Mathematical Economics Discrete time: optimal control problem

Paulo Brito

¹pbrito@iseg.ulisboa.pt University of Lisbon

November 30, 2018

Optimal control problem

We present the optimality conditions for three problems:

- Simplest problem: x_0 , x_T and T given
- Constrained terminal state problem: x_0 and T given and x_T constrained
- Discounted infinite horizon problem

Optimal control problem

Timing and value of the decisions

Optimal control problem

Timing and value of the decisions

- The action in period t: in the beginning—the state x_t is given, during—the period the control u_t is chosen, at the end—the state variable will be $x_{t+1} = G(x_t, u_t, t)$
- The value obtained by u_t , given the state x_t , is

$$F_t = F(x_t, u_t, t) \text{ period } t = 0, 1, \dots, T - 1$$

• The value of choosing the sequence $u = \{u_0, u_1, \dots, u_{T-1}\}$ is

$$J(u,x) = F(0,x_0,u_0) + \ldots + F(t,x_t,u_t) + \ldots + F(T-1,x_{T-1},u_{T-1})$$

• The optimal sequence u^* is such that

$$J^* = J[u^*] = \max_{u} \{ J[x, u] : (x, u) \in \mathcal{D} \}$$

Optimal control: simplest problem

• Problem OCP: Find $x^* = \{x_0^*, x_1^*, \dots, x_T^*\}$ and $u^* = \{u_0^*, u_1^*, \dots, u_T^*\}$ that maximizes

$$J[x, u] = \sum_{t=0}^{T-1} F(u_t, x_t, t)$$

subject to

$$\begin{cases} x_{t+1} = G(x_t, u_t, t) & t = 0, 1, ..., T - 1 \\ x_0 = \phi_0 & t = 0 \\ x_T = \phi_T & t = T \end{cases}$$

T, ϕ_0 and ϕ_T given

Pontryagin's maximum principle (PMP)

- This is a second method for solving dynamic optimization problems.
- In order to use it, we define the Hamiltonian function

$$H_t = H(\psi_t, x_t, u_t, t) = f(x_t, u_t, t) + \psi_t G(x_t, u_t, t)$$

where ψ_t is called the co-state variable at time t (obs: it has the same timing as x_t)

• Maximized Hamiltonian is a function

$$H_t^*(\psi_t, x_t^*) = \max_u H_t(\psi_t, x_t, u_t)$$

for the optimal control, $u_t^* = u^*(x_t, \psi_t)$.

PMP: necessary first order conditions from

Proposition

- If $x^* = \{x_t^*\}_{t=0}^T$ and $u^* = \{u_t^*\}_{t=0}^{T-1}$ are solutions to the OCP, there is a sequence of the co-state variable $\psi = \{\psi_t\}_{t=0}^{T-1}$ such that the following conditions hold:
- the optimality conditions

$$\frac{\partial H_t^*}{\partial u_t} = 0, \ t = 0, \dots, T - 1$$

$$\psi_t = \frac{\partial H_{t+1}^*}{\partial x_{t+1}}, \ t = 0, \dots, T - 1$$

• and the admissibility conditions

$$x_{t+1}^* = G(x_t^*, u_t^*, t) \ t = 0, \dots, T-1$$

$$x_0^* = \phi_0, \ t = 0$$

$$x_T^* = \phi_T, \ t = T$$

Maximized Hamiltonian dynamic system (MHDS)

• If $\partial^2 H_t/\partial u_t^2 \neq 0$ then the optimality condition

$$\frac{\partial H_t^*}{\partial u_t} = \frac{\partial F(x_t^*, u_t^*, t)}{\partial u_t} + \psi_t \frac{\partial G(x_t^*, u_t^*, t)}{\partial u_t} = 0$$

can be solved for the optimal control

$$u_t^* = U(x_t^*, \psi_t, t)$$

• Substituting into the f.o.c we get the MHDS in (x_t, ψ_t)

$$\begin{cases} \psi_t = p(x_{t+1}^*, \psi_{t+1}, t+1) \\ x_{t+1}^* = G(x_t^*, \psi_t, t) \\ x_0^* = \phi_0 \\ x_T^* = \phi_T \end{cases}$$

