Nasopamopue posoma 1 Bapicum 22	
Palganne 1.	
B-96: 7! = 5040	
3.1	
3abganne 2	
$A_{10}^3 = \frac{10!}{7!}$	
Radio 723	
8-96: 720	
Babgarne 3.	
$C_n^{n-2} + 2n = 9$, $n \ge 2$	
n!	
$\frac{n!}{(n-2)!} + 2n = 9 \Rightarrow n(n-1) + 4n = 18$	
n(n+3)=18 one buguo $n=3$	
B-96: n=3	
3abganne 4.	
$C_{x}^{4} = \frac{15}{4}A_{x}^{2} \Rightarrow \times \geq 4$	
Cx 47x > 8 = 4	
x! 15 x!	
$\frac{x!}{(x-4)!4!} = \frac{15}{4} \frac{x!}{(x-2)!}$	
1 1/1 1/1 20 22 5	
$\frac{1}{24} x(x-1)(x-2)(x-3) = \frac{15}{4} x(x-1)$	
(x-2)(x-3) = 90, ouelongus $x = 12$	
3 - 96: x = 12	


```
Nadopamopus podoma 2
                                        Bapianen 22
  Balganne 1.
Oбчислими знан. вироду:

P15 (A20 + C10) - 6,3 C23
   B-96:
  Balganne 2.
   P(A) = \frac{m}{n} \Rightarrow n = C_{25}^{5}, m = C_{10}^{2} C_{15}^{3}
  P(A) = \frac{C_{10}^{2} C_{15}^{3}}{C_{25}^{5}} = \frac{196}{508} = 93854
  B-96: P(A) = \frac{196}{506} \pm 0,3854
 Balganus 3.
 \begin{cases} \rho_{i} = 0,8 \\ \rho_{2} = 0,6 \end{cases} \Rightarrow \begin{cases} q_{1} = 0,2 \\ q_{2} = 0,4 \\ q_{3} = 0,8 \end{cases}
a) P(A,) = P,9293 + 9, P293 + 9,92P3 = 0,368
8) P(Az) = P,92P3 = 0,064
6) P(A3) = 9,9293 = 0,064
1) P(A4) = 9, P2P3+P192P3+P1P293=0,472
 B-96: a) 0,368; 8) 0,064; 6) 0,064; 2) 0,472
```


3abganner 10. $30p_{1}: 42\%$ > $p_{1}=0.02 \Rightarrow q_{1}=0.98$ Cxig: 33% > $p_{2}=0.04 \Rightarrow q_{2}=0.96$ Cmpymon: 25% > P3 = 9,03 = 9,97 P(A) = 0,42.0,98+0,33.0,96+0,25.0,97=0,9709 B-96: P(A) = 0,9709

