# GEOMETRIA ANALÍTICA - SEMANA 6 RETAS E PLANOS

Professor: Victor M. Cunha

Instituto de Matemática e Estatística (IME) - UFBA



**MAIO 2022** 



1 Retas

- 2 Equações da reta
- 3 Posição relativa de retas
- 4 Ângulo entre retas



- 1 Retas
- 2 Equações da reta
- 3 Posição relativa de retas
- 4 Ângulo entre retas

2



- Dados dois pontos  $A, B \in \mathbb{R}^n$ , vamos considerar a reta r que passa por estes pontos.
- Temos que um ponto  $P \in \mathbb{R}^n$  pertence à esta reta se e somente se ele for colinear com A e B. Ou seja, se  $\overrightarrow{AP}$  for paralelo à  $\overrightarrow{AB}$ .
- Deste modo, associamos a cada ponto  $P \in r$  um  $\lambda \in \mathbb{R}$ , tal que:

$$\overrightarrow{AP} = \lambda \overrightarrow{AB}$$

$$P = A + \lambda \overrightarrow{v}$$

onde  $\vec{v} = \overrightarrow{AB}$  é chamado de vetor diretor da reta, e  $\lambda \in \mathbb{R}$  é um parâmetro real.

- Esta é chamada a equação vetorial da reta r.
- Uma forma de interpretar a equação vetorial da reta é que  $\vec{v}$  representa a direção da reta, enquanto A fixa sua posição no espaço.



■ Deste modo, dados um ponto  $A(x_0, y_0, z_0)$  e um vetor  $\vec{v} = (a, b, c)$ , a equação vetorial da reta que passa por A e tem a direção  $\vec{v}$  é

$$P = A + \lambda \vec{v}$$
$$(x, y, z) = (x_0, y_0, z_0) + \lambda(a, b, c)$$

- Note que a representação vetorial de uma reta não é única. Poderíamos, por exemplo, ter tomado qualquer outro ponto  $A' \in r$ .
- Também poderíamos ter pego qualquer outro vetor não-nulo  $\vec{w} \neq 0$  e paralelo à  $\vec{v}$  para representar a direção da reta.
- Deste modo, uma mesma reta apresenta diversos vetores diretores.
- Podemos também interpretar o parâmetro como o tempo, e  $s=s_0+t\vec{v}$  como a posição de uma partícula em movimento uniforme com velocidade  $\vec{v}$ . A trajetória da partícula é então a reta.



- Dados os pontos A(1,2,5) e B(0,1,0), determine P sobre a reta  $\overrightarrow{AB}$  tal que BP=3AP.
- Dada a reta  $r: (1,0,0) + \lambda(1,1,1)$  e os pontos A(1,1,1) e B(0,0,1), encontrar o ponto da reta r equidistante de A e B.
- Dados A(0,2,1) e  $r:(0,2,-2)+\lambda(1,-1,2)$ , encontre os pontos de r que distam  $\sqrt{3}$  de A. A distância de A à r é maior, menor ou igual à  $\sqrt{3}$ ?
- Dados  $a, b, A, B.C \in \mathbb{R}$ , encontre equações vetoriais para as retas  $r \colon y = ax + b$  e  $s \colon Ax + By + C = 0$  do plano.
- $\blacksquare$  Encontre, se existir, o ponto de interseção das retas r e s:
  - $ightharpoonup r: (3,1,2) + \lambda(2,1,0) es: (0,0,1) + \mu(1,0,1).$
  - $ightharpoonup r: (1,1,0) + \lambda(2,1,-1) e s: (3,1,2) + \mu(-4,-2,2).$
  - $ightharpoonup r: (1,1,0) + \lambda(1,0,0) es: (0,0,1) + \mu(0,2,1).$



- 1 Retas
- 2 Equações da reta
- 3 Posição relativa de retas
- 4 Ângulo entre retas



- A partir da equação vetorial da reta, podemos encontrar outras formas de representar uma reta.
- Primeiramente, fazendo a igualdade termo-a-termo da equação vetorial, temos as chamadas equações paramétricas da reta:

$$\begin{cases} x = x_0 + \lambda a \\ y = y_0 + \lambda b \\ z = z_0 + \lambda c \end{cases}$$

■ Se tivermos  $a \neq 0$ ,  $b \neq 0$  e  $c \neq 0$ , podemos isolar  $\lambda$  em cada equação e obter:

$$\frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c}$$

que são as chamadas equações simétricas da reta.

