PharmaSUG SDE Tokyo 2018

Automated Generation of PowerPoint Presentations Using R in Clinical Studies

Takeda Pharmaceutical Company, Ltd.

Nobuo Funao

MENU

Introduction

- Procedures
- Details
 - ✓ Add Texts
 - ✓ Add Figures
 - ✓ Add Tables
 - ✓ Miscellaneous

Example:

Automated Generation of PowerPoint Presentations from CDISC/ADaM Datasets

Closing Clinical Study

- In closing stage of a clinical study, we should provide a statistical analysis result (SAR) with tables and figures, and then create a clinical study report (CSR) based on the result.
- In the meantime, we should also create a PowerPoint slide deck (say, topline report) including a brief summary of the study and the analysis results to report our managers / directors.

Topline Report Deliverable

Until Now

- Copy contents from SAR and paste them into slides
- Due to manual labor, the slides would have several errors (e.g., mispostings or writing errors)

From Now

- Automatically generate a PowerPoint slide deck using any software / program (e.g., R or SAS)
- Much less errors than manually

How to Generate PowerPoint Slide Deck

SAS ODS Powerpoint / Layout

Cannot read existing PowerPoint files
 (i.e., we cannot use any PowerPoint template)

R2PPT

- R package
- Few functions (especially for customizing tables)
- ActiveXObject is needed

ReporteRs

- R package
- Many functions
- JRA and package "rJava" are needed (i.e., a little slow)

R Package "officer"

- The package creates Microsoft Word and PowerPoint documents with tables and figures.
- Functions of the package can add and remove tables, figures and paragraphs of text. Slides can be added or removed.
- Like R package "ReporteRs", but this package does NOT require any installation of Microsoft products or any Java components (e.g., JRA or package "rJava").

Setup

- 1. Install R
- 2. Install the above packages
- 3. Load their packages (Done!)

Example: Create PowerPoint Document

```
> myplot <- ggplot(data=iris, aes(Sepal.Length, Sepal.Width)) +
             geom point()
> myppt <- read pptx()</pre>
> mylab <- layout summary(myppt)[[1]] # Slide Layout Name</pre>
> mytmp <- layout summary(myppt)[[2]][1]  # Show Slide Master Name
> myppt <- myppt %>%
   add slide(layout="Title Slide", master=mytmp) %>%
   ph with text(type="ctrTitle", str="Iris Data") %>%
   ph with text(type="subTitle", str="Table & Figure") %>%
   ph with text(type="dt", str=format(Sys.Date())) %>%
   add slide(layout="Title and Content", master=mytmp) %>%
   ph with text(type="title", str="Scatter Plot") %>%
   ph with gg(value=myplot) %>%
   add slide(layout="Two Content", master=mytmp) %>%
   ph with text(type="title", str="Table") %>%
   ph with table(type="body", value=iris[1:5,], index=1) %>%
   ph with text(type="body", str="Iris data", index=2)
> print(myppt, target="c:/temp/sample.pptx")
[1] "c:/temp/sample.pptx"
```

Example: Create PowerPoint Document


```
> myplot <- ggplot(data=iris, aes(Sepal.Length, Sepal.Width)) +
             geom point()
> mydoc <- read docx() %>%
   body add par(value="Table of contents", style="heading 1") %>%
   body add toc(level=2) %>%
   body add break() %>%
   body add par(value="Iris Data", style="heading 1") %>%
   body add par(value="Table", style="heading 2") %>%
   body add par ("Sepal.Length vs. Sepal.Width", style="Normal") %>%
   body add table (value=iris[1:5,], style="table template") %>%
   body add par(value="Scatter Plot", style="heading 2") %>%
   body add gg(value=myplot, style="centered")
> print(mydoc, target="c:/temp/sample.docx")
[1] "c:/temp/sample.docx"
```


1. Table of contents 1 2. Iris Data 2 2.1. Table 2 2.2. Scatter Plot 2

MENU

- Introduction
- Procedures
- Details
 - ✓ Add Texts
 - ✓ Add Figures
 - ✓ Add Tables
 - ✓ Miscellaneous
- Example:

Automated Generation of PowerPoint Presentations from CDISC/ADaM Datasets

Procedures

BODY 01

Preparation

1. Preparation

Open a connection to a PowerPoint file <u>without</u> an existing PowerPoint file

```
> myppt <- read pptx()</pre>
                                     # Create PowerPoint Object
> ( mylab <- layout summary(myppt)[[1]] )  # Show Slide Layout Name</pre>
[1] "Title Slide" "Title and Content" "Section Header"
[4] "Two Content" "Comparison" "Title Only"
[7] "Blank"
> ( mytmp <- layout summary(myppt)[[2]][1] ) # Show Slide Master Name</pre>
[1] "Office Theme"
> myppt %>%
  layout properties(layout="Title and Content", master=mytmp)%>%
                                              # Show Slide Properties
+ kable(digits=2)
  |master name |name |type |id |ph label
|5 |Office Theme |Title and Content |body |3 |Content Placeholder 2 | 0.50| 1.75| 9.00| 4.95|
| 10 | Office Theme | Title and Content | dt | 4 | Date Placeholder 3 | 0.50 | 6.95 | 2.33 | 0.40 |
|21 |Office Theme |Title and Content |ftr |5 |Footer Placeholder 4 | 3.42 | 6.95 | 3.17 | 0.40 |
|25 |Office Theme |Title and Content |sldNum |6 |Slide Number Placeholder 5 | 7.17 | 6.95 | 2.33 | 0.40 |
|31 |Office Theme |Title and Content |title |2 |Title 1 | 0.50 | 0.30 | 9.00 | 1.25 |
```

