A Recipe for Constructing a Peri-stimulus Time Histogram

Hideaki Shimazaki Dept. of Physics Kyoto University, Japan

March 1, 2007 Johns Hopkins University March 2, 2007 Columbia University

Peri-stimulus Time Histogram

Events (Spikes)

From Spikes: Exploring the Neural Code, Rieke et al. 1997

Repeated trials

Adrian, E. (1928). The basis of sensation: The action of the sense organs.

George L. Gerstein and Nelson Y.-S. Kiang (1960) An Approach to the Quantitative Analysis of Electrophysiological Data from Single Neurons, Biophys J. 1(1): 15–28.

1. Bin Width Selection

Method for Selecting the Bin Size

- Divide the data range into
 N bins of width
 △.
 Count the number of events
 in the i th bin.
- Compute the cost function

$$C_n(\Delta) = \frac{2k-v}{(n\Delta)^2},$$

while changing the bin size Δ .

$$\begin{cases} \text{Mean} & \mathbf{k} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{k}_{i}, \\ \text{Variance} & \mathbf{v} = \frac{1}{N} \sum_{i=1}^{N} (\mathbf{k}_{i} - \mathbf{k})^{2} \end{cases}$$

Theory for the Method

Time-Varying Rate

The mean underlying rate in an interval $[0, \Delta]$:

$$\theta = \frac{1}{\Delta} \int_0^{\Delta} \lambda_t \, dt.$$

Spike Sequences

The spike count in the bin obeys the Poisson distribution*:

$$p(k \mid n\Delta\theta) = \frac{\left(n\Delta\theta\right)^k}{k!} e^{-n\Delta\theta}.$$

Time Histogram

A histogram bar-height is an estimator of θ :

$$\hat{\theta}_n = \frac{k}{n\Delta}$$

*When the spikes are obtained by repeating an independent trial, the accumulated data obeys the Poisson point process due to a general limit theorem.

Theory: Selection of the Bin Size

MISE
$$\equiv \frac{1}{T} \int_{0}^{T} E(\hat{\lambda}_{t} - \lambda_{t})^{2} dt = \left\langle \frac{1}{\Delta} \int_{0}^{\Delta} E(\hat{\theta}_{n} - \lambda_{t})^{2} dt \right\rangle.$$

Expectation by the Poisson statistics, given the rate.

Average over segmented bins.

MISE =
$$\left\langle E(\hat{\theta}_n - \theta)^2 \right\rangle + \frac{1}{\Delta} \int_0^{\Delta} \left\langle \left(\lambda_t - \theta \right)^2 \right\rangle dt$$
.

Sampling Error

Systematic Error

Decomposition of the Systematic Error

$$\frac{\left\langle \theta \right\rangle - \left\langle \theta \right\rangle}{\frac{1}{\Delta} \int_{0}^{\Delta} \left\langle \left(\lambda_{t} - \theta \right)^{2} \right\rangle dt = \frac{1}{\Delta} \int_{0}^{\Delta} \left\langle \left(\lambda_{t} - \left\langle \theta \right\rangle \right)^{2} \right\rangle dt - \left\langle \left(\theta - \left\langle \theta \right\rangle \right)^{2} \right\rangle}$$

Systematic Error

Variance of the rate Independent of Δ

Variance of an ideal histogram

Introduction of the cost function:

$$C_{n}(\Delta) \equiv \text{MISE} - \frac{1}{T} \int_{0}^{T} (\lambda_{t} - \langle \theta \rangle)^{2} dt$$

$$= \langle E(\hat{\theta}_{n} - \theta)^{2} \rangle - \langle (\theta - \langle \theta \rangle)^{2} \rangle.$$
Sampling error Unknown: Var

Unknown: Variance of an ideal histogram

The variance decomposition: $\left\langle E\left(\hat{\theta}_{n} - \left\langle E\hat{\theta}_{n}\right\rangle\right)^{2}\right\rangle = \left\langle E\left(\hat{\theta}_{n} - \theta\right)^{2}\right\rangle + \left\langle \left(\theta - \left\langle \theta\right\rangle\right)^{2}\right\rangle.$ Variance of a histogram Sampling error

