Ardışıl Devre Modeli

Şimdiki durum daha önceki girişlere bağlıdır.

Senkron Ardışıl Devreler

- İşaretler bellek elemanlarını zamanın ayrık anlarında etkilerler.
- Ayrık anlar senkronizasyon gerektirir.
- Senkronizasyon ortak bir saat ile sağlanır.
- "Saat üreteci" periyodik darbe dizisi üreten bir devredir.
- Bellek elemanlarının durumu her saat darbesinde güncellenir.

Senkron Ardışıl Devreler

• Bellek elemanları 1-bitlik bilgi saklayabilen flipflop lardır.

Latch ler

- Temel bellek elemanları
- Bir latch ikili durumunu sonsuza kadar koruyabilen bir bellek elemanıdır.
- Latch ler asenkron devrelerdir ve çalışmak için saat işaretine ihtiyaçları yoktur.
- Bu sebeple senkron ardışıl devrelerde doğrudan kullanılmazlar.
- Flip-flop ları elde etmek için kullanılırlar.

SR-Latch

S	R	Q_1	Q_2
0	0	0	1
0	0	1	0
0	1	0	1
1	0	1	0
1	1	X	X

$$Q_1$$
= (R + Q_2)'=R' Q_2 '
 Q_2 = (S + Q_1)'=S' Q_1 '
 Q_1 = Q_2 '

Tanımsız

SR-Latch

S	R	Q	Q'
0	0	×	X
0	1	1	0
1	0	0	1
1	1	1	0
1	1	0	1

Tanımsız

Kontrol Girişli SR-Latch

C	S	R	Q Q'		
0	X	X	Değişme yok		
1	0	0	Değişme yok Değişme yok		
1	0	1	Q = 0 Reset durumu		
1	1	0	Q = 1 Set durumu		
1	1	1	Tanımsız		

D-Latch

- Tanımsız hal devrede kararsızlığa sebep olabileceği için SR latch ler sık kullanılmaz.
- Çözüm: D-latch ler

Bu devre S ve R girişlerinin her zaman birbirlerinin tümleyeni olmasını sağlar.

D-Latch

C	D	Q'nun sonraki durumu
0	X	Değişim yok
1	0	Q = 0; reset durumu
1	1	Q = 1; set durumu

• C=1 iken D girişi örneklenir.

Saklama elemanı olarak D-Latch

- D–latch ler geçici saklama için kullanılabilirler.
- C = 1 olduğu sürece D-latch girişi çıkışa aktarılır.
- C = 0 olduğu sürece bilgi korunur.
- Latch ler seviye tetiklemeli olarak adlandırılır.
 - C lojik-1 seviyesinde kaldığı sürece veri girişindeki değişim durumu ve latch çıkışını değiştirir.
- Bellek elemanlarının durumları senkron olarak değişmeli.
- Düşen veya yükselen kenar tetiklemeli bellek elemanlarına flip-flop lar denir.

Kenar Tetiklemeli D Flip-Flop

 Kenar tetiklemeli D flip-flop iki D latch kullanılarak yapılabilir.

Yükselen Kenar Tetiklemeli D Flip-Flop

D Flip-Flop Sembolleri

Yükselen kenar tetiklemeli D Flip-Flop

Düşen kenar tetiklemeli D Flip-Flop

- Karakteristik denklem
 - Q(t+1) = D

JK Flip-Flop lar

J	K'	Q(†+1)	Sonraki durum
0	0	Q(†)	Değişim yok
0	1	0	Reset
1	0	1	Set
1	1	Q'(†)	Tümleyen

Karakteristik Tablo

- Karakteristik denklem
 - Q(t+1) = JQ'(t) + K'Q(t)

T (Toggle) Flip-Flop

Τ	Q(†+1)	next state
0	Q(†)	no change
1	Q'(†)	Complement

Karakteristik Tablo

Karakteristik denklem

•
$$Q(t+1) = T \oplus Q = TQ' + T'Q$$

Senkron Ardışıl Devrelerin Analizi

Amaç:

