Memory Replay GANs: learning to generate images from new categories without forgetting

Chenshen Wu, Luis Herranz, Xialei Liu, Yaxing Wang, Joost van de Weijer, Bogdan Raducanu

NIPS 2018

Presented by Eungyeup Kim

Davian Vision Study 21 JAN 2020

Backgrounds

Continual Learning

: Rather than learning a single model with static, single-domain dataset, the model continually builds up its comprehensive ability on multiple tasks by learning on sequentially provided dataset.

- Computational systems operating in the real world are exposed to continuous streams of information and thus are required to learn and remember multiple tasks from dynamic data distributions.
- The ability to continually learn over time by accommodating new knowledge while retaining previously learned experiences is referred to as continual or lifelong learning.
- The main issue of continual learning is denoted as *catastrophic forgetting*, meaning that training a model with new information interferes with previously learned knowledge.

Backgrounds

Continual Learning

: Rather than learning a single model with static, single-domain dataset, the model continually builds up its comprehensive ability on multiple tasks by learning on sequentially provided dataset.

- Computational systems operating in the real world are exposed to continuous streams of information and thus are required to learn and remember multiple tasks from dynamic data distributions.
- The ability to continually learn over time by accommodating new knowledge while retaining previously learned experiences is referred to as *continual* or *lifelong learning*.
- The main issue of continual learning is denoted as catastrophic forgetting, meaning that training a model with new information interferes with previously learned knowledge.

Many papers tackling this issue are coming up in many conferences recently.. (more than 10 papers in ICRL2020)

Backgrounds

Continual Learning

: Rather than learning a single model with static, single-domain dataset, the model continually builds up its comprehensive ability on multiple tasks by learning on sequentially provided dataset.

[Network Regularization]

EWC(Elastic Weight Consolidation)
:Regularizes the degree of changes of
weights in the current task by defining
the importance of weights in the last
tasks.

- FWC++
- Online EWC

[Memory Replay]

Generative Replay
:Generates the datasets used in the last
task and use them with the current
dataset to train the model for the
current task.

- Memory Replay GANs
- Dynamic Generative Memory

[Dynamic Architecture]

EWC(Elastic Weight Consolidation)
:Selectively expand the parameters of
the model when the additional ones are
necessary for the new tasks.

- Progressive Net
- LwF
- DAN
- Dynamic-expansion Net

Motivation

The generative task of learning new categories in a sequential fashion is tackled in this paper.

- This paper proposes that the generator has an active role by replaying memories of previous tasks.
- Replay generator is extended with two different methods introduced in this paper:
 - 1. Joint retraining with replayed samples
 - 2. Replay alignment

Replay generator has prevented the catastrophic forgetting mainly in deterministic task, but not in image generation.

- Image generation is a generative task and typically more complex than classification.

Proposed Methods

Non-sequential setting: Learning to generate the multiple classes at once

- The baseline is AC-GAN with WGAN-GP loss.
- Using category labels as conditions, the task is to learn from a training set $S = \{S_1, ..., S_M\}$ to generate images given an image category c.
- The framework consists of generator, discriminator and classifier.
 - Generator takes (z, c) to generate $\tilde{x} = G_{\theta^G}(z, c)$.
 - Discriminator discerns whether an input image is real or not.
 - Classifier predicts the label $\tilde{c} = C_{\theta}c(x)$.
- Auxiliary classifier forces the generator makes images to be classified in the same way as real images.

$$\min_{\theta^{G}}(L_{GAN}^{G}(\theta,S) + L_{CLS}^{G}(\theta,S))$$

$$\min_{\theta^{G}}(L_{GAN}^{G}(\theta,S) + L_{CLS}^{D}(\theta,S))$$

$$L_{GAN}^{G}(\theta,S) = -E_{z \sim p_{z},c \sim p_{c}} \left[D_{\theta^{D}} \left(G_{\theta^{G}}(z,c) \right) \right]$$

$$L_{CLS}^{G}(\theta,S) = -E_{z \sim p_{z},c \sim p_{c}} \left[y_{c} log C_{\theta^{C}} \left(G_{\theta^{G}}(z,c) \right) \right]$$

$$L_{CLS}^{D}(\theta,S) = -E_{z \sim p_{z},c \sim p_{c}} \left[y_{c} log C_{\theta^{C}} \left(G_{\theta^{G}}(z,c) \right) \right]$$

$$L_{CLS}^{D}(\theta,S) = -E_{(x,c) \sim S} \left[\left(\left\| \nabla D_{\theta^{D}} \left(\epsilon x + (1-\epsilon) G_{\theta^{G}}(z,c) \right) \right\|_{2} - 1 \right)^{2} \right]$$

$$L_{CLS}^{D}(\theta,S) = -E_{(x,c) \sim S} \left[C_{\theta^{C}} \left(G_{\theta^{G}}(z,c) \right) \right]$$

