TD12 M1S2 Probabilité, Martingale et chaîne de Markov

12.1 Convergence de martingale dans L^2

Soit $\beta > 1$. Soit $(A_n)_{n \in \mathbb{N}^*}$ une suite de variables aléatoires indépendantes de carré intégrable telles que pour tout $n \in \mathbb{N}^*$ on ait $\mathbb{E}(A_n) = 1$ et $\mathbb{E}(A_n^2) = 1 + \frac{1}{n^{\beta}}$.

- 1. Pour tout $n \in \mathbb{N}^*$, on se donne une fonction θ_n de A_1, \ldots, A_{n-1} , et on définit $S_n = \sum_{k=1}^n (A_k 1) \sin(\theta_k)$. Montrer que $(S_n)_{n \in \mathbb{N}^*}$ est une martingale par rapport à une filtration que l'on déterminera.
- 2. Montrer que $(S_n)_{n\in\mathbb{N}^*}$ converge presque-sûrement et dans L^2 .

12.2 Deuxième lemme de Wald

Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace de probabilité. Soit $(X_n)_{n \in \mathbb{N}^*}$ une suite de variables aléatoires i.i.d. telles que $\mathbb{P}(X_1 = 1) = \mathbb{P}(X_1 = -1) = 1/2$. On note $\mathcal{F}_0 = \{\emptyset, \Omega\}$ et $\mathcal{F}_n = \sigma(X_1, \ldots, X_n)$ pour tout $n \in \mathbb{N}^*$. On pose $S_0 = 0$ et $S_n = \sum_{k=1}^n X_k$ pour tout $n \in \mathbb{N}^*$. Soit $N \in \mathbb{N}^*$. On s'intéresse à $T = \inf\{n \in \mathbb{N} \mid |S_n| = N\}$.

- 1. Montrer que $(S_n^2 n)_{n \in \mathbb{N}}$ est une martingale.
- 2. En déduire que pour tout $n \in \mathbb{N}$ on a $\mathbb{E}(n \wedge T) = \mathbb{E}(S_{n \wedge T}^2)$.
- 3. Montrer que $(\mathbb{E}(n \wedge T))_{n \in \mathbb{N}}$ est borné, puis en déduire que T est fini presquesûrement.
- 4. En déduire $\mathbb{E}(T)$.

12.3 Chaîne d'Ehrenfest

Étant donné un entier $d \geq 2$, considérons d boules numérotées de 1 à d et réparties dans deux urnes A et B. À chaque étape et de manière indépendante, on tire un nombre i au hasard entre 1 et d, et la boule numéro i est alors changée d'urne. Soit X_n le nombre de boules dans l'urne A après les n premiers tirages, $X_0 = x$ étant le nombre de boules dans A à l'instant initial. La chaîne de Markov $(X_n)_{n \in N}$ sur $E := \{0, 1, \ldots, d\}$ est appelée chaîne d'Ehrenfest.

- 1. Déterminer le noyau de transition de $(X_n)_{n\in\mathbb{N}}$, noté Q.
- 2. Trouvez une mesure de probabilité réversible, notée π , pour la chaîne d'Ehrenfest ? Est-elle unique ?
- 3. Quelle est la période de $x \in E$ pour cette chaîne de Markov ? La loi de X_n , converge-t-elle vers π ?
- 4. On suppose que d est pair et que $X_0 = d/2$. Combien faut-il faire de tirages en moyenne pour revenir dans cet état ? Déduisez-en un équivalent lorsque d est proche de l'infini. On s'aidera de la formule de Stirling :

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$
, lorsque $n \to \infty$.

12.4 Modèle d'évolution génétique de Wright-Fisher

L'évolution des configurations génétiques dans une population est modélisée par une chaîne de Markov $(X_n)_{n\in\mathbb{N}}$ homogène à valeurs dans $E=\{0,1,\ldots,N\}$ de matrice de transition Q définie par

$$Q(i,j) = \binom{N}{j} \left(\frac{i}{N}\right)^j \left(1 - \frac{i}{N}\right)^{N-j}.$$

On note $(\mathcal{F}_n)_{n\in\mathbb{N}}$ la filtration naturelle de la chaîne $(X_n)_{n\in\mathbb{N}}$.

- 1. Que valent Q(0,0) et Q(N,N)? Commenter.
- 2. Quels sont les états récurrents de la chaîne ? Quels sont les états transitoires ?
- 3. Fixons $x \in E$.
 - (a) Montrer que pour tout $x \in E$, $(X_n)_{n \in \mathbb{N}}$ est une $(\mathcal{F}_n)_{n \in \mathbb{N}}$ -martingale sous \mathbb{P}_x .
 - (b) Déduire de la question précédente que $(X_n)_{n\in\mathbb{N}}$ converge \mathbb{P}_x -presque sûrement vers une variable aléatoire notée X_{∞} .
 - (c) Déterminer la loi de X_{∞} sous \mathbb{P}_x .