Final_VAR

Contents

N																								
Tariff				•	 		•																	4
Trade				•	 		•																	Ę
China					 		•																•	(
First T	ern	1			 																			12

```
y = cbind(Vdata$dummy, Vdata$SPY_vol)
colnames(y)[1:2] <- c("dummy", "vol")</pre>
est.VAR <- VAR(y,p=6)
#extract results
mod_vol = est.VAR$varresult$vol
f = formula(mod_vol)
d = model.frame(mod vol)
lm_clean = lm(f, data = d)
#apply Newey-West
nw_vcov = NeweyWest(lm_clean, lag=6)
nw_se = sqrt(diag(nw_vcov))
#t-stats
coef = coef(lm_clean)
t_stat = coef/nw_se
#recalculate p-values
robust = 2*(1-pt(abs(t_stat), df = df.residual(lm_clean)))
screenreg(lm_clean, override.se = nw_se, override.pvalues = robust, digits = 6)
##
```

```
Model 1
              0.000083
## dummy.l1
##
                (0.000201)
## vol.11
               0.344511 ***
                (0.103790)
## dummy.12
                -0.000473 ***
##
                (0.000071)
## vol.12
                0.023714
                (0.042739)
##
## dummy.13
                -0.000804 ***
##
                (0.000088)
## vol.13
                 0.082941 ***
##
                (0.007496)
## dummy.14
                -0.000546 ***
##
                (0.000088)
## vol.14
                 0.096948
##
                (0.059298)
## dummy.15
                -0.000579 ***
##
                (0.000147)
## vol.15
                 0.022887 ***
                (0.006876)
##
## dummy.16
                -0.000099
##
                (0.000101)
## vol.16
                0.164034 ***
##
                (0.047379)
                0.008726 ***
## const
```

N

```
y2 = cbind(Vdata$N, Vdata$SPY_vol)
colnames(y2)[1:2] <- c("N", "vol")</pre>
est.VAR2 \leftarrow VAR(y2,p=6)
#extract results
mod_vol2 = est.VAR2$varresult$vol
f2 = formula(mod_vol2)
d2 = model.frame(mod_vol2)
lm_clean2 = lm(f2, data = d2)
#apply Newey-West
nw_vcov2 = NeweyWest(lm_clean2, lag=6)
nw_se2 = sqrt(diag(nw_vcov2))
#t-stats
coef2 = coef(lm_clean2)
t_stat2 = coef2/nw_se2
#recalculate p-values
robust2 = 2*(1-pt(abs(t_stat2), df = df.residual(lm_clean2)))
#table
screenreg(lm_clean2, override.se = nw_se2, override.pvalues = robust2, digits = 6)
```

```
##
## ==========
            Model 1
## N.11
               0.000045
               (0.000037)
## vol.l1
              0.345011 ***
##
               (0.104492)
## N.12
             -0.000116 ***
##
               (0.000023)
## vol.12
               0.023575
               (0.043816)
##
## N.13
              -0.000213 ***
               (0.000028)
##
## vol.13
               0.082525 ***
##
               (0.008145)
## N.14
               -0.000147 ***
               (0.000021)
##
```

```
## vol.14 0.096739
##
              (0.060827)
            -0.000119 **
## N.15
            (0.000041)
##
## vol.15
              0.022593 **
##
            (0.006952)
## N.16
             0.000000
             (0.000028)
##
           0.164442 ***
## vol.16
##
            (0.049763)
## const
             0.007587 ***
##
             (0.001578)
## R^2
             0.325324
## Adj. R^2 0.324885
## Num. obs. 19965
## =========
## *** p < 0.001; ** p < 0.01; * p < 0.05
```

Tariff

```
y3 = cbind(Vdata$tariff, Vdata$SPY_vol)
colnames(y3)[1:2] <- c("tariff", "vol")</pre>
est.VAR3 \leftarrow VAR(y3,p=6)
#extract results
mod_vol3 = est.VAR3$varresult$vol
f3 = formula(mod_vol3)
d3 = model.frame(mod_vol3)
lm_clean3 = lm(f3, data = d3)
#apply Newey-West
nw_vcov3 = NeweyWest(lm_clean3, lag=6)
nw_se3 = sqrt(diag(nw_vcov3))
#t-stats
coef3 = coef(lm clean3)
t_stat3 = coef3/nw_se3
#recalculate p-values
robust3 = 2*(1-pt(abs(t_stat3), df = df.residual(lm_clean3)))
screenreg(lm_clean3, override.se = nw_se3, override.pvalues = robust3, digits = 6)
```

```
(0.098665)
##
           0.005269
## tariff.12
##
             (0.004124)
## vol.12
              0.027464
            (0.039912)
## tariff.13 -0.007797
            (0.005183)
            0.075380 ***
## vol.13
              (0.011695)
##
## tariff.14 0.002275
             (0.002454)
## vol.14
              0.088777
            (0.063948)
## tariff.15 -0.001145
##
            (0.002634)
## vol.15
            0.026049 ***
##
              (0.006815)
## tariff.16 -0.002750
##
            (0.002450)
## vol.16
              0.167546 ***
##
             (0.049876)
## const
             0.005770 ***
##
              (0.001405)
## -----
## R^2
              0.331931
## Adj. R^2
             0.331496
## Num. obs. 19965
## ==========
## *** p < 0.001; ** p < 0.01; * p < 0.05
```

