- 1.  $\bullet \star : r = -2\sin(\theta)$ 
  - $x = \cos(\theta) * r \stackrel{\star}{\Rightarrow} x = \cos(\theta) \cdot (-2\sin(\theta))$
  - $x = \sin(\theta) * r \stackrel{\star}{\Rightarrow} y = -2\sin^2(\theta)$

$$\left\{ \begin{array}{l} x(t) = -2 \cdot \cos(t) \sin(t) \\ y(t) = -2 \sin^2(\theta) \\ 0 \leq t < \pi \end{array} \right.$$

| t                                     | $\boldsymbol{x}$ | y  |
|---------------------------------------|------------------|----|
| $\frac{\pi}{4}$                       | -1               | -1 |
| $\frac{\frac{\pi}{4}}{\frac{\pi}{2}}$ | 0                | -2 |
| $\pi$                                 | 0                | 0  |
| $\frac{3\pi}{4}$                      | 1                | -1 |



- 2.  $\bullet \star : r = 1 \cos(\theta)$ 
  - $x = r \cdot \cos(\theta) \stackrel{\star}{\Rightarrow} x = \cos(\theta) \cos^2(\theta)$
  - $y = r \cdot \sin(\theta) \stackrel{\star}{\Rightarrow} y = \sin(\theta) \sin(\theta) \cdot \cos(\theta)$

$$r = \sqrt{x^2 + t^2} \stackrel{\star}{\Rightarrow}$$

$$\begin{array}{l} \sqrt{x^2+t^2} = 1-\cos(\theta) \stackrel{\cos(\theta) = \frac{x}{\sqrt{x^2+y^2}}}{\equiv} \\ \sqrt{x^2+t^2} = 1-\frac{x}{\sqrt{x^2+y^2}} \equiv \end{array}$$

$$\begin{aligned} x^2 + y^2 &= \sqrt{x^2 + y^2} - x \\ \left\{ \begin{array}{l} x(\theta) &= \cos(\theta) - \cos^2(\theta) \\ y(\theta) &= \sin(\theta) - \sin(\theta) \cdot \cos(\theta) \\ 0 &\leq \theta < 2\pi \end{array} \right. \end{aligned}$$

| t     | x  | y |
|-------|----|---|
| 0     | 0  | 0 |
| $\pi$ | -2 | 0 |

