CS 97SI: INTRODUCTION TO PROGRAMMING CONTESTS

Today's Lecture

- Algebra
- Number Theory
- Combinatorics
- (non-computational) Geometry

Emphasis on "how to compute"

Sum of Powers

$$\sum_{k=1}^{n} k^2 = \frac{1}{6}n(n+1)(2n+1)$$

- Pretty useful in many random situations
- Memorize above!

Fast Exponentiation

- $\Box a^n =$
 - \Box 1, if n = 0
 - $\square a$, if n=1
 - $\Box (a^{n/2})^2$, if n is even
 - $\Box (a^{(n-1)/2})^2 \cdot a$, if n is odd

Can be computed recursively

Implementation (recursive)

```
double pow(double a, int n) {
   if(n == 0) return 1;
   if(n == 1) return a;
   double t = pow(a, n/2);
   return t * t * pow(a, n%2);
}
```

 \square Running time: $O(\log n)$

Implementation (non-recursive)

```
double pow(double a, int n) {
     double ret = 1;
     while(n) {
          if (n\%2 == 1) ret *= a;
          a *= a; n /= 2;
     return ret;
```

You should understand how it works

Linear Algebra

- Gaussian Elimination
 - Solve a system of linear equations
 - Invert a matrix
 - □ Find the rank of a matrix
 - Compute the determinant of a matrix
- □ Cramer's Rule

Greatest Common Divisor (GCD)

- Used very frequently in number theoretical problems

- □ Some facts:
 - $\square \gcd(a, b) = \gcd(a, b a)$
 - $\square \gcd(a,0) = a$
 - gcd(a, b) is the smallest positive number in $\{ax + by \mid x, y \in Z\}$

Euclidean Algorithm

```
\square Repeated use of \gcd(a,b) = \gcd(a,b-a)
□ gcd(1989,867)
              = \gcd(1989 - 2 \times 867, 867)
              = \gcd(255, 867)
              = \gcd(255, 867 - 3 \times 255)
              = \gcd(255, 102)
              = \gcd(255 - 2 \times 102, 102)
              = \gcd(51, 102)
              = \gcd(51, 102 - 2 \times 51)
              = \gcd(51,0)
              = 51
```

Implementation

```
int gcd(int a, int b) {
    while(b){int r = a % b; a = b; b = r;}
    return a;
}
```

- \square Running time: $O(\log(a+b))$
- □ Be careful: a % b follows the sign of a

```
    5 % 3 == 2
    -5 % 3 == -2
```

Congruence & Modulo Operation

 $\neg x \equiv y \pmod{n}$ means x and y have the same remainder when divided by n

- Multiplicative inverse
 - x^{-1} is the inverse of x modulo n if $xx^{-1} \equiv 1 \pmod{n}$

 - May not exist (e.g. Inverse of 2 mod 4)
 - \blacksquare Exists iff $\gcd(x, n) = 1$

Multiplicative Inverse

- $lue{}$ All intermediate numbers computed by Euclidean algorithm are integer combinations of a and b
 - Therefore, gcd(a, b) = ax + by for some integers x, y
 - □ If gcd(a, n) = 1, then ax + ny = 1 for some x, y
 - \blacksquare Taking modulo n gives $ax \equiv 1 \pmod{n}$

 $lue{}$ We will be done if we can find such x and y

Extended Euclidean Algorithm

 $\hfill \square$ Main idea: keep the original algorithm, but write all intermediate numbers as integer combinations of a and b

Exercise: implementation!

