

Exact Solutions > Ordinary Differential Equations > Second-Order Linear Ordinary Differential Equations > Degenerate Hypergeometric Equation

10.
$$xy_{xx}'' + (b-x)y_x' - ay = 0$$
.

Degenerate hypergeometric equation.

1°. If $b \neq 0, -1, -2, -3, \dots$, Kummer's series is a particular solution:

$$\Phi(a, b; x) = 1 + \sum_{k=1}^{\infty} \frac{(a)_k}{(b)_k} \frac{x^k}{k!},$$

where $(a)_k = a(a+1) \dots (a+k-1), (a)_0 = 1.$

If b > a > 0, this solution can be written in terms of a definite integral:

$$\Phi(a,b;x) = \frac{\Gamma(b)}{\Gamma(a)\,\Gamma(b-a)} \int_0^1 e^{xt} t^{a-1} (1-t)^{b-a-1} \, dt,$$

where $\Gamma(z) = \int_0^\infty e^{-t} t^{z-1} dt$ is the gamma function.

 2° . If b is not an integer, then the general solution has the form:

$$y = C_1 \Phi(a, b; x) + C_2 x^{1-b} \Phi(a-b+1, 2-b; x).$$

References

Bateman, H. and Erdélyi, A., Higher Transcendental Functions, Vol. 1, McGraw-Hill, New York, 1953.

Abramowitz, M. and Stegun, I. A. (Editors), Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, National Bureau of Standards Applied Mathematics, Washington, 1964.

Polyanin, A. D. and Zaitsev, V. F., *Handbook of Exact Solutions for Ordinary Differential Equations, 2nd Edition*, Chapman & Hall/CRC, Boca Raton, 2003.

Degenerate Hypergeometric Equation

Copyright © 2004 Andrei D. Polyanin

http://eqworld.ipmnet.ru/en/solutions/ode/ode0210.pdf