CORRIGÉ DU DS°6 : CCP 2013 PC Maths 1

Partie I : Étude dans un cas particulier

I.1.

- **I.1.a.** On calcule le polynôme caractéristique de A: pour $\lambda \in \mathbb{R}$, $\chi_A(\lambda) = -(\lambda+2)(\lambda-1)^2$. Par conséquent le spectre de A est $\{-2;1\}$.
- **I.1.b.** $A\mathbf{u}_1 = \mathbf{u}_1$, $A\mathbf{u}_2 = \mathbf{u}_2$ et \mathbf{u}_1 , \mathbf{u}_2 ne sont pas colinéaires donc $(\mathbf{u}_1, \mathbf{u}_2)$ est une famille libre de deux vecteurs dans $E_1(A)$. Cet espace propre ne peut pas être de dimension strictement supérieure à 2 (ordre de multiplicité de la valeur propre), donc $(\mathbf{u}_1, \mathbf{u}_2)$ est une base de $E_1(A)$.

 $A\mathbf{u}_3 = -2\mathbf{u}_3$ et \mathbf{u}_3 n'est pas nul donc $\{\mathbf{u}_3\}$ est une base de $E_{-2}(A)$.

Les sous espaces propres d'une matrice sont en somme directe donc $(\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3)$ est une famille libre. Elle est de cardinal 3, égal à la dimension de $\mathbb{M}_{3,1}(\mathbb{R})$ donc c'est une base de $\mathbb{M}_{3,1}(\mathbb{R})$ constituée de vecteurs propres de A.

- **I.1.c.** On vient de trouver une base de $\mathbb{M}_{3,1}(\mathbb{R})$ constituée de vecteurs propres de A donc A est diagonalisable. Pour les 5/2: on pouvait aussi remarquer que A est une matrice symétrique réelle donc diagonalisable.
- **I.1.d.** B $\mathbf{u}_1 = \begin{pmatrix} 4 \\ 0 \\ 0 \end{pmatrix}$ n'est pas colinéaire à \mathbf{u}_1 et de même pour \mathbf{u}_2 et \mathbf{u}_3 donc aucun élément de \mathbb{F} n'est vecteur propre de B donc a fortiori commun à A et B.

I.2.

- **I.2.a.** Pour $\lambda \in \mathbb{K}$, $\chi_B(\lambda) = (2 \lambda)^3$ (on développe par rapport à la deuxième ligne) donc le spectre de B est $\{2\}$.
- **I.2.b.** $B-2I_3 = \begin{pmatrix} 1 & -3 & -1 \\ 0 & 0 & 0 \\ 1 & -3 & -1 \end{pmatrix}$. Les trois colonnes de cette matrice sont colinéaires à \mathbf{u}_4 donc $Im_2(B) = Vect(\mathbf{u}_4)$.

Le théorème du rang nous dit alors que dim $E_2(B) = 2$.

I.2.c. La somme des dimensions des sous espaces propres de B est égale à 2 < 3 donc B n'est pas diagonalisable.

I.3.

I.3.a. $B\mathbf{u}_5 = 2\mathbf{u}_5$ et $A\mathbf{u}_5 = \mathbf{u}_5$ donc $Vect(\mathbf{u}_5) \subset E_1(A) \cap E_2(B)$.

 $E_1(A)$ et $E_2(B)$ sont de dimension 2 donc cette intersection est de dimension 1 ou 2 (on a déjà un vecteur non nul dans l'intersection). Si elle est de dimension 2, alors $E_1(A) = E_2(B)$ ce qui est absurde car \mathbf{u}_1 est dans $E_1(A)$ mais pas dans $E_2(B)$. Par conséquent l'intersection est de dimension 1 et $E_1(A) \cap E_2(B) = \text{Vect}(\mathbf{u}_5)$.

I.3.b. Comme \mathbf{u}_3 n'est pas vecteur propre de B et qu'il engendre $E_{-2}(A)$, il n'y a pas de vecteur propre commun à A et B dans $E_{-2}(A)$. De plus 2 est la seule valeur propre de B donc les vecteurs propres communs à A et B sont dans $E_1(A) \cap E_2(B)$.

