1 The weak and strong Markov properties for Brownian Motion and first consequences

1.1 The weak Markov property

In what follows, B will denote a real-valued Brownian motion in dimension 1, but the statements will also hold in higher dimensions.

Definition 1.1. For every $t \geq 0$ we denote by \mathcal{F}_t the σ -algebra generated by the random variables $\{B_r : 0 \leq r \leq t\}$. The Brownian filtration $(\mathcal{F}_t)_{t\geq 0}$ is then just the collection of these σ -fields (in particular we have $\mathcal{F}_t \subset \mathcal{F}_{t+h}$ for all $t, h \geq 0$). Moreover, for each finite time $T \geq 0$, we define the process $B^{(T)} = (B_t^{(T)})_{t\geq 0}$ by

$$B_t^{(T)} := B_{T+t} - B_T.$$

The definition of Brownian motion (stationary independent increments) ensures immediately that:

Lemma 1.1 (Weak Markov property). When T is a fixed, deterministic time, then $B^{(T)}$ is a Brownian motion that is independent of \mathcal{F}_T .

1.1.1 Blumenthal's 0-1 Law and consequences

We also define for each $t \geq 0$, the σ -Field

$$\mathcal{F}_{t+} := \bigcap_{h>0} \mathcal{F}_{t+h},$$

which seems to contain some additional infinitesimal look into the future.

Remark 1.1. We can also think about the use of the above defined σ -field if we consider for instance a local maximum on [0,t], for example a world record, and we wonder if our world record lasts at least for an infinitesimal time into the future [0,t+h].

Proposition 1.1 (Blumenthal's 0-1 law). For the Brownian filtration, the σ -field \mathcal{F}_{0+} is trivial in the sense that for all events $A \in \mathcal{F}_{0+}$ we have either $\mathbb{P}(A) = 0$ or $\mathbb{P}(A) = 1$.

Proof. Let us take $A \in \mathcal{F}_{0+}$, we then have for all h > 0 also that $A \in \mathcal{F}_h$. Let us prove that A is necessarily independent of $(B_{t_1}, \ldots, B_{t_p})$ for all fixed times $0 < t_1 < \cdots < t_p$. Recall that for this, it is enough to prove that for any bounded continuous function $f : \mathbb{R}^p \to \mathbb{R}$ we have

$$\mathbb{E}(1_A f(B_{t_1}, \dots, B_{t_p}) = \mathbb{P}(A)\mathbb{E}(f(B_{t_1}, \dots, B_{t_p})).$$

Let h > 0. By dominated convergence and the continuity of B we easily establish that

$$\mathbb{E}(1_{A}f(B_{t_{1}},\ldots,B_{t_{p}})) = \lim_{h \to 0} \mathbb{E}(1_{A}f(B_{t_{1}+h} - B_{h},\ldots,B_{t_{p}+h} - B_{h}))$$

$$= \lim_{h \to 0} \mathbb{E}(1_{A}f(B_{t_{1}},\ldots,B_{t_{p}})) \stackrel{\text{M.P.}}{=} \lim_{h \to 0} \mathbb{P}(A)\mathbb{E}(f(B_{t_{1}}^{(h)},\ldots,B_{t_{p}}^{(h)}))$$

$$= \mathbb{P}(A)\mathbb{E}(f(B_{t_{1}},\ldots,B_{t_{p}}))$$

By a monotone class argument this establishes that A is independent of \mathcal{F}_{∞} , but then since $A \in \mathcal{F}_h \subset \mathcal{F}_{\infty}$ we conclude that A is independent of itself, in particular we have

$$\mathbb{P}(A) = \mathbb{P}(A \cap A) = \mathbb{P}(A)^2 \implies \mathbb{P}(A) = 0 \text{ or } 1.$$

Here is a nice and easy consequence of Blumenthal's 0-1 law.

Proposition 1.2. Almost surely,

$$\limsup_{t\to 0} \frac{B_t}{\sqrt{t}} = \infty \ and \ \liminf_{t\to 0} \frac{B_t}{\sqrt{t}} = -\infty.$$

Remark 1.2. Note that this implies in particular that for all $\epsilon > 0$, there exists infinitely many times $t \in (0, \epsilon)$ at which $B_t = 0$. Moreover, the Proposition implies that almost surely, Brownian motion is not Hölder continuous with exponent 1/2 (nor with any exponent greater than 1/2) and thus Brownian motion is, as expected, nowhere differentiable.

