# Statistical Learning and Data Mining CS 363D/ SSC 358

Lecture: SVD, Vector Space Document Model

Prof. Pradeep Ravikumar pradeepr@cs.utexas.edu

#### Outline

- Matrices (Norms, Singular Value Decomposition (SVD), Eigenvalues)
- Running Example: Analysis of Text Documents

#### Matrices



• A matrix  $A \in \mathbb{R}^{m \times n}$  can also be viewed as a linear transformation:

$$A: \mathbb{R}^n \mapsto \mathbb{R}^m$$
$$x \mapsto Ax$$

#### Matrices



• A matrix  $A \in \mathbb{R}^{m \times n}$  can also be viewed as a linear transformation:

$$A:\mathbb{R}^n\mapsto\mathbb{R}^m$$
 
$$x\mapsto Ax$$
 
$$\alpha x+\beta y\mapsto A(\alpha x+\beta y)=\alpha Ax+\beta Ay \quad \text{: Linear Transformation}$$





- Extract all unique words, ignoring case
- Eliminate stop-words: "a", "and", "the", ...
- Eliminate non-content-bearing high-frequency and low-frequency words (using heuristic criteria)
- •
- For each document, count no. of occurrences of each word

- Extract all unique words, ignoring case
- Eliminate stop-words: "a", "and", "the", ...
- Eliminate non-content-bearing high-frequency and low-frequency words (using heuristic criteria)
- Extract word phrases ("New York")
- Reduce words to their root/stem (eliminating plurals, tenses, pre/suffixes)
- Assign a unique integer between 1 and w to remaining w words
- · For each document, count no. of occurrences of each word



$$\bullet \ A_{ji} = t_{ji} \times g_j \times s_i$$

 $t_{ji}$ : doc-term frequency; no. of times word j in document i

 $g_j$ : importance of word i in entire document collection; e.g.  $\log \frac{d}{d_j}$ , where  $d_j$  is no. of documents that contains word j

$$s_i = 1/\sqrt{\sum_{j=1}^w (t_{ji}g_j)^2}$$
: normalization for document i.

• Note that columns of A are normalized:  $||a_i||_2 = 1$ .



• Note that columns of A are normalized:  $||a_i||_2 = 1$ .

# Query



Suppose we query "data mining"



#### Query



 $A^Tq$ : Scores of documents with respect to query

# Query Retrieval



 $A^Tq$ : Scores of documents with respect to query

#### Caveats with using word-document matrix

Size: Even after pruning and following pre-processing steps outlined earlier,
 the number of words would be in the tens of thousands

#### Word Senses:

- Synonymy: different words have similar meaning
   e.g. searching for MRI, or "Magnetic Resonance Imaging"
- ▶ Polysemy: One words may have different meanings depending on context e.g. "mining" could refer to "data mining" or "coal mining"

### Caveats with using word-document matrix

• **Size:** Even after pruning and following pre-processing steps outlined earlier, the number of words would be in the tens of thousands

#### Word Senses:

Synonymy: di e.g. searching

Polysemy: Or e.g. "mining"



ging"

depending on context ining"

### Caveats with using word-document matrix

- Imagine that we could convert word-document matrix, into an ideal "semantic term" - document matrix
- Imagine that given a query (which like a document is a set of words), we can convert it into a set of "semantic terms"
  - ▶ Then we could compute query-document similarities as before
  - We humans do this all the time
  - Think of this ideal "semantic term" document matrix as "approximating" our word-document matrix

# How Good is my Matrix Approximation?

- Bill Gates, Lord Kelvin: You can't really make progress unless you can measure!
- Suppose I want to approximate a matrix A by another matrix B.
  - How good is B as an approximation?
  - ▶ Matrices also have norms || A ||
  - ▶ Use a matrix norm to measure approximation error: || A B ||
  - ▶ A popular matrix norm is the Frobenius norm:

$$||A||_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^m |a_{ij}|^2}$$

### How do I Approximate my Matrix?

A popular way to approximate a big matrix: Low-rank Approximation





#### Matrix Approximation

A popular way to approximate a big matrix: Low-rank Approximation





#### Best Low-rank Approximation

- Given A, and k, what is the best rank-k approximation?
- Find matrices B, C of rank-k which solve:

$$\min_{B,C} \|A - BC^T\|_F.$$

• Solution is given by SVD: Singular Value Decomposition of A

# SVD; Singular Value Decomposition



# SVD; Singular Value Decomposition



#### Low-Rank Approximation Using SVD

$$\mathbf{A}_{k} = \mathbf{U}_{k} \mathbf{\Sigma}_{k} \mathbf{V}_{k}^{T}$$

$$= \begin{bmatrix} \mathbf{u}_{1}, \mathbf{u}_{2}, \cdots \mathbf{u}_{k} \end{bmatrix} \begin{bmatrix} \sigma_{1} & 0 & \cdots & 0 \\ 0 & \sigma_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_{k} \end{bmatrix} \begin{bmatrix} \mathbf{v}_{1}^{T} \\ \mathbf{v}_{2}^{T} \\ \vdots \\ \mathbf{v}_{k}^{T} \end{bmatrix}$$

where 
$$U_k^T U_k = I$$
,  $V_k^T V_k = I$ , and

$$\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_k$$
.

### Low-Rank Approximation Using SVD



#### Low-Rank Approximation Using SVD

$$\mathbf{A}_{k} = \mathbf{U}_{k} \mathbf{\Sigma}_{k} \mathbf{V}_{k}^{T}$$

$$= \begin{bmatrix} \mathbf{u}_{1}, \mathbf{u}_{2}, \cdots \mathbf{u}_{k} \end{bmatrix} \begin{bmatrix} \sigma_{1} & 0 & \cdots & 0 \\ 0 & \sigma_{2} & \cdots & 0 \\ \vdots & \mathbf{v}_{k}^{T} \end{bmatrix} \begin{bmatrix} \mathbf{v}_{1}^{T} \\ \mathbf{v}_{2}^{T} \\ \vdots \\ \mathbf{v}_{k}^{T} \end{bmatrix}$$

Important Result: Among all rank-k approximations of A, the best is  $A_k$ :

$$\min_{B: \operatorname{rank}(B) \le k} ||A - B||_F \leftarrow \min_{B: \operatorname{rank}(B) \le k} ||A - B||_F \leftarrow \min_{B: \operatorname{rank}(B) \le k} ||A - B||_F$$

# Latent Semantic Indexing (LSI)

$$\mathbf{A}_{k} = \mathbf{U}_{k} \mathbf{\Sigma}_{k} \mathbf{V}_{k}^{T}$$

$$= \begin{bmatrix} \mathbf{u}_{1}, \mathbf{u}_{2}, \cdots \mathbf{u}_{k} \end{bmatrix} \begin{bmatrix} \sigma_{1} & 0 & \cdots & 0 \\ 0 & \sigma_{2} & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots \\ 0 & 0 & \cdots & \sigma_{k} \end{bmatrix} \begin{bmatrix} \mathbf{v}_{1}^{T} \\ \mathbf{v}_{2}^{T} \\ \vdots \\ \mathbf{v}_{k}^{T} \end{bmatrix}$$

- Use  $A_k$  instead of A for computing query-document similarities.
- Use  $A_k^T q$  instead of  $A^T q$ .

#### LSI Contd.

Note that 
$$\mathbf{A}_k^T \mathbf{q} = (\mathbf{V}_k \mathbf{\Sigma}_k) \left( \mathbf{U}_k^T \mathbf{q} \right)$$
.
$$\mathbf{U}_k^T \mathbf{q} = \begin{bmatrix} \mathbf{u}_1^T \mathbf{q} \\ \mathbf{u}_2^T \mathbf{q} \\ \vdots \\ \mathbf{u}_k^T \mathbf{q} \end{bmatrix}$$

- Each component  $u_i^T q$  of the vector  $U_k^T q$  is the **projection** of query vector q onto the singular vector  $u_i$ .
- The w-dimensional query vector q is reduced to k dimensions
- The singular vectors  $(u_i)$  do not span all possible documents, but span "important" part of the space

