Analysis Report on Malicious URL Detection Models

Performance Analysis:

1. XGBoost Model:

- XGBoost demonstrated the highest accuracy (96%) among the three models.
- Achieved excellent precision, recall, and F1-scores for all classes, with a particularly strong performance in the benign and defacement categories.
- Struggled slightly with class 3 (malware), likely due to overlapping features with other classes.

2. LSTM Model:

- o The LSTM model achieved moderate performance with an accuracy of 89%.
- Exhibited lower recall and F1-scores compared to XGBoost, especially in the 3 (malware) and 4 (spam) classes.
- Sequence learning helped capture patterns in URL structures but suffered from class imbalances, resulting in reduced performance for underrepresented classes.

3. BERT (LLM-Based Model):

- BERT achieved an accuracy of 72.91%, significantly lower than both XGBoost and LSTM.
- The pre-trained model was less effective in this domain, possibly due to limited fine-tuning on URL-specific data.
- Computationally expensive and struggled to generalize across all classes, especially the minority ones.

Model Comparison:

Model	Accuracy	Macro F1- Score	Strengths	Weaknesses
XGBoos	: 96%	0.95	High accuracy, interpretable, handles imbalanced data well	Slightly lower recall for class 3
LSTM	89%	0.81	Captures sequential patterns effectively	Overfits and struggles with minority classes

Model	Macro F1- Accuracy Score	Strengths	Weaknesses
BERT	72.91% -	Leverages contextual embeddings	Requires significant fine- tuning, less effective for URLs

Challenges:

1. Class Imbalance:

- Undersampling helped to balance the dataset but led to a loss of data diversity.
 The minority classes (2, 3, and 4) were particularly challenging for both LSTM and BERT.
- XGBoost managed imbalance better due to its inherent handling of weighted losses.

2. Resource Intensity:

- The BERT model required significant computational resources for fine-tuning and inference.
- o LSTM training was time-intensive due to the sequential nature of computations.

3. Feature Relevance:

 URL structures have unique characteristics that traditional NLP models like BERT may not capture effectively without specific pretraining.

Proposed Improvements:

1. Data Augmentation:

 For better generalization, consider synthetic data generation tailored to minority classes to increase representation without sacrificing diversity.

2. Regularization for LSTM:

 Add dropout layers and tune hyperparameters to mitigate overfitting and improve generalization.

3. **Domain-Specific Embeddings:**

 Fine-tune BERT on a URL-specific corpus to improve its understanding of patterns unique to URLs.

4. Hybrid Approaches:

 Combine the strengths of XGBoost and deep learning models (e.g., use XGBoost on features extracted by LSTM or BERT).

Conclusion:

XGBoost emerged as the best-performing model due to its high accuracy, robust handling of imbalanced data, and interpretability. LSTM showed moderate performance but struggled with minority classes and overfitting. BERT underperformed due to a lack of domain-specific fine-tuning and challenges in generalizing to URL data. Future efforts should focus on optimizing LSTM and BERT models for the URL domain while leveraging hybrid approaches to improve performance further.