Prediction: Regression

Logistics

- Homework 4 due today
- Midterm makeup points + grade estimates out today
- Final project details out today

<u>X</u>	<u>Y</u>
1.00	2.00
2.00	3.00
3.00	1.00
4.00	5.00
5.00	2.00
6.00	7.00

Step 1: ?

<u>X</u>	<u>Y</u>
1.00	2.00
2.00	3.00
3.00	1.00
4.00	5.00
5.00	2.00
6.00	7.00

Step 1: Visualize!

<u>X</u>	<u>Y</u>
1.00	2.00
2.00	3.00
3.00	1.00
4.00	5.00
5.00	2.00
6.00	7.00

Step 1: Visualize!

<u>X</u>	<u>Y</u>
1.00	2.00
2.00	3.00
3.00	1.00
4.00	5.00
5.00	2.00
6.00	7.00

Step 1: Visualize!

Step 2: ?

<u>X</u>	<u>Y</u>
1.00	2.00
2.00	3.00
3.00	1.00
4.00	5.00
5.00	2.00
6.00	7.00

Step 1: Visualize!

Step 2: Convert to standard units
Subtract off the mean and divide by the standard deviation

	<u>X</u>	<u>Y</u>
	1.00	2.00
	2.00	3.00
	3.00	1.00
	4.00	5.00
	5.00	2.00
	6.00	7.00
ean	3.50	3.33
t.D.	1.87	2.25

Step 1: Visualize!

Step 2: Convert to standard units

Subtract off the mean and divide by the standard deviation

X(su)	Y(su)
-1.34	-0.59
-0.80	-0.15
-0.27	-1.04
0.27	0.74
0.80	-0.59
1.34	1.63

	<u>X</u>	<u>Y</u>
	1.00	2.00
	2.00	3.00
	3.00	1.00
	4.00	5.00
	5.00	2.00
	6.00	7.00
ean	3.50	3.33
t.D.	1.87	2.25

Step 1: Visualize!

Step 2: Convert to standard units

Subtract off the mean and divide by the standard deviation

Step 3: ?

X(su)	Y(su)
-1.34	-0.59
-0.80	-0.15
-0.27	-1.04
0.27	0.74
0.80	-0.59
1.34	1.63

	<u>X</u>	<u>Y</u>
	1.00	2.00
	2.00	3.00
	3.00	1.00
	4.00	5.00
	5.00	2.00
	6.00	7.00
ean	3.50	3.33
t.D.	1.87	2.25

Step 1: Visualize!

Step 2: Convert to standard units

Subtract off the mean and divide by the standard deviation

Step 3: Multiply X(su) * Y(su)

Step 4: ?

X(su)	Y(su)	Product
-1.34	-0.59	0.79
-0.80	-0.15	0.12
-0.27	-1.04	0.28
0.27	0.74	0.20
0.80	-0.59	-0.47
1.34	1.63	2.18

	<u>X</u>	<u>Y</u>
	1.00	2.00
	2.00	3.00
	3.00	1.00
	4.00	5.00
	5.00	2.00
	6.00	7.00
ean	3.50	3.33
t.D.	1.87	2.25

Step 1: Visualize!

Step 2: Convert to standard units

Subtract off the mean and divide by the standard deviation

Step 3: Multiply X(su) * Y(su) Step 4: Average the products

X(su)	Y(su)	Product
-1.34	-0.59	0.79
-0.80	-0.15	0.12
-0.27	-1.04	0.28
0.27	0.74	0.20
0.80	-0.59	-0.47
1.34	1.63	2.18

$$r = (0.79 + 0.12 + 0.28 + 0.20 + -0.47 + 2.18) / 6$$

$$r = 0.51$$

Equation of a line: y = mx + b

y: the y-value for a given x-value

x: a given x-value

m: slope of the line (r!)

b: y-intercept

Equation of a line: y = mx + b

y: the y-value for a given x-value

x: a given x-value

m: slope of the line (r!)

b: y-intercept

In standard units, b = 0

So the equation is just:

$$y = mx$$

Equation of a line: y = mx + b

y: the y-value for a given x-value

x: a given x-value

m: slope of the line (r!)

b: y-intercept

In standard units, b = 0

So the equation is just:

$$y = rx$$

$$y = rx$$

We can use this to predict new y-values

$$y = rx$$

We can use this to predict new y-values

But they'd be in standard units

We can incorporate the equations to convert from original units to standard units to get the regression equation *in original units*

$$\frac{\text{estimate of } y - \text{average of } y}{\text{STD of } y} = r \times \frac{\text{the given } x - \text{average of } x}{\text{STD of } x}$$

y in standard units

x in standard units

We can then re-arrange this to get an equation in the form:

$$y = mx + b$$

m (slope):
$$r \cdot \frac{\text{STD of } y}{\text{STD of } x}$$

b (intercept): average of $y - slope \cdot average of x$

We can then re-arrange this to get an equation in the form:

$$y = mx + b$$

m (slope):
$$r \cdot \frac{\text{STD of } y}{\text{STD of } x}$$

b (intercept): average of $y - slope \cdot average of x$

So now you can make your twizzler length estimates in centimeters!