Introduction to Communications Engineering

Đỗ Công Thuần, Ph.D.

Dept. of CE, SoICT, HUST

Email: thuandc@soict.hust.edu.vn

IT4593E

ONE LOVE. ONE FUTURE.

Thông tin chung

- Tên học phần: Nhập môn kỹ thuật truyền thông
- Mã học phần: IT4593E
- Khối lượng: 2 TC (2-1-0-4)
- Lý thuyết và bài tập: 10 buổi lý thuyết, 5 buổi bài tập
- Đánh giá học phần:

```
30% QT (kiểm tra + bài tập/project + chuyên cần-quiz )
70% CK (trắc nghiệm + tự luận)
```

- Tài liệu tham khảo:
 - Lecture slides
 - Lecture notes
 - Textbooks, ví dụ Communication Systems Engineering, 2nd Edition, by John G. Proakis Masoud Salehi
 - Internet

Lec 04: Decision Theory 4.1 Signal Space Representation

4.1 Decision Theory: Signal Space Representation

Channel Transmission

Transmitted over the channel to the destination

Channel Model

Additive White Gaussian Noise - AWGN

Channel Transmission

AWGN Channel Characteristics

- Linear and time-invariant
- Ideal frequency response: H(f)=1
- Additive Gaussian noise: n(t)

Channel Transmission

Additive White Gaussian Noise n(t)

- Ergodic random process
- Each random variable follows a Gaussian distribution with zero mean
- Power spectral density (PSD) is constant: $G_n(f) = N_0/2$

Ergodic Random Process

 A random process is called ergodic if its statistical characteristics can be inferred from a sufficiently long sequence of its samples.

Why is Noise Gaussian Distributed?

$$f(x)=rac{1}{\sigma\sqrt{2\pi}}e^{-rac{1}{2}\left(rac{x-\mu}{\sigma}
ight)^2} \left[egin{matrix} rac{\pi}{\sigma} \ dots \ \ dots \ dots \ dots \ \ dots \ \ dots \ dots \ \ dots \ \ dots \ \$$

G → Gaussian

- Why Gaussian
- Central limit theorem → sum of independent and identically distributed (i.i.d) random variables approaches normal distribution as sample size N → ∞
- pdf of summation to two random variables is the convolution of their pdf's

n: number of uniformly distributed random variables, Xi

Figure 1. For each n, we draw a uniformly distributed random variable $X_i \sim \mathcal{U}(0,5)$ and compute the sum $S_n = \frac{1}{n} \sum_{i=1}^n X_i$. We sample a new S_n ten thousand times for each n and then compute the histogram of the variables S_n .

- Noise (total noise) is the aggregation of noise from many different sources.
- Example: A Bluetooth speaker receives a signal from your laptop, with the following noise sources:
 - Microwave oven with similar radio frequency, sensor error due to overheating, physical noise when you pick up the speaker, etc.
 - How does the total noise follow a Gaussian distribution???


```
70 80 90 100 11
Sn 11
```

```
N = [1:5 10 20 40]:
                         % values of n we are interested in
LB = 0;
                         % lowerbound for X ~ Uniform(LB,UB)
UB = 5;
                         % upperbound for X ~ Uniform(LB,UB)
n = 10000;
                         % Number of copies (samples) for each random variable
% Generate random variates
X = LB + (UB - LB)*rand(max(N),n);
                                                  % X ~ Uniform(LB,UB) (i.i.d.)
Sn = cumsum(X);
figure
s(11) = subplot(6,2,1) % n = 1
    histogram(Sn(1,:),'Normalization','pdf')
    title(s(11), 'n = 1')
s(12) = subplot(6,2,2)
    cdfplot(Sn(1,:))
    title(s(12), 'n = 1')
s(21) = subplot(6,2,3) % n = 2
    histogram(Sn(2,:),'Normalization','pdf')
    title(s(21), 'n = 2')
s(22) = subplot(6,2,4)
    cdfplot(Sn(2,:))
    title(s(22), 'n = 2')
s(31) = subplot(6,2,5) % n = 5
    histogram(Sn(5,:),'Normalization','pdf')
    title(s(31), 'n = 5')
s(32) = subplot(6,2,6)
    cdfplot(Sn(5,:))
    title(s(32), 'n = 5')
s(41) = subplot(6,2,7) % n = 10
    histogram(Sn(10,:),'Normalization','pdf')
    title(s(41), 'n = 10')
s(42) = subplot(6,2,8)
    cdfplot(Sn(10,:))
    title(s(42), 'n = 10')
s(51) = subplot(6,2,9) % n = 20
    histogram(Sn(20,:),'Normalization','pdf')
    title(s(51), 'n = 20')
s(52) = subplot(6,2,10)
    cdfplot(Sn(20,:))
    title(s(52), 'n = 20')
s(61) = subplot(6,2,11) % n = 40
    histogram(Sn(40,:),'Normalization','pdf')
    title(s(61), 'n = 40')
s(62) = subplot(6,2,12)
    cdfplot(Sn(40,:))
    title(s(62), 'n = 40')
sgtitle({'PDF (left) and CDF (right) for Sn with n \in {1, 2, 5, 10, 20, 40}'})
for tgt = [11:10:61 12:10:62]
    xlabel(s(tgt),'Sn')
    if rem(tgt,2) == 1
        ylabel(s(tgt),'pdf')
                                   % rem(tgt, 2) == 0
    else
        ylabel(s(tgt),'cdf')
    end
end
```

