Comparing One-stage cluster sampling to SRS

Week 7 (5.2.2)

Stat 260, St. Clair

1/2

Lohr Examples 5.6: design effect

When is a one-stage cluster sample more precise than SRS?

When does

$$SE(\hat{t}_{\, cluster}) \stackrel{???}{<} SE(\hat{t}_{\, SRS})$$

answer: It depends on the measurement's Analysis of Variance (ANOVA)

2/21

Population ANOVA

Let y_{ij} be your measurement of unit j in cluster i

ANOVA breaks the ${f total}$ sum of squares of y into ${f between \ cluster}$ and ${f within}$ cluster variation:

$$SST = SSB + SSW$$

For now, assume that cluster sizes are equal

$$M_i = M$$
 for all clusters $i = 1, \dots, N$

Population ANOVA

Source	df	Sum of Squares	Mean Square	
Between	N-1	$SSB = \sum_{i=1}^{N} M({ar{y}}_{i\mathcal{U}} - {ar{y}}_{\mathcal{U}})^2$	$MSB = rac{SSB}{N-1}$	
Within	N(M-1)	$SSW = \sum_{i=1}^N (M-1) S_i^2$	$MSW = rac{SSW}{N(M-1)}$	
total	NM-1	$SSTot = \sum_{i=1}^{N} \sum_{j=1}^{M} (y_{ij} - ar{y}_{\mathcal{U}})^2$	$S^2 = rac{SSTot}{NM-1}$	

Variance: SRS

Equal cluster sizes: We've sampled nM observation units (SSU) out of $M_0=NM$ possible units.

For a SRS of nM observation units, we can write the variance, SE^2 , of \hat{t}_{SRS} as

$$Var(\hat{t}_{SRS}) = (NM)^2 \left(1 - rac{nM}{NM}
ight) rac{S^2}{nM}$$

where S is the SD of the measurements in the population.

5/21

Variance: One-stage cluster sample

Equal cluster sizes: Under this assumption the variance of \hat{t}_{unb} is equal to

$$Var(\hat{t}_{\it unb}) = N^2 \left(1 - rac{n}{N}
ight) rac{M imes MSB}{n}$$

Variance: SRS vs. Stratified sample

Equal cluster sizes: Under this assumption, the design effect for a one-stage cluster sample total estimate is

$$DEff(\hat{ar{y}}_{unb}) = DEff(\hat{t}_{unb}) = rac{Var(\hat{t}_{unb})}{Var(\hat{t}_{SRS})} = rac{MSB}{S^2}$$

Variance: SRS vs. Stratified sample

Cluster sampling is more precise than an equal sized SRS when

$$MSB < S^2$$

- \Rightarrow between cluster variation is small
- $\Rightarrow\,$ measurements are heterogenous within clusters

Measuring homogeneity within clusters

• Intraclass correlation coefficient: for equal sized clusters

$$ICC = 1 - rac{M}{M-1} rac{SSW}{SSTot} \quad ext{where} \ - rac{1}{M-1} \leq ICC \leq 1$$

• Adjusted R-squared: can be used for unequal cluster sizes

$$R_a^2 = 1 - rac{MSW}{S^2} \quad ext{where } 1 - rac{NM-1}{N(M-1)} \leq R_a^2 \leq 1$$

- · For both:
 - values near 1 indicate homogeneous (similar) responses within clusters
 - values near 0 indicate heterogeneous (dissimilar) responses within clusters

9 / 21

Design effect revisted

Equal cluster sizes: Under this assumption the DEff of \hat{t}_{unb} is equal to

$$egin{split} DEff(\hat{t}_{unb}) &= rac{MSB}{S^2} \ &= rac{MN-1}{M(N-1)}(1+(M-1)ICC) \ &= 1 + rac{N(M-1)}{N-1}R_a^2 \end{split}$$

Design effect revisted

What is the design effect if

- N is big
- M = 11
- $R_a^2 = 0.5$

Big picture

- One-stage cluster sampling is "good" for precision if SSU within clusters have very heterogeneous responses
 - true whether or not cluster sizes are equal
- But often SSU within clusters have very homogeneous responses
 - clusters contain "similar" observation units
 - o clusters defined for **cost-saving** reasons, not for precision

Post-Hoc comparison

Q: How do we compute the design effect with a **sample of data** from any one-stage cluster sample?

- **1. (Any cluster sizes)** Use sampling weights to estimate $Var(\hat{t}_{srs})$
 - This is what the survey package when you use deff=TRUE

13 / 21

Post-Hoc comparison

Q: How do we compute the design effect with a **sample of data** from any one-stage cluster sample?

2. Equal cluster sizes: Estimate population sum of square values from **sample** mean square values msw and msb:

$$\widehat{SSW} = N(M-1)msw \quad \widehat{SSB} = (N-1)msb$$

The estimated design effect is

$$\widehat{DEff}(\hat{t}_{unb}) = rac{\widehat{MSB}}{\hat{S}^2} = rac{msb}{(\widehat{SSW} + \widehat{SSB})/(NM-1)}$$

Estimating ICC and R_a^2

$$\widehat{SSW} = N(M-1)msw, \quad \widehat{SSB} = (N-1)msb, \quad \widehat{SST} = \widehat{SSB} + \widehat{SSW}$$

14/21

• Estimated *ICC* is

$$ICC = 1 - rac{M}{M-1} rac{\widehat{SSW}}{\widehat{SST}}$$

• Estimated R_a^2 is

$${\hat R}_a^2=1-rac{msw}{{\hat S}^2}$$

Example - GPA

```
N = 100, n = 5, M_i = 4, M_0 = 400
```

	Suite 1	Suite 2	Suite 3	Suite 4	Suite 5
1	3.08	2.36	2.00	3.00	2.68
2	2.60	3.04	2.56	2.88	1.92
3	3.44	3.28	2.52	3.44	3.28
4	3.04	2.68	1.88	3.64	3.20
total	12.16	11.36	8.96	12.96	11.08

Example - GPA

```
N = 100, n = 5, M_i = 4, M_0 = 400
```

What is the design effect, ICC and R_a^2 for estimating mean GPA?

17 / 21

Lohr Examples 5.6: design effect of 2.245

What if cluster sizes are not equal?

Lohr Examples 5.6: design effect of 2.245

What if cluster sizes are not equal?