structure

(과제 설명)

기존의 2D homogeneous sample에 green function을 적용한다. 3개의 식, poisson equation, electron continuity, hole continuity equation에 대하여 perturbed 된 case를 나누어 $\overrightarrow{r_0}$ 를 변화시켰을 때 G parameter를 확인해보고 결과를 비교해본다.

perturbed	potential	electron	hole
Poisson equation	$G_{\phi\phi}(r,r_0)$	$G_{n\phi}(\overrightarrow{r},\overrightarrow{r_0})$	$G_{p\phi}(\overrightarrow{r},\overrightarrow{r_0})$
electron continuity	$G_{\phi n}(\vec{r}, \vec{r_0})$	$G_{nn}(\overrightarrow{r},\overrightarrow{r_0})$	$G_{pn}(\overrightarrow{r},\overrightarrow{r_0})$
hole continuity	$G_{\phi p}(\overrightarrow{r}, \overrightarrow{r_0})$	$G_{np}(\overrightarrow{r},\overrightarrow{r_0})$	$G_{pp}(r,r_0)$

(equation)

- Poisson equation perturbed

$$\rightarrow \quad \nabla^{\ 2}(\epsilon \, G_{\phi\phi}(\overrightarrow{r},\overrightarrow{r_0})) + q(G_{\rho\phi}(\overrightarrow{r},\overrightarrow{r_0}) - G_{n\phi}(\overrightarrow{r},\overrightarrow{r_0}) + N_{dop}) = \delta(\overrightarrow{r},\overrightarrow{r_0}) + N_{dop}(\overrightarrow{r},\overrightarrow{r_0}) + N_{dop}(\overrightarrow{r_0},\overrightarrow{r_0}) + N_{do$$

- electron continuity perturbed

$$\rightarrow jwG_{nn}(\overrightarrow{r},\overrightarrow{r_0}) - \frac{1}{q} \, \nabla \, \cdot \, (-q\mu_nG_{nn}(\overrightarrow{r},\overrightarrow{r_0}) \, \nabla \phi_{DC} - q\mu_nn_{DC} \nabla \, G_{\phi n}(\overrightarrow{r},\overrightarrow{r_0}) + qD_n \, \nabla \, G_{nn}(\overrightarrow{r},\overrightarrow{r_0})) = \delta(\overrightarrow{r},\overrightarrow{r_0})$$

- hole continuity perturbed

$$\Rightarrow \ jwG_{bb}(\overrightarrow{r},\overrightarrow{r_0}) + \frac{1}{q} \, \nabla \, \cdot \, (-q\mu_{b}G_{bb}(\overrightarrow{r},\overrightarrow{r_0}) \, \nabla \, \phi_{DC} - q\mu_{b}p_{DC} \nabla \, G_{\phi b}(\overrightarrow{r},\overrightarrow{r_0}) - qD_{b} \, \nabla \, G_{bb}(\overrightarrow{r},\overrightarrow{r_0})) = \delta(\overrightarrow{r}-\overrightarrow{r_0})$$

- $\overrightarrow{r_0}$ change, $x = \overrightarrow{r_0}$ 에서 residue=1

Homogeneous sample

기존
$$\frac{\text{solution}}{\text{matrix}} = \begin{pmatrix} A \\ \text{matrix} \end{pmatrix} \times \begin{pmatrix} b \\ \text{matrix} \end{pmatrix}$$
수정 $\frac{\text{solution}}{\text{matrix}} = \begin{pmatrix} A \\ \text{matrix} \end{pmatrix} \times \begin{pmatrix} \text{identity} \\ \text{matrix} \end{pmatrix}$

solution matrix의 우변의 b matrix를 boundary condition을 적용한 identity matrix를 사용하여 모든 node에서의 perturbed 한 case를 비교해보았다. 각 열은 어떤 equation이 perturbed 되었을 때, 행은 parameter를 나타낸다.

3i-2 열: Poisson equation perturbed

- 3i-2행 : $G_{\phi\phi}(\vec{r},\vec{r_0})$

- 3i-1행 : $G_{n\phi}(\overrightarrow{r},\overrightarrow{r_0})$

- 3i행 : $G_{b\phi}(\vec{r}, \vec{r_0})$

3i-1 열 : electron continuity equation perturbed

- 3i-2행 : $G_{\phi n}(\vec{r}, \vec{r_0})$

- 3i-1행 : $G_{nn}(\overrightarrow{r},\overrightarrow{r_0})$

- 3i행 : $G_{pn}(\vec{r},\vec{r_0})$

3i 열 : hole continuity equation perturbed

- 3i-2행 : $G_{\phi p}(\overrightarrow{r}, \overrightarrow{r_0})$

- 3i-1행 : $G_{np}(\overrightarrow{r},\overrightarrow{r_0})$

- 3i행 : $G_{pp}(\overrightarrow{r},\overrightarrow{r_0})$

Homogeneous sample result

Double gate MOSFET

double gate MOSFET의 경우 transient simulation과 small signal simulation에서의 admittance를 구했을 때, 유의미한 오차가 존재하여 현재 code 수정 중에 있습니다.