

TEST REPORT

Test report no.: 1-8548/14-01-08

Testing laboratory

CTC advanced GmbH

Untertuerkheimer Strasse 6 – 10
66117 Saarbruecken / Germany
Phone: + 49 681 5 98 - 0
Fax: + 49 681 5 98 - 9075
Internet: http://www.ctcadvanced.com
e-mail: mail@ctcadvanced.com

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with

the registration number: D-PL-12076-01-01

Applicant

Pilz GmbH & Co. KG Felix-Wankel-Straße 2

73760 Ostfildern / GERMANY
Phone: +49 711 340-90
Fax: +49 711 340-99691
Contact: Jürgen Kitzing
e-mail: j.kitzing@pilz.de
Phone: +49 711 340-9691

Manufacturer

Pilz GmbH & Co. KG

Felix-Wankel-Straße 2 73760 Ostfildern / GERMANY

Test standard/s

47 CFR Part 15 Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency

devices

RSS – Gen. Issue 4 Spectrum Management and Telecommunications Radio Standards Specification -

General Requirements and Information for the Certification of Radio Apparatus

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item: RFID Proximity switch

Model name: PSEN slock (p)
FCC ID: VT8-PSENSLP
IC: 7482A-PSENSLP

Frequency: 125 kHz
Technology tested: RFID

Antenna: Integrated loop antenna

Power supply: 24V DC by external power supply

Temperature range: -20°C to +55°C

This test report is electronically signed and valid without handwriting signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorised:	Test performed:
Marco Bertolino	Andreas Luckenbill

Radio Communications & EMC

Lab Manager

Lab Manager

Radio Communications & EMC

Table of contents

1	Table of contents2				
2	Gene	al information	3		
	2.1	Notes and disclaimer	3		
	2.2	Application details			
3	Test s	standard/s	3		
4	Test e	environment	2		
5	Test i	tem	2		
	5.1	Additional information			
6	Test I	aboratories sub-contracted	2		
7	Descr	iption of the test setup			
	7.1	Radiated measurements			
	7.2	Open area site			
	7.3	AC conducted	7		
8	Sumn	nary of measurement results	8		
	8.1	Additional comments	ç		
9	Meas	urement results	10		
	9.1	Timing of the transmitter	10		
	9.2	Bandwidth of the modulated carrier			
	9.3	Field strength of the fundamental			
	9.4	Fieldstrength of the harmonics and spurious			
	9.5	Conducted limits	16		
Anr	nex A	Document history	18		
Anr	nex B	Further information	18		
Δnr	nev C	Accreditation Cortificate	10		

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

2.2 Application details

Date of receipt of order: 2014-09-22
Date of receipt of test item: 2014-09-25
Start of test: 2014-09-25
End of test: 2016-05-19

Person(s) present during the test: Mr. Blum / Mr. Schuchert (Pilz GmbH & Co. KG)

3 Test standard/s

Test standard	Date	Test standard description
47 CFR Part 15		Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices
RSS – Gen. Issue 4	01.11.2014	Spectrum Management and Telecommunications Radio Standards Specification - General Requirements and Information for the Certification of Radio Apparatus

4 Test environment

T_{nom} +22 °C during room temperature tests °C during high

Temperature: T_{max} No tests under extreme conditions

T_{min} No tests under extreme conditions

Relative humidity content: 55 %

Barometric pressure: not relevant for this kind of testing

V_{nom} 24 V DC by external power supply

Power supply: V_{max} No tests under extreme conditions

V_{min} No tests under extreme conditions

5 Test item

Kind of test item :		RFID Proximity switch
Type identification :		PSEN slock (p)
PMN:		PSEN slock (p)
		PSEN sl-1.0p 1.1; PSEN sl-0.5p 1.1; PSEN sl-0.5p 2.1; PSEN sl-0.5p 2.2;
		PSEN sl-0.5p 3.1; PSEN sl-0.5p 4.1; PSEN sl-0.5p 4.2; PSEN sl-0.5p 5.1;
HVIN:		PSEN sl-0.5p 6.1; PSEN sl-0.5p 6.2; PSEN sl-1.0p 2.1; PSEN sl-1.0p 2.2;
		PSEN sl-1.0p 1.1; PSEN sl-1.0p 3.1; PSEN sl-1.0p 4.1; PSEN sl-1.0p 4.2;
		PSEN sl-1.0p 5.1; PSEN sl-1.0p 6.1; PSEN sl-1.0p 6.2
FVIN:		-l-
HMN:		-/-
S/N serial number :	N serial number : SA002580181	
HW hardware status :		-l-
SW software status :		-/-
Frequency band [MHz] :		125 kHz
Type of radio transmission :		Madulated comics
Use of frequency spectrum :		Modulated carrier
Number of channels :	: 1	
Antenna : Integrated loop antenna		Integrated loop antenna
Power supply :		24 V DC by external power supply
Temperature range :		-20°C to +55°C

