MATH 425A HOMEWORK 8 SOLUTIONS

Assignment: Chapter 4, #1.12, 1.13, 2.1, 2.2, 2.3, 2.4, 4.1, 4.2

Due Date: October 21, 2022

Rubric: (35 points total)

• Exercise 1.12. Category I, 6 points (4+2)

• Exercise 1.13. Category II, 3 points

• Exercise 2.1. Category II, 3 points

• Exercise 2.2. Category II, 4 points

• Exercise 2.3. Category II, 3 points

• Exercise 2.4. Category I, 8 points (4 + 4)

• Exercise 4.1. Category II, 3 points

• Exercise 4.2. Category II, 2 points

• Neatness: 3 points

• Optional LaTeXbonus: 1 point extra credit.

Please report any corrections, etc. to lesliet@usc.edu

- 1.12. Let (X, d) be a metric space, and let E be a subset of X.
- (a) Show that E is dense in X if and only if any nonempty open subset of X contains a point of E.
- (b) Suppose $E \subset Y \subset X$. Prove that E is dense in Y if and only if $Cl_X(E) \supset Y$.

Soln.: (a) (\Longrightarrow) Assume there exists a nonempty open subset U of X that contains no points of E. Then E is a subset of the closed set $X \setminus U$ (which is not all of X, since U is nonempty by assumption). That is,

$$\overline{E} \subset X \backslash U \subsetneq X$$
.

So E cannot be dense in X.

- (\iff) For the other direction, assume that every nonempty open subset of X contains a point of E. Choose $x \in X$; we claim that $x \in \overline{E}$. If $x \in E$, we are done; therefore assume without loss of generality that $x \notin E$. Let U be a neighborhood of x in X; then U contains a point y of E (by assumption) which is not equal to x (since $x \notin E$). Therefore $x \in \operatorname{Lim}_X(E) \subset \overline{E}$. This shows that $\overline{E} = X$, i.e., E is dense in X.
- (b) Assume E is dense in Y. Then $Y = \operatorname{Cl}_Y(E) = \operatorname{Cl}_X(E) \cap Y \subset \operatorname{Cl}_X(E)$. On the other hand, if $\operatorname{Cl}_X(E) \supset Y$, then $\operatorname{Cl}_Y(E) = \operatorname{Cl}_X(E) \cap Y \supset Y$. So E is dense in Y.
- 1.13. Previously, we said that a subset E of \mathbb{R} was dense in \mathbb{R} if for any real numbers a and b, there exists a number $c \in E$ which lies between a and b. Show that in \mathbb{R} , the new, more general definition of 'dense' agrees with the old one. That is, show that a subset E of \mathbb{R} is dense in \mathbb{R} according to the new definition if and only if it is dense according to the old one. (Hint: Use Exercise 1.12(a).)

Soln.: Assume that E satisfies the 'old' definition; that is, assume that for any real numbers a and b, there exists a number $c \in E$ that lies between them. Let U be a nonempty open subset of \mathbb{R} . Then U contains some interval of the form (a,b), where a < b, so that there exists $c \in E$ such that a < c < b. By Exercise 1.12(a), it follows that E is dense in \mathbb{R} in the 'new' sense.

Conversely, suppose that $\overline{E} = \mathbb{R}$, and choose $a, b \in \mathbb{R}$ with a < b. Then by Exercise 1.12(a), (a, b) contains a point c of E, which satisfies a < c < b. Thus the 'old' characterization of density holds for E.

2.1. Let $S = (p_n)_{n=1}^{\infty}$ be a sequence in \mathbb{R} whose image is $(\mathbb{Q} \cap (0,1)) \cup \{5\}$. What are the two possibilities for S^* ? Justify your answer.

Soln.: First of all, we have $(\operatorname{Im} S)' = ((\mathbb{Q} \cap (0,1) \cup \{5\}))' = [0,1]$. So S^* is a closed subset of \mathbb{R} that contains [0,1]. On the other hand, $\overline{\operatorname{Im} S} = [0,1] \cup \{5\}$. Thus

$$[0,1] \subset S^* \subset [0,1] \cup \{5\}.$$

Thus the two candidates for S^* are [0,1] and $[0,1] \cup \{5\}$. Both of these can be achieved; note that in order to have $5 \in S^*$ we must have $5 \in S_{\infty}$, since $5 \notin (\operatorname{Im} S)'$.

2.2. Prove Proposition 2.7 (restated here for convenience).

Proposition: Let $S = (p_n)_{n=1}^{\infty}$ be a sequence in a metric space X, and let S^* denote the set of subsequential limits of S. The following are equivalent.

- (1) $p_n \to p \text{ in } X \text{ as } n \to \infty$.
- (2) Every subsequence of $(p_n)_{n=1}^{\infty}$ converges to p in X.
- (3) $S^* = \{p\}$, and every subsequence of $(p_n)_{n=1}^{\infty}$ converges in X.

Soln.: (1) \Longrightarrow (2) Assume $p_n \to p$ in X as $n \to \infty$. Let U be any neighborhood of p in X, and choose $N \in \mathbb{N}$ large enough so that $n \ge N$ implies $p_n \in U$. Let $(p_{n_k})_{k=1}^{\infty}$ be a subsequence of $(p_n)_{n=1}^{\infty}$. Then $k \ge N$ also implies $n_k \ge k \ge N$, which implies $p_{n_k} \in U$. Thus $p_{n_k} \to p$ in X as $k \to \infty$.

