

GP quick overview

- Developed: USA in the 1990's
- Early names: J. Koza
- Typically applied to:
 - machine learning tasks (prediction, classification...)
- Attributed features:
 - competes with neural nets and alike
 - needs huge populations (thousands)
- slow
- Special:
 - non-linear chromosomes: trees, graphs
 - mutation possible but not necessary (disputed!)

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing Genetic Programming

GP technical summary tableau

Representation	Tree structures		
Recombination	Exchange of subtrees		
Mutation	Random change in trees		
Parent selection	Fitness proportional		
Survivor selection	Generational replacement		

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing Genetic Programming

Introductory example: credit scoring

- Bank wants to distinguish good from bad loan applicants
- Model needed that matches historical data

ID	No of children	Salary	Marital status	OK?
ID-1	2	45000	Married	0
ID-2	0	30000	Single	1
ID-3	1	40000	Divorced	1

Introductory example: credit scoring

• A possible model:

IF (NOC = 2) AND (S > 80000) THEN good ELSE bad

• In general:

IF formula THEN good ELSE bad

- Only unknown is the right formula, henceOur search space (phenotypes) is the set of formulas
- Natural fitness of a formula: percentage of well classified cases of the model it stands for
- Natural representation of formulas (genotypes) is: parse trees

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing Genetic Programming

Introductory example: credit scoring

IF (NOC = 2) AND (S > 80000) THEN good ELSE bad can be represented by the following tree

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing Genetic Programming

Tree based representation

- Trees are a universal form, e.g. consider
- Arithmetic formula $2 \cdot \pi + \left((x+3) \frac{y}{5+1} \right)$
- Logical formula $(x \land true) \rightarrow ((x \lor y) \lor (z \leftrightarrow (x \land y)))$
- $\begin{array}{c} \text{ i = 1;} \\ \text{while (i < 20)} \\ \\ \text{i = i + 1} \\ \\ \end{array}$

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing Genetic Programming

Tree based representation

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing Genetic Programming

Tree based representation

Tree based representation

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing Genetic Programming A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing Genetic Programming

Tree based representation

- In GA, ES, EP chromosomes are linear structures (bit strings, integer string, realvalued vectors, permutations)
- Tree shaped chromosomes are non-linear structures
- In GA, ES, EP the size of the chromosomes is fixed
- Trees in GP may vary in depth and width

Tree based representation

- · Symbolic expressions can be defined by
 - Terminal set T
 - Function set F (with the arities of function symbols)
- Adopting the following general recursive definition:
 - 1. Every $t \in T$ is a correct expression
 - 2. $f(e_1,...,e_n)$ is a correct expression if $f\in F$, arity(f)=n and $e_1,...,e_n$ are correct expressions
 - 3. There are no other forms of correct expressions
- In general, expressions in GP are not typed (closure property: any f ∈ F can take any g ∈ F as argument)

Offspring creation scheme

Compare

- GA scheme using crossover AND mutation sequentially (be it probabilistically)
- GP scheme using crossover OR mutation (chosen probabilistically)

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing Genetic Programming

Mutation cont'd

- Mutation has two parameters:
 - Probability p_m to choose mutation vs. recombination
 - Probability to chose an internal point as the root of the subtree to be replaced
- Remarkably p_m is advised to be 0 (Koza'92) or very small, like 0.05 (Banzhaf et al. '98)
- The size of the child can exceed the size of the parent

Recombination

- Most common recombination: exchange two randomly chosen subtrees among the parents
- Recombination has two parameters:
 - Probability p_c to choose recombination vs. mutation
 - Probability to chose an internal point within each parent as crossover point
- The size of offspring can exceed that of the parents

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing Genetic Programming

Selection

- · Parent selection typically fitness proportionate
- Over-selection in very large populations
 - rank population by fitness and divide it into two groups:
 - group 1: best x% of population, group 2 other (100-x)%
 - 80% of selection operations chooses from group 1, 20% from group 2
 - for pop. size = 1000, 2000, 4000, 8000 x = 32%, 16%, 8%, 4%
 - motivation: to increase efficiency, %'s come from rule of thumb
- · Survivor selection:
 - Typical: generational scheme (thus none)
 - Recently steady-state (keep part of parent pool) is becoming popular for its elitism

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing Genetic Programming

Initialisation

- Maximum initial depth of trees D_{max} is set
- Full method (each branch has depth = D_{max}):
 - nodes at depth d < D_{max} randomly chosen from function set F
 - nodes at depth d = D_{max} randomly chosen from terminal set T
- $\bullet \ \ \text{Grow method (each branch has depth} \leq D_{\text{max}}) :$
 - nodes at depth d < D_{max} randomly chosen from F \cup T
 - nodes at depth d = D_{max} randomly chosen from T
- Common GP initialisation: ramped half-and-half, where grow & full method each deliver half of initial population

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing Genetic Programming

Problems involving "physical" environments

- Trees for data fitting vs. trees (programs) that are "really" executable
- Execution can change the environment → the calculation of fitness
- Example: robot controller
- Fitness calculations mostly by simulation, ranging from expensive to extremely expensive (in time)
- But evolved controllers are often to very good

Bloat

- Bloat = "survival of the fattest", i.e., the tree sizes in the population are increasing over time
- Ongoing research and debate about the reasons
- Needs countermeasures, e.g.
 - Prohibiting variation operators that would deliver "too big" children
 - Parsimony pressure: penalty for being oversized

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing Genetic Programming

Example application: symbolic regression

- Given some points in \mathbb{R}^2 , (x_1, y_1) , ..., (x_n, y_n)
- Find function f(x) s.t. $\forall i = 1, ..., n : f(x_i) = y_i$
- Possible GP solution:
 - Representation by $F = \{+, -, /, sin, cos\}, T = \mathbf{R} \cup \{x\}$
 - Fitness is the error $err(f) = \sum_{i=1}^{n} (f(x_i) y_i)^2$
 - All operators standard
 - pop.size = 1000, ramped half-half initialisation
 - Termination: n "hits" or 50000 fitness evaluations reached (where "hit" is if $| f(x_i) y_i | < 0.0001$)

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing Genetic Programming

Discussion

Is GP:

The art of evolving computer programs?

Means to automated programming of computers?

GA with another representation?