$12n_{0877} (K12n_{0877})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -9.35659 \times 10^{83}u^{36} - 2.27819 \times 10^{84}u^{35} + \dots + 9.11104 \times 10^{86}b + 1.23806 \times 10^{87}, \\ &- 2.69779 \times 10^{87}u^{36} - 1.19660 \times 10^{88}u^{35} + \dots + 1.76754 \times 10^{89}a - 1.89107 \times 10^{90}, \\ &u^{37} + 5u^{36} + \dots + 2744u + 388 \rangle \\ I_2^u &= \langle 3.32625 \times 10^{77}au^{42} - 3.27571 \times 10^{78}u^{42} + \dots + 1.71826 \times 10^{79}a - 1.65861 \times 10^{80}, \\ &5.05212 \times 10^{81}au^{42} - 1.09660 \times 10^{82}u^{42} + \dots + 1.99839 \times 10^{83}a - 3.99060 \times 10^{83}, \\ &u^{43} - 3u^{42} + \dots + 110u - 17 \rangle \\ I_3^u &= \langle 2.20191 \times 10^{25}u^{39} + 2.35786 \times 10^{25}u^{38} + \dots + 1.03004 \times 10^{24}b - 1.37061 \times 10^{27}, \\ &- 7.73943 \times 10^{26}u^{39} - 1.52201 \times 10^{26}u^{38} + \dots + 1.95708 \times 10^{25}a + 9.28110 \times 10^{27}, \\ &u^{40} - 6u^{38} + \dots - 255u^2 - 19 \rangle \\ I_4^u &= \langle b, \ a^2 - a + 1, \ u + 1 \rangle \\ I_5^u &= \langle b - 2a, \ a^2 - a + 1, \ u - 1 \rangle \end{split}$$

* 6 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 169 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -9.36 \times 10^{83} u^{36} - 2.28 \times 10^{84} u^{35} + \dots + 9.11 \times 10^{86} b + 1.24 \times 10^{87}, -2.70 \times 10^{87} u^{36} - 1.20 \times 10^{88} u^{35} + \dots + 1.77 \times 10^{89} a - 1.89 \times 10^{90}, \ u^{37} + 5u^{36} + \dots + 2744u + 388 \rangle$$

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0.0152630u^{36} + 0.0676983u^{35} + \dots + 58.5223u + 10.6989 \\ 0.00102695u^{36} + 0.00250048u^{35} + \dots - 1.09050u - 1.35885 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0.0180233u^{36} + 0.0813561u^{35} + \dots + 78.6888u + 17.0783 \\ 0.00546745u^{36} + 0.0219598u^{35} + \dots + 15.1454u + 2.22914 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0.0125559u^{36} + 0.0593963u^{35} + \dots + 63.5435u + 14.8491 \\ 0.00546745u^{36} + 0.0219598u^{35} + \dots + 15.1454u + 2.22914 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0.00350220u^{36} + 0.0185379u^{35} + \dots + 25.9914u + 8.51953 \\ 0.00861657u^{36} + 0.0375921u^{35} + \dots + 31.1827u + 5.92203 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -0.00574521u^{36} - 0.0232586u^{35} + \dots - 14.5732u - 0.619490 \\ 0.00876059u^{36} + 0.0373042u^{35} + \dots + 32.3778u + 6.99306 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -0.00574521u^{36} - 0.0232586u^{35} + \dots - 14.5732u - 0.619490 \\ 0.00338316u^{36} + 0.0373042u^{35} + \dots + 19.6043u + 4.87169 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0.0216125u^{36} + 0.0975640u^{35} + \dots + 96.4003u + 24.3397 \\ 0.0235451u^{36} + 0.0984750u^{35} + \dots + 81.0110u + 16.7723 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0.0432275u^{36} + 0.192592u^{35} + \dots + 178.923u + 37.6052 \\ -0.0104986u^{36} - 0.0434372u^{35} + \dots - 34.9650u - 8.38565 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-0.0638114u^{36} 0.256490u^{35} + \cdots 174.364u 30.2157$

Crossings	u-Polynomials at each crossing
c_{1}, c_{7}	$u^{37} - u^{36} + \dots + 8u - 1$
c_2, c_8	$u^{37} + 5u^{36} + \dots + 2744u + 388$
c_{3}, c_{9}	$u^{37} + u^{36} + \dots + 2u + 1$
c_4,c_{10}	$u^{37} + 5u^{36} + \dots + 184u + 52$
c_5,c_{11}	$u^{37} + u^{36} + \dots - 4u + 4$
c_6,c_{12}	$u^{37} - u^{36} + \dots - 104u - 47$

Crossings	Riley Polynomials at each crossing
c_1, c_7	$y^{37} - 11y^{36} + \dots + 32y - 1$
c_2, c_8	$y^{37} - 23y^{36} + \dots + 3132720y - 150544$
c_3, c_9	$y^{37} - 37y^{36} + \dots + 30y - 1$
c_4, c_{10}	$y^{37} + 13y^{36} + \dots - 5872y - 2704$
c_5, c_{11}	$y^{37} - 5y^{36} + \dots - 976y - 16$
c_6, c_{12}	$y^{37} - 31y^{36} + \dots + 16456y - 2209$

$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
5.14523 - 0.88050I	13.89731 - 1.40909I
5.14523 + 0.88050I	13.89731 + 1.40909I
-2.71819 - 6.93203I	1.49325 + 6.38376I
-2.71819 + 6.93203I	1.49325 - 6.38376I
-5.67964 + 1.01449I	4.29448 - 6.92334I
-5.67964 - 1.01449I	4.29448 + 6.92334I
-0.18355 + 2.03501I	3.27155 - 3.11294I
-0.18355 - 2.03501I	3.27155 + 3.11294I
-5.01261 + 1.59452I	-0.74857 - 4.14264I
-5.01261 - 1.59452I	-0.74857 + 4.14264I
	5.14523 - 0.88050I $5.14523 + 0.88050I$ $-2.71819 - 6.93203I$ $-2.71819 + 6.93203I$ $-5.67964 + 1.01449I$ $-5.67964 - 1.01449I$ $-0.18355 + 2.03501I$ $-0.18355 - 2.03501I$ $-5.01261 + 1.59452I$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.255890 + 0.068162I	,	
a = -0.132967 + 0.395325I	3.63356 + 3.81297I	10.07806 - 5.49647I
b = -1.177290 + 0.087112I		
u = 1.255890 - 0.068162I		
a = -0.132967 - 0.395325I	3.63356 - 3.81297I	10.07806 + 5.49647I
b = -1.177290 - 0.087112I		
u = -0.452009 + 0.440661I		
a = 1.136500 + 0.492247I	-1.67227 + 2.60991I	-2.01632 - 5.81175I
b = -0.989885 - 0.684757I		
u = -0.452009 - 0.440661I		
a = 1.136500 - 0.492247I	-1.67227 - 2.60991I	-2.01632 + 5.81175I
b = -0.989885 + 0.684757I		
u = -1.381620 + 0.001380I		
a = -0.716115 + 0.134351I	0.77318 + 3.37059I	-2.04958 - 4.00982I
b = -0.596037 + 0.248959I		
u = -1.381620 - 0.001380I		
a = -0.716115 - 0.134351I	0.77318 - 3.37059I	-2.04958 + 4.00982I
b = -0.596037 - 0.248959I		
u = 1.45601		
a = 0.621894	3.33967	2.87470
b = 0.272503		
u = 0.473903 + 0.174617I		
a = 0.614985 + 0.716675I	1.022900 + 0.779663I	7.50935 - 3.53502I
b = 0.514605 + 0.316308I		
u = 0.473903 - 0.174617I		
a = 0.614985 - 0.716675I	1.022900 - 0.779663I	7.50935 + 3.53502I
b = 0.514605 - 0.316308I		
u = -0.04479 + 1.52449I		
a = -0.568234 + 0.602533I	2.46403 - 4.84771I	7.83065 + 5.43608I
b = 0.29065 + 1.60332I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.04479 - 1.52449I		
a = -0.568234 - 0.602533I	2.46403 + 4.84771I	7.83065 - 5.43608I
b = 0.29065 - 1.60332I		
u = -1.53849 + 0.44250I		
a = -0.509830 - 0.453544I	-0.30645 - 7.70638I	0. + 7.90475I
b = 1.61671 - 1.81990I		
u = -1.53849 - 0.44250I		
a = -0.509830 + 0.453544I	-0.30645 + 7.70638I	0 7.90475I
b = 1.61671 + 1.81990I		
u = -0.353652 + 0.059931I		
a = -1.80596 + 0.93479I	-0.91481 + 3.77913I	5.64104 - 2.45174I
b = -0.562272 - 0.178009I		
u = -0.353652 - 0.059931I		
a = -1.80596 - 0.93479I	-0.91481 - 3.77913I	5.64104 + 2.45174I
b = -0.562272 + 0.178009I		
u = -1.67250		
a = -0.101046	8.44157	14.5320
b = 2.66187		
u = -1.45646 + 0.84376I		
a = -0.737564 + 0.407660I	6.74334 - 2.70316I	0
b = 0.303225 + 0.408038I		
u = -1.45646 - 0.84376I		
a = -0.737564 - 0.407660I	6.74334 + 2.70316I	0
b = 0.303225 - 0.408038I		
u = 1.74832		
a = 0.405395	7.10544	0
b = -3.70278		
u = -0.00849 + 1.76143I		
a = 0.643665 + 0.717640I	-0.02411 + 10.88880I	0
b = -0.11867 + 1.49405I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.00849 - 1.76143I		
a = 0.643665 - 0.717640I	-0.02411 - 10.88880I	0
b = -0.11867 - 1.49405I		
u = 1.66398 + 0.63157I		
a = 0.300742 - 0.721731I	8.0218 + 12.6732I	0
b = -0.84961 - 2.41654I		
u = 1.66398 - 0.63157I		
a = 0.300742 + 0.721731I	8.0218 - 12.6732I	0
b = -0.84961 + 2.41654I		
u = -1.66761 + 0.70883I		
a = -0.330845 - 0.831651I	5.3307 - 19.4688I	0
b = 0.67399 - 2.28474I		
u = -1.66761 - 0.70883I		
a = -0.330845 + 0.831651I	5.3307 + 19.4688I	0
b = 0.67399 + 2.28474I		
u = 1.85036 + 0.61716I		
a = 0.769394 + 0.240989I	6.00980 - 1.88404I	0
b = -0.113001 + 0.215300I		
u = 1.85036 - 0.61716I		
a = 0.769394 - 0.240989I	6.00980 + 1.88404I	0
b = -0.113001 - 0.215300I		

II.
$$I_2^u = \langle 3.33 \times 10^{77} au^{42} - 3.28 \times 10^{78} u^{42} + \dots + 1.72 \times 10^{79} a - 1.66 \times 10^{80}, \ 5.05 \times 10^{81} au^{42} - 1.10 \times 10^{82} u^{42} + \dots + 2.00 \times 10^{83} a - 3.99 \times 10^{83}, \ u^{43} - 3u^{42} + \dots + 110u - 17 \rangle$$

