditions are ignored, and the DC solution is used.

ic=node: The ic statements are used, and the ic parameter on the capacitors and inductors is ignored.

ic=dev: The ic parameters on the capacitors and inductors are used, and the ic statements are ignored.

ic=all: Both the ic statements and the ic parameters are used, and the ic parameters override the ic statements.

If you specify an initial condition file with the readic parameter, initial conditions from the file are used, and any ic statements are ignored.

After you specify the initial conditions, Spectre computes the actual initial state of the circuit by performing a DC analysis. During this analysis, Spectre forces the initial conditions on nodes by using a voltage source in series with a resistor whose resistance is rforce (see options).

With the ic statement, it is possible to specify an inconsistent initial condition (one that cannot be sustained by the reactive elements). Examples of inconsistent initial conditions include setting the voltage on a node with no path of capacitors to ground, or setting the current through a branch that is not an inductor. If you initialize Spectre inconsistently, its solution jumps, that is, it changes instantly at the beginning of the simulation interval. You should avoid such changes because Spectre can have convergence problems while trying to make the jump.

Analysis Statements

You can skip DC analysis entirely by using the parameter <code>skipdc</code>. If DC analysis is skipped, the initial solution is trivial or is given in the file that you specified by using the <code>readic</code> parameter, or if the <code>readic</code> parameter is not specified, by the values specified on the ic statements. Device-based initial conditions are not used for <code>skipdc</code>. Nodes that you do not specify with the <code>ic</code> file or <code>ic</code> statements start at zero. You should not use this parameter unless you are generating a nodeset file for circuits that have trouble in the DC solution; it usually takes longer to follow the initial transient spikes that occur when the DC analysis is skipped than it takes to find the real DC solution. The <code>skipdc</code> parameter might also cause convergence problems in the transient analysis.

The possible settings of parameter skipdc and their meanings are as follows:

skipdc=no: Initial solution is calculated using normal DC analysis (default).

skipdc=yes: Initial solution is given in the file specified by the readic parameter or the values specified on the ic statements.

skipdc=useprevic: Initial solution obtained from the previous analysis is used.

skipdc=waveless: Same initial solution as skipdc=yes, but the waveform production in the time-varying independent sources is disabled during the transient analysis. Independent source values are fixed to their initial values (not their DC values).

skipdc=rampup: Independent source values start at 0 and ramp up to their initial values in from start to rampuptime. If rampuptime is not given, rampuptime will be set to rampupratio*stop. After that their values remain constant. Zero initial solution is used.

skipdc=autodc: Same as skipdc=waveless if a nonzero initial condition is specified. Otherwise, same as skipdc=rampup.

skipdc=sigrampup: Independent source values start at 0 and ramp up to their initial values in the first phase of the simulation. Unlike skipdc=rampup, the waveform production in the time-varying independent source is enabled after the rampup phase. The rampup simulation is from the start parameter. If the start parameter is not specified, the default start time is set to rampupratio*stop.

Nodesets help find the DC or the initial transient solution. You can specify nodesets in the circuit description file with nodeset statements, or in a separate file using the readns parameter. When nodesets are specified, Spectre computes an initial guess of the solution by performing DC analysis, while forcing the specified values on to nodes by using a voltage source in series with a resistor whose resistance is rforce. Spectre then removes these voltage sources and resistors and computes the required solution from this initial guess.

Nodesets have two important uses. First, if a circuit has two or more solutions, nodesets can bias the simulator towards computing the required solution. Second, these are a convergence

Analysis Statements

aid. By estimating the solution of the largest possible number of nodes, you might be able to eliminate a convergence problem or significantly speed up convergence.

When you simulate the same circuit multiple times, it is recommended that you use both write and readns parameters and assign the same file name to both parameters. DC analysis then converges quickly even if the circuit has changed since the last simulation, and the nodeset file is automatically updated.

Nodesets and initial conditions have similar implementation, but produce different effects. Initial conditions define the solution, whereas nodesets only influence it. When you simulate a circuit with a transient analysis, Spectre forms and solves a set of differential equations. Because differential equations have an infinite number of solutions, a complete set of initial conditions must be specified to identify the required solution. Any initial conditions that you do not specify are computed by the simulator to be consistent. The transient waveforms then start from initial conditions. Nodesets are usually used as a convergence aid and do not affect the final results. However, in a circuit with more than one solution, such as a latch, nodesets bias the simulator towards finding the solution closest to the nodeset values.

The method parameter specifies the integration method. The possible settings and their meanings are as follows:

method=euler: Backward-Euler is used exclusively.

method=traponly: Trapezoidal rule is used almost exclusively.

method=trapeuler: Backward-Euler and the trapezoidal rule are used.

method=gear2only: Gear's second-order backward-difference method is used almost exclusively.

method=gear2: Backward-Euler and second-order Gear are used.

method=trapgear2: Allows all three integration methods to be used.

method=trap: An advanced version of trap that uses all three integration methods.

The trapezoidal rule is usually the most efficient when you want high accuracy. This method can exhibit point-to-point ringing, but you can control this by tightening the error tolerances. For this reason, though, if you choose loose tolerances to get a quick answer, the backward-Euler or second-order Gear will probably give better results than the trapezoidal rule. Second-order Gear and backward-Euler can make systems appear more stable than they are. This effect is less pronounced with second-order Gear or when you request high accuracy.

Several parameters determine the accuracy of the transient analysis. reltol and abstol control the accuracy of the discretized equation solution. These parameters determine how

Analysis Statements

well charge is conserved and how accurately steady-state or equilibrium points are computed. You can set the integration errors in the computation of the circuit dynamics (such as time constants), relative to reltol and abstol by setting the lteratio parameter.

The parameter relref determines how the relative error is treated. The relref options are as follows:

relref=pointlocal: Compares the relative errors in quantities at each node to that node alone.

relref=alllocal: Compares the relative errors at each node to the largest values found for that node alone for all past time.

relref=sigglobal: Compares relative errors in each circuit signal to the maximum for all signals at any previous point in time.

relref=allglobal: Same as relref=sigglobal, except that it also compares the residues (KCL error) for each node to the maximum of that node's past history.

The errpreset parameter lets you adjust the simulator parameters to fit your needs quickly. You can set errpreset to conservative if the circuit is sensitive, or you can set it to liberal for a fast, but possibly inaccurate, simulation. The setting errpreset=moderate suits most needs.

The effect of errpreset on other parameters is shown in the following table. In this table, T= stop - start.

errpreset	reltol	relref	method	maxstep	lteratio
liberal	* 10	sigglobal	trapgear2	Interval/50	3.5
moderate		sigglobal	traponly	Interval/50	3.5
conservative	* 0.1	alllocal	gear2only	Interval/100	10.0

The default value for errpreset is moderate.

The value of reltol is increased or decreased from its value in the options statement, but it is not allowed to be larger than 0.01. Spectre sets the value of maxstep so that it is no larger than the value given in the table. Except for reltol and maxstep, errpreset does not change the value of any parameters you have explicitly set. The actual values used for the transient analysis are given in the log file.

errpreset also controls the LTE Check:

	Liberal	Moderate	Conservative
LTE Check	Caps/Inds	Loose nodes	strict nodes

Analysis Statements

It controls how the simulator follows signals other than capacitor voltages and inductor currents. When errpreset=liberal, the timestep is not controlled to follow these signals. When errpreset=moderate, the timestep is reduced to follow large changes in these signals. When errpreset=conservative, the timestep is reduced to follow small changes in these signals.

If the circuit you are simulating has infinitely fast transitions (for example, a circuit that contains nodes with no capacitance), Spectre might have convergence problems. To avoid this, you must prevent the circuit from responding instantaneously. You can accomplish this by setting cmin, the minimum capacitance to ground at each node, to a physically reasonable nonzero value. This often significantly improves Spectre convergence.

Spectre provides two methods for reducing the number of output data points saved: strobing, based on the simulation time, and skipping time points, which saves only every N'th point.

The parameters strobeperiod and strobedelay control the strobing method.strobeperiod sets the interval between the points that you want to save, and strobedelay sets the offset within the period relative to skipstart. The simulator forces a time step on each point to be saved, so that the data is computed, and not interpolated.

The skipping method is controlled by skipcount. If this is set to N, only every N'th point is saved.

The parameters skipstart and skipstop apply to both data reduction methods. Before skipstart and after skipstop, Spectre saves all computed data.

If you do not want any data saved before a given time, use outputstart. If you do not want any data saved after a given time, change the stop time.

Dynamic Parameters for Transient Analysis

The parameters defined in the Dynamic parameters section allows you to change temperature, design parameters or some option parameters (reltol, residualtol, vabstol, iabstol, and isnoisy) during transient simulation.

Example 1: Change temperature during tran with param_step=0(default).

```
tran1 tran stop=0.5u param=temp param vec=[0ns 20 50ns 25]
```

In this tran run, the temperature is 20C from 0ns-50ns, then it changes to 25C at 50ns. After tran is done, the temperature is reset back to its default value.

You can also define time value pairs in a file and give the file name through parameter param_file.

Analysis Statements

The format of the file is defined as follows:

```
; comments
  tscale tscale_value
  time value
  20 50.0
  30 60.0
```

where, the comment line starts with a semicolon (;), tscale is a keyword, and tscale_value is a value, such as 1.0e-6 or 1.0e-9, that is applied to each time point under the time column. time and value are two key words that identify the time and value columns. The values under the time column define the time points and each time point is scaled by tscale_value. The values under the value column define the values for the dynamic parameter.

Note: No unit is supported in the file format.

Example2: change temperature during tran with param_step=10ns

```
tran1 tran stop=0.5u param=temp param vec=[0ns 20 50ns 25] param step=10ns
```

In this tran run, the temperature is interpolated with slope (25-20)/(50ns-0ns) and updated every param_step (10ns).

Example3: Change design parameter.

```
tran1 tran stop=0.5u param=gain sub=x1 param vec=[0 5 1u 20]
```

Example4: turn On and Off transient noise in time windows.

```
tran1 tran stop=0.5u noisefmax=10G noiseseed=1
param=isnoisy param vec=[0ns 0 100ns 1 500ns 0 ]
```

The transient noise is OFF from time 0 to 100ns. Noise is ON from 100ns to 500ns and noise is OFF from 500ns to stop time.

The default value for compression is no. The output file stores data for every signal at every time point for which Spectre calculates a solution. Spectre saves the X-axis data only once, because every signal has the same x value. If compression=all, Spectre writes data to the output file only if the signal value changes by at least two times the convergence criteria. To save data for each signal independently, X-axis information corresponding to each signal must be saved. If the signals stay at constant values for large periods of the simulation time, setting compression=all results in a smaller output data file. If the signals in your circuit move around a lot, setting compression=all results in a larger output data file. The compvabstol, compiabstol, and comppwrabstol options can be used to control output compression abstol for voltage, current, and power respectively. The possible values of compression (alllocal, pointlocal, sigglobal, and abstol) in transient statement will be deprecated in the next release.

Analysis Statements

Parameter Index

In the following index, the number corresponding to each parameter name indicates where to find the description of that parameter:

acnames 85	faultfmt 130	linearic 18	relref 38
actime_pair 87	faultic 137	lteminstep 44	reltolratio 139
actimes 86	faultleadtime 131	lteratio 39	restart 90
annotate 51	faultlimsteps 133	ltethstep 45	save 55
annotatedigits 53	faultlimtime 134	maxiters 88	saveclock 27
annotateic 52	faultmaxiters	maxstep 8	savefile 29
autostop 7	faultmethod 117	maxstepratio 138	saveperiod 25
circuitage 91	faultrampinterval	mc_auto_noiseseed 96	saveperiodhistory 26
ckptperiod 24	faults 118	method 31	savetime 28
cmin 21	faultsafecheck 135	minstep 10	skipcount 60
compiabstol 74	faultsamplemethod 125	mod 105	skipdc 13
complvl 77	faultsamplenum 122	nestlvl 56	skipstart 58
comppwrabstol 75	faultsampleratio	noisefmax 93	skipstop 59
compref 72	faultsave 127	noisefmin 97	start 3

Analysis Statements

compreltol 76	faultseed 124	noiseoff 99	step 9
compression 71	faultsid 119	noiseon 98	stop 1
compvabstol 73	faultsinst 121	noisescale 94	strobedelay 62
d2aminstep 41	faultskipdc 115	noiseseed 95	strobefreq 65
d2atimetol 46	faultsname 120	oppoint 57	strobeoutput 63
dcmaxiters 89	faultstart 110	oscfreq 19	strobeperiod 61
dev 106	faultstep 109	outputstart 5	strobestart 66
emirfile 35	faultstop 111	param 100	strobestep 64
emirformat 32	faultstrobe 116	param_file 103	strobestop 67
emirstart 33	faulttimes 108	param_step 107	strobetimes 68
emirstop 34	flushofftime 80	param_vec 102	sub 104
emirtimewindows 36	flushperiod 81	paramset 101	title 54
errpreset 37	flushpoints 78	progress_p 70	tpoints 2
fastbreak 40	flushtime 79	progress_t 69	trannoisemethod 92
fastcross 42	ic 12	pstep 4	transres 43
faultautostop 114	infonames 82	rampupratio 14	useprevic 17
faultcollapse 126	infotime_pair 84	rampuptime 15	vrefbins 49
faultdb 129	infotimes 83	readic 16	vrefmax 47

Spectre Circuit Simulator Reference Analysis Statements

faultddm 128	irefbins 50	readns 20	write 22
faultevent 113	irefmax 48	readtime 6	writefinal 23
faultfile 112	istep 11	recover 30	

Analysis Statements

Special Current Saving Options (uti)

Description

This command is used to report the dynamic current of all devices connected to the specified voltage source during dynamic simulation.

Definition

Name uti parameter=value ...

Analysis Statements

Parameters

1	signal	Specify the name of signal for which voltage drop must be calculated.
2	start	Specify the start name of the measure.
3	clockcycle (s)	Specify the length of the clock cycle.
4	intervals	Specify the number of measurement intervals within a clock cycle.
5	cycles	Specify the number of clock cycles for which this measure will be calculated.
6	filename	Specify the root name of the files containing the peak, average and RMS tap currents for this measure.
7	termflag	Specify the terminals which will be output.
8	method	Specify the method used in post-processing clock analysis data.
9	namemangling	Specify namemangling.
10	utigzip=no	Zip uti output files. Possible values are no and yes.
11	compression=no	If set to yes, UTI output compression is enabled. Default value is no. Possible values are no and yes.

Parameter Index

In the following index, the number corresponding to each parameter name indicates where to find the description of that parameter.

clockcycle 3	filename 6	namemangling 9	termflag 7
compression 11	intervals 4	signal 1	utigzip 10
cycles 5	method 8	start 2	

Analysis Statements

Transfer Function Analysis (xf)

Description

The transfer function analysis linearizes the circuit about the DC operating point and performs a small-signal analysis that calculates the transfer function from every independent source in the circuit to a designated output. The variable of interest at the output can be voltage or current.

You can specify the output with a pair of nodes or a probe component. Any component with two or more terminals can be a voltage probe. When there are more than two terminals, they are grouped in pairs, and you use the porty parameter to select the appropriate pair of terminals. Alternatively, you can specify a voltage to be the output by giving a pair of nodes on the xf analysis statement.

Any component that naturally computes current as an internal variable can be a current probe. If the probe component computes more than one current (as transmission lines, microstrip lines, and N-ports do), you use the porti parameter to select the appropriate current. It is an error to specify both porty and porti. If neither is specified, the probe component provides a reasonable default.

The stimuli parameter specifies the inputs for the transfer functions. There are two choices. stimuli=sources indicates that the sources present in the circuit should be used. The xfmag parameters provided by the sources may be used to adjust the computed gain to compensate for gains or losses in a test fixture. You can limit the number of sources in hierarchical netlists by using the save and nestlvl parameters.

The transfer functions computed versus output and source types are as follows:

Source		Outpu	ıt	Туре		Source
Type		voltage		current		Amplitude
	-+-		-+-		-+-	
vsource		V(out)/V(src)		I(out)/V(src)		V(src)=xfmag
isource		V(out)/I(src)		I(out)/I(src)		<pre>I(src)=xfmag</pre>
port		2*V(out)/V(src)		2*I(out)/V(src)		V(src)=2*xfmag

where, xfmag defaults to 1 for each source type. For the port, V(src) is the internal source voltage.

Specifying stimuli=nodes_and_terminals indicates that all possible transfer functions should be computed. This is useful when it is not known in advance which transfer functions are interesting. Transfer functions for nodes are computed assuming that a unit magnitude flow (current) source is connected from the node to ground. Transfer functions for terminals are computed assuming that a unit magnitude potential (voltage) source is connected in

Analysis Statements

series with the terminal. By default, the transfer functions from a small set of terminals are computed. If transfer functions from specific terminals are required, specify the terminals in the save statement. You must use the :probe modifier (for example, Rout:1:probe) or specify useprobes=yes on the options statement. If transfer functions from all terminals are required, specify currents=all and useprobes=yes on the options statement.

Spectre can perform AC analysis while sweeping a parameter. The parameter can be frequency, temperature, component instance parameter, component model parameter, or netlist parameter. If changing a parameter affects the DC operating point, the operating point is recomputed at each step. You can sweep the circuit temperature by giving the parameter name as temp, without a dev or mod parameter. In addition, you can sweep a netlist parameter by giving the parameter name without a dev or mod parameter. After the analysis is complete, the modified parameter returns to its original value.

Definition

```
Name [p] [n] xf parameter=value ...
```

The optional terminals (p and n) specify the output of the circuit. If you do not specify the terminals, you must specify the output with a probe component.

Parameters

1	prevoppoint=no	Use the operating point computed in the previous analysis. Possible values are no and yes.
---	----------------	--

Sweep interval parameters

2	start=0	Start sweep limit.
3	stop	Stop sweep limit.
4	center	Center of sweep.
5	span=0	Sweep limit span.
6	step	Step size, linear sweep.
7	lin=50	Number of steps, linear sweep.
8	dec	Points per decade.
9	log=50	Number of steps, log sweep.

Analysis Statements

10	values=[]	Array of sweep values.
11	valuesfile	Name of the file containing the sweep values.

Sweep variable parameters

12	dev	Device instance whose parameter value is to be swept.
13	mod	Model whose parameter value is to be swept.
14	param	Name of parameter to sweep.
15	freq (Hz)	Frequency when parameter other than frequency is being swept.

Probe parameters

16	probe	Compute every transfer function to this probe
		component.

State-file parameters

17	readns	File that contains an estimate of DC solution (nodeset).
18	write	DC operating point output file at the first step of the sweep.
19	writefinal	DC operating point output file at the last step of the sweep.

Initial condition parameters

20	force=none	The set of initial conditions to use. Possible values are none, node, dev, and all.
21	readforce	File that contains initial conditions.
22	skipdc=no	Skip DC analysis. Possible values are no and yes.

Analysis Statements

23	useprevic=no	If set to yes or ns , use the converged initial condition from previous analysis as ic or ns . Possible values are no , yes , and ns .

Output parameters

24	stimuli=sources	Stimuli used for xf analysis. Possible values are sources and nodes_and_terminals.
25	save	Signals to output. Possible values are all, lvl, allpub, lvlpub, selected, none, and nooutput.
26	nestlvl	Levels of subcircuits to output.
27	oppoint=no	Determines whether operating point information should be computed; if yes, where should it be printed (screen or file). Operating point information is not printed if the operating point computed in the previous analysis remains unchanged. Possible values are no, screen, logfile, and rawfile.

Convergence parameters

28	restart=yes	Restart the DC solution from scratch if any condition has changed. If not, use the previous solution as initial guess. Possible values are no and yes.
		rossible values are no and yes.

Annotation parameters

29	annotate=sweep	Degree of annotation. Possible values are no, title, sweep, status, and steps.
30	title	Analysis title.

You can define sweep limits by specifying the end points or the center value and span of the sweep. Steps can be linear or logarithmic, and you can specify the number of steps or the size of each step. You can specify a step size parameter (step, lin, log, or dec) to determine whether the sweep is linear or logarithmic. If you do not specify a step size

Analysis Statements

parameter, the sweep is linear when the ratio of stop to start values is less than 10 and logarithmic when this ratio is 10 or greater. All frequencies are in Hertz.

The small-signal analysis begins by linearizing the circuit about an operating point. By default this analysis computes the operating point, if it is not known, or recomputes it if any significant component or circuit parameter has changed. However, if an operating point was calculated during a previous analysis, you can set prevoppoint=yes to avoid recomputing it. For example, if prevoppoint=yes and the previous analysis was a transient analysis, the operating point is the state of the circuit at the final time point.

Nodesets help find the DC or the initial transient solution. You can specify nodesets in the circuit description file with nodeset statements, or in a separate file using the readns parameter. When nodesets are specified, Spectre computes an initial guess of the solution by performing a DC analysis, while forcing the specified values on to nodes by using a voltage source in series with a resistor whose resistance is rforce. Spectre then removes these voltage sources and resistors and computes the required solution from this initial guess.

Nodesets have two important uses. First, if a circuit has two or more solutions, nodesets can bias the simulator towards computing the required solution. Second, these are a convergence aid. By estimating the solution of the largest possible number of nodes, you might be able to eliminate a convergence problem or significantly speed up convergence.

When you simulate the same circuit multiple times, it is recommended that you use both write and readns parameters and assign the same file name to both parameters. DC analysis then converges quickly even if the circuit has changed since the last simulation, and the nodeset file is automatically updated.

During the initial operating point DC analysis, you may force some of the circuit variables to the values given in the ic file, ic statements, or ic parameter on the capacitors and inductors. The ic parameter controls the interaction of various methods of setting the force values. The effects of individual settings are as follows:

force=none: All initial conditions are ignored.

force=node: The ic statements are used, and the ic parameters on the capacitors and inductors are ignored.

force=dev: The ic parameters on the capacitors and inductors are used, and the ic statements are ignored.

force=all: Both ic statements and ic parameters are used, with the ic parameters overriding the ic statements.

If you specify an ic file with the readforce parameter, force values from the file are used, and any ic statements are ignored.

Analysis Statements

After you specify the initial conditions, Spectre computes the DC operating point with the specified nodes forced to the given value by using a voltage source in series with a resistor whose resistance is rforce (see options).

Parameter Index

In the following index, the number corresponding to each parameter name indicates where to find the description of that parameter:

annotate 29	mod 13	restart 28	title 30
center 4	nestlvl 26	save 25	useprevic 23
dec 8	oppoint 27	skipdc 22	values 10
dev 12	param 14	span 5	valuesfile 11
force 20	prevoppoint 1	start 2	write 18
freq 15	probe 16	step 6	writefinal 19
lin 7	readforce 21	stimuli 24	
log 9	readns 17	stop 3	

Analysis Statements

Other Simulation Topics

This chapter discusses the following topics:

- AHDL Linter Usage (ahdllint) on page 455
- <u>Using analogmodel for Model Passing (analogmodel)</u> on page 459
- Behavioral Source Use Model (bsource) on page 461
- Checkpoint Restart (checkpoint) on page 470
- Configuring CMI Shared Objects (cmiconfig) on page 472
- Built-in Mathematical and Physical Constants (constants) on page 474
- Convergence Difficulties (convergence) on page 476
- encryption (encryption) on page 479
- **■** Expressions (expressions) on page 482
- The fastdc command line option (fastdc) on page 486
- User Defined Functions (functions) on page 489
- Global Nodes (global) on page 490
- IBIS Component Use Model (ibis) on page 491
- Initial Conditions (ic) on page 498
- The Structural if-statement (if) on page 499
- Include File (include) on page 501
- Spectre Netlist Keywords (keywords) on page 503
- Library Sectional Include (library) on page 506
- Tips for Reducing Memory Usage (memory) on page 508
- Node Sets (nodeset) on page 510

Other Simulation Topics

- Parameter Soft Limits (param limits) on page 511
- Netlist Parameters (parameters) on page 514
- Parameter Set Block of Data (paramset) on page 517
- <u>Tips for Reducing Memory Usage with SpectreRF (rfmemory)</u> on page 520
- Output Selections (save) on page 525
- Savestate Recover (savestate) on page 528
- Sensitivity Analyses (sens) on page 532
- SpectreRF Summary (spectrerf) on page 534
- Stitch Flow Use Model (stitch) on page 535
- Subcircuit Definitions (subckt) on page 541
- <u>Vec/Vcd/Evcd Digital Stimulus (vector)</u> on page 546
- Verilog-A Usage and Language Summary (veriloga) on page 549

Other Simulation Topics

AHDL Linter Usage (ahdllint)

Description

The AHDL Linter technology offers a powerful set of capabilities for upfront identification of issues that worry designers even well beyond the model creation stage. The AHDL Linter feature helps identify complex design modeling issues and can be used on block simulation or SOC verifications performed just before tape out. Early warnings enable designers to avoid expensive design iterations, and meeting quality and time-to-market goals.

You can use the AHDL Linter feature to analyze Spectre APS, and Spectre XPS test cases containing Verilog-A models.

AHDL Linter checks each Verilog-A behavioral model in the design and suggests which line should be improved to:

- Avoid potential convergence or performance problems
- Improve model accuracy, reusability, and portability

AHDL linter consists of static and dynamic lint checks. Static lint checks are performed at compilation stage. Dynamic lint checks are performed during analysis for dynamic modeling issues that may cause convergence or performance problems during simulation.

Using the AHDL Linter Feature

The AHDL Linter feature is activated in Spectre APS, and Spectre XPS using the following command-line options:

```
% spectre +aps -ahdllint netlist.scs
% spectre +xps +cktpreset=sram -ahdllint netlist.scs
```

where netlist.scs is written using Spectre, SPICE, or eSpice syntax and includes one or more Verilog-A models.

You can perform static linter checks on a netlist file that includes one or more Verilog-A models, as follows:

spectre +aps -ahdllint=static test.scs // test.scs includes the Verilog-A files

Spectre, in this case, performs only linter checks on all Verilog-A files and does not run the simulation.

Other Simulation Topics

You can also perform static lint checks on a Verilog-A file directly without specifying the top-level netlist file (.scs), as follows:

spectre +aps -ahdllint=static test.va //perform static lint check on test.va

The -ahdllint option accepts the following arguments:

no	Disables lint checks. There is no change in the existing compilation or simulation error messages.
warn	(default) Turns on the static lint and dynamic lint checks. Except the models with attribute (* ahdllint = "no" *), the static lint checks all models, continues the simulation, and then performs dynamic lint checks.
error	Turns on the static lint check. Dynamic lint checks are performed only when static lint issues are not detected. Except the models with attribute (* ahdllint = "no" *), the static lint checks all models. The simulator generates an error and exits if there is any static lint warning reported after compiling all the models of the circuit. If there are no static lint warnings, the simulator continues the simulation and performs dynamic lint checks. However, in the case of dynamic lint issues, the simulator does not error out.
force	Similar to warn, but this option overrides the model attribute (* ahdllint = "no" *), and forces to check all models, continue the simulation, and perform dynamic lint checks.
static	Performs static lint checks on a Verilog-A file directly.

Note: The <code>-ahdllint</code> option can be used without any argument, which is equivalent to specifying <code>-ahdlint=warn</code>. You can also set the <code>-ahdllint</code> option as default by setting the <code>SPECTRE_DEFAULTS</code> environment variable, as follows:

```
setenv SPECTRE DEFAULTS "-ahdllint=warn"
```

You can use the <code>-ahdllint_maxwarn = n</code> command-line option to control the maximum number of static and dynamic warnings. The default value is 5.

You can also control the maximum number of warnings by using the environment variable SPECTRE_DEFAULTS or ULSTRASIM_DEFAULTS, as show below.

```
setenv SPECTRE_DEFAULTS "-ahdllint -ahllint_maxwarn=10"
setenv ULSTRASIM DEFAULTS "-ahdllint -ahllint maxwarn=10"
```

You can use the $-ahdllint_warn_id=<ID>$ option to control the warning messages for a specific message ID. ID should be a positive integer value between 5001 and 6000 or 8001

Other Simulation Topics

and 9999. In addition, the <code>-ahdllint_warn_id</code> option should always be used with the <code>-ahdllint_maxwarn</code> option and should be directly specified after it in the command line, otherwise, the option will be ignored. For example:

```
spectre +aps -ahdllint -ahdllint maxwarn=2 -ahdllint warn id=5001 input.scs
```

In the above example, Spectre will display only two warning messages related to the message ID 5001.

You can specify the -ahdllint_maxwarn and -ahdllint_warn_id options multiple times at the command line. For example:

spectre +aps -ahdllint -ahdllint_maxwarn=1 -ahdllint_warn_id=5001 -ahdllint_maxwarn=3 -ahdllint_warn_id=8001 input.scs

In the above example, only one warning message related to the message ID 5001 will be displayed. In addition, three warning messages related to the message ID 8001 will be displayed.

You can also specify multiple IDs with the <code>-ahdllint_warn_id</code> option. However, the IDs must be specified using double quotes with a space between them. For example:

spectre +aps -ahdllint -ahdllint_maxwarn=2 -ahdllint_warn_id="5001 5003 5005" input.scs

Use the <code>-ahdllint_minstep=value</code> command-line option to set the minimal time step size boundary that will trigger an AHDL Linter warning, when the step size imposed by a <code>Verilog-AMS</code> filter or function, such as <code>transition</code>, <code>cross</code>, <code>above</code>, <code>\$bound_step</code>, and <code>timer</code> is smaller than <code>value</code>. The default value is <code>1e-12</code>.

You can use the <code>-ahdllint_summary_maxentries=<value></code> command-line option to control the maximum number of messages to be displayed in dynamic lint summary. The default value is 25. For example:

```
spectre -ahdllint summary maxentries=20 input.scs
```

By default, the static and dynamic lint warnings and the dynamic lint summary output are sent to the simulation log file. You can use the <code>-ahdllint_log=file</code> command-line option to output all the information to a specified file instead of the output log file.

Filtering AHDL Messages

You can filter the AHDL Linter messages using the options control statement, as follows:

```
Name options warning_limit=num warning_id=id
```

where:

Other Simulation Topics

warning_limit specifies the number of messages to be printed.

warning_id specifies the message id that needs to be printed.

Example1

```
myoptions options warning limit=0 warning id=[AHDLLINT-8004 AHDLLINT-8005]
```

In the above example, Spectre APS/XPS will not print any message with the id AHDLLINT-8004 and AHDLLINT-8005.

Example2

```
myoptions2 options warning limit=1 warning id=[AHDLLINT-8005]
```

In the above example, Spectre APS/XPS will print only one message with the id AHDLLINT-8005.

For more information about the options control statement, see spectre -h options.

Using the ahdlhelp Utility

You can use the ahdlhelp utility to view the extended help on various messages reported by AHDL Linter. To view the extended help, you need to provide the AHD Linter id number as an argument, as shown below.

AHDLLINT-5012: Detected \$abstime in an equality expression inside a conditional.

```
% ahdlhelp 8005
```

% ahdlhelp 5012

The following is an example of the ahdlhelp utility:

```
Analog simulations select timepoints using a variable timestep size algorithm based on accuracy considerations, so the value of "time" only changes between discrete real values. In order to perform an event at a particular time, the @(timer) construct must be used to tell the simulator to step to a particular timepoint and execute the desired code when that event actually occurs.

example:
```

```
if ($abstime==50n) xval=2;
solution:
```

```
@(timer(50n)) xval=2;
```

Other Simulation Topics

Using analogmodel for Model Passing (analogmodel)

Description

analogmodel is a reserved word in Spectre that allows you to bind an instance to different masters based on the value of a special instance parameter called modelname. An instance of analogmodel must have a parameter named modelname, whose string value represents the name of the master this instance will be bound to. The value of modelname can be passed into subcircuits.

The analogmodel keyword is used by the Cadence Analog Design Environment to enable model name passing through the schematic hierarchy.

Sample Instance Statement

```
name [(]node1 ... nodeN[)] analogmodel modelname=mastername [[param1=value1]
...[paramN=valueN]]
```

name	Name of the statement or instance label.
[(]node1nodeN[)]	Names of the nodes that connect to the component.
analogmodel	Special device name to indicate that this instance will have its master name specified by the value of the modelname parameter on the instance.
modelname	Parameter to specify the master of this instance indicated by mastername. The mastername must either be a valid string identifier or a netlist parameter that must resolve to a valid master name, a primitive, a model, a subckt, or an AHDL module.
param1 param2	Parameter values for the component. Depending on the master type, these can either be device parameters or netlist parameters. It is optional to specify these parameter values.

Example

Other Simulation Topics

```
"myOwnRes" defined below
v1 in 0 vsource dc=1
    model myOwnRes resistor r=100
    subckt top out in
    parameters a="mid"
    x1 (out in) analogmodel modelname=a //topInst1.x1 binds to "mid"
ends top
subckt mid out in
    parameters c="low"
    x1 (out in) analogmodel modelname=b //topInst1.x1.x1 binds to "bottom"
    x2 (out in) analogmodel modelname=c //topInst1.x1.x2 binds to "low"
ends mid
subckt low out in
    x1 (out in) analogmodel modelname="bottom" //topInst1.x1.x1.x2.x1 binds to
                                                  "bottom"
ends low
subckt bottom out in
    x1 (out in) analogmodel modelname="resistor" //x1 binds to primitive "resistor"
ends bottom
dc1 dc
//"VerilogAStuff.va"
'include "constants.h"
'include "discipline.h"
module VAMaster(n1, n2);
inout n1, n2;
electrical n1, n2;
parameter r=1k;
analog begin
I(n1, n2) <+ V(n1, n2)/r;
end
endmodule
```

Behavioral Source Use Model (bsource)

Description

Behavioral source enables you to model a resistor, inductor, capacitor, voltage or current source as a behavioral component. Using bsource, you can express the value of a resistance, capacitance, voltage or current as a combination of node voltages, branch currents, time expression, and built-in Spectre expressions.

The syntax for bsource is as follows:

name (node1 node2) bsource behav param param list

where behav_param can be:

c=simple_expr,	capacitance between the nodes
g=simple_expr,	conductance between the nodes
i=generic_expr,	current through bsource
l=simple_expr,	inductance between the nodes
phi=simple_expr,	flux in the bsource device
q=simple_expr,	charge in bsource device
r=simple_expr,	resistance between the nodes
v=generic_expr,	voltage across the nodes

simple_expr is defined as an Spectre expression, which contains:

- Netlist parameters.
- Current simulation time, \$time.
- Current frequency, \$freq.
- Node voltage, v(a,b), where a and b are nodes in the Spectre netlist, or node voltage v(a), which is the voltage between node a and ground.
- Branch currents, i ("inst_id:index"), where inst_id is an instance name given in the netlist and index is the port index that starts from 1. The default value of index is 1.

Note: If the value of the port index is set to 0, simple_expr treats it as the default value 1.

generic_expr is defined as a simple_expr or ddt() or idt() of simple_expr.

Other Simulation Topics

param_list is param_name=value.

param_name can have the multiplicity factor m. The value of m defaults to 1.

Temperature Parameters

tc1	Linear temperature co-efficient. Valid for all behavioral elements. Default value is 0 1/C.
tc2	Quadratic temperature co-efficient. Valid for all behavioral elements. Default value is 0 C^-2.
temp	Parameter for ambient temperature. Valid for all behavioral elements. Default value is \$temperature - 273.15.
tnom	Parameters measurement temperature. Valid for all behavioral elements. Default value is 27.0.
trise	Temperature rise for ambient. Valid for all behavioral elements. Default value is 0.0.
Т	Effective value of temperature. Valid for all behavioral elements. Default value is temp+trise-tnom.
tc1c	Linear temperature coefficient of capacitor. Valid for resistor type behavioral element. Default value is 0 1/C.
tc2c	Quadratic temperature coefficient of capacitor. Valid for resistor type behavioral element. Default value is 0 C^-2.

Clipping Parameters

max_val	Maximum value of bsource expression. Valid for all behavioral elements, but used with i and v elements to clip the current or voltage between the specified values.
min_val	Minimum value of bsource expression. Valid for all behavioral elements, but used with i and v elements to clip the current or voltage between the specified values.
bv_max	Generate a warning when because voltage of two terminals exceeds the value specified by bv_max. Valid for resistor and capacitor.

Spectre Circuit Simulator Reference Other Simulation Topics

Noise Parameters

af	Flicker noise exponent. Valid for r and g elements. Default value is 2.	
fexp	Flicker noise frequency exponent. Valid for r, g, v, and i elements. Default value is 1.	
ef	The alias parameter of fexp.	
ldexp	Flicker (1/f) noise L exponent. Valid for r and g elements. Default value is 1.0.	
If	The alias parameter of ldexp.	
wdexp	Flicker (1/f) noise W exponent. Valid for r and g elements. Default value is 1.0.	
wf	The alias parameter of wdexp.	
isnoisy	Specifies whether to generate noise. Valid for r, g, i, and v elements. Valid values are yes and no . Default value is yes .	
kf	Flicker noise co-efficient. Valid for r and g elements. Default value is 0.	
white_noise	White noise expression. Valid for v and i elements.	
flicker_noise	Flicker noise expression. Valid for v and i elements.	

DC Mismatch Parameters

mr	DC-Mismatch parameter. Valid only for r.

Other Parameters

scale, scaleb,	Bsource scaling factor. Default value is 1.0.
scaler, scalei,	
scalec	

Other Simulation Topics

ctype	Different implementations of a capacitor. When the value is 1, bsource current is ddt(cap*V(node1, node2)), where cap is the bsource capacitor value with temp effect, mfactor
	effect, scale effect and so on. V(node1, node2) is the voltage between the bsource terminals. When the value is 2, the current is ddt(cap). When the value is 0 or any other value, the current value is cap*ddt(V(node1, node2)). Default value is 0.

For the detailed algorithm, refer to "Affirma Spectre DC Device Matching Analysis Tutorial."

All the parameters in the param_name table are instance parameters. white_noise and flicker_noise may be assigned behavioral expressions; the other parameters must be assigned constant or parametric expressions.

Supported Instance Parameters

bsource supports the following instance parameters for Spectre primitives:

Resistor	isnoisy, m, r, tc1, tc2, trise, kf, af, fexp, ldexp, wdexp, l, w, mr
Capacitor	c, m, tc1, tc2, trise, ic, ctype
Inductor	l, m, tc1, tc2, trise

Mathematical Definitions

```
■ i = ddt(q) = ddt(simple_expr)
```

```
■ v = ddt(phi) = ddt(simple_expr)
```

```
\blacksquare v = i * r = i* simple_expr
```

```
\blacksquare i = g * v = simple_expr * v
```

$$\blacksquare$$
 i = c * ddt(v) = simple_expr * ddt(v)

$$\blacksquare$$
 v = 1 * ddt(i) = simple_expr * ddt(i)

Other Simulation Topics

Operating Point Parameters

Capacitor

cap (F) Capacitance at operating point	cap (F)	Capacitance at operating point	
--	---------	--------------------------------	--

Conductor

g (S)	Conductance at operating point
v (V)	Voltage at operating point
i (A)	Current through the conductor
pwr (W)	Power dissipation.

Current Source

v (V)	Voltage across the source	
i (A)	Current through the source	
pwr (W)	Power dissipation	

Inductor

ind (H)	Inductance at operating point
i (A)	Current at operating point

Charge

cap (F)	Capacitance at operating point
ddt_v (V/s)	Voltage gradient at operating point

Resistor

v (V)	Voltage at operating point
i (A)	Current through the resistor

Other Simulation Topics

res	(Ohm)	Resistance at operating point
pwr	(W)	Power dissipation

Voltage Source

v (V)	Voltage across the source
i (A)	Current through the source
pwr (W)	Power dissipation

Temperature Effects on bsource

The equation for computing temperature factor is as follows:

```
tempFactor = [1 + tc1*(temp+trise-tnom)+tc2*(temp+trise-tnom)^2]
```

Frequency Effects on bsource

The support for frequency-dependent beource is available. You can use a frequency-dependent resistor, capacitor, inductor, or beource component in ac/noise/xf/sp/hb/hbac/hbnoise analyses.

