[MEN573] Advanced Control Systems I

Lecture 12 – Stability
Part II Lyapunov's Direct Method

Associate Professor Joonbum Bae Department of Mechanical Engineering UNIST

Outline

- Positive Definite and Quadratic Functions
- The Direct Method of Lyapunov
- Lyapunov Stability Theorems
 - Stability in the sense of Lyapunov
 - Asymptotic stability
- L'Salles Asymptotic Stability Theorem
- Instability Theorems

Locally Positive Definite Functions (LPDF)

A continuous LPDF $W: \mathcal{R}^n \to \mathcal{R}_+$ satisfies:

$$(i) W(x) > 0$$

$$\forall x \neq 0 \text{ and } |x| < r$$

(ii)
$$W(0) = 0$$

Locally Positive Definite Functions (LPDF)

Example:

$$W(x_1, x_2) = x_1^2 + \sin^2(x_2)$$

is PDF for

$$x_1 \in \mathcal{R} \text{ and } |x_2| < \pi$$

Positive Definite Functions (PDF)

A continuous PDF $W: \mathbb{R}^n \to \mathbb{R}_+$ satisfies:

(i)
$$W(x) > 0$$
 $\forall x \neq 0$

(ii)
$$W(0) = 0$$

(iii)
$$W(x) o \infty$$
 as $|x| o \infty$, uniformly in x

Positive Definite Functions (PDF)

Example:

$$W(x_1, x_2) = x_1^2 + x_2^2$$

is a PDF

Positive Semi-Definite Functions (PSDF)

A continuous PSDF $W: \mathcal{R}^n \to \mathcal{R}_+$ satisfies:

(i)
$$W(x) \ge 0$$
 $\forall x$

(ii)
$$W(0) = 0$$

Positive Semi-Definite Functions (PSDF)

Example:

$$W(x_1, x_2) = x_1^2 + \sin^2(x_2)$$

is a PSDF

Quadratic functions

A quadratic function $Q: \mathbb{R}^n \to \mathbb{R}$ is a function of the form:

$$Q(x) = \sum_{i=1}^{n} \sum_{j=1}^{n} p_{ij} x_{i} x_{j} \qquad p_{ij} = p_{ji}$$

$$= \begin{bmatrix} x_{1} & \cdots & x_{n} \end{bmatrix} \begin{bmatrix} p_{11} & p_{12} & \cdots & p_{1n} \\ p_{12} & p_{22} & \cdots & p_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ p_{1n} & p_{2n} & \cdots & p_{nn} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{bmatrix}$$

$$Q(x) = x^T P x, P^T = P$$

Quadratic functions

We will generally express quadratic forms as

$$Q(x) = x^T P x, P^T = P$$

since all quadratic forms can be expressed in this manner.

Quadratic functions

All square matrices can be expressed as a sum of a symmetric matrix and a skew symmetric matrix:

$$M = P + S$$

$$P = P^T$$

$$S = -S^T$$

$$P = \frac{1}{2}M + \frac{1}{2}M^T$$

$$S = \frac{1}{2}M - \frac{1}{2}M^T$$

$$x^T M x = x^T P x$$

$$x^T S x = 0$$

Fact 1: All eigenvalues of a symmetric matrix are real.

Fact 2: Distinct eigenvectors of a symmetric matrix are orthogonal

Fact 3: Symmetric matrices can always be diagonalized

Fact 1: All eigenvalues of a symmetric matrix are real.

Proof: Let λ_i be the ith eigenvalue of \boldsymbol{P} and let

$$Pv_i = \lambda_i v_i$$

Assume that λ_i and v_i are both complex and

Let
$$v_i^* = \overline{v_i}^T$$
 (complex conjugate transpose)

Then it must also be true that

$$(\overline{\lambda}_i \lambda_i = |\lambda_i|)$$

$$P\overline{v}_i = \overline{\lambda}_i \, \overline{v}_i$$

Lets now compute the quadratic form $v_i^* P v_i$,

$$v_i^*(Pv_i) = v_i^*(\lambda_i v_i) = \lambda_i v_i^* v_i = \lambda_i |v_i|$$

and, by the fact that P is symmetric,

$$(v_i^* P) v_i = (P \overline{v}_i)^T v_i = \overline{\lambda}_i v_i^* v_i = \overline{\lambda}_i |v_i|$$

