ETR0307 010

300mA High Speed LDO Regulators with ON/OFF Switch

■GENERAL DESCRIPTION

The XC6219 series are highly accurate, low noise, CMOS LDO Voltage Regulators. Offering low output noise, high ripple rejection ratio, low dropout and very fast turn-on times, the XC6219 series is ideal for today's cutting edge mobile phone. Internally the XC6219/XC6211 includes a reference voltage source, error amplifiers, driver transistors, current limiters and phase compensators. The XC6219/XC6211's current limiters' foldback circuit also operates as a short protect for the output current limiter and. the output pin. The output voltage is set by laser trimming. Voltages are selectable in 50mV steps within a range of 0.9V to 5.0V. The XC6219 series is also fully compatible with low ESR ceramic capacitors, reducing cost and improving output stability. This high level of output stability is maintained even during frequent load fluctuations, due to the excellent transient response performance and high PSRR achieved across a broad range of frequencies.

The CE function allows the output of regulator to be turned off, resulting in greatly reduced power consumption.

■APPLICATIONS

- Smart phones / Mobile phones
- Portable games
- Digital still cameras / Camcorders
- Reference voltage sources
- Multi-function power supplies

■FEATURES

Maximum Output Current : 150mA (Vout<1.75V, A~D type)

240mA (Vout≥1.8V, A~D type) 300mA (Vout≥1.3V, E~H type)

Dropout Voltage : 200mV @ 100mA

Operating Voltage Range : 2.0V ~ 6.0V

Output Voltage Range : 0.9V ~ 5.0V (0.05V steps)

Highly Accuracy : <u>+2</u>% (VOUT>1.5V)

±30mV (VouT≦1.5V) ±1% (VouT≧3.0V)

Low Power Consumption : $25 \mu A (TYP.)$

Standby Current : Less than 0.1μ A (TYP.)

High Ripple Rejection : 65dB @ 10kHzOperating Ambient Temperature : $-40^{\circ}C ~ 85^{\circ}C$

Low ESR Capacitor : Ceramic capacitor compatible

Ultra Small Packages : SOT-25

SOT-89-5 USP-6B

Environmentally Friendly : EU RoHS Compliant, Pb Free

■TYPICAL APPLICATION CIRCUIT

●XC6219 series

■TYPICAL PERFORMANCE CHARACTERISTICS

Ripple Rejection Rate

■PIN CONFIGURATION

* The dissipation pad for the USP-6B package should be solder-plated in recommended mount pattern and metal masking so as to enhance mounting strength and hear release. If the pad needs to be connected to other pins, it should be connected to the VSS pin.

■PIN ASSIGNMENT

	PIN NUMBER		PIN NAME	FUNCTIONS
SOT-25	SOT-89-5	USP-6B	PIN NAIVIE	FUNCTIONS
1	4	1	VIN	Power Input
2	2	5	Vss	Ground
3	3	6	CE	ON / OFF Control
4	1	2, 4	NC	No Connection
5	5	3	Vout	Output

■FUNCTION

TYPE A,E

PIN NAME	SIGNAL	STATUS	
	L	Stand-by	
CE	Н	Active	
	OPEN	Stand-by	

TYPE B,F

PIN NAME	PIN NAME SIGNAL STATUS				
	L	Stand-by			
CE	Н	Active			
	OPEN	Undefined state			

TYPE C,G

PIN NAME	SIGNAL	STATUS		
	L	Active		
CE	Н	Stand-by		
	OPEN	Stand-by		

TYPE D,H

PIN NAME	SIGNAL	STATUS	
	L	Active	
CE	Н	Stand-by	
	OPEN	Undefined state	

^{*}If XC6219 B,D,F,H types are used with the CE pin opened, the IC goes into "Undefined state".

The CE pin voltage should be fixed in low or high for stable operation.

■PRODUCT CLASSIFICATION

Ordering Information

 $\underline{\mathsf{XC6219}} \ \ \underline{(1)} \underline{(2)} \underline{(3)} \underline{(4)} \underline{(5)} \underline{(6)} \underline{(7)}^{(*1)}$

DESIGNATOR	ITEM	SYMBOL	DESCRIPTION
		Α	150mA, Active high, pull-down resistor built in (Semi-custom)
		В	150mA, Active high , no pull-down resistor built in (Standard)
		С	150mA, Active low, pull-up resistor built in (Semi-custom)
1)	CE Pin Logic	D	150mA, Active low, no pull-up resistor built in (Semi-custom)
	OL I III LOGIC	Е	300mA, Active high, pull-down resistor built in (Semi-custom)
		F	300mA, Active high, no pull-down resistor built in (Standard)
		G	300mA, Active low, pull-up resistor built in (Semi-custom)
		Η	300mA, Active low, no pull-up resistor built in (Semi-custom)
23	Output Voltage	09~50	e.g. ②=3, ③=0, → 3.0V
		2 ^(*3)	0.1V increments, ±2% accuracy
			e.g. $3=2$, $3=8$, $4=2 \rightarrow 2.80V$, $\pm 2\%$
		1 ^(*2)	0.1V increments, ±1% accuracy
4	Output Voltage Accuracy		e.g. $2=3$, $3=0$, $4=1 \rightarrow 3.00V$, $\pm 1\%$
	output voltago / toouracy	A ^(*3)	0.05V increments, ±2% accuracy
			e.g. $②=2$, $③=8$, $④=A \rightarrow 2.85V$, $\pm 2\%$
		B ^(*2)	0.05V increments, ±1% accuracy
		_	e.g. $2=3$, $3=0$, $4=B \rightarrow 3.05V$, $\pm 1\%$
	Packages	MR-G	SOT-25 (3,000/Reel)
56-7	(Order Unit)	PR-G	SOT-89-5 (1,000/Reel)
	(3.33. 3)	DR-G	USP-6B (3,000/Reel)

 $^{^{(^{\}circ}1)}$ The "-G" suffix denotes Halogen and Antimony free as well as being fully EU RoHS compliant.

^(*2) Output voltage of the ±1% accuracy product is 3.0V or more.

 $^{^{^{(*3)}}}$ Output voltage accuracy of the $V_{OUT}{\leqq}1.5V$ is $\pm30mV.$

■BLOCK DIAGRAM

XC6219 series Type A,E

XC6219 series Type B,D,F,H

XC6219 series Type C,G

^{*}Diode inside the circuit are an ESD protection diode and a parasitic diode.

