CBCS SCHEME

USN 4 MH2215079

BESCK104C/BESCKC104

First Semester B.E./B.Tech. Degree Examination, Jan./Feb. 2023 Introduction to Electronics and Communication

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.

2. VTU Formula Hand Book is permitted.

3. M: Marks, L: Bloom's level, C: Course outcomes.

		Module – 1	M	L	C
01	T.	Draw the block diagram of DC power supply and explain the individual	171	L	-
Q.1	a.	blocks.	8	L2	COI
	b.	Draw the circuit diagram of voltage regulation and explain the operation.	6	L2	COI
	c.	An amplifier produces an output voltage of 2V for an input of 50mV. If the input and output currents in this condition are 4mA and 200mA respectively. Find: i) The voltage gain ii) The current gain iii) The power gain.	6	L3	COI
	•	OR			•
Q.2	a.	With a neat circuit diagram and waveform. Explain the working operation of a full wave bridge rectifier.	8	L2	CO1
	b.	Draw the circuit diagram of voltage doubler and the working operation.	6	L2	COI
	c.	Discuss briefly a Negative feedback amplifier with block diagram.	6	LI	CO1
		Module + 2			
Q.3	a.	With circuit diagram, explain the operation of an wien bridge oscillator.	8	L2	CO2
	b.	Define the following operational amplifier parameters value. i) Open loop voltage gain ii) Output Resistance iii) Slew Rate.	6	L1	CO2
	c.	Draw the circuit diagram and input and output waveform of the following operational amplifier circuits i) Differentiators ii) Integrator.	6	L1	CO2
	1	OR			
Q.4	a.	Explain the single state astable oscillator with circuit diagram.	8	L1	CO2
	b.	What is oscillator? And mention condition for oscillations.	6	L1	CO2
	c.	Explain the operation of summing amplifier using operational amplifier and write the output equation.	6	L2	CO2
		1 of 2			

		BESCK104	C/B	ESC	KC104
	_	Module – 3		т	
Q.5	a.	Implement full adder using two half adders and one OR gate. Write the equations for Sum and Cout.	8	L3	СОЗ
	b.	Convert the following numbers to its equivalent numbers and show the steps. i) $(10110001101011.111100000)_2 = (?)_8$ ii) $(10110001101011.11110010)_2 = (?)_{16}$ iii) $(1010.011)_2 = (?)_{10}$	6	L2	CO3
	c.	Using basic Boolean theorems prove i) $(x + y)(x + z) = x + yz$ ii) $xy + xz + y\overline{z} = xz + y\overline{z}$	6	L3	CO3
		OR		,	
Q.6	a.	Express the Boolean function i) $F = A + \overline{B}C$ in a sum of minterms form ii) $F = xy + \overline{x}z$ in a product of maxterms form.	8	L2	CO3
	b.	Subtract the following using 10's complement i) $(72532 - 3250)_{10}$ ii) $(3250 - 72532)_{10}$	6	L2	CO3
	c.	Write the step by step procedure to design a combinational circuit.	6	L1	CO3
Q.7	a.	What is an Embedded system? Compare Embedded systems with general computer systems.	8	L2	CO4
	b .	Mention the classification of Embedded system based on complexity and performance.	6	L1	CO4
	c.	Write a short note on −7-segment LED display. △ ▽	6	L2	CO4
		OR OR			
Q.8	a.	Discuss the typical embedded system elements.	8	L2	CO4
	b.	What is the difference between RISC and CISC processors?	6	L1	CO4
	c.	Write a short note on: i) Transducers ii) Sensors.	6	L2	CO4
		Module – 5			
Q.9	a.	Draw the block diagram of basic communication system and briefly explain the individual blocks.	10	L2	CO5
	b.	Discuss the types of communication systems.	5	L2	CO5
	c.	List the advantages of digital communication over analog communication.	5	L1	CO5
		OR			
Q.10	a.	Define Amplitude and Frequency modulation. Sketch AM and FM waveform.	10	L1	CO5
	b.	Write a short note on: Amplitude Shift Keying (ASK) modulator and demodulator.	10	L2	CO5

2 of 2

BESCK204C

Second Semester B.E./B.Tech. Degree Examination, June/July 2023 Introduction to Electronics and Communication

Time: 3 hrs.

Max. Marks: 100

Note: I. Answer any FIVE full questions, choosing ONE full question from each module.
2. M: Marks, L: Bloom's level, C: Course outcomes.

