SLCS005W - JUNE 1976 - REVISED JULY 2010

- Single Supply or Dual Supplies
- Wide Range of Supply Voltage
 - Max Rating . . . 2 V to 36 V
 - Tested to 30 V . . . Non-V Devices
 - Tested to 32 V . . . V-Suffix Devices
- Low Supply-Current Drain Independent of Supply Voltage . . . 0.4 mA Typ Per Comparator
- Low Input Bias Current . . . 25 nA Typ
- Low Input Offset Current . . . 3 nA Typ (LM193)
- Low Input Offset Voltage . . . 2 mV Typ
- **Common-Mode Input Voltage Range Includes Ground**
- Differential Input Voltage Range Equal to Maximum-Rated Supply Voltage . . . ±36 V
- **Low Output Saturation Voltage**
- Output Compatible With TTL, MOS, and **CMOS**

description/ordering information

These devices consist of two independent voltage comparators that are designed to operate from a single power supply over a wide range of voltages. Operation from dual supplies also is possible as long as the difference between the two supplies is

LM193...D OR JG PACKAGE LM293 . . . D. DGK, OR P PACKAGE LM293A . . . D OR DGK PACKAGE LM393, LM393A . . . D, DGK, P, PS, OR PW PACKAGE LM2903 . . . D, DGK, P, PS, OR PW PACKAGE (TOP VIEW)

LM193... FK PACKAGE (TOP VIEW)

NC - No internal connection

2 V to 36 V, and V_{CC} is at least 1.5 V more positive than the input common-mode voltage. Current drain is independent of the supply voltage. The outputs can be connected to other open-collector outputs to achieve wired-AND relationships.

The LM193 is characterized for operation from -55°C to 125°C. The LM293 and LM293A are characterized for operation from -25°C to 85°C. The LM393 and LM393A are characterized for operation from 0°C to 70°C. The LM2903 is characterized for operation from -40°C to 125°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

LM193, LM293, LM293A LM393, LM393A, LM2903, LM2903V DUAL DIFFERENTIAL COMPARATORS

SLCS005W - JUNE 1976 - REVISED JULY 2010

ORDERING INFORMATION[†]

T _A	V _{IOmax} AT 25°C	MAX V _{CC}	PACKAG	≣‡	ORDERABLE PART NUMBER	TOP-SIDE MARKING
			PDIP (P)	Tube of 50	LM393P	LM393P
				Tube of 75	LM393D	
			SOIC (D)	Reel of 2500	LM393DR	LM393
				Reel of 2500	LM393DRG3	
	5 mV	30 V	SOP (PS)	Reel of 2000	LM393PSR	L393
				Tube of 150	LM393PW	
			TSSOP (PW)	Reel of 2000	LM393PWR	L393
0°C to 70°C				Reel of 2000	LM393PWRG3	
			MSOP/VSSOP (DGK)	Reel of 2500	LM393DGKR	M9_§
			PDIP (P)	Tube of 50	LM393AP	LM393AP
			0010 (7)	Tube of 75	LM393AD	
	0\/		SOIC (D)	Reel of 2500	LM393ADR	LM393A
2 mV		30 V	SOP (PS)	Reel of 2000	LM393APSR	L393A
			TSSOP (PW)	Reel of 2000	LM393APWR	L393A
			MSOP/VSSOP (DGK)	Reel of 2500	LM393ADGKR	M8_§
			PDIP (P)	Tube of 50	LM293P	LM293P
		30 V		Tube of 75	LM293D	
	5 mV		SOIC (D)	Reel of 2500	LM293DR	LM293
				Reel of 2500	LM293DRG3	
–25°C to 85°C			MSOP/VSSOP (DGK)	Reel of 2500	LM293DGKR	MC_§
		30 V	2012 (7)	Tube of 75	LM293AD	
	2 mV		SOIC (D)	Reel of 2500	LM293ADR	LM293A
			MSOP/VSSOP (DGK)	Reel of 2500	LM293ADGKR	MD_§
			PDIP (P)	Tube of 50	LM2903P	LM2903P
				Tube of 75	LM2903D	
			SOIC (D)	Reel of 2500	LM2903DR	LM2903
				Reel of 2500	LM2903DRG3	
	7 mV	30 V	SOP (PS)	Reel of 2000	LM2903PSR	L2903
				Reel of 2000	LM2903PWR	
–40°C to 125°C			TSSOP (PW)	Reel of 2000	LM2903PWRG3	L2903
			MSOP/VSSOP (DGK)	Reel of 2500	LM2903DGKR	MA_§
			SOIC (D)	Reel of 2500	LM2903VQDR	L2903V
	7 mV	32 V	TSSOP (PW)	Reel of 2000	LM2903VQPWR	L2903V
		†	SOIC (D)	Reel of 2500	LM2903AVQDR	L2903AV
	2 mV	32 V	TSSOP (PW)	Reel of 2000	LM2903AVQPWR	L2903AV
		+	CDIP (JG)	Tube of 50	LM193JG	LM193JG
–55°C to 125°C	5 mV	30 V	LCCC (FK)	Tube of 55	LM193FK	LM193FK
–55°C to 125°C] """		SOIC (D)	Reel of 2500	LM193DR	LM193