■ ABSOLUTE MAXIMUM RATINGS

Ta=25°C

PARAME	TER	SYMBOL	RATINGS	UNITS
Input Volt	age	VIN	7	V
Output Cu	rrent	lout	500 ^(*1)	mA
Output Vo	Itage	Vout	Vss - 0.3 ~ Vin + 0.3	V
CE Pin Vo	ltage	VCE	Vss - 0.3 ~ Vin + 0.3	V
	SOT-25		250	
	301-20		600 (PCB mounted) ^(*2)	mW
Power Dissipation	SOT-89	Pd	500	
Power Dissipation	301-09	Fu	1300 (PCB mounted) ^(*2)	
	USP-6B		120	
	U3F-0B		1000 (PCB mounted) ^(*2)	
Operating Ambient	Temperature	Topr	- 40 ~ + 85	°C
Storage Temp	perature	Tstg	- 55 ~ + 125	°C

All voltages are described based on the V_{SS} pin.

 $^{^{(*1)}}I_{OUT} \leq Pd/(V_{IN}-V_{OUT})$

^(*2) The power dissipation figure shown is PCB mounted and is for reference only. Please refer to page 24~26 for details.

■ELECTRICAL CHARACTERISTICS

●XC6219 Type A,B Ta=25°C

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS	CIRCUIT	
Output Voltage (*5)			V _{OUT(T)} ^(*2)	V _{OUT(T)} ^(*2)	V _{OUT(T)} ^(*2)			
(2%)	V _{OUT(E)} (*3)	I _{OUT} =30mA	×0.98	V OUT(T)	×1.02	V	1	
Output Voltage (*6)	V OUT(E)	I _{OUT} -SolliA	V _{OUT(T)} ^(*2)	V _{OUT(T)} ^(*2)	V _{OUT(T)} (*2)	V	U	
(1%)			×0.99	V OUT(T)	×1.01			
Maximum Output	I _{OUTMAX}	0.9V≦V _{OUT(T)} ≦1.75V	150	-	-	mA	(1)	
Current	IOUTMAX	1.8V≦V _{OUT(T)} ≦5.0V	240	-	-	1117 (•	
Load Regulation	ΔV_{OUT}	1mA≦I _{OUT} ≦100mA	-	15	50	mV	1	
Dropout Voltage (*4)	Vdif1	I _{OUT} =30mA	1	Е	-1	mV	1	
Dropout voltage	Vdif2	I _{OUT} =100mA	1	Е	-2	IIIV	U	
Supply Current			-	28	55			
(Type A)	I _{DD}	$V_{CE}=V_{IN}=V_{OUT(T)}+1.0V$		20	33	μΑ	2	
Supply Current	IDD	$V_{OUT} \le 0.95V, V_{IN} = V_{CE} = 2.0V$		25	50	μΑ	€	
(Type B)				20	30			
Stand-by Current	I _{STB}	$V_{IN}=V_{OUT(T)}+1.0V$, $V_{CE}=V_{SS}$	_	0.01	0.10	μΑ	2	
Stand-by Current	ISTB	V _{OUT} ≦0.95V, V _{IN} =2.0V		0.01	0.10	μΑ	2	
		$V_{OUT(T)}$ +1.0 $V \le V_{IN} \le 6.0V$						
Line Regulation	ΔV_{OUT} /	V _{OUT} ≦0.95V, 2.0V≦V _{IN} ≦6.0V	_	0.01	0.20	%/V	1	
Line regulation	$(\Delta V_{IN} \cdot V_{OUT})$	I _{OUT} =30mA						
		V _{OUT} ≦1.75V, I _{OUT} =10mA						
Input Voltage	V _{IN}	-	2	-	6	V	-	
Output Voltage	ΔV _{OUT} /	I _{OUT} =30mA						
Temperature	(ΔTopr·V _{OUT})	-40°C≦Topr≦85°C	-	±100	-	ppm/°C	1	
Characteristics	(ATOPI VOUT)	-40 0 = 10pl = 00 0						
Power Supply		$V_{IN}=[V_{OUT(T)}+1.0]V+1.0Vp-p_{AC}$						
Rejection Ratio	PSRR	$V_{OUT} \le 1.5, V_{IN} = 2.5V + 1.0Vp - p_{AC}$	-	E-3	-	dB	4	
Rejection Ratio		I _{OUT} =50mA、f=10kHz						
		$V_{IN}=V_{OUT(T)}+2.0V$, $V_{CE}=V_{IN}$		300				
Current Limiter	llim	0.9V≦V _{OUT(T)} ≦1.75V	,	300	-	mA	1	
Current Limiter		$V_{IN}=V_{OUT(T)}+1.0V$, $V_{CE}=V_{IN}$	240	300	_	IIIA	U	
		1.8V≦V _{OUT(T)} ≦5.0V	240	300	-			
Short Circuit Current	I _{SHORT}	$V_{IN}=V_{OUT(T)}+1.0V$, $V_{CE}=V_{IN}$	1	50	_	mA	1	
Short Circuit Current	SHORT	$V_{OUT} \le 1.75V, V_{IN} = V_{OUT(T)} + 2.0V$	-	30	_	IIIA	U	
CE 'High' Level Voltage	V_{CEH}	-	1.6	-	V _{IN}	V	1	
CE 'Low' Level Voltage	V_{CEL}	-	-	-	0.25	V	1	
CE 'High' Level Current			_0.10		5.0			
(Type A)	la	$V_{IN}=V_{CE}=V_{OUT(T)}+1.0V$	-0.10	- 5.0	3.0	μΑ	2	
CE 'High' Level Current	І _{СЕН}	$V_{OUT} \le 0.95V, V_{IN} = V_{CE} = 2.0V$	-0.10	-	0.10	μΑ	(<u>2</u>)	
(Type B)			-0.10		0.10			
CE 'Low' Level Current	I _{CEL}	$V_{IN}=V_{OUT(T)}+1.0V, V_{CE}=V_{SS}$ $V_{OUT}\leq 0.95V, V_{IN}=2.0V$	-0.10	-	0.10	μΑ	2	

^(*1) Unless otherwise stated, V_{IN} = $V_{OUT(T)}$ +1.0V. If V_{OUT} is less than 0.95V, V_{IN} = 2.0V.

^(*2) $V_{OUT(T)}$ = Specified output voltage

^(*3) $V_{OUT(E)}$ = Effective output voltage

The output voltage when "V $_{\text{OUT}(T)}$ +1.0V" is provided at the V $_{\text{IN}}$ pin while maintaining a certain I $_{\text{OUT}}$ value.

^(*4) Vdif={ V_{IN1} - V_{OUT1} }

 V_{OUT1} =A voltage equal to 98% of the output voltage whenever an amply stabilized $I_{\text{OUT}}\{V_{\text{OUT(T)}}+1.0V\}$ is input.

 V_{IN1} =The Input Voltage when V_{OUT1} appears as Input Voltage is gradually decreased.

^(*5) If $V_{\text{OUT(T)}}$ is less than 1.45V, $V_{\text{OUT(T)}}\text{-30mV}$ (MIN.), $V_{\text{OUT(T)}}\text{+30mV}$ (MAX.)

