MICHEAL BEAR, MIDTERM 1, 9/24/25

Assignment (2 problems 50 + 50 = 100 points total)

 \square **Problem 1.** [Addition and Multiplication of Intergers as Functions] For any integer $k \in \mathbb{Z}$, define two functions $\alpha_k : \mathbb{Z} \to \mathbb{Z}$ by the formulas

$$\alpha_k(m) = k + m$$

$$\gamma_k(m) = k \cdot m$$

where + and \cdot are addition and multiplication in \mathbb{Z} , respectively, For example, if we choose k=2 and m=6, then $\alpha_2(6)=2+6=8$ and $\gamma_2(6)=2\cdot 6=12$, whereas if we just choose k=2 and allow m to vary, then α_2 and γ_2 are functions with domain \mathbb{Z} and codomain \mathbb{Z} . The subscript k is not an input to the function. The subscript k labels diffrent functions!

- 1.1 [10 points] Find the set of all $k \in \mathbb{Z}$ for which α_k is a bijection. Give proofs.
- 1.2 [10 points] Find the set of all $k \in \mathbb{Z}$ for which γ_k is a bijection. Give proofs.
- 1.3 [10 points] is $\alpha_{111} \circ \gamma_{112} = \gamma_{112} \circ \alpha_{111}$ true or false? Prove it.
- 1.4 [10 points] is $\forall m \in \mathbb{Z} \exists k \in \mathbb{Z} |\alpha_k(m) + \alpha_k(m)| \leq 112$ true or false? Prove it.
- 1.5 [10 points] is $\forall m \in \mathbb{Z} \exists k \in \mathbb{Z} |\gamma(m) + \gamma(m)| \leq 112$ true or false? Prove it.

Hint: draw the arrow aiagram for α_k and γ_k for $k \in \{-2, -1, 0, 1, 2\}$ to gain intuition, then for each, see if you can rpove if it is a bijection or not. is α_1 a bijection or not? Can you prove it? What about α_0 ? γ_0 ? Answer these before tackling Problems 1.1 and 1.2.

Caution: in the case k=2. the function $\gamma_2: \mathbb{Z} \to \mathbb{Z}$ in this problem is not the same as $\Delta: \mathbb{N} \to E$ from L4. Why? Although γ_2 and Δ both multiply their input by 2, they aren't the same functions since they don't have the same domain nor the same codomain.

solution

1.1 Find the set of all $k \in \mathbb{Z}$ for which α_k is a bijection. α_k is bijective for $k = \{..., -2, -1, 0, 1, 2, ...\} = \mathbb{Z}$

Proof: $\alpha_k(m) = k + m$.

First prove α_k is surjective: $\forall y \in \mathbb{Z} \ \exists x \in \mathbb{Z} \ y = f(x)$. Consider $y \in \mathbb{Z}$, let $x \in \mathbb{Z}$, x = -k + y. plug x into f:

$$f(-k+y) = k - k + y$$
$$= y$$

Since that satisfies the propsition, α_k is surjective for all $y \in \mathbb{Z}$. Next prove α_k is injective: $\forall b \in \mathbb{Z} \ \forall b \in \mathbb{Z} \ ((f(a) = f(b)) \Rightarrow (a = b))$. Consider $a, b \in \mathbb{Z}$, assume f(a) = f(b).

$$f(a) = f(b)$$
$$k + a = k + b$$
$$a = b$$

Since this satisfies the origonal proposition because $True \Rightarrow True = True$ by the truth table. Thus, α_k is injective for all $a, b \in \mathbb{Z}$. Since α_k is Surjective and injective, it is bijective for all $x \in \mathbb{Z}$. \square

1.2 Find the set of all $k \in \mathbb{Z}$ for which γ_k is a bijection.

 γ_k is bijective for $k = \{... -3, -2, -1, 1, 2, 3\} = \{\mathbb{Z} \mid |k| \ge 1\}.$

proof: $\gamma_k = m \cdot k$

First, Surjectivity. Prove $\forall y \in \mathbb{Z} \ \exists x \in \mathbb{Z} \ y = f(x)$.

let y = k + 1, $x = \frac{k+1}{k}$

$$f\left(\frac{k+1}{k}\right) = \frac{k+1}{k} \cdot k$$
$$= k+1$$

since $\frac{k+1}{k}$ only works when $|k| \geq 1$, it follows that γ_k is surjective for all $y, x \in \mathbb{Z}$ when $|k| \geq 1$.

