

Evaluating Machine Learning for Forecasting Key Clinical Trial Performance Metrics

Turing - Roche Knowledge Share Series: Al in Clinical Trials

Kevin Wu, PhD Student, Stanford University Eric Wu, PhD Student, Stanford University James Zou, Assistant Professor of Biomedical Data Science, Stanford University Nandini Chitale, Data Scientist, Genentech/Roche Michael DAndrea, Principal Data Scientist, Genentech/Roche

Agenda

- Roche/Genentech Stanford
 Partnership
 - . Measuring Operational Efficiency
 - 3. Data
 - 4. Methods
- 5. Results
- 6. Discussion and Conclusion

AI for Health Partnership between Genentech/Roche and Stanford

Goal: develop ML/AI to make clinical trials more effective and to improve precision medicine.

Liu et al. Nature 2021

Article | Published: 07 April 2021

Evaluating eligibility criteria of oncology trials using real-world data and Al

Ruishan Liu, Shemra Rizzo, Samuel Whipple, Navdeep Pal, Arturo Lopez Pineda, Michael Lu, Brandon Arnieri, Ying Lu, William Capra, Ryan Copping № & James Zou ☑

Nature 592, 629–633(2021) | Cite this article

Liu et al. Nature Medicine 2022

Measuring Operational Efficiency

Patient Recruitment

Trial Duration

Data

2,051

Completed trials

2009-2020

Range of starting dates

219

Unique indications

Experimental design Details of Study planned phase procedures # of Therapeutic eligibility area Operational eriteria features # of endpoints

On average per trial:

15.3 exclusion criteria

3.9 countries

Methods

Goal

Predict operational efficiency of clinical trials using only **operational features** defined before the trial.

Method: We developed a separate model for each of the **six** operational efficiency metrics:

- → Screen failure ratio
- → Dropout ratio
- → Pre-enrollment duration
- → Enrollment duration
- → Overall trial duration

Methods

Model

We used a **tree-based regression** model (LightGBM) trained with *quantile loss* produce **90% prediction intervals.**

Methods

Evaluation

We use concordance index (**c-index**) to measure the quality of our predictions

Concordance Index

A c-index of **1** indicates the model can correctly predict the order of all of the true labels. Conversely a c-index of **0.5** indicates the model does no better than random.

$$c = \frac{\sum_{i \in U} \left\{ \sum_{T_j > T_i} 1_{f_j > f_i} \right\}}{\sum_{i \in U} \left\{ \sum_{T_j > T_i} 1 \right\}}$$

where U: a set of uncensored data T_i : an observed survival time of sample i f_i : a predicted survival time of sample i $1_{a>b}$: 1 if a>b, and 0 otherwise.

We present the ability to predict operational efficiency through **four analysis**:

- 1. Across therapeutic area and study phase
- 2. Across **drug names**
- 3. Across **years**
- 4. Prediction **R**² and Mean Absolute Error (**MAE**)

Prediction across... therapeutic area and study phase

	Overall	Therapeutic area (C-index)				Study phase (C-index)			
Efficiency metric	C-index	120	Neuroscience	Oncology	Other	1	II	III	IV
Screen failure ratio	0.801	0.795	0.765	0.789	0.808	0.622	0.788	0.802	0.771
Dropout ratio	0.791	0.750	0.651	0.715	1.000	0.784	0.801	0.804	0.771
Pre-enrollment duration	0.705	0.724	0.635	0.611	0.687	0.675	0.565	0.587	0.597
Enrollment duration	0.706	0.680	0.709	0.683	0.672	0.764	0.692	0.647	0.609
Trial duration	0.728	0.644	0.766	0.624	0.756	0.808	0.656	0.610	0.666
Average	0.746	0.719	0.705	0.684	0.784	0.731	0.700	0.690	0.683

Prediction across... **drug names**

Validation on unseen Roche drugs (C-index)	Training drug set (N = 339)	Testing drug set (N = 359)	
Screen failure ratio	0.781	0.712	
Dropout ratio	0.757	0.738	
Pre-enrollment delay	0.674	0.634	
Enrollment duration	0.673	0.665	
Trial duration	0.699	0.679	
Average across metrics	0.717	0.686	

Prediction across... **years**

Validation across time (C-index)	Trials completed 2009–2012 (N = 439)	Trials completed 2012–2020 (N = 376)
Screen failure ratio	0.742	0.726
Dropout ratio	0.630	0.682
Pre-enrollment delay	0.673	0.680
Enrollment duration	0.711	0.669
Study duration	0.704	0.717
Average	0.692	0.695

Additional analyses:

- 1. Evaluation of **prediction intervals**
- **2. Interpretation** of model results

Evaluation of **prediction intervals**

Dot contained within shaded region -> model prediction interval contains true value

X-axis: Samples in order of prediction interval width, Y-axis: Metric (Mean-centered)

Interpretation of model results

Feature importances of the tree-based model

- Patient enrollment is a large scaling factor for operational efficiency
- 2. Eligibility criteria and endpoints may influence operational efficiency
- **3. Procedures** across a variety of categories collectively influence model predictions

Operational Efficiency Metric

Interpretation of model results

How does each **individual operational feature** effect efficiency?

→ Train a linear regression on the data and report coefficients

Trial Operational Feature	Screen Failure Ratio	Dropout Ratio	Pre-Enrollment Duration	Enrollment Duration	Study Duration
Num Primary Endpoints	0.0064 **	ns	ns	ns	ns
Num Secondary Endpoints	0.0046 ***	ns	ns	-7.2121 **	ns
Number Planned Countries	0.0036 ***	ns	1.2799 **	-7.9442 ***	10.2753 **
Num Eligibility Criteria	ns	ns	ns	1.5514 *	ns
Num Planned Examination Procedures	ns	0.0114 **	ns	ns	ns
Num Planned Non-Core Procedures	-0.0029 *	ns	ns	ns	ns
Num Unique Planned Visits	ns	0.0024 ***	-0.2941 *	0.9518 *	3.7001 ***
Planned Patient Enrollment	ns	ns	ns	0.0164 **	ns

Discussion

- Ability to predict operational complexity robust to therapeutic area, phase, drug, and year
- Screening success and dropout ratio is most easily predicted
- ➤ Individual features have significant correlations with operational efficiency outcomes

Acknowledgements

Roche

Michael DAndrea

Nandini Chitale

Melody Lim

Marek Dabrowski

Klaudia Kantor

Hanoor Rangi

Marius Garmhausen

Navdeep Pal

Chris Harbron

Shemra Rizzo

Ryan Copping

Stanford

James Zou

Kevin Wu

Eric Wu

Ruishan Liu

