BUSINESS ANALYTICS Using R

CONTENTS

SL No.	Topics	SL No.	Topics
1	Principal Component Analysis	5	Multinomial Regression
2	Factor Analysis	6	Classification and Regression Tree
3	Cluster Analysis	7	Survival Analysis
4	Poisson Regression	8	Ordinal Logistic Regression

Indian Statistical Institute

PRINCIPAL COMPONENTS ANALYSIS

- A dimensionality reduction technique
- Reduces the dimensionality of multivariate data without compromising much on the variation in the original data set.
- Achieved by transforming the original varaible into a new set of variables namely prinipal components (PCAs)
- PCAs are uncorrelated and ordered
- Hence the first few of them account for most of the variation in the orignal variables

- Desribes the variation in a set of correlated variables $x = (x_1, x_2, ---, x_q)$ by a set of uncorrelated variables $y = (y_1, y_2, ---, y_q)$
- Each principal component is a linear combination of the x variables.
- The new variables are derived in decreasing order of importance.
- Hence y₁ account for maximum possible variation in x among all linear combinations of x
- y₂ account for maximum possible of the remaining variation subject to being uncorrelated to y1. and so on.

- A dimensionality reduction technique
- Large number of correlated variables can be reduced to a manageable number of uncorrelated or independent factors.
- The emphasis is on the identification of underlying factors that might explain the dimensions associated with large data sets

$$y_i = a_{i1}x_1 + a_{i2}x_2 + a_{i3}x_3 + ---+ a_{iq}x_q$$

Where y_i: estimate of ith principal component, a_i: weight or score coefficient, x_i: ith variable and k: number of variables

The coefficients are selected such that

- the first principal component explains largest portion of the total variation
- the second first principal component accounts for the most of the residual variance, etc.

- Helps to understand the variability in large data sets with inter correlated variables using a smaller number of uncorrelated factors.
- Explaining variability of a set of n variables using m factors where m < n
- The emphasis is on the identification of underlying factors that might explain the dimensions associated with large data

Objectives

- Reduces the complexity of a large set of variables by summarizing them in a smaller set of components or factors
- Tries to improve the interpretation of complex data through logical factors

Computation of sample Principal Components

- The first principal component is that linear combination of original variables whose sample variance is greatest amongst all possible such linear combinations
- The second principal component is the linear combination of original variables that account for maximum proportion of the remaining variance subject to being uncorrelated with the first principal component and so on
- The first principal component is

$$y_1 = a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + ---+ a_{1q}x_q$$

The variance of y_1 be increased by increasing $a_1 = (a_{11}, - - -, a_{1q})$, a restriction must be placed on these coefficients.

The sensible restriction or constraint is to ensure that sum of squares of the coefficients should be equal to one

$$a_1'a_1 = 1$$

Computation of sample Principal Components

- To choose the elements of a_1 which maximizes the variance of y_1 subject to the constraint of a_1 ' $a_1 = 1$
- Since y₁ is a linear combination of x, the sample variance of y₁ is given by

$$Var(y_1) = a_1'Sa_1$$

where S is the sample covariance matrix of x

The coefficients a₁ of first principal component y₁ is computed by solving

Maximize

$$z = a_1$$
'Sa₁
Subject to
 a_1 'a₁ = 1

The solution to the above problem (using Lagrange multiplier method) is the Eigen vector of S corresponding to the largest Eigen value of S denoted by λ_1

Computation of sample Principal Components

In general, the coefficients a_i of first principal component y_i is computed by solving

Maximize

$$z = a_i Sa_i$$

Subject to
 $a_i a_i = 1$

The solution to the above problem (using Lagrange multiplier method) is the Eigen vector of S corresponding to the ith largest Eigen value of S denoted by λ_i

Since $a_i'a_i = 1$, the variance of ith principal component y_1 will be λ_i

Steps

- Prepare correlation matrix
- Extract a set of principal components using correlation matrix
- Determine the number of principal components
- Interpret results

Example: Suppose a researcher wants to determine the underlying benefits consumers seek from the purchase of a toothpaste. A sample of 30 respondents was interviewed. The respondents were asked to indicate their degree of agreement with the following statements using a 7 point scale (1: strongly disagree, 7: strongly agree)

- 1. It is important to buy a toothpaste that prevents cavities
- 2. I like a toothpaste that gives shiny teeth
- 3. A toothpaste should strengthen your gums
- 4. I prefer toothpaste that freshens breath
- 5. Prevention of tooth decay is not an important benefit offered by a toothpaste
- 6. The most important consideration in buying a toothpaste is attractive teeth

Step 1: Normalize the data

z transform:

Transformed data = (Data – Mean) / SD

Reading ghe file to R

>mydata = mydata[,2:7]

Transforming the variables

>myzdata = scale(mydata)

Step 2: Check for Correlation

- Variables must be correlated for data reduction
- > cor(myzdata)

Correlation Matrix

		x1	x2	х3	x4	x5	х6
	x1	1.000	053	.873	086	858	.004
	x2	053	1.000	155	.572	.020	.640
Correlation	x 3	.873	155	1.000	248	778	018
Correlation	x4	086	.572	248	1.000	007	.640
	x5	858	.020	778	007	1.000	136
	x6	.004	.640	018	.640	136	1.000

High correlation between x_1 , x_3 & x_5

Good correlation between x₂, x₄ & x₆

Indian Statistical Institute

PRINCIPAL COMPONENTS ANALYSIS

Step 4: Method used: Principle Component Analysis

- > mymodel = princomp(myzdata)
- >summary(mymodel)

Step 4: Method used: Principle Component Analysis

Used to identify minimum number of components accounting for maximum variance in the data

Eigen Values: Amount of variance attributed to a component

Total Variance = 6 (Sum of all Eigen values)

Prop. variance for PC1= Eigen value of PC1 / Total Variance (2.731/6 = 0.455)

Component	SD	Variance	Proportion of Variance	Cumulative Proportion of Variance
PC 1	1.653	2.732	0.455	0.455
PC 2	1.489	2.217	0.369	0.825
PC 3	0.665	0.442	0.074	0.899
PC 4	0.584	0.341	0.057	0.955
PC 5	0.427	0.182	0.030	0.986
PC 6	0.292	0.085	0.014	1.000
Total		6.000		

Step 4: Determine the number of Components

- 1. Based on Eigen Values: Only components with Eigen value > 1.0 or Eigen value > 0.7 are selected.
- 2. Based on cumulative % variance: Factors extracted should account for at least 65 % of variance

Component	SD	Variance	Proportion of Variance	Cumulative Proportion of Variance
PC 1	1.653	2.732	0.455	0.455
PC 2	1.489	2.217	0.369	0.825
PC 3	0.665	0.442	0.074	0.899
PC 4	0.584	0.341	0.057	0.955
PC 5	0.427	0.182	0.030	0.986
PC 6	0.292	0.085	0.014	1.000
Total		6.000		