where

$$p(x_{t+1}, \psi_{t+1}) \equiv \frac{\partial H_{t+1}^*}{\partial x_{t+1}} (x_{t+1}^*, U(x_{t+1}^*, \psi_{t+1}, t+1), \psi_{t+1}, t+1)$$

$$G(x_t^*, \psi_t, t) = G(x_t^*, U(x_t^*, \psi_t, t), t)$$

Alternative MHDS

• Alternatively we can solve

$$\frac{\partial H_t^*}{\partial u_t} = \frac{\partial F(x_t^*, u_t^*, t)}{\partial u_t} + \psi_t \frac{\partial G(x_t^*, u_t^*, t)}{\partial u_t} = 0$$

for $\psi_t = q_t(u_t^*, x_t^*, t)$ and we get an alternative **MHDS** in (x_t, u_t)

$$\begin{cases} x_{t+1}^* = G(x_t^*, u_t^*, t) \\ u_{t+1}^* = U(x_t^*, u_t^*, t, t+1) \\ x_0^* = \phi_0 \\ x_T^* = \phi_T \end{cases}$$

- If we compare with the f.o.c for an optimum for the calculus of variations problem, instead of a scalar second order difference equation we have a planar first-order equation.
- The system is characterized by a **forward** equation, $x_{t+1} = G(x_t, u_t, t)$, and a **backward** equation, $u_{t+1} = U(x_t, u_t, t, t + 1)$

Application: cake eating problem

• The problem

$$\max_{\{C\}} \sum_{t=0}^{T} \beta^{t} \ln(C_{t}), \text{ subject to } W_{t+1} = W_{t} - C_{t}, W_{0} = \phi, W_{T} = 0.$$

• The Hamiltonian for this problem is

$$H_t = \beta^t \ln(C_t) + \psi_t(W_t - C_t)$$

• The first order conditions are

$$\begin{cases} \frac{\partial H_t^*}{\partial C_t} = \beta^t (C_t^*)^{-1} - \psi_t = 0, & t = 0, \dots, T - 1 \\ \psi_t = \frac{\partial H_{t+1}^*}{\partial W_{t+1}} = \psi_{t+1}, & t = 0, \dots, T - 1 \\ W_{t+1}^* = W_t^* - C_t^*, & t = 0, \dots, T - 1 \\ W_T^* = 0, & t = 0 \\ W_0^* = \phi, & t = T \end{cases}$$

Cake eating problem: MHDS

• The MHDS in (W_t, C_t) is

$$C_{t+1}^* = \beta C_t^* \tag{1}$$

$$W_{t+1}^* = W_t^* - C_t^*, \ t = 0, \dots, T-1$$
 (2)

$$W_T^* = 0 (3)$$

$$W_0^* = \phi \tag{4}$$

- To find the solution we have to solve it.
- There are several methods to do it. Examples: (1) solve recursively; (2) as a system of linear DE

Cake eating problem: recursive solution

1 Solve the "Euler-equation" (1)

$$C_t = C_0 \beta^t. (5)$$

where C_0 is an arbitrary constraint;

2 Substitute it in the constraint (2)

$$W_{t+1} = W_t - C_0 \beta^t$$

3 Solve it to find

$$W_t = k - C_0 \sum_{s=0}^{t-1} \beta^s = k - C_0 \frac{1 - \beta^t}{1 - \beta}$$
 (6)

Cake eating problem: recursive solution (cont.)

4 Evaluate the solution for W_t at the initial and terminal time

$$\begin{cases} W_0 = k \\ W_T = k - C_0 \frac{1-\beta^T}{1-\beta} \end{cases}$$

5 Remember the the initial and terminal constraints (3) and (4)

$$\begin{cases} W_0 = k = \phi \\ W_T = k - C_0 \frac{1 - \beta^T}{1 - \beta} = 0 \end{cases}$$

6 Solve the system for k and C_0 to get $C_0 = \frac{1-\beta}{1-\beta^T}\phi$ and $k = \phi$

Cake eating problem: recursive solution (cont.)

