

Dynamic Programming

Mohammad Javad Dousti

Overview

- □ Introduction
 - > Calculating Fibonacci numbers
- ☐ Assembly-line scheduling problem
- ☐ Longest common subsequence (LCS) problem
- ☐ Knapsack problem
- ☐ Matrix-chain multiplication problem
- □ Corporate party planning problem
- □ Sample problems

Calculating Fibonacci Numbers

Calculating Fibonacci Numbers

- □ Let's consider the calculation of Fibonacci numbers:
 - \rightarrow Fib(n) = Fib(n-2) + Fib(n-1)
 - \rightarrow Fib(0) = 0, Fib(1) = 1
- ☐ The series looks like this:

n	0	1	2	3	4	5	6
Fib(n)	0	1	1	2	3	5	8

- \square How to calculate n^{th} value in the series?
- □ See a nice visualization here:
 - https://www.cs.usfca.edu/~galles/visualization/DPFib.html

Calculating Fibonacci Numbers: Recursive

$$T(n) = T(n-1) + T(n-2) + O(1) \rightarrow \text{Runtime complexity: O(2^n); why?}$$

 $T(0) = T(1) = O(1)$

Calculating Fibonacci Numbers: Memoized

□ Store (cache) results from computations for later lookup.

```
// Initialize A[1...n] array with null
Fib(n){
    if n <= 1
        return n;

    if A[n] != null
        return A[n]

    A[n] = Fib(n - 1) + Fib(n - 2)

    return A[n]
}</pre>
```


Runtime complexity: O(n)

Calculating Fibonacci Numbers: Dynamic Programming

- ☐ Filling out the array from bottom up.
- \Box Using calculated values in the A array.
 - > It doesn't require recursive calls.
 - > Any required value is already calculated.

```
Fib(n) {
    A[0] = 0
    A[1] = 1
    for i = 2 to n
        A[i] = A[i-1] + A[i-2]
    return A[n]
}
```

Runtime complexity: O(n)

- · An array of size n.
- Calculation of each array cell takes O(1)

When to use dynamic programming?

- ☐ You can solve the problem based on sub-problems.
- ☐ The main result of each sub-problem can be stored and retrieved.
- ☐ You need to solve a particular sub-problem many times.
- ☐ You would like to use bottom-up approach, i.e., from small sub-problems to big ones.

Assembly-Line Scheduling

Assembly-Line Scheduling: Problem Statement (1)

- \square An automotive company produces cars in a factory that has two assembly lines, denoted as i = 1 or 2.
- \square A vehicle chassis enters each assembly line, and has parts added to it at n different stations. The finished vehicle exits at the end of the line.

Assembly-Line Scheduling: Problem Statement (2)

- \square Each assembly line has *n* stations, numbered j = 1, 2, ..., n. We denote the j^{th} station on line *i* as: $S_{i,j}$
- \square The assembly time taken at station $S_{i,j}$ is $a_{i,j}$
- \square Each line also has an entry time, e_i , the time taken for the chassis to enter line i, and an exit time, x_i , the time taken for the completed vehicle to leave line i.
- The time to transfer a chassis between line *i* after leaving station $S_{i,j}$ is $t_{i,j}$, where i = 1, 2 and j = 1, 2, ..., n-1 (since we can't transfer after the last station.)

Assembly-Line Scheduling: Problem Statement (3)

□ **Problem:** Find which stations to choose from line 1 and which to choose from line 2 in order to minimize the total time through the factory for one auto.

Brute Force Solution

- ☐ A brute force approach yields exponential complexity time.
- ☐ At each station, we can make two choices: stay on the line, or transfer.
 - > Our set of possible decisions doubles at each station.
 - \triangleright Since we have *n* stations, there are 2ⁿ possible ways to choose stations.
 - > Hence, the runtime complexity is $O(2^n)$.

How to design a faster algorithm?

