Survival Analysis: Time To Event Modelling

Sudipta Das

Assistant Professor,
Department of Computer Science,
Ramakrishna Mission Vivekananda Educational & Research Institute

Outline I

Non Parametric Estimation

Non Parametric Estimation: Introduction I

- In this section, we shall examine techniques for drawing an inference about the distribution of the time to some event X, based on a sample of right-censored survival data.
- We assume that the potential censoring time is unrelated to the potential event time.
 - This assumption would be violated, for example, if patients with poor prognosis were routinely censored.
- The methods are appropriate for Type I, Type II, progressive or random censoring.

Non Parametric Estimation: Introduction II

- Notations:
 - Suppose that the events occur at *D* distinct times

$$0 = t_0 \le t_1 < t_2 < \ldots < t_D < \infty$$

- Let d_i be the number of events occurs at time t_i.
 - Events are sometimes simply referred to as deaths
- Let Y_i be the number of individuals who are at risk at time t_i .
 - Note that Y_i is a count of the number of individuals with a time on study of t_i or more
 - Equivalently, this is the number of individuals who are alive at t_i or experience the event of interest at t_i

Non Parametric Estimation: Introduction III

- Objective: To model the time to event/ survival time (T) by
 - Modeling the survival function

$$S(t) = P(T > t)$$

Modeling the cumulative hazard function

$$H(t) = \int_0^t \frac{f(u)}{P(T > u)} du$$

 Note: We are not assuming any structural form for the survival time distribution

Modeling Survival Function I

Kaplan-Meier estimator to model/estimate the survival function

$$\hat{S}(t) = \prod_{t_i \leq t, i=1}^n \left(1 - \frac{d_i}{Y_i}\right)^{\delta_i}$$

$$= \prod_{i: t_i \leq t} \left(\frac{Y_i - d_i}{Y_i}\right)$$

- d_i = Number of failures/deaths at t_i
- Y_i = Number at risk of dying or failure at t_i
- $\delta_i = \begin{cases} 1 & \text{if } t_i \text{ is observed failure,} \\ 0 & \text{if } t_i \text{ is censoring time.} \end{cases}$
- Product of conditional survivals

Modeling Survival Function II

 Example: Consider the data on the time to relapse of patients in a clinical trial of 6-MP against a placebo. We shall consider only the 6-MP patients.

Modeling Survival Function III

Table: Construction of the Product-Limit Estimator for the 6-MP Group

Time	Number of events	Number at risk	KM estimate
ti	d_i	Y_i	$\hat{\mathcal{S}}(t) = \prod_{t_i \leq t} \left(1 - rac{d_i}{Y_i} ight)$
6	3	21	$\left[1 - \frac{3}{21}\right] = 0.857$
7	11.	17	$0.857 \times \left[1 - \frac{1}{17}\right] = 0.807$
10	O we	15	$0.807 \times \left[1 - \frac{1}{15}\right] = 0.753$
13	1	12	$0.753 \times \left[1 - \frac{1}{12}\right] = 0.690$
16	1	11	$0.690 \times \left[1 - \frac{1}{11}\right] = 0.628$
22	1	7	$0.628 \times \left[1 - \frac{1}{7}\right] = 0.538$
23	1	6	$0.538 \times \left[1 - \frac{1}{6}\right] = 0.448$

Modeling Survival Function IV

Figure 4.1A Comparison of the Nelson–Aalen (-----) and Product-Limit (-----) estimates of the survival function for the 6-MP group.

Modeling Survival Function V

- The Product-Limit estimator was constructed by using a reduced-sample approach.
- In this approach, note that, because events are only observed at the times t_i,
 - S(t) should be a step function with jumps only at these times,
 - there being no information on events occurring at other times.
- We will estimate S(t) by a discrete distribution with mass at the time points t_1, t_2, \ldots, t_D .

Modeling Survival Function VI

• We can estimate the $Pr[T > t_i | T \ge t_i]$ as the fraction of individuals who are at risk at time t_i but who do not die at this time, that is

$$\hat{Pr}[T > t_i | T \ge t_i] = \frac{Y_i - d_i}{Y_i}, \text{ for } i = 1, 2, \dots, D.$$

$$= 1 - \frac{d_i}{Y_i}$$

$$= 1 - \hat{Pr}[T = t_i | T \ge t_i]$$

Modeling Survival Function VII

• To estimate $S(t_i)$, recall that

$$S(t_{i}) = \frac{S(t_{i})}{S(t_{i-1})} \times \frac{S(t_{i-1})}{S(t_{i-2})} \times \cdots \times \frac{S(t_{2})}{S(t_{1})} \times \frac{S(t_{1})}{S(t_{0})} \times S(t_{0})$$

$$= P[T > t_{i}|T > t_{i-1}] \times P[T > t_{i-1}|T > t_{i-2}] \cdots P[T > t_{2}|T > t_{1}] \times P[T > t_{1}|T > t_{0}] \times 1$$

$$= P[T > t_{i}|T \ge t_{i}] \times P[T > t_{i-1}|T \ge t_{i-1}] \cdots P[T > t_{2}|T \ge t_{2}] \times P[T > t_{1}|T \ge t_{1}]$$

