Properties of Regular Languages

For regular languages L_1 and L_2 we will prove that:

Union: $L_1 \cup L_2$

Concatenation: L_1L_2

Star: $L_1 *$

Reversal: L_1^R

Complement: L_1

Intersection: $L_1 \cap L_2$

Are regular Languages

We say: Regular languages are closed under

Union: $L_1 \cup L_2$

Concatenation: L_1L_2

Star: L_1*

Reversal: L_1^R

Complement: $\overline{L_1}$

Intersection: $L_1 \cap L_2$

A useful transformation: use one accept state

In General

NFA

Equivalent NFA

Single accepting state

Extreme case

NFA without accepting state

Add an accepting state without transitions

Take two languages

Regular language L_1

Regular language $\,L_2\,$

$$L(M_1) = L_1$$

$$L(M_2) = L_2$$

NFA M₂

Single accepting state

Single accepting state

$$L_2 = \{ba\} \qquad \begin{array}{c} M_2 \\ \\ b \\ \end{array}$$

Union

NFA for $L_1 \cup L_2$

NFA for
$$L_1 \cup L_2 = \{a^n b\} \cup \{ba\}$$

Concatenation

NFA for L_1L_2

NFA for
$$L_1L_2 = \{a^nb\}\{ba\} = \{a^nbba\}$$

$$L_{1} = \{a^{n}b\}$$

$$L_{2} = \{ba\}$$

$$\lambda \qquad b \qquad a$$

Star Operation

NFA for L_1* $w=w_1w_2\cdots w_k$

NFA for
$$L_1^* = \{a^n b\}^*$$

Reverse

NFA for L_1^R

- 1. Reverse all transitions
- 2. Make initial state accepting state and vice versa

Complement

- 1. Take the DFA that accepts L_1
- 2. Make accepting states non-final, and vice-versa

$$\overline{L_1} = \{a,b\} * -\{a^n b\}$$

$$a \xrightarrow{a,b}$$

$$a \xrightarrow{a,b}$$

Intersection

DeMorgan's Law: $L_1 \cap L_2 = \overline{L_1} \cup \overline{L_2}$

$$L_1$$
, L_2 regular $\overline{L_1}$, $\overline{L_2}$ regular $\overline{L_1} \cup \overline{L_2}$ regular $\overline{L_1} \cup \overline{L_2}$ regular $\overline{L_1} \cup \overline{L_2}$ regular regular $\overline{L_1} \cap L_2$ regular

$$L_1 = \{a^nb\} \quad \text{regular} \\ L_1 \cap L_2 = \{ab\} \\ L_2 = \{ab,ba\} \quad \text{regular} \\ \\ \text{regular}$$

Another Proof for Intersection Closure

Machine M_1

DFA for L_1

Machine M_2

DFA for L_2

Construct a new DFA M that accepts $L_1 \cap L_2$

M simulates in parallel $M_{\,1}$ and $M_{\,2}$

States in M

Both constituents must be accepting states

$$L_{1} = \{a^{n}b\}$$

$$M_{1}$$

$$a$$

$$b$$

$$q_{0}$$

$$a,b$$

$$L_2 = \{ab^m\}$$

Automaton for intersection

$$L = \{a^n b\} \cap \{ab^n\} = \{ab\}$$

$\,M\,$ simulates in parallel $\,M_{\,1}\,$ and $\,M_{\,2}\,$

$$L(M) = L(M_1) \cap L(M_2)$$