

Theoretische Informatik Einführung in die Theorie der formalen Sprachen

Technische Hochschule Rosenheim

SS 2019

Prof. Dr. J. Schmidt

Inhalt

- Definition von formalen Sprachen
- Die Chomsky-Hierarchie
- Das Pumping-Theorem
- Die Analyse von Wörtern
- Anwendung: Compiler

DEFINITION FORMALE SPRACHEN

Einführung

- Für die Programmierung von Rechnern ist *natürliche*Sprache oder mathematische Formelsprache nicht geeignet
- daher: Entwicklung an Rechner angepasster Programmiersprachen
- Auffälligster Unterschied zu natürlichen Sprachen:
 - streng formalisierten Sprachregeln der Programmiersprachen
 - sowie deren geringer Sprachumfang
 - Wortschatz und
 - Regeln
- hier: Behandlung einiger grundlegender Eigenschaften von formalen Sprachen
- diese sind die theoretischen Grundlagen von Programmiersprachen und Compilern

Beispiel

> Sprache L = $\{10^n1 \mid n \in \mathbb{N}_0\}$

Grammatik:

Terminale: $\{0, 1\}$

Nichtterminale: {Z, A}

Startsymbol: Z

 $Z \rightarrow 1A1, Z \rightarrow 11$

 $A \rightarrow 0A$, $A \rightarrow 0$

üblich: BNF

 $Z \rightarrow 11 \mid 1A1$

 $A \rightarrow 0A \mid 0$

Ableitung von 100001:

 $Z \to 1A1 \to 10A1 \to 100A1 \to 1000A1 \to 100001$

Definition: Formale Sprache

- Vokabular V = T ∪ S mit
 - endliches Alphabet T von terminalen Zeichen üblich: Verwendung von Kleinbuchstaben
 - endliche Menge S aus nicht-terminalen Zeichen (Variablen), wozu mindestens das Startsymbol Z gehört üblich: Verwendung von Großbuchstaben
- endliche Menge P von *Produktionen*, d.h. *Ableitungsregeln* u→v mit u ∈ V⁺, v ∈ V^{*}
- Syntax oder Ableitungsstruktur:
 - Gesamtheit Ableitungsregeln
- Grammatik: Ableitungsstruktur bei expliziter Unterteilung des Vokabulars V in
 - terminale Zeichen T und
 - nicht-terminale Zeichen S

Weitere Begriffe

- Sprache L
 - die aus dem Startsymbol Z in endlich vielen Schritten ableitbaren, nur aus terminalen Zeichen bestehenden Wörter
- zu L komplementäre Sprache: T*\L
- Formale Sprache besteht also aus
 - Grammatik
 - zugehörige Sprache

Backus Naur Form (BNF)

- Für Produktionen mit gleicher linker Seite $A \rightarrow v_1$, $A \rightarrow v_2$, ..., $A \rightarrow v_n$
- wird oft abkürzend die BNF verwendet:

$$A \rightarrow V_1 \mid V_2 \mid \dots \mid V_n$$

Formale Sprachen und Automatentheorie

enger Zusammenhang zwischen formalen Sprachen und Automaten

Zustandsübergang: eine Produktion

Eingabealphabet: Menge der Terminalsymbole

Zustandsmenge: Menge der nicht-Terminalsymbole

Anfangszustand: Startsymbol Z

Endzustand: Produktion, die zu leerem Wort ε

oder einem Terminalsymbol führt

akzeptierte Sprache: Wörter x∈T* akzeptiert, die sich aus

Z ableiten lassen

DIE CHOMSKY-HIERARCHIE

Überblick

11

Wesentliche Beiträge zur Klassifizierung formaler Sprachen:

- dem norwegischen Mathematiker A. Thue (1863 1922)
- und seit ca. 1955 von dem amerikanischen Linguisten Noam Chomsky (*1928)
- Einteilung von Grammatiken und Sprachen in die sog.
 Chomsky-Hierarchie
- Klassifikation der Grammatiken nach Art der zulässigen Produktionen von Typ 0 (am allgemeinsten) bis Typ 3 (am weitesten eingeschränkt)

Chomsky-Hierarchie (Grammatiken)

- Typ 0 (allgemeine Grammatik)
 - keine Einschränkung, außer dass sich aus einem nur aus terminalen Zeichen bestehenden Wort kein anderes Wort mehr ableiten lässt
 - Produktionen haben also die Form:
 xAy → u mit A∈S⁺ und x,y,u ∈ V*
- Typ 1 (kontextsensitive Grammatik)
 - \Rightarrow Produktionen haben die Form: $xAy \rightarrow xuy$ mit $x,y \in V^*$, $A \in S$ und $u \in V^+$
 - + zusätzlich: Z \rightarrow ε, (dann darf Z nicht auf rechter Seite auftreten)
 - Anmerkung:
 - ϕ bis auf Z \to ε sind diese Regeln monoton (nicht verkürzend)
 - ♦ umgekehrt gilt: alle monotonen Grammatiken definieren die gleiche Sprache wie kontextsensitive Grammatiken: $u \rightarrow v$, $|u| \le |v|$ $u,v \in V^*$
 - die Regeln sind aber dann nicht mehr notwendigerweise in der obigen Form
 - manche Autoren (z.B. Schöning) verwenden diese als Definition von Typ 1
 Grammatiken

Chomsky-Hierarchie (Grammatiken)