Fastest Way Through the Factory

- \square Consider the fastest way for a chassis to move from the start, to station $S_{1,i}$.
 - > If j = 1, it has come from the entry point (trivial.)
 - > For j = 2, 3, ..., n, there are two choices:
 - 1. The chassis came from station $S_{1,j-1}$. The time of moving between j-1 to j is zero, as they are on the same line.
 - 2. The chassis came from $S_{2,j-1}$. The transfer time between lines was $t_{2,j-1}$.
- \square Suppose the fastest way through $S_{1,j}$ is from $S_{1,j-1}$.
 - > The chassis must've taken the fastest time to station $S_{1,j-1}$.
 - > If there exists a faster way to $S_{1,j-1}$, our chassis would've taken it. We could then substitute this faster sub-route into our route to $S_{1,j}$.
 - > But this would then lead to a faster time for $S_{I,j}$, which implies that $S_{I,j}$ was not the fastest way through the plant: a contradiction.
- \square The symmetric argument applies to the fastest time through $S_{2,i}$

Optimal Substructure

- \Box The optimal solution (fastest time through Station $S_{i,j}$) for assembly line scheduling contains within it, other optimal solutions to subproblems.
- ☐ This property is known as *optimal substructure*.
- ☐ This problem property is an essential requirement for a dynamic programming solution.
- ☐ Therefore, we can build an optimal solution to the fastest time problem, by building optimal solutions to subproblems.

Developing a Recursive Solution (1)

- \square Let $f_i[j]$ be the fastest time to get a chassis from the start through to station j on line i (i.e., $S_{i,j}$).
- \Box Let f^* be the fastest time for the chassis to get all the way through the factory, arriving at the exit as a finished vehicle.
- \Box For the station to reach the exit, it must get all the way to station n on either line 1 or 2, and then exit the factory.
- \square Since $f_1[n]$ or $f_2[n]$ must be the fastest way, we can define our fastest time solution as:

$$f^* = \min(f_1[n] + x_1, f_2[n] + x_2),$$

where x_1 and x_2 are exit times from lines 1 and 2, respectively.

Developing a Recursive Solution (2)

 \square The fastest times through station 1 is simply the entry time e_i plus the first station assembly time $a_{i,1}$:

$$f_1[1] = e_1 + a_{1,1}$$

 $f_2[1] = e_2 + a_{2,1}$

- \square Let's now define the fastest time for $f_i[j]$ for stations j = 2, ..., n
- \square We already established that the fastest time through $S_{1,i}$ is either:
 - > From $S_{1,i-1}$ then into $S_{1,i}$ OR
 - > From $S_{2,i-1}$, transfer from line 2 to line 1, then through S1,j.
- ☐ Therefore:

$$f_1[j] = \min(f_1[j-1], f_2[j-1] + t_{2,j-1}) + a_{1,j}$$

$$f_2[j] = \min(f_2[j-1], f_1[j-1] + t_{1,j-1}) + a_{2,j}$$

Developing a Recursive Solution (3)

□ We can now define our final recursive equations:

$$f_{1}[j] = \begin{cases} e_{1} + a_{1,1} & \text{if } j = 1 \\ \min(f_{1}[j-1], f_{2}[j-1] + t_{2,j-1}) + a_{1,j} & \text{otherwise} \end{cases}$$

$$f_{2}[j] = \begin{cases} e_{2} + a_{2,1} & \text{if } j = 1 \\ \min(f_{2}[j-1], f_{1}[j-1] + t_{1,j-1}) + a_{2,j} & \text{otherwise} \end{cases}$$

Tracing our way through the factory

- ☐ The last thing we need to do is keep track of the stations that we passed through, which are used in constructing our fastest way solution.
- □ Let $l_i[j]$ be the line number, either 1 or 2, whose station j-1 is used in a fastest way through station $S_{i,j}$.
- \square Let l^* be the line whose station n is used in a fastest way through the entire factory.

An Iterative Solution

- \Box We can avoid exponential running time by referencing previously calculated values, which we will store in our f-table.
 - > This saves us wasted cycles recomputing the same values.
- □ Dynamic programming uses additional memory to save computation time. The cached results always take the form of *a table*.
- \square Recall for $j \ge 2$, $f_i[j]$ depends only on $f_j[j-1]$ and $f_2[j-1]$.
 - > By computing $f_i[j]$ as j increases, j moves from left to right, we can compute our fastest way in O(n) time.