 $C_{n}(\Delta) = 2\left\langle E(\hat{\theta}_{n} - \theta)^{2} \right\rangle - \left\langle E(\hat{\theta}_{n} - \left\langle E\hat{\theta}_{n} \right\rangle)^{2} \right\rangle.$

The Poisson statistics obeys: $E(\hat{\theta}_n - \theta)^2 = \frac{1}{n\Lambda} E\hat{\theta}_n$.

$$C_{n}\left(\Delta\right) = \frac{2}{n\Delta} \left\langle E\hat{\theta}_{n} \right\rangle - \left\langle E\left(\hat{\theta}_{n} - \left\langle E\hat{\theta}_{n} \right\rangle\right)^{2} \right\rangle.$$

Mean of a Histogram Variance of a Histogram

Application to an MT neuron data

Data: Britten et al. (2004) neural signal archive

Theories on the Optimal Bin Size

Theoretical cost function:

$$C_{n}(\Delta) = \frac{\langle \theta \rangle}{n\Delta} - \langle (\theta - \langle \theta \rangle)^{2} \rangle$$

$$= \frac{\mu}{n\Delta} - \frac{1}{\Delta^{2}} \int_{0}^{\Delta} \int_{0}^{\Delta} \phi(t_{1} - t_{2}) dt_{1} dt_{2}.$$

Mean Correlation function

$$\mu \qquad \qquad \phi(t_1-t_2)$$

(i) Expansion of the cost function by Δ :

Theoretical cost function: $C_n(\Delta) = \frac{\mu}{n\Delta} - \frac{1}{\Delta^2} \int_0^{\Delta} \int_0^{\Delta} \phi(t_1 - t_2) dt_1 dt_2$.

When the number of sequences is large, the optimal bin size is very small

The expansion of the cost function by Δ :

$$C_{n}(\Delta) = \frac{\mu}{n\Delta} - \phi(0) - \frac{1}{3}\phi'(0_{+})\Delta - \frac{1}{12}\phi''(0)\Delta^{2} + O(\Delta^{3}).$$

Scaling of the optimal bin size:

$$\Delta^* \sim \left(-\frac{6\mu}{\phi''(0)n}\right)^{1/3}.$$

Ref. Scott (1979)

Scaling of the optimal bin size

(ii) Divergence of the optimal bin size

When the number of sequences is small, the optimal bin size is very large.

The expansion of the cost function by $1/\Delta$:

$$C_{n}(\Delta) \sim \frac{\mu}{n\Delta} - \frac{1}{\Delta} \int_{-\infty}^{\infty} \phi(t) dt + \frac{1}{\Delta^{2}} \int_{-\infty}^{\infty} |t| \phi(t) dt$$
$$= \mu \left(\frac{1}{n} - \frac{1}{n_{c}}\right) \frac{1}{\Delta} + u \frac{1}{\Delta^{2}}$$

The second order phase transition.

Critical number of trials:
$$n_c = \mu / \int_{-\infty}^{\infty} \phi(t) dt$$

$$n < n_c$$
 Optimal bin size diverges.

$$n > n_c$$
 Finite optimal bin size.

Phase transitions of optimal bin size

Back to Practice!

2. The extrapolation method

Data: Britten et al. (2004) neural signal archive

Verification of the extrapolation method

Original: $C_n(\Delta)$ Optimal bin size diverges

Extrapolated:

$$C_{m}\left(\Delta \mid n\right) = \left(\frac{1}{m} - \frac{1}{n}\right) \frac{k}{n\Delta^{2}} + C_{n}(\Delta)$$

Finite optimal bin size

Optimal bin size v.s. m

of sequences used

2. The extrapolation method

Data: Britten et al. (2004) neural signal archive

Advanced Topics

Line-Graph Time Histogram

Rate

Spike Sequences

Time Histogram

Line-Graph Model

A line-graph is constructed by connecting topcenters of adjacent bar-graphs.

