GenSamp: RESULTS

Gleb Furman¹, James E. Pustejovsky², & Elizabeth Tipton³

¹ University of Texas at Austin

² University of Wisconsin-Madison

³ Northwestern University

Author Note

Correspondence concerning this article should be addressed to Gleb Furman, University of Texas at Austin, SZB 504, 1912 Speedway, Austin, Texas 78712. E-mail: gleb.furman@utexas.edu

GenSamp: RESULTS

Setup

Packages and Data

Organize Objects

Data Summary

Covariate Statistics

Continuous variable distributions

'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.

Methods Summary

Cluster Analysis

Selecting k.

Sub	Category	Type	Variables	log_odds
Status	School Data	Prop	Schoolwide Title I	0.019
Enrollment	School Data	Mean	School Size	0.374
Status	Student Data	Mean	Free/Reduced Lunch	0.081
Urbanicity	School Data	Prop	Urban	0.433
Urbanicity	School Data	Prop	Suburban	0.007
Urbanicity	School Data	Prop	Town/Rural	-0.403
Ethnicity	Student Data	Mean	% White	-0.538
Ethnicity	Student Data	Mean	% Black	0.291
Ethnicity	Student Data	Mean	% Hispanic	0.395
Gender	Student Data	Mean	% Female	-0.019
Enrollment	School Data	Mean	Student/Teacher Ratio	-0.101
District	School Data	Mean	District Size	0.520
Status	Student Data	Mean	English Language Learners	0.412

Variation explained by the strata

Participation Generating Model

Figure 1. Distributions of Participation Logits

Results

Generalizability

B Index.

```
## Note: Using an external vector in selections is ambiguous.
```

- ## i Use 'all of(variable)' instead of 'variable' to silence this message.
- ## i See https://tidyselect.r-lib.org/reference/faq-external-vector.html.
- ## This message is displayed once per session.
- ## Note: Using an external vector in selections is ambiguous.
- ## i Use 'all_of(observations)' instead of 'observations' to silence this message.
- ## i See https://tidyselect.r-lib.org/reference/faq-external-vector.html.

Figure 2. Averge B-Index

SMD. % Female

Student/Teacher Ratio

Schoolwide Title I

Free/Reduced Lunch

% Hispanic

English Language Learners

District Size

Example all SF.

Auto-Grouping.

Group 1.

A tibble: 8×3

Groups: SB [3]

SB vnames Group

 $1\ 0.25$ eth Black Group 1 $2\ 0.5$ eth Black Group 1 $3\ 0.25$ p
Fem Group 1 $4\ 0.5$ p Fem Group 1 $5\ 1$ p Fem Group 1
 60.25S T.
ratio Group 1 $7\ 0.5$ S T.
ratio Group 1 $8\ 1$ S T.
ratio Group 1

\$ethBlack

% Black

\$pFem

% Female

ST.ratio

Student/Teacher Ratio

Group 2.

A tibble: 12 x 3

SB vnames Group

 $1\ 0.25$ p
Totfrl Group 2 $2\ 0.25$ Suburban Group 2 $3\ 0.5$ Suburban Group 2
 $4\ 1$ Suburban Group 2 $5\ 0.25$ T
1 Group 2 $6\ 0.5$ T
1 Group 2 $7\ 1$ T
1 Group 2 $8\ 0.25$ To
Ru Group 2 $9\ 0.5$ To Ru Group 2 $10\ 0.25$ Urban Group 2
 $11\ 0.5$ Urban Group 2 $12\ 1$ Urban Group 2

\$pTotfrl

Free/Reduced Lunch

Suburban

Suburban

\$T1

Schoolwide Title I

\$ToRu

Town/Rural

Urban

Group 3.

A tibble: 15 x 3

SB vnames Group

1 0.25 dSCH Group 3 2 0.5 dSCH Group 3 3 1 dSCH Group 3 4 0.25 ethHisp Group 3 5 0.5 ethHisp Group 3 6 1 ethHisp Group 3 7 0.25 ethWhite Group 3 8 0.5 ethWhite Group 3 9 1 ethWhite Group 3 10 0.25 pELL Group 3 11 0.5 pELL Group 3 12 1 pELL Group 3 13 0.5 pTotfrl Group 3 14 1 pTotfrl Group 3 15 1 ToRu Group 3

pTotfrl

Free/Reduced Lunch

Suburban

Suburban

\$T1

Schoolwide Title I

\$ToRu

Urban

Group 4 # A tibble: 4 x 3 SB vnames Group

11 eth Black Group 420.25
n Group 430.5 n Group 441 n Group 4

n

Fine Grain Groups.

