

Cristo Daniel Alvarado ES Cristo Daniel Alvarado

Índice general

Ín	dice general	
1. M	Modelos de geometría hiperbólica	2
Cons	strucción del plano hiperbólico	2
Gruj	pos Fuchsianos	4
Hipe	erbólicidad y δ -hiperbolicidad	6
	1.3.1. Espacios Hiperbólicos	

Capítulo 1

Modelos de geometría hiperbólica

§1.1 Construcción del plano hiperbólico

En esta sección se construirá un modelo del plano hiperbólico a partir de una variedad Riemanniana.

Definición 1.1.1 (Plano superior)

Escribimos:

$$H = \left\{ (x, y) \in \mathbb{R}^2 \middle| y > 0 \right\} \subseteq \mathbb{R}^2$$

para el plano superior.

Observación 1.1.1

Dependiendo del contexto, veremos a H como subconjunto de \mathbb{C} , haciendo las identificaciones:

$$H \to \left\{ z \in \mathbb{C} \middle| \Im z > 0 \right\}$$

con la aplicación biyectiva $(x, y) \mapsto x + iy$.

Definición 1.1.2 (Haz tangente)

Sea M una variedad C^k -diferenciable. El **fibrado tangente** o **haz tangente** es la unión disjunta de los espacios tangentes a cada punto de la variedad, dado por:

$$TM = \bigsqcup_{p \in M} T_p M = \bigcup_{p \in M} \{p\} \times T_p M$$

donde T_pM denota el espacio tangente a M en el punto $p \in M$.

Como el conjunto H es abierto y subconjunto de \mathbb{R}^2 , entonces este hereda la estructura de variedad suave de \mathbb{R}^2 . Además, como el haz tangente a $p \in \mathbb{R}^2$ es trivial, se sigue también que el haz tangente a H es trivial y por ende, podemos identificar de forma natural al espacio T_zH como el espacio tangente de $x \in H$.

Además, como $T_zH\cong\mathbb{R}^2$, haremos la identificación de estos dos espacios como el mismo.

Definición 1.1.3 (Métrica Riemanniana)

Una **métrica Riemanniana** en una variedad C^k -diferenciable M es una aplicación bilineal simétrica $g_p: T_pM \times T_pM \to \mathbb{R}$ en cada uno de los espacios tangentes T_pM de M.

Observación 1.1.2

De la definición anterior se sigue que para cada $p \in M$ se satisface:

- (1) $g_p(u,v) = g_p(v,u)$ para todo $u,v \in T_pM$.
- (2) $g_p(u, u) \ge 0$ para todo $u \in T_pM$.
- (3) $g_p(u, u) = 0$ si y sólo si u = 0.

Definición 1.1.4 (Plano Hiperbólico)

El plano hiperbólico \mathbb{H}^2 es la variedad Riemanniana (H, g_H) , donde:

- $H \subseteq \mathbb{R}^2$ hereda la estructura suave de \mathbb{R}^2 .
- Consideramos la métrica Riemanniana $g_{H,p}: T_pH \times T_pH = \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ dada por:

$$g_{H,(x,y)}(u,v) = \frac{1}{y^2} \langle u, v \rangle, \quad \forall u, v \in \mathbb{R}^2$$

para todo $(x,y) \in H$, donde $\langle \cdot | \cdot \rangle$ denota el producto interno usual de \mathbb{R}^2 . Más aún, escribiremos $\langle \cdot | \cdot \rangle_{H,z}$ en vez de $g_{H,z}$ y a la norma inducida se le denotará por $\| \cdot \|_{H,z}$.

Nuestro interés ahora será hablar de las isometrías de \mathbb{H}^2 , para lo cual tendremos que construír una métrica en este espacio.

Definición 1.1.5 (Longitud hiperbólica de una curva)

Sea $\gamma:[a,b]\to H$ una curva suave. Se define la longitud hiperbólica de γ por:

$$L_{\mathbb{H}^2}(\gamma) = \int_a^b \|\dot{\gamma}(t)\|_{H,\gamma(t)} dt = \int_a^b \frac{\sqrt{\dot{\gamma_1}^2(t) + \dot{\gamma_2}^2(t)}}{\gamma_2(t)} dt$$

siendo $\gamma = (\gamma_1, \gamma_2)$.