Trade

```
y4 = cbind(Vdata$trade, Vdata$SPY_vol)
colnames(y4)[1:2] <- c("trade", "vol")</pre>
est.VAR4 \leftarrow VAR(y4,p=6)
#extract results
mod vol4 = est.VAR4$varresult$vol
f4 = formula(mod_vol4)
d4 = model.frame(mod_vol4)
lm_clean4 = lm(f4, data = d4)
#apply Newey-West
nw_vcov4 = NeweyWest(lm_clean4, lag=6)
nw_se4 = sqrt(diag(nw_vcov4))
#t-stats
coef4 = coef(lm_clean4)
t_stat4 = coef4/nw_se4
#recalculate p-values
robust4 = 2*(1-pt(abs(t_stat4), df = df.residual(lm_clean4)))
```

```
#table
screenreg(lm_clean4, override.se = nw_se4, override.pvalues = robust4, digits = 6)
```

```
##
## ==========
##
            Model 1
## trade.l1
                0.003399
               (0.003747)
## vol.11
                0.346107 ***
                (0.101918)
## trade.12
                0.005600
                (0.004809)
##
## vol.12
                0.022949
##
                (0.041538)
## trade.13
                -0.003904 *
               (0.001726)
##
                0.081148 ***
## vol.13
##
                (0.008258)
## trade.14
                0.000725
##
                (0.003458)
## vol.14
                0.095797
##
                (0.057082)
## trade.15
                -0.002363
##
               (0.001901)
## vol.15
                0.023502 **
##
                (0.007162)
## trade.16
                -0.001543
##
                (0.001228)
                0.165323 ***
## vol.16
##
                (0.049319)
## const
                0.005939 ***
                (0.001536)
## ----
## R^2
                 0.325134
## Adj. R^2
                0.324695
## Num. obs. 19965
## ===========
## *** p < 0.001; ** p < 0.01; * p < 0.05
```

China

```
ychina = cbind(Vdata$china, Vdata$SPY_vol)
colnames(ychina)[1:2] <- c("china", "vol")
est.VARchina <- VAR(ychina,p=6)

#extract results
mod_volchina = est.VARchina$varresult$vol
fchina = formula(mod_volchina)
dchina = model.frame(mod_volchina)
lm_cleanchina = lm(fchina, data= dchina)</pre>
```

```
#apply Newey-West
nw_vcovchina = NeweyWest(lm_cleanchina, lag=6)
nw_sechina = sqrt(diag(nw_vcovchina))
#t-stats
coefchina = coef(lm_cleanchina)
t_statchina = coefchina/nw_sechina
#recalculate p-values
robustchina = 2*(1-pt(abs(t_statchina), df = df.residual(lm_cleanchina)))
#table
screenreg(lm_cleanchina, override.se = nw_sechina, override.pvalues = robustchina, digits = 6)
##
## ==========
            Model 1
              0.006729
## china.l1
##
                (0.006694)
## vol.11
                0.344512 ***
##
                (0.097994)
                 0.002778
## china.12
                (0.004067)
## vol.12
                 0.024149
                (0.043585)
## china.13
                -0.004652 *
##
                (0.002066)
## vol.13
                0.081646 ***
                (0.009192)
## china.14
                -0.002442 *
                (0.001084)
##
                 0.094919
## vol.14
                (0.058821)
                -0.000607
## china.15
##
                (0.000970)
## vol.15
                 0.022961 **
                (0.007678)
## china.16
                 0.000596
                (0.000981)
##
## vol.16
                 0.166695 **
##
                (0.054194)
## const
                 0.005857 ***
##
                (0.001612)
  -----
## R^2
                 0.326344
## Adj. R^2
                 0.325905
## Num. obs. 19965
## ==========
## *** p < 0.001; ** p < 0.01; * p < 0.05
```

