Задачи к семинарам 02.12.2024

1 Пусть случайные величины $\{\xi_n, n \in \mathbb{N}\}$ независимы и $\xi_n \sim \text{Bin}(1, p_n)$. Докажите, что

a)

$$\xi_n \stackrel{\mathsf{P}}{\longrightarrow} 0 \iff p_n \to 0.$$

б)

$$\xi_n \xrightarrow{\text{\tiny II.H.}} 0 \iff \sum_n p_n < +\infty.$$

2 Пусть случайные величины $\{\xi_n, n \in \mathbb{N}\}$ и ξ_n принимают значения только во множестве целых чисел \mathbb{Z} . Докажите, что в этом случае $\xi_n \stackrel{d}{\longrightarrow} \xi$ тогда и только тогда, когда для любого $m \in \mathbb{Z}$ выполнено

$$P(\xi_n = m) \longrightarrow P(\xi = m)$$

при $n \to \infty$.

- **3** Случайные величины $\{\xi_n, n \in \mathbb{N}\}$ независимы в совокупности. Обозначим $S_n = \xi_1 + \ldots + \xi_n$. Пусть случайная величина ξ_n
 - а) принимает три значения $\{-n,0,n\}$ с вероятностями $(\frac{1}{2n^{3/2}},1-\frac{1}{n^{3/2}},\frac{1}{2n^{3/2}});$
 - б) принимает три значения $\{-2^n, 0, 2^n\}$ с вероятностями $(2^{-n-1}, 1-2^{-n}, 2^{-n-1})$. Выясните, в каком случае выполнен закон больших чисел

$$\frac{S_n}{n} \xrightarrow{\mathsf{P}} 0$$
 при $n \to \infty$?

4 Пусть $\{\xi_n, n \in \mathbb{N}\}$ — независимые $\mathrm{Exp}(1)$ случайные величины. Докажите, что

$$\mathsf{P}\left(\overline{\lim_{n\to\infty}}\,\frac{\xi_n}{\ln n}=1\right)=1.$$