Discrete Mallo 9
1.1a € ⇒ ε ∈ L
E is of the form a b" for n=0
Assume u = a b n for some n & N
$\frac{a}{anb} \Rightarrow anb \in \mathcal{L}$
aub = aanb = an+1 6 +1
○ N+I € N
i. ∀u∈L. y: a" b" for some n∈ N
Mb. Base case: 1=0 a"b" = E E L
Assume able & L for some k & N
akbk = akbk : ak+1 bk+1 eL
L = {a b n ∈ N}
c. The set L' is not colored under the rule, as
The smullest closed set would be {a"b", a"1b" n ∈ N

,

1.2a Rt is reflexive by the axion (z,x) ERT (XEX) => YIEX. (x,x) ERT RTP: (y, z) & R1 Let x = y (x,x) E R+ 122 (x,y) ER+ $(x,y) \in \mathbb{R}^+$ $(x,z) \in \mathbb{R}^+$.. (y, z) ER+ RERT b Base case: (y,y) ERT FyEX RTP YXEX. (x,y) ERT => (x,y) = ERT which is clearly time. : (y,y) € S Assume (x', y') & S' and (x', y') & R+ and (y', =') & R (x', z') ERT RTP: (x', 2') & 5 Equivalently, $\forall x \in X$. $(x, x') \in \mathbb{R}^+ \Rightarrow (x, z') \in \mathbb{R}^+$ Let x EX. s.t. (x,x') eR+ . R+P: (s, 2') ER+ By (t). ∀xex. (xxi)ER+ ⇒ (xyi)ER+ ... (xy')ER+ (x,z')er (zex. (y',z')er) ... (x,z')er+ · (x', z') ES

Assume (z', y') & Rt and (y', 2') & Rt · delle (2', y') ER+ : (sc', z') ER+ i. RT is transitive oc. Base case: The (x,x) and $(x,x) \in \mathbb{R}^+$ $(x,x) \in \mathbb{S}$ Assume (xy) ER+ ~ (y, z) ER ~ (xy) ES RTP: (x, z) = 5 (y, z) ∈ R => (y, z) ∈ S (x,y) = R (y, x) = S => (x, 2) = S : RES d. Rt is reflexive · R is honsitive · R' = ary other reflexive, hers the sets of set containing R ... It is the reflexione transitive closere of R must be in the form ab Case 2: ab = an

1 363 ab 3 = ab 365 b. Base case at at while 12 = 2 - 3.0 and Asome an : ab" where it=2k-son do. k, meN and : ab where 2n : 2kil - (ax 3(2m) 70 . K+1. 2m & N au Assime ab" = ab" where 1:26-3m 20. k, m EN au : ab where n-3:2 -3(my1) > 0 . k, m+1 E } : fuel deal for same 11= 2 - 3m 20 kmEN c. Assume ab 3 EL : 3: 2t - 3m fer some house A i. 2h = 3(m+1) but 2k does not have 3 as Cartracliotian .. ab & EL & L = Eab" | 11 = 2k-3m Zok, a EIN 3

2.1a. (0*10*10*)* h. La Company Company (1*01*01*)*(1*01*) 2.20. RTP (u,a)∈ U ⇔ u=a Assume (u, a) EU a must be in the form a, e, r*, r15, r15, r5, r* Given a E. The only possible form is "a" and so the only relevent rule axiom is the axiom (a, a) :. u=a "E" next. Assure u=~ (a, a) = (u, a) 6. ATP: (u, E) & U => u=E "= " Arst. Assume (u, E) & U i. E must be in the form a, e, rt, rls, 1/s, 15, 15 .. The only relievent assum/rule is the arrian (2,€) ··u·E "te" next Assume the u= q. (E,e)=(4, E).

e & is not in the form a. E. r. rls, rls, rs, or r. so there is no rule axion which might allow it to match any stoing 0. ATP (u,r/s) & U () (MATHER (u,r) & U V(u,s) & U ⇒ fint Assure (u, vis) ∈ U ris must be in the form a, E, ~ ris, ris, rs. s. 30 the only referent rules/axions one the rules (u, r) (u,s) (u, rls) (u, rls) : (a, r) & U v (4, s) & U Assure (u,r) & U v (u.s) & U Case D: (yr) Ell Case 1; (u,s) & U e ltp. (u, rs) ∈ U ⇔ FV, w ∈ E. u=vw n (v, r) ∈ U n (w, s) ∈ U Assume (urs) Ell is must be for of the form a c, r*, rb, rls, rs, r* 1. The only relevant rule/axion in the rule in France usun (Wile U a (wis) & Th

