Ch3. 논비건, 비건 특징 분석

4 조

2022 5 13

앞서 식품 카테고리 중 고기, 생선, 유제품을 줄이면 약 66%의 온실가스 배출량을 줄일 수 있음을 확인했습니다. 이번 챕터에서는 앞으로의 온실가스 배출량을 줄이기 위한 식품 섭취를 제안하기 위해 논비건과 비건의 특징을 비교하여 분석하였습니다.

Ch3. Changes in Vegan's Diet and Demographic Characteristics

Survey Results Analysis (Visualization)

Raw-Data 출처

Diet Change and Demographic Characteristics of Vegans, Vegetarians, Semi-Vegetarians, and Omnivores

Contributors: Nick Cooney Amit Steinberg Gary Shapiro Shelley Hurwitz

Date created: 2020-03-11 05:54 AM | Last Updated: 2020-06-23 02:25 AM

Category: Project

License: CC-By Attribution 4.0 International

1) 인구 특성별 특징 분석

라이브러리 로드

library(readx1)
library(dplyr)

```
library(ggplot2)
library(descr)
```

비건 데이터파일 불러오기 및 확인

```
vegan_raw <- read_xlsx("C:/Rstudy/miniprojectR/only_vegan.xlsx")
str(vegan_raw)
sum(is.na(vegan_raw))</pre>
```

논비건 데이터파일 불러오기 및 확인

```
vegan_raw <- read_xlsx("C:/Rstudy/miniprojectR/only_vegan.xlsx")

vegan_raw3 <-read_excel("C:/Rstudy/miniprojectR/vegan_Raw_data_c.xls")

vegan_raw1 <- vegan_raw3 %>% filter(!(eat_beef == "Never" & eat_chicken == "Never" & eat_dairy == "Never" & eat_eggs == "Never" & eat_fish_seafood == "Never" & eat_pork == "Never"))

#vegan_raw1 에 논비건 데이터 할당됨
```

Vegan 의 성별 분석

데이터 확인

```
str(vegan_raw$gender)
## chr [1:1491] "Male" "Female" "Female" "Female" "Male" "Female" "Male" ...
str(vegan_raw$gender)
## chr [1:1491] "Male" "Female" "Female" "Female" "Male" "Female" "Male" ...
결측치 skip 값으로 변환
vegan_raw$gender <- ifelse(is.na(vegan_raw$gender), "skip", vegan_raw$gender)
```

class2 라는 변수에 여자/남자 응답수 확인

```
class2<- margin.table(x= table(vegan_raw$gender), margin=1)
class2

##
## Female Male Non-gendered skip
## 1091 212 24 164</pre>
```

응답자 수 비율 구하기

```
#class.pct2 변수에 응답비율 할당
class.pct2 <- round(class2/sum(class2)*100, 1)
class.pct2
##
## Female Male Non-gendered skip
## 73.2 14.2 1.6 11.0
```

응답자수와 비율 포함한 라벨

```
lbl2 <- paste( class2, "명, ", class.pct2, "%", sep= "")
lbl2
## [1] "1091 명, 73.2%" "212 명, 14.2%" "24 명, 1.6%" "164 명, 11%"
```

성별- 3D 파이차트 만들기

```
library(plotrix)
pie3D(class2, labels= lbl2, explode= 0.03, labelcex= 1.2, col =terrain.colors
(3), main = "성별", cex.main=2.5, col.main= "darkgreen")
text(-0.2, 0.25, "여자", cex=2.2, font=2)
text(0.2, -0.1, "남자", cex=2.2, font=2)
text(0.7, 0.043, "응답안함", cex=1.5, font=3)
text(0.75, -0.15, "성별 X", cex=0.8, font=3)
```

성별

여자 > 남자 > 응답안함 > Non-gendered

Non-Vegan 의 성별 분석

데이터 확인

```
str(vegan_raw1$gender)
## chr [1:1765] "Female" "Male" "Female" "Male" "Female" "Male" ...
```

