Calculus II Power series, full lecture

Todor Milev

2019

Outline

Power Series

Outline

- Power Series
- Power Series as Functions
 - Differentiation and Integration of Power Series

Outline

- Power Series
- Power Series as Functions
 - Differentiation and Integration of Power Series
- Taylor and Maclaurin Series

License to use and redistribute

These lecture slides and their LATEX source code are licensed to you under the Creative Commons license CC BY 3.0. You are free

- to Share to copy, distribute and transmit the work,
- to Remix to adapt, change, etc., the work,
- to make commercial use of the work,

as long as you reasonably acknowledge the original project.

- Latest version of the .tex sources of the slides: https://github.com/tmilev/freecalc
- Should the link be outdated/moved, search for "freecalc project".
- Creative Commons license CC BY 3.0:
 https://creativecommons.org/licenses/by/3.0/us/and the links therein.

Power Series

Definition (Power Series)

A power series is a series of the form

$$\sum_{n=0}^{\infty} c_n x^n = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + \cdots$$

where x is a variable and the c_n 's are constants called the coefficients of the series.

Power Series

Definition (Power Series)

A power series is a series of the form

$$\sum_{n=0}^{\infty} c_n x^n = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + \cdots$$

where x is a variable and the c_n 's are constants called the coefficients of the series.

 For each fixed x, this is a series of constants which either converges or diverges.

Power Series

Definition (Power Series)

A power series is a series of the form

$$\sum_{n=0}^{\infty} c_n x^n = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + \cdots$$

where x is a variable and the c_n 's are constants called the coefficients of the series.

- For each fixed x, this is a series of constants which either converges or diverges.
- A power series might converge for some values of x and diverge for others.

Power Series

Definition (Power Series)

A power series is a series of the form

$$\sum_{n=0}^{\infty} c_n x^n = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + \cdots$$

where x is a variable and the c_n 's are constants called the coefficients of the series.

- For each fixed x, this is a series of constants which either converges or diverges.
- A power series might converge for some values of x and diverge for others.
- The sum of the series is a function

$$f(x) = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + \cdots$$

whose domain is the set of all *x* for which the series converges.

Power Series

Definition (Power Series)

A power series is a series of the form

$$\sum_{n=0}^{\infty} c_n x^n = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + \cdots$$

where x is a variable and the c_n 's are constants called the coefficients of the series.

- For each fixed x, this is a series of constants which either converges or diverges.
- A power series might converge for some values of x and diverge for others.
- The sum of the series is a function

$$f(x) = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + \cdots$$

whose domain is the set of all *x* for which the series converges.

• f resembles a polynomial, except it has infinitely many terms.

Definition (Power Series Centered at *a*)

A series of the form

$$\sum_{n=0}^{\infty} c_n(x-a)^n = c_0 + c_1(x-a) + c_2(x-a)^2 + c_3(x-a)^3 + \cdots$$

is called a power series centered at a or a power series about a or a power series in (x - a).

Definition (Power Series Centered at *a*)

A series of the form

$$\sum_{n=0}^{\infty} c_n(x-a)^n = c_0 + c_1(x-a) + c_2(x-a)^2 + c_3(x-a)^3 + \cdots$$

is called a power series centered at a or a power series about a or a power series in (x - a).

• We use the convention that $(x - a)^0 = 1$, even if x = a.

Definition (Power Series Centered at a)

A series of the form

$$\sum_{n=0}^{\infty} c_n(x-a)^n = c_0 + c_1(x-a) + c_2(x-a)^2 + c_3(x-a)^3 + \cdots$$

is called a power series centered at a or a power series about a or a power series in (x - a).

- We use the convention that $(x a)^0 = 1$, even if x = a.
- If x = a, then all terms are 0 for $n \ge 1$, so the series always converges when x = a.

Example

Example

For what values of x is the series $\sum_{n=0}^{\infty} n! x^n$ convergent?

Use the Ratio Test.

Example

- Use the Ratio Test.
- The *n*th term is $a_n = n! x^n$.

Example

- Use the Ratio Test.
- The *n*th term is $a_n = n!x^n$.
- If $x \neq 0$, then

$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right| = \lim_{n\to\infty}\left|\frac{(n+1)!x^{n+1}}{n!x^n}\right|$$

Example

- Use the Ratio Test.
- The *n*th term is $a_n = n!x^n$.
- If $x \neq 0$, then

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(n+1)! x^{n+1}}{n! x^n} \right|$$
$$= \lim_{n \to \infty}$$

Example

- Use the Ratio Test.
- The *n*th term is $a_n = n!x^n$.
- If $x \neq 0$, then

$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n\to\infty} \left| \frac{(n+1)!x^{n+1}}{n!x^n} \right|$$
$$= \lim_{n\to\infty} (n+1)$$

Example

- Use the Ratio Test.
- The *n*th term is $a_n = n!x^n$.
- If $x \neq 0$, then

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(n+1)! x^{n+1}}{n! x^n} \right|$$
$$= \lim_{n \to \infty} (n+1)$$

Example

- Use the Ratio Test.
- The *n*th term is $a_n = n!x^n$.
- If $x \neq 0$, then

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(n+1)! x^{n+1}}{n! x^n} \right|$$
$$= \lim_{n \to \infty} (n+1) |x|$$

Example

- Use the Ratio Test.
- The *n*th term is $a_n = n!x^n$.
- If $x \neq 0$, then

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(n+1)! x^{n+1}}{n! x^n} \right|$$

$$= \lim_{n \to \infty} (n+1)|x|$$

$$= \infty$$

Example

For what values of x is the series $\sum_{n=0}^{\infty} n! x^n$ convergent?

- Use the Ratio Test.
- The *n*th term is $a_n = n!x^n$.
- If $x \neq 0$, then

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(n+1)! x^{n+1}}{n! x^n} \right|$$

$$= \lim_{n \to \infty} (n+1)|x|$$

$$= \infty$$

• Therefore by the Ratio Test the series diverges for all $x \neq 0$.

Example

- Use the Ratio Test.
- The *n*th term is $a_n = n!x^n$.
- If $x \neq 0$, then

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(n+1)! x^{n+1}}{n! x^n} \right|$$

$$= \lim_{n \to \infty} (n+1)|x|$$

$$= \infty$$

- Therefore by the Ratio Test the series diverges for all $x \neq 0$.
- Therefore the series only converges for x = 0.

Example

Find the domain of the Bessel function of order 0 defined by

$$J_0(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{2^{2n} (n!)^2}$$

Example

Find the domain of the Bessel function of order 0 defined by

$$J_0(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{2^{2n} (n!)^2}$$

Example

Find the domain of the Bessel function of order 0 defined by

$$J_0(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{2^{2n} (n!)^2}$$

Example

Find the domain of the Bessel function of order 0 defined by

$$J_0(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{2^{2n} (n!)^2}$$

$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n\to\infty} \left| \frac{(-1)^{n+1} x^{2(n+1)}}{2^{2(n+1)} [(n+1)!]^2} \cdot \frac{2^{2n} (n!)^2}{(-1)^n x^{2n}} \right|$$

Example

Find the domain of the Bessel function of order 0 defined by

$$J_0(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{2^{2n} (n!)^2}$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-1)^{n+1} x^{2(n+1)}}{2^{2(n+1)} [(n+1)!]^2} \cdot \frac{2^{2n} (n!)^2}{(-1)^n x^{2n}} \right|$$

$$= \lim_{n \to \infty} -----$$

Example

Find the domain of the Bessel function of order 0 defined by

$$J_0(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{2^{2n} (n!)^2}$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-1)^{n+1} x^{2(n+1)}}{2^{2(n+1)} [(n+1)!]^2} \cdot \frac{2^{2n} (n!)^2}{(-1)^n x^{2n}} \right|$$

$$= \lim_{n \to \infty} \frac{x^2}{(-1)^n x^{2n}}$$

Example

Find the domain of the Bessel function of order 0 defined by

$$J_0(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{2^{2n} (n!)^2}$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-1)^{n+1} x^{2(n+1)}}{2^{2(n+1)} [(n+1)!]^2} \cdot \frac{2^{2n} (n!)^2}{(-1)^n x^{2n}} \right|$$

$$= \lim_{n \to \infty} \frac{x^2}{(-1)^n x^{2n}}$$

Example

Find the domain of the Bessel function of order 0 defined by

$$J_0(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{2^{2n} (n!)^2}$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-1)^{n+1} x^{2(n+1)}}{2^{2(n+1)} [(n+1)!]^2} \cdot \frac{2^{2n} (n!)^2}{(-1)^n x^{2n}} \right|$$

$$= \lim_{n \to \infty} \frac{x^2}{4}$$

Example

Find the domain of the Bessel function of order 0 defined by

$$J_0(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{2^{2n} (n!)^2}$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-1)^{n+1} x^{2(n+1)}}{2^{2(n+1)} [(n+1)!]^2} \cdot \frac{2^{2n} (n!)^2}{(-1)^n x^{2n}} \right|$$

$$= \lim_{n \to \infty} \frac{x^2}{4}$$

Example

Find the domain of the Bessel function of order 0 defined by

$$J_0(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{2^{2n} (n!)^2}$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-1)^{n+1} x^{2(n+1)}}{2^{2(n+1)} [(n+1)!]^2} \cdot \frac{2^{2n} (n!)^2}{(-1)^n x^{2n}} \right|$$

$$= \lim_{n \to \infty} \frac{x^2}{4(n+1)^2}$$

Example

Find the domain of the Bessel function of order 0 defined by

$$J_0(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{2^{2n} (n!)^2}$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-1)^{n+1} x^{2(n+1)}}{2^{2(n+1)} [(n+1)!]^2} \cdot \frac{2^{2n} (n!)^2}{(-1)^n x^{2n}} \right|$$

$$= \lim_{n \to \infty} \frac{x^2}{4(n+1)^2} = 0$$

Example

Find the domain of the Bessel function of order 0 defined by

$$J_0(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{2^{2n} (n!)^2}$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-1)^{n+1} x^{2(n+1)}}{2^{2(n+1)} [(n+1)!]^2} \cdot \frac{2^{2n} (n!)^2}{(-1)^n x^{2n}} \right|$$

$$= \lim_{n \to \infty} \frac{x^2}{4(n+1)^2} = 0 < 1$$

Example

Find the domain of the Bessel function of order 0 defined by

$$J_0(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{2^{2n} (n!)^2}$$

• The *n*th term is $a_n = \frac{(-1)^n x^{2n}}{2^{2n} (n!)^2}$.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-1)^{n+1} x^{2(n+1)}}{2^{2(n+1)} [(n+1)!]^2} \cdot \frac{2^{2n} (n!)^2}{(-1)^n x^{2n}} \right|$$

$$= \lim_{n \to \infty} \frac{x^2}{4(n+1)^2} = 0 < 1$$

• Therefore by the Ratio Test the series converges for all x.

Example

Find the domain of the Bessel function of order 0 defined by

$$J_0(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{2^{2n} (n!)^2}$$

• The *n*th term is $a_n = \frac{(-1)^n x^{2n}}{2^{2n} (n!)^2}$.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-1)^{n+1} x^{2(n+1)}}{2^{2(n+1)} [(n+1)!]^2} \cdot \frac{2^{2n} (n!)^2}{(-1)^n x^{2n}} \right|$$

$$= \lim_{n \to \infty} \frac{x^2}{4(n+1)^2} = 0 < 1$$

- Therefore by the Ratio Test the series converges for all x.
- Therefore the domain of the function is $(-\infty, \infty)$, or \mathbb{R} .

Example

Example

For what values of x is the series $\sum_{n=1}^{\infty} \frac{(x-3)^n}{n}$ convergent?

Use the Ratio Test.

Example

- Use the Ratio Test.
- The *n*th term is $a_n = \frac{(x-3)^n}{n}$.

Example

- Use the Ratio Test.
- The *n*th term is $a_n = \frac{(x-3)^n}{n}$.

$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right| = \lim_{n\to\infty}\left|\frac{(x-3)^{n+1}}{n+1}\cdot\frac{n}{(x-3)^n}\right|$$

Example

- Use the Ratio Test.
- The *n*th term is $a_n = \frac{(x-3)^n}{n}$.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(x-3)^{n+1}}{n+1} \cdot \frac{n}{(x-3)^n} \right|$$
$$= \lim_{n \to \infty}$$

Example

- Use the Ratio Test.
- The *n*th term is $a_n = \frac{(x-3)^n}{n}$.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(x-3)^{n+1}}{n+1} \cdot \frac{n}{(x-3)^n} \right|$$
$$= \lim_{n \to \infty} |x-3|$$

Example

- Use the Ratio Test.
- The *n*th term is $a_n = \frac{(x-3)^n}{n}$.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(x-3)^{n+1}}{n+1} \cdot \frac{n}{(x-3)^n} \right|$$
$$= \lim_{n \to \infty} |x-3|$$

Example

- Use the Ratio Test.
- The *n*th term is $a_n = \frac{(x-3)^n}{n}$.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(x-3)^{n+1}}{n+1} \cdot \frac{n}{(x-3)^n} \right|$$
$$= \lim_{n \to \infty} |x-3| \frac{n}{n+1}$$

Example

- Use the Ratio Test.
- The *n*th term is $a_n = \frac{(x-3)^n}{n}$.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(x-3)^{n+1}}{n+1} \cdot \frac{n}{(x-3)^n} \right|$$
$$= \lim_{n \to \infty} |x-3| \frac{n}{n+1} \cdot \frac{\frac{1}{n}}{\frac{1}{n}}$$

Example

- Use the Ratio Test.
- The *n*th term is $a_n = \frac{(x-3)^n}{n}$.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(x-3)^{n+1}}{n+1} \cdot \frac{n}{(x-3)^n} \right|$$

$$= \lim_{n \to \infty} |x-3| \frac{n}{n+1} \cdot \frac{\frac{1}{n}}{\frac{1}{n}} = \lim_{n \to \infty} |x-3| \frac{1}{1+\frac{1}{n}}$$

Example

- Use the Ratio Test.
- The *n*th term is $a_n = \frac{(x-3)^n}{n}$.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(x-3)^{n+1}}{n+1} \cdot \frac{n}{(x-3)^n} \right| \\
= \lim_{n \to \infty} |x-3| \frac{n}{n+1} \cdot \frac{\frac{1}{n}}{\frac{1}{n}} = \lim_{n \to \infty} |x-3| \frac{1}{1+\frac{1}{n}} = |x-3|$$

Example

For what values of x is the series $\sum_{n=1}^{\infty} \frac{(x-3)^n}{n}$ convergent?

- Use the Ratio Test.
- The *n*th term is $a_n = \frac{(x-3)^n}{n}$.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(x-3)^{n+1}}{n+1} \cdot \frac{n}{(x-3)^n} \right|$$

$$= \lim_{n \to \infty} |x-3| \frac{n}{n+1} \cdot \frac{\frac{1}{n}}{\frac{1}{n}} = \lim_{n \to \infty} |x-3| \frac{1}{1+\frac{1}{n}} = |x-3|$$

 Therefore by the Ratio Test the series converges absolutely if and diverges if

Example

For what values of x is the series $\sum_{n=1}^{\infty} \frac{(x-3)^n}{n}$ convergent?

- Use the Ratio Test.
- The *n*th term is $a_n = \frac{(x-3)^n}{n}$.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(x-3)^{n+1}}{n+1} \cdot \frac{n}{(x-3)^n} \right|$$

$$= \lim_{n \to \infty} |x-3| \frac{n}{n+1} \cdot \frac{\frac{1}{n}}{\frac{1}{n}} = \lim_{n \to \infty} |x-3| \frac{1}{1+\frac{1}{n}} = |x-3|$$

Example

For what values of x is the series $\sum_{n=1}^{\infty} \frac{(x-3)^n}{n}$ convergent?

- Use the Ratio Test.
- The *n*th term is $a_n = \frac{(x-3)^n}{n}$.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(x-3)^{n+1}}{n+1} \cdot \frac{n}{(x-3)^n} \right|$$

$$= \lim_{n \to \infty} |x-3| \frac{n}{n+1} \cdot \frac{\frac{1}{n}}{\frac{1}{n}} = \lim_{n \to \infty} |x-3| \frac{1}{1+\frac{1}{n}} = |x-3|$$

Example

For what values of x is the series $\sum_{n=1}^{\infty} \frac{(x-3)^n}{n}$ convergent?

- Use the Ratio Test.
- The *n*th term is $a_n = \frac{(x-3)^n}{n}$.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(x-3)^{n+1}}{n+1} \cdot \frac{n}{(x-3)^n} \right|$$

$$= \lim_{n \to \infty} |x-3| \frac{n}{n+1} \cdot \frac{\frac{1}{n}}{\frac{1}{n}} = \lim_{n \to \infty} |x-3| \frac{1}{1+\frac{1}{n}} = |x-3|$$

Example

For what values of x is the series $\sum_{n=1}^{\infty} \frac{(x-3)^n}{n}$ convergent?

- Use the Ratio Test.
- The *n*th term is $a_n = \frac{(x-3)^n}{n}$.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(x-3)^{n+1}}{n+1} \cdot \frac{n}{(x-3)^n} \right|$$

$$= \lim_{n \to \infty} |x-3| \frac{n}{n+1} \cdot \frac{\frac{1}{n}}{\frac{1}{n}} = \lim_{n \to \infty} |x-3| \frac{1}{1+\frac{1}{n}} = |x-3|$$

$$|x-3| < 1 \Leftrightarrow -1 < x-3 < 1$$

Example

For what values of x is the series $\sum_{n=1}^{\infty} \frac{(x-3)^n}{n}$ convergent?

- Use the Ratio Test.
- The *n*th term is $a_n = \frac{(x-3)^n}{n}$.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(x-3)^{n+1}}{n+1} \cdot \frac{n}{(x-3)^n} \right|$$

$$= \lim_{n \to \infty} |x-3| \frac{n}{n+1} \cdot \frac{\frac{1}{n}}{\frac{1}{n}} = \lim_{n \to \infty} |x-3| \frac{1}{1+\frac{1}{n}} = |x-3|$$

$$|x-3| < 1 \quad \Leftrightarrow \quad -1 < x-3 < 1 \quad \Leftrightarrow \quad 2 < x < 4$$

Example

For what values of x is the series $\sum_{n=1}^{\infty} \frac{(x-3)^n}{n}$ convergent?