Channel Transmission

Binary Data Sequence

 \underline{u}_{T}

Transmitted Waveform

s(t)

AWGN Channel

Received Waveform

$$r(t) = s(t) + n(t)$$

$$\underline{\mathbf{u}}_{\mathrm{T}} \longrightarrow \mathbf{s}(t) \longrightarrow \mathbf{r}(t) = \mathbf{s}(t) + \mathbf{n}(t)$$

The Problem at the Receiver

$$\underline{\mathbf{u}}_{\mathrm{T}} \longrightarrow \mathbf{s}(t) \longrightarrow \mathbf{r}(t) = \mathbf{s}(t) + \mathbf{n}(t)$$

Problem:

receive $r(t) \rightarrow$ recover \underline{u}_T

$$\underline{\mathbf{u}}_{\mathrm{T}} \longrightarrow \mathbf{s}(t) \longrightarrow \mathbf{r}(t) = \mathbf{s}(t) + \mathbf{n}(t)$$

Problem:

receive $r(t) \rightarrow$ recover \underline{u}_T

Divided into 2 steps:

- 1. Receive r(t), recover s(t): (difficult problem)
- 2. Receive s(t), recover \underline{u}_T : (easy problem: labeling is a 1-1 mapping)

$$\underline{\mathbf{u}}_{\mathrm{T}} \longrightarrow \mathbf{s}(t) \longrightarrow \mathbf{r}(t) = \mathbf{s}(t) + \mathbf{n}(t)$$

Problem:

receive $r(t) \rightarrow$ recover \underline{u}_T

Instead of processing the actual waveform

Easier to process on VECTORS

Given a signal set $M = \{s_1(t), \dots, s_i(t), \dots, s_m(t)\}$

Construct an orthonormal basis B

2. Process in the signal space S spanned by B

 Each signal in S can be represented as a linear combination of the basis components → each signal of S corresponds to a real vector (= the coefficients of that linear combination)

Basis B

Given a signal set:

$$M = \{s_1(t), ..., s_i(t), ..., s_m(t)\}$$

We must find an orthonormal basis:

$$B = \{b_1(t), \dots, b_j(t), \dots, b_d(t)\} \quad (d \le m)$$

B = set of signals

1. Mutually orthogonal
$$= \int_0^T b_j(t)b_i(t)dt = 0 \quad khi \quad j \neq i$$

Given a signal set:

$$M = \{s_1(t), ..., s_i(t), ..., s_m(t)\}$$

We must find an orthonormal basis:

$$B = \{b_1(t), \dots, b_j(t), \dots, b_d(t)\} \quad (d \le m)$$

2. With unit energy

Given a signal set:

$$M = \{s_1(t), ..., s_i(t), ..., s_m(t)\}$$

We must find an orthonormal basis:

$$B = \{b_1(t), \dots, b_j(t), \dots, b_d(t)\} \quad (d \le m)$$

3. The number of basis elements (*d*) is the minimum sufficient to represent each signal of M as a linear combination.

$$s_i(t) = \sum_{j=1}^d s_{ij}b_j(t) \quad s_{ij} \in R$$

Basis B

Given a signal set: $M = \{s_1(t), ..., s_i(t), ..., s_m(t)\}$

We must find an orthonormal basis:

$$B = \{b_1(t), \dots, b_j(t), \dots, b_d(t)\} \quad (d \le m)$$

B = set of signals

- 1. Mutually orthogonal $\sum \int_0^T b_j(t)b_i(t)dt = 0$ when $j \neq i$
- 3. The number of basis elements (d) is the minimum sufficient to represent each signal of M as a linear combination

$$s_i(t) = \sum_{j=1}^d s_{ij} b_j(t) \quad s_{ij} \in R$$

Constructing the Basis B

Given M, how to construct B?

For simple signal sets, it is not difficult to construct **B** directly.

In the general case, we can use the following algorithm to construct **B** from **M**:

Gram-Schmidt Algorithm

Gram-Schmidt Algorithm

$$M = \{s_1(t), \dots, s_i(t), \dots, s_m(t)\}$$

Step 1

For $s_1(t) \rightarrow$ calculate the first vector.

Define:

$$b_1^*(t) = s_1(t)$$

Calculate:

$$b_1(t) = \frac{b_1^*(t)}{\sqrt{E(b_1^*)}}$$

(If
$$b_1^*(t) = 0 \rightarrow b_1(t) = 0$$
)

For $S_2(t)$, find the second vector.

Step 2

Calculate the projection onto the first vector:

$$s_{21} = \int_0^T s_2(t)b_1(t)dt$$

Define:

$$b_2^*(t) = s_2(t) - s_{21}b_1(t)$$

Calculate:
$$b_2(t) = \frac{b_2^*(t)}{\sqrt{E(b_2^*)}}$$
 (If $b_2^*(t) = 0 \Rightarrow b_2(t) = 0$)

$$s_{21} = \int_0^T s_2(t)b_1(t)dt$$
 $b_2^*(t) = s_2(t) - s_{21}b_1(t)$

Note:

- If $b_2^*(t) = 0$ ($s_2(t)$ is proportional to $b_1(t)$)
- $\rightarrow b_2(t) = 0$ and no new vector is added. Why?
- If $b_2^*(t) \neq 0$ ($s_2(t)$ is not proportional to $b_1(t)$)
- $\rightarrow b_2(t) \neq 0$ and a new vector is found.

For $s_i(t)$ $3 \le i < m$

Calculate the projection onto previous vectors:

Step i

$$s_{ij} = \int_0^T s_i(t)b_j(t)dt \qquad 1 \le j \le i - 1$$

Define:

$$b_i^*(t) = s_i(t) - \sum_{j=1}^{i-1} s_{ij}b_j(t)$$

Calculate:

$$b_i(t) = \frac{b_i^*(t)}{\sqrt{E(b_i^*)}}$$
 If $b_i^*(t) = 0 \Rightarrow b_i(t) = 0$

$$\text{If } b_i^*(t) = 0 \Rightarrow b_i(t) = 0$$

$$s_{ij} = \int_0^T s_i(t)b_j(t)dt$$
 $b_i^*(t) = s_i(t) - \sum_{j=1}^{l-1} s_{ij}b_j(t)$

Note:

- If $b_i^*(t) = 0$ $(s_i(t))$ is a linear combination of the non-zero vectors: $b_0(t), \dots, b_{i-1}(t)$.
- $\rightarrow b_i(t) = 0$ and no new vector is added.
- If $b_i^*(t) \neq 0$ $(s_i(t))$ is not a linear combination.)
- $\rightarrow b_2(t) \neq 0$ and a new vector is found.

Last step

- Remove all $b_i(t) = 0$
- Re-index the remaining non-zero $b_i(t)$ vectors
- We have the basis B:

$$B = \{b_1(t), \dots, b_j(t), \dots, b_d(t)\} \quad (d \le m)$$

Exercise

Given the signal set:

$$M = \{s_1(t) = +P_T(t), s_2(t) = -P_T(t)\}$$

Construct the orthonormal basis *B*?

