```
# Importing required libraries
import numpy as np
import pandas as pd
# Reading the dataset
df = pd.read_csv('/content/Churn_Modelling.csv')
# Visualizing 1st 50 data
df.head()
   RowNumber
              CustomerId
                            Surname CreditScore Geography
                                                             Gender
                                                                      Age
                                                             Female
0
           1
                15634602
                           Hargrave
                                              619
                                                     France
                                                                       42
           2
                                              608
                                                      Spain Female
1
                15647311
                               Hill
                                                                       41
2
           3
                15619304
                               Onio
                                              502
                                                     France Female
                                                                       42
3
           4
                15701354
                               Boni
                                              699
                                                     France Female
                                                                       39
4
           5
                15737888
                          Mitchell
                                              850
                                                      Spain Female
                                                                       43
   Tenure
                      NumOfProducts
                                      HasCrCard
                                                 IsActiveMember
             Balance
0
        2
                0.00
                                   1
                                               1
                                                               1
1
        1
            83807.86
                                   1
                                               0
                                                               1
2
        8
           159660.80
                                   3
                                               1
                                                               0
3
                                   2
        1
                0.00
                                               0
                                                               0
4
        2
           125510.82
                                   1
                                               1
                                                               1
   EstimatedSalary Exited
0
         101348.88
                          1
1
         112542.58
                          0
2
         113931.57
                          1
3
                          0
          93826.63
4
          79084.10
                          0
# Checking for null values
df.isnull().sum()
RowNumber
                   0
CustomerId
                    0
Surname
                   0
                   0
CreditScore
                   0
Geography
Gender
                   0
                   0
Age
                   0
Tenure
Balance
                   0
NumOfProducts
                   0
HasCrCard
                   0
IsActiveMember
```

EstimatedSalary 0 Exited 0

dtype: int64

df.dtypes

RowNumber int64 CustomerId int64 Surname object CreditScore int64 object Geography Gender object Age int64 int64 Tenure Balance float64 NumOfProducts int64 HasCrCard int64 IsActiveMember int64 EstimatedSalary float64 Exited int64

dtype: object

import matplotlib.pyplot as plt

import seaborn as sns

Univariate Analysis

sns.histplot(data["CreditScore"],color='darkorange')

<matplotlib.axes._subplots.AxesSubplot at 0x7f831677f6d0>

sns.displot(data['Age'], kde=True)

<seaborn.axisgrid.FacetGrid at 0x7f831661b210>

Bi - Variate Analysis
sns.barplot(data=data.head(50), x="Geography", y="CreditScore")
<matplotlib.axes._subplots.AxesSubplot at 0x7f8313ce63d0>

sns.catplot(x='Gender', y='CreditScore', hue='HasCrCard', data=data)
<seaborn.axisgrid.FacetGrid at 0x7f8317198a90>

Multi - Variate Analysis

```
sns.jointplot(
    x='CreditScore',
    y='Age',
    data=data.head(100),
    palette='bright',
    hue='Geography');
```


sns.pairplot(data)
<seaborn.axisgrid.PairGrid at 0x7f8313a71390>

Perform descriptive statistics on the dataset

data.describe()

	RowNumber	CustomerId	CreditScore	Age	Tenure	\
count	10000.00000	1.000000e+04	10000.000000	10000.000000	10000.000000	
mean	5000.50000	1.569094e+07	650.528800	38.921800	5.012800	
std	2886.89568	7.193619e+04	96.653299	10.487806	2.892174	
min	1.00000	1.556570e+07	350.000000	18.000000	0.000000	
25%	2500.75000	1.562853e+07	584.000000	32.000000	3.000000	
50%	5000.50000	1.569074e+07	652.000000	37.000000	5.000000	
75%	7500.25000	1.575323e+07	718.000000	44.000000	7.000000	
max	10000.00000	1.581569e+07	850.000000	92.000000	10.000000	