Assume ZV, WEE. U=VW ~ (V,r) EU ~ (W,s) EU (MM, 15) = (M, 15) n(u,,r)eun(uz,r)eU... Assume (u, r *) EU pt much be in the form a, c, rt, r15, r15, r5, rt "The only relevant rules / assions are Case 0: (e.c) .. u= 8 (U,r) (V,r*) .. b= u, v s.t. (u, ,r) € U n (b, n+) € U By symmetry, V= 42 V' s.t. (uz, r) EU n (v', r+) et or (v,r) e U .. u= u, u2 u3 s.t. (u1,r) + tl, (u,r)+tl Asome u= E v(u, r) = tav(]u, u, u=u, u, u, n(u, r) = tin. Case 0: 4= 8 (8, art)

Case 1: (ur) EU (Sell of the sell (u,r) (e,r) Case 2: Let u,, ue, ... 5-t. u=u,uz ... and lungeth a (uz, r) ett. (4) Significant -(u, r) (e, r*) (un, r*) (un-211) (an-, an , 1+) (un-zun-, un , ++) (uuz ... un, un, r*) = (u, r*) 100

State Mari	Next state (a)	Next state (6)
Ø	ø	7
50	5, 54	5, 53
S	S,	Sz
Sz	5,	52
5,	Sy	S3
54	Sy	5 ₃ .
5,5,	5,,54	50,52,53
5.,5	5,104	5,52,53
50.53	Susy	50,53
50,54	5,,5,	5., 53
5,,52	5,	52
51.53	5,,54	52, 53
5,,54	5,54	52,53
5,5,	5,,54	52,53
52,54	5,,54	52,53
S3, S4	Sy	53
5,5,5,	5, , 54	5, 52, 53
5,5,5	5,,54	50,52,53
50,5,54	5,,5y	5.,52,57
50,52,53	5,,54	50,52,53
50,52,54	5, ,54	50,52,5,
50,53,54	5,,5u	50,5,
5,5,5,	5, ,5y	52, 53
5,,52,54	5,,54	52,53
5, 53, 54		52, 53
52,53,54	5, ,54	52,53
So, S, Sz, S3		5., 52, 53
50,5,52,54	3,,54	5,52,53
30,5,53,5	5,,54	5,5,5,
50, 51, 53,		50.52.53
5,,52,53.5	5500	36 S2,53

3.2. RTP: (q > q') (q, 1, q') can be inductively defined by the rule. Let u : u & e u & e u & e 2. . . destres alex Vuellun E Z rene N Let q on q = q on q on q on q on q on (2, uou, uz; gin)

RTP: Vary defred by the rules, 9 >9 Assume 9 = 9' n g' = 9" RTP 9=39" which is fine by (1) Rule 1: Assume q = g ~ q' = q" (9, uasq") RTP 9 => 9" which is true by (†) D

 $\rightarrow 0 \rightarrow 0 \rightarrow 0$ is satisfied by "b" and "ab" and so cheenly is ((alb) * an (alb) *) * 4.2 → O ÷ O • O 4.3 Let 5 Le a regular language of finite size 5.6. S: {50, 5, 52, 53, ... 5a} for some n & N VNEN. Sp is finite. let ha be the length of Sn = When of of of of of the N. of of E. : To = the regular expression matching 5, : Let ~ = ~ | r, | r, | r, | r, | $x \in \mathcal{L}(r) \iff x \in S$ · S : Ke L(n) · S is regular

M: 1000 N = 1- 23 T(Louis) = T(Louis | Louis (Louis) + Louis) €0,23 = b [[0,2] = a T(L (0) 5) = T(L (0) | L (0) (N (0)), N (0)) ~ {03 = P - {o} = a 12. 103 = 6 12. 103 = 6 1 (r, 20,23) = 1 (r, 203 | r, 003 (r, 203) * (r, 203)) €03 = a √ {0} = Ø ~ {o} = Ø r {03 = 6