Note que as equações simétricas nos dizem que em uma reta as variações  $\Delta x$ ,  $\Delta y$  e  $\Delta z$  são proporcionais entre si.



■ Se  $a \neq 0$  na equação paramétrica, podemos isolar o parâmetro  $\lambda$  na primeira equação e substitui-lo nas outras, obtendo:

$$\begin{cases} y = m_1 x + n_1 \\ z = p_1 x + q_1 \end{cases}$$

que são chamadas de equações reduzidas da reta na variável x.

- $\blacksquare$  Neste caso, expressamos as coordenadas y e z como funções afim da variável x.
- No caso do plano, temos uma única equação reduzida  $y = m_1 x + n_1$ , estudada no ensino médio, e gráfico de uma função afim y = f(x).
- De modo análogo, caso  $b \neq 0$  ou  $c \neq 0$ , podemos considerar equações reduzidas nas variáveis y ou z:

$$\begin{cases} x = m_2 y + n_2 \\ z = p_2 y + q_2 \end{cases} \begin{cases} x = m_3 z + n_3 \\ y = p_3 z + q_3 \end{cases}$$



- Note que na equação reduzida  $a \neq 0, b \neq 0$  ou  $c \neq 0$ , uma vez que  $\vec{v} = (a, b, c) \neq \vec{0}$ .
- Deste modo, sempre podemos encontrar equações reduzidas em ao menos uma das três variáveis x, y ou z.
- Portanto, de modo geral, sempre podemos expressar uma reta como um sistema de equações afim:

$$\begin{cases} A_1x + B_1y + C_1z + D_1 = 0 \\ A_2x + B_2y + C_2z + D_2 = 0 \end{cases}$$

estas são chamadas de equações gerais da reta.

■ Considerando os vetores  $\vec{n}_1 = (A_1, B_1, C_1)$  e  $\vec{n}_2 = (A_2, B_2, C_2)$ , e a equação vetorial da reta  $\vec{p} = (x, y, z) = \vec{p}_0 + \lambda \vec{v}$ , note que  $\vec{n}_1 \cdot \vec{p} = -D_1$  e  $\vec{n}_2 \cdot \vec{p} = -D_2$ , para todo  $\lambda \in \mathbb{R}$ . Deste modo:

$$\vec{n}_1 \cdot \vec{v} = \vec{n}_2 \cdot \vec{v} = 0$$

■ E  $\vec{n}_1$  e  $\vec{n}_2$  são dois vetores *L.I.* perpendiculares à reta.



- Encontre, caso existam, as equações vetorial, paramétrica, simétrica, reduzida e geral das seguintes retas:
  - A reta que passa pelos pontos A(1,1,0) e B(2,-1,1).
  - A reta paralela ao eixo x e que passa pelo ponto A(1,2,1).
  - ightharpoonup A reta x = y = z.
- Considere a reta dada pelas seguintes equações gerais:

$$\begin{cases} x - y + 2z + 1 = 0 \\ 3x + y - z - 2 = 0 \end{cases}$$

encontre uma equação vetorial para esta reta.

■ Considere a reta dada pelas equações reduzidas:

$$\begin{cases} y = 2x + 1 \\ z = -x + 2 \end{cases}$$

encontre o ponto desta reta mais próximo da origem.

■ Considere a equação geral de uma reta no plano Ax + By + C = 0. Interprete geometricamente o vetor  $\vec{n} = (A, B)$ .