- Senkron ardışıl devrelerin davranışını bulmak.
- "Davranış"
 - Girişler
 - Çıkışlar
 - Flip-flop ların durumları kullanılarak elde edilir.
- Çıkış ve sonraki durumun Boole fonksiyonlarını bulmak.
 - çıkış ve durum denklemleri
 - (durum) tablosu
 - (durum) diyagramı

Senkron Ardışıl Devrelerin Analizi

- t anındaki şimdiki durum flip-flop dizisinde saklanır.
- (t+1) anındaki sonraki durum durum ve girişlerin oluşturduğu bir Boole fonksiyonu.
- t anındaki çıkışlar şimdiki durumlar ve bazen de girişlere bağlı Boole fonksiyonları.

Durum Denklemleri

- Aynı zamanda geçiş denklemleri de denir.
 - Sonraki durumu şimdiki durum ve girişlerin bir fonksiyonu olarak verir.

Çıkış ve Durum Denklemleri

- $y_1(t+1) = (y_1(t) \oplus y_2(t)) x$
- $y_2(t+1) = x y_2(t)'$

Örnek: Durum (Geçiş) Tablosu $y_1(t+1) = ?$ z = ?

Şimdik	i Durum	Giriş	Sonrak	i Durum	çıkış
y ₁	y ₂	×	Y_1	Y ₂	z
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	0
0	1	1	1	0	0
1	0	0	0	0	0
1	0	1	1	1	0
1	1	0	0	0	0
1	1	1	0	0	1

m FF ve n girişi olan senkron ardışıl bir devrenin durum tablosunda 2^{m+n} satır vardır.

Örnek: Durum Diyagramı

Şimdil Durun		Giriş	Sonraki Durum		Çıkış
y ₁	y ₂	X	Y_1	Y ₂	Z
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	0
0	1	1	1	0	0
1	0	0	0	0	0
1	0	1	1	1	0
1	1	0	0	0	0
1	1	1	0	0	1

Durum diyagramı ile durum tablosu aynı bilgiyi verir.

JK tipi Flip-Flop lar ile Analiz

- D tipi flip-flop da durum denklemi flip-flop un giriş denklemi ile aynı
 - Q(t+1) = D
- JK tipi flip-flop larda bu iki denklem farklı
 - Amacımız durum denklemlerini bulmak.
 - Yöntem
 - 1. Flip-flop giriş denklemlerinin bulunması
 - 2. Her giriş denkleminin doğruluk tablosu oluşturulması
 - Flip-flop ların karakteristik tablosu kullanılarak durum tablosundaki sonraki durum değerlerinin belirlenmesi

Örnek: JK tipi Flip-Flop lar ile Analiz

Flip-flop input equations

$$- J_1 = xy_2$$

$$-J_1 = xy_2$$
 ve $K_1 = x' + y_2$

$$-J_2 = x$$

ve
$$K_2 = 1$$

Örnek: JK tipi Flip-Flop lar ile Analiz

$$- J_1 = xy_2$$
 ve $K_1 = x' + y_2$
 $- J_2 = x$ ve $K_2 = 1$

Şimdik	i Durum	Giriş	Sonrak	i Durum	F	F gir	rişler	'i
y_1	y ₂	X	\boldsymbol{y}_1	y_2	J_1	K_1	J_2	K_2
0	0	0	0	0	0	1	0	1
0	0	1	0	1	0	0	1	1
0	1	0	0	0	0	1	0	1
0	1	1	1	0	1	1	1	1
1	0	0	0	0	0	1	0	1
1	0	1	1	1	0	0	1	1
1	1	0	0	0	0	1	0	1
1	1	1	0	0	1	1	1	1

