

06/14/00

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

JC498 U.S. Pro
09/594528
06/14/00

In re Application of:

Kent A. Louviere

For: "Method Of Making A Plurality Of Interconnected Vials C-I-P"

Docket: 298.006

Group Art Unit:

Examiner:

Attention: Box Patent Application
 Assistant Commissioner For Patents
 Washington, D.C. 20231

Sir:

Enclosed are:

Express Mail Certificate
 U.S. Patent Application and Abstract (a total of 39 pages)
 16 Sheets of Drawings
 Combined Declaration and Power of Attorney
 Verified Statement Claiming Small Entity:
 Independent Inventor
 Cover Sheet Forwarding Assignment
 Assignment
 Information Disclosure Statement
 PTO Form 1449
 Before calculating the fee, cancel Claims _____.

The filing fee has been calculated as shown below:

FOR:	(Col.1)	(Col.2)	Small Entity	Other Than A	
				RATE	Fee
BASIC FEE				X	\$380
TOTAL CLAIMS	<u>19</u>	<u>0</u>		X11=\$	or
INDEP CLAIMS	<u>3</u>	<u>0</u>		X41=\$	or
MULTIPLE DEPENDENT CLAIM PRESENTED				+135=\$	or
				+270=\$	

*If the difference in Col. 1 is less than zero, enter "0" in Col. 2. TOTAL \$380 or TOTAL

— The Commissioner is hereby authorized to charge any fees, or additional fees which may be required, or credit any overpayment to Account No. N/A.

X A check in the amount of \$ 380 to cover the filing fee and/or N/A Assignment Recordal Fee is enclosed.

Respectfully submitted,

Date: 14-June-2000

C. Dean Domingue, Reg. No. 33,682
Domingue & Waddell, PLC
Suite 515, Box 75
600 Jefferson Street
Lafayette, Louisiana 70501
(337) 266-2304

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of:

Kent A. Louviere
For: "Method Of Making A Plurality Of Interconnected Vials C-I-P"
Docket: 298.006

Group Art Unit:

Examiner:

JC496 U.S. PTO
09/594528
06/14/00

Attention: Box Patent Application
Assistant Commissioner For Patents
Washington, D.C. 20231

"Express Mail" mailing label number EL635438796US

Date of Deposit 6/14/00

CERTIFICATE OF EXPRESS MAIL

I hereby certify that the attached, Transmittal Letter, Application and Abstract (39 pages total), 16 Sheets of Drawings, Declaration, Small Entity Status, a check for \$380 and a stamped postcard are being deposited with the United States Postal Service "Express Mail Post Office to Addressee" service under 37 C.F.R. 1.10 on the date indicated above and is addressed to the Assistant Commissioner for Patents, Washington, D.C. 20231.

Respectfully submitted,

Gloria Richard

**VERIFIED STATEMENT CLAIMING SMALL ENTITY
STATUS - INDEPENDENT INVENTOR**

Application or Patentee:

Attorney's Docket No. 298.006

Kent A. Louviere

Serial or Patent No.: 09/054,905

Filed or Issued: 3 April 1998

For: "Method of Making a Plurality of Interconnected Vials C-I-P"

**VERIFIED STATEMENT (DECLARATION) CLAIMING SMALL ENTITY
STATUS (37 CFR 1.9 (f) and 1.27(b) - INDEPENDENT INVENTOR**

As a below named inventor, I hereby declare that I qualify as an independent inventor as defined in 37 CFR 1.9 (c) for purposes of paying reduced fees under section 41 (a) and (b) of Title 35, United States Code, to the Patent and Trademark Office described in METHOD OF MAKING A PLURALITY OF INTERCONNECTED VIALS C-I-P

the specification filed herewith

Application serial no. _____ filed _____.

Patent no. _____, issued _____.

I have not assigned, granted, conveyed or licensed and am under no obligation under contract or law to assign, grant convey or license, any rights in the invention to any person who could not be classified as an independent inventor under 37 CFR 1.9 (c) if that person had made the invention, or to any concern under 37 CFR 1.9 (d) or a nonprofit organization under 37 CFR 1.9 (e).

Each person, concern or organization to which I have assigned, granted, conveyed or licensed or am under an obligation under contract or law to assign, grant, convey or license any rights in the invention is listed below:

no such persons, concern or organization

persons, concerns or organizations listed below*

*** NOTE:** Separate verified statements are required from each named person, concern or organization having rights to the invention averring to their status as small entities. (37 CFR 1.27)

FULL NAME: Kent A. Louviere

ADDRESS: 314 School Board Drive
New Iberia, LA 70560

Individual

Small
Business Concern

Nonprofit
Organization

I acknowledge the duty to file, in this application or patent, notification of any change in status resulting in loss of entitlement to small entity status prior to paying, or at the time of paying, the earliest of the issue fee or any maintenance fee due after the date on which status as a small entity is no longer appropriate (37 CFR 1.28 (b)).

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under section 1001 of Title 18 of the United States Code, and that such willful false statements may jeopardize the validity of the application, any patent issuing thereon, or any patent to which this verified statement is directed.

Kent A. Louviere

Signature of Inventor

6-6-00

Date

BACKGROUND OF THE INVENTION

This application is a continuation in part of application serial number 09/054,905 filed on April 3, 1998. This invention relates to a method and apparatus for molding a container. More particularly, but not by way of limitation, this invention relates to an apparatus and method for molding a container that has a closed end and an opened end, and wherein a material may be placed therein followed by the closing of the open end.

The injection molding of plastics is used to create a number of different objects such as caps, lids, and other plastic components. The prior art injection molding will consist of melting a plastic into a fluid state and injecting the liquid plastic into a mold. The mold will generally consist of a first section and a second section. The first section and the second section cooperate to form a mold cavity. The liquid plastic is injected into the mold. Thereafter, the liquid plastic is allowed to cool. The molded plastic article is then ejected from the mold, as is understood by those of ordinary skill in the art.

Prior art patents such as U. S. 5,560,939 to Nakagawa entitled "MOLD ASSEMBLY

10 COMPRISING A SLIDING MOLD INSERT ADAPTED FOR AUTOMATED INSERTION
AND REMOVAL" provide a mold insert that is reciprocally movable with the mold insert
coupling portion. Also, in U.S. 5,346,659 to Buhler et al entitled "METHOD FOR
PRODUCING A WELD-LINE FREE INJECTION MOLDED PLASTIC CONTAINER BODY
5 PORTION", the inventor describes an injection molding mechanism and method of its use for the
formation in a single sequence of operation of weld-line free cylindrical container body having a
central opening at one end. In yet another prior art device, U.S. 5,139,714 to Hettinga teaches a
process for injection molding a hollow plastic article in which a low pressure heat-activated gas is
injected in combination with a plastic material into a mold cavity of a plastic injection mold unit.

15
20
25

Despite these prior art molding techniques, there is a need for a mold apparatus and
method that will produce a container that generally includes a closed end, an opened end, and a
hollow inner member that can hold materials. For instance, the container may hold a medicine
such as a drug in tablet form. Alternatively, the container may be capable of holding medicine in
liquid form. After placement of the medicine within the container, the open end may be closed
according to prior art techniques such as a heat seal.

SUMMARY OF THE INVENTION

20

A device for molding a container is disclosed. The device will include a first member
including an opening defined therein. A manifold member operatively attached to the first end of

the first member for channeling a plastic fluid to an insert means is included. The insert means are positioned within the opening located within the first member, with the insert containing a first slide and a second slide. The first slide and second slide will have an extended position and a contracted position, and wherein the contracted position defines a cavity profile.

5

The second member will have a first end that contains a plurality of core pins. A piston is adapted to the second end of the second member for reciprocating the second member into engagement with the insert so that the first slide and second slide are moved to the contracted position. During the reciprocating motion, the plurality of core pins are received in the cavity profile. The apparatus will further comprise heater means for supplying a heat to the manifold means so that the plastic remains fluid. In one embodiment, the manifold member comprises a first plate with a first channel therein for channeling the plastic fluid therethrough and a second plate with a second channel therein cooperating with the first channel from the first plate for channeling the plastic fluid to the insert means.

10
15
20
25
30
35
40
45

The apparatus will further contain a first water supply means connected to the insert to supply a water to the insert. The apparatus will further contain a second water supply means connected to the first member. In the preferred embodiment, a cast heater element, operatively attached to the heater means is positioned within the first member so that the plastic fluid is heated before entering the insert. The water supply means may also connect to the first slide and to the second slide.

The apparatus may further comprise a first spring means, operatively associated with the first insert, for biasing the first slide outward from the opening, and second spring means, operatively associated with the second insert, for biasing the second slide outward from the opening. In the preferred embodiment, the reciprocating member comprises a piston operatively attached to the second member and wherein the second member comprises a retainer plate operatively attached to the piston and a stripper plate being operatively attached to the piston, the stripper plate being selectively detachable from the retainer plate. Also, a third water supply means for supplying a water stream to the core pins, and a fourth water supply means for supplying a water stream to the retainer plate is included. The apparatus may further comprise a second insert, with the second insert being biased with a second spring means, operatively associated with the second insert.

Also described herewith is a method of casting a container with a mold. The mold will include a first member that has an opening defined within a first end. The mold will further include a manifold member operatively attached to the first end of the first member for channeling a plastic fluid to an insert means. The insert means is positioned within an opening located within the first member, the insert means containing a first slide and a second slide, with the first slide and second slide having an extended position and a contracted position.

The mold will also contain a second member having a plurality of core pins contained thereon; and, a piston adapted to the second member for reciprocating the second member into engagement with the insert means. Therefore, the method comprises heating a plastic so that a

plastic fluid is formed, and thereafter channeling the plastic fluid into the manifold. Next, the plastic fluid is heated within the manifold and the plastic fluid is channeled through the first member and into the first slide and second slide. Next, the piston is moved so that the second member contacts the first slide and the second slide which in turn causes the contraction of the first slide and the second slide so that a cavity profile is formed. The core pins are placed into the cavity profile. The method allows for the injection of the plastic fluid into the cavity profile, and in turn, casting the plastic fluid about the core pins so that a container is formed.

