MAT.

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5:

G01N 21/64

(11) International Publication Number:

WO 91/07651

A1

(43) International Publication Date:

30 May 1991 (30.05.91)

(21) International Application Number:

PCT/US90/06482

(22) International Filing Date:

13 November 1990 (13.11.90)

(30) Priority data:

436,045

14 November 1989 (14.11.89) US

(71) Applicant: CORNELL RESEARCH FOUNDATION, INC. [US/US]; Suite 105, 20 Thornwood Drive, Ithaca, NY 14850 (US).

141 14030 (03).

(72) Inventors: DENK, Winfried; IBM Forschungslaboratorium, Saumerstrasse 4, CH-8803 Rüschlikon (CH). STRICKLER, James, P.; 210 Clark Hall, Ithaca, NY 14850 (US). WEBB, Watt, W.; 409 Highland Road, Ithaca, NY 14850 (US).

(74) Agents: COOPER, George, M. et al.; Jones, Tullar & Cooper, Suite 1002, 2001 Jefferson Davis Highway, Arlington, VA 22202 (US).

(81) Designated States: AT (European patent), BE (European patent), CH (European patent), DE (European patent), DK (European patent), ES (European patent), FR (European patent), GB (European patent), GR (European patent), IT (European patent), JP, LU (European patent), NL (European patent), SE (European patent).

Published

With international search report.

(54) Title: TWO-PHOTON LASER SCANNING MICROSCOPY

(57) Abstract

A laser scanning microscope (10) produces molecular excitation in a target material by simultaneous absorption of two photons to thereby provide intrinsic three-dimensional resolution. Fluorophores having single photon absorption in the short (ultraviolet or visible) wavelength range are excited by a stream of strongly focused subpicosecond pulses of laser light (14) of relatively long (red or infrared) wavelength range. The fluorophores absorb at about one half the laser wavelength to produce fluorescent images of living cells and other microscopic objects. The fluorescent emission from the fluorophores increases quadratically with the excitation intensity so that by strongly focusing the laser light (14), fluorescence as well as photobleaching are confined to the vicinity of the focal plane (18). This feature provides depth of field resolution comparable to that produced by confocal laser scanning microscopes, and in addition reduces photobleaching. Scanning of the laser beam (14), by a laser scanning microscope (10), allows construction of images by collecting two-photon excited fluorescence from each point in the scanned object while still satisfying the requirement for very high excitation intensity obtained by focusing the laser beam (14) and by pulse time compressing the beam. The focused pulses also provide three-dimensional spatially resolved photochemistry which is particularly useful in photolytic release of caged effector molecules.

nice and basic

but not reterant

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	ES	Spain	MG	Madagascar
AU	Australia	FI	Finland	ML	Mali
BB	Barbados	FR	France	MR	Mauritania
BE	Belgium	GA	Gabon	MW	Malawi
BF	Burkina Faso	GB	United Kingdom	NL	Netherlands
BG	Bulgaria	GR	Gruece	NO	Norway
BJ	Benin	HU	Hungary	PL	Poland
BR	Brazil	IT	fialy	RO	Romania
CA	Canada	JP	Japan	SD	Sudan
CF	Central African Republic	KP	Democratic People's Republic	SE	Sweden
CC	Congo		of Korea	SN	Senegal
CH	Switzerland	KR	Republic of Korea	SU	Soviet Union
CI	Côte d'Ivoire	LI	Liechtenstein	TD	Chad
CM	Cameroon	LK	Sri Lanka	TG	Togo
DB	Germany	LU	Luxembourg .	US	United States of America
DV	Danner	840	Manan		

PCT/US90/06482

1

TWO-PHOTON LASER SCANNING MICROSCOPY BACKGROUND OF THE INVENTION

This invention was made with Government support under Grant Nos. P41RR04224 awarded by the National 5 Institute of Health; NSF-BBS-8714069 awarded by the National Science Foundation, and NSF-DMB-8609084 awarded by the National Science Foundation. The Government has certain rights in the invention.

Although the principle of a flying spot scanner has 10 been known for many years, its application in microscopy has prospered only in the last few years as the necessary technology has been developed. Stable laser light sources and fast electronic image acquisition and storage technology are necessary ingredients for a scanning 15 microscope. While the imaging properties of a nonconfocal scanning microscope are very similar to those of conventional microscopes, a new domain is opened by confocal scanning microscopes. The resolution provided by such devices is only moderately increased, but the vastly 20 improved depth discrimination they provide allows the generation of three dimensional images without complicated deconvolution algorithms. The depth discrimination reduces background, and this, together with the use of a single high quality detector such as a photomultiplier, 25 allows quantitative studies with high spatial resolution.

