EGZAMIN Z PROBABILISTYKI

Imię i nazwisko grupa	SUMA PUNKTÓW	
Test składa się z 12 zadań. W każdym zadaniu jest 5 pytań, na które należy odpowiedzieć TAK (wpisując w kratce obok T) lub NIE (wpisując N). Za każdą poprawną odpowiedź otrzymuje się 2 punkty, za złą odejmowany jest 1 punkt (za zadanie nie można otrzymać jednak mniej niż 0 punktów). Za brak odpowiedzi otrzymuje się 0 punktów.		
1. Dystrybuanta zmiennej losowej (X,Y) ma postać: $F(x,y) = \begin{cases} & \\ & \\ & \end{cases}$ Wtedy:	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	≤ 1
(X, Y) ma rozkład ciągły		
X i Y nie są nieskorelowane		
$\square X$ ma rozkład jednostajny na przedziale $[0;1]$		
$ P\left(X > \frac{1}{2}, Y < \frac{1}{2}\right) = \frac{1}{16} $		
X + Y ma rozkład ciągły		
2. Funkcja $F: \mathbb{R} \to \mathbb{R}$ jest dystrybuantą jednowymiarowej zmie $a < b$, to	nnej losowej X . Jeśli $a, b \in \mathbb{R}$	oraz
$ P(a \leqslant X \leqslant b) = \lim_{x \to b^+} F(x) - \lim_{x \to a^+} F(x) $		
$ P(X \geqslant a) = 1 - F(a) $		
3. A i B są zdarzeniami z tej samej przestrzeni probabilistyczne $P(B)=0,8,P(A\cup B)=0,9.$ Wtedy:	takimi, że $P(A) = 0, 4,$	
4. Niech X będzie jednowymiarową zmienną losową. Wtedy: Jeśli istnieje EX , to istnieje EX^2 Jeśli istnieje EX^2 , to istnieje EX	- \ 2	
	1	
	$=\frac{1}{p}$	
Jeśli X ma rozkład Bernoulliego z parametrami n i p , to V	YX = np	

5.	Xi Y są niezależnymi zmiennymi losowymi. Każda z nich ma rozkład normalny $N(1,4).$ Niech $Z=2X+Y,W=X+2Y.$ Wtedy:
	igcup Z i W są niezależne
	$ P(Z > 1) = \frac{1}{2} + \Phi(0, 1) $
6.	Zmienna losowa X ma rozkład ciągły o gęstości $f_X(x)=\left\{ egin{array}{ll} -\frac{1}{2}x & , & x\in (-2;0) \\ 0 & , & w.p.p. \end{array} \right.$. Wtedy:
	Jeśli $Y = (X+1)^2$, to $f_Y(y) = \frac{1}{2\sqrt{y}}$ dla $y \in (0;1)$
	$ P(X \leqslant 0) = 1 $
	Jeśli $(X_k)_{k\in\mathbb{N}}$ jest ciągiem niezależnych zmiennych losowych takich, że dla każdego $k\in\mathbb{N}$
	zmienna losowa X_k ma rozkład o gęstości f_X , to zmienna losowa $\frac{\sum_{k=1}^{72} X_k + 96}{4}$ ma rozkład normalny $N(0,1)$
	$ EX = -\frac{4}{3} $
	VX = 2
7.	X jest zmienną losową o rozkładzie dyskretnym takim, że $S_X=\{0,1,2\}$ oraz $EX=0,9,$ $EX^2=1,5.$ Wtedy:
	P(X=1) > P(X=0)
	P(X=2) = 0,3
	$ F_X(2) = 0,7 $
	$\prod F_X(x) = 0,4$ dla każdego $x \leq 1$
	\square Jeśli $x \in (1; 2]$, to $F_X(x) = 0, 4$
8.	Kwoka wysiaduje 3 jaja. Prawdopodobieństwo, że z jajka wykluje się kura jest takie samo, jak prawdopodobieństwo, że wykluje się kogut. Oznaczmy zdarzenia: A - z jaj wykluje się co najwyżej jedna kura; B - z jaj wykluje się co najmniej jeden kogut i co najmniej jedna kura; C - wszystkie wyklute z jaj pisklęta będą tej samej płci. Wtedy:
	$ P(A) = \frac{1}{2} $
	$P(B) = \frac{3}{8}$
	Zdarzenia A i B są niezależne
	Zdarzenia A i C są niezależne
	Zdarzenia A, B, C są parami niezależne

9.	Dwuwymiarowa zmienna losowa (X,Y) ma rozkład jednostajny w obszarze $D = \{(x,y): -1 \le x \le 1, \ 0 \le y \le 1 - x \}$. Wtedy:
	EX = 0
	\square Jeśli $y \in (0;1)$, to $f_Y(y) = 2 - 2y$
	$ EY = \frac{1}{2} $
	$\hfill X$ i Y są niezależne
	$ F_X(0 \mid Y > X) = \frac{2}{3} $
10.	Są 4 urny typu A i 8 urn typu B. W każdej urnie typu A jest 6 kul zielonych i 4 czerwone. W każdej urnie typu B są 3 kule zielone i 7 czerwonych. Losujemy jedną urnę, a następnie z niej jedną kulę. Wtedy:
	$ P(\{\text{wylosujemy czerwoną kulę}\}) = \frac{3}{5} $
	$ P(\{\text{losowano z urny typu A}\} \mid \{\text{wylosowana kula jest czerwona}\}) = \frac{2}{9} $
	$ P(\{\text{losowano z urny typu B}\} \mid \{\text{wylosowana kula jest czerwona}\}) = \frac{7}{9} $
	$\ \ \ \ \ \ P(\{\mbox{będziemy losowali z urny typu A i wylosujemy czerwoną kulę}\}) = \frac{1}{5}$
	$\hfill P(\{\mbox{będziemy losowali z urny typu B i wylosujemy czerwoną kulę}\}) = \frac{4}{5}$
11.	Funkcja $f: \mathbb{R} \to \mathbb{R}$ dana wzorem $f(x) = \begin{cases} ax &, & 0 \leq x \leq 1 \\ b &, & 2 \leq x \leq 3 \\ 0 &, & w.p.p. \end{cases}$
	zmiennej losowej X. Wiadomo, że $P\left(X > \frac{1}{2}\right) = \frac{7}{8}$. Wtedy:
	\square Jeśli $x \in (0;1]$, to $F_X(x) = \frac{1}{2}x^2$
	$ \Box F_X\left(\frac{3}{2}\right) = \frac{1}{2} $
	\square Jeśli $x \in (2;3]$, to $F_X(x) = \frac{1}{2}(x-2)$
12.	X i Y są niezależnymi zmiennymi losowymi. X ma rozkład jednostajny na przedziale $[-1;1]$, Y ma rozkład jednostajny na przedziale $[-2;2]$. Niech $Z=sgnX$, $W=sgnY$. Wtedy:
	\square Z i W mają ten sam rozkład
	\square Z ma rozkład 2 - punktowy