



### Soluciones Parcial 2

17 de abril de 2020

### Ejercicio 1 [1 punto]

Recuerde la demostración de Euclides de la existencia de infinitos primos: si  $p_1, \ldots, p_k$  fueron todos los primos, habría que cualquier factor primo p de  $n = p_1 \ldots p_k + 1$  sería diferente de los  $p_i$ . Adapte esa demostración para mostrar que, dado cualquier campo F, existen infinitos polinomios mónicos irreducibles en F[x].

Demostración. Solución Supongamos, por absurdo, que existan un número finito de polinomios mónicos irreducibles en F[x]. Sean  $f_1(x), \ldots, f_n(x)$  todos los polinomios mónicos irreducibles. Consideramos el polinomio  $g(x) = f_1(x) \cdots f_n(x) + 1$ . Siendo F un campo, F[x] es un dominio euclidiano y, en particular, un dominio de integridad. Entonces,  $g \neq 0$  es un polinomio mónico. Siendo deg  $g > \deg f_i$ , para todos  $f_i$ , en particular  $g \neq f_i$ . Por hipótesis, g(x) tiene que ser reducible. Siendo g(x) mónico, podemos suponer que sus factores irreducibles sean mónicos. Siendo  $f_i$  los únicos polinomios mónicos irreducibles en F[x], alguno de los  $f_i(x)$  divide a g. Esto pero es imposible, siendo que ningún polinomio non constante puede dividir 1. Entonces g es irreducible, que es una contradicción. Entonces, hay infinitos polinomios mónicos irreducibles en F[x].

### Ejercicio 2 [1 punto]

Sea p un número natural primo. Sea  $f(x) \in \mathbb{F}_p[x]$  un polinomio irreducible de grado n. Hemos visto que el campo  $\mathbb{F}[x]/(f(x))$  tiene  $p^n$  elementos. Construya un campo con 16 elementos.

[Cuidado: un polinomio de grado 4 puede no tener raíces y ser reducible como producto de dos polinomios de grado 2:  $x^4 + 3x^2 + 2 = (x^2 + 2)(x^2 + 1)$  es reducible en los reales, pero no tiene ceros reales.]

Demostración. Solución Consideramos el polinomio  $f(x) = x^4 + x^3 + 1$ . Siendo f(0) = f(1) = 1, f no tiene raíces en  $\mathbb{F}_2$ . Para mostrar que sea irreducible, falta mostrar que no se puede escribir como producto de dos polinomios irreducibles de grado 2. Ahora, el único polinomio irreducible de grado 2 en  $\mathbb{F}_2[x]$  es el polinomio  $q(x) = x^2 + x + 1$ , siendo que  $x^2$  y  $x^2 + 1$  ambos tienen raíces en  $\mathbb{F}_2$ . Ahora  $(q(x))^2 = (x^2 + x + 1)^2 = x^4 + x^2 + 1 \neq x^4 + x^3 + 1 = f(x)$ .

Por lo que hemos visto en clase, el ideal (f(x)) es un ideal maximal y entonces  $\mathbb{F}_2[x]/(f(x))$  es un campo que tiene  $x^4 = 16$  elementos.

# Ejercicio 3 [1 punto]

Sea  $(G, \cdot)$  un grupo (en notación multiplicativa). Definimos el grupo opuesto  $G^o$  en la siguiente manera. Como conjuntos  $G^o = G$ . La operación es al revés:  $a \circ b = ba$ , para  $a \ y \ b \in G$ . Demuestre que  $G^o$  es un grupo.

Demostración. Solución Vamos a revisar que se cumplen los axiomas de grupo.

- Cierre: Sean  $a, b \in G^o = G$ . Tenemos  $a \circ b = ba \in G$  siendo G un grupo. Por lo tanto  $a \circ b \in G^o$ .
- Asociatividad: Sean  $a, b, c \in G^o$ . Tenemos:  $a \circ (b \circ c) = a \circ (cb) = cba = (ba) \circ c = (a \circ b) \circ c$ , donde hemos utilizado que el producto en G es asociativo, siendo G un grupo.

<sup>&</sup>lt;sup>1</sup>Un polinomio  $p(x) = a_n x^n + \dots + a_1 x + a_0$  se dice mónico si  $a_n = 1$ .



## Mauro Artigiani 2020-I



- Identidad: Sea  $e \in G$  la identidad por la operación de G. Para todos  $g \in G^o$  tenemos:  $g \circ e = eg = g$  y  $e \circ g = ge = g$ .
- Elemento inverso: Siendo G un grupo, para todos  $g \in G$  existe un inverso  $g^{-1}$ . Ahora, tenemos  $g \circ g^{-1} = g^{-1}g = e$  y  $g^{-1} \circ g = gg^{-1} = e$ .

Por lo tanto  $G^o$  es un grupo.

## Ejercicio 4 [1 punto]

Sea G un grupo tal que todos los elementos de G que no sean la identidad tengan orden 2. Demuestre que G es abeliano.

Demostración. Solución Sean g y  $h \in G$ . Por hipótesis  $g^2 = e = h^2$ . También tenemos:  $ghgh = (gh)^2 = e$ . Multiplicando ambos lado por la derecha por h y por la izquierda por g, obtenemos: g(ghgh)h = (gg)hg(hh) = hg = gh. Siendo g y h genéricos, G es abeliano.

**Ejercicio 5** [1 punto] Sean G y G' dos grupos, y sea  $\varphi \colon G \to G'$  un homomorfísmo sobreyectivo de grupos. Demuestre que

- 1. Si G es abeliano, también lo es G'.
- 2. Si G es cíclico, también lo es G';

Demostración. Solución

1. Sean g' y  $h' \in G'$ . Siendo  $\varphi$  sobreyectivo, existen g y  $h \in G$  tales que  $\varphi(g) = g'$  y  $\varphi(h) = h'$ . Siendo  $\varphi$  un homomorfísmo tenemos

$$g'h'=\varphi(g)\varphi(h)=\varphi(gh)=\varphi(hg)=\varphi(h)\varphi(g)=h'g',$$

donde hemos utilizado que gh = hg porque G es abeliano. Siendo g' y h' genéricos, G' es abeliano.

2. Siendo G cíclico, existe un  $g \in G$  tal que  $\langle g \rangle = G$ . Llamamos  $\varphi(g) = g' \in G'$ . Vamos a mostrar que  $G' = \langle g' \rangle$ .

Sea  $h' \in G'$ . Siendo  $\varphi$  sobreyectivo, existe un  $h \in G$  tal que  $\varphi(h) = h'$ . Siendo G cíclico, existe un  $n \in \mathbb{Z}$  tal que  $g^n = h$ . Al ser  $\varphi$  un homomorfísmo, tenemos

$$h' = \varphi(h) = \varphi(g^n) = \varphi(g)^n = (g')^n.$$

Siendo  $h' \in G'$  genérico, G' es cíclico, generado por g'.