AULA 22 - Coloração em grafos

Prof. Daniel Kikuti

Universidade Estadual de Maringá

30 de maio de 2014

Uma aplicação inicial

Problema de escalonamento de horários

- Você é o responsável por agendar horários de aulas na universidade.
- Seu objetivo é evitar conflitos, isto é, garantir que duas aulas quaisquer com alunos em comum ocorram em horários diferentes.
- Para representar esta informação, você resolveu usar um grafo, onde os vértices representam as disciplinas e uma aresta entre duas disciplinas representa um conflito.

Exemplo¹

Quantos horários distintos são necessários?

Legenda:

- A Astronomy
- C Chemistry
- G Greek
- **H** History
 - **I** Italian
- L Latin
- M Music
 - P Philosophy
 - S Spanish

¹Copiado de http://web.math.princeton.edu/math_alive/5/Notes2.pdf

Solução?

Coloração

Podemos atribuir uma cor (rótulo) para cada horário (por exemplo, o horário 19:30-21:10 pode receber a cor azul), de forma que dois vértices adjacentes não possuam a mesma cor.

Solução?

Coloração

Podemos atribuir uma cor (rótulo) para cada horário (por exemplo, o horário 19:30 – 21:10 pode receber a cor azul), de forma que dois vértices adjacentes não possuam a mesma cor.

Uma coloração possível

Conjunto independente

Um **conjunto independente** em um grafo G = (V, E) é qualquer subconjunto $V' \subseteq V$, tal que $u, v \in V' \Rightarrow (u, v) \notin E$.

Conjunto independente

Um **conjunto independente** em um grafo G = (V, E) é qualquer subconjunto $V' \subseteq V$, tal que $u, v \in V' \Rightarrow (u, v) \notin E$.

Coloração, k-coloráção, k-colorível

Uma **coloração** (própria) dos vértices de G=(V,E) é uma função $c:V\to\mathbb{N}$ que dado dois vértices adjacentes $u,v\in V$ quaisquer, associa-os a cores diferentes, isto é, $(u,v)\in E\Rightarrow c(u)\neq c(v)$. Uma **k-coloração** de um grafo é uma coloração que usa um total de k cores. Um grafo que possui uma k-coloração é dito **k-colorível**.

Conjunto independente

Um **conjunto independente** em um grafo G = (V, E) é qualquer subconjunto $V' \subseteq V$, tal que $u, v \in V' \Rightarrow (u, v) \notin E$.

Coloração, k-coloração, k-colorível

Uma **coloração** (própria) dos vértices de G=(V,E) é uma função $c:V\to\mathbb{N}$ que dado dois vértices adjacentes $u,v\in V$ quaisquer, associa-os a cores diferentes, isto é, $(u,v)\in E\Rightarrow c(u)\neq c(v)$. Uma **k-coloração** de um grafo é uma coloração que usa um total de k cores. Um grafo que possui uma k-coloração é dito **k-colorível**.

Partição em conjuntos independentes

A função de coloração c induz uma partição no grafo G em subconjuntos independentes V_1, V_2, \ldots, V_k , na qual $V_i \cap V_j = \emptyset$ e $V_1 \cup V_2 \cup \ldots \cup V_k = V$.

Número cromático

O **número cromático** de um grafo G (representado por $\chi(G)$) é o número mínimo de cores necessário para se colorir o grafo.

Complexidade do problema

Encontrar uma coloração de vértices ótima é um problema NP-difícil² (caso geral).

²Karp, Richard M. *Reducibility Among Combinatorial Problems*. In R. E. Miller and J. W. Thatcher (editors). Complexity of Computer Computations. New York: Plenum. pp. 85–103, 1972.

Limites do número cromático

- 1. $1 \le \chi(G) \le |V|$.
- 2. Para um grafo completo K_n , $\chi(K_n) = n$.
- 3. Se G contém um **clique** de tamanho k, então $\chi(G) \ge k$.
- 4. Grafos bipartidos (incluindo florestas e árvores) são 2-coloríveis.
- 5. Todo grafo planar pode ser colorido com 4 cores (Appel e Haken, 1976).
- 6. Uma coloração gulosa mostra que todo grafo pode ser colorido com uma cor a mais que o grau máximo de um vértice, $\chi(G) \leq \Delta(G) + 1$.

Algoritmo sequencial

Entrada: Um grafo G e uma lista de vértices (ordem)

 v_1, v_2, \ldots, v_n .

Saída: Uma coloração de vértices $c: V_G \to \mathbb{N}$.

- 1 Para i = 1 até n faça
- Seja $c(v_i)$ = o menor número de cor não usado nos vizinhos de menor índice de v_i
- 3 Devolva a coloração de vértices c.

Análise do algoritmo sequencial

- O algoritmo produz uma coloração própria porque evita conflitos toda vez que vai colorir um vértice.
- ▶ O tempo de execução é O(V + E).
- Quantas cores serão usadas? Depende da ordem escolhida para colorir os vértices.
- Produz uma coloração ótima se for dada uma ordenação ótima. O problema é que achar esta ordenação ótima é NP-Difícil também.
- Uma propriedade interessante é que, uma vez colorido o grafo, é possível gerar a ordem dos vértices que gera esta coloração (simplesmente listando os vértices de acordo com sua cor).
- É um algoritmo eficiente, mas não eficaz.

Análise do algoritmo sequencial

- O algoritmo produz uma coloração própria porque evita conflitos toda vez que vai colorir um vértice.
- ▶ O tempo de execução é O(V + E).
- Quantas cores serão usadas? Depende da ordem escolhida para colorir os vértices.
- Produz uma coloração ótima se for dada uma ordenação ótima. O problema é que achar esta ordenação ótima é NP-Difícil também.
- Uma propriedade interessante é que, uma vez colorido o grafo, é possível gerar a ordem dos vértices que gera esta coloração (simplesmente listando os vértices de acordo com sua cor).
- É um algoritmo eficiente, mas não eficaz.

Exercício

Mostre que o Algoritmo Sequencial nem sempre produz uma coloração que usa o número cromático de cores.

Algoritmo heurístico Maior Grau Primeiro

Entrada: um grafo G com n vértices.

Saída: Uma coloração de vértices $c: V_G \to \mathbb{N}$.

- 1 Enquanto existir vértices não coloridos em ${\cal G}$ faça
- Entre os vértices sem cor de maior grau, escolha o vértice v com o maior grau de coloração;
- Atribua a menor cor k possível para o vértice v: c(v) = k;
- 4 Devolva a coloração de vértices c.

Grau de coloração

É o número de cores diferentes usadas para os vértices coloridos adjacentes de v.

Outras aplicações

Coloração de vértices

- Alocação de faixas de frequência (rádio ou TV).
- Colorir mapas.
- Separação de produtos explosivos.
- Otimização em compiladores (alocação de registradores).

Outros problemas de coloração

- Coloração de arestas.
- Coloração de faces.