

Matemática 1

Área entre curvas

Seja S a região do plano delimitada pelas curvas y = f(x) e y = g(x) e as retas verticais x = a e x = b, onde f e g são funções contínuas tais que $f(x) \ge g(x)$ para todo $x \in [a, b]$. Vamos desenvolver aqui uma técnica que permite calcular a área de S.

Para simplificar a exposição vamos considerar f(x) = x e $g(x) = x^2$, definidas no intervalo [0,1]. O leitor não terá dificuldades em verificar que, para todo $x \in [0,1]$, vale $x \ge x^2$. Neste caso, a região S é denominada triângulo parabólico e está indica na figura abaixo.

A ideia para calcular a área consiste em fazer aproximações e, depois, tomar o limite nas aproximações. Uma aproximação A_n da área pode ser construida como se segue.

1. Dividimos o intervalo [0,1] em n subintervalos de igual comprimento $\Delta x = \frac{1}{n}$ considerando os pontos

$$0 = x_0 < x_1 < x_2 < \ldots < x_{n-1} < x_n = 1,$$

em que $x_k = k/n$, para cada k = 1, 2, ..., n.

2. Para cada k = 1, 2, ..., n consideramos o retângulo cuja base é o intervalo $[x_{k-1}, x_k]$ e a altura é dada

$$l_k = f(x_k) - g(x_k).$$

Como a base desse retângulo tem comprimento $x_k - x_{k-1} = \frac{1}{n} = \Delta x$, a sua área é exatamente $[f(x_k) - g(x_k)]\Delta x$.

3. Podemos agora aproximar a área S usando a soma das área de cada um desses retângulos. A aproximação tem a seguinte expressão:

$$A_n = [f(x_1) - g(x_1)]\Delta x + [f(x_2) - g(x_2)]\Delta x + \dots + [f(x_n) - g(x_n)]\Delta x$$
$$= \sum_{k=1}^n [f(x_k) - g(x_k)]\Delta x$$

As figuras abaixo ilustram essas aproximações nos casos em que $n=5,\,n=10$ e $n=20,\,$ respectivamente.

Intuitivamente, a aproximação melhora à medida que a quantidade de retângulos aumenta. Deste modo, a área da região S é dada pelo seguinte limite

$$\operatorname{área}(S) = \lim_{n \to +\infty} A_n = \lim_{n \to +\infty} \sum_{k=1}^n [f(x_k) - g(x_k)] \Delta x. \tag{1}$$

Vamos calcular a área acima lembrando que f(x) = x, $g(x) = x^2$ e que os pontos x_k foram escolhidos de modo que $x_k = k/n$, para cada k = 1, 2, ..., n. Logo, a aproximação S_n é dada por

$$A_n = \sum_{k=1}^n \left[f(x_k) - g(x_k) \right] \Delta x = \sum_{k=1}^n \left[\frac{k}{n} - \left(\frac{k}{n} \right)^2 \right] \frac{1}{n} = \frac{1}{n^2} \sum_{k=1}^n k - \frac{1}{n^3} \sum_{k=1}^n k^2.$$
 (2)

Vamos verificar que cada um dos termos acima possui limite quando $n \to +\infty$.

Para o primeiro, observe que

$$\frac{1}{n^2} \sum_{k=1}^{n} k = \frac{1}{n^2} (1 + 2 + \dots + n).$$

A maior dificuldade aqui é que o termo $1/n^2$ tende para zero quando $n \to \infty$, enquanto a soma $(1+2+\cdots+n)$ claramente vai para infinito. Assim, ao tentarmos fazer $n \to \infty$, temos uma indeterminação. Ela pode ser resolvida se lembrarmos que os termos da soma entre parênteses acima formam uma progressão aritmética de razão 1, de modo que

$$\frac{1}{n^2} \sum_{k=1}^n k = \frac{1}{n^2} \frac{n(n+1)}{2} = \frac{1}{2} \left(\frac{n+1}{n} \right).$$

Logo, podemos facilmente calcular

$$\lim_{n \to \infty} \frac{1}{n^2} \sum_{k=1}^{n} k = \lim_{n \to +\infty} \frac{1}{2} \left(\frac{n+1}{n} \right) = \frac{1}{2}.$$

O cálculo do limite que envolve a soma dos termos do tipo k^2 é um pouco mais delicada. De fato, neste caso os termos que vão sendo somados não formam uma PA, tampouco uma PG. Na verdade, pode-se mostrar que

$$\sum_{k=1}^{n} k^2 = (1^2 + 2^2 + \dots + n^2) = \frac{n(n+1)(2n+1)}{6}.$$

Logo,

$$\lim_{n \to \infty} \frac{1}{n^3} \sum_{k=1}^n k^2 = \lim_{n \to +\infty} \frac{1}{n^3} \frac{n(n+1)(2n+1)}{6} = \lim_{n \to +\infty} \left(\frac{n+1}{n}\right) \left(\frac{2n+1}{6n}\right) = \frac{1}{3}.$$

