

Kauno technologijos universitetas

Informatikos fakultetas

Skaitiniai metodai ir algoritmai

Netiesinių lygčių sprendimas

Vytenis Kriščiūnas IFF-1/1

Studentas

doc. Kriščiūnas Andrius

Dėstytojas

TURINYS

1. Pirma o	dalis	4
1.1. Nu	statykite daugianario $f(x)$ šaknų intervalą.	4
1.1.1.	Užduotis	4
1.1.2.	Grubus įvertis	4
1.1.3.	Tikslesnis įvertis	4
1.1.4.	Grafinis vaizdavimas f(x) funkcijos	5
1.1.5.	Grafinis vaizdavimas g(x) funkcijos	6
1.2. Ske	enavimo algoritmo panaudojimas	7
1.2.1.	Užduotis	7
1.2.2.	Funkcijos f(x) skenavimo intervalų radimas	8
1.2.3.	Funkcijos g(x) skenavimo intervalų radimas	9
1.3. Fu	nkcijų šaknų tikslinimas	10
1.3.1.	Užduotis	10
1.3.2.	Funkcijos f(x) šaknų radimas pusiaukirtos metodu	10
1.3.3.	Funkcijos f(x) šaknų radimas Niutono (liestinių) metodu	12
1.3.4.	Funkcijos g(x) šaknų radimas pusiaukirtos metodu	13
1.3.5.	Funkcijos g(x) šaknų radimas Niutono (liestinių) metodu	15
1.3.6.	Iteracijų palyginimas	17
1.4. Ga	utų šaknų tikrinimas wolframalpha.com tinklapyje	17
1.4.1.	Užduotis	17
1.4.2.	Funkcijos f(x) šaknų patikrinimo rezultatai	17
1.4.3.	Funkcijos g(x) šaknų patikrinimo rezultatai	17
2. Antra d	lalis	18
2.1. Tai	rpinių grafikų sudarymas (3, 4 ir 5 TE narių skaičius)	18
2.1.1.	Užduotis	18
2.1.2.	Funkcijos h(x) ir TE 3, 4 ir 5 narių atvaizdavimas grafiškai	18
2.2. Re	ikalaujamą tikslumą užtikrinantis daugianaris	22
2.2.1.	Užduotis	22
2.2.2.	Gautas TE narių skaičius	22
2.2.3.	Gautas grafikas	23
2.2.4.	Skaičiavimams ir grafiko braižymui naudotas Python kodas	23

2.3. TE a	nalitinė išraiška daugianario pavidalu	25
2.3.1.	Užduotis	25
2.3.2.	Gauta išraiška	25
2.3.3.	Programos kodas reikalingas skaičiavimams	25
2.4. Spre	ndinių gerėjimo grafikai	27
2.4.1.	Užduotis	27
2.4.2.	Randamų šaknų skaičius nagrinėjamame intervale	27
2.4.2.1	Gautas grafikas	28
2.4.2.2	2. Naudotas kodas	28
2.4.3.	Tikslumo įverčių ir TE narių ieškojimas kiekvienai šakniai	29
2.4.3.1	l. Gauti grafikai	29
2.4.3.2	2. Naudotas kodas	32

1. Pirma dalis

Išspręskite netiesines lygtis (1 ir 2 lentelės), kai lygties funkcija yra daugianaris f(x) = 0 ir transcendentinė funkcija g(x) = 0.

9
$$0.48x^5 + 1.71x^4 - 0.67x^3 - 4.86x^2 - 1.33x + 1.50$$
 $e^{-x}\sin(x^2) + 0.001; 5 \le x \le 10$ 2, 3

1.1. Nustatykite daugianario f(x) šaknų intervalą.

1.1.1. Užduotis

Nustatykite daugianario f(x) šaknų intervalą, taikydami "grubų" ir "tikslesnį" įverčius. Grafiškai pavaizduokite daugianarį tokiame intervale, kad matytųsi abu įverčiai. Funkciją g(x) grafiškai pavaizduokite užduotyje nurodytame intervale. Esant poreikiui, grafikų ašis pakeiskite taip, kad būtų aiškiai matomos funkcijų šaknys.