- Substitute C_0 and k into equations (6) and (5)
- We get the solution to the optimal control problem

$$W_t^* = \phi\left(\frac{\beta^t - \beta^T}{1 - \beta^T}\right), \ t = 0, \dots, T$$
$$C_t^* = \phi\left(\frac{1 - \beta}{1 - \beta^T}\beta^t\right), \ t = 0, \dots, T - 1.$$

Optimal control problems with terminal constraints

Problem OCPTC: find $u = \{u_t\}_{t=0}^{T-1}$ and $x = \{x_t\}_{t=0}^{T}$ that solves

$$\max_{u} \sum_{t=0}^{T-1} F(u_t, x_t, t)$$

with T finite and known

• subject to the constraints

•

$$\begin{cases} x_{t+1} = G(x_t, u_t, t) & t = 0, 1, \dots, T - 1 \\ x_0 = \phi_0 & t = 0 \end{cases}$$

• and, the alternative terminal constrains

$$x_T$$
 free, or $x_T \ge \phi_T$

PMP for the free-endpoint problem

Proposition

- If $x^* = \{x_t^*\}_{t=0}^T$ and $u^* = \{u_t^*\}_{t=0}^{T-1}$ are solutions of the OCP, there is a sequence $\psi = \{\psi_t\}_{t=0}^{T-1}$ such that
- the optimality conditions

$$\frac{\partial H_t^*}{\partial u_t} = 0, \ t = 0, 1, \dots, T - 1$$

$$\psi_t = \frac{\partial H_{t+1}^*}{\partial x_{t+1}}, \ t = 0, \dots, T - 1$$

• the admissibility conditions

$$x_{t+1}^* = G(x_t^*, u_t^*, t)$$

 $x_0^* = \phi_0$

• and the transversality conditions

$$\psi_{T-1} = 0, or \psi_{T-1}(x_T^* - \phi_T) = 0$$

Discounted OCP with infinite horizon

• **Problem OCPIH**: find $(u, x) = \{(u_t, x_t)\}_{t=0}^{\infty}$ such that

$$\max_{u} \sum_{t=0}^{\infty} \beta^{t} f(x_{t}, u_{t}), \ 0 < \beta < 1$$

• subject to

$$x_{t+1} = g(x_t, u_t), t = 0, 1, ...$$

 $x_0 = \phi_0$, given

note this is a free endpoint problem ($T = \infty$ is undetermined)

Discounted OCP with infinite horizon (cont.)

• The discounted-value Hamiltonian is

$$H_t = \beta^t f(u_t, x_t) + \psi_t g(u_t, x_t)$$

= $\beta^t (f(u_t, x_t) + \beta^{-t} \psi_t g(u_t, x_t))$
= $\beta^t h_t$

• We define the current-value Hamiltonian

$$h_t \equiv h(x_t, \eta_t, u_t) = f(u_t, x_t) + \eta_t g(u_t, x_t)$$

where the current-value co-state variable is

$$\eta_t = \beta^{-t} \psi_t$$

PMP for the infinite horizon problem

Proposition

• The solution of problem OCPIH verifies the following conditions:

$$\frac{\partial h_t^*}{\partial u_t} = 0, \ t = 0, \dots, \infty \tag{7}$$

$$\eta_t = \beta \frac{\partial h_{t+1}^*}{\partial x_{t+1}}, \ t = 0, \dots, \infty$$
(8)

$$x_{t+1}^* = g(x_t^*, u_t^*), \ t = 0, \dots, \infty$$
 (9)

$$x_0^* = \phi_0, \ t = 0$$
 (10)

• plus: terminal values and transversality conditions

$$\lim_{t \to \infty} x_t free, \quad \lim_{t \to \infty} \beta^t \eta_t = 0 \tag{11}$$

or

$$\lim_{t \to \infty} x_t \ge 0 \lim_{t \to \infty} \beta^t \eta_t x_t^* = 0 \tag{12}$$

