Distances

Aude Genevay

DMA - Ecole Normale Supérieure - CEREMADE - Université Paris Dauphine

NYU - April 2019

Joint work with Gabriel Peyré, Marco Cuturi, Francis Bach, Lénaïc Chizat

Comparing Probability Measures

Discrete Setting

Figure 1 – Exemple of data representation as a point cloud (from Kusner '15)

Distances

- Notions of Distance between Measures
- 2 Entropic Regularization of Optimal Transport

Sinkhorn Divergences

- 4 Unsupervised Learning with Sinkhorn Divergences

φ -divergences (Czisar '63)

Definition (φ -divergence)

Let φ convex l.s.c. function such that $\varphi(1)=0$, the φ -divergence D_{φ} between two measures α and β is defined by :

$$D_{\varphi}(\alpha|\beta) \stackrel{\text{def.}}{=} \int_{\mathcal{X}} \varphi\left(\frac{\mathrm{d}\alpha(x)}{\mathrm{d}\beta(x)}\right) \mathrm{d}\beta(x).$$

Example (Kullback Leibler Divergence)

$$D_{\mathsf{KL}}(\alpha|\beta) = \int_{\mathcal{X}} \log\left(\frac{\mathrm{d}\alpha}{\mathrm{d}\beta}(x)\right) \mathrm{d}\alpha(x) \quad \leftrightarrow \quad \varphi(x) = x \log(x)$$

Definition (Weak Convergence)

Let
$$(\alpha_n)_n \in \mathcal{M}^1_+(\mathcal{X})^{\mathbb{N}}$$
, $\alpha \in \mathcal{M}^1_+(\mathcal{X})$.

The sequence α_n weakly converges to α , i.e.

$$\alpha_n \to \alpha \Leftrightarrow \int f(x) d\alpha_n(x) \to \int f(x) d\alpha(x) \, \forall f \in \mathcal{C}_b(\mathcal{X}).$$

Let $\mathcal L$ a distance between measures , $\mathcal L$ metrises weak convergence IFF $\left(\mathcal L(\alpha_n,\alpha)\to 0\Leftrightarrow \alpha_n\rightharpoonup \alpha\right)$.

Example

On
$$\mathbb{R}$$
, $\alpha = \delta_0$ and $\alpha_n = \delta_{1/n} : D_{KL}(\alpha_n | \alpha) = +\infty$.

Definition (Weak Convergence)

Let
$$(\alpha_n)_n \in \mathcal{M}^1_+(\mathcal{X})^{\mathbb{N}}$$
, $\alpha \in \mathcal{M}^1_+(\mathcal{X})$.

The sequence α_n weakly converges to α , i.e.

$$\alpha_n \to \alpha \Leftrightarrow \int f(x) d\alpha_n(x) \to \int f(x) d\alpha(x) \, \forall f \in \mathcal{C}_b(\mathcal{X}).$$

Let $\mathcal L$ a distance between measures , $\mathcal L$ metrises weak convergence IFF $\left(\mathcal L(\alpha_n,\alpha)\to 0\Leftrightarrow \alpha_n\rightharpoonup \alpha\right)$.

Example

On
$$\mathbb{R}$$
, $\alpha = \delta_0$ and $\alpha_n = \delta_{1/n} : D_{KL}(\alpha_n | \alpha) = +\infty$.

Definition (Weak Convergence)

Let
$$(\alpha_n)_n \in \mathcal{M}^1_+(\mathcal{X})^{\mathbb{N}}$$
, $\alpha \in \mathcal{M}^1_+(\mathcal{X})$.
 The sequence α_n weakly converges to α , i.e. $\alpha_n \rightharpoonup \alpha \Leftrightarrow \int f(x) \mathrm{d}\alpha_n(x) \to \int f(x) \mathrm{d}\alpha(x) \, \forall f \in \mathcal{C}_b(\mathcal{X})$.
 Let \mathcal{L} a distance between measures , \mathcal{L} metrises weak convergence $\mathsf{IFF}\Big(\mathcal{L}(\alpha_n,\alpha) \to 0 \Leftrightarrow \alpha_n \rightharpoonup \alpha\Big)$.

Example

On
$$\mathbb{R}$$
, $\alpha = \delta_0$ and $\alpha_n = \delta_{1/n} : D_{KL}(\alpha_n | \alpha) = +\infty$.

Definition (Weak Convergence)

Let
$$(\alpha_n)_n \in \mathcal{M}^1_+(\mathcal{X})^{\mathbb{N}}$$
, $\alpha \in \mathcal{M}^1_+(\mathcal{X})$.
The sequence α_n weakly converges to α , i.e. $\alpha_n \rightharpoonup \alpha \Leftrightarrow \int f(x) \mathrm{d}\alpha_n(x) \to \int f(x) \mathrm{d}\alpha(x) \, \forall f \in \mathcal{C}_b(\mathcal{X})$.

