සියලු ම හිමිකම් ඇව්රිණි / ω ලාල්ට பதிப்புநிமையுடையது $All\ Rights\ Reserved$

ලි ලංකා විභාග දෙපාර්තමේන්තුව ලි ලංකා විභාග දෙපාර්තමේන්තුව ලි ලංකා විභාග දෙපාර්තමේන්තුව ලි ලංකා විභාග දෙපාර්තමේන්තුව இலங்கைப் பரீட்சைத் திணைக்களம் இலங்கைப் பரீட்சைத் திணைக்களம் இலங்கைப் பரீட்சைத் திணைக்களம் Department of Examinations, Sri Lanka Department of

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2018 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2018 ஓகஸ்ந் General Certificate of Education (Adv. Level) Examination, August 2018

සංයු<mark>ක්ත ගණිතය I</mark> இணைந்த கணிதம் I Combined Mathematics I

2018.08.06 / 0830 - 1140

පැය භූනයි

மூன்று மணித்தியாலம் Three hours අමතර කියවීම කාලය - මනිත්තු 10 යි மேலதிக வாசிப்பு நேரம் - 10 நிமிடங்கள் Additional Reading Time - 10 minutes

අමතර කියවීම් කාලය පුශ්න පතුය කියවා පුශ්න තෝරා ගැනීමටත් පිළිතුරු ලිවීමේදී පුමුඛත්වය දෙන පුශ්න සංවිධානය කර ගැනීමටත් යොදාගන්න.

විභාග අංකය

උපදෙස්:

🐺 මෙම පුශ්න පතුය කොටස් දෙකකින් සමන්විත වේ;

A කොටස (පුශ්න 1 - 10) සහ **B කොටස** (පුශ්න 11 - 17).

* A කොටස:

සියලු ම පුශ්නවලට පිළිතුරු සපයන්න. එක් එක් පුශ්නය සඳහා ඔබේ පිළිතුරු, සපයා ඇති ඉඩෙහි ලියන්න. වැඩිපුර ඉඩ අවශා වේ නම්, ඔබට අමතර ලියන කඩදාසි භාවිත කළ හැකි ය.

* B කොටස:

පුශ්න පහකට පමණක් පිළිතුරු සපයන්න. ඔබේ පිළිතුරු, සපයා ඇති කඩදාසිවල ලියන්න.

- stනියමිත කාලය අවසන් වූ පසු f A කොටසෙහි පිළිතුරු පතුය, f B කොටසෙහි පිළිතුරු පතුයට උඩින් සිටින පරිදි කොටස් දෙක අමුණා විභාග ශාලාධිපතිට භාර දෙන්න.
- 🔆 පුශ්න පතුයෙහි **B කොටස පමණක්** විභාග ශාලාවෙන් පිටතට ගෙන යාමට ඔබට අවසර ඇත.

පරික්ෂකවරුන්ගේ පුයෝජනය සඳහා පමණී.

(10)	සංයුක්ත ගණිප	DCG I
කොටස	උශ්න අංකය	ලකුණු
	1	
	2	
	3	
	4	
A	5	
A.	6	
	7	
	8	
<u> </u> 	9	
	10	
	11	
	12	
	13	
В	14	
	15	
†	16	
	17	
	එකතුව	
	පුතිශතය	

I පතුය	
II පතුය	
එකතුව	
අවසාන ලකුණු	

අවසාන ලකුණු

	·	 	
ඉලක්කමෙන්			
අකුරෙන්			

සංකේත අංක

උත්තර පතු පරීක්ෂඃ	ක	
පරික්ෂා කළේ:	1	
ටටක්මා ක්ලේ.	2	
අධීක්ෂණය කළේ:		

	_	_	\sim	-
A	O.	an.	C	Œ

1.	ගණිත අභ<u>ප</u>ූහන මූලධර්ම ය භාවි	විතයෙන්,	සියලු n 6	∈ ℤ⁺ ස	පඳහා	$\sum_{r=1}^{n} r^3 =$	$\frac{1}{4}n^2(n$	+1)2	බව	සාධනය	කරන්න.
					• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	• • • • • • •	•••••		
		• • • • • • • • • • • • • • • • • • • •				• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •				
						• • • • • • • • • • • • • • • • • • • •					
						•••••		•••••			
				•••••				• • • • • • • • • • • • • • • • • • • •			•••••
				•••••	•••••	•••••		•••••			••••
			•••••		•••••		• • • • • • • • • • • • • • • • • • • •				
					•••••						
			• • • • • • • • • • • • • • • • • • • •		• • • • • • • •		• • • • • • • • • • • • • • • • • • • •	• • • • • • •			
						•••••	•••••				
		•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •				
		•••••	•••••	••••••		•••••	• • • • • • • • • • • • • • • • • • •				
			•••••			•••••					
						•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • •			
		••••••		•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •			••••••	
2.	එක ම රූප සටහනක $y=3$	3- x හා	y = x - y	-1 හිද	පුස්තා ර	වල දළ	, සටහන	් අඳින	්න.		
2.	එක ම රූප සටහනක $y=3$ ඒ නයින් හෝ අන් අයුරකින් හෙ සොයන්න.									තාත්ත්	වික අගයන්
2.	ඒ නයින් හෝ අන් අයුරකින් හෙ									තාත්ත්	වික අගයන්
2.	ඒ නයින් හෝ අන් අයුරකින් හෙ									තාත්ත්	වික අගයන්
2.	ඒ නයින් හෝ අන් අයුරකින් හෙ									තාත්ත්	වික අගයන්
2.	ඒ නයින් හෝ අන් අයුරකින් හෙ									තාත්ත්	වික අගයන්
2.	ඒ නයින් හෝ අන් අයුරකින් හෙ									තාත්ත්	වික අගයන්
2.	ඒ නයින් හෝ අන් අයුරකින් හෙ									තාත්ත්	වික අගයන්
2.	ඒ නයින් හෝ අන් අයුරකින් හෙ									තාත්ත්	වික අගයන්
2.	ඒ නයින් හෝ අන් අයුරකින් හෙ									තාත්ත්	වික අගයන්
2.	ඒ නයින් හෝ අන් අයුරකින් හෙ									තාත්ත්	වික අගයන්
2.	ඒ නයින් හෝ අන් අයුරකින් හෙ									තාත්ත්	වික අගයන්
2.	ඒ නයින් හෝ අන් අයුරකින් හෙ									තාත්ත්	වික අගයන්
2.	ඒ නයින් හෝ අන් අයුරකින් හෙ									තාත්ත්	වික අගයන්
2.	ඒ නයින් හෝ අන් අයුරකින් හෙ									තාත්ත්	වික අගයන්
2.	ඒ නයින් හෝ අන් අයුරකින් හෙ									තාත්ත්	වික අගයන්

