Introducción a la Lógica y la Computación

Mariana Badano Héctor Gramaglia Pedro Sánchez Terraf Mauricio Tellechea Guido Ivetta

FaMAF, 5 de noviembre de 2021

Contenidos estimados para hoy

- Repaso
 - Gramáticas libres de contexto
 - Ejemplo en forma Backus-Naur (BNF)
- Lenguaje de una gramática
 - Derivación de palabras
 - Ambigüedad
- Gramáticas regulares
 - Relación con lenguajes regulares
 - De gramáticas a autómatas
 - De autómatas a gramáticas

 $L_{01} := \{0^n 1^n : n \in \mathbb{N}\}$ es **libre de contexto** (¡no regular!).

 $L_{01}:=\{0^n1^n:n\in\mathbb{N}\}$ es libre de contexto (¡no regular!).

$$G = (V, T, P, S)$$

■ Componentes: variables ("no terminales"), alfabeto terminal, reglas ("producciones") y símbolo inicial

 $L_{01}:=\{0^n1^n:n\in\mathbb{N}\}$ es libre de contexto (¡no regular!).

$$G = (V, T, P, S)$$

Componentes: variables ("no terminales"), alfabeto terminal, reglas ("producciones") y símbolo inicial Ejemplo:

$$G_{01} := (\{S\}, \{0, 1\}, \{S \to \epsilon; S \to 0S1\}, S).$$

 $L_{01}:=\{0^n1^n:n\in\mathbb{N}\}$ es libre de contexto (¡no regular!).

$$G = (V, T, P, S)$$

Componentes: variables ("no terminales"), alfabeto terminal, reglas ("producciones") y símbolo inicial Ejemplo:

$$G_{01} := (\{S\}, \{0, 1\}, \{S \to \epsilon; S \to 0S1\}, S).$$

■ **Derivación** usando una CFG: $S \stackrel{*}{\Longrightarrow} 000111$

 $L_{01} := \{0^n 1^n : n \in \mathbb{N}\}$ es **libre de contexto** (¡no regular!).

$$G = (V, T, P, S)$$

Componentes: variables ("no terminales"), alfabeto terminal, reglas ("producciones") y símbolo inicial Ejemplo:

$$G_{01} := (\{S\}, \{0, 1\}, \{S \to \epsilon; S \to 0S1\}, S).$$

$$S \Longrightarrow 0 S 1$$

 $L_{01} := \{0^n 1^n : n \in \mathbb{N}\}$ es **libre de contexto** (¡no regular!).

$$G = (V, T, P, S)$$

Componentes: variables ("no terminales"), alfabeto terminal, reglas ("producciones") y símbolo inicial Ejemplo:

$$G_{01} := (\{S\}, \{0,1\}, \{S \to \epsilon; S \to 0S1\}, S).$$

$$S \Longrightarrow 0 S 1 \Longrightarrow 0 0 S 1 1$$

 $L_{01} := \{0^n 1^n : n \in \mathbb{N}\}$ es **libre de contexto** (¡no regular!).

$$G = (V, T, P, S)$$

Componentes: variables ("no terminales"), alfabeto terminal, reglas ("producciones") y símbolo inicial Ejemplo:

$$G_{01} := (\{S\}, \{0, 1\}, \{S \to \epsilon; S \to 0S1\}, S).$$

$$S \Longrightarrow 0S1 \Longrightarrow 00S111 \Longrightarrow 000S111$$

 $L_{01} := \{0^n 1^n : n \in \mathbb{N}\}$ es **libre de contexto** (¡no regular!).

$$G = (V, T, P, S)$$

Componentes: variables ("no terminales"), alfabeto terminal, reglas ("producciones") y símbolo inicial Ejemplo:

$$G_{01} := (\{S\}, \{0, 1\}, \{S \to \epsilon; S \to 0S1\}, S).$$

$$S \Longrightarrow 0S1 \Longrightarrow 00S11 \Longrightarrow 000S11 \Longrightarrow 0000$$

 $L_{01} := \{0^n 1^n : n \in \mathbb{N}\}$ es **libre de contexto** (¡no regular!).

