MATHEMATIQUES - 2 IC INSA TD 3 - SERIES de FONCTIONS

Exercice 1

Soit, pour $n \in \mathbb{N}$, $x \in \mathbb{R}$:

$$f_n(x) = \frac{nx}{1 + n^3 x^2}$$

- 1. En remarquant que f_n est impaire, montrer que la série $\sum f_n$ converge simplement sur \mathbb{R} . On note S sa somme. Y a-t-il convergence normale sur \mathbb{R}_+ ?
- **2.** Soit a > 0, démontrer que $\sum f_n$ converge normalement sur $[a, +\infty[$. En déduire que S est continue sur \mathbb{R}^* .
- 3. Montrer que $\sum f'_n$ converge normalement sur $[a, +\infty[$. Qu'en déduit-on pour S?

Exercice 2

On pose, pour $n \in \mathbb{N}$, $x \in]0, +\infty[$:

$$f_n(x) = \frac{e^{-nx}}{1+n^2}$$

- 1. Déterminer le domaine \mathcal{D} de convergence simple de la série $\sum f_n$.
- **2.** Soit $f: \mathcal{D} \to \mathbb{R}$, la somme de la série. Montrer : $f \in C^1(\mathcal{D})$.
- 3. Mêmes questions à partir de

$$f_n(x) = (-1)^n \frac{e^{-nx}}{1+n^2}, \quad x \in [0, +\infty[$$

Exercice 3

- 1. Montrer que la fonction $f: x \mapsto f(x) = \sum_{n=1}^{+\infty} x^n \frac{\sin(nx)}{n}$ est de classe C^1 sur]-1,1[.
- 2. Exprimer f'(x) à l'aide de fonctions usuelles et en déduire que :

$$f(x) = Arctan \left(\frac{x \sin x}{1 - x \cos x} \right)$$

Exercice 4

On pose, pour $x \in]1, +\infty[$:

$$\zeta(x) = \sum_{n=1}^{+\infty} \frac{1}{n^x}$$

1. Justifier que la fonction ζ est bien définie, et qu'elle est de classe C^{∞} .

- 2. Montrer que ζ est décroissante, et prouver : $\lim_{x\to 1}\zeta(x)=+\infty$.
- 3. Etudier $\lim_{x\to +\infty}\zeta(x)$ à l'aide du théorème de la double limite.
- 4. Justifier que $x\mapsto \zeta(x)-1$ est intégrable sur $[2,+\infty[$, et que :

$$\int_{2}^{+\infty} \zeta(x) - 1 \ dx = \sum_{n=2}^{+\infty} \frac{1}{n^{2} \ln n}$$