mean_day_filtered <- Vdata %>% mutate(day = as.Date(timestamp), year = year(day), month = month(day)) %>% filter(!(year == 2025 & month %in% c(4, 5))) %>% # exclut avril et mai 2025

```
group\_by(day) \%>\% summarise(mean\_vol\_day = mean(SPY\_vol, na.rm = TRUE)) mean(mean\_day\_filtered\$mean\_vol\_day)
```

```
dt_t = d \%
                    rename(X.11 = dummy.11,
                    X.12 = dummy.12,
                    X.13 = dummy.13,
                    X.14 = dummy.14,
                    X.15 = dummy.15,
                    X.16 = dummy.16)
f_t \leftarrow as.formula("y \sim -1 + vol.11 + vol.12 + vol.13 + vol.14 + vol.15 + vol.16 + vol.16 + vol.16 + vol.16 + vol.16 + vol.17 + vol.18 + v
                                                                                                                               X.11 + X.12 + X.13 + X.14 + X.15 + X.16 + const"
model <- lm(f_t, data = dt_t)</pre>
dt_t2 = d2 \%
                    rename(X.11 = N.11,
                    X.12 = N.12,
                   X.13 = N.13,
                  X.14 = N.14,
                   X.15 = N.15,
                    X.16 = N.16)
f_t2 \leftarrow as.formula("y \sim -1 + vol.11 + vol.12 + vol.13 + vol.14 + vol.15 + vol.16 + vol.16 + vol.16 + vol.17 + vol.18 + vol.18 + vol.18 + vol.18 + vol.18 + vol.18 + vol.19 + 
                                                                                                                                 X.11 + X.12 + X.13 + X.14 + X.15 + X.16 + const")
model2 \leftarrow lm(f_t2, data = dt_t2)
dt_t3 = d3 \%
                    rename(X.11 = tariff.11,
                    X.12 = tariff.12,
                    X.13 = tariff.13,
                   X.14 = tariff.14,
                   X.15 = tariff.15,
                    X.16 = tariff.16)
f_t3 <- as.formula("y ~ -1 + vol.11 + vol.12 + vol.13 + vol.14 + vol.15 + vol.16 +
                                                                                                                                 X.11 + X.12 + X.13 + X.14 + X.15 + X.16 + const"
model3 \leftarrow lm(f_t3, data = dt_t3)
dt_t4 = d4 \%
                    rename(X.11 = trade.11,
                    X.12 = trade.12,
                    X.13 = trade.13,
                   X.14 = trade.14,
                   X.15 = trade.15,
                 X.16 = trade.16
```

```
f_t4 \leftarrow as.formula("y \sim -1 + vol.11 + vol.12 + vol.13 + vol.14 + vol.15 + vol.16 + 
                                                   X.11 + X.12 + X.13 + X.14 + X.15 + X.16 + const"
model4 \leftarrow lm(f_t4, data = dt_t4)
dt_tchina = dchina %>%
        rename(X.11 = china.11,
        X.12 = china.12,
        X.13 = china.13,
        X.14 = china.14,
        X.15 = china.15,
        X.16 = china.16)
f_tchina <- as.formula("y ~ -1 + vol.11 + vol.12 + vol.13 + vol.14 + vol.15 + vol.16 +
                                                    X.11 + X.12 + X.13 + X.14 + X.15 + X.16 + const")
modelchina <- lm(f_tchina, data = dt_tchina)</pre>
nw_se_t <- sqrt(diag(sandwich::NeweyWest(model, lag = 6, prewhite = FALSE)))</pre>
nw se2 t <- sqrt(diag(sandwich::NeweyWest(model2, lag = 6, prewhite = FALSE)))</pre>
nw_se3_t <- sqrt(diag(sandwich::NeweyWest(model3, lag = 6, prewhite = FALSE)))</pre>
nw_se4_t <- sqrt(diag(sandwich::NeweyWest(model4, lag = 6, prewhite = FALSE)))</pre>
nw_sechina_t <- sqrt(diag(sandwich::NeweyWest(modelchina, lag = 6, prewhite = FALSE)))</pre>
robust_t <- 2 * (1-pt(abs(coef(model) / nw_se_t), df = df.residual(model)))</pre>
robust2_t <- 2 * (1-pt(abs(coef(model2) / nw_se2_t), df = df.residual(model2)))</pre>
robust3_t <- 2 * (1-pt(abs(coef(model3) / nw_se3_t), df = df.residual(model3)))</pre>
robust4_t <- 2 * (1-pt(abs(coef(model4) / nw_se4_t), df = df.residual(model4)))</pre>
robustchina_t <- 2 * (1-pt(abs(coef(modelchina) / nw_sechina_t), df = df.residual(modelchina)))
                        <- nw se t[names(coef(model))]</pre>
nw se t
                         <- robust t[names(coef(model))]</pre>
robust t
<- robust2_t[names(coef(model2))]</pre>
robust2_t
nw_se3_t <- nw_se3_t[names(coef(model3))]</pre>
<- nw_se4_t[names(coef(model4))]</pre>
nw_se4_t
                            <- robust4_t[names(coef(model4))]</pre>
{\tt robust4\_t}
nw_sechina_t <- nw_sechina_t[names(coef(modelchina))]</pre>
robustchina_t <- robustchina_t[names(coef(modelchina))]</pre>
# Créer la liste des modèles
models_list <- list(model, model2, model3, model4, modelchina)</pre>
```

```
# Créer la liste des SE robustes
robust_ses <- list(nw_se_t, nw_se2_t, nw_se3_t, nw_se4_t, nw_sechina_t)</pre>
# Créer la liste des p-values
robust_pvals <- list(robust_t, robust2_t, robust3_t, robust4_t, robustchina_t)</pre>
# Nom des variables (affichées dans le tableau)
custom_names <- list(</pre>
  "vol.11" = "$AHV \{t-1\}$",
  "vol.12" = "$AHV_{t-2}$",
  "vol.13" = \$AHV_{t-3}",
  "vol.14" = "$AHV \{t-4\}$",
  "vol.15" = "$AHV_{t-5}$",
  "vol.16" = "$AHV \{t-6\}$",
  "X.11" = "$X_{t-1}$",
  "X.12" = "$X_{t-2}$",
  "X.13" = "$X_{t-3}$",
  "X.14" = "$X_{t-4}$",
 "X.15" = "$X_{t-5}$",
 "X.16" = "$X_{t-6}$",
  "const" = "Constant"
# Générer le tableau
table_texreg <- texreg(</pre>
 1 = models_list,
  override.se = robust ses,
  custom.coef.map = custom_names,
  override.pvalues = robust_pvals,
  custom.model.names = c("TweetDummy", "TweetCount", "Tariff", "Trade", "China"),
  caption = "VAR Models of Average Hourly Volatility",
  label = "tab:VAR_Second_Term",
  caption.above = TRUE,
  digits = 6,
  custom.gof.rows = list("Shock (IRF)" = c(0.0041713, 0.003061, 0.001189, 0.000215, 0.001937))
# Afficher dans le Viewer
table_texreg
# First and Second Mandate
#first term
Vdata_f = filter(data,between(timestamp, as.Date('2017-01-20'), as.Date('2021-01-20')))
#second term
Vdata_s = filter(data,between(timestamp, as.Date('2025-01-20'), as.Date('2025-05-07')))
```

Table 1: VAR Models of Average Hourly Volatility

	TweetDummy	TweetCount	Tariff	Trade	China
$\overline{AHV_{t-1}}$	0.344511***	0.345011***	0.342081***	0.346107***	0.344512***
0 1	(0.103329)	(0.103473)	(0.100397)	(0.103007)	(0.102386)
AHV_{t-2}	0.023714	0.023575	0.027464	0.022949	0.024149
	(0.047239)	(0.047379)	(0.042571)	(0.047267)	(0.046561)
AHV_{t-3}	0.082941***	0.082525***	0.075380***	0.081148***	0.081646***
	(0.010963)	(0.011004)	(0.013612)	(0.011336)	(0.011026)
AHV_{t-4}	0.096948	0.096739	0.088777	0.095797	0.094919
	(0.065612)	(0.065614)	(0.068856)	(0.064948)	(0.066347)
AHV_{t-5}	0.022887	0.022593	0.026049^*	0.023502	0.022961
	(0.012328)	(0.012316)	(0.011859)	(0.012242)	(0.012546)
AHV_{t-6}	0.164034^{**}	0.164442^{**}	0.167546^{**}	0.165323^{**}	0.166695^{**}
	(0.061085)	(0.061129)	(0.060128)	(0.061328)	(0.061192)
X_{t-1}	0.000083	0.000045	0.019718	0.003399	0.006729
	(0.000231)	(0.000040)	(0.019004)	(0.004067)	(0.006313)
X_{t-2}	-0.000473^{***}	-0.000116***	0.005269	0.005600	0.002778
	(0.000087)	(0.000024)	(0.004162)	(0.005050)	(0.003938)
X_{t-3}	-0.000804^{***}	-0.000213^{***}	-0.007797	-0.003904^*	-0.004652^*
	(0.000093)	(0.000028)	(0.005041)	(0.001717)	(0.001998)
X_{t-4}	-0.000546^{***}	-0.000147^{***}	0.002275	0.000725	-0.002442^*
	(0.000101)	(0.000023)	(0.002654)	(0.003504)	(0.001044)
X_{t-5}	-0.000579^{***}	-0.000119^{**}	-0.001145	-0.002363	-0.000607
	(0.000146)	(0.000041)	(0.002728)	(0.001717)	(0.000993)
X_{t-6}	-0.000099	0.000000	-0.002750	-0.001543	0.000596
	(0.000117)	(0.000033)	(0.002441)	(0.001170)	(0.000973)
Constant	0.008726^{***}	0.007587^{***}	0.005770^{***}	0.005939^{***}	0.005857^{**}
	(0.001825)	(0.001707)	(0.001695)	(0.001706)	(0.001806)
Shock (IRF)	0.004171	0.003061	0.001189	0.000215	0.001937
\mathbb{R}^2	0.325745	0.325324	0.331931	0.325134	0.326344
$Adj. R^2$	0.325306	0.324885	0.331496	0.324695	0.325905
Num. obs.	19965	19965	19965	19965	19965