Proposición 1.1.1

La función $d_H: H \times H \to \mathbb{R}_{\geq 0}$ dada por:

$$(z,z')\mapsto\inf\Big\{L_{\mathbb{H}^2}(\gamma)\Big|\gamma$$
 es una curva suave en H que une a z con $z'\Big\}$

es una métrica en H.

Demostración:

La simetría es inmediata, la desigualdad del triángulo se sigue de la definición.

Proposición 1.1.2

Sea $\gamma:[a,b]\to H$ una curva suave. Entonces:

$$L_{\mathbb{H}^2}(\gamma) = L_{(H,d_H)}(\gamma)$$

3

donde $L_{(H,d_H)}$ es llamada la **longitud métrica** y está dada por:

$$L_{(H,d_H)} = \sup \left\{ \sum_{j=0}^{k-1} d_H(\gamma(t_j), \gamma(t_{j+1})) \middle| k \in \mathbb{N}, t_0, t_1, ..., t_k \in [a, b], t_0 < t_1 < \dots < t_k \right\}$$

Conociendo la métrica de este espacio, nos interesa conocer ahora las geodésicas del mismo. Para ello, primero veremos quiénes son las isometrías de este espacio.

Definición 1.1.6 (Grupo de isometrías Riemanniano)

Una isometría Riemanniana de \mathbb{H}^2 es un difeomorfismo suave $f: H \to H$ que satisface:

$$\forall z \in H, \forall v, v' \in T_z H, \quad \langle (Df)_z(v) | (Df)_z(v') \rangle_{H,f(z)} = \langle v | v' \rangle_{H,z}$$

Proposición 1.1.3 (Isometrías Riemannianias son isometrías)

Toda isometría Riemanniana de \mathbb{H}^2 es una isometría métrica de (H, d_H) . En particular, existe un monomorfismo de grupos:

Isom
$$(\mathbb{H}^2) \to \text{Isom}(H, d_H)$$

Demostración:

§1.2 Grupos Fuchsianos

Definición 1.2.1

 $\mathrm{SL}\left(n,\mathbb{A}\right)$ denota al espacio de todas las matrices 2×2 con entradas en $\mathbb{A}\subseteq\mathbb{C}$ tales que:

$$det(A) = 1, \quad \forall A \in A$$

Definición 1.2.2 (Transformaciones de Möbius)

Para la matriz 2×2 :

$$\left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \in \mathrm{SL}\left(2,\mathbb{R}\right)$$

definimos la transformación de Möbius asociada $f_A: H \to H$, dada por:

$$z \mapsto \frac{a \cdot z + b}{c \cdot z + d}$$

Observación 1.2.1

Toda transformación de Möbius está bien definida, ya que como H es el plano superior, entonces la parte real de z nunca será un número con parte imaginaria cero, así que $c \cdot z + d \neq 0$ para todo $z \in H$.

Ejemplo 1.2.1

La función $z\mapsto z$ es una transformación de Möbius. Al igual que la función $z\mapsto \frac{1}{z}$. En particular, todas las funciones lineales de H en H son transformaciones de Möbius.

Proposición 1.2.1

Se tiene lo siguiente:

- (1) f_A está bien definido y es un difeomorfismo C^{∞} (o suave).
- (2) Para todo $A, B \in SL(2, \mathbb{R})$ se tiene que $f_{A \cdot B} = f_A \circ f_B$.
- (3) $f_A = f_{-A}$ para todo $A \in SL(2, \mathbb{R})$.

Demostración:

De (1) y (2): Son inmediatas.

De (3): Si

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}(2, \mathbb{R})$$

entonces,

$$f_A(z) = \frac{a \cdot z + b}{c \cdot z + d} = \frac{-a \cdot z + -b}{-c \cdot z + -d} = f_{-A}(z)$$

para todo $z \in H$.

Ejemplo 1.2.2 (Generadores $SL(2,\mathbb{R})$)

Tenemos los siguientes dos tipos de transformaciones de Möbius:

• Sea $b \in \mathbb{R}$. Entonces, la transformación de Möbius asociada a la matriz:

$$\left(\begin{array}{cc} 1 & b \\ 0 & 1 \end{array}\right) \in \mathrm{SL}\left(2, \mathbb{R}\right)$$

es la traslación horizontal $z\mapsto z+b$ en H por un factor b se denotará por T_b .

• La transformación de Möbius asociada a la matriz:

$$\left(\begin{array}{cc} 0 & 1\\ -1 & 0 \end{array}\right) \in \mathrm{SL}\left(2, \mathbb{R}\right)$$

es la función $z\mapsto \frac{1}{z}$ se denotará por In.

Se tiene que el grupo $SL(2,\mathbb{R})$ es generado por:

$$\left\{ \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right) \right\} \cup \left\{ \left(\begin{array}{cc} 1 & b \\ 0 & 1 \end{array} \right) \middle| b \in \mathbb{R} \right\}$$

Demostración:

Notemos que:

$$\left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right) \cdot \left(\begin{array}{cc} 1 & b \\ 0 & 1 \end{array}\right) \cdot \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right) = \left(\begin{array}{cc} 1 & 0 \\ -b & 1 \end{array}\right)$$

para todo $b \in \mathbb{R}$. Así que todas las matrices de la forma:

$$\left(\begin{array}{cc} 1 & 0 \\ a & 1 \end{array}\right)$$

está en el grupo generado por el conjunto anterior. Para terminar, basta notar que toda matriz en $SL(2,\mathbb{R})$ admite una descomposición LU o UL, dependiendo del caso.

5

Proposición 1.2.2 (Transformaciones de Möbius son isometrías)

Si $A \in SL(2,\mathbb{R})$, entonces la transformación de Möbius asociada $f_A : H \to H$ es una isometría Riemanniana de \mathbb{H}^2 . En particular, tenemos un monomorfismo de grupos:

$$\operatorname{PSL}(2,\mathbb{R}) = \operatorname{SL}(2,\mathbb{R}) / \{I, -I\} \to \operatorname{Isom}(H, d_H)$$

dado por $[A] \mapsto f_A$.

Demostración:

Por el ejemplo anterior basta con ver que T_b y In son isometrías Riemannianas de \mathbb{H}^2 , ya que la composición de isometrías Riemannianias sigue siendo una isometría Riemanniana. Analicemos los dos casos:

Teorema 1.2.1 (El grupo de isometrías hiperbólicas)

El grupo Isom (H, d_H) es generado por:

$$\left\{ f_A \middle| A \in \mathrm{SL}(2,\mathbb{R}) \right\} \cup \left\{ z \mapsto -\overline{z} \right\}$$

En particular, toda isometría de (H, d_H) es una isometría Riemanniana suave y, Isom (H, d_H) = Isom (\mathbb{H}^2) . Además, la función:

Definición 1.2.3

Sea $A \in PSL(2, \mathbb{R})$, con:

$$A = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right)$$

- Si Tr(A) < 2, entonces A es llamada **elíptica**.
- Si Tr(A) = 2, entonces A es llamada parabólica.
- Si Tr(A) > 2, entonces A es llamada hiperbólica.

§1.3 Hiperbólicidad y δ -hiperbolicidad

Estudiaremos la propiedad de hiperbolicidad, que más adelante resutará de utilidad para estudiar invariantes cuasi-isométricos.

1.3.1. Espacios Hiperbólicos

Definición 1.3.1

Sea (X, d) un espacio métrico. Para cada $\delta > 0$ y para cada $A \subseteq X$ se define el conjunto:

$$B_{\delta}^{(X,d)}(A) = \left\{ x \in X \middle| \exists a \in A \text{ tal que } d(x,a) \le \delta \right\}$$

Definición 1.3.2 (Triángulos geodésicos δ -delgados)

Sea (X, d) un espacio métrico.

1 Un **triángulo geodésico en** X es una tripleta $(\gamma_0, \gamma_1, \gamma_2)$ de geodésicas $\gamma_i : [0, L_i] \to X$ en X tales que:

$$\gamma_0(L_0) = \gamma_1(0), \quad \gamma_1(L_1) = \gamma_2(0), \quad \gamma_2(L_2) = \gamma_0(0)$$

2 Un triángulo geodésico es δ -delgado si:

$$\operatorname{im}(\gamma_0) \subseteq B_{\delta}^{(X,d)}(\operatorname{im}(\gamma_1) \cup \operatorname{im}(\gamma_2)),$$

$$\operatorname{im}(\gamma_1) \subseteq B_{\delta}^{(X,d)}(\operatorname{im}(\gamma_0) \cup \operatorname{im}(\gamma_2)),$$

$$\operatorname{im}(\gamma_2) \subseteq B_{\delta}^{(X,d)}(\operatorname{im}(\gamma_0) \cup \operatorname{im}(\gamma_1))$$

Ejemplo 1.3.1

Definición 1.3.3

Sea (X, d) un espacio métrico.