In order to see the second remark, let $0 \le s < t$ be arbitrary, we then have almost surely

$$\limsup_{t \to 0} \frac{B_t}{\sqrt{t}} = \infty = \limsup_{t \to s} \frac{B_{t-s}}{\sqrt{t-s}} = \limsup_{t \to s} \frac{B_t - B_s}{\sqrt{t-s}}$$

in particular we cannot have $|B_t - B_s| \leq C\sqrt{t-s}$ for some $C \in \mathbb{R}_{>0}$.

1 THE WEAK AND STRONG MARKOV PROPERTIES FOR BROWNIAN MOTION AND FIRST CONSEQUENCES

Proof. We define for each $\epsilon > 0$, the random variable

$$V_{\epsilon} := \sup_{s \in (0, \epsilon]} \frac{B_s}{\sqrt{s}}.$$

Thanks to the continuity of Brownian motion we can write $V_{\epsilon} = \sup\{B_s/\sqrt{s} : s \in (0, \epsilon] \cap \mathbb{Q}\}$, and we notice that V_{ϵ} is \mathcal{F}_{ϵ} measurable. Moreover, obviously $t \mapsto V_t$ is increasing and thus we can define

$$V_{0+} := \lim_{\epsilon \to 0} V_{\epsilon} = \inf_{\epsilon > 0} V_{\epsilon}.$$

So we see that the random variable V_{0+} is \mathcal{F}_{ϵ} -measurable for all $\epsilon > 0$ and therefore \mathcal{F}_{0+} measurable. Hence, by Blumenthal's 0-1 law, we have that it is constant either 0 or 1.

Recall that the scaling property of a Brownian motion tells us that for all a > 0 we have $\frac{1}{a}B_{a^2t}$ is also a Brownian motion, in particular $\frac{1}{a}B_{a^2t} \sim B_t$. We note by applying this scaling property, that the law of V_{ϵ} does in fact not depend on ϵ . Indeed, let us fix $M \geq 1$ integer, then we have almost surely

$$\left\{ \sup_{s \in (0,\epsilon]} \frac{B_s}{\sqrt{s}} \ge M \right\} \stackrel{t:=s/\epsilon}{=} \left\{ \sup_{t \in (0,1]} \frac{B_{\epsilon t}}{\sqrt{\epsilon t}} \ge M \right\} = \left\{ \sup_{t \in (0,1]} \frac{\frac{1}{\sqrt{\epsilon}} B_{\epsilon t}}{\sqrt{t}} \ge M \right\} \\
= \left\{ \sup_{t \in (0,1]} \frac{B_t}{\sqrt{t}} \ge M \right\}$$

Where in the last step the scaling property with $a = \sqrt{\epsilon}$ was used. So we have shown that $\mathbb{P}(V_{\epsilon} \geq M) = \mathbb{P}(V_1 \geq M)$, thus we finally get,

$$\mathbb{P}(V_{0+} \ge M) = \lim_{\epsilon \to 0} \mathbb{P}(V_{\epsilon} \ge M) = \mathbb{P}(V_1 \ge M) = \mathbb{P}\left(\sup_{t \in (0,1]} \frac{B_t}{\sqrt{t}} \ge M\right)$$
$$\ge \mathbb{P}(\sup_{t \in (0,1]} B_t \ge M) \ge \mathbb{P}(B_1 \ge M) > 0.$$

So by Blumenthal's 0-1 law we get that for all $M \in \mathbb{N}_{\geq 1}$, $\mathbb{P}(V_{0+} \geq M) = 1$. Thus we can exchange almost surely with for all M integer to get

$$\mathbb{P}(\forall M \ge 1, V_{0+} \ge M) = 1,$$

i.e. $V_{0+} = \infty$ almost surely. We can apply this also to the Brownian motion -B, to get the second statement.

1.2 Stopping times and the strong Markov property

The goal of this section is to extend the weak Markov property to the case where T is replaced by special random times.