D'après la question précédente, les vecteurs propres communs à A et B sont les vecteurs de la forme $\lambda \mathbf{u}_5$, $\lambda \in \mathbb{R}^*$.

I.4.

I.4.a.
$$AB = \begin{pmatrix} -1 & 1 & -1 \\ -4 & 6 & 0 \\ -3 & 1 & 1 \end{pmatrix}$$
 et $BA = \begin{pmatrix} 4 & -2 & 0 \\ -2 & 0 & -2 \\ 2 & -2 & 2 \end{pmatrix}$ donc $[A, B] = C$.

I.4.b. On calcule le polynôme caractéristique de C. Pour $\lambda \in \mathbb{R}$, $\chi_C(\lambda) = \begin{vmatrix} -5 - \lambda & 3 & -1 \\ -2 & 6 - \lambda & 2 \\ -5 & 3 & -1 - \lambda \end{vmatrix}$. On

$$\text{remplace } L_1 \text{ par } L_1 - L_3 : \chi_C(\lambda) = \left| \begin{array}{ccc} -\lambda & 0 & \lambda \\ -2 & 6 - \lambda & 2 \\ -5 & 3 & -1 - \lambda \end{array} \right|.$$

On utilise la linéarité par rapport à la première ligne puis on remplace C_1 par $C_1 + C_3$:

$$\chi_{C}(\lambda) = \lambda \begin{vmatrix} 0 & 0 & 1 \\ 0 & 6 - \lambda & 2 \\ -6 - \lambda & 3 & -1 - \lambda \end{vmatrix}$$
. Puis on développe par rapport à la première ligne : $\chi_{C}(\lambda) = \lambda(6 - \lambda)(6 + \lambda)$.

C possède trois valeurs propres distinctes, donc C est diagonalisable. De plus les valeurs propres de C sont -6, 0 et 6 donc C est semblable à D.

Le rangs de C et de D sont alors égaux et rg(C) = 2.

Partie II: Condition nécessaire et conditions suffisantes

II.1.

- II.1.a. Soient λ et μ tels que $Ae = \lambda e$ et $Be = \mu e$. Alors $ABe = \mu Ae = \lambda \mu e$ et de même pour BAe donc $e \in Ker([A, B])$.
- **II.1.b.** e est non nul (car vecteur propre) donc Ker[A, B] n'est pas réduit à $\{0\}$, donc est de dimension ≥ 1 , et d'après le théorème du rang, rg([A, B]) < n.
- **II.2.** On suppose $[A,B] = O_n$. Comme $\mathbb{K} = \mathbb{C}$, A a au moins une valeur propre : soit $\lambda \in Sp(A)$. $[A,B] = O_n$ donc $Ker([A,B]) = \mathbb{M}_{n,1}(K)$ et $E_{\lambda}(A) \subset Ker([A,B])$; de même pour B. Ainsi A et B vérifient la propriété \mathcal{H} .

II.3.

- **II.3.a.** Soit $X \in E_{\lambda}(A)$. Par hypothèse $X \in Ker([A, B])$ donc (AB BA)X = 0 soit ABX = BAX. Or $AX = \lambda X$ donc $A(BX) = \lambda BX$ ce qui signifie que $BX \in E_{\lambda}(A) : \psi : X \mapsto BX$ est une application de $E_{\lambda}(A)$ dans lui même. De plus, par propriété du produit matriciel, ψ est linéaire donc ψ est un endomorphisme de $E_{\lambda}(A)$.
- **II.3.b.** λ est valeur propre de A donc $E_{\lambda}(A)$ est de dimension non nulle et comme $K = \mathbb{C}$, ψ a au moins une valeur propre : il existe $\mu \in \mathbb{C}$ et $X \in E_{\lambda}(A)$ non nul tels que $\psi(X) = \mu X$. On a donc $BX = \mu X$, $AX = \lambda X$ et X non nul : X est un vecteur propre commun à X et X.
- **II.4.** En dimension 1, tous les endomorphismes sont des homothéties et vecteurs non nuls en sont des vecteurs propres donc \mathcal{P}_1 est vérifiée.

