CPEN 355: Machine Learning with Engineering Applications 2024-25 Term 2

Lecture Syllabus

Instructor: Prof. Xiaoxiao Li Scribe: Xiaoxiao Li

1 Course Description

- Credits: 4
- Pre-reqs: One of MATH 152, MATH 221 and one of MATH 318, MATH 302, STAT 302, STAT 321, ELEC 321 and one of CPEN 221, CPEN 223, CPSC 259.
- This course is restricted to students in year: ≥ 3 with one of these specializations: IN CPEN -OR-

in year: ≥ 3 with one of these specializations: IN ELEC -OR-

in year: ≥ 4 with one of these specializations: ****ENPH,****IGEN.

2 Contact Information

• Instructor: Xiaoxiao Li

• Email: xiaoxiao.li@ece.ubc.ca

3 Time and Location

• Class Meets:

Mon & Weds & Fri | 13:00 – 14:00 | ORCH-Floor 3-Room 3018

- Tutorials: Mon | 14:00 15:00 | CHBE-Floor 1-Room 103
 - Beidi Zhao beidi.zhao16@gmail.com
 - Chun-Yin Huang chunyinhuang17@gmail.com
- Instructor Office Hours: Weds 14:00 15:00 pm (by appointment only)

4 Prerequisites

• Proficiency in Python
All class assignments will be in Python.

- College Calculus, Linear Algebra
 You should be comfortable taking derivatives and understanding matrix vector operations and notation.
- Basic Probability and Statistics
 You should know basics of probabilities, Gaussian distributions, mean, standard deviation, etc.

5 Course Goals

The course aims to provide an introductory level exposure to machine learning concepts with a balance between practical and theoretical aspects and hands-on experience suitable for engineering students. At the end of the course, students will be able to: apply the concept of learning and machine learning to real-world problems; identify the machine learning tasks and select suitable machine learning models; execute training and validation of models; apply techniques to control overfitting and assess the success of learning; use and modify available software for machine learning models and apply to new problems; realize the ongoing challenges and problems in machine learning; continue with specialized and advance machine learning courses.

6 Computational Resources

GPU computing is required for this class. I strongly recommend to Google Colab or use your own/lab's GPU since that is the most convenient way of writing and testing code with GUI. Click here to try out the Colab tutorial.

7 Course Content

This course will cover the following topics:

- 1. Course Policy (Jan 6)
- 2. Introduction to Machine Learning (Jan 8)
- 3. Machine Learning Basics (Jan 10 31)
 - Concepts and Basic Math
 - Linear Regression
 - Penalized Regression: Lasso and Bridge
 - Logistic Regression
 - Newton's Method
 - Intro to Machine Learning Practice (Python, Pytorch, Co-lab, etc.)
 - Model Training and Evaluation
 - Assignment 1 Announcement (Jan 10)

- Assignment 1 Submission (Jan 24)
- Assignment 2 Announcement (Jan 24)
- Assignment 2 Submission (Feb 7)
- 4. Supervised Learning (Feb 3 Mar 3)
 - Introduction to Supervised Learning and K-Nearest Neighbors
 - KNN and Computational Complexity
 - Support Vector Machines
 - Decision Tree and Random Forest
 - In-class Quiz (Feb 12, tentative)
 - Practice: Housing Price Prediction
 - Assignment 3 Announcement (Feb 9)
 - Assignment 3 Submission (Mar 1)
- 5. Unsupervised Learning (Mar 4 22)
 - Intro to Unsupervised Learning and Clustering
 - Advanced Clustering
 - Gaussian Mixture Model
 - Principal Components Analysis
 - Independent Component Analysis
 - Semi-supervised Learning
 - Practice: Unsupervised Learning
 - Assignment 4 Announcement (Mar 5)
 - Assignment 4 Submission (Mar 22)
- 6. Overview of Deep Neural Networks (Mar 25 Apr 7)
 - Background and Introduction to Multilayer Perceptrons
 - Fully Connected Layers
 - Activation Functions
 - Objective Functions
 - Backpropagation and Optimization
 - Practice: ANN for Image Recognition
 - Convolutional Neural Networks
 - Recurrent Neural Networks
 - AutoEncoder
 - Generative Adversarial Network
 - In-class Quiz (April 7)
- 7. Final Project Report Submission (April 20)

8 Grading, Assignments, and Final Project

- 4 Assignments: 60% = 4*15%
 - Conceptual and practical questions
 - Programming questions
- 2 in-class exams: 20% = 2*10%
- Final project: 20% ¹
 - A machine learning project including data collection, data preprocessing, data analysis using machine learning models. You need to submit codes together with a well structured report (at least 4 pages and no more than 10 pages). **No Teamwork allowed**.
 - Passing the course does on conditional on if you pass the final project
- Late submission will result in *0.8 decay per day. Extension is only accepted via applying for Academic Concession.

9 Suggested Reading Materials

- Friedman, Jerome, Trevor Hastie, and Robert Tibshirani. The elements of statistical learning. Vol. 1. No. 10. New York: Springer series in statistics, 2001.
- Müller, Andreas C., and Sarah Guido. Introduction to machine learning with Python: a guide for data scientists. "O'Reilly Media, Inc.", 2016.
- Goodfellow, Ian, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning. Vol. 1, no. 2. Cambridge: MIT press, 2016.
- Torfi, Amirsina. Deep Learning Roadmap. https://www.machinelearningmindset.com/books/

10 Acknowledgment

- * Our course materials and design are referred to the following resources, thanks for the great work done by the smart people!
 - https://speech.ee.ntu.edu.tw/tlkagk/courses.html
 - http://cs231n.stanford.edu/
 - http://deeplearning.cs.cmu.edu/
 - https://www.deeplearningbook.org/lecture_slides.html
 - https://www.cs.princeton.edu/courses/archive/spring16/cos495/

¹You need to pass the final project to pass the course.

- $\bullet \ http://ttic.uchicago.edu/\ shubhendu/Pages/CMSC35246.html$
- $\bullet \ \, https://www.cc.gatech.edu/classes/AY2018/cs7643_fall$
- http://introtodeeplearning.com/
- $\bullet \ \, \rm https://hrlblab.github.io/cs3891.html$
- Prof. Lutz Lampe's teaching materials
- Prof. Qi Dou's teaching materials