GLM 1. Review

Review

1. Notations

a. Parameters(unknown)

σ	Standard deviation
β_1, β_2	Coefficients

b. Varibles

$$Y \ vs. \ X_1, X_2, \cdots, X_k$$

Y	Response variable, Outcome variable, Dependent variable
X_k	Explanatory variable, Independent variable, Covariate, Predictor

c. Model

$$Y_i$$
 vs. X_{i1}, X_{i2}, X_{i3}

 $(Wage) \ vs. \ (degree), (gender), (age)$

Data set:

Subject	Y	X_1	X_2	X_3
1	Y_1	X_{11}	X_{12}	X_{13}
2	Y_2	X_{21}	X_{22}	X_{23}
n	Y_n	X_{n1}	X_{n2}	X_{n3}

d. Vector

$Y(\underline{y})$	Vector of Y's(y's)
β	Vecror of coefficients

e. Matrix

X	Design matrix
W	Weight matrix

2. Distribution

$Y_i \sim \cdots$	Y_i followes/has · · · distribution	
i.i.d.	Identically and independly distributed	

a. Normal Distribution

$$Y \sim N(\mu, \sigma^2)$$

Once Y follows Normal distribution, let $Z = \frac{Y - \mu}{\sigma}$, then:

$$Z \sim N(0, 1)$$

Interpretation of Z-score: The distance, in terms of standard deviation, that the variable is deviated from the center of the distribution.

b. χ^2 -Distribution

Let $Z_1, \dots, Z_n \xrightarrow{i.i.d} N(0,1)$, then:

$$\sum_{i=1}^{n} Z_i^2 = Z_1^2 + Z_2^2 + \dots + Z_n^2 \sim \chi^2(n)$$

GLM1. Review

c. F-distribution

If:

$$\begin{cases} Y_1 \sim \chi^2(df_1) \\ Y_2 \sim \chi^2(df_2) \\ Y_1, Y_2 \ are \ independent \end{cases}$$

Then:

$$F = \frac{Y_1/df_1}{Y_2/df_2} \sim F(df_1, df_2)$$

d. T-distritbution

If:

$$\begin{cases} Z \sim N(0,1) \\ Y \sim \chi^2(df) \\ Z, Y \ are \ independent \end{cases}$$

Then:

$$T = \frac{Z}{Y/df} \sim t(df)$$

- **3.** Probability Functions
 - a. PMF(Probability Mass Function)

Example:

$$p_x(x) = \begin{cases} 0.2 & if \ x = 1 \\ 0.5 & if \ x = 3 \\ 0.3 & if \ x = 7 \end{cases}$$

b. PDF(Probability Density Function)

Example:

$$Y \sim N(\mu_i, \sigma^2)$$
$$f(y) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(y-\mu)^2}{\sigma^2}}$$

c. Likelihood Function

Treat Y as constant/observed values, allow the parameters to vary. Example:

$$Y_1, Y_2, \cdots, Y_n \stackrel{i.i.d}{\smile} N(\mu, \sigma^2)$$
$$L(\mu; \underline{y}) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(y-\mu)^2}{\sigma^2}}$$

As μ changes, $L(\mu)$ will change.

MLE: Find $\hat{\theta}$ to maximize $L(\theta)$. (In the example, find $\hat{\mu}$ to maximize $L(\mu)$)

Maximum Likelihood Estimation \rightarrow Method

Maximum Likelihood Estimator \rightarrow Function $(\hat{\mu} = \bar{x})$ Maximum Likelihood Estimate \rightarrow Plug in the value from the data set

GLM 1. Review

4. Procedures in normal regression model

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \varepsilon_i$$
$$\varepsilon_i \stackrel{i.i.d}{\sim} N(0, \sigma^2)$$

Estimate $\hat{\beta}(\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2)$ using OLS (Ordinary Least Squares) = MLE.

- a. Inference
 - CI for $\hat{\beta}_1$: $\hat{\beta}_1 \pm t_{(df=n-p, \alpha/2)} \cdot se(\hat{\beta}_1)$
 - In general: (point est.) \pm (critical value)·(standard error of the point est.)
 - Meaning of confidence level(95%): Repeat sampling process, each time get n independent sample, and every time $\hat{\beta_1}$ differs. In a run, 95% of the time, the interval would cover the true value.
- b. Test hypothesis

p-value
$$\neq P(H_0)$$

= $P(\text{test-statistic}|H_0 \text{ is true})$

• If p-value $< \alpha$ reject $H_0 \begin{cases} Correct \\ TypeIerror \end{cases}$

P(Type I error)
$$< \alpha$$

• If p-value $> \alpha$

do not reject
$$H_0$$
 $\begin{cases} Correct \\ TypeIerror \end{cases}$

Power =
$$1 - P(Type II error)$$

i. One predictor (T-test)

$$\begin{cases} H_0: \beta_1 = 0 \\ H_A: \beta_1 \neq 0 \end{cases}$$

- Interpretation of H_0 : X_1 is not associated with y, after controlling/adjusting other parameters.
- Test statistics: $t = \frac{\hat{\beta_1} 0}{se(\hat{\beta_1})}$
- p-value = $2 \cdot P(t_{(df=n-p)} > |t|)$ Reject H_0 if p-value ; α
- ii. Multiple predictors (F-test)

$$\begin{cases} H_0: \beta_1 = \beta_2 = 0 \\ H_A: ALOI0 \end{cases}$$

- Global F-test if X_1 and X_2 are all the predictors in the model.
- Partial F-test (special case of global F-test) if X_1 and X_2 are part of the predictors in the model.

Full model SSE(F) $H_0 \longrightarrow \bigcup$ Reduced model <math>SSE(R)

 GLM 1. Review

- c. Interpretation $\begin{cases} \hat{\beta} \\ R^2 \end{cases}$ d. Predictions $\begin{cases} \hat{y} \\ CIfor\hat{y}at(X_1,X_2)PIforindividualyat(X_1,X_2) \end{cases}$
- (linear relationship e. Diagnostics individual error normally distributed error constant variance