PATENT SPECIFICATION

1 581 182

(21) Application No. 11833/77 (22) Filed 21 March 1977

(31) Convention Application No. 51/032337

(32) Filed 23 March 1976

(31) Convention Application No. 51/094129

(32) Filed 6 Aug. 1976

(31) Convention Application No. 51/138733

4 (32) Filed 17 Nov. 1976 in

(33) Japan (JP)

(44) Complete Specification published 10 Dec. 1980

(51) INT CL3 B23K 35/22

(52) Index at acceptance

B3R 32G

(54) COATED WELDING ELECTRODE CONTAINING CHROMIUM

We, KOBE STEEL LTD., a Body Corporate organized under the laws of Japan, of 3-18, 1-chome, Wakinohama-cho, Fukiai-ku, Kobe City, Japan, do hereby declare the invention, for which we pray that a patent may be granted to us, and the method by which it is to be performed, to be particularly described in and by the following statement:-

The present invention relates to a consumable arc welding electrode and more particularly to a coated welding electrode containing chromium in which the content of Na₂O and K₂O in the flux coating is limited to a low level, whereby the amounts of fumes generated at the welding step, especially the amounts of toxic

soluble Cr contained in such fumes, are suppressed or minimized.

Our Japanese Patent Publication No. 20477/63 discloses an attempt to generate non-toxic fumes in a welding operation which uses a low hydrogen welding electrode by reducing the content of K based on the relationship between CaF₂ and K.

U.S. Patent No. 2,983,632 discloses a coated welding electrode involving a flux which comprises titanium, limestone, iron powder and a binder. At least 1% of sodium silicate (Na₂SiO₃) based on the total flux was normally present.

A flux cored electrode (composite wire) is disclosed in our U.S. Patent No. 3.531,620 as the welding material in which the content of (Na₂O+K₂O) is lower than 1% based on the flux. In this flux cored electrode, however, since the flux is supported by a metal hoop, it is unnecessary to apply the flux around core by using a binder as in the case of a flux coated electrode.

The present invention provides a chromium-containing coated welding electrode in which the amounts of fumes generated at the welding step, especially of toxic soluble Cr contained in the fumes, are suppressed or minimized.

In accordance with the present invention there is provided a chromiumcontaining coated consumable arc welding electrode containing at least 0.5% of Cr based on the total weight of the welding electrode and comprising a metal core and a flux coating, wherein the flux coating contains Na₂O and/or K₂O but, to reduce the Na and K components in the flux coating the (Na₂O+K₂O) content in the flux coating is below 1% based on the total weight of the flux coating, and wherein a colloidal solution in which a disperse phase containing at least one of the oxides of Sí, Al, Zr, B, P, Ti, Mg, Ca, Th and Fe constitutes from 1% to 90% by weight of the total solution is used as a binder of the flux coating.

The chromium may be in at least one of the metal core and the flux coating. Reference is now made to the accompanying drawing which is a graph illustrating the relationship between the amount of (Na₂O+K₂O) contained in a flux and the amount of soluble Cr contained in fumes generated when welding is carried out by using a chromium-containing coated electrode.

Chromium-containing coated welding electrodes are now used for welding stainless steel materials of the Ni—Cr system and materials of the Cr—Mo system, and also as welding materials for hard facing.

Stainless steel materials are now used broadly in various industrial fields such as the petrochemical industry, the fiber industries and the atomic power industry