1.1.2. Grubus įvertis

1.1.3. Tikslesnis įvertis

Tibslesnis ivertis: 1=5-3-3 B- 4,86. Reig = 1+ \\ \frac{4,86}{0,48} = 4+9\\ \frac{2}{4} = 4,281. \$(-x) =0 -0,48x5 + 1,71x4 +0,67x3 + 4,86x3 + 1,33x + 7,5=0 0,48 + 5 - 1,71 × 4 - 0,6 7 × 3 + 4,86 × 2 - 1,33 × - 1,5 =0 Rreig = 1+ 1,71 = 73 = 4,5625 - mis(-91,125; 4,5625) 5 x 5 min(17,125; 4,787)

1.1.4. Grafinis vaizdavimas f(x) funkcijos


```
# funkcia, kuriai ieškome šaknų f(x)
def fx(x):
   return 0.48*x**5 + 1.71*x**4 - 0.67*x**3 - 4.86*x**2 - 1.33*x + 1.5
```

```
x = np.linspace(-12, 12, 100)
y = fx(x)
plt.xlabel('X-axis')
plt.ylabel('Y-axis')
plt.plot(x,y)
plt.grid()
#Grubus ivertis
plt.plot(11.125, 0, markersize=10, marker='+', color = 'green', label = "Grubus
ivertis")
plt.plot(-11.125, 0, markersize=10, marker='+', color = 'green')
#Tikslesnis įvertis
plt.plot(-4.181, 0, markersize=5, marker='o', color='red', label = "Tikslesnis")
ivertis")
plt.plot(4.5625, 0, markersize=5, marker='o', color='red')
plt.legend()
plt.show()
```

1.1.5. Grafinis vaizdavimas g(x) funkcijos


```
#funkcija g(x)
def gx(x):
    return math.exp(-x) * math.sin(x**2) + 0.001

g = np.vectorize(gx)
x = np.linspace(5, 10, 1000)
y = g(x)
plt.grid()
plt.xlabel('X-axis')
plt.ylabel('Y-axis')
plt.plot(x,y)
plt.show()
```

1.2. Skenavimo algoritmo panaudojimas

1.2.1. Užduotis

Naudodami skenavimo algoritmą su nekintančiu skenavimo žingsniu raskite šaknų atskyrimo intervalus. Daugianariui skenavimo intervalas parenkamas pagal 1 užduoties punkte gautas įverčių reikšmes. Funkcija g(x) skenuojama užduotyje nurodytame intervale.

1.2.2. Funkcijos f(x) skenavimo intervalų radimas

```
#Skenavimo algoritmas

def scaning(func, From, To, arr1, arr2, postumis):
    li = 0
    while (From < To):
        zenkl1 = func(From)
        zenkl2 = func(From + postumis)

    if (np.sign(zenkl1) != np.sign(zenkl2)):
        plt.plot(From, 0, markersize=5, marker='o', color='red')
        plt.plot(From + postumis, 0, markersize=5, marker='o', color='blue')
        arr1.append(From)
        arr2.append(From + postumis)
        li += 1
        From = From + postumis
        print('Total number of intervals: = {0}'.format(li))</pre>
```

```
#Šaknų atskyrimo intervalai f(x) funkcijai (skenavimo žingsnis - 0.1)
x = np.linspace(-5, 5, 100)
y = fx(x)
plt.plot(x,y)
my_listStart2 = []
my_listEnd2 = []
scaning(fx, -4.181, 4.5625, my_listStart2, my_listEnd2, 0.1)
plt.ylim([-50000, 50000])
plt.xlim([-5, 5])
plt.xlabel('X-axis')
plt.ylabel('Y-axis')
plt.grid()
plt.show()
print('Nuo: {0} iki {1}'.format(my_listStart2, my_listEnd2))
```


Nuo: [-3.08099999999995, -1.58099999999982, -0.9809999999978, 0.41900000000000215, 1.5190000000000026] iki [-2.9809999999994, -1.4809999999998, -0.8809999999978, 0.5190000000000021, 1.619000000000027]

1.2.3. Funkcijos g(x) skenavimo intervalų radimas

```
#Šaknų atskyrimo intervalai g(x) funkcijai (skenavimo žingsnis - 0.01)
g = np.vectorize(gx)
x = np.linspace(5, 10, 1000)
y = g(x)
plt.plot(x,y)
my_listStart3 = []
my_listEnd3 = []
scaning(g, 5, 10, my_listStart3, my_listEnd3, 0.01)
plt.ylim([-0.011, 0.011])
plt.xlim([5, 7])
plt.grid()
plt.xlabel('X-axis')
plt.ylabel('Y-axis')
plt.show()
print('Nuo: {0} iki {1}'.format(my_listStart3, my_listEnd3))
```


Nuo: [5.3299999999993, 5.5799999999988, 5.9099999999981, 6.0999999999766, 6.43999999999966, 6.56999999999665] iki [5.339999999993, 5.589999999987, 5.91999999998, 6.109999999976, 6.4499999999996, 6.5799999999966]

