Если нашли опечатку/ошибку - пишите @le9endwp

Первообразная и неопределенный интеграл

Definition 0.1. Первообразная функция

 $f: \langle a, b \rangle \to \mathbb{R}; \quad F: \langle a, b \rangle \to \mathbb{R}$

F — первообразная функция f,если F дифференцируема на $\langle a,b\rangle$ и F'(x)=f(x) при всех $x\in\langle a,b\rangle$

Example 0.1.

$$f(x) = \cos x$$

$$F(x) = \sin x$$

Proposition 0.1.

Не всякая функция имеет первообразную

Example 0.2.

$$f(x) = \begin{cases} 0, & x \in (-1, 0] \\ 1, & x \in (0, 1) \end{cases}$$

Proposition 0.2.

Непрерывная на $\langle a,b \rangle$ функция имеет первообразную

Theorem 0.1.

 $f,F:\langle a,b \rangle o \mathbb{R}, F$ – первообразная f. Тогда

- 1. F + C первообразная f
- 2. Если Φ первообразная f, то $\Phi = F + C$ для некоторой константы C

Доказательство:

1.
$$(F+C)' = F' = f$$

$$2. \ \Phi' = f = F'$$

$$g = \Phi - F$$

$$g' = 0 \Rightarrow g = C \Rightarrow \Phi = F + C$$

Definition 0.2. Неопределенный интеграл

Неопределенный интеграл – множество первообразных функции f

Обозначение: $\int f(x)dx$

Remark 0.1.

Для доказательства равенства $\int f(x)dx = F(x) + C$ достаточно проверить, что F'(x) = f(x)

Действия с множествами функций:

A и B – множества функций $\langle a,b\rangle \to \mathbb{R}$

$$\lambda \in \mathbb{R}, \ h: \langle a, b \rangle \to \mathbb{R}$$

1.
$$A + B = \{f + g : f \in A, g \in B\}$$

2.
$$\lambda A = \{\lambda f : f \in A\}$$

3.
$$A + h = \{f + h : f \in A\}$$

4.
$$(A)' = \{f' : f \in A\}$$

Example 0.3.

$$(\int f(x)dx)' = \{f\}$$

Таблица интегралов:

1.
$$\int adx = ax + C$$

2.
$$\int x^p dx = \frac{x^{p+1}}{p+1} + C, \ p \neq -1$$

$$3. \in \frac{dx}{x} = \ln|x| + C$$

3.
$$\in \frac{dx}{x} = \ln |x| + C$$

4. $\int a^x dx = \frac{a^x}{\ln a} + C$; $a > 0$, $a \neq 1$
5. $\int \sin x dx = -\cos x + C$

5.
$$\int \sin x dx = -\cos x + C$$

$$6. \int \cos x dx = \sin x + C$$

7.
$$\int \frac{dx}{x^2+1} = \arctan x + C$$

7.
$$\int \frac{dx}{x^2 + 1} = \arctan x + C$$
8.
$$\int \frac{dx}{\sqrt{1 - x^2}} = \arcsin x + C$$

Theorem 0.2. Линейность интеграла

 $f,g:\langle a,b\rangle\Rightarrow\mathbb{R}$ имеют первообразные

 $\alpha, \beta \in \mathbb{R}$, не равные нулю одновременно

Тогда
$$\int (\alpha f(x) + \beta g(x)) dx = \alpha \int f(x) dx + \beta \int g(x) dx$$

Доказательство:

F и G – первообразные

Правая часть = $\{\alpha F(x) + \beta G(x) + C : C \in \mathbb{R}\}$

$$(\alpha F(x) + \beta G(x) + C)' = \alpha F'(x) + \beta G'(x) = \alpha f(x) + \beta g(x)$$

Theorem 0.3. Замена переменной в интеграле

2

 $f:\langle a,b\rangle\to\mathbb{R},\ F$ – первообразная

 $\varphi:\langle c,d\rangle \to \langle a,b\rangle$ – дифференцируемая функция

Тогда $\int f(\varphi(x))\varphi'(x)dx = F(\varphi(x)) + C$

Доказательство:

$$(F(\varphi(x)) + C)' = F'(\varphi(x))\varphi'(x) = f(\varphi(x))\varphi'(x)$$

Remark 0.2.

$$\begin{array}{ll} y = \varphi(x); & dy = \varphi'(x)dx \\ \frac{dy}{dx} = y' \\ \int f(\varphi(x))\varphi'(x)dx = \int f(y)dy = F(y) + C = F(\varphi(x)) + C \end{array}$$

$\overline{\text{Example 0.4}}$.