The syntax is as follows:

```
name ( node1 node2 ) model name behav param=freq expression
```

where:

- name is the name of the instance
- model_name can be becource, resistor, capacitor, and inductor
- behav_param is the r, c or I parameter.
- freq_expression can be specified by arbitrary expressions using the \$freq keyword.

Following are some examples using \$freq:

```
res (n1 n2) bsource r= 100 + sqrt(\$freq)/1e6
res (n1 n2) resistor r= 100 + sqrt(\$freq)/1e6
cap (n1 n2) bsource c=1e-12/(1+(\$freq)/1e9)
cap (n1 n2) capacitor c=1e-12/(1+(\$freq)/1e9)
ind (n1 n2) bsource l=1e-9+1e-9/(1+(\$freq)/1e9)
ind (n1 n2) inductor l=1e-9+1e-9/(1+(\$freq)/1e9)
```

Other Simulation Topics

Examples of bsource Usage

Non-linear resistor/capacitor/inductor modeling

Frequency-dependent resistor component

```
res1 (n1 n2) bsource r=100*(1+(1/2)*v(n1,n2))
res2 (n1 n2) resistor r=100*(1+(1/2)*v(n1,n2))
```

In this example, the resistance of res1 is frequency-dependent. Therefore, if you run hb and hbnoise analyses for different frequencies, the resistance varies accordingly.

Frequency-dependent capacitor component

```
C1 (1 0) capacitor c=1e-12/(1+($freq)/1e9)
V1 (1 0 ) vsource type=sine freq=1G fundname="freq"
ac ac start=1 stop=100M
hb hb tstab=0n funds=["freq"] maxharms=[5] errpreset=conservative
hbac hbac start=1 stop=1G dec=3
```

In this example, the capacitance of C1 is frequency-dependent. Therefore, if you run hb and hbnoise analyses for different frequencies, the capacitance varies accordingly.

Frequency-dependent inductor component

```
L1 (1 0) inductor l=1e-9+1e-9/(1+($freq)/1e9)
V1 (1 0 ) vsource type=sine freq=1G fundname="freq"
ac ac start=1 stop=100M
hb hb tstab=0n funds=["freq"] maxharms=[5] errpreset=conservative
```

In this example, the inductance of L1 is frequency-dependent. Therefore, if you run hb analysis for different frequencies, the inductance varies accordingly.

Charge model for capacitor

```
cap (n1 n2) bsource q=1.0e-6*v(n1,n2)
```

Voltage and current (Sinewave) source

```
vsrc (n1 n2) bsource v=10.0*sin(2*pi*freq*$time)
isrc (n1 n2) bsource i=1.0e-3*sin(2*pi*freq*$time)
```

Current-controlled current source

```
vsrc (n1 n2) vsource v=10
cccs1 (n3 n4) bsource i=gain*i("vsrc:1")
```

Current-controlled voltage source

```
vsrc (n1 n2) vsource v=10
```

Other Simulation Topics

```
ccvs1 (n3 n4) bsource v=100*i("vsrc:1")
```

Voltage-controlled voltage source

```
vsrc (n1 n2) resistor r=100k
vcvs1 (n3 n4) bsource v=gain*v(n1,n2)
```

Voltage-controlled current source

```
vsrc (n1 n2) resistor r=100k
vccs1 (n3 n4) bsource i=v(n1,n2)/2000.0
```

Restricting voltage limit

```
res (n1 n2) bsource r=100*(1+(1/2)*v(n1,n2)) max val=105 min val=95
```

Using temperature coefficient for resistor

```
res (n1 n2) bsource r=100 tc1=0.01 tc2=0.003 trise=10 tnom=30
```

Using DC mismatch parameter for resistor

```
res (n1 n2) bsource r=100 \text{ mr}=0.3
```

Using model card

```
model model_card_res resistor tc1=0.1 tc2=0.1 res (n1 n2) model card res r=100*(1+(1/2)*v(n1,n2))
```

Sample netlist with bsource

Note: With standard (simple) syntax for resistor/capacitor/inductor, the bsource keyword is not required in the statement. However, if the keyword is specified, Spectre treats the resistor/capacitor/inductor as a behavioral source.

Other Simulation Topics

bsource Compilation

Spectre automatically translates becure components into verilogA models for simulation. As such, they are compiled prior to simulation just like any other verilogA model.

Other Simulation Topics

Checkpoint - Restart (checkpoint)

Description

Spectre has the ability to save the checkpoint files generated during analyses, and to restart an analysis from its checkpoint file. Checkpoint files can be generated in the following ways:

- Periodically, based on real time (wall clock time).
- Asynchronous UNIX signals.
- By other methods unique to the analyses.

To generate checkpoint files periodically based on real time, set the Spectre option <code>ckptclock</code> to the time interval, in seconds. This option is turned on by default with a value of 1800 seconds (30 minutes). Spectre deletes the checkpoint file if the simulation completes normally. If the simulation terminates abnormally, the checkpoint file is not deleted.

If Spectre receives the UNIX signal USR2, Spectre immediately writes a checkpoint file. If Spectre receives interrupt signals, such as QUIT, TERM, INT, or HUP, Spectre attempts to write a checkpoint file and then exits. For other fatal signals, Spectre may not write a checkpoint file.

The name of the checkpoint file is a combination of the circuit name and the analysis name with the extension.ckpt. For example, if the circuit is named test1 and the transient analysis is named timeSweep, the checkpoint file is named test1.timeSweep.tran.ckpt.

Spectre keeps only the latest checkpoint file. It creates a new checkpoint file with a temporary name. After the file is successfully written, Spectre deletes the previous checkpoint file created earlier and renames the new file.

Currently, only transient analysis supports checkpoint files and restart.

Checkpoint

Transient analysis can generate checkpoint files periodically based on the transient simulation time. This is done by using a transient analysis parameter named <code>ckptperiod</code>, which is turned off by default. To enable the checkpoint feature, the argument <code>+checkpoint</code> must be added to the <code>spectre</code> command.

Other Simulation Topics

Restart

To restart an analysis from a checkpoint file, use the +recover option with the spectre command. Spectre searches the analyses log for the checkpoint file. If the checkpoint file for the analysis exists, Spectre skips over any previous analyses, and restarts the analysis by using the information from the file.

For more information, see <u>Recovering From Transient Analysis Terminations</u> section in the <u>Spectre Classic Simulator</u>, <u>Spectre APS</u>, <u>Spectre X</u>, and <u>Spectre XPS User Guide</u>.

Configuring CMI Shared Objects (cmiconfig)

Description

Spectre supports the ability to install devices dynamically from shared objects at run time. CMI Configuration files are used to determine and locate the set of shared objects to be installed as follows:

- 1. Spectre first reads the default CMI configuration file that specifies the default shared objects provided by Cadence.
- 2. The configuration file specified by the value of the CMI_CONFIG environment variable is then read.
- **3.** The third configuration file that Spectre reads is ~/.cmiconfig.
- **4.** Finally, the configuration file specified in the <code>-cmiconfig</code> command-line argument is read.

Each CMI configuration file modifies the existing configuration established by the configuration files read before.

The following commands can be used in a CMI configuration file.

For example, given the following CMI configuration file:

```
append /hm/MMSIM_INSTALL/tools.lnx86/cmi/lib/cmi/5.0
load libbjtx+tfet.so
load libmosx.so
```

Other Simulation Topics

The shared objects <code>libbjtx+tfet.so</code> and <code>libmosx.so</code> are loaded from <code>/hm/MMSIM_INSTALL/tools.lnx86/cmi/lib/cmi/5.0</code>, in addition to the default shared objects provided by Cadence.

For more information, refer to the <u>Using Compiled-Model Interface</u> chapter in the <u>Spectre Classic Simulator</u>, <u>Spectre APS</u>, <u>Spectre X</u>, and <u>Spectre XPS User Guide</u>.

Built-in Mathematical and Physical Constants (constants)

Description

Spectre supports the following list of built-in mathematical and physical constants:

Note: M_ is a mathematical constant

M_E	2.7182818284590452354	exp(1) = e
M_LOG2E	1.4426950408889634074	log2(e)
M_LOG10E	0.43429448190325182765	log10(e)
M_LN2	0.69314718055994530942	ln(2)
M_LN10	2.30258509299404568402	ln(10)
M_PI	3.14159265358979323846	pi
M_TWO_PI	6.28318530717958647652	2 * pi
M_PI_2	1.57079632679489661923	pi/2
M_PI_4	0.78539816339744830962	pi/4
M_1_PI	0.31830988618379067154	1/pi
M_2_PI	0.63661977236758134308	2/pi
M_2_SQRTPI	1.12837916709551257390	2/sqrt(pi)
M_SQRT2	1.41421356237309504880	sqrt(2)
M_SQRT1_2	0.70710678118654752440	sqrt(1/2)
M_DEGPERRAD	57.2957795130823208772	number of degrees per radian

Note: P_ is a physical constant

P_Q	1.6021918e-19	charge of electron in coulombs
P_C	2.997924562e8	speed of light in vacuum in meters/ sec
P_K	1.3806226e-23	Boltzmann's constant in joules/Kelvin

Other Simulation Topics

P_H	6.6260755e-34	Planck's constant in joules*sec
P_EPS0	8.85418792394420013968e-12	permittivity of vacuum in farads/ meter
P_U0	(4.0e-7 * M_PI)	permeability of vacuum in henrys/ meter
P_CELSIUS0	273.15	zero Celsius in Kelvin

These constants can be used in expressions, or anywhere where a numeric value of the expression is expected.

Other Simulation Topics

Convergence Difficulties (convergence)

Description

If you are having convergence difficulties, try the following suggestions:

- **1.** Evaluate and resolve any notice, warning, or error messages.
- **2.** Ensure that the topology checker is being used (set topcheck=full on options statement) and heed any warnings it generates.
- **3.** Perform sanity check on the parameter values by using the parameter range checker (use +param param-limits-file as a command line argument) and heed any warnings. Print the minimum and maximum parameter value by using info analysis. Ensure that the bounds given for instance, model, output, temperature-dependent, and operating-point (if possible) parameters are reasonable.
- **4.** Small floating resistors connected to high impedance nodes can cause convergence difficulties. Avoid small floating resistors, particularly small parasitic resistors in semiconductors. Instead, use voltage sources or iprobes to measure current.
- **5.** Use realistic device models. Check all component parameters, particularly nonlinear device model parameters, to ensure that they are reasonable.
- **6.** Increase the value of gmin (on options statement).
- **7.** Loosen tolerances, particularly absolute tolerances like <code>iabstol</code> (on options statement). If tolerances are set too tight, they might preclude convergence.
- **8.** Try to simplify the nonlinear component models to avoid regions that might contribute to convergence problems in the model.

DC Convergence Suggestions

After you have a solution, write it to a nodeset file by using the write parameter, and read it back in on subsequent simulations by using the readns parameter.

- 1. If you have an estimate of what the solution should be, use nodeset statements or a nodeset file, and set as many nodes as possible.
- 2. If convergence difficulties occur when using nodesets or initial conditions, try increasing rforce (on options statement).
- **3.** If this is not the first analysis and the solution from the previous analysis is far from the solution for this analysis, set restart=yes.

Other Simulation Topics

- **4.** If simulating a bipolar analog circuit, ensure that the region parameter on all transistors and diodes is set correctly.
- 5. If the analysis fails at an extreme temperature, but succeeds at room temperature, try adding a DC analysis that sweeps temperature. Start at room temperature, sweep to the extreme temperature, and write the final solution to a nodeset file.
- **6.** Use numeric pivoting in the sparse matrix factorization by setting pivotdc=yes (on options statement). Sometimes, it is also necessary to increase the pivot threshold to a value in the range of 0.1 to 0.5 by using pivrel (on options statement).
- 7. Divide the circuit into smaller pieces and simulate them individually. However, ensure that the results are close to what they would be if you had simulated the whole circuit. Use the results to generate nodesets for the whole circuit.
- **8.** Check the connections to ground. Convergence problems might result if there are no connections to ground.
- 9. If all else fails, replace the DC analysis with a transient analysis and modify all the independent sources to start at zero and ramp to their DC values. Run transient analysis well beyond the time when all the sources have reached their final value (remember that transient analysis is cheap when none of the signals in the circuit are changing) and write the final point to a nodeset file. To make transient analysis more efficient, set the integration method to backward Euler (method=euler) and loosen the local truncation error criteria by increasing lteratio, say to 50. Occasionally, this approach fails, or is slow because the circuit contains an oscillator. Often, for finding the dc solution, the oscillation can be eliminated by setting the minimum capacitance from each node to ground (cmin) to a large value.

Transient Convergence Suggestions

- Ensure that a complete set of parasitic capacitors is used on nonlinear devices to avoid jumps in the solution waveforms. On MOS models, specify nonzero source and drain areas.
- 2. Use the cmin parameter to install a small capacitor from every node in the circuit to ground. This usually eliminates any jump in the solution.

Other Simulation Topics

The dcopt command line option (dcopt)

Description

The dcopt option speeds up the DC simulation in Spectre and APS for post-layout circuits that consist of large number of parasitic resistors and capacitors, which require significant time in DC simulation. It can also be used to solve the non-convergence issues in DC simulations of any other circuit.

Note: In some cases, the DC solution obtained using the dcopt command-line option may not be as accurate as the true DC solution.

Definition

+dcopt in the command line

encryption (encryption)

Description

Encryption enables you to protect your proprietary parameters, subcircuits, models, netlists, and release your libraries to your customers without revealing sensitive information.

1. Define Encryption blocks in the netlist

Keywords (protect, unprotect) are used for defining an encryption block. The dot keywords are used in the context of the spice mode: .protect,

```
.unprotect.protect, unprotect can be abbreviated to prot, unprot(or, .prot, .unprot in spice).
```

If the whole file needs to be encrypted, one method is to put protect at the beginning of the file and unprotect at the end of the file. Alternatively, you can use the -all option of the spectre encrypt command.

Examples of netlist with protected blocks:

Example: Protection of subckts

```
protect
subckt sub1 ( ... )
....
ends sub1
subckt sub2 ( ... )
....
ends sub2
unprotect
```

2. Encrypt the netlist

spectre_encrypt is a standalone encryptor, and is used as follows:

```
where
[-i Input_file]: Netlist to be encrypted
[-o output _file]: Output file of the encrypted netlist
[-all]: The whole file will be encrypted in the input netlist
```

Note: You can separately encrypt the include files or the library files in the netlist. Spectre encryptor does not encrypt the included files automatically.

Other Simulation Topics

3. Simulate the encrypted netlist

There is no difference in how you run Spectre on an encrypted or unencrypted netlist. Spectre automatically decrypts an encrypted netlist.

For encrypted netlists, Spectre turns on the protection for devices, models, signals, and parameters in the encrypted blocks. Any error or warning messages and the outputs from the protected information is suppressed or filtered out.

The following list describes how protection is implemented:

Circuit inventory does not include encrypted parts.
The info command suppresses all information on encrypted parts.
Errors on encrypted parts are reported as:
Error has occurred within the encrypted block (no details are given).
If a portion of the model is encrypted, the entire model is encrypted.
Any command that references the protected elements results in an error message reporting that those elements do not exist.
Protected device and model parameters cannot be altered directly through alter. However, if they depend on other alterable parameters, protected parameters are

- recalculated. Protected devices and models can be replaced in the altergroup.

 Protected nodes are output in an encrypted format when the ic file is requested
- ☐ The encryption feature is not available in models using CMI 2.0.

(similarly, for nodes in checking point and restart).

4. Output operating points on protected devices

By default, all information about the protected devices is suppressed and is not visible. However, IP providers have the control to expose the operating points of the protected devices to the end users for back annotation.

Keywords (visible, invisible) or (.visible, .invisible) in the spice netlist content are defined to expose the operating points of encrypted devices.

The operating point of the protected devices between visible and invisible is not suppressed by adding what=oppoints to the visible statement.

For example:

```
prot
x1 n1 n2 n3 n4 nmos
visible what=oppoints
x2 n5 n6 n7 n8 nmos
```

Other Simulation Topics

```
x3    n9    n10    n10    n8    pmos
invisible
X4    n11    n12    n13    n13    pmos
unprot
```

For more information, refer to the <u>Encryption</u> chapter in <u>Spectre Classic Simulator</u>, <u>Spectre APS</u>, <u>Spectre X</u>, and <u>Spectre XPS User Guide</u>.

Expressions (expressions)

Description

An expression is a construct that combines operands with operators to produce a result that is a function of the values of the operands and the semantic meaning of the operators. Any legal operand is also an expression in itself. Legal operands include numeric constants and references to the top-level netlist parameters or subcircuit parameters. Calls to algebraic and trigonometric functions are also supported. The supported operators, algebraic, and trigonometric functions are listed after the examples.

Examples:

```
simulator lang=spectre
parameters p1=1 p2=2
                               // declare some top-level parameters
r1 (1 0) resistor r=p1
                               // the simplest type of expression
r2 (1 0) resistor r=p1+p2
                               // a binary (+) expression
r3 (1 0) resistor r=5+6/2
                               // expression of constants, = 8
x1 s1 p4=8
               // instantiate a subcircuit, defined in the following lines
subckt s1
parameters p1=4 p3=5 p4=6
                           // subcircuit parameters
r1 (1 0) resistor r=p1
                                   // another simple expression
r2 (1 0) resistor r=p2*p2
                                   // a binary multiply expression
r3 (1 0) resistor r=(p1+p2)/p3
                                   // a more complex expression
r4 (1 0) resistor r=sqrt(p1+p2)
                                   // an algebraic function call
r5 (1 0) resistor r=3+atan(p1/p2)
                                   // a trigonometric function call
r6 (1 0) RESMOD r=(p1 ? p4+1 : p3) // the ternary operator
ends
// a model card, containing expressions
model RESMOD resistor tc1=p1+p2 tc2=sqrt(p1*p2)
// some expressions used with analysis parameters
time sweep tran start=0 stop=(p1+p2)*50e-6 // use 5*50e-6 = 150 us
// a vector of expressions (see notes on vectors below)
dc sweep dc param=p1 values=[0.5 1 + p2 (sqrt(p2*p2))] // sweep p1
```

Using Expressions:

The Spectre native netlist language allows expressions to be used where numeric values are expected on the right-hand side of an "=" sign, or within a vector, where the vector itself is on the right-hand side of an "=" sign. Expressions can be used when specifying device or analysis instance parameter values (for example, specifying the resistance of a resistor or the stop time of a transient analysis, as outlined in the preceding example), when specifying

Other Simulation Topics

model parameter values in model cards (for example, specifying bf=p1*0.8 for a bipolar model parameter, bf), or when specifying initial conditions and nodesets for individual circuit nodes.

Operators

The following operators are supported, listed in the order of decreasing precedence. Parentheses can be used to change the order of evaluation. For a binary expression, such as a+b, a is the first operand and b is the second operand. All operators are left associative, with the exceptions of the "to the power of" operator (**) and the ternary operator (?:), which are right associative. For logical operands, any nonzero value is considered true. The relational and equality operators return a value of 1 to indicate true, or 0 to indicate false. There is no short circuiting of logical expressions involving && and II.

Operator	Symbol(s)	Value
Unary +, Unary -	+, -	Value of operand, negative of operand.
To the power of	* *	First operand raised to the power of second operand
Multiply, Divide	*, /	Sum, Difference of operands
Binary Plus/Minus	+, -	Sum, Difference of operands
Shift	<<, >>	First operand shifted left or right by the number of bits specified by the second operand
Relational	<, <=, >, >=	Less than, less than or equal, greater than, greater than or equal
Equality	==, !=	True if operands are equal, not equal
Bitwise AND	&	Bitwise AND (of integer operands)
Bitwise Exclusive NOR	~^ (or ^~)	Bitwise Exclusive NOR (of integer operands)
Bitwise OR	1	Bitwise OR (of integer operands)
Logical AND	&&	True only if both operands are true.
Logical OR	11	True if either operand is true
Ternary Operator	(cond) ? x : y	Returns x if cond is true, and y if cond is false, where x and y are expressions

Other Simulation Topics

Algebraic and Trigonometric Functions

The trigonometric and hyperbolic functions expect their operands to be specified in radians. The atan2() and hypot() functions are useful for converting from Cartesian to polar form.

Function	Description	Domain
log(x)	Natural logarithm	x > 0
ln(x)	Natural logarithm	x > 0
log10(x)	Decimal logarithm	x > 0
exp(x)	Exponential	x < 80
sqrt(x	Square Root	x > 0
min(x,y)	Minimum value	All x, all y
max(x,y)	Maximum value	All x, all y
abs(x)	Absolute value	All x
pow(x,y	x to the power of y	All x, all y
int(x)	integer value of x	All x
floor(x)	largest integer <= x	All x
ceil(x)	smallest integer >= x	All x
fmod(x,y)	floating point modulus	All x, all y, except y=0
sgn(x)	The sign of x	All x
sign(x,y)	sgn(y)*fabs(x)	All x, all y
sin(x)	Sine	All x
cos(x)	Cosine	All x
tan(x)	Tangent	All x, except $x = n^*(pi/2)$, where n odd
asin(x)	Arc-sine	-1 <= x <= 1
acos(x)	Arc-cosine	-1 <= x <= 1
atan(x)	Arc-tangent	All x

Other Simulation Topics

atan2(x,y)	Arc-tangent of x/y	All x, all y
hypot(x,y)	$sqrt(x^*x + y^*y)$	All x, all y
sinh(x)	Hyperbolic sine	All x
cosh(x)	Hyperbolic cosine	All x
tanh(x)	Hyperbolic tangent	All x
asinh(x)	Arc-hyberbolic sine	All x
acosh(x)	Arc-hyperbolic cosine	x >= 1
atanh(x)	Arc-hyperbolic tangent	-1 <= x <= 1

User-defined functions are also supported. See spectre -h functions for a description of user-defined functions.

A large number of built-in mathematical and physical constants are available for use in expressions. See <code>spectre -h constants</code> for a list of these constants.

Using Expressions in Vectors

Expressions can be used as vector elements, as in the following example:

```
dc sweep dc param=p1 values=[0.5 1 +p2 (sqrt(p2*p2)) ] // sweep p1
```

When expressions are used within vectors, anything other than constants, parameters, or unary expressions (unary +, unary -) must be surrounded by parentheses. Vector elements should be space separated for clarity, though this is not mandatory. The preceding "dc_sweep" example shows a vector of four elements, namely 0.5, 1, +p2, and sqrt(p2*p2).

Note: The square root expression is surrounded by parentheses.

Other Simulation Topics

The fastdc command line option (fastdc)

Description

The fastdc option speeds up the DC simulation in Spectre and APS for large-scale circuits and for cases where DC convergence is slow or there is difficulty in DC convergence.

The fastdc option provides a way to quickly obtain the approximate DC solution to start transient analysis.

Note: The DC solution obtained using the fastdc command-line option may not be as accurate as the true DC solution. The solution accuracy depends on the value specified for fastdc. The available values are 0, 1, 2, 3, and 4 (default).

- 0 The most accurate DC result and closest to true DC solutions with the slowest performance. It should be used for the circuits that require accurate DC solution, such as analog circuits.
- 1 The conservative DC result with slow performance. It should be used for the circuits that are sensitive to DC solution, such as analog dominated circuits.
- 2 The reasonable DC result with moderate performance. It should be used for the circuits that are lightly sensitive to DC solution, such as mixed-signal circuits.
- 3 The liberate DC results with fast performance. It should be used for the circuits that are less sensitive to DC solution, such as digital dominated circuits.
- 4 The least accurate DC result with the fastest performance. It should be used for the circuits that are not sensitive to DC solution, such as digital and memory circuits.

Definition

Note: +fastdc (equal to +fastdc=4) or +fastdc=x (0, 1, 2, 3, 4) in the command line

Other Simulation Topics

Fault List for Transient Fault Analysis (faults)

Description

The faults block is used to specify the faults to be simulated during Transient Fault Analysis. It can contain the following types of faults: bridges (or equivalently shorts), opens, custom, and parametric.

The bridge (short) block specifies the resistance value between any two nodes of the circuit.

The node names are specified hierarchically. Local node names can be used when the sub or dev parameter is specified in faults block.

Optional dev parameter is used to specify device instance associated with the bridge.

The open block specifies the nodes that will be split into two.

Parameter r specifies resistance between the new fault node and the original node.

Optional parameter c specifies capacitance between the new fault node and the original node.

The last block describes topology change: how the instances connected to the original node will be connected to the new fault node. All terminals of the instances specified in the open statement will be connected to the new node. All terminals that are not specified will remain connected to the original node.

If no instance list is specified, a warning is issued and the fault is ignored. The terminals are specified by name or numerically starting from 1. If the specified terminal number 1 is the first terminal of the instance. If the specified terminal number of an instance in the instance list is not connected to the original node, an error is generated. If no terminal list is specified for an instance, all the terminals connected to the original node will remain connected to the original node. The node and instance names can be specified hierarchically.

The parametric block specifies alter statements for a single parameter. Device, subcircuit, model, or global parameters can be used in alter statement.

Within the faults block, the bridge, short, open, parametric, and custom blocks are optional. If none are specified, a warning is issued and the faults block is ignored. If more than one bridge, short, open, parametric, or custom block is specified within a faults block, they are concatenated and treated as one block. Every fault name in a faults block must be unique. Duplicate names result in an error.

Other Simulation Topics

More than one faults block may be specified in the netlist and each faults block must have a unique name and a set of parameters associated with it.

Fault grading can be performed by specifying weight_factor for each fault block, and weight_expr to apply weighting function for each fault in the block.

Optional weight parameter can be used to assign weight value for each fault.

Definition

Example

```
parameters resBridge=10 resOpen=1e9
faultlist1 faults {
    bridge {
        bridge_1 (g 0) r=resBridge
        bridge_2 (d s) r=10
    }
    open {
        open_1 (a) r=resOpen { M2:d M1:g }
    }
}
```

User Defined Functions (functions)

Description

Spectre's user-defined function capability allows you to build upon the provided set of built-in mathematical and trigonometric functions. You can write your own functions, and call these functions from within any expression. The syntax for calling a user-defined function is the same as the syntax for calling a built-in algebraic or trigonometric function. The user-defined functions must be defined before they are referenced (called). Arguments to user-defined functions are taken as real values, and the functions return real values. A user-defined function may contain only a single statement in braces, and this statement must return an expression (which is typically an expression involving the function arguments). The return expression may reference the built-in parameters temp and tnom. User-defined functions must be declared only at the top level, and must not be declared within subcircuits. User-defined functions may be called from anywhere an expression can be currently used in Spectre. User-defined functions may call other functions (both user-defined and built-in), however, any user-defined function needs to be declared before it can be called. User-defined functions can override built-in mathematical and trigonometric functions.

Note: Only real values for arguments and return values are supported in this release.

See spectre -h expressions for a list of built-in algebraic and trigonometric functions.

Definition

```
real myfunc( [real arg1, ...real argn] ) {

Examples

real myfunc( real a, real b ) {
    return a+b*2+sqrt(a*sin(b));
}
```

An example of a function calling a previously defined function is as follows:

The final example shows how a user-defined function may be called from an expression in the Spectre netlist:

```
r1 (1 0) resistor r=myfunc(2.0, 4.5)
```

Other Simulation Topics

Global Nodes (global)

Description

The global statement allows a set of nodes to be designated as common to the main circuit and all subcircuits. Thus, components inside subcircuits can be attached to global nodes, even though the subcircuit terminals are not attached to these nodes.

Any number of global nodes may be specified using the global statement. To do this, follow the keyword global with a list of the node names that you wish to declare as global. The first node name that appears in this list is taken to be the name of the ground node. Ground is also known as the datum or reference node. If a global statement is not used, 0 is taken to be the name of the ground node.

Ground is always treated as global even if a global statement is not used. Multiple global statements are supported.

Definition

global <ground> <node> ...

IBIS Component Use Model (ibis)

Description

IBIS (I/O Buffer Information Specification) is a standard for electronic behavioral specification of integrated circuit (IC) input/output analog characteristics. It allows you to define a model for the IC component package, and a buffer model for each pin. IBIS standard also allows you to describe a board-level component containing several components on a common substrate or printed circuit board (PCB). For example, a SIMM module is a board-level component that is used to attach several DRAM components on the PCB to a motherboard through edge connector pins. Board pins, components on the board, and connections between them are defined in an Electrical Board Description file with extension.ebd. Component pins, buffers, and package descriptions are in a separate IBIS file with extension.ibs. An Additional Package file with extension.pkg can be used to describe advanced package models.

Spectre supports IBIS 6.0 and previous versions. Some keywords are not supported.

IBIS files can be referenced in Spectre netlist by using the ibis_include statement:

```
ibis include "DRAM.ibs" [options]
```

IBIS file "DRAM.ibs" is translated into Spectre netlist format by using <code>ibis2subckt</code> utility. The output file, "DRAM.scs", containing subcircuit definitions for each IBIS component, board, and package found in the input IBIS file, is included in the netlist. The list of options may consist of: <code>corner={typ|min|max|slow|fast}</code>, <code>swsel=<int></code> and <code>mdsel=<int></code>. These options are transferred to <code>ibis2subckt</code>. They are used to select IBIS buffer model corner, change position of series-switch models, and choose the required models from model selector list.

IBIS component and board subcircuits can be instantiated in a Spectre netlist along with regular Spectre primitives. Subcircuit name is the same as the component name, but is appended with the suffix_ibis. Subcircuit terminals are component pins, arranged in the order they are listed in the IBIS file. Each pin terminal is followed by a number of signal terminals, depending on the type of the pin buffer model. For example, if m1 is defined in IBIS file as an input buffer model, and m2 - as I/O type, the following IBIS component:

ent] IC				
signal_name	model_name	R_pin	L_pin	C_pin
s1	GND			
s3	m1			
s4	NC			
s5	m2			
s2	POWER			
	signal_name s1 s3 s4	signal_name model_name s1 GND s3 m1 s4 NC s5 m2	signal_name model_name R_pin s1 GND s3 m1 s4 NC s5 m2	signal_name model_name R_pin L_pin s1 GND s3 m1 s4 NC s5 m2

Other Simulation Topics

can be instantiated in the netlist as:

```
x ic ( p1 p3 s3 in p4 p5 s5 in s5 out s5 en p2 ) IC ibis
```

ibis2subckt can also be used as a stand-alone utility with the following command-line arguments:

```
ibis2subckt -in <IBIS files> -out <subckt file> -corner {typ|min|max|slow|fast} -
swsel <int> -mdsel <int>
```

Default values are:

```
corner typ
mdsel -1
swsel -1
```

SPICE NETLIST SUPPORT

For the IBIS component, Spectre also supports the SPICE .IBIS and .EBD statements.

The supported parameters of . IBIS syntax are file, component, mod_sel, package, and typ.

Other Simulation Topics

.IBIS Parameters

file = <string></string>	Specifies the IBIS file name with suffix .ibs.
<pre>component = <string></string></pre>	Specifies the used component name in the $\verb .ibs $ file.
<pre>mod_sel = <string1=string2></string1=string2></pre>	Maps the model selector name (string1) to the actual model name (string2), given as [Model selector] in the .ibis file. Multiple selectors are supported.
package = <3 0 1 2>	Specifies the type of package. Default value is 3 (use the best available package model). package=0 means no package is used. package=1 means that an RLC package is used with the same values for all pins provided in the [Package] section. package=2 means that an RLC package is used with individual RLC values for each pin provided in the [Pin] section. package=3 means that an advanced package model is used in the [Package Model] section.
typ = <typ min max fast slow< td=""><td>></td></typ min max fast slow<>	>
	Specifies the corner of the IBIS buffer. Default value is typ (typical).

The supported parameters of the .EBD syntax are file, model, and component.

.EBD Parameters

file = <string></string>	Specifies the EBD file name with the suffix .ebd
<pre>model = <string></string></pre>	Specifies name of the board-level model provided in .ebd file
<pre>component = <string></string></pre>	Specifies the component name of the ibis buffer. Multiple components are supported.

Examples

```
.ibis I1
+ file = file.ibs
+ component = Component
+ mod_sel = DQ=DQ1,CQ=CQ1
+ package=0
```

Other Simulation Topics

```
+ typ=slow
.ebd pkg
+ file = file.ebd
+ model = XXXX
+ component = Component1
+ component = Component2
```

Supported IBIS Keywords in Spectre

Note: The supported keywords list below is based on IBIS version 6.0.

The following shows the sections and keywords in the IBIS file that are supported in Spectre:

```
.ibis FILE
    FILE Header Section
        [IBIS Ver]
        [Comment Char]
        [File Name]
        [File Rev]
        [Date]
        [Source]
        [Notes]
        [Disclaimer]
        [Copyright]
    [Component]
                                  Si Location, Timing location
        [Manufacturer]
        [Package]
                                  R pkg, L pkg, C pkg
        [Pin]
                                  signal name, model name, R pin, L pin, C pin
        [Package Model]
        [Pin Mapping]
                                  pulldown ref, pullup ref, gnd clamp ref,
                                  power_clamp_ref, ext_ref
        [Diff Pin]
                                  inv pin, vdiff, tdelay typ, tdelay min, tdelay max
        [Series Pin Mapping]
                                  pin 2, model name, function table group
        [Series Switch Groups]
                                  On (m), Off (m)
    [Model Selector]
                                  Model_type, Polarity, Enable, Vinl, Vinh, C comp,
        [Model]
                                  C_comp_pullup, C_comp_pulldown, C_comp_power_clamp, C_comp_gnd_clamp, Vmeas,
                                  Cref, Rref, Vref
             [Model Spec]
                                  Vinh, Vin1
             [Add Submodel]
             [Driver Schedule]
             [Temperature Range]
```

Other Simulation Topics

```
[Voltage Range]
    [Pullup Reference]
    [Pulldown Reference]
    [Power Clamp Reference]
    [GND Clamp Reference]
    [C Comp Corner]
                                 C comp, C comp pullup, C comp pulldown,
                                 C comp power clamp, C comp gnd clamp
    [Pulldown]
    [Pullup]
    [GND Clamp]
    [POWER Clamp]
    [ISSO PU]
    [ISSO PD]
    [Rgnd]
    [Rpower]
    [Rac]
    [Cac]
    [On]
    [Off]
    [R Series]
    [L Series]
    [R1 Series]
    [C Series]
    [LC Series]
    [RC Series]
    [Series Current]
    [Series MOSFET]
                              Vds
                              dV/dt r, dV/dt f, R load
    [Ramp]
    [Rising Waveform]
                              R fixture, V fixture, V fixture min,
                              V_fixture_max, C_fixture, L_fixture,
        [Composite Current]
    [Falling Waveform]
                               fixture, V fixture, V fixture min,
                              V fixture max, C fixture, L fixture,
        [Composite Current]
    [External Model]
                              Language, Corner, Parameters, Ports, D to A,
                              A to D
        [End External Model]
[Sub Model]
                              Sub model type
    [Sub Model Spec]
                              V trigger r, V trigger f
    [POWER Pulse Table]
    [GND Pulse Table]
    [Pulldown]
```

Other Simulation Topics

```
[Pullup]
    [GND Clamp]
    [POWER Clamp]
    [Ramp]
                              dV/dt r, dV/dt f, R load
    [Rising Waveform]
                              R fixture, V fixture, V fixture min,
                              V fixture max, C fixture, L fixture,
    [Falling Waveform]
                               R fixture, V fixture, V fixture min,
                              V_fixture_max, C_fixture, L_fixture,
[Define Package Model]
    [Manufacturer]
    [OEM]
    [Description]
    [Number of Sections]
    [Number of Pins]
    [Pin Numbers]
                              Len, L, R, C, Fork, Endfork
    [Model Data]
        [Resistance Matrix]
                              Banded matrix, Sparse matrix, Full matrix
            [Bandwidth]
            [Row]
        [Inductance Matrix]
                               Banded matrix, Sparse matrix, Full matrix
            [Bandwidth]
            [Row]
                                Banded matrix, Sparse matrix, Full matrix
        [Capacitance Matrix]
            [Bandwidth]
            [Row]
        [End Model Data]
    [End Package Model'
[END]
```

The following shows the sections and keywords in the package file that are supported in Spectre:

```
.pkg FILE

FILE Header Section

[IBIS Ver]

[Comment Char]

[File Name]

[File Rev]

[Date]

[Source]

[Notes]

[Disclaimer]

[Copyright]
```

Other Simulation Topics

```
[Define Package Model]
        [Manufacturer]
        [OEM]
        [Description]
        [Number of Sections]
            Number of Pins]
        [Pin Numbers]
                                   Len, L, R, C, Fork, Endfork
        [Model Data]
            [Resistance Matrix]
                                   Banded matrix, Sparse matrix, Full matrix
                [Bandwidth]
                [Row]
            [Inductance Matrix]
                                   Banded matrix, Sparse matrix, Full matrix
                 [Bandwidth]
                [Row]
            [Capacitance Matrix] Banded matrix, Sparse matrix, Full matrix
                [Bandwidth]
                [Row]
            [End Model Data]
        [End Package Model'
        [END]
The following shows the sections and keywords in the EBD file that are supported
in Spectre:
.pkg FILE
    FILE Header Section
        [IBIS Ver]
        [Comment Char]
        [File Name]
        [File Rev]
        [Date]
        [Source]
        [Notes]
        [Disclaimer]
        [Copyright]
    [Begin Board Description]
        [Manufacturer]
        [Number of Pins]
        [Pin List]
                                    signal name
        [Path Description]
                                    Len, L, R, C, Fork, Endfork, Pin, Node
        [Reference Designator Map]
        [End Board Description]
    [END]
```

Other Simulation Topics

Initial Conditions (ic)

Description

The ic statement is used to provide initial conditions for nodes in transient analysis. It can occur multiple times in the input, and the information provided in all the occurrences is collected. Initial conditions are accepted only for inductor currents and node voltages where the nodes have a path of capacitors to ground. For more information, read the description of transient analysis.

Note: Specifying cmin for a transient analysis, does not satisfy the condition that a node has a capacitive path to ground.

Definition

```
ic <X[:param]=value> ...
```

This statement takes a list of signals with the state information to the DC and transient analyses. X can be a node, a component, or a subcircuit and param can either be a component output parameter or a terminal index. To specify a class of signals, use the pattern matching characters * for any string and ? for any character.

The concept of nodes for the statement has been generalized to signals where a signal is a value associated with a topological node of the circuit or some other unknown that is solved by the simulator, such as the current through an inductor or the voltage of the internal node in a diode. Topological nodes can either be at the top-level or in a subcircuit.

For example:

```
ic 7=0 out=1 OpAmp1.comp=5 L1:1=1.0u
```

where, 7=0 implies that node 7 should start at 0V, node out should start at 1V, node comp in subcircuit OpAmp1 should start at 5V, and the current through the first terminal of L1 should start at 1uA.

For more information, refer to <u>The ic and nodeset Statements</u> in the Spectre Classic Simulator, Spectre APS, Spectre X, and Spectre XPS User Guide.

Other Simulation Topics

The Structural if-statement (if)

Description

The structural if-statement can be used to conditionally instantiate other instance statements.