Solving the MHDS: methods

 In OPCIH problems the MHDS can be written as a system of autonomous difference equations

$$u_{t+1}^* = k(u_t^*, x_t^*)$$

$$x_{t+1}^* = g(u_t^*, x_t^*)$$

- If the system is linear we can use the following rule of thumb to solve the system:
 - try to reduce the dimensionality of the system: this is the case, v.g.
 - if the system is recursive (method 1): solve the scalar equation and substitute the solution in the other equation;
 - **9** find other type of reduction: if we can express the system into a variable like $z_t = \eta_t x_t$ (method 2)
 - **3** if we cannot reduce the dimensionality of the system: use the solution of planar linear difference equation (method 3)

Application: consumption-investment problem

• Find the optimal consumption-investment strategy that solves the problem: find $C = \{C_t\}_{t=0}^{\infty}$ that

$$\max_{C} \sum_{t=0}^{\infty} \beta^{t} \ln \left(C_{t} \right) \text{ (inter-temporal utility)}$$

• subject to the constraints:

$$\begin{cases} W_{t+1} = (1+r) \, W_t - C_t, \text{ (intra-temporal budget constraint)} \\ W_0 = \phi, \text{ (initial wealth given)} \\ \lim_{t \to \infty} (1+r)^{-t} \, W_t \ge 0, \text{ (Non-Ponzi game condition)} \end{cases}$$

where r > 0 is the (given and constant) interest rate.

Solving through the PMP

• Discounted Hamiltonian

$$h_t = \ln(C_t) + \eta_t((1+r)W_t - C_t)$$

• PMP optimality conditions

$$\begin{cases} \frac{1}{C_t} = \eta_t \\ \eta_t = \beta(1+r)\eta_{t+1} \\ W_{t+1} = (1+r)W_t - C_t \\ W_0 = \phi_0 \\ \lim_{t \to \infty} \beta^t \eta_t W_t = 0 \end{cases}$$

MHDS

- Eliminating η we get:
- the maximized Hamiltonian dynamic system (MHDS)

$$C_{t+1} = \beta(1+r)C_t \tag{13}$$

$$W_{t+1} = (1+r)W_t - C_t (14)$$

• and the initial and transversality conditions

$$W_0 = \phi_0 \tag{15}$$

$$\lim_{t \to \infty} \beta^t \frac{W_t}{C_t} = 0 \tag{16}$$

Solving the MHDS: method 1

1 Solve equation (13):

$$C_t = C_0 \beta^t (1+r)^t, \ t \in \{0, 1, \dots, \infty\}$$

where C_0 is unknown

2 Substitute in equation (14) to get

$$W_{t+1} = (1+r)W_t - C_0\beta^t(1+r)^t, \ t \in \{0, 1, \dots, \infty\}$$
 (17)

3 Solve equation (17)

$$W_t = W_0(1+r)^t - C_0 \sum_{s=0}^{t-1} (1+r)^{t-s-1} (1+r)^s \beta^s =$$

$$= W_0(1+r)^t - C_0(1+r)^{t-1} \sum_{s=0}^{t-1} \beta^s =$$

$$= (1+r)^t \left(W_0 - \frac{C_0}{1+r} \left(\frac{1-\beta^t}{1-\beta} \right) \right)$$

Solving the MHDS: method 1, cont.

4 Use the initial condition (15),

$$W_t = (1+r)^t \left(\phi - \frac{C_0}{1+r} \left(\frac{1-\beta^t}{1-\beta} \right) \right)$$

5 Use the transversality condition (16) to determine C_0

$$\lim_{t \to \infty} \beta^t \frac{W_t}{C_t} = \frac{1}{C_0} \left(\phi - \frac{C_0}{(1+r)(1-\beta)} + \lim_{t \to \infty} \frac{C_0 \beta^t}{(1+r)(1-\beta)} \right) =$$

$$= \frac{1}{C_0} \left(\phi - \frac{C_0}{(1+r)(1-\beta)} \right) = 0$$

if and only if

$$C_0 = \phi(1+r)(1-\beta)$$

• Then the solution is

$$W_t^* = \phi \beta^t (1+r)^t, \ t = 0, 1, \dots, \infty$$

$$C_t^* = (1+r)(1-\beta) W_t^* \ t = 0, 1, \dots, \infty$$
(18)