[†] For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web

[‡] Package drawings, thermal data, and symbolization are available at www.ti.com/packaging. § The actual top-side marking has one additional character that designates the wafer fab/assembly site.

SLCS005W - JUNE 1976 - REVISED JULY 2010

symbol (each comparator)

schematic (each comparator)

Current values shown are nominal.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage, V _{CC} (see Note 1)		36 V
Differential input voltage, V _{ID} (see Note 2)		±36 V
Input voltage range, V _I (either input)		0.3 V to 36 V
Output voltage, V _O		
Output current, I _O		20 mA
Duration of output short-circuit to ground (see Note 3)		Unlimited
Package thermal impedance, θ_{JA} (see Notes 4 and 5):	D package	97°C/W
	DGK package	172°C/W
	P package	85°C/W
	PS package	95°C/W
	PW package	149°C/W
Package thermal impedance, θ_{JC} (see Notes 6 and 7):	FK package	5.61°C/W
	JG package	14.5°C/W
Operating virtual junction temperature, T _J		150°C
Case temperature for 60 seconds: FK package		260°C
Lead temperature 1,6 mm (1/16 inch) from case for 60	seconds: JG package	300°C
Storage temperature range, T _{stg}		. −65°C to 150°C
· · · · · · · · · · · · · · · · · · ·		

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. All voltage values, except differential voltages, are with respect to GND.
 - 2. Differential voltages are at IN+, with respect to IN-.
 - 3. Short circuits from outputs to V_{CC} can cause excessive heating and eventual destruction.
 - 4. Maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability.
 - 5. The package thermal impedance is calculated in accordance with JESD 51-7.
 - 6. Maximum power dissipation is a function of $T_J(max)$, θ_{JC} , and T_C . The maximum allowable power dissipation at any allowable case temperature is $P_D = (T_J(max) T_C)/\theta_{JC}$. Operating at the absolute maximum T_J of 150°C can affect reliability.
 - 7. The package thermal impedance is calculated in accordance with MIL-STD-883.

LM193, LM293, LM293A LM393, LM393A, LM2903, LM2903V DUAL DIFFERENTIAL COMPARATORS

SLCS005W - JUNE 1976 - REVISED JULY 2010

electrical characteristics at specified free-air temperature, V_{CC} = 5 V (unless otherwise noted)

	PARAMETER	TEST CO	NDITIONS	T _A †	L	M193			VI293 VI393		UNIT
					MIN	TYP	MAX	MIN	TYP	MAX	
v	land offertually	$V_{CC} = 5 \text{ V to } 30$	V,	25°C		2	5		2	5	\
V_{IO}	Input offset voltage	$V_O = 1.4 \text{ V},$ $V_{IC} = V_{IC(min)}$		Full range			9			9	mV
	Innut offeet europa	V 44V		25°C		3	25		5	50	nA
I _{IO}	Input offset current	V _O = 1.4 V		Full range			100			250	ΠA
	Innest bing assument	V 4 4 V		25°C		-25	-100		-25	-250	- 1
I _{IB}	Input bias current	V _O = 1.4 V		Full range			-300			-400	nA
	Common-mode			25°C	0 to V _{CC} – 1.5			0 to V _{CC} – 1.5			.,
V _{ICR}	input voltage range [‡]			Full range	0 to V _{CC} – 2			0 to V _{CC} – 2			V
A _{VD}	Large-signal differential-voltage amplification	V_{CC} = 15 V, V_{O} = 1.4 V to 1 ^o $R_{L} \ge$ 15 k Ω to V		25°C	50	200		50	200		V/mV
	High-level	$V_{OH} = 5 V$,	V _{ID} = 1 V	25°C		0.1			0.1	50	nA
I _{OH}	output current	$V_{OH} = 30 \text{ V},$	V _{ID} = 1 V	Full range			1			1	μΑ
V	Low-level	4 4	V 4V	25°C		150	400		150	400	\/
V _{OL}	output voltage	$I_{OL} = 4 \text{ mA},$	$V_{ID} = -1 V$	Full range			700			700	mV
I _{OL}	Low-level output current	V _{OL} = 1.5 V,	V _{ID} = −1 V	25°C	6			6			mA
1	Supply current	D	V _{CC} = 5 V	25°C		8.0	1		0.8	1	mA
Icc	Зирріу сипепі	R _L = ∞	V _{CC} = 30 V	Full range			2.5			2.5	IIIA

