Analog and Digital Electronics

[As per Choice Based Credit System (CBCS) scheme] (Effective from the academic year 2015 -2016) SEMESTER - III

Subject Code	15CS32	IA Marks	20
Number of Lecture Hours/Week	04	Exam Marks	80
Total Number of Lecture Hours	50	Exam Hours	03

CREDITS - 04

Course objectives: This course will enable students to

- Recall and Recognize construction and characteristics of JFETs and MOSFETs and differentiate with BJT
- Demonstrate and Analyze Operational Amplifier circuits and their applications
- Describe, Illustrate and Analyze Combinational Logic circuits, Simplification of Algebraic Equations using Karnaugh Maps and Quine McClusky Techniques.
- Describe and Design Decoders, Encoders, Digital multiplexers, Adders and Subtractors, Binary comparators, Latches and Master-Slave Flip-Flops.
- Describe, Design and Analyze Synchronous and Asynchronous Sequential
- Explain and design registers and Counters, A/D and D/A converters.

Module -1	Teaching Hours
Field Effect Transistors: Junction Field Effect Transistors, MOSFETs, Differences between JFETs and MOSFETs, Biasing MOSFETs, FET Applications, CMOS Devices. Wave-Shaping Circuits: Integrated Circuit(IC) Multivibrators. Introduction to Operational Amplifier: Ideal v/s practical Opamp, Performance Parameters, Operational Amplifier Application Circuits: Peak Detector Circuit, Comparator, Active Filters, Non-Linear Amplifier, Relaxation Oscillator, Current-To-Voltage Converter, Voltage-To-Current Converter. Text book 1:- Ch 5: 5.2, 5.3, 5.5, 5.8, 5.9, 5.1.Ch13: 13.10.Ch 16: 16.3, 16.4. Ch 17: 7.12, 17.14, 17.15, 17.18, 17.19, 17.20, 17.21.	10 Hours
Module -2	l
The Basic Gates: Review of Basic Logic gates, Positive and Negative Logic, Introduction to HDL. Combinational Logic Circuits: Sum-of-Products Method, Truth Table to Karnaugh Map, Pairs Quads, and Octets, Karnaugh Simplifications, Don't-care Conditions, Product-of-sums Method, Product-of-sums simplifications, Simplification by Quine-McClusky Method, Hazards and Hazard covers, HDL Implementation Models.	
Text book 2:- Ch 2: 2.4, 2.5. Ch3: 3.2 to 3.11. Module – 3	

Data-Processing Circuits: Multiplexers, Demultiplexers, 1-of-16 Decoder, BCD to Decimal Decoders, Seven Segment Decoders, Encoders, Exclusive-OR Gates, Parity Generators and Checkers, Magnitude Comparator, Programmable Array Logic, Programmable Logic Arrays, HDL Implementation of Data Processing Circuits. Arithmetic Building Blocks, Arithmetic Logic Unit **Flip- Flops:** RS Flip-Flops, Gated Flip-Flops, Edge-triggered RS FLIP-FLOP, Edge-triggered D FLIP-FLOPs, Edge-triggered JK FLIP-FLOPs.

10 Hours

Text book 2:- Ch 4:- 4.1 to 4.9, 4.11, 4.12, 4.14.Ch 6:-6.7, 6.10.Ch 8:- 8.1 to 8.5.

Module-4

Flip- Flops: FLIP-FLOP Timing, JK Master-slave FLIP-FLOP, Switch Contact Bounce Circuits, Various Representation of FLIP-FLOPs, HDL Implementation of FLIP-FLOP. **Registers:** Types of Registers, Serial In - Serial Out, Serial In - Parallel out, Parallel In - Serial Out, Parallel In - Parallel Out, Universal Shift Register, Applications of Shift Registers, Register implementation in HDL. **Counters:** Asynchronous Counters, Decoding Gates, Synchronous Counters, Changing the Counter Modulus.

10 Hours

(Text book 2:- Ch 8: 8.6, 8.8, 8.9, 8.10, 8.13. Ch 9: 9.1 to 9.8. Ch 10: 10.1 to 10.4

Module-5

Counters: Decade Counters, Presettable Counters, Counter Design as a Synthesis problem, A Digital Clock, Counter Design using HDL. **D/A Conversion and A/D Conversion:** Variable, Resistor Networks, Binary Ladders, D/A Converters, D/A Accuracy and Resolution, A/D Converter-Simultaneous Conversion, A/D Converter-Counter Method, Continuous A/D Conversion, A/D Techniques, Dual-slope A/D Conversion, A/D Accuracy and Resolution.

10 Hours

Text book 2:- Ch 10: 10.5 to 10.9. Ch 12: 12.1 to 12.10.

Course outcomes:

After Studying this course, students will be able to

- Acquire knowledge of
 - o JFETs and MOSFETs, Operational Amplifier circuits and their applications.
 - o Combinational Logic, Simplification Techniques using Karnaugh Maps, Quine McClusky technique.
 - O Operation of Decoders, Encoders, Multiplexers, Adders and Subtractors.
 - o Working of Latches, Flip-Flops, Designing Registers, Counters, A/D and D/A Converters.
- Analyze the performance of
 - o JFETs and MOSFETs, Operational Amplifier circuits
 - o Simplification Techniques using Karnaugh Maps, Quine McClusky Technique.
 - o Synchronous and Asynchronous Sequential Circuits.

Apply the knowledge gained in the design of Counters, Registers and A/D & D/A converters

Graduate Attributes (as per NBA)

- 1. Engineering Knowledge
- 2. Design/Development of Solutions(partly)
- 3. Modern Tool Usage
- 4. Problem Analysis

Question paper pattern:

The question paper will have ten questions.

There will be 2 questions from each module.

Each question will have questions covering all the topics under a module.

The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

- 1. Anil K Maini, Varsha Agarwal: Electronic Devices and Circuits, Wiley, 2012.
- 2. Donald P Leach, Albert Paul Malvino & Goutam Saha: Digital Principles and Applications, 8th Edition, Tata McGraw Hill, 2015

Reference Books:

- 1. Stephen Brown, Zvonko Vranesic: Fundamentals of Digital Logic Design with VHDL, 2nd Edition, Tata McGraw Hill, 2005.
- 2. R D Sudhaker Samuel: Illustrative Approach to Logic Design, Sanguine-Pearson, 2010.
- 3. M Morris Mano: Digital Logic and Computer Design, 10th Edition, Pearson, 2008.