Package 'CMFCAM'

November 29, 2022

Title	Copula,	Multistate,	Frailty	for	Causal	Analysis	Modle

Version 1.0

Maintainer Jih-Chang Yu <h93h96@hotmail.com>

Description The packages for 'Unified semicompeting risks analysis of hepatitis natural history through mediation modeling'. The main functions are CP_MLE (calculate the causal effect from copula model by MLE), CP_Ustat (calculate the causal effect from copula model by Ustatistics), Frailty (calculate the causal effect from frailty model) and M_state (calculate the causal effect from multistate model).

License MIT

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.2.2

R topics documented:

CP_MI	LE	Est	imatin	g the	e dire	ct an	d ind	lirect	of th	е Сор	ula mod	lel by MLE	Ξ	
Index														8
	Xu2010_rest		• • •			• •								7
	Xu2010													
	pLA													
	M_state													
	ms													5
	meta.gen													2
	Frailty													3
	CP_Ustat													
	cp_u													2
	CP_MLE													

Description

Estimating the direct and indirect of the Copula model by MLE

2 cp_u

Usage

```
CP_MLE(data, P.time, int_theta, tol, step)
```

Arguments

data data.frame(X1,X2,D,Z)

P. time interpolation time can be vector or scalar

Examples

```
 \begin{array}{l} {\rm data=meta.gen(500,theta\_0=0.5,theta\_1=0.5,L1=0.5,L2=0.5,L3=1,b01=1,b02=0,b03=0,cc=2,dd="uniform")} \\ {\rm P.time=seq(0,1,by=0.01)} \\ {\rm ans=CP\_MLE(data,P.time,int\_theta=c(0.5,0.5),tol=0.01,step=50)} \\ {\rm plot(P.time,ans\$DE,type="l",ylim=c(-0.5,0.5))} \\ {\rm points(P.time,ans\$DE-ans\$DE\_sd,type="l",ylim=c(-0.5,0.5))} \\ {\rm points(P.time,ans\$DE-ans\$DE\_sd,type="l",ylim=c(-0.5,0.5))} \\ {\rm points(P.time,ans\$IE,type="l",ylim=c(-0.5,0.5),col=2)} \\ {\rm points(P.time,ans\$IE+ans\$IE\_sd,type="l",ylim=c(-0.5,0.5),col=2)} \\ {\rm points(P.time,ans\$IE-ans\$IE\_sd,type="l",ylim=c(-0.5,0.5),col=2)} \\ {\rm legend(0,0.45,c("direct effect","indirect effect"),col=1:2,lty=1)} \\ \end{array}
```

cp_u

Estimating the direct and indirect of the Copula model by U-statistics

Description

Estimating the direct and indirect of the Copula model by U-statistics

Usage

```
cp_u(data, P.time)
```

Arguments

 $\begin{array}{ll} \text{data} & \text{data.frame}(X1,\!X2,\!D,\!Z) \\ \text{interpolation} & \text{time can be vector or scalar} \end{array}$

 int_theta initial value of theta for iteration, nonnegative values vector of length 2

tol maximum tolerance of change during the iteration

step maximum number of the iteration

Examples

```
 \begin{array}{l} {\rm data=meta.gen(500,theta\_0=0.5,theta\_1=0.5,L1=0.5,L2=0.5,L3=1,b01=1,b02=0,b03=0,cc=2,dd="uniform")} \\ {\rm P.time=seq(0,1,by=0.01)} \\ {\rm ans=cp\_u(data,P.time)} \\ {\rm plot(P.time,ans\$DE,type="l",ylim=c(-0.5,0.5))} \\ {\rm points(P.time,ans\$IE,type="l",ylim=c(-0.5,0.5),col=2)} \\ {\rm legend(0,0.45,c("direct effect","indirect effect"),col=1:2,lty=1)} \\ \end{array}
```

CP_Ustat 3

CP_Ustat	Estimating the direct and indirect of the Copula model by U-statistics,
	calculate the variance by bootstrapping

Description

Estimating the direct and indirect of the Copula model by U-statistics, calculate the variance by bootstrapping

Usage

```
CP_Ustat(data, P.time)
```

Arguments

data data.frame(X1,X2,Z,D)