A T	/201	8/1	n/S.	.T

2		විග
•	_	

_	
විභාග	අංකය

3.	ආගන්ඩ් සටහනක, ${ m Arg}(z-3i)=-rac{\pi}{3}$ සපුරාලන z සංකීර්ණ සංඛාා නිරූපණය කරන ලක්ෂාවල පථයෙහි දළ සටහනක් අඳින්න.
	ඒ නයින් හෝ අන් අයුරකින් හෝ, $\operatorname{Arg}(\overline{z}+3i)=\frac{\pi}{3}$ වන පරිදි $ z-1 $ හි අවම අගය සොයන්න.
4.	$\left(x^2+rac{3k}{x} ight)^8$ හි ද්විපද පුසාරණයේ x හා x^4 හි සංගුණක සමාන වේ. k නියකයෙහි අගය සොයන්න.

	$1 \cos(\pi x)$	
5.	$\lim_{x \to 0} \frac{1 - \cos\left(\frac{\pi x}{4}\right)}{x^2 (x+1)} = \frac{\pi^2}{32} බව ලපන්වන්න.$	
	•••••••••••••••••••••••••••••••••••••••	
	2.2	
_	2x $3-x$ 0 -2 $1-0$ 0)
6.	$y=e^{2x},\;y=e^{3-x},\;x=0,\;x=3$ හා $y=0$ වකු මගින් ආවෘත පෙලෙසෙහි වර්ගඵලය, වර්ග ඒකක $\frac{3}{2}\left(e^2-1\right)$	
6.	$y = e^{2x}$, $y = e^{x}$, $x = 0$, $x = 3$ හා $y = 0$ වකු මගින ආවෘත පෙලේසෙහි පටග්පලය, පටග් පත්ත 2 බව පෙන්වන්න.	
6.	$y=e^-$, $y=e^-$, $x=0$, $x=3$ හා $y=0$ වනු මහවා ආවෘත පටමද සෙන වර්ගවලය, පටම වන්න 2 ිබව පෙන්වන්න.	
6.	$y=e^-$, $y=e^-$, $x=0$, $x=3$ හා $y=0$ වනු මගවා ආවෘත පටමද සහස වර්ගවලය, පටම වන්න 2^{-1} බව පෙන්වන්න.	
6.	$y=e^-$, $y=e^-$, $x=0$, $x=5$ හා $y=0$ වකු මගවා ආවෘත පටමද සහස පටස්වලය, පටස් වන්න $2^{-(v)}$ බව පෙන්වන්න.	
6.	$y=e^-$, $y=e^-$, $x=0$, $x=3$ හා $y=0$ වකු මහවා ආවෘත පෙලේගෙන පරගපලය, පරග පත්ත 2 ව	
6.	බව පෙන්වන්න.	
6.	$y=e^{xx},\ y=e^{xx},\ x=0,\ x=3$ හා $y=0$ වකු මගින ආවෘත පෙදෙසෙක පරිත්වලය, පරිති සොකි 2 (*)	
6.	බව පෙන්වන්න.	

7.	$\frac{\pi}{2} < t < \pi$ සඳහා $x = \ln\left(\tan\frac{t}{2}\right)$ හා $y = \sin t$ පරාමිතික සමීකරණ මගින් C වකුයක් දෙනු ලැබේ.
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \cos t \sin t$ බව පෙන්වන්න.
	$t=rac{2\pi}{3}$ ට අනුරූප ලක්ෂායෙහි දී C වකුයට ඇඳි ස්පර්ශ රේඛාවෙහි අනුකුමණය $-rac{\sqrt{3}}{4}$ බව අපෝහන ය
	කරන්න.
	1
8.	t_1 day $x+y-3=0$ and ordinal day t_2 will t_3
ð.	l_1 යනු $x+y-5=0$ සරල රේඛාව යැයි ගනිමු. $P\equiv (3,4)$ ලක්ෂාය හරහා යන හා l_1 ට ලම්බ වූ l_2 සරල රේඛාවෙහි සමීකරණය සොයන්න.
හ .	රේඛාවෙහි සමීකරණය සොයන්න.
გ .	·
გ .	රේඛාවෙහි සමීකරණය සොයන්න. Q යනු l_1 හා l_2 හි ඡේදන ලක්ෂාය යැයි ද R යනු $PQ:QR=1:2$ වන පරිදි l_2 මත වූ ලක්ෂාය යැයි ද
8 .	රේඛාවෙහි සමීකරණය සොයන්න. Q යනු l_1 හා l_2 හි ඡේදන ලක්ෂාය යැයි ද R යනු $PQ:QR=1:2$ වන පරිදි l_2 මත වූ ලක්ෂාය යැයි ද
Ծ .	රේඛාවෙහි සමීකරණය සොයන්න. Q යනු l_1 හා l_2 හි ඡේදන ලක්ෂාය යැයි ද R යනු $PQ:QR=1:2$ වන පරිදි l_2 මත වූ ලක්ෂාය යැයි ද
Ծ .	රේඛාවෙහි සමීකරණය සොයන්න. Q යනු l_1 හා l_2 හි ඡේදන ලක්ෂාය යැයි ද R යනු $PQ:QR=1:2$ වන පරිදි l_2 මත වූ ලක්ෂාය යැයි ද
8.	රේඛාවෙහි සමීකරණය සොයන්න. Q යනු l_1 හා l_2 හි ඡේදන ලක්ෂාය යැයි ද R යනු $PQ:QR=1:2$ වන පරිදි l_2 මත වූ ලක්ෂාය යැයි ද
8.	රේඛාවෙහි සමීකරණය සොයන්න. Q යනු l_1 හා l_2 හි ඡේදන ලක්ෂාය යැයි ද R යනු $PQ:QR=1:2$ වන පරිදි l_2 මත වූ ලක්ෂාය යැයි ද
8.	රේඛාවෙහි සමීකරණය සොයන්න. Q යනු l_1 හා l_2 හි ඡේදන ලක්ෂාය යැයි ද R යනු $PQ:QR=1:2$ වන පරිදි l_2 මත වූ ලක්ෂාය යැයි ද
8.	රේඛාවෙහි සමීකරණය සොයන්න. Q යනු l_1 හා l_2 හි ඡේදන ලක්ෂාය යැයි ද R යනු $PQ:QR=1:2$ වන පරිදි l_2 මත වූ ලක්ෂාය යැයි ද
8.	රේඛාවෙහි සමීකරණය සොයන්න. Q යනු l_1 හා l_2 හි ඡේදන ලක්ෂාය යැයි ද R යනු $PQ:QR=1:2$ වන පරිදි l_2 මත වූ ලක්ෂාය යැයි ද
8.	රේඛාවෙහි සමීකරණය සොයන්න. Q යනු l_1 හා l_2 හි ඡේදන ලක්ෂාය යැයි ද R යනු $PQ:QR=1:2$ වන පරිදි l_2 මත වූ ලක්ෂාය යැයි ද
8.	රේඛාවෙහි සමීකරණය සොයන්න. Q යනු l_1 හා l_2 හි ඡේදන ලක්ෂාය යැයි ද R යනු $PQ:QR=1:2$ වන පරිදි l_2 මත වූ ලක්ෂාය යැයි ද
8.	රේඛාවෙහි සමීකරණය සොයන්න. Q යනු l_1 හා l_2 හි ඡේදන ලක්ෂාය යැයි ද R යනු $PQ:QR=1:2$ වන පරිදි l_2 මත වූ ලක්ෂාය යැයි ද
8.	රේඛාවෙහි සමීකරණය සොයන්න. Q යනු l_1 හා l_2 හි ඡේදන ලක්ෂාය යැයි ද R යනු $PQ:QR=1:2$ වන පරිදි l_2 මත වූ ලක්ෂාය යැයි ද
8.	රේඛාවෙහි සමීකරණය සොයන්න. Q යනු l_1 හා l_2 හි ඡේදන ලක්ෂාය යැයි ද R යනු $PQ:QR=1:2$ වන පරිදි l_2 මත වූ ලක්ෂාය යැයි ද
8.	රේඛාවෙහි සමීකරණය සොයන්න. Q යනු l_1 හා l_2 හි ඡේදන ලක්ෂාය යැයි ද R යනු $PQ:QR=1:2$ වන පරිදි l_2 මත වූ ලක්ෂාය යැයි ද