^(*6) Only for the $V_{\text{OUT}(T)}$ is more than 3.0V products.

■ELECTRICAL CHARACTERISTICS

●XC6219 Type C,D

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS	CIRCUIT
Output Voltage (*5) (2%)	V _{OUT(E)} (*3)	I _{OUT} =30mA	V _{OUT(T)} ^(*2) ×0.98	V _{OUT(T)} ^(*2)	V _{OUT(T)} ^(*2) ×1.02	· V	1)
Output Voltage (*6) (1%)	* OUT(E)		V _{OUT(T)} ^(*2) ×0.99	V _{OUT(T)} ^(*2)	V _{OUT(T)} ^(*2) ×1.01	·	Ŷ
Maximum Output	I _{OUTMAX}	0.9V≦V _{OUT(T)} ≦1.75V	150	-	-	mA	1
Current	COTWINA	1.8V≦V _{OUT(T)} ≦5.0V	240	-	-		
Load Regulation	ΔV_{OUT}	1mA≦I _{OUT} ≦100mA	-	15	50	mV	1
Dropout Voltage (*4)	Vdif1	I _{OUT} =30mA	-	E	-1	mV	1
	Vdif2	I _{OUT} =100mA	-	E	-2		
Supply Current (Type C)	l _{DD}	$V_{IN=}V_{OUT(T)}+1.0V$ $V_{OUT} \le 0.95V, V_{IN}=2.0V$	-	28	55	<i>μ</i> Α	2)
Supply Current (Type D)	IDD	V _{CE} =V _{SS}	-	25	50	μΑ	2
Stand-by Current	I _{STB}	$V_{IN} = V_{OUT(T)} + 1.0V$, $V_{CE} = V_{IN}$ $V_{OUT} \le 0.95V$, $V_{IN} = V_{CE} = 2.0V$	1	0.01	0.10	μΑ	2
Line Regulation	ΔV _{OUT} / (ΔV _{IN} ·V _{OUT})	$V_{OUT(T)}$ +1.0 $V \le V_{IN} \le 6.0V$ $V_{OUT} \le 0.95V$, 2.0 $V \le V_{IN} \le 6.0V$ $I_{OUT} = 30mA$ $V_{OUT} \le 1.75V$, $I_{OUT} = 10mA$	-	0.01	0.20	%/V	1
Input Voltage	V _{IN}	-	2	-	6	V	-
Output Voltage Temperature Characteristics	ΔV _{OUT} / (ΔTopr•V _{OUT})	I _{OUT} =30mA -40°C≦Topr≦85°C	-	±100	-	ppm/°C	1
Power Supply Rejection Ratio	PSRR	$\begin{split} &V_{\text{IN}} = &[V_{\text{OUT(T)}} + 1.0]V + 1.0Vp - p_{\text{AC}} \\ &V_{\text{OUT}} \leqq 1.5, \ V_{\text{IN}} = 2.5V + 1.0Vp - p_{\text{AC}} \\ &I_{\text{OUT}} = 50\text{mA}, \ f = 10\text{kHz} \end{split}$	-	E-3	-	dB	4
Command Limiter	III:	$V_{IN}=V_{OUT(T)}+2.0V, V_{CE}=V_{SS}$ $0.9V \le V_{OUT(T)} \le 1.75V$	-	300	-		
Current Limiter	llim	$V_{IN}=V_{OUT(T)}+1.0V, V_{CE}=V_{SS}$ $1.8V \le V_{OUT(T)} \le 5.0V$	240	300	-	- mA	1
Short Circuit Current	I _{SHORT}	$V_{IN}=V_{OUT(T)}+1.0V$, $V_{CE}=V_{IN}$ $V_{OUT} \le 1.75V$, $V_{IN}=V_{OUT(T)}+2.0V$	-	50	-	mA	1
CE 'High' Level Voltage	V_{CEH}	-	1.6	-	V _{IN}	V	1
CE 'Low' Level Voltage	V _{CEL}	-	-	-	0.25	V	1
CE 'High' Level Current	Ісен	$V_{CE}=V_{IN}=V_{OUT(T)}+1.0V$ $V_{OUT} \le 0.95V$, $V_{CE}=V_{IN}=2.0V$	-0.10	-	0.10	μΑ	2
CE 'Low' Level Current (Type C)		V _{IN} =V _{OUT(T)} +1.0V,V _{CE} =V _{SS}	-5.0	-	0.10	^	
CE 'Low' Level Current (Type D)	I _{CEL}	V _{OUT} ≦0.95V, V _{IN} =2.0V	-0.10	-	0.10	μΑ	2

^(*1) Unless otherwise stated, V_{IN} = $V_{OUT(T)}$ +1.0V. If V_{OUT} is less than 0.95V, V_{IN} = 2.0V.

^(*2) $V_{OUT(T)}$ = Specified output voltage

^(*3) $V_{OUT(E)}$ = Effective output voltage

The output voltage when " $V_{\text{OUT}(T)}$ +1.0V" is provided at the V_{IN} pin while maintaining a certain I_{OUT} value.

^(*4) Vdif={V_{IN1}-V_{OUT1}}

 $V_{OUT1} \!\!=\!\! A \, voltage \, equal \, to \, 98\% \, of \, the \, output \, voltage \, whenever \, an \, amply \, stabilized \, I_{OUT} \, \{V_{OUT(T)} \!\!+\! 1.0V\} \, is \, input.$

 V_{IN1} =The Input Voltage when V_{OUT1} appears as Input Voltage is gradually decreased.

^(*5) If $V_{\text{OUT(T)}}$ is less than 1.45V, $V_{\text{OUT(T)}}\text{-30mV}$ (MIN.), $V_{\text{OUT(T)}}\text{+30mV}$ (MAX.)

^(*6) Only for the $V_{\text{OUT}(T)}$ is more than 3.0V products.

