An  $n \times n$  grid is an undirected graph consisting of n rows and n columns of vertices, as shown in Figure 26.11. We denote the vertex in the ith row and the jth column by (i, j). All vertices in a grid have exactly four neighbors, except for the boundary vertices, which are the points (i, j) for which i = 1, i = n, j = 1, or j = n.

Given  $m \le n^2$  starting points  $(x_1, y_1), (x_2, y_2), \dots, (x_m, y_m)$  in the grid, the **escape problem** is to determine whether or not there are m vertex-disjoint paths from the starting points to any m different points on the boundary. For example, the grid in Figure 26.11(a) has an escape, but the grid in Figure 26.11(b) does not.

a. Consider a flow network in which vertices, as well as edges, have capacities. That is, the total positive flow entering any given vertex is subject to a capacity constraint. Show that determining the maximum flow in a network with edge and vertex capacities can be reduced to an ordinary maximum-flow problem on a flow network of comparable size.





Figure 26.11 Grids for the escape problem. Starting points are black, and other grid vertices are white. (a) A grid with an escape, shown by shaded paths. (b) A grid with no escape.

b. Describe an efficient algorithm to solve the escape problem, and analyze its running time.

2.

A **path cover** of a directed graph G = (V, E) is a set P of vertex-disjoint paths such that every vertex in V is included in exactly one path in P. Paths may start and end anywhere, and they may be of any length, including 0. A **minimum path cover** of G is a path cover containing the fewest possible paths.

a. Give an efficient algorithm to find a minimum path cover of a directed acyclic graph G = (V, E). (Hint: Assuming that  $V = \{1, 2, ..., n\}$ , construct the graph G' = (V', E'), where

$$V' = \{x_0, x_1, \dots, x_n\} \cup \{y_0, y_1, \dots, y_n\} ,$$
  

$$E' = \{(x_0, x_i) : i \in V\} \cup \{(y_i, y_0) : i \in V\} \cup \{(x_i, y_j) : (i, j) \in E\} ,$$

and run a maximum-flow algorithm.)

b. Does your algorithm work for directed graphs that contain cycles? Explain.

3.

Professor Gore wants to open up an algorithmic consulting company. He has identified n important subareas of algorithms (roughly corresponding to different portions of this textbook), which he represents by the set  $A = \{A_1, A_2, \ldots, A_n\}$ . In each subarea  $A_k$ , he can hire an expert in that area for  $c_k$  dollars. The consulting company has lined up a set  $J = \{J_1, J_2, \ldots, J_m\}$  of potential jobs. In order to perform job  $J_i$ , the company needs to have hired experts in a subset  $R_i \subseteq A$  of

subareas. Each expert can work on multiple jobs simultaneously. If the company chooses to accept job  $J_i$ , it must have hired experts in all subareas in  $R_i$ , and it will take in revenue of  $p_i$  dollars.

Professor Gore's job is to determine which subareas to hire experts in and which jobs to accept in order to maximize the net revenue, which is the total income from jobs accepted minus the total cost of employing the experts.

Consider the following flow network G. It contains a source vertex s, vertices  $A_1, A_2, \ldots, A_n$ , vertices  $J_1, J_2, \ldots, J_m$ , and a sink vertex t. For  $k = 1, 2, \ldots, n$ , the flow network contains an edge  $(s, A_k)$  with capacity  $c(s, A_k) = c_k$ , and for  $i = 1, 2, \ldots, m$ , the flow network contains an edge  $(J_i, t)$  with capacity  $c(J_i, t) = p_i$ . For  $k = 1, 2, \ldots, n$  and  $i = 1, 2, \ldots, m$ , if  $A_k \in R_i$ , then G contains an edge  $(A_k, J_i)$  with capacity  $c(A_k, J_i) = \infty$ .

- a. Show that if J<sub>i</sub> ∈ T for a finite-capacity cut (S, T) of G, then A<sub>k</sub> ∈ T for each A<sub>k</sub> ∈ R<sub>i</sub>.
- b. Show how to determine the maximum net revenue from the capacity of a minimum cut of G and the given p<sub>i</sub> values.
- c. Give an efficient algorithm to determine which jobs to accept and which experts to hire. Analyze the running time of your algorithm in terms of m, n, and  $r = \sum_{i=1}^{m} |R_i|$ .

4.

