Structure d'espaces vectoriels et applications linéaires

ESEFA-Agadir

11 février 2020

Exercice 1

On se place dans l'ensemble E des fonctions \mathcal{C}^{∞} de \mathbb{R} dans \mathbb{R} (il s'agit bien d'un espace vectoriel, comme sous espace de $\mathcal{F}(\mathbb{R},\mathbb{R})$ vu en cours la semaine dernière). Parmi les ensembles suivants, lesquels sont des sous-espaces vectoriels de E?

- \bullet fonctions paires
- fonctions admettant un minimum global
- \bullet fonctions s'annulant une infinité de fois sur $\mathbb R$
- fonctions vérifiant $\forall x \in \mathbb{R}, f(2x) = f(x^2)$
- fonctions admettant une tangente horizontale en x=5
- fonctions vérifiant f''(x) = 3f'(x) 2f(x)
- ullet fonctions Lipschitziennes sur $\mathbb R$

Exercice 2

Dans chacun des cas suivants, déterminer si la famille \mathcal{F} est une base de E, et déterminer si possible les coordonnées de x dans \mathcal{F} .

- 1. $E = \mathbb{R}^3$; $\mathcal{F} = ((-1, 1, 1); (1, -1, 1); (1, 1, -1))$ et x = (2, 3, 4).
- 2. $E = \mathbb{R}_3[X]$; $\mathcal{F} = (1; X; X(X-1); X(X-1)(X-2))$ et $x = X^3$.
- 3. $E = \mathcal{M}_2(\mathbb{R})$; $\mathcal{F} = \left(\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 2 \\ 3 & -1 \end{pmatrix}; \begin{pmatrix} 2 & -2 \\ 1 & -1 \end{pmatrix}; \begin{pmatrix} 0 & -2 \\ -10 & 4 \end{pmatrix} \right)$ et $x = I_4$.
- 4. $E = \{(u_n)_{n \in \mathbb{N}} \mid \forall n \geq 4, \ u_n = 0\}; \ x = (-2, 3, 4, 1, 0, 0, \dots) \text{ (vous avez le choix pour } \mathcal{F}!).$

Exercice 3

Soit E un sous espace vectoriel réel. Montrer que l'intersection intersection $F \cap G$ de sous espaces vectoriels de E est un sous espace de E si et seulement si $F \subset G$ ou bien $G \subset F$.

Exercice 4

Dans chacun des cas suivants, montrer que les ensembles F et G sont des sous-espaces vectoriels de E, et qu'ils sont supplémentaires.

- $E = \mathbb{R}^2$; $F = \{(x, y) \mid x + y = 0\}$ et $G = \{(x, y) \mid x y = 0\}$.
- $E = \mathbb{R}^3$; $F = \{(x, y, z) \mid x y + z = 0\}$ et G = Vect((3, 2, 1)).
- $E = \mathbb{R}_2[X]$; $F = \text{Vect}(X, X^2)$ et $G = \{P \mid P' = 0\}$.
- $E = \mathbb{R}_6[X]$; $F = \{P \in E \mid P \text{ est une fonction paire}\}$ et $G = \{P \in E \mid P \text{ est une fonction impaire}\}$.
- $E = C_0([-1;1], \mathbb{R})$; $F = \{ f \in E \mid \int_{-1}^1 f(t) \ dt = 0 \}$ et $G = \{ \text{fonctions constantes} \}$.
- $E = \{(u_n)_{n \in \mathbb{R}} \mid \forall n \in \mathbb{N}, \ u_{n+3} u_{n+2} u_{n+1} + u_n = 0\}; F = \{(u_n)_{n \in \mathbb{N}} \mid \forall n \in \mathbb{N}, \ u_{n+1} + u_n = 0\}$ et $G = \{(u_n)_{n \in \mathbb{R}} \mid \forall n \in \mathbb{N}, \ u_{n+2} 2u_{n+1} + u_n = 0\}.$

Exercice 5

Donner la matrice (dans les bases canoniques à chaque fois) des applications linéaires suivantes, ainsi que leur noyau et leur image :

•
$$u: \begin{array}{ccc} \mathbb{R}^3 & \to & \mathbb{R}^2 \\ (x,y) & \mapsto & (x+y,y-2x+z) \end{array}$$

•
$$u: \begin{array}{ccc} \mathbb{R}^3 & \to & \mathbb{R}^3 \\ (x,y,z) & \mapsto & (x+y,x+z,y+z) \end{array}$$

•
$$u: \begin{array}{ccc} \mathbb{R}_3[X] & \to & \mathbb{R}^4 \\ P & \mapsto & (P(1), P(2), P(3), P(4)) \end{array}$$

•
$$u: \begin{array}{ccc} \mathcal{M}_2(\mathbb{R}) & \to & \mathcal{M}_2(\mathbb{R}) \\ M & \mapsto & AM - MA \end{array}$$
 où on a posé $A = \begin{pmatrix} -1 & 0 \\ 1 & -1 \end{pmatrix}$

Exercice 6

Soit u l'endomorphisme de \mathbb{R}^3 tel que les images des vecteurs de la base canonique soient (1, -1, 2), (-3, 2, -1) et (-7, 4, 1).

- 1. Déterminer la matrice de u dans la base canonique, ainsi que l'expression de u.
- 2. Déterminer les antécédents par u de (-1,1,8) et de (-2,1,3).
- 3. u est-elle injective? Surjective?

