Erlazioak eta funtzioak

Irakasgaia: Matematika Diskretua Titulazioa: Informatikaren Ingeniaritzako Gradua Informatika fakultatea Donostia

1

1. Erlazio bitarrak 1.1. Definizioak

Definizioa (Erlazio bitarra)

A multzoa emanik, A-ren gaineko erlazio bitarra $A \times A$ -ko parte den edozein \mathcal{R} azpimultzo da, hau da, $\mathcal{R} \subseteq A \times A$.

Baldin $(a, b) \in \mathcal{R}$: a elementua b-rekin erlazionatuta dagoela esango dugu, a $\mathcal{R}b$.

Definizioa (Biderkadura kartesiarra)

A eta B multzoen biderkadura kartesiarra (x, y) bikote ordenatuen multzoa da, non

$$A \times B := \{(x, y) : x \in A, y \in B\}$$

Ez nahastu: $(a, b) \neq (b, a), \{a, b\} = \{b, a\}$

ERLAZIOAK ETA FUNTZIOAK

1. Erlazio bitarrak.

- 1.1. Definizioak.
- 1.2. Ordena erlazioak.
- 1.3. Baliokidetasun erlazioak.
- 1.4. n moduluko kongruentzia.

2. Funtzioak.

- 2.1. Definizioak.
- 2.2. Azpimultzoen irudi eta aurreirudiak.
- 2.3. Funtzio motak.
- 2.4. Alderantzizko funtzioa.
- 2.5. Funtzioen konposaketa.

2

$Erlazio en \ propieta teak$

A multzoaren gaineko $\mathcal R$ erlazioa emanik,

- \mathcal{R} bihurkorra: $\forall x \in A \quad x \mathcal{R} x$
- \mathcal{R} simetrikoa:

$$\forall x, y \in A \quad x \mathcal{R} y \Rightarrow y \mathcal{R} x$$

R antisimetrikoa:

$$\forall x, y \in A \quad x \mathcal{R} y \land y \mathcal{R} x \Rightarrow x = y$$

• \mathcal{R} iragankorra:

$$\forall x, y, z \in A \quad x \mathcal{R} y \land y \mathcal{R} z \Rightarrow x \mathcal{R} z$$

9

1.2 Ordena erlazioak

Definizioa (Ordena erlazioa)

A multzoaren gaineko \mathcal{R} erlazioa ordena erlazioa da baldin bihurkorra, antisimetrikoa eta iragankorra bada.

A multzoaren gaineko R ordena erlazioa emanik,

• R ordena erlazio totala dela esango dugu baldin:

$$\forall x, y \in A \quad x \mathcal{R} y \lor y \mathcal{R} x$$

• Bestela, R ordena erlazio partziala dela esango dugu.

5

Baliokidetasun erlazioak

Teorema

Izan bedi A-ko R baliokidetasun erlazioa,

- 1. $(\forall x \in A)$ $x \in [x]$
- 2. $(\forall x, y \in A)$ $x \mathcal{R} y \Leftrightarrow [x] = [y]$
- 3. $(\forall x, y \in A)$ $[x] \neq [y] \Rightarrow [x] \cap [y] = \emptyset$
- $4. \ \bigcup_{x \in A} [x] = A$

A multzoaren gaineko $\mathcal R$ baliokidetasun erlazio batek sortutako baliokidetasun klase guztien bildumak A-ren partizio bat osatzen dute; A-ren zatidura multzoa.

$$A/\mathcal{R} = \{ [x] : x \in A \}$$

[a]-ren ordezkaria: [a]-ko edozein elementu.

1.3. Baliokidetasun erlazioak

Definizioa (Baliokidetasun erlazioa)

A multzoaren gaineko \mathcal{R} erlazioa emanik, \mathcal{R} baliokidetasun erlazioa da baldin bihurkorra, simetrikoa eta iragankorra bada.

