This project aims to benchmark different parts of a computer system, from the CPU, memory and disk.

This assignment ran on Amazon ec2 t2.microinstance with CPU specifications as follow.

OS: Ubuntu 14.04

```
ubuntu@ip-172-31-37-205:~$ cat /proc/cpuinfo
processor
              : 0
vendor_id
               : GenuineIntel
cpu family
               : 6
model
               : 62
model name
               : Intel(R) Xeon(R) CPU E5-2670 v2 @ 2.50GHz
stepping
               : 0x416
microcode
cpu MHz
               : 2500.040
cache size
               : 25600 KB
physical id
               : 0
siblings
               : 1
core id
               : 0
cpu cores
               : 1
apicid
               : 0
initial apicid : 0
               : yes
fpu
fpu_exception
               : yes
cpuid level
               : 13
               : yes
```

1. CPU

- a. Measure the processor speed, in terms of floating point operations per second (Giga FLOPS, 10° FLOPS) and integer operations per second (Giga IOPS, 10° IOPS).
- b. Measure the processor speed at varying levels of concurrency (1 thread, 2 threads, 4 threads)

Floating point operation readings are as follows.

GFLOPS

Threads		Observation#1	Observation#2	Observation#3	Average	Standard deviation
	1	3.86	3.84	3.85	3.85	0.008164966
	2	3.84	3.84	3.86	3.846666	0.00942809
	4	3.84	3.85	3.86	3.85	0.008164966

Performance Evaluation

IOP:

Threads	Observation#1	Observation#2	Observation#3	Average	Standard deviation
1	3.17	3.16	3.16	3.16333	0.005773503
2	3.18	3.17	3.17	3.17333	0.005773503
4	3.14	3.13	3.17	3.14666	0.02081666

c. Compute the theoretical peak performance of your processor in flops/sec.

Intel ® Xeon® CPU ES-2600 series have 8 instructions per cycle.

Theoretical peak performance can be calculated by below formula: =Number of Cores * CPU frequency * Instructions per cycle * CPU per node = 1 * 2.50 Ghz * 8 * 1= 20 GFLOPS.

d. What efficiency do you achieve compared to the theoretical performance? Max GFLOPS achieved through my assignment is 4.55 GFLOPS.

Theoretical GFLOPS is 20 GFLOPS

So 4.55/20=22.75 % of total peak performance

Note: As I increases complexity of instructions, GFLOPS also started increasing.

Performance Evaluation

e. As a separate experiment, run your benchmark on floating point and integer instructions and 4 threads for a 10-minute period for each one, and take samples every second on how many instructions per second were achieved during the experiment; plot the data for the two experiments (FLOPS and IOPS) with time (0to 10 min) on the x-axis and FLOPS/IOPS on the y-axis, with 1-second samples (you will have 600 samples for FLOPS and 600 samples for IOPS to plot)

Data files with 600 samples are placed in current folder.