Optimal Algorithm

```
FastestWay(a, t, e, x, n) \{
    f_1[1] = e_1 + a_{1.1}
    f_2[1] = e_2 + a_{2,1}
    for j = 2 to n {
         if f_1[j-1] + a_{1,j} \le f_2[j-1] + t_{2,j-1} + a_{1,j} {
             f_1[j] = f_1[j - 1] + a_{1.j}
             l₁[i] = 1
         } else {
              f_1[j] = f_2[j-1] + t_{2,j-1} + a_{1,j}
             l_1[j] = 2
        if f_2[j-1] + a_{2,j} \le f_1[j-1] + t_{1,j-1} + a_{2,j} 
             f_2[j] = f_2[j - 1] + a_{2,j}
             l_2[i] = 2
         } else {
             f_2[j] = f_1[j-1] + t_{1,i-1} + a_{2,i}
             l_{2}[i] = 1
    if f_1[n] + x_1 \le f_2[n] + x_2  {
       f^* = f_1[n] + x_1
         l^* = 1
    } else {
        f^* = f_2[n] + x_2
         l* = 2
```

Runtime complexity: O(n)

Print output

- \square Having computed our fastest way solution, we need a final helper method to convert our l^* and l-table into a path of stations.
- ☐ This procedure outputs stations in reverse order, beginning with our exit station & line.

```
i = l*
print "line " l* ", station " n
for j = n downto 2
    i = li[j]
    print "line " li[j] ", station " j - 1
```

Tables from our example

Output:

```
line 1, station 6
line 2, station 5
line 2, station 4
line 1, station 3
line 2, station 2
line 1, station 1
```


☐ It's relatively easy to rework our algorithm to print stations in increasing order, to do so we would use recursion. Can you do it?

Longest Common Subsequence (LCS)

Longest Common Subsequence (LCS)

- □ **Problem:** Given 2 sequences, $X = \langle x_1, ..., x_m \rangle$ and $Y = \langle y_1, ..., y_n \rangle$, find a common subsequence whose length is maximum.
 - > Subsequence need not be consecutive, but must be in order.
- □ Example 1:
 - \rightarrow X = \langle a, a, b, a, a, c, d \rangle
 - $Y = \langle b, b, a, d, a, a, c \rangle$
 - \rightarrow LCS = $\langle a, a, a, c \rangle$
- □ Example 2:
 - \rightarrow X = \langle b, a, b, a, c, a, c, a \rangle
 - \rightarrow Y = \langle a, d, a, d, b, b, c, c, a \rangle
 - \rightarrow LCS = $\langle a, a, c, c, a \rangle$
 - > Note that LCS might not be unique. For instance, you can consider, \langle b, c, c, a \rangle and \langle a, b, c, c, a \rangle with length 5.

Brute Force

- \square For every subsequence of X, check whether it's a subsequence of Y.
- \square Runtime complexity: $\Theta(n2^m)$.
 - > 2^m subsequences of X to check.
 - \triangleright Each subsequence takes $\Theta(n)$ time to check.
 - Scan *Y* for first letter, for second, and so on.

How to design a faster algorithm?

Optimal Substructure

Theorem

```
Let Z = \langle z_1, \ldots, z_k \rangle be any LCS of X and Y.

1. If x_m = y_n, then z_k = x_m = y_n and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1}.

2. If x_m \neq y_n, then either z_k \neq x_m implies that Z is an LCS of X_{m-1} and Y.

3. or z_k \neq y_n implies that Z is an LCS of X and Y_{n-1}.
```

- **Notation:** $X_i = \langle x_1,...,x_i \rangle$, $Y_i = \langle y_1,...,y_i \rangle$, and $Z_i = \langle z_1,...,z_i \rangle$ are the first *i* letters of X, Y, and Z, respectively.
- ☐ This says what any longest common subsequence must look like!

