

UNIVERSIDAD DEL PACÍFICO

Departamento Académico de Economía

Matemáticas III (130233)

Primer Semestre 2017

Profesores D. Winkelried, O. Bueno, J. Zúñiga, D. Bohorquez, y F. Rosales

Examen Parcial SECCIÓN I

1. Producto externo de vectores (6 ptos)

Sean $\boldsymbol{a} \in \mathbb{R}^n$ y $\boldsymbol{b} \in \mathbb{R}^n$ vectores no nulos. El producto externo se define como la matriz

$$A = ab'$$
.

- a) (1 pto) Determine el rango de A.
- b) (1 pto) Muestre que a es un vector propio de A.
- c) (1 pto) Muestre que si $v \neq 0$ es ortogonal a b, entonces v es vector propio de A.
- d) (1 pto) Recíprocamente, pruebe que si \boldsymbol{v} es vector propio de \boldsymbol{A} asociado al valor propio $\lambda=0$, entonces \boldsymbol{v} es ortogonal a \boldsymbol{b} .
- e) (1 pto) Muestre que $\lambda = 0$ tiene multiplicidad geométrica n-1.
- f) (1 pto) Muestre que si $a'b \neq 0$, entonces A es diagonalizable.

2. Constantes como sumas infinitas (5 ptos)

- a) (1 pto) Calcule la serie de Taylor de $f(x) = (1-x)^{-1}$ alrededor de a=0.
- b) (1 pto) Recordando que

$$\frac{d}{dx}\ln(1+x) = \frac{1}{1+x}\,,$$

calcule la serie de Taylor de $g(x) = \ln(1+x)$ alrededor de a = 0.

c) **(0.5 ptos)** Muestre que

$$\ln(2) = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \cdots$$

d) (2 ptos) Recordando que

$$\frac{d}{dx}\arctan(x) = \frac{1}{1+x^2}\,,$$

calcule la serie de Taylor de $h(x) = \arctan(x)$ alrededor de a = 0.

e) **(0.5 ptos)** Muestre que

$$\pi = 4 - \frac{4}{3} + \frac{4}{5} - \frac{4}{7} + \frac{4}{9} - \frac{4}{11} + \cdots$$