Math 164 Homework 5

Nick Monozon

Problem 6.7

Proof. Let $f: \mathbb{R}^n \to \mathbb{R}$, $x_0 \in \mathbb{R}^n$, $\Omega \subset \mathbb{R}^n$, and $\Omega' = \{y: y - x_0 \in \Omega\}$. For notation ease, let $w_0 = x_0 + \operatorname{arg\,min}_{x \in \Omega} f(x)$. Therefore, we need to show that $w_0 = \operatorname{arg\,min}_{y \in \Omega'} f(y - x_0)$. Hence, we must show that for all $z \in \Omega'$,

$$f(z-x_0) \ge f(w_0-x_0).$$

Choose some arbitrary $z \in \Omega'$. By definition, $z - x_0 \in \Omega$. It follows that

$$\begin{split} f(z-x_0) &\geq \min_{x \in \Omega} f(x) \\ &= f\left(\operatorname*{argmin}_{x \in \Omega} f(x) \right) \\ &= f(w_0 - x_0). \end{split}$$

And we're done.

Problem 6.11

(a) Since $d_1 \ge 0$ and $|d_2| \le d_1^2$ are conditions, the set of feasible directions is hence

$$\mathcal{D} = \{d : d_1 \ge 0, d_2 = 0\}$$

as $d_1 \ge 0$, so $|d_2| \le d_1^2$ for any $d_1 \ge 0$ only when $d_2 = 0$. This means that any feasible direction is of the form $\begin{bmatrix} d_1, 0 \end{bmatrix}^\top$ for $d_1 \ge 0$. Since $f(x) = -x_2^2$, the gradient of f is

$$\nabla f(x) = \begin{bmatrix} 0 \\ -2x_2 \end{bmatrix}.$$

For the FONC to be satisfied at x^* , we must have that

$$d^{\top}\nabla f(x^*) \ge 0.$$

So if we consider the point $[x_1, x_2]^{\top} = \mathbf{0}$, then for any feasible direction d at $\mathbf{0}$,

$$d^{\top} \nabla f(\mathbf{0}) = \begin{bmatrix} d_1, 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} = 0 \ge 0.$$

So it is true.

(b) We have that $[x_1, x_2]^{\top} = \mathbf{0}$ is a local maximizer because $f(\mathbf{0}) = 0$ while any feasible point x satisfies just $f(x) \le 0$. However $\mathbf{0}$ is not a strict local maximizer because for any point y of the form $y = [y_1, 0]^{\top}$, we can see that $f(y) = 0 = f(\mathbf{0})$, which exist in any neighborhood of $\mathbf{0}$. Additionally, we know that $\mathbf{0}$ is not a local minimizer because for any point y of the form $y = [y_1, y_1^2]^{\top}$ where $y_1 > 0$, $f(y) = -y_1^4 < 0$. Such y exist in any neighborhood of $\mathbf{0}$. So y is neither a strict local minimizer not a local minimizer.

Problem 6.13

(a) The point $x^* = \begin{bmatrix} 3,0 \end{bmatrix}^\top$ satisfies the FONC if for any feasible direction d at x^* , $d^\top \nabla f(x^*) \ge 0$ is true. We therefore must find the set of feasible directions at x^* , which we will denote \mathcal{D}^* . If we consider $d \in \mathcal{D}^*$, this implies that there exists $\bar{\alpha} > 0$ such that for any $\eta \in [0,\bar{\alpha}]$, $x^* + \eta d \in \Omega$. We have that

$$\begin{split} \left[2,0\right]^\top + \eta \left[d_1,d_2\right]^\top &= \left[2 + \eta d_1,\eta d_2\right]^\top \in \Omega \quad \Leftrightarrow \quad (2 + \eta d_1) + (d_2)^2 \leq 2 \\ &\Leftrightarrow \quad 2 + \eta d_1 + \eta^2 d_2^2 \leq 2 \\ &\Leftrightarrow \quad \eta d_1 + \eta^2 d_2^2 \leq 0 \\ &\Leftrightarrow \quad d_1 + \eta d_2^2 \leq 0 \\ &\Leftrightarrow \quad \eta \leq -\frac{d_1}{d_2^2} \quad (d_2 \neq 0). \end{split}$$

