Reference Sheet for Discrete Maths

Propositional Calculus

Order of decreasing binding power: =, \neg , \land/\lor , \Rightarrow/\Leftarrow , $\equiv/\not\equiv$.

Equivales is the only equivalence relation that is associative $((p \equiv q) \equiv r) \equiv (p \equiv (q \equiv r))$, and it is symmetric and has identity true.

Discrepancy (difference) ' $\not\equiv$ ' is symmetric, associative, has identity 'false', mutually associates with equivales $((p \not\equiv q) \equiv r) \equiv (p \not\equiv (q \equiv r))$, and mutually interchanges with it as well $(p \not\equiv q \equiv r) \equiv (p \equiv q \not\equiv r)$. Finally, negation commutes with difference: $\neg (p \equiv q) \equiv \neg p \equiv q$.

Implication has the alternative definition $p \Rightarrow q \equiv \neg p \lor q$, thus having true as both left identity and right zero; it distributes over \equiv in the second argument, and is self-distributive; and has the properties:

Shunting
$$p \land q \Rightarrow r \equiv p \Rightarrow (q \Rightarrow r)$$

Contrapositive $p \Rightarrow q \equiv \neg q \Rightarrow \neg p$
Leibniz $e = f \Rightarrow E[z = e] = E[z = f]$

Modus Ponens

$$\begin{array}{cccc} p \wedge (p \Rightarrow q) & \equiv & p \wedge q \\ p \wedge (q \Rightarrow p) & \equiv & p \\ p \wedge (p \Rightarrow q) & \Rightarrow & q \end{array}$$

It is a linear order relation generated by 'false \Rightarrow true'; whence "from false, follows anything": false \Rightarrow p. Moreover it has the useful properties "(3.62) Contextualisation": $p \Rightarrow (q \equiv r) \equiv p \wedge q \equiv p \wedge r$ —we have the context p in each side of the equivalence— and $p \Rightarrow (q \Rightarrow r) \equiv p \wedge q \Rightarrow p \wedge r$. Implication is "Subassociative": $((p \Rightarrow q) \Rightarrow r) \Rightarrow (p \Rightarrow (q \Rightarrow r))$. Finally, we have " \equiv - \equiv Elimination": $(p \equiv q \equiv r) \Rightarrow s \equiv p \Rightarrow s \equiv q \Rightarrow s \equiv r \Rightarrow s$.

Conjunction and disjunction distribute over one another, are both associative and symmetric, \vee has identity false and zero true whereas \wedge has identity true and zero false, \vee distributes over $\vee, \equiv, \wedge, \Rightarrow, \leftarrow$ whereas \wedge distributes over $\equiv -\equiv$ in that $p \wedge (q \equiv r \equiv s) \equiv p \wedge q \equiv p \wedge r \equiv p \wedge s$, and they satisfy,

Most importantly, they satisfy the "Golden Rule": $p \wedge q \equiv p \equiv q \equiv p \vee q$.

Max \uparrow **and Min** \downarrow each distribute over the other, addition distributes over both, subtraction acts like De Morgans, the operators are selective, and non-negative multiplication distributes over both. (*Tropical mathematics* is math with ' \uparrow , +' instead of '+, \times '.)

The many other properties of these operations —such as weakening laws and other absorption laws and case-analysis (\sqcup -char)— can be found by looking at the list of *lattice* properties —since both the Booleans (\Rightarrow , \land , \lor) and numbers (<, \downarrow , \uparrow) are lattices.

Orders

An order is a relation $\sqsubseteq \sqsubseteq : \tau \to \tau \to \mathbb{B}$ satisfying the following three properties:

$$\begin{array}{lll} \textbf{Reflexivity} & & \textbf{Transitivity} & & \textbf{Mutual Inclusion} \\ a \sqsubseteq a & & a \sqsubseteq b \land b \sqsubseteq c \Rightarrow a \sqsubseteq c & & a \sqsubseteq b \land b \sqsubseteq a \equiv a = b \end{array}$$

Indirect Inclusion is like 'set inclusion' and Indirect Equality is like 'set extensionality'.

