MULTI 1 - Data set: COUNTRIES

INTRODUZIONE

In questo dataset sono 12 variabili su 38 osservazioni:

- 1. REGION: regione della country
- 2. AREA: area della country (Km^2)
- 3. IRRIGATED: area di campi irrigati (Km^2)
- 4. POPULATION: popolazione in milioni di persone
- 5. UNDER.14: % di popolazione con meno di 14 anni
- 6. LIFE.EXPECTANCY: speranza di vita alla nascita in anni
- 7. LITERACY.RATE: tasso di alfabetismo
- 8. UNEMPLOYMENT: tasso di disoccupazione
- 9. ISPS/MILLION: numero di ISPs per milione di persone
- 10. TVs/PERSON: numero di televisioni per persona
- 11. RAILWAYS: lunghezza in km della rete ferroviaria
- 12. AIRPORTS: numero di aeroporti

Analisi proposte:

- 1. Statistiche descrittive
- 2. Regressione Multivariata

```
#-- R CODE
library(car)
library(sjstats)
library(plotrix)
library(sjPlot)
library(sjmisc)
library(lme4)
library(pander)
library(car)
library(olsrr)
library(systemfit)
library(het.test)
panderOptions('knitr.auto.asis', FALSE)
#-- White test function
white.test <- function(lmod,data=d){</pre>
  u2 <- lmod$residuals^2
  y <- fitted(lmod)
  Ru2 <- summary(lm(u2 \sim y + I(y^2)))$r.squared
  LM <- nrow(data)*Ru2
 p.value <- 1-pchisq(LM, 2)</pre>
  data.frame("Test statistic"=LM,"P value"=p.value)
#-- funzione per ottenere osservazioni outlier univariate
FIND EXTREME OBSERVARION <- function(x,sd factor=2){
  which(x>mean(x)+sd_factor*sd(x) | x<mean(x)-sd_factor*sd(x))</pre>
}
```

```
#-- import dei dati

ABSOLUTE_PATH <- "C:\\Users\\sbarberis\\Dropbox\\MODELLI STATISTICI"

d <- read.csv(pasteO(ABSOLUTE_PATH,"\\esercizi (5) copia\\1.mult\\countries.txt"),sep="\t")

#-- vettore di variabili numeriche presenti nei dati

VAR_NUMERIC <- c("Life.expectancy","Unemployment","Literacy.Rate","ISPs.million","Irrigated","Under.14"

#-- print delle prime 6 righe del dataset
pander(head(d),big.mark=",")
```

Table 1: Table continues below

X	Region	Area	Irrigated	Population	Under.14
Argentina	South.America	2,766,890	17,000	37.4	26.5
Australia	Oceania	7,686,850	21,070	19.4	20.6
Bangladesh	Asia	144,000	31,000	131.3	35
Brazil	South.America	8,511,965	28,000	174.5	28.6
Bolivia	South.America	1,098,580	1,750	8.3	38.5
Cameroon	Africa	$475,\!440$	210	15.8	42.4

Table 2: Table continues below

Life.expectancy	Literacy.Rate	Unemployment	ISPs.million	Tvs.person
75.2	96.2	15	0.88	0.21
79.87	100	6.4	13.61	5.36
60.54	56	35.2	0.08	0.01
63.24	83.3	7.1	0.29	0.21
64.1	83.1	11.4	1.08	0.11
54.6	63.4	30	0.06	0.03

Railways	Airports
33,744	1,359
33,819	411
2,745	18
30,539	3,264
3,691	1,093
1,104	49

STATISTICHE DESCRITTIVE

Si vuole studiare la dipendenza delle variabili "life_expectancy" e "Unemployment" da "ISPs_million", "irrigated", "Under_14", "Literacy_Rate". Si propongono dapprima le statistiche descrittive, a seguire le matrici di correlazione tra variabili dipendenti, tra variabili esplicative e tra variabili dipendenti.

