1. Soient $\alpha \in \mathbb{R}$ et $f_n : [0,1] \to \mathbb{R}$ définie par

$$f_n(x) = n^{\alpha} x (1 - x)^n$$

- a) Etudier la limite simple de (f_n) .
- b) Pour quels $\alpha \in \mathbb{R}$, y a-t-il convergence uniforme?
- **2.** On pose $f_n(x) = x^n \ln x$ avec $x \in]0,1]$ et $f_n(0) = 0$. Etudier la convergence uniforme de la suite de fonctions (f_n) sur [0,1].
- 3. On pose $f_n(x) = e^{-nx} \sin(nx)$ avec $x \in \mathbb{R}^+$. Etudier la convergence uniforme de la suite de fonctions (f_n) sur \mathbb{R}^+ puis sur $[a, +\infty[$ avec a > 0.
- **4.** On pose $f_n(x) = x^2 \sin \frac{1}{nx}$ pour x > 0 et $f_n(0) = 0$. Etudier la convergence uniforme de (f_n) sur \mathbb{R}^+ puis sur [-a, a] avec a > 0.
- 5. Etudier la suite de fonctions (f_n) définie par

$$f_n(x) = \frac{nx^2 e^{-nx}}{1 - e^{-x^2}}$$

6. On considère la suite de fonctions réelles définies par :

$$f_n(x) = \frac{x}{x+n} + arctan(x), \quad n \in \mathbb{N}^*$$

Cette suite est-telle ..

- (a) Simplement convergente sur [0, 1]?
- (b) Uniformément convergente sur (0,1]?
- (c) Uniformément convergente sur [a, 1] avec 0 < a < 1?
- (d) Uniformément convergente sur $[1, +\infty[$?
- 7. On définit la suite de fonctions si $(f_n)_{n\in\mathbb{N}^*}$ sur \mathbb{R} par :

$$\forall n \in \mathbb{N}^*, \ \forall x \in \mathbb{R}, \ f_n(x) = n \sin(\frac{x}{n}).$$

- (a) La suite $(f_n)_{n\in\mathbb{N}^*}$ converge-t-elle simplement sur \mathbb{R} et si oui, vers quelle fonction?
- (b) La convergence de la suite $(f_n)_{n\in\mathbb{N}^*}$ est-t-elle uniforme sur \mathbb{R} ?
- (c) La convergence de la suite $(f_n)_{n\in\mathbb{N}^*}$ est-t-elle uniforme sur [-1,1]?
- **8.** Soit k un entier positif ou nul et $(f_n)_{n\in\mathbb{N}^*}$ définie par $f_n(x) = \frac{x^k}{r^2 + n}$.
 - (a) Pour quelles valeur de k cette suite converge-t-elle uniformément sur \mathbb{R} ?
 - (b) Pour quelles valeur de k cette suite converge-t-elle uniformément pour tout partie bornée de \mathbb{R} ?
- **9.** Soit $\alpha > 0$ et $(f_n)_{n \in \mathbb{N}}$ la suite de fonctions définie sur \mathbb{R}^+ par $f_n(x) = n^{\alpha} x \exp(-nx)$.
 - (a) Donner une condition nécessaire et suffisante pour que cette suite de fonction converge uniformément sur \mathbb{R}^* .
 - (b) Étudier la convergence uniforme sur tout intervalle $[a, +\infty[$ avec a > 0.
- 10. On désigne par $(f_n)_{n\in\mathbb{N}}$ la suite de fonctions définies par :

$$\forall n \in \mathbb{N}, \forall x \in \mathbb{R}^+, f_n(x) = nx \sin(x) \exp(-nx).$$

- (a) Montrer que cette suite converge simplement sur \mathbb{R}^+ vers la fonction nulle.
- (b) Montrer que la fonction $\varphi: t \to t\exp(-t)$ est décroissante sur $[1, +\infty[$.
- (c) Montrer que la convergence de cette suite de fonctions $(f_n)_{n\in\mathbb{N}}$ vers 0 est uniforme sur l'intervalle $[\frac{\pi}{2}, +\infty[$.
- (d) [plus difficile] Montrer qu'il y a convergence uniforme sur $[0, \frac{\pi}{2}]$. (étudier les variations de la fonction f_n .)