 $^{^{***}}p < 0.001; \ ^{**}p < 0.01; \ ^*p < 0.05$

First Term

Dummy

```
y f d = cbind(Vdata f$dummy, Vdata f$SPY vol)
colnames(y_f_d)[1:2] <- c("dummy", "vol")</pre>
est.VAR_f_d \leftarrow VAR(y_f_d,p=6)
#extract results
mod_vol_f_d = est.VAR_f_d$varresult$vol
f_f_d = formula(mod_vol_f_d)
d_f_d = model.frame(mod_vol_f_d)
lm_clean_f_d = lm(f_f_d, data = d_f_d)
#apply Newey-West
nw_vcov_f_d = NeweyWest(lm_clean_f_d, lag=6)
nw_se_f_d = sqrt(diag(nw_vcov_f_d))
#t-stats
coef_f_d = coef(lm_clean_f_d)
t_stat_f_d = coef_f_d/nw_se_f_d
#recalculate p-values
robust_f_d = 2*(1-pt(abs(t_stat_f_d), df = df.residual(lm_clean_f_d)))
y_f_n = cbind(Vdata_f$N, Vdata_f$SPY_vol)
colnames(y_f_n)[1:2] <- c("N", "vol")</pre>
est.VAR_f_n \leftarrow VAR(y_f_n,p=6)
#extract results
mod_vol_f_n = est.VAR_f_n$varresult$vol
f_f_n = formula(mod_vol_f_n)
d_f_n = model.frame(mod_vol_f_n)
lm_clean_f_n = lm(f_f_n, data = d_f_n)
#apply Newey-West
nw_vcov_f_n = NeweyWest(lm_clean_f_n, lag=6)
nw_se_f_n = sqrt(diag(nw_vcov_f_n))
#t-stats
coef f n = coef(lm clean f n)
t_stat_f_n = coef_f_n/nw_se_f_n
\#recalculate\ p-values
robust_f_n = 2*(1-pt(abs(t_stat_f_n), df = df.residual(lm_clean_f_n)))
y f ta = cbind(Vdata f$tariff, Vdata f$SPY vol)
colnames(y_f_ta)[1:2] <- c("tariff", "vol")</pre>
est.VAR_f_ta <- VAR(y_f_ta,p=6)
#extract results
mod_vol_f_ta = est.VAR_f_ta$varresult$vol
```

```
f_f_ta = formula(mod_vol_f_ta)
d_f_ta = model.frame(mod_vol_f_ta)
lm_clean_f_ta = lm(f_f_ta, data= d_f_ta)
#apply Newey-West
nw_vcov_f_ta = NeweyWest(lm_clean_f_ta, lag=6)
nw_se_f_ta = sqrt(diag(nw_vcov_f_ta))
#t-stats
coef_f_ta = coef(lm_clean_f_ta)
t_stat_f_ta = coef_f_ta/nw_se_f_ta
#recalculate p-values
robust_f_ta = 2*(1-pt(abs(t_stat_f_ta), df = df.residual(lm_clean_f_ta)))
y f tr = cbind(Vdata f$trade, Vdata f$SPY vol)
colnames(y_f_tr)[1:2] <- c("trade", "vol")</pre>
est.VAR_f_tr <- VAR(y_f_tr,p=6)
#extract results
mod_vol_f_tr = est.VAR_f_tr$varresult$vol
f_f_tr = formula(mod_vol_f_tr)
d_f_tr = model.frame(mod_vol_f_tr)
lm_clean_f_tr = lm(f_f_tr, data= d_f_tr)
#apply Newey-West
nw_vcov_f_tr = NeweyWest(lm_clean_f_tr, lag=6)
nw_se_f_tr = sqrt(diag(nw_vcov_f_tr))
#t-stats
coef_f_tr = coef(lm_clean_f_tr)
t_stat_f_tr = coef_f_tr/nw_se_f_tr
#recalculate p-values
robust_f_tr = 2*(1-pt(abs(t_stat_f_tr), df = df.residual(lm_clean_f_tr)))
y_f_ch = cbind(Vdata_f$china, Vdata_f$SPY_vol)
colnames(y_f_ch)[1:2] <- c("china", "vol")</pre>
est.VAR_f_ch <- VAR(y_f_ch,p=6)
#extract results
mod_vol_f_ch = est.VAR_f_ch$varresult$vol
f_f_ch = formula(mod_vol_f_ch)
d_f_ch = model.frame(mod_vol_f_ch)
lm_clean_f_ch = lm(f_f_ch, data= d_f_ch)
#apply Newey-West
nw_vcov_f_ch = NeweyWest(lm_clean_f_ch, lag=6)
nw_se_f_ch = sqrt(diag(nw_vcov_f_ch))
#t-stats
coef_f_ch = coef(lm_clean_f_ch)
t_stat_f_ch = coef_f_ch/nw_se_f_ch
```

```
#recalculate p-values
robust_f_ch = 2*(1-pt(abs(t_stat_f_ch), df = df.residual(lm_clean_f_ch)))
y_s_d = cbind(Vdata_s$dummy, Vdata_s$SPY_vol)
colnames(y_s_d)[1:2] <- c("dummy", "vol")</pre>
est.VAR_s_d \leftarrow VAR(y_s_d,p=6)
#extract results
mod_vol_s_d = est.VAR_s_d$varresult$vol
f s d = formula(mod vol s d)
d_s_d = model.frame(mod_vol_s_d)
lm_clean_s_d = lm(f_s_d, data = d_s_d)
#apply Newey-West
nw_vcov_s_d = NeweyWest(lm_clean_s_d, lag=6)
nw_se_s_d = sqrt(diag(nw_vcov_s_d))
#t-stats
coef_s_d = coef(lm_clean_s_d)
t_stat_s_d = coef_s_d/nw_se_s_d
#recalculate p-values
robust_s_d = 2*(1-pt(abs(t_stat_s_d), df = df.residual(lm_clean_s_d)))
y_s_n = cbind(Vdata_s$N, Vdata_s$SPY_vol)
colnames(y_s_n)[1:2] <- c("N", "vol")</pre>
est. VAR s n \leftarrow VAR(y s n,p=6)
#extract results
mod_vol_s_n = est.VAR_s_n$varresult$vol
f_s_n = formula(mod_vol_s_n)
d_s_n = model.frame(mod_vol_s_n)
lm_clean_s_n = lm(f_s_n, data = d_s_n)
#apply Newey-West
nw_vcov_s_n = NeweyWest(lm_clean_s_n, lag=6)
nw_se_s_n = sqrt(diag(nw_vcov_s_n))
#t-stats
coef_s_n = coef(lm_clean_s_n)
t_stat_s_n = coef_s_n/nw_se_s_n
#recalculate p-values
robust_s_n = 2*(1-pt(abs(t_stat_s_n), df = df.residual(lm_clean_s_n)))
y_s_ta = cbind(Vdata_s$tariff, Vdata_s$SPY_vol)
colnames(y_s_ta)[1:2] <- c("tariff", "vol")</pre>
est.VAR_s_ta <- VAR(y_s_ta,p=6)
#extract results
mod_vol_s_ta = est.VAR_s_ta$varresult$vol
f_s_ta = formula(mod_vol_s_ta)
```

```
d_s_ta = model.frame(mod_vol_s_ta)
lm_clean_s_ta = lm(f_s_ta, data= d_s_ta)
#apply Newey-West
