Unit 02: Applications of Chemical Equilibrium

Readings refer to Ch 7 and 8 in "General Chemistry 152, University of Washington" by Zumdahl & DeCoste

Lecture 2.1

- Reading
 - Acids and Bases (7.1)
 - Acid Strength (7.2)
 - The pH Scale (7.3)
 - pH of Strong Acid Solutions (7.4)
- · Suggested EOC problems
 - Ch 7: 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 115, 119
- Questions we'll answer:
 - What do we mean by "strong" vs. "weak" acids?
 - How do we communicate the concentration of a acid-base solution?

Bronsted-Lowry Theory: acid/base reactions are proton-transfer processes.

- Acid is proton-donor (H+ ion donor).
- Base is proton- acceptor (H⁺ ion acceptor).
- The reaction of HA with H₂O is called acid ionization.
- The reaction of B with H₂O is called base hydrolysis.
- Acid solutions and base solutions are quantified by the extent of H₃O⁺ ("hydronium ion") production. Chemists tend to use "H⁺" and "H₃O⁺" synonymously.

B L: Conjugate Acid/Base Pairs

Every acid has a conjugate base.

These species differ by a single H⁺.

Every base has a conjugate acid.

These species differ by a single H⁺.

Acid Strength

Magnesium metal dissolves in acidic solution according to the following reaction:

$$Mg(s) + 2 H^{+}(aq) \rightarrow Mg^{2+}(aq) + H_{2}(g)$$

where the H⁺ ions are one of the products of acid ionization:

$$HX(aq) \rightarrow H^{+}(aq) + X^{-}(aq)$$

Dissolve _____-g samples of Mg in _____ M hydrochloric (HCl) acid and _____ M acetic (CH_3COOH) acid.

How will the rates of reaction compare?

Acid Strength (cont.)

$$HA(aq) + H_2O(l) \rightleftharpoons H_3O^+(aq) + A^-(aq)$$

$$K_a = \frac{\left(\frac{\left[H_3 O^+ \right]}{1 \text{ M}} \right) \left(\frac{\left[A^- \right]}{1 \text{ M}} \right)}{\left(\frac{\left[HA \right]}{1 \text{ M}} \right)}$$

The magnitude of K_a is a measure of how likely the acid is to dissociate in water.

Acid Strength Comparison

^{*}The units of K_a are customarily omitted.

Autoionization of Water

 Water also undergoes acid ionization with itself...we call this autoionization of water.

$$H_2O(l) + H_2O(l) \rightleftharpoons H_3O^+(aq) + OH^-(aq)$$

• The forward reaction occurs to a tiny extent...for pure water at 25°C:

$$[H_3O^+] = [OH^-] = 1.0 \times 10^{-7} M$$

$$K_{w} = \left(\frac{\left[H_{3}O^{+}\right]}{1 \text{ M}}\right) \left(\frac{\left[OH^{-}\right]}{1 \text{ M}}\right) = 1.0 \times 10^{-14}$$

- We can think of K_w as a measure of how "acidic" a water molecule is.
- The concentration values give us a reference point for acidity.

 $[H_3O^+] > 1.0 \times 10^{-7} M$ \rightarrow ACIDIC solution

 $[H_3O^+]$ < 1.0 x 10⁻⁷ M \rightarrow BASIC solution

 $[H_3O^+] = 1.0 \times 10^{-7} M \rightarrow NEUTRAL solution$

pH = "power of Hydrogen"

• Uses a *logarithmic scale* (powers of 10)

$$pH = -log_{10}[H_3O^+]$$

$$[H_3O^+] = 10^{-pH}$$

- **Sig Fig Rule**: The number of *decimal places* in the log is equal to the number of *significant figures* in the original number.
- pH represents the "order of magnitude" of the hydronium ion concentration.

pH of Common Foods: http://www.engineeringtoolbox.com/food-ph-d 403.html

pH of Strong vs Weak Acid Solutions

	НСІ	HNO ₃	HF	СН₃СООН
[HA] _o (M)	K _a > 1	K _a > 1	K _a ~ 10 ⁻⁴	K _a ~ 10 ⁻⁵
10-4	4	4	4.05	4.47
10 ⁻³	3	3	3.26	3.91
10-2	2	2	2.64	3.39
10 ⁻¹	1	1	2.10	2.88
10º	0	0	1.59	2.38
10 ¹	-1	-1	1.09	1.88

Strong acids dissociate "stoichiometrically" to form H⁺ and A⁻!

pH of Strong Acid Solutions

Example: What is the pH of a 0.100 M solution of HCI?

