Разберем примеры длин волн де Бройля:

- У частицы массой 1 г и скорость 1 метр в секунду получим $\lambda_{\rm B} = \frac{h}{p} = \frac{h}{1} = 6.63 \cdot 10^{-34}$ м
- Молекула кислорода со скоростью 500 м/с имеет длину волны $\lambda_{\rm B} = \frac{6.63 \cdot 10^{-34}}{5.32 \cdot 10^{-26} \cdot 500} = 0.025$ нм

Опыт Дэвиссона и Джермера подтверждал гипотезу де Бройля:

Узкий пучок моноэнергетических электронов направлялся на поверхность монокристалла никеля и наблюдалось отражение электронов от его поверхности. Атом в кристалле образуют упорядоченную периодическую структуру, поэтому интенсивность отраженного пучка на экране показывала распределение с резкими максимумами, как при дифракции

По закону Вульфа-Брэгга $2d\sin\varphi=n\lambda_{\rm B}$ можно узнать длину волны де Бройля и сравнить ее с формулой $\lambda_{\rm B}=\frac{h}{p}$

Аналогично опыт Томсона и Тартаковского с прохождение электронов через металлическую фольгу показала это

Также можно повторить опыт Юнга с электроном и получить дифракционную картину Если взять одну щель, то распределение электронов на экране будет соответствовать функции $\sin x$ прообразорание Функции $\sin x$ функции процессия для Δx пирома

$$\frac{\sin x}{x}$$
 – преобразование Фурье от $t(x) = \begin{cases} 0, & |x| < \Delta x/2 \\ 1, & |x| \ge \Delta x/2 \end{cases}$, функции пропускания, где Δx – ширина щели

Здесь можно определить, что первый минимум находится на угле φ_1 , для которого выполнено $\Delta x \sin \varphi_1 = \lambda_{\rm B}$. Если пучок отклонился, значит появилась проекция импульса на плоскость экрана. При малом угле $\sin \varphi_1 \approx {\rm tg} \, \varphi_1 = \frac{p_x}{p_0}$

Так как
$$\Delta p_x \approx p_x$$
, $\operatorname{tg} \varphi_1 = \frac{\Delta p_x}{p_0} \Longrightarrow \Delta x \cdot \Delta p_x = \lambda_{\mathrm{B}} p_0$

Получим $\Delta x \cdot \Delta p_x \approx h$ — соотношение неопределенностей Гейзенберга. Оно означает, что, чем точнее измеряется одна характеристика частицы (либо расстояние, либо импульс), тем менее точно можно измерить вторую

По-другому можно соотношение представить как $\Delta t \Delta v \approx 1$ — оптическое соотношение неопределенности

Или как $\Delta x \cdot \Delta k \approx 1$ — пространственное соотношение, где Δk — неопределенность измерения волнового числа

В макромире соотношение Гейзенберга можно смело игнорировать

С помощью принципа неопределенности можно объяснить природу электронов внутри атома. Чтобы не упасть на ядро под действием силы Кулона, электрон должен иметь скорость. Масса электрона равна $9.1 \cdot 10^{-31}$ кг, поэтому из-за принципа неопределенности нельзя точно узнать положение электрона внутри атома, отсюда появляется понятие электронного облака (или орбитали) – область внутри атома, внутри которой с какой-то вероятностью находится электрон

5. Строение атома

В конце XIX века был открыт электрон. Электрон имеет отрицательный заряд, но, так как атом по заряду нейтрален, ядро должно быть положительным. В 1903 году появилась модель Томпсона, которая предполагала, что электроны находились в положительно заряженном атоме, словно изюм в кексе

По расчета Томпсона размер атома равен приблизительно 10^{-10} м

Далее Резерфорд провел такой опыт: альфа-частицы разгонялись на тонкую золотую фольгу, затем отклонялись на экран. Альфа-частицы были обнаружены позади фольги, немного в бок и напротив фольги. Модель Томпсона утверждала, что напряженность атома была равномерно распространена, поэтому ее бы не хватило, чтобы отклонить альфа-частицу на меньший угол Значит, модель Томпсона оказалась неверной. Потом появилась модель Резерфорда — в ней в центра атома есть ядро, в котором был заключен весь положительный заряд, а вокруг ядра вращались электроны. Возникает несостыковка: заряженные электроны, вращаясь, создают переменное магнитное поле, перенося энергию, значит, скорость электронов должна уменьшаться, а атом прекращать существование

Тогда Нильс Бор выдвинул гипотезу, что на некоторых орбитах электроны не излучают энергию. Удивительно, что момент импульса L=mvr имеет такую же размерность, что и постоянная планка h

Бор предположил, что если момент импульса $L=n\hbar$, где $n\in\mathbb{N}$, то орбита считается стабильной (или стационарной)