Optimal Substructure: Proof (1)

Theorem

```
Let Z = \langle z_1, \ldots, z_k \rangle be any LCS of X and Y.

1. If x_m = y_n, then z_k = x_m = y_n and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1}.

2. If x_m \neq y_n, then either z_k \neq x_m implies that Z is an LCS of X_{m-1} and Y.

3. or z_k \neq y_n implies that Z is an LCS of X and Y_{n-1}.
```

- **Proof:** Case 1: $x_m = y_n$
 - Any sequence Z' that does not end in $x_m = y_n$ can be made longer by adding $x_m = y_n$ to the end.
 - > Hence, LCS Z must end in $x_m = y_n$.
 - > Z_{k-1} is a common subsequence of X_{m-1} and Y_{n-1} , and there is no longer common subsequence of X_{m-1} and Y_{n-1} , or Z would not be an LCS.

Optimal Substructure: Proof (2)

Theorem

```
Let Z = \langle z_1, \ldots, z_k \rangle be any LCS of X and Y.

1. If x_m = y_n, then z_k = x_m = y_n and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1}.

2. If x_m \neq y_n, then either z_k \neq x_m implies that Z is an LCS of X_{m-1} and Y.

3. or z_k \neq y_n implies that Z is an LCS of X and Y_{n-1}.
```

- □ **Proof:** Case 2: $x_m \neq y_n$, and $z_k \neq x_m$
 - \rightarrow Since Z does not end in x_m ,
 - > Z is a common subsequence of X_{m-1} and Y, and
 - > there is no longer common subsequence of X_{m-1} and Y, or Z would not be an LCS.
- □ Case 3 can be proven similarly.

Recursive Solution

- \square Define $c[i, j] = \text{length of LCS of } X_i \text{ and } Y_j$.
- \square We want c[m,n].

$$c[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0, \\ c[i-1,j-1] + 1 & \text{if } i,j > 0 \text{ and } x_i = y_j, \\ \max(c[i-1,j],c[i,j-1]) & \text{if } i,j > 0 \text{ and } x_i \neq y_j. \end{cases}$$
This gives a recursive algorithm and solves the problem.

- ☐ This gives a recursive algorithm and solves the problem.
 - > But does it solve it well?
 - \triangleright It becomes exponential in terms of m and n.

Computing the Length of an LCS

- \Box b[i, j] points to table entry whose subproblem we used in solving LCS of X_i and Y_i .
- \Box c[m,n] contains the length of an LCS of X and Y.
- \square Runtime Complexity: O(mn)

```
LCS-Length(X, Y){
   m = length[X]
   n = length[Y]
   for i = 1 to m
        c[i, 0] = 0
   for j = 0 to n
        c[0, j] = 0
   for i = 1 to m {
        for j = 1 to n {
            if xi = yj {
                c[i, j] = c[i-1, j-1] + 1
                b[i, j] = \kappa
            } else if c[i-1, j ] ≥ c[i, j-1] {
                c[i, j] = c[i-1, j]
                b[i, j] = "^"
            } else {
                c[i, j] = c[i, j-1]
                b[i, j] = "←"
   return c and b
```

An example

- □ Suppose $X = \langle A, B, C, B, D, A, B \rangle$ and $Y = \langle B, D, C, A, B, A \rangle$.
- ☐ The given algorithm fills tables b and c in **row- major** way.
 - > Fills in the first row of b and c tables from left to right, then the second row, and so on
- ☐ One can easily use these tables to find the LCS length and reconstruct the solution.

