De novo assembly of complex genomes

Michael Schatz

Sept 18, 2012 Statistical Bioinformatics, Purdue University

Schatz Lab Overview

Outline

- I. Genome assembly by analogy
- 2. Hybrid error correction and assembly
- 3. Very recent sequencing results

Shredded Book Reconstruction

- Dickens accidentally shreds the first printing of A Tale of Two Cities
 - Text printed on 5 long spools

- How can he reconstruct the text?
 - 5 copies x 138, 656 words / 5 words per fragment = 138k fragments
 - The short fragments from every copy are mixed together
 - Some fragments are identical

It was the best of age of wisdom, it was best of times, it was it was the age of it was the age of it was the worst of of times, it was the of times, it was the of wisdom, it was the the age of wisdom, it the best of times, it the worst of times, it times, it was the age times, it was the worst was the age of wisdom, was the age of foolishness, was the best of times, was the worst of times, wisdom, it was the age worst of times, it was

Greedy Reconstruction

```
It was the best of

was the best of times,

the best of times, it

best of times, it was

of times, it was the

of times, it was the

times, it was the worst

times, it was the age
```

The repeated sequence make the correct reconstruction ambiguous

• It was the best of times, it was the [worst/age]

Model sequence reconstruction as a graph problem.

de Bruijn Graph Construction

- $G_k = (V,E)$
 - V = All length-k subfragments (k < l)
 - E = Directed edges between consecutive subfragments
 - Nodes overlap by k-1 words

- Locally constructed graph reveals the global sequence structure
 - Overlaps between sequences implicitly computed

de Bruijn, 1946 Idury and Waterman, 1995 Pevzner, Tang, Waterman, 2001

de Bruijn Graph Assembly

It was the best was the best of the best of times. it was the worst best of times, it was the worst of the worst of times, of times, it was worst of times, it times, it was the it was the age the age of foolishness After graph construction, try to simplify the graph as was the age of the age of wisdom, much as possible age of wisdom, it of wisdom, it was wisdom, it was the

de Bruijn Graph Assembly

Counting Eulerian Tours

Generally an exponential number of compatible sequences

Value computed by application of the BEST theorem (Hutchinson, 1975)

$$\mathcal{W}(G,t) = (\det L) \Big\{ \prod_{u \in V} (r_u - 1)! \Big\} \Big\{ \prod_{(u,v) \in E} a_{uv}! \Big\}^{-1}$$

L = $n \times n$ matrix with r_u - a_{uu} along the diagonal and $-a_{uv}$ in entry uv $r_u = d^+(u) + I$ if u = t, or $d^+(u)$ otherwise $a_{uv} = \text{multiplicity of edge from } u \text{ to } v$

Assembly Complexity of Prokaryotic Genomes using Short Reads.

Kingsford C, Schatz MC, Pop M (2010) BMC Bioinformatics.

N50 size

Def: 50% of the genome is in contigs as large as the N50 value

N50 size = 30 kbp
$$(300k+100k+45k+45k+30k = 520k >= 500kbp)$$

Note:

N50 values are only meaningful to compare when base genome size is the same in all cases

Assembly Applications

Novel genomes

Metagenomes

Sequencing assays

- Transcript assembly
- Structural variations
- Haplotype analysis

Why are genomes hard to assemble?

1. Biological:

- (Very) High ploidy, heterozygosity, repeat content

2. Sequencing:

(Very) large genomes, imperfect sequencing

3. Computational:

(Very) Large genomes, complex structure

4. Accuracy:

(Very) Hard to assess correctness

Ingredients for a good assembly

High coverage is required

- Oversample the genome to ensure every base is sequenced with long overlaps between reads
- Biased coverage will also fragment assembly

Reads & mates must be longer than the repeats

- Short reads will have false overlaps forming hairball assembly graphs
- With long enough reads, assemble entire chromosomes into contigs

Errors obscure overlaps

- Reads are assembled by finding kmers shared in pair of reads
- High error rate requires very short seeds, increasing complexity and forming assembly hairballs

Current challenges in de novo plant genome sequencing and assembly Schatz MC, Witkowski, McCombie, WR (2012) Genome Biology. 12:243

Hybrid Sequencing

IlluminaSequencing by Synthesis

High throughput (60Gbp/day)
High accuracy (~99%)
Short reads (~100bp)

Pacific BiosciencesSMRT Sequencing

Lower throughput (600Mbp/day)
Lower accuracy (~85%)
Long reads (I-2kbp+)

SMRT Sequencing

Imaging of florescent phospholinked labeled nucleotides as they are incorporated by a polymerase anchored to a Zero-Mode Waveguide (ZMW).

Intensity

http://www.pacificbiosciences.com/assets/files/pacbio_technology_backgrounder.pdf

SMRT Read Types

Standard sequencing

Long inserts so that the polymerase can synthesize along a single strand

Circular consensus sequencing

 Short inserts, so polymerase can continue around the entire SMRTbell multiple times and generate multiple sub-reads from the same single molecule.

