Introdução à Interação Humano-Computador

TICs: Conjunto de tecnologias que oferecem maneiras eficientes de processar informações com diversos objetivos (interagir com pessoas).

a. As TICs no Cotidiano:

Qual importância as TICs adquiriram?

Sua importância está na capacidade de conectar pessoas, otimizar processos, democratizar o acesso à informação e criar novas formas de interação e trabalho.

Elas afetam a vida das pessoas?

Sim, profundamente. Alteram **Comportamento, Expectativas, Dependência e Inclusão/Exclusão**. (4)

O que pode ocorrer se as TICs falharem?

Paralisação de serviços impactos sociais. Perd.Dados. economia.

Quais são as consequências para quem usa e para quem desenvolve TICs?

Para quem **usa**:

- Frustração e estresse ao lidar com sistemas mal projetados.
- o Prejuízos materiais ou de tempo em caso de falhas.
- o Exclusão digital se a interface for complexa ou inacessível.
- Vantagens: quando o sistema é bem projetado: eficiência, autonomia, satisfação.

Para quem **desenvolve**:

- Responsabilidade ética e técnica pelas consequências do sistema.
- o **Impacto na reputação** profissional ou da empresa.
- Riscos legais em caso de falhas graves (ex.: vazamento de dados).
- o **Oportunidade de inovação** e impacto social positivo quando se desenvolve com qualidade.

b. Construção vs. Uso

De Dentro para Fora (Da Computação tradicional):

- O que significa: Começar o projeto pensando primeiro na parte técnica: construir primeiro sua representação de dados, algoritmos, arquitetura que permita o sistema funcionar. (projetar sistemas)
- Foco: Garantir que o sistema funcione bem tecnicamente – isso é chamado de <u>qualidade na</u> <u>construção</u>.
- **Exemplo:** Imagine que alguém cria um aplicativo de agenda começando pelo banco de dados, depois os algoritmos para salvar compromissos, e só no final pensar em como o usuário vai interagir com ele.

De Fora para Dentro (Da IHC):

A IHC propõe, por outro lado, que sistemas sejam construídos iniciando pela investigação dos usuários envolvidos, interesses, objetivos, limitações, motivações, contexto de uso (escritório, hospital, etc

Foco: Garantir que o sistema seja fácil, útil e agradável para o usuário — isso é chamado de **qualidade de uso.**

Exemplo: Antes de criar o aplicativo de agenda, o desenvolvedor conversa com usuários: "Você prefere ver seus compromissos por dia ou por semana?", "Você costuma usar o celular ou o computador?", "Você tem dificuldade com tecnologia?". Com essas respostas, ele cria algo que realmente atenda às necessidades das pessoas.

"de dentro para fora"

"de fora para dentro"

• **Tradicional**: Foca na tecnologia (Dentro para Fora). • **IHC**: Foca no ser humano (Fora para Dentro).

Benefícios de IHC:

contribui para:

- o aumentar a produtividade dos usuários
- o reduzir o número e a gravidade dos erros
- o reduzir o custo de treinamento
- o reduzir o custo de suporte técnico
- o aumentar as vendas e a fidelidade do cliente

A IHC foca 1 na experiência do usuário/clientes.

É uma área de estudo multidisciplinar que foca no projeto, avaliação e implementação de sistemas computacionais interativos para uso humano, estudando os principais fenômenos que os cercam.

Objetos de estudo em IHC

A IHC estuda a relação entre o **Humano**, o **Computador**, e o **Contexto de Uso** em que a interação ocorre, além dos **Processos de Desenvolvimento**.

2. Conceitos Básicos de Projeto e Design de Interfaces

Processo de Interação

INTERAÇÃO \rightarrow investiga o que ocorre enquanto as pessoas utilizam sistemas interativos.

CONTEXTO DE USO → influenciado pela cultura, sociedade e organização.

USUÁRIO → capacidade cognitiva para aprendizagem.

SISTEMA \rightarrow dispositivos e tecnologias.

INTERFACE COM USUÁRIO → métodos, técnicas, ferramentas de construção e avaliação.

