Numerical Analysis Assignment 4

Chuan Lu

September 16, 2017

Problem 1. Problem 2.2, Page 118

Solution. The code of the three schemes are as follows.

```
function [root, index, iteration, error, count] = bisection(f, a, b, tol)
   % Bisection for root finding;
3
   % f: the function to find root;
  % [a, b]: the interval which root lies in; f(a)*f(b) < 0;
  % tol: tolerance;
  if(feval(f, a)*feval(f, b) > 0)
7
       error('Sign of value on edges of interval shoule be differernt');
8
   end
   count = 0; index = (0:1:100)';
9
10
   iteration = zeros(100, 1);
11
   error = zeros(100, 1);
12
   while (1)
13
       count = count + 1;
14
       root = (a+b)/2;
       iteration(count) = root;
15
         error(count) = abs(feval(f, root));
16
       error(count) = abs(b-root);
17
18
       if(b-root < tol)</pre>
19
           return:
20
       elseif(count > 100)
21
           warning('Count over 100, might not converge');
22
           return;
23
       if(feval(f, b)*feval(f, root) <= 0)</pre>
24
25
           a = root;
26
       else
27
           b = root;
28
       end
29
   end
```

```
function [root, index, iteration, error, count] = newton(f, df, x0, tol)
1
  % Newton's Method for root extraction;
  % f, df: function and it's derivative;
3
  % x0: initial point;
5 % tol: tolerance;
  count = 1; index = (0:1:100);
6
   iteration = zeros(100, 1); iteration(1) = x0;
7
8
   error = zeros(100, 1); error(1) = abs(x0);
9
   while (1)
10
       count = count + 1;
       x1 = x0 - feval(f, x0) / feval(df, x0);
11
12
       iteration(count) = x1;
13
       error(count) = abs(x1-x0);
       if(abs(x1-x0) < tol)
14
15
           root = x1;
```

```
16
            return;
17
       elseif(count > 100)
18
            warning('Count over 100, may not be convergence');
19
            root = x1;
20
            return;
21
       end
       x0 = x1;
22
23
   end
```

```
function [root, index, iteration, error, count] = secant(f, x0, x1, tol)
1
2
  % Secant Method for root extraction;
3
  % f: the function;
4
  % x0, x1: initial points;
5 % tol: tolerance;
6
  count = 2; index = (0:1:100)';
  iteration = zeros(100, 1); iteration(1) = x0; iteration(2) = x1;
7
8
   error = zeros(100, 1); error(1) = abs(x0); error(2) = abs(x1-x0);
9
   while (1)
10
       count = count + 1;
11
       f0 = feval(f, x0);
12
       f1 = feval(f, x1);
       x2 = x1 - (x1 - x0)/(f1 - f0) * f1;
13
14
       iteration(count) = x2;
15
       error(count) = abs(x2-x1);
16
       if(abs(x2 - x0) < tol)
17
           root = x2;
18
           return;
19
       elseif(count > 100)
20
           warning('Count over 100, may not be convergence');
21
           root = x2;
22
           return;
23
       end
24
       x0 = x1;
25
       x1 = x2;
26
  end
```

```
f1 = 0(x)(exp(x)-3*x^2);
   df1 = 0(x)(exp(x)-6*x);
3 \mid f2 = 0(x)(x-1-0.3*\cos(x));
4 \mid df2 = @(x)(1+0.3*sin(x));
5 \mid \text{tol} = 1e-6;
6 | format long;
7
8
  % f1: Prob 2(a);
   % ONLY FOR THE NEGATIVE ROOT
9
10 % bisection
11 | subplot (121);
12 | a = -1; b = 0;
13 [root, index, iteration, error, count] = bisection(f1, a, b, tol);
14 | disp([index(1:count), iteration(1:count), error(1:count)]);
15 semilogy(index(1:count), error(1:count));
16 | hold on;
   % Newton
17
18 \times 0 = -0.5;
19 [root, index, iteration, error, count] = newton(f1, df1, x0, tol);
20 disp([index(1:count), iteration(1:count), error(1:count)]);
21 | semilogy(index(1:count), error(1:count));
22 hold on;
23 % Secant
24 \times 0 = -1; \times 1 = 0;
25 [root, index, iteration, error, count] = secant(f1, x0, x1, tol);
```

```
disp([index(1:count), iteration(1:count), error(1:count)]);
  semilogy(index(1:count), error(1:count));
27
28
29
  title('Error estimation for e^x-3x^2');
  legend('Bisection', 'Newton', 'Secant');
30
31
32
  % f2: Prob 2(d);
  % bisection
33
  subplot(122);
35
  a = 0; b = pi/2;
   [root, index, iteration, error, count] = bisection(f2, a, b, tol);
36
   disp([index(1:count), iteration(1:count), error(1:count)]);
37
   semilogy(index(1:count), error(1:count));
39
   hold on;
  % Newton
40
  x0 = 0.5;
41
42
  [root, index, iteration, error, count] = newton(f2, df2, x0, tol);
  disp([index(1:count), iteration(1:count), error(1:count)]);
43
  semilogy(index(1:count), error(1:count));
44
45
  hold on;
46
   % Secant
47
  x0 = 0; x1 = 1;
  [root, index, iteration, error, count] = secant(f2, x0, x1, tol);
48
   disp([index(1:count), iteration(1:count), error(1:count)]);
   semilogy(index(1:count), error(1:count));
50
51
52
  title('Error estimation for x-1-0.3cos(x)');
  legend('Bisection', 'Newton', 'Secant');
53
```

