REPRESENTAÇÃO E DESCRIÇÃO DE IMAGENS

PROF. VALMIR MACARIO FILHO

SUMÁRIO

1. Representação e Descrição

2. Descritores de Forma

- Código da Cadeia
- Aproximações Poligonais
- Descritores Topológicos
- Assinaturas
- Descritor de Fourier

3. Descritores de Cor

4. Descritores de Textura

- Descritores estatísticos
- Momentos
- Descritor de Fourier
- Local Binary Pattern

REPRESENTAÇÃO E DESCRIÇÃO

- Fase posterior à segmentação.
- Trata-se de representar e descrever uma determinada região da imagem de forma apropriada para o processamento subsequente.
- Representa-se em termos de:
 - Características externas (Fronteira)
 - Características internas (Pixels que compõe a região)

ESQUEMAS DE REPRESENTAÇÃO

- Características externas:
 - Escolhida quando o interesse é na forma da região.
- Características internas:
 - Escolhida quando a análise se concentrará em propriedades como cor ou textura.
- Em qualquer um dos casos, a forma de descrição deve ser minimamente afetada (invariantes) por transformações como escalamento, rotação e translação.

CARACTERÍSTICAS EXTERNAS

DESCRITORES DE FORMA

- Código da Cadeia:
 - Usada para representar fronteiras.
 - Fronteiras são consideradas sequências conectadas (conectividade de 4 ou 8) de segmentos de linha reta.
 - A direção de cada segmento é codificada por um esquema de numeração.

DESCRITORES DE FORMA

- Escolhe-se um ponto aleatório na fronteira e percorre-se a mesma no sentido horário.
- Esta abordagem é inapropriada, pois as cadeias resultantes são muito longas e bastante suscetíveis a ruídos.

CÓDIGO DA CADEIA

CÓDIGO DA CADEIA

Chain Code

Each direction is assigned a code:

4-neighbor

8-neighbor

4-neighbor:

8-neighbor:

076666553321212

0303333232312121011011

CÓDIGO DA CADEIA

Chain Code Independent of Location, Starting Point and Orientation

Chain Code:

067644222

066444201

444201066

Curvature = differences in chain code values :

-6-11202002

-6020022-11

0022-11-602

Normalize curvature = mod 8:

271202002

202002271

002271202

Code is the cyclic permutation which produces the smallest number:

002271202

APROXIMAÇÕES POLIGONAIS

- Capturar a essência da forma da borda
 - Alto custo
 - Polígonos de perímetro mínimo que se ajustam a geometria estabelecida pela grade da imagem

PERÍMETRO

- Contagem do número de pixels da Fronteira
- Usando o código de cadeia:
 - de 4 direções: número de elementos
 - de 8 direções: número de elementos pares (horizontais e verticais) mais √2 x (número de elementos ímpares) elementos diagonais

APROXIMAÇÕES POLIGONAIS

Polígonos de perímetro mínimo consite em segmentos de linhas que minimizam Distâncias entre pixels de fronteiras.

APROXIMAÇÕES POLIGONAIS

- Marquemos a região cercada pela borda:
 - Seguir a região em sentido anti-horário
 - Vértices convexos (pontos brancos) ou côncavos (pontos pretos)
 - Cada vértice côncavo tem um correspondente espelhado na borda do objeto.
 - Vértices do polígono coincidem com vértices convexos e espelhos dos vértices côncavos.

TÉCNICA DE SEPARAÇÃO

1. Encontrar a linha entre pontos extremos

DIÂMETRO DA FRONTEIRA

- O valor do Diâmetro e a orientação da linha que conecta os dois pontos da fronteira mais distantes são descritores úteis
- Diam(B) = $\max[D(p_i, p_j)]$
 - onde: $D(p_i, p_j)$ é a distância entre os píxels i e j sobre a fronteira B

EXCENTRICIDADE DA FRONTEIRA

- É a razão entro o Eixo maior (D) e o Eixo Menor (d) da fronteira.
 - E = D/d
- Eixo Menor é a maior distância entre dois pontos da fronteira B sobre uma perpendicular ao Eixo Maior
- Invariantes a translação e rotação

DESCRITORES TOPOLÓGICOS

- 1) Área de uma Região (A):
 - A = Número de pixels contido dentro de sua fronteira.
 - Caso uma imagem possua vários objetos:
 - 1. Rotular cada componente conectado da imagem
 - 2. Calcular o histograma da imagem etiquetada
 - Ordenar os componentes conectados como uma função em relação ao tamanho do histograma, ignorango os pixels de fundo
- 2) Compacidade:

Onde P = Perímetro da fronteira e

$$C = \frac{P^2}{A}$$
 $A =$ Área da Região

A Compacidade é adimensional e insensível a mudanças de escala e orientação.

DESCRITORES TOPOLÓGICOS

- Úteis para descrições globais no plano de Imagem.
- Topologia é o estudo das propriedades de uma figura que não sejam afetadas por deformações, desde que não existam divisão ou fusão da figura.
- Número de Furos:

Número de Componentes:

Região com 2 furos

Região com 3 componentes conectados

NÚMERO DE EULER:

$$E = C - H$$

Onde: C = número de componentes Conectados

H = número de furos

ASSINATURAS

Figure 6.9 Signature: (a) Construction, (b) signatures for a circle and a triangle.

CENTRÓIDE (CENTRO DE MASSA)

Média dos valores dos pontos da forma.

```
Algorithm: Region-Based Centroid Estimation
centroid_p = 0; centroid_q = 0; area = 0;0;
For p = 1 to P do
For q = 1 to Q do
   If (g(p,q) == 1)
    centroid_p = centroid_p + p;
    centroid_q = centroid_q + q;
    area = area + 1;
    end
end
end
centroid_p = centroid_p / area;
```

centroid_q = centroid_q / area;

ASSINATURAS

Representa uma função 1-D: coloca a distância de um centróide a fronteira como uma função de ângulos:

Assinatura= $r(\theta)$, $\theta = 0 \sim 2\pi$

ASSINATURAS POR PROJEÇÕES

Assinatura Vertical

$$h(x) = \sum_{y} f(x, y)$$

Assinatura Horizontal

$$v(x) = \sum_{x} f(x, y)$$

Assinatura Diagonal

$$d(\mathbf{x}) = \sum_{t} f(x, y)$$

ASSINATURAS

ASSINATURAS

DESCRITORES DE FOURIER

Pontos de Fronteira

 Seja a coordenada (x, y) da fronteira um número complexo tal que x = parte real e y = parte imaginária

$$s(k) = x(k) + jy(k)$$

DFT:

$$a(u) = \frac{1}{K} \sum_{k=0}^{K-1} s(k) e^{-2\pi u k/K}$$

para k=0,...,K-1

DFT inversa

$$s(k) = \frac{1}{K} \sum_{k=0}^{K-1} a(u) e^{2\pi u k/K}$$

DESCRITORES DE FOURIER

- Seja K o nº de pontos na borda: k = 0,1,2,K-1
- Ao invés de utilizar todos os pontos, pegue os P primeiros
- Lembre-se de que componentes de alta frequência relacionam-se para os pequenos detalhes.
- Componentes de baixa frequencia determinam a forma global.
- Quanto menor P, mais detalhes são perdidos na borda
- Utilizando as propriedades da transformada, pode-se tornar o método invariante a rotação, translação, escala e ponto inicial.

DESCRITORES DE FOURIER

CARACTERÍSTICAS INTERNAS

DESCRITORES BASEADOS EM COR

- A cor é provavelmente a característica mais
- Ela é relativamente robusta por apresentar independência do tamanho da imagem e da orientação da mesma.
- Os modelos de cor podem ser classificados em orientados ao hardware (RGB, CMY, YIQ) e orientados ao usuário (HSI, HSV, L*u*v*, L*a*b*).