- a. **Interação:** podemos considerar a interação usuário-sistema como sendo um processo de manipulação, comunicação, conversa, troca, influência, e assim por diante.
- b. Perspectivas de Interação segundo Kammersgaard:
 - De sistema: O usuário e o computador são como dois sistemas computacionais trocando informações. A interação é vista como uma simples <u>transmissão de</u> <u>dados.</u> Exemplos como o terminal (quando usamos algum comando), teclas de atalho, etc.
 - ii. Parceiro do discurso: O sistema deve se comportar de forma semelhante a um ser humano, sendo capaz de raciocinar, tomar decisões e entender a intenção do usuário. A interação é uma conversa entre o usuário e o sistema. Exemplos como as IAs, Chatbots de atendimento.
 - iii. De Ferramenta: O computador (ou software) é uma ferramenta que você usa para realizar um trabalho sobre um objeto (Manipulação). A interação é o processo de aplicar essa ferramenta a algum material (um texto, uma imagem, um código) e ver o resultado. Exemplos como o Word, e nossas IDEs de programação.
 - iv. De Mídia: O computador é um <u>canal de comunicação</u> que conecta você a <u>outras pessoas</u>. A interação aqui não é com o sistema, mas sim através do sistema. Ex

como Gmail, redes sociais.

Interface

É todo ponto de contato entre o usuário e o sistema computacional. Esse contato pode ser:

• Físico:

- Ocorre através do hardware e do software utilizados durante a interação.
- Através de hardware como teclado, mouse, monitor e alto-falantes, que permitem ao usuário agir sobre o sistema (entrada) e perceber suas respostas (saída).

Conceitual:

- A interpretação do usuário daquilo que ele percebe através do contato físico com os dispositivos de entrada e de saída durante o uso do sistema, planejando suas próximas ações.
 - O contexto de uso influencia a forma como os usuários percebem e interpretam a interface, e também seus objetivos.

Físico:

• **Exemplo 1:** Clicar com o mouse em um ícone para selecionar um arquivo.

Conceitual:

• **Exemplo 1:** Entender que um ícone de carrinho de compras representa a lista de itens a comprar.

Affordance

Refere-se às características de um objeto que sugerem ao usuário como ele pode ser utilizado. Por exemplo, um botão "convida/buscar" a ser pressionado.

É crucial que as *affordances percebidas* (o que o usuário acha que pode fazer) correspondam às *affordances reais* (o que realmente é possível fazer). Um mau design pode criar *falsas affordances*, confundindo o usuário. Como diz Don Norman, "Quando coisas simples precisam de figuras, etiquetas ou instruções, o design falhou!".

Usabilidade

É a medida de quão bem um produto pode ser usado por usuários específicos para alcançar objetivos definidos com **eficácia**, **eficiência** e **satisfação** em um determinado contexto de uso.

- **Eficácia:** A precisão e a completude com que os usuários atingem seus objetivos.
- **Eficiência:** Os recursos (tempo, esforço) gastos para atingir os objetivos.
- **Satisfação:** A ausência de desconforto e a presença de atitudes positivas durante o uso.

ISO: Divide a usabilidade em seis características principais para avaliar.

- **1. Capacidade de Reconhecimento Adequado:** (A "Primeira Impressão visão do usuário sobre o sistema")
 - Grau em que os usuários podem reconhecer se um produto ou sistema é apropriado para suas necessidades
- 2. Facilidade de Aprendizado: (É fácil "pegar o jeito"?)
 - Grau em que um produto ou sistema pode ser usado por usuários específicos para atingir objetivos específicos de aprender a usar o produto ou sistema com eficácia, eficiência, livre de riscos e satisfação em um contexto específico de uso
- **3. Operabilidade:** (É fácil de usar no dia a dia?)

- Grau em que um produto ou sistema possui atributos que facilitam sua operação e controle
- 4. Proteção Contra Erros do Usuário: (O sistema "ajuda a não errar"?)
- **5. Estética da Interface:** (É "bonito e agradável"?)
 - Grau em que uma interface de usuário permite uma interação agradável e satisfatória para o usuário
- **6. Acessibilidade:** (É "para todos"?)

Jakob Nielsen também define a usabilidade por cinco fatores: facilidade de aprendizado, facilidade de recordação (utilizar o software mesmo quando fica sem usá-lo por tempos), eficiência, segurança no uso (prevenção de erros) e satisfação.