Since $\eta \ge 0$ and $d_2^2 > 0$, we require that $d_2 \in \mathbb{R} \setminus \{0\}$ and $d_1 \le 0$. If we consider the case where $d_2 = 0$ (not considered in the above), we have that

$$\begin{bmatrix} 2, 0 \end{bmatrix}^{\top} + \eta \begin{bmatrix} d_1, 0 \end{bmatrix}^{\top} = \begin{bmatrix} 2 + \eta d_1, 0 \end{bmatrix}^{\top} \in \Omega \quad \Leftrightarrow \quad (2 + \eta d_1) + 0^2 \le 2$$

$$\Leftrightarrow \quad \eta d_1 \le 0$$

$$\Leftrightarrow \quad d_1 \le 0.$$

So $d = [d_1 = 0, d_2 \in \mathbb{R}]^{\top}$ is feasible. Hence, the set of feasible directions is

$$\mathcal{D}^* = \{ d \in \mathbb{R}^2 : d_1 \le 0, d_2 \in \mathbb{R} \}.$$

Clearly, $d \in \mathcal{D}^*$ implies that $d \in \{d \in \mathbb{R}^2 : d_1 \le 0, d_2 \in \mathbb{R}\}$, so $\mathcal{D}^* \subset \{d \in \mathbb{R}^2 : d_1 \le 0, d_2 \in \mathbb{R}\}$. Let's show the other containment now. Let $\mathcal{A} = \{d \in \mathbb{R}^2 : d_1 \le 0, d_2 \in \mathbb{R}\}$. We have that $d \in \mathcal{A}$ implies that $d_1 \le 0, d_2 \in \mathbb{R}$. So it follows that for any $\eta \ge 0$,

$$[2,0]^{\top} + \eta [d_1, d_2]^{\top} = [2 + \eta d_1, \eta d_2]^{\top}$$

and $(2 + \eta d_1) + (\eta d_2)^2 \le 2$, so $d \in \mathcal{D}^*$ and hence $\mathcal{A} \subset \mathcal{D}^*$. Our two containments mean that $\mathcal{A} \subset \mathcal{D}^* \subset \mathcal{A}$ and thus that $\mathcal{D}^* = \mathcal{A}$, so $\mathcal{D}^* = \{d \in \mathbb{R}^2 : d_1 \le 0, d_2 \in \mathbb{R}\}$ is the set of feasible directions at x^* . Now that we have established the set of feasible directions, we can check if the FONC is satisfied at x^* . Consider $d \in \mathcal{D}^*$. We have that

$$\nabla f(x^*) = \begin{bmatrix} -3 \\ 0 \end{bmatrix},$$

which means that

$$\begin{bmatrix} d_1, d_2 \end{bmatrix} \begin{bmatrix} -3 \\ 0 \end{bmatrix} = -3d_1 \ge 0$$

as $d_1 \le 0$. So the FONC is satisfied at x^* .

(b) The SONC is satisfied at x^* if for any $d \in \mathcal{D}^*$, $d^\top F(x^*) d \ge 0$. We compute the Hessian matrix to be

$$F(x) = \mathcal{J}(\nabla f(x)) = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix},$$

so $F(x^*) = F(x)$. Hence, for any $d \in \mathcal{D}^*$,

$$d^{\top} \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} d \ge 0,$$

so the SONC is satisfied at $x^* = [2,0]^{\mathsf{T}}$.

(c) Yes, x^* is a local minimizer. This is because for any feasible point $x = [x_1, x_2]^{\top} \neq x^*$, we have that $x_1 < 2$. Thus, for each $x \neq x^*$,

$$f(x) = -3x_1 > -6 = f(x^*).$$

To be more precise, x^* is a strict local minimizer.

