Analytic Number Theory

Labix

April 24, 2022

Abstract

Contents

1	Arit	thmetic Functions
	1.1	Mobius Function and Euler Totient Function
	1.2	Dirichlet Functions
	1.3	Mangoldt Function
	1.4	Multiplicative Functions
	1.5	Completely Multiplicative Functions
		Liouville's Function
	1.7	The Divisor Function
	1.8	Bell Series
	1.9	Derivatives
	1.10	Selberg Identity

1 Arithmetic Functions

1.1 Mobius Function and Euler Totient Function

Definition 1.1.1 (Arithmetical Functions). A function $f: \mathbb{N} \to \mathbb{C}$ is an arithmetical function.

Definition 1.1.2 (Mobius Function). Let $n = \prod_{i=1}^k p_i^{\alpha_i}$. Define the mobius function as

$$\mu(n) = (-1)^k$$

if $\alpha_1 = \cdots = \alpha_k = 1$. And 0 otherwise.

Theorem 1.1.3. For $n \in \mathbb{N}$, we have

$$\sum_{d|n} \mu(d) = \left\lfloor \frac{1}{n} \right\rfloor = \begin{cases} 1 & \text{if } n = 1\\ 0 & \text{otherwise} \end{cases}$$

Definition 1.1.4 (Euler's Totient Function). Let $\phi(n)$ denote the number of positive integers less than n and relatively prime to n.

Theorem 1.1.5. Let $n \geq 1$.

$$n = \sum_{d|n} \phi(d)$$

Theorem 1.1.6. For $n \in \mathbb{N}$ we have

$$\phi(n) = \sum_{d|n} \mu(d) \frac{n}{d}$$

Theorem 1.1.7. For $n \in \mathbb{N}$ we have

$$\phi(n) = n \prod_{n|n} \left(1 - \frac{1}{p} \right)$$

Proposition 1.1.8. The Euler's Totient Function has the following properties.

- $\bullet \ \phi(p^n) = p^{n-1}(p-1)$
- $\phi(mn) = \phi(m)\phi(n)\left(\frac{d}{\phi(d)}\right)$, where $d = \gcd(m, n)$
- $a|b \implies \phi(a)|\phi(b)$
- $\phi(n)$ is even for $n \geq 3$. Moreover, if n has r distinct odd prime factors, then $2^r | \phi(n)$

1.2 Dirichlet Functions

Definition 1.2.1 (Dirichlet Product). If f and g are two arithmetical functions we define their dirichlet product to be the arithmetical function h defined by the equation

$$h(n) = \sum_{d|n} f(d)g\left(\frac{n}{d}\right)$$

Theorem 1.2.2. Dirichlet multiplication is commutative and associative.

Definition 1.2.3. The arithmetical function I given by

$$I(n) = \left\lfloor \frac{1}{n} \right\rfloor = \begin{cases} 1 & \text{if } n = 1\\ 0 & \text{otherwise} \end{cases}$$

is called the identity function.

Proposition 1.2.4. For all f we have I * f = f * I = f

Theorem 1.2.5. Let f be an arithmetical function with $f(1) \neq 0$. There is a unique arithmetical function f^{-1} , called the Dirichlet inverse of f such that

$$f * f^{-1} = f^{-1} * f = I$$

Moreover f^{-1} is given by the recursion formulas

$$f^{-1}(1) = \frac{1}{f(1)}$$

and

$$f^{-1}(n) = \frac{-1}{f(n)} \sum_{\substack{d \mid n \text{ and } d \le n}} f\left(\frac{n}{d}\right) f^{-1}(d)$$

for n > 1.

Definition 1.2.6 (Unit Function). Define the unit function u to be the arithmetical function such that u(n) = 1 for all n.

Proposition 1.2.7. The Dirichlet Inverse of the mobius function is the unit function.

Theorem 1.2.8 (Mobius Inversion Formula). Let f, g be arithmetical functions.

$$f(n) = \sum_{d|n} g(d)$$

if and only if

$$g(n) = \sum_{d|n} f(d)\mu\left(\frac{n}{d}\right)$$

1.3 Mangoldt Function

Definition 1.3.1 (Mangoldt's Function). For $n \in \mathbb{N}$ define

$$\Lambda(n) = \begin{cases} \ln(p) & \text{if } n = p^m \text{ for some prime } p \text{ and some } m \ge 1\\ 0 & \text{otherwise} \end{cases}$$

Theorem 1.3.2. For $n \in \mathbb{N}$,

$$\ln(n) = \sum_{d|n} \Lambda(d)$$

Theorem 1.3.3. For $n \in \mathbb{N}$ we have

$$\Lambda(n) = \sum_{d|n} \mu(d) \ln\left(\frac{n}{d}\right) = -\sum_{d|n} \mu(d) \ln(d)$$

1.4 Multiplicative Functions

Definition 1.4.1 (Multiplicative Functions). An arithmetical function f is called multiplicative if f is not identically 0 and if

$$f(mn) = f(m)f(n)$$

when gcd(m, n) = 1 It is completely multiplicative if it is multiplicative regardless of the condition.

