

Digital Communications

« Linear » Carrier Modulations

The complex envelop associated to the transmitted signal linearly depends on the message »

- 1) One or two dimensional modulations
- 2) Complex envelop
- 3) Equivalent lowpass channel
- 4) Performance

Nathalie Thomas

IRIT/ENSEEIHT
Nathalie.Thomas@enseeiht.fr

One-dimensionnal

One-dimensionnal

M-ASK (Amplitude Shift Keying)

Example: 4-ASK, rectangular shaping

Signal modulated on
$${\rm f_p}: \quad x(t) = \sum_k a_k h(t-kT_s) \cos(2\pi f_p t)$$

$$S_x(f) = \frac{5T_s}{4} \{ sinc^2(\pi(f - f_p)T_s) + sinc^2(\pi(f + f_p)T_s) \}$$

Two-dimensionnal

Coherent demodulation
Orthogonal signals

 $\sin\left(2\pi f_p t\right)$

Complex envelop

$$x(t) = \sum_k a_k h(t - kT_s) \cos{(2\pi f_p t)} - \sum_k b_k h(t - kT_s) \sin{(2\pi f_p t)}$$
I(t)

Q(t)

In Phase Component

Quadrature Component

$$x(t) = \Re\left[(I(t) + jQ(t)) e^{j2\pi f_p t} \right]$$

$$x_e(t) = I(t) + jQ(t) = \sum_k d_k h(t - kT_s)$$

Complex envelop associated to x(t)

Complex envelop

$$x(t) = \Re \left[x_e(t)e^{j2\pi f_p t} \right]$$

Linear Carrier Modulation Complex envelop

→ The PSD of the carrier-modulated signal:

$$x(t) = \Re\left[x_e(t)e^{j2\pi f_p t}\right] \longrightarrow R_x(\tau) = \frac{1}{2}\Re\left[R_{x_e}(\tau)e^{j2\pi f_p \tau}\right] \longrightarrow S_x(f) = \frac{1}{4}\left(S_{x_e}(f - f_p) + S_{x_e}(-f - f_p)\right)$$

is obtained from the PSD of its associated complex envelop (known baseband spectrum):

$$S_{x_e}(f) = \frac{\sigma_d^2}{T_s} |H(f)|^2 + 2 \frac{\sigma_d^2}{T_s} |H(f)|^2 \sum_{k=1}^{\infty} \mathfrak{Re} \left[R_d(k) e^{j2\pi f k T_s} \right] + \frac{|m_d|^2}{T_s^2} \sum_{k} \left| H\left(\frac{k}{T_s}\right) \right|^2 \delta\left(f - \frac{k}{T_s}\right)$$

Re-use the results obtained for baseband modulations

Two main classes of two-dimensionnal modulations

$$\longrightarrow \{a_k\}$$
 and $\{b_k\}$ M-ary independent symbols $\in \{\pm 1, \pm 3, ..., \pm (\sqrt{M}-1)\}$

square M-QAM (Quadrature Amplitude Modulation)

$$d_k \in \{e^{j(\frac{2\pi}{M}l + \frac{\pi}{M})}\}, l = 0, ..., M - 1$$

M-PSK (Phase Shift Keying)

QUESTION

Let's assume that the symbols are independent, equaly likely and with a zero mean. For a given bit rate R_b, a transmission using a 8-PSK modulation and a rectangular shaping filter will be more spectrally efficient than:

- a transmission using a QPSK modulation with the same rectangular shaping filter.
- a transmission using a 8-PSK modulation with a square root raised cosine shaping filter.
- a transmission using a 16-QAM modulation with the same rectangular shaping filter.

