	 Announcements Instructor office hours moved to Saturdays at 11am Assignment 3 due Monday, April 26 at midnight Assignment 4 will be posted Saturday, April 24 Week 4	
	 Motchenbacher Chapter 5 Art of Electronics Chapter 8 Overview Last time Hybrid-π model BJT noise model BJT noise figure Noise in common-emitter structures 	
[23]:	 Today FET large/small-signal operation Thermal noise in FET devices 1/f noise and gate current noise FET noise model FET vs BJT Python packages/modules import matplotlib as mpl from matplotlib import pyplot as plt	
	<pre>from matplotlib import pyptot as pit from matplotlib import ticker, cm import numpy as np from scipy import signal from scipy import integrate #%matplotlib notebook mpl.rcParams['font.size'] = 14 mpl.rcParams['legend.fontsize'] = 'large' def plot_xy(x, y, xlabel, ylabel): fig, ax = plt.subplots(figsize=(10.0, 7.5)); ax.plot(x, y, 'b') ax.grid() ax.set_xlabel(xlabel)</pre>	
	<pre>ax.set_xtabet(xtabet) ax.set_ylabel(ylabel) def plot_xy2(x1, y1, x1label, y1label, x2, y2, x2label, y2label): fig, ax = plt.subplots(2, figsize = (10.0, 7.5)); ax[0].plot(x1, y1, 'b') ax[0].set_ylabel(y1label) ax[0].grid() ax[1].plot(x2, y2, 'b') ax[1].set_xlabel(x1label) ax[1].set_xlabel(x2label) ax[1].set_ylabel(y2label) ax[1].grid()</pre>	
	<pre>fig.align_ylabels(ax[:]) def plot_xy3(x, y1, y2, y3, xlabel, y1label, y2label, y3label): fig, ax = plt.subplots(3, figsize=(10.0,7.5)) ax[0].plot(x, y1) ax[0].set_ylabel(y1label) ax[0].grid() ax[1].plot(x, y2) ax[1].set_ylabel(y2label) ax[1].grid() ax[2].plot(x, y3)</pre>	
	<pre>ax[2].plot(x, y3) ax[2].set_ylabel(y3label) ax[2].set_xlabel(xlabel) ax[2].grid() def plot_logxy3(x, y1, y2, y3, xlabel, y1label, y2label, y3label): fig, ax = plt.subplots(3, figsize=(10.0,7.5)) ax[0].semilogx(x, y1) ax[0].set_ylabel(y1label) ax[0].grid() ax[1].semilogx(x, y2) ax[1].set_ylabel(y2label) ax[1].grid()</pre>	
	<pre>ax[2].semilogx(x, y3) ax[2].set_ylabel(y3label) ax[2].set_xlabel(xlabel) ax[2].grid() def plot_logxy(x, y, xlabel, ylabel): fig, ax = plt.subplots(figsize=(10.0, 7.5)) ax.semilogx(x, y, 'b') ax.grid(); ax.set_xlabel(xlabel) ax.set_ylabel(ylabel) def plot_log3xy(x, y1, y2, y3, xlabel, ylabel, y1label, y2label, y3label):</pre>	
	<pre>fig, ax = plt.subplots(figsize=(10.0,7.5)) ax.semilogx(x, y1, 'b', label=y1label) ax.semilogx(x, y2, 'r', label=y2label) ax.semilogx(x, y3, 'g', label=y3label) ax.set_ylabel(ylabel) ax.set_xlabel(xlabel) ax.grid() ax.legend() ax.legend(loc='upper center', ncol=3, fancybox=True,</pre>	
	<pre>fig, ax = plt.subplots(figsize=(10.0,7.5)) ax.semilogx(x, y1, 'b', label=y1label) ax.semilogx(x, y2, 'r', label=y2label) ax.set_ylabel(ylabel) ax.set_xlabel(xlabel) ax.grid() ax.legend() ax.legend(loc='upper center', ncol=2, fancybox=True,</pre>	
	<pre>ax.loglog(x, y, 'b') ax.grid(); ax.set_xlabel(xlabel) ax.set_ylabel(ylabel) def plot_loglog2(x, y1, y2, xlabel, y1abel, y1abel, y2label): fig, ax = plt.subplots(figsize=(10.0,7.5)) ax.loglog(x, y1, 'b', label=y1label) ax.loglog(x, y2, 'r', label=y2label) ax.set_ylabel(ylabel) ax.set_xlabel(xlabel) ax.grid()</pre>	
	<pre>ax.legend() ax.legend(loc='upper center', ncol=2, fancybox=True,</pre>	
	<pre>x = [] y = [] z = [] next(data) # skip header line for line in data: p = line.split() x.append(float(p[0])) complex = p[1].split(",") y.append(float(complex[0])) z.append(float(complex[1])) return x, y, z def plot_logxy2(x1, y1, x2, y2, x1label, y1label, x2label, y2label): fig, ax = plt.subplots(2, figsize = (10.0, 7.5));</pre>	