Let \mathcal{L} a distance between measures , \mathcal{L} metrises weak

convergence IFF
$$(\mathcal{L}(\alpha_n, \alpha) \to 0 \Leftrightarrow \alpha_n \rightharpoonup \alpha)$$
.

On
$$\mathbb{R}$$
, $\alpha = \delta_0$ and $\alpha_n = \delta_{1/n} : D_{KL}(\alpha_n | \alpha) = +\infty$.

Definition (Weak Convergence)

Let
$$(\alpha_n)_n \in \mathcal{M}^1_+(\mathcal{X})^{\mathbb{N}}$$
, $\alpha \in \mathcal{M}^1_+(\mathcal{X})$.
 The sequence α_n weakly converges to α , i.e. $\alpha_n \rightharpoonup \alpha \Leftrightarrow \int f(x) \mathrm{d}\alpha_n(x) \to \int f(x) \mathrm{d}\alpha(x) \, \forall f \in \mathcal{C}_b(\mathcal{X})$.
 Let \mathcal{L} a distance between measures , \mathcal{L} metrises weak

convergence IFF $(\mathcal{L}(\alpha_n, \alpha) \to 0 \Leftrightarrow \alpha_n \rightharpoonup \alpha)$.

On
$$\mathbb{R}$$
, $\alpha = \delta_0$ and $\alpha_n = \delta_{1/n} : D_{KL}(\alpha_n | \alpha) = +\infty$.

Definition (Weak Convergence)

Let
$$(\alpha_n)_n \in \mathcal{M}^1_+(\mathcal{X})^{\mathbb{N}}$$
, $\alpha \in \mathcal{M}^1_+(\mathcal{X})$.
 The sequence α_n weakly converges to α , i.e. $\alpha_n \rightharpoonup \alpha \Leftrightarrow \int f(x) \mathrm{d}\alpha_n(x) \to \int f(x) \mathrm{d}\alpha(x) \, \forall f \in \mathcal{C}_b(\mathcal{X})$.
 Let \mathcal{L} a distance between measures , \mathcal{L} metrises weak convergence $\mathsf{IFF}\Big(\mathcal{L}(\alpha_n,\alpha) \to 0 \Leftrightarrow \alpha_n \rightharpoonup \alpha\Big)$.

On
$$\mathbb{R}$$
, $\alpha = \delta_0$ and $\alpha_n = \delta_{1/n} : D_{KL}(\alpha_n | \alpha) = +\infty$.

Definition (Weak Convergence)

Let
$$(\alpha_n)_n \in \mathcal{M}^1_+(\mathcal{X})^{\mathbb{N}}$$
, $\alpha \in \mathcal{M}^1_+(\mathcal{X})$.
 The sequence α_n weakly converges to α , i.e. $\alpha_n \rightharpoonup \alpha \Leftrightarrow \int f(x) \mathrm{d}\alpha_n(x) \to \int f(x) \mathrm{d}\alpha(x) \ \forall f \in \mathcal{C}_b(\mathcal{X})$.
 Let \mathcal{L} a distance between measures , \mathcal{L} metrises weak convergence IFF $\Big(\mathcal{L}(\alpha_n,\alpha) \to 0 \Leftrightarrow \alpha_n \rightharpoonup \alpha\Big)$.

On
$$\mathbb{R}$$
, $\alpha = \delta_0$ and $\alpha_n = \delta_{1/n} : D_{KL}(\alpha_n | \alpha) = +\infty$.

Definition (Weak Convergence)

Let
$$(\alpha_n)_n \in \mathcal{M}^1_+(\mathcal{X})^{\mathbb{N}}$$
, $\alpha \in \mathcal{M}^1_+(\mathcal{X})$.

The sequence α_n weakly converges to α , i.e. $\alpha_n \rightharpoonup \alpha \Leftrightarrow \int f(x) d\alpha_n(x) \rightarrow \int f(x) d\alpha(x) \, \forall f \in C_b(\mathcal{X}).$

Let \mathcal{L} a distance between measures , \mathcal{L} metrises weak

convergence $IFF(\mathcal{L}(\alpha_n, \alpha) \to 0 \Leftrightarrow \alpha_n \rightharpoonup \alpha)$.

On
$$\mathbb{R}$$
, $\alpha = \delta_0$ and $\alpha_n = \delta_{1/n} : D_{KL}(\alpha_n | \alpha) = +\infty$.

Definition (Weak Convergence)

Let
$$(\alpha_n)_n \in \mathcal{M}^1_+(\mathcal{X})^{\mathbb{N}}$$
, $\alpha \in \mathcal{M}^1_+(\mathcal{X})$.

The sequence α_n weakly converges to α , i.e.

$$\alpha_n \rightharpoonup \alpha \Leftrightarrow \int f(x) d\alpha_n(x) \to \int f(x) d\alpha(x) \, \forall f \in \mathcal{C}_b(\mathcal{X}).$$

Let $\mathcal L$ a distance between measures , $\mathcal L$ metrises weak convergence IFF $\left(\mathcal L(\alpha_n,\alpha)\to 0\Leftrightarrow \alpha_n\rightharpoonup \alpha\right)$.

