Вероятностные модели, условные вероятности и независимость

Антипов Денис Сергеевич

Университет ИТМО, Санкт-Петербург, Россия

11 февраля 2021 г.

О лекторе

- ▶ PhD in computer science (Университет ИТМО и École Polytechnique)
- Занимаюсь теорией эволюционных вычислений
- Раньше вел матан, курс по теорверу впервые
- Контакты:
 - ► telegram: @antipovden
 - email: antipovden@yandex.ru
- ▶ Обращаться ко мне на "ты", по имени (напомню: Денис)
- ▶ Не бояться перебивать меня и задавать вопросы

О курсе

- ▶ За основу взят курс МІТ
- Во многом схож с курсом, который преподавала раньше Ирина Александровна Суслина
- ▶ Немного повторяет то, что вы проходили на дискретке
 - ▶ Осторожно! Можно случайно не заметить, когда началось что-то совсем для вас новое

Что вы уже знаете

- ▶ Множества, операции с ними, законы де Моргана
- Последовательности: пределы, сходимость
- Ряды, порядок суммирования, сумма геометрического ряда
- ▶ Счетность и несчетность; почему континуум несчетен
- ▶ Мера и ее свойства
- ▶ Как интегрировать

План лекции

- ▶ Определение вероятностного пространства
- ▶ Условная вероятность
- Формула полной вероятности и формула Байеса
- ▶ Независимость событий, условная независимость (если успеем)

Часть I. Вероятностное пространство

Вероятностное пространство — это тройка $(\Omega, \Sigma, \mathsf{Pr})$

- 1. Ω множество элементарных исходов
- 2. $\Sigma \sigma$ -алгебра событий
- 3. Рг вероятностная мера

Множество элементарных исходов Ω

Мы рассматриваем какой-то эксперимент, у которого возможны разные исходы. Множество всех возможных исходов и есть Ω .

- Эксперимент не может закончиться сразу двумя исходами одновременно (исходы — взаимоисключающие)
- ightharpoonup Эксперимент не может закончиться исходом не из Ω (Ω полное)
- Множество Ω не должно быть черезчур подробным (Ω неизбыточное)

Примеры Ω

- Подбрасывание монеты

 - ightharpoonup Если вы зануда: $\Omega = \{ {\sf орел, решка, ребро} \}$
- ▶ Хоккейный матч (КХЛ, NHL)
 - ightharpoonup $\Omega = \{B, BO, BE, \PiE, \PiO, \Pi\}$
 - Если нас интересуют только очки одной команды, то $\Omega = \{0,1,2\}$
- Время ожидания автобуса на остановке

σ -алгебра событий Σ

Событие — любое подмножество Ω (\Leftrightarrow множество исходов)

На Ω должна быть задана σ -алгебра событий Σ , то есть множество подмножеств, такое, что

- 1. $\emptyset \in \Sigma$
- 2. $A \in \Sigma \Rightarrow \bar{A} \in \Sigma$
- 3. $\{A_1, \ldots, A_n, \ldots\} \in \Sigma \Rightarrow \bigcap_{i \in \mathbb{N}} A_i \in \Sigma \text{ in } \bigcup_{i \in \mathbb{N}} A_i \in \Sigma$

Примеры событий

- Домашняя команда выиграла {B, BO, BБ}
- ▶ Монета упала орлом {орел}
- Автобус приехал в течение 5 минут [0,5] (если считаем время в минутах)

Вероятность Pr

Вероятностная мера \Pr — это функция, заданная на Σ , со следующими свойствами

- 1. Неотрицательность: $\Pr(A) \ge 0$ для любого события A
- 2. Нормализация: $Pr(\Omega) = 1$
- 3. Счетная аддитивнотсь: A_1, \ldots, A_n, \ldots последовательность попарно непересекающихся событий, тогда

$$\Pr\left(\bigcup_{i\in\mathbb{N}}A_i\right)=\sum_{i\in\mathbb{N}}\Pr(A_i).$$

NB: В литературе встречаются обозначения P, p, \mathbb{P} , их можно использовать

Свойства Pr, следующие из аксиом

- $ightharpoonup Pr(A) \leq 1$
- $ightharpoonup Pr(\emptyset) = 0$
- $ightharpoonup \Pr(A) + \Pr(\bar{A}) = 1$
- $ightharpoonup A \subset B \Rightarrow \Pr(A) \leq \Pr(B)$
- $Pr(A \cup B) = Pr(A) + Pr(B) Pr(A \cap B)$
- ▶ $Pr(A \cup B) \le Pr(A) + Pr(B)$ Union bound

