G. Santin 29.04.2025

Esercizi del corso

Algebra Lineare

Secondo semestre 2024/2025

Foglio riassuntivo 2: Matrici, omomorfismi, diagonalizzazione

Esercizio 1 (Diagonalizzazione).....

Sia $\{e_1, e_2, e_3\}$ la base canonica di $V = \mathbb{R}^3$ e si consideri la trasformazione lineare $T: V \to V$ data da

$$T(e_1) = e_1 - 2e_3$$
, $T(e_2) = e_1 + e_2 - 2e_3$, $T(e_3) = 3e_3$.

- (a) Determinare gli autovalori di T e le relative molteplicitá algebriche.
- (b) Determinare gli autospazi.
- (c) Determinare una base di ciascun autospazio.
- (d) É possibile trovare una base di V formata da autovettori di T?

Esercizio 2 (Sistemi lineari).....

Si consideri il seguente sistema lineare dipendente dal parametro reale h:

$$\begin{cases} hx + y = 1 \\ x + hy = h \\ (1 - h)x + y + hz = 0 \\ 2x + (2 + h)y + hz = 1 + h. \end{cases}$$

Determinare per quali valori di h il sistema

- (a) Ammette soluzioni.
- (b) Ammette infinite soluzioni dipendendenti da un solo parametro.
- (c) Ammette una sola soluzione.

Esercizio 3 (Forme quadratiche).....

Sia $V = \mathbb{R}^2$. Dimostrare che esiste un unico $k \in \mathbb{R}$ per cui la funzione $T: V \to V$ definita da

$$T(1,2) = (3,0), T(2,4) = (k,0), T(0,1) = (1,-1/2),$$

é un endomorfismo. Determinare poi la matrice A associata a T rispetto alla base canonica, mostrare che é simmetrica, scrivere esplicitamente la forma quadratica $q_A(x, y)$ ad essa associata e infine determinare se é definita, semidefinita, o indefinita.

Esercizio 4 (Sottospazi vettoriali).....

Sia M_2 lo spazio vettoriale delle matrici quadrate di ordine due e sia M^* il sottoinsieme di M_2 costituito dalle matrici singolari. É vero che M^* sia un sottospazio vettoriale di M_2 ?

Esercizio 5 (Diagonalizzazione).....

Sia T il seguente endormorfismo di \mathbb{R}^4 :

$$T \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} = \begin{pmatrix} 4x + 2z \\ y + w \\ -x + z \\ y + w \end{pmatrix}.$$

- (a) Determinare la matrice di rappresentazione di T rispetto alla base canonica.
- (b) Determinare $\operatorname{Ker} T \in \operatorname{Im} T$ (basi e dimensione).
- (c) Stabilire se $\operatorname{Ker} T$ e $\operatorname{Im} T$ sono in somma diretta.
- (d) Verificare che gli autovalori distinti di T sono 0, 2, 3.
- (e) Verificare che T è diagonalizzabile, trovando esplicitamente una base di autovettori.

Esercizio 6 (Diagonalizzazione).....

Si consideri, al variare di $k \in \mathbb{R}$, la matrice:

$$A_k = \begin{pmatrix} 1 & 2k - 4 & -1 \\ k - 2 & 0 & 0 \\ -1 & 0 & 1 \end{pmatrix}$$

- (a) Stabilire per quali valori di k il vettore v = (1, 0, -1) è autovettore di A_k . Per tali valori, determinare a quale autovalore λ è associato, e calcolare la molteplicità geometrica di λ .
- (b) Determinare per quali valori di k si ha che $\lambda = 0$ è autovalore di A_k .
- (c) Determinare per quali valori di k la matrice A_k è diagonalizzabile. Per tali valori determinare la matrice S che la diagonalizza (matrice del cambio di base), e la corrispondente forma diagonale di A_k .
- (d) Per k=2 determinare gli autovettori della matrice A_2 che appartengono al sottospazio vettoriale $W=\{(x,y,z)\in\mathbb{R}^3:y=0\}.$