30 In one embodiment, the first member further comprises cast heaters operatively associated with the first and second slide, and wherein the method further comprises heating the plastic fluid with the cast heaters, and wherein the step of channeling the plastic fluid through the first member and into the first and second slide includes flowing the plastic fluid through the cast heater so that the plastic fluid is maintained at a constant temperature.

5 The method further comprises introducing a first water stream into the first slide and introducing the first water stream into the second slide. The first water stream is circulated within the first member, and then exited from the first member. A second water stream may be introduced into the core pins, and the method includes circulating the second water stream within the core pins. Next, the second water stream is exited from the plurality of core pins. In the 20 preferred embodiment, the temperature of the plastic fluid within the manifold is measured. The temperature of the heater is adjusted in order to maintain the fluidity of the plastic. The method may further include measuring the temperature of the plastic fluid within the first slide and the

second slide and adjusting the temperature of the cast heater in order to maintain the plastic fluidity.

5 The mold may further contain an ejector plate operatively associated with the second member. The method further consist of reciprocating the piston away from the first end of the first member and allowing the first slide and second slide to expand. Next, the piston is reciprocated so that the ejector plate traverses the plurality of core pins so that the container surrounding the core pins is ejected.

10 The method may also include filling the container with a material. The material may be a drug in tablet form, or alternatively, the material may be a drug in a liquid form. A precise amount of material may be placed within the container. After the material is placed therein, the method may further include sealing the container by sealing the open end of the container.

20

In a second embodiment, which is the preferred embodiment of this application, a method of manufacturing a plurality of encapsulated interconnected vials is disclosed. The mold has a first member having attached thereto a plurality of core pins and a second member containing a first slide and a second slide. The first and second slide have an extended position and a contracted position. The method comprises contracting the first and second slide so that a plurality of cavity profiles linked together by a plurality of arms is formed.

Next, the plurality of core pins on the first member is inserted into the plurality of

cavity profiles so that the plurality of core pins are free standing and a plastic fluid is injected about the plurality of core pins to form a plurality of interconnected vials. Thereafter, the plurality of interconnected vials is ejected from the plurality of core pins.

5 Next, the plurality of interconnected vials is arranged into a holder tray and a compound is then placed into the plurality of interconnected vials. The open end is heat sealed in order to encapsulate the plurality of interconnected vials. The step of heat sealing includes clamping the plurality of interconnected vials into a heat sealing device. In the preferred embodiment, the heat sealing device contains a first arm and a second arm.

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
1080
1085
1090
1095
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1410
1415
1420
1425
1430
1435
1440
1445
1450
1455
1460
1465
1470
1475
1480
1485
1490
1495
1500
1505
1510
1515
1520
1525
1530
1535
1540
1545
1550
1555
1560
1565
1570
1575
1580
1585
1590
1595
1600
1605
1610
1615
1620
1625
1630
1635
1640
1645
1650
1655
1660
1665
1670
1675
1680
1685
1690
1695
1700
1705
1710
1715
1720
1725
1730
1735
1740
1745
1750
1755
1760
1765
1770
1775
1780
1785
1790
1795
1800
1805
1810
1815
1820
1825
1830
1835
1840
1845
1850
1855
1860
1865
1870
1875
1880
1885
1890
1895
1900
1905
1910
1915
1920
1925
1930
1935
1940
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
2005
2010
2015
2020
2025
2030
2035
2040
2045
2050
2055
2060
2065
2070
2075
2080
2085
2090
2095
2100
2105
2110
2115
2120
2125
2130
2135
2140
2145
2150
2155
2160
2165
2170
2175
2180
2185
2190
2195
2200
2205
2210
2215
2220
2225
2230
2235
2240
2245
2250
2255
2260
2265
2270
2275
2280
2285
2290
2295
2300
2305
2310
2315
2320
2325
2330
2335
2340
2345
2350
2355
2360
2365
2370
2375
2380
2385
2390
2395
2400
2405
2410
2415
2420
2425
2430
2435
2440
2445
2450
2455
2460
2465
2470
2475
2480
2485
2490
2495
2500
2505
2510
2515
2520
2525
2530
2535
2540
2545
2550
2555
2560
2565
2570
2575
2580
2585
2590
2595
2600
2605
2610
2615
2620
2625
2630
2635
2640
2645
2650
2655
2660
2665
2670
2675
2680
2685
2690
2695
2700
2705
2710
2715
2720
2725
2730
2735
2740
2745
2750
2755
2760
2765
2770
2775
2780
2785
2790
2795
2800
2805
2810
2815
2820
2825
2830
2835
2840
2845
2850
2855
2860
2865
2870
2875
2880
2885
2890
2895
2900
2905
2910
2915
2920
2925
2930
2935
2940
2945
2950
2955
2960
2965
2970
2975
2980
2985
2990
2995
3000
3005
3010
3015
3020
3025
3030
3035
3040
3045
3050
3055
3060
3065
3070
3075
3080
3085
3090
3095
3100
3105
3110
3115
3120
3125
3130
3135
3140
3145
3150
3155
3160
3165
3170
3175
3180
3185
3190
3195
3200
3205
3210
3215
3220
3225
3230
3235
3240
3245
3250
3255
3260
3265
3270
3275
3280
3285
3290
3295
3300
3305
3310
3315
3320
3325
3330
3335
3340
3345
3350
3355
3360
3365
3370
3375
3380
3385
3390
3395
3400
3405
3410
3415
3420
3425
3430
3435
3440
3445
3450
3455
3460
3465
3470
3475
3480
3485
3490
3495
3500
3505
3510
3515
3520
3525
3530
3535
3540
3545
3550
3555
3560
3565
3570
3575
3580
3585
3590
3595
3600
3605
3610
3615
3620
3625
3630
3635
3640
3645
3650
3655
3660
3665
3670
3675
3680
3685
3690
3695
3700
3705
3710
3715
3720
3725
3730
3735
3740
3745
3750
3755
3760
3765
3770
3775
3780
3785
3790
3795
3800
3805
3810
3815
3820
3825
3830
3835
3840
3845
3850
3855
3860
3865
3870
3875
3880
3885
3890
3895
3900
3905
3910
3915
3920
3925
3930
3935
3940
3945
3950
3955
3960
3965
3970
3975
3980
3985
3990
3995
4000
4005
4010
4015
4020
4025
4030
4035
4040
4045
4050
4055
4060
4065
4070
4075
4080
4085
4090
4095
4100
4105
4110
4115
4120
4125
4130
4135
4140
4145
4150
4155
4160
4165
4170
4175
4180
4185
4190
4195
4200
4205
4210
4215
4220
4225
4230
4235
4240
4245
4250
4255
4260
4265
4270
4275
4280
4285
4290
4295
4300
4305
4310
4315
4320
4325
4330
4335
4340
4345
4350
4355
4360
4365
4370
4375
4380
4385
4390
4395
4400
4405
4410
4415
4420
4425
4430
4435
4440
4445
4450
4455
4460
4465
4470
4475
4480
4485
4490
4495
4500
4505
4510
4515
4520
4525
4530
4535
4540
4545
4550
4555
4560
4565
4570
4575
4580
4585
4590
4595
4600
4605
4610
4615
4620
4625
4630
4635
4640
4645
4650
4655
4660
4665
4670
4675
4680
4685
4690
4695
4700
4705
4710
4715
4720
4725
4730
4735
4740
4745
4750
4755
4760
4765
4770
4775
4780
4785
4790
4795
4800
4805
4810
4815
4820
4825
4830
4835
4840
4845
4850
4855
4860
4865
4870
4875
4880
4885
4890
4895
4900
4905
4910
4915
4920
4925
4930
4935
4940
4945
4950
4955
4960
4965
4970
4975
4980
4985
4990
4995
5000
5005
5010
5015
5020
5025
5030
5035
5040
5045
5050
5055
5060
5065
5070
5075
5080
5085
5090
5095
5100
5105
5110
5115
5120
5125
5130
5135
5140
5145
5150
5155
5160
5165
5170
5175
5180
5185
5190
5195
5200
5205
5210
5215
5220
5225
5230
5235
5240
5245
5250
5255
5260
5265
5270
5275
5280
5285
5290
5295
5300
5305
5310
5315
5320
5325
5330
5335
5340
5345
5350
5355
5360
5365
5370
5375
5380
5385
5390
5395
5400
5405
5410
5415
5420
5425
5430
5435
5440
5445
5450
5455
5460
5465
5470
5475
5480
5485
5490
5495
5500
5505
5510
5515
5520
5525
5530
5535
5540
5545
5550
5555
5560
5565
5570
5575
5580
5585
5590
5595
5600
5605
5610
5615
5620
5625
5630
5635
5640
5645
5650
5655
5660
5665
5670
5675
5680
5685
5690
5695
5700
5705
5710
5715
5720
5725
5730
5735
5740
5745
5750
5755
5760
5765
5770
5775
5780
5785
5790
5795
5800
5805
5810
5815
5820
5825
5830
5835
5840
5845
5850
5855
5860
5865
5870
5875
5880
5885
5890
5895
5900
5905
5910
5915
5920
5925
5930
5935
5940
5945
5950
5955
5960
5965
5970
5975
5980
5985
5990
5995
6000
6005
6010
6015
6020
6025
6030
6035
6040
6045
6050
6055
6060
6065
6070
6075
6080
6085
6090
6095
6100
6105
6110
6115
6120
6125
6130
6135
6140
6145
6150
6155
6160
6165
6170
6175
6180
6185
6190
6195
6200
6205
6210
6215
6220
6225
6230
6235
6240
6245
6250
6255
6260
6265
6270
6275
6280
6285
6290
6295
6300
6305
6310
6315
6320
6325
6330
6335
6340
6345
6350
6355
6360
6365
6370
6375
6380
6385
6390
6395
6400
6405
6410
6415
6420
6425
6430
6435
6440
6445
6450
6455
6460
6465
6470
6475
6480
6485
6490
6495
6500
6505
6510
6515
6520
6525
6530
6535
6540
6545
6550
6555
6560
6565
6570
6575
6580
6585
6590
6595
6600
6605
6610
6615
6620
6625
6630
6635
6640
6645
6650
6655
6660
6665
6670
6675
6680
6685
6690
6695
6700
6705
6710
6715
6720
6725
6730
6735
6740
6745
6750
6755
6760
6765
6770
6775
6780
6785
6790
6795
6800
6805
6810
6815
6820
6825
6830
6835
6840
6845
6850
6855
6860
6865
6870
6875
6880
6885
6890
6895
6900
6905
6910
6915
6920
6925
6930
6935
6940
6945
6950
6955
6960
6965
6970
6975
6980
6985
6990
6995
7000
7005
7010
7015
7020
7025
7030
7035
7040
7045
7050
7055
7060
7065
7070
7075
7080
7085
7090
7095
7100
7105
7110
7115
7120
7125
7130
7135
7140
7145
7150
7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210
7215
7220
7225
7230
7235
7240
7245
7250
7255
7260
7265
7270
7275
7280
7285
7290
7295
7300
7305
7310
7315
7320
7325
7330
7335
7340
7345
7350
7355
7360
7365
7370
7375
7380
7385
7390
7395
7400
7405
7410
7415
7420
7425
7430
7435
7440
7445
7450
7455
7460
7465
7470
7475
7480
7485
7490
7495
7500
7505
7510
7515
7520
7525
7530
7535
7540
7545
7550
7555
7560
7565
7570
7575
7580
7585
7590
7595
7600
7605
7610
7615
7620
7625
7630
7635
7640
7645
7650
7655
7660
7665
7670
7675
7680
7685
7690
7695
7700
7705
7710
7715
7720
7725
7730
7735
7740
7745
7750
7755
7760
7765
7770
7775
7780
7785
7790
7795
7800
7805
7810
7815
7820
7825
7830
7835
7840
7845
7850
7855
7860
7865
7870
7875
7880
7885
7890
7895
7900
7905
7910
7915
7920
7925
7930
7935
7940
7945
7950
7955
7960
7965
7970
7975
7980
7985
7990
7995
8000
8005
8010
8015
8020
8025
8030
8035
8040
8045
8050
8055
8060
8065
8070
8075
8080
8085
8090
8095
8100
8105
8110
8115
8120
8125
8130
8135
8140
8145
8150
8155
8160
8165
8170
8175
8180
8185
8190
8195
8200
8205
8210
8215
8220
8225
8230
8235
8240
8245
8250
8255
8260
8265
8270
8275
8280
8285
8290
8295
8300
8305
8310
8315
8320
8325
8330
8335
8340
8345
8350
8355
8360
8365
8370
8375
8380
8385
8390
8395
8400
8405
8410
8415
8420
8425
8430
8435
8440
8445
8450
8455
8460
8465
8470
8475
8480
8485
8490
8495
8500
8505
8510
8515
8520
8525
8530
8535
8540
8545
8550
8555
8560
8565
8570
8575
8580
8585
8590
8595
8600
8605
8610
8615
8620
8625
8630
8635
8640
8645
8650
8655
8660
8665
8670
8675
8680
8685
8690
8695
8700
8705
8710
8715
8720
8725
8730
8735
8740
8745
8750
8755
8760
8765
8770
8775
8780
8785
8790
8795
8800
8805
8810
8815
8820
8825
8830
8835
8840
8845
8850
8855
8860
8865
8870
8875
8880
8885
8890
8895
8900
8905
8910
8915
8920
8925
8930
8935
8940
8945
8950
8955
8960
8965
8970
8975
8980
8985
8990
8995
9000
9005
9010
9015
9020
9025
9030
9035
9040
9045
9050
9055
9060
9065
9070
9075
9080
9085
9090
9095
9100
9105
9110
9115
9120
9125
9130
9135
9140
9145
9150
9155
9160
9165
9170
9175
9180
9185
9190
9195
9200
9205
9210
9215
9220
9225
9230
9235
9240
9245
9250
9255
9260
9265
9270
9275
9280
9285
9290
9295
9300
9305
9310
9315
9320
9325
9330
9335
9340
9345
9350
9355
9360
9365
9370
9375
9380
9385
9390
9395
9400
9405
9410
9415
9420
9425
9430
9435
9440
9445
9450
9455
9460
9465
9470
9475
9480
9485
9490