- Use the Ratio Test.
- The *n*th term is $a_n = \frac{(x-3)^n}{n}$.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(x-3)^{n+1}}{n+1} \cdot \frac{n}{(x-3)^n} \right|$$

$$= \lim_{n \to \infty} |x-3| \frac{n}{n+1} \cdot \frac{\frac{1}{n}}{\frac{1}{n}} = \lim_{n \to \infty} |x-3| \frac{1}{1+\frac{1}{n}} = |x-3|$$

$$|x-3| < 1 \quad \Leftrightarrow \quad -1 < x-3 < 1 \quad \Leftrightarrow \quad 2 < x < 4$$

- If we put x = 4 in the series, we get $\sum \frac{1}{n}$, which is
- If we put x = 2 in the series, we get $\sum \frac{(-1)^n}{n}$, which is

Example

For what values of x is the series $\sum_{n=1}^{\infty} \frac{(x-3)^n}{n}$ convergent?

- Use the Ratio Test.
- The *n*th term is $a_n = \frac{(x-3)^n}{n}$.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(x-3)^{n+1}}{n+1} \cdot \frac{n}{(x-3)^n} \right|$$

$$= \lim_{n \to \infty} |x-3| \frac{n}{n+1} \cdot \frac{\frac{1}{n}}{\frac{1}{n}} = \lim_{n \to \infty} |x-3| \frac{1}{1+\frac{1}{n}} = |x-3|$$

$$|x-3| < 1 \Leftrightarrow -1 < x-3 < 1 \Leftrightarrow 2 < x < 4$$

- If we put x = 4 in the series, we get $\sum \frac{1}{n}$, which is divergent.
- If we put x = 2 in the series, we get $\sum_{n=0}^{\infty} \frac{(-1)^n}{n}$, which is

Example

For what values of x is the series $\sum_{n=1}^{\infty} \frac{(x-3)^n}{n}$ convergent?

- Use the Ratio Test.
- The *n*th term is $a_n = \frac{(x-3)^n}{n}$.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(x-3)^{n+1}}{n+1} \cdot \frac{n}{(x-3)^n} \right|$$

$$= \lim_{n \to \infty} |x-3| \frac{n}{n+1} \cdot \frac{\frac{1}{n}}{\frac{1}{n}} = \lim_{n \to \infty} |x-3| \frac{1}{1+\frac{1}{n}} = |x-3|$$

$$|x-3| < 1 \quad \Leftrightarrow \quad -1 < x-3 < 1 \quad \Leftrightarrow \quad 2 < x < 4$$

- If we put x = 4 in the series, we get $\sum \frac{1}{n}$, which is divergent.
- If we put x = 2 in the series, we get $\sum_{n=0}^{\infty} \frac{(-1)^n}{n}$, which is

Example

For what values of x is the series $\sum_{n=1}^{\infty} \frac{(x-3)^n}{n}$ convergent?

- Use the Ratio Test.
- The *n*th term is $a_n = \frac{(x-3)^n}{n}$.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(x-3)^{n+1}}{n+1} \cdot \frac{n}{(x-3)^n} \right|$$

$$= \lim_{n \to \infty} |x-3| \frac{n}{n+1} \cdot \frac{\frac{1}{n}}{\frac{1}{n}} = \lim_{n \to \infty} |x-3| \frac{1}{1+\frac{1}{n}} = |x-3|$$

$$|x-3| < 1 \quad \Leftrightarrow \quad -1 < x-3 < 1 \quad \Leftrightarrow \quad 2 < x < 4$$

- If we put x = 4 in the series, we get $\sum \frac{1}{n}$, which is divergent.
- If we put x = 2 in the series, we get $\sum \frac{(-1)^n}{n}$, which is convergent.

Example

For what values of x is the series $\sum_{n=1}^{\infty} \frac{(x-3)^n}{n}$ convergent?

- Use the Ratio Test.
- The *n*th term is $a_n = \frac{(x-3)^n}{n}$.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(x-3)^{n+1}}{n+1} \cdot \frac{n}{(x-3)^n} \right|$$

$$= \lim_{n \to \infty} |x-3| \frac{n}{n+1} \cdot \frac{\frac{1}{n}}{\frac{1}{n}} = \lim_{n \to \infty} |x-3| \frac{1}{1+\frac{1}{n}} = |x-3|$$

• Therefore by the Ratio Test the series converges absolutely if |x-3| < 1 and diverges if |x-3| > 1.

$$|x-3| < 1 \Leftrightarrow -1 < x-3 < 1 \Leftrightarrow 2 < x < 4$$

- If we put x = 4 in the series, we get $\sum \frac{1}{n}$, which is divergent.
- If we put x = 2 in the series, we get $\sum \frac{(-1)^n}{n}$, which is convergent.
- The series converges if $2 \le x < 4$ and diverges otherwise.

Todor Miley Power series, full lecture 2019

Theorem (Convergence of Power Series)

For a power series $\sum c_n(x-a)^n$, there are three possibilities:

- The series converges only when x = a.
- The series converges for all x.
- There is a positive number R such that the series converges if |x a| < R and diverges if |x a| > R.

Theorem (Convergence of Power Series)

For a power series $\sum c_n(x-a)^n$, there are three possibilities:

- The series converges only when x = a.
- The series converges for all x.
- There is a positive number R such that the series converges if |x a| < R and diverges if |x a| > R.

Definition (Radius of Convergence)

The number R in case three of the theorem is called the radius of convergence of the power series.

Theorem (Convergence of Power Series)

For a power series $\sum c_n(x-a)^n$, there are three possibilities:

- The series converges only when x = a.
- The series converges for all x.
- There is a positive number R such that the series converges if |x a| < R and diverges if |x a| > R.

Definition (Radius of Convergence)

The number R in case three of the theorem is called the radius of convergence of the power series.

• In the first case, we say R = 0.

Theorem (Convergence of Power Series)

For a power series $\sum c_n(x-a)^n$, there are three possibilities:

- The series converges only when x = a.
- The series converges for all x.
- There is a positive number R such that the series converges if |x a| < R and diverges if |x a| > R.

Definition (Radius of Convergence)

The number R in case three of the theorem is called the radius of convergence of the power series.

- In the first case, we say R=0.
- 2 In the second case, we say $R = \infty$.

Theorem (Convergence of Power Series)

For a power series $\sum c_n(x-a)^n$, there are three possibilities:

- The series converges only when x = a.
- The series converges for all x.
- There is a positive number R such that the series converges if |x a| < R and diverges if |x a| > R.

Definition (Interval of Convergence)

The interval of convergence of a power series is the interval consisting of all numbers x for which the series converges.

Theorem (Convergence of Power Series)

For a power series $\sum c_n(x-a)^n$, there are three possibilities:

- The series converges only when x = a.
- The series converges for all x.
- There is a positive number R such that the series converges if |x a| < R and diverges if |x a| > R.

Definition (Interval of Convergence)

The interval of convergence of a power series is the interval consisting of all numbers x for which the series converges.

In the first case, the interval contains the single point a.

Theorem (Convergence of Power Series)

For a power series $\sum c_n(x-a)^n$, there are three possibilities:

- The series converges only when x = a.
- The series converges for all x.
- There is a positive number R such that the series converges if |x a| < R and diverges if |x a| > R.

Definition (Interval of Convergence)

The interval of convergence of a power series is the interval consisting of all numbers x for which the series converges.

- In the first case, the interval contains the single point a.
- 2 In the second case, the interval is $(-\infty, \infty)$.

Theorem (Convergence of Power Series)

For a power series $\sum c_n(x-a)^n$, there are three possibilities:

- The series converges only when x = a.
- The series converges for all x.
- There is a positive number R such that the series converges if |x a| < R and diverges if |x a| > R.

Definition (Interval of Convergence)

The interval of convergence of a power series is the interval consisting of all numbers x for which the series converges.

- In the first case, the interval contains the single point a.
- ② In the second case, the interval is $(-\infty, \infty)$.
- In the third case, the inequality |x a| < R can be rewritten a R < x < a + R.

What happens at the endpoints of the interval a - R < x < a + R?

What happens at the endpoints of the interval a - R < x < a + R?

Anything can happen.

What happens at the endpoints of the interval a - R < x < a + R?

- Anything can happen.
- The series might converge at one endpoint.
- The series might converge at both endpoints.
- The series might diverge at both endpoints.

What happens at the endpoints of the interval a - R < x < a + R?

- Anything can happen.
- The series might converge at one endpoint.
- The series might converge at both endpoints.
- The series might diverge at both endpoints.
- Thus we have four possibilities for the endpoints.

- Anything can happen.
- The series might converge at one endpoint.
- The series might converge at both endpoints.
- The series might diverge at both endpoints.
- Thus we have four possibilities for the endpoints.

- Anything can happen.
- The series might converge at one endpoint.
- The series might converge at both endpoints.
- The series might diverge at both endpoints.
- Thus we have four possibilities for the endpoints.

 - (a R, a + R]
 - [a-R,a+R]

- Anything can happen.
- The series might converge at one endpoint.
- The series might converge at both endpoints.
- The series might diverge at both endpoints.
- Thus we have four possibilities for the endpoints.
 - \bigcirc [a R, a + R)
 - (a R, a + R)

- Anything can happen.
- The series might converge at one endpoint.
- The series might converge at both endpoints.
- The series might diverge at both endpoints.
- Thus we have four possibilities for the endpoints.
 - **1** [a R, a + R)
 - (a R, a + R]
 - [a R, a + R]
- In general, the Ratio Test (or Root Test) should be used to find the radius of convergence R.

- Anything can happen.
- The series might converge at one endpoint.
- The series might converge at both endpoints.
- The series might diverge at both endpoints.
- Thus we have four possibilities for the endpoints.
 - **1** [a R, a + R)
 - (a R, a + R)

 - **4** (a R, a + R)
- In general, the Ratio Test (or Root Test) should be used to find the radius of convergence R.
- The Ratio and Root Tests will always fail when x is an endpoint a - R or a + R, so the endpoints must be checked with another test.

Example

Example

$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n\to\infty} \left| \frac{(-3)^{n+1} x^{n+1}}{\sqrt{n+2}} \cdot \frac{\sqrt{n+1}}{(-3)^n x^n} \right|$$

Example

$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n\to\infty} \left| \frac{(-3)^{n+1} x^{n+1}}{\sqrt{n+2}} \cdot \frac{\sqrt{n+1}}{(-3)^n x^n} \right|$$

$$= \lim_{n\to\infty}$$

Example

$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n\to\infty} \left| \frac{(-3)^{n+1} x^{n+1}}{\sqrt{n+2}} \cdot \frac{\sqrt{n+1}}{(-3)^n x^n} \right|$$

$$= \lim_{n\to\infty} 3$$

Example

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-3)^{n+1} x^{n+1}}{\sqrt{n+2}} \cdot \frac{\sqrt{n+1}}{(-3)^n x^n} \right|$$

$$= \lim_{n \to \infty} 3$$

Example

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-3)^{n+1} x^{n+1}}{\sqrt{n+2}} \cdot \frac{\sqrt{n+1}}{(-3)^n x^n} \right|$$

$$= \lim_{n \to \infty} 3|x|$$

Example

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-3)^{n+1} x^{n+1}}{\sqrt{n+2}} \cdot \frac{\sqrt{n+1}}{(-3)^n x^n} \right|$$

$$= \lim_{n \to \infty} 3|x|$$

Example

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-3)^{n+1} x^{n+1}}{\sqrt{n+2}} \cdot \frac{\sqrt{n+1}}{(-3)^n x^n} \right|$$

$$= \lim_{n \to \infty} 3|x| \sqrt{\frac{n+1}{n+2}}$$

Example

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-3)^{n+1} x^{n+1}}{\sqrt{n+2}} \cdot \frac{\sqrt{n+1}}{(-3)^n x^n} \right|$$

$$= \lim_{n \to \infty} 3|x| \sqrt{\frac{n+1}{n+2}} \cdot \frac{\frac{1}{\sqrt{n}}}{\frac{1}{\sqrt{n}}}$$

Example

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-3)^{n+1} x^{n+1}}{\sqrt{n+2}} \cdot \frac{\sqrt{n+1}}{(-3)^n x^n} \right| \\
= \lim_{n \to \infty} 3|x| \sqrt{\frac{n+1}{n+2}} \cdot \frac{\frac{1}{\sqrt{n}}}{\frac{1}{\sqrt{n}}} = \lim_{n \to \infty} 3|x| \sqrt{\frac{1+\frac{1}{n}}{1+\frac{2}{n}}}$$

Example

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-3)^{n+1} x^{n+1}}{\sqrt{n+2}} \cdot \frac{\sqrt{n+1}}{(-3)^n x^n} \right| \\
= \lim_{n \to \infty} 3|x| \sqrt{\frac{n+1}{n+2}} \cdot \frac{\frac{1}{\sqrt{n}}}{\frac{1}{\sqrt{n}}} = \lim_{n \to \infty} 3|x| \sqrt{\frac{1+\frac{1}{n}}{1+\frac{2}{n}}} = 3|x|$$

Example

Find the radius of convergence and interval of convergence of the series $\sum_{n=0}^{\infty} \frac{(-3)^n x^n}{\sqrt{n+1}}$.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-3)^{n+1} x^{n+1}}{\sqrt{n+2}} \cdot \frac{\sqrt{n+1}}{(-3)^n x^n} \right| \\
= \lim_{n \to \infty} 3|x| \sqrt{\frac{n+1}{n+2}} \cdot \frac{\frac{1}{\sqrt{n}}}{\frac{1}{\sqrt{n}}} = \lim_{n \to \infty} 3|x| \sqrt{\frac{1+\frac{1}{n}}{1+\frac{2}{n}}} = 3|x|$$

Ratio Test: it converges if

and diverges if

Example

Find the radius of convergence and interval of convergence of the series $\sum_{n=0}^{\infty} \frac{(-3)^n x^n}{\sqrt{n+1}}$.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-3)^{n+1} x^{n+1}}{\sqrt{n+2}} \cdot \frac{\sqrt{n+1}}{(-3)^n x^n} \right| \\
= \lim_{n \to \infty} 3|x| \sqrt{\frac{n+1}{n+2}} \cdot \frac{\frac{1}{\sqrt{n}}}{\frac{1}{\sqrt{n}}} = \lim_{n \to \infty} 3|x| \sqrt{\frac{1+\frac{1}{n}}{1+\frac{2}{n}}} = 3|x|$$

• Ratio Test: it converges if 3|x| < 1 and diverges if

Example

Find the radius of convergence and interval of convergence of the series $\sum_{n=0}^{\infty} \frac{(-3)^n x^n}{\sqrt{n+1}}$.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-3)^{n+1} x^{n+1}}{\sqrt{n+2}} \cdot \frac{\sqrt{n+1}}{(-3)^n x^n} \right| \\
= \lim_{n \to \infty} 3|x| \sqrt{\frac{n+1}{n+2}} \cdot \frac{\frac{1}{\sqrt{n}}}{\frac{1}{\sqrt{n}}} = \lim_{n \to \infty} 3|x| \sqrt{\frac{1+\frac{1}{n}}{1+\frac{2}{n}}} = 3|x|$$

• Ratio Test: it converges if 3|x| < 1 and diverges if

Example

Find the radius of convergence and interval of convergence of the series $\sum_{n=0}^{\infty} \frac{(-3)^n x^n}{\sqrt{n+1}}$.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-3)^{n+1} x^{n+1}}{\sqrt{n+2}} \cdot \frac{\sqrt{n+1}}{(-3)^n x^n} \right| \\
= \lim_{n \to \infty} 3|x| \sqrt{\frac{n+1}{n+2}} \cdot \frac{\frac{1}{\sqrt{n}}}{\frac{1}{\sqrt{n}}} = \lim_{n \to \infty} 3|x| \sqrt{\frac{1+\frac{1}{n}}{1+\frac{2}{n}}} = 3|x|$$

• Ratio Test: it converges if 3|x| < 1 and diverges if 3|x| > 1.

Example

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-3)^{n+1} x^{n+1}}{\sqrt{n+2}} \cdot \frac{\sqrt{n+1}}{(-3)^n x^n} \right| \\
= \lim_{n \to \infty} 3|x| \sqrt{\frac{n+1}{n+2}} \cdot \frac{\frac{1}{\sqrt{n}}}{\frac{1}{\sqrt{n}}} = \lim_{n \to \infty} 3|x| \sqrt{\frac{1+\frac{1}{n}}{1+\frac{2}{n}}} = 3|x|$$

- Ratio Test: it converges if 3|x| < 1 and diverges if 3|x| > 1.
- So it converges if $|x| < \frac{1}{3}$ and diverges if $|x| > \frac{1}{3}$.

Example

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-3)^{n+1} x^{n+1}}{\sqrt{n+2}} \cdot \frac{\sqrt{n+1}}{(-3)^n x^n} \right| \\
= \lim_{n \to \infty} 3|x| \sqrt{\frac{n+1}{n+2}} \cdot \frac{\frac{1}{\sqrt{n}}}{\frac{1}{\sqrt{n}}} = \lim_{n \to \infty} 3|x| \sqrt{\frac{1+\frac{1}{n}}{1+\frac{2}{n}}} = 3|x|$$

- Ratio Test: it converges if 3|x| < 1 and diverges if 3|x| > 1.
- So it converges if $|x| < \frac{1}{3}$ and diverges if $|x| > \frac{1}{3}$.
- Therefore $R = \frac{1}{3}$.