Definition 1.2. A random variable $T \in \mathbb{R}_+ \cup \{\infty\}$ is a stopping time for a filtration $(\mathcal{F}_t)_{t\geq 0}$ if for every $t\geq 0$, the event $\{T\leq t\}$ is in \mathcal{F}_t . We also define the σ -field of the past before T as

$$\mathcal{F}_T := \{ A \in \mathcal{F}_{\infty} : \forall t \ge 0, A \cap \{ T \le t \} \in \mathcal{F}_t \}.$$

It intuitively corresponds to all the information (about everything) that has happened up to random time T.

Remark 1.3. A good intuitive way to think about the definition of stopping times is that when T has occurred, then one actually knows it. Here is a neat example to have in mind of a stopping time: You're driving on the highway, when a red car passes you, you take the next exit. Here is an example of a non-stopping time: One year before the next big earthquake.

Proposition 1.3 (Strong Markov property). Let T be a stopping time (with respect to the Brownian filtration) such that $T < \infty$ almost surely. Then the process $B^{(T)} := (B_t^{(T)} = B_{T+t} - B_T)_{t \geq 0}$ is a Brownian motion independent of \mathcal{F}_T .

Figure 1: Qualitative picture of the strong Markov property. If we "reboot" the Brownian Motion at random stopping time T (notice the shift of axis, $B^{(T)}$ starts at 0), then what we observe is again a Brownian motion that is independent of its past \mathcal{F}_T (orange).

Proof. Let $A \in \mathcal{F}_T$, we want to prove that for all $t_1 < \cdots < t_p$ the event A is independent of $(B_{t_1}^{(T)}, \ldots, B_{t_p}^{(T)})$ and that $(B_{t_1}^{(T)}, \ldots, B_{t_p}^{(T)})$ has the same law as $(B_{t_1}, \ldots, B_{t_p})$. In order to prove these two statements, it is enough to check that for all $f: \mathbb{R}^p \to \mathbb{R}$ continuous and bounded, we have

$$\mathbb{E}(1_A f(B_{t_1}^{(T)}, \dots, B_{t_p}^{(T)})) = \mathbb{P}(A)\mathbb{E}(f(B_{t_1}^{(T)}, \dots, B_{t_p}^{(T)})),$$

and

$$\mathbb{E}(f(B_{t_1}^{(T)}, \dots, B_{t_p}^{(T)})) = \mathbb{E}(f(B_{t_1}, \dots, B_{t_p}))$$

We work with the discrete approximation of the stopping T. I.e. we define T_n to be the smallest multiple of 2^{-n} such that $T \leq T_n$ ($T_n = \text{smallest } j2^{-n}$ with $j2^{-n} \geq T$). It is then an easy exercise to see that T_n are also a stopping times w.r.t. the Brownian filtration and that $\{T_n = j2^{-n}\} \in \mathcal{F}_{j2^{-n}}$.

We then define for each given n, $A_j = A \cap \{T_n = j2^{-n}\}$. Then, each A_j is in $\mathcal{F}_{j2^{-n}}$ and $A = \bigcup_j A_j$ as a disjoint union of the A_j 's. So we get:

$$\mathbb{E}(1_{A}f(B_{t_{1}}^{(T_{n})},\ldots,B_{t_{p}}^{(T_{n})})) = \sum_{j=0}^{\infty} \mathbb{E}(1_{A_{j}}f(B_{t_{1}}^{(T_{n})},\ldots,B_{t_{p}}^{(T_{n})}))$$

$$= \sum_{j=0}^{\infty} \mathbb{E}(1_{A_{j}}f(B_{t_{1}}^{(j2^{-n})},\ldots,B_{t_{p}}^{(j2^{-n})})) \stackrel{\text{W.M.P.}}{=} \sum_{j=0}^{\infty} \mathbb{P}(A_{j})\mathbb{E}(f(B_{t_{1}}^{(j2^{-n})},\ldots,B_{t_{p}}^{(j2^{-n})}))$$

$$= \sum_{j=0}^{\infty} \mathbb{P}(A_{j})\mathbb{E}(f(B_{t_{1}},\ldots,B_{t_{p}})) = \mathbb{P}(A)\mathbb{E}(f(B_{t_{1}},\ldots,B_{t_{p}}))$$