DESCRITORES BASEADOS EM TEXTURA

- Fornece medidas de propriedades como suavidade, rugosidade e regularidade.
 - Abordagens principais: Estatística, Estrutural, Espectral, Análise Local
- A abordagem estatística caracteriza as Texturas como suave, áspera, granular, etc...
- A abordagem estrutural descreve as Texturas como arranjos de primitivas de imagem, tais como linhas regularmente espaçadas.
- A abordagem espectral baseia-se em propriedades do espectro de Fourier.
- A análise Local é baseada na distribuição dos píxels em torno da vizinhança de cada píxel (Texture Unit, LBP, Transformada Census)

DESCRITORES ESTATÍSTICOS

Média:

$$m = \sum_{i=0}^{L-1} z_i \, p(z_i)$$

Desvio Padrão:

$$\sigma = \sqrt{\mu_2(z)} = \sqrt{\sigma^2}$$

Suavidade:

$$R = 1 - 1/(1 + \sigma^2)$$

Terceiro Momento:

$$\mu_3 = \sum_{i=0}^{L-1} (z_i - 1)^3 p(z_i)$$

Uniformidade:

$$U = \sum_{i=0}^{L-1} p^2 \left(z_i \right)$$

Entropia:

$$e = \sum_{i=0}^{L-1} p(z_i) \log_2 p(z_i)$$

Alguns descritores de textura baseados no histograma de uma região.

 Z_i = Intensidade dos pixels

P(z) = Histograma das intensidades

L = número dos possíveis níveis de cinza

MOMENTOS

- Propriedades estatísticas que descrevem formas
- Imagens binárias ou de tons de cinza
- Depende da escala, translação, rotação.
- A média, a variância de uma função f(x) são exemplos de momento desta função.

MOMENTOS

Supercondutor (textura suave)

Colesterol (textura áspera)

Microprocessador (textura regular)

Momentos estatísticos:

$$\mu_n(z) = \sum_{i=0}^{L-1} (z_i - m)^n p(z_i)$$
• $P(z)$ = Histograma das intensidades
• L = número dos possíveis níveis de cinza

- Z_i = Intensidade dos pixels
- cinza

onde

$$m = \sum_{i=0}^{L-1} z_i p(z_i)$$

Examplo: 2° momento = variância → mede "suavidade"

3° moment → mede "assimetria"

4° moment → mede "uniformidade" (planicidade)

Texture	Mean	Standard deviation	R (normalized)	Third moment	Uniformity	Entropy
Smooth	82.64	11.79	0.002	-0.105	0.026	5.434
Coarse	143.56	74.63	0.079	-0.151	0.005	7.783
Regular	99.72	33.73	0.017	0.750	0.013	6.674

MOMENTOS 2D

 O momento de ordem (p+q) de uma função contínua bidimensional é definido como

$$m_{pq} = \sum_{x} \sum_{y} x^{p} y^{q} f(x, y)$$
 $\bar{x} = \frac{m_{10}}{m_{00}}$ $y = \frac{m_{01}}{m_{00}}$

$$\overline{x} = \frac{m_{10}}{m_{00}}$$

$$y = \frac{m_{01}}{m_{00}}$$

- Momentos Centrais:
 - São Momentos centralizados em regiões e podem ser expressos como

$$\mu_{pq} = \sum_{x} \sum_{y} (x - \overline{x})^{p} (y - \overline{y})^{q} f(x, y)$$

MOMENTOS 2D

$$\mu_{00} = m_{00}$$

$$\mu_{01} = \mu_{10} = 0$$

$$\mu_{11} = m_{11} - \bar{x}m_{01} = m_{11} - \bar{y}m_{10}$$

$$\mu_{20} = m_{20} - \bar{x}m_{10}$$
 $\mu_{02} = m_{02} - \bar{y}m_{01}$

$$\mu_{21} = m_{21} - 2\bar{x}m_{11} - \bar{y}m_{20} + 2\bar{x}^2m_{01}$$

$$\mu_{12} = m_{12} - 2\bar{y}m_{11} - \bar{x}m_{02} + 2\bar{y}^2m_{10}$$

$$\mu_{30} = m_{30} - 3\bar{x}m_{20} + 2\bar{x}^2m_{10}$$

$$\mu_{03} = m_{03} - 3\bar{y}m_{02} + 2\bar{y}^2m_{01}$$

São Invariantes com relação à escala.

