## Normal, Cohen-Macaulay, and regular schemes

## 1 Normal scheme

**Definition 1.** A scheme X is called *normal* if for every open affine subset  $U = \operatorname{Spec} A$  of X, the ring A is an integrally closed domain. Yang: To be checked.

**Definition 2.** The *normalization* of a scheme X is a normal scheme  $\widetilde{X}$  together with a finite birational morphism  $\pi:\widetilde{X}\to X$  such that for every normal scheme Y and every birational morphism  $f:Y\to X$ , there exists a unique morphism  $g:Y\to\widetilde{X}$  such that  $f=\pi\circ g$ . Yang: To be checked.

**Theorem 3.** Let X be a scheme. Then there exists a normalization  $\widetilde{X}$  of X.

**Theorem 4** (Hartog's phenomenon). Let X be a normal integral scheme, and let  $U \subseteq X$  be an open subset whose complement has codimension at least 2. Then every regular function on U extends uniquely to a regular function on X, i.e., the restriction map  $\Gamma(X, \mathcal{O}_X) \to \Gamma(U, \mathcal{O}_X)$  is an isomorphism. Yang: To be checked.

**Proposition 5.** Let X be a normal scheme, and let  $x \in X$  be a point with codimension 1. Then X is regular at x.

## 2 Cohen-Macaulay scheme

**Definition 6.** Let X be a scheme, and let  $Z \subseteq X$  be a closed subset. For a sheaf of  $\mathcal{O}_X$ -modules  $\mathcal{F}$ , the *local cohomology*  $H_Z^i(X,\mathcal{F})$  is defined as the i-th right derived functor of the functor  $\Gamma_Z(X,-)$ :  $\mathbf{Mod}(\mathcal{O}_X) \to \mathbf{Ab}$  that sends a sheaf of  $\mathcal{O}_X$ -modules  $\mathcal{G}$  to the abelian group of sections of  $\mathcal{G}$  with support in Z, i.e.,

$$H_Z^i(X,\mathcal{F}) := \mathsf{R}^i \Gamma_Z(X,\mathcal{F}).$$

Yang: To be checked.

**Definition 7.** A scheme X is called *Cohen-Macaulay* if for every point  $x \in X$ , the local ring  $\mathcal{O}_{X,x}$  is a Cohen-Macaulay ring. Yang: To be checked.

**Theorem 8.** Let X be a Cohen-Macaulay scheme, and let  $Z \subseteq X$  be a closed subset of codimension at least 2. Then for every sheaf of  $\mathcal{O}_X$ -modules  $\mathcal{F}$ , the local cohomology  $H_Z^i(X,\mathcal{F}) = 0$  for every i < 2. Yang: To be checked.

## 3 Regular scheme

We first define the tangent space of a scheme at a point.

There are many descriptions of the tangent space of a scheme at a point. Here we give one of them.

Date: October 24, 2025, Author: Tianle Yang, My Homepage



2

Let X be a scheme over a field  $\mathbf{k}$ , and let  $x \in X(\mathbf{k})$ .

**Proposition 9.** Let  $\operatorname{Spec} \mathbf{k}[\epsilon]/(\epsilon^2)$  be the spectrum of the ring of dual numbers over  $\mathbf{k}$  with point  $*: \operatorname{Spec} \mathbf{k} \to \operatorname{Spec} \mathbf{k}[\epsilon]/(\epsilon^2)$ . The tangent space  $T_x X$  is naturally isomorphic to the set of morphisms  $\operatorname{Spec} \mathbf{k}[\epsilon]/(\epsilon^2) \to X$  that send \* to x, i.e.

$$T_x X \cong \{ f : \operatorname{Spec} \mathbf{k}[\epsilon]/(\epsilon^2) \to X \mid f(*) = x \}.$$

| Proof. Yang: To be filled.

