Instructors:

Dr. Nguyen An Khuong

Mr. Tran Anh Dung

Dr. Tang Khai Hanh

Dr. Dang Tuan Thuong

Pham Nhat Minh - 1910346, HCMUT

HCM University of Technology, 09/2023

Table of Contents

- 1. Introduction
- 2. DRNG Definition and Survey
- 3. DVRF Protocol
- 4. DRNG System for Blockchain-based Applications
- 5. Experiment and Result
- 6. Conclusion and Future Work

Table of Contents

- 1. Introduction
- 2. DRNG Definition and Survey
- 3. DVRF Protocol
- 4. DRNG System for Blockchain-based Applications
- 5. Experiment and Result
- 6. Conclusion and Future Work

Motivation

3 | 32

Randomness is very important:

- Used in many applications in life: Gaming, Simulation, Voting, Cryptography, . . .
- A reliable source of randomness is required for such applications.

Motivation 4 | 32

Producing randomness is hard.

- True random number generator (TRNG): Produce true random output, but slow and must be stored for testing error.
- Pseudo-random generator (PRNG): Fast, produce pseudo-random outputs. But the owner knows the whole generation process!
- Notorious example of PRNG: The backdoor in Dual EC DRBG of NSA.

¹https://en.wikipedia.org/wiki/Dual_EC_DRBG

Decentralized Random Number Generator

- The role of generating randomness is split among participants.
- Reduce the risk of a single individual having access to the whole randomness-generating process.
- However, older DRNGs have problems in security or efficiency, while newer DRNG constructions are not widely studied.

Objectives

 $6 \mid 32$

In this thesis, we wish to fulfill the following objectives:

• Formally define the syntax and security properties of DRNGs.

Objectives

 $6 \mid 32$

In this thesis, we wish to fulfill the following objectives:

- Formally define the syntax and security properties of DRNGs.
- Conduct a systematic literature review and analyze the strengths and weaknesses of existing DRNG constructions.

Objectives

 $6 \mid 32$

In this thesis, we wish to fulfill the following objectives:

- Formally define the syntax and security properties of DRNGs.
- Conduct a systematic literature review and analyze the strengths and weaknesses of existing DRNG constructions.
- Based on the results of our survey, specify the most suitable DRNG construction tailored for blockchain-based applications.

Objectives

 $6 \mid 32$

In this thesis, we wish to fulfill the following objectives:

- Formally define the syntax and security properties of DRNGs.
- Conduct a systematic literature review and analyze the strengths and weaknesses of existing DRNG constructions.
- Based on the results of our survey, specify the most suitable DRNG construction tailored for blockchain-based applications.
- Finally, apply the aforementioned protocol to construct a DRNG system for blockchain-based applications.

Table of Contents

- 1. Introduction
- 2. DRNG Definition and Survey
- 3. DVRF Protocol
- 4. DRNG System for Blockchain-based Applications
- 5. Experiment and Result
- 6. Conclusion and Future Work

Formal Definition

8 | 32

A DRNG consists of two interactive protocols DRNGSetup, DRNGGen and an algorithm DRNGVerify as follows:

• DRNGSetup(1^{λ}) $\langle \{P\}_{P \in \mathcal{P}} \rangle$: Executed by all participants in \mathcal{P} . Outputs a set QUAL, public parameter **pp**, state \mathbf{st}_0 and each qualified P_i holds a secret key \mathbf{sk}_i .

Formal Definition

8 | 32

A DRNG consists of two interactive protocols DRNGSetup, DRNGGen and an algorithm DRNGVerify as follows:

- DRNGSetup(1^{λ}) $\langle \{P\}_{P \in \mathcal{P}} \rangle$: Executed by all participants in \mathcal{P} . Outputs a set QUAL, public parameter **pp**, state \mathbf{st}_0 and each qualified P_i holds a secret key \mathbf{sk}_i .
- DRNGGen($\mathsf{st}_r, \mathsf{pp}$) $\langle \{P_i(\mathsf{sk}_i)\}_{i \in \mathsf{QUAL}} \rangle$: Executed by all participants in QUAL with common inputs $\mathsf{st}_r, \mathsf{pp}$. Outputs a value Ω_r , a proof π_r update the state from st_r to st_{r+1} .

