Tema Nr. 11: Căutare în adâncime

Timp Alocat: 2 ore

Implementare

Se cere implementarea corectă și eficientă a algoritmului de căutare în adâncime (Depth-First Search - DFS) (Capitolul 22.3 din Cormen). Pentru reprezentarea grafurilor va trebui să folosești liste de adiacență. De asemenea va trebui să:

- Implementarea algoritmului Tarjan pentru componente tare conexe
- Implementezi sortarea topologică (vezi capitolul 22.4)

Praguri de notare

Nota	Cerințe
5	Implementarea corectă și eficientă la DFS + demo
6	Implementarea corectă și eficientă la sortare topologică + demo
8	Implementarea corectă și eficientă la Tarjan + demo
10	Analiză a performanței pentru DFS + grafice

Evaluare

- ! Înainte de a începe să lucrați la partea de evaluare, asigurați-vă că aveți un algoritm corect! Demonstrați corectitudinea algoritmului pe un graf de dimensiune mică:
 - afișând graful inițial (liste de adiacență)
 - afisând arborele rezultat în urma DFS
 - componentele puternic conexe ale grafului
 - listă de noduri sortate topologic (dacă are / dacă nu are de ce nu are?)

Cum timpul de execuție al algoritmului DFS variază în funcție de numărul de vârfuri (|V|) și de numărul de muchii (|E|) aveți de făcut următoarele analize:

- Fixați |V|=100 și variați |E| între 1000 și 4500 cu un pas de 100. Generați pentru fiecare caz un graf aleator și asigurați-vă că nu generați aceeași muchie de 2 ori. Execută DFS pentru fiecare graf generat și numără operațiile efectuate. Apoi construiește graficul cu variația numărului de operații în funcție de |E|;
- 2. Fixați |E|=4500 și variați |V| între 100 și 200 cu un pas de 10. Repetă procedura de mai sus și construiește graficul cu variația numărului de operații în funcție de |V|.
- 3. Interpretați rezultatele.