

Classical Fourier Transform (8-dimensions)

For a given vector \vec{a} compute:

$$\frac{1}{\sqrt{8}}\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & \omega & \omega^2 & \omega^3 & \omega^4 & \omega^5 & \omega^6 & \omega^7 \\ 1 & \omega^2 & \omega^{2\cdot2} & \omega^{2\cdot3} & \omega^{2\cdot4} & \omega^{2\cdot5} & \omega^{2\cdot6} & \omega^{2\cdot7} \\ 1 & \omega^3 & \omega^{3\cdot2} & \omega^{3\cdot3} & \omega^{3\cdot4} & \omega^{3\cdot5} & \omega^{3\cdot6} & \omega^{3\cdot7} \\ 1 & \omega^4 & \omega^{4\cdot2} & \omega^{4\cdot3} & \omega^{4\cdot4} & \omega^{4\cdot5} & \omega^{4\cdot6} & \omega^{4\cdot7} \\ 1 & \omega^5 & \omega^{5\cdot2} & \omega^{5\cdot3} & \omega^{5\cdot4} & \omega^{5\cdot5} & \omega^{5\cdot6} & \omega^{5\cdot7} \\ 1 & \omega^6 & \omega^{6\cdot2} & \omega^{6\cdot3} & \omega^{6\cdot4} & \omega^{6\cdot5} & \omega^{6\cdot6} & \omega^{6\cdot7} \\ 1 & \omega^7 & \omega^{7\cdot2} & \omega^{7\cdot3} & \omega^{7\cdot4} & \omega^{7\cdot5} & \omega^{7\cdot6} & \omega^{7\cdot7} \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \\ a_6 \\ a_7 \end{bmatrix}$$

Classical Fourier Transform (8-dimensions)

For a given vector \vec{a} compute:

$$\frac{1}{\sqrt{8}} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & \omega & \omega^2 & \omega^3 & \omega^4 & \omega^5 & \omega^6 & \omega^7 \\ 1 & \omega^2 & \omega^{2\cdot2} & \omega^{2\cdot3} & \omega^{2\cdot4} & \omega^{2\cdot5} & \omega^{2\cdot6} & \omega^{2\cdot7} \\ 1 & \omega^3 & \omega^{3\cdot2} & \omega^{3\cdot3} & \omega^{3\cdot4} & \omega^{3\cdot5} & \omega^{3\cdot6} & \omega^{3\cdot7} \\ 1 & \omega^4 & \omega^{4\cdot2} & \omega^{4\cdot3} & \omega^{4\cdot4} & \omega^{4\cdot5} & \omega^{4\cdot6} & \omega^{4\cdot7} \\ 1 & \omega^5 & \omega^{5\cdot2} & \omega^{5\cdot3} & \omega^{5\cdot4} & \omega^{5\cdot5} & \omega^{5\cdot6} & \omega^{5\cdot7} \\ 1 & \omega^6 & \omega^{6\cdot2} & \omega^{6\cdot3} & \omega^{6\cdot4} & \omega^{6\cdot5} & \omega^{6\cdot6} & \omega^{6\cdot7} \\ 1 & \omega^7 & \omega^{7\cdot2} & \omega^{7\cdot3} & \omega^{7\cdot4} & \omega^{7\cdot5} & \omega^{7\cdot6} & \omega^{7\cdot7} \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \\ a_6 \\ a_7 \end{bmatrix}$$

$$\begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \\ a_6 \\ a_7 \end{bmatrix} = a_0 |000\rangle + a_1 |001\rangle + a_2 |010\rangle + a_3 |011\rangle + a_4 |100\rangle + a_5 |101\rangle + a_6 |110\rangle + a_7 |111\rangle$$

Classical Fourier Transform (8-dimensions)

For a given vector \vec{a} compute:

$$\frac{1}{\sqrt{8}} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & \omega & \omega^2 & \omega^3 & \omega^4 & \omega^5 & \omega^6 & \omega^7 \\ 1 & \omega^2 & \omega^{2\cdot2} & \omega^{2\cdot3} & \omega^{2\cdot4} & \omega^{2\cdot5} & \omega^{2\cdot6} & \omega^{2\cdot7} \\ 1 & \omega^3 & \omega^{3\cdot2} & \omega^{3\cdot3} & \omega^{3\cdot4} & \omega^{3\cdot5} & \omega^{3\cdot6} & \omega^{3\cdot7} \\ 1 & \omega^4 & \omega^{4\cdot2} & \omega^{4\cdot3} & \omega^{4\cdot4} & \omega^{4\cdot5} & \omega^{4\cdot6} & \omega^{4\cdot7} \\ 1 & \omega^5 & \omega^{5\cdot2} & \omega^{5\cdot3} & \omega^{5\cdot4} & \omega^{5\cdot5} & \omega^{5\cdot6} & \omega^{5\cdot7} \\ 1 & \omega^6 & \omega^{6\cdot2} & \omega^{6\cdot3} & \omega^{6\cdot4} & \omega^{6\cdot5} & \omega^{6\cdot6} & \omega^{6\cdot7} \\ 1 & \omega^7 & \omega^{7\cdot2} & \omega^{7\cdot3} & \omega^{7\cdot4} & \omega^{7\cdot5} & \omega^{7\cdot6} & \omega^{7\cdot7} \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \\ a_6 \\ a_7 \end{bmatrix}$$

$$\begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \\ a_6 \\ a_7 \end{bmatrix} = a_0 |000\rangle + a_1 |001\rangle + a_2 |010\rangle + a_3 |011\rangle + a_4 |100\rangle + a_5 |101\rangle + a_6 |110\rangle + a_7 |111\rangle$$

$$= \sum_{x \in \{0,1\}^3} a_x |x\rangle \xrightarrow{\text{Fourier Transform}}$$