	<pre>ax[0].semilogx(x1, y1, 'b'); ax[0].set_ylabel(y1label) ax[0].grid() ax[1].semilogx(x2, y2, 'b'); ax[1].set_xlabel(x1label) ax[1].set_xlabel(x2label); ax[1].set_ylabel(y2label); ax[1].grid(); fig.align_ylabels(ax[:]) def plot_noise_bandwidth(f, mag): fig, ax = plt.subplots(2, figsize=(10.0,7.5))</pre>	
	<pre>ax[0].semilogx(f, RC_mag) ax[0].set_xscale("log") ax[0].set_xlim(f[0], f[-1]) ax[0].set_xticks(np.logspace(0.1,4,5)) ax[0].set_xticklabels([]) ax[0].set_ylabel('Magnitude [V/V]') ax[0].set_title('Equivalent Noise Bandwidth') ax[0].grid() ax[1].hlines(1, 0, f_enb, color='tab:blue') ax[1].hlines(0, f_enb, f[-1], color='tab:blue') ax[1].vlines(f_enb, 0, 1, color='tab:blue') ax[1].set_xlim(f[0], f[-1]) ax[1].set_xscale("log")</pre>	
	<pre>ax[1].set_xticks(np.logspace(0.1,4,5)) ax[1].set_xticklabels([r'\$10^0\$',r'\$10^1\$', r'\$10^2\$', r'\$10^3\$', r'\$10^4\$']) ax[1].set_ylabel('Magnitude [V/V]') ax[1].set_xlabel('Frequency [Hz]') ax[1].grid() def noise_hist(vnoise, vn_rms, bins): fig = plt.figure(figsize=(10.0,7.5)) vn_norm = vnoise/ vn_rms ax = fig.add_subplot(111) n, bins, rectangles = ax.hist(vn_norm, bins, density=True, range=(-3, 3),</pre>	
	<pre>ax.grid() fig.canvas.draw() def plot_NF_vs_Rs(en_vals, in_vals, Rs_min, Rs_max, T_in_K): fig, ax = plt.subplots(figsize=(10.0, 7.5)) k = 1.38e-23 Rs = np.logspace(np.log10(Rs_min), np.log10(Rs_max), num=200) F1 = 1 + (en_vals[0]**2+Rs**2*in_vals[0]**2)/(4*k*T_in_K*Rs) F2 = 1 + (en_vals[1]**2+Rs**2*in_vals[1]**2)/(4*k*T_in_K*Rs) F3 = 1 + (en_vals[2]**2+Rs**2*in_vals[2]**2)/(4*k*T_in_K*Rs) ax.semilogx(Rs, 10*np.log10(F1), 'b', label=r'\$e_{n1}\$, \$i_{n1}\$') ax.semilogx(Rs, 10*np.log10(F2), 'r', label=r'\$e_{n2}\$, \$i_{n2}\$') ax.semilogx(Rs, 10*np.log10(F3), 'g', label=r'\$e_{n3}\$, \$i_{n3}\$') ax.grid();</pre>	
	<pre>ax.set_xlabel(r'Source Resistance \$R_s [\Omega]\$') ax.set_ylabel(r'Noise Figure \$NF\$ [\$dB\$]') ax.legend() ax.legend(loc='upper center', ncol=3, fancybox=True,</pre>	
	<pre>ax.tgtog(ns, 1_n ns, y, tabet=1 \$1_n ns, y, tabet=1 \$1_n ns, y, tabet=1 \$1_n ns, y, tabet=1 \$1_n ns, tabe</pre>	
	<pre>v_I = k*I/q rs = np.logspace(np.log10(Rmin), np.log10(Rmax), num = 100) ic = np.logspace(np.log10(Imin), np.log10(Imax), num = 100) I_C, R_S = np.meshgrid(ic, rs) e_n_2 = 4*k*T*(V_T/2/I_C + r_bb) i_n_2 = 2*q*I_C/beta_0 NF = 1 + (e_n_2 + i_n_2*R_S**2)/(4*k*T*R_S) cp = ax.contourf(I_C, R_S, 10*np.log10(NF), levels=np.linspace(0,15, num=16)) plt.xscale('log') plt.yscale('log') plt.ylabel(r'Source Resistance \$R_s\$ [\$\omega\$]') plt.xlabel(r'Collector Current \$I_C\$ [A]') fig.colorbar(cp)</pre>	
1 [2]:	<pre>def fftnoise(f): f = np.array(f, dtype='complex') Np = (len(f) - 1) // 2 phases = np.random.rand(Np) * 2 * np.pi phases = np.cos(phases) + 1j * np.sin(phases) f[1:Np+1] *= phases f[-1:-1-Np:-1] = np.conj(f[1:Np+1]) return np.fft.ifft(f).real def band_limited_noise(min_freq, max_freq, samples=1024, samplerate=1): freqs = np.abs(np.fft.fftfreq(samples, 1/samplerate)) f = np.zeros(samples) idx = np.where(np.logical_and(freqs>=min_freq, freqs<=max_freq))[0]</pre>	
		bulk
	region (i.e. the conductivity of the channel is controlled by V_{gs}) • $V_{ds} > 0$ generates an lateral electric field causing electrons in the channel to drift from source to drain • Saturation occurs for $V_d > V_{ov} = V_{gs} - V_{th}$, at which point the drain current magnitude is predominantly determined by V_{gs} effect of V_{ds} on I_d is reduced MOSFET large-signal model	and the
