Lecture 4

Several Useful Discrete Distributions

Random Variables

- •A **random variable** is a function corresponding to the outcome of an experiment, is a chance or random event.
- Random variables can be discrete or continuous.

• Examples:

- $\checkmark x = SAT$ score for a randomly selected student
- $\checkmark x$ = number of people in a room at a randomly selected time of day
- $\checkmark x$ = weight of a fish drawn at random

Probability Distributions for Discrete Random Variables

Probability distribution of a discrete random variable x, is a graph, table or formula that gives

- possible values of x
- probability p(x) associated with each value x.

We must have

$$0 \le p(x) \le 1$$
 and $\sum p(x) = 1$

- Toss a fair coin once,
- Define *x* = number of heads.
- Find distribution of x

X

$$P(x = 0) = 1/2$$

 $P(x = 1) = 1/2$

H

1/2

1

T

 $1/2 \quad 0$

X	p(x)
0	1/2
1	1/2

•Toss a fair coin three times and define x = number of heads.

ннн	

HHT

$$P(x = 0) = 1/8$$

$$P(x = 1) = 3/8$$

$$P(x = 2) = 3/8$$

$$P(x = 3) = 1/8$$

X	p(x)
0	1/8
1	3/8
2	3/8
3	1/8

Expected Value of Random Variable

• Let x be a discrete random variable with probability distribution p(x). Then the **expected value**, denoted by E(x), is defined by

Expected Value (Expectation, Mean μ)

$$E(x) = \mu = \sum xp(x)$$

•Toss a fair coin 3 times and record *x* the number of heads.

x	p(x)	xp(x)
0	1/8	0(1/8)=0
1	3/8	1(3/8)=0.375
2	3/8	2(3/8)=0.75
3	1/8	3(1/8)=0.375
		Total 1.5

$$E(x) = \sum xp(x)$$
$$= 1.5$$

Mean & Standard Deviation

•Let x be a discrete random variable with probability distribution p(x). Then the mean, variance and standard deviation of x are given as

Mean:
$$\mu = \sum xp(x)$$

Variance:
$$\sigma^2 = \sum (x - \mu)^2 p(x)$$

Standard deviation :
$$\sigma = \sqrt{\sigma^2}$$

Variance:
$$\sigma^2 = \sum x^2 p(x) - \mu^2$$

- Toss a fair coin 3 times and record x the number of heads.
- Find variance by the definition formula.

X	p(x)	$(x-\mu)^2 p(x)$
0	1/8	$(0-1.5)^2(1/8)=.28125$
1	3/8	$(1-1.5)^2(3/8)=.09375$
2	3/8	$(2-1.5)^2(3/8)=.09375$
3	1/8	$(3-1.5)^2(1/8) = .28125$
		Total .75

$$\mu = E(x) = \sum xp(x) = 1.5$$

$$\sigma^2 = \sum (x - \mu)^2 p(x)$$
$$= 0.75$$

- Toss a fair coin 3 times and record x the number of heads.
- Find the variance by the computational formula.

$$\mu = E(x) = \sum xp(x) = 1.5$$

X	p(x)	$x^2p(x)$
0	1/8	$0^2(1/8)=0$
1	3/8	$1^2(3/8)=0.375$
2	3/8	$2^{2}(3/8)=1.5$
3	1/8	$3^2(1/8)=1.125$
		Total 3

$$\sigma^2 = \sum x^2 p(x) - \mu^2$$
$$= 3 - 1.5^2$$
$$= 0.75$$

Introduction

- Discrete random variables take on only a finite or countably infinite number of values.
- Two discrete probability distributions serve as models for a large number of practical applications:

√The binomial random variable

√The Poisson random variable

The Binomial Random Variable

•The coin-tossing experiment is a simple example of a binomial random variable. Toss a fair coin n = 3 times and record x = number of heads.

X	p(x)
0	1/8
1	3/8
2	3/8
3	1/8

The Binomial Random Variable

• Many situations in real life resemble the coin toss, but the coin is not necessarily fair, so that $P(H) \neq 1/2$.

Example: A geneticist samples 10
people and counts the number
who have a gene linked to
Alzheimer's disease.

Coin: PersonHead: Has geneTail: Doesn't have gene

Number of

n = 10

tosses:

P(H):

P(has gene) = proportion in the population who have the gene.

The Binomial Experiment

- 1. The experiment consists of *n* identical trials.
- 2. Each trial results in **one of two outcomes**, success (S) or failure (F).
- 3. The probability of success on a single trial is p and **remains constant** from trial to trial. The probability of failure is q = 1 p.
- The trials are independent.
- 5. We are interested in x, the number of successes in n trials.

