Sistema de Gestión de Bases de Datos (SGBD) Enfoque en DuckDB

lessica Lizeth Hernández Bracho - 1842553

Sistema de Gestión de Bases de Datos

¿Qué es un SGBD?

Software que permite administrar una base de datos. Proporciona el método de organización necesario para el almacenamiento y recuperación flexible de grandes cantidades de datos.

- → Permite crear, manipular y administrar bases de datos de forma eficiente, segura y estructurada.
- → Ejemplos: MySQL, PostgreSQL, Microsoft SQL Server, Oracle Database y Microsoft Access.

Clasificación de SGBD

Relacionales

Organizan la información en tablas. (DuckDB, MySQL, Oracle)

No relacionales

Incluyen modelos orientados a documentos, claves/valores, grafos.
(MongoDB)

Clasificación de SGBD

Centralizados

La base de datos y el software que la gestiona residen en un único servidor. (Microsoft Access, SQLite)

Distribuidos

Dividen los datos entre múltiples nodos o servidores. (Amazon DynamoDB)

DuckDB - SGBDR

¿Qué es DuckDB?

Sistema de Gestión de Bases de Datos Relacionales (SGBDR) de código abierto y orientado a columnas.

Está diseñado para admitir cargas de trabajo de consultas analíticas, también conocidas como procesamiento analítico en línea (OLAP).

Características de DuckDB

Simple

No requiere instalación compleja ni configuración.

Integración

Lectura directa de Parquet / CSV / JSON / Arrow.

Rendimiento

Procesamiento por vectores en lugar de filas. Aumenta el rendimiento OLAP.

Portabilidad

Puede ejecutarse en navegadores web y apps móviles.

Soporte SQL

Soporte completo de SQL moderno.

MIT License

Código abierto, libre para uso personal, académico o comercial.

¿Cómo se compara DuckDB con otros SGBD?

SGBD	Tipo	Arquitectura de almac.	Servidor	Enfoque	Uso
DuckDB	Relacional (OLAP)	Columnar/ Vectorizado.	×	Analítico	Ciencia de datos, notebooks.
SQLite	Relacional (OLTP)	Fila (row-based)	×	Ligero	Móviles, Apps locales.
Postgre SQL	Relacional (Híbrido)	Fila	♦	Transaccional y analítico.	Web apps, sistemas de información.

Ejemplo de uso

```
import duckdb
import pandas as pd
import matplotlib.pyplot as plt

df = pd.read_csv('Sample - Superstore.csv', encoding='latin1')

df['Order Date'] = pd.to_datetime(df['Order Date'], errors='coerce')

con = duckdb.connect() ←
```

1- Cargar CSV

Carga el dataset, usando codificación para evitar errores de caracteres.

2- Conexión

Establece una conexión con DuckDB para ejecutar consultas.

```
# Ejecutar consultas usando df como tabla virtual
# 1. Ventas por categoría
category = con.execute("""
    SELECT "Category", SUM("Sales") AS total ventas
    FROM df
    GROUP BY "Category"
""").df()
print("Total ventas por categoría:\n", category)
# 2. Ventas por año
anual_sales = con.execute("""
    SELECT STRFTIME("Order Date", '%Y') AS Year, SUM("Sales") AS total sales
    FROM df
    GROUP BY Year
    ORDER BY Year
""").df()
print("Ventas por año:\n", anual_sales)
```


1. Total ventas por categoría:

Category total_ventas

- O Furniture 741,999.7953
- 1 Technology 836,154.0330
- 2 Office Supplies 719,047.0320

2. Ventas por año:

Year total_sales

- 0 2014 484,247.4981
- 1 2015 470,532.5090
- 2 2016 609,205.5980
- 3 2017 733,215.2552

```
Total ventas por categoría:
          Category total ventas
     Furniture 741999.7953
       Technology 836154.0330
2 Office Supplies 719047.0320
Ventas por año:
   Year total sales
0 2014 484247,4981
1 2015 470532.5090
2 2016 609205.5980
3 2017 733215.2552
```

```
# Graficar ventas anuales
plt.figure(figsize=(8,5))
plt.plot(anual_sales['Year'], anual_sales['total_sales'],
         marker='o', linestyle='-')
plt.title('Ventas anuales')
plt.xticks(rotation=45)
plt.xlabel('Año')
plt.ylabel('Ventas')
plt.grid(True)
plt.tight layout()
plt.show()
```



```
import pandas as pd
import duckdb
# 1. Carga los datos nuevos desde CSV
df nuevos = pd.read csv('Cliente.csv')
# 2. Eliminar la primera columna (por posición)
df_nuevos.drop(df_nuevos.columns[0], axis=1, inplace=True)
# 2. Conexión a DuckDB (archivo tienda1.duckdb)
con = duckdb.connect('tienda1.duckdb')
# 3. Registra DataFrame
con.register('df_temp', df_nuevos)
# 4. Inserta datos nuevos en tabla Cliente
con.execute("""
INSERT INTO Cliente
SELECT * FROM df_temp
# 5. Consulta para mostrar todos los datos de Cliente después de insertar
df actualizado = con.execute("SELECT * FROM Cliente").fetchdf()
print("Datos actuales en la tabla Cliente:")
print(df actualizado)
```