- Typ 2 (kontextfreie Grammatik)
 - Produktionen haben die Form:
 A vie mit A = S und u = V⁴
 - $A \rightarrow u \quad mit \ A \in S \quad und \ u \in V^+$
 - \bullet zusätzlich: $Z \to \varepsilon$, (dann darf Z nicht auf rechter Seite auftreten)
- Typ 3 (reguläre Grammatik)
 - Produktionen haben die Form:
 - $A \rightarrow u \mod A \in S \mod A = T \cup TS \mod A = T \cup ST$
 - rechtslineare Produktion:
 - $A \rightarrow uB$ mit $A,B \in S$ und $u \in T^+$
 - Inkslineare Produktion:
 - $A \rightarrow Bu \text{ mit } A,B \in S \text{ und } u \in T^+$
 - terminale Produktion:
 - $A \rightarrow u \text{ mit } A \in S \text{ und } u \in T^+$
 - + zusätzlich: Z \rightarrow ε, (dann darf Z nicht auf rechter Seite auftreten)
 - Produktionen müssen entweder alle rechtslinear oder alle linkslinear sein

- Eine Sprache L heißt vom Typ i (i = 0, 1, 2, 3), falls eine Chomsky Grammatik G vom Typ i existiert, mit L(G) = L
- ightharpoonup Es gilt: $L_3 \subset L_2 \subset L_1 \subset L_0$
- Anmerkung:
 - eine Sprache bleibt auch dann vom Typ i, wenn man dafür eine Grammatik vom Typ j mit j < i angibt
 - z.B. kann man für eine reguläre Sprache durchaus eine kontextsensitive Grammatik angeben

Definierte Sprache

Es gibt Sprachen, die allgemeiner sind als Typ 0

- Typ 0 Sprachen heißen auch (rekursiv) aufzählbare Sprachen
- die dazu gehörigen Wörter können durch einen Algorithmus nacheinander erzeugt werden
- es existiert also eine Abbildung der natürlichen Zahlen auf die Menge der Wörter einer aufzählbaren Sprache, die durch eine berechenbare Funktion vermittelt wird
- prinzipiell kann jede Teilmenge L∈T* als Sprache aufgefasst werden
- die Menge aller Teilmengen (Potenzmenge) einer abzählbar unendlichen Menge (wie T*) ist überabzählbar
- es muss folglich auch Sprachen geben, die nicht durch eine Grammatik erzeugt werden
- und die auch nicht durch eine TM (und damit einen Computer) akzeptiert werden

Beispiel

$$L = \{10^{n}1 \mid n \in \mathbb{N}_{0}\}$$

(siehe auch Kap. 1)

- Startsymbol: S
- Grammatik, Typ 0:

$$S \rightarrow 1A1, A \rightarrow 0A, A \rightarrow \varepsilon$$

Ableitung von 100001:

$$S \to 1A1 \to 10A1 \to 100A1 \to 1000A1 \to 10000A1 \to 100001$$

Grammatik, Typ 2:

$$S \rightarrow 11$$
, $S \rightarrow 1A1$, $A \rightarrow 0A$, $A \rightarrow 0$

Ableitung von 100001:

$$S \to 1A1 \to 10A1 \to 100A1 \to 1000A1 \to 100001$$

Grammatik, Typ 3:

$$S \rightarrow 11, S \rightarrow 1A$$

$$A \rightarrow 0A, A \rightarrow 0B$$

$$B \rightarrow 1$$

Ableitung von 100001:

$$S \rightarrow 1A \xrightarrow{5} 10A \rightarrow 100A \rightarrow 1000A \rightarrow 10000B \rightarrow 100001$$

Die Sprache L ist also regulär

Äquivalenz Grammatik – Automat

17

Sprache	Grammatik	Automat
Menge aller Sprachen ohne Typ 0	-	-
Typ 0	allgemeine Grammatik	Turingmaschine
Typ 1	kontextsensitive / monotone Grammatik	nichtdeterministischer linear beschränkter Automat
Typ 2	kontextfreie Grammatik	nichtdeterministischer Kellerautomat
det. kontextfrei	LR(k) Grammatik	deterministischer Kellerautomat
Typ 3	reguläre Grammatik	endlicher Automat

Beispiel: Bezeichner

- Bezeichner sind in den meisten Programmiersprachen nach gewissen Regeln frei wählbar
- C: Zeichenkette aus
 - Buchstaben
 - Unterstrich (_)
 - Dezimalziffern
 - als erstes Zeichen ist nur Buchstabe oder Unterstrich zugelassen
- Formale Sprache:

```
S = {Z, W, B, D}

T = {a, b, ..., z, A, B, ..., Z, _, 0, 1, ..., 9}

P = { Z \rightarrow B, Z \rightarrow BW,

W \rightarrow D, W \rightarrow B, W \rightarrow DW, W \rightarrow BW,

B \rightarrow a \mid b \mid ... \mid Z \mid , D \rightarrow 0 \mid 1 \mid ... \mid 9}
```

Zu Vermeidung von Verwechslungen: Variablen fett, terminale Zeichen normal gedruckt

- Ableitung des Wortes ax21
 Z → BW → aW → aBW → axW → axDW → ax2W → ax2D → ax21
- Darstellung als Syntaxbaum:
 Anzahl Nachfolger eines Knotens = Wortlänge der rechten Seite der angewendeten Produktion

Beispiel: Bezeichner

Darstellung als deterministischer endlicher Automat

- offensichtlich ist die Sprache also regulär (Typ 3)
- die angegebene Grammatik ist aber kontextfrei (Typ 2)

Beispiel: Bezeichner

Typ 3 Grammatik, nur rechtslineare Produktionen

```
egin{aligned} \mathbf{Z} & 
ightarrow & \mathbf{a} \, | \, \mathbf{b} \, | \, \dots \, | \, \mathbf{Z} \, \mathbf{W} \, | \, \, \mathbf{W} \, \\ \mathbf{Z} & 
ightarrow & \mathbf{a} \, \mathbf{W} \, | \, \mathbf{b} \, \mathbf{W} \, | \, \dots \, | \, \mathbf{Z} \, \mathbf{W} \, | \, \, \mathbf{U} \, \mathbf{W} \, | \,
```

Anmerkungen

- es wird hier keine Beschränkung der Länge der Bezeichners vorgenommen
- Längenbeschränkung ist mit endlichem Automaten nur realisierbar, wenn für jede zulässige Länge ein eigener Endzustand eingeführt wird
- Mit Hilfe eines Kellerautomaten wäre dieses Problem aber ohne weiteres lösbar, indem man in einer zusätzlichen Kellervariablen über die Länge des Namens Buch führt

Beispiel: Typ 1 Sprache

```
L = \{a^n b^n a^n \mid n \in \mathbb{N}\}

> S = \{Z, A, B\}

T = \{a, b\}

P = \{Z \rightarrow aba \mid aZA \mid a^2bBa

BA \rightarrow bBa

aA \rightarrow Aa

B \rightarrow ba
```

- Grammatik ist monoton und definiert damit eine Typ 1 Sprache

Beispiel: Typ 1 Sprache

Ableitung für das Wort a⁴b⁴a⁴:

$$Z \rightarrow aZA \rightarrow aaZAA \rightarrow a^2a^2bBaAA \rightarrow a^4bBAaA \rightarrow a^4b^2BaaA \rightarrow a^4b^2BaAa \rightarrow a^4b^2BAa^2 \rightarrow a^4b^2bBaa^2 \rightarrow a^4b^3baa^3 \rightarrow a^4b^4a^4$$

oder alternativ:

```
Z \rightarrow aZA \rightarrow aaZAA \rightarrow a^2a^2bBaAA \rightarrow a^4bBAaA \rightarrow a^4bBAAa \rightarrow a^4bbBaAa \rightarrow a^4b^2BAa^2 \rightarrow a^4b^2bBaa^2 \rightarrow a^4b^3baa^3 \rightarrow a^4b^4a^4
```

- Ableitung ist also nicht eindeutig
- Bezeichnung:
 - Wörter mit eindeutiger Ableitung: eindeutige Wörter
 - Sprachen, die nur aus eindeutigen Wörtern bestehen: eindeutige Sprachen

Beispiel: Sackgasse

- Folge von Produktionen stoppt, bevor ein Wort bestehend aus rein terminalen Zeichen erreicht ist
- Beispiel:

$$Z \rightarrow aZA \rightarrow a^3bBaA \rightarrow a^3bbaaA \rightarrow a^3b^2aAa \rightarrow a^3b^2Aa^2$$

Die Kette führt in eine Sackgasse

Abgeschlossenheit

- Regeln für die Verknüpfung von Sprachen (Operationen)
- seien L₁, L₂, L Sprachen
- Mögliche Operationen:

+ Vereinigung: $L_1 \cup L_2 = \{w \mid w \in L_1 \text{ oder } w \in L_2\}$

+ Durchschnitt: $L_1 \cap L_2 = \{w \mid w \in L_1 \text{ und } w \in L_2\}$

+ Komplement: $\overline{L} = \{w \mid w \in T^* \text{ ohne } L\}$

+ Konkatenation: $L_1 L_2 = \{w_1w_2 \mid w_1 \in L_1 \text{ und } w_2 \in L_2\}$

Kleenesche Hülle: $L^* = L^0 \cup L^1 \cup L^2 \cup L^3 \cup ...$

Eine Klasse von formalen Sprachen heißt abgeschlossen unter einer Operation, wenn die resultierende Sprache zur selben Klasse gehört wie die Ausgangssprache(n).

Abgeschlossenheit

Sprache	Durchschnitt	Vereinigung	Komplement	Konkatenation	Kleenesche Hülle
Typ 3	ja	ja	ja	ja	ja
det.kf.	nein	nein	ja	nein	nein
Typ 2	nein	ja	nein	ja	ja
Typ 1	ja	ja	ja	ja	ja
Typ 0	ja	ja	nein	ja	ja

Beispiel

- Typ 2 Sprachen sind unter Durchschnittsbildung nicht abgeschlossen
- betrachte die Typ 2 Sprachen
 - $+ L_1 = \{ a^i b^k c^k \mid i, k > 0 \}$
 - $+ L_2 = \{ a^i b^i c^k \mid i, k > 0 \}$
- Schnittmenge:
 - $+ L_1 \cap L_2 = \{ a^i b^i c^i | i > 0 \}$
 - diese Sprache ist, wie im vorherigen Beispiel erläutert, Typ 1

REGULÄRE AUSDRÜCKE

- Mittel zur formalen Beschreibung von Zeichenketten bzw. Wörtern, die zu einer bestimmten Sprache gehören
- Metasprache, eng verwandt mit BNF und EBNF
 - deutlich flexibler und anschaulicher
 - aber nicht so universell.
- durch reguläre Ausdrücke beschreibbare Sprachen sind die regulären Sprachen
 - damit sind diese äquivalent zu endlichen Automaten

