

FCC Part 22H & 24E & 27 Measurement and Test Report

For

Guizhou Fortuneship Technology Co., Ltd

No. 4 Plant, High-tech Industrial Park, Xinpu Economic Development Zone,

Zunyi, China

FCC ID: 2ALQJ-WILDFIREE

FCC Rules: FCC Part 22H, FCC Part 24E, FCC Part 27

Product Description: 4G Smart Phone

Tested Model: Wildfire E

Report No.: <u>WTX19X09062799W-1</u>

Sample Receipt Date: 2019-09-09

Tested Date: <u>2019-09-09 to 2019-10-10</u>

Issued Date: <u>2019-10-10</u>

Tested By: <u>Jason Su / Engineer</u>

Reviewed By: Silin Chen / EMC Manager

Approved & Authorized By: Jandy So / PSQ Manager

Prepared By:

Shenzhen SEM Test Technology Co., Ltd.

1/F, Building A, Hongwei Industrial Park, Liuxian 2nd Road,

Jason Su Fili-Chen Jumlyso

Bao'an District, Shenzhen, P.R.C. (518101)

Tel.: +86-755-33663308 Fax.: +86-755-33663309 Website: www.semtest.com.cn

Note: This test report is limited to the above client company and the product model only. It may not be duplicated without prior permitted by Shenzhen SEM Test Technology Co., Ltd.

TABLE OF CONTENTS

1. GENERAL INFORMATION	4
1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	4
1.2 TEST STANDARDS	
1.3 TEST METHODOLOGY	
1.4 TEST FACILITY	
1.5 EUT SETUP AND TEST MODE	
1.7 TEST EQUIPMENT LIST AND DETAILS	
2. SUMMARY OF TEST RESULTS	
3. RF EXPOSURE	
3.1 STANDARD APPLICABLE	
3.2 TEST RESULT	
4. RF OUTPUT POWER	
4.1 Standard Applicable	
4.2 TEST PROCEDURE.	
4.3 SUMMARY OF TEST RESULTS/PLOTS	
5. PEAK-TO-AVERAGE RATIO (PAR) OF TRANSMITTER	18
5.1 STANDARD APPLICABLE	
5.2 Test Procedure	18
5.3 SUMMARY OF TEST RESULTS	18
6. EMISSION BANDWIDTH	20
6.1 STANDARD APPLICABLE	
6.2 Test Procedure	20
6.3 SUMMARY OF TEST RESULTS/PLOTS	
7. OUT OF BAND EMISSIONS AT ANTENNA TERMINAL	
7.1 STANDARD APPLICABLE	
7.2 TEST PROCEDURE	
8. SPURIOUS RADIATED EMISSIONS	
8.1 STANDARD APPLICABLE	
8.2 TEST PROCEDURE	
8.3 SUMMARY OF TEST RESULTS/PLOTS	
9. FREQUENCY STABILITY	
9.1 STANDARD APPLICABLE	
9.2 TEST PROCEDURE	
9.3 SUMMARY OF TEST RESULTS/PLOTS	
10. MODULATION CHARACTERISTICS	
10.1 Standard Applicable	
10.2 TEST PROCEDURE	

Report version

Version No.	Date of issue	Description	
Rev.00	2019-10-10	Original	
/	/	1	

1. GENERAL INFORMATION

1.1 Product Description for Equipment Under Test (EUT)

Client Information

Applicant: Guizhou Fortuneship Technology Co., Ltd

Address of applicant: No. 4 Plant, High-tech Industrial Park, Xinpu Economic

Development Zone, Zunyi, China

Manufacturer: Guizhou Fortuneship Technology Co., Ltd

Address of manufacturer: No. 4 Plant, High-tech Industrial Park, Xinpu Economic

Development Zone, Zunyi, China

General Description of EUT	:
Product Name:	4G Smart Phone
Brand Name:	HTC
Model No.:	Wildfire E
Adding Model(s):	/
Rated Voltage:	DC3.85V
Battery:	/
Adapter Model:	ES568-U050150XYF INPUT: AC100-240V, 50/60Hz, 0.5A; Output: DC 5V, 1500mA
Software Version:	/
Hardware Version:	/
Note: The test data is gathered fro	om a production sample provided by the manufacturer.

Report No.: WTX19X09062799W-1 Page 4 of 96 FCC Part 22H&24E&27

Technical Characteristics of E	UT:
2G	
Support Networks:	GSM, GPRS, EDGE
Support Band:	GSM850/PCS1900
	GSM/GPRS/EDGE 850: 824~849MHz
Uplink Frequency:	GSM/GPRS/EDGE 1900: 1850~1910MHz
D 815	GSM/GPRS/EDGE 850: 869~894MHz
Downlink Frequency:	GSM/GPRS/EDGE 1900: 1930~1990MHz
M. DE O D	GSM850: 32.93dBm, GSM1900: 30.12dBm
Max RF Output Power:	EDGE850: 24.13dBm, EDGE1900: 25.38dBm
Tomas of Englishing	GSM850: 252KGXW, GSM1900: 250KGXW
Type of Emission:	EDGE850: 251KG7W, EDGE1900: 248KG7W
Type of Modulation:	GMSK
Type of Antenna:	Integral Antenna
Antenna Gain:	GSM850: 0.6dBi; GSM1900: 1.1dBi
GPRS/EDGE Class:	Class 12
3G	
Support Networks:	WCDMA, HSDPA, HSUPA
Support Band:	WCDMA Band 2, WCDMA Band 4, WCDMA Band 5
	WCDMA Band 2: 1850~1910MHz
Uplink Frequency:	WCDMA Band 4: 1710~1755MHz
	WCDMA Band 5: 824~849MHz
	WCDMA Band 2: 1930~1990MHz
Downlink Frequency:	WCDMA Band 4: 2110~2155MHz
	WCDMA Band 5: 869~894MHz
	WCDMA Band 2: 22.18dBm,
RF Output Power:	WCDMA Band 4: 22.42dBm
	WCDMA Band 5: 22.27dBm
	WCDMA Band 2: 4M17F9W
Type of Emission:	WCDMA Band 4: 4M17F9W
	WCDMA Band 5: 4M17F9W
Type of Modulation:	BPSK
Antenna Type:	Integral Antenna
	WCDMA Band 2: 1.1dBi,
Antenna Gain:	WCDMA Band 4: 1.2dBi,
	WCDMA Band 5: 0.6dBi

1.2 Test Standards

The tests were performed according to following standards:

<u>FCC Rules Part 2</u>: FREQUENCY ALLOCA-TIONS AND RADIO TREATY MAT-TERS; GENERAL RULES AND REG-ULATIONS

FCC Rules Part 22: PRIVATE LAND MOBILE RADIO SERVICES.

FCC Rules Part 24: PUBLIC MOBILE SERVICES

FCC Rules Part 27: MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES

<u>TIA/EIA 603 E March 2016</u>: Land Mobile FM or PM Communications Equipment Measurement and Performance Standards.

ANSI C63.26-2015: American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services

<u>KDB 971168 D01 Power Meas License Digital Systems v03r01</u>: MEASUREMENT GUIDANCE FOR CERTIFICATION OF LICENSED DIGITAL TRANSMITTERS

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product, which result in lowering the emission, should be checked to ensure compliance has been maintained.

1.3 Test Methodology

All measurements contained in this report were conducted with TIA/EIA 603 E/ KDB 971168/ ANSI C63.26 The equipment under test (EUT) was configured to measure its highest possible emission level. The test modes were adapted accordingly in reference to the Operating Instructions.

1.4 Test Facility

Address of the test laboratory

Laboratory: Shenzhen SEM Test Technology Co., Ltd.

Address: 1/F, Building A, Hongwei Industrial Park, Liuxian 2nd Road, Bao'an District, Shenzhen, P.R.C. (518101)

FCC – Registration No.: 125990

Shenzhen SEM Test Technology Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintain ed in our files. The Designation Number is CN5010

Industry Canada (IC) Registration No.: 11464A

The 3m Semi-anechoic chamber of Shenzhen SEM Test Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 11464A.

1.5 EUT Setup and Test Mode

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements. All testing shall be performed under maximum output power condition, and to measure its highest possible emissions level, more detailed description as follows:

Test Mode Lis	t	
Test Mode	Description	Remark
TM1	GSM 850	Low, Middle, High Channels
TM2	GPRS 850	Low, Middle, High Channels
TM3	EDGE 850	Low, Middle, High Channels
TM4	GSM 1900	Low, Middle, High Channels
TM5	GPRS 1900	Low, Middle, High Channels
TM6	EDGE 1900	Low, Middle, High Channels
TM7	WCDMA Band 5	Low, Middle, High Channels
TM8	HSDPA Band 5	Low, Middle, High Channels
TM9	HSUPA Band 5	Low, Middle, High Channels
TM10	WCDMA Band 4	Low, Middle, High Channels
TM11	HSDPA Band 4	Low, Middle, High Channels
TM12	HSUPA Band 4	Low, Middle, High Channels
TM13	WCDMA Band 2	Low, Middle, High Channels
TM14	HSDPA Band 2	Low, Middle, High Channels
TM15	HSUPA Band 2	Low, Middle, High Channels

Testing Configure			
Support Band	Support Standard	Channel Frequency	Channel Number
		824.2 MHz	128
GSM 850	GSM/GPRS/EDGE	836.6 MHz	190
		848.8 MHz	251
		1850.2 MHz	512
PCS 1900	GSM/GPRS/EDGE	1880.0 MHz	661
		1909.8 MHz	810
		826.4 MHz	4132
WCDMA Band 5	WCDMA/HSDPA/HSUPA	836.6 MHz	4183
		846.6 MHz	4233
		1712.4 MHz	1312
WCDMA Band 4	WCDMA/HSDPA/HSUPA	1732.4 MHz	1412
		1752.6 MHz	1513
		1852.4 MHz	9262
WCDMA Band 2	WCDMA/HSDPA/HSUPA	1880.0 MHz	9400
		1907.6 MHz	9538

Note: the transmitter has been tested on the communications mode of GSM, GPRS, EDGE, WCDMA, HSDPA, HSUPA compliance test and record the worst case.

Report No.: WTX19X09062799W-1 Page 7 of 96 FCC Part 22H&24E&27

Model: Wildfire E

Test Conditions	
Temperature:	22~25 °C
Relative Humidity:	50~55 %.
ATM Pressure:	1019 mbar

EUT Cable List and Details				
Cable Description Length (m) Shielded/Unshielded With / Without Ferrite				
USB-C Cable	1.0	Unshielded	Without Ferrite	
Earphone Cable	1.2	Unshielded	Without Ferrite	

Special Cable List and Details					
Cable Description Length (m) Shielded/Unshielded With / Without Ferrite					
/	/	/	/		

Auxiliary Equipment List and Details						
Description Manufacturer Model Serial Number						
/ / / / / /						

1.6 Measurement Uncertainty

Measurement uncertainty				
Parameter	Conditions	Uncertainty		
RF Output Power	Conducted	±0.42dB		
Occupied Bandwidth	Conducted	±1.5%		
Frequency Stability	Conducted	2.3%		
Transmitter Spurious Emissions	Conducted	±0.42dB		
Transmitter Spurious Emissions		$30-200 MHz \pm 4.52 dB$		
	Radiated	0.2-1GHz ±5.56dB		
	Radiated	1-6GHz ±3.84dB		
		6-18GHz ±3.92dB		

1.7 Test Equipment List and Details

No.	Description	Manufacturer	Model	Serial No.	Cal Date	Due. Date	
SEMT-1075	Communication	Rohde &	CMW500	0 148650	2019-04-30	2020-04-29	
SEW11-1073	Tester	Schwarz		148030	2017-04-30		
SEMT 1062	GSM Tester	Rohde &	CMU200	CM11200 11	114403	2010 04 20	2020 04 20
SEMT-1063	OSWI Testel	Schwarz		114403	2019-04-30	2020-04-29	
SEMT-1072	Spectrum	Agilant	E4407B	ent E4407B MY41440400 2019	2019-04-30	2020-04-29	
SEWI1-1072	Analyzer	Agilent		W1141440400	2017-04-30		
SEMT-1079	Spectrum	Agilant	N0020 A	US47140102	2019-04-30	2020-04-29	
	Analyzer	Agilent	N9020A	034/140102	2019-04-30	2020-04-29	

