COMP SCI 5401 FS2016 Assignment 1c

Robert Jones rbj2q2@mst.edu

October 9, 2016

1 Plots

2 Experiment Comparisons

2.1 Control vs Mutation

2.1.1 Dataset 1

F-Test Two-Sample for Variances			t-Test: Two-Sample Assuming Un	equal Variances	
	Variable 1	Variable 2		Variable 1	Variable 2
Mean	0.503786	0.570473	Mean	0.57047313	0.503785655
Variance	0.00047	0.003196	Variance	0.003195994	0.000470454
Observati	30	30	Observations	30	30
df	29	29	Hypothesized Mean Difference	0	
F	0.147201		df	37	
P(F<=f) on	8.3E-07		t Stat	6.032288585	
F Critical c	0.5374		P(T<=t) one-tail	2.83872E-07	
			t Critical one-tail	1.68709362	
			P(T<=t) two-tail	5.67744E-07	
			t Critical two-tail	2.026192463	

2.1.2 Dataset 1

F-Test Two-Sample for Variances			t-Test: Two-Sample Assuming Unequal Variances		
	Variable 1	Variable 2		Variable 1	Variable 2
Mean	0.338424	22.08547396	Mean	0.338423814	22.08547396
Variance	0.007548	6.179319026	Variance	0.007547765	6.179319026
Observati	30	30	Observations	30	30
df	29	29	Hypothesized Mean Difference	0	
F	0.001221		df	29	
P(F<=f) on	0		t Stat	-47.88787882	
F Critical c	0.5374		P(T<=t) one-tail	1.85188E-29	
			t Critical one-tail	1.699127027	
			P(T<=t) two-tail	3.70377E-29	
			t Critical two-tail	2.045229642	

 ${f T}$ he F-Test was used to compare the two configurations. The results of the F-Test showed that unequal variances should be assumed. After the t-test, it can be assumed that for dataset 1, the control was better with a 95It can also be assumed that for dataset 2, the control was worse with a 95

2.1.3 Dataset 2

2.2 Control vs 1-Elitism Restarts

2.2.1 Dataset 1

2.2.2 1	Dataset 2
2.3 C	Control vs 2-Elitism Restarts
2.3.1 I	Dataset 1
2.3.2 I	Dataset 2
2.4 1-	-Elitism Restarts vs 2-Elitism Restarts
2.4.1 I	Dataset 1
2.4.2 I	Dataset 2
3 Bo	onus 1
3.1 C	Control vs Mutation with 1-Elitism Restarts
3.1.1 I	Dataset 1
3.1.2 I	Dataset 2

3.2 Mutation vs Mutation with 1-Elitism Restarts
3.2.1 Dataset 1
3.2.2 Dataset 2
3.3 1-Elitism Restarts vs Mutation with 1-Elitism Restarts
3.3.1 Dataset 1
3.3.2 Dataset 2
4 Bonus 2
4.1 Control vs Recombination
4.1.1 Dataset 1
4.1.2 Dataset 2
4.2 1-Elitism Restarts vs Recombination with Restarts

4.2.1	Dataset 1
4.2.2	Dataset 2
4.3	Control vs Recombination with Mutation
4.3.1	Dataset 1
4.3.2	Dataset 2
4.4	1-Elitism vs Recombination with Mutation
4.4.1	Dataset 1
4.4.2	Dataset 2
4.5	Mutation vs Recombination with Mutation
4.5.1	Dataset 1
4.5.2	Dataset 2

4.6	Mutation vs Recombination with Mutation and 1-Elitism Restarts
4.6.1	Dataset 1
4.6.2	Dataset 2
4.7	Recombination vs Recombination with Mutation
4.7.1	Dataset 1
4.7.2	Dataset 2
4.8	Recombination vs Recombination with Mutation and 1-Elitism Restarts
4.8.1	Dataset 1
4.8.2	Dataset 2

5 Conclusion

In conclusion, in can be stated with 95% confidence that both of the evolutionary algorithms used are better than random search.