#### LSI Contd.

Note that 
$$\mathbf{A}_k^T \mathbf{q} = (\mathbf{V}_k \mathbf{\Sigma}_k) (\mathbf{U}_k^T \mathbf{q}).$$

$$A = U_k \Sigma_k V_k^T + U_{w-k} \Sigma_{w-k} V_{w-k}^T$$
$$U_k^T A = \Sigma_k V_k^T \qquad \dots \quad U \text{ is orthonormal}$$

#### LSI Contd.

Note that 
$$\mathbf{A}_k^T \mathbf{q} = (\mathbf{V}_k \mathbf{\Sigma}_k) (\mathbf{U}_k^T \mathbf{q}).$$

$$A = U_k \Sigma_k V_k^T + U_{w-k} \Sigma_{w-k} V_{w-k}^T$$
$$U_k^T A = \Sigma_k V_k^T \qquad \dots \qquad U \text{ is orthonormal}$$

- Thus,  $V_k\Sigma_k$  is the projection of the documents (columns of A) onto  $U_k$ .
- So that  $A_k^T q = (V_k \Sigma_k)(U_k^T q)$  can be interpreted as dot-product between projected documents and projected query!

# LSI: Alternatively

- 1. For the entire document collection, form  $\mathbf{V}_k \mathbf{\Sigma}_k$ .
- 2. For a new query  $\mathbf{q}$ , form  $\mathbf{U}_k^T \mathbf{q}$ .
- 3. Compute  $\mathbf{z} = (\mathbf{V}_k \mathbf{\Sigma}_k)(\mathbf{U}_k^T \mathbf{q})$  and return the document i with large  $\mathbf{z}_i$  values as being the most relevant.

#### Example

Suppose we are give the following d = 9 documents:

- c1: <u>Human</u> machine <u>interface</u> for Lab ABC computer applications
- c2: A survey of <u>user</u> opinion of computer system response <u>time</u>
- c3: The <u>EPS</u> <u>user interface</u> management system
- c4: System and <u>human</u> system engineering testing of <u>EPS</u>
- c5: Relation of <u>user</u>-perceived response <u>time</u> to error measurement.
- m1: The generation of random, binary, unordered <u>trees</u>
- m2: The intersection graph of paths in <u>trees</u>
- m3: Graph minors IV: Widths of trees and well-quasi-ordering
- m4: Graph minors: A survey

# Term-Doc. Matrix (Vector Space Model)

#### **Documents**

| Terms     | c1 | c2 | c3 | c4 | c5 | m1 | m2 | m3 | $\overline{m4}$ |
|-----------|----|----|----|----|----|----|----|----|-----------------|
| human     | 1  | 0  | 0  | 1  | 0  | 0  | 0  | 0  | 0               |
| interface | 1  | 0  | 1  | 0  | 0  | 0  | 0  | 0  | 0               |
| computer  | 1  | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0               |
| user      | 0  | 1  | 1  | 0  | 1  | 0  | 0  | 0  | 0               |
| system    | 0  | 1  | 1  | 2  | 0  | 0  | 0  | 0  | 0               |
| response  | 0  | 1  | 0  | 0  | 1  | 0  | 0  | 0  | 0               |
| time      | 0  | 1  | 0  | 0  | 1  | 0  | 0  | 0  | 0               |
| EPS       | 0  | 0  | 1  | 1  | 0  | 0  | 0  | 0  | 0               |
| survey    | 0  | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 1               |
| trees     | 0  | 0  | 0  | 0  | 0  | 1  | 1  | 1  | 0               |
| graph     | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 1  | 1               |
| minors    | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 1               |

A: Nine document vectors, each in a 12 dimensional word space

#### Normalized vs Unnormalized A



First two left-singular vectors (solid line: first; dashed-line: second)

# Documents projected onto 1st two sing. vectors



# Words projected onto same two right sing. vectors



: Words projected on 2-D space from A

#### LSI: Drawbacks

- Computationally expensive: (a) typically A is large, and (b) many singular vectors are required (k = 100 to 500) and the SVD software seems to take time that is quadratic in k
- A common question: how do singular vectors capture the concepts of a document collection?
- LSI needs long queries to work well; but typically we use short queries when searching. Thus, LSI is not used in any commercial engine.
- Uses the vector space model for documents, which has its caveats
   (sequencing information of words in the document is lost, we wouldn't want a
   document just containing the few words of a query etc.)