Mathematics Department

Course Methods Year 12 test three 2022

Formula sheet provided:	Хes	
Task weighting:	%¯¯0τ¯	
Marks available:	43marks	
Special items:	Drawing instrume	orts, templates, one page of A4 notes doublesided
standard items:		preferred), pencils (including coloured), sharpener, ape, eraser, ruler, highlighters
Materials required:	Upto 3 calcul	lators/classpads allowed
Number of questions:	₉	
Time allowed for this tas	K:t0	suim_
լցշk քλb6։	уesbouse	
Student name:		Теасћег пате:

Q1 (3, 3 & 2 = 8 marks) (3.3.1)

Consider the discrete random variable X and the table of probabilities below.

X	0	1	2	3	4
P(X = x)	0.2	а	0.3	b	0.25

a) Given that the expected value of X is 2.15, determine the values of a & b.

b) Determine the standard deviation of *X* to 3 dp, showing all reasoning.

c) Determine the E(3X+4) and Variance (3X+4).

Q2(3, 2, 1 & 3 = 9 marks)(3.3.3)

The number of X minutes late a train arrives at a particular station is a uniform probability distribution from 5 mins to 25 mins.

a) Sketch the probability density function for *X* showing all relevant features and labels.

Q6 continued

Mathematics Department

Mathematics Department

- Q2 continued b) Determine the probability that the train will be less than 12 mins late given that it is at least 7 mins late.
- c) Determine the mean number of minutes late.
- d) Determine the standard deviation of $\,X\,$ showing all reasoning.

Q3 (3, 3 & Σ = 8 marks) (3.3.1) Consider a game where two ordinary dice are thrown into the air and then land and the sum of the two top numbers is added. If the sum is a prime number (Σ , 3, 5, 7....) etc then this is considered a win.

s) Determine the probability of a win. Show reasoning.

3 | Page

b) If this game was played 10 times, determine the probability that a win occurs at least 7 times. Show all reasoning.

Perth Modern

b) Using (a) above and without the use of a classpad, show how to evaluate $\int_0^1 3 \ln(3x+1) dx$.

$$\frac{1}{1+x\xi} - 1 = \frac{x\xi}{1+x\xi}$$
 əsu-iniH

Mathematics Department

6 Page

Q5 (2, 2 & 2 = 6 marks) (4.2.2)

Consider the probability density function $f(x) = ax^3(x-5)$, $1 \le x \le 5$ and zero for all other values of x.

- a) Show that $a = -\frac{5}{776}$.
- b) Determine the probability $Pr(X \le 3 | 2 \le X \le 4)$ for the above function.

c) Determine the median.

Q6 (2 & 5 = 7 marks) (4.1.11)

a) Show without the use of a classpad how to $\frac{d}{dx} [5x \ln(3x+1)]$.

Continued on next page for Q6b

Q3 cont-

c) Let $X=\sup$ of the top numbers of both dice. Determine the mean and standard deviation for X.

Q4) (5 marks) (4.1.6)

Consider $f(x) = r \log_5(x+p) + q$ where r, p & q are constants.

Using the graph above and given that the following points

(22,16) & (2,9) lie on the curve y = f(x), determine the values of r, p & q.