Model Deployment

Name: expense_prediction

Report date: 07/27/2022

Internship Batch: LISUM11: 30

Version: 1.0

Data intake by: Priyadarshani Kamble

Data intake reviewer: NA Data storage location:

https://bitbucket.org/pk_projects/work/src/week4/Income_Expense_Data.csv

Tabular data details:

Total number of observations	14
Total number of files	1
Total number of features	3
Base format of the file	csv
Size of the data	1KB

Note: Replicate same table with file name if you have more than one file.

Proposed Approach:

A: Create and Pickle a Machine Learning Model

I used Income_Expense dataset and created a model using LinearRegression model. This model will predict the expense of the person using income and age as input features.

Please refer to

https://bitbucket.org/pk_projects/work/src/week4/expense_prediction.ipynb

This model performs below operations:

- Step 1 Import data
 - o Explore the data
- Step 2-Data Cleaning:
 - Looks for missing values, replaces missing data with appropriate values using imputation technique.
 - Checking Outlier by definition and treating outliers
- Step 3- Exploratory data analysis

- o Check how Expense is varying with income
- o Check how Expense is varying with Age
- Check correlation matrix to check the strength of variation between two variables
- Step 4-feature engineering
 - o Normalization/scaling of data understanding scaling
 - o Converting data back to pandas dataframe
 - Separating features and response
 - o Dividing data in test and train
 - o Importing necessary packages
 - Fitting linear regression model
 - Checking accuracy on test data
 - o Predict values on test data

This creates a model that can predict the expense of person with $\sim 68\%$ accuracy.

B Model Deployment prep:

Model can then be pickled using

```
import pickle
pickle.dump(model, open('expense_prediction.pkl','wb'))
```

The pickle file can be found inside the same directory as the Jupyter notebook. https://bitbucket.org/pk_projects/work/src/week4/expense_prediction.pkl

C Write Flask App:

Using IDE or visual studio code, create a new .py file inside the working directory named app.py. which looks like the snapshot below.

The structure of the code follows:

- Load pickled model
- Name flask app
- Create a route that receives inputs through a html page, uses the trained model to make a prediction, and returns the prediction in a html format, which can be accessed through the API endpoint.

```
app.py - Expense prediction - Visual Studio Code
> .ipynb_checkpoints
> static
                                           1 import numpy as np
2 from flask import Flask, request, jsonify, render_template
3 import pickle
                              app = Flask(__name__)
    model = pickle.load(open('expense_prediction.pkl', 'rb'))

app = Flask(__name__)
    model = pickle.load(open('expense_prediction.pkl', 'rb'))

app = Flask(__name__)
    def home()
 app.py
 expense_prediction.ipynb

≡ expense_prediction.pkl

 Income_Expense_Data.csv
                                            9 def home():
                                                     return render_template('index.html')
                                                 @app.route('/predict',methods=['POST'])
 Untitled.ipynb
                                                 def predict():
 Untitled1.ipynb
                                                       int_features = [int(x) for x in request.form.values()]
                                                    final_features = [np.array(int_features)]
                                                      prediction = model.predict(final_features)
                                                      output = prediction[0]
                                                     return render_template('index.html', prediction_text='Expense = {}'.format(output))
                                                 if __name__ == "__main_ ":
                                                       app.run(debug=True)
```

The app file uses render_template function to load index.html Index.html is nothing but a user interface which accepts input variables for income and age and returns expense as output.

This template can be found in

https://bitbucket.org/pk_projects/work/src/week4/templates/index.html

app file further uses predict() function to predict the output.

D:

Once the app.py file is ready, I ran the flask app from the command line as below python app.py

I got the following message with the address:

```
ython.python-2022.14.0\pythonFiles\lib\python\debugpy\adapter/../..\debugpy\launcher' '60336' '--' 'c:\Users\priya\Expense_prediction\app.py'
* Serving Flask app 'app'
* Debug mode: on
WARNING: This is a development server. Do not use it in a production deployment. Use a production WSGI server instead.
* Running on http://127.0.0.1:5000
Press CTRL+C to quit
* Restarting with stat
* Debugger is active!
* Debugger PIN: 826-181-953
```

The app can now be tested using url http://127.0.0.1:5000

The model predicted 17711 as expense for input variables income =30000 and age =24.

Step E: Create requirements.txt

The requirements.txt file contain all the dependencies for the flask app. This can be created using below command: pip freeze > requirements.txt

The folder contains below files.

:) > Users > priya > Expense_prediction >

Name	Date modified	Туре	Size	
.git	8/27/2022 5:53 PM	File folder		
ipynb_checkpoints	8/27/2022 4:05 PM	File folder		
== static	8/27/2022 3:49 PM	File folder		
templates	8/27/2022 3:49 PM	File folder		
арр	8/27/2022 3:58 PM	PY File	1 KB	
expense_prediction	8/27/2022 3:58 PM	IPYNB File	51 KB	
expense_prediction	8/27/2022 3:58 PM	PKL File	1 KB	
Income_Expense_Data	8/27/2022 3:48 PM	Microsoft Excel Co	1 KB	
▼ README	8/27/2022 1:28 PM	Markdown Source	1 KB	
request	8/27/2022 3:48 PM	PY File	1 KB	
requirements	8/27/2022 5:51 PM	Text Document	1 KB	