### Prinzip der virtuellen Verrückungen:

$$\int_{0}^{L} EIw''v'' dx = \int_{0}^{L} qv dx + [Qv]_{0}^{L} - [Mv']_{0}^{L}$$
Innere virtuelle Arbeit äußere virtuelle Arbeit

$$a(w,v) = \int_{0}^{L} EIw''v'' dx$$

$$p(v) = \int_{0}^{L} qv dx + [Qv]_{0}^{L} - [Mv']_{0}^{L}$$

# a(w, v) = p(v)

Arbeitssatz: 
$$\frac{1}{2} \int_{0}^{L} EIw''^{2} dx = \frac{1}{2} \left( \int_{0}^{L} qw dx + \left[ Qw \right]_{0}^{L} - \left[ Mw' \right]_{0}^{L} \right)$$

 $\Pi(w) = \frac{1}{2}a(w, w) - p(w)$ Potentielle Energie:

### PdvV in der FEM:

$$W_h = \sum_{i=1}^n u_i \varphi_i(x)$$

$$\varphi_{1} = \frac{2}{L^{3}} \cdot x^{3} - \frac{3}{L^{2}} \cdot x^{2} + 1$$

$$\varphi_{3} = -\frac{2}{L^{3}} \cdot x^{3} + \frac{3}{L^{2}} \cdot x^{2}$$

$$\varphi_{1} = \frac{2}{L^{3}} \cdot x^{3} - \frac{3}{L^{2}} \cdot x^{2} + 1$$

$$\varphi_{2} = -\frac{1}{L^{2}} \cdot x^{3} + \frac{2}{L} \cdot x^{2} - x$$

$$\varphi_{4} = -\frac{1}{L^{2}} \cdot x^{3} + \frac{1}{L} \cdot x^{2}$$

$$\underbrace{\int\limits_{0}^{L} EI \sum\limits_{i=1}^{4} \varphi_{i}'' \varphi_{k}'' \, dx}_{K} \underbrace{u_{i}}_{u} = \underbrace{\int\limits_{0}^{L} q \, \varphi_{k} dx}_{p} + \underbrace{\left[Q \, \varphi_{k} \, \right]_{0}^{L} - \left[M \, \varphi_{k}' \, \right]_{0}^{L}}_{f} \quad k = 1, \dots, 4$$



$$\mathbf{\sigma} = \begin{bmatrix} \sigma_{xx} & \tau_{xy} \\ \tau_{yx} & \sigma_{yy} \end{bmatrix}$$

$$\sigma_{v} = \sqrt{\left(\sigma_{xx} - \sigma_{yy}\right)^{2} + 4\tau_{xy}^{2}}$$

GEH nach Von Mises:  

$$\sigma_{v} = \sqrt{\sigma_{xx}^{2} + \sigma_{yy}^{2} - \sigma_{xx}\sigma_{yy} + 3\tau_{xy}^{2}}$$



$$\sigma_{1,2} = \frac{\sigma_{xx} + \sigma_{yy}}{2} \pm \sqrt{\left(\frac{\sigma_{xx} - \sigma_{yy}}{2}\right)^2 + \tau_{xy}^2}$$

$$\varphi = \frac{1}{2} \arctan \frac{2\tau_{xy}}{\sigma_{xx} - \sigma_{yy}}$$

$$\boldsymbol{\sigma} \cdot \mathbf{n} = \mathbf{t}$$

$$\begin{cases} \mathbf{n} = \begin{bmatrix} n_x \\ n_y \end{bmatrix} & \text{Normalenvektor auf dem Rand} \\ \mathbf{t} = \begin{bmatrix} t_x \\ t_y \end{bmatrix} & \text{Spannungsvektor auf dem Rand} \end{cases}$$



### Materialgesetz:

$$\begin{bmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \tau_{xy} \end{bmatrix} = \frac{E}{(1 - v^2)} \begin{bmatrix} 1 & v & 0 \\ v & 1 & 0 \\ 0 & 0 & \frac{1 - v}{2} \end{bmatrix} \begin{bmatrix} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \gamma_{xy} \end{bmatrix}$$

