Tutoría 08

Problema 1: Determine las funciones de transferencia $H(\omega) = \frac{v_0}{v_i}$ para los siguientes circuitos eléctricos mostrados en la figura 1.

Figura 1. Circuitos para el problema 1

Respuestas:

- $H(j\omega) = \frac{R}{(i\omega)^2 RLC + i\omega L + R}$
- $H(j\omega) = \frac{j\omega RL}{RR_c + i\omega L(R_c + R)}$
- $H(j\omega) = \frac{j\omega RC + (j\omega)^2 LC}{1 + j\omega RC + (j\omega)^2 LC}$
- $H(j\omega) = \frac{R}{(j\omega)^2 RLC + j\omega L + R}$

Problema 2: Según la función de transferencia $H(\omega)$ mostrada a continuación, realice el diagrama asintótico de Bode. Justifique mediante cálculos matemáticos todo el procedimiento que le permita realizar el diagrama asintótico y bosqueje en el plano \mathbf{s} el diagrama de polos y ceros.

$$H(\omega) = \frac{10}{(1+j\omega)(10+j\omega)}$$

Respuestas:

- $H_{dB} = -20 \log_{10} |1 + j\omega| 20 \log_{10} |1 + j\omega/10|$
- $\Theta(\omega) = -tan^{-1}(\omega) tan^{-1}(\omega/10)$
- Polos: s = -1 y s = -10

Problema 3: Según la función de transferencia $H(\omega)$ mostrada a continuación, realice el diagrama asintótico de Bode. Justifique mediante cálculos matemáticos todo el procedimiento que le permita realizar el diagrama asintótico y bosqueje en el plano \mathbf{s} el diagrama de polos y ceros.

$$H(s) = \frac{10s(s+20)}{(s+1)(s^2+60s+400)} \quad s = j\omega$$

Respuestas:

- $H_{dB} = 20 \log_{10}(0.5) + 20 \log_{10}|\omega| 20 \log_{10}|1 + j\omega| 20 \log_{10}|1 + j\omega/20|$
- $\Theta(\omega) = 90^{\circ} tan^{-1}(\omega) tan^{-1}(\omega/20)$

Problema 4: Según el diagrama de la respuesta en magnitud mostrado en la figura 2, determine la función de transferencia que da origen a la respuesta en magnitud.

Figura 2. Diagrama asintótico de magnitud (Bode)

Respuesta:

•
$$H(s) = \frac{2122(s+500)}{(s+50)(s+2122)}$$

Problema 5: Considere el circuito de la figura 3 y que el amplificador operacional es ideal.

Figura 3. Circuito para el problema 5

a) Determine la función de transferencia $H(\omega)$ en términos de los componentes $R_1,\,R_2,\,$ C_1 y C_2 .

Respuesta:

•
$$H(\omega) = \frac{1+j\omega R_2 C_2}{j\omega R_2 C_2 (1+j\omega R_1 C_1)}$$

b) A partir de la función de transferencia calculada en el punto anterior, determine $\boldsymbol{H}(\omega)$ para $R_1=125~k\Omega$, $R_2=10~k\Omega$, $C_1=4~\mu\mathrm{F}$ y $C_2=10~\mu\mathrm{F}$. Además, dibuje el diagrama de polos y ceros de $\boldsymbol{H}(\omega)$.

Respuesta:

•
$$H(\omega) = \frac{10(1+\frac{j\omega}{10})}{j\omega(1+\frac{j\omega}{2})}$$

c) Grafique el diagrama asintótico de Bode tanto de magnitud como de fase para $H(\omega)$.

Respuesta:

Problema 6: Considere el circuito de la siguiente figura y que $s=j\omega$.

Figura 4. Circuito para el problema 6

a) Determine la función de transferencia $H(s) = I_o(s)/I_s(s)$. Respuesta:

$$\bullet \quad H(s) = \frac{s}{s^2 + 3s + 1}$$

b) Determine el factor de amortiguamiento ζ y la frecuencia de corte ω_n del polo cuadrático de H(s).

Respuesta:

- $\zeta = \frac{3}{2}$ $\omega_n = 1 \, rad/s$
- c) Dibuje los diagramas de Bode de magnitud y de fase de $\boldsymbol{H}(\boldsymbol{s}).$ Respuesta:

