CL-2029USNA.ST25.txt SEQUENCE LISTING

```
<110>
      E. I. duPont de Nemours and Company, Inc.
       Cheng, Qiong
       Suh, Wonchul
<120>
      Mutations Affecting Plasmid Copy Number
<130>
      CL2029 US NA
<150>
       US 60/434973
<151>
       2002-12-20
<160>
       28
<170> PatentIn version 3.2
<210>
<211>
       912
<212>
      DNA
<213> Pantoea stewartii
<220>
      misc_feature
<221>
<222>
      (1)..(3)
      Alternative start code TTG instead of ATG used.
<223>
<400>
ttgacggtct gcgcaaaaaa acacgttcac cttactggca tttcggctga gcagttgctg
                                                                       60
gctgatatcg atagccgcct tgatcagtta ctgccggttc agggtgagcg ggattgtgtg
                                                                      120
ggtgccgcga tgcgtgaagg cacgctggca ccgggcaaac gtattcgtcc gatgctgctg
                                                                      180
ttattaacag cgcgcgatct tggctgtgcg atcagtcacg ggggattact ggatttagcc
                                                                      240
tgcgcggttg aaatggtgca tgctgcctcg ctgattctgg atgatatgcc ctgcatggac
                                                                      300
gatgcgcaga tgcgtcgqqq qcqtcccacc attcacacqc agtacggtga acatgtqqcq
                                                                      360
attctggcgg cggtcgcttt actcagcaaa gcgtttgggg tgattgccga ggctgaaggt
                                                                      420
ctgacgccga tagccaaaac tcgcgcggtg tcggagctgt ccactgcgat tggcatgcag
                                                                      480
ggtctggttc agggccagtt taaggacctc tcggaaggcg ataaaccccg cagcgccgat
                                                                      540
gccatactgc taaccaatca gtttaaaacc agcacgctgt tttqcqcqtc aacqcaaatq
                                                                      600
gcgtccattg cggccaacgc gtcctgcgaa gcgcgtgaga acctgcatcg tttctcgctc
                                                                      660
gatctcggcc aggcctttca gttgcttgac gatcttaccg atggcatgac cgataccggc
                                                                      720
aaagacatca atcaggatgc aggtaaatca acgctggtca atttattagg ctcaggcgcg
                                                                      780
gtcgaagaac gcctgcgaca gcatttgcgc ctggccagtg aacacctttc cgcggcatgc
                                                                      840
caaaacggcc attccaccac ccaacttttt attcaggcct ggtttgacaa aaaactcgct
                                                                      900
                                                                      912
gccgtcagtt aa
<210>
       2
       303
<211>
<212>
       PRT
<213>
      Pantoea stewartii
<400>
       2
```

Met Thr Val Cys Ala Lys Lys His Val His Leu Thr Gly Ile Ser Ala 1 5 10 15 Glu Gln Leu Leu Ala Asp Ile Asp Ser Arg Leu Asp Gln Leu Leu Pro 20 25 30 Val Gln Gly Glu Arg Asp Cys Val Gly Ala Ala Met Arg Glu Gly Thr 35 40 45 Leu Ala Pro Gly Lys Arg Ile Arg Pro Met Leu Leu Leu Leu Thr Ala 50 60 Arg Asp Leu Gly Cys Ala Ile Ser His Gly Gly Leu Leu Asp Leu Ala 65 70 75 80 Cys Ala Val Glu Met Val His Ala Ala Ser Leu Ile Leu Asp Asp Met 85 90 95 Pro Cys Met Asp Asp Ala Gln Met Arg Arg Gly Arg Pro Thr Ile His $100 \hspace{1cm} 105 \hspace{1cm} 110$ Thr Gln Tyr Gly Glu His Val Ala Ile Leu Ala Ala Val Ala Leu Leu 115 120 125 Ser Lys Ala Phe Gly Val Ile Ala Glu Ala Glu Gly Leu Thr Pro Ile 130 140 Ala Lys Thr Arg Ala Val Ser Glu Leu Ser Thr Ala Ile Gly Met Gln 145 150 155 Gly Leu Val Gln Gly Gln Phe Lys Asp Leu Ser Glu Gly Asp Lys Pro 165 170 175 Arg Ser Ala Asp Ala Ile Leu Leu Thr Asn Gln Phe Lys Thr Ser Thr 180 185 190 Leu Phe Cys Ala Ser Thr Gln Met Ala Ser Ile Ala Ala Asn Ala Ser 195 200 205 Cys Glu Ala Arg Glu Asn Leu His Arg Phe Ser Leu Asp Leu Gly Gln 210 220 Ala Phe Gln Leu Leu Asp Asp Leu Thr Asp Gly Met Thr Asp Thr Gly 225 230 235 240 Lys Asp Ile Asn Gln Asp Ala Gly Lys Ser Thr Leu Val Asn Leu Leu 245 250 255 Gly Ser Gly Ala Val Glu Glu Arg Leu Arg Gln His Leu Arg Leu Ala 260 265 270

Ser Glu His Leu Ser Ala Ala Cys Gln Asn Gly His Ser Thr Thr Gln 275 280 285

Leu Phe Ile Gln Ala Trp Phe Asp Lys Lys Leu Ala Ala Val Ser 290 295 300

<210 <211 <212 <213	> !> I	3 1296 DNA Panto	oea s	stewa	arti [.]	i										
<220> <221> CDS <222> (1)(1296)																
<400 atg Met 1	agc	3 cat His	ttt Phe	gcg Ala 5	gtg Val	atc Ile	gca Ala	ccg Pro	ccc Pro 10	ttt Phe	ttc Phe	agc Ser	cat His	gtt Val 15	cgc Arg	48
gct Ala	ctg Leu	caa Gln	aac Asn 20	ctt Leu	gct Ala	cag Gln	gaa Glu	tta Leu 25	gtg Val	gcc Ala	cgc Arg	ggt Gly	cat His 30	cgt Arg	gtt Val	96
acg Thr	ttt Phe	ttt Phe 35	cag Gln	caa Gln	cat His	gac Asp	tgc Cys 40	aaa Lys	gcg Ala	ctg Leu	gta Val	acg Thr 45	ggc Gly	agc Ser	gat Asp	144
atc Ile	gga Gly 50	ttc Phe	cag Gln	acc Thr	gtc Val	gga Gly 55	ctg Leu	caa Gln	acg Thr	cat His	cct Pro 60	ccc Pro	ggt Gly	tcc Ser	tta Leu	192
tcg Ser 65	cac His	ctg Leu	ctg Leu	cac His	ctg Leu 70	gcc Ala	gcg Ala	cac His	cca Pro	ctc Leu 75	gga Gly	ccc Pro	tcg Ser	atg Met	tta Leu 80	240
cga Arg	ctg Leu	atc Ile	aat Asn	gaa Glu 85	atg Met	gca Ala	cgt Arg	acc Thr	agc Ser 90	gat Asp	atg Met	ctt Leu	tgc Cys	cgg Arg 95	gaa Glu	288
ctg Leu	ccc Pro	gcc Ala	gct Ala 100	ttt Phe	cat His	gcg Ala	ttg Leu	cag Gln 105	ata Ile	gag Glu	ggc Gly	gtg Val	atc Ile 110	gtt Val	gat Asp	336
caa Gln	atg Met	gag Glu 115	ccg Pro	gca Ala	ggt Gly	gca Ala	gta Val 120	gtc Val	gca Ala	gaa Glu	gcg Ala	tca Ser 125	ggt Gly	ctg Leu	ccg Pro	384
Phe	gtt Val 130	tcg Ser	gtg Val	gcc Ala	tgc Cys	gcg Ala 135	ctg Leu	ccg Pro	ctc Leu	aac Asn	cgc Arg 140	gaa Glu	ccg Pro	ggt Gly	ttg Leu	432
cct Pro 145	ctg Leu	gcg Ala	gtg Val	atg Met	cct Pro 150	ttc Phe	gag Glu	tac Tyr	ggc Gly	acc Thr 155	agc Ser	gat Asp	gcg Ala	gct Ala	cgg Arg 160	480
		tat Tyr														528
cac His	gat Asp	cgt Arg	gtg val 180	atc Ile	gcg Ala	cat His	cat His	gca Ala 185	tgc Cys	aga Arg	atg Met	ggt Gly	tta Leu 190	gcc Ala	ccg Pro	576

cgt gaa Arg Gl	a aaa u Lys 195	ctg Leu	cat His	cat His	tgt Cys	ttt	L-20 tct Ser	cca	ctg	gca	caa	atc Ile	agc Ser	cag Gln	624
ttg ato Leu Ilo 210	e Pro	gaa Glu	ctg Leu	gat Asp	ttt Phe 215	ccc Pro	cgc Arg	aaa Lys	gcg Ala	ctg Leu 220	cca Pro	gac Asp	tgc Cys	ttt Phe	672
cat gc His Ala 225	g gtt a Val	gga Gly	ccg Pro	tta Leu 230	cgg Arg	caa Gln	ccc Pro	cag Gln	ggg Gly 235	acg Thr	ccg Pro	ggg Gly	tca Ser	tca Ser 240	720
act tc Thr Se															768
ggc ac Gly Th															816
gcc tge Ala Cy	c gaa s Glu 275	gag Glu	gtg Val	gat Asp	gcg Ala	cag G1n 280	tta Leu	ctg Leu	ttg Leu	gca Ala	cac His 285	tgt Cys	ggc Gly	ggc Gly	864
ctc tca Leu Se 29		acg Thr	cag Gln	gca Ala	ggt Gly 295	gaa Glu	ctg Leu	gcc Ala	cgg Arg	ggc Gly 300	ggg Gly	gac Asp	att Ile	cag Gln	912
gtt gtg Val Va 305	g gat I Asp	ttt Phe	gcc Ala	gat Asp 310	caa Gln	tcc Ser	gca Ala	gca Ala	ctt Leu 315	tca Ser	cag Gln	gca Ala	cag Gln	ttg Leu 320	960
aca ato	c aca e Thr	cat His	ggt Gly 325	ggg Gly	atg Met	aat Asn	acg Thr	gta Val 330	ctg Leu	gac Asp	gct Ala	att Ile	gct Ala 335	tcc Ser	1008
cgc aca	a ccg r Pro	cta Leu 340	ctg Leu	gcg Ala	ctg Leu	ccg Pro	ctg Leu 345	gca Ala	ttt Phe	gat Asp	caa Gln	cct Pro 350	ggc Gly	gtg Val	1056
gca tca Ala Se	a cga r Arg 355	att Ile	gtt Val	tat Tyr	cat His	ggc Gly 360	atc Ile	ggc Gly	aag Lys	cgt Arg	gcg Ala 365	tct Ser	cgg Arg	ttt Phe	1104
act acc Thr Th 370	r Ser														1152
acc ga Thr As _l 385	t tac Tyr	ccg Pro	cag Gln	cgt Arg 390	atg Met	aca Thr	aaa Lys	att Ile	cag Gln 395	gcc Ala	gca Ala	ttg Leu	cgt Arg	ctg Leu 400	1200
gca gge Ala Gl	c ggc y Gly	aca Thr	cca Pro 405	gcc Ala	gcc Ala	gcc Ala	gat Asp	att Ile 410	gtt Val	gaa Glu	cag Gln	gcg Ala	atg Met 415	cgg Arg	1248
acc tg Thr Cys	t cag s Gln	cca Pro 420	gta Val	ctc Leu	agt Ser	ggg Gly	cag Gln 425	gat Asp	tat Tyr	gca Ala	acc Thr	gca Ala 430	cta Leu	tga	1296
<210> <211> <212> <213>	4 431 PRT Panto	nea (stew:	artij	ı										
<400>	4			 ,	-										

CL-2029USNA.ST25.txt
Met Ser His Phe Ala Val Ile Ala Pro Pro Phe Phe Ser His Val Arg
1 5 10 15 Ala Leu Gln Asn Leu Ala Gln Glu Leu Val Ala Arg Gly His Arg Val 20 25 30 Thr Phe Phe Gln Gln His Asp Cys Lys Ala Leu Val Thr Gly Ser Asp 35 40 45 Ile Gly Phe Gln Thr Val Gly Leu Gln Thr His Pro Pro Gly Ser Leu 50 60 Ser His Leu Leu His Leu Ala Ala His Pro Leu Gly Pro Ser Met Leu 65 70 75 80 Arg Leu Ile Asn Glu Met Ala Arg Thr Ser Asp Met Leu Cys Arg Glu 85 90 95 Leu Pro Ala Ala Phe His Ala Leu Gln Ile Glu Gly Val Ile Val Asp 100 105 110 Gln Met Glu Pro Ala Gly Ala Val Val Ala Glu Ala Ser Gly Leu Pro 115 120 125 Phe Val Ser Val Ala Cys Ala Leu Pro Leu Asn Arg Glu Pro Gly Leu 130 140 Pro Leu Ala Val Met Pro Phe Glu Tyr Gly Thr Ser Asp Ala Ala Arg 145 150 155 160 Glu Arg Tyr Thr Thr Ser Glu Lys Ile Tyr Asp Trp Leu Met Arg Arg 165 170 175 His Asp Arg Val Ile Ala His His Ala Cys Arg Met Gly Leu Ala Pro 180 185 Arg Glu Lys Leu His His Cys Phe Ser Pro Leu Ala Gln Ile Ser Gln 195 200 205 Leu Ile Pro Glu Leu Asp Phe Pro Arg Lys Ala Leu Pro Asp Cys Phe 210 220 His Ala Val Gly Pro Leu Arg Gln Pro Gln Gly Thr Pro Gly Ser Ser 225 230 235 240 Thr Ser Tyr Phe Pro Ser Pro Asp Lys Pro Arg Ile Phe Ala Ser Leu 245 250 255 Gly Thr Leu Gln Gly His Arg Tyr Gly Leu Phe Arg Thr Ile Ala Lys 260 265 270

```
CL-2029USNA.ST25.txt
Ala Cys Glu Glu Val Asp Ala Gln Leu Leu Leu Ala His Cys Gly Gly 275 280 285
Leu Ser Ala Thr Gln Ala Gly Glu Leu Ala Arg Gly Gly Asp Ile Gln 290 300
Val Val Asp Phe Ala Asp Gln Ser Ala Ala Leu Ser Gln Ala Gln Leu
305 310 315 320
Thr Ile Thr His Gly Gly Met Asn Thr Val Leu Asp Ala Ile Ala Ser
325 330 335
Arg Thr Pro Leu Leu Ala Leu Pro Leu Ala Phe Asp Gln Pro Gly Val 340 345 350
Ala Ser Arg Ile Val Tyr His Gly Ile Gly Lys Arg Ala Ser Arg Phe 355 360
Thr Thr Ser His Ala Leu Ala Arg Gln Ile Arg Ser Leu Leu Thr Asn 370 380
Thr Asp Tyr Pro Gln Arg Met Thr Lys Ile Gln Ala Ala Leu Arg Leu 385 390 395 400
Ala Gly Gly Thr Pro Ala Ala Ala Asp Ile Val Glu Gln Ala Met Arg
Thr Cys Gln Pro Val Leu Ser Gly Gln Asp Tyr Ala Thr Ala Leu
420 425 430
<210>
         5
         1149
<211>
<212>
         DNA
<213>
         Pantoea stewartii
<220>
<221>
<222>
         CDS
         (1)..(1149)
atg caa ccg cac tat gat ctc att ctg gtc ggt gcc ggt ctg gct aat
Met Gln Pro His Tyr Asp Leu Ile Leu Val Gly Ala Gly Leu Ala Asn
1 10 15
                                                                                                48
ggc ctt atc gcg ctc cgg ctt cag caa cag cat ccg gat atg cgg atc Gly Leu Ile Ala Leu Arg Leu Gln Gln His Pro Asp Met Arg Ile 20 25 30
                                                                                                96
ttg ctt att gag gcg ggt cct gag gcg gga ggg aac cat acc tgg tcc
Leu Leu Ile Glu Ala Gly Pro Glu Ala Gly Gly Asn His Thr Trp Ser
                                                                                               144
ttt cac gaa gag gat tta acg ctg aat cag cat cgc tgg ata gcg ccg
Phe His Glu Glu Asp Leu Thr Leu Asn Gln His Arg Trp Ile Ala Pro
                                                                                               192
ctt gtg gtc cat cac tgg ccc gac tac cag gtt cgt ttc ccc caa cgc
                                                                                               240
                                                    Page 6
```