#### Modellwahl:

| Modell    | Spannungen                                                               | Verformungen        | Belastung                     |
|-----------|--------------------------------------------------------------------------|---------------------|-------------------------------|
| Stab      | $N = \int \sigma_x  dA$                                                  | и                   | in x-Richtung                 |
| Balken    | $Q = \int \tau_{xz}  dA,  M = \int z  \sigma_x  dA$                      | w, w'               | in z-Richtung                 |
| Scheibe   | $\sigma_{xx}, \sigma_{yy}, 	au_{xy}$                                     | u, v                | in der xy-Ebene               |
| Platte    | $Q_x, Q_y, M_x, M_y, M_{xy}$                                             | $w, w_{,x}, w_{,y}$ | in z-Richtung                 |
| Kontinuum | $\sigma_{xx}, \sigma_{yy}, \sigma_{zz}, \tau_{xy}, \tau_{xz}, \tau_{yz}$ | u, v, w             | in x-, y- oder z-<br>Richtung |

#### **2D-Finite Elemente**



#### TRIA3 (CST-Element)

- 3 Knoten, 6 Fhg., linearer Ansatz
- nur konstante Dehnungen und Spannungen, somit große Spannungssprünge beim Elementübergang bei gröberen Netzen
- · Lösung i.A. zu steif bei Biegeproblemen
- praktische Bedeutung nur noch bei Spezialproblemen, z.B. Optimierung



- 6 Knoten, 12 Fhg., vollständiger quadratischer Ansatz
- lineare Dehnungen und Spannungen im Element
- gutes Verformungs- und Spannungsverhalten
- gut geeignet für komplexe Geometrien



#### QUAD4

- 4 Knoten, 8 Fhg., linearer Ansatz
- lineare Dehnungen und Spannungen im Element
- besseres Verformungsverhalten als TRIA3-Element



#### QUAD9

- 9 Knoten, 18 Fhg., vollständiger quadratischer Ansatz
- lineare Dehnungen und Spannungen im Element
- sehr gutes Verformungs- und Spannungsverhalten
- bestes Scheibenelement unter den hier genannten

#### **3D-Finite Elemente**



#### HEXA8

- 8 Knoten, 24 Fhg., linearer Ansatz
- sehr gutes Verhältnis von Aufwand zum Nutzen, oftmals aber geometrisch nicht umsetzbar oder Vernetzung zu aufwendig



#### HEXA20 / HEXA27

- 20/27 Knoten, 60/81 Fhg., vollständiger quadr. Ansatz bei HEXA27
- HEXA20: Nicht konformes Element (sog. "Serendipity-Element")
- Für die Praxis i. A. zu rechenintensiv
  - oftmals geometrisch nicht umsetzbar oder Vernetzung zu aufwendig



#### PENTA6 / PENTA15

- 6/15 Knoten, 18/45 Fhg., linearer bzw. quadratischer Ansatz
- In der Regel zum Auffüllen von HEXA-Netzen



#### TET4 / TET10

- 4/10 Knoten, 12/30 Fhg., linearer bzw. quadratischer Ansatz
- TET4 ähnlich wie TRIA3 zu steif bei Biegeproblemen
- TET10 universell einsetzbares Element zur Vernetzung beliebiger Geometrien, automatische Netzgenerierung möglich



### Singularitäten aus Geometrie:

### <u>Scheibe (ν=0,3):</u>

| Lagerungsart im<br>Randpunkt | Verschiebungen<br>singulär ab | Spannungen<br>singulär ab |  |
|------------------------------|-------------------------------|---------------------------|--|
| eingespannt – eingesp.       | 180°                          | 180°                      |  |
| frei – frei                  | 180°                          | 180°                      |  |
| eingespannt – frei           | ≈ 63°                         | ≈ 63°                     |  |

## <u>Kirchhoffplatte:</u>

| Lagerungsart im<br>Randpunkt | Biegemoment<br>singulär ab | Querkraft<br>singulär ab |  |
|------------------------------|----------------------------|--------------------------|--|
| eingespannt – eingesp.       | 180°                       | ≈ 126,28°*               |  |
| gelenkig – gelenkig          | 90°*                       | 60°*                     |  |
| frei – frei                  | 180°                       | ≈ 77,75°*                |  |
| eingespannt – gelenkig       | ≈ 128,73°                  | 90°                      |  |
| eingespannt – frei           | ≈ 95,35°                   | ≈ 52,05°                 |  |
| gelenkig – frei              | 90°                        | ≈ 51,12°                 |  |

