Matematyka dyskretna (L)

Katarzyna Paluch

Instytut Informatyki, Uniwersytet Wrocławski

2024

Szachownica i domino

Z szachownicy 8×8 wycinamy jedno pole z narożnika.

Czy tak zdeformowaną szachownicę można pokryć kostkami domina, jeśli każda taka kostka obejmuje dwa pola szachownicy?

Szachownica i domino

Z szachownicy 8×8 wycinamy dwa pola z przeciwległych narożników.

Czy taką szachownicę można pokryć kostkami domina?

Szachownica i pchły

W środku każdego pola szachownicy 5×5 siedzi pchła. Na sygnał każda z pcheł przeskakuje na jakieś sąsiadujące pole. Dwa pola są sąsiadujące, jeśli mają wspólny bok.

Czy istnieje strategia gwarantująca, że na każdym polu ponownie znajdzie się dokładnie jedna pchła?

Zasada szufladkowa Dirichleta

Zasada szufladkowa

Niech $k, s \in N > 0$.

Jeśli wrzucimy k kulek do s szuflad (Dirichleta) a kulek jest więcej niż szuflad (k > s), to w którejś szufladzie znajdą się przynajmniej 2 kulki.

Zasada szufladkowa Dirichleta

Zasada szufladkowa

Niech A i B będą skończonymi zbiorami.

Wówczas, jeśli |A| > |B|, to nie istnieje funkcja różnowartosciowa z $A \le B$.

Zasada szufladkowa Dirichleta

Zasada szufladkowa

Niech $k, s \in N > 0$.

Jeśli wrzucimy $k > s \cdot i$ kulek do s szuflad (Dirichleta), to w którejś szufladzie znajdą się przynajmniej i+1 kulki.

Krzesła i ludzie

W rzędzie stoi 12 krzeseł. Zajmuje je 9 osób.

Pokaż, że w każdym przypadku jakieś 3 sąsiadujące krzesła zostaną zajęte.

Liczba znajomych

Pokaż, że w dwolnej grupie n osób ($n \in N$) znajdą się 2 osoby o takiej samej liczbie znajomych (z tej grupy).

Dwukolorowa płaszczyzna

Każdy punkt płaszczyzny kolorujemy na jeden z dwóch kolorów: szmaragdowy lub koralowy.

Pokaż, że w każdym przypadku jakieś dwa punkty w odległości 1 będą tego samego koloru.

55 liczb

Wybieramy 55 liczb naturalnych takich, że:

$$1 \le x_1 < x_2 < \dots x_{55} \le 100.$$

Pokaż, że jakkolwiek byśmy je nie wybrali, jakieś dwie będą różnić się o 9.

Funkcja modulo

Niech $n, d \in Z$ i $d \neq 0$.

$$n \mod d = n - \lfloor \frac{n}{d} \rfloor d$$

$$n \mod d = r \Leftrightarrow 0 \le r < d \land \exists_{k \in \mathbb{Z}} n = kd + r$$

Funkcja modulo - własności

$$(a+b) \mod n = (a \mod n + b \mod n) \mod n$$

 $(a \cdot b) \mod n = ((a \mod n) \cdot (b \mod n)) \mod n$

Przystawanie modulo:

$$a \equiv_n b \Leftrightarrow a \mod n = b \mod n$$

$$a+b \equiv_n a \mod n + b \mod n$$

 $a \cdot b \equiv_n (a \mod n) \cdot (b \mod n)$

Podzielność

Niech
$$n, d \in Z$$
 i $d \neq 0$.
 $d \mid n \Leftrightarrow \exists_{k \in Z} \ n = kd$

$$d|n \Leftrightarrow n \mod d = 0$$
$$d|n \Leftrightarrow n \equiv_d 0$$

Podzielność- własności

$$d|n_1 \wedge d|n_2 \Rightarrow d|(n_1 + n_2)$$

Czy zachodzi implikacja w drugą stronę?

Podzielność przez 7

Pokaż, że wśród dowolnych 8 liczb całkowitych różnica jakichś dwóch dzieli się przez 7.

Potęgi 3

Pokaż, że istnieją dwie potęgi 3, których różnica dzieli się przez 2024.

Wariacje

Profesor Ksawery Ksenofiliński chciałby wysłać po widokówce do każdego z 7 swoich przyjaciół. Na ile sposobów może to zrobić, jeśli widokówek na ulicznym straganie jest 13 rodzajów?

Wariacje

Profesor Ksawery Ksenofiliński chciałby wysłać po widokówce do każdego z 7 swoich przyjaciół. Na ile sposobów może to zrobić, jeśli widokówek na ulicznym straganie jest 13 rodzajów?

