Multi-UAVs reference tracking using MPC

Mohammad Alikhani

Universitat Politècnica de Catalunya

April 23, 2025

Contents

- 1. UAV nonlinear Model
- 2. SOM: 2D Quadrotor model
- 3. COM: Different approaches and our Model
- 4. Objective Function
- 5. DMPC vs CMPC
- 6. Results

UAV nonlinear Model

$$\begin{bmatrix} I\kappa_{xx}\Omega_m^2 + \frac{1}{I_{xx}}U_2 \\ I\kappa_{yy}\Omega_m^2 + \frac{1}{I_{yy}}U_3 \\ I\kappa_{zz}\Omega_m^2 + \frac{1}{I_{zz}}U_4 \\ \frac{1}{m}(\cos\phi_m\cos\theta_m)U_1 - g \\ \frac{U_1}{m}(\cos\phi_m\sin\theta_m\cos\psi_m + \sin\phi_m\sin\psi_m) \\ \frac{U_1}{m}(\cos\phi_m\sin\theta_m\sin\psi_m - \sin\phi_m\cos\psi_m) \end{bmatrix}$$

SOM: 2D Quadrotor model

• System Overview:

- 6 states: $x = [x, \dot{x}, y, \dot{y}, \theta, \dot{\theta}]^T$
- 2 inputs: $u = [u_1, u_2]^T$ left and right motor thrusts

• Nonlinear Dynamics:

$$\dot{x}_1 = x_2, \qquad \dot{x}_2 = \frac{1}{m}(u_1 + u_2)\sin(\theta)$$
 $\dot{x}_3 = x_4, \qquad \dot{x}_4 = \frac{1}{m}(u_1 + u_2)\cos(\theta) - g$
 $\dot{x}_5 = x_6, \qquad \dot{x}_6 = \frac{1}{l}(u_1 - u_2)$

SOM: 2D Quadrotor model

State variables:

- $x_1 = x$: Horizontal position.
- $x_2 = \dot{x}$: Horizontal velocity.
- $x_3 = y$: Vertical position.
- $x_4 = \dot{y}$: Vertical velocity.
- $x_5 = \theta$: Pitch angle (orientation).
- $x_6 = \dot{\theta}$: Angular velocity.

• Inputs:

- *u*₁: Thrust from the left motor.
- u_2 : Thrust from the right motor.

Parameters:

- m: Mass of the quadrotor.
- g: Gravitational acceleration.
- I: Distance from the center of mass to each motor.
- I: Moment of inertia about the pitch axis.

COM: 1.Equilibrium Point (Hover)

Position and velocity:

$$x = 0, \dot{x} = 0, y = 0, \dot{y} = 0.$$

- Angle and angular velocity: $\theta = 0$, $\dot{\theta} = 0$.
- Thrusts: The net force must balance gravity, and the torque must be zero.
- $\theta = 0$, so $\cos(\theta) = 1$, $\sin(\theta) = 0$.
- $\ddot{v}=0$. so:

$$\frac{1}{m}(u_1+u_2)\cos(0)-g=0 \quad \Rightarrow \quad u_1+u_2=mg$$

 $\ddot{\theta} = 0$

$$u_1 - u_2 = 0$$
 \Rightarrow $u_1 = u_2 u_1 + u_2 = mg$, $u_1 = u_2$ \Rightarrow $u_1 = u_2 = \frac{mg}{2}$

$$\dot{x}_1 = x_2$$
 $\dot{x}_2 = \frac{1}{m}(u_1 + u_2)\sin(x_5)$
 $\dot{x}_3 = x_4$

$$\dot{x}_4 = \frac{1}{m}(u_1 + u_2)\cos(x_5) - g$$

$$\dot{x}_5 = x_6$$
 $\dot{x}_6 = \frac{1}{I}(u_1 - u_2)$

$$\Rightarrow u_1 = u_2 = \frac{mg}{2}$$

COM: 2.Computing Jacobian

$$B = \begin{bmatrix} 0 & 0 \\ \frac{\sin(x_5)}{m} & \frac{\sin(x_5)}{m} \\ 0 & 0 \\ \frac{\cos(x_5)}{m} & \frac{\cos(x_5)}{m} \\ 0 & 0 \\ \frac{l}{l} & -\frac{l}{l} \end{bmatrix}$$

- **Prediction Horizon:** N=20, with sampling time $T_s = 0.1$ s.
- Total prediction time: $N \cdot T_s = 20 \cdot 0.1 = 2$ seconds.

