Emilian Arnold Matrix Groups

Talk 1: Introduction to Matrix Groups and Examples of Them

1 Matrix Groups

Definition 1.1. A subgroup $G \leq GL_n(\mathbb{K})$ **Overview** which is also a closed Subspace is called a Matrix Group or a \mathbb{K} -matrix Group [Ba, Prop. $SL_n(\mathbb{K}) = 1.30$] $UT_n(\mathbb{K}) = 1.30$

Not all Groups of Matrices are Matrix Groups!

Example 1.2. SL_n is a Matrix Group

Definition 1.3. for a Vector $\mathbf{x} \in \mathbb{K}^n$ the length is defined as $|\mathbf{x}| = \sqrt{(x_1)^2 + ... + (x_n)^2}$

Proposition 1.4. The following Statements are equivalent: A is a linear Isometry, Ax * Ay = x * y, $A^T * A = I_n$ [Ba, Prop. 1.38]

Lemma 1.5. $Isom_n(\mathbb{R}) = O(n) \ltimes Trans_n(\mathbb{R})$ = $\{AT : A \in O(n), T \in Trans_n\}$ [Ba, Prop. 1.39]

Lemma 1.6. SU(2) is a double cover of So(3)

Lemma 1.7. The Group Heis₃ is not linear

2 Overview of Groups

Overview 2.1. $GL_n(\mathbb{K}) = \{A \in M_n(\mathbb{K}) : det(A) \neq 0\}$ $SL_n(\mathbb{K}) = \{A \in M_n(\mathbb{K}) : det(A) = 1\}$ $UT_n(\mathbb{K}) = \{A \in GL_n(\mathbb{K}) : A \text{ is upper triangular}\}$ $SUT_n(\mathbb{K}) = \{A \in GL_n(\mathbb{K}) : A \text{ is unipotent}\}$ $O(n) = \{A \in GL_n(\mathbb{R}) : A^TA = I_n\}$ $SO(n) = \{A \in GL_n(\mathbb{R}) : A^TA = I_n, det(A) = 1\}$ $U(n) = \{A \in GL_n(\mathbb{C}) : A^*A = I_n\}$ $SU(n) = \{A \in GL_n(\mathbb{C}) : A^*A = I_n, det(A) = 1\}$ $Trans_n(\mathbb{K}) = \left\{\begin{bmatrix} I & t \\ 0 & 1 \end{bmatrix} : t \in \mathbb{K}^n \right\}$ $Aff_n(\mathbb{K}) = \left\{\begin{bmatrix} A & t \\ 0 & 1 \end{bmatrix} : t \in \mathbb{K}^n, A \in GL_n(\mathbb{K}) \right\}$ $Isom_n(\mathbb{K}) = \left\{f : \mathbb{K}^n \to \mathbb{K}^n : f \text{ is an isometry} \right\}$ Example2.2.

Example 2.2. $SO(2) = \left\{ \begin{bmatrix} cos\theta & sin\theta \\ -sin\theta & cos\theta \end{bmatrix} : \theta \in [0,2\pi) \right\}$

SO(3) can be imagined as all the proper rotations of a Sphere

Exercise 2.3. Prove for that any Eigenvalue λ of a Matrix $A \in U(n) |\lambda| = 1$

References

[Ba] Andrew Baker: Matrix Groups.

Topology (of Matrix Groups)

by Friedrich Homann

Talk 2

Topology

- What is topology?
- a topology
 - axioms
 - Let X be a set and let τ ⊆ P(x). Then τ is called a topology if
 - i. Both the empty set and X are elements of τ .
 - ii. Any union of elements of τ is an element of τ .
 - iii. Any intersection of finitely many elements of τ is an element of τ .
 - examples
 - chaotic/trivial/indiscrete topology
 - discrete topology
 - standard topology

topological space

Def.: the pair of a set and a topology on that set

Open sets

- Analysis 1 notion: similar to open interval
- Def.: U is an open set if and only if it is an element of the topology.
- Therefore $GL_n(\mathbb{R},\mathbb{C})\subseteq M_n(\mathbb{R},\mathbb{C})$ can be open subsets.

- Closed sets

Def.: A set P is <u>closed</u> if and only if the complement is open.

