Reply by A.N.Ivanov and P. Kienle: Nowadays it is well established experimentally that neutrinos ν_{α} with lepton flavours $\alpha=e,\mu$ and τ are superpositions $|\nu_{\alpha}\rangle=\sum_{j}U_{\alpha j}^{*}|\nu_{j}\rangle$ of massive neutrino mass–eigenstates $|\nu_{j}\rangle$ with masses m_{j} , where $U_{\alpha j}^{*}$ are elements of the 3×3 unitary mixing matrix U, defined by mixing angles θ_{ij} [1]. The wave functions $|\nu_{\alpha}\rangle$ and $|\nu_{j}\rangle$ are orthogonal and used for the description of neutrino oscillations $\nu_{\alpha}\longleftrightarrow\nu_{\beta}$ with frequencies $\omega_{ij}=\Delta m_{ij}^{2}/2E$, where E is the neutrino energy and $\Delta m_{ij}^{2}=m_{i}^{2}-m_{j}^{2}$ [1]. In K-shell electron capture (EC) decays of the H-like heavy ions $m\to d+\nu_{e}$, where m and m are mother and daughter ions in their ground states [2, 3], one deals with an emission of electron neutrinos $|\nu_{e}\rangle=\sum_{j}U_{ej}^{*}|\nu_{j}\rangle$. Thus, the EC-decay rates of the H-like heavy ions are defined by the decay channels $m\to d_{j}+\nu_{j}$, where the final states are described by the orthogonal wave functions $\langle \nu_{i}d_{i}|d_{j}\nu_{j}\rangle=0$ for $i\neq j$. The states of the daughter ions d_{j} differ in 3-momenta d_{j} and energies $d_{j}(d_{j})$. The massive neutrinos d_{j} are produced with 3-momenta d_{j} and energies $d_{j}(d_{j})$, caused by conservation of energy and momentum in the decay channels d_{j} 0 energies $d_{j}(d_{j})$ 1. Since massive neutrinos d_{j} 2 are not detected they appear in the asymptotic states with 3-momenta d_{j} 3. In the GSI experiments [2, 3] the d_{j} 4 energies d_{j} 6 and energies d_{j} 7 and energies d_{j} 8. If the daughter ions would be detected in the asymptotic states with 3-momenta d_{j} 2 and energies d_{j} 3, the probability per unit time of the d_{j} 6 detected in the asymptotic states with 3-momenta d_{j} 6 and energies d_{j} 7 the probability per unit time of the d_{j} 8 detection in the equal to

$$P(m \to d \nu_e)(t) = \sum_{j} |U_{ej}|^2 P(m \to d_j \nu_j)(t) = \sum_{j} |U_{ej}|^2 \frac{d}{dt} |A(m \to d_j \nu_j)(t)|^2, \tag{1}$$

where $A(m \to d_j \nu_j)(t)$ is the amplitude of the decay channel $m \to d_j + \nu_j$. However, this is not the case in the GSI experiments, where the time differential detection of the daughter ions with a time resolution τ_d leads to indistinguishability of daughter ions in the decay channels $m \to d_j + \nu_j$. As a result the daughter ions d_j are measured in the asymptotic state d with a 3-momentum \vec{q} and an energy $E_d(\vec{q})$ such that $\vec{q} \simeq \vec{q}_j$ and $E_d(\vec{q}) \simeq E_d(\vec{q}_j)$ [3]. This does not violate the orthogonality of the wave functions in the final state $\langle \nu_i d | d \nu_j \rangle = 0$ for $i \neq j$. The energy and momentum uncertainties δE_d and $|\delta \vec{q}_d|$, respectively, induced by the time differential detection of the daughter ions, provide the overlap of the wave functions of the daughter ions if $\delta E_d \gg |\omega_{ij}|$ and $|\delta \vec{q}_d| \gg |\vec{q}_i - \vec{q}_j| = |\vec{k}_i - \vec{k}_j|$, where ω_{ij} present also the differences of the recoil energies of the daughter ions. The time differential detection of the daughter ions d_j in the asymptotic state with the 3-momentum \vec{q} and an energy $E_d(\vec{q})$ results in a smearing of momenta and energies in the decay channels $m \to d_j + \nu_j$ around $\vec{q} + \vec{k}_j \simeq 0$ and $E_d(\vec{q}) + E_j(\vec{k}_j) \simeq M_m$. This is the origin of the non-vanishing interference terms in the probability per unit time of the EC-decay $m \to d + \nu_e$ [3]

$$P(m \to d \nu_e)(t) = \sum_{j} |U_{ej}|^2 P(m \to d \nu_j)(t) + 2 \sum_{i>j} \frac{d}{dt} \text{Re}[U_{ei}^* U_{ej} A^*(m \to d \nu_i)(t) A(m \to d \nu_j)(t)], \tag{2}$$

where in comparison with Eq.(1) the second sum is caused by the interference terms. Since uncertainties δE_d and $|\delta \vec{q}_d|$ are rather small [3] and $|\vec{k}_j| = |\vec{q}_j| \simeq |\vec{q}| \simeq Q_{EC}$ and $Q_{EC} \gg m_j$, where Q_{EC} is the Q-value of the EC-decay $m \to d + \nu_e$, one can set the neutrino masses zero everywhere except for energy differences ω_{ij} and mixing angles θ_{ij} in the interference terms [3], and neutrino 3-momenta equal $\vec{k}_j = \vec{k}$. As a result the EC-decay rate is given by [3]

$$\lambda_{EC}(t) = \frac{1}{2M_m} \int P(m \to d\nu_e)(t) \, \frac{d^3q}{(2\pi)^3 2E_d} \frac{d^3k}{(2\pi)^3 2E_{\nu_e}} = \lambda_{EC} \Big(1 + 2 \sum_{i>j} \text{Re}[U_{ei}^* U_{ej}] \cos(\omega_{ij} t) \Big). \tag{3}$$

Thus, the asymptotic orthogonality of the final state wave functions does not influence the observation of the time modulation of the EC-decays, observed in the GSI experiments with a time resolution $\tau_d \ll T_{ij}$ much shorter than the modulation periods $T_{ij} = 2\pi/\omega_{ij}$ [3]. This is unlike the assertion by Flambaum [4]. For $\tau_d \gg T_{ij}$ the daughter ions d_j become distinguishable with 3-momenta \vec{q}_j and energies $E_d(\vec{q}_j)$ the time modulation vanishes (see Eq.(1)). For the theoretical description of the GSI data [2], accounting for the procedure for the detection of the daughter ions, one can use time-dependent perturbation theory and wave packets for the wave functions of the daughter ions, related to the density matrix description of unisolated quantum systems [5]. For technical details we refer to [3].

^[1] C. Amsler et al., Phys. Lett. B 667, 1 (2008).

^[2] Yu. A. Litvinov et al., Phys. Lett. B 664, 162 (2008); P. Kienle, Nucl. Phys. A 827, 510c (2009).

^[3] A. N. Ivanov, P. Kienle, Phys. Rev. Lett. 103, 062502 (2009); arXiv: 0909.1287, 0909.1285 [nucl-th].

^[4] V. Flambaum, Phys. Rev. Lett. Comments on [3] (in press), arXiv: 0908.2039 [nucl-th].

^[5] L. D. Landau, E. M. Lifschitz, in Quantenmechanik, Band III, Verlag Harri Deutsch, 2007.