	$I_d = \frac{1}{2}\mu C_{ox}\frac{W}{L}(V_{gs}-V_{th})^2(1+\lambda V_{ds})$ $I_g = 0 \qquad I_s = I_d$ $V_{gs} = \sqrt{\frac{2I_d}{\mu C_{ox}\frac{W}{L}}} + V_{th}$ • In saturation drain current (I_d) is a quadratic function of V_{gs} and (secondarily) a linear function of V_{ds} • $I_g = 0$ at DC and increases with frequency due to gate oxide capacitance	(1
	• If I_d is the independent variable (assuming $\lambda=0$), V_{gs} varies as the square root of I_d • If derived from first principles (and neglecting channel-length modulation), the long-channel drain current expression of the MO can be expressed as $I_d=\frac{1}{2}\mu C_{ox}\frac{W}{L}(V_{gs}-V_{th})^2$ • This expression can be decomposed into the effects of 2 electric fields. The first is a vertical electric field that controls the chancharge:	(2
	$C_{ox}W(V_{gs}-V_{th})$ • The second field is the lateral field that controls charge velocity ($v=\mu E$), assuming the potential at the edge of the channel is to $V_{gs}-V_{th}$ $\mu\frac{(V_{gs}-V_{th})}{L}$ FET small-signal model	(; s equal (4
	$g_m \equiv \frac{\partial I_D}{\partial V_{GS}} = \frac{2I_D}{V_{gs} - V_{th}} = \frac{2I_D}{V_{ov}}$ $r_o \equiv \frac{\partial V_{DS}}{\partial I_D} = \frac{1}{\lambda I_D}$ • The transconductance g_m is the derivative of drain current with respect to gate-source voltage • r_o is the small-signal output resistance of the transistor which captures the dependence of i_d on v_{gs}))
	• r_o is primarily associated with the phenomenon of <i>channel-length modulation</i> , the influence of the drain voltage on the effective of the channel	re lengt
	• The high frequency behavior of the FET, like that of the BJT, is governed by two primary capacitances C_{gs} and C_{gd} • In strong inversion C_{gs} assumes the majority of the the total gate oxide capacitance (WLC_{ox} , where $[C_{ox}] = F/m^2$) • C_{gd} comprises the "overlap" capacitance arising along the edge of the gate-drain interface ($[C_{ov}] = F/m$) • In most practical cases of interest, $C_{gs} \gg C_{gd}$, though C_{gd} can play a significant role due to a phenomenon known as the "Mi effect" in which the apparent capacitance contributed by C_{gd} is "amplified" by the voltage gain of the transistor/amplifier C_{gd} , not C_{ds}	iller
	FET transit frequency • The FET transit frequency f_T is defined as the frequency at which the short-circuit current gain is unity: $f_T = \frac{g_m}{2\pi \cdot (C_{gs} + C_{gd})}$ • f_T constitutes the maximum frequency at which the transistor is able to provide power gain - beyond this frequency, it loses its	(§ s utility
	as a gain device • As with the BJT, f_T increases with I_D , with more power being required to operate at higher speeds • Transit frequency often serves as a technology characterization metric, and is a useful means of comparing different devices/technologies • Assuming $C_{gs} \gg C_{gd}$, the transit frequency of the MOSFET in strong inversion can be expressed as $f_T = \frac{g_m}{2\pi \cdot (C_{gs} + C_{gd})} \approx \frac{\mu C_{ox}(W/L)(V_{gs} - V_{th})}{2\pi \cdot (2/3) \cdot WLC_{ox}} = \frac{3}{2} \frac{\mu \cdot (V_{gs} - V_{th})}{2\pi \cdot L^2}$	(10
