Syntax		Semantics	
	MCS		MCS
Proof System		Completeness	
	MCS		MCS
Soundness		Tautology	
	MCS		MCS
Contradiction		De Morgan's Laws	
	MCS		MCS
Law of disjunction over Conjunction	ion	Law of conjunction over Disjunction	n
	MCS		MCS
CNF		DNF	
	MCS		MCS
$X \subseteq Y$		$X \subsetneq Y$	
	MCS		MCS
$X \subset Y$		Power set	
	MCS		MCS
Cartesian Product		Disjoint	
	MCS		MCS
Domain/Source		Codomain/Target	
	MCS		MCS

The association of meaning and truth to the formulae of logic	The definition of well-formed formulae of the logic
All the "true" semantics formulae should be provable	The manipulation of formulae according to a system of rules
Where φ evaluates to true for every f	Formulae that are "provable" should be "true"
$\neg(X \land Y) \equiv \neg X \lor \neg Y$ $\neg(X \lor Y) \equiv \neg X \land \neg Y$	Where φ evaluates to true for every f
$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$	$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$
The disjunction of a conjunction of literals	The conjunction of a disjunction of literals
X is not a subset of Y	X is a subset of Y
The set of all subsets of S	X is a proper subset of Y
Two sets that have a union of the empty set	$\{(x,y): x \in X \text{ and } y \in Y\}$
The set B in the function $A \to B$	The set A in the function $A \to B$

Image		Partial function
	MCS	MCS
Injective		Surjective
	MCS	MCS
Bijective		Reflexive
	MCS	MCS
Irreflexive		Symmetry
	MCS	MCS
Antisymmetry		Transitivity
	MCS	MCS
Reflexive closure		Symmetric closure
	MCS	MCS
Transitive closure		Equivalence Relation
	MCS	MCS
Partial Order		Totally ordered set
	MCS	MCS
Well ordered set		Predicate Symbol
	MCS	MCS
Signature		Sentence
	MCS	MCS

A function such that $f(a) \in B$ or $f(a)$ is undefined	The result of passing a value through function
Every element in A maps to an element in B, all elements in B have been mapped to by at least 1 element in A	One to one function
$(a,a) \in R, \forall a \in A$ (For all values in A there is a relation to itself)	Both injective and surjective (1 to 1 connections and all elements in both sets have a mapping)
Whenever $(a, b) \in R$, then $(b, a) \in R \forall a, b \in A$ (For all possible pairs of values there is both (a,b) and (b,a))	$(a,a) \notin R \forall a \in A \text{ (Not every value in A has a relation to itself)}$
When $(a,b)(b,c) \in R$ then $(a,c) \in R, \forall a,b,c \in A$ (If there is a relation from element A to B and B to C then there is from A to C)	Whenever $(a,b)(b,a) \in R$, then $a = b \forall a, b \in A$ (If there is a pair where there is a relation both ways then the value is the same)
The smallest symmetric relation that contains R. It is obtained by adding to R all the pairs (x,y) for which (y,x) but not (x,y) lies in R	The smallest reflexive relation that contains R. It is obtained by adding to R all the pairs (x,x) that do not already lie in R
A relation that is Reflexive, symmetric and transitive	The smallest transitive relation that contains R. It is the relation defined as $\{(a,b): a,b\in A, (a,b)\in R^n, \text{ for some } n\geq 1\}=\bigcup_{n=1}^\infty R^n$
(S, \leq) is a poset and two elements in S are comparable	A relation that is reflexive, anti-symmetric and transitive A partial order R on set S is called a poset
A symbol with an associated arity	(S, \leq) is a poset and \leq is a total ordering and every non-empty subset of S has a least element
A formula with no free variables	The finite set of predicate (relation) and constant symbols

Product Rule	Product rule
MCS	MCS
Permutation	r-Permutation
MCS	MCS
r-Combination	How to use stars and bars
MCS	MCS
Experiment	Sample Space
MCS	MCS
Event	Bernoulli trial
MCS	MCS
Bayes' Theorem	Random Variable
MCS	MCS
Expected Value	Variance
MCS	MCS
Chebyshev's Inequality	Markov's inequality
MCS	MCS
Directed Graph (digraph)	Multigraphs
MCS	MCS
Pseudographs	Vertex or edge weighted graphs
MCS	MCS