Example

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-3)^{n+1} x^{n+1}}{\sqrt{n+2}} \cdot \frac{\sqrt{n+1}}{(-3)^n x^n} \right| \\
= \lim_{n \to \infty} 3|x| \sqrt{\frac{n+1}{n+2}} \cdot \frac{\frac{1}{\sqrt{n}}}{\frac{1}{\sqrt{n}}} = \lim_{n \to \infty} 3|x| \sqrt{\frac{1+\frac{1}{n}}{1+\frac{2}{n}}} = 3|x|$$

- Ratio Test: it converges if 3|x| < 1 and diverges if 3|x| > 1.
- So it converges if $|x| < \frac{1}{3}$ and diverges if $|x| > \frac{1}{3}$.
- Therefore $R = \frac{1}{3}$.
- If we use $x = \frac{1}{3}$, we get $\sum_{n=0}^{\infty} \frac{(-1)^n}{\sqrt{n+1}}$, which is
- If we use $x = -\frac{1}{3}$, we get $\sum_{n=0}^{\infty} \frac{1}{\sqrt{n+1}}$, which is

Example

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-3)^{n+1} x^{n+1}}{\sqrt{n+2}} \cdot \frac{\sqrt{n+1}}{(-3)^n x^n} \right| \\
= \lim_{n \to \infty} 3|x| \sqrt{\frac{n+1}{n+2}} \cdot \frac{\frac{1}{\sqrt{n}}}{\frac{1}{\sqrt{n}}} = \lim_{n \to \infty} 3|x| \sqrt{\frac{1+\frac{1}{n}}{1+\frac{2}{n}}} = 3|x|$$

- Ratio Test: it converges if 3|x| < 1 and diverges if 3|x| > 1.
- So it converges if $|x| < \frac{1}{3}$ and diverges if $|x| > \frac{1}{3}$.
- Therefore $R = \frac{1}{3}$.
- If we use $x = \frac{1}{3}$, we get $\sum_{n=0}^{\infty} \frac{(-1)^n}{\sqrt{n+1}}$, which is convergent.
- If we use $x = -\frac{1}{3}$, we get $\sum_{n=0}^{\infty} \frac{1}{\sqrt{n+1}}$, which is

Example

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-3)^{n+1} x^{n+1}}{\sqrt{n+2}} \cdot \frac{\sqrt{n+1}}{(-3)^n x^n} \right| \\
= \lim_{n \to \infty} 3|x| \sqrt{\frac{n+1}{n+2}} \cdot \frac{\frac{1}{\sqrt{n}}}{\frac{1}{\sqrt{n}}} = \lim_{n \to \infty} 3|x| \sqrt{\frac{1+\frac{1}{n}}{1+\frac{2}{n}}} = 3|x|$$

- Ratio Test: it converges if 3|x| < 1 and diverges if 3|x| > 1.
- So it converges if $|x| < \frac{1}{3}$ and diverges if $|x| > \frac{1}{3}$.
- Therefore $R = \frac{1}{3}$.
- If we use $x = \frac{1}{3}$, we get $\sum_{n=0}^{\infty} \frac{(-1)^n}{\sqrt{n+1}}$, which is convergent.
- If we use $x = -\frac{1}{3}$, we get $\sum_{n=0}^{\infty} \frac{1}{\sqrt{n+1}}$, which is

Example

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-3)^{n+1} x^{n+1}}{\sqrt{n+2}} \cdot \frac{\sqrt{n+1}}{(-3)^n x^n} \right| \\
= \lim_{n \to \infty} 3|x| \sqrt{\frac{n+1}{n+2}} \cdot \frac{\frac{1}{\sqrt{n}}}{\frac{1}{\sqrt{n}}} = \lim_{n \to \infty} 3|x| \sqrt{\frac{1+\frac{1}{n}}{1+\frac{2}{n}}} = 3|x|$$

- Ratio Test: it converges if 3|x| < 1 and diverges if 3|x| > 1.
- So it converges if $|x| < \frac{1}{3}$ and diverges if $|x| > \frac{1}{3}$.
- Therefore $R = \frac{1}{3}$.
- If we use $x = \frac{1}{3}$, we get $\sum_{n=0}^{\infty} \frac{(-1)^n}{\sqrt{n+1}}$, which is convergent.
- If we use $x = -\frac{1}{3}$, we get $\sum_{n=0}^{\infty} \frac{1}{\sqrt{n+1}}$, which is divergent.

Example

Find the radius of convergence and interval of convergence of the series $\sum_{n=0}^{\infty} \frac{(-3)^n x^n}{\sqrt{n+1}}$.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-3)^{n+1} x^{n+1}}{\sqrt{n+2}} \cdot \frac{\sqrt{n+1}}{(-3)^n x^n} \right|$$

$$= \lim_{n \to \infty} 3|x| \sqrt{\frac{n+1}{n+2}} \cdot \frac{\frac{1}{\sqrt{n}}}{\frac{1}{\sqrt{n}}} = \lim_{n \to \infty} 3|x| \sqrt{\frac{1+\frac{1}{n}}{1+\frac{2}{n}}} = 3|x|$$

- Ratio Test: it converges if 3|x| < 1 and diverges if 3|x| > 1.
- So it converges if $|x| < \frac{1}{3}$ and diverges if $|x| > \frac{1}{3}$.
- Therefore $R = \frac{1}{3}$.
- If we use $x = \frac{1}{3}$, we get $\sum_{n=0}^{\infty} \frac{(-1)^n}{\sqrt{n+1}}$, which is convergent.
- If we use $x = -\frac{1}{3}$, we get $\sum_{n=0}^{\infty} \frac{1}{\sqrt{n+1}}$, which is divergent.
- The interval of convergence is $(-\frac{1}{3}, \frac{1}{3}]$.

Todor Miley Power series, full lecture 2019

$$g(x) = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \cdots$$

$$g(x) = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \cdots$$

• This is a geometric series with a = ? and r = ?

$$g(x) = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \cdots$$

• This is a geometric series with a = 1 and r = ?

$$g(x) = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \cdots$$

• This is a geometric series with a = 1 and r = ?

$$g(x) = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \cdots$$

• This is a geometric series with a = 1 and r = x.

$$g(x) = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \cdots$$

- This is a geometric series with a = 1 and r = x.
- It is convergent if ? and divergent otherwise.

$$g(x) = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \cdots$$

- This is a geometric series with a = 1 and r = x.
- It is convergent if |x| < 1 and divergent otherwise.

$$g(x) = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \cdots$$

- This is a geometric series with a = 1 and r = x.
- It is convergent if |x| < 1 and divergent otherwise.
- If convergent, the sum is $\frac{?}{1-?}$.

$$g(x) = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \cdots$$

- This is a geometric series with a = 1 and r = x.
- It is convergent if |x| < 1 and divergent otherwise.
- If convergent, the sum is $\frac{1}{1-2}$.

$$g(x) = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \cdots$$

- This is a geometric series with a = 1 and r = x.
- It is convergent if |x| < 1 and divergent otherwise.
- If convergent, the sum is $\frac{1}{1-?}$.

$$g(x) = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \cdots$$

- This is a geometric series with a = 1 and r = x.
- It is convergent if |x| < 1 and divergent otherwise.
- If convergent, the sum is $\frac{1}{1-x}$.

$$g(x) = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \cdots$$

- This is a geometric series with a = 1 and r = x.
- It is convergent if |x| < 1 and divergent otherwise.
- If convergent, the sum is $\frac{1}{1-x}$.
- The domain of g(x) is ?

$$g(x) = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \cdots$$
 for $|x| < 1$

- This is a geometric series with a = 1 and r = x.
- It is convergent if |x| < 1 and divergent otherwise.
- If convergent, the sum is $\frac{1}{1-x}$.
- The domain of g(x) is |x| < 1.

$$g(x) = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \cdots$$

- This is a geometric series with a=1 and r=x.
- It is convergent if |x| < 1 and divergent otherwise.
- If convergent, the sum is $\frac{1}{1-x}$.
- The domain of g(x) is |x| < 1. The domain of $f(x) = \frac{1}{1-x}$ is ?

$$g(x) = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \cdots$$

- This is a geometric series with a=1 and r=x.
- It is convergent if |x| < 1 and divergent otherwise.
- If convergent, the sum is $\frac{1}{1-x}$.
- The domain of g(x) is |x| < 1.
 The domain of f(x) = 1/(1-x) is x ≠ 1.

$$g(x) = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \cdots$$

- This is a geometric series with a=1 and r=x.
- It is convergent if |x| < 1 and divergent otherwise.
- If convergent, the sum is $\frac{1}{1-y}$.
- The domain of g(x) is |x| < 1. The domain of $f(x) = \frac{1}{1-x}$ is $x \ne 1$.
- In this way $g(x) = \sum_{n=0}^{\infty} x^n$ is a new way to compute/expresses the function $f(x) = \frac{1}{1-x}$ for |x| < 1.

$$g(x) = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \cdots$$

- This is a geometric series with a = 1 and r = x.
- It is convergent if |x| < 1 and divergent otherwise.
- If convergent, the sum is $\frac{1}{1-x}$.
- The domain of g(x) is |x| < 1.
- The domain of $f(x) = \frac{1}{1-x}$ is $x \neq 1$.
- In this way $g(x) = \sum_{n=0}^{\infty} x^n$ is a new way to compute/expresses the function $f(x) = \frac{1}{1-x}$ for |x| < 1.
- Except for their domains, the functions g(x) and f(x) coincide.

$$\frac{1}{1-y} = \sum_{n=0}^{\infty} y^n = 1 + y + y^2 + y^3 + \dots \qquad \text{if \& only if} \\ |y| < 1$$

Example

$$\frac{1}{1-y} = \sum_{n=0}^{\infty} y^n = 1 + y + y^2 + y^3 + \dots \qquad \text{if \& only if} \\ |y| < 1$$

Example

$$\frac{1}{1+x^2} = \frac{1}{1-(-x^2)}$$

$$\frac{1}{1-y} = \sum_{n=0}^{\infty} y^n = 1 + y + y^2 + y^3 + \dots \qquad \text{if \& only if } |y| < 1$$

Example

$$\frac{1}{1+x^2} = \frac{1}{1-(-x^2)} = \sum_{n=0}^{\infty} (-x^2)^n$$
 if & only if $|-x^2| < 1$

$$\frac{1}{1-y} = \sum_{n=0}^{\infty} y^n = 1 + y + y^2 + y^3 + \dots \qquad \text{if \& only if} \\ |y| < 1$$

Example

$$\frac{1}{1+x^2} = \frac{1}{1-(-x^2)} = \sum_{n=0}^{\infty} (-x^2)^n \qquad | \text{if & only if } \\ = 1+(-x^2)+(-x^2)^2+(-x^2)^3+\dots$$

$$\frac{1}{1-y} = \sum_{n=0}^{\infty} y^n = 1 + y + y^2 + y^3 + \dots \qquad \text{if \& only if} \\ |y| < 1$$

Example

$$\frac{1}{1+x^2} = \frac{1}{1-(-x^2)} = \sum_{n=0}^{\infty} (-x^2)^n \qquad | \text{if & only if } \\ = 1+(-x^2)+(-x^2)^2+(-x^2)^3+\dots \\ = 1-x^2+x^4-x^6+\dots$$

$$\frac{1}{1-y} = \sum_{n=0}^{\infty} y^n = 1 + y + y^2 + y^3 + \dots \qquad \text{if \& only if} \\ |y| < 1$$

Example

$$\frac{1}{1+x^2} = \frac{1}{1-(-x^2)} = \sum_{n=0}^{\infty} (-x^2)^n \qquad | \text{if & only if } \\ = 1+(-x^2)+(-x^2)^2+(-x^2)^3+\dots \\ = 1-x^2+x^4-x^6+\dots \\ = \sum_{n=0}^{\infty} ? x^n$$

$$\frac{1}{1-y} = \sum_{n=0}^{\infty} y^n = 1 + y + y^2 + y^3 + \dots \qquad \text{if \& only if} \\ |y| < 1$$

Example

$$\frac{1}{1+x^2} = \frac{1}{1-(-x^2)} = \sum_{n=0}^{\infty} (-x^2)^n \qquad | \text{if & only if } \\ = 1+(-x^2)+(-x^2)^2+(-x^2)^3+\dots \\ = 1-x^2+x^4-x^6+\dots \\ = \sum_{n=0}^{\infty} (-1)^n x^n$$

$$\frac{1}{1-y} = \sum_{n=0}^{\infty} y^n = 1 + y + y^2 + y^3 + \dots \qquad \text{if \& only if} \\ |y| < 1$$

Example

$$\frac{1}{1+x^2} = \frac{1}{1-(-x^2)} = \sum_{n=0}^{\infty} (-x^2)^n \qquad | \text{if & only if } \\ = 1+(-x^2)+(-x^2)^2+(-x^2)^3+\dots \\ = 1-x^2+x^4-x^6+\dots \\ = \sum_{n=0}^{\infty} (-1)^n x^?$$

$$\frac{1}{1-y} = \sum_{n=0}^{\infty} y^n = 1 + y + y^2 + y^3 + \dots \qquad \text{if \& only if} \\ |y| < 1$$

Example

$$\frac{1}{1+x^2} = \frac{1}{1-(-x^2)} = \sum_{n=0}^{\infty} (-x^2)^n \qquad | \text{if & only if } \\ = 1+(-x^2)+(-x^2)^2+(-x^2)^3+\dots \\ = x^0-x^2+x^4-x^6+\dots \\ = \sum_{n=0}^{\infty} (-1)^n x^{2n}$$

$$\frac{1}{1-y} = \sum_{n=0}^{\infty} y^n = 1 + y + y^2 + y^3 + \dots \qquad \text{if \& only if } |y| < 1$$

Example

Write $\frac{1}{1+x^2}$ as a power series and find the interval of convergence.

$$\frac{1}{1+x^2} = \frac{1}{1-(-x^2)} = \sum_{n=0}^{\infty} (-x^2)^n$$
 if & only if
$$= 1+(-x^2)+(-x^2)^2+(-x^2)^3+\dots$$
$$= 1 - x^2 + x^4 - x^6 + \dots$$
$$= \sum_{n=0}^{\infty} (-1)^n x^{2n}$$

• This converges if and only if $\left| -x^2 \right| < 1$

$$\frac{1}{1-y} = \sum_{n=0}^{\infty} y^n = 1 + y + y^2 + y^3 + \dots \qquad \text{if \& only if} \\ |y| < 1$$

Example

Write $\frac{1}{1+x^2}$ as a power series and find the interval of convergence.

$$\frac{1}{1+x^2} = \frac{1}{1-(-x^2)} = \sum_{n=0}^{\infty} (-x^2)^n \qquad | \text{if & only if } \\ = 1+(-x^2)+(-x^2)^2+(-x^2)^3+\dots \\ = 1-x^2+x^4-x^6+\dots \\ = \sum_{n=0}^{\infty} (-1)^n x^{2n}$$

• This converges if and only if $\begin{vmatrix} |-x^2| < 1 \\ |x| < 1 \end{vmatrix}$.

$$\frac{1}{1-y} = \sum_{n=0}^{\infty} y^n = 1 + y + y^2 + y^3 + \dots \qquad \text{if \& only if} \\ |y| < 1$$

Example

$$\frac{1}{1+x^2} = \frac{1}{1-(-x^2)} = \sum_{n=0}^{\infty} (-x^2)^n \qquad | \text{if & only if } \\ = 1+(-x^2)+(-x^2)^2+(-x^2)^3+\dots \\ = 1-x^2+x^4-x^6+\dots \\ = \sum_{n=0}^{\infty} (-1)^n x^{2n}$$

- This converges if and only if $\begin{vmatrix} |-x^2| < 1 \\ |x| < 1 \end{vmatrix}$.
- Therefore the interval of convergence is $x \in (-1, 1)$.

$$\frac{1}{2+x} \quad = \quad \frac{1}{2\left(1+\frac{x}{2}\right)}$$

$$\frac{1}{2+x} = \frac{1}{2\left(1+\frac{x}{2}\right)}$$
$$= \frac{1}{2} \cdot \frac{1}{\left(1-\left(-\frac{x}{2}\right)\right)}$$

$$\frac{1}{2+x} = \frac{1}{2(1+\frac{x}{2})}$$

$$= \frac{1}{2} \cdot \frac{1}{(1-(-\frac{x}{2}))} = \frac{1}{2} \sum_{n=0}^{\infty} (-\frac{x}{2})^n \quad | \text{ if & only if } | -\frac{x}{2}| < 1$$

$$\frac{1}{2+x} = \frac{1}{2(1+\frac{x}{2})}$$

$$= \frac{1}{2} \cdot \frac{1}{(1-(-\frac{x}{2}))} = \frac{1}{2} \sum_{n=0}^{\infty} (-\frac{x}{2})^{n} \quad | \text{ if & only if } |-\frac{x}{2}| < 1$$

$$= \sum_{n=0}^{\infty} \frac{?}{?} ?$$

$$\frac{1}{2+x} = \frac{1}{2(1+\frac{x}{2})}$$

$$= \frac{1}{2} \cdot \frac{1}{(1-(-\frac{x}{2}))} = \frac{1}{2} \sum_{n=0}^{\infty} (-\frac{x}{2})^{n} \quad | \text{ if & only if } |-\frac{x}{2}| < 1$$

$$= \sum_{n=0}^{\infty} \frac{(-1)^{n}}{?}?$$

$$\frac{1}{2+x} = \frac{1}{2(1+\frac{x}{2})}$$

$$= \frac{1}{2} \cdot \frac{1}{(1-(-\frac{x}{2}))} = \frac{1}{2} \sum_{n=0}^{\infty} \left(-\frac{x}{2}\right)^{n} \quad \left| \begin{array}{c} \text{if & any if } \\ |-\frac{x}{2}| < 1 \end{array} \right|$$

$$= \sum_{n=0}^{\infty} \frac{(-1)^{n}}{?}$$

$$\frac{1}{2+x} = \frac{1}{2(1+\frac{x}{2})}$$

$$= \frac{1}{2} \cdot \frac{1}{(1-(-\frac{x}{2}))} = \frac{1}{2} \sum_{n=0}^{\infty} \left(-\frac{x}{2}\right)^{n} \quad \left| \begin{array}{c} \text{if & any if } \\ |-\frac{x}{2}| < 1 \end{array} \right|$$

$$= \sum_{n=0}^{\infty} \frac{(-1)^{n}}{2} x^{n}$$

$$\frac{1}{2+x} = \frac{1}{2(1+\frac{x}{2})}$$

$$= \frac{1}{2} \cdot \frac{1}{(1-(-\frac{x}{2}))} = \frac{1}{2} \sum_{n=0}^{\infty} (-\frac{x}{2})^n \quad | \text{ if & only if } | -\frac{x}{2}| < 1$$

$$= \sum_{n=0}^{\infty} \frac{(-1)^n}{?} x^n$$

$$\frac{1}{2+x} = \frac{1}{2(1+\frac{x}{2})}$$

$$= \frac{1}{2} \cdot \frac{1}{(1-(-\frac{x}{2}))} = \frac{1}{2} \sum_{n=0}^{\infty} \left(-\frac{x}{2}\right)^n \quad \left| \begin{array}{c} \text{if & sonly if } \\ |-\frac{x}{2}| < 1 \end{array} \right|$$

$$= \sum_{n=0}^{\infty} \frac{(-1)^n}{2^{n+1}} x^n$$

$$\frac{1}{2+x} = \frac{1}{2(1+\frac{x}{2})}$$

$$= \frac{1}{2} \cdot \frac{1}{(1-(-\frac{x}{2}))} = \frac{1}{2} \sum_{n=0}^{\infty} (-\frac{x}{2})^n \quad | \text{ if & only if } | -\frac{x}{2}| < 1$$

$$= \sum_{n=0}^{\infty} \frac{(-1)^n}{2^{n+1}} x^n$$

$$= \frac{1}{2} - \frac{x}{4} + \frac{x^2}{8} - \frac{x^3}{16} + \dots$$

Find a power series representation for $\frac{1}{x+2}$.

