6CCS3AIN AI Reasoning & Decision-Making Al and Ethics Week 10

Peter McBurney Department of Informatics King's College London London

peter.mcburney@kcl.ac.uk

Week 10 7 December 2020

Al and Ethics Outline

- This week we talk about AI and Ethics
- Why is this topic important
- Regulatory and legal constraints
- Ethical dimensions
 Fairness (non-bias), transparency, explanation, rectification
- Features of this domain
- Deciding what we ourselves should do in specific situations.

Why is it important to consider ethics?

- Most technologies have good and evil applications
- As engineers we owe a duty to our society to consider the ethics of our work
 - eg, British Computer Society Code of Conduct
- With AI, there are particular aspects we need to consider
 - Algorithms may be learnt, so that even the software developers do not know what they do or how.
 - Many machine learning methods are "black boxes"
 - Data may be biased
 - There may be significant legal consequences to our design decisions.

Trolley Problems

- Thought experiments in which we are faced with a moral dilemma
 - Often involve the control of a trolley (ie, a tram)
- For example:
 - We are driving a car in the left land and we see a pedestrian in our lane in front of us
 - If we keep driving we will likely kill the pedestrian
 - OR, we can swerve to the right lane, where there is a car heading towards us
 - If we swerve to the right lane, we will hit the car and this may kill us and the people in the car
 - What should we do?
 - Would our answer be different if the numbers of people impacted were different?

MIT Moral Machine Experiment

www.moralmachine.net

Aside — Norms vs Rules

- As AI engineers, we could hard-code many rules
 - Eg, the road rules that say we should always drive on the left
 - Hard-coding would mean the self-driving vehicle could NEVER drive on the right
- But sometimes we need the car to use the other lane, even though it is against the law
 - eg, Trolley Problems
- So, our usual solution is not to hard-code the rules as unbreakable constraints, but to code them as norms
 - Norm: an accepted standard or way of behaving, which most people follow
 - How should a machine know when it should break a norm?
- Norms and their exceptions are studied extensively in AI
 - Particularly in AI and Law.

Decisions often involve ethical trade-offs

Trade-offs:

Lives lost as a result of one action-option vs.

Lives lost as a result of another action-option

Maybe also another trade-off:

Lives lost outside the car as a result of one action-option vs.

Lives lost inside the car as a result of another action-option

- What car would you purchase?
- What car would you design?

Pressures from regulators

- Our Society is very concerned with various aspects of new technologies, such as AI
- AI is an important current focus of regulators, eg
 - European Commission
 - New regulations on AI coming in 2021
 - GDPR (General Data Protection Regulations)
 - MiFID2 (Markets in Financial Instruments Directive 2)
 - UK likely to follow EU regulations for several years
 - UK Government Office for AI
 - National regulators for data privacy and human rights, eg,
 - UK Information Commissioners Office (ICO)
 - Singapore Personal Data Protection Commission
 - Australian Human Rights Commission (looking at rights under CCTV).

Regulatory focus has been on

- Fairness (and elimination of bias)
 - Systems should not be biased against particular groups
 - People with protected characteristics (age, gender, religion, ethnicity, etc)
- Transparency
 - Stakeholders should be able to see what input data is used, what processes or algorithms are used, what output data results, and what the intended and realized purposes are
- Explainability
 - Automated decision-making systems should be able to explain their decisions in a way that humans can understand
- Rectification
 - Automated decisions should be able to be reversed
- Human involvement
 - Are decisions mediated by humans in the loop
- Governance of AI systems
 - Singapore Government Personal Data Protection Commission (PDPC) Model
 AI Governance Framework (Second Edition), released January 2020.

Legal Aspects

How can responsibility be attributed?

All has no separate legal personality and cannot be an inventor for patents

 Stephen L Thaler v Comptroller-General of Patents, Designs and Trade Marks [2020] EWHC 2412

England: an automated system is not an agent, as "only a person with a mind can be an agent at law"

 Software Solutions Partners Ltd, R (on the application of) v HM Customs & Excise [2007] EWHC 971, at paragraph 67

USA: "a robot cannot be sued"

United States of America v. Athlone Industries, Inc., 746 F.2d 977, 979 (3d Cir. 1984), U.S. Court of Appeals for the Third Circuit

Germany: machines and software cannot declare intent for purposes of contracting

Federal Supreme Court, Judgment of 16 October 2012 – X ZR 37/12

Civil liability: Analogies for causation by machines

USA: Cases relating to Auto-pilots in aircraft

- Claims against manufacturers or operators of planes with auto-pilot-enabled equipment
- Many claims have failed for lack of evidence of manufacturing defects or lack of proof of causation

England: law relating to escaping pets/animals

- Animals are, like other chattels, merely agents and instruments of damage, but they are also animate and *automotive*
- An owner of an animal not the breeder who sells it to the owner has legal responsibility for the actions of the animal

Germany, US and England:

 Some authorities suggest that, even though a contract may have been entered into automatically by software on behalf of a party, it might still be binding on that party.

