Shiv Nadar University Chennai

End Semester Examinations, 2023-2024 Odd Question Paper

Name of the Progra	Semester: III						
Course Code & Name: CS1006T DATA STRUCTURES							
	Regulation 2021						
Time: 3 Hours		Maximum: 100 Marks					

Q.No	Questions	Marks	СО#	KL#
		•		
1	Consider the following sequence of operations on an empty stack.	2	CO2	KL3
	push(54); push(52); pop(); push(55); push(62); s = pop();			
	Consider the following sequence of operations on an empty queue.			
	enqueue(21); enqueue(24); dequeue(); enqueue(28); enqueue(32); q = dequeue();			
	The value of s + q is			
2	Compute the post fix equivalent of the following expression.	2	CO2	KL3
	3 * (x+1) - a/2			
3	Suppose a circular queue of capacity $(n-1)$ elements is implemented with an array of n elements. Assume that the insertion and deletion operations are carried out using REAR and FRONT as array index variables, respectively. Initially, REAR = FRONT = 0. Write the conditions to detect queue full and queue empty.	2	CO2	KL3
4	Why array is only suitable for binary search? Substantiate with an example.	2	CO1	KL2
5	Deduce what type of tree is given below? Record your observations on the type of tree.	2	CO3	KL3
6	A binary search tree is generated by inserting in order of the following integers: 50, 15, 62, 5, 20, 58, 91, 3, 8. Write the number of nodes in the left subtree and right subtree of the root.	2	CO3	KL3
7	Write down the best- and worst-case time complexity of insertion sorting algorithm.	2	CO4	KL2
8	Compute the time complexity of the following code snippet. for (int i = 1; i <= n; i *= c) { // some O(1) expressions }	2	CO1	KL3

		for (int $i = n$; $i > 0$; $i /= c$)			
		{			
		// some O(1) expressions			
		}			
9		Determine the tree type for the given data structure. Insert 7 into the set of	2	CO5	KL3
		elements and showcase the outcome of insertion,			
		(1)			
		5 3			
		$\begin{pmatrix} 4 \end{pmatrix} \begin{pmatrix} 2 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix}$			
10		The keys 12, 13, 2, 23 and 5are inserted into an initially empty hash table	2	CO5	KL3
		of length 10 with hash function $h(k) = k \mod 10$ using linear probing. What			
		is the resultant hash table?			
		Part B – Answer all the questions ($8 \times 10 = 80$ Marks)		ı	I
11	a	Consider the following function:	5	CO1	KL3
		void fun (int a, int b)			
		{			
		while (a != b) {			
		if $(a > b)$			
		a = a - b;			
		else			
		b = b - a;			
		}			
		}			
		Analyze the best- and worst-case time complexity if the above function is			
		called.			
	b	Write the routine to insert an element in the middle of an application that	5	CO2	KL2
		helps you navigate in both directions. Show the representations and perform			
		traversal.			
12	a	Convert the infix expression $a/b - c + d * e - a * c$ into postfix expression.	10	CO2	KL3
		Write a function to evaluate that postfix expression and trace that for given data $a=6$, $b=3$, $c=1$, $d=2$, $e=4$.			
1.2			10	662	1/1 2
13	a	Create a Binary Search Tree for the following data and do in-order,	10	CO3	KL3
		Preorder and Post-order traversal of the tree. 50, 60, 25, 40, 30, 70, 35, 10, 55, 65, 5. Showcase stepwise construction status and traversal logics.			
14			10	CO3	KL3
14	a	Find the number of different topological orderings possible for the graph given below:	10		IXL)
		Ø-:			

KL - Bloom's Taxonomy Levels

(KL1: Remembering, KL2: Understanding, KL3: Applying, KL4: Analyzing, KL5: Evaluating, KL6: Creating)

CO – Course Outcomes