Balance NumOfProducts HasCrCard IsActiveMember \
count 10000.000000 10000.000000 10000.000000

76485.889288	1.530200	0.70550	0.515100
62397.405202	0.581654	0.45584	0.499797
0.000000	1.000000	0.00000	0.000000
0.000000	1.000000	0.00000	0.000000
97198.540000	1.000000	1.00000	1.000000
127644.240000	2.000000	1.00000	1.000000
250898.090000	4.000000	1.00000	1.000000
EstimatedSalary	Exited		
10000.000000	10000.000000		
100090.239881	0.203700		
57510.492818	0.402769		
11.580000	0.000000		
51002.110000	0.000000		
100193.915000	0.000000		
	62397.405202 0.000000 0.000000 97198.540000 127644.240000 250898.090000 EstimatedSalary 10000.000000 100090.239881 57510.492818 11.580000 51002.110000	62397.405202 0.581654 0.000000 1.000000 0.000000 1.000000 97198.540000 1.000000 127644.240000 2.000000 250898.090000 4.000000 EstimatedSalary Exited 10000.000000 10000.000000 100090.239881 0.203700 57510.492818 0.402769 11.580000 0.000000 51002.110000 0.000000	62397.405202 0.581654 0.45584 0.000000 1.000000 0.00000 0.000000 1.000000 1.00000 97198.540000 1.000000 1.00000 127644.240000 2.000000 1.00000 250898.090000 4.000000 1.00000 EstimatedSalary Exited 10000.000000 10000.000000 100090.239881 0.203700 57510.492818 0.402769 11.580000 0.000000 51002.110000 0.000000

0.000000

1.000000

Handle the Missing values

149388.247500

199992.480000

data.isnull().sum()

75%

max

RowNumber	0
CustomerId	0
Surname	0
CreditScore	0
Geography	0
Gender	0
Age	0
Tenure	0
Balance	0
NumOfProducts	0
HasCrCard	0
IsActiveMember	0
EstimatedSalary	0
Exited	0
dtype: int64	

Find the outliers and replace the outliers

import seaborn as sns

```
sns.boxplot(data['CreditScore'])
```

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning


```
import numpy as np
Q1 = np.percentile(data['CreditScore'], 25,
                   interpolation = 'midpoint')
Q3 = np.percentile(data['CreditScore'], 75,
                   interpolation = 'midpoint')
IQR = Q3 - Q1
#Upper bound
upper = np.where(data['CreditScore'] >= (Q3+1.5*IQR))
#Lower bound
lower = np.where(data['CreditScore'] <= (Q1-1.5*IQR))</pre>
print("Q3: ",Q3)
print("Q1: ",Q1)
print("IQR: ",IQR)
mean = data["CreditScore"].mean()
data["CreditScore"] = np.where(data["CreditScore"] > 850, mean,
data['CreditScore'])
```

```
data["CreditScore"] = np.where(data["CreditScore"] < 400, mean,
data['CreditScore'])</pre>
```

sns.boxplot(data['CreditScore'])

Q3: 718.0 Q1: 584.0 IQR: 134.0

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f83177a7310>

Check for Categorical columns and perform encoding

from sklearn.preprocessing import LabelEncoder

```
le = LabelEncoder()
data['Geography'] = le.fit_transform(data['Geography'])
data['Gender'] = le.fit_transform(data['Gender'])
```

```
data.head()
```

3

	RowNumbe	r Custome	erId	Surname	CreditScore	Geography	Gender	Age	\
0	:	1 15634	15634602		619.0	0	0	42	
1		2 15647	7311	Hill	608.0	608.0 2		41	
2	:	3 15619	9304	Onio	502.0	0	0	42	
3	4	4 15701	L354	Boni	699.0	0	0	39	
4		5 15737	7888	Mitchell	850.0	2	0	43	
	Tenure	Balance	Num	OfProducts	HasCrCard	IsActiveMem	ber \		
0	2	0.00		1	1		1		
1	1	83807.86		1	0		1		
2	8 :	159660.80		3	1		0		
3	1	0.00		2	0		0		
4	2	125510.82		1	1		1		
-				_	_		_		
	Estimate	dSalarv F	xite	d					
0		1348.88		1					
1	112542.58 0			_					
2		3931.57		1					
2	11.	JJJI.J/		T					