$m=5$, $n=9$, $p=0,6$ $p_{m}^{m}=C_{m}^{m}q^{n-m}p^{m}$ $p_{n}^{m}=C_{n}^{m}q^{n-m}p^{m}$ $p_{n}^{m}=C_{n}^{m}q^{n}p^{m}$ $p_{n}^{m}=C_{n}^{m}q^{m}p^{m}$ $p_{n}^{m}=C_{n}^{m}q^{m}p^{m}p^{m}$ p_{n}		3 ab games 1. Bapian 22
1. $P_{g} = C_{g} = C$		
8-96: 0,2508 8-96: $m_0 = 4$, $P(A) = 92290$ 3abganue 3. $p = 0,1$ $n = 100$ a) $P_{100}(m \le 15)$ 3bigua $P_{100}(m \le 15) = P_{100}(0 \le m \le 15)$ $P(m_1 \le m \le m_2) = P(x_2) - P(x_1)$ 3bigua was $p_{100}(m \le 15) = P_{100}(n \le 15)$ $p_{100}(n \le m \le 15) = P(n \le 15)$ $p_{100}(n \le m \le 15) = P(n \le 15)$ $p_{100}(n \le m \le 15) = P(n \ge 15)$ $p_{100}(n \le m \le 15) = P(n \ge 15)$		$P_{n}^{m} = C_{n}^{m} q^{n-m} p^{m}$
306 gans 2. B-96: $m_0 = 4$, $P(A) = 92290$ 306 gans 3. $p = 0,1$ $n = 100$ a) $P_{100}(m \le 15)$ 36 gan $P_{100}(m \le 15) = P_{100}(0 \le m \le 15)$ $P(m_1 \le m \le m_2) = P(x_2) - P(x_1)$, $P(m_1 \le m \le m_2) = P(x_2) - P(x_1)$, $P(x_1 \le m \le m_2) = P(x_2) - P(x_1)$, $P(x_2 \le x_1) = P(x_2 \le x_2)$ $P(x_1 \le x_2) = P(x_2 \le x_3)$ $P(x_2 \le x_4) = P(x_2 \le x_4)$ $P(x_1 \le m \le x_4) = P(x_2 \le x_4)$ $P(x_2 \le x_4) = P(x_2 \le x_4)$ $P(x_3 \le x_4) = P(x_4) = P(x_4)$ $P(x_4 \le x_4) = P(x_4)$ $P(x_4 \ge x_4)$ P		:. Pg = Cg 0,650,44 = 0,2508
B-96: $M_0 = 4$, $P(A) = 92290$ 3alganue 3. $P = 0,1$ $n = 100$ a) $P_{100}(m \le 15)$ 3bignu $P_{100}(m \le 15) = P_{100}(0 \le m \le 15)$ $P(m_1 \le m \le m_2) = P(x_2) - P(x_1)$, $P(x_2 \le m \le m_2) = P(x_2) - P(x_2)$, $P(x_1 \le m \le m_2) = P(x_2) - P(x_1)$, $P(x_1 \le m \le m_2) = P(x_2) - P(x_1)$, $P(x_1 \le m \le m_2) = P(x_2) - P(x_1)$, $P(x_2 \le m \le m_2) = P(x_2) - P(x_2)$, $P(x_1 \le m \le m_2) = P(x_2) - P(x_2)$, $P(x_1 \le m \le m_2) = P(x_2) - P(x_2)$, $P(x_1 \le m \le m_2) = P(x_2) - P(x_2)$, $P(x_1 \le m \le m_2) = P(x_2) - P(x_2)$, $P(x_1 \le m \le m_2) = P(x_2)$, $P(x_1 \le m \le m_2)$, $P(x_2 \le m \le m_2)$, $P(x_1 \le m \le m_2)$, $P(x_2 \le m \le m_2)$, $P(x_1 \le m \le m_2)$, $P(x_2 \le m \le m_2)$, $P(x_1 \le m \le m_2)$, $P(x_2 \le m \le m_2)$, $P(x_1 \le m \le m_2)$, $P(x_2 \le m \le m_2)$, $P(x_1 \le m \le m_2)$, $P(x_2 \le m \le m$		
3 abgaine 3. $p = 0,1$ $n = 100$ a) P_{100} ($m \le 15$) 3 bigua P_{100} ($m \le 15$) = P_{100} ($0 \le m \le 15$) $P(m_1 \le m \le m_2) = P(x_2) - P(x_1)$, $P(x_1 \le m \le m_2) = P(x_2) - P(x_1)$, $P(x_1 \le m \le m_2) = P(x_2) - P(x_1)$, $P(x_1 \le m \le m_2) = P(x_2) - P(x_1)$, $P(x_1 \le m \le m_2) = P(x_2) - P(x_1)$, $P(x_1 \le m \le m_2) = P(x_2) - P(x_1)$, $P(x_1 \le m \le m_2) = P(x_2) - P(x_1)$, $P(x_1 \le m \le m_2) = P(x_2) - P(x_1)$, $P(x_1 \le m \le m_2) = P(x_2) - P(x_1)$, $P(x_2 \le m \le 15) = P(x_2 \le m \le 15)$ $P(x_1 \le m \le 15) = P(x_2 \le m \le 15)$ $P(x_2 \le m \le 15) = P(x_2 \le m \le 15)$ $P(x_1 \le m \le 15) = P(x_2 \le m \le 15)$ $P(x_2 \le m \le 15) = P(x_2 \le m \le 15)$ $P(x_1 \le m \le 15) = P(x_2 \le m \le 15)$ $P(x_2 \le m \le 15) = P(x_2 \le m \le 15)$		
$ \begin{array}{lll} \rho = 0, 1 \\ n = 100 \\ a) & P_{100} & (m \le 15) \\ 36 ignu & P_{100} & (m \le 15) = P_{100} & (o \le m \le 15) \\ \vdots & P(m_1 \le m \le m_2) = P(x_2) - P(x_1) \\ 9 & P(x) = \frac{1}{\sqrt{277}} \int_{\overline{e}} e^{-\frac{t^2}{2}} dt , x_1 = \frac{m_1 - np}{\sqrt{npq}} \\ P_{100} & (o \le m \le 15) = P(1,68) - P(-3,33) & \\ \approx 0,4515 + 0,4996 = 0,9511 \\ \vdots & P_{100} & (m \le 15) = 0,9511 \end{array} $		
a) P_{100} ($M \le 15$) 36 ignu P_{100} ($M \le 15$) = P_{100} ($0 \le M \le 15$) if $P(M_1 \le M \le M_2) = P(X_2) - P(X_4)$, ge $P(X) = \frac{1}{\sqrt{2\pi}} \int_{0}^{\pi} e^{-\frac{\pi}{2}} dt$, $X_1 = \frac{M_1 - np}{\sqrt{npq}}$ P_{100} ($0 \le M \le 15$) = $P(1,66) - P(-3,33) \approx$ P_{100} ($M \le 15$) = $P(1,66) - P(-3,33) \approx$ if P_{100} ($M \le 15$) = $P(1,66) - P(-3,33) \approx$		
36ignu $P_{100}(m \le 15) = P_{100}(0 \le m \le 15)$: $P(m_1 \le m \le m_2) = P(x_2) - P(x_1)$, $P(x_1) = \frac{1}{\sqrt{27}} \int_{0}^{x_1} e^{\frac{t^2}{2}} dt$, $t_1 = \frac{m_1 - np}{\sqrt{npq}}$ 36ignu was as as $\frac{t^2}{\sqrt{npq}}$ $P_{100}(0 \le m \le 15) = P(1,66) - P(-3,33)$ $P_{100}(m \le 15) = 0,9511$: $P_{100}(m \le 15) = 0,9511$		11-100
$P(m_{1} < m < m_{2}) = P(x_{2}) - P(x_{1}),$ $P(x) = \frac{1}{\sqrt{27}} \int_{0}^{x} e^{\frac{t^{2}}{2}} dt, x_{1} = \frac{m_{1} - np}{\sqrt{npq}}$ $P_{100} (0 < m < 15) = P(1,66) - P(-3,33) \approx$ $20,4515 + 0,4996 = 0,9511$ $P_{100} (m < 15) = 0,9511$		
9e $P(x) = \frac{1}{\sqrt{27}} \int_{\overline{e}}^{2} \frac{1}{\sqrt{2}} dt$, $t_{i} = \frac{M_{i} - np}{\sqrt{npq}}$ 3bigar macmo: $P_{100} (0 \in M_{5}(15)) = P(1,66) - P(-3,33) \approx$ $\approx 0,4515 + 0,4996 = 0,9511$ $\therefore P_{100} (M \le 15) = 0,9511$	-	36 gru 100 (m (15) = P100 (0 < m (15)
P_{100} (0 \leq $M \leq 15$) = $P(1,66) - P(-3,33) \approx$ $\approx 0,4515 + 0,4996 = 0,9511$ $\therefore P_{100}$ ($M \leq 15$) = 0,9511		$g(x_1) = f(x_1) - \varphi(x_1)$ $g(x_1) = f(x_2) - \varphi(x_1)$ $g(x_1) = f(x_2) - \varphi(x_1)$ $g(x_1) = f(x_2) - \varphi(x_1)$
P_{100} (0 \leq $m_{\leq}(15)$) = $P(1,68) - P(-3,33) \approx$ $\approx 0,4515 + 0,4996 = 0,9511$ P_{100} ($M \leq 15$) = 0,9511		3bigan macons:
: P100 (M € 15) = 0,9511		Proo (0 < m < 15) = P(1,68) - P(-3,33) &
100 12 m (12) = P(0,66) - D(1,11)		
& 0,2454+0,4515 = 0,6969 11		2 0,2454+0,4515 = 0,6969 11

```
6) P100 (m720) = 1- P100 (m (19)
  Plon (0 < m < 19) = $\Psi (3) - $\Psi (-3,33) =
 - 0.4987 + 0,4996 = 0,9983
: P100 (M>20) = 1-0,9983 = 0,0017
B-96: a) 0,9515; 8, 0,6969; 6) 0,0017
3alganna 4
 p=0,7 , n=10
 a) Pro = c7.0,77.0,33=0,2668
 8) Pio (m > 8) = P8 + P10 + P10 = 0,3828
 6) PO = 6.10-6
B-96: 970,2668; 8) 0,3828; 6, 6.106
3abganno 5
 n = 200
p = 0,025
\Rightarrow \lambda = np = 0,025 \cdot 200 = 5
Pm 2 Am = 2 = 0) P200 (m < 3) = 0,265
 8) Pom 2 0,0067
 6) Proo (my4) = 1-(Proo+Proo+Proo+Proo)=
= 1-0,265 = 0,735
B-96: 0) 0,265; 8) 0,0067; 6) 0,735
```


