Virtualization

 Technique that allows creating a software-based virtual device or resource that, in practice, is an abstraction provided on top of existing hardware or software resources.

Server Virtualization

Virtual Machines (VMs)

Storage Virtualization

Disk partitioning

Storage Virtualization

Distributed storage

Other Examples

- Network devices
- Random Access Memory
- Containers
- •

Virtualization in Practice

Virtual Desktop Infrastructures (VDIs)

- VMWare Horizon 7
- Amazon WorkSpaces

Virtualization in Practice

Storage Virtualization (Software-Defined Storage)

Logical Devices

- Amazon S3, Glacier
- EMC ViPR

Virtualization in Practice

Simplified Cloud deployment

Amazon EC2, EBS

Heterogeneity

- Virtual resources can be provided on top of different/multiple physical (hardware) resources
- A virtual resource can support different applications/operating systems while resorting to the same physical hardware (e.g., VMs)

Transparency

 User interaction with virtual resources is similar to the interaction with a physical one

Isolation

- Virtual resources are fully isolated from the underlying hardware/software in terms of:
 - Security
 - Performance
 - Failures (including OS/data corruption)

Resource Optimization

- Physical resources can be leveraged to support more clients/applications
 - Server Consolidation
 - Lower Costs

Simplified Management

- Managing a virtual resource is simpler than managing bare-metal resources.
 - High Availability
 - Dynamic Load Balancing
 - E.g., VMs Live Migration/Snapshots

Performance

- The abstraction of resources often includes a performance penalty
 - CPU, Network, I/O

Overprovisioning

 Deploying more virtualised resources than needed may lead to performance degradation

Security

 If isolation is not properly addressed or, a malicious user/sysadmin has access to the physical resources (e.g., server), security may be compromised

Dependability

 The failure of physical resource may result in the failure of multiple virtual ones.

Learning Curve

- Administrators need to understand and manage a new paradigm
- In some virtualization techniques, applications must be rewritten or need additional configuration to be deployable

- Changing an application to run on different
 Operating Systems is a costly and hard task
- VMs allow running different operating systems on top of the same physical server

(context)

- IBM mainframe systems (from about 45 years ago) allowed applications to use isolated portions of a system's resources
- Virtualization became mainstream in the early 2000's with the X86 server architecture due to:
 - Under-utilised resources
 - Infrastructure costs

Architecture

Architecture

 Operations are intercepted by the Hypervisor and executed on the physical hardware

Hypervisor

Hypervisor Xen, KVM, VMware

- Controls the low-level interaction between VMs and the underlying host OS/hardware
 - access to shared disk, network, CPU, and RAM resources

Storage

- Each VM allocates a specific chunk of the host's storage capacity
- The storage system must handle multiple writers/readers efficiently
- Thin-provisioning (e.g., sparse allocation, copy-on-write)

- Time slicing processing requests are sliced up and shared across the VMs
- Similar to running multiple processes in a physical host
- Overcommitting vCPUs may lead to poor performance

Network

- VMs share network bandwidth (similarly to storage)
- Each VM can be configured with a different network setup

Network

- Host-only
 - Shares the host networking namespace. The VM only has access to the host
- Nat
 - Masks network activity as if it is done by the Host (single network identity).
 The VM has access to external resources
- Bridge
 - Uses the hypervisor to assign a specific IP to the VM (DHCP must be enabled in the network). The VM is seen as another node in the physical network

- VMs share RAM (similarly to storage)
- It is possible to perform memory reclamation across VMs deployed in the same host

- Modern virtualization is hardware-assisted and does not require traditional (emulation) software virtualization
- Better performance closer to the native one

Paravirtualization

- Requires hooks/modifications at the VM (guest)
 OS
- Costly operations are performed directly on the native host instead of the virtual environment (e.g., disk and network I/O)
- E.g., Xen and VMware

Paravirtualization

- Advantages
 - Better performance
- Disadvantages
 - Guest OS must be modified
 - Maintainability of the modified kernel

Full Virtualization

- VM OS is unmodified and presented with a simulated hardware interface (emulator)
- The hypervisor emulates all hardware devices on the virtual environment
- These emulated devices are used to build a virtual machine
- E.g., Xen, VirtualBox and KVM (QEMU)

Full Virtualization

- Advantages
 - No modifications to the guest OS (full isolation)
 - Higher range of supported OS flavors, easier migration/portability of VMs
- Disadvantages
 - All operations must be processed by two layers (VM and hypervisor)
 - Lower I/O and CPU performance

Virtualization Types

Type 1 - bare metal hypervisor

- Does not require host OS, deployed directly on the hardware
- "Small operating system"
- Better performance
- It usually requires virtualization support at the hardware level
- E.g., Vmware ESX

Virtualization Types

Type 2 - hosted hypervisor

- Deployed on top of the host's OS
- Host OS is not dedicated for the VMs
- Worst performance
- E.g., VirtualBox
- KVM and Xen present an hybrid solution

VMs Deployment

- Configuration File
 - Number of CPUs
 - RAM and Storage space
 - I/O devices it has access to (virtual disks/network)
- OS image must be copied to the virtual disk

Virtual Machine Deployment

- Templates can be used to provision VMs in a easier way with the appropriate provisioning tools
- E.g., Vagrant
 - Command-line interface
 - Vagrantfile (Ruby syntax)

Virtual Machine Migration

- Types
 - Live Migration
 - Offline Migration
- Purpose:
 - Load Balancing (Geographical, Load, etc)
 - Host Maintenance