$$G = (V, T, P, S)$$

Componentes: variables ("no terminales"), alfabeto terminal, reglas ("producciones") y símbolo inicial Ejemplo:

$$G_{01} := (\{S\}, \{0, 1\}, \{S \to \epsilon; S \to 0S1\}, S).$$

- **Derivación** usando una CFG: $S \stackrel{*}{\Longrightarrow} 000111$ porque
 - $S \Longrightarrow 0S1 \Longrightarrow 00S11 \Longrightarrow 000S111 \Longrightarrow 000\epsilon 111 = 000111.$
- Lenguaje de una gramática: $L(G) := \{\alpha \in T^* \mid S \stackrel{*}{\Longrightarrow} \alpha\}.$

 $L_{01} := \{0^n 1^n : n \in \mathbb{N}\}$ es **libre de contexto** (¡no regular!).

$$G = (V, T, P, S)$$

Componentes: variables ("no terminales"), alfabeto terminal, reglas ("producciones") y símbolo inicial Ejemplo:

$$G_{01} := (\{S\}, \{0, 1\}, \{S \to \epsilon; S \to 0S1\}, S).$$

- **Derivación** usando una CFG: $S \stackrel{*}{\Longrightarrow} 000111$ porque $S \Longrightarrow 0S1 \Longrightarrow 00S11 \Longrightarrow 000S111 \Longrightarrow 000\epsilon 111 = 000111.$
- Lenguaje de una gramática: $L(G) := \{ \alpha \in T^* \mid S \Longrightarrow \alpha \}$. Luego $L(G_{01}) = L_{01}$.

Forma Backus-Naur (BNF)

Gramática para expresiones aritméticas

$$G_{ar} = (\{E, N, D, I\}, \{a, 0, \dots, 9, +, *, (,)\}, P_{ar}, E)$$

Forma Backus-Naur (BNF)

Gramática para expresiones aritméticas

$$G_{ar} = (\{E, N, D, I\}, \{a, 0, \dots, 9, +, *, (,)\}, P_{ar}, E)$$

$$E \longrightarrow N \mid I \mid E + E \mid E * E \mid (E)$$

$$I \longrightarrow a \mid I0 \mid \dots \mid I9$$

$$N \longrightarrow 1D \mid \dots \mid 9D$$

$$D \longrightarrow 0D \mid \dots \mid 9D \mid \epsilon$$

Forma Backus-Naur (BNF)

Gramática para expresiones aritméticas

$$G_{ar} = (\{E, N, D, I\}, \{a, 0, \dots, 9, +, *, (,)\}, P_{ar}, E)$$

$$E \longrightarrow N \mid I \mid E + E \mid E * E \mid (E)$$

$$I \longrightarrow a \mid I0 \mid \dots \mid I9$$

$$N \longrightarrow 1D \mid \dots \mid 9D$$

$$D \longrightarrow 0D \mid \dots \mid 9D \mid \epsilon$$

En forma BNF

$$\langle E \rangle ::== \langle N \rangle \mid \langle I \rangle \mid \langle E \rangle + \langle E \rangle \mid \langle E \rangle * \langle E \rangle \mid (\langle E \rangle)$$

$$\langle I \rangle ::== a \mid \langle I \rangle 0 \mid \ldots \mid \langle I \rangle 9$$

$$\langle N \rangle ::== 1 \langle D \rangle \mid \dots \mid 9 \langle D \rangle$$

$$\langle D \rangle ::== 0 \langle D \rangle \mid \dots \mid 9 \langle D \rangle \mid \epsilon$$

Lenguaje de una gramática

Sean G = (V, T, P, S) gramática y $\alpha, \beta \in (V \cup T)^*$.

Definición

■ α deriva β (" $\alpha \Longrightarrow \beta$ ") si β se obtiene reemplazando en α una variable de V por el cuerpo de una producción $V \longrightarrow \gamma$:

$$\underbrace{\alpha' V \alpha''}_{\alpha} \Longrightarrow \underbrace{\alpha' \gamma \alpha''}_{\beta}$$

Lenguaje de una gramática

Sean G = (V, T, P, S) gramática y $\alpha, \beta \in (V \cup T)^*$.