Reguläre Ausdrücke – Definition

- Gegeben: Alphabet T
- Syntax
 - jedes Zeichen des Alphabets ist ein regulärer Ausdruck
 - die leere Menge Ø ist ein regulärer Ausdruck
 - \bullet das leere Wort ε ist ein regulärer Ausdruck
 - wenn a und b reguläre Ausdrücke sind, dann auch

```
(a) (Klammerung)
ab (Konkatenation)
(a | b) (a oder b)
a* (Kleensche Hülle)
a+ (positive Hülle – eigentlich unnötig, da a+ = aa*)
```

Semantik

```
Φ L(∅) = ∅
Φ L(ε) = {ε}
Φ
Φ L(x ∈ T) = {x}
Φ L((a)) = L(a)
Φ L(ab) = {uv | u ∈ L(a) und v ∈ L(b)}
Φ L((a | b)) = L(a) ∪ L(b)
Φ L(a*) = L(a)*
```

Aufgabe

Konstruieren Sie einen endlichen Automaten, der die Sprache akzeptiert, die durch folgenden regulären Ausdruck definiert ist:

a+ (ba | b)* c | b

Technische Hochschule Reguläre Ausdrücke – Verwendung Rosenheim

- dienen in Compilern zur Überprüfung, ob eine Zeichenkette syntaktisch korrekt gebildet ist
- Beschreibung oder Prüfung von semantischen Eigenschaften von Zeichenketten ist mit regulären Ausdrücken nicht möglich
- andere Einsatzgebiete
 - Textverarbeitung: Suchen, Ersetzen und Modifizieren von Mustern
 - Unix/Windows Shell
 - Bestandteil einiger Programmiersprachen: PHP, Perl, Python

Achtung:

- die im Folgenden gezeigten Konstrukte sind eine exemplarische Auswahl
 - sie unterscheiden sich je nach Sprache/Tool
 - manche sind evtl. nicht verfügbar
 - meist sind zusätzliche verfügbar
- oft sind Konstrukte verfügbar, die über die Mächtigkeit regulärer Ausdrücke hinausgehen
 - das sind dann keine regulären Ausdrücke im Sinne der theoretische Informatik mehr
 - trotzdem werden sie in der Praxis leider so bezeichnet
- Bezeichnung oft als Regex oder Regexp (von regular expression)

Regex – Metazeichen

- reservierte Zeichen in regulären Ausdrücken, mindestens:
 - +?.*^\$()[]{}|\
- ist eines dieser Zeichen Bestandteil der beschriebenen Sprache, muss es maskiert werden
 - üblich: voranstellen von \, z.B.: \? für ?
 - andere Varianten existent
- jetzt: Tabelle der wichtigsten metasprachlichen Konstrukte
 - diese sind bei weitem nicht vollständig

RegEx – Konstrukte

Zeichen	Bedeutung
۸	am Anfang eines Strings
\$	am Ende eines Strings
	beliebiges Zeichen
n?	optional vorhandenes n
n*	kein oder mehrfaches Vorkommen von n
n+	ein oder mehrere Vorkommen von n
n{2}	genau zweimaliges Vorkommen von n
n{3,}	mindestens 3 oder mehrere Vorkommen von n
n{4,11}	mindestens 4, höchstens 11 Vorkommen von n

Zeichen	Bedeutung
()	Klammern für Ausdrücke
(n a)	Entweder n oder a
[1-6]	eine Ziffer zwischen 1 und 6
[d-g]	ein Kleinbuchstabe zwischen d und g
[E-H]	ein Großbuchstabe zwischen E und H
[^a-z]	kein Vorkommen von Kleinbuchstaben zwischen a und z
[_a-zA-Z]	ein Unterstrich und ein beliebiger Buchstabe des Alphabets
[:space:]	Leerzeichen
\	Escape-Zeichen, z.B. \? für ?, \r für neue Zeile

Beispiel: Dezimalzahlen

- Verbale Beschreibung
 - # erstes Zeichen: Minuszeichen (optional): [-]?
 - es folgen beliebig viele Ziffern, mindestens aber eine: [0-9]+
 - danach kann ein Dezimalpunkt stehen: \
 - wenn dies der Fall ist, k\u00f6nnen noch beliebig viele Ziffern folgen, mindestens aber eine: [0-9]+
- regulärer Ausdruck: [-]?[0-9]+(\ .[0-9]+)?

Beispiel: Wörter und natürliche Zahlen

36

- Beschreibung eines Strings
 - aus natürlichen Zahlen und
 - aus Wörtern mit einer beliebigen Anzahl von Buchstaben
 - wobei die Zahlen bzw. Wörter durch Leerzeichen getrennt sind
- regulärer Ausdruck: ^ [a-zA-Z]+ | ([1-9][0-9]*) ([:space:][a-zA-Z]+ | ([1-9][0-9]*))* \$
- Hinweis:
 - * ^ bzw. \$ markieren nicht Beginn und Ende des Strings im Sinne von z.B. Anführungszeichen "…"
 - sondern:
 - ^ bedeutet: Übereinstimmung nur, wenn der nachfolgende Ausdruck am Anfang einer Zeichenkette vorkommt
 - \$ bedeutet: Übereinstimmung nur, wenn der nachfolgende Ausdruck am Ende einer Zeichenkette vorkommt
 - # Hier:
 - Abcd generiert eine Übereinstimmung
 - öä:Abcd generiert keine Übereinstimmung
 (würde man ^ weglassen, dann hätte man auch hier eine Übereinstimmung)

