

الامتحان الوطني الموحد للبكالوريا الدورة العادية **2013** الموضوع

- La durée de l'épreuve est de 4 heures.
- L'épreuve comporte trois exercices et un problème indépendants deux à deux.
- Les exercices et le problème peuvent être traités selon l'ordre choisi par le candidat.
 - Le premier exercice se rapporte aux structures algébriques.
 - Le deuxième exercice se rapporte aux nombres complexes.
 - Le troisième exercice se rapporte à l'arithmétique.
 - Le problème se rapporte à l'analyse.

L'USAGE DES CALCULATRICES NON PROGRAMMABLES EST AUTORISE

L'usage de la couleur rouge n'est pas permis

Exercice1:(3,5pts)

0.25

0.5

0.5

0.5

On rappelle que $(\Box, +, \times)$ est un anneau commutatif, unitaire et intègre.

1- On munit \square de la loi de composition interne * définie par :

$$(\forall (x,y) \in \square^2)$$
; $x * y = x + y - 2$

a) Montrer que la loi * est commutative et associative. 0.5

b) Montrer que $(\Box, *)$ admet un élément neutre que l'on déterminera.

c) En déduire que $(\square, *)$ est un groupe commutatif.

2- On munit \(\Bar{\cup} \) de la loi de composition interne T définie par :

$$(\forall (x,y) \in \square^2)$$
; $xTy = xy - 2x - 2y + 6$

et on considère l'application f de \square dans \square définie par : $(\forall x \in \square)$; f(x) = x + 2

a) Montrer que l'application f est un isomorphisme de (\Box, \times) dans (\Box, T) 0.5

b) Montrer que : $(\forall (x, y, z) \in \square^3)$; (x * y)Tz = (xTz)*(yTz)0.25

0.75 3- En déduire de tout ce qui précède que $(\square, *, T)$ est un anneau commutatif et unitaire.

0.25 4-a) Montrer que : xTy = 2 si est seulement si (x = 2 ou y = 2)

0.25 b) En déduire que l'anneau $(\Box, *, T)$ est intègre.

c) $(\square, *, T)$ est-il un corps ? (justifier votre réponse) 0.25

Exercice2:(3,5pts)

I- Soit *a* un nombre complexe non nul.

Soit dans l'ensemble \Box l'équation d'inconnue z:(E): $2z^2 - (3+i\sqrt{3})az + (1+i\sqrt{3})a^2 = 0$

1-Vérifier que le discriminant de l'équation (E) est : $(-1+i\sqrt{3})^2 a^2$ 0.25

0.5 2-Résoudre dans \square l'équation (E)

II-Le plan complexe étant muni d'un repère orthonormé direct (O, u, v)

On considère les points A, B et M d'affixes respectifs a, $b = ae^{i\frac{\pi}{3}}$ et z

Soit r la rotation de centre M et d'angle $\frac{\pi}{2}$

On pose $A_1 = r^{-1}(A)$ et $B_1 = r(B)$ (r^{-1} désigne la rotation réciproque de r)

et soient a_1 et b_1 les affixes respectifs de A_1 et B_1

0.5 1-Vérifier que le triangle *OAB* est équilatéral.

2- a) Montrer que : $a_1 = \left(\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)a + \left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)z$ et $b_1 = \left(-\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)a + \left(\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)z$

b) Montrer que le quadrilatère OA_1MB_1 est un parallélogramme.

3- On suppose que : $M \neq A$ et $M \neq B$

a) Montrer que : $\frac{z - b_1}{z - a} = -\frac{z - b}{z - a} \times \frac{a}{b}$ 0.5

NS25

لامتحان الوطني الموحد للبكالوريا -الدورة العادية ك013 –الموضوع- مادة: الرياضيات- شعبة العلوم الرياضية (أ) و (ب) (الترجمة الفرنسية)

0.75

b) Montrer que M, A_1 et B_1 sont alignés si et seulement si M, O, A et B sont cocycliques.

Exercice3:(3pts)

L'objectif de l'exercice est de chercher les entiers naturels n strictement supérieurs à 1 et qui vérifient la propriété suivante : (R): $3^n - 2^n \equiv 0$ [n]

1-On suppose que n vérifie la propriété (R) et soit p le plus petit diviseur premier positif de n.

