Math 2070 Week 1

Topics: Groups

Motivation

• How many ways are there to color a cube, such that each face is either red or green?

Answer: 10. Why?

- How many ways are there to form a triangle with three sticks of equal lengths, colored red, green and blue, respectively?
- What are the symmetries of an equilateral triangle?

Dihedral Group \mathcal{D}_3

Cayley Table

*	a	b	c
a	a^2	ab	ac
b	ba	b^2	bc
c	ca	cb	c^2

Cayley Table for D_3

*	r_0	r_1	r_2	s_0	s_1	s_2
r_0	r_0	r_1	r_2	s_0	s_1	s_2
r_1	r_1	r_2	r_0	s_1	s_2	s_0
r_2	r_2	r_0	r_1	s_2	s_0	s_1
s_0	s_0	s_2	s_1	r_0	r_2	r_1
s_1	s_1	s_0	s_2	r_1	r_0	r_2
s_2	s_2	s_1	s_0	r_2	r_1	r_0

Groups

Definition 1.1. A group G is a set equipped with a binary operation $*: G \times G \longrightarrow G$ (typically called **group operation** or " **multiplication** "), such that:

Associativity

$$(a*b)*c = a*(b*c),$$

for all $a, b, c \in G$. In other words, the group operation is associative.

• Existence of an Identity Element

There is an element $e \in G$, called an **identity element**, such that:

$$g * e = e * g = g,$$

for all $g \in G$.

• Invertibility

Each element $g \in G$ has an **inverse** $g^{-1} \in G$, such that:

$$g^{-1} * g = g * g^{-1} = e.$$

- Note that we do not require that a * b = b * a.
- We often write ab to denote a * b.

Definition 1.2. If ab = ba for all $a, b \in G$. We say that the group operation is **commutative**, and that G is an **abelian group**.

Example 1.3. The following sets are groups, with respect to the specified group operations:

- $G = \mathbb{Q}\setminus\{0\}$, where the group operation is the usual multiplication for rational numbers. The identity is e = 1, and the inverse of $a \in \mathbb{Q}\setminus\{0\}$ is $a^{-1} = \frac{1}{a}$. The group G is abelian.
- $G = \mathbb{Q}$, where the group operation is the usual addition + for rational numbers. The identity is e = 0. The inverse of $a \in \mathbb{Q}$ with respect to + is -a. Note that \mathbb{Q} is **NOT** a group with respect to multiplication. For in that case, we have e = 1, but $0 \in \mathbb{Q}$ has no inverse $0^{-1} \in \mathbb{Q}$ such that $0 \cdot 0^{-1} = 1$.

Exercise 1.4. Verify that the following sets are groups under the specified binary operation:

- $(\mathbb{Z},+)$
- $(\mathbb{R},+)$
- $(\mathbb{R}^{\times}, \cdot)$
- (U_m, \cdot) , where $m \in \mathbb{N}$,

$$U_m = \{1, \xi_m, \xi_m^2, \dots, \xi_m^{m-1}\},\$$

and
$$\xi_m = e^{2\pi i/m} = \cos(2\pi/m) + i\sin(2\pi/m) \in \mathbb{C}$$
.

• The set of bijective functions $f: \mathbb{R} \longrightarrow \mathbb{R}$, where $f * g := f \circ g$ (i.e. composition of functions).

Exercise 1.5. 1. WeBWork

2. WeBWork

- 3. WeBWork
- 4. WeBWork
- 5. WeBWork
- 6. WeBWork
- 7. WeBWork
- 8. WeBWork
- 9. WeBWork

Example 1.6. The set $G = GL(2, \mathbb{R})$ of real 2×2 matrices with nonzero determinants is a group under matrix multiplication, with identity element:

$$e = \begin{pmatrix} 1 & amp; 0 \\ 0 & amp; 1 \end{pmatrix}.$$

In the group G, we have:

$$\begin{pmatrix} a & amp; b \\ c & amp; d \end{pmatrix}^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & amp; -b \\ -c & amp; a \end{pmatrix}$$

Note that there are matrices $A, B \in \mathrm{GL}(2, \mathbb{R})$ such that $AB \neq BA$. Hence $\mathrm{GL}(2, \mathbb{R})$ is not abelian.

Exercise 1.7. The set $SL(2,\mathbb{R})$ (**Special Linear Group**) of real 2×2 matrices with determinant 1 is a group under matrix multiplication.

Claim 1.8. The identity element e of a group G is unique.

Proof. Suppose there is an element $e' \in G$ such that e'g = ge' = g for all $g \in G$. Then, in particular, we have:

$$e'e = e$$

But since e is an identity element, we also have e'e = e'. Hence, e' = e.

Claim 1.9. Let G be a group. For all $g \in G$, its inverse g^{-1} is unique.

Proof. Suppose there exists $g' \in G$ such that g'g = gg' = e. By the associativity of the group operation, we have:

$$g' = g'e = g'(gg^{-1}) = (g'g)g^{-1} = eg^{-1} = g^{-1}.$$

Hence, g^{-1} is unique.

Let G be a group with identity element e. For $q \in G$, $n \in \mathbb{N}$, let:

$$g^{n}amp; := \underbrace{g \cdot g \cdots g}_{n \text{ times}}.$$

$$g^{-n}amp; := \underbrace{g^{-1} \cdot g^{-1} \cdots g^{-1}}_{n \text{ times}}$$

$$g^{0}amp; := e.$$

Claim 1.10. Let G be a group.

1. For all $g \in G$, we have:

$$(g^{-1})^{-1} = g.$$

2. For all $a, b \in G$, we have:

$$(ab)^{-1} = b^{-1}a^{-1}.$$

3. For all $q \in G$, $n, m \in \mathbb{Z}$, we have:

$$g^n \cdot g^m = g^{n+m}.$$

Proof. Exercise.

Definition 1.11. Let G be a group, with identity element e. The **order** of G is the number of elements in G. The **order** ord g of an $g \in G$ is the smallest $n \in \mathbb{N}$ such that $g^n = e$. If no such n exists, we say that g has **infinite order**.

Theorem 1.12. Let G be a group with identity element e. Let g be an element of G. If $g^n = e$ for some $n \in \mathbb{N}$, then ord g divides n.

Proof. Shown in class.