Galois 理论

Ihaku

前言

... [1] [2] [3]

目录

第零章	预备知识	1
0.1	群	1
0.2	环	4
索引		5
参考文献	猷	7

vi

第零章 预备知识

0.1 群

定义 0.1 集合 S 和 S 上满足结合律的二元运算·所形成的代数结构叫做**半群**. 这个半群记成 (S,\cdot) 或者简记成 S, 运算 $x\cdot y$ 也尝尝简写成 xy. 若含有幺元则称为**幺半群**, 幺元通常记作 e 或 1. 若满足交换律则称为**交换半群**.

例 0.2 (Z, -) 不满足结合律, 故不是半群.

对于交换幺半群, 惯例是将其二元运算·写成加法 +, 并将幺元 1 写成 0, 元素 x 的逆写成 -x; 但一些场合仍适用乘法记号. 必要时另外申明.

定义 0.3 若含幺半群 (G,\cdot) 中每一个元素都存在逆元,则 G 叫做**群**. 若满足交换律则称为**交换**群或**阿贝尔**群.

简言之, 群内的元素满足封闭性, 结合律, 单位元, 逆元四个性质. 其中逆元往往难以满足, 结合律通常难以验证. 向量空间的前四条性质即是群的定义.

例 0.4 一个拓扑 (τ, \cup) 是一个幺半群, 而拓扑 (τ, \triangle) 是一个群. 单位元都为 Ø, 后者逆元为自身, 亦即 $\forall A \in \tau, A^2 = \emptyset$, 该群每一个非单位元的阶都为 2.

定义 0.5 设 G 为群, 子集 $H \subset G$ 被称为 G 的子群, 如果

- (i) H 是子幺半群,
- (ii) 对任意 $x \in H$ 有 $x^{-1} \in H$.

表示成 $H \leq G$. 假若子群 H 对所有 $x \in G$ 满足 xH = Hx, 则称 H 为 G 的正规子群, 记作 $H \triangleleft G$. 子群 $\{1\} \triangleleft G$ 称作 G 的平凡子群.

例 0.6 包含 x 的最小群叫做由 x **生成**的群,记作 $\langle x \rangle$. 若群 G 中存在元素 x 使得 $G = \langle x \rangle$,则称 G 为循环群.循环群又叫单位生成群,且都同构于 $\mathbb Z$ 的子群.

例 0.7 从任意集合 X 映到自身的全体双射构成一个群, 称为 X 上的对称群 $\mathfrak{S}_X := \operatorname{Aut}(X)$. 其中的二元运算是双射的合成 $(f,g)\mapsto f\circ g$, 幺元为恒等映射 $\operatorname{id}_X:X\to X$, 而逆元无非是 逆映射. 当 $X=\{1,\ldots,n\}$ $(n\in\mathbb{Z}_{\geq 1})$ 时也记为 \mathfrak{S}_n , 称为 n 次的对称群或置换群. 注意到 $|\mathfrak{S}_n|=n!$. 其所有偶置换元素组成的子群称为交错群, 记作 \mathfrak{A}_n , 且 $\mathfrak{A}_n \triangleleft \mathfrak{S}_n$.

定义 0.8 设 H 为群 G 的子群. 定义:

2

- (i) **左陪集**: G 中形如 xH 的子集, 全体左陪集构成的集合记作 G/H;
- (ii) **右陪集**: G 中形如 Hx 的子集, 全体右陪集构成的集合记作 $H\setminus G$;
- (iii) **双陪集**: 设 K 为另一子群,则 G 中形如 $HxK := \{hxk : h \in H, k \in K\}$ 的子集称为 G 对 (H,K) 的双陪集,全体双陪集构成的集合记作 $H \setminus G/K$.

陪集中的元素称为该陪集的一个代表元. $H \triangleleft G$ 等价于左, 右陪集相同. 由于陪集的左右之分总能从符号辨明, 以下不再申明. 定义 H 在 G 中的**指数**

$$[G:H] := |G/H|.$$

陪集空间 G/H 未必有限, 在此视 [G:H] 为基数.

定理 0.9 (Lagrange 定理) 设 H 为群 G 的子群, 则

- (i) |G| = [G:H]|H|, 特别地, 当 G 有限时 |H| 必整除 |G|;
- (ii) 若 K 是 H 的子群, 则 [G:K] = [G:H][H:K].

推论 0.10 群 G 中任意元素 g 的阶整除 G 的阶, 即 ord $g \mid |G|$. 由此直接得费马小定理.