But by dominated convergence and the continuity of Brownian motion we also have $\mathbb{E}(1_A f(B_{t_1}^{(T_n)}, \dots, B_{t_p}^{(T_n)})) \to \mathbb{E}(1_A f(B_{t_1}^{(T)}, \dots, B_{t_p}^{(T)}))$ as $n \to \infty$ almost surely. So finally we get

$$\mathbb{E}(1_A f(B_{t_1}^{(T)}, \dots, B_{t_p}^{(T)})) = \mathbb{P}(A)\mathbb{E}(f(B_{t_1}, \dots, B_{t_p})).$$

Remark 1.4. An equivalent way of phrasing the strong Markov property will be that (under the same conditions, T being a finite stopping time) for all $f : \mathbb{R}^{\times \mathbb{R}_+} \to \mathbb{R}$ bounded and continuous (measurable would be enough) we have for all $x \in \mathbb{R}$,

$$\mathbb{E}_x[f((B_{T+t})_{t\geq 0}) \mid \mathcal{F}_T] = \mathbb{E}_{B_T}[f((B_t)_{t\geq 0})]$$

i.e. conditionally on \mathcal{F}_T the process $(B_{T+t})_{t\geq 0}$ is again a Brownian motion, it is independent of \mathcal{F}_T and has the same law as B started from B_T .

1.2.1 Reflection principle and consequences

Suppose that T is a stopping time for the Brownian filtration and assume that T is almost surely finite. We now construct a new process \tilde{B} as follows: for all $t \geq 0$

$$\tilde{B}_t := \begin{cases} B_t, & t \le T \\ B_T - (B_t - B_T), & t \ge T \end{cases}$$

In other words, the increments of \tilde{B} after the stopping time T are the opposite of those of B.

Figure 2: Depiction of the process \tilde{B} . We see the Brownian motion B_t (black + grey) and the reflection after stopping time T (depicted in orange) and the process \tilde{B} (black + orange).

Proposition 1.4 (Reflection principle). The process \tilde{B} is also a Brownian motion.

Proof. The strong Markov property says that the process $B^{(T)}$ is a Brownian motion and independent of \mathcal{F}_T . Hence, the process $-B^{(T)}$ is also a Brownian motion independent of \mathcal{F}_T . But we can reconstruct B from the pair $(B_t, t \leq T)$ and $B^{(T)} = (B_{T+t} - B_T)_{t\geq 0}$ in exactly the same way in which \tilde{B} is reconstructed from the pair $(B_t, t \leq T)$ and $-B^{(T)}$, which implies that B and \tilde{B} have the same law. \square

1 THE WEAK AND STRONG MARKOV PROPERTIES FOR BROWNIAN MOTION AND FIRST CONSEQUENCES

Corollary 1.1. Let B be a Brownian motion in dimension 1. For every t > 0, define the running maximum $S_t := \max_{s < t} B_s$. For every $a \ge 0$ and $b \ge 0$ we have

$$\mathbb{P}(S_t \ge a, B_t \le a - h) = \mathbb{P}(B_t \ge a + h).$$

Moreover, for each given t, the variable S_t has the same distribution as $|B_t|$.

Proof. Let $T_a = \inf\{t \geq 0 : B_t = a\}$. We know that (best seen in a picture) $\{S_t \geq a\} = \{T_a \leq t\}$. We obtain:

$$\mathbb{P}(S_{t} \geq a, B_{t} \leq a - h) = \mathbb{P}(T_{a} \leq t, B_{t} - B_{T_{a}} \leq -h) = \mathbb{P}(T_{a} \leq t, B_{t-T_{a}}^{(T_{a})} \leq -h)
\stackrel{1)}{=} \mathbb{P}(T_{a} \leq t, -\tilde{B}_{t-T_{a}}^{(T_{a})} \leq -h) = \mathbb{P}(T_{a} \leq t, \tilde{B}_{t-T_{a}}^{(T_{a})} \geq h) = \mathbb{P}(T_{a} \leq t, \tilde{B}_{t} - \tilde{B}_{T_{a}} \geq h)
\stackrel{2)}{=} \mathbb{P}(T_{a} \leq t, \tilde{B}_{t} - B_{T_{a}} \geq h) = \mathbb{P}(T_{a} \leq t, \tilde{B}_{t} \geq a + h) \overset{3)}{=} \mathbb{P}(B_{t} \geq a + h).$$

