Cálculo das Probabilidades II - Lista 1 - 2020/01

Prof. Hugo Carvalho 15/01/2021

- INSTRUÇÕES - LEIAM ATENTAMENTE! -

- A data limite de entrega da avaliação é domingo 24/01/2021 às 23h59'. Avaliações entregues após esse prazo serão desconsideradas.
- A entrega deve ser feita exclusivamente através do Google Classroom, clicando na caixa "+ Adicionar ou Criar" dentro da postagem dessa lista, para então anexar um arquivo com sua resolução. Após isso, clique em "Entregar" para enviar sua resolução.
 - **Atenção**: Somente anexar a resolução não é suficiente! O envio deve ser feito para que sua resolução de fato seja entregue.
- Você tem a liberdade de escrever sua resolução no computador (usando Word, LATEX, dentre outros), ou manuscrito e depois escanear ou fotografar a sua resolução. Nesse último caso, tome cuidado para que o documento fique legível. No caso de fotografar, opte por utilizar luz natural e tome cuidado com sombras.
- Dica: Se for fotografar sua resolução com um *smartphone* ou *tablet*, utilize o aplicativo próprio da câmera, e evite fotografar através de WhatsApp, Telegram, Messenger, e outros. Os aplicativos de comunicação, ao utilizarem a câmera, fazem uma severa compressão da imagem, incorrendo em uma grande diminuição de sua qualidade. Para transferir a imagem do celular para o computador prefira fazer o envio por e-mail, ou acessando sua galeria de fotos através do Google Photos no computador (caso já utilize esse aplicativo para gerenciar suas fotos no aparelho).
- Independente do modo de escrita, a resolução deve ser entregue em um único documento, no formato PDF, com a resolução em pé (formato retrato). O *layout* da resolução não será levado em consideração na avaliação, porém o texto deve estar legível para ser corrigido.
 - Atenção: Resoluções ilegíveis ou fora desse formato não serão corrigidas e serão desconsideradas.
- A troca de conhecimento na realização da avaliação é permitida e encorajada: ciência se faz com colaboração, e devemos seguir esse espírito aqui. Porém, cada aluno deverá ter a sua própria resolução, e cópias ou outras ilegalidades serão severamente punidas com a anulação da avaliação para o(s) aluno(s) suspeito(s).
- Todos os passos de sua resolução devem ser devidamente justificados.
- Ao entregar essa avaliação, você afirma ter lido e estar de acordo com essas regras, comprometendo-se a cumpri-las.

- PARTE 1: FUNDAMENTOS -

Questão 1: (Bônus) (Operações com σ -álgebras) Sejam \mathcal{F}_{λ} , para $\lambda \in \Lambda$ uma coleção de σ -álgebras sobre um conjunto Ω . Faça o que se pede abaixo: (2,0)

- a) Prove que $\bigcap_{\lambda \in \Lambda} \mathcal{F}_{\lambda}$ é uma σ -álgebra sobre Ω .
- b) É verdade que $\bigcup_{\lambda \in \Lambda} \mathcal{F}_{\lambda}$ é uma σ -álgebra sobre Ω ? Justifique provando (no caso afirmativo) ou dando um contra-exemplo (no caso negativo).
- c) Seja \mathcal{A} uma coleção de sub-conjuntos de Ω . A menor σ -álgebra sobre Ω contendo \mathcal{A} é uma σ -álgebra \mathcal{F}_0 satisfazendo a seguinte propriedade: toda σ -álgebra \mathcal{G} que contenha a coleção \mathcal{A} também contém \mathcal{F}_0 ou seja, se $\mathcal{A} \subset \mathcal{G}$, então $\mathcal{F}_0 \subset \mathcal{G}$. Argumente porque esta propriedade é razoável para descrever a "menor" σ -álgebra contendo a coleção \mathcal{A} .
- d) Na notação do item c), prove que a σ -álgebra \mathcal{F}_0 é dada por

$$\mathcal{F}_0 = \bigcap_{ \substack{\mathcal{F} \ \text{\'e} \ \sigma\text{-\'algebra} \\ \mathcal{F} \ \text{cont\'em} \ \mathcal{A} }} \mathcal{F}.$$

Dica: Pelo item a) já sabemos que \mathcal{F}_0 é σ -álgebra, então resta mostrar que se \mathcal{G} é uma σ -álgebra que também contém \mathcal{A} então ela contém \mathcal{F}_0 .

e) Disserte sobre como podemos usar tais fatos para construir a σ -álgebra de Borel sobre o conjunto dos números reais.

