Simple Linear Regression

Zack W Almquist

April 17, 2018

Road Map to Today's Lecture

- Overview
 - Motivation (Why models?, why SLR?)
 - Example: Housing prices regressed on house size
 - Estimator (Least Squares)
 - Properties of Least Squares
 - ► ANOVA for Regression (R²)
- Appendix: R Code and other information

▶ How do we theorize about the world?

- ▶ How do we theorize about the world?
- One way is to posit a relationship between two measurements

- ▶ How do we theorize about the world?
- One way is to posit a relationship between two measurements
 - ▶ E.g., Parent and Child Height

- ▶ How do we theorize about the world?
- ▶ One way is to posit a relationship between two measurements
 - ► E.g., Parent and Child Height
 - ► E.g., Beer Cost and Beer Sales

- How do we theorize about the world?
- ▶ One way is to posit a relationship between two measurements
 - ► E.g., Parent and Child Height
 - ▶ E.g., Beer Cost and Beer Sales
 - E.g., Natural Gas Usage and Temperature

► How do we theorize about the world?

- ► How do we theorize about the world?
 - ▶ How does Beer Sales (Y) relate to Beer Cost (X)?

- ► How do we theorize about the world?
 - ▶ How does Beer Sales (Y) relate to Beer Cost (X)?
 - ▶ This can be written as Y = f(X)

- How do we theorize about the world?
 - ▶ How does Beer Sales (Y) relate to Beer Cost (X)?
 - ▶ This can be written as Y = f(X)
 - ▶ Start by looking at the linear relationship between two objects

- How do we theorize about the world?
 - ▶ How does Beer Sales (Y) relate to Beer Cost (X)?
 - ▶ This can be written as Y = f(X)
 - Start by looking at the linear relationship between two objects
 - $Y = b_0 + b_1 X$

- How do we theorize about the world?
 - ▶ How does Beer Sales (Y) relate to Beer Cost (X)?
 - ▶ This can be written as Y = f(X)
 - Start by looking at the linear relationship between two objects

$$Y = b_0 + b_1 X$$

- How do we theorize about the world?
 - ▶ How does Beer Sales (Y) relate to Beer Cost (X)?
 - ▶ This can be written as Y = f(X)
 - Start by looking at the linear relationship between two objects

$$Y = b_0 + b_1 X$$

Let's Build Some Intuition Housing Cost: A Case Study in San Francisco

Let's Build Some Intuition

- Let's start with a practical problem:
 - ▶ Housing prices (Somthing we can appreciate in SF!)
- ▶ We will use this to develop our Regression model
 - ► Focus today is on the "least squares" estimator
 - ▶ Note: Population parameters (Greek, e.g., β)
 - ▶ Note: Estimators of the "true" parameters (Roman, e.g., b)

Predicting Housing Prices

Problem:

- Predict market price based on observed characteristics
 - ► E.g., How much doe I expect to pay for a house?

Solution:

- Look at property sales data where we know the price and some observed characteristics
- Build a decision rule that predicts price as a function of the observed characteristics

What characteristics do we use?

We have to define the variables of interest and develop a specific quantitative measure of these variables

- Many factors or variables affect the price of a house
 - Size of house
 - Number of baths
 - Garage, air conditioning, etc.
 - Size of land (lot size)
 - Neighborhood location (e.g., the Mission)
- ► Easy to quantify price and size but what about other variables such as aesthetics, workmanship, etc?

Predicting Housing Prices

The value that we seek to predict is called the

- Dependent (or output) variable
 - ightharpoonup Y = price of house (e.g. thousands of dollars)

The variable that we use to guide prediction is the

- Explanatory (or input) variable
 - ightharpoonup X =size of the house (in thousands of square feet)

To keep things simple we will focus only on the size of the house

Zillow.com Data

- Let's consider data from Zillow.com for San Francisco
- Focus on a random sample (county tax lot database)
 - ▶ Here we will consider a sample of 204 houses
- ► Focus on X (house size in SqFt) and Y (Zillow est. of price)