600 GFLOPS sample values are as follows in the order of 1 to 600 seconds.

Threads count 4

3.747727, 3.762418, 3.731740, 3.759607, 3.750117, 3.766586, 3.780819, 3.752881, 3.780479, 3.762037 ,3.775413, 3.744871, 3.740995, 3.763042, 3.761791, 3.763766, 3.777875, 3.760508, 3.775413, 3.781755, 3.760508 ,3.731830 ,3.741043 ,4.669968 ,3.735837 ,3.713170 ,3.702730 ,3.726917 ,3.718395 ,3.752931 ,3.723261 3.727035, 3.744405, 3.7441054, 3.753588, 3.745067, 3.724675, 3.749120, 3.727324, 3.744126, 3.744126, 3.744008 3.718658, 3.760683, 3.760683, 3.748116, 3.718156, 3.718156, 3.748116, 3.760683, 3.760683, 3.746921, ,3.723798, 3.721720, 3.735558, 3.741992, 3.696995, 3.711592, 3.714736, 3.721720, 3.735558, 3.696174 3.677682, 3.677682, 3.675524, 3.686337, 3.691806, 3.687160, 3.687160, 3.687804, 3.677684, 2.710899, ,3.713857, 3.732566, 3.720561, 3.720132, 3.720132, 3.716689, 3.734920, 3.709168, 3.743959, 3.709168, ,3.720478 ,3.701066 ,3.714122 ,3.706279 ,3.725858, 3.710946, 3.710477, 3.712588, 3.712588, 3.724193, 2.70478, 3.710477, 3.715153 ,3.735619 ,3.718627 ,3.729047 ,3.725736 ,3.745917 ,3.745917 ,3.745917 ,3.735619 ,3.717788 ,3.738571 ,3.737020 ,3.717741 ,3.708331 ,3.717741 ,3.707834 ,3.714797 ,3.721916 ,3.716092 ,3.717741 ,3.696019 3.671096, 3.718074, 3.691746, 3.720510, 3.676821, 3.722304, 3.711391, 3.694446, 3.718074, 3.708110, ,3.714196 ,3.702716 ,3.693657 ,3.708207 ,3.718236 ,3.696727 ,3.706142 ,3.685457 ,3.696828 ,3.681399 ,3.712940, 3.712675, 3.712706, 3.702706, 3.705698, 3.712940, 3.712940, 3.712940, 3.715154, 3.715154, 3.715154, 3.712940, 3.7129 3.711656, 3.730831, 3.711326, 3.733294, 3.714666, 3.718631, 3.725911, 3.725911, 3.731578, 3.731578, ,3.759136, 3.723082, 3.741181, 3.71181, 3.741181, 3.759138, 3.743489, 3.740710, 3.740710, 3.743489, 3.726924, 3.748060, 3.748061, 3.702641, 3.712826, 3.704283, 3.712165, 3.711065, 3.711065, 4.731473, 3.711065, 3.704396, 3.704390, 3.67621, 3.672126, 3.719030, 3.699636, 3.704846, 3.677530, 3.672192, 3.672192, 3.677530, 3.704846 ,3.712663 ,3.731737 ,3.713633 ,3.731213 ,3.720163 ,3.718889 ,3.726728 ,3.730431 ,3.732673 ,3.732368 ,3.719230 ,3.716155 ,3.712764 ,3.760919 ,3.736589 ,3.726461 ,3.736525 ,3.718599 ,3.716155 ,3.725479 3.726705, 3.705928, 3.705928, 3.745370, 3.74862, 3.705928, 3.710204, 3.720208, 3.715851, 3.709942, 3.745370, 3.750478, 3.721894, 3.721894, 3.727089, 3.717637, 3.697514, 3.727089, 3.734218, 3.721894, 3.750478 ,3.717987, 3.728325, 3.732032, 3.728126, 3.719804, 3.746595, 1.710211, 3.749483, 3.731587, 3.736030, ,3,703988, 3,728169, 3,710979, 3,707288, 3,754849, 3,715352, 3,726193, 3,725329, 3,711838, 3,730877 ,3.693813 ,3.713286 ,3.709075 ,3.721484 ,3.725887 ,3.705232 ,3.731569 ,3.709191 ,3.735088 ,3.741789 3.735416, 3.724688, 3.735943, 3.723252, 3.714283, 3.735943, 3.724688, 3.735446, 4.601570, 3.748450, 3.719535, 3.710238, 3.710238, 3.714546, 3.731216, 3.713361, 3.716358, 3.710238, 3.719535, 3.720868, 3.756722, ,3.710507, 3.735270, 3.726592, 3.719156, 3.71909, 3.714712, 3.723148, 3.726155, 3.723148, 2.7009, 3.714712, 3.723148 ,3.708789 ,3.731453 ,3.710372 ,3.725966 ,3.723130 ,3.732137 ,3.701978 ,3.731453 ,3.733941 ,3.733217 ,3.701258, 3.727412, 3.723987, 3.723987, 3.711973, 3.711973, 3.732102, 3.701137, 3.723987, 3.727412, 3.701258 3.720658, 3.741150, 3.728681, 3.712643, 3.749757, 3.721402, 3.697650, 3.740363, 3.748514, 3.748514, 3.740363