Definición

■ α deriva β (" $\alpha \Longrightarrow \beta$ ") si β se obtiene reemplazando en α una variable de V por el cuerpo de una producción $V \longrightarrow \gamma$:

$$\underbrace{\alpha' V \alpha''}_{\alpha} \Longrightarrow \underbrace{\alpha' \gamma \alpha''}_{\beta}$$

■ La clausura reflexiva-transitiva de \Longrightarrow es $\stackrel{*}{\Longrightarrow}$: $\alpha \stackrel{*}{\Longrightarrow} \beta$ si $\exists n > 0$ tal que

$$\alpha = \alpha_0 \Longrightarrow \alpha_0 \Longrightarrow \ldots \Longrightarrow \alpha_n = \beta$$

Lenguaje de una gramática

Sean G = (V, T, P, S) gramática y $\alpha, \beta \in (V \cup T)^*$.

Definición

■ α deriva β (" $\alpha \Longrightarrow \beta$ ") si β se obtiene reemplazando en α una variable de V por el cuerpo de una producción $V \longrightarrow \gamma$:

$$\underbrace{\alpha' V \alpha''}_{\alpha} \Longrightarrow \underbrace{\alpha' \gamma \alpha''}_{\beta}$$

■ La clausura reflexiva-transitiva de \Longrightarrow es $\stackrel{*}{\Longrightarrow}$: $\alpha \stackrel{*}{\Longrightarrow} \beta$ si $\exists n \geq 0$ tal que

$$\alpha = \alpha_0 \Longrightarrow \alpha_0 \Longrightarrow \ldots \Longrightarrow \alpha_n = \beta$$

■ El lenguaje generado por G es $\{\alpha \in T^* : S \stackrel{*}{\Longrightarrow} \alpha\}$.

Ambigüedad

Definición

G = (V, T, P, S) es **regular** si todas sus producciones son de la forma

- $\blacksquare A \longrightarrow aB \quad (a \in T, B \in V),$
- $\blacksquare A \longrightarrow \epsilon.$

Definición

G = (V, T, P, S) es **regular** si todas sus producciones son de la forma

- $\blacksquare A \longrightarrow aB \quad (a \in T, B \in V),$
- $\blacksquare A \longrightarrow \epsilon.$

Lema

■ $SiX \stackrel{*}{\Longrightarrow} \beta \ y \ \beta \in (V \cup T)^* \setminus T^*$ entonces $\beta = \alpha Y \ con \ \alpha \in T^* \ y$ $Y \in V$. Más aún, si $\beta \in V$ entonces $\beta = X$.

Definición

G = (V, T, P, S) es **regular** si todas sus producciones son de la forma

- $\blacksquare A \longrightarrow aB \quad (a \in T, B \in V),$
- $\blacksquare A \longrightarrow \epsilon.$

Lema

- $SiX \stackrel{*}{\Longrightarrow} \beta \ y \ \beta \in (V \cup T)^* \setminus T^* \ entonces \ \beta = \alpha Y \ con \ \alpha \in T^* \ y \ Y \in V.$ Más aún, $si \ \beta \in V \ entonces \ \beta = X.$
- $SiX \stackrel{*}{\Longrightarrow} \alpha \ y \ \alpha \in T^*$ entonces existe $Y \in V$ tal que $X \stackrel{*}{\Longrightarrow} \alpha Y \ y \longrightarrow \epsilon$ está en P (y luego $X \stackrel{*}{\Longrightarrow} \alpha Y \Longrightarrow \alpha$).

Definición

G = (V, T, P, S) es **regular** si todas sus producciones son de la forma

- $\blacksquare A \longrightarrow aB \quad (a \in T, B \in V),$
- $\blacksquare A \longrightarrow \epsilon.$

Lema

- $SiX \stackrel{*}{\Longrightarrow} \beta \ y \ \beta \in (V \cup T)^* \setminus T^* \ entonces \ \beta = \alpha Y \ con \ \alpha \in T^* \ y \ Y \in V.$ Más aún, si $\beta \in V$ entonces $\beta = X$.
- $SiX \stackrel{*}{\Longrightarrow} \alpha \ y \ \alpha \in T^*$ entonces existe $Y \in V$ tal que $X \stackrel{*}{\Longrightarrow} \alpha Y \ y$ $Y \longrightarrow \epsilon$ está en P (y luego $X \stackrel{*}{\Longrightarrow} \alpha Y \implies \alpha$).

Teorema

L es regular $\iff L = L(G)$ para alguna G regular.

- $\blacksquare \mathbb{A} = (Q, \Sigma, \delta, q_0, F).$
- $\bullet \delta \colon Q \times \Sigma \to \mathscr{P}(Q)$

- $\blacksquare A = (Q, \Sigma, \delta, q_0, F).$
- $\bullet \delta \colon Q \times \Sigma \to \mathscr{P}(Q)$

Transiciones compuestas

$$q \stackrel{\epsilon}{\Longrightarrow} q$$

$$q \stackrel{\beta x}{\Longrightarrow} q'$$
 si y sólo si $\exists r: q \stackrel{\beta}{\Longrightarrow} r \stackrel{x}{\longrightarrow} q'$

- $\blacksquare \mathbb{A} = (Q, \Sigma, \delta, q_0, F).$
- $\bullet \delta \colon Q \times \Sigma \to \mathscr{P}(Q)$

Transiciones compuestas

$$q \stackrel{\epsilon}{\Longrightarrow} q$$

$$q \stackrel{\beta x}{\Longrightarrow} q' \quad \text{si y s\'olo si} \quad \exists r: \ q \stackrel{\beta}{\Longrightarrow} r \stackrel{x}{\longrightarrow} q'$$

$$L(\mathbb{A}) := \{\alpha \mid \exists q': \ q_0 \stackrel{\alpha}{\Longrightarrow} q' \in F\}.$$

- $\blacksquare \mathbb{A} = (Q, \Sigma, \delta, q_0, F).$
- $\bullet \delta \colon Q \times \Sigma \to \mathscr{P}(Q)$

Transiciones compuestas

$$q \overset{\epsilon}{\Longrightarrow} q$$

$$q \overset{\beta x}{\Longrightarrow} q' \quad \text{si y s\'olo si} \quad \exists r: \ q \overset{\beta}{\Longrightarrow} r \overset{x}{\longrightarrow} q'$$

$$L(\mathbb{A}) := \{\alpha \mid \exists q': \ q_0 \overset{\alpha}{\Longrightarrow} \ q' \in F\}.$$

- NFA \mathbb{A} gramática regular $G(\mathbb{A})$,

- $\blacksquare A = (Q, \Sigma, \delta, q_0, F).$
- $\bullet \delta \colon Q \times \Sigma \to \mathscr{P}(Q)$

Transiciones compuestas

$$q \overset{\epsilon}{\Longrightarrow} q$$

$$q \overset{\beta x}{\Longrightarrow} q' \quad \text{si y s\'olo si} \quad \exists r: \ q \overset{\beta}{\Longrightarrow} r \overset{x}{\longrightarrow} q'$$

$$L(\mathbb{A}) := \{\alpha \mid \exists q': \ q_0 \overset{\alpha}{\Longrightarrow} \ q' \in F\}.$$

- NFA \mathbb{A} gramática regular $G(\mathbb{A})$,

de manera que $L(G) = L(\mathbb{A}(G))$ y $L(\mathbb{A}) = L(G(\mathbb{A}))$.

De gramáticas a autómatas, ejemplo

G regular

De gramáticas a autómatas, ejemplo

G regular

NFA $\mathbb{A}(G)$

- $lacksquare G = (V, T, P, S) \text{ regular: } A \longrightarrow aB, \quad A \longrightarrow \epsilon.$
- $\blacksquare \ X \ \stackrel{*}{\Longrightarrow} \ \beta \in (V \cup T)^* \smallsetminus T^* \ \text{implica} \ \beta = \alpha Y \ \text{con} \ \alpha \in T^* \ \text{y} \ Y \in V.$
- $\blacksquare \ X \ \stackrel{*}{\Longrightarrow} \ \alpha \in T^* \ \text{implica} \ \exists Y \in V : X \ \stackrel{*}{\Longrightarrow} \ \alpha Y \ \Longrightarrow \ \alpha.$
- $lack q \stackrel{eta x}{\Longrightarrow} q'$ si y sólo si $\exists r: \ q \stackrel{eta}{\Longrightarrow} r \stackrel{x}{\longrightarrow} q'$

- $\blacksquare \ G = (V, T, P, S) \text{ regular: } A \longrightarrow a \, B, \quad A \longrightarrow \epsilon.$
- $\blacksquare \ X \ \stackrel{*}{\Longrightarrow} \ \beta \in (V \cup T)^* \smallsetminus T^* \ \text{implica} \ \beta = \alpha Y \ \text{con} \ \alpha \in T^* \ \text{y} \ Y \in V.$
- $\blacksquare \ X \stackrel{*}{\Longrightarrow} \ \alpha \in T^* \ \text{implica} \ \exists Y \in V : X \stackrel{*}{\Longrightarrow} \ \alpha Y \ \Longrightarrow \ \alpha.$
- $\blacksquare q \stackrel{\beta x}{\Longrightarrow} q'$ si y sólo si $\exists r: q \stackrel{\beta}{\Longrightarrow} r \stackrel{x}{\longrightarrow} q'$

$$\begin{split} \mathbb{A}(\textbf{\textit{G}}) &:= (V, T, \delta_{G}, \{X \in V \mid (X \longrightarrow \epsilon) \in P\}); \\ X \stackrel{a}{\longrightarrow} Y \quad \text{si y s\'olo si} \quad (X \longrightarrow aY) \in P. \end{split}$$

- $\blacksquare \ G = (V, T, P, S) \ \text{regular:} \ A \longrightarrow a \, B, \quad A \longrightarrow \epsilon.$
- $\blacksquare \ X \stackrel{*}{\Longrightarrow} \beta \in (V \cup T)^* \smallsetminus T^* \text{ implica } \beta = \alpha Y \text{ con } \alpha \in T^* \text{ y } Y \in V.$
- $\blacksquare \ X \stackrel{*}{\Longrightarrow} \ \alpha \in T^* \ \text{implica} \ \exists Y \in V : X \stackrel{*}{\Longrightarrow} \ \alpha Y \ \Longrightarrow \ \alpha.$
- $\blacksquare q \stackrel{\beta x}{\Longrightarrow} q'$ si y sólo si $\exists r: q \stackrel{\beta}{\Longrightarrow} r \stackrel{x}{\longrightarrow} q'$

$$\begin{split} \mathbb{A}(\textbf{\textit{G}}) &:= (V, T, \delta_{G}, \{X \in V \mid (X \longrightarrow \epsilon) \in P\}); \\ X \stackrel{a}{\longrightarrow} Y \quad \text{si y s\'olo si} \quad (X \longrightarrow aY) \in P. \end{split}$$

Sea $\alpha \in T^*$

Lema

$$X \stackrel{*}{\Longrightarrow} \alpha Y$$
 (según G) \iff $X \stackrel{\alpha}{\Longrightarrow} Y$ (según $\mathbb{A}(G)$).

- $\blacksquare \ G = (V, T, P, S) \ \text{regular:} \ A \longrightarrow a \, B, \quad A \longrightarrow \epsilon.$
- $\blacksquare \ X \ \stackrel{*}{\Longrightarrow} \ \beta \in (V \cup T)^* \smallsetminus T^* \ \text{implica} \ \beta = \alpha Y \ \text{con} \ \alpha \in T^* \ \text{y} \ Y \in V.$
- $\blacksquare \ X \stackrel{*}{\Longrightarrow} \ \alpha \in T^* \ \text{implica} \ \exists Y \in V : X \stackrel{*}{\Longrightarrow} \ \alpha Y \ \Longrightarrow \ \alpha.$
- $\blacksquare q \stackrel{\beta x}{\Longrightarrow} q'$ si y sólo si $\exists r: q \stackrel{\beta}{\Longrightarrow} r \stackrel{x}{\longrightarrow} q'$

$$\begin{split} \mathbb{A}(\textbf{\textit{G}}) &:= (V, T, \delta_{G}, \{X \in V \mid (X \longrightarrow \epsilon) \in P\}); \\ X \stackrel{a}{\longrightarrow} Y \quad \text{si y s\'olo si} \quad (X \longrightarrow aY) \in P. \end{split}$$

Sea $\alpha \in T^*$

Lema

$$X \stackrel{*}{\Longrightarrow} \alpha Y \text{ (según } G) \iff X \stackrel{\alpha}{\Longrightarrow} Y \text{ (según } \mathbb{A}(G)\text{)}.$$

Demostración.

