Kira 概统解题指南

官方店铺: Kira 考研周边小铺

微信公众号: Kira 言而信

微博: Kira 言而信

感谢您选择 Kira 考研数学系列之《Kira 概统解题指南》,高数葵花宝典获得的认可给了我极大的鼓舞,让我觉得自己确实做了件十分有意义的事。在大家的敦促和鼓励下,终完成此本概统指南。

我本学期担任概率论与数理统计公共课助教,批作业时发现学生存在非常严重的概念不清和思路混乱问题,恨铁不成钢,由此想到考研人中大概也有"懵逼而不自知"的同学吧。 我在复习考研数学时,对两块内容十分有心得——高数的计算和概统的框架,高数已出,概统还是有些好东西觉得可以分享。本指南有两大目标:一是概念吃透理清,通过把数学里的"鬼话"用"人话"生动地讲出来,帮你形象理解,同时你自己发现不了的含糊不清的地方,我也会帮你发现;二是把做题套路梳理干净,思路系统化,步骤规范化,达到"闭眼"做题的效果。

有评价说"概统指南就像高数那本一样,拯救了戎混乱的大脑。"

本指南的重磅部分有:17页 就考研期间的私人概统框架(我自己亲手抄写一遍时,明显能感到知识点梳理得非常清晰,能够有效拉起知识脉络,你也可以抄写一遍)、每一章开篇的"kira 挑战"及答案、全概率公式贝叶斯公式的生动讲解、一维随机变量函数分布、二维随机变量函数分布(分布函数法、卷积公式法)、式二维连续型随机变量函数的期望、秒杀计算技能、判断三大抽样分布、手把手式矩估计等。

我写指南的第一、二章节奏都很慢, 甚至很简单很熟悉的知识点都男不断强调, 一方面是为了纠正部分同学对于这些基础概念的理解偏差, 另一方面是为了对概统不入门或畏惧的同学循序渐进打开一扇门, 让新手不畏概统, 大方自信地下笔。

我一直致力于洗脑以使读者养成好习惯,如 P41-P44 连续三道例题,我每一道都在 step1 写"当 x 在……取值时,y 在……取值",字都不用换,直接"复制粘贴"。做概统很多时候就是闭着眼复制粘贴,条件反射,所有的题目都是似曾相识。

风格素承了一贯的"率性耿直吐槽风", 我的特长是 —— 洗脑洗到会为止, 边角细节用力抠, 抽象概念具体化, 讲话只讲大实话。 ><

希望概统指南能够为你们带来切实的帮助, 我相信你依然会在里面看到葵花宝典的影子和我的影子, 在最后关头 get 到使你受益的技能。我所能做的一点微薄的小事, 大概就是把枯燥的概念生动地讲给你听, 把逻辑梳理得透亮些, 让读者觉得学数学是一件快乐而轻巧的事。

再次感谢。

Kira

- 索引-

(*下划线表示该部分有我想特别强调的一些有 Kira 特色的知识点)

第一章 随机事件与概率

基本概念 P1 随机事件关系及运算律 P4 全概率公式、贝叶斯公式 P7 独立性 P8 互斥与独立 P10 古典概型 P13 几何概型 P15

伯努利概型 P15

第二章 一维随机变量及其分布

分布函数、分布律和概率密度 P21 八个常用分布 P23 泊松定理 P24 正态分布常用结论 P26 分布律与分布函数 P31 概率密度与分布函数 P33 泊松分布应用题 P36 指数分布应用题 P37 一般类型随机变量 P39 一维随机变量函数分布 P40

第三章 多维随机变量及其分布

Kira 前言 P47
联合分布 P48
边缘分布 P50
条件分布 P51
独立性 P52
二维均匀分布 P52
二位正态分布 P53
详解 P{(X,Y)∈ D}颗型 P57
求联合分布函数 P59
求条件分布 P63 P68
如何根据不等式找区域 P69
随机变量函数分布-分布函数法 P72
随机变量函数分布-卷积公式法 P74
离散型 r.v.与连续型 r.v.的函数 P79
最大值与最小值的概率分布 P83

第四章 随机变量的数字特征

期望、方差、协方差 P89 相关系数、不相关与独立 P90 求一维 r.v.特征函数 P91 求二维 r.v.函数特征函数 P94 求最大值最小值的特征函数 P98 切比雪夫不等式 P99 求协方差、相关系数 P102 二维正态分布数字特征 P103

第五章 大数定律和中心极限定理

依概率收敛 P107 大数定律 P107 中心极限定理 P108

第六章 数理统计的基本概念

总体、样本、统计量 P113 三大抽样分布 P115 单正态总体统计量分布 P116 判断三大抽样分布 P117 统计量的期望与方差计算 P119

第七章 参数估计

估计量、估计值、点估计 P125 矩估计 P125 最大似然估计 P128 参数点估计的评选标准 P128 常见题型 P129

附录 P1-P17 Kira 考研期间概统框架

- 真题索引-

(*本索引将详细列出各考研真题例题的具体位置,方便大家定位)

第一章 随机事件与概率

2016 数三 7 P11

2014 数一三 7 P12

2012 数一三 14 P12

2016 数三 14 P13

2007 数一三 16 P15

2007 数一三 9 P16

第二章 一维随机变量及其分布

2013 数一三 7 P27

1998 数 5 P29

2010 数一三 8 P29

2006 数一三 14 P34

2013 数一 14 P35

1997 数 11 P39

2003 数 11 P43

第三章 多维随机变量及其分布

2005 数一三 13 P55

2013 数三 22 P67

2013 数三 8 P69

2005 数一三 22 P76

2007 数一三 23 P77

2008 数一三 22 P79

2016 数一三 22 P80

2008 数一三 7 P84

第四章 随机变量的数字特征

2014 数一三 22 P92

2013 数三 14 P93

2012 数三 23 P98

2011 数一 8 P99

2001 数 4 P99

2012 数一三 22 P100

2006 数三 22 P101

2008 数一三 8 P101

2001 数5 P 101

2011 数一三 14 P103

第六章 数理统计的基本概念

2001 数一三 5 P118

2014 数三 8 P118

2010 数三 14 P119

2011 数三 8 P120

2001 数三 12 P120

第七章 参数估计

2013 数一三 23 P130 P131

2000 数 13 P132

2008 数一 23 P133

2009 数一 14 P134

第一章随机部件与概率

上空降点(这用于有一定基础且时间深重的同学) 【直接定阵到以下预码】】 Ps 自测上方方框 Pp 与独位有关的传陀 使阿随便相前,哪里的有角哪里) · Kim 前言:

本年介绍了各种现象术语, 概念和准论, 为太家打开了概统也界之了,我将有目的性地国佬 老点进行底信,其它一笔带过,大家自行混书游解

▶ 真颗选项出题品(很子4个老品出题,像高频~)

の事件失於和运算(ACB, A=B, ALB, AN B, A-B, AB=Þ,Ā)

日 城华的附质及武公式 日 身什相互独立和城中关系。

图 古典明之即 几何相知

▶对位大颜产生探远展的同的

(0 完备事件组一全概率公式(分集分解思想)(很多同学懵面的"高额+连债"联合分布题型。 授应是遂分的,用的即是全概公式及其思想 如数一、三 2008年22题 这分?)

的九重伯名利城型

心偏隔水/好阴的必会结论。

T 水沿(海城市)

DIO 随机试验E(3个特点)、将本点心,将序间Ω. 随机事件 A.B.C. 其对事件,必然事件,完备事件组

四一例中概念: 抽一颗型子 L随机试验E) · 孝本事件の下样本品: 品数为人(上=1,2,11,6)

· 样中房门口= {1,2,3,4.5.6} (若分别因数字+6表示), 所有另一个 A: {点数为1局数}, B: {点数为3}, C浪数太. 完备身行俱 A: {点数为方数}, A: {点数为7局数} (有 A: A= D 且 A: U Az = SZ)	1. 15
(1) 排入中(1) /不得化反义 (1) 排入中(1) P(A) > 0 (考!) 满足(0) 规范性: P(52)=1 (考!) (1) 可到到加州: A,, A, 两两3月, 有户(品本)=是P(-Ak
且对过随机试验E的每个随机争付A的现在,都有实验PUS 专其对证、则的PUSI分随机争付A的现在。)
() King 备注:这里涉及到非常济盛的数学思想,即把各种"不可指还"这为"可描述可约是! TANA PLAN 不是挥竹当然的是数学家为你定处	5 b)
(3) 有行服。 P(B(A) = P(AB) (P(A) >0)	
本版:PLA)、PLB)、PLAB)等時本空间是及 [OST PLBIA) 特在定间是A	2

▶(4) 每行独立性:

设A....A. >17事件,如身对其中行为K. K.了事好Ai,...Aik (k>>)有 P(Ai, Ai)...Aik)=P(Ai,)P(Ai,)...P(Ai,k) 则形几个事件A.....,A. 现在独立

一张,看例3?

祖A·B·Cか三丁随加事付, 君有 コット(AB)= P(A) P(B), P(B) = P(B) P(L), P(AC)= P(A) P(C) コット(ABC)= P(A) P(B) P(C)

和ABC=打事付相及独立。 常和原心,满及心的事件ABC两两独立

- ▶的 古典规型与 N.1万概型.
 - →古肉城型:将本家间满足 图 其本身付.
 - 今時可能事件ATRIC是: PLA) = 事件A所含基本事件了数 K
 - ► (二指)几何概型 { 0 先 众是年间中的有界闭电域 D 接中 D的 3 时代 A 的概率 5 A 和 位置和形状元矣,而 5 A 的固张成业比 (每个样本点符页能长生)

$$\Rightarrow P(A) = \frac{S_A}{S_b}$$
 (即间形之比)

(p.s. 类似地,一个阳何眺望. p(A)为A四间每度与拼子 安何残较有度之比;三维M河眺望,为传张之比)。 6.伯绍利城型 几次独立阶级 老随机试验上满足 面次试验上有两个话具A SA PLA)=P. PLA)= 1-P (KPC) ⇒ > (A 省 4 k次) = Cxpkgn-k (g=1-p) [2] 随机事件的关系及边算律 大於OP含 AOB B发生A以发生 ●朋告 | A= B | A(B) 发生 B(A) 必发生 のか AUB A岩子或B岩子 更欣 ANB AG生且多发生 A B の先 A-B A A 发生且 B 不发生 *的 五下 | AB= p | A, B 不同时发生 图 图 AO 对这事件 A A SA 有且仅有一个发孔 律 o 友顶律: AUB=BUA, ANB=BNA ②话合律: AU(BUC)=(AUB)UC, AN (BNG) = (ANB) NC. AU(Bnc) = (AUB)n (AUC) AN (BUC) = (ANB) U (ANC) AN (B-C) = ANB-ANC. 女 多德阿根律 AUB = AOB, ADB = AUB (对局待) A.U.A.U...UAn = A. N.A.n.·NAn Anna n. nAn = AIU AU UA

-4

· RMNM ·

· Dar的律非常的用,不必死情、交受并,并受交,长期受疑的

习 概率的基本证算公式(破陷、概率运算不复)

名17 + * P(AUBIC) = { P(AIC)+ P(BIC)-P(ABIC) P(AIC)+P(BIC) (A·Bを行)

U kin看注:

- の PCALUASU·UA、) 这样公式不同ると対方はサノー・ナノーイをから流がる サロ PLA+B+c) = P(A>+PCB)+PCC) -PCAB-PCBC>PCAC)+PLABC)
- 日 身件服命的关系对与一般极举问。把限批出"IC"拉敏

④ 冰事件 「逻辑整体,好用,好玩」("乘法公式")

サ KMA 解读:

P(AB) = P CA) PCB(A)

P(A物B设法) = P(A设法)· P(A设法) が情况了 B设法)

逻辑非解翅順、这个式多不解从 P(BIA) = P(AB) 件 及指

を 十分1順手地、肌肉では240、不径大脑地、直接11順利写货

P(A1) P(A2) - P(A1) P(A2) - P(A1) P(A1) P(A1) P(A1) P(A1) P(A2) P(A2) P(A2) P(A2) P(A2) P(A2) P(A2) P(A2)

(结合户库政施推解"分步友")

"冷阳的思想"女

一方年复理: 一定一定事情原始公式,今份原始公式, 配原始公式支朋友,原始公式最亲加了

设A为-阳南县什, B., B., ···, B., 是一个克勒事件组 (自 Bi=丘, B; B; = Ø(i+j)), P(Bi)>0, (i=1,2,···n) 则 P(A) = 爲P(Bi) P(A1Bi)

会给的明确:

吸收不2万三人本制品、匈尔尼选一个人制, 实力利用 A. B. C 分别表示用 2. 历被选中 制出。 图 用 表示 影中、则 远闻我们的逻辑思维可知。 O. G

那用,2.两个版本的概率表示》PCAI、PLBI、PCCI 表 被选中飞射中的概率》PCDIA)、PCDIA)、PCDIC)

★ Q 问: 射中电3总共分几步? [床料语气] ★ A 答: 2岁,0选一个人 B这个人影中了。

丁厚P(D) JEFTA从起思通往 D的路线 考虑今间的

OEA (BIATH) (OCEB) (D(BIH)

P(D)= P(A) P(DIA) + P(B) P(DIB) + P(C) P(DIC)

(海枫公式) 不用死措:像玩好到 (D) (D) 斯公式

没日子一随机事件, B., B., ..., B., 是一个民名事件证, PLA) >0. PLB;)>0 (i=1,2,...,n), [a.]

P(BilA) = P(Bi) P(A|Bi)

[P(Bi) P(A|Bi) ((=1.1, ... , n)

咖顿原子子? 还是内的题,已和她的被和中3,7可治于的?! 对于序题, 靶子被韧中有三种可能, 取 { P的中: P(A) P(DIA) 2朝中: P(B) P(DIB) 为新中: PLC) PLDIC)

显然, 甲基中靶的积减多

PLA) PLDIA) PLAID) 程第一飞加新中"。 "夏中" "凌年"

PIAIP(DIA) + PLB) PLDIB) + PLC) P(DIC) 所有射特斯

甲旬中

上式就是"贝叶斯城",一主一样里 一边被东,一边写,就可以了不安被时住!

4 有关独创性的形成事儿

2-13我们确有论的了独立的概念,下面点话的题 常用的结论:

①相至独立与两两独立;两两独立为相及独立。 (月世月泊出, 两两独之铁厂条件)

· BMom ·

②· A.B相互独社 & P(AB)=P(A)P(B)

- · A·B相至独立 A SB, A SB, A SB妈相至独立
- · A·B·C相及独立、多A5A、B5B、C5C中各选一事件, 得到的三个事件相至独立。 图在一事件专员处放了事件的证券。 出处之(得解力管证关系")
- 图 重要结论
 - ▲ 1960年为0的身件心与作何身件独立
 - ▲ 概率》, 的争件, 炒与行河事件独立。
 - 一 Kira 排版明明:
 - 1. 港 A.B存在旧仓关系, 是否一定不确立?
 - 2. 据A.B在下,是否一定独立了是否一定不独立?
- ▶ 烙身流流是:"否"?

花AB存在包含关系如ACB,影面上看, A安子的B-交货生,但如果PLB)=1 即?

A收入发生, B都会发生 (Atsorphin), A.B.加之。

•亚铜话沧✔

龙OCPLASCIOCPLBICL, A.B店和包含失剂,则一定不知这

好与独立一千古邓题

对于事件A.B.有面和独立两个概念。

》所致: "在厅"和"独立"不是一个服念的东西,不在一个 维度上"百年是集全关系(为AB=D,则在户) "独立"是服务关系(为PCAB)=PCA)PCB),则A·B独议

当被在一起讨论时,一切皆有可能曾

- ·如·治 PCA) >0. PLB) >0. 刚先 AB=中·阳 PCAB)=0 18 PCA) PCB) >0, 不独定,在下。
- ·如: 弗 p (AB)= p (A) p (B) >0, M) A (B # p), 为电之,不及下。(因为 p (p)=0)

(实践底路)

一随机事件的关系员边算

J具: 事件的常用变形:

中文计划) 龙心!

★O A-B = A-AB = AB (復于计算概述性)

② AUB=AUĀB = BUĀB = ABUABUĀB (北成西南野村的市)

③ 名B.B.,…, B.是一个完全事件组,加了 A= AB, UAB, U…UAB。 ()将A较化为另干环事件之和) ★特别地, A= ABUAB

(by Kina说: BSB是常用的宏强事件组)

頂駒1-2016 数=.7—— (2006 数-1) 题梯间) 设A.B.为阿尔随机寿件,且O<P(A)<1, XP(B)<1, 如果P(AIB)=1 例() (A) P(BIA)=1 (B) P(AIB)=D (C) P(AUB)=1 (D) P(BIA)=1.

DKITA考例快速解说:「能用画图解决的特别写序」 P(AIB)=I 即选B发生,则A-处发生. 又 O<P(A)<1. O<P(B)<1 ,有BCA至JZ 图例

有(A): 若A不发生,则 圆 , 显然 B也不发生。 看(B): 若 B不发生且 A 发生 , 刚 圆 , 户显然并必为 。 看(D): 结, 不解释。 适(D): 结, 不解释。 适(D): 结, 不解释。 选(A).

○ 7月括例式3月, 3-亚彻答案选D, 这题 5分钟去海3· 如身证明题: 由第一的条件, 有 P(AIB)= P(AB)=1 ⇒ P(B)-P(AB)=0 ⇒ P(BA)=0 ⇒ P(BIA)=0 承证从式 P(BIA)+P(BIA)=1 ⇒ P(BIA)=1

P1 -1 @ 19 -1

- 負題 2014 数- = 7 —— 设 随机争件AB相互独立,且P(B)=0.5, P(A-B)=0.3, 则 P(B-A) = _____

OKIM 棉妆色:

田 ASCBA, 有AC=め,有ACC,CCA

一大小本帯のと: 从问题的消走 PLABIE)= PLED = PLAB) 子 *

松(想明白里)交运算"八",越交范围越外,越少越宿到最后交彻是来,乘舰是交;和是东并是和

古典城型,几何城型,伯罗利城型.

亡 古典相死型是开发短力, 锻炼逻辑思维的好东东 我们强管会的是如何一步步把事情流出条准。 不食不响?

▶看扫评几个物学符号(基础的可跳过) ① CM: "从 M中取 m 个"的样子机数 (= n-m1:m1) 如 G = 7×6×5 3! 分3从入来加了数.再除以加! ② AM: "从几个中轴加了.并排序"的将本点数 (= n.!) 如 A3= 7×6×5 分3从几乘加了透入成数。

(我在上面反复提"特本的数",而古典概型就是头子 将ALLA的问题 由P3)

真颐4 2010.数三. 14 设管中有行,自思诉务一个,从中有效回地面球, 每次取1个,直到3种颜色都取到时货,则取球 次数1位的女子的概率为

(inkina说:古典城型除了16年数三考》还真投压的考过! 大家掌握一般难度题目即可 古典城型最 大的特色就是"机"只玩到你都不知道 配哪里睹、陷阱一大把....)

★读条件要读如了信息:有放回; @ 有划?他取刊时的

★ 客應到以下降合条件: (0) 跨人以取出的自在前分次中投出视:
* 安想到以下降合条件: 50第4次取出的色柱前3次中投出现; 0前3次取出过2种颜色的证,1种不行;
(台 清题原为到如此地步,你的逻辑原旗能力才过到电水,并可以开始到式。)
科: 进利电影下取 剩余之色进一色 对位置中排一个
阿子 C3 C3 和公共的社
多个 每次有3种选择,和4次
= 9
*补充说明:(1)不妨没最后取焦水 [][黑] (11)、黑球蓟角3次(3个位置)、放入白两种球
且的分规一次或>次,在3个位置中的任意位置
(iii) Ci:在孙白中选一种颜色,只出现一次 (iv) Ci:在外位置中选一个位置论 Ci 选出的证。
剃27位置制放另一种色的法。
子此,不重,不渝!
·古典赋型主密有以了几种的法:①直接勤数,②投信问题, ③连侵抽取问题,④超几何分配门题(抽次品摊
③连侵拗取问题,●超几何分配门题(抽次品抽牌
· 俱作不同多产生的同学可多时相关颇目来做。 方识和作重点,不需把班额的展出了图)
フェンス・クス・ア はいれい / 1976 - 7区 2 は A R 4 R 7 R 7 R 17 R 17 R 1 R 1 R 1 R 1 R 1 R

(2) 几何极型

- 一 N何佩型出题频率较高, 关键很多闭管看到题目 出活压限不知道该用几何概型, 也不会到我.
- ★<u></u> <u>財型 阑几河 脱型的 摘述有:</u> 在 放移 A.B.中行取 放点; 在 B.7 用 (a.b.) 中行和 网数;

解:设随加油和的勤力X和了有0<X<1、0<Y<1 Step1:X和了相互独立、现把UxY>看了平面生格。

Step2:满足老便对值水子之取区域即为D={(x,y)|x-y)<3} 样序间几对加区域为G={(x,y)|0<x<1,0<y<1} 可 Kira届注:即仅仅双腿,Step2边两行电信主指来, "D="G=",其体和勤侈养养,其本的步骤分。

Step3: 匝圆, 所知区域 D
$$P\{1x-Y1$$

的伯努利城型

O Bernoulli 相对中流和加入独立重要试验的独立

分版外,其包含的思想在三项分布,中	心物程强犯	统计中
出版外,其包含的思想在二项分布,中都有了这种深刻的运用。		'

一直题 6 2007 散一三 9 ———————————————————————————————————
某人何同一目的独立更复射击,每次影中命中目脉和概率 为》(o <p<))则此人第4次射击恰好第二次命中目标< td=""></p<))则此人第4次射击恰好第二次命中目标<>
的现在是一
解: (kira 维注: Bernoulli 不腐磨背, 配角条件, 按逻辑推)
(1) Th) X V X V P(A) = C3 P (1-p) P + 1847A
(A) 3 × N × M
整姆得: ÞLA)= →P²(1-P)² ※

(世长100届注: 对待独立重复试验, 限2件持条股性和清爽, 好机机准条件, 不准, 基础, 这分》)

第一年一个特殊是量 及其分析

P19 从冰挑战内露先问自己一面 答案社 P45 、战后哪里不会点哪里

上左阵点

□ 12 | 194 | 195

(种种)

o kina前意

大家观察真题的出题规律不住省现、大题是一道 多低随加度量(函数)分布,形-道病流计量稍估计 的1克什大腿,换言之,不幸不会单独出大腿,而是为 1收入题打底3的,同时办库住住以小题形式自独分题, 考察概念、特质,权必须在此等把根基打牢。

Kin 挑战 (鬼注: rv. 指随机变量") 科目版

- · 是不是P有连续型 r.v.才有概率密度?
- · P{a(X6b]=Flb)-Flan对连债型rv.成知了? 时,离散型下心,成之吗?老不成之,你从改?
- 3. 分布函数-定连接吗?-定年洞吗?
- 4. 道像型r.v.的赋净密度fxx)-定道復鸣?
 - 5. 10何分种的特景?超10份种的试验特景?
 - 6.一般地,Tix,的分段点是否与fix,分段点相同?
 - 7. 水明随机变量函数合布该从FLXX着自还是从flxx着
 - 8. 正态分布的附质?
 - 9. 知道30原则吗?(为什么别人答卷那么快 50~?)

