Assignment - 03

case-01 Both diode are on.

$$\Rightarrow \frac{5 - v_0}{50 \text{ fr}} = 2 \times \frac{v_0 - 0 - 0.7}{0.5}$$

$$P_{1000} = (5 - 0.72). \quad \frac{5 - 0.72}{50} + 2 \times \frac{0.72}{0.5} \times (0.72 - 0)$$

case - 02 Both diode one off

So,
$$I_3 = 0$$

$$\Rightarrow \frac{5-Y_0}{50K_A} = 0$$

$$\therefore V_0 = 5V$$

case 3 and 4 are similar:

$$J_3 = J_1$$

$$\Rightarrow \frac{5 - v_0}{50} = \frac{v_0 - 0.7}{0.5}$$

$$P_3 = P_4 = \frac{(5-0) \cdot 5 - 0.74}{1 \cdot (5-10)}$$
$$= \frac{(5-0.74)}{50} \times (5-0)$$

A(v)	B(v)	Output Voltage, Vo	Dissipated Poner (mw)
0	0	0.12	0.41
0	5	0.74	0.426
5	0	0.74	0.486
5	5	5	0

= 0.31 mW (Ans)