 13^{7}

Liczba funkcji

Liczba wariacji z powtórzeniami

Niech A i B będą skończonymi zbiorami o odpowiednio m i n elementach. Wówczas liczba funkcji ze zbioru A w B wynosi n^m .

Innymi słowy: $|\{f: A \to B\}| = n^m$.

Liczba funkcji

Liczba wariacji z powtórzeniami

Niech A i B będą skończonymi zbiorami o odpowiednio m i n elementach. Wówczas liczba funkcji ze zbioru A w B wynosi n^m .

Innymi słowy: $|\{f: A \rightarrow B\}| = n^m$.

Dowód 1: przez indukcję.

Dowód 2: pokazujemy równoliczność zbiorów: (i) $\{f:A \rightarrow B\}$ oraz (ii)

iloczynu kartezjańskiego $B \times B \times ... \times B$.

Iloczyn kartezjański

Iloczyn kartezjański

Niech $A_1, A_2, \dots A_n$ będą skończonymi zbiorami. Wówczas

$$|A_1 \times A_2 \times \ldots \times A_n| = |A_1| \times |A_2| \times \ldots \times |A_n|$$
.

Liczba podzbiorów

Niech A będzie skończonym zbiorem o n elementach - |A|=n. Ile podzbiorów ma A?

$$|\{B:B\subseteq A\}|=???$$

Liczba podzbiorów

Liczba podzbiorów

Niech A będzie skończonym zbiorem o n elementach. Wtedy

$$|\{B: B \subseteq A\}| = 2^n.$$

Dowód 1: przez indukcję.

Dowód 2:

Liczba podzbiorów

Liczba podzbiorów

Niech A będzie skończonym zbiorem o n elementach. Wtedy $|\{B: B \subseteq A\}| = 2^n$.

Dowód 1: przez indukcję.

Dowód 2: przez pokazanie równoliczności zbiorów: $\{B:B\subseteq A\}$ i

 $\{f: A \to \{0,1\}\}.$

Para podzbiorów

Niech U będzie zbiorem n-elementowym. Na ile sposobów możemy wybrać dwa jego podzbiory A i B takie, że $A \subseteq B$?

$$|\{(A,B):A\subseteq B\subseteq U\}|=???$$

Para podzbiorów

Niech U będzie zbiorem n-elementowym. Na ile sposobów możemy wybrać dwa jego podzbiory A i B takie, że $A \subseteq B$?

$$|\{(A,B): A \subseteq B \subseteq U\}| = |\{f: U \to \{0,1,2\}| = 3^n\}|$$

Wariacje cd

Profesor Ksawery Ksenofiliński wybiera się na tygodniowy rejs po Cykladach. Każdego dnia chciałby wysłać po jednej widokówce do każdego z 7 swoich przyjaciół. Okazuje się, że każdego dnia na każdej z odwiedzonych 7 (różnych) wysp sprzedawca ma 13 rodzajów widokówek do zaoferowania. Na ile sposobów profesor może wysłać widokówki?

Wariacje bez powtórzeń

Profesor Ksawery Ksenofiliński chciałby wysłać po widokówce do każdego z 7 swoich przyjaciół. Na ile sposobów może to zrobić, jeśli widokówek na ulicznym straganie jest 13 rodzajów, ale straganiarz wyprzedał prawie wszystkie widokówki i z każdego rodzaju została tylko jedna ?

Wariacje bez powtórzeń

Profesor Ksawery Ksenofiliński chciałby wysłać po widokówce do każdego z 7 swoich przyjaciół. Na ile sposobów może to zrobić, jeśli widokówek na ulicznym straganie jest 13 rodzajów, ale straganiarz wyprzedał prawie wszystkie widokówki i z każdego rodzaju została tylko jedna?

 $13 \cdot 12 \cdot 11 \cdot \ldots \cdot 7$

Liczba funkcji różnowartościowych

Liczba wariacji bez powtórzeń

Niech A i B będą skończonymi zbiorami o odpowiednio m i n elementach. Wówczas liczba funkcji $r\acute{o}$ żnowartościowych ze zbioru A w B wynosi $n(n-1)\ldots(n-m+1)=\frac{n!}{(n-m)!}$.

Sekwencje

lle jest k-elementowych ciągów cyfr, w których nigdzie dwie takie same cyfry nie występują obok siebie?

