

Prueba Módulo II - Forma A Mecánica Intermedia

Licenciatura en Física - 2021^1

Problema I

Se observa experimentalmente que un cometa tiene una rapidez v cuando está a una distancia r del Sol y su dirección de movimiento forma un ángulo ϕ con el vector de radio del Sol (ver figura). La masa del Sol es conocida, M_S .

- 1. (35%) Encontrar la excentricidad de la órbita del cometa en términos de los datos experimentales, $r, v y \phi$.
- 2.~(35%) Determine la máxima velocidad tangencial que puede alcanzar el cometa.
- 3. (30%) Determine el período del cometa.

¹Hora de inicio: 18:30 hrs. Hora de término: 22:00 hrs. Envíe el documento en formato pdf

Problema II

Un asteroide de masa m viene desde muy lejos (trayectoria parabólica) acercándose a un planeta de masa M y radio R, en cierto punto de la trayectoria tiene una velocidad v_0 perpendicular a la distancia d, distancia conocida como parámetro de impacto (ver figura).

- 1. (15%) Determine el momentum angular del asteroide en la posición mostrada en la figura.
- 2. (20%) La velocidad mínima v_0 para que el asteroide no choque con el planeta.
- 3. Si el asteroide estando en su punto más cercano al planeta se divide en dos partes, con una de ellas moviéndose en dirección hacia el centro del planeta con rapidez $\frac{v_0}{2}$ y con una masa de $\frac{m}{2}$, entonces:
 - (a) (25%) Determine la velocidad \overrightarrow{V}_A del otro trozo del asteroide y el ángulo respecto a la horizontal.
 - (b) (20%) Obtenga la expresión final para la energía mecánica de este trozo en función de $M,\,m,\,R$ y d.
 - (c) (20%) Este trozo ¿orbitará o no al planeta?.

Problema III

Una partícula de masa m y momentum angular ℓ describe una trayectoria dada por la expresión:

$$\theta = \sqrt{\frac{r}{c}} \qquad (c = cte.)$$

1. (30%) Determine la fuerza central asociada a esta trayectoria.

- 2. (35%) Halle el potencial central asociado a la fuerza determinada en el ítem anterior.
- 3. (35%) Demuestre que para este potencial no existen trayectorias circulares.

3