DAS PUMPING THEOREM

Einführung

- Pumping Theorem
 - wichtiger Satz für reguläre Grammatiken (und damit für endliche Automaten)
 - kann für sehr viele weiterführende Aussagen und Beweise über reguläre Sprachen genutzt werden
 - insbesondere nützlich, wenn für eine Sprache gezeigt werden soll, dass sie nicht regulär ist
 - oft auch: Pumping Lemma
- ein ähnlicher Satz existiert für kontextfreie Sprachen

- sei w ein Wort aus der Sprache einer regulären Grammatik
- ist w lang genug, kann es immer aus drei Teilen zusammengesetzt werden: w = xyz
- "Pumpen" bedeutet: Vervielfachung von y, z.B. w' = xyyz, w'' = xyyyz, …
- dies muss möglich sein, weil
 - jeder endliche Automat mit unendlich großer Sprache Zyklen durchlaufen muss
 - daher müssen auch in den Wörtern Wiederholungen auftreten

Beispiel

- Wort w = aa
 - gehört zur Sprache
 - ist aber zu kurz zum Pumpen
- Wort w = abba
 - gehört auch zur Sprache
 - * kann gepumpt werden
 - mit x = a, y = bb, z = a erhält man w' = abbbba, w" = abbbbbba, ...

Pumping Theorem für reguläre Sprachen

- sei L eine reguläre Sprache
- dann gibt es eine Konstante n, so dass sich jedes Wort w ∈ L, mit |w| ≥ n zerlegen lässt in w = xyz mit
 - # |xy| ≤ n
 - |y| ≥ 1
 - |z| beliebig (also auch 0)
- Es gilt dann: x yⁱ z ∈ L, für alle i = 0, 1, 2, ...

Beispiel: Palindrome

- Palindrom: Wort, das vorwärts und rückwärts gelesen gleich ist, z.B. abba, otto, reittier
- Behauptung: Die Sprache L = {w | w ist ein Palindrom auf T} mit T = {a, b} ist nicht regulär
- Beweis durch Widerspruch

Beispiel: Palindrome Beweis

- Annahme: es gibt eine reguläre Grammatik, die nur Palindrome auf T erzeugt
- dann muss das Pumping Theorem gelten
- aⁿ b aⁿ ist ein Palindrom aus L
- \rightarrow w = $a^n b a^n = xyz$
- xy kann dann nur aus a's bestehen, da |xy| ≤ n
- hat xy maximale Länge, dann gilt: xy = aⁿ
- insbesondere enthält y dann mindestens ein a
- Pumping Theorem: auch xyyz muss zu L gehören
- xyy enthält aber mindestens ein a mehr als z, d.h. xyyz = a^m b aⁿ mit m > n
- xyyz ist also kein Palindrom: Widerspruch!
- L kann also nicht regulär sein
- und es kann auch keinen endlichen Automaten geben, der nur Palindrome über T akzeptiert

weitere nicht reguläre Sprachen

44

Mit Hilfe des Pumping Theorems kann z.B. von folgenden Sprachen nachgewiesen werden, dass sie nicht regulär sind:

- ightharpoonup L = {aⁿ bⁿ | n \in N}
 - diese Sprache ist kontextfrei
 - damit ist auch bewiesen, dass die Menge der kontextfreien Sprachen tatsächlich umfassender ist als die Menge der darin enthaltenen regulären Sprachen
- L = {0^q | q ist eine Quadratzahl}
- $ightharpoonup L = {0^p | p ist eine Primzahl}$
 - und damit: es gibt keinen endlichen Automaten, der für eine gegebene Zahl entscheiden kann, ob sie prim ist.

Pumping Theorem für kontextfreie Sprachen

- > sei L eine kontextfreie Sprache
- dann gibt es eine Konstante n, so dass sich jedes Wort w ∈ L, mit |w| ≥ n zerlegen lässt in w = uvxyz mit
 - | vxy| ≤ n
 - # |vy| ≥ 1
 - |u|, |x|, |z| beliebig (also auch 0)
- ► Es gilt dann: $u v^i x y^i z \in L$, für alle i = 0, 1, 2, ...

Anwendung

- Nachweis, dass eine Sprache nicht kontextfrei ist
- dies kann z.B. von folgenden Sprachen nachgewiesen werden:
- ightharpoonup L = {aⁿ bⁿ cⁿ | n \in N}
 - diese Sprache ist kontextsensitiv
 - damit ist auch bewiesen, dass die Menge der kontextsensitiven Sprachen tatsächlich umfassender ist als die Menge der darin enthaltenen kontextfreien Sprachen
- L = {0^q | q ist eine Quadratzahl}
- $ightharpoonup L = \{0^p \mid p \text{ ist eine Primzahl}\}$
 - und damit: es gibt keinen Kellerautomaten, der für eine gegebene
 Zahl entscheiden kann, ob sie prim ist.