~~所以,你真的复对的的?你似题是难象的??

kim希望仍养成的好习惯

"考虑于遵性,在写净的数Fixi时不的范围取 在闭方开"展现在连续型 rv.中定形谓、但对于高和利和混合型 rv. 它可以时刻提明你下以石道美

而不犯 低级失误

- *2. 于(x)= P{X(x) 时刻遵记双取趣(-100,+100) 是"办写双取趣(-100,+100),及误写X"取趣……
- ★3、随于写像好历代,各心写像好历代, 随于画大技号"{",随于讨论X的范围。

基础城高是必备情况

- 一随加设量 riv. (random variable) (可附近) · 泊份说,随机变量的发义是将现象生活中的随机争行 数量化,化成数学语言,从何可用数学工具加以研究
- ·随机试验巨的样本多河为IT={w},如其对每一个WED 都有唯一实物》(114)与之对应,且对于行高力。风, (w: X(w) ≤ x)是随极中什,则称负义在Q上的库实值 函数 X(w) 为随机变量 循环为X

(Kira智注:

对方物学人系统, ru. 的提级是非常存电的对论改改, 因为它把现实中的具体争物方数学中的抽象概念建 23 某种联系、使济入研究成为可能、考研定以了解明了, 至夕夏知道: X 是变量, 在家数域上取值)

三插近随机变量分布的三个函数

一一一个概念一定设得一十二净,否则仍近概况了 都远不进罗对,迈不进罗

(1) /方和函数 Fixi 【老大! 妮基! 所有随顺复义都有! ▶ 夜文: 没义是随机变量,x是信息实数,初函数 Fixi= P{X=x} (x ∈ R为随机变量X的分布函数

(b) king 强调: F(x) 是关于 x 的函数, 不是 X, x 卑取逐 (-10, +10), 所以在许何情况下, 写下(x)="都要写逐 (-10, +10)上的下(x) 不完整!,

► 性质 (① F(x) 鲜调 和 II f D≤ F(x) ≤ 1 (充壤条件) {② F(x) 右连续, 限P Vx. e.R. 有茶x+ F(x)=F(x.+0)=F(x.) ② F(-10)= 茶和 F(x)=0, F(+10)= 茶和 F(x)=1

▶注:{0 下以本顶是概率,自然有0≤下以≤1 包满足上述性顶000的下以必是某随机变量的分布函数。

12)分布律户【仅限高散型随机变量X】

▶ 定义: p通机设量X只可能和有限个成页到个值x, x2, … 则和<u>X为高和型P值加变量</u>, 称 Pi= P{X=xi}, i=1,2,… 为X的分布结。

 \overrightarrow{A} \overrightarrow{A}

的那种家族 fix) 【仅限连续型riv X】

▶ 成义·如果随机变量 X 的分析函数可以表示为 FLX) = 1- fits dt (xell) 其中f以是非负可张函数。则称<u>X为直债型随顶线</u> 环f以为X的概率原度函数·记为X~f(x)

口注意连续型随机变量的定义,是先写的 (ij Kira 提醒: Fix)= 了流 fth dr. ◎ 你办有看锗:"X~fixi","Xn Fixi"都对)

14) 性质地较(两俱)

》第25维州顶(放龙纪)

(元) 10 Pk 20, k=1,2,11 (元) 12 Pk = 1 (元) 1

力 fx)是某几人的概率愿度的充带条件: f(x)20且 [thef(x)d)

· BMOM •

▶ 陽西組丹頂(放-起记)

三 常用分布

- ▶ ② 二項分析 X~ B(n)p)

 P{X=k}= Cnkpkg^nk (k=0,1,..., n; 0<p<1, f=1-p)

 排展: ル東伯勢別京阪两ケ信集 A 和月, A安は双数 X。
- ►③ 几何分布(ち几何元头,更像"终估者分布") P{X=k}=8k-1p (K=0,1,…,0<p+1,5=1-p) 指象: 值努剂试验,真欢成功时试验以验义 "首中即停止"

准息:0 1/14年品,M什次品,162 n次不较回抽样, 其中次品数 X. 或0 N4年品,M4次品,抽入140%查,其中次品数X

▼日泊か分布 X~P(入) (联想,"遊局场") P{X=k} = 入k e-入 (k=0,1,2,…, h; 入>0)

消暑: 某场合其时间段内,派分断的废品来流介数义

一大小A总话: 0-田记住表达式和对应消展,不必难,自动推 客分标准写法,她加左边抬了一块是 "P{X=K}=" 客独之自主地写出来!!! 左边会写不边知序写!!!

母特别他, 泊松健: X~BLINP),当几每大户较小网, X近似版从于泊松分和P(NP) 即P(X=k)=Chpk (1-p)***≈ (np)*emp (一即大阵本,小贼呼, 便于汀箅复杂>须分布)

亚连续型r.v. 库用分布 (以fxx论公)

 $X \sim f(x) = \begin{cases} \overline{b-a}, acx < b \\ 0, 其他 \end{cases}$

$$\vec{R} = \begin{cases}
\lambda \cdot a, \quad \chi \cdot a \\
\frac{x-a}{b-a}, \quad \alpha \in \chi < b
\end{cases}$$

新手同学-者到"X服从ETEI(a.b)上的期间合作" 之刻情住,不知该如何看到评,大为帐户地写吗:

$$X \sim f(x) = \begin{cases} \frac{1}{b-a}, a < x < b \end{cases}$$
 , 其他.

▶ ⑦指数分布 X~ E(M)

$$X \sim f(x) = \begin{cases} Ae^{-\lambda x}, & x>0 \\ 0, & x \leq 0 \end{cases}$$

成给纸

$$X \sim F(x) = \begin{cases} 1 - e^{-\lambda x}, & x > 0 \end{cases}$$

しょりの

▶ ® 正ならか X~NLM,5~)

... 1)

[3] [1] (-D< x<+0)

[最重要]

hfix)

· Kim版信:

① 最低要求:从上3种分布的于(x)安认识,能默写. F(x)安认识,可配据于(x)算你来(除疏研)

- O 均用分布和指输分布的 fix, 和 fix) 均分段, 写对移
- 图均匀分布的于拟闭肥的,指数分布和正态分布公式死背. 老局样一样就行, 早点站行更好(不难! 不准! 不住!)
- ④ 正态分种的各种性质非常重要,育座且好用里

女降库报纸: 正态分布常用语论 没:1.1 X~N(4.0)

则(ii 棉碎愿度曲弦关于X=从对称,当X<从单境. X>从时与减,在X=从处取最太值、以Y=o为4平 渐近线·

- · (ii) Z= X-6~ N(011) (林)村也, 118全)
- ▲ (iii) 标准正态分布的分布函数用重(x)意本, 有重10)= 主, 重(-x)= 1-重(x)

(iv) 对于 X~N(p,5),有

* Flx) = P(X=x) = P(x-1)

- $P\{a < X < b\} = \mathcal{Q}(\frac{b-h}{\sigma}) \mathcal{Q}(\frac{a-h}{\sigma})$
- · axtb ~ Nlaptb, a'5") (ato)

*** (v) 135" 原川 (端水!) (対外駆目)
P(ルーロイX = ル+ロ) = 68.37. 1tm
P(ルーングイX = ル+2の) = 95.47.

P(11-36 < X < 11+36) = 99.7%

property, property,

-26

正态分布在(从一36,从+36了外的和直视率不到0.3%。几乎不可能省生,对为小规律事件。

(i) Kira说明: 尽量把 68.3%, 95.4%, 99.7% 这种物准下来 指示了设筑彩,对大小有相风低,就行。 马上神谷- 道集题 办

一類[2013 数-三 7題 —— 没 X, X, X, 是種加度量,且X,~ N(v)), X~N(v,2), X, N(v,2), X, N

O kin 带仍识:

(去年12.14左右时,很多同学在网上问我这道题,我对这道题本来停无印象,因为觉得太简单)……从读题到出答案20秒足够)

[BM] 2对于X,是2个5,对于X,是1个6,对于X,是不到1个5,所以自然有p,>p,>p,>p,*
(海f1x) 专X轴包围面形配可以3)

解贬虚路

● 常见题型如下:

(一)分种律、分种函数,形对强度的机态及性质(如: 知断一个的数是否创作为分种函数/律/概率家族已知是分种函数/律/概率家族,或未知参数)

2、分布律与分布函数的关系与转换

三. 服海客後多分布函数的关系与转换

四.八个席阳分种相关问题

五.一般类型随机变量的机率分布

人六一作随机变量函数的分析 Y=g(X)

日分种排,分布函数,服李惠强的相外表及附近

小别断了函数是否介于为分介律/已知是分布律求办多数 [意路] Do 充安条件,即及20,至凡二

确定7的值

12. 别断是否为分布函数/已知是分布函数水井孙参数 [虚路] P21充要条件、依次考虑、"鲜调不成 ②社定数域在连续。)在0-1之间,F(-10)=0、F(410)=1

一度下以与了2(x)分别为随机受量X,与X,和分布函数, 为限下(x)=a下(x)-b下(x)-定复某两机变量的分布函数, 加干到站庭外组数值中加取 () (A) a=3/5,b=-2/5 (B) a=3/3.b=2/3 (C) a=-1/2,b=3/2 (D) a=1/2,b=-3/2

[分析](下以提示"判下以展合为分种函数"客①包⑤都验, "求外》多数"分类选择题,挑着处 下(-10)=0、F(100)=1 最好风

由于(+100)=1,有1=分和于(x)=a公式和于(x)-b公和于(x) = a-b 延(x) 及 补礼其它性质的经证:

OF(x1) - F(x1) = }[F1(x2)-F1(x1)]+}[F1(x2)-F1(x1)]>0

日因为下(x),万(x)均加连债,所以下(x)加连债

►3. 求碱率密度中的水沟参数 [底路] Bi 充安各件、化次考微:① f(x) >0 ② ∫-10 f(x) dx =1

 $f(x) = \begin{cases} a f(x) & x \leq 0 \\ b f(x) & x \neq 0 \end{cases}$ (aso. 6>0) 力概率感度,则ab应满足 (A) 2 a+3 b = 4 (B) 3 a+2 b = 4 (C) a+b=1 (D) a+b=2 $1 = \int_{-\infty}^{+\infty} f(x) dx = a \int_{-\infty}^{0} f(x) dx + b \int_{0}^{+\infty} f(x) dx$ = ±a+4b 热(A). 可注: 0 [fux)dx=是因为杨维亚农分布 旅師 cx fc ② 「たったいのなか[-ル3]上的切りか 个机物 海国水阳水 ★四步和的话会为其是脑补图象 的能力, 生和年应该是心算结果. ▶4. 分种函数 Fix) 的概念,游玩馆解 - 181/2 -设随和受量X的分布运勤为Fixi,用其毛示了刘旭游。 us PlacX=b]; is placX<b] is, placX=b] 艄 用为印函数质×Fix=P[X=x]MBP[X=a]=Fia)-Fia-0) 得 P[a<X=b]=P((X=b)-1X=a)]=P(X=b)-P(X=a)=F(b)-F(a) p { a < X < b } = Fib) - Fia) - p { X = b } = Flb)- Fla; -[Flb) - Flb-0)] = Flb-0)-FlA) P{a=X=b}= F(b)-F(a) + P{X=a} = FLb)-Fla) +[Fla)-Fla-o)] · KM 强调: 知何概念中的 P{X sx · BMDM ·

国 分布得与分布函数的关系及转换

►已知分布得求分布函数/B知分布函数水分布得。 [秦路]{①已知分布律P[X=Xk]=Pk(k=1/2,…)。

则X的分布函数F(X)= xix px (拉大拐克下面流) ②已知于以,且仅在X=Xx有别的好间翻流。

(超以此的高報型)则X取Xx,且PfX=Xxj=F(Xx)-开(xxo)

一角例题便明日3

高智型随机变量X~ (0.5 0.3 0.1), 求分种函数Tw) 为1下公下(x)的图象

[AT]

(Ukin的所 Fix)取遍(-1-,710) 松当x射(流度物 都有意义,不好的个小真跳,取入二八8.

 $F(1.8) = P\{x \le 1.8\} = P\{x < 1\} + P\{x = 1\} + P\{x = 1\} + P\{x \le 1.8\} = 0.5$

解:【分段】→【北大行号】

0 当X<1 附, Tix1=0

回当1=x<2时, F(x)=>{x=1}=0.5

の当zをxら时、Fix)=p{x=1]+p{x=2}=0.8

勇当x33日, F(x)=P{X∈x}=P(X=1)+p(X=1)+p(X=3)=1

旗上,从分分和函数

$$F(x) = p\{X \neq x\} = \begin{cases} 0, & x < 1 \\ 0.5, & 1 \le x < 1 \\ 0.8, & 2 \le x < 3 \end{cases}$$

(已kina猪洞:

412 分段展海角分布得 X =1,23 及; A> X 分段区间左闭分升

13> 时刻的得大招号, 第一行永远是 o .最而一行永远是1 .了到职当 办图室面逸(-10,710), 九京心品为房心息. 设随加度量义的分布函数为 ,求X的分布有 部:观察F(X)为阶梯函数, X 社》高初时随机这量、10度 局外入的和值为一1.0.1,且有一与分段点完全间 P[x=0] = F(0) F(0-0) = 0.6-0-1 = 0-5 P{x=1}=f117-f11-01=1-016=014 所以分布律力 X~ (a) or ay) (Kira 看注: 中红三山于以一下以一下以一)、鸡咕?一点不净。 前提是你在各般限计算没行题,不治什么 写这个大子座行的流水,了巷连体理一样 ⊙把限限.售报好3.产達起来、以前将此仍 的混合型加加分布面数瓶的不动作了。 房间2.再吃透り直歇2010数三三了呢?

三种学院节与分种的数的关系及转换

[詹路】 0 概率感度 fix)是冷段函数时,分段函数Fix)安冷段 一般地港连续型下以入的城亭家设力

则义的分布函数为

$$f(x) = \begin{cases} \int_{0}^{x} g(t) dt & a \in x \in b \\ 1 & x > b \end{cases}$$

(日上700番注·直接地上3式料在卷之上、较为得于6净) 清4架4,100式一出题目2路做你来3.)

(D)分种函数 Fix) 道信且除去了别点的了号,则后为 道法型 r.v.的合种函数, 非导即得顶陷华底度 fun. (*外别的大约证有意义条件下到的意动原,因此分布 函数不能唯一神免机中强度,但相对强度色 明-确定分种函数。)

没连债型随加安量X的机避免复为

$$f(x) = \begin{cases} \frac{2}{\pi \sqrt{1-x^2}}, & o < x < 1 \\ \frac{1}{\sqrt{1-x^2}}, & \frac{1}{\sqrt{1-x^2}} \end{cases}$$

形:
$$\sqrt{2}$$
 ($\sqrt{2}$) $\sqrt{2}$ ($\sqrt{2}$) $\sqrt{2}$

(K) K) 不确注:以原始公式为骨,于净清较里计算气本书不

负责解决,请自行访合《Kira高勘教礼压哄》>大王心王器 解决、weibo@kira言而信、烟宝店的kira考许图映铺) (一以上が防防人造水印ンの)全「消支持信が成心」

没连债型随机变量人的分布函数为 $F(x) = \begin{cases} 0 & , x < -\alpha \\ \frac{1}{2} + \frac{1}{\pi} \arcsin \frac{x}{\alpha} & , -\alpha \le x < \alpha \end{cases}$ 解: $f(x) = \begin{cases} F(x), & -a < x < a \\ 0, & \text{fite} \end{cases}$ $= \begin{cases} \pi(a-x), & -a < x < a \\ 0, & \text{fite} \end{cases}$, a = X

国入厅库间分布相关门题 该部分问题明- 对据,在于儒神解放验准果,会自己到代 一个对了到低,本质上还是利用户,Fixx,fixx.的成品

加州 似级题、各名考书在此部分有大量例题,可多多 练习, 我只挑选自己觉得好的个别频作为例频

(华高不作为身独出题重乱)

- 真颗子 2006 数- = 14. ____ 正态分种 没随机复量X服从正态分和N(y,50%),随机变量Y 那从正态分析从(1/2,55),且P{1X-1/21}>P{1Y-1/21}

· BMDM ·

Myrita () (A) 51<52 (B) 5.762 (C) M.< M. (D) MI>M.

解:(一) 界断脉准化,利用的准亚农分介西数片制度)

曲 $P[1x-\mu_1(x)] > P[1y-\mu_1(x)]$ 有 $P[\frac{1x-\mu_1}{51}(x)] > P[\frac{1y-\mu_1}{52}(x)]$ ⇒ $P[(x, \frac{x-\mu_1}{51}(x))] > P[(x, \frac{y-\mu_2}{52}(x))]$ ⇒ $P[(x, \frac{x-\mu_1}{52}(x))] > P[(x, \frac{y-\mu_2}{52}(x))]$ Bo(x) 節間性、 おっま ⇒ 5(5)

(一) 阳 疏布阵闸钻电,必须闭得排降锅. 你颠颠取车侧去随便玩的地步~)

 $\frac{1}{1} = \frac{P[Y>a+1|Y>a]}{P[Y>a+1|Y>a]} = \frac{P[Y>a+1|Y>a]}{P[Y>a]} = \frac{P[Y>a+1,Y>a]}{P[Y>a]} =$

加頂 一首

(以上俯题过程每一步都可以不之前找到下在抗, 没有新成面,始于五批马子)(为何化"台"力"见

没有新东西、柏干车就是了)1岁图化"兰"力"少"及图1

没X~E(x),当s,t>o时,P{X>s+t1X>t}=P{X>s}

故存题到直接证解: P { Y ≤ a+1 | Y > a } = 1 - P { Y > a + 1 | Y > a } = 1 - P { Y > 1 } = 1 - e A

一道移助程解泊松分布,熟悉泊松分布的分布得, 假的佛师的的首, 自我的情况的计算能力的题。一句取的能打干失)

解:

根本語 $= e^{-\lambda} \sum_{n=m}^{\infty} C_n^m p^m (1-p)^{n-m} \underline{\lambda}_n^n = \frac{(\lambda p)^m}{m!} e^{-\lambda} \sum_{n=m}^{\infty} \frac{[(\lambda p)\lambda]^{n-m}}{m!} e^{-\lambda} e^{-(\lambda p)^m} e^{-(\lambda$

可见,一日内到过该局位的顾客中的债人数义服从考数为2P的泊水分布。 同难,下服从考数为入(1-p)的泊松分布。

(i) K/7,看注: 先看情再的推一题,排席爽里实现不会就事)

▶ - 通帮助摘腾串联并联 指数分布, 管合求 m;ax (xi) 和 min [xi]的题 (简单)

1311 8

一电路特有三个同种电气元件,其以下状态相至独立, 且无双降工作时间那从参数为入20的指数分布。 当于元行和元政降工于时,改路工作状态业体,成水电路正常工作时间了的城华分布石(t)

没缘;了元件正常出了时间为Xi(1=1,231,则Xi~Fix)= {1-e-Xi,X>0 保证为来的

写Fw为求min, max

那何上,由题设, T= Min {X,, X, X, } の当teo, Git)= P[Tst]=0

> 0当t70, Glt)=P[Tet]=1-P[T>t] = 1- P{min{x1, x2, X3} >t} = 1-P(x,>t, X,>t, X,>t) = 1- P(x,>t) P(x,>t) P(x,>t) = 1-e-+xt 团此

·并联(全环3对修4): t>o时. Git)= P{T5t}= P{max{x...x..Xs} st} = > { X1 st , X st , X1 st] = (1-p-ht)3

₩ 10 47 有 本 有 发 说 ????!!

