Devoir maison 10.

À rendre le lundi 27 mars 2023

Ce DM pourra être rédigé en binôme (une copie rendue pour 2 élèves), sans que ce soit obligatoire.

⚠ Les deux élèves doivent chacun chercher l'ensemble du devoir!

<u> Le travail de rédaction doit être équilibré pour chaque exercice.</u>

Par exemple, l'élève 1 rédige les questions 1 à 4 de l'exercice 1 et la question 3 de l'exercice 2; l'élève 2 rédige les questions 5 à 8 de l'exercice 1 et les questions 1 et 2 de l'exercice 2.

Exercice 1

Partie 1

Soit E un K-espace vectoriel et $f \in \mathcal{L}(E)$. On suppose que f vérifie l'équation :

(*):
$$f^3 + f^2 + f + id_E = 0$$

0 désigne $0_{\mathcal{L}(E)}$.

- (*) signifie: $\forall x \in E, \ f^3(x) + f^2(x) + f(x) + x = 0_E.$
 - 1°) Montrer que $Ker(f + id_E)$ et $Ker(f^2 + id_E)$ sont en somme directe.
 - **2°) a)** Soit $x \in E$. On pose $y = f^2(x) + x$ et $z = x f^2(x)$. Montrer que $y \in \text{Ker}(f + \text{id}_E)$ et $z \in \text{Ker}(f^2 + \text{id}_E)$.
 - **b)** En déduire que $E = \text{Ker}(f + id_E) + \text{Ker}(f^2 + id_E)$.
 - **3°)** Qu'a-t-on démontré?

Partie 2 : Résolution d'une équation différentielle

On note E l'ensemble des fonctions $y:\mathbb{R}\to\mathbb{R}$ de classe C^∞ telles que :

$$y^{(3)} + y'' + y' + y = 0$$

Remarque : cela signifie bien sûr que, pour tout $x \in \mathbb{R}$, $y^{(3)}(x) + y''(x) + y'(x) + y(x) = 0$.

- $\mathbf{4}^{\circ}$) Montrer que E est un \mathbb{R} -espace vectoriel.
- 5°) On pose, pour tout $y \in E, \varphi(y) = y'$. Montrer que $\varphi \in \mathcal{L}(E)$.
- **6**°) Quelle équation vérifie φ ?
- 7°) Déterminer $\operatorname{Ker}(\varphi + \operatorname{id}_E)$ et $\operatorname{Ker}(\varphi^2 + \operatorname{id}_E)$. On exprimera ces ensembles sous la forme d'un Vect.
- 8°) En déduire l'ensemble E.

Exercice 2

Soit l'équation dans $\mathbb{R}[X]$:

$$(*)$$
: $(X + 2023)P(X) = XP(X+1)$

1°) Soit $Q \in \mathbb{R}[X]$. Montrer que :

$$Q(X+1) = Q(X) \iff Q \text{ constant}$$

- 2°) Soit P une solution de (*).
 - a) Montrer que : $\forall k \in \{0, \dots, 2022\}, P(-k) = 0.$
 - b) Comment peut alors s'écrire P?
- 3°) À l'aide des questions précédentes, résoudre (*); on obtiendra que l'ensemble des solutions est une droite vectorielle.