9.	$P\equiv (1,2)$ හා $Q\equiv (7,10)$ යැයි ගනිමු. P හා Q ලක්ෂා විෂ්කම්භයක අන්ත ලෙස වූ වෘත්තයෙහි සමීකරණය $S\equiv (x-1)(x-a)+(y-2)(y-b)=0$ වන පරිදි a හා b නියතවල අගයන් ලියා දක්වන්න.
	$S'\equiv S+\lambda(4x-3y+2)=0$ යැයි ගනිමු; මෙහි λ \in \mathbb{R} වේ. P හා Q ලක්ෂා $S'=0$ වෘත්තය මත පිහිටන බව පෙන්වා, මෙම වෘත්තය $R\equiv (1,4)$ ලක්ෂාය හරහා යන පරිදි λ හි අගය සොයන්න.
10.	$x \neq (2n+1)\frac{\pi}{2}$ සඳහා $\sec^3 x + 2\sec^2 x \tan x + \sec x \tan^2 x = \frac{\cos x}{(1-\sin x)^2}$ බව පෙන්වන්න; මෙහි $n \in \mathbb{Z}$ වේ.
	••••••
1	

සියලු ම හිමිකම් ඇවිරිනි / (முழுப் பதிப்புரிமையுடையது /All Rights Reserved

இ ලංකා විභාග දෙපාර්තමේත්තුව ලී ලංකා විභාග දෙපාර්ත**ේ පුළු වැන්නේ සිට විභාග දෙපාර්තමේ**න්තුව ලී ලංකා විභාග දෙපාර්තමේත්තුව இலங்கைப் பரீட்சைத் திணைக்களம் இலங்கைப் படுகளைத் திணைக்களும் இலங்கைப் பரீட்சைத் திணைக்களும் இலங்கைப் பரீட்சைத் திணைக்களும் Department of Examinations, Sri Lanka Department of **இலங்கைப் பரீட்சைத் நினைக்களும்** இலங்கைப் பரீட்சைத் திணைக்களும் இலங்கைப் பரீட்சைத் திணைக்களும் இலங்கைப் பரீட்சைத் திணைக்களும் இலங்கைப் பரீட்சைத் திணைக்களும்

අධාායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2018 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2018 ஓகஸ்ந் General Certificate of Education (Adv. Level) Examination, August 2018

සංයුක්ත ගණිතය இணைந்த கணிதம் Combined Mathematics

B කොටස

* පුශ්න පහකට පමණක් පිළිතුරු සපයන්න.

11. (a) a,b \in \mathbb{R} යැයි ගනිමු. $3x^2-2$ (a+b) x+ab=0 සමීකරණයේ විචේචකය a හා b ඇසුරෙන් ලියා දක්වා **ඒ නයින්**, මෙම සමීකරණයේ මූල තාත්ත්වික බව පෙන්වන්න.

මෙම මූල lpha හා eta යැයි ගනිමු. a හා b ඇසුරෙන් lpha+eta හා lphaeta ලියා දක්වන්න.

දැන්, $\beta=\alpha+2$ යැයි ගනිමු. $a^2-ab+b^2=9$ බව පෙන්වා,

 $|a| \leq \sqrt{12}$ බව **අපෝගනය** කර, a ඇසුරෙන් b සොයන්න.

- (b) $c \not= 0$) හා d තාත්ත්වික සංඛාහ යැයි ද $f(x) = x^3 + 4x^2 + cx + d$ යැයි ද ගනිමු. (x+c) මගින් f(x) බෙදු විට ශේෂය $-c^3$ වේ. තව ද (x-c) යන්න f(x) හි සාධකයක් වේ. c=-2 හා d=-12 බව පෙන්වන්න. c හා d හි මෙම අගයන් සඳහා (x^2-4) මගින් f(x) බෙදූ විට ශේෂය සොයන්න.
- $oldsymbol{12}$. (a) එක එකක පිරිමි ළමයින් තිදෙනකු හා ගැහැනු ළමයින් දෙදෙනකු සිටින කණ්ඩායම් දෙකක සාමාජිකයන් අතුරෙන්, සාමාජිකයන් හයදෙනකුගෙන් යුත් කමිටුවක් තෝරා ගත යුතුව ඇත්තේ කමිටුවේ සිටින ගැහැනු ළමයින් සංඛාහව වැඩි තරමින් දෙදෙනකු වන පරිදි ය.
 - (i) කමිටුවට එක් එක් ක-ණ්ඩායමෙන් සාමාජිකයන් ඉරට්ටේ සංඛාහවක් තෝරා ගත යුතු නම්,
 - (ii) කමිටුවට එක් ගැහැනු ළමයකු පමණක් තෝරා ගත යුතු නම්,

සැදිය හැකි එවැනි වෙනස් කමිටු ගණන සොයන්න.

$$(b) \ r \in \mathbb{Z}^+$$
 සඳහා $f(r) = \frac{1}{(r+1)^2}$ සහ $U_r = \frac{(r+2)}{(r+1)^2(r+3)^2}$ යැයි ගනිමු.

