Домашня робота з математичного моделювання #13

Студента 2 курсу групи МП-21 Захарова Дмитра

20 травня 2023 р.

Завдання 1.

Умова. Резервуар має форму вертикального циліндру радіусом R=3 фути. В його основі є круглий отвір радіусом r=1 дюйм. Скільки потрібно часу τ , щоб із резервуару витекла вся вода, якщо із самого початку він заповнений водою на $h_0=9$ футів?

Розв'язок. Нехай маємо залежність висоти в резервуарі від часу h(t). Тоді, згідно закону збереження енергії, швидкість води при витіканні $\sqrt{2gh(t)}$. Потік води при цьому (тобто, швидкість зміни об'єму від часу) дорівнює $\sqrt{2gh(t)} \cdot \pi r^2$.

Розглянемо малий проміжок часу dt. Тоді, якщо відповідна мала зміна у висоті dh, зміна об'єму за цей час $dV = -\pi R^2 dh$, тобто потік води $dV/dt = -\pi R^2 (dh/dt)$. З іншого боку, ця зміна дорівнює $\sqrt{2gh(t)}\pi r^2$. Отже:

$$\pi R^2 \frac{dh}{dt} = -\sqrt{2gh(t)}\pi r^2 \to \frac{dh}{\sqrt{h}} = -\frac{\sqrt{2g}r^2}{R^2}dt$$

Проінтегрувавши, маємо:

$$h(t) = \left(c - \frac{\sqrt{2gr^2}}{2R^2}t\right)^2$$

Якщо підставити умову, що $h(0) = h_0$, то отримаємо $c = \sqrt{h_0}$. Нам ж потрібно знайти такий час τ , що $h(\tau) = 0$. Отже:

$$\tau = \frac{2R^2\sqrt{h_0}}{\sqrt{2g}r^2} = \frac{R^2}{r^2}\sqrt{\frac{2h_0}{g}}$$

Переводимо усі величини у СІ. Згідно умові R=0.9144 м, r=0.0254 м, $h_0=2.7432$ м, а прискорення вільного падіння $g=9.81\frac{\rm M}{\rm c^2}$. Підставляючи, маємо:

$$\tau = \frac{0.9144^2}{0.0254^2} \cdot \sqrt{\frac{2 \cdot 2.7432}{9.81}} \, c \approx 969.2 \, c \approx 16.15 \, \text{xb}$$

Відповідь. Приблизно 16.15 хвилин.

Завдання 2.

Умова. Нехай популяція тварин моделюється диференціальним рівнянням

$$\frac{dN}{dt} = 0.0002N(t)(N(t) - 100)$$

Якщо початкова чисельність популяції дорівнює 50 тваринам, то коли її чисельність зменшиться на 10%? Коли популяція зникне?

Розв'язок. Розв'язання цього диференційного рівняння з умовою $N(0)=50\ \epsilon$

$$N(t) = \frac{100}{1 + e^{t/50}}$$

Нам потрібно дізнатись, в який момент часу τ популяція зменшиться на 10%, тобто стане 45. Для цього нам потрібно розв'язати рівняння:

$$N(\tau) = 45 \rightarrow \frac{100}{1 + e^{\tau/50}} = 45 \rightarrow \tau = 50 \ln \frac{11}{9} \approx 10$$

Щодо зникнення популяції питання доволі неоднозначне, оскільки функція N(t) на нескінченності звичайно дорівнює 0 (тобто $\lim_{t\to +\infty} N(t) =$

0), але нулю воно ніколи не дорівнює. Тому зникненням популяції можна вважати, наприклад, момент, коли популяція складається лише з однієї тварини (тоді, формально, після цього популяція буде менша за 1, що можна вважати її зникненням). Тоді розв'яжемо рівняння N(T)=1. Воно дає $T=55\ln 99\approx 230$.

Відповідь. 10, 230 умовних одиниць.

Завдання 3.

Умова. Припустимо, що в місті з населенням M=100 тис. осіб в початковий момент часу t=0 деякий чуток прослухали $N_0=5$ тис. осіб. Через $\tau=1$ тиждень число тих, хто прослухав цей чуток, зросло до $N_{\tau}=10$ тис. осіб. Нехай швидкість розповсюдження чутка пропорційна добутку числа тих, хто його прослухав та тих, хто його не прослухав. Через скільки днів T чуток прослухає $\epsilon=80\%$ населення міста?

