# Topologia della retta

### 1) Definizioni di base

#### • Intervallo

L'insieme di tutti i valori compresi fra due estremi (finiti o infiniti). Ognuno dei due estremi può essere incluso o escluso.

Esempio: In  $\mathbb{R}$ , l'insieme [1, 4) è un intervallo. Si può scrivere anche come [1, 4], o come  $1 \le x < 4$ . In  $\mathbb{R}$ , l'insieme {1, 2, 3} NON è un intervallo, perché non contiene TUTTI i valori compresi fra 1 e 4.



#### • Minimo di un insieme A

L'elemento più piccolo <u>appartenente</u> all'insieme A. Formalmente: m è il minimo di A se  $\begin{cases} m \in A \\ m \le x, \ \forall x \in A \end{cases}$  Osserva che <u>il minimo di A esiste solo se A è chiuso inferiormente</u>.

## Esempio:

| Escinpioi .                                 |     |
|---------------------------------------------|-----|
| dato l'insieme [ 2,5 [ il minimo è 2        | 2 5 |
| dato l'insieme ] 2,5 [ il minimo non esiste | 2 5 |

#### • Massimo di un insieme A

L'elemento più grande <u>appartenente</u> all'insieme A. Formalmente: M è il massimo di A se  $\{M \in A \mid M \geq x, \forall x \in A \}$  Osserva che il massimo di A esiste solo se A è chiuso superiormente.

## Esempio:

| Esemplo.                                      |     |
|-----------------------------------------------|-----|
| dato l'insieme ] 2,5 ] il massimo è 5         | 2 5 |
| dato l'insieme ] 2, 5 [ il massimo non esiste | 2 5 |

#### • Minorante di un insieme A

Qualsiasi elemento (appartenente o no ad A) minore o uguale di tutti gli elementi di A. Ovviamente il minimo di A fa parte dei minoranti.

Osserva che l'insieme dei minoranti, se esiste, è sempre chiuso superiormente (dal minimo di A).



### • Maggiorante di un insieme A

Qualsiasi elemento (appartenente o no ad A) maggiore o uguale di tutti gli elementi di A. Ovviamente il massimo di A fa parte dei maggioranti.

Osserva che <u>l'insieme dei minoranti, se esiste, è sempre chiuso inferiormente</u> (dal maggiore di A).



#### • Estremo inferiore di un insieme A

Il più grande dei minoranti di A. Si indica con il simbolo inf(A).

NON è necessariamente il minimo di A. Può anche NON appartenere ad A.

Osserva che in un insieme come  $]-\infty$ , 2], l'estremo inferiore è  $-\infty$ .

| dato l'                                                                                       | insieme | A =  2,5 ]         | l'estremo inferio   | ore di <i>A</i> è <b>2</b> | in simboli: inf(A    | ) = 2      |
|-----------------------------------------------------------------------------------------------|---------|--------------------|---------------------|----------------------------|----------------------|------------|
| infatti l'insieme dei minoranti di $A$ è $\left]-\infty$ , $2$ $\right]  il cui massimo è  2$ |         |                    |                     |                            |                      |            |
| <b>A</b>                                                                                      | Osserv  | a che se l'insier  | me non è limitato i | nferiormen                 | te, l'estremo inferi | oreè −∞    |
| B=]                                                                                           | -∞,5]   | $inf(B) = -\infty$ | C = ] 1,4 ]         | inf(C) =                   | 1 D = [1,4]          | inf(D) = 1 |

#### • Estremo superiore di un insieme A

Il più piccolo dei maggioranti di A. Si indica con il simbolo **sup(A)**. NON è necessariamente il massimo di A. Può anche NON appartenere ad A. Osserva che in un insieme come  $[5, +\infty[$ , l'estremo superiore è  $+\infty$ .



## 2) Definizioni introduttive ai limiti

# • Intorno completo di un punto $x_0$

Un qualsiasi intervallo <u>aperto</u> che contiene il punto  $x_0$ .

Esempio: Dato il punto  $x_0 = 6$ , l'intervallo ]4, 10[ è un intorno completo di 6.

Si possono prendere potenzialmente infiniti intorni completi (tranne se ad esempio il dominio è limitato).



### • Intorno circolare di un punto $x_0$

Un qualsiasi intervallo aperto contenente  $x_0$ , in cui  $x_0$  dista equamente da ambi gli estremi.

Ovvero:  $|x_0 - estremo_1| = |x_0 - estremo_2|$ .

Esempio: Dato il punto  $x_0 = 4$ , l'intervallo ]2, 6[ è un intorno completo di 4. Anche qui, si possono prendere potenzialmente infiniti intorni circolari.



## ullet Punto di accumulazione $x_0$ dell'insieme A

 $x_0$  è un punto di accumulazione di A se IN OGNI possibile intorno di  $x_0$  vi è ALMENO un elemento x', con  $x' \in A$ ,  $x' \neq x_0$ .  $x_0$  può anche non appartenere ad A (Esempio: inf(A) =  $x_0$ , con A intervallo aperto).

| $x_0$ put afficile from appartenere at $N$ (Escripto: $\min(N) = x_0$ , $\cot N$ interval. |                                                     |       |  |  |  |
|--------------------------------------------------------------------------------------------|-----------------------------------------------------|-------|--|--|--|
| esempi                                                                                     |                                                     |       |  |  |  |
| $x_0$ appartiene $\operatorname{ad} A$                                                     | $\sin x_0 = 3 \text{ ed } A = ]2,6[$                |       |  |  |  |
| $x_0$ è di accumulazione per $A$                                                           | 3 appartiene ad A ed è di accumulazione             | 2 3 6 |  |  |  |
| $x_0 \ non$ appartiene ad $A$                                                              | $\sin x_0 = 2 \text{ ed } A = ]2,6[$                |       |  |  |  |
| $x_0$ è di accumulazione per $A$                                                           | 2 non appartiene ad A ed è di accumulazione         | 2 6   |  |  |  |
| x <sub>0</sub> non appartiene ad A                                                         | $\sin x_0 = 1 \text{ ed } A = ]2,6[$                |       |  |  |  |
| $x_0$ non è di accumulazione per $A$                                                       | 1 non appartiene ad A e non è di accumulazione      | 1 2 6 |  |  |  |
| $x_0$ appartiene ad $A$                                                                    | $\sin x_0 = 1 \text{ ed } A = \{1\} \cup \] 2,6 \[$ |       |  |  |  |
| $x_0$ non è di accumulazione per $A$                                                       | 1 appartiene ad A e non è di accumulazione          | 1 2 6 |  |  |  |