$$\frac{1}{2+x} = \frac{1}{2\left(1+\frac{x}{2}\right)}$$

$$= \frac{1}{2} \cdot \frac{1}{\left(1-\left(-\frac{x}{2}\right)\right)} = \frac{1}{2} \sum_{n=0}^{\infty} \left(-\frac{x}{2}\right)^n \quad \left| \begin{array}{c} \text{if & 6 only if } \\ \left|-\frac{x}{2}\right| < 1 \end{array} \right|$$

$$= \sum_{n=0}^{\infty} \frac{(-1)^n}{2^{n+1}} x^n$$

$$= \frac{1}{2} - \frac{x}{4} + \frac{x^2}{8} - \frac{x^3}{16} + \dots$$

To find interval of convergence:

Find a power series representation for $\frac{1}{x+2}$.

$$\frac{1}{2+x} = \frac{1}{2\left(1+\frac{x}{2}\right)}$$

$$= \frac{1}{2} \cdot \frac{1}{\left(1-\left(-\frac{x}{2}\right)\right)} = \frac{1}{2} \sum_{n=0}^{\infty} \left(-\frac{x}{2}\right)^{n} \quad \left| \begin{array}{c} \text{if & enly if } \\ \left|-\frac{x}{2}\right| < 1 \end{array} \right|$$

$$= \sum_{n=0}^{\infty} \frac{\left(-1\right)^{n}}{2^{n+1}} x^{n}$$

$$= \frac{1}{2} - \frac{x}{4} + \frac{x^{2}}{8} - \frac{x^{3}}{16} + \dots$$

To find interval of convergence:

$$\left|-\frac{x}{2}\right| < 1$$

Find a power series representation for $\frac{1}{x+2}$.

$$\frac{1}{2+x} = \frac{1}{2\left(1+\frac{x}{2}\right)}$$

$$= \frac{1}{2} \cdot \frac{1}{\left(1-\left(-\frac{x}{2}\right)\right)} = \frac{1}{2} \sum_{n=0}^{\infty} \left(-\frac{x}{2}\right)^n \quad \left| \begin{array}{c} \text{if & & only if } \\ \left|-\frac{x}{2}\right| < 1 \end{array} \right|$$

$$= \sum_{n=0}^{\infty} \frac{\left(-1\right)^n}{2^{n+1}} x^n$$

$$= \frac{1}{2} - \frac{x}{4} + \frac{x^2}{8} - \frac{x^3}{16} + \dots$$
Find interval of some recovery

To find interval of convergence:

$$\left| -\frac{x}{2} \right| < 1$$

$$|x| < 2$$

Find a power series representation for $\frac{1}{x+2}$.

$$\frac{1}{2+x} = \frac{1}{2\left(1+\frac{x}{2}\right)}$$

$$= \frac{1}{2} \cdot \frac{1}{\left(1-\left(-\frac{x}{2}\right)\right)} = \frac{1}{2} \sum_{n=0}^{\infty} \left(-\frac{x}{2}\right)^{n} \quad \left| \begin{array}{c} \text{if & any if } \\ \left|-\frac{x}{2}\right| < 1 \end{array} \right|$$

$$= \sum_{n=0}^{\infty} \frac{\left(-1\right)^{n}}{2^{n+1}} x^{n}$$

$$= \frac{1}{2} - \frac{x}{4} + \frac{x^{2}}{8} - \frac{x^{3}}{16} + \dots$$

To find interval of convergence:

$$\left|-\frac{x}{2}\right| < 1$$

$$\frac{|x|}{|x|} < 2$$

Therefore the interval of convergence is $x \in (-2, 2)$.

Find a power series representation for $\frac{x^3}{x+2}$.

$$\frac{x^3}{x+2} = x^3 \cdot \frac{1}{x+2}$$

Find a power series representation for $\frac{x^3}{x+2}$.

$$\frac{x^3}{x+2} = x^3 \cdot \frac{1}{x+2}$$
$$= x^3$$
?

Find a power series representation for $\frac{x^3}{x+2}$.

$$\frac{x^{3}}{x+2} = x^{3} \cdot \frac{1}{x+2}$$

$$= x^{3} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{n+1}} x^{n}$$

if & only if |x| < 2

Find a power series representation for $\frac{x^3}{x+2}$.

$$\frac{x^{3}}{x+2} = x^{3} \cdot \frac{1}{x+2}$$

$$= x^{3} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{n+1}} x^{n}$$

$$= \sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{n+1}} ?$$

if & only if |x| < 2

Find a power series representation for $\frac{x^3}{x+2}$.

$$\frac{x^{3}}{x+2} = x^{3} \cdot \frac{1}{x+2}$$

$$= x^{3} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{n+1}} x^{n}$$

$$= \sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{n+1}} x^{n+3}$$

| if & only if |x| < 2

Find a power series representation for $\frac{x^3}{x+2}$.

$$\frac{x^3}{x+2} = x^3 \cdot \frac{1}{x+2}$$

$$= x^3 \sum_{n=0}^{\infty} \frac{(-1)^n}{2^{n+1}} x^n$$

$$= \sum_{n=0}^{\infty} \frac{(-1)^n}{2^{n+1}} x^{n+3}$$

$$= \frac{x^3}{2} - \frac{x^4}{4} + \frac{x^5}{8} - \frac{x^6}{16} + \cdots$$

if & only if |x| < 2

Find a power series representation for $\frac{x^3}{x+2}$.

$$\frac{x^3}{x+2} = x^3 \cdot \frac{1}{x+2}$$

$$= x^3 \sum_{n=0}^{\infty} \frac{(-1)^n}{2^{n+1}} x^n$$

$$= \sum_{n=0}^{\infty} \frac{(-1)^n}{2^{n+1}} x^{n+3}$$

$$= \frac{x^3}{2} - \frac{x^4}{4} + \frac{x^5}{8} - \frac{x^6}{16} + \cdots$$

• Another way to write this is $\frac{x^3}{x+2} = \sum_{n=3}^{\infty} \frac{(-1)^{n-1}}{2^{n-2}} x^n.$

Find a power series representation for $\frac{x^3}{x+2}$.

$$\frac{x^3}{x+2} = x^3 \cdot \frac{1}{x+2}$$

$$= x^3 \sum_{n=0}^{\infty} \frac{(-1)^n}{2^{n+1}} x^n$$

$$= \sum_{n=0}^{\infty} \frac{(-1)^n}{2^{n+1}} x^{n+3}$$

$$= \frac{x^3}{2} - \frac{x^4}{4} + \frac{x^5}{8} - \frac{x^6}{16} + \cdots$$

- Another way to write this is $\frac{x^3}{x+2} = \sum_{n=3}^{\infty} \frac{(-1)^{n-1}}{2^{n-2}} x^n$.
- The interval of convergence is again $x \in (-2, 2)$.

Differentiation and Integration of Power Series

Theorem (Differentiation and Integration of Power Series)

If a power series $\sum c_n(x-a)^n$ has radius of convergence R>0, then the function f defined by

$$f(x) = c_0 + c_1(x-a) + c_2(x-a)^2 + c_3(x-a)^3 + \cdots = \sum_{n=0}^{\infty} c_n(x-a)^n$$

is differentiable (and therefore continuous) on the interval (a - R, a + R) and

•
$$f'(x) = c_1 + 2c_2(x-a) + 3c_3(x-a)^2 + \cdots = \sum_{n=1}^{\infty} nc_n(x-a)^{n-1}$$
.

$$\int f(x) dx = C + c_0(x-a) + c_1 \frac{(x-a)^2}{2} + c_2 \frac{(x-a)^3}{3} + \cdots$$

$$= C + \sum_{n=0}^{\infty} c_n \frac{(x-a)^{n+1}}{n+1}.$$

- This is called term-by-term differentiation and integration.
- Another way of saying it is

$$\frac{d}{dx} \left[\sum_{n=0}^{\infty} c_n (x-a)^n \right] = \sum_{n=0}^{\infty} \frac{d}{dx} \left[c_n (x-a)^n \right]$$

$$\int \left[\sum_{n=0}^{\infty} c_n (x-a)^n \right] dx = \sum_{n=0}^{\infty} \int \left[c_n (x-a)^n \right] dx$$

 We can treat power series like polynomials with infinitely many terms.

$$J_0(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{2^{2n} (n!)^2}$$

$$J_0(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{2^{2n} (n!)^2}$$

$$J'_0(x) = \sum_{n=0}^{\infty} \frac{d}{dx} \left(\frac{(-1)^n x^{2n}}{2^{2n} (n!)^2} \right)$$

$$J_0(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{2^{2n} (n!)^2}$$

$$J_0'(x) = \sum_{n=0}^{\infty} \frac{d}{dx} \left(\frac{(-1)^n x^{2n}}{2^{2n} (n!)^2} \right)$$

$$= \sum_{n=0}^{\infty} \frac{(-1)^n 2n x^{2n-1}}{2^{2n} (n!)^2}$$

Find the derivative of the Bessel function

$$J_0(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{2^{2n} (n!)^2}$$

$$J_0'(x) = \sum_{n=0}^{\infty} \frac{d}{dx} \left(\frac{(-1)^n x^{2n}}{2^{2n} (n!)^2} \right)$$

$$= \sum_{n=0}^{\infty} \frac{(-1)^n 2n x^{2n-1}}{2^{2n} (n!)^2}$$

• $J_0(x)$ is defined

Find the derivative of the Bessel function

$$J_0(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{2^{2n} (n!)^2}$$

$$J_0'(x) = \sum_{n=0}^{\infty} \frac{d}{dx} \left(\frac{(-1)^n x^{2n}}{2^{2n} (n!)^2} \right)$$

$$= \sum_{n=0}^{\infty} \frac{(-1)^n 2n x^{2n-1}}{2^{2n} (n!)^2}$$

• $J_0(x)$ is defined everywhere.

$$J_0(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{2^{2n} (n!)^2}$$

$$J_0'(x) = \sum_{n=0}^{\infty} \frac{d}{dx} \left(\frac{(-1)^n x^{2n}}{2^{2n} (n!)^2} \right)$$

$$= \sum_{n=0}^{\infty} \frac{(-1)^n 2n x^{2n-1}}{2^{2n} (n!)^2}$$

- $J_0(x)$ is defined everywhere.
- Therefore its derivative $J'_0(x)$ is also defined everywhere.

$$ln(1-x)$$

Find a power series for ln(1 - x) and state its radius of convergence.

$$\ln(1-x) = \int d(\ln(1-x))$$

up to const.

$$\ln(1-x) = \int \frac{d(\ln(1-x))}{dx} = \int (\ln(1-x))^{x} dx$$
 up to const.

$$\ln(1-x) = \int d(\ln(1-x)) = \int (\ln(1-x))'dx \quad | \text{ up to const.}$$

$$= \int \mathbf{?} \quad dx$$

$$\ln(1-x) = \int d(\ln(1-x)) = \int (\ln(1-x))'dx \quad | \text{ up to const.}$$
$$= \int \left(-\frac{1}{1-x}\right)dx$$

$$\ln(1-x) = \int d(\ln(1-x)) = \int (\ln(1-x))'dx \quad | \text{ up to const.}$$

$$= \int \left(-\frac{1}{1-x}\right)dx$$

$$= -\int \left(\mathbf{?}\right)$$

$$\ln(1-x) = \int d(\ln(1-x)) = \int (\ln(1-x))'dx \quad \text{up to const.}$$

$$= \int \left(-\frac{1}{1-x}\right)dx$$

$$= -\int \left(?\right) dx \quad \text{for } |x| < 1$$

$$\ln(1-x) = \int d(\ln(1-x)) = \int (\ln(1-x))'dx \quad | \text{ up to const.}$$

$$= \int \left(-\frac{1}{1-x}\right)dx$$

$$= -\int \left(1+x+x^2+x^3+\cdots\right)dx \quad | \text{ for } |x| < 1$$

$$\ln(1-x) = \int d(\ln(1-x)) = \int (\ln(1-x))' dx \quad | \text{ up to const.}$$

$$= \int \left(-\frac{1}{1-x}\right) dx$$

$$= -\int \left(1+x+x^2+x^3+\cdots\right) dx \quad | \text{ for } |x| < 1$$

$$= -\left(x+\frac{x^2}{2}+\frac{x^3}{3}+\frac{x^4}{4}+\cdots\right)$$

$$\ln(1-x) = \int d(\ln(1-x)) = \int (\ln(1-x))' dx \quad | \text{ up to const.}$$

$$= \int \left(-\frac{1}{1-x}\right) dx$$

$$= -\int \left(1+x+x^2+x^3+\cdots\right) dx \quad | \text{ for } |x| < 1$$

$$= -\left(x+\frac{x^2}{2}+\frac{x^3}{3}+\frac{x^4}{4}+\cdots\right)$$

$$\ln(1-x) = \int d(\ln(1-x)) = \int (\ln(1-x))' dx \quad | \text{ up to const.}$$

$$= \int \left(-\frac{1}{1-x}\right) dx$$

$$= -\int \left(1+x+x^2+x^3+\cdots\right) dx \quad | \text{ for } |x| < 1$$

$$= -\left(x+\frac{x^2}{2}+\frac{x^3}{3}+\frac{x^4}{4}+\cdots\right)$$

$$\ln(1-x) = \int d(\ln(1-x)) = \int (\ln(1-x))'dx \quad | \text{ up to const.}$$

$$= \int \left(-\frac{1}{1-x}\right)dx$$

$$= -\int \left(1+x+x^2+x^3+\cdots\right)dx \quad | \text{ for } |x| < 1$$

$$= -\left(x+\frac{x^2}{2}+\frac{x^3}{3}+\frac{x^4}{4}+\cdots\right)$$

$$\ln(1-x) = \int d(\ln(1-x)) = \int (\ln(1-x))' dx \quad | \text{ up to const.}$$

$$= \int \left(-\frac{1}{1-x}\right) dx$$

$$= -\int \left(1+x+x^2+x^3+\cdots\right) dx \quad | \text{ for } |x| < 1$$

$$= -\left(x+\frac{x^2}{2}+\frac{x^3}{3}+\frac{x^4}{4}+\cdots\right) + C$$

$$\ln(1-x) = \int d(\ln(1-x)) = \int (\ln(1-x))' dx \quad | \text{ up to const.}$$

$$= \int \left(-\frac{1}{1-x}\right) dx$$

$$= -\int \left(1+x+x^2+x^3+\cdots\right) dx \quad | \text{ for } |x| < 1$$

$$= -\left(x+\frac{x^2}{2}+\frac{x^3}{3}+\frac{x^4}{4}+\cdots\right) + C$$

$$= C - \sum_{n=1}^{\infty} ?$$

$$\ln(1-x) = \int d(\ln(1-x)) = \int (\ln(1-x))' dx \quad | \text{ up to const.}$$

$$= \int \left(-\frac{1}{1-x}\right) dx$$

$$= -\int \left(1+x+x^2+x^3+\cdots\right) dx \quad | \text{ for } |x| < 1$$

$$= -\left(x+\frac{x^2}{2}+\frac{x^3}{3}+\frac{x^4}{4}+\cdots\right) + C$$

$$= C - \sum_{n=1}^{\infty} ?$$

$$\ln(1-x) = \int d(\ln(1-x)) = \int (\ln(1-x))' dx \quad \text{up to const.}$$

$$= \int \left(-\frac{1}{1-x}\right) dx$$

$$= -\int \left(1+x+x^2+x^3+\cdots\right) dx \quad \text{for } |x| < 1$$

$$= -\left(x+\frac{x^2}{2}+\frac{x^3}{3}+\frac{x^4}{4}+\cdots\right) + C$$

$$= C - \sum_{n=1}^{\infty} \frac{x^n}{n}$$

$$\ln(1-x) = \int d(\ln(1-x)) = \int (\ln(1-x))'dx \quad | \text{ up to const.}$$

$$= \int \left(-\frac{1}{1-x}\right)dx$$

$$= -\int \left(1+x+x^2+x^3+\cdots\right)dx \quad | \text{ for } |x| < 1$$

$$= -\left(x+\frac{x^2}{2}+\frac{x^3}{3}+\frac{x^4}{4}+\cdots\right)+C$$

$$= C-\sum_{n=1}^{\infty} \frac{x^n}{n}$$
• To find C , plug in $x=0$: $C=$?

$$\ln(1-x) = \int d(\ln(1-x)) = \int (\ln(1-x))'dx \quad | \text{ up to const.}$$

$$= \int \left(-\frac{1}{1-x}\right)dx$$

$$= -\int \left(1+x+x^2+x^3+\cdots\right)dx \quad | \text{ for } |x| < 1$$

$$= -\left(x+\frac{x^2}{2}+\frac{x^3}{3}+\frac{x^4}{4}+\cdots\right)+C$$

$$= C-\sum_{n=1}^{\infty} \frac{x^n}{n}$$
• To find C , plug in $x=0$: $C=0$.

$$\ln(1-x) = \int d(\ln(1-x)) = \int (\ln(1-x))'dx \quad \text{up to const.}$$

$$= \int \left(-\frac{1}{1-x}\right)dx$$

$$= -\int \left(1+x+x^2+x^3+\cdots\right)dx \quad \text{for } |x| < 1$$

$$= -\left(x+\frac{x^2}{2}+\frac{x^3}{3}+\frac{x^4}{4}+\cdots\right)+C$$

$$= C-\sum_{n=1}^{\infty} \frac{x^n}{n}$$

- To find C, plug in $\stackrel{n=1}{x} = 0$: C = 0.
- Therefore the theorem on integrating power series implies that

$$ln(1-x) = -\sum_{n=1}^{\infty} \frac{x^n}{n}$$
, for $|x| < 1$.

