departamento de matemática

universidade de aveiro

1. Considere a aplicação linear φ de \mathbb{R}^2 em \mathbb{R}^3 tal que

$$\varphi(1,0) = (1,0,0)$$
 e $\varphi(0,1) = (2,1,-1)$.

Determine:

- (a) a matriz de φ em relação às bases canónicas dos espaços considerados;
- (b) a matriz de φ em relação à base canónica de \mathbb{R}^2 e à base

$$\mathcal{B} = ((1,0,0), (0,2,0), (0,0,3)) \text{ de } \mathbb{R}^3,$$

usando a alínea anterior;

- (c) as coordenadas de $\varphi(1,3)$ na base \mathcal{B} , definida na alínea anterior;
- (d) $\varphi(x,y)$, para todo $(x,y) \in \mathbb{R}^2$.
- 2. Considere o endomorfismo φ de \mathbb{R}^3 cuja matriz, em relação à base canónica do espaço considerado, é:

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 2 & 1 & 3 \end{bmatrix}.$$

- (a) Calcule $\varphi(0,1,3)$.
- (b) Determine o núcleo de φ e uma sua base.
- (c) Indique a característica φ , sem calcular Im φ .
- 3. Considere a aplicação linear φ de \mathbb{R}^4 em \mathbb{R}^3 definida, em relação às bases canónicas de \mathbb{R}^4 e de \mathbb{R}^3 , pela matriz:

$$A = \left[\begin{array}{rrrr} 2 & 1 & -1 & 1 \\ -1 & 3 & 1 & 2 \\ 3 & -2 & -2 & -1 \end{array} \right].$$

- (a) Determine bases para $\operatorname{Im} \varphi$ e para $\operatorname{Nuc} \varphi$.
- (b) Escreva a matriz de φ em relação à base

$$\mathcal{B} = ((1, -1, 1, 0), (0, 1, -1, 0), (1, 0, 0, 1), (0, 1, 0, 1))$$

de \mathbb{R}^4 e à base $\mathcal{B}' = ((1,1,1),(1,1,0),(1,0,0))$ de \mathbb{R}^3 .

(c) Calcule $\varphi^{-1}(\langle (1,1,1)\rangle)$.

4. Considere a aplicação linear φ de \mathbb{R}^3 em \mathbb{R}^4 definida, em relação às bases canónicas dos espaços considerados, pela matriz:

$$A = \left[\begin{array}{rrr} 1 & -1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 2 \end{array} \right].$$

- (a) Calcule $\varphi^{-1}(\{(0,1,1,2)\})$.
- (b) Determine o núcleo de φ . Diga se φ é ou não um monomorfismo.
- (c) Indique um subespaço complementar de $\operatorname{Im} \varphi$.
- 5. Considere a aplicação linear φ de \mathbb{R}^3 em \mathbb{R}^2 definida, em relação à base canónica de \mathbb{R}^3 e à base $\mathcal{B} = ((1,1),(-1,1))$ de \mathbb{R}^2 , pela matriz

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 0 \end{bmatrix}.$$

Determine:

- (a) o núcleo e a nulidade de φ ;
- (b) $\varphi(x, y, z)$, para todo $(x, y, z) \in \mathbb{R}^3$.
- 6. Considere a aplicação linear φ de \mathbb{R}^3 em \mathbb{R}^5 definida, em relação à base

$$\mathcal{B} = ((1,1,1),(1,1,0),(1,0,0))$$

de \mathbb{R}^3 e à base canónica de \mathbb{R}^5 , pela matriz:

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}.$$

Seja ainda $F = \langle (1, 1, 1, 1, 1), (1, 1, 1, 0, 0), (1, 0, 0, 0, 0) \rangle$.

(a) Escreva a matriz de φ em relação à base canónica de \mathbb{R}^3 e à base

$$\mathcal{B}' = ((1, 1, 1, 1, 1), (1, 1, 1, 1, 0), (1, 1, 1, 0, 0), (1, 1, 0, 0, 0), (1, 0, 0, 0, 0))$$

de \mathbb{R}^5 .

- (b) Calcule $\varphi^{-1}(F)$.
- (c) Diga se φ é um monomorfismo ou um epimorfismo.