不管是PSS还是例8.都喜欢把P{X4x}化为1-P{X>x} 团的指数分布很有特色、P{Xxx}=1-F(x)=e-xx,好求源就 国以此事

►一通帮助提高都管款着.按解泊机分布,管仓无离散和 进侵间建之联系的题(开发思维)
一例了一个现象看在1400长度为长期的7月内发生故障的一个数人件,服从参数为入长的泊州分布。
(1) 求相继的规两双双降之间时间用隔了的分布。 (1)设备在无效降功量的所有次下,再无效降功量(6)的
[分析] 它时间间陷了是进浪型随机边是,而双数人时,
T (N/t)=0]: t时间内元政降发生 [T>t]: 为双政阵的现在对所为大于
ラタイト Nit)=0 か (7>t) 当1
1時: 「Flt) = P{Tst}
$\frac{A}{A}F(t) = P\{7 \le t\} = 1 - P\{7 > t\} = 1 - P\{N(t) = 0\} = 1 - e^{-\lambda t}, t > 0$
「足服从参数为入的指数分和。 (2) P{T216+8 T>8} = <u>P{T>24}</u> = <u>e-242</u> P{T>8}
= e-162 (= P{7>16} Tirly +7) x

3一般类型随机变量的棉碎石布

□ 兼具有道信型和高韵型随和设量特征的 nv 对现的合作的 每求很高,一公就是说题 更没有概率愿售,只有分布函数更到月石道使更

一 真题 6 1997 11 ———— (重成区, 军见, 有份量!) 假设距批受量义的他对值不太于1, P{X=-1}=蒙, P{X=1}=苹, 松野什子(X<1}发生的祭仟下, X在(-1,1)内介子分区7月上取值的条件报验与该分区7月长度发让比, 试成 X阳分析的数 FLX).

[小机]

一大小森路(Step:把各件全部看到译成物馆符号,有有于我们心里可利用的工具。 有有于我们心里可利用的工具。 Step 2:T起那万年第一步于CXX=P(X4X) 再转5胎子,一步4把结果度每来 (PS 出现分份批准,一定客想到全身分配

FIX) = P{X = x} 0 x<-1 by, Fix)=0 0 x>1 by, Fix)=1

① ① 印记报 X 绝对值 不太子,判断,"X > 1"因为 应当侯, 死行石连误到不会睹

种族隔离?道不可不相为谋》

因当一EXCIM , Flx) = P{X = x} = P[x=+]+P[-1< X = x] = + P{-1< X = x, s) 全外前,精确 李勒"有用的巴西 = 8 + P{-1 < X < x, -1 < X < 1] + P{-1 < \x < x, -1 < \x < 1] 承洁儿式 = + P{-1< X < x1 -1 < X<1] P{-1 < X<1] ==+ (x = d+ · 11-8-4) (I+X) $\frac{1}{41} + \frac{1}{k} =$

$$\frac{3}{1}$$
, $\frac{1}{1}$, $\frac{5}{1}$, $\frac{5}{1}$, $\frac{5}{1}$, $\frac{5}{1}$

一一Km编注:P{-1<X≤x}我们不直接可知必须-约为 把西班在日外条件下,才能自信大胆的)

闭一维) 通机变量函数的分布 Y=g(X)

[孝路]

名高和型:根据X分布得和g(X)即可含含了的分布律 (送分)

- 道侯型了《确定了不为的区间、把下了(y)=0,下了(y)=)旗 对龙区7月93分出。(区7月7317年度时,1月月) 面的人大子又的两都国家, 了似水草树时 一定要个周确定)
 - O利用P{glX)éy},>将XMglXx中解的, 即得到 P{ X x y} 即得到为了y的函数.

目水号传 介约

似 闸 刹 浴 MA 乜

看:道有代表性的题

(为难度,其种)

设随和受量义的分布函数为

冷丫=1X+11,求随机变量Y的分布律

解: (分证同股2例4) 易知X的分布律》 X~(0,2 a,15 e,25 0,4) X为Y取值的对社关系》 x -2 -1 0 1

的计算的分布律》1~ (0.15 0.45 0.4)

其中P{Y=0}=P{X=-1}=0.15, P{Y=1}=P{(X=-2)LI(X=0)}=P{X=-2}+P{X=0}=0.45 P{Y=2]=1-P{Y=0}-P{Y=1}=0.4

解:(Step: 响度Y的B间, Y=X'和调起爆作图)

阿鸦子当义在区间(-1,2)上和值时, 一面的剧,个在区间(0,4)上和值。

Fy (y) = P{Y=y}=P{X=y}

①当yco, Fr(1) =0

● 当y>4·Fy(y)=1 (step>. 将 x M g(x)中解公)

③ 0 = y < 1 円, Fr(y) = P (X=y) = P[-15 + X = 15] = Jo fxixidx 这特就到以什么 一项 TR题条件3. = 419 · DEYCI 阿布印刷 区间(一万,万)积份 14 y 4 pg, Fry) = P{-16 x 6 p} = 1, \$ qx + 1, \$ \$ qx ·阿159<4时, = ++ +19 0万11则邪分难值是 徐上,个的历种函数为 yれたな何りなん 悪聲幅!!! ·微调定x战: $f_{Y}(y) = \begin{cases} \frac{3}{8\pi y}, & 0 < y < 1 \\ \frac{1}{6\pi x}, & 1 \leq y < 4 \end{cases}$ 城奔窜渺 取值配流 在河桥附 但外的分母种 j kira进阶:当Y=gIXI为单调函数用页函数的在时,可转

将顶面物计入下以中求得了的分布函数

明y=g(x) {单减且反函数存在,有于(y)=P{X=g*(y)}=Fx(g*(y)) 单成且反函数存在,有于(y)=P{X>g*(y)}=1-Fx(g*(y))

以干题为例,我们用两种的法解纸片。引以取分种、

真题7 200311——没随办受量X的概率废度为f(x)={3圾,先对+E1,8]。,其他 F(x)是X的分布函数,求随机变量Y=F(X)的分布函数 码:
<记-7(P40 & 例1) 经实方法。)

确定Y不 设 Y=FLX)的分布函数为 Fy Ly), 当X在区下同C1.8)上的的区间 取值时, Y在巴间 [0,1)上取值.

Fy(y) & P{Y=y} = P{F(x)=y}

の y<0时, Fyly)=0. @ 1≤y时, Fyly1=1

页解X="10 当o<y<1, Fx(y)=P{放-1≤y}=P{X=1y+1)}} = F[(y+1)3] = 3 [(y+1)3 -1= y

(is kira 感叹: 比较上面的步骤和例11, 讲真赋低吧 奥利题的全层题跟复制料贴似的。)

(流)
$$y = F(x)$$
 的页面的 $y < 0$ $y < 0$

F(x)是車帽函数(由P42下方公式)

$$F_{Y}(y) = F_{X}(g^{-1}(y)) = \begin{cases} 0 & , & y < 0 \\ \sqrt{(Hy)^{3}} - 1 & , & 0 \le y < 1 \\ 1 & , & 1 \le y \\ 0 & , & y < 0 \\ y & , & 0 \le y < 1 \\ 1 & , & 1 \le y \end{cases}$$

() Kina维注:反函数返用熟陈的间谍孤乱一次加 的基础上可以记忆一下此法. 非降欣息

★ in 带仍杀伐汉断:

型如.已知哪些家俊 fx(x), Y=g(x),求Y的树率感度. 超这种题仍展路是了fxxx季Fxxx季Fxyx季fxyx? 可以,但太麻服了》我:直接找大以和打约的关系。

▶ 済例:

一份12 (Ster)不多, 习惯性知年, Step2放于) 设随机变量 X~U(-1,2), 求 Y=1×1的对战率强度 解: 由X~U(-1,2),有 「x(x) = 10, 其他

府庭y 当 x 2 (-1,2) 取値时, Y在 Co,2) 取値 的区间 Fr(y) = P{1×1×y}= P{-y×××y}= 下(y)-ト(-y)

* fxiy)= Fx'y)= Fx'y) - Fx'1-y)= fxiy)+ fxby)

- の当のくyと1时、friy)=ま+まこき
- の当にycz阿、try)=ま+ロ=ま
- 3 当 y < o 或 y > 2 M, fr (y) = 0.

(一) KMA在注:分段原理当例11一毛-样!)

最后我们回到Pg Kira HE我的问题

- (1. 双连读型 r.v.成之,对离积型 r.v.不一度,见月20例2. 3. 不一度 L连读型 r.v.一定),一定年润。 4. 不一定连读,但一定社(一四, 十四)可称 5. 陷 6. 是的。 7. 从下(x)箱子。 8. 阳6. 9. 阳6-27。

第三年多住了随机变量及其分布

P47 "kira 排战"先问自己一题 跨库社 P84、默后明显不会息明吗~

| Beppe. (招多加和独现的东西,建议排海过)
| P47 kin 前言
| P48-P13 知识传柯 (注意我标的"先本""后报")
| P34 题型扫一眼
| 在合P11 阅读P57
| P36 中 问该思读 何3+kin 帮付
| P38 kin 看注
| P34 例 6 P3 kin 看注
| P34 例 6 P3 kin 看注
| P38 kin 再讲解 苯介以为查
| ● P32-P3 是=91×Y3 分析函数法 +例 9
| ● P34-P37 看积从式 大讲解. "看身"思维 P35
| P30-P30 都3有一下 ~

· Kira 動意:

多准随机变量分布田年必为一道大题,其中 求尽= g(X. T)的分布函数下z(2)是意明系。LE多同学 找我球拟),与外(X,Y)两分量间独立性,及不独立时 的条件机学分中也是高频考点。

在季年我将带体航海各种概念及震路,但请你

K问自己2个问题:

②我第二年吃透3吗?甚乱第一年吃透3吗? ②我高勤二年旅分其的障吗?求得熟练吗? 图都今面吗?能读情圈是什么意思吗?

我写本年时,默认以上两个廖勇是肯定的,1910-17 问题答案是论的,则你学本并将报不自信且脏了 拥城, 汀煤门题拌《南勘葵龙豆罗》, 概念 问题.好好过前两年

Kira FIL ST

人二维连传型随机变量(8.1)的:

- o 联合分布函数式中 X, Y 能否同时的视了写取值范围印度?
- ○边缘分布函数式中x,y能各同时出现?写和值范围呢?
- 图 教行分种函数式中X少能各国的出现? B和值花围水?
- 2. 除用定义外, 别义, Y加工 °能否闭合不断数 Fx(x)Fy(y)=F(x,y)对bx,y成之? 能各同概字流度 fxix) fxiy) = f(x,y) xxyxxx?
- 3. 卷张公式本 F2(3) 医心玩了我多医心列? 区间医心划? 4. 我应先我的李强度还是分种函数?

- 5. 阳历布函数法水下2127,您以升移?您以划区间了
- 6. 扁散型 riv 与哲模型 riv. 之和互能是连模型 riv.吗?
- 7. 有限了独设面机设量最大值/最小值分布低水水?

8 Kira 希望你养教的好习惯

- 、学会写标准的双型比的步骤(有到于把题做了 (含永乐的《真题解析》步骤非常标准,我将以定 为参照来写例题步骤)
- 2. 抱住最最基本的概念和定义不推进,并呈现于 卷侧上
- 3.16旧随于分段,智大括号户讨论区间里

身如阳春又以海岸沿 (对象: >作 n.v. (X, Y))

D 时三种分布 (联合布 研究) 内容 (冷布函数) 这像分布 研究) 内容 (高韵型分布律) 在该型的布) 这该型形学领

一定们之间的关系大家双看打我们来了一个拉的脏器, 非常清楚》此处我看重团还具体概念和打造, 然后带大家过题型震路.

日 联合分布

设二维r.v.(X,Y),则二元函数F(x,y)=P{X≤x,Y≤y}(-D<X,ycm) 分为二作产近加受量(x,Y)的(联合)分布函数

→ 作版: 0 Tixy) 关于x 神外相争调不成 (类比一作) ③ 0 ← Tixxy を1, 且国庭x y时, 有 Tix, 如)=0. Tim, y)=1 $F(-\infty, -\infty) = 0$. $F(+\infty, +\infty) = 1$

③ Fixiyi 布连属, 即Fix+o.yi=Fix,yi, Fix, y+o)=Fix,yi

田 非なける、対 bxicxx, y,cyx有 p{xicXをxx, y,cYex,} = f(x,, y,) - F(x,, y,) - F(x,, y,) + F(x,, y,)

高和型 { 联合分布律 P{X=Xi, Y=Yi]=约(河=1)**) { 机规则? 我合为有这场 Funy)=P[Xex, Yey]= xxx yxx Pi 违项型 \ 联合分布函数 F(x,y)= P(X∈x,Y∈y)= [x]~ f(u,v) dudu 联合相对强度 f(x,y) 引流性; f(x,y) >> 0
从范性; f(x,y) dxdy=1
在f(x,y) 西漠底处有 3 f(x,y) = f(x,y)

U Kira 维注:

①以上是成分类程准本年内房的信啊,所有压的成义入区值 信治抗死, 做题有接套, 万受不畅其余.

②加多边缘像好的面的,我从来直现解解一下这些了概念:

一联合:联合:联合分布函数FLX:y)指[X=x3种[Y=y]]可附近的概率 了边缘: 只研究其中一个设量如下(x)我们只研究义,排放开下

条件:国及其中一个资量,研究另个资量在此条件下的分布。如因这个一次(即个不受了,严格写于一个常数),此时

求入的分布

▶月主意、对于fixy、我们有P{(x,Y) Eq}= ||fixyidxdy 这是形 随机变量函数(所谓下218))时的重要论形。如P[对了]=[[和》如如 (科队) -49-· BM**om ·**

(巴) 解题都处有依据的 尽事的罪,忠为施廷精强, 结界都是自然而然得来的。)

巨边参合和(在湘东河、但边外村顶5个作河、闽初第二年) 大了 X 知色缘分析函数: TX(x)= F(x,+100)= 3++-- F(x,y) 关于Y的边域的布函数: Friy,=Fino,y)=Gin Fixiyi

松说!4

"对谁不能

一Kira看注:

▲人物大题时, 凭求fxxx, fxyx, 再求Fx(xx), 开以, 一步多年,有污!有污!有污!

2. 已知 Tixy,我 fx (x)时, 我准不积明, 张安年还是城市 底度、不是变成一维、再批下以时,是秋x(本质是 L- 草内笼), 耐的环夏分种函数。

国条件分布

(不准,会说是格)

教中分布律 X=x 条件下, Y的P{Y=y:|X=x:}= Pin (j=1:2*)
Y=y: 科干, X的P{X=x:|Y=y:}= Pil (i=1:1*)

各件分种函数于YIX(YIX)=表,P[Y=X; X=X;] (和一作一样算)[FX;Y(X)X;)=表。p[X=X; Y=X;]

道法型

◆ Kira点被

▲ ② 二倍 5 - 作社或解顺序上有个非常大的区别: (拍照板一倍我们通常跟据证义下LX)= PEX·X) 先示分布再求强度。但二倍、下3 了我们少阅定义3 ,未边缘,求条件。都从闭税净密度环球战斗密度,再形分得分布函数。

★ 务种负义式, 关系式都用概率强度设的, 显然用底度更吃得开

②Fxx(y)x)这个式3很多人麻木,Y,x这两个写田完全不同! 首先,这是一元函数,Y是唯一变量,X是死的,X死分! 事实上, 本质上X只是介佛都而已,本质上可以写在Fxix(y)x),Fxix(y)x? 四湖北北

港对任意的原数 x,y,在p{x=x,Y=y}=P{X=x}P{Y=y}, 预随机受量X5Y相子独立。

高物型 { x 与 Y 相面独立 ⇔ F(x,y)= Fx(x,Fy(y), +x,y).

(通信型 { X 与 Y 相面独立 ⇔ f(x,y)= fx(x) fy(y), +x,y.

UKIM 看往:

- ① 可划独之时,分布律,分布函数,协议率原度和能闭,初心大服用 ② 时间离散型随机设量 (x, Y),光默认不独立并找
 - 万例,只要能泽出一个万例即了不独立;对于局部型X和近接型厂,可利用定义式、即P{X=Xi,Y=y}=P{X=X}P[Y=y]

来判别,加光泽及例(配合适助xi和y);对于直层型(xi, y) 化次承出在某一包域的f(x, y),fx(x),fx(y)用进分别的(Bo,则

图下的:

- 鸣牧型流科来xi, y; 仅 P(X=xi, Y=xi) + P(X=xi) P(Y=Xi) MAM
- -连原型:存在某时成D,仅当x,y eD时,f(x,y)+大(x,f,y)

13 二倍均同分布(合品推购设列式)

称LX.Y)和英国电域D上服从均同分布,老(X,Y)的加速原设力 f(X,Y)={standary)eD 注意: 以作均同分析的边缘分析和必是均同分析,与区域形成有关如图域的均同分析二位随机变量, 其边缘分布均不服从均匀分布

开二个工态分布

か算(x, Y) 的n政策度为 $f(x,y) = \frac{1}{2\pi\sigma_0\sigma_0\sqrt{1-\rho^2}} \exp\left\{-\frac{1}{2(1-\rho^2)}\left[\frac{(x-\mu_0)^2}{\sigma_0^2} - \frac{(x-\mu_0)(x-\mu_0)}{\sigma_0\sigma_0} + \frac{(y-\mu_0)^2}{\sigma_0\sigma_0}\right]\right\}$ 其中 μ_0 , μ_0 , σ_0 , σ_0 , ρ 为席数, σ_0 , σ_0 ,

一 km 支援: fixx)多角心肥的以说,尽量找6规律背下来。 对不下就谓3,12留以识(X,Y)~从(M, M,5ご6ごp) 出题以考除X.Y独心时件预为主(p=0), 审知道,二作业态分布是很强的条件。

当以、イン~ ルイル、か、か、か、か、か、カ、角、

- ① X~N(µ,0,3), Y~N(µ>,03), P*X等Y的相关永敬
- 3 X.Y的条件分布都是亚森分布
 - 1 ax+bY (ato x b to) HBM ICOSTP
- ★图 X5 Y独立 台 X5 Y 不相关。即 P=0

见二的西瓜安是西娄沙布 Z=g(X,Y)

(高有型 P[2=3+]=gk,y;)=3+ Pi (k=1,2,11)

(即 P[2=34]是函数值为3+的(x(Y))和自从3对社协约2种)

(连读型 下2(x)= P[91x(Y)=3x]= ||f(x,y) dx dy

角头旋尾路/(各解法柏架况种录P6-P10)

• 佛见题型依以如下:

- 一、判别是否力推随和受量联合分布函数/分布空/机率感
 - 二、水二低随加度量联合分布的并知者的
 - 三、水湖地和空量的联合的布函数(对视:如何分段反限)
 - 四、水鸣的型联合合布律
 - 豆、已知其分分布, 水边缘分布(题目设计小联合函数, 就通接用该面数,就通接
 - 方、已知联合分布,求条件分布(求完各件分布是达式再代随 "特别地"")
 - 上已和边缘。中导中等相关条件,求联合分和、知识一)
 - 八、独创为划制
 - 九 随加设量函数的规律分析
 - 十. 有限了相心独立随机受量最大值专最不值的概率分析

日利到是各步、维随机设量联合分布函数/分布率/根码学院是[东路]の一般情况下,划下(x,y)是各乡集(x,Y)分析函数,7页

P48 性质,合种病及即是,有一条不满及即否。 包划是否心鬼智性 riv 分种律:老底,非负性 Pij 20,

和规范性于于175-1 同的复数印息

当判是否为连续型ru、联合概率偏度考虑,形面性于(x,y)为。
和规范性 Stoftx f(x,y)dxdy=1、77时其强即是

(in kira角注: 洛瑟型军独址勘计算所项且否义不大,通常以题型目动方案并作为大题第一问(送句))

三水·11、随加受量联合/动的水和参数。 [套路] 问题型一。

已知了通和事件 {x=0} \$ {x+1=1}相致效之, bij a=?, b=?

解:

由和記書件 の4+ α + b+ α 1 = 1 ⇒ α +b = α . D $P\{X=\alpha\} = P\{X=\alpha, Y=0\} + P\{X=\alpha, Y=1\} = D.4+ \alpha$ $P\{X+Y=1\} = P\{X=\alpha, Y=1\} + P\{X=1, Y=\alpha\} = \alpha+b$ 由为味之、 $P\{X=\alpha, X+Y=1\} = P\{X=\alpha, Y=1\} = \alpha=1\alpha.4+\alpha)(\alpha+b)$ 科之の② ⇒ α = α 4, b = α 1

一大小面海注:对于基础不不好的同学,我再为了这个意的 阿托和如何推解这些式马、第2分户(X=0)就是 把的有 X=0 的机构如起床(边缘分),即第一分 014+6; 第2分录 P{X+Y=1},即找全所有X+Y=1 的格了,显然 X=0,Y=1 或 X=1,Y=0;第四分 P{X=0, X+Y=1],每件同时满及 X=0, X+Y=1 层款和Y=1 同准,对于混合型变量升低,这样和解本质的思想和传输。1000年的 P{x+x43-1 X=13, 电合图成 P{x43-1 | X=13, 国内区域 P{x43-1 | X=13, 因为x 就是孤阳市成了.

