Práctico 8: Independencia lineal y generadores. Bases y dimensión

- 1. Sea k un cuerpo y V un k-espacio vectorial. Demostrar las siguientes afirmaciones.
 - (a) Sean $v_1, v_2 \in V$ y $\lambda \in \mathbb{k}$. Demostrar que $\langle v_1, v_2 \rangle = \langle v_1, v_2 + \lambda v_1 \rangle$.
 - (b) Si $\lambda, \mu \in \mathbb{R}$ y $0 \neq v \in V$ son tales que $\lambda v = \mu v$. Demostrar que $\lambda = \mu$.
 - (c) Sean $w, v_1, \ldots, v_n \in V$. Demostrar que

$$\langle w, v_1, \dots, v_n \rangle = \langle v_1, \dots, v_n \rangle$$

si y sólo si $w \in \langle v_1, \dots, v_n \rangle$.

- 2. En cada caso, determine si el vector w es combinación lineal de los vectores del conjunto S en el espacio vectorial V.
 - (a) $V = \mathbb{R}^4$, w = (1, -1, 0, 0) y $S = \{(1, 0, 0, 2), (1, 1, 2, 2), (0, 1, 0, 1)\}.$
 - (b) $V = \mathbb{R}[x], w = 1 + x + x^2 + x^3 + x^4 + x^5 \text{ y } S = \{2, x + x^2, x^2 + x^3, x^3 + x^4, x^4 + x^5\}.$
- 3. Decidir si los siguientes subconjuntos de \mathbb{R}^3 son linealmente independientes. Cuando un conjunto no lo sea, mostrar una relación lineal no trivial entre sus elementos.
 - (a) $\{(1,0,-1), (1,2,1), (0,-3,2)\},\$
 - (b) $\{(1,0,-1), (1,-2,1), (2,-2,0)\},\$
 - (c) $\{(1,3,-3), (2,3,-4), (1,-3,1)\},\$
 - (d) $\{(1,1,1,1), (1,2,1,2), (1,3,1,3), (0,1,2,3)\},\$
 - (e) $\{(1,1,0,0), (0,0,1,1), (1,0,0,4), (0,0,0,2)\},\$
 - (f) $\{(1,1,2,4), (2,-1,-5,2), (1,-1,-4,0), (2,1,1,6)\}.$
- 4. Sea $A \in M_{3\times 4}(\mathbb{R})$ la matriz dada por

$$A = \left[\begin{array}{rrrr} 2 & 1 & 0 & 3 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{array} \right]$$

- (a) Calcular la dimensión del subespacio vectorial de \mathbb{R}^4 generado por las filas de A.
- (b) Calcular la dimensión del subespacio vectorial de \mathbb{R}^3 generado por las columnas de A.
- 5. Sea $A \in M_{3\times 4}(\mathbb{R})$ la matriz dada por

$$A = \left[\begin{array}{cccc} 2 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{array} \right]$$

Sea $W \subseteq \mathbb{R}^4$ el subespacio vectorial que consta de aquellos $X \in \mathbb{R}^4$ tales que AX = 0. Encontrar un conjunto de vectores que generen a W.

- 6. Demostrar las siguientes afirmaciones:
 - (a) Todo subconjunto de un conjunto LI es LI.
 - (b) Todo conjunto que contiene un subconjunto LD es también LD.
 - (c) Todo conjunto que contiene al vector 0 es LD.
 - (d) Un conjunto es LI si y sólo si todos sus subconjuntos finitos son LI.
 - (e) Probar que un conjunto de vectores $\{v_1, \ldots, v_n\}$ es LD si y sólo si alguno de los vectores está en el generado por los otros, esto es: existe $i, 1 \le i \le n$ tal que $v_i \in \langle v_1, \ldots, v_{i-1}, v_{i+1}, \ldots, v_n \rangle$.

