

Entrance Exam 2004-2005

Physics

I- [6 pts] Charging and discharging of a capacitor

In order to study the charging and the discharging of a capacitor, we consider the circuit on the adjacent figure, where $u_{PN} = E = constant$ and $r = 1 \text{ k}\Omega$.

A- Charging of the capacitor

At the instant $t_0 = 0$, we put the switch (K) in position (1).

- 1. Establish the differential equation that is verified by the voltage $u_C = u_{AB}$.
- 2. The solution of this equation is of the form: $u_C = D (1 e^{-\tau})$. Deduce the expressions of D and τ in terms of r, C and E.
- 3. a. The waveform of figure 2, giving the variations of u_C in terms of time, is obtained by pushing the button « INV » of channel Y_2 and the button « ADD ». Justify.
- b. Using this waveform, determine E and C.
- 4. Determine the instantaneous expression of the current i. Draw then the shape of the voltage u_{BM} .

B- Discharging of the capacitor

The capacitor is completely charged and the buttons « INV » of channel Y_2 and « ADD » are always pushed. At the instant $t_0 = 0$, we put the switch into position (2). We obtain the waveform of figure 3 which represents the variations of $u_C = u_{AB}$ as a function of time.

- 1. The variations of u_C is given by: $u_C = Ee^{-\frac{1}{\tau'}}$. Determine the expression of τ' . Verify the answer using the waveform of figure 3.
- 2. Draw the shape of the voltage u_{BM} and specify the used scale.

$\begin{array}{c|cccc} P & (1) & K & A & Y_1 \\ \hline E & G & & & & C \\ \hline & & & & & & & & & & & & & \\ \hline & & & & & & & & & & & & & \\ \hline & & & & & & & & & & & & & \\ \hline & & & & & & & & & & & & & \\ \hline & & & & & & & & & & & & & \\ \hline & & & & & & & & & & & & & \\ \hline & & & & & & & & & & & & & \\ \hline & & & & & & & & & & & & & \\ \hline & & & & & & & & & & & & & \\ \hline & & & & & & & & & & & & \\ \hline & & & & & & & & & & & & \\ \hline & & & & & & & & & & & & \\ \hline & & & & & & & & & & & & \\ \hline & & & & & & & & & & & \\ \hline & & & & & & & & & & & \\ \hline & & & & & & & & & & & \\ \hline & & & & & & & & & & & \\ \hline & & & & & & & & & & & \\ \hline & & & & & & & & & & & \\ \hline & & & & & & & & & & & \\ \hline & & & & & & & & & & & \\ \hline & & & & & & & & & & & \\ \hline & & & & & & & & & & & \\ \hline & & & & & & & & & & & \\ \hline & & & & & & & & & & & \\ \hline & & & & & & & & & & \\ \hline & & & & & & & & & & \\ \hline & & & & & & & & & & \\ \hline & & & & & & & & & & \\ \hline & & & & & & & & & & \\ \hline & & & & & & & & & & \\ \hline & & & & & & & & & & \\ \hline & & & & & & & & & & \\ \hline & & & & & & & & & \\ \hline & & & & & & & & & \\ \hline & & & & & & & & & \\ \hline & & & & & & & & & \\ \hline & & & & & & & & & \\ \hline & & & & & & & & & \\ \hline & & & & & & & & & \\ \hline & & & & & & & & & \\ \hline & & & & & & & & & \\ \hline & & & & & & & & & \\ \hline & & & & & & & & & \\ \hline & & & & & & & & & \\ \hline & & & & & & & & & \\ \hline & & & & & & & & & \\ \hline & & & & & & & & & \\ \hline & & & & & & & & \\ \hline & & & & & & & & \\ \hline & & & & & & & & \\ \hline & & & & & & & & \\ \hline & & & & & & & & \\ \hline & & & & & & & & \\ \hline & & & & & & & & \\ \hline & & & & & & & & \\ \hline & & & & & & & & \\ \hline & & & & & & \\ \hline & & & & & & & \\ \hline$

Duration: 2 hours

II- [6 pts] the cobalt 60

The cobalt $60 < ^{60}_{27}$ Co », a radioelement that is used in different applications (cobalt < bomb »), is produced when the natural cobalt $^{59}_{27}$ Co (stable isotope), the nickel $^{60}_{28}$ Ni or the copper $^{63}_{29}$ Cu are bombarded with neutrons.