Thanks to Norton Rose Fulbright LLP

Judicial views of computer decision-making

"A mind of its own?": Some courts are beginning to draw distinction between *deterministic* computers and *AI*:

- Deterministic systems: Systems that may be automated but are not autonomous knowledge assessed at the time of programming and by reference to the programmer: B2C2 Ltd v Quoine Pte Ltd [2019] SGHC(I) 3 (Singapore International Commercial Court)
- Autonomous systems: Would a court look to the opaque subroutines of the algorithm during subsequent system operation to determine knowledge?
- **Probabilistic computing:** Computing that is neither deterministic nor autonomous, but based on a *probability* that something is the correct answer. Quantum computing is an example. How would a court deal with *probability* outcomes?

Explanations for decision trade-offs

- Imagine being a car driver and facing a difficult trade-off:
 - Stay in left lane, and likely kill a pedestrian
 - Move to right lane, and smash into an oncoming car
- You decide in the moment and end up in court
- You explain your decision, as best you can
 - You decided in the spur of the moment
- The court may go down one level of explanation
 - They may examine your state of mind at that moment
 - Were you drunk? High on drugs?
 - Were you angry or stressed?
 - Were you insane?

Source: Wikipedia

A self-driving car in court

Same situation, but now the car was an autonomous vehicle

Photo credit: Google 2015

- The court will not accept a statement that the car made the decision in the spur of the moment
 - Because the s/w developers had time to decide what to do in this situation
- The court will examine several layers down to find who or what was responsible, eg:
 - How did the car-control program decide what to do?
 - How did the s/w developers decide how to program the control software?
 - What ethical principles did the s/w developers adhere to (explicit or implicit)?
 - What ethical training had the s/w developers been given?
 - What ethical policies had the car manufacturer or the company employing the developers had in place?
 - Etc.

In practice . . .

Typical data-driven machine learning process

Source: IBM

- Bias can arise with history data, training data, test data, and new data
- Bias can be inserted by the learning process
- Bias can be inserted by the monitoring & feedback activities.

Examples of bias in Al systems

- AI tool for recruitment of software developers at Amazon
 - Amazon gave up attempt after 3 years (2014-2017)
 - Reported by Reuters 11 October 2018

Amazon scraps secret AI recruiting tool that showed bias against women | Reuters

- Automated Bank Loans in US Bank
 - No loans given to people wearing head covering
 - Hats may be a proxy for religious beliefs.

Source: Wikipedia

Recall from Lecture 1: Data-driven vs. Model-driven Al

- Data-driven approaches vs. model-driven approaches
- Machine Learning/ Deep Learning are usually data-driven
 - Patterns are found with no explanation as to why or what these mean
- In model-driven approaches, the AI system has a model of the application domain
 - For example, a causal model connecting causes with effects.
 - Since Windows95, every version of Windows OS has a Bayesian Belief Network linking causes with effects in printer operations, to help diagnose the causes of printer problems.

Identifying bias is difficult in data-driven systems

- We don't know what factors were used to make the decisions or recommendations
- If the program undergoes evolution or learning, then the developers may not know what code results.
 - Are the s/w developers **responsible** for the code in this case?
- Since we cannot control the output, we focus on what we can control the production process
 - Looking for bias in the input, training and test data
 - Testing the algorithm for correctness (if we can)
 - Looking at flows of data BETWEEN different AI systems
 - Ensuring good AI Governance
- What comprises good governance for AI systems?

- In model-driven approaches, it is usually straightforward to see how a conclusion was reached by the AI
 - We can follow through the IF-THEN rules or reason over the causal model
- In contrast, many data-driven approaches are dark ("black boxes")
 - We cannot see how a conclusion was reached.
- To gain transparency, we may have to build a second AI to mimic the workings of the first
 - A model-driven AI to mimic the workings of the data-driven AI.

