CytoAutoCluster

Importing Dataset

```
import pandas as pd
       data= pd.read csv('/content/drive/MyDrive/Datasets/Levine 32dim.fcs.csv')
In [ ]:
        data.head()
                   Time Cell_length
Out[]:
           Event
                                        DNA1
                                                 DNA2
                                                         CD45RA
                                                                     CD133
                                                                                CD1
        0
                                 22 4.391057 4.617262
               1 2693.0
                                                         0.162691 -0.029585 -0.00669
                                 35 4.340481 4.816692
        1
               2 3736.0
                                                         0.701349 -0.038280 -0.0166!
        2
               3 7015.0
                                 32 3.838727 4.386369 0.603568 -0.032216
                                                                             0.0738!
        3
               4 7099.0
                                 29 4.255806 4.830048
                                                        0.433747 -0.027611 -0.01760
        4
               5 7700.0
                                 25 3.976909 4.506433 -0.008809 -0.030297
                                                                             0.08042
```

 $5 \text{ rows} \times 42 \text{ columns}$

NULL VS NOT NULL

```
In [ ]:
        import pandas as pd
        import matplotlib.pyplot as plt
        data = pd.read csv('/content/drive/MyDrive/Datasets/Levine 32dim.fcs.csv')
        null counts = data.isnull().sum()
        non null counts = data.notnull().sum()
        counts df = pd.DataFrame({
            'Null': null counts,
            'Non-Null': non null counts
        })
        counts df.plot(kind='bar')
        plt.title('Null vs Non-Null Values per Column')
        plt.ylabel('Count')
        plt.xlabel('Columns')
        plt.xticks(rotation=90)
        plt.show()
```


CLASS LABEL DISTRIBUTION

```
In []: import pandas as pd
import matplotlib.pyplot as plt

data = pd.read_csv('/content/drive/MyDrive/Datasets/Levine_32dim.fcs.csv')

class_counts = data['label'].value_counts()

class_counts.plot(kind='bar')

plt.title('Class Label Distribution')
plt.ylabel('Count')
plt.xlabel('Class Labels')
plt.xticks(rotation=0)
plt.show()
```

Class Label Distribution

Histograms of each feature

```
In [ ]:
        import pandas as pd
        import matplotlib.pyplot as plt
        data = pd.read csv('/content/drive/MyDrive/Datasets/Levine 32dim.fcs.csv')
        # Select only numerical columns for histogram plotting
        numerical columns = data.select dtypes(include=['float64', 'int64']).columns
        # Set up the figure for subplots
        plt.figure(figsize=(15, 20))
        # Iterate through numerical columns and create a histogram for each
        for i, column in enumerate(numerical columns, 1):
            plt.subplot(len(numerical columns)//3 + 1, 3, i)
            plt.hist(data[column], bins=30, edgecolor='black')
            plt.title(column)
            plt.xlabel('Value')
            plt.ylabel('Frequency')
        plt.tight layout()
        plt.show()
```


Feature Distribution Comparison Using Histograms and KDE

```
In [ ]: import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

```
# Load the dataset
data = pd.read csv('/content/drive/MyDrive/Datasets/Levine 32dim.fcs.csv')
# Select features for comparison (adjust based on your dataset)
features_to_compare = ['CD45RA', 'CD133', 'CD19', 'CD22'] # Example feature
# Step 1: Histograms for feature distribution comparison
plt.figure(figsize=(15, 10))
for feature in features to compare:
    plt.hist(data[feature], bins=30, alpha=0.5, label=feature, edgecolor='bl
plt.title('Feature Distribution Comparison')
plt.xlabel('Value')
plt.ylabel('Frequency')
plt.legend()
plt.show()
# Step 2: Kernel Density Estimation (KDE) for smoother distribution comparis
plt.figure(figsize=(15, 10))
for feature in features_to_compare:
    sns.kdeplot(data[feature], label=feature, fill=True, alpha=0.5)
plt.title('Feature Distribution Comparison (KDE)')
plt.xlabel('Value')
plt.ylabel('Density')
plt.legend()
plt.show()
```


Box Plot

