Parallel Coordinate Descent Methods for Full Configuration Interaction

Yuejia Zhang Weiguo Gao Yingzhou Li

Fudan University, China

SIAM LA 24, Paris, France

Problem Statement

 Search for the ground-state of a chemical system given by the many-body time-independent Schrödinger Equation

$$\hat{H}|\mathbf{\Phi_0}\rangle = E_0|\mathbf{\Phi_0}\rangle,$$

where
$$|\mathbf{\Phi_0}\rangle = \mathbf{\Phi_0}(r_1, \dots, r_{n_{\mathrm{elec}}}), r_i \in \mathbb{R}^3$$
.

• Under Born–Oppenheimer approximation, the Hamiltonian operator with n_{nuc} nuclei and n_{elec} electrons is

$$\hat{H} = -\frac{1}{2} \sum_{i=1}^{n_{\text{elec}}} \nabla_i^2 + \sum_{i=1}^{n_{\text{elec}}} V_{\text{ext}}(r_i; \{R_I\}_{I=1}^{n_{\text{nuc}}}) + \sum_{i < j}^{n_{\text{elec}}} \frac{1}{\|r_i - r_j\|}.$$

FCI Numerical Discretization

- Based on one-electron spin-orbitals $\{\chi_p\}_{p=1}^{n_{\text{orb}}}$ from Hartree-Fock procedure.
- Wavefunction approximated as linear combination of anti-symmetrized tensor products (Slater determinants)

$$|\mathbf{\Phi_0}\rangle = \sum_{i=1}^{N_{\mathsf{FCI}}} c_i |D_i\rangle = \sum_{i=1}^{N_{\mathsf{FCI}}} c_i |\chi_{\boldsymbol{p}_i} \chi_{\boldsymbol{p}_j} \cdots \chi_{\boldsymbol{p}_k}\rangle.$$

- FCI variational space dimension: $N_{FCI} = \binom{n_{orb}}{n_{olog}}$.
- Schrödinger equation transformed to FCI eigenvalue problem

$$H\mathbf{c} = E_0\mathbf{c}, \quad H \in \mathbb{R}^{N_{\mathsf{FCI}} \times N_{\mathsf{FCI}}}, \quad \mathbf{c} \in \mathbb{R}^{N_{\mathsf{FCI}}}.$$

Hamiltonian Matrix

Entry: $H_{ij} = \langle D_i | \hat{H} | D_j \rangle$, not guaranteed to be non-negative.

- Symmetric. $H_{ij} = H_{ji}$.
- Sparse. For off-diagonals $|D_i\rangle \neq |D_j\rangle$,
 - If $|D_i\rangle = a_r^{\dagger} a_p |D_j\rangle$, $H_{ij} = \langle r|\hat{h}|p\rangle + \sum_k \langle rk||pk\rangle$.
 - If $|D_i\rangle = a_r^\dagger a_s^\dagger a_p a_q |D_j\rangle$, $H_{ij} = \langle rs||pq\rangle$.
 - Otherwise, $H_{ij} = 0$.

Consequence: H has $O(n_{\text{elec}}^2 n_{\text{orb}}^2)$ entries per row.

- Ground-state eigenvalue $E_0 < 0$.
- Ground-state eigenvector **c** sparse in the sense of truncation.

Memory usage

Table: Different Molecule Systems and Storage cost

Molecule	Basis	Electrons	Spin–Orbitals	Dimension	Memory	
H ₂ O	cc-pVDZ	10	48	$\sim 10^8$	$\sim 1\;GB$	
N_2	cc-pVDZ	14	56	$\sim 10^{11}$	$\sim 1~TB$	
N_2	cc-pVTZ	14	120	$\sim 10^{16}$	$\sim 100~\text{PB}$	
Cr_2	Ahlrichs	48	84	$\sim 10^{22}$	-	

Solution: Wavefunction Compression

- By tensor train: DMRG
- By sampling: FCIQMC, iFCIQMC, S-FCIQMC
- By selecting "important" configurations: HCI, SHCI, ASCI, CDFCI

FCI eigenvalue problem

Consider the unconstrained minimization problem

$$\min_{\mathbf{c} \in \mathbb{R}^{N_{\mathsf{FCI}}}} f(\mathbf{c}) = \min_{\mathbf{c}} \|H + \mathbf{c}\mathbf{c}^{\mathsf{T}}\|_F^2.$$

