卒業論文

測域センサの反射強度を利用した視覚と行動の end-to-end 学習による人追従行動の模倣

Imitation-based end-to-end learning for human tracking behavior using reflected intensity from range sensors

2023年12月25日提出

指導教員 林原 靖男 教授

千葉工業大学 先進工学部 未来ロボティクス学科 20C1102 馬場 琉生

概要

測域センサの反射強度を利用した視覚と行動の end-to-end 学習による人追従行動の模倣

本研究室でも、機械学習を用いた画像に基づく人追従行動の生成に関する研究を行ってきた [1][2][3][4].

キーワード: 人追従, end-to-end 学習, モバイルロボット

abstract

Imitation-based end-to-end learning for human tracking behavior using reflected intensity from range sensors

keywords: Person following, End-to-end learning, Mobile robot

目次

第1章	序論	1
1.1	背景	1
1.2	関連研究	3
1.3	目的	5
1.4	論文の構成	6
第2章	要素技術	7
2.1	end-to-end 学習	7
2.2	深層学習	8
	2.2.1 Convolutional Neural Network (CNN)	8
2.3	LiDAR	9
2.4	RViz	10
第3章	提案手法	11
3.1	提案手法の概要	11
3.2	学習フェーズ	12
3.3	追従フェーズ	13
3.4	ルールベース制御器	14
3.5	ネットワーク構造	15
第 4 章	実験	16
4.1	実験の手順	16
4.2	実験装置	17

目次			vi
4.3	実験 1	LiDAR の反射強度の実験	18
	4.3.1	実験目的	18
	4.3.2	壁の反射強度	19
	4.3.3	再帰反射テープの反射強度	20
	4.3.4	学習する場所付近の反射強度	21
	4.3.5	反射強度を利用した人追従の実験	22
4.4	実験 2	提案手法による人追従の実験	23
	4.4.1	実験目的	23
	4.4.2	実験方法	23
	4.4.3	結果と考察	23
第5章	結論		26
参考文献			27
付録			29
謝辞			30

図目次

1.1	Proposed method [1]	2
1.2	The proposed method for learning of the person-following behavior $[4]$	3
1.3	Training the neural network [5]	4
1.4	The trained network is used to generate steering commands from a single	
	front-facing center camera. [5]	4
1.5	How the CNN "sees" an unpaved road. Top: subset of the camera im-	
	age sent to the CNN. Bottom left: Activation of the first layer feature	
	maps. Bottom right: Activation of the second layer feature maps. This	
	demonstrates that the CNN learned to detect useful road features on its	
	own, i.e., with only the human steering angle as training signal. We never	
	explicitly trained it to detect the outlines of roads. [5]	5
2.1	Structure of end-to-end learning	7
2.2	Training the neural network [?]	8
2.3	ImageNet classification with deep convolutional neural network [6]	8
2.4	Hokuyo 2DLiDAR (UTM-30LX) [7]	9
2.5	RViz (Display robot model and scan data)	10
3.1	The trained network is used to generate the robot's yaw angular velocity	
	from the RGB images	11
3.2	Sequence of proposed method	11
3.3	Output robot actions	12

図目次		viii
3.4	Wearing retroreflective tape	12
3.5	Proposed method in the learning phase	13
3.6	Without retroreflective tape	13
3.7	Proposed method in the following phase	14
3.8	Turn left toward the retroreflective tape	14
3.9	Turn right toward the retroreflective tape	15
3.10	Architecture of the network	15
4.1	The environment of the experiment	16
4.2	hogehoge	17
4.3	The developed system	17
4.4	hogehoge	18
4.5	Measure the reflection intensity of the wall	19
4.6	Measure the reflection intensity of retroreflective tape	20
4.7	Measure the reflection intensity of foyer	21
4.8	Learning and following phase courses	23
4.9	Histogram of angular velocity at success	24
4.10	Failed at the first corner	24
4.11	Histogram of angular velocity at failure	25

表目次

第1章

序論

1.1 背景

近年,機械学習を用いた自律移動に関しての研究が盛んに行われている.本研究室でも,機械学習を用いた画像に基づく人追従行動の生成に関する研究を行ってきた.