On
$$\mathbb{R}$$
, $\alpha = \delta_0$ and $\alpha_n = \delta_{1/n} : D_{KL}(\alpha_n | \alpha) = +\infty$.

Definition (Weak Convergence)

Let
$$(\alpha_n)_n \in \mathcal{M}^1_+(\mathcal{X})^{\mathbb{N}}$$
, $\alpha \in \mathcal{M}^1_+(\mathcal{X})$.
 The sequence α_n weakly converges to α , i.e. $\alpha_n \rightharpoonup \alpha \Leftrightarrow \int f(x) \mathrm{d}\alpha_n(x) \to \int f(x) \mathrm{d}\alpha(x) \, \forall f \in \mathcal{C}_b(\mathcal{X})$.
 Let \mathcal{L} a distance between measures , \mathcal{L} metrises weak convergence $\mathsf{IFF}\Big(\mathcal{L}(\alpha_n,\alpha) \to 0 \Leftrightarrow \alpha_n \rightharpoonup \alpha\Big)$.

Example

On
$$\mathbb{R}$$
, $\alpha = \delta_0$ and $\alpha_n = \delta_{1/n} : D_{KL}(\alpha_n | \alpha) = +\infty$.

Maximum Mean Discrepancies (Gretton '06)

Definition (RKHS)

Let \mathcal{H} a Hilbert space with kernel k, then \mathcal{H} is a Reproduicing Kernel Hilbert Space (RKHS) IFF :

$$2 \forall f \in \mathcal{H}, \quad f(x) = \langle f, k(x, \cdot) \rangle_{\mathcal{H}}.$$

Let \mathcal{H} a RKHS avec kernel k, the distance **MMD** between two probability measures α and β is defined by :

$$\begin{split} MMD_{k}^{2}(\alpha, \beta) &\stackrel{\text{def.}}{=} & \left(\sup_{\{f \mid \|f\|_{\mathcal{H}} \leqslant 1\}} |\mathbb{E}_{\alpha}(f(X)) - \mathbb{E}_{\beta}(f(Y))|\right)^{2} \\ &= & \mathbb{E}_{\alpha \otimes \alpha}[k(X, X')] + \mathbb{E}_{\beta \otimes \beta}[k(Y, Y')] \\ &- 2\mathbb{E}_{\alpha \otimes \beta}[k(X, Y)]. \end{split}$$

Optimal Transport (Monge 1781, Kantorovitch '42)

• Cost of moving a unit of mass from x to y: c(x, y)

• What is the coupling π that minimizes the total cost of moving ALL the mass from α to β ?

The Wasserstein Distance

Let $\alpha \in \mathcal{M}^1_+(\mathcal{X})$ and $\beta \in \mathcal{M}^1_+(\mathcal{Y})$,

$$W_c(\alpha, \beta) = \min_{\pi \in \Pi(\alpha, \beta)} \int_{\mathcal{X} \times \mathcal{V}} c(x, y) d\pi(x, y)$$
 (P)

For $c(x,y) = ||x-y||_2^p$, $W_c(\alpha,\beta)^{1/p}$ is the Wasserstein distance.

Transport Optimal vs. MMD

MMD

estimation robust to sampling computed in $O(n^2)$

inefficient outside of dense areas

Optimal Transport

curse of dimension computed in $O(n^3 \log(n))$ recovers full support of measures

Figure 2 – Goal : fit the the discrete measure β with α_{θ} , where θ encodes the positions of the Diracs. Method : minimize $MMD(\alpha_{\theta}, \beta)$ or $W_c(\alpha_{\theta}, \beta)$ with gradient descent.

Distances

Conclusion

- Notions of Distance between Measures
- 2 Entropic Regularization of Optimal Transport
- 3 Sinkhorn Divergences: Interpolation between OT and MMD
- 4 Unsupervised Learning with Sinkhorn Divergences
- Stochastic Optimisation for Regularized Transport
- **6** Conclusion

Entropic Regularization (Cuturi '13)

Let
$$\alpha \in \mathcal{M}^1_+(\mathcal{X})$$
 and $\beta \in \mathcal{M}^1_+(\mathcal{Y})$,

$$W_c \left(\alpha, \beta\right) \stackrel{\text{def.}}{=} \min_{\pi \in \Pi(\alpha, \beta)} \int_{\mathcal{X} \times \mathcal{Y}} c(x, y) d\pi(x, y) \tag{P}$$

Entropic Regularization (Cuturi '13)

Let
$$\alpha \in \mathcal{M}^1_+(\mathcal{X})$$
 and $\beta \in \mathcal{M}^1_+(\mathcal{Y})$,

$$W_{c,\varepsilon}(\alpha, \frac{\beta}{\beta}) \stackrel{\text{def.}}{=} \min_{\pi \in \Pi(\alpha, \frac{\beta}{\beta})} \int_{\mathcal{X} \times \mathcal{V}} c(x, y) d\pi(x, y) + \varepsilon D_{\varphi}(\pi | \alpha \otimes \frac{\beta}{\beta}) \quad (\mathcal{P}_{\varepsilon})$$