Zillow.com Data

Sample of data from Zillow.com

	House	Size	(SqFt)	Zillow	Estimate
255 DOWNEY ST			1.683		1511.798
4845 17TH ST			2.650		1981.286
1158 CAPITOL AVE			1.125		882.611
184 BURLWOOD DR			1.254		1086.365
79 GAVIOTA WAY			1.593		1446.701
2342 41ST AVE			2.680		1487.369

► House Size (in 1,000 SqFt) and Zillow Estimate (in \$1,000)

Zillow.com Data

Simple Linear Regression Model

The general relationship approximated by:

- Y = f(X) + e
 - ▶ *Y* is the response outcome variable
 - X is the explanitory or input variables
 - e represents anything left over, not described by f

And, in particular, a linear relationship is written as:

$$Y = b_0 + b_1 X + e$$

Zillow Data

Appears to be a linear relationship between price and size:

As size goes up, price goes up

Geometry of a line

Recall how the slope (b_1) and intercept (b_0) work together

Figure 1:

Linear Model

Recall that the equation of a line is

$$Y = b_0 + b_1 X$$

where b_0 is the intercept and b_1 is the slope

- ► The intercept value is in units of *Y* (\$1000)
- ▶ The slope is in units of Y per units of X (\$1000/(1000 SqFt))

In the house price example

▶ The line is $b_0 = 449.001$, $b_1 = 495.482$

Linear Prediction

We can now predict the price of a house when we know only the size

just read the value off the line that we've drawn

For example, given a house with size X=1 (i.e., a 1,000 SqFt house), the predicted price would be

$$\hat{Y} = 449.001 + 495.482 \cdot 1 = 944.483 \ (K\$)$$

▶ Note: Conversion from 1,000 SqFt to \$1,000 is done for us by the slope coefficient (*b*₁)

What is a good line?

We desire a strategy for estimating the slope and intercept parameters in the model $\hat{Y} = b_0 + b_1 X$

That involves:

- Choosing a criterion, i.e., quantifying how well a line fits the observed data
- ► And matching that with a solution, i.e., finding the best line subject to that criteria

Although there are lots of ways to choose a criterion

- Only a small handful lead to solutions that are "easy" to compute (our focus today)
- And which have nice statistical properties (more later)

Most reasonable criteria involve measuring the amount by which the *fitted value* obtained from the line *differs* from the *observed value* of the response value(s) in the data

- This amount is called the residual
- Good lines produce small residuals

Fitted Values

The dots are the observed values and the line represents our fitted values given by

$$\hat{Y}_i = b_0 + b_1 X_i$$

Fitted Values

- ▶ The residual e_i is the discrepency between the fitted \hat{Y}_i and observed Y_i values
 - Note that we can write

$$Y_i = \hat{Y}_i + (Y_i - \hat{Y}_i)$$

= $\hat{Y}_i + e_i$

Least Squares

A reasonable goal is to minimize the size of all residuals:

- ▶ This should guarantee that if *Y* and *X* are perfectedly related our residuals will be zero
 - And we would have perfect line!
- ► For imperfect data we end up with a trade-off between *moving* closer to some points and at the same time *moving* away from other points

Since some residuals are *positive* and some are *negative*, we need a measure to minimize the errors:

- ▶ Absolute Error: $|e_i|$ treats positives and negatives equally
- ▶ Squared Error: So does e_i^2 has nicer mathematical properties

Least squares chooses b_0 and b_1 to minimize $\sum_{i=1}^n e_i^2$

Choose the line to minimize the sum of the squares of the residuals,

$$\sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2 = \sum_{i=1}^{n} (Y_i - [b_0 + b_1 X_i])^2$$

How do we minimize $\sum_{i=1}^{n} (Y_i - [b_0 + b_1 X_i])^2$?

