Lecture 21. Inference on PGMs

COMP90051 Statistical Machine Learning

Lecturer: Ben Rubinstein

This lecture

- Probabilistic inference: computing (conditional) marginals from joint distributions
 - Needed to learn (posterior update) in Bayesian ML
 - Exact inference: Elimination algorithm
 - * Approximate inference: Sampling
- Statistical inference: Parameter estimation
 - Fully observed case: Factors decompose under MLE
 - Latent variables: Motivates the EM algorithm

Probabilistic inference on PGMs

Computing marginal and conditional distributions from the joint of a PGM using Bayes rule and marginalisation.

This deck: how to do it efficiently.

Two familiar examples

- Naïve Bayes (frequentist/Bayesian)
 - Chooses most likely class given data

*
$$\Pr(Y|X_1,...,X_d) = \frac{\Pr(Y,X_1,...,X_d)}{\Pr(X_1,...,X_d)} = \frac{\Pr(Y,X_1,...,X_d)}{\sum_{y} \Pr(Y=y,X_1,...,X_d)}$$

- Data $X \mid \theta \sim N(\theta, 1)$ with prior $\theta \sim N(0, 1)$ (Bayesian)
 - * Given observation X = x update posterior

*
$$\Pr(\theta|X) = \frac{\Pr(\theta,X)}{\Pr(X)} = \frac{\Pr(\theta,X)}{\sum_{\theta} \Pr(\theta,X)}$$

Joint + Bayes rule + marginalisation → anything

Nuclear power plant

- Alarm sounds; meltdown?!
- $\Pr(HT|AS = t) = \frac{\Pr(HT, AS = t)}{\Pr(AS = t)}$ = $\frac{\sum_{FG, HG, FA} \Pr(AS = t, FA, HG, FG, HT)}{\sum_{FG, HG, FA, HT'} \Pr(AS = t, FA, HR, FG, HT')}$

Numerator (denominator similar)

expanding out sums, joint summing once over 25 table

$$= \sum_{FG} \sum_{HG} \sum_{FA} \Pr(HT) \Pr(HG|HT, FG) \Pr(FG) \Pr(AS = t|FA, HG) \Pr(FA)$$

distributing the sums as far down as possible summing over several smaller tables

$$= \Pr(HT) \sum_{FG} \Pr(FG) \sum_{HG} \Pr(HG|HT, FG) \sum_{FA} \Pr(FA) \Pr(AS = t|FA, HG)$$

Nuclear power plant (cont.)

= $\Pr(HT) \sum_{FG} \Pr(FG) \sum_{HG} \Pr(HG|HT,FG) \sum_{FA} \Pr(FA) \Pr(AS = t|FA,HG)$ eliminate AS: since AS observed, really a no-op

= $Pr(HT) \sum_{FG} Pr(FG) \sum_{HG} Pr(HG|HT,FG) \sum_{FA} Pr(FA) m_{AS} (FA,HG)$ eliminate FA: multiplying 1x2 by 2x2

= $Pr(HT) \sum_{FG} Pr(FG) \sum_{HG} Pr(HG|HT,FG) m_{FA}(HG)$ eliminate HG: multiplying 2x2x2 by 2x1 HT FG

of tables, followed by summing, is actually matrix multiplication

 $= \Pr(HT) \sum_{FG} \Pr(FG) m_{HG}(HT, FG)$

eliminate *FG*: multiplying 1x2 by 2x2

 $= \Pr(HT) m_{FG}(HT)$

 $m_{FA}(HG) =$ $\boxed{$ 0.6

Useful trick: $f(X = a) = \sum_{x} f(X = x) \delta(x = a)$

Elimination algorithm

Eliminate (Graph G, Evidence nodes E, Query nodes Q)

