Topologie

David Wiedemann

Table des matières

1	Que	Quotients topologiques												
	1.1	La topologie quotient	3											
	1.2	Relations d'equivalence	4											
	1.3	Separation et quotients	5											
	1.4	Conditions de separation du quotient	5											
	1.5	Quotients par des actions de groupe	8											
	1.6	SO(n)	9											
\mathbf{L}	ist	of Theorems												
	1	Definition (Topologie quotient)	3											
	3	Proposition	3											
	4	Proposition	3											
	5	Proposition	3											
	6	Theorème	4											
	7	Proposition	4											
	8	Proposition	4											
	2	Definition	4											
	9	Proposition (Proprietes universelles)	4											
	3	Definition	4											
	4	Definition (Reunion disjointe)	5											
	5	Definition	5											
	6	Definition	5											
	11	Proposition	5											
	12	Proposition	6											
	13	Proposition	6											
	14	Corollaire	7											
	7	Definition (Espaces projectifs)	7											
	17	Proposition	7											
	8	Definition (Espace projectif complexe)	7											
	9	Definition (Groupe topologique)	8											

20	Lemme	 										8
10	Definition	 										8
11	Definition	 										8
22	Proposition	 										8
23	Proposition	 										ç

1 Quotients topologiques

Un espace topologique (X, τ) est ecrit X si la topologie est claire. Le singloton $\{*\}$ est note *.

La boule unite de \mathbb{R}^n est notee D^n et la version ouverte sera $int(D)^n$.

1.1 La topologie quotient

But : Construire de nouveaux espaces a l'aide d'espaces connus en identifiant des points.

Soit X un espace, Y un ensemble et $q: X \to Y$ surjective.

Definition 1 (Topologie quotient)

La topologie quotient sur Y est la topologie des $V \subset Y$ tel que $q^{-1}(V)$ est ouvert dans X .

Remarque

q est alors continue et on verifie que c'est une topologie.

Exemple

X = [0,1] et $Y = (0,1) \cup \{*\}$ et q l'application qui envoie 0 et 1 sur *.

Alors q est surjective et donc Y peut etre muni de la topologie quotient et est homeomorphe a un cercle.

On definit $f: S^1 \to Y: e^{2\pi i t} \mapsto t \ si \ 0 < t < 1 \ et* sinon.$

Proposition 3

Soit $q: X \to Y$ une application continue, surjective et ouverte, alors q est un quotient.

Proposition 4

Soit $V \subset Y$ un sous-ensemble tel que $q^{-1}(V)$ est ouverte dans X. Comme q est surjective, alors $V = q(q^{-1}(V))$ et c'est un ouvert car q envoie les ouverts sur les ouverts.

Proposition 5

Une composition de quotients est un quotient.

Theorème 6

La topologie quotient est la plus fine qui rend q continue. De plus, pour $g: Y \to Z$, g est continue si et seulement si $g \circ q$ est continue.

Proposition 7

Si $q: X \to Y$ est continue, la preimage d'un ouvert de Y est ouvert dans X.

 $La\ topologie\ quotient\ est\ celle\ qui\ contient\ le\ plus\ d'ouvert\ possibles.$

Clairement, si g est continue, alors $g \circ q$ l'est aussi.

Si $g \circ q$ est continue, soit $W \subset Z$ un ouvert, alors $(g \circ q)^{-1}(W) = q^{-1}(g^{-1}(W))$ est ouvert et par definition $g^{-1}(W)$ est ouvert dans Y.

Proposition 8

Le quotient d'un compact est compact

Preuve

L'image d'un compact est compacte.

1.2 Relations d'equivalence

Si $q: X \to Y$ est un quotient, on definit sur X une relation d'equivalence \sim par $x \sim x'$ ssi q(x) = q(x'), alors les points de Y sont les classes d'equivalence [x].