Розв'язок. Маємо логістичне рівняння і з лекції його розв'язок має вид:

$$N(t) = \frac{MN_0}{N_0 + (M - N_0)e^{-kMt}}$$

Згідно умові $N(\tau) = N_{\tau}$, звідки ми можемо знайти k:

$$N(\tau) = \frac{MN_0}{N_0 + (M - N_0)e^{-kM\tau}} = N_{\tau}$$

Отже:

$$e^{-kM\tau} = \frac{\frac{MN_0}{N_\tau} - N_0}{M - N_0} = \frac{N_0(M - N_\tau)}{N_\tau(M - N_0)} \to k = \frac{1}{M\tau} \ln \frac{N_\tau(M - N_0)}{N_0(M - N_\tau)} \approx 0.0075$$

Тепер нам треба розв'язати рівняння $N(T)=\epsilon M$. Отже, маємо:

$$\frac{MN_0}{N_0 + (M - N_0)e^{-kMT}} = \epsilon M$$

Отже звідси:

$$e^{-kMT} = \frac{\frac{N_0}{\epsilon} - N_0}{M - N_0} = \frac{N_0(1 - \epsilon)}{\epsilon(M - N_0)} \to T = \frac{1}{kM} \ln \left(\frac{1}{\frac{1}{\epsilon} - 1} \left(\frac{M}{N_0} - 1 \right) \right)$$

Підставляючи, маємо

$$T \approx 5.77$$
 тижнів ≈ 40.4 днів

Відповідь. Приблизно 40.4 днів.

Завдання 4.

Умова. Припустимо, що у 1970 році чисельність населення деякої країни дорівнювала 10 млн осіб та зростала зі швидкістю 1 млн осіб в рік. У 2000 році чисельність населення дорівнювала 60 млн осіб та зростала зі швидкістю 1.5 млн осіб в рік. Нехай чисельність популяції задовольняє логістичне рівняння, в якому коефіцієнт народжуваності є лінійною спадною функцією чисельності населення. Чи досягне коли-небудь чисельність населення 1 млрд осіб? Якщо так, то коли?

Розв'язок. Згідно умові, якщо позначити N(t) чисельність населення від часу в роках, починаючи з 1970, можна скласти наступне рівняння:

$$\dot{N} = kN(M - N)$$

де $k, M \in \mathbb{R}$ деякі сталі. Тоді згідно умові маємо $N(0)=10, \dot{N}(0)=1.$ Також, оскільки 2000 рік відповідає моменту t=30, можемо також записати, що $N(30)=60, \dot{N}(30)=1.5.$ В такому разі, маємо наступну систему рівнянь:

$$\begin{cases} 1 = 10k(M - 10) \\ 1.5 = 60k(M - 60) \end{cases}$$

Розв'язком цієї системи є $M \approx 76.67, k = 0.0015.$

Бачимо, що $\hat{N}=1000$ млн осіб N(t) досягти не може, оскільки гранична чисельність популяції дорівнює 76.67 млн осіб.

Відповідь. Гранична чисельність популяції дорівнює ≈ 76.67 млн осіб, отже ні, не досягне ніколи згідно моделі задачі.

Завдання 5.

Умова. Припустимо, що у момент часу t=0 чисельність населення деякої країни дорівнювала N_0 осіб та зростала зі швидкістю N_0' осіб в рік. У момент часу t>0 (в роках) чисельність населення дорівнювала $N_1>N_0$ осіб та зростала зі швидкістю N_1' осіб в рік. Чи завжди чисельність популяції може задовольняти логістичне рівняння, в якому коефіцієнт народжуваності є лінійною спадною функцією чисельності населення. Якщо може, то яка гранична кількість населення M?

Розв'язок. Логістичне рівняння, якщо виконується, має вигляд

$$N' = kN(M - N)$$

Підставимо числа з умови:

$$\begin{cases} N_0' = kN_0(M - N_0) \\ N_1' = kN_1(M - N_1) \end{cases}$$

Тут нам потрібно знайти (k, M), проте не факт, що це завжди можна зробити. Тому продовжимо виконувати алгебраїчні перетворення:

$$\begin{cases} kN_0M - kN_0^2 = N_0' \\ kN_1M - kN_1^2 = N_1' \end{cases} \rightarrow \begin{cases} kN_0M = N_0' + kN_0^2 \\ kN_1M = N_1' + kN_1^2 \end{cases}$$

Тепер, спробуємо виразити M через k з першого рівняння і підставити у друге. Ми це можемо зробити, якщо $N_0 \neq 0$, а також якщо в кінці не виявиться, що k=0. Отже, нехай дійсно $N_0 \neq 0$. Більш того, $N_0 < 0$ не має фізичного змісту, тому логічно покласти $N_0 > 0$. Тоді ми маємо:

$$M = \frac{N_0'}{kN_0} + N_0$$

Підставивши у друге маємо:

$$kN_1 \left(\frac{N_0'}{kN_0} + N_0 \right) = N_1' + kN_1^2$$

Або:

$$\frac{N_1 N_0'}{N_0} + k N_0 N_1 = N_1' + k N_1^2$$

Якщо перемістити додатки з k у ліву частину, а інші додатки у праву, то маємо:

$$kN_1(N_1 - N_0) = \frac{N_1 N_0'}{N_0} - N_1'$$

Оскільки ми вже вважаємо $N_0 > 0$, а за умовою маємо $N_1 > N_0$, то $N_1 - N_0 > 0$, $N_1 > 0$, тому маємо повне право поділити на $N_1(N_1 - N_0)$:

$$k = \frac{\frac{N_1 N_0'}{N_0} - N_1'}{N_1 (N_1 - N_0)} = \frac{N_1 N_0' - N_1' N_0}{N_0 N_1 (N_1 - N_0)}$$