If a procedure can be done in one of n_1 ways or one of n_2 ways, there are $n_1 + n_2$ ways to do the task	With a two $(n_1 \text{ and } n_2)$ steps in a procedure there are $n_1 \times n_2$ ways to do the procedure
An ordered arrangement of r elements in a set of at least r (n) distinct objects $P(n,r) = \frac{n!}{(n-r)!}$	A set of distinct objects in an ordered arrangement of these objects
C(Stars + Bars, Bars)	An unordered selection of r elements from a set of at least r (n) objects $C(n,r) = \frac{n!}{r!(n-r)!}$
The set of possible outcomes	A procedure that yields one of a given set of possible outcomes
An experiment with two possible outcomes, success and failure	A subset of the sample space
A function from the sample space of an experiment to the real numbers	$p(F E) = \frac{p(E F)p(F)}{p(E F)p(F) + p(E \overline{F})p(\overline{F})}$
$V(X) = \sum_{i=1}^{n} (X(s_i) - E(X))^2 \cdot p(s_i)$	$E(X) = \sum_{i=1}^{n} p(s_i) X(s_i)$
$p(X(s) \ge a) \le E(X)/a$	$p(X(s) - E(X) \ge r) \le V(X)/r^2$
Multiple edges allowed between two vertices	Edges can have directions
Vertices and/or edges can have weights	Edges of the form uu (loops) are allowed

Endpoints		Neighbours
	MCS	MCS
Incident		Adjacent
	MCS	MCS
Neighbourhood		Degree
	MCS	MCS
Isolated vertex		${\rm End/Pendant\ Vertex}$
	MCS	MCS
Proper Subgraph		Spanning subgraph
	MCS	MCS
Handshaking Lemma		P_{n}
	MCS	MCS
C_n		$K_{p,q}$
	MCS	MCS
K_n		Walk
	MCS	MCS
Path		Circuit/Closed Walk
	MCS	MCS
Cycle		Length
	MCS	MCS

Vertices connected by an edge	The vertices at the end of an edge
Two edges which both go to the same vertex	The nodes connected by an edge
The number of neighbours	The set of neighbours of a vertex
A vertex with degree 1	A vertex with degree 0
All vertices in the graph are in the subgraph	The subgraph does not contain all the vertices and edges of the graph
A path on n vertices	$\sum_{v \in V} \deg(v) = 2 E $
A complete bipartite graph	A cycle on n vertices
A sequence of edges	A complete bipartite graph which contains all the possible edges between pairs of vertices
A walk where the start vertex is the same as the last vertex	A walk where all vertices are distinct
The number of edges in a path or cycle	A closed walk where all vertices are distinct apart from the first and last

Distance		Diameter	
	MCS		MCS
Weakly connected		Strongly connected	
	MCS		MCS
Strongly connected component		Eulerian circuit	
	MCS		MCS
Forest		Tree	
	MCS		MCS
Rooted Trees		a b	
	MCS		MCS
The prime number theorem		Relatively prime numbers	
	MCS		MCS
Fermat's Little theorem		Euler's ϕ function	
	MCS		MCS
Dot product		Spanning a vector space	
	MCS		MCS
Basis of a vector space		Dimension of a vector space	
	MCS		MCS
Row space		Column space	
	MCS		MCS

The largest distance between two vertices in a graph	The length of the shortest path between two vertices if a path exists, ∞ otherwise
Any two distinct vertices and connected by directed paths in both directions	The graph obtained from the digraph G forgetting direction of connection
Each of the vertices in a connected graph have an even degree	A maximal strongly connected subgraph of G
A connected forest	An acyclic (without cycles) graph
a is a factor of b	A tree in which one vertex is fixed as the root and every edge is directed away from this root
gcd(a,b) = 1	The number of primes not exceeding x approaches $x/ln(x)$
$\phi(n)$ is the number of integers $\leq n$ that are relatively prime with n	If p is prime and a is not a multiple of p then $a^{p-1} \equiv 1 \mod p$ and $a^p \equiv a \mod p$
The smallest subspace of V that contains all linear combinations	$u \cdot v = u_1 v_1 + u_2 v_2 + \ldots + u_n v_n$
The dimension of a vector space is n where Any subset of V with more than n vectors is linearly dependent Any subset of V with fewer than n vectors does not span V	S is linearly independent S spans V
The subspace of \mathbb{R}^m spanned by the column vectors of A	The subspace of \mathbb{R}^n spanned by the row vectors of A

Null space	Rank
MCS	MCS
Nullity	Linear map
MCS	MCS
Kernel	Range
MCS	MCS
Similar Matrices	Diagonalisable
MCS	MCS

The dimension of the row space (the number of leading variables in the general solution to $ax = 0$) or dimension of range	The solution set of the linear system $Ax = 0$
A linear transformation between vector spaces	The dimension of the null space (the number of free variables in the general solution to $ax = 0$) or dimension of kernel
$\{u \in W u = f(x) \text{ for some } x \in V\}$	$\{x \in V f(x) = 0\}$
Similar to a diagonal matrix	$A = P^{-1}BP$