Panal Data 1: Framework

Instructor: Yuta Toyama

Last updated: 2020-03-30

Section 1

Introduction

Contents

- Framework
- Clustered Standard Errors
- Many FEs
- ▶ Implementation in R: felm command

Introduction

- ▶ Panel data has observations on n cross-sectional units at T time periods: (X_{it}, Y_{it})
- Examples:
 - 1. Person *i*'s income in year *t*.
 - 2. Vote share in county *i* for the presidential election year *t*.
 - 3. Country i's GDP in year t.
- Panel data is useful because
 - 1. More variation (both cross-sectional and temporal variation)
 - 2. Can deal with time-invariant unobserved factors.
 - 3. (Not focus in this course) Dynamics of individual over time.

Overview

Consider the model

$$y_{it} = \beta' x_{it} + \epsilon_{it}, E[\epsilon_{it}|x_{it}] = 0$$

where x_{it} is a k-dimensional vector

- ▶ If there is no correlation between x_{it} and ϵ_{it} , you can estimate the model by OLS (pooled OLS)
- ▶ A natural concern here is the omitted variable bias.
- ▶ We now consider that ϵ_{it} is written as

$$\epsilon_{it} = \alpha_i + u_{it}$$

where α_i is called **unit fixed effect**, which is the time-invariant unobserved heterogeneity.

▶ With panel data, we can control for the unit fixed effects by incorporating the dummy variable for each unit i!

$$y_{it} = \beta' x_{it} + \gamma_2 D2_i + \cdots + \gamma_n Dn_i + u_{it}$$

where Dl_i takes 1 if l = i.

- Notice that we cannot do this for the cross-section data!
- ▶ We often write the model with unit FE as

$$y_{it} = \beta' x_{it} + \alpha_i + u_{it}$$

Framework

► The fixed effects model

$$y_{it} = \beta' x_{it} + \alpha_i + u_{it}$$

- ► Assumptions:
 - 1. u_{it} is uncorrelated with (x_{i1}, \dots, x_{iT}) , that is $E[u_{it}|x_{i1}, \dots, x_{iT}] = 0$
 - 2. (Y_{it}, x_{it}) are independent across individual i.
 - 3. No outliers
 - 4. No Perfect multicollinarity
- Let's discuss Assumptions 1, 2, and 4 in detail.

- Assumption 1 is weaker than the assumption in OLS, because the time-invariant factor α_i is captured by the fixed effect.
 - **Example:** Unobserved ability is caputured by α_i .
- Assumption 2 allows for serial correlation (i.e., $Cov(x_{it}, x_{it'}) \neq 0$) within individual i.
 - ▶ This is related to the cluster-robust standard error.
- Assumption 4 seems as usual, but it has an important role in panel data analysis.
- Consider the following regression with unit FE

$$wage_{it} = \beta_0 + \beta_1 experience_{it} + \beta_2 male_i + \beta_3 white_i + \alpha_i + u_{it}$$

where $experience_{it}$ measures how many years worker i has worked before at time t.

- ▶ In the regression above, we have multicollinearity issue because of *male_i* and *white_i*.
- Intuitively, we cannot estimate the coefficient β_2 and β_3 because those **time-invariant** variables are completely captured by the unit fixed effect α_i .

Estimation (within transformation)

- You can estimate the model by adding dummy variables for each individual. This is called least square dummy variables (LSDV) estimator.
- ► This is computationary demanding if we have many cross-sectional observations.
- ▶ We often use the following within transformation.
- ▶ Define the new variable \tilde{Y}_{it} as

$$\tilde{Y}_{it} = Y_{it} - \bar{Y}_i$$

- where $\bar{Y}_i = \frac{1}{T} \sum_{t=1}^{T} Y_{it}$.
- Nhy is this useful? By applying the within transformation to the regression model, we can eliminate the unit fixed effect α_i

$$\tilde{Y}_{it} = \beta' \tilde{X}_{it} + \tilde{u}_{it}$$

Then apply the OLS estimator to the above equation!.

Importance of within variation

- As I talked before, the variation of the explanatory variable is key for precisely estimating the coefficients (once we control for the endogeneity).
- ▶ Within transformation eliminates the time-invariant unobserved factor, which is a large source of endogeneity in many situations.
- \triangleright But, within transformation also absorbs the variation of X_{it} .
- Remember that

$$\tilde{X}_{it} = X_{it} - \bar{X}_i$$

- ▶ The transformed variable \tilde{X}_{it} has the variation over time t within unit i.
- ▶ If X_{it} is fixed over time within unit i, $\tilde{X}_{it} = 0$, so that no variation.

FE, FE, and FE

▶ In addition to unit FE, you can also add time fixed effects (FE)

$$y_{it} = \beta' x_{it} + \alpha_i + \gamma_t + u_{it}$$

- ► The regression above controls for both time-invariant individual heterogeneity and (unobserved) aggregate year shock.
- ▶ Panel data is useful to capture various unobserved shock by including fixed effects.

Panel + IV

▶ You can use IV regression with panel data. This is PS5.

Standard Errors

- ► In the cross-section data, we need to use the heteroskedasticity robust standard error.
 - Remember: Heteroskedasticity means $Var(u_i|x_i) = \sigma(x_i)$.
- ▶ In the panel data setting, we need to consider the **autocorrelation** of the variable, that is the correlation between u_{it} and $u_{it'}$ across periods for each individual i.
- ► The current standard is to use so-called **cluster-robust standard error**.
 - ► The cluster is unit *i*. The observations within cluster are allowed to be freely correlated.
 - Cluster-robust standard error takes care for such correlation.
- ▶ I will explain how to deal with this in R.