The resolution along the optical axis of a confocal scanning microscope provides useful discrimination against background scattering or fluorescence arising above and 30 below the plane of focus in a transparent object. It is also very helpful in constructing three dimensional fluorescent images from a series of sections and for the use of quantitative fluorescence indicators or for mapping of fluorescent markers of cell surface receptors on non-35 planar surfaces. Such devices provide slightly better lateral resolution, much better depth field

2

discrimination, and orders of magnitude better background discrimination under ideal conditions than was available with prior devices, under ideal conditions.

Scanning can be carried out either by moving the 5 specimen stage under a stationary beam or by precisely synchronized optical scanning of both the illumination and the fluorescent response signals. Although the moving stage solution is preferable from an optical point of view, it puts limits on sample access and mounting, the 10 use of environmental chambers, and electrical recording with microelectrodes. Accordingly, the moving spot approach is often favored. Such a moving spot may be produced by the use of mirrors mounted on galvonometer scanners, although this limits the obtainable frame 15 frequency. The use of accousto-optical deflectors interferes with the confocal spatial filtering in fluorescence microscopy because of their strong dispersion. Although polygonal mirrors are faster than galvonometer scanners, one alone does not allow a vector 20 mode of operation.

A conventional arc light source can be used for many applications of a confocal scanning microscope which utilizes a rotating disc illuminator, but apparently inescapable intensity modulations limit its use for quantitative applications. In such devices, the image is formed either through a dual set of confocal pin holes in the disc, or, in recent versions, through the illumination pinholes themselves.

Confocal scanning microscopes in which a single

30 point illuminated by a laser is scanned across the moving
object work quite well at slow scanning speeds, and good
laser scanning micrographs have been obtained using
fluorescence markers that absorb and emit visible light.
However, confocal scanning images with fluorophores and
35 fluorescent chemical indicators that are excited by the
ultraviolet part of the spectrum have not been available,

3

largely because of the lack of suitable microscope lenses, which must be chromatically corrected and transparent for both absorption and emission wavelengths, but also because of the damage done to living cells by ultraviolet light. 5 Furthermore, the limitations of ultraviolet lasers have inhibited such usage. Fluorescence microscopy is further limited, in all of its manifestations, by the photobleaching of fluorophores in the target material, for the exciting light slowly 10 photobleaches the fluorophores while it is exciting fluorescence. Even in laser scanning confocal fluorescence microscopy, essentially the same photobleaching is incurred as happens in wide field microscopy, because the focused exciting light still 15 illuminates the full depth of the target specimen uniformly, in a time average, as it scans the plane of focus. Photobleaching is particularly troublesome in a three-dimensional image reconstruction because many twodimensional images are required for this purpose, and the 20 acquisition of each two-dimensional image produces photobleaching throughout the specimen.

SUMMARY OF THE INVENTION

The foregoing difficulties are overcome, in accordance with the present invention, by the use of two25 photon molecular excitation of fluorescence in laser scanning microscopy. Two-photon excitation is made possible, in accordance with the present invention, by the combination of (a) the very high, local, instantaneous intensity provided by the tight focusing available in a
30 laser scanning microscope, wherein the laser can be focused to a diffraction-limited waist of less than 1 micron in diameter, and (b) the temporal concentration of a pulsed laser. A high intensity, long wavelength, monochromatic light source which is focusable to the
35 diffraction limit such as a colliding-pulse, mode-locked dye laser, produces a stream of pulses, with each pulse

4

having a duration of about 100 femtoseconds (100x10⁻¹⁵ seconds) at a repetition rate of about 80 MHz. subpicosecond pulses are supplied to the microscope, for example by way of a dichroic mirror, and are directed 5 through the microscope optics to a specimen, or target material, located at the object plane of the microscope. Because of the high instantaneous power provided by the very short duration intense pulses focused to the diffraction limit, there is an appreciable probability 10 that a fluorophore (a fluorescent dye), contained in the target material, and normally excitable by a single high energy photon having a short wavelength, typically ultraviolet, will absorb two long wavelength photons from the laser source simultaneously. This absorption combines 15 the energy of the two photons in the fluorophore molecule, thereby raising the fluorophore to its excited state. When the fluorophore returns to its normal state, it emits light, and this light then passes back through the microscope optics to a suitable detector.