1.3. Funkcijų šaknų tikslinimas

1.3.1. Užduotis

Skenavimo metodu atskirtas daugianario ir funkcijos šaknis tikslinkite užduotyje nurodytais metodais. Skaičiavimo scenarijuje turi būti panaudotos skaičiavimų pabaigos sąlygos. Skaičiavimų rezultatus pateikite lentelėje, kurioje nurodykite šaknies tikslinimui naudojamą metodą, pradinį artinį arba atskyrimo intervalą, gautą sprendinį (šaknį), funkcijos reikšmę ties šaknimi, tikslumą, iteracijų skaičių. Palyginkite, kuriuo metodu sprendiniui rasti panaudota mažiau iteracijų.

1.3.2. Funkcijos f(x) šaknų radimas pusiaukirtos metodu

```
# pusiaukirtos metodas
def bisection(func, xFrom, xTo):
    xmid = (xFrom + xTo) / 2
    iter = 0
    while (np.abs(func(xmid)) > 1e-10):
        iter += 1
        if (np.sign(func(xmid)) == np.sign(func(xFrom))):
            xFrom = xmid
        else:
            xTo = xmid
        xmid = (xFrom + xTo) / 2
    print('Total iteration: = {0}'.format(iter))
    return xmid
```

```
#Spausdina šaknis pusiaukirtos metodu
def printRootsPusiaukirtos(func, arr1, arr2):
    i=0
    while(i < len(arr1)):
      root = bisection(func, arr1[i], arr2[i])
      print("Šaknis: ", root)
      print("Reiksme: ", func(root))
      i += 1</pre>
```

printRootsPusiaukirtos(fx, my listStart2, my listEnd2)

```
Total iteration: = 31

Šaknis: -3.0765023327143854

Reiksme: -1.7129409002336615e-11

Total iteration: = 29

Šaknis: -1.565729997720568

Reiksme: 1.2502887614118663e-11

Total iteration: = 29

Šaknis: -0.937846428569404

Reiksme: -9.000356016031219e-12

Total iteration: = 31

Šaknis: 0.43790062510501815

Reiksme: 1.3672618592863728e-11

Total iteration: = 32

Šaknis: 1.5796781338923636

Reiksme: 9.426281977198414e-11
```

Naudotas metodas	Atskirimo intervalas	Šaknis	Funkcijos reikšmė	Tikslumas	Iteracijų skaičius
Pusiaukirtos	[-3.07650233271438 54; -2.98099999999999999999999999999999999999	-3.076502332714385 4	-1.712940 90023366 15e-11	1e-10	31
Pusiaukirtos	[-1.58099999999999 82; -1.480999999999 998]	-1.565729997720568	1.2502887 61411866 3e-11	1e-10	29
Pusiaukirtos	[-0.9809999999999999999999999999999999999	-0.937846428569404	-9.000356 01603121 9e-12	1e-10	29
Pusiaukirtos	[0.419000000000000 15; 0.5190000000000 021]	0.4379006251050181	1.3672618 59286372 8e-11	1e-10	31
Pusiaukirtos	[1.519000000000000 6; 1.61900000000000 27]	1.5796781338923636	9.4262819 77198414 e-11	1e-10	32

1.3.3. Funkcijos f(x) šaknų radimas Niutono (liestinių) metodu

```
def Niutono(func, dFunc, xFrom):
    iter = 0
    xi = xFrom
    eps = 1e-8
    while np.abs(func(xi)) > eps:
        iter += 1
        xi = xi - 0.5 * (1 / dFunc(xi)) * func(xi)
    print('Total iteration: = {0}'.format(iter))
    return xi
```

```
def printRootsNiutono(func, dFunc, arr1):
    i=0
    while(i < len(arr1)):
       root = Niutono(func, dFunc, arr1[i])
       print("Šaknis: ", root)
       print("Reiksme: ", func(root))</pre>
```

printRootsNiutono(fx, dfx, my_listStart2)

