데이터베이스시스템

09. 물리적 데이터베이스 설계

나홍석 교수

9 LESSON

물리적 데이터베이스 설계

학습 목표

1 물리적 데이터 모델링 과정을 설명할 수 있다.

2 데이터 저장구조와 제약조건을 기반으로 테이블 명세서를 작성할 수 있다.

학습 내용

- 1 릴레이션 변환 리뷰
- 2 물리적 데이터 모델링
- 3 저장구조 / 제약조건 /접근경로

<u>Chapter 01</u> 릴레이션 변환 리뷰

1 개체의 릴레이션 변환

사원관리 시스템 ERD

1 개체의 릴레이션 변환

사원개체, 부서개체, 프로젝트 개체

사원 <u>사원번호</u> 이름 주소 급여 성별 생년월일

프로젝트 <u>프로젝트번호</u> 프로젝트이름 위치

1 개체의 릴레이션 변환

약개체의 릴레이션 변환

- ☑ 약개체의 경우 기본키에 해당하는 속성(집합)이 없음
- ☞ 약개체가 기준으로 하는 개체에서 필요한 속성을 빌려와야 함
- ☑ 기준 개체의 기본키와 약개체의 대표 속성을 합치고, 이를 기본키로 하는 릴레이션 생성

관계의 릴레이션 변환방법

- ☑ 개체와 개체 사이에는 한 개 이상의 관계가 존재할 수 있음
- ☑ N:M 관계의 경우 독립된 릴레이션을 생성하면 됨
- ☑ 1:N 관계의 경우는 N쪽의 릴레이션에 각각의 관계를 표현함
- ☑ 즉, 각각의 관계에서 따라 각각의 외래키를 포함해서 릴레이션 생성
- ☑ 순환 관계에 참여하는 개체의 기본키를 바로 그 개체의 외래키로 넣어서 릴레이션 완성

2 관계의 릴레이션 변환

소속, 관리, 참여, 수행

사원 <u>사원번호</u> 이름 주소 급여 성별 생년월일 부서번호(FK)

소속

부서 │ <u>부서번호</u> │ 부서이름 │ 부서관리자(FK) │ 시작일

관리

프로젝트 프로젝트번호 프로젝트이름 위치 수행부서(FK)

수행

참여

<u>사원번호(FK)</u> <u>프로젝트번호(FK)</u> 근무시간

참여

 부양가족
 사원번호
 가족이름
 성별
 생년월일
 관계

3

감독, 부양

사원 <u>사원번호</u> 이름 주소 급여 성별 생년월일 <mark>감독자(FK)</mark> 부서번호(FK)

부서 <u>부서번호</u> 부서이름 부서관리자(FK) 시작일

프로젝트 <u>프로젝트번호</u> 프로젝트이름 위치 수행부서(FK)

참여 <u>사원번호(FK)</u> <u>프로젝트번호(FK)</u> 근무시간

 부양가족
 사원번호(FK)
 가족이름
 성별
 생년월일
 관계

3 속성의 릴레이션 변환

속성의 릴레이션 변환방법

- ☑ 다중값 속성은 하나의 속성에 여러 개의 값이 들어간다는 것을 표현
- ☑ 해당 개체의 기본키와 다중값 속성을 합쳐서 복합속성을 만들고

그 복합 속성을 기본키로 하는 별도의 릴레이션을 생성

3 속성의 릴레이션 변환

2

사원관리 시스템의 릴레이션 스키마

사원 <u>사원번호</u> 이름 주소 급여 성별 생년월일 감독자(FK) 부서번호(FK)

부서 <u>부서번호</u> 부서이름 부서관리자(FK) 시작일

부서위치 <u>부서번호(FK)</u> <u>위치</u>

프로젝트 <u>프로젝트번호</u> 프로젝트이름 위치 수행부서(FK)

참여 <u>사원번호(FK)</u> <u>프로젝트번호(FK)</u> 근무시간

 부양가족
 사원번호
 가족이름
 성별
 생년월일
 관계

<u>Chapter 02</u> 물리적 데이터 모델링

1 모델링 과정 리뷰

데이터 모델링 단계

구 분	설명
개념적 모델링	 업무의 대상이 되는 실제 데이터들에 대해서, 서로의 상관관계를 파악하는 작업 개체, 관계, 속성을 파악하고 이들간의 관련성을 도식화 결과물 : ERD(Entity Relationship Diagram)
논리적 모델링	DBMS의 유형(관계형, 객체지향형, 객체-관계형)에 맞추어 DBMS에 저장될 데이터의 골격(스키마)를 만드는 작업 결과물 : 함수종속성 파악, 논리적스키마(릴레이션구조)
물리적 모델링	• 특정 DBMS에 의존하는 데이터형식, 각종 제약조건, 뷰, 인덱스 등을 설정하는 작업 • 결과물 : 테이블 정의서, 제약조건 리스트, 인덱스 명세서 등