Leu 65	٧a٦	Val	His	His	Trp 70	Pro	Asp	Tyr	Gln	val 75	Arg	Phe	Pro	Gln	Arg 80	
cgt Arg	cgc Arg	cat His	gtg val	aac Asn 85	agt Ser	ggc Gly	tac Tyr	tac Tyr	tgc Cys 90	gtg Val	acc Thr	tcc Ser	cgg Arg	cat His 95	ttc Phe	288
gcc Ala	ggg Gly	ata Ile	ctc Leu 100	cgg Arg	caa Gln	cag Gln	ttt Phe	gga Gly 105	caa Gln	cat His	tta Leu	tgg Trp	ctg Leu 110	cat His	acc Thr	336
gcg Ala	gtt Val	tca Ser 115	gcc Ala	gtt Val	cat His	gct Ala	gaa Glu 120	tcg Ser	gtc Val	cag Gln	tta Leu	gcg Ala 125	gat Asp	ggc Gly	cgg Arg	384
att Ile	att Ile 130	cat His	gcc Ala	agt Ser	aca Thr	gtg Val 135	atc Ile	gac Asp	gga Gly	cgg Arg	ggt Gly 140	tac Tyr	acg Thr	cct Pro	gat Asp	432
tct Ser 145	gca Ala	cta Leu	cgc Arg	gta Val	gga Gly 150	Phe	cag Gln	gca Ala	ttt Phe	atc Ile 155	ggt Gly	cag Gln	gag Glu	tgg Trp	caa Gln 160	480
	agc Ser															528
	gat Asp															576
	acc Thr															624
ctt Lei	cag Gln 210	gcc Ala	gaa Glu	cgg Arg	gcg Ala	cgt Arg 215	cag Gln	aac Asn	att Ile	cgc Arg	gat Asp 220	tat Tyr	gct Ala	gcg Ala	cga Arg	672
cag Glr 225	ggt Gly	tgg Trp	ccg Pro	tta Leu	cag Gln 230	acg Thr	ttg Leu	ctg Leu	cgg Arg	gaa Glu 235	gaa Glu	cag Gln	ggt Gly	gca Ala	ttg Leu 240	720
ccc Pro	att Ile	acg Thr	tta Leu	acg Thr 245	ggc Gly	gat Asp	aat Asn	cgt Arg	cag Gln 250	ttt Phe	tgg Trp	caa Gln	cag Gln	caa Gln 255	ccg Pro	768
caa Glr	gcc Ala	tgt Cys	agc Ser 260	gga Gly	tta Leu	cgc Arg	gcc Ala	ggg Gly 265	ctg Leu	ttt Phe	cat His	ccg Pro	aca Thr 270	acc Thr	ggc Gly	816
tac Tyr	tcc	cta Leu 275	ccg Pro	ctc Leu	gcg Ala	gtg Val	gcg Ala 280	ctg Leu	gcc Ala	gat Asp	cgt Arg	ctc Leu 285	agc Ser	gcg Ala	ctg Leu	864
	gtg Val 290															912
cag Gln 305	caa Gln	cgt Arg	tgg Trp	cag Gln	caa Gln 310	cag Gln	ggg Gly	ttt Phe	ttc Phe	cgc Arg 315	atg Met	ctg Leu	aat Asn	cgc Arg	atg Met 320	960
ttg Leu	ttt Phe	tta Leu	gcc Ala	gga Gly 325	ccg Pro	gcc Ala	gag Glu	tca Ser	cgc Arg 330	tgg Trp	cgt Arg	gtg Val	atg Met	cag Gln 335	cgt Arg	1008
ttc	tat	ggc	tta	ccc	gag	gat	ttg	att		cgc ge 7		tat	gcg	gga	aaa	1056

Phe Tyr Gly Leu Pro Glu Asp Leu Ile Ala Arg Phe Tyr Ala Gly Lys 340 345 350

ctc acc gtg acc gat cgg cta cgc att ctg agc ggc aag ccg ccc gtt Leu Thr Val Thr Asp Arg Leu Arg Ile Leu Ser Gly Lys Pro Pro Val 355 360 365 1104

1149

<210> 6

<211> <212> 382 PRT

Pantoea stewartii

<400>

Met Gln Pro His Tyr Asp Leu Ile Leu Val Gly Ala Gly Leu Ala Asn 1 15

Gly Leu Ile Ala Leu Arg Leu Gln Gln Gln His Pro Asp Met Arg Ile 20 25 30

Leu Leu Ile Glu Ala Gly Pro Glu Ala Gly Gly Asn His Thr Trp Ser 35 40 45

Phe His Glu Glu Asp Leu Thr Leu Asn Gln His Arg Trp Ile Ala Pro 50 55 60

Leu Val Val His His Trp Pro Asp Tyr Gln Val Arg Phe Pro Gln Arg 65 70 75 80

Arg Arg His Val Asn Ser Gly Tyr Tyr Cys Val Thr Ser Arg His Phe 85 90 95

Ala Gly Ile Leu Arg Gln Gln Phe Gly Gln His Leu Trp Leu His Thr 100 105 110

Ala Val Ser Ala Val His Ala Glu Ser Val Gln Leu Ala Asp Gly Arg 115 120 125

Ile Ile His Ala Ser Thr Val Ile Asp Gly Arg Gly Tyr Thr Pro Asp 130 135

Ser Ala Leu Arg Val Gly Phe Gln Ala Phe Ile Gly Gln Glu Trp Gln 145 150 155 160

Leu Ser Ala Pro His Gly Leu Ser Ser Pro Ile Ile Met Asp Ala Thr 165 170 175

Val Asp Gln Gln Asn Gly Tyr Arg Phe Val Tyr Thr Leu Pro Leu Ser 180 185 190

Ala Thr Ala Leu Leu Ile Glu Asp Thr His Tyr Ile Asp Lys Ala Asn Page 8

Leu Gln Ala Glu Arg Ala Arg Gln Asn Ile Arg Asp Tyr Ala Ala Arg 210 215 220 Gln Gly Trp Pro Leu Gln Thr Leu Leu Arg Glu Glu Gln Gly Ala Leu 225 230 235 240 Pro Ile Thr Leu Thr Gly Asp Asn Arg Gln Phe Trp Gln Gln Gln Pro 245 250 255 Gln Ala Cys Ser Gly Leu Arg Ala Gly Leu Phe His Pro Thr Thr Gly 260 265 270 Tyr Ser Leu Pro Leu Ala Val Ala Leu Ala Asp Arg Leu Ser Ala Leu 275 280 285 Asp Val Phe Thr Ser Ser Ser Val His Gln Thr Ile Ala His Phe Ala 290 295 300 Gln Gln Arg Trp Gln Gln Gly Phe Phe Arg Met Leu Asn Arg Met 305 310 315 320 Leu Phe Leu Ala Gly Pro Ala Glu Ser Arg Trp Arg Val Met Gln Arg 325 330 335 Phe Tyr Gly Leu Pro Glu Asp Leu Ile Ala Arg Phe Tyr Ala Gly Lys 340 345 350 Leu Thr Val Thr Asp Arg Leu Arg Ile Leu Ser Gly Lys Pro Pro Val 355 360 365Pro Val Phe Ala Ala Leu Gln Ala Ile Met Thr Thr His Arg 370 375 380 <210> 1479 <211> <212> DNA Pantoea stewartii <213> <220> <221> CDS <222> (1)..(1479)<400> 7 atg aaa cca act acg gta att ggt gcg ggc ttt ggt ggc ctg gca ctg Met Lys Pro Thr Thr Val Ile Gly Ala Gly Phe Gly Gly Leu Ala Leu 1 5 10 1548 gca att cgt tta cag gcc gca ggt att cct gtt ttg ctg ctt gag cag Ala Ile Arg Leu Gln Ala Ala Gly Ile Pro Val Leu Leu Leu Glu Gln 20 25 3096 cgc gac aag ccg ggt ggc cgg gct tat gtt tat cag gag cag ggc ttt Arg Asp Lys Pro Gly Gly Arg Ala Tyr Val Tyr Gln Glu Gln Gly Phe 144

Page 9

	ttt	aat	~~~													
Thr	Phe 50	Asp	Ala	Gly	Pro	acc Thr 55	gtt Val	atc Ile	acc Thr	gat Asp	ccc Pro 60	agc Ser	gcg Ala	att Ile	gaa Glu	192
gaa Glu 65	ctg Leu	ttt Phe	gct Ala	ctg Leu	gcc Ala 70	ggt Gly	aaa Lys	cag Gln	ctt Leu	aag Lys 75	gat Asp	tac Tyr	gtc Val	gag Glu	ctg Leu 80	240
ttg Leu	ccg Pro	gtc Val	acg Thr	ccg Pro 85	ttt Phe	tat Tyr	cgc Arg	ctg Leu	tgc Cys 90	tgg Trp	gag Glu	tcc Ser	ggc Gly	aag Lys 95	gtc val	288
ttc Phe	aat Asn	tac Tyr	gat Asp 100	aac Asn	gac Asp	cag Gln	gcc Ala	cag Gln 105	tta Leu	gaa Glu	gcg Ala	cag Gln	ata Ile 110	cag Gln	cag Gln	336
													gac Asp			384
													gtg Val			432
tta Leu 145	tcg Ser	ttc Phe	aaa Lys	gac Asp	atg Met 150	ctt Leu	cgg Arg	gcc Ala	gcg Ala	ccc Pro 155	cag Gln	ttg Leu	gca Ala	aag Lys	ctg Leu 160	480
cag Gln	gca Ala	tgg Trp	cgc Arg	agc ser 165	gtt Val	tac Tyr	agt Ser	aaa Lys	gtt Val 170	gcc Ala	ggc Gly	tac Tyr	att Ile	gag Glu 175	gat Asp	528
gag Glu	cat His	ctt Leu	cgg Arg 180	cag Gln	gcg Ala	ttt Phe	tct Ser	ttt Phe 185	cac His	tcg Ser	ctc Leu	tta Leu	gtg Val 190	ggg Gly	ggg Gly	576
aat Asn	ccg Pro	ttt Phe 195	gca Ala	acc Thr	tcg Ser	tcc Ser	att Ile 200	tat Tyr	acg Thr	ctg Leu	att Ile	cac His 205	gcg Ala	tta Leu	gaa Glu	624
cgg Arg	gaa Glu 210	tgg Trp	ggc Gly	gtc Val	tgg Trp	ttt Phe 215	cca Pro	cgc Arg	ggt Gly	gga Gly	acc Thr 220	ggt Gly	gcg Ala	ctg Leu	gtc Val	672
aat Asn 225	ggc Gly	atg Met	atc Ile	aag Lys	ctg Leu 230	ttt Phe	cag Gln	gat Asp	ctg Leu	ggc Gly 235	ggc Gly	gaa Glu	gtc Val	gtg Val	ctt Leu 240	720
aac Asn	gcc Ala	cgg Arg	gtc Val	agt Ser 245	cat His	atg Met	gaa Glu	acc Thr	gtt Val 250	ggg Gly	gac Asp	aag Lys	att Ile	cag Gln 255	gcc Ala	768
													gtg Val 270			816
aac Asn	gct Ala	gat Asp 275	gtt Val	gta Val	cat His	acc Thr	tat Tyr 280	cgc Arg	gat Asp	ctg Leu	ctg Leu	tct Ser 285	cag Gln	cat His	ccc Pro	864
													atg Met			912
tca Ser	ctg Leu	ttt Phe	gta Val	ctc Leu	tat Tyr	ttt Phe	ggt Gly	ctc Leu	Asn	cat His ge 10	His	cac His	gat Asp	caa Gln	ctc Leu	960