결측치 skip 값으로 변환

vegan_raw1\$gender <- ifelse(is.na(vegan_raw1\$gender), "skip", vegan_raw1\$gend
er)</pre>

여자/남자 응답수 확인

```
## Female Male Non-gendered skip ## 1231 265 13 256
```

응답자 수 비율 구하기

```
##
## Female Male Non-gendered skip
## 69.7 15.0 0.7 14.5
```

응답자수와 비율 포함한 라벨

```
lbl5 <- paste(names(class5), ": ", class5, "명, ", class.pct5, "%", sep= "")
lbl5

## [1] "Female: 1231 명, 69.7%" "Male: 265 명, 15%"

## [3] "Non-gendered: 13 명, 0.7%" "skip: 256 명, 14.5%"
```

논비건 성별- 3D 파이차트 만들기

성별

여자 > 남자 > 응답안함 > Non-gendered

Vegan 의 학생 비율 분석

결측치 "skip"으로 변경하고 확인

```
vegan_raw$student <- ifelse(is.na(vegan_raw$student), "skip", vegan_raw$stude
nt)
str(vegan_raw$student)
## chr [1:1491] "No" "No" "No" "No" "Yes" "Yes" "No" "skip" "No" "Yes"
...</pre>
```

그래프 형태로 확인하여보기

```
freq(vegan_raw$student, plot = T, col ="green", main =' 학생인가요 ? ')
```

학생인가요?


```
## vegan_raw$student
## Frequency Percent
## No     1019     68.34
## skip     180     12.07
## Yes     292     19.58
## Total     1491     100.00
```

class 라는 변수에 각항목 응답수 확인

```
class <- margin.table(x= table(vegan_raw$student), margin=1)
class
##
## No skip Yes
## 1019 180 292</pre>
```

응답수 + 비율 표시된 파이차트

응답수 - 비율 구하기

```
#class.pct 라는 변수에 응답비율할당
class.pct <- round(class/sum(class)*100, 1)
class.pct
```

```
##
## No skip Yes
## 68.3 12.1 19.6
```

그래프에 응답수와 비율 같이 표시하기

```
lbl <- paste( class, "명, ", class.pct, "%", sep= "")
lbl
## [1] "1019 명, 68.3%" "180 명, 12.1%" "292 명, 19.6%"
```

시각화- 3D 파이차트

학생 > 학생아님> 응답안함

직업 (학생인가요?)

Non-Vegan 의 학생 비율 분석

결측치 "skip"으로 변경하고 확인

chr [1:1765] "No" "No" "No" "No" "Yes" "Yes" "Yes" "No" "Yes" "skip" "No" ...

그래프 형태로 확인하여보기

학생인가요?


```
## vegan_raw1$student

## Frequency Percent

## No 1089 61.70

## skip 274 15.52

## Yes 402 22.78

## Total 1765 100.00
```

각항목 응답수 확인

```
##
## No skip Yes
## 1089 274 402
```

응답수 - 비율 구하기

```
## ## No skip Yes
## 61.7 15.5 22.8
```

그래프에 응답수와 비율 같이 표시하기

```
## [1] "1089명, 61.7%" "274명, 15.5%" "402명, 22.8%"
```

Non-Vegan 의 학생 비율 시각화- 3D 파이차트

직업 (학생인가요?)

학생아님 > 학생 > 응답안함

Vegan 의 교육수준 분석

그래프 미리보기

freq(vegan_raw\$education, plot = T, col ="green", main ='최종 학력은?')

vegan_raw\$education
##

Associates degree

Frequency Percent Valid Percent 176 11.804 13.415

```
## Bachelors degree
                                       528 35.412
                                                          40.244
                                       17
## Did not complete High school
                                             1.140
                                                           1.296
## Doctoral degree
                                        73
                                             4.896
                                                           5.564
## High school degree/GED
                                       283 18.981
                                                          21.570
## Masters degree
                                       235
                                            15.761
                                                          17.912
## NA's
                                       179 12.005
## Total
                                      1491 100.000
                                                         100.000
```

