Table 1: Aggregate Consumption Dynamics in Rep Agent Markov Economy (11 states)

$\Delta \log \mathbf{C}_{t+1} = \varsigma + \chi \Delta \log \mathbf{C}_t + \eta \mathbb{E}_t [\Delta \log \mathbf{Y}_{t+1}] + \alpha A_t + \epsilon_{t+1}$							
			OLS	2 nd Stage	KP p -val		
Independent Variables			or IV	$ar{R}^2$	Hansen J p val		
Frictionless: $\Delta \log \mathbf{C}_{t+1}$							
$\Delta \log \mathbf{C}_t$	$\Delta \log \mathbf{Y}_{t+1}$	A_t					
0.016			OLS	0.000			
(0.070)							
	$0.455^{\bullet\bullet\bullet}$		IV	0.024	0.512		
	(0.128)				0.543		
		0.88e-4	IV	-0.000	0.000		
		(2.24e-4)			0.483		
0.080	$0.447^{\bullet \bullet}$	-0.62e-4	IV	0.000	0.673		
(0.321)	(0.175)	(1.76e-4)					
Memo: For instruments \mathbf{Z}_t , $\Delta \log \mathbf{C}_{t+1} = \mathbf{Z}_t \zeta$, $\bar{R}^2 = -0.000$							
Sticky : Δ	$\log \widetilde{\mathbf{C}}_{t+1}$ (no	measureme	ent erro	r)			
$\Delta \log \widetilde{\mathbf{C}}_t$	$\Delta \log \widetilde{\mathbf{Y}}_{t+1}$	A_t					
$0.786^{\bullet\bullet\bullet}$			OLS	0.618			
(0.044)							
Sticky : Δ	$\log \widetilde{\mathbf{C}}_{t+1}^*$ (wi	th measure	ment er	$ror); \widetilde{\mathbf{C}}_{t+1}^* =$	$\widetilde{\mathbf{C}}_{t+1} \times \xi_t$		
$\Delta \log \widetilde{\mathbf{C}}_t^*$	$\Delta \log \widetilde{\mathbf{Y}}_{t+1}$	A_t					
$0.397^{\bullet\bullet\bullet}$			OLS	0.167			
(0.064)							
$0.771^{\bullet\bullet\bullet}$			IV	0.174	0.002		
(0.139)					0.544		
	$0.603^{\bullet\bullet\bullet}$		IV	0.119	0.097		
	(0.168)				0.180		
		-0.73e-4	IV	0.071	0.000		
		(0.59e-4)			0.022		
$0.632^{\bullet\bullet\bullet}$	0.134	0.07e-4	IV	0.160	0.291		
(0.215)	(0.256)	(0.79e-4)					
Memo: For instruments \mathbf{Z}_t , $\Delta \log \widetilde{\mathbf{C}}_{t+1}^* = \mathbf{Z}_t \zeta$, $\bar{R}^2 = 0.176$							
$var(\xi_t) = 0.04e-4$							

Notes: Reported statistics are the average values for 100 subsamples of 200 simulated quarters each. Bullets indicate that the average subsample coefficient divided by average subsample standard error is outside of the inner 90%, 95%, and 99% of the standard normal distribution. Instruments $\mathbf{Z}_t = \{\Delta \log \mathbf{C}_{t-2}, \Delta \log \mathbf{C}_{t-3}, \Delta \log \mathbf{Y}_{t-2}, \Delta \log \mathbf{Y}_{t-2}, A_{t-3}, A_{t-2}, A_{t-3}, \Delta_8 \log \mathbf{C}_{t-2}, \Delta_8 \log \mathbf{Y}_{t-2}\}.$

Table 2: Aggregate Consumption Dynamics in PE/SOE Markov Economy (11 states)

$\Delta \log \mathbf{C}_{t+1} = \varsigma + \chi \Delta \log \mathbf{C}_t + \eta \mathbb{E}_t [\Delta \log \mathbf{Y}_{t+1}] + \alpha A_t + \epsilon_{t+1}$							
			OLS	2 nd Stage	KP p -val		
Independent Variables			or IV	$ar{R}^2$	Hansen J \boldsymbol{p} val		
Frictionles	ss: $\Delta \log \mathbf{C}_{t+}$	-1					
$\Delta \log \mathbf{C}_t$	$\Delta \log \mathbf{Y}_{t+1}$	A_t					
0.358			OLS	0.129			
(0.064)							
	$0.475^{\bullet \bullet}$		IV	0.039	0.069		
	(0.214)				0.445		
		-6.38e-4	IV	0.030	0.000		
		(5.24e-4)			0.363		
0.389	0.285	0.69e-4	IV	0.034	0.555		
(0.428)	(0.376)	(9.05e-4)					
Memo: For instruments \mathbf{Z}_t , $\Delta \log \mathbf{C}_{t+1} = \mathbf{Z}_t \zeta$, $\bar{R}^2 = 0.043$							
Sticky : $\Delta \log \widetilde{\mathbf{C}}_{t+1}$ (no measurement error)							
$\Delta \log \widetilde{\mathbf{C}}_t$	$\Delta \log \widetilde{\mathbf{Y}}_{t+1}$	A_t					
$0.862^{\bullet\bullet\bullet}$			OLS	0.743			
(0.035)							
Sticky: $\Delta \log \widetilde{\mathbf{C}}_{t+1}^*$ (with measurement error); $\widetilde{\mathbf{C}}_{t+1}^* = \widetilde{\mathbf{C}}_{t+1} \times \xi_t$							
$\Delta \log \widetilde{\mathbf{C}}_t^*$	$\Delta \log \widetilde{\mathbf{Y}}_{t+1}$	A_t					
$0.497^{\bullet\bullet\bullet}$			OLS	0.253			
(0.059)							
$0.802^{\bullet\bullet\bullet}$			IV	0.251	0.000		
(0.106)					0.559		
	$0.859^{\bullet\bullet\bullet}$		IV	0.185	0.066		
	(0.189)				0.226		
		$-7.68e-4^{\bullet \bullet}$	IV	0.066	0.000		
		(3.67e-4)			0.004		
$0.661^{\bullet\bullet\bullet}$	0.199	0.62e-4	IV	0.230	0.381		
(0.189)	(0.287)	(4.84e-4)					
Memo: For instruments \mathbf{Z}_t , $\Delta \log \widetilde{\mathbf{C}}_{t+1}^* = \mathbf{Z}_t \zeta$, $\bar{R}^2 = 0.252$							
$var(\xi_t) = 0.08e-4$							
Notes: Penerted statistics are the average values for 100 subsamples of 200							