Indirect Equality (from above)
$$x=y\equiv (\forall z\bullet x\sqsubseteq z\equiv y\sqsubseteq z)$$
 Indirect Inclusion (from above) $x\sqsubseteq y\equiv (\forall z\bullet x\sqsubseteq z\equiv z\boxtimes z)$ Indirect Equality (from below) $x=y\equiv (\forall z\bullet z\sqsubseteq x\equiv z\sqsubseteq y)$ Indirect Inclusion (from below) $x\sqsubseteq y\equiv (\forall z\bullet z\sqsubseteq x\Rightarrow z\sqsubseteq y)$

An order is bounded if there are elements \top , \bot : τ being the lower and upper bounds of all other elements:

Top Element $a \sqsubseteq \top$ Bottom Element $\bot \sqsubseteq a$ Top is maximal $\top \sqsubseteq a \equiv a = \top$ Bottom is minimal $a \sqsubseteq \bot \equiv a = \top$

Lattices

A *lattice* is a pair of operations \Box , \Box : $\tau \to \tau \to \tau$ specified by the properties:

The operations act as providing the greatest lower bound, 'glb', 'supremum', or 'meet', by \sqcap ; and the least upper bound, 'lub', 'infimum', or 'join', by \sqcup .

Let \square be one of \sqcap or \sqcup , then:

Symmetry of
$$\square$$
 Associativity of \square Idempotency of \square $a\square b = b\square a$ $(a\square b)\square c = a\square (b\square c)$ $a\square a = a$

The following four properties are all equivalent:

Duality Principle:

If a statement S is a theorem, then so is $S[(\sqsubseteq, \sqcap, \sqcup, \top, \bot) := (\supseteq, \sqcup, \sqcap, \bot, \top)].$

Conditionals

"If to \wedge " may be taken as axiom from which we may prove the remaining 'alternative definitions' "if to \cdots ".

```
\begin{array}{lll} \textbf{if to} \land & P[z = \textbf{if } b \, \textbf{then} \, x \, \textbf{else} \, y \, \textbf{fi}] & \equiv & (b \Rightarrow P[z = x]) & \land & (\neg b \Rightarrow P[z = x]) \\ \textbf{if to} \lor & P[z = \textbf{if } b \, \textbf{then} \, x \, \textbf{else} \, y \, \textbf{fi}] & \equiv & (b \land P[z = x]) & \lor & (\neg b \land P[z = x]) \\ \textbf{if to} \not\equiv & P[z = \textbf{if } b \, \textbf{then} \, x \, \textbf{else} \, y \, \textbf{fi}] & \equiv & b \land P[z = x] & \not\equiv & \neg b \land P[z = x] \\ \textbf{if to} \equiv & P[z = \textbf{if } b \, \textbf{then} \, x \, \textbf{else} \, y \, \textbf{fi}] & \equiv & b \Rightarrow P[z = x] & \equiv & \neg b \Rightarrow P[z = x] \\ \end{array}
```

Note that the " \equiv " and " \neq " rules can be parsed in multiple ways since ' \equiv ' is associative, and ' \equiv ' mutually associates with ' \neq '.

 $\begin{array}{lll} \textbf{if true} & \textbf{if true then } x \operatorname{else} y \operatorname{fi} = x \\ \textbf{if false} & \textbf{if false then } x \operatorname{else} y \operatorname{fi} = y \\ \textbf{then true} & \textbf{if } R \operatorname{then true} \operatorname{else} P \operatorname{fi} = R \vee P \\ \textbf{then false} & \textbf{if } R \operatorname{then false} \operatorname{else} P \operatorname{fi} = \neg R \wedge P \\ \textbf{else true} & \textbf{if } R \operatorname{then} P \operatorname{else true} \operatorname{fi} = R \Rightarrow P \\ \textbf{else false} & \textbf{if } R \operatorname{then} P \operatorname{else false} \operatorname{fi} = R \wedge P \\ \end{array}$

 $\text{if } s\mathbf{wap} \qquad \qquad \text{if } b \text{ then } x \text{ else } y \text{ fi } = \text{ if } \neg b \text{ then } y \text{ else } x \text{ fi }$

if idempotency if b then x else x fi = x

if guard strengthening if b then x else y fi = if $b \land x \neq y$ then x else y fi

if Context if b then E else F fi = if b then E[b = true] else F[b = false] fi

 $\text{if } \mathbf{Distributivity} \qquad \qquad P[z = \mathsf{if} \ b \ \mathsf{then} \ x \ \mathsf{else} \ y \ \mathsf{fi}] \ = \ \mathsf{if} \ b \ \mathsf{then} \ P[z = x] \ \mathsf{else} \ P[z = y] \ \mathsf{fi}$

if junctivity $(if b then x else y fi) \oplus (if b then x' else y' fi)$

= if b then $(x \oplus x')$ else $(y \oplus y')$ fi

Quantification

Let ___ be an associative and symmetric operation with identity ld.