Örnek: JK tipi Flip-Flop lar ile Analiz

Karakteristik Denklemler

$$- Y_1 = J_1 y_1' + K_1' y_1$$

$$- Y_2 = J_2 y_2' + K_2' y_2$$

Flip-flop giriş denklemleri

$$-J_1 = xy_2$$
 ve $K_1 = x' + y_2$
 $-J_2 = x$ ve $K_2 = 1$

Durum denklemleri

$$-Y_1 = xy_2y_1' + (x' + y_2)'y_1 = xy_2y_1' + xy_2'y_1 = x(y_2 \oplus y_1)$$

-Y_2 = xy_2' + 1'y_2 = xy_2'

Durum Diyagramı

Şimdil Durun		Giriş	Sonraki Durum		Çıkış
y ₁	y ₂	X	Y ₁	Y ₂	Z
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	0
0	1	1	1	0	0
1	0	0	0	0	0
1	0	1	1	1	0
1	1	0	0	0	0
1	1	1	0	0	1

Devre ne yapıyor?

T tipi Flip-Flop lar ile Analiz

- Yöntem aynı
- Örnek

$$T_1 = xy_0$$

 $T_2 = x$

Örnek: T tipi Flip-Flop lar ile Analiz

Karakteristik Denklemleri

$$- Y_0 = T_0 \oplus y_0$$
$$- Y_1 = T_1 \oplus y_1$$

Flip-flop giriş denklemleri

$$- T_1 = x y_0$$
$$- T_0 = x$$

Durum denklemleri

$$- Y_0 = x \oplus y_0$$
$$- Y_1 = x y_0 \oplus y_1$$

Durum Tablosu ve Diyagramı

•
$$Y_0 = x \oplus y_0$$

•
$$Y_0 = x \oplus y_0$$

• $Y_1 = x y_0 \oplus y_1$

Şim Dui	diki rum	Giriş	Son Dur	raki rum	Çı	kış
y ₁	y o	×	У ₁	Y ₀	y ₁	y 0
0	0	0	0	0	0	0
0	0	1	0	1	0	0
0	1	0	0	1	0	1
0	1	1	1	0	0	1
1	0	0	1	0	1	0
1	0	1	1	1	1	0
1	1	0	1	1	1	1
1	1	1	0	0	1	1

Moore ve Mealy Modelleri

- Senkron ardışıl devreler veya senkron makinalar aynı zamanda sonlu durum makinaları (*Finite State Machines* (FSMs)) olarak adlandırılırlar.
- İki tip model vardır:
- Moore Modeli
 - E. F. Moore tarafından ortaya atılmıştır.
 - Çıkışlar SADECE durumlara bağlıdır.
 - Çıkışlar durum diyagramında durumların üzerinde gösterilir.

Mealy Modeli

- G. Mealy tarafından ortaya atılmıştır.
- Çıkışlar girişlere VE durumlara bağlıdır.
- Çıkışlar durum diyagramında durum geçiş çizgilerinin üzerinde gösterilir.

Örnek: Mealy ve Moore Makinaları

- x ve y girişleri senkron değiller.
- · Bu sebeple, çıkışlar kısa süreli yanlış değerler alabilirler.
- · Girişler saat işareti ile senkron hale getirilmelidir veya
- · Çıkışlar sadece saatin yükselen kenarında örneklenmelidir.

Örnek: Moore Makinası

• Çıkışlar saat işareti ile senkron olarak çalışır.

