aiNet: ein künstliches Immun Netzwerk zur Datenanalyse

Herzlich Willkommen

aiNet: An Artificial Immune Network Model for Data Analysis

Leandro Nunes de Castro & Fernando José Von Zuben

{Inunes,vonzuben}@dca.fee.unicamp.br

http://www.dca.fee.unicamp.br/~Inunes

ftp://ftp.dca.fee.unicamp.br/pub/docs/vonzuben/Inunes/DMHA.pdf

Inhalt

- Grundlegende Ideen und Ziel(e)
- Das Immunsystem
- Grundlagen
- Lernalgorithmus
- Charakterisierung von aiNet
- Knowledge Extraction
- Beispiele
- ► Fazit

Grundlegende Idee

Sinnvolle Ansätze aus der informationstheoretischen Sicht?

- Immune Network Theory
- Clonale Selektion
- affinitiy maturation

Grundlegendes Ziel

- Datensätze clustern, filtern und Redundanz reduzieren
- Datensätze sind durch hochdimensionale Beispiele gegeben
- ► ABER: es ist nicht das Ziel, das Immunsystem in irgendeiner Weise nachzubilden!

Das Immunsystem

- Immune Network Theory
- Clonale Selektion
- affinity maturation

- ShapeSpace S
 - ► S = R^L
 - L Dimensionale Abbildung der Realität
 - Physio-Chemische Messungen
 - Alle immunen Ereignisse finden hier statt
- Antibody, Antigen
 - ► L Dimensionaler String (oder Vektor)
 - Keine Unterscheidung zwischen Oberfläche und Zelle/Molekül

- Antigene
 - Abkürzung Ag
 - Daten dargestellt in ShapeSpace S
- Antibodys
 - Abkürzung Ab
 - Netzwerkknoten
 - Befinden sich auch im ShapeSpace S
 - Ziel: gleiche räumliche Verteilung wie Ag

- Ab-Ab / Ag-Ab Interaktionen
 - Als Konnektivitätsgraph
 - Distanzmetrik
 - Approximiert über Affinität
 - Distanz ist invers proportional zur Affinität
 - Je ähnlicher, räumlich näher, sich Ab-Ab oder Ab-Ag sind, desto höher ist die Affinität
 - Netzwerkunterdrückung
 - Netzwerkaktivierung

Definition: Das aiNet ist ein kantengewichteter Graph, nicht notwendigerweise vollständig verbunden, bestehend aus einem Satz aus Knoten, genannt Antibodys und einem Satz aus Knotenpaaren, genannt *Kanten*, mit einer Zahl, die *Gewicht* oder Verbindungsstärke genannt wird und jeder verbundenen Kante zugeordnet wird.

- Antibody Antigen Paar (Ab-Ag)
 - ▶ d = Affinität
 - Invers proportional zur Distanz
 - Erkennung
 - Wenn Affinität d hoch genug ist
 - Netzwerkaktivierung
 - Zellvermehrung
 - Clonen, Mutieren...

- Antibody Antibody Paar (Ab-Ab)
 - s = Ähnlichkeit (similarity)
 - Invers proportional zur Distanz
 - Erkennung
 - wenn Ähnlichkeit s groß genug ist
 - über Variable σ_s Suppression Threshold gesteuert
 - Netzwerkunterdrückung
 - Zelltod
 - Entfernen der Zelle

- Antibody ? Paar
 - Ab ist zu keinen anderen Ab ähnlich
 - Ab ist zu keinen Ag affin
 - Zelltod
 - Überpopulation

- ▶ AiNet Cluster
 - Bilder der Daten/ Datencluster
 - \blacktriangleright Eigenschaften werden durch σ_s Supression
 - Threshold gesteuert
 - ► Ab wann erkennen sich Ab oder Ag?
 - Wie groß wird das Netzwerk hierdurch ?
 - Struktur
 - Weniger Daten (Ag) als Graphenknoten (Ab)
 - Weniger Knoten (Ab) als Untergraphen / Cluster
 - Untergraph über Distanz
 - Datenkompression
 - muss extrahiert werden