拉格朗日定理的逆命题并不成立. 给定一个有限群 G 和一个整除 G 的阶的整数 d,G 并不一定有阶数为 d 的子群. 最简单的例子是 4 次交替群 \mathfrak{A}_4 , 它的阶是 12, 但对于 12 的因数 6, \mathfrak{A}_4 没有 6 阶的子群. 对于这样的子群的存在性, Cauchy 定理和 Sylow 定理给出了一个部分的回答.

定义 0.11 设 G 为群.

- (i) G 的中心定义为 $Z_G := \{z \in G : \forall x \in G, xz = zx\}^i;$
- (ii) 设 $E \subset G$ 为任意子集, 定义其中心化子为 $Z_G(E) := \{z \in G : \forall x \in E, xz = zx\}$ ii;
- (iii) 承上, 定义其正规化子为 $N_G(E) := \{n \in G : nEn^{-1} = E\}^{iii}$.

当 E 是独点集 $\{x\}$ 时, 使用简写 $Z_G(x)$ 和 $N_G(x)$.

显然有

$$Z_G = Z_G(G) \leqslant Z_G(E) \leqslant N_G(E) \leqslant G.$$

阿贝尔群等价于中心是自身的群. $H \triangleleft G$ 等价于 $N_G(H) = G$.

定义 0.12 设 M_1, M_2 为幺半群. 映射 $\varphi: M_1 \to M_2$ 如满足下述性质即称为同态

- (i) $\forall x, y \in M_1, \varphi(xy) = \varphi(x)\varphi(y);$
- (ii) $\varphi(1) = 1$.

¹因其德文 Zentrum(注意德文中名词首字母应大写), 首字母为 Z, 也有部分书采用英文 center 的首字母 C 表示.

ⁱⁱ因其德文 Zentralisator, 首字母为 Z, 也有部分书采用英文 centralizer 的首字母 C 表示.

iii 因其德文 Normalisator 和英文 normalizer, 首字母为 N.

0.1 群

从 M_1 到 M_2 的同态所成集合写作 $\operatorname{Hom}(M_1, M_2)$. 设 $\varphi \in \operatorname{Hom}(M_1, M_2)$. 它的**像**记作 $\operatorname{Im}(\varphi) := \{ \varphi(x) : x \in M_1 \}$, 而其**核**定义为 $\operatorname{Ker}(\varphi) := \varphi^{-1}(1)$.

从幺半群 M 映至自身的同态称为**自同态**,自同态全体构成一个群,叫做**自同态群**,记作 $\operatorname{End}(M) = \operatorname{Hom}(M, M)$.同态的合成仍为同态. 取常值 1 的同态称作**平凡同态**.

若存在同态 $\psi: M_2 \to M_1$ 使得 $\varphi\psi = \mathrm{id}_{M_2}$, $\psi\varphi = \mathrm{id}_{M_1}$, 则称 φ 可逆而 ψ 是 φ 的逆; 可逆同态称作**同构**. 此时我们也称 M_1 与 M_2 同构. 从幺半群映至自身的同构称为**自同构**, 自同构全体构成一个群, 叫做**自同构群**, 记作 $\mathrm{Aut}(M)$, 如恒等映射 $\mathrm{id}_M \in \mathrm{Aut}(M)$.

定义 0.13 设 G 为群, N 为其正规子群. 在陪集空间 G/N 上定义二元运算

$$xN \cdot yN = xyN, \quad x, y \in G.$$

这使得 G/N 构成一个群, 称为 G 模 N 的**商群**, 其中的幺元是 $1\cdot N$ 而逆由 $(xN)^{-1}=x^{-1}N$ 给出. 群同态

$$\pi: G \to G/N, \qquad x \mapsto xN$$

称为商同态.

定义 0.14 设幺半群 M 作用于 X. 定义

- (i) 不动点集 $X^M := \{x \in X : \forall m \in M, mx = x\};$
- (ii) 对于 $x \in X$, **轨道** $Mx := \{mx : m \in M\}$, 其元素称为该轨道的代表元, 轨道 Mx 是 X 的 M-子集:
- (iii) 承上, 其稳定化子定为 M 的子幺半群 $M_x := \{m \in M : mx = x\}$.