Exercice 7

Soit E un espace vectoriel et $u \in \mathcal{L}(E)$.

- 1. On suppose que $u^2 = 0$. Montrer que $\operatorname{Im}(u) \subset \ker(u)$, et que $id_E + u$ est un automorphisme.
- 2. Dans le cas général, montrer que $\operatorname{Im}(u) \cap \ker(u) = \{0\} \Leftrightarrow \ker(u^2) = \ker(u)$; et que $\ker(u) + \operatorname{Im}(u) = E \Leftrightarrow \operatorname{Im}(u^2) = \operatorname{Im}(u)$.

Exercice 8

On considère \mathbb{C} comme un \mathbb{R} -espace vectoriel, et on définit l'application $f: \mathbb{C} \to \mathbb{C}$ par $f(z) = z + a\overline{z}$, où a est un nombre complexe fixé. Montrer que f est linéaire, Déterminer son noyau, et donner une condition nécessaire et suffisante sur a pour que f soit bijective.

Exercice 9

On se place dans \mathbb{R}^3 et on note F = Vect((1,1,1)) et $G = \{(x,y,z) \mid 2x + y - z = 0\}$. Montrer que $F \oplus G = \mathbb{R}^3$ et déterminer l'expression analytique de la projection sur F parallèlement à G et de la symétrie par rapport à G parallèlement à F.

Exercice 10

On considère l'application $f: \mathbb{R}^3$ dans \mathbb{R}^3 définie par $f(x,y,z) = \left(\frac{2}{3}x + \frac{1}{3}y + \frac{1}{3}z; \frac{1}{3}x + \frac{2}{3}y - \frac{1}{3}z; \frac{1}{3}x - \frac{1}{3}y + \frac{2}{3}z\right)$. Montrer que f est un projecteur et déterminer ses éléments caractéristiques (noyau et image).

Exercice 11

Soient p et q deux projecteurs dans un même espace vectoriel E, vérifiant $p \circ q = q \circ p$.

- 1. Montrer que $p \circ q$ est aussi un projecteur.
- 2. Montrer que $\operatorname{Im}(p \circ q) = \operatorname{Im}(p) \cap \operatorname{Im}(q)$.
- 3. Montrer que $\ker(p \circ q) = \ker(p) + \ker(q)$.

Exercice 12

On se place dans l'espace vectoriel $E = \mathbb{R}_2[X]$ et on note \mathcal{B} la famille $(X^2 + 1; X + 1; 2X^2 - X)$.

- 1. Vérifier que \mathcal{B} est une base de $\mathbb{R}_2[X]$.
- 2. Déterminer la matrice de passage de la base canonique vers la base \mathcal{B} , et celle de \mathcal{B} vers la base canonique.
- 3. Déterminer les coordonnées du polynôme $P = X^2 X + 2$ dans la base \mathcal{B} .
- 4. On considère l'endomorphisme de E défini par $\varphi(P) = XP'$. Déterminer sa matrice dans la base canonique, puis dans la base \mathcal{B} .

Exercice 13

Soit f l'endomorphisme de \mathbb{R}^3 dont la matrice dans le base canonique est $A = \begin{pmatrix} 3 & -2 & -4 \\ 1 & 0 & -2 \\ 1 & -1 & -1 \end{pmatrix}$.

- 1. Calculer A^2 . Que peut-on en déduire sur f?
- 2. Déterminer une base de ker(f) et de Im(f).
- 3. Donner la matrice de f dans une base constituée uniquement de vecteurs de $\ker(f)$ et $\operatorname{Im}(f)$.

Mini-Problème

On se place dans tout ce problème sur $\mathbb{R}_2[X]$ muni de sa base canonique. On y définit les deux

applications
$$f: \left\{ \begin{array}{ccc} \mathbb{R}_2[X] & \to & \mathbb{R}_2[X] \\ P & \mapsto & \frac{1}{2} \left(P\left(\frac{X}{2}\right) + P\left(\frac{X+1}{2}\right) \right) \end{array} \right. ; \text{ et } \varphi: \left\{ \begin{array}{ccc} \mathbb{R}_2[X] & \to & \mathbb{R} \\ P & \mapsto & P(1) \end{array} \right. .$$

On note par ailleurs $\mathcal{B} = (1; -2X + 1; 6X^2 - 6X + 1)$, et $A = \begin{pmatrix} 1 & \frac{1}{4} & \frac{1}{8} \\ 0 & \frac{1}{2} & \frac{1}{4} \\ 0 & 0 & \frac{1}{4} \end{pmatrix}$.

- 1. Montrer que f et φ sont des applications linéaires.
- 2. Écrire la matrice de f dans la base canonique. L'application f est-elle injective? Surjective?
- 3. Déterminer une base de $\ker(\varphi)$. L'application φ est-elle injective? Surjective?
- 4. Justifier que \mathcal{B} est une base de $\mathbb{R}_2[X]$.
- 5. Écrire la matrice de passage de la base canonique vers \mathcal{B} , et calculer son inverse.
- 6. Écrire la matrice Q de f dans la base \mathcal{B} .
- 7. Calculer A^n pour tout entier naturel n, en précisant la valeur des neuf coefficients de la matrice.
- 8. Pour un polynôme $P \in \mathbb{R}_2[X]$, exprimer $f^n(P)$ en fonction de ses coefficients, et montrer que $\lim_{n \to +\infty} \varphi(f^n(P)) = \int_0^1 P(t) \ dt.$