Solving the MHDS: method 2

- 1 Introduce a transformation of variables $z_t \equiv W_t/C_t$ (suggestion: use the transversality condition)
- 2 We get a scalar linear difference equation equivalent to equations (13) and (14)

$$z_{t+1} = \frac{W_{t+1}}{C_{t+1}} = \frac{(1+r)W_t - C_t}{\beta(1+r)C_t} = \frac{1}{\beta} \left(z_t - \frac{1}{1+r} \right)$$

3 Jointly with condition (16) we have a simpler boundary value problem for z_t

$$\begin{cases} z_{t+1} = \frac{1}{\beta} \left(z_t - \frac{1}{1+r} \right) \\ \lim_{t \to \infty} \beta^t z_t = 0. \end{cases}$$

4 The general solution for z_t is

$$z_t = \bar{z} + (k - \bar{z})\beta^{-t}k.$$

where

$$\bar{z} = \frac{1}{(1-\beta)(1+r)}$$

Solving the MHDS: method 2, cont

4 We use equation (16) to determine k

$$\lim_{t \to \infty} \beta^t z_t = \lim_{t \to \infty} \beta^t \bar{z} + k - \bar{z} = k - \bar{z} = 0$$

if and only if $k = \bar{z}$. Then z_t is time-independent

$$z_t = \bar{z} = \frac{1}{(1+r)(1-\beta)}, \ t = 0, 1, \dots, \infty$$

5 Because $C_t^* = (1 - \beta)(1 + r) W_t^*$, substituting in equation (14) and using condition (15) we can solve the initial value problem

$$\begin{cases} W_{t+1}^* = (1+r) W_t^* - C_t^* = \beta(1+r) W_t^*, \ t = 0, 1, \dots \\ W_0^* = \phi \end{cases}$$

6 Which, after solving, yields the same solution (18)

Solving the MHDS: method 3

1 We write equations (13) and (14) in matrix notation

$$\begin{pmatrix} C_{t+1} \\ W_{t+1} \end{pmatrix} = \begin{pmatrix} \beta(1+r) & 0 \\ -1 & 1+r \end{pmatrix} \begin{pmatrix} C_t \\ W_t \end{pmatrix}$$

2 The general solution of this planar equation has the form Planar.

$$\begin{pmatrix} C_t \\ W_t \end{pmatrix} = h_+ \mathbf{P}^+ \lambda_+^t + h_- \mathbf{P}^- \lambda_-^t \tag{19}$$

3 Compute the eigenvalues λ_{\pm} . The characteristic polynomial is

$$c(\lambda) = \lambda^{2} - (1+r)(1+\beta)\lambda + \beta(1+r)^{2} = (\lambda - (1+r))(\lambda - \beta(1+r))$$

it happens to factorize (if not use the general formula). Then

$$\lambda_{+} = 1 + r, \ \lambda_{-} = \beta(1 + r)$$

Solving the MHDS: method 3, cont

4 Compute the eigenvectors \mathbf{P}^+ and \mathbf{P}^-

$$\begin{pmatrix} (1+r)(\beta-1) & 0 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} p_1^+ \\ p_2^+ \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \implies \mathbf{P}^+ = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

and

$$\begin{pmatrix} 0 & 0 \\ -1 & (1+r)(1-\beta) \end{pmatrix} \begin{pmatrix} p_1^- \\ p_2^- \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \ \Rightarrow \ \mathbf{P}^- = \begin{pmatrix} (1+r)(1-\beta) \\ 1 \end{pmatrix}$$

5 Substituting in equation (19) we get

$$\binom{C_t}{W_t} = h_+ \binom{0}{1} (1+r)^t + h_- \binom{(1+r)(1-\beta)}{1} \beta^t (1+r)^t$$

then

$$C_t = (1 - \beta)(1 + r)^{1+t}\beta^t$$
, $W_t = (1 + r)^t (h_+ + h_-\beta^t)$

Solving the MHDS: method 3, cont

5 Then

$$\lim_{t \to \infty} \beta^t \frac{W_t}{C_t} = \lim_{t \to \infty} \frac{h_+ + h_- \beta^t}{(1+r)(1+\beta)h_-} = \frac{h_+}{(1+r)(1+\beta)h_-} = 0.$$

Condition (16) holds if and only if $h_{+} = 0$.

