Projeto de Instalações Telefônicas

12

- 12.1 Introdução
- 12.2 Simbologia Básica
- 12.3 Critérios para Previsão de Pontos Telefônicos e Caixas de Saída
- 12.4 Caixas de Distribuição Geral, de Distribuição e de Passagem
- 12.5 Tubulação Secundária e Primária
- 12.6 Aterramento
- 12.7 Tubulação de Entrada
- 12.8 Caixa de Entrada Subterrânea
- 12.9 Prumada
- 12.10 Projeto de Rede Telefônica Interna

12.1) (Introdução

Devido ao fato de o Técnico em Eletrotécnica e o Engenheiro Eletricista serem os únicos profissionais habilitados para desenvolver os projetos de tubulação e rede interna para telefonia, consideramos necessária a inclusão deste capítulo.

A seqüência para desenvolvimento deste projeto atende às determinações da Norma 224-3115-01/02 (TELEBRÁS) e das Normas 235-001-007-PR - Manual de Tubulações em Edificações e 235-110-613-PR - Projeto de Rede Telefônica Interna (TELEPAR). O procedimento descrito a seguir, é adequado para qualquer tipo de prédio residencial, mas recomendamos que em projetos maiores, seja feita uma consulta à norma da concessionária local.

O nosso trabalho será dividido em duas partes, inicialmente o projeto de tubulação, e a seguir, o projeto de fiação (rede interna).

12.2 Simbologia Básica

De acordo com as normas TELEBRÁS, para as plantas deverá ser utilizada a simbologia mostrada na figura 12.1 a seguir:

^{*} Contribuição para este capítulo do Prof. Paulo Sérgio Walênia, do Departamento Acadêmico de Eletrotécnica - CEFET/PR

	CAIXA DE SAÍDA, NA PAREDE h = 0,30 m
	CAIXA DE SAÍDA, NA PAREDE h = 1,30 m
	CAIXA DE SAÍDA NO PISO
	CAIXA DE DISTRIBUIÇÃO GERAL
	CAIXA DE DISTRIBUIÇÃO OU DE PASSAGEM
xx mm	TUBULAÇÃO NO PISO, INDICAÇÃO DE DIÂMETRO
xx mm	TUBULAÇÃO NO TETO, INDICAÇÃO DE DIÂMETRO
	TUBULAÇÃO QUE SOBE
0	TUBULAÇÃO QUE DESCE
R1, R2, R3 ou R4	CAIXA SUBTERRÂNEA
Quant. Tipo de Fios 4 FI 6 - 9 Comprimento do Lance Secundária	TRECHO DE FIO FI-60-R
Tipo Capacidade do Cabo C1 - 50 - 50 21 - 70 18,50 Contagem Comprimento do Lance	TRECHO DE FIO CI

Figura 12.1 - Simbologia Normatizada para Tubulações e Rede Telefônicas

Critérios para Previsão de Pontos Telefônicos e Caixas de Saída

Ponto telefônico equivale ao número de linhas externas disponíveis no apartamento ou residência; **atenção**, não é igual ao número de tomadas (caixas de saída).

Para prevermos o número de pontos devemos usar a Tabela 12.1 abaixo:

Tabela 12.1 - Previsão de Pontos Telefônicos

Tipo	Base de Cálculo	Pontos
Residências	Até 2 quartos	1,0
ou	De 3 quartos	1,5
Apartamentos	Mais de 3 quartos	2,0
Lojas	Até 50 m²	3,0
	De 50 a 500 m²	3,0 a 12 *
	Acima de 500 m²	> 12 **
Escritórios	Cada 10 m²	1

^{*} Começar em 3 e adicionar 1 ponto a cada 50 m²

Deverão ser previstas *caixas de saída* nos seguintes locais:

- quartos, h = 0,30 m, na provável cabeceira da cama;
- salas, h = 0,30 m, recomendável a instalação de mais de uma;
- copas, h = 1,30 m ou h = 0,30 m;
- cozinhas, h = 1,30 m.