Entropic Regularization (Cuturi '13)

Let $\alpha \in \mathcal{M}^1_+(\mathcal{X})$ and $\beta \in \mathcal{M}^1_+(\mathcal{Y})$,

$$W_{c,\varepsilon}(\alpha, \beta) \stackrel{\text{def.}}{=} \min_{\pi \in \Pi(\alpha, \beta)} \int_{\mathcal{X} \times \mathcal{Y}} c(x, y) d\pi(x, y) + \varepsilon H(\pi | \alpha \otimes \beta), \quad (\mathcal{P}_{\varepsilon})$$

where

$$H(\pi | \alpha \otimes \beta) \stackrel{\text{def.}}{=} \int_{\mathcal{X} \times \mathcal{V}} \log \left(\frac{\mathrm{d}\pi(x, y)}{\mathrm{d}\alpha(x) \mathrm{d}\beta(y)} \right) \mathrm{d}\pi(x, y).$$

relative entropy of the transport plan π with respect to the product measure $\alpha \otimes \beta$.

Entropic Regularization

Figure 3 – Influence of the regularization parameter ε on the transport plan π .

Intuition: the entropic penalty 'smoothes' the problem and avoids over fitting (think of ridge regression for least squares)

Dual Formulation

Contrary to standard OT, no constraint on the dual problem :

$$W_{c} (\alpha, \beta) = \max_{\substack{u \in \mathcal{C}(\mathcal{X}) \\ v \in \mathcal{C}(\mathcal{Y})}} \int_{\mathcal{X}} u(x) d\alpha(x) + \int_{\mathcal{Y}} v(y) d\beta(y) \qquad (\mathcal{D})$$
such that $\{u(x) + v(y) \leqslant c(x, y) \ \forall \ (x, y) \in \mathcal{X} \times \mathcal{Y}\}$

Distances

Dual Formulation

Contrary to standard OT, no constraint on the dual problem :

$$W_{c,\varepsilon}(\alpha, \beta) = \max_{\substack{u \in \mathcal{C}(\mathcal{X}) \\ v \in \mathcal{C}(\mathcal{Y})}} \int_{\mathcal{X}} u(x) d\alpha(x) + \int_{\mathcal{Y}} v(y) d\beta(y)$$
$$-\varepsilon \int_{\mathcal{X} \times \mathcal{Y}} e^{\frac{u(x) + v(y) - c(x,y)}{\varepsilon}} d\alpha(x) d\beta(y) + \varepsilon.$$
$$= \max_{\substack{u \in \mathcal{C}(\mathcal{X}) \\ v \in \mathcal{C}(\mathcal{Y})}} \mathbb{E}_{\alpha \otimes \beta} \left[f_{\varepsilon}^{XY}(u, v) \right] + \varepsilon, \qquad (\mathcal{D}_{\varepsilon})$$

with
$$f_{\varepsilon}^{xy}(u, \mathbf{v}) \stackrel{\text{def.}}{=} u(x) + \mathbf{v}(y) - \varepsilon e^{\frac{u(x) + \mathbf{v}(y) - \varepsilon(x, y)}{\varepsilon}}$$

Sinkhorn's Algorithm

First order conditions for $(\mathcal{D}_{\varepsilon})$, concave in (u, v):

$$e^{u(x)/\varepsilon} = \frac{1}{\int_{\mathcal{Y}} e^{\frac{v(y) - c(x,y)}{\varepsilon}} d\beta(y)} \quad ; \quad e^{v(y)/\varepsilon} = \frac{1}{\int_{\mathcal{X}} e^{\frac{u(x) - c(x,y)}{\varepsilon}} d\alpha(x)}$$

 \rightarrow (u, v) solve a fixed point equation.

Sinkhorn's Algorithm

First order conditions for $(\mathcal{D}_{\varepsilon})$, concave in (u, v):

$$e^{u_i/\varepsilon} = \frac{1}{\sum_{j=1}^m e^{\frac{v_i - c_{ij}}{\varepsilon}} \beta_j} \quad ; \quad e^{v_j/\varepsilon} = \frac{1}{\sum_{i=1}^n e^{\frac{u_i - c_{ij}}{\varepsilon}} \alpha_i}$$

 \rightarrow (u, v) solve a fixed point equation.

Sinkhorn's Algorithm

Let
$$K_{ij} = e^{-\frac{c(x_i,y_j)}{\varepsilon}}$$
, $\mathbf{a} = e^{\frac{\mathbf{u}}{\varepsilon}}$, $\mathbf{b} = e^{\frac{\mathbf{v}}{\varepsilon}}$.

$$\mathbf{a}^{(\ell+1)} = \frac{1}{\mathsf{K}(\mathbf{b}^{(\ell)} \odot \boldsymbol{\beta})} \qquad ; \qquad \mathbf{b}^{(\ell+1)} = \frac{1}{\mathsf{K}^{\mathsf{T}}(\mathbf{a}^{(\ell+1)} \odot \boldsymbol{\alpha})}$$

Complexity of each iteration : $O(n^2)$, Linear convergence, constant degrades when $\varepsilon \to 0$.