CL-2029USNA.ST25.1	tx1	t
315		

CL-2029USNA.ST25.txt 305 310 315 320	
gcc cat cat acc gtc tgt ttt ggg cca cgc tac cgt gaa ctg att cac Ala His His Thr Val Cys Phe Gly Pro Arg Tyr Arg Glu Leu Ile His 325 330 335	1008
gaa att ttt aac cat gat ggt ctg gct gag gat ttt tcg ctt tat tta Glu Ile Phe Asn His Asp Gly Leu Ala Glu Asp Phe Ser Leu Tyr Leu 340 345 350	1056
cac gca cct tgt gtc acg gat ccg tca ctg gca ccg gaa ggg tgc ggc His Ala Pro Cys Val Thr Asp Pro Ser Leu Ala Pro Glu Gly Cys Gly 355 360 365	1104
agc tat tat gtg ctg gcg cct gtt cca cac tta ggc acg gcg aac ctc Ser Tyr Tyr Val Leu Ala Pro Val Pro His Leu Gly Thr Ala Asn Leu 370 375 380	1152
gac tgg gcg gta gaa gga ccc cga ctg cgc gat cgt att ttt gac tac Asp Trp Ala Val Glu Gly Pro Arg Leu Arg Asp Arg Ile Phe Asp Tyr 385 390 395 400	1200
ctt gag caa cat tac atg cct ggc ttg cga agc cag ttg gtg acg cac Leu Glu Gln His Tyr Met Pro Gly Leu Arg Ser Gln Leu Val Thr His 405 410 415	1248
cgt atg ttt acg ccg ttc gat ttc cgc gac gag ctc aat gcc tgg caa Arg Met Phe Thr Pro Phe Asp Phe Arg Asp Glu Leu Asn Ala Trp Gln 420 425 430	1296
ggt tcg gcc ttc tcg gtt gaa cct att ctg acc cag agc gcc tgg ttc Gly Ser Ala Phe Ser Val Glu Pro Ile Leu Thr Gln Ser Ala Trp Phe 435 440 445	1344
cga cca cat aac cgc gat aag cac att gat aat ctt tat ctg gtt ggc Arg Pro His Asn Arg Asp Lys His Ile Asp Asn Leu Tyr Leu Val Gly 450 455 460	1392
gca ggc acc cat cct ggc gcg ggc att ccc ggc gta atc ggc tcg gcg Ala Gly Thr His Pro Gly Ala Gly Ile Pro Gly Val Ile Gly Ser Ala 465 470 475 480	1440
aag gcg acg gca ggc tta atg ctg gag gac ctg att tga Lys Ala Thr Ala Gly Leu Met Leu Glu Asp Leu Ile 485 490	1479
<210> 8 <211> 492 <212> PRT <213> Pantoea stewartii	
<400> 8	
Met Lys Pro Thr Thr Val Ile Gly Ala Gly Phe Gly Gly Leu Ala Leu 1 5 10 15	
Ala Ile Arg Leu Gln Ala Ala Gly Ile Pro Val Leu Leu Glu Gln 20 25 30	
Arg Asp Lys Pro Gly Gly Arg Ala Tyr Val Tyr Gln Glu Gln Gly Phe 35 40 45	
Thr Phe Asp Ala Gly Pro Thr Val Ile Thr Asp Pro Ser Ala Ile Glu 50 60 Page 11	

Glu Leu Phe Ala Leu Ala Gly Lys Gln Leu Lys Asp Tyr Val Glu Leu 65 70 75 80 Leu Pro Val Thr Pro Phe Tyr Arg Leu Cys Trp Glu Ser Gly Lys Val 85 90 95 Phe Asn Tyr Asp Asn Asp Gln Ala Gln Leu Glu Ala Gln Ile Gln Gln 100 105 110 Phe Asn Pro Arg Asp Val Ala Gly Tyr Arg Ala Phe Leu Asp Tyr Ser 115 120 125 Arg Ala Val Phe Asn Glu Gly Tyr Leu Lys Leu Gly Thr Val Pro Phe 130 140 Leu Ser Phe Lys Asp Met Leu Arg Ala Ala Pro Gln Leu Ala Lys Leu 145 150 155 160 Gln Ala Trp Arg Ser Val Tyr Ser Lys Val Ala Gly Tyr Ile Glu Asp 165 170 175 Glu His Leu Arg Gln Ala Phe Ser Phe His Ser Leu Leu Val Gly Gly 180 185 190 Asn Pro Phe Ala Thr Ser Ser Ile Tyr Thr Leu Ile His Ala Leu Glu 195 200 205 Arg Glu Trp Gly Val Trp Phe Pro Arg Gly Gly Thr Gly Ala Leu Val 210 215 220 Asn Gly Met Ile Lys Leu Phe Gln Asp Leu Gly Glu Val Val Leu 225 230 235 240 Asn Ala Arg Val Ser His Met Glu Thr Val Gly Asp Lys Ile Gln Ala 245 250 255 Val Gln Leu Glu Asp Gly Arg Arg Phe Glu Thr Cys Ala Val Ala Ser 260 265 270 Asn Ala Asp Val Val His Thr Tyr Arg Asp Leu Leu Ser Gln His Pro 275 280 285 Ala Ala Ala Lys Gln Ala Lys Lys Leu Gln Ser Lys Arg Met Ser Asn 290 295 300 Ser Leu Phe Val Leu Tyr Phe Gly Leu Asn His His Asp Gln Leu 305 310 315 320 Ala His His Thr Val Cys Phe Gly Pro Arg Tyr Arg Glu Leu Ile His 325 330 335 Page 12

Glu Ile Phe	Asn His As 340	o Gly Leu	Ala Glu As 345		Leu Tyr Leu 350	
His Ala Pro 355	Cys Val Th	r Asp Pro 360		la Pro Glu (365	Gly Cys Gly	
Ser Tyr Tyr 370	Val Leu Al	a Pro Val 375	Pro His Lo	eu Gly Thr A 380	Ala Asn Leu	
Asp Trp Ala 385	Val Glu Gl 39	/ Pro Arg)		sp Arg Ile 1 95	Phe Asp Tyr 400	
Leu Glu Gln	His Tyr Me 405	t Pro Gly	Leu Arg So 410	er Gln Leu \	/al Thr His 415	
Arg Met Phe	Thr Pro Ph	e Asp Phe	Arg Asp G		Ala Trp Gln 430	
Gly Ser Ala 435	Phe Ser Va	l Glu Pro 440	Ile Leu T	hr Gln Ser A 445	Ala Trp Phe	
Arg Pro His 450	Asn Arg As	Lys His 455	Ile Asp As	sn Leu Tyr 1 460	_eu Val Gly	
Ala Gly Thr 465	His Pro Gl 47	/ Ala Gly)	Ile Pro G	ly Val Ile o 75	Gly Ser Ala 480	
Lys Ala Thr	Ala Gly Le 485	ı Met Leu	Glu Asp Le 490	eu Ile		
<210> 9 <211> 891 <212> DNA <213> Panto	oea stewart	ii				
<220> <221> CDS <222> (1).	. (891)					
<400> 9 atg gcg gtt Met Ala Val 1						48
gcc aaa acc Ala Lys Thr				yr Ala Trp 🤉		96
tgc gac gac Cys Asp Asp 35						144
ccc tct tcg Pro Ser Ser 50	cag atg cc Gln Met Pr	gag cag Glu Gln 55	cgc ctg ca Arg Leu G Page	ln Gln Leu (60	gaa atg aaa Glu Met Lys	192

acg c Thr A 65	cgt Arg	cag Gln	gcc Ala	tac Tyr	gcc Ala 70	ggt Gly	tcg Ser	caa Gln	atg Met	cac His 75	gag Glu	ccc Pro	gct Ala	ttt Phe	gcc Ala 80	240
gcg t Ala P																288
ttc g Phe A	gac Asp	cat His	ctg Leu 100	gaa Glu	ggt Gly	ttt Phe	gcc Ala	atg Met 105	gat Asp	gtg val	cgc Arg	gaa Glu	acg Thr 110	cgc Arg	tac Tyr	336
ctg a Leu T	aca Thr	ctg Leu 115	gac Asp	gat Asp	acg Thr	ctg Leu	cgt Arg 120	tat Tyr	tgc Cys	tat Tyr	cac His	gtc Val 125	gcc Ala	ggt Gly	gtt val	384
gtg g Val G	ggc Gly 130	ctg Leu	atg Met	atg Met	gcg Ala	caa Gln 135	att Ile	atg Met	ggc Gly	gtt Val	cgc Arg 140	gat Asp	aac Asn	gcc Ala	acg Thr	432
ctc g Leu A 145	gat Asp	cgc Arg	gcc Ala	tgc Cys	gat Asp 150	ctc Leu	ggg Gly	ctg Leu	gct Ala	ttc Phe 155	cag Gln	ttg Leu	acc Thr	aac Asn	att Ile 160	480
gcg c Ala A	arg	gat Asp	att Ile	gtc Val 165	gac Asp	gat Asp	gct Ala	cag Gln	gtg Val 170	ggc Gly	cgc Arg	tgt Cys	tat Tyr	ctg Leu 175	cct Pro	528
gaa a Glu S	agc Ser	tgg Trp	ctg Leu 180	gaa Glu	gag Glu	gaa Glu	gga Gly	ctg Leu 185	acg Thr	aaa Lys	gcg Ala	aat Asn	tat Tyr 190	gct Ala	gcg Ala	576
cca g Pro G	gaa Glu	aac Asn 195	cgg Arg	cag Gln	gcc Ala	tta Leu	agc Ser 200	cgt Arg	atc Ile	gcc Ala	ggg Gly	cga Arg 205	ctg Leu	gta Val	cgg Arg	624
gaa g Glu A 2	gcg Ala 210	gaa Glu	ccc Pro	tat Tyr	tac Tyr	gta Val 215	tca Ser	tca Ser	atg Met	gcc Ala	ggt Gly 220	ctg Leu	gca Ala	caa Gln	tta Leu	672
ccc t Pro L 225																720
aaa a Lys I	att [le	ggc Gly	gtg Val	aaa Lys 245	gtt Val	gaa Glu	cag Gln	gcc Ala	ggt Gly 250	aag Lys	cag Gln	gcc Ala	tgg Trp	gat Asp 255	cat His	768
cgc c																816
tcc g Ser G	ggt	cag Gln 275	gca Ala	gtt Val	act Thr	tcc Ser	cgg Arg 280	atg Met	aag Lys	acg Thr	tat Tyr	cca Pro 285	ccc Pro	cgt Arg	cct Pro	864
gct c Ala H 2								tag								891

<210> 10 <211> 296 <212> PRT <213> Pantoea stewartii

<400> 10

Met Ala Val Gly Ser Lys Ser Phe Ala Thr Ala Ser Thr Leu Phe Asp 1 10 15 Ala Lys Thr Arg Arg Ser Val Leu Met Leu Tyr Ala Trp Cys Arg His 20 25 30 Cys Asp Asp Val Ile Asp Asp Gln Thr Leu Gly Phe His Ala Asp Gln 35 40 45 Pro Ser Ser Gln Met Pro Glu Gln Arg Leu Gln Gln Leu Glu Met Lys 50 55 60 Thr Arg Gln Ala Tyr Ala Gly Ser Gln Met His Glu Pro Ala Phe Ala 65 70 75 80 Ala Phe Gln Glu Val Ala Met Ala His Asp Ile Ala Pro Ala Tyr Ala 85 90 95 Phe Asp His Leu Glu Gly Phe Ala Met Asp Val Arg Glu Thr Arg Tyr 100 105 110 Leu Thr Leu Asp Asp Thr Leu Arg Tyr Cys Tyr His Val Ala Gly Val 115 120 125 Val Gly Leu Met Met Ala Gln Ile Met Gly Val Arg Asp Asn Ala Thr 130 135 140 Leu Asp Arg Ala Cys Asp Leu Gly Leu Ala Phe Gln Leu Thr Asn Ile 145 150 155 160 Ala Arg Asp Ile Val Asp Asp Ala Gln Val Gly Arg Cys Tyr Leu Pro 165 170 175 Glu Ser Trp Leu Glu Glu Glu Gly Leu Thr Lys Ala Asn Tyr Ala Ala 180 185 190 Pro Glu Asn Arg Gln Ala Leu Ser Arg Ile Ala Gly Arg Leu Val Arg 195 200 205 Glu Ala Glu Pro Tyr Tyr Val Ser Ser Met Ala Gly Leu Ala Gln Leu 210 215 220 Pro Leu Arg Ser Ala Trp Ala Ile Ala Thr Ala Lys Gln Val Tyr Arg 225 230 235 240 Lys Ile Gly Val Lys Val Glu Gln Ala Gly Lys Gln Ala Trp Asp His 245 250 255 Arg Gln Ser Thr Ser Thr Ala Glu Lys Leu Thr Leu Leu Leu Thr Ala 260 265 270

Ser Gly Gln Ala Val Thr Ser Arg Met Lys Thr Tyr Pro Pro Arg Pro 275 280 285

Ala His Leu Trp Gln Arg Pro Ile 290 295

<210> 11

<211> 528 <212> DNA <213> Pantoea stewartii	
<220> <221> CDS <222> (1)(528)	
<pre><400> 11 atg ttg tgg att tgg aat gcc ctg atc gtg ttt gtc acc gtg gtc ggc Met Leu Trp Ile Trp Asn Ala Leu Ile Val Phe Val Thr Val Val Gly 1</pre>	. 48
atg gaa gtg gtt gct gca ctg gca cat aaa tac atc atg cac ggc tgg Met Glu Val Val Ala Ala Leu Ala His Lys Tyr Ile Met His Gly Trp 20 25 30	96
ggt tgg ggc tgg cat ctt tca cat cat gaa ccg cgt aaa ggc gca ttt Gly Trp Gly Trp His Leu Ser His His Glu Pro Arg Lys Gly Ala Phe 35 40 45	144
gaa gtt aac gat ctc tat gcc gtg gta ttc gcc att gtg tcg att gcc Glu Val Asn Asp Leu Tyr Ala Val Val Phe Ala Ile Val Ser Ile Ala 50 55 60	192
ctg att tac ttc ggc agt aca gga atc tgg ccg ctc cag tgg att ggt Leu Ile Tyr Phe Gly Ser Thr Gly Ile Trp Pro Leu Gln Trp Ile Gly 65 70 75 80	240
gca ggc atg acc gct tat ggt tta ctg tat ttt atg gtc cac gac gga Ala Gly Met Thr Ala Tyr Gly Leu Leu Tyr Phe Met Val His Asp Gly 85 90 95	288
ctg gta cac cag cgc tgg ccg ttc cgc tac ata ccg cgc aaa ggc tac Leu Val His Gln Arg Trp Pro Phe Arg Tyr Ile Pro Arg Lys Gly Tyr 100 105 110	336
ctg aaa cgg tta tac atg gcc cac cgt atg cat cat gct gta agg gga Leu Lys Arg Leu Tyr Met Ala His Arg Met His His Ala Val Arg Gly 115 120 125	384
aaa gag ggc tgc gtg tcc ttt ggt ttt ctg tac gcg cca ccg tta tct Lys Glu Gly Cys Val Ser Phe Gly Phe Leu Tyr Ala Pro Pro Leu Ser 130 135 140	432

aaa ctt cag gcg acg ctg aga gaa agg cat gcg gct aga tcg ggc gct Lys Leu Gln Ala Thr Leu Arg Glu Arg His Ala Ala Arg Ser Gly Ala 145 150 155 160

gcc aga gat gag cag gac ggg gtg gat acg tct tca tcc ggg aag taa Ala Arg Asp Glu Gln Asp Gly Val Asp Thr Ser Ser Gly Lys 165 170 175

<210> 12 <211> 175 <212> PRT 480

528

<213> Pantoea stewartii

<400> 12

Met Leu Trp Ile Trp Asn Ala Leu Ile Val Phe Val Thr Val Val Gly
5 10 15

Met Glu Val Val Ala Ala Leu Ala His Lys Tyr Ile Met His Gly Trp 20 25 30

Gly Trp Gly Trp His Leu Ser His His Glu Pro Arg Lys Gly Ala Phe 35 40 45

Glu Val Asn Asp Leu Tyr Ala Val Val Phe Ala Ile Val Ser Ile Ala 50 55 60

Leu Ile Tyr Phe Gly Ser Thr Gly Ile Trp Pro Leu Gln Trp Ile Gly 65 70 75 80

Ala Gly Met Thr Ala Tyr Gly Leu Leu Tyr Phe Met Val His Asp Gly 85 90 95

Leu Val His Gln Arg Trp Pro Phe Arg Tyr Ile Pro Arg Lys Gly Tyr 100 105 110

Leu Lys Arg Leu Tyr Met Ala His Arg Met His His Ala Val Arg Gly 115 125

Lys Glu Gly Cys Val Ser Phe Gly Phe Leu Tyr Ala Pro Pro Leu Ser 130 140

Lys Leu Gln Ala Thr Leu Arg Glu Arg His Ala Ala Arg Ser Gly Ala 145 150 155 160

Ala Arg Asp Glu Gln Asp Gly Val Asp Thr Ser Ser Gly Lys
165 170 175

<210> 13

<211> 25

<212> DNA

<213> Artificial sequence

<220>

<223> Primer used to amplify crt gene cluster.