Therefore,

$$\overline{\lambda}_i = \lambda_i \Leftrightarrow \lambda_i \in \mathcal{R} \text{ and } v_i \in \mathcal{R}^n$$

Fact 2: Distinct eigenvectors of a symmetric matrix are orthogonal

Proof: Let λ_i and λ_j be two distinct eigenvalues of a symmetric matrix P with associated eigenvectors

$$v_i$$
 and v_j . $(Pv_i = \lambda_i v_i \text{ and } Pv_j = \lambda_j v_j)$

$$v_j^T P v_i = \lambda_i v_j^T v_i$$
$$(P v_j)^T v_i = \lambda_i v_j^T v_i$$

$$\lambda_j v_j^T v_i = \lambda_i v_j^T v_i$$

Thus,

$$\lambda_i \neq \lambda_j \Leftrightarrow v_j^T v_i = 0$$

Fact 3: Symmetric matrices can always be diagonalized

Proof: Let λ_m be a repeated eigenvalue of P of multiplicity 2 and assume that v_1 is one of its associated eigenvectors. We will show that

$$\operatorname{nullity}\{[\lambda_m I - P]\} = 2$$

Attempt to compute a *generalized eigenvector* v_2

$$Pv_2 = \lambda_m v_2 + v_1$$

Then,

$$v_1^T P v_2 = \lambda_m v_1^T v_2 + v_1^T v_1$$

and, by the fact that P is symmetric and v_1 is an eigenvector,

$$(Pv_1)^T v_2 = \lambda_m v_1^T v_2 + |v_1|^2$$
$$\lambda_m v_1^T v_2 = \lambda_m v_1^T v_2 + |v_1|^2$$

Therefore, a generalized eigenvector *cannot* be found, which in turn means that

$$nullity\{[\lambda_m I - P]\} = 2$$

and two (orthogonal) eigenvectors can be found for the repeated eigenvalue λ_m

Fact 3: Symmetric matrices can always be diagonalized Thus,

- The normalized eigenvectors of every symmetric matrix $P \in \mathcal{R}^{n \times n}$ form an **orthonormal basis** for \mathcal{R}^n .
- There exist an orthogonal coordinate transformation matrix T and a diagonal matrix Λ such that

$$T^T P T = \Lambda \qquad T^T T = I$$

Positive Definite Matrix

A symmetric matrix $P = P^T$

is positive definite iff the quadratic function

$$Q(x) = x^T P x$$

is a Positive Definite Function (PDF).

Positive definite symbol

We will use the symbol: $P \succ 0$

to denote that P is a symmetric and positive definite matrix.

We will use the symbol: $W(x) \succ 0$

to denote that W(x) is positive definite function (PDF).

Positive Semi-Definite Matrix

A symmetric matrix $P = P^T$

is positive semi-definite iff the quadratic function

$$Q(x) = x^T P x$$

is a Positive Semi-definite Function (PSDF).

Positive semi-definite symbol

We will use the symbol: $P \succ 0$

to denote that P is a symmetric and positive semi-definite matrix.

We will use the symbol: $W(x) \succeq 0$

to denote that W(x) is positive semi-definite function (PDF).

Determining if a matrix is positive definite

For a symmetric matrix P, the following statements are equivalent:

- 1) P > 0 (positive definite)
- 2) **ALL** eigenvalues of \boldsymbol{P} are positive
- 3) **ALL** leading principal minors of \boldsymbol{P} are positive
- 4) There exist a non-singular matrix N such that

$$P = N^* N$$

Determining if a matrix is positive semi-definite

For a symmetric matrix P, the following statements are equivalent:

- 1) $P \succ 0$ (positive semi-definite)
- 2) $\underline{\mathsf{ALL}}$ eigenvalues of P are greater than or equal to zero, and at least one is zero.
- 3) \underline{ALL} leading principal minors of \boldsymbol{P} greater than or equal to zero, and at least one is zero.
- 4) There exist a $\underline{\mathbf{singular}}$ matrix N such that

$$P = N^* N$$

Leading principal minors

The leading principal minors of

$$P = \begin{bmatrix} p_{11} & p_{12} & p_{13} \\ p_{12} & p_{22} & p_{23} \\ p_{13} & p_{23} & p_{33} \end{bmatrix}$$

are

$$p_{11} \quad \det \left(\left[egin{array}{cc} p_{11} & p_{12} \\ p_{12} & p_{22} \end{array}
ight]
ight) \quad \det \left(P
ight)$$

