- **1.48.** Let z_0 be a complex number with polar coordinates (r_0, θ_0) and Cartesian coordinates (x_0, y_0) . Determine expressions for the Cartesian coordinates of the following complex numbers in terms of x_0 and y_0 . Plot the points z_0 , z_1 , z_2 , z_3 , z_4 , and z_5 in the complex plane when $r_0 = 2$ and $\theta_0 = \pi/4$ and when $r_0 = 2$ and $\theta_0 = \pi/2$. Indicate on your plots the real and imaginary parts of each point.
- (c) $z_3 = r_0 e^{j(\theta_0 + \pi)}$
- (a) $z_1 = r_0 e^{-j\theta_0}$ (b) $z_2 = r_0$ (c) $z_4 = r_0 e^{j(-\theta_0 + \pi)}$ (e) $z_5 = r_0 e^{j(-\theta_0 + \pi)}$
 - (e) $z_5 = r_0 e^{j(\theta_0 + 2\pi)}$
- 1.49. Express each of the following complex numbers in polar form, and plot them in the complex plane, indicating the magnitude and angle of each number:
 - (a) $1 + i\sqrt{3}$

- (a) $1 + j\sqrt{3}$ (b) -5 (c) -5 5j(d) 3 + 4j (e) $(1 j\sqrt{3})^3$ (f) $(1 + j)^5$ (g) $(\sqrt{3} + j^3)(1 j)$ (h) $\frac{2 j(6/\sqrt{3})}{2 + j(6/\sqrt{3})}$ (i) $\frac{1 + j\sqrt{3}}{\sqrt{3} + j}$ (j) $j(1 + j)e^{j\pi/6}$ (k) $(\sqrt{3} + j)2\sqrt{2}e^{-j\pi/4}$ (l) $\frac{e^{j\pi/3} 1}{1 + j\sqrt{3}}$
- **1.50.** (a) Using Euler's relationship or Figure P1.48, determine expressions for x and y in terms of r and θ .
 - **(b)** Determine expressions for r and θ in terms of x and y.
 - (c) If we are given only r and $\tan \theta$, can we uniquely determine x and y? Explain your answer.

as

Figure P1.48

1.52. Let z denote a complex variable; that is,

$$z = x + jy = re^{j\theta}.$$

The *complex conjugate* of z is

$$z^* = x - jy = re^{-j\theta}.$$

Derive each of the following relations, where z, z_1 , and z_2 are arbitrary complex numbers:

- (a) $zz^* = r^2$
- **(b)** $\frac{z}{z^*} = e^{j2\theta}$
- (c) $z + z^* = 2\Re\{z\}$
- (d) $z-z^*=2j\mathfrak{G}m\{z\}$
- (e) $(z_1 + z_2)^* = z_1^* + z_2^*$ (f) $(az_1z_2)^* = az_1^*z_2^*$, where a is any real number (g) $(\frac{z_1}{z_2})^* = \frac{z_1^*}{z_2^*}$
- **(h)** $\Re\{\frac{z_1}{z_2}\} = \frac{1}{2} \left[\frac{z_1 z_2^* + z_1^* z_2}{z_2 z_2^*} \right]$

- 1.56. Evaluate each of the following integrals, and express your answer in Cartesian (rectangular) form:

- (a) $\int_0^4 e^{j\pi t/2} dt$ (b) $\int_0^6 e^{j\pi t/2} dt$ (c) $\int_2^8 e^{j\pi t/2} dt$ (d) $\int_0^\infty e^{-(1+j)t} dt$ (e) $\int_0^\infty e^{-t} \cos(t) dt$ (f) $\int_0^\infty e^{-2t} \sin(3t) dt$

18.1 Trigonometric Form of the Fourier Series

- 1. Determine the fundamental frequency, fundamental radian frequency, and period of the following: (a) $5\sin 9t$; (b) $200\cos 70t$; (c) $4\sin(4t-10^\circ)$; (d) $4\sin(4t + 10^{\circ})$.
- 2. Plot multiple periods of the first, third, and fifth harmonics on the same graph of each of the following periodic waveforms (three separate graphs in total are desired): (a) $3 \sin t$; (b) $40 \cos 100t$; (c) $2 \cos (10t - 90^{\circ})$.
- 3. Calculate a_0 for the following: (a) $4 \sin 4t$; (b) $4 \cos 4t$; (c) $4 + \cos 4t$; (d) $4\cos(4t + 40^{\circ})$.
- 4. Compute a_0 , a_1 , and b_1 for the following functions: (a) $2\cos 3t$; (b) $3 \cos 3t$; (c) $4\sin(4t - 35^{\circ})$.
- 6. (a) Compute the Fourier coefficients a_0 , a_1 , a_2 , a_3 , a_4 , b_1 , b_2 , b_3 , and b_4 for the periodic function g(t) partially sketched in Fig. 18.28. (b) Plot g(t) along with the Fourier series representation truncated after n = 4.

FIGURE 18.28