Группы и алгебры Ли II

Лекция 10

Решетки корней и весов

На прошлой лекции мы столкнулись с решеткой корней Q и решеткой весов P системы корней A_2 . Дадим определения этих решеток в случае произвольной системы корней R.

Определение. Решетка корней Q системы корней R - это абелева группа в E, порожденная R. Иначе говоря, если $\Pi = \{\alpha_1, \dots, \alpha_r\}$ набор простых корней R, то $Q = \bigoplus_{i=1}^r \mathbb{Z}\alpha_i$.

Вспомним, что конечномерность неприводимого представления старшего веса μ приводила к условию $\mu(H_{ij}) = \frac{2(e_i - e_j, \mu)}{(e_i - e_j, e_i - e_j)} \in \mathbb{Z}_+$. В случае A_2 из этого условия мы заключили, что μ лежит на решетке $\bigoplus_{i=1}^r \mathbb{Z} e_i$ и назвали ее решеткой весов P.

Определение. Решетка весов P системы корней R - это абелева группа в E, определенная следующим образом:

$$P = \{ \lambda \in E | \frac{2(\lambda, \alpha)}{(\alpha, \alpha)} \in \mathbb{Z} \quad \forall \alpha \in R \}$$
 (1)

Определение. Фундаментальные веса $\omega_i \in P$ - это веса, удовлетворяющие условию $\frac{2(\lambda_i, \alpha_j)}{(\alpha_j, \alpha_j)} = \delta_{ij}$.

Фундаментальные веса образуют базис P:

$$P = \bigoplus_{i=1}^{r} \mathbb{Z}\omega_i \tag{2}$$

Пример. Фундаментальные веса решетки весов системы корней A_2 - это $\{e_1,e_2\}$.

Пусть имеется какая-то решетка в евклидовом пространстве $L \subset E$, то есть некоторая абелева подгруппа E с числом образующих, равных размерности E.

Определение. Два элемента $\alpha, \beta \in E$ конгруэнтны относительно решетки L, если $\alpha - \beta \in L$.

Описание набора весовых подпространств, окончание

На прошлой лекции мы установили, что:

- 1. Всякое конечномерное представление $V \mathfrak{sl}_3$ имеет старший вес;
- 2. Старший вес μ неприводимого представления V единственный, лежит на решетке весов, и $dimV[\mu]=1;$
- 3. Все веса неприводимого представления V заключены внутри шестиугольника с вершинами, полученными из μ отражениями относительно прямых $L_{e_i-e_j}$, причем если вес λ лежит на стороне шестиугольника, то $dimV[\lambda] = 1$.

Нам осталось понять, какие из весов внутри шестиугольника присутствуют в весовом разложении. По теореме 2 предыдущей лекции в него могут входить только веса, конгруэнтные μ , то есть такие λ , что $\lambda-\mu$ лежит на решетке корней. На самом деле каждый такой вес входит в разложение с ненулевой кратностью: возьмем любой вес β на одном из ребер шестиугольника, выберем $w \in V[\beta]$ и подействуем на него E_{ij} (выберем E_{ij} так, чтобы вес $\beta+e_i-e_j$ был внутри шестиугольника). Мы получим неприводимое представление \mathfrak{sl}_2 -тройки $\{E_{ij}, H_{ij}, E_{ji}\}$, веса которого расположены симметрично относительно прямой $L_{e_i-e_j}$. Это значит, что все слагаемые прямой суммы $\bigoplus_{k\in\mathbb{Z}_+}V[\beta+k(e_i-e_j)]$ ненулевые.

Рис. 1: набор весов неприводимого представления со страшим весом α

Теорема 1. Пусть V - неприводимое конечномерное представление \mathfrak{sl}_3 . Тогда для некоторого μ , лежащего на решетке весов, множество весов представления V - это такие $\lambda \in P$, что они конгруэнтны μ и лежат внутри шестиугольника с вершинами, полученными отражениями относительно прямых $L_{e_i-e_i}$.

Примеры

Простейший нетривиальный пример неприводимого представления - это стандартное представление $V=\mathbb{C}^3$. В стандартном базисе $\{v_1,v_2,v_3\}$ для любого элемента $h\in\mathfrak{h}$ $h.v_i=h_iv_i=e_i(h)v_i,$ поэтому весовое разложение $V=\bigoplus_{i=1}^3 V[e_i].$

Следующий пример - двойственное представление $W=V^*$. Поскольку $\forall x \in \mathfrak{g} \langle x.v,u \rangle + \langle v,x.u \rangle = 0$, веса V^* - это веса V, взятые с противоположным знаком.