Constructing an LCS

- \square Initial call is Print-LCS(b, X, m, n).
- \square When $b[i,j] = "\kappa"$, we have extended LCS by one character.
- \square Runtime complexity: O(m+n)

```
Print-LCS(b, X, i, j){
    if i = 0 or j = 0 {
        return

if b[i, j] = "κ" {
        Print-LCS(b, X, i-1, j-1)
        print xi
    } else if b[i, j] = "↑" {
        Print-LCS(b, X, i-1, j)
    } else {
        Print-LCS(b, X, i, j-1)
    }
}
```


Knapsack Problem

The Knapsack Problem

- □ A thief breaks into a house, carrying a knapsack...
 - > He can carry up to 15kg of loot.
 - > He has to choose which of *n* items to steal.
 - > Each item has some weight and some value.
- □ Goal: Maximize the value of looted items, while not exceeding the weight limit (i.e., 15kg.)

Knapsack: Formal Definition

 \square Given *n* objects, with weights $w_1, w_2, ..., w_n$ and values $v_1, v_2, ..., v_n$, find $S \subseteq \{1, 2, ..., n\}$ such that:

Maximize $\Sigma_{i \in S} v_i$

subject to $\Sigma_{i \in S} w_i \leq W$

 \square Alternatively, one can find x_i 's such that:

Maximize $\sum_{i=1}^{n} x_i v_i$

subject to $\sum_{i=1}^{n} x_i w_i \leq W$ and $x_i \in \{0, 1\}$

□ The second formulation brought the name "0-1 knapsack" for the problem.

Brute Force

- ☐ The straight forward way:
 - > The complexity is $O(2^n)$
 - > Example:

$$n = 3$$

 $(v_1, v_2, v_3) = (1, 2, 5)$
 $(w_1, w_2, w_3) = (2, 3, 4)$
 $W = 6$

x_1	x_2	x_3	$\sum x_i v_i$	$\sum x_i w_i$
О	O	O	0	0
О	O	1	5	4
O	1	O	2	3
О	1	1	_	_
1	O	O	1	2
1	О	1	$\underline{6} \leftarrow solution$	6
1	1	О	3	5
1	1	1		_

Optimal Substructure

- \Box Consider the i^{th} object. The optimal solution can either:
 - > Contain this object. Hence, the new limit will be W w_i
 - > Not contain this object. Hence, the limit remains W
- ☐ In both cases, the remaining problem is smaller, because we have fewer objects to consider.
- \square Suppose A[i, j] is the highest values of objects we can take if we can choose from the first i objects and the weight limit is j.

$$A[i,j] = \begin{cases} A[i-1,j], & \text{if } j < w_i \\ \max(A[i-1,j], A[i-1,j-w_i] + v_i), & \text{if } j \ge w_i \end{cases}$$

- □ What's the base case?
 - > A[0, j] = 0

Knapsack: Dynamic Programming Solution

□ Array needs to be filled in row-major order.


```
Knapsack(v, w, n, W) {
    for j=0 to W {
        A[0, j] = 0
    for i = 1 to n {
        for j=0 to W {
            A[i, j] = A[i-1, j]
            if w_i \le j and A[i, j] < v_i + A[i-1, j-w_i] {
                A[i, j] = v_i + A[i-1, j-w_i]
    return A[n, W]
```

Runtime complexity: O(nW)Space complexity: O(nW)

Reducing the Required Space for Knapsack Problem (1)

Implementation with O(nW) space

```
Knapsack(v, w, n, W) {
    for j=0 to W
    prevA[j] = 0

for i = 1 to n {
        for j=0 to W {
            currA[j] = prevA[j]
            if w<sub>i</sub> ≤ j and currA[j] < v<sub>i</sub> + prevA[j-w<sub>i</sub>]
                  currA[j] = v<sub>i</sub> + prevA[j-w<sub>i</sub>]
            }
        prevA = currA
    }
    return currA[W]
}
```

Implementation with O(W) space

Reducing the Required Space for Knapsack Problem (2)

Matrix-Chain Multiplication Problem

Matrix-Chain Multiplication Problem

- □ If *B* is a $p \times q$ matrix and *C* is a $q \times r$ matrix, their multiplication (i.e., $B \times C$) requires $p \times q \times r$ scalar multiplications.
- \square In order to calculate $A_1 \times A_2 \times ... \times A_n$, two matrices can be multiplied together at a time.
- □ Problem: Find the best parenthesization of $A_1 \times A_2 \times ... \times A_n$ such that it requires the fewest scalar multiplications.