例1 设二件随加度量(x, Y)的联合的阵魔该为 f(x,y)= { 0 , 11也 以研究常数 A () 末 P{x<1, Y<3}, P{X+Y<4} 的由联合概率隐覆的规范附有 1= fto ftx yo dxdy 利下个酒局都加度! = $A \int_{1}^{2} \int_{1}^{4} (6-x-y) dy = 8A$ 解得 A= 1/8 P{x<1, Y<3}= || f(x,y) dx dy $= \iint_{B \cap B} \frac{1}{8} (b-x-y) dx dy$ (男中内= {(x,y) | x<1, y<5] = $\frac{1}{8} \int_0^1 dx \int_{x}^{3} (6-x-y) dy = \frac{3}{8}$ P{X+Y<4} = | | f(x,y) dxdy = $\frac{1}{\sqrt{8}} \frac{1}{8} (6-x-y) dxdy$ 此约之市是南省 $= \frac{1}{8} \int_{0}^{2} dx \int_{2}^{4-x} (6-x-y) dy = \frac{2}{3}$

- ▶ ① 新, 开办强调本包不负表初二重形分计算, 找巨城, 到二重张分, 化界以积分, 计算方法专致为消息行解决 成寻求《Kinn尚数葵花宜典》的帮助(「大砂锅」之 不定於分交形分,「4A稿」之二重形分)
- ▶日 第四月我的计算步骤严格分三步走,考试着面下程 此三步即可:

Step·刘原始从于 P{(x,y)ED}= JJ f(x,y)如此少 (注海:此时积分区域 D是f(x)及地域, 被形面徵巡镇且只值 18 f(x,y), f(x,y)是包括正明的分和口棚部分的。图)

Step2. 抓取证据记录分,在这形分区域(区域找证了19年的开解)。(注意: 你和"知" 锁定"二羽和以为自己表达得十分精准》一 此处的 fix.y) 已被报及言(6-x-y) 了! 注意 =(6-x-y) 并不是 fix.y), 而是fix.y)的正规程的所以对社区域也是正照区域, 0 分钟扔掉 []])

- Step 3. 把烟路的> 享形历代写成准确的景众形分式 (这是二章部分底的, 找区域和创筑是事品、写公运与 一方面使于闲着人外分, 另一个面, 主要是为自己计算提供 便利, 这一步与对题其十五八九部已份出来了!"
- ③ 清化细弦合为的 (1) 7别误回,你到你会其中的道姆, 其对分济到胸解后读题型,加其一为为相公见所亦见的颜是十分有格知的. 术有分子,而道不受!

求:11年 随加多量的联合分布函数。(已知分析得/已知打xxx))

▶。岛都型 · 八下国过渡者起来夏东、但其实有调有条, 思想领金铜,有污)

· (考试不太考, 凌思.不太, 但思想, rt) 十分有价鉴额

[屈脐] 已知分种律: ①函图 把所有职值品点公开

②用眼报分段点画了口戏形,求属压的原

设二作随机设量(X,Y)的联合分布律力

求Lx,Yi的联合分布函数 Fix,Y)

解: 画成所有可能和值品(0,0),(1,0),(0,1),(1,1).

0当xco 或y<o时, F(x,y)=o;

①当0=x<1,y2,1月, F1xy,=P(x=0,Y=0)=P(X=0,Y=1)=共 1111(1,0)

@\$ x>1,0=y<107, f(x,y)=p[x=0,7=0]+p[x=1,7=0]=14

图当 X21, y21时, FLX,y)=1

用FIX,y)=P{X≤x,Y≤y},画在平面有有学的科

即是的(x,y)为顶点的了户沟积 (x,y) 我们处理该们题的分段1定形为 (x,y) 该广4分钟 (明影部分度1年的知值点的情况分几种

多い単位次、全面方底、四寸连接情形也是如此。
せい、X<0、我 Y<0时、アルサースによりでのは、アストンの点、アストンのである。
当の台×くし、のらy<1时、アル外へ、なりなが、なりも大下的10、0)点、アイス・ソコーコ、当の台×くし、Y>1时、アルルがなりは、10、0のか(0、1)、アイス・ソコーコ、な此失事、説は画園、熟练重表、)

连度型。(以高散型和B)讲解为设施铺垫) [考路] 已和城市家庭打xxxx

①画出亚枫和区域(这界线面清楚,阴影标清楚) 将在国分别或从了区域

●社留厅区域内利用及文Fixy)=「tost」。fist,此 (一一一注意:画亚城区域画的是区域,不安管fixy)函数式, 不安稳定厅行、被包括消视听》)

已知2伯克拉沙曼 (x, Y) 的联合城华隐陵为 f(x, y) = {2e-1x+y, 0<x<y 0 , 其他

录(x, Y) 的联合分布函数下(x, y)解, 面出证规区域如图.

图 当x<0,成y<0时,显然.开x,y)=0

图 当 0≤y≤x时,(如图中4). [在180日

O当 OSYSX时、山田国中A)、 ないの的 Fixiy)= jx ds jx fisit) ot + 原始の的

4 序数功闲 自己于无限=重构 Be Brave !

③当osxxy.伽图中B).有 $F(x,y) = \int_{-\infty}^{x} ds \int_{-\infty}^{y} f(s,t) dt = 2 \int_{0}^{x} e^{-s} ds \int_{s}^{y} e^{-t} dt$ = 1-20-y-e-x +2e-(x+y)

旗上.(x.Y) 钢联合分和函数力

$$F(x,y) = \begin{cases} 0 & , & x < 0 \text{ if } y < 0 \\ 1-2e^{-y} + e^{-y} & , & 0 \le y < x \\ 1-2e^{-y} - e^{-2x} + 2e^{-(x+y)}, & 0 \le x < y \end{cases}$$

亡 Kina非常化:

▶ ①如何耳信有后地为灰河沧?柳次:先画国再写它. 有无比地和法国家,移动了户外的,再限新国把 x.y的分段取值对上

PO FIX,y)= [Labs] La fisit) by (相针Ps) step 1) = 2 | x e-3 ds | x e-t dt (相当于1971 step2 和3) 最终订算二重和分的区域是扩大的面正现为区域专广的种格 的人类部分在这个公共区域上关于打火火车。南部分。

▶3 从确定顶点(x,x)面顺势画广D矩形,由思考一下乡约 A Wも O tyex, B H も D tx < y L 現す: 代特值).

DE NHUBUN OSXCY和OSYSX为划分了国为它们的区域 院分别天难之别 A (即 o s y s x) 确定的区域是三角形, t=y3间定,初5上限多边界 Y=X限制而变,所以积分限为「xxlstind (解析后积 t, 因为y确定(y初为常数), 从积5,且5从明到 t…

二重积分知识品到加上);B(即o=x·y)确定的已成是例 S=X确定,而t的部分下限受边界y=X限制,有tis.所以积分限 Ji de Ji ···· dt · 洁仓的国家和二重部分和识

拟松神解

回	球气	主境	的	型西加	变量) For	关合分析	伸
	وب ر	-3 8						

[金码] O兄确定(X,1)的可能取值

@再由题资确定(X,Y)和各个可能值的服件

+你艱玩趣的事客思想,

设导行A.B满及P(A)= 4, P(B|A)=P(A|B)=主, 令 X= {1, A64 }= {1, B62

洲来(x,γ)和联合分布律

解: 由颎没有

PLABI= PLAIP(BIA) = 8.

P(B) = P(AB) / P(AIB) = 4

(x, Y) 取值-月3税, 直接进入区销定磁率证书 -上寻先论旅程已知行 得出月了能易的话论」。

(x. 1)的习施和值点为 (0,01,(0.1),(1,0).(1,1))

P(X=0, Y=0) = P(AB) = P(AUB) = 1-P(AUB) = 1-P(A)-P(B)+P(AB)= \frac{5}{8}

P(X=0, Y=1) = P(AB) = P(B)-P(AB) = \frac{1}{8}

P(X=1, Y=0) = P(AB) = P(A)-P(AB) = \frac{1}{8}

P{ X=1, Y=1}= PLAB)= \$

切(x, Y)的联合分析建力

		127	
X	. 0	}	
0 .	3	8	
1	<u>8</u>	8	

口 Kira 舜注:

商散型研究服产的,一定要考虑实际虚义与 随和设置X. Y之间的联系 加X计算闭于A份出 如X计算闭于A份出 做X高额及下还读"真题又题的

事實思想目 🚣

园已知联合分布, 求边缘分布 题目给订加联合的数别直接用派函数求边缘、(最)(大) [秦路]()由联合分布函数、 天(X)= F(X, +10), F(Y)=F(+10, Y)

- ②由联合物理:Pi=于Pi (i=12m),Pi=于Pi (i=12m)
- ③用联合环游客度: fx(x)= fto f(x)y) dy, fr(y)= sto f(x,y) dx.

高敬型

一把自行自己的门边到进进就是边缘都得明之一

1	3/4W 18114	中的	分种得	<u>.</u>
		0	1	p{x=x;}
	0	4	8	<u>3</u>
	1	1/8	<u>]</u> 8	4
分布得,一	P{Y=Xi}	3	4	ı

(x的边缘分布得)

道侯型

一例「 设=作随机受量(X,Y)的联合规学院度为 f(x,y)=新电 (1+S)nxSiny, (-r<x,y,<tr>
求为1x和为于的边缘概学家员

女 U Kina 海注: ①本题中frixi不需多求, 思着fxixi 为写即可, 因为由fixiy), 为和少的地位完全相同

一方已知联合分布,求条件分布(B) @用着看)

(由10269+1的函数)+重电信论)

[底路] 0 已知联合布律,对于国定xi, 若 P{X=xi}>0,则社 X-xi条件下,Y的条件分种得为 $P\{Y=X; | X=x; \} = P\{X=x;, Y=y; \}$ (j=1,2,...)

> 间提入的各件分布得为 $P\{X=X_{i}|Y=y_{i}\}=\frac{P\{X=X_{i},Y=y_{i}\}}{P\{Y=Y=1\}}$ (0= 1,2,--)

(i kina 备注:以上公式不必死记,会看着你得表格 求都值即可, so easy

@已知联合服导感度,对于固定x, fx(x) 20.则化

X=x条1斗下,Y的条件概率像後为 $f_{\Gamma \mid X}(y \mid X) = \frac{f(X)}{f_{X}(X)}$ 同程,Y的条1斗分布律为 (在Y=>条件下) $f_{X\mid Y}(X\mid Y) = \frac{f(X)}{f_{Y}(Y)}$

(已King海往:该公式在XIX(Yx)的各件下使用, 1公放严格等于,PEX=11Ye号这种安闭交义

旅分来水,见例6)

高物型

例如 P62分布律表格, 求在 X20的条件下, Y和条件分析律,

日为
$$P\{X=0\} = \frac{2}{4} > 0$$
 所収.
$$P\{Y=0|X=0\} = \frac{P\{X=0,Y=0\}}{P\{X=0,Y=1\}} = \frac{1}{4} = \frac{1}{6}$$

$$P\{Y=1|X=0\} = \frac{P\{X=0,Y=1\}}{P\{X=0\}} = \frac{1}{4} = \frac{1}{6}$$

$$P\{Y=y;|X=0\} = \frac{1}{6}$$

() Kira备注: 其实就是把第一行的概率等, 音按证例 四程一下, 仅之和为1)

い神庭偏常との状也像相呼底度fxいったいり

(4) 水积中限于 PST=专1X=专]、PST=专1X>专)

的由规范性

$$| = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(xy) dx dy = k \int_{0}^{1} dx \int_{x^{\perp}}^{x} dy = k$$

$$\Rightarrow k = 6.$$

$$= \begin{cases} \int_{x}^{x} 6 \, dy & o < x < 1 \\ o & 10 \end{cases}$$

$$= \begin{cases} 6(x-x^2) & o < x < 1 \end{cases}$$

(3) 当 0 ex <1 时, fx(x) = 6 (x-x3)>0, 则在X=x (0 < x <1)条件下, Y的条件加入本原管型

将别地,在X=3条件下 frix (y1x===)= {4, 1/4 < y < 1/2

U Kira 强注:

- 0 行河时恢告概率强度和分布函数都要随于讨论范围,在大战
- Q fyix(yix)的正概区域为fixy)和fxix,正概区域之交。
- 目 fix(xix)的最终表达成本质上是关于y的一流函数,x的负团定 在10·1)上的某处, 九(x)为庭值.
- ▲图在求形如fyx(y)x=与的,社先求公fyx(y)x)的函数形, 再将 X=347入.

当ccycl, fry)= 6103-107000 刚在产业 /ccycl)条件。
X 的条件概率像设备
fry (xly)= fry)= fry)= fry
o, 其他

特别地,在Y=本条件下 fxiy(xiy=本)= {4, 本<x<=1 0, 其他

(4) $P_1 = \frac{1}{3} = \int_{-10}^{3} f_{11}(y|x=3) dy$ + $\frac{1}{1} = \frac{1}{1} + \frac{1}{1} = \frac{1}{1} = \frac{1}{1} + \frac{1}{1} = \frac{1}{1} = \frac{1}{1} + \frac{1}{1} = \frac$

$$\frac{P\{Y=\frac{1}{3} \mid X \gg \frac{1}{3}\}}{P\{X \gg \frac{1}{3}\}} = \frac{P\{X \gg \frac{1}{3}\}}{P\{X \gg \frac{1}{3}\}} = \frac{\int_{\frac{1}{3}}^{\frac{1}{3}} f_{X}(x) dx}{\int_{\frac{1}{3}}^{\frac{1}{3}} f_{X}(x) dx} = \frac{\int_{\frac{1}3}^{\frac{1}{3}} f_{X}(x) dx}{\int_{\frac{1}{3}}^{\frac{1}{3}} f_{X}(x) dx} = \frac{\int_{\frac{1}3}^{\frac{1}3} f_{X}(x) dx}{\int_{\frac{1}3}^{\frac{1}{3}} f_{X}(x) dx} = \frac{\int_{\frac{1}3}^{\frac{1}3} f_{X}(x) dx}{\int_{\frac{1}3}^{\frac{1}3} f_{X}(x) dx} = \frac{\int_{\frac{1}3}^{\frac{1}3} f_{X}(x) dx}{\int_{\frac{1}3$$

★ 一 Km 海注: (4)是-通非常好的条件成率的折题 P5 Y= 引 X=3 了和P(Y= 引 X X=3)都是条件概率 但前看因是头格写于"X==3"而加利用fix 形分末求,而后看不到用fix形分求,从床半子

[E] 已知边缘分布。不各个分布图相关条件、求联合分布 [存储] ① 唐智型、枢环日的和条件不可、可由以下公式确定 联合分布。P[X=xi, Y=yi]=P{Y=yi|X=xi} P{X=xi} cij=mi) P{X=xi, Y=yi]=P{X=xi|Y=yi]P{Y=yi} cij>n>m) ② 连续型、作品形已和各件不可、可由以下公式确定 Tixy)=fxix(yix)fxix);fixy)=fxiy(xiy)fxix)

-66-

(已 Kira 油注: 本质上就是乘流化式 戏利用 fxiy(xiy)=#xiy かれずー 一真駒 1 2013 春日三 22 (注意吸油标准加严谨的资格 设义下是二维随机受量,X的边缘城率原度为 fx(x)= >3x2, 0 <x<1, 在始度X=7/0 <x<1)的条件下, Y的各件积分家庭的 frix (yix) = { >y } , o<y<x d> 水(x, Y) 和脱率属度 f(x, y) 四,水下的边缘胸华海陵 frix) 小水 D1 X>21 解: + (1) B知/A式 frix (yix) = f(x,y) 当fx(x) >= 时成之 所加.当fx(x) >0时,即 0<x<1时, f(x,y) = fx (x) fx (x) = { 9x , o < x < x 这样得到的fix.y,P是这在O<X<1,-m<y<+10上Nof(x,y) 但实际上fix.y)1x的定义社全年相上 国此、我们有许用确定社。<></>
</ 平圆上 f(x,y) =o, 最后得到 $f(x,y) = \begin{cases} \frac{qy'}{x}, & 0 < y < x, 0 < x < 1 \\ 0, & \underline{1} = 1 \end{cases}$

少长/x备注:以上步骤为含水乐度颠簸们的构准发展 我看到后大为惊叹,非常严碍:仍必须能喝的无把这 些叙述自己写出来,才能得色之无性配的满分,才说明 你真正把这块内容吃透了. 如果没有混泡线的叙述 而直接解成 f(x,y)= fx(x) fx(x)(x)(x)={9\$\frac{2}{x}}, \(\nabla < y < x, \nabla < x <) 具符号本质上不成之(设备出起的多证据),因为第一个符号 仅限 0< x < 1 、 而第二个符号中的"其他"则是对合平面而言

♥ : King 可隔:对答库不安只可答序",一定要现摩思考全场赚有时仍以为你结算对了,但实际上基本现代都不明白,根上是烂的,整道题想话调明自出。

①
$$f_{Y}(y) = \int_{-\infty}^{+\infty} f(x,y) dx$$

$$= \begin{cases} \int_{-\infty}^{1} \frac{qy^{2}}{x} dx & o < y < 1 \\ o & f(x) \end{cases}$$

$$= \begin{cases} -qy^{2} \ln y & o < y < 1 \\ o & f(x) \end{cases}$$

U KMAAH解:

. RMnm .

求fxiy) 严格分之多友

step: 闭现写序性的成式,且"水浒不水浒", fr(x)= fintxy)以step2.①托大转多,为出亚州的部分和口观部分。

"不补烧灰泥" → 0<y<1

step3. 视y为常数,把关于X的部分解公车

y x=1 y=x y=x y=x xy=x P57:50 图用解 1分详图,此处用说于如何确定形为区域 Step: 图直该 2y=x 5tep: 对 {(x,y)|0 < y < x < 1 } 和 {(x,y)|2 y < x } 的/公东部的 (数学文7分好的同学大概酒一服初知道 2y < x 取直线下方,或者代介总试试,如和 x=(00, y=0, 尼然,是值线下方的流,故 {(x,y)|2 y < x } 和直线下方) Step3. 在已域 D= {(x,y)|0 < 2y < x < 1 } 上刊 f(x,y) = 9½ 排名 由二重形分知识有 ∫; dx ∫章 9½ dy

·利用的充電新作及上的看往 多報型

直侵型

先:作随机分量(x, Y)的联合城市家庭》 f(x,y)= > 8xy, 0<x<y<,)。, 其他.

问x与Y是方相的独心.

解: fx(x)= ltof(x,y)dy

friy)= fix fixiyidx

= $\begin{cases} \int_{a}^{b} 8xy \, dx & 0 < y < 1 \\ 0 & 1 = 1 \end{cases}$ = $\begin{cases} 4y^{3}, 0 < y < 1 \\ 0, 1 = 1 \end{cases}$

显然和DCX<Y<I内, fixy) = fx(x,fx(y),因此不批之、*

(D Kina角注: 闭侧李原度划私创时,要指明区域, 不到从用个别点的概率强度值

★ TD 随机变量函数的机车分布 ≥=g(x, Y).

·连侵型和·羌、祝、陶 ~ 3种函数法 ▲ 老张公式法 ▲ ·连续型其空的数

人名勒·利 r.v. 与近侯型r.v. 知函数。(2016.复题,数-12 22)

-70-

· BWDW ·

高散型

[食眠]·到走确定区的分部可能取值及其根本,写的布律即可。若以下独之且均为种质整数,且分析律分别为Pfx=k}=Pk, Pff=k}=完(k=0,1,2,...),则X+厂的分布律为 P{X+Y=k}=Psk+Psqk-1+...+ Pcs. (k=0,1,2...) 1.高效者积公式)

13/18	*	_	T •	- 1				
设二的	470岁了	2 (x, Y) \$		沖得力 こと: X+Y		的油种律		
	5/20 3/	20 6/20	•	W=XY		, ,		
三 沙。沙。沙。 山= max {x, y} 斯·特斯名分布律如下表达								
P	5/20	2/20	6/20	3/20	3/20	1/2-		
(x, Y)	(-1,-1)	(4)1)	(-1,2)	(2,-1)	(>/1)	(>12)		
X+Y	- 2	D	l l	1	3	4		
ΥΫ́	1	~1	->	->	٤	4		
max(x,Y)	-1	,	٤	2	2	2		
对相等的数值并顶下得如下的布律								
Z = x+Y~	[-2	0 1	34)	• 	1			
	(5/20	1/2. 9/20	%. /2./					

$$Z = X + Y \sim \begin{pmatrix} -2 & 0 & 1 & 3 & 4 \\ \frac{1}{20} & \frac{1}{20} & \frac{1}{20} & \frac{1}{20} \end{pmatrix}$$

$$W = X Y \sim \begin{pmatrix} -2 & -1 & 1 & 2 & 4 \\ \frac{1}{20} & \frac{1}{20} & \frac{1}{20} & \frac{1}{20} \end{pmatrix}$$

$$U = \max\{X, Y\} \sim \begin{pmatrix} -1 & 1 & 2 \\ \frac{1}{20} & \frac{1}{20} & \frac{1}{20} \end{pmatrix}$$

ご清晰 ₽

求连集型随机变量和, 关、环、物合和 X±Y, xY, X/Y [连明] 老已知二明随机多量(X.Y,的城学客度为f(x.y) <u>の分布函数法</u>则X与Y的函数≥=g(X,Y)的分布函数为 Fz121=P[2=3]=P[g(x, Y)=3]= [f(x, y) dxdy 其中。G=[(x.y)19(x.y) 58], 赤色为道漠型,则有于2181=[6]

[东路]

step1. 画出 Tixyx 的正规区域D,画出由了确定的区域G stepz使和海(-10,+10)、观察区域DOG的变化,分段作二重积分形成了

一大以看注:找DNG和关于3分段是重难品,但其思路 10是PST 的=步,找区校的为讯仍是P69上为明-的资动和于多,和画图到式时把了视功常数。 和分之后的歌只剩下多、即得下(1)

设(x, Y)~ f(x, y)= { 0 , 其他 事陋机多量 Z= X-Y 的佩华宽度 f2(2)

- RMNM .