개념적 데이터 모델링

➡️ 개체간의 관계를 정확히 표현하는 단계

- 요구분석 명세로부터 개체, 속성, 관계를 식별해서 결정
- 특히, 개념적 설계에서는 개체와 개체 간의 연관성(관계:relationship)에 중점을 둠

☑ 개념적 데이터 모델(개체-관계도: Entity-Relationship Diagram)로 기술

- 개체, 관계, 속성으로 구성
- 이전단계에서 도출된 요구명세와의 상응성을 점검

논리적 데이터 모델링

- ☑ 개념적 설계로 만들어진 개념적 구조로부터 특정 목표 DBMS가 처리할 수 있는 스키마를 생성함
- ☑ 이 스키마는 요구조건 명세를 만족해야 하며, 무결성이나 일관성 제약조건도 만족해야 함
- ☑ 관계형 데이터베이스의 경우 논리적 설계 단계에서 함수적 종속성에 대한 분석과 정규화가 이루어짐
- ☑ 논리적 설계 단계부터 DBMS의 특성에 많이 의존됨

개요

A physical data model (or database design) is a representation of a data design which takes into account the facilities and constraints of a given database management system.

In the lifecycle of a project, it typically derives from a logical data model, though it may be reverseengineered from a given database implementation.

- Wikipedia -

효율적, 구현 가능한 물리적 DB 구조 설계

- ☑ 데이터의 저장 구조나 접근 경로에 대해서 DBMS가 지원하는 방법 중에서 선택함
- ☑ 응답시간, 저장공간의 효율화, 트랜잭션 처리도(Throughput) 등을 고려해야 함

수행 작업

저장구조 설계

■ 데이터베이스 구조, 테이블 구조, 테이블 분할, 이름 영문화

제약조건 지정

■ 데이터 형 지정, 기본키 및 기본값 정의, 체크와 규칙 정의

레코드 집중의 분석 및 설계

- 레코드 크기와 물리적 저장 장치의 특성에 의존
- 테이블 분산, 파티셔닝 등

접근경로설계

■ 인덱스 설정, 뷰 정의

용어 정리 - 관계형 DBMS

- ☑ 테이블은 데이터 저장을 위한 가장 기본적인 단위로 논리모델의 릴레이션에 대응
- ☑ 컬럼은 테이블의 열, 로우는 테이블의 행에 해당

테이블명 및 컬럼명의 영문화 #1

- ☑ DBMS로 구현하고 프로그래밍 환경에 적용하기 위해서는 영문 테이블명과 컬럼명이 필요
- ☑ 논리적 모델에서 사용된 릴레이션과 애트리뷰트를 영문으로 전환하는 과정이 필요
- ☑ 표준 용어집을 작성하거나 사전에 정의된 명명규칙에 맞추어서 변환

테이블명 및 컬럼명의 영문화 #2

No	한글단어	영문 전체 이름	영문약어
1	학생	Student	St
2	학과	Department	Dept
3	이름	Name	Nm
4	주소	Address	Addr
5	전화번호	Phone Number	Phn
6	집	Home	Hm
7	이동(전화)	Mobile	Mbl
8	번호	Number	No
9	생년월일	Birthday	Birth
10	아이디	Identifier	ID

모델링 결과 #1

물리적 데이터베이스 스키마

- 주변 환경 정보
 - 하드웨어 자원 현황, 운영체제 현황, DBMS 버전 및 파라미터 정보 파악
- 데이터베이스 운영 정보
 - 사용자 관리 정책, 백업/복구 기법 및 정책, 보안관리 정책
- 테이블 정의서, 컬럼 정의서
- 표준 용어집
- 뷰 및 인덱스 정의

2 물리적 데이터 모델

모델링 결과 #2

6

테이블 정의서
" = 0-1

 프로젝트
 K사이버대학교
 시스템명
 학사관리시스템
 작성일자
 2021. 3. 1
 작성자
 김정식

테이블명 Student

테이블정의 K사이버대학교 재학생/휴학생 개인신상 정보

No	컬럼명	한글명	타입	길이	NULL	UK	PK	FK	참조테이블	참조컬럼	비고
1	St_Name	이름	varchar	20							
2	St_ID	아이디	varchar	10			Υ				
3	St_Sex	성별	char	1	Υ						F, M
4	St_Phn_Mbl	전화번호	char	13	Υ						999-9999-9999
5	St_Addr	주소	varchar	50	Υ						
6	St_Birth	생년월일	datetime		Υ	Υ					1900년 이후 출생
7	Dept_ID	소속학과	char	2				Υ	Department	Dept_ID	IT, BZ, MD,

