Pseudo bulk chondrosarcoma analysis

Léa ROGUE

2025-03-25

List of Figures

1	Relative immune cells expression heatmap	(
2	Relative expression of CTAs	8

Contents

Load libraries	4
Read data	4
Prepare data	4
I. Relative immune cells expression	5
II. Relative expression of CTAs	6

This script analyze pseudo bulk scRNAseq the same manner the microarray part to see if it is coherent and to see the infiltrated tumors or not.

Load libraries

```
library(dplyr)
library(ComplexHeatmap)
library(colorRamp2)
```

Read data

Prepare data

```
df_tpm$CTA <- NA

# Rename col
colnames(df_CTA) <- c("SYMBOL")

# Df with CTA and whole genes by adding CTA in col CTA for

# CTA genes
df_tpm_CTA <- df_tpm %>%
    left_join(df_CTA, by = "SYMBOL") %>%
    mutate(CTA = ifelse(SYMBOL %in% df_CTA$SYMBOL, "CTA", NA))

# Reorganize columns
df_tpm_CTA <- df_tpm_CTA %>%
    select(SYMBOL, CTA, everything())

# Read immune cells genes
colnames(df_immune_sign) <- c("Signature", "Gene")</pre>
```

```
\# Merge df\_CTA\_whole and df\_immune\_sign to associate
# signatures
df_tpm_CTA_imm_cells <- merge(df_tpm_CTA, df_immune_sign, by.x = "SYMBOL",
   by.y = "Gene", all.x = TRUE)
# Reorganize the columns if needed
df_tpm_CTA_imm_cells <- df_tpm_CTA_imm_cells %>%
    select(SYMBOL, CTA, Signature, everything())
# Combine multiple signatures into one for each gene by
# concatenating with a comma
df_tpm_CTA_imm_cells_clean <- df_tpm_CTA_imm_cells %>%
    group_by(SYMBOL) %>%
    summarise(Signature = paste(unique(Signature), collapse = ", "),
        across(everything(), ~first(.)), .groups = "drop")
# Average the expression between same immune cells types
# Take rows with immune cells signature from normalized
# data
df_avg_immune_sign <- df_tpm_CTA_imm_cells %>%
   filter(Signature != "NA")
# Group by signature and calculate mean of expression
df_avg_immune_sign_final <- df_avg_immune_sign %>%
   select(-c(SYMBOL, CTA)) %>%
   group by (Signature) %>%
   summarise(across(where(is.numeric), \(x) mean(x,
       na.rm = TRUE)))
```

I. Relative immune cells expression

```
# Create the heatmap
heatmap_data <- as.data.frame(df_avg_immune_sign_final)</pre>
rownames(heatmap_data) <- heatmap_data$Signature</pre>
heatmap_data <- heatmap_data[, -1] # Remove the Signature column
heatmap_data <- log2(heatmap_data + 1)</pre>
# Calculate Z-scores
z_scores_row <- t(scale(t(heatmap_data)))</pre>
# Add columns
df_z_scores <- as.data.frame(z_scores_row)</pre>
colnames(df_z_scores) <- c("Low_L07", "Low_L28", "High_L31",</pre>
    "High_L44", "Ben_L49", "Med_L63", "Med_L80", "Low_L81", "Ded_L83")
colors <- colorRampPalette(c("blue", "white", "red"))(100)</pre>
Heatmap(as.matrix(df_z_scores), cluster_rows = TRUE, cluster_columns = TRUE,
    cluster_column_slices = TRUE, clustering_distance_columns = "euclidean",
    clustering method columns = "complete", show column dend = TRUE,
    col = colorRamp2(seq(-8, 8, length.out = 100), colors), border = NA,
```

```
show_column_names = TRUE, column_names_gp = gpar(fontsize = 7),
row_names_gp = gpar(fontsize = 7), heatmap_legend_param = list(title = "Expression Level"))
```


Figure 1: Relative immune cells expression heatmap

We see that the more infiltrated tumors are dedifferentiated and low tumors, contrary to the less infiltrated that are high grade.

II. Relative expression of CTAs

```
# Create the heatmap
cta_data <- subset(df_tpm_CTA, df_tpm_CTA$CTA == "CTA")
rownames(cta_data) <- cta_data$SYMBOL
cta_data <- cta_data[, -c(1, 2)]
cta_data <- log2(cta_data + 1)

# Calculate Z-scores
z_scores_row <- t(scale(t(cta_data)))

# Add columns
df_z_scores <- as.data.frame(z_scores_row)

Heatmap(as.matrix(df_z_scores), cluster_rows = TRUE, cluster_columns = TRUE,</pre>
```

```
cluster_column_slices = TRUE, clustering_distance_columns = "euclidean",
clustering_method_columns = "complete", show_column_dend = TRUE,
col = colorRamp2(seq(-8, 8, length.out = 100), colors), border = NA,
show_column_names = TRUE, column_names_gp = gpar(fontsize = 7),
row_names_gp = gpar(fontsize = 4), heatmap_legend_param = list(title = "Expression Level"))
```

