

CanberraUAV Workshop Ground Control Stations

Feb 2017

Ground Control Stations

- Also known as GCS
- Communicate with the UAV
- Receive telemetry data
- Send commands to UAV

GCS -Introduction

- Telemetry Data
 - Data sent from UAV to GCS
 - Contains information about the current state of the UAV
 - Speed
 - Position
 - Altitude
 - System errors

GCS -Introduction

- Command data
 - Data sent from GCS to UAV
 - Can be
 - Flight commands (RTL, Goto waypoint)
 - Get/set flight parameters
 - Get/set mission waypoints

GCS -Introduction

- A GCS Consists of
 - Communications Link
 - GCS Computer
 - GCS Software
 - Other accessories live video feed, tracking antenna, DGPS base station, etc as required

GCS – Software Options

- Most GCS software is run on laptops
- Different options depending on
 - Which flight controller is used
 - GCS Operating System
 - Require features
- Open source and commercial offerings

GCS - Software Options

Software	Runs on Linux	Runs on Windows	Runs on OSX
Mission Planner		YY	Υ
MAVProxy	YY	Υ	
APM Planner 2	YY	YY	YY
Qground control	Υ	Υ	YY
UgCS	YY	YY	YY

GCS - Software Options

Software	Runs on Android	Runs on iOS
Tower	YY	
MAVPilot		YY
SidePilot		YY
AndroPilot	YY	

GCS - Software Options

 Compatibility and features vary widely between GCS programs

- Micro Air Vehicle Link
- Standardised protocol for most open-source flight controllers
 - Though some flight controllers may have extra MAVLink messages
- Efficient and low datarate
- Includes CRC to ensure validity of data
- 3 versions 0.9, 1.0, 2.0
- Arduplane can use 1.0 or 2.0 (default 1.0)

Byte Index	Content	Value	Explanation
0	Packet start sign	v1.0: 0xFE (v0.9: 0x55)	Indicates the start of a new packet.
1	Payload length	0 - 255	Indicates length of the following payload.
2	Packet sequence	0 - 255	Each component counts up his send sequence. Allows to detect packet loss
3	System ID	1 - 255	ID of the SENDING system.
4	Component ID	0 – 255	ID of the SENDING component.
5	Message ID	0 - 255	ID of the message – the id defines what the payload "means" and how it should be correctly decoded.
6 to (n+6)	Data	(0 – 255) bytes	Data of the message, depends on the message id.
(n+7) to (n+8)	Checksum (low byte, high byte)	ITU X.25/SAE AS-4 hash, excluding packet start sign, so bytes 1(n+6)	

GPS_RAW_INT (<u>#24</u>)

The global position, as returned by the Global Positioning System (GPS). This is NOT the global position estimate of the system, but rather a RA estimate. Coordinate frame is right-handed, Z-axis up (GPS frame).

Field Name	Туре	
time_usec	uint64_t	Timestamp (microseconds since UNIX epoch or microsecon
fix_type	uint8_t	See the GPS_FIX_TYPE enum.
lat	int32_t	Latitude (WGS84), in degrees * 1E7
Ion	int32_t	Longitude (WGS84), in degrees * 1E7
alt	int32_t	Altitude (AMSL, NOT WGS84), in meters * 1000 (positive fc addition to the WGS84 altitude.
eph	uint16_t	GPS HDOP horizontal dilution of position (unitless). If unkno
epv	uint16_t	GPS VDOP vertical dilution of position (unitless). If unknown
vel	uint16_t	GPS ground speed (m/s * 100). If unknown, set to: UINT16_
cog	uint16_t	Course over ground (NOT heading, but direction of movem
satellites_visible	uint8_t	Number of satellites visible. If unknown, set to 255

MAV_CMD

Commands to be executed by the MAV. They can be executed on user request, or as part of a mission script. If the action is used in a mis 1, Param 2, Param 3, Param 4, X: Param 5, Y:Param 6, Z:Param 7. This command list is similar what ARINC 424 is for commercial aircraft:

CMD ID	Field Name	
16	MAV_CMD_NAV_WAYPOINT	Navigate to MISSION.
	Mission Param #1	Hold time in decimal seconds. (ignored by fixed wing
	Mission Param #2	Acceptance radius in meters (if the sphere with this i
	Mission Param #3	0 to pass through the WP, if > 0 radius in meters to μ orbit. Allows trajectory control.
	Mission Param #4	Desired yaw angle at MISSION (rotary wing)
	Mission Param #5	Latitude
	Mission Param #6	Longitude
	Mission Param #7	Altitude
17	MAV_CMD_NAV_LOITER_UNLIM	Loiter around this MISSION an unlimited amount of ti
	Mission Param #1	Empty
	Mission Param #2	Empty
	Mission Param #3	Radius around MISSION, in meters. If positive loiter (
	Mission Param #4	Desired yaw angle.
	Mission Param #5	Latitude
	Mission Param #6	Longitude
	Mission Param #7	Altitude