Result. The result of output are as follows, and in each result there are three columns, index, value, error respectively.

```
1
   >> main
2
                          -0.500000000000000
                                                 0.500000000000000
3
      1.000000000000000
                          -0.250000000000000
                                                 0.250000000000000
      2.000000000000000
                          -0.375000000000000
                                                 0.125000000000000
4
5
      3.00000000000000
                          -0.437500000000000
                                                 0.062500000000000
6
      4.000000000000000
                          -0.468750000000000
                                                 0.031250000000000
7
      5.000000000000000
                          -0.453125000000000
                                                 0.015625000000000
8
      6.000000000000000
                          -0.460937500000000
                                                 0.007812500000000
9
      7.000000000000000
                           -0.457031250000000
                                                 0.003906250000000
                           -0.458984375000000
10
      8.000000000000000
                                                 0.001953125000000
11
      9.000000000000000
                          -0.458007812500000
                                                 0.000976562500000
12
     10.000000000000000
                          -0.458496093750000
                                                 0.000488281250000
13
     11.000000000000000
                          -0.458740234375000
                                                 0.000244140625000
14
     12.000000000000000
                          -0.458862304687500
                                                 0.000122070312500
     13.000000000000000
                          -0.458923339843750
                                                 0.000061035156250
15
     14.000000000000000
                           -0.458953857421875
                                                 0.000030517578125
16
17
     15.000000000000000
                           -0.458969116210938
                                                 0.000015258789063
18
     16.000000000000000
                          -0.458961486816406
                                                 0.000007629394531
19
     17.000000000000000
                          -0.458965301513672
                                                 0.000003814697266
     18.000000000000000
                          -0.458963394165039
20
                                                 0.000001907348633
21
     19.000000000000000
                          -0.458962440490723
                                                 0.000000953674316
22
23
                          -0.500000000000000
                                                 0.5000000000000000
      1.000000000000000
                           -0.460219570045525
24
                                                 0.039780429954475
25
      2.000000000000000
                           -0.458963518356852
                                                 0.001256051688672
26
      3.000000000000000
                           -0.458962267538189
                                                 0.000001250818663
27
      4.000000000000000
                           -0.458962267536949
                                                 0.00000000001240
28
29
                          -1.000000000000000
                                                 1.000000000000000
30
      1.000000000000000
                                                 1.000000000000000
      2.0000000000000000
                          -0.275321257596836
                                                 0.275321257596836
31
```