Matrix-Chain Multiplication: An Example

- \square Suppose you want to multiply A_1, A_2 , and A_3 matrices.
 - > Matrix dimensions: $A_1=10\times100$, $A_2=100\times5$, $A_3=5\times10$
- \square Method 1: $(A_1 \times A_2) \times A_3$
 - > Required scalar multiplications:
 - \circ B=A₁×A₂ requires 10×100×5=5000 multiplications.
 - \circ *B*×*A*₃ requires 10×5×10=500 multiplications.
 - o Total multiplications: 5,500
- \square Method 2: $A_1 \times (A_2 \times A_3)$
 - > Required scalar multiplications:
 - \circ B=A₂×A₃ requires 100×5×10=5000 multiplications.
 - \circ $A_1 \times B$ requires $10 \times 100 \times 10 = 10,000$ multiplications.
 - o Total multiplications: 15,000

Optimal Substructure

- \square Suppose A_i is a $p_{i-1} \times p_i$ matrix.
- □ Where to place outer parentheses?

$$(A_1 \times ... \times A_k) \times (A_{k+1} \times ... \times A_n)$$
B
C
Dimension: $p_0 \times p_k$
Dimension: $p_k \times p_n$

Dimension: $p_k \times p_n$

☐ How subproblems would look like?

A Recursive Solution

- □ Suppose m[i, j] is the minimum number of scalar multiplications needed to compute matrix $A_i \times ... \times A_j$ (shown as $A_{i...j}$).
- \square Assuming that the best place to do outer parenthesization is at location k, m[i,j] can be written as

$$m[i,j] = \begin{cases} 0 & \text{if } i = j \\ \min_{i \le k < j} \{ m[i,k] + m[k+1,j] + p_{i-1}p_k p_j \} & \text{if } i < j \end{cases}$$

Computing the Optimal Cost

☐ How to fill out the table?


```
MatrixChainOrder(p) {
    for i = 1 to n
        m[i, i] = 0
    for l = 2 to n {    // l is the chain length
        for i = 1 to n - l + 1 {
            j = i + l - 1
            m[i, j] = \infty
            for k = i to j - 1 {
                 q = m[i, k] + m[k + 1, j] + p_{i-1}p_kp_j
                 if q < m[i, j] {</pre>
                     m[i, j] = q
                     s[i, j] = k
    return m[1, n], s
```

Runtime complexity: $O(n^3)$ Space complexity: $O(n^2)$

Constructing an Optimal Solution

- \square s[i, j] records k such that an optimal parenthesization of $A_i ... A_j$ splits the product between A_k and A_{k+1} .
- \square In other words, split happens as follows: $(A_i...A_{s[i,j]}) \times (A_{s[i,j]+1}...A_j)$.

```
PrintOptimalParens(s, i, j) {
    if i == j {
        print "A<sub>i</sub>"
    } else {
        print "("
            PrintOptimalParens(s, i, s[i, j])
            PrintOptimalParens(s, s[i, j] + 1, j)
            print ")"
    }
}
```

Corporate Party Planning Problem

Corporate Party Planning Problem

- □ Suppose you want to invite employees of a corporation to a party.
- \square Each employee *i* has a friendliness score of v_i .
- ☐ You need to make sure no employee is invited with their direct manager.
- □ How do you choose employees such that total friendliness of invitees is

maximized?

Corporate Party Planning: An Example

 \Box Total friendliness of invitees: 10+7+10+4+5+10=46

Optimal Substructure

- \square Define A[i] as the best party if i was the CEO.
- $\square A[i]$ can be defined as follows:

$$A[i] = \begin{cases} v_i + \sum_{j: \text{grandchild}(i)} A[j] \\ \sum_{j: \text{child}(i)} A[j] \end{cases}$$

if *i* is invited if *i* isn't invited

A Recursive Solution

- $\square A[i]$: The best party if i was the CEO.
- \square B[i]: The best party if i was the CEO and they aren't invited.
- ☐ Using these definitions, one can write:

$$B[i] = \sum_{j \in child(i)} A[j]$$

$$A[i] = \max\{v_i + \sum_{j \in child(i)} B[j], B[i]\}$$

 \square A[i] and B[i] can be calculated for node i, if they are calculated for all i's children.