▶ We need to find the *optimal* b_0 and b_1

Choose the line to minimize the sum of the squares of the residuals,

$$\sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2 = \sum_{i=1}^{n} (Y_i - [b_0 + b_1 X_i])^2$$

- We need to find the *optimal* b_0 and b_1
- This is a classic calculus optimization problem

Choose the line to minimize the sum of the squares of the residuals,

$$\sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2 = \sum_{i=1}^{n} (Y_i - [b_0 + b_1 X_i])^2$$

- We need to find the *optimal* b_0 and b_1
- This is a classic calculus optimization problem

$$b_1 = r_{xy} \frac{S_y}{S_x}$$

- ▶ We need to find the *optimal* b_0 and b_1
- ▶ This is a classic calculus optimization problem

$$b_1 = r_{xy} \frac{S_y}{S_x}$$

$$r_{XY} = \frac{\sum (X_i - \bar{X})(Y_i - \bar{Y})}{\sqrt{\sum (X_i - \bar{X})^2} \sqrt{\sum (Y_i - \bar{Y})^2}}$$
$$S_X = \sqrt{\frac{1}{n} \sum (X_i - \bar{X})^2}$$
$$S_Y = \sqrt{\frac{1}{n} \sum (Y_i - \bar{Y})^2}$$

$$b_1 = r_{xy} \frac{S_y}{S_x}$$
$$b_0 = \bar{Y} - b_1 \bar{X}$$

Exercise

- Use Household Size to predict Last Sold Price for Zillow data
- Google Sheets Example
- ► Google Sheets In Class Assignment
 - ► Compute \bar{X} , \bar{Y} , S(X), S(Y), corr(X, Y), b_0 , b_1
 - ► And \hat{Y} , e, e^2
- Extra (You can do SLR in Google Sheets automatically):
 - ► Try highlighting columns: "House Size [X] (in 1000 SqFt)" and "Last Sold Price [Y] (in \$1000)"
 - ▶ Insert \rightarrow Chart \rightarrow Scatter \rightarrow Customization \rightarrow Trendline \rightarrow linear \rightarrow Label \rightarrow Use equation \rightarrow Check box R^2

$$\hat{Y}_i = b_0 + b_1 X_i$$
 $b_1 = r_{xy} \frac{S_y}{S_x}$ $e_i = Y_i - \hat{Y}_i$ $b_0 = \bar{Y} - b_1 \bar{X}$

Steps in a regression analysis Basic Recipe for SLR problems

We have covered the first 5!

- 1. State the problem
- 2. Select potentially relevant variables
- 3. Data collection
- 4. Model specification (simple linear)
- 5. Model fitting (least squares)
- 6. Model validation and criticism
- 7. Answering the posed questions

This is a simplification . . .

- it is more iterative, and it can be an art ...

Model Adequacy and Assessment

Model Assessment and Properties of Least Squares Fit

Properties of the least squares fit

Developing techniques for model validation and criticism requires a deeper understanding of the least squares line

The fitted values (\hat{Y}_i) and "residuals" (e_i) obtained from the least squares line have some special properties

Lets look at the housing data analysis to figure out what some of these properties are. . .

The fitted values are perfectly correlated with the inputs

The residuals are "stripped of all linearity"

Relationship between \hat{Y} , e and X

What is the intuition for the relationship between \hat{Y} , e and X?

Lets consider an alternative line:

Relationship between \hat{Y} , e and X

This is a bad fit! We are underestimating the value of small houses and overestimating the value of big houses

Clearly, we have left some predictive ability on the table!

Relationship between \hat{Y} , e and X

As long as the correlation between e and X is non-zero, we could always adjust our prediction rule to do better

We need to exploit all of the predictive prower in the X values and put this into \hat{Y} ,

▶ Leaving no "Xness" in the residuals

In summary: $Y = \hat{Y} + e$ where:

- \hat{Y} is "made from X"; $corr(X, \hat{Y}) = 1$
- e is unrelated to X; corr(X, e) = 0
- ightharpoonup $\bar{e}=0$

- Insisted on these qualities
- ▶ Rather than serendipitiously obtaining them as a consequence

$$\frac{1}{n}\sum_{i=1}^n e_i = 0$$

- Insisted on these qualities
- ▶ Rather than serendipitiously obtaining them as a consequence

$$\frac{1}{n}\sum_{i=1}^{n}e_{i}=0 \Rightarrow \frac{1}{n}\sum_{i=1}^{n}(Y_{i}-b_{0}-b_{1}X_{i})$$

- Insisted on these qualities
- ▶ Rather than serendipitiously obtaining them as a consequence

$$\frac{1}{n}\sum_{i=1}^{n}e_{i}=0\Rightarrow\frac{1}{n}\sum_{i=1}^{n}(Y_{i}-b_{0}-b_{1}X_{i})$$
$$\Rightarrow \overline{Y}-b_{0}-b_{1}\overline{X}=0$$