7. Considere o endomorfismo φ de $M_{2\times 2}(\mathbb{R})$ definido por:

$$\varphi\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = \begin{bmatrix} a-b & a+b-c \\ b+c-d & 2a+b-d \end{bmatrix}, \quad \forall \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M_{2\times 2}(\mathbb{R})$$

- (a) Determine $\operatorname{Nuc} \varphi \in \operatorname{Im} \varphi$.
- (b) Diga se φ é ou não um automorfismo.
- (c) Escreva a matriz de φ em relação à base de $M_{2\times 2}(\mathbb{R})$

$$\mathcal{B} = \left(\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right).$$

(d) Escreva a matriz de φ em relação à base

$$\mathcal{B} = \left(\begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \right)$$

de $M_{2\times 2}(\mathbb{R})$, usando a alínea anterior.

(e) Calcule
$$\varphi^{-1}\left(\left\langle \begin{bmatrix} -1 & 0 \\ 1 & 0 \end{bmatrix} \right\rangle\right)$$
.

8. Considere o endomorfismo φ de \mathbb{R}^2 tal que $\varphi(1,2)=(2,-2)$ e

$$\operatorname{Nuc}\varphi = \left\{ (x, y) \in \mathbb{R}^2 : x - y = 0 \right\}.$$

Determine:

- (a) $\varphi(0,1) \in \varphi(1,1)$;
- (b) a matriz de φ em relação à base canónica de \mathbb{R}^2 .
- 9. Seja E um espaço vectorial real tal que $\mathcal{B} = (e_1, e_2, e_3)$ uma sua base. Considere o endomorfismo φ de E tal que:

$$\varphi(e_1) = 2e_1 + 3e_2, \quad \varphi(e_2) = -e_1 + e_2 \quad \text{e} \quad \varphi(e_3) = 2e_2 + 3e_3.$$

- (a) Determine a matriz de φ em relação à base \mathcal{B} .
- (b) Considere os vectores $u_1 = e_1 e_2$, $u_2 = 2e_3$ e $u_3 = e_2 + e_3$.
 - i. Prove que $\mathcal{B}' = (u_1, u_2, u_3)$ é uma base de E.
 - ii. Escreva a matriz de mudança de base $M(\mathcal{B}, \mathcal{B}')$.
 - iii. Utilizando a alínea anterior, determine a matriz de φ em relação à base \mathcal{B}' .
 - iv. Determine as coordenadas do vector $\varphi(v)$ na base \mathcal{B}' , onde $v=(2,-1,0)_{\mathcal{B}}$.

página 4/7

10. Considere o seguinte sistema de equações lineares

$$\begin{cases} x+y+z=a\\ y+2z=b\\ -x+z=c \end{cases}$$

- (a) Determine a relação entre os valores de a, b e c para os quais o sistema é possível.
- (b) Supondo que o sistema é possível, determine o conjunto solução e indique o grau de indeterminação.
- (c) Seja φ o endomorfismo de \mathbb{R}^3 cuja matriz em relação à base canónica de \mathbb{R}^3 é a matriz dos coeficientes do sistema dado. Utilizando as alíneas anteriores, indique:
 - i. Im φ ;
 - ii. Nuc φ ;
 - iii. $\varphi^{-1}(\{(1,2,1)\})$.
- 11. Seja φ um endomorfismo de \mathbb{R}^3 representado, em relação à base canónica de \mathbb{R}^3 , pela matriz

$$A = \left[\begin{array}{ccc} 1 & \alpha & -1 \\ \alpha & 1 & -1 \\ -1 & -1 & \alpha \end{array} \right],$$

onde α é um parâmetro real.

- (a) Determine os valores de α para os quais φ é um isomorfismo.
- (b) Para $\alpha = 1$, determine:
 - i. o núcleo de φ ;
 - ii. o conjunto $\varphi^{-1}(\{(a,b,c)\})$, onde $(a,b,c) = \varphi(1,2,0)$.
- (c) Discuta o sistema AX = 0, em função de α .

Sugestão: utilize as alíneas anteriores.

- (d) Utilizando as alíneas anteriores, determine os valores de α para os quais o sistema AX = B é possível, para todo $B \in M_{3\times 1}(\mathbb{R})$.
- 12. Seja φ um endomorfismo de \mathbb{R}^3 representado, em relação à base canónica de \mathbb{R}^3 , pela matriz

$$A = \left[\begin{array}{ccc} -1 & -1 & \alpha \\ \alpha & -1 & -1 \\ -1 & \alpha & -1 \end{array} \right],$$

onde α é um parâmetro real.

