Controlando Motor Brushless de HD com Arduino

Por Fernando Koyanagi

Objetivo

Nosso objetivo será criar um programa para controlar a velocidade de rotação do motor que retiramos de um disco rígido.

Utilizaremos: 1 arduino UNO, 1 motor brushless de HD, 3 Transistores Tip122, 3 resistores 1200 Ω , 3 diodos 1N4007 e uma fonte de alimentação 12v / 5v.

Arduino UNO

TIP122

1N4007

Resistor 1k2 Ω

Em <u>www.fernandok.com</u>

Download arquivo PDF dos diagramas Download arquivo INO do código fonte

Esquema Elétrico

Montagem

Exemplo 1

Vamos fazer um programa para chegar ao máximo da rotação de nosso motor, ou seja, 5400 rpm.

Obs: utilizando alimentação de 5v

Vamos ao código

Começaremos definindo as constantes que utilizaremos durante nosso código.

```
//definição dos pinos que cada bobina representa no arduino
#define A
            6
#define B
#define C
          11
//intervalo de delay inicial que irá decair para aumentarmos a aceleração
int intervalo = 6000;
//variável responsável por armazenar o valor que decrementaremos de nosso delay
int decremento = 15;
//variáveis que armazenam os tempo em microssegundos para o delay.
const int DELAY_MINIMO
                           = 450;
const int DELAY_ACEL_MAXIMA = 1200;
const int DELAY MARCO UM
                           = 4500;
const int DELAY MARCO DOIS
                           = 3200;
const int DELAY MARCO TRES = 2200;
```


Setup

Na função *setup()*, vamos apenas configurar como OUTPUT os pinos que utilizaremos para controlar as bobinas e o LED de indicação.

```
void setup()
{
    pinMode(A, OUTPUT);
    pinMode(B, OUTPUT);
    pinMode(C, OUTPUT);

    pinMode(LED_BUILTIN, OUTPUT);
    digitalWrite(LED_BUILTIN, LOW);//apaga o LED L
}
```

Loop

Na função *loop()*, vamos fazer as chamadas para controle das bobinas e em seguida configurar a aceleração para ir aumentando a velocidade de giro do motor.

```
void loop()
     //chamada da ativação das bobinas
     pulso(1);
     pulso(2);
     pulso(3);
     pulso(4);
     pulso(5);
     pulso(6);
     //enquanto o intervalo for maior que DELAY MÁXIMO o decremento é maior que 1 unidade.
     if(intervalo > DELAY_ACEL_MAXIMA)
          //outras faixas de intervalo para ir controlando a aceleração
          if(intervalo < DELAY_MARCO_UM)</pre>
                     decremento = 10;
          else if(intervalo < DELAY_MARCO_DOIS)</pre>
                     decremento = 5;
          else if(intervalo < DELAY_MARCO_TRES)</pre>
                     decremento = 2;
     else decremento = 1;
```

LOOP (continuação)

```
//...
//tempo mínimo de delay permitido (quanto menor mais rápido o giro)
if(intervalo > DELAY_MINIMO){
    //subtrai de intervalo o valor atual de decremento
    intervalo -= decremento;
}
else {
    //acende o led L do arduino ao chegar na velocidade máxima permitida
    digitalWrite(LED_BUILTIN, HIGH);
}
```

PULSO

```
void pulso(int bobina)
     switch(bobina)
           case 1: //liga a bobina A
                digitalWrite(A,HIGH);
                break;
           case 2://liga a bobina A e B
                digitalWrite(A,HIGH);
                digitalWrite(B,HIGH);
                break;
           case 3://liga a bobina B
                digitalWrite(B,HIGH);
                break;
           case 4://liga a bobina B e C
                digitalWrite(B,HIGH);
                digitalWrite(C,HIGH);
                break;
           case 5://liga a bobina C
                digitalWrite(C,HIGH);
                break;
           case 6://liga a bobina C e A
                digitalWrite(C,HIGH);
                digitalWrite(A,HIGH);
                break;
```


PULSO (continuação)

```
//tempo que a(s) bobina(s) ficam ligadas
delayMicroseconds(intervalo);

//desliga todas as bobinas
digitalWrite(A,LOW);
digitalWrite(B,LOW);
digitalWrite(C,LOW);
delayMicroseconds(intervalo);
}
```


Exemplo 2

Agora vamos fazer algumas modificações em nosso programa para que nosso motor gire em sua potência Mínima.

Modificações para 100 rpm

Primeiramente mude o valor da variável "intervalo" para 45000.

//intervalo de delay inicial que irá decair conforme aceleração
int intervalo = 45000;

Modificações

A seguir na função LOOP, deixa apenas as chamadas para a função PULSO.

```
void loop()
{
    //chamada da ativação das bobinas
    pulso(1);
    pulso(2);
    pulso(3);
    pulso(4);
    pulso(5);
    pulso(6);
}
```


Agora é só compilar e executar. O motor ficará girando em sua potência mínima.

Veja abaixo uma tabela com a configuração para os valores máximos e mínimos do motor.

Intervalo	DELAY_MINIMO	Rpm	Voltagem
6000	220	5400	12v
41500	Não usa	141	12v
6000	450	5400	5v
45000	Não usa	101	5v

Em www.fernandok.com

Download arquivo PDF dos diagramas Download arquivo INO do código fonte