II.5.

- II.5.a. A et B ne vérifient pas \mathcal{H} donc $E_{\lambda}(A)$ n'est pas inclus dans Ker(C): il existe $\mathbf{u} \in E_{\lambda}(A)$ tel que $\mathbf{u} \notin Ker(C)$: \mathbf{u} est donc un élément de $\mathbb{M}_{n,1}(\mathbb{C})$ qui vérifie $A\mathbf{u} = \lambda \mathbf{u}$ et $C\mathbf{u} \neq 0$.
- **II.5.b.** Par hypothèse ImC est de dimension 1 et $\mathbf{v} = C\mathbf{u}$ est un vecteur non nul de cette image donc ImC = Vect(\mathbf{v}).
- II.5.c. $\mathbf{v} = C\mathbf{u}$ donc $\mathbf{v} = AB\mathbf{u} BA\mathbf{u} = AB\mathbf{u} \lambda B\mathbf{u}$ soit $\mathbf{v} = (A \lambda I)(B\mathbf{u}) : \mathbf{v} \in Im_{\lambda}(A)$. La question précédente permet alors de dire que $ImC \subset Im_{\lambda}(A)$.
- **II.5.d.** ImC est de dimension 1 donc $1 \le \dim(\operatorname{Im}_{\lambda}(A))$.

 λ est valeur propre de A donc $E_{\lambda}(A)$ a une dimension non nulle et, d'après le théorème du rang, $\dim(\operatorname{Im}_{\lambda}(A)) \leq n-1$.

Finalement : $1 \le \dim(\operatorname{Im}_{\lambda}(A)) \le n - 1$.

II.5.e A et $A - \lambda I_n$ commutent donc $[A, A - \lambda I_n] = O_n$.

Par définition $[B, A - \lambda I_n] = B(A - \lambda I_n) - (A - \lambda I_n)B = BA - AB = -[A, B]$ d'où $[B, A - \lambda I_n] = -C$.

 ϕ et ψ sont des applications linéaires par propriétés du produit matriciel.

Soit $X \in Im_{\lambda}(A)$: $X = (A - \lambda I_n)Y$ où $Y \in \mathbb{M}_{n,1}(\mathbb{C})$. Comme $[A, A - \lambda I_n] = O_n$, $AX = (A - \lambda I_n)(AY)$ donc $AX \in Im_{\lambda}(A)$. Par conséquent ϕ est un endomorphisme de $Im_{\lambda}(A)$.

De même BX = $(A - \lambda I_n)(BY) - CY$. $CY \in ImC$ et $ImC \subset Im_{\lambda}(A)$ donc $CY \in Im_{\lambda}(A)$; on a aussi $(A - \lambda I_n)(BY) \in Im_{\lambda}(A)$ donc $BX \in Im_{\lambda}(A)$. On en conclut que ψ est un endomorphisme de $Im_{\lambda}(A)$.

II.5.f. $\operatorname{Im}([\varphi,\psi]) \subset \operatorname{Im}(C)$ donc $\operatorname{rg}([\varphi,\psi]) \leq 1$. On peut donc appliquer l'hypothèse de récurrence à φ et ψ , endomorphismes de $\operatorname{Im}_{\lambda}(A)$ qui est de dimension non nulle et strictement inférieure à $n:\varphi$ et ψ ont un vecteur propre commun. A fortiori A et B ont un vecteur propre commun.

- **II.6.** On démontre par récurrence sur $n \in \mathbb{N}^*$ que \mathcal{P}_n est vraie.
 - \mathcal{P}_1 est vraie.
 - Soit $n \in \mathbb{N}$, $n \ge 2$. On suppose que \mathbb{P}_k est vérifiée pour tout entier $k \in [1, n-1]$.

Soit E de dimension n et soient φ et ψ deux endomorphismes de E tels que $\operatorname{rg}([\varphi,\psi]) \leq 1$.

On considère A et B les matrices associées respectivement à φ et ψ dans une base de E, et C = AB – BA.