<400> 13

atgacggtct gcgcaaaaaa acacg

<210> 14

<211> 28 <212> DNA

<213> Artificial sequence

<220>

<223> Primer used to amplify crt gene cluster.

Page 17

25

<400> gagaaa1	14 ttat gttgtggatt tggaatgc	28
<210> <211> <212> <213>	15 21 DNA Artificial sequence	
<220> <223>	Primer Tn5PCRF	
<400> gctgag1	15 ttga aggatcagat c	21
<210> <211> <212> <213>	16 21 DNA Artificial sequence	
<220> <223>	Primer Tn5PCRR	
<400> cgagcaa	16 agac gtttcccgtt g	21
<210> <211> <212> <213>	17 25 DNA Artificial sequence	
<220> <223>	Primer Kan-2 FP-1	
<400> acctaca	17 aaca aagctctcat caacc	25
<210> <211> <212> <213>	18 25 DNA Artificial sequence	
<220> <223>	Primer Kan-2 RP-1	
<400> gcaatg	18 taac atcagagatt ttgag	25
<210> <211> <212> <213>	19 3159 DNA Escherichia coli	
<400> atgcctq	19 gtta taactcttcc tgatggcagc caacgccatt acgatcacgc tgtaagcccc	60
atggat	gttg cgctggacat tggtccaggt ctggcgaaag cctgtatcgc agggcgcgtt	120
aatggc	gaac tggttgatgc ttgcgatctg attgaaaacg acgcacaact gtcgatcatt	180
accgcca	aaag acgaagaagg tctggagatc attcgtcact cctgtgcgca cctgttaggg	240
cacgcga	atta aacaactttg gccgcatacc aaaatggcaa tcggcccggt tattgacaac	300

CL-2029USNA.ST25.txt 360 ggtttttatt acgacgttga tcttgaccgc acgttaaccc aggaagatgt cgaagcactc 420 gagaagcgga tgcatgagct tgctgagaaa aactacgacg tcattaagaa gaaagtcagc tggcacgaag cgcgtgaaac tttcgccaac cgtggggaga gctacaaagt ctccattctt 480 540 gacgaaaaca tcgcccatga tgacaagcca ggtctgtact tccatgaaga atatgtcgat atgtgccgcg gtccgcacgt accgaacatg cgtttctgcc atcatttcaa actaatgaaa 600 acggcagggg cttactggcg tggcgacagc aacaacaaaa tgttgcaacg tatttacggt 660 720 acggcgtggg cagacaaaaa agcacttaac gcttacctgc agcgcctgga agaagccgcg 780 aaacgcgacc accgtaaaat cggtaaacag ctcgacctgt accatatgca ggaagaagcg ccgggtatgg tattctggca caacgacggc tggaccatct tccgtgaact ggaagtgttt 840 gttcgttcta aactgaaaga gtaccagtat caggaagtta aaggtccgtt catgatggac 900 960 cgtgtcctgt gggaaaaaac cggtcactgg gacaactaca aagatgcaat gttcaccaca 1020 tcttctgaga accgtgaata ctgcattaag ccgatgaact gcccgggtca cgtacaaatt 1080 ttcaaccagg ggctgaagtc ttatcgcgat ctgccgctgc gtatggccga gtttggtagc 1140 tgccaccgta acgagccgtc aggttcgctg catggcctga tgcgcgtgcg tggatttacc 1200 caggatgacg cgcatatctt ctgtactgaa gaacaaattc gcgatgaagt taacggatgt 1260 atccgtttag tctatgatat gtacagcact tttggcttcg agaagatcgt cgtcaaactc 1320 tccactcgtc ctgaaaaacg tattggcagc gacgaaatgt gggatcgtgc tgaggcggac 1380 ctggcggttg cgctggaaga aaacaacatc ccgtttgaat atcaactggg tgaaggcgct 1440 ttctacggtc cgaaaattga atttaccctg tatgactgcc tcgatcgtgc atggcagtgc 1500 ggtacagtac agctggactt ctctttgccg tctcgtctga gcgcttctta tgtaggcgaa 1560 gacaatgaac gtaaagtacc ggtaatgatt caccgcgcaa ttctggggtc gatggaacgt 1620 ttcatcggta tcctgaccga agagttcgct ggtttcttcc cgacctggct tgcgccggtt 1680 caggttgtta tcatgaatat taccgattca cagtctgaat acgttaacga attgacgcaa 1740 aaactatcaa atgcgggcat tcgtgttaaa gcagacttga gaaatgagaa gattggcttt aaaatccgcg agcacacttt gcgtcgcgtc ccatatatgc tggtctgtgg tgataaagag 1800 1860 gtggaatcag gcaaagttgc cgttcgcacc cgccgtggta aagacctggg aagcatggac 1920 gtaaatgaag tgatcgagaa gctgcaacaa gagattcgca gccgcagtct taaacctgtc 1980 tcttatacac atctcaacca tcatcgatga attgtgtctc aaaatctctg atgttacatt gcacaagata aaaatatatc atcatgaaca ataaaactgt ctgcttacat aaacagtaat 2040 acaaggggtg ttatgagcca tattcaacgg gaaacgtctt gctcgaggcc gcgattaaat 2100 tccaacatgg atgctgattt atatgggtat aaatgggctc gcgataatgt cgggcaatca 2160 2220 ggtgcgacaa tctatcgatt gtatgggaag cccgatgcgc cagagttgtt tctgaaacat

ggcaaaggta gcgttgccaa tgatgttaca gatgagatgg tcagactaaa ctggctgacg gaatttatgc ctcttccgac catcaagcat tttatccgta ctcctgatga tgcatggtta

2280

2340

ctcaccactg	cgatccccgg	aaaaacagca	ttccaggtat	tagaagaata	tcctgattca	2400
ggtgaaaata	ttgttgatgc	gctggcagtg	ttcctgcgcc	ggttgcattc	gattcctgtt	2460
tgtaattgtc	cttttaacag	cgatcgcgta	tttcgtctcg	ctcaggcgca	atcacgaatg	2520
aataacggtt	tggttgatgc	gagtgatttt	gatgacgagc	gtaatggctg	gcctgttgaa	2580
caagtctgga	aagaaatgca	taaacttttg	ccattctcac	cggattcagt	cgtcactcat	2640
ggtgatttct	cacttgataa	ccttattttt	gacgagggga	aattaatagg	ttgtattgat	2700
gttggacgag	tcggaatcgc	agaccgatac	caggatcttg	ccatcctatg	gaactgcctc	2760
ggtgagtttt	ctccttcatt	acagaaacgg	ctttttcaaa	aatatggtat	tgataatcct	2820
gatatgaata	aattgcagtt	tcatttgatg	ctcgatgagt	ttttctaatc	agaattggtt	2880
aattggttgt	aacactggca	gagcattacg	ctgacttgac	gggacggcgg	ctttgttgaa	2940
taaatcgaac	ttttgctgag	ttgaaggatc	agatcacgca	tcttcccgac	aacgcagacc	3000
gttccgtggc	aaagcaaaag	ttcaaaatca	ccaactggtc	cacctacaac	aaagctctca	3060
tcaaccgtgg	cggggatcct	ctagagtcga	cctgcaggca	tgcaagcttc	agggttgaga	3120
tgtgtataag	agacaggtct	taaacaattg	gaggaataa			3159

<210> 20 <211> 3171 <212> DNA <213> Escherichia coli

<400> 20

atgatgagtt atgtagactg	gccgccatta	attttgaggc	acacgtacta	catggctgaa	60
ttcgaaacca cttttgcaga	tctgggcctg	aaggctccta	tccttgaagc	ccttaacgat	120
ctgggttacg aaaaaccatc	tccaattcag	gcagagtgta	ttccacatct	gctgaatggc	180
cgcgacgttc tgggtatggc	ccagacgggg	agcggaaaaa	ctgcagcatt	ctctttacct	240
ctgttgcaga atcttgatcc	tgagctgaaa	gcaccacaga	ttctggtgct	ggcaccgacc	300
cgcgaactgg cggtacaggt	tgctgaagca	atgacggatt	tctctaaaca	catgcgcggc	360
gtaaatgtgg ttgctctgta	cggcggccag	cgttatgacg	tgcaattacg	cgccctgcgt	420
caggggccgc agatcgttgt	cggtactccg	ggccgtctgc	tggaccacct	gaaacgtggc	480
actctggacc tctctaaact	gagcggtctg	gttctggatg	aagctgacga	aatgctgcgc	540
atgggcttca tcgaagacgt	tgaaaccatt	atggcgcaga	tcccggaagg	tcatcagacc	600
gctctgttct ctgcaaccat	gccggaagcg	attcgtcgca	ttacccgccg	ctttatgaaa	660
gagccgcagg aagtgcgcat	tcagtccagc	gtgactaccc	gtcctgacat	cagccagagc	720
tactggactg tctggggtat	gcgcaaaaac	gaagcactgg	tacgctgtct	cttatacaca	780
tctcaaccat catcgatgaa	ttgtgtctca	aaatctctga.	tgttacattg	cacaagataa	840
aaatatatca tcatgaacaa	taaaactgtc	tgcttacata	aacagtaata	caaggggtgt	900
tatgagccat attcaacggg	aaacgtcttg	ctcgaggccg	cgattaaatt	ccaacatgga	960
tgctgattta tatgggtata	aatgggctcg	cgataatgtc Page 20	gggcaatcag)	gtgcgacaat	1020

ctatcgattg	tatgggaagc	ccgatgcgcc	agagttgttt	ctgaaacatg	gcaaaggtag	1080
cgttgccaat	gatgttacag	atgagatggt	cagactaaac	tggctgacgg	aatttatgcc	1140
tcttccgacc	atcaagcatt	ttatccgtac	tcctgatgat	gcatggttac	tcaccactgc	1200
gatccccgga	aaaacagcat	tccaggtatt	agaagaatat	cctgattcag	gtgaaaatat	1260
tgttgatgcg	ctggcagtgt	tcctgcgccg	gttgcattcg	attcctgttt	gtaattgtcc	1320
ttttaacagc	gatcgcgtat	ttcgtctcgc	tcaggcgcaa	tcacgaatga	ataacggttt	1380
ggttgatgcg	agtgattttg	atgacgagcg	taatggctgg	cctgttgaac	aagtctggaa	1440
agaaatgcat	aaacttttgc	cattctcacc	ggattcagtc	gtcactcatg	gtgatttctc	1500
acttgataac	cttatttttg	acgaggggaa	attaataggt	tgtattgatg	ttggacgagt	1560
cggaatcgca	gaccgatacc	aggatcttgc	catcctatgg	aactgcctcg	gtgagttttc	1620
tccttcatta	cagaaacggc	tttttcaaaa	atatggtatt	gataatcctg	atatgaataa	1680
attgcagttt	catttgatgc	tcgatgagtt	tttctaatca	gaattggtta	attggttgta	1740
acactggcag	agcattacgc	tgacttgacg	ggacggcggc	tttgttgaat	aaatcgaact	1800
tttgctgagt	tgaaggatca	gatcacgcat	cttcccgaca	acgcagaccg	ttccgtggca	1860
aagcaaaagt	tcaaaatcac	caactggtcc	acctacaaca	aagctctcat	caaccgtggc	1920
ggggatcctc	tagagtcgac	ctgcaggcat	gcaagcttca	gggttgagat	gtgtataaga	1980
gacagactgg	tacgtttcct	ggaagcggaa	gattttgatg	cggcgattat	cttcgttcgt	2040
accaaaaacg	cgactctgga	agtggctgaa	gctcttgagc	gtaacggcta	caacagcgcc	2100
gcgctgaacg	gtgacatgaa	ccaggcgctg	cgtgaacaga	cactggaacg	cctgaaagat	2160
ggtcgtctgg	acatcctgat	tgcgaccgac	gttgcagccc	gtggcctgga	cgttgagcgt	2220
atcagcctgg	tagttaacta	cgatatcccg	atggattctg	agtcttacgt	tcaccgtatc	2280
ggtcgtaccg	gtcgtgcggg	tcgtgctggc	cgcgcgctgc	tgttcgttga	gaaccgcgag	2340
cgtcgtctgc	tgcgcaacat	tgaacgtact	atgaagctga	ctattccgga	agtagaactg	2400
ccgaacgcag	aactgctagg	caaacgccgt	ctggaaaaat	tcgccgctaa	agtacagcag	2460
cagctggaaa	gcagcgatct	ggatcaatac	cgcgcactgc	tgagcaaaat	tcagccgact	2520
gctgaaggtg	aagagctgga	tctcgaaact	ctggctgcgg	cactgctgaa	aatggcacag	2580
ggtgaacgta	ctctgatcgt	accgccagat	gcgccgatgc	gtccgaaacg	tgaattccgt	2640
gaccgtgatg	accgtggtcc	gcgcgatcgt	aacgaccgtg	gcccgcgtgg	tgaccgtgaa	2700
gatcgtccgc	gtcgtgaacg	tcgtgatgtt	ggcgatatgc	agctgtaccg	cattgaagtg	2760
ggccgcgatg	atggtgttga	agttcgtcat	atcgttggtg	cgattgctaa	cgaaggcgac	2820
atcagcagcc	gttacattgg	taacatcaag	ctgtttgctt	ctcactccac	catcgaactg	2880
ccgaaaggta	tgccgggtga	agtgctgcaa	cactttacgc	gcactcgcat	tctcaacaag	2940
ccgatgaaca	tgcagttact	gggcgatgca	cagccgcata	ctggcggtga	gcgtcgtggc	3000
ggtggtcgtg	gtttcggtgg	cgaacgtcgt	gaaggcggtc Page 2:	gtaacttcag 1	cggtgaacgc	3060

