Matemática Discreta l Clase 6 - Conteo

FAMAF / UNC

4 de abril de 2023

Ejemplo

¿Cuántos números de cuatro dígitos pueden formarse con los dígitos 1,2,3,4,5,6?

Ejemplo

¿Cuántos números de cuatro dígitos pueden formarse con los dígitos 1,2,3,4,5,6?

Por la proposición de la clase pasada es claro que hay 6⁴ números posibles.

Ejemplo

¿Cuántos números de cuatro dígitos pueden formarse con los dígitos 1,2,3,4,5,6?

Por la proposición de la clase pasada es claro que hay 6^4 números posibles.

Ejemplo

¿Cuántos números de 5 dígitos y capicúas pueden formarse con los dígitos 1, 2, 3, 4, 5, 6, 7, 8?

Ejemplo

¿Cuántos números de cuatro dígitos pueden formarse con los dígitos 1, 2, 3, 4, 5, 6?

Por la proposición de la clase pasada es claro que hay 6⁴ números posibles.

Ejemplo

¿Cuántos números de 5 dígitos y capicúas pueden formarse con los dígitos 1, 2, 3, 4, 5, 6, 7, 8?

Un número capicúa de cinco dígitos es de la forma

XYZYX

Se reduce a ver cuántos números de tres dígitos pueden formarse con aquéllos dígitos.

Ejemplo

¿Cuántos números de cuatro dígitos pueden formarse con los dígitos 1, 2, 3, 4, 5, 6?

Por la proposición de la clase pasada es claro que hay 6⁴ números posibles.

Ejemplo

¿Cuántos números de 5 dígitos y capicúas pueden formarse con los dígitos 1, 2, 3, 4, 5, 6, 7, 8?

Un número capicúa de cinco dígitos es de la forma

XYZYX

Se reduce a ver cuántos números de tres dígitos pueden formarse con aquéllos dígitos. Exactamente 83.

Sea X un conjunto de n elementos. ¿Cuántos subconjuntos tiene este conjunto?

Por ejemplo, si $X = \{a, b, c\}$ los subconjuntos de X son:

Sea X un conjunto de n elementos. ¿Cuántos subconjuntos tiene este conjunto?

Por ejemplo, si $X = \{a, b, c\}$ los subconjuntos de X son:

$$\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}.$$

Es decir, si X es un conjunto de 3 elementos, entonces tiene 8 subconjuntos.

Clase 6 - Conteo

Sea X un conjunto de n elementos. ¿Cuántos subconjuntos tiene este conjunto?

Por ejemplo, si $X = \{a, b, c\}$ los subconjuntos de X son:

$$\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}.$$

Es decir, si X es un conjunto de 3 elementos, entonces tiene 8 subconjuntos.

Sea
$$A \subseteq X \rightarrow a \in A$$
 o $a \notin A$ (2 posibilidades)

$$\rightarrow$$
 $b \in A$ o $b \notin A$ (2 posibilidades)

$$\rightarrow$$
 $c \in A \circ c \notin A$ (2 posibilidades)

Luego hay

$$2 \cdot 2 \cdot 2 = 2^3 = 8$$

posibles subconjuntos de X.

Razonando de manera análoga obtenemos nuestro primer resultado "no sencillo" de conteo.

Proposición

La cantidad de subconjuntos de un conjunto de n elementos es 2^n .

Razonando de manera análoga obtenemos nuestro primer resultado "no sencillo" de conteo.

Proposición

La cantidad de subconjuntos de un conjunto de n elementos es 2^n .

Dado X un conjunto, denotamos $\mathcal{P}(X)$, partes de X, al conjunto formado por todos los subconjuntos de X, por ejemplo

$$\mathcal{P}(\{1,2\}) = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}.$$

Si X es un conjunto finito la proposición anterior nos dice que

$$|P(X)| = 2^{|X|}$$

4 / 18

Clase 6 - Conteo 04/04/2023

Sea X un conjunto finito de n elementos.

¿De cuántas formas podemos elegir m de X en forma ordenada?

Sea X un conjunto finito de n elementos.

¿De cuántas formas podemos elegir m de X en forma ordenada?

Ejemplo

Elegir en forma ordenada y sin repetición 2 elementos del conjunto $X = \{a, b, c\},$

Sea X un conjunto finito de n elementos.

¿De cuántas formas podemos elegir m de X en forma ordenada?