5.1 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup- and EUT-photos are included in test report: 1-8548/14-01-08_AnnexA

1-8548/14-01-08_AnnexB 1-8548/14-01-08_AnnexD

6 Test laboratories sub-contracted

None

7 Description of the test setup

7.1 Radiated measurements

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 9 kHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are confirmed with specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

Equipment table:

Equipment	Туре	Manufacturer	Serial No.	INV. No CTC
Switch-Unit	3488A	HP Meßtechnik	2719A14505	300000368
DC power supply, 60Vdc, 50A, 1200 W	6032A	HP Meßtechnik	2920A04466	300000580
EMI Test Receiver	ESCI 3	R&S	100083	300003312
Amplifier	JS42-00502650-28-5A	MITEQ	1084532	300003379
Antenna Tower	Model 2175	ETS-LINDGREN	64762	300003745
Positioning Controller	Model 2090	ETS-LINDGREN	64672	300003746
Turntable Interface-Box	Model 105637	ETS-LINDGREN	44583	300003747
TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck	295	300003787
Test Receiver	ESH2	R&S	871921/095	300002505
Loop Antenna 9 KHz - 30 MHz	HFH2-Z2	R&S	872096/61	300001824
EMI Test Receiver 9 kHz - 3 GHz incl. Preselector	ESPI3	R&S	101713	300004059

7.2 Open area site

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation:

 $\overline{\text{FS [dB}\mu\text{V/m]}} = 40.0 \text{ [dB}\mu\text{V/m]} + (-35.8) \text{ [dB]} + 32.9 \text{ [dB/m]} = 37.1 \text{ [dB}\mu\text{V/m]} (71.61 \ \mu\text{V/m})$

Equipment table:

Equipment	Туре	Manufacturer	Serial No.	INV. No CTC
Test Receiver	ESH2	R&S	871921/095	300002505
Loop Antenna 9 KHz - 30 MHz	HFH2-Z2	R&S	872096/61	300001824

7.3 AC conducted

FS = UR + CF + VC

(FS-field strength; UR-voltage at the receiver; CR-loss of the cable and filter; VC-correction factor of the ISN)

Example calculation:

 $FS [dB\mu V/m] = 37.62 [dB\mu V/m] + 9.90 [dB] + 0.23 [dB] = 47.75 [dB\mu V/m] (244.06 \(\mu V/m \))$

Equipment table:

Equipment	Туре	Manufacturer	Serial No.	INV. No CTC
MXE EMI Receiver 20 Hz bis 26,5 GHz	N9038A	Agilent Technologies	MY51210197	300004405
Isolating Transformer	MPL IEC625 Bus Regeltrenntravo	Erfi	91350	300001155
Switch / Control Unit	3488A	HP Meßtechnik	*	300000199
Switch / Control Unit	3488A	HP Meßtechnik	2719A15013	300001168
Artificial Mains 9 kHz to 30 MHz	ESH3-Z5	R&S	828576/020	300001210

8 Summary of	measurement	t results
--------------	-------------	-----------

\boxtimes	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained

TC Identifier	Description	Verdict	Date	Remark	
RF-Testing	CFR Part 15 RSS-Gen., Issue 4	Passed	2016-12-14	-/-	

Test Specification Clause	Test Case	Temperature Conditions	Power Source Voltages	Pass	Fail	NA	NP	Results
§ 15.35 (c) / RSS-GEN Issue 4 Section 4.5	Timing of the transmitter (Duty cycle correction factor)	Nominal	Nominal					complies
§ 2.1049 / RSS-Gen.	Bandwidth of the modulated carrier	Nominal	Nominal					complies
§ 15.209 / RSS-Gen.	Fieldstrength of fundamental	Nominal	Nominal					complies
§ 15.209 (a) / RSS-Gen.	Fieldstrength of harmonics and spurious	Nominal	Nominal	\boxtimes				complies
§ 15.109 / RSS-Gen.	Receiver spurious emissions	Nominal	Nominal			\boxtimes		-/-
§ 15.107 / § 15.207	Conducted limits	Nominal	Nominal	\boxtimes				complies