Moore ve Mealy Örnek Diyagramları

• Mealy Modeli durum diyagramı

Moore Modeli durum diyagramı

Moore ve Mealy Örnek Durum Tabloları

Moore Model durum tablosu

Şimdiki	Sonraki	Durum	Çıkış
Durum	x=0	x=1	
0	0	1	0
1	0	2	0
2	0	2	1

Mealy Model durum tablosu

Şimdiki	Sonraki Durum		Çıkış	
Durum	x=0	x=1	x=0	x=1
0	0	1	0	0 .
1	0	1	0	1

Senkron Ardışıl Devre Tasarımı

- 1. Problemin sözle tanımı
- 2. Durum diyagramının çizilmesi
- 3. Durumların indirgenmesi: s = durum sayısı
- 4. Flip-flop sayısının belirlenmesi: $n = \lceil \log_2 s \rceil$
- 5. Durumların kodlanması: $\underbrace{00 \dots 0}_{n-bit}$, $\underbrace{00 \dots 1}_{n-bit}$, $\underbrace{00 \dots 1}_{n-bit}$, ...
- 6. Durum tablosunun çıkarılması
- 7. Flip-flopların tipinin belirlenmesi
- 8. Boole Fonksiyonlarının elde edilmesi
 - 1. Flip-flopların giriş fonksiyonları
 - 2. Çıkış fonksiyonları
- 9. Boole fonksiyonlarının gerçeklenmesi

Örnek: Senkron Ardışıl Devre Tasarımı

Sözle tanım

- 1. Adım: 1-bitlik girişinden ard arda 3 tane veya daha fazla 1 geldiğini sezen devreyi tasarlayınız.
- Giriş: herhangibir uzunluktaki bit dizisi
- Çıkış:
 - "1": eğer devre istenen diziyi yakalamışsa
 - "0" : diğer hallerde

Örnek: Durum Diyagramı

2. Adım: Durum diyagramının çizilmesi 0/0

- 3. Adım: Durum indirgeme
 - Mümkün değil
- 4. Adım: Flip-flop sayısı
 - 4 durum
 - ? flip-flop
- 5. Adım: Durum kodlama

• 6. Adım: Durum tablosunun çıkarılması

Şimdik	i Durum	Giriş	Sonrak	i Durum	Çıkış
y ₁	y ₂	×	y_1	y_2	Z
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	0
0	1	1	1	0	0
1	0	0	0	0	0
1	0	1	1	1	0
1	1	0	0	0	1
1	1	1	1	1	1

- 7. Adım: Flip-flopların tipinin belirlenmesi
 - D tipi flip-floplar
- 8. Adım: Boole Fonksiyonlarının elde edilmesi
 - − D₁ ve D₂ için Boole fonksiyonları

$\chi_2 x$				
y_1	00	01	11	10
0	0	0	1	0
1	0	1	1	0

$$D_1 = y_1 x + y_2 x$$

y ₂ x				
y_1	00	01	11	10
0	0	1	0	0
1	0	1	1	0

$$D_2 = y_1 x + y_2' x$$

Z için Boole fonksiyonu

$$z = y_1y_2$$

• 9. Adım: Boole fonksiyonlarının gerçeklenmesi

JK Tipi Flip-Floplar ve MUX ile tasarım

Durum sayısı= 6

Durum değişkeni sayısı= 3

Flip-flop sayısı= 3

Giriş sayısı= 0

Çıkış sayısı= 6

- 6 tane kayan ışık
- ••= lojik-1
- •O= lojik-0

Durum Diyagramı ve Tablosu

y = Jy + Ky							
J	K	У					
0	0	У					
0	1	0					
1	0	1					
_	_						

Şimdiki Durum	Sonraki Durum	Flip-	flop gi	rişleri		Çıkışlar	
Y ₂ Y ₁ Y ₀	$Y_2 Y_1 Y_0$	$J_2 K_2$	$J_1 K_1$	$J_0 K_0$	z ₅ z ₄ :	z_3 z_2 z_1 z_0	$\ $
0 0 0	0 0 1	0 k	0 k	1 k	1 1	1 0 0 0	
0 0 1	0 1 0	0 k	1 k	k 1	0 1	1 1 0 0	
0 1 0	0 1 1	0 k	k 0	1 k	0 0	1 1 1 0	
0 1 1	1 0 0	1 k	k 1	k 1	0 0	0 1 1 1	
1 0 0	1 0 1	k 0	0 k	1 k	0 0	1 1 1 0	
1 0 1	0 0 0	k 1	0 k	k 1	0 1	1 1 0 0	

