Homework 2

Phan Hoang An - 9651

Problem 4.1

It is *true* that an FID signal lasts as long as the transverse magnetization.

Problem 4.2

For a spin system with N spectral components at their corresponding individual frequencies, the spectral density function $\rho(\omega)$ is a combination of N delta functions of frequencies:

$$\rho(\omega) = \sum_{k=1}^{N} M_{z,k}^{0} \delta(\omega - \omega_{k})$$

In addition, an FID signal resulting from an α pulse is mathematically presented by:

$$S(t) = \sin \alpha \int_{-\infty}^{\infty} \rho(\omega) e^{-t/T_2(\omega)} e^{-j\omega t} d\omega$$

Thus, an FID signal with N spectral components can be derived as follows:

$$S(t) = \sin \alpha \int_{-\infty}^{\infty} \sum_{k=1}^{N} M_{z,k}^{0} \delta(\omega - \omega_{k}) e^{-t/T_{2}(\omega)} e^{-j\omega t} d\omega$$

$$\Rightarrow S(t) = \sin \alpha \sum_{k=1}^{N} \left(M_{z,k}^{0} \int_{-\infty}^{\infty} \delta(\omega - \omega_{k}) e^{-t/T_{2}(\omega)} e^{-j\omega t} d\omega \right)$$

For any function f(x) defined within [a, b], we consider the following characteristic

$$\int_a^b \delta(x - x_0) f(x) dx = f(x_0), \ \forall x_0 \in [a, b]$$

Hence, with any $k \in [1, N]$, we easily see that

$$\int_{-\infty}^{\infty} \delta(\omega - \omega_k) e^{-t/T_2(\omega)} e^{-j\omega t} d\omega = e^{-t/T_2(\omega_k)} e^{-j\omega_k t}$$

Therefore, we finally obtain the expression of a FID with N spectral components,

$$S(t) = \sin \alpha \sum_{k=1}^{N} M_{z,k}^{0} e^{-t/T_{2}(\omega_{k})} e^{-j\omega_{k}t}$$

Problem 4.11

(a) Let's denote M_z^0 as the bulk magnetization at thermal equilibrium. So, we have,

$$\begin{cases} \text{the process } \vec{M}_{rot}(0_{-}) \xrightarrow{90_{x'}^{o}} \vec{M}_{rot}(0_{+}) \xrightarrow{90_{y'}^{o}} \vec{M}_{rot}(0_{++}) \\ \text{the pre-pulse condition } \vec{M}_{rot}(0_{-}) = [0, 0, M_{z}^{0}]^{T} \end{cases}$$

1

•Calculation of \vec{M}_{rot} after $90^o_{x'}$ -pulse: $\vec{M}_{rot}(0_+) = R_{x'}(90^o)\vec{M}_{rot}(0_-)$

$$\Rightarrow \vec{M}_{rot}(0_{+}) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos 90^{o} & \sin 90^{o} \\ 0 & -\sin 90^{o} & \cos 90^{o} \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ M_{z}^{0} \end{bmatrix} = \begin{bmatrix} 0 \\ M_{z}^{0} \\ 0 \end{bmatrix}$$

•Calculation of \vec{M}_{rot} after $90^o_{n'}$ -pulse: $\vec{M}_{rot}(0_{++}) = R_{n'}(90^o)\vec{M}_{rot}(0_{++})$

$$\Rightarrow \vec{M}_{rot}(0_{++}) = \begin{bmatrix} \cos 90^o & 0 & -\sin 90^o \\ 0 & 1 & 0 \\ \sin 90^o & 0 & \cos 90^o \end{bmatrix} \begin{bmatrix} 0 \\ M_z^0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ M_z^0 \\ 0 \end{bmatrix}$$

•Sketch the bulk magnetization $\vec{M}_{rot}(t)$ after the two pulses

 \bigcirc From the sketch, because the signal has only one single spectral component, it is obvious that the FID signals $S_1(t)$ and $S_2(t)$ generated by the two pulses are **the same**.

Problem 4.12 a

Let's denote the two given processes as follows:

$$\begin{cases} \text{Process 1: } \vec{M}_{rot}(0_{-}) \xrightarrow{90^{o}_{x'}} \vec{M}_{rot}(\tau_{-}) \xrightarrow{\tau} \vec{M}_{rot}(\tau_{+}) \xrightarrow{180^{o}_{y'}} \vec{M}_{1} \\ \text{Process 2: } \vec{M}_{rot}(0_{-}) \xrightarrow{90^{o}_{x'}} \vec{M}_{rot}(\tau_{-}) \xrightarrow{\tau} \vec{M}_{rot}(\tau_{+}) \xrightarrow{180^{o}_{x'}} \vec{M}_{2} \end{cases}$$

The sketch of the bulk magnetization vector from the time point τ_{+} onwards,

It can be seen that the two echo signals resulted from \vec{M}_1 and \vec{M}_2 should be equal in their magnitude, and have 180^o phase difference. To illustrate, lets consider some angle coordination as in the sketch, then $\varphi = -(-a) + a - b + (-b) = 2(a - b) = 2(-\pi/2) = -\pi$ or 180^o .

Problem 4.19

(a)
$$B_z(x, y, z) = 3 - 2x \Rightarrow \vec{\nabla} B_z = \frac{\partial (3 - 2x)}{\partial x} \vec{i} + \frac{\partial (3 - 2x)}{\partial y} \vec{j} + \frac{\partial (3 - 2x)}{\partial z} \vec{z} = -2\vec{i}$$

 \Rightarrow A linear x-gradient field with $G_x = -2$.

(c)
$$B_z(x, y, z) = 5 - x - y - z \Rightarrow \vec{\nabla} B_z = -\vec{i} - \vec{j} - \vec{k} \Rightarrow A$$
 linear gradient field.

Problem 5.1

It is **false** that selection of an envelope function for an RF pulse has nothing to do with the \vec{B}_0 field strength. Because the sharp of RF envelope function together with the inhomogeneity of the \vec{B}_0 field will affect the number of selective spectral components (or the scaling interval of equally two-sided rectangular function in frequency domain) in the transverse magnetization vector (the solution of Bloch equation in which both \vec{B}_0 and \vec{B}_1 participate) as well as in the selection accuracy of expected parts of an object.

Problem 5.4

In the slice-selective excitation, the *cross-talk* artifacts means the unexpected excitation of spins in the neighboring slices to some varying degrees, which is due to the truncation of RF-pulse (spatially support-limited time-domain signal impacts on entire frequency-domain).