Abbreviation	$(\oplus x \bullet P) = (\oplus x \mid true \bullet P)$
Empty range	$(\oplus x \mid false \bullet P) = Id$
One-point rule	$(\oplus x \mid x = E \bullet P) = P[x = E]$
Distributivity	$(\oplus x \mid R \bullet P \oplus Q) = (\oplus x \mid R \bullet P) \oplus (\oplus x \mid R \bullet Q)$
Nesting	$(\oplus x, y \mid X \land Y \bullet P) = (\oplus x \mid X \bullet (\oplus y \mid Y \bullet P))$
Dummy renaming	$(\oplus x \mid R \bullet P) = (\oplus y \mid R[x = y] \bullet P[x = y])$

Disjoint Range split $(\oplus x \mid R \lor S \bullet P) = (\oplus x \mid R \bullet P) \oplus (\oplus x \mid S \bullet Q)$ provided $R \land S \equiv$ false

Range split $(\oplus x \mid R \lor S \bullet P) \oplus (\oplus x \mid R \land S \bullet P) \\ = (\oplus x \mid R \bullet P) \oplus (\oplus x \mid S \bullet Q)$

Idempotent Range split $(\oplus x \mid R \lor S \bullet P) = (\oplus x \mid R \bullet P) \oplus (\oplus x \mid S \bullet Q)$ $provided \oplus \text{is idempotent}$

Set Theory

The set theoretic symbols \in , =, \subseteq , are defined as follows.

Axiom, Set Membership: $F \in \{x \mid R \bullet E\} \equiv (\exists x \mid R \bullet F = E)$

Axiom, Extensionality: $S = T \equiv (\forall x \bullet x \in S \equiv x \in T)$

Axiom, Subset: $S \subseteq T \equiv (\forall x \bullet x \in S \Rightarrow x \in T)$

As witnessed by the following definitions, it is the \in relation that translates set theory to propositional logic.

Universe $x \in \mathbf{U}$ trueEmpty set $x \in \emptyset$ \equiv false Complement $x \in {\sim}S$ $\equiv x \notin S$ Union $x \in S \cup T$ $\equiv x \in S \lor x \in T$ $x \in S \cap T$ Intersection $\equiv x \in S \land x \in T$ **PseudoComplement** $x \in S \rightarrow T$ $\equiv x \in S \Rightarrow x \in T$ Difference $x \in S - T$ $\equiv x \in S \land x \notin T$ $\equiv S \subseteq T$ Power set $S \in \mathbb{P}T$

The pairs \emptyset | false, \mathbf{U} | true, $\cup | \vee, \cap | \wedge, \subseteq | \Rightarrow, \sim | \neg$ are related by \in and so all equational theorems of propositional logic also hold for set theory —indeed, that is because both are Boolean algebras.

 \rightarrow Set difference is a residual wrt \cup , and so satisfies the division properties below.

 \rightarrow Subset is an order and so satisfies the aforementioned order properties. It is bounded below by \emptyset and above by \mathbf{U} .

The relationship between set comprehension and quantifier notation is:

Combinatorics

Axiom, Size: $\#S = (\Sigma x \mid x \in S \bullet 1)$ Axiom, Interval: $m..n = \{x : \mathbb{Z} \mid m \le x \le n\}$

The following theorems serve to define '#' for the usual set theory operators.