HCl is a strong acid; therefore, it complete dissociates to form $\rm H_3O^+$ and $\rm Cl^-$

$$HCl(aq) + H_2O(l) \longrightarrow H_3O^+(aq) + Cl^-(aq)$$

pH of Strong Acid Solutions (cont.)

 The stoichiometric production of H₃O⁺ will be true for any strong acid.

$$HA(aq) + H_2O(l) \longrightarrow H_3O^+(aq) + A^-(aq)$$
Equilibrium lies very, very far to the right!

- Strong acids to know:
 - HCl (hydrochloric acid)
 - HBr (hydrobromic acid)
 - HI (hydroiodic acid)
 - HNO₃ (nitric acid)
 - HClO₄ (perchloric acid)
 - H₂SO₄ (sulfuric acid...first proton only)

Concept Quiz

• What is the pH of a 0.010 M solution of nitric acid?

Lecture 2.2

- Reading
 - pH of Weak Acid Solutions (7.5)
 - pH of Base Solutions (7.6)
- Suggested EOC problems
 - Ch 7: 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 65, 67, 69, 71, 73, 75, 77, 79, 81, 117
- Questions we'll answer:
 - How do we calculate the pH of an acid or base, given its strength and initial concentration?

Weak Acids

 For weak acids dissociation is not complete. A mixture of species will be present at equilibrium!

Dominant species in solution

Need to use our equilibrium chemistry techniques.

$$K_{a} = \frac{\left(\frac{\left[H_{3}O^{+}\right]}{1 \text{ M}}\right)\left(\frac{\left[A^{-}\right]}{1 \text{ M}}\right)}{\left(\frac{\left[HA\right]}{1 \text{ M}}\right)}$$

The magnitude of K_a is a measure of how likely the acid is to dissociate in water.

pH of Weak Acid Solutions

• **Example**: Calculate the pH of a 0.100 M solution of nitrous acid HNO_2 ($K_a = 4.0 \times 10^{-4}$).

$$HNO_2(aq) + H_2O(l) \rightleftharpoons H_3O^+(aq) + NO_2^-(aq)$$

- This is a weak acid; therefore we will treat this just like a standard equilibrium problem.
- Reaction is balanced; therefore, we can construct the equilibrium expression:

$$K_a = 4.0 \times 10^{-4} = \frac{\left(\frac{\left[\text{H}_3\text{O}^+\right]}{1 \text{ M}}\right) \left(\frac{\left[\text{NO}_2^-\right]}{1 \text{ M}}\right)}{\left(\frac{\left[\text{HNO}_2\right]}{1 \text{ M}}\right)}$$

pH of Weak Acid Solutions (cont.)

• Next: ICE Table!

$$HNO_2(aq) + H_2O(l) \rightleftharpoons H_3O^+(aq) + NO_2^-(aq)$$

• Sub into K_a and solve.

• Let's trying solving this two ways: with and without approximation.

pH of Weak Acid Solutions (cont.)

• First, no approximations. Use quadratic formula:

pH of Weak Acid Solutions (cont.)

• Next, let's assume x is really small:

Approximation Check

- There are two assumptions we've made in the past two calculations:
 - Extent of dissociation is modest such that we can just use the initial concentration of the weak acid.
 - The amount of H₃O⁺ produced from HNO₂ is significantly greater than the amount present due to autoionization.
- Checking:

1. For
$$[HNO_2]_{dissoc}$$
:
$$\frac{0.006\underline{3}2 \text{ M}}{0.100 \text{ M}} \times 100 = 6.3 \%$$
2. For $[H_3O^+]_{from \, water}$:
$$\frac{1 \times 10^{-7} \text{ M}}{0.006\underline{3}2 \text{ M}} \times 100\% = 1.6 \times 10^{-3} \%$$

• Both assumptions are reasonable.

pH of Weak Acid Solutions (cont.)

• **Example**: A 0.150 M solution of hydrofluoric acid HF has a pH of 1.98. Use this data to approximate the K_a for this weak acid.

What is a Base?