Total iteration: = 24 Šaknis: -3.07650233298573 Reiksme: -6.90348933574114e-9

Total iteration: = 23 Šaknis: -1.56572999963357 Reiksme: 5.50195622395222e-9

Total iteration: = 24 Šaknis: -0.937846430912868 Reiksme: -5.24056886774815e-9

Total iteration: = 24 Šaknis: 0.437900624008705 Reiksme: 5.83423553912610e-9

Total iteration: = 27 Šaknis: 1.57967813353049 Reiksme: -7.21822823734897e-9

Naudotas metodas	Pradinis artinys	Šaknis	Funkcijos reikšmė	Tikslumas	Iteracijų skaičius
Niutono(liesninių)	-3.0809999999999 995	-3.0765023329857 3	-6.903489 33574114 e-9	1e-8	24
Niutono(liesninių)	-1.5809999999999 982	-1.5657299996335 7	5.5019562 2395222e -9	1e-8	23
Niutono(liesninių)	-0.9809999999999 978	-0.9378464309128 68	-5.240568 86774815 e-9	1e-8	24
Niutono(liesninių)	0.4190000000000 215	0.43790062400870 5	5.8342355 3912610e -9	1e-8	24
Niutono(liesninių)	1.51900000000000 26	1.57967813353049	-7.218228 23734897 e-9	1e-8	27

1.3.4. Funkcijos g(x) šaknų radimas pusiaukirtos metodu

```
def bisection(func, xFrom, xTo):
    xmid = (xFrom + xTo) / 2
    iter = 0
    while (np.abs(func(xmid)) > 1e-10):
        iter += 1
        if (np.sign(func(xmid)) == np.sign(func(xFrom))):
            xFrom = xmid
        else:
            xTo = xmid
        xmid = (xFrom + xTo) / 2
    print('Total iteration: = {0}'.format(iter))
    return xmid
```

```
#Spausdina šaknis pusiaukirtos metodu
def printRootsPusiaukirtos(func, arr1, arr2):
    i=0
    while(i < len(arr1)):
      root = bisection(func, arr1[i], arr2[i])
      print("Šaknis: ", root)

    print("Reiksme: ", func(root))
    i += 1</pre>
```

printRootsPusiaukirtos(g, my listStart3, my listEnd3)

```
Total iteration: = 21
Šaknis: 5.337017233371727
Reiksme: -1.008098747708186e-11
Total iteration: = 20
Šaknis: 5.580983586311327
Reiksme: -9.16669635163403e-11
Total iteration: = 18
Šaknis: 5.910615901947002
Reiksme: -9.962999305765385e-11
Total iteration: = 19
Šaknis: 6.102124223709083
Reiksme: 3.566202238028393e-11
Total iteration: = 18
Šaknis: 6.443646373748749
Reiksme: -5.5405460601398726e-11
Total iteration: = 17
Šaknis: 6.571631355285612
Reiksme: 9.287189420281727e-11
```

Naudotas metodas	Atskirimo intervalas	Šaknis	Funkcijos reikšmė	Tikslumas	Iteracijų skaičius
Pusiaukirtos	[5.32999999999993; 5.3399999999999993]	5.337017233371727	-1.008098 74770818 6e-11	1e-10	21
Pusiaukirtos	[5.57999999999988 ; 5.589999999999987]	5.580983586311327	-9.166696 35163403 e-11	1e-10	20
Pusiaukirtos	[5.9099999999981 ; 5.9199999999998]	5.910615901947002	-9.962999 30576538 5e-11	1e-10	18
Pusiaukirtos	[6.09999999999976 6 ; 6.109999999999976	6.102124223709083	3.5662022 38028393 e-11	1e-10	19
Pusiaukirtos	[6.4399999999999969; 6.4499999999999969]	6.443646373748749	-5.540546 06013987 26e-11	1e-10	18
Pusiaukirtos	[6.569999999999966 5 ; 6.579999999999966]	6.571631355285612	9.2871894 20281727 e-11	1e-10	17

1.3.5. Funkcijos g(x) šaknų radimas Niutono (liestinių) metodu

```
def Niutono(func, dFunc, xFrom):
    iter = 0
    xi = xFrom
    eps = 1e-8
    while np.abs(func(xi)) > eps:
        iter += 1
        xi = xi - 0.5 * (1 / dFunc(xi)) * func(xi)
    print('Total iteration: = {0}'.format(iter))
    return xi
```

```
def printRootsNiutono(func, dFunc, arr1):
    i=0
    while(i < len(arr1)):
       root = Niutono(func, dFunc, arr1[i])
       print("Šaknis: ", root)
       print("Reiksme: ", func(root))
       i += 1</pre>
```

printRootsNiutono(g, dgx, my_listStart3)