パシンら [1][2][3] は、引き紐を利用して画像に基づく人追従行動を生成する手法を提案している.これは、深層強化学習 [8] を用いており、引き紐に取り付けられたポテンショメータでリンクの角度を取得し、それに応じた報酬をエージェント(ロボット)に与えて強化学習 [9] することで、画像に基づいて人追従する行動を生成できることを示した。Fig. 1.1 にシステムの概要を示す。入力は画像で、出力は直進、左旋回、右旋回のいずれかの行動である。報酬は、引き紐を取り付けたリンクの角度に基づいており、人がロボットの正面に立つと報酬が高くなるように設定されている。ロボットは報酬が高くなるように行動を選択するため、引き紐を持つ人がロボットの正面になるように、左旋回や右旋回といった行動を選択する。引き紐を持つ人が正面にいる場合は、ロボットは直進を選択する。さまざまな行動と画像に対して、リンクの角度に応じた報酬を与えることで、徐々に人を追従する適切な行動を選択していった。しかし、強化学習の特性により、行動の選択がランダムに探索される場合がある。その結果、報酬の低い行動が選択され、追従対象者が望まない行動が発生する可能性がある。また、カメラ画像に基づく人追従行動を獲得するまでに約20分かかり、その間にロボットは望まない行動を繰り返すため、追従対象者に比較的負担がかかるという問題があった。

Fig. 1.1: Proposed method [1]

岡田ら [4] は、強化学習のような教師なし学習ではなく、深層学習 [10] という教師あり学習を用いて画像に基づく人追従行動を生成する手法を提案している。これは、後述する Bojarskiら [5] の技術 (end-to-end 学習)を人追従問題に応用しており、強化学習を使用していないため、ロボットの行動がランダムに選択されることはない。また、学習時はルールベース制御器でロボットを制御しているので、常に人を追従する。つまり、学習時にも人追従行動を獲得することができ、強化学習を採用する手法と比べて追従対象者の負担が少ないというメリットがある。Fig. 1.2 にシステムの概要を示す。まず、学習時は、追従対象者が引き紐を操作する。引き紐には同じくポテンショメータが取り付けられていて、ヨー関節の変位角が 0 度となるようにロボットは直進や左旋回、右旋回のいずれかの行動で制御される。並行して、これらの行動とカメラ画像を深層学習器にオンラインで end-to-end 学習する。学習後は、追従対象者が引き紐を操作しなくても、深層学習器によりカメラ画像を入力するだけで、出力は直進や左旋回、右旋回といった行動を選択する。つまり、学習時のルールベース制御器(引き紐による人追従行動)を模倣するように深層学習器(カメラ画像による人追従行動)は振る舞う。

(a) Learning phase

(b) Following phase

Fig. 1.2: The proposed method for learning of the person-following behavior [4]

1.2 関連研究

は、カメラ画像とステアリングの角度を教師信号とし、end-to-end 学習することで自動車の 自動運転に成功している。このシステムは、人間からの最小限の学習データで、車線のあるな しを問わず一般道や高速道路での渋滞中の走行を学習する。また、駐車場や未舗装路など、視

覚ガイダンスが不明瞭な場所でも運転することができます。本システムは,人間の操舵角のみを学習信号として,道路の特徴を検出するなどの必要な処理を内部表現として自動的に学習させる.

Fig. 1.3: Training the neural network [5]

学習後は、Fig. 1.4 に示すようにカメラ画像から直接、ステアリングコマンドを出力するシステムになっている。

Fig. 1.4: The trained network is used to generate steering commands from a single front-facing center camera. [5]

このため、例えば、道路の外周を検出するような明示的な学習は行っていない.

Fig. 1.5: How the CNN "sees" an unpaved road. Top: subset of the camera image sent to the CNN. Bottom left: Activation of the first layer feature maps. Bottom right: Activation of the second layer feature maps. This demonstrates that the CNN learned to detect useful road features on its own, i.e., with only the human steering angle as training signal. We never explicitly trained it to detect the outlines of roads. [5]

1.3 目的

1.4 論文の構成

第2章

要素技術

2.1 end-to-end 学習

Fig. 2.1: Structure of end-to-end learning

第2章 要素技術 8

2.2 深層学習

2.2.1 Convolutional Neural Network (CNN)

Fig. 2.2: Training the neural network [?]

