

Nested Dual-chamber Origami (NDO) Actuator with Pressure Compounding and Enhanced Payload

Authors: Xiaohuang Liu, Zhonggui Fang, Shaowu Tang, Sicong Liu*, Hongqiang Wang, Zheng Wang, Jian S Dai*

Institution: Southern University of Science and Technology

CONTENTS

- 1. Introduction and Background
- 2. Concept ,Design and Fabrication of NDO
- 3. Modeling of NDO Actuator
- 4. Experiment and Validation
- **5.** Conclusions and Prospects

Introduction and Background

Stimulus:

Gu, G. et al. *Sci. Robot* (2018)

Electricity

Huang, X. et al. *Adv. Mater* (2019)

Shape Memory Alloy (SMA)

Liu, S. et al. *IEEE ASME Trans Mechatron.(*2020)

Pneumatics

&

Motion forms:

Polygerinos, P. et al. *IEEE Trans. Robot*(2015)

Bending

Yi, J.. et al. *IEEE Trans. Robot*(2019)

Rotation

Introduction and Background

Yi, J. et al. SoRo (2018)

Dong, X. et al. *IEEE Robot Autom Lett.(*2021)

Liu, S. et al. *Chem. Eng. J.*(2024)

Limitations:

High bidirectional payload

- Negative pressure < 1 atm
- Buckling in the thin-walled structure

In this work

To get large bidirectional payload

Nested Dual-chamber Origami (NDO) structure & Compounding of Positive and Negative Pressure Actuation method

NDO actuator prototype

Experiments & validation

Concept of Nested Dual-chamber Origami (NDO) SUSTech Southern University of Science and Technology

Actuation: Negative pressure OR Positive pressure

Actuation: Negative pressure AND Positive pressure

Design and Fabrication

Yoshimura Origami

- TPU 95 A (FDM)
- Thickness 0.75 mm
- 3 identical folding layers
- 2 same folding units each layer

Pleated Origami

- TPU 95 A (FDM)
- Thickness 0.6 mm
- 8 same pleats

Modeling of NDO Actuator

Resisting force: generated by **stiffness** of the chambers

$$F = F_{YO} + F_{PO} = F_{YOH}(H_Y) + F_{YOP}(P_Y) + F_{POH}(H_P) + F_{POP}(P_P)$$
(A) (B) (C) (D)

Driving force: generated by **pressure difference** of the chambers

Contraction state

Modeling of Yoshimura Origami Chamber (outer) SUSTech Southern University of Science and Technology

Resisting force analysis:

$$F = F_{YO} + F_{PO} = F_{YOH}(H_Y) + F_{YOP}(P_Y) + F_{POH}(H_P) + F_{POP}(P_P)$$
(1)
$$(A) (B) (C) (D)$$

(A) Resisting force of YO chamber:

Virtual work:
$$F_e \cdot dH_Y = \Sigma M_\theta \cdot d\theta + \Sigma M_\phi \cdot d\phi + \Sigma f_\theta \cdot dl_\theta$$
 (2)

Virtual work + Small-strain folding Principle:

$$\Delta h_{Lu}/2 \qquad F_{YOH} = F_e = \frac{uv(a+b)Et^2}{6n(H_Y - H_{Y0})} \left(\arcsin\left(\frac{H_Y}{2vl_0}\right) - \arcsin\left(\frac{H_{Y0}}{2vl_0}\right) \right)^2$$

$$+ \frac{uvcEt^2}{3n(H_Y - H_{Y0})} \left(\arcsin\left(\frac{H_Y}{tan\alpha\sqrt{4v^2c^2 - H_Y^2}}\right) - \arcsin\left(\frac{H_Y}{tan\alpha\sqrt{4v^2c^2 - H_{Y0}^2}}\right) \right)^2$$

$$- \sum_{v=1}^{\infty} + \frac{2uvEt(a+b)l_0}{H_Y - H_{Y0}} \left(\arcsin\left(\frac{H_Y}{tan\alpha\sqrt{4v^2c^2 - H_Y^2}}\right) - \arcsin\left(\frac{H_Y}{tan\alpha\sqrt{4v^2c^2 - H_{Y0}^2}}\right) \right)^2$$

$$- \sum_{v=1}^{\infty} + \frac{2uvEt(a+b)l_0}{H_Y - H_{Y0}} \left(\arcsin\left(\frac{H_Y}{tan\alpha\sqrt{4v^2c^2 - H_Y^2}}\right) - \arcsin\left(\frac{H_Y}{tan\alpha\sqrt{4v^2c^2 - H_{Y0}^2}}\right) \right)^2$$