Ejemplo

Elegir en forma ordenada y sin repetición 2 elementos del conjunto $X = \{a, b, c\}$, tenemos ab, ac, ba, bc, ca, cb, 6 elecciones.

Sea X un conjunto finito de n elementos.

¿De cuántas formas podemos elegir m de X en forma ordenada?

Ejemplo

Elegir en forma ordenada y sin repetición 2 elementos del conjunto $X = \{a, b, c\}$, tenemos ab, ac, ba, bc, ca, cb, 6 elecciones.

Es decir si el conjunto es $X=\{a_1,a_2,\ldots,a_n\}$, las selecciones deben ser del tipo

$$a_{i_1}a_{i_2}\cdots a_{i_m}$$

donde $a_{i_i} \neq a_{i_k}$ si $i \neq k$.

Por ejemplo, las selecciones de 3 elementos en forma ordenada y sin repetición de $\{1,2,3\}$ son exactamente

Por ejemplo, las selecciones de 3 elementos en forma ordenada y sin repetición de $\{1,2,3\}$ son exactamente

123, 132, 213, 231, 312, 321

(son las ternas donde los tres números son distintos).

Clase 6 - Conteo

Por ejemplo, las selecciones de 3 elementos en forma ordenada y sin repetición de $\{1,2,3\}$ son exactamente

$$123,\ 132,\ 213,\ 231,\ 312,\ 321$$

(son las ternas donde los tres números son distintos).

O sea hay 6 selecciones ordenadas y sin repetición de elementos de $\{1,2,3\}.$

Notemos que:

- 1° elemento \rightarrow 3 posibilidades: 1, 2, 3
- 2° elemento ightarrow 2 posibilidades: distinto al elegido en 1°
- 3° elemento $\;\;
 ightarrow\;\;1$ posibilidades: distinto a los elegidos en $\,1^{\circ}$ y $\,2^{\circ}$

Tenemos entonces $3 \cdot 2 \cdot 1 = 3!$ selecciones posibles.

Pensemos ahora que queremos elegir en forma ordenada y sin repetición 3 elementos entre 5. Entonces para la primera elección tenemos 5 posibilidades, para la segunda 4 posibilidades y para la tercera 3 posibilidades haciendo un total de

$$5 \cdot 4 \cdot 3$$

selecciones posibles.

Clase 6 - Conteo

Pensemos ahora que queremos elegir en forma ordenada y sin repetición 3 elementos entre 5. Entonces para la primera elección tenemos 5 posibilidades, para la segunda 4 posibilidades y para la tercera 3 posibilidades haciendo un total de

$$5 \cdot 4 \cdot 3$$

selecciones posibles.

Proposición

Si n > m entonces existen

$$n \cdot (n-1) \cdot \cdot \cdot (n-m+1),$$
 (m - factores)

selecciones ordenadas y sin repetición de m elementos de un conjunto de n elementos.

Si hay 10 personas ¿De cuántas formas puedo hacer una fila de 7 personas?

Si hay 10 personas ¿De cuántas formas puedo hacer una fila de 7 personas? Solución.

Si hay 10 personas ¿De cuántas formas puedo hacer una fila de 7 personas? Solución.

Razonando,

 1° puesto ightarrow 10 posibilidades

Si hay 10 personas ¿De cuántas formas puedo hacer una fila de 7 personas?

Solución.

```
1^{\circ} puesto \rightarrow 10 posibilidades 2^{\circ} puesto \rightarrow 9 posibilidades
```

Si hay 10 personas ¿De cuántas formas puedo hacer una fila de 7 personas?

Solución.

```
1^{\circ} puesto 
ightarrow 10 posibilidades
```

$$2^{\circ}$$
 puesto $ightarrow$ 9 posibilidades

$$3^{\circ}$$
 puesto \rightarrow 8 posibilidades

Si hay 10 personas ¿De cuántas formas puedo hacer una fila de 7 personas?

Solución.

Si hay 10 personas ¿De cuántas formas puedo hacer una fila de 7 personas?

Solución.

Si hay 10 personas ¿De cuántas formas puedo hacer una fila de 7 personas?

Solución.

Si hay 10 personas ¿De cuántas formas puedo hacer una fila de 7 personas?

