0.1 Chapter 2

Theorem 1. Let P be an ordered set and let $S \subseteq P$. An element $x \in P$ is an **upper** bound of S if $s \leq x$ for all $s \in S$. A **lower bound** is defined dually. The set of all upper bounds of S is denoted by S^u (read as 'S upper') and the set of all lower bounds by S^l (read as 'S **lower**'):

$$S^u := \{x \in P | (\forall s \in S) s \le x\} \text{ and } S^l := \{x \in P | (\forall s \in S) s \ge x\}$$

Since \leq is transitive, S^u is always an up-set and S^l is a down-set. If S^u has a least element x, then x is called the **least upper bound** of S. Equivalently, x is the least upper bound of S if

- 1. x is an upper bound of S and
- 2. $x \leq y$ for all upper bounds y of S.

The least upper bounds of S exists if and only if there exists $x \in P$ such that

$$(\forall y \in P)[((\forall s \in S)s \le y) \Longleftrightarrow x \le y]$$

Dually, if S^l has a greatest element, x, then x is called the **greatest lower bound** of S. The least upper bound of S is also called the **supremum** of S and is denoted by $\sup S$; the greatest lower bound of S if also called the **infinum** of S and is denoted by $\inf S$.

Theorem 2. We write $x \vee y$ (read as 'x **join** y') in place of $\sup\{x,y\}$ when it exists and $x \wedge y$ (read as 'x **meet** y' in place of $\inf\{x,y\}$ when it exists. Similarly we write $\bigvee S$ (the '**join of** S') and $\bigwedge S$ (the '**meet of** S') instead of $\sup S$ and $\inf S$ when these exist. It is sometimes necessary to indicate that the join or meet is being found in a particular ordered set P, in which case we write $\bigvee_P S$ or $\bigwedge_P S$.

Theorem 3. Let P be a non-empty ordered set.

- 1. If $x \vee y$ and $x \wedge y$ exists for all $x, y \in P$, then P is called **lattice**
- 2. If $\bigvee S$ and $\bigwedge S$ exist for all $S \subseteq P$, then P is called a **complete lattice**.

Theorem 4. Let L be a lattice and let $a, b \in L$. Then the following are equivalent:

- 1. $a \le b$;
- $2. \ a \lor b = b;$
- β . $a \wedge b = a$.

Theorem 5. Let L be a lattice. Then \vee and \wedge satisfy, for all $a, b, c \in L$,

- (L1) $(a \lor b) \lor c = a \lor (b \lor c)$ (associative law)
- (L2) $a \lor = b \lor a \ (commutative \ law)$
- (L3) $a \lor a = a$ (idempotency law)
- (L4) $a \lor (a \land b) = a \ (absorption \ law)$

Theorem 6. Let $\langle L, \vee, \wedge \rangle$ be a non-empty set equipped with two binary operations which satisfy **(L1)-(L4)**

- (i) For all $a, b \in L$, we have $a \vee b = b$ if and only if $a \wedge b = a$.
- (ii) Defined \leq on L by $a \leq b$ if $a \vee b = b$. Then \leq is an order relation.
- (iii) With \leq as in (ii), $\langle L; \leq \rangle$ is a lattice in which the original operations agree with the induced operations, that is, for all $a, b \in L$,

$$a \lor b = \sup\{a, b\}$$
 and $a \land b = \inf\{a, b\}$.

Theorem 7. Let L be a lattice and $\emptyset \neq M \subseteq L$. Then M is a **sublattice** of L if

$$a, b \in M$$
 implies $a \vee b \in M$ and $a \wedge b \in M$

We denote the collection of all sublattices of L by subL and let $Sub_0L = SubL \cup \{\emptyset\}$; both are ordered by inclusion.

Theorem 8. Let L and K be lattices. Define \vee and \wedge coordinatewise on $L \times K$, as follows:

$$(\ell_1, k_1) \vee (\ell_2, k_2) = (\ell_1 \vee \ell_2, k_1 \vee k_2)$$

$$(\ell_1, k_1) \wedge (\ell_2, k_2) = (\ell_1 \wedge \ell_2, k_1 \wedge k_2)$$

Theorem 9. Let L and K be a lattices. A map $f: L \to K$ is said to be a **homomorphism** (or, for emphasis, **lattice homomorphism**) if f is a **join-preserving** and **meet-preserving**, that is, for all $a, b \in L$,

$$f(a \lor b) = f(a) \lor f(b)$$
 and $f(a \land b) = f(a) \land f(b)$.

A bijective homomorphism is a (lattice) isomorphism. If $f: L \to K$ is a one-to-one homomorphism, then the sublattice f(L) of K is isomorphic to L and we refer to f as an embeding (of L into K).

Theorem 10. Let L and K be lattices and $f: L \to K$ a map.

- (i) The following are equivalent:
 - (a) f is order-preserving;
 - (b) $(\forall a, b \in L) f(a \lor b) \ge f(a) \lor f(b);$
 - (c) $(\forall a, b \in L) f(a \land b) \leq f(a) \land f(b)$. In particular, if f is homomorphism, then f is order-perserving.
- (ii) f is a lattice isomorphism if and only if it is an order-isomorphism.

Theorem 11. Let L be a lattice. A non-empty subset J of L is call an **ideal** if

- (i) $a, b \in J$ implies $a \vee b \in J$,
- (ii) $a \in L, b \in J$ and $a \leq b$ imply $a \in J$.

Theorem 12. Non-empty saubset G of L is called a **filter** if

- (i) $a, b \in G$ implies $a \land b \in G$,
- (ii) $a \in L, b \in G$ and $a \ge b$ imply $a \in G$

The set of all ideals (filters) of L is denoted by $\mathcal{I}(L)$