Constructing the Basis

As mentioned, for simple signal sets, B can be constructed directly without applying Gram Schmidt.

Just find **d** signals that satisfy the conditions of an orthonormal basis:

- 1. Orthogonal
- Unit energy
- 3. The number of elements **d** is the minimum and sufficient to represent each signal of **M** as a linear combination

Exercise

Given the signal set:

$$M = \{s_1(t) = 0, s_2(t) = +P_T(t)\}$$

Construct the orthonormal basis *B*?

Exercise

Given the signal set:

$$M = \{s_1(t) = +P_T(t)\cos(2\pi f_0 t), s_2(t) = -P_T(t)\cos(2\pi f_0 t)\}$$

Construct the orthonormal basis *B*?

Signal Space S

With the orthonormal basis:

$$B = \{b_1(t), \dots, b_j(t), \dots, b_d(t)\} \quad (d \le m)$$

The space S represented by B is:

$$S = \left\{ a(t) = \sum_{j=1}^{d} a_j b_j(t) \qquad a_j \in R \right\}$$

(the set of all signals that can be represented as linear combinations of the basis signals)

Exercise

Given the basis B

$$B = \left\{ b_1(t) = +\frac{1}{\sqrt{T}} P_T(t) \right\}$$

What is the signal space S?

Exercise

Given the basis B

$$B = \left\{ b_1(t) = + \sqrt{\frac{2}{T}} P_T(t) \cos(2\pi f_0 t) \right\}$$

What is the signal space S?

Vector Representation

Given B, for each signal $a(t) \in S$ we have

$$a(t) = \sum_{j=1}^{d} a_j b_j(t)$$

The signal a(t) corresponds to a real vector with d components (the coefficients a_j of the linear combination), and vice versa:

$$a(t) \equiv \underline{a} = (a_1, \dots, a_j, \dots, a_d)$$

Vector Representation

1. From vector \underline{a} to signal a(t) $\underline{a} = (a_1, ..., a_j, ..., a_d)$

$$a(t) = \sum_{j=1}^{a} a_j b_j(t)$$

Projection onto vector $b_i(t)$

2. From signal a(t) to vector \underline{a}

 $a(t) \implies a_j = \int_0^T a(t)b_j(t)dt$

$$a = (a_1, \dots, a_i, \dots, a_d)$$

Vector Representation of the Signal Set

We have

$$M \subseteq S$$

Each signal $s_i(t) \in S$ corresponds to a real vector with dcomponents and vice versa:

$$s_i(t) \equiv \underline{s_i} = (s_{i1}, \dots, s_{ij}, \dots, s_{id})$$

The signal set M is a set of signals $M = \{s_1(t), ..., s_1(t), ..., s_m(t)\}$ The signal set M is a set of vectors $M = \{s_1, ..., s_1, ..., s_m\}$

$$M = \{s_1(t), \dots, s_1(t), \dots, s_m(t)\}$$

$$M = \{s_1, ..., s_1, ..., s_m\}$$

1. From vector \underline{s}_i to signal $s_i(t)$ $s_i = (s_{i1}, ..., s_{ij}, ..., s_{id})$

$$s_i(t) = \sum_{j=1}^d s_{ij} b_j(t)$$

2. From signal $s_i(t)$ to vector \underline{s}_i

Projection onto vector $b_i(t)$

$$s_i(t) \Longrightarrow s_{ij} = \int_0^T s_i(t)b_j(t)dt$$

$$\underline{s_i} = (s_{i1}, \dots, s_{ij}, \dots, s_{id})$$

Note: for simple signal sets, the vector components can be deduced directly instead of calculating the projection.

We write:

$$s_i(t) = s_{i1}b_1(t) + \cdots + s_{ij}b_j(t) + \cdots + s_{id}b_d(t)$$

The basis signals $b_j(t)$ are known.

We find the set of coefficients S_{ij} that satisfy the above equation.

The solution is unique.

