Лабораторная работа № 2.2.1 Исследование взаимной диффузии газов.

Никита Москвитин, Б04-204

2023

1 Аннотация

В данной работе проверялся общеизвестный закон диффузии. Был найден коэффицент диффузии при атмосферном давлении. Также в условиях экспермента были найдены длина свободного пробега атомов гелия и их эффективное сечение.

2 Введение

Диффузия - самопроизвольное взаимное проникновение веществ друг в друга, происходящее вследствие хаотичного теплового движения молекул. При перемешивании молекул разного сорта говорят о взаимной (или концентрационной) диффузии. В системе, состоящей из двух компонентов, плотность потока вещества в результате взаимной диффузии описывается законом Фика:

$$j_a = -D_{ab} \frac{\partial n_a}{\partial x}, j_b = -D_{ba} \frac{\partial n_b}{\partial x}, \tag{1}$$

где $D_{ab} = D_{ba} = D$ – коэффициент взаимной диффузии компонентов, j_{ab} = плотности потока частиц соответствующего сорта (количество частиц, пересекающих единичную площадку в единицу времени).

В работе исследуется диффузия примеси лёгкого газа (гелия) на фоне воздуха, поэтому концентрация воздуха в опыте значительно больше концентрации гелия, и её относительное изменение незначительно. В процессе работы будет описываться только диффузия примеси гелия на стационарном фоне воздуха.

Проведём теоретическую оценку величины коэффициента взаимной диффузии. В работа мала концентрация гелия, более того, масса атомов гелия много меньше массы молекул, составляющих воздух. При таких условиях перемешивание газов в эксперимента можно рассматривать как диффузию гелия на стационарном форне воздуха. Тогда коэффициент диффузии приблизительно равен:

$$D = \frac{1}{3}\lambda \bar{v},\tag{2}$$

где λ – длина свободного пробега частиц гелия, $\bar{v}=\sqrt{\frac{8kT}{\pi m}}$ – их средняя тепловая скорость. В общем случае необходимо считать $\lambda=\frac{1}{n_\Sigma\sigma}$, где $n_\Sigma=n_{He}+n_B=\frac{P_\Sigma}{kT}$ - полная концентрация частиц, σ – среднее сечение столкновения частиц гелия с воздухом. Также $\bar{v}=\sqrt{\frac{8kT}{\pi\mu}}$ – средняя относитель. Таким образом, теоретическая оценка предполагает, что коэффициент диффузии не зависит от пропорция элементов, а обратно пропорционален давлению $D\propto\frac{1}{P_\Sigma}$.

Предпологая, что процесс диффузии будет квазиостационарным, можно показать, что разность концентраций будет убывать по экспоненциальному закону (Δn_0 – начальная разность концетраций):

$$\Delta n = \Delta n_0 e^{-t/\tau},\tag{3}$$

где τ — характерное время выравнивания концентраций между сосудами, определяемое следующей формулой:

$$\tau = \frac{1}{D} \frac{VL}{2S}.\tag{4}$$

3 Экспериментальная установка

Общий вид конструкции установки приведён на рис. 1. Установка состоит из двух сосудов V_1 и V_2 , соединённых краном K_3 , форвакуумного насоса Ф.Н. с выключателем Т, манометра М и системы напуска гелия, состоящей из кранов K_6 , K_6' , K_7 . Кран K_5 позволяет соединять форвакуумны насос либо с установкой, либо с атмосферой. Сосуды V_1 и V_2 соединены трубкой длины l и сечения S. Сосуды заполнены смесь двух газов при одинаковом давлении, но с различной концентрацией компонентов. Вследствие взаимной диффузии концентрации каждого из компонентов с течением времени выравниваются Между форвакуумным насосом и краном K_5 вставлен предохранительный баллон, защищающий кран и установку при неправильной её эксплуатации от попадания форвакуумного масла из насоса. Сосуды V_1 и V_2 можно соединять как с системой напуска гелия, так и с форвакуумным насосом. Для этот служат краны K_1 , K_2 , K_4 , K_5 . Манометр М регистрирует давление газа, до которого заполняют тот или иной сосуды. Кран K_4 изолирует форвакуумный насос от установки. Для подачи воздуха в установку служит кран K_5 . Дополнительный кран K_6' служит для вакуумной изоляции установки от системы подачи гелия. Краны K_4 , K_5 , K_6' обладают повышенной вакуумплотностью и хорошо изолируют установку от протечек.