Proposition 1.4.2. If f is multiplicative then f(1) = 1.

Proposition 1.4.3. Let f(1) = 1 be an arithmetical function. f is multiplicative if and only if

$$f\left(\prod_{i=1}^{k} p_i^{\alpha_i}\right) = \prod_{i=1}^{k} f\left(p_i^{\alpha_i}\right)$$

Proposition 1.4.4. Let f(1) = 1 be an arithmetical function. f is completely multiplicative if and only if $f(p)^{\alpha} = f(p)^{\alpha}$ for all primes p and all integers $\alpha \geq 1$.

Proposition 1.4.5. If f and g are multiplicative, so is their Dirichlet product.

Proposition 1.4.6. If f and f * g are multiplicative, then g is multiplicative.

Proposition 1.4.7. If f is multiplicative, so is f^{-1} .

1.5 Completely Multiplicative Functions

Theorem 1.5.1. Let f be multiplicative. Then f is completely multiplicative if and only if

$$f^{-1}(n) = \mu(n)f(n)$$

for all $n \geq 1$.

Theorem 1.5.2. If f is multiplicative we have

$$\sum_{d|n} \mu(d)f(d) = \prod_{p|n} (1 - f(p))$$

1.6 Liouville's Function

Definition 1.6.1 (Liouville's Function). Define $\lambda(1) = 1$ and if

$$n = \prod_{i=1}^{k} p_i^{\alpha_i}$$

define

$$\lambda(n) = (-1)^{\alpha_1 + \dots + \alpha_k}$$

Proposition 1.6.2. $\lambda(n)$ is completely mutiplicative.

Theorem 1.6.3. For $n \in \mathbb{N}$ we have

$$\sum_{d|n} \lambda(d) = \begin{cases} 1 & \text{if } n \text{ is a square} \\ 0 & \text{otherwise} \end{cases}$$

Also $\lambda^{-1}(n) = |\mu(n)|$ for all n.

1.7 The Divisor Function

Definition 1.7.1. For real and complex α and any $n \in \mathbb{N}$ define

$$\sigma_{\alpha}(n) = \sum_{d|n} d^{\alpha}$$

Proposition 1.7.2. $\sigma_{\alpha}(n)$ is multiplicative.

Theorem 1.7.3. For $n \in \mathbb{N}$ we have

$$\sigma_{\alpha}^{-1}(n) = \sum_{d|n} d^{\alpha} \mu(d) \mu\left(\frac{n}{d}\right)$$

1.8 Bell Series

Definition 1.8.1 (Bell Series). Let f be an arithmetical function and p a prime. Denote

$$f_p(x) = \sum_{n=0}^{\infty} f(p^n) x^n$$

the bell series of f modulo p.

Theorem 1.8.2. Let f, g be multiplicative functions. Then f = g if and only if $f_p(x) = g_p(x)$ for all primes p.

Theorem 1.8.3. Let f, g be arithmetical functions and let h = f * g. Then for every prime p we have

$$h_p(x) = f_p(x)g_p(x)$$

1.9 Derivatives

Definition 1.9.1 (Derivatives of Arithmetical Functions). For any arithmetical function f define f' to be its derivative where

$$f'(n) = f(n)\ln(n)$$

for $n \geq 1$.

Theorem 1.9.2. Let f, g be arithmetical functions.

- $\bullet \ (f+g)' = f' + g'$
- (f * g)' = f' * g + f * g'
- $(f^{-1})' = -f' * (f * f)^{-1}$ whenever $f(1) \neq 0$

1.10 Selberg Identity

Theorem 1.10.1 (Selberg Identity). For $n \in \mathbb{N}$ we have

$$\Lambda(n)\ln(n) + \sum_{d|n} \Lambda(d)\Lambda\left(\frac{n}{d}\right) = \sum_{d|n} \mu(d)\ln^2\left(\frac{n}{d}\right)$$