Ta=25°C

■ELECTRICAL CHARACTERISTICS

●XC6219 Type E,F

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS	CIRCUIT
Output Voltage (*5)	STWIDOL	CONDITIONS	V _{OUT(T)} (*2)		V _{OUT(T)} ^(*2)	UNITS	CIRCUIT
(2%)			×0.98	$V_{OUT(T)}^{(*2)}$	×1.02		
Output Voltage (*6)	V _{OUT(E)} (*3)	I _{OUT} =30mA				V	1
			V _{OUT(T)} ^(*2)	V _{OUT(T)} (*2)	V _{OUT(T)} ^(*2)		
(1%)			×0.99		×1.01		
Maximum Output	I _{OUTMAX}	V _{IN} =E-5 (*7)	E-4	_	-	mA	1
Current							
Load Regulation	ΔV_{OUT}	1mA≦I _{OUT} ≦100mA	-	15	50	mV	1
Load Regulation2	ΔV_{OUT2}	1mA≦I _{OUT} ≦300mA	-	-	100	mV	1
Dropout Voltage (*4)	Vdif1	I _{OUT} =30mA	-	E	-1	mV	1
Dropout voltage	Vdif2	I _{OUT} =100mA	-	E	-2	1110	U
Supply Current				20	55		
(Type E)		$V_{CE}=V_{IN}=V_{OUT(T)}+1.0V$	-	28	55		
Supply Current	l _{DD}	V _{OUT} ≦0.95V, V _{CE} =V _{IN} =2.0V				μΑ	2
(Type F)			-	25	50		
·		V _{IN} =V _{OUT(T)} +1.0V, V _{CE} =V _{SS}					
Stand-by Current	I _{STB}	$V_{OUT} \le 0.95V, V_{CE} = V_{IN} = 2.0V$	-	0.01	0.10	μΑ	2
		$V_{OUT(T)} + 1.0V \le V_{IN} \le 6.0V$					
	ΔV _{OUT} /	$V_{OUT} \le 0.95V, 2.0V \le V_{IN} \le 6.0V$		0.01	0.20		
Line Regulation			-			%/V	1
	(ΔV _{IN} •V _{OUT})	I _{OUT} =30mA					
		V _{OUT} ≦1.75V, I _{OUT} =10mA					
Input Voltage	V _{IN}	-	2	-	6	V	-
Output Voltage	ΔV _{OUT} /	I _{OUT} =30mA					
Temperature	(ΔTopr·V _{OUT})	-40°C≦Topr≦85°C	-	±100	-	ppm/°C	1
Characteristics	(2.0)						
Power Supply		$V_{IN}=[V_{OUT(T)}+1.0]V+1.0Vp-p_{AC}$	- 70				
	PSRR	$V_{OUT} \le 1.5, V_{IN} = 2.5V + 1.0Vp-p_{AC}$		70	-	dB	4
Rejection Ratio		I _{OUT} =50mA、f=10kHz					
		$V_{IN}=V_{OUT(T)}+2.0V$, $V_{CE}=V_{IN}$					
		0.9V≦V _{OUT(T)} ≦1.75V					
Current Limiter	llim	$V_{IN}=V_{OUT(T)}+1.0V$, $V_{CE}=V_{IN}$	-	380	-	mA	1
		1.8V≦V _{OUT(T)} ≦5.0V					
		$V_{IN}=V_{OUT(T)}+1.0V$, $V_{CE}=V_{IN}$					
Short Circuit Current	I _{SHORT}	$V_{OUT} \le 1.75V, V_{IN} = V_{OUT(T)} + 2.0V$	-	50	-	mA	1
CE 'High' Level Voltage	V _{CEH}	-	1.6	_	V _{IN}	V	1
CE 'Low' Level Voltage		-		-		V	1
	V _{CEL}	-	-	-	0.25	٧	U
CE 'High' Level Current		\ \ _\/ _\/ \ \ \ \ \ \ \ \ \ \ \ \ \ \	-0.10	-	5.0		
(Type E)	I _{CEH}	$V_{IN} = V_{CE} = V_{OUT(T)} + 1.0V$				μΑ	2
CE 'High' Level Current		$V_{OUT} \le 0.95V, V_{IN} = V_{CE} = 2.0V$	-0.10	-	0.10		
(Type F)							
CE 'Low' Level Current	los	$V_{IN}=V_{OUT(T)}+1.0V$, $V_{CE}=V_{SS}$	-0.1	-	0.1	// A	2
CE Low Level Current	I _{CEL}	V _{OUT} ≦0.95V, V _{IN} =2.0V	-v. i	_	0.1	μΑ	•

^(*1) Unless otherwise stated, $V_{\text{IN}}\text{=}V_{\text{OUT(T)}}\text{+}1.0\text{V}.$ If V_{OUT} is less than 0.95V, $V_{\text{IN}}\text{=}2.0\text{V}.$

^(*2) $V_{OUT(T)}$ = Specified output voltage

^(*3) $V_{OUT(E)}$ = Effective output voltage

The output voltage when " $V_{OUT(T)}$ +1.0V" is provided at the V_{IN} pin while maintaining a certain I_{OUT} value.

^(*4) $Vdif=\{V_{IN1}-V_{OUT1}\}$

 V_{OUT1} =A voltage equal to 98% of the output voltage whenever an amply stabilized I_{OUT} { $V_{\text{OUT}(T)}$ +1.0V} is input. V_{IN1} =The Input Voltage when V_{OUT1} appears as Input Voltage is gradually decreased.

^(*5) If $V_{OUT(T)}$ is less than 1.45V, $V_{OUT(T)}$ -30mV (MIN.), $V_{OUT(T)}$ + 30mV (MAX.)

^(*6) Only for the $V_{\text{OUT}(T)}$ is more than 3.0V products.

^(*7) Please refer to the "Voltage Chart" table.