Then, Injectivity: $\forall b \in \mathbb{Z} \ \forall b \in \mathbb{Z} \ ((f(a) = f(b)) \Rightarrow (a = b))$ Consider $a, b \in \mathbb{Z}$, assume f(a) = f(B).

$$f(a) = f(b)$$
$$a \cdot k = b \cdot k$$
$$a = b.$$

This statement is true when $k \neq 0$. Thus γ_k is injective when |k| > 0. Since γ_k is surjective when $|k| \geq 1$ and γ_k is injective when |k| > 0, it follows that γ_k is bijective when $|k| \geq 1$ 1.3 is $\alpha_{111} \circ \gamma_{112} = \gamma_{112} \circ \alpha_{111}$ true or false?

False consider $m \in \mathbb{Z}$, assume $\alpha_{111} \circ \gamma_{112} = \gamma_{112} \circ \alpha_{111}$

$$\alpha_{111}(\gamma_{112}(m)) = \gamma_{112}(\alpha_{111}(m))$$

$$\alpha_{111}(112 \cdot m) = \gamma_{112}(111 + m)$$

$$111 + 112m = 112(111 + m)$$

$$111 + 112m \neq 112 \cdot 111 + 112m$$

Since this is not equal, the two compositions are also not equal and the whole equation is False. \square

1.4 is $\forall m \in \mathbb{Z} \exists k \in \mathbb{Z} |\alpha_k(m) + \alpha_k(m)| \leq 112$ true or false?

False Let m=1, consider $k \in \mathbb{Z}$. Evaluate the statement for our value of m.

$$|k+1-k+1| \le 112$$

 $|2| \le 112.$

This statement is false when m=1. Therefore this statement does not hold for all $m \in \mathbb{Z}$. it follows that the statement $\forall m \in \mathbb{Z} \, \exists k \in \mathbb{Z} \, |\alpha_k(m) + \alpha_k(m)| \leq 112$ is False. \square

1.5 is $\forall m \in \mathbb{Z} \exists k \in \mathbb{Z} |\gamma(m) + \gamma(m)| \leq 112$ true or false?

False consider $m, k \in \mathbb{Z}$. Evaluate the statement for our values of m and k

$$|k \cdot m + -k \cdot m| \le 112$$
$$|0| \le 112$$

since the equation evaluates to 0 for all $k, m \in \mathbb{Z}$. it follows that the statment $\forall m \in \mathbb{Z} \exists k \in \mathbb{Z} | \gamma(m) + \gamma(m) | \leq 112 \text{ is } False.$

□ **Problem 2.** [The Field with Two Elements] Let $F = \{a, b\}$ be the finite set with $a \neq b$ and |f| = 2. Consider the two binary operations \otimes and \oplus on F defined by the formulas

$$a \oplus a = a$$
 $a \otimes a = a$ $a \otimes b = a$ $a \otimes b = a$ $b \oplus a = b$ $b \otimes b = a$ $b \otimes b = b$

The first binary operation \otimes takes two inputs $x \in F$ and $x \in F$ and $y \in F$ and returns a single output $x \otimes y \in F$ according to the table on the left. Similarly, the second binary operation \otimes takes two inputs $x \in F$ and returns a single output $x \otimes y \in F$ according to the table on the right. These tules enable calculations such as

$$(a \oplus (b \oplus b)) \otimes b = (a \oplus a) \otimes b = a \otimes b = a$$

Determine the truth value of each propsition below. Give proofs and explain your reasoning.