0.75

a)Montrer que :
$$3^n - 2^n \equiv 0$$
 [p], en déduire que $p \ge 5$

0.5

b) Montrer que :
$$2^{p-1} \equiv 1 \lceil p \rceil$$
 et $3^{p-1} \equiv 1 \lceil p \rceil$

0.5

c)Montrer qu'il existe un couple
$$(a,b)$$
 de \Box 2 tel que : $an-b(p-1)=1$

0.5

d) Soient r et q le reste et le quotient de la division euclidienne de a par p-1

$$(a = q(p-1) + r \text{ avec } 0 \le r < p-1 \text{ et } q \in \square)$$

Montrer qu'il existe <u>un entier naturel</u> k tel que : rn = 1 + k(p-1)

0.75

2- En déduire de tout ce qui précède qu'il n'existe pas d'entier naturel n strictement supérieur à 1 vérifiant (R)

Problème: (10pts)

On considère la fonction numérique h définie sur l'intervalle $[1,+\infty[$ par :

$$h(1) = 1$$
 et $(\forall x > 1)$; $h(x) = \frac{x-1}{x \ln x}$

Première partie:

0.25

1-a) Montrer que la fonction h est continue à droite en 1

0.75

b) Montrer que : $(\forall x > 1)$; $\ln x < x - 1$, en déduire que la fonction h est strictement décroissante sur l'intervalle]1,+ ∞ [

0.5

2-a) Calculer $\lim_{x\to +\infty} h(x)$ puis donner le tableau de variations de h

0.25

b) En déduire que : $(\forall x \ge 1)$; $0 < h(x) \le 1$

Deuxième partie:

On considère la fonction numérique g définie sur l'intervalle $[1,+\infty[$ par :

$$g(1) = \ln 2$$
 et $(\forall x > 1)$; $g(x) = \int_{x}^{x^{2}} \frac{1}{\sqrt{t \ln t}} dt$

Soit (C) la courbe représentative de la fonction g dans un repère orthonormé $\left(O,\vec{i},\vec{j}\right)$

0.25

1-a) Vérifier que :
$$(\forall x > 1)$$
; $\int_{x}^{x^2} \frac{1}{t \ln t} dt = \ln 2$

0.25

b) Vérifier que :
$$(\forall x > 1)$$
 ; $g(x) - \ln 2 = \int_{x}^{x^2} \frac{\sqrt{t} - 1}{t \ln t} dt$

0.5

c) Montrer que :
$$(\forall x > 1)$$
 ; $g(x) - \ln 2 = \int_{\sqrt{x}}^{x} \frac{t-1}{t \ln t} dt$

<u>الصفحة</u> 3 4	لامتحان الوطني الموحد للبكالوريا -الدورة العادية كاك الموضوع- مادة: الرياضيات- شعبة العلوم الرياضية (أ) و (ب) (الترجمة الفرنسية)
0.5	2-a)Montrer que : $(\forall x > 1)$; $(x - \sqrt{x})h(x) \le g(x) - \ln 2 \le (x - \sqrt{x})h(\sqrt{x})$
0. 5	b) En déduire que la fonction g est dérivable à droite au point 1
0.75	c)Montrer que : $\lim_{x \to +\infty} g(x) = +\infty$ et que $\lim_{x \to +\infty} \frac{g(x)}{x} = 0$
0.75	3-a)Montrer que g est dérivable sur l'intervalle $]1,+\infty[$ et que : $(\forall x > 1)$; $g'(x) = \frac{1}{2}h(\sqrt{x})$
0.5	b) En déduire que : $(\forall x \ge 1)$; $0 < g'(x) \le \frac{1}{2}$, puis donner le tableau de variations de g
0.5	c) Construire la courbe (C)
0.5	Troisième partie : I-1-Montrer que la fonction $k: x \mapsto g(x) - x + 1$ est une bijection de l'intervalle $[1, +\infty[$ dans l'intervalle $]-\infty, \ln 2]$
0.25	2- En déduire qu'il existe un unique réel α de l'intervalle $]1,+\infty[$ qui vérifie : $1+g(\alpha)=\alpha$
	II - On considère la suite numérique $(u_n)_{n\geq 0}$ définie par :
	$1 \le u_0 < \alpha$ et $(\forall n \ge 0)$; $u_{n+1} = 1 + g(u_n)$
0.5	1- a) Montrer que : $(\forall n \ge 0)$; $1 \le u_n < \alpha$
0.5	b) Montrer que la suite $(u_n)_{n\geq 0}$ est strictement croissante.
0.75	c) En déduire que la suite $(u_n)_{n\geq 0}$ est convergente et que $\lim_{n\to +\infty} u_n = \alpha$
0.5	2-a) Montrer que : $(\forall n \ge 0)$; $ u_{n+1} - \alpha \le \frac{1}{2} u_n - \alpha $
0.5	b) Montrer que : $(\forall n \ge 0)$; $ u_n - \alpha \le \left(\frac{1}{2}\right)^n u_0 - \alpha $
0.25	c) En déduire une deuxième fois, que : $\lim_{n\to+\infty} u_n = \alpha$

FIN