Reinforcement Learning for Business, Economics, and Social Sciences

Unit 1-3: Upper Confidence Bound

Davud Rostam-Afschar (Uni Mannheim)

How to learn by being optimistic in the face of uncertainty?

Which action should we pick?

- ▶ The more uncertain we are about an action-value...
- ▶ The more important it is to explore that action
- ▶ It could turn out to be the best action!

Which action should we pick?

- ▶ We become less uncertain about its value
- ▶ We are more likely to pick another action
- ► The idea is to always try the best arm

Which action should we pick?

- ▶ We become less uncertain about its value
- ▶ We are more likely to pick another action
- ▶ The idea is to always try the best arm, where "best" includes

Which action should we pick?

- ▶ We become less uncertain about its value
- ▶ We are more likely to pick another action
- The idea is to always try the best arm, where "best" includes
 - exploitation (average observed reward) and

Which action should we pick?

- ▶ We become less uncertain about its value
- We are more likely to pick another action
- The idea is to always try the best arm, where "best" includes
 - exploitation (average observed reward) and
 - exploration (uncertainty about observed reward)

Which action should we pick?

After picking arm 3:

- ▶ We become less uncertain about its value
- ▶ We are more likely to pick another action
- The idea is to always try the best arm, where "best" includes
 - exploitation (average observed reward) and
 - exploration (uncertainty about observed reward)

(Auer, Cesa-Bianchi, and Fischer, 2002)

Convergence

- Theorem:
 An optimistic strategy that always selects $\underset{a}{\operatorname{argmax}}U_t(a)$ will converge to a^* .
- ► Proof by contradiction:
 - Suppose that we converge to suboptimal arm a after infinitely many trials
 - ▶ Then $\overline{Q}(a) = U_{\infty}(a) \ge U_{\infty}(a') = \overline{Q}(a') \quad \forall \ a'$
 - ▶ But $\overline{Q}(a) \ge \overline{Q}(a')$ \forall a' contradicts our assumption that a is suboptimal

Convergence

- ► Theorem: An optimistic strategy that always selects $\underset{a}{\operatorname{argmax}} U_t(a)$ will converge to a^* .
- ▶ Proof by contradiction:
 - Suppose that we converge to suboptimal arm a after infinitely many trials
 - ▶ Then $\overline{Q}(a) = U_{\infty}(a) \ge U_{\infty}(a') = \overline{Q}(a') \quad \forall \ a'$
 - ▶ But $\overline{Q}(a) \ge \overline{Q}(a')$ \forall a' contradicts our assumption that a is suboptimal
- ► Problem: We can't compute an upper bound with certainty since we are sampling

Upper Confidence Bounds

▶ Estimate an upper confidence $U_t(a)$ for each action value \Rightarrow Such that with high probability

$$q(a) \leq \underbrace{\overline{Q}_t(a)}_{ ext{estimated mean}} + \underbrace{U_t(a)}_{ ext{estimated Upper Confidence}}$$

Upper Confidence Bounds

▶ Estimate an upper confidence $U_t(a)$ for each action value \Rightarrow Such that with high probability

$$q(a) \leq \overline{Q}_t(a) + \underbrace{U_t(a)}_{ ext{estimated mean}} + \underbrace{U_t(a)}_{ ext{Upper Confidence}}$$

- ▶ Upper confidence depends on number of times action *a* has been selected:
 - ▶ Small $N_t(a) \Rightarrow \text{large } U_t(a)$ (estimated value is uncertain)
 - ▶ Large $N_t(a)$ \Rightarrow small $U_t(a)$ (estimated value is accurate)

Upper Confidence Bounds

Estimate an upper confidence $U_t(a)$ for each action value \Rightarrow Such that with high probability

$$q(a) \leq \overline{Q}_t(a) + \underbrace{U_t(a)}_{ ext{estimated mean}} + \underbrace{U_t(a)}_{ ext{Upper Confidence}}$$

- ▶ Upper confidence depends on number of times action *a* has been selected:
 - ▶ Small $N_t(a) \Rightarrow \text{large } U_t(a)$ (estimated value is uncertain)
 - ▶ Large $N_t(a)$ ⇒ small $U_t(a)$ (estimated value is accurate)
- Select action maximizing Upper Confidence Bound (UCB):

$$a_t = rg \max_{a \in \mathcal{A}} \left[\overline{Q}_t(a) + U_t(a) \right]$$

Hoeffding's Inequality

▶ Let $X_1, ..., X_t$ be *i.i.d.* random variables in [0, 1], and let

$$\overline{X}_t=rac{1}{t}\sum_{ au=1}^t X_ au$$
 be the sample mean. Then $\mathbb{P}\left[\mathbb{E}[X]>\overline{X}_t+u
ight]\leq e^{-2tu^2}$