20 The two-photon excitation of fluorophores by highly intense, short pulses of light constitutes a general fluorescence technique for microscopy which provides improved background discrimination, reduces photobleaching of the fluorophores, and minimizes the photo damage to 25 living cell specimens. This is because the focused illumination produced in the microscope fills a converging cone as it passes into the specimen. All of the light which reaches the plane of focus at the apex of the converging cone, except the tiny fraction which is 30 absorbed in the fluorophore, then passes out the opposite side of the specimen through a diverging cone. Only in the region of the focal point on the object plane at the waist formed by the converging and diverging cones is the intensity sufficiently high to produce two photon 35 absorption in the specimen fluorophore, and this intensity dependence enables long wavelength light to provide the

effect of short wavelength excitation only in the small local volume of the specimen surrounding the focal point. This absorption is produced by means of a stream of fast, high intensity, femtosecond pulses of relatively long 5 wavelength which retains a moderate average illumination intensity of long wavelength light throughout the remainder of the specimen outside the region of the focal point. As a result, photobleaching of the fluorophore outside the plane of focus is virtually eliminated. 10 photon absorption of the long wavelength light is negligible, and outside the plane of focus the instantaneous intensity is too low for appreciable twophoton absorption and excitation, even though the time average illumination is in reality nearly uniform 15 throughout the depth of the specimen. This effect also significantly reduces the damage to living cells.

The two-photon excitation of the present invention allows accurate spatial discrimination and permits quantitation of fluorescence from small volumes whose locations are defined in three dimensions, and thus provides a depth of field resolution comparable to that produced in confocal laser scanning microscopes without the disadvantages of confocal microscopes previously described. This is especially important in cases where thicker layers of cells are to be studied. Furthermore, the two-photon excitation greatly reduces the background fluorescence.

The two-photon absorption technique discussed above can also be used to excite selected locations in a three30 dimensional optical memory device of the type described by Dimitri A. Parthenopoulos et al in an article entitled "Three-dimensional Optical Storage Memory", Science, Vol. 245, pages 843-845, August 25, 1989. In accordance with the present invention, extremely short, high intensity pulses of relatively long wavelength light from a single laser source, or from coaxial multiple sources, are

directed through a scanning microscope into a storage medium which may be a photochromic or a photolyzable fluorescent material such as crystals, composites, or chomophores embedded in a polymer matrix. The incident 5 light beam is highly focused onto any one of many layers in the matrix, and its intensity is modulated as it is scanned or stepped across the selected layer. excites selected locations in the matrix so that coded information represented by the beam is stored in a binary 10 format within the medium. The highly focused beam provides the spatial resolution required for accurate storage. The femtosecond, high intensity pulses induce two-photon absorption in the matrix material to write information into the material, which normally requires 15 excitation by light in the ultraviolet range. excitation level of the written points in the matrix can be detected, or read, by a "read" laser of long wavelength which will produce fluorescence in the previously written molecules.

20 BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing, and additional objects, features and advantages of the present invention will become apparent from the following detailed description of preferred embodiments thereof, taken in conjunction with the accompanying drawings, in which:

Fig. 1 is a diagrammatic illustration of a laser scanning confocal microscope utilized in accordance with the present invention;

Fig. 1A is an enlarged partial view of the region of 30 the object plane of the device of Fig. 1;

Fig. 2 is a synthesized stereo image pair showing blue fluorescence excited by two-photon absorption of red light;

Fig. 3 is a plot of the average intensity from an 35 area inside a fluorescent latex bead versus the applied average laser power;

7

Fig. 4 is a two-photon excited fluorescence image of chromosomes of live cultured pig kidney cells stained with a DNA stain;

Fig. 5 is an image of a latex bead, showing two5 photon photobleaching confined to the plane of focus; and
Fig. 6 is an image of a two-photon bleached pattern
inside a fluorescently stained latex bead.

DESCRIPTION OF PREFERRED EMBODIMENT

Turning now to a more detailed description of the 10 present invention, there is illustrated in Fig. 1 in diagrammatic form a conventional laser scanning microscope 10 which includes an objective lens 12 for focusing incident light 14 from a source 16 such as a laser onto an object plane 18. As illustrated in Fig. 1A, the object 15 plane may lie on, or in, a specimen or target material 20 which may be carried on a movable stage 22. illumination provided by incident light beam 14 fills a converging cone generally indicated at 24, the cone passing into the specimen 20 to reach the plane of focus 20 at object plane 18 and, except for the tiny fraction of light absorbed by the specimen, passing out through a diverging cone 25. The incident light forms a waist, or focal point, 26 on the object plane 18. The diameter of the focal point 26 is limited by diffraction in the 25 optical path, but preferably is less than 1 micron. known, by adjustment of the microscope optics, the vertical location of the focal point in the specimen 20 can be selected. Additionally, the stage 22 may be movable in a horizontal plane, as in a raster motion along 30 X and Y axes, to position the incident light at selected locations in the specimen in the horizontal plane, so that three-dimensional scanning of the specimen can be obtained. However, since mechanically scanned stages present difficulties, it is preferred to use a stationary 35 stage, and to scan the incident beam in the X-Y plane

8

optically, as by means of scanning mirrors in the optical path of the microscope.

