CSE 411: Machine Learning Clustering

Dr Muhammad Abul Hasan

Department of Computer Science and Engineering Green University of Bangladesh muhammad.hasan@cse.green.edu.bd

Fall 2023

Outline

- 1 Unsupervised Learning
- 2 Clustering
- **3** K-Means Clustering
- 4 K Means Clustering Example
- 5 Finding optimum K

■ People worry that computers will get too smart and take over the world, but the real problem is that they're too stupid and they've already taken over the world.

- Pedro Domingos

Unsupervised Learning

- **Supervised learning:**
 - \square Predict target value y given features x.
- Unsupervised learning:
 - Understand patterns of data (just x)
 - Useful for many reasons:
 - Data mining ("explain")
 - Missing data values ("impute")
 - Representation (feature generation or selection)
- Example of unsupervised learning: Clustering

Clustering and Data Compression

- Clustering is related to vector quantization
 - Dictionary of vectors (the cluster centers)
 - Each original value is represented using a dictionary index
 - Each center "claims" a nearby region (Voronoi region)

- Basic idea: group together similar instances
- Example: 2D point patterns

- Basic idea: group together similar instances
- Example: 2D point patterns

- Basic idea: group together similar instances
- Example: 2D point patterns

- Basic idea: group together similar instances
- Example: 2D point patterns

What could "similar" mean?

- One option: small Euclidean distance (squared)
- Clustering results are crucially dependent on the measure of similarity (or distance) between "points" to be clustered

- Image segmentation
- Goal: Break up the image into meaningful or perceptually similar regions

CSE 411: Machine Learning

K-Means Clustering

- A simple clustering algorithm
- Iterate between
 - Updating the assignment of data to clusters
 - Updating the cluster's summarization
- Suppose we have K clusters $c = 1 \dots K$

K-Means

- An iterative clustering algorithm
 - Initialize: Pick K random points as cluster centers
 - Alternate:
 - Assign data points to the closest cluster center
 - Change the cluster center to the average of its assigned points
 - Stop when no points assignments change

K-Means

- An iterative clustering algorithm
 - Initialize: Pick K random points as cluster centers
 - Alternate:
 - Assign data points to the closest cluster center
 - Change the cluster center to the average of its assigned points
 - Stop when no points assignments change

Properties of K means algorithm

- Guaranteed to converge in a finite number of iterations.
- Running time per iteration:
 - Assign data points to the closest cluster center $\mathcal{O}(KN)$ time
 - Change the cluster center to the average of its assigned points $\mathcal{O}(N)$

How to find the number of clusters in K-means?

- K is a hyperparameter to the k-means algorithm.
- In most cases, the number of clusters K is determined in a heuristic fashion.
- Most strategies involve running K-means with different values of K and finding the best value using some criteria. One of the two most popular criteria used is the elbow method.

Elbow Method

- The elbow method involves finding optimum values of K and finding the elbow point.
- At first, the quality of clustering improves rapidly when changing the value of K, but eventually stabilizes.
- The elbow point is where the relative improvement is not very high anymore.

Thank You!