Sekwencje

lle jest k-elementowych ciągów cyfr takich, że cyfra miejscu $i \geq 3$ jest inna od cyfry na miejscu i-1 oraz inna od cyfry na miejscu i-2?

lloczyn

Suma rozłącznych równolicznych zbiorów

Niech każdy z n skończonych parami rozłącznych zbiorów A_1,A_2,\ldots,A_n ma m-elementów. Wtedy

$$\left|\sum_{i=1}^{n} A_i\right| = nm$$

Operacja k-krokowa

Iloczyn możliwości

Jeśli pewna operacja składa się z k kroków oraz

pierwszy krok można wykonać na n_1 sposobów, drugi krok na n_2 sposobów (niezależnie od tego jak wykonano krok pierwszy),

. . .,

k-ty krok można wykonać na n_k sposobów (niezależnie od tego jak wykonano poprzednie kroki), to

całą operację można wykonać na $n_1 n_2 \dots n_k$ sposobów.

Załoga

Ania, Basia, Cyryl i Daniel zamierzają popłynąć w rejs. Muszą wybrać kto jest kapitanem, kto sternikiem i kto kucharzem. Nikt nie może pełnić dwóch funkcji. Ania nie może być kapitanem, a kucharzem musi być Cyryl lub Daniel.

Na ile sposobów mogą się podzielić funkcjami?

Permutacje

Niech U będzie zbiorem n-elementowym. Na ile sposobów możemy ustawić w rząd jego elementy?

Permutacje

Niech U będzie zbiorem n-elementowym. Na ile sposobów możemy ustawić w rząd jego elementy?

Na tyle, ile jest funkcji różnowartościowych $f:U \to \{1,2,\ldots,n\}$.

$$|\{f: U \to \{1, 2, \dots, n\}, 1-1\}| = \frac{n!}{(n-n)!} = n!.$$

Sufit i podłoga

Niech
$$x \in R$$
 i $n \in Z$.
 $\lfloor x \rfloor = n \Leftrightarrow n \leq x < n+1$ podłoga z $x \in [x] = n \Leftrightarrow n-1 < x \leq n$ sufit z $x \in [x] = x - \lfloor x \rfloor$ część ułamkowa x

Sufit i podłoga - własności

Niech
$$x \in R$$
 i $n \in Z$.
 $\lfloor x + n \rfloor = n + \lfloor x \rfloor$, bo
 $\lfloor x \rfloor + n \le x + n < \lfloor x \rfloor + n + 1$

$$\lceil x + n \rceil = n + \lceil x \rceil$$

Sufit i podłoga - własności

Niech $x \in R$ i $n \in Z$.

Czy zachodzi: $\lfloor nx \rfloor = n \lfloor x \rfloor$?

Jak zamienić podłogę na sufit?

Sufit i podłoga - własności

Niech $x \in R$ i $n \in Z$.

Czy zachodzi: $\lfloor nx \rfloor = n \lfloor x \rfloor$?

Jak zamienić podłogę na sufit?

$$\lfloor -x \rfloor = -\lceil x \rceil$$

lle jest k-elementowych podzbiorów zbioru n-elementowego?

lle jest k-elementowych podzbiorów zbioru n-elementowego?

$$|U| = \{1, 2, \dots, n\}$$

 $P_n^k = \{A \subseteq U : |A| = k\}$

Porównajmy P_n^k z wariacjami k-elementowymi bez powtórzeń.

$$|D| = \{1, 2, \dots, k\}$$

 $F_{k,n}^{1-1} = \{f : D \to U : f \text{ r\'oznowarto\'sciowa } \}$

lle jest k-elementowych podzbiorów zbioru n-elementowego?

$$|U| = \{1, 2, ..., n\}$$

 $P_n^k = \{A \subseteq U : |A| = k\}$

Porównajmy P_n^k z wariacjami k-elementowymi bez powtórzeń.

$$|D| = \{1, 2, \dots, k\}$$

 $F_{k,n}^{1-1} = \{f : D \to U : f \text{ r\'oznowarto\'sciowa } \}$

$$F_{k,n} = \{I : D \rightarrow U : I \text{ roznowartosci}\}$$

Dla
$$k = 1$$
 zachodzi: $|F_{k,n}^{1-1}| = |P_n^k|$

Dla
$$k > 1$$
 zachodzi: $|F_{k,n}^{1-1}| > |P_n^k|$

lle jest k-elementowych podzbiorów zbioru n-elementowego?