- ▶ 1. Bei jedem Durchlauf / jeder Generation
 - ▶ 1.1 Für jedes Antigen Ag_j, j=1..M, (Ag_j aus Ag):
 - 1.1.1 Berechne die Affinität f_{ij} für alle Ab_i ,i=1..N
 f_{ij} = 1 / D_{ij}
 D_{ij} = || Ab_i − Ag_j || (Distanz)
 - ► 1.1.2 Bilde Ab_{n} aus den n Antibody mit der höchsten Affinität

- ▶ 1.1.3 Aus Ab_{n} wird C erstellt, indem proportional zu der antigenen Affinität f_{ij} geklont wird:
 Je höher die Affinität, desto mehr Clone gibt es jeweils.
- 1.1.4 Es wird C* generiert, indem die Clone C gezielt mutiert werden (affinity maturation). Die Mutationsrate α_k ist invers proportional zu der Antigenen Affinität f_{ij}: je höher die Affinität, desto geringer ist die Mutationsrate.

$$C_k^* = C_k^* + \alpha_k^* (Ag_j^* - C_k^*)$$
 mit $\alpha_k = 1/f_{ij}^*$; $k = 1...N_c^*$; $i = 1...N_c^*$

- ► 1.1.5 Berechne die Affinität d_{kj} = 1/D_{kj} für Ag_j und alle Elemente von C*
- 1.1.6 Bilde M_j (clonales Gedächtnis) aus den ζ%
 Antibodys mit der höchsten Affinität d_{kj}
- ► 1.1.7 Apoptose: Eliminiere alle Clone aus M_j deren Affinität $D_{ki} > \sigma_d$ ist.
- ► 1.1.8 Berechne die Ähnlichkeit s_{ik} für die Clone in M_{j} $s_{ij} = ||M_{ji} M_{jk}||$ für alle i und k

- 1.1.9 Clonale Unterdrückung: Eliminiere alle Clone aus M_j deren s_{ik} < σ_s ist.
- ► 1.1.10 Füge die verbliebenen Clone in M_j den Antibodys des aktuellen Durchlaufs Ab_{m} hinzu
- ► 1.2 Berechne die Ähnlichkeit aller Antibodys aus Ab_{m}: s_{ik}=||Ab_{m} Ab_{m} || für alle i und k
- 1.3 Netzwerkunterdrückung: Eliminiere alle Antibodys aus Ab_{m} deren s_{ik} < σ_s

- ► 1.4 Bilde die neue Generation Ab aus Ab_{m} und
 Ab_{d} (wobei Ab_{d} eine Auswahl aus Ab sein muss)
- ▶ 2. Überprüfe das Haltekriterium

- Haltekriterium
 - Variabel
 - Flexibel
 - Anzahl Iterationen
 - Anzahl an Antibodys
 - Mittlerer Fehler zwischen Ab-Ag
 - Wenn der Mittlere Fehler sich nicht mehr verändert oder schwankt

aiNet: Charakterisierung

- Verbindungsorientiert
- Konkurrierend
 - Ag Erkennung
 - Überleben der Ab
- Konstruktive
- Ab Korrespondieren zu Ag
- Konzentration und Affinität sind der Zustand
 - Änderung durch Lernalgorithmus
- Anpassungsfähig an die Aufgabe
 - Durch Initialen Antigen Satz

aiNet: Charakterisierung

Unterschied zu Neuralen Netzen:

	aiNet	Neurales Netz
Knoten	Bilder der Daten	Verarbeitende Elemente
Verbindungen	Ähnlichkeit	Spiegeln gelerntes wieder

aiNet: Charakterisierung

- ► Als evolutionärer Algorithmus
 - Populations basiert
 - Anfangspopulation gegeben
 - Evaluations Funktion
 - Ähnlichkeitsmessungen müssen definiert werden.
 - Affinitätsmessungen müssen definiert werden.
 - Mutation
 - Clone werden durch Mutation zu Nachkommen
 - Viele Parameter
 - Maximale Affinität, Ähnlichkeit
 - Die Anzahl der zu selektierenden Ab's
 - Natürlicher Tod, Netzwerkunterdrückung

- Warum Knowledge Extraction ?
 - Visualisierung des Netzwerks für Antibody/Antigen Dimensionen größer 3 nicht ohne weiteres möglich
 - Hierarchisches Clustern
 - Fertige Netzwerkstruktur

aiNet illustration. (a) Learning data. (b) Resulting network antibodies.

