Trabajo Práctico Nº4 Análisis AC y Análisis de Ruido

16 de mayo de 2024

Figura 1: Testbench para analisis de AC & Noise

1. Esquemático:

Implementar el circuito de la fig.1.

2. Análisis de Respuesta en Frecuencia:

Analizar las curvas de respuesta AC (bode de amplitud y fase) en base a la siguiente configuración:

- $C_L = C_0 = 1 \text{aF}$.
- MOS: $L = 0.15 \mu \text{m y W} = 0.45 \mu \text{m}$; $0.9 \mu \text{m}$; $1.35 \mu \text{m}$; $1.8 \mu \text{m}$; $2.25 \mu \text{m}$.
- $Id = 100 \mu A$.

En todos los casos analizar con los parámetros detallados anteriormente salvo que se especifique lo contrario.

- 1. Graficar la respuesta en frecuencia Vout/Vin en términos de magnitud (dB) y fase. Explicar porqué la fase inicia en 180 grados.
- 2. Graficar la respuesta del punto 1) y además el punto de operación gm y explicar:
 - a) ¿Porqué sube el gm a medida que aumenta W?
 - b) ¿Que sucede con el ancho de banda (BW) y la ω_0 en función de W? ¿Porqué aumenta/disminuye?

Nota: Observar valores de las capacidades (cgs, cgd, cds y cgg).

- 3. Parametrizar $C_L=1$ a ; 1f ; 2f ; 5f ;10f manteniendo W = 0.9 μ m
 - a) Extraer gráficos de Bode.
 - b) Explicar que sucede con BW y ω_0

- 4. Fijar $C_L=1$ f y parametrizar W = 0.45 μ m ; 0.9 μ m ; 1.35 μ m ; 1.8 μ m ; 2.25 μ m. Realizar los siguientes items:
 - a) Extraer gráficos de bode.
 - b) Explicar que sucede con BW y ω_0 .
 - c) Analizar con qué W se obtiene el ω_0 máximo.
 - d) Analizar con qué W se obtiene el ω_0 máximo si $C_L=10\mathrm{f}.$

3. Análisis de Ruido:

Analizar las curvas y reportes de ruido en base a la siguiente configuración: En todos los casos analizar con los siguientes parámetros, salvo que se especifique lo contrario:

- $C_L = C_0 = 1 \text{aF}.$
- MOS: $L = 0.15 \mu \text{m y W} = 0.45 \mu \text{m}$; $0.9 \mu \text{m}$; $1.35 \mu \text{m}$; $1.8 \mu \text{m}$; $2.25 \mu \text{m}$.
- Id = $100 \mu A$.
- 1. Analizar curvas de ruido de salida V_{out} . ¿A partir de qué frecuencia empieza a dominar el ruido térmico sobre flicker (fc)?
- 2. En base al sumario de ruido:
 - a) Reportar el ruido total a la salida en V (integrar el ruido desde 10Hz a 1THz)...
 - b) Explicar porqué el ruido total de salida no baja a la mitad si integramos la mitad de ancho de banda (desde 10Hz a 500GHz).
- 3. Analizar el equivalente de ruido a la entrada y explicar:
 - a) ¿Se cumple la relación $V_{n,in} = V_{n,out}/A_v$, donde $V_{n,out}$ es el ruido medido a la salida y $V_{n,in}$ es el ruido equivalente a la entrada? Nota: por simplicidad, analizar sólo para W=0.9 μ m.
 - b) Cambiar el reporte de ruido integrando sólo desde 10Hz a 1GHz y analizar la diferencia de resultados. Explicar porqué los reportes de ruido equivalente a la entrada $(V_{n,in})$ dan diferentes en el caso (a) y (b).
- 4. Configurar C_L =1fF, W = 0.45 μ m ; 0.9 μ m ; 1.35 μ m ; 1.8 μ m ; 2.25 μ m, volver a integrar ruido desde 10Hz a 1THz y explicar:
 - a) ¿Qué sucede con el ruido total a la salida y los porcentajes entre ruido flicker y térmico?
 - b) ¿Cambia la frecuencia fc (ruido flicker vs. termico)?