Thus,

$$\hat{S}(t) = \prod_{i: \ t_i < t} \left(\frac{Y_i - d_i}{Y_i} \right)$$

Modeling Survival Function VIII

Kaplan-Meier estimator

- It is also known as product-limit estimator
- It can be shown to be nonparametric MLE of survival function, under certain regularity conditions
- In the absence of censoring, it reduces to complement of the empirical distribution function (EDF):

$$\hat{S}(t) = 1 - \frac{\text{Number of obs } \leq t}{\text{Total Number of obs}}$$

Modeling Survival Function IX

- Kaplan-Meier estimators of either the survival function or the cumulative hazard rate are consistent.
- For values of t beyond the largest observation time this estimator is not well defined
 - Efron (1967) suggests estimating $\hat{S}(t)$ by 0 for $t > t_{\text{max}}$. (This leads to a negatively biased estimator)
 - Gill (1980) suggests estimating $\hat{S}(t)$ by $\hat{S}(t_{\text{max}})$ for $t > t_{\text{max}}$. (This leads to a positively biased estimator)
 - Although both estimators have the same large-sample properties and converge to the true survival function for large samples

Modeling Survival Function X

Variance of KM Estimate (Greenwood's formula):

$$\hat{Var}(\hat{S}(t)) = \hat{S}^{2}(t) \sum_{i:t_{i} \leq t} \frac{d_{i}}{Y_{i}(Y_{i} - d_{i})}$$

$$= \hat{S}^{2}(t)\sigma_{S}^{2}(t),$$

where
$$\sigma^2_{S}(t) = \sum_{i:t_i \leq t} \frac{d_i}{Y_i(Y_i - d_i)}$$

 It underestimate the true variance of the Kaplan-Meier estimator for small to moderate samples.

Modeling Survival Function XI

Table: Construction of the variance of KM Estimator for the 6-MP Group

Time	# of	# at	KM		Variance of $\hat{S}(t)$
	events	risk	est.		
t _i	di	Yi	$\hat{S}(t)$	$\sigma_{S}^{2}(t) = \sum_{t_{i} \leq t} \frac{d_{i}}{Y_{i}(Y_{i} - d_{i})}$	$\hat{V}(\hat{S}(t)) = \hat{S}^2(t) \sum_{t_i \le t} \frac{d_i}{Y_i(Y_i - d_i)}$
6	3	21	0.857	$\frac{3}{21\times18} = 0.0079$	$0.857^2 \times 0.0079 = 0.0058$
7	1	17	0.807	$0.0079 + \frac{1}{17 \times 16} = 0.0116$	$0.807^2 \times 0.0116 = 0.0076$
10	1	15	0.753	$0.0116 + \frac{1}{15 \times 14} = 0.0164$	$0.753^2 \times 0.0164 = 0.0093$
13	1	12	0.690	$0.0164 + \frac{1}{12 \times 11} = 0.0240$	$0.690^2 \times 0.0240 = 0.0114$
16	1	11	0.628	$0.0240 + \frac{1}{11 \times 10} = 0.0330$	$0.628^2 \times 0.0330 = 0.0130$
22	1	7	0.538	$0.0330 + \frac{1}{7 \times 6} = 0.0569$	$0.538^2 \times 0.0569 = 0.0164$
23	1	6	0.448	$0.0569 + \frac{1}{6 \times 5} = 0.0902$	$0.448^2 \times 0.0902 = 0.0181$

Modeling Survival Function XII

- The variance was constructed by the help of delta method.
- Recall that

$$\hat{S}(t_i) = \prod_{j=1}^i \left[\frac{Y_j - d_j}{Y_j} \right] = \prod_{j=1}^i \hat{p}_j$$

