

MOSFET

600V CoolMOS™ SJ S7TA Power Device

CoolMOS™ S7TA enables the best price performance for low-frequency switching applications. The embedded temperature sensor increases junction temperature sensing accuracy and robustness while keeping an easy and seamless implementation. CoolMOS™ S7TA is optimized for "static switching" and high current applications. The new temperature sensor enhances S7A features, allowing the best possible utilization of the power transistor.

Features

- Optimized price performance in low-frequency switching applications
- · High pulse current capability
- Seamless diagnostics at lowest system cost
- Temperature sense feature for protection and optimized thermal device utilization

Benefits

- Reduction of external sensing elements, hence a more compact design compared to electromechanical devices
- Increased system performance
- · Minimized conduction losses (reduce heat sink size)
- · More reliability and longer system lifetime
- Shock & Vibration resistance; No contact arcing or bouncing

Potential applications

- Circuit breakers (HV eDisconnect switch, DC and AC low frequency switch, HV eFuse, on-board charger)
- · Line rectification in high-power/performance applications

Product validation

Qualified according to AEC Q101

Please note: The source and sense source pins are not exchangeable. Their exchange might lead to malfunction. For paralleling 4pin MOSFET devices the placement of the gate resistor is generally recommended to be on the Driver Source instead of the Gate. For production part approval process (PPAP) release we propose to share application related information during an early design phase to avoid delays in PPAP release. Please contact Infineon sales office.

Parameter	Value	Unit				
R _{DS(on),max}	22	mΩ				
$Q_{g,typ}$	150	nC				
V _{SD}	0.82	V				
Pulsed I _{SD} , I _{DS}	371	A				
ESD class (HBM)	2	JEDEC AEC Q101				

Type / Ordering Code	Package	Marking	Related Links
IPQC60T022S7A	PG-HDSOP-22	60T022S7	see Appendix A

600V CoolMOS™ SJ S7TA Power Device IPQC60T022S7A

Table of Contents

Description
Maximum ratings
Thermal characteristics
Electrical characteristics
Femperature Sensor parameters
Electrical characteristics diagrams
Fest Circuits
Package Outlines
Appendix A
Revision History
Frademarks
Disclaimer

600V CoolMOS™ SJ S7TA Power Device IPQC60T022S7A

1 Maximum ratings at $T_j = 25$ °C, unless otherwise specified

Table 2 **Maximum MOSFET ratings**

Developer	Symbol	Values			11!4	Nata / Tank Oam Hittan	
Parameter		Min.	Тур.	Max.	Unit	Note / Test Condition	
Drain current rating ¹⁾	I_{D}	-	-	90 24	А	T _C =25°C T _C =140°C	
Pulsed drain current ²⁾	I _{D,pulse}	-	-	371	Α	T _C =25°C	
Avalanche energy, single pulse	E AS	-	-	286	mJ	I_D =3.7A; V_{DD} =50V; see table 11	
Avalanche current, single pulse	I _{AS}	-	-	3.7	Α	-	
MOSFET dv/dt ruggedness ³⁾	dv/dt	-	-	20	V/ns	V _{DS} = 0V to 300V	
Gate source voltage (static)	V _{GS}	-20	-	20	V	static	
Gate source voltage (dynamic)	V _{GS}	-30	-	30	V	AC (f>1 Hz)	
Power dissipation	P _{tot}	-	-	416	W	T _C =25°C	
Storage temperature	T _{stg}	-55	-	150	°C	-	
Operating junction temperature ¹⁾	T _j	-40	-	150	°C	-	
Extended operating junction temperature	T _j	150	-	175	°C	≤50 h in the application lifetime	
Mounting torque	-	-	-	n.a.	Ncm	-	
Diode forward current rating	Is	-	-	24	A	T _C =140°C Current is limited by T _{j max} = 150°C; Lower case temp does increase current capability	
Diode pulse current ¹⁾	I _{S,pulse}	-	-	371	Α	T _C =25°C	
Reverse diode dv/dt ⁴⁾	dv/dt	-	-	5	V/ns	$V_{\rm DS}$ =0 to 300V, $I_{\rm SD}$ <=23A, $T_{\rm j}$ =25°C see table 9	
Maximum diode commutation speed	di _f /dt	-	-	800	A/μs	s V_{DS} =0 to 300V, I_{SD} <=23A, T_{j} =25° see table 9	
Insulation withstand voltage	V _{ISO}	-	-	n.a.	V	-	