Classical Fourier Transform (8-dimensions)

For a given vector \vec{a} compute:

$$\frac{1}{\sqrt{8}}\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & \omega & \omega^2 & \omega^3 & \omega^4 & \omega^5 & \omega^6 & \omega^7 \\ 1 & \omega^2 & \omega^{2\cdot2} & \omega^{2\cdot3} & \omega^{2\cdot4} & \omega^{2\cdot5} & \omega^{2\cdot6} & \omega^{2\cdot7} \\ 1 & \omega^3 & \omega^{3\cdot2} & \omega^{3\cdot3} & \omega^{3\cdot4} & \omega^{3\cdot5} & \omega^{3\cdot6} & \omega^{3\cdot7} \\ 1 & \omega^4 & \omega^{4\cdot2} & \omega^{4\cdot3} & \omega^{4\cdot4} & \omega^{4\cdot5} & \omega^{4\cdot6} & \omega^{4\cdot7} \\ 1 & \omega^5 & \omega^{5\cdot2} & \omega^{5\cdot3} & \omega^{5\cdot4} & \omega^{5\cdot5} & \omega^{5\cdot6} & \omega^{5\cdot7} \\ 1 & \omega^6 & \omega^{6\cdot2} & \omega^{6\cdot3} & \omega^{6\cdot4} & \omega^{6\cdot5} & \omega^{6\cdot6} & \omega^{6\cdot7} \\ 1 & \omega^7 & \omega^{7\cdot2} & \omega^{7\cdot3} & \omega^{7\cdot4} & \omega^{7\cdot5} & \omega^{7\cdot6} & \omega^{7\cdot7} \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \\ a_6 \\ a_7 \end{bmatrix}$$

In bra-ket notation:
$$\begin{vmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \\ a_6 \\ a_7 \end{vmatrix} = a_0|000\rangle + a_1|001\rangle + a_2|010\rangle + a_3|011\rangle + a_4|100\rangle + a_5|101\rangle + a_6|110\rangle + a_7|111\rangle$$

$$= \sum_{x \in \{0,1\}^3} a_x |x\rangle \xrightarrow{\text{Fourier Transform}} \frac{1}{\sqrt{8}} \sum_{x \in \{0,1\}^3} b_x |x\rangle$$

$$\text{where } b_x = \sum_{y \in \{0,1\}^3} a_y \omega^{xy} |y\rangle$$

Classical Fourier Transform (8-dimensions)

For a given vector \vec{a} compute:

$$\frac{1}{\sqrt{8}}\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & \omega & \omega^2 & \omega^3 & \omega^4 & \omega^5 & \omega^6 & \omega^7 \\ 1 & \omega^2 & \omega^{2\cdot2} & \omega^{2\cdot3} & \omega^{2\cdot4} & \omega^{2\cdot5} & \omega^{2\cdot6} & \omega^{2\cdot7} \\ 1 & \omega^3 & \omega^{3\cdot2} & \omega^{3\cdot3} & \omega^{3\cdot4} & \omega^{3\cdot5} & \omega^{3\cdot6} & \omega^{3\cdot7} \\ 1 & \omega^4 & \omega^{4\cdot2} & \omega^{4\cdot3} & \omega^{4\cdot4} & \omega^{4\cdot5} & \omega^{4\cdot6} & \omega^{4\cdot7} \\ 1 & \omega^5 & \omega^{5\cdot2} & \omega^{5\cdot3} & \omega^{5\cdot4} & \omega^{5\cdot5} & \omega^{5\cdot6} & \omega^{5\cdot7} \\ 1 & \omega^6 & \omega^{6\cdot2} & \omega^{6\cdot3} & \omega^{6\cdot4} & \omega^{6\cdot5} & \omega^{6\cdot6} & \omega^{6\cdot7} \\ 1 & \omega^7 & \omega^{7\cdot2} & \omega^{7\cdot3} & \omega^{7\cdot4} & \omega^{7\cdot5} & \omega^{7\cdot6} & \omega^{7\cdot7} \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \\ a_6 \\ a_7 \end{bmatrix}$$

(where $\omega = e^{\frac{2\pi i}{8}}$ is nth primative root of unity)

$$\begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \\ a_6 \\ a_7 \end{bmatrix} = a_0|000\rangle + a_1|001\rangle + a_2|010\rangle + a_3|011\rangle + a_4|100\rangle + a_5|101\rangle + a_6|110\rangle + a_7|111\rangle$$

$$= \sum_{x \in \{0,1\}^3} a_x |x\rangle \xrightarrow{\text{Fourier Transform}} \frac{1}{\sqrt{8}} \sum_{x \in \{0,1\}^3} b_x |x\rangle$$

$$\text{where } b_x = \sum_{y \in \{0,1\}^3} a_y \omega^{xy} |y\rangle$$

Quantum Fourier Transform (3 qubits)

