

Today's Outline

- · Addressing our other problem
- B+-tree properties
- Implementing B+-tree insertion and deletion
- · Some final thoughts on B+-trees

2

M-ary Search Tree

- Maximum branching factor of *M*
- Complete tree has height h ≅ log_MN
- Each internal node in a complete tree has

M - 1 keys

runtime:

Actually, $h = \lceil \log_M(N(M-1) + 1) \rceil - 1$

Incomplete *M*-ary Search Tree ⊗

• Just like a binary tree, though, complete m-ary trees can store m⁰ keys, m⁰ + m¹ keys, m⁰ + m¹ + m² keys,

. . .

• What about numbers in between??

4

B+-Trees

- B+-Trees are specialized M-ary search trees
- · Each node has many keys
 - at least some minimum # of keys
 - subtree between two keys x and y contains values y such that x < y < y
 - binary search within a node to find correct subtree
- Each node takes one full {page, block, line} of memory

· ALL the leaves are at the same depth!

3 7 1221 x-7 75x-12 425x-21 215x

Today's Outline

- · Addressing our other problem
- B+-tree properties
- · Implementing B+-tree insertion and deletion
- · Some final thoughts on B+-trees

6

B+-Tree Properties

Properties

- maximum branching factor of M
- the root has between 2 and **M** children or at most **L** keys/values
- other internal nodes have between $\lceil M/2 \rceil$ and M children
- internal nodes contain only search keys (no data)
- smallest datum between search keys x and y equals x
- each (non-root) leaf contains between $\lceil L/2 \rceil$ and L keys/values
- all leaves are at the same depth

• Result

- tree is Θ (log_M n) deep (between log_{M/2} n and log_M n)
- all operations run in ⊕ (log_M n) time
- operations get about M/2 to M or L/2 to L items at a time

B+-Tree Properties[‡]

Properties

- maximum branching factor of M
- the root has between 2 and M children or at most L keys/values
- other internal nodes have between M/2 and Mchildren
- internal nodes contain only *search* keys (no data)
- smallest datum between search keys x and y equals x
- each (non-root) leaf contains between $\lceil L/2 \rceil$ and L keys/values
- all leaves are at the same depth

• Result

- tree is Θ (log_M n) deep (between log_{M/2} n and log_M n)
- all operations run in Θ (\log_M n) time
- operations get about M/2 to M or L/2 to L items at a time

[‡]These are B⁺-Trees. B-Trees store data at internal nodes.

B+-Tree Properties

· Properties

- maximum branching factor of M
- the root has between 2 and M children or at most L keys/values
- other internal nodes have between $\lceil M/2 \rceil$ and M children
- internal nodes contain only search keys (no data)
- smallest datum between search keys x and y equals x
- each (non-root) leaf contains between \[\(\mu/2 \) and \(\mu\) keys/values
- all leaves are at the same depth

Result

- tree is $\Theta(\log_M n)$ deep (between $\log_{M/2} n$ and $\log_M n$)
- all operations run in $\Theta\left(\log_{M} \, n\right)$ time
- operations get about M/2 to M or L/2 to L items at a time

B+-Tree Properties

· Properties

- maximum branching factor of M
- the root has between 2 and M children or at most L keys/values
- other internal nodes have between $\lceil M/2 \rceil$ and M children
- internal nodes contain only search keys (no data)
- smallest datum between search keys x and y equals x
- each (non-root) leaf contains between $\lceil L/2 \rceil$ and L keys/values
- all leaves are at the same depth

Result

- height is Θ (\log_M n) between $\log_{M/2}$ (2n/L) and \log_M (n/L)
- all operations run in Θ (log_M n) time
- operations get about M/2 to M or L/2 to L items at a time

Today's Outline

- · Addressing our other problem
- B+-tree properties
- · Implementing B+-tree insertion and deletion
- ullet Some final thoughts on B+-trees

11

Today's Outline

- · Addressing our other problem
- B+-tree properties
- · Implementing B+-tree insertion and deletion
- $\bullet \ \ Some \ final \ thoughts \ on \ B+-trees$

29

Thinking about B-Trees

- B+-Tree insertion can cause (expensive) splitting and propagation (could we do something like borrowing?)
- B+-Tree deletion can cause (cheap) borrowing or (expensive) deletion and propagation
- Propagation is rare if **M** and **L** are large (Why?)
- Repeated insertions and deletion can cause thrashing
- If M = L = 128, then a B-Tree of height 4 will store at least 30,000,000 items

A Tree with Any Other Name

FYI:

- B+-Trees with $\mathbf{M} = 3$, $\mathbf{L} = \mathbf{x}$ are called 2-3 trees
- B+-Trees with $\mathbf{M} = \mathbf{4}$, $\mathbf{L} = \mathbf{x}$ are called 2-3-4 trees
- Other balanced trees include Red-Black trees (rotation-based), Splay Trees (rotation-based and *amortized* O(lg n) bounds), B-trees, B*-trees, ...

32

To Do

· Hashing readings

33

Coming Up

- · In some order:
 - Everyone Gets a Crack at Parallelism
 - Hash Tables

34