Algoritmi avansaţi

Laborator 5 (săpt. 9 și 10)

1. (0,5p) Implementați / utilizați testul de orientare.

Input. Trei puncte $P=(x_P,y_P), Q=(x_Q,y_Q), R=(x_R,y_R)$ (în această ordine) din \mathbb{R}^2 .

Output. Programul afișează natura virajului PQR (viraj la stânga, viraj la dreapta, puncte coliniare).

2. (0,5p) Algoritm cu complexitate-timp liniară pentru frontiera acoperirii convexe a unui poligon dat.

Input. Numărul de vârfuri n, vârfurile poligonului: $P_1 = (x_{P_1}, y_{P_1}), P_2 = (x_{P_2}, y_{P_2}), \dots, P_n = (x_{P_n}, y_{P_n})$ (în această ordine) din \mathbb{R}^2 .

Output. Programul afișează vârfurile acoperirii convexe a mulțimii $\{P_1, \ldots, P_n\}$. **Precizare.** Pentru testare, $P_1P_2 \ldots P_n$ reprezintă un poligon parcurs în sens trigonometric (acest lucru nu mai trebuie verificat). Algoritmul va avea complexitatea-timp liniară.

3. (1p) Algoritm eficient pentru stabilirea poziției unui punct față de un poligon convex.

Input. Numărul de vârfuri n, vârfurile poligonului convex $P_1 = (x_{P_1}, y_{P_1}), P_2 = (x_{P_2}, y_{P_2}), \ldots, P_n = (x_{P_n}, y_{P_n})$ (în această ordine), un punct Q din \mathbb{R}^2 .

Output. Programul afișează poziția relativă a punctului Q față de poligon (în interior, în exterior, pe laturi).

Precizare. Pentru testare, $P_1P_2\dots P_n$ reprezintă un poligon convex parcurs în sens trigonometric (acest lucru nu mai trebuie verificat). Algoritmul va fi cât mai eficient.

4. (1p) Implementați algoritmul care construiește, în context euclidian, un traseu optim pentru TSP folosind acoperirea convexă.