描述逻辑简介

1. 概念

论域必须是非空的,可以是无穷集合。论域中的元素称为实例 (instance)。

概念名称 (concept name) : 类名,外延是论域的有限子集,可以看作一元谓词。

作用名称 (role name) : 关系名,表示论域中的二元关系,可以看作二元谓词。

概念描述 (concept description) : 用概念名称和作用名称按照语法规则构成的句子,表示对一些实例的

抽象描述/刻画。

概念定义 (defined concept): 将概念描述定义为一个概念名称。

专名(nominal concept):外延只有一个元素的概念名称。

个体名称 (individual name): 个体名,一般出现在 中,表示论域中的单个元素。因为这里用了"个

体",所以一般论域中的元素不称为个体,而是称为实例。

实例断言 (instance assertion) : 断言一个个体名称是一个概念名称的实例。

概念模型 (concept patterns) : 含有变量的概念描述。

2. 语法

3. 语义

4. 模态

描述逻辑 是多模态逻辑 的变体是由 Schild 于 1991 发现的。概念名称看作命题,作用名称看作可通达关系。 的解释就是一个克里普克结构,其中 是世界集, 既提供世界集上的可通达关系集又给出对命题的赋值。于是基于可通达关系 ,全称约束 成为 ,存在约束 成为 。将 翻译到一阶逻辑(FOL)的通常方法也和模态逻辑的标准翻译一致。

5.

一个 是形如 的概念定义的有限集合,其中 是概念名称, 是概念描述,并且同一个在 中只出现一次。这时, 称作 中的原始概念。如果概念名称 在 中出现,则称 直接使用,将"使用"理解为"直接使用"的传递闭包。若 中存在一个原始概念使用了它本身,则称 含有循环(或一般的),否则称为无环的 。

无环 的模型:如果 则解释 满足概念定义 。如果解释 满足 中的所有概 念定义,则解释 是 的模型。

一般的 的模型: general concept inclusion axioms (GCIs): 是形如 的形式,其中都是(复合)概念描述。如果 则解释 满足 。如果解释 满足 则解释 满足概念定义 。有限个 构成的集合是 。如果解释 满足 中的所有概念定义,则解释 是 的模型。

6.

设有可数无穷个个体名称 等等, 是形如 的断言的有限集合,其中 是概念描述, 是作用描述。对每个个体 解释为 ,通常遵守唯一名称假设 ()。如果 则解释 满足概念断言 。如果 则解释 满足作用断言 。如果解释 满足 中的所有断言,则解释 是 的模型。

7. 推理

T 推理(Terminological Reasoning)

- 可满足 (Satisfiability):如果存在一个概念描述 和一个 TBox 的共同模型时,那么 相对于 是可满足的。
- 包含 (Subsumption):如果对于一个 TBox 的任意模型 ,均有 ,那么概念描述 包含在概念描述 中,记为 。
- 相等 (equivalent):如果对于一个 TBox 的任意模型 ,均有 , 那么概念描述 与概念描述 相等,记为 。

A 推理(Assertional Reasoning)

- 一致性 (Consistency): 如果存在一个 ABox 和一个 TBox 的共同模型,那么 相对于 是一致的。
- 实例检测 (Instance Detection): 如果对于一个 TBox 和一个 ABox 的任意共同模型 ,均有 ,那么个体实例 相对于 是概念描述 的实例,记为 。

复合推理问题(Compound Inference Problems)

- Classification (结构化):给定一个 TBox ,计算 中概念名称(抽象类)之间起约束作用的包含关系()。
- Realization (抽象化): 给定一个 ABox , 一个 TBox 以及个体实例 , 计算 中满足的概念名称 构成的集合, 记为 , 并用包含关系 找到最小的。
- Retrieval (实例化):给定一个 ABox ,一个 TBox 以及概念 ,计算 中满足 的个体实例 构成的集合,记为 。

8. 具体域

- 抽象域 (abstract domain): 论域
- 具体域 (concrete domain): 一个具体域 是一个有序对 , 其中 是非空集合, 是由 谓词名称构成的集合,并且对于 元谓词 , 有 。

将具体域 整合到 就得到

- 抽象特征:
- 具体特征:
- 谓词约束: , 其中 是任意多个抽象特征和一个具体特征的复合, 设 , 则 。 , 其解释定义如下:

9. 属性描述逻辑

: 概念名称的	集合; : 作用名称的集合	台; : 个(本名称的集合;	:
: 说明的集合,	可以是如下表达式:			
 变量 闭说明 (close 开说明 (oper	ed specifiers) :			
其中, ,	要么 中的个体名称,	要么是形如	的表达式, 其中	1
: 关系的集合,	包括所有形如 的表达式	式,其中	, 0	
:概念描述的集合				
记	为论	仑域上的所有	有限二元关系的集份	슼 。
任给变量指派	,一个说明 ,说明的语义定义为:	被解释到一	-个集合	。通过定义
	7 90/343/47000000			
对于,	, 定义:			

10. 亚里士多德形而上学

"是"的逻辑功能

- 判断的联结词: 其形式是"S"是"P", 直称判断是最简单、最基本的判断。
- 指称主词自身: "S是"在希腊文中是一个完整的句子, 表示主词 S是自身。
- 表示被定义的概念与定义的等同:定义的形式是"S是Df"。定义与判断不同,判断的谓词表述主词,不能交换,而被定义的词与定义的位置却可以交换而意义不变。定义的一般形式是"种+属差"。

实体与属性

主词和谓词分属两类逻辑范畴,主词所属的范畴是"实体",谓词所属的范畴是"属性"。亚里士多德把范畴数量归纳为十个:除"实体"外,其他九个分别是实体的数量、性质、关系、位置、时间、姿态、状态、活动、受动。只有实体可以充当主词,其它九个范畴都是用来表述主词的谓词。就实体和属性的关系而言,实体是独立存在,不依赖其它东西而存在;属性必须依附于实体才能存在。

第一实体和第二实体

判断的主词可以被分为通名和专名: 专名只能作为主词来使用; 通名也可以用作谓词。专名指示个别事物, 是第一实体, 而通名指示种和属, 是第二实体。

以上所有内容摘抄自 赵敦华《西方哲学史》 pp. 79-82