DD2448 Foundations of Cryptography Lecture 9

Douglas Wikström KTH Royal Institute of Technology dog@kth.se

April 7, 2020

Public-Key Cryptography

Cipher (Symmetric Cryptosystem)

Public-Key Cryptosystem

History of Public-Key Cryptography

Public-key cryptography was discovered:

- ▶ By Ellis, Cocks, and Williamson at the Government Communications Headquarters (GCHQ) in the UK in the early 1970s (not public until 1997).
- Independently by Merkle in 1974 (Merkle's puzzles).
- ▶ Independently in its discrete-logarithm based form by Diffie and Hellman in 1977, and instantiated in 1978 (key-exchange).
- Independently in its factoring-based form by Rivest, Shamir and Adleman in 1977.

Public-Key Cryptosystem

Public-Key Cryptography

Definition. A public-key cryptosystem is a tuple (Gen, E, D) where,

- Gen is a probabilistic key generation algorithm that outputs key pairs (pk, sk),
- ▶ E is a (possibly probabilistic) **encryption algorithm** that given a public key pk and a message m in the plaintext space \mathcal{M}_{pk} outputs a ciphertext c, and
- D is a decryption algorithm that given a secret key sk and a ciphertext c outputs a plaintext m,

such that $D_{sk}(E_{pk}(m)) = m$ for every (pk, sk) and $m \in \mathcal{M}_{pk}$.

RSA

The RSA Cryptosystem (1/2)

Key Generation.

- ▶ Choose n/2-bit primes p and q randomly and define N = pq.
- ▶ Choose e in $\mathbb{Z}_{\phi(N)}^*$ and compute $d = e^{-1} \mod \phi(N)$.
- Output the key pair ((N, e), (p, q, d)), where (N, e) is the public key and (p, q, d) is the secret key.

The RSA Cryptosystem (2/2)

Encryption. Encrypt a plaintext $m \in \mathbb{Z}_N^*$ by computing

$$c = m^e \mod N$$
.

Decryption. Decrypt a ciphertext c by computing

$$m = c^d \mod N$$
.

$$(m^e \mod N)^d \mod N = m^{ed} \mod N$$

$$(m^e \mod N)^d \mod N = m^{ed} \mod N$$

= $m^{1+t\phi(N)} \mod N$

$$(m^e \mod N)^d \mod N = m^{ed} \mod N$$

= $m^{1+t\phi(N)} \mod N$
= $m^1 \cdot \left(m^{\phi(N)}\right)^t \mod N$

$$(m^e \mod N)^d \mod N = m^{ed} \mod N$$

$$= m^{1+t\phi(N)} \mod N$$

$$= m^1 \cdot \left(m^{\phi(N)}\right)^t \mod N$$

$$= m \cdot 1^t \mod N$$

$$(m^e \mod N)^d \mod N = m^{ed} \mod N$$

$$= m^{1+t\phi(N)} \mod N$$

$$= m^1 \cdot \left(m^{\phi(N)}\right)^t \mod N$$

$$= m \cdot 1^t \mod N$$

$$= m \mod N$$

Implementing RSA

- Modular arithmetic.
- Greatest common divisor.
- Primality test.

Modular Arithmetic (1/3)

Basic operations on O(n)-bit integers using "text book" implementations.

Operation	Running time
Addition	O(n)
Subtraction	O(n)
Multiplication	$O(n^2)$
Modular reduction	$O(n^2)$
Greatest common divisor	$O(n^2)$

Modular Arithmetic (1/3)

Basic operations on O(n)-bit integers using "text book" implementations.

Operation	Running time
Addition	O(n)
Subtraction	O(n)
Multiplication	$O(n^2)$
Modular reduction	$O(n^2)$
Greatest common divisor	$O(n^2)$

Optimal algorithms for multiplication and modular reduction are much faster.

Modular Arithmetic (1/3)

Basic operations on O(n)-bit integers using "text book" implementations.

Operation	Running time
Addition	O(n)
Subtraction	O(n)
Multiplication	$O(n^2)$
Modular reduction	$O(n^2)$
Greatest common divisor	$O(n^2)$

Optimal algorithms for multiplication and modular reduction are much faster.

What about modular exponentiation?