Definition

```
if <condition> <statement1> [ else <statement2> ]
```

The condition is a Boolean expression based on the comparisons of various arithmetic expressions that are evaluated during circuit hierarchy flattening. The statement1 and statement2 fields can be ordinary instance statements, if-statements, or a list of these within braces ({}). The ordinary instance statements need a newline to terminate them. The else part is optional. When if-statements are nested without braces, an else matches the closest previous unmatched if at the same level.

It is possible to have duplicate instance names within the if statement under strict topological conditions. These conditions are as follows:

- References to an instance with duplicate names is possible only within a structural if statement that has both an "if" part and an "else" part.
- Both the "if" part and the "else" part must be a simple one-statement block, or another structural if statement to which these same rules apply.
- The duplicate instances must have the same number of terminals and be bound to the same list of nodes.
- The duplicate instances must refer to the same primitive or model.
- Where duplicate instances refer to a model, the underlying primitive must be the same.

This feature allows automatic model selection based on any netlist or subcircuit parameter. As an example, consider using Spectre's inline subcircuits and structural if statement to implement automatic model selection based on bipolar device area. Here, the duplicate instances are the inline components.

```
model npn_default bjt is=3.2e-16 va=59.8
model npn10x10 bjt is=3.5e-16 va=61.5
model npn20x20 bjt is=3.77e-16 va=60.5
// npn_mod chooses scaled models binned on area!
// if ( area < 100e-12 ) use model npn10x10
// else if ( area < 400e-12 ) use model npn20x20
// else use model npn default</pre>
```

Other Simulation Topics

```
inline subckt npn_mod (c b e s)
  parameters area=5e-12
if ( area < 100e-12 ) {
     npn_mod (c b e s) npn10x10 // 10u * 10u, inline device
} else if ( area < 400e-12 ) {
     npn_mod (c b e s) npn20x20 // 20u * 20u, inline device
} else {
     npn_mod (c b e s) npn_default // 5u * 5u, inline device
}
ends npn_mod
q1 (1 2 0 0) npn_mod area=350e-12 // gets 20x20 model
q2 (1 3 0 0) npn_mod area=25e-12 // gets 10x10 model
q3 (1 3 0 0) npn mod area=1000e-12 // gets default model</pre>
```

For additional information, refer to the <u>Conditional Instances</u> section in the <u>Spectre Classic Simulator</u>, <u>Spectre APS</u>, <u>Spectre X</u>, and <u>Spectre XPS User Guide</u>.

Other Simulation Topics

Include File (include)

Description

File inclusion allows the circuit description to be spread over several files. The include statement itself is replaced by the contents of the file named. An included file may also contain include statements. If the name given is not an absolute path specification, the path is taken relative to the directory of the file currently being read.

To read existing SPICE library and model files, Spectre automatically switches to SPICE input mode when it opens an include file. Thus, all files that use the Spectre native language must begin with a simulator lang=spectre statement. The one exception is files that end with a ".scs" file extension, which are treated specially and are read in Spectre input mode. This language mode treatment applies to files included by both the Spectre include statement, and the CPP #include statement.

After reading the include file, Spectre restores the language processing mode to what it was before the file was included, and continues reading the original file starting at the line after the include statement. Lines cannot be continued across file boundaries.

The CPP #include statement differs from Spectre include statement in that the CPP macro processing is not performed on files included by Spectre, but is performed on files included by CPP. If your netlist contains a #include statement, you must run CPP to perform this inclusion; otherwise, an error occurs.

If the file to be included cannot be found in the same directory as the including file, both the Spectre include and CPP #include search for the file to be included along the search path specified by the -I command-line arguments.

The Spectre include statement allows you to include a library section. The following is the syntax for specifying a library reference:

```
include "file" section=sectionName
```

where, file is the name of the library file to be included, and sectionName matches the name of the section defined in the library. The library reference statement looks like an include statement, except for the specification of the library section. When the file is being inserted, only the named section is actually included.

The Spectre include statement allows you to embed special characters in the name of the file to be included. The Spectre include statement automatically expands the ~ character to the user's home directory, will expand the environment variables and % codes, such as

```
include "~/models/${SIMULATOR} pd/npn.scs"
```

Other Simulation Topics

which looks in the directory given by the environment variable SIMULATOR, followed by _pd, which is under the models directory in the user's home directory.

Note: These special character features are not available with the CPP #include statement.

For additional information, see <u>Input Data from Multiple Files</u> in the <u>Spectre Classic Simulator</u>, <u>Spectre APS</u>, <u>Spectre X</u>, and <u>Spectre XPS User Guide</u>.

Definition

include "filename"

Spectre Netlist Keywords (keywords)

Description

The following are Spectre keywords, including netlist keywords and built-in mathematical and physical constants. Spectre has special use for these keywords, and they are reserved in certain contexts. You should follow the rules given below when using them to prevent errors.

- Netlists keywords cannot be used as instance names, subckt names, model names, or function names.
- Built-in mathematical and physical constants cannot be used as node names, instance names, subckt names, model names, function names, or parameter names.

Keyword	Keyword Type
M_1_PI	Mathematical Constant
M_2_PI	Mathematical Constant
M_2_SQRTPI	Mathematical Constant
M_DEGPERRAD	Mathematical Constant
M_E	Mathematical Constant
M_LN10	Mathematical Constant
M_LN2	Mathematical Constant
M_LOG10E	Mathematical Constant
M_LOG2E	Mathematical Constant
M_PI	Mathematical Constant
M_PI_2	Mathematical Constant
M_PI_4	Mathematical Constant
M_SQRT1_2	Mathematical Constant
M_SQRT2	Mathematical Constant
M_TWO_PI	Mathematical Constant
P_C	Mathematical Constant
P_CELSIUS0	Mathematical Constant
P_EPS0	Mathematical Constant

Spectre Circuit Simulator Reference Other Simulation Topics

P_H	Mathematical Constant
P_K	Mathematical Constant
_ P_Q	Mathematical Constant
_~ P_U0	Mathematical Constant
- altergroup	Netlist Keyword
correlate	Netlist Keyword
else	Netlist Keyword
end	Netlist Keyword
ends	Netlist Keyword
export	Netlist Keyword
for	Netlist Keyword
freq	Netlist Reserved Word
function	Netlist Keyword
global	Netlist Keyword
ic	Netlist Keyword
if	Netlist Keyword
in	Netlist Keyword
inline	Netlist Keyword
input	Netlist Keyword
invisible	Netlist Keyword
library	Netlist Keyword
local	Netlist Keyword
march	Netlist Keyword
model	Netlist Keyword
nodeset	Netlist Keyword
out	Netlist Keyword
output	Netlist Keyword
parameters	Netlist Keyword
paramset	Netlist Keyword

Other Simulation Topics

plot Netlist Keyword

print Netlist Keyword

protect Netlist Keyword (The first four letters of the keyword (in

lowercase or uppercase) can be used as an abbreviation. For

example, prot and PROT are valid keywords).

pwr Netlist Keyword

real Netlist Keyword

return Netlist Keyword

save Netlist Keyword

scalem Netlist Reserved Word

sens Netlist Keyword

statistics Netlist Keyword

subckt Netlist Keyword

temp Netlist Reserved Word

temper Netlist Reserved word

time Netlist Reserved Word

tnom Netlist Reserved Word

to Netlist Keyword

truncate Netlist Keyword

unprotect Netlist Keyword. (The first six letters of the keyword (in

lowercase or uppercase) can be used as an abbreviation. For

example, unprot and UNPROT are valid keywords).

vary Netlist Keyword

visible Netlist Keyword

Library - Sectional Include (library)

Description

Library inclusion allows the circuit description to be spread over several files. The library statement itself is replaced by the contents of the specified section of the library file. A library section may also contain library reference statements. If the file name given is not an absolute path specification, the path is taken relative to the directory of the file currently being read.

There are two types of library statements. One that references a library section, and another that defines a library section. The definition of a library section is prohibited in the netlist.

In order to read existing SPICE library and model files, Spectre automatically switches to SPICE input mode when it opens a library file. Thus, all files that use the Spectre native language must contain a simulator lang=spectre statement within each section of the library or the file can have a .scs filename extension. After reading the library section, Spectre restores the language processing mode and continues reading the original file starting at the line after the library statement. Lines cannot be continued across file boundaries.

Spectre allows only one library per file, but a library may contain multiple sections (typically, one section per process corner).

Definition

Inside netlist (reference library section)

Sample Library

```
library corner_lib
section tt

model nch bsim3v3 type=n mobmod=1 capmod=2 version=3.1

+ xj=1.7e-7 vsat=7.99e4 at=3.6e4 a0=0.799 ags=0.4

+ a1=0 a2=1 keta=-0.05 nch=2.8e17 ngate=1.31e20 k1=0.74

model pch bsim3v3 type=p mobmod=1 capmod=2 version=3.1

+ xj=1.7e-7 vsat=1.38e5 at=1e5 a0=1.3 ags=0.3

+ a1=1.1e-4 a2=1 keta=0 nch=4.1e17 ngate=7.6e19 k1=0.88

model knpn bjt is=10e-13 bf=170 va=58.7 ik=5.63e-3 rb=rbn rbm=86

+ re=3.2 cje=0.25e-12 pe=0.76 me=0.34 tf=249e-12 cjc=0.34e-12 pc=0.55

+ mc=0.35 ccs=2.4e-12 ms=0.35 ps=0.53 rc=169

model kpnp bjt type=pnp is=10e-13 bf=60 va=43.1 ik=0.206e-3 rb=rbp rbm=64.3

+ re=33.8 cje=0.16e-12 pe=0.5 me=0.26 tf=36e-9 cjc=0.72e-12 pc=0.58

+ mc=0.34 ccs=2.5e-12 ps=0.53 ms=0.35 rc=276
```

Other Simulation Topics

```
endsection
section ss
  model nch bsim3v3 type=n mobmod=1 capmod=2 version=3.1
  + xj=1.7e-7 vsat=7.99e4 at=3.6e4 a0=0.799 ags=0.4
  + a1=0 a2=1 keta=-0.05 nch=2.8e17 ngate=1.31e20 k1=0.74
  model pch bsim3v3 type=p mobmod=1 capmod=2 version=3.1
   + xj=1.7e-7 vsat=1.38e5 at=1e5 a0=1.3 ags=0.3
   + a1=1.1e-4 a2=1 keta=0 nch=4.1e17 ngate=7.6e19 k1=0.88
  model knpn bjt is=10e-13 bf=70 va=58.7 ik=5.63e-3 rb=rbn rbm=86
   + re=3.2 cje=0.25e-12 pe=0.76 me=0.34 tf=249e-12 cjc=0.34e-12 pc=0.55
  + mc=0.35 ccs=2.4e-12 ms=0.35 ps=0.53 rc=169
  model kpnp bjt type=pnp is=10e-13 bf=30 va=43.1 ik=0.206e-3 rb=rbp rbm=64.3
   + re=33.8 cje=0.16e-12 pe=0.5 me=0.26 tf=36e-9 cjc=0.72e-12 pc=0.58
   + mc=0.34 ccs=2.5e-12 ps=0.53 ms=0.35 rc=276
endsection
section ff
  model nch bsim3v3 type=n mobmod=1 capmod=2 version=3.1
  + xj=1.7e-7  vsat=7.99e4 at=3.6e4 a0=0.799 ags=0.4
  + a1=0 a2=1 keta=-0.05 nch=2.8e17 ngate=1.31e20 k1=0.74
  model pch bsim3v3 type=p mobmod=1 capmod=2 version=3.1
   + xj=1.7e-7  vsat=1.38e5 at=1e5 a0=1.3 ags=0.3
   + a1=1.1e-4 a2=1 keta=0 nch=4.1e17 ngate=7.6e19 k1=0.88
  model knpn bjt is=10e-13 bf=220 va=58.7 ik=5.63e-3 rb=rbn rbm=86
   + re=3.2 cje=0.25e-12 pe=0.76 me=0.34 tf=249e-12 cjc=0.34e-12 pc=0.55
  + mc=0.35 ccs=2.4e-12 ms=0.35 ps=0.53 rc=169
  model kpnp bjt type=pnp is=10e-13 bf=90 va=43.1 ik=0.206e-3 rb=rbp rbm=64.3
   + re=33.8 cje=0.16e-12 pe=0.5 me=0.26 tf=36e-9 cjc=0.72e-12 pc=0.58
   + mc=0.34 ccs=2.5e-12 ps=0.53 ms=0.35 rc=276
endsection
endlibrary
```

Other Simulation Topics

Tips for Reducing Memory Usage (memory)

Description

If you are facing an insufficient memory problem, try the following suggestions:

- 1. Try using a 64-bit executable if you are using the 32-bit one.
- 2. Try ulimit/unlimit command to adjust memory limitations.
- 3. Try another machine that has more memory, if hardware limit is the cause
- 4. Refer to spectre -h rfmemory, if you faced the problem during RF analyses.

Other Simulation Topics

Multi-Technology Simulation Mode (mts)

Description

Multi-Technology Simulation (MTS) mode enables the simulation of a system consisting of blocks designed with different processes. Under this mode, models and modelgroups referenced using include or ahdl_include statements in a subcircuit are locally scoped to that subcircuit only. In addition, process options parameters (temp, tnom, scale, and scalem), when specified in a subcircuit, are locally scoped to that subcircuit only.

MTS mode is enabled by default across all Spectre simulators. To turn the MTS mode off, use the -mts command-line option.

Here is an example of a system consisting of blocks designed with different processes:

```
subckt chip1 ( in out )
    scopedOptions options tnom=27 scale=0.1
    .....
ends chip1
subckt chip2 ( in out )
    scopedOptions options tnom=25 scale=0.2
    .....
ends chip2
```

In the log file, you will see the following user options:

Other Simulation Topics

Node Sets (nodeset)

Description

The nodeset statement is used to provide an initial guess for nodes in DC analysis or to provide the initial condition calculation for transient analysis. The nodeset statement can occur multiple times in the input and the information provided in all the occurrences is collected. For more information, read the description of DC analysis.

Definition

```
nodeset <X>[:param]=value
```

This statement takes a list of signals with the state information to the DC and transient analyses. X can be a node, a component, or a subcircuit, and param can be either a component output parameter or a terminal index. To specify a class of signals, use the pattern matching character * for any string and ? for any character.

The concept of nodes for the statement has been generalized to signals, where a signal is a value associated with a topological node of the circuit or some other unknown that is solved by the simulator, such as the current through an inductor or the voltage of the internal node in a diode. Topological nodes can be either at the top-level or in a subcircuit.

For example:

```
nodeset 7=0 out=1 OpAmp1.comp=5 L1:1=1.0u
```

where, 7=0 implies that node 7 should be about 0V, node out should be about 1V, node comp in subcircuit 0pAmp1 should be about 5V, and the current through the first terminal of L1 should be about 1uA.

For more information, refer to <u>The ic and nodeset Statements</u> in the Spectre Classic Simulator, Spectre APS, Spectre X, and Spectre XPS User Guide.

Parameter Soft Limits (param_limits)

Description

The parameter values passed to Spectre components and analysis are subject to both hard and soft limits. If you set a parameter to a value that violates a hard limit, such as giving z0=0 to a transmission line, Spectre issues an error message and quits. If the given parameter value violates a soft limit, a warning is issued, but Spectre uses the value of the component as given. Hard limits are used to prevent you from using values that would cause Spectre to fail or put a model in an invalid region. Soft limits are used to call attention to unusual parameter values that might have been given mistakenly. If a parameter value violates a soft limit, a message similar to one of the following sample messages is printed:

```
Parameter rb has the unusually small value of 1uOhms.

Or

Parameter rb has the unusually large value of 1MOhms.
```

Spectre has built-in soft limits on a few parameter values. However, it is possible for you to override these limits or to provide limits on parameters that do not have built-in limits. To do so, create a parameter range limits file and run Spectre by providing the name of the file after the +param command-line option. For example:

```
spectre +param limits-file input-file
```

Limits are specified using the following syntax:

```
[PrimitiveName] [model] [LowerLimit <[=]] [|]Param[|] [<[=] UpperLimit]
```

The limits can be given as strict (using <=) or nonstrict (using <). If the limits are strict, there can be no space between < and =. The limits for one parameter are given on one line. There is no way of continuing the specification of the limits for a parameter over more than one line. If a parameter is specified more than once, the limits specified at last override the earlier limits. The primitive name must be a Spectre primitive name, and not a name used for SPICE compatibility. For example, mos3 must be used instead of mos. Parameter limits can be written using Spectre native mode metric scale factors. Therefore, a limit of f <= 1.0e6 can also be written as f <= 1M.

Examples

Other Simulation Topics

It is not necessary to specify the primitive name each time. If the primitive name is not specified, it is assumed to be the same as the previous parameter. Upper and lower limits may be specified, but if these are not specified, there is no limit on the parameter value. Therefore, in the example, if w is less than 0.5um, a warning is issued, but there is no limit on how large w can be. If a parameter is mentioned, but no limits are given, all limits are disabled for that parameter. Limits are placed on model parameters by giving the model keyword. If the model keyword is not given, the limits are applied to instance parameters. Notice that you can also place upper or lower limits on the absolute value of a parameter. For example:

```
resistor 0.1 < |r| < 1M
```

indicates that the absolute value of r should be greater than 0.1 Ohm and less than 1 MOhm. There can be no spaces between the absolute value symbols and the parameter name.

Examples

```
1 <= x < 0.5
1 <= y <= 1
1 < z < 1
```

In the first case, the lower bound is larger than the upper bound, which indicates that the range of x is all real numbers, except those from 0.5 to 1, including 0.5. The limits are applied separately, therefore, x must be both greater than or equal to 1 ($1 \le x$) and less than 0.5 ($x \le 0.5$). The second case specifies that y should be 1, and the third case specifies that z should not be 1.

It is possible to specify limits for any scalar parameter that takes a real number, an integer, or an enumeration. To specify the limits of a parameter that takes enumerations, use the indexes associated with the enumerations. For example, consider the region parameter of the bjt. There are four possible regions: off, fwd, rev, and sat (see spectre -help bjt). Each enumeration is assigned a number starting at 0 and counting up. Therefore, off=0, fwd=1, rev=2, and sat=3. The specification bjt $3 \le \text{region} \le 1$ indicates that a warning should be printed if region=rev because the conditions ($3 \le \text{region}$) and (region ≤ 1) exclude only (region=2) and region 2 is rev.

It is possible to read a parameter limits file from within another file. To do so, use an include statement. For example,

```
include "filename"
```

temporarily suspends the reading of the current file until the contents of filename have been read. Include statements may be nested arbitrarily deep with the condition that the operating system may limit the number of files that Spectre may have open at once. Paths in file names are taken to be relative to the directory that contains the current file, and not from the directory from which Spectre was run.

Other Simulation Topics

Spectre can be instructed to always read a parameter limits file by using the SPECTRE_DEFAULTS environment variable. For example, if you put the following in you shell initialization file (.profile for sh, .cshrc for csh)

setenv SPECTRE_DEFAULTS "+param /cds/etc/spectre/param.lmts"

Spectre always reads the specified limits file.

For more information, see <u>Selecting Limits for Parameter Value Warning Messages</u> in the <u>Spectre Classic Simulator</u>, <u>Spectre APS</u>, <u>Spectre X</u>, and <u>Spectre XPS User Guide</u>.

Netlist Parameters (parameters)

Description

The Spectre native netlist language allows parameters to be specified and referenced in the netlist, both at the top-level scope and within subcircuit declarations (run spectre -h subckt for more details on parameters within subcircuits).

Definition

```
parameters <param=value> [param=value]...
Examples:
simulator lang=spectre
parameters p1=1 p2=2
                               // declare some parameters
r1 (1 0) resistor r=p1
                               // use a parameter, value=1
r2 (1 0) resistor r=p1+p2
                               // use parameters in an expression, value=3
               // "s1" is defined below, pass in value 8 for "p4"
x1 s1 p4=8
subckt s1
parameters p1=4 p3=5 p4=6
                                // note: no "p2" here, p1 "redefined"
                                // local definition used: value=4
r1 (1 0) resistor r=p1
r2 (1 0) resistor r=p2
                                // inherit from parent(top-level) value=2
r3 (1 0) resistor r=p3
                               // use local definition, value=5
r4 (1 0) resistor r=p4
                               // use passed-in value, value=8
                               // use local+inherited/local = (4+2/5) = 4.4
r5 (1 0) resistor r=p1+p2/p3
ends
time sweep tran start=0 stop=(p1+p2)*50e-6 // use 5*50e-6 = 150 us
dc sweep dc param=p1 values=[0.5 1 + p2 (sqrt(p2*p2))] // sweep p1
```

Parameter Declaration

Parameters can be declared anywhere in the top-level circuit description or on the first line of a subcircuit definition. Multiple parameters can be declared on a single line. When parameters are declared in the top-level, their values must be specified. When parameters are declared within subcircuits, their default values are optionally specified.

Parameter Inheritance

Subcircuit definitions inherit parameters from their parent (enclosing subcircuit definition or top-level definition). This inheritance continues across all levels of nesting of subcircuit

Other Simulation Topics

definitions, that is, if a subcircuit s1 is defined, which itself contains a nested subcircuit definition s2, then any parameters accessible within the scope of s1 are also accessible from within s2. In addition, any parameters declared within the top-level circuit description are also accessible within both s1 and s2. However, any subcircuit definition can redefine a parameter that it has inherited. In this case, if no value is specified for the redefined parameter when the subcircuit is instantiated, the redefined parameter uses the locally defined default value, rather than inheriting the actual parameter value from the parent.

Parameter Referencing

Spectre netlist parameters can be referenced anywhere. A numeric value is normally specified on the right-hand side of an "=" sign or within a vector, where the vector itself is on the right-hand side of an "=" sign. This includes referencing of parameters in expressions (run spectre -h expressions for more details on netlist expression handling), as indicated in the preceding examples. You can use expressions containing parameter references when specifying device or analysis instance parameter values (for example, specifying the resistance of a resistor or the stop time of a transient analysis, as outlined in the preceding example), when specifying model parameter values in model cards (for example, specifying bf=p1*0.8 for a bipolar model parameter bf), or when specifying initial conditions and nodesets for individual circuit nodes.

Altering/Sweeping Parameters

Just as certain Spectre analyses (for example, sweep, alter, ac, dc, noise, sp, xf) can sweep device instance or model parameters, they can also sweep netlist parameters. Run spectre -h <analysis> to view the details for any of these analyses, where <analysis> is the analysis of interest.

Temperature as a Parameter

You can use the reserved parameters temp and thom anywhere an expression can be used, including within expressions and user-defined functions. The temp parameter always represents the simulator (circuit) temperature, and thom always represents the measurement temperature. All expressions involving temp or thom are re-evaluated everytime the circuit temperature or measurement temperature changes.

You can also alter or sweep the temp and tnom parameters by using any of the techniques available for altering or sweeping the netlist or subcircuit parameters (with the exception of s).

This capability allows you to write temperature dependent models, for example, by using temp in an equation for a model or an instance parameter. For example:

```
r1 1 0 res r=(temp-tnom)*15+10k // temp is temperature
```

Other Simulation Topics

ol options temp=55 // causes a change in above resistor rl

Reserved Parameters

The following parameters are reserved and must not be declared as either top-level parameters or subcircuit parameters: temp, tnom, scale, scalem, freq, time.

For additional information, refer to the <u>Parameters Statement</u> section in the <u>Spectre Classic Simulator</u>, <u>Spectre APS</u>, <u>Spectre X</u>, and <u>Spectre XPS User Guide</u>.

Other Simulation Topics

Parameter Set - Block of Data (paramset)

Description

A parameter set is a block of data, which can be referenced by a sweep analysis. Within a parameter, the first row contains an array of top-level netlist parameters. All other rows contain numbers that are used to alter the value of the parameters during the sweep. Each row represents an iteration of the sweep. This data should be bound within braces. The opening brace is required at the end of the line defining the parameter. The parameter cannot be defined within subcircuits or cannot be nested.

Definition

```
<Name> paramset {
}

Example:
```

```
data paramset {
   p1  p2  p3
   1.1  2.2  3.3
   4.4  5.5  6.6
}
```

Other Simulation Topics

The postlayout command line option (postlayout)

Description

This option enables various technologies to speed up post-layout simulation including RC reduction, efficient coupling capacitor handling, advanced DC algorithms optimized for large post-layout circuits, along with other advanced numerical techniques.

The +postlayout option delivers best simulation performance, with acceptable accuracy, for custom digital designs, memory designs, and analog/mixed-signal designs where high simulation precision is not required.

+postlayout=hpa provides higher simulation precision for analog /mixed-signal designs.

+postlayout=upa delivers the ultimate post-layout simulation accuracy, similar to +postlayout=hpa, but with RC reduction completely disabled.

Even though not recommended, $+rcnet_fmax=N$ command-line option can be used to adjust the simulation accuracy associated with +postlayout. The unit for N is in GHz and the default value is 125. N=25 is considered aggressive, whereas N=250 is considered conservative. The $+rcnet_fmax$ option not only controls RC reduction accuracy with any local RC net, but also defines the accuracy/performance trade-off of other non-reduction based techniques. $rcnet_fmax$ is available as a Spectre command-line argument or option.

+postlayout=legacy/legacy_rf options provide backward compatibility with the +parasitics/+parasitics=rf options respectively. Accuracy of the +postlayout=legacy option can also be adjusted using the rcr_fmax option.

Definition

+postlayout in the command line

Other Simulation Topics

Pspice_include File (pspice_include)

Description

Spectre supports PSPICE netlist format targeting to include PCB components that are modeled in PSPICE format. This solution does not support PSPICE designs. A top-level netlist and control statement needs to be defined in Spectre or SPICE format. The recommended approach is to define a subckt in PSPICE netlist format and to instantiate the subckt in a Spectre netlist.

A PSPICE netlist can be included in Spectre by using the following include statements.

```
pspice_include <file> (Spectre format)
.pspice include <file> (SPICE format)
```

PSPICE file inclusion allows the circuit description to be spread over several files. The include statement itself is replaced by the contents of the file named. If the name given is not an absolute path specification, it is taken relative to the directory of the file currently being read.

The PSPICE file defined in the pspice_include statement is required to contain only PSPICE netlist format. A PSPICE file may also contain include statements such as .inc or .lib to include other PSPICE files. The pspice_include statement cannot be used in a PSPICE netlist.

When Spectre-simulator opens a pspice_include file then it automatically switches to PSPICE mode. When in PSPICE mode, all elements and device models used in the PSPICE netlist are simulated using PSPICE default values and equations. Switching from PSPICE mode to Spectre mode inside a PSPICE file is not supported. After reading the include file, Spectre restores the language processing mode to what it was before the file was included, and continues reading the original file starting at the line after the include statement. Lines cannot be continued across file boundaries.

Definition

Pspice include "filename"

Other Simulation Topics

Tips for Reducing Memory Usage with SpectreRF (rfmemory)

Description

Problem: How can you reduce memory usage when running SpectreRF simulations? What are the things that you need to be aware of?

Solution: The amount of swap/memory that Spectre/SpectreRF requires depends on the following:

- The analysis type you are running (PSS, QPSS, transient, dc, and so on). PSS and QPSS can take up a lot of memory.
- PSS and QPSS shooting can take up a lot of memory. If a reasonably small number of harmonics is needed for your circuit, then harmonic balance will require less memory than the shooting method, especially for systems with multiple input frequencies. More details are provided below.
- The amount of memory required is roughly proportional to the number of nodes in the circuit. Remember that most device models have multiple nodes inside the model.
- The number of nodes/nets you save has only a small effect on memory use and runtime. The number of nodes/nets you save does change the amount of disk space required to save the simulation result.

This help is broken into four sections; Shooting, Harmonic Balance, Small-Signal Analyses, and Envelope.

PSS analysis

The amount of memory required depends on the number of time points in the PSS solution. The number of time points in the solution depends on several factors.

■ If you increase the number of harmonics above 10, the minimum number of time points is 20*number of harmonics. Closely spaced input frequencies require a large number of harmonics to be calculated, and thus require large amount of memory.

For example, consider a system with 2.4GHz and 2.4GHz minus 1MHz, or 2.399GHz. To get to the second harmonic of 2.4 GHz requires 4,800 harmonics, which in turn requires 96,000 timepoints. This large number of timepoints would require a large amount of memory. For such systems, use harmonic balance (hb) instead.

Other Simulation Topics

- Increasing the accuracy by selecting conservative or by reducing the value of reltol and/ or vabstol has the effect of producing more timepoints. A rough estimate is that for every power of 10 smaller you set reltol, five times as many timepoints will be produced.
- Setting a small maxstep compared to the PSS period or setting maxacfreq above 40*PSS beat frequency will produce more timepoints. Unless you see warning messages in the small-signal analyses that instruct you to set maxacfreq, it is better to leave maxstep and maxacfreq unspecified and set conservative and/or a smaller values for reltol and vabstol. This will have the effect of taking more timesteps only in areas of transition, and longer timesteps where the waveform is static.
- The waveforms produced by the circuit can also affect the number of timepoints. If there are fast transitions in your circuit, the timestep will be reduced in the areas of the transitions to preserve high accuracy of the simulation.

QPSS analysis

- QPSS Analysis should be used only for nonlinear circuits like sampling circuits or switched-capacitor circuits. For other circuits, use hb instead.
- QPSS analysis runs a series of PSS analyses that depend on the number of moderate tones and the number of harmonics set in each moderate tone. Each PSS analysis is one cycle of the signal designated as Large in the QPSS Choosing Analyses Form with all of the input signals applied. The number of harmonics for the large tone and the accuracy settings mentioned above set the number of timepoints for each PSS analysis. The number of PSS analyses (called transient integrations in the Spectre output window) is (2*number of harmonics on moderate tone 1)+1 * (2*number of harmonics on moderate tone 2)+1 and continuing for more input tones. Assuming three harmonics on two moderate tones the number of PSS analyses is (2*3)+1 * (2*3)+1, or 49 total PSS analyses.

Harmonic Balance analysis

- The amount of memory required depends primarily on the number of harmonics in the solution. Setting accuracy options will have only a small effect on the memory size.
- The number of harmonics in the solution depends on the number of input frequencies, the number of harmonics to be calculated for each frequency, and whether frequency cuts are used. The default number of harmonics is calculated as follows: (2*number of harmonics on tone 1)+1 * (2*number of harmonics on tone 2)+1 * (2*number of harmonics on tone 3)+1 and increasing if more inputs are present.
- For a single input and 7 harmonics, (2*7)+1 or 15 harmonics are needed. If there are two inputs with 7 and 3 harmonics set, then 15*7 or 105 harmonics are needed by default.

Other Simulation Topics

■ Frequency cuts can reduce the number of harmonics that needs to be calculated. For more information on frequency cuts, see the SpectreRF User Guide, Chapter 3. If you want to use frequency cuts, the safest general recommendation is to use the funnel cut with maximum order set between 5 and 9. Use the smallest value of maximum order that produces accurate results.

Small-Signal analysis

Once the PSS, QPSS or HB analysis runs, additional memory is required to run the small-signal analyses. The amount of memory is difficult to predict because different analyses require different amounts of memory. As a rough estimate, the amount of memory might double or triple shortly after the small-signal analysis starts. For shooting method, setting maximum sidebands above about 50 will require more memory. For harmonic balance, the memory depends on the number of harmonics present in the harmonic balance large-signal analysis.

Envelope method

- Envelope method has two engines; shooting and harmonic balance. Harmonic balance is recommended because it always requires less memory and time to run, and it has a fast envelope level 1 analysis available.
- Transistor-level and Level 1 harmonic balance envelope is harmonic balance with a transient engine. The memory required is only slightly more than a single-tone hb analysis with the same number of harmonics that are used in envelope.
- For transistor-level envelope, a harmonic balance simulation is done at each time in the envelope analysis. For fast envelope, a series of harmonic balance analyses are run at the start to characterize the circuit, and then a behavioral simulation runs after that.

You can consider using the following strategies:

- 1. Never set useprobes=yes for SpectreRF simulations. It can cause large errors in the small signal Pxx analyses. Use useprobes for linear AC analysis only.
- **2.** Check to see how much swap and memory you have on your computer. Greater than 2GB RAM and 5GB swap is recommended.

A 64-bit Spectre executable is available with MMSIM releases. This means that there is no 4GB process size limit, which was the case with the 32-bit Spectre executable. This allows much larger circuits to be simulated. If the memory required for simulation is larger than the amount of RAM installed on the machine, the machine will start swapping which dramatically slows the simulation and may cause the simulation to almost completely stop because the disk is so active. The best solution is more RAM on the system. A

Other Simulation Topics

partial solution for shooting only is to use the swap file option described below. At least one large machine should be available for post-parasitic simulations to complete successfully without swapping.

- 3. If you are using shooting and your machine starts to swap, consider setting the swapfile option. This option writes much of the data from pss and qpss shooting large-signal analyses to disk files on your system. Large files will be produced. If the disk is local to the machine that is running the simulation, this will speed things up slightly compared to swapping in the operating system because Spectre manages the disk operations to put the data in concentric cylinders on the machine, but it is still fundamentally much slower than running on a machine that has more RAM. If the disk is a networked drive, the network latency may actually slow the simulation down. Only setting the option will allow runtime comparisons. Harmonic balance does not have this option.
- **4.** For post-layout simulations, consider using RC reduction to reduce the number of nodes in the circuit.
- **5.** Choose the largest possible PSSfund frequency. A higher fundamental frequency (PSSfund) yields a shorter simulation time.
- **6.** If you have two or more closely spaced frequencies, use harmonic balance instead of PSS.
- 7. When shooting is used, try to use 10 harmonics or less and don't set the macacfreq or maxstep options unless you get errors from the small-signal analyses. Don't over-tighten the accuracy options.
- **8.** In harmonic balance, use the smallest number of harmonics you can that produce accurate results, and consider using frequency cuts for circuits with multiple input frequencies.
- **9.** If you are using names in harmonic balance or if you are using qpss, make sure that all the sources at the same frequency have the same Frequency Name 1 property.

Note: This is NOT the Instance Name property which all must be unique.

Setting the Frequency Name 1 property to the same name signifies to Spectre to treat those sources as a single frequency. For example, imagine you have differential RF inputs at 2.4GHz and I and Q differential LOs at 2.41GHz. There are two RF sources and four LO sources. Both RF sources have the same frequency and all four LO sources have the same frequency. As an example, you might set the RF sources to have the frequency name 1 property "RF" and all the LO sources "LO." In this case, Spectre will solve for two different frequencies as it should. If you named the sources RF1, RF2, LO1, LO2, LO3, and LO4, Spectre will consider these as all separate input frequencies. This becomes a six-tone simulation instead of a two-tone simulation and will take much longer to run and require hugely more memory.

Other Simulation Topics

- 10. In shooting small-signal analyses try to keep the number of sidebands to about 50 or less. More than 50 sidebands will require more memory. Full spectrum pnoise requires less memory than traditional pnoise. In hb small-signal analyses, leave the number of sidebands field unspecified and use the smallest number of harmonics in the harmonic balance analysis that you can that also produce accurate results.
- **11.** In envelope analysis, use the smallest number of harmonics you can to get an accurate result.
- **12.** Run Spectre when no other users are using the same machine so all the RAM is available for your use.
- **13.** In harmonic balance, run the memory estimator on the circuit to have an understanding of the rough memory consumption.

Other Simulation Topics

Output Selections (save)

Description

The save statement indicates that the values of specific nodes or signals must be saved in the output file. It works in conjunction with the save parameter for most analyses. The output file is written in Cadence Parameter Storage Format (PSF), or in Nutmeg/SPICE3 format, which is controlled by a command-line argument or a global option (see the options statement). See options help for the complete list of supported formats. An appropriate postprocessor should be used to view the output, generate plots, or do any further processing.

Definition

```
save X[:param] ... [depth=num] [sigtype=node|dev|subckt|all]
[devtype=component_type] [subckt=subckt_master]
[exclude=[wildcard_patterns_list]] [compression=no|yes] [ports=yes|no]
[filter=none|rc] [probelvl=num] time window=[t1 t2 t3 t4 ...]
```

The save statement takes a list of signals followed by some optional parameters as an argument. X can be a node, a component, or a subcircuit and param can be a component output parameter or a terminal index. To specify a class of signals, use the pattern matching character * for any string and ? for any character. The parameters control pattern matching. depth controls the depth of pattern matching and, by default, matches signals at all hierarchical levels. sigtype with the default value node defines the type of X. If sigtype=all, X can be a node, a component, or a subcircuit. devtype defines the component type and has no default value. subckt is used to save signals that are contained only in instances of a given subcircuit master. The signals matching a pattern from the list specified with exclude are not saved. When subckt is given, the wildcard patterns in the save statement and the depth of pattern matching must be relative to the subcircuit master.

The concept of nodes for the save statement is generalized to signals where a signal is a value associated with a topological node of the circuit or some other unknown that is solved by the simulator, such as the current through an inductor or the voltage of the internal node in a diode. Topological nodes can be at the top level or in the subcircuit.

By default, the waveforms defined in the save statement are not compressed. Compression can be enabled globally for selected hierarchy levels in the transient statement (compression, complv1). Compression can also be enabled or disabled individually for each save statement. The compression settings in the save statement overwrite the compression settings in the transient statement.

 $time_window$ is used to specify the output time interval for transient analysis. Signals in [t1 t2] and [t3 t4]... are outputted.

Other Simulation Topics

The ports parameter saves the subckt ports names as well if yes is specified. The default value is no. The filter parameter works with wildcarding to filter out the nodes that connect only to parasitics, if rc is specified. The default value is none.

To probe terminal currents hierarchically at a specified depth, specify the depth using the probelv1 option to obtain the terminal current for all terminals connected within that depth.

For example:

```
save 7 out OpAmp1.comp M1:currents D3:oppoint L1:1 R4:pwr
```

specifies that node 7, node out, node comp in subcircuit OpAmp1, the currents through the terminals of M1, the oppoint information for diode D3, the current through the first terminal of L1, and the instantaneous power dissipated by R4 should be saved. These outputs are saved in addition to any outputs specified by the save parameter for the analysis.

To specify a component terminal current, specify the name of the component and the name or the index of the terminal separated by a colon. If currents is specified after the component and the colon, all the terminal currents for the component are saved unless the component has only two terminals, in which case only the current through the first terminal is saved. Current is positive if it enters the terminal flowing into the component.

If a component name is followed by a colon and oppoint, then the operating point information associated with the component is computed and saved. If the colon is followed by an operating point parameter name (see each component for list of operating point parameters), then the value of that parameter is output.

If only a component name is given, all available information about the component, including the terminal currents and the operating point parameter values, is saved.

Examples of pattern matching

save $x^*.*1$ depth=3

Saves the voltages of all nodes from level 2 to level 3 whose name starts with x and ends in 1. For example, x1.n1, x1.x2.x3 but not x1.x2.x3.

 \blacksquare save x*.*1 sigtype=subckt

Saves all terminal currents of subcircuits from level 2 and above whose name starts with x and ends in 1. For example, x1.x21:2, x1.x2.x31:3.

■ save *:c devtype=bjt

Saves all collector currents

save * subckt=inv

Other Simulation Topics

Saves the voltages of all nodes in the instances of the subcircuit inv. For example, x1.n1 for an instance x1 of inv but not net091 at the top-level

■ save * exclude=[X1* X2*]

Saves the voltages of all nodes excluding the ones whose names start with X1 or X2. For example, net091, X0.res3.n2 but not X21.res3.n2.

■ save X1:A probelvl=3

Saves all terminal currents that are connected to terminal ${\tt A}$ of subcircuit ${\tt X1}$, till the third-level depth.