→ Step 1. 面出 fix.y)的正孤足城 D. 画出由3确定和区域台

Z=X-Y 的分布函数为

Fe(3) = P[8:3] = P[x-Y=3] = | f(x) x) dx dy

→ Step ≥

0当3~0时,程(1)=0

自当2》时,后的三

日当0=3<1时, F2(2)= 11 f(x,y) dxdy 1; 3x 9x 1x 1x 9x = = [13-1]

▶ i Kira 格格啦:

① x-y=3 的国象法,4找? 先函出 y=x-3 的国家, 其当X辅多于 (3,0), 又由 y=x-3 如其代表的区域 G> y=x-1 上分的部分

②如历根据 DOG/3段? D={(x,y)10< y<x<13为了20两份}
阴影电域, G={(x,y)1 y > x-b], 由門 国中可以存出。

(0)当 2 < 0时, DDG 为序集, 放下8121=0(此时 fix,y)为0.积份。)

(的当371时,DOG为民程的与角形区域D、超下(2)=1(区时介)以为在DOG上部分为1)()当053个时,DOG直至的受化而受化,

DNG直观上是 yex和 yinni的新的等腹端形皮域

②如何到光汁填=庫积分? 当8€[0,1)时,直线 y=x-31之寸如圆位置,在阴影区域上对fxy)形分 有万(3)= // 3× d×dy (以下讲奇数 マペマ) 田区找形状袋们以直线×=3为分割线 各自形分,所以

田区校科状装剂 m 直(名x=)为分划线 各自形分,所加 (2) (3x) 3x dy = 3 13-32)

X-y=3 3x dxdy = 1 dx [x 3x dy + [1 dx] x 3x dy = 3 13-32)

► : King 恢复地说:其实没有行的新东西,制面会3. 二年报分礼实3. 这是者一肥自燃融合图3.

② 卷积/6式i和: 弗巴和 > (1年) 重机设量 (X,Y) 的研究率 度为 f(x,y) 耐流光 形陶 (i) U=X+Y: fu(u)= J-th f(x,u-x)dx 或 fu(u)= J-th f(u-y,y)dy l 四类, 1公伯的 (ii) V=X-Y: fu(v)= J-th f(x,x-v)dx 或 fv(v)= lth f(v+y,y)dy 并一点都不行!) (iii) W=X/Y: fu(w)= J-th f(y,y)dy ly = 0) 或 (x+0)

U Kira 备注:

- 可考U=x+ypx与Y独之,则fum可进与写成fum= ftxfxxxfum 其它函数的可记。
- ► <u>②为14m到63公共数价便?因为66</u>式法可消去一元,傻二直形分为 一元形力,自然容易快延得多。助抗运分两数直接求了(1)。
- → 图如图沙巾这些人成了以U=x+Y净例,据分布函数的本型 xi f(x,y)部分,而因为Y=u-x,所以把其中y形像为u-x 即有f(x,u-x),祝以为常数、xix部分即可, V.W.Z)可能,
 - ·特别元化一下W=X/Y安求的(与flyw,y)中yw-的) 至=XY安求前(与f(支,y)中文-物)所以其实这些历代都不同背,自定得现得直接写(强烈的)的纷纷 两个小式,挑一个顺序的问题和对3)

→引机:被形函数 f(x, n-x)等的作 0 域的确定。("将"程序进行到底 还是例9 < 记> 一 设工作产值和受量(x, Y) 的联合规率低度为 f(x, y) = {3x , o<x<1 , o< y< x 0 , 其他

爾:
由以刊记录文子的规则强度为有(x)= \frac{tr}{-r} f(z+y,y) dy.

其中被形函数不为。的巨城为

它Kira洋解如仍讨论了的范围 女女女女 ("把'智事进行利阳) 我们在月4中流,把打火火中的少替换为11-x 而得于(x.n.x)。 也可以说 U-X是少的"替事", 网难, 在找范围过程中"舒身"向 身份要继续发挥· 产厂中 zty 是x 的"替身"。

康题中,正规证成的职值由x,y表示,即 [0<y<x<1 下旬,我们傻似的是把了炒猪顶进了,那什么,那{0<3+4<1

将以上不管式整理成 关于Y. S的区域有 Yzo, 320, 3-1/<1 y画图形分:Step 1. 多画楼轴 (和地)画楼轴,为便讨论)

step 2. 据fz(3)= [the fly+z·y)dy 形分。 过程文mf P68 "kinA用讲解"求条件分析:

0"我了不积了,不补兄友限",由国为0<2<,加其他 ②"限内画各成,先交写下限,后交写下限",因此多>∫"了。 The Application of the site

●更一般的卷形八式:设=价种重加量量(x,Y)的职心率愿度f(x,y)

则随加受量 Z=aX+bY (ab+0)的概率密度为 18(1) = iai (+10 f(3-by, y) dy (a=1时会排作如用) 成 [3(8)= 161] to f(x, 3-1x) dx (in Kra看注: 由P74 中间部分我的解解,这个公式也不必准, 可以自然而然写出人 真题 >. 2005 粉-. 主. 22. -设二维随机重量(X,Y)的概率底度> f(x,y)= {1, o<x<1,ocyc2x 0, 其他. 述又=>X-Y的概学原度 fe(1) 由公式法, Z=2X-Y的服务庭度为f2(2)= [+ f(x,2x-2) dx 其中被张函数不为。的区域为 { o < x < 1 ⇒ } o < x < 1 ⇒ } o < x < 1 ⇒ } o < x < 1 ⇒ } o < x < 1 ⇒ } fa())= | +60 f(x,2x-1) dx ,其他 ,其他

(记 Kira 成双道: /函式活集心料常如用?对对连求行动等问 于初系,我们人能用从式活就用公式法)

◆压压济入:之前的3都是分一段的,接干外-通例题,我们 在一下多分儿致和情况,其实都是P5的底路。

· BMOM ·

▶ 连续型随机设置其他函数的分布

型一连接型 r.v. U的概率展度》 f(w), 且為都型陷阱逐是 X= L(U) 5 Y=g(U), 确定(X, Y)/3种:

[唐盼]利用义、Y5U的函数关系,统一将 P5x=?,Y=?] TE成 Pf 2<U=?,Y=?] TE成

设确心变量口在区间 [一33]上那从均匀分布,随机变量 X= {-1, U=-2 }= {-1, U=2 我(X,Y)的联合分节、 用题设随机变量山的概率密度》 fulm= { 0, 其他 (X,5)的所有可能和值》(-1,-1)(-1,1)(1,-1)(1,1) 然方は、P{X=-1, Y=-1}=P{U=-2, U=2}=P{U=-2} P{X=-1, Y=1} = P{ U=-2, U>>} = 0 P{X=1, Y=-1} = P{U>-2, U=2} = P{-2<U=2}=[:tdm=] P{X=1, Y=1}= 1-t-0-=== t 于是x与了的联合分布得为

(豆 Kin 留意: 梅門度內容內別的,沿常好的棉帘(wsy!)

(已 kira备注:思路和型-相同,规-用函数换成=用色)

一例Ⅱ 设随如变量x 5 U= {0, X²+Y²e

设随办变量又当个相互独之,且又个人(011), YN/1011, 光.

n= {0, x+1, =1 , N= {0, x+1, =>

ず P{U=1, V=0} 和 P{U=0, V=0}

角 由题设知

f(x,y) = = 1 (- 10 < x / y < to)

P{U=0, V=0}=P{X+y2=1, X+Y2=2}=P{X+Y2=1} = [] \(\frac{1}{2\pi} e^{-\frac{1}{2}\pi} dxdy = \frac{1}{2\pi} for do [! e^{-\frac{1}{2}} rdr = 1-e^{-\frac{1}{2}}

(b) king看注:其实就是将U=?, V=? 翻译发的门背后的意义 x4Y*51 等,由问题指目已批,不能好玩人)

● 高級型随机安量与直接型随机变量的函数 Z=g(X, Y) 已知和值有限的高数型随机变量X的分布律 通道 医取 及连层型随机变量Y的概率流度,且X5\相及独议、 则X+Y, X-Y, XY的概率分布 7位据分布函数的交叉调定

一真题4 2008 数-、三江——(还说得我社厅的话和阳的斜湖 设理机总量X与竹相构的,X的概念分析为户(X=i)= \$ li=1,0.! 竹约佩泽康度为fx(Y)= {1,06Yc1,记圣=X+Y

小水P(25½) X=0) 小水水的碱率熔度作(x)

辦: 小 由X专Y相飞狮之,1号. P{ Z= 1/3 | X=0]= P{ X+ Y= 1/3 | X=0] + 把 B 编译 (X+ Y) = P { Y = 1/2 | X=0 } + X = 0 7 + 2 + ◆因为X.丫篇. = P{ Y < 1/2 } = Tr(1/2) = 1/2. X离散,一张有3种 情况,全列公东到流 T2(8)= P{2:3] = P{x+1:3} = P{x+1:3,52} = P{x+Y=}, X=+]+P{X+Y=}, x=0]+P{X+Y=}, X=1] = P{x=1}P{x+Y=1|x=1]+ P{x=0}P{x+Y=2|x=0} + P{x=1}P{x+Y=3|x=1} = P[x=1] P[x+1=3 | x=1] = 3 P[Y=1+1]+ 3 P[Y=1]+ 3 P[Y=3-1] | 15年3 P[Y=3-1] | 15年3 P[Y=1+1]+ 3 P[Y=1]+ 15 P[Y=3-1] | 15年3 P[Y=3-1] | 15P[Y=3-1] | 15P[Y= X值全代完后. 刚丁 利用有(y)即十二多(万(3+1)+万(8)+万(8-1)) fz12)=Fz'(3)= 31 fx(8+1)+fx(8)+fx(8-1)) = \ \frac{1}{3} \quad \, -1 \leq \} < 2 一一 KM 总信: 本题几大神器—— 加起, 条件概率化流射 规律; 全转解思路与全概公式; 死自定义.) 设二作随机变量 (x,Y)在巴城D={(x,y) | ocx<1, x zy<反] 上服从均匀分布。 食口= 10, X=Y 引写的(x,Y)的概率强度 四门山与X是否相互独立?姆. 西 水2=U+X 的分布函数 F(3)

• BMDM • - Sv-

铺: (I) 区域 D的面积 Sp= [:(版-x²)dx=3 的 (X,Y)~ f(x,y)= { }, o<x²<y<取<1 0, 其地

コッア(U=0, x===)= P(x>Y, x===)= 1= dx x 3 dy = 本 の P(U=0) = P(x>Y) = 1= 1= dx x 3 dy = ラ (* (x-x*) dx = == 1 dx x 3 dy = ラ (* (x-x*) dx = == 1 dx x 3 dy = 月 - ま x 5 U 不分本之.

* Ukira角注:

- ① 此处的证明思路见了公 片响金注②, 远山的南义与国对门算方便, 考试时从胆学试
- ② P(U=0, X≤==)= P(x>Y, X≤==) 用到的仍是 P34-P80例凝度略
- 3 P{X=3]不需定特地水X的边缘布,直接画图水心重水分 3P可, 把X=3规功(X,U)66的一种情形, 用利用印)

(四) を約分析函数を [3] = P{2 = 3} = P{U+X = 3}

= P{U+X = 3,52} = P{U+X = 3, U=0} + P{U+X = 3, U=1}

= P{X = 3, U=0} + P{X+1=3, U=1} + 河田山植
= P{X = 3, X>Y} + P{X = 3-1, X=Y}

0 8 < 0, 下2(3)=0

@ 3>>2, 下2(3)=1

30 = 3 < 1. Fz(1) = P{x > Y, x = 1} + P(p) = || f(x,y) dx dy = \int dx \int x + dy = \frac{2}{3} \frac

4 1= 302, Fz17)= P(x>Y)+P(x=Y, x=3-1)

$$= \frac{1}{2} + \iint_{x \in \mathcal{Y}_{1}} f(x,y) dx dy = \frac{1}{2} + \iint_{x}^{2} dx \int_{x}^{2} 3 dy$$

$$= \frac{1}{2} + 3\left[\frac{3}{3}(3-1)^{\frac{1}{2}} - \frac{1}{2}(3-1)^{2}\right]$$

$$= \frac{1}{2} + 3\left[\frac{3}{3}(3-1)^{\frac{1}{2}} - \frac{1}{2}(3-1)^{2}\right]$$

$$= \frac{1}{2} + 3\left[\frac{3}{3}(3-1)^{\frac{1}{2}} - \frac{1}{2}(3-1)^{2}\right]$$

$$= \frac{1}{2} + 3\left[\frac{3}{3}(3-1)^{\frac{1}{2}} - \frac{1}{2}(3-1)^{\frac{1}{2}}\right]$$

$$= \frac{1}{2} + 3\left[\frac{3}{3}(3-1)^{\frac{1}{2$$

★ i kira看注:

· 此政合体分解思想、与Pso题如出一轴、步骤和是ctrl+V的P

② P[X≤3,X>Y]和 P{X≤1-1,X≤Y3都视为 P{(X,Y)∈D} 类型题,把了有作带数计算形分,讨论3时审把的个P{\]-规值 不安造调。

司门的作出陈正城区域 G, 知{X=1, X>}}和 D={X=1, X=}}
的国务、观察并思考如何历奏讨厄》
我们。拿着工和工运网形的方线从一加往
和移动 可以有出

(ii) 当 0~~ < 1时, I进, G, P{X=Y, X>Y}= 5.dx x 3 + 1 - 1

P{X=Y-1, X=Y}=0

(iv) 当2年3时, I. I 均从省侧移的G、Pfx43,X>Y]=主, PfX43-1,X4Y}=主,

以上分析过程呈现在卷囱上便如我断了中所示,本质上考察的

是我了了一片的讲解的命函数计算功成。不非、静下心来都能的,关键是沉住气有序、推测处分析。

▲随以上介的过程是=9(X,Y)的几种国质震路外,其他函数 类型不机豫,真据用分介函数法。

一角限了相至独立随机变量最大值专最小值的旅游分布 ●高報型 投随机变量 X., X. 相至独立,且已知 P{X;=Xij}=Pij (i=1,2;j=1,2,…) 比 Y: Max {Xi, Xi}, 先求Y的所有可能取值, 再求 下版李/分布即可(双P71例题8)

·当X,X,有事业验数值时有
P{Y=k}=P{X=k,X=k}+P{X=k,X=k-1}+**+P{X=k,X=1}
+P{X=k,X=k}+P{X=k,X=k-1,X=k}
+P{X=k-1,X=k}+**-+P{X=1,X=k}
(日即先把所有P{X=k,=k}加起來, 再把所有P{X=k,=k}
70起來。)

已知分布函数

博

·设随机变量 X1., X21...., X1相至独立, F; (x) 为X1的分布函数 Y= Max {x1.,..., X2], 8:M1 {X1., X21..., X2], 其分布函数/分别为 Fy(y), Fe(81, 121]

Tryy = F. (y) F. (y) ... F. (y)
F218) = 1-[1-F. (8)] [1-F. (8)] ... [1-F. (8)]

·若X.,X2... Xn 独到的种于F1xx,例

Fry) = [Fy)]"

(i) kira 省注:以上结论非常有用,建议直接背下,有时我怕自己指促

示すと会えれまった。 打起来非像快:

Fy(y) = P{max{x,···,xn} e y} = P{x, e y, x, e y, ···, xn e y} + 一個介部 e y i を明 = P{x, e y} P{x, e y} ··· ア {x, e y} = 「Fi(y) Fx(y) ··· Fx(y) Fx(x) = P{mix{x,···,xn} e x} = 1 - P{mix{x,···xn} > x} = 1 - P{x, > x, x, > x, ···, xn > x} = 1 - P{x, > x} P{x, > x} ··· xn > x} = 1 - [1 - Fi(x)] [1 - Fi(x)] ··· [1 - Fi(x)]

· 真颜 6 2008 数· 三 7 —— 设随加边最 X, Y独之门分布, 且X分析函数为 F(x, , 肌) 飞= max{X, Y} 的分布函数为

(A) F2(x) (B) F(x) F(y) (C) (-[1-F(x)] (D) [1-F(x)][1-F(y)]
(D) #1)

利用沿地或取打一遍. 易如起A.

B和D这种同时出现x和y的直接就能挥3.在12是一作~

型最后。我们回到PAT Kirn 和战,的问题

- (1.0能;能包含;否包能;能(但其中-17是国定数)
 - 3. P34-P77
 - 4. 时于联合、条件、边缘"知二年"问题、多似概本原度对似点。对于不能阴极本底度的,再从分析函数和侵义实施。
 - I. P22- P73, (+P30 取的5 2016 数-、三xxi年解)
 - 6. 了能如79 题4. (有一下附来脏珠月。注)
- 7. 83-784 2 DAR 1155

···是艰德简单3 9

第四年 随和受量的 都容特征

PST KIM 排战 先刊自己。遍答屏在Pos. 明华不承点哪见。 是空阵点,

P87 大小前言 (尤其最后5个字)
P88 EX 竹木顶 DX 竹木顶 P89 COLLX,Y, 竹板
P90 至
P93 结论
P94 连该型沟种思路
P94-P9,求 引X.Y, 的数字特征
P102 两个拉距。

じkina 前意·

这部分没有难解解的概念,被题也不需像前面那样 机波图象, 关键在于记得公式, 动于远军, 本军既隔降 硬的计算加底(形的边阵),也需要软的计算技巧(冲)。 多利用公式胸心计算、便动背吸入!

We King the By

x5Y相互独立 ↔ X5Y不相关

光(x. 下)服从=的正态分布,则x5下相互独之的X5下和支。 考×·丫和服从0-1分布,则X5个相至独之→X5个不相关。

>. Ecax+b> =? , D(ax+b)=?

A 协比图关不写式写的对对证 DX 还是一些?

4. X~N(0,0")则X的A阶原总电E(X")=了(特结论,以名的

5. 现X+Y产品海?

6. ELIX-YI] 係小算?

7. 承》(x+1)有哪些思路?网路个更批用?

8. 如何求有限了独立同场和rv. 最x值最小值和始厚特征?

基础概念及必备库次

数符期望EX,为差DX,加流流cov(X.Y),切似雪天不写式 相关系数fxy

日勘学期望政

▲ 處散型 阿加曼曼

*特别地 E(X)= 岩(X 荒门), E(Y)=岩(X 荒门)

· BMDm ·

▲ 连续型 { 随机变量 E(x)= \$the xf(x) dx 形分铯对收敛) { 随机变量函数 \$ -说: 日作 \$the g(x) f(x) dx ,其中Y=g(x) >12: E(8)= 1-10 (+10 gix,y) fix,y) dray 其中是= 9(x,Y)

(i kinn 強注:

随机变量函数的期望下带把随机变量期望中的不换引的 其它完全不受 ,似题不定犹豫!)

1节仮

D成性性: Elaixi+axx+···+axxte)=a,Ex,+a,Exx+····+axExx+c 那有以了成之:ELC)=L (c为序数); Elx+c)=EX+C。(情数分析) 区 Z X, X, ··· X, 相互独之, 则ECX, X,··· X,)=EX, EX, ··· EX,

国 多差 DX

(A) DX = ELX-EX) = EX-LEX)

DX= EIX-EX) = \$ (x-Ex) Pi ▲ 唐散型-作

▲ 进展型一维。 Dx = E(x-Ex)2= J+10 (x-Ex)2 f(x) dx

(一) Kin看注:方式很力用被分成设数多水,多气水期望, 再用DX=E(x-EX),或DX=EX-(EX),非出, 114质安熟练掌握.).

1146

→"席敬不要3" D DCAX+b) = a2 DX

② D(X±Y)= DX+DY ±2 cov(x,Y) 4"±和是OX+DY"

① X1, X2, Xn 新足 N. D(X, + X2+11+ Xn)=DX,+DX2+111 TDXn

田名C+E(X),刚从《E(X-C)"(其中C为常教)

E tip界X了独立,A] D(aX+b),=a'DX+b'D).

