

Tema 3: Modelos de Propagación de gran Escala

Modelos de propagación

- La señal recibida por el móvil en cualquier punto del espacio puede estar constituida por un gran número de ondas planas con distribución aleatoria de amplitud, de fase y de ángulo de llegada.
- Es posible la recepción incluso cuando no hay visión directa entre Transmisor y Receptor.
 - Bloqueo (shadowing)

Modelos de propagación

- Los modelos de propagación a gran escala predicen el comportamiento medio para distancias >> λ
 - Dependencia de la distancia y de características del entorno
 - Independencia del ancho de banda
 - Útiles para modelar el alcance de un sistema radio y para planificación.
- Modelos de pequeña escala (fading) describen las variaciones de señales sobre distancias del orden de λ
 - Fading: cambios rápidos de la señal sobre distancias (intervalos de tiempo) cortos.
 - Multitrayecto
 - Cancelación de fase
 - Atenuación constante
 - Dependencia del ancho de banda de transmisión.

Modelos de propagación

- Mecanismos de Propagación de señal.
 - Espacio Libre (Path Loss, Line-of-Sight)
 - Bloqueo (debido a obstrucciones)
 - Modelo Log-distancia
 - Modelo Log-normal
 - Desvanecimiento por multitrayecto (interferencia con(des)structiva)

Modelos de gran escala: Path Loss, PL

Propagación en espacio libre

$$P_R(d)[W] = P_T[W] \times G_T G_R \left(\frac{\lambda}{4\pi d}\right)^2$$
ath Loss
Espacio libre

Path Loss

$$PL(d)[dB] = (32.44 + 20\log_{10} d + 20\log_{10} f)$$
 f en MHz
 d en Km

- El modelo de propagación de espacio libre es sólo válido para campo lejano ($d > d_0$)
 - Valores típicos de d₀
 - Celdas grandes (rural): 1 km.
 - Microceldas (urbano): 100 m
 - Indoor (WLAN): 1m.

$$P_{R}(d)[W] = P_{R}(d_{0})[W] \times \left(\frac{d_{0}}{d}\right)^{2}, \quad d \ge d_{0}$$

$$PL(d)[dB] = PL(d_0)[dB] + 20\log\left(\frac{d}{d_0}\right)$$

Modelos de gran escala: Path Loss, PL

- □Existen modelos que pueden explicar "mejor" que el de "espacio libre" las pérdidas en un trayecto.
 - Ejemplo: Modelo de Okumura-Hata: pérdidas en promedio

$$\overline{\text{PL}}_{\text{Okumura}}[\text{dB}] = 69.55 + 26.16\log(f) - 13.82\log(H_1) + \left[44.9 - 6.55\log(H_1)\right]\log(d) - a(H_2)$$

donde:

f: frecuencia (MHz)

 H_1 : Altura efectiva de la antena transmisora (m) [30 a 200 m]

 H_2 : Altura efectiva de la antena receptora (m) [1 a 10 m]

d: distancia (km)

$$a(H_2) = (1.1 \log(f) - 0.7) H_2 - (1.56 \log(f) - 0.8)$$

Comparación con el modelo de propagación en espacio libre

$$PL(d)[dB] = (32,44 + 20\log_{10} d + 20\log_{10} f)$$
 f en MHz d en Km

Modelos de gran escala: log-distancia

 En la práctica, existen condiciones del entorno que afectan a la <u>potencia</u> media recibida

$$P_{R}(d)[W] = P_{R}(d_{0})[W] \times \left(\frac{d_{0}}{d}\right)^{n}, d \ge d_{0}$$

Pérdidas medias en el trayecto

$$P_{R}(d)[dBW] = P_{R}(d_{0})[dBW] - 10n\log\left(\frac{d}{d_{0}}\right)$$

$$PL(d)[dB] = PL(d_0)[dB] + 10n \log \left(\frac{d}{d_0}\right)$$

Entorno	Exponente, n
Espacio libre	2
Reflexión especular ideal	4
Entorno urbano	2.7 - 3.5
Entorno urbano (shadowing)	3 - 5
En edificios (visión directa)	1.6 - 1.8
En edificios (camino obstruido)	4 - 6
En industria (camino obstruido)	2 - 3

Modelos de gran escala: log-distancia

Pérdidas medias en el trayecto

$$PL(d)[dB] = PL(d_0)[dB] + 10n \log \left(\frac{d}{d_0}\right)$$

Lineal cuando la distancia se

expresa en unidades logarítmicas

- log-distancia

Microceldas urbanas

Dependiendo del perfil, el índice n puede variar

Modelos de gran escala: log-normal

Variaciones entorno a la media

 $PL(d)[dB] = PL(d_0) + 10n \log\left(\frac{d}{d_0}\right) + X_{\sigma}$

Componente de desvanecimiento Log-normal [dB]

Variable aleatoria Gaussiana $(0, \sigma_{PL}^2)$ [dB]

□Celdas en forma de ameba

Modelos de gran escala: log-normal

Variaciones entorno a la media

$$PL(d)[dB] = PL(d_0) + 10n \log\left(\frac{d}{d_0}\right) + X_{\sigma}$$

Componente de desvanecimiento Log-distancia [dB]

Variable aleatoria Gaussiana $(0,\sigma_{Pl}^{2})[dB]$

Building	Frequency (MHz)	n	σ (dB)	
Retail Stores	914	2.2	8.7	
Grocery Store	914	1.8	5.2	
Office, hard par- tition	1500	3.0	7.0	
Office, soft partition 900		2.4	9.6	
Office, soft partition 1900		2.6	14.1	
Factory LOS				
Textile/Chemical	1300	2.0	3.0	
Textile/Chemical	4000	2.1	7.0	
Paper/Cereals 1300		1.8	6.0	
Metalworking 1300		1.6	5.8	
Suburban Home				

Ejemplo: Determinar "n" y σ^2

Encontrar los parámetros del modelo log-normal

Variable aleatoria Gaussiana $(0,\sigma^2)$ [dB]

Ejemplo: Determinar "n" y σ²

- \square Asuma $P_R(d_0) = 0$ dBm y $d_0=100$ m
- □Asuma que la potencia recibida P_R(d) se mide a distancias 100 m, 200 m, 1000 m y 3000 m,
- □Encontrar los parámetros del modelo log-normal

Distancia desde el transmisor	Potencia Recibida
100 m	0 dBm
200 m	-20 dBm
1000 m	-35 dBm
3000 m	-70 dBm

Componente de desvanecimiento Log-distancia [dB]

$$P_{R}(d)[dBm] = P_{R}(d_{0})[dBm] - 10n \log \left(\frac{d}{d_{0}}\right) + X_{\sigma}$$

Variable aleatoria Gaussiana $(0,\sigma^2)$ [dB]

Ejemplo: Determinar "n" y σ²

Modelo log-normal

• Cálculo de n

Distancia	P _R (d) (dBm) media experimental	P _R (d) (dBm) media Modelo log- normal
100m (d ₀)	0	0
200m	-20	-3n
1000m	-35	-10n
3000m	-70	-14.77n

$$\overline{\mathbf{P}_{\mathbf{R}}}(d)[d\mathbf{Bm}] = \mathbf{P}_{\mathbf{R}}(d_0)[d\mathbf{Bm}] - 10n\log\left(\frac{d}{d_0}\right)$$

Ejemplo: Determinar "n" y σ²

Modelo log-normal

$$\overline{P_R}(d)[dBm] = P_R(d_0)[dBm] - 10n \log\left(\frac{d}{d_0}\right)$$

Cálculo de n

Distancia	P _R (d) (dBm) media experimental	P _R (d) (dBm) media Modelo log-normal
100m (d ₀)	0	0
200m	-20	-3n
1000m	-35	-10n
3000m	-70	-14.77n

Error cuadrático

$$- \varepsilon^{2}(n) = (0-0)^{2} + (-20-(-3n))^{2} + (-35-(-10n))^{2} + (-70-(-14.77n))^{2}$$

Error cuadrático medio

$$\frac{1}{\varepsilon}(n) = \frac{1}{4} \left(0 + \left(3n - 20 \right)^2 + \left(10n - 35 \right)^2 + \left(14.77n - 70 \right)^2 \right)$$

$$n_{\text{opt}} \xrightarrow{d\varepsilon} \frac{d\varepsilon}{dn} = 0$$

$$\sigma = \sqrt{\varepsilon^2 \left(n_{\text{opt}} \right)} \left[\text{dB} \right]$$

Cálculo de coberturas

- El Modelo Log-normal (shadowing) nos permite definir probabilidades de coberturas.
 - La probabilidad de que $P_R(d)$ [dBm] supere γ [dBm]:
 - Estadística Gaussiana

