Software Requirements Specification (SRS) Document

1. Introduction

1.1 Purpose

The purpose of this project is to develop a real-time, IoT-based pollution monitoring system that can detect and measure pollution levels in air, water, and soil using integrated sensors, Automatically collect and process data using a Raspberry Pi and display it on the Blynk IoT platform.

1.2 Scope

Real-time environmental pollution monitoring system that tracks air, water, and soil pollution using IoT technology.

- Air quality (smoke, CO, methane), water quality (turbidity), soil condition (moisture and temperature)
- Uses Raspberry Pi 3 as the central controller
- Collects data from multiple sensors via MCP3008 ADC
- Displays real-time values on the Blynk IoT app
- Voice alerts using Bluetooth speaker
- Visual data representation on Blynk app
- Audio alerts for immediate attention

1.3 Definitions, Acronyms, and Abbreviations

- **IoT** Internet of Things
- API Application Programming Interface
- **ADC** Analog to Digital Converter
- SMS Short Message Service
- **CO** Carbon Monoxide

1.4 References

- Research papers on **Real time pollution monitoring system.**
- [1]Gupta, R., & Kumar, S. (2021). Smart Environmental Monitoring System Using IoT. International Journal of Computer Applications.

- [2] Kumar, S., & Jasuja, A. (2023). Air Quality Monitoring System Based on IoT using Raspberry Pi. International Journal of Environmental Science and Technology.
- [3] Zhang, Y., & Wang, L. (2022). A Review of IoT-Based Environmental Monitoring Systems Sensors.
- Documentation on Blynk app, Bluetooth speaker, and Speech Recognition APIs

2. Overall Description

2.1 Product Perspective

The Real-Time Pollution Monitoring System is designed as a standalone IoT-based product that integrates multiple environmental sensors to monitor air, water, and soil pollution levels.

2.2 Product Features

- Multi-Environmental Monitoring
- Real-Time Data Processing
- IoT Integration
- Automated Alerts System
- Visual Dashboard Interface
- Integrated Sensor Network

2.3 User Characteristics

- General Users Access data via the Blynk IoT app for awareness or educational purposes.
- **Technical Users (System Admins/Developers)** Configure and maintain hardware (Raspberry Pi, sensors, speaker, etc.) Manage backend software (Python code, APIs like Twilio, eSpeak, Blynk).

2.4 Constraints

- Accuracy of pollution readings can vary depending on sensor quality and environmental conditions.
- Limited processing power of Raspberry Pi 3 may restrict scalability if additional sensors or modules are added.
- Sensors may need frequent calibration to maintain data reliability.

2.5 Assumptions and Dependencies

- Raspberry Pi and sensors will have a stable and uninterrupted power supply for real-time monitoring.
- Users can monitor data remotely via the **Blynk mobile app** or dashboard.

3. Specific Requirements

3.1 Functional Requirements

1. Air Pollution Monitoring

Uses MQ2 and MQ3 sensors to detect gases (methane, smoke, alcohol).

Converts analog sensor data to digital using MCP3008 ADC.

Displays real-time AQI on the Blynk IoT platform with categorized health impact levels.

Uses multiple sensors for source triangulation and hotspot alerts.

2. Soil Condition Monitoring

Measures moisture, temperature, pH, and salinity to assess soil health.

Detects heavy metals (lead, arsenic, mercury) for contamination analysis.

Provides nutrient (NPK) analysis and fertilizer recommendations.

3. Real-Time Alerts

Uses Twilio API for instant SMS notifications.

Integrates eSpeak for real-time voice alerts.

Sends alerts to farmers, authorities, and environmental agencies.

4. IoT Platform Integration (Blynk)

Remote monitoring via mobile/web interface.

Real-time data visualization with customizable dashboards.

Cloud storage for long-term trend analysis.

5. Threshold & Emergency Alerts

Predefined safety levels trigger alerts for hazardous conditions.

Emergency alerts if multiple gases exceed critical levels.

Users can customize sensitivity settings based on location.

6. Automated & Multi-User System

Operates autonomously, minimizing manual intervention.

Supports multiple users, ensuring broad stakeholder engagement.

3.2 Non-Functional Requirements

Performance – The system should respond to sensor input and send alerts within 2 seconds of detecting critical levels.

Usability – Provide an intuitive user interface on the Blynk platform for non-technical users.

Scalability – The system should accommodate additional sensors or functionalities for broader environmental monitoring.

Reliability – Ensure accurate data collection and transmission by calibrating sensors and using robust hardware.

Portability - Use lightweight components like Raspberry Pi to ensure the system can be deployed in diverse locations.

3.3 External Interface Requirements

User Interfaces – GUI using Tkinter or PyQt6 for real-time data visualization and control.

Hardware Interfaces – Requires MQ2 & MQ3 gas sensors, turbidity sensor, soil moisture & temperature sensors, Raspberry Pi, MCP3008 ADC, Wi-Fi/Ethernet module, microphone, and speakers for sensor data collection and alerts.

Software Interfaces – Uses Python for programming, Blynk for IoT visualization, Twilio API for SMS notifications, and eSpeak for voice alerts.

4. System Features

4.1 Air Pollution Monitoring Module

- MQ2 & MQ3 Sensors Detects harmful gases such as smoke, methane, and carbon monoxide.
- Data Processing Sensor readings are converted using MCP3008 ADC and processed by Raspberry Pi.
- **Monitoring & Alerts** Data is uploaded to Blynk IoT for real-time monitoring, triggering alerts when pollution exceeds safe levels.

4.2 Water Pollution Monitoring Module

- Turbidity Sensor Measures water clarity and detects contamination levels.
- Data Processing Sensor data is digitized using MCP3008 ADC and sent to Raspberry Pi.
- **Monitoring & Alerts** Real-time updates are displayed on Blynk IoT, with alerts triggered for poor water quality.

4.3 Soil Pollution Monitoring Module

- Soil Moisture & Temperature Sensors Tracks soil conditions for agricultural and environmental monitoring.
- Data Processing Sensor data is processed through MCP3008 ADC before being sent to Blynk IoT.
- Monitoring & Alerts Farmers receive instant alerts when soil conditions require attention.

4.4 IoT & Alerts Module

- Raspberry Pi Manages sensor data and system operations.
- **Blynk IoT** Provides a real-time dashboard for environmental data visualization.
- Twilio API Sends SMS alerts when pollution levels exceed predefined thresholds.
- **eSpeak** Generates voice alerts to notify users of critical pollution levels.

5. Other Requirements

5.1 Software Requirements

- Blynk Application: Displays sensor data and sends notifications.
- Python: Codebase for sensor data processing, IoT communication, and threshold checks.
- Voice Alert System: Uses a text-to-speech library for real-time audio alerts.

5.2 Hardware Requirements

- Raspberry Pi Central processing & IoT hub
- Air Sensors: MQ2 (smoke, methane), MQ3 (CO, alcohol)
- Water Sensor: Turbidity sensor (water clarity)
- Soil Sensors: Moisture & temperature sensors
- MCP3008 ADC: Converts analog to digital signals
- Speaker & Bluetooth Module: Provides audio alerts when thresholds are breached

Conclusion

This **SRS document** outlines the features, and requirements providing a comprehensive guide for the development and implementation of the Real-Time Pollution Monitoring System, ensuring that it meets stakeholder expectations and operates effectively in diverse environments.

Guide: Dr. Mohammad Aamir Almas

Signature: