

ЭТИКЕТКА

<u>СЛКН.431232.031 ЭТ</u> Микросхема интегральная 564 ИЕ15В

Функциональное назначение – Программируемый счетчик

Климатическое исполнение УХЛ Схема расположения выводов

Условное графическое обозначение

3	 J1			
4	 J2			
4 5	 J3	OT.		
6	 J4	CT		
22	 J5			
21	 J6			
20	 J7			
19	 J8		У	 23
18	 J9			
17	 J10			
16	 J11			
15	 J12			
10	 J13			
9	 J14			
8	 J15			
7	 J16			
14				
	Ka			
13	Kb			
11	Kc			
2	L			
1	C			

Таблица назначения выводов

№ вывода	Назначение вывода	№ вывода	Назначение вывода	№ вывода	Назначение вывода
1	Вход тактовый	9	Вход установки	17	Вход установки
2	Вход «защелка»	10	Вход установки	18	Вход установки
3	Вход установки	11	Вход формирования режима	19	Вход установки
4	Вход установки	12	Общий	20	Вход установки
5	Вход установки	13	Вход формирования режима	21	Вход установки
6	Вход установки	14	Вход формирования режима	22	Вход установки
7	Вход установки	15	Вход установки	23	Выход счетчика
8	Вход установки	16	Вход установки	24	Питание

1 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

1.1 Основные электрические параметры (при $t = (25\pm10)$ °C)

Таблица 1

Науманаранна параматра анишина намарання размен чамарання	Буквенное	Норма	
Наименование параметра, единица измерения, режим измерения	обозначение	не менее	не более
1	2	3	4
1. Выходное напряжение низкого уровня, B, при: $U_{\rm CC} = 5~{\rm B};~10~{\rm B}$	U_{OL}	-	0,01
2. Выходное напряжение высокого уровня, B, при: $U_{\rm CC} = 5~{\rm B}$ $U_{\rm CC} = 10~{\rm B}$	U _{ОН}	4,99 9,99	
3. Максимальное выходное напряжение низкого уровня, B, при: U_{CC} = 5 B, U_{IL} = 1,5 B, U_{IH} = 3,5 B U_{CC} = 10 B, U_{IL} = 3,0 B, U_{IH} = 7,0 B	U _{OL max}	-	0,8 1,0
4. Минимальное выходное напряжение высокого уровня, B, при: $U_{CC}=5$ B, $U_{IL}=1,5$ B, $U_{IH}=3,5$ B $U_{CC}=10$ B, $U_{IL}=3,0$ B, $U_{IL}=7,0$ B	U _{OH min}	4,2 9,0	- -
5. Входной ток низкого уровня, мкА, при: $U_{\rm CC}$ = 15 В	$I_{\rm IL}$	-	/-0,1/
6. Входной ток высокого уровня, мкА, при: $U_{CC} = 15 \; B$	I_{IH}	-	0,1
7. Выходной ток низкого уровня, мА, при: $U_{CC} = 5 \ B, \ U_O = 0,4 \ B$ $U_{CC} = 10 \ B, \ U_O = 0,5 \ B$	I_{OL}	2,0 4,0	

