Национальный исследовательский университет ИТМО Факультет программной инженерии и компьютерной техники

Практическое задание №2 по дисципение Теория Автоматов Минимизация абстрактных автоматов

Вариант 11

Студент: Саржевский Иван

Группа: Р3302

Преподаватель: Тропченко Александр Ювенальевич

г. Санкт-Петербург $2020 \ {\rm r}.$

Цель

Овладение навыками минимизации полностью определенных абстрактных автоматов (на примере автомата Мура).

Постановка задачи

Абстрактный автомат задан табличным способом. Причем абстрактный автомат Мили представлен таблицами переходов и выходов, а абстрактный автомат Мура - одной отмеченной таблицей переходов. Эквивалентные автоматы могут иметь различное число состояний. В связи с этим возникает задача нахождения минимального (с минимальным числом состояний) автомата в классе эквивалентных между собой автоматов. Для минимизации абстрактного автомата использовать алгоритм, предложенный Ауфенкампом и Хоно. Основная идея алгоритма состоит в разбиении всех состояний исходного абстрактного автомата на попарно не пересекаемые классы эквивалентных состояний. После разбиения происходит замена каждого класса эквивалентности одним состоянием. Получившийся в результате минимальный абстрактный автомат имеет столько же состояний, на сколько классов эквивалентности разбиваются состояния исходного абстрактного автомата.

Исходный граф

Исходный автомат задается следующей таблицей переходов:

λ	w_1	w_2	w_2	w_1	w_2	w_2	w_2	w_1
δ	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8
z_1	a_5	a_7	a_8	a_5	a_5	a_4	a_6	a_2
z_2	a_2	a_4	a_8	a_2	a_6	a_2	a_3	a_1

Графический вид:

Минимизация исходного автомата

По таблице выходов найдем классы одноэквивалентных состояний.

$$\begin{split} B_1 &= \{a_1, a_4, a_8\} \\ B_2 &= \{a_2, a_3, a_5, a_6, a_7\} \\ P_1 &= \{B_1, B_2\} \end{split}$$

		B_1		B_2									
	a_1	a_4	a_8	a_2	a_3	a_5	a_6	a_7					
z_1	B_2	B_2	B_2	B_2	B_1	B_2	B_1	B_2					
z_2	B_2	B_2	B_1	B_1	B_1	B_2	B_2	B_2					

$$C_1 = \{a_1, a_4, a_5, a_7\}$$

$$C_2 = \{a_2, a_8\}$$

$$C_2 = \{a_2, a_8\}$$

$$C_3 = \{a_3\}$$

$$C_4 = \{a_6\}$$

$$P_2 = \{C_1, C_2, C_3, C_4\}$$

 $P_{1} \neq P_{2}$ - продолжаем минимизацию.

		C	, 1		C	$\overset{7}{2}$	C_3	C_4
	a_1	a_4	a_5	a_7	a_2	a_8	a_3	a_6
z_1	C_1	C_1	C_1	C_4	C_1	C_2	C_2	C_1
z_2	C_2	C_2	C_4 C_3		C_1	C_1	C_2	C_2

$$D_1 = \{a_1, a_4\}$$

$$D_2 = \{a_5\}$$

$$D_3^2 = \{a_7\}$$

$$D_4 = \{a_2\}$$

$$D_5 = \{a_8\}$$

$$D_6 = \{a_3\}$$

$$D_7 = \{a_6\}$$

$$P_3 = \{D_1, D_2, D_3, D_4, D_5, D_6, D_7\}$$

 $P_2 \neq P_3$ - продолжаем минимизацию.

		L) ₁	D_2	D_3	D_4	D_5	D_6	D_7	
		$a_1 \mid a_4 \mid$		$a_5 \mid a_7 \mid$		a_2	$a_8 \mid a_3$		a_6	
	z_1	D_2	D_2	D_2	D_7	D_3	D_4	D_5	D_1	
Ī	z_2	D_4	D_4	D_7	D_6	D_1	D_1	D_5	D_4	

$$E_1 = \{a_1, a_4\}$$

$$E_2 = \{a_5\}$$

$$E_3 = \{a_7\}$$

$$E_4 = \{a_2\}$$

$$E_5 = \{a_8\}$$

 $E_6 = \{a_3\}$

$$E_6 = \{a_3\}$$

$$E_7=\{a_6\}$$

$$P_4 = \{E_1, E_2, E_3, E_4, E_5, E_6, E_7\}$$

$$P_{3}=P_{4}$$
 - завершаем минимизацию.

$$a_1 \equiv a_4$$

Минимизированный автомат

Полученный автомат задается следующей таблицей переходов:

λ	w_1	w_2	w_2	w_2	w_2	w_2	w_1
δ	a_1	a_2	a_3	a_4	a_5	a_6	a_7
z_1	a_4	a_6	a_7	a_4	a_1	a_5	a_2
z_2				a_5			

Графический вид:

Проверка автоматов на эквивалентность

	Исходный автомат																				
z1	z2	z2	z1	z2	z1	z2	z2	z2	z1	z1	z2	z1	z2	z1	z1	z2	z1	z2	z2	z1	
	w2	w2	w2	w2	w2	w1	w1	w2	w1	w2	w2	w2	w1	w2	w2	w2	w2	w2	w2	w1	w2
						1	Иин	ими	изиј	рова	анні	ый а	авто	ома	Γ						
z1	z2	z2	z1	z2	z1	z2	z2	z2	z1	z1	z2	z1	z2	z1	z1	z2	z1	z2	z2	z1	
	w2	w2	w2	w2	w2	w1	w1	w2	w1	w2	w2	w2	w1	w2	w2	w2	w2	w2	w2	w1	w2

Вывод

В результате работы были получены навыки минимизации абстрактного автомата алгоритмом минимизации Ауфенкампа и Хона, на примере минимизации автомата Мура. Можно сказать, что метод работает, так как количество состояний исходного автомата больше, чем минимизированного.