Slogans de usabilidade de Nielsen:

- Sua melhor tentativa não é boa o suficiente: Teste, não adivinhe.
- **Usuário está sempre certo:** A culpa é do design, não do usuário.
- **Usuário não está sempre certo:** Observe as necessidades, não apenas os desejos.
- Usuários não são designers: Ofereça flexibilidade e personalização.
- **Designers não são usuários:** Você não é o seu usuário; evite o viés.
- **Menos é mais:** Simplicidade é a chave; evite sobrecarga.
- **Help não ajuda:** A interface deve ser a própria ajuda.

• Experiência do Usuário (UX)

É um conceito mais amplo que a usabilidade. UX engloba todos os aspectos da interação do usuário com um produto ou serviço, incluindo sentimentos e emoções. Além de ser útil e fácil de usar, a UX se preocupa com aspectos subjetivos como **estética, prazer, diversão e satisfação**. Atualmente, UX é visto como um termo "guarda-chuva" que abrange todas as áreas relacionadas ao projeto de interfaces e interação. ÚTIL → FÁCIL → AGRADÁVEL → BOA IMPRESSÃO.

Acessibilidade

Significa projetar sistemas de forma que possam ser usados pelo maior número possível de pessoas, independentemente de suas capacidades ou limitações. O objetivo é oferecer meios de acesso e interação **sem que a interface imponha obstáculos**.

Comunicabilidade

É a capacidade da interface de **comunicar ao usuário a lógica por trás do seu design**. Uma boa comunicabilidade deixa claro para que serve o sistema, como ele funciona, vantagem e quais são as melhores estratégias para usá-lo.

Ergonomia

É a ciência de adaptar o trabalho ao ser humano. Em IHC, foca em modelar as interfaces (máquinas, ferramentas, mobiliário, ambiente) para eliminar riscos, esforços desnecessários e buscar conforto e eficiência. A ergonomia considera aspectos posturais, ambientais (ruído, iluminação) e cognitivos para garantir que o sistema se adapte ao usuário, e não o contrário.

O objetivo principal é **projetar e organizar as coisas** para que elas se ada**ptem perfeitamente às pessoas**, e não o contrário.

3. Processo de Design Centrado no Usuário

Design:

- Definição: É um processo composto por
- + A análise da situação atual: estudar e interpretar a situação atual;
- Significa: Entender o contexto em que o design será inserido, identificando o problema a ser debatido.

Criamos uma interpretação da realidade estudada, através de um enquadramento e um recorte particular dela. O foco está na busca por conhecer os elementos envolvidos e as relações entre eles, por exemplo:

- Pessoas: Os envolvidos, como usuários diretos (com suas características, necessidades e preferências) e stakeholders.
- Artefatos: Ferramentas, objetos, etc.
- Processos: Como as atividades são realizadas.
- Contexto: O local onde tudo ocorre.

O resultado final desta análise é a identificação de necessidades e oportunidades de melhoria.

- + **A síntese de uma intervenção**: planejar e executar uma intervenção na situação atual;
- **Significa:** Projetar soluções para os questionamentos levantados pela análise, visando construir a resposta para a pergunta: **"Como melhorar esta situação?"**.

Dessa forma, busca-se projetar um novo produto ou processo. A intervenção é a mudança que será realizada, podendo ser algo grande ou simples. O foco está na experiência do usuário.

- + A avaliação da nova situação: verificar o efeito da intervenção, comparando a situação analisada anteriormente com a nova situação, atingida após a intervenção.
- **Significa:** Medir se a intervenção modificou a situação atual da forma desejada.

Esse processo pode ocorrer em diferentes momentos e tem como foco verificar se a interação e a interface atendem aos critérios de qualidade, como usabilidade e acessibilidade, definidos como prioridade na fase de análise.

- Pode-se voltar de novo para a etapa anterior.

Processos de Design de IHC

- É uma metodologia que detalha as etapas anteriores, definindo: como executar cada atividade; a sequência em que elas devem ser executadas; quais atividades podem se repetir, e por quais motivos; e os artefatos consumidos e produzidos em cada uma delas.
- São iterativos, ou seja, as atividades são executadas em ciclos que se repetem, permitindo refinamentos sucessivos da análise da situação atual e da proposta de intervenção.

Como funciona o ciclo?

- 1. O designer começa com a análise para entender a situação.
- 2. Com conhecimento suficiente, ele passa para a Síntese para criar uma solução.