 $r \in \mathbb{Z}^+$ සඳහා $f(r) - f(r+2) = 4U_r$ බව පෙන්වන්න.

ඊ නයින්,
$$n\in\mathbb{Z}^+$$
සඳහා $\sum_{r=1}^n U_r = \frac{13}{144} - \frac{1}{4(n+2)^2} - \frac{1}{4(n+3)^2}$ බව පෙන්වන්න.

 $\sum U_r$ අපරිමිත ශ්ලේණිය අභිසාරී බව **අපෝහනග** කර එහි ඓකාසය සොයන්න.

$$n\!\in\! {\hbox{$\Bbb Z$}}^+$$
සඳහා $t_n=\sum_{r=n}^{2n}U_r$ යැයි ගතිමු.

 $\lim_{n\to\infty} t_n = 0$ බව පෙන්වන්න.

$$egin{aligned} \mathbf{13.} & (a) & \mathbf{A} = \begin{pmatrix} 1 & 1 & 0 \\ 2 & 4 & -1 \end{pmatrix}$$
 හා $\mathbf{B} = \begin{pmatrix} 3 & 2a \\ -1 & 0 \\ 1 & 3a \end{pmatrix}$ යැයි ගනිමු; මෙහි $a \in \mathbb{R}$ වේ.

 ${f P}={f A}{f B}$ මගින් අර්ථ දැක්වෙන ${f P}$ නාපාසය සොයා, a හි කිසිදු අගයකට ${f P}^{-1}$ නොපවතින බව පෙන්වන්න.

$$\mathbf{P}igg(egin{array}{c}1\2\end{array}igg)=5igg(egin{array}{c}2\1\end{array}igg)$$
 නම්, $a=2$ බව පෙන්වන්න.

a සඳහා මෙම අගය සහිත ව, $\mathbf{Q} = \mathbf{P} + \mathbf{I}$ යැයි ගනිමු; මෙහි \mathbf{I} යනු ගණය 2 වන ඒකක නාහසයයි.

 \mathbf{Q}^{-1} ලියා දක්වා $\mathbf{A}\mathbf{A}^{\mathrm{T}}-\frac{1}{2}\mathbf{R}=\left(\frac{1}{5}\mathbf{Q}\right)^{-1}$ වන පරිදි \mathbf{R} නාහසය සොයන්න.

- (b) z=x+iy යැයි ගනිමු; මෙහි x,y∈ \mathbb{R} වේ. z හි, මාපාංකය |z| හා පුතිබද්ධය \overline{z} අර්ථ දක්වන්න.
 - (i) $z\overline{z} = |z|^2$,
 - (ii) $z + \overline{z} = 2 \operatorname{Re} z$ so $z \overline{z} = 2i \operatorname{Im} z$
 - බව පෙන්වන්න.

$$z \neq 1$$
 හා $w = \frac{1+z}{1-z}$ යැයි ගනිමු. $\operatorname{Re} w = \frac{1-\left|z\right|^2}{\left|1-z\right|^2}$ හා $\operatorname{Im} w = \frac{2\operatorname{Im} z}{\left|1-z\right|^2}$ බව පෙන්වන්න.

 $z=\cos\,lpha\,+\,i\,\sin\,lpha\,\,(0<lpha<2\pi)$ නම්, $w=i\cotrac{lpha}{2}$ බව තව දුරටක් පෙන්වන්න.

- (c) ආගන්ඩ සටහනක, A හා B ලක්ෂා පිළිවෙළින් -3i හා 4 සංකීර්ණ සංඛාා නිරූපණය කරයි. C හා D ලක්ෂා පළමුවන වෘත්ත පාදකයේ පිහිටන්නේ ABCD රොම්බසයක් හා $B\hat{A}D = \theta$ වන පරිදි ය; මෙහි $\theta = \sin^{-1}\left(\frac{7}{25}\right)$ වේ. C හා D ලක්ෂා මගින් නිරූපණය කරනු ලබන සංකීර්ණ සංඛාා සොයන්න.
- **14.** (a) $x \neq -1$, $\frac{1}{3}$ සඳහා $f(x) = \frac{16(x-1)}{(x+1)^2(3x-1)}$ යැයි ගනිමු.

 $x \neq -1$, $\frac{1}{3}$ සඳහා f(x)හි වසුත්පන්නය, f'(x) යන්න $f'(x) = \frac{-32x(3x-5)}{(x+1)^3(3x-1)^2}$ මගින් දෙනු ලබන බව පෙන්වන්න.

ස්පර්ශෝත්මුඛ හා හැරුම් ලක්ෂා දක්වමින් y=f(x) හි පුස්තාරයේ දළ සටහනක් අඳින්න.

පුස්තාරය භාවිතයෙන්, $k(x+1)^2 (3x-1) = 16 (x-1)$ සමීකරණයට හරියටම එක් මූලයක් පවතින පරිදි $k \in \mathbb{R}$ හි අගයන් සොයන්න.

(b) අරය $3r \, {\rm cm} \, {\rm so} \, {\rm cm} \, 2h \, {\rm cm} \, 2$

15. (a) (i) x^2, x^1 හා x^0 හි සංගුණක සැසඳීමෙන්,

සියලු $x \in \mathbb{R}$ සඳහා $Ax^2(x-1) + Bx(x-1) + C(x-1) - Ax^3 = 1$ වන පරිදි A, B හා C නියතවල අගයන් සොයන්න.

ඒ නයින්, $\frac{1}{x^3(x-1)}$ යන්න භින්න භාග වලින් ලියා දක්වා $\int \frac{1}{x^3(x-1)} \, \mathrm{d}x$ සොයන්න.

(ii) කොටස් වශයෙන් අනුකලනය භාවිතයෙන්, $\int x^2 \cos 2x \,\mathrm{d}x$ සොයන්න.

$$(b)$$
 $\theta = an^{-1}(\cos x)$ ආදේශය භාවිතයෙන්, $\int\limits_0^\pi \frac{\sin x}{\sqrt{1+\cos^2 x}} \,\mathrm{d}x = 2\ln\left(1+\sqrt{2}\right)$ බව පෙන්වන්න.

a නියතයක් වන $\int\limits_0^a f(x)\,\mathrm{d}x = \int\limits_0^a f(a-x)\,\mathrm{d}x$ සූතුය භාවිතයෙන්, $\int\limits_0^\pi \frac{x\sin x}{\sqrt{1+\cos^2 x}}\,\mathrm{d}x$ සොයන්න.

