Computer Networks and Internet Technology

2021W703033 VO Rechnernetze und Internettechnik Winter Semester 2021/22

Jan Beutel

Communication Networks and Internet Technology Recap of last weeks lecture

Congestion Control

Congestion control aims at solving three problems

#1	bandwidth estimation	How to adjust the bandwidth of a single flow to the bottleneck bandwidth?	
		could be 1 Mbps or 1 Gbps	
#2	bandwidth adaptation	How to adjust the bandwidth of a single flow to variation of the bottleneck bandwidth?	
#3	fairness	How to share bandwidth "fairly" among flows, without overloading the network	

Congestion control differs from flow control both are provided by TCP though

Flow control prevents one fast sender from

overloading a slow receiver

Congestion control

prevents a set of senders from

overloading the network

The sender adapts its sending rate based on these two windows

Receiving Window

RWND

How many bytes can be sent

without overflowing the receiver buffer?

based on the receiver input

Congestion Window

CWND

How many bytes can be sent

without overflowing the routers?

based on network conditions

Sender Window

minimum(CWND, RWND)

The 2 key mechanisms of Congestion Control

detecting congestion

reacting to congestion

Detecting losses can be done using ACKs or timeouts, the two signal differ in their degree of severity

duplicated ACKs

mild congestion signal

packets are still making it

timeout

severe congestion signal

multiple consequent losses

The 2 key mechanisms of Congestion Control

detecting congestion

reacting to congestion

TCP approach is to gently increase when not congested and to rapidly decrease when congested

question

What increase/decrease function should we use?

it depends on the problem we are solving...

#2 bandwidth adaptation

How to adjust the bandwidth of a single flow to variation of the bottleneck bandwidth?

Initially, you want to quickly get a first-order estimate of the available bandwidth

Intuition Start slow but rapidly increase

until a packet drop occurs

Increase cwnd = 1 initially

policy cwnd += 1 upon receipt of an ACK

Alternatives

increase decrease behavior behavior

AIAD gentle gentle

AIMD gentle aggressive

MIAD aggressive gentle

MIMD aggressive aggressive

In practice, TCP implements AIMD

increase

behavior

decrease

behavior

AIAD gentle

gentle

AIMD gentle

aggressive

MIAD

aggressive

gentle

MIMD

aggressive

aggressive

#3

AIMD converge to fairness and efficiency, it then fluctuates around the optimum (in a stable way)

Congestion control makes TCP throughput look like a "sawtooth"

Communication Networks and Internet Technology

This weeks lecture

http

video

email

Wireless networks

DNS

 DNS

google.at 142.251.36.99

http

video

email

Wireless

networks

Internet has one global system for

addressing hostsby design

naming hosts DNSby "accident", an afterthought

Internet has one global system for

naming hosts

DNS

by "accident", an afterthought

Using Internet services can be divided into four logical steps

step 1	A person has name of entity she wants to access	www.uibk.ac.at
step 2	She invokes an application to perform the task	Chrome
step 3	The application invokes DNS to resolve the name into an IP address	138.232.17.233
step 4	The application invokes transport protocol to establish an app-to-app connection	

The DNS system is a distributed database which enables to resolve a name into an IP address

www.uibk.ac.at

138.232.17.233

In practice, names can be mapped to more than one IP

In practice, IPs can be mapped by more than one name

name → DNS	IP address
www.uibk.ac.at	138.232.17.233
ifi-smokeping.uibk.ac.at	138.232.18.35
pbl.permasense.uibk.ac.at	138.232.18.35

How does one resolve a name into an IP?

initially

all host to address mappings were in a file called hosts.txt

in /etc/hosts

problem

scalability in terms of query load & speed

management

consistency

availability

When you need... more flexibility,

you add... a layer of indirection

When you need... more scalability,

you add... a hierarchical structure

To scale, DNS adopt three intertwined hierarchies

naming structure hierarchy of addresses

https://www.uibk.ac.at/informatik/

management hierarchy of authority

over names

infrastructure hierarchy of DNS servers

naming structure

hierarchy of addresses

https://www.uibk.ac.at/informatik/

Top Level Domain (TLDs) sit at the top

Domains are subtrees

A name, e.g. uibk.ac.at, represents a leaf-to-root path in the hierarchy

management

hierarchy of authority over names

The DNS system is hierarchically administered

(*) see http://www.iana.org/domains/root/db

managed by The Austrian Education & Research Network (*)

(*) see https://www.aco.net

Hierarchical administration means that name collision is trivially avoided

infrastructure

hierarchy of DNS servers

The DNS infrastructure is hierarchically organized

13 root servers (managed professionally) serve as root (*)

^(*) see http://www.root-servers.org/

a. root-servers.net VeriSign, Inc.

b. root-servers.net University of Southern California

c. root-servers.net Cogent Communications

d. root-servers.net University of Maryland

e. root-servers.net NASA

f. root-servers.net Internet Systems Consortium

g. root-servers.net US Department of Defense

h. root-servers.net US Army

i. root-servers.net Netnod

j. root-servers.net VeriSign, Inc.

k. root-servers.net RIPE NCC

I. root-servers.net ICANN

m. root-servers.net WIDE Project

To scale root servers, operators rely on BGP anycast

Intuition

Routing finds shortest-paths

If several locations announce the same prefix, then routing will deliver the packets to the "closest" location

This enables seamless replications of resources

Do you see any problems in performing load-balancing this way?

