Universidade Federal da Paraíba Centro de Informática Projeto final da disciplina de Pesquisa Operacional

Rodrigo Ramalho Guilherme Moreira Lucas Alves

14 de agosto de 2020

1 Introdução

Este relatório tem por objetivo apresentar a modelagem para o problema de Produção de Eletricidade, descrevendo os dados do problema, variáveis de decisão, restrições do problema e função objetivo.

2 Descrição do problema

O problema de Produção de Eletricidade consiste em escolher um conjunto de usinas de produção elétrica de custo mínimo que consiga suprir toda a demanda de um período do dia.

3 Modelagem

Definem-se P como o conjunto de períodos de um dia. Dessa forma, é dado uma duração e uma demanda para o período, representado por t_p e d_p , $\forall p \in P$. Também, definem-se U como o conjunto dos tipos de usinas. Para toda usina do tipo $u \in U$ é associado um N_u referente a quantidade de usinas que podem ser utilizadas, β_u e α_u como a produção mínima e máxima e os custos de produção mínima, adicional e de ligação, representados, respectivamente, por c_u , a_u e l_u .

Foram definidas quatro variáveis de decisão, sendo estas: x_{np}^u , ρ_{np}^u , e_{np}^u e o_{np}^u , representando, respectivamente, se a usina $n \in \{1, \dots, N_u\}$ do tipo $u \in U$ está sendo utilizada no período $p \in P$, a produção desta usina no período, o adicional produzido acima da produção mínima e se uma usina inutilizada foi ligada neste período.

$$\min \sum_{u \in U} \sum_{n=1}^{N_u} \left[\sum_{p \in P} (c_u x_{np}^u + a_u e_{np}^u + l_u o_{np}^u) \right] + l_u x_{n0}^u$$
 (1)

s.a.:
$$\sum_{u \in U} \sum_{p=1}^{N_u} \rho_{np}^u = d_p$$
 $p \in P$ (2)

$$d_p x_{np}^u \ge \rho_{np}^u$$
 $u \in U, n \in \{1, \dots, N_u\}, p \in P$ (3)

$$\rho_{np}^{u} \le \alpha_{u} \qquad u \in U, n \in \{1, \dots, N_{u}\}$$
 (4)

$$o_{np}^{u} \ge x_{np}^{u} - x_{n(p-1)}^{u}$$
 $u \in U, n \in \{1, \dots, N_{u}\}, p \in P, p \ne 1$ (5)

$$o_{n1}^u \ge x_{n1}^u - x_{n|P|}^u \qquad u \in U, n \in \{1, \dots, N_u\}$$
 (6)

$$e_{np}^{u} \ge \rho_{np}^{u} - \beta_{u} \qquad u \in U, n \in \{1, \dots, N_{u}\}, p \in P$$
 (7)

$$x_{np}^u \in \{0, 1\}$$
 $u \in U, n \in \{1, \dots, N_u\}, p \in P$ (8)

$$o_{np}^u \in \{0, 1\}$$
 $u \in U, n \in \{1, \dots, N_u\}, p \in P$ (9)

$$e_{np}^{u} \ge 0$$
 $u \in U, n \in \{1, \dots, N_{u}\}, p \in P$ (10)

$$\rho_{np}^{u} \ge 0 \qquad u \in U, n \in \{1, \dots, N_{u}\}, p \in P \qquad (11)$$

3.1 Função Objetivo e Restrições

• A equação 1 refere-se a função objetiva que consiste em minimizar os custos de operação das usinas na produção de energia elétrica.

- A restrição 2 assegura que o somatório das produções das usinas ativadas no período $p \in P$ seja suficiente para atender toda demanda d_p do período.
- A restrição 3 tem como função que a demanda por período de uma usina tem que ser maior ou igual que a produção daquela usina no mesmo período.
- A restrição 4 limita a produção de uma usina do tipo $u \in U$ à produção máxima α_u .
- As restrições 5 e 6 tem como objetivo verificar se as usinas já estavam sendo utilizada no período anterior.
- A restrição 7 refere-se a variável de decisão acerca do adicional produzido acima da produção mínima, a qual tem que ser maior ou igual a produção da energia naquele período retirando-se a produção mínima.
- A restrição 8 permite que a variável assuma valores binários, sendo 1 caso a usina esteja sendo utilizada em um determinado período, e 0 caso contrário.
- A restrição 9 permite que a variável assuma apenas valores binários, sendo 1 caso a usina seja ligada neste período, e 0 caso contrário.
- A restrição 10 tem objetivo garantir que a variável de decisão referente as unidades excedidas na produção mínima em um determinado período utilizado não seja negativo.
- A restrição 11 tem função de garantir que a variável de decisão referente a produção em um determinado período não seja negativa.

4 Referências

Anotações e Aula do Professor