Number of factors selected: 2

Step 4: Determine the number of Factors

>plot(mymodel)

3. Based on Scree plot: Plot of the Eigen values against the number of factors in order of extraction. The number of components is identified based on slope change of scree plot

Step 5: Calculate Component Scores - Eigen Vectors

>loadings(mymodel)

$$y_i = a_{i1}x_1 + a_{i2}x_2 + a_{i3}x_3 + ---+ a_{ik}x_k$$

	Component			
	y ₁ y ₂			
x ₁	0.562	-0.170		
X ₂	-0.182	-0.534		
X ₃	0.566	-0.088		
X ₄	-0.207	-0.530		
X ₅	-0.526	0.236		
x ₆	-0.107 -0.585			

Step 5: Interpret Components – Eigen Vectors

	Component			
	y ₁ y ₂			
X ₁	0.562	-0.170		
X ₂	-0.182 -0.534			
X ₃	0.566 -0.088			
X ₄	-0.207 -0.530			
X ₅	-0.526 0.236			
X ₆	-0.107	-0.585		

Component 1 is correlated with x₁, x₃ & x₅

Component 2 is correlated with x₂, x₄ & x₆

Step 5: Interpret Components

	Component			
	У ₁	y ₂		
Prevention of Cavities	0.562	-0.170		
x ₂	-0.182	-0.534		
Strong Gum	0.566	-0.088		
X ₄	-0.207	-0.530		
Non Prevention of Tooth Decay	-0.526	0.236		
x ₆	-0.107	-0.585		

Interpretation

Component 1 (y₁) represents the health related benefits

Step 5: Interpret Components

	Component				
	У ₁	y ₂			
Prevention of Cavities	0.562	-0.170			
Shiny Teeth	-0.182	-0.534			
Strong Gum	0.566	-0.088			
Fresh Breath	-0.207	-0.530			
Non Prevention of Tooth Decay	-0.526	0.236			
Attractive Teeth	-0.107	-0.585			

Interpretation

Component 2 (y₂) represents the social related benefits

Step 6: Reduced Data Set

>pc = mymodel\$scores

>cbind(pc[,1], pc[,2])

Respondent	PC1	PC2	Respondent	PC1	PC2
1	1.953	-0.071	16	1.412	0.1352
2	-1.6763	0.9852	17	1.261	0.6098
3	2.4298	0.6577	18	2.5041	-0.2372
4	-0.0908	-1.6975	19	-1.2981	1.3974
5	-1.5154	2.7238	20	-1.2777	-1.7423
6	1.6696	0.0148	21	-1.449	1.7912
7	1.0622	1.1536	22	0.9783	-0.2455
8	2.0882	-0.5402	23	-1.4107	0.8217
9	-1.29	1.3543	24	-0.9281	-2.6799
10	-2.7958	-1.6321	25	1.4305	-0.0294
11	2.0398	0.3893	26	-1.0791	-2.2053
12	-1.6682	0.9421	27	1.4698	0.106
13	2.4379	0.6146	28	-1.5875	-1.2162
14	-0.4251	-1.9974	29	-0.8027	-3.2699
15	-1.6509	1.8801	30	-1.7904	1.987

Exercise 1: Data on Customer satisfaction survey conducted by IT company is given below. Each customer is asked to were asked to indicate their degree of agreement with the following statements using a 7 point scale (1: strongly disagree, 7: strongly agree). Can you reduce the 14 variables into less number of factors?

Indian Statistical Institute

EXPLORATORY FACTOR ANALYSIS

- Many times it may not be possible to measure some the concepts directly
- Such cases the concepts are examined indirectly by collecting information on variables which can be directly measurable and assumed to be indicators of the concepts of interest.

Example

It is difficult to conclude a student is interested in science or arts directly. The students scores on science subjects or arts subjects can be an indicator for the students interest in science or arts.

- Concepts which cannot be measured directly are called latent variables or factors
- The variables which can be directly measured and related to latent variables are called manifest variables

The method of analysis to uncover the relationship between latent variables and manifest variables is factor analysis

The method is based on multiple regression, except in factor analysis manifest variables is regressed on unobservable latent variables

Types of Factor Analysis: Exploratory and Confirmatory

Exploratory Factor Analysis

Used to investigate the relationship between factors and manifest variables without making any assumption about which manifest variables is related to which factors

Confirmatory Factor Analysis

Used to test whether a specific factor model postulated a priori on the relationship between factors and manifest variables is correct or not

Factor analysis model

A regression model linking the manifest variables to a set of unobserved (or unobservable) latent variables

Assumes that the observed relationships between the manifest variables are the result of relationship between manifest variables and latent variables

The relationship between the manifest variables is measured using covariance matrix or correlation matrix.

Factor analysis model

Let a set of observed or manifest variables $x = (x_1, x_2, ---, x_q)$ be linked to k unobserved latent variables or common factors $f_1, f_2, ---, f_k$, where k < q by the regression model given by

Where

 $\boldsymbol{\lambda_j}$ are regression coefficients of the x variables on the common factors known as factor loadings

Shows how each observed variable x_i, depends on the common factors

Factor analysis model

The regression model is

$$x = \Lambda f + \mu$$

Assumptions

The random disturbance terms μ_1 , μ_2 , - - -, μ_q are uncorrelated with each other and with the factors f_1 , f_2 , - - -, f_k .

Hence correlation between the observed variables arise from their relationship with the common factors.

The factors f_1 , f_2 , - - -, f_k also uncorrelated and occur in the standardized form with mean zero and standard deviation one

Principal Component Method of factor analysis model

Very similar to principal component analysis but not operating directly on S or R but on the reduced covariance matrix S*

$$S^* = S - \psi$$

Steps

- Prepare correlation matrix
- Extract a set of factors using correlation matrix
- Determine the number of factors
- Rotate factors to increase interpretability
- Interpret results

Example: Suppose a researcher wants to determine the underlying benefits consumers seek from the purchase of a toothpaste. A sample of 30 respondents was interviewed. The respondents were asked to indicate their degree of agreement with the following statements using a 7 point scale (1: strongly disagree, 7: strongly agree)

- 1. It is important to buy a toothpaste that prevents cavities
- 2. I like a toothpaste that gives shiny teeth
- 3. A toothpaste should strengthen your gums
- 4. I prefer toothpaste that freshens breath
- 5. Prevention of tooth decay is not an important benefit offered by a toothpaste
- 6. The most important consideration in buying a toothpaste is attractive teeth

Step 1: Normalize the data

z transform:

Transformed data = (Data – Mean) / SD

Reading ghe file to R

>mydata = mydata[,2:7]

Transforming the variables

>myzdata = scale(mydata)

Step 2: Check for Correlation

- Variables must be correlated for data reduction
- > cor(myzdata)

