Question	Scheme	Marks
number		
10 (a)	$f(1) = 32(1^3) - 33(1) + 1 = 0 *$	B1 cso
		(1)
(b)	$(x-1)(32x^2+32x-1)=0$	M1
	A correct method shown to solve a quadratic	
	•	
	e.g. $\frac{-32 \pm \sqrt{32^2 + 4 \times 32}}{64}$	M1
	64	
	$(x = 1)$ or $\frac{-4 + 3\sqrt{2}}{8}$ or $\frac{-4 - 3\sqrt{2}}{8}$	A 1 A 1
	$(x-1)$ or $\frac{8}{8}$ or $\frac{8}{8}$	A1 A1 (4)
	Accept decimals correct to 3 sf e.g. = 0.0303 or = -1.03	(+)
	1.05 o. 0.05 05 01	
(c)	r 1	
. ,	$\sqrt{x} = \frac{1}{8x}$ $p = \frac{1}{4}$	M1
	0λ 1	A 1
	$p = \frac{1}{4}$	A1
	4	(2)
()	Notes	
(a)	For substitution of 1 into f(-) to obtain the size a would	
B1 cso	For substitution of 1 into $f(x)$ to obtain the given result	
(b)		
M1	For $(x-1)(32x^2+32x-1)=0$	
M1	A correct method shown to solve a quadratic. If an algebraic met	thod is
IVII	not shown then M0A0A0 is awarded.	
	For $\frac{-4+3\sqrt{2}}{9}$ Allow 0.0303 or better	
A1	For $\frac{1}{8}$ Allow 0.0303 or better	
	4 2 5	
A1	For $\frac{-4-3\sqrt{2}}{8}$ Allow -1.03 or better	
	8	
(c)		
M1	For equating the two equations	
A1	For $p = \frac{1}{-}$	
111	For $p = \frac{1}{4}$	

(d)	$\pi \int_{\frac{1}{4}}^{a} x \mathrm{d}x = \pi \left[\frac{x^2}{2} \right]_{\frac{1}{4}}^{a}$	M1
	$=\pi\left(\frac{a^2}{2}-\frac{1}{32}\right)$	A1
	$\pi \int_{\frac{1}{4}}^{a} \frac{1}{64x^2} \mathrm{d}x = \pi \left[-\frac{1}{64x} \right]_{\frac{1}{4}}^{a}$	M1
	$=\pi\left(\frac{1}{16}-\frac{1}{64a}\right)$	A1
	$=\pi \left(\frac{a^2}{2} - \frac{1}{32}\right) - \pi \left(\frac{1}{16} - \frac{1}{64a}\right) = \frac{27\pi}{64}$	dM1
	$32a^3 - 33a + 1 = 0$	A1
	So $a = 1$	A1 (7)
	Alternative Method	(,)
	$\pi \int_{\frac{1}{4}}^{a} \left(x - \frac{1}{64x^2} \right) dx = \frac{27\pi}{64}$	M1
	$\int_{\frac{1}{4}}^{a} \left(64x - \frac{1}{x^2} \right) dx = 27$	A1
	$\[32x^2 + \frac{1}{x}\]_{\frac{1}{4}}^a = 27$	M1 A1
	$\left(32a^2 + \frac{1}{a}\right) - \left(2 + 4\right) = 27$	dM1
	$32a^3 - 33a + 1 = 0$	A1
	So $a = 1$	A1
		(7) [14]

	Notes
(d)	
M1	For an attempt to integrate $\pi \int_{\frac{1}{4}}^{a} x dx$ Ignore limits
A1	For $\pi \left(\frac{a^2}{2} - \frac{1}{32} \right)$
M1	For an attempt to integrate $\pi \int_{\frac{1}{4}}^{a} \frac{1}{64x^2} dx$ Ignore limits
A1	$For = \pi \left(\frac{1}{16} - \frac{1}{64a} \right)$
M1	Dependant on at least one previous M mark being awarded - for subtraction of the two integrals.
A1	For $32a^3 - 33a + 1 = 0$ oe
A1	For $a = 1$
M1	Alternative For $\pi \int_{\frac{1}{4}}^{a} \left(x - \frac{1}{64x^2} \right) dx = \frac{27\pi}{64}$ Ignore limits
A1	For $\int_{\frac{1}{4}}^{a} \left(64x - \frac{1}{x^2}\right) dx = 27$ Ignore limits
M1	For an attempt to integrate $\int_{\frac{1}{4}}^{a} \left(64x - \frac{1}{x^2} \right) dx$ Ignore limits
A1	$\left[32x^2 + \frac{1}{x}\right]_{\frac{1}{4}}^a = 27$
M1	Dependant on at least one previous M mark being awarded - for correct substitution of the limits
A1	For $32a^3 - 33a + 1 = 0$ oe
A1	For $a = 1$