Cyber15队智能汽车竞赛技术报告(节选)

■ 吕修文 金至卓 吕哲鸣 上海交通大学 带队教师: 王冰 王春香

摘要: 车模使用飞思卡尔加速度传感器MMA7260以及村田公司ENC-03陀 螺仪进行卡尔曼融合,获取车模直立姿态。使用电容电感组成的谐振电路 检测电磁信号幅值。通过二轮差速进行车模的转向。

关键词: Freescale; 智能车; 电磁; 两轮平衡; 卡尔曼滤波

DOI: 10.3969/j.issn.1005-5517.2012.12.019

使用卡尔曼滤波的原因

当决定使用加速度计 (反应角 度) 以及陀螺仪(反应角速度)以 后,我们对参考的论文中为何要同时 使用加速度计以及陀螺仪产生过一些 疑问。因为如果需要角速度, 我们可 以通过 $\frac{x(t)-x(t-1)}{r}$ 这样的方法对加速 度计进行微分,计算出角速度,或者 可以通过对于陀螺仪 $\sum x(t)dt$ 积分.

从而获得角度。既然如此为何我们需 要使用两个传感器。

于是,我们对两个传感器进行了 数据采样、观测其输出信号的关系。 由于考虑电机转动产生的震动会对传 感器产生比较大的干扰, 因此我们 测试了不同PWM占空比下传感器输 出、并用MATLAB绘制曲线、并进行

相关运算。

传感器噪声大小。

螺仪的噪声也更加显著。 表1是我们通过MATLAB计算获 得的一些数据。此处我们用方差表征

1)、随着PWM占空比的不断提高, 陀

首先是陀螺仪的数据测试(见图

之后我们对加速度传感器进行了 测试,如图2。通过以上数据,我们 不难获得以下一些结论。

- 1、陀螺仪的噪声还在可以接受 范围、但是加速度计噪声已经远远超 出可控范围接受。
- 2、对于加速度计做一个补充说 明,加速度计在车模直立状态下,电 机PWM占空比100%噪声情况下,幅 值映射到实际角度大约是60度左右。 根本不能直接使用。
- 3、方差(可以等效理解为噪声 大小) 随着占空比不断增加。
- 4、加速度计虽然噪声很大,但 是长时间来看, 他的数学期望是非常 稳定的。
- 5、陀螺仪的噪声比较小,但是 他的误差会对积分造成漂移。

无论是加速度计还是陀螺仪,都 有自己的优势和劣势。简而言之: 加速 度计短时间内不可信, 但是长时间内可 信。陀螺仪短时间内可信而长时间内不 可信。这也就是为什么车模直立必须使 用两个传感器来完成信号获取。因为单

图1 陀螺仪测试数据

PWM 100%占空比下, 车模直立状态 下的加速度计输出

图2 加速度传感器数据

PWM占空比与加速度计方差关系

个传感器不可靠,只有取其精华去其糟 粕,发挥两个传感器的共同优势,才能 够取得好的效果。于是,我们需要一种 算法、能够在短时间内置信陀螺仪、而 长时间内置信加速度计的算法。这就需 要卡尔曼滤波。

卡尔曼滤波化筒

$$X_1 = A * X_0 + B * gyro$$

 $P_1 = A * P_0 * A + Q$
 $Kg = P_1 * H / H * P_1 * H * + R$
 $X_0 = X_1 + Kg * (acc - H * X_1)$
 $P_0 = (I - Kg * H) * P_1$

上述五个公式便是卡尔曼滤波 的五条数学公式在本项目中的使用。 但是, 以上五个公式, 仅仅只是矩阵 形式。虽然可以在MATLAB里进行仿 真, 但是却不能使用单片机进行有效 运算。