■ Save nA:currents probelv1=2

Saves the currents of all terminals that are connected to node $n\mathbb{A}$, till the second-level depth.

■ save N1 time_window=[1m 2m 3m 4m]

Save node N1 from 1ms to 2ms and 3ms to 4ms.

■ save N1 time_window=[1m 2m]
save N1 time window=[0.5m 2.5m 3m 4m]

Save node N1 from 0.5ms to 2.5ms and 3ms to 4ms

■ save N1 time_window = [1m 2m]

Saves all waveforms starting with N for entire simulation time, except N1 which is only saved from 1ms to 2ms.

For more information, see <u>The Save Statement</u> in the Spectre Classic Simulator, Spectre APS, Spectre X, and Spectre XPS User Guide.

Other Simulation Topics

Savestate - Recover (savestate)

Description

Savestate-Recover is a transient analysis feature. It is a replacement for Checkpoint-Restart capability.

The Checkpoint-Restart capability saves only the circuit solution for the timepoint at which the simulation is interrupted. Because there is no history information saved for the circuit, glitches, convergence issues, and inaccuracies can result when the simulation is resumed. The Savestate-Recover feature saves the complete state of the circuit, avoiding these issues.

Savestate-Recover provides the following functions:

- You have the option to save circuit information at set intervals or at multiple points during transient analysis. If the simulation halts unexpectedly, you can restart transient analysis from any saved timepoint.
- You can experiment with different accuracy settings over different transient time periods to obtain the optimal speed/accuracy trade-off.

Requirements for Savestate-Recover

When the simulation is restarted:

- Netlist topology must not be changed. Topology changes or the removal/addition of nodes in the restore file causes a fatal error.
- You may edit any netlist parameter as long as the circuit topology remains the same.
- The stop time of Transient analysis must be larger than the timepoint corresponding to the savestate file.
- Saved state file is binary and platform dependent.
- Savestate-Recover works only for transient analysis and the transient analysis must not be within a Sweep or Monte Carlo analysis.

Use Model

Savestate

Savestate is enabled/disabled by using the spectre command, as follows.

```
spectre [+savestate ] [-savestate ] ...
```

Other Simulation Topics

where:

- +savestate Enables Savestate. You may use +ss as an abbreviation for +savestate.
- -savestate Disables Savestate. You may use -ss as an abbreviation for -savestate.

By default, savestate is on, and checkpoint is off.

■ Define saved time points and state file in the tran statement. For example:

where:

- □ saveperiod, saveclock, and savetime define the time points to save the states.
 - O If saveperiod is given, Spectre generates a saved state file periodically based on the transient simulation time. Only the last saved state file is kept.
 - O If saveclock is given, Spectre generates a saved state file periodically based on real time (wall clock time). Its default value is 1800 seconds (30 minutes).
 - O If savetime is given, Spectre generates a saved state file on each specified time point.
- □ savefile defines where the saved states are written.
 - O If savefile is not defined, the default file name is %C.%A.srf.

Where %C is the input circuit file name, and %A is the analysis name.

If multiple save time points are given, That is,

```
analysisName tran stop=stoptime savetime=[time1 time2 ...] savefile=filename the saved state file is filename_at_time1, filename_at_time2, and so on.
```

Besides saving the state based on saveperiod or saveclock or savetime, if savestate is enabled, Spectre automatically saves the states to a file when an interrupt signal like QUIT, TERM, INT, or HUP is received for the first time. If interrupt signals are received more than once, Spectre quits immediately.

The saveclock, saveperiod, and savetime parameters should not be specified at the same time.

If more than one parameter is specified, Spectre reads them in the following order:

```
saveperiod
```

Other Simulation Topics

savetime
saveclock

Recover

There are two ways to recover the simulation from the saved state file. The first is to define the recover file using the spectre command. The second is to define the recover file in a tran statement.

Defining the recover file in the tran statement is strongly recommended, especially if there are multiple analyses statements in the netlist.

Recover from command line

```
spectre [+recover[=filename]] [-recover] ...
```

where:

- +recover Enables recover. You may use +rec as an abbreviation for +recover.
- -recover Disables recover. You may use -rec as an abbreviation for -recover.

■ Recover from the tran statement

```
analysisName tran recover=filename ...
```

By default, recover is disabled.

Output Directory on Recovering

When recovering from a saved state in a Spectre run by using +recover=state_file in a command-line option, a new raw directory is created to avoid overwriting the previous simulation results. However, if recover=state_file is given in a tran statement, the default raw directory is used.

When defining recover=state_file in a tran statement, use a different tran name to avoid previous simulation results to be overwritten by the recovered results.

When a new raw directory is created, the raw directory name is the same as the default raw directory, except that an index (starting from 0) is suffixed to raw, such as * .raw#, where # is 0, 1, 2, and so on.

For example, in the first run, enter:

```
spectre input.scs
```

Spectre saves the simulation state in a file on a time point. By default, input.raw directory is created.

When Spectre runs in recover mode:

```
spectre +recover=saved_state_file input.scs
```

Other Simulation Topics

a new raw directory named <code>input.raw0</code> is created. The index of the raw directory is increased by one at each successive recover run. Another use model is that you define multiple transient-analysis runs in a netlist. In the first transient-analysis run, Spectre saves the simulation state on a time point.

In the next transient analysis run, simulation is continued from the saved time point. For example:

```
tran1 tran step=1ps stop=200ns savetime=[50ns] savefile=tran1_save
tran2 tran step=1p stop=400ns recover=tran1 save at 50.00ns
```

In this case, the default raw directory is used.

For more information, see <u>Recovering From Transient Analysis Terminations</u> section in the <u>Spectre Classic Simulator</u>, <u>Spectre APS</u>, <u>Spectre X</u>, and <u>Spectre XPS User Guide</u>.

Sensitivity Analyses (sens)

Description

Use the sens control statement to find partial or normalized sensitivities of the output variables with respect to component and instance parameters for the list of the analyses performed. Currently, DC and AC sensitivity analyses are supported. The results of the sensitivity analyses are stored in the output files written in Cadence Parameter Storage Format (PSF). The global option parameter senstype (see the options statement) is used to control the type of sensitivity being calculated. In addition, you can use +sensdata filename command-line argument or a global option (see the options statement) to direct sensitivity analyses results into a specified ASCII file.

Definition

sens (output variables list) to (design parameters list) for (analyses list)

where:

- output_variables_list = ovar1 ovar2, and so on.
- \blacksquare design_parameters_list = dpar1, dpar2, and so on.
- analyses_list = anal1 anal2, and so on.

The list of design parameters may include valid instance and model parameters. You can also specify device instances or device models without a modifier. In this case, Spectre attempts to compute sensitivities with respect to all corresponding instance or model parameters. Caution should be exercised in using this option as warnings or errors may be generated if many instance and model parameters cannot be modified. If no design parameters are specified, then all the instance and model parameters are added. The list of the output variables for both AC and DC analyses may include node voltages and branch currents. For DC analyses, it may also include device instance operating point parameters.

Examples

- sens (q1:betadc 2 Out) to (vcc:dc nbjt1:rb) for (analDC)
 - For this statement, DC sensitivities of betadc operating point parameter of transistor q1 and of nodes 2 and Out are computed with respect to dc voltage level of voltage source vcc and model parameter rb for the DC analysis analDC. The results are stored in the raw directory with the name in the format analysisname.sens.analysistype, that is, dc.sens.analDC.
- \blacksquare sens (1 n2 7) to (q1:area nbjt1:rb) for (analAC)

Other Simulation Topics

For this statement, AC sensitivities of nodes 1, n2, and 7 are computed with respect to the area parameter of transistor q1 and the model parameter rb for each frequency of the AC analysis analAC. The results are stored in the output file analAC.sens.ac.

- \blacksquare sens (1 n2 7) for (analAC)
 - For this statement, AC sensitivities of nodes 1, n2, and 7 are computed with respect to all instance and model parameters of all devices in the design for each frequency of the AC analysis analAC. The results are stored in the file in the format ac.sens.analAC.
- sens (vbb:p q1:int_c q1:gm 7) to (q1:area nbjt1:rb) for (analDC1)

 For this statement, DC sensitivities of branch current vbb:p, the operating point parameter gm of the transistor q1, the internal collector voltage q1:int_c and the node 7 voltage are computed with respect to instance parameter area for instance q1 and model parameter rb for model nbjt1.

For additional information, see <u>Sensitivity Analysis</u> in the <u>Spectre Classic Simulator</u>, <u>Spectre APS</u>, <u>Spectre X</u>, and <u>Spectre XPS User Guide</u>.

Other Simulation Topics

SpectreRF Summary (spectrerf)

Description

SpectreRF is an optional collection of analyses that are useful for circuits that are driven with a large periodic signal. Examples include mixers, oscillators, switched-capacitor filters, sample-and-holds, chopper stabilized amplifiers, frequency multipliers, frequency dividers, and samplers. They efficiently and directly compute the periodic and quasiperiodic steady-state solution of such circuits and are capable of computing large-and-small-signal behavior, including noise behavior. Therefore, SpectreRF is capable of computing the noise figure or intermodulation distortion of a mixer, the phase noise and harmonic distortion of an oscillator, and the frequency-response and noise behavior of a switched-capacitor filter. For more information about the SpectreRF analyses, run spectre -help analysisName where analysisName is pss, pac, pxf, pnoise, psp, pstb, qpss, qpac, qpxf, qpnoise, qpsp, envlp, hb, hbac, hbsp, or hbnoise.

Other Simulation Topics

Stitch Flow Use Model (stitch)

Description

Stitching enables Spectre APS to plug in the parasitic elements while simulation is running. Compared to the flat RC netlist and the hierarchical RC netlist approaches, the Stitching flow has the following advantages:

- Reuse of the pre-layout simulation test-bench. There is no need to change the probe and the measure statements.
- What-if analysis powered by selective stitching.

Spectre APS stitching is enabled by options.

Parasitic File Loading Parameters

■ spf

This option specifies the to-be-stitched DSPF file and its stitching scope. The syntax is spf="scope filename". The scope can be a subcircuit or an instance. When a subcircuit is specified as the scope, the DSPF file is stitched to all the instances of that subcircuit. When an instance is specified as the scope, the DSPF file is stitched to that instance only. Multiple DSPF files can be specified for stitching by using the option multiple times.

Example:

```
spf="mem mem.dspf"
```

■ dpf

This option specifies the to-be-stitched DPF file and its stitching scope. The syntax is dpf="scope filename". The scope can be a subcircuit or an instance. When a subcircuit is specified as the scope, the DPF file is stitched to all the instances of that subcircuit. When an instance is specified as the scope, the DPF file is stitched to that instance only. Multiple DPF files can be specified for stitching by using the option multiple times.

Example:

```
dpf="X1.XPLL PLL.dpf" dpf="X1.XMEM mem.dpf"
```

This means that the PLL. dpf file needs to be stitched to the X1.XPLL instance and the mem. dpf file needs to be stitched to the X1.XMEM instance.

■ spef

Other Simulation Topics

This option specifies the to-be-stitched SPEF file and its stitching scope. The syntax is spef="scope filename". The scope can be a subcircuit or an instance. When a subcircuit is specified as the scope, the SPEF file is stitched to all the instances of that subcircuit. When an instance is specified as the scope, the SPEF file is stitched to that instance only. Multiple SPEF files can be specified for stitching by using the option multiple times.

Example:

spef="adc a.spef"

Stitching Parsing Options

■ spfscale

This option specifies the scaling factor of all the elements in the parasitic files (DSPF/SPEF/DPF). For example, consider that the width of a device in the DSPF file is w=2. If spfscale=1.0e-6 is used, the actual width will be w=2.0e-6.

spfscalec

This option specifies the scaling factor of all the capacitors in the parasitic files (DSPF/SPEF/DPF). Example, suppose a capacitor's value in the DSPF file is 2. If spfscalec=1.0e-15 is used, the actual capacitor value will be 2.0e-15.

■ spfscaler

This option specifies the scaling factor of all the resistors in the parasitic files (DSPF/SPEF/DPF). Example, suppose a resistor's value in the DSPF file is 2. If spfscaler=1.0e-3 is used, the actual capacitor value will be w=2.0e-3.

■ spfswapterm

This option specifies the swappable terminals of a subcircuit macro-model. The syntax is spfswapterm="terminal1 terminal2 subcktname".

Example:

```
spfswapterm="n1 n2 nch mac"
```

This indicates that terminals n1 and n2 of subckt nch_mac are swappable. In general, this is applicable to devices that are modeled by subcircuits. Multiple spfswapterm statements are supported.

■ spfxtorprefix

This option specifies the prefix in the names (devices and nets) in the DSPF/SPEF/DPF file. The device names in the prelayout netlist and the DSPF/SPEF file often do not

Other Simulation Topics

match. The spfxtorprefix option can be used to help match the device names. The syntax is spfxtorprefix="<substring> [<replace_substring>]".

Example:

```
spfxtorprefix="XM X"
```

XX1/XM1 exists in the prelayout netlist but the corresponding device name in the DSPF file is XMX1/XM1. This option will change XM to X.

■ spfaliasterm

Sometimes the terminal names of devices in DSPF/SPEF/DPF files are different from those in the simulation model library. This happens often in the technology nodes that uses subcircuits to model devices. The syntax is spfaliasterm="<model|subckt>cprelayout_term1>=<spf_alias1> cprelayout_term2>=<spf_alias2>...

Example:

```
spfaliasterm="nfet mac n1=D n2=G n3=S n4=B"
```

This means that in subckt $nfet_{mac}$, terminal n1 corresponds to terminal D in the DSPF file, n1 corresponds to terminal C, n3 corresponds to terminal C and n4 corresponds to terminal C.

■ speftriplet

This option specifies the value that should be used for stitching in the SPEF file. This is effective only when the values in the SPEF file are represented by triplets (for instance, 0.325:0.41:0.495). Default value is 2. Possible values are 1, 2 and 3.

■ spfinstancesection

This option controls the backannotation of device parameters in the instance section of the DSPF file. If spfinstancesection is turned off, the instance section is ignored (that is, the device parameters are not changed during stitching). Default is on.

■ spfbusdelim = busdelim_schematic [busdelim_parasitic]

This option maps the bus delimiter between schematic netlist and parasitic file (i.e. DSPF, SPEF, or DPF). The option defines the bus delimiter in the schematic netlist, and optionally the bus delimiter in the parasitic file. By default, the bus delimiter of the parasitic file is taken from the parasitic file header (i.e. * | BUSBIT [], * | BUS_BIT [], or * | BUS_DELIMITER []). If the bus delimiter is not defined in the parasitic file header, you need to specify it by using the spfbusdelim option in schematic netlist.

Example:

Other Simulation Topics

- spfbusdelim=<> A<1> in the schematic netlist is mapped to A_1 in the DSPF file, if the bus delimiter header in the DSPF file is "_".
- spfbusdelim=@ [] A@1 in the schematic netlist is mapped to to A[1] in the DSPF file (the bus delimiter in DSPF header will be ignored).
- spfinstarraydelim

This option specifies the supplemental bus delimiter, if more than one bus delimiter is used in the pre-layout netlist (usually for instance array indexing). This option is similar to spfbusdelim.

Selective Stitching Options

■ spfcnet

This option specifies the net that has its total capacitance stitched. All other parasitic components, say parasitic resistors, associated with this net are ignored. The full hierarchical names are required. Multiple statements are supported. Wildcards are supported.

Example:

```
spfcnet=X1.netA
```

■ spfcnetfile

This option has the same functionality as spfcent. However, it accepts a text file in which all the C-only stitched nets are listed. Only one file can be specified. The syntax is spfcnetfile="filename". The format in the file is one line per net.

Example:

```
spfcnetfile="nets.tex"
```

The format in the nets.tex is:

netA

netB

netC

spfrcnet

This option specifies the name of the net to be stitched with parasitic resistors and capacitors. The other nets are stitched with lumped total capacitances. Multiple statements are supported. Wildcards are supported and you can specify multiple nets. Full hierarchical names are required.

Example:

```
spfrcnet=netA
```

Other Simulation Topics

■ spfrcnetfile

This option has the same functionality as spfrcnet. However, it accepts a text file in which all the RC stitched nets are specified. Only one file can be specified. The syntax is spfrcnetfile="filename". The format in the file is one line per net.

Example:

```
spfrcnetfile="nets.tex"
```

The format in the nets.tex is:

netA netB

netC

■ spfnetcmin

This option allows you to select the net for stitching by the value of its total node capacitance. If a net's total node capacitance exceeds spfnetcmin, all parasitics associated with the net are stitched correctly; otherwise, only the total capacitance is added to the net node.

Example:

```
spfnetcmin=1.0e-6
```

■ spfskipnet

This option specifies the net to be skipped for stitching, that is, all parasitic components of the net are not stitched. Wildcards and multiple statements are supported.

Example:

```
spfskipnet=X1.nodeA
```

spfskipnetfile

This option allows you to specify the nets to be skipped as a list in the text file called file_name. The syntax is <code>spfskipnetfile="filename"</code>. Only one file can be specified. The format in the file is one line per net.

Example:

```
spfskipnetfile="nets.tex"
nets.tex file format is:
netA
netB
netC
```

Other Simulation Topics

Stitching Message Control Option

■ spfmsglimit

This option specifies the maximum number of messages to be printed in the spfrpt file. The messages in the spfrpt file are categorized by their ID number (STITCH-ID). This option specifies the maximum number of messages for a particular type of messages by using their STITCH-ID. The syntax is $spfmsglimit="number STITCH-ID_1 STITCH-ID_2"$. When STITCH-ID is not specified, the tool assigns the maximum message number limit to all messages categories (STITCH-IDs).

Example:

```
spfmsglimit="10 STITCH-0010"
```

This tells the tool to print not more than 10 messages for the STITCH-0010 message category, in the meantime, for the other message categories, the default maximum limit of 50 messages will apply.

For additional information, see <u>Parasitic Backannotation of DPSF/SPEF/DPF Files</u> in the Spectre Classic Simulator, Spectre APS, Spectre X, and Spectre XPS User Guide.

Other Simulation Topics

Subcircuit Definitions (subckt)

Description

Hierarchical Circuit

The subckt statement is used to define a subcircuit. Subcircuit definitions are circuit macros that can be expanded anywhere in the circuit any number of times. When an instance in your input file refers to a subcircuit definition, the instances specified within the subcircuit are inserted into the circuit. Subcircuits may be nested. Therefore, a subcircuit definition may contain instances of other subcircuits. Subcircuits may also contain component, analysis, or model statements. Subcircuit definitions can also be nested, in which case the innermost subcircuit definition can only be referenced from within the subcircuit in which it is defined, and cannot be referenced from elsewhere.

Instances that instantiate a subcircuit definition are referred to as subcircuit calls. The node names (or numbers) specified in the subcircuit call are substituted, in order, for the node names given in the subcircuit definition. All instances that refer to a subcircuit definition must have the same number of nodes as are specified in the subcircuit definition and in the same order. Node names inside the subcircuit definition are strictly local unless declared otherwise in the input file with a global statement.

Subcircuit Parameters

Parameter specification in subcircuit definitions is optional. In the case of nested subcircuit definitions, parameters that have been declared for the outer subcircuit definition are also available within the inner subcircuit definition. Parameters that are specified are referred to by name, optionally followed by an = sign and a default value. If, when making a subcircuit call, you do not specify a particular parameter, this default value is used in the macro expansion. Subcircuit parameters can be used in expressions within the subcircuit consisting of subcircuit parameters, constants, and various mathematical operators. Run spectre -h parameters for details about Spectre expression handling capability. Run spectre -h parameters for details about how Spectre handles netlist parameters, including subcircuit parameters, and how they inherit within nested subcircuit definitions.

Subcircuits always have an implicitly defined parameter m. This parameter is passed to all components in the subcircuit, and each component is expected to multiply it by its own multiplicity factor. In this way, it is possible to efficiently model several copies of the subcircuit in parallel. Any attempt to explicitly define m on a parameters line results in an error. In addition, because m is only implicitly defined, it is not available for use in expressions in the subcircuit.

Other Simulation Topics

Inline Subcircuits

An inline subckt is a special case of a subckt where one of the devices or models instantiated within this subckt does not get its full hierarchical name. It instead inherits the subckt call name. An inline subckt is syntactically denoted by the presence of the keyword inline before the subckt. It is called in the same manner as a regular subcircuit. The body of the inline subcircuit can typically contain one of the following, based on different use models:

- Multiple device instances, one of which is the inline component
- Multiple device instances, one of which is inline and one or more parameterized models
- A single inline device instance and a parameterized model to which the device instance refers

The inline component is denoted by giving it the same name as the inline subcircuit. When the subcircuit is flattened, the inline component does not take on a hierarchical name such as X1.M1, it instead takes on the name of the subckt call, such as X1. Any non-inline components in the subckt take on the regular hierarchical name, as if the subcircuit were a regular subckt (that is, not an inline subckt).

Probing the inline device

Spectre allows the following list of items to be saved or probed for primitive devices. These would also apply to devices modeled as the inline components of inline subcircuits:

- All terminal currents. For example, save q1:currents
- Specific (index) terminal current. For example, save q1:1 (#1=collector)
- Specific (named) terminal current. For example, save q1:b ("b"=base)
- Save all operating point info. For example, save q1:oppoint
- Save specific operating point info. For example, save q1:vbe
- Save all currents and oppoint info. For example, save q1

Parameterized Models and Inline Subckts

Inline subckts can be used in the same way as regular subcircuits to implement parameterized models, however, inline subckts provide some powerful new options. When an inline subcircuit contains both a parameterized model and an inline device that references that model, you can create instances of the device, and each device automatically gets an appropriately scaled model assigned to it. For example, the instance parameters to an inline

Other Simulation Topics

subckt could represent something like emitter width and length of a BJT device, and within the subckt, a model card that is parameterized for emitter width and length and scales can be created accordingly. When you instantiate the macro, supply the values for the emitter width and length, and a device is instantiated with an appropriate geometrically scaled model. Again, the inline device does not get a hierarchical name and can be probed in the same manner as the inline device in the previous section on modeling parasitics, that is, the inline device can be probed just as if it were a simple device, and not actually embedded in a subckt

Automatic Model Selection using Inline Subckts

See spectre -h if for a description on how to combine Spectres structural if statement with inline subckts to perform automatic model selection based on any netlist/subckt parameter.

For additional information on subcircuits, see <u>Subcircuits</u> in the <u>Spectre Classic Simulator</u>, <u>Spectre APS</u>, <u>Spectre X</u>, and <u>Spectre XPS User Guide</u>.

Definition

```
[inline] subckt <Name> (<node1> ... <nodeN>)
```

Example 1: subckt

```
subckt coax (i1 o1 i2 o2)
   parameters zin=50 zout=50 vin=1 vout=1 len=0
   inner i1 o1 i2 o2 tline z0=zin vel=vin len=len
   outer o1 0 o2 0 tline z0=zout vel=vout len=len
ends coax
```

Defines a parameterized coaxial transmission line macro from two ideal transmission lines. To instantiate this subcircuit, one could use an instance statement such as:

```
Coax1 pin nin out qnd coax zin=75 zout=150 len=35m
```

Example 2: inline subckt - parasitics

Consider the following example of an inline subcircuit, which contains a mosfet instance, and two parasitic capacitances:

Other Simulation Topics

The following circuit creates a simple mos device instance M1, and calls the inline subcircuit s1 twice (M2 and M3)

```
M1 (2 1 0 0) mos_mod
M2 (5 6) s1 p1=6u p2=7u
M3 (6 7) s1
```

This expands/flattens to:

```
M1 (2 1 0 0) mos_mod

M2 (5 6 0 0) mos_mod l=6u w=7u // the "inline" component, inherits call name

M2.cap1 (5 0) capacitor c=1n // a regular hierarchical name

M2.cap2 (6 0) capacitor c=1n

M3 (6 7 0 0) mos_mod l=1u w=2u // the "inline" component, inherits call name

M3.cap1 (6 0) capacitor c=1n

M3.cap2 (7 0) capacitor c=1n
```

Here, the final flattened names of the three mosfets (one for each instance) are M1, M2, and M3, rather than M1, M2.s1, and M3.s1 as they would be if s1 was a regular subcircuit. However, the parasitic capacitors (which you may not interested in, or perhaps, even aware of, if the inline subckt definition was written by a different modeling engineer) have full hierarchical names.

Example 3: inline subckt - scaled models

Consider the following example, in which a parameterized model is declared within an inline subcircuit for a bipolar transistor. The model parameters are emitter width, length, and area, and also the temperature delta (trise) of the device above nominal. Ninety-nine instances of a 4*4 transistor are then placed and one instance of a transistor with area=50 is placed. Each transistor gets an appropriately scaled model.

Declare a subckt, which instantiates a transistor with a parameterized model. The parameters are emitter width and length.

```
inline subckt bjtmod (c b e s)
parameters le=1u we=2u area=le*we trise=0
model mod1 bjt type=npn bf=100+(le+we)/2*(area/1e-12)
+ is=1e-12*(le/we)*(area/1e-12)
bjtmod (c b e s) mod1 trise=trise // "inline" component
ends bjtmod
```

some instances of this subckt

```
q1 (2 3 1 0) bjtmod le=4u we=4u // trise defaults to zero q2 (2 3 2 0) bjtmod le=4u we=4u trise=2 q3 (2 3 3 0) bjtmod le=4u we=4u .....
```

June 2020 © 2003-2020

Other Simulation Topics

.

q99 (2 3 99 0) bjtmod le=4u we=4u q100 (2 3 100 0) bjtmod le=1u area=50e-12

Other Simulation Topics

Vec/Vcd/Evcd Digital Stimulus (vector)

Description

Spectre supports Digital Vector (VEC), Verilog-Value Change Dump (VCD), and Extended Verilog-Value Change Dump (EVCD).

VEC

To process digital vector files, the following command card needs to be specified in the netlist.

In Spice netlist:

```
.vec "vector_filename" [HLCheck = 0|1]

Or
.vec vector filename [HLCheck = 0|1]
```

Quotation marks can be double or single in Spice Netlist.

In Spectre netlist,

```
vec_include "vector_filename" [HLCheck = 0|1]
```

where,

vector_filename is the filename of the digital vector file.

 $HLCheck = 0 \mid 1$ is a special flag (default = off) to create the vector output check for the H and L states of input signals. Bidirectional and output signals always check H and L states and are unaffected by the HLCheck flag.

Normally, you do not need to use the HLCheck flag.

Each command card specifies only one VEC file. If a netlist needs to include multiple VEC files, multiple.vec/vec_include cards must be used. For example, if a netlist contains three VEC files, it needs three .vec cards, as given below:

```
.vec "file1.vec"
.vec "file2.vec"
.vec "file3.vec"
```

Other Simulation Topics

VCD/EVCD

VCD and EVCD formats are widely used in digital circuit design and contain different kinds of information for transistor-level simulation. You need to provide signal information, such as timing characteristics, voltage threshold, and driving ability of input signals, for each VCD or EVCD file.

Because VCD and EVCD formats are compatible, the same signal information file can be shared between them.

The VCD file (ASCII format) contains information about value changes for selected variables in the circuit design. Spectre simulator supports two types of VCD files:

Four states - represents variable changes in 0, 1, x (unknown or not needed), and z (tristate) without providing strength information and port direction.

Extended - represents variable changes in all states and provides strength information and port direction.

To process the VCD/EVCD file in Spectre, the following command card needs to be specified in the netlist.

In Spice netlist:

```
.vcd "vcd_filename" "signal_info_filename"
.evcd "evcd_filename" "signal_info_filename"
```

In Spectre netlist:

```
vcd_include "vcd_filename" "signal_info_filename"
evcd include "evcd filename" "signal info filename"
```

Each command card specifies only one VCD file. If a netlist needs to include multiple VCD files, multiple.vcd/vcd_include cards must be used. For example, if a netlist contains three VCD files, it needs three.vcd cards, as given below:

```
.vcd "file1.vcd" "file1.signal"
.vcd "file2.vcd" "file2.signal"
.vcd "file3.vcd" "file3.signal"
```

Output Check

For VEC, VCD, and EVCD output check, the results are written in two files under the raw directory, one a check error report file %A.vecerr and the other a check summary report file %A.veclog where, %A is the analysis name.

Other Simulation Topics

To find VEC VCD and EVCD file, signal_info file format description and examples, refer to the <u>Digital Vector File Format</u> chapter in the <u>Spectre Classic Simulator</u>, <u>Spectre APS</u>, <u>Spectre X</u>, and <u>Spectre XPS User Guide</u> for details.

Verilog-A Usage and Language Summary (veriloga)

Description

Verilog-A is an analog hardware description language standard from Open Verilog International. It enables analog circuit behavior to be described at a high level of abstraction. Behavioral descriptions of modules and components may be instantiated in a Spectre netlist along with regular Spectre primitives.

Verilog-A descriptions are written in files different from the Spectre netlist file. These descriptions are written in modules (see the module alpha below). To include a module in the Spectre netlist, first add the line ahdl_include "VerilogAfile.va to the Spectre netlist file (where, VerilogAfile.va is the name of the file in which the required module is defined). The module is instantiated in the Spectre netlist in the same manner as Spectre primitives, for example:

```
name (node1 node2) alpha arg1=4.0 arg2=2
```

This instantiates an element alpha, which has two nodes and two parameters.

AHDL Linter can be used to improve Verilog-A model quality. It can help to avoid potential convergence or performance problems, and to improve model accuracy, reusability and portability. Refer to the *Verilog-A Language Reference manual* for more information.

Verilog-A simulation performance has been improved by compiling the Verilog-A modules. This is explained in more detail in the Verilog-A compilation section below.

Module Template

The following is a Verilog-A module template

```
include "discipline.h"
include "constants.h"
module alpha( n1, n2 );
electrical n1, n2;
parameter real arg1 = 2.0;
parameter integer arg2 = 0;
   real local;
   // this is a comment
   analog begin
     @ ( initial_step ) begin
     // performed at the first timestep of an analysis
   end
```

Other Simulation Topics

```
// module behavioral description
V(n1, n2) <+ I(n1, n2) * arg1;
@ ( final_step ) begin
// performed at the last time step of an analysis
end
end
end
endmodule</pre>
```

Verilog-A Compilation

The first time a verilogA file is used in simulation, Spectre performs a one-time compilation step. Following the initial compilation, recompilation is performed only if the Verilog-A source is changed.

The compiled C code flow stores the compiled shared objects in a database on the disk for the simulation to use. The shared objects are stored in a directory named <code>ahdlSimDB</code>. By default, this database is created in the current working directory and given a name created by appending <code>.ahdlSimDB</code> to the circuit name. You can specify an alternative location for ahdlSimDB by setting the <code>CDS_AHDLCMI_SIMDB_DIR</code> environment variable to the path of a directory, as follows:

```
setenv CDS AHDLCMI SIMDB DIR /projects/ahdlcmiSimDirs
```

If the path is writable, adhlSimDB is created there. If the path is not writable or does not exist, an error is reported.

To store compiled objects, use a second type of database, named ahdlShipDBs. To create such databases, set the CDS AHDLCMI SHIPDB COPY to YES, as follows:

```
setenv CDS AHDLCMI SHIPDB COPY YES
```

In this case, an ahdlShipDB is created for each Verilog-A file in the directory that contains the Verilog-A files, if the directory is writable. If the directory is not writable, no ahdlShipDBs are created for the modules in the Verilog-A file that is being processed.

If the CDS_AHDLCMI_SHIPDB_DIR environment variable (or the equivalent, but obsolete, CDS_AHDLCMI_DIR variable) is also set to a writable path, the ahdlShipDB database is created there and shared by all the Verilog-A files used for simulations that are run while this environmental variable is set. If the CDS_AHDLCMI_SHIPDB_DIR is not set to a writable path or the path does not exist, a warning is reported and ahdlShipDBs are not created.

The reuse of Verilog-A compiled library can also be achieved by command-line options, refer to the usage of the Spectre command-line options: -ahdlshipdbdir and -ahdlshipdbmode.

Other Simulation Topics

Language Summary

The following provides a summary of the Verilog-A analog hardware description language. For more information refer to *Verilog-A Reference Manual*.

Other Simulation Topics

Analog Operators/Waveform Filters

```
Differentiate x with respect to time.
ddt(x <, abstol>)
idt(x, ic <, assert <, abstol> >)
                        Integrate x with respect to time. Output = ic during dc analysis
                        and when assert is 1.
idtmod(x <, <ic <, modulus <, offset <, abstol> >> )
                        Circular Integration of x with respect to time. Output = ic during
                        DC analysis. Integration is performed with given offset and
                        modulus, if specified.
transition(x <, delay <, trise <, tfall <, timetol> > >)
                        Specify details of signal transitions. For efficient simulation, it is
                        recommended that x not be a continuous signal, that is, a
                        function of a probe. See the Verilog-A manual for further
                        explanation of this issue.
slew(x <, SRpos <, SRneq>>)
                        Model slew rate behavior.
delay(x, time_delay, max_delay)
                        Response(t) = x(t - time delay).
zi nd(x, numer, denom, period, < ttransition <,sample offset time >)
                        z-domain filter function, numerator-denominator form.
zi zd(x, zeros, denom, period, < ttransition <, sample offset time >)
                        z-domain filter function, zero-denominator form.
zi_np(x, numer, poles, period, < ttransition <, sample offset time >)
                        z-domain filter function, numerator-pole form.
zi_zp(x, zeros, poles, period, < ttransition <,sample offset time > )
                        z-domain filter function, zero-pole form.
laplace_nd(x, numer, denom, <, abstol > )
                        s-domain filter function, numerator-denominator form.
laplace_zd(x, zeros, denom, <, abstol > )
                        s-domain filter function, zero-denominator form.
laplace np(x, numer, poles, <, abstol > )
```

Other Simulation Topics

s-domain filter function, numerator-pole form.

laplace_zp(x, zeros, poles, <, abstol >)

s-domain filter function, zero-pole form.

Other Simulation Topics

Built-In Mathematical Functions

abs(x)	Absolute value
exp(x)	Exponential if $x < 80$
ln(x)	Natural logarithm
log(x)	Log base 10
sqrt(x)	Square root
min(x,y)	Minimum
max(x,y)	Maximum
pow(x,y)	x to the power of y

Noise Functions

white_noise(power <, tag >)

Generates white noise with given power. Noise contributions with the same tag are combined for a module.

flicker_noise(power, exp <, tag >)

Generates pink noise with given power at 1 Hz that varies in proportion to 1/f^exp. Noise contributions with the same tag are combined for a module.

noise_table(vector <, tag >)

Generates noise where power is determined by linear interpolation from the given vector of frequency-power pairs. Noise contributions with the same tag are combined for a module.

AC Analysis Stimuli

ac_stim(<analysis_name <, mag <, phase > >)

Small signal source of specified magnitude and phase in radians, active for given analysis.

Other Simulation Topics

Analog Events

Analog events must be contained in an analog event detection statement; @(analog_event) statement.

```
cross(x, direction <, timetol <, abstol <, enable >>>)
                                                Generates an event when x crosses
                                                zero.
above(x <, timetol <, abstol <, enable >>>)
                                                Generates an event when x becomes
                                                greater than or equal to zero. An above
                                                event can be generated and detected
                                                during initialization. By contrast, a cross
                                                event can be generated and detected
                                                only after at least one transient time step
                                                is complete.
timer(start_time <, period <, timetol <, enable >>> )
                                                Set (optionally periodic) breakpoint event
                                                at time = start time.
initial_step< ( arg1 <, arg2 <, etc... > > )
                                                Generate an event at the initial step of an
                                                analysis. arg1, arg2, and so on.
                                                Examples of analyses strings are "dc",
                                                "tran", "ac", "pss", "noise", "pdisto",
                                                "qpss", "pac", "pnoise", "pxf", "sp", "tdr",
                                                "xf", "envlp", "psp", "qpsp", "qpac",
                                                "gpnoise", "gpxf", "static", "ic", and so on.
final_step< ( arg1 <, arg2 <, etc... > > )
                                                Generate an event at the final step of an
                                                analysis. arg1, arg2, and so on.
                                                Examples of analyses strings are "dc",
                                                "tran", "ac", "pss", "noise", "pdisto",
                                                "qpss", "pac", "pnoise", "pxf", "sp", "tdr",
                                                "xf", "envlp", "psp", "qpsp", "qpac",
                                                "qpnoise", "qpxf", "static", "ic", and so on.
```

Timestep Control

bound_step(max_step)	Limit timestep, (timestep <= max_step).
<pre>last_crossing(x, direction)</pre>	Return time when expression last crossed zero in a given direction.
discontinuity(n)	Hint to simulator that discontinuity is present in nth derivative.

Simulator IO Functions

<pre>\$display(argument_list)</pre>	Print data to stdout. Formatting strings may be interspersed between arguments/data.	
<pre>\$fdisplay(fptr, argument_list)</pre>	Print data to a file. Formatting strings may be interspersed between arguments/data.	
<pre>\$strobe(argument_list)</pre>	Print data to stdout. Formatting strings may be interspersed between arguments/data.	
<pre>\$fstrobe(fptr, argument_list)</pre>	Print data to a file. Formatting strings may be interspersed between arguments/data.	
<pre>\$fscanf(fptr, "format string" <, arguments>)</pre>		
	Read data from a file	
<pre>\$fopen("filename", mode)</pre>	Open a file for reading/writing	
<pre>\$fclose(fptr)</pre>	Close a file	
\$finish<(n)>	Finish the simulation	
\$stop<(n)>	Stop the simulation	

Simulator Environment Functions

\$realtime	Returns current simulation time	
\$temperature	Returns ambient simulation temperature (K)	
\$vt	Returns thermal voltage	
<pre>\$vt(temp)</pre>	Returns thermal voltage at given temp	
<pre>\$analysis(analysis_string1<, analysis_string2 <,>>)</pre>		

Other Simulation Topics

Returns true(1) if the current analysis phase matches one of
the given analyses strings. The following are the examples of
analyses strings: "dc", "tran", "ac", "pss", "noise", "pdisto",
"qpss", "pac", "pnoise", "pxf", "sp", "tdr", "xf", "envlp", "psp",
"qpsp", "qpac", "qpnoise", "qpxf", "static", "ic", and so on.

Parameter Functions

\$pwr(x)	Assignment of model power consumption. Adds the
	expression x to the pwr parameter of a module.

Data Types

integer	Discrete numerical type.
real	Continuous numerical type.

Data Qualifiers

parameter	Indicates that a variable is a parameter and so may be given a different value when the module is instantiated, and that it may
	not be assigned a different value inside the module.

Structural Statements

Structural statements are used inside the module block but outside the analog block.

```
module_or_primitive #(<.param1(expr1)<,...>>) inst_name (<node1 <,
..>> );

Creates a new instance of module_or_primitive named
inst_name.
```

Environment Variables

CDS_AHDLCMI_SHIPDB_COPY	Set this environment variable to YES to use AHDL ship databases (ahdlShipDBs). When the environment variable is to YES, the software creates an ahdlShipDB for each Verilog-A file in the directory that contains the Verilog-A file, if the directory is writable. If the directory is not writable, the software does not create any ahdlShipDBs for the modules in the Verilog-A file (see CDS_AHDLCMI_SHIPDB_DIR).
CDS_AHDLCMI_SHIPDB_DIR	Specifies the path to a directory for ahdlShipDB. All Verilog-A files share this path. If the path specified by this variable is not writable, or the path does not exist, the software does not create any ahdlShipDB and generates a warning. For example, setenv CDS_AHDLCMI_SHIPDB_DIR /export/shared/objects.
CDS_AHDL_COMPILEC_MAX_LOAD	Set this environment variable to change the max_load value for parallel compilation of AHDL generated C code. When the system load average is above max_load, parallel compilation is turned off. For example, setenv CDS_AHDL_COMPILEC_MAX_LOAD 4.0.
CDS_AHDL_DDT_SCALE	Set this environment variable to scale the value of ddt to the specified range for better convergence. The default value is 1e-17.
CDS_AHDL_FINISH_MODE	Set this environment variable to 1 to cause the \$finish function to stop the current analysis instead of stopping the whole simulation. The default value is 0.
CDS_AHDL_IDT_SCALE	Set this environment variable to scale the value of idt to the specified range for better convergence. The default value is 1.
CDS_AHDL_IGNORE_HIDDEN_STATE	Set this environment variable to YES to process all hidden state variables as non-hidden state variables for all Verilog-A modules.