Anmerkung

- mit dem Pumping Theorem kann nur gezeigt werden, dass eine Sprache nicht regulär/kontextfrei ist
- es kann nicht gezeigt werden, dass sie regulär/kontextfrei ist
- es gibt Sprachen, die das Pumping Theorem erfüllen, die aber nicht regulär/kontextfrei sind
- Beispiel:
 - + L = { aⁱ b^k c^k | i, k > 0 } ∪ { b^j c^k | j,k ≥ 0 }
 - erfüllt das Pumping Theorem für reguläre Sprachen
 - ist aber nicht regulär

ANALYSE VON WÖRTERN

Wortproblem und Parsing Problem

- Wortproblem: entscheide von einem Wort x, ob es wohlgeformt ist (konform zu den Regeln)
- Parsing Problem (Zerteilungsproblem)
 - vollständige Analyse des Wortes x
 - Ableitung von x wird bis zum Startsymbol Z zurückverfolgt
 - \oplus es müssen alle Schritte von Z \rightarrow x bestimmt werden
- Fragen:
 - sind diese Probleme für alle Sprachklassen lösbar?
 - wie schwierig/zeitaufwändig ist die Entscheidung?

Wortproblem für reguläre Sprachen (Typ 3)

- lösbar durch deterministischen endlichen Automaten
- stoppt die Verarbeitung in einem Endzustand, so ist das analysierte Wort Teil der Sprache
- Zeitaufwand: linear bzgl. der Wortlänge

Wortproblem für kontextfreie Sprachen (Typ 2)

- lösbar, wenn Grammatik in Chomsky Normalform ist
- CYK-Algorithmus (Cocke, Younger, Kasami)
- Zeitaufwand: O(n³) bzgl. der Wortlänge
 - für praktische Zwecke (z.B. Syntaxanalyse) zu langsam
 - deshalb: typischerweise Beschränkung auf LR(k) Grammatiken
 - diese haben lineares Laufzeitverhalten

- Für jede kontextfreie Grammatik G mit ε ∉ G kann man eine Grammatik G' angeben mit L(G) = L(G'), die in Chomsky Normalform ist
 - \bullet $\epsilon \in G: Z \rightarrow \epsilon$, Z darf nicht auf rechter Seite auftreten
- Eine Grammatik ist in Chomsky Normalform, wenn alle Regeln die Form haben (A, B, C Variablen, a Terminalsymbol)
 - \oplus A \rightarrow BC
 - \oplus A \rightarrow a

Chomsky Normalform Konstruktion

- Ordne jedem Terminalsymbol a eine neue Variable V_a zu
 - \bullet füge der Grammatik alle Produktionen $V_a \rightarrow a$ hinzu
 - ersetze auf allen rechten Seiten Terminalsymbole durch V_a
- Ersetze Regeln mit mehr als 2 Variablen auf rechter Seite
 - aus A → B₁B₂...B_k, k ≥ 3 werden folgende Regeln:
 - $\begin{array}{c} \Phi & A \longrightarrow B_1V_2 \\ V_2 \longrightarrow B_2V_3 \\ \dots \\ V_{k-1} \longrightarrow B_{k-1}B_k \end{array}$
- ► Ersetze Produktionen der Form A → B
 - entferne alle Regeln A → B
 - Füge für jede Regel B → b eine Regel A → b hinzu

- gegeben: Wort der Länge n, w = w₀w₁...w_{n-1} ∈ T*
- > Fall n = 1, d.h. w = w_0
 - \bullet da Grammatik in CNF: Regel $Z \rightarrow w_0$ muss existieren
- Fall n > 1
 - da Grammatik in CNF: das Wort muss aus 2 Teilwörtern bestehen
 - \bullet diese lassen sich über eine Produktion Z \rightarrow XY ableiten

- Reduktion des Problems auf 2 Teilwörter der Länge k und n k
- k steht am Anfang nicht fest, d.h. man muss alle möglichen Trennungen betrachten
- benötigt wird eine Tabelle der Größe n x n, von der aber nur die Hälfte der Einträge besetzt ist

CYK-Algorithmus Prinzip

Beginne mit Wort in oberster Zeile (nicht in Tabelle gespeichert)

senkrecht nach oben und diagonal, ob es in der richtigen Entfernung eine Regel gibt, die das Teilwort erzeugt; falls ja: trage die Variable(n) ein

CYK-Algorithmus Prinzip

Welche Variablenmenge im Eintrag T_{ij} erzeugt welches Teilwort:

CYK-Algorithmus Prinzip

- geg.: Grammatik G in CNF
 Z → AB, A → CD | CF, B → c | EB
 C → a, D → b, E → c, F → AD
- ist w = aaabbbcc ∈ L(G)?

а	а	а	b	b	b	С	С
С	C	O	D	D	D	B, E	B, E
							•
						•	
					!		
				l			
			l				
		I					

$$Z \rightarrow AB$$
, $A \rightarrow CD \mid CF$, $B \rightarrow c \mid EB$
 $C \rightarrow a$, $D \rightarrow b$, $E \rightarrow c$, $F \rightarrow AD$

а	а	а	b	b	b	С	С
С	C	С	D	D	D	B, E	B, E
		Α				В	
							•
						•	
					•		
			I				
		I					

$$Z \rightarrow AB$$
, $A \rightarrow CD \mid CF$, $B \rightarrow c \mid EB$
 $C \rightarrow a$, $D \rightarrow b$, $E \rightarrow c$, $F \rightarrow AD$

а	а	а	b	b	b	С	С
С	С	O	D	D	D	B, E	B, E
		Α				В	
		F					•
						•	
				ı			
			l				
		I					

$$Z \rightarrow AB$$
, $A \rightarrow CD \mid CF$, $B \rightarrow c \mid EB$
 $C \rightarrow a$, $D \rightarrow b$, $E \rightarrow c$, $F \rightarrow AD$