6 Then

$$W_t = h_- (1+r)^t \beta^t$$

and condition (15) holds if and only if $h_{-} = \phi$.

7 We get the same solution (18)

Optimal consumption-saving: characterisation of the solution

As

$$C_t^* = (1+r)(1-\beta)W_t^*$$

the dynamics of consumption is monotonously related to financial wealth

• The optimal stock of financial wealth is

$$W_t^* = \phi (\beta(1+r))^t = \phi \left(\frac{1+r}{1+\rho}\right)^t, \ t = 0, 1, \dots, \infty$$

where

$$\beta = \frac{1}{1+\rho}$$

 $\rho = \text{rate of time preference}$

- Characterisation of the solution
 - if $r > \rho$ then $\lim_{t \to \infty} W_t^* = \infty$ and $\lim_{t \to \infty} C_t^* = \infty$
 - if $r = \rho$ then $\lim_{t \to \infty} W_t^* = \phi$ and $\lim_{t \to \infty} C_t^* = \rho \phi$
 - if $r < \rho$ then $\lim_{t \to \infty} W_t^* = 0$ and $\lim_{t \to \infty} C_t^* = 0$

- Even though wealth and consumption may be unbounded (if $\rho < r$) the value functional is bounded
- The value of the intertemporal utility for the optimal consumption path is

$$J^* = \sum_{t=0}^{\infty} \beta^t \ln (C_t^*) =$$

$$= \sum_{t=0}^{\infty} \beta^t \ln \left((1+r)(1-\beta)\phi (\beta(1+r))^t \right) =$$

$$= \dots$$

$$= \frac{1}{1-\beta} \ln \left(\left[(1+r)(1-\beta)^{1-\beta}\beta^{\beta} \right]^{1/(1-\beta)} \phi \right)$$

- is bounded if ϕ is bounded for any r and ρ
- This is a consequence of the transversality condition: what matters is boundedness in present value terms not at the asymptotic levels of the variables.

Infinite-horizon discounted problem: dynamic programming approach

Problem OCPIH Consider the infinite-horizon discounted optimal control problem: find $(x^*, u^*)_{t=0}^{\infty}$ that solves the problem

$$\max_{\{u_t\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t f(x_t, u_t) \text{ s.t. } x_{t+1} = g(x_t, u_t), \ x_0 = \phi_0$$

where $0 < \beta < 1$ and ϕ_0 is given

Proposition

Let (x^*, u^*) be a solution to problem OCPIH: then it verifies the Hamilton-Jacobi-Bellman condition

$$V(x) = \max_{u} \{ f(x, u) + \beta V(g(x, u)) \}$$

for any admissible $x_t^* = x$ for $t \in \{0, \dots \infty\}$.

HJB equation: properties

- the properties of V are hard to determine: in general it is continuous, but differentiability is not assured
- if H is C^2 then we can determine the optimal control through the **optimality condition**

$$\frac{\partial H(x,u)}{\partial u} = 0$$

and we get the **policy function**

$$u^* = h(x)$$

• HJB equation becomes a non-linear functional equation

$$V(x) = f(x, h(x)) + \beta V[g(x, h(x))].$$

 \bullet both h and V have closed form solution only in very rare cases.

Application: the cake strikes again

• The HJB equation

$$V(W) = \max_{C} \left\{ \ln \left(C \right) + \beta V(W - C) \right\},\,$$

• Finding the optimal control: the optimality condition

$$\frac{\partial \left\{ \ln \left(C \right) + \beta V(W - C) \right\}}{\partial C} = 0.$$