Solución.

```
puesto
                  10
                       posibilidades
                       posibilidades
   puesto
   puesto
                       posibilidades
                       posibilidades
   puesto
                       posibilidades
   puesto
6° puesto
                      posibilidades
                   5
                      posibilidades
7° puesto
```

Si hay 10 personas ¿De cuántas formas puedo hacer una fila de 7 personas?

Solución.

Razonando,

```
puesto
                 10
                      posibilidades
                      posibilidades
   puesto
   puesto
                      posibilidades
   puesto
                      posibilidades
                      posibilidades
  puesto
6° puesto
                      posibilidades
                  5
                      posibilidades
7° puesto
```

La solución es entonces $10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4$.

Si hay 10 personas ¿De cuántas formas puedo hacer una fila de 7 personas?

Si hay 10 personas ¿De cuántas formas puedo hacer una fila de 7 personas? Solución (aplicando la proposición de p. 7).

Si hay 10 personas ¿De cuántas formas puedo hacer una fila de 7 personas? Solución (aplicando la proposición de p. 7).

Cantidad de elementos: $\rightarrow n = 10$

Si hay 10 personas ¿De cuántas formas puedo hacer una fila de 7 personas?

Solución (aplicando la proposición de p. 7).

Cantidad de elementos: $\rightarrow n = 10$ Cantidad de elecciones: $\rightarrow m = 7$

Si hay 10 personas ¿De cuántas formas puedo hacer una fila de 7 personas?

Solución (aplicando la proposición de p. 7).

Cantidad de elementos: $\rightarrow n = 10$ Cantidad de elecciones: $\rightarrow m = 7$

Por lo tanto, n - m + 1 = 10 - 7 + 1 = 4.

Clase 6 - Conteo

Si hay 10 personas ¿De cuántas formas puedo hacer una fila de 7 personas?

Solución (aplicando la proposición de p. 7).

Cantidad de elementos: $\rightarrow n = 10$ Cantidad de elecciones: $\rightarrow m = 7$

Por lo tanto, n - m + 1 = 10 - 7 + 1 = 4.

La solución es entonces: $10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4$.

Ejemplo (repetido)

Si hay 10 personas ¿De cuántas formas puedo hacer una fila de 7 personas?

Solución (aplicando la proposición de p. 7).

Cantidad de elementos: $\rightarrow n = 10$ Cantidad de elecciones: $\rightarrow m = 7$

Por lo tanto, n - m + 1 = 10 - 7 + 1 = 4.

La solución es entonces: $10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4$.

Observar que

$$10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 = \frac{10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{3 \cdot 2 \cdot 1} = \frac{10!}{3!}$$
$$= \frac{10!}{(10 - 7)!}.$$

04/04/2023

¿Cómo elegir 4 elementos entre n?

¿Cómo elegir 4 elementos entre *n*?

Solución.

¿Cómo elegir 4 elementos entre n?

Solución.

Razonando,

 1° puesto ightarrow n-1 posibilidades

¿Cómo elegir 4 elementos entre n?

Solución.

Razonando,

 1° puesto \rightarrow n-1 posibilidades 2° puesto \rightarrow n-2 posibilidades

¿Cómo elegir 4 elementos entre n?

Solución.

Razonando,

 3° puesto \rightarrow n-3 posibilidades

¿Cómo elegir 4 elementos entre n?

Solución.

Razonando,

```
1^\circ puesto 
ightarrow n-1 posibilidades
```

$$2^{\circ}$$
 puesto \rightarrow n-2 posibilidades

$$3^{\circ}$$
 puesto $ightarrow$ n-3 posibilidades

$$4^{\circ}$$
 puesto \rightarrow n-4 posibilidades

¿Cómo elegir 4 elementos entre n?

Solución.

Razonando,

 1° puesto \rightarrow n-1 posibilidades

 2° puesto \rightarrow n-2 posibilidades

 3° puesto ightarrow n-3 posibilidades

 4° puesto \rightarrow n-4 posibilidades

La solución es entonces

$$(n-1)(n-2)(n-3)(n-4) = \frac{(n-1)(n-2)(n-3)(n-4)(n-5)!}{(n-5)!}$$
$$= \frac{n!}{(n-5)!}$$

Clase 6 - Conteo 04/04/2023

En general

$$n\cdot (n-1)\cdots (n-m+1)=rac{n\cdot (n-1)\cdots (n-m+1)\cdot (n-m)\cdots 2\cdot 1}{(n-m)\cdots 2\cdot 1}$$