The optical path from laser 16 to the object plane 18 includes a dichroic mirror 28 onto which the light from 5 the laser 16 is directed. As will be explained in greater detail below, in accordance with the present invention the output from the laser consists of short intense pulses of light having a relatively long wavelength, preferably in the visible red or near infrared spectral range. 10 mirror 28 deflects this long wavelength light downwardly to a mirror 30 which in turn directs the light to a pair of scanning mirrors 32 and 34 by way of curved mirrors 36 The mirrors 32 and 34 are rotatable about mutually perpendicular axes in order to move the incident 15 light 14 along perpendicular X and Y axes on the object plane so that the stationary specimen is scanned by the incident beam. The light from the scanning mirrors passes through eyepiece 40 and is focused through the objective lens 12 to the object plane 18.

20 Fluorescence produced in the specimen 20, indicated by dotted arrows 42 in Fig. 1A, travels back through the microscope 10, retracing the optical path of the incident beam 14, and thus passes through objective lens 12 and eyepiece 40, the scanning mirrors 34 and 32 and the curved 25 mirrors 38 and 36, and is reflected by mirror 30 back to the dichroic mirror 28. The light emitted by fluorescent material in the specimen is at a wavelength that is specific to the fluorophore contained in the specimen, and thus is a different wavelength than the incident light 14. 30 This fluorescent light is able to pass through the dichroic mirror 28, rather than being reflected back toward the laser 16, and follows the light path indicated generally at 44. The fluorescent light 42 thus passes through a barrier filter 46 and is reflected by flat 35 mirrors 48, 50 and 52 to a suitable detector such as a

photomultiplier tube 54. In accordance with the present

9

invention, a confocal laser scanning microscope is preferred, and accordingly such a microscope is illustrated in the drawings. However, it will be understood that other laser scanning microscopes may be used. In the confocal microscope 10, an adjustable confocal pin hole 56 is provided in the collection optics 44 to minimize background fluorescence excited in the converging and diverging cones 24 and 25 above and below the plane of focus. This confocal pinhole is useful, but is not necessary in the two photon fluorescence excitation of the present invention, since excitation is essentially limited to the region of the focal point 26 on the object plane.

With prior fluorescence microscopes the visible 15 light fluorescence photons 42 are produced by molecules that are excited by absorbing a single photon from incident light 14 that has higher energy; that is, a shorter wavelength, than the fluorescence 42 generated during relaxation of the molecule from its excited state. 20 The number of fluorescence photons released per molecule in such prior devices is ordinarily linearly proportional to the number of exciting photons absorbed. Because only a single photon need be absorbed in such devices, photolysis of molecules that absorb the exciting light 14 25 can occur all along the double cone beam 24 and 25 within the specimen 20, although this process is not necessarily linear with intensity. Because fluorescence is generated all along the double cone beam, the amount of fluorescence released from each plane in the specimen above, below and 30 within the plane of focus of the exciting light 14 tends to be the same, and three dimensional resolution is difficult to obtain. As a result, the high energy of the incident light throughout the specimen tends to damage the specimens and this is particularly undesirable when living 35 cells are being viewed.

In order to obtain three dimensional resolution in scanning microscopy and to reduce damage to the specimen in regions outside the focal point of the microscope, the present invention utilizes two-photon excitation of a 5 fluorophore which has a one-photon absorption peak at a wavelength which overlaps one-half that of the exciting To accomplish this, the laser 16 produces a very short pulsed laser beam of high instantaneous power and of a relatively long wavelength, for example in the visible 10 red or the infrared range. This light is directed to a specimen containing a fluorophore normally excited by a single photon in the short wavelength, for example ultraviolet, range so that two low energy (red) photons must combine their energy to provide the same excitation 15 of the specimen that would be provided by a single high energy (ultraviolet) photon. Both the excitation and hence the fluorescence rates in the specimen are proportional to the square of the intensity of the incident light. In the focused excitation laser beam 14, 20 the intensity of the long wavelength incident light becomes high enough to excite the fluorophores in the specimen only in the region of the focal point 26 of the microscope optics. This focal point may be adjustably positioned within the specimen, so that fluorescence 25 and/or photolysis of the specimen are produced only in a selected ellipsoidal volume around the focus. accordance with the invention, only long wavelength excitation light has to pass through the specimen, and this long wavelength light is focused to produce 30 sufficient intensity to excite fluorescence only in a very small region. This fluorescence is produced even if the fluorophore normally absorbs only in the ultraviolet. Since the focal point can be selectively positioned in the specimen, three-dimensional resolution is provided in both 35 scanning fluorescence microscopy and in photolysis,

including photolysis of photon-activatable reagents which can be released by photolysis.

In accordance with the present invention, the necessary excitation intensity is provided at the focal 5 point of the microscope 10 from a light source 16 which may be, for example, a colliding pulse, mode-locked dye laser generating pulses of light having a wavelength in the red region of the spectrum, for example about 630 nm, with the pulses having less than 100 fsec. duration at 10 about 80 MHz repetition rate. Other bright pulsed lasers may also be used to produce light at different relatively long wavelengths in the infrared or visible red region of the spectrum, for example, to generate the necessary excitation photon energies which will add up to the 15 appropriate absorption energy band required by the fluorophores in the specimen which normally would be excited by absorption of a single photon in the spectral region having wavelengths about one-half the wavelength of the incident light. Thus, for example, two photons in the 20 visible red region at 630 nm would combine to excite a fluorophore which normally absorbs light in the ultraviolet region at 315 nm, while two photons in the infrared region of, for example, 1070 nm, would excite a fluorophore which absorbs at 535 nm in the visible light 25 region.

In a modified form of the invention, the single wavelength light source 16 can be replaced by two different long wavelength laser sources so that the incident light beam 14 consists of two superimposed pulsed light beams of high instantaneous power and of different wavelengths. The wavelengths of the incident beam are selected to excite a fluorophore which is absorbent at a short wavelength which may be described as:

$$\frac{1}{\lambda_{abs}} = \frac{1}{\lambda_1} + \frac{1}{\lambda_2}$$

where λ_{abs} is the short wavelength of the absorber, and λ_i, λ_z are the laser incident beam wavelengths..

In two-photon excitation, with a typical two-photon cross section δ of:

$$\delta = 10^{-58} \text{ m}^4\text{s/photon} \qquad (Eq. 1)$$

and with the pulse parameters given above (100 fsec. pulses at a repetition rate of 80 MHz), and with the beam focused by a lens of numerical aperture A = 1.4, the

10 average incident laser power (p₀) of approximately 50 mW saturates the fluorescence output of a fluorophore at the limit of one absorbed photon per pulse per fluorophore. The number n_a of photons absorbed per fluorophore per pulse depends on the following relationship:

$$n_a \approx \frac{P_o^2 \delta}{T f^2} \left[\frac{A^2}{2 h c \lambda} \right]^2$$
 (Eq. 2)

where Tis the pulse duration;

f is the repetition rate;

P₀ is the average incident laser power;

& is the photon absorption cross section;

h is the Planck quantum of action;

c is the speed of light; and

A is the numerical aperture of the focusing lens.

25 The fluorescence emission could be increased, however, by increasing the pulse repetition frequency up to the inverse fluorescence lifetime, which typically is:

$$T_{f}^{-1} = 10^{9} \text{s}^{-1}$$
 (Eq. 3)

30

20

For comparison, one-photon fluorescence saturation occurs at incident powers of about 3 mW.

Fig. 2 illustrates the depth discrimination achieved 35 by the two photon technique of the present invention. A stereo pair of images 60 and 62 was generated from a stack of images of a cluster of fluorescent 9 micrometer diameter latex beads which are normally excited by ultraviolet light having a wavelength of about 365 nm. These images were obtained using a standard laser scanning 5 microscope, but with its continuous-wave argon-ion laser illuminator 16 replaced by a 25 mw colliding-pulse modelocked dyelaser producing output pulses at a wavelength of about 630 nm. Measurements made on the microscope 10 indicated that about 3 mw reached the object plane. An emission filter, passing wavelengths from 380 to 445 nm, was provided at the barrier filter 46, and the detector aperture 54 was opened to its limit in order to reduce the optical sectioning effect that would result from a small confocal aperture.

