Multivariate smoothing, model selection

David L Miller

Recap

- How GAMs work
- How to include detection info
- Simple spatial-only models
- How to check those models

Univariate models are fun, but...

Ecology is not univariate

- Many variables affect distribution
- Want to model the right ones
- Select between possible models
 - Term selection
 - Response distribution
- Large literature on model selection

Tobler's first law of geography

"Everything is related to everything else, but near things are more related than distant things"

Tobler (1970)

Implications of Tobler's law

Covariates are not only correlated (linearly) but also "concurve"

What can we do about this?

- Careful inclusion of terms
- Fit models using robust criteria (REML)
- Test for concurvity
- Test for sensitivity

Models with multiple terms

Adding terms

- Already know that + is our friend
- Add everything then remove terms?

Now we have a huge model, what do we do?

Term selection

- Classically two main approaches:
 - Stepwise path dependence
 - All possible subsets computationally expensive

Removing terms by shrinkage

- Remove terms using a penalty (shrink the EDF)
- Basis "ts" thin plate splines with shrinkage
- "Automatic"

p-values

- p-values can be used
- They are approximate
- Reported in summary
- Generally useful though

Let's employ a mixture of these techniques

How do we select terms?

- 1. Look at EDF
 - Terms with EDF<1 may not be useful
 - These can usually be removed
- 2. Remove non-significant terms by p-value
 - Decide on a significance level and use that as a rule

Example term selection

Selecting terms

```
Family: Tweedie(p=1.277)
Link function: log
Formula:
count \sim s(x, y, bs = "ts") + s(Depth, bs = "ts") + s(DistToCAS,
     bs = "ts") + s(SST, bs = "ts") + s(EKE, bs = "ts") + s(NPP,
     bs = "ts") + offset(off.set)
Parametric coefficients:
               Estimate Std. Error t value Pr(>ItI)
(Intercept) -20.260 0.234 -86.59 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Approximate significance of smooth terms:
                        edf Ref.df F p-value
s(x,y) 1.888e+00 29 0.705 3.56e-06 ***
s(Depth) 3.679e+00 9 4.811 2.15e-10 ***

      s(DistToCAS)
      3.936e-05
      9 0.000
      0.6798

      s(SST)
      3.831e-01
      9 0.063
      0.2160

      s(EKE)
      8.196e-01
      9 0.499
      0.0178

s(NPP) 1.587e-04 9 0.000
                                               0.8361
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
R-sq.(adj) = 0.11 Deviance explained = 35%
```

Shrinkage in action

Same model with no shrinkage

Let's remove some terms & refit

What does that look like?

```
Family: Tweedie(p=1.279)
Link function: log
Formula:
count \sim s(x, y, bs = "ts") + s(Depth, bs = "ts") + s(EKE, bs = "ts")
   offset(off.set)
Parametric coefficients:
          Estimate Std. Error t value Pr(>|t|)
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Approximate significance of smooth terms:
          edf Ref.df F p-value
s(x,y) 1.8969 29 0.707 1.76e-05 ***
s(Depth) 3.6949 9 5.024 1.08e-10 ***
s(EKE) 0.8106 9 0.470 0.0216 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
R-sq.(adj) = 0.105 Deviance explained = 34.8%
-REML = 385.09 Scale est. = 4.5733 n = 949
```

Removing EKE...

```
Family: Tweedie(p=1.268)
Link function: log
Formula:
count \sim s(x, y, bs = "ts") + s(Depth, bs = "ts") + offset(off.set)
Parametric coefficients:
          Estimate Std. Error t value Pr(>|t|)
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Approximate significance of smooth terms:
         edf Ref.df F p-value
s(x,y) 6.443 29 1.322 4.75e-08 ***
s(Depth) 3.611 9 4.261 1.49e-10 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
R-sq.(adj) = 0.141 Deviance explained = 37.8%
-REML = 389.86 Scale est. = 4.3516 n = 949
```

 \bigcirc

Comparing models

Nested vs. non-nested models

- Compare $\sim s(x)+s(depth)$ with $\sim s(x)$
 - nested models
- What about s(x) + s(y) vs. s(x, y)
 - don't want to have all these terms in the model
 - not nested models

Measures of "fit"

- Two listed in summary
 - Deviance explained
 - Adjusted R²
- Deviance is a generalisation of \mathbb{R}^2
- Highest likelihood value (saturated model) minus estimated model value
- (These are usually not very high for DSMs)

