ELP201 Lab Report 3

Adit Malhotra

2020EE10458

1 Introduction

According to my entry number (2020EE10458), the sequence to be generated at output side is 1, 0, 1, 0, 0, 0.

2 State diagram

In total there would be 6 states, let them S_i , where $i \in \{0, 1, 2, 3, 4, 5\}$. Let S_0 be the idle state. Then according to the statement of question the state diagram would be:

Since total number of states are 6 and $6 \le 2^3$, hence total of 3 flipflops would be needed. Let's assign each state S_i the binary value of i.

3 State table

The outputs $Q_2Q_1Q_0$, of the D-flipflops would represent the state at any time t. And since the characteristic equation for the D-flipflop is Q(t+1) = D, then the state table would be:

$Q_2(t)$	$Q_1(t)$	$Q_0(t)$	X(in)	$Q_2(t+1)$	$Q_1(t+1)$	$Q_0(t+1)$	Y(out)	D_2	D_1	D_0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	1	1	0	0	1
0	0	1	0	0	1	0	0	0	1	0
0	0	1	1	0	1	0	0	0	1	0
0	1	0	0	0	1	1	1	0	1	1
0	1	0	1	0	1	1	1	0	1	1
0	1	1	0	1	0	0	0	1	0	0
0	1	1	1	1	0	0	0	1	0	0
1	0	0	0	1	0	1	0	1	0	1
1	0	0	1	1	0	1	0	1	0	1
1	0	1	0	0	0	0	0	0	0	0
1	0	1	1	0	0	0	0	0	0	0

4 Simplification using K-maps

From the state table, the k-maps for $Output(Y), D_2, D_1, D_0$ are as follows:

Figure 1: K-Map for Output(Y)

Figure 2: K-Map for D_2

Figure 3: K-Map for D_1

Figure 4: K-Map for D_0

And from the k-maps the simplified expressions are as follows:

$$\begin{split} Y &= \bar{Q_2} \bar{Q_0} X \ + \ Q_1 \bar{Q_0} \\ D_2 &= Q_2 \bar{Q_0} \ + \ Q_0 Q_1 \\ D_1 &= \bar{Q_2} \bar{Q_1} Q_0 \ + \ Q_1 \bar{Q_0} \\ D_0 &= \bar{Q_0} X \ + \ Q_1 \bar{Q_0} \ + \ Q_2 \bar{Q_0} \end{split}$$

5 Verilog Simulation

5.1 Code

The code file (design.v) for the implementation of the above finite state machine using D-flipflops is: The D-flipflop designed is a postive edge triggered one and has a reset pin which is active low.

```
module DFlipFlop(D,clock,preset,Q,Qbar);
    input D,clock,preset;
2
    output reg Q,Qbar;
3
    initial
    begin
      if(~preset)
      begin
         Q=1;Qbar=0;
10
      else
11
      begin
         Q=0; Qbar=1;
13
      end
14
15
16
    always@(posedge clock)
17
    begin
18
      Q <= D;
19
      Qbar <= ~D;</pre>
    end
21
    endmodule
22
23
    module FSM(in,out,clock,q2,q1,q0,q2bar,q1bar,q0bar);
24
    input in,clock;
25
    output wire q2,q1,q0,q2bar,q1bar,q0bar;
26
    output reg out=0;
27
28
    DFlipFlop ff1((q0bar & in)|(q1 & q0bar)|(q2 & q0bar),clock,1'b1,q0,q0bar);
29
    DFlipFlop ff2((q2bar & q1bar & q0)|(q1 & q0bar),clock,1'b1,q1,q1bar);
30
    DFlipFlop ff3((q2 & q0bar) | (q1 &q0),clock,1'b1,q2,q2bar);
31
    always @(posedge clock )
32
33
      assign out=(q1 & q0bar) | (q2bar & q0bar & in);
34
    endmodule
```

The code file for the testbench (main.v) is: Intitially the input (X) is kept 1 for at least 6 clock cycles and when it reaches the idle state again, it is then made 0 for again at least 6 clock cycles, and finally it is again made 1 for one clock cycle so that machine again becomes active then immediately made 0 for again at least 6 clock cycles. The D-flipflop designed is a postive edge triggered one and has a reset pin which is active low.

```
timescale 1s/100ms
include "design.v"

module main();

reg clk,in;
wire q0,q1,q2,q2bar,q1bar,q0bar,out;
```

```
8
9
    FSM func(in,out,clk,q2,q1,q0,q2bar,q1bar,q0bar);
10
11
    initial
12
    begin
13
    $monitor("CLK=%b,out=%b,in=%b,q2=%b,q1=%b,q0=%b",clk,out,in,q2,q1,q0);
14
    $dumpfile("design.vcd");
15
    $dumpvars(0,main);
16
17
      in=1;#60 //initially input=1;
18
      in=0;#60; //after running the simulation for 60s, input is made 0;
19
      in=1;#10;in=0;
20
      #60;
      $finish;
22
    end
23
    always
24
      #5 clk = ~clk; //changing clock after every 5s
25
    endmodule
26
```

5.2 Waveform

The gtkwave plot obtained is:

Hence it can be observed from the plot, that the FSM once starts generating the sequence, keep generating it no matter whatever is the value of X is and also it remains in the idle state as long as X is kept 0. And at last the sequence generated is 1,0,1,0,0,0 at the output side. Hence, the FSM is working perfectly as required.

Download link for the code files

The code files can be downloaded from here.