1. Preparation

 Open a connection to a PowerPoint file with an existing PowerPoint file (e.g., C:\temp\nds.pptx)

```
> myppt <- read pptx("C:/temp/nds.pptx") # Create PowerPoint Object</pre>
> ( mylab <- layout summary(myppt)[[1]] ) # Show Slide Layout Name</pre>
[1] "Title Slide"
                          "Title and Vertical Text"
[3] "Vertical Title and Text" "Title and Content"
[5] "Section Header"
                         "Two Content"
[7] "Comparison"
                         "Title Only"
[9] "Blank"
                          "Content with Caption"
[11] "Figure with Caption"
> ( mytmp <- layout summary(myppt)[[2]][1] ) # Show Slide Master Name</pre>
[1] "Slide Template"
> for (i in 1:length(mylab)) {
   layout properties(myppt, mylab[i], master=mytmp) %>% kable(digits=2) %>% print()
                       ltype
                                      ph label | offx| offy| cx| cy|
   |master name | name
                               |id
|:--|:-----|:----|:----|:----|:----|:----|:----|:----|----|----:|----:|----:|----
| 1 | | Slide Template | Title Slide | body | | 8223 | AutoShape 31 | 0.36 | 2.59 | 0.48 | 0.42 |
[Show Properties for All Templates]
```



```
> myplot <- ggplot(data=iris, aes(Sepal.Length, Sepal.Width)) + geom point()
> myppt <- myppt %>%
   # Add "Title Slide" using an argument of "layout"
   add slide(layout="Title Slide", master=mytmp) %>%
   ph with text(type="ctrTitle", str="Iris Data") %>%
   ph with text(type="subTitle", str="Table & Figure") %>%
   ph with text(type="dt", str=format(Sys.Date())) %>%
   # Slide for Scatter Plot
   add slide(layout="Title and Content", master=mytmp) %>%
   ph with text(type="title", str="Scatter Plot") %>%
   ph with qq(value=myplot) %>%
   # Slide for Text and Table
   add slide(layout="Two Content", master=mytmp) %>%
   ph with text(type="title", str="Table") %>%
   ph with table(type="body", value=iris[1:5,], index=1) %>%
   ph with text(type="body", str="Iris data", index=2)
```



```
> print(myppt, target="c:/temp/sample.pptx")
[1] "c:/temp/sample.pptx"
                                     Scatter Plot
          Iris Data
          Table & Figure
    "Title Slide"
                            "Title and Content"
           Table
     "Two Content"
```

MENU

- Introduction
- Procedures
- Details
 - ✓ Add Texts
 - ✓ Add Figures
 - ✓ Add Tables
 - ✓ Miscellaneous
- Example:

Automated Generation of PowerPoint Presentations from CDISC/ADaM Datasets

Add Texts

- Function ph_with_text() is used to add texts to a slide without any format.
 - "type" argument: placeholder type
 - "index" argument: placeholder index for "Two Content" slide

```
> myppt <- read pptx()</pre>
> mylab <- layout summary(myppt)[[1]]</pre>
> mytmp <- layout summary(myppt)[[2]][1]</pre>
> myppt <- myppt %>%
+
    add slide(layout="Two Content", master=mytmp) %>%
   ph with text(type="title", str="A title") %>%
   ph with text(type="ftr", str="A footnote") %>%
   ph with text(type="dt", str=format(Sys.Date())) %>%
   ph with text(type="body", str="A first text", index=1) %>%
+
    ph with text(<u>type="body"</u>, str="A second text", <u>index=2</u>)
> print(myppt, target="c:/temp/sample.pptx")
[1] "c:/temp/sample.pptx"
```

Add Texts

A title

· A first text

A second text

2018-04-12 A footnote

Add Texts

- Function ph_with_ul() is used to add unordered lists to a slide with some format.
 - "type" argument: placeholder type
 - "index" argument: placeholder index for "Two Content" slide
 - "str_list" argument: list of texts
 - "level_list" argument: list of levels
 - "style=fp_text(...)" argument: text style ("font.size=0" to use the default size)
- The functions of ph_add_par() and ph_add_text() can be used to add texts more.

```
> myppt <- read_pptx()
> mytmp <- layout_summary(myppt)[[2]][1]
> myppt <- myppt %>%
+ add_slide(layout="Title and Content", master=mytmp) %>%
+ ph_with_text(type="title", str="A title") %>%
+ ph_with_ul(type="body", level_list=c(1,2), str_list=c("aaa","bbb"),
+ style=fp_text(font.size=0, color="red")) %>%
+ ph_add_par(type="body", level=3) %>%
+ ph_add_text(type="body", str="ccc", style=fp_text(color="blue"))
> print(myppt, target="c:/temp/sample.pptx")
[1] "c:/temp/sample.pptx"
```


A title

- aaaa
 - $-\,\mathrm{bbb}$

Add Figures (image file / ggplot object)

```
> png("C:/temp/myplot.pnq")
> plot(iris$Sepal.Length, iris$Sepal.Width)
> dev.off()
null device
> myplot <- ggplot(data=iris, aes(Sepal.Length, Sepal.Width)) + geom point()</pre>
> myppt <- read pptx()</pre>
> mytmp <- layout summary(myppt)[[2]][1]</pre>
> myppt <- myppt %>%
    # Add Plot by ph with img()
    add slide(layout="Title and Content", master=mytmp) %>%
   ph with text(type="title", str="Scatter Plot by plot()") %>%
   ph with img(type="body", src="C:/temp/myplot.png", width=5, height=5) %>%
    # Add Plot by ph with img at()
    add slide(layout="Title and Content", master=mytmp) %>%
    ph with text(type="title", str="Scatter Plot by plot()") %>%
    ph with img at(src="C:/temp/myplot.png", left=2, top=2, width=5, height=5) %>%
    # Add Plot by ph with gg()
    add slide(layout="Title and Content", master=mytmp) %>%
    ph with text(type="title", str="Scatter Plot by ggplot()") %>%
    ph with gg(value=myplot)> print(myppt, target="c:/temp/sample.pptx")
[1] "c:/temp/sample.pptx"
```


Add Tables

Two functions of ph_with_table() and ph_with_table_at()
are used to add a table into a slide

```
> myppt <- read pptx()</pre>
> mytmp <- layout summary(myppt)[[2]][1]</pre>
> myppt <- myppt %>%
    add slide(layout="Two Content", master=mytmp) %>%
+
    ph with text(type="title", str="Table 1") %>%
    ph with table(type="body", value=iris[1:5,], index=1) %>%
    ph with text(type="body", str="Iris data", index=2) %>%
    add slide(layout="Title and Content", master=mytmp) %>%
    ph with text(type="title", str="Table 2") %>%
    ph with table at (value=iris[1:5,], left=1, top=2, width=8, height=5)
> print(myppt, target="c:/temp/sample.pptx")
[1] "c:/temp/sample.pptx"
```

Add Tables

Table 1

Sepal. Lengt h	Sepal. Width	Petal. Lengt h	Petal. Width	Specie s
5.1	3.5	1.4	0.2	setosa
4.9	3.0	1.4	0.2	setosa
4.7	3.2	1.3	0.2	setosa
4.6	3.1	1.5	0.2	setosa
5.0	3.6	1.4	0.2	setosa

Iris data

_			\sim
Ta	n	Δ	,
ıa	v		_

Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
5.1	3.5	1.4	0.2	setosa
4.9	3.0	1.4	0.2	setosa
4.7	3.2	1.3	0.2	setosa
4.6	3.1	1.5	0.2	setosa
5.0	3.6	1.4	0.2	setosa

- There is no function to customize table in the "officer" package
- Next, "flextable" package will be introduced to customize

Add Tables - "flextable" Object

- A "flextable" ("flex"ible "table") is an object for reporting table from data.frame
- A "flextable" is containing three parts below*, header rows, body rows and footer rows

	row 1 - cell from 1 to 5				
header part	row 2 - cell from 1 to 2		row 2 cell from 3 to 5		
	row 3 cell 1	row 3 cell 2	row 3 cell 3	row 3 cell 4	row 3 cell 5
	data[1,1]	data[1,2]	data[1,3]	data[1,4]	data[1,5]
body part	data[2,1]	data[2,2]	data[2,3]	data[2,4]	data[2,5]
	data[n,1]	data[n,2]	data[n,3]	data[n,4]	data[n,5]
footer part	Grouped footer 1.1 Grouped footer 1.2				
	Grouped foote	er 2.1			

Add Tables - "flextable" Object

 Both flextable() and regulartable() functions produce a flextable. The first one is resource consuming.

```
> myft <- regular table (iris [49:52, c(5,1,2)]) # Create "flextable" object
> myft <- theme booktabs(myft)</pre>
                                                  # Change "flextable" theme
> myft <- autofit(myft)</pre>
                                                   # Adjust Cell Width and Height
> myppt <- read pptx()</pre>
> mytmp <- layout summary(myppt)[[2]][1]</pre>
> myppt <- myppt %>%
    add slide(layout="Title and Content", master=mytmp) %>%
    ph with flextable(myft, type="body")
> print(myppt, target="c:/temp/sample.pptx")
[1] "c:/temp/sample.pptx"
                                                               Sepal.Length Sepal.Width
                                                        Species
                                                        setosa
                                                                    5.300
                                                                              3.700
                                                                    5.000
                                                                              3.300
                                                         setosa
                                                      versicolor
                                                                    7.000
                                                                              3.200
                                                       versicolor
                                                                              3.200
                                                                    6.400
```

Add Tables - "flextable" Object Select Columns and Change Theme

- "col_keys" argument selects displayed columns (blank columns are added if some column names are not in the list of this argument)
- Several functions are defined to change theme of tables

myft1

Sepal.Length Sepal.Width

3.700

3.300

3.200

3.200

5.300

5.000

7.000

6.400

myft3

Species	Sepal.Length	Sepal.Width
setosa	5.300	3.700
setosa	5.000	3.300
versicolor	7.000	3.200
versicolor	6.400	3.200

myft8

Species

setosa

setosa

versicolor

versicolor

Sepal.Length	Sepal.Width
5.300	3.700
5.000	3.300
7.000	3.200
6.400	3.200

Species

setosa

setosa

versicolor

versicolor

Add Tables - "flextable" Object Merge Cells

- Three functions of merge_h(i=rows), merge_v(j=columns), and merge_at(i=rows, j=columns) merge rows, columns and cells.
- The merge_none() function deletes all merging information.

```
> myft <- regulartable(iris[49:52,],
+ col_keys=c("Species","Sepal.Length","Sepal.Width"))
> myft1 <- merge_v(myft, j=c(1,3))
> myft1
> myft2 <- merge_v(myft, ~ Species)
> myft2
```

myft1

Species S	Sepal.Length	Sepal.Width
ootooa -	5.300	3.700
setosa -	5.000	3.300
versicolor -	7.000	3.200
versicolor =	6.400	3.200

myft2

Species S	Sepal.Length	Sepal.Width
setosa -	5.300	3.700
seiosa –	5.000	3.300
versicolor ·	7.000	3.200
versicolor =	6.400	3.200

