Formale Grundlagen der Informatik II 1. Übungsblatt

Fachbereich Mathematik Prof. Dr. Ulrich Kohlenbach Alexander Kreuzer SS 2012

Gruppenübung

Pavol Safarik

Aufgabe G1

(a) Erstellen Sie die Wahrheitstafel zu folgender Formel:

$$\varphi := (\neg p \land \neg q) \to (p \lor (\neg q \land r))$$

Ist die Formel erfüllbar? Ist sie allgemeingültig?

(b) Geben Sie eine Formel zu folgender Wahrheitstafel an:

p	q	r	
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

- (c) Geben Sie eine Formel $\varphi(p,q,r)$ an, welche genau dann wahr ist, wenn höchstens eine der Variablen p,q,r wahr ist.
- (d) Geben Sie eine Formel $\varphi(p,q,r,s)$ an, welche genau dann wahr ist, wenn genau drei der Variablen denselben Wert haben.

Lösungsskizze:

(a) Wahrheitstafel:

\overline{p}	\overline{q}	r	$ \neg p \wedge \neg q $	$p \vee (\neg q \wedge r)$	φ
0	0	0	1	0	0
0	0	1	1	1	1
0	1	0	0	0	1
0	1	1	0	0	1
1	0	0	0	1	1
1	0	1	0	1	1
1	1	0	0	1	1
1	1	1	0	1	1

1

Die Formel ist also erfüllbar, aber nicht allgemeingültig.

- (b) Eine mögliche Lösung in DNF ist $\varphi := (\neg p \land \neg q \land \neg r) \lor (\neg p \land q \land \neg r) \lor (p \land \neg q \land r) \lor (p \land q \land \neg r)$.
- (c) Eine mögliche Lösung ist $\varphi := (\neg p \land \neg q) \lor (\neg p \land \neg r) \lor (\neg q \land \neg r)$.
- (d) Eine mögliche Lösung ist

$$\varphi := (p \land q \land r \land \neg s) \lor (p \land q \land \neg r \land s) \lor (p \land \neg q \land r \land s) \lor (\neg p \land q \land r \land s) \lor (\neg p \land \neg q \land \neg r \land s) \lor (\neg p \land \neg q \land \neg r \land \neg s) \lor (\neg p \land q \land \neg r \land \neg s) \lor (p \land \neg q \land \neg r \land \neg s).$$

Aufgabe G2

- (a) Wir versuchen, ein verteiltes System in der Aussagenlogik zu modellieren. Angenommen wir wollen n Prozesse für s Zeiteinheiten beobachten. Jeder Prozess kann sich an jedem Zeitpunkt im Zustand p, q oder r befinden. Wir führen Aussagenvariablen p_t^i, q_t^i und r_t^i ein, die auf wahr gesetzt werden, wenn Prozess i zur Zeit t im entsprechenden Zustand ist. Formalisieren Sie die folgenden Aussagen in AL:
 - Zu jedem Zeitpunkt ist höchstens ein Prozess in Zustand q.
 - Es sind immer mindestens zwei Prozesse in Zustand p.
 - Wenn sich ein Prozess in Zustand q befindet, dann wechselt er nach spätestens 3 Zeiteinheiten in den Zustand r.
- (b) Konstruieren Sie induktiv über n aussagenlogische Formeln

$$\varphi_n(x_n,\ldots,x_0,y_n,\ldots,y_0)$$
,

welche genau dann wahr sind, wenn die in $x_n \dots x_0$ kodierte Binärzahl $\sum_i x_i 2^i$ kleiner ist als die in $y_n \dots y_0$ kodierte.