Substituindo-se os resultados dos limites acima em (2) pode-se concluir que a área do triângulo parabólico é

$$\operatorname{área}(S) = \lim_{n \to \infty} A_n = \lim_{n \to \infty} \left(\frac{1}{n^2} \sum_{k=1}^n k - \frac{1}{n^3} \sum_{k=1}^n k^2 \right) = \left(\frac{1}{2} - \frac{1}{3} \right) = \frac{1}{6}.$$

É importante observar que o procedimento acima vale para quaisquer funções f(x) e g(x) contínuas que satisfazem $f(x) \geq g(x)$ em [a,b]. Assim, denotando por S a região do plano compreendida abaixo do gráfico de f e acima do gráfico de g, temos que

$$\operatorname{área}(S) = \lim_{n \to \infty} \sum_{k=1}^{n} [f(x_k) - g(x_k)] \Delta x.$$

O procedimento de aproximação acima pode ser feito de uma maneira geral. De fato, dada uma função contínua $f:[a,b] \to \mathbb{R}$ vamos dividir o intervalo [a,b] em n subintervalos de mesmo tamanho $\Delta x = (b-a)/n$ que se interceptam somente (e possivelmente) nos extremos. Para isto, consideramos os pontos

$$a = x_0 < x_1 < x_2 < \ldots < x_{n-1} < x_n = b$$

em que $x_k = a + k\Delta x$, para cada k = 1, ..., n. Vamos escolher em cada subintervalo $[x_{k-1}, x_k]$ um ponto x_k^* arbitrário e considerar a soma de Riemman

$$S_n = \sum_{k=1}^n f(x_k^*) \Delta x.$$

Observe que a soma acima depende, de fato, não só do índice n mas também da escolha dos pontos x_k^* 's. Contudo, pode-se mostrar que, quando $n \to +\infty$, a soma acima converge para um número, qualquer que seja a escolha destes pontos. Vamos denotar este limite da seguinte forma

$$\int_{a}^{b} f(x)dx = \lim_{n \to +\infty} \sum_{k=1}^{n} f(x_{k}^{*}) \Delta x.$$

O número acima é chamado integral definida de f no intervalo [a, b].

Antes de terminar o texto algumas considerações se fazem necessárias.

- 1. A integral $\int_a^b f(x)dx$ é um número, não dependendo portanto de x. De fato, a letra usada no símbolo da integral não é importante, de modo que $\int_a^b f(x)dx = \int_a^b f(t)dt$.
- 2. Usando a definição de integral e os argumentos apresentados no início do texto concluímos que, se $f, g: [a,b] \to \mathbb{R}$ são funções contínuas tais que $f(x) \geq g(x)$ para todo $x \in [a,b]$, então a área da região S compreendida entre os gráficos das funções é exatamente

$$\operatorname{área}(S) = \int_{a}^{b} [f(x) - g(x)] dx.$$

Em particular, se $f \geq 0$ em [a,b], podemos tomar $g \equiv 0$ para concluir que a área abaixo do gráfico de f e acima do eixo $\mathcal{O}x$ é dada por $\int_a^b f(x)dx$.

3. O cálculo de uma integral usando a definição não é uma tarefa simples. De fato, é necessário obter fórmulas que nos permitam manipular o somatório que aparece na definição de modo a conseguir calcular o limite.

Tarefa

Nesta tarefa vamos calcular a área da região delimitada pelos gráficos das parábolas $f(x) = (4x - x^2)$ e $g(x) = x^2$, conforme ilustrado na figura abaixo.

A primeira dificuldade que encontramos é que, diferente do exemplo visto no texto sobre áreas, não sabemos aqui qual é o intervalo [a,b] que utilizaremos no cálculo, tampouco qual das curvas fica por cima da outra. Os passos seguintes resolvem essa questão:

- 1. Determine as soluções da equação f(x) = g(x), chamando de a o menor valor e b o maior.
- 2. Pelo Teorema do Valor Intermediário temos que, em todo o intervalo [a, b], uma das funções é sempre maior ou igual à outra. Determine qual delas é a maior, calculando cada uma delas em ponto $c \in (a, b)$ e comparando os dois valores.

Uma vez que os gráficos se tocam em somente dois pontos, a região S a ser considerada é aquela que fica abaixo da função que está por cima, e acima da que está por baixo, sendo considerado somente o que ocorre no intervalo [a, b].

- 3. Proceda como no texto para calcular o valor da aproximação de área A_n obtida quando dividimos o intervalo [a, b] em n subintervalos de tamando $\Delta x = (b a)/n$.
- 4. Usando as fórmulas apresentadas no texto calcule o limite $\lim_{n\to+\infty} A_n$ para obter o valor da área.
- 5. Escreva a área em termos de uma integral definida.