Izan bitez A multzoaren gaineko \mathcal{R} baliokidetasun erlazioa eta $a \in A$ elementua. a-ren baliokidetasun klasea honako azpimultzoa da:

$$[a] := \{x \in A : x\mathcal{R}a\}$$

6

Multzo baten partizioa

A multzoaren partizioa: A-ren azpimultzo ez-hutsen familia bat da, non azpimultzo hauek elkarren artean disjuntuak diren eta guztien bildura A den.

$$\mathcal{P} = \{A_i : i \in I\}$$
 (I : indize multzoa)

- $(\forall i \in I)$ $\emptyset \neq A_i \subseteq A$ azpimultzo ez-hutsak.
- $(\forall i, j \in I)$ $A_i \neq A_j \Rightarrow A_i \cap A_j = \emptyset$
- $\bigcup_{i\in I} A_i = A$.

A_i: partizioaren klaseak.

7

8

1.4. Modulu finituko osokoak. n moduluko kongruentzia

Izan bedi $n\in\mathbb{Z}$ osokoa, n>1 izanik. $a,b\in\mathbb{Z}$ osokoak kongruenteak modulu n direla esango dugu, $a\equiv b\pmod{n}$, baldin $n\mid a-b$, hau da,

$$\exists k \in \mathbb{Z} \ / \ a = b + kn.$$

n osokoak (a - b) zatitzen duela esaten da.

Teorema

Izan bedi $n \in \mathbb{Z}$, n > 1. n moduluko kongruentzia \mathbb{Z} -ren gaineko baliokidetasun erlazioa da.

Osokoen partizioa: $\mathbb{Z}_n = \{[x] : x \in \mathbb{Z}\}$

9

2. Funtzioak 2.1. Definizioak

Definizioa (Funtzioa)

A eta B multzoak emanik, A-tik B-rako f funtzioa edo aplikazioa A-ko elementu bakoitzari B-ko elementu bat, eta bakarra, elkartzen dion legea da.

$$f:A\longrightarrow B$$
 $A\stackrel{f}{\longrightarrow} B$

f funtzioaren iturburu multzoa: A, helburu multzoa: B. Baldin $a \in A$ elementuari f funtzioak $b \in B$ elementua elkartzen badio: a-ren irudia b da eta a elementua b-ren aurreirudi bat. $(f(a) = b \quad , \quad a \longmapsto b)$.

n moduluko kongruentziak sortutako klaseak kalkulatzeko: $x \in \mathbb{Z}$ izanik, x osokoa $n \in \mathbb{Z}$ -rekin zatituz, x = qn + r, [x] klasearen ordezkari bat lortzen da: r hondarra, $0 \le r < n$. Horrela, $x \equiv r \pmod{n}$.

$$[x] = [r] = \{r + kn : k \in \mathbb{Z}\} =$$

$$= \{\dots, r - 2n, r - n, r, r + n, r + 2n, \dots\} =$$

$$= \{y \in \mathbb{Z} : r \text{ izanik } y \text{ eta } n \text{ arteko zatiketaren hond.}\}$$

n klase ditugu, hondar posibleak adina. n moduluko kongruentziari dagokion \mathbb{Z} -ren partizioa:

$$\mathbb{Z}_n = \{[0], [1], \cdots, [n-1]\}$$

10

Funtzioak

f eta g bi funtzio berdinak dira (f = g) baldin,

- 1. A iturburu multzo berbera badute.
- 2. B helburu multzo berbera badute.
- 3. $(\forall x \in A)$ f(x) = g(x).

A multzoa emanik, A multzoaren gaineko identitate funtzioa: id_A , $\mathbf{1}_A$

$$id_A:A\longrightarrow A$$

funtzioa da non $id_A(x) = x$ betetzen den $\forall x \in A$.

2.2. Azpimultzoen irudi eta aurreirudiak

- Izan bitez $f:A\longrightarrow B$ eta $A_1\subseteq A$ azpimultzoa. f-ren bidezko A_1 -en irudia, A_1 -eko elementuen f-ren bidezko irudiek osatzen duten multzoa da. $f(A_1):=\{f(x):x\in A_1\}$ $f(A_1)\subseteq B$. Akordioa: $f(\emptyset):=\emptyset$.
- $f: A \longrightarrow B$ funtzioa izanik, f-ren irudi multzoa, Im f := f(A), honela definitzen da. $Im f := \{f(x) : x \in A\}$
- Izan bitez $f:A \longrightarrow B$ eta $B_1 \subseteq B$ azpimultzoa. B_1 -en f funtzioaren bidezko aurreirudia, honela definitzen da: irudia B_1 multzoan duten A-ko elementuek osatutako multzoa. $f \subset \{B_1\} := \{x : x \in A \text{ eta } f(x) \in B_1\}$

 $f^{\leftarrow}(B_1) := \{x : x \in A \text{ eta } f(x) \in B_1\}$ $f^{\leftarrow}(B_1) \subseteq A$. Akordioa: $f^{\leftarrow}(\emptyset) := \emptyset$.