Lösungsskizze:

(a) i.
$$\bigwedge_{t \leq s} \bigwedge_{i \neq k} \neg (q_t^i \wedge q_t^k)$$

ii.
$$\bigwedge_{t \leq s} \bigvee_{i \neq k} (p_t^i \wedge p_t^k)$$

iii.
$$\bigwedge_{i \leq n} \left(\bigwedge_{t \leq s-3} [q^i_t \rightarrow (r^i_{t+1} \vee r^i_{t+2} \vee r^i_{t+3})] \wedge [q^i_{s-2} \rightarrow (r^i_{s-1} \vee r^i_s)] \wedge [q^i_{s-1} \rightarrow r^i_s] \right)$$

(b)

$$\varphi_0(x_0, y_0) := \neg x_0 \wedge y_0,
\varphi_n(x_n, \dots, x_0, y_n, \dots, y_0) := [\neg x_n \wedge y_n]
\vee [(x_n \leftrightarrow y_n) \wedge \varphi_{n-1}(x_{n-1}, \dots, x_0, y_{n-1}, \dots, y_0)].$$

Aufgabe G3

- (a) Beweisen oder widerlegen Sie die folgenden Aussagen.
 - (i) $\varphi \models \psi$ genau dann, wenn $\models \varphi \rightarrow \psi$.
 - (ii) Wenn $\varphi \models \psi$ und φ allgemeingültig (bzw. erfüllbar) ist, dann ist auch ψ allgemeingültig (bzw. erfüllbar).
 - (iii) Wenn $\varphi \models \psi$ und ψ allgemeingültig (bzw. erfüllbar) ist, dann ist auch φ allgemeingültig (bzw. erfüllbar).
 - (iv) $\{\varphi, \psi\} \models \theta$ genau dann, wenn $\varphi \models \theta$ oder $\psi \models \theta$.

- (b) Beweisen oder widerlegen Sie die folgenden Äquivalenzen und Folgerungsbeziehungen.
 - i. $\neg(\varphi \lor \psi) \equiv \neg \varphi \land \neg \psi$
 - ii. $\neg(\varphi \lor \psi) \equiv \neg \varphi \lor \neg \psi$
 - iii. $\{\neg \psi, \psi \rightarrow \varphi\} \models \neg \varphi$
 - iv. $\{\neg \varphi, \psi \rightarrow \varphi\} \models \neg \psi$

Lösungsskizze:

- (a) (i) Richtig.
 - \Rightarrow : Ist \Im eine Interpretation, dann gilt entweder $\varphi^{\Im}=0$ oder $\varphi^{\Im}=1$. In dem ersten Fall, gilt $(\varphi \to \psi)^{\Im}=1$, also $\Im \models \varphi \to \psi$. In dem zweiten Fall, gilt auch $\psi^{\Im}=1$, da $\varphi \models \psi$ bedeutet, dass jede Interpretation die φ wahr macht auch ψ wahr macht. Also auch in diesem Fall $(\varphi \to \psi)^{\Im}=1$.
 - \Leftarrow : Angenommen $\mathfrak I$ ist eine Interpretation mit $\mathfrak I \models \varphi$, also mit $\varphi^{\mathfrak I} = 1$. Da auch $\mathfrak I \models \varphi \to \psi$, muss auch gelten $\psi^{\mathfrak I} = 1$, also $\mathfrak I \models \psi$. Damit ist $\varphi \models \psi$ gezeigt.
 - (ii) Richtig. $\varphi \models \psi$ heißt, dass jede Interpretation, die φ wahr macht, auch ψ wahr macht. Machen alle Interpretationen φ wahr, dann gilt das also auch für ψ ; gibt es eine Interpretation die φ wahr macht, dann ist dieselbe Interpretation ein Modell von ψ .
 - (iii) Falsch (in beiden Fällen). $0 \models 1$, aber es gibt keine Modelle für 0, und alle Modelle machen 1 wahr.
 - (iv) Falsch. Ein Gegenbeispiel: $\varphi = p, \psi = \neg p, \vartheta = 0$. Ein weiteres Gegenbeispiel ist $\varphi = p, \psi = q$ und $\vartheta = p \wedge q$.
- (b) i. Richtig, da für jede Interpretation 3 gilt:

$$\mathfrak{I} \models \neg(\varphi \lor \psi) \Leftrightarrow \neg(\varphi \lor \psi)^{\mathfrak{I}} = 1$$

$$\Leftrightarrow (\varphi \lor \psi)^{\mathfrak{I}} = 0$$

$$\Leftrightarrow \varphi^{\mathfrak{I}} = 0 \quad \text{und} \quad \psi^{\mathfrak{I}} = 0$$

$$\Leftrightarrow (\neg \varphi)^{\mathfrak{I}} = 1 \quad \text{und} \quad (\neg \psi)^{\mathfrak{I}} = 1$$