Add Tables - "flextable" Object Change Labels and Add Headers

- The set_header_labels() function replaces column labels of the bottom row of the header.
- The add_header() and add_footer() functions add a header and a footer, respectively.

myft1

Species	Length	Width
setosa	5.300	3.700
setosa	5.000	3.300
versicolor	7.000	3.200
versicolor	6.400	3.200

myft2

C!		Sepal
Species -	Length	Width
setosa	5.300	3.700
setosa	5.000	3.300
versicolor	7.000	3.200
versicolor	6.400	3.200

This is a footnote.

Add Tables - "flextable" Object Adjust Cell Widths and Heights

- The autofit() function adjusts automatically cell widths and heights.
- Three functions of width(), height(), and height_all() adjust manually cell widths and heights, respectively.

ппунт		
Species	Sepal.Length	Sepal.Width
setosa	5.300	3.700
setosa	5.000	3.300
versicolor	7.000	3.200
versicolor	6.400	3.200

myft2		
Species	Sepal.Length	Sepal.Width
setosa	5.300	3.700
setosa	5.000	3.300
versicolor	7.000	3.200
versicolor	6.400	3.200

Add Tables - "flextable" Object Formatting

- The several functions below modify formatting properties of a flextable.
- The "part" argument should be "all", "body", "header" and "footer".

```
> myft1 <- regulartable(iris[49:52,],</pre>
             col keys=c("Species", "Sepal.Length", "Sepal.Width"))
> myft2 <- align(myft1, align="center", part="all") %>%
                                                               # Text Alignment
           bg(bg="cyan", part="body") %>%
                                                                # Background Color
           bold(part="header") %>%
                                                                # Bold
           color(color="red", part="header") %>%
                                                                # Font Color
           font(j="Species", fontname="Arial") %>%
                                                                # Font
           fontsize(part="all", size=14) %>%
                                                                # Font Size
           italic(i=~ Sepal.Length>6,
                                                                # Conditional format
                  j=~ Sepal.Length+Sepal.Width, italic=T) %>% # Italic
           padding(padding=3, part="all") # Padding(space around a text in a cell)
```

myft1

Species	Sepal.Length	Sepal.Width
setosa	5.300	3.700
setosa	5.000	3.300
versicolor	7.000	3.200
versicolor	6.400	3.200

myft2

Species	Sepal.Length	Sepal.Width
setosa	5.300	3.700
setosa	5.000	3.300
versicolor	7.000	3.200
versicolor	6.400	3.200

Add Tables - "flextable" Object Borders

 The several functions below change properties of the horizontal or vertical borders for a flextable.

```
> # Create Border Properties Objects
> b0 <- fp border(color="white", style="none")</pre>
> b1 <- fp border(color="blue", style="solid", width=1)</pre>
> b2 <- fp border(color="red", style="dotted", width=2) # style="dashed" is available
> myft <- regulartable(iris[49:52,],</pre>
             col keys=c("Species", "Sepal.Length", "Sepal.Width")) %>%
           add footer(Species="This is a footnote." ) %>%
           merge at(i=1, j=1:3, part="footer")
> myft1 <- border remove(myft)</pre>
                                                        # Remove All Borders
> myft2 <- hline(myft1, border=b1) %>%
                                                       # Set horizontal lines
           hline top(border=b2, part="body") %>% # Set first horizontal line
           hline bottom(border=b0, part="footer") %>% # Set last horizontal line
          vline(border=b1, part="header") %>%  # Set vertical lines
          vline left(border=b0, part="footer") %>%  # Set first vertical line
           vline right(border=b0, part="footer")  # Set last vertical line
```

Add Tables - "flextable" Object Borders

The functions of border_inner_h(), border_inner_v() and border_outer()
are useful to apply a border to inner/outer cells of one or all parts of a
flextable if the border design is simple.

```
myft3 <- border_inner_h(myft1, border=b1, part="all") %>%
    border_inner_v(border=b2, part="all") %>%
    border_outer(border=b3, part="all")
```

myft1

Species	Sepal.Length	Sepal.Width
setosa	5.300	3.700
setosa	5.000	3.300
versicolor	7.000	3.200
versicolor	6.400	3.200
This is a foot	note.	

myft2

Species	Sepal.Length	Sepal.Width
setosa	5.300	3.700
setosa	5.000	3.300
versicolor	7.000	3.200
versicolor	6.400	3.200

This is a footnote.

myft3

Species	Sepal.Length	Sepal.Width
setosa	5.300	3.700
setosa	5.000	3.300
versicolor	7.000	3.200
versicolor	6.400	3.200
This is a footnote.		

Miscellaneous: Some Objects for Properties

Create Border properties object

```
fp_border(color="black", style="solid", width=1)
```

Create Text formatting properties object

Create Cell formatting object

Miscellaneous: Slide selection and manipulation

 Four functions of add_slide(), remove_slide(), on_slide() and ph_remove() are used to select and manipulate a slide/content

```
> myppt <- read pptx()</pre>
> mylab <- layout summary(myppt)[[1]]</pre>
> mytmp <- layout summary(myppt)[[2]][1]</pre>
> myppt <- myppt %>%
   add slide(layout="Title and Content", master=mytmp) %>%
  add slide(layout="Title Only",
                                       master=mytmp) %>%
   # Create 3 slides
> myppt <- myppt %>% remove slide(index=1)
                                                          # Remove Slide #1
> myppt <- myppt %>%
   on slide(index=1) %>%
                                                          # Focus on #1
   ph with text(type="title", str="Dummy Title") %>%
                                                          # Add a text
   on slide(index=2) %>%
                                                          # Focus on #2
   ph with table(type="body", value=iris[1:5,], index=1) %>% # Add a table
   ph with text(type="body", str="Iris data", index=2) %>% # Add a text
   on slide(index=1) %>%
                                                          # Focus on #1
   ph remove(type="title")
                                                          # Remove title
> print(myppt, target="c:/temp/sample.pptx")
```

Miscellaneous: "xtable" Object

 The xtable_to_flextable() function gets a flextable from a xtable object (e.g., a xtable object converted from a lm.object)

myft1

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	5.01	0.07	68.76	0.00
Speciesversicolor	0.93	0.10	9.03	0.00
Speciesvirginica	1.58	0.10	15.37	0.00

myft2

Char.	Freq.
Α	5
В	1
С	4

MENU

- Introduction
- Procedures
- Details
 - ✓ Add Texts
 - ✓ Add Figures
 - ✓ Add Tables
 - ✓ Miscellaneous

Example:

Automated Generation of PowerPoint Presentations from CDISC/ADaM Datasets

A Virtual Clinical Study

Target Population: Subjects with history of gastric ulcer (GU)

Treatment: ABC-XXX 1 mg or Placebo

Primary Endpoint: Time to recurrence of GU

Secondary Endpoint: Time to occurrence of duodenal ulcer (DU)

Other Endpoints: Proportion of GU recurrence, Proportion of DU occurrence,

Treatment-emergent adverse event (TEAE)

Demography / Baseline

Characteristics:

Age, Gender, BMI, Helicobacter Pylori test, Caffeine consumption, Alcohol consumption, Smoking status

ADAM Datasets: ADSL, ADTTE, ADAE (simple for illustrative purposes)

ADSL

Variable	Type	Label
STUDYID	Char	Study Identifier
USUBJID	Char	Unique Subject Identifier
SUBJID	Char	Subject Identifier for the Study
SITEID	Char	Study Site Identifier
AGE	Num	Age
AGEU	Char	Age Units
AGEGR1	Char	Pooled Age Group 1
AGEGR1N	Num	Pooled Age Group 1 (N)
SEX	Char	Sex
RACE	Char	Race
BMIBL	Num	Baseline Body Mass Index (kg/m2)
BMIGR1	Char	Pooled Baseline BMI (kg/m2) Group 1
BMIGR1N	Num	Pooled Baseline BMI (kg/m2) Group 1 (N)
ALCOHOL	Char	Consumption of Alcohol
CAFFEINE	Char	Consumption of Caffeine
HPYLORI	Char	Helicobacter Pylori Infection
TOBACCO	Char	Consumption of Tobacco
FASFL	Char	Full Analysis Set Population Flag
PPROTFL	Char	Per-Protocol Population Flag
SAFFL	Char	Safety Population Flag
COMPLFL	Char	Completers Population Flag
RANDFL	Char	Randomized Population Flag
ARM	Char	Description of Planned Arm
ACTARM	Char	Description of Actual Arm
TRT01P	Char	Planned Treatment for Period 01
TRT01PN	Num	Planned Treatment for Period 01 (N)
TRT01A	Char	Actual Treatment for Period 01
TRT01AN	Num	Actual Treatment for Period 01 (N)

- TRTP: ABC-XXX, Placebo
- RANDFL: Y, N
- AGE : Age (years)
- AGEGR1:

- **SEX**: M (Male), F (Female)
- **BMIBL**: Baseline BMI (kg/m²)
- BMIGR1 :

- HPYLORI: Negative, Positive
- CAFFEINE : No, Yes
- ALCOHOL : No, Yes
- TOBACCO: No, Yes

ADTTE

Variable	Typo	Label
STUDYID	Type Char	Study Identifier
USUBJID	Char	,
		Unique Subject Identifier
SUBJID	Char	Subject Identifier for the Study
SITEID	Char	Study Site Identifier
AGE	Num	Age
AGEU	Char	Age Units
AGEGR1	Char	Pooled Age Group 1
AGEGR1N	Num	Pooled Age Group 1 (N)
SEX	Char	Sex
RACE	Char	Race
BMIBL	Num	Baseline Body Mass Index (kg/m2)
BMIGR1	Char	Pooled Baseline BMI (kg/m2) Group 1
BMIGR1N	Num	Pooled Baseline BMI (kg/m2) Group 1 (N)
ALCOHOL	Char	Consumption of Alcohol
CAFFEINE	Char	Consumption of Caffeine
HPYLORI	Char	Helicobacter Pylori Infection
TOBACCO	Char	Consumption of Tobacco
FASFL	Char	Full Analysis Set Population Flag
PPROTFL	Char	Per-Protocol Population Flag
SAFFL	Char	Safety Population Flag
COMPLFL	Char	Completers Population Flag
RANDFL	Char	Randomized Population Flag
ARM	Char	Description of Planned Arm
ACTARM	Char	Description of Actual Arm
TRTP	Char	Planned Treatment
TRTPN	Num	
TRTA	Char	Actual Treatment
TRTAN	Num	Actual Treatment (N)
HAIN	Null	Actual Heatilietit (IV)

Variable	Type	Label
ASEQ	Num	Analysis Sequence Number
ADT	Num	Analysis Date
PARAM	Char	Parameter
PARAMCD	Char	Parameter Code
PARAMN	Num	Parameter (N)
AVAL	Num	Analysis Value
STARTDT	Num	Time to Event Origin Date for Subject
CNSR	Num	Censor

• TRTP: ABC-XXX, Placebo

• **FASFL** : Y, N

PPROTFL : Y, N

PARAMCD : GU (Gastric ulcer),

DU (Duodenal ulcer)

AVAL : Time to Event/Censor (days)

CNSR: 0 (Event), 1 (Censor)

Covariates/Subgroups :

AGE, SEX, BMIBL, HPYLORI, CAFFEINE, ALCOHOL, TOBACCO

ADAE

Variable	Type	Label
STUDYID	Char	Study Identifier
USUBJID	Char	Unique Subject Identifier
SUBJID	Char	Subject Identifier for the Study
SITEID	Char	Study Site Identifier
AGE	Num	Age
AGEU	Char	Age Units
AGEGR1	Char	Pooled Age Group 1
AGEGR1N	Num	Pooled Age Group 1 (N)
SEX	Char	Sex
RACE	Char	Race
BMIBL	Num	Baseline Body Mass Index (kg/m2)
BMIGR1	Char	Pooled Baseline BMI (kg/m2) Group 1
BMIGR1N	Num	Pooled Baseline BMI (kg/m2) Group 1 (N)
ALCOHOL	Char	Consumption of Alcohol
CAFFEINE	Char	Consumption of Caffeine
HPYLORI	Char	Helicobacter Pylori Infection
TOBACCO	Char	Consumption of Tobacco
FASFL	Char	Full Analysis Set Population Flag
PPROTFL	Char	Per-Protocol Population Flag
SAFFL	Char	Safety Population Flag
COMPLFL	Char	Completers Population Flag
RANDFL	Char	Randomized Population Flag
TRTP	Char	Planned Treatment
TRTPN	Num	Planned Treatment (N)
TRTA	Char	Actual Treatment
TRTAN	Num	Actual Treatment (N)
AESEQ	Num	Sequence Number
AETERM	Char	Reported Term for the Adverse Event

Variable	Type	Label
AEDECOD	Char	Dictionary-Derived Term
AEBODSYS	Char	Body System or Organ Class
TRTEMFL	Char	Treatment Emergent Analysis Flag
AESTDTC	Num	Start Date/Time of Adverse Event
AESTDY	Num	Study Day of Start of Adverse Event
AEENDTC	Num	End Date/Time of Adverse Event
AESEV	Char	Severity/Intensity
ASEV	Char	Analysis Severity/Intensity
ASEVN	Num	Analysis Severity/Intensity (N)
AEBDSYCD	Num	Body System or Organ Class Code
AESER	Char	Serious Event
AEREL	Char	Causality
AREL	Char	Analysis Causality
ARELN	Num	Analysis Causality (N)
AEPTCD	Num	Preferred Term Code
AOCCFL	Char	1st Occurrence within Subject Flag
AOCCPFL	Char	1st Occurrence of Preferred Term Flag
AOCCSFL	Char	1st Occurrence of SOC Flag
		<u> </u>

• TRTA: ABC-XXX, Placebo

TRTEMFL: Y (TEAE), N (PTE)

AEDECOD : PT Name

AESER: Y (SAE), N (Non-SAE)

AREL: Not Related, Related

ASEV: Mild, Moderate, Severe

Analytical Methods for Primary Endpoint

Primary Analysis

The cumulative incidences and the two-sided 95% confidence intervals (CIs) will be provided by treatment group using the Kaplan-Meier method.

A log-rank test will be used to test for treatment differences.

- Tables for the cumulative incidences with 95% CIs
- Kaplan-Meier Plot
- Using FAS

Other Analysis

- Sensitivity Analysis (the same as above, but using PPS)
- Covariate Adjusted Analysis (Cox regression model with treatment and each demographic data as covariate)
- Subgroup Analysis

Purpose

- Automatically generate a PowerPoint slide deck using R
- The slides will include below:
 - Summary table of Demographics and Baseline Characteristics [Randomized Set, ADSL]
 - Table and Figure of Analysis Result for Primary Endpoint [FAS and PPS, ADTTE]
 - Table and Figure of Analysis Result for Secondary Endpoint [FAS, ADTTE]
 - Tables for Other Efficacy Endpoints [FAS, ADTTE]
 - Covariate Adjusted Analysis [FAS, ADTTE]
 - Subgroup Analysis [FAS, ADTTE]
 - Tables and Figures of TEAE, Drug-related TEAE,
 TEAE by Intensity and SAE [Safety Analysis Set, ADAE and ADSL]

R Program (1/3)