Рассмотрим $W = Sym^2V$. Базис в этом случае - это мономы v_iv_j , причем $\mathbb{C}v_iv_j = W[e_i + e_j]$, $W = \bigoplus W[e_i + e_j]$. Представление W неприводимо, поскольку все его весовые подпространства одномерны.

Лемма 1. Представление $V_{n,0} = Sym^a V$ неприводимо.

Доказательство. Следует из того, что Sym^aV имеет старший вектор v_1^a , а каждое его весовое подпространство одномерно: вес $ke_1 + le_2 + me_3$, k + l + m = a соответствует подпространству $\mathbb{C}v_1^kv_2^lv_3^m$ и только ему.

Следствие. Представление $V_{0,n}=Sym^aV^*$ неприводимо.

Рассмотрим $W=V\otimes V^*$. В этом случае весовые подпространства $W[e_i-e_j]=\mathbb{C}v_i\otimes v_j^*,$ $W=\bigoplus W[e_i-e_j]$. Представление W приводимо. В самом деле, мы можем рассмотреть морфизм представлений $i:V\otimes V^*\to\mathbb{C}$, заданный спариванием: $v\otimes u^*\mapsto \langle v,u^*\rangle$. Его ядро - это бесследовые операторы $\mathfrak{sl}(V)$: $i(\sum_{i,j}a_{ij}v_i\otimes v_j^*)=\sum_{i,j}a_{ij}\langle v_i,v_j^*\rangle=\sum_ia_{ii}=0$. Но вообще-то ядро морфизма представлений - это тоже представление, причем в этом случае мы получили, что $\ker i$

Рис. 2: Стандартное (фундаментальное) представление V

Рис. 3: Двойственное к стандартному представление V^*

- присоединенное представление, которое является неприводимым по доказанному на прошлой лекции. Так что $W=\mathbb{C}\oplus\mathfrak{sl}_3.$

Теперь рассмотрим $W = Sym^2V \otimes V^*$. Это представление имеет одномерные весовые подпространства $W[e_i + e_j - e_k] = \mathbb{C} v_i v_j \otimes v_k^*$ для $k \neq i,j$ и трехмерные весовые подпространства $W[e_i] = \mathbb{C} v_i v_j \otimes v_j^* \oplus \mathbb{C} v_i v_k \otimes v_k^* \oplus \mathbb{C} v_i v_i \otimes v_i^*)$. Представление W снова приводимо. В самом деле, рассмотрим морфизм представлений $i: Sym^2V \otimes V^* \to V$, снова заданный спариванием: $uv \otimes w \mapsto \langle u, w \rangle v + \langle v, w \rangle u$. Его ядро состоит из одномерных весовых подпространств $W[e_i + e_j - e_k]$, $k \neq i,j$ и двумерных весовых подпространств $W[e_i]$. Ядро морфизма $\ker i$ является подпредставлением.

Рис. 4: Sym^2V

Рис. 5: $V \otimes V^*$

Рис. 6: $Sym^2V\otimes V^*$

Описание неприводимых представлений

Нам осталось разобраться с двумя вопросами - классификацией неприводимых представлений и кратностью вхождения в них весовых подпространств.

Теорема 2. Для всякой пары целых неотрицательных a, b существует единственное неприводимое конечномерное представление $V_{a,b}$ со старшим весом $ae_1 - be_3$.

Доказательство. Существование $V_{a,b}$ следует из того, что представление $Sym^aV\otimes Sym^bV^*$ содержит старший вектор веса ae_1-be_3 . Докажем единственность $V_{a,b}$. Предположим, нашлось два представления со старшим весом μ , скажем, V и W со старшим векторами $v\in V[\mu]$ и $w\in W[\mu]$. Рассмотрим прямую сумму представлений $V\oplus W$. Вектор $(v,w)\in V\oplus W$ - старший с весом μ . Рассмотрим неприводимое подпредставление $U\subset V\oplus W$, порожденное старшим вектором (v,w). Теперь рассмотрим проекции $\pi_V:U\to V$ и $\pi_W:U\to W$. Это морфизмы неприводимых представлений, значит по лемме Шура $U\cong V$ и $U\cong W$, так что $V\cong W$.