		Module - 1	M	L	C
Q.1	a.	What is Regulated Power Supply? With neat block diagram, explain the working of DC power supply. Also mention the principal components used in each block.	8	L2	COI
	b.	What is an Amplifier? Explain the types of Amplifier.	4	L2	COI
	c.	With neat circuit diagram and wave forms explain full wave bridge rectifier.	8	L2	CO
		OR			
Q.2	a.	What is Voltage Regulator? With neat circuit diagram, explain the operation of a voltage regulator using Zener diode.	7	L2	CO
	b.	Mention the advantages of negative feedback in amplifier circuits. With relevant equations and diagram, explain the concept of negative feedback.	7	L2	COI
	c.	What is Voltage Multiplier? With circuit diagram, explain the operation of voltage doubler.	6	L2	CO1
		Module – 2		,	
Q.3	a.	What is Op – Amp? Explain the various parameters of Operational Amplifier.	7	L2	CO2
	b.	Sketch the circuits of each of the following based on the use of Op – amp along with input and output wave forms: i) Integrator ii) Voltage follower iii) Comparator.	7	L2	CO2
	c.	Explain the operation of three – stage ladder RC Network Oscillator with neat circuit diagram.	6	L2	CO2
		OR	,	,	
Q.4	a.	Explain the Barkhausen criteria for Oscillations. In wein bridge oscillator if $C_1 = C_2 = 100$ nF, determine the frequency of oscillations when $R_1 = R_2 = 1 \text{k}\Omega$.		L3	CO2
	b.	Explain the operation of Single stage Astable multivibrator with its circuit diagram.	7	L2	CO2
	c.	Explain the Ideal characteristics of an Op – amp.	6	L2	CO2
		1 of 2			

			BES	CK	204C
		Module – 3			
Q.5	a.	Convert the following: i) $(1 \text{ AD.EO})_{16} = (?)_{10}$ ii) $(37.625)_{10} = (?)_2$ iii) $(110100111001.110)_2 = (?)_8$ iv) $(345.AB)_{16} = (?)_2$.	8	L3	CO3
	b.	State and prove De – Morgan's theorems with its truth table.	6	L2	CO3
	c.	Implement the following Boolean functions by using logic gates: i) $F_1 = xy' + x'z$ ii) $F_2 = x'y'z + x'yz + xy'$.	6	L3	CO3
		OR			
Q.6	a.	Perform the following: i) (1010100) ₂ – (1000100) ₂ using 1's complement and 2's complement method. ii) (4456) ₁₀ – (34234) ₁₀ using 9's complement and 10's complement method.	8	L3	CO3
	b.	Implement full adder circuit with its truth table and write the expressions for sum and carry.	6	L3	CO3
	c.	Express the Boolean function $F = A + B'C$ in a sum of min terms.	6	L3	CO
		Module – 4			
Q.7	a.	What is an Embedded system? Compare Embedded system and General computing system.	7	L2	CO
	b.	Using suitable diagrams, explain Instrumentation and Control System.	7	L	2 CC
			4 090	9.	- 1
	c.	Discuss major application areas of Embedded systems with examples.	6	L	CC
	c.	Discuss major application areas of Embedded systems with examples. OR	6	L	
.8	c. a.		7	L2	
.8		OR O	7		СО
.8	a.	OR Write a note on Core of Embedded systems with its block diagram. Explain how 7 seg LED display can be used to display the data and write a	7	L2	СО
.8	a. b.	Write a note on Core of Embedded systems with its block diagram. Explain how 7 seg LED display can be used to display the data and write a brief note on operation of LED. Explain the classification of Embedded systems. Module – 5	7 7 6	L2 L2	CO4
.8 Q.9	a. b.	Write a note on Core of Embedded systems with its block diagram. Explain how 7 seg LED display can be used to display the data and write a brief note on operation of LED. Explain the classification of Embedded systems. Module - 5 Module - 5	7	L2	CO
	a. b.	Write a note on Core of Embedded systems with its block diagram. Explain how 7 seg LED display can be used to display the data and write a brief note on operation of LED. Explain the classification of Embedded systems. Module - 5 Describe the blocks of Modern Communication System with neat block diagram.	7 7 6	L2 L2	CO4
	a. b. c.	Write a note on Core of Embedded systems with its block diagram. Explain how 7 seg LED display can be used to display the data and write a brief note on operation of LED. Explain the classification of Embedded systems. Module - 5 Describe the blocks of Modern Communication System with neat block diagram. Explain with a neat diagram, the concept of Radio wave propagation and its different types.	7 7 6	L2 L2 L2	CO4
	a. b. c. a. b	Write a note on Core of Embedded systems with its block diagram. Explain how 7 seg LED display can be used to display the data and write a brief note on operation of LED. Explain the classification of Embedded systems. Module - 5 Describe the blocks of Modern Communication System with neat block diagram. Explain with a neat diagram, the concept of Radio wave propagation and its different types. Explain different Multiple Access Techniques.	7 7 6 8 7	L2 L2 L2 L2 L2	CO4 CO5 CO5
	a. b. c. a. b	Write a note on Core of Embedded systems with its block diagram. Explain how 7 seg LED display can be used to display the data and write a brief note on operation of LED. Explain the classification of Embedded systems. Module - 5 Describe the blocks of Modern Communication System with neat block diagram. Explain with a neat diagram, the concept of Radio wave propagation and its different types. Explain different Multiple Access Techniques.	7 7 6 8 7	L2 L2 L2 L2	CO:
Q.9	a. b. c. a. b	Write a note on Core of Embedded systems with its block diagram. Explain how 7 seg LED display can be used to display the data and write a brief note on operation of LED. Explain the classification of Embedded systems. Module - 5 Describe the blocks of Modern Communication System with neat block diagram. Explain with a neat diagram, the concept of Radio wave propagation and its different types. Explain different Multiple Access Techniques. OR What is Modulation? Explain Amplitude Modulation (AM) and Frequency	7 7 6 8 7 5	L2 L2 L2 L2 L2	CO:

2 of 2