PRIMEIRO TRABALHO - CMI064

Murilo Stellfeld de Oliveira Poloi - GRR20185705

UFPR - Matemática Industrial

Neste trabalho será feita a simulação computacional da tabela presente na página 18 do livro *Mathematical Models in Biology* de Leah Edelstein Keshet, referente ao modelo de propagação anual de plantas para dois conjuntos distintos de paramêtros. Foi utilizado o *software* de programação *Octave*, na versão 7.1.0. Os códigos desenvolvidos podem ser acessados em https://github.com/murlopoloi/CMI064/tree/main/Trabalho%201.

Primeira situação:

Aqui temos como parâmetros de entrada: $\alpha=0.5$, $\beta=0.25$, $\gamma=2.0$ e $\sigma=0.8$, assim, conseguimos gerar os seguintes resultados considerando precisão de duas casas decimais:

Geração	Plantas	Novas sementes	Sementes de um ano de idade	Sementes de dois anos de idade
0	100.00	0	0	0
1	80.00	200.00	160.00	0
2	80.00	160.00	128.00	64.00
3	76.80	160.00	128.00	51.20
4	74.24	153.60	122.88	51.20
5	71.68	148.48	118.78	49.15
6	69.22	143.36	114.69	47.51
7	66.85	138.44	110.76	45.88
8	64.55	133.69	106.95	44.30
9	62.34	129.11	103.28	42.78
10	60.20	124.68	99.74	41.31
11	58.13	120.40	96.32	39.90
12	56.14	116.27	93.01	38.53
13	54.21	112.28	89.82	37.21
14	52.35	108.42	86.74	35.93
15	50.56	104.70	83.76	34.70
16	48.82	101.11	80.89	33.51
17	47.15	97.64	78.11	32.36
18	45.53	94.29	75.43	31.25
19	43.97	91.05	72.84	30.17
20	42.46	87.93	70.34	29.14

Segunda situação:

Aqui temos como parâmetros de entrada: $\alpha=0.6$, $\beta=0.3$, $\gamma=2.0$ e $\sigma=0.8$, assim, conseguimos gerar os seguintes resultados considerando precisão de duas casas decimais:

Geração	Plantas	Novas sementes	Sementes de um ano de idade	Sementes de dois anos de idade
0	100.00	0	0	0
1	96.00	200.00	160.00	0
2	107.52	192.00	153.60	51.20
3	117.96	215.04	172.03	49.15
4	129.76	235.93	188.74	55.05
5	142.69	259.52	207.62	60.40
6	156.91	285.38	228.30	66.44
7	172.55	313.83	251.06	73.06
8	189.75	345.11	276.09	80.34
9	208.67	379.51	303.61	88.35
10	229.47	417.34	333.87	97.15
11	252.34	458.94	367.15	106.84
12	277.49	504.68	403.75	117.49
13	305.15	554.99	443.99	129.20
14	335.57	610.31	488.25	142.08
15	369.02	671.14	536.91	156.24
16	405.80	738.04	590.43	171.81
17	446.25	811.60	649.28	188.94
18	490.73	892.50	714.00	207.77
19	539.65	981.46	785.17	228.48
20	593.44	1079.29	863.44	251.25