Find a power series for ln(1 - x) and state its radius of convergence.

$$\ln(1-x) = \int d(\ln(1-x)) = \int (\ln(1-x))'dx \quad | \text{ up to const.}$$

$$= \int \left(-\frac{1}{1-x}\right)dx$$

$$= -\int \left(1+x+x^2+x^3+\cdots\right)dx \quad | \text{ for } |x| < 1$$

$$= -\left(x+\frac{x^2}{2}+\frac{x^3}{3}+\frac{x^4}{4}+\cdots\right)+C$$

$$= C-\sum_{n=1}^{\infty} \frac{x^n}{n}$$

- To find C, plug in $\stackrel{n=1}{x} = 0$: C = 0.
- Therefore the theorem on integrating power series implies that

$$ln(1-x) = -\sum_{n=1}^{\infty} \frac{x^n}{n}$$
, for $|x| < 1$.

• By the same theorem, the radius of convergence remains R = 1.

Find a power series for arctan *x* and state its radius of convergence.

$$arctan(x) = \int d(arctan x)$$

up to const.

Find a power series for arctan x and state its radius of convergence.

$$\arctan(x) = \int d(\arctan x) = \int (\arctan x)' dx$$

up to const.

$$\arctan(x) = \int d(\arctan x) = \int (\arctan x)' dx$$
 up to const.
=
$$\int \left(? \right) dx$$

$$\arctan(x) = \int d(\arctan x) = \int (\arctan x)' dx$$
 up to const.
$$= \int \left(\frac{1}{1+x^2}\right) dx$$

$$\arctan(x) = \int d(\arctan x) = \int (\arctan x)' dx \qquad \text{up to const.}$$

$$= \int \left(\frac{1}{1+x^2}\right) dx = \int \left(\frac{1}{1-(-x^2)}\right) dx$$

$$\arctan(x) = \int d(\arctan x) = \int (\arctan x)' dx \qquad \text{up to const.}$$

$$= \int \left(\frac{1}{1+x^2}\right) dx = \int \left(\frac{1}{1-(-x^2)}\right) dx$$

$$= \int \left(\mathbf{?}\right) dx \qquad \text{for } |x| < 1$$

$$\arctan(x) = \int d(\arctan x) = \int (\arctan x)' dx \qquad \text{up to const.}$$

$$= \int \left(\frac{1}{1+x^2}\right) dx = \int \left(\frac{1}{1-(-x^2)}\right) dx$$

$$= \int \left(1-x^2+x^4-x^6+\cdots\right) dx \qquad \text{for } |x| < 1$$

$$\arctan(x) = \int d(\arctan x) = \int (\arctan x)' dx \qquad \text{up to const.}$$

$$= \int \left(\frac{1}{1+x^2}\right) dx = \int \left(\frac{1}{1-(-x^2)}\right) dx$$

$$= \int \left(1-x^2+x^4-x^6+\cdots\right) dx \qquad \text{for } |x| < 1$$

$$= \left(x-\frac{x^3}{3}+\frac{x^5}{5}-\frac{x^7}{7}+\cdots\right)$$

$$\arctan(x) = \int d(\arctan x) = \int (\arctan x)' dx \qquad \text{up to const.}$$

$$= \int \left(\frac{1}{1+x^2}\right) dx = \int \left(\frac{1}{1-(-x^2)}\right) dx$$

$$= \int \left(1-x^2+x^4-x^6+\cdots\right) dx \qquad \text{for } |x| < 1$$

$$= \left(x-\frac{x^3}{3}+\frac{x^5}{5}-\frac{x^7}{7}+\cdots\right)$$

$$\arctan(x) = \int d(\arctan x) = \int (\arctan x)' dx \qquad \text{up to const.}$$

$$= \int \left(\frac{1}{1+x^2}\right) dx = \int \left(\frac{1}{1-(-x^2)}\right) dx$$

$$= \int \left(1-x^2+x^4-x^6+\cdots\right) dx \qquad \text{for } |x| < 1$$

$$= \left(x-\frac{x^3}{3}+\frac{x^5}{5}-\frac{x^7}{7}+\cdots\right)$$

$$\arctan(x) = \int d(\arctan x) = \int (\arctan x)' dx \qquad \text{up to const.}$$

$$= \int \left(\frac{1}{1+x^2}\right) dx = \int \left(\frac{1}{1-(-x^2)}\right) dx$$

$$= \int \left(1-x^2+x^4-x^6+\cdots\right) dx \qquad \text{for } |x| < 1$$

$$= \left(x-\frac{x^3}{3}+\frac{x^5}{5}-\frac{x^7}{7}+\cdots\right)$$

$$\arctan(x) = \int d(\arctan x) = \int (\arctan x)' dx \qquad \text{up to const.}$$

$$= \int \left(\frac{1}{1+x^2}\right) dx = \int \left(\frac{1}{1-(-x^2)}\right) dx$$

$$= \int \left(1-x^2+x^4-x^6+\cdots\right) dx \qquad \text{for } |x| < 1$$

$$= \left(x-\frac{x^3}{3}+\frac{x^5}{5}-\frac{x^7}{7}+\cdots\right) + C$$

arctan(x) =
$$\int d(\arctan x) = \int (\arctan x)' dx$$
 | up to const.
=
$$\int \left(\frac{1}{1+x^2}\right) dx = \int \left(\frac{1}{1-(-x^2)}\right) dx$$

=
$$\int \left(1-x^2+x^4-x^6+\cdots\right) dx$$
 | for $|x| < 1$
=
$$\left(x-\frac{x^3}{3}+\frac{x^5}{5}-\frac{x^7}{7}+\cdots\right) + C$$

=
$$C + \sum_{n=0}^{\infty} ?$$

$$\arctan(x) = \int d(\arctan x) = \int (\arctan x)' dx \qquad \text{up to const.}$$

$$= \int \left(\frac{1}{1+x^2}\right) dx = \int \left(\frac{1}{1-(-x^2)}\right) dx$$

$$= \int \left(1-x^2+x^4-x^6+\cdots\right) dx \qquad \text{for } |x| < 1$$

$$= \left(x-\frac{x^3}{3}+\frac{x^5}{5}-\frac{x^7}{7}+\cdots\right) + C$$

$$= C + \sum_{n=0}^{\infty} ?$$

$$\operatorname{arctan}(x) = \int d(\operatorname{arctan} x) = \int (\operatorname{arctan} x)' dx \qquad \text{up to const.}$$

$$= \int \left(\frac{1}{1+x^2}\right) dx = \int \left(\frac{1}{1-(-x^2)}\right) dx$$

$$= \int \left(1-x^2+x^4-x^6+\cdots\right) dx \qquad \text{for } |x| < 1$$

$$= \left(x-\frac{x^3}{3}+\frac{x^5}{5}-\frac{x^7}{7}+\cdots\right) + C$$

$$= C + \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$$

Find a power series for arctan x and state its radius of convergence.

$$\operatorname{arctan}(x) = \int d(\operatorname{arctan} x) = \int (\operatorname{arctan} x)' dx \qquad \text{up to const.}$$

$$= \int \left(\frac{1}{1+x^2}\right) dx = \int \left(\frac{1}{1-(-x^2)}\right) dx$$

$$= \int \left(1-x^2+x^4-x^6+\cdots\right) dx \qquad \text{for } |x| < 1$$

$$= \left(x-\frac{x^3}{3}+\frac{x^5}{5}-\frac{x^7}{7}+\cdots\right) + C$$

$$= C + \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$$

• To find C, plug $\lim_{x \to 0}^{n=0} x = 0$: C = ?

Find a power series for arctan x and state its radius of convergence.

$$\operatorname{arctan}(x) = \int d(\operatorname{arctan} x) = \int (\operatorname{arctan} x)' dx \qquad | \text{up to const.}$$

$$= \int \left(\frac{1}{1+x^2}\right) dx = \int \left(\frac{1}{1-(-x^2)}\right) dx$$

$$= \int \left(1-x^2+x^4-x^6+\cdots\right) dx \qquad | \text{for } |x| < 1$$

$$= \left(x-\frac{x^3}{3}+\frac{x^5}{5}-\frac{x^7}{7}+\cdots\right) + C$$

$$= C + \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$$

• To find C, plug $\lim_{x \to 0}^{n=0} C = 0$.

$$\operatorname{arctan}(x) = \int d(\operatorname{arctan} x) = \int (\operatorname{arctan} x)' dx \qquad | \text{ up to const.}$$

$$= \int \left(\frac{1}{1+x^2}\right) dx = \int \left(\frac{1}{1-(-x^2)}\right) dx$$

$$= \int \left(1-x^2+x^4-x^6+\cdots\right) dx \qquad | \text{ for } |x| < 1$$

$$= \left(x-\frac{x^3}{3}+\frac{x^5}{5}-\frac{x^7}{7}+\cdots\right) + C$$

$$= C + \sum_{n=1}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$$

- To find C, plug $\lim_{x \to 0}^{n=0} x = 0$: C = 0.
- Therefore the theorem on integrating power series implies that $\arctan x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$, for |x| < 1.

Find a power series for arctan x and state its radius of convergence.

$$\arctan(x) = \int d(\arctan x) = \int (\arctan x)' dx \qquad \text{up to const.}$$

$$= \int \left(\frac{1}{1+x^2}\right) dx = \int \left(\frac{1}{1-(-x^2)}\right) dx$$

$$= \int \left(1-x^2+x^4-x^6+\cdots\right) dx \qquad \text{for } |x| < 1$$

$$= \left(x-\frac{x^3}{3}+\frac{x^5}{5}-\frac{x^7}{7}+\cdots\right) + C$$

$$= C + \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$$

- To find C, plug in x = 0: C = 0.
- Therefore the theorem on integrating power series implies that $\arctan x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$, for |x| < 1.
- By the same theorem, the radius of convergence remains R = 1.

Todor Miley Power series, full lecture 2019

- Let *f* be a function that can be represented by a power series:
- $f(x) = c_0 + c_1(x-a) + c_2(x-a)^2 + c_3(x-a)^3 + \cdots$

- Let *f* be a function that can be represented by a power series:
- $f(x) = c_0 + c_1(x-a) + c_2(x-a)^2 + c_3(x-a)^3 + \cdots$
- f(a) =

- Let *f* be a function that can be represented by a power series:
- $f(x) = c_0 + c_1(x-a) + c_2(x-a)^2 + c_3(x-a)^3 + \cdots$
- $f(a) = c_0$.

- Let *f* be a function that can be represented by a power series:
- $f(x) = c_0 + c_1(x-a) + c_2(x-a)^2 + c_3(x-a)^3 + \cdots$
- $f(a) = c_0$.
- $f'(x) = c_1 + 2c_2(x-a) + 3c_3(x-a)^2 + 4c_4(x-a)^3 + \cdots$

- Let *f* be a function that can be represented by a power series:
- $f(x) = c_0 + c_1(x-a) + c_2(x-a)^2 + c_3(x-a)^3 + \cdots$
- $f(a) = c_0$.
- $f'(x) = c_1 + 2c_2(x-a) + 3c_3(x-a)^2 + 4c_4(x-a)^3 + \cdots$
- f'(a) =

- Let *f* be a function that can be represented by a power series:
- $f(x) = c_0 + c_1(x-a) + c_2(x-a)^2 + c_3(x-a)^3 + \cdots$
- $f(a) = c_0$.
- $f'(x) = c_1 + 2c_2(x-a) + 3c_3(x-a)^2 + 4c_4(x-a)^3 + \cdots$
- $f'(a) = c_1$.

- Let f be a function that can be represented by a power series:
- $f(x) = c_0 + c_1(x-a) + c_2(x-a)^2 + c_3(x-a)^3 + \cdots$
- $f(a) = c_0$.
- $f'(x) = c_1 + 2c_2(x-a) + 3c_3(x-a)^2 + 4c_4(x-a)^3 + \cdots$
- $f'(a) = c_1$.
- $f''(x) = 2c_2 + 2 \cdot 3c_3(x-a) + 3 \cdot 4c_4(x-a)^2 + 4 \cdot 5c_5(x-a)^3 + \cdots$

- Let f be a function that can be represented by a power series:
- $f(x) = c_0 + c_1(x-a) + c_2(x-a)^2 + c_3(x-a)^3 + \cdots$
- $f(a) = c_0$.
- $f'(x) = c_1 + 2c_2(x-a) + 3c_3(x-a)^2 + 4c_4(x-a)^3 + \cdots$
- $f'(a) = c_1$.
- $f''(x) = 2c_2 + 2 \cdot 3c_3(x-a) + 3 \cdot 4c_4(x-a)^2 + 4 \cdot 5c_5(x-a)^3 + \cdots$
- f''(a) =

- Let f be a function that can be represented by a power series:
- $f(x) = c_0 + c_1(x-a) + c_2(x-a)^2 + c_3(x-a)^3 + \cdots$
- $f(a) = c_0$.
- $f'(x) = c_1 + 2c_2(x-a) + 3c_3(x-a)^2 + 4c_4(x-a)^3 + \cdots$
- $f'(a) = c_1$.
- $f''(x) = 2c_2 + 2 \cdot 3c_3(x-a) + 3 \cdot 4c_4(x-a)^2 + 4 \cdot 5c_5(x-a)^3 + \cdots$
- $f''(a) = 2c_2$.

- Let f be a function that can be represented by a power series:
- $f(x) = c_0 + c_1(x-a) + c_2(x-a)^2 + c_3(x-a)^3 + \cdots$
- $f(a) = c_0$.
- $f'(x) = c_1 + 2c_2(x-a) + 3c_3(x-a)^2 + 4c_4(x-a)^3 + \cdots$
- $f'(a) = c_1$.
- $f''(x) = 2c_2 + 2 \cdot 3c_3(x-a) + 3 \cdot 4c_4(x-a)^2 + 4 \cdot 5c_5(x-a)^3 + \cdots$
- $f''(a) = 2c_2$.
- $f'''(x) = 2 \cdot 3c_3 + 2 \cdot 3 \cdot 4c_4(x-a) + 3 \cdot 4 \cdot 5c_5(x-a)^2 + \cdots$

- Let f be a function that can be represented by a power series:
- $f(x) = c_0 + c_1(x-a) + c_2(x-a)^2 + c_3(x-a)^3 + \cdots$
- $f(a) = c_0$.
- $f'(x) = c_1 + 2c_2(x-a) + 3c_3(x-a)^2 + 4c_4(x-a)^3 + \cdots$
- $f'(a) = c_1$.
- $f''(x) = 2c_2 + 2 \cdot 3c_3(x-a) + 3 \cdot 4c_4(x-a)^2 + 4 \cdot 5c_5(x-a)^3 + \cdots$
- $f''(a) = 2c_2$.
- $f'''(x) = 2 \cdot 3c_3 + 2 \cdot 3 \cdot 4c_4(x-a) + 3 \cdot 4 \cdot 5c_5(x-a)^2 + \cdots$
- f'''(a) =

- Let f be a function that can be represented by a power series:
- $f(x) = c_0 + c_1(x-a) + c_2(x-a)^2 + c_3(x-a)^3 + \cdots$
- $f(a) = c_0$.
- $f'(x) = c_1 + 2c_2(x-a) + 3c_3(x-a)^2 + 4c_4(x-a)^3 + \cdots$
- $f'(a) = c_1$.
- $f''(x) = 2c_2 + 2 \cdot 3c_3(x-a) + 3 \cdot 4c_4(x-a)^2 + 4 \cdot 5c_5(x-a)^3 + \cdots$
- $f''(a) = 2c_2$.
- $f'''(x) = 2 \cdot 3c_3 + 2 \cdot 3 \cdot 4c_4(x-a) + 3 \cdot 4 \cdot 5c_5(x-a)^2 + \cdots$
- $f'''(a) = 2 \cdot 3c_3 = 3!c_3.$

- Let f be a function that can be represented by a power series:
- $f(x) = c_0 + c_1(x-a) + c_2(x-a)^2 + c_3(x-a)^3 + \cdots$
- $f(a) = c_0$.
- $f'(x) = c_1 + 2c_2(x-a) + 3c_3(x-a)^2 + 4c_4(x-a)^3 + \cdots$
- $f'(a) = c_1$.
- $f''(x) = 2c_2 + 2 \cdot 3c_3(x-a) + 3 \cdot 4c_4(x-a)^2 + 4 \cdot 5c_5(x-a)^3 + \cdots$
- $f''(a) = 2c_2$.
- $f'''(x) = 2 \cdot 3c_3 + 2 \cdot 3 \cdot 4c_4(x-a) + 3 \cdot 4 \cdot 5c_5(x-a)^2 + \cdots$
- $f'''(a) = 2 \cdot 3c_3 = 3!c_3$.
- $f^{(n)}(a) =$

- Let f be a function that can be represented by a power series:
- $f(x) = c_0 + c_1(x-a) + c_2(x-a)^2 + c_3(x-a)^3 + \cdots$
- $f(a) = c_0$.
- $f'(x) = c_1 + 2c_2(x-a) + 3c_3(x-a)^2 + 4c_4(x-a)^3 + \cdots$
- $f'(a) = c_1$.
- $f''(x) = 2c_2 + 2 \cdot 3c_3(x-a) + 3 \cdot 4c_4(x-a)^2 + 4 \cdot 5c_5(x-a)^3 + \cdots$
- $f''(a) = 2c_2$.
- $f'''(x) = 2 \cdot 3c_3 + 2 \cdot 3 \cdot 4c_4(x-a) + 3 \cdot 4 \cdot 5c_5(x-a)^2 + \cdots$
- $f'''(a) = 2 \cdot 3c_3 = 3!c_3$.
- $f^{(n)}(a) = n!c_n$.