- 1. $\int \frac{x}{x^2+1} dx = \frac{1}{2} \int \frac{(x^2+1)'}{x^2+1} dx = \frac{1}{2} \int \frac{dy}{y} = \ln|y| + c = \ln|x^2+1| + C$ Здесь $y = \varphi(x) = x^2 + 1$
- 2. $\int \frac{dx}{\sin x} = \int \frac{dx}{2 \sin \frac{x}{2} \cos \frac{x}{2}} = \int \frac{dy}{\sin y \cos y} = \int \frac{dy}{\tan y \cos^2 y} = \int \frac{(\tan y)'}{\tan y} dy = \int \frac{dz}{z} = \ln|z| + C = \ln|\tan y| + C = \ln|\tan \frac{x}{2}| + C$
- Здесь $y = \frac{x}{2}$ и $z = \operatorname{tg} y$ 3. $\int \frac{dx}{1+\sqrt[3]{x}} = \int \frac{3t^2dt}{1+t} = 3\int \frac{t^2-1+1}{t+1}dt = 3\int (t-1+\frac{1}{t+1})dt = 3(\int tdt \int dt + \int \frac{dt}{t+1}) =$ $=3t^{2}-3t+3\int \frac{d(t+1)}{t+1}=3t^{2}-3t+3\ln|t+1|+C$

Theorem 0.4. Интегрирование по частям

 $f,g:\langle a,b\rangle\to\mathbb{R}$ дифференцируемые Если f'g имеет первообразную, то $\int f(x)g'(x)dx = f(x)g(x) - \int f'(x)g(x)dx$

Доказательство:

H – первообразная функции f'q

$$(fg - H + C)' = (fg)' - H' = f'g + fg' - f'g = fg'$$

Notation 0.1. Традиционная запись формулы

$$\begin{cases}
udv = uv - \int vdu \\
du = u'(x)dx \\
dv = v'(x)dx
\end{cases}$$

Example 0.5.

- 1. $\int \ln x dx = x \ln x \int x \frac{dx}{x} = x \ln x \int dx = x \ln x x + C$ Здесь $u = \ln x$, v = x й $du = (\ln x)' dx = \frac{dx}{x}$
- 2. $\int x^2 e^x dx = \int x^2 de^x = x^2 e^x \int 2x e^x dx = x^2 e^x 2 \int x de^x = x^2 e^x 2(x e^x \int e^x dx) = x^2 e^x 2(x$ $=x^2e^x - 2xe^x + 2e^x + C$

3

Здесь сначала берем $u = x^2, v = e^x$, а потом $u = x, v = e^x$

Площадь

Definition 0.3. Площадь

F – семейство всех ограниченных подмножеств плоскости

Прямоугольник $(a_1, b_1) \times (a_2, b_2)$, площадь прямоугольника $(b_1 - a_1)(b_2 - a_2)$

Площадь $S: F \to [0, +\infty)$

- 1. $S(\langle a_1, b_1 \rangle \times \langle a_2, b_2 \rangle) = (b_1 a_1)(b_2 a_2)$
- 2. $S(E) = S(E_1) + S(E_2)$, если $E = E_1 \bigcup E_2$, $E_1 \cap E_2 = \emptyset$

Theorem 0.5. Свойство

Если $\tilde{E} \subset E$, то $S(\tilde{E}) \leq S(E)$

Доказательство:

$$E = \tilde{E} \bigcup (E \setminus \tilde{E})$$

$$S(E) = S(\tilde{E}) + S(E \setminus \tilde{E}) \ge S(\tilde{E})$$

Definition 0.4.

 $\sigma: F \to [0, +\infty)$

- 1. $\sigma(\langle a_1, b_1 \rangle \times \langle a_2, b_2 \rangle) = (b_1 a_1)(b_2 a_2)$
- 2. $\sigma(E) = \sigma(E_{-}) + \sigma(E_{+})$, если E_{-} и E_{+} множества, получающиеся в результате разбиения E вертикальной (горизонтальной) прямой
- 3. Если $\tilde{E} \subset E$, тое $\sigma(\tilde{E}) \leq \sigma(\tilde{E})$

Remark 0.3. Свойство

Формула 2) верна и если $E_- \cap E_+ \neq \emptyset$

Например, линию разбиения можно считать относящейся и к левой (верхней), и к правой (нижней) части