0

93826.63 0 79084.10

```
Split the data into dependent and independent variables
y = data['CreditScore'] #dependent
x = data.drop(columns = ['CreditScore'],axis = 1) #independent
x.head()
```

	RowNumber	CustomerId	Surname	Geography	Gender	Age	Tenure	Balance
\								
0	1	15634602	Hargrave	0	0	42	2	0.00
1	2	15647311	Hill	2	0	41	1	83807.86
2	3	15619304	Onio	0	0	42	8	159660.80
3	4	15701354	Boni	0	0	39	1	0.00
4	5	15737888	Mitchell	2	0	43	2	125510.82

	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
0	1	1	1	101348.88	1
1	1	0	1	112542.58	0
2	3	1	0	113931.57	1
3	2	0	0	93826.63	0
4	1	1	1	79084.10	0

Scale the independent variables

```
['RowNumber','CustomerId','Geography','Gender','Age','Tenure','Balance','NumO
fProducts','HasCrCard','IsActiveMember','EstimatedSalary','Exited']
from sklearn.preprocessing import scale
x = scale(x[names])
array([[-1.73187761, -0.78321342, -0.90188624, ..., 0.97024255,
        0.02188649, 1.97716468],
                                 1.51506738, ..., 0.97024255,
      [-1.7315312, -0.60653412,
        0.21653375, -0.50577476,
       [-1.73118479, -0.99588476, -0.90188624, ..., -1.03067011,
        0.2406869 , 1.97716468],
       [1.73118479, -1.47928179, -0.90188624, ..., 0.97024255,
       -1.00864308, 1.97716468],
      [ 1.7315312 , -0.11935577,
                                 0.30659057, \ldots, -1.03067011,
       -0.12523071, 1.97716468],
      [1.73187761, -0.87055909, -0.90188624, ..., -1.03067011,
        -1.07636976, -0.50577476]])
x = pd.DataFrame(x,columns = names)
x.head()
   RowNumber CustomerId Geography
                                      Gender
                                                  Age
                                                         Tenure
                                                                  Balance
\
0 -1.731878
              -0.783213 -0.901886 -1.095988 0.293517 -1.041760 -1.225848
1 -1.731531
            -0.606534 1.515067 -1.095988 0.198164 -1.387538 0.117350
              -0.995885 -0.901886 -1.095988 0.293517 1.032908 1.333053
2 -1.731185
3 -1.730838
               0.144767 -0.901886 -1.095988 0.007457 -1.387538 -1.225848
4 -1.730492
               0.652659 1.515067 -1.095988 0.388871 -1.041760 0.785728
  NumOfProducts HasCrCard IsActiveMember EstimatedSalary
                                                              Exited
0
      -0.911583 0.646092
                                  0.970243
                                                  0.021886 1.977165
1
      -0.911583 -1.547768
                                  0.970243
                                                  0.216534 -0.505775
2
       2.527057 0.646092
                                 -1.030670
                                                  0.240687 1.977165
3
       0.807737 -1.547768
                                 -1.030670
                                                 -0.108918 -0.505775
4
      -0.911583
                0.646092
                                  0.970243
                                                 -0.365276 -0.505775
```

Split the data into training and testing

from sklearn.model selection import train test split

Split training and testing data

```
xtrain,xtest,ytrain,ytest =
train_test_split(x,y,test_size=0.20,random_state=0)
# Checking shape of data
xtrain.shape,xtest.shape
((8000, 12), (2000, 12))
```