16. $A\equiv (-2,-3)$ හා $B\equiv (4,5)$ යැයි ගනිමු. AB රේඛාව සමග l_1 හා l_2 රේඛා එක එකක් සාදන සුළු කෝණය $rac{\pi}{4}$ වන පරිදි A ලක්ෂාය හරහා යන l_1 හා l_2 රේඛාවල සමීකරණ සොයන්න.

P හා Q ලක්ෂා පිළිවෙළින් l_1 හා l_2 මත ගෙන ඇත්තේ APBQ සමචතුරසුයක් වන පරිදි ය.

PQ හි සමීකරණය සොයා, P හා Q හි ඛණ්ඩාංක සොයන්න.

තව ද $A,\,P,\,B$ හා Q ලක්ෂා හරහා යන S වෘත්තයේ සමීකරණය සොයන්න.

 $\lambda > 1$ යැයි ගනිමු. $R \equiv (4\lambda\,,5\lambda\,)$ ලක්ෂාය, S වෘත්තයට පිටතින් පිහිටන බව පෙන්වන්න.

R ලක්ෂාගේ සිට S වෘත්තයට ඇඳි ස්පර්ශකවල ස්පර්ශ ජානයේ සමීකරණය සොයන්න.

 λ (> 1) විචලනය වන විට, මෙම ස්පර්ශ ජාාායන් අචල ලක්ෂාායක් හරහා යන බව පෙන්වන්න.

17. (a) $0 \le \theta \le \pi$ සඳහා $\cos 2\theta + \cos 3\theta = 0$ විසඳන්න. $\cos \theta$ ඇසුරෙන් $\cos 2\theta$ හා $\cos 3\theta$ ලියා දක්වා, $\cos 2\theta + \cos 3\theta = 4t^3 + 2t^2 - 3t - 1$ බව පෙන්වන්න; මෙහි $t = \cos \theta$ වේ.

ඒ නයින්, $4t^3+2t^2-3t-1=0$ සමීකරණයෙහි මූල තුන ලියා දක්වා $4t^2-2t-1=0$ සමීකරණයෙහි මූල $\cos\frac{\pi}{5}$ හා $\cos\frac{3\pi}{5}$ බව පෙන්වන්න. $\cos\frac{3\pi}{5}=\frac{1-\sqrt{5}}{4}$ බව **අපෝහන**ය කරන්න.

(b) ABC තිකෝණයක් යැයි ද D යනු BD:DC=m:n වන පරිදි BC මත වූ ලක්ෂාය යැයි ද ගනිමු; මෙහි $m,\,n>0$ වේ. $B\hat{A}D=\alpha$ හා $D\hat{A}C=\beta$ බව දී ඇත. BAD හා DAC තිකෝණ සඳහා සයින් නීතිය භාවිතයෙන්, $\frac{mb}{nc}=\frac{\sin\alpha}{\sin\beta}$ බව පෙන්වන්න; මෙහි b=AC හා c=AB වේ.

ඒ නයින්, $\frac{mb-nc}{mb+nc}=\tan\left(\frac{\alpha-\beta}{2}\right)\cot\left(\frac{\alpha+\beta}{2}\right)$ බව පෙන්වන්න.

(c) $2 \tan^{-1} \left(\frac{1}{3}\right) + \tan^{-1} \left(\frac{4}{3}\right) = \frac{\pi}{2}$ බව පෙන්වන්න.

7.	A හා B යනු S නියැදි අවකාශයක සිද්ධි දෙකක් යැයි ගනිමු. සුපුරුදු අංකනයෙන්, $P(A)=\frac{1}{3}$, $P(B)=\frac{1}{4}$ හා $P(A\cap B)=\frac{1}{6}$ වේ. $P(A B')$, $P(A'\cap B')$ හා $P(B' A')$ සොයන්න; මෙහි A' හා B' මගින් පිළිවෙළින් A හා
	B සිද්ධිවල අනුපූරක සිද්ධි දැක්වේ.
	<u> </u>
,	
	පාටීන් හැර අන් සෑම අයුරකින්ම සමාන වූ රතු බෝල 4 ක් හා කළු බෝල 3 ක් මල්ලක අඩංගු වේ. වරකට
	එක බැගින් පුතිස්ථාපනයෙන් තොරව, බෝල හතරක් සසම්භාවී ලෙස මල්ලෙන් ඉවතට ගනු ලැබේ. (i) ඉවතට ගනු ලබන බෝල එකම පාටින් යුක්ත වීමේ, (ii) ඕනෑම අනුයාත ඉවතට ගැනීම් දෙකක දී ඉවතට ගනු ලබන බෝල වෙනස් පාටින් යුක්ත වීමේ,
	සම්භාවිතාව සොයන්න.

9.	එක එකක් 8 ට අඩු ධන නිඛිල පහකට එක මාතයක් පමණක් ඇත. ඒවායේ මධානායය, මාතය හා මධාසේථය
	6:10:5 අනුපාතවලට පිහිටයි. මෙම නිඛිල පහ සොයන්න.
	,
10.	එක්තරා නගරයක උෂ්ණත්වය දින 20ක් සඳහා දිනපතා වාර්තාගත කරන ලදී. මෙම දත්ත කුලකය සඳහා
	මධානාසය μ හා සම්මත අපගමනය σ පිළිවෙළින් 28° C හා 4° C ලෙස ගණනය කර තිබුණි. කෙසේ නමුත්
	ඉහත උෂ්ණත්වවලින් දෙකක් $35^{\circ}\mathrm{C}$ හා $21^{\circ}\mathrm{C}$ ලෙස වැරදියට ඇතුළත් කර ඇති බව සොයා ගැනීමෙන් පසුව
	ඒවා $25^\circ\mathrm{C}$ හා $31^\circ\mathrm{C}$ ලෙස නිවැරදි කරන ලදී. μ හා σ හි නිවැරදි අගයන් සොයන්න.

