Control Systems

G V V Sharma*

CONTENTS

Abstract—This manual is an introduction to control systems based on GATE problems.Links to sample Python codes are available in the text.

Download python codes using

svn co https://github.com/gadepall/school/trunk/ control/codes

1 Polar Plot

1.1 Introduction

1.1. Sketch the direct polar plot for a unity feedback system with open loop transfer function

$$G(s) = \frac{1}{s(1+s)^2}$$
 (1.1.1)

Solution: The polar plot is obtained by plotting (r, ϕ)

$$r = |H(1\omega)||G(1\omega)| \tag{1.1.2}$$

$$\phi = \angle H(1\omega)G(1\omega), 0 < \omega < \infty \tag{1.1.3}$$

The following code plots the polar plot in Fig. ??

codes/ee18btech11002/polarplot.py

1.2. Sketch the inverse polar plot for (??) **Solution:** The above code plots the polar plot in Fig. ?? by plotting $\left(\frac{1}{r}r, -\phi\right)$

1.2 Example

Fig. 1.1: Polar Plot

Fig. 1.2: Inverse Polar Plot

^{*}The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.