Adaptive Rejection Sampling

Katherine Kempfert, Eric Chu, Jiahui Zhao

December 18, 2020

Introduction

Adaptive rejection sampling is a method for efficiently sampling from univariate probability density function which is log-concave. It is particularly useful when the distribution interested is computationally expensive. In this project, our group implemented the Adaptive Rejection Sampler (ars) based on algorithms discussed in the paper *Adaptive Rejection Sampling for Gibbs Sampling* by W. R. GILKS. More details about the algorithm is shown in Methods section.

Methods

To make sure tangent lines can be used as upper bounds, our function ars assumes the input density is log concave, that is, h(x) = log(g(x)) is a concave function. After initializing valid x abscissas, we calculate the intersections of tangent lines using

$$z_j = \frac{h(x_{j+1}) - h(x_j) - x_{j+1}h'(x_{j+1}) + x_jh'(x_j)}{h'(x_j) - h'(x_{j+1})}$$

For $z \in [z_{j-1}, z_j]$ and j = 1, 2, ..., k, the upper bound is defined and calculated as

$$u_k(x) = h(x_i) + (x - x_i)h'(x_i)$$

The sampling density $s_k(x)$, which we will use to draw samples from is

$$s_k(x) = \frac{\exp u_k(x)}{\int_D \exp u_k(x') dx'}$$

Observations will be sampled as follows. First, we find the interval to which x will be sampled from by selecting one of the piece of the piece-wise exponential density curves, which have been normalized using the denominator in above function $s_k(x)$. Then we randomly generate a value u_1 from Uniform(0,1) distribution, and find the largest interval index, i, such that the total integral value from the lowest interval of x to the upper bound of that interval is smaller than u_1 .

We then use the Inverse CDF method to actually draw x^* within the i_th interval.

The CDF, given that x belongs to a particular interval, is computed as

$$S(x) = P(X \le x | x \in [z_{j-1}, z_j]) = \frac{\int_{z_{j-1}}^x \exp u_k(x') dx'}{\int_{z_{j-1}}^{z_j} \exp u_k(x') dx'}$$

S(x) is a value between 0 and 1. The denomination of S(x) is a normalizing constant and can be denoted as C.

$$C = \int_{z_{j-1}}^{z_j} \exp u_k(x') dx'$$

The numerator can be integrated as follows,

$$\begin{split} \int_{z_{j-1}}^{x} \exp u_k(z) dz &= \int_{z_{j-1}}^{x} \exp(h(x_j) + (z - x_j)h'(x_j)) dz \\ &= \exp(h(x_j) - x_j h'(x_j)) \int_{z_{j-1}}^{x} \exp(zh'(x_j)) dz \\ &= \exp(h(x_j) - x_j h'(x_j)) \cdot \frac{\exp(zh'(x_j))}{h'(x_j)} \big|_{z_{j-1}}^{x} \\ &= \frac{\exp(h(x_j) - x_j h'(x_j))}{h'(x_j)} \left(\exp(xh'(x_j)) - \exp(z_{j-1}h'(x_j)) \right). \end{split}$$

Then, we randomly generate a value from Uniform(0,1) distribution, u_2 .

$$\frac{\int_{z_{j-1}}^{x^*} \exp u_k(z) dz}{C} = u_2$$

and,

$$\int_{z_{j-1}}^{x^*} \exp u_k(z) dz = u_2 \times C$$

The inverse CDF can be computed as

$$\frac{e^{h(x_j) - x_j h'(x_j)}}{h'(x_j)} (e^{x^* h'(x_j)} - e^{z_{j-1} h'(x_j)}) = u_2 \times C$$

$$x^* = \frac{1}{h'(x_j)} log(\frac{u_2 \times C \times h'(x_j)}{e^{h(x_j) - x_j h'(x_j)}} + e^{z_{j-1} h'(x_j)})$$

After getting a new sample x^* , we perform the squeezing test and rejection test with a randomly generated uniform value w.

We accept x^* when either $w \leq e^{l_k(x^*)-u_k(x^*)}$ (squeezing test) or $w \leq e^{h(x^*)-u_k(x^*)}$ (rejection test) is met. However, we only include x^* in T_k to form T_{k+1} when the rejection test is evaluated.

We repeat the above algorithm until we get enough samples.

Implementation

Test

Conclusion