

Primer Coloquio de Divulgación de la Comunidad de Ingeniería en Sistemas

Aprendizaje Automático en Python

José Clemente Hernández Hernández

Gustavo Adolfo Vargas Hákim

COVNNEC - App

Research Group on Computer Vision, Neural Networks,

Evolutionary Computation and their Applications

Agenda

- 1. ¿Qué es el Aprendizaje Automático?
- 2. Tipos de Aprendizaje Automático
- 3. ¿Cuáles son las partes del Aprendizaje Automático?
- 4. ¿Cuándo utilizar Aprendizaje Automático?
- 5. Preprocesamiento de datos en Python

Aprendizaje Automático

Ciencias de la Computación

Algoritmos y técnicas

Resolución de problemas complejos

Matemáticas y Estadística

Aprendizaje Automático

Tipos de Aprendizaje Automático

Proceso del Aprendizaje Automático

Los datos

Texto

Audio

¿Cuándo No utilizar aprendizaje automático?

Un ejemplo muy intuitivo:

Masa	Aceleración	Fuerza
16 Kg	5 m/s ²	80 N
10 Kg	1 m/s ²	10 N
48 Kg	3 m/s ²	144 N
5 Kg	6 m/s ²	x

¿Cuándo No utilizar aprendizaje automático?

Otro ejemplo

Sensor 1	Sensor 2	Salida
1	1	1
1	0	0
0	1	0
0	0	x

Entonces... ¿cuándo utilizarlo?

Entonces...¿cuándo utilizarlo?

¿Podemos programar esta función?

Ejemplos interesantes

Ejemplos interesantes

Manejo y preprocesamiento de datos

matpletlib

Los datos

Variables/características/descriptores

$$x^2 = (0.98, 1.42, 0.88, 0.76)$$

 $y_2 = B$

Etiquetas/salidas/clases

Manos a la obra

Discretización de variables

X ₁	X ₂	у
0.7	8.0	1
0.6	0.4	0
0.1	0.9	0
0.2	0.3	0

Variables continuas

X ₁	X ₂	у
1	1	1
1	0	0
0	1	0
0	0	0

Variables discretas

¿Cómo se hace?

Mediante intervalos

Class-Attribute interdependence Maximization

Algoritmo CAIM

Intervalos con límites conocidos

X ₁	X ₂	у
0.7	8.0	1
0.6	0.4	0
0.1	0.9	0
0.2	0.3	1

Sujeto a: **0 ≤ x₁, x₂ ≤ 1**

Intervalos con límites conocidos

Intervalos a considerar:

$$i_0 = [0, 0.5]$$

 $i_1 = (0.5, 1]$

x ₁	X ₂	у
1	1	1
1	0	0
0	1	0
0	0	0

Discretizado

Intervalos con límites desconocidos

X ₁	X ₂	у
0.7	8.0	1
0.6	0.4	0
0.1	0.9	0
0.2	0.3	1

Intervalos con límites desconocidos

Límites a considerar:

 $0.1 \le x_1 \le 0.7$ $0.3 \le x_2 \le 0.8$

Para x₁:

$$i_0 = [0.1, 0.4]$$

 $i_1 = (0.4, 0.7]$

$$i_1 = (0.4, 0.7)$$

Para x₂:

$$i_0 = [0.3, 0.55]$$

 $i_1 = (0.55, 0.8]$

$$_{\bullet}$$
 = (0.55, 0.8]

Intervalos con límites desconocidos

x ₁	X ₂	У
0.7	8.0	1
0.6	0.4	0
0.1	0.9	0
0.2	0.3	1

X ₁	X ₂	у
i ₁	i ₁	1
i ₁	i ₀	0
i _o	i ₁	0
i _o	i ₀	1

Discretizado

Algoritmo CAIM

Class-Attribute interdependence Maximization (CAIM)

L. A. Kurgan and K. J. Cios, "CAIM discretization algorithm," in *IEEE Transactions on Knowledge and Data Engineering*, vol. 16, no. 2, pp. 145-153, Feb. 2004, doi: 10.1109/TKDE.2004.1269594.