Теорема 3. Пусть $b \le a$. Тогда имеется такое разбиение:

$$Sym^{a}V \otimes Sym^{b}V^{*} = \bigoplus_{i=0}^{b} V_{a-i,b-i}$$
(3)

Замечание. Сравним это с результатом для представлений \mathfrak{sl}_2 :

$$V_a \otimes V_b = \bigoplus_{i=0}^b V_{a-b+2i} \tag{4}$$

Доказательство. Сначала заметим, что все веса $Sym^aV\otimes Sym^bV^*$ лежат внутри шестиугольника, соответствующего весовой диаграмме представления $V_{a,b}$, так что набор весов у $Sym^aV\otimes Sym^bV^*$ и $\bigoplus_{i=0}^b V_{a-i,b-i}$ одинаковый. Весовая диаграмма устроена следующим образом: она состоит из b шестиугольников $H_i, i=0,\ldots b-1$, с вершинами в точках $(a-i)e_1-(b-i)e_3$, которые сменяются треугольниками $T_j, j=1,\ldots, [(a-b)/3]$ с вершинами в точках (a-b-3j).

Размерность весовых подпространств в $Sym^aV\otimes Sym^bV^*$, соответствующих точкам на шестиугольнике H_i , равна $\frac{(i+1)(i+2)}{2}$, а размерность весовых подпространств, соответствующих точкам на треугольнике T_j , равна $\frac{(b+1)(b+2)}{2}$.

Пусть $\mu=(a-i)e_1-(b-i)e_3$. Заметим, что отображение $E_{21}^m:[\mu]\to V[\mu+m(e_2-e_1)]$ инъективно, если вес $\mu+m(e_2-e_1)$ еще принадлежит весовой диаграмме, поскольку иначе существует вектор $v\in V[\mu]$ такой, что $E_{21}^m.v=0$, что невозможно из-за веса v. Но $dim(V[\mu])=dim(V[\mu+m(e_2-e_1)])$, поэтому отображение $E_{21}^m:V[\mu]\to V[\mu+m(e_2-e_1)]$ - изоморфизм. Как следствие, любой вектор $w\in V[\mu+m(e_2-e_1)]$ имеет вид $w=E_{21}^m.v$ для некоторого $v\in V[\mu]$, а значит $E_{12}.w\neq 0$. Таким образом, в весовое разложение $Sym^aV\otimes Sym^bV^*$ не могут входить никакие веса, кроме уже обозначенных. Нам остается проверить, что все обозначенные там есть.

Проверим, что каждое весовое подпространство $V[(a-i)e_1-(b-i)e_3]$ содержит старший вектор. Зададим общий вид вектора веса $(a-i)e_1-(b-i)e_3$: $v=\sum_{(i_1,i_2,i_3)}c_{(i_1,i_2,i_3)}v_1^{(a-i)}v^{(i_1,i_2,i_3)}\otimes v^{*(b-i)}v^{*(i_1,i_2,i_3)}$, где $v^{(i_1,i_2,i_3)}=v_1^{i_1}v_2^{i_2}v_3^{i_3}$, $i_1+i_2+i_3=i$. Найдем коэффициенты $c_{(i_1,i_2,i_3)}$, при которых он будет старшим, то есть $E_{12}.v=E_{23}.v=0$. Воспользуемся знанием о том, что

$$E_{12}.v_2 = v_1 E_{12}.v_1^* = -v_2^*$$
(5)

$$E_{12}.v_1^{(a-i)}v^{(i_1,i_2,i_3)} \otimes v^{*(b-i)}v^{*(i_1,i_2,i_3)} = i_2v_1^{(a-i)}v^{(i_1+1,i_2-1,i_3)} \otimes v^{*(b-i)}v^{*(i_1,i_2,i_3)} - i_1v_1^{(a-i)}v^{(i_1,i_2,i_3)} \otimes v^{*(b-i)}v^{*(i_1-1,i_2+1,i_3)}$$

$$(6)$$

Поэтому чтобы v был старшим, необходимо и достаточно, чтобы $i_2c_{(i_1,i_2,i_3)}=(i_1+1)c_{(i_1+1,i_2-1,i_3)}$ и $i_3c_{i_1,i_2,i_3}=(i_2+1)c_{(i_1,i_2+1,i_3-1)}.$ Отсюда видно, что $i_1!i_2!i_3!c_{(i_1,i_2,i_3)}$ не зависит от i_1,i_2,i_3 , так что $c_{(i_1,i_2,i_3)}=c/i_1!i_2!i_3!$ для произвольного c. Таким образом, для каждого веса $(a-i)e_1-(b-i)e_3$ мы нашли старший вектор, а значит и неприводимое подпредставление $V_{a-i,b-i}\subset Sym^aV\otimes Sym^bV^*$.