■ELECTRICAL CHARACTERISTICS

●XC6219 Type G,H

Ta=25°C

Output Voltage (%) (2%) Vount(%) Voun	PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS	CIRCUIT
Output Voltage Out	Output Voltage (*5)			V _{OUT(T)} ^(*2)	(*2)	V _{OUT(T)} ^(*2)		
Current (1%) Current (10mmx	(2%)	(*3)		×0.98	V _{OUT(T)} ` ′	×1.02		•
Maximum Output Current Ioumus V _N =E-S ^(T) E-4 -	Output Voltage (*6)	V _{OUT(E)} (°)	I _{OUT} =30mA	V _{OUT(T)} ^(*2)	(*2)	V _{OUT(T)} (*2)	V	(1)
Current Lourwax V _m =E-51" F4 - - mA ①	(1%)			×0.99	V _{OUT(T)} ' -/			
Current Current Current Current Current Current Current Limiter Load Regulation ΔΛουτ ImA≤lour≤100mA - 15 50 m/V ①	Maximum Output		(*7)					<i>a</i>
Load Regulation A	Current	IOUTMAX	V _{IN} =E-5 (1)	E-4	-	-	mA	U
Dropout Voltage "4" Volif1 Iour=30mA - E-1 mV ①	Load Regulation	ΔV_{OUT}	1mA≦I _{OUT} ≦100mA	-	15	50	mV	1
Dropout Voltage (**) Volif2 Lour=100mA	Load Regulation2	ΔV_{OUT2}	1mA≦I _{OUT} ≦300mA	ı	-	100	mV	1
Supply Current (Type G) Supply Current (Type H) Void 50 95V, Vo	Dropout Voltage (*4)	Vdif1	I _{OUT} =30mA	ı	Е	-1	m\/	①
Crype G Cry	Dropout voltage	Vdif2	I _{OUT} =100mA	ı	Е	-2	IIIV	U
	Supply Current		\\ -\\ \\ 14.0\\		20	55		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(Type G)			-	20	55		<u> </u>
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Supply Current	IDD			O.F.	F0	μΑ	∠
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(Type H)		V _{CE} -V _{SS}	-	25	50		
Line Regulation	Ctand by Current	,	$V_{IN}=V_{OUT(T)}+1.0V$, $V_{CE}=V_{IN}$		0.01	0.10		①
Line Regulation ΔV _{OUT} / (ΔV _{IN} • V _{OUT}) V _{OUT} ≤ 0.95V, 2.0V ≤ V _{IN} ≤ 6.0V 10.0T = 30mA V _{OUT} ≤ 1.75V, I _{OUT} = 10mA 2 - 6 V	Stand-by Current	ISTB	$V_{OUT} \leq 0.95V$, $V_{CE} = V_{IN} = 2.0V$	-	0.01	0.10	μΑ	∠
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			V _{OUT(T)} +1.0V≦V _{IN} ≦6.0V					
Input Voltage	Live Beer lefter	ΔV_{OUT} /	V _{OUT} ≦0.95V, 2.0V≦V _{IN} ≦6.0V		0.01	0.20	%/V	1
Input Voltage	Line Regulation	$(\Delta V_{IN} \cdot V_{OUT})$	I _{OUT} =30mA	-				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			V _{OUT} ≦1.75V, I _{OUT} =10mA					
Temperature Characteristics ΔV _{OUT} / (ΔΤορτ·V _{OUT}) Iour=30MA - 40°C ≤ Topr ≤ 85°C - ±100 - ppm/°C ① Power Supply Rejection Ratio PSRR $V_{IN} = V_{OUT}(1+0)V + 1.0V + 0.0V - 0.0C - $	Input Voltage	V _{IN}	-	2	-	6	V	-
Temperature Characteristics ΔV _{OUT} / (ΔΤορτ·V _{OUT}) Iour=30MA - 40°C ≤ Topr ≤ 85°C - ±100 - ppm/°C ① Power Supply Rejection Ratio PSRR $V_{IN} = V_{OUT}(1+0)V + 1.0V + 0.0V - 0.0C - $	Output Voltage							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				-	±100	-	ppm/°C	1
Power Supply Rejection Ratio PSRR	Characteristics	(ΔTopr•V _{OUT})	-40°C≦1opr≦85°C					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			V _{IN} =[V _{OUT(T)} +1.0]V+1.0Vp-p _{AC}					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	PSRR	V _{OUT} ≦1.5, V _{IN} =2.5V+1.0Vp-p _{AC}	-	70	-	dB	4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Rejection Ratio		I _{OUT} =50mA、f=10kHz					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			$V_{IN}=V_{OUT(T)}+2.0V$, $V_{CE}=V_{SS}$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			0.9V≦V _{OUT(T)} ≦1.75V					•
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Current Limiter	llim		-	380	-	mA	(1)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1.8V≦V _{OUT(T)} ≦5.0V					
Short Circuit Current I_{SHORT} $V_{OUT} \le 1.75V, V_{IN} = V_{OUT(T)} + 2.0V$ - 50 - mA (1) CE 'High' Level Voltage V_{CEH} - 1.6 - V_{IN} V (1) CE 'Low' Level Voltage V_{CEL} 0.25 V (1) CE 'High' Level Current I_{CEH} $V_{CE} = V_{IN} = V_{OUT(T)} + 1.0V$ $V_{OUT} \le 0.95V, V_{CE} = V_{IN} = 2.0V$ -0.10 - 0.10 μ A (2) CE 'Low' Level Current (Type G) I_{CEL} $V_{IN} = V_{OUT(T)} + 1.0V, V_{CE} = V_{SS}$ $V_{OUT} \le 0.95V, V_{IN} = 2.0V$ -0.10 - 0.10	01 101 115							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Short Circuit Current	Short Circuit Current Island		-	50	-	mA	(1)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CE 'High' Level Voltage	V _{CEH}	-	1.6	-	V _{IN}	V	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CE 'Low' Level Voltage		-	-	-		V	
CE 'High Level Current I_{CEH} $V_{OUT} \le 0.95V, V_{CE} = V_{IN} = 2.0V$ -0.10 $-$	OF ALCOHOL 10		V _{CE} =V _{IN} =V _{OUT(T)} +1.0V	0.10		0.40		
(Type G) $V_{\text{IN}} = V_{\text{OUT}(T)} + 1.0V, V_{\text{CE}} = V_{\text{SS}}$ $V_{\text{OUT}} \le 0.95V, V_{\text{IN}} = 2.0V$ $V_{\text{OUT}} = 0.10$ $V_{\text{IN}} = 0.10$	CE 'High' Level Current	I _{CEH}		-0.10	-	0.10	μΑ	(2)
(Type G) $V_{\text{IN}} = V_{\text{OUT}(T)} + 1.0V, V_{\text{CE}} = V_{\text{SS}}$ μ A ② μ A ②	CE 'Low' Level Current			5 ^		0.40		
CE 'Low' Level Current V _{OUT} ≦0.95V, V _{IN} =2.0V -0.10 - 0.10	(Type G)		$V_{IN}=V_{OUT(T)}+1.0V$, $V_{CE}=V_{SS}$	-5.0	-	0.10		
(Type H)	CE 'Low' Level Current	I _{CEL}	V _{OUT} ≦0.95V, V _{IN} =2.0V	0.40		0.40	μΑ	(2)
	(Type H)			-0.10	-	0.10		

^(*1) Unless otherwise stated, V_{IN} = $V_{OUT(T)}$ +1.0V. If V_{OUT} is less than 0.95V, V_{IN} = 2.0V.

^(*2) $V_{OUT(T)}$ = Specified output voltage

^(*3) $V_{OUT(E)}$ = Effective output voltage

The output voltage when " $V_{OUT(T)}$ +1.0V" is provided at the V_{IN} pin while maintaining a certain I_{OUT} value.

^(*4) $Vdif=\{V_{IN1}-V_{OUT1}\}$

 V_{OUT1} =A voltage equal to 98% of the output voltage whenever an amply stabilized I_{OUT} { $V_{\text{OUT(T)}}$ +1.0V} is input. V_{IN1} =The Input Voltage when V_{OUT1} appears as Input Voltage is gradually decreased.

^(*5) If $V_{OUT(T)}$ is less than 1.45V, $V_{OUT(T)}$ -30mV (MIN.), $V_{OUT(T)}$ + 30mV (MAX.)

^(*6) Only for the $V_{\text{OUT}(T)}$ is more than 3.0V products.

^(*7) Please refer to the "Voltage Chart" table.