plurality of interconnected vials into a heat sealing device, and wherein the heat sealing device contains a first arm and a second arm. The first arm is lowered into engagement with the second arm, and heat is applied to the first arm. The temperature of the first arm is measured. A predetermined maximum temperature is set. Once the predetermined maximum temperature is exceeded, the heat applied is terminated.

DO
10
15
20
25

An advantage of the present invention includes the production of a hollow plastic article. Another advantage is the production of a container having a first end that is closed, and a second end that is opened. Yet another advantage is that after processing, the container can be filled with a material; thereafter, the open end may be sealed. Another advantage is that the material to be placed within the container may include a drug in liquid form or tablet form. Still yet another advantage is that an exact amount of the material (such as a pharmaceutical prescription) may be added into each individual container, and thereafter sealed. Another advantage is the use of a resin that allows for suitable flow properties during injection. Yet another advantage is the process leaves a small seam parting line about the produced product.

Yet another advantage is that the novel heat sealer device herein disclosed allows for sealing an interconnected row of vials. Another advantage is that the heat sealer device measures the time that heat is applied in order to seal the vials. Additionally, the heat sealer device measures the temperature, with a maximum temperature cut-off. Still yet another advantage is the injection of the material (including liquid) into the plurality of interconnected vials while the vials are positioned within a holder tray.

A feature of the present invention includes having a mold that contains a first stationary mold half and a second traveling mold half. Another feature of the present invention includes use of a sliding insert which is constructed in two cooperating halves. The sliding insert is fitted into an opening within the stationary mold half. Yet another feature includes the sliding insert is biased within the opening so that there is an expanded position. Another feature includes that the sliding insert may be biased into a contracted position by the traveling mold half.

Another feature includes a cavity profile is formed when the sliding insert is moved to the contracted position. In the preferred embodiment, the sliding insert contains a plurality of cavity profiles. Another feature includes a core pin is positioned on the traveling mold half, with the core pin being sized as to fit into the cavity profile. Still yet another feature includes a plurality of core pins may be attached to the traveling mold half, that cooperate with the cavity profiles of the sliding insert. Still yet another feature includes the core pins within the cavity profile form an annulus into which the plastic fluid is injected.

Yet another feature is the application of heat means to heat the manifold in order to keep the fluid plastic at the proper temperature. Another feature is the application of cast heaters to keep the plastic fluid at the proper temperature within the cavity profile during injection. Still yet another feature includes use of a water stream that cools the sliding inserts. Another feature is the use of a water stream injected within the core pin in order to cool the core pin. Yet another feature is having a free standing core pin that is not anchored within the cavity profile during the injection process.

BRIEF DESCRIPTION OF THE DRAWINGS

5

FIGURE 1 is a perspective view of the mold apparatus of the present invention.

FIGURE 2 is the mold apparatus of FIGURE 1 with the cold half of the mold advanced against the hot half of the mold.

FIGURE 3 is the mold apparatus of FIGURE 1 with the cold half having been retreated and with the ejector plate advanced.

FIGURES 4A & 4B are a cross-sectional view of the mold apparatus taken along line A-A of FIGURE 2.

FIGURES 5A & 5B are a cross-sectional view of the mold apparatus taken along line B-B of FIGURE 2.

FIGURE 6A, is the top view of one half of a slide insert member.

FIGURE 6B is the front view of the slide insert member half of FIGURE 6A.

FIGURE 6C is the side view of the slide insert member half of FIGURE 6A.

FIGURE 7 is a cross-sectional illustration of a core pin.

FIGURE 8 is a perspective view of a row of molded hollow plastic articles.

20 FIGURE 9 is a flow chart diagram of the logic employed with the heat sealer device of the present invention.

FIGURE 10 is a perspective view of the heat sealer device.

FIGURE 11 is a perspective view of the vial tray holder with injection means.

FIGURE 12 is a perspective view of the assembled heat sealer device illustrated in
FIGURE 10

FIGURE 13 is an illustration of the electrical components used with the heater sealer
5 device of FIGURE 10.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Referring to Fig. 1, a perspective view of the mold apparatus 2 of the present invention will now be described. The mold apparatus 2 generally consist of a first member 4 (also referred to as the hot half) that will be stationary during the process herein disclosed as well as a second member 6 (also referred to as the cold half) that is reciprocally movable into engagement with the first member 4 via the piston 8. The mold apparatus 2 will have operatively associated therewith a plastic supply 10 that is fed into a heater bin 12 where the plastic is made into a fluid (sometimes referred to as fluidize) so that the plastic can be flowed through the mold as will be further described. In the preferred embodiment, the plastic supply used is a resin which can be purchased from Dow Chemical Company under the trade name Metallocene Resin PT 1450. It has been found by applicant that this plastic resin sustains superior flow and curing properties under the system and method herein disclosed. During injection, this resin exhibits superior flow and cure properties so that the fluid plastic may be injected about the free standing core pin. The prior art injection molds exhibit poor flow qualities about free standing core pins (such as the free standing

core pin described herein); therefore, the teachings of this application solve this problem. Also, the novel system (including the disclosed resin) leaves an acceptable seam-line about the produced product. Prior art products contain large seam lines which are undesirable for several reasons including but not limited to an inherently weak joining plane as well as being bulky.

5 The first member 4 will comprise a manifold plate 14 that contains therein an inlet for receiving the fluid plastic as well as a channel means for channeling the fluid plastic to the retainer plate 16. The manifold plate 14 will also contain heating means 18 for heating the manifold plate
14. The heating means 18 generates an electrical heat that keeps the plastic fluid at the proper temperature in order to ensure the proper flow properties, as will be understood by those of ordinary skill in the art.

10
15
20

20

The retainer plate 16 is operatively attached to the mold base 20, with the mold base 20 having a first end face 22 and a second end face 24. The first end face 22 is attached to the retainer plate 16 and receives the fluid plastic. The second end face 24 will cooperate with the second member 6 as will be more fully explained. The second end face 24 contains an opening that will have disposed therein the slide insert members 26 and 28. The slide insert members 26, 28 are constructed in halves, with insert members 26, 28 being biased outward from the second end face 24. The slide insert members 26, 28 are wedged shaped. The slide insert members 26, 28 accommodate an extended position (such as shown in Figs. 1 and 3) as well as a contracted position (as shown in Fig. 2). The slide insert members 26, 28 will be described in greater detail later in the application.