· ~ {0,23 = a | Ø Ø + 6 = a The Fo. 23 = 6 | aa + 6 = a + 6 (0,1,23: 6 a (a+6) a · r= bla(a*6)* a 4.5 Z : {a} M Not (M) 1(m) = 1(aa*) 1 (Nor(M))=1(a*) {u6 &+ | u € 1(m)} = {E} ≠ 1(a+) · 1(No+(M)) For example a e 2 (Not (M)) a & {ue & | u & 1 (m)}

4.6 r: (a/b) * a 6 (a/b) *
matches any string with a consecutive "a6" in in, any "a" much be followed by another "a" or be at the end of the string All the "b" s must appear before the . ur = 6 a * 4.7. 830 LTP. u EL (M) (XEL (M,) A UEL (MZ) Assume $u \in L(M)$ u (f, f_2) in M for some fifty $f \in F_1$, $f_2 \in F_2$ Assume u & L(M) Let that path he $(s_0s_2) \xrightarrow{u_1} (q_1, q_2) \xrightarrow{u_2} (q_1, q_2) \xrightarrow{u_3} (q_1, q_2) \xrightarrow{u_4} (f_1, f_2)$ Let 5, = 9°, S2 = 92, f. : 9°, f2 : 92 where u= u, uzu, ...un without loss of generality, consider the individual (gk, gk) - (gkri, gkri) : 8((9 k, 9 k), un,) = (9 k, 92 k, 1) = (8, (9 k, un), 5, (9 k, un))
: 8((9 k, 9 k), un) = 9 k, 1 a 52 (9 k, uk, 1) = 9 k, 1

h gh wert ger in M. and granding ghat in U/2 Similarly for the other house hars: Sport of or of the M. Som gi of gi on Ma : 5, => f, .. M. .. u ∈ L(M.) Sz = fz in Mz .. u + L (Mz) 4 € next Assume weL (M,) nueL(M2) .. $S_1 \Longrightarrow f_1$ for some $f_1 \in F_1$ in M_1 $S_2 \Longrightarrow f_2$ for some $f_2 \in F_2$ in M_2 Let these paths respectively be 5, -> q' -> q' -> q' -> f, in M,

5, -> q' -> q' -> q' -> f, in M, where $S_1 = g_1^0$, $S_2 = g_2^0$, $f_1 = g_1^0$, $f_2 = g_2^0$ where $U = U_1 U_2 U_3 ... U_n$

Considering two individual transitions: ghe were ghere in the gh dkni gher ir M2 1. 8. (9 t Mun) = 9 km n 8, (92 u) = 92 : (8(9 k ukm), 82(92, um)) = (9 km 9 km) = 8 ((91, 92), uk) the housition (q 4, q 4) deri (q 4+1 q k+1) existes in M Likewise for all OckEN & u the path (5, 52) - (9, 9;) - (9, 92) - (4, f2) (Sy, S2) => (f, f2) in M 1. u ∈ L(M)

5.1 Suppose such as Ill exists Let M = DFA(Q, {a,b,c3, 8m, sm, F) Let M' : DFA(Q, Ea, 63, Sm, Sm(5m, c), F) where $\delta_{M} : \{(q, \sigma) \in \delta_{M} \mid \sigma \in \{a, b\}\}$ YneN≥o, carbre1(M) $S_{m} \xrightarrow{c} S_{m}(S_{m,c}) \xrightarrow{a^{n}b^{n}} f$ for some $f \in F$ in M \mathfrak{D} $S_{m}(S_{m,c}) \xrightarrow{a^{n}b^{n}} f$ for some $f \in F$ in M'1. {a"b" | nEN > 03 5 2(m') Vx € 1 [a, b, c3*. x € L(m) > > 2 € { cm n b n | m > 1 € n 7,03 v x ∈ [a" 6" | m, n > 0 3 : Vx & {a,b,c}*, y & {a,b}* x & L(m) nx : cy => y = anb n nx 1(mi) < [y | Vx & {a,b,c}, y & {a,b}, * x & L(m) x = cy3 1. L(M') < {an6 n | n €N≥0} : f(m1) = { a 6 1 n EN 203

FLGINZI, ab is of length ZL Let v= ak with k<1 Let uz = b such that a'b': U, VUZ & L(M') 14, 1 = 1 5 1 However, u, v° v2 = u, v2 = a b = £ L(m') ...t(M') is not regular there can exist no such M