Thus,

$$\log\left[\hat{S}(t_i)\right] = \sum_{j=1}^{i}\log\left[\hat{p}_j\right]$$

Modeling Survival Function XIII

Hence,

$$\hat{Var} \left[\log \left[\hat{S}(t_i) \right] \right] = \sum_{j=1}^{i} \hat{Var} \left\{ \log \left[\hat{p}_j \right] \right\} \\
= \sum_{j=1}^{i} \left[\hat{p}_j \right]^{-1} \left\{ \hat{Var} \left[\hat{p}_j \right] \right\} \left[\hat{p}_j \right]^{-1} \\
= \sum_{j=1}^{i} \left[\hat{p}_j \right]^{-2} \left\{ \frac{\hat{p}_j \left[1 - \hat{p}_j \right]}{Y_j} \right\} \\
= \sum_{j=1}^{i} \left[\hat{p}_j \right]^{-1} \left[1 - \hat{p}_j \right] \frac{1}{Y_j} \\
= \sum_{j=1}^{i} \left[\frac{Y_j - d_j}{Y_j} \right]^{-1} \left[\frac{d_j}{Y_j} \right] \frac{1}{Y_j} = \sum_{j=1}^{i} \frac{d_j}{Y_j (Y_j - d_j)} \\$$

Modeling Survival Function XIV

Therefore,

$$\hat{Var}\left[\hat{S}(t_i)\right] = \hat{Var}\left[e^{\log[\hat{S}(t_i)]}\right] \\
= \left[e^{\log[\hat{S}(t_i)]}\right] \hat{Var}\left[\log\left[\hat{S}(t_i)\right]\right] \left[e^{\log[\hat{S}(t_i)]}\right] \\
= \left[\hat{S}(t_i)\right]^2 \sum_{j=1}^i \frac{d_j}{Y_j(Y_j - d_j)}$$

And

$$\hat{Var}\left[\hat{S}(t)\right] = \left[\hat{S}(t)\right]^2 \sum_{i:t_i < t} \frac{d_i}{Y_i(Y_i - d_i)}$$

Modeling Survival Function XV

Standard error of KM Estimate:

$$\hat{SE}(\hat{S}(t)) = \hat{S}(t) \sqrt{\sum_{t_i \leq t} \frac{d_i}{Y_i(Y_i - d_i)}}$$

- Asymptotic property of KM Estimate
 - Under suitable regularity conditions, the Product-Limit estimator converges weakly to Gaussian process.
 - This fact means that for fixed *t*, the estimator has an approximate normal distribution.

Modeling Survival Function XVI

• Thus, the $100(1-\alpha)\%$ **point-wise** Confidence Interval of S(t):

$$\left[\hat{S}(t) - z_{1-\alpha/2} \times \hat{SE}(\hat{S}(t)), \hat{S}(t) + z_{1-\alpha/2} \times \hat{SE}(\hat{S}(t))\right] \tag{1}$$

- Called linear confidence interval
- Appropriate for large sample

Modeling Survival Function XVII

Table: The Product-Limit Estimator and Its Estimated Standard Error for the 6-MP Group

Time on Study KM Estimator		Standard Error	95% CI
t	$\hat{\mathcal{S}}(t)$	$\hat{SE}(\hat{S}(t))$	
0 ≤ <i>t</i> < 6	1.000	0.000	[1,1]
$6 \le t < 7$	0.857	0.076	[0.708, 1.006]
7 ≤ <i>t</i> < 10	0.807	0.087	[0.636, 0.978]
10 ≤ <i>t</i> < 13	0.753	0.096	[0.565, 0.941]
13 ≤ <i>t</i> < 16	0.690	0.107	[0.480, 0.900]
16 ≤ <i>t</i> < 22	0.628	0.114	[0.405, 0.851]
22 ≤ <i>t</i> < 23	0.538	0.128	[0.287, 0.789]
23 ≤ <i>t</i> < 35	0.448	0.135	[0.183, 0.713]

Modeling Cumulative Hazard Function from Survival Function

- Cumulative Hazard Function H(t) can be constructed from Survival Function S(t)
 - Cumulative Hazard Function:

$$\hat{H}(t) = -\log \hat{S}(t)$$

Modeling Cumulative Hazard Function I

 Nelson-Aalen estimator to model/estimate the cumulative hazard function

$$\tilde{H}(t) = \sum_{i:\ t_i \leq t} \frac{d_i}{Y_i}.$$

- d_i = Number of failured/death at t_i
- Y_i = number at risk of dying or failure at t_i
- Its variance

$$\hat{Var}(\tilde{H}(t)) = \sum_{t_i \leq t} \frac{d_i}{Y_i^2} = \sigma_H^2(t).$$