	• From this expression we gather that the speed of a MOS device depends significantly on the gate length, and to a lesser extendibility and overdrive voltage MOSFET as a resistance/switch • In linear/triode operation, the drain current is heavily influenced by the modulation of the lateral electric field with V_{ds} and can be expressed as	nt, on
	$I_d=\mu C_{ox}\left(rac{W}{L} ight)\left[(V_{gs}-V_{th})V_{ds}-rac{V_{ds}^2}{2} ight]$ • For $V_{ds}\ll V_{gs}-V_{th}$, this can be approximated by a linear function in V_{ds} $I_d\approx \mu C_{ox}\left(rac{W}{L} ight)(V_{gs}-V_{th})V_{ds}$ • From this expression we can defined an effective resistance given by $r_{ds}=rac{1}{\sqrt{W_{cs}}}$	(11) (12)
	$r_{ds} = \frac{1}{\mu C_{ox} \left(\frac{W}{L}\right) (V_{gs} - V_{th})}$ • This is the expression typically used to describe MOS behavior when operated as a switch	width o
	• $V_d>0$ produces a lateral electric field and causes majority carriers (electrons in this case) to drift between source and drain, is addition to modulating the depletion region width near the drain $ $	
	$I_d = I_{DSS} \left(1 - \frac{V_{gs}}{V_p}\right)^2$ $g_m = \frac{2I_{DSS}}{V_p} \left(1 - \frac{V_{gs}}{V_p}\right)$ $= \frac{2I_d}{V_p - V_{gs}}$ • In saturation, drain current (I_d) is a quadratic function of V_{gs}	(14 (15
	• V_p is referred to as the "pinch-off" voltage, the value of V_{gs} at which the channel thickness goes to zero FET channel noise • The primary noise mechanism in the MOSFET (and JFET) is the thermally-induced movement of mobile charge carriers in the channel	
	 In the MOSFET, the channel charge is modulated by an electric field that attracts minority carriers from the source and drain to region of the bulk directly under the gate In the JFET, the applied gate voltage increases/decreases the width of the depletion layer(s) near the gate contact(s), decreasing/increasing the effective height of the channel and modulating the conductivity In this sense, prior to saturation, both devices can be viewed as resistances whose magnitude is controlled by the gate voltage Thermal noise in a resistor	ē
	• The mean-square current spectral density of noise due to thermal fluctuation of charge carriers in a resistance R is expressed $i_n^2 = \frac{4kT}{R} \ A^2/Hz$ • Resistance can be expressed in terms of material parameters μ_c (carrier mobility) and n_c (carrier concentration), legnth L , and sectional area A $R = \frac{L}{\sigma A} = \frac{L}{qn_c\mu_c A}$ • The $total\ charge\ $ in the volume defined by $A\cdot L$ is given by	(16
	3	
	$Q_{tot}=qn_cAL$ • The spectral density of the noise can be expressed in terms of the total charge as $i_n^2=\frac{4kT}{R}=4kT\frac{qn_c\mu_cA}{L}=4kT\frac{\mu_cQ_{tot}}{L^2}~A^2/Hz$ MOSFET channel charge	
	• The spectral density of the noise can be expressed in terms of the total charge as $i_n^2=\frac{4kT}{R}=4kT\frac{qn_c\mu_cA}{L}=4kT\frac{\mu_cQ_{tot}}{L^2}~A^2/Hz$ MOSFET channel charge	(19
	• The spectral density of the noise can be expressed in terms of the total charge as $i_n^2 = \frac{4kT}{R} = 4kT\frac{qn_c\mu_cA}{L} = 4kT\frac{\mu_cQ_{tot}}{L^2} \ A^2/Hz$ MOSFET channel charge	(19 nnel