 The best we can do is to say that optimal consumption is a function of the size of the cake

$$\frac{1}{C} - \beta V'(W - C) = 0 \Leftrightarrow C^* = C(W)$$

• and that the HJB has the form

$$V(W) = \ln(C(W)) + \beta V[W - C(W)].$$

The cake problem: solution

- Step 1: solve the HJB equation explicitly
 - lacktriangledown we use a trial function of W depending upon some undetermined coefficients;
 - ② if the form of the function is right, then we use the method of the undetermined coefficients (try to get the unknown coefficients by substituting in the HJB equation)
 - \bullet we get an explicit solution for C as a function of W
- Step 2: substitute C(W) in the constraints of the problem to get

$$W_{t+1} = W_t - C(W_t)$$

• Step 3: solve the difference equation with $W_0 = \phi$

The cake problem: solving the HJB equation

• Trial solution:

$$V(W) = a + b \ln(W)$$

where a and b are unknown constants;

• Policy function:

$$\frac{1}{C} = \frac{\beta b}{W - C} \implies C = \frac{1}{1 + b\beta} W$$

• Substituting in the HJB equation

$$a+b\ln\left(W\right) = \ln\left(W\right) - \ln\left(1+b\beta\right) + \beta\left(a+b\ln\left(\left(1-\frac{1}{1+b\beta}\right)W\right)\right),$$

collecting terms

$$(b(1-\beta)-1)\ln(W) = a(\beta-1) - \ln(1+b\beta) + \beta b \ln\left(\frac{b\beta}{1+b\beta}\right).$$

Step 1: solving the HJB equation

• then we determine

$$b = \frac{1}{1-\beta}, \ a = \ln(1-\beta) + \frac{\beta}{1-\beta}\ln(\beta)$$

• and

$$V(W) = \frac{1}{1-\beta} \ln(\chi W)$$
, where $\chi \equiv (\beta^{\beta} (1-\beta)^{1-\beta})^{1/(1-\beta)}$.

• Then because

$$C^* = (1 - \beta) W^*$$

is the optimal policy function and holds at all times

Step 2: optimal budget constraint

• Substituting the policy function in the intratemporal budget constraint we get

$$W_{t+1}^* = W_t^* - (1 - \beta) W_t^*, \ t = 0, 1, \dots, \infty$$

• given

$$W_0 = \phi$$
, given

Step 3: solution for the cake-eating problem

The infinite horizon cake eating problem has the solution:

• the optimal sequence of cake size $W^* = \{W_t^*\}_{t=0}^{\infty}$ is generated by

$$W_t^* = \phi \beta^t, \ t = 0, 1, \dots, \infty$$

• the optimal sequence of cake consumption $C^* = \{C_t^*\}_{t=0}^{\infty}$ is generated by

$$C_t^* = \phi(1-\beta)\beta^t, \ t = 0, 1, \dots, \infty$$

Proof of proposition 1

- Assume we know the solution $(u^*, x^*) = \{x_t^*, u_t^*\}_{t=0}^T$ for the problem.
- The optimal value

$$J^* = \sum_{t=0}^{T-1} F(x_t^*, u_t^*, t)$$

• We write the Lagrangean

$$L = \sum_{t=0}^{T-1} F(x_t, u_t, t) + \psi_t(G(x_t, u_t, t) - x_{t+1})$$

$$= \sum_{t=0}^{T-1} H_t(\psi_t, x_t, u_t, t) - \psi_t x_{t+1} =$$

$$= \sum_{t=0}^{T-1} \ell(\psi_t, x_t, u_t, x_{t+1}, t)$$

Proof of proposition 1

• Consider an arbitrary perturbation away from the solution to the problem, such that $x_t = x_t^* + \epsilon_t^x$. The perturbation is admissible if $\epsilon_0^x = \epsilon_T^x = 0$, and $u_t = u_t^* + \epsilon_t^u$. It induces the variation in value

$$\begin{split} L - J^* &= \frac{\partial H_0}{\partial x_0} \epsilon_0^x + \sum_{t=1}^{T-1} \left(-\psi_{t-1} + \frac{\partial H_t}{\partial x_t} \right) \epsilon_t^x - \psi_{T-1} \epsilon_T^x + \sum_{t=0}^{T-1} \frac{\partial H_t}{\partial u_t} \epsilon_t^u + \\ &+ \sum_{t=0}^{T-1} \left(\frac{\partial H_t}{\partial \psi_t} - x_{t+1} \right) \epsilon_t^\psi = \\ &= \sum_{t=1}^{T-1} \left(-\psi_{t-1} + \frac{\partial H_t}{\partial x_t} \right) \epsilon_t^x + \sum_{t=0}^{T-1} \frac{\partial H_t}{\partial u_t} \epsilon_t^u + \sum_{t=0}^{T-1} \left(G(x_t, u_t, t) - x_{t+1} \right) \epsilon_t^\psi \end{split}$$