CDS_AHDL_IGNORE_OPPOINT	Set this environment variable to YES to ignore all operating point calculations. Set the environment variable to NO to disable optimization. The default value is YES for compact models and NO for normal models.
CDS_AHDL_REUSE_LIB	In +aps, ++aps, +xps and +ms modes, the software automatically searches the pre-run shared library and reuses it. Set this environment variable to NO to disable the automatic search and reuse of pre-run shared library.
CDS_CMI_COMPLEVEL	Set this environment variable to control GCC optimization level when compiling AHDL-generated C code flow. The environment value is from 0 to 3, which implies that GCC will use level O0 ~ O3 to compile AHDL C code. O3 is the default compilation level and gives better optimization.
CDS_VLOGA_INCLUDE	Set this environment variable to specify the directory that contains the file with the "include" directive. You can specify more than one directory by using comma(,), colon(:), or semicolon(;) as delimiters to separate the directories. For example, setenv CDS_VLOGA_INCLUDE "dir1; dir2" or setenv CDS_VLOGA_INCLUDE dir1:dir2.
CDS_AHDL_LRM_COMPATIBILITY	Set this environment variable to specify the version of LRM. The default value is 2.3. For example, setenv CDS_AHDL_LRM_COMPATIBILITY 2.4.
CDS_AHDL_AUTOGDEV_SUPPORT	Set this environment variable to NO to prevent a Verilog-A model from automatically adding the simulation parameter gdev at a non-linear branch when the kernel uses the gdev method. The default value is YES, which means that the Verilog-A model adds the simulation parameter gdev by default.

CDS_AHDL_AUTOGMIN_INSERT	Set this environment variable to YES to enable a Verilog-A model to add the simulation parameter gmin at a non-linear branch. The default value is NO.

Circuit Checks

This chapter discusses the following topics:

- Dynamic Subckt Instance Activity Check (dyn_activity) on page 563
- Dynamic Active Node Check (dyn_actnode) on page 565
- Dynamic Capacitor Voltage Check (dyn_capv) on page 567
- Dynamic DC Leakage Path Check (dyn_dcpath) on page 569
- <u>Dynamic Delay Check (dyn_delay)</u> on page 572
- <u>Dynamic Diode Voltage Check (dyn_diodev)</u> on page 575
- <u>Dynamic Excessive Element Current Check (dyn_exi)</u> on page 577
- Dynamic Excessive Rise, Fall, Undefined State Time Check (dyn_exrf) on page 579
- Dynamic Floating Node Induced DC Leakage Path Check (dyn floatdcpath) on page 582

- Dynamic Glitch Check (dyn_glitch) on page 597
- <u>Dynamic HighZ Node Check (dyn_highz)</u> on page 600
- <u>Dynamic MOSFET Voltage Check (dyn_mosv)</u> on page 605
- <u>Dynamic Node Capacitance Check (dyn_nodecap)</u> on page 607
- <u>Dynamic Noisy Node Check (dyn_noisynode)</u> on page 609
- Dynamic Pulse Width Check (dyn_pulsewidth) on page 612
- Dynamic Resistor Voltage Check (dyn resv) on page 615
- Dynamic Setup and Hold Check (dyn_setuphold) on page 617
- <u>Dynamic Subckt Port Voltage/Current Check (dyn_subcktport)</u> on page 623

Circuit Checks

- <u>Dynamic Subckt Port Power Check (dyn_subcktpwr)</u> on page 625
- Static Capacitor Check (static_capacitor) on page 628
- Static Capacitor Voltage Check (static_capv) on page 630
- Static DC Leakage Path Check (static dcpath) on page 635
- Static Diode Voltage Check (static diodev) on page 637
- Static ERC Check (static_erc) on page 639
- Static HighZ Node Check (static highz) on page 645
- Static MOSFET Voltage Check (static_mosv) on page 648
- Static NMOS to vdd count (static_nmos2vdd) on page 651
- Static NMOS Forward Bias Bulk Check (static nmosb) on page 652
- Static Always Conducting NMOSFET Check (static nmosvgs) on page 655
- Static PMOS Forward Bias Bulk Check (static_pmosb) on page 659
- Static Always Conducting PMOSFET Check (static pmosvgs) on page 662
- Static Resistor Check (static resistor) on page 668
- Static Resistor Voltage Check (static_resv) on page 670
- Static Subckt Port Voltage Check (static subcktport) on page 672
- Static Transmission Gate Check (static tgate) on page 674
- Static Voltage Domain Device Check (static_voltdomain) on page 678

Dynamic Subckt Instance Activity Check (dyn_activity)

Description

This check reports activity percentage of an instance relative to a circuit. The activity percentage is the ratio of the events in the instance versus the events in the entire circuit.

The results are written to the dynamic.xml file, which can be viewed in a Web browser. This check is supported only by Spectre XPS.

For additional information, refer to the <u>Dynamic Subckt Instance Activity Check</u> section in the <u>Spectre Classic Simulator</u>, <u>Spectre APS</u>, <u>Spectre X</u>, and <u>Spectre XPS User Guide</u>.

Definition

Name dyn activity parameter=value ...

Parameters

Filtering parameters

1	time_window=[tstart, tstop] sec	
		Time window during which the circuit check is applied. Multiple non-overlapping time windows are supported. Default time window is 0 to tend.
2	error_limit=10000	Maximum number of errors reported. Default is 10000.
3	min_activity=0	Any block activity below the minimum activity percentage will not be reported. The value can be between 0 and 1 . Default is 0 .

Wildcard scoping

4 inst=[...] Subcircuit instances to which the check is applied.

Default includes all instances (inst=*).

Circuit Checks

5	xinst=[]	Subcircuit instances to be excluded from the check. Default is none.
6	subckt=[]	The instances of the specified subcircuit to which the check is applied. Default includes all subcircuits (subckt=*).
7	xsubckt=[]	The instances of the specified subcircuits that are excluded from the check. Default is none.
8	depth=8	Hierarchy levels (starting from top, instance, or subcircuit scope) to be checked. Default is 8.

Parameter Index

In the following index, the number corresponding to each parameter name indicates where to find the description of that parameter.

depth	8		inst	4		subckt	5 6		xinst	5	
error	limit	2	min a	ctivity	3	time v	window	1	xsubckt	ī.	7

Dynamic Active Node Check (dyn_actnode)

Description

The active node checking analysis detects nodes with voltage changes that exceed the user-defined threshold dv. The voltage change is defined as the peak-to-peak voltage (Vpp) within a time window.

The results are written to the dynamic.xml file, which can be viewed in a Web browser.

For additional information, refer to the <u>Dynamic Active Node Check</u> section in the <u>Spectre Classic Simulator</u>, <u>Spectre APS</u>, <u>Spectre X</u>, and <u>Spectre XPS User Guide</u>.

Definition

Name dyn actnode parameter=value ...

Parameters

Design check parameters

1	node="[]"	Nodes to which the check is applied. Default is none.
2	dv=0.1 v	Voltage change threshold for the active nodes. Default is 0.1 volt.
3	type=act	Report inactive or active nodes or both.
		Possible values are act, inact, and both.

Filtering parameters

4	time_window=[tstar	ct, tstop] sec
		Time window during which the circuit check is applied. Multiple non-overlapping time windows are supported. Default time window is 0 to tend.
5	error limit=10000	Maximum number of errors reported. Default is 10000.

Circuit Checks

6	fanout=all	Fanout setting to filter node with specified connection.
		Possible values are all, gate, and bulk.

Wildcard scoping

7	inst=[]	Subcircuit instances to which the check is applied. Default includes all instances (inst=*).
8	xinst=[]	Subcircuit instances to be excluded from the check. Default is none.
9	subckt=[]	The instances of the specified subcircuit to which the check is applied. Default includes all subcircuits (subckt=*).
10	xsubckt=[]	The instances of the specified subcircuits that are excluded from the check. Default is none.
11	depth=8	Hierarchy levels (starting from top, instance, or subcircuit scope) to be checked. Default is 8.

Parameter Index

In the following index, the number corresponding to each parameter name indicates where to find the description of that parameter.

depth 11	fanout 6	subckt 9	xinst 8
dv 2	inst 7	time_window 4	xsubckt 10
error limit 5	node 1	type 3	

Dynamic Capacitor Voltage Check (dyn_capv)

Description

Reports capacitor elements fulfilling the conditional expression on element voltages for a duration longer than the user-specified threshold duration.

Supported capacitor variables are: v(1,2), v(1), and v(2)

Supported operators are: +, -, *, /, ==,!=, <, <=, >, >=,||, &&, and !

The results are written to the dynamic.xml file, which can be viewed in a Web browser. This check is supported only by Spectre XPS. For Spectre and Spectre APS, use assert statement.

For additional information, refer to the <u>Dynamic Capacitor Voltage Check</u> section in the Spectre Classic Simulator, Spectre APS, Spectre X, and Spectre XPS User Guide.

Definition

Name dyn capv parameter=value ...

Parameters

Design check parameters

1	cond	The conditional expression to be fulfilled. Default is none.
2	duration=5.00E-09 sec	Duration threshold. Default is 5.00E-09 sec.

Filtering parameters

3 time_window=[tstart, tstop] sec

The time window during which the circuit check is applied. Multiple non-overlapping time windows are supported. Default time window is 0 to tend.

Circuit Checks

4	error_limit=10000	Maximum number of errors reported. Default is
		10000.

Wildcard scoping

5	inst=[]	Subcircuit instances to which the check is applied. Default includes all instances (inst=*).
6	xinst=[]	Subcircuit instances to be excluded from the check. Default is none.
7	subckt=[]	The instances of the specified subcircuit to which the check is applied. Default includes all subcircuits (subckt=*).
8	xsubckt=[]	The instances of the specified subcircuits that are excluded from the check. Default is none.
9	depth=8	Hierarchy levels (starting from top, instance, or subcircuit scope) to be checked. Default is 8.

Parameter Index

In the following index, the number corresponding to each parameter name indicates where to find the description of that parameter.

cond 1	error_limit 4	time_window 3
depth 9	inst 5	xinst 6
duration 2	subckt 7	xsubckt 8

Circuit Checks

Dynamic DC Leakage Path Check (dyn_dcpath)

Description

Reports conductance paths between user-specified nets. This check can be used in two ways. One is based on transient-analysis and other is based on leakage-analysis.

Note: Both the approaches cannot be combined in a single check statement. If you specify both approaches in one check statement, the leakage analysis gets higher priority than transient analysis.

Transient based approach:

The check based on transient-analysis reports a qualifying path carrying an absolute current higher than the current threshold (ith) and for a time longer than the user-specified duration (duration), within the user-specified time_window.

Leakage-analysis based approach:

The check based on leakage-analysis is evoked when parameter, <code>leaki_times</code>, is specified. <code>leaki_times</code> should be carefully selected in standby or power-down mode. The check is performed at specified times (<code>leaki_times</code>) of a transient simulation. The check based on leakage-analysis reports a qualifying paths carrying an absolute current higher than the parameter <code>ith</code> (current threshold) at user-specified time points (<code>leaki_times</code>).

If more than two nets are specified, Spectre checks the conducting path between each pair of nodes. For example, if net=[vdc1 vdc2 0] is specified, then the conducting path between vdc1 and vdc2, vdc1 and 0, and vdc2 and 0 is checked.

Higher accuracy settings are recommended when using the XPS solver:

```
+cktpreset=sram_pwr
```

The results are written to the dynamic.xml file, which can be viewed in a Web browser.

For additional information, refer to the <u>Dynamic DC Leakage Current Path Check</u> section in the <u>Spectre Classic Simulator</u>, <u>Spectre APS</u>, <u>Spectre X</u>, and <u>Spectre XPS User Guide</u>.

Definition

Name dyn dcpath parameter=value ...

Circuit Checks

Parameters

Design check parameters

1	net="[]"	The leakage path between the voltage source nets is checked. net defines a set of nodes and not a pair. For example, net = [vdd vdd1 0] checks the leakage path between vdd and vdd1, vdd and 0, and vdd1 and 0.
2	ith=5.00E-05 A	The leakage path with the absolute current higher than the threshold value is reported. Default is 5.00E-05 A.
3	duration=5.00E-09 sec	Duration threshold. Default is 5.00E-09 sec.
4	sort=no	If set to no, sorting is not performed. If set to current, dyn_dcpath will sort violations by max current. Default is no. Possible values are no and current.

Filtering parameters

5	time_window=[tstart	tstop] sec	
		The time window during which the circuit check is applied. Multiple non-overlapping time windows are supported. Default time window is 0 to tend.	
6	<pre>leaki_times=[] sec</pre>	Time point(s) at which dynamic dcpath check is performed. This parameter is supported only in XPS.	
7	error_limit=10000	Maximum number of errors reported. Default is 10000.	
8	xinst	Subckt instances to be excluded from the check. Default is none.	
		Note: This parameter is supported only in XPS.	

Parameter Index

In the following index, the number corresponding to each parameter name indicates where to find the description of that parameter.

Circuit Checks

duration 3	ith 2	net 1	time_window 5
error_limit 7	leaki_times 6	sort 4	xinst 8

Circuit Checks

Dynamic Delay Check (dyn_delay)

Description

Checks timing delays between two signals and reports nodes with edge delay errors.

The delay is measured between user-specified node(s) and a reference node. A timing delay error occurs when the transition time of a signal falls outside the range of refTime + min_time and refTime + max_time, where refTime is the transition time of the reference signal. In other words, a timing delay error occurs when the delay between the signal and reference signal is outside the range of min_time and max_time.

The ref_vhth and vhth parameters are used for triggering rising edge measurements, while ref_vlth and vlth are used for triggering falling edge measurements. For example, a delay measurement from a rising reference signal to a falling signal includes the measurement of the delay from the time the reference signal crosses ref_vhth to the time the signal crosses vlth.

If the subckt parameter is specified, then node and ref_node are considered as local nodes to the specified subcircuit. In other words, node and ref_node belong to the instances of the specified subcircuit. Only one subckt value must be specified per check, with no wildcard.

If the subckt parameter is not specified then node and ref_node are considered as global nodes with hierarchical names starting from the top level.

The results are written to the dynamic.xml file, which can be viewed in a Web browser. This check is supported only in XPS.

For additional information, refer to the <u>Dynamic Delay Check</u> section in the <u>Spectre Classic Simulator</u>, <u>Spectre APS</u>, <u>Spectre X</u>, and <u>Spectre XPS User Guide</u>.

Definition

Name dyn delay parameter=value ...

Parameters

Circuit Checks

Design check parameters

1	node="[]"	Nodes to which the check is applied.
2	ref_node	Name of the referenced node.
3	min_time=0.0 sec	Minimum delay between the signal and the reference signal transition.
4	<pre>max_time=0.0 sec</pre>	Maximum delay between the signal and the reference signal transition.
5	edge=rise	Edge type of the signal net. Default is rise.
		Possible values are rise, fall, and both.
6	ref_edge=rise	Edge type of the reference signal. Default is rise.
		Possible values are rise, fall, and both.

Digitize parameters

7	vlth=0.2 V	Low voltage threshold for the signal net.
8	ref_vlth=0.2 V	Low voltage threshold for the referenced net.
9	vhth=0.8 V	High voltage threshold for the signal net.
10	ref_vhth=0.8 V	High voltage threshold for the referenced net.

Filtering parameters

11	time_window=[tstart	, tstop] sec
		Time window to which the circuit check is applied. Multiple non-overlapping time windows are supported. Default time window is 0 to tend.
12	error_limit=10000	Maximum number of errors reported. Default is 10000.

Circuit Checks

Wildcard scoping

13	subckt=[]	Instances of the specified subcircuit to which the
		check is applied. Default iis none.

Parameter Index

In the following index, the number corresponding to each parameter name indicates where to find the description of that parameter.

edge 5	node 1	ref_vlth 8	error_limit 12
ref_edge 6	vhth 9	max_time 4	ref_node 2
subckt 13	vlth 7	min_time 3	ref_vhth 10
time_window 11			

Circuit Checks

Dynamic Diode Voltage Check (dyn_diodev)

Description

Reports diode elements fulfilling the conditional expression on element voltages for a time longer than a user-specified duration threshold.

Supported diode variables: v(a,c), v(a), v(c)

Supported operators: +, -, *, /, ==,!=, <, <=, >, >=,||, &&, and !

The results are reported into a file with the extension dynamic.xml, which can be read with a web browser. This check is supported only by Spectre XPS. For Spectre and Spectre APS use the assert statement.

For additional information, refer to the <u>Dynamic Diode Voltage Check</u> section in the Spectre Classic Simulator, Spectre APS, Spectre X, and Spectre XPS User Guide.

Definition

Name dyn diodev parameter=value ...

Parameters

Design check parameters

1	cond	The conditional expression to be fulfilled. Default is none.
2	duration=5.00E-09 sec	Duration threshold. Default is 5.00E-09 sec.
3	model=[]	Diode device model names to be checked.

Filtering parameters

4 time_window=[tstart, tstop] sec

Circuit Checks

		Time window to which the circuit check is applied. Multiple non-overlapping time windows are supported. Default time window is 0 to tend.
5	error_limit=10000	Maximum number of errors reported. Default is 10000.

Wildcard scoping parameters

6	inst=[]	Subcircuit instances to which the check is applied. Default includes all instances (inst=*).
7	xinst=[]	Subcircuit instances to be excluded from the check. Default is none.
8	subckt=[]	The instances of the specified subcircuit to which the check is applied. Default includes all subcircuits (subckt=*).
9	xsubckt=[]	The instances of the specified subcircuits that are excluded from the check. Default is none.
10	depth=8	Hierarchy levels (starting from top, instance, or subcircuit scope) to be checked. Default is 8.

Parameter Index

In the following index, the number corresponding to each parameter name indicates where to find the description of that parameter.

cond 1	error_limit 5	subckt 8	xsubckt 9
depth 10	inst 6	time_window 4	
duration 2	model 3	xinst 7	

Dynamic Excessive Element Current Check (dyn_exi)

Description

Reports elements and devices carrying currents (absolute value) higher than the current threshold (ith) for a time longer than the duration threshold (duration).

The results are written to the dynamic.xml file, which can be viewed in a Web browser.

For additional information, refer to the <u>Dynamic Excessive Element Current Check</u> section in the <u>Spectre Classic Simulator</u>, <u>Spectre APS</u>, <u>Spectre X</u>, and <u>Spectre XPS</u> User Guide.

Definition

Name dyn exi parameter=value ...

Parameters

Design check parameters

1	dev="[]"	The instance names of device or elements to be checked.
2	ith (ampere)	Current threshold. Default is none.
3	duration=5.00E-09 sec	Duration threshold. Default is 5.00E-09 sec.

Filtering parameters

4	time_window=[tstart,	tstop] sec
		The time window during which the circuit check is applied. Multiple non-overlapping time windows are supported. Default time window is 0 to tend.
5	error_limit=10000	Maximum number of errors reported. Default is 10000.

Circuit Checks

Wildcard scoping

6	inst=[]	Subcircuit instances to which the check is applied. Default includes all instances (inst=*).
7	xinst=[]	Subcircuit instances to be excluded from the check. Default is none.
8	subckt=[]	The instances of the specified subcircuit to which the check is applied. Default includes all subcircuits (subckt=*).
9	xsubckt=[]	The instances of the specified subcircuits that are excluded from the check. Default is none.
10	depth=8	Hierarchy levels (starting from top, instance, or subcircuit scope) to be checked. Default is 8.

Parameter Index

depth 10	error_limit 5	subckt 8	xsubckt 9
dev 1	inst 6	time_window 4	
duration 3	ith 2	xinst 7	

Dynamic Excessive Rise, Fall, Undefined State Time Check (dyn_exrf)

Description

Reports the nodes with excessive rise times, fall times, or with an undefined state. The rise and fall times are measured between low (vlth) and high (vhth) voltage thresholds. The duration longer than the user-specified rise and fall time threshold are reported. Undefined states are defined by node voltages between low and high voltage threshold and are reported when their duration is longer than the undefined time threshold (utime).

The results are written to the dynamic.xml file, which can be viewed in a Web browser.

For additional information, refer to the <u>Dynamic Capacitor Voltage Check</u> section in the Spectre Classic Simulator, Spectre APS, Spectre X, and Spectre XPS User Guide.

Definition

Name dyn exrf parameter=value ...

Parameters

Design check parameters

1	n8ode="[]"	Nodes to which the check is applied. Default is all (node=*).
2	rise (sec)	Risetimes longer than the specified value are reported. Default is none.
3	fall (sec)	Falltimes longer than the specified value are reported. Default is none.
4	utime (sec)	The undefined time threshold. An undefined state is defined by node voltages between the low and high voltage thresholds.

Circuit Checks

5	fanout=all	Fanout setting to filter node with specified connection. When fanout=gate_no_moscap, gates connecting only to MOSCAPs will not be checked. This option is supported only in Spectre XPS. Possible values are all, gate, bulk gate_has_driver_no_moscap, and gate_no_moscap.
6	filter=no	If set to no, filtering is not performed. If set to rc, dyn_exrf checker will report only one node in same parasitic sub. This option is supported only in XPS. Possible values are no and rc.
7	inverse=no	If set to no, reports risetimes and falltimes longer than the specified value. If set to yes, reports risetimes and falltimes shorter than the specified value. This option is supported only in XPS. Default is no. Possible values are no and yes.
8	sort=no	If set to no, sorting is not performed. If set to duration, dyn_exrf will sort violations by duration. Default is no. Possible values are no and duration.

Digitize parameters

9	vlth (V)	Low voltage threshold for rise, fall, and utime measurements. Default is none.
10	vhth (V)	High voltage threshold for rise, fall, and utime measurements. Default is none.

Filtering parameters

11	time_window=[tstart,	tstop] sec
		The time window during which the circuit check is applied. Multiple non-overlapping time windows are supported. Default time window is 0 to tend.
12	error_limit=10000	Maximum number of errors reported. Default is 10000.

Circuit Checks

Wildcard scoping

13	inst=[]	Subcircuit instances to which the check is applied. Default includes all instances (inst=*).
14	xinst=[]	Subcircuit instances to be excluded from the check. Default is none.
15	subckt=[]	The instances of the specified subcircuit to which the check is applied. Default includes all subcircuits (subckt=*).
16	xsubckt=[]	The instances of the specified subcircuits that are excluded from the check. Default is none.
17	depth=8	Hierarchy levels (starting from top, instance, or subcircuit scope) to be checked. Default is 8.

Parameter Index

depth 17	inst 13	subckt 15	xinst 14
error_limit 12	inverse 7	time_window 11	xsubckt 16
fall 3	node 1	utime 4	
fanout 5	rise 2	vhth 10	
filter 6	sort 8	vlth 9	

Circuit Checks

Dynamic Floating Node Induced DC Leakage Path Check (dyn_floatdcpath)

Description

Reports the DC leakage paths that are caused by floating gate.

This check can be used in two ways. One is based on transient analysis and other is based on leakage analysis. Both approaches cannot be combined in one check statement. If you specify both approaches in one check statement, then leakage analysis gets higher priority than transient analysis.

Transient based approach:

The check based on transient analysis is evoked when parameters time_window or/and duration are specified. It reports the qualifying path carrying an absolute current higher than the parameter ith for a duration longer than the specified duration, within the specified time_window. This qualifying path must also have a MOSFET with gate floating for duration longer than the specified duration, within the specified time_window. The violations will be the union of dyn_highz and dyn_dcpath, if same settings are used. This methodology does not give the worst case leakage path. If the settings of dyn_dcpath and dyn_floatdcpath are same, then the violations of dyn_floatdcpath will be a subset of dyn_dcpath. The following parameters are irrelevant: Vmin, vmax, points, rforce, leaki_times, sweep, floatgate, detailed_report, debug_net, distribute, numprocesses. The floating node detection is similar to dyn_highz. The path detection is similar to dyn_dcpath.

Leakage analysis based approach:

The check based on leakage-analysis is evoked when parameter, leaki_times, is specified. leaki_times should be carefully selected in standby or power-down mode.

The check is performed at specified times (leaki_times) of a transient simulation. Floating nodes and MOSFET devices with floating gates are detected. Potential leakage paths (sweep=no) or worst leakage paths (sweep=all,single,all_once) caused by floating gate MOSFET devices are reported. The leakage paths are checked between user-specified power supply nodes (net). The floating node detection and path detection, in Leakage analysis based approach, are explained below:

Floating node detection (leaki_times)

Circuit Checks

A node is considered floating (or in high impedance state) if it has no conducting path to a power supply or ground. A report of all MOSFETs with floating gates can be printed using the floatgate parameter. The following device conducting rules are used for the floating node detection:

- MOSFET is conducting if MOS region is either triode or saturation
 - Resistors, controlled resistors, phy_res, relay, and inductors are conducting if R<=res_th
 - BJT is conducting if Vbe>bjt_vbe OR Ic>bjt_ith
 - Diode is conducting if V>diode_vth
 - Vsources and iprobes are considered conducting
 - Isources, VCCS, and CCCS are conducting if i>isource_ith
 - JFET is considered conducting
 - Mutual inductors and controlled capacitors are not conducting
 - VerilogA: conducting path depends on module details

Path detection (leaki_times)

Once the floating nodes are identified, the leakage paths caused by the floating nodes need to be detected. You can use the current-based method or conducting-rule-based method to detect the leakage path. These two methods are explained below:

When the sweep parameter is set to single, all, or all_once, the leakage path detection is current-based. In the current-based path detection method, floating node voltage is swept, and the current in the path is measured. After the measurement, the current-based method reports qualifying paths carrying an absolute current higher than the ith parameter. Either all floating nodes are swept at once (sweep=all), or each floating node is swept individually (sweep=single).

The following parameters are relevant to current-based path detection method:

vmin, vmax, points, rforce, and ith.

- When the sweep parameter is set to no, the leakage path detection is based on following conducting rules:
 - MOSFET with floating gate is always considered conducting.
 - Resistors, controlled resistors, and inductors are conducting if R<=res_th

Circuit Checks

- BJT is conducting if Vbe>bjt_vbe OR Ic>bjt_ith
- Diode is conducting if V>diode_vth
- Vsources is conducting if V=0 otherwise it is not conducting
- iprobes are considered conducting
- Isources, VCCS, and CCCS are conducting if i>isource_ith
- VerilogA: conducting path depends on module details

The following parameters are irrelevant with sweep=no:

Vmin, vmax, points, rforce, and ith.

If more than two nets are specified, Spectre checks the leakage path between each pair of nets. For example, if $net=[vdc1 \ vdc2 \ 0]$ is specified, then the conducting path between vdc1 and vdc2, vdc1 and 0, and vdc2 and 0 is checked.

Higher accuracy settings are recommended when using the Spectre XPS solver: +cktpreset=sram_pwr.

The results are written to the dynamic.xml file, which can be viewed in a Web browser.

For additional information, refer to the <u>Dynamic Floating Gate Induced Leakage Check</u> section in the <u>Spectre Classic Simulator</u>, <u>Spectre APS</u>, <u>Spectre X</u>, and <u>Spectre XPS</u> User Guide.

Definition

Name dyn floatdcpath parameter=value ...

Circuit Checks

Parameters

Design check parameters

1	leaki_times=[] sec
	Time point(s) at which check is performed.
2	duration=5.00E-09 sec
	Duration threshold. Default is 5.00E-09 sec.
	Note: This option is supported only in Spectre and APS.
3	time_window=[tstart, tstop] sec
	Time window during which the circuit check is applied. Multiple non-overlapping time windows are supported. Default time window is 0 to tend.
	Note: This option is supported only in Spectre and APS.
4	error_limit=10000
	Maximum number of errors reported. Default is 10000.

Floating node detection parameters

5	bjt_vbe=0.4	BJT vbe conducting threshold for floating node detection. Default is $0.4\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
6	bjt_ith=50E-9	BJT ic conducting threshold for floating node detection. Default is 50 nA.
7	res_th_va=10E6	Verilog-A resistor conducting threshold for high impedance node detection. Only applicable on AMS IE element and on one or two port AHDL module. Default is 10MOhms.
8	res_th=1E12	Resistor conducting threshold for floating node detection. Default is 1 ${\tt TOhm.}$
9	diode_vth=0.6	Diode voltage conducting threshold for high impedance node detection. Default is 0 . $6\ensuremath{\mathrm{V}}.$
10	isource_ith=1.0E-12	
		Current source conducting threshold for floating node

detection. Default is 1 pA.

Circuit Checks

11 debug_net=[...]

Hierarchical net(s) to debug. Wildcard is not allowed. Default is none. The debug report will be generated at leaki times.

12 nonconducting_subckt

All instances of the specified subcircuit or Verilog-A modules are considered non-conducting during floating node detection. All devices inside the subcircuit, and all branches inside the Verilog-A module are also considered non-conducting during floating node detection. Wildcard is supported. Default is none.

conducting_subckt=[...]

All instances of specified subcircuit or VerilogA modules are considered non-conducting during the floating node detection. All devices inside the subcircuit, and all branches inside the VerilogA module are considered non-conducting during the floating node detection. Wildcard is supported. Default is none.

14 float_vpn=[...]

All channel connections of specified vpn(s) will be marked as floating nodes during floating node detection. Wildcard is not allowed. Default is none.

This option is supported only in Spectre XPS FastSPICE mode.

Circuit Checks

Floating node detection filtering parameters

15	floatgate=no	Whether to report all MOSFETs with floating gate at leaki_times. When floatgate=gate_has_driver_no_moscap, floating MOSCAPs will not be reported.
		Possible values are no, yes, and gate_has_driver_no_moscap. Default is no.
16	filter=no	If set to no, filtering is not performed. If set to rc , dyn_floatdcpath will check only one node in same parasitic sub. This option is supported only in XPS. Possible values are no and rc .
17	filter_diocon_n	nodes=0
		Filter out highz nodes connected to MOSDIODE. When set to 1, highz node that is connected to PMOSDIODE is filtered out given that its source is connected to VDD. A highz node tat is connected to NMOSDIODE is filtered out given that its source is connected to 0. When set to 2, highz node that is connected to PMOSDIODE is filtered out given that its source voltage is greater than drain voltage. A highz node that is connected to NMOSDIODE is filter out given that its drain voltage is greater than source voltage. This option is supported only in Spectre and APS. Possible values are 0, 1 and 2.
18	node	Nodes to which floating node detection is applied. Default is all (node=*). This parameter is not supported in XPS FastSpice mode.
19	xnode="[]"	Nodes to which be excluded from the floating node detection. Default is none.
20	inst	Subcircuit instances to which floating node detection is applied. Default includes all subcircuits (subckt=*). This parameter is not supported in XPS FastSpice mode.
21	xinst	Subcircuit instances to be excluded from floating node detection. Default is none. This parameter is not supported in XPS FastSpice mode.
22	subckt	Instances of the specified subcircuit to which floating node detection is applied. Default includes all subcircuits (subckt=*). This parameter is not supported in XPS FastSpice mode.

Circuit Checks

23	xsubckt	Instances of the specified subcircuit to be excluded from floating node detection. Default is none. This parameter is not supported in XPS FastSpice mode.

Circuit Checks

Path detection parameters

24	net="[]"	Hierarchical node names between which the leakage path is checked. Wildcarding is not allowed.
25	sweep=all	If set to no, then no DC sweep is performed and leakage path is based on conducting rules. If set to single, then each floating node is swept one at a time and leakage paths more than ith are reported. If set to all, then all floating nodes will be swept together and leakage paths more than ith are reported. If set to all_once, voltage of gates connected to nmos will be VDD, voltage of gates connected to pmos will be 0, voltage of gates connected to both nmos and pmos will be VDD/2, and leakage paths more than ith are reported. The default is all in Spectre and APS, and the default is no in XPS. The option all_once is supported only in XPS. The option single in not supported in XPS. The option single is not supported in XPS. Possible values are no, all, single, and all_once.
26	ith=50E-6	Leakage path more than ith will be reported. Applicable only with sweep=single, sweep=all, and sweep=all_once. The default value is 50uA.
27	points=3	Defines the number of sweep points; applicable to both sweep=single and sweep=all.
28	vmin=0	Defines a minimum voltage for sweep=single and single=all. If specified, the voltage sweep will start from specified vmin voltage. If not specified, minimum voltage in a design will be used. Default is none.
29	vmax=0	Defines a maximum voltage for sweep=single and single=all. If specified, the voltage sweep will stop at specified vmax voltage. If not specified, maximum voltage in a design will be used. Default is none.
30	rforce=500E06	Change the rforce value only for sweep=single and sweep=all. The default value is 500 MOhm.
31	numprocesses=0	Number of processes for distributed analysis.
32	distribute=no	Distribute method, only support sweep=single. Possible values are no and fork.

Circuit Checks

Path detection filtering parameters

33	detailed_path=per_fm	
		If set to yes, prints the detailed path. Default is per_fm, which prints one path per floating mosfet. If set to per_fn, print one path per floating node. The per_fn value is not supported in Spectre XPS. Possible values are per_fm, yes, and per_fn.
34	sort=no	If set to no , sorting is not performed. If set to current, dyn_floatdcpath will sort violations by max current. Default is no .

Parameter Index

bjt_ith 6	filter 16	node 18	sweep 25
bjt_vbe 5	filter_diocon_nod es 17	-	time_window 3
conducting_subckt	float_vpn 14	numprocesses 31	vmax 29
debug_net 11	floatgate 15	points 27	vmin 28
detailed_path 33	inst 20	res_th 8	xinst 21
diode_vth 9	isource_ith 10	res_th_va 7	xnode 19
distribute 32	ith 26	rforce 30	xsubckt 23
duration 2	leaki_times 1	sort 34	
error_limit 4	net 24	subckt 22	

Circuit Checks

Dynamic Floating Node Statistical Check (dyn_float_tran_stat)

Description

The dyn_float_tran_stat check reports leaky MOSFETs/BJTs caused by floating nodes. It also detects floating nodes caused by other floating nodes.

The check deploys a statistical method of forcing (pinging) different voltages on the gate of MOSFET and the base of BJT. Ping refers to randomly forcing a node to 0 or VDD, or ramping from 0 to VDD. Only MOSFET gates or BJT base nodes are pinged. Ping is realized by applying a voltage source in series with a large resistor (ping_resistor) on each node. The strength of a ping is weaker (because of large ping_resistor) than other drivers on each node.

dyn_float_tran_stat Algorithm

- Transient simulation is run till ping_start.
- Qualified nodes are identified to exercise pings according to domains.
- For each qualified node, domain_voltage is evaluated.
- Pings are created randomly using seed value. One third of the qualified nodes are selected for HIGH. One third of qualified nodes are selected for LOW. One third of qualified nodes are selected for RAMP.
- ping_duration and ping_resistor are evaluated
- Pings are applied sequentially at ping_start.
- For each ping:
 - All MOSFET drain currents and BJT collector currents are stored as reference current (Iref) right before applying the ping

For the first half of ping_duration:

- O HIGH/LOW to each node is forced through a resistor with ping_resistor value.
- Device current (Iping) is checked at 0.95 of 0.5*ping_duration. A fail is detected
 if:

Ilref-Ipingl > max(pingibsthresh, pingirelthresh * min(Ilrefl,Ilpingl))

■ For the second half of ping_duration:

Circuit Checks

The RAMP is forced to each node through a resistor with the ping_resistor value and the maximum (lping,max) and minimum (lping,min) device current is checked during the RAMP. A fail is detected in any of the following cases:

Ilref-Iping,minl > max(pingiabsthresh_ramp, pingirelthresh*min(Ilrefl,Ilping,minl))

The results are written to the dynamic.xml file, which can be viewed in a Web browser. This design check is supported only in Spectre and Spectre APS modes. It is not supported in Spectre XPS FastSPICE, Spectre XPS SPICE, and Spectre XPS MS modes.

Definition

Name dyn float tran_stat parameter=value \dots

Circuit Checks

Parameters

Design check parameters

1	domains="[]"	Pairs of power supply domains in which floating nodes are checked. Example: domains=[VDD VSS VPP VSS]. Domain also defines domain voltage (domain_voltage) value for forcing node voltages. Wildcarding is not allowed. Default is none.
2	ping_start="[]"	Time at which the check is initiated.
3	ping_count=300	Number of statistical periods being used. Default is 300.
4	ping_duration	Duration of a ping. A ping consists of two phases: high/low forcing phase and ramp up forcing phase. Length of each phase is half of ping_duration. Default is none.
5	ping_ibias=1	Lowest bias current in the design. It is recommended to set this parameter to 10% of bias current in the design. Default is none. If specified, then ping_resistor is evaluated to be equal to domain_voltage/ping_ibias.
6	ping_iabsthresh=1	Current threshold for floating node detection during high/low forcing. Default is domain_voltage/ping_resistor.
7	ping_iabsthresh_ramp=1	
		Current threshold for floating node detection during ramp forcing. Default is 100*domain_voltage/ping_resistor.
8	ping_irelthresh=1000	
		Relative threshold for floating node detection for both high/low and ramp forcing. Default is 1000.
9	seed=3	Seed for random number generation.
10	domain_voltage_thresh=0.0	

Circuit Checks

		Lowest threshold for domain voltage. If a node has voltage less than domain_voltage_thresh, it will be excluded from ping. Default is 0.0.
11	save=no	To probe gate voltage of MOSFETs, base voltage of BJTs, drain current of MOSFETs and collector current of BJTs. When value is set to ping or all, a new waveform file will be written in raw directory. The format of this new waveform file will be <checkname>_<pingstart>.tran.tran, where <checkname> is the name of check statement and <pingstart> is the time specified in ping_start parameter. The waveform will start from PingStart until ping simulation is finished. If save=ping, only save ping voltages and mos/bjt currents. If save=all, both of signals in the save=ping and the ones saved in the netlist are saved. Default is no. Possible values are ping, no and all.</pingstart></checkname></pingstart></checkname>
12	distribute=no	Distribute method. Possible values are no and fork.
13	numprocesses=0	Number of processes for distributed analysis.
14	report_top_current=0	
		Number of top n devices with the largest leakage current to be reported. When set to 0, report will contain all devices.
15	ping_duration_max=0	
		Maximum value of ping_duration applied. Default is none.
16	ping_resistor_max=10e+9	
		Maximum value of ping_resistor applied. Default is 10G.
17	ping_resistor_min=100e+6	
		Minimum value of ping_resistor applied. Default is 100M.
18	time_constant=6	Time constant. Default is 6.0.