Flip-flop giriş Denklemlerinin Gerçeklenmesi

y_1y_0				
y ₂	00	01	11	10
0	k	k	k	k
1	0	1	k	k

$$K_1 = 1$$

Flip-flop Çıkış Denklemlerinin Gerçeklenmesi

$$\begin{array}{c}
1 \\
0 \\
y_0
\end{array}$$

$$\begin{array}{c}
1 \\
1 \\
1 \\
1
\end{array}$$

$$\begin{array}{c}
1 \\
1 \\
1 \\
1
\end{array}$$

 $z_5 = y_2' y_1' y_0' + k(y_2 y_1 y_0' + y_2 y_1 y_0)$ $z_4 = y_2' y_1' y_0' + y_2' y_1' y_0 + y_2 y_1' y_0 + k(y_2 y_1 y_0' + y_2 y_1 y_0)$

 $z_3 = y_2' y_1' y_0' + y_2' y_1' y_0 + y_2' y_1 y_0' + y_2 y_1' y_0' + y_2 y_1' y_0 + k(y_2 y_1 y_0' + y_2 y_1 y_0)$

Flip-flop Çıkış Denklemlerinin Gerçeklenmesi

 $z_2 = y_2' y_1' y_0 + y_2' y_1 y_0' + y_2' y_1 y_0 + y_2 y_1' y_0' + y_2 y_1' y_0 + k(y_2 y_1 y_0' + y_2 y_1 y_0)$

 $z_1 = y_2' y_1 y_0' + y_2' y_1 y_0 + y_2 y_1' y_0' + k(y_2 y_1 y_0' + y_2 y_1 y_0)$

Flip-flop Çıkış Denklemlerinin Gerçeklenmesi

$$\begin{array}{c}
0 \\
y_0 \\
0
\end{array}$$

$$\begin{array}{c}
y_2 y_1 \\
z_0 = y_2' y_1 y_0 + k(y_2 y_1 y_0' + y_2 y_1 y_0)
\end{array}$$

Lojik diyagram

$$J_2 = y_1 y_0' K_2 = y_0 J_1 = y_2' y_0 K_1 = y_0 J_0 = 1 K_1 = 1$$

• Örnek: 3-bit ikili sayıcı

$$-0 \rightarrow 1 \rightarrow 2 \rightarrow ... \rightarrow 7 \rightarrow 0 \rightarrow 1 \rightarrow 2$$

Kaç flip-flop?

Durum kodlama:

- $D_0 \rightarrow 000$
- $D_1 \rightarrow 001$
- $D_2 \rightarrow 010$
- •
- $D_7 \rightarrow 111$

Durum Diyagramı

• Durum tablosu

Şim	simdiki Durum FF girişle			Sonraki Durum		eri		
y ₂	y ₁	y ₀	y ₂	\boldsymbol{y}_1	\mathbf{y}_{0}	T ₂	T_1	T_o
0	0	0	0	0	1	0	0	1
0	0	1	0	1	0	0	1	1
0	1	0	0	1	1	0	0	1
0	1	1	1	0	0	1	1	1
1	0	0	1	0	1	0	0	1
1	0	1	1	1	0	0	1	1
1	1	0	1	1	1	0	0	1
1	1	1	0	0	0	1	1	1 5

• Flip-Flop giriş denklemleri

$$T_2 = y_1 y_0$$

$$T_0 = 1$$

$$T_1 = y_0$$

Kullanılmayan Durumlar

Modulo-5 sayıcı

Şimdiki Durum			Sonraki Durum		
y ₂	$y_\mathtt{1}$	y_0	Y ₂	Y_{1}	Y_0
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	0	0	0