	• The spectral density of the noise can be expressed in terms of the total charge as $i_n^2 = \frac{4kT}{R} = 4kT\frac{qn_c\mu_cA}{L} = 4kT\frac{\mu_cQ_{tot}}{L^2} \ A^2/Hz$ MOSFET channel charge $ \boxed{\qquad} $ • The inversion charge in the conducting channel of a MOSFET is a function of the gate capacitance C_{ox} and the applied voltag (above threshold) $V_{gs} - V_{th}$ • In the linear mode of operation, when $V_{ds} \ll V_{gs} - V_{th}$ the capacitance and charge are approximately uniform along the charand the charge is given by $Q_{lin} = WLC_{ox}(V_{gs} - V_{th})$ • In saturation, the capacitance is non-uniform between the source and drain and the total charge can be approximated as $Q_{sat} = \frac{2}{3}WLC_{ox}(V_{gs} - V_{th})$ Channel thermal noise $ \frac{2}{3}WLC_{ox}(V_{gs} - V_{th}) = \frac{2}{$	(19 (20 (22
	• The spectral density of the noise can be expressed in terms of the total charge as $t_n^2 = \frac{4kT}{R} = 4kT\frac{qn_0d_0t_1}{L} = 4kT\frac{\mu Q_0t_0t}{L^2} A^2/Hz$ MOSFET channel charge • The inversion charge in the conducting channel of a MOSFET is a function of the gate capacitance C_{ox} and the applied voltag (above threshold) $V_{yx} = V_{th}$. • In the linear mode of operation, when $V_{th} \ll V_{yx} = V_{th}$ the capacitance and charge are approximately uniform along the charant due charge is given by $Q_{th} = WLC_{ox}(V_{yx} - V_{th})$. • In saturation, the capacitance is non-uniform between the source and drain and the total charge can be approximated as $Q_{xxt} = \frac{2}{3}WLC_{ox}(V_{yx} - V_{th})$. • In triode/linear operation, the spectral density of the thermal noise can be expressed in terms of the channel charge as $i_{xd}^2 = 4kT\frac{\mu Q_{th}}{L^2} = 4kT\mu C_{ox}\frac{W}{L}(V_{yx} - V_{th})A^2/Hz$ • The noise is often expressed in terms of g_{x0} , the derivative of the drain current with respect to V_{tx} when $V_{ty} = 0$. • $g_{x0} = \frac{dI_{xt}}{dV_{xt}} _{V_{tx} = 0} = \mu C_{ox}\frac{W}{L}(V_{yx} - V_{th})$ • This gives • $i_{xd}^2 = 4kT\mu C_{ox}\frac{W}{L}(V_{yx} - V_{th}) = 4kTg_{x0}A^2/Hz$ • It is often assumed that $g_{xx} \approx g_{x0}$, resulting in the common expression • $i_{xd}^2 = 4kT\eta_{x0}A^2/Hz$ • The factor γ is sometimes called the "excess noise factor" and is typically taken to be $\frac{2}{3}$ for long-channel devices • Particularly for shorter channel lengths (i.e. $L \ll 10\mu m$), velocity saturation and other effects cause an increase in the observations, resulting in excess noise factors as high as $2-3$	(20) (21) (22) (22)
	. The spectral density of the noise can be expressed in terms of the total charge as $i_{s}^{2} = \frac{4kT}{R} - 4kT\frac{qn_{s}q_{s}A}{L} = 4kT\frac{\mu_{s}Q_{tot}}{L^{2}} A^{2}/Hz$ MOSFET channel charge $\frac{dkT}{R} - 4kT\frac{qn_{s}q_{s}A}{L} = 4kT\frac{\mu_{s}Q_{tot}}{L^{2}} A^{2}/Hz$ The inversion charge in the conducting channel of a MOSFET is a function of the gate capacitance C_{xx} and the applied voltag (above threshold) $V_{xx} - V_{tb}$. In the linear mode of operation, when $V_{dx} \ll V_{xx} - V_{tb}$, the capacitance and charge are approximately uniform along the channel the charge is given by $Q_{tio} = WLC_{tot}(V_{yx} - V_{tb})$. In saturation, the capacitance is non-uniform between the source and drain and the total charge can be approximated as $Q_{xx} = \frac{2}{3}WLC_{xx}(V_{yx} - V_{tb})$. Channel thermal noise In thiode/linear operation, the spectral density of the thermal noise can be expressed in terms of the channel charge as $i_{xx}^{2} = 4kT\frac{\mu_{x}Q_{tot}}{L^{2}} = 4kT\mu_{x}C_{xx}\frac{W}{L}(V_{yx} - V_{tb}) A^{2}/Hz$ The noise is often expressed in terms of g_{tot} the derivative of the drain current with respect to V_{dx} when $V_{dx} = 0$: $g_{xx} = \frac{dI_{x}}{dV_{xx}} _{V_{tot}} = \mu C_{xx}\frac{W}{L}(V_{yx} - V_{tb})$ This gives $i_{xy}^{2} = 4kT\mu_{x}Q_{xx}\frac{W}{L}(V_{yx} - V_{tb}) - 4kTg_{tb}, A^{2}/Hz$ It is often assumed that $g_{xx} \approx g_{tb}$, resulting in the common expression $i_{xy}^{2} = 4kT^{2}Q_{tx} + i_{xy}^{2} + i_{xy}^{$	(29) (22) (22) (24) (24)