Explainability in Model-driven Al — usually straightforward

- Model-driven or symbolic approaches to AI are usually able to generate explanations
 - Because they have a model of the application domain & are transparent
- For example: An Expert System comprising IF . . . THEN . . . Rules
 - IF the patient has lost sense of smell THEN the patient could have CV19
 - IF the patient has a new persistent cough THEN the patient could have
 CV19
 - ...
 - IF the patient has all the above symptoms THEN the patient does have CV19
- We can create an explanation for a particular automated diagnosis
 from the particular IF-THEN rules invoked in the trace of that decision
- Similarly, for other model-driven AI, such as Bayesian Belief Networks.

Explainability in data-driven Al — usually difficult

- In AI methods that are data-driven, such as Neural Networks & Deep Learning methods, the machine is manipulating data without it knowing what the data means
- For example, an image classification program may identify faces by:
 - Examining pixel colours in the image
 - Using pixel colours to identify edges (eg, boundaries of the face)
 - Linking edges together to identify shapes of parts in the image
 - Comparing shapes in image to a library of shapes (eg, chins, ears, eyes)
 - Creating composites of shapes to form faces
 - Comparing faces in different images to find matching faces
- At no point, does the program have any understanding of what is a chin, or an ear, or a face.
- Very difficult to create an explanation for how the decision was reached
 - People don't understand this description of the process.

- Current Machine Learning and Deep Learning methods are still very immature
 - The resulting systems are not robust to small changes in inputs
 - This makes them easy to hack
- The data-driven approaches require lots of data
- For many situations we do not have enough data
 - Particularly for edge cases and rare events
 (eg, maritime collisions).

Autonomous Vehicles

Sequence of development of AVs:

- Autonomous aircraft (centralized control of airspace, data from isolated experiments)
- Then, autonomous road vehicles (data gained by experiments off-road)
- Lastly, autonomous ships (very little data, no centralized control of high seas).

Source: Rolls Royce

Al Governance

- Companies are starting to put in place processes to govern the creation and deployment of AI systems
- Typically, this will involve a special internal AI Governance committee
 - With representatives of different departments (eg, IT, Operations, Legal)
 - In the best case, including 1-2 outsiders (to avoid "group think")
 - To vet potential AI projects and to oversee their deployment
- Modeled on the Pharmaceutical industry, where these committees are standard
- Companies are also adopting company-wide policies for use of AI
 - Example: Vodafone AI Framework

www.vodafone.com/what-we-do/public-policy/policy-positions/artificial-intelligence-framework

Singapore Model Al Governance Framework

- On 21 January 2020 the Singapore Personal Data Protection Commission (PDPC) released the second edition of the Model AI Governance Framework.
- The framework is a voluntary set of compliance and ethical principles and governance considerations and recommendations that can be adopted by organisations when deploying AI technologies at scale. It is not legally binding.
- The Model Framework is based on two high-level guiding principles:
 - Organisations using AI in decision-making should ensure that the decision-making process is explainable, transparent and fair;
 and
 - AI solutions should be human-centric.
- The 2020 edition of the Framework includes real-life industry case studies demonstrating effective implementation of the AI Framework by organisations.

- A key question is to what extent humans should be involved in automated decision-making processes
 - Eg, London Underground self-driving tube trains on 4 lines, but still have driver sitting in front
- Some regulations only apply to decision-making systems with no humans in the loop
 - Eg, MiFID 2 regulations.
- The human role needs to be sincere (not just for show), or it is likely to be rejected by courts.
- The next slide is a diagram presented in the Singapore Model AI Governance Framework to help companies decide the extent of human involvement in AI decision-making processes.

What level of human involvement is appropriate?

Source: Singapore PDPC Model AI Governance Framework: Compendium of Use Cases, 2020.

Some ethical questions

- The tutorials for this week will include some ethical questions
 - There are usually some answers that are definitely wrong
 - There may be more than one answer that is right
 - There may be some answers which are "grey"
- But what is right or wrong?
- Just following orders without question is never right
 - This defence was not accepted in the War Crimes Tribunals after WW II in Nuremberg in November 1945 and in Tokyo in April 1946
- Some situations may require obtaining legal advice
- Many situations can be clarified by discussion (with bosses, colleagues, independent persons).

Reconsidering your orders

"When faced with untenable alternatives you should consider your imperative."

Admiral Helena Cain, Battlestar Galactica

Galactica-type Battlestar Source: galactica.fandom.com

Al and Ethics Summary

- This week we have talked about AI and Ethics
- Why is this topic important
 - Trolley problems
- Regulatory and legal constraints
- Ethical dimensions
 Fairness (non-bias), transparency, explanation, rectification
- Features of this domain
 - ML sensitive, easy to hack
 - Expert systems vs deep learning
 - Humans in the loop
- Deciding what we ourselves should do in specific situations.

Thankyou!