$$\begin{array}{l} a_2 = \begin{pmatrix} 0 \\ u \end{pmatrix} \\ a_8 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \\ a_4 = \begin{pmatrix} -0.00287322au^{42} + 0.0282956u^{42} + \cdots - 0.148423a + 1.43271 \end{pmatrix} \\ a_9 = \begin{pmatrix} 1 \\ -u^2 \end{pmatrix} \\ a_1 = \begin{pmatrix} -0.0460162au^{42} + 0.106090u^{42} + \cdots - 2.56707a + 5.57201 \\ 0.00293218au^{42} - 0.0252712u^{42} + \cdots + 0.473351a - 0.516706 \end{pmatrix} \\ a_{12} = \begin{pmatrix} -0.0489483au^{42} + 0.131361u^{42} + \cdots - 3.04042a + 6.08871 \\ 0.00293218au^{42} - 0.0252712u^{42} + \cdots + 0.473351a - 0.516706 \end{pmatrix} \\ a_{12} = \begin{pmatrix} 0.00873077au^{42} + 0.106037u^{42} + \cdots - 1.17990a + 5.44946 \\ 0.0460162u^{42} - 0.137175u^{41} + \cdots - 10.6374u + 2.56707 \end{pmatrix} \\ a_7 = \begin{pmatrix} -0.0278442au^{42} - 0.0717915u^{42} + \cdots - 1.80262a - 7.63595 \\ -0.000873541au^{42} - 0.0982682u^{42} + \cdots - 0.782275a - 4.47485 \end{pmatrix} \\ a_6 = \begin{pmatrix} -0.0278442au^{42} - 0.0717915u^{42} + \cdots - 1.80262a - 7.63595 \\ -0.00293545au^{42} - 0.0982682u^{42} + \cdots - 0.832122a - 3.94930 \end{pmatrix} \\ a_3 = \begin{pmatrix} u \\ u \end{pmatrix} \\ a_5 = \begin{pmatrix} 0.00984394au^{42} - 0.125943u^{42} + \cdots + 1.79971a - 5.22417 \\ 0.00422200au^{42} - 0.0543645u^{42} + \cdots - 0.723111a - 3.46387 \end{pmatrix} \\ a_{11} = \begin{pmatrix} -0.0425359au^{42} - 0.0109791u^{42} + \cdots - 3.72010a + 0.0400840 \\ -0.00613998au^{42} - 0.0134470u^{42} + \cdots - 0.167347a - 0.720202 \end{pmatrix} \end{array}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $0.260099u^{42} 0.756964u^{41} + \cdots 62.4522u + 23.1375$

Crossings	u-Polynomials at each crossing
c_{1}, c_{7}	$u^{86} - 7u^{85} + \dots - 55u + 3$
c_2, c_8	$(u^{43} - 3u^{42} + \dots + 110u - 17)^2$
c_3, c_9	$u^{86} + 4u^{85} + \dots + 3742879u + 515187$
c_4,c_{10}	$(u^{43} - 2u^{42} + \dots + 8u - 5)^2$
c_5,c_{11}	$u^{86} + 2u^{85} + \dots - 1380u + 529$
c_6, c_{12}	$u^{86} - 2u^{85} + \dots + 2676206273u + 339660187$

Crossings	Riley Polynomials at each crossing
c_1, c_7	$y^{86} - 7y^{85} + \dots - 31y + 9$
c_2, c_8	$(y^{43} - 39y^{42} + \dots + 4960y - 289)^2$
c_3, c_9	$y^{86} - 28y^{85} + \dots - 1722726646621y + 265417644969$
c_4, c_{10}	$(y^{43} + 20y^{42} + \dots - 446y - 25)^2$
c_5,c_{11}	$y^{86} + 32y^{85} + \dots + 34272852y + 279841$
c_6, c_{12}	$y^{86} - 10y^{85} + \dots - 3384577457419862375y + 115369042632874969$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.115680 + 0.088438I		
a = -0.530621 - 0.816347I	2.05988 - 4.53064I	6.07841 + 4.88354I
b = -0.36669 - 1.40614I		
u = -1.115680 + 0.088438I		
a = 0.016420 + 0.564275I	2.05988 - 4.53064I	6.07841 + 4.88354I
b = -0.685045 - 0.446535I		
u = -1.115680 - 0.088438I		
a = -0.530621 + 0.816347I	2.05988 + 4.53064I	6.07841 - 4.88354I
b = -0.36669 + 1.40614I		
u = -1.115680 - 0.088438I		
a = 0.016420 - 0.564275I	2.05988 + 4.53064I	6.07841 - 4.88354I
b = -0.685045 + 0.446535I		
u = 1.194820 + 0.508478I		
a = 0.529082 + 0.865996I	3.19067 + 2.37658I	0 11.61854I
b = -0.128273 + 0.357532I		
u = 1.194820 + 0.508478I		
a = 0.127113 - 0.366982I	3.19067 + 2.37658I	0 11.61854I
b = -2.67295 - 2.83110I		
u = 1.194820 - 0.508478I		
a = 0.529082 - 0.865996I	3.19067 - 2.37658I	0. + 11.61854I
b = -0.128273 - 0.357532I		
u = 1.194820 - 0.508478I		
a = 0.127113 + 0.366982I	3.19067 - 2.37658I	0. + 11.61854I
b = -2.67295 + 2.83110I		
u = 1.337540 + 0.195957I		
a = 0.751109 - 0.509623I	0.786358 + 1.135550I	0
b = 0.64184 - 1.29054I		
u = 1.337540 + 0.195957I		
a = -0.162295 - 0.099306I	0.786358 + 1.135550I	0
b = 0.298914 - 0.668145I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.337540 - 0.195957I		
a = 0.751109 + 0.509623I	0.786358 - 1.135550I	0
b = 0.64184 + 1.29054I		
u = 1.337540 - 0.195957I		
a = -0.162295 + 0.099306I	0.786358 - 1.135550I	0
b = 0.298914 + 0.668145I		
u = 0.294990 + 0.528224I		
a = -0.435664 - 0.275251I	1.43197 + 1.52483I	4.77881 - 4.92385I
b = -0.033816 + 0.763184I		
u = 0.294990 + 0.528224I		
a = 1.39558 + 0.81111I	1.43197 + 1.52483I	4.77881 - 4.92385I
b = 0.066598 + 0.867420I		
u = 0.294990 - 0.528224I		
a = -0.435664 + 0.275251I	1.43197 - 1.52483I	4.77881 + 4.92385I
b = -0.033816 - 0.763184I		
u = 0.294990 - 0.528224I		
a = 1.39558 - 0.81111I	1.43197 - 1.52483I	4.77881 + 4.92385I
b = 0.066598 - 0.867420I		
u = 0.213109 + 1.378840I		
a = 0.083822 + 1.308350I	-4.20801 + 3.81011I	0
b = 0.326802 + 1.369390I		
u = 0.213109 + 1.378840I		
a = -0.300600 - 0.256235I	-4.20801 + 3.81011I	0
b = 1.38339 - 1.96236I		
u = 0.213109 - 1.378840I		
a = 0.083822 - 1.308350I	-4.20801 - 3.81011I	0
b = 0.326802 - 1.369390I		
u = 0.213109 - 1.378840I		
a = -0.300600 + 0.256235I	-4.20801 - 3.81011I	0
b = 1.38339 + 1.96236I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.399740 + 0.139228I		
a = 0.427844 - 0.842577I	4.07903 + 8.22022I	0
b = -0.44234 - 3.01249I		
u = 1.399740 + 0.139228I		
a = 0.090161 - 0.501687I	4.07903 + 8.22022I	0
b = -0.299763 - 0.437113I		
u = 1.399740 - 0.139228I		
a = 0.427844 + 0.842577I	4.07903 - 8.22022I	0
b = -0.44234 + 3.01249I		
u = 1.399740 - 0.139228I		
a = 0.090161 + 0.501687I	4.07903 - 8.22022I	0
b = -0.299763 + 0.437113I		
u = -1.40247 + 0.29057I		
a = -0.775681 + 0.883009I	2.64500 + 3.06546I	0
b = -0.57870 + 1.57791I		
u = -1.40247 + 0.29057I		
a = 0.660428 - 0.286945I	2.64500 + 3.06546I	0
b = -0.316631 + 0.132705I		
u = -1.40247 - 0.29057I		
a = -0.775681 - 0.883009I	2.64500 - 3.06546I	0
b = -0.57870 - 1.57791I		
u = -1.40247 - 0.29057I		
a = 0.660428 + 0.286945I	2.64500 - 3.06546I	0
b = -0.316631 - 0.132705I		
u = -1.47287 + 0.24746I		
a = -0.103512 - 0.862014I	6.94974 - 4.89323I	0
b = 0.58468 - 2.98444I		
u = -1.47287 + 0.24746I		
a = -0.159985 + 0.026947I	6.94974 - 4.89323I	0
b = 0.243337 - 0.145539I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.47287 - 0.24746I		
a = -0.103512 + 0.862014I	6.94974 + 4.89323I	0
b = 0.58468 + 2.98444I		
u = -1.47287 - 0.24746I		
a = -0.159985 - 0.026947I	6.94974 + 4.89323I	0
b = 0.243337 + 0.145539I		
u = 0.285156 + 0.399219I		
a = 0.815991 + 0.837097I	0.47321 + 2.39024I	2.04869 - 4.02922I
b = 0.906247 - 0.313562I		
u = 0.285156 + 0.399219I		
a = 1.03908 + 2.24033I	0.47321 + 2.39024I	2.04869 - 4.02922I
b = -0.105611 + 0.731929I		
u = 0.285156 - 0.399219I		
a = 0.815991 - 0.837097I	0.47321 - 2.39024I	2.04869 + 4.02922I
b = 0.906247 + 0.313562I		
u = 0.285156 - 0.399219I		
a = 1.03908 - 2.24033I	0.47321 - 2.39024I	2.04869 + 4.02922I
b = -0.105611 - 0.731929I		
u = 0.26091 + 1.49221I		
a = -0.742276 + 0.668844I	1.47280 - 1.84076I	0
b = 0.036986 + 1.190880I		
u = 0.26091 + 1.49221I		
a = 0.864713 + 0.676358I	1.47280 - 1.84076I	0
b = 0.100868 + 1.121450I		
u = 0.26091 - 1.49221I		
a = -0.742276 - 0.668844I	1.47280 + 1.84076I	0
b = 0.036986 - 1.190880I		
u = 0.26091 - 1.49221I		
a = 0.864713 - 0.676358I	1.47280 + 1.84076I	0
b = 0.100868 - 1.121450I		
-		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.473826 + 0.064283I		
