

Aum Amriteshwariye Namaha

ABC Tunned FOPID Controller For BLDC Motor Drive System Performance Analysis. Name SREELEKSHMI P Roll No.AM.EN.P2RAU20037

MTech (Robotics and Automation)
Department of Mechanical Engineering,
Amrita Vishwa Vidyapeetham,
Amritapuri Campus, Kollam

Advisor:

Sri Rajesh Kannan Megalingam
Director HuT LABS
Electronics and Communication Department, Amritapuri

Problem Definition

- Implementation of FOPID.
- Sectoral information hacking.
- Implementing inverter as well as buck converter.
- Tunning of FOPID.
- Improved settling time.
- Less steady state error.
- Better performance indices.

Glance Via the Work

Circuit Diagram and Mathematical Modelling

Contd

Block Diagram

Motor Parameters

Power: 240w

Speed: 2000rpm

Voltage: 220v

No. Of Poles: 4

Stator resistance: 2.8750 ohm

Stator inductance: 8.5 mH

Inertia: 0.0008kg.m^2

Emf Constant = 0.175 v.sec

Pseudo Code of ABC Algorithm

- 1: Initialize the population of solutions xij
- 2: Evaluate the population
- 3: cycle=1
- 4: repeat
- 5: Produce new solutions (food source positions) $\upsilon i,j$ in the neighbourhood of xi,j for the employed bees using the formula $\upsilon i,j = xi,j + \Phi ij(xi,j xk,j)$ (k is a solution in the neighbourhood of i, Φ is a random number in the range [-1,1])and evaluate them.
- 6: Apply the greedy selection process between xi and ui.
- 7: Calculate the probability values Pi for the solutions xi by means of their fitness values using the equation

$$P_i = \frac{fit_i}{\sum_{i=1}^{SN} fit_i}$$

 In order to calculate the fitness values of solutions we employed the following equation

$$fit_i = \begin{cases} \frac{1}{1+f_i} & \text{if } f_i \ge 0\\ 1+abs(f_i) & \text{if } f_i < 0 \end{cases}$$

Normalize Pi values into [0,1]

- 8: Produce the new solutions (new positions) vi for the onlookers from the solutions xi, selected depending on Pi, and evaluate them.
- 9: Apply the greedy selection process for the onlookers between xi and vi.

- 10: Determine the abandoned solution (source), if exists, and replace it with a new randomly produced solution xi for the scout using the equation xij=minj+rand(0,1)*(maxj-minj)
- 11: Memorize the best food source position (solution) achieved so far
 12: cycle=cycle+1
- 13: until cycle= Maximum Cycle Number (MCN)

Stability Analysis

BLDC motor modelling without tunning

Performance Indices

BLDC motor modelling with tunning

Performance Indices

Simulation

Results

Obtained a control strategy for BLDCM drive system.

Reduced settling time.

Reduced steady state error.

Good tracking.

Robust performance.

Improved characteristics than conventional bldcm.

Future Scope

Make the system sensor lessly.

Add weigheted as well as movable load.

Different motor parameters.

• THANK YOU