V-ratio and Log odds.

A tibble: 39 x 15

vnames T.SS W.SS B.SS vratio Sub Category Type Variables log_odds 1 dSCH 4.02e8~3.62e8~4.05e7~0.101 Dist~ School ~ Mean District~ 0.52~2 dSCH 4.02e8~3.62e8~4.05e7~0.101 Dist~ School ~ Mean District~ 0.52~3 dSCH 4.02e8~3.62e8~4.05e7~0.101 Dist~ School ~ Mean District~ 0.52~4 ethBlack 2.52e6~2.44e6~7.96e4~0.0316 Ethn~ Student~ Mean % Black 0.291~5 ethBlack 2.52e6~2.44e6~7.96e4~0.0316 Ethn~ Student~ Mean % Black 0.291~6 ethBlack 2.52e6~2.44e6~7.96e4~0.0316 Ethn~ Student~ Mean % Black 0.291~7 ethHisp 1.05e7~4.63e6~5.89e6~0.560 Ethn~ Student~ Mean % Hispan~ 0.395~8 ethHisp 1.05e7~4.63e6~5.89e6~0.560

 $\label{log_scholar_equation} Ethn\sim Student\sim Mean~\%~ Hispan\sim 0.395~10~ethWhite~9.10e6~3.28e6~5.83e6~0.640~Ethn\sim Student\sim Mean~\%~ White~-0.538~\#~\dots~~with~29~more~rows,~and~5~more~variables:~SB~,~Coeficient~,~\#~abs_log_odds~,~SF_fac~,~Group$

Test 2 - relative log_odds and relative v
ratio

Feasibility

Sampling Difficulty.

Figure 3. Schools Contacted

 $\#\#\#\# \; \mathrm{SF} = [1, \, .5, \, .25, \, .01]$

###Gini Plot

Export Data

A tibble: 28 x 2

Vars MB

 $1~{\rm tabs}~473.62~{\rm Mb}~2~{\rm figs}~301.614~{\rm Mb}~3~{\rm results}~84.955~{\rm Mb}~4~{\rm df.list}~19.796~{\rm Mb}~5~{\rm df.sim}$ $3.027~{\rm Mb}$

 $6 \text{ plot_smd } 0.077 \text{ Mb}$

7 test.group 0.066 Mb

8 df.smd.ipsw 0.038 Mb

9 get_quant 0.03 Mb

 $10~{\rm test}~0.013~{\rm Mb}$

```
\# . . . with 18 more rows \# A tibble: 20 x 2 fig size
```

- 1 dist 263.1 Mb 2 ch $0~\mathrm{Mb}$
- 3 vratio 0 Mb
- 4 allocation 0 Mb
- 5 joint.cluster.stats 0 Mb
- 6 cluster.SMD 0.2 Mb
- 7 B 0.1 Mb
- 8 smd.by.scale 0.4 Mb
- 9 smd.examples 0.1 Mb
- 10 smd.examples.sf100 0 Mb
- 11 v.coef 0 Mb
- 12 samples.contacts.sf100 0 Mb
- 13 samples.response.rates.sf100 0 Mb
- 14 samples.contacts.sf.all 0 Mb
- 15 samples.response.rates.sf.all 0 Mb
- 16 relative.counts.URS 0 Mb
- 17 relative.counts.UCS 0 Mb
- 18 samples.relative.contacts.sf.all 0 Mb
- 19 gini 0 Mb
- 20 gini.coef 37.4 Mb # A tibble: 16 x 2 tab size
- 1 pop.desc 0 Mb
- 2 dist 263.1 Mb 3 allocation 0 Mb
- 4 cluster.SMD 0.2 Mb
- 5 strata.data 0 Mb
- 6 intercepts 0 Mb

- 7 B 0 Mb
- 8 smd.results 0.2 Mb
- 9 smd.by.scale 0.6 Mb
- 10 smd.examples 0.1 Mb
- 11 samples 0 Mb
- 12 samples.contacts.labels.sf100 0 Mb
- $13~\mathrm{samples.response.rates.labels.sf100}$ 0 Mb
- 14 relative.counts 0.1 Mb
- 15 gini.coef 0 Mb
- 16 gini.count 209.2 Mb

Presentation Figures