- (1) Sea $\delta \mathbb{R}_{\geq 0}$. Decimos que (X, d) es δ -hiperbólico si X es geodésico y todos los triángulos geodésicos de X son δ -delgados.
- (2) (X, d) es **hiperbólico** si existe $\delta \in \mathbb{R}_{\geq 0}$ tal que (X, d) es δ -hiperbólico.

Ejemplo 1.3.2

Todo espacio métrico geodésico X de diámetro finito es diam(X)-hiperbólico.

Ejemplo 1.3.3

La recta real $\mathbb R$ es 0-hiperbólico ya que cada triángulo geodésico en $\mathbb R$ es degenerado, pues estos se ven simplemente como líneas rectas.

Ejemplo 1.3.4

El plano euclideano \mathbb{R}^2 no es hiperbólico.

1.3.2. Hiperbolicidad de \mathbb{H}^2

Nuestro objetivo en esta subsección será probar el siguiente resultado:

Proposición 1.3.1

El plano hiperbólico \mathbb{H}^2 es un espacio métrico hiperbólico en el sentido de la definición anterior.

Antes de llegar a ello, probaremos algunos resultados adicionales y enunciaremos algunas definciones fundamentales.

Definición 1.3.4 (Área hiperbólica)

Sea $f: H \to \mathbb{R}_{>0}$ una función Lebesgue integrable. Se define la **integral de** f **sobre** \mathbb{H}^2 como:

$$\int_{H} f \, dV_{H} = \int_{H} f(x, y) \sqrt{\det(G_{H,(x,y)})} \, dx dy$$
$$= \int_{H} \frac{f(x, y)}{y^{2}} \, dx dy$$

donde:

$$G_{H,(x,y)} = \begin{pmatrix} g_{H,(x,y)}(e_1, e_1) & g_{H,(x,y)}(e_1, e_2) \\ g_{H,(x,y)}(e_2, e_1) & g_{H,(x,y)}(e_2, e_2) \end{pmatrix} = \begin{pmatrix} 1/y^2 & 0 \\ 0 & 1/y^2 \end{pmatrix}$$

siendo $e_1, e_2 \in T_{(x,y)}H = \mathbb{R}^2$ los vectores coordenados usuales.

Si $A \subseteq H$ es un conjunto Lebesgue medible, definimos el **área hiperbólica de** A por:

$$\mu_{\mathbb{H}^2}(A) = \int_H \chi_A \, dV_H$$

siendo χ_A la función característica de A.

Proposición 1.3.2 (Crecimiento exponencial del área hiperbólica)

Para todo $r \in \mathbb{R}_{>10}$ tenemos que:

$$\mu_{\mathbb{H}^2}(B_r^{(H,d_H)}(i)) \ge e^{\frac{r}{10}}(1 - e^{-\frac{r}{2}})$$

Demostración:

Sea $r \in \mathbb{R}_{>10}$. Se tiene que el conjunto:

$$Q_r = \left\{ x + iy \middle| x \in [0, e^{r/10}], y \in [1, e^{r/2}] \right\}$$

está contenido en $B_r^{(H,d_H)}(i)$. En particular, obtenemos que:

$$\mu_{\mathbb{H}^2}(B_r^{(H,d_H)}(i)) \ge \mu_{\mathbb{H}^2}(Q_r)$$

$$= \int_0^{e^{r/10}} \int_1^{e^{r/2}} \frac{dxdy}{y^2}$$

$$= e^{\frac{r}{10}} (1 - e^{-\frac{r}{2}})$$

Teorema 1.3.1 (Triángulos son delgados)

Existe una constante $C \in \mathbb{R}_{\geq 0}$ tal que todo triángulo geodésico en (H, d_H) es C-delgado.

Figura 1. Caption.