 $^{^{1)}}$ Please consider the App Note: 600 V CoolMOS $^{\text{TM}}$ S7 with Temperature Sense for high delta T $_{\text{J}}$ usage $^{2)}$ Pulse width t_{p} limited by $T_{\text{j,max}}$ $^{3)}$ The dv/dt has to be limited by appropriate gate resistor $^{4)}$ Identical low side and high side switch

600V CoolMOS™ SJ S7TA Power Device

2 Thermal characteristics

Table 3 Thermal characteristics

Damamatan	Oala al	Values			11:4	Nata / Tarak O am distant
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition
Thermal resistance, junction - case	R _{thJC}	-	-	0.3	°C/W	-
Thermal resistance, junction - ambient	R _{thJA}	-	-	62	°C/W	device on PCB, minimal footprint
Thermal resistance, junction - ambient for SMD version		-	45	55	°C/W	Device on 40mm*40mm*1.5mm epoxy PCB FR4 with 6cm² (one layer, 70µm thickness) copper area. Tap exposed to air. PCB is vertical without air stream cooling.
Soldering temperature, reflow soldering allowed	T _{sold}	-	-	260	°C	reflow MSL1

600V CoolMOS™ SJ S7TA Power Device IPQC60T022S7A

Electrical characteristics

at T_i=25°C, unless otherwise specified

Table 4 Static characteristics

The CoolMOS[™] mentioned in this datasheet shall not be operated in linear mode. For any questions in this regard, please contact Infineon sales office.

For applications with applied blocking voltage >400V, it is required that the customer

evaluates the impact of cosmic radiation effect in early design phase and contacts the Infineon sales office for the necessary technical support by Infineon

Paramatan.	Cumbal	Values			11	Nata / Task Canalities
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition
Drain-source breakdown voltage	V _{(BR)DSS}	600	-	-	V	V _{GS} =0V, I _D =1mA
Gate threshold voltage	$V_{(GS)th}$	3.5	4.0	4.5	V	$V_{\rm DS}=V_{\rm GS},\ I_{\rm D}=1.43{\rm mA}$
Zero gate voltage drain current	I _{DSS}	-	- 50	5	μΑ	V _{DS} =600V, V _{GS} =0V, T _j =25°C V _{DS} =600V, V _{GS} =0V, T _j =150°C
Gate-source leakage current	I _{GSS}	-	-	100	nA	V _{GS} =20V, V _{DS} =0V
Drain-source on-state resistance	R _{DS(on)}	-	0.02 0.046	0.022	Ω	V _{GS} =12V, I _D =23A, T _j =25°C V _{GS} =12V, I _D =23A, T _j =150°C
Gate resistance	R _G	-	0.8	-	Ω	f=1MHz, open drain

Table 5 Dynamic characteristicsExternal parasitic elements (PCB layout) influence switching behavior significantly.

Stray inductances and coupling capacitances must be minimized.

For layout recommendations please use provided application notes or contact Infineon sales office.

