Playing with Signals: Sampling and Interpolation

Sibi Raj B Pillai srbpteach@gmail Subject:EE113-RollNo

Digital Oscilloscope

Digital-to-Analog :- "Sufficiently many discrete dots interpolated"

Analog-to-Digital :- "Sample enough to preserve its identity"

GNURADIO: Square wave from sines (Homework in Python).

No non-zero continuous interpolator having only frequencies below $\frac{1}{2T}$.

No non-zero continuous interpolator having only frequencies below $\frac{1}{2T}$.

Shannon Interpolator: $sinc(\frac{t}{T})$

No non-zero continuous interpolator having only frequencies below $\frac{1}{2T}$.

Shannon Interpolator: $sinc(\frac{t}{T})$

The dot product $\langle \bar{x}, \bar{p} \rangle$ of two vectors \bar{x}, \bar{p} measures their overlap.

The dot product $\langle \bar{x}, \bar{p} \rangle$ of two vectors \bar{x}, \bar{p} measures their overlap.

$$\langle x(t), p(t) \rangle = \int_{\mathbb{R}} x(t) p^*(t) dt.$$

$$\langle x(t), p(t) \rangle = 0 \Rightarrow \text{orthogonal}$$

The dot product $\langle \bar{x}, \bar{p} \rangle$ of two vectors \bar{x}, \bar{p} measures their overlap.

$$\langle x(t), p(t) \rangle = \int_{\mathbb{R}} x(t) p^*(t) dt.$$

$$\langle x(t), p(t) \rangle = 0 \Rightarrow \text{orthogonal}$$

$$\langle x(t), \cos(2\pi ft) \rangle = \langle x(t), \sin(2\pi ft) \rangle = 0, \forall f \ge f_0 \Rightarrow x(t)$$
 bandlimited.

The dot product $\langle \bar{x}, \bar{p} \rangle$ of two vectors \bar{x}, \bar{p} measures their overlap.

$$\langle x(t), p(t) \rangle = \int_{\mathbb{R}} x(t) p^*(t) dt.$$

$$\langle x(t), p(t) \rangle = 0 \Rightarrow \text{orthogonal}$$

$$\langle x(t), \cos(2\pi ft) \rangle = \langle x(t), \sin(2\pi ft) \rangle = 0, \forall f \ge f_0 \Rightarrow x(t)$$
 bandlimited.

The Fourier Transform of the signal x(t) is

$$X(f) := \langle x(t), \exp(j2\pi ft) \rangle = \int_{\mathbb{R}} x(t) \exp(-j2\pi ft) dt$$

Using superposition: (Shannon Interpolation Formula)

$$x(t) = \sum_{n \in \mathbb{Z}} x[n] \operatorname{sinc}\left(\frac{t}{T} - n\right)$$

Using superposition: (Shannon Interpolation Formula)

$$x(t) = \sum_{n \in \mathbb{Z}} x[n] \operatorname{sinc}\left(\frac{t}{T} - n\right)$$
 "Convolution"

Piece-wise Polynomials

Piece-wise Polynomials

2D Demo: Interpolating Images; 1D : Audio (MP3 or WAV)

Piece-wise Polynomials

2D Demo: Interpolating Images; 1D : Audio (MP3 or WAV)

How to deal with Colors (multi-dimensional)