

Going deeper with convolutions

2023.06.26

Youngjae Kim

1. Author & about the paper

- Computer Vision and Pattern Recognition(CVPR 2015)
- SOTA on ILSVRC 2014
- 7 out of 9 authors from Google Inc.

1. abstract

- Codename : Inception
- Deep-convolutional neural network architecture
- GoogLeNet
- ImageNet Large Scale Visual Recognition Challenge 2014 (2등 VGGNet)
 - SOTA on 1) classification 2) detection
- Main hallmark of this architecture?
 - Computing resource <-> Depth and Width

2. Introduction

- 1. Synergy of deep architecture + algorithm
- ILSVRC 2014's top entries used ONLY classification dataset
 - Hardware & bigger datasets?
 - Algorithms & network architecture

2. Introduction

- 2. Computing efficiency
 - mobile / embedded computing
- Used 12 x fewer parameters than ILSVRC 2012

ImageNet Classification with Deep Convolutional Neural Networks

Alex Krizhevsky
University of Toronto
kriz@cs.utoronto.ca

Ilya Sutskever University of Toronto ilya@cs.utoronto.ca Geoffrey E. Hinton
University of Toronto
hinton@cs.utoronto.ca

- Keep 1.5 billion multiply-adds at inference time
 - academic curiosity?
 - real world use

LeNet-5 & CNN's standard structure

- Increase layer number / size + drop-out to solve overfitting
- Concerns that Max-pooling layers result in loss of <u>spatial</u> information
 - localization / object detection / human pose estimation

Ross B. Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In *Computer Vision and Pattern Recognition*.

Alexander Toshev and Christian Szegedy. Deeppose: Human pose estimation via deep neural networks. *CoRR*, abs/1312.4659, 2013.

[15] Thomas Serre, Lior Wolf, Stanley M. Bileschi, Maximilian Riesenhuber, and Tomaso Poggio. Robust object recognition with cortex-like mechanisms. *IEEE Trans. Pattern Anal. Mach. Intell.*, 29(3):411–426, 2007.

- Neuroscience model of the primate visual cortex
 - Fixed Gabor filters of different sizes to handle multiple scales
- Fixed 2-layer deep model <-> "learning" repeated inception layers (22 layers GoogLeNet model)

Network-in-Network

Network In Network

Min Lin^{1,2}, Qiang Chen², Shuicheng Yan²

¹Graduate School for Integrative Sciences and Engineering

²Department of Electronic & Computer Engineering

National University of Singapore, Singapore

{linmin, chengiang, eleyans}@nus.edu.sg

- 1x1 convolutional layers followed by ReLu
 - Non-linearity = complicated pattern recognitions
 - as dimension reduction module (computational bottleneck)
 - increase in depth / width without performance penalty
- Use of average pooling at last layer (explained later)

[6] Ross B. Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In Computer Vision and Pattern Recognition, 2014. CVPR 2014. IEEE Conference on, 2014.

- R-CNN (Regions with Convolutional Neural Networks)
 - two stage approach
 - low-level cues + CNN classifier
 - -> multi-box prediction + ensemble

4. Motivations and High level considerations

- Deep neural network performance == Larger size model (width + height)
 - overfitting -> more high quality data sets needed -> expensive cost
 - dramatically increased use of computational resource

4. Motivations and High level considerations

Hebbian Principle – "neurons that fire together, wire together"

 Sanjeev Arora, Aditya Bhaskara, Rong Ge, and Tengyu Ma. Provable bounds for learning some deep representations. CoRR, abs/1310.6343, 2013.

