Métricas de desempeño de modelos

Rafael Zambrano

rafazamb@gmail.com

Evaluación de modelos de regresión

Error absoluto medio MAE (Mean Absolute Error)

$$MAE = \frac{1}{n} \sum_{j=1}^{n} |y_j - \hat{y}_j|$$

Real	Predicción
32	35
23	28
85	95

$$MAE = \frac{1}{3}(|32 - 35| + |23 - 28| + |85 - 97| = \frac{1}{3}(3 + 5 + 10) = 6$$

 Error cuadrático medio RMSE (Root Mean Square Error): Tiene la ventaja de penalizar errores grandes

$$RMSE = \sqrt{\frac{1}{n} \sum_{j=1}^{n} (y_j - \hat{y}_j)^2}$$

$$RMSE = \sqrt{\frac{1}{3}(3^2 + 5^2 + 10^2)} = 6.68$$

Evaluación de modelos de regresión

• R² (coeficiente de determinación): explica cómo de bien el modelo explica la variación en los datos (valor entre 0 y 1)

Evaluación de modelos de clasificación

• **Ejemplo**: Clasificador de motos

Evaluación de modelos de clasificación: Matriz de confusión

- True Positives (TP)
- True Negatives (TN)
- False Positives (FP)
- False Negatives (FN)

		REALIDAD		
		MOTOS	COCHES	
PREDICCIÓN	MOTOS	TP 90	FP 20	
	COCHES	FN 10	TN 30	

Evaluación de modelos de clasificación

Accuracy: En general, ¿cómo de bueno es el clasificador? (TP+TN)/Total = (90+30)/150= 80%

Precision: Cuando predice "SÍ", ¿cuántas veces acierta? TP/(TP+FP) = 90/(90+20) = 82%

Recall: En los casos reales de "SÍ", ¿cuánto predice correctamente? TP/(TP+FN) = 90/(90+10) = 90%

Specificity: En los casos reales de "NO", ¿cuánto predice correctamente? TN/(TN+FP) = 30/(30+20)=60%

F1 Score: Combina precision y recall en una sola métrica \in [0,1]: (2*Precision*Recall)/(Precision+Recall) = 0.81

Ratio de falsos positivos: 1 – Specificity = FP/(TN+FP) = 1-0.6 = 40%

Mejora (Lift): ¿Cómo mejora el modelo a una decisión aleatoria?

Prior =
$$P(moto) = 100/150 = 66\%$$

 \Rightarrow Me jora = $Precision/Prior = 82/66 = 1.24$

Evaluación de modelos de clasificación

Ejemplo: Detección de fraude en tarjetas. De 1000 clientes, solo 10 cometieron fraude. Se entrena un modelo y se prueba con el conjunto de test, obteniendo la siguiente matriz de confusión

		FRAUDE	NO FRAUDE
PREDICCIÓN	FRAUDE	0	0
	NO FRAUDE	10	990

- Accuracy: En general, ¿cómo de bueno es el clasificador? (TP+TN)/Total = (0+990)/1000= 99%
- Precision: Cuando predice "SÍ", ¿cuántas veces acierta? TP/(TP+FP) = 0/(0+0) = 0%
- Recall: En los casos reales de SÍ, ¿cuánto predice correctamente? TP/(TP+FN) = 0/(0+10) = 0%
- Specificity: En los casos reales de NO, ¿cuánto predice correctamente? TN/(TN+FP) = 990/(990+0)=100%
- F1 Score: Combina precision y recall en una sola métrica ∈[0,1]: (2*Precision*Recall)/(Precision+Recall) = 0
- Ratio de falsos positivos: 1 Specificity = FP/(TN+FP) = 1-0 = 100%
- Mejora: ¿Cómo mejora el modelo a una decisión aleatoria?

Prior = P(fraude) =
$$10/1000 = 1\%$$

 \Rightarrow Mejora = Precision/Prior = $0/1 = 0$

Otro ejemplo

Medición del desempeño de un clasificador

La matriz de confusión es una de las herramientas básicas de medición del desempeño de un modelo de clasificación:

	Real:	
Predicción:	Heavy User	No Heavy User
Heavy User	4	1
No Heavy User	20	75

	Actually	Actually
	Positive (1)	Negative (0)
Predicted Positive (1)	True Positives (TPs)	False Positives (FPs)
Predicted Negative (0)	False Negatives (FNs)	True Negatives (TNs)

Precision

% de positivos del modelo que son correctos

Recall

% de positivos reales que detecta el modelo

Ejemplo (2)

- Precision = 4/(4+1)=80%
- Recall = 4/(4+20)=17%
- ...No está teniendo un buen desempeño. Sólo es capaz de detectar un 17% de los positivos

Evaluación de modelos de clasificación: Curva ROC

• En los modelos de clasificación binarios, existe un compromiso entre el error de falsos positivos y el de falsos negativos, pudiendo aumentar uno para disminuir el otro, y viceversa.

• Ejemplos:

- Quiero que mi modelo detecte todos los fraudes de tarjetas: habrá muchos falsos positivos (baja precisión) y pocos falsos negativos (mayor recall)
- Quiero que mi modelo detecte solo los casos reales de fraude de tarjetas: habrá muchos falsos negativos (bajo recall) y pocos falsos positivos (alta precisión)
- La curva ROC relaciona el recall con el ratio de falsos positivos

Evaluación de modelos de clasificación: Curva ROC

- En las curvas ROC, nos interesa que la curva se acerque lo máximo posible a la esquina superior izquierda de la gráfica, de manera que el hecho de aumentar el recall no haga que nuestro modelo introduzca más falsos positivos.
- En este caso también podemos calcular el ROC AUC (área bajo la curva), que también nos sirve como métrica para resumir la curva y poder comparar modelos.

- AUC = 1: Clasificador perfecto
- AUC = 0.5: Clasificador aleatorio

¡Gracias!

Contacto: Rafael Zambrano

rafazamb@gmail.com