A quick note about REML scores

- Use REML to select the smoothness
- Can also use the score to do model selection
- BUT only compare models with the same fixed effects
- All terms must be bs="ts"
- Alternatively set select=TRUE in gam()

Selecting between response distributions

Goodness of fit tests

- Q-Q plots
- Closer to the line == better

 \bigcirc

Recap

General strategy

For each response distribution and non-nested model structure:

- 1. Build a model with the smooths you want
- 2. Make sure that smooths are flexible enough (k=...)
- 3. Remove terms that have been shrunk
- 4. Remove non-significant terms

Going back to concurvity

Concurvity (model-term)

concurvity(dsm_all_tw)

```
s(SST)
                        s(x,y) s(Depth) s(DistToCAS)
                 para
s(EKE)
        2.539199e-23 0.9963493 0.9836597
                                            0.9959057 0.9772853
worst
0.7702479
observed 2.539199e-23 0.8571723 0.8125938
                                           0.9882995 0.9525749
0.6745731
estimate 2.539199e-23 0.7580838 0.9272203
                                           0.9642030 0.8978412
0.4906765
            s(NPP)
        0.9727752
worst
observed 0.9483462
estimate 0.8694619
```

Concurvity between terms

concurvity(dsm_all_tw, full=FALSE)\$estimate

```
s(x,y)
                                           s(Depth) s(DistToCAS)
                     para
             1.000000e+00 4.700364e-26 4.640330e-28 6.317431e-27
para
             8.687343e-24 1.000000e+00 9.067347e-01 9.568609e-01
s(x,y)
             1.960563e-25 2.247389e-01 1.000000e+00 2.699392e-01
s(Depth)
s(DistToCAS) 2.964353e-24 4.335154e-01 2.568123e-01 1.000000e+00
s(SST)
             3.614289e-25 5.102860e-01 3.707617e-01 5.107111e-01
s(EKE)
             1.283557e-24 1.220299e-01 1.527425e-01 1.205373e-01
             2.034284e-25 4.407590e-01 2.067464e-01 2.701934e-01
s(NPP)
                   s(SST)
                                s(EKE)
                                             s(NPP)
             5.042066e-28 3.615073e-27 6.078290e-28
para
s(x,y)
             7.205518e-01 3.201531e-01 6.821674e-01
s(Depth)
             1.232244e-01 6.422005e-02 1.990567e-01
s(DistToCAS) 2.554027e-01 1.319306e-01 2.590227e-01
             1.000000e+00 1.735256e-01 7.616800e-01
s(SST)
             2.410615e-01 1.000000e+00 2.787592e-01
s(EKE)
s(NPP)
             7.833972e-01 1.033109e-01 1.000000e+00
```

Visualising concurvity between terms

Path dependence

Sensitivity

- What if there are highly concurve terms?
- Is the model is sensitive to them?
- Fit variations excluding terms that are concurve
- Appendix of Winiarski et al (2014) has an example
- (Often there's not much difference)

Sensitivity example

- s(Depth) and s(x, y) are highly concurve (0.9067)
- Refit removing Depth first

```
# with depth

edf Ref.df F p-value
s(x,y) 6.442980 29 1.321650 4.754400e-08
s(Depth) 3.611038 9 4.261229 1.485902e-10

# without depth

edf Ref.df F p-value
s(x,y) 13.7777929 29 2.5891485 1.161562e-12
s(EKE) 0.8448441 9 0.5669749 1.050441e-02
s(NPP) 0.7994168 9 0.3628134 3.231807e-02
```

Comparison of spatial effects

Sensitivity example

Refit removing x and y...

```
# without xy

edf Ref.df F p-value
s(SST) 4.583260 9 3.244322 3.118815e-06
s(Depth) 3.973359 9 6.799043 4.125701e-14

# with xy

edf Ref.df F p-value
s(x,y) 6.442980 29 1.321650 4.754400e-08
s(Depth) 3.611038 9 4.261229 1.485902e-10
```

Comparison of depth terms

Comparing those three models...

Name	Rsq	Deviance
full	0.1411	37.8207
no	0.1159	34.3970
depth		
no xy	0.1213	35.7583

- "Full" model still explains most deviance
- No depth model requires spatial term to "mop up" extra variation
- We'll come back to this when we do prediction

Recap

Recap

- Adding terms
- Removing terms
 - p-values
 - shrinkage
- Comparing models
- Comparing response distributions
- Sensitivity