Also as seen in Fig. 1, the mold base 20 contains the openings 30, 32, 34, 36, with these openings allowing communication of a water stream line to the slide insert members 26, 28. Thus, the opening 30 will have the input/output water lines 38, the opening 32 will have the input/output water lines 40, the opening 34 will have the input/output water lines 42, and the opening 36 will have the input/output water lines 44.

The mold apparatus 2 will also have operatively associated therewith the controller means 46 for controlling the injection process which includes the injection of fluid plastic, measuring and adjusting the heat means and cast heaters, as well as monitoring the water input and output lines.

The controller means 46 is well known in the art and is commercially available from American MSI Corporation under the mark 38 Zone Delta.

The second member 6 will generally consist of a bottom clamp plate 52, with the bottom clamp plate 52 being operatively attached to the piston 8. The retainer plate 54 is, in turn, operatively attached to the bottom clamp plate 52, with the retainer plate 54 having extending therefrom the guide pins 56, 58. The guide pins 56, 58 will cooperate with and serve as a guide rail for the ejector plate 60 as well as serving to guide the second member into engagement with the first member 4 by insertion of the guide pins 56, 58 into the cooperating apertures 62, 64.

20 The ejector plate 60 has a first face 65 and a second face 66. The ejector plate 60 is selectively detachable from the second member 6 via the secondary piston 67.

The core pins 68, 70 are also depicted in Fig. 1. The core pins 68, 70 are operatively

attached to the retainer plate 54, with the core pins 68, 70 extending outwardly through apertures contained in the ejector plate 60. The core pin 68 will be received within the slide insert 26 while the core pin 70 will be received within the slide insert 28. It should be noted that in the preferred embodiment, the retainer plate 54 may contain two rows of pins that would cooperate with two corresponding rows of insert members, with this feature being described in greater detail later in the application. The apparatus 2 will also contain a water input/output stream that will be fed into the second member 6 and ultimately into the core pins 68, 70.

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

Referring now to Fig. 2A, the mold apparatus 2 of Fig. 1 with the second member 6 (also referred to as the cold half) of the mold is seen advanced against the first member 4 (also referred to as the hot half) of the mold. It should be noted that like numbers appearing in the various figures refer to like components. Thus, the second member 6 has been advanced via the piston 8. The core pins 68, 70 have been advanced into the slide members 26, 28 respectively. The first face 65 is now abutted against the second face 24 of the first member 4. The advancement of the core pins 68, 70 and the second member 6, and in particular the first face 65, acts to contract the slide insert members 26, 28 via the biasing means. Once the insert slide members are contracted (as in the position seen in Fig. 2), a profile cavity is formed. The core pin inserted within the profile cavity will form an annulus into which the fluid plastic will be injected.

Fig. 2B is an expanded view of the core pin 68 received within the cavity profile 71A. The core pin 68 is not anchored within the cavity profile 71A. Instead, according to the novel teachings of this invention, the core pins 68 will be free standing within the cavity profile as

depicted in Fig. 2B. This is accomplished by use of the novel design of the slide insert 26, 28. Additionally, use of the said resin (Metallocene) allows for proper thickness of the resin between the tip 71B of the core pin 68 and the insert 28. Thus, the fluid plastic is injected about the pin 68 without core pin 68 deflection. As mentioned earlier, the free standing core pins within a cavity profile have caused problems with the prior art injection molds including but not limited to the deflection of the core pin which in turn causes the product to have walls of irregular thickness, etc.

Once the fluid plastic is injected, the piston will retract so that the second member 6 is again placed in the position as seen in Fig. 1. At this time, a container of plastic is formed about the core pins 68, 70. Next, the process entails moving the ejector plate 60 via the secondary piston 67 so that the ejector plate 60 is advanced as seen in Fig. 3. The act of advancing will cause the plastic container disposed about the core pins to be ejected from the core pins. Also, the biasing means that act against the slide insert member 26, 28 will bias the slide insert members 26, 28 outward as seen in Fig. 3. Thereafter, the secondary piston 67 will retract causing the ejector plate 60 to travel to the position seen in Fig. 1. The process for injecting another series of articles may commence.

Referring now to Figs. 4A-4B, a cross-sectional view of the mold apparatus 2 taken along line A-A of Fig. 2 will now be described. The first member 4 contains the manifold plate 14 which consist of a first section 80 and a second section 82, with the first section and second section containing the opening 84 for placement of a bolting member. The first member 4 further

contains the retainer plate 16 that will have disposed therein channels for placement of the electrical wiring members 86 and 88, with the wiring members 86, 88 leading to the cast heater elements 90, 92. The cast heating elements 90, 92 are disposed within cavities within the retainer plate 16 as well as the mold base 20. The cast heating elements 90, 92 are generally tubular and will have an inner bore through which the fluid plastic will flow. The fluid plastic will be channeled from within the manifold 14 to the compartments 94, 96 and into the bore of the heating elements.

10
15

The mold base 20 will have openings 98, 100 for placement of the slide insert members 26, 28. In the preferred embodiments, the slide insert member 26 contains lock members 102, 104 associated with a retainer plate 106. The slide insert member 28 contains lock members 108, 110 associated with a retainer plate 112. The slide insert member 26 has the biasing means 114 for biasing the slide insert 26 outward, while the slide insert member 28 has the biasing means 116 for biasing the slide insert 28 outward. Also, the slide cams 118, 120 are included, with the slide cam 118 having the opening 122 and the slide cam 120 will have the opening 124 so that the water lines may be passed to the cams. The slide cams 126, 128 are also included, with the slide cam 126 having the opening 130 and the slide cam 128 will have the opening 132 so that the water lines may be passed to the fitted therein.

The slide cams 118 and 120 will come together to form the cavity profile into which the core pin 68 is fitted while the slide cams 126, 128 will come together to form another cavity

profile into which the core pin 70 will cooperate. When the slide cams are retracted (as shown in Figs. 4A and 4B) a first passage 134 and a second passage 136 is formed so that the fluid plastic may pass from the inner bore of the cast heaters to the annulus areas 138 and 140 of the cavity profiles. It should be noted that the mold base 20 will contain the openings for insert of the guide rails 56, 58.

The second member 6 will be described with reference to Fig. 4B. The second member 6 will contain a stripper insert 144 that is in turn attached to the ejector insert 146 and are collectively referred to as the ejector plate 60. As seen in Fig. 4B, the stripper insert 144 and ejector insert 146 are attached in order to operate together. The ejector plate 60 is selectively detachable from the retainer plate 54. The ejector plate 60 and retainer plate 54 both contain openings that has disposed therethrough the core pins 68, 70. As shown in Fig. 4, the ejector plate 60 has the openings 150, 152 and the retainer plate 54 has the openings 154, 156. The retainer plate 148 and the ejector plate 60 contain the openings 158, 160 respectively, for placement of the guide pins 56 (not shown is the guide pin 58).

The retainer plate 54 is in turn connected to the bottom clamp plate 52, as previously described, which in turn is connected to the piston 8. The bottom clamp plate 52 will contain the openings 162, 164. The opening 162 aligns with the openings 154, 150 and opening 164 aligns with the openings 156, 152. The core pin 68 is disposed in opening 162 and the core pin 70 is disposed in the opening 164. The core pins will generally consist of a cylindrical member that contains an inner bore, with the core pins being described in greater detail later in the application.

The inner bore contains a concentric tubular member that forms an annulus. The bottom clamp plate 52 will contain a first channel 166 and a second channel 168 for a water stream input and output, with the first channel 166 injecting the water stream into inner bore and into the annulus and the second channel providing an outlet for the water stream from the annulus. There are also included the third channel 170 and fourth channel 172 that are provided for inputting and outputting a water stream to the core pin 70. The Fig. 4B also depicts the bores 173 for placement of attaching means such as bolts for attaching the various plates together.

The core pins disclosed herein are all of similar construction. The core pin 68 as seen in Fig. 7 has a first cylindrical surface 178 that includes a flanged section 179 with a seal therein, with the surface 178 surface extending to the chamfered surface 180 that in turn stretches to the second surface 182. As previously stated, an annulus 184 is created within the slide insert for injection of the fluid plastic. It should be noted that a metal-to-metal seal between the surface 180 and the plate 144 is formed so that the fluid plastic can not flow through the cold half 6. As noted earlier (and as seen in Fig. 4B), the core pin 68 contains the inner bore 186, with the inner bore 186 receiving a tubular member 188, with the tubular member 188 and the inner bore 186 forming another annulus 190. Thus, the water stream may be directed to the inner bore of the tubular member 188, out one end of the tubular member 188 and into the annulus 190, with the water channel 168 allowing an output for the water stream.

20

Referring now to Figs. 5A-5B, a cross-sectional view of the mold apparatus 2 taken along line B-B of Fig. 2 will now be described. Thus, the apparatus 2 includes the first section 80 that is

operatively attached to the second section 82, which in turn leads to the gate insert 20. As illustrated in Fig. 5A, the preferred embodiment contains a row of cast heater elements including 90A, 90B, 90C, 90D, 90E, 90F, 90G, 90H, 90I, 90J, 90K, 90L. The row of cast heater elements leads to the slide insert member 26. When the slide insert member 26 is in the contracted position 5 (as seen in Figs. 5A and 5B), the annulus cavity profiles 184A-184L are formed. The slide insert member 26, in the contracted position, also forms a rectangular extension cavity for entry by the fluid plastic, with the rectangular extension cavity being generally seen from 200A-200L and with the rectangular cavities being in communication with the annulus cavity profiles 184A-184L. Also patterned by the disclosed design is the wing tip cavities 202A-202L that are formed once the slide insert member 26 is in the contracted position. The wing tip cavities 202A-202L are in communication with each other as seen in Fig. 8 such that once the molding process has been completed and the row has been ejected, the row is linked together. Also included will be the water channels 204, 206 for inputting, circulating and withdrawing a water stream from the insert member 26.