- 1 Notions of Distance between Measures
- 2 Entropic Regularization of Optimal Transport
- 3 Sinkhorn Divergences : Interpolation between OT and MMD
- 4 Unsupervised Learning with Sinkhorn Divergences
- 5 Stochastic Optimisation for Regularized Transport
- 6 Conclusion

Sinkhorn Divergences

Issue of entropic transport : $W_{c,\varepsilon}(\alpha,\alpha) \neq 0$

Proposed Solution: introduce corrective terms to 'debias'

entropic transport

Definition (Sinkhorn Divergences)

Let
$$\alpha \in \mathcal{M}^1_+(\mathcal{X})$$
 and $\beta \in \mathcal{M}^1_+(\mathcal{Y})$,

$$SD_{c,\varepsilon}(\alpha, \beta) \stackrel{\text{def.}}{=} W_{c,\varepsilon}(\alpha, \beta) - \frac{1}{2}W_{c,\varepsilon}(\alpha, \alpha) - \frac{1}{2}W_{c,\varepsilon}(\beta, \beta),$$

Interpolation Property

Theorem (G., Peyré, Cuturi '18), (Ramdas and al. '17)

Sinkhorn Divergences have the following asymptotic behavior :

quand
$$\varepsilon \to 0$$
, $SD_{c,\varepsilon}(\alpha, \beta) \to W_c(\alpha, \beta)$, (1)

quand
$$\varepsilon \to +\infty$$
, $SD_{c,\varepsilon}(\alpha, \beta) \to \frac{1}{2}MMD_{-c}^2(\alpha, \beta)$. (2)

Remark : To get an MMD, -c must be positive definite. For $c = \|\cdot\|_2^p$ with 0 , the MMD is called Energy Distance.

Empirical Illustration

The 'sample complexity'

Informal Definition

Given a distance between measures, its sample complexity corresponds to the error made when approximating this distance with samples of the measures.

ightarrow Bad sample complexity implies bad generalization (over-fitting).

Known cases:

- OT : $\mathbb{E}|W(\alpha, \beta) W(\hat{\alpha}_n, \hat{\beta}_n)| = O(n^{-1/d})$ \Rightarrow curse of dimension (Dudley '84, Weed and Bach '18)
- MMD : $\mathbb{E}|MMD(\alpha, \beta) MMD(\hat{\alpha}_n, \hat{\beta}_n)| = O(\frac{1}{\sqrt{n}})$ \Rightarrow independent of dimension (Gretton '06)

What about
$$\mathbb{E}|SD_{\varepsilon}(\alpha, \beta) - SD_{\varepsilon}(\hat{\alpha}_n, \hat{\beta}_n)|$$
?

Properties of Dual Potentials

Theorem (G., Chizat, Bach, Cuturi, Peyré '19)

Let $\mathcal{X},\mathcal{Y}\subset\mathbb{R}^d$ bounded , and $c\in\mathcal{C}^\infty$. Then the optimal pairs of dual potentials (u,v) are uniformly bounded in the Sobolev $\mathbf{H}^{\lfloor d/2\rfloor+1}(\mathbb{R}^d)$ and their norm verifies :

$$\| \mathbf{\textit{u}} \|_{\mathbf{H}^{\lfloor d/2 \rfloor + 1}} = O\left(1 + \frac{1}{\varepsilon^{\lfloor d/2 \rfloor}}\right) \text{ et } \| \mathbf{\textit{v}} \|_{\mathbf{H}^{\lfloor d/2 \rfloor + 1}} = O\left(1 + \frac{1}{\varepsilon^{\lfloor d/2 \rfloor}}\right),$$

with constants depending on $|\mathcal{X}|$ (ou $|\mathcal{Y}|$ pour v), d, and $||c^{(k)}||_{\infty}$ pour $k = 0, \ldots, |d/2| + 1$.

 $\mathbf{H}^{\lfloor d/2 \rfloor + 1}(\mathbb{R}^d)$ is a RKHS \to the dual $(\mathcal{D}_{\varepsilon})$ est the maximization of an expectation in a RKHS ball.

'Sample Complexity' of Sinkhorn Div.