10

5

15

20

25

30

35

40

40

5

10

15

20

25

30

35

2	1,581,182	
5	because stainless steels have excellent corrosion resistance, oxidation resistance and heat resistant, and have good processability and good mechanical properties, and it is expected that demands for these stainless steel materials will increase in the future. Accordingly, it is also expected that demands for welding materials for such stainless steel materials will increase.	5
10	Low alloy, heat resistant steels and heat resistant alloys are used for high-temperature, high-pressure operations conducted mainly in thermoelectric power plants and petrochemical industries. It is therefore expected that demands for materials of the Cr—Mo system will increase in the future. Accordingly, it is also expected that welding materials for such materials of the Cr—Mo system will increase.	10
	Further, welding materials for hard facing are now used in various fields for construction work, mining and agriculture, and it is expected that their range of applications will be expanded henceforth.	1.5
15	Chromium-containing welding materials are thus used in various industrial fields and their excellent properties are fully utilized. Fumes are inevitably generated from welding materials at the welding step, and, as a result of analytical experiments made by us, we have found that so-called soluble Cr which is soluble in	15
20	percent in fumes generated from chromium-containing welding materials. Various contrivances for removing fumes are now made at welding spots so as to improve contrivances for removing fumes are now made at welding spots so as to improve the marking environment has been	20
25	significantly improved by these means for removing fumes from welding spots, it is preferred to prevent beforehand the generation of toxic substances such as soluble Cr. Therefore, we have sought to clarify why and how soluble Cr is contained in	25
30	fumes from chromium-containing welding materials, and, as a result of the X ray diffraction analysis of such fumes, we have confirmed that compounds of Cr with Na and K are contained in these fumes. Thus, we have found that, when Na or K is co-present with Cr in a welding material, soluble Cr is generated in the fumes. For confirmation, the content of soluble Cr in fumes generated when welding was confirmation, the content of soluble Cr in fumes generated when welding was confirmation, the content of soluble Cr in fumes generated when welding was	30
35	out by using an electrode formed by coating the above core with a coating including water glass [(Na ₂ O+K ₂ O) content=13%, SiO ₂ content being 13%. It was found that the soluble Cr content was below 0.01% in the former case while the	35
40	Based on these findings, we have succeeded in reducing the soluble Cr content in the fumes to a minimum level by reducing the contents of Na and K as much as possible in the flux of a flux-coated, chromium-containing welding electrode. Water glass containing at least one of Na ₂ O and K ₂ O is ordinarily used as a binder for a coating flux of a coated welding electrode, and slag-forming agents containing Na ₂ O and K ₂ O such as feldspar and mica are often used and also	40
45	Carbonates of Na and K are used. As pointed out hereinbefore, the presence of Na and K components in the flux As pointed out hereinbefore, the presence of Na and K component is	45
50	effective as an arc stabilizer or as one component of a binder, it is preferred that Na and K components should be present in small amounts. Therefore, it is necessary to clarify the relation between the content of Na and K components and the amount of soluble Cr generated. Accordingly, we have made the following experiments.	50
50	Experiment 1	
55	Various chromium-containing cores having a diameter of 5.0 mm and a length of 400 mm were coated with a flux comprising limestone, rutile, fluorite, metallic Cr and feldspar by using a binder (SiO ₂ content=20%, Na ₂ O content ≤0.35%) so that the diameter of the resulting coated electrode was 7.5 mm. Chromium-containing test electrodes were prepared. The Cr contents in the core and flux of each electrode and the Na ₂ O and K ₂ O contents in the flux (inclusive of the binder) are the resulting that the law Ry using each welding electrode, welding was	55
60	carried out under the conditions indicated below, and fumes were collected and analysed according to the methods described below.	60

(1) Welding conditions: 170 A, 22—27 V, AC.

