Heatmaps

MARKET BASKET ANALYSIS IN PYTHON

Isaiah Hull Economist

MovieLens dataset

```
import pandas as pd

# Load ratings data.
ratings = pd.read_csv('datasets/movie_ratings.csv')
print(ratings.head())
```

```
movieId title
  userId
    3149
            54286
                  Bourne Ultimatum, The (2007)
0
    3149
            1220
                  Blues Brothers, The (1980)
                  Wall Street (1987)
    3149
             4007
3
    3149 7156 Fog of War: Eleven...
    3149
            97304
                  Argo (2012)
```

Creating "transactions" from ratings

```
# Recover unique user IDs.
user_id = movies['userId'].unique()

# Create library of highly rated movies for each user.
libraries = [list(ratings[ratings['userId'] == u].title) for u in user_id]

# Print example library.
print(library[0])
```

```
['Battlestar Galactica (2003)',
'Gorgon, The (1964)',
'Under the Skin (2013)',
'Upstream Color (2013)',
'Destry Rides Again (1939)',
'Dr. Phibes Rises Again (1972)']
```

One-hot encoding transactions

```
from mlxtend.preprocessing import TransactionEncoder
# Instantiate transaction encoder.
encoder = TransactionEncoder()
# One-hot encode libraries.
onehot = encoder.fit(libraries).transform(libraries)
# Use movie titles as column headers.
onehot = pd.DataFrame(onehot, columns = encoder.columns_)
# Print onehot header.
print(onehot.head())
```

One-hot encoding transactions

```
(500) Days of Summer (2009)
                                 .45 (2006)
                                             10 Things I Hate About You (1999)
0
                          False
                                      False
                                                                           False
                          False
                                      False
                                                                           False
                                      False
                                                                           False
                          False
3
                          False
                                      False
                                                                           False
                          False
                                      False
                                                                           False
```


What is a heatmap?

Preparing the data

- Generate the rules.
 - Use Apriori algorithm and association rules.
- 2. Convert antecedents and consequents into strings.
 - Stored as frozen sets by default in mlxtend.
- 3. Convert rules into matrix format.
 - Suitable for use in heatmaps.

Preparing the data

```
from mlxtend.frequent_patterns import association_rules, apriori
import seaborn as sns

# Apply the apriori algorithm
frequent_itemsets = apriori(onehot, min_support=0.10,
```

```
# Recover the association rules
rules = association_rules(frequent_itemsets)
```

Generating a heatmap

```
# Convert antecedents and consequents into strings
rules['antecedents'] = rules['antecedents'].apply(lambda a: ','.join(list(a)))
rules['consequents'] = rules['consequents'].apply(lambda a: ','.join(list(a)))

# Print example.
print(rules[['antecedents','consequents']])
```

```
antecedents consequents
O Batman Begins (2005) Dark Knight Rises, The (2012)
```


Generating a heatmap

```
# Generate heatmap
sns.heatmap(support_table)
```

Generating a heatmap

Customizing heatmaps

sns.heatmap(pivot, annot=True, cbar=False, cmap='ocean')

Let's practice!

MARKET BASKET ANALYSIS IN PYTHON

Scatterplots

MARKET BASKET ANALYSIS IN PYTHON

Isaiah Hull Economist

Introduction to scatterplots

Introduction to scatterplots

- A scatterplot displays pairs of values.
 - Antecedent and consequent support.
 - Confidence and lift.
- No model is assumed.
 - No trend line or curve needed.
- Can provide starting point for pruning.
 - Identify patterns in data and rules.

Support versus confidence

Support versus confidence

¹ Bayardo Jr., R.J. and Agrawal, R. (1999). Mining the Most Interesting Rules. In Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 145-154).