 $P_{R}(d)-\gamma$

z	Q(z)	z	Q(z)	z	Q(z)	z	Q(z)
0.0	0.5	1.0	0.15866	2.0	0.02275	3.0	0.00135
0.1	0.46017	1.1	0.13567	2.1	0.01786	3.1	0.00097
0.2	0.42074	1.2	0.11507	2.2	0.01390	3.2	0.00069
0.3	0.38209	1.3	0.09680	2.3	0.01072	3.3	0.00048
0.4	0.34458	1.4	0.08076	2.4	0.00820	3.4	0.00034
0.5	0.30854	1.5	0.06681	2.5	0.00621	3.5	0.00023
0.6	0.27425	1.6	0.05480	2.6	0.00466	3.6	0.00016
0.7	0.24196	1.7	0.04457	2.7	0.00347	3.7	0.00011
0.8	0.21118	1.8	0.03593	2.8	0.00256	3.8	0.00007
0.9	0.18406	1.9	0.02872	2.9	0.00187	3.9	0.00005

16

Cálculo de coberturas

- El Modelo Log-normal (shadowing) nos permite definir probabilidades de coberturas.
 - La probabilidad de que $P_R(d)$ [dBm] supere γ [dBm]:

$$\Pr[P_{R}(d)[dBm] > \gamma[dBm]] = Q \underbrace{\frac{\gamma[dBm] - \overline{P_{R}}(d)[dBm]}{\sigma[dB]}}_{\text{$P_{R}(d)[dBm]$}} \underbrace{\frac{\text{Area sombreada}}{\text{$P_{R}(d)[dBm]$}}}_{\text{$P_{R}(d)[dBm]$}} P_{R}(d) dBm$$

- Efecto de la variación de la distancia (γ [dBm] permanece constante).
 - Supongamos $d_1 < d_2$ $\rightarrow \overline{P_R}(d_1) [dBm] > \overline{P_R}(d_2) [dBm]$

Cálculo de coberturas

- El Modelo Log-normal (shadowing) nos permite definir probabilidades de coberturas.
 - La probabilidad de que $P_R(d)$ [dBm] supere γ [dBm]:

- Planificación de red:
 - Encontrar el valor de "d" para el que la potencia recibida media supere el umbral γ [dBm] con una probabilidad α %.

Potencia recibida y PDF normal

□Encontrar el valor de "d" para el que la potencia recibida media supere el umbral γ [dBm] con una probabilidad α %

$$\Pr[P_R(d)[dBm] > \gamma[dBm]] \ge \alpha\%$$

• Ejemplo: γ = -88 [dBm]; σ = 5 dB; ¿cuánto tiene que valer $P_R(d)$ para

$$\Pr[P_R(d)[dBm] > -88[dBm]] \ge 95\%?$$

Z	Q(z)	Z	Q(z)	z	Q(z)	Z	Q(z)
0.0	0.5	1.0	0.15866	2.0	0.02275	3.0	0.00135
0.1	0.46017	1.1	0.13567	2.1	0.01786	3.1	0.00097
0.2	0.42074	1.2	0.11507	2.2	0.01390	3.2	0.00069
0.3	0.38209	1.3	0.09680	2.3	0.01072	3.3	0.00048
0.4	0.34458	1.4	0.08076	2.4	0.00820	3.4	0.00034
0.5	0.30854	1.5	0.06681	2.5	0.00621	3.5	0.00023
0.6	0.27425	1.6	0.05480	2.6	0.00466	3.6	0.00016
0.7	0.24196	1.7	0.04457	2.7	0.00347	3.7	0.00011
0.8	0.21118	1.8	0.03593	2.8	0.00256	3.8	0.00007
0.9	0.18406	1.9	0.02872	2.9	0.00187	3.9	0.00005

Potencia recibida y PDF normal

□Ejemplo: γ = -88 [dBm]; σ = 5 dB; ¿cuánto tiene que valer P_R (d) para que

$$\Pr[P_R(d)[dBm] > -88[dBm]] = Q\left(\frac{-88[dBm] - \overline{P_R}(d)[dBm]}{5[dB]}\right) \ge 0.95?$$

Equivalentemente...

$$\Pr\left[P_R(d)\left[dBm\right] < -88\left[dBm\right]\right] = Q\left(\frac{\overline{P_R}(d)\left[dBm\right] - \gamma\left[dBm\right]}{5\left[dB\right]}\right) \le 0.05?$$

Z	Q(z)	Z	Q(z)	Z	Q(z)	Z	Q(z)
0.0	0.5	1.0	0.15866	2.0	0.02275	3.0	0.00135
0.1	0.46017	1.1	0.13567	2.1	0.01786	3.1	0.00097
0.2	0.42074	1.2	0.11507	2.2	0.01390	3.2	0.00069
0.3	0.38209	1.3	0.09680	2.3	0.01072	3.3	0.00048
0.4	0.34458	1.4	0.08076	2.4	0.00820	3.4	0.00034
0.5	0.30854	1.5	0.06681	2.5	0.00621	3.5	0.00023
0.6	0.27425	1.6	0.05480	2.6	0.00466	3.6	0.00016
0.7	0.24196	1.7	0.04457	2.7	0.00347	3.7	0.00011
0.8	0.21118	1.8	0.03593	2.8	0.00256	3.8	0.00007
0.9	0.18406	1.9	0.02872	2.9	0.00187	3.9	0.00005

$$\frac{\overline{P_R}(d)[dBm] - \gamma[dBm]}{5[dB]} \ge 1.6 \longrightarrow \overline{P_R}(d)[dBm] \ge 5 \times 1.6 - 88 = -80[dBm]$$

Reflexión: Modelo de N-Rayos

- Se aplica cuando, en la mayor parte del tiempo, llegan al receptor otras componentes distintas de la LOS.
- Reflexión en Tierra: Modelo de 2-Rayos
 - Campo recibido: contribución del rayo directo (R_D) y del reflejado (R_R)

$$E_{\mathit{RX}} = E_{\mathit{FS}} + E_{\mathit{REFLEJADO}} = E_{\mathit{FS}} \left(1 + \Gamma e^{-j\frac{2\pi}{\lambda}\Delta d} \right) \left[\frac{V}{m} \right] \qquad \text{Desfase proporcional a la differencia de caminos}$$

$$\tan \theta = \frac{h_{TX} + h_{RX}}{d_1 + d_2} = \frac{h_{TX}}{d_1}$$

$$d_1 = \frac{h_{TX}}{h_{TX} + h_{RX}} (d_1 + d_2) = \frac{h_{TX}}{h_{TX} + h_{RX}} d$$

$$d_2 = \frac{h_{RX}}{h_{TX} + h_{RX}} d$$

Reflexión: Modelo de 2-Rayos

- Desfase entre rayo directo y reflejado
 - Distancia recorrida por el rayo

directo
$$\sqrt{d^2 + (h_{TX} - h_{RX})^2} = d\sqrt{1 + \frac{(h_{TX} - h_{RX})^2}{d^2}}$$

$$\approx d\left(1 + \frac{(h_{TX} - h_{RX})^2}{2d^2}\right)$$

$$\sqrt{1 + x} \approx 1 + \frac{x}{2}$$

Distancia recorrida por el rayo reflejado

$$\sqrt{d^{2} + (h_{TX} + h_{RX})^{2}} = d\sqrt{1 + \frac{(h_{TX} + h_{RX})^{2}}{d^{2}}}$$

$$\approx d\left(1 + \frac{(h_{TX} + h_{RX})^{2}}{2d^{2}}\right)$$

• Diferencia
$$\Delta d = \sqrt{d^2 + (h_{TX} + h_{RX})^2} - \sqrt{d^2 + (h_{TX} - h_{RX})^2} \approx \frac{2h_{TX}h_{RX}}{d}$$

Reflexión especular en tierra

□Casos prácticos: Γ≈-1, d>>h_{TX}, h_{RX}

$$|F| = 2 \left| \sin \left(\frac{2\pi}{\lambda} \cdot \frac{h_{TX} h_{RX}}{d} \right) \right| \underset{d \gg h_{TX} h_{RX}}{\approx} \frac{4\pi h_{TX} h_{RX}}{\lambda d}$$

■Potencia recibida

$$P_{R} = P_{T}G_{T}G_{R}\left(\frac{\lambda}{4\pi d}\right)^{2} \left|F\right|^{2}$$

$$P_R = P_T G_T G_R \left(\frac{h_{TX} h_{RX}}{d^2} \right)^2$$

□Pérdidas en el trayecto (n=4)

$$PL(d) = 40\log(d) - 20\log(h_{TX}h_{RX})$$

$$PL(d) = PL(d_0) + 40\log\left(\frac{d}{d_0}\right)$$

Ejemplo: 2 rayos

☐ Sistema GPRS Clase 10 (4+2)

- f_c = 1800 MHz, Ancho de Banda: 200 kHz
- Régimen binario: 57.4 kbits/sec (downlink)
- Distancia: 15 km. Modelo de 2 rayos.
- Transmisor: Potencia: 2 W, h_{TX}=40 m.
- Receptor: h_{RX}=1,5 m, Figura de ruido: 9 dB

\square E_b/N_0 ?