 Execute the following R program after reading the data, definition of R functions, creating R variables (omitted)

```
> # For Page Number
> myPageNumber <- 0
> pageNum <- function (x) {
    if (missing(x)) { myPageNumber <<- myPageNumber+1; return(as.character(myPageNumber)) }</pre>
    else
                   { myPageNumber <<- x; return(as.character(myPageNumber)) }
> # Create Slides
> myppt <- read pptx("C:/temp/nds.pptx")</pre>
> mytmp <- layout summary(myppt)[[2]][1]</pre>
> myppt <- myppt %>%
    add slide(layout="Title Slide", master=mytmp) %>%
   ph with text(type="ctrTitle", str="ABC-XXX Phase 3 Study") %>%
   ph with text(type="subTitle", str="Flash Result") %>%
   ph with text(type="ftr",
                                str=format(Sys.Date())) %>%
    add slide(layout="Title and Content", master=mytmp) %>%
   ph with text(type="title", str="Demographics and Baseline Characteristics") %>%
   ph with flextable at(value=DEMOG TABLE1, left=0.5, top=1.3) %>%
    ph with text(type="sldNum", str=pageNum(2)) %>%
    add slide(layout="Title and Content", master=mytmp) %>%
    ph with text(type="title", str="Demographics and Baseline Characteristics") %>%
    ph with flextable at (value=DEMOG TABLE2, left=0.5, top=1.3) %>%
   ph with text(type="sldNum", str=pageNum()) %>%
    add slide(layout="Title and Content", master=mytmp) %>%
    ph with text(type="title", str="Cumulative Incidence of GU [FAS]") %>%
    ph with qq at(value=kmplot(T1), width=9, height=5, left=0.5, top=2) %>%
   ph with ul(type="body", level list=1, str list=T1$pot, style=fp text(font.size=24, color=T1$col)) %>%
    ph with text(type="sldNum", str=pageNum()) %>%
```

R Program (2/3)


```
add slide(layout="Title and Content", master=mytmp) %>%
ph with text(type="title", str="Life Table of GU [FAS]") %>%
ph with flextable at(value=T1$table, left=0.5, top=1.3) %>%
ph with text(type="sldNum", str=pageNum()) %>%
add slide(layout="Title and Content", master=mytmp) %>%
ph with text(type="title", str="Cumulative Incidence of GU [PPS]") %>%
ph with gg at(value=kmplot(T2), width=9, height=5, left=0.5, top=2) %>%
ph with ul(type="body", level list=1, str list=T2$pot, style=fp text(font.size=24, color=T2$col)) %>%
ph with text(type="sldNum", str=pageNum()) %>%
add slide(layout="Title and Content", master=mytmp) %>%
ph with text(type="title", str="Life Table of GU [PPS]") %>%
ph with flextable at(value=T2$table, left=0.5, top=1.3) %>%
ph with text(type="sldNum", str=pageNum()) %>%
add slide(layout="Title and Content", master=mytmp) %>%
ph with text(type="title", str="Cumulative Incidence of DU [FAS]") %>%
ph with qq at(value=kmplot(T3), width=9, height=5, left=0.5, top=2) %>%
ph with ul(type="body", level list=1, str list=T3$pot, style=fp text(font.size=24, color=T3$col)) %>%
ph with text(type="sldNum", str=pageNum()) %>%
add slide(layout="Title and Content", master=mytmp) %>%
ph with text(type="title", str="Life Table of DU [FAS]") %>%
ph with flextable at(value=T3$table, left=0.5, top=1.3) %>%
ph with text(type="sldNum", str=pageNum()) %>%
add slide(layout="Title and Content", master=mytmp) %>%
ph with text(type="title", str="Proportion of GU/DU [FAS]") %>%
ph with ul(type="body", level list=1, str list=ADDITIONAL$pot1,
style=fp text(font.size=20, color=ADDITIONAL$col1)) %>%
ph add par(type="body", level=1) %>%
ph add text(type="body", str=ADDITIONAL$pot2,
style=fp text(font.size=20, color=ADDITIONAL$col2)) %>%
ph with flextable at (value=ADDITIONAL$table1, left=0.5, top=2.4) %>%
ph with flextable at(value=ADDITIONAL$table2, left=0.5, top=5.2) %>%
ph with text(type="sldNum", str=pageNum()) %>%
```

R Program (3/3)


```
add slide(layout="Title and Content", master=mytmp) %>%
   ph with text(type="title", str="Covariate Adjusted Analysis") %>%
   ph with img at(src="C:/temp/adj.bmp", left=0.4, top=1.1, width=9, height=6) %>%
   ph with text(type="sldNum", str=pageNum()) %>%
   add slide(layout="Title and Content", master=mytmp) %>%
   ph with text(type="title", str="Subgroup Analysis") %>%
   ph with img at(src="C:/temp/sub.bmp", left=0.4, top=1.1, width=9, height=6) %>%
   ph with text(type="sldNum", str=pageNum()) %>%
   add slide(layout="Title and Content", master=mytmp) %>%
   ph with text(type="title", str="All TEAEs") %>%
   ph with img at(src="C:/temp/teae1.bmp", left=0.4, top=1.1, width=9, height=6) %>%
   ph with text(type="dt", str="TEAE: Treatment Emergent Adverse Event") %>%
   ph with text(type="sldNum", str=pageNum()) %>%
   add slide(layout="Title and Content", master=mytmp) %>%
   ph with text(type="title", str="Drug-related TEAEs") %>%
   ph with img at(src="C:/temp/teae2.bmp", left=0.4, top=1.1, width=9, height=6) %>%
   ph with text(type="dt", str="TEAE: Treatment Emergent Adverse Event") %>%
   ph with text(type="sldNum", str=pageNum())
> for (i in 1:length(INT TABLE)) {
   myppt <- myppt %>%
    add slide(layout="Title and Content", master=mytmp) %>%
    ph with text(type="title", str="Intensity of TEAEs") %>%
     ph with flextable at(value=INT TABLE[[i]], left=0.5, top=1.3) %>%
     ph with text(type="dt", str="TEAE: Treatment Emergent Adverse Event") %>%
     ph with text(type="sldNum", str=pageNum())
+ }
> myppt <- myppt %>%
   add slide(layout="Title and Content", master=mytmp) %>%
   ph with text(type="title", str="SAEs") %>%
   ph with img at(src="C:/temp/teae3.bmp", left=0.4, top=1.1, width=9, height=6) %>%
   ph with text(type="sldNum", str=pageNum())
> print(myppt, target="c:/temp/result.pptx")
```