Performance Evaluation

,3.740113, 3.737702, 3.733996, 3.727306, 3.730135, 3.727892, 3.717689, 3.733313, 3.737702, 3.720319 ,3.720702 ,3.706013 ,3.722088 ,3.710902 ,3.734336 ,3.744958 ,3.733198 ,3.732650 ,3.749070 ,3.710959 ,3.718691 ,3.724427 ,3.696884 ,3.736622 ,3.726177 ,3.728245 ,3.693682 ,3.713307 ,3.738389 ,3.711757 3.724821, 3.737253, 3.740337, 3.724831, 3.713823, 3.713117, 3.724831, 3.713823, 3.737247, 3.722852, 3.740337, ,3.706021 ,3.704190 ,3.682107 ,3.724861 ,3.694281 ,3.708894 ,3.729737 ,3.746953 ,3.732515 ,3.722552 ,3.732452, 3.753577, 3.753577, 3.718866, 3.746924, 3.715004, 3.7346924, 3.718866, 3.729132, 3.753577 3.715102, 3.749802, 3.737712, 3.710430, 3.710430, 3.713454, 3.742215, 3.742215, 3.713454, 3.730990, 3.713454, ,3.730588, 3.726218, 3.726218, 3.726218, 3.726218, 3.700147, 3.726218, 3.736583, 3.726583, 3.726930, 3.730588, 3.708279, 3.720380, 3.693783, 3.729376, 3.718961, 3.701414, 3.727515, 43.704904, 3.726811, 43.726811, 43.704904 ,3.731815 ,3.719066 ,3.727510 ,3.726650 ,3.708032 ,3.728075 ,3.725471 ,3.709632 ,3.742457 ,3.697721 3.727647, 3.744639, 3.711006, 3.710245, 3.710245, 3.710245, 3.698371, 3.699252, 3.699252, 3.699252, 3.698371, ,3.709771 ,3.734428 ,3.713793 ,3.739984 ,3.719968 ,3.709908 ,3.723345 ,3.717870 ,3.755559 ,3.734723 ,3.734931 ,3.749036 ,3.721397 ,3.740003 ,3.741386 ,3.718333 ,3.742600 ,3.688894 ,3.702282 ,3.716173 ,3.713460 ,3.731816 ,3.718835 ,3.710485 ,3.713641 ,3.726018 ,3.741562 ,3.722855 ,3.739517 ,3.705381 3.714060, 3.717453, 3.718745, 3.735112, 3.735112, 3.742885, 3.7447885, 3.735165, 3.735165, 3.735165, ,3.716118, 3.726212, 3.702466, 3.723692, 3.732869, 3.721093, 3.725088, 3.719555, 3.728084, 3.727692 3.713019, 3.701199, 3.701199, 3.706566, 3.702974, 3.701199, 3.713019, 3.729535, 3.753211, 3.745523, 3.735706, 3.714379, 3.691962, 3.706566 ,3.714050 ,3.722743 ,3.706432 ,3.706718 ,3.710519 ,3.709789 ,3.743536 ,3.737007 ,3.732429 ,3.690174 3.770714, 3.778062, 3.778062, 3.778062, 3.728224, 3.771779, 3.778062, 3.759259, 3.770714 ,3.755283 ,3.775942 ,3.773899 ,3.756197 ,3.762919 ,3.766556 ,3.7775942 ,3.773899 ,3.756197 ,3.766956 ,3.711821 ,3.731169 ,3.740941 ,3.743031 ,3.747051 ,3.726588 ,3.728646 ,3.734734 ,3.709769 ,3.742516 3.735386, 3.734102, 3.767625, 3.750780, 3.750780, 3.722730, 3.714301, 3.722730, 3.750780, 3.750780, 3.714560, ,3.700743, 3.738746, 3.737723, 3.739447, 3.701521, 3.701521, 3.701521, 3.737723, 3.738346, 3.739447 ,3.715133 ,3.738206 ,3.737056 ,3.715720 ,3.739054 ,3.709950 ,3.725566 ,3.720447 ,3.719877 ,3.730207 3.730330, 3.716229, 3.714709, 3.723432, 3.723436, 3.711705, 3.711255, 3.726412, 3.726412, 3.726412, 3.726412, ,3.698693, 3.715579, 3.725154, 3.716884, 3.736985, 3.718406, 3.724782, 3.691635, 3.706014, 3.702191 ,3.676141 ,3.705454 ,3.715730 ,3.705691 ,3.701325 ,3.703182 ,3.708339 ,3.697623 ,3.728714 ,3.720974 3.701620, 3.707035, 3.680366, 3.699198, 3.680438, 3.720624, 3.731629, 3.698270, 3.708972, 3.6984420,