Formal Definition

8 | 32

A DRNG consists of two interactive protocols DRNGSetup, DRNGGen and an algorithm DRNGVerify as follows:

- DRNGSetup $(1^{\lambda})\langle\{P\}_{P\in\mathcal{P}}\rangle$: Executed by all participants in \mathcal{P} . Outputs a set QUAL, public parameter pp, state st_0 and each qualified P_i holds a secret key sk_i .
- DRNGGen(st_r , pp) $\langle \{P_i(\mathsf{sk}_i)\}_{i\in \mathsf{QUAL}}\rangle$: Executed by all participants in QUAL with common inputs st_r , pp . Outputs a value Ω_r , a proof π_r update the state from st_r to st_{r+1} .
- DRNGVerify(pp, Ω_r , π_r , st_r): Executed by anyone to verify the correctness of Ω_r . Outputs a bit $b \in \{0, 1\}$.

Security Properties

9 | 32

A secure DRNG protocol satisfies the following properties:²

• Pseudo-randomness: For any r, the output Ω_r is pseudo-random. More formally, if $(\Omega_r, \pi_r, \mathsf{st}_{r+1}) \leftarrow \mathsf{DRNGGen}(\mathsf{st}_r, \mathsf{pp}) \langle \{P_i(\mathsf{sk}_i)\}_{i \in \mathsf{QUAL}} \rangle$, then for any computational bouned adversaries \mathcal{A} , there is a negligible function negl such that

$$|\Pr[\mathcal{A}(\Omega_r,(\Omega_i)_{i=1}^{r-1})=1]-\Pr[\mathcal{A}(U,(\Omega_i)_{i=1}^{r-1})=1]|\leq \mathsf{negl}(\lambda)$$

where U is uniformly sampled in $\{0,1\}^{\lambda}$.

²https://eprint.iacr.org/2019/1320.pdf

Security Properties

9 | 32

A secure DRNG protocol satisfies the following properties:²

• Pseudo-randomness: For any r, the output Ω_r is pseudo-random. More formally, if $(\Omega_r, \pi_r, \mathsf{st}_{r+1}) \leftarrow \mathsf{DRNGGen}(\mathsf{st}_r, \mathsf{pp}) \langle \{P_i(\mathsf{sk}_i)\}_{i \in \mathsf{QUAL}} \rangle$, then for any computational bouned adversaries \mathcal{A} , there is a negligible function negl such that

$$|\Pr[\mathcal{A}(\Omega_r, (\Omega_i)_{i=1}^{r-1}) = 1] - \Pr[\mathcal{A}(U, (\Omega_i)_{i=1}^{r-1}) = 1]| \le \mathsf{negl}(\lambda)$$

where U is uniformly sampled in $\{0,1\}^{\lambda}$.

• Unbiasability: Adversaries cannot control the distribution of the output for their own goal.

²https://eprint.iacr.org/2019/1320.pdf

Security Properties

9 | 32

A secure DRNG protocol satisfies the following properties:²

• Pseudo-randomness: For any r, the output Ω_r is pseudo-random. More formally, if $(\Omega_r, \pi_r, \mathsf{st}_{r+1}) \leftarrow \mathsf{DRNGGen}(\mathsf{st}_r, \mathsf{pp}) \langle \{P_i(\mathsf{sk}_i)\}_{i \in \mathsf{QUAL}} \rangle$, then for any computational bouned adversaries \mathcal{A} , there is a negligible function negl such that

$$|\Pr[\mathcal{A}(\Omega_r,(\Omega_i)_{i=1}^{r-1})=1] - \Pr[\mathcal{A}(U,(\Omega_i)_{i=1}^{r-1})=1]| \leq \mathsf{negl}(\lambda)$$

where U is uniformly sampled in $\{0,1\}^{\lambda}$.