_	_	_	_	_	_	_	
а	а	а	b	b	b	С	С
С	С	С	D	D	D	B, E	B, E
		Α				В	
		F					•
	Α					•	
	F				•		
Α				•			
Z			<u> </u>				
7		•					

Wortproblem für kontextsensitive Sprachen (Typ 1)

- lösbar, da Grammatik monoton sein muss
- für ein Wort der Länge n dürfen also alle Zwischenergebnisse höchstens n Zeichen lang sein
- die Anzahl der Wörter mit Länge n über einem endlichen Alphabet ist endlich
- daher muss es einen Algorithmus geben, der das Wortproblem löst:
- es müssen alle möglichen Ableitungen durchprobiert werden
- Zeitaufwand: O(aⁿ) bzgl. der Wortlänge
 - für praktische Zwecke nicht verwendbar
 - (a = Anzahl Zeichen des Alphabets)

Wortproblem für Typ 0 Sprachen

- in Grammatiken können bei Ableitungen Sackgassen auftreten (auch für andere Sprachklassen als Typ 0)
 - die Ableitung muss nicht eindeutig sein
 - bei der Rückverfolgung kann man auf einen Weg gelangen, der gar nicht zum Startsymbol Z führt
 - bei Typ 1 Sprachen (und damit auch Typ 2, 3) ist garantiert, dass eine Sackgasse endliche Länge hat
 - bei Typ 0 Sprachen kann eine Sackgasse auch unendlich lang sein
- Das Wortproblem für Typ 0 Sprachen ist unlösbar!
 - Es gibt keinen Algorithmus, der für alle Typ 0 Sprachen entscheiden kann, ob ein Wort w von einer gegebenen Typ 0 Grammatik erzeugt wird oder nicht
 - das Problem ist unentscheidbar

Leerheits-/Schnitt-/ Äquivalenzproblem

- Leerheitsproblem
 - gegeben: Grammatik G (oder äquivalenter Automat)
 - \bullet Frage: ist L(G) = \emptyset
- Schnittproblem
 - gegeben: zwei Grammatiken G₁ und G₂
 (oder äquivalente Automaten)
 - \bullet Frage: ist $L(G_1) \cap L(G_2) = \emptyset$
- Äquivalenzproblem
 - gegeben: zwei Grammatiken G₁ und G₂
 (oder äquivalente Automaten)
 - Frage: Definieren G₁ und G₂ die gleiche Sprache, d.h. ist L(G₁) = L(G₂)?

Wort-/Leerheits-/Schnitt-/ Äquivalenzproblem

69

- für welche Sprachklassen/Automatenmodelle ist das Problem entscheidbar (lösbar)?
- Einträge

ja: es gibt einen Algorithmus, der das Problem löst

+ nein: das Problem ist unlösbar, es gibt keinen Algorithmus dafür

Sprache	Wortproblem	Leerheitsproblem	Äquivalenzproblem	Schnittproblem
Typ 3	ja	ja	ja	ja
det.kf.	ja	ja	ja	nein
Typ 2	ja	ja	nein	nein
Typ 1	ja	nein	nein	nein
Typ 0	nein	nein	nein	nein

Zusammenfassung – formale Sprachen

- Definition formaler Sprachen
 - terminale/nichtterminale Symbole, Produktionen (Regeln)
 - Sprache L(G): alle aus Startsymbol ableitbaren Wörter
- Chomsky-Hierarchie
 - \bullet Typ 0 bis 3 Grammatik/Sprache, $L_3 \subset L_2 \subset L_1 \subset L_0$
 - Äquivalenz Grammatiken/Automatenmodelle
 - Abschlusseigenschaften (Durchschnitt, Vereinigung, Komplement, Konkatenation, Stern/Kleene'sche Hülle)
 - Reguläre Ausdrücke zur Beschreibung regulärer Sprachen
- Pumping Theorem
 - für reguläre/kontextfreie Sprachen
 - Nachweis, dass eine Sprache nicht regulär/kontextfrei ist
- Analyse von Wörtern
 - Wortproblem
 - reguläre Sprache: endlicher Automat
 - kontextfreie Sprache: CYK-Algorithmus
 - kontextsensitive Sprache: alle Varianten durchtesten
 - Typ 0 Sprache: unlösbar
 - Leerheits-, Schnitt- und Äquivalenzproblem

ANWENDUNG: COMPILER

Definition

- Compiler (Übersetzer):
 - Programm, das die Anweisungen eines in einer Programmiersprache
 P1 (Quellsprache) geschriebenen Programms in Anweisungen einer anderen Programmiersprache P2 (Zielsprache) überträgt
- Compiler muss einem Quellprogramm a ∈ P1 genau ein semantisch äquivalentes (bedeutungsgleiches)
 Zielprogramm b ∈ P2 zuordnen
- hierfür werden formale Sprachen verwendet
- Zielprogramm soll möglichst effizient ablaufen
 - optimierende Compiler
 - Laufzeit und/oder der Speicherbedarf von b werden minimiert