Compute the Solution

□ Reminder

```
\succ B[i] = \Sigma_{j \in child(i)} A[j]
```

```
 A[i] = \max\{v_i + \Sigma_{j \in child(i)}B[j], B[i]\}
```

```
PartyPlanning(v, i) {
    // A and B are defined outside the function
    A[i] = v[i]
    B[i] = 0
    for j ∈ i's children {
        PartyPlanning(v, j) // DFS
        // A[j] and B[j] are already calculated
        A[i] += B[j]
        B[i] += A[j]
    }
    A[i] = max(A[i], B[i])
}
```

Runtime complexity: O(n)Space complexity: O(n)

Solving a Problem using Dynamic Programming

- 1. Characterize the structure of an optimal solution.
- 2. Recursively define the value of an optimal solution.
- 3. Compute the value of an optimal solution, typically in a bottom-up fashion.
- 4. Construct an optimal solution from computed information.

Where did the name "dynamic programming" come from?

R. Bellman Coined the Term "Dynamic Programming" (1)

- □ The word *dynamic* was chosen by Richard Bellman to capture the timevarying aspect of the problems, and because it sounded impressive.
- ☐ The word programming referred to the use of the method to find an optimal program, in the sense of a military schedule for training or logistics.
 - > This usage is the same as that in the phrases *linear programming* and *mathematical programming*, a synonym for *mathematical optimization*.

R. Bellman Coined the Term "Dynamic Programming" (2)

- □ Richard Bellman, "Eye of the Hurricane: an autobiography," 1984:
 - > "...The 1950s were not good years for mathematical research. [the] Secretary of Defense ...had a pathological fear and hatred of the word, research...

I decided therefore to use the word, "programming".

I wanted to get across the idea that this was dynamic, this was multistage... I thought, let's ... take a word that has an absolutely precise meaning, namely dynamic... it's impossible to use the word, dynamic, in a pejorative sense. Try thinking of some combination that will possibly give it a pejorative meaning. It's impossible.

Thus, I thought dynamic programming was a good name. It was something not even a Congressman could object to."

Edit Distance: A Practical Example*

^{*} Some slides are courtesy of Prof. Dan Jurafsky of Stanford (CS 124 course.)

How similar are two strings?

- □ Spell correction
 - > The user typed "graffe"
 - > Which is closest?
 - o graf
 - o grab
 - o grail
 - o giraffe
- □ Computational Biology
 - > Align two sequences of nucleotides:

AGGCTATCACCTGACCTCCAGGCCGATGCCC
TAGCTATCACGACCGCGGTCGATTTGCCCGAC

□ Resulting alignment:

-AGGCTATCACCTGACCTCCAGGCCGA--TGCCC--TAG-CTATCAC--GACCGC--GGTCGATTTGCCCGAC

Edit Distance

- ☐ The minimum edit distance between two strings.
- ☐ Is the minimum number of editing operations
 - > Insertion
 - > Deletion
 - Substitution (A.K.A. Replacement)
- □ Needed to transform one into the other.
- \square Example: Intention \rightarrow Execution

Usage in Natural Language Processing (NLP)

- □ Evaluating Machine Translation and speech recognition models.
 - > Spokesman confirms senior government adviser was shot!
 - > Spokesman said the senior adviser was shot dead!

How to Find Minimum Edit Distance?

- □ Problem: Suppose two strings X (w/ length m) and Y (w/ length n) are given and we want to transform X to Y using minimum number of insertions, deletions, and substitutions.
- ☐ Brute force (search all possible ways) is very slow.
- ☐ Is there any better way?