13

Funtzio-motak, 2.4. Alderantzizko funtzioa

Teorema

Izan bedi $f:A\longrightarrow B$ funtzioa, A eta B multzo finituak izanik eta $\mid A\mid=\mid B\mid$, f suprajektiboa \iff f injektiboa

Definizioa (Alderantzizko funtzioa)

Izan bedi $f:A\longrightarrow B$ funtzio bijektiboa,

 $\forall y \in B \quad \exists | x \in A \quad / \quad f(x) = y.$

f-ren alderantzizko funtzioa honela definitzen da.

$$f^{-1}:B\longrightarrow A$$

$$y \longrightarrow x$$

f suprajektiboa denez, $\exists x$ eta injektiboa ere badenez, x bakarra da. Hortaz, f^{-1} funtzioa da.

 f^{-1} funtzioa ere bijektiboa da, eta $(f^{-1})^{-1} = f$.

• $f: A \longrightarrow B$ funtzioa suprajektiboa da baldin B-ko elementu orok aurreirudirik badu (Imf = B).

$$\forall y \in B \quad \exists x \in A \quad / \quad f(x) = y$$

 f: A → B funtzioa injektiboa da baldin B-ko elementu bakoitza gehienez behin agertzen bada A-ko elementu baten irudi moduan, hau da,

$$(\forall x_1, x_2 \in A)$$
 $x_1 \neq x_2 \implies f(x_1) \neq f(x_2)$

beste era batera esanda.

$$(\forall x_1, x_2 \in A)$$
 $f(x_1) = f(x_2)$ $\Longrightarrow x_1 = x_2$

• $f: A \longrightarrow B$ funtzioa bijektiboa da baldin injektiboa eta suprajektiboa bada.

14

2.5. Funtzioen konposaketa

Definizioa (Funtzioen konposaketa)

Izan bitez $f:A\longrightarrow B$ eta $g:B\longrightarrow C$ funtzioak. f eta g-ren funtzio konposatua honela definitzen da:

$$g \circ f : A \longrightarrow C$$

non $(g \circ f)(x) = g(f(x)), x \in A izanik.$

$$g \circ f : A \xrightarrow{f} B \xrightarrow{g} C$$

 $x \longmapsto f(x) \longmapsto g(f(x))$

Funtzioen konposaketa. Propietateak

Funtzioen konposaketa, oro har, ez da trukakorra. Elkarkorra bada. Funtzio konposaketaren propietateak:

1. Izan bitez $f: A \longrightarrow B$, $g: B \longrightarrow C$ eta $h: C \longrightarrow D$,

$$h \circ (g \circ f) = (h \circ g) \circ f = h \circ g \circ f$$

2. $f: A \longrightarrow B$ funtzioa emanik,

$$f \circ id_A = f$$
 $id_B \circ f = f$

 \mathcal{S} . Izan bedi $f:A\longrightarrow B$ funtzio bijektiboa,

$$f^{-1} \circ f = id_A \qquad \qquad f \circ f^{-1} = id_B$$

 $Funtzio en \ konposaketa. \ Propietate ak$

- 4. Izan bitez $f:A\longrightarrow B$ eta $g:B\longrightarrow C$, $f,g \text{ injektiboak } \Longrightarrow g\circ f \text{ injektiboa}$
- 5. Izan bitez $f:A\longrightarrow B$ eta $g:B\longrightarrow C$, $f,g \text{ suprajektiboak } \Longrightarrow g\circ f \text{ suprajektiboa}$
- 6. Izan bitez $f:A\longrightarrow B$ eta $g:B\longrightarrow C$, $f,g \text{ bijektiboak} \implies g\circ f \text{ bijektiboa}$
- 7. Izan bitez $f:A\longrightarrow B$ eta $g:B\longrightarrow C$ bijektiboak (ondorioz $g\circ f$ bijektiboa)

$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}$$