Modeling Cumulative Hazard Function II

Table: Construction of the variance of Nelson–Aalen Estimator for the 6-MP Group

Time	# of events	# at risk	Nalson-Aalen estimator	Variance of $\tilde{H}(t)$
t _i	di	Yi	$\tilde{H}(t) = \sum_{t_i \leq t} \frac{d_i}{Y_i}$	$\sigma_H^2(t) = \hat{V}(\tilde{H}(t)) = \sum_{t_i \le t} \frac{d_i}{Y_i^2}$
6	3	21	$\frac{3}{21} = 0.1428$	$\frac{3}{21^2} = 0.0068$
7	1	17	$0.1428 + \frac{1}{17} = 0.2017$	$0.0068 + \frac{1}{17^2} = 0.0103$
10	1	15	$0.2017 + \frac{7}{15} = 0.2683$	$0.0103 + \frac{1}{15^2} = 0.0147$
13	1	12	$0.2683 + \frac{1}{12} = 0.3517$	$0.0147 + \frac{11}{12^2} = 0.0217$
16	1	11	$0.3517 + \frac{7}{11} = 0.4426$	$0.0217 + \frac{1}{11^2} = 0.0299$
22	1	7	$0.4426 + \frac{1}{7} = 0.5854$	$0.0299 + \frac{1}{7^2} = 0.0503$
23	1	6	$0.5854 + \frac{1}{6} = 0.7521$	$0.0503 + \frac{1}{6^2} = 0.0781$

Modeling Cumulative Hazard Function III

Figure 4.1B Comparison of the Nelson–Aalen (-----) and Product-Limit (------) estimates of the cumulative bazard rate for the 6-MP group.

Modeling Cumulative Hazard Function IV

Note

- The Nelson-Aalen estimator of the cumulative hazard rate is the first term in a Taylor series expansion of minus the logarithm of the Product-Limit estimator.
- Under certain regularity conditions, one can show that the Nelson-Aalen estimator is nonparametric maximum likelihood estimator.
- Nelson-Aalen estimators of either the survival function or the cumulative hazard rate are consistent.

Modeling Cumulative Hazard Function V

Standard error of NA estimator:

$$\hat{SE}(\tilde{H}(t)) = \sqrt{\sum_{t_i \leq t} \frac{d_i}{Y_i^2}} = \sigma_H(t).$$

- Asymptotic property of NA Estimate
 - Under suitable regularity conditions, the Nelson-Aalen estimator converges weakly to Gaussian process.
 - This fact means that for fixed t, the estimator has an approximate normal distribution.
- Thus, the $100(1-\alpha)\%$ Confidence Interval of H(t):

$$\left[\tilde{H}(t)-z_{1-\frac{\alpha}{2}}\times\hat{SE}(\tilde{H}(t)),\tilde{H}(t)+z_{1-\frac{\alpha}{2}}\times\hat{SE}(\tilde{H}(t))\right]$$

Modeling Cumulative Hazard Function VI

Table: The Nelson-Aalen Estimator, Its estimated standard error and 95% CI for the 6-MP Group

Time on Study	NA Estimator	Standard Error	95% CI
t	$\tilde{H}(t)$	$\hat{SE}(\tilde{H}(t))$	
0 ≤ <i>t</i> < 6	0.0000	0.0000	[1, 1]
$6 \le t < 7$	0.1428	0.0068	[0.1295, 0.1561]
7 ≤ <i>t</i> < 10	0.2017	0.0103	[0.1815, 0.2219]
10 ≤ <i>t</i> < 13	0.2683	0.0147	[0.2395, 0.2971]
13 ≤ <i>t</i> < 16	0.3517	0.0217	[0.3092, 0.3943]
16 ≤ <i>t</i> < 22	0.4426	0.0299	[0.3840, 0.5012]
22 ≤ <i>t</i> < 23	0.5854	0.0503	[0.4868, 0.6840]
23 ≤ <i>t</i> < 35	0.7521	0.0781	[0.5990, 0.9052]

Modeling Survival Function from Cumulative Hazard Function

- Survival Function S(t) can be constructed from Cumulative Hazard Function H(t)
 - Survival Function:

$$\tilde{S}(t) = e^{-\tilde{H}(t)}$$

Non Parametric Estimation: Example in R

- Example: Bank Credit Data
 - Data read
 - Data preparation
 - Kaplan-Meier Estimator/ Product Limit Estimator for Survival Function
 - FIGURE 5A
 - Nelson-Aalen Estimator for Cumulative Hazard Function
 - FIGURE 5B
 - Nelson-Aalen Estimator for Survival Function
 - FIGURE 5C