Recursive Solution

- $\square D(i,j)$ is defined as the edit distance between X[:i] and Y[:j].
 - > The edit distance between X and Y is defined as D(m, n).
- \square Recursive equation for D(i, j):

```
D(i-1,j-1)
\min(D(i-1,j)+1,D(i,j-1)+1,D(i-1,j-1)+1)
                                             substitution
         deletion
                         insertion
```

$$if j = 0$$

$$if i = 0$$

$$if X[i] = Y[j]$$

$$if X[i] \neq Y[j]$$

Examples

□ Tables for transforming "sitting" to "kitten" and "Saturday" to "Sunday".

		k	i	t	t	e	n
	0	1	2	3	4	5	6
S	1	1	2	3	4	5	6
i	2	2	1	2	3	4	5
t	3	3	2	1	2	3	4
t	4	4	3	2	1	2	3
i	5	5	4	3	2	2	3
n	6	6	5	4	3	3	2
g	7	7	6	5	4	4	3

		S	a	t	u	r	d	a	y
	0	1	2	3	4	5	6	7	8
S	1	0	1	2	3	4	5	6	7
u	2	1	1	2	2	3	4	5	6
n	3	2	2	2	3	3	4	5	6
d	4	3	3	3	3	4	3	4	5
a	5	4	3	4	4	4	4	3	4
y	6	5	4	4	5	5	5	4	3

Optimal Solution: Wagner-Fischer Algorithm

```
EditDistance(X, Y) {
    m, n = X.length, Y.length
    for i = 1 to m {
       d[i, 0] = i
    for i = 1 to n {
       d[0, j] = j
    for i = 1 to m {
       for j = 1 to n {
            if X[i-1] = Y[j-1] {
                d[i,j] = d[i-1, j-1]
                ptr[i, j] = 2 // Assume that array indices are zero based.
            } else {
                d[i,j] = min(d[i-1,j], d[i,j-1], d[i-1, j-1]) + 1
                ptr[i, j] = argmin(d[i-1, j], d[i, j-1], d[i-1, j-1])
    return d[m,n], ptr
```

Runtime complexity?
Space complexity?
Constructing the solution complexity?

Sample Problems

True or False?

□ If a dynamic programming solution is set up correctly, i.e., the recurrence equation is correct and the subproblems are always smaller than the original problem, then the resulting algorithm will always find the optimal solution in polynomial time.

□ 0-1 knapsack problem can be solved using dynamic programming in polynomial time.

Binomial Coefficient

- \square Consider using two different methods, recursive computation and dynamic programming, to compute "n choose k" (or the more familiar form of $\binom{n}{k}$), also known as *Binomial coefficient*.
- \square Analyze and compare the complexity in each case to each other. Note that your complexity in the dynamic programming approach must be as good as polynomial; specifically $O(n^2)$.

Recursive Tree

Do you know what we just calculated?

☐ What we just calculated was Khayyam-Pascal triangle!

$$(a+b)^n = C(n,0)a^n + ... + C(n,k)a^{n-k}b^k + ... + C(n,n)b^n$$

n	$\binom{n}{0}$	$\binom{n}{1}$	$\binom{n}{2}$	$\binom{n}{3}$	$\binom{n}{4}$	$\binom{n}{5}$	$\binom{n}{6}$	$\binom{n}{7}$
0	1							
1	1	1						
2	1	2	1					
3	1	3	3	1				
4	1	4	6	4	1			
5	1	5	10	10	5	1		
6	1	6	15	20	15	6	1	
7	1	7	21	35	35	21	7	1

Rod Cutting

- ☐ How to cut steel rods into pieces in order to maximize the revenue you can get?
- □ Each cut is free. Rod lengths are always an integral number of centimeters.
- □ Input: A length N and table of prices p_i , for i = 1, 2, ..., N.
- □ Output: The maximum revenue obtainable for rods whose lengths sum to N, computed as the sum of the prices for the individual rods.

Rope Cutting

- \square A rope has length of N units, where N is an integer.
- ☐ You are asked to cut the rope (at least once) into different smaller pieces of integer lengths so that the product of the lengths of those new smaller ropes is maximized.