Supplementary material

1 Correctly Predicted Examples

input	call the method CLASS_0 . FUNC_0 with an argument boolean True .
pred .	CLASS_0.FUNC_0(True)
input	ANY_1 is an string STR_0 formatted with CLASS_0 . ANY_0 and result of
	the method CLASS_0 . FUNC_0 , respectively .
$\mathbf{pred.}$	ANY_1 = 'STR_0' % (CLASS_0.ANY_0, CLASS_0.FUNC_0())
input	ANY_0 is an list with an element ANY_1 .
pred .	$ANY_0 = [ANY_1]$
input	remove last element for ANY_0 .
$\mathbf{pred.}$	$ANY_O = ANY_O[:-1]$
\mathbf{remark}	The fact that the model learned to map the token "last" in the query
	to "-1" in code, tells us that the model has learnt to translate some
	semantics in the input query to code.

2 Incorrectly Predicted Examples

input	ANY_0 is an tuple with 3 elements : None , result of method CLASS_0 .
	FUNC_0 and None .
ref.	ANY_O = None, CLASS_O.FUNC_O(), None
$\mathbf{pred.}$	ANY_O = None, (None,), CLASS_O.None
remark	A typical form, XXX.YYY appears in code, whenever the user wants to
	express that YYY is an attribute of entity. Here, we hypothesize that
	the model assigned "None" as CLASS_0's attribute due to the period at
	the end of the sentence.
input	call the function CLASS_0 . FUNC_0 -LSB- CLASS_0 . FUNC_0 -RSB- with
	3 arguments : raw string STR_0 , ANY_2 and ANY_0 without the first and
	last element
ref.	ANY_1 = CLASS_0.FUNC_0('STR_0', ANY_2, ANY_0[1:-1])
$\mathbf{pred.}$	ANY_O = CLASS_O.FUNC_O('STR_O', ANY_O + 1)
remark	We observe that the model typically performs well on short phrases,
	but on long phrases it fails to capture all the nuances expressed
	in different parts of the sentences. In the above example, the model
	completely fails to realise ANY_O as a list

3 Interesting finds

	ANV O is an amount distinguish
${f input}$	ANY_O is an empty dictionary .
$\mathbf{ref.}$	ANY_O = dict()
$\mathbf{pred.}$	$ANY_0 = \{\}$
remark	Here, the model has correctly predicted an empty dictionary, but the
	evaluation has missed this.
input	substitute ANY_1 for ANY_0 , ANY_4 , ANY_3 and ANY_2 , respectively .
ref.	ANY_0 , ANY_4 , ANY_3 , $ANY_2 = ANY_1$
$\mathbf{pred.}$	ANY_0 , ANY_4 , ANY_3 , $ANY_2 = ANY_1$
\mathbf{remark}	It is interesting to notice that the model is able to understand which
	part of the code fall on the left and right side of the assignment
	operator. Also, it correctly places all the variables in their proper
	order.