Chapter 03 저장구조 / 제약조건 / 접근경로

1 테이블 구조 정의 #1

- ☑ 릴레이션으로부터 테이블명과 컬럼명을 도출하여 각각의 테이블 구조를 정의함
- ☑ 관리상 필요한 컬럼이 추가되기도 함

예) 해당 데이터를 등록한 날짜, 시스템 번호 등

테이블 구조 정의 #2

☑ 테이블명과 컬럼을 정의한 후 타입과 제약조건을 추가

테이블명 Student

데이블정의 K사이버대학교 재학생/휴학생 개인신상 정보

No	컬럼명	한글명	타입	길이	NULL	UK	PK	FK	참조테이블	참조컬럼	비고
1	St_Name	이름									
2	St_ID	아이디									
3	St_Sex	성별									
4	St_Phn_Mbl	전화번호									
5	St_Addr	주소									
6	St_Birth	생년월일									
7	Dept_ID	소속학과									

2 데이터타입 #1 - 개요

- ☑ DBMS에 맞는 데이터타입 선택
- ☑ 논리적인 모델의 데이터 타입을 물리적인 DBMS의 특성과 성능을 고려하여 최적의 데이터 타입을 선택
- ☑ 크게 문자(열) 타입, 숫자 타입, 날짜 타입 등으로 분류되며, DBMS에 따라 세부적으로 더 많은 종류의 타입을 지원

데이터타입 #2 - 문자열형 데이터 타입

☑ CHAR(n): 고정 길이 데이터 타입

☑ VARCHAR(n): 가변 길이 데이터 타입

	ORACLE	MS SQL Sen	ver	MySQL,	MariaDB
데이터타입	설명	데이터타입	크기	데이터타입	크기
CHAR(n)	고정길이 문자열 / 최대 2000bytes	char(n)	1 to 8000	CHAR(n)	최대 255자
NCHAR(n)	고정길이 유니코드문자열 /최대 2000bytes	nchar(n)	1 to 4000		
VARCHAR2(n)	가변길이 문자열 / 최대 4000bytes	varchar(n max)	1 to 8000 max는 2G	VARCHAR(n)	최대 255자
NVARCHAR2(n)	가변길이 유니코드 문자열 / 최대 4000bytes	nvarchar(n max)	1 to 4000 max는 2G		
LONG	가변길이 문자열 최대 / 2Gbytes			LONGTEXT	
CLOB	대용량 텍스트 데이터 타입 /최대 4Gbytes	text, varchar(max)	2G	TEXT	최대 65535자
NCLOB	대용량 텍스트 유니코드 데이터 타입 /최대 4Gbytes	ntext, nvarchar(max)	2G		

데이터타입 #3 - 숫자 데이터 타입

☑ 오라클 → NUMBER(p,s): 가변 숫자 / 최대 22bytes

☑ p: 소수점을 포함한 전체 자리수, s: 소수점 자리수

입력값	타입	저장되는 값
123.89	NUMBER	123.89
123.89	NUMBER(3)	124
123.89	NUMBER(3,2)	Exceeds precision
123.89	NUMBER(4,2)	Exceeds precision
123.89	NUMBER(5,2)	123.89
123.89	NUMBER(6,1)	123.9

MS SQL	Server	MySQL, MariaDB				
데이터타입	크기	데이터타입	크기			
bigint	8 bytes	BIGINT	8 bytes			
int	4 bytes	INT	4 bytes			
smallint	2 bytes	SMALLINT	2 bytes			
tinyInt	1 bytes	TINYINT	1 bytes			
<pre>decimal(p,s) numeric(p,s)</pre>	고정소수점	DECIMAL	고정소수점			
float real	부동소수점	FLOAT DOUBLE	부동소수점			

데이터타입 #4 - 날짜 데이터 타입

☑ DATE: 연, 월, 일, 시, 분, 초 까지 입력 가능(오라클)

☑ TIMESTAMP: 연도, 월, 일, 시, 분, 초 + 밀리초까지 입력가능 (오라클)