- Si rg(C) = 1 et si A et B ne vérifient pas \mathcal{H} , alors, d'après **II.5.**, A et B ont un vecteur propre commun : ϕ et ψ ont un vecteur propre commun.
- Si rg(C) = 1 et A, B vérifient \mathcal{H} , alors d'après II.3., φ et ψ ont un vecteur propre commun.
- Si rg(C) = 0, alors [A, B] = 0 et, d'après II.2. et II.3., φ et ψ ont un vecteur propre commun.

On en déduit que \mathcal{P}_n est vérifiée, ce qui achève la récurrence.

Partie III: Étude d'un autre cas particulier

III.1.
$$g(P) = \sum_{k=0}^{2n} a_k X^{2n-k}$$
. On pose $\ell = 2n - k$ pour obtenir $g(P) = \sum_{\ell=0}^{2n} a_{2n-\ell} X^{\ell}$.

III.2. Pour tout polynôme P, $\deg P' \leq \deg P$ et la dérivation des polynômes est linéaire donc f est un endomorphisme de E.

La question précédente prouve que g est une application de E dans E. Si $(P,Q) \in E^2$ et $\lambda \in \mathbb{C}$,

$$g(P + \lambda Q) = X^{2n}(P + \lambda Q)\left(\frac{1}{X}\right) = X^{2n}P\left(\frac{1}{X}\right) + X^{2n}Q\left(\frac{1}{X}\right) = g(P) + \lambda g(Q)$$

donc g est linéaire. g est donc un endomorphisme de E.

III.3.

III.3.a. Soit P un vecteur propre de g et λ la valeur propre associée. $g(P) = \lambda P$.

La question **III.1.** prouve que g est injective donc λ ne peut pas être nul. Par conséquent P et g(P) ont le même degré que l'on appelle d. (P n'est pas nul car vecteur propre).

On reprend les notations de la question III.1. $a_d \neq 0$ donc si k = 2n - d, $a_{2n-k} \neq 0$ et donc $\deg(g(P)) \geq 2n - d$. Par conséquent $d \geq 2n - d$ et donc $\deg(P) \geq n$.

III.3.b. $g(X^n) = X^n$ et X^n n'est pas le polynôme nul donc X^n est un vecteur propre de g.

- III.4. III.4.a. $f^i(P) = P^{(i)}$. $P^{(i)}$ est nul si et seulement si P est un polynôme de degré strictement inférieur à i donc $\text{Ker } f^i = \mathbb{C}_{i-1}[X]$.
 - **III.4.b.** Si P est non nul de degré i-1, alors $f^i(P)=0$.P donc $0 \in Sp(f^i)$. $(f^i)^{2n+1}=(f^{2n+1})^i$ et si $P \in E$, sa dérivée d'ordre 2n+1 est nulle donc X^{2n+1} est un polynôme annulateur de f^i . 0 est sa seule racine donc 0 est la seule valeur propre possible de f^i . Finalement $Sp(f^i)=\{0\}$.
- **III.5.** Si $i \ge n+1$, $f^i(X^n) = 0.X^n$ donc X^n est vecteur propre de f^i . Avec la question **III.3.b.** on peut en déduire que X^n est un vecteur propre commun à f et g.

On suppose réciproquement que i est tel que f et g ont un vecteur propre commun.

Soit P un tel vecteur propre commun. D'après III.3.a., $\deg(P) \ge n$ et d'après III.4.b. $P \in \operatorname{Ker} f^i$ donc d'après III.4.a. $\deg(P) \le i-1$. Ainsi, $n \le i-1$ soit $i \ge n+1$. Finalement f et g ont un vecteur propre commun si et seulement si $i \ge n+1$.

III.6. $A_n = (a_{ij})_{1 \le i,j \le 2n+1}$ où pour i entre 2 et 2n, $a_{i,i-1} = i-1$ et tous les autres coefficients sont nuls :

$$A_{n} = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ \vdots & 0 & 2 & \ddots & \vdots \\ & & \ddots & \ddots & 0 \\ \vdots & & & \ddots & 2n \\ 0 & \cdots & & \cdots & 0 \end{pmatrix}$$

Pour k entre 0 et 2n, $g(X^k) = X^{2n-k}$ donc $B_n = (b_{ij})_{1 \le i,j \le 2n+1}$ où pour tout i entre 1 et 2n+1, $b_{i,2n+2-i} = 1$, tous les autres coefficients étant nuls :

$$B_n = \begin{pmatrix} & \mathbf{0} & & & & 1 \\ & \mathbf{0} & & \ddots & & \\ & & \ddots & & & \\ & 1 & & & \mathbf{0} & \end{pmatrix}$$

III.7.