nw_vcov_s_ta = NeweyWest(lm_clean_s_ta, lag=6)
nw_se_s_ta = sqrt(diag(nw_vcov_s_ta))
coef_s_ta = coef(lm_clean_s_ta)
t_stat_s_ta = coef_s_ta/nw_se_s_ta
#recalculate p-values
robust_s_ta = 2*(1-pt(abs(t_stat_s_ta), df = df.residual(lm_clean_s_ta)))
y_s_tr = cbind(Vdata_s$trade, Vdata_s$SPY_vol)
colnames(y_s_tr)[1:2] <- c("trade", "vol")</pre>
est.VAR_s_tr <- VAR(y_s_tr,p=6)
#extract results
mod_vol_s_tr = est.VAR_s_tr$varresult$vol
f_s_tr = formula(mod_vol_s_tr)
d_s_tr = model.frame(mod_vol_s_tr)
lm_clean_s_tr = lm(f_s_tr, data= d_s_tr)
#apply Newey-West
nw_vcov_s_tr = NeweyWest(lm_clean_s_tr, lag=6)
nw_se_s_tr = sqrt(diag(nw_vcov_s_tr))
#t-stats
coef_s_tr = coef(lm_clean_s_tr)
t_stat_s_tr = coef_s_tr/nw_se_s_tr
#recalculate p-values
robust_s_tr = 2*(1-pt(abs(t_stat_s_tr), df = df.residual(lm_clean_s_tr)))
y_s_ch = cbind(Vdata_s$china, Vdata_s$SPY_vol)
colnames(y_s_ch)[1:2] <- c("china", "vol")</pre>
est.VAR_s_ch <- VAR(y_s_ch,p=6)
#extract results
mod_vol_s_ch = est.VAR_s_ch$varresult$vol
f_s_ch = formula(mod_vol_s_ch)
d_s_ch = model.frame(mod_vol_s_ch)
lm_clean_s_ch = lm(f_s_ch, data= d_s_ch)
#apply Newey-West
nw_vcov_s_ch = NeweyWest(lm_clean_s_ch, lag=6)
nw_se_s_ch = sqrt(diag(nw_vcov_s_ch))
#t-stats
coef_s_ch = coef(lm_clean_s_ch)
t_stat_s_ch = coef_s_ch/nw_se_s_ch
```

```
#recalculate p-values
robust_s_ch = 2*(1-pt(abs(t_stat_s_ch), df = df.residual(lm_clean_s_ch)))
```

```
#first
d_f_d_t = d_f_d \%
                              rename(X.11 = dummy.11,
                              X.12 = dummy.12,
                              X.13 = dummy.13,
                             X.14 = dummy.14,
                              X.15 = dummy.15,
                              X.16 = dummy.16)
f_t_f_d \leftarrow as.formula("y \sim -1 + vol.11 + vol.12 + vol.13 + vol.14 + vol.15 + vol.16 + vol.16 + vol.16 + vol.17 + vol.18 + vol.18
                                                                                                                                                                                            X.11 + X.12 + X.13 + X.14 + X.15 + X.16 + const"
model_f_d \leftarrow lm(f_t_f_d, data = d_f_d_t)
 d_f_n_t = d_f_n \%
                              rename(X.11 = N.11,
                              X.12 = N.12,
                             X.13 = N.13,
                             X.14 = N.14,
                             X.15 = N.15,
                             X.16 = N.16)
f_t_f_n \leftarrow as.formula("y \sim -1 + vol.11 + vol.12 + vol.13 + vol.14 + vol.15 + vol.16 + vol.16 + vol.16 + vol.17 + vol.18 + vol.18
                                                                                                                                                                                            X.11 + X.12 + X.13 + X.14 + X.15 + X.16 + const"
model_f_n \leftarrow lm(f_t_f_n, data = d_f_n_t)
d_f_ta_t = d_f_ta %>%
                              rename(X.l1 = tariff.l1,
                              X.12 = tariff.12,
                             X.13 = tariff.13,
                             X.14 = tariff.14,
                             X.15 = tariff.15,
                              X.16 = tariff.16
f_t_f_a < -as.formula("y ~ -1 + vol.11 + vol.12 + vol.13 + vol.14 + vol.15 + vol.16 + vol.16 + vol.16 + vol.16 + vol.16 + vol.17 + vol.18 + vol.1
                                                                                                                                                                                            X.11 + X.12 + X.13 + X.14 + X.15 + X.16 + const"
model_f_{ta} \leftarrow lm(f_t_f_{ta}, data = d_f_{ta})
 d_f_tr_t = d_f_tr %>%
                              rename(X.11 = trade.11,
                              X.12 = trade.12,
                             X.13 = trade.13,
                             X.14 = trade.14,
                              X.15 = trade.15,
                              X.16 = trade.16)
f_t_f_t - f_t - as.formula("y ~ -1 + vol.11 + vol.12 + vol.13 + vol.14 + vol.15 + vol.16 + vol.16 + vol.16 + vol.17 + vol.18 + 
                                                                                                                                                                                            X.11 + X.12 + X.13 + X.14 + X.15 + X.16 + const"
model_f_tr <- lm(f_t_f_tr, data = d_f_tr_t)</pre>
```

```
d_f_ch_t = d_f_ch \%
