South-Eastern Finland University of Applied Sciences Jari Kortelaine

Matrices and Graphs

Exercises 2

Problems

- 1. Let $\mathbf{x} \in \mathbb{R}^4$ such that $\mathbf{x} = (-2, 5, 3, 6)$. Calculate $\|\mathbf{x}\|$, $\hat{\mathbf{x}}$ and $\mathbf{x} \cdot 3\mathbf{x}$.
- 2. Let *V* be any inner product space over \mathbb{R} and $\mathbf{u}, \mathbf{v} \in V$. We determine vectors $\mathbf{a} = 7\mathbf{u} 3\mathbf{v}$ and $\mathbf{b} = 2\mathbf{u} + 3\mathbf{v}$, thus, \mathbf{a} and \mathbf{b} are linear combinations of \mathbf{u} and \mathbf{v} .
 - a) If the angle α between **u** and **v** is $\alpha = \frac{2\pi}{3}$ and $\|\mathbf{u}\| = 3$ and $\|\mathbf{v}\| = 4$ then calculate $\mathbf{a} \cdot \mathbf{b}$.
 - b) If **u** and **v** are *orthogonal*, i.e. perpendicular, and $\|\mathbf{u}\| = \|\mathbf{v}\| = 1$ then calculate $\mathbf{a} \cdot \mathbf{b}$.

Recall that in an inner product space V we have for any $\mathbf{u}, \mathbf{v} \in V$, $\mathbf{u} \cdot \mathbf{v} = \|\mathbf{u}\| \|\mathbf{v}\| \cos(\alpha)$, where α is the angle between \mathbf{u} and \mathbf{v} .

- 3. Calculate $\hat{\mathbf{a}}$, when \mathbf{a} is given in exercise 2 a).
- 4. Let P(-1,3,4) and Q(5,2,8) be two *points* on the 3D real space. If \overline{P} and \overline{Q} are the corresponding vectors then determine the angle between \overline{P} and \overline{Q} and the distance $d(\overline{P},\overline{Q})$
- 5. Consider an object living in the 3D real space. Its current position is P(2,5,3). The object is heading towards the point Q(4,10,5), and moves to that direction exactly 3 length units. Calculate the position of this object after movement. Hint! Calculate $\hat{\mathbf{x}}$, where $\mathbf{x} = \overline{Q} \overline{P}$.