a = -1.54698 - 0.84528I	-5.62558 - 0.60241I	3.49360 + 2.24885I
b = -0.25071 - 1.60585I		
u = -0.473826 + 0.064283I		
a = 2.74140 - 0.91558I	-5.62558 - 0.60241I	3.49360 + 2.24885I
b = -0.206993 + 0.451612I		
u = -0.473826 - 0.064283I		
a = -1.54698 + 0.84528I	-5.62558 + 0.60241I	3.49360 - 2.24885I
b = -0.25071 + 1.60585I		
u = -0.473826 - 0.064283I		
a = 2.74140 + 0.91558I	-5.62558 + 0.60241I	3.49360 - 2.24885I
b = -0.206993 - 0.451612I		
u = 0.169794 + 0.434125I		
a = -2.23282 - 0.47524I	-0.38058 - 6.28025I	0.64015 + 9.26219I
b = -0.511531 - 0.638166I		
u = 0.169794 + 0.434125I		
a = -2.55925 + 1.01168I	-0.38058 - 6.28025I	0.64015 + 9.26219I
b = 0.145150 + 1.155370I		
u = 0.169794 - 0.434125I		
a = -2.23282 + 0.47524I	-0.38058 + 6.28025I	0.64015 - 9.26219I
b = -0.511531 + 0.638166I		
u = 0.169794 - 0.434125I		
a = -2.55925 - 1.01168I	-0.38058 + 6.28025I	0.64015 - 9.26219I
b = 0.145150 - 1.155370I		
u = -0.03772 + 1.56297I		
a = -0.120715 - 0.856591I	-8.16558 - 1.16224I	0
b = 0.05713 - 1.83396I		
u = -0.03772 + 1.56297I		
a = 0.11469 + 1.74498I	-8.16558 - 1.16224I	0
b = 0.04099 + 1.67869I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.03772 - 1.56297I		
a = -0.120715 + 0.856591I	-8.16558 + 1.16224I	0
b = 0.05713 + 1.83396I		
u = -0.03772 - 1.56297I		
a = 0.11469 - 1.74498I	-8.16558 + 1.16224I	0
b = 0.04099 - 1.67869I		
u = 1.53711 + 0.31414I		
a = 0.768268 + 0.635630I	4.44405 + 0.89151I	0
b = -0.056706 + 0.707806I		
u = 1.53711 + 0.31414I		
a = -0.062562 + 0.463261I	4.44405 + 0.89151I	0
b = 1.15312 + 3.42175I		
u = 1.53711 - 0.31414I		
a = 0.768268 - 0.635630I	4.44405 - 0.89151I	0
b = -0.056706 - 0.707806I		
u = 1.53711 - 0.31414I		
a = -0.062562 - 0.463261I	4.44405 - 0.89151I	0
b = 1.15312 - 3.42175I		
u = -0.194415 + 0.346795I		
a = -1.065970 - 0.131400I	-0.28736 + 3.36637I	11.88280 + 1.35996I
b = -0.14265 + 2.22850I		
u = -0.194415 + 0.346795I		
a = 3.21301 + 0.74244I	-0.28736 + 3.36637I	11.88280 + 1.35996I
b = -0.589464 + 0.006918I		
u = -0.194415 - 0.346795I		
a = -1.065970 + 0.131400I	-0.28736 - 3.36637I	11.88280 - 1.35996I
b = -0.14265 - 2.22850I		
u = -0.194415 - 0.346795I		
a = 3.21301 - 0.74244I	-0.28736 - 3.36637I	11.88280 - 1.35996I
b = -0.589464 - 0.006918I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.60996 + 0.08161I		
a = 0.884676 + 0.826488I	1.31869 - 7.19355I	0
b = 0.66083 + 1.52938I		
u = 1.60996 + 0.08161I		
a = -0.634090 - 0.080905I	1.31869 - 7.19355I	0
b = 0.135911 + 0.270762I		
u = 1.60996 - 0.08161I		
a = 0.884676 - 0.826488I	1.31869 + 7.19355I	0
b = 0.66083 - 1.52938I		
u = 1.60996 - 0.08161I		
a = -0.634090 + 0.080905I	1.31869 + 7.19355I	0
b = 0.135911 - 0.270762I		
u = -1.62004 + 0.05900I		
a = -0.169701 - 0.719649I	7.35319 - 4.35321I	0
b = 0.24164 - 2.95574I		
u = -1.62004 + 0.05900I		
a = -0.516824 - 0.337282I	7.35319 - 4.35321I	0
b = 0.055828 - 0.398375I		
u = -1.62004 - 0.05900I		
a = -0.169701 + 0.719649I	7.35319 + 4.35321I	0
b = 0.24164 + 2.95574I		
u = -1.62004 - 0.05900I		
a = -0.516824 + 0.337282I	7.35319 + 4.35321I	0
b = 0.055828 + 0.398375I		
u = -1.63959 + 0.12969I		
a = -0.629016 - 0.711882I	3.95952 - 9.14255I	0
b = 0.62535 - 1.60664I		
u = -1.63959 + 0.12969I		
a = 0.220903 + 0.413033I	3.95952 - 9.14255I	0
b = -1.26345 + 3.62757I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.63959 - 0.12969I		
a = -0.629016 + 0.711882I	3.95952 + 9.14255I	0
b = 0.62535 + 1.60664I		
u = -1.63959 - 0.12969I		
a = 0.220903 - 0.413033I	3.95952 + 9.14255I	0
b = -1.26345 - 3.62757I		
u = 0.256452 + 0.097043I		
a = 1.72057 - 2.43295I	-3.48797 + 8.65451I	10.96127 - 3.30272I
b = -0.01397 - 1.83611I		
u = 0.256452 + 0.097043I		
a = -1.71936 + 5.75556I	-3.48797 + 8.65451I	10.96127 - 3.30272I
b = 0.717391 + 0.308677I		
u = 0.256452 - 0.097043I		
a = 1.72057 + 2.43295I	-3.48797 - 8.65451I	10.96127 + 3.30272I
b = -0.01397 + 1.83611I		
u = 0.256452 - 0.097043I		
a = -1.71936 - 5.75556I	-3.48797 - 8.65451I	10.96127 + 3.30272I
b = 0.717391 - 0.308677I		
u = -1.64625 + 0.57157I		
a = -0.206383 - 0.751197I	7.57975 - 5.62049I	0
b = 0.65091 - 2.37486I		
u = -1.64625 + 0.57157I		
a = -0.731761 + 0.237535I	7.57975 - 5.62049I	0
b = -0.1289710 + 0.0080917I		
u = -1.64625 - 0.57157I		
a = -0.206383 + 0.751197I	7.57975 + 5.62049I	0
b = 0.65091 + 2.37486I		
u = -1.64625 - 0.57157I		
a = -0.731761 - 0.237535I	7.57975 + 5.62049I	0
b = -0.1289710 - 0.0080917I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.81032		
a = 0.704212	7.04633	0
b = -1.95016		
u = 1.81032		
a = 0.137336	7.04633	0
b = -10.9556		
u = 1.63813 + 0.86204I		
a = 0.940907 + 0.346569I	5.43168 + 10.49420I	0
b = 0.275684 + 0.126572I		
u = 1.63813 + 0.86204I		
a = 0.314823 - 0.765184I	5.43168 + 10.49420I	0
b = -0.60244 - 2.02673I		
u = 1.63813 - 0.86204I		
a = 0.940907 - 0.346569I	5.43168 - 10.49420I	0
b = 0.275684 - 0.126572I		
u = 1.63813 - 0.86204I		
a = 0.314823 + 0.765184I	5.43168 - 10.49420I	0
b = -0.60244 + 2.02673I		

