Izaac Facundo

Imf339

HW4

Problem 3

Plot the components of the DCM versus time

• Plot the components of the quaternion versus time

• Using the formula we saw in class, calculate the DCM from the quaternion at time t = 1800 seconds and make sure it (approximately) matches the propagated DCM at time t = 1800 seconds

• Using the propagated DCM show the value of TTT at the final time (hint: they should be close to the identity matrix).

	1	3.799e-11	5.371e-11
JĒ	3.799e-11	1	6.982e-12
	5.371e-11	6.982e-12	1
	100		

Should be Identity (Propogated)

• Using the DCM calculated from the quaternion show the values of TTT at the final time (hint: they should be close to the identity matrix).

	1	-5.365e-12	6.419e-12
ŀ	-5.365e-12	1	-5.173e-12
ľ	6.419e-12	-5.173e-12	1

Should be Identity (derived from quaternion)

• Which of the two is closer to identity?

The one calculated from the quaternion is closer to identity

• Add a "Normalize" block after the quaternion integration, show that using the corresponding DCM at the final time we now have that TTT = I (within machine precision).

	1	-1.735e-17	0
ŀ	-1.735e-17	1	0
I	0	0	1

Should be Identity (derived from quaternion)

Problem 4:


```
function omegadot = fcn(omega)
J = [100 0 0;
    0 60 0;
    0 0 60];
omegadot = -inv(J)*[cross(omega,J*omega)];

function eulerdot = fcn(Minv,omega)
eulerdot = Minv*omega;

function Minv = fcn(alpha,beta,gamma)

Minv = (1/cos(beta))*[sin(gamma) cos(gamma) 0;
    cos(beta)*cos(gamma) cos(beta)*sin(gamma) 0;
    -sin(beta)*sin(gamma) -sin(beta)*cos(gamma) cos(beta)];
```

I tried for a few hours but I could not get this code to produce reasonable euler angle values. Here is what I got (graphically):