A- Production and disintegration of cobalt 60

- 1. Write the three equations of the reactions that produce the cobalt 60.
- 2. The nucleus of the cobalt 60 is transformed, by β^- emission, into a daughter nucleus $^{60}_{28}$ Ni in an excited state of energy $E_2 = 2.50$ MeV. $^{60}_{28}$ Ni returns to the fundamental state, of energy $E_f = 0$, into 2 steps, which correspond to the emission of 2 photons (see figure).

- a. Calculate the energy that is liberated by this disintegration.
- b. The kinetic energy E_C of the β particle is not quantized. Why?
- c. Calculate the wavelengths of the radiations associated with the two photons.

B- Radioactive decay of cobalt 60

We study a sample containing only, at the instant $t_0 = 0$, cobalt 60 of mass $m_0 = 1$ mg. Each year, we measure the activity A of this sample. We notice that the ratio $\frac{A(t)}{A(t+1)}$ has an average value of 1.14, where A(t) and A(t+1) are respectively the activity of the sample at a given instant t and at the instant (t+1), that is one year later, t being expressed in years. Let A_0 be the activity of the sample at the instant $t_0 = 0$.

- 1. Give the definition of the activity and write the expression of the activity A(t).
- 2. Determine the radioactive constant λ .
- 3. Calculate the time after which the activity becomes $\frac{A_0}{2}$. What does this time represent?
- 4. Calculate the mass of ${}^{60}_{27}$ Co that is disintegrated after one year.

Given: $h = 6.63 \times 10^{-34} \text{ J.s}$; $c = 3 \times 10^8 \text{ m/s}$; $1 \text{ eV} = 1.6 \times 10^{-19} \text{ J}$; $m(^{60}_{27}\text{Co}) = 59.9190 \text{ u}$; $m(^{60}_{28}\text{Ni}) = 59.9154 \text{ u}$; $m(^{\circ}_{-1}\text{e}) = 5.5 \times 10^{-4} \text{ u}$; $1 \text{ u} = 1.66 \times 10^{-27} \text{ kg} = 931.5 \text{ MeV/}c^2$.

III- [8 pts] Mechanical oscillator

The purpose of this exercise is to study the behavior of a horizontal mechanical oscillator as a function of the magnitude F of the force of friction. A horizontal mechanical oscillator is made of a solid (S), of mass m = 0.635 kg, that is fixed at the free end of a spring (R) of negligible mass and of spring constant (stiffness) k = 25.0 N/m.

At any instant t, the abscissa x of the center of inertia G of (S) is located with respect to a horizontal axis (O, \vec{i}), where O is the abscissa of G at equilibrium and $\dot{x} = V$, the algebraic value of the velocity of (S). The horizontal plane containing G is taken as the reference level of the gravitational potential energy.

A- Experimental study

We displace (S), from its equilibrium position, 4,00 cm to the left and we release it without initial velocity at the instant $t_0 = 0$. An appropriate device allows us to visualize the motion of (S) for different values of F of the force of friction exerted on (S). (See figures (a), (b), (c), and (d)).

- 1. Let us consider the case of figure (a). Calculate the loss of energy that the system [(S), spring] undergoes after the first oscillation. Deduce the average value of the force of friction that is supposed constant during this first oscillation.
- 2. a. Arrange, with justification, the sketches with respect to the increasing values of F.
 - b. What do we obtain if we eliminate the force of friction?
 - c. Which type of motion does (S) perform when it does not oscillate?
- 3. How does the duration of an oscillation vary when F increases? How do we call the duration of such oscillation?
- 4. In which case can we consider that the duration of an oscillation is almost equal to the natural (proper) period T₀ of the oscillator? Why?

B- Theoretical study

- (S), that is displaced 4,00 cm to the right from its equilibrium position, is launched, at the instant $t_0 = 0$, with an initial velocity $\vec{V}_0 = V_0 \vec{i}$ where $V_0 = 0.281$ m/s. (S) begins then to oscillate without friction around its equilibrium position.
- 1. By applying the law of conservation of the mechanical energy of the system [(S), spring]:
- a. find the value x_m of the amplitude of oscillations of (S).
- b. determine the second order differential equation that governs the motion of (S) and calculate T_0 . The obtained value is in agreement with the experiment. Justify.
- 2. The solution of this equation is of the form: $x = x_m \cos(\frac{2\pi}{T_0}t + \phi)$. Show that ϕ can have the value -2,30 rd.
- 3. Calculate the time t₁ after which (S) passes by O for the first time. Draw the shape of x in terms of t.