15 The intensity of the incident beam 14 from laser 16 was adjusted by placing neutral density filters in the excitation beam between laser 16 and the dichroic mirror 28 and the blue fluorescence produced by the individual latex beads was measured. As illustrated in Fig. 3 by the 20 graph 64, the detected intensity of fluorescence from the latex beads making up the specimen increased with the square of the excitation laser power, clearly indicating two-photon excitation in the beads. The excitation cross section of the beads, which were "fluoresbrite BB" beads 25 produced by Polysciences Corporation, was estimated to be 5x10⁻⁵⁸ M⁴ s/photon, accurate within a factor of 3, by taking into account the dye concentration in the beads, the optical throughput of the laser scanning microscope, the pulse duration, the repetition rate, the numerical 30 aperture and the incident power. This value was found to be comparable to previously measured values for similar dyes.

Fig. 4 is a scanned image of chromosomes in dividing cells (LLC-PK1; ATTC), using cellular DNA labeling with an ultraviolet excitable fluorescent stain (33258; Hoechst) the image acquisition time of 13 seconds was short

compared to the bleaching time of several minutes. Furthermore, no degradation was apparent in these live cells even after illumination by the scanning laser for several minutes.

Photobleaching during protracted scanning of a fluorescent bead occurred only in a slice about 2 micrometers thick around the focal plane, as demonstrated by the horizontal section 70 of reduced brightness bleached out of the bead 72 illustrated in Fig. 5. 10 bead was scanned for six minutes at a constant focal plane position. Similar localization of bleaching was observed in the fluorescently stained cell nuclei. localization illustrates a distinct advantage over the use of single-photon excitation, where the entire specimen is 15 bleached even when only a single plane is imaged. because for one-photon excitation, bleaching in both scanning and broad field microscopy depends on the time averaged excitation intensity, which does not vary along the axial, or Z-direction indicated in Fig. 1. 20 photon excitation, on the other hand, bleaching depends on the time averaged square of the intensity, which falls off strongly above and below the focal plane.

The dependence of the fluorescent signal on the square of the excitation intensity is responsible for 25 another advantage of two-photon excitation; that is, such excitation provides an optical sectioning effect through the specimen, even when using a detector, such as a CCD array, which views the whole field, without a pinhole being used as a spatial filter. This sectioning effect, 30 which is illustrated in Fig. 5, avoids the serious problems associated with chromatic aberration in the objective lens and some of the throughput losses in conventional confocal laser scanning microscopes.

Two-photon photolysis can also be used for fast and 35 localized release of biologically active chemicals such as caged Ca++, H+, nucleotides and neurotransmitters. For

example, when caged neurotransmitters are released by a scanning beam, the whole-cell transmembrane current so produced is usable as the contrast-generating mechanism to map the distribution of receptor activity for those 5 transmitters on the cell surface. The feasibility of twophoton cage photolysis was demonstrated, in accordance with the present invention, by irradiating DMNPE caged ATP (33mM) [from Molecular Probes, Eugene Oregon], by the colliding pulse mode locked dyelaser 16 focused to a beam 10 waist diameter at the object plane of about 10 micrometers. Photolysis yields of about 10-11 moles of ATP were measured using a luciferin bioluminescence assay from Calbiochem, San Diego, CA. Typically, about 10% of the caged ATP in an aliquot volume of about 107(µm)3 was 15 photolyzed in the illumination volume of about $10^4 (\mu m)^3$ during about 600 seconds.

Since two-photon excitation in accordance with the present invention provides access by visible light to excitation energies corresponding to single-ultraviolet-20 photon excitation, a whole new class of fluorophores and fluorescent indicators becomes accessible to threedimensionally resolved laser scanning microscopy. Such indicators may be Indo-1 for Ca⁺², Mag-Indo-1 for Mg⁺², ABF1 for Na and PBFI for K. Although two-photon cross 25 sections are not yet known for many of these compounds, and different selection rules apply to two-photon absorption, molecular asymmetry often allows both one photon and two-photon transitions into the same excited state. Visible fluorescence was observed from 10mM 30 solutions of Indo-1, FURA-2, Hoechst 33258, Hoechst 33342, DANSYL hydrazine [Molecular Probes], Stilbene 420 [Exciton Chem. Co., Dayton, OH], and several Coumarin dyes upon excitation by a CMP weakly focused to a 25 m diameter waist, and two-photon excited LSM 35 fluorescence images of microcrystals of DANSYL and Coumarin 440 were recorded.

