Upper Bound:

Let (S, \preccurlyeq) be a poset and let $A \subseteq S$. If u is an element of S such that $a \preccurlyeq u$ for all elements $a \in A$ then u is an *upper bound* of A.

Least Upper Bound:

An element x that is an upper bound on a subset A and is less than all other upper bounds on A is called the *least upper bound* on A. We abbreviate "lub".

Note: The least upper bound of $a, b \in S$ is denoted as: $a \oplus b$ (or) a + b (or) a V b and read as Join or sum of a and b.

Lower Bound:

Let (S, \preccurlyeq) be a poset and let $A \subseteq S$. If l is an element of S such that $l \preccurlyeq a$ for all elements $a \in A$ then l is a *lower bound* of A.

Greatest Lower Bound:

An element x that is a lower bound on a subset A and is greater than all other lower bounds on A is called the *greatest lower bound* on A. We abbreviate "glb".

Note: The greatest lower bound of $a, b \in S$ is denoted as: $a \star b$ (or) a . b (or) a \land b and read as meet or product of a and b.

Example

What are the lower/upper bounds and glb/lub of the sets $\{d,e,f\},\;\{a,c\}$ and $\{b,d\}$

```
\{d, e, f\}
```

- Lower Bounds: ∅, thus no glb either.
- Upper Bounds: ∅, thus no lub either.

$\{a,c\}$

- Lower Bounds: ∅, thus no glb either.
- Upper Bounds: $\{h\}$, since its unique, lub is also h.

$\{b,d\}$

- Lower Bounds: $\{b\}$ and so also glb.
- Upper Bounds: $\{d,g\}$ and since $d \prec g$, the lub is d.

Example

Minimal/Maximal elements?

- Minimal & Minimum Element: a.
- Maximal Elements: b, d, i, j.

Bounds, glb, lub of $\{c, e\}$?

- Lower Bounds: $\{a, c\}$, thus glb is c.
- Upper Bounds: $\{e,f,g,h,i.j\}$ thus lub is e

Bounds, glb, lub of $\{b, i\}$?

- Lower Bounds: $\{a\}$, thus glb is a.
- Upper Bounds: Ø, thus lub DNE.

Ex: Find the lower and upper bounds of the subsets $\{a, b, c\}$, $\{j, h\}$, and $\{a, c, d, f\}$ in the poset with the Hasse diagram shown in Figure 7.

FIGURE 7 The Hasse Diagram of a Poset.

Solution: The upper bounds of $\{a, b, c\}$ are e, f, j, and h, and its only lower bound is a. There are no upper bounds of $\{j, h\}$, and its lower bounds are a, b, c, d, e, and f. The upper bounds of $\{a, c, d, f\}$ are f, h, and j, and its lower bound is a.

Find the greatest lower bound and the least upper bound of $\{b, d, g\}$, if they exist, in the poset shown in Figure 7.

FIGURE 7 The Hasse Diagram of a Poset.

Solution: The upper bounds of $\{b, d, g\}$ are g and h. Because $g \prec h$, g is the least upper bound. The lower bounds of $\{b, d, g\}$ are a and b. Because $a \prec b$, b is the greatest lower bound.

LATTICES:

Definition:

 A lattice is a partially ordered set < L, ≤ > in which every pair of elements a, b ∈ L has a greatest lower bound and least upper bound.

i.e. A Poset (L, \leq) is said to be lattice if for every pair of elements a, b \in L, a \oplus b and a \star b exists.

Note:

Since the lattices has two binary operations \bigoplus and \star , the lattice can be denoted as a triple ordered set (L, \bigoplus, \star) or (L, \bigvee, \wedge) .

EX: Determine whether the posets represented by each of the Hasse diagrams in Figure 8 are lattices.

FIGURE 8 Hasse Diagrams of Three Posets.

Solution: The posets represented by the Hasse diagrams in (a) and (c) are both lattices because in each poset every pair of elements has both a least upper bound and a greatest lower bound,

On the other hand, the poset with the Hasse diagram shown in (b) is not a lattice, because the elements b and c have no least upper bound. To see this, note that each of the elements d, e, and f is an upper bound, but none of these three elements precedes the other two with respect to the ordering of this poset.

Example: ({1, 2, 4, 8}, |), where | means 'divisor of '. The hasse diagram

So, it is a lattice.

Example: $(\{1, 2, 3, 4, 5\}, |)$ It is not a lattice, since LUB of

the pair (2, 3) and (3, 5) do

Not exist.

Example . Consider the poset $A = \{a, b, c, d, e, f, g, h\}$, whose Hasse diagram is shown in Figure 7.24. Find all upper and lower bounds of the following subsets of A: (a) $B_1 = \{a, b\}$; (b) $B_2 = \{c, d, e\}$.

Figure 7.24

Solution

- (a) B_1 has no lower bounds; its upper bounds are c, d, e, f, g, and h.
- (b) The upper bounds of B_2 are f, g, and h; its lower bounds are c, a, and b.

Example: Is the Poset $(Z^+, |)$ a lattice?

Solution: Let $a, b \in \mathbb{Z}^+$, now, LUB of these two integers is the LCM (Least Common multiple) and GLB is the GCD (Greatest Common Divisor).

Example:

 Let n be a positive integer and s be the set of all divisors of n For example:

Let D denote the relation of "division".

• The lattices <S₆,D>, <S₂₄,D>, <S₈,D> and <S₃₀,D> are given in lattices fig (b),(g),(a) and (f).

Example: In the case of power set P(S) of any set S, $(P(S), \subseteq)$ is a lattice

Here always $LUB = A \cup B$ and $GLB = A \cap B$, where A and B are any subsets of P(S).

Example:

- Let S be the set and $\rho(s)$ be its power set.
- The partially ordered set < ρ(s), ⊆ > is a lattice in which the meet and join are the same as the operations
 ∧ and ∨ respectively.
- In particular when s has a single element, the corresponding lattices are a chain containing two elements.
- When s has two and three elements, the diagrams of the corresponding lattices are as shown in fig (b) and (f).

Partially ordered sets which are not lattices:

