

Administrivia: Final Grades

- All grades are posted *except* Homework 6, Lab 6, and a few attendance points
- ▶ Final letter grade cutoffs are 90.0/80.0/70.0/60.0 strict
 - When Harika posts HW6 grades, e-mail her *immediately* if there's a problem
 - You're welcome to come by my office to review your final exam (I keep the exams)
 - No "fishing for points" too late for grade changes for Homework 1–5 and Exams 1–2
 - No special favors, ever

Administrivia: Final Exam

- Friday, December 12, 12:00–2:30 p.m.
- ▶ Allowed one double-sided 8½×11" cheat sheet

- Write anything you want on it
- ▶ Turn it in with your exam
- ▶ Comprehensive Material from Exams 1 & 2 (70%):
 - Review study guides
 - ▶ Review the exams themselves expect similar questions
- New topics since Exam 2 (30%): floating-point, heap memory, caching/memory hierarchy
 - Review in-class activities there will be questions like those on the activity sheets
 - Review the assigned reading, especially on cache memory
 - > Study guide for this material will be posted

THIS ISTHE NUMBER OF BITS INTHE IEEE 754 DOUBLE-PRECISION REPRESENTATION OF A FLOATING-POINT NUMBER.

What is 64?

1-\$200

THIS ISTHE MASM DATA TYPE USED TO DEFINE SINGLE-PRECISION FLOATING-POINT NUMBERS.

What is REAL4?

THIS INSTRUCTION LOADS A FLOATING-POINT VALUE FROM MEMORY, PUSHING IT ONTO THE FLOATING-POINT STACK AT ST(0)

What is FLD?

1-\$400

IF A .DATA SECTION CONTAINS

TOO REAL4 2.0

TREE REAL4 3.0

THIS ISTHEVALUE IN ST(0) AFTER EXECUTING

FLD TOO FLD TREE FSUB

What is -1.0?

WHEN INTERPRETED AS A SINGLE-PRECISION FLOATING-POINT NUMBER, THE 32 BITS

BFC00000h

REPRESENT THIS VALUE.

What is -1.5?

2-\$100

THIS PRINCIPLE STATES THAT
INSTRUCTIONS EXECUTED WITHIN A
SHORT PERIOD OFTIMETEND TO BE
CLOSETOGETHER IN MEMORY, AND
DATA THAT ARE ACCESSED WITHIN A
SHORT PERIOD OFTIME ALSO TEND TO
BE CLOSETOGETHER IN MEMORY.

What is the Principle of Locality?

THIS IS AN ORGANIZATION OF STORAGE DEVICES THAT TAKES ADVANTAGE OF THE CHARACTERISTICS OF DIFFERENT STORAGE TECHNOLOGIES TO IMPROVE THE OVERALL PERFORMANCE OF A COMPUTER SYSTEM.

What is a memory hierarchy?

2-\$300

IF A 2-WAY SET ASSOCIATIVE CACHE HAS 8 ENTRIES, THIS ISTHE NUMBER OF ENTRIES IN WHICH A PARTICULAR BLOCK OF MEMORY MAY BE STORED.

What is 2?

(Every 2 rows forms a set, and each block must be stored in one particular set)

IF MEMORY ADDRESSES ARE 32 BITS, AND A CACHE HAS 64-BYTE CACHE LINES, THIS MANY BITS OF A MEMORY ADDRESS WILL BE USED TO IDENTIFY THE BLOCK NUMBER.

What is 26?

 $(64 = 2^6)$, so the low 6 bits identify the offset within a block, and the upper 32 - 6 = 26 bits identify the block number)

2-\$500

IN A 2-WAY SET ASSOCIATIVE CACHE, IF 26 BITS OF A MEMORY ADDRESS ARE USED TO IDENTIFY THE BLOCK NUMBER, THIS MANY BITS ARE USED FOR THE TAG.

What is 25?

(The lowest 1 bit identifies the set in the cache; the remaining 26 - 1 = 25 are the tag)

THIS IS A MEMORY POOL FOR A SPECIFIC PROCESS. FROM WHICH MEMORY CAN BE ALLOCATED DYNAMICALLY. ITS SIZE IS NOT FIXED AND IS GENERALLY LARGER THAN THE STACK.

What is the heap?

3-\$200

THIS WIN32 API FUNCTION IS USED TO ALLOCATE MEMORY ON THE HEAP.

What is HeapAlloc?

IF HEAPALLOC IS UNABLETO ALLOCATE MEMORY, IT RETURNS THIS VALUE

What is 0?

3-\$400

X86 PROCESSSORS BOOT INTHIS MODE, WHICH USES 20-BIT MEMORY ADDRESSES

What is real-address mode?

ALTHOUGH YOUR PROGRAM'S DATA BEGINS AT MEMORY ADDRESS 00405000H, THAT IS NOT A PHYSICAL MEMORY ADDRESS; IT ISTHISTYPE OF MEMORY ADDRESS.

What is a virtual address?

4-\$100

THIS INSTRUCTION POPS A DWORD OFF OF THE STACK, THEN JUMPS TO THE INSTRUCTION ATTHAT MEMORY ADDRESS

What is RET?

INTHIS CALLING CONVENTION, THE CALLER IS RESPONSIBLE FOR REMOVING ARGUMENTS FROM THE STACK

What is the C calling convention?

4-\$300

AFTER A STACK FRAME HAS BEEN CREATED, THE FIRST ARGUMENTTO A FUNCTION WILL BE FOUND ATTHE MEMORY ADDRESS EBP + THIS VALUE

What is 8?

IFTHEVERY FIRST INSTRUCTION IN A PROCEDURE IS MOV EAX, [EBP+8], YOU PROBABLY MADE A MISTAKE. BEFOREHAND, YOU SHOULD HAVE INSERTED THIS INSTRUCTION.

What is ENTER?

4-\$500

THE INSTRUCTION RET 8 INCREASES ESP BY THIS AMOUNT, IN TOTAL

What is 12?

(First, it pops a 4-byte return address. Then, it removes 8 bytes of arguments.)

