Francesco Lin:
Monopole Ploer homology & theta characteristics Stopology geometry
Storology
geometry
Floer homology; topological invariants of 3-manifolds
obtained by counting solutions to certain special
non-linear PDEs (Yang-Mills, Seiberg-witten,
pseudo holomorpiconnes)
very powerful!
(krouheiner scombinatoria)
Krauh - Mrowka 08 Khovanov homology detects the
unknof
Manolesa 113 The triangulation conjecture is false in dim ≥5
in dim 25
(\$ top. manifold (X Simplicial camplex)
Drawback: very hard to compute/understand!
General theme of thurston
one can study 3-monitolds using tools from geometry
Q: Is there any relation between the geometry of Y and its Floer homology?
and it's Floer homology ?
RK: "most" 3-manifolds are bynerbolic Y= H3

(hoperbolic into one top invariants)

	Let 9 ∈ MCG (Mg.), 9 ≥ 2
	La mapping class group = Diff iso tropy
	mapping torus 6 6 6
	mapping torus (6)
	[0,1] x [1,0]
	Thm (Thurston) 9 is either:
	>1) finite order => Mg is modeled on H2×1R
today -	2) 120 disciple 1
	> 3) Pseudo-Anosov () Mg is hyperbolic estgeneristance
generic	General
case	RK: if 9 has finite order, Jig
	then 3 Riemann surface order on 5, sol 825 (acts)
	as automorphism
	9: is there a relation between Floer hamology
	and the complex geometry of (2, 4)?
	D (1)
	Thm (L): yes when $\frac{Z}{g} = P $ (Z is Rienam surface of
	$\omega^{d} = p(z)$
	(Z,w) -3(Z, Jw)
	Object of interest in Constant
	Objects of interest in Organistry side:
	theta characteristics
	K-32 canonical line bundle
	theta characteristic L is holomorphic line bolk st. L ^{®2} ~ K

=> there exactly 23 of them
1
(H°(L) space of holomorphic sections of L (finite din'l)
Interesting for classical problems in the geometry of algebraic
cones
Thm (Jacobi ~1850s)
Thm (Jacobi ~ 1850s) Z C CP smooth of degree 4, then Fexactly 28 "bitament" bitaments
bitangent 1) bitangents
bitargents
line 12 = 4 points by Bezout
$g(\overline{2}) = 3 = \frac{(4-1)(4-2)}{2}$ as $2^6 = 64$ the tachan
28 of there have H°(L) =1
ty the 2
36 have din H°(L)=0 bitanger
In gen's dim H°(L) depends on the Riemann surface structure!
in a subtle way
(Mumfard) dim H°(L) mod 2 does not!
Lodd/even defem
along
SOZ automorphism = 82 & theta char? family
→ (Serre) I fixed points, say I fixes L
3 lift g: L5 >> 6*: H°(L) 5 finile order
m 3. L y 3 . 11 (L)
Spec (8*) CS (with multiplicities)

spatum (eisenvalues)

	On Floer homology:
	L & invariant spin structure S, on M,
	HM (Mg, SL) -> f.g. IR[U]-module
	1 monopole Floer handogy
	ns topological invariant!
	Thm: 922, Zp = IP1, Linvariant theta char.
	Then Spec (8x) campletely determines HM (Mg, SL)
	geometric topological
	E. a. d.
	For example 1) dim R HM (Mg, SL) = dim c HO(L)
•	2) if HM(Mg, S) is cyclic => I spec((g*) = upper half
	(canuse, eg, surgey to compute) Plane
	Atigah's proof (70s)
	of Montad's Thm { theta char} = \$ spin structures on Z}
	dim H°(L) mod 2 Art (2,5) & Z2
	E/N
	sing $\bar{\partial} = Dirac op in dim 2$
	Gleen protagonist
	Seiberg-Witten egns.