

Universidade Federal da Fronteira Sul

Curso de Ciência da Computação

Disciplina: Circuitos Digitais

Professores: Luciano L. Caimi - Geomar Schreiner

Matrícula: 20240005644 Nota: 40

1,91

- 1. (1,5) Considere as afirmações abaixo e atribua (V) verdadeira ou (F) falsa para cada uma delas. Além disso corrija as afirmações falsas de forma a torná-las verdadeiras.
 - Segundo o teorema de Niquist-Shannon a taxa de amostragem de um sinal analógico deve ser de duas vezes a frequência máxima do sinal.
 - As etapas para conversão de um sinal analógico em digital são a amostragem, a quantização e o armazenamento digital.
 - (**F**) Uma conversão AD com taxa de amostragem de 1000 Hz, utilizando 8 bits por amostra produz 40000. Bytes ao longo de 5 minutos.
 - (F) O erro de quantização é diretamente proporcional a quantidade de bits utilizados para representar cada amostra.
 - (V) Considerando um sinal analógico com variação de 0V a 12V, a representação binária de uma amostra utilizando 8 bits, cujo valor é 11000110 equivale ao valor de 9.28125 volts

- 2. (2,0) Dado o circuito mostrado ao lado, obtenha:
 - a) a expressão; (não Simplificar)
 - b) a tabela-verdade;

2,3

- 3. (3,0) Dadas as expressões ao lado, para cada uma delas apresente:

 - ii) a simplificação algébrica;
- b) $S = \overline{A}.B + (A.B.C.(\overline{\overline{A} + (\overline{B}.C)}))$

- . (2,0) Simplifique utilizando mapa de Karnaugh
 - a) S(A,B,C) = maxitermos(1, 4, 6, 7) (())
 - b) R(A,B,C,D) = minitermos(0,1,2,4,5,6,7,9,13,15) (1)

1,5

- 5. (1,5) A partir do circuito CMOS a seguir obtenha:
 - a) A equação booleana
 - b) A tabela-verdade (indique tambémo estado (A) aberto ou (F) fechado dos transistores 1, 2, 3 e 4)

Boa Prova!

4161 1 1 1 10 8 1 0 10 D D + A J.D = S (B. C 5 2 4 3 1 Do 5 B 0 A A A 0 A F F F 1 A A 1 A 1 1000 A 1 0 A A F A A A F 0 A A 0 A A A 0 A A