然后,将卡尔曼滤波矩阵形式转 化为方程形式:

$$\begin{split} X_{11} &= X_{01} + dt * gyro - dt * X_{02} \\ X_{12} &= X_{02} \\ P_{11} &= P_{01} - dt * P_{03} - dt * (P_{02} - dt * P_{04}) + Q_{1} \\ P_{12} &= P_{02} - dt * P_{04} \\ P_{13} &= P_{03} - dt * P_{04} \\ P_{14} &= P_{04} + Q_{2} \\ Kg_{1} &= P_{11} / (P_{11} + R) \\ Kg_{2} &= P_{13} / (P_{11} + R) \\ P_{01} &= P_{11} * (1 - Kg_{1}) \\ P_{02} &= P_{12} * (1 - Kg_{1}) \\ P_{03} &= P_{13} - P_{11} * Kg_{2} \\ P_{04} &= P_{14} - P_{12} * Kg_{2} \\ X_{01} &= X_{11} + (acc - X_{11}) * Kg_{1} \\ X_{02} &= X_{12} + (acc - X_{11}) * Kg_{2} \end{split}$$

这里, X01即为我们需要的角度卡尔 曼滤波值。

可以看到的是,卡尔曼滤波方程 形式共有14个公式,同时很多参数的 运算涉及浮点数,这对于单片机的高 效运行时极为不利的, 因此我们需要 通过一些方法对卡尔曼滤波的公式进 行化简,从而在不 表1 陀螺仪测试参数 失精度的情况下, 尽可能减小运算 量。

需要注意的

是, Q,R两个参数 是关于传感器和 系统的方差, 他们 况不同而会产生相 应变化,对应到我 们的系统, 在车模 运行状态不同 (倾 角不同、PWM不 同)情况下,QR 都是不同的。

陀螺仪参数测试							
PWM占空比	最大值	最小值	期望	方差	采样点数		
20	71	70	70.0121	0.012	742		
30	70	70	70	0	842		
40	71	70	70.0201	0.0197	746		
50	71	70	70.0199	0.0195	754		
60	71	70	70.0199	0.0195	754		
70	71	69	70.0471	0.0857	786		
80	71	69	70.0455	0.2752	726		
90	72	68	70.0587	0.5911	699		
100	72	67	70.0676	1.2864	843		

随着系统的工作状 表2 通过MATLAB计算获得的关于加速度传感器的测试参数

加速度参数测试								
PWM占空比	最大值	最小值	期望	方差	采样点数			
20	80	87	83.1544	0.3116	786			
30	78	89	83.304	0.5379	967			
40	75	89	83.3189	1.1393	668			
50	71	90	83.293	2.5727	789			
60	68	91	•83.1108	4.3543	977			
70	66	93	82.1382	15.7352	867			
80	63	97	83.0125	34.4538	921			
90	60	98	81.8	27.793	835			
100	59	98	83.15	34.3276	937			

根据相关参考文献、QR虽然都 是关于时间的变量, 但是由于卡尔曼 滤波有很好的收敛性,所以可以将 Q, R都取比较极端的参数。用常量 来定义。然后再看图3,注意方框中 的公式, 根据我们的观察, 不难发 现、整个方框中都是为了获得卡尔曼 增益(矩阵Kg),我们设想,能否 使用一个常数来等效替代卡尔曼增益 那?根据我们在实验中的观察、卡尔 曼增益是一个收敛的变量, 并且针对 到我们的这个系统, 他的值非常小, 直立状态下趋近于一个常数。(所有 这些工作都在MATLAB下完成)

所以, 我们将方框中的所有公式 完全省略,通过实验整定,选取一个 近似Kg来替代方框中的所有运算。同 时,通过NATLAB观测各变量的变化 趋势, 我们尝试让Kg2=0 (Kg1, Kg2 本身就是非常小的变量,所以可以让 其等于0)。并发现Kg2对于整个卡尔 曼滤波的影响非常有限。所以将Kg2