Correlation Matrix

		x1	x2	х3	x4	x5	х6
	x1	1.000	053	.873	086	858	.004
	x2	053	1.000	155	.572	.020	.640
Correlation	x 3	.873	155	1.000	248	778	018
Correlation	x4	086	.572	248	1.000	007	.640
	x5	858	.020	778	007	1.000	136
	x6	.004	.640	018	.640	136	1.000

High correlation between x1, x3 & x5

Good correlation between x2, x4 & x6

Step 3: Check for Sampling (factor) adequacy

>library(psych)

> KMO(myzdata)

Statistics	Value	Criteria
Kaiser, Meyer, Olkin (KMO)	0.66	> 0.5

Step 4: Identifying the number of factors

Compute eigen values

Choose the factors with eigen values > 1

> s = cov(myzdata)

> s_eigen = eigen(s)

> variance = s_eigen\$values

Factor	Variance	% Variance	Cum % Variance
F1	2.731188	45.52	45.52
F2	2.218119	36.97	82.49
F3	0.441598	7.36	89.85
F4	0.341258	5.69	95.54
F5	0.182628	3.04	98.58
F6	0.085209	1.42	100.00
Total	6		

Step 4: Determine the number of Factors

- 1. Based on Eigen Values: Only factors with Eigen value > 1.0 are selected
- 2. Based on cumulative % variance: Factors extracted should account for at least 65 % of variance

Factor	Variance	% Variance	Cum % Variance
F1	2.731188	45.52	45.52
F2	2.218119	36.97	82.49
F3	0.441598	7.36	89.85
F4	0.341258	5.69	95.54
F5	0.182628	3.04	98.58
F6	0.085209	1.42	100.00
Total	6		

Number of factors selected: 2

Step 4: Determine the number of Factors

- > barplot(variance, xlab = "Factor", ylab = 'Variance', main = "Scree Plot")
- 3. Based on Scree plot: Plot of the eigen values against the number of factors in order of extraction. The number of factors is identified based on slope change of scree plot

Number of factors selected: 2

Step 5: Calculate Factor Scores

> mymodel = factanal(myzdata, 2)

	Component 2			
x1	0.968	0.000		
x2	0.000 0.749			
х3	0.898 -0.140			
x4	0.000	0.784		
x5	-0.887	0.236		
х6	0.000	0.830		

Interpretation is difficult when the variables are evenly loaded on many factors Solution: Rotation

Step 5: Calculate Factor Scores: Rotation

A process by which a solution is made more interpretable without changing its underlying mathematical properties.

Types of rotations

- 1. Orthogonal rotation
- 2. Oblique rotation

Orthogonal rotation

Restricts the rotated factors to being uncorrelated

Oblique rotation

allows the rotated factors to be correlated

Step 5: Calculate Factor Scores: Rotation

A process by which a solution is made more interpretable without changing its underlying mathematical properties.

Commonly used rotation: Orthogonal rotation

Commonly used orthogonal rotation: varimax rotation

Try to achieve factors with a few large loadings and as many near – zero loadings as possible

Step 5: Calculate Factor Scores: Rotation

- > myrotatedmodel = factanal(myzdata, 2, rotation = "varimax", scores = "regression")
- > myrotatedmodel

	Component			
	1 2			
x1	0.968	0.000		
x2	0.000 0.749			
х3	0.898 -0.140			
x4	0.000	0.784		
x5	-0.887	0.236		
х6	0.000	0.830		

Step 5: Interpret Components – Eigen Vectors

	Component			
	1 2			
x1	0.968	0.000		
x2	0.000	0.749		
х3	0.898	-0.140		
x4	0.000	0.784		
х5	-0.887 0.23			
х6	0.000	0.830		

Component 1 is correlated with x1, x3 & x5

Component 2 is correlated with x2, x4 & x6

Step 5: Interpret Components

	Component		
	1	2	
Prevention of Cavities	0.968	0.000	
x2	0.000	0.749	
Strong Gum	0.898	-0.140	
x4	0.000	0.784	
Non Prevention of Tooth Decay	-0.887	0.236	
х6	0.000	0.830	

Interpretation

Component 1 represents the health related benefits

Step 5: Interpret Components

	Component 2	
Prevention of Cavities	0.968	0.000
Shiny Teeth	0.000	0.749
Strong Gum	0.898	-0.140
Fresh Breath	0.000	0.784
Non Prevention of Tooth Decay	-0.887	0.236
Attractive Teeth	0.000	0.830

Interpretation

Component 2 represents the social related benefits

Step 6: Reduced Data Set

> output = myrotatedmodel\$scores

> output

Respondent	Factor1	Factor2	Respondent	Factor1	Factor2
1	1.3046	-0.2413	16	0.8934	-0.342
2	-1.2952	-0.2556	17	0.5714	-0.5502
3	1.1629	-0.7569	18	1.501	-0.24
4	0.1747	1.0108	19	-0.9845	-0.6938
5	-1.428	-1.3608	20	-0.4187	1.259
6	0.9864	-0.2511	21	-1.3132	-0.8042
7	0.4605	-0.9084	22	0.5706	-0.0143
8	1.1867	-0.0515	23	-0.9855	-0.1067
9	-0.7678	-0.6358	24	0.0209	1.7277
10	-1.1191	1.3473	25	0.8821	-0.1881
11	1.0738	-0.6495	26	-0.3011	1.5195
12	-1.0785	-0.1976	27	0.4675	-0.2914
13	1.3796	-0.6989	28	-0.5606	0.7776
14	0.0978	1.2286	29	0.1111	2.1146
15	-1.394	-0.7847	30	-1.1988	-0.9623

Exercise 1: Data on Customer satisfaction survey conducted by IT company is given below. Each customer is asked to were asked to indicate their degree of agreement with the following statements using a 7 point scale (1: strongly disagree, 7: strongly agree). Can you reduce the 14 variables into less number of factors?

Indian Statistical Institute

CLUSTER ANALYSIS

A technique used to classify objects or cases into relatively homogeneous groups called clusters

Cluster

A collection of data objects similar to one another within the same cluster and dissimilar to the objects in other clusters

Cluster analysis

A procedure for grouping a set of data objects into clusters

• A technique used to classify objects or cases into relatively homogeneous groups called clusters

Example: A survey was done to study the consumers attitude towards shopping. The consumers need to be clustered based on their attitude towards shopping. The respondents were asked to express their degree of agreement with the following statements on a 7 point scale (1: strongly disagree, 7: strongly agree).

