Probability and Statistics (MA6.101)

Monsoon 2021, IIIT Hyderabad 05 November, Friday (Lecture 19)

Taught by Prof. Pawan Kumar

Probability

Distributions (contd.)

Standard Gaussian Distribution

This distribution is also known as the standard normal distribution. A CRV Zis said to be a standard Guassian random variable $(Z \sim N(0,1))$ if its PDF is given by

$$f_Z(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}}, z \in \mathbb{R}.$$

The Central Limit Theorem states (roughly) that if we add a large number of random variables, the distirbution of the sum is normal.

We can check that E[Z] = 0, as the integral is of an odd function. Also, Var(Z) = 1.

The CDF of the standard Gaussian distribution is denoted by Φ , and defined as

$$\Phi(x) = P(Z \le x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{u^2}{2}} du$$

This integral does not have a closed solution, but values of it have been tabulated. The CDF of any normal distribution can be written in terms of Φ .

Some properties of this function are:

- $\begin{array}{ll} \bullet & \lim_{x\to\infty}\Phi(x)=1, \lim_{x\to-\infty}\Phi(x)=0.\\ \bullet & \Phi(0)=\frac{1}{2}\\ \bullet & \Phi(-x)=1-\Phi(x) \end{array}$

Further, for all $x \ge 0$, it satisfies the following bound:

$$\frac{1}{\sqrt{2\pi}}\frac{x}{x^2+1}e^{\frac{-x^2}{2}} \leq 1 - \Phi(x) \leq \frac{1}{\sqrt{2\pi}}\frac{1}{x}e^{\frac{-x^2}{2}}.$$

We can prove this in the following way.

$$1 - \Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{x}^{\infty} e^{-\frac{u^{2}}{2}}$$

$$\leq \frac{1}{\sqrt{2\pi}} \int_{x}^{\infty} \frac{u}{x} e^{-\frac{u^{2}}{2}} du \text{ [as } u \geq x \text{]}$$

$$= \frac{1}{x\sqrt{2\pi}} \int_{x}^{\infty} e^{-\frac{u^{2}}{2}} d\left(\frac{u^{2}}{2}\right)$$

$$= \frac{1}{x\sqrt{2\pi}} \left[-e^{-\frac{u^{2}}{2}}\right]_{x}^{\infty}$$

$$= \frac{1}{\sqrt{2\pi}} \frac{1}{x} e^{-\frac{x^{2}}{2}}.$$

General Gaussian Distribution

The general Gaussian distribution is obtained from the standard Gaussian by shifting and scaling. If $X = \sigma Z + \mu$, where $\sigma > 0$, then $X \sim N(\mu, \sigma^2)$.

We can see that $E[X] = \sigma E[Z] + \mu$, which is μ , and $Var(X) = \sigma^2 Var(Z)$, which is σ^2 .

Conversely, if $X \sim N(\mu, \sigma^2)$, then $Z = \frac{X-\mu}{\sigma} \sim N(0, 1)$.

The CDF of X is given by

$$\begin{split} F_X(x) &= P(X \leq x) = P(\sigma Z + \mu \leq x) \\ &= P\left(Z \leq \frac{x - \mu}{\sigma}\right) \\ &= \Phi\left(\frac{x - \mu}{\sigma}\right). \end{split}$$

We can then easily find the PDF of X as

$$\begin{split} f_X(x) &= \frac{d}{dx} F_X(x) = \frac{d}{dx} \Phi\left(\frac{x-\mu}{\sigma}\right) \\ &= \frac{1}{\sigma} \Phi'\left(\frac{x-\mu}{\sigma}\right) = \frac{1}{\sigma} f_Z\left(\frac{x-\mu}{\sigma}\right) \\ &= \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}. \end{split}$$

Thus, if X is a normal RV with mean μ and variance σ^2 , then $X \sim N(\mu, \sigma^2)$.

We can see, then, that a linear transformation of a Gaussian RV is another Gaussian RV. More concretely, if $X \sim N(\mu_X, \sigma_X^2)$ and Y = aX + b, then $Y \sim N(a\mu_X + b, a^2\sigma_X^2)$.

Gamma Distribution

The gamma function $\Gamma(x)$ is an extension of the factorial function to real numbers.