Report No.: WTX19X09062799W-1 Page 8 of 96 FCC Part 22H&24E&27

SEMT-1080	Signal Generator	Agilent	83752A	3610A01453	2019-04-30	2020-04-29
SEMT-1081	Vector Signal Generator	Agilent	N5182A	MY47070202	2019-04-30	2020-04-29
SEMT-1028	Power Divider	Weinschel	1506A	PM204	2019-04-30	2020-04-29
SEMT-1082	Power Divider	RF-Lambda	RFLT4W5M18G	14110400027	2019-04-30	2020-04-29
GENTE 1021	Spectrum	Rohde &	EGDOO	02/070/025	2010 04 20	2020 04 20
SEMT-1031	Analyzer	Schwarz	FSP30	836079/035	2019-04-30	2020-04-29
GEN ## 1007	EMI Test	Rohde &	EGLID	005.451.4005	2010 04 20	2020 04 20
SEMT-1007	Receiver	Schwarz	ESVB	825471/005	2019-04-30	2020-04-29
SEMT-1008	Amplifier	Agilent	8447F	3113A06717	2019-04-30	2020-04-29
SEMT-1043	Amplifier	C&D	PAP-1G18	2002	2019-04-30	2020-04-29
SEMT-1069	Loop Antenna	Schwarz beck	FMZB 1516	9773	2019-05-05	2021-05-04
SEMT-1068	Broadband Antenna	Schwarz beck	VULB9163	9163-333	2019-05-05	2021-05-04
SEMT-1042	Horn Antenna	ETS	3117	00086197	2019-05-05	2021-05-04
SEMT-1121	Horn Antenna	Schwarzbeck	BBHA 9170	BBHA9170582	2019-05-05	2021-05-04
SEMT-1168	Pre-amplifier	Direction Systems Inc.	PAP-0126	14141-12838	2019-04-30	2020-04-29
SEMT-1169	Pre-amplifier	Direction Systems Inc.	PAP-2640	14145-14153	2019-04-30	2020-04-29
SEMT-1163	Spectrum Analyzer	Rohde & Schwarz	FSP40	100612	2019-04-30	2020-04-29
SEMT-1170	DRG Horn Antenna	A.H. SYSTEMS	SAS-574	571	2019-05-05	2021-05-04
SEMT-1166	Power Limiter	Agilent	N9356B	MY45450376	2019-04-30	2020-04-29
SEMT-1048	RF Limiter	ATTEN	AT-BSF-2400~2500	/	2019-04-30	2020-04-29
SEMT-1076	RF Switcher	Top Precision	RCS03-A2	/	2019-04-30	2020-04-29
SEMT-C001	Cable	Zheng DI	LL142-07-07-10M(A)	/	2019-03-18	2020-03-17
SEMT-C002	Cable	Zheng DI	ZT40-2.92J-2.92J-6M	/	2019-03-18	2020-03-17
SEMT-C003	Cable	Zheng DI	ZT40-2.92J-2.92J-2.5M	/	2019-03-18	2020-03-17
SEMT-C004	Cable	Zheng DI	2M0RFC	/	2019-03-18	2020-03-17
SEMT-C005	Cable	Zheng DI	1M0RFC	/	2019-03-18	2020-03-17
SEMT-C006	Cable	Zheng DI	1M0RFC	/	2019-03-18	2020-03-17

Software List								
Description Manufacturer Model Version								
EMI Test Software	Form 4	EZ EMC	DA 02A1					
(Radiated Emission)*	Farad	EZ-EMC	RA-03A1					
EMI Test Software	E I	E7 EMC	DA 0241					
(Conducted Emission)*	Farad	EZ-EMC	RA-03A1					

^{*}Remark: indicates software version used in the compliance certification testing

Report No.: WTX19X09062799W-1 Page 9 of 96 FCC Part 22H&24E&27

2. SUMMARY OF TEST RESULTS

FCC Rules	Description of Test Item	Result
§1.1307, §2.1093	RF Exposure	Compliant
\$22.913(a), \$24.232(c), \$27.50(d)	RF Output Power	Compliant
§24.51, §27.50	Peak-to-average Ratio (PAR) of Transmitter	Compliant
\$22.917(b), \$24.238(b), \$27.53	Emission Bandwidth	Compliant
\$22.917(a), \$24.238(a), \$27.53(h)	Spurious Emissions at Antenna Terminal	Compliant
\$22.917(a), \$24.238(a), \$27.53(h)	Spurious Radiation Emissions	Compliant
\$22.917(a), \$24.238(a), \$27.53(h)	Out of Band Emissions	Compliant
§22.355, §24.235, §27.54	Frequency Stability	Compliant

3. RF Exposure

3.1 Standard Applicable

According to §1.1307 and §2.1093, the portable transmitter must comply the RF exposure requirements.

3.2 Test Result

This product complied with the requirement of the RF exposure, please see the SAR report.

4. RF Output Power

4.1 Standard Applicable

According to §22.913(a)(2), the ERP of mobile and portable stations transmitters and auxiliary test transmitters must not exceed 7 Watts.

According to §24.232(c), mobile and portable stations are limited to 2 watts EIRP and the equipment must employ a means for limiting power to the minimum necessary for successful communications.

According to §27.50(d)(4), fixed, mobile, and portable (hand-held) stations operating in the 1710-1755 MHz band and mobile and portable stations operating in the 1695-1710 MHz and 1755-1780 MHz bands are limited to 1 watt EIRP.

