SRM INSTITUTE OF SCIENCE AND TECHNOLOGY

Department of Mathematics

Fifth Semester – Common to CSE & ECE

18MAB302T – DISCRETE MATHEMATICS FOR ENGINEERS Assignment - 1

PART-A

(c) coset

(d) lattice

1. A collection of all well-defined objects is called

(b) group

(a) set

2.	If the relation R is reflexive, anti-symmetric and transitive, then the relation R is called (a)equivalence relation (b) equivalence class (c) partial order relation (d) partially ordered set		
3.	A digraph representing the partial order rela (a)Helmut Hasse (b)POSET	ation (c)graph relation	(d)Hasse diagram
4.	Partial order relation is a) Reflexive ,Symmetric,& transitive c) Antisymmetric & transitive	b) Symmetric & trans d) Reflexive, Antisym	
5.	Let R be a symmetric and transitive relation on a set A, if a) R is reflexive then R is an equivalence relation b) R is reflexive then R is a parital order c) R is reflexive then R is not an equivalence relation d) R is not reflexive then R is a parital order		
6.	Determine which one of the following relation (a) $R_1 = \{(1,1), (2,1), (3,1), (4,1), (3,3)\}$ (b) $R_2 = \{(1,2), (2,3), (4,2)\}$ (c) $R_3 = \{(4,4), (3,1), (1,2), (4,2)\}$ (d) $R_4 = \{(1,1), (2,1), (1,2), (3,4)\}$	ions on the set {1, 2, 3	, 4} is a function.
7.	Which one of the following relations on the set {1, 2, 3, 4} is an equivalent relation (a) {(2,4), (4,2)} (b) {(2,2), (2,3), (2,4), (3,2), (3,3), (3,4)} (c) {(1,3), (1,4), (2,3), (2,4), (3,1), (3,4)} (d) {(1,1), (1,2), (2,1), (2,2), (3,3), (4,4)}		
8.	The domain and range are same for a) constant function c) identity function	b) absolute value fund d) greatest integer fund	
9.	9. If $A = \{1, 2, 3\}$ and f, g are functions from A to A given by $f = \{(1, 2), (2, 3), (3, 1)\}$, $g = \{(1, 2), (2, 1), (3, 3)\}$ then $\{(1, 3), (2, 2), (3, 1)\}$ is the composition relation of one of the following: (a) $f \circ g$ (b) $g \circ f$ (c) $f \circ (f \circ g)$ (d) $f \circ (g \circ f)$		
10. If $A = \{1, 2, 3, 4\}$, $B = \{x, y, z\}$ and $f = \{(1, x), (2, y), (3, z), (4, x)\}$, then the function f is (a) both 1–1 and onto (b)1–1 but not onto (c) onto but not 1 – 1 (d) neither 1 – 1 nor onto			

PART – B

- 1. Define closure of a relation. Find reflexive and symmetric closure of $R = \{(1,2),(2,2),(2,3),(3,2),(4,1),(4,4)\}$ defined on $A = \{1,2,3,4\}$.
- 2. Obtain all the partitions of the set $B = \{a, b, c\}$.
- 3. The relation R on the set $A = \{1, 2, 3, 4, 5\}$ is defined by the rule $(a, b) \in R$, if 3 divides a b then list the elements of R and R^{-1} , also find domain and range of R and R^{-1} .
- 4. Draw the Hasse diagram for D_{30} (relation "x divides y")
- 5. Show that the function $f: R \to R$ defined by $f(x) = \frac{x}{x+4}$ is one-to-one and onto

PART - C

- 1. State and prove De Morgan's law in set theory.
- 2. If R is the relation on the set of integers such that $(x, y) \in R$, if and only if 3x + 4y = 7n for some integer n, prove that R is an equivalence relation
- 3. Let $A=\{1,2,3,4,5\}$ and the relation $R=\{(1,1),(1,3),(1,5),(2,3),(2,4),(3,3),(3,5),(4,2),(4,4),(5,4)\}$ defined on A. Find the transitive closure of the relation R using Warshall's algorithm..
- 4. Let $A=\{1,2,3,4\}$ and the relation $R=\{(1,1),(1,3),(1,4),(2,2),(3,4),(4,1)\}$ defined on A. Find the transitive closure of the relation R using Warshall's algorithm..
- 6. If $f: A \to B$ & $g: B \to C$ are invertible functions, then prove that $g \circ f: A \to C$ is also invertible and $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$