- According to Arrhenius theory, a base is a substance that produces OH⁻ ions in solution.
- Within this definition, the metal hydroxide salts are bases:

NaOH (s)
$$\xrightarrow{\text{H}_2\text{O}}$$
 Na⁺ (aq) + OH⁻(aq)
Mg(OH)₂(s) $\xrightarrow{\text{H}_2\text{O}}$ Mg²⁺ (aq) + 2 OH⁻(aq)

• In the Bronsted-Lowry theory, a base is a substance that can accept a proton from an acid. When the acid is water, [OH⁻] increases:

$$B(aq) + H_2O(l) \rightleftharpoons BH^+(aq) + OH^-(aq)$$

• This more general definition includes the strong base hydroxide, which is the conjugate base of water.

pH and pOH

We can define an expression similar to pH for "power of hydroxide":

$$pOH = -log_{10}[OH^{-}]$$

In aqueous solution at 25° C

Hydroxide: A Strong Base

- Example: What is the pH of a 0.010 M solution of KOH?
- Since KOH is a soluble salt of the strong base OH-, complete dissociation occurs:

Weak Bases

• When a weak base B reacts with water, hydroxide ions are produced, a lot of unreacted B remains at equilibrium:

Dominant species in solution

 To determine the concentration of OH⁻, we are going to have to use our equilibrium chemistry techniques (just like we did for weak acids).

$$K_b = \frac{\left(\frac{\begin{bmatrix} \mathbf{B}\mathbf{H}^+ \end{bmatrix}}{1 \mathbf{M}}\right) \left(\frac{\begin{bmatrix} \mathbf{O}\mathbf{H}^- \end{bmatrix}}{1 \mathbf{M}}\right)}{\left(\frac{\begin{bmatrix} \mathbf{B} \end{bmatrix}}{1 \mathbf{M}}\right)}$$

The magnitude of K_b is a measure of how likely the base is to hydrolyze water.

Weak Bases

 Typical weak bases include amines (nitrogen-bearing compounds) of which the simplest is ammonia.

$$NH_3(aq) + H_2O(l) \rightleftharpoons NH_4^+(aq) + OH^-(aq)$$

• The reaction involves the lone pair of electrons on the nitrogen that forms a bond with a proton to form the protonated amine.

 Other amines include methylamine (CH₅N) and triethylamine (C₃H₉N).

pH of Weak Base Solutions

• Example: Calculate the pH of a 0.100 M solution of ammonia NH_3 ($K_b = 1.8 \times 10^{-5}$).

$$NH_3(aq) + H_2O(l) \rightleftharpoons NH_4^+(aq) + OH^-(aq)$$

- Since ammonia is a weak base we treat this just like a standard equilibrium problem.
- Reaction is balanced; therefore, we can construct the equilibrium expression:

· Next: ICE Table!

$$NH_3(aq) + H_2O(l) \rightleftharpoons NH_4^+(aq) + OH^-(aq)$$

• Sub into K_b and solve.

Approximation Check

- We made two assumptions we made in the last calculation:
 - Extent of dissociation is modest such that we can just use the initial concentration of the weak base.
 - The amount of OH⁻ produced is significantly greater than the amount present due to autoionization.
- Checking:

1. For
$$[NH_3]_{hydrolysis}$$
 :
$$\frac{0.00134 \text{ M}}{0.100 \text{ M}} \times 100 = 1.3 \%$$

2. For
$$[OH^{-}]_{from water}$$
: $\frac{1 \times 10^{-7} \text{ M}}{0.00134 \text{ M}} \times 100\% = 0.00746 \%$

• Both assumptions are reasonable.

Lecture 2.3

- Reading
 - Acid-Base Properties of Salts (7.8)
- Suggested EOC Problems
 - Ch 7: 91, 93, 97, 99, 101, 103, 107, 121
- Questions we'll answer:
 - What is the relationship between K_a and K_b?
 - How does the strength of a acid/base conjugate affect the pH of solution?

Acid/Base Conjugates

• Consider the dissociation of acetic acid (CH₃COOH) where $K_a = 1.8 \times 10^{-5}$):

$$\frac{\text{CH}_3\text{COOH}}{\text{acid}}(aq) + \text{H}_2\text{O}(l) \rightleftharpoons \frac{\text{CH}_3\text{COO}^-}{\text{conjugate base}}(aq) + \text{H}_3\text{O}^+(aq)$$

- Notice that the acetate ion is capable of accepting a proton; therefore, it is a base.
- The resulting base formed from the dissociation of an acid is called the conjugate base of the acid.