600 GIOP values in the order of 1 to 600 sec are as follows.

Threads count 4

3.405598, 3.425411, 3.397916, 3.408322, 3.427081, 3.426834, 3.444529, 3.425313, 3.454451, 4.305624, 3.420757, 3.451109, 3.412842, 3.437546, 3.441167, 3.418314, 3.425702, 3.403665, 3.446065, 3.434533, 3.418084, 3.433651, 3.407685, 3.429187, 3.433716, 3.421616, 3.438720, 3.414660, 3.445899, 3.452153, 3.432287, 3.446325, 3.429325, 3.442343, 3.444372, 3.445977, 3.467545, 3.441028, 3.459894, 3.451843, 4.295765, 3.445616, 3.437515, 3.455991, 3.452353, 3.423434, 3.461882, 3.456446, 3.445226, 3.463264, 3.457284, 3.459768, 3.453630, 3.425154, 3.443595, 3.438126, 3.458399, 3.457813, 3.445330, 3.434227, 4.295653, 3.443096, 3.428369, 3.442392, 3.439352, 3.418414, 3.475363, 3.449913, 3.424345, 3.428850, 3.413596, 3.452158, 3.457856, 3.447604, 3.434990, 3.420197, 3.446106, 3.429166, 3.421605, 3.434748, 3.413562, 3.434471, 3.431014, 3.423507, 3.417078, 3.419250, 3.441588, 3.429541, 3.441369, 3.434748, 3.410262, 3.443793, 3.433776, 3.419878, 3.438171, 3.444211, 3.473441, 3.468110, 3.448420, 3.456086