Ejemplo con base de datos


```
Datos actuales en la tabla Cliente:
   clienteID
                        c nombre
                                     segmento
                                                        pais \
                                     Consumer United States
   CG-12520
                     Claire Gute
                 Darrin Van Huff
                                    Corporate United States
    DV-13045
                                  Home Office United States
   50-20335
                   Sean ODonnell
    AA-10480
                    Andrew Allen
                                     Consumer United States
   IM-15070
                    Irene Maddox
                                     Consumer United States
   HP-14815
                   Harold Pawlan Home Office United States
   RA-19885
                    Ruben Ausman
                                    Corporate United States
                      Erin Smith
    ES-14080
                                    Corporate United States
                                    Corporate United States
   ON-18715
                   Odella Nelson
                                    Consumer United States
    LH-16900
                  Lena Hernandez
    XT-2688
                    Hilary Lynds
                                     Consumer United States
10
11
    JJ-3659
                    Ursula Thies Home Office United States
12
    TA-1738
                    Nani Alekhov
                                     Consumer United States
13
    0Z-3445
                Desdemona Tapner
                                    Corporate United States
14
    UE-7582
                     Reggy Bruck
                                    Corporate United States
15
    OH-4354
                   Hillel Huxton
                                    Consumer United States
16
     ZQ-6510
                Mohammed Bumford
                                     Consumer United States
             Lemuel Featherstone Home Office United States
17
    VR-4151
    CP-5108
                                    Corporate United States
18
                   Court Squeers
                     Care Stairs Home Office United States
19
    HJ-9118
                Nelly Pitkaithly Home Office United States
     DJ-6938
     DT-5463
                     Son Breeman
                                    Cornorate United States
```


Operaciones relacionales

1. Proyección + Selección

Clientes que hicieron pedidos en California

- \rightarrow π (Nombre Cliente)(σ (Estado = 'California')(Pedidos))
- → Lista de nombres de clientes en California con pedidos.

```
df_clientes_ca = con.execute("""
SELECT DISTINCT c.c_nombre
FROM Pedido p
JOIN Cliente c ON p.clienteID = c.clienteID
WHERE c.estado = 'California'
""").fetchdf()
print("Clientes que hicieron pedidos en California:")
print(df_clientes_ca)
```


c_nombre

- O Ruben Ausman
- 1 Hillel Huxton
- 2 Andros Randles
- 3 Mohammed Bumford

Operaciones relacionales

2. Join + Selección + Proyección

Nombres de productos tecnológicos vendidos

- \rightarrow π (Nombre Producto)(σ (Categoría = 'Technology')(Pedidos \bowtie Productos))
- → Listado de productos tecnológicos vendidos.

```
df_tecnologia = con.execute("""
SELECT DISTINCT pr.p_nombre
FROM DetallePedido dp
JOIN Producto pr ON dp.productoID = pr.productoID
WHERE pr.categoria = 'Technology'
""").fetchdf()
print("Productos tecnológicos vendidos:")
print(df_tecnologia)
```


	p_nombre
0	Verbatim 25 GB 6x Blu-ray Single Layer Recorda
1	LF Elite 3D Dazzle Designer Hard Case Cover, L
2	Fellowes Super Stor/Drawer
3	Invicta Office Printer Cart
4	Logitech LS21 Speaker System - 2.1-CH Wired
5	iPhone Case
6	Aurora Paper Trimmer
7	Hon Deluxe Fabric Upholstered Stacking Chairs
8	Self-Adhesive Address Labels for Typewriters b
9	Canon imageCLASS D1320
10	Eldon Light Bulb - Duo Pack
11	Tenex Box - Single Width
12	Logitech Wireless Mouse M510

SGBD relacional embebido, optimizado para análisis de datos en memoria.

Servidor

No requiere servidor, lo que lo hace ligero, rápido y fácil de usar.

Integración

Se integra perfectamente con Python y Pandas, ideal para ciencia de datos.

Archivos

Soporta lectura directa de archivos CSV.

- IONOS. (s.f.). ¿Qué es un sistema gestor de base de datos (SGBD)?. IONOS Digital Guide. https://www.ionos.mx/digitalguide/hosting/cuestiones-tecnicas/sistema-gestor-de-base-de-datos-

sqbd/#c221916

- Dongee. (s.f.). ¿Cómo se puede clasificar un SGBD?.
 Dongee. https://www.dongee.com/tutoriales/como-se-puede-clasificar-un-sgbd/#clasificaci%C3%B3n-de-sgbd-seq%C3%BAn-la-arquitectura-del-sistema
- Wikipedia. (s.f.). DuckDB. Wikipedia. https://en.wikipedia.org/wiki/DuckDB
- DuckDB Developers. (s.f.). DuckDB: The SQLite for Analytics. DuckDB. https://duckdb.org/

