Final Problems 2

Due Friday October 9. REVISED Oct 4

- 1. (problem sent to /dev/null)
- 2. Let *A* be an arbitrary regular language over alphabet $\Sigma = \{a, b\}$. Show that the following languages are also regular:

SwapOne(
$$A$$
) = { $x \mid \exists y \in A : x$ and y differ in exactly one character}
DropOne(A) = { $uv \mid \exists c \in \Sigma : ucv \in A$ }
= { $x \mid \exists y \in A : x$ is the result of removing exactly 1 character from y }
AddOne(A) = { $ucv \mid c \in \Sigma$ and $uv \in A$ }
= { $x \mid \exists y \in A : x$ is the result of adding exactly 1 character from y }

- 3. Let $M = (Q, \Sigma, \delta, s, F)$ be a DFA.
 - (a) For all $p, q \in Q$, show that the following language is regular:

$$A_{p,q} \stackrel{\text{def}}{=} \{ w \mid \widehat{\delta}(p, w) = q \}$$

(b) Remember the puzzle from the first lecture? A **combobulation string** for *M* is any string such that after reading that string there is no doubt about which state *M* is in, regardless of which state you started from. Show that the set of combobulation strings for *M* is regular.