- 7. En cada caso, determinar si el subconjunto indicado es linealmente independiente.
 - (a) $\{(1,0,-1),(1,2,1),(0,-3,2)\}\subseteq \mathbb{R}^3$.
 - $\text{(b) } \left\{ \begin{bmatrix} 1 & 0 & 2 \\ 0 & -1 & -3 \end{bmatrix}, \quad \begin{bmatrix} 1 & 0 & 1 \\ -2 & 1 & 0 \end{bmatrix}, \quad \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix} \right\} \subseteq M_{2\times 3}(\mathbb{R}).$
 - (c) $\{1, \text{sen}(x), \cos(x)\} \subset F(\mathbb{R})$ (Donde $F(\mathbb{R})$ es el \mathbb{R} -espacio vectorial del Ejercicio 3 del práctico 7).
 - (d) $\{1, 2\operatorname{sen}^2(x), \cos^2(x)\} \subset F(\mathbb{R}).$
 - (e) $\{1, x+1, x^2+x+1, x^3+x^2+x+1\} \subset \mathbb{R}_4[x]$
- 8. Dar 3 vectores en \mathbb{R}^3 que sean LD y tales que dos cualesquiera de ellos sean LI.
- 9. Sea V el \mathbb{Q} -espacio vectorial de sucesiones con valores racionales, es decir funciones $a: \mathbb{N} \to \mathbb{Q}$. Para todo $n \in \mathbb{N}$ encontrar un subconjunto de V de cardinal n que sea LI.
- 10. Sea $V = \mathbb{R}^6$, y sean W_1 y W_2 los siguientes subespacios de V:

$$W_1 = \{(u, v, w, x, y, z) : u + v + w = 0, x + y + z = 0\},\$$

$$W_2 = \langle (1, -1, 1, -1, 1, -1), (1, 2, 3, 4, 5, 6), (1, 0, -1, -1, 0, 1), (2, 1, 0, 0, 0, 0) \rangle.$$

- (a) Determinar $W_1 \cap W_2$, y describirlo por generadores y con ecuaciones.
- (b) Determinar $W_1 + W_2$, y describirlo por generadores y con ecuaciones.
- (c) ¿Es la suma $W_1 + W_2$, una suma directa?
- (d) Dar un complemento directo de W_1 .
- (e) Dar un complemento directo de W_2 .
- (f) Decir cuáles de los siguientes vectores están en $W_1 \cap W_2$ y cuáles en $W_1 + W_2$:

$$(1,1,-2,-2,1,1), (0,0,0,1,0,-1), (1,1,1,0,0,0), (3,0,0,1,1,3), (-1,2,5,6,5,4).$$

- (g) Para los vectores v del punto anterior en W_1+W_2 , hallar $w_1\in W_1$ y $w_2\in W_2$ tales que $v=w_1+w_2$.
- 11. Sea K un cuerpo. Decidir si las siguientes afirmaciones son verdaderas o falsas. Justificar.
 - (a) Si W_1 y W_2 son subespacios vectoriales de \mathbb{K}^8 de dimensión 5, entonces $W_1 \cap W_2 = 0$.
 - (b) Sean S,T y U subespacios de un espacio vectorial V tales que

$$S \cap T = S \cap U$$
, $S + T = S + U$, y $T \subset U$.

Entonces T = U.

- (c) Si W es un subespacio de $M_2(\mathbb{K})$ de dimensión 2, entonces existe una matriz triangular superior no nula que pertenece a W.
- (d) Sean $v_1, v_2, w \in \mathbb{K}^n$ y $A \in M_n(\mathbb{K})$ tales que $Av_1 = Av_2 = 0 \neq Aw$. Si $\{v_1, v_2\}$ es LI, entonces $\{v_1, v_2, w\}$ también es LI.
- 12. Consideremos a \mathbb{R} como \mathbb{Q} -espacio vectorial. Para todo $n \in \mathbb{N}$ encontrar un conjunto de n elementos de \mathbb{R} que sea LI. Calcular $\dim_{\mathbb{Q}} \mathbb{R}$.
- 13. Dar una base y la dimensión de los siguientes subespacios vectoriales:
 - (a) $\{(x, y, z) \in \mathbb{R}^3 : z = x + y\},$
 - (b) $\{(x, y, z, w, u) \in \mathbb{R}^5 : w = x + z, y = x z, u = 2x 3z\},\$
 - (c) $\{a_0 + a_1x + a_2x^2 + a_3x^3 \in \mathbb{R}_3[x] : a_0 + a_3 = a_1 + a_2\},\$
 - (d) $\{p(x) \in \mathbb{R}_4[x] : p'(0) = 0\}.$
 - $\text{(e)} \ \ W = \left\{ A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathbb{R}^{2 \times 2} \ : \ A \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} A \right\}.$
 - (f) $W = \{p(x) = a + bx + cx^2 + dx^3 \in \mathbb{R}_4[x] : p'(1) = 0 \text{ y } p(2) = p(3)\}$
- 14. Sean V un espacio vectorial de dimensión finita y $W \subset V$ un subespacio. Probar que si dim $W = \dim V$, entonces W = V

- 15. Sea \mathbb{k} un cuerpo. Dado $m \in \mathbb{N}_0$ denotamos por $\mathbb{k}_m[x]$ al subespacio de $\mathbb{k}[x]$ formado por los polinomios de grado < m.
 - (a) Sean p_1, \ldots, p_n polinomios no nulos en $\mathbb{k}[x]$ tales que sus grados son distintos dos a dos. Probar que $\{p_1, \ldots, p_n\}$ es LI en $\mathbb{k}[x]$.
 - (b) Probar que $\mathcal{B} = \{1, 1+x, (1+x)^2\}$ es una base de $\mathbb{k}_3[x]$. Encontrar las coordenadas de $p(x) = x^2$ en la base \mathcal{B} .
 - (c) Para todo $a \in \mathbb{k}$ y para todo $m \in \mathbb{N}_0$, demostrar que el conjunto

$$\{1, (x-a), (x-a)^2, \dots, (x-a)^{m-1}\}\$$

es una base de $\mathbb{k}_m[x]$.

- (d) Probar que $\mathbb{K}_3[x]$ es generado por $\{1, 2+2x, 1-x+x^2, 2-x^2\}$. ¿Es ese conjunto una base?
- 16. Probar que los vectores $v_1 = (1, 0, -i)$, $v_2 = (1 + i, 1 i, 1)$, $v_3 = (i, i, i)$ forman una base de \mathbb{C}^3 . Dar las coordenadas de un vector (x, y, z) en esta base.
- 17. Sean $\lambda_1, ..., \lambda_n \in \mathbb{R}$ todos distintos y recordemos el \mathbb{R} -espacio vectorial $F(\mathbb{R})$. Demostrar que el conjunto $\{e^{\lambda_1 x}, ..., e^{\lambda_n x}\} \subset F(\mathbb{R})$ es LI. Concluir que $\dim_{\mathbb{R}} F(\mathbb{R})$ es infinita.
- 18. Consideremos el espacio vectorial $M_n(\mathbb{R})$. Sean

$$Sym = \{ A \in M_n(\mathbb{R}) : A^t = A \},$$

$$Asym = \{ A \in M_n(\mathbb{R}) : A^t = -A \}.$$

Es decir, las matrices simétricas y antisimétricas. Demostrar que ambos Sym, Asym son subespacios vectoriales y que $M_n(\mathbb{R}) = Sym \oplus Asym$.

- 19. Sean $S = \{ f \in \mathbb{R}^{\mathbb{R}} \mid f(x) = f(-x) \ \forall x \in \mathbb{R} \}$ y $T = \{ f \in \mathbb{R}^{\mathbb{R}} \mid f(x) = -f(x) \ \forall x \in \mathbb{R} \}$, es decir S es el conjunto de funciones pares y T el conjunto de funciones impares. Probar que S y T son subespacios de $F(\mathbb{R})$ y que $F(\mathbb{R}) = S \oplus T$.
- 20. Decidir si es posible extender los siguientes conjuntos a una base de los respectivos espacios vectoriales. En caso afirmativo, extender a una base.
 - (a) $\{(1,2,1,1),(1,0,1,1),(3,2,3,3)\}\subseteq \mathbb{R}^4$.
 - (b) $\{(1,2,0,0),(1,0,1,0)\}\subseteq \mathbb{R}^4$.
 - (c) $\left\{ \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix} \right\} \subseteq M_{2 \times 2}(\mathbb{R}).$
 - (d) $\{1+x+x^2, x^2-x, 2x+3, 1\} \subseteq \mathbb{R}_5[x]$.

