UNIT STEP FUNCTION: DISCRETE-TIME

UNIT IMPULSE FUNCTION: DISCRETE-TIME

(Unit Sample)

TRANSPARENCY

3.1

Discrete-time unit step and unit impulse sequences.

$$\delta[n] = u[n] - u[n-1]$$

TRANSPARENCY 3.2

The unit impulse sequence as the first backward difference of the unit step sequence.

TRANSPARENCY

expressed as a superposition of

3.4

UNIT STEP FUNCTION: CONTINUOUS -TIME

$$u(t) = \begin{cases} 0 & t < 0 \\ 1 & t > 0 \end{cases}$$

$$u(t) = u_{\Delta}(t)$$
 as $\Delta \rightarrow 0$

TRANSPARENCY 3.5

The continuous-time unit step function.

UNIT IMPULSE FUNCTION

$$\delta(t) = \frac{du(t)}{dt}$$

$$\delta_{\triangle}(t) = \frac{du_{\triangle}(t)}{dt}$$

$$\delta(t) = \delta_{\triangle}(t) \text{ as } \triangle \rightarrow 0$$

TRANSPARENCY 3.6The definition of the unit impulse as the derivative of the unit step.

TRANSPARENCY 3.7

Interpretation of the continuous-time unit impulse as the limiting form of a rectangular pulse which has unit area and for which the pulse width approaches zero.

area = 1

height = " 0" width = " 0" area = 1

TRANSPARENCY

3.8
The unit step expressed as the running integral of the unit impulse.

$$\delta(t) = \frac{du(t)}{dt}$$

$$u(t) = \int_{-\infty}^{t} \delta(\tau) d\tau$$

0

τ

TRANSPARENCY 3.12 Feedback interconnection of two systems.

MARKERBOARD 3.1

MEMORYLESS

y(+)@t=t==+, (+)@t=t,

y[n]@n=no~x[n]@n=n.

Examples

y(t)=x2(t) = quarer

y[n]=x2[n]

$$\sqrt[4]{y(t)} = \int_{0}^{t} \chi^{2}(t) dt$$
If $3 = I$ werse of A

John X [n-1] de de Then (y:= x;)

John X [n-1] de de Titu

I NVERTIBILITY

x2 = 4,

System A: $y_{i}(t) = \int_{0}^{t} x_{i}(t) dt$ Integrator System A'; $y_{2}(t) = \frac{dx_{2}(t)}{dt}$ d'ifferentiatr

MARKERBOARD 3.2

Causality

Output at any time cepends only on input prior or equal to that time or:

System can't anticipate "future" inputs

or:

If: x1(4)=x2(4) t<+.

Then:

Same for discrete

Example:

y[n] = \frac{1}{3} \{x(n-1) + x[n] + x[n+1]\}

Movin Q

Average

y[n]

Stability

=> For every bounded input the output is bounded

DEMONSTRATION 3.1 Illustration of an unstable system.

MARKERBOARD

3.3

y(t)=(Sint)x(t)	C.T & D.T $4(t) \longrightarrow 9,(t)$ $2(t) \longrightarrow 92(t)$ Then:
	xe(t) -> y2(t)
0 = 2 - 2 2 - 5 C	
$x(t) \longrightarrow (sint)x(t)$	a x(4)+bx2(4)
x(+-to)(Sin+)x(+-to)	۵4,(+)+642(4)
H	Examples
4(++0) = SINCT to DXC+to)	yets= 5xczldz yes
3	
	y 603 = 2 x 603 +3 But
y[n] = [x[k] accumulated y(++0) = sin(++0)) Accumulated y[n] = [normalist ? No	200-200-2
	4 cm = x2 cm Not
	x(t-to) (Sint)x(t-to)