Applied Data Science Project Update Presentation:

Best City for investing a Chinese Restaurant

Nicolas Fan 04/25/2019

Project Inspiration

Suppose an investor comes to consult me. He has a budget of **250,000 dollars** and wants to invest in a **Chinese restaurant** in North America. Which city would be the best choice and why?

Yelp Open Dataset

The dataset contains:

The files:

- business.json
- review.json
- user.json

What's inside business.csv?

7	D .	• 1
	Business_	1d
1.	Dubilicob_	_ru

- 2. Name
- 3. Neighborhood
- 4. Address
- 5. City
- 6. State
- 7. Postal_code
- 8. Latitude
- 9. Longitude
- 10. Stars
- 11. Review_count
- 12. Is_open

- 1. c7X2SdKxVJMaOnFROO8WEg
- 2. "Finga Lickin' Caribbean Eatery"
- 3.
- 4. "2838 The Plz"
- 5. Charlotte
- 6. NC
- 7. 28205
- 8. 35.236823 9. -80.801084
- 10. 4.5
- 11.
- 12. Pizza;Food;Caribbean

Logic & Assumption

The following indicators can indirectly or directly indicate whether Chinese food are popular in a region.

- Open rate
- Average Star
- Review counts

Data Cleaning

Step 1: Chinese diner

diner_chinese =
(df_GTA.loc[df['categories
'].isin(['Chinese'])])

Step 2: define region

GTA =

(df.loc[df['city'].isin(['Ajax',
'Brampton', 'Burlington',
'Markham','Toronto','Missi
ssauga', 'Newmarket',
'Oakville', 'Oshawa',
'Pickering', 'Richmond
Hill', 'Vaughan',
'Whitby'])])

Step 3: irrelevant info

columns_needed =
['business_id', 'name',
'neighborhood', 'address',
'city', 'state', 'latitude',
'longitude', 'stars',
'review_count', 'is_open']

Analysis

	state	postal c	ode	latitude	longitude	stars	review count	is open
248	ON	M5T	1G6	43.653324	-79.395372	3.5	165	1
672	ON	L5M	5S5	43.558921	-79.742916	3.0	14	1
1329	ON	L4Z	3K8	43.614583	-79.662815	3.5	41	1
1467	ON	M6R	1A7	43.639365	-79.442530	3.0	8	0
2073	ON	M1S	2B7	43.786989	-79.276122	3.5	24	1
3534	ON	L3P	5J5	43.876709	-79.285820	3.5	118	1
3815	ON		L3T	43.819342	-79.399660	3.0	9	1
3924	ON	L4B	3N7	43.866086	-79.387103	2.5	3	0
4518	ON	L3Y	883	44.046096	-79.437159	3.0	7	1
5091	ON	M2H	2N5	43.805515	-79.337624	3.0	3	1
5161	ON	L6L	5B3	43.433704	-79.702300	3.5	4	0
5456	ON	L3R	9Y7	43.846579	-79.357335	3.0	6	1
5732	ON	L6H	6W5	43.476373	-79.726544	3.0	11	1

	address	city	\
248	"421 Dundas St W, 3rd Fl"	Toronto	
672	"5602 Tenth Line W, Unit 110"	Mississauga	
1329	"Sandalwood Mall, 30 Bristol Road E, Unit 3"	Mississauga	
1467	"1533 Queen Street W"	Toronto	
2073	"3 Glen Watford Drive"	Toronto	
3534	"1 Raymerville Dr"	Markham	
3815	"300 John Street"	Markham	
3924	"9425 Leslie Street"	Richmond Hill	
4518	"869 Mulock Drive, Unit 12"	Newmarket	
5091	"3560 Victoria Park Avenue"	Toronto	
5161	"649 Fourth Line"	Oakville	
5456	"8368 Woodbine Ave"	Markham	
5732	"2530 Sixth Line, Unit 13"	Oakville	

[16]: #Among the many Chinese restaurants in Toronto, we clearly observed that
#As can be seen from the figure, the Chinese restaurant's score on the y
GTA_chinese['stars'].value_counts().plot(kind='barh')

[16]: <matplotlib.axes._subplots.AxesSubplot at 0x127a4eeb8>

In [22]: #The vast majority of Chinese restaurants near Toronto are concentrated #The city of Toronto is well-understood as a population gathering place #The relatively low rents and mature university districts have become GTA_chinese['city'].value_counts().plot(kind='pie')

Out[22]: <matplotlib.axes._subplots.AxesSubplot at 0x126d10748>


```
annot=True, cbar=False, fmt='.0f', cmap='RdBu r')
Out[37]: <matplotlib.axes. subplots.AxesSubplot at 0x127ba8710>
         longitude
              -79.2663275
                     latitude
```

In [37]: sns.heatmap(GTA chinese.groupby(['longitude', 'latitude'])['stars'].mean().unstack(),

Current Result

For Chinese restaurants at greater toronto area,

- Open rate = 83.6% > 74.9%
- Top area would be: Toronto downtown, Markham and Richmond Hill.
- Average star = 3.43 > 2.96
- Top streets: dundas street, yonge street
- Top Chinese restaurants: New Hong Kong, Luckee

Future steps

Step 1

Derived from the Toronto area to other regions, such as New York, Las Vegas and more. Compare the data horizontally and conclude the result.

Integrate data visualizations from different regions on the same map for a more intuitive understanding

Step 2

Further combine the content of review.csv and according to the id of the well Chinese restaurant, retrieve the evaluation of the restaurant by yelp users, and analyze the quality of the diners in the area.

Thank you