cgtgaaggtg gccgtggtga tggtcgtcgt tttagcggcg aacgtcgtga aggccgcgct	3120
ccgcgtcgtg atgattctac cggtcgtcgt cgtttcggtg gtgatgcgta a	3171
<210> 21 <211> 2904 <212> DNA <213> Escherichia coli	
<400> 21	60
atgactgaat cttttgctca actctttgaa gagtccttaa aagaaatcga aacccgcccg	60
ggttctatcg ttcgtggcgt tgttgttgct atcgacaaag acgtagtact ggttgacgct	120
ggtctgaaat ctgagtccgc catcccggct gagcagttca aaaacgccca gggcgagctg	180
gaaatccagg taggtgacga agttgacgtt gctctggacg cagtagaaga cggcttcggt	240
gaaactctgc tgtcccgtga gaaagctaaa cgtcacgaag cctggatcac gctggaaaaa	.300
gcttacgaag atgctgaaac tgttaccggt gttatcaacg gcaaagttaa gggcggcttc	360
actgttgagc tgaacggtat tcgtgcgttc ctgccaggtt ctctggtaga cgttcgtccg	420
gtgcgtgaca ctctgcacct ggaaggcaaa gagcttgaat ttaaagtaat caagctggat	480
cagaagcgca acaacgttgt tgtttctcgt cgtgccgtta tcgaatccga aaacagcgca	540
gagcgcgatc agctgctgga aaacctgcag gaaggcatgg aagttaaagg tatcgttaag	600
aacctcactg actacggtgc attcgttgat ctgggcggcg ttgacggcct gctgcacatc	660
actgacatgg cctggaaacg cgttaagcat ccgagcgaaa tcgtcaacgt gggcgacgaa	720
atcactgtta aagtgctgaa gttcgaccgc gaacgtaccc gtgtatccct gggcctgaaa	780
cagctgggcg aagatccgtg ggtagctatc gctaaacgtt atccggaagg taccaaactg	840
actggtcgcg tgaccaacct gaccgactac ggctgcttcg ttgaaatcga agaaggcgtt	900
gaaggcctgg tacacgtttc cgaaatggac tggaccaaca aaaacatcca cccgtccaaa	960
gttgttaacg ttggcgatgt agtggaagtt atggttctgg atatcgacga agaacgtcgt	1020
cgtatctccc tgggtctgaa acagtgcaaa gctaacccgt ggcagcagtt cgcggaaacc	1080
cacaacaagg gcgaccgtgt tgaaggtaaa atcaagtcta tcactgactt cggtatcttc	1140
atcggcttgg acggcggcat cgacggcctg gttcacctgt ctgacatctc ctggaacgtt	1200
gcaggcgaag aagcagttcg tgaatacaaa aaaggcgacg aaatcgctgc agttgttctg	1260
caggttgacg cagaacgtga acgtatctcc ctgggcgtta aacagctcgc agaagatccg	1320
ttcaacaact gggttgctct gaacaagaaa ggcgctatcg taaccggtaa agtaactgca	1380
gttgacgcta aaggcgcaac cgtagaactg gctgacggcg ttgaaggtta cctgcgtgct	1440
tctgaagcat cccgtgaccg cgttgaagac gctaccctgg ttctgagcgt tggcgacgaa	1500
gttgaagcta aattcaccgg cgttgatcgt aaaaaccgcg caatcagcct gtctgttcgt	1560
	1620
gcgaaagacg aagctgacga gaaagatgca atcgcaactg tctcttatac acatctcaac	
cctgaagctt gcatgcctgc aggtcgactc tagaggatcc ccgccacggt tgatgagagc	1680

aagccgccgt cccgtcaagt cagcgtaatg ctctgccagt gttacaacca attaaccaat tctgattaga aaaactcatc gagcatcaaa tgaaactgca atttattcat atcaggatta tcaataccat attttgaaa aagccgtttc tgtaatgaag gagaaaactc accgaggcag	1800 1860 1920 1980
tctgattaga aaaactcatc gagcatcaaa tgaaactgca atttattcat atcaggatta tcaataccat atttttgaaa aagccgtttc tgtaatgaag gagaaaactc accgaggcag	1920 1980
tcaataccat atttttgaaa aagccgtttc tgtaatgaag gagaaaactc accgaggcag	1980
***************************************	2040
ttccatagga tggcaagatc ctggtatcgg tctgcgattc cgactcgtcc aacatcaata 2	2040
caacctatta atttcccctc gtcaaaaata aggttatcaa gtgagaaatc accatgagtg	2100
acgactgaat ccggtgagaa tggcaaaagt ttatgcattt ctttccagac ttgttcaaca 2	2160
ggccagccat tacgctcgtc atcaaaatca ctcgcatcaa ccaaaccgtt attcattcgt	2220
gattgcgcct gagcgagacg aaatacgcga tcgctgttaa aaggacaatt acaaacagga	2280
atcgaatgca accggcgcag gaacactgcc agcgcatcaa caatattttc acctgaatca	2340
ggatattctt ctaatacctg gaatgctgtt tttccgggga tcgcagtggt gagtaaccat	2400
gcatcatcag gagtacggat aaaatgcttg atggtcggaa gaggcataaa ttccgtcagc 2	2460
cagtttagtc tgaccatctc atctgtaaca tcattggcaa cgctaccttt gccatgtttc 2	2520
agaaacaact ctggcgcatc gggcttccca tacaatcgat agattgtcgc acctgattgc 2	2580
ccgacattat cgcgagccca tttataccca tataaatcag catccatgtt ggaatttaat	2640
cgcggcctcg agcaagacgt ttcccgttga atatggctca taacacccct tgtattactg	2700
tttatgtaag cagacagttt tattgttcat gatgatatat ttttatcttg tgcaatgtaa 2	2760
catcagagat tttgagacac aattcatcga tgatggttga gatgtgtata agagacagca 2	2820
atcgcaactg ttaacaaaca ggaagatgca aacttctcca acaacgcaat ggctgaagct 2	2880
ttcaaagcag ctaaaggcga gtaa	2904

<210> 22 <211> 5454 <212> DNA <213> Escherichia coli

<400> 22

gtgaaagatt tattaaagtt t	tctgaaagcg	cagactaaaa	ccgaagagtt	tgatgcgatc	60
aaaattgctc tggcttcgcc a	agacatgatc	cgttcatggt	ctttcggtga	agttaaaaag	120
ccggaaacca tcaactaccg t	tacgttcaaa	ccagaacgtg	acggcctttt	ctgcgcccgt	180
atctttgggc cggtaaaaga t	ttacgagtgc	ctgtgcggta	agtacaagcg	cctgaaacac	240
cgtggcgtca tctgtgagaa g	gtgcggcgtt	gaagtgaccc	agactaaagt	acgccgtgag	300
cgtatgggcc acatcgaact g	ggcttccccg	actgcgcaca	tctggttcct	gaaatcgctg	360
ccgtcccgta tcggtctgct g	gctcgatatg	ccgctgcgcg	atatcgaacg	cgtactgtac	420
tttgaatcct atgtggttat c	cgaaggcggt	atgaccaacc	tggaacgtca	gcagatcctg	480
actgaagagc agtatctgga c	cgcgctggaa	gagttcggtg	acgaattcga	cgcgaagatg	540
ggggcggaag caatccaggc t	tctgctgaag	agcatggatc Page 23	tggagcaaga 3	gtgcgaacag	600

ctgcgtgaag	agctgaacga	aaccaactcc	gaaaccaagc	gtaaaaagct	gaccaagcgt	660
atcaaactgc	tggaagcgtt	cgttcagtct	ggtaacaaac	cagagtggat	gatcctgacc	720
gttctgccgg	tactgccgcc	agatctgcgt	ccgctggttc	cgctggatgg	tggtcgtttc	780
gcgacttctg	acctgaacga	tctgtatcgt	cgcgtcatta	accgtaacaa	ccgtctgaaa	840
cgtctgctgg	atctggctgc	gccggacatc	atcgtacgta	acgaaaaacg	tatgctgcag	900
gaagcggtag	acgccctgct	ggataacggt	cgtcgcggtc	gtgcgatcac	cggttctaac	960
aagcgtcctc	tgaaatcttt	ggccgacatg	atcaaaggta	aacagggtcg	tttccgtcag	1020
aacctgctcg	gtaagcgtgt	tgactactcc	ggtcgttctg	taatcaccgt	aggtccatac	1080
ctgcgtctgc	atcagtgcgg	tctgccgaag	aaaatggcac	tggagctgtt	caaaccgttc	1140
atctacggca	agctggaact	gcgtggtctt	gctaccacca	ttaaagctgc	gaagaaaatg	1200
gttgagcgcg	aagaagctgt	cgtttgggat	atcctggacg	aagttatccg	cgaacacccg	1260
gtactgctga	accgtgcacc	gactctgcac	cgtctgggta	tccaggcatt	tgaaccggta	1320
ctgatcgaag	gtaaagctat	ccagctgcac	ccgctggttt	gtgcggcata	taacgccgac	1380
ttcgatggtg	accagatggc	tgttcacgta	ccgctgacgc	tggaagccca	gctggaagcg	1440
cgtgcgctga	tgatgtctac	caacaacatc	ctgtccccgg	cgaacggcga	accaatcatc	1500
gttccgtctc	aggacgttgt	actgggtctg	tactacatga	cccgtgactg	tgttaacgcc	1560
aaaggcgaag	gcatggtgct	gactggcccg	aaagaagcag	aacgtctgta	tcgctctggt	1620
ctggcttctc	tgcatgcgcg	cgttaaagtg	cgtatcaccg	agtatgaaaa	agatgctaac	1680
ggtgaattag	tagcgaaaac	cagcctgaaa	gacacgactg	ttggccgtgc	cattctgtgg	1740
atgattgtac	cgaaaggtct	gccttactcc	atcgtcaacc	aggcgctggg	taaaaaagca	1800
atctccaaaa	tgctgaacac	ctgctaccgc	attctcggtc	tgaaaccgac	cgttatttt	1860
gcggaccaga	tcatgtacac	cggcttcgcc	tatgcagcgc	gttctggtgc	atctgttggt	1920
atcgatgaca	tggtcatccc	ggagaagaaa	cacgaaatca	tctccgaggc	agaagcagaa	1980
gttgctgaaa	ttcaggagca	gttccagtct	ggtctggtaa	ctgcgggcga	acgctacaac	2040
aaagttatcg	atatctgggc	tgcggcgaac	gatcgtgtat	ccaaagcgat	gatggataac	2100
ctgcaaactg	aaaccgtgat	taaccgtgac	ggtcaggaag	agaagcaggt	ttccttcaac	2160
agcatctaca	tgatggccga	ctccggtgcg	cgtggttctg	cggcacagat	tcgtcagctt	2220
gctggtatgc	gtggtctgat	ggcgaagccg	gatggctcca	tcatcgaaac	gccaatcacc	2280
gcgaacttcc	gtgaaggtct	gaacgtactc	cagtacttca	tctccaccca	cggtgctcgt	2340
aaaggtctgg	cggataccgc	actgaaaact	gcgaactccg	gttacctgac	tcgtcgtctg	2400
gttgacgtgg	cgcaggacct	ggtggttacc	gaagacgatt	gtggtaccca	tgaaggtatc	2460
atgatgactc	cggttatcga	gggtggtgac	gttaaagagc	cgctgcgcga	tcgcgtactg	2520
ggtcgtgtaa	ctgctgaaga	cgttctgaag	ccgggtactg	ctgatatcct	cgttccgcgc	2580
aacacgctgc	tgcacgaaca	gtggtgtgac	ctgctggaag Page 24	agaactctgt 4	cgacgcggtt	2640