- Elementy k-elementowego podzbioru U możemy ustawić na k! sposobów.
- Każdemu k-elem. podzbiorowi A odpowiada k! funkcji różnowartościowych $\{1, 2, \dots k\} \rightarrow A$.
- Każdemu k-elem. podzbiorowi A odpowiada k!-elem zbiór Z_A .
- Zauważmy, że $A \neq B \Rightarrow Z_A \cap Z_B = \emptyset$.
- $\bullet \ F_{k,n}^{1-1} = \bigcup_{A \subseteq U, |A| = k} Z_A$
- $|F_{k,n}^{1-1}| = k! |P_n^k|$
- $\bullet \ \frac{n!}{(n-k)!} = k! |P_n^k|$
- $|P_n^k| = \frac{n!}{(n-k)!k!} = \binom{n}{k}$

Niech $k, n \in N$ takie, że $0 \le k \le n$. Wówczas $\binom{n}{k} = \binom{n}{n-k}$

Niech
$$k, n \in N$$
 takie, że $0 \le k \le n$.

Wówczas
$$\binom{n}{k} = \binom{n}{n-k}$$

Dowód 1: algebraiczny.

Dowód 2 kombinatoryczny: budujemy bijekcję \mathcal{F} między P_n^k i P_n^{n-k} .

$$P_n^k = \{A \subseteq \{1, 2, \dots, n\} : |A| = k\}$$

$$P_n^{n-k} = \{A \subseteq \{1, 2, \dots, n\} : |A| = n - k\}$$

Niech $k, n \in N$ takie, że $0 \le k \le n$.

Wówczas
$$\binom{n}{k} = \binom{n}{n-k}$$

Dowód 1: algebraiczny.

Dowód 2 kombinatoryczny: budujemy bijekcję \mathcal{F} między P_n^k i P_n^{n-k} .

$$P_n^k = \{A \subseteq \{1, 2, \dots, n\} : |A| = k\}$$

$$P_n^{n-k} = \{A \subseteq \{1, 2, \dots, n\} : |A| = n - k\}$$

$$\mathcal{F}:P_n^k o P_n^{n-k}$$
 $\mathcal{F}(A)=\{1,2,\ldots,n\}\setminus A=ar{A}\ (A\ \text{przyporządkowujemy dopełnienie}\ A)$

Niech
$$k, n \in N$$
 takie, że $0 \le k < n$.

Wówczas
$$\binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1}$$

Dowód 1: algebraiczny.

Dowód 2 kombinatoryczny:

Niech
$$k, n \in N$$
 takie, że $0 \le k < n$.
Wówczas $\binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1}$

Dowód 1: algebraiczny.

Dowód 2 kombinatoryczny: dzielimy P_{n+1}^{k+1} na dwa rozłączne zbiory:

$$U=\{1,2,\ldots,n+1\}$$
 Z_+^{k+1} - zbiór $(k+1)$ -elem. podzbiorów U zawierających $n+1$ Z_-^{k+1} - zbiór $(k+1)$ -elem. podzbiorów U niezawierających $n+1$

Niech $k, n \in N$ takie, że $0 \le k < n$.

Wówczas
$$\binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1}$$

Dowód 1: algebraiczny.

Dowód 2 kombinatoryczny: dzielimy P_{n+1}^{k+1} na dwa rozłączne zbiory:

$$U=\{1,2,\ldots,n+1\}$$
 Z_+^{k+1} - zbiór $(k+1)$ -elem. podzbiorów U zawierających $n+1$ Z_-^{k+1} - zbiór $(k+1)$ -elem. podzbiorów U niezawierających $n+1$

$$\begin{aligned} |P_{n+1}^{k+1}| &= |Z_{+}^{k+1}| + |Z_{-}^{k+1}| \\ |Z_{-}^{k+1}| &= |P_{n}^{k+1}| = \binom{n}{k+1} \end{aligned}$$

Niech
$$k, n \in N$$
 takie, że $0 \le k < n$.
Wówczas $\binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1}$

Dowód 1: algebraiczny.

Dowód 2 kombinatoryczny: dzielimy P_{n+1}^{k+1} na dwa rozłączne zbiory:

$$U=\{1,2,\ldots,n+1\}$$
 Z_+^{k+1} - zbiór $(k+1)$ -elem. podzbiorów U zawierających $n+1$ Z_-^{k+1} - zbiór $(k+1)$ -elem. podzbiorów U niezawierających $n+1$

$$\begin{aligned} |P_{n+1}^{k+1}| &= |Z_{+}^{k+1}| + |Z_{-}^{k+1}| \\ |Z_{-}^{k+1}| &= |P_{n}^{k+1}| = \binom{n}{k+1} \\ |Z_{+}^{k+1}| &= |P_{n}^{k}| = \binom{n}{k} \end{aligned}$$

Trójkąt Pascala