[†] Full range (MIN or MAX) for LM193 is -55°C to 125°C, for LM293 is 25°C to 85°C, and for LM393 is 0°C to 70°C. All characteristics are measured with zero common-mode input voltage, unless otherwise specified.

[‡] The voltage at either input or common-mode should not be allowed to go negative by more than 0.3 V. The upper end of the common-mode voltage range is $V_{CC}+-1.5~V$ for the inverting input (-), and the non-inverting input (+) can exceed the V_{CC} level; the comparator provides a proper output state. Either or both inputs can go to 30 V without damage.

SLCS005W - JUNE 1976 - REVISED JULY 2010

electrical characteristics at specified free-air temperature, $V_{CC} = 5 \text{ V}$ (unless otherwise noted)

	PARAMETER	TEST CONDITION	NS	T _A †		1293A 1393A		UNIT
					MIN	TYP	MAX	
.,	loon it offers to selte as	$V_{CC} = 5 \text{ V to } 30 \text{ V}, V_{O} = 1.4 \text{ V},$		25°C		1	2	\ /
V_{IO}	Input offset voltage	$V_{IC} = V_{IC(min)}$		Full range			4	mV
	local offs at surrent	V 44V		25°C		5	50	A
I _{IO}	Input offset current	$V_{O} = 1.4 \text{ V}$		Full range			150	nA
	land this and the	V 44V		25°C		-25	-250	A
I _{IB}	Input bias current	$V_O = 1.4 \text{ V}$		Full range			-400	nA
	Common-mode input voltage			25°C	0 to V _{CC} – 1.5			
V _{ICR}	range§			Full range	0 to V _{CC} – 2			٧
A _{VD}	Large-signal differential-voltage amplification	V_{CC} = 15 V, V_{O} = 1.4 V to 11.4 $R_L \ge$ 15 k Ω to V_{CC}	V,	25°C	50	200		V/mV
	High level autout assessed	$V_{OH} = 5 V$,	$V_{ID} = 1 V$	25°C		0.1	50	nA
I _{OH}	High-level output current	V _{OH} = 30 V,	$V_{ID} = 1 V$	Full range			1	μΑ
.,	Law lavel autout valle sa	1 4 4	V 4V	25°C		150	400	mV
V _{OL}	Low-level output voltage	$I_{OL} = 4 \text{ mA},$	$V_{ID} = -1 V$	Full range			700	mv
I_{OL}	Low-level output current	V _{OL} = 1.5 V,	$V_{ID} = -1 V$	25°C	6			mA
laa	Complex commands	V _{CC} = 5		25°C		8.0	1	mA
Icc	Supply current	- \limin	$R_{L} = \infty$ $V_{CC} = 30 \text{ V}$				2.5	IIIA

[†] Full range (MIN or MAX) for LM293A is 25°C to 85°C, and for LM393A is 0°C to 70°C. All characteristics are measured with zero common-mode input voltage, unless otherwise specified.

[§] The voltage at either input or common-mode should not be allowed to go negative by more than 0.3 V. The upper end of the common-mode voltage range is V_{CC+} – 1.5 V, but either or both inputs can go to 30 V without damage.

LM193, LM293, LM293A LM393, LM393A, LM2903, LM2903V DUAL DIFFERENTIAL COMPARATORS

SLCS005W - JUNE 1976 - REVISED JULY 2010

electrical characteristics at specified free-air temperature, V_{CC} = 5 V (unless otherwise noted)

