Causal Inference:

Fundamentals of Partial Identification

YES Workshop 2023 Eindhoven, 15th March 2023

Jakob Zeitler,

PhD Candidate in Foundational Artificial Intelligence Centre for Doctoral Training in Foundational AI at UCL mail@jakob-zeitler.de

The basis for this talk

The Causal Marginal Polytope for Bounding Treatment Effects

Jakob Zeitler, Ricardo Silva https://arxiv.org/abs/2202.13851

Stochastic Causal Programming for Bounding Treatment Effects

Kirtan Padh, Jakob Zeitler, David Watson, Matt Kusner, Ricardo Silva, Niki Kilbertus https://arxiv.org/abs/2202.10806

Learn more @ CLeaR (Causal Learning and Reasoning) 2023!

Literature Review: https://tinyurl.com/partial-identification

You have seen this before this week

Mats Stensrud, Tuesday, 9:30am

onwards

Slide 30

Example on Vitamin A supplementation in northern Sumatra

$$-0.0054 \le \mathbb{E}(Y^{a=1} - Y^{a=0}) \le 0.1946$$

Consider now the effect among those who intend to be treated:

$$\mathbb{E}(Y^{a=1}-Y^{a=0}\mid A=1)=-0.0032.$$

and among those who intend to be untreated $-0.007 \le \mathbb{E}(Y^{a=1} - Y^{a=0} \mid A = 0) \le 0.331$.

Mats J. Stensrud Superoptimal regimes Eindhoven, 2023 37 / 39

Program

- 1. Causal Inference
- 2. Partial Identification
 - a. Problem
 - b. Challenges
 - c. Solutions
- 3. Q&A

Causal Inference: Identifiability

Can I express the effect of interest from the data?

Can I express the effect of interest from the data?

YES

The effect is identifiable

Can I express the effect of interest from the data?

YES

The effect is identifiable

NO

The effect is **not identifiable**

If yes, apply "Back-Door Adjustment"

Example: Confounding backdoor adjustment

If we want to adjust for confounding, we need to identify the confounders!

Scenario 1:

"No Confounding"

Average Treatment Effect (ATE):

$$P(Y = y | do(X = x))$$

Scenario 2:

"Confounding" Problem?

Average Treatment Effect (ATE):

$$P(Y = y | do(X = x)) = \sum_{z} P(Y = y | X = x, Z = z) P(Z = z)$$

10

Example: Confounding backdoor adjustment

If we want to adjust for confounding, we need to identify the confounders!

Scenario 1:

"No Confounding"

Average Treatment Effect (ATE):

$$P(Y = y | do(X = x))$$

Scenario 2:

"Confounding" Problem?

Average Treatment Effect (ATE):

$$P(Y = y | do(X = x)) = \sum_{z} P(Y = y | X = x, Z = z) P(Z = z)$$

1

Example: Confounding backdoor adjustment

If we we deto identify the confounders!

Sc su

Problem!

Assumption:

"No unmeasured confounding"

Violated?: Yes!

Because we don't observe

W, and cannot adjust for it.

Consequence:

Biased effect estimate

Scenario 2:

"Confounding"

Problem!

Average Treatment Effect (ATE):

$$P(Y = y | do(X = x)) = \sum_{z} P(Y = y | X = x, Z = z) P(Z = z)$$

Avera

Assumptions are <u>essential</u> for Identification

Causal Inference is a <u>language</u> for encoding your causal assumptions

It's all about the **assumptions** you make:

"No Causes in, No Causes out"

No assumptions, no identification

Nancy Cartwright,
 https://doi.org/10.1093/0198235070.003.0003

Partial Identification: Why

Why is partial identification relevant?

Can I express the effect of interest from the data?

YES

The effect is identifiable

NO

The effect is **not identifiable**

Can I express the effect of interest from the data?

YES

The effect is identifiable

NO

The effect is **not identifiable**

MAYBE

The effect might be **partially identifiable**

Can I express the effect of interest from the data?

