Neural network development in the analysis of single top-quark production in association with a Higgs boson and light-quark at ATLAS

Christian Kirfel

15th of March 2020





## tHq ditau hadhad channel selection



- n-jets: 2 (b-jets: 1)
- b-jet WP: 70 DL1r
- ullet nLeptons & nTaus:  $1oldsymbol{e}/\mu$   $2 au_{\mathsf{had}}$
- **E**<sub>T,miss</sub>: no cut (to 800 GeV)

• jets

- $p_T > 35 \,\text{GeV}$
- $|\eta| < 4.5$ 
  - EMPFlow
- electrons:
  - $p_T > 20 \, \text{GeV}$  leading 27 GeV
  - $|\eta| < 2.5$  not in 1.37 1.52
  - WP: LooseAndBLayerLH; isolation: no requirement
- muons:
  - $p_T > 20 \,\text{GeV}$  leading 27 GeV
  - $0.01 < |\eta| < 2.5$
  - WP Loose ; isolation no requirement
- taus:
  - $p_T > 20 \,\text{GeV}$  leading 27 GeV
  - $|\eta| < 2.5$  not in 1.37 1.52
  - WP: RNNLoose
  - ASG recommended OLR ( $au_{had}$  remove jets



## Challenges

#### Negative weights in Monte Carlo

- Negative weights arise from ... source missing
- In neural network training negative weights lead to an unwanted behaviour

#### Different sizes of background processes

- Dominating background can diminish the significance of secondary backgrounds in training
- Especially very signal-like backgrounds are likely to be mislabeled

#### Accelerating network optimisation

- Exploration of new features is only possible in an optimised network
- · An evolutionary optimisation approach minimises the work effort

Motivation Intro Background Negative Weights Evolutionary Conclusions

## Background processes in neural network training



- Generally expected shape for signal and background response
- Due to the dominating size of tt̄ it defines the training
- For example tZq gets classified as signal
- The network has to be trained to take care of smaller signal-like samples
- Approaches: multiple networks, multiple targets, reweighting of the samples



Motivation Intro Background Negative Weights Evolutionary Conclusions

## Impact of negative weights on the training





- About 35% of events have negative weights
- Negative weights break the networks training
- Possible ways of handling the weights is to use the absolutes or just use positive weights

### Problems in network optimisation

#### Obstacles of optimisation processes

- Grid searches are both tedious and ressource intensive
- Knowledge gained in one problem is rarely universal
- Experienced users can develop a bias towards certain hyperparamters

### Applications of semi-supervised optimisation

- A neural network should be developed in parallel to an ongoing analysis.
- New additions need a new optimisation.



## Training specifications (Redundant?)

- Training a deep neural network
- Coarse optimisation using an evolutionary neural network
- Fine optimisation doing a grid search
- Optimised hyperparameters:
  - Number of nodes
  - Number of layers
  - Dropout percentage
- Signal: tHq
- Background: tt̄
- Using absolute weights



## Evolutionary optimisation of neural networks

- Combination of a grid searches with a survival of the fittest setup
- Start with a number of random hyperparamters
- Evaluate the set of hyperparameters
- Create a a new set of networks based on the previous best
- Add recombination and variation to avoid local minima and bias

# Example of an evolutionary training

- tHq as signal against tt as background
- Using basic kinematic variables
- Region: 2j1b
- Weights: absolute
- Testing: nodes, layers, dropout
- Fixed hyperparameters:
  - Optimizer: Adam
  - Activation: relu, sigmoid
  - Batchsize: 1000
  - Epochs per generation: 25

#### Initial parameters

- Layers: 1 − 10
- Nodes: 1 − 100
- Dropout: 0 − 1

### Final parameters

- Layers: 4 ± 2
- Nodes:  $67 \pm 33$
- Dropout:  $0.4 \pm 0.3$



# Comparing ROC to a grid search



earch Evolutionary search



## Comparing response to a grid search





Motivation Intro Background Negative Weights Evolutionary Conclusions

#### Conclusions

- Using neural networks for signal to background separation in the tHq channel is an interesting analysis that offers many challenges.
- Negative weights resulting from Monte Carlo generators cannot easily be handled by machine learning algorithms.
- Different sizes of background samples result in smaller backgrounds getting ignored or even classified as signal
- Evolutionary optimisation of neural networks is a nice approach to reoptimise a network automatically in an ongoing analysis.