Acid/Base Conjugates (cont.)

• Let's write down the equilibrium expression for the acid:

$$CH_3COOH(aq) + H_2O(l) \rightleftharpoons CH_3COO^-(aq) + H_3O^+(aq)$$

$$K_a = \frac{\left(\frac{\left[\text{CH}_3\text{COO}^{-}\right]}{1 \text{ M}}\right)\left(\frac{\left[\text{H}_3\text{O}^{+}\right]}{1 \text{ M}}\right)}{\left(\frac{\left[\text{CH}_3\text{COOH}\right]}{1 \text{ M}}\right)}$$

• Let's write down the equilibrium expression for the base:

$$CH_3COO^-(aq) + H_2O(l) \rightleftharpoons CH_3COOH(aq) + OH^-(aq)$$

$$K_b = \frac{\left(\frac{\text{[CH_3COOH]}}{1 \text{ M}}\right) \left(\frac{\text{[OH^-]}}{1 \text{ M}}\right)}{\left(\frac{\text{[CH_3COO^-]}}{1 \text{ M}}\right)}$$

Acid/Base Conjugates (cont.)

Finally, let's look at the product of K_a and K_b:

$$K_{a}K_{b} = \frac{\begin{bmatrix} \text{CH}_{3}\text{COO} \end{bmatrix} \begin{pmatrix} \begin{bmatrix} \text{H}_{3}\text{O}^{+} \\ 1 \text{ M} \end{pmatrix}}{\begin{pmatrix} 1 \text{ M} \end{pmatrix}} \times \frac{\begin{pmatrix} \text{CH}_{3}\text{COOH} \end{bmatrix} \begin{pmatrix} \begin{bmatrix} \text{OH}^{-} \\ 1 \text{ M} \end{pmatrix}}{\begin{pmatrix} 1 \text{ M} \end{pmatrix}} = \begin{pmatrix} \begin{bmatrix} \text{H}_{3}\text{O}^{+} \\ 1 \text{ M} \end{pmatrix} \begin{pmatrix} \begin{bmatrix} \text{OH}^{-} \\ 1 \text{ M} \end{pmatrix} \end{pmatrix}$$

• This last expression is equivalent to the equilibrium constant for the autoionization of water:

$$2H_2O(l) \leftrightarrow H_3O^+(aq) + OH^-(aq)$$

$$K_{w} = \left(\frac{\left[H_{3}O^{+}\right]}{1 \text{ M}}\right) \left(\frac{\left[OH^{-}\right]}{1 \text{ M}}\right) = 1.0 \times 10^{-14}$$

Acid/Base Conjugates (cont.)

· Generalizing this result:

$$K_a K_b = K_w = 1.0 \times 10^{-14}$$
 at 25°C

- The K_a for an acid and the K_b for its conjugate base are directly related through the above expression.
- If one is given the K_a for an acid, then K_b for the conjugate base is readily determined.
- Same goes for a base and its conjugate acid, the product of $\rm K_b$ and $\rm K_a$ is $\rm K_w$.

Acid/Base Conjugates (cont.)

 Consider the product of the dissociation of acetic acid (CH₃COOH), for which K_a = 1.8 x 10⁻⁵. What is the pH of a 0.350 M solution of acetate?

$$CH_3COO^-(aq) + H_2O(l) \rightleftharpoons CH_3COOH(aq) + OH^-(aq)$$

• First, the reaction is balanced. Next, we write the equilibrium expression:

$$K_b = \frac{\left(\frac{\text{[CH_3COOH]}}{1 \text{ M}}\right) \left(\frac{\text{[OH^-]}}{1 \text{ M}}\right)}{\left(\frac{\text{[CH_3COO^-]}}{1 \text{ M}}\right)}$$

Acid/Base Conjugates (cont.)