The Binomial Probability Distribution

 For a binomial experiment with n trials and probability p of success on a given trial, the probability of k successes in n trials is

$$P(x=k) = C_k^n p^k q^{n-k} = \frac{n!}{k!(n-k)!} p^k q^{n-k} \text{ for } k = 0,1,2,...n.$$

Recall
$$C_k^n = \frac{n!}{k!(n-k)!}$$

with $n! = n(n-1)(n-2)...(2)1$ and $0! \equiv 1$.

with
$$n! = n(n-1)(n-2)...(2)1$$
 and $0! \equiv 1$

The Mean and Standard Deviation

 For a binomial experiment with n trials and probability p of success on a given trial, the measures of center and spread are:

Mean: $\mu = np$ Variance: $\sigma^2 = npq$

Standarddeviation: $\sigma = \sqrt{npq}$

n = 5 success = hit
$$p = .8$$
 $x = \# \text{ of hits}$

$$P(x = 3) = C_3^n p^3 q^{n-3} = \frac{5!}{3!2!} (.8)^3 (.2)^{5-3}$$

$$= 10(.8)^3 (.2)^2 = .2048$$

What is the probability that more than 3 shots hit the target?

$$P(x > 3) = C_4^5 p^4 q^{5-4} + C_5^5 p^5 q^{5-5}$$

$$= \frac{5!}{4!1!} (.8)^4 (.2)^1 + \frac{5!}{5!0!} (.8)^5 (.2)^0$$

$$= 5(.8)^4 (.2) + (.8)^5 = .7373$$

The Poisson Random Variable

 The Poisson random variable x is a model for data that represent the number of occurrences of a specified event in a given unit of time or space.

Examples:

- The number of calls received by a switchboard during a given period of time.
- The number of machine breakdowns in a day
- The number of traffic accidents at a given intersection during a given time period.

The Poisson Probability Distribution

•x is the number of events that occur in a period of time or space during which an average of μ such events can be expected to occur. The probability of k occurrences of this event is

$$P(x=k) = \frac{e^{-\mu}\mu^k}{k!}$$

For values of k = 0, 1, 2, ... The mean and standard deviation of the Poisson random variable are

Mean: μ

Standard deviation: $\sigma = \sqrt{\mu}$

The average number of traffic accidents on a certain section of highway is two per week. Assume that the number of accidents follow a Poisson distribution with $\mu = 2$. Find the probability of

- (a) exactly one accident during a one-week period.
- (b) at most three accidents on this section of highway during a 2-week period

Cumulative Probability Tables

You can use the cumulative probability tables to find probabilities for selected Poisson distributions.

- ✓ Find the column for the correct value of μ .
- ✓ The row marked "k" gives the cumulative probability, $P(x \le k) = P(x = 0) + ... + P(x = k)$

What is the probability that there is exactly 1 accident?

	-			11		
k	2.0	2.5	3.0	u 3.5	4.0	4.5
0	.135	.082	.055	.033	.018	.011
1	.406	.287	.199	.136	.092	.061
2	.677	.544	.423	.321	.238	.174
3	.857	.758	.647	.537	.433	.342
4	.947	.891	.815	.725	.629	.532
5	.983	.958	.916	.858	.785	.703
6	.995	.986	.966	.935	.889	.831
7	.999	.996	.988	.973	.949	.913
8	1.000	.999	.996	.990	.979	.960
9		1.000	.999	.997	.992	.983
10			1.000	.999	.997	.993
11				1.000	.999	.998
12					1.000	.999
13						1.000

$$P(x = 1) = P(x \le 1) - P(x \le 0)$$

= .406 - .135
= .271

Check from formula: P(*x* = 1) = .2707

k	$\mu = 2$
0	.135
1	.406
2	.677
3	.857
4	.947
5	.983
6	.995
7	.999
8	1.000

What is the probability that 8 or more accidents happen?

$$P(x \ge 8) = 1 - P(x < 8)$$

= $1 - P(x \le 7)$
= $1 - .999 = .001$

A life insurance salesman sells on the average 3 life insurance policies per week. Use Poisson's law to calculate the probability that in a given week he will sell

- a. Some policies
- b. 2 or more policies but less than 5 policies.
- c. Assuming that there are 5 working days per week, what is the probability that in a given day he will sell one policy?

Here,
$$\mu = 3$$

(a) "Some policies" means "1 or more policies". We can work this out by finding 1 minus the "zero policies" probability:

$$P(X>0) = 1 - P(x_0)$$

Now
$$P(X) = \frac{e^{-\mu}\mu^x}{x!}$$
 so $P(x_0) = \frac{e^{-3}3^0}{0!} = 4.9787 \times 10^{-2}$

Therefore the probability of 1 or more policies is given by:

$$ext{Probability} = P(X \geq 0)$$
 $= 1 - P(x_0)$ $= 1 - 4.9787 imes 10^{-2}$ $= 0.95021$

A life insurance salesman sells on the average 3 life insurance policies per week. Use Poisson's law to calculate the probability that in a given week he will sell

- a. Some policies
- b.2 or more policies but less than 5 policies.
- c. Assuming that there are 5 working days per week, what is the probability that in a given day he will sell one policy?