Proposed Methods

Sequential setting: Learning to generate the class one by one in a sequential manner

1. Joint retraining with replayed samples

(a) Joint retraining with replay

- Compared to DGN, a conditional GAN where (x, c) pair is input allows us finer control of the replay process, avoiding potential classification errors and biased sampling towards the recent categories.
- This method creates an extended dataset $S'_t = S_c \cup \tilde{S}_{c \in \{1, \dots, t-1\}}$, where S_c denotes the real training data for current task, \tilde{S}_c denotes the memory replays from previous tasks.

$$\min_{\theta_t^G} (L_{GAN}^G(\theta_t, S_t') + \lambda_{CLS} L_{CLS}^G(\theta_t, S_t'))$$

$$\min_{\theta_t^D} (L_{GAN}^D(\theta_t, S_t') + \lambda_{CLS} L_{CLS}^D(\theta_t, S_t'))$$

Proposed Methods

Sequential setting: Learning to generate the class one by one in a sequential manner

2. Replay Alignment

- The current generator is first initialized with the same parameters of the replay generator, both of them can be synchronized to generate the same image by the same category c and latent vector z as inputs.
- In these conditions, the generated images \hat{x} from the replay generator and \tilde{x} from the current generator should be aligned pixelwise.

$$\min_{\theta_{t}^{G}}(L_{GAN}^{G}(\theta_{t}, S_{t})) + \lambda_{RA}L_{RA}(\theta_{t}, S_{t})$$

$$L_{RA}(\theta_{t}, S_{t}) = E_{x \sim S, z \sim p_{z}, c \sim U\{1, t-1\}} \left[\left\| G_{\theta_{t}^{G}}(z, c) - G_{\theta_{t-1}^{G}}(z, c) \right\|^{2} \right]$$

(b) Replay alignment

Table 1: Average classification accuracy (%) in digit generation (ten sequential tasks).

	5 tasks (0-4)					10 tasks (0-9)						
	Baselines		Others		MeRGAN		Baselines		Others		MeRGAN	
	JT	SFT	EWC[26]	DGR[27]	JTR	RA	JT	SFT	EWC[26]	DGR[27]	JTR	RA
MNIST	97.66	19.87	70.62	90.39	97.93	98.19	96.92	10.06	77.03	85.40	97.00	97.0
SVHN	85.30	19.35	39.84	61.29	80.90	76.05	84.82	10.10	33.02	47.28	66.50	66.78

- Sequential fine-tuning(SFT) and non-sequential joint training(JT) are lower-bound and upperbound, respectively.
- Generation for SVHN is more challenging with relatively limited capacity of model.
- Qualitatively reliable and better results are generated from MeRGAN methods compared to others.
- Higher classification accuracy is achieved in MeRGAN methods.

(b) After tasks 0,1,3,9

- A classifier trained with real digits is used to extract the embeddings of the methods.
- The distributions of 0s generated by MeRGANs greatly overlap with the distributions of real 0s.
- No isolated clusters of real samples are observed, which suggests that MeRGANs prevent forgetting better while keeping diversity.

Table 2: FID and average classification accuracy (%) on LSUN after the 4th task

	SFT	EWC	DGR	MeRGAN-JTR	MeRGAN-RA
Acc.(%)	15.02	14.28	15.40	79.19	81.03
Rev acc.(%)	28.0	63.35	26.17	70.00	83.62
FID	110.12	178.05	93.70	49.69	37.73

Figure 6: Evolution of FID and classification accuracy (%). Best viewed in color.

- Reverse accuracy measured by a classifier trained with generated data and evaluated with real data.
- Frechet inception score(FID) measures both quality and diversity.