- Möglichkeit 1
 - Alle Verbindungen, die größer als ein bestimmter Wert (Threshold) sind, entfernen.
- ► Problem:
 - Fehlerhafte Interpretationen

- Anforderungen an KE Algorithmus
 - Hohe Aussagewahrscheinlichkeit
 - Anzahl der Cluster
 - Räumliche Verteilung der Cluster
 - Antigene den Clustern zuordnen

- Möglichkeit 2
 - Dendrogramm
 - Definition: Ein Dendrogramm ist ein gewichteter Baum bei dem alle Endknoten die selbe Distanz (Pfadlänge) bis zur Wurzel besitzen.
 - Konstruktion aus der Ähnlichkeit / Distanz
 - Siehe: Hartigan(1967) und Hubert, Arabie, und Meulman (1998)
 - Clusterung über die Höhe des Dendrogramms
 - Siehe: Milligan and Cooper (1985)

- Möglichkeit 3
 - Minimaler Spannbaum
 - Ein Baum ist ein Spannbaum eines Graphen wenn er ein Untergraph ist, der alle Knoten enthält und Schleifenfrei ist.
 - ► Ein Minimaler Spannbaum eines Graphen ist ein Spannbaum mit minimalen Gewicht.
 - Das Gewicht eines Baumes ist definiert als die Summe der Gewichte der einzelnen Kanten.

- ► Möglichkeit 3
 - Minimaler Spannbaum
 - Erstellung über Prim's Algorithmus (Prim, 1957)
 - Histogramm
 - Cluster = Anzahl Täler
 - Inkonsistente Kanten
 - werden entfernt
 - gdw. das Gewicht der Kante signifikant größer, als der Durchschnitt der benachbarten Kanten ist.

- Möglichkeit 4
 - Fuzzy Clustering
 - Antibody werden nicht fest einem Cluster zugeordnet
 - membership function
 - fuzzy k-means algorithm
 - fuzzy c-means algorithm
 - Siehe Bezdek und Pal (1992)

	c_1	c_2	c_3	c_4	C_5	c_6	c_7	c_8	C 9	c_{10}
v_1	1.00	1.00	0.67	0.71	0.76	0.69	0.84	0.75	0.71	0.66
v_2	0.58	0.63	0.50	1.00	0.68	0.50	1.00	0.60	0.56	0.64
v_3	0.67	0.50	0.63	0.56	0.50	0.58	0.57	1.00	1.00	0.50
v_4	0.50	0.55	0.54	0.62	1.00	0.57	0.64	0.50	0.50	1.00
v_5	0.60	0.50	1.00	0.50	0.59	1.00	0.50	0.60	0.56	0.64

	c_1	c_2	c_3	c_4	C5	c_6	<i>C</i> 7	\mathcal{C}_8
v_1	1.00	0.50	1.00	0.50	0.50	0.86	1.00	0.63
v_2	0.80	0.50	1.00	0.50	0.50	1.00	0.97	1.00
v_3	0.65	0.50	0.55	0.50	1.00	0.89	0.94	0.50
v_4	0.71	0.50	1.00	1.00	0.50	0.50	0.59	0.72
v_5	0.50	1.00	0.50	0.50	0.50	0.63	0.50	0.80

Fazit

- ▶ Der Algorithmus hat die Laufzeit O(n²)
- aiNet ist nur als Vorstufe für weitere Clusterung zu sehen.
- Daten in ShapeSpace zu bringen könnte Problematisch sein.
- Probleme zu formulieren nicht intuitiv.

Noch Fragen???

Vielen Dank für Eure Aufmerksamkeit.