- Unbiasability: Adversaries cannot control the distribution of the output for their own goal.
- Liveness (Availability): The protocol must produce an output. In other words, $\Omega_r \neq \perp$ for all r.

²https://eprint.iacr.org/2019/1320.pdf

Security Properties

9 | 32

A secure DRNG protocol satisfies the following properties:²

• Pseudo-randomness: For any r, the output Ω_r is pseudo-random. More formally, if $(\Omega_r, \pi_r, \mathsf{st}_{r+1}) \leftarrow \mathsf{DRNGGen}(\mathsf{st}_r, \mathsf{pp}) \langle \{P_i(\mathsf{sk}_i)\}_{i \in \mathsf{QUAL}} \rangle$, then for any computational bouned adversaries \mathcal{A} , there is a negligible function negl such that

$$|\Pr[\mathcal{A}(\Omega_r,(\Omega_i)_{i=1}^{r-1})=1] - \Pr[\mathcal{A}(U,(\Omega_i)_{i=1}^{r-1})=1]| \leq \mathsf{negl}(\lambda)$$

where U is uniformly sampled in $\{0,1\}^{\lambda}$.

- Unbiasability: Adversaries cannot control the distribution of the output for their own goal.
- Liveness (Availability): The protocol must produce an output. In other words, $\Omega_r \neq \perp$ for all r.
- Public Verifiability: For any r, an external verifier can check the correctness of Ω_r using DRNGVerify.

²https://eprint.iacr.org/2019/1320.pdf

DRNG Classification

10 | 32

DRNGs are classified through their cryptographic primitives as follows:

Cryptographic Primitives	DRNG Constructions
Hash	Proof-of-work, RANDAO.
Publicly verifiable secret sharing	Randshare, SCRAPE, ALBATROSS.
Threshold signature	Drand, DFINITY.
Verifiable random function	Algorand, DVRF.
Homomorphic encryption	Nguyen et al., HERB.
Verifiable delay function	Minimal VDF Beacon, Harmony.

DRNG Classification

11 | 32

Advantages and disadvantages of DRNG constructions:

	Advantages	Disadvantages
Hash	Achieve $O(n^2)$ communication cost, $O(n)$	Do not achieve Unbiasability and Liveness.
	computation and verification cost.	
PVSS	Achieve full security properties.	Suffer $O(n^3)$ to $O(n^2 \log^2 n)$ computation and
		verification cost.
Thres.	- Achieve full security properties.	Suffer $O(n \log^2 n)$ computation cost.
Sig.	 Achieve O(n²) communication cost. 	
VRF	- Achieve O(n ²) communication cost.	- DVRF suffers $O(n \log^2 n)$ computation cost.
	- DVRF achieves full security properties.	- Algorand does not achieve Unbiasability.
	- Algorand enjoys $O(n)$ computation cost.	
HE	 Achieve O(n²) communication cost. 	- HERB suffers $O(n \log^2 n)$ computation cost.
	- HERB achieves full security properties.	- Nguyen et al. does not achieve Unbiasability.
	- Nguyen et al. enjoys $O(n)$ computation	
	cost.	
VDF	- Achieve full security properties.	
	- Achieve $O(n^2)$ communication cost and	Suffer very high computation cost.
	O(n) verification cost.	