- (a) Determine, em função de α , a nulidade de φ .
- (b) Considere $\alpha = 2$.

5.5. aplicações lineares - revisões

página 5/7

- i. Verifique que Nuc φ é um subespaço complementar de Im φ .
- ii. Determine $\varphi^{-1}(\{(1,1,-2)\})$.
- 13. Seja φ uma aplicação linear de \mathbb{R}^3 para $P_2[x]$ definida por:

$$\varphi(a, b, c) = (b - c) + (a + c)x + (a + 2b)x^{2},$$

para todo $(a, b, c) \in \mathbb{R}^3$.

- (a) Determine $\operatorname{Nuc} \varphi$ e averigúe se φ é um isomorfismo.
- (b) Determine a matriz de φ em relação à base $\mathcal{B} = ((2,0,0),(1,-1,0),(0,2,-1))$ de \mathbb{R}^3 e à base $\mathcal{B}' = (1+x^2,1-x,-1)$ de $P_2[x]$.
- (c) Considere a aplicação linear ψ de $P_2[x]$ em \mathbb{R}^4 cuja matriz em relação à base \mathcal{B}' de $P_2[x]$, definida na alínea anterior, e à base canónica de \mathbb{R}^4 é

$$C = \left[\begin{array}{rrr} 0 & 3 & 4 \\ -1 & -1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 1 \end{array} \right].$$

Determine a matriz de $\psi \circ \varphi$ relativamente à base \mathcal{B} de \mathbb{R}^3 , definida na alínea anterior, e à base canónica de \mathbb{R}^4 .

14. Sejam φ e ψ endomorfismos de \mathbb{R}^3 definidos por:

$$\varphi(1,1,0) = (1,0,0), \quad \varphi(1,-1,0) = (1,2,0) \quad e \quad \varphi(0,0,1) = (0,1,1)$$

е

$$\psi(x, y, z) = (-y, x - y, z),$$
 para todo $(x, y, z) \in \mathbb{R}^3$.

- (a) Determine $\varphi(x, y, z)$, para todo $(x, y, z) \in \mathbb{R}^3$.
- (b) Considere o endomorfismo de \mathbb{R}^3 , $\varphi + \alpha \psi$, onde α é um parâmetro real. Determine os valores de α para os quais $\varphi + \alpha \psi$ é um automorfismo.

página 6/7

1. (a)
$$\begin{bmatrix} 1 & 2 \\ 0 & 1 \\ 0 & -1 \end{bmatrix}$$
; (b) $\begin{bmatrix} 1 & 2 \\ 0 & -\frac{1}{2} \\ 0 & -\frac{1}{3} \end{bmatrix}$; (c) $(7, -\frac{3}{2}, -1)$;

- (d) $\varphi(x,y) = (x+2y,y,-y)$, para todo $(x,y) \in \mathbb{R}^2$.
- 2. (a) (3,4,10); (b) Nuc $\varphi = \{(-z,-z,z) : z \in \mathbb{R}\}$ e $\mathcal{B}_{\text{Nuc }\varphi} = ((-1,-1,1))$; (c) $c_{\varphi} = 2$.

3. (a)
$$\mathcal{B}_{\operatorname{Im}\varphi} = ((2, -1, 3), (1, 2, -1)) \in \mathcal{B}_{\operatorname{Nuc}\varphi} = ((-4, 1, -7, 0), (-3, 0, -5, 1));$$

(b)
$$\begin{bmatrix} 3 & 0 & 2 & -3 \\ -6 & 2 & -2 & 7 \\ 3 & 0 & 3 & -2 \end{bmatrix};$$
 (c)
$$\{(2 - 3w - 4y, y, 3 - 7y - 5w, w) : y, w \in \mathbb{R}\}.$$

- 4. (a) $\{(y, y, 1 y) : y \in \mathbb{R}\};$
 - (b) Nuc $\varphi = \{(y, y, -y) : y \in \mathbb{R}\}$ e φ não é monomorfismo;
 - (c) $\{(0, y, z, 0) : y, z \in \mathbb{R}\}.$
- 5. (a) Nuc $\varphi = \{(z, -2z, z) : z \in \mathbb{R}\} \text{ e } n_{\varphi} = 1;$ (b) $\varphi(x, y, z) = (z - x, 3x + 2y + z)$, para todo $(x, y, z) \in \mathbb{R}^3$.