The signal space S is isomorphic to the Euclidean space R^a (with the set of all vectors with d real components we can visualize in Cartesian space)

If d=1, S \approx R and can be visualized as a 1-D line If d=2, S \approx R² and can be visualized as a 2-D plane If d=3, S \approx R³ and can be visualized as a 3-D space We will write:

$$M \subseteq R^d$$

(A signal set is a set of m points in the Euclidean space R^d)

Example

Signal Energy

For a signal $a(t) \in S$

Its energy is:

$$E(a) = \int_0^1 a^2(t)dt$$

If its vector representation is:

$$a(t) \equiv (a_1, \dots, a_i, \dots, a_d)$$

Then the energy is calculated as follows: (Parseval's identity)

$$E(a) = \sum_{j=1}^d a_j^2$$

In practice, since
$$a(t) = \sum_{j=1}^{a} a_j b_j(t)$$

$$E(a) = \int_0^T a^2(t)dt = \int_0^T \left[\sum_{j=0}^{d-1} a_j b_j(t) \right]^2 dt = \sum_{j=0}^{d-1} a_j^2 \int_0^T b_j^2(t)dt = \sum_{j=0}^{d-1} a_j^2$$

Where the orthogonality property has been used:

$$\int_0^T b_j(t)b_i(t)dt = 0, v \circ i \neq j$$

Signal Set Energy

Given the signal set $M = \{s_1, ..., s_i, ..., s_d\} \subseteq R_d$

With
$$\underline{s_i} = (s_{i1}, \dots, s_{ij}, \dots, s_{id})$$

We have:

$$E(s_i) = \sum_{j=1}^a s_{ij}^2$$

Signal set energy (average):

$$E_S = \sum_{i=1}^{m} P(s_i) E(s_i)$$

Where $P(s_i)$ is the probability of transmitting s_i

Signal Set Energy

Binary data sequences: ideally random

$$\underline{v} \in H_k$$

Binary vectors $\underline{v} \in H_k$ have equal probability.

Labeling is a 1-1 mapping

$$e: H_k \leftrightarrow M$$

The signals in the set
$$s_i \in M$$
 have equal probability.

$$P(s_i) = \frac{1}{m}$$

 $P(s_i) = \frac{1}{m}$ The signal set has energy:

$$E_S = \frac{1}{m} \sum_{i=1}^{m} E(s_i)$$

Energy per Bit

Energy required to transmit one bit via *M*

$$E_b = \frac{E_s}{k}$$

Given a bipolar NRZ signal set:

$$M = \{s_1(t) = +VP_T(t), s_2(t) = -VP_T(t)\}$$

- Construct the orthonormal basis.
- Represent the signal set in vector form.
- Plot in Euclidean space.
- Determine the signal space S?
- Calculate E_s and E_b .

Given a unipolar NRZ signal set:

$$M = \{s_1(t) = +VP_T(t), s_2(t) = 0\}$$

- Construct the orthonormal basis.
- Represent the signal set in vector form.
- Plot in Euclidean space.
- Determine the signal space S?
- Calculate E_s and E_b .

Given a 2-PSK signal set:

$$M = \{s_1(t) = +AP_T(t)\cos(2\pi f_0 t), s_2(t) = -AP_T(t)\cos(2\pi f_0 t)\}\$$

- Construct the orthonormal basis.
- Represent the signal set in vector form.
- Plot in Euclidean space.
- Determine the signal space S?
- Calculate E_s and E_b .

Given a 4-PSK signal set:

$$M = \{s_1(t) = +AP_T(t)\cos(2\pi f_0 t), s_2(t) = +AP_T(t)\sin(2\pi f_0 t),$$

$$s_3(t) = -AP_T(t)\cos(2\pi f_0 t), s_4(t) = -AP_T(t)\sin(2\pi f_0 t)\}$$

- Construct the orthonormal basis.
- Represent the signal set in vector form.
- Plot in Euclidean space.
- Determine the signal space S?
- Calculate E_s and E_b .

Hint:
$$A\cos(2\pi f_0 t - \theta) = (A\cos\theta)\cos(2\pi f_0 t) + (A\sin\theta)\sin(2\pi f_0 t)$$

Repeat for all the following signal sets:

- NRZ (bipolar and unipolar)
- RZ (bipolar and unipolar)
- 4-PAM
- 4-ASK
- 2-PSK
- 4-PSK
- 2-FSK

