Методы дообучения больших языковых моделей инструкциям для повышения качества работы на русском языке

Лебедев Андрей, группа 424 Научный руководитель: к.ф.-м.н. Тихомиров Михаил Михайлович

Задача

Исследовать и применить современные подходы к адаптации больших языковых моделей на инструкциях для повышения качества их работы на русском языке.

В частности, дообучить конкретную модель на качественных русскоязычных данных, используя:

- Supervised Fine-Tuning (SFT),
- Simple Preference Optimization (SimPO).

Актуальность

- Распространение больших языковых моделей.
- Недостаточное качество работы на русском языке.
- Проблемы при работе с длинным контекстом.

Методология обучения

Исходная модель: Qwen2.5-3B-Instruct

Использованные методы дообучения:

- Supervised Fine-Tuning (SFT) дообучение на размеченных данных, пары «запрос эталонный ответ».
- Simple Preference Optimization (SimPO) оптимизация предпочтений без дополнительной модели награды, тройки «запрос хороший ответ плохой ответ».

Методология обучения

 SFT – минимизация кросс-энтропии между предсказанием модели и эталонным ответом. Та же задача, что на pretrain-этапе:

$$\mathcal{L}_{SFT}(\theta) = -E_{(x,y)\sim\mathcal{D}} \left[\sum_{i=1}^{|y|} \log \pi_{\theta} \left(y_i \mid x, y_{< i} \right) \right]$$

• **SimPO** – максимизация вероятности, что положительный ответ вероятнее отрицательного на некоторую величину:

$$\mathcal{L}_{SimPO}(\pi_{\theta}) = -E \left[\log \sigma \left(\frac{\beta}{|y_w|} \log \pi_{\theta}(y_w \mid x) - \frac{\beta}{|y_l|} \log \pi_{\theta}(y_l \mid x) - \gamma \right) \right]$$

Методология обучения

Используемые датасеты:

- Vikhrmodels/GrandMaster-PRO-MAX: разнообразные примеры инструкций-ответов, синтетика GPT-4.
- *IlyaGusev/saiga_scored:* размеченные по качеству пары инструкций-ответов.
- Vikhrmodels/Grounded-RAG-RU-v2: набор данных для задач с глубоким пониманием контекста.
- *IlyaGusev/saiga_preferences:* предпочтения пользователей для улучшения генерации.

Методология оценки

Качество генерации на русском языке:

Оценка с помощью метода LLM-as-a-Judge на наборе RU Arena Hard. Показывает, насколько в среднем тестируемая модель лучше других по мнению сильной LLM-судьи.

Оценка знаний:

Междисциплинарный бенчмарк ruMMLU с выбором ответов.

• Оценка работы с длинным контекстом:

Бенчмарк LIBRA – сабсеты RuBabilongQA1 и RuBabilongQA2 для длинного контекста.

Результаты экспериментов

Модель	LLM-as-a-Judge	Avg. len	ruMMLU	${\rm ruBABILongQA1}$	${\rm ruBABILongQA2}$
Qwen2.5-3B-Instruct	0.136	418	0.550	0.648	0.260
${\it Qwen 2.5-3 B-Instruct+GM}$					
+60%	0.194	568	0.551	0.623	0.367
+80%	0.149	539	0.551	0.638	0.383
+100%	0.148	551	0.550	0.647	0.363
${\it Qwen 2.5-3 B-Instruct}+100\%{\it Saiga}$	0.086	410	0.552	0.640	0.373
${\it Qwen 2.5-3 B-Instruct} + 100\% \; {\it GM} + {\it Saiga}$					
+20% Saiga:	0.101	484	0.559	0.650	0.350
+40% Saiga:	0.100	479	0.558	0.645	0.355
+60% Saiga:	0.108	456	0.557	0.652	0.378
+100% Saiga:	0.098	439	0.558	0.670	0.355
${\it Qwen 2.5-3 B-Instruct}+100\%{\it RAG}$	0.185	467	0.553	0.642	0.240
${\it Qwen 2.5-3 B-Instruct} + 100\% \; {\it GM} + {\it RAG}$					
$+\ 100\%\ \mathrm{RAG}\ (4/5,\ 10\%)$	0.130	516	0.536	0.635	0.368
$+\ 100\%\ { m RAG}\ (5/5,5\%)$	0.177	529	0.543	0.648	0.335
$+\ 100\%\ \mathrm{GM}+60\%\ \mathrm{Saiga}+100\%\ \mathrm{RAG}\ (5/5,5\%)$	0.117	495	0.550	0.670	0.312
+ 100% GM $+$ 100% RAG $+$ 100% Saiga $+$ 100% Saiga Pref	0.093	447	0.551	0.632	0.363

Выводы

- Исследованы **методы дообучения** LLM инструкциям и **способы оценки** эффективности работы на русском языке.
- Показано, что использование качественных открытых датасетов улучшает **генерацию**, **знания и работу на длинном контексте**.
- Обнаружено, что комбинирование разных типов данных и методов адаптации обеспечивает сбалансированный рост всех ключевых метрик.
- Работа демонстрирует практические подходы улучшения LLM на русском языке через выбор методов адаптации и датасетов.