We will apply Hoeffding's Inequality to rewards of the bandit conditioned on selecting action a

$$\mathbb{P}\left[Q(a) > \overline{Q}_t(a) + U_t(a)\right] \leq e^{-2N_t(a)U_t(a)^2}$$

Calculating Upper Confidence Bounds

- ▶ Pick a probability *p* that true value exceeds UCB
- Now solve for $U_t(a)$

$$e^{-2N_t(a)U_t(a)^2}=p$$

$$U_t(a) = \sqrt{\frac{-\log p}{2N_t(a)}}$$

Calculating Upper Confidence Bounds

- Pick a probability p that true value exceeds UCB
- Now solve for $U_t(a)$

$$e^{-2N_t(a)U_t(a)^2}=p$$

$$U_t(a) = \sqrt{\frac{-\log p}{2N_t(a)}}$$

- ▶ Reduce p as we observe more rewards, e.g. $p = t^{-c}$, c = 4
 - ightharpoonup (note: c is a hyper-parameter that trades-off explore/exploit)
- ▶ Ensures we select optimal action as $t \to \infty$

$$U_t(a) = \sqrt{\frac{2 \log t}{N_t(a)}}$$

UCB: Three-Arm Example for t = 100

Arm	Pulls	Empirical mean	Exploration bonus	$UCB_a =$
a	N ₁₀₀ (a)	$\overline{Q}_t(a)$	$\sqrt{\frac{2\log t}{N_t(a)}}$	$\overline{Q}_t(a) + bonus_t(a)$
1	30	0.70	$\sqrt{2\ln(100)/30} = 0.554$	1.254
2	50	0.50	$\sqrt{2\ln(100)/50} = 0.429$	0.929
3	20	0.60	$\sqrt{2\ln(100)/20} = 0.679$	1.279

Next selection: Arm 3 (highest UCB of 1.279)

Upper Confidence Bound (UCB)

Choose a with highest Hoeffding bound

```
UCB(T)
    Q_t(a) \leftarrow 0, t \leftarrow 0, N_t(a) \leftarrow 0
    Repeat until t = T
         Execute argmax \overline{Q}_t(a) + \sqrt{\frac{2 \log t}{N_t(a)}}
        Receive R_t(a)
        Q_t(a) \leftarrow Q_t(a) + R_t(a)
        \overline{Q}_t(a) \leftarrow \frac{N_t(a)\overline{Q}_t(a) + R_t(a)}{N_t(a) + 1}
        t \leftarrow t+1, N_t(a) \leftarrow N_t(a)+1
Return Q_t(a)
```

Exploration vs Exploitation

Upper Confidence Bound (UCB)

- ► A clever way of reducing exploration over time
- Estimate an upper bound on the true action values
- Select the action with the largest (estimated) upper bound:

$$a_t = \arg\max_a \left[Q_t(a) + c\sqrt{\dfrac{\log t}{N_t(a)}} \right]$$

• where c > 0 controls the degree of exploration

UCB Convergence

- ► Theorem: Although Hoeffding's bound is probabilistic, UCB converges.
- ▶ **Idea:** As t increases, the term $\sqrt{\frac{2 \log t}{N_t(a)}}$ increases, ensuring that all arms are tried infinitely often. The higher $N_t(a)$, the more confident in the estimate for action a.
- ▶ Expected cumulative regret: Loss_T = $\mathcal{O}(\log T)$
 - Logarithmic regret

References I

AUER, P., N. CESA-BIANCHI, AND P. FISCHER (2002): "Finite-time analysis of the multiarmed bandit problem," *Machine learning*, 47, 235–256.

Takeaways

What is Upper Confidence Bound (UCB)?

- Uses a probabilistic upper bound to guide action selection
- ► At each step, select action with highest empirical mean plus exploration bonus
- Ensures that all actions are tried enough times
- ▶ It and converges to the optimal arm
- Achieves logarithmic regret
- ▶ UCB often outperforms ε -greedy strategies in practice