

第二赛季 总决赛

阿里巴巴大数据竞赛决赛分享

数据心跳

村国霖 厦门大学

阿里巴巴大数据竞赛

天猫推荐算法》大挑战

第二赛季 总决赛

内容

- 解题思路
- •三个要点
 - 特征
 - 模型
 - 融合

问题描述

- 给定天猫用户在4月15日到8月15日的品牌交互数据
- 一共四种行为: 0(点击), 1(购买), 2(收藏), 3(购物车)

user_:	id	brand_id	type	visit_datetime		
10944	750	15761	0	4月24日		
10944	750	15761	0	4月24日		
10944	750	15761	0	4月24日		
10944	750	15761	0	4月24日		
10944	750	19673	0	7月5日		
10944	750	19673	0	7月5日		

• 预测这些用户在8月16日到9月15日购买的品牌

问题分析

- 已交互推荐
 - 分类问题 -> 一个用户品牌对:买 or 不买
 - 回归问题(ranking) -> 一个用户品牌对的购买可能性评分
- 未交互推荐
 - 协同过滤
 - 关联分析
 - 流行推荐

未交互推荐

- 协同过滤
 - 购买代价大
 - 大部分购买是因为需求,而喜好!= 需求
 - 需求单一,相似推荐效果差
- 关联规则
 - 相关性!= 因果性
 - 品牌!= 商品
 - 关联样本太少
- 放弃未交互推荐
 - Gain太少,消耗时间大
 - · Solo没精力

己交互推荐

• 二分类问题

• 正样本:交互过->买

• 负样本:交互过->没买

	user_id	brand_id	is_buy	buy_probability	
	10944	1267	0	0.1453	
	10944	1588	0	0.0344	
	28444	1344	1	0. 7888	
	28444	6888	0	0. 2867	

已交互推荐

- 购买的动机不一样
 - 忠实于某个品牌
 - 某个品牌口碑好
 - 促销
 - 需求
 - 心血来潮
 - •

己交互推荐

• 二分类问题->多分类问题

数据拆分

• 数据切分成3块,分开训练

数据拆分

- 优点:
 - 符合实际问题
 - 充分利用3个instance
 - 主数据样本少 -> 速度快
 - 主数据噪声少 -> 精度高
 - 线上结果更优
- 缺点:
 - 子模型的预测量比例不好控制
 - 解决方法:线下调优

内容

- 解题思路
- 三个要点
 - 特征, 决定UpperBound
 - 模型
 - •融合

特征设计

- 系统化设计:系统化,工程化地提取可能有用的特征
- 业务知识设计:根据业务知识,人工构造有效的特征

指标	系统化设计	业务知识设计		
特征数量	多	少		
信息量	大 (噪声多)	较大(噪声少)		
人力劳动	低	高		
模型依赖度	高	低		
单一特征刻画能力	弱	强		
存在相似特征?	存在	不存在		
适用模型	复杂模型	简单模型		
适用领域	J . .	窄		

特征设计

- 选择系统化设计
 - 业务知识不足
 - 人力劳动少
 - 特征变动少
 - solo思维较局限
 - 一般比赛做法

系统化特征设计

- 时间压缩
 - 降低特征维度
- 多粒度
 - 保证特征的信息量
- · 交叉
 - 提高特征刻画能力

时间压缩

- 将序列信息分段压缩
- 近期密,远期粗,重叠
 - 1,3,7,14,28,56,max

多粒度

特征交叉

- 不同粒度的交叉
 - Brand的人均销量
 - Brand的日均销量
 - •
- 不同行为的交叉
 - 转化率
 - •

特征交叉

- 不同类别的交叉
 - 交互点击*转化率
 - 交互点击/用户点击
 - •
- 不同时间的交叉
 - 增长率
 - 回头率
 - •

数据清洗

- 目的:去掉明显的噪声,得到干净的特征统计
- 清洗对象:
 - 爬虫用户
 - 点击大于500(经验值),且没有购买过
 - 异常用户
 - 没有点击,但有其他操作

特征处理

- 平滑
 - 数据缺失问题
 - Laplace平滑

$$\bullet \; \frac{x}{y} \; \Rightarrow \; \frac{x+ab}{y+b}$$

特征处理

- 小样本置信度
 - Wilson Score Interval

•
$$\frac{1}{1+\frac{1}{n}z^2} \left[\hat{p} + \frac{1}{2n}z^2 \pm z \sqrt{\frac{1}{n}\hat{p}(1-\hat{p}) + \frac{1}{4n^2}z^2} \right]$$

特征处理

• 离散化

• 扩展维度,解耦非线性

• 品牌:冷门,普通,热门

• 用户:普通,活跃

内容

- •解题思路
- 三个要点
 - •特征,决定UpperBound
 - <u>模型,决定接近UpperBound的程度</u>
 - 融合

目的

- 为融合准备的模型 -> 各种模型都要做到极致
 - 线性模型 vs 非线性模型
 - Bagging vs Boosting
 - · 分类 vs 回归

基本模型

模型	输出	线性	Ensemble	速度	效果
逻辑回归(LR)	分类	线性	无	快	5.56%
随机森林(RF)	分类	非线性	Bagging	慢	6.01%
梯度渐进回归树 (GBRT)	回归	非线性	Boosting	较快	6.09%

组合模型

- RF initial GBRT
 - 1. 先用RF训练,使用原始的目标值y训练,输出为y_{RF}
 - 2. GBRT训练,用RF初始化后的目标值y-y_{RF}训练
 - 3. 预测时,用1和2训练的RF和GBRT分别预测一次,最终结果 取两者均值

组合模型

 Random GBRT Forest Random Random Random **GBRT GBRT GB**KT

AVG

内容

- •解题思路
- 三个要点
 - •特征,决定UpperBound
 - 模型,决定接近UpperBound的程度
 - 融合,更进一步接近UpperBound

融合关键

• 多样性

融合步骤

- 1. 在Local_Training集合上训练多个模型
- 2. 在Local_Test集合上调参,融合
- 3. 在Online_Training (Local_Training+Local_Test)集合上,训练单模型,使用2得到的参数
- 4. 使用2得到的融合参数进行融合

融合方法

- ・人工指定
 - 对输出加权,穷举参数
 - · 分别取top k, 取并集

• 模型学习

- 简单模型:逻辑回归,线性回归
- 复杂模型: GBRT, RF_Initial_GBRT

做法多样性

- 抽样
 - · 每个单模型都重新抽样训练(Bagging)
 - 不同抽样比例
- 不同长度的label区间(21天, 28天, 31天)
 - 扩展:滑窗构造
- 不同解决方案
 - 点击率预估 vs 购买率预估

最终使用

- 两组特征
 - 一组离散化,一组没有离散化
- 使用模型
 - LR (线性)
 - RF (非线性, bagging)
 - 多组参数不同的GBRT(非线性, boosting)
 - RF_Initial_GBRT
- 做法
 - 每个单模型都重新抽样训练(Bagging)
 - 不同长度的label区间(28天,31天)

最终使用

- 融合方法:LR
 - 模型多,人工指定效率低
 - 复杂模型融合线下过拟合(Time drift, 分布不一致)
 - LR 可以肉眼看系数,去掉异常模型

最终模型

• Buyed 子模型

最终模型

• Short Term 子模型

最终模型

• Long Term 子模型

其他

- 融合效果取决于
 - 1 单模型的性能
 - 2 模型输出的重合度(Top K)
- 满足多样性的条件下,效果差的模型可以保留
- 去掉线下过拟合的模型
- 要对单模型的输出进行处理(z-score, ranking score)后再融合