III.7.a. En prenant n = 1 dans la question précédente, on obtient bien $A_1 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}$ et $B_1 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$.

Un calcul simple donne $A_1^2 = \begin{pmatrix} 0 & 0 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ et A_1^3 est la matrice nulle.

III.7.b. On trouve $[A_1, B_1] = \begin{pmatrix} 0 & 1 & 0 \\ 2 & 0 & -2 \\ 0 & -1 & 0 \end{pmatrix}$ qui est de rang 2.

$$[A_1^2, B_1] = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -2 \end{pmatrix}$$
 qui est aussi de rang 2.

III.7.c. Quand i = 2, $i \ge 1+1$ donc A_1^2 et B_1 ont un vecteur propre commun alors que la condition de la question **II.6.** n'est pas vérifiée; celle-ci n'est donc pas nécessaire.

Quand i = 1, $rg([A_1, B_1]) < 3$ mais A_1 et B_1 n'ont pas de vecteur propre commun donc la condition de la question II.1.b. n'est pas suffisante.

Partie IV: Forme normale pour un vecteur propre

IV.1. dim $E_{\lambda}(A) \ge 2$ donc on peut considérer deux vecteurs propres X et X' formant une famille libre associés à la valeur propre $\lambda : X = (x_1, \dots, x_n)$ et $X' = (x'_1, \dots, x'_n)$.

Si $x_1 = 0$ alors $X \in \mathcal{N}$.

SI $x_1 \neq 0$, on pose $X'' = x_1'X - x_1X'$. Alors $X'' \in \mathcal{N}$ (la première composante de X'' est nulle), X'' n'est pas nul (car (X, X') est libre) et est dans $E_{\lambda}(A)$ donc X'' est un vecteur propre de A.

Dans tous les cas, A admet un vecteur propre sous forme normale associé à la valeur propre λ .

IV.2.

IV.2.a. Par exemple, soit $A = (a_{ij})_{1 \le i,j \le n}$ tel que $a_{12} = 1$, $a_{21} = -1$, tous les autres coefficients nuls (ceci est possible car $n \ge 2$). A n'est pas la matrice nulle et est antisymétrique donc $A_n(\mathbb{C}) \ne \{0_n\}$.

IV.2.b. Soit $M \in \mathcal{A}_n(\mathbb{C})$, $M = (m_{ij})_{1 \le i,j \le n}$. Pour tous i et j, $m_{ij} = -m_{ji}$ donc en particulier les coefficients diagonaux m_{ii} sont nuls; comme il y en a un par colonne, on en déduit que les colonnes de M sont des éléments de \mathcal{N} .

IV.2.c. Soit $M \in A_n(\mathbb{C})$. La transposition est linéaire et ${}^t(AB) = {}^tB^tA$ donc

$$^{t}(\varphi(M)) = ^{t}(AM) + ^{t}(M^{t}A) = ^{t}M^{t}A + ^{t}(^{t}A)^{t}M = -M^{t}A + A^{t}M = -\varphi(M)$$

donc $\varphi(M) \in \mathcal{A}_n(\mathbb{C})$.

De même

$$^{t}(\psi(M)) = ^{t}(AM^{t}A) = A^{t}M^{t}A$$

= $-\psi(M)$

 φ et ψ sont donc des applications de $\mathcal{A}_n(\mathbb{C})$ dans lui-même ; de plus elles sont linéaires par propriétés du produit matriciel donc φ et ψ sont des endomorphismes de $\mathcal{A}_n(\mathbb{C})$.