P. time interpolation time can be vector or scalar

Examples

```
 \begin{array}{l} {\rm data=meta.gen(500,theta\_0=0.5,theta\_1=0.5,L1=0.5,L2=0.5,L3=1,b01=1,b02=0,b03=0,cc=2,dd="uniform")} \\ {\rm P.time=seq(0,1,by=0.01)} \\ {\rm ans=CP\_Ustat(data,P.time)} \\ {\rm plot(P.time,ans\$DE,type="l",ylim=c(-0.5,0.5))} \\ {\rm points(P.time,ans\$DE-ans\$DE\_sd,type="l",ylim=c(-0.5,0.5))} \\ {\rm points(P.time,ans\$DE-ans\$DE\_sd,type="l",ylim=c(-0.5,0.5))} \\ {\rm points(P.time,ans\$IE,type="l",ylim=c(-0.5,0.5),col=2)} \\ {\rm points(P.time,ans\$IE-ans\$IE\_sd,type="l",ylim=c(-0.5,0.5),col=2)} \\ {\rm points(P.time,ans\$IE-ans\$IE\_sd,type="l",ylim=c(-0.5,0.5),col=2)} \\ {\rm legend(0,0.45,c("direct effect","indirect effect"),col=1:2,lty=1)} \\ \end{array}
```

Frailty

Estimating the direct and indirect of the frailty model

Description

Estimating the direct and indirect of the frailty model

Usage

```
Frailty(data, P.time, int_theta, tol, step)
```

Arguments

data.frame(X1, X2, D, Z)

 $\verb|int_theta| initial value of theta for iteration, nonnegative values vector of length 2$

tol maximum tolerance of change during the iteration

step maximum number of the iteration interpolation time can be vector or scalar

4 meta.gen

Examples

```
 \begin{array}{l} {\rm data=meta.gen(500,theta\_0=0.5,theta\_1=0.5,L1=0.5,L2=0.5,L3=1,b01=1,b02=0,b03=0,cc=2,dd="uniform")} \\ {\rm P.time=seq(0,1,by=0.01)} \\ {\rm ans=Frailty(data,P.time,int\_theta=c(0.5,0.5),tol=0.01,step=50)} \\ {\rm plot(P.time,ans\$DE,type="l",ylim=c(-0.5,0.5))} \\ {\rm points(P.time,ans\$DE-ans\$DE\_sd,type="l",ylim=c(-0.5,0.5))} \\ {\rm points(P.time,ans\$DE-ans\$DE\_sd,type="l",ylim=c(-0.5,0.5))} \\ {\rm points(P.time,ans\$IE,type="l",ylim=c(-0.5,0.5),col=2)} \\ {\rm points(P.time,ans\$IE+ans\$IE\_sd,type="l",ylim=c(-0.5,0.5),col=2)} \\ {\rm points(P.time,ans\$IE-ans\$IE\_sd,type="l",ylim=c(-0.5,0.5),col=2)} \\ {\rm legend(0,0.45,c("direct effect","indirect effect"),col=1:2,lty=1)} \\ \end{array}
```

meta.gen

generating the data with 1/2 bivariate exposure from the frailty model by three exponential distributions

Description

generating the data with 1/2 bivariate exposure from the frailty model by three exponential distributions

Usage

```
meta.gen(
    n,
    theta_0,
    theta_1,
    L1,
    L2,
    L3,
    b01,
    b02,
    b03,
    cc = 2,
    dd = "uniform"
)
```

Arguments

```
sample size (even)
n
theta_0
                   theta for Z=1
theta_1
                   theta for Z=2
                   lambda for genarate T1
L1
L2
                   lambda for generate T2 without given T1
L3
                   lambda for generate T2 given T1
                   effect from Z to T1
b01
                   effect from Z to T2
b02
b03
                   effect from T1 to T2
                   parameter for generating the censoring time, the regulator censoring rate
СС
```

ms 5

dd set "uniform" for U(0,cc); set weibull for weibull(shape=5,scale=cc)

output X1,X2,Z and D are observed mediated, terminal event times exposure and cen-

soring index (1/0 for failure and censored)

Examples

```
meta.gen(500,theta_0=1,theta_1=0.5,L1=1,L2=1,L3=1,b01=0.5,b02=0,b03=1,cc=2,dd="uniform")
```

ms

Estimating the direct and indirect of the Multistate model.

Description

Estimating the direct and indirect of the Multistate model.

Usage

```
ms(data, P.time)
```

Arguments

data data.frame(X1,X2,D,Z)

P. time interpolation time can be vector or scalar

Examples

```
 \begin{array}{l} {\rm data=meta.gen(500,theta\_0=0.5,theta\_1=0.5,L1=0.5,L2=0.5,L3=1,b01=1,b02=0,b03=0,cc=2,dd="uniform")} \\ {\rm P.time=seq(0,1,by=0.01)} \\ {\rm ans=ms(data,P.time)} \\ {\rm plot(P.time,ans\$DE,type="l",ylim=c(-0.5,0.5))} \\ {\rm points(P.time,ans\$IE,type="l",ylim=c(-0.5,0.5),col=2)} \\ {\rm legend(0,0.45,c("direct effect","indirect effect"),col=1:2,lty=1)} \\ \end{array}
```