The cold half 6 is also depicted in Figs. 5A-5B which includes the bottom clamp plate 52 that is attached to the retainer plate 54. The retainer plate 54 is selectively attachable to the ejector plate 60, with the ejector plate 60 containing the ejector insert 146 and the stripper insert 144 as previously described.

As shown in Fig. 5B, the invention includes the row of core pins 68A-68L and the concentrically placed tubular members 188A-188L. Therefore, a series of annuluses 190A-190L

are formed for channeling the water as previously defined. Fig. 5 also depicts the water channels 166 and 168 that allow for channeling the water into and out of the tubular members 188A-188L. As shown, the water channel 166 connects with the inner bore and the water channel 168 connects with the annulus space 190 with the direction of flow in the preferred embodiment being from the water channel 166 through the inner bore, into the annulus space 190 and into the water channel 168 thereby cooling the core pins.

Referring now to Figs. 6A, 6B, and 6C, the cross-sectional view of one half of a slide insert member 26 will now be described. It should be noted that the two halves comprise the slide insert member 26. The Fig. 6A slide insert member half will be referred to as 210. Thus, the slide insert member half 210 includes the indentation profiles that forms the rectangular extension cavities 200A-200L, the container profile cavities 212A-212L, and the wing tip cavities 202A-202L. The container profile cavities 212A-212L will extend to the open end 214A-214L, with the open ends 214A-214L concluding at the insert slide face 216. The slide insert half also has the opposite slide face 218 that abuts the gate insert 20.

The Fig. 6B depicts the front view of the slide insert member half 210. Thus, the open ends 214A-214L are represented along the insert slide face 216. The front view also illustrates the notches 220 and 222. Referring now to Fig. 6C, the side view of the slide insert member half 210 will now be described. Thus, this view shows the member half 210 rotated so that the wedge configuration is depicted. As shown, the insert slide face 216 is longer than the insert slide face 218. The Fig. 6C also depicts the open end 214L and ensuing profile that extends to the

rectangular extension 200L. The indentation 224 is used for placement of the biasing means with the biasing means used to bias the insert member outward. In the preferred embodiment, the biasing means is a conical spring.

5 Referring now to Fig. 7, the core pin 68 will be described in greater detail. The flanged section 179 contains a radially flat surface 230 for placement of a seal means, such as an o-ring, for sealing with the face of the bottom clamp plate 52. The first cylindrical surface 178 leads to the chamfered surface 180 which in turn extends to the second cylindrical surface 182. A conical surface 232 stretches from surface 182, with the conical surface concluding at the apex 234. Once the apex area 234 has been inserted into the insert member, the apex 234 and insert member will cooperate to allow flow of the fluid plastic about the core pin 68. The core pin 68 also contains the inner bore 186, with the inner bore 186 extending to the closed end 236. As described earlier, the tubular member 188 will be disposed therein so that a fluid may be pumped down the tubular member 188 and up through the annulus 190 thus formed.

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240A-240L
241A-241L
242A-242L
243A-243L
244A-244L
245A-245L
246A-246L
247A-247L
248A-248L
249A-249L
250A-250L
251A-251L
252A-252L
253A-253L
254A-254L
255A-255L
256A-256L
257A-257L
258A-258L
259A-259L
260A-260L
261A-261L
262A-262L
263A-263L
264A-264L
265A-265L
266A-266L
267A-267L
268A-268L
269A-269L
270A-270L
271A-271L
272A-272L
273A-273L
274A-274L
275A-275L
276A-276L
277A-277L
278A-278L
279A-279L
280A-280L
281A-281L
282A-282L
283A-283L
284A-284L
285A-285L
286A-286L
287A-287L
288A-288L
289A-289L
290A-290L
291A-291L
292A-292L
293A-293L
294A-294L
295A-295L
296A-296L
297A-297L
298A-298L
299A-299L
300A-300L
301A-301L
302A-302L
303A-303L
304A-304L
305A-305L
306A-306L
307A-307L
308A-308L
309A-309L
310A-310L
311A-311L
312A-312L
313A-313L
314A-314L
315A-315L
316A-316L
317A-317L
318A-318L
319A-319L
320A-320L
321A-321L
322A-322L
323A-323L
324A-324L
325A-325L
326A-326L
327A-327L
328A-328L
329A-329L
330A-330L
331A-331L
332A-332L
333A-333L
334A-334L
335A-335L
336A-336L
337A-337L
338A-338L
339A-339L
340A-340L
341A-341L
342A-342L
343A-343L
344A-344L
345A-345L
346A-346L
347A-347L
348A-348L
349A-349L
350A-350L
351A-351L
352A-352L
353A-353L
354A-354L
355A-355L
356A-356L
357A-357L
358A-358L
359A-359L
360A-360L
361A-361L
362A-362L
363A-363L
364A-364L
365A-365L
366A-366L
367A-367L
368A-368L
369A-369L
370A-370L
371A-371L
372A-372L
373A-373L
374A-374L
375A-375L
376A-376L
377A-377L
378A-378L
379A-379L
380A-380L
381A-381L
382A-382L
383A-383L
384A-384L
385A-385L
386A-386L
387A-387L
388A-388L
389A-389L
390A-390L
391A-391L
392A-392L
393A-393L
394A-394L
395A-395L
396A-396L
397A-397L
398A-398L
399A-399L
400A-400L
401A-401L
402A-402L
403A-403L
404A-404L
405A-405L
406A-406L
407A-407L
408A-408L
409A-409L
410A-410L
411A-411L
412A-412L
413A-413L
414A-414L
415A-415L
416A-416L
417A-417L
418A-418L
419A-419L
420A-420L
421A-421L
422A-422L
423A-423L
424A-424L
425A-425L
426A-426L
427A-427L
428A-428L
429A-429L
430A-430L
431A-431L
432A-432L
433A-433L
434A-434L
435A-435L
436A-436L
437A-437L
438A-438L
439A-439L
440A-440L
441A-441L
442A-442L
443A-443L
444A-444L
445A-445L
446A-446L
447A-447L
448A-448L
449A-449L
450A-450L
451A-451L
452A-452L
453A-453L
454A-454L
455A-455L
456A-456L
457A-457L
458A-458L
459A-459L
460A-460L
461A-461L
462A-462L
463A-463L
464A-464L
465A-465L
466A-466L
467A-467L
468A-468L
469A-469L
470A-470L
471A-471L
472A-472L
473A-473L
474A-474L
475A-475L
476A-476L
477A-477L
478A-478L
479A-479L
480A-480L
481A-481L
482A-482L
483A-483L
484A-484L
485A-485L
486A-486L
487A-487L
488A-488L
489A-489L
490A-490L
491A-491L
492A-492L
493A-493L
494A-494L
495A-495L
496A-496L
497A-497L
498A-498L
499A-499L
500A-500L
501A-501L
502A-502L
503A-503L
504A-504L
505A-505L
506A-506L
507A-507L
508A-508L
509A-509L
510A-510L
511A-511L
512A-512L
513A-513L
514A-514L
515A-515L
516A-516L
517A-517L
518A-518L
519A-519L
520A-520L
521A-521L
522A-522L
523A-523L
524A-524L
525A-525L
526A-526L
527A-527L
528A-528L
529A-529L
530A-530L
531A-531L
532A-532L
533A-533L
534A-534L
535A-535L
536A-536L
537A-537L
538A-538L
539A-539L
540A-540L
541A-541L
542A-542L
543A-543L
544A-544L
545A-545L
546A-546L
547A-547L
548A-548L
549A-549L
550A-550L
551A-551L
552A-552L
553A-553L
554A-554L
555A-555L
556A-556L
557A-557L
558A-558L
559A-559L
560A-560L
561A-561L
562A-562L
563A-563L
564A-564L
565A-565L
566A-566L
567A-567L
568A-568L
569A-569L
570A-570L
571A-571L
572A-572L
573A-573L
574A-574L
575A-575L
576A-576L
577A-577L
578A-578L
579A-579L
580A-580L
581A-581L
582A-582L
583A-583L
584A-584L
585A-585L
586A-586L
587A-587L
588A-588L
589A-589L
590A-590L
591A-591L
592A-592L
593A-593L
594A-594L
595A-595L
596A-596L
597A-597L
598A-598L
599A-599L
600A-600L
601A-601L
602A-602L
603A-603L
604A-604L
605A-605L
606A-606L
607A-607L
608A-608L
609A-609L
610A-610L
611A-611L
612A-612L
613A-613L
614A-614L
615A-615L
616A-616L
617A-617L
618A-618L
619A-619L
620A-620L
621A-621L
622A-622L
623A-623L
624A-624L
625A-625L
626A-626L
627A-627L
628A-628L
629A-629L
630A-630L
631A-631L
632A-632L
633A-633L
634A-634L
635A-635L
636A-636L
637A-637L
638A-638L
639A-639L
640A-640L
641A-641L
642A-642L
643A-643L
644A-644L
645A-645L
646A-646L
647A-647L
648A-648L
649A-649L
650A-650L
651A-651L
652A-652L
653A-653L
654A-654L
655A-655L
656A-656L
657A-657L
658A-658L
659A-659L
660A-660L
661A-661L
662A-662L
663A-663L
664A-664L
665A-665L
666A-666L
667A-667L
668A-668L
669A-669L
670A-670L
671A-671L
672A-672L
673A-673L
674A-674L
675A-675L
676A-676L
677A-677L
678A-678L
679A-679L
680A-680L
681A-681L
682A-682L
683A-683L
684A-684L
685A-685L
686A-686L
687A-687L
688A-688L
689A-689L
690A-690L
691A-691L
692A-692L
693A-693L
694A-694L
695A-695L
696A-696L
697A-697L
698A-698L
699A-699L
700A-700L
701A-701L
702A-702L
703A-703L
704A-704L
705A-705L
706A-706L
707A-707L
708A-708L
709A-709L
710A-710L
711A-711L
712A-712L
713A-713L
714A-714L
715A-715L
716A-716L
717A-717L
718A-718L
719A-719L
720A-720L
721A-721L
722A-722L
723A-723L
724A-724L
725A-725L
726A-726L
727A-727L
728A-728L
729A-729L
730A-730L
731A-731L
732A-732L
733A-733L
734A-734L
735A-735L
736A-736L
737A-737L
738A-738L
739A-739L
740A-740L
741A-741L
742A-742L
743A-743L
744A-744L
745A-745L
746A-746L
747A-747L
748A-748L
749A-749L
750A-750L
751A-751L
752A-752L
753A-753L
754A-754L
755A-755L
756A-756L
757A-757L
758A-758L
759A-759L
760A-760L
761A-761L
762A-762L
763A-763L
764A-764L
765A-765L
766A-766L
767A-767L
768A-768L
769A-769L
770A-770L
771A-771L
772A-772L
773A-773L
774A-774L
775A-775L
776A-776L
777A-777L
778A-778L
779A-779L
780A-780L
781A-781L
782A-782L
783A-783L
784A-784L
785A-785L
786A-786L
787A-787L
788A-788L
789A-789L
790A-790L
791A-791L
792A-792L
793A-793L
794A-794L
795A-795L
796A-796L
797A-797L
798A-798L
799A-799L
800A-800L
801A-801L
802A-802L
803A-803L
804A-804L
805A-805L
806A-806L
807A-807L
808A-808L
809A-809L
810A-810L
811A-811L
812A-812L
813A-813L
814A-814L
815A-815L
816A-816L
817A-817L
818A-818L
819A-819L
820A-820L
821A-821L
822A-822L
823A-823L
824A-824L
825A-825L
826A-826L
827A-827L
828A-828L
829A-829L
830A-830L
831A-831L
832A-832L
833A-833L
834A-834L
835A-835L
836A-836L
837A-837L
838A-838L
839A-839L
840A-840L
841A-841L
842A-842L
843A-843L
844A-844L
845A-845L
846A-846L
847A-847L
848A-848L
849A-849L
850A-850L
851A-851L
852A-852L
853A-853L
854A-854L
855A-855L
856A-856L
857A-857L
858A-858L
859A-859L
860A-860L
861A-861L
862A-862L
863A-863L
864A-864L
865A-865L
866A-866L
867A-867L
868A-868L
869A-869L
870A-870L
871A-871L
872A-872L
873A-873L
874A-874L
875A-875L
876A-876L
877A-877L
878A-878L
879A-879L
880A-880L
881A-881L
882A-882L
883A-883L
884A-884L
885A-885L
886A-886L
887A-887L
888A-888L
889A-889L
890A-890L
891A-891L
892A-892L
893A-893L
894A-894L
895A-895L
896A-896L
897A-897L
898A-898L
899A-899L
900A-900L
901A-901L
902A-902L
903A-903L
904A-904L
905A-905L
906A-906L
907A-907L
908A-908L
909A-909L
910A-910L
911A-911L
912A-912L
913A-913L
914A-914L
915A-915L
916A-916L
917A-917L
918A-918L
919A-919L
920A-920L
921A-921L
922A-922L
923A-923L
924A-924L
925A-925L
926A-926L
927A-927L
928A-928L
929A-929L
930A-930L
931A-931L
932A-932L
933A-933L
934A-934L
935A-935L
936A-936L
937A-937L
938A-938L
939A-939L
940A-940L
941A-941L
942A-942L
943A-943L
944A-944L
945A-945L
946A-946L
947A-947L
948A-948L
949A-949L
950A-950L
951A-951L
952A-952L
953A-953L
954A-954L
955A-955L
956A-956L
957A-957L
958A-958L
959A-959L
960A-960L
961A-961L
962A-962L
963A-963L
964A-964L
965A-965L
966A-966L
967A-967L
968A-968L
969A-969L
970A-970L
971A-971L
972A-972L
973A-973L
974A-974L
975A-975L
976A-976L
977A-977L
978A-978L
979A-979L
980A-980L
981A-981L
982A-982L
983A-983L
984A-984L
985A-985L
986A-986L
987A-987L
988A-988L
989A-989L
990A-990L
991A-991L
992A-992L
993A-993L
994A-994L
995A-995L
996A-996L
997A-997L
998A-998L
999A-999L
1000A-1000L
1001A-1001L
1002A-1002L
1003A-1003L
1004A-1004L
1005A-1005L
1006A-1006L
1007A-1007L
1008A-1008L
1009A-1009L
1010A-1010L
1011A-1011L
1012A-1012L
1013A-1013L
1014A-1014L
1015A-1015L
1016A-1016L
1017A-1017L
1018A-1018L
1019A-1019L
1020A-1020L
1021A-1021L
1022A-1022L
1023A-1023L
1024A-1024L
1025A-1025L
1026A-1026L
1027A-1027L
1028A-1028L
1029A-1029L
1030A-1030L
1031A-1031L
1032A-1032L
1033A-1033L
1034A-1034L
1035A-1035L
1036A-1036L
1037A-1037L
1038A-1038L
1039A-1039L
1040A-1040L
1041A-1041L
1042A-1042L
1043A-1043L
1044A-1044L
1045A-1045L
1046A-1046L
1047A-1047L
1048A-1048L
1049A-1049L
1050A-1050L
1051A-1051L
1052A-1052L
1053A-1053L
1054A-1054L
1055A-1055L
1056A-1056L
1057A-1057L
1058A-1058L
1059A-1059L
1060A-1060L
1061A-1061L
1062A-1062L
1063A-1063L
1064A-1064L
1065A-1065L
1066A-1066L
1067A-1067L
1068A-1068L
1069A-1069L
1070A-1070L
1071A-1071L
1072A-1072L
1073A-1073L
1074A-1074L
1075A-1075L
1076A-1076L
1077A-1077L
1078A-1078L
1079A-1079L
1080A-1080L
1081A-1081L
1082A-1082L
1083A-1083L
1084A-1084L
1085A-1085L
1086A-1086L
1087A-1087L
1088A-1088L
1089A-1089L
1090A-1090L
1091A-1091L
1092A-1092L
1093A-1093L
1094A-1094L
1095A-1095L
1096A-1096L
1097A-1097L
1098A-1098L
1099A-1099L
1100A-1100L
1101A-1101L
1102A-1102L
1103A-1103L
1104A-1104L
1105A-1105L
1106A-1106L
1107A-1107L
1108A-1108L
1109A-1109L
1110A-1110L
1111A-1111L
1112A-1112L
1113A-1113L
1114A-1114L
1115A-1115L
1116A-1116L
1117A-1117L
1118A-1118L
1119A-1119L
1120A-1120L
1121A-1121L
1122A-1122L
1123A-1123L
1124A-1124L
1125A-1125L
1126A-1126L
1127A-1127L
1128A-1128L