YES

The effect is identifiable

NO

The effect is **not identifiable**

- No confidence in strong assumptions, e.g. "no unmeasured confounding"
- We want to compare and report models with weaker and stronger assumptions

MAYBE

The effect might be **partially identifiable**

Bounds on effects of interest

Instead of doing our usual **backdoor identification strategy** of ...

$$P(Y = y | do(X = x)) = \sum_{z} P(Y = y | X = x, Z = z) P(Z = z) = 0.34$$

Bounds on effects of interest

Instead of doing our usual **backdoor identification strategy** of ...

$$P(Y = y | do(X = x)) = \sum_{z} P(Y = y | X = x, Z = z) P(Z = z) = 0.34$$

... we try to calculate **Bounds** on the effect of interest:

i.e. Lower Bound < ATE(X->Y) < Upper Bound

e.g
$$0.1 < P(Y = y | do(X = x)) < 0.4$$

Let's review

So far, we have learned:

- Causal Inference is all about assumptions
- If we assume a certain structure, we can apply the backdoor adjustment for full identification
- If we do not want to assume we know all confounders, we can calculate **bounds**, i.e. **partial identification**

Questions?

Explaining partial identification with the help of

Instrumental Variable Models

A classical workhorse method of causal inference, especially econometrics.

Instrumental Variable Model

Practically: "Imperfect Compliance" Model

All binary, i.e. Z, D, $Y = \{0,1\}$

Introducing

Response Functions Variables

A very simple idea

Imperfect Compliance with Response Functions

Expressing $P(V=\{Z,D,Y\})$ with $P(R=\{Rz,Rd,Ry\})$

$$P(\mathbf{v}) = \sum_{\mathbf{r}} P(\mathbf{r}) \prod_{V \in \mathbf{V}} \mathbb{I}(v; \mathsf{pa}_V, r_V),$$

Observed data P(v)

Latent model P(r)

Calculating Upper and Lower Bounds

Using Linear Programming

LPs are convex, i.e. solutions are exact

$$\min / \max \quad \text{TCE}(x_1, x_0) = \sum_{r_X, r_Y} P(r_X, r_Y) \mathbb{I}(y; x_1, r_Y) - \sum_{r_X, r_Y} P(r_X, r_Y) \mathbb{I}(y; x_0, r_Y),$$

$$\begin{aligned} & \min/\max & \quad ^{\text{TCE}(x_1,\,x_0)} = \sum\limits_{r_X,r_Y} P(r_X,r_Y) \mathbb{I}(y;x_1,r_Y) - \sum\limits_{r_X,r_Y} P(r_X,r_Y) \mathbb{I}(y;x_0,r_Y), \\ & \text{s.t.} & \quad P(\mathbf{V}) = P(\mathcal{D}), \quad \sum\limits_{\mathbf{r}} P(\mathbf{r}) = 1, \quad P(\mathbf{r}) \geq 0, \end{aligned}$$

$$\begin{array}{ll} \min/\max & \mathrm{TCE}(x_1,x_0) = \sum\limits_{r_X,r_Y} P(r_X,r_Y) \mathbb{I}(y;x_1,r_Y) - \sum\limits_{r_X,r_Y} P(r_X,r_Y) \mathbb{I}(y;x_0,r_Y), \\ \mathrm{s.t.} & P(\mathbf{V}) = P(\mathcal{D}), & \sum\limits_{\mathbf{r}} P(\mathbf{r}) = 1, & P(\mathbf{r}) \geq 0, \\ \mathrm{Matching \ observed \ data \ and \ latent \ model} & \mathrm{Probability \ ``Simplex''} \\ \end{array}$$

Partial Identification:

Why is partial identification hard?

Beyond Instrumental Variable Models

How to generalise response functions variables

So far ...

Response Functions Variables are universal

Response Function Variables:

- 1. Number of states "coming in" from parents
- 2. Numbers of "states" of node (the domain)

$$N_V = |V|^{|\mathsf{PA}_V|}$$

states per variable?
$$N_V = |V|^{|\mathsf{PA}_V|}$$

$$N_V = |V|^{|\mathsf{PA}_V|}$$

S = 2 W = 2 ** 2 A = 2 ** 2 Y = 2 ** (2 * 2 * 2) = 256 (!!!)

$$N_V = |V|^{|\mathsf{PA}_V|}$$

S = 2 W = 2 ** 2 A = 2 ** 2 Y = 2 ** (2 * 2 * 2) = 256 (!!!)

How many Response Function states for the whole model?

$$N_V = |V|^{|\mathsf{PA}_V|}$$

W = 2 ** 2 A = 2 ** 2 Y = 2 ** (2 * 2 * 2) = 256 (!!!)

S = 2

How many Response Function states for the whole model?