SMRT Sequencing Data

Yeast (Pre-release Chemistry / 2010)

65 SMRT cells 734,151 reads after filtering Mean: 642.3 +/- 587.3

Median: 553 Max: 8,495

Sample of 100k reads aligned with BLASR requiring > 100bp alignment Average overall accuracy: 83.7%, 11.5% insertions, 3.4% deletions, 1.4% mismatch

Read Quality

Consistent quality across the entire read

- Uniform error rate, no apparent biases for GC/motifs
- Sampling artifacts at beginning and ends of alignments

Consensus Quality: Probability Review

Roll n dice => What is the probability that at least half are 6's

n	Min to Lose	Losing Events	P(Lose)
I		1/6	16.7%
2		P(1 of 2) + P(2 of 2)	30.5%
3		P(2 of 3) + P(3 of 3)	7.4%
4		P(2 of 4) + P(3 of 4) + P(4 of 4)	13.2%
5		P(3 of 5) + P(4 of 5) + P(5 of 5)	3.5%
n	ceil(n/2)	$\sum_{i=\lceil n/2 \rceil}^{n} P(i \text{ of } n) = \sum_{i=\lceil n/2 \rceil}^{n} \binom{n}{i} (p)^{i} (1-p)^{n-i}$	

Consensus Accuracy and Coverage

Coverage can overcome random errors

- Dashed: error model from binomial sampling; solid: observed accuracy
- For same reason, CCS is extremely accurate when using 5+ subreads

$$CNS \, Error = \sum_{i=\lceil c/2 \rceil}^{c} {c \choose i} (e)^{i} (1-e)^{n-i}$$

PacBio Error Correction

http://wgs-assembler.sf.net

- I. Correction Pipeline
 - I. Map short reads (SR) to long reads (LR)
 - 2. Trim LRs at coverage gaps
 - 3. Compute consensus for each LR

2. Error corrected reads can be easily assembled, aligned

Hybrid error correction and de novo assembly of single-molecule sequencing reads. Koren, S, Schatz, MC, et al. (2012) *Nature Biotechnology*. doi:10.1038/nbt.2280

Error Correction Results

Correction results of 20x PacBio coverage of E. coli K12 corrected using 50x Illumina

Celera Assembler

http://wgs-assembler.sf.net

- I. Pre-overlap
 - Consistency checks
- 2. Trimming
 - Quality trimming & partial overlaps
- 3. Compute Overlaps
 - Find high quality overlaps
- 4. Error Correction
 - Evaluate difference in context of overlapping reads
- 5. Unitigging
 - Merge consistent reads
- 6. Scaffolding
 - Bundle mates, Order & Orient
- 7. Finalize Data
 - Build final consensus sequences

SMRT-Assembly Results

Hybrid assembly results using error corrected PacBio reads Meets or beats Illumina-only or 454-only assembly in every case

Improved Gene Reconstruction

FOXP2 assembled on a single contig

Transcript Alignment

- Long-read single-molecule sequencing has potential to directly sequence full length transcripts
 - Raw reads and raw alignments (red) have many spurious indels inducing false frameshifts and other artifacts
 - Error corrected reads almost perfectly match the genome, pinpointing splice sites, identifying alternative splicing
- New collaboration with Gingeras Lab looking at splicing in human

PacBio Technology Roadmap

Internal Roadmap has made steady progress towards improving read length and throughput

Very recent improvements:

- Improved enzyme:
 Maintains reactions longer
- "Hot Start" technology:Maximize subreads
- MagBead loading:Load longest fragments

PACIFIC BIOSCIENCES® CONFIDENTIAL

PacBio Rice Sequencing

Preliminary Rice Assemblies

Assembly	Contig N50
Illumina Fragments 50x 2x100bp @ 180	3925
Illumina Mates 50x 2x100bp @ 180 36x 2x50bp @ 2100 51x 2x50bp @ 4800	13696
MiSeq Fragments 23x 459bp 8x 2x251bp @ 450	6444
PBeCR Reads 6.3x 2146bp ** MiSeq for correction	13600
PBeCR + Mates 6.3x 2146bp ** MiSeq for correction 51x 2x50bp @ 4800	In Progress

In collaboration with McCombie & Ware labs @ CSHL

Single Molecule Sequencing Summary

PacBio RS has capabilities not found in any other technology

- Substantially longer reads -> span repeats
- Unbiased sequence coverage -> close sequencing gaps
- Single molecule sequencing -> haplotype phasing, alternative splicing

Long reads enables highest quality de novo assembly

- Longer reads have more information than shorter reads
- Because the errors are random we can compensate for them
- One chromosome, one contig achieved in microbes

Exciting developments on the horizon

- Longer reads, higher throughput PacBio
- Nanopore Sequencing

Acknowledgements

Schatz Lab

Giuseppe Narzisi

Shoshana Marcus

Rob Aboukhalil

Mitch Bekritsky

Charles Underwood

James Gurtowski

Alejandro Wences

Hayan Lee

Rushil Gupta

Avijit Gupta

Shishir Horane

Deepak Nettem

Varrun Ramani

Eric Biggers

CSHL

Hannon Lab

Iossifov Lab

Levy Lab

Lippman Lab

Lyon Lab

Martienssen Lab

McCombie Lab

Ware Lab

Wigler Lab

NBACC

Adam Phillippy

Sergey Koren

JHU/UMD

Steven Salzberg

Mihai Pop

Ben Langmead

Cole Trapnell

Thank You!

Want to push the frontier of bioinformatics, biotechnology, & genetics? http://schatzlab.cshl.edu/apply/

Long Read Advantages

- (a) Long reads close sequencing gaps
- (b) Long readsassemble acrosslong repeats
- (c) Long reads span complex microsatellites

Theoretical Benefits of Hot Start Sequencing

Magnetic Bead Enzyme-Template Complex Loading

Multiple complexes attached to magnetic beads that are much larger than individual ZMWs

Pre-Deposition: Complex loaded beads in solution

Magnet

(II)
Introduce magnet: Bead complexes pulled to chip surface

Rotate magnet to evenly disperse beads across entire chip surface

PACIFIC BIOSCIENCES™ CONFIDENTIAL

MBS (MagBead Station)

Cholera

Improvements to Sample Prep

PACIFIC BIOSCIENCES® CONFIDENTIAL