invention, the design and resin herein disclosed, allows for minimum formation of a seam parting line. Whereas, in the prior art, significant seam parting lines will be formed in the casting of vials, for instance, in blow molding and/or injection techniques.

5 The method of molding a container with according to the teachings of the present invention will now be described. First, the plastic is heated so that a fluid plastic is formed which is then channeled into the manifold 18/80. The fluid plastic will also be heated within the manifold and is further heated via the cast heaters 90. The cast heaters allow for the fluid plastic to be held at a relatively constant temperature. The fluid plastic will be channeled through the first member 4 and into the first slide 26 and channeled through the first member 4 and into the second slide 28. The piston 8 will be moved so that the second member 6 contacts the first slide insert 26 and the second slide insert 28 which in turn will contract the first slide 26 and the second slide 28 so that the previously described cavity profiles are formed. Continued advancement of the second member 6 will place the plurality of core pins into the cavity profiles. The controller means 46 will then inject the fluid plastic into the cavity profiles and the plastic is cast about the plurality of core pins so that a container is formed.

20 The method also includes introducing a first water stream into the first slide 26 via the water input lines 38/40 through the channels 204,206, as well as introducing the first water stream into the second slide 28 via the water input lines 42/44 through the channels, with the water being circulated through and exited from the first member 4. The method will further include introducing a second water stream into the plurality of core pins 68/70 and circulating the second

water stream within the plurality of core pins 68/70 and in turn exiting the second water stream from the plurality of core pins 68/70. During the process, the controller means 46 causes the measurement of the temperature of the fluid plastic within the first member 4 and in turn adjusting the temperature of the heaters in order to maintain the fluidity of the plastic. The method further comprises measuring the temperature of the fluid plastic within the first slide 26 and second slide 28 and in turn adjusting the temperature of the cast heaters 90A-90L in order to maintain the proper fluidity.

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

The method also includes reciprocating the piston 8 away from the end face 24 of the first member 4 so that the first slide 26 and second slide 28 are allowed to expand. As the second member 6 is withdrawn from contact with the hot half 4, the core pins 68/70 will have disposed thereon the deposited plastic. Next, the secondary piston 67 is allowed to advance so that the ejector plate 60 traverses the plurality of core pins 68/70 ejecting the containers from the plurality of core pins 68/70 so that the articles shown in Fig. 8 are formed.

The containers thus produced may be used a vial for medical purposes. Therefore, the method may further include providing a drug in a tablet embodiment and inserting the tablet into the open end of the vial (container). Next, the open end of the vial may be sealed so that the vial is a closed container. Alternatively, the method may include providing a drug in a liquid form and inserting the liquid into the open end of the vial, and thereafter, sealing the open end of the vial so that the vial is a closed container. The open end may be sealed via conventional means such as heat sealing. With the teachings of this invention, an exact amount of medicine may be placed

within the vial, with the exact prescription depending on the patient's particular medical requirements.

Referring now to Fig. 9, a flow chart diagram of the logic employed with the heat sealer device of the present invention will now be described. The first step 300 is to place the plurality of interconnected vials into the vial tray holder. The vial tray holder is adapted to contain a row of the interconnected vials, as will be described later in the application. The operator would then place the product, compound and/or liquid into the vials 302; preferably, the product is liquid and the liquid is injected into the vials.