- $(2) \Longrightarrow (1) (p_n)_{n=1}^{\infty}$ is a subsequence of itself. (Put $n_k = k$ for each $k \in \mathbb{N}$.) So statement (1) is a special case of statement (2).
- (2) \Longrightarrow (3) Assume that every subsequence of $(p_n)_{n=1}^{\infty}$ converges to p. Then p a subsequential limit, and is moreover the only possible subsequential limit; this says exactly that $S^* = \{p\}$.
- (3) \Longrightarrow (2) Assume that $S^* = \{p\}$ and that every subsequence of $(p_n)_{n=1}^{\infty}$ converges in X. Let $(p_{n_k})_{k=1}^{\infty}$ be a subsequence of $(p_n)_{n=1}^{\infty}$. Then (p_{n_k}) converges in X by assumption, and its limit is an element of S^* by definition of S^* . Since the only element of S^* is $\{p\}$, it follows that $p_{n_k} \to p$ in X as $k \to \infty$.
 - 2.3. Let (X, d) be a metric space, and let $(x_n)_{n=1}^{\infty}$ be a sequence in X. Prove the following statements.
 - (a) If $(x_n)_{n=1}^{\infty}$ converges in X, then it is Cauchy in X.
 - (b) If $(x_n)_{n=1}^{\infty}$ is Cauchy in X, then it is bounded in X.

Soln.: (a) Assume $(x_n)_{n=1}^{\infty}$ converges in X, to some point $x \in X$. Choose $\varepsilon > 0$, and choose $N \in \mathbb{N}$ such that $n \geq N$ implies $d(x_n, x) < \frac{\varepsilon}{2}$. Then $m \geq n \geq N$ implies that

$$d(x_m, x_n) \le d(x_m, x) + d(x, x_n) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Thus (x_n) is Cauchy in X.

- (b) Assume $(x_n)_{n=1}^{\infty}$ is Cauchy in X, and choose $N \in \mathbb{N}$ such that $m \geq n \geq N$ implies $d(x_m, x_n) < 1$. Put $M = \max\{1, d(x_1, x_N), \dots, d(x_{N-1}, x_N)\}$. We claim that $\{x_n\}_{n=1}^{\infty} \subset B_X(x_N, M)$. Indeed, if j < N, then $d(x_j, x_N) \leq M$ by definition of M; if $j \geq N$ then $d(x_j, x_N) < 1 \leq M$ by choice of N. This proves that $(x_n)_{n=1}^{\infty}$ is bounded in X.
- 2.4. Prove Theorem 2.12 (copied below for convenience). (Hints: For (a), use Theorem 1.11 and Proposition 1.15. For part (b), Exercise 1.4 is relevant.)

Theorem: Let (X, d) be a metric space; let Y be a subset of X. The following statements hold.

- (a) If Y is complete, then Y is closed in X.
- (b) If X is complete and Y is closed in X, then Y is complete.

- Soln.: (a) Assume Y is complete; we show that $\operatorname{Lim}_X(Y) \subset Y$. (This is enough, by Proposition 1.15.) Choose $y \in \operatorname{Lim}_X(Y)$. By Theorem 1.11, we can find a sequence $(y_n)_{n=1}^\infty$ in $Y \setminus \{y\}$ such that $y_n \to y$ in X as $n \to \infty$. Thus $(y_n)_{n=1}^\infty$ is Cauchy in X and is a sequence in Y, so $(y_n)_{n=1}^\infty$ is Cauchy in Y. Since Y is complete, it follows that $(y_n)_{n=1}^\infty$ converges in Y to a point $z \in Y$. Consequently $y_n \to z$ in X. By uniqueness of limits, we have z = y, which tells us that $y \in Y$. Thus $\operatorname{Lim}_X(Y) \subset Y$, as needed.
- (b) Assume X is complete and Y is closed in X. Let $(y_n)_{n=1}^{\infty}$ be a Cauchy sequence in Y; we need to show that it converges in Y. Since $(y_n)_{n=1}^{\infty}$ is Cauchy in Y, it is also Cauchy in X; since X is complete, $(y_n)_{n=1}^{\infty}$ must converge in X to a point $y \in X$. We claim first of all that $y \in Y$. If $y = y_n$ for some $n \in \mathbb{N}$, then we are done, as $(y_n)_{n=1}^{\infty}$ is a sequence in Y by assumption. Therefore we assume without loss of generality that $y \notin \{y_n\}_{n=1}^{\infty}$, which implies that $(y_n)_{n=1}^{\infty}$ is a sequence in $Y \setminus \{y\}$ that converges in X to y. By Theorem 1.16, it follows that $y \in \text{Lim}_X(Y)$, which implies that $y \in Y$ since Y is closed in X.

We have thus established that $y_n \to y$ in X and $y \in Y$. By Exercise 1.4, it follows that $y_n \to y$ in Y. Thus Y is complete, as needed.

4.1. Prove Corollary 4.10. (Statement: Let (X, d) be a metric space. Assume F and K are subsets of X, with F closed and K compact. Then $F \cap K$ is compact.)

Soln.: $F \cap K$ is closed in K, since F is closed in X. Therefore it is a closed subset of a compact metric space, therefore (by Theorem 4.9) compact.

4.2. Give an example of a collection \mathcal{A} of *bounded* subsets of \mathbb{R} such that \mathcal{A} has the finite intersection property, but $\bigcap_{A \in \mathcal{A}} A = \emptyset$. Hint: If $A \subset \mathbb{R}$ is bounded in \mathbb{R} , what else can prevent it from being compact?

Soln.: Put $\mathcal{A} = \{(0, \frac{1}{n})\}_{n=1}^{\infty}$. Then \mathcal{A} is a countable collection of nonempty nested sets, so it has the finite intersection property. But $\bigcap_{n=1}^{\infty} (0, \frac{1}{n}) = \emptyset$.