6. (a)
$$\begin{bmatrix} 1 & -1 & 1 \\ -1 & 2 & -2 \\ 1 & -2 & 2 \\ -1 & 2 & -2 \\ 1 & -2 & 2 \end{bmatrix}$$
; (b) $\{(x, x+z, x) : x, z \in \mathbb{R}\}$;

(c) não é monomorfismo nem epimorfismo.

7. (a) Nuc
$$\varphi = \left\{ \frac{1}{3} \begin{bmatrix} d & d \\ 2 & 3d \end{bmatrix} : d \in \mathbb{R} \right\}$$
e Im $\varphi = \{(x, y, z, w) \in \mathbb{R}^4 : w - x - y - z = 0\};$

(b) não é automorfismo. (c)
$$\begin{bmatrix} 1 & -1 & 0 & 0 \\ 1 & 1 & -1 & 0 \\ 0 & 1 & 1 & -1 \\ 2 & 1 & 0 & -1 \end{bmatrix}; (d) \frac{1}{2} \begin{bmatrix} 9 & 5 & -3 & 6 \\ -6 & -2 & 2 & -4 \\ 1 & -1 & -1 & 4 \\ -3 & -1 & 1 & -2 \end{bmatrix};$$

(e)
$$\left\{ \begin{bmatrix} -c & 2c \\ c & 0 \end{bmatrix} : c \in \mathbb{R} \right\}$$
.

8. (a)
$$\varphi(0,1) = (2,-2) e \varphi(1,1) = (0,0);$$
 (b) $\begin{bmatrix} -2 & 2 \\ 2 & -2 \end{bmatrix}$.

9. (a)
$$\begin{bmatrix} 2 & -1 & 0 \\ 3 & 1 & 2 \\ 0 & 0 & 3 \end{bmatrix}$$
; (b) ii. $\frac{1}{2} \begin{bmatrix} 2 & 0 & 0 \\ -1 & -1 & 1 \\ 2 & 2 & 0 \end{bmatrix}$; iii. $\frac{1}{2} \begin{bmatrix} 6 & 0 & -2 \\ -5 & 2 & 1 \\ 10 & 8 & 4 \end{bmatrix}$; iv. $\varphi(v) = (5, -5, 10)_{\mathcal{B}'}$.

- 10. (a) c + a b = 0;
 - (b) $\{(a-b+z,b-2z,z):z\in\mathbb{R}\}$ e grau de indeterminação é 1;

5.5. aplicações lineares - revisões

página 7/7

(c) i.
$$\text{Im } \varphi = \{(x,y,z) \in \mathbb{R}^3 : z+x-y=0\};$$
 ii. $\text{Nuc } \varphi = \{(z,-2z,z) : z \in \mathbb{R}\};$ iii. $\{(-1+z,2-2z,z) : z \in \mathbb{R}\}.$

- 11. (a) $\alpha \in \mathbb{R} \setminus \{-2, 1\};$
 - (b) i. Nuc $\varphi = \{(x, y, z) \in \mathbb{R}^3 : x + y z = 0\};$ ii. $\{(1 + x, 2 + y, x + y) : x, y \in \mathbb{R}\};$
 - (c) sistema possível e indeterminado: $\alpha \in \{-2, 1\}$;

sistema possível e determinado: $\alpha \in \mathbb{R} \setminus \{-2, 1\}$;

- (d) $\alpha \in \mathbb{R} \setminus \{-2, 1\}$.
- 12. (a) se $\alpha = -1$, $n_{\varphi} = 2$; se $\alpha = 2$, $n_{\varphi} = 1$; se $\alpha \in \mathbb{R} \setminus \{-1, 2\}$, $n_{\varphi} = 0$;
 - (b) ii. $\{(z, z 1, z) : z \in \mathbb{R}\}.$
- 13. (a) Nuc $\varphi = \{(0,0,0)\}$ e é um isomorfismo;

(b)
$$\begin{bmatrix} 2 & -1 & 4 \\ -2 & -1 & 1 \\ 0 & -1 & 2 \end{bmatrix}$$
; (c)
$$\begin{bmatrix} -6 & -7 & 11 \\ 0 & 2 & -5 \\ -2 & -3 & 6 \\ 0 & -1 & 2 \end{bmatrix}$$
.

- 14. (a) $\varphi(x,y,z) = (x,x-y+z,z)$, para todo $(x,y,z) \in \mathbb{R}^3$;
 - (b) $\alpha \in \mathbb{R} \setminus \{-1, 1\}$.