- There are MAVLink messages for sending/receiving parameters and missions
- Typically, a flight controller may only send some of the messages – depending on it's features, settings and current state

- MAVLink does include any encryption
 - Up to the user to implement in their communications link
- MAVLink 2.0 includes a "signing key"
 - 32-bit number
 - Flight controller will only accept commands from packet signed with this key
 - Disabled by default

Creating the waypoints to achieve the mission objectives

- What is the mission objective?
 - Primary and secondary goals
 - Payload required
 - UAV required
- Most GCS software packages have a mission planning screen where you can drag-n-drop waypoints

- Considerations
 - Takeoff/landing area
 - Hills/Terrain
 - Flight altitude
 - Mission length (km)
 - Weather (wind)
 - Communications coverage

- If possible, run the mission in SITL beforehand, to ensure the waypoints are correctly laid out
- Some GCS software packages have autogeneration of waypoints for mowing-thelawn surveys

Practical Session 1 (20min)

- Create a mission that:
 - Perform an aerial survey of the Snowy Hydro base
- Considerations:
 - Takeoff/landing at CMAC
 - Landing will be manual
- Create the mission, run in SITL
 - cd ./ArduPlane
 - ../Tools/autotest/sim vehicle.py
- Two options for GCS tool to use for mission planning (choose one)
 - Connect Mission Planner via UDP, port 14550
 - Use module load misseditor in MAVProxy

GCS – Advanced Planning

- Geofences
 - A single closed polygon
- UAV will turn back if it crosses outside of the polygon

Note that the UAV's inertia may send it beyond the

fence for a short period

GCS – Advanced Planning

- Rally points
 - Instead of a single Home point, have a set of rally points
 - On RTL, the UAV will head to the nearest rally point

GCS – Advanced Planning

- Terrain Following
 - Terrain data stored on Pixhawk's SD card
 - Arduplane will look at this database to estimate it's AGL
 - Available in AUTO, RTL and other flight modes. Will maintain a constant height above ground
 - Set TERRAIN_ENABLE to 1 and TERRAIN_FOLLOW to 1
 - Note the datasource is the SRTM data, so is only accurate to 20m

GCS - Post flight analysis

- Two types of logfiles
 - GCS saved copy of MAVlink stream (tlog)
 - APM saved on SD card (bin)
- Bin log has more messages at a faster rate
 - Generally the preferred log when analysing a flight
- Tlog is on the GCS, so can be used if the UAV goes missing or is destroyed
 - Still worth searching the crash site for the SD card!

GCS – Post flight analysis

- Tlogs are stored in:
 - Mission Planner
 - C:\Program Files (x86)\Mission Planner\logs
 - MAVProxy
 - Same folder that MAVproxy was run from (unless using the --aircraft option)

GCS – Post flight analysis

- Most flight analysis tools will work with both bin files and tlog files
- Popular Flight Analysis tools:
 - Mission Planner
 - MAVExplorer (part of MAVProxy)

GCS - Post flight analysis

GCS – Post flight analysis

- Mechanical Failures
 - These appear in the log as a sudden divergence in the desired roll and pitch vs the vehicles actual roll and pitch

GCS - Post flight analysis

Excessive Vibration

GCS – Post flight analysis

- Compass Interference
 - Look for patterns between mag_field and throttle

GCS – Post flight analysis

GPS Glitches

GCS - Post flight analysis

Power brown-outs, if APM voltage varies by more than 0.15V, or goes below 4.7V

Practical Session 2 (20min)

- Logfile Analysis
 - Find a logfile generated by SITL(./ArduPlane/logs) for the bin file
 - For more interesting data: <u>http://discuss.ardupilot.org/t/altitude-hold-and-stability/14536</u>
- Two options for Analysis tool (choose one)
 - Mission Planner
 - MAVExplorer
- Check GPS
 - GPS.Nsats and GPS.HDop messages
- Check Vibration
 - IMU.AccX, IMU.AccY, IMU.AccZ messages

- APM outputs a lot of telemetry data
- How to watch all this in realtime?

- Decide which data is important
- May vary depending on mission phase
 - Speed, Altitude during takeoff and landing
 - Moving map during mission

- Things to typically monitor
 - Speed
 - Altitude
 - UAV Position (longitude/latitude) along with waypoints
 - Battery voltage
 - Telemetry link quality
 - Any error messages
- Anything that, if not detected in a short time, could result in a crash

- Have backup plans for common failure scenarios
- Practice!
 - In SITL
 - In test flights
- Consider having multiple GCS stations to split the workload

The End!

- Flight Planning
- Logfile analysis
- Inflight monitoring