aaagtacgtt	ctgttgtatc	ttgtgacacc	gactttggtg	tatgtgcgca	ctgctacggt	2700
cgtgacctgg	cgcgtggcca	catcatcaac	aagggtgaag	caatcggtgt	tatcgcggca	2760
cagtccatcg	gtgaaccggg	tacacagctg	accatgcgta	cgttccacat	cggtggtgcg	2820
gcatctcgtg	cggctgctga	atccagcatc	caagtgaaaa	acaaaggtag	catcaagctc	2880
agcaacgtga	agtcggttgt	gaactccagc	ggtaaactgg	ttatcacttc	ccgtaatact	2940
gaactgaaac	tgatcgacga	attcggtcgt	actaaagaaa	gctacaaagt	accttacggt	3000
gcggtactgg	cgaaaggcga	tggcgaacag	gttgctggcg	gcgaaaccgt	tgcaaactgg	3060
gacccgcaca	ccatgccggt	tatcaccgaa	gtaagcggtt	ttgtacgctt	tactgacatg	3120
atcgacggcc	agaccattac	gcgtcagacc	gacgaactga	ccggtctgtc	ttcgctggtg	3180
gttctggatt	ccgcagaacg	taccgcaggt	ggtaaagatc	tgcgtccggc	actgaaaatc	3240
gttgatgctc	agggtaacga	cgttctgatc	ccaggtaccg	atatgccagc	gcagtacttc	3300
ctgccgggta	aagcgattgt	tcagctggaa	gatggcgtac	agatcagctc	tggtgacacc	3360
ctggcgcgta	ttccgcagga	atccggcggt	accaaggaca	tcaccggtgg	tctgccgcgc	3420
gttgcggacc	tgttcgaagc	acgtcgtccg	aaagagccgg	caatcctggc	tgaaatcagc	3480
ggtatcgttt	ccttcggtaa	agaaaccaaa	ggtaaacgtc	gtctggttat	caccccggta	3540
gacggtagcg	atccgtacga	agagatgatt	ccgaaatggc	gtcagctcaa	cgtgttcgaa	3600
ggtgaacgtg	tagaacgtgg	tgacgtaatt	tccgacggtc	cggaagcgcc	gcacgacatt	3660
ctgcgtctgc	gtggtgttca	tgctgttact	cgttacatcg	ttaacgaagt	acaggacgta	3720
taccgtctgc	agggcgttaa	gattaacgat	aaacacatcg	aagttatcgt	tcgtcagatg	3780
ctgcgtaaag	ctaccatcgt	taacgcgggt	agctccgact	tcctggaagg	cgaacaggtt	3840
gaatactctc	gcgtcaagat	cgcaaaccgc	gaactggaag	cgaacggcaa	agtgggtgca	3900
acttactccc	gcgatctgct	gggtatcacc	aaagcgtctc	tggcaaccga	gtccttcatc	3960
tccgcggcat	cgttccagga	gaccactcgc	gtgctgaccg	aagcagccgt	tgcgggcaaa	4020
cgcgacgaac	tgcgcggcct	gaaagagaac	gttatcgtgg	gtcgtctgat	cccggcaggt	4080
accggttacg	cgtaccacca	ggatcgtatg	cgtcgccgtg	ctgcgggtga	agctctgtct	4140
cttatacaca	tctcaaccct	gaagcttgca	tgcctgcagg	tcgactctag	aggatccccg	4200
ccacggttga	tgagagcttt	gttgtaggtg	gaccagttgg	tgattttgaa	cttttgcttt	4260
gccacggaac	ggtctgcgtt	gtcgggaaga	tgcgtgatct	gatccttcaa	ctcagcaaaa	4320
gttcgattta	ttcaacaaag	ccgccgtccc	gtcaagtcag	cgtaatgctc	tgccagtgtt	4380
acaaccaatt	aaccaattct	gattagaaaa	actcatcgag	catcaaatga	aactgcaatt	4440
tattcatatc	aggattatca	ataccatatt	tttgaaaaag	ccgtttctgt	aatgaaggag	4500
aaaactcacc	gaggcagttc	cataggatgg	caagatcctg	gtatcggtct	gcgattccga	4560
ctcgtccaac	atcaatacaa	cctattaatt	tccctcgtc	aaaaataagg	ttatcaagtg	4620
agaaatcacc	atgagtgacg	actgaatccg	gtgagaatgg Page 25	caaaagttta 5	tgcatttctt	4680

tccagacttg	ttcaacaggc	cagccattac	gctcgtcatc	aaaatcactc	gcatcaacca	4740
aaccgttatt	cattcgtgat	tgcgcctgag	cgagacgaaa	tacgcgatcg	ctgttaaaag	4800
gacaattaca	aacaggaatc	gaatgcaacc	ggcgcaggaa	cactgccagc	gcatcaacaa	4860
tattttcacc	tgaatcagga	tattcttcta	atacctggaa	tgctgttttt	ccggggatcg	4920
cagtggtgag	taaccatgca	tcatcaggag	tacggataaa	atgcttgatg	gtcggaagag	4980
gcataaattc	cgtcagccag	tttagtctga	ccatctcatc	tgtaacatca	ttggcaacgc	5040
tacctttgcc	atgtttcaga	aacaactctg	gcgcatcggg	cttcccatac	aatcgataga	5100
ttgtcgcacc	tgattgcccg	acattatcgc	gagcccattt	atacccatat	aaatcagcat	5160
ccatgttgga	atttaatcgc	ggcctcgagc	aagacgtttc	ccgttgaata	tggctcataa	5220
caccccttgt	attactgttt	atgtaagcag	acagttttat	tgttcatgat	gatatatttt	5280
tatcttgtgc	aatgtaacat	cagagatitt	gagacacaat	tcatcgatga	tggttgagat	5340
gtgtataaga	gacagggtga	agctccggct	gcaccgcagg	tgactgcaga	agacgcatct	5400
gccagcctgg	cagaactgct	gaacgcaggt	ctgggcggtt	ctgataacga	gtaa	5454

<210> 23 <211> 1845

<212> DNA <213> Escherichia coli

<400> 23

atgggcaaaa catctatgat acacgcaatt gtggatcaat atagtcactg tgaatgggtg 60 gaaaatagca tgagtgccaa tgaaaacaac ctgatttgga tcgatcttga qatgaccqqt 120 ctggatcccg agcgcgatcg cattattgag attgccacgc tggtgaccga tgccaacctg 180 aatattctgg cagaagggcc gaccattgca gtacaccagt ctgatgaaca gctggcgctg 240 atggatgact ggaacgtgcg cacccatacc gccagcgggc tggtagagcg cgtgaaagcg 300 agcacgatgg gcgatcggga agctgaactg gcaacgctcg aatttttaaa acagtgggtg 360 cctgcgggaa aatcgccgat ttgcggtaac agcatcggtc aggaccgtcg tttcctgttt 420 aaatacatgc cggagctgga agcctacttc cactaccgtt atctcgatgt cagcaccctg 480 aaagagctgg cgcgccgctg gaagccggaa attctggatg gttttaccaa gcaggggacg 540 catcaggcga tggatgatat ccgtgaatcg gtggcggagc tggcttacta cctgtctctt 600 atacacatct caaccctgaa gcttgcatgc ctgcaggtcg actctagagg atccccgcca 660 cggttgatga gagctttgtt gtaggtggac cagttggtga ttttgaactt ttgctttgcc 720 acggaacggt ctgcgttgtc gggaagatgc gtgatctgat ccttcaactc agcaaaagtt 780 cgatttattc aacaaagccg ccgtcccgtc aagtcagcgt aatgctctgc cagtgttaca 840 accaattaac caattctgat tagaaaaact catcgagcat caaatgaaac tgcaatttat 900 tcatatcagg attatcaata ccatattttt gaaaaagccg tttctgtaat gaaggagaaa 960 actcaccgag gcagttccat aggatggcaa gatcctggta tcggtctgcg attccgactc 1020

*******	224262266		-2029USNA.S		*****	1000
giccaacatc	aatacaacct	attaatttcc	ccccgccaaa	aataaggtta	ccaagcgaga	1080
aatcaccatg	agtgacgact	gaatccggtg	agaatggcaa	aagtttatgc	atttctttcc	1140
agacttgttc	aacaggccag	ccattacgct	cgtcatcaaa	atcactcgca	tcaaccaaac	1200
cgttattcat	tcgtgattgc	gcctgagcga	gacgaaatac	gcgatcgctg	ttaaaaggac	1260
aattacaaac	aggaatcgaa	tgcaaccggc	gcaggaacac	tgccagcgca	tcaacaatat	1320
tttcacctga	atcaggatat	tcttctaata	cctggaatgc	tgtttttccg	gggatcgcag	1380
tggtgagtaa	ccatgcatca	tcaggagtac	ggataaaatg	cttgatggtc	ggaagaggca	1440
taaattccgt	cagccagttt	agtctgacca	tctcatctgt	aacatcattg	gcaacgctac	1500
ctttgccatg	tttcagaaac	aactctggcg	catcgggctt	cccatacaat	cgatagattg	1560
tcgcacctga	ttgcccgaca	ttatcgcgag	cccatttata	cccatataaa	tcagcatcca	1620
tgttggaatt	taatcgcggc	ctcgagcaag _.	acgtttcccg	ttgaatatgg	ctcataacac	1680
cccttgtatt	actgtttatg	taagcagaca	gttttattgt	tcatgatgat	atattttat	1740
cttgtgcaat	gtaacatcag	agattttgag	acacaattca	tcgatgatgg	ttgagatgtg	1800
tataagagac	aggcttacta	ccgcgagcat	tttatcaagc	tgtaa		1845

<210> 24 <211> 2334 <212> DNA <213> Escherichia coli

<400> 24

atgaagccaa	ttttagccg	tggcccgtcg	ctacagattc	gccttattct	ggcggtgctg	60
gtggcgctcg	gcattattat	tgccgacagc	cgcctgggga	cgttcagtca	aatccgtact	120
tatatggata	ccgccgtcag	tcctttctac	tttgtttcca	atgctcctcg	tgaattgctg	180
gatggcgtat	cgcagacgct	ggcctcgcgt	gaccaattag	aacttgaaaa	ccgggcgtta	240
cgtcaggaac	tgttgctgaa	aaacagtgaa	ctgctgatgc	ttggacaata	caaacaggag	300
aacgcgcgtc	tgcgcgagct	gctgggttcc	ccgctgcgtc	aggatgagca	gaaaatggtg	360
actcaggtta	tctccacggt	taacgatcct	tatagcgatc	aagttgttat	cgataaaggt	420
agcgttaatg	gcgtttatga	aggccagccg	gtcatcagcg	acaaaggtgt	tgttggtcag	480
gtggtggccg	tcgctaaact	gaccagtcgc	gtgctgctga	tttgtgatgc	gacccacgcg	540
ctgccaatcc	aggtgctgcg	caacgatatc	cgcgtaattg	cagccggtaa	cggttgtacg	600
gatgatttgc	agcttgagca	tctgccggcg	aatacggata	ttcgtgttgg	tgatgtgctg	660
gtgacttccg	gtctgggcgg	tcgtttcccg	gaaggctatc	cggtcgcggt	tgtctcttcc	720
gtaaaactcg	atacccagcg	cgcttatact	gtgattcagg	cgcgtccgac	tgcagggctg	780
caacgtttgc	gttatctgct	gctgctgtgg	ggggcagatc	gtaacggcgc	taacccgatg	840
acgccggaag	aggtgcatcg	tgttgctaat	gaacgtctga	tgcagatgat	gccgcaggta	900
ttgccttcgc	cagacgcgat	ggggccaaag	ttacctgaac	cggcaacggg	gatcgctcag	960
ccgactccgc	agcaaccggc	gacaggaaat	gcagctactg Page 27	cgcctgctgc 7	gccgacacag	1020

cctctgtctc ttatacacat ctcaaccatc atcgatgaat tgtgtctcaa aatctctgat	1080						
gttacattgc acaagataaa aatatatcat catgaacaat aaaactgtct gcttacataa	1140						
acagtaatac aaggggtgtt atgagccata ttcaacggga aacgtcttgc tcgaggccgc	1200						
gattaaattc caacatggat gctgatttat atgggtataa atgggctcgc gataatgtcg	1260						
ggcaatcagg tgcgacaatc tatcgattgt atgggaagcc cgatgcgcca gagttgtttc	1320						
tgaaacatgg caaaggtagc gttgccaatg atgttacaga tgagatggtc agactaaact	1380						
ggctgacgga atttatgcct cttccgacca tcaagcattt tatccgtact cctgatgatg	1440						
catggttact caccactgcg atccccggaa aaacagcatt ccaggtatta gaagaatatc	1500						
ctgattcagg tgaaaatatt gttgatgcgc tggcagtgtt cctgcgccgg ttgcattcga	1560						
ttcctgtttg taattgtcct tttaacagcg atcgcgtatt tcgtctcgct caggcgcaat	1620						
cacgaatgaa taacggtttg gttgatgcga gtgattttga tgacgagcgt aatggctggc	1680						
ctgttgaaca agtctggaaa gaaatgcata aacttttgcc attctcaccg gattcagtcg	1740						
tcactcatgg tgatttctca cttgataacc ttatttttga cgaggggaaa ttaataggtt	1800						
gtattgatgt tggacgagtc ggaatcgcag accgatacca ggatcttgcc atcctatgga	1860						
actgcctcgg tgagttttct ccttcattac agaaacggct ttttcaaaaa tatggtattg	1920						
ataatcctga tatgaataaa ttgcagtttc atttgatgct cgatgagttt ttctaatcag	1980						
aattggttaa ttggttgtaa cactggcaga gcattacgct gacttgacgg gacggcggct	2040						
ttgttgaata aatcgaactt ttgctgagtt gaaggatcag atcacgcatc ttcccgacaa	2100						
cgcagaccgt tccgtggcaa agcaaaagtt caaaatcacc aactggtcca cctacaacaa	2160						
agctctcatc aaccgtggcg gggatcctct agagtcgacc tgcaggcatg caagcttcag	2220						
ggttgagatg tgtataagag acagacacag cctgctgcta atcgctctcc acaaagggct	2280						
acgccgccgc aaagtggtgc tcaaccgcct gcgcgtgcgc cgggagggca atag	2334						
<210> 25 <211> 2676 <212> DNA <213> Escherichia coli							
<400> 25 atgcgaagtg aacagatttc tggctcgtca ctcaatccgt cttgtcgttt cagttcctgt	60						
ctcttataca catctcaacc atcatcgatg aattgtgtct caaaatctct gatgttacat	120						
tgcacaagat aaaaatatat catcatgaac aataaaactg tctgcttaca taaacagtaa	180						
tacaaggggt gttatgagcc atattcaacg ggaaacgtct tgctcgaggc cgcgattaaa	240						
ttccaacatg gatgctgatt tatatgggta taaatgggct cgcgataatg tcgggcaatc	300						
aggtgcgaca atctatcgat tgtatgggaa gcccgatgcg ccagagttgt ttctgaaaca	360						
tggcaaaggt agcgttgcca atgatgttac agatgagatg	420						
ggaatttatg cctcttccga ccatcaagca ttttatccgt actcctgatg atgcatggtt	480						