★常用分布的勘学期望与为羌

·合种	期理	る気
€ 0-1/77p	P	per-p>
D =7A/37pBLn.p)	np	np(1-p)
③ ジョイトルカチャ(ス)	λ	λ
の がいしかか	n 🛠	<u> </u>
10 Mil 37 Geips	<u></u>	1-P P2
的 正态分和 Nyst)	ju	σ,
9 均匀分布 Ucabi	atb 2	1 b-a>
② 指数分布 ELA)	大	1/2
	r	2n

(O K/20备注:其中除图外,其应坍庸热镇记忆 取和 DX)

目协济 COV(X:Y)

COV(X,Y) = E[&-EX)(Y-EY)] = EXY) EXEY

{· 存物型 cov(x,Y)= デラ[(x:-Ex)(y:-EY)] pij ・ 连信型 cov(x,Y)= / ニン [x-Ex)(y-EY)fx.y)dxdy

(以 kira强注:这个一样本环网,证折腾时顶,到河EXY-EXEY)

附板

Q 777414 COV(X, Y) = COV(Y, X), COV(X, X) = DX

到 改附州 a cov (aX+b, cY+d) = ac cov(X,Y) (a.b.c.d为传 COV(X, c) =0

COV(X+Y,Z)= (ov(X,Z)+cov(Y,Z)

- @ [covix, Y,] = DXDY
- 先×与丫相后独立, NJ cov(x, Y)=0.

回相关系数fxy Rxy= (DX (DY (斯中DX知,D)FO)

(i kina 角注: cov(x, Y) 和 Rxy 研究 X 与Y 之7月 [> 线附相为性,Ry相当于将LevexY)的贵网的。 拉 1 pxy 越大, 浅川州美性越福)

0 有那は |Pay 1=1

② 如界 Y=ax+b,则 Pxy=51, a>o X5Y 家企业相关 (1) 已经可写出线117吨达式3 P1Par1省原是1~夏最大~)

国不相关与独立 光 RY=0、孙随机变量X5个不相关。

► 写价命题: Par =0 ⇔ COV(X, Y)=0 ⇔ EXY= EX. EY ⇔ D(x±Y)=Dx+D} (没有狮シ!)

► X 5Y 相を加え Z X 5Y A 相关

- 第(X,Y)服从二维亚态分析,则X与Y独立⇔Ry=0分"
- · X 5 Y 都服从 0-1分布,例 X 5 Y 淋之 ⇔ RY=0 ⇔ …

河如此雪水齊式

我DX存在则对作的500,有P[1X-EX1>2]≤公式

P{1x-Ex1<5}>1-DX

(日K小角注:这个小成背下来,怕颜含角出取,加米取,双,今取远的分,就多以3.两个挑一个记,建议记得一个,有办有安视"为至台"这个制情记期中?)

解题食路

● 常见题型论次如了.

一、水一作随机变量(函数)的期望和方差。

三、水布记了湖南的各种随机设是最大值、最小值的期望和浅

四.利用切地写头不写式估计概率。

王、求随机变量切为差、朋友参数,相关性与加强性制制制

力,二维亚态分析数信特征相关问题

一侧,一侧, x = 0 , x = 0

则随办受量 Y= [1 ; = X<2 的数管期望、方差分别为?

[分析]]第一步确定了的分布律,再求了的数字特征 解: P{Y=0}=p1x<±}=]:tdx=t b{ L=1 }= b { = X < 5 }= 1 + qx + 1 = xp qx = = アイキョン]: 1- オーショオ 角で (ロッシオ)

于炭 EY= 0×4+ 1×5+2×4=1 (上了对证相乘用相对 町= 0x4+1x2+2x4=至(R对有初概存得

FIRM EY= 1, DY= =

▶连续型

展的形为 EX= 12 xf(x) dx [先本至2] (界級XDg Lan, fix)不受).

直駆しかは数シシスン-

设在加多是X的城市分布为PfX=13=PfX=23=3,在180 X=1 為17下,随机受量了服从均匀分布U(o,i) (i=1,2,...)

小本Y的分布函数 Fry

瓜 末EY.

解: 212 (与P39 真题6 等之间以多涉及科分析和今集分解的问题相同度路,又开始复制特殊)

记U(oii)的分价函数为下ixx (i=1,2)周 Ti (x)= } , xco

· RMNM ·

(in kina看注:要求EY, 先来fry), 度厚始公式 Jinyfrixidy 随着fry的的内段而分段积分即分)

· 随机变量函数的期望 Ecgixii - 741:

- 頂顕2 2013 数ミ 14

其中。

一门非常如用的话吧:(P44净例)(证明初1例6) 老X~ N10.5"),则X的几阶原总次色为 ELX") = {(h-1)!!o", n为傷数

• BMOM •

Ex= 52 (n=1); Ex3=0 (n=3); Ex4=354 (n=4)... ▼_▼ (小随直接写结果,大题假管到一下式至时分,并直接写明) 巨水二倍随机安量函数的期望和3差 高報型 · E(Z)= デュg(x,y) Pij (Z=g(x,Y). step1. 求(x),联合分布得 <u>对如2. 求色的分布建</u> (最)(取的方法)。 step3. 有角区的分种律末E区)。 DZ= EZ'-(EZ)' 是为(x, Y) 的联合规本分种为 XX → D(X+Y).

解:由(x,Y)联合分布律, x+Y的全部取值为-2,0,2. 分析得为 x+Y~ (-2 0 2) 本之本

FITH E(x+y) = -2x + 0x + 2x = 0 $E(x+y)^2 = (-2)^2 + 0x + 2x = 2$ $D(x+y) = E(x+y)^2 - [E(x+y)]^2 = 2$

道得到。E(Z): 「如 fto g(x,y,f(x,y) dx dy (2:3(X))) 通常有两种思路 { I. 先来 Z的分布, 再当成一作问题来 EZ II. 不求 Z的分布, 直接用 附质间接或 EZ Q() 上的强调: 两种思路都走得通,都对, 不以太纠话里

· BWDW ·

建议优先考虑第二种,略做一些特克求已的分布后间 已防御城了,还要再办一步已,那简直要城死了之会)

●斉例:

求PCX+Y) S山利用分种的物法或公式法,求思=X+Y的标识 A或Ez, Ez² 两个思路 (四利用P9473/2式, 就ELX+Y), E(X+Y)) (直接对 (xty)f(x,y)和(xty)=f(x,y)积的)

设二维户近加受量 LX.Y) 在以总(01),(110),(111) 为了加剧 的三角形区域G内服从相目分布、试水随机变量X+Y的方差。

解: 油题高。(x.Y)的联合概则多家货力

(注17 (根据 134-137 的讲解) 设是= X+Y, 刚 fe(3)= J+中 f(1-Y, Y) dy 其中被称函数不多的区域为

计是

$$f_{2|3}$$
 = $\int_{2\pi}^{+\infty} f(x-y,y) dy$
= $\int_{2\pi}^{+\infty} 2dy$, $1<3<2 = 52(2-8)$, $1<3<2$
0 , 其他 0 , 其他

EZ =
$$\int_{-\infty}^{+\infty} 3f_{2}(2) d2 = \int_{1}^{2} 23(2-2) d2 = \frac{4}{3}$$

EZ = $\int_{-\infty}^{+\infty} 3^{2} f_{2}(2) d3 = \int_{1}^{2} 23^{2} (2-3) d2 = \frac{4}{3}$

$$\int_{-\infty}^{+\infty} 2(x+y) dx = \frac{1}{2}$$

X

l is kinn 备注:

①钻然从对话亦足的概率愿度也很快,但彻相比较,还是法二更为简质

② 那分水 EX 七七形分水分布简单,因为不常分段也不需考虑 夏、直接在整个亚帆区域上大大方方形分,把岸边球公成了以了)

· 并和 E(1x-Y1) -13

设随机受量X.丫都服从区间(0,1)上的烟目分布,且相互独之, 求E(1x-Y1), D(1x-Y1)

[分析][套路]永远先承(x,Y)的联合服降展度,然后用 174法工机分求特征函数,1注-的小变化是 分致形分以去掉绝对值符号。

期间现货和fx(x)= {o, 其他. fr(y)={o, 其他 又由X与Y独之,得x与Y的联合家度为 y f(x,y)={o, 对他

E(1x-11)= 5-10 1x-y1 f(x,y) dxdy

= $\int_{0}^{1} \int_{0}^{1} |x-y| \, dx \, dy$ = $\int_{0}^{1} dx \int_{0}^{1} |x-y| \, dy + \int_{0}^{1} dy \int_{0}^{1} |y-x| \, dx$ (= $\int_{0}^{1} + \int_{0}^{1} |y-y| \, dx \, dy$ = $\int_{0}^{1} \int_{0}^{1} |x-y| \, dx \, dy$

·对于具有可加性的常见分布,老色可初求,则先求于8(3)

後x, Y 独立, x n N(o, 1), Y n N(o, 1), y D | x D

=2 / to 3 扇 e d 2 = 両 e | +a = 1 帝

> DZ= 1-帝

* Kira补礼:常见分种的可加时之

相互独议且服从问类型分布的随机变量,其和分布也是问类型的,设随机变量义与丫册互独之,则

- ① 芳X~B(n.p), Y~B(m.p), 刚X+Y~B(n+m,p) (注意:>项分布需P相同)
- ②光X~PINI),Y~PUN), 例X+Y~PUNHA)
- 图 * X~ N(y,, 6i), Y~N(y,5i), 加(x+Y~ N(y,+y,2,0i+5i))
- の考X~xin, Y~xim), 则X+Y~xin+m)

目求有限了独立同分布随加多是最大值,最少值的期望的关 设随机变量x,, X,, ··, Xn相互独包围3布于下以(tix) 食Y=min {X1, ..., Xn}, Z=max[X1, ..., Xn]则由P83分布 { Fr(y) = 1-[1-F(y)]", fr(y) =n[1-F(y)]" f(y)
Fz(2) = [F(2)]", fz(x) = n[F(2)]" f(x) SEY = [The y frey) dy DY = EY' - LEY'

LEZ = [The y frey) dy DZ = EZ' - (EZ)'

() 没有新东西,自动的水稻公来)

▶此类型题常用的好话论:

② min {x, Y} = X+Y- max {x, Y} = ±(x+Y-1x-Y)) ③ max {x, Y}+ min {x, Y} = X+Y → " 頂電都它1两…

- 真願る 2012 樹ニ 23

没随机变量X与Y相互独之,且都服从参数为1的指数 分种,记U=max {X, Y}, V=min {X, Y}

の求V的概率强度 fuco

小水E(U+V)

= P{min(x, Y) = V}=1-P{min(x, Y)>V)

=1- P(X, V, Y, V) = 1-e-2, v>0.

当250时, 下(2)=0, 所以

friv= {2e2v, v>0

西 ELU+V)= E(x+Y)=Ex+EY=1+1=2.

国利用切地雪天不写式估计概率 /G式见 Po 下方 — 其题5 2001·4———

to EUV= EXY = EX EY 选B

设×Yx随机变量,数学期望都是2,方关分别为1和4.

相关系数为0·5、试用和比雪天不喝式估计概率 P[x-]1》6} 解:利用不喝式 P[1x-Ex132]《DX

E(x-Y) = Ex - EY = 2-2 =0

D(X-Y) = Dx + DY - 2 COV(x, Y) = 1+ 4 - 2x0.5 x 2=}

取 = 6 由切址等未不得介,得 P(1x-Y1>6] < D(x-Y) = 元 = 六

(它 King 编注: 通常利用切不得成份的时时 我们的证别 "安观工"(比题为6),"排价 EX"(此题为0), 和计算 DX"(此题为, 真亚的语)

国主协多差。相关系数;划相关性与独立性 利用公式 { Lov (x, Y) = DXY - EXEY 和 Pao 至 等价命题 (xy = Cov (x, Y) / NX 所

×

多取型 把所需的分布律化次列出、求的需要管特证、 17入协方差估式 (由cov(x,Y)=EXY-EXEY, 通常需写出 X, Y, 和XY的分布律

一真题b 2012 数-、之22—— 设二低高散型随机变量(x,Y)的脱率分布为

0 4 0 4	X	0	1	٤.
	0	4	O	4
> 1 + 0 +	1	o	3	0
2 1 15 15	2	72	0	12

水 cov (X-Y, Y)

3. 特殊

解: COV(X-Y,Y) = COV(X,Y) - COV(Y,Y) = EXY-EXEY-DY 求分种律如 $X \sim \begin{pmatrix} 0 & 1 & 2 \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{3} \end{pmatrix}$ $Y \sim \begin{pmatrix} 0 & 1 & 2 \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{3} \end{pmatrix}$

求得 EXY = 0.72 + 1.3 + 4.72 = 3 EX = 0.2 + 1.3 + 2.72 = 3 EY = 0.3 + 1.3 + 2.3 = 1 $DY = EY^{-}(EY)^{2} = 3$ $EY^{2} = 0.3 + 1.3 + 2.3 = 3$ $EY^{2} = 0.3 + 1.3 + 2.3 = 3$ $EY^{3} = 0.3 + 1.3 + 2.3 = 3$ $EY^{3} = 0.3 + 1.3 + 2.3 = 3$ $EY^{3} = 0.3 + 1.3 + 2.3 = 3$

() Kinn 总话: 第一步 L来先把 cov (·, ·)全打开, 看看需要 什么东西, 一个个排着龙就好, 难度补数 o)

连续型 思路与高额型完全相同,只是 E(gix)) 通过 那分来求,加入的分种得。

的分布函数,求 cov (x.Y) LOV (x, Y)= LOV(x, X2)=EX3-EXEX + 台编编馆 一部排作的的冷酸 $EX = \int_{-\infty}^{+\infty} \pi f_X(x) dx = \int_{-1}^{0.2} \frac{1}{2} dx + \int_{0}^{2} \frac{1}{4} dx = 4$ EX= 1= x= fx (x) dx = 1= \frac{7}{x^2}dx + \frac{6}{2} \frac{7}{x^2}dx = \frac{7}{6} $EX^{2} = \int_{-\infty}^{+\infty} x^{3} f_{x}(x) dx = \int_{-1}^{0} \frac{x^{3}}{2} dx + \int_{0}^{2} \frac{x^{3}}{4} dx = \frac{7}{8}$ X. · Pgo pxy 的性质像被拿来做多章. 一真駒8 2008 数-三 8 设随机设量 X~1/10,11, Y~1/1.4) 且相关承数 Pxx=1. A) A, P{ Y= -2x-1}=1. (B) P{ Y=>x-1}=1 (C) P{Y=-2x+1}=1 (D) P{Y=2x+1}=1 [分析] (XY=1 说明X 与Y正改胜相关,排除 A.C. 设 Y=aX+b , a>0.

1=EY=aEX+b=b MMD.

(PS可信用 PXY=1= COV(X,Y) 本 a=2,但作为我群投业里

tv 月足 大人 $f = \frac{cev(x, n-x)}{\sqrt{Dx}} = \frac{cev(x, n-x)}{\sqrt{Dx}} = \frac{-Dx}{\sqrt{Dx}\sqrt{Dx}} = -1$

- · 公划 x 与 Y 是 各种 2, 用上一章 划划式 成 由"相关 > 不独立"
- · 发知 X与了是否相关,用看在XY是否写于EXEX,各相等则不相关 或由"融证》不相关"(独立流明X与X)毫无关系,当然没有

孩性相关性)

两个重要技能分分界

设 x v N (0, 0°), Y= X³, 则 X 与 Y 是含相关?是含称之? (解: X~ f(x) = 面 e^-5(8)°, f(x) * x 的7 隔函数. 放.

 $EY = EX^3 = \int_{-\infty}^{+\infty} x^3 f(x) dx = 0 \qquad (RRAPS NO 60)$

$$EX = EX^{4} = \int_{-\infty}^{+\infty} X^{4} \frac{1}{\sqrt{\pi}} e^{-\frac{1}{2}(\frac{2}{6})^{2}} dx$$

$$= \frac{2}{\sqrt{\pi}} \int_{0}^{+\infty} X^{4} e^{-\frac{1}{2}(\frac{2}{6})^{2}} dx$$

$$\frac{2i8^{3} = 40^{4}}{\sqrt{\pi}} \int_{0}^{+\infty} t^{\frac{1}{2}} e^{-t} dt = \frac{40^{4}}{\sqrt{\pi}} \Gamma(\frac{1}{2})$$

$$= \frac{45^{4}}{\sqrt{\pi}} \Gamma(\frac{1}{2}) = \frac{45^{4}}{\sqrt{\pi}} \cdot \frac{2}{2} \cdot \frac{1}{2} \sqrt{\pi} = 30^{4} \neq EXEY = 0$$

$$tx \times \sqrt{\frac{11}{2}} \times 2 \times \sqrt{\frac{11}{2}$$

② []函数 ((高勤族花宝枣>> P77)

dof- [)函数 鱼 Joth x x + e - x d x = [](x)
 运算性质: [(x+1) = x](v), [(n+1) = n!, [(注) = √17]

· 角层例:

 $0 \int_{0}^{+\infty} |x| e^{+} dx = \int_{0}^{+\infty} (\frac{1}{2}+1) = \frac{1}{2} \int_{0}^{+\infty} |x|^{2} e^{-2x} dx = \frac{1}{2} \int_{0}^{+\infty} |x|^{2} e^{-$

· BMDM ·

-102-

(村村)

- (i) Kira解解:第一丁"="用3旅-手法,把巴*族成巴* 菏阳是专了。+10(2x)2e-2xd(2x)加将2x振成x后形为限 1B是Ozto,所以呈现出多」、toxzexdx
 - 3) $\int_{0}^{+\infty} x^{2} e^{-x^{2}} dx = \frac{1}{2} \int_{0}^{+\infty} \sqrt{x^{2}} e^{-x} dx^{2} = \frac{1}{2} \int_{0}^{-1} (\frac{1}{2} + 1) = \frac{\sqrt{\pi}}{4}$
 - (i) KinA次强调:厂函数在局数户库积的和规范 将征函勤计算中非常好用,耐以简化计算,一定医含息 不难!

|引二作正於分散字特证相关问题

利用Psi 附质(合题多有 p=0, 即x,Y独主).

- 復點10 2011. 数~三14-

设=作随机变量 (x, Y)服从亚态分布 N(M, M; ot, ot, ot)。)

则缺?)=_

領: 由 Pxx=0 ⇒ X, Y 独立. 且 EX=EY=p. Dx=DY=02 (由P88 Ex H+顶) ExY= Ex·EY= Ex·(EY)+DY) = \(\mu\cdot\) = \(\mu^3 + \mu\sigma^3\)

(in king 备注: 只要能读情题于就能做, 另外,还需售报 与xxx独立, EX, Xx = EXEXx这一村质、关键不安被形式 吓住.)

翼最后,我们因到PBT「kira+16钱」的问题:

- 1. ₹ ; ⇔ ; ⇔ 2. aExtb ; a²Dx 3. Pgo.

4. P93. 75 =

5. P95

6. P96.

7. P95 J. I.

8. P98

9. P102-P103.

U 勒特公式勒旗题,道x受,思路多必有程有条里

- BMDM -

第五章

大数定律和 中心极限定理.

吕空降点:

读读 P1.8 指号, 3解定设存质

i kinn 前言:

本章有似公式庞杂,其实样后的思想,是十分一致而济别的, 导家上,中心极限定设被认为是(沙亚式的)加入李沧中的首阵定设, 本章不作为考试重高, 海绵和 内涵, 以不变起为变, 考前背价公式即可.

基础概念 又必备常识

日伦混译的级

吸x:设随机复产序则{xn},n=1,2,3...,随机变量x1或常数的如果对1注意,470,有

▶ 附版: 没 $x_n \xrightarrow{\Gamma} x$, $Y_n \xrightarrow{\Gamma} Y$, $g(x_n) \xrightarrow{\Gamma} 2$ (x, Y). $Q(x_n, Y_n) \xrightarrow{\Gamma} Q(x_n, Y_n)$.

□大教庭律 (大教即大样本,加,四) ① +切比雪头: "{xm}相互称之"+" DXx c km)仍在"+"DXx-30有环 囚{xm}服从于大教庭律 元层 xi →元(层 Exi)

●伯昭利: Jun是小重伯努利试验中事件A发生次数,在每次事件A发生概率为p(0<p(1),则 带 与 p.

-10]-

- 图字钦:"Xi迎干"+"EXX=从松龙",则有元荒Xi子从 (省注:X; 池下即X; 独立同分布于其分布下)
- (一)大数定律研究的是平均值的稳定性。信伦是: 样本均值的概率的成于平均值的数学期望。)

国中心极限定设 ("中心"指其在概率论中的重要地位,标减) ▲①到19月一环德伯格(湖南河省布中心极限交货) 设X; ,Xn 心干, 若EXn=,N, DXn=52>0 (即X; 以于1,M,O)) 刚 EX; JIMARA NINH, NO?)