Performance Evaluation

```
,3.436606 ,3.439593 ,3.449690 ,3.440873 ,3.465245 ,3.434122 ,3.455244 ,4.329433 ,3.438273 ,3.466030
,3.428878 ,3.440340 ,3.444480 ,3.446525 ,3.452904 ,3.444454 ,3.451788 ,3.437034 ,3.463683 ,3.479165
,3.444517 ,3.465744 ,3.463166 ,3.467786 ,3.468383 ,3.421803 ,3.434817 ,3.431134 ,3.416643 ,3.436461
,3.409671 ,3.434965 ,3.434205 ,3.456942 ,3.460320 ,3.437867 ,3.445365 ,3.445364 ,3.440102 ,3.443922
,3.423312 ,3.436091 ,3.450020 ,3.429303 ,3.449586 ,3.434333 ,3.454006 ,3.452410 ,3.440748 ,3.461784
,3.436389 ,3.447242 ,3.450843 ,3.432838 ,3.449488 ,4.290218 ,3.443305 ,3.450589 ,3.456834 ,3.481581
,3.466305 ,3.445144 ,3.454615 ,3.439970 ,3.452074 ,3.443567 ,3.452550 ,3.458837 ,3.449512 ,3.448228
,3.443031 ,3.436939 ,3.456730 ,3.437266 ,3.462432 ,3.463912 ,3.437432 ,3.438208 ,3.434048 ,3.429034
,3.43185, 3.474536, 3.474536, 3.424667, 3.424667, 3.424667, 3.474536, 3.447568, 3.447568, 3.424667, 3.424667,
,3.405621 ,3.419383 ,3.452229 ,3.412329 ,3.434791 ,3.441888 ,3.419914 ,3.446676 ,3.408352 ,3.435534
,3.44035, ,3.436389, ,3.455875, ,3.434722, ,3.451555, ,3.45155, ,3.440355, ,3.440355, ,3.450669
,3.447379 ,3.433393 ,3.457685 ,3.454860 ,3.453236 ,3.445643 ,3.449869 ,3.459079 ,3.432524 ,3.460912
,3.441924 ,3.496444 ,3.436451 ,3.447306 ,3.450155 ,3.448946 ,3.461265 ,3.496444 ,3.436451 ,3.449243
,3.455976 ,3.456160 ,3.467699 ,3.435702 ,3.452561 ,3.451059 ,3.444485 ,3.457771 ,3.454376 ,3.419062
,3.462389 ,3.457338 ,4.339757 ,3.464035 ,3.421282 ,3.425457 ,3.419180 ,3.418103 ,3.406501 ,3.425315
,3.433891 ,3.418878 ,3.424673 ,3.413602 ,3.448582 ,3.430728 ,3.434982 ,3.436607 ,3.408126 ,3.424594
,3.454318 ,3.441019 ,3.473242 ,3.419802 ,3.425870 ,3.436805 ,3.433450 ,3.462311 ,3.416731 ,3.433926
,3.447693 ,3.416362 ,4.308095 ,3.414544 ,3.462619 ,3.457022 ,3.453251 ,3.460796 ,3.443702 ,3.470066
,3.440870, 3.447612, 3.446882, 3.456064, 3.456064, 3.456064, 3.456064, 3.457829, 3.447612, 3.440870
,3.496545 ,3.460595 ,3.479051 ,3.455897 ,4.315306 ,3.456421 ,3.439235 ,3.450692 ,3.434896 ,4.302499
,3.452465 ,3.436338 ,3.456108 ,3.424249 ,3.419793 ,3.431556 ,3.413608 ,3.441762 ,4.308771 ,3.442636
,3.439764 ,3.429119 ,3.445399 ,3.447705 ,3.437730 ,3.457834 ,3.439863 ,3.458880 ,3.443907 ,3.460761
,3.462959 ,3.410926 ,3.421188 ,3.419136 ,3.406632 ,3.449722 ,3.448427 ,3.470215 ,4.308677 ,3.446183
,3.444364 ,3.448665 ,3.460267 ,3.455973 ,3.437970 ,3.457457 ,3.435665 ,3.449050 ,4.289853 ,4.305032
,3.458432, ,4.315351, 3.466027, 3.455131, 3.465108, 3.455638, ,4.315351, 3.460869, 3.437570, 3.468162
,3.473621 ,3.453187 ,3.457542 ,3.457991 ,3.451014 ,3.449923 ,3.434675 ,3.464474 ,3.448937 ,3.444041
,3.436538 ,3.410590 ,3.419598 ,3.399405 ,3.422276 ,3.423569 ,3.431738 ,3.457268 ,3.438264 ,3.434863
,3.421141 ,3.426608 ,3.457683 ,3.432808 ,3.446699 ,3.452761 ,3.438166 ,3.456263 ,3.436119 ,3.441325
,3.446404 ,4.301920 ,3.455531 ,3.442332 ,3.472132 ,3.453711 ,3.442496 ,3.456783 ,3.455944 ,3.458833
,3.465610 ,3.441512 ,3.453216 ,4.310672 ,3.433819 ,3.458321 ,3.433582 ,3.473321 ,3.456576 ,3.443807
,3.464466, 3.437308, 3.469557, 3.456421, 3.470535, 3.457466, 3.443992, 3.459708, 3.459016, 3.467558
,3.477060 ,3.444190 ,3.449053 ,3.452385 ,3.439453 ,3.448660 ,3.455222 ,3.457257 ,3.450218 ,3.444261
,3.440668 ,3.406554 ,3.434649 ,3.448277 ,3.457374 ,3.457356 ,3.444002 ,3.479823 ,3.440215 ,3.445553
,3.469613 ,3.438247 ,3.452851 ,3.442648 ,3.427526 ,3.450818 ,4.314848 ,3.454187 ,3.429235 ,3.441798
,3.460282 ,3.431131 ,3.456584 ,3.441834 ,3.458611 ,3.457034 ,3.440404 ,3.453404 ,3.453020 ,3.477291
,3.473730 ,3.449680 ,3.440150 ,3.449797 ,3.469640 ,3.454352 ,3.454352 ,3.454369 ,3.447399 ,3.449680 ,3.449797
,3.460251 ,3.451692 ,3.472587 ,3.433605 ,3.451018 ,3.456360 ,3.440054 ,3.460081 ,3.432452 ,3.452536
,3.461054 ,3.458196 ,3.483561 ,3.446050 ,3.451104 ,3.462915 ,3.460283 ,3.445920 ,3.446153 ,3.381598
3.426027, 3.411069, 3.423735, 3.415376, 3.445492, 4.277496, 3.437335, 3.420844, 3.447263, 3.437335, 3.420844,
,3.432811 ,3.440958 ,3.432175 ,3.406913 ,3.430689 ,3.444283 ,3.407777 ,3.432688 ,3.414015 ,3.448806
,3.438003 ,3.430988 ,3.438785 ,3.398457 ,3.442322 ,3.453573 ,3.436091 ,3.425726 ,3.415592 ,3.437357
,3.429387 ,3.420784 ,3.428431 ,3.408620 ,3.438395 ,3.451616 ,3.433071 ,3.436297 ,3.416843 ,3.422175
,3.428632 ,3.424109 ,3.434704 ,3.460059 ,3.460396 ,4.333751 ,3.447537 ,3.459034 ,3.451555 ,3.441866
```