결측치 skip 으로 변경

vegan_raw\$education <- ifelse(is.na(vegan_raw\$education), "skip", vegan_raw\$e
ducation)</pre>

파이차트 만들기

class1 라는 변수에 각항목 응답수 확인

```
class1 <- margin.table(x= table(vegan raw$education), margin=1)</pre>
class1
##
##
               Associates degree
                                               Bachelors degree
##
                              176
                                                             528
## Did not complete High school
                                                Doctoral degree
         High school degree/GED
##
                                                 Masters degree
##
                              283
                                                             235
##
                             skip
##
                              179
```

학력 시각화-pie 차트

```
#응답비율 구하기
class.pct1 <- round(class1/sum(class1)*100, 1)</pre>
class.pct1
##
##
                                             Bachelors degree
              Associates degree
                            11.8
                                                          35.4
## Did not complete High school
                                              Doctoral degree
##
                                                           4.9
         High school degree/GED
##
                                                Masters degree
##
                            19.0
                                                          15.8
##
                            skip
                            12.0
lbl1 <- paste( class1, "명, ", class.pct1, "%", sep= "")
lbl1
```

```
## [1] "176명, 11.8%" "528명, 35.4%" "17명, 1.1%" "73명, 4.9%" "283명, 19%"
## [6] "235명, 15.8%" "179명, 12%"
#파이차트 그리기
pie(class1, labels= lbl1, main = "최종학력", col =terrain.colors(7), cex.main= 2, col.main= "darkgreen")

text(-0.15, 0.35, "학사", cex=2.2, font=2)
text(0.5, 0.2, "준학사", cex=1.7, font=3)
text(0.47, -0.2, "응답안함", cex=1.3, font=3)
text(0.15, -0.48, "석사", cex=1.7, font=3)
text(-0.4, -0.3, "고등학교졸업", cex=1.7, font=3)
text(-0.5, 0.08, "고등학교졸업X", cex=1, font=3)
```

최종학력


```
lbl1_5 <- paste(c("준학사", "학사", "고등학교졸업 X", "박사", "고등학교졸업", "석사", "응답안함" ))
fan.plot(class1,labels= lbl1_5,col =terrain.colors(7), main="최종학력", cex.main=2.5, col.main= "darkgreen", align='left',max.span=pi)
```


Non-Vegan 의 교육수준 분석

그래프 미리보기

## vegan_raw1\$education				
##	Frequency	Percent	Valid Percent	
## Associates degree	208	11.785	13.969	
## Bachelors degree	590	33.428	39.624	
## Did not complete High school	42	2.380	2.821	
## Doctoral degree	55	3.116	3.694	
## High school degree/GED	308	17.450	20.685	
## Masters degree	286	16.204	19.208	

## NA's	276 15.637	
## Total	1765 100.000	100.000

결측치 skip 으로 변경

파이차트 만들기

class7 라는 변수에 각항목 응답수 확인

```
##
##
              Associates degree
                                              Bachelors degree
##
                             208
                                                            590
## Did not complete High school
                                               Doctoral degree
##
         High school degree/GED
                                                Masters degree
##
                             308
                                                            286
##
                            skip
##
                             276
```

Non-vegan 학력 시각화-pie 차트

#응답비율 구하기

```
##
##
                                            Bachelors degree
              Associates degree
##
                                                         33.4
                           11.8
## Did not complete High school
                                             Doctoral degree
##
                            2.4
                                                          3.1
         High school degree/GED
##
                                              Masters degree
##
                           17.5
                                                         16.2
##
                           skip
##
                           15.6
## [1] "208 명, 11.8%" "590 명, 33.4%" "42 명, 2.4%" "55 명, 3.1%"
                                                                     "308 명,
17.5%"
## [6] "286명, 16.2%" "276명, 15.6%"
```