Объект теории вероятности

- Мы будем работать с вероятностным пространством (Ω, Σ, Pr) :
 - Описывать множество элементарных исходов и определять события
 - ▶ Задавать вероятностную меру на этих событиях
 - ▶ Делать какие-то выводы о построенной модели
- ▶ Будем делать это уже на ближайшей практике ☺

Как воспринимать нашу деятельность

- ▶ Теорвер просто раздел математики
 - ▶ На основе определенных аксиом выводим какие-то более сложные утверждения и называем их теоремами
 - ightharpoonup Теорема Вероятность события A есть p.
- Как интерпретировать вероятность?
 - Вероятность = частота события (Пример: если много раз кидать монетку, то примерно половина результатов будет "орел")
 - ▶ Вероятность = наша вера в событие (Пример: с вероятностью 0.125 ® выиграет в этом году кубок Гагарина)

Взаимодействие с реальным миром

lacktriangle Пусть все исходы равновероятны (вероятность каждого $rac{1}{12}$)

- ightharpoonup Пусть все исходы равновероятны (вероятность каждого $\frac{1}{12}$)
- ▶ Вероятность события A есть $Pr(A) = 5 \cdot \frac{1}{12} = \frac{5}{12}$

- ightharpoonup Пусть все исходы равновероятны (вероятность каждого $\frac{1}{12}$)
- ▶ Вероятность события *A* есть $Pr(A) = 5 \cdot \frac{1}{12} = \frac{5}{12}$
- ▶ Нам стало известно, что произошло событие В. Какой стала вероятность события А?

- ightharpoonup Пусть все исходы равновероятны (вероятность каждого $\frac{1}{12}$)
- ▶ Вероятность события A есть $Pr(A) = 5 \cdot \frac{1}{12} = \frac{5}{12}$
- ▶ Нам стало известно, что произошло событие В. Какой стала вероятность события А?
- В событие B входят 6 равновероятных исходов, из которых только 2 входят в событие A. То есть теперь вероятность события A есть $2 \cdot \frac{1}{6} = \frac{1}{3}$.

Поступление новой информации

- При появлении новой информации мы хотим изменить свою модель, чтобы она соответствовала новым условиям
- ▶ Пусть мы знаем, что произошло событие В. Тогда мы хотим:
 - $ightharpoonup A: A \cap B = \emptyset \Rightarrow \Pr(A \mid B) = 0$
 - $ightharpoonup A \subset B \Rightarrow \Pr(A \mid B) = rac{\Pr(A)}{\Pr(B)}$ (сохраняем нормализацию)
- ▶ Любое событие можно представить как $A = (A \cap B) \cup (A \cap \bar{B})$, тогда по аддитивности вероятности

$$\Pr(A \mid B) = \Pr(A \cap B \mid B) + \Pr(A \cap \bar{B} \mid B) = \frac{\Pr(A \cap B)}{\Pr(B)} + 0.$$

Определение условной вероятности

$$Pr(A \mid B) = \frac{Pr(A \cap B)}{Pr(B)}$$

 $Pr(A \mid B)$ — Вероятность события A при условии события B

NB: $\Pr(\cdot \mid B)$ — это новая вероятностная мера, заданная на той же самой σ -алгебре, то есть для нее выполняются все аксиомы меры и следствия из них

Бросок двух тетраидальных костей

Бросок двух тетраидальных костей

Событие *B*: $min{X, Y} = 2$

Бросок двух тетраидальных костей

Событие B: min $\{X, Y\} = 2$

▶ $Pr(max{X, Y} = 1 | B) = 0$

Бросок двух тетраидальных костей

Событие B: min $\{X, Y\} = 2$

▶
$$Pr(max{X, Y} = 1 | B) = 0$$

►
$$Pr(X + Y = 5 \mid B) = \frac{2}{5}$$

Бросок двух тетраидальных костей

Событие B: min $\{X, Y\} = 2$

$$ightharpoonup \Pr(\max\{X,Y\}=1 \mid B)=0$$

►
$$Pr(X + Y = 5 \mid B) = \frac{2}{5}$$

►
$$Pr(X = 2 \mid B) = \frac{3}{5}$$

- В НоММЗ у вашего героя экспертный навык удачи
- Ваш титан Татакует дендройда б
 - ▶ Урон титана 40-60 (выбирается равновероятно)
 - Здоровье дендройда 55
 - Пусть навыки атаки и защиты одинаковы
 - Удача срабатывает с вероятностью 0.125 и удваивает урон
- Событие A: сработала удача
- Событие В: дендройд пал

