Introduction to Multiple Regression

Math 430, Winter 2017

The data

- In an effort to understand the important aspects of a satisfactory supervisor, clerical employees at a large financial organization company were asked to rate their immediate supervisor.
- The survey questions were designed to measure overall performance of the supervisor, as well as six additional characteristics.
- Employees were asked to rate the following statements on a scale from 0 to 100 (0 meaning "completely disagree" to 100 meaning "completely agree")

The data

Variable	Description		
rating	Overall rating of supervisor performance		
complaints	Score for "Your supervisor handles employee complaints appropriately."		
privileges	Score for "Your supervisor allows special privileges."		
learn	Score for "Your supervisor provides opportunities to learn new things."		
raises	Score for "Your supervisor bases raises on performance."		
critical	Score for "Your supervisor is too critical of poor performance."		
advance	Score for "I am not satisfied with the rate I am advancing in the company?"		

The data

```
supervisor <- read.table("https://github.com/math430-lu/data/raw/master/supervisor.txt",</pre>
                         header = TRUE)
head(supervisor)
##
     overall complaints privileges learn raises critical advance
## 1
          43
                     51
                                30
                                      39
                                             61
                                                       92
                                                               45
## 2
          63
                     64
                                51
                                      54
                                                       73
                                             63
                                                               47
## 3
          71
                     70
                                68
                                      69
                                             76
                                                       86
                                                               48
## 4
          61
                     63
                                45
                                      47
                                             54
                                                       84
                                                               35
## 5
                     78
                                56
                                      66
                                             71
                                                       83
                                                               47
          81
## 6
          43
                     55
                                49
                                      44
                                             54
                                                       49
                                                               34
```

Problem overview

Primary research question

What makes a good (or bad) supervisor?

Analysis

- What is the response variable?
- What should we use for the predictor?

Multiple Regression

The model

Model

$$Y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_k x_{ip} + e_i, \quad e_i \stackrel{iid}{\sim} \mathcal{N}(0, \sigma_e^2)$$

· In matrix form

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{e}$$

· Assumptions – same as in SLR

The geometry

$$Y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_k x_{ip} + e_i$$

Interpreting β_0

$$Y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_k x_{ip} + e_i, \quad e_i \stackrel{iid}{\sim} \mathcal{N}(0, \sigma_e^2)$$

Uncentered model:

Centered model:

Interpreting β_k

$$Y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_k x_{ip} + e_i, \quad e_i \stackrel{iid}{\sim} \mathcal{N}(0, \sigma_e^2)$$

Interpreting e_i

$$Y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_k x_{ip} + e_i, \quad e_i \stackrel{iid}{\sim} \mathcal{N}(0, \sigma_e^2)$$

- · Same as before: the distance an observation falls from the "line"
- Represents random error (that we can't model)

Interpreting σ_e^2

$$Y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_k x_{ip} + e_i, \quad e_i \stackrel{iid}{\sim} \mathcal{N}(0, \sigma_e^2)$$

· Same as before: the typical (average) distance an observation falls from the "line"

Fitting the model

Target:

Prediction equation

$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 x_{i1} + \widehat{\beta}_2 x_{i2} + \dots + \widehat{\beta}_k x_{ip}$$

i.e.

$$\widehat{\mathbf{Y}} = \mathbf{X}\widehat{\boldsymbol{\beta}}$$

· Standard error for MLR model: $\hat{\sigma}_e$

Fitting the model

Procedure:

· Least squares estimation: choose the coefficients to minimize

$$SSE = \sum_{i} \left(Y_i - \widehat{Y}_i \right)^2$$

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$$

Use
$$s^2 = \sqrt{\frac{RSS}{n-p-1}}$$

Using R

```
super.lm <- lm(overall ~ complaints + privileges + learn + raises + critical + advance,</pre>
              data = supervisor)
summary(super.lm)
##
## Call:
## lm(formula = overall ~ complaints + privileges + learn + raises +
      critical + advance, data = supervisor)
##
##
## Residuals:
                1Q Median
##
       Min
                                 3Q
                                         Max
## -10.9418 -4.3555 0.3158 5.5425 11.5990
##
## Coefficients:
             Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 10.78708 11.58926 0.931 0.361634
## complaints 0.61319 0.16098 3.809 0.000903 ***
## privileges -0.07305 0.13572 -0.538 0.595594
## learn 0.32033 0.16852 1.901 0.069925 .
           0.08173 0.22148 0.369 0.715480
## raises
## critical 0.03838 0.14700 0.261 0.796334
## advance
            -0.21706 0.17821 -1.218 0.235577
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 7.068 on 23 degrees of freedom
## Multiple R-squared: 0.7326, Adjusted R-squared: 0.6628
```