2 * 4 * 4 * 256 = <u>8192</u>

$$N_V = |V|^{|\mathsf{PA}_V|}$$

How many Response Function states for the whole model?

2 * 4 * 4 * 256 = <u>8192</u>

Problem: RFV space increases *super-exponentially*.

How can we deal with that?

Partial Identification:

Solutions

How is partial identification feasible?

Solution: Causal Marginal Polytope

Idea: Consider smaller parts of the graph, aka. "marginals"

Example:

- 4 Variables
- Fully connected
- Fully confounded

The Causal Marginal Polytope for Bounding Treatment Effects

Jakob Zeitler, Ricardo Silva https://arxiv.org/abs/2202.13851

"Complete" model

Marginals: 1, i.e. the complete 4 variable model

Number of Parameters: 32,768

Tightness of bounds: Sharp

"Complete" model

Marginals: 1, i.e. the complete 4 variable model

Number of Parameters: 32,768

Tightness of bounds: Sharp

Causal Marginal Polytope

Marginals: 4, each with 3 variables

Number of Parameters:128*4=512

Tightness of bounds: More loose

"Complete" model

Marginals: 1, i.e. the complete 4 variable model

Number of Parameters: 32,768

Tightness of bounds: Sharp

Causal Marginal Polytope

Marginals: 4, each with 3 variables

Number of Parameters:128*4=512

Tightness of bounds: More loose

Let's add constraints to tighten the bounds

Constraint A:

$$\sum_{X_3} P(X_1, X_2, X_3) = \sum_{X_4} P(X_1, X_2, X_4)$$

Constraint A:

$$\{\{X_1, X_2\}, \{X_2, X_4\}, \{X_1, X_3\}, \{X_3, X_4\}\}$$

min/max

Objective: e.g. TCE

s.t.

 $P(\mathbf{V}) = P(\mathcal{D}), \quad \sum P(\mathbf{r}) = 1, \quad P(\mathbf{r}) \ge 0,$

Constraint A:

min/max

Objective: e.g. TCE

s.t

$$P(\mathbf{V}) = P(\mathcal{D}), \quad \sum P(\mathbf{r}) = 1, \quad P(\mathbf{r}) \ge 0,$$

Constraint A:

$$\sum_{X_3} P(X_1, X_2, X_3) = \sum_{X_4} P(X_1, X_2, X_4)$$

Constraint B:

Expert knowledge

- 1. Bidirected edges
- 2. Directed edges

min/max

Objective: e.g. TCE

s.t.

$$P(\mathbf{V}) = P(\mathcal{D}), \quad \sum P(\mathbf{r}) = 1, \quad P(\mathbf{r}) \ge 0,$$

Constraint A: **Overlaps**

$$\sum_{X_3} P(X_1, X_2, X_3) = \sum_{X_4} P(X_1, X_2, X_4)$$

Constraint B:

Expert knowledge

min/max

Objective: e.g. TCE

s.t.

$$P(\mathbf{V}) = P(\mathcal{D}), \quad \sum P(\mathbf{r}) = 1, \quad P(\mathbf{r}) \ge 0,$$

Constraint A: Overlaps

$$\sum_{X_3} P(X_1, X_2, X_3) = \sum_{X_4} P(X_1, X_2, X_4)$$

Constraint B:

Expert knowledge

Directed edges

$$|P_{\mathcal{M}}(V_i = 1 \mid do(v_{pa_i \setminus j}), do(V_j = 1), v_{\mathcal{M}'}) -$$

$$P_{\mathcal{M}}(V_i = 1 \mid do(v_{pa_i \setminus j}), do(V_j = 0), v_{\mathcal{M}'}) \mid \leq \epsilon_{ij},$$

Objective: e.g. TCE

 $P(\mathbf{V}) = P(\mathcal{D}), \quad \sum P(\mathbf{r}) = 1, \quad P(\mathbf{r}) \ge 0,$

Constraint A: **Overlaps**

 $\sum P(X_1, X_2, X_3) = \sum P(X_1, X_2, X_4)$

Constraint B: **Expert** knowledge

 $|P_{\mathcal{M}}(V_i = 1 \mid do(v_{pa_i \setminus j}), do(V_j = 1), v_{\mathcal{M}'}) P_{\mathcal{M}}(V_i = 1 \mid do(v_{pa_i \setminus j}), do(V_j = 0), v_{\mathcal{M}'}) \mid \leq \epsilon_{ij},$