- 1. Choose node ordering I such that Q appears last
- 2. Initialise empty list active
- 3. For each node X_i in G
 - a) Append $Pr(X_i | parents(X_i))$ to active
- **4.** For each node X_i in E
 - a) Append $\delta(X_i, x_i)$ to active
- 5. For each i in I
 - a) potentials = Remove tables referencing X_i from active
 - b) N_i = nodes other than X_i referenced by tables
 - Table $\phi_i(X_i, X_{N_i})$ = product of tables
 - d) Table $m_i(X_{N_i}) = \sum_{X_i} \phi_i(X_i, X_{N_i})$
 - e) Append $m_i(X_{N_i})$ to active
- 6. Return $\Pr(X_Q|X_E = x_E) = \phi_Q(X_Q)/\sum_{X_Q} \phi_Q(X_Q)$

initialise evidence marginalise normalise

Runtime of elimination algorithm

"reconstructed" graph
From process called
moralisation

- Each step of elimination
 - Removes a node
 - Connects node's remaining neighbours
 - → forms a clique in the "reconstructed" graph (cliques are exactly r.v.'s involved in each sum)
- Time complexity exponential in largest clique
- Different elimination orderings produce different cliques
 - Treewidth: minimum over orderings of the largest clique
 - * Best possible time complexity is exponential in the treewidth e.g. $O(2^{tw})$

Mini Summary

(Exact) probabilistic inference on PGMs

- What? Marginalise out variables, Condition
- Why? Example: Bayesian posterior updates!
- How? The elimination algorithm
- How long? Time exponential in treewidth

Next: Approximate PGM probabilistic inference

Probabilistic inference by simulation

- Exact probabilistic inference can be expensive/impossible
 - Integration may not have analytical solution!
- Can we approximate numerically?
- Idea: sampling methods
 - Approximate distribution by histogram of a sample
 - * We can't trivially sample: (1) only know desired distribution up to a (normalising) constant (2) naïve sampling approaches are inefficient in high dimensions.

Gibbs sampling

Divide and conquer: Sampling single variable at a time.

- Given: D-PGM on d random variables Given: evidence values \mathbf{x}_E over variables $E \subset \{1, ..., d\}$ Goal: many approximately independent samples from joint conditioned on \mathbf{x}_E
- 1. Initialise with a starting $\mathbf{X}^{(0)} = \left(X_1^{(0)}, \dots, X_d^{(0)}\right)$ with $\mathbf{X}_E^{(0)} = \mathbf{x}_E$
- 2. Repeat many times
 - a) Pick non-evidence node X_i uniformly at random
 - b) Sample single node $X'_{j} \sim p\left(X_{j} | X_{1}^{(i-1)}, ..., X_{j-1}^{(i-1)}, X_{j+1}^{(i-1)}, ..., X_{d}^{(i-1)}\right)$
 - Save entire joint sample $\mathbf{X}^{(i)} = \left(X_1^{(i-1)}, \dots, X_{j-1}^{(i-1)}, X_j', X_{j+1}^{(i-1)}, \dots, X_d^{(i-1)}\right)$
- Exercise: Why always $\mathbf{X}_{E}^{(i)} = \mathbf{x}_{E}$?
- Need not update nodes in random order, e.g. parents first order
 But do need to be able to sample from conditionals (e.g. conjugacy)

Markov blanket

- Intuition: all the nodes that you directly depend on.
 Not just your parents/children!
- Consider node X_i in D-PGM on nodes $N = \{1, ..., d\}$
- Markov blanket MB(i) of X_i :
 - * Nodes $B \subseteq N \setminus \{i\}$ such that...
 - * X_i independent of $\mathbf{X}_{\bar{B}\setminus\{i\}}$ given \mathbf{X}_B
 - * $p(X_i | X_1, ..., X_{i-1}, X_{i+1}, ..., X_d) = p(X_i | MB(X_i))$
- In D-PGM Markov blanket is:
 - * Parents of i, children of i, parents of children of i
 - * $p(X_i \mid MB(X_i)) \propto p(X_i | X_{\pi_i}) \prod_{k:i \in \pi_k} p(X_k | X_{\pi_k})$

public domain

Markov Chain Monte Carlo (MCMC)