4.2 Test Procedure

Conducted output power test method:

- Radiated power test method:
- 1. The setup of EUT is according with per ANSI/TIA Standard 603E and ANSI C63.26 measurement procedure.
- 2. The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.
- 3. The frequency range up to tenth harmonic of the fundamental frequency was investigated.
- 4. Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

4.3 Summary of Test Results/Plots

> Max. Radiated Power

Mode	Channel	Antenna Polar	ERP (dBm)	Limit (dBm)	Result
	120	V	30.15		
	128	Н	24.25		
CCM050	190	V	30.19	-29.45	Daga
GSM850	190	Н	24.11	<38.45	Pass
	251	V	30.24		
	231	Н	24.58		
	128	V	30.41		Pass
	120	Н	23.58		
GPRS850	190 251	V	30.18	<38.45	
OFKS830		Н	23.98	<36.43	
		V	30.27		
	231	Н	24.21		
	128	V	22.15		
EGPRS850	120	Н	16.52		
	190	V	22.61	<38.45	Dogg
	190	Н	16.98	<30.43	Pass
	251	V	22.41		
	231	Н	16.56		

Mode	Channel	Antenna Polar	EIRP (dBm)	Limit (dBm)	Result
	512	V	28.56		
	312	Н	23.41		
PCS1900	661	V	28.69	<33.00	Pass
PCS1900	001	Н	23.51	<55.00	Pass
	810	V	28.33		
	810	Н	23.42		
	512	V	27.42		Pass
	312	Н	23.69		
GPRS1900	810	V	28.54	<33.00	
GFK51900		Н	23.41	<55.00	
		V	27.98		
	810	Н	24.01		
	512	V	23.45		
	312	Н	17.52		
EGPRS1900	661	V	23.36	<33.00	Dogo
	661	Н	17.62	<33.00	Pass
	810	V	23.46		
	010	Н	17.32		

Mode	Channel	Antenna Polar	ERP	Limit (dBm)	Result
	4122	V	20.42		Pass
	4132	Н	14.51		
WCDMA Dand W	4183	V	20.39	20.45	
WCDMA Band V		Н	14.46	<38.45	
	4233	V	20.39		
		Н	14.65		

Mode	Channel	Antenna Polar	EIRP	Limit (dBm)	Result
	1212	V	20.14		Pass
	1312	Н	15.35		
WCDMA Band	1412	V	20.36	<20.00	
IV		Н	14.01	<30.00	
		V	20.36		
		Н	13.68		

Mode	Channel	Antenna Polar	EIRP	Limit (dBm)	Result
	0262	V	19.85		Pass
	9262	Н	14.25		
WCDMA D I II	9400	V	20.36	22.00	
WCDMA Band II		Н	14.11	<33.00	
	9538	V	20.69		
		Н	14.39		

Note: Pre-scan mode WCDMA/HSDPA/HSUPA find the worst case at WCDMA mode and recorded in the test report.

> Max. Conducted Power (Average power)

Conducted Average power (dBm)							
Band	GSM850			PCS1900			
Channel	128	190	251	512	661	810	
Frequency(MHz)	824.20	836.60	848.80	1850.20	1880.00	1909.80	
GSM	32.91	32.91	32.92	30.12	30.11	29.97	
GPRS(1Slot)	32.93	32.9	32.9	30.12	30.09	29.96	
EGPRS(1Slot)	23.59	24.13	24.13	25.22	25.21	25.38	

Conducted Average power (dBm)							
Band	V	VCDMA Band	V	WCDMA Band II			
Channel	4132	4183	4233	9262	9400	9538	
Frequency(MHz)	826.4	836.6	846.6	1852.4	1880.0	1907.6	
RMC 12.2k	22.25	22.18	22.27	22.10	22.18	22.07	
HSDPA Subtest-1	22.16	22.17	22.15	22.09	22.03	22.01	
HSDPA Subtest-2	21.15	22.15	22.13	22.07	22.00	21.96	
HSDPA Subtest-3	21.14	22.13	22.13	22.05	22.01	21.97	
HSDPA Subtest-4	21.14	22.14	22.14	22.04	22.01	21.98	
HSUPA Subtest-1	22.11	22.15	22.18	21.85	21.77	21.80	
HSUPA Subtest-2	22.08	22.13	22.16	21.82	21.73	21.76	
HSUPA Subtest-3	22.08	22.12	22.15	21.82	21.75	21.76	
HSUPA Subtest-4	22.09	22.12	22.15	21.84	21.75	21.77	
HSUPA Subtest-5	22.07	22.12	22.15	21.83	21.75	21.77	

Report No.: WTX19X09062799W-1 Page 16 of 96 FCC Part 22H&24E&27

Conducted Average power (dBm)							
Band	W	CDMA Band l	V				
Channel	1312	1412	1513				
Frequency(MHz)	1712.4	1733.4	1752.6				
RMC 12.2k	21.45	21.99	22.42				
HSDPA Subtest-1	21.42	21.11	22.05				
HSDPA Subtest-2	21.41	21.08	22.03				
HSDPA Subtest-3	21.4	21.08	22.03				
HSDPA Subtest-4	21.4	21.09	22.03				
HSUPA Subtest-1	21.25	21.13	22.22				
HSUPA Subtest-2	21.21	21.11	22.19				
HSUPA Subtest-3	21.22	21.12	22.2				
HSUPA Subtest-4	21.22	21.12	22.21				
HSUPA Subtest-5	21.21	21.12	22.19				

5. Peak-to-average Ratio (PAR) of Transmitter

5.1 Standard Applicable

According to §24.232(d), power measurements for transmissions by stations authorized under this section may be made either in accordance with a Commission-approved average power technique or in compliance with paragraph (e) of this section. In both instances, equipment employed must be authorized in accordance with the provisions of §24.51, in measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

According to \$27.50(B), the peak-to-average power ratio (PAPR) of the transmitter output power must not exceed 13 dB. The PAPR measurements should be made using either an instrument with complementary cumulative distribution function (CCDF) capabilities to determine that PAPR will not exceed 13 dB for more than 0.1 percent of the time or other Commission approved procedure. The measurement must be performed using a signal corresponding to the highest PAPR expected during periods of continuous transmission.

5.2 Test Procedure

According with KDB 971168

- 1. The signal analyzer's CCDF measurement profile is enabled
- 2. Frequency = carrier center frequency
- 3. Measurement BW > Emission bandwidth of signal
- 4. The signal analyzer was set to collect one million samples to generate the CCDF curve
- 5. The measurement interval was set depending on the type of signal analyzed. For continuous signals (>98% duty cycle), the measurement interval was set to 1ms. For burst transmissions, the spectrum analyzer is set to use an internal "RF Burst" trigger that is synced with an incoming pulse and the measurement interval is set to less than the duration of the "on time" of one burst to ensure that energy is only captured during a time in which the transmitter is operating at maximum power

Test Configuration for the emission bandwidth testing:

5.3 Summary of Test Results

PCS1900									
Test Mode	Channel	Frequency (MHz)	PAR (dB)	Limit (dB)					
GSM	661	1850.2	5.69	13					
GPRS(1 Slot)	661	1850.2	5.41	13					
EDGE(1 Slot)	661	1850.2	5.52	13					

WCDMA Band IV						
Test Mode	Channel	Frequency (MHz)	PAR (dB)	Limit (dB)		
WCDMA	1312	1712.4	6.14	13		
	1412	1733.4	5.78	13		
	1513	1752.6	5.59	13		

WCDMA Band II						
Test Mode	Channel	Frequency (MHz)	PAR (dB)	Limit (dB)		
WCDMA	9262	1852.4	6.22	13		
	9400	1880.0	6.14	13		
	9538	1907.6	5.97	13		

Note: Only the worst case was selected to record.