Given quantum state:
$$\sum_{x \in \{0,1\}^3} \alpha_x |x\rangle$$

$$= \alpha_0 |000\rangle + \alpha_1 |001\rangle + \alpha_2 |010\rangle + \alpha_3 |011\rangle + \alpha_4 |100\rangle + \alpha_5 |101\rangle + \alpha_6 |110\rangle + \alpha_7 |111\rangle$$

$$\bigvee_{x \in \{0,1\}^3} \beta_x |x\rangle \text{ where } \beta_x = \sum_{y \in \{0,1\}^3} \alpha_y \omega^{xy} |y\rangle$$

Classical Fourier Transform (8-dimensions)

For a given vector \vec{a} compute:

$$\frac{1}{\sqrt{8}}\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & \omega & \omega^2 & \omega^3 & \omega^4 & \omega^5 & \omega^6 & \omega^7 \\ 1 & \omega^2 & \omega^{2\cdot2} & \omega^{2\cdot3} & \omega^{2\cdot4} & \omega^{2\cdot5} & \omega^{2\cdot6} & \omega^{2\cdot7} \\ 1 & \omega^3 & \omega^{3\cdot2} & \omega^{3\cdot3} & \omega^{3\cdot4} & \omega^{3\cdot5} & \omega^{3\cdot6} & \omega^{3\cdot7} \\ 1 & \omega^4 & \omega^{4\cdot2} & \omega^{4\cdot3} & \omega^{4\cdot4} & \omega^{4\cdot5} & \omega^{4\cdot6} & \omega^{4\cdot7} \\ 1 & \omega^5 & \omega^{5\cdot2} & \omega^{5\cdot3} & \omega^{5\cdot4} & \omega^{5\cdot5} & \omega^{5\cdot6} & \omega^{5\cdot7} \\ 1 & \omega^6 & \omega^{6\cdot2} & \omega^{6\cdot3} & \omega^{6\cdot4} & \omega^{6\cdot5} & \omega^{6\cdot6} & \omega^{6\cdot7} \\ 1 & \omega^7 & \omega^{7\cdot2} & \omega^{7\cdot3} & \omega^{7\cdot4} & \omega^{7\cdot5} & \omega^{7\cdot6} & \omega^{7\cdot7} \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \\ a_6 \\ a_7 \end{bmatrix}$$

(where $\omega = e^{\frac{2\pi i}{8}}$ is nth primative root of unity)

$$\begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \\ a_6 \\ a_7 \end{bmatrix} = a_0|000\rangle + a_1|001\rangle + a_2|010\rangle + a_3|011\rangle + a_4|100\rangle + a_5|101\rangle + a_6|110\rangle + a_7|111\rangle$$

$$= \sum_{x \in \{0,1\}^3} a_x |x\rangle \xrightarrow{\text{Fourier Transform}} \frac{1}{\sqrt{8}} \sum_{x \in \{0,1\}^3} b_x |x\rangle$$

$$\text{where } b_x = \sum_{y \in \{0,1\}^3} a_y \omega^{xy} |y\rangle$$

Quantum Fourier Transform (3 qubits)

Given quantum state:
$$\sum_{x \in \{0,1\}^3} \alpha_x |x\rangle$$
$$= \alpha_0 |000\rangle + \alpha_1 |001\rangle + \alpha_2 |010\rangle + \alpha_3 |011\rangle + \alpha_4 |100\rangle + \alpha_5 |101\rangle + \alpha_6 |110\rangle + \alpha_7 |111\rangle$$
 QFT

$$\sum_{x \in \{0,1\}^3} \beta_x |x\rangle \text{ where } \beta_x = \sum_{y \in \{0,1\}^3} \alpha_y \omega^{xy} |y\rangle$$

So pretty much the same, except...

Upside

Classical Fourier Transform (8-dimensions)

For a given vector \vec{a} compute:

$$\frac{1}{\sqrt{8}}\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & \omega & \omega^2 & \omega^3 & \omega^4 & \omega^5 & \omega^6 & \omega^7 \\ 1 & \omega^2 & \omega^{2\cdot2} & \omega^{2\cdot3} & \omega^{2\cdot4} & \omega^{2\cdot5} & \omega^{2\cdot6} & \omega^{2\cdot7} \\ 1 & \omega^3 & \omega^{3\cdot2} & \omega^{3\cdot3} & \omega^{3\cdot4} & \omega^{3\cdot5} & \omega^{3\cdot6} & \omega^{3\cdot7} \\ 1 & \omega^4 & \omega^{4\cdot2} & \omega^{4\cdot3} & \omega^{4\cdot4} & \omega^{4\cdot5} & \omega^{4\cdot6} & \omega^{4\cdot7} \\ 1 & \omega^5 & \omega^{5\cdot2} & \omega^{5\cdot3} & \omega^{5\cdot4} & \omega^{5\cdot5} & \omega^{5\cdot6} & \omega^{5\cdot7} \\ 1 & \omega^6 & \omega^{6\cdot2} & \omega^{6\cdot3} & \omega^{6\cdot4} & \omega^{6\cdot5} & \omega^{6\cdot6} & \omega^{6\cdot7} \\ 1 & \omega^7 & \omega^{7\cdot2} & \omega^{7\cdot3} & \omega^{7\cdot4} & \omega^{7\cdot5} & \omega^{7\cdot6} & \omega^{7\cdot7} \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \\ a_6 \\ a_7 \end{bmatrix}$$