设定为0。

以下就是我们组程序中卡尔曼滤 波的简化算法实现

$$X_{11} = X_{01} + dt * gyro - dt * X_{02}$$

$$X_{12} = X_{02}$$

$$P_{11} = P_{01} - dt * P_{03} - dt * (P_{02} - dt * P_{04}) + Q_{1}$$

$$P_{12} = P_{02} - dt * P_{04}$$

$$P_{13} = P_{03} - dt * P_{04}$$

$$P_{14} = P_{04} + Q_{2}$$

$$Kg_{1} = P_{11} / (P_{11} + R)$$

$$Kg_{2} = P_{13} / (P_{11} + R)$$

$$P_{01} = P_{11} * (1 - Kg_{1})$$

$$P_{02} = P_{12} * (1 - Kg_{1})$$

$$P_{03} = P_{13} - P_{11} * Kg_{2}$$

$$P_{04} = P_{14} - P_{12} * Kg_{2}$$

$$X_{01} = X_{11} + (acc - X_{11}) * Kg_{1}$$

$$X_{02} = X_{12} + (acc - X_{11}) * Kg_{2}$$

图4 化简后的卡尔曼滤波框图

图5

X1=X0+gyro*dt; X0=X1+(acc-X1)*kg; 化简后的卡尔曼滤波框图如图4。

卡尔曼波波参数整定

化简后的卡尔曼滤波主要是对dt 以及Kg两个参数进行整定。需要特别 指出的是,这里的dt并不只是一个采 样间隔。由于陀螺仪的输出和加速度 计输出的量纲并不相同,所以陀螺仪 采样值*dt并不直接反应一个角度,而 是与实际角度相差一个系数。因此此 处的dt可以等效理解为dt=采样间隔* 比例系数。

dt越大,积分速度越快,卡尔曼 输出追随实际角度的情况越好(当然 不能太大,不然可能会出现超前相 位)。但是dt越大,陀螺仪漂移造成 的影响也就越大。

Kg决定了加速度计的权重。Kg越 大,实际输出的漂移就越小,但是滤 波效果的噪声也就越大。

所以dt和kg是一对矛盾,不能太 过于极端。

首先是静态整定。

将车模保持在稳定直立状态,让 车轮以恒定PWM (80%以上)转动, 然后调节参数。

目标是达到图5效果。红色为卡尔曼滤波输出,蓝色为加速度计直接输出。如果红色抖动非常厉害,可以

图6

适当减小Kg的大小。接着是动态整定,还是保持车轮恒定PWM旋转,同时,摇摆车身。

大致调节到图6所示的样子。目前存在一个相位差,这个相位差在后期直立算法的调试中是致命的,必须克服掉。解决方法,逐渐增加dt即

图8 长前瞻导致轮子掉落跑道

可。达到图7效果即可认为卡尔曼滤 波参数整定完成。

电磁支架设计

在智能车设计中,越早获取赛道信息就能够更早作出判断,并对车模实施控制。对于摄像头组而言,获取的赛道信息多,但是对于电磁探头而言,基本只能获得探头正下方和前方部分信息。那么要越早获取前方赛道信息,最直接有效的方法就是加长前瞻。

同时,针对两轮车而言,长前瞻 容易带来如下几个问题。

1、增加重量:支架的重量将直接影响直立的效果以及两轮车的动态性能。尤其当前瞻较远的时候,前段

337

的增重将造成力矩的增加,且前瞻越远,增加的力矩也就更明显,对于车 模的直立影响将更大。

2、增加转向惯量: 过于长的前瞻 将使得Z方向的转动惯量增加,由于 电机功率有限,转动惯量的增加将造 成转向上不灵活的情况,影响弯道性

图9 车模最终整体外观图

能。

- 3、信号串扰:根据比赛规定,两条电磁线间最小间距为60CM,如果前瞻过长,有可能探头支架申入临近赛道,被临近信号干扰,造成窜道的情况。
- 4、过于压线: 当使用跟线的弯道 算法时,过长的前瞻容易致使一个轮 子掉落跑道,如下图。

根据实际测验得,前瞻在40CM-60CM之间,效果最好,因此最后选取前瞻为50CM。

-

[1]冯智勇、曹瀚、张力、赵亦欣、黄伟、基于陀螺仪及加速度计信号融合 的姿态角度测量[J]。西南师范大学学报,2011,36 (4):137-141 [2]尾芳、刘俊、卡尔曼·沙波飞在陀螺仪器机谋等中的应用[J],按计算机 信息、2007,23(8-2):222-224 [3] 版籍、泰珍白平新机县人横四及 控制方法研究[D] 北京 丁业大学场

[3]陈静·两轮自平衡机器人模型及控制方法研究[D].北京工业大学硕士学位论文,2008.

工子取记入。2006.
[4]Rich Chi Ooi.Balancing a Two-Wheeled Autonomous Robot[D].The University of Western Australia Final Year Thesis, 2003.

[5]Gene F.Franklin, J.David Powell, Michael L. Workman. Digital Control of Dynamic Systems[M].北京:清华大学出社, 2011.