$$\Leftrightarrow (\neg \varphi \land \neg \psi)^{\mathfrak{I}} = 1$$

$$\Leftrightarrow \mathfrak{I} \models \neg \varphi \land \neg \psi.$$

- ii. Falsch. Ist $\varphi = p$, $\psi = q$ und \Im eine Interpretation mit $\Im(p) = 1$ und $\Im(q) = 0$, dann gilt $(\neg(\varphi \lor \psi))^{\Im} = 0$ und $(\neg\varphi \lor \neg\psi)^{\Im} = 1$.
- iii. Falsch. Ist $\varphi = p$, $\psi = q$ und \Im eine Interpretation mit $\Im(p) = 1$ und $\Im(q) = 0$, dann gilt $(\neg \psi)^{\Im} = 1$, $(\psi \to \varphi)^{\Im} = 1$ und $(\neg \varphi)^{\Im} = 0$.
- iv. Richtig. Angenommen \Im ist eine Interpretation mit $\Im \models \{\neg \varphi, \psi \to \varphi\}$, also $(\neg \varphi)^{\Im} = 1$ und $(\psi \to \varphi)^{\Im} = 1$. Es folgt $\varphi^{\Im} = 0$. Da $(\neg \psi \lor \varphi)^{\Im} = 1$ gdw. $(\neg \psi)^{\Im} = 1$ oder $\varphi^{\Im} = 1$, folgt $(\neg \psi)^{\Im} = 1$ wie gewünscht.

Aufgabe G4

Für $n \geq 1$ sei

$$\varphi_n(p_1,\ldots,p_{2n}) := \bigwedge_{i=1}^n \neg (p_{2i-1} \leftrightarrow p_{2i})$$

(siehe Beispiel 3.9 im Skript). Zeigen Sie, dass

- (a) φ_n genau 2^n verschiedene Modelle hat;
- (b) φ_n äquivalent zu einer Formel in KNF ist, welche 2n Konjunktionsglieder besitzt;

(c) jede zu φ_n äquivalente Formel in DNF mindestens 2^n Disjunktionsglieder hat.

Lösungsskizze:

- (a) Für jedes $i \leq n$ muss genau eine der Variablen p_{2i-1} und p_{2i} wahr sein. Das heißt, dass man die Wahrheitswerte der p_{2i} frei wählen kann und die Werte der p_{2i-1} durch diese Wahl festgelegt sind. Also gibt es genau so viele Modelle, wie es Funktionen $\{1, \ldots, n\} \to \mathbb{B}$ gibt. Dies sind 2^n .
- (b) $\varphi_n \equiv \bigwedge_{i=1}^n [(\neg p_{2i-1} \vee \neg p_{2i}) \wedge (p_{2i-1} \vee p_{2i})]$, da $\neg (q \leftrightarrow r) \equiv (\neg q \vee \neg r) \wedge (q \vee r)$.
- (c) Angenommen, es gibt eine zu φ_n äquivalente Formel $\bigvee_{i=1}^m \psi_i$ in DNF mit $m < 2^n$ Disjunktionsgliedern. Für jedes Modell \Im von φ_n muss es ein Disjunktionsglied ψ_k geben mit $\Im \models \psi_k$. Da es weniger Disjunktionsglieder als Modelle von φ_n gibt, muss es also ein Disjunktionsglied ψ_k geben, das von mindestens zwei Modellen von φ_n wahrgemacht wird.
 - Da ψ_k eine Konjuktion von Literalen ist und mindestens zwei Modelle hat, gibt es mindestens eine Variable p_i , so dass weder p_i noch $\neg p_i$ in ψ_k vorkommen. Wir wählen ein Modell \Im von ψ_k . Sei \Im' jetzt die Interpretation, die überall mit \Im übereinstimmt, aber nur auf p_i einen anderen Wert annimmt. Dann ist \Im' auch ein Modell von ψ_k und damit von φ_n . Aber φ_n kann nicht zwei Modelle haben, die sich nur an einer Stelle unterscheiden. Widerspruch! Also hat jede zu φ_n äquivalente Formel in DNF mindestens 2^n Disjunktionsglieder.