Directed edges

Bidirected edges

 $|P_{\mathcal{M}}(V_i = 1 \mid do(v_{pa_{ij}}), do(V_j = v_j), v_{\mathcal{M}'}) -$

 $P_{\mathcal{M}}(V_i = 1 \mid do(v_{pa_{ij}}), V_j = v_j, v_{\mathcal{M}'}) \mid \leq \epsilon_{ij}^{\mathsf{C}},$

Example: Simulation

- 4 Variables
- We constrain the red directed and bidirected edges
- We supply the following data regimes

```
do(\emptyset)
do(x_2), do(x_3)
do(x_2, x_3)
do(x_1 = 0, x_3 = 0), do(x_1 = 0, x_3 = 1)
```


Example: Simulation

- 4 Variables
- We constrain the red directed and bidirected edges
- We supply the following data regimes

$$do(\emptyset)$$
 Identification from data $do(x_2), do(x_3)$ $do(x_2, x_3)$ $do(x_1 = 0, x_3 = 0), do(x_1 = 0, x_3 = 1)$

Results: Each constraint by itself

Tightening of bounds by constraining the **overlap of the margins**.

Results: Each constraint by itself

Tightening of bounds by constraining the **overlap of the margins**.

A weak directed edge tightens bounds. Invalid bounds are marked with a cross.

Results: Each constraint by itself

Tightening of bounds by constraining the **overlap of the margins**.

A weak directed edge tightens bounds. Invalid bounds are marked with a cross.

A **weak bidirected** edge tightens bounds. Lower epsilon values are falsified by infeasibility.

Let's review, again

We have learned:

- If we do not want to assume we know all confounders, we can calculate **bounds**, i.e. **partial identification**
- But exact partial identification is hard: there is no free lunch.

Partial Identification:

Alternatives

What **alternative solutions** are there?

What's really behind partial identification

Take the IV model on the left, with

two possible models for B.

Table 1: Equation $f_A(c, u)$ for determining values of A.

Table 2: Equations $f_B^1(a, u)$ and $f_B^2(a, u)$ for determining values of B.

What's really behind partial identification

Take the IV model on the left, with **two** possible models for B.

- 1. Setting P(U = 1) as p
- 2. The first model implies:

a.
$$P(B = 1|do(A = 1)) = 1$$

- b. P(B = 1|do(A = 0)) = 0
- c. Therefore, ACE=1-0=1

Figure 1: Example: A, B, C are observed variables and U is a hidden variable.

U	C	$A = f_A$
0	0	0
0	1	0
1	0	1
1	1	1

U	A	$B = f_B^1$	$B = f_B^2$	
0	0	0	0	
0	1	1	0	
1	0	0	0	
1	1	1	1	

Table 1: Equation $f_A(c, u)$ for determining values of A.

Table 2: Equations $f_B^1(a, u)$ and $f_B^2(a, u)$ for determining values of B.

What's really behind partial identification

Take the IV model on the left, with **two** possible models for B.

- 1. Setting P(U = 1) as p
- 2. The first model implies:

a.
$$P(B = 1|do(A = 1)) = 1$$

b.
$$P(B = 1|do(A = 0)) = 0$$

- c. Therefore, ACE=1-0=1
- The second model implies: +

a.
$$P(B = 1|do(A = 1)) = p$$

b.
$$P(B = 1|do(A = 0)) = 0$$

c. Therefore,
$$ACE=p - 0 = p$$

- 4. We cannot reject either model
- 5. Therefore, the bounds are: [p,1]

Figure 1: Example: A, B, C are observed variables and U is a hidden variable.

	_		
U	A	$B = f_B^1$	$-B = f_B^2$
0	0	0	0
0	1	1	0
1	0	0	0
1	1	1	1

Table 2: Equations $f_B^1(a, u)$ and $f_B^2(a, u)$ for determining values of B.

Approximate Partial Identification

- 1. Define a class of possible models
- 2. Reject models that disagree with that data
- 3. Calculate ATEs for all models left
- 4. The highest and lowest are your bounds

$$\min_{\eta \in \mathbb{R}^d} / \max_{o_{x^\star}(\eta) = \psi(x^\star)^\top} \mathbb{E}_N[\mu_{\eta_0}(N)]$$

subject to $\operatorname{dist}(p_\eta, \hat{p}) \leq \epsilon$.