- Let f be a function that can be represented by a power series:
- $f(x) = c_0 + c_1(x-a) + c_2(x-a)^2 + c_3(x-a)^3 + \cdots$
- $f(a) = c_0$.
- $f'(x) = c_1 + 2c_2(x-a) + 3c_3(x-a)^2 + 4c_4(x-a)^3 + \cdots$
- $f'(a) = c_1$.
- $f''(x) = 2c_2 + 2 \cdot 3c_3(x-a) + 3 \cdot 4c_4(x-a)^2 + 4 \cdot 5c_5(x-a)^3 + \cdots$
- $f''(a) = 2c_2$.
- $f'''(x) = 2 \cdot 3c_3 + 2 \cdot 3 \cdot 4c_4(x-a) + 3 \cdot 4 \cdot 5c_5(x-a)^2 + \cdots$
- $f'''(a) = 2 \cdot 3c_3 = 3!c_3$.
- $f^{(n)}(a) = n!c_n$.
- Therefore $c_n = \frac{f^{(n)}(a)}{n!}$.

Theorem (Coefficients of a Power Series)

If f has a power series representation at a, that is, if

$$f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n, \qquad |x-a| < R,$$

then its coefficients are given by the formula

$$c_n=\frac{f^{(n)}(a)}{n!}.$$

Theorem (Coefficients of a Power Series)

If f has a power series representation at a, that is, if

$$f(x) = \sum_{n=0}^{\infty} c_n(x-a)^n, \qquad |x-a| < R,$$

then its coefficients are given by the formula

$$c_n=\frac{f^{(n)}(a)}{n!}.$$

Here is what we get if we plug these coefficients into the power series:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$$

= $f(a) + \frac{f'(a)}{1!} (x-a) + \frac{f''(a)}{2!} (x-a)^2 + \frac{f'''(a)}{3!} (x-a)^3 + \cdots$

Theorem (Coefficients of a Power Series)

If f has a power series representation at a, that is, if

$$f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n, \qquad |x-a| < R,$$

then its coefficients are given by the formula

$$c_n=\frac{f^{(n)}(a)}{n!}.$$

Here is what we get if we plug these coefficients into the power series:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$$

= $f(a) + \frac{f'(a)}{1!} (x-a) + \frac{f''(a)}{2!} (x-a)^2 + \frac{f'''(a)}{3!} (x-a)^3 + \cdots$

Definition (Taylor Series)

This series is called the Taylor series of f.

The case when a = 0 is special enough to have its own name:

Definition (Maclaurin Series)

The Maclaurin series of f is the Taylor series of f centered at a = 0. In other words, it is the series

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = f(0) + \frac{f'(0)}{1!} x + \frac{f''(0)}{2!} x^2 + \frac{f'''(0)}{3!} x^3 + \cdots$$

•
$$f^{(n)}(x) =$$

•
$$f^{(n)}(x) = e^x$$
.

- $f^{(n)}(x) = e^x$.
- $f^{(n)}(0) =$

- $f^{(n)}(x) = e^x$.
- $f^{(n)}(0) = e^0 = 1$.

- $f^{(n)}(x) = e^x$.
- $f^{(n)}(0) = e^0 = 1$.
- Therefore the Maclaurin series is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = \sum_{n=0}^{\infty} \frac{1}{n!} x^n = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

Find the Maclaurin series of $f(x) = e^x$ and its radius of convergence.

- $f^{(n)}(x) = e^x$.
- $f^{(n)}(0) = e^0 = 1$.
- Therefore the Maclaurin series is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = \sum_{n=0}^{\infty} \frac{1}{n!} x^n = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

Find the Maclaurin series of $f(x) = e^x$ and its radius of convergence.

- $f^{(n)}(x) = e^x$.
- $f^{(n)}(0) = e^0 = 1$.
- Therefore the Maclaurin series is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = \sum_{n=0}^{\infty} \frac{1}{n!} x^n = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=\lim_{n\to\infty}\left|\frac{x^{n+1}}{(n+1)!}\cdot\frac{n!}{x^n}\right|$$

Find the Maclaurin series of $f(x) = e^x$ and its radius of convergence.

- $f^{(n)}(x) = e^x$.
- $f^{(n)}(0) = e^0 = 1$.
- Therefore the Maclaurin series is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = \sum_{n=0}^{\infty} \frac{1}{n!} x^n = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n\to\infty} \left| \frac{x^{n+1}}{(n+1)!} \cdot \frac{n!}{x^n} \right| = \lim_{n\to\infty} - - -$$

Find the Maclaurin series of $f(x) = e^x$ and its radius of convergence.

- $f^{(n)}(x) = e^x$.
- $f^{(n)}(0) = e^0 = 1$.
- Therefore the Maclaurin series is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = \sum_{n=0}^{\infty} \frac{1}{n!} x^n = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n\to\infty} \left| \frac{x^{n+1}}{(n+1)!} \cdot \frac{n!}{x^n} \right| = \lim_{n\to\infty} \frac{|x|}{x^n}$$

Find the Maclaurin series of $f(x) = e^x$ and its radius of convergence.

- $f^{(n)}(x) = e^x$.
- $f^{(n)}(0) = e^0 = 1$.
- Therefore the Maclaurin series is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = \sum_{n=0}^{\infty} \frac{1}{n!} x^n = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right| = \lim_{n\to\infty}\left|\frac{x^{n+1}}{(n+1)!}\cdot\frac{n!}{x^n}\right| = \lim_{n\to\infty}\frac{|x|}{x^n}$$

Find the Maclaurin series of $f(x) = e^x$ and its radius of convergence.

- $f^{(n)}(x) = e^x$.
- $f^{(n)}(0) = e^0 = 1$.
- Therefore the Maclaurin series is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = \sum_{n=0}^{\infty} \frac{1}{n!} x^n = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n\to\infty} \left| \frac{x^{n+1}}{(n+1)!} \cdot \frac{n!}{x^n} \right| = \lim_{n\to\infty} \frac{|x|}{n+1}$$

Find the Maclaurin series of $f(x) = e^x$ and its radius of convergence.

- $f^{(n)}(x) = e^x$.
- $f^{(n)}(0) = e^0 = 1$.
- Therefore the Maclaurin series is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = \sum_{n=0}^{\infty} \frac{1}{n!} x^n = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right| = \lim_{n\to\infty}\left|\frac{x^{n+1}}{(n+1)!}\cdot\frac{n!}{x^n}\right| = \lim_{n\to\infty}\frac{|x|}{n+1} =$$

Find the Maclaurin series of $f(x) = e^x$ and its radius of convergence.

- $f^{(n)}(x) = e^x$.
- $f^{(n)}(0) = e^0 = 1$.
- Therefore the Maclaurin series is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = \sum_{n=0}^{\infty} \frac{1}{n!} x^n = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n\to\infty} \left| \frac{x^{n+1}}{(n+1)!} \cdot \frac{n!}{x^n} \right| = \lim_{n\to\infty} \frac{|x|}{n+1} = 0$$

Find the Maclaurin series of $f(x) = e^x$ and its radius of convergence.

- $f^{(n)}(x) = e^x$.
- $f^{(n)}(0) = e^0 = 1$.
- Therefore the Maclaurin series is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = \sum_{n=0}^{\infty} \frac{1}{n!} x^n = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n\to\infty} \left| \frac{x^{n+1}}{(n+1)!} \cdot \frac{n!}{x^n} \right| = \lim_{n\to\infty} \frac{|x|}{n+1} = 0 < 1$$

Find the Maclaurin series of $f(x) = e^x$ and its radius of convergence.

- $f^{(n)}(x) = e^x$.
- $f^{(n)}(0) = e^0 = 1$.
- Therefore the Maclaurin series is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = \sum_{n=0}^{\infty} \frac{1}{n!} x^n = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

• To find the radius of convergence, let $a_n = \frac{x^n}{n!}$.

$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right| = \lim_{n\to\infty}\left|\frac{x^{n+1}}{(n+1)!}\cdot\frac{n!}{x^n}\right| = \lim_{n\to\infty}\frac{|x|}{n+1} = 0 < 1$$

• Therefore by the Ratio Test the series converges for all x.

Find the Maclaurin series of $f(x) = e^x$ and its radius of convergence.

- $f^{(n)}(x) = e^x$.
- $f^{(n)}(0) = e^0 = 1$.
- Therefore the Maclaurin series is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = \sum_{n=0}^{\infty} \frac{1}{n!} x^n = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right| = \lim_{n\to\infty}\left|\frac{x^{n+1}}{(n+1)!}\cdot\frac{n!}{x^n}\right| = \lim_{n\to\infty}\frac{|x|}{n+1} = 0 < 1$$

- Therefore by the Ratio Test the series converges for all x.
- Therefore $R = \infty$.

sum of the series
$$\sum_{n=0}^{\infty} (-1)^n \frac{1}{2^n n!} = 1 - \frac{1}{2 \cdot 1!} + \frac{1}{4 \cdot 2!} - \frac{1}{8 \cdot 3!} + \cdots$$

$$\sum_{n=0}^{\infty} (-1)^n \frac{1}{2^n n!} = 1 - \frac{1}{2 \cdot 1!} + \frac{1}{4 \cdot 2!} - \frac{1}{8 \cdot 3!} + \cdots$$

$$e^x = \sum_{n=0}^{\infty}$$

sum of the series
$$\sum_{n=0}^{\infty} (-1)^n \frac{1}{2^n n!} = 1 - \frac{1}{2 \cdot 1!} + \frac{1}{4 \cdot 2!} - \frac{1}{8 \cdot 3!} + \cdots$$

$$e^x = \sum_{n=0}^{\infty} \frac{1}{n!} x^n$$

$$\sum_{n=0}^{\infty} (-1)^n \frac{1}{2^n n!} = 1 - \frac{1}{2 \cdot 1!} + \frac{1}{4 \cdot 2!} - \frac{1}{8 \cdot 3!} + \cdots$$

$$e^x = \sum_{n=0}^{\infty} \frac{1}{n!} x^n$$

$$\sum_{n=0}^{\infty} (-1)^n \frac{1}{2^n n!} = \sum_{n=0}^{\infty} \frac{1}{n!} \left(\right)^n$$

$$\sum_{n=0}^{\infty} (-1)^n \frac{1}{2^n n!} = 1 - \frac{1}{2 \cdot 1!} + \frac{1}{4 \cdot 2!} - \frac{1}{8 \cdot 3!} + \cdots$$

$$e^x = \sum_{n=0}^{\infty} \frac{1}{n!} x^n$$

$$\sum_{n=0}^{\infty} (-1)^n \frac{1}{2^n n!} = \sum_{n=0}^{\infty} \frac{1}{n!} \left(-\frac{1}{2} \right)^n$$

$$\sum_{n=0}^{\infty} (-1)^n \frac{1}{2^n n!} = 1 - \frac{1}{2 \cdot 1!} + \frac{1}{4 \cdot 2!} - \frac{1}{8 \cdot 3!} + \cdots$$

$$e^x = \sum_{n=0}^{\infty} \frac{1}{n!} x^n$$

$$\sum_{n=0}^{\infty} (-1)^n \frac{1}{2^n n!} = \sum_{n=0}^{\infty} \frac{1}{n!} \left(-\frac{1}{2} \right)^n$$

$$\sum_{n=0}^{\infty} (-1)^n \frac{1}{2^n n!} = 1 - \frac{1}{2 \cdot 1!} + \frac{1}{4 \cdot 2!} - \frac{1}{8 \cdot 3!} + \cdots$$

$$e^{\mathbf{x}} = \sum_{n=0}^{\infty} \frac{1}{n!} \frac{\mathbf{x}^n}{n!}$$

$$\sum_{n=0}^{\infty} (-1)^n \frac{1}{2^n n!} = \sum_{n=0}^{\infty} \frac{1}{n!} \left(-\frac{1}{2} \right)^n$$
$$= e^{-\frac{1}{2}}$$

$$\sum_{n=0}^{\infty} (-1)^n \frac{1}{2^n n!} = 1 - \frac{1}{2 \cdot 1!} + \frac{1}{4 \cdot 2!} - \frac{1}{8 \cdot 3!} + \cdots$$

$$e^x = \sum_{n=0}^{\infty} \frac{1}{n!} x^n$$

$$\sum_{n=0}^{\infty} (-1)^n \frac{1}{2^n n!} = \sum_{n=0}^{\infty} \frac{1}{n!} \left(-\frac{1}{2} \right)^n$$

$$= e^{-\frac{1}{2}}$$

$$= \frac{1}{\sqrt{e}}$$

•
$$f^{(n)}(x) =$$

Find the Taylor series for $f(x) = e^x$ at a = 3.

• $f^{(n)}(x) = e^x$.

- $f^{(n)}(x) = e^x$.
- $f^{(n)}(3) =$

- $f^{(n)}(x) = e^x$.
- $f^{(n)}(3) = e^3$.

- $f^{(n)}(x) = e^x$.
- $f^{(n)}(3) = e^3$.
- Therefore the Taylor series is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(3)}{n!} (x-3)^n = \sum_{n=0}^{\infty} \frac{e^3}{n!} (x-3)^n$$

Find the Taylor series for $f(x) = e^x$ at a = 3.

- $f^{(n)}(x) = e^x$.
- $f^{(n)}(3) = e^3$.
- Therefore the Taylor series is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(3)}{n!} (x-3)^n = \sum_{n=0}^{\infty} \frac{e^3}{n!} (x-3)^n$$

Find the Taylor series for $f(x) = e^x$ at a = 3.

- $f^{(n)}(x) = e^x$.
- $f^{(n)}(3) = e^3$.
- Therefore the Taylor series is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(3)}{n!} (x-3)^n = \sum_{n=0}^{\infty} \frac{e^3}{n!} (x-3)^n$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{e^3 (x-3)^{n+1}}{(n+1)!} \cdot \frac{n!}{e^3 (x-3)^n} \right|$$

Find the Taylor series for $f(x) = e^x$ at a = 3.

- $f^{(n)}(x) = e^x$.
- $f^{(n)}(3) = e^3$.
- Therefore the Taylor series is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(3)}{n!} (x-3)^n = \sum_{n=0}^{\infty} \frac{e^3}{n!} (x-3)^n$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{e^3 (x-3)^{n+1}}{(n+1)!} \cdot \frac{n!}{e^3 (x-3)^n} \right| = \lim_{n \to \infty} - ---$$

Find the Taylor series for $f(x) = e^x$ at a = 3.

- $f^{(n)}(x) = e^x$.
- $f^{(n)}(3) = e^3$.
- Therefore the Taylor series is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(3)}{n!} (x-3)^n = \sum_{n=0}^{\infty} \frac{e^3}{n!} (x-3)^n$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{e^3 (x-3)^{n+1}}{(n+1)!} \cdot \frac{n!}{e^3 (x-3)^n} \right| = \lim_{n \to \infty} \frac{|x-3|}{|x-3|}$$

Find the Taylor series for $f(x) = e^x$ at a = 3.

- $f^{(n)}(x) = e^x$.
- $f^{(n)}(3) = e^3$.
- Therefore the Taylor series is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(3)}{n!} (x-3)^n = \sum_{n=0}^{\infty} \frac{e^3}{n!} (x-3)^n$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{e^3 (x-3)^{n+1}}{(n+1)!} \cdot \frac{n!}{e^3 (x-3)^n} \right| = \lim_{n \to \infty} \frac{|x-3|}{n!}$$

Find the Taylor series for $f(x) = e^x$ at a = 3.

- $f^{(n)}(x) = e^x$.
- $f^{(n)}(3) = e^3$.
- Therefore the Taylor series is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(3)}{n!} (x-3)^n = \sum_{n=0}^{\infty} \frac{e^3}{n!} (x-3)^n$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{e^3 (x-3)^{n+1}}{(n+1)!} \cdot \frac{n!}{e^3 (x-3)^n} \right| = \lim_{n \to \infty} \frac{|x-3|}{n+1}$$

Find the Taylor series for $f(x) = e^x$ at a = 3.

- $f^{(n)}(x) = e^x$.
- $f^{(n)}(3) = e^3$.
- Therefore the Taylor series is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(3)}{n!} (x-3)^n = \sum_{n=0}^{\infty} \frac{e^3}{n!} (x-3)^n$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{e^3 (x-3)^{n+1}}{(n+1)!} \cdot \frac{n!}{e^3 (x-3)^n} \right| = \lim_{n \to \infty} \frac{|x-3|}{n+1} =$$

Find the Taylor series for $f(x) = e^x$ at a = 3.

- $f^{(n)}(x) = e^x$.
- $f^{(n)}(3) = e^3$.
- Therefore the Taylor series is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(3)}{n!} (x-3)^n = \sum_{n=0}^{\infty} \frac{e^3}{n!} (x-3)^n$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{e^3 (x-3)^{n+1}}{(n+1)!} \cdot \frac{n!}{e^3 (x-3)^n} \right| = \lim_{n \to \infty} \frac{|x-3|}{n+1} = 0$$

Find the Taylor series for $f(x) = e^x$ at a = 3.

- $f^{(n)}(x) = e^x$.
- $f^{(n)}(3) = e^3$.
- Therefore the Taylor series is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(3)}{n!} (x-3)^n = \sum_{n=0}^{\infty} \frac{e^3}{n!} (x-3)^n$$

• To find the radius of convergence, let $a_n = \frac{e^3}{n!}(x-3)^n$.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{e^3 (x-3)^{n+1}}{(n+1)!} \cdot \frac{n!}{e^3 (x-3)^n} \right| = \lim_{n \to \infty} \frac{|x-3|}{n+1} = 0$$

• Therefore by the Ratio Test the series converges for all x.

Find the Taylor series for $f(x) = e^x$ at a = 3.

- $f^{(n)}(x) = e^x$.
- $f^{(n)}(3) = e^3$.
- Therefore the Taylor series is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(3)}{n!} (x-3)^n = \sum_{n=0}^{\infty} \frac{e^3}{n!} (x-3)^n$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{e^3 (x-3)^{n+1}}{(n+1)!} \cdot \frac{n!}{e^3 (x-3)^n} \right| = \lim_{n \to \infty} \frac{|x-3|}{n+1} = 0$$

- Therefore by the Ratio Test the series converges for all x.
- Therefore $R = \infty$.