Definition 2

 $Si \simeq est \ une \ relation \ d'equivalence \ sur \ X, \ alors \ X/\sim est \ l'espace \ quotient \ des \ classes \ d'equivalence.$

Proposition 9 (Proprietes universelles)

Soit \sim une relation d'equivalence sur X et $f: X \to Z$ tel que $x \sim x' \implies f(x) = f(x')$, alors il existe un unique $\overline{f}: X/\sim Z$ tel que $\overline{f}\circ q = f$

Preuve

Pour que le triangle commute, on doit poser $\overline{f}([x]) = f(x)$ et l'application est bien definie par hypothèse et donc unique.

On sait que \overline{f} est continue ssi $\overline{f} \circ q$ l'est.

Definition 3

Si $A \subset X$, on pose $x \sim x' \iff x = x'$ ou $x, x' \in A$. Le collapse X/A est l'espace quotient X/\sim

Par exemple $I/\{0,1\}$.

Exemple

$$D^n/\partial D^n = D^n/S^{n-1} = S^n$$

Pour deux espaces bien connus, pointes (X_1, x_1) et (X_2, x_2) , on peut construire un nouvel espace en identifiant x_1 et x_2 .

Definition 4 (Reunion disjointe)

Soit I un ensemble, X_{α} un espace pour chaque $\alpha \in I$.

La reunion disjointe $\bigcup X_{\alpha}$ est l'ensemble $\bigcup_{\alpha \in I} X_{\alpha} \times \{\alpha\}$ dont la topologie est engendree par les sous-ensemble de la forme $U_{\alpha} \times \{\alpha\}$

Definition 5

Soit I un ensemble et pour tout $\alpha \in I$, (X_{α}, x_{α}) un espace pointe.

Le wedge $\bigvee_{\alpha} X_{\alpha}$ est le collapse de la reunion disjointe ou on identifie les points de base

Definition 6

Soit X un espace. Le cylindre Cyl(X) est $X \times I$ et le cone CX est le collapse du cylindre a la base.

1.3 Separation et quotients

On definit sur $\mathbb{R} \times \{0;1\}$ une relation d'equivalence \sim par $(x,0) \sim (x,1)$ si $x \neq 0$.

Le quotient est la droite a deux origines dont on ne peut separer les deux origines (0,1) et (0,0) par des ouverts.

Regardons le graphe de \sim dans $\mathbb{R} \times \{0;1\} \times (\mathbb{R} \times \{0,1\})$ (ie. une copie de 4 plans)

Proposition 11

 $Si~X/\sim est~separe,~alors~le~graphe~de\sim dans~X\times X~est~ferme.$

Preuve

La preimage de $\Delta \subset X/\sim \times X/\sim par\ q\times q\ est\ \Gamma_{\sim}$. Comme Δ est ferme, sa preimage aussi.

Lecture 2: Conditions de Separation

Sat 26 Feb

1.4 Conditions de separation du quotient

On donne une condition necessaire et une condition suffisante pour que le quotient soit separe

Proposition 12

Soit \sim une relation d'equivalence sur un espace X. Si X/\sim est separe, le graphe Γ de la relation est ferme dans $X\times X$

Preuve

Si X/\sim est separe, par un lemme, la diagonale $\Delta\subset X/\sim \times X/\sim$ est ferme. Considerons $q\times q: X\times X\to X/\sim \times X/\sim$. Cette application est continue et donc $(q\times q)^{-1}(\Delta)$ est un ferme de $X\times X$. Or cette preimage est l'ensemble des paires de points $(x,y)\in X\times X$ tq $q(x)=q(y)\iff x\sim y$.

On donne maintenant une condition suffisante permettant de conclure qu'un quotient est separe.

Proposition 13

Soit \sim une relation d'equivalence sur un espace X separe. Si $q^{-1}(q(x))$ est compact pour tout point $x \in X$ et de plus que pour $F \subset X$ ferme $q^{-1}(q(F))$ est ferme, alors le quotient est separe.

Preuve

Soit $\overline{x} = q(x)$ et $\overline{y} = q(y)$ deux points distincts de X/\sim .