6. Emission Bandwidth

6.1 Standard Applicable

According to §22.917(b), the emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

According to §24.238(b), the emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

According to §27.53, the emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

6.2 Test Procedure

The RF output terminal of the transmitter was connected to the input of the spectrum analyzer via a suitable attenuation. The RBW of the spectrum analyzer was set to 10kHz for GSM mode and 100kHz for WCDMA mode, VBW shall be at least 3 times the RBW, and the 26dB bandwidth was recorded.

Test Configuration for the emission bandwidth testing:

6.3 Summary of Test Results/Plots

EUT Mode	Channel	Frequency (MHz)	99% Occupy bandwidth (kHz)	-26dB bandwidth (kHz)
GSM 850 (GMSK)	128	824.20	242.6090	310.184
	190	836.60	243.8059	291.488
	251	848.80	240.2839	309.105
GPRS850 (GMSK,1Slot)	128	824.20	252.2495	312.081
	190	836.60	244.4532	317.614
(Girishi, isiot)	251	848.80	237.7130	310.279
	128	824.20	237.3126	303.310
EGPRS850 (8PSK,1Slot)	190	836.60	251.2571	310.913
(81 SK,15101)	251	848.80	245.9305	311.281
	512	1850.20	248.2678	317.859
PCS1900 (GMSK)	661	1880.00	235.8687	317.376
	810	1909.80	249.8306	317.707
	512	1850.20	240.8513	313.500
GPRS1900 (GMSK,1Slot)	661	1880.00	245.2275	317.758
	810	1909.80	242.6773	300.065
EGPRS1900 (8PSK,1Slot)	512	1850.20	247.5205	321.463
	661	1880.00	237.6757	318.033
	810	1909.80	246.2525	320.532

EUT Mode	Channel	Frequency (MHz)	99% Occupy bandwidth (kHz)	-26dB bandwidth (kHz)
WCDMA Band V	4132	826.40	4160.6	4694
	4183	836.60	4154.5	4701
	4233	846.60	4153.7	4686
	4132	826.40	4155.8	4687
HSDPA	4183	836.60	4159.5	4667
	4233	846.60	4156.6	4679
	4132	826.40	4148.9	4684
HSUPA	4183	836.60	4158.0	4690
	4233	846.60	4167.8	4679
	9262	1852.40	4152.7	4694
WCDMA Band II	9400	1880.00	4165.6	4684
	9538	1907.60	4157.1	4681
	9262	1852.40	4157.9	4677
HSDPA	9400	1880.00	4164.6	4685
	9538	1907.60	4163.1	4686
	9262	1852.40	4145.8	4685
HSUPA	9400	1880.00	4143.2	4692
	9538	1907.60	4159.1	4666
	1312	1712.4	4150.5	4692
WCDMA Band IV	1412	1733.4	4153.9	4680
	1513	1752.6	4167.6	4662
	1312	1712.4	4154.0	4697
HSDPA	1412	1733.4	4143.4	4680
	1513	1752.6	4144.7	4686
HSUPA	1312	1712.4	4146.8	4683
	1412	1733.4	4146.0	4680
	1513	1752.6	4155.3	4699

7. Out of Band Emissions at Antenna Terminal

7.1 Standard Applicable

According to \$22.917(a), the power of any emissions outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.

According to \$24.238(a), the power of any emissions outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.

According to §27.53 (h), the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least 43 + 10 log10 (P) dB.

7.2 Test Procedure

The RF output terminal of the transmitter was connected to the input of the spectrum analyzer via a suitable attenuation. The RBW of the spectrum analyzer was set to 100kHz and 1MHz for the scan frequency from 30MHz to 1GHz and the scan frequency from 1GHz to up to 10th harmonic.

Test Configuration for the out of band emissions testing:

7.3 Summary of Test Results/Plots

Note: Pre-scan mode WCDMA/HSDPA/HSUPA find the worst case at WCDMA mode and recorded in the test report.

Please refer to the following test plots

8. Spurious Radiated Emissions

8.1 Standard Applicable

According to §22.917(a), the power of any emissions outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

According to \$24.238(a), the power of any emissions outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.

According to \$27.53 (h), the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least 43 + 10 log10 (P) dB.

8.2 Test Procedure

- 1. The setup of EUT is according with per ANSI/TIA Standard 603E and ANSI C63.26 measurement procedure.
- 2. The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.
- 3. The frequency range up to tenth harmonic of the fundamental frequency was investigated.
- 4. Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Spurious attenuation limit in dB = $43+10 \text{ Log}_{10}$ (power out in Watts)

8.3 Summary of Test Results/Plots

Note: this EUT was tested in 3 orthogonal positions and the worst case position data was reported.