Total iteration: = 16 Šaknis: 5.33701712323370 Reiksme: 5.411182022428684e-09

Total iteration: = 12 Šaknis: 5.58098334867873

Reiksme: -9.967680069788293e-09

Total iteration: = 11 Šaknis: 5.91061559651715 Reiksme: 8.691046665763175e-09

Total iteration: = 13 Šaknis: 6.10212396531522

Reiksme: -6.536927559582656e-09

Total iteration: = 13 Šaknis: 6.44364590418424 Reiksme: 6.960229326268344e-09

Total iteration: = 12 Šaknis: 6.57163095733060 Reiksme: -5.42617859021835e-09

Naudotas metodas	Pradinis artinys	Šaknis	Funkcijos reikšmė	Tikslumas	Iteracijų skaičius
Niutono(liesninių)	5.3299999999999	5.33701712323370	5.4111820 22428684 e-09	1e-8	16
Niutono(liesninių)	5.5799999999998 8	5.58098334867873	-9.967680 06978829 3e-09	1e-8	12
Niutono(liesninių)	5.909999999999 1	5.91061559651715	8.6910466 65763175 e-09	1e-8	11
Niutono(liesninių)	6.099999999999 66	6.10212396531522	-6.536927 55958265 6e-09	1e-8	13
Niutono(liesninių)	6.43999999999999999999999999999999999999	6.44364590418424	6.9602293 26268344 e-09	1e-8	13
Niutono(liesninių)	6.5699999999996 65	6.57163095733060	-5.426178 59021835 e-09	1e-8	12

1.3.6. Iteracijų palyginimas

Funkcijos f(x) ir funkcijos g(x) iteracijų skaičius buna mažesnis naudojant Niutono (liestinių) metodą, nes naudodamas pusiaukirtos metodą pasirinkau didesnį tikslumą.

1.4. Gautų šaknų tikrinimas wolframalpha.com tinklapyje

1.4.1. Užduotis

Gautas šaknų reikšmes patikrinkite naudodami išorinius išteklius (funkcijas roots arba fzero, tinklapį wolframalpha.com arba kitas priemones) ir pateikite patikrinimo rezultatus.

1.4.2. Funkcijos f(x) šaknų patikrinimo rezultatai

$$0.48*x**5 + 1.71*x**4 - 0.67*x**3 - 4.86*x**2 - 1.33*x + 1.5 = 0$$

Solutions	
$x \approx -3.0765$	
$x \approx -1.56573$	
$x \approx -0.937846$	
$x \approx 0.437901$	
$x \approx 1.57968$	

1.4.3. Funkcijos g(x) šaknų patikrinimo rezultatai

$$e^{-x} * sin(x^2) + 0.001 = 0; 5 <= x <= 10$$

Solutions		
$x \approx 5.33702$		
$x \approx 5.58098$		
$x \approx 5.91062$		
$x \approx 6.10212$		
<i>x</i> ≈ 6.44365		
$x \approx 6.57163$		

2. Antra dalis

3 lentelėje pateiktą funkciją h(x) išskleiskite Teiloro eilute (TE) nurodyto intervalo vidurio taško aplinkoje. Nustatykite TE narių skaičių, su kuriuo visos TE šaknys esančios nurodytame intervale, skiriasi nuo funkcijos h(x) šaknų ne daugiau negu |1e-4|. Tiek pateiktos funkcijos h(x) šaknis, tiek TE šaknis raskite antru iš pirmoje dalyje realizuotų skaitinių metodų (Niutono arba Kvazi-Niutono, priklausomai nuo varianto). Darbo ataskaitoje pateikite:

ш			
	9	$2\cos(x) - 47\cos(2x) + 2$	$-6 \le x \le 0$

2.1. Tarpinių grafikų sudarymas (3, 4 ir 5 TE narių skaičius)

2.1.1. Užduotis

Tarpinius grafikus, kai drauge su pateikta funkcija h(x) nurodytame intervale atvaizduojama TE, kai jos narių skaičius lygus 3, 4 ir 5.