Performance Evaluation

,3.447678 ,4.303699 ,3.475603 ,4.318962 ,3.422179 ,3.459285 ,3.463415 ,3.470456 ,3.484833 ,3.398483 ,3.472251 ,3.424344 ,3.427084 ,3.445340 ,3.441282 ,3.427945 ,3.417615 ,3.452134 ,3.412243 ,3.427368 ,4.283678 ,3.410058 ,3.442435 ,3.427159 ,3.444676 ,3.437780 ,3.424732 ,3.441943 ,3.420282 ,3.441544 ,3.432663 ,3.419494 ,3.439840 ,3.427887 ,3.455527 ,3.449980 ,3.444340 ,3.446501 ,3.434055 ,3.466412 ,3.483462 ,3.463651 ,3.466076 ,3.435053 ,3.439207 ,3.451790 ,3.443273 ,3.443244 ,3.423598 ,3.445032 ,3.447161 ,3.450035 ,3.468390 ,3.436626 ,3.452977 ,3.463630 ,4.324897 ,3.441405 ,3.434021 ,3.431017 ,3.412572 ,3.413766 ,3.455813 ,3.450512 ,3.447309 ,3.445290 ,3.446766 ,3.467657 ,3.422126 ,3.461142

CPU Benchmark 10 minute experiment(GFLOP nad GIOP) 4.5 2.5 1.5 0.5 GFLOP 3.747727 ——GIOP 3.405598

Performance Evaluation

f. Extra Credit (3.3%): Run the Linpack benchmark (http://en.wikipedia.org/wiki/LINPACK) and report the best performance achieved; what efficiency do you achieve compared to the theoretical performance?

```
Current date/time: Thu Feb 11 03:17:31 2016
CPU frequency:
                2.881 GHz
Number of CPUs: 1
Number of cores: 1
Number of threads: 1
Parameters are set to:
Number of tests: 15
Number of equations to solve (problem size) : 1000 2000 5000 10000 15000 18000 20000 22000 25000 26000 27000 30000 35000 40000 45000
Leading dimension of array
                                         : 1000 2000 5008 10000 15000 18008 20016 22008 25000 26000 27000 30000 35000 40000 45000
Number of trials to run
                                         : 4
                                                 2
                                                             2
                                                                              2
                                                                                   2
                                                                                               2
                                                                                                                      1
Data alignment value (in Kbytes)
                                         : 4
Maximum memory requested that can be used=800204096, at the size=10000
======== Timing linear equation system solver ==============
Size LDA
             Align. Time(s)
                              GFlops Residual
                                                   Residual(norm) Check
1000
      1000
                    0.037
                              17.9337 9.900691e-13 3.376390e-02
1000
      1000
                    0.035
                              19.1465 9.900691e-13 3.376390e-02
                                                                 pass
      1000
                   0.037
1000
                              18.0474 9.900691e-13 3.376390e-02
                                                                 pass
1000
      1000
                    0.036
                              18.6005 9.900691e-13 3.376390e-02
2000
      2000
                   0.271
                              19.7209 4.053480e-12 3.526031e-02
                                                                 pass
      2000
2000
                   0.264
                              20.2172 4.053480e-12 3.526031e-02
                                                                 pass
5000
      5008
                    3.928
                              21.2261 2.336047e-11 3.257429e-02
                                                                 pass
      5008
5000
                   3.940
                              21.1648 2.336047e-11 3.257429e-02
                                                                 pass
      10000
            4
                    31.312
                              21.2975 1.124127e-10 3.963786e-02
10000
                                                                 pass
10000
     10000 4
                    30.815
                              21.6409 1.124127e-10 3.963786e-02
                                                                 pass
Performance Summary (GFlops)
Size LDA
             Align. Average Maximal
1000
      1000
                    18.4320 19.1465
2000
      2000
                    19.9691 20.2172
      5008
                    21.1954 21.2261
5000
10000 10000 4
                    21.4692 21.6409
Residual checks PASSED
End of tests
```

Performance Evaluation

Theoretical performance is 20 GFLOP, LIMPACK is 21.4692. Since Intel E5-2670 series have Max turbo frequency, it may increase more than 20 GFLOPS, So LIMPACK achieved almost 100% of theoretical performance.

2. Memory

- a. Measure the memory speed of your host.
- b. Your parameter space should include read+write operations (e.g. memcpy), sequential access, random access, varying block sizes (1B, 1KB, 1MB), and varying the concurrency (1 thread & 2 threads)
- c. The metrics you should be measuring are throughput (Megabytes per second, MB/sec) and latency (milliseconds, ms)

Reading are as below.