Report No.: WTX19X09062799W-1 Page 75 of 96 FCC Part 22H&24E&27

> Spurious Emissions Below 1GHz

For Cellular Band			
Test Channel	GSM850	Polarity:	Horizontal

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBm)	Factor(dB)	(dBm)	(dBm) (dBm)		
1	50.7637	-77.10	0.63	-76.47	-13.00	-63.47	ERP
2	105.6415	-77.08	-1.28	-78.36	-13.00	-65.36	ERP
3	425.0280	-76.31	5.61	-70.70	-13.00	-57.70	ERP

For Cellular Band			
Test Channel	GSM850	Polarity:	Vertical

No.	Frequency	requency Reading Correct Result Limit		Limit	Margin	Remark	
	(MHz)	(dBm)	Factor(dB)	(dBm)	(dBm)	(dB)	
1	50.7637	-76.91	0.63	-76.28	-13.00	-63.28	ERP
2	112.5244	-76.10	-1.50	-77.60	-13.00	-64.60	ERP
3	364.2595	-76.44	4.02	-72.42	-13.00	-59.42	ERP

For Cellular Band			
Test Channel	GSM1900	Polarity:	Horizontal

	No.	Frequency Reading Correct Result		Limit	Margin	Remark		
Ī		(MHz)	(dBm)	Factor(dB)	actor(dB) (dBm)		(dB)	
ſ	1	47.4918	-76.94	0.63	-76.31	-13.00	-63.31	ERP
ſ	2	118.1862	-76.32	-2.15	-78.47	-13.00	-65.47	ERP
	3	578.6699	-76.70	7.57	-69.13	-13.00	-56.13	ERP

For Cellular Band			
Test Channel	GSM1900	Polarity:	Vertical

No.	Frequency	quency Reading Correct Result		Limit	Margin	Remark	
	(MHz)	(dBm)	Factor(dB)	(dBm)	(dBm)	(dB)	
1	51.6616	-76.51	0.42	-76.09	-13.00	-63.09	ERP
2	107.5101	-77.03	-1.25	-78.28	-13.00	-65.28	ERP
3	582.7425	-75.71	7.61	-68.10	-13.00	-55.10	ERP

Note: Margin = (Reading + Correct) - Limit

No.	Frequency	Frequency Reading Correct Result I		Limit	Margin	Remark	
	(MHz)	(dBm)	Factor(dB)	(dBm)	(dBm)	(dB)	
1	50.0566	-76.33	0.80	-75.53	-13.00	-62.53	ERP
2	106.0126	-77.16	-1.28	-78.44	-13.00	-65.44	ERP
3	432.5457	-77.16	5.61	-71.55	-13.00	-58.55	ERP

Test Channel

Model: Wildfire E

 $WCDMA \ Band \ V$

Polarity:

Vertical

10.	0															
)0										 					· 	
)										! 						
)	janjadanajan <mark>d</mark> ku	HOLOW	- Trajuju	Christophi Christophi	at all	ባ ለአት ፋ	Jungh	Apple and with a promote the property of the second of	ere-defende of the control of the co	! ! !	 :	 !			· i	
	L.	, MARIA	X X				2 X		L. Judgmann Mark	Mary Democration	yya repoura di	Japan Viller				
0							,	the war and a stay to a might a see for you proposed to		3		municipal	Literation	a de Lorde	المريدها <u>ال</u>	MH.
0				<u> </u>			!			! ! !	!					
0						 -				 	 					
0				<u> </u>			;			;					;	
										! ! !						
0																
0				ļ						! ! !	¦	<u> </u>				
		1	-	 	-					1		:	Limi	11:	_	-+

No.	Frequency Reading		ading Correct Result		Limit	Margin	Remark	
	(MHz)	(dBm)	dB	(dBm)	(dBm)	(dB)		
1	51.8430	-75.48	0.38	-75.10	-13.00	-62.10	ERP	
2	98.4866	-75.75	-1.73	-77.48	-13.00	-64.48	ERP	
3	336.0352	-76.22	2.98	-73.24	-13.00	-60.24	ERP	

Test Channel	WCDMA Band IV	Polarity:	Horizontal
--------------	---------------	-----------	------------

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBm)	dB	(dBm)	(dBm)	(dB)	
1	46.6664	-76.57	0.58	-75.99	-13.00	-62.99	ERP
2	100.5806	-76.60	-1.37	-77.97	-13.00	-64.97	ERP
3	307.8313	-74.22	2.53	-71.69	-13.00	-58.69	ERP

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBm)	Factor(dB)	(dBm)	(dBm)	(dB)	
1	51.3005	-76.87	0.51	-76.36	-13.00	-63.36	ERP
2	108.6470	-76.52	-1.23	-77.75	-13.00	-64.75	ERP
3	303.5437	-76.55	2.55	-74.00	-13.00	-61.00	ERP

Note: Margin= (Reading+ Correct)- Limit

70 80

40

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBm)	dB	(dBm)	(dBm)	(dB)	
1	46.9948	-76.98	0.60	-76.38	-13.00	-63.38	ERP
2	102.3597	-77.37	-1.34	-78.71	-13.00	-65.71	ERP
3	408.9460	-76.04	4.69	-71.35	-13.00	-58.35	ERP

1000.0 MHz

30.000

40

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBm)	Factor(dB)	(dBm)	(dBm)	(dB)	
1	49.3594	-76.62	0.76	-75.86	-13.00	-62.86	ERP
2	117.7725	-76.32	-2.10	-78.42	-13.00	-65.42	ERP
3	381.2487	-77.34	4.23	-73.11	-13.00	-60.11	ERP

300

400

500

600 700

Note: Margin= (Reading+ Correct)- Limit

70 80

> Spurious Emissions Above 1GHz

➤ For Cellular Band_GSM850 Mode

Frequency	Reading	Correct	Result	Limit	Margin	Polar			
(MHz)	(dBm)	dB	(dBm)	(dBm)	(dB)	H/V			
	Low Channel (824.2MHz)								
1648.4	-34.01	4.94	-29.07	-13	-16.07	Н			
2472.6	-42.07	8.46	-33.61	-13	-20.61	Н			
1648.4	-34.03	4.94	-29.09	-13	-16.09	V			
2472.6	-44.72	8.46	-36.26	-13	-23.26	V			
	Middle Channel (836.6MHz)								
1673.2	-35.81	5.11	-30.7	-13	-17.7	Н			
2509.8	-43.07	8.54	-34.53	-13	-21.53	Н			
1673.2	-37.84	5.11	-32.73	-13	-19.73	V			
2509.8	-43.33	8.54	-34.79	-13	-21.79	V			
		High	Channel (848.8N	MHz)					
1697.6	-34.07	5.25	-28.82	-13	-15.82	Н			
2546.4	-43.16	8.57	-34.59	-13	-21.59	Н			
1697.6	-34.63	5.25	-29.38	-13	-16.38	V			
2546.4	-42.25	8.57	-33.68	-13	-20.68	V			