pander(summary(d[,VAR_NUMERIC]),big.mark=",") #-- statistiche descrittive

Table 4: Table continues below

Life.expectancy	Unemployment	Literacy.Rate	ISPs.million
Min. :37.10	Min.: 1.80	Min.: 38.00	Min.: 0.000
1st Qu.:60.78	1st Qu.: 5.55	1st Qu.: 78.30	1st Qu.: 0.230
Median: 71.70	Median: 9.75	Median: 87.00	Median: 0.920
Mean:67.58	Mean $:15.10$	Mean: 82.85	Mean: 3.831
3rd Qu.:77.45	3rd Qu.:20.00	3rd Qu.: 97.75	3rd Qu.: 2.172
Max. $:80.80$	Max. $:50.00$	Max. $:100.00$	Max. :29.130

Irrigated	Under.14
Min.: 10.0	Min. :14.17
1st Qu.: 632.5	1st Qu.:18.90
Median: 5212.0	Median $:29.45$
Mean: 33385.1	Mean: 29.22
3rd Qu.: 25592.5	3rd Qu.:38.17
Max. :498720.0	Max. :47.40

pander(cor(d[,VAR_NUMERIC]),big.mark=",") #-- matrice di correlazione

Table 6: Table continues below

	Life.expectancy	Unemployment	Literacy.Rate
Life.expectancy	1	-0.8153	0.6385
Unemployment	-0.8153	1	-0.3976
Literacy.Rate	0.6385	-0.3976	1
ISPs.million	0.3473	-0.2932	0.378
Irrigated	0.09763	-0.1579	-0.06472
${f Under.14}$	-0.8089	0.6309	-0.7723

	ISPs.million	Irrigated	Under.14
Life.expectancy	0.3473	0.09763	-0.8089
${\bf Unemployment}$	-0.2932	-0.1579	0.6309
Literacy.Rate	0.378	-0.06472	-0.7723
ISPs.million	1	0.06517	-0.4452
Irrigated	0.06517	1	-0.07298
Under.14	-0.4452	-0.07298	1

plot(d[,VAR_NUMERIC],pch=19,cex=.5) #-- scatter plot multivariato


```
par(mfrow=c(2,3))
for(i in VAR_NUMERIC){
  boxplot(d[,i],main=i,col="lightblue",ylab=i)
}
```



```
par(mfrow=c(2,3))
for(i in VAR_NUMERIC){
  hist(d[,i],main=i,col="lightblue",xlab=i,freq=F)
}
```


Non esistono correlazioni particolarmente forti che facciano pensare a collinearità o legami di dipendenza lineare perfetta. Si propongano ora le regressioni uni variate cominciando ora la variabile dipendente "life_expentancy".

ESERCIZIO 1

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	92.61	14.62	6.333	3.634e-07
ISPs.million	-0.03255	0.1861	-0.1749	0.8622
Irrigated	6.513 e-06	1.493 e - 05	0.4363	0.6655
${\bf Under. 14}$	-0.9566	0.2081	-4.598	6.006e-05
Literacy.Rate	0.03402	0.1125	0.3024	0.7642

Table 9: Fitting linear model: Life.expectancy \sim ISPs.million + Irrigated + Under.14 + Literacy.Rate

Observations	Residual Std. Error	R^2	Adjusted \mathbb{R}^2
38	7.867	0.657	0.6155

pander(anova(mod1),big.mark=",")

Table 10: Analysis of Variance Table

	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
ISPs.million	1	718.1	718.1	11.6	0.001748
${f Irrigated}$	1	33.63	33.63	0.5435	0.4662
${\bf Under. 14}$	1	$3,\!155$	$3,\!155$	50.98	3.522 e-08
Literacy.Rate	1	5.66	5.66	0.09145	0.7642
Residuals	33	2,042	61.89	NA	NA

L'aspettativa alla nascita dipende solo da "Under 14" che è l'unica variabile significativa e il fitting è elevato $(R^2=0.6570)$. Si verifica dai grafici e dal test di White che gli errori sono omoschedastici. Dal Q-Q plot e dalla distribuzione dei residui la distribuzione appare normale

#-- R CODE
pander(white.test(mod1),big.mark=",")

Test.statistic	P.value
6.533	0.03813

pander(dwtest(mod1),big.mark=",")

Table 12: Durbin-Watson test: mod1

Test statistic	P value	Alternative hypothesis
1.848	0.3211	true autocorrelation is greater than 0

plot(mod1, which=2, pch=19)

Im(Life.expectancy ~ ISPs.million + Irrigated + Under.14 + Literacy.Rate)

hist(resid(mod1),col="lightblue",freq=F,xlab="Resid",main="")
lines(density(resid(mod1)),col=2,lwd=2)

Si osserva qualche outlier che andrebbe eliminato:

```
#-- R CODE
plot(hatvalues(mod1),rstudent(mod1),pch=19,xlab="Leverage",ylab="Student - Residual")
abline(h=2,col=2,lty=2,lwd=2)
abline(h=-2,col=2,lty=2,lwd=2)
```


plot(cooks.distance(mod1),pch=19,xlab="Observation Index",ylab="Cook DIstance",type="h")
points(cooks.distance(mod1),pch=19)
abline(h=4/nrow(d),col=2,lty=2,lwd=2)

Si passa ora alla regressione multipla dove la variabile dipendente è "unemployment." Anche in questo caso l'unica variabile significativa rimane "under 14" con un discreto fitting. Gli errori sono anche in questo caso omoschedastici e gli errori sono anche non correlati con distribuzione normale.

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	-27.25	20.91	-1.303	0.2015
ISPs.million	-0.03646	0.266	-0.1371	0.8918
${f Irrigated}$	-1.388e-05	2.134e-05	-0.6505	0.5199
${\bf Under. 14}$	1.045	0.2974	3.515	0.001301
Literacy.Rate	0.1497	0.1608	0.931	0.3586

Table 14: Fitting linear model: Unemployment \sim ISPs.million + Irrigated + Under.14 + Literacy.Rate

Observations	Residual Std. Error	R^2	Adjusted \mathbb{R}^2
38	11.25	0.4257	0.3561

pander(anova(mod2),big.mark=",")

Table 15: Analysis of Variance Table

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
ISPs.million	1	624.8	624.8	4.94	0.03321
Irrigated	1	140.6	140.6	1.112	0.2994
${\bf Under. 14}$	1	2,220	2,220	17.55	0.0001962
Literacy.Rate	1	109.6	109.6	0.8667	0.3586
Residuals	33	$4,\!174$	126.5	NA	NA

#-- R CODE pander(white.test(mod2),big.mark=",")

Test.statistic	P.value
12.94	0.00155

pander(dwtest(mod2),big.mark=",")

Table 17: Durbin-Watson test: mod2

Test statistic	P value	Alternative hypothesis
1.707	0.1825	true autocorrelation is greater than 0

plot(mod2, which=2, pch=19)

Im(Unemployment ~ ISPs.million + Irrigated + Under.14 + Literacy.Rate)

hist(resid(mod2),col="lightblue",freq=F,xlab="Resid",main="")
lines(density(resid(mod2)),col=2,lwd=2)

Si osserva anceh in questo caso che qualche outlier che andrebbe eliminato:

```
#-- R CODE
plot(hatvalues(mod2),rstudent(mod2),pch=19,xlab="Leverage",ylab="Student - Residual")
abline(h=2,col=2,lty=2,lwd=2)
abline(h=-2,col=2,lty=2,lwd=2)
```


plot(cooks.distance(mod2),pch=19,xlab="Observation Index",ylab="Cook DIstance",type="h")
points(cooks.distance(mod2),pch=19)
abline(h=4/nrow(d),col=2,lty=2,lwd=2)