Stochastic Causal Programming for Bounding Treatment Effects

Kirtan Padh, Jakob Zeitler, David Watson, Matt Kusner, Ricardo Silva, Niki Kilbertus https://arxiv.org/abs/2202.10806

Where we end today:

The goal of causal modelling is **not identification as such**, but to make the best out of the observables that we do have.

Don't say: "I can't provide a unique solution from your assumptions, go home."

Do say: "These are all the solutions compatible with your assumptions".

No academic talk without a **meme**

how it started

how it's going

The core
question of
causal
inference:
Identifiability

"I can't provide a unique solution from your assumptions, go home." Make the best out of the observables that we have

"These are all the solutions compatible with your assumptions".

Questions & Answers

Time for

- Questions
- Discussion
- Feedback
- 40+ slides in the Appendix

You can also talk to me about

- 1. Synthetic Control
- 2. (Causal) Bayesian Optimisation
- 3. Topological Perspectives of Causality

partial-identification.com

- Book (draft)
- 45 minute version of this talk

Contribute to Causal Genealogy: genealogy.causality.link

		_	_	_	_	
	A	В	С	D	E	
1	How to use this Geneology	(inspired by https://www.genea ew of the researchers in causal in	logy.math.ndsu.nodak.e		DCPBqbvJNNlx76wfA5038rJ5zHrSZFk/edit?usp=shar	ring
2	FAQ How do I add more people t Simply use the Google Docs of	o the sheet?	turn your comment into an	n entry.		
3	Name	Institution	Supervisor	Location	Previous Positions	Link
4	Academia					
5	UCLA					
6	Judea Pearl	UCLA	?	US	Rutgers, Technion, Newark College of Engineering	http://b
7	Wesley Salmon	UCLA	Hans Reichenbach	US	?	
8	Hans Reichenbach	UCLA	Paul Hensel, Max Noeth	US	Berlin, Istanbul, Erlangen	
9	John Hopkins					
10	Ilya Shpitser	John Hopkins		US	UCLA, Judea Pearl	https://
11	Oregon State University					
12	Karthika Mohan	Oregon State University	Judea Pearl	US		http://w
13	CMU					
14	Kun Zhang	СМU		Pittsburgh, US	MPI Tübingen	
15	Clark Glymour	CMU	Wesley Salmon	Pittsburgh, US		
16	Peter Spirtes	CMU		Pittsburgh, US		
17	ETH Zürich					
18	Peter Bühlmann	ETH		Zürich	?	
19	Marloes Maathuis	ETH		Zürich	?	https://
20	Nicolai Meinshausen	ETH				

Appendix

The Causal Ladder

(Pearl, 2018: "Book of Why")

Two schools of thought: Apples and Oranges?

	Potential Outcomes	Graphical Models (DAGs)
Areas	Epidemiology, Econometrics	Computer Science, Artificial Intelligence
Schools	Harvard, Berkeley and more	UCLA, CMU and more

Discussion see here:

https://www.jstor.org/stable/4616823?seg=1

Compare: Identifiability in RCTs and obs. studies

(Alternatively, if these conditions are not met, one can try to use a *instrumental variable model*)

Compare: Identifiability in RCTs and obs. studies

Observational studies (The focus of this talk)

(Alternatively, if these conditions are not met, one can try to use a *instrumental variable model*)

If we want to adjust for confounding, we need to identify the confounders!

Define SCM: <**V**, **F**, **U**>

V: observed variables

F: structural equations

U: background variables, with P(**U**)

"The building blocks of causal DAGs (directed acyclic graphs)"

If we want to adjust for confounding, we need to **identify the confounders!**

$$V = \{X, Y, Z\}, U = \{U_X, U_Y, U_Z\}, F = \{f_X, f_Y, f_Z\}$$

V: observed variables

F: structural equations

U: background variables, with P(**U**)

This SCM implies this DAG:

"The building blocks of causal DAGs (directed acyclic graphs)"

If we want to adjust for confounding, we need to identify the confounders!

$$V = \{X, Y, Z\}, U = \{U_X, U_Y, U_Z\}, F = \{f_X, f_Y, f_Z\}$$
$$f_X : X = U_X$$

V: observed variables

F: structural equations

 ${\bf U}$: background variables, with ${\bf P}({\bf U})$

This SCM implies this DAG:

"The building blocks of causal DAGs (directed acyclic graphs)"

If we want to adjust for confounding, we need to identify the confounders!

$$V = \{X, Y, Z\}, U = \{U_X, U_Y, U_Z\}, F = \{f_X, f_Y, f_Z\}$$

 $f_X : X = U_X$
 $f_Y : Y = 4x + U_Y$

Define SCM: **<V**, **F**, **U**>

V: observed variables F: structural equations

U: background variables, with P(**U**)

This SCM implies this DAG:

"The building blocks of causal DAGs (directed acyclic graphs)"

If we want to adjust for confounding, we need to identify the confounders!

$$V = \{X, Y, Z\}, U = \{U_X, U_Y, U_Z\}, F = \{f_X, f_Y, f_Z\}$$

 $f_X : X = U_X$
 $f_Y : Y = 4x + U_Y$

$$f_Z: Z = \frac{x}{10} + U_Z$$

This SCM implies this DAG:

Define SCM: <V, F, U>

V: observed variables

F: structural equations

U: background variables, with P(**U**)

"The building blocks of causal DAGs (directed acyclic graphs)"

Pearl, Causality, 2009

If we want to adjust for confounding, we need to identify the confounders!

Define SCM: <**V**, **F**, **U**> (which implies a DAG)

V: observed variables F: structural equations

U: background variables, with P(**U**)

Pearl, Causality, 2009

$$P(Y = y | do(X = x)) = \sum_{z} P(Y = y | X = x, Z = z) P(Z = z)$$

Effect of X on Y:

Choosing the correct adjustment set Z is critical for unbiased effect estimation.

Backdoor adjusted ATE:

$$P(Y = y | do(X = x)) = \sum_{z} P(Y = y | X = x, Z = z) P(Z = z)$$

Effect of X on Y:

Choosing the correct adjustment set Z is critical for unbiased effect estimation.

Backdoor adjusted ATE:

$$P(Y = y | do(X = x)) = \sum_{z} P(Y = y | X = x, Z = z) P(Z = z)$$

X

e

Effect of X on Y:

Choosing the correct adjustment set Z is critical for unbiased effect estimation.

Backdoor adjusted ATE:

$$P(Y = y | do(X = x)) = \sum_{z} P(Y = y | X = x, Z = z) P(Z = z)$$

Effect of X on Y:

Choosing the correct adjustment set Z is critical for unbiased effect estimation.

Backdoor adjusted ATE:

$$P(Y = y | do(X = x)) = \sum_{z} P(Y = y | X = x, Z = z) P(Z = z)$$

$$ACE(D \to Y) = P(y_1^* | \hat{d}_1^*) - P(y_1^* | \hat{d}_0^*)$$

ACE
$$(D \to Y) = P(y_1^* | \hat{d}_1^*) - P(y_1^* | \hat{d}_0^*)$$

 $P(y^* | \hat{d}^*) = \sum P(y|d, u) P(u)$

Treatment Assignment

$$ACE(D \to Y) = P(y_1^* | \hat{d}_1^*) - P(y_1^* | \hat{d}_0^*)$$

$$P(y^*|\hat{d}^*) = \sum P(y|d,u)P(u)$$

P(y,d,z,u) = P(y|d,u) P(d|z,u) P(z) P(u)

Treatment Received

Latent Factors

Observed Response

 $P(y^*|\hat{d}^*) = \sum P(y|d,u)P(u)$

P(y,d,z,u) = P(y|d,u) P(d|z,u) P(z) P(u)

U: unobserved (latent)

Unidentifiable!

$$ACE(D \to Y) = P(y_1^* | \hat{d}_1^*) - P(y_1^* | \hat{d}_0^*)$$

$$P(y^* | \hat{d}^*) = \sum_{u} P(y | d, u) P(u)$$

P(y,d,z,u) = P(y|d,u) P(d|z,u) P(z) P(u)

U: unobserved (latent)
Unidentifiable!

BUT: Observed marginal

P(y,d,z)

$$v = f_V(\mathsf{pa}_V, u_V)$$

Problem: U_v can be anything: "any type with any domain"

$$v = f_V(\mathsf{pa}_V, u_V)$$

Problem: U_v can be anything: "any type with any domain"

But: "For each u_v of U_v, the functional mapping from PA_v to V is *particular* deterministic response function."

$$v = f_V(\mathsf{pa}_V, u_V)$$

Problem: U_v can be anything: "any type with any domain"

But: "For each u_v of U_v, the functional mapping from PA_v to V is *particular deterministic response function*."