11 / 18

Clase 6 - Conteo 04/04/2023

En general

$$n\cdot (n-1)\cdots (n-m+1)=rac{n\cdot (n-1)\cdots (n-m+1)\cdot (n-m)\cdots 2\cdot 1}{(n-m)\cdots 2\cdot 1}$$

Es decir

$$n\cdot (n-1)\cdots (n-m+1)=\frac{n!}{(n-m)!}.$$

Clase 6 - Conteo

En general

$$n\cdot (n-1)\cdots (n-m+1)=rac{n\cdot (n-1)\cdots (n-m+1)\cdot (n-m)\cdots 2\cdot 1}{(n-m)\cdots 2\cdot 1}.$$

Es decir

$$n\cdot (n-1)\cdots (n-m+1)=\frac{n!}{(n-m)!}.$$

Por lo tanto podemos reescribir la proposición en forma mas compacta:

11 / 18

Clase 6 - Conteo 04/04/2023

Proposición

Si $n \ge m$ entonces existen

$$\frac{n!}{(n-m)!}$$

selecciones ordenadas y sin repetición de m elementos de un conjunto de n elementos.

Clase 6 - Conteo

Si en un colectivo hay 9 asientos vacíos.

¿De cuántas formas se pueden distribuir 3 pasajeros? Lo que se está preguntando es cuantas posibles distribuciones de 3 asientos existen (no importa quien se sienta en cada asiento).

Si en un colectivo hay 9 asientos vacíos.

¿De cuántas formas se pueden distribuir 3 pasajeros? Lo que se está preguntando es cuantas posibles distribuciones de 3 asientos existen (no importa quien se sienta en cada asiento).

Solución

Si en un colectivo hay 9 asientos vacíos.

¿De cuántas formas se pueden distribuir 3 pasajeros? Lo que se está preguntando es cuantas posibles distribuciones de 3 asientos existen (no importa quien se sienta en cada asiento).

Solución

Se trata de ver cuantas selecciones ordenadas y sin repetición hay de 3 asientos entre 9.

Si en un colectivo hay 9 asientos vacíos.

¿De cuántas formas se pueden distribuir 3 pasajeros? Lo que se está preguntando es cuantas posibles distribuciones de 3 asientos existen (no importa quien se sienta en cada asiento).

Solución

Se trata de ver cuantas selecciones ordenadas y sin repetición hay de 3 asientos entre 9.

Primero hagámoslo usando el principio de multiplicación:

Si en un colectivo hay 9 asientos vacíos.

¿De cuántas formas se pueden distribuir 3 pasajeros? Lo que se está preguntando es cuantas posibles distribuciones de 3 asientos existen (no importa quien se sienta en cada asiento).

Solución

Se trata de ver cuantas selecciones ordenadas y sin repetición hay de 3 asientos entre 9.

Primero hagámoslo usando el principio de multiplicación:

o 1° persona: 9 lugares posibles. Total: 9

Si en un colectivo hay 9 asientos vacíos.

¿De cuántas formas se pueden distribuir 3 pasajeros? Lo que se está preguntando es cuantas posibles distribuciones de 3 asientos existen (no importa quien se sienta en cada asiento).

Solución

Se trata de ver cuantas selecciones ordenadas y sin repetición hay de 3 asientos entre 9.

Primero hagámoslo usando el principio de multiplicación:

- 1° persona: 9 lugares posibles. Total: 9
- \circ 2° persona: 8 lugares posibles. Total: 9 \times 8

Si en un colectivo hay 9 asientos vacíos.

¿De cuántas formas se pueden distribuir 3 pasajeros? Lo que se está preguntando es cuantas posibles distribuciones de 3 asientos existen (no importa quien se sienta en cada asiento).

Solución

Se trata de ver cuantas selecciones ordenadas y sin repetición hay de 3 asientos entre 9.

Primero hagámoslo usando el principio de multiplicación:

- 1° persona: 9 lugares posibles. Total: 9
- \circ 2° persona: 8 lugares posibles. Total: 9 \times 8
- \circ 3° persona: 7 lugares posibles. Total: $9 \times 8 \times 7$.

Este número es

 $9 \cdot 8 \cdot 7$, 3 - factores.

Clase 6 - Conteo

Este número es

$$9 \cdot 8 \cdot 7$$
, 3 - factores.