QUESTION

A QPSK modulation is:

A 4-state phase modulation:

FALSE

A 4-state QAM modulation:

TRUE

B FALSE

Less spectrally efficient than a BPSK modulation using the same shaping filter

A TRUE

FALSE

More robust, for the same level of noise and the same transmitted power, than a BPSK modulation:

TRUE

FALSE

Linear Carrier Modulation Constellation

Representation of possible $d_k s$ in the (a_k, b_k) plane = « constellation » of the modulation

QAM Constellations

Power efficient (DVB-C, DVB-T, xDSL)

PSK Constellations

Robust to non linearities (DVB-S)

Hybrid modulations: APSK (DVB-S2, DVB-S2X)

Linear Carrier Modulation **Examples**

→ <u>Two-dimensionnal linear modulations</u>: M-QAM

Independent $\{a_k\}$ and $\{b_k\}$

Example: 4-QAM or QPSK (DVB-S)

bits	a_k	b_k	d _k
00	-1	-1	-1-j
01	-1	+1	-1+j
10	+1	-1	1-ј
11	+1	+1	1+j

Linear Carrier Modulation Examples

→ <u>Two-dimensionnal linear modulations</u>: M-QAM

<u>Examp</u>	<u>le :</u>	16-QAM	(DVB-C)

Bits	0000	0001	 1110	1111
a _k	+3	+3	-1	-1
b _k	+3	+1	-3	-1
d_k	3+3j	3+j	-1-3j	-1-j

Independent $\{a_k\}$ and $\{b_k\}$

Examples

→ <u>Two-dimensionnal linear modulations</u>: M-PSK

Example: 8-PSK (DVB-S2)

$$d_k \in \{e^{j\left(\frac{2\pi}{8}l + \frac{\pi}{8}\right)}\}, \ l = 0, ..., 7$$

 $\{a_k\}$ and $\{b_k\}$ are linked

Examples

→ <u>Hybrid modulations</u>: M-APSK (DVB-S2)

16-QAM

$$d_k \in \begin{cases} R_1 e^{j\left(\frac{2\pi}{n_1}i + \theta_1\right)}, & i = 0, ..., n_1 - 1 \\ R_2 e^{j\left(\frac{2\pi}{n_2}i + \theta_2\right)}, & i = 0, ..., n_2 - 1 \\ ... \\ R_R e^{j\left(\frac{2\pi}{n_R}i + \theta_R\right)}, & i = 0, ..., n_R - 1 \end{cases}$$

$$M = n_1 + n_2 + ... + n_R$$

16-APSK (4-12 APSK)

32-APSK (4-12-16 APSK)

Linear Carrier Modulation **Examples**

→ <u>Hierarchical modulations</u>: DVB-T and T2, DVB-H, DVB-S2

Example 1: hierarchical 16-QAM (DVB-T or H)

Example 2: hierarchical 8-PSK (DVB-S2)

Transmitter

Bits
$$\longrightarrow$$
 $\{d_k\} \Rightarrow \sum_k d_k \delta(t-kT_s) \Rightarrow h$ (t) $\Rightarrow x_e(t) = \sum_k d_k h(t-kT_s)$ $\Rightarrow \Re[.]$ $\Rightarrow x(t)$ Complex symbols Complex envelop associated to $x(t)$: $x_e(t) = I(t) + jQ(t)$ Complex baseband modulation Frequency transposition

$$\begin{array}{ll} \to \underline{\mathsf{M-ASK:}} & d_k = a_k \in \{\pm 1,...,\pm (M-1)\} \\ & x_e(t) = I(t) \\ & x(t) = I(t) \cos(2\pi f_p t) \\ \\ \to \underline{\mathsf{M-QAM:}} & d_k = a_k + j b_k \ avec \ a_k \ et \ b_k \in \{\pm 1,...,\pm (\sqrt{M}-1)\} \\ \\ \to \underline{\mathsf{M-PSK:}} & d_k \in \{e^{j\left(\frac{2\pi}{M}l + \frac{\pi}{M}\right)}\}, \ l = 0,...,M-1 \\ & x_e(t) = I(t) + j Q(t) \\ & x(t) = I(t) \cos(2\pi f_p t) - Q(t) \sin(2\pi f_p t) \end{array}$$

17

Receiver

Equivalent lowpass channel to reduce the processing time for digital implementations

Equivalent lowpass channel to reduce the processing time for digital implementations

Complex envelop

→ PSD of the corresponding complex envelop:

Equivalent lowpass channel: construction

→ Complex envelop associated to the bandpass channel:

$$h_{c_e}(t) = I_{c_e}(t) + jQ_{c_e}(t)$$

(remark: the channel is assumed to be ideal in the figure)