Consequence: Can map each value of U_v to a deterministic response function.

Reason: Although the domain size of U_V is unknown, which might be very large or even infinite, the number of different deterministic response functions is **known and limited**, given the domain sizes of PA_v and V

$$v = f_V(\mathsf{pa}_V, u_V)$$

Problem: U_v can be anything: "any type with any domain"

But: "For each u_v of U_v, the functional mapping from PA_v to V is *particular deterministic response function*."

Consequence: Can map each value of U_v to a deterministic response function.

Reason: Although the domain size of U_V is unknown, which might be very large or even infinite, the number of different deterministic response functions is **known and limited**, given the domain sizes of PA_v and V

$$h_{d,3}(z) = d_1$$
 , $h_{d,2}(z) = \begin{cases} d_1 & \text{if } z = z_0 \\ d_0 & \text{if } z = z_1 \end{cases}$

From P(V) to P(R): A visual representation

"Replacing the U with the R"

$$f_V(\mathsf{pa}_V, u_V) = f_V(\mathsf{pa}_V, \ell_V^{-1}(r_V)) = f_V \circ \ell_V^{-1}(\mathsf{pa}_V, r_V) = g_V(\mathsf{pa}_V, r_V),$$

where g_V is the composition of f_V and ℓ_V^{-1} and denotes the response functions represented by r_V .

$$\mathbb{I}(v; \mathsf{pa}_V, r_V) = \begin{cases} 1 & \text{if } g_V(\mathsf{pa}_V, r_V) = v, \\ 0 & \text{otherwise,} \end{cases}$$

Different Formulations: All the same stuff

$$f_{W_i}(\mathbf{r}) = f_{W_i}(f_{W_{i1}}(\mathbf{r}), \dots, f_{W_{ik_i}}(\mathbf{r}), r_{W_i}).$$

$$x_i = f_{x_i}(\mathbf{r})$$

= $f_{x_i}(f_{u_1}(\mathbf{r}), f_{u_2}(\mathbf{r}), \dots, f_{u_k}(\mathbf{r}), r_{x_i})$

$$f_V(\mathsf{pa}_V, u_V) = f_V(\mathsf{pa}_V, \ell_V^{-1}(r_V)) = f_V \circ \ell_V^{-1}(\mathsf{pa}_V, r_V) = g_V(\mathsf{pa}_V, r_V),$$

$$P(\mathbf{V}) = P(\mathcal{D})$$

$$P(\mathbf{V}) = P(\mathcal{D}), \quad \sum_{\mathbf{r}} P(\mathbf{r}) = 1, \quad P(\mathbf{r}) \ge 0,$$

Example:

Example:
$$P(x,y) = \sum_{r_X,r_Y} P(r_X,r_Y) \mathbb{I}(x;r_X) \mathbb{I}(y;x,r_Y).$$

$$TCE(x_1, x_0) = \sum_{r_X, r_Y} P(r_X, r_Y) \mathbb{I}(y; x_1, r_Y) - \sum_{r_X, r_Y} P(r_X, r_Y) \mathbb{I}(y; x_0, r_Y),$$

Linear Programming

$$\begin{aligned} & \min/\max \quad P(\hat{y}_{s_1|\pi,s_0|\bar{\pi}}|\mathbf{o}) - P(\hat{y}_{s_0}|\mathbf{o}), \\ & \text{s.t.} \quad P(\mathbf{V}) = P(\mathcal{D}), \quad \sum_{\mathbf{r}} P(\mathbf{r}) = 1, \quad P(\mathbf{r}) \geq 0, \\ & \textit{Wu et al. (2019): The key idea is to} \end{aligned}$$

- 1. parameterize the causal model using so-called response-function variables, whose distribution captures all randomness encoded in the causal model,
- 2. so that we can explicitly **traverse all possible causal models** to find the tightest possible bounds.