Entrance Exam 2004-2005

Duration: 2 hours

Solution of Physics

Expected answers	Scale	Comments
Exercise 1- Charging and discharging [6 pts]		
de la companya de la		
A- 1- Knowing that $i = \frac{dq}{dt}$ and $q = C.u_C$; and $E = u_C + ri$ by substitution		
We get $E = u_C + rC \frac{du_C}{dt} \Leftrightarrow \frac{du_C}{dt} + \frac{1}{rC} u_C = \frac{E}{rC}$ differential equation		
of second order without second member.		
or second order without second memoer.		
2- the solution of the previous differential equation is		
$u_C = D(1 - e^{-\frac{t}{\tau}})$. By deriving this equation with respect to time we		
get:		
$\frac{du_C}{dt} = \frac{D}{\tau} e^{-\frac{t}{\tau}}$; by substitution in the differential equation we get		
$\frac{D}{\tau} e^{-\frac{\tau}{\tau}} + \frac{D}{rC} - \frac{D}{rC} e^{-\frac{\tau}{\tau}} = \frac{E}{rC}$ we can prove that $\tau = rC$ and $E = D$	_ ~	
t PC PC		
$3- a- u_{AM} = u_{AB} + u_{BM} \Leftrightarrow u_{AB} = u_{AM} - u_{BM}$		
(INV for u_{BM} and to get u_{AB})		
b- From the figure when $t \to \infty$; $E = (1 \text{ V/div} \times 8 \text{ div}) = 8 \text{ V}$		
$\tau = rC = (\frac{1}{2} \text{ div} \times 2 \text{ms/div}) = \frac{1}{2} \text{ ms} \Leftrightarrow C = 10^{-6} \text{ F}$		
duc oD -t oB -t B -t . 11	100	
$4-i = C \frac{du_C}{dt} = C \frac{D}{\tau} e^{-\frac{t}{\tau}} = C \frac{E}{rC} e^{-\frac{t}{\tau}} = \frac{E}{r} e^{-\frac{t}{\tau}}.$		
then $u_{BM} = ri = E e^{-\frac{r}{r}} = 8 \times e^{-1000t}$		
B- Discharging of the capacitor $t = lms$		
$1- u_C = E e^{-\frac{t}{\tau'}}; u_{AM} = ri = u_C + (-ri) \Rightarrow$		
$1 \text{ uc} = 1 \text{ uc} + (-11) \Rightarrow$		
$-2ri + u_C = 0$; and $i = -\frac{dq}{dt}$ (discharging) = $-C\frac{du_C}{dt}$		1
at at		
$\Rightarrow 2rC\frac{du_C}{dt} + u_C = 0 \Rightarrow \tau' \frac{du_C}{dt} + u_C = 0 \Rightarrow \tau' = 2rC.$		
From the figure 3. The tangent to the curve at the origin cuts the the		
time axis at $t = 1 \text{div} \Rightarrow \tau' = 1 \text{div} \times 2 \text{ms/div} = 2 \text{ ms} = 2 \tau$.		