32	3.000000000000000	-0.588196207258892	0.312874949662057
33	4.000000000000000	-0.439364813249275	0.148831394009618
34	5.00000000000000	-0.457108107412876	0.017743294163601
35	6.000000000000000	-0.458991546782558	0.001883439369682
36	7.000000000000000	-0.458962224440445	0.000029322342112
37	8.000000000000000	-0.458962267535948	0.00000043095503
38	9.00000000000000	-0.458962267536949	0.0000000001000
39			
40	0	0.785398163397448	0.785398163397448
41	1.000000000000000	1.178097245096172	0.392699081698724
42	2.000000000000000	0.981747704246810	0.196349540849362
43	3.00000000000000	1.079922474671491	0.098174770424681
44	4.000000000000000	1.129009859883832	0.049087385212341
45	5.00000000000000	1.104466167277661	0.024543692606170
46	6.00000000000000	1.116738013580747	0.012271846303085
47	7.00000000000000	1.122873936732289	0.006135923151543
48	8.00000000000000	1.125941898308061	0.003067961575771
49	9.00000000000000	1.127475879095946	0.001533980787886
50	10.000000000000000	1.128242869489889	0.000766990393943
51	11.000000000000000	1.128626364686860	0.000383495196971
52	12.000000000000000	1.128434617088375	0.000191747598486
53	13.000000000000000	1.128338743289132	0.000095873799243
54	14.000000000000000	1.128386680188753	0.000047936899622
55	15.000000000000000	1.128410648638564	0.000023968449811
56	16.000000000000000	1.128422632863469	0.000011984224906
57	17.000000000000000	1.128428624975922	0.000005992112453
58	18.000000000000000	1.128425628919696	0.000002996056226
59	19.000000000000000	1.128424130891582	0.000001498028113
60	20.000000000000000	1.128424879905639	0.00000749014057
61			0. 500000000000000000000000000000000000
62	0	0.500000000000000	0.50000000000000
63	1.0000000000000000	1.167298749806364	0.667298749806364
64	2.000000000000000	1.128496956086359	0.038801793720005
65	3.000000000000000	1.128425093253079	0.000071862833280
66	4.000000000000000	1.128425092992225	0.00000000260854
67	0	0	0
68	1 00000000000000	1 000000000000000	0
69	1.0000000000000000	1.000000000000000	1.00000000000000 0.142446054871640
70 71	2.0000000000000000000000000000000000000	1.142446054871640 1.128326304321001	0.014119750550639
72	4.000000000000000	1.128425023756146	0.000098719435145
73	5.000000000000000	1.128425092992570	0.000098719433145
74	6.000000000000000	11.128425092992225	0.0000000000000346
1.4		11.120-2000200220	

Graph. And the error estimation is shown as 1.

Problem 2.12, Page 119

Solution. Denote

$$f(x) = x^2 - a,$$

we know the Newton's scheme for this function is

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = \frac{1}{2}(x_n + \frac{a}{x_n}).$$

If we square both side of the equation, we can get

$$x_{n+1}^2 - a = \left(\frac{x_n^2 + a}{2x_n}\right)^2 - a = \left(\frac{x_n^2 - a}{2x_n}\right)^2.$$

Then $x_n > \sqrt{a}$. Thus

$$x_{n+1} - x_n = \frac{a - x_n^2}{2x_n} < 0,$$

Figure 1: Error Estimation

which means $\{x_n\}$ is a strictly decreasing sequence. If we consider the error, we can know

$$e_{n+1} = \sqrt{a} - x_{n+1} = -\frac{(x_n - \sqrt{a})^2}{2x_n} = -\frac{e_n^2}{2x_n},$$

and the relative error

$$Rel(x_{n+1}) = \frac{e_{n+1}}{\sqrt{a}} = -\frac{e_n^2}{2\sqrt{a}x_n} = -\frac{\sqrt{a}}{2x_n} (Rel(x_n))^2.$$

Then

$$|\operatorname{Rel}(x_n)| = \left(\frac{\sqrt{a}}{2}\right)^n \frac{\operatorname{Rel}(x_0)^{2^n}}{\prod_{i=0}^{n-1} x_i} < \left(\frac{\sqrt{a}}{2}\right)^n \frac{\operatorname{Rel}(x_0)^{2^n}}{(\sqrt{a})^n} = \frac{\operatorname{Rel}(x_0)^{2^n}}{2^n}.$$

Thus

$$|\operatorname{Rel}(x_4)| < \frac{10^{-16}}{16}.$$