Numerical and experimental study on cooling process in spiral

Overview

- Project goals
- Up-to-date efforts
- Basics of heat transfer: Thermal & hydynamic boundary layers
- > Experimental work on single pasties
- Numerical simulation of the whole spiral
- Next steps?
- Conclusion

Project objectives

- Reduction in retention time in spiral
 - Improving product quality (dehydration, texture, flavour)
 - Freezing the product
 - Increasing company profitability

Up-to-date efforts and next steps

- Completed: CFD 2D analysis
 - Simulation showed that impingement is more efficient than spiral approach
- > In progress: 3D Numerical and experimental analysis
 - 3D numerical analysing of a single pasty is ongoing
 - Analysing of a cooling spiral model
 - Experimental data obtained for a single pasty

Heat Transfer basics: Boundary layer concept

No-slip condition: when a fluid brought in in direct contact with a solid, it comes to rest "sticks" to the surface due to viscous effects, and there is no slip. This causes the development of Hydrodynamic boundary layer (HB)

Viscosity of a fluid is responsible for the no-slip condition and the development of the HB

Thermal boundary layer (TB) develops when a fluid brought into contact with a solid surface with a different temperature. The flow region (TB) developed, due the temperature variation, over the surface is thermally significant.

The *thickness* of the thermal boundary layer δ_t at any location along the surface is defined as *the distance from* the surface at which the temperature difference $T - T_s$ equals to 0.99 ($T_f - T_s$).

Heat Transfer in Conjugate systems

Flat plate

Reynolds number $Re = \frac{Ux}{v}$ Prandlt number $Pr = \frac{v}{\alpha}$, $\frac{\delta}{\delta_t} \cong Pr^{\frac{1}{3}}$

where $\delta_t > \delta$ for Pr < 1 for air $Pr \sim 0.7$

$$\delta = \frac{4.91 \, x}{\sqrt{Re_x}} \qquad \delta_t = \frac{4.91 \, x}{Pr^{\frac{1}{3}} \sqrt{Re_x}}$$

The average heat flux

$$\bar{Q} = \bar{h} A (T_s - T_f)$$

The average convective coefficient

$$\overline{h} = 0.332 \frac{k_f}{L} P r^{\frac{1}{3}} R e_L^{\frac{1}{2}}$$

The average Nusselt number

$$\overline{Nu} = \overline{h} \frac{L}{k_f} = 0.332 \ Pr^{\frac{1}{3}} \ Re_L^{\frac{1}{2}}$$

A common correlation of average Nusselt number

$$\overline{Nu} = C Pr^n Re_L^m$$

where C stands for geometry, 0<n<1 and 0<m<1

Simple experimental work

Aims

- Monitoring the effect of the velocity of air on heat transfer
- Determine limits and possibilities of an ticipated achievement
- Identifying the base point for further optimization

Experiment set up and the equipment

Experimental Results: Tesco4Pak C&O

Temperature profiles at three different locations in a pasty: Fig-a data obtained from the combined cooling of ambient and chiller spirals Fig-b data obtained from chiller spiral only

Experimental Results: OCP 270g

Temperature profiles at three different locations in a pasty: Fig-a data obtained from the combined ambient and chiller spirals Fig-b data obtained from chiller spiral only

Ch2 Ch3 Ch4

Experimental Results: OCP 284g

Temperature profiles at three different locations in the OCP284g pasty: Fig-a data obtained from the combined ambient and chiller spirals

Comparison between the current retention time and the tests

Product name and number of experiments	Current Spiral				Test 1				Test 2	
	Time (A) [minutes]	T_{ave} [°C]	Time (C) [minutes]	T_{ave} [°C]	Time (A) [minutes]	T_{ave} [°C]	Time (C) [minutes]	T_{ave} [°C]	Time (C) [minutes]	T_{ave} [°C]
Tesco4Pack135g (3 tests)	40	~45	40	< 3	~ 35	~19	~ 8	< 3	~ 31	< 1
OPC227g (3 tests)	45	~50	45	< 3	~ 36	~22	~ 15	< 3	~ 32	< 2
OPC284g (1 test)	45	~50	45	< 3	~ 38	~24	~ 18	< 3		

The improvement that can be achieved in percentage against the current system

Product name	Test1 gain in the side Ambient [%]	Test1 gain in the Chill sides [%]	Test1 over all gain [%]	Test2 over all gain [%]
Tesco4Pack135g	12.5	80	46.25	61.25
OPC227g	20	66.66	43	60
OPC284g	15	61	39	

Numerical simulation of spiral

Aims

- Predicting the air circulation within the spiral
- Extraction the velocity profile and compare it against the actual one (later)
- Identifying the base point for further optimization

Estimation of air distribution across the Conveyer

$$S_F = 3 \times (\pi r^2 - 0.1 \times D)$$
 $S_C = \pi (R_2^2 - R_1^2)$
= $3 \times (3.14 \times 0.5^2)$ = $3.14 (2.2^2)$
= $2.055 m^2$ = $9.0432 m^2$

Mass conservation

$$\dot{Q}_F = \dot{Q}_C$$

$$V_F \times S_F = V_C \times S_C$$

$$V_C = V_F \times \frac{S_F}{S_C}$$

Velocity between the belt & drum: $V_C = 2.7269 \, m/s$

Stream lines of the air flow

Validation of numerically calculated velocity against analytical values

Validation of horizontal Velocity at 3 different locations VS. analytical solution

Next Steps

- Simulation of whole spiral (4 weeks)
 - ✓ Numerical evaluation of the velocity of air and temperature inside the spiral (in particular improving air circulation)
 - ✓ Simulation a set of pasties inside of the spiral
- Conducting experiments on set of pasties (4 weeks)
 - ✓ Continuing investigating the effect of velocity on retention time including the effect of multiple units
 - ✓ The immediate action: monitoring the actual velocity of air inside the spiral

Conclusion

- > It was found that the retention time for cooling could be reduced
- > The velocity was validated against analytical solution
- > The flow rate should be increased for better air circulation
- Further investigations (Numerical and experimental) are required,
 - the actual air circulation in the spiral must be detrmined

The end of presentation