PRÁCTICA 7: CONVERGENCIAS Y LEY DE LOS GRANDES NÚMEROS

Ejercicio 1. Sean X e Y variables aleatorias. Para cada $n \in \mathbb{N}$ definimos la variable aleatoria $Z_n = \frac{1}{n} \cdot X + \left(1 - \frac{1}{n}\right) \cdot Y$. Hallar el límite en distribución de $(Z_n)_{n \in \mathbb{N}}$.

Ejercicio 2. Sean $(X_n)_{n\in\mathbb{N}}$ y X variables aleatorias discretas a valores en $\mathbb{N}\cup\{0\}$. Mostrar que $X_n \stackrel{\mathcal{D}}{\to} X$ si y sólo si $\lim_{n\to\infty} p_n(k) = p(k)$ para todo $k \in \mathbb{N}_0$.

Ejercicio 3. Sean $(p_n)_{n \in \mathbb{N}}$ y $(\lambda_n)_{n \in \mathbb{N}}$ dos sucesiones convergentes tales que vale $0 < p_n < 1$ y $\lambda_n > 0$ para todo $n \in \mathbb{N}$. Sean $p = \lim_{n \to +\infty} p_n$ y $\lambda = \lim_{n \to +\infty} \lambda_n$.

- a) Si $X_n \sim Bi(k, p_n)$ para cada $n \in \mathbb{N}$ entonces $X_n \xrightarrow{\mathcal{D}} X$ con $X \sim Bi(k, p)$.
- b) Si $Y_n \sim Ge(p_n)$ para cada $n \in \mathbb{N}$ entonces $Y_n \xrightarrow{\mathcal{D}} Y$ con $Y \sim \mathcal{G}(p)$.
- c) Si $Z_n \sim \mathcal{P}(\lambda_n)$ para cada $n \in \mathbb{N}$ entonces $Z_n \xrightarrow{\mathcal{D}} Z$ con $Z \sim \mathcal{P}(\lambda)$.

Ejercicio 4. Sea X_n una variable aleatoria con distribución binomial de parámetros n y p_n . Probar que si p_n tiende a cero cuando n tiende a infinito de manera tal que $\lim_{n\to+\infty} np_n = \lambda > 0$ entonces $X_n \xrightarrow{\mathcal{D}} X \sim \mathcal{P}(\lambda)$.

Ejercicio 5. De un bolillero que contiene en su interior B bolillas blancas y N bolillas negras se extraen sucesivamente y sin reposición n de ellas. Sea $X_{B,N}$ la cantidad de bolillas blancas obtenidas.

- a) ¿Cuál es la distribución de $X_{B,N}$?
- b) Probar que si B y N tienden a infinito de modo tal que $\frac{B}{B+N} \to p$ entonces

$$X_{B,N} \stackrel{\mathcal{D}}{\longrightarrow} X \sim Bi(n,p).$$

c) Establecer la convergencia en distribución del item b en términos de distribuciones conocidas. 1

Ejercicio 6. Una máquina produce artículos de 3 clases: A, B y C en proporciones 25%, 25% y 50% respectivamente. Las longitudes de los artículos A y B siguen distribuciones $\mathcal{U}[0,1]$ y $\mathcal{U}[0,2]$ respectivamente y las longitudes de los artículos C se distribuyen según la densidad $f(x) = \left(1 - \frac{x}{2}\right) 1_{[0,2]}(x)$. Se eligen n artículos al azar de la producción total y se calcula el promedio de sus longitudes.

- a) Dar una cota inferior para la probabilidad de que el promedio de las longitudes esté comprendido entre $\frac{15}{24}$ y $\frac{19}{24}$ si el tamaño de la muestra es n=100.
- b) ¿Cuál debe ser el tamaño de la muestra para que la probabilidad de que el promedio de las longitudes esté comprendido entre $\frac{15}{24}$ y $\frac{19}{24}$ sea mayor o igual que 0.90?

¹Este ejercicio muestra que si el número de bolillas en el bolillero tiende a infinito entonces sacar con o sin reposición pierde importancia. ¿Por qué será esto?

Ejercicio 7. Sean $(X_n)_{n\in\mathbb{N}}$ una sucesión de variables aleatorias independientes tal que $X_1\equiv 0$ y para $n\geq 2$

$$P(X_n = k) = \begin{cases} \frac{1}{n^3} & \text{si } k = \pm 1, \pm 2, \dots, \pm n \\ 1 - \frac{2}{n^2} & \text{si } k = 0 \end{cases}$$

Probar que si $\alpha > \frac{1}{2}$ entonces

$$\sum_{i=1}^{n} \frac{X_i}{n^{\alpha}} \stackrel{P}{\longrightarrow} 0.$$

Sugerencia:
$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$
.

Ejercicio 8. Sean $(X_n)_{n\in\mathbb{N}}$ una sucesión de variables aleatorias tal que $\lim_{n\to+\infty} \operatorname{Var}(X_n) = 0$.

- a) Probar que si $\mathbb{E}(X_n) = 0$ para todo $n \in \mathbb{N}$ entonces $X_n \stackrel{P}{\longrightarrow} 0$.
- b) Probar que si $\lim_{n\to+\infty} \mathbb{E}(X_n) = \mu \in \mathbb{R}$ entonces $X_n \xrightarrow{P} \mu$.

Ejercicio 9. Sean $(X_n)_{n\in\mathbb{N}}$ una sucesión de variables aleatorias y X otra variable aleatoria, todas ellas definidas sobre el mismo espacio (Ω, \mathcal{F}, P) .

- a) Escribir el conjunto $\{X_n \to X\}$ en términos de eventos de la forma $\{|X_n X| \le \alpha\}$ con $\alpha > 0$ y verificar que es un evento perteneciente a la σ -álgebra \mathcal{F} .
- b) Escribir el conjunto $\{X_n \nrightarrow X\}$ en términos de numerables eventos de la forma $\{|X_n X| > \alpha\}$ con $\alpha > 0$.
- c) Verificar que $\{X_n \to X\} = \{X_n X \to 0\}.$
- d) Sea $L^+ = \limsup_{n \to +\infty} X_n$, i.e., para cada $\omega \in \Omega$ se define $L^+(\omega) = \limsup_{n \to +\infty} X_n(\omega)$.
 - i. Para cada $\alpha > 0$ escribir el conjunto $\{L^+ \geq \alpha\}$ en términos de numerables eventos de la forma $\{X_n > r$ para infinitos valores de $n\}$ con $r \in \mathbb{R}$ y verificar que es un evento perteneciente a la σ -álgebra \mathcal{F} . Deducir que L^+ es una variable aleatoria.
 - ii. Para cada $\alpha > 0$ escribir el conjunto $\{L^+ > \alpha\}$ en términos de numerables eventos de la forma $\{X_n > r$ para infinitos valores de $n\}$ con $r \in \mathbb{R}$.
- e) Demostrar afirmaciones análogas a las del ítem d) para $L^- = \liminf_{n \to +\infty} X_n$.

Ejercicio 10. Sea $(X_n)_{n\in\mathbb{N}}$ una sucesión de variables aleatorias independientes con distribución $\varepsilon(1)$ y para cada $n\in\mathbb{N}$ definamos la variable aleatoria

$$Y_n = \frac{X_n}{\log(n+1)}.$$

- a) Probar que $Y_n \stackrel{P}{\longrightarrow} 0$.
- b) Probar que $P(L^+=1)=1$, donde $L^+:=\limsup_{n\to+\infty}Y_n$.
- c) Probar que $P(L^-=0)=1$, donde $L^-:=\liminf_{n\to+\infty}Y_n$.

d) Deducir de los ítems anteriores que la sucesión $(Y_n)_{n\in\mathbb{N}}$ no tiene límite casi seguro.

Ejercicio 11. Se elige al azar un número X en el intervalo [0,1].²

- a) Dados $k \in \mathbb{N}$ y una secuencia ordenada de k dígitos $(a_1, \ldots, a_k) \in \{0, \ldots, 9\}^k$, calcular la probabilidad para cada $n \in \mathbb{N}$ de que dicha secuencia coincida con la de los dígitos del desarrollo decimal de X entre los lugares n y n + k 1.
- b) Dados $k \in \mathbb{N}$ y una secuencia ordenada de k dígitos $(a_1, \ldots, a_k) \in \{0, \ldots, 9\}^k$, calcular la probabilidad de que dicha secuencia aparezca infinitas veces en el desarrollo decimal de X.
- c) Calcular $P(\text{Ocurren infinitos } A_n)$, donde para cada $n \in \mathbb{N}$ se define el evento A_n como

 $A_n = \{ \text{El } 9 \text{ aparece al menos } n \text{ veces consecutivas en los } 2n \text{ primeros lugares}$ del desarrollo decimal de $X \}$

d) ¿Cuál es la probabilidad de que X sea racional?

Ejercicio 12. Se tira infinitas veces una moneda de manera independiente y con probabilidad p de obtener cara en cada lanzamiento.

- a) Dado $k \in \mathbb{N}$ calcular la probabilidad de obtener infinitas rachas de k caras consecutivas.
- b) Sea A_n el evento de obtener una racha de caras consecutivas de longitud no menor que n entre los lanzamientos 2^n y $2^{n+1} 1$. Probar que

$$P(\text{Ocurren infinitos } A_n) = \begin{cases} 0 & \text{si } p < \frac{1}{2} \\ 1 & \text{si } p \ge \frac{1}{2}. \end{cases}$$

Sugerencia: Si
$$p \ge \frac{1}{2}$$
 entonces $\sum_{n=1}^{\infty} \left(1 - (1-p^n)^{\left\lceil \frac{2^n}{n} \right\rceil}\right) = +\infty$.

Ejercicio 13.

- a) Probar que una sucesión de variables aleatorias $(X_n)_{n\in\mathbb{N}}$ converge en probabilidad a una variable aleatoria X si y sólo si toda subsucesión de $(X_n)_{n\in\mathbb{N}}$ contiene otra subsucesión que converge casi seguramente a X^3 .
- b) Probar que si toda subsucesión de $(X_n)_{n\in\mathbb{N}}$ contiene otra subsucesión que converge casi seguramente a X no es cierto que $(X_n)_{n\in\mathbb{N}}$ converge casi seguramente a X.

Ejercicio 14. Una colección $(X_i)_{i\in\mathcal{I}}$ de variables aleatorias se dice acotada en probabilidad o tight si dado $\varepsilon > 0$ existe un compacto K_{ε} tal que

$$\sup_{i\in\mathcal{I}}P(X_i\notin K_{\varepsilon})<\varepsilon.$$

 $^{^2 \}mathrm{Si}$ un número admite dos desarrollos decimales se optará por el finito. Por ejemplo, se tomará 0.745 y no 0.7449̂.

³En particular, toda sucesión de variables aleatorias que converge en probabilidad tiene una subsucesión que converge casi seguramente.

- a) Probar que toda colección finita de variables aleatorias es acotada en probabilidad.
- b) Mostrar que una familia infinita de variables aleatorias no es necesariamente acotada en probabilidad.
- c) Sean $(X_n)_{n\in\mathbb{N}}$ una sucesión de variables aleatorias y X_0 una variable aleatoria tal que $X_n \xrightarrow{P} X_0$. Probar que la familia $(X_n)_{n\in\mathbb{N}_0}$ está acotada en probabilidad.
- d) Sean $(X_n)_{n\in\mathbb{N}}$ una sucesión de variables aleatorias y X_0 una variable aleatoria tal que $X_n \xrightarrow{\mathcal{D}} X_0$. Probar que la familia $(X_n)_{n\in\mathbb{N}_0}$ está acotada en probabilidad.

Ejercicio 15. Sean $(\mathbf{X}_k)_{k\in\mathbb{N}}$ una sucesión de vectores aleatorios sobre \mathbb{R}^n y \mathbf{X}_0 otro vector aleatorio sobre \mathbb{R}^n .

- a) Probar que si $\mathbf{X}_k \stackrel{cs}{\longrightarrow} \mathbf{X}_0$ y $g: \mathbb{R}^n \to \mathbb{R}^m$ es una función continua entonces $g(\mathbf{X}_k) \stackrel{cs}{\longrightarrow} g(\mathbf{X}_0)$.
- b) Probar que si $\mathbf{X}_k \stackrel{P}{\longrightarrow} \mathbf{X}_0$ y $g: \mathbb{R}^n \to \mathbb{R}^m$ es una función continua entonces $g(\mathbf{X}_k) \stackrel{P}{\longrightarrow} g(\mathbf{X}_0)$. Sugerencia: Hay dos posibilidades. La más fácil, tomar subsucesión de la subsucesión. La otra, tener presente que $(\mathbf{X}_k)_{k \in \mathbb{N}_0}$ es una sucesión acotada en probabilidad y que toda función continua es uniformemente continua sobre compactos.

Ejercicio 16. Sean $(X_n)_{n\in\mathbb{N}}$ e $(Y_n)_{n\in\mathbb{N}}$ dos sucesiones de variables aleatorias.

- a) Probar que si $X_n \stackrel{P}{\longrightarrow} 0$ e $(Y_n)_{n \in \mathbb{N}}$ está acotada en probabilidad entonces $X_n Y_n \stackrel{P}{\longrightarrow} 0$.
- b) Probar que si $X_n \xrightarrow{P} X$ e $Y_n \xrightarrow{P} Y$ entonces $X_n + Y_n \xrightarrow{P} X + Y$ y que $X_n Y_n \xrightarrow{P} XY$.

Ejercicio 17. Sea $(X_n)_{n\in\mathbb{N}}$ una sucesión de variables aleatorias.

a) Sea X una variable aleatoria. Definimos a Z por

$$Z = \begin{cases} \frac{1}{X} & \text{si } X \neq 0 \\ 0 & \text{si } X = 0. \end{cases}$$

Probar que Z es una variable aleatoria. La notaremos por $\frac{1}{X}$.

- b) Supongamos que $X_n \stackrel{cs}{\longrightarrow} X$ con P(X=0)=0. Probar que $\frac{1}{X_n} \stackrel{cs}{\longrightarrow} \frac{1}{X}$, donde $\frac{1}{X_n}$ se define como en el ítem anterior.
- c) Supongamos que $X_n \xrightarrow{P} X$ con P(X=0) = 0. Probar que $\frac{1}{X_n} \xrightarrow{P} \frac{1}{X}$. Sugerencia: Tomar subsucesión de la subsucesión.

Ejercicio 18. Sean $(\mu_n)_{n\in\mathbb{N}}\subseteq\mathbb{R}$ y $(\sigma_n)_{n\in\mathbb{N}}\subseteq\mathbb{R}_{\geq 0}$ succesiones convergentes tales que $\lim_{n\to+\infty}\mu_n=\mu$ y $\lim_{n\to+\infty}\sigma_n=\sigma$.

- a) Probar que si $X_n \sim N(\mu_n, \sigma_n^2)$ para cada $n \in \mathbb{N}$ entonces $X_n \xrightarrow{\mathcal{D}} X \sim N(\mu, \sigma^2)$.
- b) ¿Qué sucede con la convergencia en distribución si $|\mu| = +\infty$ o $\sigma = +\infty$?

Ejercicio 19. Hallar el límite en distribución de la sucesión $(Z_n)_{n\in\mathbb{N}}$ en cada uno de los siguientes casos:

- a) Para cada $n \in \mathbb{N}$ la variable aleatoria Z_n tiene distribución uniforme en el conjunto $\{\frac{i}{n}: 1 \leq i \leq n\}$.
- b) Para cada $n \in \mathbb{N}$ la variable aleatoria nZ_n tiene distribución geométrica de parámetro $\frac{\lambda}{n}$.

Ejercicio 20. Sea $(U_n)_{n\in\mathbb{N}}$ una sucesión de variables aleatorias independientes con distribución $\mathcal{U}[a,b]$. Para cada $n\in\mathbb{N}$ definimos las variables aleatorias

$$Y_n = \min\{U_1, \dots, U_n\}$$
 y $Z_n = \max\{U_1, \dots, U_n\}.$

- a) Hallar los límites en distribución de las sucesiones $(Y_n)_{n\in\mathbb{N}}$ y $(Z_n)_{n\in\mathbb{N}}$.
- b) Hallar los límites en distribución de las sucesiones $(V_n)_{n\in\mathbb{N}}$ y $(W_n)_{n\in\mathbb{N}}$, donde para cada $n\in\mathbb{N}$

$$V_n = n(Y_n - a)$$
 y $W_n = n(b - Z_n)$.

Ejercicio 21. Sea $(X_n)_{n\in\mathbb{N}}$ una sucesión de variables aleatorias independientes con distribución $\mathcal{U}[0,1]$. Hallar el límite casi seguro de la sucesión $(Y_n)_{n\in\mathbb{N}}$, donde para cada $n\in\mathbb{N}$ la variable aleatoria Y_n se define como

$$Y_n = \sqrt[n]{\prod_{i=1}^n X_i}.$$

Ejercicio 22. Sea $(X_n)_{n\in\mathbb{N}}$ una sucesión de variables aleatorias independientes e idénticamente distribuidas tal que $\mathbb{E}(X_1) = 1$, $\mathbb{E}(X_1^2) = 2$ y $\mathbb{E}(X_1^4) < +\infty$. Probar que

$$\frac{\sum_{i=1}^{n} X_i}{\sqrt{n \sum_{i=1}^{n} X_i^2}} \xrightarrow{cs} \frac{1}{\sqrt{2}}.$$

Ejercicio 23. Sea $(X_n)_{n\in\mathbb{N}}$ una sucesión de variables aleatorias i.i.d. con $\mathbb{E}(|X_1|) = +\infty$.

- a) Probar que para todo $k \in \mathbb{N}$ se verifica $\sum_{n \in \mathbb{N}} P(|X_n| > kn) = +\infty$.
- b) Probar que $\limsup_{n\to+\infty} \frac{|X_n|}{n} = +\infty$ cs.
- c) Deducir que $\limsup_{n\to+\infty} \frac{|S_n|}{n} = +\infty$ cs., donde $S_n = \sum_{i=1}^n X_i$.
- d) Concluir del ítem anterior que si $(X_n)_{n\in\mathbb{N}}$ es una sucesión de variables aleatorias independientes e idénticamente distribuidas tal que $\frac{1}{n}\sum_{i=1}^n X_i \stackrel{cs}{\longrightarrow} \mu$ para cierto $\mu \in \mathbb{R}$ entonces $\mathbb{E}(|X_1|) < +\infty$.

⁴Por convención, denotamos por $N(\mu, 0)$ a la variable aleatoria constante μ .

Ejercicio 24. Sea $(X_n)_{n\in\mathbb{N}}$ una sucesión de variables aleatorias independientes e idénticamente distribuidas tal que $\mathbb{E}(X_1) = \mu$, $V(X_1) = \sigma^2$, y $\mathbb{E}(X_1^4) < +\infty$. Sean $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ y $S_n^2 = \frac{1}{n-1} \sum_{i=1}^n \left(X_i - \overline{X}_n\right)^2$ que, en contextos estadísticos se denominan la media muestral y la varianza muestral, respectivamente.

- a) Hallar la esperanza y la varianza de \overline{X}_n .
- b) Probar que $\sum_{i=1}^{n} (X_i \overline{X}_n)^2 = \sum_{i=1}^{n} X_i^2 n \overline{X}_n^2$ y que $E(S_n^2) = \sigma^2$. Sugerencia: recordar que la fórmula $V(W) = E(W^2) - E(W)^2$ puede usarse para calcular $E(W^2)$.
- c) Probar que $S_n^2 \xrightarrow{cs} \sigma^2$.