Theorem (Bartlett-Mendelson '02)

Let $\mathbb{P} \in \mathcal{M}^1_+(\mathcal{X})$, ℓ a B-Lipschitz function and \mathcal{H} a RKHS with kernel k bounded on \mathcal{X} by K. Then

$$\mathbb{E}_{\mathbb{P}}\left[\sup_{\{g|\|g\|_{\mathcal{H}}\leqslant\lambda\}}\mathbb{E}_{\mathbb{P}}\ell(g,X)-\frac{1}{n}\sum_{i=1}^{n}\ell(g,X_{i})\right]\leqslant2B\frac{\lambda K}{\sqrt{n}}.$$

Theorem (G., Chizat, Bach, Cuturi, Peyré '19)

Let $\mathcal{X}, \mathcal{Y} \subset \mathbb{R}^d$ bounded, and $c \in \mathcal{C}^{\infty}$ L-Lipschitz. Then

$$\mathbb{E}|W_{arepsilon}(lpha, oldsymbol{eta}) - W_{arepsilon}(\hat{lpha}_n, \hat{oldsymbol{eta}}_n)| = O\left(rac{e^{rac{\kappa}{arepsilon}}}{\sqrt{n}}\left(1 + rac{1}{arepsilon^{\lfloor d/2
floor}}
ight)
ight),$$

where $\kappa = 2L|\mathcal{X}| + \|c\|_{\infty}$ and constants depend on $|\mathcal{X}|$, $|\mathcal{Y}|$, d, and $||c^{(k)}||_{\infty}$ pour $k = 0 \dots |d/2| + 1$.

'Sample Complexity' of Sinkhorn Div.

We get the following asymptotic behavior

$$\begin{split} \mathbb{E}|W_{\varepsilon}(\alpha, \pmb{\beta}) - W_{\varepsilon}(\hat{\alpha}_{\pmb{n}}, \hat{\pmb{\beta}}_{\pmb{n}})| &= O\left(\frac{e^{\frac{\kappa}{\varepsilon}}}{\varepsilon^{\lfloor d/2\rfloor}\sqrt{n}}\right) \qquad \text{quand } \varepsilon \to 0 \\ \mathbb{E}|W_{\varepsilon}(\alpha, \pmb{\beta}) - W_{\varepsilon}(\hat{\alpha}_{\pmb{n}}, \hat{\pmb{\beta}}_{\pmb{n}})| &= O\left(\frac{1}{\sqrt{n}}\right) \qquad \text{quand } \varepsilon \to +\infty. \end{split}$$

- → We recover the interpolation property,
- → A large enough regularization breaks the curse of dimension.

- Notions of Distance between Measures
- 2 Entropic Regularization of Optimal Transport
- 3 Sinkhorn Divergences : Interpolation between OT and MMD
- 4 Unsupervised Learning with Sinkhorn Divergences
- 5 Stochastic Optimisation for Regularized Transport
- 6 Conclusion

Generative Models

Problem Formulation

- β the **unknown** measure of the date : finite number of samples $(y_1, \dots, y_N) \sim \beta$
- α_{θ} the parametric model of the form $\alpha_{\theta} \stackrel{\text{def.}}{=} g_{\theta \#} \zeta$: to sample $x \sim \alpha_{\theta}$, draw $z \sim \zeta$ and take $x = g_{\theta}(z)$.

We are looking for the optimal parameter θ^* defined by

$$\theta^* \in \operatorname*{argmin}\limits_{ heta} SD_{c,arepsilon}(lpha_{ heta},eta)$$

 $NB : \alpha_{\theta}$ and β are only known via their samples.

Conclusion

The Optimization Procedure

We want to solve by gradient descent

$$\min_{\theta} SD_{c,\varepsilon}(\alpha_{\theta}, \beta)$$

At each descent step k instead of approximating $\nabla_{\theta} SD_{c,\varepsilon}(\alpha_{\theta},\beta)$:

- we approximate $SD_{c,\varepsilon}(\alpha_{\theta^{(k)}},\beta)$ by $SD_{c,\varepsilon}^{(L)}(\hat{\alpha}_{\theta^{(k)}},\hat{\beta})$ via
 - minibatches : draw n samples from $\alpha_{\theta^{(k)}}$ and m in the dataset (distributed according to β),
 - L Sinkhorn iterations : we compute an approximation of the SD bewteen both samples with a fixed number of iterations
- we compute the gradient $\nabla_{\theta} SD_{c,\varepsilon}^{(L)}(\hat{\alpha}_{\theta^{(k)}},\hat{\beta})$ by backpropagation (with automatic differentiation library)
- we do an update $\theta^{(k+1)} = \theta^{(k)} C_k \nabla_{\theta} SD_{c,\varepsilon}^{(L)}(\hat{\alpha}_{\theta^{(k)}},\hat{\beta})$

Computing the Gradient in Practice

Données

Figure 5 – Scheme of the approximation of the Sinkhorn Divergence from samples (here, $g_{\theta}: z \mapsto x$ is represented as a 2-layer NN).

Empirical Results

Figure 6 – Influence of the 'debiasing' of the Sinkhorn Divergence (SD_{ε}) compared to regularized OT (W_{ε}) . Data are generated uniformly inside an ellipse, we want to infer the parametersLes données sont générées A, ω (covariance and center).

Empirical Results

Figure 7 – Comparison of the Sinkhorn Divergence $(SD_{c,\varepsilon})$ and Energy Distance (ED_p) on the ellipse fitting task (we retained best parameters for each).