日禄真的一拉鲁拉斯(二项分析以正态分为在限分布定设)

(看注:其实色是①的特别情况. ①是非常具有一般性的 超结论. "湖江河分布"景府纵为的帝军东行)

(一)中心极限定役研究的是独立随机变量和的极限分布 为正态分钟,所以中心极限处设地大数定律的方的 现象更深刻,成2的条件也更苛刻.即客水口X;存在. 大数原律R审求 EXi 存在)

解驗疾路 /

以上公式重在将解,把排放荒火、~ 人们加入的) 再配折题意相等对可.

设从. Xx, ..., Xn. ... 为邻之间分布的随机变量到, 且垌服从于考数入(入入)的指数分布, 记中(x)为 价准正态分布函数则

(A)
$$R \Rightarrow P \left\{ \frac{\sum_{i=1}^{n} \chi_{i} - n \chi}{\sqrt{m}} \leq X \right\} = \Phi(X)$$

$$(B) \qquad P \left\{ \frac{\sum_{i=1}^{n} x_i - n\lambda}{\sqrt{n\lambda}} \leq x \right\} = \mathcal{Q}(x)$$

(C)
$$\frac{1}{n+n}$$
 $P\left\{\frac{\lambda \sum_{i=1}^{n} X_{i} - n}{\sqrt{n}} \in X\right\} = \Phi(x)$

[分析] 根形我们之前停证的内房, 本题密求我们具备以了知识

- ① Xi~ ELX).则 EX= 六, DXi=六, 将Psg 完格.
- 图 喜xi 20 N(元, 元), 林柏城有

$$\frac{\sum_{i=1}^{n} x_i - \frac{n}{\lambda}}{\sqrt{x}} \approx \mathcal{N}(0,1)$$

 $\frac{\lambda \sum_{i=1}^{n} X_{i} - \lambda}{n} \sim N(0,1) \qquad \text{if } C.$

(i kira看注:

你必须看到一道题能像这样,瞬间抓出所有考点,并依次这位在产节的确切量节(或且节的确切量中) 且分种从分清清楚楚,一步为有各不紊地完成题目, 才部说已做好准备去考试了里

, • 1 - - 3

第一种独独的建林服念

先看 Kina 前言、Kina 挑战(Pin 答集)

了东降点

P114 三个概念。真心识解了 P114 下为性质 P117 出了三大分种之心机方法 P119 发型题彻陆掌握 U kira前言:

有的同学跟我说、判断分布和自用度太难的,想放弃。 千万别是这种题出出来,有丌算丌都是这分的是 其实路序都同意在原题中了。

Ro Kira JAL Bi

- 人什么是总体?什么是样本?什么是统计量? 都好化计到脑在干嘛?意义何在?
- 2. 当总1本X有EX=,M,DX=5°,则其殇量为n的拼本X,,...,X,n 同: EX;=_,DX;=_,EX=_,DX=__,ES²=_,DS²=__.
- 3. 和自自正态总体 NCM. 07 的一个特本 X, …, Xn, 文和 5° 务自服从行心分布?
- 4. 如何判断统计量服从于2、1、下三人分析中的明介?

基础概念是必须库识

日机念与术注

① 总体:研究对各全体对应的某一随机变量过至极)

② 特本(P.研究"简单随机样本"):对总标义的办法现象得到的几个相似地注目的历史X的随机变量X1,…,Xn.初加入自己作文的样本、初几为特本容量。

▲③流汗最:老样本函数 g(x,、, x,) 计不合分布的未知参数,

则称g(x,, x,, ·, x,) >成计量. (统计量是随机变量)

(D) kinn 海注: 流计之于城市论,相当于现底运迁搜想, 我们饮烟净沉疑目时分布都仍好,其实都是纸上难兵, 现实是我们根本不知道总体是什么分布,有什么特征,而然 从挪取的样本和样本统计量来非断总体,是必估计. 抽样分布息统对指断的设泡基础)

三样本的分布

芳底体义的分布运输为下的,则(x, -, x)的联合分布运物下(xi, ···, x)。 耳下(xi) ,相处地,我们有

- · 高敏型: P[X,=x,;,X,=x,] = 点 P[x;=x;}
- · 连续型: f(x,,...,x): 当f(x)

目常问说计量

① 村本均值文: x= 六篇Xi

① 19个方式 S': S'= 1-1 后(x-x)'= 一(后xi'-nx')

③顺序论计量:将符本(X,…,Xn)的几个观测量推取值从小到大顺序排列、得Xn, ≤Xn, ≤Xn, ≤Xn, xn) 从小到大顺序排列、得Xn, ≤Xn, ≤Xn, xn)

 四三大组样分布 (肥工和陷谷协准亚东分种; X:间 x)间礁之

· 港随加多量 Xi..., Xi 相互独立, 且都服从于城市正态分布则 X= 层Xi 服从自由度为几的之分布, 记为 X~ 光(n) 特别地 Xi~光(n).

四老X~ Yin, NEX=n, DX=2n

fix)

t/37p

· 没随机变量 X~ N(O,1), Y~ Xin), X与Y相互独立,则 T= 产品 那从自由该为人的七分布,记为 T~ tin)

· 附质: Ot分布的概率密度 fix) 图的关于2=0对称, ACC

B当1747日), T 地 人(0,1)

下分和

·没阿加多量X~2°(n),Y=2°(n)且x当Y加之, 则F=<u>X/n</u>服从自由度为几和加的下分布, 论为下一下(n,n),其中几为第一自由度,加为第二自由度

·性质: 若F~F(m, m),则产~F(m, m)

(b) km为注:所谓"自由度"是指加入中加速量量的个数. 成面俗说,不受其它变量取值影响的自变量个数

1	年正态感体(元)	量分布		
			ハレルのりなり	个特本》
(10)	X、、、、X、初見取自 ママル(A、売)	有顶纹	- M) ~ N(0,1)	1 1 7 7 7 18
	(148)	(52-dà)		

(2)
$$\frac{(n-1)S^{2}}{S^{2}}$$
 ~ $\chi^{2}(n-1)$, χ^{2} 55° 独立 χ^{2} (n-1) , χ^{2} 55° 独立 χ^{2} (n-1) (3) $\frac{\overline{\chi}-h}{S/n}$ ~ χ^{2} (n-1) (4) χ^{2} χ^{2} ~ χ^{2} (n-1) χ^{2} ~ χ^{2} (n-1)

(4)
$$T = \frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} \sim F(m-1, n-1)$$

(b) Kira备注:一定客Xi取自正态总体才有以上分布, 万要记度, 其中UPO、非常重要, 应作为基本库识)

俯题在路

日刘断分布问题

划断亚态分布

一例1一一级XI,Xxx,…,Xn,Xn+1为在自正态总体NLMO为的符本。 X: 九荒Xi , 水:

(1) Xn+1-艾肠外的分布 (2) X1-艾阳从的分布 解

11) Xn+1~ N(M, 52), X~N(M, 52) 文品高Xi 与Xmi 外上,所以Xmi-文服从正态分布 有E(Xn+1-ダ)= EXn+1-Ex=0 $D(X_{mi} - \overline{X}) = DX_{n+1} + D\overline{X} = \overline{D}^* + \frac{\overline{D}^*}{n} = \frac{n+1}{n} \overline{D}^*$ 旗上 Xn+1-X~ N(0, 町の)

(2) 国 X,-又是 X, X,, ..., X, 的线性运输,故 X,-灭 那从正态分布, E(X,-灭)=EX,-Ex=µ-µ=0 下面录 X,-灭的方差。

(it) $X_1 - \bar{X} = X_1 - \frac{1}{n}(X_1 + \dots + X_n) = \frac{n-1}{n}X_1 - \frac{1}{n}X_2 - \dots - \frac{1}{n}X_n$ Figh $D(X_1 - \bar{X}) = D(\frac{n-1}{n}X_1 - \frac{1}{n}X_2 - \dots - \frac{1}{n}X_n)$ $= \left[\left(\frac{n-1}{n} \right)^2 + (n-1) \frac{1}{n^2} \right] \sigma^2 = \frac{n-1}{n} \sigma^2$

 $(3h=7) D(x,-\overline{x}) = Dx, + D\overline{x} - 2cev(x,,\overline{x})$ $= 5^2 + \frac{5^2}{n} - 2x \frac{5^2}{n} = \frac{n-1}{n} 5^2$

其中国X, 5 x2, ..., Xn 均相互独立, 所以 COV (X1, X) = COV (X1, , ti x1+ ti X2+...+ ti xn)

 $= cov (x_i, \pi X_i) = \pi cov (x_i, X_i) = \frac{1}{n} Dx_i = \frac{5}{n}$

強主 X1-ヌ ~N10, かりが)

Δ

⇒ kira看注:

- ① 这是一道非常深刻的时题、必须掌握话论"有限了相对加速正存,随机变量的议性函数的那从正存分布",因而将不分布的问题简化为求 Ex和 Dx 的问题
- - 包的中求方差的两种方法。法一是彻底拆开文珠术法、将文视为整体系术、都可信存。

到新三大排斥分布 □ 考试十分像考的送分颜,安注意,把作三种分布的特征 ★① 70 分介: 平方和 ★② 七分布: 正态/研 ★② 下分析: 平方和 平方和

- 上分布, 自由度为和的顶数相同, 有管分程程 协作业态, 自由度 n有没有拿纸, 谷界都是明摆着的 1到式了片是表面功夫(当然,这点基本功安有)
 - ▲ P.S. 关于七分布的心机考记: 当分母年为办仅为一项时,整个式子会生现的 正态分布 的形式, 有特级划服从于七川

-真販 2no1 数- 三 5 ----

设态体 X 服从于正态分布 N (0,2°),而 X,…,X,来自高体 X 的简单随机将本,则随机变量 Y= Xi+…+Xi; 服从一份, 考数为 ____.

心机]

可加强的一样: ~ NOOD , 为日子的种, 这即推服从下(10.5)

 $\lambda = \frac{\left[\left(\frac{x_{1}}{2} \right)_{1}^{2} + \dots + \left(\frac{x_{1}}{2} \right)_{1}^{2} \right] / 10}{\left[\left(\frac{x_{1}}{2} \right)_{1}^{2} + \dots + \left(\frac{x_{1}}{2} \right)_{1}^{2} \right] / 2} = \frac{x_{1}^{2} + \dots + x_{10}^{2}}{2(x_{1}^{2} + \dots + x_{10}^{2})} \sim \int_{10^{2} \text{ s}} \left[10^{2} \text{ s} \right]$

塚忠 填 F3 (10.5)

— 真颜 zoiy 卷b = 8 ——

设义, Xx, Xx 为来自业态总体》10,5°)的简单随机样本,则统计量S=—Xx,-Xx 那从的分布为.

A. F(1,1) B. F(2,1) Ct(1) D. t(2)

【分析】

一园默,连个平方都没有,A.B.直接排除,伦敦上面Pins

三流计量数学期望与多差计算

一熟记席用统计量写法,P14下36个特征函数。 P15 2°分析作质、做题化杂化去逃不做产品图。 同时军把特征函数计算的功底打牢。(P87件质) 例2——例2——"以对牛"

设x,xx,…,Xx,是车目的体XxXin的件本,又是样本烟值,求E(x)与D(x).

确: EX = n. DX = 2n所以 $E\bar{X} = EX = n$, $D\bar{X} = \frac{D^2}{10} = \frac{2n}{10} = \frac{n}{1}$. *

(于 kira 始注:此题者似简单, 实则犯容易厚, 概念:文。 含物都不行. 0 X, X, X。是外目流体 X-Xin)"的样子,是说 Xi ~ Xin),目由度为佛数巾, 对Xin 不需要自平方了 ② D京= 异石剂中的 n是指样子含度10. 与自由的 已分不复说)

- 復駒2010 数三. 14 ----

没 X1, X2, …, Xn 是独成体 N(M, 5°) (0>0)的简单随机样本, 记视计量T=抗毒Xi*,则ET=一.

[分析]
ET=E(大高Xi)= 大高EXi=六高[DX:+LEXi)]=大高[o+yi]
= 5+yi(日本氧内容都只是形式复东,本质都是老东西,十分单化)

- 真騒2011 巻= 8 ----

设总体服从参数为入(1)20)的泊松分布,X1,11,12(1)20)为其自该总体的简单随机样本,则对于流计量Tintalishi的方面,是Xi+方知,有

(A) ET. > ET. , DT. > DT. < DT

 $X \sim P(\lambda)$ 所以 $EX = \lambda$, $DX = \lambda$, 由 $X_i \stackrel{\text{in}}{\sim} P(\lambda)$ $ET_i = E(\overline{X}) = \lambda$, $DT_i = D\overline{X} = \widehat{R}$ $\overline{R} = E(\overline{A} \stackrel{\text{in}}{\sim} X_i) + E(\overline{A} X_n) = \lambda + \widehat{R}$ $DT_i = D \stackrel{\text{in}}{\sim} X_i) + D(\overline{A} X_n) = \widehat{R}_i + \widehat{R}_i$ $DT_i = D \stackrel{\text{in}}{\sim} X_i) + D(\overline{A} X_n) = \widehat{R}_i + \widehat{R}_i$ $TY(\lambda) = T_i < ET_i = i$, $DT_i < DT_i = i$

(日本)的海注:1效的此题的前提是准的油粉的等常见了种的特征函数区X DX. ②大层Xi 和广层Xin 都是x, 和间用区和区公式, R是样子量不同; 尤知·R是福加维Xi 的系数而已, 利用 EX 和DX 的运算性质来求解)

一 复题2001 数= 12——
设态体×服从正态分析N(M,5°)(5>0),从该总体中排取
简单通机符车X,X,、、X, Ln>>), 样本均值文= 古言Xi,
求化计量Y= 5(Xi+Xn+i-2x)*的数学期望EY.
辅:

(次一) (古巴村当全打开) (入刊末記) Y= 富 (X:+ Xn+:-2文) = 富 (X:+ Xn+:+4文 +2X: Xn+:-4x:文) = 富 X: +> 富 Xi Xn+: -4n X' EY = 富 E(X:) +2 富 EX: EXn+: -4n E(X) = 50 (2+ N3)+ 50 h5-40 (10 + N3) = 5(0-1) 2,

一在以上多强中间到了: $\begin{cases} \cdot \sum_{i=1}^{n} (|X_i|^2 + X_{n+i}) = \sum_{i=1}^{n} |X_i|; \\ \cdot \sum_{i=1}^{n} (4|X_i|\overline{X}| + 4|X_{n+i}|\overline{X}|) = 4\overline{X} \sum_{i=1}^{n} |X_i|; \\ \cdot \sum_{i=1}^{n} (4|X_i|^2 + 4|X_{n+i}|\overline{X}|) = 4\overline{X} \sum_{i=1}^{n} |X_i|; \\ \cdot \sum_{i=1}^{n} (4|X_i|^2 + 4|X_{n+i}|^2) = 4\overline{X} \sum_{i=1}^{n} |X_i|; \\ \cdot \sum_{i=1}^{n} (4|X_i|^2 + 4|X_{n+i}|\overline{X}|) = 4\overline{X} \sum_{i=1}^{n} |X_i|; \\ \cdot \sum_{i=1}^{n} (4|X_i|^2 + 4|X_{n+i}|\overline{X}|) = 4\overline{X} \sum_{i=1}^{n} |X_i|; \\ \cdot \sum_{i=1}^{n} (4|X_i|^2 + 4|X_{n+i}|\overline{X}|) = 4\overline{X} \sum_{i=1}^{n} |X_i|; \\ \cdot \sum_{i=1}^{n} (4|X_i|^2 + 4|X_{n+i}|\overline{X}|) = 4\overline{X} \sum_{i=1}^{n} |X_i|; \\ \cdot \sum_{i=1}^{n} (4|X_i|^2 + 4|X_{n+i}|\overline{X}|) = 4\overline{X} \sum_{i=1}^{n} |X_i|; \\ \cdot \sum_{i=1}^{n} (4|X_i|^2 + 4|X_{n+i}|\overline{X}|) = 4\overline{X} \sum_{i=1}^{n} |X_i|; \\ \cdot \sum_{i=1}^{n} |X_i|^2 + 4|X_i|^2 + 4|X_$ (医含在高和管闭灵活变换,电明自xi和Xmi多自的角色)

(法二)(观察,大胆猜测,构造新样本)(推私) JELLX1+Xn+1),(X2+Xn+2),~,(Xn+Xn+i)有成取自志7本 N12/11, 26)的简单随机特本. 样中均值 大荒(X·+X·+1)=2x 特本3差 前点 (Xi+ Xmi - 2及) ≥= 元 Thrux EY= $(n-1) E(\frac{Y}{n-1}) = (n-1) \cdot 25^2 = 2(n-1) 5^2$

一定学也的比部分, 需深刻推解称之间分布(mx1,..., xm 的关系) 深刻招解各统计量真正内涵及从(即文,5°等) 热你运用 EX和DX的边军性质(如线性性等) ● 旅游游的都般解3、孩有的自治电视有3. 做勘慢慢来,沉闷气,肯只能走纸.

胃最后,我们回到Ping 「Kinn挑战的问题

- 1. P113-P114 2. P11473 3. P116.

第七章教化计

A 序降息,

P126-P127 对这估计的带实例全到析 P130 "你好你就能像净度中的超举"中中 P132 估计值的估计量 · Kira前言:

门星

自然从考试做题际间来说,本年需要学的新内房仅是 关于估计的一些概念和到式方法,关键等法处在于 之前年节的特征感数计算,抽样分析计算,本年对数二 每项较低,了解考数的总估计,估计量和估计值的概念, 等程处估计法和最大似默估计法即可,而数一还需3解 估订量的无门高性,有效性和一致性,并会验证估计量的 无价性(算期里)

基础概念各必备常识

日点,757 (法一下这个概念并推解)

设总体X的分布函数为F1x;的,其中0是一个水和参数。(X,,...,X_1)是取信体X的一个样本.由样本构造一个核计量了(x,,...,X_1)作为参数0的估计,则初级计量下为6的估计量,记为6=6(x,...,X_1)

②16寸值 如果 (x,x,…,x)是样本的介观察值, 将其代入估计量自中得自(x,,…,x) 以此作为齐和孝敬 B 的近似值,流计中和这个值为齐和孝敬 B的估计值。

图点估计 建二个化计量作为未知参数的的估计量。并以相应观察值作为未知参数估计值的问题,初为参数的点估计问题。

以特本矩升估计点体矩.

-125-

坟义:

设定体文分布中有反个未知参数目,及,一及。, 人及。, 人名, 人名, 人名, 是来自总体义的样本,如身义的原点, 经巨义(12)1676人。全特本发展等于流体处。

所号 ら=の(x,…x,) (l=1,1,…k)

从一阶难到到附始,一次上个方限 如,一次上个方限 一种从个手知见 全解故

(by Kirn X Bib Bil):

总作知 EX 是大自然的"是这个世界上的房观不在"一定是真实的、特的;而将才是我们从整体中抽出来的,加州并及其物运的统计量不可能反映总、体的全部信息。 尤言Xi"是估计量,不是真的,是粗略的

→ 越热打铁,我们闭一道例题翻译一下上面"礼以槽"的定义:

- Bil 1-

没流体X的概率密度的 fix)={ \$e^{-x-4}, x>u, B>o , 其te

其中参数从,包均不知,长,…,为对自己体上的样本。 作从,包约估计量。

[Kira 13th]

每本页上3页义的讲法来描述比较,即为"没底体x分布中有~厂办知考查儿和》 , (x,, ..., xn)是有底体的样本,会样本知得当底体处即

 $\begin{cases} \frac{1}{\pi} \sum_{i=1}^{n} X_{i} = EX & 0 \\ \frac{1}{\pi} \sum_{i=1}^{n} X_{i}^{2} = EX^{2} & 0 \end{cases}$

· 游数五百两边 闪步排序如3]? 前肾 $\left\{ \hat{\theta} = \hat{\theta}(X_1, \dots, X_n) \right\}$

[成义移对诗完毕,有有稍微形象-些亡)

▲ KING 有注: 求纯估订的问题,有MT未知者数,就到 门方程,我到九阶轮;多数考题只有一个未知考制员 MUR 用EX= 片层Xi这一个方程就够了.

解:用小老的样子的短节 用从先示将本二阶矩 元篇Xi 由题, 闭样序矩对探心体矩 $\begin{cases} \mu_1 = EX = \int_{\mu}^{+\infty} x \frac{1}{6} e^{-\frac{x-\mu}{6}} dx = \mu + 0 \\ \mu_2 = EX^2 = \int_{\mu}^{+\infty} x^2 \cdot f e^{-\frac{x-\mu}{6}} dx = \mu^2 + 2\mu o + 20^2 \end{cases}$

> > N=11.- [12-11. , 0= [12-11. 用桥本-阶轮--阶轮分别猎孩从小人

 $\hat{b} = \frac{1}{\pi} \sum_{i=1}^{n} \chi_{i}^{*} - \overline{\chi}^{*}$

奺

→ kirn 梳准:

撸-下此处用的知识①列式,定义,我私侧,海丽芹 你们看相评的一遍,应该每个人都能get到公到了~ ○计算总体矩 EX. CX2. 用第四年知识,视从中为岸数.