	Masopoumopue posome 4 Bapian 22
	3abganna 1) aus an midden har harring
	X -5 -4 0 1 2 4
	Pi 0,15 0,2 0,25 0,2 0,15 0,05
	$M(x) = \sum_{i} x_{i}p_{i} = \sum_{i=1}^{6} x_{i}p_{i} = -0,85$ $D(x) = M(x^{2}) - M^{2}(x) = \sum_{i=1}^{6} x_{i}^{2}p_{i} - 0,85^{2} = 0$
	$D(x) = M(x^2) - M^2(x) = \sum_{i=1}^{6} x_i^2 \rho_i - o_i g_i g_i^2 = 0$
	$5(x) = \sqrt{D(x)} = \sqrt{7,8275} \approx 2,7978$
	3abganne 2.
	$p = 0,45$, $k = 3$ $P_n^m = C_n^m p^m q^{n-m}$
X	
P,	1331 3267 2673 729 8000 8000 8000 8000
	$P_3^{\circ} = C_3^{\circ} \circ ,45^{\circ} \circ ,55^{3-\circ} = \frac{1331}{8000}$
4	$3 = \frac{3267}{3} = \frac{3267}{3000} = \frac{2673}{3000} = \frac{729}{3000}$
	$M(x) = 1,35$ } $D(x) = 0,7425$;
	$\delta(x) = \sqrt{D(x)} \approx 0,8617$