III.
$$I_3^u = \langle 2.20 \times 10^{25} u^{39} + 2.36 \times 10^{25} u^{38} + \dots + 1.03 \times 10^{24} b - 1.37 \times 10^{27}, -7.74 \times 10^{26} u^{39} - 1.52 \times 10^{26} u^{38} + \dots + 1.96 \times 10^{25} a + 9.28 \times 10^{27}, \ u^{40} - 6u^{38} + \dots - 255u^2 - 19 \rangle$$

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 39.5458u^{39} + 7.77693u^{38} + \dots - 2324.41u - 474.232 \\ -21.3768u^{39} - 22.8909u^{38} + \dots + 1244.77u + 1330.64 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -58.1679u^{39} + 3.29014u^{38} + \dots + 3449.07u - 137.870 \\ -5.80256u^{39} + 11.6925u^{38} + \dots + 359.869u - 685.518 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -52.3653u^{39} - 8.40239u^{38} + \dots + 3089.20u + 547.648 \\ -5.80256u^{39} + 11.6925u^{38} + \dots + 359.869u - 685.518 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -70.0334u^{39} - 21.3768u^{38} + \dots + 4061.56u + 1244.77 \\ 7.77693u^{39} + 12.7669u^{38} + \dots + 474.232u - 751.370 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 36.0799u^{39} - 5.80256u^{38} + \dots - 2110.89u + 359.869 \\ 3.29014u^{39} - 18.6530u^{38} + \dots - 137.870u + 1105.19 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 36.0799u^{39} - 5.80256u^{38} + \dots - 2110.89u + 359.869 \\ -8.40239u^{39} - 16.8892u^{38} + \dots + 547.648u + 994.941 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -19.8101u^{39} - 2.40796u^{38} + \dots + 1124.82u + 148.776 \\ -21.0277u^{39} - 13.7029u^{38} + \dots + 1259.48u + 794.359 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -41.8084u^{39} - 21.0277u^{38} + \dots + 2425.85u + 1259.48 \\ -2.40796u^{39} - 6.63080u^{38} + \dots + 148.776u + 376.393 \end{pmatrix}$$

(ii) Obstruction class = 1

(iii) Cusp Shapes = $\frac{149855023258607474000595971}{515021663836420099366239}u^{38} - \frac{948392840239352276013737578}{515021663836420099366239}u^{36} + \dots - \frac{89911988946080209745670467197}{515021663836420099366239}u^{2} - \frac{8671019797870820314013476786}{515021663836420099366239}u^{2} - \frac{8671019797870820314013476788}{515021663836420099366239}u^{2} - \frac{8671019797870820314013476788}{515021663836420099366239}u^{2} - \frac{8671019797870820314013476788}{515021663836420099366239}u^{2} - \frac{8671019797870820314013476788}{515021663836420099366239}u^{2} - \frac{86710197978708078}{515021663836420099366239}u^{2} - \frac{86710197978708078}{515021663836420099366239}u^{2} - \frac{86710197978708078}{515021663836420099366239}u^{2} - \frac{86710197978708078}{515021663836420099366239}u^{2} - \frac{86710197978708}{515021663836420099366239}u^{2} - \frac{86710197978708078}{515021663836420099366239}u^{2} - \frac{86710197978708078}{515021663836420099366239}u^{2} - \frac{86710197978708078}{515021663836420099366239}u^{2} - \frac{86710197978708078}{515021663836420099366239}u^{2} - \frac{86710197978708}{515021663836420099366239}u^{2} - \frac{8671019797978}{515021663836420099366239}u^{2} - \frac{867$

Crossings	u-Polynomials at each crossing
c_1, c_7	$u^{40} - 12u^{39} + \dots + 15u + 1$
c_2, c_8	$u^{40} - 6u^{38} + \dots - 255u^2 - 19$
c_3, c_9	$u^{40} + 5u^{39} + \dots - 3u + 1$
c_4, c_{10}	$u^{40} + 8u^{38} + \dots - 297u^2 - 19$
c_5, c_{11}	$u^{40} - 5u^{39} + \dots - 36u - 36$
c_6, c_{12}	$u^{40} + 5u^{39} + \dots - 81u + 27$

Crossings	Riley Polynomials at each crossing
c_{1}, c_{7}	$y^{40} - 24y^{39} + \dots - 235y + 1$
c_{2}, c_{8}	$(y^{20} - 6y^{19} + \dots - 255y - 19)^2$
c_{3}, c_{9}	$y^{40} - 31y^{39} + \dots + 41y + 1$
c_4,c_{10}	$(y^{20} + 8y^{19} + \dots - 297y - 19)^2$
c_5,c_{11}	$y^{40} - y^{39} + \dots - 27216y + 1296$
c_6, c_{12}	$y^{40} + 11y^{39} + \dots + 104247y + 729$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.929042I		
a = 1.008700 + 0.535913I	1.39660	4.42730
b = 0.116734 + 0.879504I		
u = -0.929042I		 -
a = 1.008700 - 0.535913I	1.39660	4.42730
b = 0.116734 - 0.879504I		
u = 1.178850 + 0.209458I		
a = -0.703351 - 0.338282I	1.32275 - 5.63915I	0. + 7.01051I
b = 0.022042 + 0.625498I		
u = 1.178850 - 0.209458I		
a = -0.703351 + 0.338282I	1.32275 + 5.63915I	0 7.01051I
b = 0.022042 - 0.625498I		
u = -1.178850 + 0.209458I		
a = -0.749427 + 0.898373I	1.32275 + 5.63915I	0 7.01051I
b = -0.72110 + 1.23469I		
u = -1.178850 - 0.209458I		
a = -0.749427 - 0.898373I	1.32275 - 5.63915I	0. + 7.01051I
b = -0.72110 - 1.23469I		
u = 1.199010 + 0.348364I		
a = 0.137760 + 0.349959I	3.52609 + 1.74568I	0
b = -2.07637 + 0.88877I		
u = 1.199010 - 0.348364I		
a = 0.137760 - 0.349959I	3.52609 - 1.74568I	0
b = -2.07637 - 0.88877I		
u = -1.199010 + 0.348364I		
a = -0.548822 + 0.771359I	3.52609 - 1.74568I	0
b = 0.239946 + 0.310271I		
u = -1.199010 - 0.348364I		
a = -0.548822 - 0.771359I	3.52609 + 1.74568I	0
b = 0.239946 - 0.310271I		