IV.2.d. Soit $M \in \mathcal{A}_n(\mathbb{C})$.

$$\varphi \circ \psi(M) = \varphi(AM^t A) = A(AM^t A) + (AM^t A)^t A = A^2 M^t A + AM(t^t A)^2$$

et par ailleurs

$$\psi \circ \varphi(M) = \psi(AM + M^t A) = A(AM + M^t A)^t A = A^2 M^t A + AM(^t A)^2$$

Par conséquent, pour tout $M \in A_n(\mathbb{C})$, $\varphi \circ \psi(M) = \psi \circ \varphi(M)$ donc $\varphi \circ \psi = \psi \circ \varphi$.

IV.3.

IV.3.a.

i) $X_1 \in \mathbb{M}_{n,1}(\mathbb{C})$ et ${}^tX_2 \in \mathbb{M}_{1,n}(\mathbb{C})$ donc $X_1^tX_2 \in \mathbb{M}_n(\mathbb{C})$. De même $X_2^tX_1 \in \mathbb{M}_n(\mathbb{C})$ donc $B \in \mathbb{M}_n(\mathbb{C})$. De plus

$${}^{t}B = {}^{t}(X_{1}^{t}X_{2}) - {}^{t}(X_{2}^{t}X_{1}) = X_{2}^{t}X_{1} - X_{1}^{t}X_{2}$$

donc $B \in \mathcal{A}_n(\mathbb{C})$.

- ii) On suppose $B = O_n$. Alors $X_1^t X_2 = X_2^t X_1$. On multiplie à droite par $\overline{X_2}$ pour obtenir $X_1({}^t X_2 \overline{X_2}) = X_2({}^t X_1 \overline{X_2})$. Or ${}^t X_2 \overline{X_2}$ et ${}^t X_1 \overline{X_2}$ sont des scalaires et (X_1, X_2) est libre (vecteurs propres associés à des valeurs propres distinctes) donc ${}^t X_2 \overline{X_2} = {}^t X_1 \overline{X_2} = 0$. En posant $X_2 = (\alpha_1, \cdots, \alpha_n)$, cela nous donne $\sum_{i=1}^n |\alpha_i|^2 = 0$ et donc $X_2 = 0$ ce qui contredit le fait que X_2 soit un vecteur propre de A. Par conséquent $B \neq O_n$.
- iii) Pour i = 1 ou i = 2, $AX_i = \lambda_i X_i$ donc ${}^tX_i^t A = \lambda_i^t X_i$.

$$AB + B^{t}A = AX_{1}^{t}X_{2} - AX_{2}^{t}X_{1} + X_{1}^{t}X_{2}^{t}A - X_{2}^{t}X_{1}^{t}A$$

$$= \lambda_{1}X_{1}^{t}X_{2} - \lambda_{2}X_{2}^{t}X_{1} + \lambda_{2}X_{1}^{t}X_{2} - \lambda_{1}X_{2}^{t}X_{1}$$

$$= \lambda_{1}B + \lambda_{2}B$$

d'où AB + B^tA = $(\lambda_1 + \lambda_2)$ B.

iv) De même

$$AB^{t}A = (AX_{1})(^{t}X_{2}^{t}A) - (AX_{2})(^{t}X_{1}^{t}A)$$

= $\lambda_{1}\lambda_{2}X_{1}^{t}X_{2} - \lambda_{2}\lambda_{1}X_{2}^{t}X_{1}$

d'où $AB^tA = (\lambda_1\lambda_2)B$.

- **IV.3.b.** A et I_n commutent donc $(A \lambda_1 I_n)(A \lambda_2 I_n)B = A^2B (\lambda_1 + \lambda_2)AB + \lambda_1\lambda_2B$. On multiplie la relation iii) par A à gauche : $A^2B + AB^tA = (\lambda_1 + \lambda_2)AB$ donc $(A \lambda_1 I_n)(A \lambda_2 I_n)B = -AB^tA + \lambda_1\lambda_2B$. D'après iv), on conclut $(A \lambda_1 I_n)(A \lambda_2 I_n)B = O_n$.
- **IV.3.c.** B \neq O_n donc l'une au moins des colonnes de B est non nulle; soit C une colonne de B non nulle. $(A \lambda_2 I_n)B = O_n$ donc $(A \lambda_2 I_n)C = O_{n,1}$ soit $AC = \lambda_2 C$. C n'est pas nulle donc C est un vecteur propre de A.

