CS 207: Discrete Structures

Abstract algebra and Number theory

Lecture 36 Oct 15 2015

Last topic of this course

Abstract algebra and Number theory: An introduction

Recall

Definition

A group is a set S along with an operator * such that the following conditions are satisfied:

- ▶ Closure: $\forall a, b \in S, a * b \in S$.
- ► Associativity: $\forall a, b, c \in S, \ a * (b * c) = (a * b) * c.$
- ▶ Identity: $\exists e \in S \text{ s.t.}, \forall a \in S, a * e = e * a = a.$
- ▶ Inverse: $\forall a \in S, \exists a' \in S \text{ s.t.}, a * a' = a' * a = e.$

Recall

Definition

A group is a set S along with an operator * such that the following conditions are satisfied:

- ▶ Closure: $\forall a, b \in S, a * b \in S$.
- ▶ Associativity: $\forall a, b, c \in S, \ a * (b * c) = (a * b) * c.$
- ▶ Identity: $\exists e \in S \text{ s.t.}, \forall a \in S, a * e = e * a = a.$
- ▶ Inverse: $\forall a \in S, \exists a' \in S \text{ s.t.}, a * a' = a' * a = e.$

Examples:

- \triangleright Permutations of $\{1,\ldots,n\}$,
- ▶ Automophisms of a (graph) structure,
- ▶ Over numbers: $(\mathbb{Z}, +)$, $(\mathbb{Q} \setminus 0, \times)$, $(\mathbb{Z}_p \setminus 0, \times)$
- ▶ Symmetries of a triangle: Rigid motions (transformations) that move an equilateral triangle to itself.
- ▶ The set of invertible matrices over \mathbb{R} , denoted $GL_2(\mathbb{R})$.

▶ The order of a finite group is the number of elements in it.

- ▶ The order of a finite group is the number of elements in it.
- ▶ If x is an element of a finite group, then the order of x in G is the least positive integer m such that $x^m = e$.

- ▶ The order of a finite group is the number of elements in it.
- ▶ If x is an element of a finite group, then the order of x in G is the least positive integer m such that $x^m = e$.

Proposition

Let x be an element of order m in a finite group G. $x^s = e$ iff

- ▶ The order of a finite group is the number of elements in it.
- ▶ If x is an element of a finite group, then the order of x in G is the least positive integer m such that $x^m = e$.

Proposition

Let x be an element of order m in a finite group G. $x^s = e$ iff s is a multiple of m.

Commutativity

▶ In a group G, for $a, b \in G$, $a * b \neq b * a$ in general. Can you give such an example?

Commutativity

- ▶ In a group G, for $a, b \in G$, $a * b \neq b * a$ in general. Can you give such an example?
- ▶ When a * b = b * a for two elements they are said to commute.

Commutativity

- ▶ In a group G, for $a, b \in G$, $a * b \neq b * a$ in general. Can you give such an example?
- ▶ When a * b = b * a for two elements they are said to commute.
- ▶ If any two elements in a group commute, then the group is called a commutative or an Abelian group.

Which of these are abelian groups?

- ightharpoonup $(\mathbb{Z},+),$
- $ightharpoonup (\mathbb{Q} \setminus 0, \times),$
- ▶ Symmetries of a triangle: Rigid motions (transformations) that move an equilateral triangle to itself.
- ▶ The set of invertible matrices over \mathbb{R} , denoted $GL_2(\mathbb{R})$.

► Consider the set of rotations of a triangle. What properties does it have?

► Consider the set of rotations of a triangle. What properties does it have?

Definition

Let G be a group under operation *. A subset H of G is called a subgroup if H is also a group under *.

► Consider the set of rotations of a triangle. What properties does it have?

Definition

Let G be a group under operation *. A subset H of G is called a subgroup if H is also a group under *.

▶ Does every group have a subgroup?

► Consider the set of rotations of a triangle. What properties does it have?

Definition

Let G be a group under operation *. A subset H of G is called a subgroup if H is also a group under *.

ightharpoonup Does every group have a subgroup? Yes! $\{id\}$ and itself.

► Consider the set of rotations of a triangle. What properties does it have?

Definition

Let G be a group under operation *. A subset H of G is called a subgroup if H is also a group under *.

- ▶ Does every group have a subgroup? Yes! $\{id\}$ and itself.
- ▶ Other examples (of non-trivial subgroups):
 - ▶ Subgroup of rotations in group of symmetries (of a triangle).
 - Give an example of a subgroup of $GL_n(\mathbb{R})$...

► Consider the set of rotations of a triangle. What properties does it have?

Definition

Let G be a group under operation *. A subset H of G is called a subgroup if H is also a group under *.

- ▶ Does every group have a subgroup? Yes! {id} and itself.
- ▶ Other examples (of non-trivial subgroups):
 - ▶ Subgroup of rotations in group of symmetries (of a triangle).
 - Give an example of a subgroup of $GL_n(\mathbb{R})$...set of invertible matrices with determinant 1, called $SL_n(\mathbb{R})$.

Definition: A subset H of G is called a subgroup if H is also a group.

Definition: A subset H of G is called a subgroup if H is also a group.

Proposition?

A subset H of G is a subgroup if for all $x, y \in H$, $xy^{-1} \in H$.

Definition: A subset H of G is called a subgroup if H is also a group.

Proposition?

A subset H of G is a subgroup if for all $x, y \in H$, $xy^{-1} \in H$.

Proof: exercise! Done on board.

Definition: A subset H of G is called a subgroup if H is also a group.

Proposition

A subset H of G is a subgroup iff $H \neq \emptyset$ and for all $x, y \in H$, $xy^{-1} \in H$.

Proof: exercise! Done on board.