3			1,	,581,182			3
	(2) Base metal: 19 mm (thickness)×75 mm (width)×400 mm (length) (mild steel buttered with the test electrode).						
5	(3) Method of collecting fumes: Welding was carried out in an iron box open in its lower portion and having a high volume air sampler in the upper portion, and generated fumes were sucked in by the high volume air sampler and collected on a filter paper. After completion of the welding, the filter paper was taken out and fumes were gathered and analysed. The filter paper used was as follows: Material: glass fiber Shape: 8 inches×12 inches						5
	Weigl	ht: about 40 sis method:					
15	Solub	le Cr in fur sorption me	mes: atomic abs	sorption method	Na ₂ O and K ₂ O	in the flux:	15
	(5) Result The re		ned were as show	vn in Table 1 and	the accompanyir	ig drawing.	
			т	ABLE 1			
20		0. 1	Cr Content	Cr Content (wt.%) in	(Na ₂ O+K ₂ O) Content	Soluble Cr Content	20
	System 5-Cr	Sample No. 1	(wt.%) in Core 5.5	coated Electrode 5	(wt.%) in Flux 0.29	(wt.%) in Fumes 0.07	
2 5	5-Cr 5-Cr 5-Cr 5-Cr	2 3 4 5	5.5 5.5 5.5 5.5	5 5 5 5	0.55 1.13 1.81 4.84	1.11 1.39 1.40 1.60	25
30	15-Cr 15-Cr 15-Cr 15-Cr	1 2 3 4	19.0 19.0 19.0 19.0	15 15 15 15	0.31 0.63 1.16 2.33	0.25 2.74 2.97 3.41	30
35	15-Cr 25-Cr 25-Cr 25-Cr	5 1 2 3	19.0 26.5 26.5	15 25 25	4.73 0.22 0.50	3.55 0.99 4.08	
<i>J J</i>	25-Cr 25-Cr 40-Cr	4 5 1	26.5 26.5 26.5 26.5	25 25 25 40	0.86 1.20 4.75 0.21	4.43 4.49 5.25 1.20	35
40	40-Cr 40-Cr 40-Cr 40-Cr	2 3 4 5	26.5 26.5 26.5 26.5	40 40 40 40	0.58 0.89 1.73 3.10	5.10 5.48 5.75 6.74	40
15	content of	$(Na_{2}O+K_{3}O)$	in the coating	flux inclusive of	ntent is a value of the binder. This o	of the total	4
45	adjusted b	y controllir	ng the amount o	of feldspar adde	d.		45
50	flux as in content ≤	dicated in 7 0.35%) to p	iameter of 4.0 m Table 2 below t repare coated el	by using a binded ectrodes for stai	of 350 mm were co er (SiO ₂ content= nless steel D308 a	20%, Na ₂ O	. •
J0	(1) Weldi	ng conditio A, 20—25 V		rried out as des	cribed below.		50
55	(2) Base i 19 mi steel with	m (thicknes:	s)×75 mm (width	n)×400 mm (leng	th) (formed by bu	ttering mild	55
		•					

(3) Methods of collecting and analysing fumes: As described in Experiment 1.

(4) Results: The results	s obtained	were as sho	wn in Table 3	and in the d	rawing.		
5	,			ABLE 2				5
	Elect Composition (parts by weight) Binde						Binder	^
Sample No. 1 2 3 4 5	limestone 20 20 20 20 20 20	fluorite 5 5 5 5 5 5	rutile 48 48 48 48 48	metallic Cr 7.5 7.7 8.2 9 10.5	electro- lytic Mn 5 5 5 5 5	mica 3 	(cc per 10 g of solven 15.5 16.0 18.3 18.4 17.0	o t)
			Т	ABLE 3				15
15			Content	(Na ₂ O+K ₂ O) C	Solub Con- Con			15
20	Sam No 1 2 3 4	ple Entir o. E	vt.%) in re Welding lectrode 16 16	tent (wt.%); Flux 0.28 0.58 1.18 2.00	in (wt.) Fur 0.9 2. 3.	nes		20
	5	;	16 16	3.08	3.	91		
25	fumes decrea	a ₂ O+K ₂ O) ses fairly sl	harply. Who	from the accos below 1%, the en the content the amount of O) but this dec	of (Na ₂ O+K	O) is above decreases wi	1%, ith a	25
30	decrease in the content of (Na ₂ O+N ₂ O), but is soluble Cr-reducing effect is more conspicuous in a lower Cr system, but is soluble Cr-reducing effect is more conspicuous in a lower Cr system to the 40-Cr commonly attained in all the systems ranging from the 5-Cr system to the 40-Cr commonly attained in all the systems ranging from the 5-Cr system to the 40-Cr commonly attained in all the systems being exemplified hereinbefore. Accordingly, it will readily system. Such systems being exemplified hereinbefore hereinbefo							30
35	Cr content in the tumes can be remarked by the content of the curve that, even if the content of (Na_2O+K_2O) is below 1% , the gradient of each curve that, even if the content of (Na_2O+K_2O) value of 0.75%, changes sharply at a point corresponding to an (Na_2O+K_2O) should be reduced below Accordingly, we prefer that the content of (Na_2O+K_2O) should be reduced below							35
40	curve is sub (Na ₂ O+K ₂ O) drastically re	ostantially Noticed in the stantial of the sta	below 0.5% most prefe	the content of () near. Thus, it i f, the amount of rred that the co ro. Thus, water se the binder, an	soluble Cr is ntent of (Na ₂	o the fumes of the	an be uld be duced	40
45	(Na ₂ O+K ₂ O Na ₂ O and K As state solution con	content in CO is not a ded previous a de	ay be used a dded but s ly, the binded isperse pha-	ilica sand is use or for the coated se containing at	ed as the SiO welding elec- least one of t	2 source. etrode is a co the oxides of water or an o	lloidal Si, Al, organic	45
50	solution comprising a disperse phase containing at least one of the state of the st						51	
55	On the oth weight of t readily take strain is re	er nand, if he binder, es place an adily cause	the fluidity d the coatir d in the co	or stability of the group of the dispersion of the dispersion of the dry	the binder is he binder is ing step. The	degraded, greduced. Mo kind of dis- pidal solution	elation reover, persion n in the	5
	present inv	ention is r chosen and	ioi particui	arly critical, bu	t water or a	n organic so	ivent is	6
60	optionally	CHOSCH AND						