최종학력

채식주의자(Vegan) 의 소득 분석

```
#결측치 값 skip 으로 변환
vegan_raw$income <-ifelse(is.na(vegan_raw$income), "skip", vegan_raw$income)</pre>
income <- gsub("250000", "$250,000+", vegan_raw$income)</pre>
#class3 변수에 응답수 할당
class3<- margin.table(x= table(income), margin=1)</pre>
class3
## income
                       $25,000-$50,000 $25,000 or under
                                                                   $250,000+
## $100,000-$250,000
                                    297
                                                       294
##
                                                                          27
##
   $50,000-$100,000
                                   skip
##
                 394
                                    251
```

```
#class.pct3 변수에 응답비율 할당
class.pct3 <- round(class3/sum(class3)*100, 1)</pre>
class.pct3
## income
## $100,000-$250,000
                       $25,000-$50,000 $25,000 or under
                                                                 $250,000+
##
                15.3
                                  19.9
                                                    19.7
                                                                       1.8
## $50,000-$100,000
                                  skip
##
                                  16.8
```

소득 시각화-pie 차트

```
lbl3 <- paste(names(class3), ": ", class3, "명, ", class.pct3, "%", sep= "")
lbl3

## [1] "$100,000-$250,000: 228 명, 15.3%" "$25,000-$50,000: 297 명, 19.9%"

## [3] "$25,000 or under: 294 명, 19.7%" "$250,000+: 27 명, 1.8%"

## [5] "$50,000-$100,000: 394 명, 26.4%" "skip: 251 명, 16.8%"

pie(class3, labels= lbl3, main = "소득수준", col =terrain.colors(6), cex.main= 2.5, col.main= "darkgreen")

소득수준

$25,000-$50,000: 297 명, 19.9%,

5100,000-$250,000: 297 명, 19.9%,

$250,000+: 27 명, 1.8%

$50,000-$100,000: 394 g, 26.4%
```

소득 시각화- fanplot 차트

```
fan.plot(class3,labels= lbl3,col =terrain.colors(6), main="소득수준", cex.main=2.5, col.main= "darkgreen", align='left',max.span=pi)
```


Non-Vegan 의 소득 분석

결측치 skip 으로 변경

```
#응답자수
## income
## $100,000-$250,000
                       $25,000-$50,000 $25,000 or under
                                                                 $250,000+
##
                 254
                                   367
                                                     317
                                                                         31
##
  $50,000-$100,000
                                  skip
##
                 429
                                   367
#응답비율
## income
## $100,000-$250,000
                       $25,000-$50,000 $25,000 or under
                                                                 $250,000+
##
                                  20.8
                                                    18.0
                                                                        1.8
                14.4
##
   $50,000-$100,000
                                  skip
##
                                  20.8
                24.3
```

Non-Vegan 소득 시각화- pie 차트

```
## [1] "$100,000-$250,000: 254명, 14.4%" "$25,000-$50,000: 367명, 20.8%"
## [3] "$25,000 or under: 317명, 18%" "$250,000+: 31명, 1.8%"
```


Non-Vegan 소득 시각화- fanplot 차트

Vegan 의 반려동물 분석

각항목 응답수, 응답비율 확인

```
#응답수
class4<- margin.table(x= table(pet), margin=1)</pre>
class4
## pet
##
                                                  Bird(s)
##
                                                       76
##
                                                   Cat(s)
##
                                                      671
                                                   Dog(s)
##
##
                                                      665
                                       None of the above
##
##
                                                      401
##
                                               Reptile(s)
##
                                                       47
## Small mammal(s) (ex. Rabbit, guinea pig, rat, etc.)
##
#응답비율
class.pct4 <- round(class4/sum(class4)*100, 1)</pre>
class.pct4
## pet
##
                                                  Bird(s)
##
                                                      3.8
##
                                                   Cat(s)
##
                                                     33.9
##
                                                   Dog(s)
##
                                                     33.6
##
                                       None of the above
##
                                                     20.3
                                               Reptile(s)
##
                                                      2.4
## Small mammal(s) (ex. Rabbit, guinea pig, rat, etc.)
```

vegan 의 반려동물 시각화- pie 차트

```
#라벨
lbl4 <- paste(names(class4), ": ", class4, "명, ", class.pct4, "%", sep= "")
lbl4

## [1] "Bird(s): 76 명, 3.8%"

## [2] "Cat(s): 671 명, 33.9%"

## [3] "Dog(s): 665 명, 33.6%"
```