Oracle	SQL Server	MySQL, MariaDB
DATE	datetime	DATETIME
	date	DATE
	smalldatetime	
	time	TIME
TIMESTAMP	datetime2 (DT2)	

Student 테이블 데이터 타입 정의

- ☑ 전화번호: 계산에 쓰이는 컬럼이 아니므로 고정길이 문자열로 정의함
- ☑ 소속학과: 학과코드(2바이트)가 들어감
- ☑ 날짜: 대부분 일반적인 날짜 형식을 사용함

4

Student 테이블 데이터타입 정의 결과

 테이블명
 Student

 테이블정의
 K사이버대학교 재학생/휴학생 개인신상 정보

No	컬럼명	한글명	타입	길이	NULL	U K	PK	FK	참조테이블	참조컬 럼	비고
1	St_Name	이름	varchar	20							
2	St_ID	아이디	varchar	10							
3	St_Sex	성별	char	1							
4	St_Phn_Mbl	전화번호	char	13							
5	St_Addr	주소	varchar	50							
6	St_Birth	생년월일	datetime								
7	Dept_ID	소속학과	char	2							

개체무결성 제약조건 #1

실 기본키 / 유일성 제약(Unique)

- 논리 모델의 기본키는 물리 모델의 기본키(Primary Key)로 대응
- 기본키는 개체무결성 제약조건을 만족시키기 위한 조건 (Unique + Not Null)
- 기본키를 제외한 나머지 후보키 들은 기본적으로 Unique 속성을 가짐
- Not Null 속성을 갖는 지 여부를 다시 한번 검토

제약조건 지정

개체무결성 제약조건 #2

▲ 자연키(Natural PK)와 인조키(Artificial PK)

- 기본키가 여러 개의 속성으로 구성되거나 크기가 큰 경우 인조키를 인위적으로 생성함
- 자연키는 쉽게 이해할 수 있으며, 인조키는 쉽게 만들고 사용할 수 있음
- 기본키를 구성하는 속성들이 기본키의 조건을 만족시킨다는 확신이 없을 경우 인조키를 만들어서 사용하는 것이 좋음

인조키의 예

<u>고객번호</u> <u>주문일자</u> 상품 개수

주문 <u>주문번호</u> 고객번호

상품

개수

개체무결성 제약조건 #3

LA NULL과 NOT NULL

- NULL 값은 매우 주의해서 사용해야 함
- 어떤 컬럼의 값이 생략이 가능하다고 해서 NULL을 허용하는 것이 아니라 알지 못하는 값을 표현할 필요가 있는 경우에 사용
- 단순하게 값이 생략되어도 좋은 경우라면, 공백, 0, -1 등의 값을 사용해서 표현하는 것이 좋음
- 특히, 인덱스로 지정이 되는 컬럼에서는 NULL 값을 허용하지 않는 것을 권장

참조무결성 제약조건

🛂 외래키 지정

- 1:M 관계에서 1(One)에 있는 PK를 M(Many)의 FK로 변환
- 1:1 관계에서는 전체가 참여하는 쪽(Mandatory)에 상대편의 PK를 FK로 생성
- N:M 관계는 관계를 표현하는 테이블을 생성 후 이 테이블에 FK를 생성

도메인 무결성 제약조건

체크(Check) 제약조건

- 테이블의 값이 올바른 값만 입력되도록 제약조건을 두는 것이 체크 제약 조건
- 도메인 무결성을 유지하기 위해서 필요, 허용 양식과 허용 값을 검사할 수 있음
- 일반적으로, 컬럼 단위로 제약조건을 주지만, 여러 컬럼에 걸쳐 제약조건을 줄 수 있음

예) 전화번호는 숫자(문자)로만 구성되어야 하며, 3자리-4자리-4자리를 갗는다. "999-9999-9999"

기본값 제약조건

니본값(Default Value)

- 데이터 삽입 시 값을 생략하면 미리 지정되어 있는 기본값이 대신 삽입하도록 지정
- 예를 들어, 학과 컬럼에 기본값으로 'GE'를 지정하면, 학생의 정보가 입력될 때 학과에 관한 값이 없으면 자동으로 'GE' 라는 값이 들어감
- 값의 생략은 허용하면서, NULL 값은 허용하지 않는 경우에 유용하게 사용됨

