The crosslinker exemplified herein is a polyfunctional aziridine liquid crosslinker, such as, for example, I-aziridine propanoic acid, 2-methi-, 2 ethyi-2-(3-(2-methyi-1-WHAE IS CloAIMEDOIS) methyl)-1,3-propandiyl ester marketed by Zeneca Resin, Wilminktor graft coated substrate, the substrate comprising polyethylene, and a graft coating covalently bonded therethy wherein said graft coating comprises a mon-polyethylene polymer of copolymer eactive carboxyl functionality, in both water-based and organic solvent 2 a The graft coated substrate of claim 1, wherein the graft coating comprises a polymer selected from the group consisting of a wrethane, an epoxy, a polysilicone, and by combinations or copolymers thereof and the like. For these embediments comprising epoxy more a 3-7 The graft coated substrate of claim 1 wherein the graft coating comprises agents materials selected from the group consisting of a pigment or colorant, a fire retarding agent, and combinations thereofly curing agents or hardened and including those comprises a linear translations thereofly curing agents or hardened and combinations thereofly curing agents or hardened and combinations thereofly curing agents or hardened and combinate comprises a linear polyethylene having a density ranging from about 0.930 g cm⁻³ to about 0.940 g cm⁻³.

5. The graft coated substrate of claim 1 that comprises a polyethylene having an average molecular weight ranging from about 100,000 amu to at least 6 x 10⁶ amu.

Parts A and B are mixed in a suitable proportion, stirred to a uniform solution, and the 6. The graft coated substrate of claim 1, wherein the substrate comprises a resulting grafting solution is applied to the PE substrate to be treated. The time necessary for polyethylene selected from the group consisting of low density polyethylene, a linear low the reaction to run to completion depends up the reaction temperature, the reagents employed density polyethylene, a medium density polyethylene, a high density polyethylene, a high density, high molecular weight polyethylene, a high density, ultra high molecular weight polyethylene, a high density, ultra high molecular weight polyethylene, an ultra-high density polyethylene, and combinations thereof.

7. The graft coated substrate of claim 1 that is formed into an article of manufacture selected from the group consisting of a pipe or tube, a curved or planar sheet, a beam, a board, a rod or shaft, a container for solids or fluids, and combinations thereof.

8. The graft coated substrate of claim 7 wherein the pipe is selected from the group consisting of straight pipe, bent pipe, a straight pipe joint, an elbow joint, an end-cap, a heat-shrinkable joint, and combinations thereof.

9. The graft coated substrate of claim 7 wherein the pipe is selected from the group consisting of single wall pipe, pipe with a plurality of walls nested one within the other, pipe with a single insulating layer between two concentric walls, and pipe with a plurality of concentric insulating layers.

10. The graft coated substrate of claim 1 that resists melting and burning for a time in period ranging from about 1 to about 18 minutes, when the article is tested by exposure to a of planar heated surface that is heated to a temperature ranging from about 800 to about 960°C,

20

10

15

25⁵

35

30

30

and wherein the heating panel is a rectangle that measures about 25 x 51 cm, and the graft coated substrate is positioned at a distance of about 12.5 cm from the heating panel.

- 11. The graft coated substrate of claim 1 that has a surface energy ranging from about 56 to about 80 dynes/cm².
- 12. The graft coated substrate of claim 1 that has a surface energy of at least 80 dynes/cm²
- 13. A process for modifying the surface of a solid polyethylene substrate, comprising covalently grafting a heat resistant coating onto said substrate by

 (a) applying to a solid polyethylene substrate, a liquid composition comprising effective amounts of a monomer, prepolymer, a graft initiator, a catalyst and a polymerization promoter, under conditions effective to promote grafting of the monomer or prepolymer to the solid polyethylene substrate to form a coating on the substate, and