Generating a scatterplot

```
import pandas as pd
import seaborn as sns
from mlxtend.frequent_patterns import association_rules, apriori
# Load one-hot encoded MovieLens data
onehot = pd.read_csv('datasets/movies_onehot.csv')
# Generate frequent itemsets using Apriori
frequent_itemsets = apriori(onehot, min_support=0.01, use_colnames=True, max_len=2)
# Generate association rules
rules = association_rules(frequent_itemsets, metric='support', min_threshold=0.0)
sns.scatterplot(x="antecedent support", y="consequent support", data=rules)
```


Generating a scatterplot

Adding a third metric

Adding a third metric

What can we learn from scatterplots?

- Identify natural thresholds in data.
 - Not possible with heatmaps or other visualizations.
- Visualize entire dataset.
 - Not limited to small number of rules.
- Use findings to prune.
 - Use natural thresholds and patterns to prune.

Let's practice!

MARKET BASKET ANALYSIS IN PYTHON

Parallel coordinates plot

MARKET BASKET ANALYSIS IN PYTHON

Isaiah Hull Economist

What is a parallel coordinates plot?

When to use parallel coordinate plots

- Parallel coordinates vs. heatmap.
 - Don't need intensity information.
 - Only want to know whether rule exists.
 - Want to reduce visual clutter.

- Parallel coordinates vs. scatterplot.
 - Want individual rule information.
 - Not interested in multiple metrics.
 - Only want to examine final rules.

Preparing the data

```
from mlxtend.frequent_patterns import association_rules, apriori

# Load the one-hot encoded data
onehot = pd.read_csv('datasets/movies_onehot.csv')

# Generate frequent itemsets
frequent_itemsets = apriori(onehot, min_support = 0.10, use_colnames = True, max_len = 2)

# Generate association rules
rules = association_rules(frequent_itemsets, metric = 'support', min_threshold = 0.00)
```


Converting rules to coordinates

Dark Knight, The (2008) Inception (2010)

```
# Convert rules to coordinates.
rules['antecedent'] = rules['antecedents'].apply(lambda antecedent: list(antecedent)[0])
rules['consequent'] = rules['consequents'].apply(lambda consequent: list(consequent)[0])
rules['rule'] = rules.index
# Define coordinates and label
coords = rules[['antecedent','consequent','rule']]
# Print example
print(coords.head(1))
                antecedent
                                  consequent rule
```

```
Q datacamp
```

Generating a parallel coordinates plot

```
from pandas.plotting import parallel_coordinates

# Generate parallel coordinates plot
parallel_coordinates(coords, 'rule', colormap = 'ocean')
```


Generating a parallel coordinates plot

Refining a parallel coordinates plot

```
# Generate frequent itemsets
frequent_itemsets = apriori(onehot, min_support = 0.01, use_colnames = True, max_len = 2)
# Generate association rules
rules = association_rules(frequent_itemsets, metric = 'lift', min_threshold = 1.00)
# Generate coordinates and print example
coords = rules_to_coordinates(rules)
# Generate parallel coordinates plot
parallel_coordinates(coords, 'rule')
```

Refining a parallel coordinates plot

Let's practice!

MARKET BASKET ANALYSIS IN PYTHON

Congratulations!

MARKET BASKET ANALYSIS IN PYTHON

Isaiah Hull Instructor

Transactions and itemsets

Transactions

TID	Transaction
1	MILK, BREAD, BISCUIT
•••	•••
20	TEA, MILK, COFFEE, CEREAL

Itemsets

- {MILK, BREAD}
- {MILK, COFFEE, CEREAL}

Association rules and metrics

- Association Rules
 - Use if-then structure.
 - If A then B.
 - Have antecedent(s) and consequent(s).
 - Many association rules.

Metrics

- Measure strength of association.
 - Support, lift, confidence, conviction
- Used to prune itemsets and rules.

Pruning and aggregation

Big Box

Red Bag

Purple Candle

Cloth Bag

Metal Sign

Neon Sign

Brown Box

Large Candle

Medium Bag

Wooden Sign

The Apriori algorithm

- = not in frequent two-item sets
- = eliminated by Apriori Principle

Visualizing rules

Congratulations!

MARKET BASKET ANALYSIS IN PYTHON