Objective Function

$$J = \sum_{k=1}^{N} \left((r_k - Cx_k)^T Q (r_k - Cx_k) + u_k^T R_k u_k + \Delta u_k^T S \Delta u_k + x_k^T Q_{\mathsf{state}} x_k \right)$$

- Tracking: $(r_k Cx_k)^T Q (r_k Cx_k)$, $Q = 5 \cdot I_{3\times 3}$
- Control Effort: $R_k = I + w \cdot x_{0.5}^2 \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \end{bmatrix}, \quad w = 10$
- Smoothness: $\Delta u_k^T S \Delta u_k$, $S = 5 \cdot I_{2 \times 2}$
- State Penalty: $Q_{\text{state}} = \text{diag}(0, 2, 0, 2, 0, 5)$ (penalizes $\dot{x}, \dot{y}, \dot{\theta}$)
- Constraints:
 - Inputs: $(0 \le u_k(1), u_k(2) \le mg, \quad u_k(1) + u_k(2) \le mg \cdot (1 \alpha |x_{0,5}|), \quad \alpha = 5$
 - **States:** $(-10 \le x, y \le 10, 5 \le \dot{x}, \dot{y} \le 5, 0.1 \le \theta \le 0.1, -2 \le \dot{\theta} \le 2$
 - Torque: $(\left|\frac{1}{I}(u_k(1) u_k(2))\right| \le 2$

Cost Function Terms(2/1)

- Tracking Error: $(r_k Cx_k)^T Q(r_k Cx_k)$, $Q = 5 \cdot I_{3\times 3}$.
 - Ensures x, y, θ track references r_x, r_y, r_θ
 - High Q prioritizes accurate position and angle

$$C = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

- Control Effort: $u_k^T R_k u_k$, $R_k = I + w \cdot x_{0.5}^2 \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \end{bmatrix}$, w = 10
 - Penalizes large thrusts u₁, u₂
 - Dynamic R_k : Reduces thrust when $|\theta|$ is large, ensuring cautious speed

Cost Function Terms (2/2)

- Smoothness: $\Delta u_k^T S \Delta u_k$, $S = 5 \cdot I_{2 \times 2}$, $\Delta u_k = u_k u_{k-1}$
 - Minimizes rapid thrust changes, reducing energy and actuator wear
- State Penalty: $x_k^T Q_{\text{state}} x_k$, $Q_{\text{state}} = \text{diag}(0, 2, 0, 2, 0, 5)$
 - Penalizes high velocities (\dot{x},\dot{y}) and angular velocity $(\dot{ heta})$
 - Reduces energy (via drag) and stabilizes motion

Constraints

• Inputs:

- $0 \le u_k(1), u_k(2) \le mg, m \cdot g = 49.05 \,\mathrm{N}$
 - Ensures thrusts are positive and within motor limits
- $u_k(1) + u_k(2) \leq m \cdot g \cdot (1 \alpha \cdot |x_{0,5}|), \quad \alpha = 5$
 - Reduces total thrust when $|\theta|$ is large, ensuring cautious speed
 - Example: At $|\theta| = 0.1$, limit is 24.525 N
- $\left| \frac{1}{I} (u_k(1) u_k(2)) \right| \leq 2$
 - Limits torque, reducing energy-intensive angular acceleration

States:

- $-10 \le x, y \le 10$ m: Defines workspace
- $-5 \le \dot{x}, \dot{y} \le 5$ m/s: Limits speed, reducing drag
- $-0.1 \le \theta \le 0.1$ rad: Keeps linearization valid (e.g., $\sin(\theta) \approx \theta$)
- $-2 \le \dot{\theta} \le 2$ rad/s: Limits angular velocity, stabilizing orientation

DMPC vs CMPC

Aspect	Decentralized MPC	Centralized MPC
Structure	Each quadcopter has its own	Single MPC optimizes for all
	MPC, optimizing locally	quadcopters globally
Computation	Distributed: Smaller problems	Centralized: Large problem
	per quadcopter.	with all states/inputs
Communication	Requires sharing states among	All data sent to a central con-
	quadcopters.	troller
Scalability	Scales well: Add quadcopters	Poor scalability: Problem size
	with minimal impact.	grows with number of quad-
		copters
Fault Tolerance	Robust: Failure of one quad-	Vulnerable: Central failure im-
	copter doesn't affect others.	pacts all quadcopters
Performance	Suboptimal: Local optimiza-	Optimal: Global optimization
	tion may miss global goals	for all quadcopters

Results

Results

U1 Control Action very small after 30s

U2 Control Action very small after 30s

Thanks For your Attention!