1. Gansk Logic Coloquium - Schindler 2 X1 23 Martin's Maximum ++

The P is dutionary set preserving, D = fDi: i=aif is a allection of dense sets, { z; i=w1} is a collection of names for stationary subsets of wi, i-e: Ill zis w, is stationary for $di = \omega_1$. MM++ is equivalent to: For all \mathbb{P} retionary set preserving, for all models $M = (N, \mathbb{R})$ $||\mathbb{R}|| \leq \chi_1$) and for all Σ_1 flas in $Z_{\tilde{e},N\tilde{s}\omega}$, if $V^{\mathcal{P}} \neq \phi(m)$ then: in I there is nome is nome \overline m -> m s.f. \$(m). Let's formulate a strong theming of MM++. Definition Let ϕ be a Σ_1 -formula in $Z_{\xi,NS\omega_1}$.

Say that $\phi(M)$ is honestly consistent of for all universally gains functions F, there is a transitive model of e^{V} (all ω , tell ω , tell ω , then ω is the consisting of ω and ω in ω in

Theorem (NSw is saturated + V is closed under x +> Ma (x))
TFAE: (1) P(R) n L(R) -BMM* 1+ (1) (x) (Woodin's Proper axiom). Partly exampled Woodin larged 2013.

(3) P(R) - L(R) - BMM+

| New Agress - Schinster

Open . To there a reformulation of BMM + as a

(*)-like axism? 3. Chairth Logic Colloquium - Schindler · For $1 \ge N_2$ is $17 - M_1^{++}$ equivalent to $18 - M_2^{++}$?

(eq. Jo MM*, ++ equivalent to MM ++?). In my next talks : (1) $T_{12}^{H\omega_2}$ - maximality is the statement: if ϕ is $T_{12}^{H\omega_2}$ and Ω -consistent, then ϕ is time. We'll give a direct proof of The - maximality from My++. (2) The consistency of Mn 2x. (=> 2x0 = ×2) by forcing over a madel D of determinacy. D + AD + D is a regular limit of the Solorage sequence + every set of reals is universally Baire D Pmax * ed (w3, ws) & ZFC + MMX

Chen forcing, actually

Force MM*1++ over a ZFC model with large cardinals.