DEVOIR MAISON GÉNÉRATION ALÉATOIRE UNIFORME – NUMÉRO 4

Le but de ce devoir est d'étudier et de programmer un générateur uniforme pour les arbres hexabinaires.

Un arbre plan est dit *hexabinaire* si tout nœud de l'arbre a 0 enfant (ce qui s'appelle une feuille) ou 2 enfants ou 6 enfants. On définit ici la taille d'un arbre hexabinaire comme le nombre de nœuds internes (i.e. nœuds différents d'une feuille).

Partie théorique

Les parties suivantes seront à rendre soit sur un pdf, soit sur copie papier.

Question 1. Combien y a-t-il d'arbres hexabinaires de taille 2?

Question 2. Décrire une spécification combinatoire pour les arbres hexabinaires. En déduire une équation satisfaite par leur série génératrice.

On considère \mathcal{C} la classe combinatoire des chemins commençant en (0,0), restant à une altitude positive, terminant sur l'axe des abscisses (altitude 0), et utilisant des pas montants (+5,+1), (+1,+1) et des pas descendants (-1,+1). La taille d'un élément de \mathcal{C} est son nombre de pas montants.

Question 3. Montrer que \mathcal{C} et les arbres hexabinaires sont comptés par les mêmes nombres. Pour cela, on pourra soit chercher une bijection entre les deux classes combinatoires, soit montrer que \mathcal{C} satisfait la même spécification combinatoire que les arbres hexabinaires. (La méthode est selon votre préférence.)

Question 4. Pouvez-vous trouver une formule close pour le nombre d'arbres hexabinaires de taille n?

PARTIE PRATIQUE

On déposera sur ecampus un programme python répondant aux questions suivantes.

Question 5. Définir une classe pour les arbres hexabinaires.

Question 6. Écrire un algorithme de génération uniforme pour les arbres hexabinaires. En plus de la taille, vous pouvez choisir de mettre comme paramètre supplémentaire le nombre de feuilles.

Question 7. Écrire un générateur de Boltzmann pour les arbres hexabinaires. (Ne pas oublier de préciser la valeur maximale du paramètre.)