DSA 8070 R Session 1: Characterizing and Displaying Multivariate Data

Whitney

August 29, 2022

Contents

Descriptive Statistics	1		
Sample covariance visualization	1		
Sample and population covariance	2		
Bivariate Data Example	3		
Generliazed Variance	3		
Graphs and Visualization			
pairs	4		
ggpairs	4		
3D Scatter Plot	5		
Chernoff Faces	6		
Visualizing Summary Statistics	Ç		

Descriptive Statistics

Sample covariance visualization

```
set.seed(123)
library(MASS)
dat <- mvrnorm(n = 20, mu = c(0, 0), Sigma = matrix(c(4, 1.4, 1.4, 1), 2))
n <- dim(dat)[1]
par(mar = c(3.6, 3.6, 0.8, 0.6), las = 1)
layout(matrix(c(1, 1, 2, 3), nrow = 2, ncol = 2))
plot(dat, pch = 16, las = 1, xlab = "", ylab = "")
mtext(expression(X[j]), 1, line = 2); mtext(expression(X[k]), 2, line = 2)
text(-4, 2, expression(paste(S[jk], " = ")))
text(-3.3, 2, round(cov(dat[, 1], dat[, 2]), 2))
abline(h = mean(dat[, 2]), lty = 2); abline(v = mean(dat[, 1]), lty = 2)
plot(1:n, dat[, 1], pch = 16, xlab = "", ylab = "")
abline(h = mean(dat[, 1]))
mtext(expression(X[j]), 1, line = 2)</pre>
```

```
plot(1:n, dat[, 2], pch = 16, xlab = "", ylab = "")
abline(h = mean(dat[, 2]))
mtext(expression(X[k]), 1, line = 2)
```


Sample and population covariance

Here we simulate data with size sample n=20 from a bivariate normal distribution with *population covariance* $\rho_{12}=0$. We calculate the *sample covariance* s_{12} for each simulated data set, and we repeat this process 1,000 times.

The main purpose of this exercise is to demonstrate that one can conduct a *Monte Carlo* experiment to approximate the *sampling distribution* of s_{12} .

```
dat <- replicate(1000, mvrnorm(n = 20, mu = c(0, 0), Sigma = matrix(c(1, 0, 0, 1), 2)))
s12 <- apply(dat, 3, function(x) cov(x[, 1], x[, 2]))
hist(s12, 20, las = 1, main = "")
abline(v = 0, col = "red")</pre>
```


Bivariate Data Example

```
data <- cbind(x1 = c(42, 52, 88, 58, 60), x2 = c(4, 5, 7, 4, 5))
(means <- apply(data, 2, mean))

## x1 x2
## 60 5

cov(data)

## x1 x2
## x1 294 19.0
## x2 19 1.5

cor(data)

## x1 x2
## x1 1.0000000 0.9047619
## x2 0.9047619 1.0000000</pre>
```

Generliazed Variance

```
data(mtcars)
vars <- which(names(mtcars) %in% c("mpg", "disp", "hp", "drat", "wt"))
car <- mtcars[, vars]; S <- cov(car)
(genVar <- det(S))</pre>
```

Graphs and Visualization

pairs

head(iris)

```
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1
              5.1
                          3.5
                                       1.4
                                                   0.2 setosa
## 2
              4.9
                          3.0
                                       1.4
                                                   0.2 setosa
                                                   0.2 setosa
## 3
              4.7
                          3.2
                                       1.3
                          3.1
                                       1.5
## 4
              4.6
                                                   0.2 setosa
## 5
              5.0
                          3.6
                                       1.4
                                                   0.2 setosa
## 6
              5.4
                          3.9
                                       1.7
                                                   0.4 setosa
```

pairs(iris[, -5], las = 1, col = rep(c("green", "red", "blue"), each = 50), cex = 0.8)

ggpairs

library(GGally)

```
## Loading required package: ggplot2
## Registered S3 method overwritten by 'GGally':
     method from
##
     +.gg
            ggplot2
library(ggplot2)
p <- ggpairs(iris[, -5], aes(color = iris$Species)) + theme_bw()</pre>
# Change color manually.
# Loop through each plot changing relevant scales
for(i in 1:p$nrow) {
  for(j in 1:p$ncol){
    p[i, j] \leftarrow p[i, j] +
        scale_fill_manual(values = c("green", "red", "blue")) +
        scale_color_manual(values = c("green", "red", "blue"))
  }
}
p
```


3D Scatter Plot

```
library(scatterplot3d)
scatterplot3d(iris[, 1:3], pch = 19, color = rep(c("green", "red", "blue"), each = 50), grid = TRUE, box
```


Chernoff Faces

```
library(aplpack)

## Warning in system2("/usr/bin/otool", c("-L", shQuote(DSO)), stdout = TRUE):
## running command ''/usr/bin/otool' -L '/Library/Frameworks/R.framework/Resources/
## library/tcltk/libs//tcltk.so'' had status 1

par(mar = rep(0, 4))
faces(mtcars, cex = 0.8)
```


#	#	Murder	Assault	UrbanPop	Rape
#	# Alabama	13.2	236	58	21.2
#	# Alaska	10.0	263	48	44.5
#	# Arizona	8.1	294	80	31.0
#	# Arkansas	8.8	190	50	19.5
#	# California	9.0	276	91	40.6
#	# Colorado	7.9	204	78	38.7
#	# Connecticut	3.3	110	77	11.1
#	# Delaware	5.9	238	72	15.8
#	# Florida	15.4	335	80	31.9
#	# Georgia	17.4	211	60	25.8
#	# Hawaii	5.3	46	83	20.2
#:	# Idaho	2.6	120	54	14.2

##	Illinois	10.4	249	83 24.0
##	Indiana	7.2	113	65 21.0
##	Iowa	2.2	56	57 11.3
##	Kansas	6.0	115	66 18.0
##	Kentucky	9.7	109	52 16.3
##	Louisiana	15.4	249	66 22.2
##	Maine	2.1	83	51 7.8
##	Maryland	11.3	300	67 27.8
	Massachusetts	4.4	149	85 16.3
##	Michigan	12.1	255	74 35.1
##	Minnesota	2.7	72	66 14.9
##	Mississippi	16.1	259	44 17.1
##	Missouri	9.0	178	70 28.2
##	Montana	6.0	109	53 16.4
##	Nebraska	4.3	102	62 16.5
##	Nevada	12.2	252	81 46.0
##	New Hampshire	2.1	57	56 9.5
##	New Jersey	7.4	159	89 18.8
##	New Mexico	11.4	285	70 32.1
##	New York	11.1	254	86 26.1
##	North Carolina	13.0	337	45 16.1
##	North Dakota	0.8	45	44 7.3
##	Ohio	7.3	120	75 21.4
##	Oklahoma	6.6	151	68 20.0
##	Oregon	4.9	159	67 29.3
##	Pennsylvania	6.3	106	72 14.9
##	Rhode Island	3.4	174	87 8.3
##	South Carolina	14.4	279	48 22.5
##	South Dakota	3.8	86	45 12.8
##	Tennessee	13.2	188	59 26.9
##	Texas	12.7	201	80 25.5
##	Utah	3.2	120	80 22.9
##	Vermont	2.2	48	32 11.2
##	Virginia	8.5	156	63 20.7
##	Washington	4.0	145	73 26.2
##	West Virginia	5.7	81	39 9.3
##	Wisconsin	2.6	53	66 10.8
##	Wyoming	6.8	161	60 15.6

faces(USArrests, cex = 0.8)

Visualizing Summary Statistics