Kullanılmayan Durumlar

Şimdiki Durum			Sonraki Durum		
y ₂	y ₁	y_0	Y ₂	Y ₁	Y_0
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	0	0	0

y_1y_0 y_2	00	01	11	10
0	0	0	1	0
1	0	X	X	X

$$Y_2 = y_1 y_0$$

y_1y_0				
y ₂	00	01	11	10
0	0	1	0	1
1	0	X	X	X

$$y_1 = y_1' y_0 + y_1 y_0'$$

= $y_1 \oplus y_0$

$$Y_0 = y_2' y_0'$$

Kullanılmayan Durumlar

Şim	Şimdiki Durum			Sonraki Durum		
y ₂	y ₁	y ₀	Y ₂	Y ₁	Y_0	
0	0	0	0	0	1	
0	0	1	0	1	0	
0	1	0	0	1	1	
0	1	1	1	0	0	
1	0	0	0	0	0	
1	0	1	0	1	0	
1	1	0	0	1	0	
1	1	1	1	0	0	

$$Y_2 = y_1 y_0$$

$$Y_1 = y_1 \oplus y_0$$

$$Y_0 = y_2' y_0'$$

Devre kilitlenen türden değil.

Tasarım Örneği

 1 bitlik girişinden son 1010 geldiğinde çıkışı 1 olan devreyi tasarlayınız.

• Örnek: x= <u>1010</u> <u>1011</u> ise z= 0001 0000

Durum Tablosu

Şimdiki Durum		Giriş	Sonraki Durum		Çıkış
y ₁	y ₂	×	y_1	y_2	Z
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	1	0	0
0	1	1	0	1	0
1	0	0	0	0	0
1	0	1	1	1	0
1	1	0	0	0	1 1
1	1	1	0	1	0

VHDL Kodu

```
library IEEE;
use
    IEEE.STD_LOGIC_1164
    .ALL;

entity MeallyMachine is
    Port ( x : in STD_LOGIC;
    y : out STD_LOGIC;
    clk : in STD_LOGIC;
    rst : in STD_LOGIC);
end MeallyMachine;
```

```
architecture Behavioral of MeallyMachine is
  type state type is (BD,Bir,BirO,BirO1); signal durum : state type;
Begin
process(clk) begin
  if clk'event and clk='1' then
    if rst='1' then durum \leq BD; y \leq '0';
     else
       case durum is
          when BD =>
            v <= '0';
            if x='1' then durum <= Bir; else durum <= BD; end if;
         when Bir=>
            y <= '0';
            if x='1' then durum <= Bir; else durum <= Bir0; end if;
         when Bir0 =>
            y \le '0';
            if x='1' then durum <= Bir01; else durum <= BD; end if;
          when Bir01=>
            if x='1' then durum <= Bir; y <= '1'; else durum <= Bir0; y <= '0'; end if;
       end case;
    end if;
    end if;
end process;
                                                                                     59
end Behavioral;
```

Devre Şeması

Zamanlama Diyagramı

İdeal Hal: Gecikmeler = 0

İdeal Olmayan Hal: Gecikmeler ≠ 0


```
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity MooreMachine is
  Port ( x : in STD_LOGIC;
      y : out STD_LOGIC;
      clk : in STD_LOGIC;
      rst : in STD_LOGIC);
end MooreMachine;
```

VHDL Kodu

```
architecture Behavioral of MooreMachine is
type state type is (BD,Bir,BirO,BirO1,BirO10); signal durum : state type;
Begin
process(clk) begin
  if clk'event and clk='1' then
     if rst='1' then durum <= BD; y <= '0';
     else
       case durum is
          when BD =>
            y \le '0';
            if x='1' then durum <= Bir; else durum <= BD; end if;
          when Bir =>
            v <= '0':
            if x='1' then durum <= Bir; else durum <= Bir0; end if;
          when Bir0 =>
            y \le '0';
            if x='1' then durum <= Bir01; else durum <= BD; end if;
          when Bir01 =>
            v <= '0';
            if x='1' then durum <= Bir; else durum <= Bir010; end if;
          when Bir010 =>
            v <= '1';
            if x='1' then durum <= Bir; else durum <= BD; end if;
     end case;
   end if;
 end if;
end process;
end Behavioral;
                                                                        63
```

Devre Şeması

Zamanlama Diyagramı

İdeal Hal: Gecikmeler = 0

İdeal Olmayan Hal: Gecikmeler ≠ 0