- $P_{TX} = 2 \text{ W} \rightarrow 10 \log (2/10^{-3}) = 33 \text{ dBm}$
- $PL[dB]=40log(d)-20 log(h_{TX}h_{RX})=40log(15000)-20log(40×1,5)=131,48 dB$
- $P_{RX} = 33 \text{ dBm} 131,48 \text{ dB} = -98,48 \text{ dBm}$
- Ruido:
 - $\ kT_{eq}B = 1.3803 x 10^{-23} \, x \, 290 x (10^{9/10} \, -1) \, \times \, 2.0 \times 10^5 = 5.5 \, x 10^{-15} W \, \rightarrow \, -112{,}55 \, dBm.$

$$\left(\frac{S}{N}\right)$$
[dB] = -98,48 dBm-(-112.55) dBm=14 dB

$$\left(\frac{S}{N}\right) = \frac{E_b \times R_b}{N_0 \times B} \rightarrow \left(\frac{E_b}{N_0}\right) \left[dB\right] = \left(\frac{S}{N}\right) \left[dB\right] + 10\log\left(\frac{B}{R_b}\right) = 19,42 dB$$

Difracción

- La difracción tiene lugar cuando el frente de la onda choca con el borde de un obstáculo.
 - Se generan "ondas secundarias" que se propagan en la región de sombra
 - Por el mayor recorrido se produce un desplazamiento de fase.

Difracción "filo de cuchillo"

- Donde E_{FS} es el campo correspondiente a espacio libre.
- Se demuestra en base a la teoría de Huygens

$$\frac{E_{RX}}{E_{ES}} = \left(1 + G_{diff}(v)e^{-j\Delta\phi(h)}\right) = F(v) = \frac{(1+j)}{2} \int_{v}^{\infty} e^{-j\pi \frac{t^{2}}{2}} dt$$

• donde ν se define como el "*índice de difracción*" que provoca el obstáculo.

$$v = h \sqrt{\frac{2}{\lambda} \frac{d_1 + d_2}{d_1 d_2}}$$

Los resultados de la integral anterior (integral de Fresnel) se obtienen de tablas para distintos valores de v

$$\frac{E_{RX}}{E_{FS}} = F(v)$$

$$\frac{E_{RX}}{E_{FS}} = F(v) \qquad v = h \sqrt{\frac{2}{\lambda} \frac{d_1 + d_2}{d_1 d_2}}$$

ATENUACIÓN POR DIFRACCIÓN [dB]

- □Dependiendo del "despejamiento" (h), puede haber variaciones en la señal recibida
 - Cuando el desfase es un múltiplo par de π radianes se produce una interferencia constructiva (suma en fase)
 - Cuando el desfase es un múltiplo impar de π radianes hay interferencia destructiva (suma en contrafase)

Diferencia de camino entre la trayectoria directa (d_1-d_2) ahora obstruida, y la trayectoria por Q, (q_1-q_2)

 \square Para h << d₁, d₂, se puede aproximar la diferencia de camino \triangle d por

$$\sqrt{1+x} \underset{x\to 0}{\approx} 1 + \frac{x}{2} \qquad \Delta d \approx d_1 \left(1 + \frac{1}{2} \left(\frac{h}{d_1} \right)^2 \right) + d_2 \left(1 + \frac{1}{2} \left(\frac{h}{d_2} \right)^2 \right) - \left(d_1 + d_2 \right)$$

$$\Delta d = \frac{h^2}{2} \frac{d_1 + d_2}{d_1 d_2} \to \Delta \phi = \frac{2\pi}{\lambda} \Delta d = \frac{\pi h^2}{\lambda} \frac{d_1 + d_2}{d_1 d_2} = \frac{\pi v^2}{2}$$

□ Existe una simetría cilíndrica en torno al eje d₁-d₂

- los h_n determinan radios de círculos concéntricos en el plano perpendicular a la dirección de propagación.
 - Los haces dentro del primer círculo difieren en fase entre si, y como mucho, en π .
 - Para h_1 ,el desfase entre el rayo directo y el refractado es de π radianes \Leftrightarrow la diferencia de caminos es de $\lambda/2$ metros

□Tridimensionalmente, las regiones de Fresnel son elipsoidales con radios:

 TX

$$h_n = \sqrt{n\lambda \frac{d_1 d_2}{d_1 + d_2}}$$

- La difracción será más severa cuanto menor sea el índice n de las regiones afectadas.
 - El grado obstrucción depende de la frecuencia (1/λ) y la posición del obstáculo (d₁, d₂)

□Regla empírica:

 cuando la primera zona de Fresnel está despejada en al menos un 60 % un mayor despejamiento de zonas de Fresnel tiene poco efecto sobre el enlace.

$$Si -h > 0.6h_1$$

Propagación en gases

■Absorción por gases en la troposfera

• Dos contribuciones: Oxígeno y Vapor de agua

• Atenuación específica: dB/km.