- 1 Retas
- 2 Equações da reta
- 3 Posição relativa de retas
- 4 Ângulo entre retas

# Posição relativa de retas no plano



- Considerando duas retas no plano, temos duas possibilidades para a sua posição relativa:
   Elas podem ser paralelas ou concorrentes.
- Por simplicidade, vamos considerar retas coincidentes como um caso particular de retas paralelas.
- Duas retas r:  $A + \lambda \vec{r}$  e s:  $B + \mu \vec{s}$  são paralelas se tiverem a mesma direção, ou seja  $\vec{r}$  e  $\vec{s}$  são paralelos:

$$\vec{r} = \alpha \vec{s}$$

■ Se duas retas forem paralelas, elas serão coincidentes caso tenham pontos em comum. Podemos então fazer  $B \in r$ , ou seja  $\overrightarrow{AB}$  paralelo à  $\overrightarrow{r}$  (e à  $\overrightarrow{s}$ ).

$$\overrightarrow{AB}$$
 //  $\overrightarrow{r}$  //  $\overrightarrow{s}$ 

■ Duas retas coincidentes são essencialmente a mesma reta. Note, no entanto, que os pontos A e B e os vetores  $\vec{r}$  e  $\vec{s}$  não precisam ser iguais. Isto porque a representação da reta pela equação vetorial não é única.



- No plano, se duas retas não são paralelas, elas serão concorrentes, ou seja terão exatamente um ponto de interseção.
- De fato, se  $\vec{r}, \vec{s} \in \mathbb{R}^2$  não são paralelos, eles formam uma base do  $\mathbb{R}^2$ , e podemos expressar  $\overrightarrow{AB}$  como uma combinação linear deles:

$$\overrightarrow{AB} = \alpha_1 \vec{r} + \alpha_2 \vec{s}$$

$$B - A = \alpha_1 \vec{r} + \alpha_2 \vec{s}$$

$$B - \alpha_2 \vec{s} = A + \alpha_1 \vec{r}$$

ou seja, o ponto  $C=A+\alpha_1\vec{r}=B-\alpha_2\vec{s}$  pertence à ambas as retas, sendo portanto a interseção de r e s.

■ Este ponto é único, dado que a representação de  $\overrightarrow{AB}$  como uma combinação linear de  $\overrightarrow{r}$  e  $\overrightarrow{s}$  é única.



- Considerando agora retas no espaço, elas não necessitam mais serem coplanares. Podemos agora ter retas paralelas, concorrentes ou reversas.
- Novamente, duas retas  $r: A + \lambda \vec{r}$  e  $s: B + \mu \vec{s}$  são paralelas caso seus vetores diretores sejam paralelos, ou seja  $\vec{r} = \alpha \vec{s}$ . Elas são coincidentes se, além de paralelas, tivermos também  $\vec{AB}$  //  $\vec{r}$  //  $\vec{s}$ .
- No espaço, no entanto, duas retas que não são paralelas podem também não ser concorrentes.
- Para que duas retas r:  $A + \lambda \vec{r}$  e s:  $B + \mu \vec{s}$  sejam concorrentes,  $\vec{r}$  e  $\vec{s}$  devem ser L.l. e  $\overrightarrow{AB}$  deve pertencer ao plano formado por  $\overrightarrow{r}$  e  $\overrightarrow{s}$ , ou seja:

$$\overrightarrow{AB} = \alpha_1 \overrightarrow{r} + \alpha_2 \overrightarrow{s}$$
 ou  $det(\overrightarrow{r}, \overrightarrow{s}, \overrightarrow{AB}) = 0$ 