반려동물들

Vegan 의 반려동물 시각화-fanplot 차트

```
1bl5 <- paste(c("파충류", "고양이", "강아지", "키우지 않음", "새", "작은 포유류"), ": ", class4, "명, ", class.pct4, "%", sep= "")
1bl5

## [1] "파충류: 76 명, 3.8%" "고양이: 671 명, 33.9%"

## [3] "강아지: 665 명, 33.6%" "키우지 않음: 401 명, 20.3%"

## [5] "새: 47 명, 2.4%" "작은 포유류: 118 명, 6%"

fan.plot(class4,labels= lbl5 ,col =terrain.colors(6), main="반려동물들", cex.main=2.5, col.main= "darkgreen", align='left', max.span=pi)
```


Non-Vegan 의 반려동물 분석

각항목 응답수, 응답비율 확인

```
#응답수
## pet
##
                                                Bird(s)
##
                                                     101
##
                                                 Cat(s)
##
                                                     742
##
                                                 Dog(s)
##
                                                     705
                                      None of the above
##
##
                                                     572
##
                                             Reptile(s)
## Small mammal(s) (ex. Rabbit, guinea pig, rat, etc.)
##
#응답비율
```

```
## pet
##
                                                  Bird(s)
##
                                                       4.4
##
                                                    Cat(s)
##
                                                      32.1
##
                                                    Dog(s)
##
                                                      30.5
##
                                        None of the above
##
                                                      24.7
##
                                               Reptile(s)
##
                                                       2.6
## Small mammal(s) (ex. Rabbit, guinea pig, rat, etc.)
##
```

Non-vegan 의 반려동물 시각화- pie 차트

```
## [1] "Bird(s): 101명, 4.4%"
## [2] "Cat(s): 742명, 32.1%"
## [3] "Dog(s): 705명, 30.5%"
## [4] "None of the above: 572명, 24.7%"
## [5] "Reptile(s): 61명, 2.6%"
## [6] "Small mammal(s) (ex. Rabbit, guinea pig, rat, etc.): 131명, 5.7%"
###
```

반려동물들

Non-vegan 의 반려동물 시각화-fanplot 차트

[1] "파충류: 101명, 4.4%" "고양이: 742명, 32.1%"

[3] "강아지: 705명, 30.5%" "키우지 않음: 572명, 24.7%"

[5] "새: 61명, 2.6%" "작은 포유류: 131명, 5.7%"

다음은 연령별 남자와 여자 수를 시각화해보았습니다.

라이브러리 로드

library(readxl)

library(dplyr)

library(ggplot2)

원본 데이터 파일 불러오기 및 필요 행 추출 - non_vegan

```
vegan_raw <- read_excel("C:/Rstudy/mini_team1/data/vegan_Raw_data_c.xls")</pre>
```

vegan_raw1 <- vegan_raw %>% filter(!(eat_beef == "Never" & eat_chicken == "Ne
ver" &eat_dairy == "Never" &

```
eat_eggs =="Never" & eat_fish_seafood
=="Never"& eat_pork =="Never"))
원본 데이터 파일 불러오기 및 필요 행 추출 - vegan
vegan_raw2 <- read_excel("C:/Rstudy/mini_team1/data/only_vegan.xlsx")</pre>
데이터 확인 - non-vegan
str(vegan raw1$gender)
str(vegan raw1$age)
데이터 확인 - vegan
str(vegan raw2$gender)
str(vegan_raw2$age)
결측치 확인 및 대체 - non-vegan
table(vegan_raw1$age)
vegan_raw1$gender <- ifelse(is.na(vegan_raw1$gender), "skip", vegan_raw1$gend</pre>
er)
vegan_raw1$age <- ifelse(is.na(vegan_raw1$age), "skip", vegan_raw1$age)</pre>
결측치 확인 및 대체 - vegan
table(vegan raw2$age)
vegan_raw2$gender <- ifelse(is.na(vegan_raw2$gender), "skip", vegan_raw2$gend</pre>
vegan_raw2$age <- ifelse(is.na(vegan_raw2$age), "skip", vegan_raw2$age)</pre>
이상치 대체 및 제거 확인- non-vegan
```

