Universidad Tecnológica de la Mixteca

Clave DGP: 200089

Ingeniería Industrial

00108

PROGRAMA DE ESTUDIOS

NOMBRE DE LA ASIGNATURA		
	Simulación Industrial	FORESCH

SEMESTRE	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Décimo	114103M	80

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Otorgar al estudiante el conocimiento sobre la naturaleza de los sistemas reales, el aprendizaje de técnicas de modelado y herramientas para sistemas discretos y estocásticos aplicados a la industria, así como la habilidad para usar software de simulación para modelar un sistema y estimar las medidas de rendimiento y sus resultados.

TEMAS Y SUBTEMAS

1. Principios básicos de la simulación.

- 1.1. Introducción a la simulación.
- 1.2. Definiciones de simulación.
- 1.3. Ventajas y desventajas de la simulación.
- 1.4. Pasos para realizar un estudio de simulación.

2. Números pseudoaleatorios.

- 2.1. Generación de números pseudoaleatorios.
- 2.2. Propiedades de los números pseudoaleatorios.
- 2.3. Pruebas estadísticas para los números pseudoaleatorios.

3. Variables aleatorias.

- 3.1. Definición de variable aleatoria.
- 3.2. Tipos de variables aleatorias.
- 3.3. Determinación del tipo de distribución de un conjunto de datos.
- 3.4. Generación de variables aleatorias discretas.
- 3.5. Generación de variables aleatorias continuas.

4. Simulación de variables aleatorias.

- 4.1. Verificación y validación de los modelos de simulación.
- 4.2. Simulaciones no terminales o de estado estable.
- 4.3. Modelos de simulación.
- 4.4. Selección de lenguajes de simulación.

5. Simulación utilizando hojas de cálculo.

- 5.1. Tipo de modelos de simulación.
- 5.2. Ejemplos de modelos de simulación.
- 5.3. Análisis de resultados.

6. Simulación de sistemas de manufactura.

- 6.1. Introducción.
- 6.2. Objetivos de la simulación en manufactura.
- 6.3. Software de simulación para aplicaciones de manufactura.
- 6.4. Estructura de programación.
- 6.5. Construcción de un modelo.
- 6.6. Casos de estudio.

VICE-RECTORIA

ACADEMICA

ACTIVIDADES DE APRENDIZAJE

Revisión bibliográfica y comprensión de artículos científicos de frontera en el ámbito de simulación industrial. Realización de modelos de simulación de casos de estudio. Realización de proyecto final de modelación y simulación de un sistema de manufactura real para proponer as en los procesos que lo constituyan. La modelación debe estar validada estadísticamente al igual que las mejoras propuestas.

Universidad Tecnológica de la Mixteca

Clave DGP: 200089

Ingeniería Industrial

00109

PROGRAMA DE ESTUDIOS

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Al inicio del curso, el profesor indicará el procedimiento de evaluación que comprende tres exámenes parciales que tendrán una equivalencia del 50% y un examen ordinario equivalente al 50%, la suma de estos dos porcentajes dará la calificación final.

BIBLIOGRAFÍA

Libros Básicos:

- 1. Manufacturing Systems Modeling and Analysis. Guy L. Curry, Richard M. Feldman, Springer, 2nd Edition, 2011.
- Discrete-Event System Simulation. Jerry Banks, John S. Carson II, Barry L. Nelson, David M. Nicol. Pearson. 5th Edition. 2010.
- 3. Simulation Modeling Handbook: A Practical Approach. Christopher A. Chung. CRC Press. 2004.
- 4. Simulation Modeling and Arena. Manuel D. Rossetti. Wiley. 2nd Edition. 2015.

Libros de Consulta:

- Probabilidad y estadística aplicadas a la ingeniería. Douglas C. Montgomery, George C. Runger. Limusa Wiley, 2a Edición, 2003.
- 2. Simulation Using Promodel. Charles Harrell, Biman K. Ghosh, Royce O. Bowden. McGraw-Hill Science, 2nd Edition. 2004.
- Simulation with Arena. W. David Kelton, Randall P. Sadowski, Nancy B. Zupick, McGraw-Hill Education. 6th Edition, 2015.

PERFIL PROFESIONAL DEL DOCENTE

Maestro en Ciencias o Doctorado en Manufactura, o áreas afines, con experiencia en Simulación de Procesos de Manufactura e Industriales.

Vo. Bo.

DR. IGNACIO HERNANDEZ CASTILLO JEFE DE CARRERA

> JEFATURA DE CARRERA INGENIERÍA INDUSTRIMA

DR. AGUSTIN SANTIAGO ALVARADO

Autorizó

VICE-RECTOR ACADÉMICO

ACADÉMICA