

Databases - Introduction to SQL

Jaeyong Choi
Dept. of Software, Gachon University

Overview

History

- IBM Sequel language developed as part of System R project at the IBM San Jose Research Laboratory
- Renamed Structured Query Language (SQL)
- ANSI and ISO standard SQL:
 - □ SQL-86, SQL-89, SQL-92
 - □ SQL:1999, SQL:2003, ..., SQL: 2019
- Commercial systems offer most of SQL-92 features
 - Plus varying feature sets from later standards and special proprietary features
 - NOTE: Some examples here may not work on your particular system

Sample Database

University database

□ University database *cont'd* 🗐

ID	пате	dept_name	salary
10101	Srinivasan	Comp. Sci.	65000
12121	Wu	Finance	90000
15151	Mozart	Music	40000
22222	Einstein	Physics	95000
32343	El Said	History	60000
33456	Gold	Physics	87000
45565	Katz	Comp. Sci.	75000
58583	Califieri	History	62000
76543	Singh	Finance	80000
76766	Crick	Biology	72000
83821	Brandt	Comp. Sci.	92000
98345	Kim	Elec. Eng.	80000

Figure 2.1 The *instructor* relation.

dept_name	building	budget
Biology	Watson	90000
Comp. Sci.	Taylor	100000
Elec. Eng.	Taylor	85000
Finance	Painter	120000
History	Painter	50000
Music	Packard	80000
Physics1	Watson	70000

Figure 2.5 The *department* relation.

course_id	title	dept_name	credits
BIO-101	Intro. to Biology	Biology	4
BIO-301	Genetics	Biology	4
BIO-399	Computational Biology	Biology	3
CS-101	Intro. to Computer Science	Comp. Sci.	4
CS-190	Game Design	Comp. Sci.	4
CS-315	Robotics	Comp. Sci.	3
CS-319	Image Processing	Comp. Sci.	3
CS-347	Database System Concepts	Comp. Sci.	3
EE-181	Intro. to Digital Systems	Elec. Eng.	3
FIN-201	Investment Banking	Finance	3
HIS-351	World History	History	3
MU-199	Music Video Production	Music	3
PHY-101	Physical Principles	Physics	4

Figure 2.2 The course relation.

University database cont'd

course_id	sec_id	semester	year	building	room_number	time_slot_id
BIO-101	1	Summer	2009	Painter	514	В
BIO-301	1	Summer	2010	Painter	514	A
CS-101	1	Fall	2009	Packard	101	H
CS-101	1	Spring	2010	Packard	101	F
CS-190	1	Spring	2009	Taylor	3128	Е
CS-190	2	Spring	2009	Taylor	3128	A
CS-315	1	Spring	2010	Watson	120	D
CS-319	1	Spring	2010	Watson	100	В
CS-319	2	Spring	2010	Taylor	3128	C
CS-347	1	Fall	2009	Taylor	3128	A
EE-181	1	Spring	2009	Taylor	3128	C
FIN-201	1	Spring	2010	Packard	101	В
HIS-351	1	Spring	2010	Painter	514	C
MU-199	1	Spring	2010	Packard	101	D
PHY-101	1	Fall	2009	Watson	100	A

Figure 2.6 The *section* relation.

course_id	prereq_id
BIO-301	BIO-101
BIO-399	BIO-101
CS-190	CS-101
CS-315	CS-101
CS-319	CS-101
CS-347	CS-101
EE-181	PHY-101

Figure 2.3 The prereq relation.

ID	course_id	sec_id	semester	year
10101	CS-101	1	Fall	2009
10101	CS-315	1	Spring	2010
10101	CS-347	1	Fall	2009
12121	FIN-201	1	Spring	2010
15151	MU-199	1	Spring	2010
22222	PHY-101	1	Fall	2009
32343	HIS-351	1	Spring	2010
45565	CS-101	1	Spring	2010
45565	CS-319	1	Spring	2010
76766	BIO-101	1	Summer	2009
76766	BIO-301	1	Summer	2010
83821	CS-190	1	Spring	2009
83821	CS-190	2	Spring	2009
83821	CS-319	2	Spring	2010
98345	EE-181	1	Spring	2009

Figure 2.7 The teaches relation.