- 3. Durante a Síntese, ele pode perceber que precisa de mais informações, então ele volta para a Análise para refinar seu entendimento.
- 4. Com uma proposta de solução em mãos, ele vai para a Avaliação.
- 5. Durante a Avaliação, ele pode descobrir falhas na solução (voltando para a Síntese) ou até mesmo no seu entendimento do problema (voltando para a Análise).
- 6. Esse processo se repete até que a intervenção seja considerada satisfatória.

Aprendizado tanto sobre o problema a ser resolvido quanto sobre a solução

Com a revisão da análise, o designer amplia, refina ou reformula a sua proposta de intervenção

Esse processo se repete quantas vezes forem necessárias, até satisfazer.

O designer pode dedicar mais tempo e esforço a diferentes fases.

- <u>Design Dirigido pelo Problema</u>: Gasta-se mais tempo na análise, investigando a fundo a situação atual, as necessidades e as oportunidades de melhoria (o problema), e menos tempo explorando possíveis intervenções (as soluções)
- **Design Dirigido pela Solução:** Faz o oposto. Gasta-se pouco tempo na Análise e mais tempo explorando e experimentando diversas intervenções (soluções) possíveis.

Os processos de design de IHC buscam atender e servir em primeiro lugar aos usuários e aos demais envolvidos (stakeholders), e não às tecnologias.

- Seguem estes princípios:
- 1. **Foco no Usuário:** O designer precisa entender profundamente quem são os usuários. Isso significa estudar suas necessidades, características, objetivos, limitações e como eles realizam suas

- tarefas atualmente. O sistema deve se adaptar ao usuário, e não o contrário.
- 2. **Métricas Observáveis**: É essencial testar o design com usuários reais desde cedo, usando protótipos. O comportamento e as reações desses usuários devem ser observados e medidos para ver o que realmente funciona e o que não funciona na prática.
- 3. Design Iterativo: O processo é um ciclo contínuo de melhoria. Quando os testes do passo anterior revelam problemas, a equipe deve corrigir o design e testá-lo novamente. Esse ciclo de projetar, testar e redesenhar se repete quantas vezes forem necessárias até que a solução atenda de verdade às necessidades dos usuários.

Processos de Design de IHC

Ciclo de Vida Simples

- A ideia principal é criar produtos que realmente funcionem para as pessoas, seguindo um ciclo de melhoria contínua.

1. Identificar Necessidades e Definir Requisitos:

- Antes de desenhar qualquer tela, você precisa entender profundamente quem são seus usuários e o que eles precisam fazer. É a fase de análise.

2. (Re)Design:

- Cria-se a solução. É a fase de explorar ideias, fazer esboços, desenhar as telas e pensar em como o usuário vai interagir com o sistema.

3. Construir uma Versão Interativa:

- Cria-se um protótipo: uma simulação ou uma versão simplificada do produto. O objetivo é ter algo "clicável" que os usuários possam experimentar, mesmo que não esteja 100% funcional.

4. Avaliar:

- Entrega-se o protótipo para usuários reais e observa como eles o utilizam. Aqui você descobre o que está bom e, principalmente, o que está confuso ou errado.
- Avaliação define o ciclo.
- Foco: Design Centrado no Usuário.
- Iteração (repetição e melhoria contínua)
- Ferramenta: Versão Interativa (Protótipo) para permitir testes com usuários reais.

Ciclo de Vida em Estrela

Fase de Análise (Entendimento do Problema)

- **Análise:** Entender a situação atual, os usuários, as tarefas e definir os requisitos do sistema.
 - É a atividade responsável pelo aprendizado da situação atual e pelo levantamento das necessidades e oportunidades de melhoria.
- **Especificação de Requisitos:** Consolidar a interpretação da análise, definindo os problemas que o projeto deve resolver.

Fase de Síntese (Criação da Solução)

- Projeto Conceitual e Especificação do Design: Criar a solução, ou seja, desenhar a interface e pensar na interação.
 - É a fase de concepção da solução.
- **Prototipação:** Construir versões interativas (protótipos) para permitir a realização de testes práticos.
- Implementação: Desenvolver o sistema final (a programação em si).

Avaliação é o Centro: É a atividade principal que conecta todas as outras.

Passagem Obrigatória: É impossível ir de uma atividade para outra sem antes passar pela Avaliação.

Não tem começo nem sequência obrigatória; o projeto dita o caminho.