Estas caixas deverão ser interligadas dentro do apartamento, de forma seqüencial, pela tubulação secundária até a caixa de distribuição.

A figura 12.2, a seguir, mostra o detalhe de uma caixa de saída.

Figura 12.2 - Caixa de Saída com Tomada padrão TELEBRÁS

^{**} Começar em 12 e adicionar 1 ponto a cada $100~\text{m}^2$

Exemplo:

A figura 12.3 representa a tubulação telefônica de um apartamento de 3 quartos, no qual temos: 1,5 pontos telefônicos (tabela 12.1) e 6 caixas de saída (planta).

Figura 12.3 - Tubulação Telefônica Secundária de um Apartamento

Caixas de Distribuição Geral, de Distribuição e de Passagem

a) Definições:

- Caixa de Distribuição Geral: liga a rede interna à rede externa da edificação;
- Caixa de Distribuição: nelas são instalados blocos terminais, fios e cabos telefônicos da rede interna;
- Caixa de Passagem: utilizadas somente quando tivermos grandes lances de tubulação, ou excedermos o número de curvas recomendadas por trecho de tubulação.

b) Localização:

- em áreas comuns;
- preferencialmente em áreas internas e cobertas;
- em halls de serviço, se houver;
- de acordo com a Tabela 12.2, a seguir:

Tabela 12.2 - Localização das Caixas Telefônicas

Número de				I	.ocaliza	ıção da	s Caixa	s			
Andares	TR	03	06	09	12	15	18	21	24	27	30
1 a 2	X										
3 a 4	X	X									
5 a 7	X	X	X								
8 a 10	X	X	X	X							
11 a 13	X	X	x	X	X						
14 a 16	X	X	X	X	X	X					
17 a 19	X	X	X	X	X	X	X				
20 a 22	X	X	X	X	X	X	x	X			
23 a 25	Х	Х	X	X	X	X	X	X	X		
26 a 28	х	Х	х	Х	X	X	х	X	X	X	
29 a 31	х	X	X	X	X	X	X	X	X	X	X

A figura 12.4 mostra uma caixa de distribuição, com a respectiva altura de instalação recomendada por norma.

Figura 12.4 - Vista Frontal de uma Caixa de Distribuição Telefônica

c) Dimensionamento das Caixas Telefônicas:

Tabela 12.3 - Dimensionamento das Caixas Telefônicas

Nº de pontos telefônicos	Caixa de Distribuição Geral	Caixa de Distribuição	Caixa de Passagem
1 e 2	-	•	1
3 a 15	3	3	2
6 a 45	4	3	2
46 a 95	5	4	3
96 a 190	6	5	3
191 a 390	7	6	4
391 a 600	8	6	5
601 em diante	Sala do DG		

d) Dimensões das Caixas Telefônicas:

Tabela 12.4 - Dimensões das Caixas Telefônicas

Caixa	Dimensões (cm)		
	Altura	Largura	Profundidade
1	10	10	5
2	20	20	12
3	40	40	12
4	60	60	12
5	80	80	12
6	120	120	12
7	150	150	15
8	200	200	20

12.5 Tubulação Secundária e Primária

a) Definições:

- Tubulação Secundária: interliga as caixas de saída entre si e estas com as caixas de distribuição;
- Tubulação Primária: interliga as caixas de distribuição com a caixa de distribuição geral.

b) Dimensionamentos:

O *diâmetro interno* mínimo deve ser determinado em função do número de pontos telefônicos, conforme a Tabela 12.5, a seguir:

Tabela 12.5 - Dimensionamento de Tubulações Telefônicas Primária e Secundária

Nº de pontos acumulados	diâmetro interno mínimo (mm)	quantidade mínima de dutos	
1 a 4	19 *	1	
5 a 10	25	1	
11 a 20	32	1	
21 a 50	38	1	
51 a 100	50	1	
101 a 200	50	2	
201 a 300	50	3	
acima de 300	poço de elevação		