Summary

	Pseudorandom	Unpredictable	Unbiasability	Liveness	Public Ver.	Comm. Cost	Comp. Cost	Verf. Cost	Primitives
Proof-of-work	Х	✓	Х	Х	✓	$\mathcal{O}(n^2)$	very high	O(1)	Hash
RANDAO	✓	✓	Х	Х	✓	$\mathcal{O}(n^2)$	$\mathcal{O}(1)$	$\mathcal{O}(n)$	Hash
RandShare	✓	✓	✓	✓	✓	$\mathcal{O}(n^3)$	$\mathcal{O}(n^3)$	$\mathcal{O}(n^3)$	PVSS
SCRAPE	✓	✓	✓	✓	✓	$\mathcal{O}(n^3)$	$\mathcal{O}(n^2 \log^2 n)$	$\mathcal{O}(n^2 \log^2 n)$	PVSS
ALBATROSS	✓	✓	✓	✓	✓	$\mathcal{O}(n^3)$	$\mathcal{O}(n^2 \log n)$	$\mathcal{O}(1)$	PVSS
Algorand	Х	√	Х	Х	✓	$\mathcal{O}(n^2)$	O(n)	O(1)	VRF
DVRF	\checkmark	√	\checkmark	\checkmark	\checkmark	$\mathcal{O}(n^2)$	$\mathcal{O}(n\log^2 n)$	$\mathcal{O}(n\log^2 n)$	VRF
Nguyen19	✓	✓	Х	✓	✓	$\mathcal{O}(n^2)$	O(n)	$\mathcal{O}(n)$	HE
HERB	√	√	√	√	√	$\mathcal{O}(n^2)$	$\mathcal{O}(n\log^2 n)$	$\mathcal{O}(n\log^2 n)$	HE
Harmony	Х	√	✓	√	✓	$\mathcal{O}(n^2)$	very high	O(n)	VDF
Minimal VDF	Х	√	✓	√	✓	$\mathcal{O}(n^2)$	very high	O(n)	VDF
Drand	Х	√	√	√	√	$\mathcal{O}(n^2)$	$\mathcal{O}(n\log^2 n)$	$\mathcal{O}(n\log^2 n)$	BLS Signature
DFINITY	Х	√	√	√	√	$\mathcal{O}(n^2)$	$\mathcal{O}(n\log^2 n)$	$\mathcal{O}(n\log^2 n)$	BLS Signature

Table of Contents

- 1. Introduction
- 2. DRNG Definition and Survey
- 3. DVRF Protocol
- 4. DRNG System for Blockchain-based Applications
- 5. Experiment and Result
- 6. Conclusion and Future Work

Components

Component: Distributed Key Generation

- Executed jointly by **n** participants.
- Generate a public-secret key pair $(pk = g^{sk}, sk)$ and a partial public-secret key pair $(pk_i = g^{sk_i}, sk_i)$ for each participant P_i .
- At least t+1 partial secret keys are required to restore ${\sf sk}.$

Component: VRF Based on Elliptic Curves

16 | 32

ECVRF construction: ³

- The public key pk is $pk = g^{sk}$.
- Let h = H(X) and compute $Y = h^{sk}$.
- Compute the proof π to prove the knowledge of sk such that $pk = g^{sk}$ and $Y = h^{sk}$, then output (Y, π) .

³https://eprint.iacr.org/2017/099.pdf

Construction: Setup

17 | 32

$\mathsf{DRNGSetup}(1^{\lambda})\langle \{P\}_{P\in\mathcal{P}}\rangle$: For simplicity, see figure below.

Construction: Generation

18 | 32

 $\mathsf{DRNGGen}(\mathsf{st}_r,\mathsf{pp})\langle\{P_i(\mathsf{sk}_i)\}_{i\in\mathsf{QUAL}}\rangle$: For simplicity, see figure below.

Construction: Generation

19 | 32

 $\mathsf{DRNGGen}(\mathsf{st}_r,\mathsf{pp})\langle\{P_i(\mathsf{sk}_i)\}_{i\in\mathsf{QUAL}}\rangle$: For simplicity, see figure below.

Construction: Generation

20 | 32

 $\mathsf{DRNGGen}(\mathsf{st}_r, \mathsf{pp}) \langle \{P_i(\mathsf{sk}_i)\}_{i \in \mathsf{QUAL}} \rangle$: For simplicity, see figure below.

Construction: Verification

21 | 32

DRNGVerify(pp, Ω_r , π_r , st_r): For simplicity, see figure below.