Expected answers	Scale	Comments
Second exercise: The cobalt 60 [6 pts]		
A-1-		
The production of cobalt 60 is obtained: $a - {}^{1}_{0}n + {}^{59}_{27}Co \rightarrow {}^{60}_{27}Co + \gamma ; b - {}^{1}_{0}n + {}^{60}_{28}Ni \rightarrow {}^{60}_{27}Co + {}^{1}_{1}H$		
c- ${}^{1}_{0}$ n + ${}^{63}_{29}$ Cu $\rightarrow {}^{60}_{27}$ Co + ${}^{4}_{2}$ He		
$2 - {}^{60}_{28}\text{Co} \rightarrow {}^{60}_{28}\text{Ni} + {}^{-1}_{-1}\text{e}(\beta^-) + {}^{0}_{0}\text{V}.$		
a- The mass defect: $\Delta m = [m (Co) - m (Ni) - m (\beta^2) = 0.00305 \text{ u}]$. The liberated energy for this reaction is given by : $E = \Delta m c^2 = 0.00305 \times 931.5 = 2.84 \text{ MeV}$		
b- The β^- decay is accompanied with the emission of an antineutrino which can take any value. Since the kinetic energy of the particle β^- is not quantized.		
c- The two emitted photons have the respective energy: $1^{st} \text{ photon is } E_1 = 1.33 \text{ MeV}; \text{ but } E_1 = h\nu_1 = \frac{hc}{\lambda_1} \Rightarrow \lambda_1 = \frac{hc}{E_1}$ $= 9.35 \times 10^{-13} \text{ m}.$	y	
The second Photon E' = E ₂ - E ₁ = 2.50 - 1.33 = 1.17MeV \Rightarrow E' = $hv_2 = \frac{hc}{\lambda_2} \Rightarrow \lambda_2 = \frac{hc}{E'} = 1.06 \times 10^{-12} \text{m}.$		
B-1- The activity is the number of disintegrations per unit of time $A(t) = A_0e^{-\lambda t}$.		
2- A(t) = A ₀ e ^{-λt} and A(t+1) = A ₀ e ^{-λ(t+1)} $\Rightarrow \frac{A(t+1)}{A(t)} = \frac{1}{e^{-\lambda}} = e^{\lambda} = 1.14$ $\Rightarrow \lambda = \text{Ln}(1.14) = 0.131 \text{ year}^{-1}.$		
$3- A(t_1) = \frac{A_0}{2} = A_0 e^{-\lambda t} \Rightarrow e^{-\lambda t} = 2 \Rightarrow t_1 = \frac{Ln2}{\lambda} \Rightarrow t_1 = 5.2 \text{ years. } t_1 \text{ represents}$ the radioactive period or helf life	1	
the radioactive period or half-life. 4- the disintegrated mass in one year : $m_d = m_0 - m(1 \text{year}) = m_0 (1 - e^{-\lambda 1})$		
= 1(1 - 0.877) = 0.123 mg		

Expected answers	Scale	Comments
Third exercise: Mechanical oscillator [8 pts]		
A- Experimental study		
1- At the time $t_0 = 0$: the amplitude $X_0 = 4$ cm;		
the mechanical energy = the potential energy = $\frac{1}{2}$ K X_1^2 .		
The energy lost = $\frac{1}{2}$ k $X_1^2 - \frac{1}{2}$ k X_0^2 =		
$\frac{1}{2}[25(7.0225 - 16)] = -1.12 \times 10^{-2} \text{ J} < 0 \text{ energy lost.}$		
The variation of mechanical energy: $\Delta ME = W(\vec{F}) = -F_{ave}$. $\ell = -1.12 \times 10^{-2}$. With $\ell = 4 + 3.2 \times 2 + 2.65 = 13.05 = 0.1305$ m		
\Rightarrow F _{av} =8.58 × 10 ⁻² N.		
2- a- d; a; c: b. + justification d- Undammed oscillations. e- Non periodic motion	7	/
f-		
3- When F increases, the time of one oscillation increases. $(T_a > T_d)$. in this case the period is called pseudo-period.		
4- in the case (d) where the damping is small. We can consider that the period is approximately equal to the proper period.	P.	/ /
B- Theoretical study		
1-a- ME = $\frac{1}{2}$ kx ² + $\frac{1}{2}$ mV ² = $\frac{1}{2}$ kx ₀ ² + $\frac{1}{2}$ mV ₀ ² = $\frac{1}{2}$ kx _m ² \Rightarrow		
$x_{\rm m}^2 = x_0^2 + \frac{m}{k} V_0^2 \Rightarrow x_{\rm m} = 6 \text{ cm}$		/
$b - \frac{dME}{dt} = 0 \Rightarrow m\dot{x}\ddot{x} + kx\dot{x} = 0$. divide by $\dot{x} \Rightarrow \ddot{x} + \frac{k}{m}x = 0$		/
$\Rightarrow \ddot{x} + \omega_0^2 \ x = 0 \ ; \text{ differential equ.} \dots \Rightarrow \omega_0 = \sqrt{\frac{k}{m}} = \frac{2\pi}{T_0}$		
\Rightarrow T ₀ = $2\pi \sqrt{\frac{m}{k}} = 1$ s. this value is verified by the figure (d) where T = 1s		
3- $x = x_m \cos(\frac{2\pi}{T_0} t + \phi)$; $V = \dot{x} = -x_m \frac{2\pi}{T_0} \sin(\frac{2\pi}{T_0} t + \phi)$. at $t = 0$		

4- at the time t_1 ; $x_1 = 0 \Rightarrow \cos(2\pi t_1 + \varphi) = 0$ and $\dot{x}(t_1) = -2\pi x_m \sin(2\pi t_1 + \varphi) > 0$ $\Rightarrow 2\pi t_1 + \varphi = -\frac{\pi}{2} \Rightarrow t_1 = 0.116 \text{ s.}$