        rename(X.11 = china.11,
        X.12 = china.12,
        X.13 = china.13,
        X.14 = china.14,
        X.15 = china.15,
        X.16 = china.16
f_t_f_c + c < as.formula("y ~ -1 + vol.11 + vol.12 + vol.13 + vol.14 + vol.15 + vol.16 + vol.16 + vol.16 + vol.16 + vol.16 + vol.17 + vol.18 + vo
                                                   X.11 + X.12 + X.13 + X.14 + X.15 + X.16 + const"
model_f_ch \leftarrow lm(f_t_f_ch, data = d_f_ch_t)
nw_se_f_d_t <- sqrt(diag(sandwich::NeweyWest(model_f_d, lag = 6, prewhite = FALSE)))</pre>
nw_se_f_n_t <- sqrt(diag(sandwich::NeweyWest(model_f_n, lag = 6, prewhite = FALSE)))</pre>
nw_se_f_ta_t <- sqrt(diag(sandwich::NeweyWest(model_f_ta, lag = 6, prewhite = FALSE)))</pre>
nw_se_f_tr_t <- sqrt(diag(sandwich::NeweyWest(model_f_tr, lag = 6, prewhite = FALSE)))</pre>
nw se f china t <- sqrt(diag(sandwich::NeweyWest(model f ch, lag = 6, prewhite = FALSE)))
robust_f_d_t <- 2 * (1-pt(abs(coef(model_f_d) / nw_se_f_d_t), df = df.residual(model_f_d)))</pre>
robust_f_n_t <- 2 * (1-pt(abs(coef(model_f_n) / nw_se_f_n_t), df = df.residual(model_f_n)))
robust_f_ta_t <- 2 * (1-pt(abs(coef(model_f_ta) / nw_se_f_ta_t), df = df.residual(model_f_ta)))</pre>
robust_f_tr_t <- 2 * (1-pt(abs(coef(model_f_tr) / nw_se_f_tr_t), df = df.residual(model_f_tr)))
robust_f_ch_t <- 2 * (1-pt(abs(coef(model_f_ch) / nw_se_f_china_t), df = df.residual(model_f_ch)))</pre>
nw_se_f_d_t <- nw_se_f_d_t[names(coef(model_f_d))]</pre>
robust_f_d_t <- robust_f_d_t[names(coef(model_f_d))]</pre>
# Listes modèles, SE robustes et p-values robustes pour first
models_list_f <- list(model_f_d, model_f_n, model_f_ta, model_f_tr, model_f_ch)</pre>
robust_ses_f <- list(nw_se_f_d_t, nw_se_f_n_t, nw_se_f_ta_t, nw_se_f_tr_t, nw_se_f_china_t)
robust pvals f <- list(robust f d t, robust f n t, robust f ta t, robust f tr t, robust f ch t)
# Noms personnalisés des coefficients
custom_names <- list(</pre>
    "vol.11" = "$AHV \{t-1\}$",
    "vol.12" = "$AHV_{t-2}$",
    "vol.13" = "$AHV_{t-3}$",
    "vol.14" = "$AHV_{t-4}$",
    "vol.15" = "$AHV \{t-5\}$",
    "vol.16" = "$AHV_{t-6}$",
    "X.11" = "$X_{t-1}$",
    "X.12" = "$X {t-2}$",
    "X.13" = "$X_{t-3}$",
    "X.14" = "$X_{t-4}$",
    "X.15" = "$X_{t-5}$",
    "X.16" = "$X_{t-6}$",
```

```
"const" = "Constant"
)
# Générer tableau texreq pour first
table_texreg_f <- texreg(</pre>
  1 = models_list_f,
  override.se = robust_ses_f,
 override.pvalues = robust_pvals_f,
  custom.model.names = c("TweetDummy", "TweetCount", "Tariff", "Trade", "China"),
  custom.coef.map = custom names,
  caption = "First-Term VAR Models of Average Hourly Volatility",
 label = "tab:VAR First Term",
 caption.above = TRUE,
 digits = 6,
 custom.gof.rows = list("Shock (IRF)" = c(0.002919, 0.002236, 0.000484, 0.000702, 0.000904)),
  star.cutoffs = c(0.001, 0.01, 0.05)
# Afficher le tableau
table_texreg_f
```

```
#second
d_s_d_t = d_s_d \%
                            rename(X.11 = dummy.11,
                            X.12 = dummy.12,
                            X.13 = dummy.13,
                          X.14 = dummy.14,
                            X.15 = dummy.15,
                            X.16 = dummy.16)
f_t_s_d \leftarrow as.formula("y \sim -1 + vol.11 + vol.12 + vol.13 + vol.14 + vol.15 + vol.16 + vol.16 + vol.16 + vol.17 + vol.18 + vol.18
                                                                                                                                                                                X.11 + X.12 + X.13 + X.14 + X.15 + X.16 + const"
model_s_d \leftarrow lm(f_t_s_d, data = d_s_d_t)
 d_s_n_t = d_s_n \%
                            rename(X.11 = N.11,
                           X.12 = N.12,
                           X.13 = N.13,
                           X.14 = N.14,
                            X.15 = N.15,
                            X.16 = N.16)
f_t_s_n \leftarrow as.formula("y \sim -1 + vol.11 + vol.12 + vol.13 + vol.14 + vol.15 + vol.16 + vol.16
                                                                                                                                                                                X.11 + X.12 + X.13 + X.14 + X.15 + X.16 + const"
model_s_n \leftarrow lm(f_t_s_n, data = d_s_n_t)
 d_s_ta_t = d_s_ta %>%
                          rename(X.11 = tariff.11,
               X.12 = tariff.12,
```

