9.3

Autres expressions du produits scalaire

SPÉ MATHS 1ÈRE - JB DUTHOIT

9.3.1 Expression analytique du produit scalaire

Propriété 9. 29

Dans une base <u>orthonormée</u> (\vec{i}, \vec{j}) , si $\vec{u}(x; y)$ et $\vec{v}(x'; y')$, alors $\vec{u}.\vec{v} = xx' + yy'$

Exemple

On considère deux vecteurs $\vec{u}(-5;2)$ et $\vec{v}(1;4)$ dans une base orthonormée (\vec{i}, \vec{j}) du plan. Calculer $\vec{u}.\vec{v}$

Conséquence 9.30

Dans une base <u>orthonormée</u> $(\vec{\imath}, \vec{\jmath})$, et si $\vec{u}(x; y)$ et $\vec{v}(x'; y')$, alors : \vec{u} et \vec{v} orthogonaux équivaut à xx' + yy' = 0

Propriété 9. 31

Dans une base <u>orthonormée</u> (\vec{i}, \vec{j}) , et si $\vec{u}(x; y)$, alors $||\vec{u}|| = \sqrt{x^2 + y^2}$

Exemple

On considère deux vecteurs $\vec{u}(5;7)$ et $\vec{v}(-5;4)$ dans une base orthonormée (\vec{i},\vec{j}) du plan. Calculer $||\vec{u}||$ et $||\vec{v}||$

Savoir-Faire 9.32

SAVOIR DÉMONTRER L'ORTHOGONALITÉ DE DEUX VECTEURS - MÉTHODE 2 , AVEC DES COORDONNÉES

ABCD est le rectangle ci-dessous avec AB=5 et BC=2. E et F sont les points tels que $\overrightarrow{AE} = \frac{1}{5}\overrightarrow{AB}$ et $\overrightarrow{DF} = \frac{4}{5}\overrightarrow{DC}$. Monter que (AF) et (DE) sont perpendiculaires.

9.3.2 Expression du produit scalaire à partir des normes

↑Démonstration 9.9

On souhaite déterminer une expression de $\vec{u}.\vec{v}$ en fonction des normes. Pour cela, on peut développer $||\vec{u} - \vec{v}||^2$ et $||\vec{u} + \vec{v}||^2$, et ensuite isoler $\vec{u}.\vec{v}$ pour en déduire les formules recherchées.

Propriété 9. 32

Pour tous vecteurs
$$\vec{u}$$
 et \vec{v} , on a :
$$\vec{u} \cdot \vec{v} = \frac{1}{2} (\|\vec{u}\|^2 + \|\vec{v}\|^2 - \|\vec{u} - \vec{v}\|^2)$$

$$\vec{u} \cdot \vec{v} = \frac{1}{2} (\|\vec{u} + \vec{v}\|^2 - \|\vec{u}\|^2 - \|\vec{v}\|^2)$$

•
$$\vec{u} \cdot \vec{v} = \frac{1}{2} (\|\vec{u} + \vec{v}\|^2 - \|\vec{u}\|^2 - \|\vec{v}\|^2)$$