					LN	W2903		LM	2903A		
	PARAMETER	TEST CO	NDITIONS	T _A †	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
.,		$V_{CC} = 5 \text{ V to M}$	ΑX [‡] ,	25°C		2	7		1	2	
V _{IO}	Input offset voltage	$V_O = 1.4 \text{ V},$ $V_{IC} = V_{IC(min)}$		Full range			15			4	mV
	land to effect accomment	V 44V		25°C		5	50		5	50	4
I _{IO}	Input offset current	$V_0 = 1.4 \text{ V}$		Full range			200			200	nA
	lancet biogrammant	V 44V		25°C		-25	-250		-25	-250	4
I _{IB}	Input bias current	$V_0 = 1.4 \text{ V}$		Full range			-500			-500	nA
,,	Common-mode			25°C	0 to V _{CC} – 1.5			0 to V _{CC} – 1.5			,,
V _{ICR}	input voltage range§			Full range	0 to V _{CC} - 2			0 to V _{CC} – 2			V
A _{VD}	Large-signal differential-voltage amplification	V_{CC} = 15 V, V_{O} = 1.4 V to 1 ^o $R_{L} \ge$ 15 k Ω to V		25°C	25	100		25	100		V/mV
	High-level	$V_{OH} = 5 V$,	V _{ID} = 1 V	25°C		0.1	50		0.1	50	nA
I _{OH}	output current	$V_{OH} = V_{CC} MAX$	K, V _{ID} = 1 V	Full range			1			1	μΑ
.,	Low-level	1 4 4		25°C		150	400		150	400	
V_{OL}	output voltage	$I_{OL} = 4 \text{ mA},$	$V_{ID} = -1 V$	Full range			700			700	mV
I _{OL}	Low-level output current	V _{OL} = 1.5 V,	V _{ID} = -1 V	25°C	6			6			mA
1	Supply current	B	V _{CC} = 5 V	25°C		8.0	1		0.8	1	mA
Icc	Supply culterit	R _L = ∞	$V_{CC} = MAX$	Full range			2.5			2.5	IIIA

[†] Full range (MIN or MAX) for LM2903 is -40°C to 125°C. All characteristics are measured with zero common-mode input voltage, unless otherwise

switching characteristics, V_{CC} = 5 V, T_A = 25°C

PARAMETER	TEST CO	NDITIONS	LM193 LM293, LM293A LM393, LM393A LM2903	UNIT
Response time	R_L connected to 5 V through 5.1 k Ω ,	100-mV input step with 5-mV overdrive	1.3	
nesponse time	C _L = 15 pF [¶] , See Note 8	TTL-level input step	0.3	μs

 $^{^{\}P}$ C_L includes probe and jig capacitance.

NOTE 8: The response time specified is the interval between the input step function and the instant when the output crosses 1.4 V.

[†] V_{CC} MAX = 30 V for non-V devices and 32 V for V-suffix devices.
§ The voltage at either input or common-mode should not be allowed to go negative by more than 0.3 V. The upper end of the common-mode voltage range is V_{CC+} – 1.5 V, but either or both inputs can go to 30 V (32 V for V-suffix devices) without damage.

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
5962-9452601Q2A	ACTIVE	LCCC	FK	20	1	TBD	Call TI	Call TI	
5962-9452601QPA	ACTIVE	CDIP	JG	8	1	TBD	Call TI	Call TI	
JM38510/11202BPA	ACTIVE	CDIP	JG	8	1	TBD	A42	N / A for Pkg Type	
LM193DR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
LM193DRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
LM193FKB	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	
LM193JG	ACTIVE	CDIP	JG	8	1	TBD	A42	N / A for Pkg Type	
LM193JGB	ACTIVE	CDIP	JG	8	1	TBD	A42	N / A for Pkg Type	
LM2903AVQDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
LM2903AVQDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
LM2903AVQPWR	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
LM2903AVQPWRG4	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
LM2903D	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
LM2903DE4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
LM2903DG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
LM2903DGKR	ACTIVE	VSSOP	DGK	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
LM2903DGKRG4	ACTIVE	VSSOP	DGK	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
LM2903DR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
LM2903DRE4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
LM2903DRG3	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	
LM2903DRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
LM2903P	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	
LM2903PE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	
LM2903PSR	ACTIVE	SO	PS	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
LM2903PSRG4	ACTIVE	SO	PS	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
LM2903PWLE	OBSOLETE	TSSOP	PW	8		TBD	Call TI	Call TI	
LM2903PWR	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
LM2903PWRE4	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
LM2903PWRG3	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	
LM2903PWRG4	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
LM2903QD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
LM2903QDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
LM2903QDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
LM2903QDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
LM2903QP	OBSOLETE	PDIP	Р	8	-	TBD	Call TI	Call TI	
LM2903VQDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
LM2903VQDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
LM2903VQPWR	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
LM2903VQPWRG4	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
LM293AD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
LM293ADE4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
LM293ADG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
LM293ADGKR	ACTIVE	VSSOP	DGK	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
LM293ADGKRG4	ACTIVE	VSSOP	DGK	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
LM293ADR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
LM293ADRE4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
LM293ADRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
LM293D	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
LM293DE4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
LM293DG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
LM293DGKR	ACTIVE	VSSOP	DGK	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
LM293DGKRG4	ACTIVE	VSSOP	DGK	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
LM293DR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
LM293DRE4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
LM293DRG3	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	
LM293DRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
LM293P	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	
LM293PE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	
LM393AD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
LM393ADE4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
LM393ADG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
LM393ADGKR	ACTIVE	VSSOP	DGK	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
LM393ADGKRG4	ACTIVE	VSSOP	DGK	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
LM393ADR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
LM393ADRE4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
LM393ADRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
LM393AP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	
LM393APE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	
LM393APSR	ACTIVE	SO	PS	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
LM393APSRE4	ACTIVE	SO	PS	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
LM393APSRG4	ACTIVE	SO	PS	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
LM393APWLE	OBSOLETE	TSSOP	PW	8		TBD	Call TI	Call TI	
LM393APWR	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
LM393APWRE4	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
LM393APWRG4	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
LM393D	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	