M state

Estimating the direct and indirect of the Multistate model. Obtaining the variance by bootstrapping

Description

Estimating the direct and indirect of the Multistate model. Obtaining the variance by bootstrapping

Usage

```
M_state(data, P.time)
```

Arguments

data data.frame(X1,X2,D,Z)

P. time interpolation time can be vector or scalar

6 Xu2010

Examples

```
 \begin{array}{l} {\rm data=meta.gen(500,theta\_0=0.5,theta\_1=0.5,L1=0.5,L2=0.5,L3=1,b01=1,b02=0,b03=0,cc=2,dd="uniform")} \\ {\rm P.time=seq(0,1,by=0.01)} \\ {\rm ans=M\_state(data,P.time)} \\ {\rm plot(P.time,ans\$DE,type="l",ylim=c(-0.5,0.5))} \\ {\rm points(P.time,ans\$DE-ans\$DE\_sd,type="l",ylim=c(-0.5,0.5))} \\ {\rm points(P.time,ans\$DE-ans\$DE\_sd,type="l",ylim=c(-0.5,0.5))} \\ {\rm points(P.time,ans\$IE,type="l",ylim=c(-0.5,0.5),col=2)} \\ {\rm points(P.time,ans\$IE-ans\$IE\_sd,type="l",ylim=c(-0.5,0.5),col=2)} \\ {\rm points(P.time,ans\$IE-ans\$IE\_sd,type="l",ylim=c(-0.5,0.5),col=2)} \\ {\rm points(P.time,ans\$IE-ans\$IE\_sd,type="l",ylim=c(-0.5,0.5),col=2)} \\ {\rm legend(0,0.45,c("direct effect","indirect effect"),col=1:2,lty=1)} \\ \end{array}
```

pLA

predicting the value for one to one vector

Description

predicting the value for one to one vector

Usage

```
pLA(yy, tt, LL)
```

Arguments

yy any time you want to interpolate

tt time or x value with same length of LL, must >0

LL value as f(tt)

Examples

```
x=seq(0,0.5,by=0.01)
LL=pnorm(x,0,1)
pLA(c(0,0.1,0.25,0.01,3),x,LL)
```

Xu2010

Estimating the parameters of the frailty model

Description

Estimating the parameters of the frailty model

Usage

```
Xu2010(T1, T2, d2, int\_theta, tol = tol, step)
```

Xu2010_rest 7

Arguments

T1	observed mediator event time (vector)
T2	observed terminal event time (vector)
d2	1 for terminal event occured 0 for censored (vector)

int_theta initial value (>0) for theta used for iteration

tol maximum tolerance of change during the iteration

step maximum number of the iteration

Examples

Xu2010_rest

Estimating the parameters of the frailty model

Description

Estimating the parameters of the frailty model

Usage

```
Xu2010_rest(T1, T2, d2, int_theta, tol = 0.01, step)
```

Arguments

T1	observed mediator event time (vector)
T2	observed terminal event time (vector)

d2 1 for terminal event occured 0 for censored (vector)

int_theta initial value (>0) for theta used for iteration

tol maximum tolerance of change during the iteration

step maximum number of the iteration

Examples

Index

* Copula	CP_Ustat, 3
CP_MLE, 1	Frailty, 3
* U-statistics	M_state, 5
CP_Ustat, 3	ms, 5
* Xu2010	* semicompeting
Xu2010, 6	CP_MLE, 1
Xu2010_rest,7	cp_u, 2
* causal	CP_Ustat, 3
CP_MLE, 1	Frailty, 3
cp_u, 2	M_state, 5
CP_Ustat, 3	ms, 5
Frailty, 3	OD 141 5 1
M_state, 5	CP_MLE, 1
ms, 5	cp_u, 2
* copula	CP_Ustat, 3
CP_Ustat, 3	Frailty, 3
* frailty	rrailty, 5
cp_u, 2	M_state, 5
Frailty, 3	meta.gen, 4
M_state, 5	ms, 5
ms, 5	-, -
* inference,	pLA, 6
CP_MLE, 1	
cp_u, 2	Xu2010, 6
CP_Ustat, 3	Xu2010_rest, 7
Frailty, 3	
M_state, 5	
ms, 5	
* meta.gen	
meta.gen, 4	
* model,	
CP_Ustat, 3	
* model	
CP_MLE, 1	
cp_u, 2	
Frailty, 3	
M_state, 5	
ms, 5	
* pLA	
pLA, 6	
* risks,	
CP_MLE, 1	
cp_u, 2	
op_u, 2	