Proof methods – exercises

Peter Rowlett

- 1. Prove or disprove the following.
 - (a) Let m be an integer. If m is odd, then m^2 is odd.
 - (b) Suppose that $p \in \mathbb{Q}$ and $p^2 \in \mathbb{Z}$. Then, $p \in \mathbb{Z}$.
 - (c) Let m and n be real numbers. If n > m > 0, then

$$\frac{m+1}{n+1} > \frac{m}{n}.$$

(d) Let A, B and C be sets. Then,

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$$

- (e) Let A and B be sets. Then, A = B if and only if $A \subseteq B$ and $B \subseteq A$.
- 2. Show that the sum of two consecutive odd numbers is a multiple of 4. What is the converse and is it true?
- 3. Let $f: X \to Y$. Suppose A and B are subsets of X. Show $f(A \cup B) = f(A) \cup f(B)$.
- 4. Prove or disprove the following.
 - (a) $a + b = c \implies a^2 + b^2 = c^2$.
 - (b) Let $x \in \mathbb{Z}$. Then -x is negative.
- 5. The following is a proof that 1 = 2. You may have reason to doubt that this is a true fact! Where is the error?

Theorem. 1 = 2.

Proof. Let a = b, where $a, b \in \mathbb{Z}$. Then,

$$ab = a^2$$
 since $a = b$,
 $ab - b^2 = a^2 - b^2$ by subtracting b^2 from both sides,
 $b(a-b) = (a+b)(a-b)$ by factoring,
 $b = a+b$ by dividing both sides by $a-b$,
 $b = 2b$ since $a = b$,
 $1 = 2$ by dividing by b .

- 6. Prove or disprove the following.
 - (a) Suppose $n \in \mathbb{N}$. Then $n^3 n$ is a multiple of 3.
 - (b) Suppose $x, y \in \mathbb{R}$. Then $|x + y| \le |x| + |y|$.
 - (c) The square of any integer is of the form 3k or 3k+1 for some $k \in \mathbb{Z}$.
 - (d) Suppose a = bc for $a, b, c \in \mathbb{R}$. If two of a, b or c are non-zero, then so is the third.
- 7. Prove or disprove the following.
 - (a) There are no positive integers x and y such that $x^2 y^2 = 1$.
 - (b) The sum of a rational and an irrational number is an irrational number.
 - (c) $\sqrt{3}$ is irrational.
 - (d) $\sqrt{4}$ is irrational. (What happens is you try the same approach as for $\sqrt{3}$?)
 - (e) There are no positive integer solutions to $x^2 + x + 1 = y^2$.
 - (f) Suppose $x, y \in \mathbb{Z}$. Then $\sqrt{x^2 + y^2} \neq x + y$.