Exercise 8.1 If $|X_n| \leq |Y_n|$ almost surely and Y_n is uniformly integrable then X_n is uniformly integrable.

Solution $|X_n| \leq |Y_n|$ almost surely, so for any given $a \in \mathbb{R}$,

$$\{\omega : |X_n(\omega)| > a\} \subset \{\omega : |Y_n(\omega)| > a\}$$

This implies

$$I_{|X_n|>a}(x) \le I_{|Y_n|>a}(x)$$

Moreover since expectation is linear $|X_n| \leq |Y_n|$ implies

$$\mathbb{E}|X_n| \leq \mathbb{E}|Y_n|$$

Now, all inequalities here are between two positive numbers so we can multiple them together to see

$$\mathbb{E}|X_n|I_{|X_n|>a}(x) \le \mathbb{E}|Y_n|I_{|Y_n|>a}(x)$$

Recall that Y_n is uniformly integrable so $\lim_{a\to\infty} \mathbb{E}|Y_n|I_{|Y_n|>a}(x)=0$ uniformly in n. Thus

$$\lim_{a \to \infty} \mathbb{E}|X_n|I_{|X_n| > a}(x) = 0 \quad \text{uniformly in } n$$

Therefore, X_n is uniformly integrable.

Exercise 8.2 If X_n is increasing and $X_n \stackrel{P}{\to} X$ then $X_n \stackrel{a.s.}{\to} X$.

Solution Let $\epsilon > 0$ be given. Then there exists $k \in \mathbb{N}$ such that $0 < \frac{1}{k} < \epsilon$. Let $A_n = \{\omega : |X_n(\omega) - X(\omega)| < \frac{1}{k}\}$. Then by monotonicity of X_n we see that $A_n \subset A_{n+1}$. Notice that by monotonicity and convergence in probability we see

$$P(\lim_{n\to\infty}|X_n - X| = 0) = P\left(\bigcap_{n=1}^{\infty} A_n\right) \stackrel{Monont.}{=} \lim_{n\to\infty} P(A_n) \stackrel{CinP}{=} 1$$

Therefore $X_n \stackrel{a.s.}{\rightarrow} X$

Exercise 8.3 Show that \mathbb{R} has the subsubsequence property.

Solution(\Longrightarrow) Suppose that $a_n \to a$ pointwise. Then for $\epsilon > 0$, then there exists $N(\epsilon) \in \mathbb{N}$ such that for all $n \geq N(\epsilon)$ we have $|a_n - a| < \epsilon$. Now for any subsequence a_{n_k} , for $n_k > N(\epsilon)$ we have $|a_{n_k} - a| < \epsilon$. Lastly for any further subsequence $a_{n_{k_j}}$, if $n_{k_j} > N(\epsilon)$ we see $|a_{n_{k_j}} - a| < \epsilon$. Hence every subsequence has a subsequence that converges pointwise a.

(\Leftarrow) Suppose that for any subsequence a_{n_k} there exists a further subsequence $a_{n_{k_k}} \to a$. Now, for the sake of contradiction, assume that $a_n \not\stackrel{P}{\to} a$. This implies for $\epsilon > 0$ that there exists a_{n_k} such that $|a_{n_k} - a| > \epsilon$ for all n_k . Then any further subsequence, $a_{n_{k_j}}$ we have $|a_{n_{k_j}} - a| > \epsilon$ by construction. Therefore, we see there is a sequence such that there does not exist any subsequence that converges to a. This is a contradiction to our initial assumption. Therefore, we must have $a_n \to a$.

Exercise 8.4 Show that convergence in probability has the subsubsequence property.

Solution(\Longrightarrow) Suppose that $X_n \stackrel{P}{\to} X$. Then we know that every subsequence of X_n has a further subsequence such that $X_{n_{k_j}} \stackrel{a.s.}{\to} X$. Recall that almost sure convergence implies convergence in probability. Thus, we see that $X_{n_{k_i}} \stackrel{P}{\to} X$.

(\iff) Assume that for every subsequence of X_n , there exists a further subsequence such that $X_{n_{k_j}} \stackrel{P}{\to} X$. Now assume for the sake of contradiction that $X_n \stackrel{P}{\to} X$. Then there exists some X_{n_k} such that for some $\epsilon > 0$ and $\delta > 0$ that $P(|X_{n_k} - X| > \delta) > \epsilon$ for all n_k . Then by construction, we see $\lim_{j\to\infty} P(|X_{n_{k_j}} - X| > \delta) > \epsilon$. Hence there is a subsubsequence that does not converge in probability. Thus we have a contradiction and see that $X_n \stackrel{P}{\to} X$.