Circuit Checks

19	omain_detection_method=dev	7
		Domain detection, find the ping nodes through device or node. Possible values are dev and node.
20	inst=[]	Subcircuit instances to which the check is applied. Default includes all instances (inst=*).
21	xinst=[]	Subcircuit instances to be excluded from the check. Default is none.
22	subckt=[]	The instances of the specified subcircuit to which the check is applied. Default includes all subcircuits (subckt=*).
23	xsubckt=[]	The instances of the specified subcircuits that are excluded from the check. Default is none.
24	node=[]	Nodes to which the check is applied. Default is none.
25	xnode=[]	Nodes to be excluded from the check. Default is none.
26	ping_voltage_thresh=0	Threshold for ping voltage.
27	ping_index=[]	Selectively re-ping a circuit with a list of pings.
28	domain_detection_voltage_a	tol=1e-20
		Voltage tolerance for voltage-based domain

Voltage tolerance for voltage-based domain detection.

Parameter Index

distribute 12	numprocesses 13	ping_index 27	save 11
domain_detection_ method 19	ping_count 3	<pre>ping_irelthresh 8</pre>	seed 9
domain_detection_ voltage_atol 28	ping_duration 4	ping_resistor_max 16	subckt 22

Circuit Checks

<pre>domain_voltage_th resh 10</pre>	ping_duration_max 15	ping_resistor_min 17	time_constant 18
domains 1	ping_iabsthresh 6	ping_start 2	xinst 21
inst 20	ping_iabsthresh_r amp 7	ping_voltage_thre sh 26	xnode 25
node 24	ping_ibias 5	report_top_curren t 14	xsubckt 23

Dynamic Glitch Check (dyn_glitch)

Description

A 'Glitch' occurs when:

- A low signal goes above the mid-level, and crosses the mid-level again within the user-defined duration.
- A high signal goes below the mid-level, and crosses the mid-level again within the user-defined duration.

This check applies only to blocks with single and constant power supply.

The results are written to the dynamic.xml file, which can be viewed in a Web browser.

For additional information, refer to the <u>Dynamic Glitch Check</u> section in the <u>Spectre Classic Simulator</u>, <u>Spectre APS</u>, <u>Spectre X</u>, and <u>Spectre XPS User Guide</u>.

Definition

Name dyn glitch parameter=value ...

Parameters

Design check parameters

1	node="[]"	Nodes to which the check is applied. Default is none.
		••
2	duration=5.00E-	09 sec
		Duration threshold. Default is 5.00E-09 sec.
3	min_duration=0	sec
		Minimum glitch duration threshold. Default is 0 sec.
4	max_duration=5.	00E-09 sec
		Maximum glitch duration threshold. Default is 5.00E-09
		sec.
5	low=0 volt	Low-level voltage. Default is 0V.

Circuit Checks

6	high (volt)	High-level voltage. Default is none.
7	mid=0.5 (high +	low) volt
		Mid-level voltage for glitch detection. Default is 0.5* (high+ low).

Filtering parameters

8	time_window=[tstart, tstop] sec	
		The time window during which the circuit check is applied. Multiple non-overlapping time windows are supported. Default time window is 0 to tend.
9	error_limit=10000	
		Maximum number of errors reported. Default is 10000.
10	fanout=all	Fanout setting to filter node with specified connection. This option is supported only in Spectre XPS. Possible values are all, gate, and bulk.

Wildcard scoping

11	inst=[]	Subcircuit instances to which the check is applied. Default includes all instances (inst=*).
12	xinst=[]	Subcircuit instances to be excluded from the check. Default is none.
13	subckt=[]	The instances of the specified subcircuit to which the check is applied. Default includes all subcircuits (subckt=*).
14	xsubckt=[]	The instances of the specified subcircuits that are excluded from the check. Default is ${\tt none}.$
15	depth=8	Hierarchy levels (starting from top, instance, or subcircuit scope) to be checked. Default is 8.

Circuit Checks

Parameter Index

depth 15	high 6	mid 7	time_window 8
duration 2	inst 11	min_duration 3	xinst 12
error_limit 9	low 5	node 1	xsubckt 14
fanout 10	max_duration 4	subckt 13	

Dynamic HighZ Node Check (dyn_highz)

Description

Reports the nodes that are in high impedance state for a duration longer than the userdefined threshold. A high impedance state is reached when there is no conducting path from the node to any power supply or ground. The following device conducting rules are used for the floating node detection:

- MOSFET is conducting if MOS region is either triode or saturation
- Resistors, controlled resistors, phy_res, relay, and inductors are conducting if R<=res_th</p>
- BJT is conducting if Vbe>bjt_vbe or lc>bjt_ith
- Diode is conducting if V>diode_vth
- Vsources and iprobes are considered conducting
- Isources, VCCS, and CCCS are conducting if i>isource_ith
- JFET is considered conducting
- Mutual inductors and controlled capacitors are not conducting
- VerilogA: conducting path depends on module details

The results are written to the dynamic.xml file, which can be viewed in a Web browser.

For additional information, refer to the <u>Dynamic High Impedance Node Check</u> section in the <u>Spectre Classic Simulator</u>, <u>Spectre APS</u>, <u>Spectre X</u>, and <u>Spectre XPS User Guide</u>.

Definition

Name dyn highz parameter=value ...

Parameters

Design check parameters

1 node="[...]" Nodes to which the check is applied. Default is none.

Circuit Checks

2	xnode="[]"	Nodes to be excluded from the check. Default is none.
3	<pre>xnode_file=[]</pre>	Nodes to be excluded from the check, defined in file, wildcard is not supported. Default is none.
4	duration=5.00E-09 sec	C
		Duration threshold. Default is 5.00E-09 sec.
5	bjt_vbe=0.4	BJT vbe conducting threshold for high impedance node detection. Default is 0 . 4 $$ $$ $$ $$ $$ $$ $$ $$ $$
6	bjt_ith=50E-9	BJT ic conducting threshold for high impedance node detection. Default is 50 nA.
7	res_th_va=10E6	VerilogA resistor conducting threshold for high impedance node detection. Only applicable on AMS IE element and on one or two port AHDL module. Default is 10MOhms.
8	res_th=1E12	Resistor conducting threshold for high impedance node detection. Default is 1 TOhms.
9	diode_vth=0.6	Diode voltage conducting threshold for high impedance node detection. Default is 0.6 V.
10	isource_ith=1.0E-12	Current source conducting threshold for high impedance node detection. Default is 1 $\mathrm{pA}.$
11	inverse=no	If set to no, reports all nodes that are in highz sate. If set to yes, reports all nodes not being in highz state. Default is no. Possible values are no and yes.
12	sort=no	If set to no, sorting is not performed. If set to duration, dyn_highz will sort violations by duration. Default is no. Possible values are no and duration.
13	debug_net=[]	Hierarchical net(s) to debug. Wildcard is not allowed. Default is none.
14	debug_time=[]	Time point(s) at which debug report will be generated. Default is none.

Circuit Checks

15	debug_format=txt	When debug_format=txt, the report will be written into a file,
		<pre><netlistname>_<checkname>_<debug_tim e="">.report.log, in txt format. When debug_format=sql, report will be written in xml/ sql format. When debug_format=both, report will be written in all formats. Possible values are sql, txt, and both.</debug_tim></checkname></netlistname></pre>
16	debug_report=lowz	When debug_report = lowz, only lowz nodes are reported and the report will contain all conducting paths from a debug_net to ground causing debug_net to be lowz node. When debug_report = highz, only highz nodes are reported and report will contain all devices that are off causing a debug_net to be highz. This highz report is only supported in text format(debug_format=txt). When debug_report = both, both lowz and highz node are reported. Possible values are lowz, high, and both.

Filtering parameters

17	<pre>time_window=[tstart,</pre>	tstop] sec
		Time window to which the circuit check is applied. Multiple non-overlapping time windows are supported. Default time window is 0 to tend.
18	error_limit=10000	Maximum number of errors reported. Default is 10000.
19	fanout=all	Fanout setting to filter node with specified connection. When fanout=gate_has_driver_no_moscap, floating nodes only connecting to MOSCAPs will not be checked. When fanout=gate_no_moscap, gates only connecting to MOSCAPs will not be checked. Possible values are all, gate, bulk, gate_has_driver_no_moscap, and gate_no_moscap.

Circuit Checks

20	filter=no	If set to no, filtering is not performed. If set to rc, dyn_highz checker will report only one node in same parasitic sub. This option is supported only in XPS.
		Possible values are no and rc.
21	filter_diocon_nodes=0	
		Filter out highz nodes connected to MOSDIODE. When set to 1, highz node that is connected to PMOSDIODE is filtered out given that its source is connected to VDD. A highz node that is connected to NMOSDIODE is filtered out given that its source is connected to 0. When set to 2, highz node that is connected to PMOSDIODE is filtered out given that its source voltage is greater than drain voltage. A highz node that is connected to NMOSDIODE is filter out given that its drain voltage is greater than source voltage. This option is supported only in Spectre and APS. Possible values are 0, 1 and 2.

Wildcard scoping

22	inst=[]	Subcircuit instances to which the check is applied. Default includes all instances (inst=*).
23	xinst=[]	Subcircuit instances to be excluded from the check. Default is none.
24	subckt=[]	The instances of the specified subcircuit to which the check is applied. Default includes all subcircuits (subckt=*).
25	xsubckt=[]	The instances of the specified subcircuits that are excluded from the check. Default is none.
26	depth=8	Hierarchy levels (starting from top, instance, or subcircuit scope) to be checked. Default is 8.
	nonconducting_subckt	

Circuit Checks

27		All instances of the specified subcircuit or Verilog-A modules are considered non-conducting during floating node detection. All devices inside the subcircuit, and all branches inside the Verilog-A module are also considered non-conducting during floating node detection. Default is none.
		Note: This option is supported only in Spectre and Spectre APS.
28	conducting_subckt=[.]
		All instances of specified subcircuit or VerilogA modules are considered conducting during the floating node detection. All devices inside the subcircuit, and all branches inside the VerilogA module are considered conducting during the floating node detection. Default is none.

Parameter Index

bjt_ith 6	depth 24	inst 22	sort 12
bjt_vbe 5	diode_vth 9	inverse 11	subckt 23
conducting_subckt 28	duration 4	isource_ith 10	time_window 17
debug_format 15	error_limit 18	node 1	xinst 23
debug_net 13	fanout 19	nonconducting_s ubckt 22	xnode 2
debug_report 16	filter 20	res_th 8	<pre>xnode_file 3</pre>
debug_time 14	filter_diocon_n odes 21	res_th_va 7	xsubckt 25

Dynamic MOSFET Voltage Check (dyn_mosv)

Description

Reports MOSFET devices fulfilling the conditional expression on device voltages and device size (w, l) for a time longer than the user-specified threshold duration.

Supported MOSFET variables are: v(g,s), v(g,d), v(g,b), v(d,s), v(d,b), v(s,b), v(g), v(d), v(s), v(d), v(d),

Supported operators are: +, -, *, /, ==,!=, <, <=, >, >=,||, &&, and !

The results are written to the dynamic.xml file, which can be viewed in a Web browser.

For additional information, refer to the <u>Dynamic MOSFET Voltage Check</u> section in the Spectre Classic Simulator, Spectre APS, Spectre X, and Spectre XPS User Guide.

Definition

Name dyn mosv parameter=value ...

Parameters

Design check parameters

1	model="[]"	MOSFET device model names to be checked.
2	cond	The conditional expression to be fulfilled. Default is none.
3	duration=5.00E-09 sec	Duration threshold. Default is 5.00E-09 sec.
4	sample=start	Report extreme value or the start point.
		Possible values are start and extreme.
5	sort=no	If set to no, sorting is not performed. If set to duration, dyn_mosv will sort violations by duration. Default is no. Possible values are no and duration.

Circuit Checks

Filtering parameters

6	time_window=[tstart,	tstop] sec
		The time window during which the circuit check is applied. Multiple non-overlapping time windows are supported. Default time window is 0 to tend.
7	error_limit=10000	Maximum number of errors reported. Default is 10000.

Wildcard scoping

8	inst=[]	Subcircuit instances to which the check is applied. Default includes all instances (inst=*).
9	xinst=[]	Subcircuit instances to be excluded from the check. Default is none.
10	subckt=[]	The instances of the specified subcircuit to which the check is applied. Default includes all subcircuits (subckt=*).
11	xsubckt=[]	The instances of the specified subcircuits that are excluded from the check. Default is none.
12	depth=8	Hierarchy levels (starting from top, instance, or subcircuit scope) to be checked. Default is 8.

Parameter Index

cond 2	error_limit 7	sample 4	time_window 6
depth 12	inst 8	sort 5	xinst 9
duration 3	model 1	subckt 10	xsubckt 11

Dynamic Node Capacitance Check (dyn_nodecap)

Description

Reports the node capacitance at specified times (time) of a transient simulation. Device capacitances, grounded capacitances, and coupling capacitances are combined into one value.

The results are written to the dynamic.xml file, which can be viewed in a Web browser.

For additional information, refer to the <u>Dynamic Node Capacitance Check</u> section in the Spectre Classic Simulator, Spectre APS, Spectre X, and Spectre XPS User Guide.

Definition

Name dyn_nodecap parameter=value ...

Parameters

Design check parameters

1	node="[]"	Nodes for which the capacitance needs to be checked.
		vsrc nodes are skipped.

Filtering parameters

2	time=[] sec	time point(s) at which dynamic nodecap check is performed.
3	error_limit=10000	Maximum number of errors reported. Default is 10000.
4	fanout=all	Fanout setting to filter node with specified connection. This option is supported only in Spectre XPS. Possible values are all, gate, and bulk.

Circuit Checks

Wildcard scoping

5	inst=[]	Subcircuit instances to which the check is applied. Default includes all instances (inst=*).
6	xinst=[]	Subcircuit instances to be excluded from the check. Default is none.
7	subckt=[]	The instances of the specified subcircuit to which the check is applied. Default includes all subcircuits (subckt=*).
8	xsubckt=[]	The instances of the specified subcircuits that are excluded from the check. Default is none.
9	depth=8	Hierarchy levels (starting from top, instance, or subcircuit scope) to be checked. Default is 8.
10	intrinsic_cap_merge=no	
		Merge the internal captab node to external node. Default is no. This option is supported only in Spectre and APS. Possible values are no and yes.

Parameter Index

depth 9	inst 5	subckt 7	xsubckt 8
error_limit 3	intrinsic_cap_mer ge 10	time 2	
fanout 4	node 1	xinst 6	

Dynamic Noisy Node Check (dyn_noisynode)

Description

Identifies the nodes with unstable or noisy node conditions. A node is considered unstable or noisy if its voltage fulfills the condition abs(dV/dt)>e1 and abs(d(dV/dt)dt)>e2 for a time longer than duration. Stable periods shorter than skip are ignored.

The results are written to the dynamic.xml file, which can be viewed in a Web browser.

For additional information, refer to the <u>Dynamic Noisy Node Check</u> section in the <u>Spectre Classic Simulator</u>, <u>Spectre APS</u>, <u>Spectre X</u>, and <u>Spectre XPS User Guide</u>.

Definition

Name $dyn_noisynode parameter=value \dots$

Parameters

Design check parameters

1	node="[]"	Nodes to which the check is applied. Default is none.
2	duration=5.00E-07 sec	
		Duration threshold. Default is 5.00E-07 sec.
3	e1=5.00E04 volt/sec	The first derivative threshold. Default is 5.00 ± 04 .
4	e2=2.00E16 volt/(sec2)	
		The second derivative threshold. Default is 2.00E16.
5	skip=50.0E-09 sec	The stable period less than skip is ignored. Default is $50.0E-09$.

Filtering parameters

```
6 time_window=[tstart, tstop] sec
```

Circuit Checks

		The time window during which the circuit check is applied. Multiple non-overlapping time windows are supported. Default time window is 0 to tend.
7	error_limit=10000	Maximum number of errors reported. Default is 10000.
8	fanout=all	Fanout setting to filter node with specified connection. This option is supported only in Spectre XPS. Possible values are all, gate, and bulk.

Wildcard scoping

9	inst=[]	Subcircuit instances to which the check is applied. Default includes all instances (inst=*).
10	xinst=[]	Subcircuit instances to be excluded from the check. Default is none.
11	subckt=[]	The instances of the specified subcircuit to which the check is applied. Default includes all subcircuits (subckt=*).
12	xsubckt=[]	The instances of the specified subcircuits that are excluded from the check. Default is none.
13	depth=8	Hierarchy levels (starting from top, instance, or subcircuit scope) to be checked. Default is 8.

Parameter Index

depth 13	error_limit 7	skip 5	xsubckt 12
duration 2	fanout 8	subckt 11	
e1 3	inst 9	time window 6	

Circuit Checks

e2 4

node 1

xinst 10

Dynamic Pulse Width Check (dyn_pulsewidth)

Description

Reports nodes with pulse width error.

The pulse widths that fall outside of pwmin_low and pwmax_low, and pwmin_high and pwmax_high are reported.

The results are written to the dynamic.xml file, which can be viewed in a Web browser.

For additional information, refer to the <u>Dynamic Pulse Width Check</u> section in the <u>Spectre Classic Simulator</u>, <u>Spectre APS</u>, <u>Spectre X</u>, <u>and Spectre XPS User Guide</u>.

Definition

Name dyn pulsewidth parameter=value ...

Parameters

Design check parameters

1	node="[]"	Nodes to which the check is applied. Default is none.
2	<pre>pwmin_low=0.0 sec</pre>	The minimum value of the pulse width in logic 0 state.
3	<pre>pwmax_low=infinity sec</pre>	The maximum value of the pulse width in logic 0 state.
4	<pre>pwmin_high=0.0 sec</pre>	The minimum value of the pulse width in logic 1 state.
5	<pre>pwmax_high=infinity sec</pre>	The maximum value of the pulse width in logic 1 state.
6	fanout=all	Fanout setting to filter node with specified connection. This option is supported only in Spectre XPS. Possible values are all, gate, and bulk.

Circuit Checks

Digitize parameters

7	vlth=0.2 V	Low voltage threshold for signal net.
8	vhth=0.8 V	High voltage threshold for signal net.

Filtering parameters

9	<pre>time_window=[tstart,</pre>	tstop] sec
		Time window to which the circuit check is applied. Multiple non-overlapping time windows are supported. Default time window is 0 to tend.
10	error_limit=10000	Maximum number of errors reported. Default is 10000.

Wildcard scoping

11	inst=[]	Subcircuit instances to which the check is applied. Default includes all instances (inst=*).
12	xinst=[]	Subcircuit instances to be excluded from the check. Default is none.
13	subckt=[]	The instances of the specified subcircuit to which the check is applied. Default includes all subcircuits (subckt=*).
14	xsubckt=[]	The instances of the specified subcircuits that are excluded from the check. Default is none.
15	depth=8	Hierarchy levels (starting from top, instance, or subcircuit scope) to be checked. Default is 8.

Circuit Checks

Parameter Index

depth 15	node 1	pwmin_low 2	vlth 7
error_limit 10	pwmax_high 5	subckt 13	xinst 12
fanout 6	pwmax_low 3	time_window 9	xsubckt 14
inst 11	pwmin high 4	vhth 8	

Dynamic Resistor Voltage Check (dyn_resv)

Description

Reports the resistor elements fulfilling the conditional expression on element voltages for a duration longer than the user-specified duration threshold.

Supported resistor variables are: v(1,2), v(1), and v(2)

Supported operators are: +, -, *, /, ==,!=, <, <=, >, >=,||, &&, and !

The results are written to the dynamic.xml file, which can be viewed in a Web browser. This check is supported only by Spectre XPS. For Spectre and Spectre APS use the assert statement.

For additional information, refer to the <u>Dynamic Resistor Voltage Check</u> section in the Spectre Classic Simulator, Spectre APS, Spectre X, and Spectre XPS User Guide.

Definition

Name dyn resv parameter=value ...

Parameters

Design check parameters

1	cond	The conditional expression to be fulfilled. Default is none.
2	duration=5.00E-09 sec	Duration threshold. Default is 5.00E-09 secs.

Filtering parameters

3 time_window=[tstart, tstop] sec

Circuit Checks

		The time window during which the circuit check is applied. Multiple non-overlapping time windows are supported. Default time window is 0 to tend.
4	error_limit=10000	Maximum number of errors reported. Default is 10000.

Wildcard scoping

5	inst=[]	Subcircuit instances to which the check is applied. Default includes all instances (inst=*).
6	xinst=[]	Subcircuit instances to be excluded from the check. Default is none.
7	subckt=[]	The instances of the specified subcircuit to which the check is applied. Default includes all subcircuits (subckt=*).
8	xsubckt=[]	The instances of the specified subcircuits that are excluded from the check. Default is none.
9	depth=8	Hierarchy levels (starting from top, instance, or subcircuit scope) to be checked. Default is 8.

Parameter Index

In the following index, the number corresponding to each parameter name indicates where to find the description of that parameter.

616

cond 1	error_limit 4	time_window 3
depth 9	inst 5	xinst 6
duration 2	subckt 7	xsubckt 8

Dynamic Setup and Hold Check (dyn_setuphold)

Description

Reports nodes with setup or hold timing errors with reference to a clock signal. The transition time of the clock signal is refTime.

For setup timing, transitions that happen between refTime + delay - setupTime and refTime + delay are reported.

For hold timing, transitions that happen between refTime + delay and refTime + delay + holdTime are reported.

ref_vhth and vhth parameters are used for triggering rising edge measurements, while ref_vlth and vlth are used for triggering falling edge measurements.

If the subckt parameter is specified, node and ref_node are considered as local nodes to the specified subcircuit. In other words, node and ref_node belong to instances of the specified subcircuit. Only one subckt value can be specified per check, with no wildcard.

If the subckt parameter is not specified, node and ref_node are considered as global nodes with hierarchical names starting from the top level.

The parameters inst, xinst, xsubckt, and depth are not supported.

The results are written to the dynamic.xml file, which can be viewed in a Web browser.

For additional information, refer to the <u>Dynamic Setup and Hold Check</u> section in the Spectre Classic Simulator, Spectre APS, Spectre X, and Spectre XPS User Guide.

Definition

Name dyn setuphold parameter=value ...

Parameters

Design check parameters

1 node="[...]"

Nodes to which the check is applied. Default is none.

Circuit Checks

2	ref_node	Name of the referenced clock. Wildcards are not supported.
3	setup_time=0.0 sec	Setup time violation window. If specified, the setup check is enabled. Default is 0.0 sec.
4	hold_time=0.0 sec	Hold time violation window. If specified, the hold check is enabled.
5	delay=0.0 sec	Delay of the reference signal.
6	edge=rise	Edge type of the signal net. Possible values are rise, fall, and both. Default is rise. Possible values are rise, fall, and both.
7	ref_edge=rise	Edge type of the reference signal. Possible values are rise, fall, and both. Default is rise. Possible values are rise, fall, and both.
8	fanout=all	Fanout setting to filter node with specified connection. This option is supported only in Spectre XPS. Possible values are all, gate, and bulk.

Digitize parameters

9	setup_chk_time=0.0 sec	Setup time checking window.
10	hold_chk_time=0.0 sec	Hold time checking window.
11	vlth=0.2 V	Low voltage threshold for the signal net.
12	ref_vlth=0.2 V	Low voltage threshold for the referenced net.
13	vhth=0.8 V	High voltage threshold for the signal net.
14	ref_vhth=0.8 V	High voltage threshold for the referenced net.

Filtering parameters

15	time_window=[tstart,	The time window during which the circuit check is
	tstop] sec	applied. Multiple non-overlapping time windows are
		supported. Default time window is 0 to tend.

Circuit Checks

16	margin_stats=no	Whether to report margin stats. Default is no. Possible values are no and yes.
17	error_limit=10000	Maximum number of errors reported. Default is 10000.

Wildcard scoping

18	subckt=none	Instances of the specified subcircuit to which the check is applied. Default is none.
19	report=violation	Report all checks or violation only. Default is violation. Possible values are all and violation.

Parameter Index

delay 5	hold_time 4	ref_vhth 14	subckt 18
edge 6	margin_stats	ref_vlth 12	time_window 15
error_limit 17	node 1	report 19	vhth 13
fanout 8	ref_edge 7	setup_chk_time 9	vlth 11
hold_chk_time 10	ref_node 2	setup_time 3	

Circuit Checks

Dynamic Statistical HighZ Node Check (dyn_stahighz)

Description

Identifies and reports nodes that are in high impedance state at a user given time. Deploys a statistical method of forcing (pinging) different voltage levels or voltage ramp ups to all nodes, and detecting floating nodes based on the current changes in the connecting devices.

The results are written to the dynamic.xml file, which can be viewed in a Web browser.

Definition

Name dyn_stahighz parameter=value ...

Circuit Checks

Parameters

Design check parameters

1	domains="[]"	Pairs of power supply domains in which floating nodes are checked. Example: domains=[VDD VSS VPP VSS]. Domain also defines high voltage (high_voltage) value for forcing node voltages. Default is none. Wildcards not allowed.
2	ping_start=[] sec	
		Time at which the check is initiated.
3	ping_count=300	Number of statistical periods being used. Default is 300.
4	ping_duration	
		Duration of one statistical period. One ping consists of 3 ping_duration (high/low forcing, ramp up forcing, release). Default is none.
5	ping_ibias	Lowest bias current in the design. Default is none. Internal value ping_resistor=high_voltage/ (ping_ibias/10).
6	ping_iabsthresh	Current threshold for floating node detection during high/low forcing. Default is high_voltage/ping_resistor.
7	ping_iabsthresh_ramp	
		Current threshold for floating node detection during ramp forcing. Default is 100*high_voltage/ping_resistor.
8	ping_irelthresh=1000	
		Relative threshold for floating node detection for both high/low and ramp forcing. Default is 1000.
9	seed=3	Seed for random number generation.
10	domain_voltage_thresh	=0.0
		Lowest threshold for domain voltage. If a node has

voltage less than domain_voltage_thresh, it will be

excluded from ping. Default is 0.0.

Circuit Checks

11	save=no	To probe gate voltage of MOSFETs, base voltage of BJTs, drain current of MOSFETs and collector current of BJTs. When value is set to yes, a new waveform file will be written in raw directory. The format of this new waveform file will be <checkname>_<pingstart>.tran.tran, where <checkname> is the name of check statement and <pingstart> is the time specified in ping_start parameter. The waveform will start from PingStart until ping simulation is finished. Possible values are yes and no. Default is no.</pingstart></checkname></pingstart></checkname>
12	distribute=no	Distribute method. Possible values are no, fork, _rsh, _ssh, _lsf, _sge, _nc, and _auto.
13	numprocesses=0	Number of processes for distributed analysis.

Parameter Index

distribute 12	ping_count 3	ping_ibias 5 seed 9
domain_voltage_th	ping_duration 4	<pre>ping_irelthresh 8</pre>
domains 1	ping_iabsthresh 6	ping_start 2
numprocesses 13	ping_iabsthresh_r amp 7	save 11

Circuit Checks

Dynamic Subckt Port Voltage/Current Check (dyn_subcktport)

Description

Reports instances of the user-specified subckt fulfilling the conditional expression on port voltages and port currents for a time longer than the user-specified duration. Only one subckt is allowed per statement.

The voltages and currents of a port can be referenced by the subckt's port-name. For example, consider a subckt definition ".subckt NOT port_A port_B". Here, supported subckt port-name are: $v(port_A)$, $v(port_B)$, $v(port_A, port_B)$, $i(port_A)$, and $i(port_B)$. The port current is positive when the current is flowing into a subckt.

Supported operators are: +, -, *, /, ==,!=, <, <=, >, >=,||, &&, and !

Subcircuit instances whose depth is greater than specified value are excluded from the check.

The results are written to the dynamic.xml file, which can be viewed in a Web browser. This check is supported only by XPS.

For additional information, refer to the <u>Dynamic Subcircuit Port/Voltage/Current Check</u> section in the <u>Spectre Classic Simulator</u>, <u>Spectre APS</u>, <u>Spectre X</u>, and <u>Spectre XPS</u> User Guide.

Definition

Name dyn subcktport parameter=value ...

Parameters

Design check parameters

1	subckt	Instances of the specified subcircuit to which the check is applied. Wildcard is not supported. Only one subcircuit is allowed per statement. Default is none.
2	cond	The conditional expression to be fulfilled. Default is none.

Circuit Checks

Filtering parameters

3	time_window=[tstart, tstop] sec	
	Time window to which the circuit check is applied. Multiple non-overlapping time windows are supported. Default time window is 0 to tend.	
4	duration=5.00E-09 sec	
	Duration threshold. Default is 5.00E-09 sec.	
5	error_limit=10000	
	Maximum number of errors reported. Default is 10000.	

Parameter Index

Circuit Checks

Dynamic Subckt Port Power Check (dyn_subcktpwr)

Description

Reports port currents, port powers, and subcircuit powers.

The port current is positive when current is going into a subcircuit. This check will report average, RMS, and the maximum values of the current entering a port.

The power analysis can be done by using the power parameter. When the power parameter is set to on, two additional sections are generated. The first section reports the average, RMS, and the maximum power entering all the ports that are defined by the port parameter. The second section reports the average, RMS, and maximum power consumed by each instance of a subcircuit that is defined by the inst parameter.

Note: For the second section, it is mandatory to have the parameter port set to [*].

Max is defined as the maximum of the absolute of a waveform within a time_window. For example, consider a current entering a port having a peak value of 1mA and another peak value of -2mA below 0. Therefore, the check will report "Max (A)" as -2mA and the time point will be reported in "Max Time(s)". Therefore, this check will use an absolute function to find the maximum current/power but it will report that finding with a regular current/power. Unlike Max, the average and RMS are defined as the average or RMS value of a regular waveform within a time_window, respectively.

The filter parameter can be used to filter out ports that are connected only to the gate of MOSFET.

The inst_file parameters are supported only in Spectre XPS.

The results are reported to the dynamic.xml file, which can be viewed in a Web browser.

For additional information, refer to the <u>Dynamic Subcircuit Port Power Check</u> section in the <u>Spectre Classic Simulator</u>, <u>Spectre APS</u>, <u>Spectre X</u>, and <u>Spectre XPS User Guide</u>.

Definition

Name dyn subcktpwr parameter=value ...

Parameters

Circuit Checks

Design check parameters

1	port=[]	Ports to be checked. Default is none.
2	net	Net. Default is none.
3	power=off	Report power or not. Possible values are off and on.

Filtering parameters

4	filter=none	Check all ports or only those not connecting to gates. Possible values are none and gates.
5	ith=0.0	Port currents with either abs(AVG), RMS or abs(MAX) value larger than the specified ith are reported. In other words, if all abs(AVG), RMS and abs(MAX) values are below ith then it will be filtered out. This parameter is only supported in XPS. Default is 0.0.
6	time_window=[tstar	t, tstop] sec
		Time window to which the circuit check is applied. Multiple non-overlapping time windows are supported. Default time window is 0 to tend.
7	error_limit=10000	Maximum number of errors reported. Default is 10000.

Wildcard scoping

8	inst=[]	Subcircuit instances to which the check is applied. Default is none.
9	depth	Hierarchy levels (starting from top, instance, or subcircuit scope) to be checked. Default is none.

Circuit Checks

Parameter Index

depth 9	inst 8	port 1
error_limit 7	ith 5	power 3
filter 4	net 2	time window 6

Circuit Checks

Static Capacitor Check (static_capacitor)

Description

Reports all capacitors within or outside the range of cmin and cmax. It can also generate a distribution list of all the capacitors in a circuit. If the type parameter is set to range, all capacitors outside the range of cmin and cmax will be reported.

If the type parameter is set to print, all capacitors between cmin and cmax will be reported. In the report, the capacitor names can be sorted by clicking on the Device name header in a Web browser.

If the type parameter is set to distr, a distribution list will be generated for all capacitors. There are a maximum of 9 bins: -Inf - 0, 0 - 10a, 10a - 100a, 100a - 1f, 1f - 10f, 10f - 100f, 100f - 1p, 1p - 10p, and 10p - 10f

However, if two or more consecutive bins are empty, they will merge into one bin, reducing the number of bins. If type is set to distr, the parameters cmin, cmax, and error_limit are ignored.

The results are reported to the static.xml file, which can be viewed in a Web browser. This check is supported only by Spectre XPS.

For additional information, refer to the <u>Static Capacitor Check</u> section in the <u>Spectre Classic Simulator</u>, <u>Spectre APS</u>, <u>Spectre X</u>, and <u>Spectre XPS User Guide</u>.

Definition

Name static capacitor parameter=value ...

Parameters

Design check parameters

1	type=print	Checking types. Possible values are range, distr, and print.
2	cmin=-1 F	Minimum capacitor value.
3	cmax=1 F	Maximum capacitor value.

Circuit Checks

Filtering parameters

4	error_limit=10000	Maximum number of errors reported. Default is
		10000.

Static Capacitor Voltage Check (static_capv)

Description

Reports capacitor devices fulfilling the conditional expression on device voltages.

Supported capacitor variables are: v(1,2), v(1), and v(2)

Supported operators are: +, -, *, /, ==,!=, <, <=, >, >=,||, &&, and !

The results are written to the static.xml file, which can be viewed in a Web browser. This check is supported only by Spectre XPS.

For additional information, refer to the <u>Static Capacitor Voltage Check</u> section in the Spectre Classic Simulator, Spectre APS, Spectre X, and Spectre XPS User Guide.

Definition

Name static capv parameter=value ...

Parameters

Design check parameters

1	cond	The conditional expression to be fulfilled. Default is none.
2	rpt_node=no	Report node voltages. Possible values are no, all, top and selected.

Digitize parameters

3	vpth=-0.4 V	PMOS threshold voltage. This value is used to calculate the voltage drop across a PMOS channel during voltage propagation. Default is -0.4 V.
4	vnth=0.5 V	NMOS threshold voltage. This value is used to calculate the voltage drop across a NMOS channel during voltage propagation. Default is 0.5 V.
5	pwl_time=	Time for pwl src to be considered as constant vsrc.

Circuit Checks

Filtering parameters

6 error_limit=10000

Maximum number of errors reported. Default is 10000.

Wildcard scoping

7	inst=[]	Subcircuit instances to which the check is applied. Default includes all instances (inst=*).
8	xinst=[]	Subcircuit instances to be excluded from the check. Default is none.
9	subckt=[]	The instances of the specified subcircuit to which the check is applied. Default includes all subcircuits ($subckt=*$).
10	xsubckt=[]	The instances of the specified subcircuits that are excluded from the check. Default is none.
11	depth=8	Hierarchy levels (starting from top, instance, or subcircuit scope) to be checked. Default is 8.

Parameter Index

cond 1	inst 6	subckt 8	xinst 7
depth 10	pwl_time 4	vnth 3	xsubckt 9
error_limit 5	rpt_node 2	vpth 2	

Circuit Checks

Static Coupling Impact Check (static_coupling)

Description

Evaluate the possible coupling effects in the circuit.

For each victim node, identify its voltage level impact from aggressors by dividing the total agressor's charge with its total capacitance (including cc+gc+device cap). Each agressor's charge is calculated by multiplying the coupling aggressor's voltage level (using Vmax for worst case analysis) by coupling capacitance. In this check, only capacitors written in netlist are counted.

The results are reported into a file with the extension static.xml, which can be read with a web browser.

Definition

Name static coupling parameter=value ...

Circuit Checks

Parameters

Design check parameters

1 node="[...]"

Nodes to which the check is applied. Default is none.

Filtering parameters

2 error_limit=100

Maximum number of errors reported. Default is 100.

Digitize parameters

3 vpth=-0.4 V

PMOS threshold voltage. This value is used to calculate the voltage drop across a PMOS channel during voltage propagation. Default is -0.4 V.

4 vnth=0.5 V

NMOS threshold voltage. This value is used to calculate the voltage drop across a NMOS channel during voltage propagation. Default is 0.5 V.

5 pwl_time=infinity

Time for pwl src to be considered as constant vsrc.

Wildcard scoping

6 inst=[...]

Subcircuit instances to which the check is applied.

Default includes all instances (inst=*).

7 xinst=[...]

Subcircuit instances to be excluded from the check.

Default is none.

8 subckt=[...]

The instances of the specified subcircuit to which the

check is applied. Default includes all subcircuits

(subckt=*).

9 xsubckt=[...]

The instances of the specified subcircuits that are

excluded from the check. Default is none.

10 depth=8

Hierarchy levels (starting from top, instance, or

subcircuit scope) to be checked. Default is 8.

Circuit Checks

Parameter Index

depth 10	node 1	vnth 4	xsubckt 9
error_limit 2	pwl_time 5	vpth 3	
inst 6	subckt 8	xinst 7	

Circuit Checks

Static DC Leakage Path Check (static_dcpath)

Description

Reports the always conducting paths between the power supply nodes.

The results are written to the static.xml file, which can be viewed in a Web browser. This check is supported only by Spectre XPS and Spectre APS.

For additional information, refer to the <u>Static DC Leakage Path Check</u> section in the Spectre Classic Simulator, Spectre APS, Spectre X, and Spectre XPS User Guide.

Definition

Name static_dcpath parameter=value ...

Parameters

Design check parameters

1	net="[]"	The leakage path between the voltage source nodes is checked. net defines a set of nodes and not a pair. For example, node = [vdd vdd1 0] checks the leakage path between vdd and vdd1, vdd and 0, and vdd1 and 0.
2	rpt_node=no	Report node voltages. Possible values are no, all, top and selected.

Digitize parameters

3	vpth=-0.4 V	PMOS threshold voltage. This value is used to calculate the voltage drop across a PMOS channel during voltage propagation. Default is -0.4 V.
4	vnth=0.5 V	NMOS threshold voltage. This value is used to calculate the voltage drop across a NMOS channel during voltage propagation. Default is $0.5\ \ \text{V}$.
5	pwl_time=	Time for pwl src to be considered as constant vsrc.

Circuit Checks

Filtering parameters

6 error_limit=10000

Maximum number of errors reported. Default is 10000.

Parameter Index

Static Diode Voltage Check (static_diodev)

Description

Reports the diode devices fulfilling the conditional expression on device voltages.

Supported diode variables are: v(a,c), v(a), and v(c)

Supported operators are: +, -, *, /, ==,!=, <, <=, >, >=,||, &&, and !

The results are written to the static.xml file, which can be viewed in a Web browser. This check is supported only by Spectre XPS and Spectre APS.

For additional information, refer to the <u>Static Diode Voltage Check</u> section in the <u>Spectre Classic Simulator</u>, <u>Spectre APS</u>, <u>Spectre X</u>, <u>and Spectre XPS User Guide</u>.

Definition

Name static diodev parameter=value ...

Parameters

Design check parameters

1	model="[]"	MOSFET device model names to be checked.
2	cond	The conditional expression to be fulfilled. Default is none.
3	rpt_node=no	Report node voltages. Possible values are no, all, top and selected.

Digitize parameters

4	vpth=-0.4 V	PMOS threshold voltage. This value is used to calculate the voltage drop across a PMOS channel during voltage propagation. Default is $-0.4~\rm V$.
5	vnth=0.5 V	NMOS threshold voltage. This value is used to calculate the voltage drop across a NMOS channel during voltage propagation. Default is 0.5 V.

Circuit Checks

6	pwl_time=	Time for pwl src to be considered as constant vsrc.

Filtering parameters

7 error_limit=10000

Maximum number of errors reported. Default is 10000.

Wildcard scoping

8	inst=[]	Subcircuit instances to which the check is applied. Default includes all instances (inst=*).
9	xinst=[]	Subcircuit instances to be excluded from the check. Default is none.
10	subckt=[]	The instances of the specified subcircuit to which the check is applied. Default includes all subcircuits (subckt=*).
11	xsubckt=[]	The instances of the specified subcircuits that are excluded from the check. Default is none.
12	depth=8	Hierarchy levels (starting from top, instance, or subcircuit scope) to be checked. Default is 8.