(where $\omega = e^{\frac{2\pi i}{8}}$ is nth primative root of unity)

$\begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \\ a_6 \\ a_7 \end{bmatrix} = a_0|000\rangle + a_1|001\rangle + a_2|010\rangle + a_3|011\rangle + a_4|100\rangle + a_5|101\rangle + a_6|110\rangle + a_7|111\rangle$ $= \sum_{x \in \{0,1\}^3} a_x |x\rangle \xrightarrow{\text{Fourier Transform}} \frac{1}{\sqrt{8}} \sum_{x \in \{0,1\}^3} b_x |x\rangle$ where $b_x = \sum_{y \in \{0,1\}^3} a_y \omega^{xy} |y\rangle$

Quantum Fourier Transform (3 qubits)

Given quantum state:
$$\sum_{x \in \{0,1\}^3} \alpha_x |x\rangle$$

$$= \alpha_0 |000\rangle + \alpha_1 |001\rangle + \alpha_2 |010\rangle + \alpha_3 |011\rangle + \alpha_4 |100\rangle + \alpha_5 |101\rangle + \alpha_6 |110\rangle + \alpha_7 |111\rangle$$

$$\bigvee_{x \in \{0,1\}^3} \beta_x |x\rangle \text{ where } \beta_x = \sum_{y \in \{0,1\}^3} \alpha_y \omega^{xy} |y\rangle$$

So pretty much the same, except...

Upside

FT matrix is unitary and can be implemented using $O(\log^2 N)$ quantum gates.

Classical Fourier Transform (8-dimensions)

For a given vector \vec{a} compute:

$$\frac{1}{\sqrt{8}} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & \omega & \omega^2 & \omega^3 & \omega^4 & \omega^5 & \omega^6 & \omega^7 \\ 1 & \omega^2 & \omega^{2\cdot2} & \omega^{2\cdot3} & \omega^{2\cdot4} & \omega^{2\cdot5} & \omega^{2\cdot6} & \omega^{2\cdot7} \\ 1 & \omega^3 & \omega^{3\cdot2} & \omega^{3\cdot3} & \omega^{3\cdot4} & \omega^{3\cdot5} & \omega^{3\cdot6} & \omega^{3\cdot7} \\ 1 & \omega^4 & \omega^{4\cdot2} & \omega^{4\cdot3} & \omega^{4\cdot4} & \omega^{4\cdot5} & \omega^{4\cdot6} & \omega^{4\cdot7} \\ 1 & \omega^5 & \omega^{5\cdot2} & \omega^{5\cdot3} & \omega^{5\cdot4} & \omega^{5\cdot5} & \omega^{5\cdot6} & \omega^{5\cdot7} \\ 1 & \omega^6 & \omega^{6\cdot2} & \omega^{6\cdot3} & \omega^{6\cdot4} & \omega^{6\cdot5} & \omega^{6\cdot6} & \omega^{6\cdot7} \\ 1 & \omega^7 & \omega^{7\cdot2} & \omega^{7\cdot3} & \omega^{7\cdot4} & \omega^{7\cdot5} & \omega^{7\cdot6} & \omega^{7\cdot7} \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \\ a_6 \\ a_7 \end{bmatrix}$$

(where $\omega = e^{\frac{2\pi i}{8}}$ is nth primative root of unity)

$$\begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \\ a_6 \\ a_7 \end{bmatrix} = a_0|000\rangle + a_1|001\rangle + a_2|010\rangle + a_3|011\rangle + a_4|100\rangle + a_5|101\rangle + a_6|110\rangle + a_7|111\rangle$$

$$= \sum_{x \in \{0,1\}^3} a_x |x\rangle \xrightarrow{\text{Fourier Transform}} \frac{1}{\sqrt{8}} \sum_{x \in \{0,1\}^3} b_x |x\rangle$$
 where $b_x = \sum_{y \in \{0,1\}^3} a_y \omega^{xy} |y\rangle$

Quantum Fourier Transform (3 qubits)

Given quantum state:
$$\sum_{x \in \{0,1\}^3} \alpha_x |x\rangle$$
$$= \alpha_0 |000\rangle + \alpha_1 |001\rangle + \alpha_2 |010\rangle + \alpha_3 |011\rangle + \alpha_4 |100\rangle + \alpha_5 |101\rangle + \alpha_6 |110\rangle + \alpha_7 |111\rangle$$

$$\sum_{x \in \{0,1\}^3} \beta_x |x\rangle \text{ where } \beta_x = \sum_{y \in \{0,1\}^3} \alpha_y \omega^{xy} |y\rangle$$

So pretty much the same, except...