Por inducción en α .

- $\blacksquare \ X \ \stackrel{*}{\Longrightarrow} \ \alpha \in T^* \ \text{implica} \ \exists Y \in V : X \ \stackrel{*}{\Longrightarrow} \ \alpha Y \ \ Y \ \longrightarrow \epsilon.$
- $\blacksquare \ \mathbb{A}(G) \mathrel{\mathop:}= (V, T, \delta_G, S, F) \ \mathsf{con} \ F = \{X \in V \mid (X \longrightarrow \epsilon) \in P\}.$
- $\blacksquare L(\mathbb{A}(G)) = \{ \alpha \mid \exists q : S \Longrightarrow q \in F \}.$
- $\blacksquare \ X \stackrel{*}{\Longrightarrow} \ \alpha Y \ (\text{según } G) \quad \iff \quad X \stackrel{\alpha}{\Longrightarrow} \ Y \ (\text{según } \mathbb{A}(G)).$

- $\blacksquare \ X \ \stackrel{*}{\Longrightarrow} \ \alpha \in T^* \ \text{implica} \ \exists Y \in V : X \ \stackrel{*}{\Longrightarrow} \ \alpha Y \ \ y \ \ Y \longrightarrow \epsilon.$
- $\blacksquare \ \mathbb{A}(G) \mathrel{\mathop:}= (V, T, \delta_G, S, F) \ \mathsf{con} \ F = \{X \in V \mid (X \longrightarrow \epsilon) \in P\}.$
- $\blacksquare L(\mathbb{A}(G)) = \{ \alpha \mid \exists q : S \stackrel{\alpha}{\Longrightarrow} q \in F \}.$
- $\blacksquare \ X \stackrel{*}{\Longrightarrow} \ \alpha Y \ (\text{según } G) \quad \iff \quad X \stackrel{\alpha}{\Longrightarrow} \ Y \ (\text{según } \mathbb{A}(G)).$

$$L(G) = L(\mathbb{A}(G))$$

 $\alpha \in L(G)$ si y sólo si

- $\blacksquare \ X \ \stackrel{*}{\Longrightarrow} \ \alpha \in T^* \ \text{implica} \ \exists Y \in V : X \ \stackrel{*}{\Longrightarrow} \ \alpha Y \ \ Y \ \longrightarrow \epsilon.$
- $\blacksquare \ \mathbb{A}(G) \vcentcolon= (V, T, \delta_G, S, F) \ \text{con} \ F = \{X \in V \mid (X \longrightarrow \epsilon) \in P\}.$
- $\blacksquare L(\mathbb{A}(G)) = \{ \alpha \mid \exists q : S \stackrel{\alpha}{\Longrightarrow} q \in F \}.$
- $\blacksquare \ X \stackrel{*}{\Longrightarrow} \ \alpha Y \ (\text{según } G) \quad \iff \quad X \stackrel{\alpha}{\Longrightarrow} \ Y \ (\text{según } \mathbb{A}(G)).$

$$L(G) = L(\mathbb{A}(G))$$

$$\alpha \in L(G)$$
 si y sólo si $S \stackrel{*}{\Longrightarrow} \alpha$

- $\blacksquare \ X \stackrel{*}{\Longrightarrow} \alpha \in T^* \text{ implica } \exists Y \in V : X \stackrel{*}{\Longrightarrow} \alpha Y \text{ y } Y \longrightarrow \epsilon.$
- $\blacksquare \ \mathbb{A}(G) \mathrel{\mathop:}= (V, T, \delta_G, S, F) \ \mathsf{con} \ F = \{X \in V \mid (X \longrightarrow \epsilon) \in P\}.$
- $\blacksquare L(\mathbb{A}(G)) = \{ \alpha \mid \exists q : S \stackrel{\alpha}{\Longrightarrow} q \in F \}.$
- $\blacksquare \ X \stackrel{*}{\Longrightarrow} \ \alpha Y \ (\text{según} \ G) \quad \iff \quad X \stackrel{\alpha}{\Longrightarrow} \ Y \ (\text{según} \ \mathbb{A}(G)).$