www.ti.com

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
LM393DE4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
LM393DG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
LM393DGKR	ACTIVE	VSSOP	DGK	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
LM393DGKRG4	ACTIVE	VSSOP	DGK	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
LM393DR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
LM393DRE4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
LM393DRG3	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	
LM393DRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
LM393P	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	
LM393PE3	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	
LM393PE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	
LM393PSLE	OBSOLETE	SO	PS	8		TBD	Call TI	Call TI	
LM393PSR	ACTIVE	SO	PS	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
LM393PSRG4	ACTIVE	SO	PS	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
LM393PW	ACTIVE	TSSOP	PW	8	150	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
LM393PWE4	ACTIVE	TSSOP	PW	8	150	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
LM393PWG4	ACTIVE	TSSOP	PW	8	150	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
LM393PWLE	OBSOLETE	TSSOP	PW	8		TBD	Call TI	Call TI	
LM393PWR	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
LM393PWRE4	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	

www.ti.com 16-Aug-2012

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
LM393PWRG3	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	
LM393PWRG4	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
M38510/11202BPA	ACTIVE	CDIP	JG	8	1	TBD	A42	N / A for Pkg Type	

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF LM2903, LM293:

Automotive: LM2903-Q1

Enhanced Product: LM293-EP

NOTE: Qualified Version Definitions:

- Automotive Q100 devices qualified for high-reliability automotive applications targeting zero defects
- Enhanced Product Supports Defense, Aerospace and Medical Applications

PACKAGE MATERIALS INFORMATION

www.ti.com 16-Aug-2012

TAPE AND REEL INFORMATION

REEL DIMENSIONS

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

TAPE AND REEL INFORMATION

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LM193DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM2903AVQPWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM2903DGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
LM2903DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM2903DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM2903DRG4	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM2903DRG4	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM2903PSR	SO	PS	8	2000	330.0	16.4	8.2	6.6	2.5	12.0	16.0	Q1
LM2903PWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM2903PWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM2903PWRG3	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM2903PWRG4	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM2903QDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM2903VQPWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM293ADGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
LM293ADR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM293ADR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM293DGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 16-Aug-2012

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LM293DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM293DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM293DRG4	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM293DRG4	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM393ADGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
LM393ADR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM393ADR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM393APSR	SO	PS	8	2000	330.0	16.4	8.2	6.6	2.5	12.0	16.0	Q1
LM393APWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM393APWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM393APWRG4	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM393DGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
LM393DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM393DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM393DRG4	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM393DRG4	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM393PSR	SO	PS	8	2000	330.0	16.4	8.2	6.6	2.5	12.0	16.0	Q1
LM393PWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM393PWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM393PWRG3	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM393PWRG4	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1

www.ti.com 16-Aug-2012

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LM193DR	SOIC	D	8	2500	367.0	367.0	35.0
LM2903AVQPWR	TSSOP	PW	8	2000	367.0	367.0	35.0
LM2903DGKR	VSSOP	DGK	8	2500	364.0	364.0	27.0
LM2903DR	SOIC	D	8	2500	340.5	338.1	20.6
LM2903DR	SOIC	D	8	2500	367.0	367.0	35.0
LM2903DRG4	SOIC	D	8	2500	367.0	367.0	35.0
LM2903DRG4	SOIC	D	8	2500	340.5	338.1	20.6
LM2903PSR	SO	PS	8	2000	367.0	367.0	38.0
LM2903PWR	TSSOP	PW	8	2000	364.0	364.0	27.0
LM2903PWR	TSSOP	PW	8	2000	367.0	367.0	35.0
LM2903PWRG3	TSSOP	PW	8	2000	364.0	364.0	27.0
LM2903PWRG4	TSSOP	PW	8	2000	367.0	367.0	35.0
LM2903QDR	SOIC	D	8	2500	367.0	367.0	35.0
LM2903VQPWR	TSSOP	PW	8	2000	367.0	367.0	35.0
LM293ADGKR	VSSOP	DGK	8	2500	364.0	364.0	27.0
LM293ADR	SOIC	D	8	2500	367.0	367.0	35.0
LM293ADR	SOIC	D	8	2500	340.5	338.1	20.6
LM293DGKR	VSSOP	DGK	8	2500	364.0	364.0	27.0
LM293DR	SOIC	D	8	2500	367.0	367.0	35.0
LM293DR	SOIC	D	8	2500	340.5	338.1	20.6

PACKAGE MATERIALS INFORMATION

www.ti.com 16-Aug-2012

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LM293DRG4	SOIC	D	8	2500	340.5	338.1	20.6
LM293DRG4	SOIC	D	8	2500	367.0	367.0	35.0
LM393ADGKR	VSSOP	DGK	8	2500	364.0	364.0	27.0
LM393ADR	SOIC	D	8	2500	340.5	338.1	20.6
LM393ADR	SOIC	D	8	2500	367.0	367.0	35.0
LM393APSR	SO	PS	8	2000	367.0	367.0	38.0
LM393APWR	TSSOP	PW	8	2000	367.0	367.0	35.0
LM393APWR	TSSOP	PW	8	2000	364.0	364.0	27.0
LM393APWRG4	TSSOP	PW	8	2000	367.0	367.0	35.0
LM393DGKR	VSSOP	DGK	8	2500	364.0	364.0	27.0
LM393DR	SOIC	D	8	2500	340.5	338.1	20.6
LM393DR	SOIC	D	8	2500	367.0	367.0	35.0
LM393DRG4	SOIC	D	8	2500	340.5	338.1	20.6
LM393DRG4	SOIC	D	8	2500	367.0	367.0	35.0
LM393PSR	SO	PS	8	2000	367.0	367.0	38.0
LM393PWR	TSSOP	PW	8	2000	367.0	367.0	35.0
LM393PWR	TSSOP	PW	8	2000	364.0	364.0	27.0
LM393PWRG3	TSSOP	PW	8	2000	364.0	364.0	27.0
LM393PWRG4	TSSOP	PW	8	2000	367.0	367.0	35.0

JG (R-GDIP-T8)

CERAMIC DUAL-IN-LINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification.
- E. Falls within MIL STD 1835 GDIP1-T8

FK (S-CQCC-N**)

LEADLESS CERAMIC CHIP CARRIER

28 TERMINAL SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a metal lid.
- D. Falls within JEDEC MS-004

P (R-PDIP-T8)

PLASTIC DUAL-IN-LINE PACKAGE

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001 variation BA.

DGK (S-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 per end.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.50 per side.
- E. Falls within JEDEC MO-187 variation AA, except interlead flash.

D (R-PDSO-G8)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AA.

D (R-PDSO-G8)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

PS (R-PDSO-G8)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

PW (R-PDSO-G8)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
- E. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements.

Applications

Products Audio www.ti.com/audio **Amplifiers** amplifier.ti.com **Data Converters** dataconverter.ti.com **DLP® Products** www.dlp.com DSP dsp.ti.com Clocks and Timers www.ti.com/clocks Interface interface.ti.com Logic logic.ti.com Power Mgmt power.ti.com Microcontrollers microcontroller.ti.com

www.ti-rfid.com **OMAP Mobile Processors** www.ti.com/omap

Wireless Connectivity www.ti.com/wirelessconnectivity Automotive and Transportation www.ti.com/automotive www.ti.com/communications Communications and Telecom Computers and Peripherals www.ti.com/computers Consumer Electronics www.ti.com/consumer-apps **Energy and Lighting** www.ti.com/energy Industrial www.ti.com/industrial Medical www.ti.com/medical Security www.ti.com/security

Space, Avionics and Defense www.ti.com/space-avionics-defense Video and Imaging www.ti.com/video

e2e.ti.com

TI E2E Community