CS 7545: Machine Learning Theory

Fall 2019

Lecture 12: More Online Convex Optimization

Lecturer: Jacob Abernethy Scribes: Jihui Jin & Sihan Zeng

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

12.1 Reminder of Online Convex Optimization Framework

The online convex optimization framework involves the following protocol. Given a convex set $\mathcal{K} \subseteq \mathbb{R}^d$ For t = 1, ..., T:

- 1. Alg selects $x_t \in \mathcal{K}$
- 2. Nature reveals convex function $f_t: \mathcal{K} \to \mathbb{R}$

Goal: Minimize $\operatorname{Regret}_T = \sum_{t=1}^T f_t(x_t) - \min_{x \in \mathcal{K}} \sum_{t=1}^T f_t(x)$

Definition 12.1 (projection) For any $y \in \mathbb{R}^d$, the **projection** onto a set K is defined as

$$\Pi_{\mathcal{K}}(y) = \operatorname*{argmin}_{x \in \mathcal{K}} \|x - y\|_{2}$$

Lemma 12.2 (Pythagorean Theorem for Bregman Divergences) For any $x \in \mathcal{K}$,

$$||x - \Pi_{\mathcal{K}}(y)|| \le ||x - y||$$

, and the equation holds iff $y \in K$.

Proof: (Exercise)

12.2 Online Gradient Descent

Assumptions:

- f_t is G-Lipschitz: $\|\nabla f_t\| \leq G$
- \mathcal{K} has diameter $D: ||x y|| \le D \quad \forall x, y \in \mathcal{K}$

Algorithm 1: Online Gradient Descent

```
1 Init x_1 \in \mathcal{K};

2 for i \leftarrow 1 to T do

3  | \eta_t = \frac{D}{G\sqrt{t}};

4  | \tilde{x}_{t+1} = x_t + \eta_t \nabla f_t(x_t);

5  | x_{t+1} = \Pi_{\mathcal{K}}(\tilde{x}_{t+1});

6 end
```

Theorem 12.3 Assume that $\|\nabla f_t\| \leq G$, $\|x - y\| \leq D$ for all x, y in K. Then

$$\operatorname{Regret}_T(OGD) \leq \frac{3}{2}GD\sqrt{T}$$

Proof: Let $x^* = \operatorname{argmin}_{x \in \mathcal{K}} \sum_{t=1}^T f_t(x)$. Define $\nabla_t := \nabla f_t(x_t)$ By convexity of f_t at x_t :

$$f(x_t) - f_t(x^*) \le \nabla_t^\top (x_t - x^*)$$

By Lemma 12.2, we have that

$$||x_{t+1} - x^*||^2 = ||\Pi_{\mathcal{K}}(x_t - \eta_t \nabla_t) - x^*||^2$$

$$\leq ||x_t - \eta_t \nabla_t - x^*||^2$$

$$= ||x_t - x^*||^2 + \eta_t^2 ||\nabla_t||^2 - 2\eta_t \nabla_t^\top (x_t - x^*)$$

Combining these two gives that

$$f_t(x_t) - f_t(x^*) \le \frac{\|x_t - x^*\|^2}{2\eta_t} + \frac{\eta_t \|\nabla_t\|^2}{2} - \frac{\|x_{t+1} - x^*\|^2}{2\eta_t}$$

$$\operatorname{Regret}_{T} = \sum_{t=1}^{T} f_{t}(x_{t}) - f_{t}(x^{*})$$

$$\leq \frac{1}{2} \sum_{t=1}^{T} \left(\frac{\|t_{x} - x^{*}\|^{2} - \|x_{t+1} - x^{*}\|^{2}}{\eta_{t}} \right) + \frac{G^{2}}{2} \sum_{t=1}^{T} \eta_{t}$$

$$\leq \frac{1}{2} \sum_{t=1}^{T} \|x_{t} - x^{*}\|^{2} \left(\frac{1}{\eta_{t}} - \frac{1}{\eta_{t-1}} \right) + \frac{G^{2}}{2} \sum_{t=1}^{T} \eta_{t}$$

$$\leq \frac{D^{2}}{2} \sum_{t=1}^{T} \left(\frac{1}{\eta_{t}} - \frac{1}{\eta_{t-1}} \right) + \frac{G^{2}}{2} \sum_{t=1}^{T} \eta_{t}$$

$$= \frac{D^{2}}{2} \left(\frac{1}{\eta_{T}} - \frac{1}{\eta_{0}} \right) + \frac{G^{2}}{2} \sum_{t=1}^{T} \frac{D}{G\sqrt{t}}$$

$$\leq \frac{1}{2} DG\sqrt{T} + \frac{G^{2}}{2} \left(2\frac{D}{G}\sqrt{T} \right)$$

$$= \frac{3}{2} DG\sqrt{T}$$

Where in the second to last step we make use of the inequality that

$$\sum_{t=1}^{T} \frac{1}{\sqrt{t}} \le 2\sqrt{T}$$

Corollary 12.4 Gradient descent algorithms for minimizing one convex function f with "averaging" converges at a rate of $O(\frac{DG}{\sqrt{T}})$

12.3 Stochastic Gradient Descent (SGD)

Let $h(\cdot;\cdot)$ be some convex loss function. Consider the SGD algorithm to minimize $f(x) = \underset{\zeta}{\mathbb{E}}[h(x;\zeta)]$, where ζ denotes samples from the distribution.

The steps of the SGD algorithm at each iteration t is as follows:

(1) sample
$$\zeta_t$$

(2)
$$x_{t+1} \leftarrow x_t - \eta_t \nabla h(x_t; \zeta_t)$$

(3) output:
$$\bar{x}_T = \frac{1}{T} \sum_{t=1}^T x_t$$

Claim 12.5 SGD converges at $O(\frac{DG}{\sqrt{T}})$.

Proof:

$$\mathbb{E}_{\zeta_{1:T}}[f(\bar{x}_T)] \leq \mathbb{E}[\frac{1}{T}\sum_{t=1}^T f(x_t)] \text{ by the convexity of the loss function}$$

$$= \mathbb{E}[\frac{1}{T}\sum_{t=1}^T \mathbb{E}_{\zeta_{1:t}}[f(x_t)|\zeta_{1:t-1}]] \text{ since } x_t \text{ only depends on samples before } t$$

$$= \mathbb{E}[\frac{1}{T}\sum_{t=1}^T \mathbb{E}_{\zeta_{1:t}}[h(x_t;\zeta_t)|\zeta_{1:t-1}]] \text{ using the definition of } f$$

$$= \mathbb{E}[\frac{1}{T}\sum_{t=1}^T f_t(x_t)] \text{ using the fact that } \mathbb{E}[\mathbb{E}[A|B]] = \mathbb{E}[A]$$

$$\leq \mathbb{E}[\frac{1}{T}\sum_{t=1}^T f_t(x^*)] + \frac{Regret_T(OGD)}{T} \text{ since we use the OGD protocol to update x at each iteration}$$

$$= f(x^*) + \frac{3DG}{2\sqrt{T}}$$

Therefore, the convergence rate $\mathbb{E}[f(\bar{x}_T)] - f(x^*) \leq \frac{3DG}{2\sqrt{T}}$.