Sequential Byte transfer latency (ms)									
Threads	Observation#1	observation#2	observation#3	average	standard				
					deviation				
1	0.000003	0.000003	0.000003	0.000003	0				
2	0.000003	0.000003	0.000003	0.000003	0				
Sequential byte transfer throughput (MB/sec)									
1	370.3	375.86	373.7373	373.2991	2.430538139				
2	375.29	375.612	369.457569	373.453	4.124151511				
Random By	yte transfer latency (m	ns)							
1	0.0000417	0.00004624	0.00004324	4.37267E-05	2.30879E-06				
2	0.0000408	0.00004593	0.00005079	0.00004584	4.99561E-06				
Random by	te transfer throughpu	ıt (MB/sec)							
1	23.98	21.63	23.128	22.91266667	1.189706406				
2	24.54	21.7723	19.849346	22.053882	2.357970537				
Sequential	Kbyte transfer latence	y (ms)							
1	4.35E-08	2.68E-08	4.56E-08	3.86333E-08	1.03016E-08				
2	2.82E-08	2.76E-08	2.79E-08	2.79E-08	3E-10				
Sequential	Kbyte transfer through	hput (MB/sec)							
1	22995.09	37382.39	21913.85	27430.44333	8635.577678				
2	35484.81	36282.907	35848.752	35872.15633	399.5629205				
Random Kl	yte transfer latency (ms)							
1	2.35E-07	0.000002675	2.799E-07	1.0633E-06	1.39595E-06				
2	2.901E-07	3.326E-07	3.098E-07	3.10833E-07	2.12688E-08				
Random Kl	oyte transfer through	out (MB/sec)							
1	4255.5844	3738.91	3572.6609	3855.718433	356.1309932				
2	3446.9954	3006.23853	3227.38033	3226.871419	220.3788747				

Performance Evaluation

Sequential Mbyte transfer latency (ms)									
1	5.97E-08 0.000000056 5.81E-08 5.79333E-08 1.8556								
2	7.58E-08	7.93E-08	0.000000073	0.000000073 7.60333E-08 3.15647E-					
Sequential Mbyte transfer throughput(MB/sec)									
1	26763.81	27863.31	27203.872	27276.99733	553.3855331				
2	36189.64	35603.0769	36697.9229	36163.5466	547.8892133				
Random M	byte transfer latency	(ms)							
1	1.524E-07								
2	1.729E-07 1.793E-07 1.596E-07 1.706E-07 1.00494E			1.00494E-08					
Random Mbyte transfer throughput (MB/sec)									
1	6559.75	5979.91	6124.8598	6221.5066	301.7599366				
2	2 5782.06 5576.0489 6263.894863 5874.001254 353.0197061								

d. Compute the theoretical memory bandwidth of your memory, based on the type of memory and the speed.

Formula to calculate Memory bandwidth is the product of:=

Base DRAM clock frequency * Number of data transfers per clock * Memory bus (interface) width: * Number of interfaces:

Since there is no mention DRAM type. With reference to https://en.wikipedia.org/wiki/DDR3_SDRAM for CPU E5-2670 v2. I am considering DDR3-1333* memory type with 10666.67 MB/sec.

e. Extra Credit (3.3%): Run the Stream benchmark (http://www.cs.virginia.edu/stream/) and report the best performance achieved; what efficiency do you achieve compared to the theoretical performance?

```
------
STREAM version $Revision: 5.10 $
This system uses 8 bytes per array element.
Array size = 20000000 (elements), Offset = 0 (elements)
Memory per array = 152.6 MiB (= 0.1 GiB).
Total memory required = 457.8 MiB (= 0.4 GiB).
Each kernel will be executed 10 times.
The *best* time for each kernel (excluding the first iteration)
will be used to compute the reported bandwidth.
Your clock granularity/precision appears to be 1 microseconds.
Each test below will take on the order of 50971 microseconds.
   (= 50971 clock ticks)
Increase the size of the arrays if this shows that
you are not getting at least 20 clock ticks per test.
WARNING -- The above is only a rough guideline.
For best results, please be sure you know the
precision of your system timer.
Function Best Rate MB/s Avg time Min time Max time Copy: 6173.1 0.052940 0.051838 0.054501 Scale: 6134.5 0.053769 0.052164 0.055194 Add: 8851.5 0.055673 0.054228 0.056868 Triad: 8107.0 0.060925 0.059208 0.061939
Solution Validates: avg error less than 1.000000e-13 on all three arrays
```

Assumed theoretical peak memory speed is 10666.67 MB/sec. with stream max speed is 8851.5 MB/sec so 8851.5/10666.67= 82.98% of theoretical peak performance.

