Equations différentielles

M5 – Chapitre 1

Equations du 1er degré I.

Solution générale 1.

$$y' + ay = b$$

$$y = \underbrace{y_H}_{\text{solution}} + \underbrace{y_P}_{\text{solution}}_{\text{homogène}}$$
 particulière

Solution homogène

$$y_H' + ay_H = 0 \iff y_H = ke^{-\int a}$$

Solution particulière : méthode de la variation de la constante

On pose $y=y_0\mathcal{C}$ avec y_0 une des solutions homogènes et $\mathcal{C}=\mathcal{C}(t)$ fonction.

$$y = y_0 C \quad y' = y_0' C + y_0 C'$$

$$\underline{y' + ay} = \underbrace{(y_0' + ay_0)}_{=0} C + y_0 C'$$

$$C' = \frac{b}{v_0} \Leftrightarrow C = \int \frac{b}{v_0} dt \Leftrightarrow C = C_0 + k$$

$$y = (C_0 + k)y_0$$
 $C_0 = \int \frac{b}{y_0}$ $y_0 = e^{-\int a}$

Equations différentielles

M5 - Chapitre 1

II. Equations du 2nd degré

1. Solution générale

$$ay'' + by' + cy = f(t)$$

$$y = \underbrace{y_H}_{\text{solution}} + \underbrace{y_P}_{\text{solution}}_{\text{homogène}}$$

2. Solution homogène

$$ar^2 + br + c = 0 \quad (Ec)$$

$\Delta < 0$	$\Delta = 0$	$\Delta > 0$
$r = \alpha \pm i\beta$	$r = -\frac{b}{2a}$	$r = -\frac{b \pm \sqrt{\Delta}}{2a}$
$y_H = (A\cos\beta t + B\sin\beta t)e^{at}$	$y_H = (At + B)e^{rt}$	$y_H = Ae^{r_1t} + Be^{r_2t}$

3. Solution particulière

a. Si
$$f(t) = P_0(t)e^{\lambda t}$$

$y_P =$	$=Q(t)e^{\lambda t}$
<i>J</i> 1	• • • •

λ pas solution de (Ec)	λ solution simple de (Ec)	λ solution double de (Ec)
$d^{\circ}Q = d^{\circ}P_0$	$d^{\circ}Q = d^{\circ}P_0 + 1$	$d^{\circ}Q = d^{\circ}P_0 + 2$

Puis remplacer y_P dans l'équation différentielle pour déterminer les coefficients du polynôme Q(t).

b. Sinon méthode de la variation de la constante

On cherche $|y_P = Ay_1 + By_2|$ avec y_1, y_2 solutions de l'équation homogène (à identifier avec l'équation homogène précédemment calculée) et A et B fonctions. On posera également pour les calculs $A'y_1 + B'y_2 = 0$.

$$y_{P} = Ay_{1} + By_{2} \qquad y_{P}' = Ay_{1}' + By_{2}' \qquad y_{P}'' = A'y_{1}' + Ay_{1}'' + B'y_{2}' + By_{2}''$$

$$\underline{ay_{P}'' + by_{P}' + cy_{P}}_{= f(t)} = A \underbrace{\left[ay_{1}'' + by_{1}' + cy_{1}\right]}_{= 0} + B \underbrace{\left[ay_{2}'' + by_{2}' + cy_{2}\right]}_{= 0} + A'y_{1}' + B'y_{2}'$$

$$\underline{A'y_{1}' + B'y_{2}' = f(t)}_{= 0} \text{ et } A'y_{1} + B'y_{2} = 0$$

$$A' = -B'y_{2}\frac{y_{1}'}{y_{1}} \Rightarrow -B'y_{2}\frac{y_{1}'}{y_{1}} + B'y_{2}' = f(t)$$

$$B'\left[y_{2}' - y_{2}\frac{y_{1}'}{y_{1}}\right] = f(t)$$
On calcule B' , B puis A avec $A' = -B'y_{2}\frac{y_{1}'}{y_{1}}$