Negative (semi-) definite symbol

$$P \prec 0 \iff -P \succ 0$$

$$P \leq 0 \iff -P \geq 0$$

Derivative along a state trajectory

 Consider an n-th order nonlinear time invariant continuous time system of the form:

$$\dot{x} = f(x)$$
 with $f(0) = 0$

- Let the function $W:\mathcal{R}^n \to \mathcal{R}_+$ have continuous partial derivatives.
- ullet Denote the gradient of W with respect to x by

$$\nabla W(x) = \begin{bmatrix} \frac{\partial W}{\partial x_1} & \cdots & \frac{\partial W}{\partial x_n} \end{bmatrix}^T$$

Derivative along a state trajectory

• The derivative of W(x) along the state trajectory

$$\frac{\dot{x} = f(x)}{dW(x)} = \nabla W^{T}(x) f(x)$$

is

$$= \begin{bmatrix} \frac{\partial W}{\partial x_1} & \cdots & \frac{\partial W}{\partial x_n} \end{bmatrix} \begin{bmatrix} f_1(x) \\ \vdots \\ f_n(x) \end{bmatrix}$$

Derivative along a state trajectory

The expression

$$\nabla W^{T}(x) f(x) = \begin{bmatrix} \frac{\partial W}{\partial x_{1}} & \cdots & \frac{\partial W}{\partial x_{n}} \end{bmatrix} \begin{bmatrix} f_{1}(x) \\ \vdots \\ f_{n}(x) \end{bmatrix}$$

Is also called the Lie derivative of W(x) with respect to the vector field f(x).

$$L_f W(x) = \nabla W^T(x) f(x)$$

The Direct Method of Lyapunov

- The direct method of Lyapunov lets us study stability of dynamic systems:
 - linear/nonlinear,
 - time-invariant/time varying

without solving the state equations explicitly.

 It is based on computing a scalar function called the <u>Lyapunov function candidate</u>, which can be viewed as a generalization of the energy function.

Stability from the Energy Viewpoint

Consider the mechanical system:

Energy:

$$E(t) = \frac{1}{2}Kx_1^2(t) + \underbrace{\frac{1}{2}Mx_2^2(t)}_{\text{potential}} + \underbrace{\frac{1}{2}Mx_2^2(t)}_{\text{kinetic}}$$

Energy is a PDF

• Energy:

$$E(x_1, x_2) = \frac{1}{2} \left(K x_1^2 + M x_2^2 \right)$$

$$E(x_1, x_2) = \frac{1}{2} \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} K & 0 \\ 0 & M \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \succ 0$$

PDF

Stability from the Energy Viewpoint

$$E(x_1, x_2) = \frac{1}{2} \left(K x_1^2 + M x_2^2 \right)$$

Time derivative of the energy

$$\dot{E} = (K x_1 \dot{x}_1 + M x_2 \dot{x}_2)
= K x_1 x_2 + M x_2 \left(-\frac{K}{M} x_1 - \frac{B}{M} x_2 \right)
= -B x_2^2 \le 0$$

is negative, as long as $x_2 \neq 0$

Stability from the Energy Viewpoint

• Thus, since

$$\dot{E}(t) < 0 \Leftrightarrow x_2 \neq 0$$

• Energy will continue to decrease unless $x_2 = 0$

• Since $(x_1 \neq 0, x_2 = 0)$ is not an equilibrium state, the motion cannot stop at $(x_1 \neq 0, x_2 = 0)$

Thus,
$$E \to 0 \Rightarrow \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \to \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Lyapunov Function

V(x) is a Lyapunov function for the system

$$\dot{x} = f(x)$$

if there exists a constant r > 0 such that:

1)
$$V(x) \succ 0$$
 $\forall |x| < r$

$$\dot{V}(x) = \nabla V^{T}(x) f(x) \leq 0$$

for all |x| < r

Lyapunov Function

Lyapunov function V(x) must be:

1) Locally Positive Definite (LPDF)

$$V(x) \succ 0 \quad \forall |x| < r$$

2) its derivative along the state trajectory must be **Locally Negative Semi-definite**:

$$\dot{V}(x) \leq 0 \qquad \forall |x| < r$$

Lyapunov Stability Theorem (CT)

The equilibrium state 0 of an n-th order nonlinear time invariant continuous time system of the form:

$$\dot{x} = f(x)$$

is stable in the sense of Lyapunov if there exists a Lyapunov function V(x) for this system.