Рис. 1: Схема установки

4 Измерения

Параметры установки: $V = (775 \pm 10)$ см³, $\frac{L}{S} = (5, 3 \pm 0, 1) \frac{1}{\text{см}}$, $P_0 = 745$ торр. В таблице привиденны значения давлениий, при которых производились имзерения. Для гелия было произведенно одно измерение при давлении P_1 .

Таблица 1: Давления при которых проводились измерения

P_1 , Topp	P_2 , Topp	P_3 , Topp	P_4 , Topp	P_5 , Topp	P_6 , Topp
52,15	67,05	89,4	141,55	219,775	283,1

5 Обработка результатов

Построим для всех измерений графики в логарифмиическом масштабе, привиденны на соответствующих рисунках. Причем при таких осях $k=1/\tau$, тогда $D=k\frac{VL}{2S}$. В Таблице 2 приведенны значения коэффицентов наклона графиков и соответсвующих коэффицентов диффузии.

Таблица 2: Коэффиценты наклона графиков и диффузии

	P_1 , Topp	P_2 , Topp	P_3 , торр	P_4 , Topp	P_5 , Topp	P_6 , Topp
$k * 10^4, 1/c$	44	37	30	19	13	9
$D, cm^2/c$	$9,0 \pm 0,2$	$7,6 \pm 0,2$	$6,2 \pm 0,2$	$3,9 \pm 0,2$	$2,7 \pm 0,2$	$1,8 \pm 0,2$

С помощью экстарполяции графика коэффицента диффузии, от велечины обратной давлению получаем, что коэффицент диффузии при атмосферном давлении будет равен $D_{P_0}=1,2\pm0,2\,\mathrm{cm}^2/\mathrm{c}$, табличное значение $D_{\mathrm{table}}=0,84\,\mathrm{cm}^2/\mathrm{c}$ (источник: https://www.bog5.in.ua). Также посчитаем, коэффицент диффузии для обратного эксперимента $D_{\mathrm{возд}}=9,4\pm0,2\,\mathrm{cm}^2/\mathrm{c}$, что как мы видим не сильно оличается от $D_{\mathrm{He}}=9,0\pm0,2\,\mathrm{cm}^2/\mathrm{c}$, что логично, так как вывод наш учитаывал, что имеет значение давление, а оно в обоих эксперемнтах примерно одинаковое. Оценим длину свободного пробега для первого эксперимента $\lambda=10^{-5}\,\mathrm{m}$, а эффективная площадь $\sigma=7*10^{-20}\mathrm{m}^2$.

6 Вывод

Как мы видим, наша теоретическая зависимость совпала с реальностью. Коэффицент диффузии при атмосферном давлении будет равен $D_{P_0}=1,2\pm0,2~{\rm cm}^2/{\rm c}$, табличное значение $D_{\rm table}=0,84~{\rm cm}^2/{\rm c}$ (источник: https://www.bog5.in.ua). Коэффицент диффузии для обратного эксперимента $D_{\rm возд}=9,4\pm0,2~{\rm cm}^2/{\rm c}$, что как мы видим не сильно оличается от $D_{\rm He}=9,0\pm0,2~{\rm cm}^2/{\rm c}$, что логично, так как вывод наш учитаывал, что имеет значение давление, а оно в обоих эксперемнтах примерно одинаковое. Длина свободного пробега для первого эксперимента $\lambda=10^{-5}$ м, а эффективная площадь $\sigma=7*10^{-20}{\rm m}^2$.

Рис. 2: График относительной разницы концетраций от времени в логарифимиче
еком масштабе для P_1

Рис. 3: График относительной разницы концетраций от времени в логарифимиче
еком масштабе для P_2

Рис. 4: График относительной разницы концетраций от времени в логарифимиче
еком масштабе для P_3

Рис. 5: График относительной разницы концетраций от времени в логарифимич
секом масштабе для P_4

Рис. 6: График относительной разницы концетраций от времени в логарифимиче
еком масштабе для P_5

Рис. 7: График относительной разницы концетраций от времени в логарифимич
секом масштабе для P_6

Рис. 8: График относительной разницы концетраций от времени в логарифимиче
еком масштабе для He

Рис. 9: График коэффиценнта диффузии, от велечиный обратной давлению.