Chinese Remainder Theorem

- \square Given a, b, n, m such that n and m are coprime
- \square Find x such that $x \equiv a \pmod{m}$, $x \equiv b \pmod{n}$

- Solution:
 - \blacksquare Let n^{-1} be the inverse of n modulo m
 - \blacksquare Let m^{-1} be the inverse of m modulo n
 - $\blacksquare \text{ Set } x = ann^{-1} + bmm^{-1} \text{ (check this yourself)}$
- Extension: solving for more simultaneous equations

Binomial Coefficients

- - or, the coefficient of $x^k y^{n-k}$ in the expansion of $(x+y)^n$

Appears everywhere in combinatorics

Computing $\binom{n}{k}$

Solution 1: Compute using the following formula

$$\binom{n}{k} = \frac{n(n-1)\cdots(n-k+1)}{k!}$$

□ Solution 2: Use Pascal's triangle

- $lue{}$ Case 1: Both n and k are small
 - Use either solution
- \square Case 2: n is big, but k or n-k is small
 - Use Solution 1 (carefully)

Fibonacci sequence

Definition:

- $\Box F_0 = 0, F_1 = 1$
- $F_n = F_{n-1} + F_{n-2}$, where $n \ge 2$

Appears in many different contexts

Closed Form

$$\square$$
 $F_n = \frac{\varphi^n - \overline{\varphi}^n}{\sqrt{5}}$, where $\varphi = \frac{1 + \sqrt{5}}{2}$

- \square Bad because φ and $\sqrt{5}$ are irrational
- $lue{}$ Cannot compute the exact value of F_n for large n

- $lue{}$ There is a more stable way to compute F_n
 - and any other recurrence of a similar form

Better Closed Form

$$\begin{bmatrix} F_{n+1} \\ F_n \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} F_n \\ F_{n-1} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^n \begin{bmatrix} F_1 \\ F_0 \end{bmatrix}$$

 Use fast exponentiation to compute the matrix power

 Can be extended to support any linear recurrence with constant coefficients

Geometry

- In theory: not that hard
- In programming contests: avoid if you can...

- Will cover basic stuff today
 - Computational geometry in week 9

When Solving Geometry Problems

- Precision, precision, precision!
 - If possible, don't use floating-point numbers
 - If you have to, always use double and never use float
 - Avoid division whenever possible
 - \blacksquare Introduce small constant ϵ in (in)equality tests
 - **e.g.** Instead of if (x == 0), write if (abs(x) < EPS)
- □ No hacks!
 - In most cases, randomization, probabilistic methods, small perturbations won't help

2D Vector Operations

- \square Have a vector (x, y)
- □ Norm (distance from the origin): $\sqrt{x^2 + y^2}$
- \square Counterclockwise rotation by θ :

Left-multiply by
$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

- Make sure to use correct units (degrees, radians)
- □ Normal vectors: (y, -x), (-y, x)

Memorize all of them!

Line-Line Intersection

- □ Have two lines: ax + by + c = 0, dx + ey + f = 0
- Write in matrix form:

Invert the matrix on the left using the following:

$$\begin{bmatrix} a & b \\ d & e \end{bmatrix}^{-1} = \frac{1}{ae-bd} \begin{bmatrix} e & -b \\ -d & a \end{bmatrix}$$

- Memorize this!
- \Box Edge case: ae = bd

Circumcircle of a Triangle

- \square Have three points A, B, C
- \square Want to compute P that is equidistance from A,B,C

- Don't try to solve the system of quadratic equations!
- Instead, do the following:
 - \blacksquare Find the bisectors of AB and BC
 - Compute their intersection

Area of a Triangle

- \square Have three points A, B, C
- □ Use cross product: $2 \cdot area = |(B A) \times (C A)|$

Cross product:

Very important in computational geometry. Memorize!

Area of a Simple Polygon

- \square Given P_1, P_2, \dots, P_n around perimeter of polygon P
- \square If P is convex, we can decompose P into triangles:

- It turns out that the formula above works for nonconvex polygons too
 - Area is the absolute value of the sum of "signed area"
- Alternative formula:

$$\square 2 \cdot area = |\sum_{i=1}^{n} (x_i y_{i+1} - x_{i+1} y_i)|$$

Conclusion

- No need to look for one-line closed form solutions
- Multi-step algorithms are good enough
 - This is a CS class, after all

- Have fun with the exercise problems
 - and come to the practice contest if you can!