Lyapunov Asymptotic Stability Theorem (CT)

The equilibrium state 0 of an n-th order nonlinear system of the form:

$$\dot{x} = f(x)$$

is <u>locally asymptotically stable</u> if there exists a **Lyapunov function** V(x) such that, for some r > 0

$$\dot{V}(x) \prec 0 \qquad \forall |x| < r$$

(local negative definite function)

Lyapunov Global Asymptotic Stability Theorem (CT)

The equilibrium state 0 of an n-th order nonlinear system of the form:

$$\dot{x} = f(x)$$

is globally asymptotically stable if there exists a Lyapunov function, such that

$$V(x) \succ 0$$
 PDF

$$\dot{V}(x) \prec 0$$
 NDF

LaSalle's Asymptotic Stability Theorem (CT)

Provides relaxed conditions for asymptotic stability

LaSalle's theorem only applies to:

• Time invariant systems $\dot{x} = f(x)$

Periodic systems

$$\dot{x} = f(x,t)$$

$$f(x,t) = f(x,t+T)$$

LaSalle's Asymptotic Stability Theorem (CT)

The equilibrium state 0 of:

$$\dot{x} = f(x)$$

is locally asymptotically stable if:

1) There exist a Lyapunov function V(x).

2) The set
$$S = \{x : V(x) \le m, \dot{V}(x) = 0\}$$

contains no trajectories other than x = 0, where

$$m = \sup_{|x| \le r} V(x)$$

Example:

$$\frac{dx_1}{dt} = x_2$$

$$\frac{dx_2}{dt} = -\frac{K}{M}x_1 - \frac{B}{M}x_2$$

Consider the PDF

$$V(x) = \frac{1}{2} \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} K & 0 \\ 0 & M \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \succ 0$$

Example:

$$\frac{dx_1}{dt} = x_2$$

$$\frac{dx_2}{dt} = -\frac{K}{M}x_1 - \frac{B}{M}x_2$$

Take the time derivative of V(x):

$$\dot{V}(x) = -B x_2^2$$

$$\dot{V}(x) = -\begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & -B \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \leq 0$$

Thus:

$$V(x) \succ 0$$

$$\dot{V}(x) \leq 0$$

V(x) is a Lyapunov function

Stability in the sense of Lyapunov follows

• Since $\dot{V}(x) = -Bx_2^2$

$$S = \{x : V(x) \le m, \dot{V}(x) = 0\}$$
 $m = \sup_{|x| \le r} V(x)$

$$S = \left\{ \begin{bmatrix} x_1 \\ 0 \end{bmatrix}, |x_1| < m' \right\} \qquad m' = \sqrt{2m/K}$$

To prove asymptotic stability, we must show that the only possible solution of the state equations

$$\frac{dx_1}{dt} = x_2$$

$$\frac{dx_2}{dt} = -\frac{K}{M}x_1 - \frac{B}{M}x_2$$

that satisfies:

$$x_s(t) = \begin{bmatrix} x_{s1}(t) \\ x_{s2}(t) \end{bmatrix} = \begin{bmatrix} x_{s1}(t) \\ 0 \end{bmatrix}$$

is
$$x_s(t) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Assume:

$$x_s(t_o) = \left[\begin{array}{c} x_{s1}(t_o) \\ 0 \end{array} \right]$$

where

$$0 < \left| x_{s1}(t_0) \right| \le \sqrt{2m/K}$$

Then:

$$\frac{dx_{s1}}{dt} = x_{s2}$$

$$\frac{dx_{s2}}{dt} = -\frac{K}{M}x_{s1} - \frac{B}{M}x_{s2}$$

$$\dot{x}_{s2}(t_o) = -\frac{K}{M}x_{s1}(t_o) \neq 0$$

Therefore, the only trajectory that remains in

$$S = \left\{ \begin{bmatrix} x_1 \\ 0 \end{bmatrix}, |x_1| < m' \right\} \qquad m' = \sqrt{2m/K}$$

is
$$x_s(t) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Asymptotic stability follows from LaSalle's Theorem

