Academic year (2023/2024)Mathematical analysis 3

Work sheet N 0 Improper Integrals

Exercise 1: Study the nature of the following improper integrals:

$$1. \int_0^\infty \frac{dx}{x^2 + 1}$$

$$2. \int_0^\infty \frac{x}{x^2 + 1} dx$$

3.
$$\int_0^\infty e^{-x}(\cos x + \sin x) dx$$
 4. $\int_0^{\frac{\pi}{2}} \sec^2 x dx$

$$4. \int_0^{\frac{\pi}{2}} \sec^2 x dx$$

$$5. \int_0^4 \frac{1}{(4-x)^{\frac{2}{5}}} dx$$

$$6. \int_{1}^{\infty} \frac{1}{x^2} dx$$

$$7. \int_{e}^{\infty} \frac{dx}{x\sqrt{\ln x}}$$

$$8. \int_0^\infty e^{-3x} dx$$

$$9. \int_1^e \frac{1}{x(\ln x)^2} dx$$

9.
$$\int_{1}^{e} \frac{1}{x(\ln x)^2} dx$$
 10. $\int_{0}^{\infty} e^{-x} \sin^2(\frac{\pi x}{2}) dx$

$$11. \int_{-\infty}^{\infty} \frac{1}{x^2 + 1} dx$$

11.
$$\int_{-\infty}^{\infty} \frac{1}{x^2 + 1} dx$$
 12. $\int_{-\infty}^{\infty} \frac{x}{x^2 + 1} dx$

Exercise 2: Prove that the integral $\int_{1}^{\infty} \frac{1}{x^{p}} dx$ is convergent if p > 1 and divergent if 0 .

Exercise 3: Suppose that p > 0. Find all values of p for which $\int_0^1 \frac{1}{x^p} dx$ converges.

Exercise 4: Show that $\int_{1}^{\infty} \frac{\sin^2 x}{x(\sqrt{x}+1)} dx$ converges.