Доказательство:

$$e = E_- \bigcap E_+, \ \sigma(e) = 0$$

$$\sigma(E_+) = \sigma(E_+ \setminus e) + \sigma(e \cap E_+) = \sigma(E_+ \setminus e)$$

$$\sigma(E_-) + \sigma(E_+) = \sigma(E_-) + \sigma(E_+ \setminus e) = \sigma(E_- \bigcup (E_+ \setminus e)) = \sigma(E_- \bigcup E_+) = \sigma(E)$$

Example 0.6. Примеры площадей $E \in F$

- Рассмотрим покрытие E конечным числом прямоугольников P_i (т.е. $\bigcup^{\sim} P_i \supset E$) $\sigma_1(E) = \inf\{\sum_{i=1}^n \sigma(P_i) : \bigcup_{i=1}^n P_i \supset E\}$
- Рассмотрим покрытие E последовательностью прямоугольников P_i (т.е. $\bigcup_{i=1}^{\infty} P_i \supset P_i$

$$\sigma_2(E) = \inf\{\sum_{i=1}^\infty \sigma(P_i) : \bigcup_{i=1}^\infty P_i \supset E\}$$
• Ясно, что $\sigma_1(E) \ge \sigma_2(E)$

Но, если $E=([0,1]\bigcap\mathbb{Q})\times([0,1]\bigcap\mathbb{Q}),$ то $\begin{cases} \sigma_1(E)=1\\ \sigma_2(E)=0 \end{cases}$

Theorem 0.6.

- 1. σ_1 площадь
- 2. σ_1 не меняется при параллельном переносе

Доказательство:

1)

- 1. $\sigma_1(\langle a, b \rangle \times \langle c, d \rangle) = (b a)(d c)$ Поскольку $[a,b] \times [c,d]$ – покрытие $P, \sigma_1(P) \leq (b-a)(d-c)$ В обратную сторону красиво доказано АИ. Там рисуночки, посмотрите!
- 2. $E = E_{-} \bigcup E_{+} \Rightarrow \sigma_{1}(E) = \sigma_{1}(E_{-}) + \sigma_{1}(E_{+})$

 \leq : Если $P_1^+, \dots P_m^+$ – покрытие E_+ , для которого $\sum_{i=1}^m \sigma(P_i^+) < \sigma_1(E_+) + \varepsilon$

А $P_1^-,\dots P_n^-$ – покрытие E_- , для которого $\sum\limits_{i=1}^n \sigma(P_i^-) < \sigma_1(E_-) + \varepsilon$, то $P_1^-,P_2^-,\dots P_n^-,P_1^+,P_2^+,\dots P_m^+$ – покрытие E, для которого $\sigma_1(E) \leq \sum\limits_{i=1}^{n+m} \sigma(P_i) < \sigma_1(E_-) + \sigma_1(E_+) + 2\varepsilon \Rightarrow \sigma_1(E) < \sigma_1(E_-) + \sigma_1(E_+) + 2\varepsilon$

 \geq : Пусть $P_1, P_2, \dots P_n$ – покрытие E

Разобьем P_i на P_i^- и P_i^+ $\sigma(P_i) = \sigma(P_i^-) + \sigma(P_i^+)$ $P_1^\pm, P_2^\pm, \dots P_n^\pm$ – покрытие E^\pm

 $\sum_{i=1}^{n} \sigma(P_i^{\pm}) \ge \sigma_1(E^{\pm})$

 $\sum_{i=1}^{n} (\sigma(P_i^-) + \sigma(P_i^+)) \ge \sigma_1(E_-) + \sigma_1(E_+)$

3. $\tilde{E} \subset E \Rightarrow \sigma_1(\tilde{E}) \leq \sigma_1(E)$

Если $\bigcup_{i=1}^n P_i\supset E$, то $\bigcup_{i=1}^n P_i\supset \tilde E\Rightarrow$ класс покрытий $\tilde E$ шире, чем класс покрытий E

2)

Пусть \tilde{E} – параллельный перенос E на вектор \overrightarrow{v}

 $P_1, P_2, \dots P_n$ – покрытие E. Пусть \tilde{P}_i – параллельный перенос P_i на вектор \overrightarrow{v}

Тогда $\tilde{P}_1, \tilde{P}_2, \dots \tilde{P}_n$ – покрытие \tilde{E} и $\sum_{i=1}^n \sigma(P_i) = \sum_{i=1}^n \sigma(\tilde{P}_i)$