

INSTITUTE OF TECHNOLOGY

BLANCHARDSTOWN

Year			4			
Semeste	er		Semester 1			
Date of	Examina	tion	AUG 2012			
Time of Examination			TBA			
Prog Code	BN402	Prog Title	Bachelor of Science (Honours) in Computing	Module Code	Comp H4018	
Prog Code	BN104	Prog Title		Module Code	Comp H4018	
Module Title D			Derivation of Algorithr	erivation of Algorithms		

Internal Examiner(s): Mr. Stephen Sheridan External Examiner(s): Dr. Richard Studdert

Instructions to candidates:

- 1) To ensure that you take the correct examination, please check that the module and programme which you are following is listed in the tables above.
- 2) Answer any four questions.
- 3) All questions carry 25 marks.

DO NOT TURN OVER THIS PAGE UNTIL YOU ARE TOLD TO DO SO

(ANSWER ANY FOUR QUESTIONS)

Question 1

Write a specification and derive a solution for the following problem.

Given an interger array f[0..N), $N \ge 0$, determine if the array contains all 0's.

[25 marks]

Question 2

Write down the invariants **P0** and **P1** which describe the program below and hence derive the programs formal proof. An <u>annotated</u> program should be included in your answer.

```
| con
    N: int; \{ N \ge 0 \}
     f: array[0..N) of char;
  var
     freqlower: int;
      k: int;
      freqlower,k := 0, 0;
      do k < N \rightarrow
        if f.k \ge 'a' \land f.k \le 'z' \rightarrow
                freqlower := freqlower + 1;
        [] f.k < 'a' \lor f.k > 'z' \rightarrow
                skip;
        fi:
        k := k + 1;
     od
  { freqlower = \#j : 0 \le j < N : f.j \ge 'a' \land f.j \le 'z'}
][
```

[25 marks]

Question 3

Formally derive a solution to the given specification. Your answer should include a complete solution.

```
[[ con
    N: int; { N ≥ 0 }
    f: array[0 .. N ) of int;
var
    b: boolean;
    S
    { b = ∃j : 0 ≤ j < N : f.j mod 2 = 0}
]</pre>
```

[25 marks]

Question 4

Derive a solution for the following specification. Your answer must include a complete solution.

[25 marks]

Question 5

Use an invariant diagram to derive an O(N) solution to the following specification. Your answer should include a complete solution.

Note: Only swap operations are allowed on f.

[25 marks]

Appendix: Laws of the Calculus

Let P, Q, R be propositions

- 1. Constants
 - $P \vee true = true$
 - $P \vee false = P$
 - $P \wedge true = P$
 - $P \land false = false$
 - $true \Rightarrow P \equiv P$
 - $false \Rightarrow P \equiv true$
 - $P \Rightarrow ture = true$
 - $P \Rightarrow false = \neg P$
- 2. Law of excluded middle : $P \lor \neg P \equiv true$
- 3. Law of contradiction: $P \land \neg P = \text{false}$
- 4 Negation : $\neg \neg P \equiv P$
- 5. Associativity: $P \lor (Q \lor R) \equiv (P \lor Q) \lor R$
 - $P \wedge (Q \wedge R) = (P \wedge Q) \wedge R$
- 6. Commutativity: $P \lor Q \equiv Q \lor P$
 - $P \wedge Q \equiv Q \wedge P$
- 7. Idempotency: $P \lor P \equiv P$
 - $P \wedge P \equiv P$
- 8. De Morgan's laws : $\neg (P \land Q) \equiv \neg P \lor \neg Q$
 - $\neg (P \lor Q) \equiv \neg P \land \neg Q$
- 9. Implication $P \Rightarrow Q \equiv \neg P \lor Q$

$$P \Rightarrow Q \equiv \neg Q \Rightarrow \neg P$$

$$(P \land Q) \Rightarrow R \equiv P \Rightarrow (Q \Rightarrow R)$$

- 10. (If and only if) \equiv : $P = Q = (P \Rightarrow Q) \land (Q \Rightarrow P)$
- 11. Laws of distribution: $P \land (Q \lor R) \equiv (P \land Q) \lor (P \land R)$
 - $P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$
- 12. Absorption: $[P \land (P \lor R) = P]$
 - $[P \lor (P \land R) \equiv P]$

13. Predicate Calculus

Negation

$$\forall x \neg P(x) \equiv \neg \exists x P(x)$$

 $\exists x \neg P(x) \equiv \neg \forall P(x)$

$$\exists x P(x) \equiv \neg(\forall x \neg P(x))$$

Universal Quantification

$$[(\forall x : P(x)) \land (\forall x : Q(x)) = (\forall x : P(x) \land Q(x))]$$

$$[(\forall x: P(x)) \lor (\forall x: Q(x)) \Rightarrow (\forall x: P(x) \lor Q(x))]$$

[Q
$$\vee$$
 (\forall x : P(x)) = (\forall x: Q \vee P(x))], where x not free in Q

$$[Q \land (\forall x: P(x)) = (\forall x: Q \land P(x))]$$
, where x not free in Q

Existential Quantification

$$\left[(\exists x : P(x) \land Q(x)) \Rightarrow (\exists x : P(x)) \land (\exists x : Q(x)) \right]$$

$$[(\exists x : P(x)) \lor (\exists x : Q(x)) = (\exists x : P(x) \lor Q(x))]$$

$$[Q \lor (\exists x: P(x)) = (\exists x: Q \lor P(x))]$$
, where x not free in Q

$$[Q \land (\exists x: P(x)) = (\exists x: Q \land P(x))]$$
, where x not free in Q

$$\left[(\exists x : P(x)) = \neg (\forall x : \neg P(x)) \right]$$

$$[(\neg \exists x : P(x)) = (\forall x : \neg P(x))]$$

14. Universal Quantification over Ranges

$$[\forall i : R : P = \forall i : \neg R \lor P]$$
 Trading

$$[\forall i : false : P = true]$$

$$[\forall i : i = x : P = P(i := x)]$$
 One-point rule

$$\left[(\forall i:R:P) \ \land \ (\forall i:R:Q) \ \equiv \ (\forall i:R:P \land \ Q) \ \right]$$

$$\left[(\forall i:R:P) \land (\forall i:S:P) \equiv (\forall i:R \lor S:P) \right]$$

$$\big[(\forall i:R:P) \ \lor \ (\forall i:R:Q) \Rightarrow (\forall i:R:P \lor Q) \big]$$

$$\left[\mathsf{Q} \vee (\forall \mathsf{i} : \mathsf{R} : \mathsf{P}) \, \equiv \, (\forall \mathsf{i} : \mathsf{R} : \mathsf{Q} \vee \mathsf{P}) \, \right]$$

$$[Q \land (\forall i : R : P) = (\forall i : R : Q \land P)]$$

15. Existential Quantification over Ranges

 $[\exists i : R : P = \exists i : R \land P] \text{ Trading}$ $[\exists i : false : P = false]$ $[\exists i : i = x : P = P(i := x)] \text{ One-point rule}$ $[(\exists i : R : P \land Q) \Rightarrow (\exists i : R : P) \land (\exists i : R : Q)]$ $[(\exists i : R : P) \lor (\exists i : R : Q) = (\exists i : R : P \lor Q)]$ $[Q \lor (\exists i : R : P) = (\exists i : R : Q \lor P)]$ $[Q \land (\exists i : R : P) = (\exists i : R : Q \land P)]$