- x1: Shopping is fun
- x2: Shopping is bad for your budget
- x3: I combine shopping with eating out
- x4: I try to get the best buys when shopping
- x5: I don't care about shopping
- x6: You can save a lot os money by comparing prices

Step 1: Choose Type of clustering - Agglomerative Clustering

- Hierarchical Clustering characterized by development of a hierarchy or tree like structure
- Starts with each object or record as separate clusters
- Clusters are formed by grouping objects in to bigger and bigger clusters until all objects are in one cluster.
- The objects grouped based on linkage measure
- Commonly used linkage measure is Euclidean distance d,
- Euclidean distance between two records i and j, d_{ij} is defined as

$$d_{ij} = \sqrt{\sum_{k=1}^{q} (x_{ik} - x_{jk})^2}$$

Step 1: Choose Type of clustering - Agglomerative Clustering

- The data are not partitioned into a particular number of classes or groups at a single step
- Consists of a series of partitions that may run from a single cluster containing all individuals to n clusters, each contain a single individual
- Produce partitions by a series of successive fusions of the n individuals into groups
- Fusion once made are irreversible, when the algorithm has placed two individuals in the same group they cannot subsequently appear in different groups

Types of Linkage

1. Single Linkage:

Based on minimum distance

The first two objects clustered are those having minimum distance between them

$$d_{\mathbf{A}B} = \min_{\substack{i \in A \\ i \in B}} (d_{ij})$$

2. Complete Linkage:

Based on maximum distance

The distance between two clusters is calculated as the distance between two furthest points d = max(d)

$$d_{\mathbf{A}B} = \max_{\substack{i \in A \\ i \in B}} (d_{ij})$$

Where d_{AB} is the distance between two clusters A and B and d_{ij} is the distance between individuals i and j found from the initial inter – individual distance matrix

Types of Linkage

3. Average Linkage:

Based on average distance

The distance between two clusters is defined as the average of the distance between all pairs of points

Preferred method

$$d_{AB} = \frac{1}{n_A n_B} \sum_{i \in A} \sum_{j \in B} d_{ij}$$

Where n_A and n_B are the numbers of individuals in clusters A and B

Step 2: Choose Method

Variance method:

Generates clusters with minimum within cluster variance

Uses Ward's Procedure

Ward's Procedure

For each cluster means for all the variables are computed

For each object or record, the Euclidean distance to the cluster mean is computed

R Code

Read data to mydata and compute distance

> distance = dist(mydata, method = "euclidean")

Generate Clusters

>mymodel = hclust(distance, method = "ward")

Plot Dendogram

>plot(mymodel)

Decide on number of clusters: Dendrogram

Cluster Dendrogram

distance hclust (*, "ward.D")

Decide on number of clusters: Dendrogram

Stages is given in x axis and distance in y axis

When one move from 3 cluster to 2 cluster the distance increases drastically. So 3 cluster may be appropriate

```
>groups = cutree(mymodel, k = 3)
```

> rect.hclust(mymodel, k = 3, border = "red")

Cluster Dendrogram

distance hclust (*, "ward.D")

Identification of cluster membership for each record

> output = cbind(mydata, groups
>write,csv(output, "E:/ISI_Mumbai/output.csv")

Respondent id	x 1	x2	х3	x4	x5	x6	groups
1	6	4	7	3	2	3	1
2	2	3	1	4	5	4	2
3	7	2	6	4	1	3	1
4	4	6	4	5	3	6	3
5	1	3	2	2	6	4	2
6	6	4	6	3	3	4	1
7	5	3	6	3	3	4	1
8	7	3	7	4	1	4	1
9	2	4	3	3	6	3	2
10	3	5	3	6	4	6	3
11	1	3	2	3	5	3	2
12	5	4	5	4	2	4	1
13	2	2	1	5	4	4	2
14	4	6	4	6	4	7	3
15	6	5	4	2	1	4	1
16	3	5	4	6	4	7	3
17	4	4	7	2	2	5	1
18	3	7	2	6	4	3	3
19	4	6	3	7	2	7	3
20	2	3	2	4	7	2	2

Cluster Profile

> aggregate(mydata, by = list(groups), FUN = mean)

Variables		Cluster Mean			
		2	3		
x1 (shopping is fun)	5.750	1.667	3.500		
x2 (shopping upsets my budget)	3.625	3.000	5.833		
x3 (I combine shopping with eating out)	6.000	1.833	3.333		
x4 (I try to get best buys when shopping)	3.125	3.500	6.000		
x5 (I don't care about shopping)	1.875	5.500	3.500		
x6 (save a lot by comparing prices	3.875	3.333	6.000		

Cluster 1: High on x1 & x3 but low on x5 Fun loving and concerned

Cluster 2: Low on x1 & x3 but High on x5
Careless & no fun in shopping (apathetic)

Cluster 3: High on x2 x4 & x6

Concerned about spending money (Economical)

k mean clustering

Partitions n individuals in a set of multivariate data into k groups or clusters $(G_1, G_2, ---, G_k)$

k is given or a possible range is specified

Common approach is to identify the k groups which minimizes the within – group sum of squares (WGSS)

$$WGSS = \sum_{j=1}^{q} \sum_{l=1}^{k} \sum_{i \in G_i} (x_{ij} - \overline{x}_{j}^{(1)})^2$$

Where $\bar{x}_{j}^{(l)} = \frac{1}{n_{i}} \sum_{i \in G_{i}} x_{ij}$ is the mean of the individuals in group G_{l} on variable j

Computing WGSS for each value of k and choose that of value of k which minimize WGSS is almost impossible

One option is to plot WGSS for different values of k and choose the optimum k at which the slope of the curve changes

k mean clustering

Computing WGSS for each value of k and choose that of value of k which minimize WGSS is almost impossible

Moreover as number of cluster increases BGSS decreases or BGSS / Total SS will increase

One option is to plot BGSS/ Total SS for different values of k and choose the optimum k at which the curve flattens or slope changes

Example: Cluster the data given in cluster_Analysis_example.csv using k mean method

- >mynewmodel = kmeans(mydata,3)
- > mynewmodel
- >cluster = mynewmodel\$cluster
- >output = cbind(mydata, cluster)
- > write.csv(output, "E:/MSQMS/Applied_Multivariate_Analysis/output.csv")

To find optimum k, compute BGSS / Total SS for different values of k

> kmeans(mydata,k, k = .1,2, - - -)

Example: Cluster the data given in cluster_Analysis_example.csv using k mean method

optimum k,

> kmeans(mydata,k, k = .1,2, - - -)

k	WGSS/Total SS			
1	0.0			
2	47.5			
3	75.8			
4	79.6			
5	81.4			
6	83.7			
7	85.8			
8	89.2			

Example: Cluster the data given in cluster_Analysis_example.csv using k mean method

optimum k, > plot(k, WGSS, type = "b")

The curve flattens after k = 3, hence optimum k is 3

Exercise 1: Data on Customer satisfaction survey conducted by IT company is given below. Each customer is asked to were asked to indicate their degree of agreement with the following statements using a 7 point scale (1: strongly disagree, 7: strongly agree). Can you group the customers into meaningful groups?