Paramatan.	Oh a l	Values			11	Nata / Table Open Hillian	
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition	
Input capacitance	Ciss	-	5640	-	pF	V _{GS} =0V, V _{DS} =300V, f=250kHz	
Output capacitance	Coss	-	89	-	pF	V _{GS} =0V, V _{DS} =300V, f=250kHz	
Effective output capacitance, energy related ¹⁾	C _{o(er)}	-	302	-	pF	V _{GS} =0V, V _{DS} =0 to 300V	
Effective output capacitance, time related ²⁾	C _{o(tr)}	-	2677	-	pF	I_D =constant, V_{GS} =0V, V_{DS} =0 to 300V	
Output charge	Qoss	-	803	-	nC	V _{GS} =0V, V _{DS} =0 to 300V	
Turn-on delay time	$t_{\sf d(on)}$	-	30	-	ns	$V_{\rm DD}$ =300V, $V_{\rm GS}$ =13V, $I_{\rm D}$ =23A, $R_{\rm G}$ =5.3 Ω ; see table 9	
Rise time	t _r	-	6	-	ns	$V_{\rm DD}$ =300V, $V_{\rm GS}$ =13V, $I_{\rm D}$ =23A, $R_{\rm G}$ =5.3 Ω ; see table 9	
Turn-off delay time	$t_{\sf d(off)}$	-	142	-	ns	$V_{\rm DD}$ =300V, $V_{\rm GS}$ =13V, $I_{\rm D}$ =23A, $R_{\rm G}$ =5.3 Ω ; see table 9	
Fall time	t _f	-	10	-	ns	$V_{\rm DD}$ =300V, $V_{\rm GS}$ =13V, $I_{\rm D}$ =23A, $R_{\rm G}$ =5.3 Ω ; see table 9	

 $^{^{1)}}$ $C_{\text{o(er)}}$ is a fixed capacitance that gives the same stored energy as C_{oss} while V_{DS} is rising from 0 to 300V $^{2)}$ $C_{\text{o(tr)}}$ is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 300V

600V CoolMOS™ SJ S7TA Power Device

 Table 6
 Gate charge characteristics

Develope	Cymbal	Values			11	Note / Test Condition
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition
Gate to source charge	Q _{gs}	-	31	-	nC	$V_{\rm DD}$ =300V, $I_{\rm D}$ =23A, $V_{\rm GS}$ =0 to 12V
Gate to drain charge	Q_{gd}	-	49	-	nC	$V_{\rm DD}$ =300V, $I_{\rm D}$ =23A, $V_{\rm GS}$ =0 to 12V
Gate charge total	Qg	-	150	-	nC	$V_{\rm DD}$ =300V, $I_{\rm D}$ =23A, $V_{\rm GS}$ =0 to 12V
Gate plateau voltage	V _{plateau}	-	5.4	-	V	$V_{\rm DD}$ =300V, $I_{\rm D}$ =23A, $V_{\rm GS}$ =0 to 12V

Table 7 Reverse diode characteristics

Dougnatou	Cymahal	Values			11:4	Nata / Task Candition
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition
Diode forward voltage	V _{SD}	-	0.82	-	V	V _{GS} =0V, I _F =23A, T _j =25°C
Reverse recovery time	t _{rr}	-	410	-	ns	V_R =300V, I_F =23A, di_F/dt =100A/ μ s; see table 8
Reverse recovery charge	Qrr	-	10	-	μC	V_R =300V, I_F =23A, di_F/dt =100A/ μ s; see table 8
Peak reverse recovery current	I _{rrm}	-	48	-	А	V_R =300V, I_F =23A, di_F/dt =100A/ μ s; see table 8

600V CoolMOS™ SJ S7TA Power Device IPQC60T022S7A

4 Temperature Sensor parameters at T_j =25°C, unless otherwise specified

Maximum ratings Table 8

Developedan	Cumb al	Values				Note (Tool Condition
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition
Repetitive Peak Reverse Voltage	V_{RRM}	-	-	15	V	<i>I</i> _R = 100 μA
Sensor forward current	I _F	-	-	5	mA	-
Repetitive peak forward current	I _{F_pulse}	_	-	25	mA	t _{pulse} = 1 ms, T _{period} = 10 ms
Non-repetitive peak forward current	I _{FSM}		-	1.5 0.2 0.1	A	T_C = 25°C, t_{pulse} = 1 μs T_C = 25°C, t_{pulse} = 1 ms T_C = 25°C, t_{pulse} = 1 s
Junction Temperature	T _j	_	-	185	°C	t < 50h, Sensor only