2.1.2. Funkcijos h(x) ir TE 3, 4 ir 5 narių atvaizdavimas grafiškai

```
def fx(x):
   return 2 * np.cos(x) - 47 * np.cos(2*x) + 2 # -6 ir 0
def df1(x):
  return 2 * (-np.sin(x)) + 94 * np.sin(2*x)
def df2(x):
  return 2 * (-np.cos(x)) + 188 * np.cos(2*x)
def df3(x):
  return 2 * (np.sin(x)) - 376 * np.sin(2*x)
def df4(x):
  return 2 * (np.cos(x)) - 752 * np.cos(2*x)
def df5(x):
  return 2 * (-np.sin(x)) + 1504 * np.sin(2*x)
def ts3(x, x0):
  return fx(x0) + (x-x0)*df1(x0) + (np.power((x-x0), 2) / 2) *df2(x0) +
(np.power((x-x0), 3) / (3*2)) *df3(x0)
def ts4(x, x0):
 return fx(x0) + (x-x0)*df1(x0) + (np.power((x-x0), 2) / 2) *df2(x0) +
(np.power((x-x0), 3) / (3*2)) *df3(x0) + (np.power((x-x0), 4) / (4*3*2)) *df4(x0)
def ts5(x, x0):
 return fx(x0) + (x-x0)*df1(x0) + (np.power((x-x0), 2) / 2) *df2(x0) +
(np.power((x-x0), 3) / (3*2)) *df3(x0) + (np.power((x-x0), 4) / (4*3*2)) *df4(x0)
+ (np.power((x-x0), 5) / (5*4*3*2)) *df5(x0)
```

```
dx= 0.1
x=np.arange(-6, 0+dx, dx)
y = fx(x)

#3 Teiloro eilute
plt.xlim([-6, 0]); plt.ylim([-100, 100])

x0 = -3; # vidurio taskas

tsy3 = ts3(x, x0)
```

```
plt.xlabel('X-axis')
plt.ylabel('Y-axis')
plt.plot(x, y, 'b', linewidth=3.0) # pagrindine funkcija
plt.plot(x, tsy3, 'r', 1) # 3 order
plt.plot(x0, fx(x0), 'or') # vidurio tasko atvaizdavimas

plt.legend(['Duota funcija: f(x)', '3 Teiloro eilute', 'Vidurio taskas'])
plt.grid()
plt.show()
```



```
#4 Teiloro eilute
plt.xlim([-6, 0]); plt.ylim([-100, 100])

x0 = -3; # vidurio taskas

tsy4 = ts4(x, x0)
plt.xlabel('X-axis')
```

```
plt.ylabel('Y-axis')
plt.plot(x, y, 'b', linewidth=3.0) # pagrindine funkcija
plt.plot(x, tsy4, 'r', 1) # 4 order
plt.plot(x0, fx(x0), 'or') # vidurio tasko atvaizdavimas

plt.legend(['Duota funcija: f(x)', '4 Teiloro eilute', 'Vidurio taskas'])
plt.grid()
plt.show()
```



```
#5 Teiloro eilute
plt.xlim([-6, 0]); plt.ylim([-100, 100])

x0 = -3; # vidurio taskas

tsy5 = ts5(x, x0)

plt.xlabel('X-axis')
plt.ylabel('Y-axis')
plt.plot(x, y, 'b', linewidth=3.0) # pagrindine funkcija
```

```
plt.plot(x, tsy5, 'r', 1) # 5 order
plt.plot(x0, fx(x0), 'or') # vidurio tasko atvaizdavimas

plt.legend(['Duota funcija: f(x)', '5 Teiloro eilute', 'Vidurio taskas'])
plt.grid()
plt.show()
```


2.2. Reikalaujamą tikslumą užtikrinantis daugianaris

2.2.1. Užduotis

Grafiką, kuriame pavaizduotas reikalaujamą tikslumą užtikrinantis pagal TE sudarytas daugianaris, drauge pateikiant ir funkcijos h(x) grafiką.