Next, the clamp arms are closed 304 and heat is applied to at least one of the arms 306 (in the preferred embodiment, both arms are heated). The control system, which will be described in greater detail later in the application, will measure the amount of heat 308 via a temperature sensor means. If the temperature exceeds a predetermined limit as sensed by the temperature sensor means, the control system will terminate the applied heat 310. Concurrently therewith, the control system will also measure the amount of time that heat is applied 310. Once a predetermined amount of time has expired (which corresponds to the amount of time to heat seal and encapsulate the vials), the control system will terminate the applied heat 310. The system will allow for a light indicator, such as light emitting diode, to indicate the termination of applied heat

20 The operator can then unclamp 314 the arms from the row of vials, and thereafter, remove the row of encapsulated interconnected vials.

In Fig. 10, a perspective view of the heat sealer device 320 will now be described. The main unit 322 contains the electrical components and control system that activates and terminates the heat as previously mentioned. The electrical components and control system will be discussed with relation to Fig. 13 later in the application. The device 320 also contains the stationary arm 324 that is attached to the front side of unit 322. The stationary arm 324 has a first side 326 that is essentially flat. The stationary arm 324 conducts heat generated from the main unit 322 i.e. the arm 324 is heated. .

The second arm 328 is movable and will be maneuvered into engagement with the arm 324 via the lever means, seen generally at 330. The second arm 328 comprises a first bar 332 and a second bar 334. The first bar 332 contains a first terminal connector means 336 and a second terminal connector means 338 for supplying an electrical heat to the second arm 328. The second arm 328 is also heated. **Both arms are heated in this embodiment, even though it is possible to have only one arm heated for purposes of heat sealing.*..** The second arm further contains a base 340.

40
45
50
55
60
65
70
75

Fig. 11 is a perspective view of the vial tray holder 360 with injection means 362. The holder 360 has a first plate 364 with openings, a second plate 366 with openings, and a third base plate 368. The sides 369a, 369b are included for structural purposes, as will be readily understood by those of ordinary skill in the art. The plurality of interconnected vials produced as per the teachings of this invention is positioned within this holder, through the openings. The open end 370 of the vials face upward as shown in Fig. 11. The injection means can be a linear

tubular member 372 having projections 374 therefrom. The projections will be placed above the openings of the vials. In the preferred embodiment, a liquid is injected into the linear tubular member 372, and into the projections, which in turn is delivered into the vials. The liquid, for instance, may be a medicine.

5

Fig. 12 is a perspective view of the assembled heat sealer device illustrated in Fig. 10 with the tray holder 360 positioned there below. Hence, the operator would simply pull on the handle of the lever means 330 which would in turn pivot the arm 328 into contact with the arm 324. The vial ends are sandwiched between the two arms. Heat is applied as earlier stated thereby sealing the vials. Applying the logic of Fig. 9 for instance, the control system activates a light when the heating process is complete. The operator would then simply lift the handle, and then remove the tray 360.

Fig. 13 is an illustration of the electrical components used with the heater sealer device of Fig. 10 as set out on the circuit board of the present invention. The control system 400 is used to control the operation of the heat sealing system herein disclosed. It allows independent control of the heating and cooling periods, with adjustment ranges of 0.1 - 10 seconds for each cycle. The heating cycle is disabled when the cooling cycle is operational. Switch contact closure from a clamp micro-switch ensures that the heating cycle cannot begin unless the vials to be sealed are in place. The circuit may be triggered by pressing the PC board-mounted push button switch 402 or by contact closure from an external foot-switch. Three LED indicators (404, 406, 408) display the status of the board during the clamp, heating and cooling cycles. Test points 410, 412, 414

are provided on the board for use in calibration and troubleshooting. An external solid state relay is used to control current flow in the heater elements during the heat cycle.

5 The circuit consist of two cascaded one-shot multi-vibrator circuits, gating logic, and an AC power supply. Heating and cooling period calibration requires the adjustment of two board-mounted trimmer potentiometers.

One-shot multi-vibrator 416 (available from National Semiconductor under the part number lmc555cn) controls the heating cycle. A negative-going pulse at capacitor 418 (available from Panasonic under the part number ecu-s1h473kbb) triggers the timer. The width of the heat pulse is determined by timing capacitor 420 (available from Sprague under the part number 199d107x96r3da1) and an external 100k ohm, ten-turn, wire-wound potentiometer that is connected at header 422 (available from Molex under the parts number 22-23-2031). Adjusting potentiometer 424 (available from Bourns under the parts number 3386p-1-102) performs pulse width calibration. The wiper's voltage alters the threshold voltage for the integrated circuit (IC) 416, varying the pulse width accordingly.

20 Similarly, one-shot multi-vibrator 426 (available from National Semiconductor under the parts number lmc555cn) controls the cooling cycle. The falling edge of the timer integrated circuit 416 output pulse triggers 426. The width of the cool pulse is determined by timing capacitor 428 (available from Sprague under the parts number 199d107x96r3da1) and an external potentiometer connected at header 430 (available from Molex under the parts number wm4201-

nd). Adjusting potentiometer 432 (available from Bourns under the parts number 3386p-1-102) performs width calibration.

Resistor 434 (available from Yageo under the parts number cfr-25jb10k) and capacitor 436 (available from Sprague under the parts number 199d106x96r3aa1) prevent the multi-vibrators from triggering when AC power is first applied. The reset pins on IC 426 and IC 416 and held low until Vcc has stabilized. Once capacitor 436 has charged, the reset pins are held at Vcc potential. This configures IC 426 and IC 416 for operation as one-shot multi-vibrators.

To lock out the heating cycle during the cooling period, NAND gate 438 (available from Fairchild under the parts number 74act10pc) disables the trigger switch path. Once the output of IC 426 returns to a low state, IC 438 is held high. NAND gate 440 (available from Fairchild under the parts number 74act10pc) is then able to recognize the clamp switch and trigger switch contact closures.

The AC power supply consists of transformer 442 (available from Microtran Tamura under the parts number psd3-16), bridge rectifier 444 (available from Microsemi under the parts number rb152), capacitor 446 (available from Philips under the parts number 2222-021-35471), and IC voltage regulator 448 (available from National Semiconductor under the parts number lm340t-5.0-nd). Capacitors 450 , 452 (available from Panasonic under the parts number ecu-s1h224kbb) stabilize voltage regulator 448 under varying load conditions. Transient suppressor 454 (available from Diodes, Inc. under the parts number 1.5ke24ca) protects regulator 448 from

AC power line spikes. Capacitors 456, 458, 460 (available from Panasonic under the parts number ecu-s1h473kbb) are used to bypass integrated circuits 426, 416 and 438U4, respectively.

Push-button switch 402 (available from C & K under the parts number pt11sh9abe) initiates operation of the timer circuitry. Alternately, an external foot switch can be connected to header 464 (available from Molex under the parts number 22-23-2021) to perform the same operation. Capacitor 466 (available from Panasonic under the parts number ecu-s1h473kbb) provides transient protection and eliminates false triggering of the circuit due to static discharge. An alternate switch configuration is also possible with this design. When push-button 402 is not installed, an additional two-pin header would be installed at location 468 (available from Molex under the parts number 22-23-2021). An external push-button would then be connected to header 468.

The clamp switch connects to the PC board at header 470 (available from Molex under the parts number 22-23-2041), pins 1 and 3. The input of the solid state relay connects to pins 2 and 4. Driver 472 (available from Toshiba under the parts number td62003ap) controls operation of the HEAT, COOL, and CLAMP LEDs as well as current flow to the input of the solid state relay. During the heating cycle, the output of the timer IC 416 is high. This causes IC 474, pin 15 (available from Toshiba under the parts number td62003ap) to go low, turning on LED 406. Simultaneously, IC 474, pin 14 goes low, providing current flow for the input path of the solid state relay. Similarly, IC 474, pin 16 goes low during the cooling cycle and 474, pin 13 goes low when the clamp switch is closed. It should also be noted that test points 476, 478 (available from

Keystone, vendor category number 5013k-nd and 5011k-nd respectively) ground 480 and a NAND gate 482 similar to 438 is included.

Changes and modifications in the specifically described embodiments can be carried out
5 without departing from the scope of the invention which is intended to be limited only by the scope of the appended claims.

100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I claim:

1. A method of manufacturing a plurality of encapsulated interconnected vials with a mold having a first member having attached thereto a plurality of core pins and a second member containing a first slide and a second slide, and wherein said first slide and said second slide have an extended position and a contracted position, and wherein the method comprises:

-contracting said first slide and said second slide so that a plurality of cavity profiles linked together by a plurality of arms are formed;

-inserting the plurality of core pins on said first member into said plurality of cavity profiles so that said plurality of core pins are free standing;

-injecting a plastic fluid about said plurality of core pins to form a plurality of interconnected vials;

-ejecting the plurality of interconnected vials from the plurality of core pins;

-positioning the plurality of interconnected vials into a holder tray;

-placing a liquid into the plurality of interconnected vials;

-heat sealing the open end of the plurality of interconnected vials in order to encapsulate said plurality of interconnected vials.

2. The method of claim 1 wherein the step of heat sealing includes:

20 -clamping the plurality of interconnected vials into a heat sealing device, and wherein the heat sealing device contains a first arm and a second arm;

-lowering the first arm into engagement with the second arm;

- applying heat to the first arm;
- measuring the temperature of the first arm;
- measuring the time heat is applied to said first arm.

5

3. The method of claim 2 further comprising.

- terminating the heat applied to said first arm after a predetermined time;
- unclasping the first arm from the second arm;
- removing the plurality of interconnected vials from said holder.

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

4. The method of claim 3 wherein the liquid comprises a medicine and wherein the step of placing the liquid into the plurality of interconnected vials includes measuring a predetermined amount of medicine and injecting the predetermined amount of the medicine into the plurality of interconnected vials.

5. The method of claim 2 wherein the step of heat sealing includes:

- clamping the plurality of interconnected vials into a heat sealing device, and wherein the heat sealing device contains a first arm and a second arm;
- lowering the first arm into engagement with the second arm;
- applying heat to the first arm;
- measuring the temperature of the first arm;
- setting a predetermined maximum temperature;
- exceeding the predetermined maximum temperature;

20

-terminating the heat applied after exceeding the predetermined maximum temperature.

