# PeaPod - Design Proposal

Outlining a Proposal to the PeaPod Design Brief

Jayden Lefebvre - Lead Engineer jayden.lefebvre@mail.utoronto.ca

Nathan Chareunsouk, Navin Vanderwert, Chris Lansdale - Design Engineers

Revision 0.1 University of Toronto Agritech June 2nd, 2021

# Contents

| 1                       | Introduction |          |                           |     |
|-------------------------|--------------|----------|---------------------------|-----|
|                         | 1.1          | Purpos   | se                        | . 2 |
| 2                       | Desi         | ign      |                           | 3   |
|                         | 2.1          | Autom    | nation                    | . 4 |
|                         | 2.2          | Isolatio | on/Insulation and Housing | . 4 |
|                         | 2.3          | Aeropo   | onics                     | . 4 |
| 2.4 Environment Control |              | Enviro   | onment Control            | . 5 |
|                         |              | 2.4.1    | Air Temperature           | . 5 |
|                         |              | 2.4.2    | Air Humidification        | . 5 |
|                         |              | 2.4.3    | Air Dehumidification      | . 5 |
|                         |              | 2.4.4    | Solution Temperature      | . 5 |
|                         |              | 2.4.5    | Solution Nutrients        | . 6 |
|                         |              | 2.4.6    | Solution pH               | . 6 |
|                         |              | 2.4.7    | Lighting                  | . 6 |

# 1 Introduction

## 1.1 Purpose

The purpose of this document is to outline a the fuction and features of a proposal to the PeaPod design brief.

It accomplishes this by answering the following questions on a recursively-scoping basis:

- 1. **What** is the design? What does it accomplish/what is its function?
- 2. **How** does it accomplish this? What are its features?
- 3. **Why** that functionality? Why that way?

# 2 Design

Functions of the design are derived from the input and output requirements.



Figure 1: "Black box" input-output model of PeaPod.

Features of the design are developed to meet the function, and are derived from the opportunity statement:

PeaPod is "an <u>automated</u> and <u>isolated</u> <u>aeroponic</u> crop growth system, able to generate any environment from a combination of independent <u>environment parameters</u>, with both environment and crop growth data collection".



Figure 2: Features and feature types of PeaPod.

## 2.1 Automation

What: Performing tasks autonomously on a schedule or necessity basis

**How**: Fixed schedule; "Sense, Plan, Act" robotics/control model:

- 1. Senses current conditions
- 2. Plans a path to desired condition
- 3. Acts to change current condition to desired condition

Why: Increase accuracy/precision, minimize human hours spent

## 2.2 Isolation/Insulation and Housing

**What**: Isolates the growth environment from the exterior environment.

**How**: Cubic exoskeleton (aluminum extrusion) holds solid (acrylic/foam) interenally-reflective (mylar) panels in place and aids in mounting plant growth platforms, lights, etc.

**Why**: Increases thermal and light efficiency. Isolation increases protection against pathogenic substances. Simple and strong construction.

# 2.3 Aeroponics

What: Medium-free growing method that uses nutrients dissolved within atomized water

**How**: High-pressure (pump-tank-switch system) nozzles deliver atomized (50 micron droplet) nutrient solution to plant roots. Parallel distribution topology (T-quick-connects at every unit height, solenoid ball valves at tank out and in each tray)

**Why**: No water parameter feedback, 98% more water efficient, minimizes pathogens and waste water

## 2.4 Environment Control

The environment control feature can be broken up into **control systems** (2.4.1-2.4.3; sometimes in two parts) and **set systems** (2.4.4-2.4.7).

#### 2.4.1 Air Temperature

What: Maintaining desired air temperature within the enclosure

**How**: Thermoelectric heating/cooling system (peltier tiles w/ polarity switch and 'dimming' current control) on a heat sink w/ fan

**Why**:Better space and energy efficiency, less complexity (no liquids, pressurized fluids, etc.), better control

#### 2.4.2 Air Humidification

What: Adding water vapour to air

How: Ultrasonic nebulizer (piezo disc w/ custom driver circuit), RO water

Why:Piezo for droplet size, commonly used; RO for purity of water vapour

#### 2.4.3 Air Dehumidification

What: Absorbs water vapour from the air

**How**: Silica gel beads, controlling airflow rate across

**Why**: Non-toxic, safe, cheap, effective. Color-changing indication at saturation, easily reset by baking and recapturing water

#### 2.4.4 Solution Temperature

What: Maintaining desired water temperature within the water store

**How**: Same as 2.4.1; on a water block

**Why**: Same as 2.4.1

#### 2.4.5 Solution Nutrients

**What**: Precisely dosing the correct amount of nutrients to the water system at setup/water addition

How: Syringe dosage via servo motor to set ppm based on fill volume

**Why**: Syringe dosage is precise, easy to refill

## 2.4.6 Solution pH

What: Precisely adds pH up/down solutions to set the solution pH at setup/water addition

How: Same as 2.4.5

**Why**: Same as 2.4.5

## 2.4.7 Lighting

What: Wide spectrum precision LED lighting targeting PAR

**How**: N LED series/colors, N controlled-current PWM drivers, M LEDs per series = NxM LEDs.

Custom LED boards wired in series, one power board per tray, w/ diffusion

**Why**: LED > every other type in every way, PWM easy protocol, CC because they're LEDs