MOMENTOS 2D INVARIANTES

Os momentos centrais normalizadas de ordem p + q

$$\eta_{pq} = \frac{\mu_{pq}}{\mu_{00}^{\gamma}}$$
 onde $\gamma = \frac{p+q}{2} + 1$

Momentos invariantes de Hu: rotação, translação, escala e reflexão

$$\phi_{1} = \eta_{20} + \eta_{02} \qquad \phi_{2} = (\eta_{20} - \eta_{02})^{2} + 4\eta_{11}^{2}$$

$$\phi_{3} = (\eta_{30} - 3\eta_{12})^{2} + (3\eta_{21} - \eta_{03})^{2} \qquad \phi_{4} = (\eta_{30} + \eta_{12})^{2} + (\eta_{21} + \eta_{03})^{2}$$

$$\phi_{5} = (\eta_{30} - 3\eta_{12})(\eta_{30} + \eta_{12})[(\eta_{30} + \eta_{12})^{2} - 3(\eta_{21} + \eta_{03})^{2}] + (3\eta_{21} - \eta_{03})(\eta_{21} + \eta_{03})[3(\eta_{30} + \eta_{12})^{2} - (\eta_{21} + \eta_{03})^{2}]$$

$$\phi_{6} = (\eta_{10} - \eta_{10})[(\eta_{11} + \eta_{11})^{2} - (\eta_{11} + \eta_{11})^{2}] + (\eta_{11} + \eta_{11})^{2}$$

$$\phi_6 = (\eta_{20} - \eta_{02}) [(\eta_{30} + \eta_{12})^2 - (\eta_{21} + \eta_{03})^2] + 4\eta_{11} (\eta_{30} + \eta_{12}) (\eta_{21} + \eta_{03})$$

$$\phi_7 = (3\eta_{21} - \eta_{03})(\eta_{30} + \eta_{12})[(\eta_{30} + \eta_{12})^2 - 3(\eta_{21} + \eta_{03})^2]$$

$$+ (\eta_{30} - 3\eta_{12})(\eta_{21} + \eta_{03})[3(\eta_{30} + \eta_{12})^2 - (\eta_{21} + \eta_{03})^2]$$

MOMENTOS 2D INVARIANTES

MOMENTOS 2D INVARIANTES

Invariante	Imagem Original	Metade	Espelhado	Rotação 2º	Rotação 45º
$\phi_{_1}$	6,249	6,226	6,919	6,253	6,318
ϕ_2	17,180	16,954	16,955	17,270	16,803
ϕ_3	22,655	23,531	26,689	22,836	19,724
ϕ_4	22,919	24,236	26,901	23,130	20,437
ϕ_5	45,749	48,349	53,724	46,136	40,525
ϕ_6	31,830	32,916	37,134	32,068	29,315
ϕ_7	45,589	48,343	53,590	46,017	40,170

 A experiência tem mostrado que os 7 Momentos Invariantes de Hu, são suficientes para descrever uma região relativamente independente da rotação, translação e escala.