제약조건 지정 결과 #1

➡ Student 테이블 정의

테이블명 Student

테이블정의 K사이버대학교 재학생/휴학생 개인신상 정보

No	컬럼명	한글명	타입	길이	NULL	UK	PK	FK	참조테이블	참조컬럼	비고
1	St_Name	이름	varchar	20							
2	St_ID	아이디	varchar	10			Υ				
3	St_Sex	성별	char	1	Υ						F, M
4	St_Phn_Mbl	전화번호	char	13	Υ	Υ					999-9999-9999
5	St_Addr	주소	varchar	50	Υ						
6	St_Birth	생년월일	Datetime		Υ						1900년 이후 출생
7	Dept_ID	소속학과	char	2				Υ	Department	Dept_ID	IT, BZ, MD,

제약조건 지정 결과 #2

☑ Course 테이블 정의

테이블명 Course 테이블정의 K사이버대학교 과목 정보 테이블

No	컬럼명	한글명	타입	길이	NULL	UK	PK	FK	참조테이블	참조컬럼	비고
1	Co_Num	과목번호	char	5			Υ				
2	Co_Name	과목이름	varchar	20		Υ					
3	Co_Location	과목장소	varchar	10	Υ						

제약조건 지정 결과 #3

Inrol 테이블 정의

테이블명 Enrol

테이블정의 K사이버대학교 등록 정보 테이블

No	컬럼명	한글명	타입	길이	NULL	UK	PK	FK	참조테이블	참조컬럼	비고
1	St_ID	학생번호	char	6			Υ	Υ	Student	St_ID	
2	Co_Num	과목번호	char	5			Υ	Υ	Course	Co_Num	
3	Grade	학점	char	2	Y						A, B, C, D, F Default 'U'
4	Mid	중간성적	int		Υ						0이상,100이하
5	Final	기말성적	int		Υ						0이상,100이하

3 접근경로 설정

- 1 인덱스(Index)
 - ☑ 데이터에 대한 논리적 포인터의 집합
 - ☑ 책의 찾아보기와 같은 역할
 - ☑ 질의문의 빠른 수행과 컬럼값의 유일성을 보장하기 위해서 사용

인덱스 종류

- ☑ 단일(Single) 칼럼 인덱스와 결합(Composite) 인덱스
- ☑ Unique 인덱스와 Non-Unique 인덱스
- ☑ 함수기반(Function-based) 인덱스
- ☑ 물리적 구현방식: B-tree 구조 인덱스, 비트맵 인덱스, 클러스터링 인덱스

인덱스 장단점

인덱스의 장점

- 빠르게 데이터를 찾아낼 수 있음
- 유일성 인덱스로 만들면 유일성 제약 조건도 강화됨

인덱스의 단점

- 인덱스 자체가 추가적인 공간을 차지함
- 인덱스를 유지 관리하는 데 추가적인 시간이 소비됨
- 데이터를 추가하고 수정할 때는 인덱스 때문에 시간이 더 걸림

정리

■ 데이터 모델링 단계

구 분	설명
개념적 모델링	 업무의 대상이 되는 실제 데이터들에 대해서, 서로의 상관관계를 파악하는 작업 개체, 관계, 속성을 파악하고 이들간의 관련성을 도식화 결과물 : ERD(Entity Relationship Diagram)
논리적 모델링	 DBMS의 유형(관계형, 객체지향형, 객체-관계형)에 맞추어 DBMS에 저장될 데이터의 골격(스키마)를 만드는 작업 결과물 : 함수종속성 파악, 논리적스키마(릴레이션구조)
물리적 모델링	 특정 DBMS에 의존하는 데이터형식, 각종 제약조건, 뷰, 인덱스 등을 설정하는 작업 결과물 : 테이블 정의서, 제약조건 리스트, 인덱스 명세서 등

학습 정리

🔪 데이터베이스 물리적 설계

- 효율적, 구현 가능한 물리적 DB 구조 설계 계
 - 데이터의 저장 구조나 접근 경로에 대해서 DBMS가 지원하는 방법 중에서 선택함
 - 응답시간, 저장공간의 효율화, 트랜잭션 처리도(Throughput) 등을 고려해야 함

정리

🖳 물리적 설계단계 할 일

저장구조 설계

■ 데이터베이스 구조, 테이블 구조, 테이블 분할, 이름 영문화

제약조건 지정

■ 데이터 형 지정, 기본키 및 기본값 정의, 체크와 규칙 정의

레코드 집중의 분석 및 설계

- 레코드 크기와 물리적 저장 장치의 특성에 의존
- 테이블 분산, 파티셔닝 등

접근경로설계

■ 인덱스 설정, 뷰 정의

References

무허

山 데이터베이스 시스템 7판, Ramez Elmasri, Shamkant B. Navathe 지음, 황규영 등 옮김, 홍릉과학출판사, 2018년 8월

www.wikipedia.org