540 actcaccact gcgatccccg gaaaaacagc attccaggta ttagaagaat atcctgattc 600 aggtgaaaat attgttgatg cgctggcagt gttcctgcgc cggttgcatt cgattcctgt ttgtaattgt ccttttaaca gcgatcgcgt atttcgtctc gctcaggcgc aatcacgaat 660 720 gaataacggt ttggttgatg cgagtgattt tgatgacgag cgtaatggct ggcctgttga 780 acaagtctgg aaagaaatgc ataaactttt gccattctca ccggattcag tcgtcactca tggtgatttc tcacttgata accttatttt tgacgagggg aaattaatag gttgtattga 840 900 tgttggacga gtcggaatcg cagaccgata ccaggatctt gccatcctat ggaactgcct 960 cggtgagttt tctccttcat tacagaaacg gctttttcaa aaatatggta ttgataatcc tgatatgaat aaattgcagt ttcatttgat gctcgatgag tttttctaat cagaattggt 1020 taattggttg taacactggc agagcattac gctgacttga cgggacggcg gctttgttga 1080 1140 ataaatcgaa cttttgctga gttgaaggat cagatcacgc atcttcccga caacgcagac 1200 cgttccgtgg caaagcaaaa gttcaaaatc accaactggt ccacctacaa caaagctctc 1260 atcaaccgtg gcggggatcc tctagagtcg acctgcaggc atgcaagctt cagggttgag atgtgtataa gagacagttt cagttctgcg tactctcctg tgaccaggca gcgaaaagac 1320 1380 atgagtcgat gaccgtaaac aggcatggat gatcctgcca taccattcac aacattaagt tcgagattta ccccaagttt aagaactcac accactatga atcttaccga attaaagaat 1440 1500 acgccggttt ctgagctgat cactctcggc gaaaatatgg ggctggaaaa cctggctcgt 1560 atgcgtaagc aggacattat ttttgccatc ctgaagcagc acgcaaagag tggcgaagat 1620 atctttggtg atggcgtact ggagatattg caggatggat ttggtttcct ccgttccgca 1680 gacagctcct acctcgccgg tcctgatgac atctacgttt cccctagcca aatccgccgt 1740 ttcaacctcc gcactggtga taccatctct ggtaagattc gcccgccgaa agaaggtgaa 1800 cgctattttg cgctgctgaa agttaacgaa gttaacttcg acaaacctga aaacgcccgc 1860 aacaaaatcc tctttgagaa cttaaccccg ctgcacgcaa actctcgtct gcgtatggaa 1920 cgtggtaacg gttctactga agatttaact gctcgcgtac tggatctggc atcacctatc ggtcgtggtc agcgtggtct gattgtggca ccgccgaaag ccggtaaaac catgctgctg 1980 2040 cagaacattg ctcagagcat tgcttacaac cacccggatt gtgtgctgat ggttctgctg 2100 atcgacgaac gtccggaaga agtaaccgag atgcagcgtc tggtaaaagg tgaagttgtt 2160 gcttctacct ttgacgaacc cgcatctcgc cacgttcagg ttgcggaaat ggtgatcgag 2220 aaggccaaac gcctggttga gcacaagaaa gacgttatca ttctgctcga ctccatcact 2280 cgtctggcgc gcgcttacaa caccgttgtt ccggcgtcag gtaaagtgtt gaccggtggt 2340 gtggatgcca acgccctgca tcgtccgaaa cgcttctttg gtgcggcgcg taacgtggaa gagggcggca gcctgaccat tatcgcgacg gcgcttatcg ataccggttc taaaatggac 2400 gaagttatct acgaagagtt taaaggtaca ggcaacatgg aactgcacct ctctcgtaag 2460 2520 atcgctgaaa aacgcgtctt cccggctatc gactacaacc gttctggtac ccgtaaagaa

CL-2029USNA.: gagctgctca cgactcagga agaactgcag aaaatgtgga		aatcattcac	2580
ccgatgggcg aaatcgatgc aatggaattc ctcattaata	aactggcaat	gaccaagacc	2640
aatgacgatt tcttcgaaat gatgaaacgc tcataa			2676
<210> 26 <211> 1746 <212> DNA <213> Escherichia coli			
<400> 26 atggattact tcaccctctt tggcttgcct gcccgctatc	aactcgatac	ccaggcgctg	60
agcctgcgtt ttcaggatct acaacgtcag tatcatcctg	ataaattcgc	cagcggaagc	120
caggcggaac aactcgccgc cgtacagcaa tctgcaacca	ttaaccaggc	ctggcaaacg	180
ctgcgtcatc cgttaatgcg cgcggaatat ttgctttctt	tgcacggctt	tgatctcgcc	240
agcgagcagc atacctgtct cttatacaca tctcaaccat	catcgatgaa	ttgtgtctca	300
aaatctctga tgttacattg cacaagataa aaatatatca	tcatgaacaa	taaaactgtc	360
tgcttacata aacagtaata caaggggtgt tatgagccat	attcaacggg	aaacgtcttg	420
ctcgaggccg cgattaaatt ccaacatgga tgctgattta	tatgggtata	aatgggctcg	480
cgataatgtc gggcaatcag gtgcgacaat ctatcgattg	tatgggaagc	ccgatgcgcc	540
agagttgttt ctgaaacatg gcaaaggtag cgttgccaat	gatgttacag	atgagatggt	600
cagactaaac tggctgacgg aatttatgcc tcttccgacc	atcaagcatt	ttatccgtac	660
tcctgatgat gcatggttac tcaccactgc gatccccgga	aaaacagcat	tccaggtatt	720
agaagaatat cctgattcag gtgaaaatat tgttgatgcg	ctggcagtgt	tcctgcgccg	780
gttgcattcg attcctgttt gtaattgtcc ttttaacagc	gatcgcgtat	ttcgtctcgc	840
tcaggcgcaa tcacgaatga ataacggttt ggttgatgcg	agtgattttg	atgacgagcg	900
taatggctgg cctgttgaac aagtctggaa agaaatgcat	aaacttttgc	cattctcacc	960
ggattcagtc gtcactcatg gtgatttctc acttgataac	cttatttttg	acgaggggaa	1020
attaataggt tgtattgatg ttggacgagt cggaatcgca	gaccgatacc	aggatcttgc	1080
catcctatgg aactgcctcg gtgagttttc tccttcatta	cagaaacggc	tttttcaaaa	1140
atatggtatt gataatcctg atatgaataa attgcagttt	catttgatgc	tcgatgagtt	1200
tttctaatca gaattggtta attggttgta acactggcag	agcattacgc	tgacttgacg	1260
ggacggcggc tttgttgaat aaatcgaact tttgctgagt	tgaaggatca	gatcacgcat	1320
cttcccgaca acgcagaccg ttccgtggca aagcaaaagt	tcaaaatcac	caactggtcc	1380
acctacaaca aagctctcat caaccgtggc ggggatcctc	tagagtcgac	ctgcaggcat	1440
gcaagcttca gggttgagat gtgtataaga gacaggcagc	atactgtgcg	cgacaccgcg	1500
ttcctgatgg aacagttgga gctgcgcgaa gagctggacg	agatcgaaca	ggcgaaagat	1560
gaagcgcggc tggaaagctt tatcaaacgt gtgaaaaaga	tgtttgatac	ccgccatcag	1620
ttgatggttg aacagttaga caacgagacg tgggacgcgg Page 3	cggcggatac 0	cgtgcgtaag	1680

ctgcgttttc tcgataaact gcgaagcagt gccgaacaac tcgaagaaaa	actgctcgat	1740
ttttaa		1746
<210> 27 <211> 3171 <212> DNA <213> Escherichia coli		
<400> 27 atgatgagtt atgtagactg gccgccatta attttgaggc acacgtacta	catooctoaa	60
ttcgaaacca cttttgcaga tctgggcctg aaggctccta tccttgaagc		120
		180
ctgggttacg aaaaaccatc tccaattcag gcagagtgta ttccacatct		240
cgcgacgttc tgggtatggc ccagacgggg agcggaaaaa ctgcagcatt		
ctgttgcaga atcttgatcc tgagctgaaa gcaccacaga ttctggtgct		300
cgcgaactgg cggtacaggt tgctgaagca atgacggatt tctctaaaca		360
gtaaatgtgg ttgctctgta cggcggccag cgttatgacg tgcaattacg		420
caggggccgc agatcgttgt cggtactccg ggccgtctgc tggaccacct		480
actctggacc tctctaaact gagcggtctg gttctggatg aagctgacga	aatgctgcgc	540
atgggcttca tcgaagacgt tgaaaccatt atggcgcaga tcccggaagg	tcatcagacc	600
gctctgttct ctgcaaccat gccggaagcg attcgtcgca ttacccgccg	ctttatgaaa	660
gagccgcagg aagtgcgcat tcagtccagc gtgactaccc gtcctgacat	cagccagagc	720
tactggactg tctggggtat gcgcaaaaac gaagcactgg tacgctgtct	cttatacaca	780
tctcaaccat catcgatgaa ttgtgtctca aaatctctga tgttacattg	cacaagataa	840
aaatatatca tcatgaacaa taaaactgtc tgcttacata aacagtaata	caaggggtgt	900
tatgagccat attcaacggg aaacgtcttg ctcgaggccg cgattaaatt	ccaacatgga	960
tgctgattta tatgggtata aatgggctcg cgataatgtc gggcaatcag	gtgcgacaat	1020
ctatcgattg tatgggaagc ccgatgcgcc agagttgttt ctgaaacatg	gcaaaggtag	1080
cgttgccaat gatgttacag atgagatggt cagactaaac tggctgacgg	aatttatgcc	1140
tcttccgacc atcaagcatt ttatccgtac tcctgatgat gcatggttac	tcaccactgc	1200
gatccccgga aaaacagcat tccaggtatt agaagaatat cctgattcag	gtgaaaatat	1260
tgttgatgcg ctggcagtgt tcctgcgccg gttgcattcg attcctgttt	gtaattgtcc	1320
ttttaacagc gatcgcgtat ttcgtctcgc tcaggcgcaa tcacgaatga	ataacggttt	1380
ggttgatgcg agtgattttg atgacgagcg taatggctgg cctgttgaac		1440
agaaatgcat aaacttttgc cattctcacc ggattcagtc gtcactcatg		1500
acttgataac cttatttttg acgaggggaa attaataggt tgtattgatg		1560
cggaatcgca gaccgatacc aggatcttgc catcctatgg aactgcctcg		1620
tccttcatta cagaaacggc tttttcaaaa atatggtatt gataatcctg		1680
carrante anguancy of the continual analygians yaldaleting	acacgaacaa	1000

CL-2029USNA.ST25.txt attgcagttt catttgatgc tcgatgagtt tttctaatca gaattggtta attggttgta 1740 acactggcag agcattacgc tgacttgacg ggacggcggc tttgttgaat aaatcgaact 1800 tttgctgagt tgaaggatca gatcacgcat cttcccgaca acgcagaccg ttccgtggca 1860 1920 aagcaaaagt tcaaaatcac caactggtcc acctacaaca aagctctcat caaccgtggc ggggatcctc tagagtcgac ctgcaggcat gcaagcttca gggttgagat gtgtataaga 1980 gacagactgg tacgtttcct ggaagcggaa gattttgatg cggcgattat cttcgttcgt 2040 2100 accaaaaacg cgactctgga agtggctgaa gctcttgagc gtaacggcta caacagcgcc gcgctgaacg gtgacatgaa ccaggcgctg cgtgaacaga cactggaacg cctgaaagat 2160 ggtcgtctgg acatcctgat tgcgaccgac gttgcagccc gtggcctgga cgttgagcgt 2220 atcagcctgg tagttaacta cgatatcccg atggattctg agtcttacgt tcaccgtatc 2280 2340 ggtcgtaccg gtcgtgcggg tcgtgctggc cgcgcgctgc tgttcgttga gaaccgcgag 2400 cgtcgtctgc tgcgcaacat tgaacgtact atgaagctga ctattccgga agtagaactg 2460 ccgaacgcag aactgctagg caaacgccgt ctggaaaaat tcgccgctaa agtacagcag cagctggaaa gcagcgatct ggatcaatac cgcgcactgc tgagcaaaat tcagccgact 2520 2580 gctgaaggtg aagagctgga tctcgaaact ctggctgcgg cactgctgaa aatggcacag ggtgaacgta ctctgatcgt accgccagat gcgccgatgc gtccgaaacg tgaattccgt 2640 2700 gaccgtgatg accgtggtcc gcgcgatcgt aacgaccgtg gcccgcgtgg tgaccgtgaa 2760 gatcgtccgc gtcgtgaacg tcgtgatgtt ggcgatatgc agctgtaccg cattgaagtg 2820 ggccgcgatg atggtgttga agttcgtcat atcgttggtg cgattgctaa cgaaggcgac 2880 atcagcagcc gttacattgg taacatcaag ctgtttgctt ctcactccac catcgaactg ccgaaaggta tgccgggtga agtgctgcaa cactttacgc gcactcgcat tctcaacaag 2940 3000 ccgatgaaca tgcagttact gggcgatgca cagccgcata ctggcggtga gcgtcgtggc ggtggtcgtg gtttcggtgg cgaacgtcgt gaaggcggtc gtaacttcag cggtgaacgc 3060 cgtgaaggtg gccgtggtga tggtcgtcgt tttagcggcg aacgtcgtga aggccgcgct 3120 ccgcgtcgtg atgattctac cggtcgtcgt cgtttcggtg gtgatgcgta a 3171 <210> 28 8609 <211> <212> DNA Artificial sequence <220> <223> Plasmid pPCB15 <400> 28 cgtatggcaa tgaaagacgg tgagctggtg atatgggata gtgttcaccc ttgttacacc 60 gttttccatg agcaaactga aacgttttca tcgctctgga gtgaatacca cgacgatttc 120