Проте, як ми казали, k не може бути 0, тому як мінімум повинно додатково виконуватись $N_1N_0'\neq N_1'N_0$. Окрім цього, якщо чисельність населення дійсно відповідає логістичному рівнянню, в якому коефіцієнт народжуванності є лінійною спадною функцією чисельності населення, то k>0, а отже $N_1N_0'>N_1'N_0$. Якщо це виконується, то тоді M можемо знайти як:

$$M = \frac{N_0'}{kN_0} + N_0 = \frac{N_0' \cdot N_0 N_1 (N_1 - N_0)}{(N_1 N_0' - N_1' N_0) N_0} + N_0$$

Далі можемо спростити:

$$M = \frac{N_0' N_1 (N_1 - N_0)}{N_1 N_0' - N_1' N_0} + N_0 = \frac{N_0' N_1^2 - N_0' N_1 N_0 + N_0 N_1 N_0' - N_0^2 N_1'}{N_1 N_0' - N_1' N_0}$$

Отже остаточно:

$$M = \frac{N_0' N_1^2 - N_1' N_0^2}{N_0' N_1 - N_1' N_0}$$

Знаменник ніколи не 0, сама величина завжди додатна: це краще видно з виду $\frac{N_0'N_1(N_1-N_0)}{N_1N_0'-N_1'N_0}+N_0$, оскільки перший додаток додатній, оскільки $N_1-N_0>0, N_1N_0'-N_1'N_0>0.$

Тепер розглянемо вираз N(t). Згідно лекції

$$N(t) = \frac{MN_0}{N_0 + (M - N_0)e^{-kMt}}$$

Якщо момент часу t нам данний, для якого чисельність дорівнює N_1 , то має також виконуватись:

$$N(t) = N_1 = \frac{MN_0}{N_0 + (M - N_0)e^{-kMt}}$$

тобто

$$t = \frac{N_0^2 N_1 - N_0 N_1^2}{N_0^2 N_1' - N_0' N_1^2} \ln \frac{N_0' N_1^2}{N_1' N_0^2}$$

Нарешті, логічно вважати $N_0' > 0$ (а також потрібно, оскільки N'(t) > 0 для будь-яких t). Оскільки N'(t) монотонно зростає, то $N_0' < N_1'$.

Відповідь. Якщо $0 < N_0 < N_1, 0 < N_0' < N_1',$ а також $N_1N_0' - N_1'N_0 > 0$. Тоді гранична кількість населення $\frac{N_0'N_1^2 - N_1'N_0^2}{N_0'N_1 - N_1'N_0}$.

Якщо задано t, то воно повинно дорівнювати $\frac{N_0^2N_1-N_0N_1^2}{N_0^2N_1'-N_0'N_1^2}\ln\frac{N_0'N_1^2}{N_1'N_0^2}$.

Завдання 6.

Умова. Скількома способами можна наклеїти на конверт в одну лінію марки на 40 грн, використовуючи марки вартістю в 5, 10, 15 і 20 грн (розташування, яке відрізняється порядком марок, розглядається як різні, кількість марок не обмежено)?

Розв'язок. Якщо f(x) це кількість способів наклеїти на конверт в одну лінію марки на x грн, то наша відповідь f(40). Тоді, якщо позначимо 5,10,15,20 через x_1,x_2,x_3,x_4 , то маємо $f(x)=\sum_{j=1}^4 f(x-x_j)$.

Якщо підставити це у програму, що була наведена у попередньому домашньому завданні, то маємо 108.

Відповідь. 108.

Завдання 7.

Умова. Скількома способами можна розміняти 100 копійок на монети номіналом в 10, 15, 20 і 50 копійок?

Розв'язок. Якщо $f(x_1, \ldots, x_n; x)$ є способом розміняти x копійок на монети номіналом в x_1, \ldots, x_n , то маємо рекуретне співвідношення:

$$f(x_1, \ldots, x_k; x) = f(x_1, \ldots, x_k; x - x_k) + f(x_1, \ldots, x_{k-1}; x)$$

Підставляючи числа у програму, маємо відповідь 20.

Відповідь. 20.

Завдання 8.

Умова. Скількома способами можна скласти вагу в 78 г, використовуючи вісім гир в 1, 1, 2, 5, 10, 10, 20, 50 г? При цьому вважається, що застосування двох різних гир, що хоча б і мають однакову вагу, дають різні комбінації.

Розв'язок. Нехай $f(m_1,\ldots,m_k;M)$ це кількість скласти вагу в M маючи гірі m_1,m_2,\ldots,m_k . Тоді маємо наступне відношення:

$$f(m_1,\ldots,m_k;M) = f(m_1,\ldots,m_{k-1};M-m_k) + f(m_1,\ldots,m_{k-1};M)$$

Підставляючи числа у програму, маємо відповідь 4.

Відповідь. 4.