Intro

I denne rapporten har jeg funnet avkjøingskonstanten til vann i en av koppene mine.

Teori

Newtons avkjølingslov beskriver temperaturendringen til en gjendstand som en andel av temperaturforskjellen mellom omgivelsene og gjenstanden

$$\dot{T}(t) = \alpha (T(t) - T_k)$$

Ved løsing av differensialigningen får man temperaturen som en funksjon av tiden

$$T(t) = T_k + (T_0 - T_k)e^{-\alpha t}$$

Dette kan brukes til å finne avkjøingskonstaten alpha

Metode

Vann ble oppvarmet til ca 100C og deretter satt i en kopp. Temperaturen til vannet ble målt hvert minutt. Temperaturen i rommet ble også målt. Til slutt ble målingene plottet grafisk og verdien til avkjølingskonstanten funnet.

Resultat

Måligene ga følgende tabell, der T_k er temperaturen i rommet

T_k	23.1								
Tid [min]	Temp [C]								
0	76.8	20	51.2	40	40.1	60	33.9	80	30.6
1	73.9	21	50.8	41	40.1	61	33.7	81	30.2
2	72.3	22	50	42	39.7	62	33.7	82	30
3	71.9	23	49.2	43	38.9	63	33.3	83	30
4	69.9	24	48.4	44	38.5	64	32.9	84	30
5	68.7	25	47.6	45	38.5	65	32.9	85	29.8
6	66.7	26	47.2	46	38.1	66	32.9	86	29.4
7	64.7	27	46.8	47	37.7	67	32.5	87	29.4
8	63.5	28	46	48	37.3	68	32.5	88	29.4
9	62.3	29	45.2	49	36.9	69	32.1	89	29
10	60.9	30	44.8	50	36.9	70	32.1	90	29
11	59.7	31	44.4	51	36.3	71	31.7		
12	58.5	32	44	52	36.3	72	31.4		
13	57.3	33	43.6	53	35.9	73	31.4		
14	56.5	34	43.2	54	35.5	74	31.4		
15	55.7	35	42.5	55	35.5	75	31		
16	54.5	36	41.6	56	35.1	76	31		
17	53.7	37	41.2	57	34.7	77	31		
18	52.5	38	40.8	58	34.7	78	30.6		
19	51.7	39	40.8	59	34.3	79	30.6		

Dette ga følgende graf med teoretisk modell og målte verdier. Her er blå graf de målte verdiene og oransje den teoretiske. Dette viste seg å gi en avkjølingskonstant på ca 0.02824

Konklusjon

Avkjølingskonstaten er ca 0.02824