Analysis and Differential Equations (2)

Problem1. Compute
$$\frac{1}{1^3} - \frac{1}{3^3} + \frac{1}{5^3} - \frac{1}{7^3} + \cdots$$

Problem2. A number $\xi \in \mathbb{R}$ is diophantine (with exponent k, k > 0) if for some constant C > 0, there are no rational numbers $\frac{p}{q}$ $(p, q \in \mathbb{Z}, q > 0)$ such that $|\xi - \frac{p}{q}| < Cq^{-k}$. ξ is a Liouville number if it is not diophantine, i.e. if for every k > 0 there exist integers p, q such that q > k and $|\xi - \frac{p}{q}| \le q^{-k}$.

- (1) Prove that the set of diophantine numbers is of the first category in \mathbb{R} .
- (2) Prove that the set L of Liouville numbers has zero Hausdorff dimension.

Problem3. Prove or disprove: If f(z) is an entire function on \mathbb{C} such that the image of every unbounded set under f is unbounded, then f is a polynomial.

Problem4. Let $B_1(0)$ be the unit ball in \mathbb{R}^n , centered at the origin, and let u be a smooth solution of

$$\begin{cases} u_{tt} + a^{2}(x)u_{t} - \Delta u = 0 & in \ B_{1}(0) \times (0, +\infty) \\ u(x, t) = f(x) & on \ \partial B_{1}(0) \times (0, +\infty) \\ u(x, 0) = g(x), u_{t}(x, 0) = h(x) & on \ B_{1}(0) \times \{0\} \end{cases}$$

Here g, h and a are smooth functions and g, h vanish on $\partial B_1(0)$. Prove that

$$\int_{B_1(0)} u^2(x,t)dx \le C \exp(-At),$$

where $A = \min\{a^2(x)\}$ and C only depends on g, h and n.

Problem5. Let $\phi : \mathbb{R}^n \to \mathbb{C}$ be a measurable function such that $\phi(x+y) = \phi(x)\phi(y)$ and $|\phi| = 1$. Prove that there exists $\xi \in \mathbb{R}^n$ s.t. $\phi(x) = e^{i\xi \cdot x}$.