Los datos son nuestra materia prima.

x ₁	X ₂	у
1	1	1
1	0	0
0	1	0
0	0	0

2 variables binarias

X ₁	X ₂	X ₃	у
1	1	1	1
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

3 variables binarias

El número de ejemplos necesarios para representar todos los casos crece de forma exponencial!

Esto se conoce como la maldición de la dimensionalidad.

¿Qué pasa si no tenemos suficientes datos?

¿Qué hacemos si no hay más datos? Aumentarlos

Synthetic Minority Over-Sampling Technique (SMOTE)

Chawla, N. V., Bowyer, K. W., Hall, L. O., Kegelmeyer, W. P. (2002). SMOTE: synthetic minority over-sampling technique. *Journal of Artificial Intelligence Research* 16(1), pp. 321-357

¿De qué trata SMOTE?

Elegimos a los k vecinos más cercanos de la misma clase

Elegimos un número entero entre 1 y k al azar

Crear ejemplo sintética provisional:

$$x_{new} = []$$

Por cada variable i en x_{cat} , calcular lo siguiente:

$$diff = x_{nn}^{i} - x_{cat}^{i}$$

$$gap = U(0,1)$$

$$x_{new}^i = x_{cat}^i + gap \cdot diff$$

Selección de características

x ₁	X ₂	X ₃	X ₄	X ₅	у
1	1	0	1	0	1
1	1	1	0	0	0
0	1	1	1	0	0
0	1	0	0	0	1

X ₁	X ₄	у
1	1	1
1	0	0
0	1	0
0	0	1

5 características/variables

Dimensionalidad reducida

Selección de características

Utilizado para:

- Eliminar características redundantes
- Reducir el ruido en los datos
- Mejorar el desempeño del aprendizaje
- Minimizar la "maldición de la dimensionalidad"

Selección de características

Selección manual

Fuerza bruta

Computación Evolutiva

Algoritmo SFS

Sequential Forward Selection

Seleccionar la mejor, con respecto a una métrica

Algoritmo SFS

Hasta obtener las k características seleccionadas...

Algoritmos Evolutivos

Métodos filter

Métodos híbridos

Imágenes

ning-challenge/

- i1. Analytics (s.f.). Semantic Image Segmentation Annotation for Deep Learning Analytics. Recuperado de:
 - https://docs.google.com/presentation/d/1urNzejQZE-69cyLbN5KDj_0t9feteLf8aCHedpuiieE/edit#slide =id.gda9529ccee_0_0
- i2. Kuno, N. S. (2019). Winners announced in multi-agent reinforcement learning challenge. Recuperado de: https://www.microsoft.com/en-us/research/blog/winners-announced-in-multi-agent-reinforcement-lear
- i3. Gershgorn, D. (2018). *Al can generate fake faces now. Here's how to spot them.* Recuperado de: https://qz.com/1510746/how-to-identify-fake-faces-generated-by-ai/
- i4. Loukas, S. (2020). Time-Series Forecasting: Predicting Stock Prices Using Facebook's Propher Model. Recuperado de: https://ai.plainenglish.io/predicting-stock-prices-using-facebooks-prophet-model-b527ea8e445
- i5. Pegus digital (s.f.). *Top 5 Voice Recognition Apps.* Recuperado de: https://pegus.digital/top-5-voice-recognition-apps/
- i6. Trouillet, B. (2019). *From Phantomb Limb to Prothetic Arm*. Recuperado de: https://news.cnrs.fr/videos/from-phantom-limb-to-prosthetic-arm

Imágenes

- i7. Cohut, M. (2018). *Dogs: Our best friends in sickness and in health.* Recuperado de: https://www.medicalnewstoday.com/articles/322868# noHeaderPrefixedContent
- i8. n.a. (s.f.). s.t. Recuperado de: http://www.imcorp.jp/jmss.asp?iid=162948521&cid=43

Referencias

1. Rebala, G., Ajay, R. & Churiwala, S. (2019). *Introduction to machine learning*. https://doi.org/10.4018/978-1-7998-0414-7.ch003