Foco: Garantir que tudo (desde os requisitos até o protótipo) seja avaliado constantemente, permitindo corrigir erros cedo e com baixo custo.

- Engenharia de Usabilidade de Nielsen

Conjunto de atividades que devem ocorrer durante todo o ciclo de vida do produto.

- **1. Conheça seu Usuário:** Estudar e entender profundamente quem são as pessoas que usarão o sistema e o que elas pretendem fazer com ele.
- **2. Realize uma Análise Competitiva:** Examinar produtos com funcionalidades semelhantes. Aprender com os acertos e erros deles no teste, para descobrir o que funciona bem e o que pode ser melhorado e por quê.
- **3. Defina as Metas de Usabilidade:** Definir os fatores de qualidade de uso que devem ser priorizados no projeto, como serão avaliados ao longo do processo de design, e quais faixas de valores são inaceitáveis, aceitáveis e ideais para cada indicador..
- **4. Faça Designs Paralelos:** Em vez de seguir uma única ideia, vários designers criam, de forma independente, diferentes propostas para a mesma solução. Isso estimula a criatividade e aumenta as chances de encontrar o melhor caminho.
- **5. Adote o Design Participativo:** É envolver usuários reais durante todo o processo de design. Contato constante com um grupo de usuários para receber feedbacks e garantir que o produto atenda às suas necessidades.
- **6. Faça o Design Coordenado da Interface como um Todo:** É garantir que toda a experiência do produto seja consistente. Botões, menus, telas, textos de ajuda e tutoriais devem seguir o mesmo padrão, para que o sistema pareça um todo lógico e coeso.
- 7. Aplique Diretrizes e Análise Heurística: É usar um "checklist" de princípios de usabilidade conhecidos (as "heurísticas") para guiar o design e fazer avaliações rápidas.
- **8. Faça Protótipos:** É criar versões simplificadas e de baixo custo do sistema para poder testar as ideias antes de programar o produto final. Podem ser de dois tipos:

- Horizontal: Mostra muitas telas, mas com pouca função (testa a navegação).
- **Vertical:** Mostra poucas telas, mas com a função completa (testa uma tarefa em detalhes).
- **9. Realize Testes Empíricos:** É o teste de usabilidade clássico: observar usuários reais tentando executar tarefas com os protótipos. O objetivo é ver na prática onde eles encontram dificuldades.
- 10. Pratique Design Iterativo: É o ciclo de melhoria contínua. Com base nos problemas encontrados nos testes (passo 9), a equipe corrige o design, cria uma nova versão e repete o ciclo de testes. Isso continua até que as metas de usabilidade (do passo 3) sejam alcançadas.
- Foco: Garantir a usabilidade através de um ciclo prático e iterativo, baseado em testes com usuários reais e metas mensuráveis.

Engenharia de Usabilidade de Mayhew → Grande imagem...

- Ciclo de vida de design com 3 Fases do Processo:

1. Análise de Requisitos:

- **Objetivo:** É a fase de planejamento. Aqui se definem as **metas de usabilidade** (o que o produto precisa alcançar para ser considerado fácil de usar).
- **Como?** Analisando os usuários, suas tarefas e as limitações da plataforma (ex: web, mobile).
- Resultado Principal: Um Guia de Estilos, que é um documento com as regras e padrões de design que deverão ser seguidos no resto do projeto.

2. Design / Avaliação / Desenvolvimento:

- Objetivo: É a fase de criação, onde a solução é construída. Esta é a parte mais detalhada do modelo e sua principal característica. Durante o desenvolvimento, a interface deve ser avaliada com os usuários.
- Como? O trabalho é dividido em 3 Níveis de Detalhe:
 - Nível 1 (Conceitual).
 - Nível 2 (Padrões).
 - Nível 3 (Detalhado).

3. Instalação:

- Objetivo: É a fase pós-lançamento. O foco é coletar a opinião dos usuários depois que eles já estão usando o produto no dia a dia.
- Como? Através de feedbacks, pesquisas, etc.
- **Resultado Principal:** As informações coletadas servem para planejar **melhorias e futuras versões** do sistema.

Visão Estruturada.

Estrutura: 3 Fases (Análise, Design/Desenvolvimento, Instalação). Característica Única: A fase de design é dividida em 3 Níveis de Detalhe (Conceitual → Padrões → Detalhado).

