Calc III Notes Day 32

Joseph Brooksbank

May 15, 2019

Exam Friday Material after exam 2 up to 11.5 (ALT Series Test)

One last thing about AST

$$1 - 0 + \frac{1}{2} - 0 + \frac{1}{3} - 0 + \frac{1}{4}$$

This is alternating

The terms $\rightarrow 0$

So it should converge, but it actually diverges

basically just $\sum \frac{1}{n}$

It shoudn't actually converge, x_n is NOT decreasing

If the " x_n " decreasing hypothesis fails, then alt series might diverge!

11.6 Absolute Convergence, Ratio Test, and other things

Look at series

$$1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} + \frac{1}{4} - \frac{1}{5}$$
...

This series converges by AST, but also by telescoping (everything cancels except 1

"Positive" part of series:
$$1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4}$$
...

"negative part":
$$-\frac{1}{2} - \frac{1}{3} - \frac{1}{4}$$

Diverges, going to negative ∞

This series "barely converges" because the pos ∞ and neg ∞ barely "canel out" KIND of like an indeterminate form

Contrasting with

$$1 - \frac{1}{2^2} + \frac{1}{2^2} - \frac{1}{3^2} + \frac{1}{3^2} - \dots$$

Both positive and negative parts converge seperately, $\sum \frac{1}{n^2}$ converges

DEFINITION:

A series $\sum_{n=1}^{\infty} x_n$ absolutely converges if

 $\bullet\,$ pos part and neg part both converge

or can be written as $\sum_{n=1}^{\infty} |x_n| \text{ conv} < --- \text{ making both parts pos, and still conv}$

 $\mathbf{E}\mathbf{x}$

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$$

Does this converge?

AST...?
$$\frac{1}{\sqrt{n}}$$

going to 0? yes

decreasing? yes, \sqrt{n} is increasing, so decreasing

So this entire thing does converge

Does it absolutely converge?

$$\sum_{n=1}^{\infty} \left| \frac{(-1)^n}{\sqrt{n}} \right|$$
$$= \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$$

p is not bigger than 1, so it diverges

DEFINITION:

Conditionally Convergent means:

• convergent but NOT absolutely convergent

 $\mathbf{E}\mathbf{X}$

$$\sum_{n=1}^{\infty} \frac{\cos(n)}{n^2}$$
 Converges?

- $\cos 1 = +$
- $\cos 2 = -$
- $\cos 3 = -$
- $\cos 4 = -$

• $\cos 5 = +$

Not positive all the time, and also doesn't alternate, sign oscillates "randomly" Can't use integral test, alternating test, etc Let's try... absolute convergence?

$$\sum_{n=1}^{\infty} |\frac{cosn}{n^2}| = \sum_{n=1}^{\infty} \frac{|cosn|}{n^2} \text{because } n^2 \text{ is always pos}$$

$$\frac{|cosn|}{n^2} \le \frac{1}{n^2}$$

$$\sum_{n=1}^{\infty} \frac{1}{n^2} converges$$

due to the comparison test, the ABS series converges (always postive) converges due to comparison test with $\frac{1}{n^2}$.

Absolute Convergence is even STRONGER than convergence!

So original series converges, because absolute

converges! cool!

This chapter is really about

RATIO / ROOT TESTS

$$\sum_{n=1}^{\infty} \frac{n^2}{3^n}$$
 Does this converge or diverge?

Which wins? 3^n . Exponential growth CRUSHES polynomial growth

The 3^n should make n^3 irrelevant, so that makes this "like a geometric series"

Idea: How to tell if $\sum_{n=1}^{\infty} x_n$ is "basically geometric"?

If this is geometric, then x_n is basically $r^n \to \sqrt[n]{x_n} == r$

ROOT TEST:

If $\sum_{n=1}^{\infty} x_n$ series and $\sqrt[n]{x_n} \to L$, Then

- 1. if L < 1 originial series (absolutely) converges
- 2. if 1 < L, then series diverges
- 3. if L=1 then test was inconclusive and you have to use another test