Upside

FT matrix is unitary and can be implemented using $O(\log^2 N)$ quantum gates.

$$n \text{ qubits } \rightarrow 2^n = N \rightarrow \log^2 N = O(n^2)$$
 ...poly-time in number of qubits!

Classical Fourier Transform (8-dimensions)

For a given vector \vec{a} compute:

$$\frac{1}{\sqrt{8}}\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & \omega & \omega^2 & \omega^3 & \omega^4 & \omega^5 & \omega^6 & \omega^7 \\ 1 & \omega^2 & \omega^{2\cdot2} & \omega^{2\cdot3} & \omega^{2\cdot4} & \omega^{2\cdot5} & \omega^{2\cdot6} & \omega^{2\cdot7} \\ 1 & \omega^3 & \omega^{3\cdot2} & \omega^{3\cdot3} & \omega^{3\cdot4} & \omega^{3\cdot5} & \omega^{3\cdot6} & \omega^{3\cdot7} \\ 1 & \omega^4 & \omega^{4\cdot2} & \omega^{4\cdot3} & \omega^{4\cdot4} & \omega^{4\cdot5} & \omega^{4\cdot6} & \omega^{4\cdot7} \\ 1 & \omega^5 & \omega^{5\cdot2} & \omega^{5\cdot3} & \omega^{5\cdot4} & \omega^{5\cdot5} & \omega^{5\cdot6} & \omega^{5\cdot7} \\ 1 & \omega^6 & \omega^{6\cdot2} & \omega^{6\cdot3} & \omega^{6\cdot4} & \omega^{6\cdot5} & \omega^{6\cdot6} & \omega^{6\cdot7} \\ 1 & \omega^7 & \omega^{7\cdot2} & \omega^{7\cdot3} & \omega^{7\cdot4} & \omega^{7\cdot5} & \omega^{7\cdot6} & \omega^{7\cdot7} \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \\ a_6 \\ a_7 \end{bmatrix}$$

(where $\omega = e^{\frac{2\pi i}{8}}$ is nth primative root of unity)

$$\begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \\ a_6 \\ a_7 \end{bmatrix} = a_0|000\rangle + a_1|001\rangle + a_2|010\rangle + a_3|011\rangle + a_4|100\rangle + a_5|101\rangle + a_6|110\rangle + a_7|111\rangle$$

$$= \sum_{x \in \{0,1\}^3} a_x |x\rangle \xrightarrow{\text{Fourier Transform}} \frac{1}{\sqrt{8}} \sum_{x \in \{0,1\}^3} b_x |x\rangle$$

$$\text{where } b_x = \sum_{y \in \{0,1\}^3} a_y \omega^{xy} |y\rangle$$

Quantum Fourier Transform (3 qubits)

Given quantum state:
$$\sum_{x \in \{0,1\}^3} \alpha_x |x\rangle$$

$$= \alpha_0|000\rangle + \alpha_1|001\rangle + \alpha_2|010\rangle + \alpha_3|011\rangle + \alpha_4|100\rangle + \alpha_5|101\rangle + \alpha_6|110\rangle + \alpha_7|111\rangle$$

$$\sum_{x \in \{0,1\}^3} \beta_x |x\rangle \text{ where } \beta_x = \sum_{y \in \{0,1\}^3} \alpha_y \omega^{xy} |y\rangle$$

So pretty much the same, except...

Upside

FT matrix is unitary and can be implemented using $O(\log^2 N)$ quantum gates.

$$n ext{ qubits } o 2^n = N o \log^2 N = O(n^2) ext{ ...poly-time in number of qubits!}$$
 whereas run time of classical FFT: $O(N \log N) o O(2^n \cdot n)$

Classical Fourier Transform (8-dimensions)

For a given vector \vec{a} compute:

$$\frac{1}{\sqrt{8}} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & \omega & \omega^2 & \omega^3 & \omega^4 & \omega^5 & \omega^6 & \omega^7 \\ 1 & \omega^2 & \omega^{2\cdot2} & \omega^{2\cdot3} & \omega^{2\cdot4} & \omega^{2\cdot5} & \omega^{2\cdot6} & \omega^{2\cdot7} \\ 1 & \omega^3 & \omega^{3\cdot2} & \omega^{3\cdot3} & \omega^{3\cdot4} & \omega^{3\cdot5} & \omega^{3\cdot6} & \omega^{3\cdot7} \\ 1 & \omega^4 & \omega^{4\cdot2} & \omega^{4\cdot3} & \omega^{4\cdot4} & \omega^{4\cdot5} & \omega^{4\cdot6} & \omega^{4\cdot7} \\ 1 & \omega^5 & \omega^{5\cdot2} & \omega^{5\cdot3} & \omega^{5\cdot4} & \omega^{5\cdot5} & \omega^{5\cdot6} & \omega^{5\cdot7} \\ 1 & \omega^6 & \omega^{6\cdot2} & \omega^{6\cdot3} & \omega^{6\cdot4} & \omega^{6\cdot5} & \omega^{6\cdot6} & \omega^{6\cdot7} \\ 1 & \omega^7 & \omega^{7\cdot2} & \omega^{7\cdot3} & \omega^{7\cdot4} & \omega^{7\cdot5} & \omega^{7\cdot6} & \omega^{7\cdot7} \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \\ a_6 \\ a_7 \end{bmatrix}$$