Note: NA = Not Applicable; NP = Not Performed

8.1 Additional comments

Reference documents: None

Special test descriptions: None

Configuration descriptions: None

9 Measurement results

9.1 Timing of the transmitter

Limits:

FCC	IC		
Timing of th	e transmitter		

(c) Unless otherwise specified, e.g. Section 15.255(b), when the radiated emission limits are expressed in terms of the average value of the emission, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value. The exact method of calculating the average field strength shall be submitted with any application for certification or shall be retained in the measurement data file for equipment subject to notification or verification.

Duty cycle of the sample with test mode: 100 %

In normal use the duty cycle is approximately 100% (declared by the manufacturer).

Result: Passed

9.2 Bandwidth of the modulated carrier

Limits:

FCC	IC		
Bandwidth of the modulated carrier			

Measured with the integrated OBW-function of the spectrum analyzer (measurement criteria is the integrated power in %)

Result:

	Occupied Bandwidth (kHz)
20 dB (99%)	2.56

Plots of the measurement

Plot 1: 20dB (99%) - bandwidth

Date: 25.SEP.2014 13:22:01

9.3 Field strength of the fundamental

Measurement:

Measurement parameter		
Detector:	AVG	
Resolution bandwidth:	10kHz	
Trace-Mode:	Max Hold	
Test setup:	see chapter 7.2	

Limits:

FCC		IC	
Fundamental Frequency (MHz)	Field strength of Fundamental (dBµV/m)		Measurement distance (m)
125 kHz	26		300

Result:

TEST CO	TEST CONDITIONS		VER (dBμV/m)
Freq	uency	125 kHz	125 kHz
Mode		at 10 m distance	at 300 m distance
T _{nom}	V _{nom}	53.0	-7
Measurement uncertainty		±30	dB

Recalculation to a measurement distance of 300m with a correction of 40 dB/decade.

Result: Passed

9.4 Fieldstrength of the harmonics and spurious

Measurement:

Measurement parameter			
Detector:	Peak / Average / Quasi Peak		
Sweep time:	Auto		
Resolution bandwidth:	F < 150 kHz: 200 Hz 150 kHz > F > 30 MHz: 9 kHz F > 30 MHz: 120 kHz		
Video bandwidth:	F < 150 kHz: 1 kHz 150 kHz > F > 30 MHz: 100 kHz F > 30 MHz: 300 kHz		
Span:	See plot!		
Trace-Mode:	Max hold		
Test setup:	see chapter 7.1		

Limits:

FCC			IC
Fi	Field strength of the harmonics and spur		
Frequency (MHz)	Field strength (μV/m)		Measurement distance (m)
0.009 - 0.490	2400/F(kHz)		300
0.490 – 1.705	24000/F(kHz)		30
1.705 – 30	30 (29.5 dBμV/m)		30
30 – 88	100 (40 dBμV/m)		3
88 – 216	150 (43.5 dBµV/m)		3
216 – 960	200 (46 d	BμV/m)	3

Result:

	EMISSION LIMITATIONS					
f Detector Limit Amplitude of emission [dBμV/m] Res						
All detected peaks are more than 20 dB below the limit.						

Result: Passed

Note: The limit was recalculated with 20 dB / decade (Part 15.31) for all radiated spurious emissions 30 MHz to 1 GHz from 3 meter limit to a 10 meter distance. (40dB/decade for emissions < 30MHz)

Plots of the measurements

Plot 1: 9 kHz - 30 MHz

Plot 2: 30 MHz - 1000 MHz

Common Information

EUT: PSEN sl-1.0p
Serial number: SA002580181
Test description: FCC part 15

Operating condition: tx
Operator name: Kraus
Comment: DC 24V

Final_Result

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
39.433950	10.99	30.00	19.01	1000.0	120.000	103.0	٧	126	14.0
219.302700	22.15	36.00	13.85	1000.0	120.000	98.0	٧	146	12.4
753.148500	20.07	36.00	15.93	1000.0	120.000	100.0	Н	123	22.7

9.5 Conducted limits

Measurement:

Measurement parameter		
Detector:	Peak / Quasi-Peak / Average	
Sweep time:	Auto	
Resolution bandwidth:	9 kHz	
Video bandwidth:	50 kHz	
Span:	30 MHz	
Trace-Mode:	Max Hold	
Test setup:	see chapter 7.3	

Limits:

FCC		IC	
	Conducte	ed limits	
Frequency of Emission (MHz)	Frequency of Emission (MHz) Conducted Limit (dBµV)		Limit (dBµV)
		Quasi-peak	Average
0.15 – 0.5		66 to 56 *	56 to 46 *
0.5 – 5		56	46
5 - 30		60	50

^{*}Decreases with the logarithm of the frequency

Result: Passed

Plots:

Plot 1: phase line

Plot 2: neutral line

Annex A Document history

Version	Applied changes	Date of release
	Initial release	2016-12-14

Annex B Further information

Glossary

AVG - Average

DUT - Device under test

EMC - Electromagnetic Compatibility

EN - European Standard EUT - Equipment under test

ETSI - European Telecommunications Standard Institute

FCC - Federal Communication Commission

FCC ID - Company Identifier at FCC

HW - Hardware

IC - Industry Canada
Inv. No. - Inventory number
N/A - Not applicable
PP - Positive peak
QP - Quasi peak
S/N - Serial number
SW - Software

Annex C **Accreditation Certificate**

Front side of certificate

(DAkkS

Deutsche Akkreditierungsstelle GmbH

Beliehene gemäß § 8 Absatz 1 AkkStelleG i.V.m. § 1 Absatz 1 AkkStelleGBV Unterzeichnerin der Multilateralen Abkommen von EA, ILAC und IAF zur gegenseitigen Anerkennung

Akkreditierung

Die Deutsche Akkreditierungsstelle GmbH bestätigt hiermit, dass das Prüflaboratorium

CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken

die Kompetenz nach DIN EN ISO/IEC 17025:2005 besitzt, Prüfungen in folgenden Bereichen durchzuführen:

Funk Mobilfunk (GSM / DCS) + OTA Mobilitunk (GSM / DCS) + OTA Elektromagnethse Verträglichkeit (EMV) Produksischerheit SAR / EMF Umweit Smart Card Technology Bluetooth* Automotive Wi-Fi-Services Kanadische Anforderungen US-Anforderungen

Near Field Communication (NFC) Die Akkreditierungsurkunde gilt nur in Verbindung mit dem Bescheid vom 25.11.2016 mit der Akkreditierungsnummer D-PL-12076-01 und ist gültig bis 17.01.2018. Sie besteht aus diesem Deckblatt, der Rückseite des Deckblatts und der folgenden Anlage mit insgesamt 63 Seiten.

Frankfurt, 25,11,2016

Back side of certificate

Deutsche Akkreditierungsstelle GmbH

Standort Frankfurt am Main Europa-Allee 52 60327 Frankfurt am Main

Standort Braunschwe Bundesallee 100 38116 Braunschweig

Die auszugsweise Veröffentlichung der Akkreditierungsurkunde bedarf der vorherigen schriftlicher Zustimmung der Deutsche Akkreditierungsstelle GmbH (DAkks). Ausgenommen davon ist die sepa Weiterverbreitung des Deckbiattes durch die umsellig genannte Konformitätsbewertungsstelle in unweränderter form.

Die Akkreditierung erfolgte gemäß des Gesetzes über die Akkreditierungsstelle (AkkStelleG) vom 31. Juli 2009 (BGBI, I.S. 2625) sowie der Verordnung (EG) Nr. 765/2008 des Europäischen Parlaments und des Rates vom 9. Juli 2008 Weber die Vorschriften für die Akkreditierung und Marktüberwachung im Zusammenhang mit der Vermarktung von Produkten (Abl. L.218 vom 9. Juli 2008, S. 30). Die DAkKS ist Unterzeichernich der Wultilateralen Abbommen zur gegenseitigen Anerkennung der European co-operation for Accreditation (EA), des International Accreditation Forum (IAF) und der International Laboratory Accreditation (Cooperation (ILAC), Die Unterzeichner dieser Abkommen erkennen ihre Akkreditierungen gegenseitig an.

Der aktuelle Stand der Mitgliedschaft kann folgenden Webseiten entnommen werden: EA: www.european-accreditation.org ILAC: www.lisc.org IAF: www.lisc.org

Note:

The current certificate including annex may be received from CTC advanced GmbH on request.