Table 2: First-Term VAR Models of Average Hourly Volatility

	TweetDummy	TweetCount	Tariff	Trade	China
$\overline{AHV_{t-1}}$	0.541944***	0.542426***	0.543570***	0.543958***	0.543471***
V 1	(0.080972)	(0.080477)	(0.079273)	(0.079048)	(0.079428)
AHV_{t-2}	-0.113920**	-0.113855**	-0.115106^{**}	-0.115566**	-0.115002**
	(0.040758)	(0.040843)	(0.041031)	(0.040968)	(0.040995)
AHV_{t-3}	0.058050	0.057592	0.053635	0.053636	0.054382
	(0.030414)	(0.030474)	(0.030529)	(0.030534)	(0.030495)
AHV_{t-4}	0.188383	0.187417	0.184183	0.184102	0.184610
	(0.118235)	(0.117967)	(0.117238)	(0.117118)	(0.117369)
AHV_{t-5}	-0.088758	-0.089704	-0.091496	-0.091655	-0.091848
	(0.079651)	(0.079584)	(0.079702)	(0.079683)	(0.079634)
AHV_{t-6}	0.336662^{***}	0.337701^{***}	0.343373^{***}	0.343466^{***}	0.343184^{***}
	(0.048176)	(0.048104)	(0.047473)	(0.047512)	(0.047665)
X_{t-1}	-0.000478^{***}	-0.000163^{**}	-0.000454	-0.001838^{**}	-0.000352
	(0.000140)	(0.000057)	(0.000353)	(0.000702)	(0.000385)
X_{t-2}	-0.000184**	-0.000063^*	-0.000289	0.000221	-0.000048
	(0.000070)	(0.000030)	(0.000271)	(0.000513)	(0.000233)
X_{t-3}	-0.000693^{***}	-0.000263^{***}	-0.001007^{***}	-0.000949^{**}	-0.001412^{***}
	(0.000153)	(0.000062)	(0.000267)	(0.000308)	(0.000359)
X_{t-4}	-0.000564^{***}	-0.000208***	-0.000274	-0.000612	-0.000202
	(0.000159)	(0.000062)	(0.000392)	(0.000411)	(0.000452)
X_{t-5}	-0.000435^{***}	-0.000125^{**}	-0.000468	-0.000605	-0.000057
	(0.000118)	(0.000046)	(0.000274)	(0.000361)	(0.000354)
X_{t-6}	0.000118	0.000099*	0.000240	-0.000121	0.000275
	(0.000122)	(0.000049)	(0.000344)	(0.000395)	(0.000371)
Constant	0.004020^{***}	0.003079^{***}	0.001510^{***}	0.001657^{***}	0.001593^{***}
	(0.000661)	(0.000520)	(0.000353)	(0.000371)	(0.000343)
Shock (IRF)	0.002919	0.002236	0.000484	0.000702	0.000904
\mathbb{R}^2	0.687909	0.687236	0.685341	0.685489	0.685533
$Adj. R^2$	0.687331	0.686657	0.684758	0.684907	0.684951
Num. obs.	7036	7036	7036	7036	7036