Instances of the k-root server (*) are hosted in more than 40 locations worldwide

Four of these locations are in Austria: in Feldkirch, Salzburg and Vienna

All locations announce 193.0.14.0/23 in BGP, with 193.0.14.129 being the IP of the server

Four of these locations are in Austria: in Feldkirch, Salzburg and Vienna

Do you mind guessing which one we use, here... in Innsbruck?

Each instance receives up to 70k queries per second summing up to more than 4 billions queries per day

TLDs server are also managed professionally by private or non-profit organization

The bottom (and bulk) of the hierarchy is managed by Internet Service Provider or locally

Every server knows the address of the root servers (*)

required for bootstrapping the systems

^(*) see https://www.internic.net/domain/named.root

Each root server knows the address of all TLD servers

\$ dig @a.root-servers.net at.

```
172800 IN
at.
                              a.nic.at.
            172800 IN
at.
                        NS
                              b.nic.at.
at.
            172800 IN
                        NS
                             c.nic.at.
at.
            172800 IN
                        NS
                              d.nic.at.
            172800 IN
                              e.nic.at.
                        NS
at.
            172800 IN
at.
                        NS
                             f.nic.at.
            172800 IN NS
at.
                             h.nic.at.
```

also see https://www.iana.org/domains/root/db/at.html

Any .at DNS server knowns the addresses of the DNS servers of all sub-domains

\$ dig @d.ns.at orf.at

orf.at. 10800 IN NS ns4.apa.net. orf.at. 10800 IN NS ns3.apa.at.

Once arrived at the leaf of the hierarchy (*.orf.at), each DNS server knows the IP address of all children

\$ dig www.orf.at @ns3.apa.at

www.orf.at.	86400	IN	Α	194.232.104.149
www.orf.at.	86400	IN	Α	194.232.104.141
www.orf.at.	86400	IN	Α	194.232.104.4
www.orf.at.	86400	IN	Α	194.232.104.140
www.orf.at.	86400	IN	Α	194.232.104.150
www.orf.at.	86400	IN	Α	194.232.104.142
www.orf.at.	86400	IN	Α	194.232.104.3
www.orf.at.	86400	IN	Α	194.232.104.139

To ensure availability, each domain must have at least a primary and secondary DNS server

Ensure name service availability

as long as one of the servers is up

DNS queries can be load-balanced across the replicas

On timeout, client use alternate servers exponential backoff when trying the same server

Overall, the DNS system is highly scalable, available, and extensible

scalable #names, #updates, #lookups, #users,

but also in terms of administration

available domains replicate independently

of each other

extensible any level (including the TLDs)

can be modified independently

You've founded next-startup.ch and want to host it yourself, how do you insert it into the DNS?

You register next-startup.ch at a registrar *X* e.g. ACONET or GoDaddy

Provide X with the name and IP of your DNS servers

e.g., [ns1.next-startup.ch,129.132.19.253]

You set-up a DNS server @129.132.19.253

define A records for www, MX records for next-startup.ch...

A DNS server stores Resource Records composed of a (name, value, type, TTL)

Records Name Value

A hostname IP address

NS domain DNS server name

MX domain Mail server name

CNAME alias canonical name

PTR IP address corresponding hostname

Using DNS relies on two components

trigger resolution process send request to local DNS server usually, near the endhosts
configured statically (resolv.conf)
or dynamically (DHCP)

DNS query and reply uses UDP (port 53), reliability is implemented by repeating requests (*)

DNS resolution can either be recursive or iterative

When performing a recursive query, the client offload the task of resolving to the server

When performing a iterative query, the server only returns the address of the "next server"

root **DNS** server

What about resolving speeds?
Waiting for servers all over the globe is not fast...

To reduce resolution times, DNS relies on caching

DNS servers cache responses to former queries

and your client and the applications (!)

Authoritative servers associate a lifetime to each record Time-To-Live (TTL)

DNS records can only be cached for TTL seconds after which they must be cleared

As top-level servers rarely change & popular website visited often, caching is very effective (*)

Top 10% of names account for 70% of lookups

9% of lookups are unique

Limit cache hit rate to 91%

Practical cache hit rates ~75%

Communication Networks and Internet Technology
Short Recap on this weeks lecture

Top Level Domain (TLDs) sit at the top

The DNS system is hierarchically administered

The bottom (and bulk) of the hierarchy is managed by Internet Service Provider or locally

Reading: Book Kurose & Ross

Class textbook:

Computer Networking: A TopDown Approach (8th ed.)

J.F. Kurose, K.W. Ross

Pearson, 2020

http://gaia.cs.umass.edu/kurose_ross

- Week 11
 - 2.5 (DNS. The Internet's Directory Service)
 - 2.2 (The Web and HTTP)

Check Your Knowledge

CHAPTER 2: APPLICATION LAYER

- DNS Basics
- DNS Iterative vs Recursive Query
- DNS and HTTP delays (similar to Chapter 2, P7,P8)
- HTTP GET (similar to Chapter 2, P4)
- HTTP RESPONSE (similar to Chapter 2, P5)
- Browser Caching
- Electronic Mail and SMTP
- A comparison of client-server and P2P file distribution delays (similar to Chapter 2, P22)

Final Exam

- 02.02.2022 10:15h
- Online exam
- Duration 120 min
- Open book
- Individual problem solving
- No (electronic) communication allowed
- Random spot checks
- Register online via Ifuonline