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.136984 + 1.302140I		
a = -0.305822 - 0.314089I	-4.33120 + 3.94595I	0
b = 1.73222 - 1.78973I		
u = 0.136984 - 1.302140I		
a = -0.305822 + 0.314089I	-4.33120 - 3.94595I	0
b = 1.73222 + 1.78973I		
u = -0.136984 + 1.302140I		
a = -0.108453 + 1.343220I	-4.33120 - 3.94595I	0
b = -0.330792 + 1.302590I		
u = -0.136984 - 1.302140I		
a = -0.108453 - 1.343220I	-4.33120 + 3.94595I	0
b = -0.330792 - 1.302590I		
u = 0.050813 + 0.653192I		
a = 0.54749 + 2.31274I	-6.41705 - 0.11934I	-5.06037 - 1.90424I
b = -0.068034 + 1.252060I		
u = 0.050813 - 0.653192I		
a = 0.54749 - 2.31274I	-6.41705 + 0.11934I	-5.06037 + 1.90424I
b = -0.068034 - 1.252060I		
u = -0.050813 + 0.653192I		
a = 0.27250 + 1.80754I	-6.41705 + 0.11934I	-5.06037 + 1.90424I
b = -0.22773 + 1.58802I		
u = -0.050813 - 0.653192I		
a = 0.27250 - 1.80754I	-6.41705 - 0.11934I	-5.06037 - 1.90424I
b = -0.22773 - 1.58802I		
u = -0.226986 + 0.550089I		
a = -0.27141 + 1.59457I	-3.85848 - 8.80900I	-7.98418 + 11.33270I
b = 0.11892 + 1.82807I		
u = -0.226986 - 0.550089I		
a = -0.27141 - 1.59457I	-3.85848 + 8.80900I	-7.98418 - 11.33270I
b = 0.11892 - 1.82807I		

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.226986 + 0.550089I		
a = 1.45723 + 2.48719I	-3.85848 + 8.80900I	-7.98418 - 11.33270I
b = 0.511984 + 0.415389I		
u = 0.226986 - 0.550089I		
a = 1.45723 - 2.48719I	-3.85848 - 8.80900I	-7.98418 + 11.33270I
b = 0.511984 - 0.415389I		
u = -0.004800 + 0.571260I		
a = -1.58528 + 1.61394I	-0.55712 - 3.66399I	-1.27961 + 13.86053I
b = 0.152978 + 0.082715I		
u = -0.004800 - 0.571260I		
a = -1.58528 - 1.61394I	-0.55712 + 3.66399I	-1.27961 - 13.86053I
b = 0.152978 - 0.082715I		
u = 0.004800 + 0.571260I		
a = 0.712428 + 0.739925I	-0.55712 + 3.66399I	-1.27961 - 13.86053I
b = -1.00518 + 2.26941I		
u = 0.004800 - 0.571260I		
a = 0.712428 - 0.739925I	-0.55712 - 3.66399I	-1.27961 + 13.86053I
b = -1.00518 - 2.26941I		
u = 1.47284 + 0.15553I		
a = 0.552345 - 0.801614I	3.28324 + 7.83214I	0
b = -0.36950 - 2.22670I		
u = 1.47284 - 0.15553I		
a = 0.552345 + 0.801614I	3.28324 - 7.83214I	0
b = -0.36950 + 2.22670I		
u = -1.47284 + 0.15553I		
a = -0.152691 + 0.262120I	3.28324 - 7.83214I	0
b = -0.285395 + 0.888432I		
u = -1.47284 - 0.15553I		
a = -0.152691 - 0.262120I	3.28324 + 7.83214I	0
b = -0.285395 - 0.888432I		

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.51156 + 0.26431I		
a = 0.355371 + 0.035389I	6.77206 + 4.79490I	0
b = 0.0104865 - 0.1040000I		
u = 1.51156 - 0.26431I		
a = 0.355371 - 0.035389I	6.77206 - 4.79490I	0
b = 0.0104865 + 0.1040000I		
u = -1.51156 + 0.26431I		
a = -0.112338 - 0.872812I	6.77206 - 4.79490I	0
b = 0.51658 - 2.86042I		
u = -1.51156 - 0.26431I		
a = -0.112338 + 0.872812I	6.77206 + 4.79490I	0
b = 0.51658 + 2.86042I		
u = 0.05303 + 1.61259I		
a = -0.082693 - 0.843305I	-8.09446 - 1.28532I	0
b = 0.05758 - 1.82287I		
u = 0.05303 - 1.61259I		
a = -0.082693 + 0.843305I	-8.09446 + 1.28532I	0
b = 0.05758 + 1.82287I		
u = -0.05303 + 1.61259I		
a = -0.05806 + 1.72700I	-8.09446 + 1.28532I	0
b = -0.06640 + 1.70162I		
u = -0.05303 - 1.61259I		
a = -0.05806 - 1.72700I	-8.09446 - 1.28532I	0
b = -0.06640 - 1.70162I		
u = 1.83596		
a = 0.0349025	7.08706	0
b = -14.4201		
u = -1.83596		
a = -0.765863	7.08706	0
b = 1.76221		

IV.
$$I_4^u=\langle b,\ a^2-a+1,\ u+1\rangle$$

$$a_{2} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} a \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -a+1 \\ -1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -a+2 \\ -1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 2a \\ -a \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 2a-1 \\ -a+1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 2a-1 \\ a \end{pmatrix}$$

$$\begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

- $a_3 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$ $(2a+1)^3$
- $a_5 = \begin{pmatrix} 2a+1 \\ -a \end{pmatrix}$
- $a_{11} = \begin{pmatrix} -a+2\\-1 \end{pmatrix}$
- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 4a + 4

Crossings	u-Polynomials at each crossing
c_1, c_9, c_{10}	$u^2 - u + 1$
c_2, c_{12}	$(u-1)^2$
c_3, c_4, c_7	$u^2 + u + 1$
<i>C</i> ₅	$u^2 + 2u + 4$
c_6	$u^2 + 3$
c ₈	$(u+1)^2$
c_{11}	u^2

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_4 c_7, c_9, c_{10}	$y^2 + y + 1$
c_2, c_8, c_{12}	$(y-1)^2$
c_5	$y^2 + 4y + 16$
c_6	$(y+3)^2$
c_{11}	y^2

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.00000		
a = 0.500000 + 0.866025I	1.64493 - 2.02988I	6.00000 + 3.46410I
b = 0		
u = -1.00000		
a = 0.500000 - 0.866025I	1.64493 + 2.02988I	6.00000 - 3.46410I
b = 0		