Conclusion

Learning the cost function

In high dimension (e.g. images), the euclidean distance is not relevant \rightarrow choosing the cost c is a complex problem.

Idea: the cost should yield high values for the Sinkhorn Divergence when $\alpha_{\theta} \neq \beta$ to differenciate between synthetic samples (from α_{θ}) and 'real' data (from β). (Li and al '18)

We learn a parametric cost of the form :

$$c_{\varphi}(x,y) \stackrel{\mathsf{def.}}{=} \|f_{\varphi}(x) - f_{\varphi}(y)\|^p$$
 where $f_{\varphi}: \mathcal{X} \to \mathbb{R}^{d'}$,

The optimization problem becomes a min-max on (θ, φ)

$$\min_{\theta} \max_{\varphi} SD_{c_{\varphi}, \varepsilon}(\alpha_{\theta}, \beta)$$

 \rightarrow GAN-type problem, cost c acts as a discriminator.

Empirical Results - CIFAR10

Figure 8 – Images generated by α_{θ^*} trained on CIFAR 10

Table 1 – Inception Scores on CIFAR10 (same setting as MMD-GAN paper (Li et al. '18)).

- Notions of Distance between Measures
- 2 Entropic Regularization of Optimal Transport
- 3 Sinkhorn Divergences: Interpolation between OT and MMD
- 4 Unsupervised Learning with Sinkhorn Divergences
- 5 Stochastic Optimisation for Regularized Transport
- 6 Conclusion

Motivations

- Sinkhorn purely discrete algorithm: requires sampling from the measures beforehand
- 'Batch' method :each iteration costs $O(n^2)$

Ides: exploit OT formulation as max of an expectation by using stochastic optimization.

- ullet Only requires being able to sample from the measures o no discretization bias
- 'Online' method : each iteration costs O(n)

Semi-Dual Formulation

When one mesure is discrete, e.g.

Distances

$$\frac{\beta}{\beta} \stackrel{\text{def.}}{=} \sum_{i=1}^{n} \frac{\beta_{i} \delta y_{i}}{\beta_{i} \delta y_{i}} \rightarrow v = (v_{i})_{i=1}^{n} \stackrel{\text{def.}}{=} (v_{i} x_{i}), \dots, v(x_{n}) \in \mathbb{R}^{n}.$$

Using first order condition on dual problem (relation between ν and u), we get the semi-dual formulation :

$$W_{c,\varepsilon}(\alpha, \beta) = \max_{\mathbf{v} \in \mathbb{R}^n} \mathbb{E}_{\alpha} \left[g_{\varepsilon}^{\mathbf{X}}(\mathbf{v}) \right] \tag{S_{\varepsilon}}$$

where
$$g_{\varepsilon}^{X}(\mathbf{v}) = \sum_{i=1}^{m} \mathbf{v}_{i} \boldsymbol{\beta}_{i} + \begin{cases} -\varepsilon \log \left(\sum_{i=1}^{n} \exp(\frac{\mathbf{v}_{i} - c(x, y_{i})}{\varepsilon}) \boldsymbol{\beta}_{i} \right) & \text{si } \varepsilon > 0 \\ \min_{i} \left(c(x, y_{i}) - \mathbf{v}_{i} \right) & \text{si } \varepsilon = 0 \end{cases}$$

Semi-Discrete Case: SGD

We want to solve

$$W_{c,\varepsilon}(\alpha,\beta) = \max_{\mathbf{v} \in \mathbb{R}^n} \mathbb{E}_{\alpha} \left[g_{\varepsilon}^{\mathbf{X}}(\mathbf{v}) \right] \stackrel{\text{def.}}{=} G_{\varepsilon}(\mathbf{v}) \tag{S_{\varepsilon}}$$

by gradient ascent on $G_{\varepsilon}(\mathbf{v})$.

Problem: We can't compute the gradient (α is not known)

Idea: At each iteration, we draw $x^{(k)} \sim \alpha$ and $\nabla g_{\varepsilon}^{x^{(k)}}$ is a proxy for ∇G_{ε} .

The iterates of SGD are:

$$\mathbf{v}^{(k+1)} = \mathbf{v}^{(k)} + \frac{C}{\sqrt{k}} \nabla_{\mathbf{v}} g_{\varepsilon}^{\mathbf{x}^{(k)}} (\mathbf{v}^{(k+1)}) \quad \text{where} \quad \mathbf{x}^{(k)} \sim \alpha.$$
 (3)

Proposition (Convergence of SGD)

Let $\mathbf{v}_{\varepsilon}^*$ a minimizer of the semi-dual and $\bar{\mathbf{v}}^{(k)} \stackrel{\text{def.}}{=} \frac{1}{k} \sum_{i=1}^k \mathbf{v}^{(k)}$ the average of the SGD iterates. Then

$$|G_{\varepsilon}(\mathbf{v}_{\varepsilon}^*) - G_{\varepsilon}(\overline{\mathbf{v}}^{(k)})| = O(1/\sqrt{k}).$$

Complexity of each iteration O(n).