Продолжение таблицы 1			
1	2	3	4
8. Выходной ток высокого уровня, мА, при:			
$U_{CC} = 5 \text{ B}, U_0 = 2.5 \text{ B}$	I_{OH}	/-1,6/	-
$U_{CC} = 5 \text{ B}, U_0 = 4,6 \text{ B}$	IOH	/-0,4/	-
$U_{CC} = 10 \text{ B}, U_0 = 9,5 \text{ B}$		/-0,9/	-
9. Ток потребления, мкА, при:			
$U_{cc} = 5 B$	I_{CC}	-	5,0
$U_{CC} = 10 B$	icc	-	10,0
$U_{CC} = 15 B$		-	20,0
10. Ток потребления в динамическом режиме, мА, при:	I_{OCC}	_	0,80
$U_{CC} = 10 \text{ B}; C_L = 50 \text{ m}\Phi$	-000		-,
11. Время задержки распространения сигнала при включении, нС, при:			260
$U_{CC} = 5 \text{ B}; C_L = 50 \text{ n}\Phi$	$t_{ m PHL}$	-	360
$U_{CC} = 10 \text{ B}; C_L = 50 \text{ m}\Phi$		-	180
12. Время задержки распространения сигнала при выключении, нС, при:			
$U_{CC} = 5 \text{ B}; C_L = 50 \text{ n}\Phi$	$t_{\rm PLH}$	-	360
$U_{CC} = 10 \text{ B}; C_L = 50 \text{ n}\Phi$		ı	180
13. Максимальная тактовая частота, мГц, при:			
$U_{CC} = 5 \text{ B}, C_L = 50 \text{ m}\Phi$	f _{Tmax}	1,5	-
$U_{CC} = 10 \text{ B}, C_L = 50 \text{ n}\Phi$	THUX	3,0	
14. Входная емкость, пФ, при:	Cı	_	10
$U_{\rm CC} = 10 \mathrm{B}$	CI		10

1.2 Содержание драгоценных металлов в 1000 шт. микросхем:

золото г, серебро г, в том числе:

золото г/мм
на 24 выводах, длиной мм.

Цветных металлов не содержится.

2 НАДЕЖНОСТЬ

 $2.1~\mathrm{M}$ инимальная наработка (Тнм) микросхем в режимах и условиях эксплуатации, допускаемых стандартом ОСТ В $11~0398-2000~\mathrm{u}$ ТУ, при температуре окружающей среды (температуре эксплуатации) не более $65~\mathrm{C}$ - не менее $100000~\mathrm{u}$., а в облегченных режимах, которые приводят в ТУ, при $U_{\mathrm{CC}} = 5\mathrm{B} \pm 10\%$ - не менее $120000~\mathrm{u}$.

 Γ амма – процентный ресурс $(T_{p\gamma})$ микросхем устанавливают в ТУ при γ = 95% и приводят в разделе "Справочные данные" ТУ.

2.2 Минимальный срок сохраняемости микросхем (T _{см}) при их хранении в отапливаемом хранилище или в хранилище с регулируемыми влажностью и температурой или местах хранения микросхем, вмонтированных в защищенную аппаратуру, или находящихся в защищенном комплекте ЗИП, должен быть 25 лет.

Минимальный срок сохраняемости микросхем в условиях, отличающихся от указанных, в соответствии с разделом 4 ОСТ В 11 0398 – 2000.

2.3 Срок сохраняемости исчисляют с даты изготовления, указанной на микросхеме.

3 ГАРАНТИИ ПРЕДПРИЯТИЯ – ИЗГОТОВИТЕЛЯ

 $3.1 \ \underline{\Gamma}$ арантии предприятия — изготовителя — по ОСТ В 11 0398 — 2000:

Предприятие-изготовитель гарантирует соответствие поставляемой микросхемы всем требованиям ТУ в течение срока сохраняемости и минимальной наработки в пределах срока сохраняемости при соблюдении потребителем режимов и условий эксплуатации, правил хранения и транспортирования, а также указаний по применению, установленных ТУ.

Срок гарантии исчисляют с даты изготовления, нанесенной на микросхеме.

4 СВЕДЕНИЯ О ПРИЕМКЕ

Микросхемы 564 ИЕ15В соответствуют техническим условиям бК0.347.064 ТУ17/02 и признаны годными для эксплуатации.

Приняты по	(извещение, акт и др.)	OT	(дата)	
Место для шт	ампа ОТК			Место для штампа ВП
Место для шт	ампа «Перепроверка і	произведена	ı	» (дата)
Приняты по	(извещение, акт и др.)	от	(дата)	
Место для шт	ампа ОТК			Место для штампа ВП

Цена договорная

5 УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

5.1 При работе с микросхемами и монтаже их в аппаратуру должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала 500 В. Наиболее чувствительные к статическому электричеству последовательности (пары выводов): вход – общая точка, выход – общая точка.

Остальные указания по применению и эксплуатации – в соответствии с бК0.347.064 ТУ/02.