$$\Pr(B \mid A) = \frac{\Pr(B \cap A)}{\Pr(A)}$$

 $Pr(A \cap B) = Pr(A) Pr(B \mid A) = 0.125$

$$\Pr(B \mid A) = \frac{\Pr(B \cap A)}{\Pr(A)}$$

- $Arr Pr(A \cap B) = Pr(A) Pr(B \mid A) = 0.125$
- $ightharpoonup \Pr(B) = \Pr(B \cap A) + \Pr(B \cap \bar{A}) =$

$$Pr(A) Pr(B \mid A) + Pr(\bar{A}) Pr(B \mid \bar{A}) = 0.125 \cdot 1 + 0.875 \cdot \frac{6}{21} = 0.375$$

$$\Pr(B \mid A) = \frac{\Pr(B \cap A)}{\Pr(A)}$$

- ► $Pr(A \cap B) = Pr(A) Pr(B \mid A) = 0.125$
- $Pr(B) = Pr(B \cap A) + Pr(B \cap \bar{A}) =$

$$Pr(A) Pr(B \mid A) + Pr(\bar{A}) Pr(B \mid \bar{A}) = 0.125 \cdot 1 + 0.875 \cdot \frac{6}{21} = 0.375$$

► $Pr(A \mid B) = \frac{Pr(A \cap B)}{Pr(B)} = \frac{0.125}{0.375} = \frac{1}{3}$

Правило (теорема) умножения вероятностей

- ▶ Мы уже видели, что $Pr(A \cap B) = Pr(A) Pr(B \mid A)$
- Можно обобщить:

$$\Pr\left(\bigcap_{i=1}^{n} A_{i}\right) = \Pr(A_{1}) \prod_{i=2}^{n} \Pr(A_{i} \mid A_{1} \cap \cdots \cap A_{i-1})$$

Докажем по индукции

$$\Pr\left(\bigcap_{i=1}^{n} A_{i}\right) = \Pr\left(A_{n} \cap \left(\bigcap_{i=1}^{n-1} A_{i}\right)\right)$$

$$= \Pr\left(\bigcap_{i=1}^{n-1} A_{i}\right) \Pr\left(A_{n} \mid \left(\bigcap_{i=1}^{n-1} A_{i}\right)\right)$$

$$= \Pr(A_{1}) \prod_{i=2}^{n} \Pr(A_{i} \mid A_{1} \cap \cdots \cap A_{i-1})$$

Правило (теорема) полной вероятности

Есть разбиение Ω на события A_1, A_2, A_3, \ldots

- ightharpoonup Знаем $Pr(A_i)$ для всех i
- ightharpoonup Знаем $\Pr(B \mid A_i)$ для всех i

$$\Pr(B) = \sum_{i} \Pr(A_i) \Pr(B \mid A_i)$$

Доказательство:

- $ightharpoonup B = \bigcup_i (B \cap A_i)$ объединение непересекающихся множеств
- $ightharpoonup \Pr(B \cap A_i) = \Pr(A_i) \Pr(B \mid A_i)$ из правила умножения

NB: Это верно как для конечного, так и для счетного разбиения Ω

Формула Байеса

Есть разбиение Ω на события

 A_1, A_2, A_3, \ldots

- ightharpoonup Знаем $Pr(A_i)$ для всех i
- ightharpoonup Знаем $Pr(B \mid A_i)$ для всех i

$$Pr(A_i \mid B) = \frac{Pr(A_i) Pr(B \mid A_i)}{\sum_{j} Pr(A_j) Pr(B \mid A_j)}$$

Часть III. Независимость

- Бросаем два раза нечестную монету:
 - ▶ $Pr(P) = p \neq 0.5$
 - ▶ Pr(O) = (1 p)
- ▶ Получаем один из четырех результатов:

$$\{PP, PO, OP, OO\}$$

- Вероятности этих исходов:
 - ▶ $Pr(PP) = Pr(P*) Pr(*P \mid P*) = p \cdot p = p^2$
 - Pr(PO) = Pr(OP) = p(1-p)
 - ▶ $Pr(OO) = (1 p)^2$

