Instituto Superior Técnico LEIC-A 2021/2022

Projeto de BD - Parte 2

Professor Francisco Regateiro

Grupo nº 93, turno B2L09

Nome, número e aproveitamento:

- Gonçalo Azevedo nº 93075 33% (7 horas)
- Ivan Fortes nº 99085 33% (7 horas)
- Paulo Almeida nº 98959 33% (7 horas)

Modelo Relacional

PointOfretail (address, name)

IVM (<u>serial_number</u>, <u>manuf</u>)

InstalledAt (serial_number, manuf, address, nr)

- serial_number, manuf : FK (IVM)
- address : **FK** (PointOfretail)

Shelve (<u>serial_number</u>, <u>manuf</u>, <u>nr</u>, height, category_name)

- serial_number, manuf : **FK** (IVM)
- category_name : **FK** (Category.name)
- IC-1 All Shelve primary key combinations must appear in AmbientTempShelf, Cold_Shelf or WarmShelf relations.
- IC-2 No **Shelve** primary key combinations can appear in both **AmbientTempShelf**, **ColdShelf** or **WarmShelf** relations at the same time.

AmbientTempShelf (serial_number, manuf, nr)

serial_number, manuf, nr : FK (Shelve)

ColdShelf (serial_number, manuf, nr)

• serial_number, manuf, nr : **FK** (Shelve)

WarmShelf (serial number, manuf, nr)

• serial_number, manuf, nr : **FK** (Shelve)

Product (ean, descr)

• IC-3 – All **Product** <u>ean</u> must appear in **Has** relation.

Planogram (serial_number, manuf, nr, ean, faces, units, loc)

- serial_number, manuf, nr : **FK** (Shelves)
- ean : **FK** (Product)

Has (<u>name</u>, <u>ean</u>)

• name : **FK** (Category)

• ean : **FK** (Product)

Category (name)

SimpleCategory (name)

• name : **FK** (Category)

SuperCategory (name)

- name : **FK** (Category)
- IC-4 All SuperCategory <u>name</u> must also appear in **HasOther** relation.

HasOther (<u>simple_category_name</u>, super_category_name)

- Simple_category_name : **FK** (SimpleCategory.name)
- Super_category_name : **FK** (SuperCategory.name)
- IC-5 simple_category_name and super_category_name cannot be the same.

Retailer (tin, name)

• **UNIQUE**(name)

ResponsibleFor (<u>serial_number</u>, <u>manuf</u>, <u>tin</u>, <u>category_name</u>)

- serial_number, manuf : **FK** (IVM)
- tin: **FK** (Retailer)
- Category_name : **FK** (Category.name)

ReplenishmentEvent (<u>serial_number</u>, <u>manuf</u>, <u>nr</u>, <u>ean</u>, <u>instant</u>, tin, units)

- serial_number, manuf, nr, ean : **FK** (Planogram)
- tin : **FK** (Retailer)
- IC-8 <u>units</u> must be less or equal to the <u>units</u> of the **Planogram** relation with primary key <u>serial_number</u>, <u>manuf</u>, <u>nr</u> and <u>ean</u>.
- IC-9 <u>category_name</u> of the **Planogram** relation with primary key <u>serial_number</u>, manuf, nr and ean, and tin must appear in the **ResponsibleFor** relation.

RI-6: a Category(1) cannot have a Sub-Category(2) that contains Category(1).

Álgebra Relacional

- 1. $((\pi_{ean} (\sigma_{name = "Barras \, Energ\'eticas"} (has))) \cap (\pi_{ean} (\sigma_{inst > '2021/12/32'} \land units > 10))$ (ReplenishmentEvent)))) \bowtie Product.
- 2. $\pi_{\text{serial_number}}(\sigma_{\text{ean}} = \text{``9002490100070''} (\text{Planogram})).$
- 3. $G_{count()}$ ($\sigma_{super_category_name = "Sopas Take-Away"}$ (HasOther).
 - SUM_TABLE <- $_{ean}G_{sum(units)}$ (ReplenismentEvent) MAX_VAL <- $G_{max(sum(units)}$ (SUM_TABLE) ($\pi_{ean}(MAX_VAL \bowtie SUM_TABLE)$) \bowtie Product.

SQL

```
1. ((SELECT ean
   FROM Has
   WHERE name = 'Barras Energéticas')
   INTERSECT
   (SELECT ean
   FROM ReplenishmentEvent
   WHERE inst = 2021/12/32 AND units > 10)
   NATURAL JOIN Product.
2. SELECT serial_number
   FROM Planogram
   WHERE ean = 9002490100070.
3. SELECT COUNT(*)
   FROM HasOther
   WHERE super_category_name = 'Sopas Take-Away'.
4.
   SELECT ean
   FROM ReplenishmentEvent
   WHERE units = (SELECT MAX)
   FROM (SELECT SUM(units)
   FROM ReplenishmentEvent))
```

FROM (MAX_VAL

NATURAL JOIN Product.

NATURAL JOIN SUM_TABLE))