

Building SNARKs

(credit to Alessandro Chiesa)

GAO Shang 2025/07/03

SNARKs

 Cryptographic proofs for computation integrity that are super short and are super fast to verify.

• Origins in the 1990s:

Blockchain Application

SNARGs

• Succinct Non-interactive ARGuments (SNARK: SNARG of Knowledge).

• Different models depending on the "powers" granted to the verifier:

multi-prover isolated multiple provers

interaction prover and verifier exchange messages randomness verifier is probabilistic oracle access
verifier can query
prover's messages

• Different models depending on the "powers" granted to the verifier:

• Different models depending on the "powers" granted to the verifier:

- Qualitative features:
 - IP: primarily sub-routines (e.g. sumcheck) to other probabilistic proofs.
 - PCP: pedagogically useful but mostly inefficient (e.g. with point queries).
 - MIP (& MIOP): attractive features (e.g. space efficiency) but hard to use.
 - IOP: underlie most efficient SNARKs.

Probabilistically Checkable Proofs

The verifier is probabilistic and has oracle access to 1 prover message.

Note: PCP ≠ Succinct Argument!

It is insecure for the verifier to just ask the prover to answer a few queries.

Most PCPs are Inefficient

- 1990s 2010: PCPs are galactic (asymptotically efficient but concretely useless).
- 2010 2013: galactic \rightarrow expensive.
 - PCP-based SNARGs where argument size is 10s of MBs & non-trivial for large (but not galactic) values of T.
- 2013 now: slow PCP improvements.

Notable Exception: PCPs with linear queries are efficient.

Interactive Oracle Proofs

• The verifier can simultaneously leverage randomness, interaction, and oracle access.

Constructions of IOPs

- Flurry of IOP research in the past few years:
 - quasilinear-time ZK [BCGV16][BCFGRS17].
 - linear-size proof length [BCGRS17][RR20].
 - linear-time prover [BCGGHJ17][BCG20][BCL20].
 - linear-time proximity proofs [BBGR16][BBHR18][BKS18][BGKS20][BCIKS20][BN20].
 - efficient implementations [BBC+16][BBHR19][BCRSVW19][COS20].
- Many new techniques:
 - Interactive proof composition.
 - Univariate sumcheck.
 - Out-of-domain sampling.
 - Algebraic linking.

IOPs offer much improved efficiency (asymptotically & concretely).

Realizing Proof Models: Cryptography

• Examples of SNARK recipes:

Probabilistic Proof	Cryptography	SNARK
linear PCP (and 2-message linear IP)	linear encoding	[G10][L11][BCIOP13] [GGPR13][PGHR13] [G16][GM17]
PCP and IOP	vector commitment	Ligero, Aurora, Fractal, SCI, STARK,
Polynomial PCP & IOP	polynomial commitment	Sonic, Marlin, Plonk, Spartan Supersonic-RSA, Hyrax, vSQL, vRAM, Libra,
type of computation (e.g., circuit vs machine)	 cryptographic costs (in prover and in verifier) pre-quantum or post-quantum setup (public or private, specific or universal) 	

Polynomial IOP

It can also support multi-variant polynomials.

PCS Relation

$$\mathfrak{N} = \left\{ \begin{array}{l} \text{witness: } f_1(X) \\ \text{public input: } F, z_1, v \end{array} \middle| \begin{array}{l} F = Com(f_1) \\ v = f_1(z_1) \end{array} \right\}.$$

Can you write the relation for multivariant polynomial PCS?

Thanks!

