Análisis I - Matemática I - Análisis II (C) - Análisis Matemático I (Q) Primer cuatrimestre 2020

Práctica 2: Curvas y superficies en \mathbb{R}^2 y \mathbb{R}^3 - Funciones

Se sugiere complementar la resolución de los ejercicios de esta práctica con GeoGebra.

1. Graficar las siguientes curvas de \mathbb{R}^2 dadas de forma paramétrica y decidir si son el gráfico de una función de la forma y = f(x).

a)
$$x = 3 - 4t$$
, $y = 2 - 3t$,

b)
$$x = 1 - t^2$$
, $y = t - 2, -2 \le t \le 2$,

c)
$$x = t^2 + t$$
, $y = t^2 - t$, $-2 \le t \le 2$, d) $x = t^2$, $y = t^3 - 4t$, $-3 \le t \le 3$.

d)
$$x = t^2$$
, $y = t^3 - 4t$, $-3 \le t \le 3$.

2. En cada uno de los siguientes casos, describir de forma paramétrica la circunferencia de radio r y centro p.

a)
$$r = 2$$
, $p = (0,0)$,

b)
$$r = 1, p = (1,3),$$

c)
$$r = 3, p = (0, 2).$$

3. Graficar la región del plano que consiste en todos los puntos cuyas coordenadas polares verifican las siguientes condiciones.

$$a) r \geq 1,$$

a)
$$r \ge 1$$
, b) $0 \le r < 2$, $\pi \le \theta \le 3\pi/2$, c) $\pi/6 \le \theta \le 5\pi/6$.

c)
$$\pi/6 \le \theta \le 5\pi/6$$
.

4. Graficar las curvas dadas por las siguientes ecuaciones en coordenadas polares.

a)
$$r = -2\operatorname{sen}(\theta)$$
, b) $r = 1 - \cos(\theta)$.

b)
$$r = 1 - \cos(\theta)$$
.

i) Graficar las siguientes curvas de \mathbb{R}^2 . 5.

a)
$$x^2 + y^2 = 4$$
,

$$b) \ \frac{x^2}{4} + \frac{y^2}{9} = 1$$

a)
$$x^2 + y^2 = 4$$
, b) $\frac{x^2}{4} + \frac{y^2}{9} = 1$, c) $\frac{x^2}{4} - \frac{y^2}{9} = 1$,

$$d) x = y^2.$$

ii) Para $a,b \in \mathbb{R}$, dar una descripción geométrica de las siguientes ecuaciones utilizando deslizadores en GeoGebra.

$$a) \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

a)
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
, b) $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, c) $x = ay^2$.

$$c) x = ay^2.$$

6. Graficar las siguientes superficies de \mathbb{R}^3 .

a)
$$y = 2x + 1$$
,

$$b) y = x^2,$$

a)
$$y = 2x + 1$$
, b) $y = x^2$, c) $x^2 + y^2 = 1$,

$$d) \ 4x^2 + y^2 = 4.$$

7. i) Utilizando trazas, graficar las siguientes superficies de \mathbb{R}^3 .

a)
$$x^2 + \frac{y^2}{4} + \frac{z^2}{9} = 1$$
, b) $z = x^2 + y^2$, c) $x = y^2 + 4z^2$,

$$b) \ z = x^2 + y^2$$

c)
$$x = y^2 + 4z^2$$
,

d)
$$z^2 = x^2 + y^2$$
,

$$e) x^2 = y^2 + 4z^2,$$

$$f) z = x^2 - y^2,$$

g)
$$x^2 + y^2 - z^2 = 1$$

g)
$$x^2 + y^2 - z^2 = 1$$
, h) $-x^2 - y^2 + z^2 = 1$, i) $4x^2 + 9y^2 + z = 0$.

$$i) 4x^2 + 9y^2 + z = 0.$$

ii) Para $a, b, c \in \mathbb{R}$, dar una descripción geométrica de las siguientes ecuaciones utilizando deslizadores en GeoGebra.

a)
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$
, b) $z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$, c) $z^2 = \frac{x^2}{a^2} + \frac{y^2}{b^2}$,

$$z = \frac{x^2}{a^2} + \frac{y^2}{b^2},$$

$$c) \ z^2 = \frac{x^2}{a^2} + \frac{y^2}{b^2}$$

d)
$$z = \frac{x^2}{a^2} - \frac{y^2}{b^2}$$
,

$$e) \frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1,$$

$$d) \ z = \frac{x^2}{a^2} - \frac{y^2}{b^2}, \qquad \qquad e) \ \frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1, \qquad f) \ - \frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$$

- 8. Graficar la región de \mathbb{R}^3 acotada por las superficies $x^2+y^2=1$ y $z=\sqrt{x^2+y^2}$ para $1 \le z \le 2$.
- 9. Hallar el dominio de cada una de las siguientes funciones.

a)
$$r(t) = \left(\sqrt{4 - t^2}, 5t + 1, \ln(t + 1)\right),$$
 b) $r(t) = \left(4t, \frac{3t}{t - 2}, e^t\right).$

$$b) \ r(t) = \left(4t \ , \ \frac{3t}{t-2} \ , \ e^t \ \right)$$

10. Graficar la curva imagen de las siguientes funciones.

a)
$$r(t) = (\cos(t), \sin(t), 1),$$

b)
$$r(t) = (t, t^2, t - t^2),$$

c)
$$r(t) = (t^2 + t, t^2 - t, (t^2 - t)^2).$$

- 11. Hallar una función $r:\mathbb{R}\to\mathbb{R}^2$ cuya imagen describa los siguientes conjuntos.
 - a) el rectángulo de vértices (0, 2), (0, -2), (1, 2) y (1, -2),
 - b) el triángulo de vértices (1,0), (-1,0) y (0,1).
- 12. i) Graficar la curva intersección de las siguientes superficies.

a)
$$x^2 + y^2 = 4$$
 y $z = xy$,

a)
$$x^2 + y^2 = 4$$
 y $z = xy$, b) $x^2 + y^2 = 1$ y $y + z = 2$,

c)
$$z = \sqrt{x^2 + y^2}$$
 y $z = 1 + y$.

ii) Hallar una función $r:\mathbb{R}\to\mathbb{R}^3$ cuya imagen describa las curvas graficadas en el item anterior.

13. Graficar el dominio de las siguientes funciones.

$$a) \ f(x,y) = \sqrt{2x - y},$$

b)
$$f(x,y) = \sqrt{x^2 - y^2}$$
,

c)
$$f(x, y, z) = \ln(1 - x^2 - y^2 - z^2)$$
.

14. Para cada una de las siguientes funciones, calcular dominio, graficar las curvas de nivel y usarlas para graficar la función.

$$a) \ f(x,y) = 3y,$$

$$b) f(x,y) = \frac{1}{x},$$

b)
$$f(x,y) = \frac{1}{x}$$
, c) $f(x,y) = x^2 + y^2$,

d)
$$f(x,y) = -x^2 - y^2$$
,

e)
$$f(x,y) = \sqrt{x^2 + y^2}$$

d)
$$f(x,y) = -x^2 - y^2$$
, e) $f(x,y) = \sqrt{x^2 + y^2}$, f) $f(x,y) = \sqrt{4 - x^2 - y^2}$.