3D Object Detection Models

The Dream Team: Shahriar Hossain, Sanjay Mohan, Sean Steinle, Joseph Sepich

Overview

Shahriar - Motivation and Introduction

Sanjay - Background on Models

Sean - Experimental Results

Joseph - Practical Notes on Model Training

Sample output from a 3D object detection model

Motivation: Why 3D object detection matters?

Robust Depth Sensing: Direct distance measurements, immune to lighting changes (night, glare, shadows)

Critical for Safety: Precise 3D localization of cars, cyclists, pedestrians down to a few centimeters

Adverse Conditions: Rain, fog, low sun—cameras struggle, LiDAR still returns reliable data

Real-Time Requirements: Autonomous vehicles must process and react in milliseconds

Introduction

- We implemented 3 state of the art 3D object detection models
- These are: PointPillars, SECOND and PointRCNN
- All the models were implemented on KITTI dataset consisting of 29GB of pointcloud data and 12 GB of image data along with some calibration files and label files
- GPU used: Nvidia RTX 3080

PointPillar

- Pillar-based Discretization: Organizes the LiDAR point cloud into a grid of vertical pillars, creating a structured 2D representation from unstructured 3D data.
- PointNet Feature Encoding: Extracts features from points within each pillar using a simplified PointNet, capturing local geometric information efficiently.
- 2D CNN Backbone: Processes the resulting 2D feature map with standard
 2D convolutional neural networks, leveraging their speed and optimization.
- **Single-stage Detection:** Predicts 3D bounding boxes, class labels, and orientations in a single forward pass, enabling real-time performance.

SECOND

- Voxelization: Transforms the raw point cloud into a 3D voxel grid, enabling structured spatial processing.
- Sparse 3D CNN: Applies a sparse 3D convolutional neural network to efficiently process only non-empty voxels.
- Region Proposal Network (RPN): Uses a 2D convolutional backbone on a bird's-eye view (BEV) feature map to propose 3D regions.
- Refinement Head: Fine-tunes proposals to predict precise 3D bounding boxes, orientations, and class labels.

PointRCNN

- Point-based Proposal: Generates 3D object proposals directly from raw point clouds using a PointNet++ backbone.
- Region-wise Feature Extraction: Extracts local point features for each proposal to capture detailed geometric context.
- **Two-stage Pipeline:** Refines proposals in a second stage to predict accurate 3D bounding boxes, orientations, and classes.
- Foreground Segmentation: Enhances proposal quality by segmenting foreground points, improving detection robustness.

PointRCNN Dominates	PointPillar	Specificity	Easy	Moderate	Hard
Pedestrian Detection		2D BBox AP AOS BEV AP 3D AP	64.40% $49.35%$ $59.11%$ $51.35%$	61.43% $46.73%$ $54.32%$ $47.98%$	57.62% $43.84%$ $50.50%$ $43.80%$
Though SECOND is more robust to challenging examples	SECOND	Specificity	Easy	Moderate	Hard
		2D BBox AP AOS	69.21% $65.40%$	66.12% 61.91%	63.43% 58.93%
PointPillar is not a serious competitor		BEV AP 3D AP	63.11% 58.68%	56.77% 53.90%	53.83% $49.75%$
Pedestrians are the most challenging object to classify	PointRCNN	Specificity	Easy	Moderate	Hard
		2D BBox AP AOS BEV AP 3D AP	73.54% 71.29% 67.51% 61.84%	65.83% 63.17% 60.27% 57.02%	62.27% 59.48% 54.09% 51.15%

	_				
Dor	nına	ate	s C	ycıı,	SI
Det	ecti	ion			
A 11					

PointRCNN Also

PointPillar

2D BBox AP
AOS
BEV AP
3D AP
Specificity
2D BBox AP
AOS
BEVAP

Specificity

25/3
86.24%
85.02%
84.41%
81.76%
Easy
86.66%
86.33%

87.72%

Easy

Moderate

73.06%

69.08%

67.13%

63.66%

76.53%

75.98%

69.92%

72.57%

Moderate

60.90%
Hard
72.67%
72.12%
66.34%
62.22%
Hard
iiaia
75.27%

74.70%

71.01%

69.94%

Hard

70.17%

66.28%

63.74%

All models have serious degradation with respect to both skill and specificity Cyclists are also difficult to detect

PointRCNN

SECOND 3D AP Specificity AOS BEV AP 3D AP

80.72%Easy 2D BBox AP 89.75%89.67%88.36%

66.56%Moderate 77.67%77.20%74.44%

All Models Succeed at Car Detection

PointPillar

AOS BEV AP 3D AP Specificity 2D BBox AP

Specificity

2D BBox AP

90.48%89.96%86.63%Easy 90.81%

Easy

90.65%

85.73% 85.77% 74.17%Hard 89.18%89.01%

Hard

86.66%

Cars are the easiest category to detect All models do very well, performing within 1-2% on all specificity-difficulty pairs

SECOND

PointRCNN

AOS BEV AP 3D AP Specificity 2D BBox AP AOS

BEV AP

3DAP

90.80%89.88%88.52%Easy

90.52%

90.52%

89.81%

88.38%

89.90% 87.83% 78.61%

Moderate

89.23%

89.13%

87.12%

78.19%

Moderate

89.33%

88.68%

87.88%

76.74%

Moderate

89.98%

86.47%77.33%Hard

88.94%

88.78%

85.84%77.72%

PointRCNN
Passes the Eye
Test

PointPillar

PointRCNN is perfect

PointPillar has 2 false positives

SECOND has many false positives

SECOND

PointRCNN

PointRCNN Passes the (Bird's) Eye Test

PointPillar SECOND PointRCNN

Some Scenes Are Harder Than Others

Occlusion is one challenge among many

Highlights need for sensor fusion

3D Bounding Boxes

Bird's Eye View (BEV)

Training Setup

PointPillars	SECOND	PointRCNN
Custom - mmdet	OpenPCDet	OpenPCDet
Windows	WSL Ubuntu 22.04	WSL Ubuntu 22.04
3080 GPU	3080Ti GPU	3080Ti GPU
~3 hours	4 hrs 43 minutes	7 hrs 46 minutes
Cross Entropy/Smooth L1/Focal Loss	Cross Entropy/Smooth L1/Focal Loss	IoU Based Loss

Reproducibility Challenges

Data Set Preparation

- Directory Layout
- Preprocessing

Environment Difficulties

- OS Windows vs Linux (System Library Support)
- System Libraries CUDA
- Language Packages
 - pytorch
 - o spconv
- Language Version

Conclusion

3D Object Detection

PointPillars

SECOND

PointRCNN