

Moteur de jeux

Compte-rendu TP1 & TP2

Benjamin Serva Master 1 IMAGINE Université de Montpellier

6 mars 2024

Contents

1	TP1	_		3
	1.1	Questi	ion 1	3
		1.1.1	Création du plan	3
		1.1.2	Plaquage de la texture	3
	1.2	Questi	ion 2	3
		1.2.1	Altitude de sommets	3
2	TP2	2		4
	2.1	Questi	ion 1	4
		2.1.1	Height map	4
		2.1.2	Texture en fonction de la height map	
		2.1.3	Resolution	
	2.2	Questi	ion 2	5
	2.3	Questi	ion 3	5
		2.3.1	Caméra orbital	5
		2.3.2	Accéleration	5
		2.3.3	Mode de caméra	5

1 TP1

1.1 Question 1

1.1.1 Création du plan

Figure 1: plan classique

1.1.2 Plaquage de la texture

Figure 2: plan avec la texture grass

Figure 3: plan avec la texture rock

1.2 Question 2

1.2.1 Altitude de sommets

Figure 4: plan avec une alitude aléatoire

2 TP2

2.1 Question 1

2.1.1 Height map

Figure 5: plan avec l'altitude en fonction de la heightmap

2.1.2 Texture en fonction de la height map

Figure 6: plan avec l'altitude en fonction de la heightmap ainsi que les textures

2.1.3 Resolution

Les intéractions sont ${\bf p}$ pour augmenter la résolution et ${\bf o}$ pour la diminuer

(b) plan quand resolution grande

Figure 7: modification de la resolution

2.2 Question 2

Quand vous executez le programme il vous suffit d'appuyer sur la touche c pour basculer dans ce mode de caméra

2.3 Question 3

2.3.1 Caméra orbital

Quand vous executez le programme vous êtes automatiquement sur cette caméra.

```
if (cam) {
    angle += speed_ * deltaTime * 70;
    view = glm::lookAt(camera_position_used, camera_position_used + camera_target, camera_up);
    model = mat4(1.0f);
    model = glm::rotate(model, glm::radians(45.f), glm::vec3(1.0f, 0.0f, 0.0f));
    model = glm::rotate(model, glm::radians(angle), glm::vec3(0.0f, 1.0f, 0.0f));
    model = glm::scale(model, glm::vec3(zoom, zoom));
    projection = glm::perspective(glm::radians(45.0f), (float)SCR_WIDTH / (float)SCR_HEIGHT, 0.1f, 100.0f);
}
```

Figure 8: bout de code permettant de tourner autour du plan de façon constante

2.3.2 Accéleration

Utilisation de la variable **speed**_ qu'on incrémente ou décrémente de 0.1 à chaque intéraction clavier.

2.3.3 Mode de caméra

J'ai fais le choix pour chaque fois qu'on a appuie sur la touche c de ramener notre caméra au niveau du centre de notre plan donc le point (0,0,0) et se remettre en face.