FLUSSER & SUK['93]: MOMENTOS INVARIANTES AFINS

$$M_F = (M_{F1}, ..., M_{F6})$$

$$\begin{split} M_{F1} &= \mu_{00}^{-4} (\mu_{20} \mu_{02} - \mu_{11}^2) \\ M_{F2} &= \mu_{00}^{-10} (\mu_{30}^2 \mu_{03}^2 - 6\mu_{30} \mu_{21} \mu_{12} \mu_{03} + 4\mu_{30} \mu_{12}^3 + 4\mu_{30} \mu_{21}^3 - 3\mu_{21}^2 \mu_{12}^2 \\ M_{F3} &= \mu_{00}^{-7} [\mu_{20} (\mu_{21} \mu_{03} - \mu_{12}^2) - \mu_{11} (\mu_{30} \mu_{03} - \mu_{21} \mu_{12}) + \mu_{02} (\mu_{30} \mu_{12} - \mu_{21}^2)] \\ M_{F4} &= \mu_{00}^{-11} (\mu_{20}^3 \mu_{03}^3 - 6\mu_{20}^2 \mu_{11} \mu_{12} \mu_{03} - 6\mu_{20}^2 \mu_{02} \mu_{21} \mu_{03} + 9\mu_{20}^2 \mu_{02} \mu_{12}^2 + 12\mu_{20} \mu_{11}^2 \mu_{21} \mu_{03} \\ &+ 6\mu_{20} \mu_{11} \mu_{02} \mu_{30} \mu_{03} - 18\mu_{20} \mu_{11} \mu_{02} \mu_{21} \mu_{12} - 8\mu_{11}^3 \mu_{30} \mu_{03} \\ &- 6\mu_{20} \mu_{02}^2 \mu_{30} \mu_{12} + 9\mu_{20} \mu_{02}^2 \mu_{21}^2 + 12\mu_{11}^2 \mu_{02} \mu_{30} \mu_{12} - 6\mu_{11} \mu_{02}^2 \mu_{30} \mu_{21} + \mu_{02}^3 \mu_{30}^2) \\ M_{F5} &= \mu_{00}^{-6} (\mu_{40} \mu_{04} - 4\mu_{31} \mu_{12} + 3\mu_{22}^2) \\ M_{F6} &= \mu_{00}^{-9} (\mu_{40} \mu_{04} \mu_{22} + 2\mu_{31} \mu_{22} \mu_{12} - \mu_{40} \mu_{12}^2 - \mu_{04} \mu_{31}^2 - \mu_{22}^3) \end{split}$$

DESCRITORES DE FOURIER PARA TEXTURA

Imagem Original

FFT2D \
+FFTSHIFT/

Fourier coefficient image

Dividir a área em ângulos

Divide a área por raios

Soma todos os pixels em

 $S(\theta) = \sum_{r=1}^{R_0} S_r(\theta)$

Soma todos os pixels em cada área

$$S(r) = \sum_{\theta=0}^{\pi} S_{\theta}(r)$$

DESCRITORES DE FOURIER PARA TEXTURA

LBP (LOCAL BINARY PATTERN)

Invariante:

- Variação monotônica de nível de cinza
- Translação

LBP

Valor do bit
$$b = egin{cases} 1 \ se \ o \ valor \ do \ vizinho \ \geq \ valor \ central \ 0 & caso \ contr\'ario \end{cases}$$

LBP

Descritor de Texturas

LBP

Invariante:

 Variações monotônicas do nível de cinza

Translação

Definição de vizinhança:

Comparação de vizinhos:

Valor do bit
$$b = \begin{cases} 1 \text{ se o valor do vizinho} - valor central } \geq T \\ 0 & caso contrário \end{cases}$$

* $T = (threshold \equiv limiar)$

- Reduzir número de padrões
- Medida de uniformidade: U
- U = nº de transições 1 ← 0 na representação binária

$$U = 0$$

1	1	1
1	•	1
1	1	1

$$U = 2$$

$$U = 4$$

1	1	0	
1		1	-
0	1	1	

- Os padrões 00000000 (0 transições), 01110000 (2 transições) e 11001111 (2 transições) são uniformes.
- Os padrões 11001001 (4 transições) e 01010011 (6 transições) não são uniformes.

LBP Uniforme:

- •Os padrões com U=0 ou U=2, possuem um código individual
- •O resto dos padrões são associados com o mesmo código
- •LBP: 256 padrões, LBP Uniforme: (58 + 1) padrões

LBP UNIFORME POR BLOCOS

LBP UNIFORME NORMALIZADO

Valores entre 0 e 1 para cada bloco

PERGUNTAS?