日前人和1的二元次为指排,两中报能

用将本头色换掉小小小,种有老师中会,独定了)

最大似然估计 (我觉得这真的是一种非磷聪明的方法?~~~)

属散型烧作X~P(x,0),样本X,…,从的相样子观察值* オ·、ス·、··· オn、が Lio)=P{X·=x·、···、 キャニスn }= ボア(xi, は) (日日日本海) 为将本X,…,X,的1以然函数.

| 连层型 总对 X~ f(x, p), 将 + X, … 为 的一组将 中观繁殖的 31、32、···, 74、粉上10)= 点 f (な, 10) 为 将 本 X, ··· X In 似肌函数.

売の=自(x,,…, xn)投售L(色)= max L(色)、別がも=の(x1,-xn) 为自的最大似既估计值,相应的流行是自二自(x),一,X)和为 的最大观点估计量。

₩ kin 解解:

最大似然估计的想法是,从总体中抽取样本的试验E 有很多种可能的信息,我随便抽样本,偏偏就抽中? A这组将本则我们有理由认为A省出的概率最大 以此为前提,我们作估计的部局,我的一个日的直, 仅A这组科本出现的概率最大

(羽题后面细说)

mnmg.

国务数点估计的许选标准

▶ 充备性 芳E(百)=0,则附6岁0的无偏估计量.

(注) 冒的无偏估计量不明一图 又是政的无偏估计 -128-

③ 5 7 是总体方式的利益估计 ④ 特本像总统元言以"是总体相处像总统已X"的 礼偏一致估计

有效性对对自的两个无格估计量点,成,考对代意日色的。 用DIE()←D(n),且子り对某-170←回有不符号成立, 则称自此的有效。(无偏前提下才比较有效性)。

▶【相合性】 港区信棚率的知到日,则积分的阳台估计量。

俯随意路

一常见题型依次如下: (一. 求总.体未知参数的知话计。 二. 求最从似思估计 { 离散型总体 连续型总.体

| step1 | 対流は | M=Ex= g(0,00) | M= EX= g(0,00) | M= EX= g(0,00) | Step2 | 万所な落物 の= ん(M,M) の= ん(が, M) | の= ん(ズ, ズ系xi) の= ん(ズ, ズ系xi) |

(过最终信集-庭是阳估计量(样和确值)和标准体务数)

其中日为水为参数且大了零. X., X., ..., X., 如新版件X的简单随机符本.。

办求的知识估计量.

$$\widehat{A} = Ex = \int_{-\infty}^{\infty} x f(x; \theta) dx$$

$$= \int_{0}^{+\infty} x \cdot \frac{1}{x^{3}} e^{-\frac{1}{x}} dx$$

→ 床水水水水像净色的 挺洋,给肛厂伤外机 众,慢慢来~

= 5.to 停) e = dx = 0 From 10 50 50 to to to f f = x , 其中x=元三次

日本最大似然估计

离散型点1本

日分布律写似、思函数 Lie)= Tip(xi,0),再取 G Lio)= 是Inp(xi,0) 水最大值点 O.

(豆 k) 不 备注,其实写 L10)有种写联合分布律的感觉,思路的确足类似的,即写出取得当前该组件不值的概率", 作不同之处和了 L10,1和安全是 0)

其中日(0、6~号)是朴孙参数,利用总体X的机下将本值

3.1.3.0.3.1.3,3年日的最大吸收估计值. 排稿 473 [17] [170] L10)=(1-20)40[20(1-0)]0 = 40 (1-0) 2 (1-20)4

#2 ln L(0) = ln 4+ 6 ln 0+2 ln (1-0) +4/n (1-20) 13 dln L10) = \$ - \frac{2}{1-0} - \frac{2}{1-20} = 0

解得 An = 7±13 (好 0 € Lo. 5). 所以自的最大似思估计为 6= 7-13 &

→ 通信型流体 Juniter 有解 ot diniter 和解 ot diniter 和 和 和 是调性和 值。

真験213 数ーミス 投资体×的概率宽度力
f(x; 0) = { 元 2 - 4 , x>0

其中0岁外和参勤且大了零,从,…,从,为有底1个X的

狗单随加特车

解如求自的最大似然估计量。 设X.. X.... X... 为将本观测值。

 上10)= ガ f(xi; 0) = $\begin{cases} \frac{\partial^2 n}{(x_1 x_2 \cdots x_n)^2} e^{-0 \stackrel{?}{\longrightarrow} \stackrel{?}{\longrightarrow}} \\ (x_1 x_2 \cdots x_n)^2 e^{-0 \stackrel{?}{\longrightarrow} \stackrel{?}{\longrightarrow}} \end{cases}$ で しまれを引かるうじ 小人班、西州大小

提笔写上的=

当x1, x2, ..., Xn 70时, LnL10)=2n LnO-0元十一3三/nxi

所以的最大似然估计量为自二点本

而估计量用文写字图义,是用西加多量表示的。

我们写最大似然估计的 Lie)时,闭到的是将本观训值(xi,…xn),如界最后问的是最大似然估计量-定记得 核大写管用.

(i) kin为注:

- ① 连续型本体写L10)的不要志论X,…,X 的范围、需要根据X, —, X 的范围来确定得到知估计是各符合题表。
- ②求加上10月对对着10岁,把其他信目都下降数。有几种的就写成几次,方便求导。

— 真駒 2000 数- 13——— 设序科元件的包围为邻义的概率强度为 f(x;0) = ≤ 2e-2(x-0), x>0 0 , x≤0

其中日20万年知春数,双效为,加一,不是又到一进样本

现测值, 求参数的最大似然估计值.

当Xi>0, i=1,2,... n的L10)>0.弗对勉得 lnL18)=n/n2-2点(xi-0)

 $\frac{d\ln L(0)}{d\ln L(0)} = 2n > 0.$

所以人10) 年增,更及上10)最大,则日越大越松,但日 1必须满足 日<X;,1三,5,…,10,因此当日取加加(xi,…,xi) 人10) 取最大值,所以日的最大似然估计值为 日=加入(xi,…,xi) 次

() kina 看注: 有的问管一看到 Lie, 单调就觉得天电解了, 其实正是 价格特准设能力大量身子的好机会。 O < Xi Think o 能取到的最大值便是 (Xi,..., x) 和下界, 即min(xi,...,xi) 根据最大从然函数的原理分析。即可。)

到阳阳石油的一

- 真酸 2008 数-.>} ----

设义,从,…, X, 是后体入以, 5°)的简单随机符本。 记文=元层心, 5°=六层(x;-文)*, T=心元5° 山, 证明了是小的无体的才量。 解,

(Him 备注: 到这其本加入有出本年的列式金路都是十分国际的,第四年都信特征,第5年排析分析 161没打字的清往回翻, 像新扎京十二

ラ MP Litk)-knp'=np'

5°是高格 方光的元 伊格什

(D) kina信信: 德计每年四名一大颇,我配支生也是统计, 很多问学觉得做得和顺子,我认为问题主要出版。一是概念不清,且不说估计部分相对复东的概念,即便是流体,在不说计算这些基本概念,很多人到最后也没搞明白, 有题不犯标准呢;一是计算的, 压入有格的一个, 就有自信判断。考前各以管准以第四年的路方有的性质、公式为做流行大题打下空实表证里

附录:

你物期间你概然性深

(可借路:关注品,详与略,逻辑框架,不写版话)

(*注:看在进机动力一起,可以激发很多思考,想明白很多东西;

PS. 我壮脑集和上方曾这样写道:

記入 [⊙]√[⊙]

概然植华思路、秦路》(针对142)频应崩点)

第一年随机争けち棚件/

- 随机导行、运算律:(1)交换律(1)结合律 ▲ (3) /3配律 AU(BNC), AN(BUC), AN(B-C) ▲ (4) De. Morgan AUB = ĀNB; ĀNB = ĀUB

一次 kira 店期批注:

构造记建议根据目对情况许路得当来写,以一定之行为例, (1)()为常识, 不必具体写的式,(1) 我有赔了"="

龙边的部分,因为我的关注总是哪些情形可以同分配得, 为边自动信献可以了, (1) 我并没有从A,写到 An, 彻只以 A. B代表, 因为"道不变"

农社的情况过,为3电水"完整"项写,是在制造垃圾时间。

(PS. 微) | 图 e Kin 言而信, 搜索支键信"完建",即可查看我于2016.11.12 发节的微博, 图1是辅导书的完整版, 大家可更氧观感侵做坚强的处理方式~)

三. 常用售价度型

S. A-B = A-AB(化原系) = AB 2. AUB = AUAB = BUAB = ABUABUAB (1227) 3. A= AB.U AB.U "UAB" 49 AABUAB

三、常闲排导

1 BEA & B=AB.

* PLBIA)和PLAB>的区别: 科本公司不同

五.事行孤之性有关的题

1 PE1011. 多开办独立、独立不至开.

2. A.B.c 及相独之 > A与 Bc和, 关、积 独之.

3. AB MAZ (= PCB) = PCBIA) = PCBIA) (克要条件;在1201年)等号成之即可!)

力 事等组合公式:

差 Cni Cn = Cn+n (上面相切, 下面も相切)

第二年一维随本设量及其分布 高報x < P(x=a)= F(a)- F(a-0)
高報x < P(axx=b) = F(b)-F(a) 连读×〈住意品处P为01万则一定不连读) F(x)在(-10,+10)连读 ,分种函都附质相关考点: 韩周不液,0-1之7间,右连镇 (2) 协作强度 通 fix = { gix), a excb , else , else , x ca # f(x)= {= 万年不住的 协和格为 (*分析函数随fix)的分较而分段) 3.一得随机变量函数的分布 启教型: P{Y=y}=P{X=x}+P{X=x}+··+P{x=x;} (列公务值对社关系是 土) ▲连续型(O研定Y不为O的区间,把下约=0.下约=1.56份 ③求导得 fry)

· BMOM ·

- y=g(x) {再增, 下函数存在→下x (g¹(y)) (部将下函数y的专述式底进 反射阻).
- 冠。原题论长以,水长少,可知用下,万倍长 关于大的表达式
 - @ Y= min {x, ≥} Box Y= {x 那表成通俗的函数.

第二年 多位随机变量及其分布

源述: 三个分中。一个联合、边缘、条件)有个分种体、分种多数和机等家货。

(* 年图性,有界性To.门,本苗侯,种(关)的野人高和型 {分种群的 F(x=xi, Y=xi)= 户;

连读型 新分服净原度 (-p(xx)的} 間以)的

分种函数 Fix,y)= [2] Ly fu,v) dudv

KINA看注 1: 她介以了6日这儿 X+Y71世傳!

2. (逐行)边缘分布 (有一件边饵的质, 但存版和分准方面) · Tx(x)=F(x,+10), 张乡进为联

唐都型 {分布律:如关于X.P.=字阶(把)全班) 分和函数:Fx(X)= 流 Pi·

道溪型 我们 fx(x)= stop fix,y) dx

| Fx(x)= 「なないが必 | Fx(x)= 「なないが必 | Fy(y)= 」ン fy(y) dy

3. 条件分析 公视力为条件, 研究与一设置, 高物型 {分析律 P{Y=y; |X=X;}= Pi; (j=1,2,11) 分析函数

国家X=x··广义 仅限写了! 干酪等了! (現場 frix lyix)= f(x,y) 直接を fxlx)

あ今神色樹 Frix Lyix)=P{r∈xiX∈x} = J-r frix (xix) dx

安虽然很质But: (一一我的原话……)

 $f(x,y) = \frac{1}{2715.62\sqrt{1-p^2}} \exp \left\{ -\frac{1}{2(1-p^2)} \left[\frac{(x-\mu)^2}{61^2} - 2p \frac{(x-\mu)(x-\mu)}{6162} + \frac{1y-\mu y^2}{61^2} \right] \right\}$

其中. M.M., 51, 51, 19時数,且pe(-1,1), 6,>0,62>0, 科 LX, Y) 那八小旗正在分布, 行(X,Y)~N/M, M., 51,62,1) 世路 X~N/M, 51), Y~N(M,52), X, Y独社今p=0. 三的脚套路

1. 问是否的联合分析选数: 考虑 审调,有屏, 力违法 (Fix+o,y)= Fix,y), 对质 闹贼) p.s. 此处非负即 P(x,≤X∈X≥, y,≤Y≤X)=F(x,,y,)-F(x,,x,)-F(x,,x,)+K,,,

三水水和发物(高部型 IPij=1 (利用规范性)(通信型 J型J型 fixy) dx dy=1

(D Be Brave P部子克服二阶积分早自信息)

河流。第次积分积分限 一部级,已知分布律 图描出所有取值的 为流。第次积分积分限 图面了下汉时, 图面了下汉时, 图面层注点, 的 证 图 有层注点, 的 正 阶

连续、已和打Xxxxx 中国的原域 (用边济该将该面创) 中国了区域 Fixxxx [*ds [*yfistudt

生球股份分布律(龙闲题)

5. 建联合分布, PAP 边缘分布或各个分布等标件。

}· 由分布得。 P{x=xi, Y=yi}=P{Y=yi|X=xi}P{x=xi}

· 由磁度 f(x,y)=fxxx(xxx)fx(y)=fxxx(xxx)tx(x)

过过该分种,已知联合分布

山联合分布函数 Tx(x)=F(x,+m)
 由联合分布得: Pi·= FPi
 由联合宏後: tx(x)= /the f(x,y) dy

□ 题目给的什么联合(分布函数/·得/·原度) 就直接求什么世俗(分布函数/·律/·原度)

了、求好行分介、已知我多分介

 $\{\cdot$ 由分种律 $P\{Y=Yi\mid X=xi\}=$ P[X=Xi,Y=Xi]· 油密度 $f_{XiY}(xiy)=\frac{f(x,y)}{f_{Yiy}}$

图 求别是达式酬明的付值成分最终结束 ("特别地")

8. 独创到到

* fix, 与giY, 独主 \$ x5下独之 L例如·x2573独之但x5个不为从之(医和值区域限例))]

对9. 随机设置函数的概率分布

①高物型 {· 园影响定之全部可能取值及相对。 、以当了独立、P{x+Y=K}=Pokx+Pokx+1666。 (名形成式)

② ▲ 连续型 (公式话)

四分种函数活找亚烟流震度交集GND,再二京积分。 图用卷积公式最简洁、治沟流形分限。

1. 分, 光, 就, 陶 のU=X+Y: fulu)= 「the flx, U-x)dx L四类, 形式必须标准!) のV=X-Y: fulu)= 「the flx, x-v)dx のW=X/Y: fwlw)= 「the ly 1 flyw, y) dy も そ= XY: f2(3)= 「the y fly, y) dy

· KITA/AARMZVA:

利用常指111. 以0为例U=X+Y, 移项即行 Y=U-X, 潜板 打x以中y的位置,即有 f(x,u-x), 图由机削陶补1y1和1实即了~

MM 电排作步骤及冷息,事质.

- 1. 多面膀轴.
- 2. 148/2 \$ 06861, 16862, else.
 - 为最后表达代只有了,范围中世界有了

2° 其他的数

- ① 连缘U-fin, 高数X=从(U), Y=g(U), X确定(X, Y)病
 P{X=Xi, Y=Xi}= Soi, finidu
 - 弱先写的(xxxx)分钟取值,p{x=, Y=]=p{U=, U=]=p{U=}} 最近此成仅承山的问题。

関型駆動 x= {゚, 当u... Y= {゚, 当u...

- ② -铜芭绿山、V- fiu.V), 离构X=ん(U,V), Y=g(U,V),
 - 和 p[x=, Y=]=p[某LU,V)=]=] = Jl fru,v) dudv
- 图(X,Y)-fixy), 末是=g(x)的物种函数法 图把(X,Y)额链和及,来以有xxxxdx
- (A) (X, Y) f(X, y), 就是= ax+bY , ab+o 心则是-引起) f2(12) = [the right] (1-by , x) dy · 用b.

(P.S. 当 a.1 时会排路好用。)

3° 再其他不犹豫,用分种函黏沿.

10. 离散型 X 和连续型 Y 函数的分布

(成 X. Y 加至:全服化式 + 加到生: 大大陶设新城市 苏不独至(不考施)

11. 有限了姐区独之X; 最大,最小值分布。

○ X.. Xx… Xn が称と) 同りも不申
 {・ max : fx(y) = [f(y)]ⁿ
 ・ min : fe(3) = 1-[1-f(y)]ⁿ

院四年数多特征

多想,利用公式附化计算」

"选定一种方法走下去,没有可不可以飞到,看取了!」

回绵亚

fi) O E(c)=c . E(ax+b)=aE(x)+b 别域的

3. 方光.

DIX) = E[X-E(X)] = EX-(EX) ={腐韵 [[xi-Eixj]*pi 过侯 [# [x-Eixj]*findx

 Φ D(ax+b) = a^2 D(x).

D(X+Y) = DX+DY+2 WOVLX, Y)

B X, Y 3出と > D(XY) = D(X) D(Y)+D(X)(とり), +D人(をX),

@ C≠ELXT,有 DX<ELX-C) (其中c力库数).

强闭 相目分析 $EX = \frac{a+b}{2}$, $DX = \frac{(b-a)^2}{12}$

3. t办元 E[(x-Ex)(Y-EY)]=(av(x,Y)=E(xY)-EXEY)
① cov(aX+b,cY+d)= ac cov(x,Y)
② [con(x,Y)]* = bxbf

▲ LX, TI服从二维亚态分布 or 0-1分平则 X5下不相关 ⇔X5下相互独立。

4. 切比雪夫不喝礼 ON V 570, p{1x-11>2} = 公 or p[1x-11<2] > 1-22 一 kira 助记: · " 2 "是本命 , 为 E = 同 答 · 看到 < 别扭 , 所以 1- 祭

三瓣题思路。 小球EX, DX (高額 〈愛看的函数 连续 〈(同4)

> EX. DX (一班 三维 (连侯: 五和必须度分布, 利用公?) 高额: 光阴度分布

一个话泡:X~N(O,O) X的内所点头包 ELX") = { (n-1)!! 0", n为离勤

如: ① E[(x+Y))] 先陷升, 再求解.

OE[IX-TI] 积分,注意用y=x分区

Z. Je max, min \$0 ET. DY Frish = frish > SEX = J-10 > frish dy => DY

X, Y 湖南河南南于 N(N,5) 求 max (x, Y), min (x,))

· 闲以下好别的为话。 「OU= 一, V= 一, U, V~ N(0,1)

② max {x, Y} = 5 max {U, Y}+ /1 ③ max {U, V} = \$1 U+V+1 U-V1) ④ U-V ~ N(0,2) ⑤ E(1U-V1) = \$-10 131 f(x) d3 "內用-处形的"

(B) min {x, Y} = x+ } - max {x, Y}

能心理到罗

第3年大数庭律和中心般限庭性.

 $\frac{A \frac{1}{12} \frac{1}{1$

2.大粒定律 ① +切: "X;防防无关"+"DX;了x私"+"DX;有坏"→式zX; 二元(x) 加入 { @ 字: "X; 心 F" + "E(Xx)=µ"→式zX; 二,µ; ③ 伯: n以伯昭利试验中 Mn(次数), p(根), p)

3.中心地限原理 が一葉: X., …, X. ご F(M, 02) ⇒ E, Xk~ N(n M, no") 根: X., …, Xm ご B(1,p) ⇒ E, Xk~ N(np, np(rp))

[] 为i和对引 1. #p P {1 Yn-0| > 2} = P { Y ≤ n- c } + P { Y > a+ c } = P { X, > ...} · P { Xx > ...} · P { Xx > ...} = f(c) → 0

· 未粉粉已和 · 未净饱时值

第方章 中的符合布

|
$$\Sigma$$
 | Σ | Σ

3 Fimin, 137p U~ Xim, V= Xin, U, V 独立, 和 T= U/m ~ T(m,n)

4. 正成的技術订覧がす ① す~ ル(p, 気) ② (n-1)ら、ハス(n-1) 、 又もら、独立

$$\frac{\overline{X} - \mu}{s/\sqrt{n}} \sim t(n-1)$$

$$\frac{\overline{X} - \mu}{s/\sqrt{n}} \sim t(n-1)$$

$$f = \frac{s_i^2/\sigma_i^2}{s_i^2/\sigma_i^2} \sim f(m-1, n-1)$$

厂 为话抽乃

少约的分布。有那个相互独立同服从正态分布的变量的。
该性函数仍服从正态分布。

2. 计算统计量均值3差

用以下结论:
$$E\bar{\chi} = \mu$$
. $ES^2 = 0^{\circ}$, $E\chi^2 = n$. $D\bar{\chi}^2 = \frac{204}{n-1}$, $D\chi^2 = 2n$. [顯中间語紹公與今整理]

第七年 考数估计

回版地 本役しの最大的の= f(x,…,x)

□为汤扬的 <u>▲ 萨·伊·科知 参勒 和 天巨估计</u> 0., 0.

◆ 两个未知考数 ① 求总体矩 (EX=,从=g,(0,,0x) + EX=,从=g>(0,,0x) ② 下瓣, O1=h,(从-,从2), B2=h,(从1,从1) ③ 祥根:用又种大工X: 潜板从,从1

2. 求最大似然估计

海镇: 用户(xi, b) 若利明星分布律,用含义,避免形成的 这镇: 用于(xi, b),利用(n L/b) { d(n L/b) 有) 有) 人 d(n L/b) 元前,重响性

<u>元证相合性</u>

·估计量写样就色函数,则一类物能的函数10%)