■ ELECTRICAL CHARACTERISTICS (Continued)

■Voltage Chart

●Voltage Chart SYMBOL	E-0			E	-1	E	E-2		
PARAMETER	(2	VOLTAGE %) V)	OUTPUT VOLTAGE (1%) (V)		DROPOUT VOLTAGE1 (mV) (I _{OUT} =30mA)		DROPOUT VOLTAGE2 (mV) (I _{OUT} =100mA)		Power Supply Rejection Ratio
OUTPUT VOLTAGE					Ta=	:25°C	Ta=	25℃	Ta=25°C
$V_{OUT(T)}$	Vo	OUT	V	OUT	Vo	dif1	Vo	dif2	PSRR
▼ OUI(I)	MIN	MAX	MIN	MAX	TYP	MAX	TYP	MAX	TYP
0.90	0.870	0.930	-	-	1100	1110	1150	1200	
0.95	0.920	0.980	-	-	1100	1110	1100	1200	
1.00	0.970	1.030	-	-	1000	1010	1050	1100	
1.05	1.020	1.080	-	-					
1.10	1.070	1.130	-	-	900	910	950	1000	
1.15	1.120	1.180	-	-		0.0			
1.20	1.170	1.230	-	-	800	810	850	900	
1.25	1.220	1.280	-	-		0.0			
1.30	1.270	1.330	-	-	700	710	750	800	65
1.35	1.320	1.380	-	-	700	7.10	7.00	000	
1.40	1.370	1.430	-	-	600	610	650	700	
1.45	1.420	1.480	-	-	000	0.10	000	7.00	
1.50	1.470	1.530	-	-	500	510	550	600	
1.55	1.519	1.581	-	-	000	0.10	0 330	000	
1.60	1.568	1.632	-	-	400			550	
1.65	1.617	1.683	-	-	400				
1.70	1.666	1.734	-	-	300			450	
1.75	1.715	1.785	-	-	000	0.10	100	100	
1.80	1.764	1.836	-	-	200	210	300	400	
1.85	1.813	1.887	-	-	200	2.0	000	100	
1.90	1.862	1.938	-	-	120	150	280	380	
1.95	1.911	1.989	-	-	120	100	200	000	
2.00	1.960	2.040	-	-				350	
2.05	2.009	2.091	-	-					
2.10	2.058	2.142	-	-					
2.15	2.107	2.193	-	-				330	
2.20	2.156	2.244	-	-	80	120	240	330	
2.25	2.205	2.295	-	-		120	240		
2.30	2.254	2.346	-	-					
2.35	2.303	2.397	-	-				310	70
2.40	2.352	2.448	-	-				310	"0
2.45	2.401	2.499	-	-					
2.50	2.450	2.550	-	-					
2.55	2.499	2.601	-	-					
2.60	2.548	2.652	-	-				290	
2.65	2.597	2.703	-	-	70			250	
2.70	2.646	2.754	-	-		100	220		
2.75	2.695	2.805	-	-		100	220		
2.80	2.744	2.856	-	-					
2.85	2.793	2.907	-	-				270	
2.90	2.842	2.958	-	-				210	
2.95	2.891	3.009	-	-					

■ ELECTRICAL CHARACTERISTICS (Continued)

●Voltage Chart

SYMBOL	E-0			Е	-1	Е	-2	E-3	
PARAMETER					DRO	POUT	DROPOUT		Power
	OUTPUT	VOLTAGE	OUTPUT	VOLTAGE		GE1 (mV)		GE2 (mV)	Supply
	(2)	%)	(1	%)		30mA)		00mA)	Rejection
	(\	V)	()	V)	(-001		(-001		Ratio
OUTPUT VOLTAGE					Ta=	25°C	Ta=	25°C	Ta=25°C
$V_{OUT(T)}$	Vo	DUT	Vo	DUT	Vo	lif1	Vo	lif2	PSRR
- 001(1)	MIN	MAX	MIN	MAX	TYP	MAX	TYP	MAX	TYP
3.00	2.940	3.060	2.970	3.030				270	
3.05	2.989	3.111	3.020	3.081					
3.10	3.038	3.162	3.069	3.131					
3.15	3.087	3.213	3.119	3.182					
3.20	3.136	3.264	3.168	3.232					
3.25	3.185	3.315	3.218	3.283					
3.30	3.234	3.366	3.267	3.333					
3.35	3.283	3.417	3.317	3.384					
3.40	3.332	3.468	3.366	3.434					
3.45	3.381	3.519	3.416	3.485		90	200		
3.50	3.430	3.570	3.465	3.535			200	250	
3.55	3.479	3.621	3.515	3.586				250	
3.60	3.528	3.672	3.564	3.636					
3.65	3.577	3.723	3.614	3.687					
3.70	3.626	3.774	3.663	3.737					
3.75	3.675	3.825	3.713	3.788					
3.80	3.724	3.876	3.762	3.838					
3.85	3.773	3.927	3.812	3.889					
3.90	3.822	3.978	3.861	3.939					
3.95	3.871	4.029	3.911	3.990	60				
4.00	3.920	4.080	3.960	4.040	00				70
4.05	3.969	4.131	4.010	4.091					
4.10	4.018	4.182	4.059	4.141					
4.15	4.067	4.233	4.109	4.192					
4.20	4.116	4.284	4.158	4.242					
4.25	4.165	4.335	4.208	4.293					
4.30	4.214	4.386	4.257	4.343					
4.35	4.263	4.437	4.307	4.394					
4.40	4.312	4.488	4.356	4.444					
4.45	4.361	4.539	4.405	4.494		80	180	230	
4.50	4.410	4.590	4.455	4.545		00	100	230	
4.55	4.459	4.641	4.504	4.595					
4.60	4.508	4.692	4.554	4.646					
4.65	4.557	4.743	4.603	4.696					
4.70	4.606	4.794	4.653	4.747					
4.75	4.655	4.845	4.702	4.797					
4.80	4.704	4.896	4.752	4.848					
4.85	4.753	4.947	4.801	4.898					
4.90	4.802	4.998	4.851	4.949					
4.95	4.851	5.049	4.900	4.999					
5.00	4.900	5.100	4.950	5.050	50	70	160	210	

■ELECTRICAL CHARACTERISTICS (Continued)

● Specification & Condition by Series

SYMBOL	E-5	E-4		
CONDITION, RATINGS	INPUT VOLTAGE (V)	MAX. OUTPUT CURRENT		
	INFOT VOLIAGE (V)	(mA)		
OUTPUT VOLTAGE (V)	V_{IN}	MIN		
0.90~0.95	2.5	260		
1.00~1.05	2.5	260		
1.10~1.15	2.6	270		
1.20~1.25	2.7	290		
1.30~1.35	2.8			
1.40~1.45	2.9	300		
1.50~1.95	3.0	300		
2.00~6.00	V _{OUT(T)} +1.0			

