Cálculo Companheiro - Companheiro para seu curso de Cálculo

Gustavo Garone

2024-08-31

Índice

Pr	Prefácio	3
T	ODO .	4
1	Sumário	5
2	Introdução	6
3	TODO	7
4	Matrizes 4.1 Matriz Identidade	8 9 9
Re	References	12

Prefácio

TODO

Aqui adicionaremos uma breve introdução técnica e conceitual do livro, para que ele foi feito e como usá-lo. um "meta" capítulo focando em tecnicalidades e não em matemática.

1 Sumário

Resumo dos conteudos do livro, ou seja, um sumário.

2 Introdução

3 TODO

texto bonitinho sobre matematica e como estudar e tals etc etc

4 Matrizes

Uma matriz $m \times n$ tem m linhas e n colunas. Também é comum usarmos $i \times j$, e você pode encontrar essa notação. Chamamos isso de **Ordem** da matriz.

Chamamos uma matriz de quadrada se ela possuí número igual de linhas e colunas, isto é, se m=n

$$M_{m\times n} = \begin{bmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} \\ a_{2,1} & a_{2,2} & \dots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \dots & a_{m_n} \end{bmatrix}$$

4.1 Matriz Identidade

Uma matriz identidade é uma matriz quadrada com 1s em sua diagonal e 0 como outros elementos. É comum chamarmos a matriz identidade de ordem n de I_n :

$$I_1 = [1]$$

$$I_n = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1_{(a_{n-n})} \end{bmatrix}$$

Esse nome, "identidade", fará mais sentido quando discutirmos multiplicação de matrizes.

4.2 Soma e Subtração de Matrizes

Para somar matrizes, primeiro temos que garantir que elas possuem mesma ordem. Caso, por exmeplo possuam números de linhas e colunas diferentes entre si, não será possível somá-las.

Dessa forma, matrizes com mesma ordem, ou seja, mesmo número de linhas e colunas, podem ser somadas ou subtraídas:

$$\begin{split} M_{i\times j} + N_{i\times j} &= \begin{bmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,j} \\ a_{2,1} & a_{2,2} & \dots & a_{2,j} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i,1} & a_{i,2} & \dots & a_{i,j} \end{bmatrix} + \begin{bmatrix} b_{1,1} & b_{1,2} & \dots & b_{1,j} \\ b_{2,1} & b_{2,2} & \dots & b_{2,j} \\ \vdots & \vdots & \ddots & \vdots \\ b_{mi1} & b_{i,2} & \dots & b_{i,j} \end{bmatrix} \\ &= \begin{bmatrix} a_{1,1} + b_{1,1} & a_{1,2} + b_{1,2} & \dots & a_{1,j} + b_{1,j} \\ a_{2,1} + b_{2,1} & a_{2,2} + b_{2,2} & \dots & a_{2,j} + b_{2,j} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i,1} + b_{i,1} & a_{i,2} + b_{i,2} & \dots & a_{i,i} + b_{i,j} \end{bmatrix} \end{split}$$

4.3 Multiplicação de matrizes por escalar

Chamamos de escalar um número (normalmente, real ou complexo, aqui chamado de λ) que multiplica um vetor ou matriz. Para multiplicar uma matriz por um escalar, multiplicamos todos seus elementos por ele, idependente de sua ordem:

$$\lambda \; M_{m \times n} = \lambda \; \begin{bmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} \\ a_{2,1} & a_{2,2} & \dots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \dots & a_{m,n} \end{bmatrix} = \begin{bmatrix} \lambda a_{1,1} & \lambda a_{1,2} & \dots & \lambda a_{1,n} \\ \lambda a_{2,1} & \lambda a_{2,2} & \dots & \lambda a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ \lambda a_{m,1} & \lambda a_{m,2} & \dots & \lambda a_{m,n} \end{bmatrix}$$

4.4 Multiplicação de Matrizes

Para multiplicarmos duas matrizes, é necessário que o número de colunas da primeira matriz seja igual ao número de linhas da segunda matriz. Por esse e outros motivos, dizemos que a multiplicação de matrizes $n\~ao$ é comutativa, ou seja, multiplicar uma matriz M por uma matriz N pode nos dar uma matriz resultante diferente do que se multiplicarmos N por M, caso essa multiplicação seja se quer possível!

$$\begin{split} &M_{i\times j}\times N_{j\times k}, j=j\Rightarrow\checkmark\\ &M_{i\times j}\times B_{k\times j}, j\neq k\Rightarrow\swarrow\\ &N_{j\times k}\times M_{i\times j}. k\neq i\Rightarrow\swarrow \end{split}$$

Vamos analisar como a operação é feita, e então nos ficará claro o porquê dessa regra existir. sadasdsad asdsa

Considere as seguintes matrizes:

$$A_{2,3} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}, \ B_{3,1} = \begin{bmatrix} 7 \\ 8 \\ 9 \end{bmatrix}$$

Sabemos que podemos multiplicá-las com A como primeira matriz $A_{2,3} \times B_{3,1}, 3=3 \Rightarrow \checkmark$, mas não como segunda matriz: $B_{3,1} \times A_{2,3}, 1 \neq 2 \Rightarrow \not X$. Iremos então realizar a primeira operação descrita da seguinte maneira:

Definição. Para multiplicar matrizes, somaremos cada linha da primeira multiplicada por um elemento equivalente de cada coluna:

$$A \times B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \times \begin{bmatrix} 7 \\ 8 \\ 9 \end{bmatrix}$$
$$= \begin{bmatrix} 1 \cdot 7 + 2 \cdot 8 + 3 \cdot 9 \\ 4 \cdot 7 + 5 \cdot 8 + 6 \cdot 9 \end{bmatrix}$$
$$= \begin{bmatrix} 50 \\ 122 \end{bmatrix}$$

É importante que você se familiarize com o "pareamento" feito entre as linhas da primeira matriz com as linhas da segunda. Você pode agora estar se perguntando o que aconteceria caso houvesse mais de uma coluna na segunda matriz. A resposta pode ser bastante intuitiva para você: a matriz resultante terá mais uma coluna.

$$C \times D = \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} \times \begin{bmatrix} g & h \\ i & j \\ k & l \end{bmatrix}$$
$$= \begin{bmatrix} a \cdot g + b \cdot i + c \cdot k & a \cdot h + b \cdot j + c \cdot k \\ d \cdot g + e \cdot i + f \cdot k & d \cdot h + e \cdot j + f \cdot k \end{bmatrix}$$

Note que o número de linhas da matriz resultate da multiplicação entre matrizes é sempre igual ao número de linhas da primeira matriz e o de colunas igual ao da segunda.

E onde a matriz identidade entra no jogo?

Para qualquer matriz $M_{i,i}$,

$$I_i \times M_{i,j} = M_{i,j} = M_{i,j} \times I_j$$

Prove!

A multiplicação de matrizes, por mais que simples, é extremamente poderosa e é a base por trás de importantes conceitos matemáticos. Um deles é a inversão de matriz, que você verá adiante.

4.5 Inversão de matrizes

teste referencia bibtex [(**TechnicalWriting?**)](Guidorizzi H. L. Um Curso De Cálculo Vol 2 (2013), [s.d.]; «Technical writing», [s.d.]) Guidorizzi H. L. Um Curso De Cálculo Vol 2 (2013) ([s.d.])

References

Guidorizzi H. L. Um Curso De Cálculo Vol 2 (2013). [s.l: s.n.].

 $\begin{tabular}{ll} \textbf{Technical writing.}, [s.d.]. & Disponível em: $$<$https://quarto.org/docs/visual-editor/technical.html>$$$