Outline Introducción Modelado del problema Mejoras al algoritmo backpropagation Resultados Conclusiones

Redes neuronales multicapa Castiglione, Karpovsky, Sturla

Sistemas de Inteligencia Artificial

3 de Mayo de 2012

- Introducción
 - El problema
- 2 Modelado del problema
 - Representación de la red neuronal
 - Funciones de activación
 - Arquitecturas
 - Cálculo del error
 - Conjuntos de entrenamiento y testeo
- Mejoras al algoritmo backpropagation
 - Eta dinámico
 - Ruido y momentum
- Resultados
- 6 Conclusiones

- Introducción
 - El problema
- 2 Modelado del problema
 - Representación de la red neuronal
 - Funciones de activación
 - Arquitecturas
 - Cálculo del error
 - Conjuntos de entrenamiento y testeo
- Mejoras al algoritmo backpropagation
 - Eta dinámico
 - Ruido y momentum
- 4 Resultados
- Conclusiones

El problema

El problema planteado consiste en la estimación de funciones escalares a partir de un conjunto de puntos que las representan.

En nuestor caso particular hemos trabajado con el archivo samples7.txt

Gráfico de la función

Representación de la red neuronal Funciones de activación Arquitecturas Conjuntos de entrenamiento y testeo

- 1 Introducción
 - El problema
- 2 Modelado del problema
 - Representación de la red neuronal
 - Funciones de activación
 - Arquitecturas
 - Cálculo del error
 - Conjuntos de entrenamiento y testeo
- Mejoras al algoritmo backpropagation
 - Eta dinámico
 - Ruido y momentum
- 4 Resultados
- Conclusiones

Representación de la red neuronal

Se representó la red neuronal como una matriz de pesos.

- Cada neurona es una columna de pesos.
- Cada capa de neuronas es una matriz de pesos.
- La red neuronal, por consiguiente, es un vector de matrices.

Se utilizaron dos funciones de activación distintas:

Sigmoidea exponencial

$$g(h) = \frac{1}{1 + e^{-2\beta h}}$$

Derivada:

$$2\beta g(1-g)$$

Tangente hiperbólica

$$g(x) = tanh(x)$$

Derivada:

$$\beta g(1-g^2)$$

Arquitecturas estudiadas

- Perceptron simple?
- Pocas neuronas, pocas capas
- Muchas neuronas, muchas capas
- Punto intermedio
- Conexiones muertas/rotas

Conjunto de entrenamiento y testeo

Se decidió seguir el consejo de la cátedra y al realizar las pruebas se utilizó un subconjunto de los datos seleccionados al azar para la fase de aprendizaje y el subconjunto restante para testeo.

• Elección de puntos al azar? Puntos representativos?

- Introducción
 - El problema
- 2 Modelado del problema
 - Representación de la red neuronal
 - Funciones de activación
 - Arquitecturas
 - Cálculo del error
 - Conjuntos de entrenamiento y testeo
- Mejoras al algoritmo backpropagation
 - Eta dinámico
 - Ruido y momentum
- 4 Resultados
- Conclusiones

Eta dinámico (η adaptativo)

- Si el error sube consistenemente incrementar eta aritméticamente: quizás se está siendo muy conservador.
- Si el error incrementa, reducir η exponencialmente.

Momentum

$$w_{ij}(t+1) = -\frac{\partial E}{\partial w_{ij}} + \alpha w(t)$$

Cambios dependen de cambios anteriores. Idea de dirección general del error.

Olvido exponencial de cambios anteriores.

Se aplica a cada batch / lote

Ruido

Idea: Escape del mínimo local.

Robustez de la red neuronal: debería poder soportar ruido.

- Introducción
 - El problema
- 2 Modelado del problema
 - Representación de la red neuronal
 - Funciones de activación
 - Arquitecturas
 - Cálculo del error
 - Conjuntos de entrenamiento y testeo
- Mejoras al algoritmo backpropagation
 - Eta dinámico
 - Ruido y momentum
- Resultados
- Conclusiones

Resultados 1

Figura 1: Arq [200 100], eta adaptativo, tangente hiperbólica

Resultados 2

Figura 2: Arq [50 30] 200 epocas, tangente hiperbólica.

Resultados 3

Figura 3: Arq [4 4] 200 épocas eta adaptativo, tanh.

- Introducción
 - El problema
- 2 Modelado del problema
 - Representación de la red neuronal
 - Funciones de activación
 - Arquitecturas
 - Cálculo del error
 - Conjuntos de entrenamiento y testeo
- Mejoras al algoritmo backpropagation
 - Eta dinámico
 - Ruido y momentum
- Resultados
- Conclusiones

Conclusión

- Incrementar la cantidad de neuronas arbitrariamente no necesariamente implica mejoras en cuanto al error (puede llevar a malas generalizaciones y tiempo de más hasta alcanzar el error desdeado).
- No existe tal cosa como una mejor arquitectura o parámetros óptimos. Estos seguramente dependan el problema que se está analizando.

Conclusión cont.

- Momentum no siempre puede acelerar la convergencia.
- La función de activación exponencial es más propensa a atascarse en mínimos.
- Tomar pocos puntos puede ser una muestra poco representativa, y por lo tanto, puede haber mala generalización.