5)
$$\begin{pmatrix} c, & x \leq -5 \\ c, & 0 \geq 2, & -5 \leq x \leq -4 \\ o, & 0 \leq 5, & -4 \leq x \leq -3 \\ o, & 0 \leq 5, & -4 \leq x \leq -3 \\ o, & 0 \leq 5, & -3 \leq x \leq -1 \\ o, & 0 \leq 1, & 0 \leq x \leq 1 \\ o, & 0 \leq 1, & 0 \leq x \leq 1 \\ o, & 0 \leq$$

$$A_{s} = -0.0262$$

$$A_{s} = \frac{M_{4}}{\delta_{4}} - 3 = \frac{1}{\delta_{4}} (V_{4} - 4V_{1}V_{3} + 6V_{1}^{2}V_{2} - 3V_{1}^{4}) = 3$$

$$E_{s} = -1.077$$

.A	Nasopo	emspu	sed s	oma	5	2 9	Bapi	am	n 2	2		
	XX	20	25	30	3.5							
	10	0,03	0,12	0,1	0,0	8		LU.	000	10		
	12	0,1	0,07	0,09	0,0	4		in				
12,31	14	0,06	0,05	0,12	0,1	4	91	0			X	
	X	10	12	14	Y	20	25		30	3:	5	
72			,3 0									
28		-2 6 1	x:p:=									
			$\binom{2}{x}$ - M			-			M.			
			- y ; P ;									
			(Y2)-				26					
			v(x))-1	NX,) M	(Y)		
	M(xy)= =	(x)0(r) x;9;p	ij =	3	(x)	6 (x; y;	Pil	= 3	41,5	
	=> r,	· y =	341,	5-12	3 D	20-						