Making connection using correlations among features

- Early LeNet (Sparse) -> AlexNet(FC)
- Fully connected to sparsely connected architecture
 - inefficient (computationally)
 - improvements on fully connected related libraries

4. Motivations and High level considerations

- Inception model
- -> making "sparsely connected architecture" with fully connected architecture
- -> firm motivation for future work in this direction

- Using 3 filters parallel at one time -> concatenation
- 1 x 1, 3 x 3, 5 x 5 convolutions Gabor filter
 - avoid patch-alignment issue
 - later GoogLeNet 5x5 -> (3x3) (3x3) : less parameter & less overfitting

- Max-pooling
- 1 x 1 convolutions with ReLu before 3x3 and 5x5 convolutions

Figure 3: GoogLeNet network with all the bells and whistles

- Auxiliary classifier
 - regularization to prevent overfitting
 - weighted by 0.3
- Average Pooling (Network in Network)
 - adapting and fine tuning for other label set
 - w/ wo/ FC
 - 0.6% improvement

type	patch size/ stride	output size	depth	#1×1	#3×3 reduce	#3×3	#5×5 reduce	#5×5	pool proj	params	ops
convolution	7×7/2	112×112×64	1							2.7K	34M
max pool	3×3/2	56×56×64	0								
convolution	3×3/1	$56 \times 56 \times 192$	2		64	192				112K	360M
max pool	3×3/2	28×28×192	0								
inception (3a)		28×28×256	2	64	96	128	16	32	32	159K	128M
inception (3b)		28×28×480	2	128	128	192	32	96	64	380K	304M
max pool	3×3/2	14×14×480	0								
inception (4a)		14×14×512	2	192	96	208	16	48	64	364K	73M
inception (4b)		14×14×512	2	160	112	224	24	64	64	437K	88M
inception (4c)		14×14×512	2	128	128	256	24	64	64	463K	100M
inception (4d)		14×14×528	2	112	144	288	32	64	64	580K	119M
inception (4e)		14×14×832	2	256	160	320	32	128	128	840K	170M
max pool	3×3/2	7×7×832	0								
inception (5a)		7×7×832	2	256	160	320	32	128	128	1072K	54M
inception (5b)		7×7×1024	2	384	192	384	48	128	128	1388K	71M
avg pool	7×7/1	1×1×1024	0								
dropout (40%)		$1 \times 1 \times 1024$	0								
linear		1×1×1000	1							1000K	1M
softmax		1×1×1000	0								

Table 1: GoogLeNet incarnation of the Inception architecture

6. Results

Team	Year	Place	Error (top-5)	Uses external data
SuperVision	2012	1st	16.4%	no
SuperVision	2012	1st	15.3%	Imagenet 22k
Clarifai	2013	1st	11.7%	no
Clarifai	2013	1st	11.2%	Imagenet 22k
MSRA	2014	3rd	7.35%	no
VGG	2014	2nd	7.32%	no
GoogLeNet	2014	1st	6.67%	no

Table 2: Classification performance

Number of models	Number of Crops	Cost	Top-5 error	compared to base
1	1	1	10.07%	base
1	10	10	9.15%	-0.92%
1	144	144	7.89%	-2.18%
7	1	7	8.09%	-1.98%
7	10	70	7.62%	-2.45%
7	144	1008	6.67%	-3.45%

Table 3: GoogLeNet classification performance break down

• Resize to 256, 288, 320, 352 and crop

Team	Year	Place	mAP	external data	ensemble	approach
UvA-Euvision	2013	1st	22.6%	none	?	Fisher vectors
Deep Insight	2014	3rd	40.5%	ImageNet 1k	3	CNN
CUHK DeepID-Net	2014	2nd	40.7%	ImageNet 1k	?	CNN
GoogLeNet	2014	1st	43.9%	ImageNet 1k	6	CNN

Table 4: Detection performance

Team	mAP	Contextual model	Bounding box regression		
Trimps-Soushen	31.6%	no	?		
Berkeley Vision	34.5%	no	yes		
UvA-Euvision	35.4%	?	?		
CUHK DeepID-Net2	37.7%	no	?		
GoogLeNet	38.02%	no	no		
Deep Insight	40.2%	yes	yes		

Table 5: Single model performance for detection

7. Conclusion

- Solid evidence that approximating the expected optimal sparse structure by dense blocks -> improve neural networks for computer vision
- Efficient computational requirements with wider/deeper network