Problem 6.17

(a) We have that $f(x) = \ln x_1 + \ln x_2$. Taking the gradient, we find that

$$f(x) = \begin{bmatrix} 1/x_1 \\ 1/x_2 \end{bmatrix}$$

for $x_1, x_2 > 0$. Suppose that x^* is an optimal solution for this maximization problem. For x^* to be an interior point of Ω , we require that $\nabla f(x^*) = \mathbf{0}$. However, $1/x_1$ and $1/x_2$ cannot be 0, so it's not possible for x^* to be an interior point of Ω .

(b) We compute the Hessian matrix to be

$$F(x) = \mathcal{J}(f(x)) = \begin{bmatrix} -\frac{1}{x_1^2} & 0\\ 0 & -\frac{1}{x_2^2} \end{bmatrix}$$

which is negative definite for every $x = [x_1, x_2]^{\top} \in \Omega$. Since this is a maximization problem, the negative definiteness of the Hessian is analogous to the positive definiteness of the Hessian for a minimization problem. As such, by Corollary 6.2, since $F(x^*)$ is negative definite for every feasible $x = [x_1, x_2]^{\top} \in \Omega$, the SONC is satisfied at every point $x \in \Omega$.

Problem 6.26

Since $x_1, x_2 \ge 0$, $d = \begin{bmatrix} 1, 1 \end{bmatrix}^{\top}$ is clearly a feasible direction at **0**. We see that

$$d^{\top}\nabla f(\mathbf{0}) = \frac{\partial f}{\partial x_1}(\mathbf{0}) + \frac{\partial f}{\partial x_2}(\mathbf{0}).$$

Since $\nabla f(\mathbf{0}) \leq \mathbf{0}$ and $\nabla f(\mathbf{0}) \neq 0$, this means that

$$d^{\top}\nabla f(\mathbf{0}) < 0.$$

This does not satisfy the FONC, so 0 cannot be a local minimizer.

Problem 6.28

For this linear programming question, the objective function is $f(x) = -c_1x_1 - c_2x_2$. Hence, it follows that

$$\nabla f(\mathbf{x}) = \begin{bmatrix} -c_1 \\ -c_2 \end{bmatrix} \neq \mathbf{0}$$

for every x as $c_1 > c_2 \ge 0$. By the FONC, the optimal feasible solution x^* therefore cannot be an interior point of the feasible set. For each $x \in L_1 \cup L_2$, $d = \begin{bmatrix} 1 \\ 1 \end{bmatrix}^\top$ is a feasible direction, so we have that

$$d^{\top} f(x) = -c_1 - c_2 < 0.$$

So by the FONC, the optimal feasible solution is not contained in $L_1 \cup L_2$. Next, for each $x \in L_3$, $d = \begin{bmatrix} 1, -1 \end{bmatrix}^\top$ is a feasible direction, so we have that

$$d^{\top} f(x) = c_2 - c_1 > 0.$$

Again, the FONC for the interior case is not satisfied, so the optimal feasible solution is not in L_3 . By the process of elimination, the unique optimal feasible solution must be $\begin{bmatrix} 1,0 \end{bmatrix}^{\top}$.

Problem 6.32

Proof. Let Ω be a convex subset of \mathbb{R}^n , $f \in C^2$ be a real-valued function on Ω , and x^* be a point in Ω . Since $f \in C^2$, we know that $F(x^*) = F^\top(x^*)$. Suppose that $d \neq 0$ is a feasible direction at x^* . Then, by Taylor's Theorem,

$$f(x^* + d) - f(x^*) = \frac{1}{2}d^{\top}\nabla f(x^*) + d^{\top}F(x^*)d + o(\|d\|^2).$$

By conditions 1 and 2, we have that

$$f(x^* - d) - f(x^*) \ge c \|d\|^2 + o(\|d\|^2).$$

Hence, for any d that that ||d|| is sufficiently small, we have that

$$f(x^* + d) > f(x^*),$$

and so x^* is a strict local minimizer for f. This completes the proof.