Indian Statistical Institute

POISSON REGRESSION

Used to develop models when the output or response variable y is count Models the logarithm of the output variable

$$y = e^{a+b_1x_1+b_2x_2+---+b_kx_k}$$

y: output variable

x_i's: independent variables

a, b₁, b₂, ---: coefficients to be estimated

If estimate of $p \ge 0.5$, then classified as success, otherwise as failure

Usage: When the dependant variable (Y variable) is count

Example: Develop a model to predict the number of code review defects. The control factors identified are author skill (0: Low, 1: High), reviewer skill (0: Low, 1: High), review type (0: peer, 1: fagan), preparation time and size. The data is given in CR_Data.csv?

- 1. Reading the file and variables
 - > size = mydata\$Size
 - > askill = mydata\$Author.Skill
 - > rskill = mydata\$Reviewer.skill
 - > rtype = mydata\$Review.type
 - > ptime = mydata\$Preparation.time
 - > defects = mydata\$Defects

Usage: When the dependant variable (Y variable) is count

- 2. Converting control variables to factors
 - > askill = factor(askill)
 - > rskill = factor(rskill)
 - > rtype = factor(rtype)

3. Perform Poisson regression

- > mymodel = glm(defects ~ size + askill + rskill + rtype + ptime, family = poisson())
- > summary(mymodel)

	Estimate	Std. Error	Z	p value
(Intercept)	6.01365	0.218261	27.553	0.0000
size	0.02265	0.002585	8.761	0.0000
askill1	-0.7701	0.067414	-11.423	0.0000
rskill1	-0.0698	0.040083	-1.74	0.0818
rtype1	0.60998	0.067548	9.03	0.0000
ptime	-6.6641	0.823795	-8.09	0.0000

4. Fitted Values

- > pred = predict(mymodel, type = "response")
- > res = defects pred
- > output = cbind(defects, pred, res) > write.csv(output, "E:/Infosys/Part 2/output.csv")

SL No	Actual Defects	Predicted Defects	Residuals	SL No	Actual Defects	Predicted Defects	Residuals
1	37	49.284	-12.284	15	78	129.600	-51.600
2	55	53.592	1.408	16	77	68.719	8.281
3	49	54.055	-5.055	17	135	144.130	-9.130
4	45	54.424	-9.424	18	141	136.840	4.160
5	88	102.915	-14.915	19	220	148.800	71.200
6	45	54.055	-9.055	20	145	205.335	-60.335
7	89	133.473	-44.473	21	165	127.394	37.606
8	72	59.852	12.148	22	120	160.056	-40.056
9	49	58.647	-9.647	23	170	149.922	20.078
10	66	51.112	14.888	24	250	222.637	27.363
11	37	57.100	-20.100	25	197	142.921	54.079
12	118	125.045	-7.045	26	150	167.176	-17.176
13	65	59.584	5.416	27	187	156.756	30.244
14	75	51.577	23.423				

- 5. Normality test on residuals
- > qqnorm(res)
- > qqline(res)

- 5. Normality test on residuals
- > shapiro.test(res)

Statistic	Value
w	0.9783
p value	0.8233

Exercise 2: The data on the number of awards received by different students based on the program to which they are admitted and their mathematics score in final examination is given in Poisson_Reg.csv. Develop a model to estimate the number of awards?

If there is over dispersion (if residual deviance is much large then degrees of freedom) then use quasi Poisson family

Used to develop models when the output or response variable y is nominal

The output variable will be categorical, having more than two categories

Models log odds of the outcomes as linear combination of the predictor variables

One of the outcome category is taken as baseline category

Develops models for estimating the probability that the output belongs to a category or not

$$p_i = \frac{e^{a_i + b_{i1}x_1 + b_{i2}x_2 + \dots + b_{ik}x_k}}{1 + e^{a_i + b_{i1}x_1 + b_{i2}x_2 + \dots + b_{ik}x_k}}$$

pi: probability that the output belongs to a particular category i

x_i's: independent variables

a_i, b_{i1}, _{bi2}, ---: coefficients to be estimated

$$\sum_{i=1}^{n} p_i = 1$$

Where n is the number of categories

The predicted category is the one with highest probability

Example 1: The data on system test defect density along with testing effort and test coverage is given in ST_Defects.csv. The defect density is classified as Low Medium High. Develop a model to estimate the system testing defect density class based on testing effort and test coverage?

Read the data file and variables

- > dd = mydata\$DD
- > effort = mydata\$Effort
- > coverage = mydata\$Test.Coverage

Example 1: The data on system test defect density along with testing effort and test coverage is given in ST_Defects.csv. The defect density is classified as Low Medium High. Develop a model to estimate the system testing defect density class based on testing effort and test coverage?

Make one of the classes (say "Low") of output variable as the baseline level

- > library(nnet)
- > dd = relevel(dd, ref = "Low")

Develop the model and display summary result

- > mymodel = multinom(dd ~ effort + coverage)
- > result = summary(mymodel)
- > result

Example 1: The data on system test defect density along with testing effort and test coverage is given in ST_Defects.csv. The defect density is classified as Low Medium High. Develop a model to estimate the system testing defect density class based on testing effort and test coverage?

Coefficients

	(Intercept)	effort	coverage
High	7.313595	-0.0684	-0.0882
Medium	3.865068	-0.039	-0.0485

Standard Errors

	(Intercept)	effort	coverage
High	1.326415	0.02498	0.02341
Medium	1.281011	0.02462	0.02235

Example 1: The data on system test defect density along with testing effort and test coverage is given in ST_Defects.csv. The defect density is classified as Low Medium High. Develop a model to estimate the system testing defect density class based on testing effort and test coverage?

Testing the significance of coefficients using z tests

> z = result\$coefficients / result\$standard.errors

> Z

z statistics

	(Intercept)	effort	coverage
High	5.513807	-2.740058	-2.740058
Medium	3.017201	-1.582807	-2.172594

Example 1: The data on system test defect density along with testing effort and test coverage is given in ST_Defects.csv. The defect density is classified as Low Medium High. Develop a model to estimate the system testing defect density class based on testing effort and test coverage?

Computation of p value

$$> p = (1 - pnorm(abs(z), 0,1))*2$$

> p

P values

	(Intercept)	effort	coverage
High	0.0000	0.0061	0.00016
Medium	0.0000	0.1135	0.0298

Since p value < 0.05, all the factors have significant impact on defect density

Example 1: The data on system test defect density along with testing effort and test coverage is given in ST_Defects.csv. The defect density is classified as Low Medium High. Develop a model to estimate the system testing defect density class based on testing effort and test coverage?