(where $\omega = e^{\frac{2\pi i}{8}}$ is nth primative root of unity)

$$\begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \\ a_6 \\ a_7 \end{bmatrix} = a_0|000\rangle + a_1|001\rangle + a_2|010\rangle + a_3|011\rangle + a_4|100\rangle + a_5|101\rangle + a_6|110\rangle + a_7|111\rangle$$

$$= \sum_{x \in \{0,1\}^3} a_x |x\rangle \xrightarrow{\text{Fourier Transform}} \frac{1}{\sqrt{8}} \sum_{x \in \{0,1\}^3} b_x |x\rangle$$
 where $b_x = \sum_{y \in \{0,1\}^3} a_y \omega^{xy} |y\rangle$

Quantum Fourier Transform (3 qubits)

Given quantum state:
$$\sum_{x \in \{0,1\}^3} \alpha_x |x\rangle$$

$$= \alpha_0|000\rangle + \alpha_1|001\rangle + \alpha_2|010\rangle + \alpha_3|011\rangle + \alpha_4|100\rangle + \alpha_5|101\rangle + \alpha_6|110\rangle + \alpha_7|111\rangle$$

$$\sum_{x \in \{0,1\}^3} \beta_x |x\rangle \text{ where } \beta_x = \sum_{y \in \{0,1\}^3} \alpha_y \omega^{xy} |y\rangle$$

So pretty much the same, except...

Upside

FT matrix is unitary and can be implemented using $O(\log^2 N)$ quantum gates.

$$n ext{ qubits } o 2^n = N o \log^2 N = O(n^2) ext{ ...poly-time in number of qubits!}$$
 whereas run time of classical FFT: $O(N \log N) o O(2^n \cdot n)$

- Can't actually see the FT vector it's "hidden" in amplitudes!
- Can only measure one outcome (why QFT is sometimes called *Fourier sampling*)

Goal: compute multiplication

$$\frac{1}{\sqrt{8}} \begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & \omega & \omega^2 & \omega^3 & \omega^4 & \omega^5 & \omega^6 & \omega^7 \\
1 & \omega^2 & \omega^{2\cdot2} & \omega^{2\cdot3} & \omega^{2\cdot4} & \omega^{2\cdot5} & \omega^{2\cdot6} & \omega^{2\cdot7} \\
1 & \omega^3 & \omega^{3\cdot2} & \omega^{3\cdot3} & \omega^{3\cdot4} & \omega^{3\cdot5} & \omega^{3\cdot6} & \omega^{3\cdot7} \\
1 & \omega^4 & \omega^{4\cdot2} & \omega^{4\cdot3} & \omega^{4\cdot4} & \omega^{4\cdot5} & \omega^{4\cdot6} & \omega^{4\cdot7} \\
1 & \omega^5 & \omega^{5\cdot2} & \omega^{5\cdot3} & \omega^{5\cdot4} & \omega^{5\cdot5} & \omega^{5\cdot6} & \omega^{5\cdot7} \\
1 & \omega^6 & \omega^{6\cdot2} & \omega^{6\cdot3} & \omega^{6\cdot4} & \omega^{6\cdot5} & \omega^{6\cdot6} & \omega^{6\cdot7} \\
1 & \omega^7 & \omega^{7\cdot2} & \omega^{7\cdot3} & \omega^{7\cdot4} & \omega^{7\cdot5} & \omega^{7\cdot6} & \omega^{7\cdot7}
\end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \\ a_6 \\ a_7 \end{bmatrix}$$

```
Figure 2.7 The fast Fourier transform (polynomial formulation) \frac{\text{function FFT}}{\text{function FFT}}(A,\omega) Input: Coefficient representation of a polynomial A(x) of degree \leq n-1, where n is a power of 2 \omega, an nth root of unity Output: Value representation A(\omega^0),\ldots,A(\omega^{n-1}) if \omega=1: return A(1) express A(x) in the form A_e(x^2)+xA_o(x^2) call FFT (A_e,\omega^2) to evaluate A_e at even powers of \omega call FFT (A_o,\omega^2) to evaluate A_o at even powers of \omega for j=0 to n-1: compute A(\omega^j)=A_e(\omega^{2j})+\omega^jA_o(\omega^{2j}) return A(\omega^0),\ldots,A(\omega^{n-1})
```

Goal: compute multiplication


```
Figure 2.7 The fast Fourier transform (polynomial formulation) \frac{\text{function FFT}}{\text{function FFT}}(A,\omega) Input: Coefficient representation of a polynomial A(x) of degree \leq n-1, where n is a power of 2 \omega, an nth root of unity Output: Value representation A(\omega^0),\ldots,A(\omega^{n-1}) if \omega=1: return A(1) express A(x) in the form A_e(x^2)+xA_o(x^2) call FFT (A_e,\omega^2) to evaluate A_e at even powers of \omega call FFT (A_o,\omega^2) to evaluate A_o at even powers of \omega for j=0 to n-1: compute A(\omega^j)=A_e(\omega^{2j})+\omega^jA_o(\omega^{2j}) return A(\omega^0),\ldots,A(\omega^{n-1})
```