- Gibbs sampling produces a chain of samples $\mathbf{X}^{(1)}, \mathbf{X}^{(2)}, ...$ approximating draws from $p(\mathbf{X}_{\bar{E}}|\mathbf{X}_E=\mathbf{x}_E)$
- How good an approximation? Independent draws possible?
- Samples form a Markov chain: Each $\mathbf{X}^{(i)}$ depends only $\mathbf{X}^{(i-1)}$
 - States are all possible values taken by joint samples
 - * Initial distribution \mathbf{p}_0 of state $\mathbf{X}^{(0)}$ given by initialisation process
 - * Transition probability matrix **T** given by PGM conditional probabilities
 - * Combines to: distribution $\mathbf{p}_i = (\mathbf{T})^i \mathbf{p}_0$ of state $\mathbf{X}^{(i)}$.
- Burn in: Run Gibbs long enough and $\mathbf{X}^{(i)} \sim p(\mathbf{X}_{\bar{E}} | \mathbf{X}_E = \mathbf{x}_E)$
 - * "Limiting distribution" $\lim_{\substack{i \to \infty \\ i \to \infty}} \mathbf{p}_i$ is $p(\mathbf{X}_{\bar{E}} | \mathbf{X}_E = \mathbf{x}_E)$ under condition that no entry of \mathbf{T} is zero ("ergodicity" may not always hold)
 - * Solution: throw away first few thousand samples
- Thinning: Want saved full samples to be independent
 - * Neighbouring $\mathbf{X}^{(i)}$, $\mathbf{X}^{(i+1)}$ are highly correlated. Intuition why?
 - Solution: only keep every 100 or so samples

public domain

Initialising Gibbs: Forward Sampling

- Set all evidence nodes to observed values
- Remaining nodes, parent-first order
 - Node has no parents? Sample from its D-PGM marginal
 - Sample node given previously sampled parents
- However Markov chain theory tells us MCMC converges irrespective of initial sample's distribution
 - * The limiting distribution the "equilibrium distribution" is a property of the transition matrix (the PGM's joint) not the initial distribution

Now what??

- With our $\mathbf{X}^{(1)}$, ..., $\mathbf{X}^{(T)}$ in hand after running Gibbs for a while with burn-in and thinning...
- These form "i.i.d." sample of $p(\mathbf{X}_{\bar{E}}|\mathbf{X}_E=\mathbf{x}_E)$
- We can do heaps!
 - a) Can approximate the distribution via a histogram of these samples (make bins, form counts).
 - b) Marginalising out variables == Dropping components from samples
 - c) Expectations: Estimating by sample mean of samples
- Posterior $p(\mathbf{w}|\mathbf{X}_{tr}, \mathbf{y}_{tr})$ combine (a) and (b) Mean posterior point estimate, combine with (c)

Mini Summary

Approximate probabilistic inference on PGMs

- Why? Summation/integration may be costly
- Why? Integration may be impossible analytically
- Briefly: Gibbs sampling

Next: Statistical inference on PGMs

Statistical inference on PGMs

Learning from data — fitting probability tables to observations (eg as a frequentist; a **Bayesian would just use probabilistic inference** to update prior to posterior)

Have PGM, Some observations, No tables...

Fully-observed case is "easy"

- Max-Likelihood Estimator (MLE) says
 - * If we observe all r.v.'s X in a PGM independently n times x_i
 - * Then maximise the *full* joint $\arg \max_{\theta \in \Theta} \prod_{i=1}^{n} \prod_{j} p(X^{j} = x_{i}^{j} | X^{parents(j)} = x_{i}^{parents(j)})$

- Decomposes easily, leads to counts-based estimates
 - * Maximise log-likelihood instead; becomes sum of logs $\arg\max_{\theta\in\Theta}\sum_{i=1}^n\sum_j\log p(X^j=x_i^j|X^{parents(j)}=x_i^{parents(j)})$
 - Big maximisation of all parameters together, decouples into small independent problems
- Example is training a naïve Bayes classifier

Example: Fully-observed case

$$\frac{\#\{x_i|HG_i = true, HT_i = false, FG_i = false\}}{\#\{x_i|HT_i = false, FG_i = false\}}$$

Presence of unobserved variables trickier

- But most PGMs you'll encounter will have latent, or unobserved, variables
- What happens to the MLE?
 - Maximise likelihood of observed data only
 - Marginalise full joint to get to desired "partial" joint
 - * $\arg \max_{\theta \in \Theta} \prod_{i=1}^{n} \sum_{\text{latent } j} \prod_{j} p(X^{j} = x_{i}^{j} | X^{parents(j)} = x_{i}^{parents(j)})$
 - * This won't decouple oh-no's!!
- → Use EM algorithm!

i=1...n

Summary

- Probabilistic inference on PGMs
 - * What is it and why do we care?
 - Elimination algorithm; complexity via cliques
 - Monte Carlo approaches as alternate to exact integration
- Statistical inference on PGMs
 - * What is it and why do we care?
 - Straight MLE for fully-observed data
 - * EM algorithm for mixed latent/observed data

Next time: deeper dive into HMMs and more