 - Beibehaltung der semantischen Äquivalenz zwischen a und b

Arten von Compilern

- Compiler im engeren Sinn
 - Quellsprache P1 ist eine h\u00f6here Sprache als Zielsprache P2
- Assembler (Assemblierer)
 - Compiler zur Übertragung von ASSEMBLER-Quellprogrammen in Maschinensprache
- Cross-Compiler
 - Compiler erzeugt Zielcode, der auf einer anderen Plattform läuft als der Compiler selbst
 - anderes Betriebssystem und/oder CPU
- Präprozessor/Präcompiler
 - Übersetzung von Spracherweiterungen vor eigentlicher Compilierung
- Compiler-Compiler
 - Programm zur Generierung eines Compilers aus einer formalisierten Sprachbeschreibung
 - z.B.: YACC (Yet Another Compiler Compiler)

Arten von Compilern

- Interpreter (Interpretierer)
 - Anweisungen des Quellprogramms werden übersetzt und sofort ausgeführt (während des Programmablaufs)
 - Vorteil:
 - Test während Entwicklung sehr schnell möglich, ohne separate Compilierung
 - wichtiges Instrument, wenn Programm ohne Änderung auf Rechnern mit unterschiedlichen Betriebssystemen und unterschiedlicher Hardware laufen sollen
 - Nachteil: Zur Ausführungszeit kommt immer die Übersetzungszeit hinzu
 - kostet besonders bei Schleifendurchläufen viel Zeit
 - Beispiele: BASIC, LISP, PROLOG, Python, mit Einschränkungen: Java

Schritte

75

Lexikalische Analyse

- Umwandlung des Quellprogramm a∈P1 mit Scanner in Zwischencode (Token)
- Objekte der Sprache (z.B. Kommentare, Operatoren, Schlüsselwörter, Namen) werden als solche erkannt und in Token verwandelt
- Es können hier bereits einfache Regelverletzungen gemeldet werden
 - z.B. Verwendung eines nicht zugelassenen Zeichens in einem Bezeichner
- Beschreibung durch reguläre Grammatik/reguläre Ausdrücke
- Realisierung durch (deterministischen) endlichen Automat

Schritte

76

Syntaktische Analyse

- Parser erzeugt aus Token entsprechend der Syntax von P1 den Ableitungsbaum (Syntaxbaum) des Programms a∈P1
- Verwendung von deterministisch kontextfreien Grammatiken
 - Top-Down: LL(k) Grammatik, meist LL(1)
 - Bottom-Up: LR(k) Grammatik, meist LR(1)
- realisiert als deterministischer Kellerautomat

Semantische Analyse

- Analyse des Ableitungsbaums von a∈P1
- gleichzeitig: Code-Generator überträgt a in die Zielsprache P2
- Prüfung der Semantik des Programms, z.B.
 - wurden alle verwendeten Variablen definiert/deklariert
 - werden sie typgerecht verwendet
 - gibt es evtl. Bereichsüberschreitungen
- Verwendung von (kontextfreien) Attributgrammatiken

Schritte

77

Code-Optimierung

- Steigerung der Effizienz des Zielprogramms b ∈ P2
- Zeit- und/oder Speicherbedarf optimieren; oft Widerspruch
- Programmcode b verändert
 - Semantik muss natürlich unverändert bleiben
- Code-Optimierung ist zeitaufwändig
- vollständiger Erhalt der Semantik von b kann nicht in jedem Fall garantiert werden kann
- daher: optional

Linken (Binden)

- Ergebnis der Übersetzung ist Objekt-Code (kein lauffähiges Programm)
- wird durch ein separates Hilfsprogramm (Binder/Linker) in ein ausführbares Programm übertragen
- Grund:
 - aufgerufene Funktionen liegen oft nicht als Code vor, sondern sind in unabhängig erstellte Module oder in Standard-Bibliotheken ausgelagert
- Binder fügt die Objekt-Codes aller benötigten Module und Bibliotheken zu einem lauffähigen Programm zusammen

Tools

80

lex / flex: Lexikalische Analyse

lex: 1975

yacc / bison: syntaktische/semantische Analyse

yacc: 1979

erzeugen C-Code Dateien

Links:

lex & yacc: http://dinosaur.compilertools.net/

flex:
<u>http://flex.sourceforge.net/</u>

bison: http://www.gnu.org/software/bison/

"The asteroid to kill this dinosaur is still in orbit." (Lex Manual Page)

Zusammenfassung – Compiler

- Compiler: übersetzt Quell- in Zielprogramm
- Arten von Compilern
 - Compiler im engeren Sinn, Assembler, Cross-Compiler, Präprozessor, Compiler-Compiler, Interpreter
- > (Haupt-)Schritte beim Übersetzungsvorgang
 - lexikalische Analyse
 - Scanner
 - reguläre Grammatik
 - Umwandlung in Token
 - syntaktische Analyse
 - Parser
 - Generierung eines Syntaxbaums
 - deterministisch kontextfreie Grammatik
 - semantische Analyse
 - Analyse des Syntaxbaums
 - Code-Generierung und –Optimierung
 - + Linken
- Reguläre Ausdrücke
 - zur Beschreibung der Grammatiken für lexikalische und (in erweiterter Form) syntaktische Analyse

Quellen

82

Die Folien entstanden auf Basis folgender Literatur

- # H. Ernst, J. Schmidt und G. Beneken: Grundkurs Informatik. Springer Vieweg, 6. Aufl., 2016.
- Schöning, U.: Theoretische Informatik kurz gefasst. Spektrum Akad. Verlag (2008)
- Sander P., Stucky W., Herschel, R.: Automaten, Sprachen, Berechenbarkeit, B.G. Teubner, 1992