^{***}p < 0.001; **p < 0.01; *p < 0.05

```
X.13 = tariff.13,
                X.14 = tariff.14,
                X.15 = tariff.15,
                X.16 = tariff.16
f_t_s_ta \leftarrow as.formula("y \sim -1 + vol.11 + vol.12 + vol.13 + vol.14 + vol.15 + vol.16 + vol.16 + vol.16 + vol.17 + vol.18 + vol.1
                                                                                                         X.11 + X.12 + X.13 + X.14 + X.15 + X.16 + const"
model_s_ta <- lm(f_t_s_ta, data = d_s_ta_t)</pre>
d_s_tr_t = d_s_tr %>%
                rename(X.11 = trade.11,
                X.12 = trade.12,
                X.13 = trade.13,
                X.14 = trade.14,
                X.15 = trade.15,
                X.16 = trade.16
f_t_s_t < -as.formula("y ~ -1 + vol.11 + vol.12 + vol.13 + vol.14 + vol.15 + vol.16 + vol.16 + vol.16 + vol.17 + vol.18 + vol.1
                                                                                                         X.11 + X.12 + X.13 + X.14 + X.15 + X.16 + const"
model_s_tr <- lm(f_t_s_tr, data = d_s_tr_t)</pre>
d_s_ch_t = d_s_ch \%
                rename(X.11 = china.11,
                X.12 = china.12,
               X.13 = china.13,
                X.14 = china.14,
                X.15 = china.15,
                X.16 = china.16
f_t_s_c + s_c + 
                                                                                                        X.11 + X.12 + X.13 + X.14 + X.15 + X.16 + const"
model_s_ch \leftarrow lm(f_t_s_ch, data = d_s_ch_t)
nw_se_s_d_t <- sqrt(diag(sandwich::NeweyWest(model_s_d, lag = 6, prewhite = FALSE)))</pre>
nw_se_s_n_t <- sqrt(diag(sandwich::NeweyWest(model_s_n, lag = 6, prewhite = FALSE)))</pre>
nw_se_s_ta_t <- sqrt(diag(sandwich::NeweyWest(model_s_ta, lag = 6, prewhite = FALSE)))</pre>
nw_se_s_tr_t <- sqrt(diag(sandwich::NeweyWest(model_s_tr, lag = 6, prewhite = FALSE)))</pre>
nw_se_s_china_t <- sqrt(diag(sandwich::NeweyWest(model_s_ch, lag = 6, prewhite = FALSE)))</pre>
robust_s_d_t <- 2 * (1-pt(abs(coef(model_s_d) / nw_se_s_d_t), df = df.residual(model_s_d)))</pre>
robust_s_n_t <- 2 * (1-pt(abs(coef(model_s_n) / nw_se_s_n_t), df = df.residual(model_s_n)))</pre>
robust_s_ta_t <- 2 * (1-pt(abs(coef(model_s_ta) / nw_se_s_ta_t), df = df.residual(model_s_ta)))</pre>
robust_s_tr_t <- 2 * (1-pt(abs(coef(model_s_tr) / nw_se_s_tr_t), df = df.residual(model_s_tr)))
robust_s_ch_t <- 2 * (1-pt(abs(coef(model_s_ch)) / nw_se_s_china_t), df = df.residual(model_s_ch)))</pre>
nw_se_s_d_t <- nw_se_s_d_t[names(coef(model_s_d))]</pre>
robust_s_d_t <- robust_s_d_t[names(coef(model_s_d))]</pre>
```

```
# Listes modèles, SE robustes et p-values robustes pour second
models_list_s <- list(model_s_d, model_s_n, model_s_ta, model_s_tr, model_s_ch)</pre>
robust_ses_s <- list(nw_se_s_d_t, nw_se_s_n_t, nw_se_s_ta_t, nw_se_s_tr_t, nw_se_s_china_t)
robust_pvals_s <- list(robust_s_d_t, robust_s_n_t, robust_s_ta_t, robust_s_tr_t, robust_s_ch_t)
# Générer tableau texreq pour second
table_texreg_s <- texreg(</pre>
 1 = models_list_s,
 override.se = robust_ses_s,
 override.pvalues = robust_pvals_s,
  custom.model.names = c("TweetDummy", "TweetCount", "Tariff", "Trade", "China"),
  custom.coef.map = custom_names,
  caption = "Second-Term VAR Models of Average Hourly Volatility",
 label = "tab:VAR Second Term",
 caption.above = TRUE,
 digits = 6,
 custom.gof.rows = list("Shock (IRF)" = c(0.016739, 0.015714, 0.011582, -0.004131, 0.015569)),
 star.cutoffs = c(0.05, 0.01, 0.001)
# Afficher le tableau
table_texreg_s
```

Table 3: Second-Term VAR Models of Average Hourly Volatility

	TweetDummy	TweetCount	Tariff	Trade	China
$\overline{AHV_{t-1}}$	0.299398**	0.299350**	0.294752**	0.301160**	0.274419***
<i>t</i> -1	(0.112417)	(0.114098)	(0.108853)	(0.111015)	(0.081386)
AHV_{t-2}	$0.015406^{'}$	0.013567	0.020667	0.011769	0.031670
v <u>-</u>	(0.045643)	(0.046702)	(0.039243)	(0.045795)	(0.031719)
AHV_{t-3}	0.076169***	0.076851***	0.068749***	0.072284***	0.052697
	(0.010099)	(0.010266)	(0.016672)	(0.015313)	(0.033941)
AHV_{t-4}	0.084229	0.085108	0.074401	0.080544	0.035573
	(0.073259)	(0.073217)	(0.080381)	(0.069965)	(0.107841)
AHV_{t-5}	0.013424	0.010406	0.015342	0.017631	0.005467
	(0.009477)	(0.009620)	(0.009167)	(0.011320)	(0.031442)
AHV_{t-6}	0.126612^*	0.126324^*	0.132056^*	0.124277^*	0.150909^*
	(0.058486)	(0.057687)	(0.057043)	(0.057466)	(0.059264)
X_{t-1}	0.006569	0.000947	0.027028	0.020463	0.154584
	(0.010877)	(0.001389)	(0.029078)	(0.031549)	(0.140076)
X_{t-2}	-0.003222**	-0.000736	0.008588	0.047163	0.099315
	(0.001221)	(0.000535)	(0.007247)	(0.041734)	(0.097425)
X_{t-3}	-0.005538**	-0.001637^*	-0.010306	-0.026631	-0.047690
	(0.001707)	(0.000726)	(0.007507)	(0.021408)	(0.028342)
X_{t-4}	0.002474	0.000136	0.002002	0.019925	-0.020669
	(0.005119)	(0.000924)	(0.003272)	(0.031241)	(0.013733)
X_{t-5}	-0.008527^*	-0.001651	-0.002649	-0.012965	-0.004470
	(0.004029)	(0.001070)	(0.004407)	(0.014516)	(0.020539)
X_{t-6}	-0.003594	-0.000627	-0.004279	-0.011100	0.008027
	(0.003213)	(0.000745)	(0.003857)	(0.010029)	(0.024100)
Constant	0.072524^{**}	0.068423^{***}	0.049265^{**}	0.052127^{***}	0.044027^*
	(0.023894)	(0.020607)	(0.015173)	(0.013712)	(0.018061)
Shock (IRF)	0.016739	0.015714	0.011582	-0.004131	0.015569
\mathbb{R}^2	0.244117	0.240788	0.251263	0.244406	0.285165
$Adj. R^2$	0.224424	0.221009	0.231757	0.224721	0.266543
Num. obs.	512	512	512	512	512

^{***}p < 0.001; **p < 0.01; *p < 0.05