16

Another application of the present invention may be in three-dimensional optical memory devices which rely on multi-photon processes in two intersecting beams for writing and reading operations. A single beam would be simpler than the two intersecting beams, and would permit maximal information packing density. The multi-photon processes would be localized to the high intensity region at the focus, as illustrated in Fig. 5 where the bleaching of microscopic patterns inside fluorescent beads

10 constitutes a high density write once memory which is readable about 10³ times with present fluorophores.

Thus there has been described and illustrated a practical two-photon laser scanning fluorescence microscope for biological and other applications. 15 two-photon excited fluorescence microscope provides inherent three-dimensional resolution with a depth of field comparable to that produced by confocal laser scanning microscopes. The use of a confocal pinhole in conjunction with this two-photon excitation further 20 improves resolution along all three axes. Background fluorescence can be eliminated by scaled subtraction of images which are recorded at different input powers. With the present technique, photobleaching, as well as photodynamic damage, can be confined to the vicinity of 25 the focal plane, thereby providing a considerable advantage over both confocal laser scanning microscopy and area detector imaging for the acquisition of data for three dimensional reconstruction, since ultraviolet damage to cells and fluorophores would be confined to the volume 30 from which information is actually collected. This also allows sharp localization of photochemical processes such as photolysis and photoactivation within the focal volume. The invention is principally described as utilizing two photons from a single laser, but it should be understood 35 that excitation of the target material can also be accomplished by two photons from two sources, as long as

the two different wavelengths add up to the excitation wavelength of the target material. Thus, for example, two different laser sources could be used, with their output beams being directed coaxially into the optical path of the microscope. Alternatively, two different wavelengths could be derived from a single source, as by means of a frequency doubler.

Although the present invention has been described in terms of preferred embodiments, it will be apparent to 10 those of skill in the art that variations and modifications may be made without departing from the true spirit and scope thereof as set forth in the accompanying claims.

WHAT IS CLAIMED IS:

1. A laser scanning microscope comprising: an object plane for receiving target material to be imaged, said material including fluorescent means responsive to excitation by light in the short wavelength spectral range to produce fluorescence characteristic of said target material;

lens means positioned adjacent said object plane;
a source of subpicosecond monochromatic coherent
light pulses in the long wavelength spectral range;
detector means;

mirror means directing said coherent light along an optical path including said lens means to impinge on said target material, said long wavelength light pulses providing sufficient instantaneous power to produce fluorescence in said target material, said fluorescence providing output light which travels on said optical path to said detector means.

- 2. The microscope of claim 1, wherein said light source produces pulses of high instantaneous power at a high repetition rate, whereby said target material absorbs energy from at least two incident long wavelength pulses without decay to emulate the energy supplied by short wavelength incident light.
- 3. The microscope of claim 2, wherein said long wavelength light from said source is focused by said lens means to a submicron diameter in said target material to produce sufficiently high intensity at said target to produce fluorescence in said target.
- 4. The microscope of claim 2, wherein said lens means focusses said long wavelength light into a conical configuration to produce converging and diverging light on opposite sides of said object plane, whereby said long wavelength light is concentrated at a focal point on said plane.

- 5. The microscope of claim 2, wherein said target material is a fluorophore having a single photon absorption peak in the ultraviolet wavelength spectral range and is capable of absorbing two photons in the red wavelength spectral range.
- 6. The microscope of claim 5, wherein said lens means focuses said long wavelength light at a focal point in said target material to produce a light intensity which excites fluorescence in a limited ellipsoidal volume around said focal point.
- 7. A laser scanning microscope, comprising an object plane for receiving a target material having an absorption peak responsive to single photon excitation by light of a predetermined wavelength;

lens means positioned adjacent said object plane;

a laser source of long wavelength, subpicosecond light pulses said light having a wavelength about twice said predetermined wavelength;

mirror means directing said light pulses along an optical path including said lens means to cause said pulses to impinge on said target material, said lens means focusing said light pulses on a focal point in said target material, the intensity of said pulses producing in the region of said focal point a two-photon excitation energy level equivalent to the single-photon excitation energy level which corresponds to said single photon absorption peak.

- 8. The microscope of claim 7, wherein said target material includes a fluorophore, having said absorption peak.
- 9. The microscope of claim 8, wherein said fluorophore responds to impinging light photons providing said predetermined intensity to produce fluorescence.
- 10. The microscope of claim 9, wherein said incident light pulses provide photons of light energy to said target material, and wherein the combined energy of

two photons of said incident light is required to produce fluorescence.

