Class 10: Structural Bioinformatics

Nathaniel Lightle (A16669288)

1. Introduction to RCSB Protein Data Bank (PDB)

Downloading CSV file for data distribution

```
stats <- read.csv("Data Export Summary.csv", row.names = 1)
head(stats)</pre>
```

			,			0.1
	X.ray	EM	NMR	Multiple.methods	Neutron	Uther
Protein (only)	158,844	11,759	12,296	197	73	32
Protein/Oligosaccharide	9,260	2,054	34	8	1	0
Protein/NA	8,307	3,667	284	7	0	0
Nucleic acid (only)	2,730	113	1,467	13	3	1
Other	164	9	32	0	0	0
Oligosaccharide (only)	11	0	6	1	0	4
	Total					
Protein (only)	183,201					
Protein/Oligosaccharide	11,357					
Protein/NA	12,265					
Nucleic acid (only)	4,327					
Other	205					
Oligosaccharide (only)	22					

Making a function to remove the commas from the numbers

```
rm.comma <- function(x) {
   as.numeric( gsub(",", "", x))
}</pre>
```

Removing the commas from the dataset

rm.comma(stats\$EM)

```
[1] 11759 2054 3667 113 9 0
```

We can use apply() to fix the whole table

```
pdbstats <- apply(stats, 2, rm.comma)
rownames(pdbstats) <- rownames(stats)
pdbstats</pre>
```

	X.ray	EM	NMR	Multiple.methods	Neutron	Other
Protein (only)	158844	11759		197	73	32
Protein/Oligosaccharide	9260	2054	34	8	1	0
Protein/NA	8307	3667	284	7	0	0
Nucleic acid (only)	2730	113	1467	13	3	1
Other	164	9	32	0	0	0
Oligosaccharide (only)	11	0	6	1	0	4
	Total					
Protein (only)	183201					
Protein/Oligosaccharide	11357					
Protein/NA	12265					
Nucleic acid (only)	4327					
Other	205					
Oligosaccharide (only)	22					

Q1: What percentage of structures in the PDB are solved by X-Ray and Electron Microscopy?

```
totals <- apply(pdbstats, 2, sum)
(totals/totals["Total"]) * 100</pre>
```

X.ray	EM	NMR	Multiple.methods
84.83231383	8.32730146	6.67953467	0.10691797
Neutron	Other	Total	
0.03642780	0.01750427	100.00000000	

84.83% are solved by X-ray and 8.33% are solved by EM.

Q2: What proportion of structures in the PDB are protein?

round(pdbstats[, "Total"] / sum(pdbstats[, "Total"]) * 100, 2)

Protein/NA	Protein/Oligosaccharide	Protein (only)
5.80	5.37	86.67
Oligosaccharide (only)	Other	Nucleic acid (only)
0.01	0.10	2.05

86.67% are protein only.

Q3: Skip

Here is a lovely figure of HIP-OR with the catalytic ASP residues, the MK1 compound and the all important water 308

Q4: Water molecules normally have 3 atoms. Why do we see just one atom per water molecule in this structure?

Hydrogens are smaller than the resolution. So, they don't show up.

Q5: There is a critical "conserved" water molecule in the binding site. Can you identify this water molecule? What residue number does this water molecule have?

It's water molecule 308

Q6: Generate and save a figure clearly showing the two distinct chains of HIV-protease along with the ligand. You might also consider showing the catalytic residues ASP 25 in each chain and the critical water (we recommend "Ball & Stick" for these side-chains). Add this figure to your Quarto document

The bio3d package for structural bioinformatics

```
library(bio3d)

pdb <- read.pdb("1hsg")

Note: Accessing on-line PDB file

pdb

Call: read.pdb(file = "1hsg")

Total Models#: 1
   Total Atoms#: 1686, XYZs#: 5058 Chains#: 2 (values: A B)

Protein Atoms#: 1514 (residues/Calpha atoms#: 198)
   Nucleic acid Atoms#: 0 (residues/phosphate atoms#: 0)</pre>
```

```
Non-protein/nucleic Atoms#: 172 (residues: 128)
    Non-protein/nucleic resid values: [ HOH (127), MK1 (1) ]
  Protein sequence:
     PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKMIGGIGGFIKVRQYD
     QILIEICGHKAIGTVLVGPTPVNIIGRNLLTQIGCTLNFPQITLWQRPLVTIKIGGQLKE
     ALLDTGADDTVLEEMSLPGRWKPKMIGGIGGFIKVRQYDQILIEICGHKAIGTVLVGPTP
     VNIIGRNLLTQIGCTLNF
+ attr: atom, xyz, segres, helix, sheet,
       calpha, remark, call
  head(pdb$atom)
 type eleno elety alt resid chain resno insert
                                                                z o
                                                          У
                                          <NA> 29.361 39.686 5.862 1 38.10
1 ATOM
          1
               N < NA >
                        PRO
                                Α
                                      1
2 ATOM
                                Α
          2
               CA <NA>
                        PRO
                                     1 <NA> 30.307 38.663 5.319 1 40.62
3 ATOM
          3
              C <NA>
                        PRO
                                Α
                                     1 <NA> 29.760 38.071 4.022 1 42.64
          4
                        PRO
4 ATOM
                O <NA>
                                Α
                                     1 <NA> 28.600 38.302 3.676 1 43.40
                                    1 <NA> 30.508 37.541 6.342 1 37.87
5 ATOM
          5
               CB <NA>
                        PRO
                                Α
          6
                        PRO
                                    1 <NA> 29.296 37.591 7.162 1 38.40
6 ATOM
               CG <NA>
 segid elesy charge
1 <NA>
           N
               <NA>
2 <NA>
           C <NA>
3 <NA>
           C <NA>
4 <NA>
           O <NA>
5 <NA>
           C <NA>
6 <NA>
           C <NA>
```

Predicting functional motions of a single structure

Let's finish today with a bioinformatics calculation to predict the functional motions of a PDB structure.

```
adk <- read.pdb("6s36")

Note: Accessing on-line PDB file
   PDB has ALT records, taking A only, rm.alt=TRUE</pre>
```

m <- nma(adk)

Building Hessian... Done in 0.058 seconds. Diagonalizing Hessian... Done in 1.046 seconds.

plot(m)

Q7. How many amino acid residues are there in this pdb object?

There are 198 amino acid residues.

Q8. Name one of the two non-protein residues?

One of the two non-protein residues is HOH.

Q9. How many protein chains are in this structure?

There are 2 protein chains in this structure.