Les saturations $q^{-1}(\overline{x}), q^{-1}(\overline{y})$ sont des compacts par hypothese.

Comme X est separe, on peut separer des compacts avec des ouverts disjoints U et V.

On a donc

$$q^{-1}(\overline{x}) \subset U, q^{-1}(\overline{y}) \subset V \ et \ U \cap V = \emptyset$$

Posons $E = X \setminus U, F = X \setminus V$ deux fermes de X.

Par hypothese, les saturations $q^{-1}(q(E))$ et $q^{-1}(q(F))$ sont fermes. Ainsi $U' = X \setminus q^{-1}(q(E))$ et $V' = X \setminus q^{-1}(q(F))$ sont des ouverts. On observe que $E \subset q^{-1}(q(E)), F \subset q^{-1}(q(F)),$ alors $U' \subset U, V' \subset V$.

De plus $q^{-1}(q(x)) \subset U'$ et $q^{-1}(q(y)) \subset V'$.

Il reste a montrer que q(U') et q(V') sont ouverts dans X/\sim et disjoints. Pour le premier point, il suffit de verifier que $q^{-1}(q(U'))$ est ouvert dans X. On pretend que $q^{-1}(q(U')) = U'$.

En effet, $U' \subset q^{-1}(q(U'))$ est toujours vrai, il faut donc montrer l'inclusion inverse.

Soit $u \in q^{-1}(q(U'))$, donc $q(u) \in q(U')$. Donc $q(u) \notin q(E)$ et donc $u \in U'$ Le meme resultat est vrai pour V'.

Il faut donc finalement encore montrer que q(U') et q(V') sont des voisinages ouverts, de \overline{x} et \overline{y} disjoints.

Supposons qu'il existe $u' \in U', v' \in V'$ tel que q(u') = q(v'). Alors $u' \in q^{-1}(q(v')) \subset q^{-1}(q(V')) = V'$.

Donc
$$U' \cap V' \neq \emptyset$$
, contradiction.

Lecture 3: Groupes topologiques

Mon 28 Feb

Corollaire 14

Soit $A \subset X$ un sous-espace compact d'un espace X separe. Alors le collapse $\mathfrak{X}A$ est separe.

Preuve

Il suffit de verifier les proprietes du theoreme.

Soit $\overline{x} \in \mathfrak{X}A$.

Si $x \in A, q^{-1}(x) = A$ est compact. Si $x \notin A, q^{-1}(\overline{x}) = \{x\}$ qui est compact. Soit F un ferme de X, alors si $F \cap A = \emptyset$, on a que $q^{-1}(q(F)) = F$ ferme, sinon $F \cap A \neq \emptyset$ et alors

$$q^{-1}(q(F)) = F \cup A$$

Comme A est compact et X separe, alors A ferme.

Exemple

Soit \sim une relation d'equivalence sur \mathbb{R}^2 defini par $(x,y) \sim (x',y') \iff (x-x',y-y') \in \mathbb{Z}^2$.

Alors

$$\mathbb{R}^2 \sim$$

est un tore, separe, or la proposition ne s'applique pas car $q^{-1}(0,0) = \mathbb{Z}^2$.

Definition 7 (Espaces projectifs)

L'espace projectif reel $\mathbb{R}P^n$ est le quotient de S^n par la relation antipodale $x \sim y \iff x = \pm y \ pour \ x, y \in S^n \subset \mathbb{R}^{n+1}$

Exemple

$$-\mathbb{R}P^0 = \mathfrak{S}^{\mathfrak{o}} \sim = *, \mathbb{R}P^1 = \mathfrak{S}^1 \sim \cong S^1.$$

— De plus
$$\mathbb{R}P^2 = S^2/\sim$$
 est le plan projectif

Proposition 17

 $\mathbb{R}P^n$ est compact et separe

Suit immediatement des propositions.