- Gradient $\nabla f(\mathbf{c}) = 4H\mathbf{c} + 4(\mathbf{c}^{\mathsf{T}}\mathbf{c})\mathbf{c}$.
- Hessian $\nabla^2 f(c) = 4H + 8\mathbf{c}\mathbf{c}^\mathsf{T} + 4(\mathbf{c}^\mathsf{T}\mathbf{c})I$.
- Non-convex problem, with unbounded Lipschitz constant.
- Stationary points: $0, \pm \sqrt{-\lambda_1} \mathbf{v}_1, \dots, \pm \sqrt{-\lambda_m} \mathbf{v}_m \ (\dots < \lambda_m < 0 < \lambda_{m+1} < \dots)$.
- Only two local minimizers $\pm \sqrt{-\lambda_1} \mathbf{v}_1$ (which are also global minimizers), the others are all strict saddle points.
- Ensures convergence to the ground state $\pm \mathbf{c}$, given a good starting point (e.g., Hartree–Fock ground state).

Coordinate Descent FCI (CDFCI)¹

Coordinate gradient descent method

- Minimizes computational costs by avoiding operations with the entire Hamiltonian matrix.
- In each iteration, only one coordinate of the optimizing vector is updated.
- Computation for updating involves only one column of the Hamiltonian matrix.

Figure: Update for one coordinate.

¹Z. Wang, Y. Li, J. Lu, J. Chem. Theory Comput., 2019.

CDFCI Framework

Initialize $\mathbf{c}^{(0)}$, $\mathbf{b}^{(0)} = H\mathbf{c}^{(0)}$.

- For iteration $\ell = 1, 2, \dots$
 - Select coordinate $i^{(\ell)} = \arg\max_i |\nabla_i f(\mathbf{c}^{(\ell-1)})|$.
 - ② Find stepsize by exact line search $\alpha^{(\ell)} = \arg\min_{\alpha} f(\mathbf{c}^{(\ell-1)} + \alpha \mathbf{e}_{i^{(\ell)}}).$

Remark: Gradient

$$\nabla f(\mathbf{c}) = 4H\mathbf{c} + 4\mathbf{c}^{\mathsf{T}}\mathbf{c}\mathbf{c} = 4\mathbf{b} + 4\mathbf{c}^{\mathsf{T}}\mathbf{c}\mathbf{c}.$$

Figure: Update for one coordinate.

CDFCI Framework - for Two Coordinates?

Initialize $\mathbf{c}^{(0)}$, $\mathbf{b}^{(0)} = H\mathbf{c}^{(0)}$. For iteration $\ell = 1, 2, \dots$

- $\begin{aligned} & \textbf{Select coordinate} \\ & i^{(\ell)} = \arg\max_{i} |\nabla_{i} f(\mathbf{c}^{(\ell-1)})|, \\ & j^{(\ell)} = \arg\max_{j \neq j^{(\ell)}} |\nabla_{j} f(\mathbf{c}^{(\ell-1)})|. \end{aligned}$
- ② Find stepsize $\alpha^{(\ell)} = \arg\min_{\alpha} f(\mathbf{c}^{(\ell-1)} + \alpha \mathbf{e}_{i^{(\ell)}}),$ $\beta^{(\ell)} = \arg\min_{\beta} f(\mathbf{c}^{(\ell-1)} + \beta \mathbf{e}_{i^{(\ell)}}).$
- Update $\mathbf{c}^{(\ell)} = \mathbf{c}^{(\ell-1)} + \alpha^{(\ell)} \mathbf{e}_{i(\ell)} + \beta^{(\ell)} \mathbf{e}_{j(\ell)},$ $\mathbf{b}^{(\ell)} = \mathbf{b}^{(\ell-1)} + \alpha^{(\ell)} H_{\cdot i(\ell)} + \beta^{(\ell)} H_{\cdot i(\ell)}.$

Figure: Update for two coordinates.

CDFCI Framework - Exact Line Search?

Initialize $\mathbf{c}^{(0)}$, $\mathbf{b}^{(0)} = H\mathbf{c}^{(0)}$. For iteration $\ell = 1, 2, \dots$

- $\begin{array}{l} \textbf{ Select coordinate} \\ i^{(\ell)} = \arg\max_i |\nabla_i f(\mathbf{c}^{(\ell-1)})|, \\ j^{(\ell)} = \arg\max_{i \neq i^{(\ell)}} |\nabla_i f(\mathbf{c}^{(\ell-1)})|. \end{array}$
- ② Find stepsize $\alpha^{(\ell)}, \beta^{(\ell)} = \arg\min_{\alpha,\beta} f(\mathbf{c}^{(\ell-1)} + \alpha \mathbf{e}_{i^{(\ell)}} + \beta \mathbf{e}_{i^{(\ell)}}).$
- $\begin{aligned} & \text{Update} \\ & \mathbf{c}^{(\ell)} = \mathbf{c}^{(\ell-1)} + \alpha^{(\ell)} \mathbf{e}_{i^{(\ell)}} + \beta^{(\ell)} \mathbf{e}_{j^{(\ell)}}, \\ & \mathbf{b}^{(\ell)} = \mathbf{b}^{(\ell-1)} + \alpha^{(\ell)} H_{:,i^{(\ell)}} + \beta^{(\ell)} H_{:,j^{(\ell)}}. \end{aligned}$

Figure: Update for two coordinates.

Add a Scalar γ for Exact Line Search

Modify the minimization problem from $\min_{\alpha,\beta} f(\mathbf{c} + \alpha \mathbf{e}_i + \beta \mathbf{e}_j)$ to

$$\min_{\boldsymbol{\gamma}, \alpha, \beta} f(\boldsymbol{\gamma} \mathbf{c} + \alpha \mathbf{e}_i + \beta \mathbf{e}_j) = f(\begin{bmatrix} \mathbf{c} & \mathbf{e}_i & \mathbf{e}_j \end{bmatrix} \begin{bmatrix} \boldsymbol{\gamma} \\ \alpha \\ \beta \end{bmatrix}) \\
= \begin{bmatrix} H + \begin{bmatrix} \mathbf{c} & \mathbf{e}_i & \mathbf{e}_j \end{bmatrix} \begin{bmatrix} \boldsymbol{\gamma} \\ \alpha \\ \beta \end{bmatrix} \begin{bmatrix} \boldsymbol{\gamma} & \alpha & \beta \end{bmatrix} \begin{bmatrix} \mathbf{c}^\mathsf{T} \\ \mathbf{e}_i^\mathsf{T} \\ \mathbf{e}_i^\mathsf{T} \end{bmatrix} \end{bmatrix}^2.$$

Matrix Orthogonalization

Construct $\begin{bmatrix} \tilde{\mathbf{c}} & \mathbf{e}_i & \mathbf{e}_j \end{bmatrix}$, where $\|\tilde{\mathbf{c}}\|_2 = 1$, $(\tilde{\mathbf{c}}, \mathbf{e}_i) = 0$, $(\tilde{\mathbf{c}}, \mathbf{e}_j) = 0$.

Add γ and $\tilde{\mathbf{c}}$ for Exact Line Search

Modify the minimization problem from $\min_{\alpha,\beta} f(\mathbf{c} + \alpha \mathbf{e}_i + \beta \mathbf{e}_i)$ to

$$\min_{\boldsymbol{\gamma}, \alpha, \beta} f(\boldsymbol{\gamma} \tilde{\mathbf{c}} + \alpha \mathbf{e}_i + \beta \mathbf{e}_j) = f(\begin{bmatrix} \tilde{\mathbf{c}} & \mathbf{e}_i & \mathbf{e}_j \end{bmatrix} \begin{bmatrix} \boldsymbol{\gamma} \\ \alpha \\ \beta \end{bmatrix}) \\
= \| H + \begin{bmatrix} \tilde{\mathbf{c}} & \mathbf{e}_i & \mathbf{e}_j \end{bmatrix} \begin{bmatrix} \boldsymbol{\gamma} \\ \alpha \\ \beta \end{bmatrix} [\boldsymbol{\gamma} \quad \alpha \quad \beta] \begin{bmatrix} \tilde{\mathbf{c}}^\mathsf{T} \\ \mathbf{e}_i^\mathsf{T} \\ \mathbf{e}_j^\mathsf{T} \end{bmatrix} \|_F^2 \\
= \| \underbrace{\begin{bmatrix} \tilde{\mathbf{c}}^\mathsf{T} \\ \mathbf{e}_i^\mathsf{T} \\ \mathbf{e}_j^\mathsf{T} \end{bmatrix}}_{\in \mathbb{R}^{3 \times 3}} H \begin{bmatrix} \tilde{\mathbf{c}} & \mathbf{e}_i & \mathbf{e}_j \end{bmatrix} + \begin{bmatrix} \boldsymbol{\gamma} \\ \alpha \\ \beta \end{bmatrix} [\boldsymbol{\gamma} \quad \alpha \quad \beta] \|_F^2 .$$

Extension to Multi Coordinate Descent FCI

- Select a set of coordinates $I = \{i_1, \dots, i_k\}, 1 \le i_j \le N_{\mathsf{FCI}}$ based on gradient $\nabla f(\mathbf{c}) = 4H\mathbf{c} + 4\mathbf{c}^\mathsf{T}\mathbf{c}\mathbf{c}$.
- Denote $\mathcal{E}_I = [e_{i_1}, \dots, e_{i_k}] \in \mathbb{R}^{N_{\mathsf{FCI}} \times k}$
- The update is given by

$$\mathbf{c} \leftarrow \gamma \mathbf{c} + \mathcal{E}_I \mathbf{a}$$
.

ullet The values of γ and ${f a}$ are given by the eigenvector of

$$\begin{bmatrix} \mathbf{\tilde{c}}^\mathsf{T} \\ \mathcal{E}_I^\mathsf{T} \end{bmatrix} H \begin{bmatrix} \mathbf{\tilde{c}} & \mathcal{E}_I \end{bmatrix} \in \mathbb{R}^{(k+1) \times (k+1)}$$

corresponding to the minimal eigenvalue λ_{\min} , which is the current energy estimate.

Implementation Details

- \bullet H_{ij} evaluated on-the-fly.
- **c** and **b** = H**c** are stored in a hash table.
- Update of \mathbf{b}_i is discarded if $\mathbf{c}_i = 0$ and $\Delta \mathbf{b}_i < \tau$, where $\Delta \mathbf{b} = H_{:,j}a_j$. Note that this does not affect eigenvalue estimator

$$\mathsf{RQ}(\mathbf{c}) = \frac{\mathbf{c}^\mathsf{T} H \mathbf{c}}{\mathbf{c}^\mathsf{T} \mathbf{c}} = \frac{\mathbf{c}^\mathsf{T} \mathbf{b}}{\mathbf{c}^\mathsf{T} \mathbf{c}}.$$

- ullet Compression tolerance au balances between memory-cost and accuracy.
- Shared memory parallelism based on OpenMP: the updates of **c** and **b** = H**c** for each coordinate are performed in parallel.

Overall Speedup: $H_2O/\text{cc-pVDZ}$

Figure: Speedup of mCDFCI compared with CDFCI(2019), both in 64 threads. We perform k coordinates (k = 64) descent per iteration for the original CDFCI.

Overall Speedup: $C_2/\text{cc-pVDZ}$

Figure: Speedup of mCDFCI compared with CDFCI(2019), both in 64 threads. We perform k coordinates (k = 64) descent per iteration for the original CDFCI.

Overall Speedup: $N_2/\text{cc-pVDZ}$

Remark: With a larger search space each step, mCDFCI leads to lower energy with just 0.2%

more coordinates searched

Scalability

Table: Speedup of mCDFCI for different number of coordinates (threads) of H_2O in cc-pVDZ basis

	Wall Time (s)			Speedup on k Cores				
Energy	Error	on Single Core	2	4	8	16	32	64
-76.2318601	10^{-2}	9.0	1.9×	3.7×	5.0×	7.0×	10.4×	13.1×
-76.2408601	10^{-3}	292.9	$2.0 \times$	$3.7 \times$	$4.8 \times$	$8.2 \times$	$14.3 \times$	$20.3 \times$
-76.2417601	10^{-4}	1837.6	$2.0 \times$	$3.5 \times$	$6.1 \times$	$8.3 \times$	$16.2 \times$	$22.5 \times$
-76.2418501	10^{-5}	9016.7	$2.1 \times$	$4.1 \times$	$\times 0.8$	$12.3 \times$	$21.1 \times$	$29.0 \times$
-76.2418591	10^{-6}	32931.7	$2.1 \times$	$4.5 \times$	$9.3 \times$	$16.2 \times$	$29.1 \times$	40.7×

Scalability for each procedure

Figure: Time spent listed in each procedure, while running 6.4M core \times iterations for Cr_2 in Ahlrics SV Basis (48e, 84o), $\tau = 10^{-4}$.

Summary

The proposed methods CDFCI and mCDFCI

- performs configuration selection using coordinate descent and exact line search.
- visits important determinants efficiently.
- captures the significant part of FCI space for ground state approximation.

Figure: Update for two coordinates.

Thanks for Your Attention!

Registration and travel support for this presentation was provided by the Society for Industrial and Applied Mathematics.