University database cont'd

ID	пате	dept_name	tot_cred
00128	Zhang	Comp. Sci.	102
12345	Shankar	Comp. Sci.	32
19991	Brandt	History	80
23121	Chavez	Finance	110
44553	Peltier	Physics	56
45678	Levy	Physics	46
54321	Williams	Comp. Sci.	54
55739	Sanchez	Music	38
70557	Snow	Physics	0
76543	Brown	Comp. Sci.	58
76653	Aoi	Elec. Eng.	60
98765	Bourikas	Elec. Eng.	98
98988	Tanaka	Biology	120

Figure 4.1 The *student* relation.

ID	course_id	sec_id	semester	year	grade
00128	CS-101	1	Fall	2009	A
00128	CS-347	1	Fall	2009	A-
12345	CS-101	1	Fall	2009	C
12345	CS-190	2	Spring	2009	Α
12345	CS-315	1	Spring	2010	Α
12345	CS-347	1	Fall	2009	A
19991	HIS-351	1	Spring	2010	В
23121	FIN-201	1	Spring	2010	C+
44553	PHY-101	1	Fall	2009	B-
45678	CS-101	1	Fall	2009	F
45678	CS-101	1	Spring	2010	B+
45678	CS-319	1	Spring	2010	В
54321	CS-101	1	Fall	2009	A-
54321	CS-190	2	Spring	2009	B+
55739	MU-199	1	Spring	2010	A-
76543	CS-101	1	Fall	2009	A
76543	CS-319	2	Spring	2010	A
76653	EE-181	1	Spring	2009	C
98765	CS-101	1	Fall	2009	C-
98765	CS-315	1	Spring	2010	В
98988	BIO-101	1	Summer	2009	A
98988	BIO-301	1	Summer	2010	null

Figure 4.2 The takes relation.

MySQL

MySQL

- A free open-source database management system (DBMS)
 - Pronounced "My S-Q-L" or "My Sequel"
- A popular choice as the database system for use with web applications (a component of LAMP)
 - <u>L</u>inux <u>A</u>pache <u>M</u>ySQL <u>P</u>HP
- Widely used in various web sites
 - Facebook, Google, Wikipedia, Twitter, Flickr, and YouTube

MySQL usage

 Ranked second after Oracle; first among open source databases (as of Sept. 2022)

MySQL database hierarchy

Connect to MySQL server

C:\> mysql -u root -p mysql

C:\> mysql -u root -p mydb

C:\> mysql -u root -p

Enter password: 12345

Create a database

```
mysql> CREATE DATABASE MYDB; mysql> COMMIT;
```

mysql> **USE MYDB**;

(Note: MySQL commands and SQL database/table/attribute names are case-insensitive!)

Example

```
mysql> CREATE DATABASE MYDB;
mysql> CREATE TABLE MyTable (칼럼명1 data_type, 칼럼
명2 data_type);
```

1049 (42000): Unknown database 'mydb

vsql> create database MYDB;

mysal> commit;

mysal> use MYDB;

Database changed

Duery OK, 1 row affected (0.01 sec)

Query OK, O rows affected (0.00 sec)

Update root password

```
mysql> USE MYSQL;
mysql> UPDATE USER
SET PASSWORD=PASSWORD('12345')
WHERE USER='root';
mysql> FLUSH PRIVILEGES;
```

Others

show databases;	DB들의 리스트를 표시하라	
use world;	WORLD DB를 사용한다	
show tables;	WORLD DB의 테이블리스트를 표시하라	
desc city;	city 테이블의 구조를 표시달라	
select * from city;	city테이블의 내용을 표시하라	

Manage databases

mysql> **SHOW** DATABASES;

mysql> USE MYDB;

mysql> **DELETE** DATABASE MYDB;

mysql> TRUNCATE DATABASE MYDB;

mysql> DROP DATABASE MYDB;

mysql> COMMIT;

mysql> **DROP** DATABASE MYDB;

Exercise

- □ Program → MySQL workbench 8.o CE 선택
- □ Database → connect to database

Exercise

□ Password 입력

For more information

- Check the MySQL documentation
- https://dev.mysql.com/doc/refman/8.o/en/

SQL Data Definition

Data definition language (DDL)

- Allows the specification of information about relations
 - Schema for each relation
 - Domain of values associated with each attribute
 - Integrity constraints
- Also other information such as:
 - Set of indices to be maintained for each relations
 - Security and authorization information for each relation
 - Physical storage structure of each relation on disk