Интуитивное понимание независимости

Какова вероятность, что второй бросок упадет решкой?

$$Pr(*P) = p$$

Какова вероятность, что второй бросок упадет решкой, если первый упал орлом?

$$Pr(*P \mid O*) = p$$

то есть условие не влияет на вероятность

Какова вероятность, что второй бросок упадет решкой, если есть ровно одна решка?

$$\Pr(*P \mid PO \cup OP) = \frac{\Pr(OP)}{\Pr(PO \cup OP)} = \frac{p(1-p)}{2p(1-p)} = \frac{1}{2},$$

условие влияет на вероятность

Определение независимости

- lacktriangle Интуитивно: события A и B независимы, если $\Pr(A \mid B) = \Pr(A)$
 - ightharpoonup Событие ho не несет никакой информации о событии ho
 - ▶ Но это не работает, если Pr(B) = 0
- ▶ Лучше так: события A и B независимы, если

$$Pr(A \cap B) = Pr(A) Pr(B)$$

- Симметрично относительно событий A и B
- ▶ Из него следует и $Pr(A \mid B) = Pr(A)$, и $Pr(B \mid A) = Pr(B)$ (если условные вероятности определены)
- Noppeктно и при Pr(A) = 0, и при Pr(B) = 0

Типичная ошибка в понимании независимости

События A и B — незавсимы?

Они максимально зависимы: если произошло A, то точно не произошло B, и наоборот

Независимость дополнений

- \blacktriangleright Если A и B независимы, то независимы и A и \bar{B}
 - Интуиция: если "событие B произошло" не дает никакой инфы про A, то и "событие B не произошло" не должно ее давать
 - Формально:

$$P(A) = \Pr(A \cap B) + \Pr(A \cap \overline{B})$$

$$= \Pr(A) \Pr(B) + \Pr(A \cap \overline{B})$$

$$\Rightarrow \Pr(A \cap \overline{B}) = P(A) - \Pr(A) \Pr(B) = \Pr(A)(1 - \Pr(B))$$

$$= \Pr(A) \Pr(\overline{B})$$

Условная независимость

События A и B независимы при условии C, если

$$\Pr(A \cap B \mid C) = \Pr(A \mid C) \Pr(B \mid C)$$

Независимость и условная независимость не особо связаны друг с другом

Пусть A и B — независимы

пересекаются

Независимость множества событий

Пусть есть конечный набор событий $\{A_1,\dots,A_n\}$ Они независимы, если никакой набор событий не влияет на вероятность любого другого события.

$$\Pr(A_1 \cap \bar{A}_4) = \Pr(A_1 \cap \bar{A}_4 \mid A_2 \cap (A_3 \cup \bar{A}_5))$$

События $\{A_1,\dots,A_n\}$ независимы (по совокупности), если для любого набора индексов $I\subset [1..n]$ верно

$$\Pr\left(\bigcap_{i\in I}A_i\right)=\prod_{i\in I}\Pr(A_i)$$

Пример для трех событий

Есть события $\{A_1, A_2, A_3\}$. Они независимы, если

- ▶ $\Pr(A_1 \cap A_2) = \Pr(A_1) \Pr(A_2)$ Попарная независимость

 ▶ $\Pr(A_1 \cap A_3) = \Pr(A_1) \Pr(A_3)$ (слабее, чем независимость по

 ▶ $\Pr(A_2 \cap A_3) = \Pr(A_2) \Pr(A_3)$ совокупности)
- $Arr Pr(A_1 \cap A_2 \cap A_3) = Pr(A_1) Pr(A_2) Pr(A_3)$

Попарная vs По совокупности

Бросаем две монеты

- A первая монета орлом
- В вторая монета орлом
- ▶ С обе монеты одинаковы

Вероятности событий:

▶
$$Pr(A) = \frac{1}{2}$$

$$Pr(B) = \frac{1}{2}$$

$$Pr(C) = \frac{1}{2}$$

Вероятности комбинаций:

$$Pr(A \cap B) = \frac{1}{4} = Pr(A) Pr(B)$$

$$Pr(A \cap C) = \frac{1}{4} = Pr(A) Pr(C)$$

$$Pr(B \cap C) = \frac{1}{4} = Pr(B) Pr(C)$$

$$Pr(A \cap B \cap C) = \frac{1}{4} \neq Pr(A) Pr(B) Pr(C)$$