	The spectral density of the noise can be expressed in terms of the total charge as $\hat{v}_{2}^{2} = \frac{4kT}{R} - 4kT \frac{q e_{1} p_{2} A}{L} = 4kT \frac{\mu_{2} Q_{tot}}{L^{2}} A^{2}/Hz$ MOSFET channel charge $\hat{v}_{2}^{2} = \frac{4kT}{R} - 4kT \frac{\mu_{2} Q_{tot}}{L^{2}} A^{2}/Hz$ MOSFET is a function of the gate capacitance $C_{e_{0}}$ and the applied vottag (above threshold) $V_{2}^{2} = V_{2}^{2}$. In the linear mode of operation, when $V_{2}^{2} \ll V_{2}^{2} = V_{2}^{2}$, the capacitance and charge are approximately uniform along the charge to given by $Q_{2}^{2} = WLC_{ox}(V_{2}^{2} - V_{2}^{2})$. In saturation, the capacitance is non-uniform between the source and drain and the total charge can be approximated as $Q_{ox} = \frac{2}{3}WLC_{ox}(V_{2}^{2} - V_{2}^{2})$. Channel thermal noise In modellinear operation, the spectral density of the thermal noise can be expressed in terms of the channel charge as $\hat{v}_{ex}^{2} = 4kT\frac{\mu_{2}Q_{1}}{L^{2}} = 4kT_{1}C_{0}^{2} \frac{W}{L}(V_{2}^{2} - V_{2}^{2}) A^{2}/Hz$. The noise is often expressed in terms of g_{0} , the derivative of the drain current with respect to V_{dx} when $V_{dx} = 0$: $g_{0}^{2} = \frac{dL_{1}}{dV_{2}^{2}} V_{dx}^{2} = 4kT Q_{0}^{2} \frac{W}{L}(V_{2}^{2} - V_{2}^{2})$. This gives $\hat{v}_{ex}^{2} = 4kT Q_{0}^{2} \frac{W}{L}(V_{2}^{2} - V_{2}^{2}) = 4kT Q_{0}^{2} A^{2}/Hz$ In saturation the drain current noise can be expressed as $\hat{v}_{ex}^{2} = 4kT Q_{0}^{2} \frac{W}{L}(V_{2}^{2} - V_{2}^{2}) = 4kT Q_{0}^{2} A^{2}/Hz$ It is often assumed that $g_{ux} \approx g_{a}^{2}$, resulting in the corner expression $\hat{v}_{ex}^{2} = 4kT Q_{0}^{2} A^{2}/Hz$ The factor γ is sometimes called the "excess noise factor" and is typically taken to be $\frac{2}{3}$ for long-channel devices particularly for shorter channel lengths (i.e. $L \ll 10 \mu m$), velocity saturation and other effects cause an increase in the observation, resulting in excess noise factors as high as $2-3$. JFET thermal noise	(25) (25) (25) (26) (26) (27) (27) (27) (28) (28) (28)
	The spectral density of the noise can be expressed in terms of the total charge as $i_{n}^{2} = \frac{4kT}{R} - 4kT \frac{qn_{o}kA}{L} = 4kT \frac{gn_{o}kA}{L^{2}} A^{2}/Hz$ MOSFET channel charge The inversion charge in the conducting channel of a MOSFET is a function of the gate capacitance C_{ot} and the applied voltage (above threshold) $V_{c} = V_{c}$. In the linear mode of operation, when $V_{c} \ll V_{ot} - V_{c}$, the capacitance and charge are approximately uniform along the channel charge is given by $Q_{th} = WLC_{ot}(V_{ot} - V_{c})$. In saturation, the capacitance is non-uniform between the source and drain and the total charge can be approximated as $Q_{cb} = \frac{1}{3}WLC_{out}(V_{ot} - V_{c})$. Channel thermal noise In triddefilinear operation, the spectral density of the thermal noise can be expressed in terms of the channel charge as $i^{2}_{cd} = 4kT \frac{\mu Q_{tot}}{R^{2}} = 4kT\mu C_{oc} \frac{W}{L}(V_{ot} - V_{cb})$. The noise is often expressed in terms of g_{cb} , the derivative of the drain