Linear Programming

$$\begin{aligned} & \min/\max \quad P(\hat{y}_{s_1|\pi,s_0|\bar{\pi}}|\mathbf{o}) - P(\hat{y}_{s_0}|\mathbf{o}), \\ & \text{s.t.} \quad P(\mathbf{V}) = P(\mathcal{D}), \quad \sum_{\mathbf{r}} P(\mathbf{r}) = 1, \quad P(\mathbf{r}) \geq 0, \\ & \textit{Wu et al. (2019): The key idea is to} \end{aligned}$$

- 1. parameterize the causal model using so-called response-function variables, whose distribution captures all randomness encoded in the causal model,
- 2. so that we can explicitly **traverse all possible causal models** to find the tightest possible bounds.

Recap: Unidentifiable situation means that there exist two causal models which exactly agree with the same observational distribution.

Beyond Simple Effects

Everything you can imagine

 $TCE(x_1, x_0) = P(y_{x_1}) - P(y_{x_0}).$

$$TCE(x_1, x_0) = P(y_{x_1}) - P(y_{x_0}).$$

$$PE_{\pi}(x_1, x_0) = P(y_{x_1|\pi, x_0|\bar{\pi}}) - P(y_{x_0}),$$

$$S \longrightarrow W$$

$$TCE(x_1, x_0) = P(y_{x_1}) - P(y_{x_0}).$$

$$PE_{\pi}(x_1, x_0) = P(y_{x_1|\pi, x_0|\bar{\pi}}) - P(y_{x_0}),$$

$$S \xrightarrow{\hat{Y}} \hat{Y}$$

 $CE(x_1, x_0 | \mathbf{o}) = P(y_{x_1} | \mathbf{o}) - P(y_{x_0} | \mathbf{o}).$

 $TCE(x_{1}, x_{0}) = P(y_{x_{1}}) - P(y_{x_{0}}).$ $PE_{\pi}(x_{1}, x_{0}) = P(y_{x_{1}|\pi, x_{0}|\bar{\pi}}) - P(y_{x_{0}}),$ $CE(x_{1}, x_{0}|\mathbf{o}) = P(y_{x_{1}}|\mathbf{o}) - P(y_{x_{0}}|\mathbf{o}).$

 $PCE_{\pi}(x_1, x_0 | \mathbf{o}) = P(y_{x_1 | \pi, x_0 | \bar{\pi}} | \mathbf{o}) - P(y_{x_0} | \mathbf{o}).$

 $\pi = \{ S \to W \to A \to \hat{Y},$

 $S \to \hat{Y}$

$$TCE(x_1, x_0) = P(y_{x_1}) - P(y_{x_0}).$$

$$PE_{\pi}(x_1, x_0) = P(y_{x_1|\pi, x_0|\bar{\pi}}) - P(y_{x_0}),$$

$$CE(x_1, x_0 | \mathbf{o}) = P(y_{x_1} | \mathbf{o}) - P(y_{x_0} | \mathbf{o}).$$

$$PCE_{\pi}(x_1, x_0 | \mathbf{o}) = P(y_{x_1 | \pi, x_0 | \bar{\pi}} | \mathbf{o}) - P(y_{x_0} | \mathbf{o}).$$

Table 1: Connection between previous fairness notions and PC fairness

$$TCE(x_1, x_0) = P(y_{x_1}) - P(y_{x_0}).$$

$$PE_{\pi}(x_1, x_0) = P(y_{x_1|\pi, x_0|\bar{\pi}}) - P(y_{x_0}),$$

$$CE(x_1, x_0 | \mathbf{o}) = P(y_{x_1} | \mathbf{o}) - P(y_{x_0} | \mathbf{o}).$$

$$S \longrightarrow W$$

$$PCE_{\pi}(x_1, x_0 | \mathbf{o}) = P(y_{x_1 | \pi, x_0 | \bar{\pi}} | \mathbf{o}) - P(y_{x_0} | \mathbf{o}).$$

Choice of O and pi determines effect! Just plug in into PCE_pi

Table 1: Connection between previous fairness notions and PC fairness

Partial Identification:

Applications

How is partial identification useful?

Algorithmic Recourse

Scenario: Joe wants to know what he needs to change to get his loan approved.

Graph	X_1 X_2 X_3	X_1 X_2 X_3	
Confounding	Full	Partial	
Recourse	Bounds (LB _{FC} ,UB _{FC})	Bounds (LB _{PC} ,UB _{PC})	
Example	Joe's loan application will cross the acceptance threshold if his salary increases above €80k.	if his salary increases above €78k, i.e. LB _{PB} might be tighter due to lack of confounding, 'flipping' earlier.	