Parameter Index

cond 2	inst 8	rpt_node 3	vpth 4
depth 12	model 1	subckt 10	xinst 9
error_limit 7	pwl_time 6	vnth 5	xsubckt 11

Circuit Checks

Static ERC Check (static_erc)

Description

Performs various electrical rule checks and reports the devices with violations.

The results are reported to the static.xml file, which can be viewed in a Web browser.

This check is only supported by Spectre XPS and Spectre APS.

For additional information, refer to the <u>Static ERC Check</u> section in the <u>Spectre Classic Simulator</u>, <u>Spectre APS</u>, <u>Spectre X</u>, and <u>Spectre XPS User Guide</u>.

Definition

Name static_erc parameter=value ...

Parameters

Design check parameters

1	hotwell=off	Reports MOSFET with bulk not connected to VDD or GND. Possible values are off and on.
2	floatbulk=off	Reports MOSFET with floating bulk. Possible values are off, all, and no_top.
3	floatgate=off	Reports MOSFET with floating gate. Possible values are off, all, no_top, no_moscap, and no_top_moscap.
4	dangle=off	Reports the dangling nodes. Possible values are off, all, and no_top.
5	gate2power=off	Reports PMOS with gate connected to ground and NMOS with gate connected to VDD. Possible values are off and on.
6	rpt_node=no	Report node voltages. Possible values are no, all, top and selected.

Circuit Checks

Digitize parameters

7	vlth=0.2 v	DC sources with voltage lower than vlth carry static 0, and is considered GND. Default is 0.2 V. Applicable only with gate2power and hotwell.
8	vhth=0.8 v	DC sources with voltage higher than vhth carry static 1, and is considered VDD. Default is 0.8 V. Applicable only with gate2power and hotwell.
9	vpth=-0.4 V	PMOS threshold voltage. This value is used to calculate the voltage drop across a PMOS channel during voltage propagation. Default is -0 . 4 V.
10	vnth=0.5 V	NMOS threshold voltage. This value is used to calculate the voltage drop across a NMOS channel during voltage propagation. Default is 0.5 V.
11	pwl_time	Time for pwl src to be considered as constant vsrc.
12	rmax=100000000 ohm	Maximum resistance value where the node is considered to be connected to the voltage source node.

Filtering parameters

13	error_limit=10000	Maximum number of errors reported. Default is
		10000.

Wildcard scoping

14	inst=[]	Subcircuit instances to which the check is applied. Default includes all instances (inst=*).
15	xinst=[]	Subcircuit instances to be excluded from the check. Default is none.
16	subckt=[]	The instances of the specified subcircuit to which the check is applied. Default includes all subcircuits (subckt=*).

Circuit Checks

17	xsubckt=[]	The instances of the specified subcircuits that are excluded from the check. Default is none.
18	depth=8	Hierarchy levels (starting from top, instance, or subcircuit scope) to be checked. Default is 8.

Parameter Index

dangle 4	gate2power 5	rpt_node 6	vpth 9
depth 18	hotwell 1	subckt 16	xinst 15
error_limit 13	inst 14	vhth 8	xsubckt 17
floatbulk 2	pwl_time 11	vlth 7	
floatgate 3	rmax 12	vnth 10	

Circuit Checks

Static Highfanout Check (static_highfanout)

Description

This check detects the MOSFETs having gate connected to a highfanout node, and reports the nodes having count larger than the specified count.

The results are reported into a file with the extension static.xml, which can be read with a web browser.

Definition

Name static_highfanout parameter=value ...

Circuit Checks

Parameters

Design check parameters

1	node=[]	Nodes to which the check is applied. Default is none.
2	upth=10	Defines the ratio of the width of PMOS (pull-up) and the loading of MOSFETs (with gate connection). The load of transmission gate are also considered. Default is 10.
3	downth=20	Defines the ratio of the width of NMOS (pull-down) and the loading of MOSFETs. Default is 20.
4	rcut=1e6	The resistor bigger than its value is cut. The default value is $1e6$.

Filtering parameters

5 error_limit=10000

Maximum number of errors reported. Default is 10000.

Wildcard scoping

6	inst=[]	Subcircuit instances to which the check is applied. Default includes all instances (inst=*).
7	xinst=[]	Subcircuit instances to be excluded from the check. Default is none.
8	subckt=[]	The instances of the specified subcircuit to which the check is applied. Default includes all subcircuits (subckt=*).
9	xsubckt=[]	The instances of the specified subcircuits that are excluded from the check. Default is none.
10	depth=8	Hierarchy levels (starting from top, instance, or subcircuit scope) to be checked. Default is 8.

Parameter Index

Circuit Checks

depth 10	inst 6	subckt 8	xsubckt 9
downth 3	node 1	upth 2	
error limit 5	rcut. 4	xinst 7	

Circuit Checks

Static HighZ Node Check (static_highz)

Description

Reports the nodes that do not have any possible conducting path to a DC power supply or ground.

The results are written to the static.xml file, which can be viewed in a Web browser.

This check is supported only by Spectre XPS.

For additional information, refer to the <u>Static High Impedance Node Check</u> section in the Spectre Classic Simulator, Spectre APS, Spectre X, and Spectre XPS User Guide.

Definition

Name static_highz parameter=value ...

Parameters

Design check parameters

1	node="[]"	Nodes to which the check is applied. Default is none.
2	fanout=all	Fanout setting to filter node with specified connection. When set to <code>gate_has_driver_no_moscap</code> , floating nodes only connecting to MOSCAPs will not be checked. When set to <code>gate_no_moscap</code> , gates only connecting to MOSCAPs will not be checked. Possible values are <code>all</code> , <code>gate</code> , <code>bulk</code> , <code>gate_has_driver_no_moscap</code> , and <code>bulkgate_no_moscap</code> .
3	rpt_node=no	Report node voltages. Possible values are no, all, top and selected.

Circuit Checks

Digitize parameters

4	vpth=-0.4 V	PMOS threshold voltage. This value is used to calculate the voltage drop across a PMOS channel during voltage propagation. Default is $-0.4~\rm V.$
5	vnth=0.5 V	NMOS threshold voltage. This value is used to calculate the voltage drop across a NMOS channel during voltage propagation. Default is 0.5 V.
6	<pre>pwl_time=infinit y</pre>	Time for pwl src to be considered as constant vsrc.

Filtering parameters

7	error_limit=10000	
		Maximum number of errors reported. Default is 10000.

Wildcard scoping

8	inst=[]	Subcircuit instances to which the check is applied. Default includes all instances (inst=*).
9	xinst=[]	Subcircuit instances to be excluded from the check. Default is none.
10	subckt=[]	The instances of the specified subcircuit to which the check is applied. Default includes all subcircuits (subckt=*).
11	xsubckt=[]	The instances of the specified subcircuits that are excluded from the check. Default is none.
12	depth=8	Hierarchy levels (starting from top, instance, or subcircuit scope) to be checked. Default is 8.

Parameter Index

Circuit Checks

depth 12	inst 8	rpt_node 3	vpth 4
error_limit 7	node 1	subckt 10	xinst 9
fanout 2	pwl time 6	vnth 5	xsubckt 11

Static MOSFET Voltage Check (static_mosv)

Description

Reports the MOSFET devices fulfilling the conditional expression on device voltages and device size (w, I).

Supported MOSFET variables are: v(g,s), v(g,d), v(g,b), v(d,b), v(d,b), v(g,b), v(d,b), v(

Supported operators are: +, -, *, /, ==,!=, <, <=, >, >=,||, &&, and !

The results are written to the static.xml file, which can be viewed in a Web browser. This check is supported only by Spectre XPS.

For additional information, refer to the <u>Static MOSFET Voltage Check</u> section in the Spectre Classic Simulator, Spectre APS, Spectre X, and Spectre XPS User Guide.

Definition

Name static mosv parameter=value ...

Parameters

Design check parameters

1	model="[]"	MOSFET device model names to be checked.
2	cond	The conditional expression to be fulfilled. Default is none.
3	rpt_node=no	Report node voltages. Possible values are no, all, top and selected.

Digitize parameters

4	vpth=-0.4 V	PMOS threshold voltage. This value is used to calculate
		the voltage drop across a PMOS channel during voltage
		propagation. Default is -0.4 V.

Circuit Checks

5	vnth=0.5 V	NMOS threshold voltage. This value is used to calculate the voltage drop across a NMOS channel during voltage propagation. Default is 0.5 V.
6	<pre>pwl_time=infini ty</pre>	Time for pwl src to be considered as constant vsrc.

Filtering parameters

7 error_limit=10000

Maximum number of errors reported. Default is 10000.

Wildcard scoping

8	inst=[]	Subcircuit instances to which the check is applied. Default includes all instances (inst=*).
9	xinst=[]	Subcircuit instances to be excluded from the check. Default is none.
10	subckt=[]	The instances of the specified subcircuit to which the check is applied. Default includes all subcircuits (subckt=*).
11	xsubckt=[]	The instances of the specified subcircuits that are excluded from the check. Default is none.
12	depth=8	Hierarchy levels (starting from top, instance, or subcircuit scope) to be checked. Default is 8.

Parameter Index

cond	2	inst	8	rpt_node	: 3	vpth	4
depth	12	model	1	subckt	10	xinst	9

Circuit Checks

error_limit 7 pwl_time 6 vnth 5 xsubckt 11

Static NMOS to vdd count (static_nmos2vdd)

Description

This check counts the unpaired NMOS in a charging path from a fanout node to VDD and report paths that have an NMOS count greater than specified count. The check analyzes the fanout nodes only. It does not check the nodes that connect to MOSDIODEs or MOSCAPs.

The results are written to a file with the extension static.xml, which can be viewed in a web browser.

Definition

Name static_nmos2vdd parameter=value ...

Parameters

Design check parameters

Filtering parameters

2	count=3	Maximum number of permitted NMOS. Default is 3.
---	---------	---

Wildcard scoping

3	inst=[]	Subcircuit instances to which the check is applied. Default includes all instances (inst=*).
4	xinst=[]	Subcircuit instances to be excluded from the check. Default is none.
5	subckt=[]	The instances of the specified subcircuit to which the check is applied. Default includes all subcircuits (subckt=*).
6	xsubckt=[]	The instances of the specified subcircuits that are excluded from the check. Default is none.
7	depth=8	Hierarchy levels (starting from top, instance, or subcircuit scope) to be checked. Default is 8.

Static NMOS Forward Bias Bulk Check (static_nmosb)

Description

Reports the NMOS devices with a forward-biased bulk condition. A violation is generated when the bulk bias voltage meets the following conditions:

```
when mode = definite:
min( Vb ) >= min( Vd, Vs ) + abs( vt )
```

when mode = possible:
max(Vb) >= min(Vd, Vs) + abs(vt)

The results are written to the static.xml file, which can be viewed in a Web browser. This check is supported only by Spectre XPS and Spectre APS.

For additional information, refer to the <u>Static NMOS/PMOS Forward Bias Bulk Check</u> section in the <u>Spectre Classic Simulator</u>, <u>Spectre APS</u>, <u>Spectre X</u>, and <u>Spectre XPS User Guide</u>.

Definition

Name static nmosb parameter=value ...

Parameters

Design check parameters

1	model="[]"	MOSFET device model names to be checked.
2	rpt_node=no	Report node voltages. Possible values are no, all, top and selected.
3	mode=definite	Mode possible will report all possible violations. Mode definite will report definite violations. Default is definite. Possible values are definite and possible.
4	vt=0.3 V	Threshold for p-n junction being checked. Default is $0.3 \ensuremath{\text{V}}.$

Circuit Checks

Digitize parameters

5	vpth=-0.4 V	PMOS threshold voltage. This value is used to calculate the voltage drop across a PMOS channel during voltage propagation. Default is -0.4 V.
6	vnth=0.5 V	NMOS threshold voltage. This value is used to calculate the voltage drop across a NMOS channel during voltage propagation. Default is 0.5 V.
7	pwl_time=infinity	Time for pwl src to be considered as constant vsrc.

Filtering parameters

8 error_limit=10000	Maximum number of errors reported. Default is 10000.
---------------------	--

Wildcard scoping

9	inst=[]	Subcircuit instances to which the check is applied. Default includes all instances (inst=*).
10	xinst=[]	Subcircuit instances to be excluded from the check. Default is none.
11	subckt=[]	The instances of the specified subcircuit to which the check is applied. Default includes all subcircuits (subckt=*).
12	xsubckt=[]	The instances of the specified subcircuits that are excluded from the check. Default is none.
13	depth=8	Hierarchy levels (starting from top, instance, or subcircuit scope) to be checked. Default is 8.

Circuit Checks

Parameter Index

depth 13	model 1	vnth 6	xsubckt	12
error_limit 8	pwl_time 7	vpth 5		
inst 9	rpt_node 2	vt 4		
mode 3	subckt 11	xinst 10		

Circuit Checks

Static Always Conducting NMOSFET Check (static_nmosvgs)

Description

Reports the NMOS devices that are potentially always conducting due to connectivity problems.

The following conditions are checked, and an error is reported if they are fulfilled: NMOS: min(Vg) > min (Vs/Vd) + abs(vt)

The results are written to the static.xml file, which can be viewed in a Web browser. This check is supported only by Spectre XPS.

For additional information, refer to the <u>Static Always Conducting NMOS/PMOS Check</u> section in the <u>Spectre Classic Simulator</u>, <u>Spectre APS</u>, <u>Spectre X</u>, and <u>Spectre XPS User Guide</u>.

Definition

Name static nmosvgs parameter=value ...

Parameters

Design check parameters

1	model="[]"	MOSFET device model names to be checked.
2	vt=0.0v	MOSFET voltage threshold. Default is $0.0v$.
3	rpt_node=no	Report node voltages. Possible values are no, all, top and selected.

Circuit Checks

Digitize parameters

4	vpth=-0.4 V	PMOS threshold voltage. This value is used to calculate the voltage drop across a PMOS channel during voltage propagation. Default is -0.4 V.
5	vnth=0.5 V	NMOS threshold voltage. This value is used to calculate the voltage drop across a NMOS channel during voltage propagation. Default is 0.5 V.
6	<pre>pwl_time=infini ty</pre>	Time for pwl src to be considered as constant vsrc.

Filtering parameters

7 error_limit=10000

Maximum number of errors reported. Default is 10000.

Wildcard scoping

8	inst=[]	Subcircuit instances to which the check is applied. Default includes all instances (inst=*).
9	xinst=[]	Subcircuit instances to be excluded from the check. Default is none.
10	subckt=[]	The instances of the specified subcircuit to which the check is applied. Default includes all subcircuits (subckt=*).
11	xsubckt=[]	The instances of the specified subcircuits that are excluded from the check. Default is none.
12	depth=8	Hierarchy levels (starting from top, instance, or subcircuit scope) to be checked. Default is 8.

Circuit Checks

Parameter Index

In the following index, the number corresponding to each parameter name indicates where to find the description of that parameter.

depth 12	model 1	subckt 10	vt 2
error_limit 7	pwl_time 6	vnth 5	xinst 9
inst 8	rpt_node 3	vpth 4	xsubckt 11

Static PMOS to gnd count (static_pmos2gnd)

Description

This checks counts the unpaired PMOS in a discharging path from the fanout node to GND and report paths that have a PMOS count greater than the specified count.

The check analyzes the fanout nodes only. It does not check the nodes that connect to MOSDIODEs or MOSCAPs.

The results are written to a file with the extension static.xml, which can be viewed in a web browser.

Definition

Name static pmos2gnd parameter=value ...

Circuit Checks

Parameters

Design check parameters

1 node="[]" Nodes to which the check is applied. Default is none.	1	node="[]"	Nodes to which the check is applied. Default is none.
---	---	-----------	---

Filtering parameters

2 count=3 Maximum number of permitted PMOS. Default is 3.

Wildcard scoping

3	inst=[]	Subcircuit instances to which the check is applied. Default includes all instances (inst=*).
4	xinst=[]	Subcircuit instances to be excluded from the check. Default is none.
5	subckt=[]	The instances of the specified subcircuit to which the check is applied. Default includes all subcircuits (subckt=*).
6	xsubckt=[]	The instances of the specified subcircuits that are excluded from the check. Default is none.
7	depth=8	Hierarchy levels (starting from top, instance, or subcircuit scope) to be checked. Default is 8.
	· · · · · · · · · · · · · · · · · · ·	

Static PMOS Forward Bias Bulk Check (static_pmosb)

Description

Reports the PMOS devices with a forward-biased bulk condition.

A violation is generated when the bulk bias voltage meets the following conditions:

■ when mode = definite:

```
max( Vb ) <= max( Vd, Vs ) - abs( vt )</pre>
```

■ when mode = possible:

```
min( Vb ) <= max( Vd, Vs ) - abs( vt )
```

The results are written to the static.xml file, which can be viewed in a Web browser. This check is supported only by Spectre XPS and Spectre APS.

For additional information, refer to the <u>Static NMOS/PMOS Forward Bias Bulk Check</u> section in the <u>Spectre Classic Simulator</u>, <u>Spectre APS</u>, <u>Spectre X</u>, and <u>Spectre XPS</u> User Guide.

Definition

Name static pmosb parameter=value ...

Parameters

Design check parameters

1	model="[]"	MOSFET device model names to be checked.
2	rpt_node=no	Report node voltages. Possible values are no, all, top and selected.
3	mode=definite	Mode possible will report all possible violations. Mode definite will report definite violations. Default is definite. Possible values are definite and possible.
4	vt=0.3 V	Threshold for p-n junction being checked. Default is 0.3V.

Circuit Checks

Digitize parameters

5	vpth=-0.4 V	PMOS threshold voltage. This value is used to calculate the voltage drop across a PMOS channel during voltage propagation. Default is -0.4 V.
6	vnth=0.5 V	NMOS threshold voltage. This value is used to calculate the voltage drop across a NMOS channel during voltage propagation. Default is 0.5 V.
7	pwl_time=infinity	Time for pwl src to be considered as constant vsrc.

Filtering parameters

8	error_limit=10000	Maximum number of errors reported. Default is
		10000.

Wildcard scoping

9	inst=[]	Subcircuit instances to which the check is applied. Default includes all instances (inst=*).
10	xinst=[]	Subcircuit instances to be excluded from the check. Default is none.
11	subckt=[]	The instances of the specified subcircuit to which the check is applied. Default includes all subcircuits (subckt=*).
12	xsubckt=[]	The instances of the specified subcircuits that are excluded from the check. Default is none.
13	depth=8	Hierarchy levels (starting from top, instance, or subcircuit scope) to be checked. Default is 8.

Circuit Checks

Parameter Index

depth 13	model 1	vnth 6	xsubckt 12
error_limit 8	pwl_time 7	vpth 5	
inst 9	rpt_node 2	vt 4	
mode 3	subckt 11	xinst 10	

Circuit Checks

Static Always Conducting PMOSFET Check (static_pmosvgs)

Description

Reports the PMOS devices potentially always conducting due to connectivity problems.

The following conditions are checked, and an error is reported if they are fulfilled: PMOS: max(Vg) < max (Vs/Vd) - abs(vt)

The results are written to the static.xml file, which can be viewed in a Web browser. This check is supported only by Spectre XPS.

For additional information, refer to the <u>Static Always Conducting NMOS/PMOS Check</u> section in the <u>Spectre Classic Simulator</u>, <u>Spectre APS</u>, <u>Spectre X</u>, and <u>Spectre XPS</u> User Guide.

Definition

Name static pmosvgs parameter=value ...

Parameters

Design check parameters

1	model="[]"	MOSFET device model names to be checked.
2	vt=0.0 V	MOSFET voltage threshold. Default is 0.0v.
3	rpt_node=no	Report node voltages. Possible values are no, all, top and selected.

Digitize parameters

4	vpth=-0.4 V	PMOS threshold voltage. This value is used to
		calculate the voltage drop across a PMOS channel
		during voltage propagation. Default is -0.4 V.

Circuit Checks

5	vnth=0.5 V	NMOS threshold voltage. This value is used to calculate the voltage drop across a NMOS channel during voltage propagation. Default is 0.5 V.
6	pwl_time=infinity	Time for pwl src to be considered as constant vsrc.

Filtering parameters

7	error_limit=10000	Maximum number of errors reported. Default is
		10000.

Wildcard scoping

8	inst=[]	Subcircuit instances to which the check is applied. Default includes all instances (inst=*).
9	xinst=[]	Subcircuit instances to be excluded from the check. Default is none.
10	subckt=[]	The instances of the specified subcircuit to which the check is applied. Default includes all subcircuits (subckt=*).
11	xsubckt=[]	The instances of the specified subcircuits that are excluded from the check. Default is none.
12	depth=8	Hierarchy levels (starting from top, instance, or subcircuit scope) to be checked. Default is 8.

Parameter Index

depth	12		model	1		subckt	10	vt	2	
error	limit.	7	pwl t.in	ne	6	vnth	5	xinst	-	9

Circuit Checks

inst 8 rpt_node 3 vpth 4 xsubckt 11

Circuit Checks

Static RCDelay Check (static_rcdelay)

Description

Reports nodes with excessive rise or fall times. Rise and fall times are based on estimation.

Only the fanout nodes are analyzed. Nodes connecting to MOSDIODEs or MOSCAPs are not checked. The check reports either the top worst case rise/fall times (maxnrise, maxnfall) or nodes with rise/fall times above the user-defined thresholds (maxtrise, maxtfall). In addition, the check reports the driving MOSFETs and the receiving MOSFET (gate connected to the analyzed node) for each node.

The results are reported into a file with the extension static.xml, which can be read with a web browser.

For additional information, refer to the <u>Static RC Delay Check</u> section in the <u>Spectre Classic Simulator</u>, <u>Spectre APS</u>, <u>Spectre X</u>, <u>and Spectre XPS User Guide</u>.

Definition

Name static rcdelay parameter=value ...

Parameters

Design check parameters

1	node="[]"	Nodes to which the check is applied. Default is none.
2	detailed_path=no	Report all possible (yes) or worst case (no) rise/fall time per node. Possible values are yes and no.
3	<pre>fanoutmargin=[0.1 0.9]</pre>	Relative fanout level (in ratio of VDD voltage) for which rise and fall time is measured. The range of values is [0.01 0.99]. Lower margin should be less than the higher margin.

Circuit Checks

Filtering parameters

4	cmin=1e-14	Node capacitance threshold. Only nodes with total capacitance higher than the specified value are reported. Default is 1e-14.
5	maxnrise=0	Report the top number nodes with highest rise-time. Default is none.
6	minnrise=0	Report the bottom number nodes with lowest rise-time. Default is none.
7	maxnfall=0	Report the top number nodes with highest fall-time. Default is none.
8	minnfall=0	Report the bottom number nodes with lowest fall-time. Default is none.
9	maxtrise=infinity	Report only those node names with rise time higher than the specified value. Default is infinity.
10	mintrise=0	Report only those node names with rise time lower than the specified value. Default is none.
11	maxtfall=infinity	Report only those node names with fall time higher than the specified value. Default is infinity.
12	mintfall=0	Report only those node names with fall time lower than the specified value. Default is none.

Wildcard scoping

13	inst=[]	Subcircuit instances to which the check is applied. Default includes all instances (inst=*).
14	xinst=[]	Subcircuit instances to be excluded from the check. Default is none.
15	subckt=[]	The instances of the specified subcircuit to which the check is applied. Default includes all subcircuits (subckt=*).
16	xsubckt=[]	The instances of the specified subcircuits that are excluded from the check. Default is none.

Circuit Checks

17	depth=8	Hierarchy levels (starting from top, instance, or
		subcircuit scope) to be checked. Default is 8.

Parameter Index

cmin 4	inst 13	maxtrise	9	mintrise	10
xsubckt 16	depth 17	maxnfall	7	minnfall	8
node 1	detailed_path 2	maxnrise	5	minnrise	6
subckt 15	fanoutmargin 3	maxtfall	11	mintfall	12
xinst 14					

Static Resistor Check (static_resistor)

Description

Reports all resistors within or outside the range of rmin and rmax. It can also generate a distribution list of all the resistors in a circuit.

If the type parameter is set to range, all the resistors outside the range of rmin and rmax will be reported. If the type parameter is set to print, all the resistors between rmin and rmax will be reported. In the report, the resistor names can be sorted by clicking on the Device name header in the Web browser.

If the type parameter is set to distr, a distribution list will be generated for all resistors. There are a maximum of 12 bins: -Inf - 0, 0 - 1m, 1m - 10m, 10m - 0.1, 0.1 - 1, 1 - 10, 10 - 100, 100 - 1k, 1k - 10k, 10k - 100k, 100k - 100k

However, if two or more consecutive bins are empty, they will merge into one bin, reducing the number of bins. If type is set to distr, the parameters rmin, rmax and error_limit are ignored.

The results are reported into the static.xml file, which can be viewed in a Web browser. This check is supported only by Spectre XPS.

For additional information, refer to the <u>Static Resistor Check</u> section in the <u>Spectre Classic Simulator</u>, <u>Spectre APS</u>, <u>Spectre X</u>, and <u>Spectre XPS User Guide</u>.

Definition

Name static resistor parameter=value ...

Parameters

Design check parameters

1	type=print	Checking types. Possible values are range, distr, and print.
2	rmin=-1000E9 Ω	Minimum resistor value.
3	rmax=1000E9 Ω	Maximum resistor value.

Circuit Checks

Filtering parameters

4 error_limit=10000 Maximum number of errors reported. Default is 10000.

Circuit Checks

Static Resistor Voltage Check (static_resv)

Description

Reports the resistor devices fulfilling the conditional expression on device voltages.

Supported resistor variables are: v(1,2), v(1), and v(2)

Supported operators are: +, -, *, /, ==,!=, <, <=, >, >=,||, &&, and !

The results are written to the static.xml file, which can be viewed in a Web browser. This check is supported only by Spectre XPS.

For additional information, refer to the <u>Static Resistor Voltage Check</u> section in the Spectre Classic Simulator, Spectre APS, Spectre X, and Spectre XPS User Guide.

Definition

Name static resv parameter=value ...

Parameters

Design check parameters

1	cond	The conditional expression to be fulfilled. Default is none.
2	rpt_node=no	Report node voltages. Possible values are no, all, top and selected.

Digitize parameters

3	vpth=-0.4 V	PMOS threshold voltage. This value is used to calculate the voltage drop across a PMOS channel
		during voltage propagation. Default is -0.4 V.

Circuit Checks

4	vnth=0.5 V	NMOS threshold voltage. This value is used to calculate the voltage drop across a NMOS channel during voltage propagation. Default is 0.5 V.
5	pwl_time=infinity	Time for pwl src to be considered as constant vsrc.

Filtering parameters

6	error_limit=10000	Maximum number of errors reported. Default is 10000.
---	-------------------	--

Wildcard scoping

7	inst=[]	Subcircuit instances to which the check is applied. Default includes all instances (inst=*).
8	xinst=[]	Subcircuit instances to be excluded from the check. Default is none.
9	subckt=[]	The instances of the specified subcircuit to which the check is applied. Default includes all subcircuits (subckt=*).
10	xsubckt=[]	The instances of the specified subcircuits that are excluded from the check. Default is none.
11	depth=8	Hierarchy levels (starting from top, instance, or subcircuit scope) to be checked. Default is 8.

Parameter Index

cond 1	inst 7	subckt 9	xinst 8
depth 11	pwl_time 5	vnth 4	xsubckt 10
error limit 6	rpt node 2	voth 3	

Circuit Checks

Static Subckt Port Voltage Check (static_subcktport)

Description

Reports instances of the user-specified subckt fulfilling the conditional expression on port voltages. Only one subckt is allowed per statement.

Voltages of a port can be referenced by the port name of a subcircuit. For example, consider the subcircuit definition subckt INV port_A port_B. Here, supported port names are: v(port_A), v(port_B) and v(port_A,port_B).

Supported operators are: +, -, *, /, ==,!=, <, <=, >, >=,||, &&, and !

All design instances of the subcircuit specified in subckt will be checked.

The results are written to the dynamic.xml file, which can be viewed in a Web browser.

For additional information, refer to the <u>Static Subcircuit Port Voltage Check</u> section in the Spectre Classic Simulator, Spectre APS, Spectre X, and Spectre XPS User Guide.

Definition

Name static subcktport parameter=value ...

Circuit Checks

Parameters

Design check parameters

1	subckt	Instances of the specified subcircuit to which the check is applied. Wildcard is not supported. Only one subcircuit is allowed per statement. Default is none.
2	cond	The conditional expression to be fulfilled. Default is none.
3	vpth=-0.4 V	PMOS threshold voltage. This value is used to calculate the voltage drop across a PMOS channel during voltage propagation. Default is -0.4 V.
4	vnth=0.5 V	NMOS threshold voltage. This value is used to calculate the voltage drop across a NMOS channel during voltage propagation. Default is 0.5 V.
5	pwl_time=inf	inity
		Time for pwl source to be considered as constant vsource.

Filtering parameters

6 error_limit=10000

Maximum number of errors reported. Default is 10000.

Circuit Checks

Static Transmission Gate Check (static_tgate)

Description

Reports the transmission gates which cause potential leakage currents between power supplies. These gates can be characterized by their node connectivity, based on the following:

- Nodes that connect to the gate and NMOS drain/source terminals, but not to the PMOS drain/source terminals
- Nodes that connect to the gate and PMOS drain/source terminals, but not to the NMOS drain/source terminals

The results are written to the static.xml file, which can be viewed in a Web browser. This check is supported only by Spectre XPS.

For additional information, refer to the <u>Static Transmission Gate Check</u> section in the Spectre Classic Simulator, Spectre APS, Spectre X, and Spectre XPS User Guide.

Definition

Name static tgate parameter=value ...

Parameters

Design check parameters

1 node="[]" Nodes to which the check is applied. Default is none.	s none.
---	----------------

Filtering parameters

2	error_limit=10000	Maximum number of errors reported. Default is
		10000.

Circuit Checks

Wildcard scoping

3	inst=[]	Subcircuit instances to which the check is applied. Default includes all instances (inst=*).
4	xinst=[]	Subcircuit instances to be excluded from the check. Default is none.
5	subckt=[]	The instances of the specified subcircuit to which the check is applied. Default includes all subcircuits (subckt=*).
6	xsubckt=[]	The instances of the specified subcircuits that are excluded from the check. Default is none.
	depth=8	Hierarchy levels (starting from top, instance, or subcircuit scope) to be checked. Default is 8.

Parameter Index

depth 11	inst_file 4	subckt_file 8	xsubckt 9
error_limit 2	node 1	xinst 5	xsubckt_file 10
inst 3	subckt 7	xinst file 6	

Circuit Checks

Static Voltage Domain Conflict Check (static_vconflict)

Description

Reports low voltage domain driving MOSFET devices from high voltage domain.

Fanout violations - Reports PMOS and depletion NMOS of higher voltage domain driven by MOSFET devices of low voltage domain.

MultiDC violations - Reports Muiti-DC sources and their connecting path elements.

The results are written to the static.xml file, which can be viewed in a Web browser.

This check is supported only by Spectre XPS and Spectre APS.

Definition

Name static vconflict parameter=value ...

Circuit Checks

Parameters

Design check parameters

1 rpt_node=no Report node voltages.Possible values are no, all, top and selected.

Digitize parameters

1	vpth=-0.4 V	PMOS threshold voltage. This value is used to calculate the voltage drop across a PMOS channel during voltage propagation. Default is $-0.4~\rm V$.
2	vnth=0.5 V	NMOS threshold voltage. This value is used to calculate the voltage drop across a NMOS channel during voltage propagation. Default is 0.5 V.
3	pwl_time	Time for pwl src to be considered as constant vsrc.

Filtering parameters

4	error_limit=10000	Maximum number of errors reported. Default is
		10000.

Static Voltage Domain Device Check (static_voltdomain)

Description

Reports the high voltage driving the low-voltage MOSFET and low voltage driving the high-voltage MOSFET

The results are written to the static.xml file, which can be viewed in a Web browser. This check is supported only by Spectre XPS and Spectre APS.

For additional information, refer to the <u>Static Voltage Domain Device Check</u> section in the Spectre Classic Simulator, Spectre APS, Spectre X, and Spectre XPS User Guide.

Definition

Name static voltdomain parameter=value ...

Parameters

Design check parameters

1	model=[]	MOSFET device model names to be checked. By default all types of MOSFETs are checked.
2	rpt_node=no	Report node voltages. Possible values are no, all, top and selected.

Digitize parameters

<pre>3 pwl_time=infinity</pre>	Time for pwl src to be considered as constant vsrc.
--------------------------------	---

Filtering parameters

4	error_limit=10000	Maximum number of errors reported. Default is	
		10000.	

Circuit Checks

Wildcard scoping

5	inst=[]	Subcircuit instances to which the check is applied. Default includes all instances (inst=*).
6	xinst=[]	Subcircuit instances to be excluded from the check. Default is none.
7	subckt=[]	The instances of the specified subcircuit to which the check is applied. Default includes all subcircuits (subckt=*).
8	xsubckt=[]	The instances of the specified subcircuits that are excluded from the check. Default is none.
9	depth=8	Hierarchy levels (starting from top, instance, or subcircuit scope) to be checked. Default is 8.

Parameter Index

depth 9	model 1	subckt 7
error_limit 4	pwl_time 3	xinst 6
inst 5	rpt node 2	xsubckt 8

Circuit Checks

References

This section gives additional details about the source documents referred to in the text.

- [antognetti88] Paolo Antognetti, Giuseppe Massobrio. Semiconductor Device Modeling with SPICE. McGraw-Hill, New York, 1988.
- [gear71] C. William Gear. Numerical Initial Value Problems in Ordinary Differential Equations. Prentice-Hall, 1971.
- [hammerstad80] E. Hammerstad, O. Jensen. "Accurate models for microstrip computer-aided design." IEEE MTT-S 1980 International Microwave Symposium Digest, pages 407-409.
- [jansen83] Rolf H. Jansen, Martin Kirschning. "Arguments and an accurate model for the power-current formulation of microstrip characteristic impedance." Arch. Elek. Ubertragung (AEU), vol. 37, 1983, pages 108-112.
- [kirschning82] M. Kirschning, R. H. Jansen. "Accurate model for effective dielectric constant of microstrip with validity up to millimetre-wave frequencies." Electronic Letters, vol. 18, no. 6, 18 March 1982, pages 272-273.
- [kundert90]Kenneth S. Kundert, Jacob K. White, Alberto Sangiovanni-Vincentelli. Steady-State Methods for Simulating Analog and Microwave Circuits. Kluwer Academic Publishers, 1990.
- [nagel75]Laurence W. Nagel. SPICE2: A Computer Program to Simulate Semiconductor Circuits. Ph. D. dissertation, University of California at Berkeley, May 1975. Available through Electronics Research Laboratory Publications, U. C. B., 94720; Memorandum No. UCB/ERL M520.
- [quarles89] Thomas L. Quarles. Analysis of Performance and Convergence Issues for Circuit Simulation. Ph. D. dissertation, University of California at Berkeley, April 1989. Extensively documents the Spice3 program. Available through Electronics Research Laboratory Publications, U. C. B., 94720; Memorandum No. UCB/ERL M89/42.