$$- \sum_{v=1}^{\infty} + \frac{2uvEt(a+b)l_0}{H_Y - H_{Y0}} \left(\arcsin\left(\frac{H_Y}{tan\alpha\sqrt{4v^2c^2 - H_Y^2}}\right) - \arcsin\left(\frac{H_Y}{tan\alpha\sqrt{4v^2c^2 - H_Y^2}}\right) \right)^2$$

$$- \sum_{v=1}^{\infty} + \frac{2uvEt(a+b)l_0}{H_Y - H_{Y0}} \left(\frac{m - \frac{mH_{Y0}}{H_Y} - \ln\left(1 + m - \frac{mH_{Y0}}{H_Y}\right)}{H_Y} \right)$$

$$- \sum_{v=1}^{\infty} + \frac{uvcEt^2}{tan\alpha\sqrt{4v^2c^2 - H_Y^2}} \right)^2$$

$$+ \frac{2uvEt(a+b)l_0}{H_Y - H_{Y0}} \left(\frac{m - \frac{mH_{Y0}}{H_Y} - \ln\left(1 + m - \frac{mH_{Y0}}{H_Y}\right)}{H_Y} \right)$$

$$- \sum_{v=1}^{\infty} + \frac{uvcEt^2}{tan\alpha\sqrt{4v^2c^2 - H_Y^2}} \right)^2$$

$$+ \frac{2uvEt(a+b)l_0}{H_Y - H_{Y0}} \left(\frac{m - \frac{mH_{Y0}}{H_Y} - \ln\left(1 + m - \frac{mH_{Y0}}{H_Y}\right)}{H_Y} \right)$$

$$+ \frac{2uvEt(a+b)l_0}{H_Y - H_{Y0}} \left(\frac{m - \frac{mH_{Y0}}{H_Y} - \ln\left(1 + m - \frac{mH_{Y0}}{H_Y}\right)}{H_Y} \right)$$

$$+ \frac{2uvEt(a+b)l_0}{H_Y - H_{Y0}} \left(\frac{m - \frac{mH_{Y0}}{H_Y} - \ln\left(1 + m - \frac{mH_{Y0}}{H_Y}\right)}{H_Y} \right)$$

$$F_{YOP} = {}^{S}P_{Y} \tag{4}$$

Experiments & Validation

Explore the **mechanical properties** of the mentioned actuators and **validate the effectiveness** of the NDO structure

Experimental setup:

Ball screw Displacement sensor Actuator

Passive test: Deformed by input force (ball screw)

Active test: Deformed by air supply (pneumatic system)

Test of Yoshimura Origami Chamber (outer)

Passive test: Calibrating n & m

• Compression : n=0.196, m=0.01

• Stretching: n=0.427, m=0.01

Bending region n, and stretching extent m

Active test: Calibrating S

• $S=3.97 \text{ e}-3m^2$

The effective area

The modeling result was consistent with the testing result in the load free state to some extent.

Test of Pleated Origami chamber (inner)

PO

Resisting force of PO chamber

Based on the virtual work:

$$F_{POH} = \frac{F_a \cdot dL_b}{dH_P}$$

pressure difference over 30kPa

Displacement increased dramatically in the middle stage

Test of NDO & Validation

The minimum pressure of **YO chamber** was **-20kPa** (buckling prevented)

- NDO structure inherently offered an improvement on force:
- 10N (12.5% increase) in the contraction direction;
- 8N (10% increase) in the elongation direction.

• When the PO chamber was set to 100kPa, it offered an improvement about **130N**, (**162% increase**) in the contraction direction.

NDO structure can simultaneously offer high bidirectional payload.

Demonstration

Contraction

Buckling

No buckling

- Avoid buckling during depressurization
- High bidirectional payload

Conclusion & Future Work

Concept:

NDO structure & Compounding actuation for high bidirectional payload

Design & Fabrication:

• A compact NDO actuator prototype was designed and fabricated

Experimental validation:

- Inherently, 10N in the contraction direction (12.5%) and 8N (10%) in the elongation direction
- Based on the NDO design and Compounding actuation, 130N (162%) in the contraction direction

Modeling:

• Refining the mechanical model for better actuation

Application:

- More applications to validate the reliability
- Bidirectional payload of motions like twisting and bending

Thanks for Listening!

Conclusion:

Future work: