Primitive	Strengths	Weaknesses
Conventional public-key cryptography (RSA/ECC)	 Widely used and tested. No known classical attacks. 	 Vulnerable to quantum attack via Shor's algorithm. Vulnerable to store-now-decrypt-later quantum attacks. Should not be used for information with significant forward value. Memory overheads: ciphertext longer than plaintext. Computationally relatively slow.
Conventional private-key cryptography (e.g AES)	 Widely used and tested. No known efficient classical or quantum attacks. Computationally efficient. No memory overheads: plaintext and ciphertext are of equal length. Hardware optimisation: many modern processors contain dedicated AES coprocessors and instructions. 	 Absence of security proofs. Quantum attacks offer quadratic enhancement of brute-force attacks (can be offset by doubling key lengths).
Hash functions (e.g SHA)	 Widely used and tested. No known efficient classical or quantum attacks. Computationally efficient. Hardware optimisation: many modern processors contain dedicated SHA coprocessors and instructions. 	Quantum attacks offer quadratic enhancement in finding pre-images (can be offset by doubling hash lengths).
Post-quantum cryptography (lattice-based methods)	 Promises robustness against both classical and quantum attacks. Compatible with existing classical hardware. Adoption is straightforward. 	 New and inadequately tested. Not yet standardised.
Post-quantum cryptography (hash-based digital signatures)	• Security inherited only from pre-image resistance of hash functions, considered very strong.	Large memory overheads.
Quantum cryptography	Theoretically offers perfect information- theoretic security.	 Only facilitates private-key cryptography. Not applicable to public-key cryptography. Channel authentication relies on classical techniques. Highly limited utility. Not suitable for roaming devices. Restricted to point-to-point communication. No broadcasting. Requires new and expensive infrastructure. Heightened risk of denial-of-service attacks. Heightened risk of side-channel attacks. Real-world implementations largely untested.
Secure quantum computation (homomorphic encryption & blind quantum computing)	Theoretically offers perfect information- theoretic security.	 Not presently available. Requires quantum communication infrastructure between client and server.
Blockchains	Can adopt post-quantum cryptography upon availability.	 Security inherited from underlying choice of public-key cryptography and hash functions. Current implementations largely rely on RSA/ECC and vulnerable to future quantum attacks.
Hybrid cryptography	Multiple encryption ensures security unless all layers of encryption are compromised.	Increased computational, memory and communications overheads.