```
import pandas as pd
In [ ]:
        import matplotlib.pyplot as plt
        import seaborn as sns
        # Load the dataset
        data = pd.read csv('/content/drive/MyDrive/Datasets/Levine 32dim.fcs.csv')
        # Step 1: Box Plots for Numerical Features
        numerical features = data.select dtypes(include=['float64', 'int64']).columr
        rows = (len(numerical features) // 4) + 1 # Calculate the number of rows ne
        plt.figure(figsize=(15, rows * 4))
        for i, feature in enumerate(numerical features):
            plt.subplot(rows, 4, i + 1)
            sns.boxplot(data[feature])
            plt.title(feature)
        plt.tight layout()
        plt.show()
        # Step 2: Count Plots for Categorical Features
        categorical features = data.select dtypes(include=['object']).columns # Sel
        plt.figure(figsize=(15, 10))
        for i, feature in enumerate(categorical features):
            plt.subplot(2, 2, i + 1)
            sns.countplot(x=data[feature], order=data[feature].value counts().index)
```

```
plt.title(feature)
  plt.xticks(rotation=45)
plt.tight_layout()
plt.show()
```


<Figure size 1500x1000 with 0 Axes>

Correlation Matrix

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

# Load the data
data = pd.read_csv('/content/drive/MyDrive/Datasets/Levine_32dim.fcs.csv')

# Drop the specified columns
data = data.drop(columns=['file_number', 'Event', 'Time'])

# Calculate the correlation matrix
correlation_matrix = data.corr()

# Set up the matplotlib figure
plt.figure(figsize=(12, 10))

# Create a heatmap using Seaborn without annotations
sns.heatmap(correlation_matrix, annot=False, cmap='coolwarm', square=True, coolwarm')
plt.title('Correlation Matrix')
plt.show()
```


Skewness

```
In [ ]: import pandas as pd
        from scipy.stats import skew
        import matplotlib.pyplot as plt
        import seaborn as sns
        import math
        # Load the data
        data = pd.read csv('/content/drive/MyDrive/Datasets/Levine 32dim.fcs.csv')
        data = data.drop(columns=['file number', 'Event', 'Time'])
        # Calculate skewness
        skewness = data.apply(skew)
        # Function to categorize skewness
        def categorize skewness(value):
            if value > 0.5:
                return 'Right-skewed'
            elif value < -0.5:</pre>
                return 'Left-skewed'
            else:
                return 'Approximately symmetrical'
        # Apply the categorization
        skewness category = skewness.apply(categorize skewness)
        # Display skewness and its categorization
        skewness df = pd.DataFrame({'Skewness': skewness, 'Category': skewness categ
        print(skewness df)
        # Set the number of columns in the grid
        n cols = 5 # Adjust this value for number of plots per row
        n plots = len(data.columns)
        n rows = math.ceil(n plots / n cols)
        # Create subplots grid
        fig, axes = plt.subplots(n rows, n cols, figsize=(15, 4 * n rows)) # Adjust
        axes = axes.flatten() # Flatten axes array to make it easier to index
        # Loop through columns and plot histograms on each subplot
        for idx, col in enumerate(data.columns):
            sns.histplot(data[col], bins=10, kde=True, ax=axes[idx])
            axes[idx].set title(f'Distribution of {col} (Skewness: {skewness[col]:.2
            axes[idx].axvline(data[col].mean(), color='red', linestyle='--', label='
            axes[idx].axvline(data[col].median(), color='green', linestyle='--', lat
            axes[idx].legend()
        # Remove any unused subplots (if n plots is not a perfect multiple of n cols
        for i in range(n plots, len(axes)):
            fig.delaxes(axes[i])
        # Ensure the layout is tight and the plot is shown properly
```

	Skewness	Category
Cell_length	0.527832	Right-skewed
DNA1	0.845010	Right-skewed
DNA2	0.779167	Right-skewed
CD45RA	1.191595	Right-skewed
CD133	2.141953	Right-skewed
CD19	1.682609	Right-skewed
CD22	2.283181	Right-skewed
CD11b	1.679089	Right-skewed
CD4	1.622044	Right-skewed
CD8	1.775713	Right-skewed
CD34	3.492437	Right-skewed
Flt3	7.098151	Right-skewed
CD20	2.754699	Right-skewed
CXCR4	0.955342	Right-skewed
CD235ab	2.001479	Right-skewed
CD45	-1.484824	Left-skewed
CD123	3.648890	Right-skewed
CD321	0.247097	Approximately symmetrical
CD14	3.609006	Right-skewed
CD33	2.724977	Right-skewed
CD47	-0.250323	Approximately symmetrical
CD11c	1.733888	Right-skewed
CD7	1.606528	Right-skewed
CD15	1.445147	Right-skewed
CD16	5.733203	Right-skewed
CD44	-0.431589	Approximately symmetrical
CD38	1.141482	Right-skewed
CD13	2.234311	Right-skewed
CD3	0.342239	Approximately symmetrical
CD61	4.894707	Right-skewed
CD117	4.097508	Right-skewed
CD49d	0.856805	Right-skewed
HLA-DR	0.795359	Right-skewed
CD64	1.743733	Right-skewed
CD41	5.366314	Right-skewed
Viability	0.985417	Right-skewed
event_number	0.304116	Approximately symmetrical
label	NaN	Approximately symmetrical
individual	0.982030	Right-skewed

