Propositional Logic - Self Ass Report

Atomic Proposition

• The most basic logical building blocks are called atomic propositions, and they are statements that can only be true or untrue. Usually, they are represented by a single letter, like.

Simple statements like "It is raining" or "The sun is shining" can be represented using atomic propositions.

Compound Propositions

 Atomic propositions are combined with logical operators to generate compound propositions.

The following are examples of common logical operators: AND (Λ), OR (V), NOT (\neg), IMPLIES (\rightarrow), and IF AND ONLY IF (\leftrightarrow).

We can express more intricate links between statements using compound propositions.

Type of Compound propositions

- Conjunction (Λ): Indicates the logical AND operation connecting two statements. Only when both of the atomic statements are true is the composite proposition true.
- The disjunction symbol (V) signifies the logical action of OR between two propositions. If at least one of the atomic assertions is true, then the composite proposition is true.
- Negation (¬): Indicates the proposition on which the logical NOT operation is applied. It disproves the atomic proposition's veracity.
- The symbol for the logical inference between two statements is implication (\rightarrow) . Unless the antecedent is true and the consequent is false, the compound statement is true.
- Biconditional (↔): Indicates that two propositions are logically equivalent. If the truth values of the two assertions are the same, then the compound proposition is true.

Evaluation of Compound Proposition

- A compound proposition's truth value is determined by the logical operators employed as well as the truth values of its constituent atomic parts.
- To systematically assess the truth values of compound propositions for every possible combination of the atomic propositions' truth values, truth tables can be built.

Components of a truth table

- Variables: The truth table's columns contain a list of the atomic propositions that make up the compound proposition.
- Rows: Every set of truth values for the atomic propositions is represented by a distinct row in the truth table.
- Columns: In the expression being evaluated, each column corresponds to an atomic proposition or a compound proposition.
- Truth Values: The rows of the truth table are filled with the truth values of the compound propositions for every combination of the atomic propositions' truth values

Step to construct a truth table

- Determine each and every atomic and compound proposition that the phrase contains.
- Based on the number of atomic propositions (usually two times n, where n is the number of atomic propositions), determine the number of rows required.
- Make a list of every conceivable combination of the atomic propositions' truth values.
- Utilizing the logical operators, determine the truth values of compound propositions and update the truth table accordingly.

Usage of truth table

- Assessment of Logical Expressions: Truth tables offer a methodical and transparent approach to assessing the truth values of intricate logical expressions.
- Verification of Equivalences: By comparing the truth values of two expressions for every
 possible combination of the atomic propositions' truth values, truth tables can be utilized
 to verify logical equivalencies.
- Truth tables are a useful tool for demonstrating a variety of logical theorems and properties.

Components of Boolean algebra

- Boolean Variables: In Boolean algebra, variables stand for logical statements or conditions that may or may not be true.
- Logical Operators: A number of basic logical operators are present in Boolean algebra, including:
 - ✓ The symbol for logical conjunction is AND (Λ). Only when both operands are true does it produce true.
 - ✓ OR (V): Indicates a logical contradiction. If any one of the operands is true, it yields true.
 - ✓ NOT (¬): Indicates a logical rejection. It disproves the operand's truth value. Exclusive disjunction is represented by XOR (Exclusive OR). If precisely one operand is true, it returns true.
 - ✓ The symbol for a negated conjunction is NAND (Not AND). Only when both operands are true does it return false.
 - ✓ NOR (Not OR): Shows a disjunction that has been negated. Only when both operands are false does it produce true

• Applications of Boolean Algebra

- ✓ Digital Logic Design: The cornerstone of digital logic design, which is used to create electrical circuits and systems, is boolean algebra.
- ✓ Computer Science: The design of algorithms, the implementation of logic gates, and the creation of software all require boolean algebra.
- ✓ Database Systems: Boolean algebra is utilized in database systems for indexing, data retrieval, and query optimization.
- ✓ Boolean algebra is essential to the techniques and protocols used in cryptography, which ensures safe communication and data encryption.