^{*} $V_{OUT(T)}$ =Nominal output voltage

■TEST CIRCUITS

Circuit ①

Circuit ②

Circuit ③

Circuit 4

*TEST CIRCUIT V_{CE} (CE Pin Voltage)

ACTIVE

XC6219 Type A,B,E,F: $V_{CE}=V_{IN}$ XC6219 Type C,D,G,H: $V_{CE}=V_{SS}$

STANDBY

XC6219 Type A,B,E,F: $V_{CE}=V_{SS}$ XC6219 Type C,D,G,H: $V_{CE}=V_{IN}$

■OPERATIONAL EXPLANATION

<Output Voltage Control>

The voltage divided by resistors R1 & R2 is compared with the internal reference voltage by the error amplifier. The P-channel MOSFET, which is connected to the Vout pin, is then driven by the subsequent output signal. The output voltage at the Vout pin is controlled and stabilized by a system of negative feedback. The current limit circuit and short protect circuit operate in relation to the level of output current. Further, the IC's internal circuitry can be shutdown via the CE pin's signal

<Low ESR Capacitors>

With the XC6219 series, a stable output voltage is achievable even if used with low ESR capacitors as a phase compensation circuit is built-in. In order to ensure the effectiveness of the phase compensation, we suggest that an output capacitor (CL) is connected as close as possible to the output pin (Vout) and the Vss pin. Please use an output capacitor with a capacitance value of at least $1.0 \,\mu$ F. Also, please connect an input capacitor (CIN) of $1.0 \,\mu$ F between the VIN pin and the Vss pin in order to ensure a stable power input.

Stable phase compensation may not be ensured if the capacitor runs out capacitance when depending on bias and temperature. In case the capacitor depends on the bias and temperature, please make sure the capacitor can ensure the actual capacitance.

<Current Limiter, Short-Circuit Protection>

The XC6219 series includes a combination of a fixed current limiter circuit & a foldback circuit, which aid the operations of the current limiter and circuit protection. When the load current reaches the current limit level, the fixed current limiter circuit operates and output voltage drops. As a result of this drop in output voltage, the foldback circuit operates, output voltage drops further and output current decreases. When the output pin is shorted, a current of about 50mA flows.

<CE Pin>

The IC's internal circuitry can be shutdown via the signal from the CE pin with the XC6219 series. In shutdown mode, output at the VouT pin will be pulled down to the Vss level via R1 & R2. The operational logic of the IC's CE pin is selectable (please refer to the selection guide). Note that as the standard XC6219B type's regulator 1 and 2 are both 'High Active/No Pull-Down', operations will become unstable with the CE pin open. Although the CE pin is equal to an inverter input with CMOS hysteresis, with either the pull-up or pull-down options, the CE pin input current will increase when the IC is in operation. We suggest that you use this IC with either a Vin voltage or a Vss voltage input at the CE pin. If this IC is used with the correct specifications for the CE pin, the operational logic is fixed and the IC will operate normally. However, supply current may increase as a result of through current in the IC's internal circuitry.

■NOTES ON USE

- 1. For temporary, transitional voltage drop or voltage rising phenomenon, the IC is liable to malfunction should the ratings be exceeded.
- 2. Where wiring impedance is high, operations may become unstable due to noise and/or phase lag depending on output current. Please keep the resistance low between V_{IN} and V_{SS} wiring in particular.
- 3. Please wire the input capacitor (C_{IN}) and the output capacitor (C_L) as close to the IC as possible.
- 4. The IC is controlled with constant current start-up. Start-up sequence control is requested to draw a load current after even nominal output voltage rising up the output voltage.
- Torex places an importance on improving our products and their reliability.We request that users incorporate fail-safe designs and post-aging protection treatment when using Torex products in their systems.

■TYPICAL PERFORMANCE CHARACTERISTICS

(1) Output Voltage vs. Output Current

2.3

(2) Output Voltage vs. Input Voltage

1.0

1.3

XC6219x252

1.8

Input Voltage VIN (V)

XC6219x252

XC6219x302

XC6219x302

(3) Dropout Voltage vs. Output Current

XC6219x302

(4) Supply Current vs. Input Voltage

(4) Supply Current vs. Input Voltage (Continued)

(5) Output Voltage vs. Ambient Temperature

Ambient Temperature Topr (°C)

XC6219x302

(6) Supply Current vs. Ambient Temperature

(7) Input Transient Response

(7) Input Transient Response (Continued)

(8) Load Transient Response

Time (40usec/div)

0

XC6219x182

(8) Load Transient Response (Continued)

(8) Load Transient Response (Continued)

(9) Ripple Rejection Rate

23/29

■PACKAGING INFORMATION

XC6219 Series

● SOT-25 Power Dissipation

Power dissipation data for the SOT-25 is shown in this page.

The value of power dissipation varies with the mount board conditions.

Please use this data as the reference data taken in the following condition.

1. Measurement Condition

Condition: Mount on a board

Ambient: Natural convection

Soldering: Lead (Pb) free

Board Dimensions: 40 x 40 mm (1600 mm² in one side)

Metal Area: Copper (Cu) traces occupy 50% of the board

area in top and back faces.

Package heat-sink is tied to the copper traces

Material: Glass Epoxy (FR-4)

Thickness: 1.6 mm

Through-hole: 4 x 0.8 Diameter

Evaluation Board (Unit: mm)

2. Power Dissipation vs. Ambient Temperature (85°C)

Board Mount (Tjmax=125°C)

Ambient Temperature (°C)	Power Dissipation Pd (mW)	Thermal Resistance (°C/W)
25	600	166.67
85	240	100.07

SOT-89-5 Power Dissipation

Power dissipation data for the SOT-89-5 is shown in this page.

The value of power dissipation varies with the mount board conditions.

Please use this data as the reference data taken in the following condition.

1. Measurement Condition

Condition: Mount on a board

Ambient: Natural convection

Soldering: Lead (Pb) free

Board Dimensions: 40 x 40 mm (1600 mm² in one side)

Metal Area: Copper (Cu) traces occupy 50% of the board

area in top and back faces.

Package heat-sink is tied to the copper traces

Material: Glass Epoxy (FR-4)

Thickness: 1.6 mm

Through-hole: 5 x 0.8 Diameter

Evaluation Board (Unit: mm)

2. Power Dissipation vs. Ambient Temperature (85°C)

Board Mount (Tjmax=125°C)

Ambient Temperature (°C)	Power Dissipation Pd (mW)	Thermal Resistance (°C/W)
25	1300	76.92
85	520	70.92

USP-6B Power Dissipation

Power dissipation data for the USP-6B is shown in this page.

The value of power dissipation varies with the mount board conditions.

