CSE2312 Computer Organization & Assembly Language Programming QUIZ 1 (Chapter 1)

Student Name:	
Student ID:	

TRUE OR FALSE (1 pts per)

Q:	1	2	3	4	5	6	7	8	9	10
T/F	T	F	T	T	F	F	F	T	T	F
1/1										

- 1. Computer Architecture is to study how to design parts of a computer system that are visible to the programmers. T
- 2. An interpreter converts programs in one language to another, while a translator carries out a program instruction by instruction. F
- 3. Hardware and software are functionally equivalent. Any function done by one can, in principle, be done by the other. T
- 4. Hardware and software are not equivalent in the sense that to make the machine really run, the bottom level must be hardware, not software. They also differ in performance. T
- 5. L1 language is less convenient for people to use than those in built-in machine instructions. F
- 6. Clock rate is the only factor that determines the performance of a CPU. F
- 7. Keep other factors the same, running the same program in a computer with 2 CPUs will get at least 2x acceleration compared to running it on a computer with only 1 CPU. F
- 8. The response time is defined as the amount of time that a given computer takes to do a specific task. T
- 9. ISA is the interface between software and hardware. T
- 10. Amdahl's law predicts the capacity of disk will increase 2x every year. F

Multiple Choices (4 pts per)

1. Which of following is true for Translation and Interpretation? [a, b, c]

- (a) In both of them, the computer carried out instructions in L1 by executing equivalent sequences of instructions in L0
- (b) In translation, the entire L1 program is converted to a L0 program.
- (c) In interpretation, after each L1 instruction is examined and decoded, it is carried out immediately.
- (d) Interpretation is more efficient than Translation

2. Which of following can be stored in the memory? [c]

- (a) Data only
- (b) Program only
- (c) Both data and program
- (d) None of them

3. Which of following may affect the execution time? [a, b, c, d]

- (a) Algorithm: determine the number of operations executed
- (b) Programming language, compiler, architecture: determine the number of machine instructions executed per operation (IC)
- (c) Processor and memory system: determine how fast instructions are executed (CPI) and increase it.
- (d) I/O system (including OS): determines how fast I/O operations are executed

4. Which of following is true in Multilevel Machines? [c, d]

- (a) Instruction Set Architecture Level lay between Digital Logic Level and Microarchitecture Level.
- (b) Assembly Language Level lay between Instruction Set Architecture Level and Operating System Level
- (c) Operating System Level lay between Assembly Language Level and Instruction Set Architecture Level
- (d) Microarchitecture Level lay between Digital Logic Level and Instruction Set Architecture Level

5. Which of following is true based on Moore Law: [b]

- (a) 2X processor speed increment every 8 months.
- (b) 2X processor speed increment every 18 months.
- (c) 4X processor speed increment every 8 months.
- (d) 4X processor speed increment every 18 months.

6.	Consider a computer with identical interpreters at levels 1, 2, an	d 3	. It takes	an
	interpreter n instructions to fetch, examine and execute one instr	uct	ion. A le	vel
	1 instruction takes k nanoseconds to execute. How long does it ta	ke i	for an	
	instructions at levels 3	[c]
(a)	k nanoseconds.			
(b)	kn nanoseconds.			
(c)	kn ² nanoseconds.			
(d)	kn ³ nanoseconds.			
7.	What factors could account for the performance discrepancy of	f co	_	s:
			a,b,c,d]
	Cycle time.			
	The number of bytes fetched per cycle.			
` '	Memory speed.			
(d)	I/O architecture.			
8.	Which of following is not I/O device?	[d]
` '	Keypad.			
` '	Mouse.			
` '	Printer.			
(d)	CPU.			
9.	In computer architecture, which of the following use ISA:	[a, b]
(a)	Operating System.			
(b)	Compiler.			
(c)	Memory.			
(d)	Disk.			
10.	Which of following is not a computer of Von Neumann Archite	ectu	ıre:	
			d]
` '	iPhone.			
` '	iPad.			
	Dell Desktop PC.			
(d)	Babbage's difference engine.			

Fill in the Blanks and Short Answer (5 pts per)

1. Please draw a diagram for the Contemporary 6-level Machines

2. Please draw a diagram for the Von Neumann Machine

3. What factors affect the execution time? How to reduce the execution time correspondingly?

Solution:

Algorithm, programming language, compiler and architecture, processor and memory system, I/O system.

- Algorithm
- Reduce number of operations executed
- Programming language, compiler, architecture
- Reduce number of machine instructions executed per operation (IC)
- Processor and memory system
- Determine how fast instructions are executed (CPI) and increase it.
- I/O system (including OS)
- Determines how fast I/O operations are executed
- 4. If computer A and Computer B are 8Mhz and 3Ghz respectively, what is their clock times respectively?

Solution:

A: $1/8 * 10^{-6}$ sec.

B: $1/3 * 10^{-9}$ sec.

5. What is the key gap in computer design? How to bridge this gap?

<u>Key Gap</u>: Human prefers natural language while it's easy to use machine (binary) language for computers.

<u>Bridging the Gap:</u> Designing a high level language (L1) including a new set of instructions that is more convenient for people to use than those in built-in machine instructions (L0 language).

Computation and Short Answer (15 pts per)

1. There are 4 classes of instructions, A, B, C, D. Suppose compiler has two choices: Sequence 1 and Sequence 2, as described below:

Class	A	В	С	D
CPI for class	1	2	1	3
IC in sequence 1	3	1	5	1
IC in sequence 2	2	4	1	3

Which choice will be better? Why?

Solution:

Sequence 1: IC =3+1+5+1=10.
Clock cycle =
$$3*1 + 1*2 + 5*1 + 1*3 = 13$$
.
Avg CPI = $13/10 = 1.3$
Sequence 2: IC = $2+4+1+3=10$.
Clock cycle = $2*1 + 4*2 + 1*1 + 3*3 = 20$.
Avg CPI = $20/10 = 2$.

Sequence 1 has lower avg CPI, so it is better.

2. Computer A has 5GHz clock. It takes 100s CPU time to finish one given task.

We want to design Computer B to finish the same task within 20s CPU time. The clock cycle number for computer B is 2 times as that of Computer A.

So, what clock rate should be designed for Computer B?

Solution:

```
Clock rate (CR) = Clock Cycle/CPU Time

Clock Cycle<sub>A</sub> = CR<sub>A</sub> * CPU<sub>A</sub> = 5*10^9 * 100s = 500*10^9

Clock Cycle<sub>B</sub> = 2 Clock Cycle<sub>A</sub> = 2*500*10^9 = 1000*10^9

CPU<sub>B</sub> = 20s

So Clock Rate<sub>B</sub> = Clock Cycle<sub>B</sub> /CPU<sub>B</sub> = (1000/20) * 10^9 = 50 GHz
```

- 3. There are two computers: A and B.
 - Computer A: Cycle Time = 500ps, CPI = 4.0
 - Computer B: Cycle Time = 200ps, CPI = 5.0

If they have the same ISA, which computer is faster? How many times it is faster than another?

Solution:

```
CPU = IC * CPI * Cycle time
So

CPU_A = IC*4*500 = 2000*IC

CPU_B = IC*5*200 = 1000*IC

So B is (2000/1000) = 2 times faster.
```