Contents

1	Functions		
	1.1	prime	- primality test, prime generation
		1.1.1	trialDivision – trial division test
		1.1.2	spsp – strong pseudo-prime test
		1.1.3	smallSpsp – strong pseudo-prime test for small number .
		1.1.4	miller – Miller's primality test
		1.1.5	millerRabin – Miller-Rabin primality test
		1.1.6	lpsp – Lucas test
		1.1.7	fpsp – Frobenius test
		1.1.8	by_primitive_root - Lehmer's test
		1.1.9	full_euler - Brillhart & Selfridge's test
		1.1.10	
		1.1.11	primeq – primality test automatically
		1.1.12	prime – n -th prime number
		1.1.13	nextPrime – generate next prime
		1.1.14	randPrime – generate random prime
		1.1.15	generator – generate primes
		1.1.16	generator_eratosthenes – generate primes using Eratos-
			thenes sieve
		1.1.17	primonial – product of primes
		1.1.18	properDivisors – proper divisors
		1.1.19	primitive_root - primitive root
		1.1.20	Lucas chain – Lucas sequence

Chapter 1

Functions

1.1 prime – primality test, prime generation

1.1.1 trialDivision – trial division test

```
trialDivision(n: integer, bound: integer/float=0) \rightarrow True/False
```

Trial division primality test for an odd natural number.

bound is a search bound of primes. If it returns 1 under the condition that bound is given and less than the square root of n, it only means there is no prime factor less than bound.

1.1.2 spsp – strong pseudo-prime test

```
\begin{array}{l} {\rm spsp(n:}\; integer,\; {\rm base:}\; integer,\; {\rm s:}\; integer{=}{\rm None},\; {\rm t:}\; integer{=}{\rm None})\\ \rightarrow \; True/False \end{array}
```

Strong Pseudo-Prime test on base base.

s and t are the numbers such that $n-1=2^{s}t$ and t is odd.

1.1.3 smallSpsp – strong pseudo-prime test for small number

Strong Pseudo-Prime test for integer n less than 10^{12} .

4 spsp tests are sufficient to determine whether an integer less than 10^{12} is prime or not.

s and t are the numbers such that n-1=2^st and t is odd.

1.1.4 miller – Miller's primality test

```
miller(n: integer) \rightarrow True/False
```

Miller's primality test.

This test is valid under GRH. See config.

1.1.5 millerRabin – Miller-Rabin primality test

 $millerRabin(n: integer, times: integer=20) \rightarrow True/False$

Miller's primality test.

The difference from **miller** is that the Miller-Rabin method uses fast but probabilistic algorithm. On the other hand, **miller** employs deterministic algorithm valid under GRH.

times (default to 20) is the number of repetition. The error probability is at most $4^{-\text{times}}$.

1.1.6 lpsp – Lucas test

 $lpsp(n: integer, a: integer, b: integer) \rightarrow True/False$

Lucas Pseudo-Prime test.

Return True if n is a Lucas pseudo-prime of parameters a, b, i.e. with respect to $x^2 - ax + b$.

1.1.7 fpsp – Frobenius test

fpsp(n: integer, a: integer, b: integer)
ightarrow True/False

Frobenius Pseudo-Prime test.

Return True if n is a Frobenius pseudo-prime of parameters a, b, i.e. with respect to $x^2 - ax + b$.

1.1.8 by primitive root – Lehmer's test

 $by_primitive_root(n: \textit{integer}, \, divisors: \textit{sequence}) \rightarrow \textit{True/False}$

Lehmer's primality test [2].

Return True iff n is prime.

The method proves the primality of n by existence of a primitive root. divisors is a sequence (list, tuple, etc.) of prime divisors of n-1.

1.1.9 full euler – Brillhart & Selfridge's test

 $\text{full euler(n: } \textit{integer}, \, \text{divisors: } \textit{sequence}) \rightarrow \textit{True/False}$

Brillhart & Selfridge's primality test [1].

Return True iff n is prime.

The method proves the primality of n by the equality $\varphi(n) = n - 1$, where φ denotes the Euler totient (see **euler**). It requires a sequence of all prime divisors of n - 1.

divisors is a sequence (list, tuple, etc.) of prime divisors of n-1.

1.1.10 apr – Jacobi sum test

 $apr(n: integer) \rightarrow True/False$

APR (Adleman-Pomerance-Rumery) primality test or the Jacobi sum test.

Assuming n has no prime factors less than 32. Assuming n is spsp (strong pseudo-prime) for several bases.

1.1.11 primeq – primality test automatically

 $primeq(n: integer) \rightarrow True/False$

A convenient function for primality test.

It uses one of trialDivision, smallSpsp or apr depending on the size of n.

1.1.12 prime -n-th prime number

 $prime(n: integer) \rightarrow integer$

Return the n-th prime number.

1.1.13 nextPrime – generate next prime

$$nextPrime(n: integer) \rightarrow integer$$

Return the smallest prime bigger than the given integer n.

1.1.14 randPrime – generate random prime

$$randPrime(n: integer) \rightarrow integer$$

Return a random n-digits prime.

1.1.15 generator – generate primes

$$\operatorname{generator}((\operatorname{None})) o \operatorname{\it generator}$$

Generate primes from 2 to ∞ (as generator).

$$\mathbf{generator} \quad \mathbf{eratosthenes(n:} \ integer) \rightarrow \mathbf{generator}$$

Generate primes up to n using Eratosthenes sieve.

1.1.17 primonial – product of primes

$$primonial(p: integer) \rightarrow integer$$

Return the product

$$\prod_{q \in \mathbb{P}_{\leq p}} q = 2 \cdot 3 \cdot 5 \cdots p.$$

1.1.18 properDivisors – proper divisors

```
properDivisors(n: integer) \rightarrow list
```

Return proper divisors of n (all divisors of n excluding 1 and n).

It is only useful for a product of small primes. Use **proper_divisors** in a more general case.

The output is the list of all proper divisors.

1.1.19 primitive root – primitive root

```
primitive root(p: integer) \rightarrow integer
```

Return a primitive root of p.

p must be an odd prime.

1.1.20 Lucas chain – Lucas sequence

Return the value of (x_n, x_{n+1}) for the sequece $\{x_i\}$ defined as:

$$x_{2i} = f(x_i)$$

 $x_{2i+1} = g(x_i, x_{i+1})$,

where the initial values x_0 , x_1 .

f is the function which can be input as 1-ary integer. g is the function which can be input as 2-ary integer.

Examples

```
>>> prime.primeq(131)
True
>>> prime.primeq(133)
False
>>> g = prime.generator()
>>> g.next()
```

```
>>> g.next()
3
>>> prime.prime(10)
29
>>> prime.nextPrime(100)
101
>>> prime.primitive_root(23)
```

Bibliography

- [1] J. Brillhart and J. L. Selfridge. Some factorizations of $2^n \pm 1$ and related results. *Math. Comp.*, Vol. 21, pp. 87–96, 1967.
- [2] D. H. Lehmer. Tests for primality by the converse of Fermat's theorem. *Bull. Amer. Math. Soc.*, Vol. 33, pp. 327–340, 1927.