- Insisted on these qualities
- ▶ Rather than serendipitiously obtaining them as a consequence

$$\frac{1}{n} \sum_{i=1}^{n} e_i = 0 \Rightarrow \frac{1}{n} \sum_{i=1}^{n} (Y_i - b_0 - b_1 X_i)$$
$$\Rightarrow \overline{Y} - b_0 - b_1 \overline{X} = 0$$
$$\Rightarrow b_0 = \overline{Y} - b_1 \overline{X}$$

Suppose we turned things around and

- Insisted on these qualities
- ▶ Rather than serendipitiously obtaining them as a consequence

$$\frac{1}{n}\sum_{i=1}^{n}e_{i}=0 \Rightarrow \frac{1}{n}\sum_{i=1}^{n}(Y_{i}-b_{0}-b_{1}X_{i})$$
$$\Rightarrow \bar{Y}-b_{0}-b_{1}\bar{X}=0$$
$$\Rightarrow b_{0}=\bar{Y}-b_{1}\bar{X}$$

Gives us our intercept!

Suppose
$$0 = corr(e, X)$$
, then

$$\Rightarrow$$
 0 = $corr(e, X)$

$$0 = corr(e, X) = \frac{1}{SD(X)SD(e)} \cdot \sum_{i=1}^{n} (e_i - \overline{e})(X_i - \overline{X})$$

$$0 = corr(e, X) = \frac{1}{SD(X)SD(e)} \cdot \sum_{i=1}^{n} (e_i - \bar{e})(X_i - \bar{X}) = \sum_{i=1}^{n} e_i(X_i - \bar{X})$$

$$0 = corr(e, X) = \frac{1}{SD(X)SD(e)} \cdot \sum_{i=1}^{n} (e_i - \bar{e})(X_i - \bar{X}) = \sum_{i=1}^{n} e_i(X_i - \bar{X})$$
$$\Rightarrow 0 = \sum_{i=1}^{n} e_i(X_i - \bar{X})$$

$$0 = corr(e, X) = \frac{1}{SD(X)SD(e)} \cdot \sum_{i=1}^{n} (e_i - \bar{e})(X_i - \bar{X}) = \sum_{i=1}^{n} e_i(X_i - \bar{X})$$

$$\Rightarrow 0 = \sum_{i=1}^{n} e_i(X_i - \bar{X})$$

$$= \sum_{i=1}^{n} (Y_i - b_0 - b_1 X_i)(X_i - \bar{X})$$

$$0 = corr(e, X) = \frac{1}{SD(X)SD(e)} \cdot \sum_{i=1}^{n} (e_i - \bar{e})(X_i - \bar{X}) = \sum_{i=1}^{n} e_i(X_i - \bar{X})$$

$$\Rightarrow 0 = \sum_{i=1}^{n} e_i(X_i - \bar{X})$$

$$= \sum_{i=1}^{n} (Y_i - b_0 - b_1 X_i)(X_i - \bar{X})$$

$$= \sum_{i=1}^{n} (Y_i - (\bar{Y} - b_1 \bar{X}) - b_1 X_i)(X_i - \bar{X})$$

[note: replace b_0 with b_1 solved for earlier]

$$0 = corr(e, X) = \frac{1}{SD(X)SD(e)} \cdot \sum_{i=1}^{n} (e_i - \bar{e})(X_i - \bar{X}) = \sum_{i=1}^{n} e_i(X_i - \bar{X})$$

$$\Rightarrow 0 = \sum_{i=1}^{n} e_i(X_i - \bar{X})$$

$$= \sum_{i=1}^{n} (Y_i - b_0 - b_1X_i)(X_i - \bar{X})$$

$$= \sum_{i=1}^{n} (Y_i - (\bar{Y} - b_1\bar{X}) - b_1X_i)(X_i - \bar{X})$$

$$= \sum_{i=1}^{n} (Y_i - \bar{Y} - b_1(X_i - \bar{X})(X_i - \bar{X}))$$

$$0 = corr(e, X) = \frac{1}{SD(X)SD(e)} \cdot \sum_{i=1}^{n} (e_{i} - \bar{e})(X_{i} - \bar{X}) = \sum_{i=1}^{n} e_{i}(X_{i} - \bar{X})$$