Obs.: Lembre-se que a σ -álgebra de Borel sobre o conjunto dos números reais, denotada por $\mathcal{B}(\mathbb{R})$, é a menor σ -álgebra sobre \mathbb{R} que contém a família de conjuntos $\mathcal{A} = \{(-\infty, x], \text{ para } x \in \mathbb{R}\}.$

Questão 2: Considere B e C eventos, e $(A_n)_{n\in\mathbb{N}}$ uma sequência de eventos, todos em um espaço de probabilidade $(\Omega, \mathcal{F}, \mathbb{P})$. Prove o que se pede abaixo: (1,0)

a) Se
$$\mathbb{P}(A_n) = 0$$
, para todo $n = 1, 2, \dots$, então $\mathbb{P}\left(\bigcup_{n=1}^{\infty} A_n\right) = 0$

b) Se
$$\mathbb{P}(A_n)=1$$
, para todo $n=1,2,\ldots$, então $\mathbb{P}\left(\bigcap_{n=1}^{\infty}A_n\right)=1$

c) Se os eventos
$$A_n$$
 são dois-a-dois disjuntos e $\mathbb{P}(B|A_n) \geq c$ para todo n , então $\mathbb{P}\left(B \middle| \bigcup_{n=1}^{\infty} A_n\right) \geq c$

- PARTE 2: VARIÁVEIS E VETORES ALEATÓRIOS -

Questão 3: Sejam X e Y variáveis aleatórias independentes com $X \sim \text{Exp}(\lambda)$ e $Y \sim \text{Exp}(\mu)$. Suponha que seja impossível observarmos os valores de X e Y diretamente, e em vez disso observamos as variáveis aleatórias Z e W, onde

$$Z = \min\{X, Y\}$$
 e $W = \begin{cases} 1 & \text{se } Z = X, \\ 0 & \text{se } Z = Y. \end{cases}$

Essa é uma situação que aparece, por exemplo, em experimentos médicos, sendo X e Y variáveis ditas censuradas. Faça o que se pede abaixo: (3,0)

- a) Descreva detalhadamente um cenário aonde esse modelo é adequado.
- b) Encontre a distribuição conjunta de Z e W.

Obs.: Note que esse par aleatório não será nem contínuo nem discreto, mas sim misto, por ser Z contínua e W discreta.

Dica: Tente calcular $\mathbb{P}(Z \leq z, W = i)$, para i = 1 e i = 0. A partir daí, derive na variável z para encontrar a "função densidade de probabilidade e massa de probabilidade conjunta" do par aleatório (Z, W).

- c) Calcule as distribuições marginais de Z e W.
- d) Encontre as distribuições condicionais Z|(W=1) e Z|(W=0).
- e) Conclua que Z e W são independentes.
- f) Descreva o que a independência entre Z e W representa no seu cenário descrito no item a).

Questão 4: (Jacobiano sem bijeção – caso univariado) O objetivo desta questão é generalizar o teorema de mudança de variáveis para variáveis aleatórias contínuas, apresentado no slide 1 da aula 13.2, para o caso em que a função g é diferenciável porém **não** é bijetiva. (3,0)

- a) Para ganhar intuição, considere X uma variável aleatória contínua e seja $Y=X^2$. Expresse a densidade de Y em função da densidade de X.
- b) Juntando a intuição que você ganhou no o item a) com o que vimos sobre o tema nas aulas, formule, explique intuitivamente e faça um esboço da demonstração de um teorema análogo ao teorema de mudança de variáveis para variáveis aleatórias contínuas (teorema do *slide* 1 da aula 13.2).

Dica: Um desenho semelhante ao do slide 4 da aula 13.2 pode ajudar a ganhar intuição.

c) Agora vamos usar esse desenvolvimento para resolver um problema mais "emocionante". Assuma que $X \sim \text{Exp}(1)$, e obtenha a densidade de $Y = \cos(X)$.

Dica: Particione o domínio em subconjuntos $D_i = ((i-1)\pi, i\pi]$, para $i \ge 1$. Ao obter as inversas, separe os casos de i par e i impar.

Questão 5: (Jacobiano sem bijeção – caso multivariado) A continuação natural da questão anterior é considerar também o caso multivariado. Por simplicidade, você pode trabalhar somente no cenário bivariado. (3,0)

a) Formule e explique intuitivamente um teorema análogo ao método do Jacobiano, apresentado no slide 1 da aula 14.2, quando a função g é diferenciável mas não é bijetiva.

Dica: Um desenho pode ajudar.

Obs.: Aqui não há necessidade de fazer um esboço da prova de tal resultado.

b) Vamos utilizar esse conhecimento para resolver um probleminha. Encontre a distribuição conjunta de Y_1 e Y_2 , onde

$$Y_1 = X_1^2 + X_2^2$$
 e $Y_2 = \frac{X_1}{\sqrt{Y_1}}$,

e X_1 e X_2 seguem distribuições normais independentes de média zero e variância σ^2 .

Obs.: Note que essa transformação $n\tilde{ao}$ é bijetiva, pois $n\tilde{ao}$ é possível determinar o sinal de X_2 a partir de Y_1 e Y_2 .

c) Na notação do item b), mostre que Y_1 e Y_2 são independentes e interprete tal resultado geometricamente.