Ejercicios Adicionales

- 21. Supongamos que tenemos un conjunto LI $\{v_1, \ldots, v_n\}$ en un espacio vectorial V. Sea $w \in V$. Demostrar que si $\{v_1 + w, \ldots, v_n + w\}$ es LD, entonces $w \in \langle v_1, \ldots, v_n \rangle$.
- 22. Supongamos que \mathbb{F} y \mathbb{K} son cuerpos tales que \mathbb{F} es subcuerpo de \mathbb{K} . Entonces \mathbb{K} puede ser mirado como un \mathbb{F} -espacio vectorial. Supongamos que \mathbb{K} tiene dimensión finita mirado como \mathbb{F} -espacio vectorial. Sea V un \mathbb{K} -espacio vectorial (también se lo puede ver como un \mathbb{F} -espacio vectorial). Demostrar que V tiene dimensión finita mirado como \mathbb{K} -espacio vectorial si y solo si V tiene dimensión finita mirado como \mathbb{F} -espacio vectorial. Mostrar que en tal caso vale

$$\dim_{\mathbb{F}} V = \dim_{\mathbb{F}} \mathbb{K} \dim_{\mathbb{K}} V.$$

- 23. Dar una base y la dimensión de los siguientes subespacios vectoriales.
 - (a) $W = \{(x, y, z) \in \mathbb{R}^3 : z = x + y\}.$
 - (b) $W = \{(x, y, z, w, u) \in \mathbb{R}^5 : y = x z, w = x + z, u = 2x 3z\}.$
 - (c) $W = \{p(x) = a + bx + cx^2 + dx^3 \in \mathbb{R}_3[x] : a + d = b + c\}.$
 - (d) $W = \{p(x) \in \mathbb{R}_n[x] : p'(0) = 0\}.$

- 24. Sea \mathbb{k} un cuerpo. Dado $m \in \mathbb{N}_0$. Supongamos que tenemos $q_0, q_1, \dots q_m \in \mathbb{k}_m[x]$ tales que $q_j(1) = 0$ para todo j. Probar que $\{q_0, q_1, \dots, q_m\}$ es LD.
- 25. En los siguientes ejercicios k denota un cuerpo arbitrario. Calcular la dimensión de los siguientes espacios vectoriales exhibiendo una base.
 - (a) \mathbb{C}^n como \mathbb{C} -espacio vectorial.
 - (b) \mathbb{C}^n como \mathbb{R} -espacio vectorial.
 - (c) $\{A \in M_n(\mathbb{k}) : A = A^t\}.$
 - (d) $\{A \in M_n(\mathbb{k}) : A \text{ es triangular superior } \}.$
 - (e) $\{A \in M_n(\mathbb{k}) : Tr(A) = 0\}.$
 - (f) $\{A \in M_2(\mathbb{C}) : A = \overline{A^t}\}$ como \mathbb{R} -espacio vectorial.
- 26. Sea $S = \{v_1, v_2, v_3, v_4\} \subset \mathbb{R}^4$, donde

$$v_1 = (-1, 0, 1, 2), \quad v_2 = (3, 4, -2, 5), \quad v_3 = (0, 4, 1, 11), \quad v_4 = (1, 4, 0, 9).$$

- (a) Describir implícitamente al subespacio $W = \langle S \rangle$, es decir, hallar un sistema de ecuaciones lineales homogéneo, para el cuál su espacio de soluciones sea exactamente W.
- (b) Si $W_1 = \langle v_1, v_2, v_3 + v_4 \rangle$ y $W_2 = \langle v_3, v_4 \rangle$, describir $W_1 \cap W_2$ implícitamente.