References

- [statz87]Hermann Statz, Paul Newman, Irl W. Smith, Robert A. Pucel, Hermann A. Haus. "GaAs FET device and circuit simulation in SPICE." IEEE Transactions on Electron Devices, vol. ED-34, no. 2, pages 160-169, February 1987.
- [vladimirescu81]A. Vladimirescu, Kaihe Zhang, A. R. Newton, D. O. Pederson, A. Sangiovanni-Vincentelli. SPICE Version 2G User's Guide, August 1981. Available through Industrial Liaison Program Software Distribution office, Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, 94720.
- [yang82]Ping Yang, Pallab K. Chatterjee. "SPICE modeling for small geometry MOSFET circuits." IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. CAD-1, no. 4, pages 169-182, October 1982.

analogmodel(Using analogmodel for Model Passing) 459 Index analyses AC Analysis 45 ACMatch Analysis 51 Alter a Circuit, Component, or Netlist Parameter <u>56</u> Alter Group 58 **Symbols** Check Parameter Values 61 Checklimit Analysis 62 %S DEFAULTS 41 Circuit Information 151 %X (+/-), spectre command option 30 DC Analysis 66 +/-interactive, spectre command option <u>33</u> DC Device Matching Analysis 72 Deferred Set Options 386 Envelope Following Analysis Α Harmonic Balance Steady State Analysis 92 ac HB AC Analysis 113 analysis HB Noise Analysis 121 definition 45 HB S-Parameter Analysis 132 description 45 HB Stability Analysis 140 parameters 45 HB XF Analysis 144 AC Analysis analyses 45 Immediate Set Options 188 ac(AC Analysis) 45 Load Pull Analysis 163 acmatch Monte Carlo Analysis analysis Noise Analysis 182 definition 51 Periodic AC Analysis 251 description 51 Periodic Noise Analysis 259 parameters 51 Periodic S-Parameter Analysis 270 ACMatch Analysis analyses <u>51</u> Periodic STB Analysis 304 acmatch(ACMatch Analysis) 51 Periodic Steady-State Analysis 278 -alias, spectre command option 32 Periodic Transfer Function alter Analysis 309 analysis PZ Analysis 318 definition 56 Quasi-Periodic AC Analysis 324 description 56 Quasi-Periodic Noise Analysis 329 parameters 56 Quasi-Periodic S-Parameter Alter a Circuit, Component, or Netlist Analysis 337 Parameter analyses <u>56</u> Quasi-Periodic Steady State Alter Group analyses 58 Analysis 345 alter(Alter a Circuit, Component, or Netlist Quasi-Periodic Transfer Function Parameter) <u>56</u> Analysis 362 altergroup Reliability Analysis 368 analysis Setting for Simulink-MATLAB codefinition 58 simulation 65 description 58 Shell Command 393 parameters <u>59</u> S-Parameter Analysis altergroup(Alter Group) 58 Special current saving options analogmodel Stability Analysis 400 other Sweep Analysis 413

description 459

THERMAL Analysis 420

Time-Domain Reflectometer	•	(ac) <u>45</u>
Analysis <u>418</u>		(acmatch) <u>51</u>
Transfer Function Analysis	446	(alter) <u>56</u>
analysis	110	(altergroup) <u>58</u>
definition		(check) <u>61</u>
(ac) <u>45</u>		(checklimit) <u>62</u>
(acmatch) <u>51</u>		(cosim) <u>65</u>
(alter) <u>56</u>		(dc) <u>66</u>
(altergroup) <u>58</u>		(dcmatch) <u>72</u>
(check) <u>61</u>		(envlp) <u>78</u>
(checkĺimi <u>t) 62</u>		(hb)
(cosim) <u>65</u>		(hbac) <u>113</u>
(dc) <u>66</u>		(hbnoise) <u>121</u>
(dc) <u>55</u> (dcmatch) <u>72</u>		(hben) 132
		(hbsp) <u>132</u> (hbstb) <u>140</u>
(envlp) <u>79</u>		(NDSID) <u>140</u>
(hb) <u>92</u>		(hbxf) <u>144</u>
(hbac) <u>113</u>		(INTO) <u>151</u>
(hbnoise) <u>123</u>		(loadpull) <u>163</u>
(hbsp) 132		(montecarlo) <u>166</u>
(hbsp) <u>132</u> (hbstb) <u>140</u>		(noise) <u>182</u>
$(hbxf)$ $1\overline{44}$		(options) <u>188</u>
(hbxf) <u>144</u> (info) <u>151</u>		(pac) <u>251</u>
(If) <u>157</u>		(pnoise) <u>259</u>
(loadpull) <u>163</u>		(prioise) <u>255</u> (pep) 270
		(psp) <u>270</u>
(montecarlo) <u>167</u>		(pss) <u>276</u>
(noise) <u>183</u>		(psp) <u>270</u> (pss) <u>278</u> (pstb) <u>304</u> (pxf) <u>309</u> (pz) <u>318</u>
(options) <u>188</u>		(pxt) <u>309</u>
(pac) <u>251</u>		(pz) <u>318</u>
(pnoise) <u>261</u>		(qpac) <u>324</u>
(psp) <u>270</u>		(qpnoise) <u>329</u>
(pss) <u>279</u>		(qpsp) <u>337</u>
(pstb) <u>304</u>		(gpss) <u>345</u>
(psp) <u>270</u> (pss) <u>279</u> (pstb) <u>304</u> (pxf) <u>309</u> (pz) <u>318</u>		(qpsp) <u>337</u> (qpss) <u>345</u> (qpxf) <u>362</u>
(pz) 3 <u>18</u>		(reliability) <u>368</u>
(qpac) <u>324</u>		(set) <u>386</u>
(qpnoise) <u>331</u>		(shell) 393
(qpsp) <u>337</u>		(sp) 394
(apse) 346		(stb) <u>400</u>
(qpss) <u>346</u>		(sweep) <u>413</u>
(qpxf) <u>362</u>		
(reliability) <u>368</u>		(tdr) 418
(set) 386		(tran) <u>423</u>
(shéll) <u>393</u>		(uti) <u>444</u>
(sp) <u>394</u>		(xf) <u>446</u>
(stb) <u>400,</u> <u>408</u>		parameters
(sweep) <u>413</u>		(ac) <u>45</u>
(tdr) <u>418</u>		(acmatch) <u>51</u>
(thérmal) 420		(alter) <u>56</u>
(tran) <u>423</u>		(altergroup) <u>59</u>
(uti) 444		(check) <u>61</u>
(xf) 447		(checklimit) <u>62</u>
description		(cosim) <u>65</u>
accompliant		(000111) 00

(dc) <u>66</u> (dcmatch) <u>73</u>		C
(acmatch) 79 (hb) 93 (hbac) 114 (hbnoise) 123 (hbsp) 132 (hbstb) 141 (hbxf) 144 (info) 152 (loadpull) 163 (montecarlo) 167 (noise) 183 (options) 188 (pac) 252 (pnoise) 261 (psp) 270 (pss) 279 (pstb) 305 (pxf) 309 (pz) 318 (qpac) 324 (qpnoise) 331 (qpsp) 337 (qpsp) 337 (qpsp) 346 (qpxf) 362 (reliability) 368 (set) 386 (shell) 393 (sp) 394 (stb) 400, 408 (sweep) 413 (tdr) 418 (thermal) 420 (tran) 423 (uti) 445 (xf) 447 attached simulator control 31		C preprocessor (CPP) control 32 check analysis definition 61 parameters 61 Check Parameter Values analyses 61 check(Check Parameter Values) 61 checker definition (dyn_activity) 563 (dyn_actnode) 565 (dyn_capv) 567 (dyn_depath) 569 (dyn_delay) 572 (dyn_diodev) 575 (dyn_exi) 577 (dyn_exi) 577 (dyn_exi) 599 (dyn_float_tran_stat) 592 (dyn_floatdcpath) 584 (dyn_glitch) 597 (dyn_noisynode) 605 (dyn_noisynode) 609 (dyn_pulsewidth) 612 (dyn_setuphold) 617 (dyn_stahighz) 620 (dyn_subcktport) 623 (dyn_subcktport) 625 (static_capacitor) 628 (static_capt) 630 (static_diodev) 637 (static_erc) 639
В		(static_highfanout) <u>642</u> (static_highz) <u>645</u>
Behavioural Source Use Model other bsource other description 461 bsource(Behavioural Source Use Model) 461 Built-in Mathematical and Physical Constants other 474	<u>461</u>	(static_mosv) 648 (static_nmos2vdd) 651 (static_nmosb) 652 (static_nmosvgs) 655 (static_pmos2gnd) 657 (static_pmosb) 659 (static_pmosvgs) 662 (static_rcdelay) 665 (static_resistor) 668

(atatia rapy) 670	(dun conv) FG7
(static_resv) 670	(dyn_capv) <u>567</u>
(static_subcktport) <u>672</u>	(dyn_dcpath) <u>570</u>
(static_tgate) 674	(dyn_delay) <u>572</u>
(static_vconflict) 676	(dyn_diodev) <u>575</u>
(static_voltdomain) <u>678</u>	(dyn_exi) <u>577</u>
description	(dyn_exrf) <u>579</u>
(dyn_actnode) <u>565</u>	(dýn_float_tran_stat) <u>593</u>
	(dyn_floatdeneth) FOF
(dyn_capv) <u>563,</u> <u>567</u>	(dyn_floatdcpath) <u>585</u>
(dyn_dcpath) <u>569</u>	(dyn_glitch) <u>597</u>
(dyn_delay) 5 <u>72</u>	(dyn_highz) <u>600</u>
(dyn_diodev)_ <u>575</u>	(dyn_mosv) <u>605</u>
(dyn_exi) <u>577</u>	(dyn_nodecap) <u>607</u>
(dyn_exrf) <u>579</u>	(dyn_noisynode) <u>609</u>
(dyn_float_tran_stat) <u>591</u>	(dyn_pulsewidth) 612
(dyn_floatdcpath) 582	(dyn_resv) 615
(dyn_glitch) <u>597</u>	(dyn_setuphold) <u>617</u>
(dyn_highz) <u>600</u>	(dyn_stahighz) <u>621</u>
(dyn_mosv) <u>605</u>	(dyn_subcktport) 623
(dyn_nodecap) <u>607</u>	(dyn_subcktpwr) <u>625</u>
(dyn_noisynode) <u>609</u>	(static_capacitor) <u>628</u>
(dyn_pulsewidth) <u>612</u>	(static_capv) 630
(dyn_resv) <u>615</u>	(static_coupling) 633
(dyn_setuphold) <u>617</u>	(static_dcpath) <u>635</u>
(dyn_stahighz) <u>620</u>	(static_diodev) <u>637</u>
(dyn_subcktport) <u>623</u>	(static_erc) <u>639</u>
(dyn_subcktpwr) 625	(static_highfanout) 643
(static_capacitor) <u>628</u>	(static_highz) <u>645</u>
(static_capv) <u>630</u>	(static_mosv) <u>648</u>
(static_coupling) 632	(static_nmos2vdd) 651
(static_dcpath) 635	(static_nmosb) <u>652</u>
(static_diodev) <u>637</u>	(static_nmosvgs) <u>655</u>
(static_erc) <u>639</u>	(static_pmos2gnd) <u>658</u>
(static_highfanout) <u>642</u>	(static_pmosb) 659
(static_highz) 645	(static_pmosvgs) <u>662</u>
(static_mosv) <u>648</u>	(static_rcdelay) <u>665</u>
(static_nmos2vdd) <u>651</u>	(static_resistor) <u>668</u>
(static_nmosb) <u>652</u>	(static_resv) <u>670</u>
(static_nmosvgs) 655	(static_subcktport) 673
(static_pmos2gnd) <u>657</u>	(static_tgate) <u>674</u>
(static_pmosb) <u>659</u>	(static_vconflict) <u>677</u>
(static_pmosvgs) 662	(static_voltdomáin) 678
(static_rcdelay) <u>665</u>	checkers
(static_resistor) <u>668</u>	Dynamic Capacitor Voltage Check
(static_resv) 670	Violations 567
(static_subcktport) 672	Dynamic DC Leakage Path Check
(static_tgate) 674	Violations 569
(static_vconflict) 676	Dynamic Delay Check <u>572</u>
(static_voltdomáin) 678	Dynamic Diode Voltage Check 575
parameters	
	Dynamic Excessive Element Current
(dyn_activity) <u>563</u>	Check Violations <u>577</u>
(dyn_actnode) <u>565</u>	Dynamic Excessive Rise, Fall, Undefined
· • =	

Olata Than Olata	Object Teachers of the Object
State Time Check	Static Transmission Gate Check
Violations <u>579</u>	Violations <u>674</u>
Dynamic Floating Node Induced DC	Static Voltage Domain Conflict
Leakage Path Check	Check <u>676</u>
Violations <u>582</u>	Static Voltage Domain Device Check
Dynamic Floating Node Statistical	Violations <u>678</u>
Check 591	checklimit
Dynamic Glitch Check Violations 597	analysis
Dynamic HighZ Node Check	definition <u>62</u>
Violations 600	description <u>62</u>
Dynamic MOSFET Voltage Check	parameters <u>62</u>
Violations 605	Checklimit Analysis analyses 62
Dynamic Node Capacitance Check 607	checklimit(Checklimit Analysis) 62
Dynamic Noisy Node Check	Checkpoint - Restart other 470
Violations 609	checkpoint (+/-), spectre command
Dynamic Pulse Width Check 612	option <u>29</u>
Dynamic Resistor Voltage Check	checkpoint and recovery <u>29</u>
Violations 615	checkpoint(Checkpoint - Restart) 470
Dynamic Setup and Hold Check Violations 617	Circuit Information analyses <u>151</u> cmiconfig
Dynamic Statistical HighZ Node	other
Check 620	description 472
Dynamic Subckt Instance Activity	cmiconfig(Configuring CMI Shared
Check 563	Objects) 472
Dynamic Subckt Port Power Check	-cols, spectre command option 30
Violations 625	-colslog, spectre command option 30
Dynamic Subckt Port voltage/current	Configuring CMI Shared Objects other 472
Check 623	constants
Static Always Conducting MOSFET	other
Check Violations 655, 662	description 474
Static Capacitor Check Violations 628	constants(Built-in Mathematical and
Static Capacitor Voltage Check	Physical Constants) 474
Violations 630	conventions 12, 13
Static Coupling Impact Check 632	convergence
Static DC Leakage Path Check	other
Violations 635	description 476
Static Diode Voltage Check 637	Convergence Difficulties other 476
Static ERC Check Violations 639	convergence Convergence
Static Forward Bias Bulk Check	Ďifficulties) <u>476</u>
Violations <u>652, 659</u>	cosim
Static Highfanout Check 642	analysis
Static HighZ Node Check	definition <u>65</u>
Violations <u>645</u>	description <u>65</u>
Static MOSFET Voltage Check	parameters <u>65</u>
Violations <u>648</u>	cosim(Setting for Simulink-MATLAB co-
Static PMOS to gnd count 657	simulation) <u>65</u>
Static RCDelay Check 665	
Static Resistor Check Violations 668	n
Static Resistor Voltage Check	D
Violations <u>670</u>	
Static Subckt Port Voltage Check 672	-D. spectre command option 32

dc	dun dolay/Dynamic Dolay Chook) 572
	dyn_delay(Dynamic Delay Check) <u>572</u>
analysis	dyn_diodev
definition <u>66</u>	checker
description <u>66</u>	definition <u>575</u>
parameters <u>66</u>	description <u>575</u>
DC Analysis analyses 66	parameters <u>575</u>
DC Device Matching Analysis analyses 72	dyn_diodev(Dynamic Diode Voltage
dc(DC Analysis) 66	Check) <u>575</u>
dcmatch	dyn_exi
analysis	checker
definition <u>72</u>	definition <u>577</u>
description <u>72</u>	description <u>577</u>
parameters <u>73</u>	parameters <u>577</u>
dcmatch(DC Device Matching Analysis) 72	dyn_exi(Dynamic Excessive Element
dcopt	Current Check Violations) <u>577</u>
other	dyn_exrf
definition 478	checker
description 478	definition <u>579</u>
debug (+/-), spectre command option 31	description <u>579</u>
defaults of parameter values 41	parameters <u>579</u>
Deferred Set Options analyses 386	dyn_exrf(Dynamic Excessive Rise, Fall,
dyn_activity	Undefined State Time Check
checker	Violations) 579
definition 563	
	dyn_float_tran_stat checker
parameters <u>563</u>	
dyn_activity(Dynamic Subckt Instance	definition <u>592</u>
Activity Check) <u>563</u>	description <u>591</u>
dyn_actnode	parameters <u>593</u>
checker	dyn_float_tran_stat(Dynamic Floating Node
definition <u>565</u>	Statistical Check) <u>591</u>
description <u>565</u>	dyn_floatdcpath
parameters <u>565</u>	checker 504
dyn_capv	definition <u>584</u>
checker	description <u>582</u>
definition <u>567</u>	parameters <u>585</u>
description <u>563, 567</u>	dyn_floatdcpath(Dynamic Floating Node
parameters <u>567</u>	Induced DC Leakage Path Check
dyn_capv(Dynamic Capacitor Voltage	Violations) <u>582</u>
Check Violations) <u>567</u>	dyn_glitch
dyn_dcpath	checker
checker	definition <u>597</u>
definition <u>569</u>	description <u>597</u>
description <u>569</u>	parameters <u>597</u>
parameters <u>570</u>	dyn_glitch(Dynamic Glitch Check
dyn_dcpath(Dynamic DC Leakage Path	Violations) 597
Check Violations) <u>569</u>	dyn_highz / —
dyn_delay	checker
checker	definition 600
definition <u>572</u>	description 600
description 572	parameters <u>600</u>
parameters 572	dvn highz(Dvnamic HighZ Node Check

Violations) 600	checker
dyn_mosv	definition <u>623</u>
checker	description <u>623</u>
definition <u>605</u>	parameters <u>623</u>
description 605	dyn_subcktport(Dynamic Subckt Port
parameters <u>605</u>	voltage/current Check) 623
dyn_mosv(Dynamic MOSFET Voltage	dyn_subcktpwr
Check Violations) 605	checker
dyn_nodecap	definition 625
checker	description 625
definition 607	parameters <u>625</u>
description 607	dyn_subcktpwr(Dynamic Subckt Port Power
parameters 607	Check Violations) 625
dyn_nodecap(Dynamic Node Capacitance	Dynamic Capacitor Voltage Check
	Violations checkers 567
Check) 607	
dyn_noisynode checker	Dynamic DC Leakage Path Check Violations checkers 569
definition 609	
	Dynamic Delay Check checkers 572
description 609	Dynamic Diode Voltage Check
parameters 609	checkers 575
dyn_noisynode(Dynamic Noisy Node Check	Dynamic Excessive Element Current Check
Violations) <u>609</u>	Violations checkers 577
dyn_pulsewidth	Dynamic Excessive Rise, Fall, Undefined
checker	State Time Check Violations
definition 612	checkers <u>579</u>
description <u>612</u>	Dynamic Floating Node Induced DC
parameters <u>612</u>	Leakage Path Check Violations
dyn_pulsewidth(Dynamic Pulse Width	checkers <u>582</u>
Check) <u>612</u>	Dynamic Floating Node Statistical Check
dyn_resv	checkers 591
checker	Dynamic Glitch Check Violations
definition 615	checkers <u>597</u>
description <u>615</u>	Dynamic HighZ Node Check Violations
parameters <u>615</u>	checkers <u>600</u>
dyn_resv(Dynamic Resistor Voltage Check	Dynamic MOSFET Voltage Check Violations
Violations) <u>615</u>	checkers <u>605</u>
dyn_setuphold	Dynamic Node Capacitance Check
checker	checkers <u>607</u>
definition <u>617</u>	Dynamic Noisy Node Check Violations
description <u>617</u>	checkers <u>609</u>
parameters <u>617</u>	Dynamic Pulse Width Check checkers 612
dyn_setuphold(Dynamic Setup and Hold	Dynamic Resistor Voltage Check Violations
Check Violations) <u>617</u>	checkers <u>615</u>
dyn_stahighz	Dynamic Setup and Hold Check Violations
checker	checkers <u>617</u>
definition <u>620</u>	Dynamic Statistical HighZ Node Check
description <u>620</u>	checkers <u>620</u>
parameters <u>621</u>	Dynamic Subckt Instance Activity Check
dyn_stahighz(Dynamic Statistical HighZ	checkers <u>563</u>
Node Check) <u>620</u>	Dynamic Subckt Port Power Check
dyn_subcktport ´	Violations checkers 625

Dynamic Subckt Port voltage/current Check checkers 623	G
E	global other definition <u>490</u>
-E, spectre command option 32 encryption other	description <u>490</u> Global Nodes other <u>490</u> global(Global Nodes) <u>490</u>
description <u>479</u> encryption other <u>479</u> encryption (character) 470	Н
encryption(encryption) <u>479</u> Envelope Following Analysis analyses <u>78</u> environment variable %S_DEFAULTS <u>41</u> SPECTRE_DEFAULTS <u>41</u>	Harmonic Balance Steady State Analysis analyses <u>92</u> hb
envlp analysis definition <u>79</u>	analysis definition <u>92</u> description <u>92</u> parameters <u>93</u>
description <u>78</u> parameters <u>79</u> envlp(Envelope Following Analysis) <u>78</u> error (+/-), spectre command option <u>30</u>	HB AC Analysis analyses 113 HB Noise Analysis analyses 121 HB S-Parameter Analysis analyses 132
expressions other description 482	HB Stability Analysis analyses 140 HB XF Analysis analyses 144 hb(Harmonic Balance Steady State Analysis) 92
Expressions other <u>482</u> expressions(Expressions) <u>482</u>	hbac analysis definition <u>113</u> description <u>113</u>
F	parameters <u>114</u> hbac(HB AC Analysis) <u>113</u>
fastdc other definition 486	hbnoise analysis definition <u>123</u>
description <u>486</u> fastdc(The fastdc command line option) <u>486</u>	description <u>121</u> parameters <u>123</u> hbnoise(HB Noise Analysis) <u>121</u>
faults other	hbsp analysis
definition <u>488</u> description <u>487</u> filename replacement <u>30</u>	definition <u>132</u> description <u>132</u> parameters <u>132</u>
-format, spectre command option <u>29</u> formatting of results <u>29</u> functions	hbsp(HB S-Parameter Analysis) <u>132</u> hbstb analysis
other definition <u>489</u> description <u>489</u>	definition <u>140</u> description <u>140</u>
functions(User Defined Functions) 489	parameters <u>141</u> hbstb(HB Stability Analysis) <u>140</u>

hbxf analysis	K
definition <u>144</u> description <u>144</u>	keywords <u>12</u>
parameters <u>144</u>	other description <u>503</u>
hbxf(HB XF Analysis) 144	keywords(Spectre Netlist Keywords) 503
help features online <u>27</u> -help, spectre command option <u>27</u>	
-helpfull, spectre command option 28	L
-helpsort, spectre command option 27	_
-helpsortfull, spectre command option 28	lf analysis
	analysis definition <u>157</u>
1	library
-I, spectre command option 32	other definition <u>506</u>
ibis	description 506
other description <u>491</u>	Library - Sectional Include other 506
IBIS Component Use Model other 491	library(Library - Sectional Include) <u>506</u> license manager <u>32</u>
ibis(IBIS Component Use Model) 491	literal characters 12
other	Load Pull Analysis analyses 163
definition <u>498</u>	loadpull analysis
description <u>498</u> ic(Initial Conditions) <u>498</u>	definition <u>163</u>
if	description <u>163</u> parameters <u>163</u>
other	loadpull(Load Pull Analysis) 163
definition <u>499</u> description <u>499</u>	$\log (+/-/=)$, spectre command option <u>28</u>
if(The Structural if-statement) 499	
Immediate Set Options analyses 188	M
include other	maman
definition <u>502</u>	memory other
description <u>501</u> Include File other <u>501</u>	description 508
include(Include File) 501	memory(Tips for Reducing Memory Usage) 508
info	message control 30
analysis definition <u>151</u>	Monte Carlo Analysis analyses 166
description 151	montecarlo analysis
parameters <u>152</u> info (+/-), spectre command option <u>31</u>	definition <u>167</u>
info(Circuit Information) 151	description <u>166</u> parameters <u>167</u>
Initial Conditions other 498	montecarlo(Monte Carlo Analysis) 166
italics in syntax 13	-mt, spectre command option 32
	mts other
	description <u>509</u>

mts(Multi-Technology Simulation	(parameters) <u>514</u>
` Mode) <u>509</u>	(paramset) <u>517</u>
Multi-Technology Simulation Mode	(postlayout) <u>518</u>
other <u>509</u>	(save) <u>525</u>
	(sens) <u>532</u>
A.I	(subckt) <u>543</u>
N	description
	(analogmodel) <u>459</u>
Netlist Parameters other <u>514</u>	(bsource) <u>461</u>
Node Sets other <u>510</u>	(cmiconfig) <u>472</u>
nodeset	(constants) 474
other	(convergence) <u>476</u>
definition 510	(dcopt) : <u>478</u>
description 510	(encryption) <u>479</u>
nodeset(Node Sets) 510	(expressions) <u>482</u>
noise	(fastdc) <u>486</u>
analysis	(faults) <u>487</u>
definition 183	(functions) 489
description <u>182</u>	(global) <u>490</u>
parameters 183	(ibis) 491
Noise Analysis analyses 182	(ic) <u>498</u>
noise(Noise Analysis) <u>182</u>	(if) <u>499</u>
	(include) <u>501</u>
0	(keywords) <u>503</u> (library) 506
•	(library) <u>506</u> (memory) <u>508</u>
online help 27	(mts) <u>509</u>
options	(nodeset) <u>510</u>
analysis	(param_limits) <u>511</u>
definition 188	(parameters) 514
description 188	(paramset) <u>517</u>
parameters 188	(postlayout) 518
options(Immediate Set Options) 188	(rfmemory) <u>520</u>
other	(save) <u>525</u>
Behavioural Source Use Model 461	(savestate) <u>528</u>
Built-in Mathematical and Physical	(sens) <u>532</u>
Constants 474	(spectrerf) <u>534</u>
Checkpoint - Restart 470	(stitch) <u>535</u>
Configuring CMI Shared Objects 472	(subckt) <u>541</u>
Convergence Difficulties 476	(vector) <u>546</u>
definition	(veriloga) <u>549</u>
(dcopt) <u>478</u>	encryption 479
(fastdc) <u>486</u>	Expressions <u>482</u>
(faults) <u>488</u>	Global Nodes 490
(functions) 489	IBIS Component Use Model 491
(global) 490	Include File 501
(ic) <u>498</u>	Initial Conditions 498
(if) <u>499</u>	Library - Sectional Include 506
(include) <u>502</u>	Multi-Technology Simulation Mode 509
(library) <u>506</u>	Netlist Parameters 514
(nodeset) <u>510</u>	Node Sets 510

Output Selections 525 Parameter Set - Block of Data 517 Parameter Soft Limits 511 Savestate - Recover 528 Sensitivity Analyses 532 Spectre Netlist Keywords 503 SpectreRF Summary 534 Stitch Flow Use Model 535 Subcircuit Definitions 541	Data) 517 Periodic AC Analysis analyses 251 Periodic Noise Analysis analyses 259 Periodic S-Parameter Analysis analyses 270 Periodic STB Analysis analyses 304 Periodic Steady-State Analysis analyses 278 Periodic Transfer Function Analysis
The fastdc command line option 486 The postlayout command line option 518	analyses <u>309</u> pnoise analysis
The Structural if-statement 499 Tips for Reducing Memory Usage 508 Tips for Reducing Memory Usage with	definition <u>261</u> description <u>259</u> parameters <u>261</u>
SpectreRF <u>520</u> User Defined Functions <u>489</u> Using analogmodel for Model	pnoise(Periodic Noise Analysis) <u>259</u> postlayout other
Passing <u>459</u> Vec/Vcd/Evcd Digital Stimulus <u>546</u> Verilog-A Usage and Language Summary <u>549</u>	definition <u>518</u> description <u>518</u> postlayout(The postlayout command line option) <u>518</u>
Output Selections other 525	psp
P	analysis definition <u>270</u> description <u>270</u> parameters <u>270</u>
pac	psp(Periodic S-Parameter Analysis) 270
analysis	pss
definition 251	analysis
description <u>251</u> parameters <u>252</u>	definition <u>279</u> description <u>278</u>
pac(Periodic AC Analysis) <u>251</u>	parameters <u>279</u>
param_limits	pss(Periodic Steady-State Analysis) 278
other	pstb
description <u>511</u>	analysis
param_limits(Parameter Soft Limits) 511	definition 304
-param, spectre command option <u>28</u> Parameter Set - Block of Data other <u>517</u>	description <u>304</u> parameters <u>305</u>
Parameter Soft Limits other 511	pstb(Periodic STB Analysis) 304
parameters	pxf
default values 41	analysis
other	definition <u>309</u>
definition <u>514</u>	description 309
description 514	parameters 309
parameters(Netlist Parameters) <u>514</u> paramset	pxf(Periodic Transfer Function Analysis) 309
other	pz
definition 517	analysis
description 517	definition 318
paramset(Parameter Set - Block of	description 318

parameters <u>318</u> PZ Analysis analyses <u>318</u>	R
pz(PZ Analysis) 318	-raw, spectre command option 29 recover (+/-), spectre command option 30 recovery features 29 reliability
qpac analysis definition 324 description 324 parameters 324 qpac(Quasi-Periodic AC Analysis) 324 qpnoise analysis definition 331 description 329 parameters 331 qpnoise(Quasi-Periodic Noise Analysis) 329	analysis definition 368 description 368 parameters 368 Reliability Analysis analyses 368 reliability(Reliability Analysis) 368 results formatting 29 rfmemory other description 520 rfmemory(Tips for Reducing Memory Usage with SpectreRF) 520
qpsp analysis definition <u>337</u> description <u>337</u>	S save other
parameters 337 qpsp(Quasi-Periodic S-Parameter Analysis) 337 qpss	definition <u>525</u> description <u>525</u> save(Output Selections) <u>525</u> savestate
" analysis definition 346 description 345 parameters 346 qpss(Quasi-Periodic Steady State	other description <u>528</u> Savestate - Recover other <u>528</u> savestate (+/-), spectre command
Analysis) 345 qpxf analysis definition 362 description 362	option <u>29</u> savestate(Savestate - Recover) <u>528</u> screen width control <u>30</u> sens control with spectre command <u>32</u> other
parameters 362 qpxf(Quasi-Periodic Transfer Function Analysis) 362	definition <u>532</u> description <u>532</u>
Quasi-Periodic AC Analysis analyses 324 Quasi-Periodic Noise Analysis analyses 329	sens(Sensitivity Analyses) <u>532</u> -sensdata, spectre command option <u>32</u> Sensitivity Analyses other <u>532</u> set
Quasi-Periodic S-Parameter Analysis analyses <u>337</u> Quasi-Periodic Steady State Analysis	analysis definition <u>386</u> description <u>386</u>
analyses <u>345</u> Quasi-Periodic Transfer Function Analysis analyses <u>362</u>	parameters 386 set(Deferred Set Options) 386 Setting for Simulink-MATLAB co-simulation

analyses <u>65</u>	-raw <u>29</u>
shell	+/-recover <u>30</u>
analysis	+/-savestate <u>29</u>
definition <u>393</u>	-sensdata <u>32</u>
description 393	-slave <u>31</u>
parameters 393	-slvhost <u>32</u>
Shell Command analyses 393	-U <u>32</u>
shell(Shell Command) 393	-uwifmt <u>29</u>
-slave, spectre command option 31	-uwilib <u>29</u>
	-uwiiib <u>25</u> -V <u>32</u>
-slvhost, spectre command option 32	-V <u>32</u> -W <u>32</u>
sp analysis	
analysis	+/-warn <u>30</u>
definition 394	+/-%X <u>30</u>
description <u>394</u>	results formatting 29
parameters <u>394</u>	screen width control 30
sp(S-Parameter Analysis) 394	sensitivity analysis control 32
S-Parameter Analysis analyses 394	version information 32
Special current saving options	Spectre Netlist Keywords other 503
analyses <u>444</u>	SPECTRE_DEFAULTS 41
Spectre	SpectreRF
differences from SPICE 16, 27	brief description <u>11</u>
spectre command 27	spectrerf ——
attached simulator control 31	other
C preprocessor (CPP) control 32	description <u>534</u>
checkpoint and recovery 29	SpectreRF Summary other 534
defaults	spectrerf(SpectreRF Summary) 534
+/- pairs of options 40	SPICE
filename replacement 30	differences from Spectre 16, 27
license manager 32	Stability Analysis analyses 400
message control 30	statements
online help features <u>27</u>	AC Analysis 45
options	ACMatch Analysis 51
-+/-interactive <u>33</u>	Alter a Circuit, Component, or Netlist
-alias <u>32</u>	Parameter <u>56</u>
+/-checkpoint <u>29</u>	Alter Group <u>58</u>
-cols <u>30</u>	Behavioural Source Use Model 461
-colslog <u>30</u>	Built-in Mathematical and Physical
-D <u>32</u>	Constants <u>474</u>
+/-debug <u>31</u>	Check Parameter Values 61
-E <u>32</u>	Checklimit Analysis <u>62</u>
+/-error <u>30</u>	Checkpoint - Restart <u>470</u>
-format <u>29</u>	Circuit Information 151
-help <u>27</u>	Configuring CMI Shared Objects 472
-helpfull <u>28</u>	Convergence Difficulties 476
-helpsort <u>27</u>	DC Analysis 66
-helpsortfull <u>28</u>	DC Device Matching Analysis 72
-l <u>32</u>	Deferred Set Options 386
+/-info <u>31</u>	Dynamic Capacitor Voltage Check
+/-/=log <u>28</u>	Violations 567
-mt <u>32</u>	Dynamic DC Leakage Path Check
-param <u>28</u>	Violations 569
-paiaiii <u>20</u>	งเปเลแบบอ <u>วบฮ</u>

Dynamic Delay Check 572	Multi-Technology Simulation Mode 509
Dynamic Diode Voltage Check 575	Netlist Parameters 514
Dynamic Excessive Element Current	Node Sets 510
Check Violations 577	Noise Analysis <u>182</u>
Dynamic Excessive Rise, Fall, Undefined	Output Selections 525
State Time Check	Parameter Set - Block of Data 517
Violations 579	Parameter Soft Limits 511
Dynamic Floating Node Induced DC	Periodic AC Analysis 251
Leakage Path Check	Periodic Noise Analysis 259
Violations 582	Periodic S-Parameter Analysis 270
Dynamic Floating Node Statistical	Periodic STB Analysis 304
Check 591	Periodic Steady-State Analysis 278
Dynamic Glitch Check Violations 597	Periodic Transfer Function
Dynamic HighZ Node Check	Analysis 309
Violations 600	PZ Analysis 318
Dynamic MOSFET Voltage Check	Quasi-Periodic AC Analysis 324
Violations 605	
	Quasi-Periodic Noise Analysis 329 Quasi-Periodic S-Parameter
Dynamic Node Capacitance Check 607 Dynamic Noisy Node Check	Analysis 337
Violations 609	
Dynamic Pulse Width Check 612	Quasi-Periodic Steady State
	Analysis <u>345</u> Quasi-Periodic Transfer Function
Dynamic Resistor Voltage Check Violations 615	
Dynamic Setup and Hold Check	Analysis <u>362</u>
Violations 617	Reliability Analysis <u>368</u> Savestate - Recover <u>528</u>
Dynamic Statistical HighZ Node	Sensitivity Analyses 532
Check 620	Setting for Simulink-MATLAB co-
Dynamic Subckt Instance Activity	simulation 65
Check 563	Shell Command 393
Dynamic Subckt Port Power Check	S-Parameter Analysis 394
Violations 625	
Dynamic Subckt Port voltage/current	Special current saving options 444 Spectre Netlist Keywords 503
Check 623	SpectreRF Summary 534
encryption <u>479</u>	Stability Analysis 400
Envelope Following Analysis 78	
Expressions 482	Static Always Conducting MOSFET Check Violations 655, 662
Global Nodes 490	Static Capacitor Check Violations 628
Harmonic Balance Steady State	Static Capacitor Check Violations <u>628</u> Static Capacitor Voltage Check
	Violations 630
Analysis <u>92</u> HB AC Analysis <u>113</u>	Static Coupling Impact Check 632
HB Noise Analysis 121	Static Oddpling impact Oneck 052 Static DC Leakage Path Check
	Violations 635
HB S-Parameter Analysis <u>132</u> HB Stability Analysis <u>140</u>	Static Diode Voltage Check 637
	Static ERC Check Violations 639
HB XF Analysis <u>144</u> IBIS Component Use Model <u>491</u>	Static End Check Violations 039 Static Forward Bias Bulk Check
Immediate Set Options 188	
Include File 501	Violations <u>652, 659</u>
Initial Conditions 498	Static Highfanout Check 642 Static HighZ Node Check
	Violations 645
	Static MOSFET Voltage Check
Load Pull Analysis <u>163</u> Monte Carlo Analysis 166	Violations 648
ινιστιο σατισταίνοιο 100	งเบเฉนบเอ บ า บ

Static PMOS to gnd count 657 Static RCDelay Check 665 Static Resistor Check Violations 668 Static Resistor Voltage Check Violations 670	Static PMOS to gnd count checkers 657 Static RCDelay Check checkers 665 Static Resistor Check Violations checkers 668 Static Resistor Voltage Check Violations
Static Subckt Port Voltage Check 672	checkers 670
Static Transmission Gate Check	Static Subckt Port Voltage Check
Violations <u>674</u> Static Voltage Domain Conflict	checkers <u>672</u> Static Transmission Gate Check Violations
Check <u>676</u>	checkers <u>674</u>
Static Voltage Domain Device Check	Static Voltage Domain Conflict Check
Violations <u>678</u> Stitch Flow Use Model <u>535</u>	checkers <u>676</u> Static Voltage Domain Device Check
Subcircuit Definitions 541	Violations checkers 678
Sweep Analysis 413	static_capacitor
The fastdc command line option 486	checker
The postlayout command line	definition <u>628</u>
option 518	description <u>628</u>
The Structural if-statement <u>499</u> THERMAL Analysis <u>420</u>	parameters <u>628</u> static_capacitor(Static Capacitor Check
Time-Domain Reflectometer	Violations) 628
Analysis <u>418</u>	static_capv
Tips for Reducing Memory Usage 508	checker
Tips for Reducing Memory Usage with	definition <u>630</u>
SpectreRF 520	description <u>630</u>
Transfer Function Analysis 446 User Defined Functions 489	parameters <u>630</u> static_capv(Static Capacitor Voltage Check
Using analogmodel for Model	Violations) 630
Passing 459	static_coupling
Vec/Vcd/Evcd Digital Stimulus <u>546</u>	checker
Verilog-A Usage and Language	definition <u>632</u>
Summary 549 Static Always Conducting MOSEET Chark	description <u>632</u>
Static Always Conducting MOSFET Check Violations checkers 655, 662	parameters 633 static_coupling(Static Coupling Impact
Static Capacitor Check Violations	Check) 632
checkers 628	static_dcpath
Static Capacitor Voltage Check Violations	checker
checkers 630	definition 635
Static Coupling Impact Check	description <u>635</u>
checkers 632 Static DC Leakage Path Check Violations	parameters <u>635</u> static_dcpath(Static DC Leakage Path
checkers 635	Check Violations) 635
Static Diode Voltage Check checkers 637	static_diodev
Static ERC Check Violations checkers 639	checker
Static Forward Bias Bulk Check Violations	definition 637
checkers <u>652, 659</u>	description <u>637</u>
Static Highfanout Check checkers 642 Static HighZ Node Check Violations	parameters <u>637</u> static_diodev(Static Diode Voltage
checkers 645	Check) 637
Static MOSFET Voltage Check Violations	static_erc
checkers 648	checker

definition 639	count) <u>657</u>
description 639	static_pmosb
parameters 639	checker
ctatio ara/Statio EDC Chook	definition 659
static_erc(Static ERC Check	
Violations) <u>639</u>	description <u>659</u>
static_highfanout	parameters <u>659</u>
checker	static_pmosb(Static Forward Bias Bulk
definition 642	Check Violations) 659
description <u>642</u>	static_pmosvgs
parameters <u>643</u>	checker
static_highfanout(Static Highfanout	definition <u>662</u>
Check) <u>642</u>	description <u>662</u>
static_highz (parameters <u>662</u>
checker	static_pmosvgs(Static Always Conducting
definition 645	MOSFET Check Violations) 662
description 645	static_rcdelay
parameters 645	checker
static_highz(Static HighZ Node Check	definition <u>665</u>
Violations) 645	description 665
static_mosv	parameters <u>665</u>
checker	· · · · · · · · · · · · · · · · · · ·
definition 648	static_resistor
description 648	checker
parameters 648	definition <u>668</u>
static_mosv(Static MOSFET Voltage Check	description <u>668</u>
Violations) <u>648</u>	parameters <u>668</u>
static_nmos2vdd	static_resistor(Static Resistor Check
checker	Violations) <u>668</u>
definition <u>651</u>	static_resv
description <u>651</u>	checker
parameters <u>651</u>	definition <u>670</u>
static_nmosb	description 670
checker	parameters 670
definition 652	static_resv(Static Resistor Voltage Check
description 652	Violations) 670
parameters <u>652</u>	static_subcktport
static_nmosb(Static Forward Bias Bulk	checker
Check Violations) 652	definition 672
static_nmosvgs	description 672
checker	parameters <u>673</u>
	static_subcktport(Static Subckt Port Voltage
description 655	Check) <u>672</u>
parameters 655	static_tgate
static_nmosvgs(Static Always Conducting	checker
MOSFET Check Violations) 655	definition 674
static_pmos2gnd	description <u>674</u>
checker	parameters <u>674</u>
definition <u>657</u>	static_tgate(Static Transmission Gate
description 657	Čheck Violations) <u>674</u>
parameters <u>658</u>	static_vconflict
static_pmos2gnd(Static PMOS to gnd	checker

definition 676 description 676 parameters 677 static_vconflict(Static Voltage Domain Conflict Check) 676 static_voltdomain checker definition 678 description 678 parameters 678 static_voltdomain(Static Voltage Domain Device Check Violations) 678 stb analysis definition 400, 408 description 400 parameters 400, 408 stb(Stability Analysis) 400 stitch	The Structural if-statement other 499 thermal analysis definition 420 parameters 420 THERMAL Analysis analyses 420 thermal(THERMAL Analysis) 420 Time-Domain Reflectometer Analysis analyses 418 Tips for Reducing Memory Usage other 508 Tips for Reducing Memory Usage with SpectreRF other 520 tran analysis definition 423 description 423 parameters 423 Transfer Function Analysis analyses 446
other description 535 Stitch Flow Use Model other 535 stitch(Stitch Flow Use Model) 535 Subcircuit Definitions other 541 subckt other definition 543 description 541 subckt(Subcircuit Definitions) 541 sweep analysis definition 413 description 413 parameters 413 Sweep Analysis analyses 413 sweep(Sweep Analysis) 413 syntax conventions 12	U -U, spectre command option 32 User Defined Functions other 489 Using analogmodel for Model Passing other 459 uti analysis definition 444 description 444 parameters 445 uti(Special current saving options) 444 -uwifmt, spectre command option 29 -uwilib, spectre command option 29
tdr analysis definition 418 description 418 parameters 418 tdr(Time-Domain Reflectometer Analysis) 418 The fastdc command line option other 486 The postlayout command line option other 518	-V, spectre command option 32 Vec/Vcd/Evcd Digital Stimulus other 546 vector other description 546 vector(Vec/Vcd/Evcd Digital Stimulus) 546 Verilog-A 11 veriloga other description 549 Verilog-A Usage and Language Summary other 549

veriloga(Verilog-A Usage and Language Summary) <u>549</u> version information <u>32</u>

W

-W, spectre command option $\underline{32}$ warn (+/-), spectre command option $\underline{30}$

X

xf
analysis
definition 447
description 446
parameters 447
xf(Transfer Function Analysis) 446