연령대별이 필요하기 때문에 정확할 필요는 없음 -> 40 대냐 50 대냐가 중요

```
vegan_raw1$age <- gsub(" years old", "", vegan_raw1$age)</pre>
vegan_raw1$age <- gsub("yrs", "", vegan_raw1$age)</pre>
vegan_raw1$age <- gsub(" years", "", vegan_raw1$age)</pre>
vegan_raw1$age <- gsub("Sixty four", 64, vegan_raw1$age)</pre>
vegan_raw1$age <- gsub(" yo", "", vegan_raw1$age)</pre>
vegan_raw1$age <- gsub("sixty-four", 64, vegan_raw1$age)</pre>
vegan_raw1$age <- gsub("20 and a half", 20, vegan_raw1$age)</pre>
vegan_raw1$age <- gsub("mid-50s", 55, vegan_raw1$age)</pre>
vegan_raw1$age <- gsub(" ", "", vegan_raw1$age)</pre>
vegan raw1$age <- ifelse(vegan raw1$age %in% c(1:120), vegan raw1$age, "skip</pre>
")
table(vegan_raw1$age)
```

```
str(vegan_raw1$age)
str(vegan_raw1$gender)
```

이상치 대체 및 제거 확인- vegan

```
vegan_raw2$age <- gsub(" years old", "", vegan_raw2$age)</pre>
vegan_raw2$age <- gsub("yrs", "", vegan_raw2$age)</pre>
vegan_raw2$age <- gsub(" yrs old", "", vegan_raw2$age)
vegan_raw2$age <- gsub(" year old", "", vegan_raw2$age)
vegan_raw2$age <- gsub(" year old", "", vegan_raw2$age)</pre>
vegan_raw2$age <- gsub("Twenty five.", 25, vegan_raw2$age)</pre>
vegan_raw2$age <- gsub("Sixty", 60, vegan_raw2$age)</pre>
vegan_raw2$age <- gsub(" old", "", vegan_raw2$age)</pre>
vegan raw2$age <- gsub("I will be 46 next month.", 46, vegan raw2$age)</pre>
vegan_raw2$age <- gsub("almost 54", 54, vegan_raw2$age)</pre>
vegan_raw2$age <- gsub("mid to upper 30's", 35, vegan_raw2$age)</pre>
vegan_raw2$age <- gsub("df", "", vegan_raw2$age)</pre>
vegan_raw2$age <- gsub("almost 54", 54, vegan_raw2$age)</pre>
vegan raw2$age <- gsub("51 almost 52", 51, vegan raw2$age)</pre>
vegan_raw2$age <- gsub("45-55", "skip", vegan_raw2$age)</pre>
vegan_raw2$age <- gsub("44.5", 44, vegan_raw2$age)</pre>
vegan_raw2$age <- gsub("40s", 40, vegan_raw2$age)</pre>
vegan_raw2$age <- gsub("25, also female is not a gender, it's a sex", 25, veg</pre>
an_raw2$age)
vegan_raw2$age <- gsub(" ", "", vegan_raw2$age)</pre>
vegan raw2$age <- ifelse(vegan raw2$age %in% c(1:120), vegan raw2$age, "skip</pre>
")
table(vegan raw2$age)
str(vegan raw2$age)
str(vegan_raw2$gender)
```

skip 제거 및 필요 컬럼 추출- non-vegan

```
non_vegan_age_gender <- vegan_raw1 %>% select(age, gender) %>% filter(age !=
"skip" & gender != "skip" & gender != "Non-gendered")
str(non_vegan_age_gender)
```

skip 제거 및 필요 컬럼 추출- vegan

```
vegan_age_gender <- vegan_raw2 %>% select(age, gender) %>% filter(age != "ski
p" & gender != "Non-gendered")
str(vegan_age_gender)
```