 (b) curing the applied composition.
- 14. The process of claim 13 wherein the monomer or prepolymer is selected from the group consisting of a vinyl monomer, a urethane monomer, an epoxy monomer, a silicon-based monomer and combinations thereof.
- 15. The process of claim 13 wherein the graft initiator is a metal ion, present in an amount effective to initiate radical formation in the polyethylene substrate.
- 16. The process of claim 15 wherein the graft initiator is present in a concentration ranging from about 0.01 to about 1.0%, by weight.
- 17. The process of claim 15 wherein the graft initiator is selected from the group consisting of ions of iron, silver, cobalt, copper, cerium and combinations thereof.
- 18. The process of claim 13 wherein the catalyst is a peroxide present in the liquid composition in a concentration ranging from about 0.1 to about 5% by weight.
- 19. The process of claim 13 wherein the catalyst is an selected from the group consisting of benzoyl peroxide, methyl ethyl ketone peroxide, 1-butyl hydroperoxide and combinations thereof.
- 20. The process of claim 13 wherein the polymerization promoter is present in a concentration effective to react with, and crosslink, the monomer or prepolymer.
- 21. The process of claim 20 wherein the polymerization promoter is a polyfunctional aziridine liquid crosslinker.
- 22. The process of claim 13 wherein the substrate is a polyethylene having a density ranging from about 0.930 g cm⁻³ to about 0.940 g cm⁻³.

10

5

15

20

25

30

. :

5

10

10

15

15

20

20

25

5

Crosslicker CX-100

1.8

28

9011-1001

The process of claim 13 wherein the liquid composition is applied to the substrate
by a method selected from the group consisting of brushing, dipping, spraying and
uncombinations thereof morners, catalyst, graft initiator system and the other ingredients of
the compatition is self-curing.
The result 25s The process of claim 13 wherein the applied composition is cured by heating the
coated substrate at a temperature and for a duration sufficient to cure the applied coating.
26. The process of claim 25 wherein the applied composition is cured at a temperature ranging from about 60 to about 200 degrees F, for a time period ranging from
about 30 minutes to about 6 days. 27. The process of claim 13 wherein the liquid composition further comprises a uniform sofution for the grating process. compatible flame retardant agent.
Applica 28. The process of claim 27 wherein the flame retardant agent is a phosphorous-
based flame retardant ne samples and related parts with the grafting solution by
spraying 29. The process of claim 27 wherein the flame retardant agent is selected from the
group consisting of chlorinated phosphate esters, melamine derivatives, poligomeric phosphate
esters, bromoaryl ether/phosphate product, and phosphonates.
30. The process of claim 27 wherein the flame retardant is selected from the group
consisting of dimethyl methylphosphonate, diethyl-N, N-bis (2-hydroxyethyl) aminomethyl
phosphonate, oligomeric chloroalkyl phosphate/phosphonate, tri (1, 3-dichloroisopropyl)
phosphate, oligomeric phosphonate, tributyl phosphate, isopropylated triphenyl phosphate ester, and combinations thereof.
31. The process of claim 30 wherein the flame retardant agent is dimethyl
methylphosphonate, 1900 on the automobile of the a water-hazed tressance
32. The process of claim 13 wherein the liquid composition is first prepared without
the polymerization promoter, and the process further comprises the step of mixing the
polymerization promoter with the liquid composition prior to application of the liquid
composition to the substrate. 33. The process of claim 13 wherein the liquid composition further comprises a
polymer selected from the group consisting of a vinyl polymer, a urethane, an epoxy, a polysilicone and combinations thereof, wherein said polymer is suitable for grafting to the

(Witce OrganoSilicones Group OSi Specialies, Inc.)

34. A solid polyethylene substrate comprising a graft coating covalently bonded

30

substrate.

thereto, prepared by the process of claim 13.

36. A liquid composition for graft coating a solid polyethylene substrate with a coating that comprises at least one non-polyethylene polymer, comprising an effective amount of a monomer or prepolymer, a graft initiator, a catalyst and a polymerization promoter.

5

__