V.
$$I_5^u = \langle b - 2a, \ a^2 - a + 1, \ u - 1 \rangle$$

$$a_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} a \\ 2a \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} a-1\\2a-1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -a \\ 2a - 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ a \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ -a+1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ -a+2 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ -a+2 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} a \\ 2a+1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 4a + 4

Crossings	u-Polynomials at each crossing
c_1, c_9, c_{10}	$u^2 + u + 1$
c_2	$(u+1)^2$
c_3, c_4, c_7	$u^2 - u + 1$
<i>C</i> ₅	u^2
c_{6}, c_{8}	$(u-1)^2$
c_{11}	$u^2 + 2u + 4$
c_{12}	$u^2 + 3$

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_4 c_7, c_9, c_{10}	$y^2 + y + 1$
c_2, c_6, c_8	$(y-1)^2$
<i>C</i> ₅	y^2
c_{11}	$y^2 + 4y + 16$
c_{12}	$(y+3)^2$

	Solutions to I_5^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u =	1.00000		
a =	0.500000 + 0.866025I	1.64493 - 2.02988I	6.00000 + 3.46410I
b =	1.00000 + 1.73205I		
u =	1.00000		
a =	0.500000 - 0.866025I	1.64493 + 2.02988I	6.00000 - 3.46410I
b =	1.00000 - 1.73205I		

VI.
$$I_1^v = \langle a, \ b^2 + b + 1, \ v + 1 \rangle$$

$$a_2 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 0 \\ b \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -1 \\ -b - 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} b \\ -b-1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ -b \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ b+1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} -b \\ b+1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 0 \\ b \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ -b \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -8b-4

Crossings	u-Polynomials at each crossing	
c_1, c_6, c_7 c_{12}	$u^2 - u + 1$	
c_2, c_4, c_8 c_{10}	u^2	
c_3, c_5, c_9 c_{11}	$u^2 + u + 1$	

Crossings	Riley Polynomials at each crossing	
c_1, c_3, c_5 c_6, c_7, c_9 c_{11}, c_{12}	$y^2 + y + 1$	
c_2, c_4, c_8 c_{10}	y^2	

Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = -1.00000 $a = 0$ $b = -0.500000 + 0.866025I$	4.05977I	06.92820I
v = -1.00000 $a = 0$ $b = -0.500000 - 0.866025I$	-4.05977I	0. + 6.92820I

VII. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_7	$((u^{2} - u + 1)^{2})(u^{2} + u + 1)(u^{37} - u^{36} + \dots + 8u - 1)$ $\cdot (u^{40} - 12u^{39} + \dots + 15u + 1)(u^{86} - 7u^{85} + \dots - 55u + 3)$
c_2, c_8	$u^{2}(u-1)^{2}(u+1)^{2}(u^{37}+5u^{36}+\cdots+2744u+388)$ $\cdot (u^{40}-6u^{38}+\cdots-255u^{2}-19)(u^{43}-3u^{42}+\cdots+110u-17)^{2}$
c_3, c_9	$(u^{2} - u + 1)(u^{2} + u + 1)^{2}(u^{37} + u^{36} + \dots + 2u + 1)$ $\cdot (u^{40} + 5u^{39} + \dots - 3u + 1)(u^{86} + 4u^{85} + \dots + 3742879u + 515187)$
c_4, c_{10}	$u^{2}(u^{2} - u + 1)(u^{2} + u + 1)(u^{37} + 5u^{36} + \dots + 184u + 52)$ $\cdot (u^{40} + 8u^{38} + \dots - 297u^{2} - 19)(u^{43} - 2u^{42} + \dots + 8u - 5)^{2}$
c_5, c_{11}	$u^{2}(u^{2} + u + 1)(u^{2} + 2u + 4)(u^{37} + u^{36} + \dots - 4u + 4)$ $\cdot (u^{40} - 5u^{39} + \dots - 36u - 36)(u^{86} + 2u^{85} + \dots - 1380u + 529)$
c_6, c_{12}	$((u-1)^2)(u^2+3)(u^2-u+1)(u^{37}-u^{36}+\cdots-104u-47)$ $\cdot (u^{40}+5u^{39}+\cdots-81u+27)$ $\cdot (u^{86}-2u^{85}+\cdots+2676206273u+339660187)$

VIII. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_7	$((y^{2} + y + 1)^{3})(y^{37} - 11y^{36} + \dots + 32y - 1)$ $\cdot (y^{40} - 24y^{39} + \dots - 235y + 1)(y^{86} - 7y^{85} + \dots - 31y + 9)$
c_2, c_8	$y^{2}(y-1)^{4}(y^{20} - 6y^{19} + \dots - 255y - 19)^{2}$ $\cdot (y^{37} - 23y^{36} + \dots + 3132720y - 150544)$ $\cdot (y^{43} - 39y^{42} + \dots + 4960y - 289)^{2}$
c_3, c_9	$((y^{2} + y + 1)^{3})(y^{37} - 37y^{36} + \dots + 30y - 1)$ $\cdot (y^{40} - 31y^{39} + \dots + 41y + 1)$ $\cdot (y^{86} - 28y^{85} + \dots - 1722726646621y + 265417644969)$
c_4, c_{10}	$y^{2}(y^{2} + y + 1)^{2}(y^{20} + 8y^{19} + \dots - 297y - 19)^{2}$ $\cdot (y^{37} + 13y^{36} + \dots - 5872y - 2704)(y^{43} + 20y^{42} + \dots - 446y - 25)^{2}$
c_5,c_{11}	$y^{2}(y^{2} + y + 1)(y^{2} + 4y + 16)(y^{37} - 5y^{36} + \dots - 976y - 16)$ $\cdot (y^{40} - y^{39} + \dots - 27216y + 1296)$ $\cdot (y^{86} + 32y^{85} + \dots + 34272852y + 279841)$
c_6, c_{12}	$((y-1)^{2})(y+3)^{2}(y^{2}+y+1)(y^{37}-31y^{36}+\cdots+16456y-2209)$ $\cdot (y^{40}+11y^{39}+\cdots+104247y+729)$ $\cdot (y^{86}-10y^{85}+\cdots-3384577457419862375y+115369042632874969)$