연령대 나누기- non-vegan

```
non_vegan_ageg_gender <- non_vegan_age_gender %>% mutate(ageg = ifelse(age < 20, "10 대", ifelse(age < 30, "20 대", ifelse(age < 40, "30 대", ifelse(age < 50, "40 대", ifelse(age<60, "50 대", ifelse(age<70, "60 대", ifelse(age<70, "70 대"))))))))))))
```

연령대 나누기- non-vegan

```
vegan_ageg_gender <- vegan_age_gender %>% mutate(ageg = ifelse(age < 20, "10 대", ifelse(age < 30, "20 대", ifelse(age < 40, "30 대", ifelse(age < 50, "40 대", ifelse(age<60, "50 대", ifelse(age<70, "60 대", ifelse(age<70, "70 대"))))))))))))))
```

확인- non-vegan

table(non_vegan_ageg_gender)

확인- non-vegan

table(vegan_ageg_gender)

그룹화 및 요약- non-vegan

```
non_vegan_ageg_gender_g <- non_vegan_ageg_gender %>% group_by(ageg, gender) %
>% summarise(n6 = n())
## `summarise()` has grouped output by 'ageg'. You can override using the
## `.groups` argument.
```

그룹화 및 요약- vegan

```
vegan_ageg_gender_g <- vegan_ageg_gender %>% group_by(ageg, gender) %>% summa
rise(n6 = n())
```

`summarise()` has grouped output by 'ageg'. You can override using the
`.groups` argument.

남자, 여자 값 반대로 주기- non-vegan

```
non_vegan_ageg_gender_g$n6[non_vegan_ageg_gender_g$gender == "Female"] = -non
_vegan_ageg_gender_g$n6

## Warning in non_vegan_ageg_gender_g$n6[non_vegan_ageg_gender_g$gender == :
number

## of items to replace is not a multiple of replacement length
```

남자, 여자 값 반대로 주기- vegan

```
vegan_ageg_gender_g$n6[vegan_ageg_gender_g$gender == "Female"] = -vegan_ageg_gender_g$n6
## Warning in vegan_ageg_gender_g$n6[vegan_ageg_gender_g$gender == "Female"]
## = -vegan_ageg_gender_g$n6: number of items to replace is not a multiple of
## replacement length
```

그래프 시각화- non-vegan

```
library(ggplot2)
ggplot(non_vegan_ageg_gender_g, aes(x = ageg, y = n6, fill = gender)) + geom_bar(stat = "identity", width = .9) +
    coord_flip() + scale_y_continuous(labels = abs) + ylim(-500,500) +
    theme_bw() +
    ggtitle("연령대별 남자 여자", subtitle = "non-vegan") +
    theme(plot.title = element_text(face = "bold", hjust = 0.5, size = 20, colo
r = "darkblue"),
    plot.subtitle = element_text(size = 15)) + xlab('연령대') + ylab('남자
여자 수')
```

그래프 시각화- vegan

```
library(ggplot2)
ggplot(vegan_ageg_gender_g, aes(x = ageg, y = n6, fill = gender)) + geom_bar
(stat = "identity", width = .9) +
    coord_flip() + ylim(-500,500) + theme_bw() +
    ggtitle("연령대별 남자 여자", subtitle = "vegan") +
    theme(plot.title = element_text(face = "bold", hjust = 0.5, size = 20, colo
r = "darkblue"),
        plot.subtitle = element_text(size = 15)) +
    xlab('연령대') + ylab('남자 여자 수')
```

연령대별 남자 여자

연령대별 남자 여자