180

240

cggcagtttc tacacatata ttcgcaagat gtggcgtgtt acggtgaaaa cctggcctat

ttccctaaag ggtttattga gaatatgttt ttcgtctcag ccaatccctg ggtgagtttc

CL-2029USNA.ST25.txt accapttttg atttaaacgt ggccaatatg gacaacttct tcgcccccgt tttcaccatg 300 ggcaaatatt atacgcaagg cgacaaggtg ctgatgccgc tggcgattca ggttcatcat 360 gccgtctgtg atggcttcca tgtcggcaga atgcttaatg aattacaaca gtactgcgat 420 gagtggcagg gcggggcgta atttttttaa ggcagttatt ggtgcctaga aatatttat 480 ctgattaata agatgatctt cttgagatcg ttttggtctg cgcgtaatct cttgctctga 540 aaacgaaaaa accgccttgc agggcggttt ttcgaaggtt ctctgagcta ccaactcttt 600 gaaccgaggt aactggcttg gaggagcgca gtcaccaaaa cttgtccttt cagtttagcc 660 ttaaccggcg catgacttca agactaactc ctctaaatca attaccagtg gctgctgcca 720 gtggtgcttt tgcatgtctt tccgggttgg actcaagacg atagttaccg gataaggcgc 780 agcggtcgga ctgaacgggg ggttcgtgca tacagtccag cttggagcga actgcctacc 840 cggaactgag tgtcaggcgt ggaatgagac aaacgcggcc ataacagcgg aatgacaccg 900 gtaaaccgaa aggcaggaac aggagagcgc acgagggagc cgccagggga aacgcctggt 960 atctttatag tcctgtcggg tttcgccacc actgatttga gcgtcagatt tcgtgatgct 1020 tgtcaggggg gcggagccta tggaaaaacg gctttgccgc ggccctctca cttccctgtt 1080 aagtatcttc ctggcatctt ccaggaaatc tccgccccgt tcgtaagcca tttccgctcg 1140 ccgcagtcga acgaccgagc gtagcgagtc agtgagcgag gaagcggaat atatcctgta 1200 tcacatattc tgctgacgca ccggtgcagc cttttttctc ctgccacatg aagcacttca 1260 ctgacaccct catcagtgcc aacatagtaa gccagtatat acactccgct agcgcccaat 1320 acgcaaaccg cctctccccg cgcgttggcc gattcattaa tgcagctggc acgacaggtt 1380 tcccgactgg aaagcgggca gtgagcgcaa cgcaattaat gtgagttagc tcactcatta 1440 ggcaccccag gctttacact ttatgcttcc ggctcgtatg ttgtgtggaa ttgtgagcgg 1500 ataacaattt cacacaggaa acagctatga ccatgattac gaattcgagc tcggtaccca 1560 aacgaattcg cccttttgac ggtctgcgca aaaaaacacg ttcaccttac tggcatttcg 1620 1680 gctgagcagt tgctggctga tatcgatagc cgccttgatc agttactgcc ggttcagggt gagcgggatt gtgtgggtgc cgcgatgcgt gaaggcacgc tggcaccggg caaacgtatt 1740 cgtccgatgc tgctgttatt aacagcgcgc gatcttggct gtgcgatcag tcacggggga 1800 ttactggatt tagcctgcgc ggttgaaatg gtgcatgctg cctcgctgat tctggatgat 1860 atgccctgca tggacgatgc gcagatgcgt cgggggcgtc ccaccattca cacgcagtac 1920 ggtgaacatg tggcgattct ggcggcggtc gctttactca gcaaagcgtt tggggtgatt 1980 gccgaggctg aaggtctgac gccgatagcc aaaactcgcg cggtgtcgga gctgtccact 2040 gcgattggca tgcagggtct ggttcagggc cagtttaagg acctctcgga aggcgataaa 2100 ccccgcagcg ccgatgccat actgctaacc aatcagttta aaaccagcac gctgttttgc 2160 gcgtcaacgc aaatggcgtc cattgcggcc aacgcgtcct gcgaagcgcg tgagaacctg 2220 catcgtttct cgctcgatct cggccaggcc tttcagttgc ttgacgatct taccgatggc 2280

CL-2029USNA.ST25.txt 2340 atgaccgata ccggcaaaga catcaatcag gatgcaggta aatcaacgct ggtcaattta 2400 ttaggctcag gcgcggtcga agaacgcctg cgacagcatt tgcgcctggc cagtgaacac ctttccgcgg catgccaaaa cggccattcc accacccaac tttttattca ggcctggttt 2460 2520 gacaaaaaac tcgctgccgt cagttaagga tgctgcatga gccattttgc ggtgatcgca 2580 ccgccctttt tcagccatgt tcgcgctctg caaaaccttg ctcaggaatt agtggcccgc 2640 ggtcatcgtg ttacgttttt tcagcaacat gactgcaaag cgctggtaac gggcagcgat 2700 atcggattcc agaccgtcgg actgcaaacg catcctcccg gttccttatc gcacctgctg 2760 cacctggccg cgcacccact cggaccctcg atgttacgac tgatcaatga aatggcacgt 2820 accagcgata tgctttgccg ggaactgccc gccgcttttc atgcgttgca gatagagggc 2880 gtgatcgttg atcaaatgga gccggcaggt gcagtagtcg cagaagcgtc aggtctgccg 2940 tttgtttcgg tggcctgcgc gctgccgctc aaccgcgaac cgggtttgcc tctggcggtg atgcctttcg agtacggcac cagcgatgcg gctcgggaac gctataccac cagcgaaaaa 3000 atttatgact ggctgatgcg acgtcacgat cgtgtgatcg cgcatcatgc atgcagaatg 3060 ggtttagccc cgcgtgaaaa actgcatcat tgtttttctc cactggcaca aatcagccag 3120 3180 ttgatccccg aactggattt tccccgcaaa gcgctgccag actgctttca tgcggttgga ccgttacggc aaccccaggg gacgccgggg tcatcaactt cttatttcc gtccccggac 3240 3300 aaaccccgta tttttgcctc gctgggcacc ctgcagggac atcgttatgg cctgttcagg accatcgcca aagcctgcga agaggtggat gcgcagttac tgttggcaca ctgtggcggc 3360 3420 gccgatcaat ccgcagcact ttcacaggca cagttgacaa tcacacatgg tgggatgaat 3480 3540 acggtactgg acgctattgc ttcccgcaca ccgctactgg cgctgccgct ggcatttgat caacctggcg tggcatcacg aattgtttat catggcatcg gcaagcgtgc gtctcggttt 3600 actaccagcc atgcgctggc gcggcagatt cgatcgctgc tgactaacac cgattacccg 3660 3720 cagcgtatga caaaaattca ggccgcattg cgtctggcag gcggcacacc agccgccgcc 3780 gatattgttg aacaggcgat gcggacctgt cagccagtac tcagtgggca ggattatgca accgcactat gatctcattc tggtcggtgc cggtctggct aatggcctta tcgcgctccg 3840 gcttcagcaa cagcatccgg atatgcggat cttgcttatt gaggcgggtc ctgaggcggg 3900 3960 agggaaccat acctggtcct ttcacgaaga ggatttaacg ctgaatcagc atcgctggat agcgccgctt gtggtccatc actggcccga ctaccaggtt cgtttccccc aacgccgtcg 4020 4080 ccatgtgaac agtggctact actgcgtgac ctcccggcat ttcgccggga tactccggca acagtttgga caacatttat ggctgcatac cgcggtttca gccgttcatg ctgaatcggt 4140 4200 ccagttagcg gatggccgga ttattcatgc cagtacagtg atcgacggac ggggttacac gcctgattct gcactacgcg taggattcca ggcatttatc ggtcaggagt ggcaactgag 4260

4320

cgcgccgcat ggtttatcgt caccgattat catggatgcg acggtcgatc agcaaaatgg

CL-2029USNA.ST25.txt ctaccgcttt gtttataccc tgccgctttc cgcaaccgca ctgctgatcg aagacacaca 4380 ctacattgac aaggctaatc ttcaggccga acgggcgcgt cagaacattc gcgattatgc 4440 tgcgcgacag ggttggccgt tacagacgtt gctgcgggaa gaacagggtg cattgcccat 4500 4560 tacgttaacg ggcgataatc gtcagttttg gcaacagcaa ccgcaagcct gtagcggatt acgcgccggg ctgtttcatc cgacaaccgg ctactcccta ccgctcgcgg tggcgctggc 4620 cgatcgtctc agcgcgctgg atgtgtttac ctcttcctct gttcaccaga cgattgctca 4680 ctttgcccag caacgttggc agcaacaggg gtttttccgc atgctgaatc gcatgttgtt 4740 tttagccgga ccggccgagt cacgctggcg tgtgatgcag cgtttctatg gcttacccga 4800 ggatttgatt gcccgctttt atgcgggaaa actcaccgtg accgatcggc tacgcattct 4860 gagcggcaag ccgcccgttc ccgttttcgc ggcattgcag gcaattatga cgactcatcg 4920 ttgaagagcg actacatgaa accaactacg gtaattggtg cgggctttgg tggcctggca 4980 ctggcaattc gtttacaggc cgcaggtatt cctgttttgc tgcttgagca gcgcgacaag 5040 ccgggtggcc gggcttatgt ttatcaggag cagggcttta cttttgatgc aggccctacc 5100 gttatcaccg atcccagcgc gattgaagaa ctgtttgctc tggccggtaa acagcttaag 5160 gattacgtcg agctgttgcc ggtcacgccg ttttatcgcc tgtgctggga gtccggcaag 5220 gtcttcaatt acgataacga ccaggcccag ttagaagcgc agatacagca gtttaatccg 5280 5340 cgcgatgttg cgggttatcg agcgttcctt gactattcgc gtgccgtatt caatgagggc tatctgaagc tcggcactgt gcctttttta tcgttcaaag acatgcttcg ggccgcgccc 5400 cagttggcaa agctgcaggc atggcgcagc gtttacagta aagttgccgg ctacattgag 5460 gatgagcatc ttcggcaggc gttttctttt cactcgctct tagtgggggg gaatccgttt 5520 gcaacctcgt ccatttatac gctgattcac gcgttagaac gggaatgggg cgtctggttt 5580 CCacgcggtg gaaccggtgc gctggtcaat ggcatgatca agctgtttca ggatctgggc 5640 ggcgaagtcg tgcttaacgc ccgggtcagt catatggaaa ccgttgggga caagattcag 5700 gccgtgcagt tggaagacgg cagacggttt gaaacctgcg cggtggcgtc gaacgctgat 5760 gttgtacata cctatcgcga tctgctgtct cagcatcccg cagccgctaa gcaggcgaaa 5820 5880 aaactgcaat ccaagcgtat gagtaactca ctgtttgtac tctattttgg tctcaaccat catcacgatc aactcgccca tcataccgtc tgttttgggc cacgctaccg tgaactgatt 5940 cacgaaattt ttaaccatga tggtctggct gaggattttt cgctttattt acacgcacct 6000 tgtgtcacgg atccgtcact ggcaccggaa gggtgcggca gctattatgt gctggcgcct 6060 gttccacact taggcacggc gaacctcgac tgggcggtag aaggaccccg actgcgcgat 6120 cgtatttttg actaccttga gcaacattac atgcctggct tgcgaagcca gttggtgacg 6180 caccgtatgt ttacgccgtt cgatttccgc gacgagctca atgcctggca aggttcggcc 6240 ttctcggttg aacctattct gacccagagc gcctggttcc gaccacataa ccgcgataag 6300

6360

cacattgata atctttatct ggttggcgca ggcacccatc ctggcgcggg cattcccggc

CL-2029USNA.ST25.txt 6420 gtaatcggct cggcgaaggc gacggcaggc ttaatgctgg aggacctgat ttgacgaata 6480 cgtcattact gaatcatgcc gtcgaaacca tggcggttgg ctcgaaaagc tttgcgactg catcgacgct tttcgacgcc aaaacccgtc gcagcgtgct gatgctttac gcatggtgcc 6540 6600 gccactgcga cgacgtcatt gacgatcaaa cactgggctt tcatgccgac cagccctctt 6660 cgcagatgcc tgagcagcgc ctgcagcagc ttgaaatgaa aacgcgtcag gcctacgccg 6720 gttcgcaaat gcacgagccc gcttttgccg cgtttcagga ggtcgcgatg gcgcatgata 6780 tcgctcccgc ctacgcgttc gaccatctgg aaggttttgc catggatgtg cgcgaaacgc 6840 gctacctgac actggacgat acgctgcgtt attgctatca cgtcgccggt gttgtgggcc tgatgatggc gcaaattatg ggcgttcgcg ataacgccac gctcgatcgc gcctgcgatc 6900 tcgggctggc tttccagttg accaacattg cgcgtgatat tgtcgacgat gctcaggtgg 6960 7020 . . gccgctgtta tctgcctgaa.agctggctgg aagaggaagg actgacgaaa gcgaattatg. 7080 ctgcgccaga aaaccggcag gccttaagcc gtatcgccgg gcgactggta cgggaagcgg aaccctatta cgtatcatca atggccggtc tggcacaatt acccttacgc tcggcctggg 7140 7200 ccatcgcgac agcgaagcag gtgtaccgta aaattggcgt gaaagttgaa caggccggta 7260 agcaggcctg ggatcatcgc cagtccacgt ccaccgccga aaaattaacg cttttgctga 7320 cggcatccgg tcaggcagtt acttcccgga tgaagacgta tccaccccgt cctgctcatc 7380 tctggcagcg cccgatctag ccgcatgcct ttctctcagc gtcgcctgaa gtttagataa 7440 cggtggcgcg tacagaaaac caaaggacac gcagccctct tttcccctta cagcatgatg 7500 catacggtgg gccatgtata accgtttcag gtagcctttg cgcggtatgt agcggaacgg 7560 ccagcgctgg tgtaccagtc cgtcgtggac cataaaatac agtaaaccat aagcggtcat 7620 gcctgcacca atccactgga gcggccagat tcctgtactg ccgaagtaaa tcagggcaat 7680 cgacacaatg gcgaatacca cggcatagag atcgttaact tcaaatgcgc ctttacgcgg 7740 ttcatgatgt gaaagatgcc agccccaacc ccagccgtgc atgatgtatt tatgtgccag 7800 tgcagcaacc acttccatgc cgaccacggt gacaaacacg atcagggcat tccaaatcca caacataatt tctcaagggc gaattcgcgg ggatcctcta gagtcgacct gcaggcatgc 7860 7920 aagcttggca ctggccgtcg ttttacaacg tcgtgactgg gaaaaccctg gcgttaccca 7980 acttaatcgc cttgcagcac atcccccttt cgccagctgg cgtaatagcg aagaggcccg 8040 caccgatcgc ccttcccaac agttgcgcag cctgaatggc gaatggcgct gatgtccggc 8100 ggtgcttttg ccgttacgca ccaccccgtc agtagctgaa caggagggac agctgataga aacagaagcc actggagcac ctcaaaaaca ccatcataca ctaaatcagt aagttggcag 8160 8220 catcacccga cgcactttgc gccgaataaa tacctgtgac ggaagatcac ttcgcagaat 8280 aaataaatcc tggtgtccct gttgataccg ggaagccctg ggccaacttt tggcgaaaat 8340 gagacgttga tcggcacgta agaggttcca actttcacca taatgaaata agatcactac

8400

cgggcgtatt ttttgagtta tcgagatttt caggagctaa ggaagctaaa atggagaaaa

	CL-2029USNA.ST25.txt					
aaatcactgg	atataccacc	gttgatatat	cccaatggca	tcgtaaagaa	cattttgagg	8460
catttcagtc	agttgctcaa	tgtacctata	accagaccgt	tcagctggat	attacggcct	8520
ttttaaagac	cgtaaagaaa	aataagcaca	agttttatcc	ggcctttatt	cacattcttg	8580
cccgcctgat	gaatgctcat	ccggaattt				8609