F-statistic: 10.5 on 6 and 23 DF, p-value: 1.24e-05

Using R

head(model.matrix(super.lm))

##		(Intercept)	complaints	privileges	learn	raises	critical	advance
##	1	1	51	30	39	61	92	45
##	2	1	64	51	54	63	73	47
##	3	1	70	68	69	76	86	48
##	4	1	63	45	47	54	84	35
##	5	1	78	56	66	71	83	47
##	6	1	55	49	44	54	49	34

Interpreting β_k

Effects plots

· Idea: visualize the effect of a predictor by fixing the other predictors at their sample mean (i.e. \bar{x}_k values)

```
library(effects)
plot(Effect("complaints", super.lm))
```

complaints effect plot

Inference

Review: The ANOVA identity

Total sum of squares (SST) =
$$\sum_{i=1}^{n} (y_i - \overline{y})^2$$

Sum of squares error (RSS) = $\sum_{i=1}^{n} (y_i - \hat{y}_i)^2$
Sum of squares due to model (SSreg) = $\sum_{i=1}^{n} (\hat{y}_i - \overline{y})^2$

ANOVA tables

Review: R^2

Coefficient of Multiple Determination

$$R^2 = \frac{\text{SSModel}}{\text{SSTotal}} = 1 - \frac{\text{SSE}}{\text{SSTotal}}$$

Inference for all coefficients

Testing H_0 : $\beta_1 = \beta_2 = \cdots = \beta_k = 0$

Inference for all coefficients

```
summary(super.lm)
##
## Call:
## lm(formula = overall ~ complaints + privileges + learn + raises +
##
      critical + advance, data = supervisor)
##
## Residuals:
       Min
                1Q Median
                                30
                                       Max
## -10.9418 -4.3555 0.3158 5.5425 11.5990
##
## Coefficients:
             Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 10.78708 11.58926 0.931 0.361634
## complaints 0.61319 0.16098 3.809 0.000903 ***
## privileges -0.07305 0.13572 -0.538 0.595594
          0.32033 0.16852 1.901 0.069925 .
## learn
## raises 0.08173 0.22148 0.369 0.715480
## critical
            ## advance -0.21706 0.17821 -1.218 0.235577
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 7.068 on 23 degrees of freedom
## Multiple R-squared: 0.7326, Adjusted R-squared: 0.6628
## F-statistic: 10.5 on 6 and 23 DF, p-value: 1.24e-05
```

Inference for all coefficients

```
null.lm <- lm(overall ~ 1, data = supervisor)</pre>
anova(null.lm, super.lm)
## Analysis of Variance Table
##
## Model 1: overall ~ 1
## Model 2: overall ~ complaints + privileges + learn + raises + critical +
      advance
##
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1
        29 4297
## 2 23 1149 6 3148 10.502 1.24e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
1 - pf(10.502, df1 = 23, df2 = 29)
## [1] 1.113971e-08
```

Testing $\mathbf{H_0}: \beta_j = \beta_j^0$

```
library(broom)
tidy(super.lm)
##
                   estimate
                             std.error statistic
           term
                                                      p.value
  1 (Intercept) 10.78707639 11.5892572 0.9307824 0.3616337210
## 2
     complaints 0.61318761
                             0.1609831 3.8090182 0.0009028679
     privileges -0.07305014
                             0.1357247 -0.5382229 0.5955939205
## 4
          learn 0.32033212
                            0.1685203 1.9008516 0.0699253459
## 5
         raises 0.08173213 0.2214777 0.3690310 0.7154800884
     critical 0.03838145
## 6
                            0.1469954 0.2611064 0.7963342642
## 7
        advance -0.21705668 0.1782095 -1.2179862 0.2355770486
```

Confidence interval for β_j

```
confint(super.lm, level = 0.9)

## 5 % 95 %

## (Intercept) -9.07542163 30.64957440

## complaints 0.33728323 0.88909198

## privileges -0.30566483 0.15956454

## learn 0.03150994 0.60915429

## raises -0.29785215 0.46131642

## critical -0.21354986 0.29031275

## advance -0.52248482 0.08837146
```