Find the Taylor series for $f(x) = e^x$ at a = 3.

- $f^{(n)}(x) = e^x$.
- $f^{(n)}(3) = e^3$.
- Therefore the Taylor series is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(3)}{n!} (x-3)^n = \sum_{n=0}^{\infty} \frac{e^3}{n!} (x-3)^n$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{e^3 (x-3)^{n+1}}{(n+1)!} \cdot \frac{n!}{e^3 (x-3)^n} \right| = \lim_{n \to \infty} \frac{|x-3|}{n+1} = 0$$

- Therefore by the Ratio Test the series converges for all x.
- Therefore $R = \infty$.
- Just like the Maclaurin series, this series also represents e^x .

$$e^x = e^{x-3+3}$$

$$e^{x} = e^{x-3+3} = e^{3}e^{x-3}$$

$$e^x = e^{x-3+3} = e^3 e^{x-3}$$

$$e^{x} = e^{x-3+3} = e^{3}e^{x-3}$$

Recall that
$$e^y = \sum_{n=0}^{\infty} \frac{y^n}{n!}$$

$$e^{x} = e^{x-3+3} = e^{3}e^{x-3}$$

$$= e^{3}\sum_{n=0}^{\infty} \frac{(x-3)^{n}}{n!}$$

Recall that
$$e^y = \sum_{n=0}^{\infty} \frac{y^n}{n!}$$

Set $y = x - 3$

$$e^{x} = e^{x-3+3} = e^{3}e^{x-3}$$

$$= e^{3}\sum_{n=0}^{\infty} \frac{(x-3)^{n}}{n!}$$

$$= \sum_{n=0}^{\infty} \frac{e^{3}}{n!} (x-3)^{n}$$

Recall that
$$e^y = \sum_{n=0}^{\infty} \frac{y^n}{n!}$$

Set $y = x - 3$

Find the Taylor series for $f(x) = e^x$ at a = 3.

$$e^{x} = e^{x-3+3} = e^{3}e^{x-3}$$
 Recall that $e^{y} = \sum_{n=0}^{\infty} \frac{y^{n}}{n!}$
 $= e^{3} \sum_{n=0}^{\infty} \frac{(x-3)^{n}}{n!}$
 $= \sum_{n=0}^{\infty} \frac{e^{3}}{n!} (x-3)^{n}$

The radius of convergence was already computed to be $R = \infty$.

$$f(x) = \sin x$$
 $f(0) = f'(x) = f''(x) = f''(x) = f'''(x) = f'''(x) = f^{(4)}(x) = f^{(4)}(0) = f^$

$$f(x) = \sin x$$
 $f(0) = 0$
 $f'(x) = f''(0) = 0$
 $f''(x) = f''(0) = 0$
 $f'''(x) = f'''(0) = 0$
 $f'''(x) = 0$

$$f(x) = \sin x$$
 $f(0) = 0$
 $f'(x) = f''(0) = f''(0) = f'''(0) = f'''(0) = f'''(0) = f^{(4)}(0) =$

$$f(x) = \sin x$$
 $f(0) = 0$
 $f'(x) = \cos x$ $f'(0) = 0$
 $f''(x) = f''(0) = 0$
 $f'''(x) = f'''(0) = 0$
 $f'''(x) = 0$
 $f'''(x) = 0$
 $f'''(x) = 0$

$$f(x) = \sin x$$
 $f(0) = 0$
 $f'(x) = \cos x$ $f'(0) = 0$
 $f''(x) = f''(0) = 0$
 $f'''(x) = f'''(0) = 0$
 $f'''(x) = f'''(0) = 0$
 $f'''(0) = 0$

$$f(x) = \sin x$$
 $f(0) = 0$
 $f'(x) = \cos x$ $f'(0) = 1$
 $f''(x) = f'''(0) = f'''(0) = f'''(0) = f^{(4)}(0) = f^{$

$$f(x) = \sin x$$
 $f(0) = 0$
 $f'(x) = \cos x$ $f'(0) = 1$
 $f''(x) = f'''(0) = 1$
 $f'''(x) = f'''(0) = f'''(0) = 1$

$$f(x) = \sin x$$
 $f(0) = 0$
 $f'(x) = \cos x$ $f'(0) = 1$
 $f''(x) = -\sin x$ $f''(0) =$
 $f'''(x) = f'''(0) =$
 $f(4)(x) = f(4)(0) =$

$$f(x) = \sin x$$
 $f(0) = 0$
 $f'(x) = \cos x$ $f'(0) = 1$
 $f''(x) = -\sin x$ $f''(0) =$
 $f'''(x) = f^{(4)}(x) =$

$$f(x) = \sin x$$
 $f(0) = 0$
 $f'(x) = \cos x$ $f'(0) = 1$
 $f''(x) = -\sin x$ $f''(0) = 0$
 $f'''(x) = f^{(4)}(x) = f^{(4)}(0) = 0$

$$f(x) = \sin x$$
 $f(0) = 0$
 $f'(x) = \cos x$ $f'(0) = 1$
 $f''(x) = -\sin x$ $f''(0) = 0$
 $f'''(x) = f^{(4)}(x) = f^{(4)}(0) = 0$

$$f(x) = \sin x$$
 $f(0) = 0$
 $f'(x) = \cos x$ $f'(0) = 1$
 $f''(x) = -\sin x$ $f''(0) = 0$
 $f'''(x) = -\cos x$ $f'''(0) = 0$
 $f^{(4)}(x) = f^{(4)}(0) = 0$

$$f(x) = \sin x$$
 $f(0) = 0$
 $f'(x) = \cos x$ $f'(0) = 1$
 $f''(x) = -\sin x$ $f''(0) = 0$
 $f'''(x) = -\cos x$ $f'''(0) = 0$
 $f^{(4)}(x) = f^{(4)}(0) = 0$

$$f(x) = \sin x \qquad f(0) = 0$$

$$f'(x) = \cos x \qquad f'(0) = 1$$

$$f''(x) = -\sin x \qquad f''(0) = 0$$

$$f'''(x) = -\cos x \qquad f'''(0) = -1$$

$$f^{(4)}(x) = f^{(4)}(0) =$$

$$f(x) = \sin x \qquad f(0) = 0$$

$$f'(x) = \cos x \qquad f'(0) = 1$$

$$f''(x) = -\sin x \qquad f''(0) = 0$$

$$f'''(x) = -\cos x \qquad f'''(0) = -1$$

$$f^{(4)}(x) = \qquad f^{(4)}(0) =$$

$$f(x) = \sin x$$
 $f(0) = 0$
 $f'(x) = \cos x$ $f'(0) = 1$
 $f''(x) = -\sin x$ $f''(0) = 0$
 $f'''(x) = -\cos x$ $f'''(0) = -1$
 $f^{(4)}(x) = \sin x$ $f^{(4)}(0) =$

$$f(x) = \sin x$$
 $f(0) = 0$
 $f'(x) = \cos x$ $f'(0) = 1$
 $f''(x) = -\sin x$ $f''(0) = 0$
 $f'''(x) = -\cos x$ $f'''(0) = -1$
 $f^{(4)}(x) = \sin x$ $f^{(4)}(0) =$

$$f(x) = \sin x$$
 $f(0) = 0$
 $f'(x) = \cos x$ $f'(0) = 1$
 $f''(x) = -\sin x$ $f''(0) = 0$
 $f'''(x) = -\cos x$ $f'''(0) = -1$
 $f^{(4)}(x) = \sin x$ $f^{(4)}(0) = 0$

Find the Maclaurin series of $f(x) = \sin x$ and its radius of convergence.

$$f(x) = \sin x$$
 $f(0) = 0$
 $f'(x) = \cos x$ $f'(0) = 1$
 $f''(x) = -\sin x$ $f''(0) = 0$
 $f'''(x) = -\cos x$ $f'''(0) = -1$
 $f^{(4)}(x) = \sin x$ $f^{(4)}(0) = 0$

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n =$$

Find the Maclaurin series of $f(x) = \sin x$ and its radius of convergence.

$$f(x) = \sin x$$
 $f(0) = 0$
 $f'(x) = \cos x$ $f'(0) = 1$
 $f''(x) = -\sin x$ $f''(0) = 0$
 $f'''(x) = -\cos x$ $f'''(0) = -1$
 $f^{(4)}(x) = \sin x$ $f^{(4)}(0) = 0$

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n =$$

Find the Maclaurin series of $f(x) = \sin x$ and its radius of convergence.

$$f(x) = \sin x$$
 $f(0) = 0$
 $f'(x) = \cos x$ $f'(0) = 1$
 $f''(x) = -\sin x$ $f''(0) = 0$
 $f'''(x) = -\cos x$ $f'''(0) = -1$
 $f^{(4)}(x) = \sin x$ $f^{(4)}(0) = 0$

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n =$$

Find the Maclaurin series of $f(x) = \sin x$ and its radius of convergence.

$$f(x) = \sin x$$
 $f(0) = 0$
 $f'(x) = \cos x$ $f'(0) = 1$
 $f''(x) = -\sin x$ $f''(0) = 0$
 $f'''(x) = -\cos x$ $f'''(0) = -1$
 $f^{(4)}(x) = \sin x$ $f^{(4)}(0) = 0$

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = \mathbf{x}$$

Find the Maclaurin series of $f(x) = \sin x$ and its radius of convergence.

$$f(x) = \sin x$$
 $f(0) = 0$
 $f'(x) = \cos x$ $f'(0) = 1$
 $f''(x) = -\sin x$ $f''(0) = 0$
 $f'''(x) = -\cos x$ $f'''(0) = -1$
 $f^{(4)}(x) = \sin x$ $f^{(4)}(0) = 0$

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = x$$

Find the Maclaurin series of $f(x) = \sin x$ and its radius of convergence.

$$f(x) = \sin x$$
 $f(0) = 0$
 $f'(x) = \cos x$ $f'(0) = 1$
 $f''(x) = -\sin x$ $f''(0) = 0$
 $f'''(x) = -\cos x$ $f'''(0) = -1$
 $f^{(4)}(x) = \sin x$ $f^{(4)}(0) = 0$

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = x$$

Find the Maclaurin series of $f(x) = \sin x$ and its radius of convergence.

$$f(x) = \sin x$$
 $f(0) = 0$
 $f'(x) = \cos x$ $f'(0) = 1$
 $f''(x) = -\sin x$ $f''(0) = 0$
 $f'''(x) = -\cos x$ $f'''(0) = -1$
 $f^{(4)}(x) = \sin x$ $f^{(4)}(0) = 0$

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = x - \frac{x^3}{3!}$$

Find the Maclaurin series of $f(x) = \sin x$ and its radius of convergence.

$$f(x) = \sin x \qquad f(0) = 0$$

$$f'(x) = \cos x \qquad f'(0) = 1$$

$$f''(x) = -\sin x \qquad f''(0) = 0$$

$$f'''(x) = -\cos x \qquad f'''(0) = -1$$

$$f^{(4)}(x) = \sin x \qquad f^{(4)}(0) = 0$$

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = x - \frac{x^3}{3!}$$

Find the Maclaurin series of $f(x) = \sin x$ and its radius of convergence.

$$f(x) = \sin x$$
 $f(0) = 0$
 $f'(x) = \cos x$ $f'(0) = 1$
 $f''(x) = -\sin x$ $f''(0) = 0$
 $f'''(x) = -\cos x$ $f'''(0) = -1$
 $f^{(4)}(x) = \sin x$ $f^{(4)}(0) = 0$

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = x - \frac{x^3}{3!}$$

Find the Maclaurin series of $f(x) = \sin x$ and its radius of convergence.

$$f(x) = \sin x$$
 $f(0) = 0$
 $f'(x) = \cos x$ $f'(0) = 1$
 $f''(x) = -\sin x$ $f''(0) = 0$
 $f'''(x) = -\cos x$ $f'''(0) = -1$
 $f^{(4)}(x) = \sin x$ $f^{(4)}(0) = 0$

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = x - \frac{x^3}{3!} + \frac{x^5}{5!}$$

Find the Maclaurin series of $f(x) = \sin x$ and its radius of convergence.

$$f(x) = \sin x$$
 $f(0) = 0$
 $f'(x) = \cos x$ $f'(0) = 1$
 $f''(x) = -\sin x$ $f''(0) = 0$
 $f'''(x) = -\cos x$ $f'''(0) = -1$
 $f^{(4)}(x) = \sin x$ $f^{(4)}(0) = 0$

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$$

Find the Maclaurin series of $f(x) = \sin x$ and its radius of convergence.

$$f(x) = \sin x$$
 $f(0) = 0$
 $f'(x) = \cos x$ $f'(0) = 1$
 $f''(x) = -\sin x$ $f''(0) = 0$
 $f'''(x) = -\cos x$ $f'''(0) = -1$
 $f^{(4)}(x) = \sin x$ $f^{(4)}(0) = 0$

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots = \sum_{n=0}^{\infty}$$

Find the Maclaurin series of $f(x) = \sin x$ and its radius of convergence.

$$f(x) = \sin x$$
 $f(0) = 0$
 $f'(x) = \cos x$ $f'(0) = 1$
 $f''(x) = -\sin x$ $f''(0) = 0$
 $f'''(x) = -\cos x$ $f'''(0) = -1$
 $f^{(4)}(x) = \sin x$ $f^{(4)}(0) = 0$

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots = \sum_{n=0}^{\infty} (-1)^n$$

Find the Maclaurin series of $f(x) = \sin x$ and its radius of convergence.

$$f(x) = \sin x$$
 $f(0) = 0$
 $f'(x) = \cos x$ $f'(0) = 1$
 $f''(x) = -\sin x$ $f''(0) = 0$
 $f'''(x) = -\cos x$ $f'''(0) = -1$
 $f^{(4)}(x) = \sin x$ $f^{(4)}(0) = 0$

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots = \sum_{n=0}^{\infty} (-1)^n$$

Find the Maclaurin series of $f(x) = \sin x$ and its radius of convergence.

$$f(x) = \sin x$$
 $f(0) = 0$
 $f'(x) = \cos x$ $f'(0) = 1$
 $f''(x) = -\sin x$ $f''(0) = 0$
 $f'''(x) = -\cos x$ $f'''(0) = -1$
 $f^{(4)}(x) = \sin x$ $f^{(4)}(0) = 0$

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

Find the Maclaurin series of $f(x) = \sin x$ and its radius of convergence.

$$f(x) = \sin x$$
 $f(0) = 0$
 $f'(x) = \cos x$ $f'(0) = 1$
 $f''(x) = -\sin x$ $f''(0) = 0$
 $f'''(x) = -\cos x$ $f'''(0) = -1$
 $f^{(4)}(x) = \sin x$ $f^{(4)}(0) = 0$

The Maclaurin series is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-1)^{n+1} x^{2n+3}}{(2n+3)!} \cdot \frac{(2n+1)!}{(-1)^n x^{2n+1}} \right|$$

Find the Maclaurin series of $f(x) = \sin x$ and its radius of convergence.

$$f(x) = \sin x$$
 $f(0) = 0$
 $f'(x) = \cos x$ $f'(0) = 1$
 $f''(x) = -\sin x$ $f''(0) = 0$
 $f'''(x) = -\cos x$ $f'''(0) = -1$
 $f^{(4)}(x) = \sin x$ $f^{(4)}(0) = 0$

The Maclaurin series is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-1)^{n+1} x^{2n+3}}{(2n+3)!} \cdot \frac{(2n+1)!}{(-1)^n x^{2n+1}} \right|$$

$$= \lim_{n \to \infty} ------$$

Find the Maclaurin series of $f(x) = \sin x$ and its radius of convergence.

$$f(x) = \sin x$$
 $f(0) = 0$
 $f'(x) = \cos x$ $f'(0) = 1$
 $f''(x) = -\sin x$ $f''(0) = 0$
 $f'''(x) = -\cos x$ $f'''(0) = -1$
 $f^{(4)}(x) = \sin x$ $f^{(4)}(0) = 0$

The Maclaurin series is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-1)^{n+1} x^{2n+3}}{(2n+3)!} \cdot \frac{(2n+1)!}{(-1)^n x^{2n+1}} \right|$$

$$= \lim_{n \to \infty} \frac{x^2}{(-1)^n x^{2n+1}}$$

Find the Maclaurin series of $f(x) = \sin x$ and its radius of convergence.

$$f(x) = \sin x$$
 $f(0) = 0$
 $f'(x) = \cos x$ $f'(0) = 1$
 $f''(x) = -\sin x$ $f''(0) = 0$
 $f'''(x) = -\cos x$ $f'''(0) = -1$
 $f^{(4)}(x) = \sin x$ $f^{(4)}(0) = 0$

The Maclaurin series is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-1)^{n+1} x^{2n+3}}{(2n+3)!} \cdot \frac{(2n+1)!}{(-1)^n x^{2n+1}} \right|$$

$$= \lim_{n \to \infty} \frac{x^2}{(-1)^n x^{2n+1}}$$

Find the Maclaurin series of $f(x) = \sin x$ and its radius of convergence.

$$f(x) = \sin x$$
 $f(0) = 0$
 $f'(x) = \cos x$ $f'(0) = 1$
 $f''(x) = -\sin x$ $f''(0) = 0$
 $f'''(x) = -\cos x$ $f'''(0) = -1$
 $f^{(4)}(x) = \sin x$ $f^{(4)}(0) = 0$

The Maclaurin series is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-1)^{n+1} x^{2n+3}}{(2n+3)!} \cdot \frac{(2n+1)!}{(-1)^n x^{2n+1}} \right|$$

$$= \lim_{n \to \infty} \frac{x^2}{(2n+2)(2n+3)}$$

Find the Maclaurin series of $f(x) = \sin x$ and its radius of convergence.

$$f(x) = \sin x$$
 $f(0) = 0$
 $f'(x) = \cos x$ $f'(0) = 1$
 $f''(x) = -\sin x$ $f''(0) = 0$
 $f'''(x) = -\cos x$ $f'''(0) = -1$
 $f^{(4)}(x) = \sin x$ $f^{(4)}(0) = 0$

The Maclaurin series is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-1)^{n+1} x^{2n+3}}{(2n+3)!} \cdot \frac{(2n+1)!}{(-1)^n x^{2n+1}} \right|$$

$$= \lim_{n \to \infty} \frac{x^2}{(2n+2)(2n+3)} =$$

Find the Maclaurin series of $f(x) = \sin x$ and its radius of convergence.

$$f(x) = \sin x$$
 $f(0) = 0$
 $f'(x) = \cos x$ $f'(0) = 1$
 $f''(x) = -\sin x$ $f''(0) = 0$
 $f'''(x) = -\cos x$ $f'''(0) = -1$
 $f^{(4)}(x) = \sin x$ $f^{(4)}(0) = 0$

The Maclaurin series is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-1)^{n+1} x^{2n+3}}{(2n+3)!} \cdot \frac{(2n+1)!}{(-1)^n x^{2n+1}} \right|$$

$$= \lim_{n \to \infty} \frac{x^2}{(2n+2)(2n+3)} = 0$$

Find the Maclaurin series of $f(x) = \sin x$ and its radius of convergence.

$$f(x) = \sin x$$
 $f(0) = 0$
 $f'(x) = \cos x$ $f'(0) = 1$
 $f''(x) = -\sin x$ $f''(0) = 0$
 $f'''(x) = -\cos x$ $f'''(0) = -1$
 $f^{(4)}(x) = \sin x$ $f^{(4)}(0) = 0$

The Maclaurin series is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

Use the Ratio Test to find R.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-1)^{n+1} x^{2n+3}}{(2n+3)!} \cdot \frac{(2n+1)!}{(-1)^n x^{2n+1}} \right|$$

$$= \lim_{n \to \infty} \frac{x^2}{(2n+2)(2n+3)} = 0$$

Therefore R =

Find the Maclaurin series of $f(x) = \sin x$ and its radius of convergence.

$$f(x) = \sin x$$
 $f(0) = 0$
 $f'(x) = \cos x$ $f'(0) = 1$
 $f''(x) = -\sin x$ $f''(0) = 0$
 $f'''(x) = -\cos x$ $f'''(0) = -1$
 $f^{(4)}(x) = \sin x$ $f^{(4)}(0) = 0$

The Maclaurin series is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

Use the Ratio Test to find R.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-1)^{n+1} x^{2n+3}}{(2n+3)!} \cdot \frac{(2n+1)!}{(-1)^n x^{2n+1}} \right|$$

$$= \lim_{n \to \infty} \frac{x^2}{(2n+2)(2n+3)} = 0$$

Therefore $R = \infty$.

