Exercises Week 1 $(1) a) \times [n] = (a) \left(11 \cdot \frac{3}{10} \cdot n \right) = (a) \left(211 + n \right)$ X[N] = X[N+N]multiple of 27 $X[N+N] = \cos\left(\frac{1}{1} \cdot \frac{3}{3} \cdot (N+N)\right) = \cos\left(\frac{1}{1} \cdot \frac{3}{3} \cdot N + \frac{1}{1} \cdot \frac{3}{3} \cdot N\right)$ N = 20 = $\sqrt{10}$ N = 6 T $\frac{1}{f} = \frac{20}{3}$ $N = 20 = 3 \cdot \frac{1}{7}$ $I = \frac{3}{7}$ $I = \frac{1}{7} = \frac{1}{7}$ $I = \frac{1}{7} = \frac{1}{7}$ N = 1 not always

N = multiple of 1 (a) (7.2 TN + 7.2 TN) N=5 $f = \frac{3}{2\pi} = \frac{3}{2\pi} = \frac{3}{2\pi} = \frac{3}{2\pi}$ 271 fm c) Sim (3 m) 2KII N/ me existà! -SM (3 M+3 N)

d). $\times [n] = \sin \frac{\pi}{2} + \cos^{3} \frac{\pi}{2}$ N_{2}

Sin $\frac{11n}{2} = \sin\left(\frac{11n}{2} + \frac{11}{2}\right)$ with $N_1 = 4$

(1) 3 // C (2) (3 // Nz) with Nz = 8

N total = 8 = c.m.m. m. c (4,8)

= least common multiple

a)
$$F_{S} = 2.7 \mu q x = 8400 Hz$$

$$\frac{1}{2} = 0.25 \text{ os} \left(2 + \frac{3.6}{2000} + \frac{1}{2} + \frac$$

$$f_3 = \frac{4.2}{8} = \frac{4.7}{8} - 1 = \frac{-3.8}{8}$$

$$\sqrt{X[M]} = 0.25 - 1 + \cos(...) + 0.25 \cos(2\pi - 38.m)$$

$$X[M] = 0.25 \dots + cos(...) + 0.25 cos(211.-38.m)$$

c)
$$M \rightarrow t \cdot \mp_{S}$$
 $(\pm \rightarrow \pm \cdot \mp_{S})$

*\(\text{X}_{\text{L}}(t) = 0.25 \omega_{S} \left(\text{z.II.3600t} \right) + \(\text{D.25 \omega_{S}} \left(\text{z.II.} \left(\frac{-3\text{B}}{2} \right) \) 8000.t)

= \(\text{D.25 \omega_{S}} \left(\text{z.II.} \frac{-3\text{B}}{2} \right) \) 8000.t)