Exercise 8.5 Show that

$$d(X,Y) = \mathbb{E}\left[\frac{|X-Y|}{1+|X-Y|}\right]$$

gives a metric.

Solution

1. First note that $\frac{|X-Y|}{1+|X-Y|} \ge 0$ so $d(X,Y) \ge 0$. Now if d(X,Y) = 0 iff $\int \frac{|X-Y|}{1+|X-Y|} dF(X,Y) = 0$. Notice that the integrand is nonnegative and $F(X,Y) \ge 0$. So this implies $\int \frac{|X-Y|}{1+|X-Y|} dF(X,Y) = 0$ iff $\frac{|X-Y|}{1+|X-Y|} \stackrel{a.s}{=} 0$ iff $|X-Y| \stackrel{a.s}{=} 0$

2.

$$d(X,Y) = \mathbb{E}\left[\frac{|X-Y|}{1+|X-Y|}\right] = \mathbb{E}\left[\frac{|Y-X|}{1+|Y-X|}\right] = d(Y,X)$$

3. First note that $|X-Y| \le |X-Z| + |Z-Y|$ by the triangle inequality. Moreover, by the results proved in 8.6 with $\epsilon = |X-Y|$ and a = |X-Z| + |Z-Y| we have

$$\begin{split} \frac{|X-Y|}{1+|X-Y|} & \leq \frac{|X-Z|+|Z-Y|}{1+|X-Z|+|Z-Y|} \\ & = \frac{|X-Z|}{1+|X-Z|+|Z-Y|} + \frac{|X-Z|}{1+|X-Z|+|Z-Y|} \\ & \leq \frac{|X-Z|}{1+|X-Z|} + \frac{|X-Z|}{1+|Z-Y|} \end{split}$$

Now applying the expectation we see

$$\mathbb{E}\left[\frac{|X-Y|}{1+|X-Y|}\right] \le \mathbb{E}\left[\frac{|X-Z|}{1+|X-Z|+|Z-Y|}\right] + \mathbb{E}\left[\frac{|X-Z|}{1+|X-Z|+|Z-Y|}\right]$$

Thus $d(X,Y) \le d(X,Z) + d(Z,Y)$

Exercise 8.6 Show that if a > 0 that $a > \epsilon$ iff $\frac{a}{1+a} > \frac{\epsilon}{1+\epsilon}$

Solution

$$a > \epsilon$$

$$a + a\epsilon > \epsilon + a\epsilon$$

$$a(1 + \epsilon) > \epsilon(1 + a)$$

$$\frac{a}{1 + a} > \frac{\epsilon}{1 + \epsilon}$$

Exercise 8.7 Show that $X_n \stackrel{P}{\to} X$ is equivalent to $d(X_n, X) \to 0$.

Solution First let $Z_n = \frac{|X_n - X|}{1 + |X_n - X|}$. Then $d(X_n, X) = \mathbb{E}\left[\frac{|X - Y|}{1 + |X - Y|}\right] = \mathbb{E}(Z_n)$. (\iff) Now if $d(X_n, X) \to 0$ then $\mathbb{E}(Z_n) \to 0$ and $\lim_{n \to \infty} \int Z_n dF(Z_n) = 0$. Since $Z_n \ge 0$ and $F(Z_n) \ge 0$ this implies that $\lim_{n \to \infty} Z_n \stackrel{a.s}{=} 0$ or $Z_n \stackrel{P}{\to} 0$. This implies for any $\epsilon > 0$

$$\lim_{n \to \infty} P\left(\frac{|X_n - X|}{1 + |X_n - X|} < \epsilon\right) = 1$$

$$\lim_{n \to \infty} P\left(|X_n - X| < \epsilon + \epsilon |X_n - X|\right) = 1$$

$$\lim_{n \to \infty} P\left(|X_n - X| < \frac{\epsilon}{1 - \epsilon}\right) = 1$$

 ϵ was arbitrary so $X_n \stackrel{P}{\to} X$. (\Longrightarrow) If $X_n \stackrel{P}{\to} X$ then by Slutksy $Z_n = \frac{|X_n - X|}{1 + |X_n - X|} \stackrel{P}{\to} 0$. This implies that

$$\lim_{n \to \infty} \mathbb{E}(Z_n) = \lim_{n \to \infty} \int Z_n dF(Z_n) = 0$$

But notice that

$$\lim_{n \to \infty} \mathbb{E}(Z_n) = \lim_{n \to \infty} d(X_n, X) = 0$$