Carrier modulated signal:

Equivalent lowpass channel: construction

→ Complex envelop associated to the filtered noise:

$$b_e(t) = I_b(t) + jQ_b(t)$$

$$S_{I_b}(f) = S_{Q_b}(f) = S_{b_e}^+(f - f_p) + S_{b_e}^-(f + f_p) = N_0$$

Equivalent lowpass channel: construction

Equivalent lowpass channel

Performance (Hypothesis: Nyquist + Matched filtering)

→ Squared M-QAM

$$d_k = a_k + jb_k \text{ with } a_k \text{ and } b_k \in \{\pm 1, ..., \pm (\sqrt{M} - 1)\}$$

 \Leftrightarrow two independen \sqrt{M} -PAM transmissions

But !! Es = physical parameter = average symbol energy at the receiver input (M symbols d_k) !!

$$SER \simeq 2SER_I = 4\left(1 - \frac{1}{\sqrt{M}}\right)Q\left(\sqrt{\frac{3}{M-1}\frac{E_s}{N_0}}\right) = 4\left(1 - \frac{1}{\sqrt{M}}\right)Q\left(\sqrt{\frac{3\log_2(M)}{M-1}\frac{E_b}{N_0}}\right)$$

$$SER = 2Q\left(\sqrt{\frac{2E_s}{N_0}}\sin\left(\frac{\pi}{M}\right)\right)$$

Linear Carrier Modulation BER comparison for M-QAM and M-PSK

QUESTION

Assuming, for ech case, that the shaping filter is the same and that the transmission channel is optimzed (Gray Mapping, Nyquist, Matched filtering, optimal sampling and thresholds), a modulation 16-QAM will be:

More power efficient than a 16-PSK modulation:

A TRUE

FALSE

More spectrally efficient than a 16-PSK modulation:

A TRUE

B FALSE

More power efficient than a QPSK modulation:

TRUE

B FALSE

More spectrally efficient than a QPSK modulation:

TRUE

FALSE

QUESTION

Assuming, for ech case, that transmission channel is optimzed (Gray Mapping, Nyquist, Matched filtering, optimal sampling and thresholds), using a 16-QAM modulation with a retangular shaping filter is:

More power efficient than using a 16-QAM modulation with a square root raised cosine filter:

- TRUE
- B FALSE

More spectrally efficient than using a 16-QAM modulation with a square root raised cosine filter:

- TRUE
- B FALSE

Example of physical layer on an AWGN channel:

Satellite Digital Video Broadcasting: DVB-S (1994)

Physical layer

Table D.1: Example of System performance over 33 MHz transponder

Bit rates

Bit Rate R _u (after MUX) [Mbit/s]	Bit Rate R'u (after RS) [Mbit/s]	Symbol Rate [Mbaud]	Convolut. Inner Code Rate	RS Outer Code Rate	C/N (33 MHz) [dB]
23,754	25,776	25,776	1/2	188/204	4,1
31,672	34,368	25,776	2/3	188/204	5,8
35,631	38,664	25,776	3/4	188/204	6,8
39,590	42,960	25,776	5/6	188/204	7,8
41,570	45,108	25,776	7/8	188/204	8,4
,570	,,,,,,	20,110	.,,	.55,25	٠, ٠

Physical layer

Example on an image

Mux Adaptation and energy dispersal

Scrambling

PSD of the unscramble signal:

PSD of the scramble signal :

Physical layer

Physical layer

References

- → <u>Digital Communications</u>, J. G. Proakis, Mac Graw Hill Book Cie
- → <u>Telecommunications system engineering</u>, Lindsay and Simon, Prentice Hall
- → <u>Digital communication by satellite</u>, J.J. Spilker, Prentice Hall
- → <u>Digital Video Broadcasting (DVB)</u>: Framing structure, channel coding and modulation for 11/12 GHz satellite services, norme ETSI EN 300 421.
- → <u>Digital Video Broadcasting (DVB)</u>: User guidelines for the second generation system for broadcasting, interactive services, news gathering and other broadband satellite applications (DVB-S2), norme ETSI EN 102 376.