2.2.2. Gautas TE narių skaičius

TE nariu skaicius: 17

2.2.3. Gautas grafikas

2.2.4. Skaičiavimams ir grafiko braižymui naudotas Python kodas

```
#Pradinės funkcijos šaknys
def hSaknys(h_Saknys, Artiniai):
    i = 0
    while(i < len(Artiniai)):
        root = Niutono(fx, df1, Artiniai[i])
        h_Saknys.append(root)
        print(root)
        i += 1</pre>
```

```
#Teiloro funkcija
def Taylor(f, N):
    x, f, fp = sp.symbols(('x','f','fp'))
    f = 2 * sp.cos(x) - 47 * sp.cos(2*x) + 2 #Turima funkcija
```

```
fp = f.subs(x, -3) #Pirmasis TE narys

for i in range(1, N):
    f=f.diff(x)
    fp = fp + f.subs(x, -3)/math.factorial(i)*(x+3)**i
    i += 1
    N += 1
    return fp
```

```
#Šaknų lyginimas pagal 1e-4 tikslumą
def SaknuPanasumas(saknis, mas):
   x, fp = sp.symbols(('x', 'fp'))
   f_prad = 2 * sp.cos(x) - 47 * sp.cos(2*x) + 2 #Pradine funkcija, kuri nekis
  i = 2
   fp = Taylor(f_prad, 1)
   mas.append(0)
  fp = Taylor(f prad, 2)
   mas.append(np.abs(saknis - Niutono(sp.lambdify(x, fp, modules=['numpy']),
sp.lambdify(x, fp.diff(x), modules=['numpy']), saknis)))
   while (np.abs(saknis - Niutono(sp.lambdify(x, fp, modules=['numpy']),
sp.lambdify(x, fp.diff(x), modules=['numpy']), saknis)) >= 1e-4):
      i += 1
      fp = Taylor(f_prad, i)
      mas.append(np.abs(saknis - Niutono(sp.lambdify(x, fp, modules=['numpy']),
sp.lambdify(x, fp.diff(x), modules=['numpy']), saknis)))
   return i, fp
```

```
VisiTESkaiciai = []
Artiniai = [-5.5, -4, -2.5, -0.5]
h_Saknys = []
hSaknys(h_Saknys, Artiniai)

mas = [] #Nereikalingas
maximum = 0
for saknis in h_Saknys:
    SkaiciusTE, Daugianaris = SaknuPanasumas(saknis, mas)
    VisiTESkaiciai.append(SkaiciusTE)
    print(SkaiciusTE)
    if SkaiciusTE > maximum:
        maximum = SkaiciusTE
        DidziausiasDaugianaris = Daugianaris

print("TE nariu skaicius: ", maximum)
```

```
#Grafiko h(x) ir N-tosios Teiloro eilutes braizymas
x = sp.symbols('x')
dx = 0.1
f prad = 2 * sp.cos(x) - 47 * sp.cos(2*x) + 2
xvalue=np.arange(-6, 0+dx, dx)
y vals = [DidziausiasDaugianaris.subs(x, val) for val in xvalue]
y vals f prad = [f prad.subs(x, val) for val in xvalue]
plt.plot(xvalue, y vals, 'b')
plt.plot(xvalue, y_vals_f_prad, 'g', 1)
plt.legend(['N Teiloro eilute', 'Duota funcija: f(x)'])
plt.ylim(-100, 100)
plt.xlim(-6, 0)
for saknis in h Saknys:
      plt.axvline(x=saknis, color='r', linestyle='--')
plt.title('Pagal tiksluma sudarytas daugianario grafikas')
plt.grid()
plt.show()
```

2.3. TE analitinė išraiška daugianario pavidalu

2.3.1. Užduotis

Nustatytos reikalaujamą tikslumą užtikrinančios TE analitinę išraišką daugianario pavidalu.

2.3.2. Gauta išraiška

```
TE daugianario pavidalas: (x + 3)^**16^*(-94^*\cos(6)/638512875 + \cos(3)/10461394944000) + (x + 3)^**15^*(752^*\sin(6)/638512875 - \sin(3)/653837184000) + (x + 3)^**14^*(-\cos(3)/43589145600 + 376^*\cos(6)/42567525) + (x + 3)^**13^*(\sin(3)/3113510400 - 376^*\sin(6)/6081075) + (x + 3)^**12^*(-188^*\cos(6)/467775 + \cos(3)/239500800) + (x + 3)^**11^*(376^*\sin(6)/155925 - \sin(3)/19958400) + (x + 3)^**10^*(-\cos(3)/1814400 + 188^*\cos(6)/14175) + (x + 3)^**9^*(\sin(3)/181440 - 188^*\sin(6)/2835) + (x + 3)^**8^*(-94^*\cos(6)/315 + \cos(3)/20160) + (x + 3)^**7^*(376^*\sin(6)/315 - \sin(3)/2520) + (x + 3)^**6^*(-\cos(3)/360 + 188^*\cos(6)/45) + (x + 3)^**5^*(\sin(3)/60 - 188^*\sin(6)/15) + (x + 3)^**4^*(-94^*\cos(6)/3 + \cos(3)/12) + (x + 3)^**3^*(188^*\sin(6)/3 - \sin(3)/3) + (x + 3)^**2^*(-\cos(3) + 94^*\cos(6)) + (x + 3)^*(2^*\sin(3) - 94^*\sin(6)) - 47^*\cos(6) + 2^*\cos(3) + 2
```