$$\Rightarrow 0 = \sum_{i=1}^{n} e_{i}(X_{i} - \bar{X})$$

$$= \sum_{i=1}^{n} (Y_{i} - b_{0} - b_{1}X_{i})(X_{i} - \bar{X})$$

$$= \sum_{i=1}^{n} (Y_{i} - (\bar{Y} - b_{1}\bar{X}) - b_{1}X_{i})(X_{i} - \bar{X})$$

$$= \sum_{i=1}^{n} (Y_{i} - \bar{Y} - b_{1}(X_{i} - \bar{X})(X_{i} - \bar{X}))$$

$$= \sum_{i=1}^{n} (X_{i} - \bar{X})(Y_{i} - \bar{Y})$$

$$0 = corr(e, X) = \frac{1}{SD(X)SD(e)} \cdot \sum_{i=1}^{n} (e_{i} - \bar{e})(X_{i} - \bar{X}) = \sum_{i=1}^{n} e_{i}(X_{i} - \bar{X})$$

$$\Rightarrow 0 = \sum_{i=1}^{n} e_{i}(X_{i} - \bar{X})$$

$$= \sum_{i=1}^{n} (Y_{i} - b_{0} - b_{1}X_{i})(X_{i} - \bar{X})$$

$$= \sum_{i=1}^{n} (Y_{i} - (\bar{Y} - b_{1}\bar{X}) - b_{1}X_{i})(X_{i} - \bar{X})$$

$$= \sum_{i=1}^{n} (Y_{i} - \bar{Y} - b_{1}(X_{i} - \bar{X})(X_{i} - \bar{X}))$$

$$= \sum_{i=1}^{n} (X_{i} - \bar{X})(Y_{i} - \bar{Y})$$

$$\Rightarrow b_{1} = \frac{\sum_{i=1}^{n} (X_{i} - \bar{X})(Y_{i} - \bar{Y})}{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}} = r_{XY} \frac{S_{Y}}{S_{X}}$$

Gives us our slope!

Model Fit: When is your line good enough?

Model Fit: When is your line good enough?

- What is simplest baseline (\bar{Y})
 - ▶ (Remember) Null hypothesis testing?
 - $\bar{Y} = 1215.925 \text{ (in $1000s)}$
 - We can compare our model (SLR) to a simple mean model (\bar{Y})
- ▶ We can also think of this as variance decomposition of Y
 - ► ⇒ ANOVA

How well does the least squares line explain variation in Y? Since \hat{Y} and e are independent (i.e. $cov(\hat{Y}, e) = 0$),

$$var(Y) = var(\hat{Y} + e) = var(\hat{Y}) + var(e)$$

This leads to ANOVA for regression:

$$\sum_{i=1}^{n} (Y_i - \bar{Y})^2 = \sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2 + \sum_{i=1}^{n} e_i^2$$

$$\underbrace{\sum_{i=1}^{n} (Y_i - \bar{Y})^2}_{\text{Total Sum of Squares}} = \underbrace{\sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2}_{\text{Sum of Squares}} + \underbrace{\sum_{i=1}^{n} e_i^2}_{\text{Sum of Squares}}$$

$$\underbrace{\sum_{i=1}^{n} (Y_i - \bar{Y})^2}_{\text{Sum of Squares}} + \underbrace{\sum_{i=1}^{n} e_i^2}_{\text{Sum of Squares}}$$

$$\underbrace{\sum_{i=1}^{n} (Y_i - \bar{Y})^2}_{\text{Sum of Squares}} + \underbrace{\sum_{i=1}^{n} e_i^2}_{\text{Sum of Squares}}$$

$$\underbrace{\sum_{i=1}^{n} (Y_i - \bar{Y})^2}_{\text{Sum of Squares}} + \underbrace{\sum_{i=1}^{n} e_i^2}_{\text{Sum of Squares}}$$

SSR: Variation in Y explained by the regression line

SSE: Variation in Y that is left unexplained

$$SSR = SST \Rightarrow \text{ perfect fit}$$

Be careful of similar acronyms, e.g. SSR for "residual" SS

How does that breakdown look on a scatterplot?

