Assignment-1

ee24btech11043-Muura Rajesh Kumar Reddy

0

- 6) Let f be a one-one function with domain $\{x, y, z\}$ and range $\{1, 2, 3\}$. It is given that exactly one of the following statements is true and the remaining two are false $f(x) = 1, f(y) \neq 1, f(z) \neq 2$ determine $f^{-1}(1)$. (1981 2Marks)
- 7) Let R be the set of real numbers and f: $R \to R$ be such that for all x and y in $R |f(x) f(y)| \le |x y|^3$. Prove that f(x) is a constant. (1988 2*Marks*)
- 8) Find the natural number 'a' for which $\sum_{k=1}^{n} f(a+k) = 16(2^{n}-1)$, where the function 'f' satisfies the relation f(x+y) = f(x)f(y) for all natural numbers x, y and further f(1) = 2. (1992 6Marks)
- 9) Let $\{x\}$ and [x] denotes the fractional and integral part of a real number x respectively. Solve $4\{x\} = x + [x]$. (1994 4*Marks*)
- 10) A function $f: IR \to IR$, where IR is the set of real numbers, is defined by $f(x) = \frac{\alpha x^2 + 6x 8}{\alpha + 6x 8x^2}$. Find the interval of values α for which f is onto. Is the function one-to-one for $\alpha = 3$? Justify your answer. (1996 5Marks)
- 11) Let $f(x) = Ax^2 + Bx + C$ where A, B, C are real numbers. Prove that if f(x) is an inteher whenever x is an integer, then the numbers 2A, A + B and C are all integers. Conversly, prove that if the numbers 2A, A + B and C are all integers then f(x) is an integer whenever x is an integer. (1998 8Marks)

F MATCH THE FOLLOWING

1. Let the function defined in column I have domain $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and range $\left(-\infty, \infty\right)$ (1992 - 2Marks)

COLUMN I

COLUMN II

- (p) onto but not one-one
- (q) one-one but not onto
- (r) one-one and onto
- (B) tanx (s) neither one-one nor onto

(A) 1 + 2x

2) Let $f(x) = \frac{x^2 - 6x + 5}{x^2 - 5x + 6}$ (2007 – 6*Marks*) Match of expressions/statements in Column II with expressions/statements in Column II and indicate your answer by darkening the appropriate bubbles in the 4 * 4 matrix given in the ORS.

COLUMN I

- (A) If -1 < x < 1, then f(X) satisfies
- (B) If 1 < x < 2, then f(x) satisfies
- (C) If 3 < x < 5, then f(x) satisfies
- (D) If x > 5, then f(x) satisfies

I. COLUMN II

- (p) 0 < f(x) < 1
- (q) f(x) < 0
- (r) f(x) > 0
- (s) f(x) < 1

This section contains 4 questions. Each questions has 2 matching lists: LIST-I and LIST-II. Four options are give representing matching of elements from LIST-I and LIST-II. Only one of these four option corresponding to a correct matching.

3) Let $E_1 = \{x \in R : x \neq 1 \text{ and } \frac{x}{x-1} > 0\}$ and $E_2 = \{x \in E_1 : \sin^{-1}(\log_e(\frac{x}{x-1})) \text{ is a real number }\}$. (Here, the inverse trigonometric function $\sin^{-1} x$ assumes values in $[-\frac{\pi}{2}, \frac{\pi}{2})$. Let $f: E_1 \to R$ be the function defined by $f(x) = \log_e(\frac{x}{x-1})$ and $g: E_2 \to R$ be the function defined by $g(x) = \sin^{-1}(\log_e(\frac{x}{x-1}))$ (JEEAdv.2018)

II. LIST-I

III. LIST-II

- 1) $(-\infty, \frac{1}{1-e}] \cup [\frac{e}{e-1}, \infty)$ 2) (0, 1)

- 3) $\left[-\frac{1}{2}, \frac{1}{2}\right]$ 4) $(-\infty, 0) \cup (0, \infty)$
- 5) $(-\infty, \frac{e}{e-1}]$ 6) $(-\infty, 0) \cup (\frac{1}{2}, \frac{e}{e-1})$

The correct option is:

P The range of f is

S The domain of g is

Q The range of g contains

R The domain of f contains

(a)
$$P \rightarrow 4$$
; $Q \rightarrow 2$; $R \rightarrow 1$; $S \rightarrow 1$

(b) $P \rightarrow 3$; $Q \rightarrow 3$; $R \rightarrow 6$; $S \rightarrow 5$

(c) $P \rightarrow 4$: $O \rightarrow 2$: $R \rightarrow 1$: $S \rightarrow 6$

(d) $P \rightarrow 4$; $Q \rightarrow 3$; $R \rightarrow 6$; $S \rightarrow 5$

I INTEGER VALUE CORRECT TYPE

- 1) Let $f: [0, 4\pi] \rightarrow [0, \pi]$ be defined by $f(x) = \cos^{-1}(\cos x)$. The number of points $x \in [0, 4\pi]$ satisfying the equation $f(x) = \frac{10-x}{10}$ is (JEEAdv.2014)2) The value of $((\log_2 9)^2)^{\frac{1}{\log_2(\log_2 9)}} \times (\sqrt{7})^{\frac{1}{\log_2 47}}$ is .
- (JEEAdv.2018)
- 3) Let X be a set with exactly 5 elements and Y be a set with exactly 7 elements. If α is the number of one-one functions from X to Y and β is the number of onto functions from Y to X, then the value of $\frac{1}{5!}(\beta - \alpha)$ is (*JEEAdv*.2018)

SECTION-B JEE MAIN/ AIEEE

- 1) The domain of $\sin^{-1}[\log_3(\frac{x}{3})]$ is |2002|
 - a) [1,9]
 - b) [-1, 9]
 - c) [-9, 1]
 - d) [-9, 1]
- 2) The function $f(x) = log(x + \sqrt{x^2 + 1})$, is |2003|
 - (a) neither an even nor an odd function
 - (b) an even function
 - (c) an odd function
 - (d) a periodic function.
- 3) Domain of definition of the function f(x) = $\frac{3}{4-x^2} + \log_{10}(x^3 - x)$, is |2003|
 - (a) $(-1,0) \cup (1,2) \cup (2,\infty)$
 - (b) (*a*, 2)
 - (c) $(-1,0) \cup (a,2)$
 - (d) $(1,2) \cup (2,\infty)$.