Electrical characteristics Table 9

Parameter	Symbol	Values			Unit	Note / Test Condition	
raiailletei	Symbol	Min.	Тур.	Max.	Ullit	Note / Test Condition	
Sensor forward voltage ¹⁾	V _{F_25}	1.5601 - - 2.0665	1.6019 1.8103 1.9806 2.0966	-	V	$T_{j} = 25^{\circ}\text{C}, I_{F} = 10 \ \mu\text{A}$ $T_{j} = 25^{\circ}\text{C}, I_{F} = 50 \ \mu\text{A}$ $T_{j} = 25^{\circ}\text{C}, I_{F} = 200 \ \mu\text{A}$ $T_{j} = 25^{\circ}\text{C}, I_{F} = 500 \ \mu\text{A}$	
Sensor forward voltage temperature coefficient	TC	- - -	5.9644 5.5880 5.2287 5.0135	-	mV/K	$\begin{array}{l} 25^{\circ}C \leq T_{j} \leq 175^{\circ}C, \ I_{F} = 10 \ \mu A \\ 25^{\circ}C \leq T_{j} \leq 175^{\circ}C, \ I_{F} = 50 \ \mu A \\ 25^{\circ}C \leq T_{j} \leq 175^{\circ}C, \ I_{F} = 200 \ \mu A \\ 25^{\circ}C \leq T_{j} \leq 175^{\circ}C, \ I_{F} = 500 \ \mu A \\ \end{array}$	
Sensor forward voltage	V _{F_175}	-	0.7072 0.9721 1.1963 1.3445	-	V	$T_{j} = 175^{\circ}\text{C}, I_{F} = 10 \mu\text{A}$ $T_{j} = 175^{\circ}\text{C}, I_{F} = 50 \mu\text{A}$ $T_{j} = 175^{\circ}\text{C}, I_{F} = 200 \mu\text{A}$ $T_{j} = 175^{\circ}\text{C}, I_{F} = 500 \mu\text{A}$	
Reverse leakage current	I _R	-	-	1 20	μA	$V_R = 10V, T_j = 25^{\circ}C$ $V_R = 10V, T_j = 175^{\circ}C$	
Sensor G Capacitance	C _{GTS}	-	4.2	-	pF	f = 1 MHz, I _F = 50 μA	
Sensor Capacitance	C _{STS}	-	4.8	-	pF	f = 1 MHz, I _F = 50 μA	
Anode-Drain Capacitance	C _{DTS}	-	0.5	-	pF	f = 1 MHz, V _{DS} = 0 V	

7

Rev. 2.0, 2023-11-30

5 Electrical characteristics diagrams

6 Test Circuits

Table 10 Diode characteristics

Table 11 Switching times (ss)

Table 12 Unclamped inductive load (ss)

7 Package Outlines

Figure 1 Outline PG-HDSOP-22, dimensions in mm

600V CoolMOS™ SJ S7TA Power Device IPQC60T022S7A

8 Appendix A

Table 13 Related Links

• IFX CoolMOS™ S7TA Webpage: www.infineon.com

• IFX CoolMOS™ S7TA application note: www.infineon.com

• IFX CoolMOS™ S7TA simulation model: www.infineon.com

• IFX Design tools: www.infineon.com

600V CoolMOS™ SJ S7TA Power Device

IPQC60T022S7A

Revision History

IPQC60T022S7A

Revision: 2023-11-30, Rev. 2.0

Previous Revision

Revision	Date	Subjects (major changes since last revision)
2.0	2023-11-30	Release of final version

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Disclaimer

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: erratum@infineon.com

Published by Infineon Technologies AG 81726 München, Germany © 2023 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.