- Finalmente, duas retas  $r: A + \lambda \vec{r}$  e  $s: B + \mu \vec{s}$  no espaço são reversas caso elas não sejam coplanares.
- $\blacksquare$  Para tal,  $\overrightarrow{AB}$ ,  $\overrightarrow{r}$  e  $\overrightarrow{s}$  não devem pertencer a um mesmo plano. Ou seja, eles são vetores *L.I.*:

$$det(\vec{r}, \vec{s}, \overrightarrow{AB}) \neq 0$$







#### Exercícios



- Determine se as retas seguintes são paralelas, concorrentes ou reversas:
  - $ightharpoonup r: (1,1,0) + \lambda(-2,1,-3) e s: (2,0,1) + \mu(6,-3,9).$
  - $r: (0,1,1) + \lambda(2,0,1)$  e s:  $(-2,-1,0) + \mu(1,1,1)$ .
  - $r: (-1,0,2) + \lambda(1,-2,1) es: (2,-2,1) + \mu(-1,0,1).$
  - $r: (1,0,0) + \lambda(1,2,-1) es: (-1,-4,2) + \mu(2,4,-2).$
- Encontre a reta que passa pelo ponto A(-1,2,1) e é paralela à reta  $r: (0,1,0) + \lambda(2,0,-1)$ .
- Encontre a reta que passa pelo ponto A(1,0,0) e é concorrente às retas  $r: (-1,1,1) + \lambda(1,-1,1)$  e  $s: (0,-1,0) + \mu(0,2,1)$ .
- Determine se as retas seguintes são paralelas, concorrentes ou reversas:

r: 
$$\begin{cases} 2x + 3y - z - 1 = 0 \\ x + y + z = 0 \end{cases}$$
 s: 
$$\begin{cases} y = 2x - 1 \\ z = x + 1 \end{cases}$$



- 4 Ângulo entre retas

20

### ÂNGULO ENTRE RETAS



- Definimos o ângulo formado entre as retas r e s como o menor ângulo formado entre um vetor diretor da reta r e um vetor diretor da reta s.
- Em particular, sendo  $r: A + \lambda \vec{r}$  e  $s: B + \mu \vec{s}$ , temos:

$$\cos \theta = \frac{|\vec{r} \cdot \vec{s}|}{\|\vec{r}\| \|\vec{s}\|}$$

note que temos sempre  $0 \le \theta \le \pi/2$ .

- Em particular, se  $\theta = 0$  as retas são paralelas e se  $\theta = \pi/2$  as retas são ortogonais.
- Note que as retas não precisam ser concorrentes para definirmos o ângulo formado por elas. Caso duas retas ortogonais sejam concorrentes, elas são ditas perpendiculares.
- As retas  $r: A + \lambda \vec{r}$  e  $s: B + \mu \vec{s}$  são ortogonais se e somente se  $\vec{r} \cdot \vec{s} = 0$ .

# ÂNGULO ENTRE RETAS









#### ■ Determine o ângulo formado entre as seguintes retas:

- $ightharpoonup r: (1,1,0) + \lambda(-2,1,-3) es: (2,0,1) + \mu(6,-3,9).$
- $ightharpoonup r: (0,1,1) + \lambda(2,0,1) es: (-2,-1,0) + \mu(1,1,1).$
- $ightharpoonup r: (-1,0,2) + \lambda(1,-2,1) es: (2,-2,1) + \mu(-1,0,1).$
- Encontre a reta que passa pelo ponto A(-1,2,1) e é perpendicular à reta  $r \colon (0,1,0) + \lambda(2,0,-1)$ .
- Encontre a reta que passa pelo ponto A(1,0,1) e é ortogonal às retas  $r: (-1,0,2) + \lambda(1,-2,1)$  e  $s: (2,-2,1) + \mu(-1,0,1)$ .
- Considere os pontos A(2,0,1), B(0,-1,1) e C(2,1,0).
  - lacktriangle Determine a reta r formada pelos pontos equidistantes de A, B e C.
  - Mostre que r é ortogonal à  $\overrightarrow{AB}$ ,  $\overrightarrow{AC}$  e  $\overrightarrow{BC}$ .