Design Baseado em Cenários

O Processo em 3 Fases: O processo transforma histórias sobre problemas em histórias sobre soluções.

1. Fase de Análise (Entender o Problema):

- **Objetivo:** Estudar a situação atual e entender as dificuldades dos usuários.
- Ferramenta Principal: A equipe cria Cenários de Problema.
- **O que são?** São histórias que descrevem como as coisas são feitas *hoje*, destacando os problemas e as frustrações dos usuários.

2. Fase de Projeto (Criar a Solução):

- **Objetivo:** Imaginar e detalhar como o novo sistema vai resolver os problemas.
- **Ferramenta Principal:** A equipe transforma os Cenários de Problema em 3 tipos de **Cenários de Solução**, indo do geral para o específico:

- Cenários de Atividade: Descrevem "o quê" o usuário fará com o novo sistema (as funcionalidades).
- 2. **Cenários de Informação:** Detalham os cenários de atividade, descrevendo **"quais informações"** o sistema vai mostrar ao usuário durante a tarefa.
- 3. **Cenários de Interação:** Descreve o **passo a passo** da interação: as ações do usuário (cliques, digitação) e as respostas do sistema (feedbacks). É a história do **"como"** a tarefa é feita.

3. Fase de Prototipação e Avaliação (Testar a Solução):

- **Objetivo:** Verificar se as soluções imaginadas nos cenários funcionam na prática.
- **Como?** Protótipos são construídos para simular o que foi descrito nos cenários. Os próprios cenários são usados como "roteiros" para os testes com usuários, ajudando a avaliar se a história imaginada faz sentido na realidade.
- Fluxo Principal: Transformar Cenários de Problema → em Cenários de Solução.
- A Progressão dos Cenários de Solução: Lembre-se da ordem: Atividade
 (O quê?) → Informação (O que eu vejo?) → Interação (Como eu faço?).
- Tudo, do início ao fim, é baseado em Cenários.do, do início ao fim, é baseado em Cenários.
- É simplesmente uma história sobre pessoas realizando uma atividade. Por ser uma história escrita em linguagem normal, todos (designers, clientes, usuários) podem participar do processo.

Integração das Atividades de IHC com Engenharia de Software

Perspectiva da Engenharia de Software (Foco no Sistema):

- **O que importa?** O código, a arquitetura, a performance. O sistema é visto como uma "caixa preta": recebe dados, processa e devolve um resultado.
- Preocupação principal: Qualidade interna. O sistema é bem construído, eficiente, seguro e fácil de dar manutenção?

Perspectiva de IHC (Foco no Uso):

- O que importa? A experiência do usuário. A interface é intuitiva? As informações são fáceis de encontrar? As tarefas são simples de realizar?
- **Preocupação principal:** Qualidade **de uso**. O sistema ajuda o usuário a atingir seus objetivos de forma fácil e agradável em seu contexto real?

As 3 Principais Formas de Integrar IHC e ES

Para fazer as duas áreas trabalharem juntas, existem três abordagens principais:

- Definindo Características (ou Princípios):

Em vez de criar um processo novo, estabelecemos regras que todo projeto deve seguir para garantir usabilidade.

Exemplo: sempre realizar testes com usuários antes do lançamento.

- Processos Paralelos:

A equipe de IHC segue seu próprio processo ao mesmo tempo que a equipe de ES, trocando informações em pontos-chave.

Exemplo: a equipe de IHC entrega protótipos e testes para orientar a equipe de ES no início de cada ciclo.

- Inserindo Atividades (mais comum):

Atividades de IHC são adicionadas dentro de processos de ES já existentes, como Scrum ou Waterfall.

Exemplo: incluir um teste de usabilidade do protótipo dentro de um Sprint antes da programação.

ES foca **dentro** do sistema (qualidade técnica), IHC foca **fora** do sistema (experiência do usuário). Integrar as duas para criar sistemas que sejam tecnicamente bons **e fáceis** de usar. **3 Formas de Integrar:** Definindo **Princípios**, rodando **Processos Paralelos** ou **Inserindo Atividades** de IHC em processos de ES.

Métodos Ágeis e IHC: Ágeis (XP, Scrum) ajudam IHC porque trabalham em ciclos curtos com feedback constante, permitindo ajustes rápidos. Mas, muitas vezes ignoram usuários e interface, focando só em funcionalidades e prazos.