K. J. SOMAIYA COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS ENGINEERING ELECTRONIC CIRCUITS EEEE

Numerical 1: Simulate a half wave rectifier circuit with input amplitude = 180V peak, f = 50Hz, $R_1 = 80$ using LTspice select diode as 1N4148 use 10:1 stepdown Transformer plot the following using LTspice:

- a) Primary peak voltage
- b) Secondary peak voltage
- c) Output voltage across the resister
- d) Output voltage across diode
- e) Current flowing through the circuit

Also calculate the efficiency of the half wave rectifier circuit.

Figure 1: Circuit 1

Solution:

$$I_m = \frac{V_m}{R_1}$$

Since,
$$V_m = \frac{180}{10} = 18V$$

$$I_m = \frac{18}{80} = 0.225A$$

$$DC_{power} = P_{dc} = \frac{I_m^2}{\pi^2} \times R_1$$

$$DC_{power} = \frac{V_m^2}{\pi^2 \times R_1} = 0.41035W \dots (I_m = \frac{V_m}{R_1})$$

$$AC_{power} = P_{ac} = \frac{V_m^2}{4(R_1 + Rs)}$$

$$AC_{power} = \frac{18^2}{320.04} = 1.01237W$$

Efficiency
$$(\eta) = \frac{P_{dc}}{P_{ac}} \times 100$$

$$\eta = \frac{0.41035}{1.01237} \times 100$$

$$\therefore \eta = 40.5336\%$$

Peak inverse voltage(PIV) = $-V_m = -18V$

SIMULATED RESULTS:

Above circuit is simulated in LTspice. The results are presented below:

Figure 2: Circuit Schematic and simulated results

Figure 3: Plots in LTspice

Comparison of theoretical and simulated values:

Parameters	Theoretical Values	Simulated Values
Input peak voltage V_m	18V	17.046189V
Output peak voltage I_m	0.22A	0.2130086A
AC_{power}	1.01237W	1.0114W
DC_{power}	0.41035W	0.4099W
Efficiency	40.5336%	40.52798%
PIV rating	-18V	-17.99491V

Numerical 2: Simulate a full wave rectifier circuit with input amplitude = 150V peak, f = 50Hz, $R_1 = 60$ using LTspice select diode as 1N4148 use 10:1 stepdown Transformer plot the following using LTspice:

- a) Primary peak voltage
- b) Secondary peak voltage
- c) Output voltage across the resister
- d) Output voltage across diode
- e) Current flowing through the diode
- f) Current flowing through the circuit

Also find the efficiency of the full wave centre tapped rectifier circuit.

Figure 4: Circuit 2

Solution:

$$I_m = \frac{V_m}{R_1}$$

Since,
$$V_m = \frac{150}{10} = 15V$$

$$I_m = \frac{15}{60} = 0.25A$$

$$DC_{power} = P_{dc} = \frac{2I_m^2}{\pi^2} \times R_1$$

$$DC_{power} = \frac{0.25^2 \times 4 \times 60}{\pi^2} = 1.51981775W$$

$$AC_{power} = P_{ac} = \frac{I_m^2(R_1 + Rs)}{2}$$

$$P_{ac} = \frac{0.25^2(60 + 0.01)}{2} = 1.8753125W$$

Efficiency
$$(\eta) = \frac{P_{dc}}{P_{ac}} \times 100$$

 $\eta = \frac{1.51981775}{1.8753125} \times 100$
 $\therefore \eta = 81.04344\%$

Peak inverse voltage(PIV) =
$$-2 \times V_m = -2 \times 15 = -30V$$

SIMULATED RESULTS:

Above circuit is simulated in LTspice. The results are presented below:

Figure 5: Circuit Schematic and simulated results

Figure 6: Plots in LTspice(i)

Figure 7: Plots in LTspice(ii)

Comparison of theoretical and simulated values:

Parameters	Theoretical Values	Simulated Values
Input peak voltage V_m	15V	14.031047V
Output peak voltage I_m	0.25A	0.23385A
AC_{power}	1.8753125W	1.640848W
DC_{power}	1.519817W	1.329799W
Efficiency	81.04344%	81.04349%
PIV rating	-30V	-29.029322V
