Brandon M. Waskiewicz

https://brandonw.github.io/brandon.waskiewicz@gmail.com

OBJECTIVE

A position focusing on Python development in a Linux environment with special interest in web applications.

EDUCATION

Bachelor of Science, Computer Science University of Massachusetts, Amherst, MA Graduated With Honors

COMPUTER SKILLS Languages: Python, C#, Javascript, C, Rust, Haskell

Frameworks & Libraries: Django, jQuery, Django REST Framework, ASP.NET MVC

Software & Tools: Vim, git, MSSQL, PostgreSQL, Vagrant, Ansible

Operating Systems: Linux, Windows

EXPERIENCE

Lead Software Engineer

Winter 2012-Present

Bridgeport National Bindery, ERP and B2B application development, Agawam, MA

- Acted as a primary motivator in the addition of Bridgeport National Bindery's biggest POD partner; implemented several communication streams between the two domains under very sensitive time constraints.
- Improved usability and reduced complexity of several standalone desktop applications by combining them into a web application.
- Optimized several key chokepoints as usage increased, including the primary order API, as well as a background downloader process.

Software Engineer

Fall 2006-2012

Bridgeport National Bindery, ERP and B2B application development, Agawam, MA

- Architected a revamp of the existing ERP system which drastically increased modularity, improved consistency, and streamlined the addition of large customers.
- Automated many manual operations, improving throughput of the entire system by many orders of magnitude.

Software Intern Summer 2006

Atalasoft, Easthampton, MA

- Worked together with a team of interns exploring the potential usage paradigms of a newly released product.
- Processed a plethora of information on both digital image theory and the dotImage product from current employees in order to find the best possible ways to pair dotImage with Windows Workflow Foundation.

PLC & HMI Programmer

Winters 2002-07

Industrial Power Services, Ware, MA

- Automated alerts, logging, and proportional-integral-derivative loops used in programmable logic controllers to optimize the operating efficiency of multiple power plants.
- Implemented the ladder logic of DirectSoft PLC programs that governed the transitions and states of multiple generators and gas-burning flares, making the process of bringing up or shutting down all systems easier and faster.