The effective Hamiltonian describing cross-Kerr interaction between modes a and b can be given as:

 $\hat{H_{kerr}} = \hbar \chi^{(3)} \hat{n_a} \hat{n_b}$

where $\chi^{(3)}$ is the (rescaled) third-order susceptibility of the nonlinear medium, and $\hat{n}_a = \hat{a}^{\dagger}\hat{a}$ and $\hat{n}_b = \hat{b}^{\dagger}\hat{b}$ are the photon number operators given in terms of the annihilation (\hat{a} and \hat{b})and creation(\hat{a}^{\dagger} and \hat{b}^{\dagger})operators.

We analyze photon-number qubits as superpositions of vacuum and single-photon Fock states. Using an appropriately strong cross-Kerr interaction, it is possible to perform the CPHASE gate on two qubits so that the states $|00\rangle$, $|01\rangle$, and $|10\rangle$ are unchanged,

but the two single-photon states gain some additional phase, δ .(i.e., $|11\rangle \rightarrow e^{i\delta} |11\rangle$). In particular, for $\delta=\pi$, the CPHASE gate becomes the controlled-sign (CSIGN) gate, which is equivalent up to a unitary transformation, to the controlled-NOT gate.