$$L(G) = L(\mathbb{A}(G))$$

$$\alpha \in L(G)$$
 si y sólo si $S \stackrel{*}{\Longrightarrow} \alpha$ si y sólo si $S \stackrel{*}{\Longrightarrow} \alpha Y$ y $Y \longrightarrow \epsilon$

- $\blacksquare \ X \ \stackrel{*}{\Longrightarrow} \ \alpha \in T^* \ \text{implica} \ \exists Y \in V : X \ \stackrel{*}{\Longrightarrow} \ \alpha Y \ \ y \ \ Y \longrightarrow \epsilon.$
- $\blacksquare \ \mathbb{A}(G) := (V, T, \delta_G, S, F) \text{ con } F = \{X \in V \mid (X \longrightarrow \epsilon) \in P\}.$
- $\blacksquare L(\mathbb{A}(G)) = \{ \alpha \mid \exists q : S \stackrel{\alpha}{\Longrightarrow} q \in F \}.$
- $\blacksquare \ X \stackrel{*}{\Longrightarrow} \ \alpha Y \ (\text{según} \ G) \quad \iff \quad X \stackrel{\alpha}{\Longrightarrow} \ Y \ (\text{según} \ \mathbb{A}(G)).$

$$L(G) = L(\mathbb{A}(G))$$

- $\blacksquare \ X \ \stackrel{*}{\Longrightarrow} \ \alpha \in T^* \ \text{implica} \ \exists Y \in V : X \ \stackrel{*}{\Longrightarrow} \ \alpha Y \ \ y \ \ Y \longrightarrow \epsilon.$
- $\blacksquare \ \mathbb{A}(G) \mathrel{\mathop:}= (V, T, \delta_G, S, F) \ \mathsf{con} \ F = \{X \in V \mid (X \longrightarrow \epsilon) \in P\}.$
- $\blacksquare L(\mathbb{A}(G)) = \{ \alpha \mid \exists q : S \stackrel{\alpha}{\Longrightarrow} q \in F \}.$
- $\blacksquare \ X \stackrel{*}{\Longrightarrow} \ \alpha Y \ (\text{según} \ G) \quad \iff \quad X \stackrel{\alpha}{\Longrightarrow} \ Y \ (\text{según} \ \mathbb{A}(G)).$

$$L(G) = L(\mathbb{A}(G))$$

De autómatas a gramáticas

$$\blacksquare$$
 $\mathbb{A} = (Q, \Sigma, \delta, q_0, F).$

De autómatas a gramáticas

 \blacksquare $\mathbb{A} = (Q, \Sigma, \delta, q_0, F).$

$$\begin{split} & \pmb{G}(\mathbb{A}) := (Q, \Sigma, P_{\mathbb{A}}, q_0); \\ P_{\mathbb{A}} := \begin{cases} q &\longrightarrow aq' \quad \text{sii } q \overset{a}{\longrightarrow} q' \\ q &\longrightarrow \epsilon \quad \text{sii } q \in F \end{cases} \end{split}$$

De autómatas a gramáticas

 \blacksquare $\mathbb{A} = (Q, \Sigma, \delta, q_0, F).$

$$\begin{split} G(\mathbb{A}) &:= (Q, \Sigma, P_{\mathbb{A}}, q_0); \\ P_{\mathbb{A}} &:= \begin{cases} q \longrightarrow aq' & \text{sii } q \stackrel{a}{\longrightarrow} q' \\ q \longrightarrow \epsilon & \text{sii } q \in F \end{cases} \end{split}$$

Exactamente la misma prueba de antes muestra que $L(\mathbb{A}) = L(G(\mathbb{A}))$.

