Exercise Sheet 1

MAGIC009 - Category Theory

October 11th, 2024

1. Check in detail that the following are indeed categories.

(a) **Rel**, the category of sets and relations. For this, recall that a relation from a set X to a set Y is a subset $R \subseteq X \times Y$. We define the composite of $R \subseteq X \times Y$ and $S \subset Y \times Z$ as the relation $S \circ R \subset X \times Z$ given by

$$S \circ R = \{(x, z) \in X \times Z \mid (\exists y \in Y) (x, y) \in R \land (y, z) \in S\}.$$

The identity relation on a set X is the relation $1_X = \{(x, y) \in X \times X \mid x = y\}$.

- (b) **Grp**, the category of groups and group homomorphisms.
- (c) **Top**, the category of topological spaces and continuous functions.
- 2. Let \mathbb{C}_1 and \mathbb{C}_2 be categories. There is a category, written $\mathbb{C}_1 \times \mathbb{C}_2$ and called the product of \mathbb{C}_1 and \mathbb{C}_2 , such that
 - $Ob(\mathbb{C}_1 \times \mathbb{C}_2) = Ob(\mathbb{C}_1) \times Ob(\mathbb{C})_2$
 - For (X_1, X_2) , $(Y_1, Y_2) \in Ob(\mathbb{C}_1 \times \mathbb{C}_2)$,

$$\mathbb{C}_1 \times \mathbb{C}_2((X_1, X_2), (Y_1, Y_2)) = \mathbb{C}_1(X_1, Y_1) \times \mathbb{C}_2(X_2, Y_2).$$

Complete this definition in the evident way and show that $\mathbb{C}_1 \times \mathbb{C}_2$ is a category.

3. Let $\mathbb C$ be a category. Recall from Lecture 1 that an an **inverse** of a map $f:X\to Y$ is a map $g\colon Y\to X$ such that

$$g \circ f = 1_X$$
, $f \circ g = 1_Y$.

and that we say that f is an **isomorphism** if it admits an inverse.

- (a) Prove that an inverse of f, if it exists, is unique.
- (b) Prove that the composite of two isomorphisms is an isomorphism and that identities are isomorphisms.
- 4. Let $(M, \cdot, 1)$ be a monoid and M the associated category.
 - (a) Describe what is an isomorphism in the category \underline{M} in terms of the monoid M.
 - (b) Assume that every map in M is an isomorphism. What can be said about the monoid M?
- 5. Let (P, \leq) be a poset and consider the category P associated to it.
 - (a) Describe what is a terminal object in \underline{P} in terms of the poset P.
 - (b) Find a finite poset (P, \leq) such that P does not have a terminal object.
- 6. Check that:
 - (a) {*} is a terminal object in **Set**,
 - (b) \varnothing is a terminal object in **Rel**.
- 7. The distributive law for a ring $(R, +, 0, \cdot, 1)$ says that

$$a \cdot (b+c) = ab + ac$$

for all $a, b, c \in R$. Express this equation as a commutative diagram in **Set**.