How does that breakdown look on a scatterplot?

How does that breakdown look on a scatterplot?

Decomposing the Variance

How does that breakdown look on a scatterplot?

A goodness of fit measure: R^2

The coefficient of determination, denoted by R^2 , measures goodness-of-fit:

$$R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}$$

- $ightharpoonup 0 < R^2 < 1$
- ▶ The closer R^2 is to 1, the better the fit

A goodness of fit measure: R^2

An interesting fact: $R^2 = r_{XY}^2$

▶ i.e., R² is squared correlation

$$R^{2} = \frac{\sum_{i=1}^{n} (\hat{Y} - \bar{Y})^{2}}{\sum_{i=1}^{n} (Y_{i} - \bar{Y})^{2}}$$

$$= \frac{\sum_{i=1}^{n} (b_{0} + b_{1}X_{i} - b_{0} - b_{1}\bar{X})^{2}}{\sum_{i=1}^{n} (Y_{i} - \bar{Y})^{2}}$$

$$= \frac{b_{1}^{2} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}}{\sum_{i=1}^{n} (Y_{i} - \bar{Y})^{2}} = \frac{b_{1}^{2} S_{X}^{2}}{S_{Y}^{2}} = r_{xy}^{2}$$

 No surprise: the higher the sample correlation between X and Y, the better you are doing in your regression

Summarizing/Back to the Housing Data

Source	df	Sum Sq	Mean Sq	F-value	p-va
Regress Error Total	p-1 n-p n-1	SSR SSE SST	SSR/(p-1) SSE/(n-p) SST/(n-1)	(MSR/MSE)	p*

Summarizing/Back to the house data

```
lm <- lm(Zillow_Estimate ~ House_Size_SqFt, data = sf_house)
anova(lm)</pre>
```

```
Analysis of Variance Table
```

```
Response: Zillow_Estimate

Df Sum Sq Mean Sq F value Pr(>F)

House_Size_SqFt 1 20158987 20158987 294.9 < 2.2e-16 ***

Residuals 202 13808267 68358
---

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

- Careful:
 - Residuals SS is our Error SS (SSE)
 - Size SS is our Regression SS (SSR)

Summarizing/Back to the house data

Call:

```
lm(formula = Zillow_Estimate ~ House_Size_SqFt, data = sf_house)
Residuals:
   Min 10 Median 30 Max
-753.61 -162.70 -7.83 165.67 1009.50
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept) 449.00
                          48.27 9.303 <2e-16 ***
House Size SqFt 495.48
                          28.85 17.173 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 261.5 on 202 degrees of freedom Multiple R-squared: 0.5935, Adjusted R-squared: 0.5915 F-statistic: 294.9 on 1 and 202 DF, p-value: < 2.2e-16

Exercise

- Use Household Size to predict Last Sold Price for the Zillow House data (ANOVA Test)
- Google Sheets Example
- Google Sheets in Class Assignment
 - Compute $(Y_i \bar{Y})^2$ and $(\hat{Y}_i \bar{Y})^2$
 - ▶ Fill in the ANOVA table and R² from our previous work

Source	df	Sum Sq	Mean Sq	F-value	p-va
Regress Error Total	p-1 n-p n-1	SSR SSE SST	SSR/(p-1) SSE/(n-p) SST/(n-1)	(MSR/MSE)	p*

$$R^2 = SSR/SST$$

Slides for SLR as a Probability Model

A prediction rule is any function where you input X and it outputs \hat{Y} as a predicted response at X

The least squares line is a prediction rule:

$$\hat{Y} = f(x) = b_0 + b_1 X$$

This rule tells us what to do when a new X comes along

lacktriangle Run it through the formula above and obtain a guess \hat{Y}

 \hat{Y} is just what we expect for a given X

▶ It is not going to be a perfect prediction

We need to devise a notion of forecast accuracy

- ▶ How sure are we about our forecast?
- Or how different could Y be from what we expect?