- 11. The microscope of claim 10, wherein said lens means is adjustable to select focal points at different depths within said target material.
- 12. The microscope of claim 11, further including scanning means to move said focal point with respect to said target material.
- 13. The microscope of claim 12, further including detector means responsive to light in said optical path for detecting said target fluorescence.
- 14. The microscope of claim 13, wherein said detector means is a photosensitive array which responds to said fluorescence.
- 15. The microscope of claim 7, wherein said target material is a biological cell responsive to said two-photon excitation energy level produced at said focal point by said light pulses.
- 16. The microscope of claim 15, wherein said target material responds to said light pulses at said focal point to produce localized release of biologically active chemicals.
- 17. The microscope of claim 7, wherein said target material is a photon-activatable reagent.
- 18. The microscope of claim 7, wherein sid target material is an optical memory responsive to two-photon energization from a single light source.

FIG. I

FIG. IA

FIG.2

FIG. 3

FIG.4

FIG.5

FIG.6

INTERNATIONAL SEARCH REPORT

				/US 90/06482		
I. CLAS	SIFICATIO	ON OF SUBJECT MATTER (II several class	ssification symbols apply, Indicate all) 3			
	<i>E</i>	tional Patent Classification (IPC) or to both N.				
		G 01 N 21/64		250/458.1		
II. FIELE	DS SEARCE					
Classifica	tion System	Minimum Docum	Chaefferties Symbols			
	lion System	1	Classification Symbols			
υ.:	s.	250/458.1, 461.1, 462.	461.1, 462.1, 423, 356/318, 365/106, 127			
			r than Minimum Documentation its are included in the Fields Searched •			
		ONSIDERED TO BE RELEVANT "				
Category *	Citati	ion of Document, 16 with Indication, where ap	propriate, of the relevant passages 12	Relevant to Claim No. 14		
x		, 4,877,965 (Dandliker et .10.89), See full documen		1		
Y	US, A, 4,827,125 (Goldstein) 02 May 1989 (02.05.89), 1,7 See column 2, lines 30-45.					
¥		US, A, 4,631,581 (Carlsson) 23 December 1986 1,7 (23.12.86), See full document.				
Y	Journal of Physics E:Scientific Intruments, vol. 8, 1975, Great Britain, Fritzler et al., "A spectro- 1,7 meter for Semiautomatic Two photon fluorescence spectroscopy", pp.580-532. See Abstract and Introduction.					
Y.	Medi Will lase fluo	Journal of the Association for the Advancement of Medical Instrumentation, vol. 6, No. 3, 1972, Williams & Wilkins Company, Slomba et al., "A laser flying spot scanner for use in automated fluorescence antibody instrumentation", pp230-234. See full document.				
1	1	•	;	; !		
	l					
1	ı :——		•			
"A" doci con: "E" earli filin; "L" doci	cument definir isidered to be lier document ig date cument which	of cited documents: 13 ng the general state of the art which is not a of particular relevance t but published on or after the international may throw doubts on priority claim(s) or a establish the publication date of another	or priority date and not in conflicted to understand the principle invention "X" document of particular relevant cannot be considered novel or involve an inventive step	"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step		
citat "O" docs othe	tion or other :ument referri er meens :ument publisi	special reason (as specified) ing to an oral disclosure, use, exhibition or thed prior to the international filing date but lority date claimed	"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family			
IV. CERT	TFICATION		——————————————————————————————————————			
Date of the	Actual Com	npletion of the International Search *	Date of Mailing of this International Se	erch Report s		
. 11	January	y 199I	1 1 FEB 1991 //			
Internation	al Searching	Authority s	Signature of Authorized Office to	7		
ISA/US			(duad/N/			

III. DOCU	MENTS CONSIDERED TO BE RELEVANT (CONTINUED FROM THE SECOND SHEE	n
Calegory *	Citation of Document, 16 with indication, where appropriate, of the relevant passages 17	Relevant to Claim No 18
Y	Preceedings of the 8th Imeico Congress of the International Measurement Confederation Conference: Measurement for Progress in Science and Technology, Ohsawa et al., "On the possibility of gas temperature using two-photon excitation", pp 523-528. See section 2, Two-Photon Absorption.	1,7
A	US, A, 4,405,237 (Manuccia et al.) 20 September 1983 (20.09.83), See full document.	1-18
A	US, A, 4,466,080 (Swainson et al.) 14 August 1984 (14.08.84), See full document.	1–18
A	US, A, 4,471,470 (Swainson et al.) 11 September 1984 (11.09.84), See full document.	1–18
ı		