Notes: Reported statistics are the average values for 100 subsamples of 200 simulated quarters each. Bullets indicate that the average subsample coefficient divided by average subsample standard error is outside of the inner 90%, 95%, and 99% of the standard normal distribution. Instruments $\mathbf{Z}_t = \{\Delta \log \mathbf{C}_{t-2}, \Delta \log \mathbf{C}_{t-3}, \Delta \log \mathbf{Y}_{t-2}, \Delta \log \mathbf{Y}_{t-2}$

Table 3: Aggregate Consumption Dynamics in HA-DSGE Markov Economy (11 states)

$\Delta \log \mathbf{C}_{t+1} = \varsigma + \chi \Delta \log \mathbf{C}_t + \eta \mathbb{E}_t [\Delta \log \mathbf{Y}_{t+1}] + \alpha A_t + \epsilon_{t+1}$							
Expectations : Dep Var			OLS	2 nd Stage	KP p -val		
Independent Variables			or IV	$ar{R}^2$	Hansen J \boldsymbol{p} val		
Frictionless : $\Delta \log \mathbf{C}_{t+1}$							
$\Delta \log \mathbf{C}_t$	$\Delta \log \mathbf{Y}_{t+1}$	A_t					
$0.349^{\bullet\bullet\bullet}$			OLS	0.125			
(0.064)							
	$0.475^{\bullet\bullet\bullet}$		IV	0.064	0.053		
	(0.176)				0.401		
		$-3.40e-4^{\bullet \bullet}$	IV	0.066	0.000		
		(1.50e-4)			0.422		
0.327	0.168	-1.35e-4	IV	0.068	0.553		
(0.460)	(0.347)	(3.40e-4)					
Memo: For instruments \mathbf{Z}_t , $\Delta \log \mathbf{C}_{t+1} = \mathbf{Z}_t \zeta$, $\bar{R}^2 = 0.073$							
Sticky : Δ	$\log \widetilde{\mathbf{C}}_{t+1}$ (no	measureme	ent erro	r)			
$\Delta \log \widetilde{\mathbf{C}}_t$	$\Delta \log \widetilde{\mathbf{Y}}_{t+1}$	A_t					
$0.859^{\bullet\bullet\bullet}$			OLS	0.739			
(0.036)							
Sticky : Δ	$\log \widetilde{\mathbf{C}}_{t+1}^*$ (wi	th measurer	nent er	$\overline{\mathbf{C}}_{t+1}^* = \overline{\mathbf{C}}_{t+1}^* = \overline{\mathbf{C}}_{t$	$\widetilde{\mathbf{C}}_{t+1} \times \xi_t$		
$\Delta \log \widetilde{\mathbf{C}}_t^*$	$\Delta \log \widetilde{\mathbf{Y}}_{t+1}$	A_t					
$0.438^{\bullet\bullet\bullet}$			OLS	0.199			
(0.061)							
0.811			IV	0.271	0.000		
(0.110)					0.558		
	$0.785^{\bullet\bullet\bullet}$		IV	0.216	0.052		
	(0.166)				0.289		
		$-4.37e-4^{\bullet \bullet \bullet}$	IV	0.138	0.000		
		(1.05e-4)			0.004		
$0.641^{\bullet\bullet\bullet}$	0.159	-0.44e-4	IV	0.261	0.381		
	(0.278)						
Memo: For instruments \mathbf{Z}_t , $\Delta \log \widetilde{\mathbf{C}}_{t+1}^* = \mathbf{Z}_t \zeta$, $\bar{R}^2 = 0.275$							
$var(\xi_t) = 0.04e-4$							

Notes: Reported statistics are the average values for 100 subsamples of 200 simulated quarters each. Bullets indicate that the average subsample coefficient divided by average subsample standard error is outside of the inner 90%, 95%, and 99% of the standard normal distribution. Instruments $\mathbf{Z}_t = \{\Delta \log \mathbf{C}_{t-2}, \Delta \log \mathbf{C}_{t-3}, \Delta \log \mathbf{Y}_{t-2}, \Delta \log \mathbf{Y}_{t-2}$