Forecasts are useless without some kind of uncertainty qualification/quantification

One method is to specify a range of Y values that are likely, given an X value

▶ A prediction interval: a probable range for Ys given X

Key insight: to construct a prediction interval, we will have to assess the likely range of residual values corresponding to a Y value that has not yet been observed!

We must "invest" in a **probability model** (e.g., a normal distribution)

▶ Only then we can say something like "with 95% probability the residuals (the error term) will be no less than -\$50,000 or larger than \$50,000"

We must also acknowledge that the "fitted" line may be fooled by particular realizations of the residuals

▶ I.e., that our estimated coefficients b_0 & b_1 are random

Here it is:

$$Y = \beta_0 + \beta_1 X + \epsilon, \quad \epsilon \sim N(0, \sigma^2)$$

Similar but with important differences

- ▶ It is a model, so we are assuming this relationship holds for some **true but unknown** values of β_0 , β_1
- ▶ Greek letters remind us they are *not* the same as the LS estimates of b_0 and b_1

The error ϵ is independent, additive, "idosyncratic noise"

- Its distribution is *known* up to its spread σ^2
- Greek letters remind us that ϵ is not the same as ϵ

Why do we have $\epsilon \sim N(0, \sigma^2)$?

- ▶ $\mu[\epsilon] = 0 \iff \mu[Y|X] = \beta_0 + \beta_1 X$ ($\mu[Y|X]$ is "conditional expectation of Y given X")
- Many distributions are close to normal (central limit theorem)
- ▶ MLE estimates for β 's are the same as the LS b's, giving us a handle on computation
- We can estimate the spread of σ^2
- ▶ It works! This is a very robust model!

Before looking at any data, the model specifies

- ▶ How Y varies with X on average: $\mu[Y|X] = \beta_0 + \beta_1 X$
- ▶ And the influence of factors other than X, $\epsilon \sim N(0, \sigma^2)$ independently of X

Context from the house data example

Think of $\mu[Y|X]$ as the average price of houses with X, and σ^2 is the spread around that average

When we specify the SLR model we say that

- The average house price is linear in its size, but we don't know the coefficients
- Some houses could have a higher than expected value, some lower, but the amount by which they differ from average is unknown but
 - Is independent of the size
 - And is normal

We think about the data as being one possible realization of data that *could* have been **generated from the model**

$$Y|X \sim N(\beta_0 + \beta_1 X, \sigma^2)$$

• σ^2 controls the dispersion of Y around $\beta_0 + \beta_1 X$

Prediction intervals in the true model

You are told (without looking at the data) that

$$\beta_0 = 40; \ \beta_1 = 45; \ \sigma = 10$$

and you are asked to predict the price of a 1500 SqFt house What do you know about Y from the model?

$$Y = 40 + 45(1.5) + \epsilon$$

= 107.5 + ϵ

Thus our prediction for price is

$$Y \sim N(107.5, 10^2)$$

Prediction intervals in the true model

The model (449 + 495.48X) says that the mean value of a 1000 SqFt house is \$495931.06 and the deviation from mean is within \approx \$28808.114

We are 95% sure that

- \$ $-56463.904 < \epsilon < 56463.904
- ▶ \$439127.88 < *Y* < \$552734.25

In general, the 95% Prediction Interval is $PI=eta_0+eta_1X\pm1.96\sigma_{\hat{Y}}$

Note that here I am using a t-distribution with df=202, such that $495931.064 \pm 1.9717774 \cdot 28808.114$

SE of \hat{Y}

► SE of ŷ at x is:

$$\hat{\sigma}_{\hat{Y}} = SE(\hat{Y}) = \hat{\sigma}\sqrt{1 + \frac{1}{n} + \frac{(x - \bar{x})^2}{\sum_{i=1}^{n}(x_i - \bar{x})^2}}$$

where
$$\hat{\sigma} = \sqrt{\frac{1}{n-2} \sum_{i=1}^{n} (y_i - \hat{y})^2}$$
 (Also known as $rMSE$)