^{*} Nos apartamentos de alto luxo e em edifícios comerciais, a tubulação secundária mínima será de 25mm.

c) Recomendações:

- entre duas caixas, podem ser utilizadas no máximo duas curvas de 90°, sendo 2 metros a distância mínima entre as duas curvas;
- não devem ser empregadas curvas com deflexão maior que 90° (ângulo externo), ou reversas (curvas em planos diferentes);
- a tubulação telefônica deve ter o comprimento de seus lances limitado para facilitar o puxamento de cabos e fios, conforme a Tabela 12.6, abaixo:

Tabela 12.6 - Limites de Comprimento de Tubulações Telefônicas

Tubulação entre caixas	Vertical (m)	Horizontal (m) *
Trechos retilíneos sem curvas	15	30
Trechos com 1 curva	12	24
Trechos com 2 curvas	9	18

^{*} Utilizar a coluna referente à maior parte do trajeto do eletroduto.

• Caixas de Passagem:

Caso não seja possível atender às recomendações acima, devemos utilizar caixas de passagem.

12.6 Aterramento

Consiste na interligação de todas as caixas de distribuição do prédio à haste de aterramento, através de um condutor devidamente tubulado. Deve ser um aterramento específico para o sistema telefônico e estar distante pelo menos 5 m de outros sistemas de aterramento.

Deve ser projetada uma tubulação de diâmetro interno mínimo de 13 mm, interligando todas as caixas de distribuição e caixa de distribuição geral à caixa de aterramento.

Deverão ser utilizados os seguintes materiais:

- **a)** caixa para haste aterramento: em alvenaria nas dimensões 30 x 30 x 30 cm, com tampa removível de concreto;
- b) condutor de aterramento: de cobre rígido, isolado, com seção mínima de 6 mm²;
- c) haste de aterramento: tipo coperweld, ou similar, de aço cobreado, com diâmetro de 16 mm e comprimento de 3 m.

12.7) (Tubulação de Entrada

Poderá ser aérea ou subterrânea, mas neste capítulo nos limitaremos a comentar sobre a entrada subterrânea por ser recomendada para as seguintes situações:

- o edifício possuir mais de 4 pavimentos;
- o número de pontos telefônicos ser superior a 20;
- o construtor optar, por razões estéticas.

A tubulação de entrada destina-se à instalação subterrânea de um fio ou cabo telefônico da caixa de distribuição geral até a rede telefônica externa aérea ou subterrânea da concessionária.

a) Dimensionamento:

De acordo com a Tabela 12.7 abaixo, em função do número de pontos acumulados.

Nº de pontos do Edifício	diâmetro interno mínimo (mm)	quantidade mínima de dutos
1 a 50	50	1
51 a 200	75	1
201 a 600	75	2
601 a 1800	100	3
1801 em diante	Fazer estudo conjunto com a concessionária	

Tabela 12.7 - Tubulação de Entrada

b) Recomendações:

- devem ser utilizados eletrodutos de PVC rígido ou eletrodutos corrugados para canalização subterrânea;
- o número máximo de curvas deve ser dois e estas não podem ter deflexão acima de 90°;
- o comprimento máximo do lance da tubulação de entrada é dado pela Tabela 12.8, a seguir:

Tabela 12.8 - Comprimento Máximo do Lance de Tubulação de Entrada

Lances	Comprimento Máximo
Retilíneos	60 m
Com uma curva	50 m
Com duas curvas	40 m

• Em caso de termos mais de 2 curvas ou um lance maior que o permitido, devemos instalar caixas de passagem internas (subterrâneas ou na parede, conforme a necessidade).

Para a proteção dos eletrodutos deverá ser utilizado o sistema de bancos de dutos, conforme o detalhe mostrado na figura 12.5, a seguir:

Figura 12.5 - Detalhe do Banco de Dutos Telefônicos

12.8 Caixa de Entrada Subterrânea

A caixa subterrânea tem a finalidade de permitir a entrada e facilitar a passagem do cabo telefônico oriundo da rede externa da concessionária.

a) Localização:

- deve ficar paralela ao alinhamento predial, sendo de aproximadamente 2,5 m a distância do alinhamento predial ao centro da caixa;
- deve ficar afastada no mínimo 1 metro de outras caixas subterrâneas ou postes;
- não deve ser instalada em local de acesso de veículos.

b) Dimensionamento:

Em função do número de pontos telefônicos acumulados, conforme a Tabela 12.9 a seguir:

Tabela 12.9 - Dimensionamento da Caixa de Entrada Subterrânea

Nº de pontos	Tipo de Caixa	Dimensões (cm)		
		Comprimento	Largura	Altura
1 a 50	R1	60	35	50
51 a 200	R2	107	52	50
201 a 400	R3	150	120	130
acima de 400	Estudo em conjunto com a concessionária			

12.9 Prumada

A prumada telefônica de um prédio corresponde a um conjunto de meios físicos, dispostos verticalmente e destinados à instalação de blocos e cabos telefônicos.

As prumadas, de acordo com as características, finalidade do prédio e número de pontos telefônicos acumulados podem ser do tipo convencional, poço de elevação ou dirigida. A seguir, descreveremos a prumada convencional, por ser a mais utilizada.

A prumada telefônica deve localizar-se em áreas de uso comum do prédio e que apresentem maior continuidade vertical, do último andar até o térreo, onde está situado o Distribuidor Geral.

Prumada Convencional

Pode ser utilizada em edifícios residenciais, comerciais e industriais onde o número de pontos acumulados é igual ou inferior a 300.

A figura 12.6 a seguir, ilustra uma prumada convencional de um edifício de 7 andares, com dois apartamentos por andar.

Figura 12.6 - Prumada Convencional da Tubulação Telefônica de um Edifício

A figura 12.7, a seguir, ilustra os detalhes de interligação dos diversos trechos de tubulações (primária, secundária e de aterramento), com as respectivas caixas de saída, de distribuição e caixas de passagem. Observe nos detalhes A e B, o posicionamento recomendado para as tubulações em relação às caixas.

Figura 12.7 - Posicionamento dos Eletrodutos nas Caixas Telefônicas

[12.10] (Projeto de Rede Telefônica Interna

a) Rede Secundária:

O projeto de Rede Telefônica interna consiste em, inicialmente, prever para cada ponto telefônico do apartamento um par FI-60-R, interligando as tomadas de forma seqüencial, sendo que em apartamentos com até dois quartos teremos um par FI e cada caixa de saída deverá possuir uma tomada. Em apartamentos com três ou mais quartos, teremos dois pares FI e cada caixa de saída deverá possuir duas tomadas padrão TELEBRÁS.

Cada um dos pares FI-60-R deve ter uma identificação (numeração e contagem) específica.

Toda caixa que atende até cinco pontos telefônicos é considerada parte da rede secundária e nela devem ser projetados apenas pares FI-60-R.

b) Rede Primária:

O primeiro passo para o dimensionamento da rede primária é a determinação do número ideal de pares que aquela caixa deverá atender. Por exemplo:

Temos uma caixa de distribuição N° 3 que atende 8 pontos telefônicos e possui 17 pontos acumulados, conforme a figura 12.8.

Figura 12.8 - Caixa de Distribuição em uma Prumada Telefônica

O número ideal de pares será o número existente dividido por 0,8, então:

$$\frac{8}{0.8} = 10 \Rightarrow 10 \text{ pares}$$

$$\frac{17}{0.8} = 21,25 \Rightarrow 22 \text{ pares}$$

A figura 12.9, a seguir, ilustra a representação da Caixa de Distribuição na Rede Interna.

Figura 12.9 - Representação de uma Caixa de Distribuição com Identificação dos Pares Telefônicos

O próximo passo será determinarmos o cabo que irá alimentar esta caixa. Para isso, utilizaremos o número ideal de pares (pontos) acumulados na caixa e a tabela 12.10.

Tabela 12.10 - Capacidade dos Cabos Telefônicos

Quantidade de Pontos Acumulados	Capacidade por Cabo
até 6	pares FI
7 a 8	10
9 a 16	20
17 a 24	30
25 a 32	50
33 a 40	50
41 a 80	100

Este cabo deverá ser do tipo CI para rede interna, cujas características principais estão indicadas na Tabela 12.11.

Tabela 12.11 - Características dos Cabos Telefônicos CI

Designação	Número de Pares	Diâmetro Externo (mm)
CI-50-10	10	10,0
CI-50-20	20	13,0
CI-50-30	30	15,0
CI-50-50	50	18,5
CI-50-100	100	24,5
CI-50-200	200	34,0
CI-50-300	300	40,0
CI-50-400	400	46,0
CI-50-600	600	55,5
CI-50-800	800	63,5
CI-50-900	900	67,0
Cl-50-1200	1200	76,5

Determinado o cabo que utilizaremos, o próximo passo será determinar a quantidade de blocos internos a serem instalados nesta caixa.

- o número de blocos será igual à capacidade do cabo dividido por 10 (pois cada bloco tem capacidade de 10 pares);
- deverão ser usados blocos tipo M-10-B fixados em bastidores;
- a quantidade de bastidores depende do número de blocos a serem instalados, sendo que podem ser utilizados bastidores para 3, 5 ou 10 blocos;

• finalmente, ainda deverão ser previstas as braçadeiras para fixação dos cabos (determinadas em função do diâmetro do cabo) e a quantidade de anéis guia.

A Tabela 12.12 apresenta os códigos das braçadeiras utilizadas.

Tabela 12.12 - Braçadeiras para Cabos Telefônicos

Código	φ (mm)	
BC 1	13	
BC 2	17	
BC 3	20	
BC 4	23	
BC 5	28	
BC 6	36	
BC 7	38	
BC 8	43	
BC 9	51	
BC 10	66	

A figura 12.10, a seguir, representa o interior de uma caixa de distribuição número 4, com capacidade para até 45 pontos acumulados, indicando o posicionamento dos blocos e braçadeiras.

Figura 12.10 - Caixa de Distribuição № 4 para até 45 Pontos Acumulados

c) Contagem dos Pares e Numeração das Caixas de Distribuição:

Os pares de um cabo telefônico devem ser numerados no projeto para facilitar a confecção de emendas, a instalação de telefones etc.

A numeração deverá ser feita da seguinte forma: o cabo mais afastado da caixa de distribuição geral deve receber a numeração mais baixa. Esta numeração vai crescendo à medida que se aproxima da caixa de distribuição geral.

Por exemplo, um edifício de apartamentos de 5 andares, onde temos 2 apartamentos de 2 quartos por andar, teríamos a seguinte tabela de contagem:

Tabela 12.13 - Contagem e Numeração de Pares Telefônicos (Exemplo)

		Distribuição Secundária	
		Apartamento	Par Secundário
	11 - 20	101	12
		102	11
		201	8
		202	7
Contagem		301	6
	1 - 10	302	5
Primária		401	4
		402	3
		501	2
		502	1

O próximo passo é a numeração das caixas. Para numerar uma caixa basta dividir o último par distribuído nela por 10.

Para esclarecermos os procedimentos aqui descritos faremos um exemplo.

Exemplo

Apresentaremos o projeto de tubulação e rede telefônica interna de um edifício residencial com 2 apartamentos de 3 quartos por andar, com subsolo, térreo e pavimento tipo.

Este projeto está representado nas figuras 12.11 a 12.14, a seguir.

Figura 12.11 - Planta da Tubulação e Rede Telefônica de um Apartamento

Figura 12.12 - Prumada da Tubulação Telefônica de um Edifício Residencial

Figura 12.13 - Prumada da Rede Telefônica Interna de um Edifício Residencial