Please use this data as the reference data taken in the following condition.

1. Measurement Condition

Condition: Mount on a board

Ambient: Natural convection

Soldering: Lead (Pb) free

Board Dimensions: 40 x 40 mm (1600 mm² in one side)

Metal Area: Copper (Cu) traces occupy 50% of the board

area in top and back faces.

Package heat-sink is tied to the copper traces

Material: Glass Epoxy (FR-4)

Thickness: 1.6 mm

Through-hole: 4 x 0.8 Diameter

Evaluation Board (Unit: mm)

2. Power Dissipation vs. Ambient Temperature

Board Mount (Tj max = 125°C)

Ambient Temperature (°C)	Power Dissipation Pd (mW)	Thermal Resistance(°C/W)
25	1000	400.00
85	400	100.00

■MARKING RULE

●SOT-25, SOT-89-5

① represents product series

MARK	PRODUCT SERIES
L	XC6219xxxxxx

② represents type of regulator

	MARK							
V _{OUT} 100mV II	NCREMENTS	V _{OUT} 50mV IN	PRODUCT SERIES					
V _{OUT} :0.1~3.0V	V _{OUT} :0.1~3.0V V _{OUT} :3.1~6.0V		V _{OUT} :0.15~3.05V V _{OUT} :3.15~6.05V					
V	А	Е	L	XC6219Axxxxx				
Х	В	F	M	XC6219Bxxxxx				
Y	С	Н	N	XC6219Cxxxxx				
Z	D	K	Р	XC6219Dxxxxx				
<u>V</u>	<u>A</u>	<u>E</u>	<u>L</u>	XC6219Exxxxx				
<u>X</u>	<u>B</u>	<u>F</u>	<u>M</u>	XC6219Fxxxxx				
<u>Y</u>	CI	<u>H</u>	<u>N</u>	XC6219Gxxxxx				
<u>Z</u>	<u>D</u>	<u>K</u>	<u>P</u>	XC6219Hxxxxx				

3 represents output voltage

MARK	OUTPUT VOLTAGE (V)			MARK	OU	TPUT V	OLTAGE	(V)	
0	-	3.1	-	3.15	F	1.6	4.6	1.65	4.65
1	-	3.2	1	3.25	Н	1.7	4.7	1.75	4.75
2	-	3.3	1	3.35	K	1.8	4.8	1.85	4.85
3	-	3.4	ı	3.45	L	1.9	4.9	1.95	4.95
4	-	3.5	ı	3.55	М	2.0	5.0	2.05	-
5	-	3.6	ı	3.65	N	2.1	1	2.15	-
6	-	3.7	-	3.75	Р	2.2	-	2.25	-
7	-	3.8	-	3.85	R	2.3	-	2.35	-
8	0.9	3.9	0.95	3.95	S	2.4	1	2.45	-
9	1.0	4.0	1.05	4.05	Т	2.5	-	2.55	-
Α	1.1	4.1	1.15	4.15	U	2.6	-	2.65	-
В	1.2	4.2	1.25	4.25	V	2.7	-	2.75	-
С	1.3	4.3	1.35	4.35	Х	2.8	-	2.85	-
D	1.4	4.4	1.45	4.45	Υ	2.9	-	2.95	-
Е	1.5	4.5	1.55	4.55	Z	3.0	-	3.05	-

4 represents production lot number

0 to 9, A to Z reverse character of 0 to 9, A to Z repeated (G, I, J, O, Q, W excluded)

■MARKING RULE (Continued)

●USP-6B

12 represents product series

MA	RK	DRODUCT SERIES	
1 2		PRODUCT SERIES	
1	9	XC6219xxxxDx	

3 represents type of regulator

MARK	TYPE	PRODUCT SERIES
Α	High Active, pull-down resistor built-in (semi-custom)	XC6219AxxxMx
В	High Active, no pull-down resistor built-in (standard)	XC6219BxxxMx
С	Low Active, pull-up resistor built-in (semi-custom)	XC6219CxxxMx
D	Low Active, no pull-up resistor built-in (semi-custom)	XC6219DxxxMx
E	High Active, pull-down resistor built-in (semi-custom)	XC6219ExxxDx
F	High Active, no pull-down resistor built-in (standard)	XC6219FxxxDx
Z	Low Active, pull-up resistor built-in (semi-custom)	XC6219GxxxDx
Н	Low Active, no pull-up resistor built-in (semi-custom)	XC6219HxxxDx

4 represents product series

MARK	VOLTAGE (V)	PRODUCT SERIES
3	3.X	XC6219x3xxDx
5	5.X	XC6219x5xxDx

5 represents output voltage

MARK	VOLTAGE	PRODUCT SERIES	SYMBOL	VOLTAGE	PRODUCT SERIES
0	X.0	XC6219xx0xDx	Α	X.05	XC6219xx0ADx
1	X.1	XC6219xx1xDx	В	X.15	XC6219xx1ADx
2	X.2	XC6219xx2xDx	С	X.25	XC6219xx2ADx
3	X.3	XC6219xx3xDx	D	X.35	XC6219xx3ADx
4	X.4	XC6219xx4xDx	Е	X.45	XC6219xx4ADx
5	X.5	XC6219xx5xDx	F	X.55	XC6219xx5ADx
6	X.6	XC6219xx6xDx	Н	X.65	XC6219xx6ADx
7	X.7	XC6219xx7xDx	K	X.75	XC6219xx7ADx
8	X.8	XC6219xx8xDx	L	X.85	XC6219xx8ADx
9	X.9	XC6219xx9xDx	М	X.95	XC6219xx9ADx

6 represents production lot number

0 to 9, A to Z repeated (G, I, J, O, Q, W excluded)

^{*} No character inversion used.

- 1. The products and product specifications contained herein are subject to change without notice to improve performance characteristics. Consult us, or our representatives before use, to confirm that the information in this datasheet is up to date.
- 2. We assume no responsibility for any infringement of patents, patent rights, or other rights arising from the use of any information and circuitry in this datasheet.
- 3. Please ensure suitable shipping controls (including fail-safe designs and aging protection) are in force for equipment employing products listed in this datasheet.
- 4. The products in this datasheet are not developed, designed, or approved for use with such equipment whose failure of malfunction can be reasonably expected to directly endanger the life of, or cause significant injury to, the user.
 - (e.g. Atomic energy; aerospace; transport; combustion and associated safety equipment thereof.)
- Please use the products listed in this datasheet within the specified ranges.
 Should you wish to use the products under conditions exceeding the specifications, please consult us or our representatives.
- 6. We assume no responsibility for damage or loss due to abnormal use.
- 7. All rights reserved. No part of this datasheet may be copied or reproduced without the prior permission of TOREX SEMICONDUCTOR LTD.

TOREX SEMICONDUCTOR LTD.