Goal: compute multiplication

Γ1	1	1	1	1	1	1	$ \begin{array}{c} 1\\ \omega^7\\ \omega^{2\cdot7}\\ \omega^{3\cdot7}\\ \omega^{4\cdot7} \end{array} $	$\lceil a_0 \rceil$
1	ω^2	ω^4	ω^6 $\omega^{2\cdot 6}$	ω^1	ω^3	ω^5	ω^{7} $\omega^{2\cdot7}$ $\omega^{3\cdot7}$ $\omega^{4\cdot7}$ $\omega^{5\cdot7}$ $\omega^{6\cdot7}$ $\omega^{7\cdot7}$	$ a_2 $
1	$\omega^{2\cdot 2}$	$\omega^{2\cdot 4}$	$\omega^{2\cdot 6}$	ω^2	$\omega^{2\cdot 3}$	$\omega^{2\cdot 5}$	$\omega^{2\cdot7}$	$ a_4 $
1	$\omega^{3\cdot 2}$	$\omega^{3\cdot 4}$	$\omega^{3\cdot 6}$	ω^3	$\omega^{3\cdot 3}$	$\omega^{3\cdot 5}$	$\omega^{3\cdot7}$	$ a_6 $
1	$\omega^{4\cdot 2}$	$\omega^{4\cdot 4}$	$\omega^{4\cdot6}$	ω^4	$\omega^{4\cdot 3}$	$\omega^{4\cdot 5}$	$\omega^{4\cdot7}$	a_1
1	$\omega^{5\cdot 2}$	$\omega^{5\cdot 4}$	$\omega^{5\cdot 6}$	ω^5	$\omega^{5\cdot 3}$	$\omega^{5\cdot 5}$	$\omega^{5\cdot7}$	$\begin{vmatrix} a_1 \\ a_3 \end{vmatrix}$
1	$\omega^{6\cdot 2}$	$\omega^{6\cdot 4}$	$\omega^{6\cdot 6}$	ω^6	$\omega^{6\cdot 3}$	$\omega^{6\cdot 5}$	$\omega^{6\cdot7}$	$ a_5 $
<u> </u>	$\omega^{7\cdot 2}$	$\omega^{7\cdot 4}$	$\omega^{7\cdot 6}$	ω^7	$\omega^{7\cdot 3}$	$\omega^{7\cdot 5}$	$\omega^{7\cdot7}$	$\lfloor a_7 \rfloor$

```
Figure 2.7 The fast Fourier transform (polynomial formulation) \frac{\text{function FFT}(A,\omega)}{\text{Input: Coefficient representation of a polynomial }A(x)} of degree \leq n-1, where n is a power of 2 \omega, an nth root of unity Output: Value representation A(\omega^0),\ldots,A(\omega^{n-1}) if \omega=1: return A(1) express A(x) in the form A_e(x^2)+xA_o(x^2) call FFT (A_e,\omega^2) to evaluate A_e at even powers of \omega call FFT (A_o,\omega^2) to evaluate A_o at even powers of \omega for j=0 to n-1: compute A(\omega^j)=A_e(\omega^{2j})+\omega^jA_o(\omega^{2j}) return A(\omega^0),\ldots,A(\omega^{n-1})
```

Goal: compute multiplication

Γ1	1	1	1	1	1	1	1	$\begin{bmatrix} a_0 \\ a_2 \\ a_4 \\ a_6 \end{bmatrix}$
1	ω^2	ω^4	$\omega^6 \ \omega^{2\cdot 6}$	ω^1	ω^3	ω^5	ω^7	$ a_2 $
1	$\omega^{2\cdot 2}$	$\omega^{2\cdot 4}$	$\omega^{2\cdot 6}$	ω^2	$\omega^{2\cdot 3}$	$\omega^{2\cdot 5}$	$\omega^{2\cdot7}$	$ a_4 $
1	$\omega^{3\cdot 2}$	$\omega^{3\cdot 4}$	$\omega^{3\cdot 6}$	ω^3	$\omega^{3\cdot 3}$	$\omega^{3\cdot5}$	$\omega^{3\cdot7}$	$ a_6 $
$\parallel 1$	$\omega^{4\cdot 2}$	$\omega^{4\cdot 4}$	$\omega^{4\cdot 6}$	ω^4	$\omega^{4\cdot 3}$	$\omega^{4\cdot 5}$	$\omega^{4\cdot7}$	a_1
1	$\omega^{5\cdot 2}$	$\omega^{5\cdot 4}$	$\omega^{5\cdot 6}$	ω^5	$\omega^{5\cdot 3}$	$\omega^{5\cdot 5}$	$\omega^{5\cdot7}$ [$ a_3 $
$\parallel 1$	$\omega^{6\cdot 2}$	$\omega^{\mathbf{6\cdot4}}$	$\omega^{6\cdot 6}$	ω^{o}	$\omega^{\mathbf{o}\cdot\mathbf{s}}$	$\omega^{\mathbf{o} \cdot \mathbf{o}}$	$\omega^{6\cdot7}$	a_5
$\lfloor 1$	$\omega^{7\cdot 2}$	$\omega^{7\cdot 4}$	$\omega^{7\cdot 6}$	ω^7	$\omega^{7\cdot 3}$	$\omega^{7\cdot 5}$	$\omega^{7\cdot7}$	$\lfloor a_7 \rfloor$

```
Figure 2.7 The fast Fourier transform (polynomial formulation) \frac{\text{function FFT}(A,\omega)}{\text{Input: Coefficient representation of a polynomial }A(x)} of degree \leq n-1, where n is a power of 2 \omega, an nth root of unity Output: Value representation A(\omega^0),\ldots,A(\omega^{n-1}) if \omega=1: return A(1) express A(x) in the form A_e(x^2)+xA_o(x^2) call FFT (A_e,\omega^2) to evaluate A_e at even powers of \omega call FFT (A_o,\omega^2) to evaluate A_o at even powers of \omega for j=0 to n-1: compute A(\omega^j)=A_e(\omega^{2j})+\omega^jA_o(\omega^{2j}) return A(\omega^0),\ldots,A(\omega^{n-1})
```