➤ For PCS Band_GSM1900 Mode

Frequency	Reading	Correct	Result	Limit	Margin	Polar
(MHz)	(dBm)	dB	(dBm)	(dBm)	(dB)	H/V
		Low	Channel (1850.21	MHz)		
3700.4	-39.32	10.54	-28.78	-13	-15.78	Н
5550.6	-49.05	13.37	-35.68	-13	-22.68	Н
3700.4	-39.03	10.54	-28.49	-13	-15.49	V
5550.6	-47.62	13.37	-34.25	-13	-21.25	V
		Midd	le Channel (1880	MHz)		
3760.0	-39.83	10.64	-29.19	-13	-16.19	Н
5640.0	-47.25	13.54	-33.71	-13	-20.71	Н
3760.0	-42.71	10.64	-32.07	-13	-19.07	V
5640.0	-47.67	13.54	-34.13	-13	-21.13	V
		High	Channel (1909.8)	MHz)		
3819.6	-42.44	10.74	-31.7	-13	-18.70	Н
5729.4	-46.95	13.71	-33.24	-13	-20.24	Н
3819.6	-40.08	10.74	-29.34	-13	-16.34	V
5729.4	-47.34	13.71	-33.63	-13	-20.63	V

For WCDMA Band V Mode

Frequency	Reading	Correct	Result	Limit	Margin	Polar			
(MHz)	(dBm)	dB	(dBm)	(dBm)	(dB)	H/V			
	Low Channel (826.4MHz)								
1652.8	-36.69	4.94	-31.75	-13	-18.75	Н			
2479.2	-43.73	8.46	-35.27	-13	-22.27	Н			
1652.8	-37.74	4.94	-32.8	-13	-19.8	V			
2479.2	-42.07	8.46	-33.61	-13	-20.61	V			
		Middl	e Channel (836.6	MHz)					
1672.8	-35.44	5.11	-30.33	-13	-17.33	Н			
2509.2	-41.64	8.54	-33.1	-13	-20.1	Н			
1672.8	-34.56	5.11	-29.45	-13	-16.45	V			
2509.2	-41.42	8.54	-32.88	-13	-19.88	V			
		High	Channel (846.6N	MHz)					
1693.2	-36.54	5.25	-31.29	-13	-18.29	Н			
2539.8	-42.64	8.57	-34.07	-13	-21.07	Н			
1693.2	-35.44	5.25	-30.19	-13	-17.19	V			
2539.8	-41.74	8.57	-33.17	-13	-20.17	V			

➤ For WCDMA Band IV Mode

Frequency	Reading	Correct	Result	Limit	Margin	Polar			
(MHz)	(dBm)	dB	(dBm)	(dBm)	(dB)	H/V			
	Low Channel (1712.4MHz)								
3424.8	-34.34	8.65	-25.69	-13	-12.69	Н			
5137.2	-44.05	12.03	-32.02	-13	-19.02	Н			
3424.8	-37.27	8.65	-28.62	-13	-15.62	V			
5137.2	-44.55	12.03	-32.52	-13	-19.52	V			
	Middle Channel (1732.4MHz)								
3466.8	-35.64	8.91	-26.73	-13	-13.73	Н			
5200.2	-42.04	12.29	-29.75	-13	-16.75	Н			
3466.8	-34.24	8.91	-25.33	-13	-12.33	V			
5200.2	-41.29	12.29	-29	-13	-16	V			
		High	Channel (1752.6)	MHz)					
3505.2	-36.47	9.11	-27.36	-13	-14.36	Н			
5257.8	-44.91	12.56	-32.35	-13	-19.35	Н			
3505.2	-37.43	9.11	-28.32	-13	-15.32	V			
5257.8	-41.07	12.56	-28.51	-13	-15.51	V			

For WCDMA Band II Mode

Frequency	Reading	Correct	Result	Limit	Margin	Polar			
(MHz)	(dBm)	dB	(dBm)	(dBm)	(dB)	H/V			
	Low Channel (1852.4MHz)								
3704.8	-37.54	10.17	-27.37	-13	-14.37	Н			
5557.2	-42.54	14.69	-27.85	-13	-14.85	Н			
3704.8	-34.51	10.17	-24.34	-13	-11.34	V			
5557.2	-43.06	14.69	-28.37	-13	-15.37	V			
	Middle Channel (1880MHz)								
3760.8	-36.97	10.26	-26.71	-13	-13.71	Н			
5640.0	-44.44	14.78	-29.66	-13	-16.66	Н			
3760.8	-36.29	10.26	-26.03	-13	-13.03	V			
5640.0	-44.2	14.78	-29.42	-13	-16.42	V			
		High	Channel (1907.6)	MHz)					
3815.2	-36.54	10.59	-25.95	-13	-12.95	Н			
5722.8	-42.05	15.03	-27.02	-13	-14.02	Н			
3815.2	-36.37	10.59	-25.78	-13	-12.78	V			
5722.8	-41.38	15.03	-26.35	-13	-13.35	Н			

 $Note: Result = Result + Correct, \ Margin = \ Result - Limit$

Note: Testing is carried out with frequency rang 9kHz to the tenth harmonics, other than listed in the table above are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Report No.: WTX19X09062799W-1 Page 88 of 96 FCC Part 22H&24E&27

9. Frequency Stability

9.1 Standard Applicable

According to §22.355, §24.235, §27.54 the limit is 2.5ppm.

9.2 Test Procedure

According to §2.1055, the following test procedure was performed.

The Frequency Stability is measured directly with a Frequency Domain Analyzer. Frequency Deviation in ppm is calculated from the measured peak to peak value.

The Carrier Frequency Stability over Power Supply Voltage and over Temperature is measured with a Frequency Domain Analyzer in histogram mode.