Rinunciando a eliminare gli outlier (provare per esercizio) come sarebbe comunque opportuno si passa ora alla regressione multivariata.

```
#-- R CODE
mod3 <- lm(cbind(Unemployment, Life.expectancy) ~ ISPs.million + Irrigated + Under.14 + Literacy.Rate, d
#-- calcolo correlazione parziale tra "Life.expectancy" e "Unemployment"
#-- al netto delle altre variabili
library(ppcor)
## Warning: package 'ppcor' was built under R version 3.4.3
pander(pcor.test(d$Life.expectancy,d$Unemployment,d[,c("ISPs.million","Irrigated","Under.14","Literacy.
##
##
                p.value
                           statistic
                                                 Method
   estimate
                                            gp
##
               7.408e-06
                                       38
summary(mod3)
## Response Unemployment :
##
## Call:
## lm(formula = Unemployment ~ ISPs.million + Irrigated + Under.14 +
```

```
##
      Literacy.Rate, data = d)
##
## Residuals:
##
                    Median
       Min
                 1Q
                                  3Q
                                          Max
## -20.3115 -5.2740
                     0.5191 5.1450 24.1047
##
## Coefficients:
##
                  Estimate Std. Error t value Pr(>|t|)
                -2.725e+01 2.091e+01 -1.303
## (Intercept)
                                              0.2015
## ISPs.million -3.646e-02 2.660e-01 -0.137
                                               0.8918
## Irrigated
                -1.388e-05 2.134e-05 -0.650
                                              0.5199
## Under.14
                 1.045e+00 2.974e-01
                                      3.515
                                              0.0013 **
## Literacy.Rate 1.497e-01 1.608e-01
                                      0.931
                                               0.3586
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 11.25 on 33 degrees of freedom
## Multiple R-squared: 0.4257, Adjusted R-squared: 0.3561
## F-statistic: 6.116 on 4 and 33 DF, p-value: 0.0008505
##
## Response Life.expectancy :
##
## Call:
## lm(formula = Life.expectancy ~ ISPs.million + Irrigated + Under.14 +
      Literacy.Rate, data = d)
##
## Residuals:
       Min
                 1Q
                    Median
                                  3Q
                    0.5599 4.3173 17.5504
## -21.3828 -3.3426
##
## Coefficients:
##
                  Estimate Std. Error t value Pr(>|t|)
                 9.261e+01 1.462e+01
                                      6.333 3.63e-07 ***
## (Intercept)
## ISPs.million -3.255e-02 1.861e-01 -0.175
                                                0.862
## Irrigated
                 6.513e-06 1.493e-05
                                      0.436
                                                0.665
## Under.14
                -9.566e-01 2.081e-01 -4.598 6.01e-05 ***
## Literacy.Rate 3.402e-02 1.125e-01
                                      0.302
                                                0.764
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 7.867 on 33 degrees of freedom
## Multiple R-squared: 0.657, Adjusted R-squared: 0.6155
## F-statistic: 15.8 on 4 and 33 DF, p-value: 2.542e-07
pander(manova(mod3),big.mark=",")
##
##
         
                      Df Pillai approx F
                                               num Df
                                                        den Df
                                                                  Pr(>F)
   **ISPs.million**
##
                           0.2606
                                                  2
                      1
                                      5.638
                                                          32
                                                                 0.007987
##
                                                 2
                                                          32
##
     **Irrigated**
                      1
                           0.0326
                                      0.5391
                                                                  0.5885
##
```

```
##
      **Under.14**
                              0.6115
                                         25.18
                                                     2
                                                               32
                                                                      2.696e-07
##
                                                                        0.305
##
    **Literacy.Rate**
                              0.07153
                                         1.233
                                                     2
                                                               32
##
##
      **Residuals**
                        33
                                NA
                                           NA
                                                     NA
                                                               NA
                                                                         NA
##
Anova(mod3, type="III")
##
## Type III MANOVA Tests: Pillai test statistic
##
                 Df test stat approx F num Df den Df
                                                         Pr(>F)
                      0.63584 27.9373
                                             2
                                                   32 9.563e-08 ***
## (Intercept)
                  1
## ISPs.million
                      0.00469
                                             2
                                                   32
                                                       0.927482
                  1
                                 0.0755
## Irrigated
                  1
                      0.01267
                                 0.2053
                                             2
                                                   32
                                                       0.815503
## Under.14
                      0.39319 10.3674
                                             2
                                                   32
                                                       0.000338 ***
                  1
## Literacy.Rate 1
                      0.07153
                                 1.2327
                                             2
                                                   32
                                                       0.304984
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Il modello multivariato con le stesse variabili esplicative sotto il profilo descrittivo è l'accostamento di due regressioni multiple che vengono risolte l'una indipendentemente dall' altra perciò gli \mathbb{R}^2 e le stime dei parametri usando il test sono identici.

La variabile "under 14", come previsto risulta significativa. "Literacy" non risulta significativa

Si passa ora a verificare ipotesi multiple mediante il test Manova cominciando con le 2 variabili Isps e literacy che risultano congiuntamente non significative:

```
#-- R CODE
summary(manova(cbind(Life.expectancy, Unemployment) ~ ISPs.million, data = d))
                Df Pillai approx F num Df den Df Pr(>F)
## ISPs.million
                1 0.1209
                            2.4067
                                        2
                                              35 0.1049
## Residuals
                36
Anova(lm(cbind(Life.expectancy, Unemployment) ~ ISPs.million, data = d),type="III")
##
## Type III MANOVA Tests: Pillai test statistic
                Df test stat approx F num Df den Df Pr(>F)
## (Intercept)
                     0.98975 1690.06
                                           2
                                                 35 <2e-16 ***
                 1
## ISPs.million 1
                     0.12090
                                 2.41
                                           2
                                                 35 0.1049
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(manova(cbind(Life.expectancy, Unemployment) ~ Irrigated, data = d))
##
                  Pillai approx F num Df den Df Pr(>F)
## Irrigated 1 0.027818 0.50075
                                             35 0.6103
## Residuals 36
summary(manova(cbind(Life.expectancy, Unemployment) ~ Under.14, data = d))
##
             Df Pillai approx F num Df den Df
                                                  Pr(>F)
## Under.14
              1 0.65678
                         33.487
                                            35 7.457e-09 ***
## Residuals 36
## ---
```

```
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(manova(cbind(Life.expectancy, Unemployment) ~ Literacy.Rate, data = d))
##
                Df Pillai approx F num Df den Df
## Literacy.Rate 1 0.45279
                             14.48
                                        2
                                              35 2.616e-05 ***
## Residuals
                36
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
#-- R CODE
summary(manova(cbind(Life.expectancy, Unemployment) ~ Literacy.Rate + ISPs.million, data = d))
##
                Df Pillai approx F num Df den Df
                                                    Pr(>F)
## Literacy.Rate 1 0.45542 14.2166
                                        2
                                              34 3.259e-05 ***
## ISPs.million
                 1 0.02890
                             0.5059
                                        2
                                              34
                                                    0.6075
## Residuals
                35
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Anova(lm(cbind(Life.expectancy, Unemployment) ~ Literacy.Rate + ISPs.million, data = d),type="III")
## Type III MANOVA Tests: Pillai test statistic
                Df test stat approx F num Df den Df
                     0.80954
                              72.259
                                          2
                                                34 5.709e-13 ***
## (Intercept)
                 1
## Literacy.Rate 1
                     0.39552
                              11.123
                                          2
                                                34 0.0001921 ***
                                                34 0.6074542
## ISPs.million
                     0.02890
                               0.506
                                          2
                 1
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(manova(cbind(Life.expectancy, Unemployment) ~ Irrigated + Under.14, data = d))
##
            Df Pillai approx F num Df den Df
                                                Pr(>F)
## Irrigated 1 0.04199
                          0.745
                                    2
                                          34
                                                0.4823
             1 0.65494
                                    2
## Under.14
                         32.267
                                          34 1.394e-08 ***
## Residuals 35
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```