Measuring Data Similarity, and Proximity

ข้อมูลที่เป็นตัวเลข สามารถนำมา plot เพื่อดูความห่าง สิ่งที่จำเป็นก่อนจะนำข้อมูลไปประมวลผล คือ ต้องสามารถวัดได้ ว่า Data จุดที่ 1 กับ Data จุดที่ 2 มันเหมือน หรือ มันต่างกันอย่างไร

Similarity, Dissimilarity, and Proximity

- Similarity measure or similarity function
 - A real-valued function that quantifies the similarity between two objects
 - Measure how two data objects are alike: The higher value, the more alike
 - Often falls in the range [0,1]: 0: no similarity; 1: completely similar
- Dissimilarity (or distance) measure
 - Numerical measure of how different two data objects are
 - In some sense, the inverse of similarity: The lower, the more alike
 - Minimum dissimilarity is often 0 (i.e., completely similar)
 - Range [0, 1] or [0, ∞), depending on the definition
- Proximity usually refers to either similarity or dissimilarity

55

- Similarity measure or similarity function (ความเหมือน)
 อยากรู้ว่าข้อมูลทั้งสองเหมือนหรือต่างกันอย่างไร จึงทำการสร้างฟังก์ชั่นขึ้นมาหนึ่งฟังก์ชั่น ที่ใส่ Data 2 จุดเข้า
 ไป แล้วฟังก์ชั่นจะทำการคำนวณว่า สองจุดนี้เหมือนหรือต่างกันอย่างไร โดยผล Output ออกมา จะมีค่าอยู่
 ระหว่าง 0 1 ถ้า Similarity มีค่าเป็น 0 หมายความว่าข้อมูลทั้งสองไม่มีความเหมือนกันเลย, Similarity มีค่า
 เป็น 1 หมายความว่าข้อมูลทั้งสองมีความเหมือนกัน
- Dissimilarity (or distance) measure (ความไม่เหมือน)
 วัดว่า ระยะห่างของทั้งสองข้อมูลเป็นเท่าไหร่ ระยะห่างน้อย หมายความว่า ทั้งสองข้อมูลมีความเหมือนกันมาก,
 ระยะห่างมาก หมายความว่าทั้งสองข้อมูลมีความเหมือนกันน้อย
- Proximity (ความต่าง ระยะห่างระหว่างข้อมูล)

Data Matrix and Dissimilarity Matrix

- Data matrix
- A data matrix of n data points with / dimensions
- Dissimilarity (distance) matrix
 - n data points, but registers only the distance d(i, j) (typically metric)
 - Usually symmetric, thus a triangular matrix
 - Distance functions are usually different for real, boolean, categorical, ordinal, ratio, and vector variables
 - Weights can be associated with different variables based on applications and data semantics

oolean, $\begin{pmatrix} 0 \\ d(2,1) & 0 \\ \vdots & \vdots & \ddots \\ d(n,1) & d(n,2) & \dots & 0 \end{pmatrix}$

 x_{n2}

 x_{n1}

 $x_{1/2}$

 x_{nl}

แนวนอน เป็นข้อมูลแต่จุด, แนวตั้ง เป็นฟิวล์แต่ละอัน

Distance matrix เป็น matrix ที่ใช้คำนวณก่อนที่จะนำไปประมวณผล ว่า ข้อมูลไหน ห่างจากข้อมูลไหน เท่าไหร่

Example: Data Matrix and Dissimilarity Matrix

Data Matrix

point	attribute1	attribute2
xl	1	2
x2	3	5
x3	2	0
x4	4	5

Dissimilarity Matrix (by Euclidean Distance)

	xl	x2	x3	x4
xI	0			
x2	3.61	0		
x3	2.24	5.1	0	
x4	4.24	1	5.39	0

58

Dissimilarity Matrix เป็นการบอกว่าข้อมูลแต่ละจุดห่างกันเท่าใหร่ ซึ่งถ้าข้อมูลมี 4 จุด เท่ากับ Distance matrix จะมีขนาดเท่ากับ 4*4

Standardizing Numeric Data

- Z-score:
 - X: raw score to be standardized, μ: mean of the population, σ: standard deviation
 - the distance between the raw score and the population mean in units of the standard deviation
 - negative when the raw score is below the mean, "+" when above
- An alternative way: Calculate the mean absolute deviation

$$s_f = \frac{1}{n}(|x_{1f} - m_f| + |x_{2f} - m_f| + ... + |x_{nf} - m_f|)$$

where

$$m_f = \frac{1}{n} (x_{1f} + x_{2f} + ... + x_{nf})$$

- $m_f = \frac{1}{n}(x_{1f} + x_{2f} + ... + x_{nf})$ $\Rightarrow \text{ standardized measure } (z score): \qquad z_{if} = \frac{x_{if} m_f}{s_f}$
- Using mean absolute deviation is more robust than using standard deviation

Distance on Numeric Data: Minkowski Distance

Minkowski distance: A popular distance measure

$$d(i,j) = \sqrt[p]{|x_{i1} - x_{j1}|^p + |x_{i2} - x_{j2}|^p + \dots + |x_{il} - x_{jl}|^p}$$

where $i = (x_{i1}, x_{i2}, ..., x_{il})$ and $j = (x_{j1}, x_{j2}, ..., x_{jl})$ are two *l*-dimensional data objects, and p is the order (the distance so defined is also called L-p norm)

- Properties
 - \Box d(i, j) > 0 if i \neq j, and d(i, i) = 0 (Positivity)

 - d(i, j) = d(j, i) (Symmetry)
 d(i, j) ≤ d(i, k) + d(k, j) (Triangle Inequality)
- A distance that satisfies these properties is a metric
- Note: There are nonmetric dissimilarities, e.g., set differences

57

Special Cases of Minkowski Distance

- p = 1: (L₁ norm) Manhattan (or city block) distance
- E.g., the Hamming distance: the number of bits that are different between two binary vectors $d(i,j) = |x_{i1} x_{j1}| + |x_{i2} x_{j2}| + \cdots + |x_{il} x_{jl}|$
- p = 2: (L₂ norm) Euclidean distance

$$d(i,j) = \sqrt{|x_{i1} - x_{j1}|^2 + |x_{i2} - x_{j2}|^2 + \dots + |x_{il} - x_{jl}|^2}$$

- $ightharpoonup p
 ightharpoonup \infty$: (L_{max} norm, L_{∞} norm) "supremum" distance
- ☐ The maximum difference between any component (attribute) of the vectors

$$d(i,j) = \lim_{p \to \infty} \sqrt[p]{|x_{i1} - x_{j1}|^p + |x_{i2} - x_{j2}|^p + \dots + |x_{il} - x_{jl}|^p} = \max_{f=1}^l |x_{if} - x_{jf}|$$

point

Example: Minkowski Distance at Special Cases

	34	4		
1_				
L			x ₂	x4
1				
2	x ₁			
<u> </u>		2		4

attribute 1 attribute 2

point

x2

Manhat	Manhattan (L ₁)				
L	x1	x2	x3	x4	
x1	0				
x2	5	0			
x3	3	6	0		
x4	6	1	7	0	

x4	6	1	7	0	
Euclidean (L ₂)					
L2	x1	x2	x3	x4	
x1	0				
x2	3.61	0			
x3	2.24	5.1	0		
x4	4.24	1	5.39	0	
Supremum (L _w)					
L _{eo}	x1	x2	х3	x4	

	- 00			
I.co	xl	x2	x3	x4
x1	0			
x2	3	0		
x3	2	5	0	
x4	3	1	5	0

623020521-8 นางสาวณิชากร ไชยสุวรรณ 5