 $\#S \subseteq 0 \equiv S = \emptyset$ Positive definite $\#\mathbb{P}S = 2^{\#S}$ Power set size Principle of Inclusion-Exclusion $\#(S \cup T) = \#S + \#T - \#(S \cap T)$ Monotonicity $S \subseteq T \Rightarrow \#S \le \#T$ $S \subseteq T \Rightarrow \#(T - S) = \#T - \#S$ Difference rule $\#(\sim S) = \#\dot{\mathbf{U}} - \#\dot{S}$ Complement size Range size $(\Sigma x : \mathbf{U} \mid x \notin S \bullet 1) = \#\mathbf{U} - \#S$ Interval size #(m..n) = n - m + 1 for m < n $(\Sigma i:1..n \bullet E)/n < (\uparrow i:1..n \bullet E)$ Pigeonhole Principle $(\downarrow i:1..n \bullet E) < (\Sigma i:1..n \bullet E)/n$ ("min < avq < max")

Rule of sum: $\#(\cup i \mid Ri \bullet P) = (\Sigma i \mid Ri \bullet \#P)$ provided the range is pairwise disjoint: $\forall i, j \bullet Ri \land Rj \equiv i = j$.

Rule of product: $\#(\times i \mid Ri \bullet P) = (\Pi i \mid Ri \bullet \#P)$

Converse —an over-approximation of inverse (A4)

Residuals, Division

Suppose we have an associative operation $_{\circ}$ with identity Id and two operations "under \setminus " and "over /" specified as follows.

When \S is symmetric, as in the special cases $\S = \square$, the divisions coincide: $x/y = y \setminus x$.

Monotonicity of
$$\S$$
 $a \sqsubseteq a' \land b \sqsubseteq b' \Rightarrow a \S b \sqsubseteq a' \S b'$
Subdistributivity of \S over \sqcap $a \S b \sqcap c \supseteq a \S b \sqcap a \S c$

Numerator monotonicity
$$b \sqsubseteq b' \Rightarrow a \setminus b \sqsubseteq a \setminus b'$$
 $b \sqsubseteq b' \Rightarrow b/a \sqsubseteq b'/a$
Denominator antitonicity $a' \sqsubseteq a \Rightarrow a \setminus b \sqsubseteq a' \setminus b$ $a' \sqsubseteq a \Rightarrow b/a \sqsubseteq b/a'$

Exact division $(\exists z \bullet y = x \, \sharp \, z) \equiv x \, \sharp (x \backslash y) = y$ Exact division $(\exists z \bullet y = x \backslash z) \equiv x \backslash (x \, \sharp \, y) = y$

Modal and Dedekind rules:

$$\begin{array}{ll} \text{(Axioms)} & \text{(Theorems)} \\ a \circ b \sqcap c \sqsubseteq a \circ (b \sqcap a \circ \circ c) & a \backslash b \sqcap c \sqsubseteq a \backslash (b \sqcap a \circ c) \\ a \circ b \sqcap c \sqsubseteq (a \sqcap c \circ b) \circ b & a \backslash b \sqcap c \sqsubseteq (a \sqcap c \backslash b) \backslash b \\ a \circ b \sqcap c \sqsubseteq (a \sqcap c \circ b) \circ (b \sqcap a \circ c) & a \backslash b \sqcap c \sqsubseteq (a \sqcap c \backslash b) \backslash (b \sqcap a \circ c) \end{array}$$

Division for the special case $\ \ \ = \ \square$ is known the relative pseudo-complement: Denoted $x \to y$ ("x implies y"), it is the largest piece 'outside' of x that is still included in y. The relative pseudocomplement internalises inclusion, $z \sqsubseteq (x \to y) \Rightarrow (z \sqsubseteq x \Rightarrow z \sqsubseteq y)$; more generally: $x \sqsubseteq y \equiv \operatorname{Id} \sqsubseteq x \setminus y$.

$$\begin{array}{ll} \text{Pseudo-complement} & \text{Semi-complement} \\ x \sqcap a \sqsubset b \equiv x \sqsubset a \to b & a-b \sqsubset x \equiv a \sqsubset b \sqcup x \\ \end{array}$$

Strong modus ponens Absorption
$$a \sqcap (a \to b) = a \sqcap b \qquad (x \sqcup b) - b = x - b$$
 $a \to (x \sqcap a) = a \to x \qquad (a - b) \sqcup b = a \sqcup b$

Division for the special case $\S = \sqcup$ in the dual order (\supseteq) is known as the difference or relative semi-complement: Denoted x-y ("x without y"), it is the smallest piece that along with y 'covers' x; i.e., it is the least value that 'complements' ("fill up together") y to include x. (Possibly for this reason, set difference is sometimes denoted $S \setminus T$ in other books!)

Named Properties

The above properties are preserved by converse: Let P be any of the above properties, then $Px \equiv P(x^{\sim})$.

```
univalent x
                                   x \subseteq g x \sqsubseteq \mathsf{Id}
                                                                                      injective
                                                                                                                  \equiv x \, \stackrel{\circ}{\circ} \, x \stackrel{\smile}{\sim} \, \Box \, \operatorname{Id}
total
                            \equiv
                                    \mathsf{Id} \sqsubseteq x \, \S \, x ^{\smile}
                                                                                      surjective x \equiv
                                                                                                                             \mathsf{Id} \sqsubseteq x \lor \S x
                     x
                                                                                      bijective
                                                                                                            x \equiv \text{surjective } x \land \text{injective } x
                            \equiv total x \wedge univalent x
mapping
                    x
                          \equiv mapping x \land bijective x
                     x
```

Duality theorems

Invertiblility theorems

```
\begin{array}{ll} \operatorname{total} x \wedge \operatorname{injective} x \Rightarrow x\, \mathring{\mathfrak{g}}\, x^{\smallsmile} = \operatorname{Id} \\ \operatorname{iso} x & \equiv \quad x\, \mathring{\mathfrak{g}}\, x^{\smallsmile} = \operatorname{Id} \, \wedge \, x^{\smallsmile}\, \mathring{\mathfrak{g}}\, x = \operatorname{Id} \\ \operatorname{iso} x & \Rightarrow \quad (\exists g \bullet \, x\, \mathring{\mathfrak{g}}\, g = \operatorname{Id} = g\, \mathring{\mathfrak{g}}\, x) \end{array}
```

Shunting laws:

$$\begin{array}{lll} \text{univalent } f & \Rightarrow & (x \, \$ \, f \sqsubseteq y \iff x \sqsubseteq y \, \$ \, f^{\backsim}) \\ \text{total } f & \Rightarrow & (x \, \$ \, f \sqsubseteq y \Rightarrow x \sqsubseteq y \, \$ \, f^{\backsim}) \\ \text{mapping } f & \Rightarrow & (x \, \$ \, f \sqsubseteq y \sqsubseteq x \sqsubseteq y \, \$ \, f^{\backsim}) \end{array}$$

Relations

Relations are sets of pairs ...

```
x (R) y
Tortoise
                                                  (\forall x, y \bullet x (R) y \equiv x (S) y)
Extensionality
                           R = S
                                              \equiv (\forall x, y \bullet x (R) y \Rightarrow x (S) y)
Inclusion
                           R \subseteq S
                           u (\emptyset) v
                                                  false
Empty
Universe
                           u(A \times B)v \equiv
                                                  u \in A \land v \in B
Complement
                           u (\sim S) v
                                              \equiv \neg(u (S) v)
                           u ( S \cup T ) v
                                              \equiv u(S)v \vee u(T)v
Union
Intersection
                           u (S \cap T)v
                                              \equiv u(S)v \wedge u(T)v
                           u (S-T)v
                                                   u(S)v \wedge \neg(u(T)v)
Difference
PseudoComplement
                          u(S \rightarrow T)v \equiv u(S)v \Rightarrow u(T)v
An Identity
                          u ( \mathbb{I} A ) v
                                              \equiv u = v \in A
                           u (Id) v
The Identity
                                              \equiv u = v
Converse
                          u ( R\sim ) v
                                              \equiv v(R)u
Composition
                           u (R;S)v
                                              \equiv (\exists x \bullet u(R)x \wedge x(S)v)
                                               \equiv (\forall x \bullet x (S) u \Rightarrow x (R) v) 
 \equiv (\forall y \bullet v (S) y \Rightarrow u (R) y) 
Under Division
                           u (S \setminus R) v
Over Division
                           u(R/S)v
```

Example: Define $x \in X$ $E \setminus X \equiv x \in X$, then $A \in E \setminus B \subseteq A \subseteq B$. **Example (Indirect inclusion):** Define $x \in X \subseteq X$, then $x \in X \subseteq X$ then $x \in X \subseteq X$.

Interpreting Named Properties

We will interpret the named properties using

 \diamond Relations: Formulae on sets of pairs; " $\forall x \bullet \dots$ "

 $\diamond\,$ Graphs: Dots and lines on a page

♦ Matrices: 1s and 0s on a grid

♦ Programs: Transformations of inputs to outputs

Properties of a relationship flavour

reflexive $R \equiv (\forall b \bullet b (R) b)$

Every node in a graph has a 'loop', a line to itself (Thus, paths can always be increased in length: $R \subseteq R$; R)

The diagonal of a matrix is all 1s

irreflexive $R \equiv (\forall b \bullet \neg (b (R) b))$

No node in a graph has a loop The diagonal of a matrix is all 0s

symmetric $R \equiv (\forall b, c \bullet b (R) c \equiv c (R) b)$

The graph is undirected; we have a symmetric matrix

antisymmetric $R \equiv (\forall b, c \bullet b (R) c \land c (R) b \Rightarrow b = c)$

Mutually related nodes are necessairly self-loops

"Mutually related items are necessairly indistinguishable"

asymmetric $R \equiv (\forall b, c \bullet b (R) c \Rightarrow \neg (c (R) b))$

At most 1 edge (regardless of direction) relating any 2 nodes

transitive $R \equiv (\forall b, c, d \bullet b (R) c (R) d \Rightarrow b (R) d$

Paths can always be shortened (but nonempty)

idempotent $R \equiv \text{Lengths of paths can be changed arbitrarily (nonzero)}$

Intuitively, by considering the interpretations only, we find

 $\mathsf{reflexive}\,R \, \wedge \, \mathsf{transitive}\,R \, \Rightarrow \, \mathsf{idempotent}\,R$

Super cool stuff!

"Relations are simple graphs"

Relations directly represent *simple graphs*: Dots (*nodes*) and at most 1 line (*edge*) between any two. E.g., cities and highways (ignoring multiple highways).

Treating R as a graph:

R A bunch of dots on a page and an arrow from x to y when $x \in \mathbb{R}$ y

 R^{\smile} Flip the arrows in the graph

Dom R The nodes that have an outgoing edge Ran R The nodes that have an incoming edge $x \in R \setminus Y$ A path of length 1 (an edge) from x to y

x (R; R) y A path of length 2 from x to y

 $R \cup R^{\smile}$ The associated undirected graph ("symmetric closure")

Properties of an operational flavour

univalent $R \equiv (\forall b, c, c' \bullet b (R) c \land b (R) c' \Rightarrow c = c')$ —aka "partial function"

Graph: Every node has at most one outgoing edge

Matrix: Every row has at most one 1

Prog: The program is deterministic, same-input yields same-output

injective $R \equiv (\forall b, b', c \bullet b (R) c \wedge b' (R) c \Rightarrow b = b')$

Graph: Every node has at most one incoming edge

Matrix: Every column has at most one 1

Prog: The program preserves distinctness (by contraposition)

total $R \equiv (\forall b \bullet \exists c \bullet b (R) c)$

Graph: Every node has at least one outgoing edge

Matrix: Every row has at least one 1

Prog: The program terminates; has at least one output for each input

surjective $R \equiv (\forall c \bullet \exists b \bullet b (R) c)$

Graph: Every node has at least one incoming edge

Matrix: Every column has at least one 1

Prog: All possible outputs arise from some input

mapping $R \equiv \text{total } R \wedge \text{univalent } R - \text{also known as a "(total) function"}$

Graph: Every node has exactly one outgoing edge

Matrix: Every row has exactly one 1

Prog: The program always terminates with a unique output

 $\mbox{bijective} \quad R \quad \equiv \quad \mbox{surjective} \, R \, \wedge \, \mbox{injective} \, R$

Graph: Every node has exactly one incoming edge

Matrix: Every column has exactly one 1

Prog: Every output arises from a unique input

iso $R \equiv \mathsf{mapping}\,R \land \mathsf{bijective}\,R$

Graph: It's a bunch of 'circles'

Matrix: It's a permutation; a re-arrangement of the identity matrix

Prog: A non-lossy protocol associating inputs to outputs