"ohne 180"

### Reissner-Mindlin-Platte:

| Lagerungsarten            | Biegemoment                       | Querkraft       |  |
|---------------------------|-----------------------------------|-----------------|--|
| im Eckpunkt               | unbeschränkt ab                   | unbeschränkt ab |  |
| hard clamped-hard clamped | 180°                              | 180°            |  |
| soft clamped-soft clamped | 90°*                              | 180°            |  |
| hard support-hard support | 90°*                              | 180°            |  |
| soft support-soft support | 180°                              | 180°            |  |
| frei-frei                 | 180°                              | 180°            |  |
| hard clamped-soft clamped | 90°                               | 180°            |  |
| hard clamped-hard support | 90°                               | 180°            |  |
| hard clamped-soft support | $\approx 61.70^{\circ}(\nu=0.29)$ | 180°            |  |
| hard clamped-frei         | $\approx 61.70^{\circ}(\nu=0.29)$ | 90°             |  |
| soft clamped-hard support | 45°                               | 90°             |  |
| soft clamped-soft support | 90°                               | 180°            |  |
| soft clamped-frei         | 90°                               | 90°             |  |
| hard support-soft support | $\approx 128.73^\circ$            | 180°            |  |
| hard support-frei         | $\approx 128.73^{\circ}$          | 90°             |  |
| soft support-frei         | 180°                              | 90°             |  |

\*ohne 180°



#### <u>Singuläre Lasten (Sobolev'scher Einbettungssatz):</u>

m = Ordnung der Energie (entspricht halber Ordnung der Differentialgleichung)

i = Grad der Singulariät (z.B. i = 0 für Kraft, i = 1 für Moment)

n = Dimension des Problems (z.B. n = 1 für Balken, n = 2 für Scheibe, usw.)

m-i>n/2

| Tabelle 6            | Tabelle 6.2: Lasten mit endlicher (Ja) und unendlicher (Nein) Energie |                          |           |  |
|----------------------|-----------------------------------------------------------------------|--------------------------|-----------|--|
|                      | n = 1                                                                 | n = 2                    | n = 3     |  |
| m = 1                | Seil, Stab,                                                           | Scheibe, schubw. Schale, | Kontinuum |  |
| Singularität         | Timoshenko-Balken                                                     | Reissner-Mindlin-Platte  |           |  |
| i=0:                 | Ja                                                                    | Nein                     | Nein      |  |
| i=1:                 | Nein                                                                  | Nein                     | Nein      |  |
| m = 2                | schubstarrer                                                          | schubstarre Schale,      | Kontinuum |  |
| Singularität         | Balken                                                                | Kirchhoffplatte          |           |  |
| i=0:                 | Ja                                                                    | Ja                       | Ja        |  |
| i=1:                 | Ja                                                                    | Nein                     | Nein      |  |
| $i=2$ : $\checkmark$ | Nein                                                                  | Nein                     | Nein      |  |
| i=3:                 | Nein                                                                  | Nein                     | Nein      |  |

#### Einflussfunktionen:

#### Konstruktionsvorschrift für Einflussfunktionen für Lagerkräfte:

Die Einflussfunktion einer Lagerkraft entspricht der Verformungsfigur, die entsteht, wenn die zugehörige Lagerfessel entfernt wird und eine zur Lagerkraft entgegengesetzte Verschiebung von Eins aufgebracht wird

- Bei statisch bestimmten Tragwerken entsteht eine stückweise kinematische Kette
- Bei statisch unbestimmten Tragwerken entsteht eine Biegelinie, die aus gegebenen Randbedingungen berechnet werden kann

Konstruktionsvorschrift für Einflussfunktionen beliebiger Größen:

#### EL für Verschiebungen:

• Die Einflussfunktion entspricht der Biegelinie w(x), wenn eine Belastung von F=1 in Richtung der gesuchten Verschiebung aufgebracht wird

#### EL für Spannungen:

 Die Einflussfunktion entspricht der Biegelinie w(x) (bzw. der kinematischen Kette bei statisch bestimmten Systemen), wenn ein zur Spannung konjugiertes Gelenk eingebaut und an dieser Stelle eine Gelenkspreizung von Eins aufgebracht wird

### Schraubenmodellierung:











### Schweißverbindungen:

