ME 705A - Inferência Bayesiana Primeiro semestre de 2012 Prova II

Data: 16/05/2012

OBS: A menos que o contrário seja mencionado, nos exercícios você deve considerar uma amostra aleatória $X_1|\theta,...,X_n|\theta \text{ de } X|\theta.$

OBS: A menos que o contrário seja mencionado, esperança, variância, vício e erro quadrático médio do estimador Bayesiano devem ser calculados sob a ótica frequentista.

Nome:	RA:
-------	-----

Leia atentamente as instruções abaixo:

- Coloque seu nome completo e RA em todas as folhas que você recebeu, inclusive nesta.
- Utilize somente um dos lados de cada folha.
- Leia atentamente cada uma das questões.
- Enuncie, claramente, todos os resultados que você utilizar.
- Justifique, adequadamente, seus desenvolvimentos, sem, no entanto, escrever excessivamente.
- O(a) aluno(a) só poderá sair da sala após as 16h30, mesmo que já tenha finalizado a prova. Após a saída do(a) primeiro(a) aluno(a) não será permitido a entrada de nenhum(a) outro(a) aluno(a).
- Não é permitdo empréstimo de material.
- Celulares deverão permanecer desligados.
- Não serão dirimidas dúvidas de quaisquer natureza, após os 20 minutos iniciais.
- Resolva a prova, preferencialmente, à caneta, e procure ser organizado(a). Se fizer à lápis, destaque, à caneta, sua resposta.
- O(a) aluno(a) deverá portar sua carteira de estudante e apresentá-la, quando for solicitada sua assinatura.
- Contestações a respeito da nota, só serão consideradas se estiverem por escrito. A nota do aluno(a) será $\frac{NP}{NT} \times 10$, em que NP é o número de pontos obtidos na prova e NT é o numero total de pontos da prova.
- Os resultados numéricos finais devem ser apresentados com duas casas decimais, apenas.
- A prova terá duração de 120 minutos, das 16h às 18h, improrrogáveis.

Faça uma excelente Prova!!

- 1. Seja uma amostra aleatória de tamanho n de $X|\theta \sim U_{[0,\theta]}, \theta > 0$. Responda os itens:
 - a) Prove que a família conjugada natural para o modelo é a distribuição de Pareto. Use a notação do formulário, denotando os hiperparâmetros por (a,b) e considere que $y_n > b$, em que $y_n = \max\{x_1,...,x_n\}$ $(y_n$ é o máximo da amostra observada) (50 pontos).
 - b) Encontre a distribuição a posteriori de θ com base na priori encontrada no item a) (50 pontos).
 - c) Obtenha os estimadores EAP, MdAP e MAP de θ , suas esperanças e suas variâncias (simplifique o máximo possível). OBS: Você pode usar o fato de que a fdp de $Y_n|\theta$ é dada por $p(y|\theta) = n \frac{y^{n-1}}{\theta^n} \mathbbm{1}_{[0,\theta]}(y)$ (100 pontos).
 - d) Encontre um intervalo de credibilidade γ (simétrico) usando a distribuição a posteriori encontrada no item b). Para $n=15, y_n=13, \gamma=0, 95, a=b=1$, encontre o referido intervalo(100 pontos).
 - e) Encontre a distribuição preditiva à posteriori para uma única observação (100 pontos).
 - f) Encontre o fator de Bayes para testar $H_0: \theta \leq \theta_0$ vs $H_1: \theta > \theta_0, \theta_0 > 0$ conhecido (50 pontos).
- 2. Considere uma amostra aleatória de tamanho n da seguinte distribuição:

$$p(x|\theta) = \theta x^{\theta-1} \mathbb{1}_{(0,1)}(x), \theta > 0$$

Responda os itens:

- a) Assuma a priori que $p(\theta) \propto e^{-\theta} \mathbb{1}_{(0,\infty)}(\theta)$. Encontre a posteriori e prove que ela é própria (100 pontos).
- b) Considere as hipóteses $H_0: \theta = \theta_0$ vs $H_1: \theta \neq \theta_0, \theta_0 > 0$ conhecido. Suponha a seguinte priori:

$$p(\theta) = \left[\alpha 1\!\!1_{\{\theta_0\}}(\theta) + (1-\alpha)p_1(\theta) 1\!\!1_{\Theta_1}(\theta)\right], \Theta_1 = (0,\infty) - \theta_0,$$

em que $p_1(\theta) \propto e^{-\theta} \mathbb{1}_{(0,\infty)}(\theta)$. Encontre $O(H_1, H_0), O(H_1, H_0 | \boldsymbol{x})$ e $B(\boldsymbol{x})$ (200 pontos).

- c) Suponha $\theta_0 = 2$, n = 9, $\sum_{i=1}^n \ln x_i = -2$, 24 no item b). Qual sua conclusão a respeito das hipóteses, usando o fator de Bayes? Justifique, adequadamente, sua resposta. Escolha o valor de α que lhe parecer mais adequado, justificando sua escolha (100 pontos).
- 3. Considere uma única observação da distribuição Binomial-Poisson, ou seja:

$$p(x,y|\gamma,\phi) = \begin{pmatrix} y \\ x \end{pmatrix} \gamma^x (1-\gamma)^{y-x} e^{-\phi} \frac{\phi^y}{y!} 1\!\!1_{\{0,1,2,\dots\}}(y) 1\!\!1_{\{0,1,\dots,y\}}(x), \gamma \in (0,1), \phi \in \mathcal{R}^+$$

 (γ, ϕ) desconhecidos. Responda os itens:

- a) Determine a família conjugada natural para o o modelo(100 pontos).
- b) Obtenha a priori de Jeffreys. Verifique se ela é própria(150 pontos).
- c) Obtenha as posterioris conjunta e marginais, sob a priori de Jeffreys e verifique se elas (as três) são próprias(150 pontos).

d) Considere as hipóteses $H_0: \gamma = \gamma_0$ vs $H_1: \gamma \neq \gamma_0, \gamma_0 \in (0,1)$ conhecido. Suponha a seguinte priori:

$$p(\gamma, \phi) = h(\gamma)g(\phi) = \left[\alpha \mathbb{1}_{\{\gamma_0\}}(\gamma) + (1-\alpha)h_1(\gamma)\mathbb{1}_{\Theta_1}(\gamma)\right]e^{-\phi}\mathbb{1}_{(0,\infty)}(\phi), \Theta_1 = (0,1) - \gamma_0,$$

em que $h_1(\gamma) \propto 1$, (note que $h_1(.)$ é própria). Encontre $O(H_1, H_0), O(H_1, H_0|x, y)$ e $B(x, y)(150$ pontos).

e) Suponha $\gamma_0 = 0, 8, x = 3$ e y = 7 no item d). Qual sua conclusão a respeito das hipóteses, usando o fator de Bayes? Justifique, adequadamente, sua resposta. Escolha o valor de α que lhe parecer mais adequado, justificando sua escolha(50 pontos).

Formulário

- 1. Se $X|\theta \sim U_{[0,\theta]}, \theta > 0$, então $p(x|\theta) = \frac{1}{\theta} \mathbb{1}_{(0,\theta)}(x), \mathcal{E}(X|\theta) = \frac{\theta}{2}, \mathcal{V}(X|\theta) = \frac{\theta^2}{12}$.
- 2. Se $X|\theta \sim \text{Pareto}(a,b), a,b > 0$, então $p(x|a,b) = a \frac{b^a}{x^{a+1}} \mathbbm{1}_{(b,\infty)}(x)$, $\mathcal{E}(X|a,b) = \frac{ab}{a-1}$, Moda(X|a,b) = b, $\text{Mediana}(X|a,b) = b2^{1/a}$, $\mathcal{V}(X|a,b) = \frac{b^2a}{(a-1)^2(a-2)}$.
- 3. Se $X|(m,\theta) \sim \text{Binomial}(m,\theta), m \in \{0,1,\ldots\}, \theta \in (0,1), \text{ então } p(x|m,\theta) = \begin{pmatrix} m \\ x \end{pmatrix} \theta^x (1-\theta)^{m-x} \mathbb{1}_{\{0,1,2,\ldots,m\}}(x),$ $\mathcal{E}(X|\theta) = m\theta, \ \mathcal{V}(X|\theta) = m\theta(1-\theta).$
- 4. Se $X|\lambda \sim \text{Poisson}(\lambda), \lambda > 0, \ p(x|\lambda) = \frac{e^{-\lambda}\lambda^x}{x!} \mathbb{1}_{\{0,1,2,\ldots\}}(x), \ \mathcal{E}(X|\lambda) = \lambda, \ \mathcal{V}(X|\lambda) = \lambda.$
- 5. Se $X|(r,\theta) \sim \operatorname{gama}(r,\theta), r > 0, \theta > 0$, então $p(x|r,\theta) = \frac{1}{\theta^r \Gamma(r)} e^{-\frac{x}{\theta}} x^{r-1} \mathbbm{1}_{(0,\infty)}(x), \mathcal{E}(X|r,\theta) = r\theta, \operatorname{Moda}(X|r,\theta) = (r-1)\theta, \mathcal{V}(X|r,\theta) = r\theta^2.$
- 6. Se $X|(a,b) \sim \text{beta}(a,b), a > 0, b > 0$, então $p(x|a,b) = \frac{1}{\beta(a,b)} x^{a-1} (1-x)^{b-1} \mathbbm{1}_{(0,1)}(x), \beta(a,b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)},$ $\mathcal{E}(X|a,b) = \frac{a}{a+b}, \text{Moda}(X|a,b) = \frac{a-1}{a+b-2}, \mathcal{V}(X|a,b) = \frac{ab}{(a+b)^2(a+b+1)}.$
- 7. $\Gamma(r) = \int_0^\infty x^{r-1} e^{-x} dx$, $\Gamma(r) = (r-1)\Gamma(r-1)$. Se r for inteiro $\Gamma(r) = (r-1)!$

Teste de Hipóteses Bayesianos

- Fórmulas gerais: $O(H_1, H_0) = \frac{P(H_1)}{P(H_0)}, \ O(H_1, H_0 | \boldsymbol{x}) = \frac{P(H_1 | \boldsymbol{x})}{P(H_0 | \boldsymbol{x})}, \ B(\boldsymbol{x}) = \frac{O(H_1, H_0 | \boldsymbol{x})}{O(H_1, H_0)}.$
- Para hipóteses $H_0: \theta \leq \theta_0$ vs $H_1: \theta > \theta_0$, basta usar as funções distribuição acumulada e de sobrevivência, apropriadas.
- Para hipóteses $H_0: \theta = \theta_0 \text{ vs } H_1: \theta \neq \theta_0, \theta \in \Theta$, temos

(Um único parâmetro)

Priori
$$p(\theta) = [\alpha \mathbb{1}_{\{\theta_0\}}(\theta) + (1-\alpha)p_1(\theta)\mathbb{1}_{\Theta_1}(\theta)], \Theta_1 = \Theta - \theta_0, p_1(.)$$
 é uma fdp em Θ_1

$$O(H_1, H_0) = \frac{1-\alpha}{\alpha}, O(H_1, H_0 | \boldsymbol{x}) = \frac{p_1(\boldsymbol{x})}{p(\boldsymbol{x}|\theta_0)} \frac{1-\alpha}{\alpha}, B(\boldsymbol{x}) = \frac{p_1(\boldsymbol{x})}{p(\boldsymbol{x}|\theta_0)}. \ p_1(\boldsymbol{x}) = \int_{\Theta_1} p(\boldsymbol{x}|\theta) p_1(\theta) d\theta, \ p(\boldsymbol{x}|\theta) \text{ \'e}$$
a verossimilhança.

(Dois parâmetros (θ, ϕ))

Priori $p(\theta,\phi)=h(\theta)g(\phi)=[\alpha 1\!\!1_{\{\theta_0\}}(\theta)+(1-\alpha)p_1(\theta)1\!\!1_{\Theta_1}(\theta)]g(\phi), \Theta_1=\Theta_\theta-\theta_0,\, p_1(.)$ é uma fdp em Θ_1 e $g(\phi)$ é uma fdp em $\Theta_\phi.$

$$O(H_1,H_0) = \frac{1-\alpha}{\alpha}, O(H_1,H_0|\boldsymbol{x}) = \frac{p_1(\boldsymbol{x})}{p(\boldsymbol{x}|\theta_0)} \frac{1-\alpha}{\alpha}, B(\boldsymbol{x}) = \frac{p_1(\boldsymbol{x})}{p(\boldsymbol{x}|\theta_0)}, p_1(\boldsymbol{x}) = \int_{\Theta_1} p(\boldsymbol{x}|\theta) p_1(\theta) d\theta,$$

 $p(\pmb{x}|\theta) = \int_{\Theta_\phi} p(\pmb{x}|\theta,\phi) g(\phi) d\phi$ é a verossimilhança marginal.

8. Fator de Bayes

Valor	Evidência a favor de H_1
< 1	Contra
[1; 3)	Leve
[3; 10)	Moderada
[10; 30)	Forte
[30; 100)	Muito forte
≥ 100	Decisiva