È

සියලු ම හිමිකම් ඇව්රිනී / மුඟුට பதிப்புரிமையுடையது /All Rights Reserved]

ලි ලංකා වතාග දෙපාර්තමේන්තුව ලි ලංකා විභාග දෙපාර්ත**ල් අද සින්න මට ප්රදාන දෙපාල් පාලිල් මාන** දෙපාර්තමේන්තුව ලි ලංකා විභාග දෙපාර්තමේන්තුව இலங்கைப் பரீட்சைத் திணைக்களம் இலங்கைப் பூட்சைத் திணைக்களம் இருங்கைப் பரீட்சைத் திணைக்களம் இலங்கைப் பரீட்சைத் திணைக்களம் Department of Examinations, Sri Lanka Department of **இබාස්කාණ් Sri Linka Operatment** of Examinations, Sri Lanka ලි ලංකා විභාග දෙපාර්තමේන් Sri Lanka Department of Examinations, Sri Lanka ලි ලංකා විභාග දෙපාර්තමේන්තුව ලින්න විභාග දෙපාර්තමේන්තුව ලින්න විභාග විභාග දෙපාර්තමේන්තුව ලින්න විභාග ව

අබනයන පොදු සහනික පතු (උසස් පෙළ) විභාගය, 2018 අගෝස්තු கல்விட் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரின், 2018 ஓகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2018

B කොටස

கு**் பூன்ற ஏறிற**க II இணைந்த கணிதம் II Combined Mathematics II 10 S II

* පුශ්න **පහකට** පමණක් පිළිතුරු සපයන්න.

... ලෙකුදේ පපපපෙන. (මෙම පුශ්න පතුයෙහි g මගින් ගුරුත්වජ ත්වරණය දැක්වෙයි.)

11.(a) මීටර 4d ගැඹුරු පතලක චලනය වන සෝපානයක් t=0 කාලයේ දී A ලක්ෂායකින් නිශ්චලතාවේ සිට සිරස් ව පහළට චලනය වීමට පටන් ගනී. එය, පළමුව $\frac{g}{2}$ m s $^{-2}$ නියත ත්වරණයෙන් මීටර d දුරක් චලනය වී ඊළඟට එම චලිනය අවසානයේ ලබාගත් පුවේගයෙන් තව මීටර d දුරක් චලනය වේ. සෝපානය ඉන්පසු A සිට මීටර 4d දුරක් පහළින් පිහිටි B ලක්ෂායේ දී නිශ්චලතාවට පැමිණෙන පරිදි නියත මන්දනයකින් ඉතිරි දුර ද චලනය වේ.

සෝපානයෙහි චලිතය සඳහා පුවේග-කාල වකුයේ දළ සටහනක් අඳින්න.

ඒ නයින්, A සිට B දක්වා පහළට චලිතය සඳහා සෝපානය ගනු ලබන මුළු කාලය සොයන්න.

- (b) පොළොවට සාපේක්ෂව $u \ \mathrm{km} \ \mathrm{h}^{-1}$ ඒකාකාර වේගයකින් උතුරු දිශාවට නැවක් යාතුා කරයි. එක්තරා මොහොතක දී නැවේ සිට, දකුණෙන් නැගෙනහිරට β කෝණයකින්, **නැවේ පෙතෙහි සිට** $p \ \mathrm{km}$ දුරකින් B_1 බෝට්ටුවක් නිරීක්ෂණය කරනු ලැබේ. මෙම මොහොතේ දී ම, B_2 බෝට්ටුවක් නැවේ සිට බටහිරින් $q \ \mathrm{km}$ දුරකින් නිරීක්ෂණය කරනු ලැබේ. බෝට්ටු දෙකම පොළොවට සාපේක්ෂව $v(>u) \ \mathrm{km} \ \mathrm{h}^{-1}$ ඒකාකාර වේගයෙන් සරල රේඛ්ය පෙත්වල, නැව අල්ලා ගැනීමේ අපේක්ෂාවෙන් යාතුා කරයි. පොළොවට සාපේක්ෂව බෝට්ටුවල පෙත් නිර්ණය කිරීම සඳහා පුවේග නිකෝණවල දළ සටහන් එකම රූපයක අඳින්න. පොළොවට සාපේක්ෂව B_1 බෝට්ටුවේ පෙත උතුරෙන් බටහිරට $\beta \sin^{-1}\left(\frac{u \sin\beta}{v}\right)$ කෝණයක් සාදන බව පෙන්වා, පොළොවට සාපේක්ෂව B_2 බෝට්ටුවේ පෙත සොයන්න. $\beta = \frac{\pi}{3} \ \mathrm{vi} \ v = \sqrt{3} u \ \mathrm{cr} (\mathrm{d} \ \mathrm{vi} \ \mathrm{d} \ \mathrm{sin}^2) \ \mathrm{d} \$
- 12.(a) AB=a හා $B\hat{A}D=\frac{\pi}{6}$ වන පරිදි වූ රූපයේ දැක්වෙන ABCD තුපීසියම, ස්කන්ධය 2m වූ සුමට ඒකාකාර කුට්ටියක ගුරුත්ව කේන්දුය තුළින් වූ සිරස් හරස්කඩකි. AD හා BC රේබා සමාන්තර වන අතර AB රේබාව එය අඩංගු මුහුණතෙහි උපරිම බෑවුම් රේබාවකි. AD අයත් මුහුණත සුමට තිරස් ගෙබීමක් මත ඇතිව කුට්ටිය තබනු ලබයි. රූපයේ දැක්වෙන පරිදි ස්කන්ධය m වූ P අංශුවක් A ලක්ෂායෙහි තබා, එයට \overline{AB} දිගේ u පුවේගයක් දෙනු ලබයි; මෙහි $u^2=\frac{7ga}{3}$ වේ. කුට්ටියට සාපේක්ෂව P හි මන්දනය $\frac{2g}{3}$ බව පෙන්වා, P අංශුව B කරා ළඟා වන විට, කුට්ටියට සාපේක්ෂව P අංශුවෙහි පුවේගය සොයන්න.

තව ද $BE=rac{\sqrt{3}\,a}{2}$ වන පරිදි කුට්ටියෙහි උඩත් මුහුණතෙහි BC මත වූ E ලක්ෂායේ කුඩා සිදුරක් ඇත. කුට්ටියට සාපේක්ෂව චලිතය සැලකීමෙන්, P අංශුව E හි ඇති සිදුරට වැටෙන බව පෙන්වන්න.

(b) දිග a වූ සැහැල්ලු අවිතනා තන්තුවක එක් කෙළවරක් O අවල ලක්ෂායකට ද අනෙක් කෙළවර ස්කන්ධය m වූ P අංශුවකට ද ඇඳා ඇත. අංශුව O ට සිරස් ව පහළින් නිශ්චලව එල්ලී තිබෙන අතර එයට විශාලත්වය $u=\sqrt{kag}$ වූ තිරස් පුවේගයක් දෙනු ලැබේ; මෙහි 2 < k < 5 වේ. තන්තුව θ කෝණයකින් හැරී තවමත් නොබුරුල්ව තිබෙන විට අංශුවේ v වේගය $v^2 = (k-2)ag + 2ag\cos\theta$ මගින් දෙනු ලබන බව පෙන්වන්න.