current with respect to V_{cb} when $V_{cb} = 0$. $g_{cb} = \frac{dV_{cb}}{dV_{cb}} _{V_{cb} = 1} = gC_{cb} \frac{W}{L}(V_{ot} - V_{cb})$ This gives $i^{2}_{cd} = 4kT\mu C_{oc} \frac{W}{L}(V_{ot} - V_{cb}) = 4kT\eta_{cb} A^{2}/Hz$ It is often assumed that $g_{cb} \approx g_{cb}$, resulting in the common expression $i^{2}_{cd} = 4kT\eta_{cb} A^{2}/Hz$ The factor γ is sometimes called the "excess noise factors" and is typically taken to be $\frac{1}{3}$ for long-channel devices Particularly for shorter channel lengths $(e, L, e, L, WL(V_{cb}), whoolety saturation and other effects cause an increase in the observation, resulting in excess noise factors as high as 2 - 3 JFET thermal noise MOSFET drain current exhibits 1/f noise due to the trappropreferess of charge carriers primarily at the Si - SiO2 interface, producing current cose with a 1/f characteristic i^{2}_{cd} = \frac{K_{c}}{f} \frac{Q_{c}^{2}}{WLC_{co}} 1/f noise in MOSFETs can be reduced by increasing gate area (as seen in the above expression), though this comes at the$	(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)
	The spectral density of the notice can be expressed in terms of the tests crosp as $E_{ij} = \frac{48T}{R} = 48T \frac{e^{iQ_{ij}Q_{ij}}}{L} A^2/Hz$ MOSFET channel charge • The investion charge in the conducting channel of a MOSFET is a function of the pate expression of the application of the pate expression of the pate expression, when $V_{ij} = V_{ij}$ in the income more of operations, when $V_{ij} = V_{ij}$ is a charge of the pate expression of the pate ex	(25) (25) (26) (27) (27) (27) (27) (27) (27) (27) (27
	The operand develop of the crose can be expressed in terms of the food charge as: \[\hat{R}_{n} = \frac{\text{APT}}{R} = \text{A	(19 (20 (20 (20 (20 (20 (20 (20 (20 (20 (20
	 The special density of the robes can be expressed in terms of the boad change as:	(25 years) (26 years) (27 years) (27 years) (28 years) (27 years) (28 ye
	The special density of the notes can be expressed in terms of the time charge as $\frac{1}{k_{\perp}} = \frac{4kT}{k_{\perp}} - \frac{4kT}{k_{\perp}} - \frac{4kT}{k_{\perp}} - \frac{4kT}{k_{\perp}} + \frac{4kT}{k_{\perp}} - \frac{4kT}{k_{\perp}} + \frac{4kT}{k_{\perp}}$	(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)
	The special context of the policy can be constanted in cases of the state and page 3. $\int_{-\infty}^{\infty} \frac{dT}{dt} = A T^{\frac{1}{1}} \frac{dV}{dt} = A T^{\frac{1}{$	(19 (20 (20 (20 (20 (20 (20 (20 (20 (20 (20
	The special density of the case can be expressed in them to the state stage as $\frac{2\pi}{2} - \frac{8\pi}{2} - 2\pi \frac{\sin^2 x}{4} - 8\pi \frac{\pi^2 - \pi^2}{4} - 8\pi \frac{\pi^2 - \pi^2}{4} + 8\pi \frac{\pi^2 - \pi^2}{4} = 8\pi \frac{\pi^2 - \pi^2}{4} + 8\pi \frac{\pi^2 - \pi^2}$	(19 (20 (20 (20 (20 (20 (20 (20 (20 (20 (20
	The special access of the state can be excessed in which of the state cauge as $\frac{d^2}{dt^2} = -c_1 e^{-i t_1 t_2} - c_2 e^{-i t_2 t_2} - c_3 e^{-i t_2 t_2} + c_3 e^{-i t_2 t_2} + c_3 e^{-i t_2 t_2}$ $\frac{d^2}{dt^2} = -c_1 e^{-i t_1 t_2} - c_3 e^{-i t_2 t_2} + c$	(19 (20 (20 (20 (20 (20 (20 (20 (20 (20 (20
	• The operation control of the color can be considered in the color can be proved in the color of the color	(25 years) (26 years) (27 years) (27 years) (28 years) (27 years) (28 years) (29 years) (21 years) (21 years) (22 years) (23 years) (24 years) (25 years) (26 years) (27 years) (28 years)