Goal: compute multiplication


```
Figure 2.7 The fast Fourier transform (polynomial formulation) \frac{\text{function FFT}}{\text{function FFT}}(A,\omega) Input: Coefficient representation of a polynomial A(x) of degree \leq n-1, where n is a power of 2 \omega, an nth root of unity Output: Value representation A(\omega^0),\ldots,A(\omega^{n-1}) if \omega=1: return A(1) express A(x) in the form A_e(x^2)+xA_o(x^2) call FFT (A_e,\omega^2) to evaluate A_e at even powers of \omega call FFT (A_o,\omega^2) to evaluate A_o at even powers of \omega for j=0 to n-1: compute A(\omega^j)=A_e(\omega^{2j})+\omega^jA_o(\omega^{2j}) return A(\omega^0),\ldots,A(\omega^{n-1})
```


(Figures courtesy Dasgupta, Papadimitriou, and Vazirani 2006)

 $M_n = n$ dimensional Fourier transform

(Figures courtesy Dasgupta, Papadimitriou, and Vazirani 2006)

 $M_n = n$ dimensional Fourier transform

(Figures courtesy Dasgupta, Papadimitriou, and Vazirani 2006)

 $M_n = n$ dimensional Fourier transform


```
Figure 2.9 The fast Fourier transform
function FFT (a, \omega)
Input: An array a=(a_0,a_1,\ldots,a_{n-1}), for n a power of 2
              A primitive nth root of unity, \omega
Output: M_n(\omega) a
if \omega = 1: return a
(s_0, s_1, \dots, s_{n/2-1}) = \text{FFT}((a_0, a_2, \dots, a_{n-2}), \omega^2)

(s'_0, s'_1, \dots, s'_{n/2-1}) = \text{FFT}((a_1, a_3, \dots, a_{n-1}), \omega^2)
for j = 0 to n/2 - 1:
   r_{j+n/2} = s_j - \omega^j s_j'
return (r_0, r_1, \ldots, r_{n-1})
```



```
Figure 2.9 The fast Fourier transform
function FFT (a, \omega)
Input: An array a=(a_0,a_1,\ldots,a_{n-1}), for n a power of 2
              A primitive nth root of unity, \omega
Output: M_n(\omega) a
if \omega = 1: return a
(s_0, s_1, \dots, s_{n/2-1}) = \text{FFT}((a_0, a_2, \dots, a_{n-2}), \omega^2)

(s'_0, s'_1, \dots, s'_{n/2-1}) = \text{FFT}((a_1, a_3, \dots, a_{n-1}), \omega^2)
for j=0 to n/2-1:
   r_{j+n/2} = s_j - \omega^j s_j'
return (r_0, r_1, \ldots, r_{n-1})
```



```
Figure 2.9 The fast Fourier transform
function FFT (a,\omega)
Input: An array a=(a_0,a_1,\ldots,a_{n-1}), for n a power of 2
             A primitive nth root of unity, \omega
Output: M_n(\omega) a
if \omega=1: return a
(s_0, s_1, \dots, s_{n/2-1}) = \text{FFT}((a_0, a_2, \dots, a_{n-2}), \omega^2)

(s'_0, s'_1, \dots, s'_{n/2-1}) = \text{FFT}((a_1, a_3, \dots, a_{n-1}), \omega^2)
for j=0 to n/2-1:
   r_{j+n/2} = s_j - \omega^j s_j'
return (r_0, r_1, \ldots, r_{n-1})
```



```
Figure 2.9 The fast Fourier transform
function FFT (a,\omega)
Input: An array a=(a_0,a_1,\ldots,a_{n-1}), for n a power of 2
             A primitive nth root of unity, \omega
Output: M_n(\omega) a
if \omega = 1: return a
(s_0, s_1, \dots, s_{n/2-1}) = \text{FFT}((a_0, a_2, \dots, a_{n-2}), \omega^2)

(s'_0, s'_1, \dots, s'_{n/2-1}) = \text{FFT}((a_1, a_3, \dots, a_{n-1}), \omega^2)
for j=0 to n/2-1:
   r_{j+n/2} = s_j - \omega^j s_j'
return (r_0, r_1, \ldots, r_{n-1})
```


Classical Algorithm