6. A method of molding a plurality of interconnected vials with a mold, said mold comprising a first member having a first end and a second end, including an opening defined within said first end; a manifold member operatively attached to said second end of said first member for channeling a plastic fluid to an insert means, said insert means being positioned within the opening located within said first member, said insert means containing a first slide and a second slide, with said first slide and said second slide having an extended position and a contracted position; a second member having a first end and a second end, and wherein said first end of said second member has attached thereto a plurality of core pins contained therein; the method comprising:

-heating a plastic so that the plastic is fluidized;

-channeling the plastic fluid into the manifold;

-injecting the plastic fluid into the manifold;

-moving said piston so that said first end of said second member contacts said first slide and said second slide;

-injecting the plastic fluid through said first member;

-contracting said first slide and said second slide so that said first end of said second member abuts the first end of said first member;

-forming a plurality of cavity profiles within said contracted first slide and said second slide and wherein said plurality of cavity profiles are in communication forming a plurality

of arm contours;

-placing said plurality of core pins into said plurality of cavity profiles so that said plurality of core pins are free standing within said plurality of cavity profiles;

5 -injecting the plastic fluid into said plurality of cavity profiles and into said plurality of arm contours interconnected together via a plurality of arms;

-allowing the first slide and second slide to expand;

-ejecting the plurality of interconnected vials from the plurality of core pins;

-placing the plurality of interconnected vials into a vial holder tray.

7. The method of claim 6 wherein the plurality of interconnected vials comprises a first end that is closed and a second end that is opened and wherein the method further comprises:

-placing a medicine within said open end of said plurality of interconnected vials.

8. The method of claim 7 further comprising:

20 -placing the open end of said plurality of interconnected vials within a heat sealer device, said heat sealer device comprising a first arm and a second arm;

-clamping said plurality of interconnected vials within said first arm and second arm,

-applying heat to said first arm;

-measuring the amount of heat applied to said first arm;

-measuring the time the heat is applied to said first arm;

-terminating the heat after a predetermined amount of time has expired.

9. The method of claim 8 further comprising:

- unclasping said first arm from said second arm;
- removing said plurality of interconnected vials from the vial holder tray;
- separating said plurality of interconnected vials.

5

10. The method of claim 9 wherein the medicine is a liquid and the step of placing the liquid into the plurality of interconnected vials includes measuring a predetermined amount of liquid and injecting the liquid into the open end of the plurality of interconnected vials.

11. The method of claim 10 wherein said first member further comprises a plurality of cast heaters operatively associated with said first slide and said second slide, and wherein the step of maintaining the plastic fluid at a constant temperature comprises:

- heating the plastic fluid with said cast heaters;
- and wherein the step of channeling the plastic fluid through said first member and into said insert means includes flowing the plastic fluid through said cast heater so that the plastic fluid is maintained at a constant temperature.

12. The method of claim 11 wherein the step of channeling the water stream through said mold comprises:

20

- introducing a first water stream into said first slide;
- introducing the first water stream into said second slide;
- circulating the first water stream within said first slide and said second slide;

-exiting the first water stream from said first slide and said second slide.

13. The method of claim 12 wherein the step of channeling the water stream through said mold further comprises:

5 - introducing a second water stream into said plurality of core pins;
- circulating the second water stream within said plurality of core pins;
- exiting the second water stream from said plurality of core pins.

14. The method of claim 13 wherein the step of maintaining the plastic fluid within said manifold at a constant temperature further comprises :

- measuring the temperature of said plastic fluid within said manifold;
- adjusting the temperature of said heater in order to maintain the plastic fluidity.

15. The method of claim 14 wherein the plastic fluid is a metallocene resin.

16. A method of producing a plurality of interconnected vials in a mold, the mold comprising a first member having a first end and a second end, including an opening defined within said first end; a manifold member operatively attached to said second end of said first member for channeling a plastic fluid to a first slide and a second slide positioned within the opening, with said first slide and said second slide having an extended position and a contracted position; a second member having a first end and a second end, and wherein said first end of said second member contains a plurality of core pins contained therein; an ejector plate selectively

attachable to said second member, said plurality of core pins being disposed therethrough; and, a piston adapted to said second end of said second member for reciprocating said second member into engagement with said first slide and said second slide, the method comprising:

-heating a plastic so that a plastic fluid is formed;

5 -injecting the plastic fluid through said first member and into said first slide and said second slide;

-moving said piston so that said second member contacts said first slide and said second slide;

-contracting said first slide and said second slide so that said contracted first slide and said second slide form a plurality of cavity profiles and wherein said plurality of cavities are linked together by a plurality of arms, said cavity profiles having a first end and a second end, with the first end containing a wing tip contour, and the second end being opened;

-placing said plurality of core pins into said plurality of cavity profiles and wherein said plurality of core pins are in a free standing arrangement within said cavity profiles;

-injecting the plastic fluid into said cavity profiles;

-injecting the plastic fluid about said plurality of core pins so that the plasticized fluid is disposed about said core pin so that the plurality of interconnected vials are formed;

-reciprocating the piston away from the first end of said first member;

-allowing the first slide and second slide to expand;

20 -reciprocating the piston so that the ejector plate axially traverses the plurality of core pins;

-ejecting the plurality of interconnected vials from the plurality of core pins, and

wherein the plurality of interconnected vials comprises a first end that is closed and a second end that is opened;

- placing said plurality of interconnected vials within a holder tray;
- placing a flowable compound within said plurality of interconnected vials.

5

17. The method of claim 16 further comprising:

- placing the open end of said plurality of interconnected vials within a heat sealer device, said heat sealer device comprising a first arm and a second arm;
- clamping said plurality of interconnected vials within said first arm and second arm;
- applying heat to said first arm;
- measuring the amount of heat applied;
- measuring the time the heat is applied;
- terminating the heat after a predetermined amount of time has expired.

10
15
20

18 The method of claim 17 further comprising:

- unclasping said first arm from said second arm;
- removing said plurality of interconnected vials from the vial holder tray;
- separating said plurality of interconnected vials.

20

19. The method of claim 18 wherein the medicine is a liquid and the step of placing the liquid into the plurality of interconnected vials includes measuring a predetermined amount of liquid and injecting the liquid into the open end of the plurality of interconnected vials.

ABSTRACT OF THE DISCLOSURE

5 A device for molding a container is disclosed. The device will include a first member including an opening defined therein. A manifold member, operatively attached to the first member for channeling a plastic fluid to an insert means, is included. The insert means are positioned within the opening located within the first member, with the insert containing a first slide and a second slide. The first slide and second slide will have an extended position and a contracted position, and wherein the contracted position defines a cavity profile. The second member will have a first end that contains a plurality of core pins. A piston is adapted to the second end of the second member for reciprocating the second member into engagement with the insert so that the first slide and second slide are moved to the contracted position. During the reciprocating motion, the plurality of core pins are received in the cavity profile. The apparatus will further comprise heater means for supplying a heat to the fluidized plastic. Also described herewith is a method of casting a container with a mold, with the container being used as a medical vial.

10

15

FIGURE 1

FIGURE 2

FIGURE 3

SECTION B-B
FIGURE 4A

20

FIGURE 4B

FIGURE 5A SECTION A-A

SECTION A-A
FIGURE 5B

FIGURE 6A

FIGURE 6B

210
214L
216
204
200L
218
206
224

FIGURE 6C

FIGURE 7

FIGURE 8

Fig. 9

Fig. 10

Fig. 11

+

Fig. 12

+

Fig. 13

**DECLARATION AND POWER OF ATTORNEY--
ORIGINAL APPLICATION**

Attorney's Docket No. 298.006

As a below-named inventor, I hereby declare that:

Kent A. Louviere

My residence, post office address and citizenship are as stated below next to my name;

Kent A. Louviere
314 School Board Drive
New Iberia, LA 70560

I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled, **METHOD OF MAKING A PLURALITY OF INTERCONNECTED VIALS C-I-P**, the specification of which

(check one) X is attached hereto.

 was filed on as
Application Serial No.
and was amended on
(if applicable).

I hereby state that I have reviewed and understand the content of the above-identified specification, including the claims, as amended by any amendment referred to above.

I acknowledge the duty to disclose information which is material to the examination of this application in accordance with Title 37, Code of Federal Regulations, § 1.56(a).

I hereby claim foreign priority benefits under Title 35, United States Code, § 119 of any foreign application(s) for patent or inventor's certificate listed below and have also identified below any foreign application for patent or inventor's certificate having a filing date before that of the application on which priority is claimed:

Prior Foreign Applications: N/A

Priority

Claimed

(number) (country) (Day/Month/Year filed)

Yes

No

I hereby claim the benefit under Title 35, United States Code, § 120 of any United States application(s) listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first paragraph of Title 35, United States Code, § 112, I acknowledge the duty to disclose material information as defined in Title 37, Code of Federal Regulations, § 1.56(a) which occurred between the filing date of the prior application and the national or PCT international filing date of this application:

09/054,905 **3 April 1998** **Pending**
(Application Serial No.) **(Filing Date)** **(Status-patented, pending, abandoned)**

Power of Attorney: As a named inventor, I hereby appoint the following attorney(s) and/or agent(s) to prosecute this application and transact all business in the Patent and Trademark Office connected therewith: C. Dean Domingue, Registration No. 33,682, Robert L. Waddell, Registration No. 35,795 and Henry Naylor, Registration No. 35,795.

Send Correspondence To:

Direct Telephone Calls To:

C. Dean Domingue
U.S. Registered Patent Attorney
Domingue & Waddell, PLC
Suite 515, Box 75
600 Jefferson Street
Lafayette, LA 70501

C. Dean Domingue
(337) 266-2304
(337) 266-2305 (Fax)

Full Name of Inventor:

Family Name

First Given Name

Second Given Name

Louviere

Kent

A.

Residence & Citizenship:

City

State or Foreign Country

Country of Citizenship

New Iberia

Louisiana

USA

Address:

City

State

Zip Code

Country

314 School Board Drive

New Iberia

Louisiana

70560

USA

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code, and that such willful false statements may jeopardize the validity of the application or any patent issuing thereon.

Signature of Inventor

Kent A. Louviere

Date: 6.6.00