Where we used:

- 1. It is easily seen that on $t \geq T_a$ we have $\tilde{B}_{t-T_a}^{(T_a)} = \tilde{B}_t \tilde{B}_{T_a} \stackrel{\text{def}}{=} B_{T_a} (B_t B_{T_a}) a = B_{T_a} B_t$. Geometrically this is obvious when we look at the previous figure.
- 2. By definition, as already used in 1. above, we have $\tilde{B}_{T_a} = B_{T_a} = a$.
- 3. We have $\{B_t \geq a + h\} \subset \{T_a \leq t\}$, indeed if for some fixed $t \geq 0$ we have $B_t \geq a + h$ then necessarily the first time when B_t meets the height a must occur before time t, i.e. $T_a \leq t$.

And R.P. stands for Reflection Principle.

To establish the second claim we choose h=0 to see that

$$\mathbb{P}(S_t \ge a) = \mathbb{P}(S_t \ge a, B_t \le a) + \mathbb{P}(S_t \ge a, B_t \ge a)$$

$$\stackrel{h=0}{=} \mathbb{P}(B_t \ge a) + \mathbb{P}(S_t \ge a, B_t \ge a) = 2\mathbb{P}(B_t \ge a) = \mathbb{P}(|B_t| \ge a).$$

Where obviously $\{B_t \geq a\} \subset \{S_t \geq a\}$.

1.2.2 The zero-set of a Brownian motion

We now state and prove another property of a Brownian motion which just further illustrates that a Brownian motion is quite a strange continuous curve. Let us define the zero-set of a Brownian motion as

$$\mathcal{Z} := \{ t \geq 0 : B_t = 0 \}.$$

Proposition 1.5. Almost surely, the set Z is a perfect set (i.e. it is an non-empty closed set with no isolated points).

Remark 1.5.

- 1. Recall that a point $t \in Z$ is called isolated by definition if for all $\epsilon > 0$ we have $Z \cap ((t \epsilon, t + \epsilon) \setminus \{t\}) \neq \emptyset$.
- 2. It is an elementary exercise to show that a non-empty closed subset of \mathbb{R} with no isolated points has the same cardinality as \mathbb{R} .

Proof. The set \mathcal{Z} is closed almost surely thanks to the continuity of B. (A subset D of a metric space is closed iff it contains all limits of seq. in D).

For $q \in \mathbb{Q}_+(=\mathbb{Q} \cap \mathbb{R}_+)$ we define the stopping time $\tau_q = \inf\{t \geq q : B_t = 0\}$. Clearly if we take $T \in \mathcal{Z}$ (i.e. $B_T = 0$) and if we assume that T is isolated from the left (i.e. $\exists \epsilon > 0$ such that $(T - \epsilon, T) \cap \mathcal{Z} = \emptyset$) then $\exists q \in \mathbb{Q}_+$ such that $\tau_q = T$.

On the other hand, we know that for all such q, $B^{(\tau_q)}$ is distributed like a Brownian motion, and we have seen $(\limsup_{t\to 0} B_t/\sqrt{t} = \infty)$ that almost surely $B^{(\tau_q)}$ has infinitely many zeros in any interval $(0, \epsilon)$, in particular τ_q is not isolated from the right in \mathcal{Z} .

Consequently, we have almost surely for all $q \in \mathbb{Q}_+$, that τ_q is not isolated in \mathbb{Z} from the right. But then almost surely for all $t \in \mathbb{Z}$ which are isolated from the left we have

$$t \in \bigcup_{q \in \mathbb{O}} \{ \tau_q \},\,$$

so t is not isolated from the right and therefore \mathcal{Z} has no isolated points.

