Lecture 10: Applications of Group Theory, Part II

Filipp Furche

Chem 150/250 Fall 2023

10/20/2022

http://ffgroup.chem.uci.edu

Conservation Laws

A system "has a symmetry" associated with $\mathcal G$ iff the Hamiltonian is totally symmetric under all symmetry operations, i.e.,

$$\hat{P}(a)\hat{H}\hat{P}^{-1}(a) = \hat{H} \quad \forall a \in \mathcal{G}$$

or equivalently $[\hat{H}, \hat{P}(a)] = 0$.

As a consequence, the eigenstates of \hat{H} transform according to IRREPs of \mathcal{G} . This is closely related to Noether's theorem, "symmetries induce conservation laws".

Symmetries and Conservation Laws

Examples:

- Rotational (SO(3)) symmetry: Angular momentum conservation.
 IRREPs are 2l + 1-dimensional, spanned by integer spherical harmonics
- Spin rotation (SU(2)) symmetry: Total spin conservation. IRREPs are 2l+1-dimensional, spanned by integer or half integer spherical harmonics
- Translation symmetry: Momentum conservation. IRREPs are spanned by reciprocal lattice vectors
- Parity: Inversion symmetry. IRREPs are even (g) and odd (u)
- ullet Point group symmetry: All molecular eigenstates (orbitals, vibrations, etc.) transform according to an IRREP of ${\cal G}$

Matrix Elements

Necessary condition for a matrix element

$$M(\alpha, \beta, \gamma) = (\psi_{\alpha} | \hat{O}_{\beta} \phi_{\gamma})$$

to be non-zero:

 $\alpha \otimes \beta \otimes \gamma \text{contains}$ the totally symmetric IRREP

Generalization: Wigner-Eckart Theorem

Examples

• Dipole moment:

$$\boldsymbol{\mu} = q(\psi_{lpha}|\hat{\mathbf{r}}\psi_{lpha})$$

Nonzero if $\alpha \otimes \Gamma_{\mathbf{r}} \otimes \alpha$ or $\Gamma_{\mathbf{r}} \otimes \alpha \otimes \alpha$ contains totally symmetric IRREP. Since $\alpha \otimes \alpha$ always contains the totally symmetric IRREP, the dipole moment is non-zero if $\Gamma_{\mathbf{r}}$ contains the totally symmetric IRREP. Applies to each component of μ .

- It follows that molecules with inversion symmetry do not have a permanent dipole moment.
- Transition dipole moment:

$$\boldsymbol{\mu}_{lphaeta} = q(\psi_{lpha}|\mathbf{\hat{r}}\chi_{eta})$$

Nonzero if $\alpha \otimes \Gamma_{\mathbf{r}} \otimes \beta$ contains the totally symmetric IRREP. Special case: Transitions from closed-shell ground states. α is totally symmetric IRREP, so the condition simplifies to $\Gamma_{\mathbf{r}} \otimes \beta$ containing the totally symmetric IRREP. Hence β must be one of the IRREPs contained in $\Gamma_{\mathbf{r}}$ ("electronically (dipole) allowed transitions")

Examples

 Optical activity / circular dichroism: The circular dichroism intensity is proportional to

$$\boldsymbol{\mu}_{\alpha\beta}\cdot\boldsymbol{m}_{\beta\alpha},$$

where

$$oldsymbol{\mu}_{lphaeta}=rac{q}{2mc}(\psi_lpha|\hat{f l}\chi_eta)$$

is the magnetic transition dipole moment. Necessary condition for scalar product of a polar and axial vector to be non-zero:

$$\Gamma_r \otimes \Gamma_I$$

must contain totally symmetric IRREP

• Stronger condition: Improper rotations (no S_n axes with n > 0) must be absent, since the scalar product $\boldsymbol{\mu}_{\alpha\beta} \cdot \boldsymbol{m}_{\beta\alpha}$ is a pseudoscalar (odd parity under improper rotation).

Examples

• IR selection rule: Electronic dipole moment derivative wrt normal mode X_{α} ,

$$\frac{\partial \boldsymbol{\mu}}{\partial X_{\alpha}}$$

is nonzero if $\Gamma_{\bf r}\otimes\alpha$ is totally symmetric, i.e., X_α changes the (permanent) dipole moment.

• Raman selection rule: Electronic polarizability derivative wrt normal mode X_{α} ,

$$rac{\partial \mathbf{P}}{\partial X_{lpha}}$$

is nonzero if $\Gamma_{\mathbf{P}}\otimes \alpha$ is totally symmetric. \mathbf{P} is second-rank symmetric tensor, so $\Gamma_{\mathbf{P}}$ contains the totally symmetric IRREP (isotropic part) plus 5 elements transforming as 5 spherical d functions. Hence totally symmetric modes are Raman active.

• Inversion symmetric molecules: X_{α} is either IR or Raman active, because IR activity implies odd symmetry whereas Raman activity implies even symmetry.