Fig. 2.3: ImageNet classification with deep convolutional neural network [6]

第 2 章 要素技術 **9**

2.3 LiDAR

Fig. 2.4: Hokuyo 2DLiDAR (UTM-30LX) [7]

第 2 章 要素技術 10

2.4 RViz

Fig. 2.5: RViz (Display robot model and scan data)

第3章

提案手法

3.1 提案手法の概要

Fig. 3.1: The trained network is used to generate the robot's yaw angular velocity from the RGB images

Fig. 3.2: Sequence of proposed method

Fig. 3.3: Output robot actions

3.2 学習フェーズ

Fig. 3.4: Wearing retroreflective tape

Fig. 3.5: Proposed method in the learning phase

3.3 追従フェーズ

Fig. 3.6: Without retroreflective tape

Fig. 3.7: Proposed method in the following phase

3.4 ルールベース制御器

Fig. 3.8: Turn left toward the retroreflective tape

Fig. 3.9: Turn right toward the retroreflective tape

3.5 ネットワーク構造

Fig. 3.10: Architecture of the network

第4章

実験

4.1 実験の手順

Fig. 4.1: The environment of the experiment

Fig. 4.2: hogehoge

4.2 実験装置

Fig. 4.3: The developed system

表

Fig. 4.4: hogehoge

- 4.3 実験1LiDARの反射強度の実験
- 4.3.1 実験目的

4.3.2 壁の反射強度

(b) View from the side

Fig. 4.5: Measure the reflection intensity of the wall

4.3.3 再帰反射テープの反射強度

(b) View from the side

Fig. 4.6: Measure the reflection intensity of retroreflective tape

4.3.4 学習する場所付近の反射強度

Fig. 4.7: Measure the reflection intensity of foyer

4.3.5 反射強度を利用した人追従の実験

4.4 実験2提案手法による人追従の実験

4.4.1 実験目的

4.4.2 実験方法

Fig. 4.8: Learning and following phase courses

4.4.3 結果と考察

第4章 実験 24

Fig. 4.9: Histogram of angular velocity at success

Fig. 4.10: Failed at the first corner

Fig. 4.11: Histogram of angular velocity at failure

第5章

結論

参考文献

- [1] ティーラパップパシン, 林原 靖男, "強化学習を用いた移動ロボットの自律化に関する研究 一引き紐の角度を報酬とする人追従の提案一", 3E3-07, SI2017 (2017).
- [2] ティーラパップパシン,上田隆一,林原靖男,"強化学習を用いた移動ロボットの自律化に関する研究 一引き紐を用いて一定間隔で人追従する学習の性能評価一",2B3-14,SI2018 (2018).
- [3] ティーラパップパシン、林原靖男、上田隆一、"強化学習を用いた移動ロボットの自律化に関する研究 ——定の間隔で人を追従する行動の獲得に関する検討—"、日本機械学会ロボティクス・メカトロニクス講演会'18 予稿集, 1A1-M11 (2018).
- [4] 岡田真也,上田隆一,林原靖男,"引き紐を利用した視覚と行動の End-to-end 学習による移動ロボットの人追従行動の生成", 2A5-01, SI2019 (2019).
- [5] Mariusz Bojarski et al, "End-to-end Learning for Self-driving Cars", arxiv: 1604.07316, 2016.
- [6] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton, "Imagenet classification with deep convolutional neural networks", Advances in neural information processing systems, 2012.
- [7] 北陽電気, UTM-30LX (最終閲覧日:2023年12月18日), https://www.hokuyo-aut.co.jp/search/single.php?serial=21.
- [8] Hado van Hasselt, Arthur Guez, and David Silver, "Deep reinforcement learning with double q-learning", Thirtieth AAAI conference on artificial intelligence, 2016.
- [9] Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore, "Reinforcement learning: A survey", Journal of artificial intelligence research 4, pp.237-285, 1996.
- [10] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. "Deep learning", nature 521.7553

参考文献 28

(2015): 436-444.

[11] Yann Lecun et al, "Gradient-based learning applied to document recognition", Proceedings of the IEEE 86.11 (1998): 2278-2324.

付録

謝辞

本研究を進めるにあたり、1年に渡り、熱心にご指導を頂いた林原靖男教授に深く感謝いた します.