Domain types in SQL

- char(n) fixed length character string, with user-specified length n
- varchar(n) variable length character strings, with userspecified maximum length n
- int integer (a finite machine-dependent subset of integers)
- □ tinyint 1 byte integer
- **numeric(p,d)** fixed point number, with user-specified precision of p digits, with d digits to the right of decimal point
 - E.g., numeric(3,1) allows 44.5, but not 444.5 or 0.32
- real, double precision floating point and double-precision floating point numbers, with machine-dependent precision
- float(n) floating point number, with user-specified precision of at least n digits
- and more

Examples of DDL commands

- CREATE is used to create the database or its objects (like table, index, function, views, store procedure and triggers).
- □ DROP is used to delete objects from the database.
- ALTER-is used to alter the structure of the database.
- TRUNCATE—is used to remove all records from a table, including all spaces allocated for the records are removed.
- COMMENT –is used to add comments to the data dictionary.
- RENAME —is used to rename an object existing in the database.

Create table construct

An SQL relation is defined using the create table command:
CREATE TABLE 'Student' (

```
create table r(A_1 D_1, A_2 D_2, ..., A_n D_n,

<integrity-constraint<sub>1</sub>>,

...,

<integrity-constraint<sub>k</sub>>);
```

- r is the name of the relation
- \blacksquare Each A_i is an attribute name in the schema of relation r
- \square D_i is the data type of values in the domain of attribute A_i
- □ Integrity constraints(무결성 제약조건) in create table
 - □ **not null** → Required fields
 - **primary key** (A_1, \dots, A_n)
 - **o** foreign key (A_m, \dots, A_n) references r

'id' tinyint NOT NULL,

PRIMARY KEY ('id')

);

`name` char(4) NOT NULL,

`sex` enum('날자','역자') NOT NULL,

`address` varchar(50) NOT NULL,
`birthday` datetime NOT NULL,

Example

Example

```
create table department (
       dept_name varchar (20),
                                                     building
       building
                                                     budget
                           varchar (15),
       budget
                            numeric (12,2),
       primary key (dept_name));
                                                    department
create table instructor (
                                                    dept name
                                                    building
                    varchar (5),
                                                    budget
       name varchar (20) not null,
       dept_name varchar(20),
             numeric (8,2),
                                                     instructor
       salary
       primary key (ID),
                                                      name
                                                      dept_name
       foreign key (dept_name)
                     references department (dept_name));
```

primary key declaration automatically ensures not null

Example – alter the table

- ALTER TABLE changes the structure of a table
 - add or delete columns, create or destroy indexes, change the type of existing columns, or rename columns or the table itself.
 - Multiple ADD, ALTER, DROP, and CHANGE clauses are permitted in a single ALTER TABLE statement, separated by commas.

Examples

- Add and Drop column
 - alter table instructor add column [a] [int];
 - alter table instructor drop column [a];
- Modify column
 - ALTER TABLE [table_name] MODIFY COLUMN [ex_column] [varchar(16)] NULL;

Example – alter the table

- □ Change name and definition (이름까지 변경)
 - ALTER TABLE t1 CHANGE a b BIGINT NOT NULL;
 - ALTER TABLE t1 RENAME COLUMN b TO a;
- Modify constraints
 - alter table instructor add foreign key (dept_name) references department(dept_name);
 - ALTER TABLE t1 DROP FOREIGN KEY fk_symbol;
- Multiple column changes
 - ALTER TABLE t2 DROP COLUMN c, DROP COLUMN d;

More relation definitions

```
D
                                                              name
                                                              dept_name
create table student (
                                                              tot_cred
                       varchar(5) primary key,
        ID
                       varchar(20) not null,
                                                             department
        name
                                                              dept_name
                                                              building
       dept_name varchar(20)
                                                             budget
                       references department (dept_name),
                       numeric(3,0));
       tot_cred
create table course (
                       varchar (7) primary key,
       course_id
                                                     course_id
                                                                  department
                                                                  dept name
       title
                       varchar (50),
                                                     dept name
                                                                  building
                                                     credits
                                                                  budget
       dept_name varchar(20)
                       references department (dept_name),
       credits
                               numeric (2,0));
```

student

More relation definitions cont'd

■ Note: *sec_id(是也)* can be dropped from primary key above, to ensure a student cannot be registered for two sections of the same course in the

same semester

ID	Course_id	Sec_id	semester	Year
20191123	1111	01	Fall	2019
20191123	1111	02	Fall	2019

student

dept_name

devartment

dept name

building

budget

tot cred

Exercise -Let's try!