Remark 1.6. The Lebesgue measure $\lambda(\mathcal{Z})$ of \mathcal{Z} is almost surely equal to zero, indeed, by Fubini's theorem

$$\mathbb{E}(\lambda(\mathcal{Z})) = \mathbb{E}\left(\int_0^\infty 1_{B_t=0} dt\right) = \int_0^\infty \mathbb{P}(B_t=0) dt = 0$$

which entails that $\lambda(\mathcal{Z}) = 0$ almost surely.

1.3 Analogous results for multidimensional Brownian motion

Let us briefly list which results in the previous section can be immediately generalized to the case where one considers a Brownian motion B in d-dimensional space with $d \ge 2$ instead of d = 1.

- The weak Markov property.
- The strong Markov property.
- Blumenthal's 0-1 law.

The statements and proofs are exactly the same as in the one-dimensional case.

1.3.1 One extension of some 1D results/ideas

We start with an application of Blumenthal's 0-1 law in higher dimensions. Let $(B_t)_{t\geq 0}$ be a Brownian motion in \mathbb{R}^d , $d\geq 2$, started at the origin 0. Let \mathcal{C} be an open subset of $\mathbb{R}^d\setminus\{0\}$ such for some fixed r>0, it contains a union of balls $\mathcal{B}(x_n,r|x_n|)$, where x_n is some sequence in $\mathbb{R}^d\setminus\{0\}$ with $x_n\to 0$ (we can always assume that $|x_n|$ decreasing with n). That is, $\exists r>0$ and there exists a sequence $x_n\to 0$ in $\mathbb{R}^d\setminus\{0\}$ such that

$$\bigcup_{n\in\mathbb{N}}\mathcal{B}(x_n,r|x_n|)\subset\mathcal{C}.$$

A good example to have in mind of such a set if when \mathcal{C} is a cone with apex at 0.

Figure 3: C is a cone with apex at 0.

Proposition 1.6. Almost surely, for all $\epsilon > 0$ there exists $t \in (0, \epsilon)$ such that $B_t \in \mathcal{C}$.

Proof. Let us define for $n_0 \in \mathbb{N}$

$$V_{n_0} := \bigcup_{n \ge n_0} \{ B_{|x_n|^2} \in \mathcal{B}(x_n, r|x_n|) \}.$$

Then V_{n_0} is measurable with respect to

$$\mathcal{F}_{\max_{n>n_0}|x_n|^2}$$
.

We have

$$V_{\infty} := \bigcap_{n_0 \ge 0} V_{n_0} = \{ \exists \text{ infinitely many } n's : B_{|x_n|^2} \in \mathcal{B}(x_n, r|x_n|) \}.$$

Since also $V_{n_0+1} \subset V_{n_0}$ we have for all \tilde{n} that

$$V_{\infty} = \bigcap_{n_0 > \tilde{n}} V_{n_0},$$

in particular V_{∞} is in F_{0+} and therefore we have thanks to Blumenthal's 0-1 law that $\mathbb{P}(V_{\infty})=0$ or 1. We want to show that this probability is 1.

$$\mathbb{P}(V_{\infty}) = \lim_{n_0 \to \infty} \mathbb{P}(V_{n_0}) \ge \lim_{n_0 \to \infty} \mathbb{P}(B_{|x_{n_0}|^2} \in \mathcal{B}(x_{n_0}, r | x_{n_0}|)
= \lim_{n_0 \to \infty} \mathbb{P}\left[\frac{1}{|x_{n_0}|} B_{|x_{n_0}|^2} \in \mathcal{B}\left(\frac{x_{n_0}}{|x_{n_0}|}, r\right)\right] \stackrel{1)}{=} \lim_{n_0 \to \infty} \mathbb{P}(B_1 \in \mathcal{B}(x_{n_0}/|x_{n_0}|, r))
\stackrel{2)}{=} \lim_{n_0 \to \infty} \mathbb{P}(B_1 \in \mathcal{B}(1, r)) = \mathbb{P}(B_1 \in \mathcal{B}(1, r)) > 0.$$

Where we used:

- 1. the scaling invariance at time t = 1 $\frac{1}{a}B_{a^2t} \sim B_t$.
- 2. The isotropy property of a Brownian motion, it just states that for all linear isometries ϕ we have $\Phi(B)$ is still a BM in \mathbb{R}^d and $1 = (1, 0, 0, \dots, 0) \in \mathbb{R}^d$.