Semi-Discrete Case: SGD - Application

Conclusion

Continuous Case: Dual Formulation

Idea: Replace dual potentials(u, v) by their expansion in a well chosen RKHS

$$\mathbf{u}(\mathbf{x}) \leftarrow \langle \mathbf{u}, \kappa(\cdot, \mathbf{x}) \rangle_{\mathcal{H}} \qquad \mathbf{v}(\mathbf{y}) \leftarrow \langle \mathbf{v}, \kappa(\cdot, \mathbf{y}) \rangle_{\mathcal{H}}$$

The dual problem becomes

$$W_{c,\varepsilon}(\alpha, \beta) = \max_{\mathbf{u} \in \mathcal{C}(\mathcal{X}), \mathbf{v} \in \mathcal{C}(\mathcal{X})} \mathbb{E}_{\alpha \otimes \beta} \left[f_{\varepsilon}^{\mathbf{X} \mathbf{Y}}(\mathbf{u}, \mathbf{v}) \right] + \varepsilon, \qquad (\mathcal{D}_{\varepsilon})$$

with

Distances

$$f_{\varepsilon}^{xy}(\mathbf{u}, \mathbf{v}) \stackrel{\text{def.}}{=} \langle \mathbf{u}, \kappa(\cdot, x) \rangle_{\mathcal{H}} + \langle \mathbf{v}, \kappa(\cdot, y) \rangle_{\mathcal{H}} \\ - \varepsilon \exp\left(\frac{\langle \mathbf{u}, \kappa(\cdot, x) \rangle_{\mathcal{H}} + \langle \mathbf{v}, \kappa(\cdot, y) \rangle_{\mathcal{H}} - c(x, y)}{\varepsilon}\right)$$

Continuous Case: Kernel-SGD

Let $\mathcal H$ a RKHS with kernel κ . The iterates of Kernel-SGD read :

$$\begin{cases} \mathbf{u}^{(k)} & \stackrel{\text{def.}}{=} \sum_{i=1}^{k} w^{(i)} \kappa(\cdot, \mathbf{x}_i) \\ \mathbf{v}^{(k)} & \stackrel{\text{def.}}{=} \sum_{i=1}^{k} w^{(i)} \kappa(\cdot, \mathbf{y}_i) \end{cases}, \quad \text{with} \quad \begin{cases} (\mathbf{x}_i)_{i=1...k} \sim \alpha \\ (\mathbf{y}_i)_{i=1...k} \sim \beta \end{cases}$$

et
$$w^{(i)} \stackrel{\text{def.}}{=} \frac{C}{\sqrt{i}} \left(1 - \exp\left(\frac{u^{(i-1)}(x_i) + v^{(i-1)}(y_i) - c(x_i, y_i)}{\varepsilon}\right) \right),$$

Proposition (Convergence of Kernel-SGD)

If α and β have bounded supports in \mathbb{R}^d , then for κ the Matern kernel or a universal Kernel (e.g. Gaussian) the iterates $(u^{(k)}, v^{(k)})$ converge to a solution of the dual $(\mathcal{D}_{\varepsilon})$.

Continuous Case: Kernel-SGD - Illustration

Figure 9 – Illustration of the convergence of kernel-SGD on a simple case in $1\mbox{D}$

At iteration k, need to compute $\begin{cases} u^{(k-1)}(x_k) = \sum_{i=1}^{k-1} w^{(i)} \kappa(x_k, x_i) \\ v^{(k-1)}(y_k) = \sum_{i=1}^{k-1} w^{(i)} \kappa(y_k, y_i) \end{cases}$

Problem: itération k costs O(k)

Idea : replace kernel κ by an approximation of the form

$$\hat{\kappa}(x, x') = \langle \varphi(x), \varphi(x') \rangle$$
 où $\varphi : \mathcal{X} \to \mathbb{R}^p$.

 \rightarrow The cost of each iteration is then fixed as O(p).

Examples: Cholesky Decomposition, Random Fourier Features (RFF)

Continuous Case : Kernel-SGD - Acceleration

Figure 10 – Effects of the acceleration procedure on CPU time and precision

- \rightarrow For 10^6 iterations, kernel-SGD takes 6 hours
- \rightarrow The accelerated version with RFF and D=20 takes 3 minutes, and we get the same level of precison!

- 1 Notions of Distance between Measures
- 2 Entropic Regularization of Optimal Transport
- 3 Sinkhorn Divergences : Interpolation between OT and MMD
- 4 Unsupervised Learning with Sinkhorn Divergences
- Stochastic Optimisation for Regularized Transport
- **6** Conclusion

Take Home Message

Sinkhorn Divergences interpolate between OT (small ε) and MMD (large ε) and get the best of both worlds :

- inherit geometric properties from OT
- break curse of dimension for ε large enough
- fast algorithms for implementation in ML tasks