11.118. В магнитном поле, индукция которого B = 0,1 Тл, **томещена** квадратная рамка из медной проволоки. Площадь поперечного сечения проволоки $s = 1 \text{ мм}^2$, площадь рамки $s = 25 \text{ см}^2$. Нормаль к плоскости рамки параллельна магнитному полю. Какое количество электричества q пройдет по контуру рамки при исчезновении магнитного поля?

Решение:

Количество электричества, прошедшего через поперечное сечение проводника при возникновении в нем индук-

инонного тока,
$$dq=-rac{1}{R}d\Phi$$
. Отсюда $q=-rac{1}{R}\int\limits_{\Phi_1}^{\Phi_2}d\Phi=$

$$= -\frac{1}{R} (\Phi_2 - \Phi_1)$$
 — (1). По условию $\Phi_2 = 0$, а $\Phi_1 = BS$.

Сопротивление рамки
$$R = \rho \frac{l}{s} = \rho \frac{4a}{s} = \rho \frac{4\sqrt{S}}{s}$$
, где a —

Регорона рамки. Тогда из (1) получим $q = \frac{Bs\sqrt{S}}{4\rho} =$

≝74 ·10⁻³ Кл.

11.119. В магнитном поле, индукция которого B = 0.05 Тл, помещена катушка, состоящая из N = 200 витков проволоки. Сопротивление катушки R = 40 Ом; площадь поперечного сечения S = 12 см². Катушка помещена так, что ее ось составляет мол $\alpha = 60^{\circ}$ с направлением магнитного поля. Какое количество электричества q пройдет по катушке при исчезновении магнитного поля?

Решение:

Количество электричества, прошедшего через поперечное сечение проводника при возникновении в нем индук-

пионного тока, $dq = -\frac{1}{R}d\Phi$. Элементарный магнитный **поток** $d\Phi = NS\cos\alpha dB$, где N — число витков катушки,

— площадь поперечного сечения. Тогда количество

электричества, которое пройдет по катушке при исчезновении магнитного поля, $q=-\frac{1}{R}\int\limits_{B}^{0}d\Phi=-\frac{NS\cos\alpha}{R}\int\limits_{B}^{0}dB=$ $=\frac{BN\cos\alpha}{D}=0.15~\text{мКл}.$

11.120. Круговой контур радиусом r=2 см помещен в однородное магнитное поле, индукция которого B=0.2 Тл. Плоскость контура перпендикулярна к направлению магнитного поля. Сопротивление контура R=1 Ом. Какое количество электричества q пройдет через катушку при повороте ее на угол $\alpha=90^{\circ}$?

Решение:

Количество электричества, прошедшего через поперечное сечение проводника при возникновении в нем индукционного тока, $dq=-\frac{1}{R}d\Phi$. Элементарный магнитный поток $d\Phi=BS\sin\alpha d\alpha$, т. к. α — угол между плоскостью контура и направлением вектора магнитной индукции. Тогда количество электричества, которое пройдет через катушку при повороте ее на угол $\alpha=90^\circ$, $q=-\frac{1}{R}\int\limits_0^\alpha d\Phi=\frac{BS}{R}\sin\alpha d\alpha=-\frac{BS}{R}\cos\alpha\bigg|_0^{\frac{\pi}{2}}$; $q=-\frac{BS}{R}\left(\cos\frac{\pi}{2}-\cos\theta\right)=\frac{BS}{R}$. Т. к. $S=\pi^{-2}$, то окончательно $q=\frac{B\pi r^2}{R}=0.25\,\mathrm{mKm}$.

11.121. На соленоид длиной $l=21\,\mathrm{cm}$ и площадью поперечного сечения $S=10\,\mathrm{cm}^2$ надета катушка, состоящая из $N_1=50$ витков. Катушка соединена с баллистическим гальванометром, сопротивление которого $R=1\,\mathrm{kOm}$. По обмотке соле-

пида, состоящей из $N_2 = 200$ внтков, идет ток I = 5 А. Найти пистическую постоянную C гальванометра, если известно, по при включении тока в соленоиде гальванометр дает отброс, авный 30 делениям шкалы. Сопротивлением катушки по сравнению с сопротивлением баллистического гальванометра пренебречь.

Решение:

Взаимная индуктивность катушки и соленоида $L_{12} = \mu_0 n_1 n_2 Sl$, где $n_1 = \frac{N_1}{l}$ и $n_2 = \frac{N_2}{l}$ — число витков на единицу длины соответственно катушки и соленоида. При э.д.с., индуцируемая в катушке, $\varepsilon_i = -L_{12} \frac{dI}{dt}$ — (1)

правые части уравнений (1) и (2), получаем $\frac{d\Phi}{dt} = L_{12} \frac{dI}{dt}$

ини $d\Phi = L_{12}dI = \frac{\mu_0 N_1 N_2 S dI}{l}$. Количество электричес-

та, прошедшего через гальванометр, $q=-rac{1}{R}\int\limits_{I}^{\sigma}d\Phi=$

$$\frac{1}{R} \frac{\mu_0 N_1 N_2 S}{l} \int_{l}^{0} dI = -\frac{1}{R} \frac{\mu_0 N_1 N_2 S}{l} (-I) = \frac{\mu_0 N_1 N_2 S I}{R l};$$

 $g = \frac{\mu_0 N_1 N_2 SI}{Rl}$. Тогда баллистическая постоянная галь-

ванометра $C = \frac{q}{k} = \frac{\mu_0 N_1 N_2 SI}{kRI} = 10^{-8} \, \text{Кл/дел, где } k$ — число

делений шкалы, на которое произошел отброс.

11.122. Для измерения индукции магнитного поля между полюсами электромагнита помещена катушка, состоящая из 150 витков проволоки и соединенная с баллистическим параллельна направлению магнит-

ного поля. Площадь поперечного сечения катушки $S=2\,\mathrm{cm}^2$. Сопротивление гальванометра $R=2\,\mathrm{кOm}$; его баллистическая постоянная $C=2\cdot 10^{-8}\,\mathrm{Kn/дел}$. При быстром выдергивании катушки из магнитного поля гальванометр дает отброс, равный 50 делениям шкалы. Найти индукцию B магнитного поля. Сопротивлением катушки по сравнению с сопротивлением баллистического гальванометра пренебречь.

Решение:

Количество электричества, прошедшего через поперечное сечение проводника при возникновении в нем индукционного тока, $dq=-\frac{1}{R}d\Phi$. Элементарный магнитный поток $d\Phi=NSdB$, где N— число витков проволоки, S— площадь поперечного сечения катушки. Количество электричества, которое протечет через гальванометр при быстром выдергивании катушки из магнитного поля, $q=-\frac{1}{R}\int\limits_{B}^{0}NSdB=\frac{NBS}{R}$ — (1). С другой стороны, q=Ck— (2), где C— баллистическая постоянная гальванометра, k— число делений отброса гальванометра. Приравнивая правые части уравнений (1) и (2), получаем $\frac{NBS}{R}=Ck$, откуда индукция магнитного поля электромагнита $B=\frac{RCk}{SN}=0,2$ Тл.

11.123. Зависимость магнитной проницаемости μ от напряженности магнитного поля H была впервые исследована A. Γ . Столетовым в его работе «Исследование функции намагничения мягкого железа». При исследовании Столетов придал испытуемому образцу железа форму тороида. Железо намагничивалось пропусканием тока I по первичной обмотке тороида. Изменение направления тока в этой первичной катушке вызывало в баллистическом гальванометре отброс на угол α . Гальва-

метр был включен в цепь вторичной обмотки тороида. Тороид, которым работал Столетов, имел следующие параметры: попладь поперечного сечения $S=1,45\,\mathrm{cm}^2$, длина $l=60\,\mathrm{cm}$, число витков первичной катушки $N_1=800$, число витков вторичной катушки $N_2=100$. Баллистическая постоянная гальванометра $C=1,2\cdot 10^{-5}\,\mathrm{K}$ л/дел и сопротивление вторичной цепи $R=12\,\mathrm{Om}$. Результаты одного из опытов Столетова сведены в таблицу:

<i>I</i> . A	0,1	0.2	0,3	0,4	0,5
е (в дел. шкалы)	48,7	148	208	241	256

о этим данным составить таблицу и построить график завиимости магнитной проницаемости μ от напряженности магитного поля H для железа, с которым работал Столетов.

Решение:

Напряженность магнитного поля в тороиде $H = \frac{IN_1}{l}$ — (1). Если изменить направление тока в первичной катушке противоположное, то через гальванометр пройдет поличество электричества $q = \frac{2\Phi N_2}{R}$, где Φ — магнитный проток, пронизывающий площадь поперечного сечения

тороида. Но
$$\Phi = BS = \frac{\mu \mu_0 SIN_1}{l}$$
; следовательно,

$$q=rac{2N_2\mu\mu_0SIN_1}{Rl}$$
 , откуда $\mu=rac{qRl}{2\mu_0N_1N_2SI}$. Т. к. $q=Clpha$, то

$$\mu = \frac{C\alpha Rl}{2\mu_0 N_1 N_2 SI}$$
 — (2). Подставляя в (1) и (2) различные

значения I и соответствующие значения α , данные в условии задачи, получим таблицу:

I, A	0,1	0,2	0,3	0,4	0,5
<i>Н</i> , А/м	133	266	400	533	667
μ	1440	2190	2050	1790	1520

11.124. Для измерения магнитной проницаемости железа из него был изготовлен тороид длиной $l = 50 \, \mathrm{cm}$ и площадью поперечного сечения $S = 4 \text{ cm}^2$. Одна из обмоток тороида имела $N_1 = 500$ витков и была присоединена к источнику тока, другая имела $N_2 = 1000$ витков и была присоединена к гальванометру. Переключая направление тока в первичной обмотке на обратное, мы вызываем во вторичной обмотке индукционный ток. Найти магнитную проницаемость железа μ , если известно, что при переключении в первичной обмотке направления тока I = 1 A через гальванометр прошло количество электричества $q = 0.06 \, \mathrm{Km}$. Сопротивление вторичной обмотки $R = 20 \, \text{Ом}$.

Решение:

Магнитный поток через катушку изменяется за время t of $\Phi = NBS$ до нуля. В катушке индуцируется э.д.с. Значения э.д.с. в различные моменты времени различны. По закону электромагнитной индукции э.д.с. в некоторый момент

времени определяется по формуле $\varepsilon_{\rm H} = \frac{d\Phi}{dt}$. Изменение

магнитного потока за время t можно определить κ ак: 252

$$\delta = \int \varepsilon dt = \varepsilon t$$
. Э.д.с. в свою очередь связана с силой тока:

E = IR, откуда изменение магнитного потока за время t равно $\Phi = R(I \cdot t)$. Выражение в скобках определяет полный заряд, протекший по цепи за время t, т. е. $\Phi = qR$ — (1), но $\Phi = N_2 BS$ — (2), где $B = \frac{\mu \mu_0 I N_1}{I/2}$ — (3). Из (2) и (3)

получим $\Phi = \frac{2N_1N_2\mu\mu_0IS}{l}$ — (4). Приравнивая (1) и (4),

найдем $\mu = \frac{qRl}{2N_1N_2\mu_0 IS} = 1200$.

11.125. Электрическая лампочка, сопротивление которой в горячем состоянии $R = 10 \, \text{Ом}$, подключается через дроссель к **12-воль**товому аккумулятору. Индуктивность дросселя $L = 2 \, \Gamma$ н, сопротивление $r = 1 \, \text{Ом}$. Через какое время t после включения лампочка загорится, если она начинает заметно светиться при напряжении на ней $U = 6 \, \text{B}$?

Решение:

Вследствие явления самоиндукции при включении э.д.с. сила тока в лампочке нарастает по закону $\begin{pmatrix} R+r \end{pmatrix}$

$$I = I_0 \left(1 - exp \left(-\frac{R+r}{L}t \right) \right)$$
 — (1). По закону Ома для участка

чепи начальный и конечный токи соответственно равны ε . U

$$I_0 = \frac{\varepsilon}{R+r}$$
 и $I = \frac{U}{R+r}$, тогда уравнение (1) можно

Переписать в виде $U = \varepsilon \left(1 - exp\left(-\frac{R+r}{L}t\right)\right)$ или

$$1 - \frac{U}{\varepsilon} = exp\left(-\frac{R+r}{L}t\right)$$
 — (2). Прологарифмируем уравне-

мие (2), тогда $ln\left(1-\frac{U}{\varepsilon}\right) = -\frac{R+r}{L}t$, откуда время, через

которое загорится лампочка после включения,
$$t = -\frac{L}{R+r} ln \left(1 - \frac{U}{\varepsilon} \right) = 126 \text{ мс.}$$

11.126. Имеется катушка длиной $l=20\,\mathrm{cm}$ и диаметром $D=2\,\mathrm{cm}$. Обмотка катушки состоит из $N=200\,\mathrm{B}$ витков медной проволоки, площадь поперечного сечения которой $S=1\,\mathrm{mm}^2$. Катушка включена в цепь с некоторой э.д.с. При помощи переключателя э.д.с. выключается, и катушка замыкается накоротко. Через какое время t после выключения э.д.с. ток в цепи уменьшится в 2 раза?

Решение:

254

Магнитный поток, создаваемый током I в катушке, связан с ее индуктивностью соотношением: $\Phi = LI$. При изменении тока на величину ΔI магнитный поток изменяется на $\Delta \Phi = L \Delta I$. По условию задачи $\Delta I = I - \frac{I}{2} = \frac{I}{2}$, т. е. $\Delta\Phi = \frac{LI}{2}$. С другой стороны, $\Delta\Phi = RI\Delta t$ (см. задачу 11.124), тогда $\frac{LI}{2} = RI\Delta t$, откуда $\Delta t = \frac{L}{2R}$ — (1). Найдем индуктивность катушки и ее сопротивление. Имеем $L = \frac{\mu \mu_0 S N^2}{I}$, где площадь поперечного сечения катушки $S = \pi \frac{D^2}{A}$. Откуда $L = \frac{\mu \mu_0 \pi D^2 N^2}{AL}$ — (2). Сопротивление катушки $R = \rho \frac{l'}{r}$, где длина проволоки $l' = \pi DN$. Отсюда $R = \rho \frac{\pi DN}{c}$ — (3). Подставляя (2) и (3) в (1), получим $\Delta t = \frac{\mu \mu_0 DNS}{8I_O}$. Подставляя числовые данные, получим $\Delta t = 0.2 \cdot 10^{-3} \, \text{c}.$

11.127. Катушка имеет индуктивность $L = 0.2 \, \Gamma$ н и сопроживаение $R = 1,64 \, \text{Ом}$. Во сколько раз уменьщится ток в катушке через время $t = 0.05 \, \text{с}$ после того, как э.д.с. выключена и катушка замкнута накоротко?

Решение:

Магнитный поток, создаваемый током I в катушке, связан \mathbf{c} ее индуктивностью соотношением: $\Phi = LI$. При изменении тока на величииу ΔI магнитный поток изменяется

на
$$\Delta \Phi = L \Delta I$$
. По условию задачи $\Delta I = I - \frac{I}{n} = I \left(1 - \frac{1}{n} \right)$,

т.е.
$$\Delta \Phi = LI \left(1 - \frac{1}{n} \right)$$
. С другой стороны, $\Delta \Phi = RI\Delta t$ (см.

задачу 11.124), тогда
$$LI\left(1-\frac{1}{n}\right)=RI\Delta t$$
 или, учитывая, что

$$\Delta t = t$$
, и преобразуя последнее выражение, $L - Rt = \frac{L}{n}$,

роткуда
$$n = \frac{L}{L - Rt} = 1.6$$
. Т. е. ток в катушке уменьшится в **1.6 раза**.

11.128. Катушка имеет индуктивность $L = 0,144 \,\Gamma$ н и сопромивление $R = 10 \,\text{Om}$. Через какое время t после включения в катушке потечет ток, равный половине установившегося?

Решение:

имеем $t = \frac{L}{2R}$ (см. задачу 11.126). Подставляя числовые панные, получим $t = 7.2 \cdot 10^{-3}$ с.

11.129. Контур имеет сопротивление R = 2 Ом и индуктивность L = 0,2 Гн. Построить график зависимости тока I в сонтуре от времени t, прошедшего с момента включения в цепь

э.д.с., для интервала $0 \le t \le 0.5$ с через каждую 0.1 с. Π_{0} оси ординат откладывать отношение нарастающего тока I к конечному току I_{0} .

Решение:

Изменение потока магнитной индукции $d\Phi$ связано с изменением тока dI в цепи соотношением $d\Phi = LdI$. С другой стороны, $d\Phi = RIdt$ (см. задачу 11.124). Отсюда LdI = RIdt или $\frac{dI}{I} = \frac{R}{L}dt$. Интегрируя полученное выражение, получим $\int_{I}^{0} \frac{dI}{I} = \int_{0}^{t} \frac{R}{L}dt$; $\ln \frac{I_{0}}{I} = \frac{R}{L}t$. Отсюда $\frac{I_{0}}{I} = exp\left(\frac{R}{L}t\right)$ или $\frac{I}{I_{0}} = exp\left(-\frac{R}{L}t\right)$. Подставляя числовые данные, получим $\frac{I}{I_{0}} = exp(-10t)$. Для заданного интервала t составим таблицу и построим график зависимости $\frac{I}{I}(t)$:

t, c	0	0,1	0,2	0,3	0,4	0.5
I/I_0	1,000	0,368	0,135	0,050	0,018	0.007

11.130. Квадратная рамка из медной проволоки сечением 1 мм^2 помещена в магнитное поле, индукция которого менята по закону $B = B_0 \sin \omega t$, где $B_0 = 0.01 \, \text{Tr}$, $\omega = \frac{2\pi}{T}$ и $= 0.02 \, \text{с}$. Площадь рамки $S = 25 \, \text{cm}^2$. Плоскость рамки перпентикулярна к направлению магнитного поля. Найти зависимость от времени t и наибольшее значение: а) магнитного потока Φ , пронизывающего рамку; б) э.д.с. индукции ε , возникающей в рамке; в) тока I, текущего по рамке.

Решение:

Найдем угловую скорость вращения рамки. Имеем $m=rac{2\pi}{T}$, подставляя числовое значение периода T, полу- $\omega = 100\pi$. Магнитный поток, пронизывающий рамку, равен $\Phi = BS = B_0 S \sin \omega t$. Подставляя числовые данные, получим $\Phi = 25 \cdot 10^{-6} \sin 100 \pi t$. Максимальное значение магнитного потока равно амплитуде $\mathbf{e}_{\text{max}} = 25 \cdot 10^{-6} \, \text{Вб. Э.д.с.}$ индукции, возникающей в рамке равна $\varepsilon = \frac{d\Phi}{dt}$. Дифференцируя магнитный поток Φ по времени t, получим $\varepsilon = 7.85 \cdot 10^{-3} \cos 100 \pi t$. Максимального Значения э.д.с. достигнет при $\cos 100\pi t = 1$, т. е. $\epsilon_{\text{max}} = 7.85 \cdot 10^{-3} \, \text{B}$. Силу тока, текущего в рамке, можно **най**ти по закону Ома $I = \frac{\mathcal{E}}{R}$. Найдем сопротивление R**Рамки.** Имеем $R = \rho \frac{l}{\epsilon}$, где длина проволоки $l = 2\pi r = 2\pi \sqrt{\frac{S}{\pi}} = 2\sqrt{\pi S}$. Отсюда $R = \rho \frac{2\sqrt{\pi S}}{s} = 3.1 \cdot 10^{-3}$ Ом. Тогда $I = 2.5 \cos 100 \pi t$, а $I_{max} = 2.5 \text{ A}$.

11.131. Через катушку, индуктивность которой $L=21\,\mathrm{M}\Gamma_\mathrm{H}$, течет ток, изменяющийся со временем по закону $I=I_0\,\sin\omega\,t$, где $I_0=5\,\mathrm{A},\;\omega=\frac{2\pi}{T}$ и $T=0.02\,\mathrm{c}.$ Найти зависимость от времени t:a) э.д.с. ε самоиндукции, возникающей в катушке; б) энергии W магнитного поля катушки.

Решение:

- а) Э.д.с. самоиндукции определяется формулой $\varepsilon_c = -L \frac{dI}{dt}$ (1). По условию ток изменяется со временем по закону $I = I_0 \sin \omega t$ (2). Подставляя (2) в (1), получаем $\varepsilon_c = -L \frac{d}{dt} (I_0 \sin \omega t) = -L I_0 \omega \cos \omega t$, где $\omega = \frac{2\pi}{T}$, тогда $\varepsilon_c = -33 \cos 100 \pi t$.
- б) Магнитная энергия контура с током $W = \frac{LI^2}{2}$ или, с учетом (2), $W = \frac{LI_0^2 \sin^2 \omega t}{2} = 0.263 \sin^2 100 \pi t$.
- 11.132. Две катушки имеют взаимную индуктивность $L_{12}=5\,\mathrm{m}\Gamma\mathrm{h}$. В первой катушке ток изменяется по закону $I=I_0\,\sin\omega\,t$, где $I_0=10\,\mathrm{A}$, $\omega=\frac{2\pi}{T}$ и $T=0.02\,\mathrm{c}$. Найти зависимость от времени t э.д.с. ε_2 , индуцируемой во второй катушке, и наибольшее значение $\varepsilon_{2\,max}$ этой э.д.с.

Решение:

Зависимость э.д.с., индуцируемой во второй катушке, от времени (см. задачу 11.131): $\varepsilon_2 = -L_{12} \frac{dI}{dt} = -L_{12} I_0 \omega \cos \omega t = -15,7\cos 100\pi t$. Э.д.с. индукции будет максимальной в том случае, когда $\cos \omega t = -1$, тогда $\varepsilon_{2max} = 15,7$ В.