මෙම පිහිටීමේ දී තන්තුවේ ආතතිය සොයන්න.

heta=lpha වන විට තන්තුව බුරුල් වන බව **අපෝහන**ය කරන්න; මෙහි $\coslpha=rac{2-k}{3}$ වේ.

13. ස්කත්ධය m වූ P අංශුවක් එක එකක ස්වාහාවික දිග a හා මාපාංකය mg වූ සමාන සැහැල්ලු පුතාහස්ථ තත්තු දෙකක කෙළවර දෙකකට ඇඳා ඇත. එක තත්තුවක නිදහස් කෙළවර A අචල ලක්ෂායකට හා අනික් තත්තුවේ නිදහස් කෙළවර A ට සිරස් ව පහළින් 4a දුරකින් පිහිටි B අචල ලක්ෂායකට ඇඳා ඇත. (රූපය බලන්න.) තත්තු දෙකම නොබුරුල්ව, A ට $\frac{5a}{2}$ දුරක් පහළින් අංශුව සමතුලිතව තිබෙන බව පෙත්වන්න.

P 13 4a-x

P අංශුව දැන්, AB හි මධා ලක්ෂායට ඔසවා එම පිහිටිමේ දී නිසලතාවේ සිට සීරුවෙන් මුදාහරීනු ලැබේ. තත්තු දෙකම නොබුරුල් හා AP තන්තුවේ දිග x වන විට, $\ddot{x}+\dfrac{2g}{a}\Big(x-\dfrac{5a}{2}\Big)=0$ බව පෙන්වන්න.

මෙම සමීකරණය $\ddot{X}+\omega^2X=0$ ආකාරයෙන් නැවත ලියන්න; මෙහි $X=x-\frac{5a}{2}$ හා $\omega^2=\frac{2g}{a}$ වේ.

 $\dot{\chi}^2 = \omega^2 (c^2 - \chi^2)$ සූතුය භාවිතයෙන් මෙම චලිතයේ විස්තාරය c සොයන්න.

P අංශුව එහි පහත් ම පිහිටීමට ළඟා වන මොහොතේ දී PB තත්තුව කපනු ලැබේ. නව චලිතයේ දී x=a වන විට අංශුව එහි උච්චතම පිහිටීමට ළඟා වන බව පෙත්වන්න.

P අංශුව x=2a හි වූ එහි ආරම්භක පිහිටීමේ සිට පහළට a දුරක් ද ඊළඟට ඉහළට $\frac{a}{2}$ දුරක් ද චලනය වීමට ගනු ලබන මුළු කාලය $\frac{\pi}{3}\sqrt{\frac{a}{2g}}\left(3+\sqrt{2}\right)$ බව තව දුරටත් පෙන්වන්න.

- 14.(a) OAB තුිකෝණයක් යැයි ද D යනු AB හි මධා ලක්ෂාය යැයි ද E යනු OD හි මධා ලක්ෂාය යැයි ද ගනිමු. F ලක්ෂාය OA මත පිහිටා ඇත්තේ OF:FA=1:2 වන පරිදි ය. O අනුබද්ධයෙන් A හා B හි පිහිටුම් දෛශික පිළිවෙළින් \mathbf{a} හා \mathbf{b} වේ. \overrightarrow{BE} හා \overrightarrow{BF} දෙශික \mathbf{a} හා \mathbf{b} ඇසුරෙන් පුකාශ කරන්න. B,E හා F ඒකරේඛීය බව **අපෝහනය** කර, BE:EF අනුපාතය සොයන්න. $\overrightarrow{BF}\cdot\overrightarrow{DF}$ අදිශ ගුණිතය $|\mathbf{a}|$ හා $|\mathbf{b}|$ ඇසුරෙන් සොයා, $|\mathbf{a}|=3|\mathbf{b}|$ නම්, \overrightarrow{BF} යන්න \overrightarrow{DF} ට ලම්බ වන බව පෙන්වන්න.
 - (b) Oxy-තලයේ වූ බල පද්ධතියක් පිළිවෙළින් (-a, 2a), (0, a) හා (-a, 0) ලක්ෂාවල දී කි්යාකරන $3P\mathbf{i} + 2P\mathbf{j}$, $2P\mathbf{i} P\mathbf{j}$ හා $-P\mathbf{i} + 2P\mathbf{j}$ යන බල තුනෙන් සමන්විත වේ; මෙහි P හා a යනු පිළිවෙළින් නිව්ටන හා මීටරවලින් මනින ලද ධන රාශි වේ. O මූලය වටා, පද්ධතියේ දක්ෂිණාවර්ත සූර්ණය, 12Pa Nm බව පෙන්වන්න.

තව ද පද්ධතිය, විශාලත්වය 5P N වූ තනි සම්පුයුක්ත බලයකට තුලා වන බව පෙන්වා, එහි දිශාව හා කිුයා රේඛාවේ සමීකරණය සොයන්න.

දැන්, අතිරේක බලයක් පද්ධතියට ඇතුළත් කරනු ලබන්නේ නව පද්ධතිය දක්ෂිණාවර්ත සූර්ණය $24\,Pa\,\,\mathrm{N}\,\mathrm{m}$ වූ යුග්මයකට තුලා වන පරිදි ය. අතිරේක බලයෙහි විශාලත්වය, දිශාව හා කිුිිිියා රේඛාවේ සමීකරණය සොයන්න.

- 15.(a) බර W හා දිග 2a වූ ඒකාකාර AB දණ්ඩක A කෙළවර රළු තිරස් බිමක් මත හා B කෙළවර සුමට සිරස් බිත්තියකට එරෙහිව තබා ඇත. දණ්ඩ බිත්තියට ලම්බ සිරස් තලයක පිහිටන අතර, එය තිරස සමග θ කෝණයක් සාදයි; මෙහි $\tan \theta = \frac{3}{4}$ වේ. AC = x ලෙස දණ්ඩ මත වූ C ලක්ෂායට බර W වූ අංශුවක් සවි කර ඇත. අංශුව සහිත දණ්ඩ සමතුලිතතාවයේ ඇත. දණ්ඩ හා බිම අතර සර්ෂණ සංගුණකය $\frac{5}{6}$ වේ. $x \leq \frac{3a}{2}$ බව පෙත්වත්න.
 - (b) යාබද රූපයෙහි පෙන්වා ඇති රාමු සැකිල්ල, AB, BC, AC, CD හා AD සැහැල්ලු දඬු පහක් ඒවායේ කෙළවරවලින් නිදහසේ සන්ධි කර සාදා ඇත. AB = a, BC = 2a, AC = CD හා $CAD = 30^\circ$ බව දී ඇත. බර W වූ භාරයක් D හි එල්ලෙන අතර පිළිවෙළින් A හා B හි දී **රූපයේ දක්වා ඇති දිශාවලට** කිුිියාකරන P හා Q සිරස් බලවල ආධාරයෙන් AB තිරස් ව හා AC සිරස් ව රාමු සැකිල්ල සිරස් තලයක සමකුලිතව තිබේ. Q හි අගය W ඇසුරෙන් සොයන්න. බෝ අංකනය භාවිතයෙන් පුතාහබල සටහනක් ඇඳ, **ඒ නගීන්**, දඬු පහේ පුතාහබල සොයා, මෙම පුතාහබල ආතති ද තෙරපුම් ද යන්න පුකාශ කරන්න.

16.අරය a වූ ඒකාකාර සන අර්ධ ගෝලයක ස්කන්ධ කේන්දුය එහි කේන්දුයේ සිට $\frac{3}{8}a$ දුරකින් පිහිටන බව පෙන්වන්න.

අරය a, උස a හා ඝනත්වය ρ වූ ඒකාකාර ඝන ඍජු වෘත්තාකාර සිලින්ඩරයකින් අරය a වූ අර්ධ ගෝලාකාර කොටසක් කපා ඉවත් කරනු ලැබේ. දැන්, යාබද රූපයේ දැක්වෙන පරිදි සිලින්ඩරයේ ඉතිරි කොටසෙහි වෘත්තාකාර මුහුණකට අරය a හා ඝනත්වය $\lambda\rho$ වූ ඒකාකාර ඝන අර්ධ ගෝලයක වෘත්තාකාර මුහුණක සවි කරනු ලබන්නේ, ඒවායේ සමමිතික අක්ෂ දෙක සම්පාත වන පරිදි ය. මෙලෙස සාදාගනු ලබන S වස්තුවෙහි ස්කන්ධ කේන්දුය, එහි සමමිතික අක්ෂය මත, ගැටියේ O කේන්දුයේ සිට $\frac{(11\lambda+3)a}{4(2\lambda+1)}$ දුරකින් පිහිටන බව පෙන්වන්න.

 $\lambda=2$ යැයි ද A යනු S වස්තුවෙහි වෘත්තාකාර ගැටිය මත වූ ලක්ෂෳයක් යැයි ද ගනිමු.

මෙම S වස්තුව රළු සිරස් බිත්තියකට එරෙහිව සමතුලිතව තබා ඇත්තේ, A ලක්ෂායට හා සිරස් බිත්තිය මත වූ B අචල ලක්ෂායකට ඇඳා ඇති සැහැල්ලු අවිතනා තත්තුවක ආධාරයෙනි. මෙම සමතුලිත පිහිටීමේ දී S හි සමමිතික අක්ෂය බිත්තියට ලම්බව පිහිටන අතර S හි අර්ධ ගෝලාකාර පෘෂ්ඨය B ලක්ෂායට 3a දුරක් සිරස් ව පහළින් වූ C ලක්ෂායේ දී බිත්තිය ස්පර්ශ කරයි. (යාබද රූපය බලන්න.) O,A,B හා C ලක්ෂා බිත්තියට ලම්බ සිරස් තලයක පිහිටයි.

 μ යනු බිත්තිය හා S හි අර්ධ ගෝලීය පෘෂ්ඨය අතර ඝර්ෂණ සංගුණකය නම්, $\mu \geq 3$ බව පෙන්වන්න.

- 17. (a) ආයතනයක එක්තරා රැකියාවකට අයදුම් කරන සියලු ම අයදුම්කරුවන් අභියෝගානා පරීක්ෂණයකට පෙනීසිටීම අවශා වේ. මෙම අභියෝගානා පරීක්ෂණයෙන් A ලේණියක් ලබන අය රැකියාව සඳහා තෝරාගනු ලබන අතර, ඉතිරි අයදුම්කරුවන් සම්මුඛ පරීක්ෂණයකට මුහුණ දිය යුතු ය. අයදුම්කරුවන්ගෙන් 60% ක් A ලේණි ලබන බව ද ඒ අයගෙන් 40% ක් ගැහැනු අය බව ද සමීක්ෂණයක දී සොයා ගෙන ඇත. සම්මුඛ පරීක්ෂණයට මුහුණ දෙන අයදුම්කරුවන්ගෙන් 10% ක් පමණක් තෝරාගනු ලබන අතර එයින් 70% ක් ගැහැනු අය වෙති.
 - (i) මෙම රැකියාව සඳහා පිරිමි අයකු තෝරාගනු ලැබීමේ,
 - (ii) රැකියාවට තෝරාගනු ලැබූ පිරිමි අයකු අභියෝගානා පරීක්ෂණයට A ශ්‍රේණියක් ලබා තිබීමේ, සම්භාවිතාව සොයන්න.
 - (b) එක්තරා රෝහලක රෝගීන් 100 දෙනකුගේ පුතිකාර ලබා ගැනීමට පෙර රැඳී සිටි කාල (මිනිත්තුවලින්) එක් රැස් කරනු ලැබේ. එම එක් එක් කාලයෙන් මිනිත්තු 20ක් අඩු කිරීමෙන් ලැබෙන අන්තර එක එකක් 10න් බෙදීමෙන් ලැබෙන අගයන්ගේ වහප්තිය පහත වගුවෙන් දෙයි.

අගයන්ගේ පරාසය	රෝගීන් ගණන
-2 - 0	30
0 - 2	40
2 - 4	15
4 – 6	10
6 – 8	5

මෙම වගුවෙහි දී ඇති වාහප්තියෙහි මධානාපය හා සම්මත අපගමනය නිමානය කරන්න.

ඒ නයින්, රෝගීන් 100 දෙනා රැඳී සිටි කාලවල මධානාසය μ සහ සම්මත අපගමනය σ නිමානය කරන්න. σ තිමානය කරන්න $\kappa = \frac{\mu - M}{\sigma}$ මගින් අර්ථ දක්වනු ලබන කුටිකතා සංගුණකය κ නිමානය කරන්න; මෙහි M යනු රෝගීන් 100 දෙනා රැඳී සිටි කාලවල මාතය වේ.