PREDICTING SEVERITY OF CRASHES

In Chicago

By Tzega Abera

WHY?

- Chicago: the largest urban center in Illinois, the third-largest in the United States.
- Population: 2.7 million and covers an area of 237 square miles
- Average daily traffic volume in 2019 = 20,000 vehicles/ day
- Reported motor vehicle crashes in 2019 = 117,949
- Purpose:
 - Building a crash severity predicting model to determine if a crash will result in a severe/fatal incident

MTMO

- Source: electronic crash reporting system (E-Crash) at CPD
- Includes traffic crashes on city streets within the City of Chicago limits and under the jurisdiction of Chicago Police Department (CPD)
- Records are added when a crash report is finalized or when amendments are made to an existing report in E-Crash
- Includes only crashes with a property damage value of \$1,500 or more or involving bodily injury to any person(s)
- Source: https://data.cityofchicago.org/Transportation/Traffic-Crashes-Crashes/85ca-t3if

METHOD

- Sampling technique to modify the format of the data structure for analysis
- Selected a subset of the data from the larger dataset was for analysis
- The raw dataset: 600,000 rows and 49 features.
- reduced dataset size to 200,000 rows and 38 features
 - Save computation time
 - make the data more manageable.

DATA CLEANING

Challenges:

- Dataset was too large to work with
 - Reduced the size of the dataset by extracting data from 2013-2023
- Multiple columns with over 65% of missing values
 - Solution: dropped the columns
- The target variable was not available as binary datapoint
 - identified relevant criteria and used that to create a binary datapoint for the target variable

EDA

Identified:

- most common causes of traffic crashes in Chicago.
- relationship between weather conditions and the crashes
- relationship between road conditions and the number of accidents
- relationship between the time of day and the severity of crashes
- specific areas of the city that are more prone to crashes
- Correlation between speed and accidents

EDA - WEATHER CONDITION AND NUMBER OF CRASHES

EDA - ROAD CONDITION AND NUMBER OF ACCIDENTS

EDA - CRASH HOUR AND NUMBER OF CRASHES

EDA-BEATS AND NUMBER OF CRASHES

EDA - SPEED LIMIT AND NUMBER OF CRASHES

MODEL SELECTION

 Under-sampling technique to balance the classes in our dataset.

FEATURE SELECTION

feature selection analysis: dropped the features "INJURIES_TOTAL", and "MOST_SEVERE_IN JURY" to prevent overfitting and bias

COMPARE ML MODELS

 The logistic regression model achieved the highest accuracy score

Algorithm	ithm Model accuracy	
	score	
KNN	0.999633	
Random Forest	0.949183	
Logistic Regression	1.000000	
Gradient Boost	0.995367	
Naive Bayes	0.999283	

COMPARE ML MODELS

all algorithms have good prediction ability, but the logistic regression model achieved the highest scores

	Algorithm	ROC-AUC train score	ROC-AUC test score
0	KNN	0.987377	0.964990
1	Random Forest	0.999945	1.000000
2	Logistic Regression	1.000000	1.000000
3	Gradient Boost	0.999873	0.999938
4	Naive Bayes	1.000000	0.999971

LIMITATIONS AND FUTURE IMPROVEMENTS

- analysis only considers the incidence of crashes and does not account for factors such as driver behavior or road conditions
- subsampled dataset may not be representative of the larger dataset
- Used only underdamping technique to balance the data
 - Oversampling should also be used for comparison