Prediction Models

$$p(dd = High) = \frac{e^{7.3135 - 0.0684 \times Effort - 0.0882 \times Coverage}}{1 + e^{7.3135 - 0.0684 \times Effort - 0.0882 \times Coverage}}$$

$$p(dd = Medium) = \frac{e^{3.865 - 0.039 \times Effort - 0.0485 \times Coverage}}{1 + e^{3.865 - 0.039 \times Effort - 0.0485 \times Coverage}}$$

$$p(dd = Low) = 1 - P(dd = High) - P(dd = Medium)$$

Predicted class of dd will be k if p(dd = k) = max(P(dd = i)), i = Low, Medium or High

Example 1: The data on system test defect density along with testing effort and test coverage is given in ST_Defects.csv. The defect density is classified as Low Medium High. Develop a model to estimate the system testing defect density class based on testing effort and test coverage?

Predicted values

```
> pred = predict(mymodel)
> fit = fitted(mymodel)
>fit
> output = cbind(dd, pred)
>write.csv(output, "E:/Infosys/Part 2/output.csv")
```

Example 1: The data on system test defect density along with testing effort and test coverage is given in ST_Defects.csv. The defect density is classified as Low Medium High. Develop a model to estimate the system testing defect density class based on testing effort and test coverage?

Comparing Actual Vs Predicted

- > mytable = table(dd, pred)
- > mytable
- > prop.table(mytable)

Example 1: The data on system test defect density along with testing effort and test coverage is given in ST_Defects.csv. The defect density is classified as Low Medium High. Develop a model to estimate the system testing defect density class based on testing effort and test coverage?

Comparing Actual Vs Predicted

		Predicted			
		Low	High	Medium	
A atrial	Low	94	11	0	
Actual	High	23	27	0	
	Medium	31	14	0	

Example 1: The data on system test defect density along with testing effort and test coverage is given in ST_Defects.csv. The defect density is classified as Low Medium High. Develop a model to estimate the system testing defect density class based on testing effort and test coverage?

Comparing Actual Vs Predicted (in %)

		Predicted			
		Low	High	Medium	
Antural	Low	0.47	0.05	0.00	
Actual	High	0.12	0.14	0.00	
	Medium	0.16	0.07	0.00	

Accuracy = 0.47 + 0.14 + 0.00 = 0.61 = 61%

A collection of techniques for modeling the time to an event.

Data may be right censored

- the even may not have occurred till the end of the study period
- Incomplete information on an observation that up to certain time the event had not occured

Data are typically entered in

start time, end time and status(1: event occurred, 0: event did not occur) or

Time to event and status

Example 1: The data on time on treatment in months of a group of patients suffering from a particular disease is given in survival.csv file. The type of medicine (0: type 1, 1: type 2) and the age of the patient is also given in the file.

- 1. Compute the survival distribution (Kaplan Meier estimator) of the patients?
- 2. Compare the survival distribution of patients who use medicine 1 and 2?
- 3. Is there any difference in the survival distribution of patients who treated with medicine and from those who treated with medicine 2?
- 4. Develop a model to predict the survival based on age?

Example 1: The data on time on treatment in months of a group of patients suffering from a particular disease is given in survival.csv file. The type of medicine (0: type 1, 1: type 2) and the age of the patient is also given in the file.

Reading the data and variables

- > time = mydata\$time
- > age = mydata\$age
- > drug = mydata\$drug
- > status =mydata\$censor

Create a survival object

- >Library(survival)
- >Survobject = Surv(time, status)
- > survobject

Example 1: The data on time on treatment in months of a group of patients suffering from a particular disease is given in survival.csv file. The type of medicine (0: type 1, 1: type 2) and the age of the patient is also given in the file.

Computing Kaplan – Meier Estimator

- > mymodel = survfit(survobject ~ 1)
- > summary(mymodel)
- > plot(mymodel)

Example 1: The data on time on treatment in months of a group of patients suffering from a particular disease is given in survival.csv file. The type of medicine (0: type 1, 1: type 2) and the age of the patient is also given in the file.

time	n.risk	n.event	survival	std.err	lower 95% CI	Upper 95% CI
1	100	15	0.85	0.0357	0.7828	0.923
2	83	5	0.7988	0.0402	0.7237	0.882
3	73	10	0.6894	0.0473	0.6026	0.789
4	61	4	0.6442	0.0493	0.5544	0.748
5	56	7	0.5636	0.0517	0.4709	0.675
6	49	2	0.5406	0.0521	0.4476	0.653
7	46	6	0.4701	0.0526	0.3775	0.586
8	39	4	0.4219	0.0525	0.3306	0.538
9	35	3	0.3857	0.052	0.2962	0.502
10	32	3	0.3496	0.0511	0.2625	0.466
11	28	3	0.3121	0.05	0.228	0.427
12	25	2	0.2872	0.049	0.2055	0.401
13	21	1	0.2735	0.0486	0.1931	0.387
14	20	1	0.2598	0.048	0.1809	0.373
15	19	2	0.2325	0.0467	0.1568	0.345
22	16	1	0.2179	0.046	0.1441	0.33
30	14	1	0.2024	0.0453	0.1305	0.314
31	13	1	0.1868	0.0444	0.1173	0.298
32	12	1	0.1712	0.0433	0.1043	0.281
34	11	1	0.1557	0.0421	0.0916	0.264
35	10	1	0.1401	0.0407	0.0793	0.247
36	9	1	0.1245	0.039	0.0674	0.23
43	8	1	0.109	0.0371	0.0559	0.212
53	7	1	0.0934	0.0349	0.0449	0.194
54	6	1	0.0778	0.0324	0.0344	0.176
57	4	1	0.0584	0.0296	0.0216	0.157
58	3	1	0.0389	0.0253	0.0109	0.13

Example 1: The data on time on treatment in months of a group of patients suffering from a particular disease is given in survival.csv file. The type of medicine (0: type 1, 1: type 2) and the age of the patient is also given in the file.

Example 1: The data on time on treatment in months of a group of patients suffering from a particular disease is given in survival.csv file. The type of medicine (0: type 1, 1: type 2) and the age of the patient is also given in the file.