Modular Arithmetic (2/3)

Square-and-Multiply.

```
SquareAndMultiply(x, e, N)
1 z \leftarrow 1
2 i = index of most significant one
3
    while i \ge 0
           do
              z \leftarrow z \cdot z \mod N
5
               if e_i = 1
                  then z \leftarrow z \cdot x \mod N
               i \leftarrow i - 1
6
    return z
```

Modular Arithmetic (3/3)

Although basically is the same, the most efficient algorithms for exponentiation are faster.

Computing g^{x_1}, \ldots, g^{x_k} can be done much faster!

Computing $\prod_{i \in [k]} g^{x_i}$ can be done much faster!

Computing g_1^x, \dots, g_k^x can be done somewhat faster!

Modular Arithmetic (3/3)

Although basically is the same, the most efficient algorithms for exponentiation are faster.

Computing g^{x_1}, \ldots, g^{x_k} can be done much faster!

Computing $\prod_{i \in [k]} g^{x_i}$ can be done much faster!

Computing g_1^x, \dots, g_k^x can be done somewhat faster!

What about side-channel attacks?

Prime Number Theorem

The primes are relatively dense.

Prime Number Theorem

The primes are relatively dense.

Theorem. Let $\pi(m)$ denote the number of primes 0 .

Then

$$\lim_{m\to\infty}\frac{\pi(m)}{\frac{m}{\ln m}}=1.$$

Prime Number Theorem

The primes are relatively dense.

Theorem. Let $\pi(m)$ denote the number of primes 0 . Then

$$\lim_{m\to\infty}\frac{\pi(m)}{\ln m}=1.$$

To generate a random prime, we repeatedly pick a random integer m and check if it is prime. It should be prime with probability close to $1/\ln m$ in a sufficently large interval.

Definition. Given an odd integer $b \ge 3$, an integer a is called a **quadratic residue** modulo b if there exists an integer x such that $a = x^2 \mod b$.

Definition. The **Legendre Symbol** of an integer a modulo an **odd prime** p is defined by

$$\left(\frac{a}{p}\right) = \left\{ \begin{array}{cc} 0 & \text{ if } a = 0 \\ 1 & \text{ if } a \text{ is a quadratic residue modulo } p \\ -1 & \text{ if } a \text{ is a quadratic non-residue modulo } p \end{array} \right. .$$

Theorem. If p is an odd prime, then

$$\left(\frac{a}{p}\right) = a^{(p-1)/2} \bmod p .$$

Theorem. If p is an odd prime, then

$$\left(\frac{a}{p}\right) = a^{(p-1)/2} \bmod p .$$

Proof.

▶ If $a = y^2 \mod p$, then $a^{(p-1)/2} = y^{p-1} = 1 \mod p$.

Theorem. If p is an odd prime, then

$$\left(\frac{a}{p}\right) = a^{(p-1)/2} \bmod p .$$

Proof.

- ▶ If $a = y^2 \mod p$, then $a^{(p-1)/2} = y^{p-1} = 1 \mod p$.
- ▶ If $a^{(p-1)/2}=1 \mod p$ and b generates \mathbb{Z}_p^* , then $a^{(p-1)/2}=b^{x(p-1)/2}=1 \mod p$ for some x. Since b is a generator, $(p-1)\mid x(p-1)/2$ and x must be even.

Theorem. If p is an odd prime, then

$$\left(\frac{a}{p}\right) = a^{(p-1)/2} \bmod p .$$

Proof.

- ▶ If $a = y^2 \mod p$, then $a^{(p-1)/2} = y^{p-1} = 1 \mod p$.
- ▶ If $a^{(p-1)/2} = 1 \mod p$ and b generates \mathbb{Z}_p^* , then $a^{(p-1)/2} = b^{x(p-1)/2} = 1 \mod p$ for some x. Since b is a generator, $(p-1) \mid x(p-1)/2$ and x must be even.
- If a is a non-residue, then $a^{(p-1)/2} \neq 1 \mod p$, but $\left(a^{(p-1)/2}\right)^2 = 1 \mod p$, so $a^{(p-1)/2} = -1 \mod p$.

Jacobi Symbol (my academic great⁹ grand father)

Definition. The **Jacobi Symbol** of an integer *a* modulo an odd integer $b = \prod_i p_i^{e_i}$, with p_i prime, is defined by

$$\left(\frac{a}{b}\right) = \prod_{i} \left(\frac{a}{p_{i}}\right)^{e_{i}} .$$

Note that we can have $\left(\frac{a}{b}\right) = 1$ even when a is a non-residue modulo b.