2.1 [10 points]
$$\forall x \in F((x \otimes x = x) \Rightarrow (x = a))$$

2.2 [10 points]
$$\exists w \in F \ \forall x \in Fx \oplus w = x$$

2.3 [10 points]
$$\forall x \in F \exists y \in F \ x \otimes y = b$$

2.4 [10 points]
$$\exists g \in F \ \forall \ x \in F \otimes g = x$$

2.5 [10 points]
$$\forall x \in F \ \exists y \in F \ x \oplus y = a$$

solution

2.1 $\forall x \in F((x \otimes x = x) \Rightarrow (x = a))$ False: let x = b, if we plug x into the equation given we get:

$$x \otimes x = x$$
$$b \otimes b = b.$$

The equation $b \otimes b = b$ is true according to the formulas given. However, the statement $(b \otimes b = b) \Rightarrow (b = a)$ is False. This is because $True \Rightarrow False$ is False by the truth table of implies. Since the statement does not hold for all $x \in F$, the proposition $\forall x \in F(x \otimes x = x) \Rightarrow (x = a)$ is false. \Box

 $2.2 \ \exists w \in F \ \forall x \in F \ x \oplus w = x$

True: Nominate w = a. We can slip all $x \in F$ into the the case (1) where x = a and case (2) where x = b.

Case 1: Let x = a. If we plug in our values of x and w into the equation we get:

$$x \oplus w = x$$

$$a \oplus a = a$$

by the given formulas. Since this statment is true, the proposition holds when x = a.

Case 2: Let x = b. If we plug in our values of x and w into the equation we get:

$$x \oplus w = x$$

$$b \oplus a = b$$

by the given formulas. Since this statement is true, the proposition holds when w=a.

Since, when x=a, the proposition $x\oplus w=x$ holds for both x=a and x=b—and a, b are the only elements of F, this proposition holds for all $x\in F$. Thus: $\exists w\in F\ \forall x\in F\ x\oplus w=x$ is true \Box

 $2.3 \ \forall x \in F \ \exists \ y \in F \ x \otimes y = b$

False: Consider x = a, let y = a. if we plug in x and y we get:

$$x \otimes y = b$$

$$a \otimes a = a$$
.

By the equations given, $a \otimes a = a$ and $a \otimes a! = b$ as it would need to be for the proposition to be true, thus the statement does not hold when y = a.

Now consider x = a, let y = b. If we plug in x and y we get:

$$x \otimes y = b$$

$$a \otimes b = a$$
.

By the equations given $a \otimes b = a$ and $a \otimes b! = b$ as it would need to be for the proposition to be true, thus the statement does not hold when y = b.

Since the statement does not hold when y = a and it does not hold when y = b, and a and b are all elements of F, there are no values of y that make the proposition true when x = a.

Since the proposition is always false when x = a it follows that the proposition is not true for all $g \in F$, thus the statement $\forall x \in F \exists y \in F \ x \otimes y = b$ is False. \square

$$2.4 \exists g \in F \ \forall x \in F \ x \otimes g = x$$

True: consider g = a. Since there are only two elements of F, in order to prove the statement is true for all elements $x \in F$ we can consider two cases: case (1) where x = a and case (2) where x = b.

Case 1: x = a. plug in our values of x and g

$$x \otimes g = x$$

$$a \otimes a = a$$
.

since $a \otimes a = a$ in our given formulas, the statements holds true for x = a.

Case 2: x = b. plug in the values of x and g:

$$x \otimes g = x$$

$$b \otimes a = a$$
.

Since $b \otimes a = a$ in our given formulas, then the statement holds true for x = b.

Since the statement holds for x = a and x = b and a and b are all the elements of F. $\exists g \in F \ \forall x \in F \ x \otimes g = x$ is True. \square

$$2.5 \ \forall x \in F \ \exists y \in F \ x \oplus y = a$$

True: Since there are only two elements of F we can evaluate all $x \in F$ by splitting it into two cases: case (1) where x = a and case (2) where x = b. // Case 1: consider x = a, let y = a. Plug in our values of x and y:

$$x \oplus y = a$$

$$a \oplus a = a$$

This is true by the given formulas. It follows that, when x = a, the statment holds true. Case 2: consider x = b, let y = b. Plug in our values of x and y:

$$x \oplus y = a$$

$$b \oplus b = a$$
.

This is true by the given formulas. Thus, the statement holds when x = b. Since a, and b are all the values of F, all values of x have been evaluated. Furthermore, since the proposition holds for all members of F, the statement: $\forall x \in F \ \exists y \in F \ x \oplus y = a$ is True. \square