Data Analysis of Cars Performance | Motor Trend Magazine

How does transmission type inffluences Miles Per Gallon?

Matheus Cardoso

Jun 10, 2020

Contents

Executive Summary	1
Data Exploration	1
Introduction to dataframe used	1
Load data and process it	2
Basic visualization of the data	3
Modeling data	5
Conclusions	7

Executive Summary

In this post we'll perform some data analysis in regard to transmission type and miles per gallon (MPG). We'll seek to answer 2 main questions:

- "Is an automatic or manual transmission better for MPG"?
- How can we "Quantify the MPG difference between automatic and manual transmissions"?

Data Exploration

Introduction to dataframe used

We are going to use a famous dataframe in R, called mtcars. Here is a brief explanation about it:

The data was extracted from the 1974 Motor Trend US magazine, and comprises fuel consumption and 10 aspects of automobile design and performance for 32 automobiles (1973–74 models).

Format: A data frame with 32 observations on 11 (numeric) variables. [, 1] mpg Miles/(US) gallon [, 2] cyl Number of cylinders [, 3] disp Displacement (cu.in.) [, 4] hp Gross horsepower [, 5] drat Rear axle ratio [, 6] wt Weight (1000 lbs) [, 7] qsec 1/4 mile time [, 8] vs Engine (0 = V-shaped, 1 = straight) [, 9] am Transmission (0 = automatic, 1 = manual) [,10] gear Number of forward gears [,11] carb Number of carburetors

Load data and process it

In this section we load libraries, load data and modify it to a more tidy form.

```
library(tidyverse)
library(magrittr)
library(GGally)
library(knitr)
library(glue)
library(ggfortify)
library(broom)
set.seed(1)
d <- mtcars %>%
        as_tibble() %>%
        mutate(am = factor(am, labels = c("Automatic", "Manual")),
               vs = factor(vs, labels = c("V", "S")),
               cyl = factor(cyl))
summary_d <- tibble(</pre>
    "Number of Rows" = nrow(d),
    "Number of Columns" = ncol(d)
kable(
    summary_d,
    caption = "A summary of the dimensions of `mtcars` dataframe"
```

Table 1: A summary of the dimensions of mtcars dataframe

Number of Rows	Number of Colunms
32	11

```
kable(
    sample_n(d, 5),
    caption = "A quick look at the raw data"
)
```

Table 2: A quick look at the raw data

mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb
19.2	8	400	175	3.08	3.845	17.05	V	Automatic	3	2
21.4	6	258	110	3.08	3.215	19.44	\mathbf{S}	Automatic	3	1
14.3	8	360	245	3.21	3.570	15.84	V	Automatic	3	4
21.0	6	160	110	3.90	2.620	16.46	V	Manual	4	4
21.0	6	160	110	3.90	2.875	17.02	V	Manual	4	4

Basic visualization of the data

Here we show some basic plots demonstrating properties of the data.

```
ggplot(d) +
   geom_point(aes(mpg, disp, color = am)) +
   geom_smooth(aes(mpg, disp, color = am), method = "lm") +
   labs(
        title = "Variation of Engine Displacement as Miles per Galon as increases",
        caption = "Note how transmission type influences the relationship",
        x = "Miles per Galon",
        y = "Engine Displacement (cu.in.)"
   ) +
   scale_color_discrete(name = "Transmission Type")
```

Variation of Engine Displacement as Miles per Galon as increases

Note how transmission type influences the relationship

```
ggplot(d) +
   geom_point(aes(mpg, gear, color = am)) +
   geom_smooth(aes(mpg, gear, color = am), method = "lm") +
   labs(
        title = "How Gear type and Miles per Galon are related",
        caption = "Note how automatic cars tend to have a positive association between Miles per Galon
        The same does not occour with manual cars.",
        x = "Miles per Galon",
        y = "Gear type"
   ) +
   scale_color_discrete(name = "Transmission Type")
```

How Gear type and Miles per Galon are related

w automatic cars tend to have a positive association between Miles per Galon and Gear.

The same does not occour with manual cars.

As you can see, the difference between transmission type is quite large.

The p-value for this two groups is 0.001

kable(plot_t.test\$estimate, caption = "Summary of variation between transmission types")

Table 3: Summary of variation between transmission types

	X
mean in group Automatic	17.14737
mean in group Manual	24.39231

Modeling data

Now we go one step further and perform some statistical modeling.

Table 4: Student's T-test for mtcars dataframe

estimate	estimate1	estimate2	statistic	p.value	parameter	conf.low	conf.high	method
-7.244939	17.14737	24.39231	-3.767123	0.0013736	18.33225	-11.28019	-3.209684	Welch Two Sample t-test

Table 5: Linear Regression Model for mtcars dataframe

term	estimate	std.error	statistic	p.value
(Intercept)	17.8198433	16.3060232	1.0928381	0.2874542
cyl6	-1.6603067	2.2622966	-0.7339032	0.4715245
cyl8	1.6374398	4.3157345	0.3794116	0.7083808
disp	0.0139124	0.0174018	0.7994830	0.4334036
hp	-0.0461284	0.0271202	-1.7008869	0.1044619
drat	0.0263503	1.6764895	0.0157175	0.9876155
wt	-3.8062476	1.8466431	-2.0611712	0.0525285
qsec	0.6469571	0.7219502	0.8961242	0.3808461
vsS	1.7473869	2.2726721	0.7688689	0.4509559
amManual	2.6172655	2.0047494	1.3055325	0.2065309
gear	0.7640292	1.4566802	0.5245003	0.6056959
carb	0.5093512	0.9424418	0.5404590	0.5948487

Finally we make a panel plot to show how is the residual of the model.

Conclusions

As we can see from this tables and plots, MPG values tend to be highly influence by gear type. Answering our initial questions:

- "Is an automatic or manual transmission better for MPG"?
 - Answer: Cars with manual transmissions are generally better when seeking better miles per gallon values.
- How can we "Quantify the MPG difference between automatic and manual transmissions"?
 - Answer: Looking at the previous boxplot and t.test we can easily quantify this difference.