Comparison of survival distribution of patients with medicine 1 & 2

- >mynewmodel = survfit(survobject ~ drug)
- > summary(mynewmodel)

Survival distribution of patients with medicine 1

time	n.risk	n.event	survival	std.err	lower 95% CI	Upper 95% CI
1	51	5	0.902	0.0416	0.8239	0.987
2	46	3	0.8431	0.0509	0.749	0.949
3	41	2	0.802	0.0561	0.6992	0.92
4	38	2	0.7598	0.0606	0.6498	0.888
5	35	3	0.6947	0.066	0.5766	0.837
6	32	1	0.673	0.0675	0.5529	0.819
7	31	1	0.6513	0.0687	0.5296	0.801
8	30	2	0.6078	0.0706	0.484	0.763
9	28	2	0.5644	0.072	0.4396	0.725
10	26	2	0.521	0.0727	0.3964	0.685
11	23	2	0.4757	0.0731	0.352	0.643
12	21	2	0.4304	0.0728	0.309	0.6
13	19	1	0.4077	0.0724	0.2879	0.577
14	18	1	0.3851	0.0718	0.2672	0.555
15	17	1	0.3624	0.0711	0.2468	0.532
22	15	1	0.3383	0.0703	0.225	0.508
30	13	1	0.3123	0.0696	0.2018	0.483
31	12	1	0.2862	0.0685	0.1791	0.457
32	11	1	0.2602	0.067	0.1571	0.431
34	10	1	0.2342	0.0652	0.1357	0.404
35	9	1	0.2082	0.0629	0.1151	0.376
36	8	1	0.1821	0.0602	0.0953	0.348
43	7	1	0.1561	0.0569	0.0764	0.319
53	6	1	0.1301	0.0531	0.0585	0.289
54	5	1	0.1041	0.0484	0.0418	0.259
57	4	1	0.0781	0.0427	0.0267	0.228
58	3	1	0.052	0.0355	0.0136	0.198

Survival distribution of patients with medicine 2

time	n.risk	n.event	survival	std.err	lower 95% CI	Upper 95% CI
1	49	10	0.7959	0.0576	0.6907	0.917
2	37	2	0.7529	0.062	0.6407	0.885
3	32	8	0.5647	0.074	0.4367	0.73
4	23	2	0.5156	0.0753	0.3872	0.686
5	21	4	0.4174	0.0753	0.2931	0.594
6	17	1	0.3928	0.0748	0.2705	0.57
7	15	5	0.2619	0.0691	0.1562	0.439
8	9	2	0.2037	0.0648	0.1092	0.38
9	7	1	0.1746	0.0618	0.0873	0.349
10	6	1	0.1455	0.0579	0.0667	0.317
11	5	1	0.1164	0.0531	0.0476	0.285
15	2	1	0.0582	0.049	0.0112	0.303

Comparison of survival distribution of patients with medicine 1 & 2

Testing for difference in survival distribution of patients used medicine 1 & 2 > survdiff(survobject ~ drug)

Statistics	Value
Chi Square	11.9
Degrees of Freedom	1
P value	0.000575

Since p value < 0.05, there is significant difference in the survival distribution of patients using medicine 1 & hat of medicine 2

Modeling survival in terms of age

>mymodel = coxph(survobject ~ age)

> mymodel

	Coefficient	exp(coeff)	se(coeff)	Z	p value
age	0.0853	1.09	0.0174	4.89	0.00

Total	100
Events	80
Likelihood ratio test	23.3
P value	0.00

Modeling survival in terms of age

>mymodel = coxph(survobject ~ age)

> mymodel

	rho	Chi sq	se(coeff)	р
age	0.00129	0.00011	0.0174	0.992

Objective

To develop a predictive model to classify dependant or response metric (Y) in terms of independent or exploratory variables(Xs).

When to Use

Xs: Continuous or discrete

Y: Discrete or continuous

Classification Tree

When response Y is discrete

Method = "class"

Regression Tree

When response Y is discrete

Method = "anova"

Classifies data (develops a model) based on the training data Each sample is assumed to belong to a predefined class Sample data set used for building the model is training set

Usage:

For classifying future or unknown data

Example:

Attribute 1	x1
Attribute 2	x2
Label : y	Y1 (Red) , y2 (Blue)

x 1	x2	Υ	x1	x2	Υ
11.35	23	Blue	11.85	39.9	Red
11.59	22.3	Blue	12.09	39.5	Red
12.19	24.5	Blue	12.69	37.8	Red
13.23	26.4	Blue	13.73	38.2	Red
13.51	30.2	Blue	14.01	37.8	Red
13.68	32	Blue	14.18	36.5	Red
14.78	33.1	Blue	15.28	36	Red
15.11	33	Blue	15.61	37.1	Red
15.55	25.2	Blue	16.05	33.1	Red
16.37	24.1	Blue	16.87	32.4	Red
16.99	22	Blue	17.49	31	Red
18.23	23.5	Blue	18.73	32	Red
18.83	24.1	Blue	19.33	31.8	Red
19.06	25	Blue	19.56	30.9	Red

Attribute 1	x1
Attribute 2	x2
Label : y	Y1 (Red), y2 (Blue)

Attribute 1	x1
Attribute 2	x2
Label : y	y1 (Red) , y2 (Blue)

Attribute 1	x1
Attribute 2	x2
Label : y	y1 (Red) , y2 (Blue)

Attribute 1	x1
Attribute 2	x2
Label : y	y1 (Red), y2 (Blue)

Example: Rules

Attribute 1	x1
Attribute 2	x2
Label : y	y1 (Red), y2 (Blue)

If $x^2 > 35$ then $y = y^1$

If $x^2 < 28$, then $y = y^2$

If 28 > x2 > 35 & x1 > 15.5, then y = y1

If 28 > x2 > 35 & x1 < 15.5, then y = y2

Challenges

How to represent the entire information in the dataset using minimum number of rules?

How to develop the smallest tree?

Solution

Select the variable with maximum information (highest relation with Y) for first split

Example: A marketing company wants to optimize their mailing campaign by sending the brochure mail only to those customers who responded to previous mail campaigns. The profile of customers are given below. Can you develop a rule to identify the profile of customers who are likely to respond (Mail_Respond.csv?

SL No	District	House Type	Income	Previous_Customer	Outcome
1	Suburban	Detached	High	No	No Response
2	Suburban	Detached	High	Yes	No Response
3	Rural	Detached	High	No	Responded
4	Urban	Semi-detached	High	No	Responded
5	Urban	Semi-detached	Low	No	Responded
6	Urban	Semi-detached	Low	Yes	No Response
7	Rural	Semi-detached	Low	Yes	Responded
8	Suburban	Terrace	High	No	No Response
9	Suburban	Semi-detached	Low	No	Responded
10	Urban	Terrace	Low	No	Responded
11	Suburban	Terrace	Low	Yes	Responded
12	Rural	Terrace	High	Yes	Responded
13	Rural	Detached	Low	No	Responded
14	Urban	Terrace	High	Yes	No Response

Example: A marketing company wants to optimize their mailing campaign by sending the brochure mail only to those customers who responded to previous mail campaigns. The profile of customers are given below? Can you develop a rule to identify the profile of customers who are likely to respond?