In []:

Kurtosis

```
In [ ]: import pandas as pd
        import matplotlib.pyplot as plt
        import seaborn as sns
        from scipy.stats import kurtosis
        import math
        # Load the data
        data = pd.read csv('/content/drive/MyDrive/Datasets/Levine 32dim.fcs.csv')
        # Drop the specified columns
        data = data.drop(columns=['file number', 'Event', 'Time'])
        # Calculate kurtosis for each column
        kurtosis_values = data.apply(kurtosis, fisher=False) # Fisher=False gives F
        # Create a DataFrame with kurtosis values
        kurtosis_df = pd.DataFrame({'Column': data.columns, 'Kurtosis': kurtosis_val
        # Categorize the kurtosis values (Leptokurtic, Mesokurtic, Platykurtic)
        def categorize kurtosis(value):
            if value > 3:
                return 'Leptokurtic (heavy tails)'
            elif value < 3:</pre>
                return 'Platykurtic (light tails)'
            else:
                return 'Mesokurtic (normal tails)'
        kurtosis df['Category'] = kurtosis df['Kurtosis'].apply(categorize kurtosis)
        # Print the kurtosis values and their categories
        print(kurtosis df)
        # Set the number of columns in the grid
```

```
n_cols = 5 # You can adjust this to control how many plots per row
n plots = len(data.columns)
n rows = math.ceil(n plots / n cols)
# Create subplots grid
fig, axes = plt.subplots(n rows, n cols, figsize=(15, 4 * n rows)) # Adjust
axes = axes.flatten() # Flatten axes array to make it easier to index
# Loop through columns and plot KDE on each subplot
for idx, column in enumerate(data.columns):
   sns.kdeplot(data[column].dropna(), color='c', fill=True, alpha=0.7, ax=a
   axes[idx].set title(f'{column} (Kurtosis: {kurtosis df.loc[kurtosis df["
   axes[idx].set xlabel(column)
   axes[idx].set ylabel('Density')
   axes[idx].grid(True)
# Remove any unused subplots (if n_plots is not a perfect multiple of n_cols
for i in range(n plots, len(axes)):
   fig.delaxes(axes[i])
plt.tight layout()
plt.show()
```

	Column	Kurtosis	Category		
Cell_length	Cell_length	2.834033	Platykurtic (light tails)		
DNA1	DNA1	1.994037	Platykurtic (light tails)		
DNA2	DNA2	1.975021	Platykurtic (light tails)		
CD45RA	CD45RA	4.964272	Leptokurtic (heavy tails)		
CD133	CD133	9.190066	Leptokurtic (heavy tails)		
CD19	CD19	4.590887	Leptokurtic (heavy tails)		
CD22	CD22	7.500223	Leptokurtic (heavy tails)		
CD11b	CD11b	4.964495	Leptokurtic (heavy tails)		
CD4	CD4	5.844261	Leptokurtic (heavy tails)		
CD8	CD8	4.745776	Leptokurtic (heavy tails)		
CD34	CD34	16.596416	Leptokurtic (heavy tails)		
Flt3	Flt3	85.583534	Leptokurtic (heavy tails)		
CD20	CD20	10.435449	Leptokurtic (heavy tails)		
CXCR4	CXCR4	3.936307	Leptokurtic (heavy tails)		
CD235ab	CD235ab	13.440586	Leptokurtic (heavy tails)		
CD45	CD45	5.246770	Leptokurtic (heavy tails)		
CD123	CD123	18.361217	Leptokurtic (heavy tails)		
CD321	CD321	2.914593	Platykurtic (light tails)		
CD14	CD14	23.062535	Leptokurtic (heavy tails)		
CD33	CD33	10.967536	Leptokurtic (heavy tails)		
CD47	CD47	2.943834	Platykurtic (light tails)		
CD11c	CD11c	5.117156	Leptokurtic (heavy tails)		
CD7	CD7	4.885115	Leptokurtic (heavy tails)		
CD15	CD15	4.504387	Leptokurtic (heavy tails)		
CD16	CD16	42.287749	Leptokurtic (heavy tails)		
CD44	CD44	2.918792	Platykurtic (light tails)		
CD38	CD38	3.521190	Leptokurtic (heavy tails)		
CD13	CD13	10.637564	Leptokurtic (heavy tails)		
CD3	CD3	1.264612	Platykurtic (light tails)		
CD61	CD61	34.878020	Leptokurtic (heavy tails)		
CD117	CD117	26.375108	Leptokurtic (heavy tails)		
CD49d	CD49d	3.468119	Leptokurtic (heavy tails)		
HLA-DR	HLA-DR	2.309924	Platykurtic (light tails)		
CD64	CD64	4.910631	Leptokurtic (heavy tails)		
CD41	CD41	41.521113	Leptokurtic (heavy tails)		
Viability	Viability	3.156935	Leptokurtic (heavy tails)		
event_number	event_number	1.706183	Platykurtic (light tails)		
label	label	NaN	Mesokurtic (normal tails)		
individual	individual	1.964382	Platykurtic (light tails)		