9.3 Summary of Test Results/Plots

- Note: 1. Worst case at GSM850/PCS1900/WCDMA B2/B4/B5 middle channel
 - 2. Normal Voltage NV=DC3.85V; Low Voltage LV=DC3.5V; High Voltage HV=DC4.35V

Report No.: WTX19X09062799W-1 Page 89 of 96 FCC Part 22H&24E&27

> Frequency stability V.S. Temperature measurement

Reference Frequency: GSM850 Middle channel=190 channel=836.6MHz								
Davier cumplied (VIde)	Tamanamatuma (90)	Frequen	cy error	Limit (nam)	Result			
Power supplied (Vdc)	Temperature ($^{\circ}$ C)	Hz	ppm	Limit (ppm)	Result			
	-30	59	0.0708					
	-20	52	0.0625					
	-10	42	0.0497					
	0	34	0.0405					
NV	10	29	0.0349	2.50	Pass			
	20	22	0.0267					
	30	27	0.0322					
	40	33	0.0395					
	50	40	0.0478					
Re	ference Frequency: Po	CS1900 Middle ch	annel=661 channe	l=1880MHz				
Down symplical (V/ds)	Towns and type (90)	Frequen	cy error	Limit (ppm)	Result			
Power supplied (Vdc)	Temperature ($^{\circ}$ C)	Hz	ppm	Limit (ppm)				
	-30	52	0.0274					
	-20	48	0.0254					
	-10	42	0.0225					
	0	38	0.0205					
NV	10	33	0.0176	2.50	Pass			
	20	28	0.0151					
	30	33	0.0176					
	40	38	0.0205					
	50	45	0.0237					

Referen	ce Frequency: WCDM	IA Band V Middle	channel=4183 ch	annel=836.6MHz	
Darran armaliad (Vda)	Towns and true (90)	Frequen	cy error	Limit (mm)	Result
Power supplied (Vdc)	Temperature ($^{\circ}$ C)	Hz	ppm	Limit (ppm)	Result
	-30	64	0.0763		
	-20	58	0.0699		
	-10	47	0.0561		
	0	42	0.0497		
NV	10	38	0.0451	2.50	Pass
	20	32	0.0377		
	30	35	0.0423		
	40	42	0.0506		
	50	50	0.0598		
Referenc	e Frequency: WCDM	A Band IV Middle	channel=1412 ch	annel=1733.6MH	Z
Dayyan ayumliad (V/da)	Towns and type (90)	Frequen	cy error	Limit (ppm)	Result
Power supplied (Vdc)	Temperature ($^{\circ}$ C)	Hz	ppm	Limit (ppm)	Result
	-30	46	0.0266		
	-20	35	0.0204		
	-10	30	0.0173		
	0	26	0.0151		
NV	10	22	0.0129	2.50	Pass
	20	17	0.0098		
	30	21	0.0120		
	40	28	0.0160		
	50	34	0.0195		
Referen	ce Frequency: WCDN	AA Band II Middle	channel=9400 ch	annel=1880MHz	
Power supplied (Vdc)	Temperature (°C)	Frequen	cy error	Limit (ppm)	Result
rower supplied (vdc)	remperature (°C)	Hz	ppm	Limit (ppin)	Kesuit
	-30	66	0.0352		
	-20	58	0.0307		
	-10	48	0.0254		
	0	42	0.0225		
NV	10	35	0.0184	2.50	Pass
	20	28	0.0151		
	30	36	0.0192		
	40	42	0.0221		
	50	49	0.0262		

> Frequency stability V.S. Voltage measurement

Referenc	e Frequency: GSM850) (GSM link) Midd	lle channel=190 cl	nannel=836.6MH	Z				
Temperature ($^{\circ}$ C)	Power supplied (Vdc)	Frequen Hz	cy error	Limit (ppm)	Result				
	HV	62	0.0745						
25	NV	54	0.0644	2.50	Pass				
	LV	46	0.0552	-					
Reference Frequency: PCS1900 (GSM link) Middle channel=661 channel=1880MHz									
T	Power supplied	Frequen	cy error	***	- I				
Temperature ($^{\circ}$ C)	(Vdc)	Hz	ppm	Limit (ppm)	Result				
	HV	58	0.0307						
25	NV	42	0.0225	2.50	Pass				
	LV	38	0.0205	-					
Referen	ce Frequency: WCDM	IA Band V Middle	channel=4183 ch	annel=836.6MHz					
Temperature ($^{\circ}$ C)	Power supplied	Frequen	cy error	Limit	(ppm)				
remperature (C)	(Vdc)	Hz ppm		Result					
	HV	35	0.0414						
25	NV	42	0.0506	2.50	Pass				
	LV	47	0.0561						
Referenc	e Frequency: WCDM	A Band IV Middle	channel=1412 cha	annel=1733.6MH	Z				
Temperature ($^{\circ}$ C)	Power supplied	Frequen	cy error	Limit (ppm)	Result				
Temperature (C)	(Vdc)	Hz	ppm	Еппт (ррпі)	Result				
	HV	69	0.0400						
25	NV	55	0.0320	2.50	Pass				
	LV	44	0.0253						
Referen	ce Frequency: WCDN	AA Band II Middle	channel=9400 ch	annel=1880MHz					
Temperature ($^{\circ}$ C)	Power supplied	Frequen	cy error	Limit (ppm)	Result				
1	(Vdc)	Hz	ppm	(FF)					
	HV	25	0.0131	-					
25	NV	31	0.0164	2.50	Pass				
	LV	35	0.0184						

10. Modulation characteristics

10.1 Standard Applicable

According to §2.1047, measurements required: Modulation characteristics is given below:

- (a) Voice modulated communication equipment. A curve or equivalent data showing the frequency response of the audio modulating circuit over a range of 100 to 5000 Hz shall be submitted. For equipment required to have an audio low-pass filter, a curve showing the frequency response of the filter, or of all circuitry installed between the modulation limiter and the modulated stage shall be submitted.
- (b) Equipment which employs modulation limiting. A curve or family of curves showing the percentage of modulation versus the modulation input voltage shall be supplied. The information submitted shall be sufficient to show modulation limiting capability throughout the range of modulating frequencies and input modulating signal levels employed.
- (c) Single sideband and independent sideband radiotelephone transmitters which employ a device or circuit to limit peak envelope power. A curve showing the peak envelope power output versus the modulation input voltage shall be supplied. The modulating signals shall be the same in frequency as specified in paragraph (c) of §2.1049 for the occupied bandwidth tests.
- (d) Other types of equipment. A curve or equivalent data which shows that the equipment will meet the modulation requirements of the rules under which the equipment is to be licensed.

10.2 Test Procedure

According to ANSI C63.26-2015 section 5.3.2, the following test setup was performed.

10.3 Summary of Test Results/Plots

Only the worst case was selected to record

***** END OF REPORT *****