$$L_{t} = \frac{\theta^{+} + \theta^{-}}{2} + \frac{\theta^{+} - \theta^{-}}{\Delta} t. \qquad \Lambda^{+} \equiv \frac{1}{\Delta} \int_{0}^{\Delta} \lambda_{t} dt. \qquad \theta^{-} \equiv \frac{1}{\Delta} \int_{-\Delta}^{0} \lambda_{t} dt.$$

The spike count obeys the Poisson distribution

$$p(k \mid n\Delta\Lambda) = \frac{\left(n\Delta\theta\right)^k}{k!} e^{-n\Delta\theta}.$$

An estimator of a line-graph

$$\hat{L}_t = \frac{\hat{\theta}^+ + \hat{\theta}^-}{2} + \frac{\hat{\theta}^+ - \hat{\theta}^-}{\Delta} t.$$

A Recipe for an optimal line-graph TH

(i) Define the four spike counts,

$$k_i^{(+)}(j)$$
 $k_i^{(-)}(j)$ $k_i^{(0)}(j)$ $k_i^{(*)}(j)$ $p = \{-, +, 0, *\}$

(ii) Summation of the spike count

$$k_i^{(p)} \equiv \sum_{j=1}^n k_i^{(p)}(j)$$

Covariations w.r.t. bins

$$s^{(p,q)} \equiv \frac{1}{N} \sum_{i=1}^{N} \left(k_i^{(p)} - \overline{k}^{(p)} \right) \left(k_i^{(q)} - \overline{k}^{(q)} \right) \qquad \overline{k}^{(p)} \equiv \frac{1}{N} \sum_{i=1}^{N} k_i^{(p)}$$
Binned-average

Bin-average of the covariation of spike count w.r.t. sequences,

$$\overline{s}^{(p,q)} = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{n} \sum_{j=1}^{n} \left(k_i^{(p)}(j) - \frac{k_i^{(p)}}{n} \right) \left(k_i^{(q)}(j) - \frac{k_i^{(q)}}{n} \right)$$

- (iii) The covariances of an ideal line-graph model is $\sigma^{(p,q)} \equiv \frac{s^{(p,q)}}{(n\Lambda)^2} \frac{\overline{s}^{(p,q)}}{n\Lambda^2}$
- (iv) Cost function:

$$C_n(\Delta) = \frac{2}{3} \frac{\overline{k}^{(+)}}{(n\Delta)^2} + \frac{2}{3} \sigma^{(+,+)} + \frac{1}{3} \sigma^{(+,-)} - 2\sigma^{(+,0)} - 2\sigma^{(+,*)}.$$

(v) Repath i through iv by changing Δ . Find the optimal Δ that minimizes the cost function.

$$k_i^{(*)}(j) \equiv 2 \sum\nolimits_\ell t_i^\ell(j)/\Delta$$

The optimal Line-Graph Histogram

The Line-graph histogram performs better if the rate is smooth.

2. Theories on the optimal bin size

Theoretical Cost Function

(Bar-Graph)
$$C_{n}(\Delta) = \frac{\langle \theta \rangle}{n\Delta} - \left\langle (\theta - \langle \theta \rangle)^{2} \right\rangle$$
$$= \frac{\mu}{n\Delta} - \frac{1}{\Delta^{2}} \int_{0}^{\Delta} \int_{0}^{\Delta} \phi(t_{1} - t_{2}) dt_{1} dt_{2}.$$

(Line-Graph)
$$C_{n}\left(\Delta\right) = \frac{2\mu}{3n\Delta} - \frac{2}{\Delta^{2}} \int_{0}^{\Delta} \int_{-\Delta/2}^{\Delta/2} \left(1 + \frac{2t_{2}}{\Delta}\right) \phi\left(t_{1} - t_{2}\right) dt_{1} dt_{2}$$

$$+ \frac{2}{3\Delta^{2}} \int_{0}^{\Delta} \int_{0}^{\Delta} \phi\left(t_{1} - t_{2}\right) dt_{1} dt_{2} + \frac{1}{3\Delta^{2}} \int_{0}^{\Delta} \int_{-\Delta}^{0} \phi\left(t_{1} - t_{2}\right) dt_{1} dt_{2}.$$