- Next, we can use the K_a for acetic acid to calculate K_b for acetate.
- ICE table time:

Ions of Strong Acid/Base

- To finish our introduction to acid/base chemistry, we return to ionic compounds (aka "salts") in solution, such as NaCl.
- Water simply "solvates" the Na⁺ and Cl⁻ ions, and there is no reaction with H⁺ or OH⁻
- For example, Cl⁻ does not react with H₂O to make HCl and OH⁻:

$$Cl^{-}(aq) + H_{2}O(l) \longrightarrow HCl(aq) + OH^{-}(aq)$$

- In fact, the equilibrium lies on the reactant side (since the products are a strong acid and a strong base).
- In summary: Anions (Cl⁻) from strong acids (HCl) have no affect on pH. The same is true for the cations (Na⁺) from strong bases (NaOH).

Ions of Strong Acid/Base (cont.)

- There are a variety of ions from strong acids and bases that simply form solvated ions in solution and do not affect pH.
- Correspondingly, the salts of these ions will not affect pH when dissolved in water.
- Examples include KNO₃, NaNO₃, KCl, NaCl, NaClO₄.

$$KCl(s) \xrightarrow{H_2O} K^+(aq) + Cl^-(aq)$$

• Sulfate salts are also "neutral" salts: Na₂SO₄, K₂SO₄.

pH of Salts

- What happens when the anion of the salt is also a weak base?
- Consider placing sodium acetate (NaC₂H₃O₂) into solution:

$$\operatorname{NaC}_{2}\operatorname{H}_{3}\operatorname{O}_{2}(s) \xrightarrow{H_{2}O} \operatorname{Na}^{+}(aq) + \operatorname{C}_{2}\operatorname{H}_{3}\operatorname{O}_{2}^{-}(aq)$$

- We have three species in solution: Na⁺, C₂H₃O₂⁻, and H₂O.
 Which species can affect the pH?
- Notice that sodium acetate contains the conjugate base of acetic acid (a weak acid).

$$\frac{\mathrm{HC_2H_3O_2(aq)}}{\mathrm{HC_2H_3O_2(aq)}} + \mathrm{H_2O}(l) \iff \mathrm{H_3O^+(aq)} + \frac{\mathrm{C_2H_3O_2(aq)}}{\mathrm{C_2H_3O_2(aq)}}$$

pH of Salts (cont.)

- Sodium acetate acts as a base, and is the "strongest" species present (since neither Na⁺ nor H₂O affect pH).
- Therefore, the reaction of interest is:

$$C_2H_3O_2(aq) + H_2O(l) \rightleftharpoons HC_2H_3O_2(aq) + OH^2(aq)$$

 We can determine the pH by simply applying the techniques developed earlier. The equilibrium expression is:

$$K_{b} = \frac{\left(\frac{\left[\text{HC}_{2}\text{H}_{3}\text{O}_{2}\right]}{1 \text{ M}}\right)\left(\frac{\left[\text{OH}^{-}\right]}{1 \text{ M}}\right)}{\left(\frac{\left[\text{C}_{2}\text{H}_{3}\text{O}_{2}^{-}\right]}{1 \text{ M}}\right)} = \frac{K_{w}}{K_{a}} = \frac{1.0 \times 10^{-14}}{1.8 \times 10^{-5}} = 5.6 \times 10^{-10}$$

• Recall: $K_a K_b = K_w = 1.0 \times 10^{-14}$

pH of Salts (cont.)

- Example: Calculate the pH of a 0.45 M NaCN solution where the $\rm K_a$ value for HCN is 6.2 x 10⁻¹⁰.
- First step: Determine what the strongest species in solution is.
- Next, write down the acid/base reaction for this species.

pH of Salts (cont.)

• Finally, ICE table and solve.

pH of Salts (cont.)

- There are salts that produce acidic solutions as well.
- Salts where the cation is the conjugate acid of a weak base will produce solutions that are acidic.
- · Example: ammonuium chloride

$$NH_4Cl(s) \xrightarrow{H_2O} NH_4^+(aq) + Cl^-(aq)$$

• Chloride (Cl⁻) does not affect pH, but ammonium ion acts as a weak acid:

$$NH_4^+(aq) + H_2O(l) \longleftrightarrow NH_3(aq) + H_3O^+(aq)$$

pH of Salts (cont.)

- Example: What is the pH of a solution that is 0.10 M in NH $_4$ Cl? K $_b$ for NH $_3$ is 1.8 x 10⁻⁵.
- NH₄⁺ is the strongest species in solution and dictates pH.
- Next, write down the equilibrium expression for NH₄⁺:

pH of Salts (cont.)

• Finally, ICE table and solve.