Complexity Analysis

22 | 32

The communication, computation and verification complexity of the protocol depend on the number of participants, denoted by \boldsymbol{n} as follows:

- Communication Complexity: $O(n^2)$.
- Computation Complexity per Participant: $O(n \log^2 n)$.
- Verification Complexity per Verifier: $O(n \log^2 n)$.

Table of Contents

- 1. Introduction
- 2. DRNG Definition and Survey
- 3. DVRF Protocol
- 4. DRNG System for Blockchain-based Applications
- Experiment and Result
- 6. Conclusion and Future Work

Randomness for Blockchain

- Various blockchain-based games (e.g., Axie Infinity) require randomness for distributing prizes, items.
- Existing blockchain systems employ older DRNGs such as RANDAO → Do not satisfy required security properties.
- We propose to use DRVF protocol above to generate randomness for such applications.

Figure: Axie Infinity ⁴

⁴https://axieinfinity.com

Proposed System Architecture

 $25\mid 32$

• Dapp: An application wishes to use a random number.

Proposed System Architecture

- Dapp: An application wishes to use a random number.
- Smart Contract: Forward random number request from Dapp to DVRF and verify the result from DVRF.

Proposed System Architecture

- Dapp: An application wishes to use a random number.
- Smart Contract: Forward random number request from Dapp to DVRF and verify the result from DVRF.
- DVRF: Used for generating randomness in a distributed manner.

Proposed System Workflow

Table of Contents

- 1. Introduction
- 2. DRNG Definition and Survey
- 3. DVRF Protocol
- 4. DRNG System for Blockchain-based Applications
- 5. Experiment and Result
- 6. Conclusion and Future Work

NIST Test Suite

28 | 32

• Developed and maintained by the U.S. government.

NIST Test Suite

- Developed and maintained by the U.S. government.
- Widely used in the industry standard.

NIST Test Suite

- Developed and maintained by the U.S. government.
- Widely used in the industry standard.
- Consists of different tests to test the randomness of binary sequences produced by hardware or software-based cryptographic random or pseudo-random number generators following different statistical tests.

NIST Test Suite

- Developed and maintained by the U.S. government.
- Widely used in the industry standard.
- Consists of different tests to test the randomness of binary sequences produced by hardware or software-based cryptographic random or pseudo-random number generators following different statistical tests.
- We use NIST Test Suite to test our implementation with 20 numbers; each number is 100000 bits long.

Result

29 | 32

Test name	Pass rate
Frequency	20/20
Frequency in a Block	20/20
Run	20/20
Longest Run of Ones in a Block	19/20
Binary Matrix Rank	20/20
Discrete Fourier Transform	20/20
Non-Overlapping Template Matching	20/20
Overlapping Template Matching	20/20
Universal Statistical	20/20
Linear Complexity	19/20
Serial	20/20
Approximate Entropy	19/20
Cumulative Sums	20/20

In the test suite 5 , for 20 numbers, the acceptable pass rate is equal to $0.99 \pm 3\sqrt{(0.99(1-0.99)/20} = [0.923,1] \rightarrow \text{all test passed}$.

⁵https://csrc.nist.gov/pubs/sp/800/22/r1/upd1/final

Table of Contents

- 1. Introduction
- 2. DRNG Definition and Survey
- 3. DVRF Protocol
- 4. DRNG System for Blockchain-based Applications
- 5. Experiment and Result
- 6. Conclusion and Future Work

Conclusion and Future Work

31 | 32

Conclusion.

- A summary of the thesis has been accepted at IUKM 2023.
- Formally defined the syntax and security properties of DRNGs.
- Conducted a systematic literature review of existing DRNGs.
- Specified a DRNG construction tailored for blockchain-based applications.
- Applied the aforementioned protocol to construct a DRNG system for blockchain-based applications.
- Assessed the security of the system using the NIST test suite.

Future Work.

- Construct DRNGs that are secure against quantum threats.
- Define DRNGs using the Universal Composable Security framework.

⁶https://www.jaist.ac.jp/IUKM/IUKM2023/

Thank you

32 | 32

Thank You for Listening!