CLASS WORK CODE

```
In [1]: import tensorflow as tf
        from sklearn.manifold import TSNE
        import matplotlib.pyplot as plt
        import numpy as np
        # Load the MNIST dataset
        (train_images, train_labels), (test_images, test_labels) = tf.keras.datasets
        train images = train images.astype('float32') / 255.0
        test images = test images.astype('float32') / 255.0
        # Flatten the images and take a subset
        n \text{ samples} = 1000
        train images flat = train images[:n samples].reshape(n samples, -1)
        train labels subset = train labels[:n samples]
        # Perform t-SNF
        tsne = TSNE(n_components=2, random_state=42, perplexity=30)
        train images embedded = tsne.fit transform(train images flat)
        # Plot the t-SNE results
        plt.figure(figsize=(10, 8))
        scatter = plt.scatter(train images embedded[:, 0], train images embedded[:,
        plt.colorbar(scatter, label='Digit Label')
        plt.title('t-SNE Visualization of MNIST Digits')
        plt.xlabel('t-SNE Component 1')
        plt.ylabel('t-SNE Component 2')
        plt.show()
```

Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz

T-SNE

```
In []: import pandas as pd
    from sklearn.preprocessing import StandardScaler
    from sklearn.manifold import TSNE
    import matplotlib.pyplot as plt

# Load the dataset
data = pd.read_csv('/content/Levine_32dim.fcs.csv')

# Exclude the specified columns
    exclude_columns = ['Event', 'Time', 'Cell_length', 'file_number', 'event_num
    data_filtered = data.drop(columns=exclude_columns)

# Standardize the data (z-score normalization)
scaler = StandardScaler()
data_standardized = scaler.fit_transform(data_filtered)

# Perform t-SNE
tsne = TSNE(n_components=2, random_state=42, perplexity=30) # You can adjus
tsne_results = tsne.fit_transform(data_standardized)
```

```
# Add the t-SNE results to the original data for visualization
data['t-SNE Component 1'] = tsne_results[:, 0]
data['t-SNE Component 2'] = tsne_results[:, 1]

# Plot the t-SNE visualization
plt.figure(figsize=(10, 8))
scatter = plt.scatter(data['t-SNE Component 1'], data['t-SNE Component 2'],
plt.colorbar(scatter, label='Label')
plt.title('t-SNE Visualization of Levine_32dim Dataset')
plt.xlabel('t-SNE Component 1')
plt.ylabel('t-SNE Component 2')
plt.show()
```


PCA

```
import pandas as pd
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
import matplotlib.pyplot as plt

# Load the dataset
data = pd.read_csv('/content/Levine_32dim.fcs.csv')
```

```
# Exclude the specified columns
exclude columns = ['Event', 'Time', 'Cell_length', 'file_number', 'event_num
data filtered = data.drop(columns=exclude columns)
# Standardize the data (z-score normalization)
scaler = StandardScaler()
data standardized = scaler.fit transform(data filtered)
# Perform PCA
pca = PCA(n components=2) # Reduce to 2 dimensions for visualization
pca result = pca.fit transform(data standardized)
# Add the PCA results to the original data for visualization
data['PCA Component 1'] = pca result[:, 0]
data['PCA Component 2'] = pca result[:, 1]
# Plot the PCA results
plt.figure(figsize=(10, 8))
scatter = plt.scatter(data['PCA Component 1'], data['PCA Component 2'], c=de
plt.colorbar(scatter, label='Label')
plt.title('PCA Visualization of Levine 32dim Dataset')
plt.xlabel('PCA Component 1')
plt.ylabel('PCA Component 2')
plt.show()
```