Remarks

- The previous theorems only provide sufficient but not necessary conditions
 - i.e. failure to find a Lyapunov function does not imply instability.
- If a PDF function W(x) does not satisfy the conditions of the theorems, nothing can be concluded.
 - It simply means that W(x) is not a Lyapunov function.

Instability Theorem (CT)

The equilibrium state 0 of:

$$\dot{x} = f(x)$$

is <u>unstable</u> if there exists function W(x) such that:

1)
$$\dot{W}(x) > 0$$
, $\forall |x| < r$

(i.e $\dot{W}(x)$ is a **LPDF**).

2) There exists states x arbitrarily close to the origin such that W(x) > 0.

Discrete Time Systems

All of the previous theorems have counterparts for discrete time systems of the form

$$x(k+1) = f(x(k))$$

$$f(0) = 0$$

Difference along a state trajectory

Consider an n-th order discrete time system

$$x(k+1) = f(x(k))$$

• For a function $W: \mathcal{R}^n \to \mathcal{R}_+$

We denote

$$\Delta W(x(k)) = W(x(k+1)) - W(x(k))$$
$$= W(f(x(k))) - W(x(k))$$

Lyapunov Function

V(x) is a Lyapunov function for the system

$$x(k+1) = f(x(k))$$

if there exists a constant r > 0 such that:

1)
$$V(x) \succ 0$$
 $\forall |x| < r$

2)
$$\Delta V(x) \leq 0$$

for all
$$|x| < r$$

Lyapunov Function

Lyapunov function V(x) must be:

1) Locally Positive Definite (LPDF)

$$V(x) \succ 0 \quad \forall |x| < r$$

2) its difference along the state trajectory must be **Locally Negative Semi-definite**:

$$\Delta V(x) \leq 0 \quad \forall |x| < r$$

Lyapunov Stability Theorem (DT)

The equilibrium state 0 of an n-th order nonlinear time invariant continuous time system of the form:

$$x(k+1) = f(x(k))$$

is stable in the sense of Lyapunov if there exists a Lyapunov function V(x) for this system.

Lyapunov Asymptotic Stability Theorem (DT)

The equilibrium state 0 of an n-th order nonlinear system of the form:

$$x(k+1) = f(x(k))$$

is <u>locally asymptotically stable</u> if there exists a <u>Lyapunov function</u> V(x) such that, for some r > 0

$$\Delta V(x) \prec 0 \quad \forall |x| < r$$

(local negative definite function)

LaSalle's Asymptotic Stability Theorem (DT)

Provides relaxed conditions for asymptotic stability

LaSalle's theorem only applies to:

• Time invariant systems x(k+1) = f(x(k))

Periodic systems

$$x(k+1) = f(x(k), k)$$

$$L \geq 1$$

$$f(x,k) = f(x,k+L)$$

LaSalle's Asymptotic Stability Theorem (DT)

The equilibrium state 0 of:

$$x(k+1) = f(x(k))$$

is locally asymptotically stable if:

1) There exist a Lyapunov function V(x).

2) The set
$$S = \{x : V(x) \le m, \Delta V(x) = 0\}$$

contains no trajectories other than x = 0, where

$$m = \sup_{|x| \le r} V(x)$$

Remarks

- The previous theorems only provide sufficient but not necessary conditions
 - i.e. failure to find a Lyapunov function does not imply instability.
- If a PDF function W(x) does not satisfy the conditions of the theorems, nothing can be concluded.
 - It simply means that W(x) is not a Lyapunov function.

Instability Theorem (DT)

The equilibrium state 0 of:

$$x(k+1) = f(x(k))$$

is <u>unstable</u> if there exists function W(x) such that:

1)
$$\Delta W(x) \succ 0, \quad \forall |x| < r$$

(i.e $\Delta W(x)$ is a **LPDF**).

2) There exists states x arbitrarily close to the origin such that W(x) > 0.