定理 0.15 (轨道分解定理) 设群 G 作用于 X, 则

- (i) 有轨道分解 $X = \prod_x Gx$, 其中我们对每个轨道选定代表元 x;
- (ii) 对每个 $x \in X$, 映射

$$G/G_x \to Gx$$
, $q \cdot G_x \mapsto qx$

是 G-集间的同构;

(iii) 特别地, 我们有基数的等式

$$|X| = \sum_{x} [G:G_x];$$

(iv) 对所有 $x \in X$ 和 $g \in G$, 有

$$G_{gx} = gG_xg^{-1}.$$

定义 0.16 依旧设 G 为群. 伴随自同构 $Ad: G \to Aut(G)$ 给出的作用称为 G 的共轭作用 $G \times G \to G$ (在此考虑左作用). 定义展开后无非是

$$(q,x) \longmapsto^g x := qxq^{-1}.$$

共轭作用下的轨道称为 G 中的共轭类.

4 第零章 预备知识

推而广之, 对任意子集 $E \subset G$ 我们业已定义子群 $N_G(E)$, 它在 E 上的作用也叫共轭. 若两子集 E, E' 满足 $\exists g \in G, E' = gEg^{-1}$, 则称 E 与 E' 共轭.

非交换群共轭作用的性状一般相当复杂. 对于 $x \in G$, 其稳定化子群正是中心化子 $Z_G(x)$, 而不动点集则是中心 Z_G . 剖析 G 的共轭作用是了解其群结构的必由之路.

定理 0.17 (同态基本定理) 设 $\varphi \in \text{Hom}(G_1, G_2)$, 则 φ 诱导出同构

$$\bar{\varphi}: G_1/\operatorname{Ker}(\varphi) \to \operatorname{Im}(\varphi), \qquad g \cdot \operatorname{Ker}(\varphi) \mapsto \varphi(g).$$

此同构叫做正则同构.

定理 0.18 (Caylay 定理) 对任意有限群 G, 同态

$$\rho: G \to \mathfrak{S}_G, \qquad \rho(g)a = ga$$

是单的, 故 $Ker(\rho) = \{1\}$, 利用同态基本定理得: 每个群均同构于某个对称群的子群.

定理 0.19 (Cauchy 定理) 设 G 为有限群, 素数 p 整除 |G|, 则存在 $x \in G$ 使得 ord x = p.

定义 0.20 设 G 为 n 阶有限群, p 为素数. 设 $p^m \mid n$, 满足 $|H| = p^m$ 的子群 H 称为 G 的 Sylow p-子群.

定理 0.21 (Sylow 定理) 对任意有限群 G 和任意素数 p,

- (i) *G* 含有 Sylow *p*-子群.
- (ii) (a) 任意 p-子群 $H \subset G$ 皆包含于某个 Sylow p-子群;
 - (b) G 的任两个 Sylow p-子群 P, P' 皆共轭; 特别地, G 中存在正规的 Sylow p-子群当且仅当 G 有唯一的 Sylow p-子群.
- (iii) G 中 Sylow p-子群的个数 $\equiv 1 \pmod{p}$.

定理 0.22 (有限生成阿贝尔群结构定理) 有限生成阿贝尔群都同构于若干 ℤ 子群的直和.

有关对称群和可解群的内容请参考 [1, 1.6, 1.11], 这对于 Galois 理论的学习至关重要.

0.2 环

索引

```
半群 (semi group), 1
                                                Sylow p-子群, 4
                                                正规子群 (normal subgroup), 1
半群 (semigroup)
    幺半群 (monoid), 1
                                              对称群 (symmetric group), 1
                                              循环群 (cyclic group), 1
共轭 (conjugation), 3
                                              阿贝尔群 (Abel group), 1
轨道 (orbit), 3
                                          同构 (isomorphism), 3
核 (kernel), 3
                                              自同构 (automorphism), 3
                                          同态 (morphism), 2
陪集 (coset), 2
                                              自同态 (endomorphism), 3
群 (group), 1
                                          稳定化子 (stabilizer), 3
   交错群 (alternative group), 1
   商群 (quotient group), 3
                                           正规化子 (normalizer), 2
                                           中心化子 (centralizer), 2
   子群 (subgroup), 1
```

套引 索引

参考文献

- [1] 冯克勤. 近世代数引论. 合肥: 中国科学技术大学出版社, 2009.
- [2] 李文威. 代数学方法 (第一卷), volume 67.1 of 现代数学基础丛书. 北京: 高等教育出版社, 2019.
- [3] 章璞. 伽罗瓦理论: 天才的激情, volume 37 of 现代数学基础丛书. 北京: 高等教育出版社, 2013.