Ejercicios en I⁴TEX Variable Compleja

1. Conjugada de un número complejo

Sea z = x + iy un número complejo. Se define el conjugado de z y se representa por \overline{z} como el número complejo x - iy.

1.1. Propiedades (Demostrar)

1. $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$

Demostración:

$$\overline{z_1 + z_2} = \overline{(x_1 + iy_1) + (x_2 + iy_2)}$$

$$= \overline{(x_1 + x_2) + i(y_1 + y_2)}$$

$$= (x_1 + x_2) - i(y_1 + y_2)$$

$$= (x_1 - iy_1) + (x_2 - iy_2)$$

$$= \overline{z_1} + \overline{z_2}$$

 $2. \ \overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}$

Demostración:

$$\overline{z_1 \cdot z_2} = \overline{(x_1 + iy_1) \cdot (x_2 + iy_2)}$$

$$= \overline{(x_1 x_2 - y_1 y_2) + i(x_1 y_2 + x_2 y_1)}$$

$$= (x_1 x_2 - y_1 y_2) - i(x_1 y_2 + x_2 y_1)$$

$$= (x_1 - iy_1) \cdot (x_2 - iy_2)$$

$$= \overline{z_1} \cdot \overline{z_2}$$

3. $z + \overline{z} = 2Re(z)$

Demostración:

$$z + \overline{z} = (x + iy) + (x - iy)$$

$$= (x+x) + (y-y)i$$
$$= 2x$$
$$= 2Re(z)$$

4. $z - \overline{z} = 2iIm(z)$

Demostración:

$$z - \overline{z} = (x + iy) - (x - iy)$$

$$= (x - x) + (y + y)i$$

$$= 2yi$$

$$= 2iIm(z)$$

5. $\overline{z} = z$

Demostración:

$$\overline{z} = \overline{x + iy}$$
$$= x - iy$$
$$= z$$

6. $z \cdot \overline{z} = (Re(z))^2 + (Im(z))^2$. Por ello si $z \neq 0$, entonces $z \cdot \overline{z} > 0$

Demostración:

$$z \cdot \overline{z} = (x + iy) \cdot (x - iy)$$

$$= (x^2 + y^2) + i(-xy + xy)$$

$$= (x^2 + y^2)$$

$$= (Re(z))^2 + (Im(z))^2$$

2. Módulo de un número complejo

Se define el módulo de un número complejo z = x + iy y se representa por |z| como el número real $|z| = \sqrt{x^2 + y^2}$.

2.1. Propiedades (Demostrar)

- 1. $|z| = |\overline{z}|$
- 2. Revisar por que los ejercicios estan mal escritos, liena 196

3. Ejercicios

1. Escribe los siguientes complejos en forma de par ordenado y representa gráficamente.

a)
$$z_1 = 3 - 4i \ z_1 = (3, -4)$$

b)
$$z_2 = -1 - 6i \ z_2 = (-1, -6)$$

c)
$$z_3 = 5 - 5i \ z_3 = (5, -5)$$

2. Encuentre el valor de \boldsymbol{x} y de \boldsymbol{y} en los siguientes casos:

a)
$$(3, x) = (3, 5)$$

Solución:

x = 5

b)
$$(x+3,2y) = (y,2+x)$$

Solución:

$$x + 3 = y$$
 $x + 3 = -1$
 $2y = 2 + x$ $x = \boxed{-4}$
 $2y - x = 2$
 $2y - (y - 3) = 2$
 $2y - y + 3 = 2$
 $y + 3 = 2$
 $y = \boxed{-1}$

c)
$$(x^2 - 5x + 6, 6) = (0, 6)$$

Solución:

$$x^{2} - 5x + 6 = 0$$
$$(x - 2)(x - 3) = 0$$
$$x = \boxed{2,3}$$

$$\underline{\mathbf{d}}) \ \frac{1}{2}x + \frac{2}{3}yi = 1 - 2i$$

Solución:

$$\frac{1}{2}x + \frac{2}{3}yi = 1 - 2i$$

$$\frac{1}{2}x = 1$$

$$x = \boxed{-3}$$

$$\frac{2}{3}yi = -2i$$

$$\frac{2}{3}y = -2$$

$$y = \boxed{-3}$$

e)
$$\frac{3x+7yi}{4} = \frac{2x+1+(8y-12)i}{5}$$

Solución:

$$\frac{3x + 7yi}{4} = \frac{2x + 1 + (8y - 12)i}{5}$$

$$5(3x + 7yi) = 4(2x + 1 + (8y - 12)i)$$

$$15x + 35yi = 8x + 4 + 32yi - 48i$$

$$15x - 8x + 35yi - 32yi = 4 - 48i$$

$$7x + 3yi = 4 - 48i$$

Un conjunto de números complejos solo pueden ser iguales si sus partes reales e imaginarias son iguales, por lo tanto:

$$7x = 4$$

$$x = \boxed{\frac{4}{7}}$$

$$3y = -48$$

$$y = \boxed{-16}$$

3. Efectúa las siguientes operaciones:

a)
$$(-6,5) + (-3,4) =$$

Solución:

$$(-6,5) + (-3,4) = (-6-3,5+4)$$

= $(-9,9)$

b) (-1,3)-(5,7)

Solución:

$$(-1,3) - (5,7) = (-1-5,3-7)$$

= $(-6,-4)$

c) (-4, -5) + (-3, -9)

Solución:

$$(-4, -5) + (-3, -9) = (-4 - 3, -5 - 9)$$

= $(-7, -14)$

d) (-4, -5) - (-12, 1)

Solución:

$$(-4, -5) - (-12, 1) = (-4 + 12, -5 - 1)$$

= $(8, -6)$

e) (-7, -8) + (-5, 6) - (-2, -1)

Solución:

$$(-7, -8) + (-5, 6) - (-2, -1) = (-7 - 5 + 2, -8 + 6 + 1)$$

= $(-10, -1)$

f)
$$(5,-3)-(7,-1)+(10,8)$$

Solución:

$$(5,-3) - (7,-1) + (10,8) = (5-7+10,-3+1+8)$$

= $(8,6)$

g) $(7,-3)\cdot(-2,5)$

Solución:

$$(7,-3) \cdot (-2,5) = (7 \cdot -2 - (-3) \cdot 5, 7 \cdot 5 + (-3) \cdot -2)$$
$$= \boxed{(-4,29)}$$

 $\underline{\mathbf{h}}$) $(-9, -5) \cdot (-8, -9)$

Solución:

$$(-9, -5) \cdot (-8, -9) = (-9 \cdot -8 - (-5) \cdot -9, -9 \cdot -9 + (-5) \cdot -8)$$
$$= \boxed{(47, -81)}$$

i)
$$(12,-5)\cdot(12,-5)-(13,3)\cdot(13,-8)$$

Solución:

$$(12, -5) \cdot (12, -5) - (13, 3) \cdot (13, -8) = (12 \cdot 12 - (-5) \cdot (-5) - (13 \cdot 13 - 3 \cdot (-8)))$$
$$= (169, 169)$$

j) (3,-8):(2,-3)

Solución:

$$(3,-8):(2,-3) = \frac{(3,-8)}{(2,-3)}$$

$$= \frac{(3,-8)\cdot(2,3)}{(2,-3)\cdot(2,3)}$$

$$= \frac{(3\cdot 2 - (-8)\cdot 3, 3\cdot 3 + (-8)\cdot 2)}{(2\cdot 2 - (-3)\cdot 3)}$$

$$= \frac{(30,-1)}{(13,13)}$$

$$= \boxed{\left(\frac{30}{13}, \frac{-1}{13}\right)}$$