(b) The probability of selling 2 or more, but less than 5 policies is:

$$P(2 \le X < 5)$$

$$= P(x_2) + P(x_3) + P(x_4)$$

$$= \frac{e^{-3}3^2}{2!} + \frac{e^{-3}3^3}{3!} + \frac{e^{-3}3^4}{4!}$$

$$= 0.61611$$

(c) Average number of policies sold per day: $\frac{3}{5}=0.6$

So on a given day,
$$P(X) = rac{e^{-0.6}(0.6)^1}{1!} = 0.32929$$

A company makes electric motors. The probability an electric motor is defective is 0.01. What is the probability that a sample of 300 electric motors will contain exactly 5 defective motors?

A company makes electric motors. The probability an electric motor is defective is 0.01. What is the probability that a sample of 300 electric motors will contain exactly 5 defective motors?

The average number of defectives in 300 motors is $\mu = 0.01 \times 300 = 3$

The probability of getting 5 defectives is:

$$P(X) = \frac{e^{-3}3^5}{5!} = 0.10082$$

If electricity power failures occur according to a Poisson distribution with an average of 3 failures every twenty weeks, calculate the probability that there will not be more than one failure during a particular week.

If electricity power failures occur according to a Poisson distribution with an average of 3 failures every twenty weeks, calculate the probability that there will not be more than one failure during a particular week.

The average number of failures per week is: $\mu=\frac{3}{20}=0.15$

"Not more than one failure" means we need to include the probabilities for "0 failures" plus "1 failure".

$$P(x_0) + P(x_1) = \frac{e^{-0.15}0.15^0}{0!} + \frac{e^{-0.15}0.15^1}{1!} = 0.98981$$

Vehicles pass through a junction on a busy road at an average rate of 300 per hour.

- a. Find the probability that none passes in a given minute.
- b. What is the expected number passing in two minutes?
- c.Find the probability that this expected number actually pass through in a given two-minute period.

Vehicles pass through a junction on a busy road at an average rate of 300 per hour.

- a. Find the probability that none passes in a given minute.
- b. What is the expected number passing in two minutes?
- c. Find the probability that this expected number actually pass through in a given two-minute period.

The average number of cars per minute is: $\mu=\frac{300}{60}=5$

(a)
$$P(x_0) = \frac{e^{-5}5^0}{0!} = 6.7379 \times 10^{-3}$$

(b) Expected number each 2 minutes = $E(X) = 5 \times 2 = 10$

(c) Now, with
$$\mu=10$$
, we have: $P(x_{10})=rac{e^{-10}10^{10}}{10!}=0.12511$

Twenty sheets of aluminum alloy were examined for surface flaws. The frequency of the number of sheets with a given number of flaws per sheet was as follows:

Number of flaws	Frequency
-----------------	-----------

Trainbor or harro	
0	4
1	3
2	5
3	2
4	4
5	1
6	1

What is the probability of finding a sheet chosen at random which contains 3 or more surface flaws?

The total number of flaws is given by:

$$(0 \times 4) + (1 \times 3) + (2 \times 5) + (3 \times 2) + (4 \times 4) + (5 \times 1) + (6 \times 1) = 46$$

So the average number of flaws for the 20 sheets is given by:

$$\mu = \frac{46}{20} = 2.3$$

The required probability is:

Probability =
$$P(X \ge 3)$$

= $1 - (P(x_0) + P(x_1) + P(x_2))$
= $1 - \left(\frac{e^{-2.3}2.3^0}{0!} + \frac{e^{-2.3}2.3^1}{1!} + \frac{e^{-2.3}2.3^2}{2!}\right)$
= 0.40396

Key Concepts

I. The Binomial Random Variable

- 1. Five characteristics: *n* identical independent trials, each resulting in either success *S* or failure *F*; probability of success is *p* and remains constant from trial to trial; and *x* is the number of successes in *n* trials.
- 2. Calculating binomial probabilities
 - a. Formula: $P(x=k) = C_k^n p^k q^{n-k}$
 - b. Cumulative binomial tables
 - c. Individual and cumulative probabilities using Minitab
- 3. Mean of the binomial random variable: $\mu = np$
- 4. Variance and standard deviation: $\sigma^2 = npq$ and $\sigma = \sqrt{npq}$

Key Concepts

II. The Poisson Random Variable

- 1. The number of events that occur in a period of time or space, during which an average of μ such events are expected to occur
- 2. Calculating Poisson probabilities

a. Formula:
$$P(x=k) = \frac{\mu^k e^{-\mu}}{k!}$$

- b. Cumulative Poisson tables
- c. Individual and cumulative probabilities using Minitab
- 3. Mean of the Poisson random variable: $E(x) = \mu$
- 4. Variance and standard deviation: $\sigma^2 = \mu$ and
- 5. Binomial probabilities can be approximated with Poisson probabilities when np < 7, using $\mu = np$.

Thank You