2.3.3. Programos kodas reikalingas skaičiavimams

```
#Pradinės funkcijos šaknys
def hSaknys(h_Saknys, Artiniai):
```

```
i = 0
while(i < len(Artiniai)):
    root = Niutono(fx, df1, Artiniai[i])
    h_Saknys.append(root)
    print(root)
    i += 1</pre>
```

```
#Teiloro funkcija
def Taylor(f, N):
    x, f, fp = sp.symbols(('x','f','fp'))
    f = 2 * sp.cos(x) - 47 * sp.cos(2*x) + 2 #Turima funkcija

fp = f.subs(x, -3) #Pirmasis TE narys

for i in range(1, N):
    f=f.diff(x)
    fp = fp + f.subs(x, -3)/math.factorial(i)*(x+3)**i
    i += 1
    N += 1
    return fp
```

```
#Šaknų lyginimas pagal 1e-4 tikslumą
def SaknuPanasumas(saknis, mas):
   x, fp = sp.symbols(('x', 'fp'))
   f_prad = 2 * sp.cos(x) - 47 * sp.cos(2*x) + 2 #Pradine funkcija, kuri nekis
  i = 2
   fp = Taylor(f prad, 1)
   mas.append(0)
   fp = Taylor(f_prad, 2)
   mas.append(np.abs(saknis - Niutono(sp.lambdify(x, fp, modules=['numpy']),
sp.lambdify(x, fp.diff(x), modules=['numpy']), saknis)))
   while (np.abs(saknis - Niutono(sp.lambdify(x, fp, modules=['numpy']),
sp.lambdify(x, fp.diff(x), modules=['numpy']), saknis)) >= 1e-4):
      i += 1
      fp = Taylor(f_prad, i)
      mas.append(np.abs(saknis - Niutono(sp.lambdify(x, fp, modules=['numpy']),
sp.lambdify(x, fp.diff(x), modules=['numpy']), saknis)))
   return i, fp
```

```
VisiTESkaiciai = []
Artiniai = [-5.5, -4, -2.5, -0.5]
h_Saknys = []
```

```
hSaknys(h_Saknys, Artiniai)

mas = [] #Nereikalingas

maximum = 0

for saknis in h_Saknys:
    SkaiciusTE, Daugianaris = SaknuPanasumas(saknis, mas)
    VisiTESkaiciai.append(SkaiciusTE)
    print(SkaiciusTE)
    if SkaiciusTE > maximum:
        maximum = SkaiciusTE
        DidziausiasDaugianaris = Daugianaris
```

print("TE daugianario pavidalas: ", DidziausiasDaugianaris)

2.4. Sprendinių gerėjimo grafikai

2.4.1. Užduotis

Grafikus, pagal kuriuos būtų galima įvertinti, kaip gerėjo sprendinys priklausomai nuo TE narių skaičiaus.

- a) grafikas, kuris nurodo visą randamų šaknų skaičių nagrinėjamame intervale (ox-TE eilė, oy šaknų skaičius);
- b) atskiri grafikai kiekvienai šakniai, kuriuose oy ašyje pateikti tikslumo įverčiai tarp h(x) apskaičiuotos šaknies ir artimiausios TE šaknies, o ox ašyje TE narių skaičiai.

2.4.2. Randamų šaknų skaičius nagrinėjamame intervale

2.4.2.1. Gautas grafikas

2.4.2.2. Naudotas kodas

```
#Gaunamas bendras šaknų kiekis prilausantis nuo TE eilių

def GetSaknysTEskaiciu(masTE, SaknuSk):

   i = 0
   z = 0
   while (i < len(masTE)):
        j = 0

   if (i + 1 < len(masTE)):
        while (j <= (masTE[i + 1] - 1) - masTE[i]):
        SaknuSk.append(i)

        z += 1
        j += 1</pre>
```

```
i += 1
<u>SaknuSk</u>.append(i - 1)
```

```
#4. a dalis
saknuSk = []
VisiTESkaiciai = VisiTESkaiciai + [0]
VisiTESkaiciai.sort()
GetSaknysTEskaiciu(VisiTESkaiciai, saknuSk) #Gražinamas saknuSk masyvas
y_values = np.linspace(0, 4, 100)
plt.figure()
plt.plot(range(0, maximum + 1), saknuSk, marker='o', label='tikslumai')
plt.xlabel('ox-TE eilė')
plt.ylabel('oy - šaknų skaičius')
plt.grid(True)
plt.show()
```

2.4.3. Tikslumo įverčių ir TE narių ieškojimas kiekvienai šakniai 2.4.3.1. Gauti grafikai

2.4.3.2. Naudotas kodas

```
#4. b dalis
i = 1
for saknis in h_Saknys:
    tikslumuMas = []
    SkaiciusTE, daugianaris = SaknuPanasumas(saknis, tikslumuMas)

# Atskiras grafikas kiekvienai šakniai
    plt.figure()
    plt.plot(range(1, SkaiciusTE + 1), tikslumuMas, marker='o', label='tikslumai')
    plt.xlabel('TE nariai')
    plt.ylabel('Tikslumo įvertis')
    plt.title('{0} - Saknis'.format(i))
    plt.grid(True)
    i += 1
```

plt.show()