- \triangleright Example x = 1000
- $\hat{Y} = \beta_0 + \beta_1 x = 449 + 495.48 \times 1000 = 495929$
- $\hat{\sigma} = 261.45$
- $\frac{(x-\bar{x})^2}{\sum_{i=1}^n (x_i-\bar{x})^2} = \frac{996906.73}{82.11}$
- $\sqrt{1 + \frac{1}{n} + \frac{(x \bar{x})^2}{\sum_{i=1}^{n} (x_i \bar{x})^2}} = 110.19$
- $\hat{\sigma}_{\hat{\mathbf{v}}} = 28809.3$
- ▶ 95% CI: $495929 \pm qt(1 .05/2, n 2) \times 28809.3$
- ightharpoonup 95% CI: 495929 \pm 1.97 imes 28809.3

Summary of Simple Linear Regression

Assume that all observations are drawn from our regression model and that errors on those observations are independent

The model is

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$

wher ϵ_i is independent and identically distributed $N(0, \sigma^2)$

The SLR has 3 basic parameters

- \triangleright β_0 , β_1 (linear pattern)
- $ightharpoonup \sigma$ (variation around the line)

Summary of Simple Linear Regression

What are the key characterstics of SLR?

▶ I.e., how do we describe the model in words?

We assume that

- ▶ The mean of Y is linear in X
- ► The error terms (deviations from the line) are normally distributed
 - Very few deviations are more than 2 sd away from the regression mean
- And the error terms have constant variance

Extra Notes

Conditional vs Marginal Distributions

More on the conditional distribution:

$$Y|X \sim N(\mu(Y|X], Var(Y|X))$$

- Mean is $\mu[Y|X] = \mu[\beta_0 + \beta_1 X + \epsilon | X] = \beta_0 + \beta_1 X$
- Variance is

$$Var(Y|X) = Var(\beta_0 + \beta_1 X + \epsilon | X) = Var(\epsilon) = \sigma^2$$

• $\sigma^2 < Var(Y)$ if X and Y are related

And the ANOVA for regression:

▶ The bigger $[1 - \sigma^2/Var(Y)]$, the more X matters!

R Addendum

► Key R Code:

```
help(lm)
help(predict.lm)
help(anova)
help(plot.lm)
help(package = "ggplot2")
```

► R Studio

```
## Read Data and load ggplot2
library(ggplot2)
hdata <- read.csv("https://goo.gl/F2q8Vy")</pre>
```

```
ggplot(hdata, aes(y = ZillowEstimate, x = houseSize..sq.ft.)) + geom_point(shape = 1) +
    geom_smooth(method = lm)
```

```
lm1 <- lm(ZillowEstimate ~ houseSize..sq.ft., data = hdata)
summary(lm1)</pre>
```

anova(lm1)

```
## Predict house price if 500 sq ft, 1000 sq ft, 1500 sq ft
predict(lm1, data.frame(houseSize..sq.ft. = c(500, 1000, 1500)), interval = "confidence",
level = 0.05)
```

```
## Predict house price if 500 sq ft, 1000 sq ft, 1500 sq ft
predict(lm1, data.frame(houseSize..sq.ft. = c(500, 1000, 1500)))
```

Extra Example of R SLR: Data

```
library(Sleuth3)
data(ex0828)
head(ex0828)
```

	Subject	AFQT	Educ	Income2005
1	2	6.841	12	5500
2	6	99.393	16	65000
3	7	47.412	12	19000
4	8	44.022	14	36000
5	9	59.683	14	65000
6	13	72.313	16	8000

Example of R SLR: Validity of the regression model

```
ggplot(ex0828, aes(y = log(Income2005), x = Educ)) + geom_point(shape = 1) +
    geom_smooth(method = lm)
```


Example of R SLR: Data

```
lm_1 \leftarrow lm(log(Income2005) \sim Educ, data = ex0828)
summary(lm_1)
Call:
lm(formula = log(Income2005) ~ Educ, data = ex0828)
Residuals:
   Min
          1Q Median
                                Max
-6.8671 -0.3487 0.1441 0.5772 2.6981
Coefficients:
          Estimate Std. Error t value
                                             Pr(>|t|)
(Intercept) 8.880995 0.103473 85.83 <0.0000000000000000 ***
Educ
          Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.9328 on 2582 degrees of freedom
Multiple R-squared: 0.08299, Adjusted R-squared: 0.08264
F-statistic: 233.7 on 1 and 2582 DF, p-value: < 0.0000000000000022
```