Number of variables = 4

SL No	Variable Name	Number of values
1	District	3
2	House Type	3
3	Income	2
4	Previous Customer	2

Total Combination of Customer Profiles = $3 \times 3 \times 2 \times 2 = 36$

Read file and variables

- > mydata = Mail_Respond
- > house = mydata\$House_Type
- > district = mydata\$District
- > income = mydata\$Income
- > prev = mydata\$Previous_Customer
- > outcome = mydata\$Outcome

Develop the model

```
> library(rpart)
```

```
> mymodel = rpart( outcome ~ district + house + income + prev, method = "class", control = rpart.control(minsplit = 2))
```

Note: When response is categorical, method = "class", when response is numeric, methos = "anova"

>print(mymodel)

- 1) root 14 5 Responded (0.3571429 0.6428571)
 - 2) dist=Suburban, Urban 10 5 No Response (0.5000000 0.5000000)
 - 4) income=High 5 1 No Response (0.8000000 0.2000000)
 - 8) house=Detached, Terrace 4 0 No Response (1.0000000 0.0000000) *
 - 9) house=Semi-detached 1 0 Responded (0.0000000 1.0000000) *
 - 5) income=Low 5 1 Responded (0.2000000 0.8000000)
 - 10) prev=Yes 2 1 No Response (0.5000000 0.5000000)
 - 20) dist=Urban 1 0 No Response (1.0000000 0.0000000) *
 - 21) dist=Suburban 1 0 Responded (0.0000000 1.0000000) *
 - 11) prev=No 3 0 Responded (0.0000000 1.0000000) *
 - 3) dist=Rural 4 0 Responded (0.0000000 1.0000000) *

Plot the tree

- > plot(mymodel)
- > text(mymodel, pretty = 0)

Making predictions

- > pred = predict(mymodel)
- > Predclass = ifelse(pred[,1] > 0.5, "1", "2")
- > mytable = table(outcome, predclass)

		Predicted		
		Respon	d	No Respond
Respond		9		0
Outcome	No Respond	0		5

Exercise 1: Develop a tree based model for predicting whether the customer will take pep using ghe customer profile data given in bank-data.csv?

Exercise 2: Develop a tree based model for predicting conversion using temperature, time and kappa number as factors. The data is given in Mult_Reg_Conversion.csv?

Random Forest

Improves predictive accuracy

Generates large number of bootstrapped trees

Classifies a new case using each tree in the new forest of trees

Final predicted outcome by combining the results across all of the trees

Regression tree – average

Classification tree – majority vote

Random Forest

Example

Develop a model to predict plant class using the data given in Iris.csv.\ using random forest method. Validate the model with Iris_test.csv data?

Random Forest

Example

Develop a model to predict plant class using the data given in Iris.csv.\ using random forest method. Validate the model with Iris_test.csv data?

Random Forest

Example

Develop a model to predict plant class using the data given in Iris.csv.\ using random forest method. Validate the model with Iris_test.csv data?

Read Iris data to mydata

- > library(randomForest)
- > mymodel = randomForest(Class ~ sepal.length + sepal.width + petal.length + petal.width, data
- = mydata)
- > mymodel

Random Forest

Example

Develop a model to predict plant class using the data given in Iris.csv.\ using random forest method. Validate the model with Iris_test.csv data?

	Iris-setosa	Iris-versicolor	Iris-virginica	class.error
Iris-setosa	50	0	0	0
Iris-versicolor	0	47	3	0.06
Iris-virginica	0	3	47	0.06

Random Forest

Example

Develop a model to predict plant class using the data given in Iris.csv.\ using random forest method. Validate the model with Iris_test.csv data?

Model Validation

Read data to new data

- > newdata <- read.csv("E:/Infosys/Part 2/Data/Iris_test.csv")
- > pred = predict(mymodel, newdata = newdata)
- > mytable = table(newdata\$Class, pred)
- > mytable

Random Forest

Example

Develop a model to predict plant class using the data given in Iris.csv.\ using random forest method. Validate the model with Iris_test.csv data?

	Predicted			
Actual	Iris-setosa	Iris-versicolor	Iris-virginica	
Iris-setosa	49	0	0	
Iris-versicolor	0	15	0	
Iris-virginica	0	0	2	

Random Forest

Example

Develop a model to predict plant class using the data given in Iris.csv.\ using random forest method. Validate the model with Iris_test.csv data?

	Predicted		
Actual	Iris-setosa	Iris-versicolor	Iris-virginica
Iris-setosa	74.24	0.00	0.00
Iris-versicolor	0.00	22.73	0.00
Iris-virginica	0.00	0.00	3.03

Used to develop models when the output or response variable y is prdinall.

The output variable will be categorical, having more than two categories

Example 1: The data on system test defect density along with testing effort and test coverage is given in ST_Defects.csv. The defect density is classified as Low Medium High. Develop a model to estimate the system testing defect density class based on testing effort and test coverage?

Read the data file and variables

- > dd = mydata\$DD
- > effort = mydata\$Effort
- > coverage = mydata\$Test.Coverage

Example 1: The data on system test defect density along with testing effort and test coverage is given in ST_Defects.csv. The defect density is classified as Low Medium High. Develop a model to estimate the system testing defect density class based on testing effort and test coverage?

Make one of the classes (say "Low") of output variable as the baseline level

- > library(MASS)
- > mymodel = polr(dd ~ effort + coverage)
- > summary(mymodel)

Example 1: The data on system test defect density along with testing effort and test coverage is given in ST_Defects.csv. The defect density is classified as Low Medium High. Develop a model to estimate the system testing defect density class based on testing effort and test coverage?

Coefficients

effort	coverage
0.0234	0.0257

Intercepts

High Low	Low Medium
1.4947	3.925

Example 1: The data on system test defect density along with testing effort and test coverage is given in ST_Defects.csv. The defect density is classified as Low Medium High. Develop a model to estimate the system testing defect density class based on testing effort and test coverage?

Predicted values

```
> pred = predict(mymodel)
> fit = fitted(mymodel)
>fit
> output = cbind(dd, pred)
>write.csv(output, "E:/Infosys/Part 2/output.csv")
```

Example 1: The data on system test defect density along with testing effort and test coverage is given in ST_Defects.csv. The defect density is classified as Low Medium High. Develop a model to estimate the system testing defect density class based on testing effort and test coverage?

Comparing Actual Vs Predicted

- > mytable = table(dd, pred)
- > mytable
- > prop.table(mytable)

Example 1: The data on system test defect density along with testing effort and test coverage is given in ST_Defects.csv. The defect density is classified as Low Medium High. Develop a model to estimate the system testing defect density class based on testing effort and test coverage?

Comparing Actual Vs Predicted

		Predicted		
Actual		High	Low	Medium
	High	8	42	0
	Low	0	105	0
	Medium	1	44	0

Example 1: The data on system test defect density along with testing effort and test coverage is given in ST_Defects.csv. The defect density is classified as Low Medium High. Develop a model to estimate the system testing defect density class based on testing effort and test coverage?

Comparing Actual Vs Predicted (in %)

		Predicted		
Actual		High	Low	Medium
	High	4.0	21.0	0.00
	Low	0.00	52.50	0.00
	Medium	0.50	22.0	0.00

Accuracy = 4 + 52.5 + 0.00 = 0.565 = 56.5%