Continuity

- Def.: Let (M, τ_M) and (N, τ_N) be topological spaces. Then a map f: M → N is continuous if ∀ V ∈ τ_N: preim_f(V) ∈ τ_M.
- theorem: the composition of continuous maps is continuous.

example:

- Let $S = \{1,2,3,4\}$ be a set. $\tau = \{\{\emptyset\}, \{1\}, \{1,2,3,4\}\}$ is a topology on S.
- {1} is an open set
- {2,3,4} is a closed set
- Let τ' = {{∅}, S} be a different topology on S. Let f: (S, τ) → (S, τ') be the identity map. Then f is continuous, but not its inverse, since the preimage of {1} is not an open set in τ'.

Compactness

- simplified notion from Analysis 1 lectures: closed & bounded
- Open cover

 - example:

-
$$U = \{B((M,N),1); M,N \in \mathbb{Z}\}$$

- Subcover
 - Def.: V is a subcover of U if V is a subset of U that also covers E.
- Def.: E is compact if every open cover U has a finite subcover V.
- Compactness is preserved by continuous functions.
- Heine-Borel theorem states: for any set S in Rⁿ, S is closed and compact ⇔ S is compact i.e. every open cover has a finite subcover.
- examples:
 - [a, b]
 - open balls in m^n closed balls of finite radius
 - O(n) and SO(n)
- non-examples:
 - \mathbb{R} $(U = \{(-n, n) | n \in \mathbb{N}\}$, finitely many elements do not suffice)
 - (0,1) $(U = {1 \over n} | n \in \mathbb{N})$, again, finitely many elements do not suffice)

Connectedness

- Def.: not disconnected
- Disconnectedness
 - Def.: E is <u>disconnected</u> if there are nonempty, open and disjoint subsets of E such that the union is E.
 - analogy/example:
 - Puzzle
 - property
 - If f: C → f(C) is continuous and C is connected, then f(C) is connected.
 - Therefore: a continuous function f: (0,1) → (0; 0,5) U (1,5; 2) is impossible. proof is left as an exercise/problem
- example:
 - IR
 - $GL_n(\mathbb{R})$ isn't connected because it has two disjoint components. The matrices with positive and the matrices with negative determinants.
 - $GL_n(\mathbb{C})$ is

Homeomorphisms

- not homomorphisms
- a.k.a. the donut = coffee mug part of topology
- preserve the topological structure
- Def.: f: M → N is a <u>homeomorphism</u> if f is bijective and continuous "in both directions".
- examples:
 - $f: [0,1] \rightarrow [0,2]$ (f could be $x \mapsto 2x$)
 - (0,1) and R are homeomorphic
 - exercise:
 - a) First find a homeomorphism between [0,100] and [0,1].
 - b) Then, find a homeomorphism between (0,1) and \mathbb{R} .

Metric

- creates the notion of distance
- has to meet certain properties:
 - i. $d(x, y) \ge 0$ and $d(x, y) = 0 \Leftrightarrow x = y$
 - ii. d(x, y) = d(y, x)
 - iii. $d(x, y) + d(y, z) \ge d(x, z)$
- A pair of a set S and a metric d (S, d) is called a metric space.
- Closely related notion of norm.
- examples:
 - Euclidean metric $\sqrt{(x_1 x_2)^2 + (y_1 y_2)^2}$ in \mathbb{R}^2
 - taxicab metric ($|x_1 x_2| + |y_1 y_2|$ in \mathbb{R}^2
 - L^{p} metrics $(|x_{1}-x_{2}|^{p}+|y_{1}-y_{2}|^{p})^{\frac{1}{p}}$ in \mathbb{R}^{2}
- possible norm on $M_n(\mathbb{R})$: $||A|| = \{|Ax|: x \in \mathbb{R}^n, |x| = 1\}$
- can be used to define a metric on $M_n(\mathbb{R})$ (d(A, B) = ||A B||)

Subspace topology

- Induction of topologies on subsets
- Def.: Let (M, τ) be a topological space, $N \subset M$, then $\tau|_N := \{u \cap N | u \in \tau\}$.
 - proof that τ|_N is a topology is left as an exercise.
- properties:
 - If N is an open set in M, then v is open in N if and only if it is open in M.
- examples:
 - We can equip $S_1 \subset \mathbb{R}^2$ with $\tau_{std.}|_{s_1}$.