• Then $L \leq J^*$ only if $\psi_{t-1} - \frac{\partial H_t}{\partial x_t} = \frac{\partial H_t}{\partial u_t} = x_{t+1} - G(x_t, u_t, t) = 0$.

Proof of proposition 2

• The value functional for x_t^* is

$$V(x_t^*) = \sum_{s=t}^{\infty} \beta^{s-t} F(x_s^*, u_s^*) =$$

$$= \max_{\{u_s\}_{s=t}^{\infty}} \sum_{s=t}^{\infty} \beta^{s-t} F(x_s, u_s) =$$

$$= \max_{\{u_s\}_{s=t}^{\infty}} \left\{ F(x_t, u_t) + \beta \sum_{s=t+1}^{\infty} \beta^{s-(t+1)} F(x_s, u_s) \right\}$$

$$= \max_{u_t} \left\{ F(x_t, u_t) + \beta \left(\max_{\{u_s\}_{s=t+1}^{\infty}} \sum_{s=t+1}^{\infty} \beta^{s-(t+1)} F(x_s, u_s) \right) \right\}$$

applying the principle of dynamic programming

Proof of proposition 2, cont.

• Then

$$V(x_t^*) = \max_{u_t} \{ f(x_t, u_t) + \beta V(x_{t+1}^*) \}$$

• But to be admissible $x_{t+1}^* = g(x_t^*, u_t^*)$, and the previous equation should hold for any $t \in \{0, \ldots, \infty\}$ and for any admissible value for $x_t^* = x$,

$$V(x) = \max_{u} \left\{ f(x, u) + \beta V(g(x, u)) \right\}$$

Return

Solution of planar linear difference equations

• Consider a linear difference equation $\mathbf{y}_{t+1} = \mathbf{A}\mathbf{y}_t + \mathbf{B}$ and assume that $\det (\mathbf{I} - \mathbf{A}) \neq 0$

$$\begin{pmatrix} y_{1,t+1} \\ y_{2,t+1} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} y_{1,t} \\ y_{2,t} \end{pmatrix} + \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$$

• The solution of this equation can be written as

$$\begin{pmatrix} y_{1,t} \\ y_{2,t} \end{pmatrix} = \begin{pmatrix} \bar{y}_1 \\ \bar{y}_2 \end{pmatrix} + h_+ \mathbf{P}^+ \lambda_+^t + h_- \mathbf{P}^- \lambda_-^t$$

where:

- $oldsymbol{ar{y}}$ is the steady state of the planar equation
- λ_{\pm} are the eigenvalues of matrix **A**
- vectors \mathbf{P}^+ and \mathbf{P}^- are the eigenvectors associated to λ_+ and λ_- ,
- the arbitrary constants h_+ and h_- are determined by using the initial and the terminal or tranversality conditions

The components of the solution:

• The steady state is

$$\bar{\mathbf{y}} = (\mathbf{I} - \mathbf{A})^{-1} \mathbf{B}$$

• the eigenvalues λ_{\pm} of matrix **A** which are the roots of the characteristic equation

$$C(\lambda) = \lambda^2 - \operatorname{trace}(\mathbf{A})\lambda + \det(\mathbf{A}) = 0$$

• the eigenvectors vectors \mathbf{P}^+ and \mathbf{P}^- , associated to λ_+ and λ_- , are determined from the homogeneous equation

$$(\mathbf{A} - \lambda_i \mathbf{I})\mathbf{P}^i = \mathbf{0}$$
, for, $i = +, -$

where **I** is the identity matrix and $\mathbf{0} = (0,0)^{\top}$

Return