Bölüm 10

Model Seçimi Doğrulama

Model Seçimi

Model Seçimi

- Model Seçimi Nedir?
- Model Seçiminin Önemi
- Model Seçme Kriterleri

Model Seçimi Nedir?

- Makine öğrenmesinde model seçimi, bir problem için en uygun modeli belirleme sürecidir.
- Bu süreç, veri setinin özelliklerine, problemin doğasına ve hedeflenen sonuçlara bağlı olarak yapılır.

Model Seçiminin Önemi

- Makine öğrenmesinde model seçimi önemlidir.
 - Performansı Etkiler
 - Genelleme Yeteneğini Etkiler
 - Hesaplama Kaynaklarını Etkiler
 - Yorumlanabilirlik ve Açıklanabilirlik
 - Uygulanabilirlik

Model Seçme Kriterleri

- En uygun modeli seçmek, çeşitli yöntemlerin ve alan uzmanlığının bir karışımını gerektirir.
- Basit veya karmaşık bir model, geleneksel veya derin öğrenme modeli, doğrusal veya doğrusal olmayan bir model arasındaki seçim, birkaç faktöre bağlıdır.
 - Problem Türü
 - Veri Erişilebilirliği ve Kalitesi
 - Bilgisayar Kaynakları
 - Açıklanabilirlik
 - Ölçeklenebilirlik
 - Çoklu Girişleri İşleme Yeteneği
 - Zaman Kısıtları
 - Alan Bilgisi

Model Seçme Yöntemleri

≪∘− ىلللا 111 elle

Model Seçme Yöntemleri

- Model Seçme Yöntemleri
 - Olasılıksal
 - Rastgele Bölünme
 - Örnekleme

Model Seçme Yöntemleri

- Makine öğrenmesinde model seçimi, bir problem için en uygun modeli belirleme sürecidir.
- Bu süreç, veri setinin özelliklerine, problemin doğasına ve hedeflenen sonuçlara bağlı olarak yapılır.

https://censius.ai/blogs/machine-learning-model-selection-techniques#blogpost-toc-0

Olasılıksal

- Bilgi Kriteri, istatistiksel prosedürlerin etkinliğini değerlendirmek için kullanılan bir tür olasılıksal ölçümdür.
- Yöntemleri, En Büyük Olabilirlik Tahmini'nin (MLE) log-olabilirlik çerçevesini kullanarak en etkili aday modelleri seçen bir puanlama sistemini içerir.
- Örnekleme sadece model performansına odaklanırken, olasılıksal modelleme hem model performansına hem de karmaşıklığına odaklanır.
- Karmaşıklık derecesini ve belirli bir modelin veri kümesine ne kadar iyi uyduğunu hesaplamak için üç istatistiksel yöntem vardır:
 - Akaike Bilgi Kriteri (Akaike Information Criterion AIC)
 - Minimum Açıklama Uzunluğu (Minimum Description Length MDL)
 - Bayesian Bilgi Kriteri (Bayesian Information Criterion BIC)

Akaike Bilgi Kriteri

 Amaç, bir modelin ne kadar iyi bir şekilde verileri açıkladığını ve ne kadar karmaşık olduğunu dengelemektir.

$$AIC = -2\ln(L) + 2k$$

Minimum Açıklama Uzunluğu

- Karmaşıklık ve uyum arasındaki dengeyi sağlar.
- MDL, veri setinin kodlanması ve modelin karmaşıklığı arasındaki toplam bit sayısını en aza indirmeyi amaçlar.

Bayesian Bilgi Kriteri

• AIC gibi, model karmaşıklığı ve uyum arasındaki dengeyi sağlamak için kullanılır.

$$\mathrm{BIC} = k \ln(n) - 2 \ln(\widehat{L})$$

Rastgele Bölünme

- Bölme işlemi rastgele veya zamana dayalı olabilir.
- Rastgele bölme yöntemi, eğitim verisini eğitim, test ve doğrulama kümelerine rastgele böler.
- Bu işlem, modelin performansını çeşitli test kümelerinde kontrol etmek ve güvenilirliğini gözlemlemek için tekrarlanır.

Rastgele Bölünme

 Zaman tabanlı bölme genellikle zaman bileşeni içeren veriler için yapılır, örneğin hava durumu veya borsa verileri gibi.

https://towardsdatascience.com/time-series-from-scratch-train-test-splits-and-evaluation-metrics-4fd654de1b37

Örnekleme Yöntemleri

- Örnekleme yöntemleri, modelin eğitim almadığı veri örnekleri üzerinde performansını görmek için veri örneklerini yeniden düzenlemenin basit yöntemleridir.
- Başka bir deyişle, örnekleme, modelin genelleme yeteneğini belirlememizi sağlar.
- Örnekleme yöntemleri:
 - Bootstrap
 - Çarpraz Doğrulama
 - K-Fold Çapraz Doğrulama
 - Leave-One-Out (LOO) Çapraz Doğrulama

Bootstrap

- Bu teknik, bir veri setinden rastgele örneklemler çekmek suretiyle tekrarlanan örnekleme yaparak, popülasyon üzerinde istatistiksel sonuçların tahmin edilmesini sağlar.
- Bootstrap yöntemi, genellikle küçük veri setleri veya sınırlı veriye sahip durumlarda parametrik olmayan istatistiklerin güven aralıklarını ve standart hatalarını hesaplamak için kullanılır.
 - Veri setinden rastgele örneklemler çekilir.
 - Örneklemler üzerinde istatistikler hesaplanır.
 - Bu adımlar birçok kez tekrarlanır.
 - Elde edilen istatistiklerin dağılımı incelenir.

K-Fold Çapraz Doğrulama

- Veri seti k eşit parçaya bölünür (katman).
- Ardından, her bir katman sırayla test seti olarak kullanılırken, diğer katmanlar birleştirilerek eğitim seti oluşturulur.
- Bu işlem kere tekrarlanır ve her bir katmanın test seti üzerindeki performansı değerlendirilir.
- Sonuçlar genellikle ortalamalar alınarak rapor edilir.

Leave-One-Out (LOO) Çapraz Doğrulama

- Her bir veri noktası sırayla test seti olarak ayrılırken, geri kalan veri noktaları eğitim seti olarak kullanılır.
- Bu işlem veri noktalarının tamamı için tekrarlanır ve her bir veri noktasının test seti üzerindeki performansı değerlendirilir.