Generalization of Koyama and Shinomoto J. Phys. A, 37(29):7255–7265. 2004

(i) Scalings of the optimal bin size

The expansion of the cost function by Δ :

(Bar-Graph)
$$C_n(\Delta) = \frac{\mu}{n\Delta} - \phi(0) - \frac{1}{3}\phi'(0_+)\Delta - \frac{1}{12}\phi''(0)\Delta^2 + O(\Delta^3).$$

(Line-Graph)
$$C_n(\Delta) = \frac{2\mu}{3n\Delta} - \phi(0) - \frac{37}{144}\phi'(0_+)\Delta + \frac{181}{5760}\phi'''(0_+)\Delta^3 + \frac{49}{2880}\phi''''(0)\Delta^4 + O(\Delta^5)$$
the second order term vanishes.

A smooth process: A correlation function is smooth at origin.

A jagged process: A correlation function has a cusp at origin.

$$\phi'(0_{+}) \neq 0 \qquad \text{(Bar-Graph)} \qquad \Delta^{*} \sim \left(-\frac{3\mu}{\phi'(0_{+})n}\right)^{1/2}.$$

$$\Delta^{*} \sim \left(-\frac{96\mu}{37\phi'(0_{+})n}\right)^{1/2}.$$

Identification of the scaling exponents

Bar-Graph Histogram

togram Line-Graph Histogram

Data Size Used

Data Size Used

smooth

$$\Delta^* \sim n^{-1/3}$$

$$\Delta^* \sim n^{-1/5}$$

zig-zag

$$\Delta^* \sim n^{-1/2}$$

$$\Delta^* \sim n^{-1/2}$$

The second and the first order phase transitions

Second order First order (Continuous) (Discontinuous) $\mathsf{D}_{\,\Phi(\omega)}$ $A_{\Phi(\omega)}$ Power spectrum 0.5 of a rate process 0 0 0 В $C_n(\Delta)$ $C_n(\Delta)$ Cost functions 10 10 5 -5 -5 15 10 20 10 15 $1/\Delta$ $1/\Delta$ F 1/∆∗ $1/\Delta*$ Optimal Bin Size 8 2 1 2 0.04 0.04 0.08 0.02 0.06 0.08 0.1 0.02 0.06 1/n

1/n

Summary of Today's Talk

FAQ

Q. Can I apply the proposed method to a histogram for a probability distribution? A. Yes.

Q. I want to make a 2-dimensional histogram. Can I use this method? A. Yes.

Q. I obtained a very small bin width, which is likely to be erroneous. Why?

A. You probably searched smaller bin size than the sampling resolution.

Q. Can I use unbiased variance for computation of the cost function? A. No.

$$C(\Delta) = \frac{2k - v}{\Delta^2}$$
 $v = \frac{1}{N} \sum_{i=1}^{N} (k_i - k)^2$ $v = \frac{1}{N-1} \sum_{i=1}^{N} (k_i - k)^2$

Reference

A Method for Selecting the Bin Size of a Time Histogram

Hideaki Shimazaki and Shigeru Shinomoto Neural Computation in Press

Short Summary:

Adavances in Neural Information Processing Systems Vol. 19, 2007

- Web Application for the Bin Size Selection
- Matlab / Mathematica / R sample codes

are available at our homepage

http://www.ton.scphys.kyoto-u.ac.jp/~shino/

See also

/~hideaki/

Koyama, S. and Shinomoto, S. Histogram bin width selection for time-dependent poisson processes. *J. Phys. A*, 37(29):7255–7265. 2004

Acknowledgements

Prof. Shigeru Shinomoto Dr. Shinsuke Koyama

JSPS Research Grant

Introducing myself...

2003 MA Prof. Ernst Niebur Dept. of Neuroscience, Johns Hopkins University Baltimore, Maryland

Prof. Shigeru Shinomoto 2007 Ph. D Dept. of Physics Kyoto University, Kyoto, Japan

2006-2008 **JSPS Research Fellow**

The Poisson Point Process

 $\Pr[\text{One event in } \delta t] = \lambda(t)\delta t$

 $\Pr[\text{More than one event in } \delta t] = O(\delta t)$

Samples are independently drawn from an identical distribution.