Прв парцијален испит

Задача 1 (20). Сигналот x(t) е даден на сликата:

а) Да се скицираат сигналите $x_1(t)$ и $x_2(t)$ дефинирани на следниот начин:

a.1)
$$x_1(t) = 2x(-2-2t)$$

a.2)
$$x_2(t) = x(t-1)[u(t) - u(t-2)]$$

- б) Да се пресмета вредноста на интегралот $\int_{-1}^{1} x(t) \delta\left(t \frac{3}{2}\right) dt$? Одговорот да се образложи!
- в) Да се пресмета вкупната енергија на сигналот $x_2(t)$.

Задача 2 (20). Дали следниот систем зададен со влез-излез релацијата:

$$y(t) = 3x(t/2)$$

e:

- а) без меморија
- б) временски инваријантен
- в) линеарен
- г) каузален

Задача 3 (20). Индициониот одзив на еден систем е дефиниран како:

$$a(t-2) = \begin{cases} 0, & t \le 2 \\ 2t, & 2 < t \le 4 \\ 4, & t > 4 \end{cases}$$

- а) Дали системот е каузален? Одговорот да се образложи!
- б) Дали системот е стабилен? Одговорот да се образложи!
- в) Да се одреди одзивот на системот ако на влез се донесе сигналот:

$$x(t) = 3e^{-3t}[u(t) - u(t-4)] + \delta(t-5)$$

Задача 4 (15). Дадени се два периодични сигнали, $x_1(t)$ и $x_2(t)$.

Доколку коефициентите од развојот во Фуриеов ред на сигналот $x_1(t)$ се $a_k = \frac{1}{jk\pi} \bigg[\cos \bigg(k \frac{\pi}{2} \bigg) - \cos \bigg(k \frac{3\pi}{4} \bigg) \bigg]$, да се одредат коефициентите b_k од развојот во Фуриеов ред на сигналот $x_2(t)$, со помош на a_k . На кои особини се заснова вашиот метод? Одговорот да се образложи!

Задача 5 (25). LTI систем е зададен со диференцијалната равенка што ги поврзува влезниот и излезниот сигнал:

$$\frac{dy}{dt} + 2y(t) = 2x(t)$$

На влезот од системот е донесен сигналот x(t) дефиниран како :

$$x(t) = 2e^{-j\left(3t + \frac{\pi}{4}\right)} - \frac{3}{2j}e^{-j2t} + 4 + \frac{3}{2j}e^{j2t} + 2e^{j\left(3t + \frac{\pi}{4}\right)}.$$

- а) Да се скицираат амплитудниот и фазниот спектар на влезниот сигнал;
- б) Дали сигналот x(t) е реален? Одговорот да се образложи!
- в) Да се одреди излезниот сигнал, y(t);
- г) Да се одреди вкупната енергија на сигналот x(t).