De plus $B \in \mathcal{A}_n(\mathbb{C})$ donc $C \in \mathbb{N}$. C, une des colonnes de B, est donc un vecteur propre de A sous forme normale

IV.3.d. $(A - \lambda_2 I_n)B \neq O_n$ donc il existe X une colonne de $(A - \lambda_2 I_n)B$ non nulle. Il existe alors U une des colonnes de B telle que $X = (A - \lambda_2 I_n)U$. D'après la question b., X est un vecteur propre de A (associé à la valeur propre λ_1 et λ_2 est une valeur propre de A, $U \in \mathbb{N}$. Finalement X est donc un vecteur propre de A sous forme normale.

IV.4.

- **IV.4.a.** φ et ψ sont deux endomorphismes de $\mathcal{A}_n(\mathbb{C})$ tels que $\operatorname{rg}([\varphi,\psi]) = 0 \le 1$ donc, d'après la partie II, φ et ψ ont un vecteur propre commun : il existe $B \in \mathcal{A}_n(\mathbb{C})$ non nulle vecteur propre de φ et de ψ ; il existe donc $\alpha \in \mathbb{C}$ tel que $\varphi(B) = \alpha B$ soit $AB + B^t A = \alpha B$ et il existe $\beta \in \mathbb{C}$ tel que $AB^t A = \beta B$.
- **IV.4.b.** On multiplie i) par A à gauche : $A^2B + AB^tA = \alpha AB$ mais $AB^tA = \beta B$ donc $A^2B + \beta B = \alpha AB$. En factorisant par B, on obtient $(A^2 \alpha A + \beta I_n)B = O_n$.

- **IV.4.b.** Le polynôme $X^2 \alpha X + \beta$ à coefficients complexes a deux racines (éventuellement confondues) donc il existe $(\gamma, \delta) \in \mathbb{C}^2$ tel que $X^2 \alpha X + \underline{=}(X \gamma)(X \delta)$. Alors $A^2 \alpha A + \beta I_n = (A \alpha I_n)(A \beta I_n)$ et, la relation de la question précédente devient : $(A \gamma I_n)(A \delta I_n)B = O_n$.
- **IV.4.d.** On suppose $(A \delta I_n)B = O_n$ donc, si $A \delta I_n$ est inversible, alors $B = O_n$ ce qui est exclu donc $A \delta I_n$ n'est pas inversible et $\delta \in Sp(A)$. Une colonne non nulle de B est alors un vecteur propre de A sous forme normale.
- **IV.4.e.** Si $\delta = \lambda$ et $(A \delta I_n)B \neq O_n$. Soit X une colonne non nulle de $(A - \delta I_n)B$ et U la colonne de B telle que $X = (A - \delta I_n)U$. $U \in \mathcal{N}$, $\delta \in Sp(A)$ et $(A - \gamma I_n)X = O_{n,1}$ (d'après **IV.4.c.**) donc X est un vecteur propre de A sous forme normale.
- **IV.4.f.** A n'a qu'une valeur propre λ et $\delta \neq \lambda$ donc δ n'est pas valeur propre de A et $(A \delta I_n)$ est inversible. $A \gamma I_n$ et $A \delta I_n$ commutent donc si on multiplie à gauche la relation de la question **IV.4.c.** par $(A \delta I_n)^{-1}$, on obtient $(A \gamma I_n)B = O_n$.
- **IV.4.g.** On est alors revenu à la situation de la question **IV.4.d.** et donc A possède un vecteur propre sous forme normale.

On considère une matrice $A \in M_n(\mathbb{C})$ quelconque.

A a au moins une valeur propre.

Si A a une seule valeur propre, d'après IV.4., A possède un vecteur propre sous forme normale.

Si A a au moins deux valeurs propres distinctes, alors d'après **IV.3.**, A possède un vecteur propre sous forme normale.

On en conclut que, dans tous les cas, une matrice A de $\mathbb{M}_n(\mathbb{C})$ possède un vecteur propre sous forme normale.

* * * * * * * * *