	• The operated surface who can be considered in an other both displace of $\frac{1}{N} = \frac{N^2}{N^2} = $	(19) (2) (2) (2) (2) (2) (2) (2) (2) (3) (2) (4) (4) (5) (4) (5) (4) (5) (5) (4) (5) (5) (5) (6) (6) (7) (7) (10)
	The description contact of the contact of the part of the contact	(25) (26) (27) (27) (27) (27) (27) (27) (27) (27
	The contraction of the contract	(19) (19) (19) (19) (19) (19) (19) (19)
	The contraction of the contract	(15) (25) (25) (26) (26) (26) (26) (26) (26) (26) (26) (26) (36) $(3$
	MOSFET channel change $\frac{1}{2} = \frac{1}{2} \frac{1}$	Innel (2^{1})
	MOSEFU trained change $\frac{1}{2} = \frac{1}{2} \frac{1}$	(25) (26)
	MOSFEE channel charge $\frac{1}{ x } = \frac{1}{ $	(25) (24) (25) (24) (25) (24) (25) (25) (24) (25) (25) (25) (25) (26)

— MOS Noise BJT Noise 10-6 Voltage Noise Density [V/√Hz] 10^{-7} 10-8 10-9 10² 10³ 10⁰ 10¹ 10^{4} 10⁵ 10⁶ Source Resistance $[\Omega]$ ullet Thus, for moderate currents, and depending on the values of r_b and MOS g_m/I_D , BJT's tend be go-to devices for source resistances below a few $k\Omega,$ and beyond this FETs will generally outperform $\bullet \ \ \text{However, BJT's are superior devices in a number of other ways, including lower input capacitance for a given } g_m, \text{lower } 1/f \text{ noise,}$ and more stable/predictable characteristics • Let's take a look at how the two device types perform in terms of noise factor/figure... In [77]: $\begin{aligned} & \text{NF_BJT = 10*np.log10((en_BJT_2 + 4*k*T*Rs)/(4*k*T*Rs))} \\ & \text{NF_MOS = 10*np.log10((en_MOS_2 + 4*k*T*Rs)/(4*k*T*Rs))} \end{aligned}$ BJT NF MOS NF 20 15 Noise Figure [dB] 5 10⁰ 10¹ 10² 10³ 10⁴ 10⁵ 10⁶ Source Resistance $[\Omega]$ - Unsurprisingly, the BJT achieves a superior noise figure for moderate values of R_s , but suffers as R_s increases - Why not just decrease collector current to increase $R_{\it opt}$ as $R_{\it s}$ increases? Other considerations - Let's assume we have a source with equivalent resistance $R_s=1M\Omega$ and a signal bandwidth of 10kHz. We could design our BJT amplifier such that $R_{opt}=R_{s}.$ - Recall that in the shot-noise-limited regime $R_{\it opt}$ is given by $R_{opt}pprox rac{V_T}{I_C}\sqrt{eta_0}$ - Let $eta_0=200$. Assuming we're operating at room temperature, the condition $R_{opt}=R_s$ requires $I_C pprox rac{V_T}{R_{opt}} \sqrt{eta_0} = 365 n A$ ullet Thes use of such low collector currents leads to precipitously low values of f_T , drastically reducing the usable frequency range of the device Summary • The primary noise mechanism in MOSFET and JFET devices is the thermal agitation of charge carriers in the channel • Thermal noise density in MOSFETs depends on the excess noise factor γ , which has a minimum value of $\frac{2}{3}$ in saturation and can be 2-3 times higher, particularly for high values of $f_{T}\,$ $\bullet \ \ 1/f \ {\it noise} \ is \ more \ prounounced \ in \ {\it FET} \ devices \ relative \ to \ {\it BJTs}, \ particularly \ in \ {\it MOSFETs} \ due \ to \ defects \ at \ the \ oxide-silicon \ interface$ • Gate current noise in FETs is extremely low at low to moderate frequencies, but can increase substantially at high frequencies/temperatures • BJTs outperform FETs in terms of thermal noise, in part due to their higher transconductance efficiency, but FETs are generally superior for applications involving high source resistances

(40)

(41)