Output Slides (1/5)

Output Slides (2/5)

Output Slides (3/5)

Life Table of DU [FAS]

_	_			_		95% CI	
Group	Time	At Rink	Event	Censor	*	Lower	Upper
	0	100	0	0	0.0	0.0	0.0
	100	80	2	18	2.2	0.0	5.3
ABC-IOX	200	56	5	39	6.3	0.9	11.8
	300	32	9	59	14.7	5.4	24.0
	400	0	14	86	100.0	100.0	100.0
	0	100	0	0	0.0	0.0	0.0
	100	77	6	17	6.6	1.5	11.6
Placebo	200	56	12	32	14.4	6.8	22.0
	300	27	16	57	22.1	12.0	32.2
	400	0	23	77	05.4	36.5	96.3

- · The difference in proportions of GU was statistically significant.
- · The difference in proportions of DU was not statistically significant.

Test	Group	Yes (%)	No Total	Total	95% CI		
-	Grace	166 (4)	140	1000	Lower	Upper	
QU .	ABC-3000	23 (23.0)	77	100	15.2	32.5	
	Placebo	44 (44.0)	56	100	34.1	54.3	
	ABC-0000	14 (14.0)	86	100	7.9	22.4	
DU	Placebo	23 (23.0)	77	100	15.2	32.5	

Test	Group	Dif.	95% CI			Chi-equare Test	
Test	Group	Diff.	Lower	Upper	Chieq.	DF	p-value
GU	ABC-XXX - Placebo	-21.0	-33.0	-0.2	8.978	1	0.0027
DU	ABC-XXX - Placebo	-9.0	-19.7	1.7	2.122	1	0.1452

Covariate Adjusted Analysis

Covariate		HR	95% LCL	95% UCL
Overall		0.44	0.26	0.73
Age	-	0.44	0.26	0.73
Gender	-	0.43	0.26	0.73
BM		0.45	0.27	0.75
H. pylori Infection		0.44	0.26	0.73
Caffeine Consumption		0.44	0.26	0.73
Alcohol Consumption		0.43	0.26	0.72
	_	0.44	0.26	0.73

Subgroup Analysis

Age 65 == .<=\Next{Nax} Gender Male Gender Formale BM Min == .<25 BM 25 == .<=\Next{Nax} H, pylon infaction Positive H, pylon infaction Negative Caffeire Consumption Ves Caffeire Consumption No Alcohol Consumption Yes		HR	95% LCL	95% UCL
Age 65 == .<=\Next{Nax}	0.44	0.44	0.26	0.73
Gender Male	0.42	0.42	0.23	0.76
Gandar Femula	0.55	0.55	0.21	1.46
Min==-<25	0.32	0.32	0.14	0.7
BM 25cc - <=Nax	0.59	0.59	0.29	1.24
H. pyloni Infection Positive H. pylon Infection Negative Caffeire Consumption Yes Caffeire Consumption No Alcohol Consumption Yes	0.25	0.25	0.09	0.69
R pylon Infection Negative Caffeine Consumption Yes Caffeine Consumption No Alcohol Consumption Yes	0.49	0.49	0.26	0.93
Caffeine Consumption Yes Caffeine Consumption No Alcohol Consumption Yes	0.44	0.44	0.21	0.92
Caffeine Consumption No	0.39	0.39	0.19	0.83
Alcohol Consumption Yes	0.44	0.44	0.18	1.08
	0.41	0.41	0.22	0.77
No. 10 constant	0.61	0.61	0.25	1.49
Alcohol Consumption No —=—	0.33	0.33	0.17	0.65
Tobacco Consumption Yes -	0.14	0.14	0.03	0.63
Tobacco Consumption No	0.55	0.55	0.31	0.98

Output Slides (4/5)

Output Slides (5/5)

MENU

- Introduction
- Procedures
- Details
 - ✓ Add Texts
 - ✓ Add Figures
 - ✓ Add Tables
 - ✓ Miscellaneous
- Example:

Automated Generation of PowerPoint Presentations from CDISC/ADaM Datasets

References

The R Project
 https://www.r-project.org/

officer by David Gohel

CRAN: https://cran.r-project.org/web/packages/officer/index.html

Github: https://davidgohel.github.io/officer/index.html

flextable by David Gohel

CRAN: https://cran.r-project.org/web/packages/flextable/index.html

Github: https://davidgohel.github.io/flextable/index.html

ReporteRs by David Gohel

CRAN: https://cran.r-project.org/web/packages/ReporteRs/index.html

Github: http://davidgohel.github.io/ReporteRs/index.html

Crafting a PowerPoint Presentation with R by Len Kiefer
 http://lenkiefer.com/2017/09/23/crafting-a-powerpoint-presentation-with-r/

 Analysis Data Model Implementation Guide Version 1.1 https://www.cdisc.org/standards/foundational/adam

Thank you for your attention!

Takeda Pharmaceutical Company, Ltd.