L'analogue complexe donne

Definition 8 (Espace projectif complexe)

L'espace projectif complexe $\mathbb{C}P^n$ est le quotient de $S^{2n+1} \subset \mathbb{C}^{n+1}$ par la relation $x \sim y \iff \exists \alpha \in S^1$ tel que $x = \alpha y$.

De meme, pour les quaternions \mathbb{H} , on peut definir $\mathbb{H}P^n$, pour les octonions on peut construire $\mathbb{O}P^0$, $\mathbb{O}P^1 \simeq S^8$, $\mathbb{C}P^2$

1.5 Quotients par des actions de groupe

Definition 9 (Groupe topologique)

Un groupe topologique est un groupe G tel que les applications de multiplication $\mu: G \times G \to G$ et l'inverse $\iota: G \to G$ sont continues.

Tout groupe peut etre vu comme un groupe topologique discret.

Exemple

Le cercle unite $S^1 \subset \mathbb{C}$ muni de la multiplication complexe est un groupe topologique

Remarque

Les seules spheres qui sont des groupes topologiques sont S^0, S^1, S^3

Lemme 20

 $Si\ H < G\ est\ un\ sous$ -groupe d'un groupe topologique G, la topologie induite en fait un groupe topologique.

Definition 10

Une action d'un groupe topologique G sur un espace X est une application $\mu: X \times G \to X$ telle que

$$\mu(x, 1_G) = x \forall x \in X \text{ et } \mu(x, gg') = \mu(\mu(x, g), g')$$

Definition 11

Soit μ une action de G sur X, l'espace des orbites $\mathfrak{X}G$ et l'espace quotient de X par la relation $x \sim y \iff \exists g \in G$ tel que $y = \mu(x, g)$

Remarque

Si H < G est un groupe topologique, alors H agit sur G par multiplication a droite et $\mathfrak{G}H$ est l'espace des orbites gH. Si H est un sous-groupe normal, ce quotient est un groupe.

Proposition 22

Soit μ une action d'un groupe topologique G sur un espace X, alors

- 1. $q: X \to \mathfrak{X}G$ est ouverte
- 2. Si X est compact, le quotient est compact
- 3. Si X et G sont compact et separe, alors $\mathfrak{X}G$ aussi.

Preuve

Soit $U \subset X$ ouvert, q(U) est ouvert car $q^{-1}(q(U)) = \bigcup_{g \in G} U \cdot g$ et $U \cdot g$ est ouvert car la translation est continue et est meme un homeomorphisme. La propriete 2 est immediate. On considere $X \times X \times G \to X \times X$ en envoyant $(x,y,g) \mapsto (x,yg)$, cette application est continue.

Le graphe Γ de la relation definie par μ est l'image de $\Delta \times G$.

Comme X est separe, Δ est ferme donc compact et G est compact.

Ainsi Γ est compact dans $X \times X$ separe donc Γ est ferme.

Soient xG et yG deux orbites differentes, ie. $(x,y) \notin \Gamma$.

Il existe donc des ouverts $x \in U, y \in V$ tel que $U \times V \cap \Gamma = \emptyset$.

Comme q est ouverte, q(U), q(V) sont des voisinages ouverts des orbites xG et yG respectivement. On conclut en remarquant que ces images sont disjointes.

Sinon on aurait zG commun, ie. $zg \in U, zg' \in V$ pour $g, g' \in G$ et alors $(zg, zgg^{-1}g') \in \Gamma \cap (U \times V)$

1.6 SO(n)

Proposition 23

Soit G compact et X separe. Soit μ une action transitive de G sur X. Alors, si G_x , alors

$$\mathfrak{G}G_x = X$$

pour tout $x \in X$.

Preuve

On definit $\mu_x: G \to X$ envoyant $g \mapsto xg$, continue.

On observe que μ_x envoie G_x sur x et par transitivite, μ_x est surjective.

Par la propriete universelle du quotient, μ_x passe au quotient.

 $\bar{\mu}_x$ est une bijection continue. C'est un homeo car $\mathfrak{G}G_x$ est compact, X separe. \square