2019

Example

Find the Maclaurin series of $f(x) = \sin x$ and its radius of convergence.

$$f(x) = \sin x \qquad f(0) = 0$$

$$f'(x) = \cos x \qquad f'(0) = 1$$

$$f''(x) = -\sin x \qquad f''(0) = 0$$

$$f'''(x) = -\cos x \qquad f'''(0) = -1$$

$$f^{(4)}(x) = \sin x \qquad f^{(4)}(0) = 0$$

The Maclaurin series is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

Use the Ratio Test to find R.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-1)^{n+1} x^{2n+3}}{(2n+3)!} \cdot \frac{(2n+1)!}{(-1)^n x^{2n+1}} \right|$$

$$= \lim_{n \to \infty} \frac{x^2}{(2n+2)(2n+3)} = 0$$

Therefore $R = \infty$. It can be shown that this series sums to $\sin x$.

d the sum of the series
$$\sum_{n=0}^{\infty} (-1)^n \frac{\pi^{2n+1}}{2^{2n+1}(2n+1)!} = \frac{\pi}{2} - \frac{\pi^3}{8 \cdot 3!} + \frac{\pi^5}{32 \cdot 5!} - \frac{\pi^7}{128 \cdot 7!} + \cdots$$

$$\sum_{n=0}^{\infty} (-1)^n \frac{\pi^{2n+1}}{2^{2n+1}(2n+1)!} = \frac{\pi}{2} - \frac{\pi^3}{8 \cdot 3!} + \frac{\pi^5}{32 \cdot 5!} - \frac{\pi^7}{128 \cdot 7!} + \cdots$$

$$\sin x = \sum_{n=0}^{\infty}$$

$$\sum_{n=0}^{\infty} (-1)^n \frac{\pi^{2n+1}}{2^{2n+1}(2n+1)!} = \frac{\pi}{2} - \frac{\pi^3}{8 \cdot 3!} + \frac{\pi^5}{32 \cdot 5!} - \frac{\pi^7}{128 \cdot 7!} + \cdots$$

$$\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{1}{(2n+1)!} x^{2n+1}$$

$$\sum_{n=0}^{\infty} (-1)^n \frac{\pi^{2n+1}}{2^{2n+1}(2n+1)!} = \frac{\pi}{2} - \frac{\pi^3}{8 \cdot 3!} + \frac{\pi^5}{32 \cdot 5!} - \frac{\pi^7}{128 \cdot 7!} + \cdots$$

$$\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{1}{(2n+1)!} x^{2n+1}$$

$$\sum_{n=0}^{\infty} (-1)^n \frac{\pi^{2n+1}}{2^{2n+1}(2n+1)!} = \sum_{n=0}^{\infty} (-1)^n \frac{1}{(2n+1)!} \binom{n}{2n+1}$$

$$\sum_{n=0}^{\infty} (-1)^n \frac{\pi^{2n+1}}{2^{2n+1}(2n+1)!} = \frac{\pi}{2} - \frac{\pi^3}{8 \cdot 3!} + \frac{\pi^5}{32 \cdot 5!} - \frac{\pi^7}{128 \cdot 7!} + \cdots$$

$$\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{1}{(2n+1)!} x^{2n+1}$$

$$\sum_{n=0}^{\infty} (-1)^n \frac{\pi^{2n+1}}{2^{2n+1}(2n+1)!} = \sum_{n=0}^{\infty} (-1)^n \frac{1}{(2n+1)!} \left(\frac{\pi}{2}\right)^{2n+1}$$

$$\sum_{n=0}^{\infty} (-1)^n \frac{\pi^{2n+1}}{2^{2n+1}(2n+1)!} = \frac{\pi}{2} - \frac{\pi^3}{8 \cdot 3!} + \frac{\pi^5}{32 \cdot 5!} - \frac{\pi^7}{128 \cdot 7!} + \cdots$$

$$\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{1}{(2n+1)!} \mathbf{x}^{2n+1}$$

$$\sum_{n=0}^{\infty} (-1)^n \frac{\pi^{2n+1}}{2^{2n+1}(2n+1)!} = \sum_{n=0}^{\infty} (-1)^n \frac{1}{(2n+1)!} \left(\frac{\pi}{2}\right)^{2n+1}$$

$$\sum_{n=0}^{\infty} (-1)^n \frac{\pi^{2n+1}}{2^{2n+1}(2n+1)!} = \frac{\pi}{2} - \frac{\pi^3}{8 \cdot 3!} + \frac{\pi^5}{32 \cdot 5!} - \frac{\pi^7}{128 \cdot 7!} + \cdots$$

$$\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{1}{(2n+1)!} x^{2n+1}$$

$$\sum_{n=0}^{\infty} (-1)^n \frac{\pi^{2n+1}}{2^{2n+1}(2n+1)!} = \sum_{n=0}^{\infty} (-1)^n \frac{1}{(2n+1)!} \left(\frac{\pi}{2}\right)^{2n+1}$$

$$= \sin \frac{\pi}{2}$$

$$\sum_{n=0}^{\infty} (-1)^n \frac{\pi^{2n+1}}{2^{2n+1}(2n+1)!} = \frac{\pi}{2} - \frac{\pi^3}{8 \cdot 3!} + \frac{\pi^5}{32 \cdot 5!} - \frac{\pi^7}{128 \cdot 7!} + \cdots$$

$$\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{1}{(2n+1)!} x^{2n+1}$$

$$\sum_{n=0}^{\infty} (-1)^n \frac{\pi^{2n+1}}{2^{2n+1}(2n+1)!} = \sum_{n=0}^{\infty} (-1)^n \frac{1}{(2n+1)!} \left(\frac{\pi}{2}\right)^{2n+1}$$

$$= \sin \frac{\pi}{2}$$

Find the Maclaurin series for $\cos x$.

Find the Maclaurin series for
$$\cos x$$
.
 $\cos x = \frac{d}{dx}$ ()

Find the Maclaurin series for
$$\cos x$$
.
 $\cos x = \frac{d}{dx} (\sin x)$

Find the Maclaurin series for
$$\cos x$$
.
$$\cos x = \frac{d}{dx} (\sin x)$$

$$= \frac{d}{dx} \left(\frac{\sin x}{\cos x} \right)$$

Find the Maclaurin series for
$$\cos x$$
.

$$\cos x = \frac{d}{dx} (\sin x)$$

$$= \frac{d}{dx} \left(\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} \right)$$

Find the Maclaurin series for
$$\cos x$$
.

$$\cos x = \frac{d}{dx} (\sin x)$$

$$= \frac{d}{dx} \left(\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} \right)$$

$$= \sum_{n=0}^{\infty} \frac{d}{dx} \left((-1)^n \frac{x^{2n+1}}{(2n+1)!} \right)$$

Find the Maclaurin series for
$$\cos x$$
.

$$\cos x = \frac{d}{dx} (\sin x)$$

$$= \frac{d}{dx} \left(\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} \right)$$

$$= \sum_{n=0}^{\infty} \frac{d}{dx} \left((-1)^n \frac{x^{2n+1}}{(2n+1)!} \right)$$

$$= \sum_{n=0}^{\infty} (-1)^n \frac{(2n+1)x^{2n}}{(2n+1)!}$$

Find the Maclaurin series for
$$\cos x$$
.

$$\cos x = \frac{d}{dx} (\sin x)$$

$$= \frac{d}{dx} \left(\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} \right)$$

$$= \sum_{n=0}^{\infty} \frac{d}{dx} \left((-1)^n \frac{x^{2n+1}}{(2n+1)!} \right)$$

$$= \sum_{n=0}^{\infty} (-1)^n \frac{(2n+1)x^{2n}}{(2n+1)!}$$

$$= \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n+1)!}$$

Find the Maclaurin series for
$$\cos x$$
.

$$\cos x = \frac{d}{dx} \left(\sin x \right)$$

$$= \frac{d}{dx} \left(\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} \right)$$

$$= \sum_{n=0}^{\infty} \frac{d}{dx} \left((-1)^n \frac{x^{2n+1}}{(2n+1)!} \right)$$

$$= \sum_{n=0}^{\infty} (-1)^n \frac{(2n+1)x^{2n}}{(2n+1)!}$$

$$= \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$$

Find the Maclaurin series for
$$\cos x$$
.

$$\cos x = \frac{d}{dx} \left(\sin x \right)$$

$$= \frac{d}{dx} \left(\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} \right)$$

$$= \sum_{n=0}^{\infty} \frac{d}{dx} \left((-1)^n \frac{x^{2n+1}}{(2n+1)!} \right)$$

$$= \sum_{n=0}^{\infty} (-1)^n \frac{(2n+1)x^{2n}}{(2n+1)!}$$

$$= \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$$

$$= 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$$

Find the Maclaurin series for
$$\cos x$$
.

$$\cos x = \frac{d}{dx} \left(\sin x \right)$$

$$= \frac{d}{dx} \left(\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} \right)$$

$$= \sum_{n=0}^{\infty} \frac{d}{dx} \left((-1)^n \frac{x^{2n+1}}{(2n+1)!} \right)$$

$$= \sum_{n=0}^{\infty} (-1)^n \frac{(2n+1)x^{2n}}{(2n+1)!}$$

$$= \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$$

$$= 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$$
The series for sin x converges everywhere, so the series

The series for sin x converges everywhere, so the series for cos x does too.

$$X \cos X = X$$

$$x \cos x = x \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$$

$$x \cos x = x \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$$
$$= \sum_{n=0}^{\infty} (-1)^n \frac{(2n)!}{(2n)!}$$

$$x \cos x = x \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$$
$$= \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n)!}$$

$$x \cos x = x \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$$

$$= \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n)!}$$

$$= x - \frac{x^3}{2!} + \frac{x^5}{4!} - \frac{x^7}{6!} + \cdots$$

Here is a table of some important Maclaurin series we have learned:

Function	Series	R
	$= \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \cdots$	1
	$= \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1} = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots$	1
	$= \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$	∞
sin <i>X</i>	$= \sum_{n=0}^{n=0} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$	∞
cos X	$= \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$	∞

Use a power series to find $\lim_{x\to 0} \frac{e^x - 1 - x}{x^2}$. $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

$$e^{x} = \frac{1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots}{e^{x}-1-x} = \frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots$$

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots$$

$$e^{x} - 1 - x = \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \cdots$$

$$\frac{e^{x} - 1 - x}{x^{2}} = \frac{1}{2!} + \frac{x}{3!} + \frac{x^{2}}{4!} + \cdots$$

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots$$

$$e^{x} - 1 - x = \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \cdots$$

$$\frac{e^{x} - 1 - x}{x^{2}} = \frac{1}{2!} + \frac{x}{3!} + \frac{x^{2}}{4!} + \cdots$$

$$\frac{e^{x} - 1 - x}{x^{2}} = \lim_{x \to 0} \left(\frac{1}{2} + \frac{x}{3!} + \frac{x^{2}}{4!} + \cdots \right)$$

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots$$

$$e^{x} - 1 - x = \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \cdots$$

$$\frac{e^{x} - 1 - x}{x^{2}} = \frac{1}{2!} + \frac{x}{3!} + \frac{x^{2}}{4!} + \cdots$$

$$\frac{e^{x} - 1 - x}{x^{2}} = \lim_{x \to 0} \left(\frac{1}{2} + \frac{x}{3!} + \frac{x^{2}}{4!} + \cdots\right) = \frac{1}{2!} + \frac{x}{3!} + \frac{x^{2}}{4!} + \cdots$$

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots$$

$$e^{x} - 1 - x = \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \cdots$$

$$\frac{e^{x} - 1 - x}{x^{2}} = \frac{1}{2!} + \frac{x}{3!} + \frac{x^{2}}{4!} + \cdots$$

$$\frac{e^{x} - 1 - x}{x^{2}} = \lim_{x \to 0} \left(\frac{1}{2} + \frac{x}{3!} + \frac{x^{2}}{4!} + \cdots\right) = \frac{1}{2}$$

Use a power series to find $\lim_{x\to 0} \frac{x-\sin x}{x^3}$.

Use a power series to find
$$\lim_{x\to 0} \frac{x-\sin x}{x^3}$$
.
 $\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$

Use a power series to find
$$\lim_{x\to 0} \frac{x - \sin x}{x^3}$$
.
 $\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$

$$-\sin x = -x + \frac{x^3}{3!} - \frac{x^5}{5!} + \frac{x^7}{7!} - \cdots$$

Use a power series to find
$$\lim_{x\to 0} \frac{x - \sin x}{x^3}$$
.
 $\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$

$$-\sin x = -x + \frac{x^3}{3!} - \frac{x^5}{5!} + \frac{x^7}{7!} - \cdots$$

$$x - \sin x = \frac{x^3}{3!} - \frac{x^5}{5!} + \frac{x^7}{7!} - \cdots$$

 $X - \sin X$ Use a power series to find lim ____

series to find
$$\lim_{x \to 0} \frac{x - \sin x}{x^3}$$
.

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$$

$$-\sin x = -x + \frac{x^3}{3!} - \frac{x^5}{5!} + \frac{x^7}{7!} - \cdots$$

$$x - \sin x = \frac{x^3}{3!} - \frac{x^5}{5!} + \frac{x^7}{7!} - \cdots$$

$$\frac{x - \sin x}{x^3} = \frac{1}{3!} - \frac{x^2}{5!} + \frac{x^4}{7!} - \cdots$$

Use a power series to find
$$\lim_{x\to 0} \frac{x - \sin x}{x^3}$$
.

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$$

$$-\sin x = -x + \frac{x^3}{3!} - \frac{x^5}{5!} + \frac{x^7}{7!} - \cdots$$

$$x - \sin x = \frac{x^3}{3!} - \frac{x^5}{5!} + \frac{x^7}{7!} - \cdots$$

$$\frac{x - \sin x}{x^3} = \frac{1}{3!} - \frac{x^2}{5!} + \frac{x^4}{7!} - \cdots$$

$$\lim_{x\to 0} \frac{x - \sin x}{x^3} = \lim_{x\to 0} \left(\frac{1}{6} - \frac{x^2}{5!} + \frac{x^4}{7!} - \cdots\right)$$

Use a power series to find
$$\lim_{x\to 0} \frac{x - \sin x}{x^3}$$
.

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$$

$$-\sin x = -x + \frac{x^3}{3!} - \frac{x^5}{5!} + \frac{x^7}{7!} - \cdots$$

$$x - \sin x = \frac{x^3}{3!} - \frac{x^5}{5!} + \frac{x^7}{7!} - \cdots$$

$$\frac{x - \sin x}{x^3} = \frac{1}{3!} - \frac{x^2}{5!} + \frac{x^4}{7!} - \cdots$$

$$\lim_{x\to 0} \frac{x - \sin x}{x^3} = \lim_{x\to 0} \left(\frac{1}{6} - \frac{x^2}{5!} + \frac{x^4}{7!} - \cdots\right) = \frac{1}{3!} + \frac{x^4}{5!} - \frac{x^4}{7!} - \cdots$$

Use a power series to find
$$\lim_{x\to 0} \frac{x - \sin x}{x^3}$$
.

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$$

$$-\sin x = -x + \frac{x^3}{3!} - \frac{x^5}{5!} + \frac{x^7}{7!} - \cdots$$

$$x - \sin x = \frac{x^3}{3!} - \frac{x^5}{5!} + \frac{x^7}{7!} - \cdots$$

$$\frac{x - \sin x}{x^3} = \frac{1}{3!} - \frac{x^2}{5!} + \frac{x^4}{7!} - \cdots$$

$$\lim_{x\to 0} \frac{x - \sin x}{x^3} = \lim_{x\to 0} \left(\frac{1}{6} - \frac{x^2}{5!} + \frac{x^4}{7!} - \cdots\right) = \frac{1}{6}$$