5	In welding electrodes used for the above-mentioned experiments, since compounds having an arc-stabilizing activity, such as carbonates, fluorides and titanium oxide were included, even if the amounts of Na ₂ O and K ₂ O were very small, the arc did not become unstable. In view of the foregoing, it is seen that, even in the case where Na ₂ O and K ₂ O have to be incorporated as arc stabilizers in the Cr-containing welding electrode of the present invention, their content must be reduced below 1% and that, in the case where other arc-stabilizing substances can	5
10	be used, the content of Na ₂ O and K ₂ O in the flux coating is reduced to below 1%, preferably below 0.5%, and more preferably to values approaching zero. As will be apparent from the foregoing illustration, according to the present invention, by controlling the co-presence of Cr and Na and K components under certain conditions, the amount of soluble Cr generated in fumes can be drastically	10
15	reduced. Therefore, even at a welding spot where the provision of a fume sucking treatment apparatus is not feasible or allowed, the problem of operational safety can be solved. It is to be noted that, when such fume sucking apparatus is used, the disposal of the collected fumes normally causes difficulties. Therefore, the present invention makes a significant contribution to the improvement of the working environment.	15
20	WHAT WE CLAIM IS:— 1. A chromium-containing coated consumable are welding electrode containing at least 0.5% of Cr based on the total weight of the welding electrode and comprising a metal core and a flux coating, wherein the flux coating contains	20
25	Na ₂ O and/or K ₂ O but to reduce the content of Na and K components in the flux coating the (Na ₂ O+K ₂ O) content in the flux coating is below 1% based on the total weight of the flux coating, and wherein a colloidal solution in which a disperse phase containing at least one of the oxides of Si, Al, Zr, B, P, Ti, Mg, Ca, Th and Fe constitutes from 1% to 90% by weight of the total solution is used as a binder of the	25
30	flux coating. 2. A chromium-containing coated welding electrode as set forth in Claim 1, wherein the (Na ₂ O+K ₂ O) content in the flux coating is below 0.75% based on the total weight of the flux coating. 3. A chromium-containing coated welding electrode as set forth in Claim 2,	30
35	wherein the (Na ₂ O+K ₂ O) content in the flux coating is below 0.5% based on the total weight of the flux coating. 4. A chromium-containing coated welding electrode as claimed in Claim 1 and substantially as herein described with reference to the accompanying drawing and/or either of the specific examples.	35

ELKINGTON AND FIFE, Chartered Patent Agents, High Holborn House, 52/54 High Holborn, London, WC1V 6SH, Agents for the Applicants.

Printed for Her Majesty's Stationery Office, by the Courier Press, Leamington Spa, 1980 Published by The Patent Office, 25 Southampton Buildings, London, WC2A 1AY, from which copies may be obtained.

1581182

COMPLETE SPECIFICATION

1 SHEET

This drawing is a reproduction of the Original on a reduced scale

AMOUNT OF (Na2O+ K2O) CONTAINED IN A FLUX