3D PCA graph

```
In [ ]: import pandas as pd
        from sklearn.preprocessing import StandardScaler
        from sklearn.decomposition import PCA
        import matplotlib.pyplot as plt
        from mpl toolkits.mplot3d import Axes3D # Importing 3D plotting
        # Load the dataset
        data = pd.read csv('/content/drive/MyDrive/Datasets/Levine 32dim.fcs.csv')
        # Exclude the specified columns
        exclude columns = ['Event', 'Time', 'Cell length', 'file number', 'event num
        data filtered = data.drop(columns=exclude columns)
        # Standardize the data (z-score normalization)
        scaler = StandardScaler()
        data standardized = scaler.fit transform(data filtered)
        # Perform PCA
        pca = PCA(n components=3) # Reduce to 3 dimensions for 3D visualization
        pca result = pca.fit transform(data standardized)
        # Add the PCA results to the original data for visualization
        data['PCA Component 1'] = pca result[:, 0]
        data['PCA Component 2'] = pca result[:, 1]
        data['PCA Component 3'] = pca result[:, 2]
        # Plot the PCA results in 3D
        fig = plt.figure(figsize=(10, 8))
        ax = fig.add subplot(111, projection='3d')
        # Create a 3D scatter plot
        scatter = ax.scatter(data['PCA Component 1'], data['PCA Component 2'], data[
                             c=data['label'], cmap='tab20', s=10)
        # Add color bar and labels
        plt.colorbar(scatter, label='Label')
        ax.set title('3D PCA Visualization of Levine 32dim Dataset')
        ax.set xlabel('PCA Component 1')
        ax.set_ylabel('PCA Component 2')
        ax.set zlabel('PCA Component 3')
        # Show the plot
        plt.show()
```


Variance, Cumulative Proportion and S.D.

```
In []: import pandas as pd
    from sklearn.preprocessing import StandardScaler
    from sklearn.decomposition import PCA

# Load the dataset
    data = pd.read_csv('/content/drive/MyDrive/Datasets/Levine_32dim.fcs.csv')

# Exclude the specified columns
    exclude_columns = ['Event', 'Time', 'Cell_length', 'file_number', 'event_num
    data_filtered = data.drop(columns=exclude_columns)

# Standardize the data (z-score normalization)
    scaler = StandardScaler()
    data_standardized = scaler.fit_transform(data_filtered)

# Perform PCA
    pca = PCA(n_components=4) # Use 4 principal components
    pca.fit(data_standardized)

# Extract the required information
```

```
explained variance = pca.explained variance ratio
cumulative variance = explained_variance.cumsum()
standard deviation = pca.singular values / (len(data standardized) - 1)**0.
# Create a DataFrame for the output
pca summary = pd.DataFrame({
    'PC1': [standard deviation[0], explained variance[0], cumulative variand
    'PC2': [standard deviation[1], explained variance[1], cumulative variand
    'PC3': [standard deviation[2], explained variance[2], cumulative variand
    'PC4': [standard deviation[3], explained variance[3], cumulative variance
}, index=['Standard Deviation', 'Proportion of Variance', 'Cumulative Propor
# Round the numbers for better readability
pca summary = pca summary.map(lambda x: f'\{x:.4f\}')
# Apply styles to the DataFrame
styled summary = (pca summary.style
                 .set caption("PCA Summary")
                  .set table styles(
                      [{'selector': 'caption', 'props': [('font-size', '16px
                  .background gradient(cmap='coolwarm', axis=None)
                  .set properties(**{'text-align': 'center'})
# Hiding the index column manually (workaround)
styled summary.set table styles({
    'index': [{'selector': '', 'props': 'display:none;'}] # Hides the index
})
# Display the styled DataFrame
styled summary
```

Out[]:

PCA Summary

	PC1	PC2	PC3	PC4
Standard Deviation	2.3277	1.9574	1.8780	1.6067
Proportion of Variance	0.1548	0.1095	0.1008	0.0738
Cumulative Proportion	0.1548	0.2643	0.3650	0.4388

This notebook was converted with convert.ploomber.io