ЛАБОРАТОРНАЯ РАБОТА №3 «ИССЛЕДОВАНИЕ ТРАНЗИСТОРОВ И КЛЮЧЕВЫХ СХЕМ НА БИПОЛЯРНЫХ И УНИПОЛЯРНЫХ ТРАНЗИСТОРАХ»

3.1. Цель работы

Экспериментальные исследования характеристик биполярных и униполярных транзисторов и ключевых схем. Приобретение практических навыков измерения электрических параметров и регистрации временных диаграмм с помощью электро- и радиоизмерительных приборов.

3.2. Постановка задачи

- А. Создать на рабочем поле симулятора схему для измерения ВАХ биполярного n-p-n транзистора (рис.2.3). Тип транзистора и напряжение источника питания выбирается согласно варианту. В качестве источника входного сигнала использовать источник напряжения 1,5 В и потенциометр РОТ-НG. Снять зависимость тока I_6 базы от напряжения U_{69} база-эмиттер. Входной ток изменять от 0 до 500 мкА.
- Б. Снять зависимость тока коллектора I_{κ} от тока базы I_{6} и определить коэффициент усиления транзистора по току β .
- В. Создать на рабочем поле симулятора схему транзисторного ключа (инвертора) на n-p-n транзисторе. Тип транзистора выбирается согласно варианту.
- Г. Подключить на вход ключа генератор прямоугольных импульсов, а выход ключа соединить со входом 2-го канала осциллографа. Первый вход осциллографа подключить к генератору прямоугольных импульсов. Амплитуду импульсов установить равной 3В, форма импульсов меандр. Длительности передних и задних фронтов 1 мкс. В качестве нагрузки применить резистор сопротивлением 20 кОм.
- Д. Снять осциллограммы входных и выходных импульсов при частотах прямоугольной последовательности 10, 50 и 100 кГц. Измерить время задержки переключения ключа при переходе из режима отсечки в насыщение и обратно.
- Е. Создать на рабочем поле симулятора схему транзисторного ключа (инвертора) на КМОП-транзисторах (см. рисунок Приложения Б). Для этой цели использовать транзисторную пару 2SJ118 и 2SK1058.
 - Ж. Повторить пп. 4.5 и 4.6 для инвертора на КМОП-транзисторах.
- 3. Измерить величину потребляемого тока при изменении частоты переключения инвертора от 10 до 100 к Γ ц.

3.3. Ход выполнения программы

А. В рабочем пространстве симулятора была построена схема для измерения ВАХ транзистора (Рисунок А.1). Была снята зависимость тока базы I_6 от напряжения база-эмиттер U_{69} (Таблица 3.1).

Таблица 3.1 – Зависимость силы тока базы от напряжения база-эмиттер

Сила тока базы I ₆ , мкА	Напряжение база-эмиттер U _{бэ} , В
0.01	0.48
0.03	0.52
0.11	0.55
0.60	0.60
1.86	0.63
9.57	0.67
25	0.70
99	0.74
255	0.78
409	0.80
495	0.81

Рисунок 3.1 – График зависимости силы тока базы от напряжения базаэмитер

Б. Снята зависимость тока коллектора от тока базы(Таблица 3.2) . Определён коэффициент усиления транзистора по току β .

Таблица 3.2 – Зависимость силы тока коллектора от силы тока базы

Сила тока коллектор Іб, мкА	Сила тока базы I_{κ} , мА	Коэффициент усиления
0,06	0,01	166,6666667
0,11	0,02	181,8181818
0,19	0,04	210,5263158
0,34	0,07	205,8823529
1,05	0,23	219,047619
3,25	0,71	218,4615385
9,57	2,07	216,3009404
15,8	3,38	213,9240506
25	5,27	210,8
75,2	14,6	194,1489362
155	27,1	174,8387097
255	40,4	158,4313725
291	44,7	153,6082474
329	49,1	149,2401216
585	74,1	126,6666667
633	78,2	123,5387046
734	86,4	117,7111717
842	94,6	112,3515439
899	98,7	109,7886541
958	103	107,5156576
		168,5633726

Рисунок 3.2 – График зависимости силы тока коллектора от силы тока базы

- В. На рабочем столе симулятора создана схема транзисторного ключа (инвертора) на n-p-n транзисторах.
- Г. К составленной схеме добавлен генератор прямоугольных импульсов. Рисунок А.2 отображает получившуюся схему.
- Д. Были сняты осциллограммы входных и выходных импульсов при разных частотах генератора (Рисунок А.3, Рисунок А.4 и Рисунок А.5). На основе осциллограмм были определены задержки при переключении транзистора из режима отсечки в режим насыщения .

Таблица 3.3 — Время переключения n-p-n транзистора при разных частотах генератора

Частота генератора, кГц	Время переключения, нс
10	0,4
50	0,5
100	0,6

Е. На рабочем столе симулятора была создана схема транзисторного ключа на КМОП-транзисторах (Рисунок А.6).

Ж. Со схемы инвертора на КМОП-транзисторах были сняты осциллограммы входных и выходных импульсов при разных частотах генератора (Рисунок А.7, Рисунок А.8 и Рисунок А.9). На основе приведённых осциллограмм были

определены задержки при переключении транзистора из режима отсечки в режим насыщения и наоборот (Таблица 3.3).

Таблица 3.4 — Время переключения КМОП-транзистора при разных частотах генератора

Частота генератора, кГц	Время переключения, нс
10	0,3
50	0,35
100	0,37

3. Было проведено исследование количества потребляемого тока при изменении частоты переключения инвертора. Таблица 3.4 отображает результаты исследования.

Таблица 3.5 – Величина потребляемого тока при изменении частоты колебаний

Частота генератора, кГц	Величина потребляемого тока І, мА
10	10,5
50	23,5
100	32,7

Вывод

При выполнении данной лабораторной работы были получены навыки построения схем с использованием n-p-n и КМОП-транзисторов. Также в ходе выполнения работы было сделано несколько выводов:

- 1. По составленным графикам BAX определено, что напряжение на коллекторе-эмиттере при повышении силы тока возрастает, но при прохождении определённой точки рост напряжения замедляется.
- 2. Приведённые ранее в таблицах результаты исследований показывают основные отличия КМОП от n-p-n транзисторов. Таким образом сделан вывод, что хоть время переключения у КМОП-транзистора выше, но стоимость производства и количество потребляемой энергии значительно ниже в сравнении с n-p-n транзисторами.

Приложение А Схемы и графики

Рисунок А.1 – Схема снятия ВАХ транзистора

Рисунок А.2 – Схема инвертора на n-p-n транзисторе

Рисунок А.3 – Осциллограмма инвертора на n-p-n транзисторе (10 кГц)

Рисунок А.4 –Осциллограмма инвертора на n-p-n транзисторе (50 кГц)

Рисунок А.5 – Осциллограмма инвертора на n-p-n транзисторе (100 кГц)

Рисунок А.6 – Схема инвертора на КМОП-транзисторах

Рисунок А.7 – Осциллограмма инвертора на КМОП-транзисторах (10 кГц)

Рисунок А.8 – Осциллограмма инвертора на КМОП-транзисторах (50 кГц)

Рисунок А.9 – Осциллограмма инвертора на КМОП-транзисторах (100 кГц)