Quasi-Newton

Nonlinear Systems II: Multiple Variables

CS 205A:

Mathematical Methods for Robotics, Vision, and Graphics

Justin Solomon

Today's Root Problems

Quasi-Newton

$$f:\mathbb{R}^n \to \mathbb{R}^m$$

One Easy Instance

$$f(\vec{x}) = A\vec{x} - \vec{b}$$

Multivariable Roots

0.00

Usual Assumption

Quasi-Newton

$$f: \mathbb{R}^n \to \mathbb{R}^m$$
$$\longrightarrow n \ge m$$

Quasi-Newton

Jacobian

$$(Df)_{ij} \equiv \frac{\partial f_i}{\partial x_j}$$

Multivariable Roots

Jacobian

Quasi-Newton

$$(Df)_{ij} \equiv \frac{\partial f_i}{\partial x_j}$$

How big is Df for $f: \mathbb{R}^n \to \mathbb{R}^m$?

Multivariable Roots

First-Order Approximation of

Quasi-Newton

$$f: \mathbb{R}^n \to \mathbb{R}^n$$

$$f(\vec{x}) \approx f(\vec{x}_k) + Df(\vec{x}_k) \cdot (\vec{x} - \vec{x}_k)$$

First-Order Approximation of

Quasi-Newton

$$f: \mathbb{R}^n \to \mathbb{R}^n$$

$$f(\vec{x}) \approx f(\vec{x}_k) + Df(\vec{x}_k) \cdot (\vec{x} - \vec{x}_k)$$

Newton's Method:

$$\vec{x}_{k+1} = \vec{x}_k - [Df(\vec{x}_k)]^{-1}f(\vec{x}_k)$$

First-Order Approximation of

Quasi-Newton

$$f: \mathbb{R}^n \to \mathbb{R}^n$$

$$f(\vec{x}) \approx f(\vec{x}_k) + Df(\vec{x}_k) \cdot (\vec{x} - \vec{x}_k)$$

Newton's Method:

$$\vec{x}_{k+1} = \vec{x}_k - [Df(\vec{x}_k)]^{-1}f(\vec{x}_k)$$

Review: Do we explicitly compute $[Df(\vec{x}_k)]^{-1}$?

Convergence Sketch

1. $\vec{x}_{k+1} = g(\vec{x}_k)$ converges when the maximum-magnitude eigenvalue of Dg is less than 1

2. Extend observations about (quadratic) convergence in multiple dimensions

Two Problems

1. Differentiation is hard

Quasi-Newton

Two Problems

1. Differentiation is hard

2. $Df(\vec{x}_k)$ changes every iteration

Extend Secant Method?

Extend Secant Method?

Direct extensions are not obvious:
Not enough data points!

Observation: Directional Derivative

Quasi-Newton

000000000

$$D_{\vec{v}}f = Df \cdot \vec{v}$$

Secant-Like Approximation

$$J \cdot (\vec{x}_k - \vec{x}_{k-1})$$
 $pprox f(\vec{x}_k) - f(\vec{x}_{k-1})$ where $J pprox Df(\vec{x}_k)$

Secant-Like Approximation

$$J \cdot (\vec{x}_k - \vec{x}_{k-1})$$

$$\approx f(\vec{x}_k) - f(\vec{x}_{k-1})$$
 where $J \approx Df(\vec{x}_k)$

"Broyden's Method"

Broyden's Method: Outline

- Maintain current iterate \vec{x}_k and approximation J_k of Jacobian near \vec{x}_k
- Update \vec{x}_k using Newton-like step
- Update J_k using secant-like formula

Deriving the Broyden Step

minimize_{$$J_k$$} $||J_k - J_{k-1}||^2_{\text{Fro}}$
such that $J_k \cdot (\vec{x}_k - \vec{x}_{k-1}) = f(\vec{x}_k) - f(\vec{x}_{k-1})$

Deriving the Broyden Step

minimize_{$$J_k$$} $||J_k - J_{k-1}||^2_{Fro}$
such that $J_k \cdot (\vec{x}_k - \vec{x}_{k-1}) = f(\vec{x}_k) - f(\vec{x}_{k-1})$

$$J_k = J_{k-1} + \frac{(f(\vec{x}_k) - f(\vec{x}_{k-1}) - J_k \cdot \Delta \vec{x})}{\|\vec{x}_k - \vec{x}_{k-1}\|_2^2} (\Delta \vec{x})^{\top}$$

The Newton Step

$$\vec{x}_{k+1} = \vec{x}_k - J_k^{-1} f(\vec{x}_k)$$

• How to initialize J_0 ?

► How to initialize J_0 ? Common choice: $J_0 \equiv I$

► How to initialize J_0 ? Common choice: $J_0 \equiv I$

Long "memory"—bad approximation?

► How to initialize J_0 ? Common choice: $J_0 \equiv I$

Long "memory"—bad approximation? Limited-memory methods

► How to initialize J_0 ? Common choice: $J_0 \equiv I$

Long "memory"—bad approximation? Limited-memory methods

• Still have to invert J_k in each step!

Revisiting the Broyden Step

$$J_k = J_{k-1} + \frac{(f(\vec{x}_k) - f(\vec{x}_{k-1}) - J_k \cdot \Delta \vec{x})}{\|\vec{x}_k - \vec{x}_{k-1}\|_2^2} (\Delta \vec{x})^{\top}$$

Revisiting the Broyden Step

$$J_k = J_{k-1} + \frac{(f(\vec{x}_k) - f(\vec{x}_{k-1}) - J_k \cdot \Delta \vec{x})}{\|\vec{x}_k - \vec{x}_{k-1}\|_2^2} (\Delta \vec{x})^{\top}$$

Simpler form:

$$J_k = J_{k-1} + \vec{u}_k \vec{v}_k^{\top}$$

Sherman-Morrison Formula

$$(A + \vec{u}\vec{v}^{\top})^{-1} = A^{-1} - \frac{A^{-1}\vec{u}\vec{v}^{\top}A^{-1}}{1 + \vec{v}^{\top}A^{-1}\vec{u}}$$

Homework (if I remember): Check this #sorrynotsorry

Broyden Without Inversion

Start with a J_0 for which you know J_0^{-1} (e.g. identity)

• Update J_0^{-1} directly!

Broyden Without Inversion

Start with a J_0 for which you know J_0^{-1} (e.g. identity)

• Update J_0^{-1} directly!

Question: Limited-memory strategy?

Broyden Without Inversion

Start with a J_0 for which you know J_0^{-1} (e.g. identity)

• Update J_0^{-1} directly!

Question: Limited-memory strategy? **Question:** Large-scale strategy?

Automatic Differentiation

Quasi-Newton

$$\left(x, \frac{dx}{dt}\right); \left(y, \frac{dy}{dt}\right) \mapsto$$

$$\left(x + y, \frac{dx}{dt} + \frac{dy}{dt}\right)$$

$$\left(xy, \frac{dx}{dt}y + x\frac{dy}{dt}\right) \quad \left(\frac{x}{y}, \frac{y\frac{dx}{dt} + x\frac{dy}{dt}}{y^2}\right) \dots$$