Suppose that we have one machine and a set of n tasks  $a_1, a_2, \ldots, a_n$ , each of which requires time on the machine. Each task  $a_j$  requires  $t_j$  time units on the machine (its processing time), yields a profit of  $p_j$ , and has a deadline  $d_j$ . The machine can process only one task at a time, and task  $a_j$  must run without interruption for  $t_j$  consecutive time units. If we complete task  $a_j$  by its deadline  $d_j$ , we receive a profit  $p_j$ , but if we complete it after its deadline, we receive no profit. As an optimization problem, we are given the processing times, profits, and deadlines for a set of n tasks, and we wish to find a schedule that completes all the tasks and returns the greatest amount of profit. The processing times, profits, and deadlines are all nonnegative numbers.

- State this problem as a decision problem.
- b. Show that the decision problem is NP-complete.
- c. Give a polynomial-time algorithm for the decision problem, assuming that all processing times are integers from 1 to n. (Hint: Use dynamic programming.)
- d. Give a polynomial-time algorithm for the optimization problem, assuming that all processing times are integers from 1 to n.

5.

A boolean formula in *exclusive-or conjunctive normal form* (XCNF) is a conjunction (AND) of several *clauses*, each of which is the *exclusive-*or of one or more literals. For example:

$$(u \oplus v \oplus \bar{w} \oplus x) \wedge (\bar{u} \oplus \bar{w} \oplus y) \wedge (\bar{v} \oplus y) \wedge (\bar{u} \oplus \bar{v} \oplus x \oplus y) \wedge (w \oplus x) \wedge y$$

The XCNF-SAT problem asks whether a given XCNF boolean formula is satisfiable. Either describe a polynomial-time algorithm for XCNF-SAT or prove that it is NP-complete.

6.

Let G be an undirected graph with weighted edges. A *heavy Hamiltonian cycle* is a cycle G that passes through each vertex of G exactly once, such that the total weight of the edges in G is at least half of the total weight of all edges in G. Prove that deciding whether a graph has a heavy Hamiltonian cycle is NP-complete.



A heavy Hamiltonian cycle. The cycle has total weight 34; the graph has total weight 67.

7.

Suppose you are given a magic black box that can solve the 3Colorable problem *in polynomial time*. That is, given an arbitrary graph G as input, the magic black box returns True if G has a proper 3-coloring, and returns False otherwise. Describe and analyze a *polynomial-time* algorithm that computes an actual proper 3-coloring of a given graph G, or correctly reports that no such coloring exists, using this magic black box as a subroutine. [Hint: The input to the black box is a graph. Just a graph. Nothing else.]

8.

Show that if every NP-hard language is also PSPACE-hard, then PSPACE = NP.

9.

The Japanese game *go-moku* is played by two players, "X" and "O," on a  $19 \times 19$  grid. Players take turns placing markers, and the first player to achieve five of her markers consecutively in a row, column, or diagonal is the winner. Consider this game generalized to an  $n \times n$  board. Let

 $GM = \{\langle B \rangle | B \text{ is a position in generalized go-moku,}$ where player "X" has a winning strategy}.

By a *position* we mean a board with markers placed on it, such as may occur in the middle of a play of the game, together with an indication of which player moves next. Show that  $GM \in PSPACE$ .

Two graphs are said to be *isomorphic* if one can be transformed into the other just by relabeling the vertices. For example, the graphs shown below are isomorphic; the left graph can be transformed into the right graph by the relabeling  $(1, 2, 3, 4, 5, 6, 7) \mapsto (c, g, b, e, a, f, d)$ .



Two isomorphic graphs.

## Consider the following related decision problems:

- GraphIsomorphism: Given two graphs G and H, determine whether G and H are isomorphic.
- EVENGRAPHISOMORPHISM: Given two graphs *G* and *H*, such that every vertex in *G* and *H* has even degree, determine whether *G* and *H* are isomorphic.
- SubgraphIsomorphism: Given two graphs *G* and *H*, determine whether *G* is isomorphic to a subgraph of *H*.
- (a) Describe a polynomial-time reduction from EvenGraphIsomorphism to GraphIsomorphism.
- (b) Describe a polynomial-time reduction from GraphIsomorphism to EvenGraphIsomorphism.
- (c) Describe a polynomial-time reduction from GraphIsomorphism to SubgraphIsomorphism.
- (d) Prove that SubgraphIsomorphism is NP-complete.
- (e) What can you conclude about the NP-hardness of GraphIsomorphism? Justify your answer.