Podríamos haberlo hecho directamente por la proposición de la p. 12: elegir 3 elementos entre 9 son

$$\frac{9!}{(9-3)!} = \frac{9!}{6!}$$

$$= \frac{9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}$$

$$= 9 \cdot 8 \cdot 7$$

posibilidades.

ADD ABD ABD B 990

14 / 18

Clase 6 - Conteo 04/04/2023

Hay

$$\frac{n!}{0!} = n!$$

selecciones ordenadas y sin repetición de n elementos en un conjunto con n elementos.

Hay

$$\frac{n!}{0!} = n!$$

selecciones ordenadas y sin repetición de n elementos en un conjunto con n elementos.

Las selecciones ordenadas y sin repetición de n elementos en un conjunto con n elementos se denominan permutaciones de grado n.

Clase 6 - Conteo

Hay

$$\frac{n!}{0!} = n!$$

selecciones ordenadas y sin repetición de n elementos en un conjunto con n elementos.

Las selecciones ordenadas y sin repetición de n elementos en un conjunto con n elementos se denominan permutaciones de grado n.

Hay, pues, n! permutaciones de grado n.

Clase 6 - Conteo

04/04/2023

Respondamos la siguiente pregunta:

¿De cuantas formas puedo ordenar \emph{n} objetos?

Respondamos la siguiente pregunta:

¿De cuantas formas puedo ordenar n objetos?

Observemos que, ordenar n objetos es equivalente a seleccionar ordenadamente y sin repetición los n objetos (de un conjunto con n objetos).

Por lo tanto, la respuesta es n!.

Respondamos la siguiente pregunta:

¿De cuantas formas puedo ordenar n objetos?

Observemos que, ordenar n objetos es equivalente a seleccionar ordenadamente y sin repetición los n objetos (de un conjunto con n objetos).

Por lo tanto, la respuesta es n!.

Ejemplo.

Dado el conjunto $\mathbb{I}_4=\{1,2,3,4\}$ ¿cuántas permutaciones de los elementos de \mathbb{I}_4 hay?

Respondamos la siguiente pregunta:

¿De cuantas formas puedo ordenar n objetos?

Observemos que, ordenar n objetos es equivalente a seleccionar ordenadamente y sin repetición los n objetos (de un conjunto con n objetos).

Por lo tanto, la respuesta es n!.

Ejemplo.

Dado el conjunto $\mathbb{I}_4=\{1,2,3,4\}$ ¿cuántas permutaciones de los elementos de \mathbb{I}_4 hay?

Solución.

Respondamos la siguiente pregunta:

¿De cuantas formas puedo ordenar n objetos?

Observemos que, ordenar n objetos es equivalente a seleccionar ordenadamente y sin repetición los n objetos (de un conjunto con n objetos).

Por lo tanto, la respuesta es n!.

Ejemplo.

Dado el conjunto $\mathbb{I}_4=\{1,2,3,4\}$ ¿cuántas permutaciones de los elementos de \mathbb{I}_4 hay?

Solución.4!

¿Cuántas permutaciones pueden formarse con las letras de silvia?

Clase 6 - Conteo

¿Cuántas permutaciones pueden formarse con las letras de silvia?

Solución

¿Cuántas permutaciones pueden formarse con las letras de silvia?

Solución

Afirmamos que se pueden formar 0! palabras usando las letras de *silvia*. Si escribo en lugar de *silvia*,

Es decir si cambio la segunda i por i', todas las letras son distintas, luego hay 6! permutaciones, pero cada par de permutaciones del tipo

coinciden, por lo tanto tengo que dividir por 2 el número total de permutaciones: 6!/2! = 360.

Tomemos la palabra

ramanathan

el número total de permutaciones es

 $\frac{10!}{4!2!}.$

Tomemos la palabra

ramanathan

el número total de permutaciones es

 $\frac{10!}{4!2!}$

En efecto, escribiendo el nombre anterior así

 r_1 a_1 m_1 a_2 n_1 a_3 t_1 h_1 a_4 n_2

el número total de permutaciones es 10! Pero permutando las a_i y las n_i sin mover las otras letras obtenemos la misma permutación de *ramanathan*.

Como hay 4! permutaciones de las letras a_1 , a_2 , a_3 , a_4 , y 2! de n_1 , n_2 el número buscado es

 $\frac{10!}{4!2!}$