3. Disk

- a. Measure the disk speed; Hint: there are multiple ways to read and write to disk, explore the different APIs, and pick the fastest one out of all them
- b. Your parameter space should include read operations, write operations, sequential access, random access, varying block sizes (1B, 1KB, 1MB), and varying the concurrency (1 thread, 2 threads) c. The metrics you should be measuring are throughput (MB/sec) and latency (ms)

Sequential write	e Byte transfer late	ency				
Threads	Observation#1	observation#2	observation#3	average	standard deviation	
1	0.000028	0.000028	0.000028	0.000028	0	
2	0.000028	0.000028	0.000028	0.000028	0	
Sequential write	e byte transfer th	roughput				
1	36.02	36.8034	36.096	36.30646667	0.432031311	
2	35.25	35.7	35.82	35.59	0.300499584	
Random write	Byte transfer later	ncy				
1	0.00139799	0.00014364	0.001400252	0.000980627	0.000724853	
2	0.0014189	0.001404	0.00141785	0.001413583	8.316E-06	
Random write b	yte transfer throu	ıghput				
1	0.7153	0.69618	0.714171	0.708550333	0.010727885	
2	0.764766	0.712186	0.72529	0.734080667	0.027370074	
Sequential Kbyt	e write transfer la	tency				
1	9.413E-07	8.181E-07	8.562E-07	8.71867E-07	6.30765E-08	
2	1.1781E-07	9.608E-07	9.325E-07	6.7037E-07	4.7874E-07	
Sequential Kbyt	e write throughpu	ıt				
1	1062.38	1322.4014	1167.939407	1184.240269	130.7748856	
2	1048.843	1040.77	1072.3829	1053.998633	16.42495899	
Random Kbyte	write latency					
1	2.6156E-06	2.3976E-06	2.4363E-06	2.48317E-06	1.16311E-07	
2	3.8269E-06	3.2183E-06	3.2993E-06	3.44817E-06	3.30484E-07	
Random Kbyte	write throughput					
1	382.315	417.078	410.4658	403.2862667	18.4601142	
2	261.30785	310.726	303.0916	291.7084833	26.6030054	
Sequential Mby	te write latency					
1	7.199E-07	5.749E-07	7.174E-07	6.70733E-07	8.30035E-08	
2	6.559E-07	6.525E-07	6.789E-07	6.62433E-07	1.43615E-08	
Sequential Mby	te write throughp	ut				
1	1389.0236	1739.5089	1393.8269	1507.453133	200.980539	
2	1524.5362	1513.255	1479.576	1505.789067	23.39145178	
Random Mbyte	write latency					

Performance Evaluation

1	4.743E-07	3.746E-07	5.106E-07	4.53167E-07	7.04199E-08						
2	4.753E-07	4.737E-07	5.022E-07	4.83733E-07	1.60126E-08						
Random Mbyte write throughput											
1	2108.5381	2669.4908	1958.4908	2245.506567	374.7672887						
2	2103.8844	2111.08516	1991.219	2068.72952	67.22256518						
Sequential read Byte transfer latency											
1	0.000027	0.000027	0.00002	2.46667E-05	4.04145E-06						
2	0.000027	0.000027	0.000027	0.000027	4.1496E-21						
Sequential read	byte transfer thr	oughput									
1	36.71	36.95	37.105	36.92166667	0.199018425						
2	36.5674	36.85	36.8916	36.76966667	0.176398677						
Random read B	yte transfer laten	су									
1	0.000588186	0.000583444	0.000559448	0.000577026	1.54067E-05						
2	0.000576244	0.00058197	0.0005747	0.000577638	3.82991E-06						
Random read by	te transfer throu	ghput									
1	1.6983	1.71396	1.7874	1.73322	0.047570087						
2	1.7353	1.718303	1.740012	1.731205	0.011419148						
Sequential Kbyt	e read transfer lat	ency									
1	2.486E-07	2.378E-07	2.271E-07	2.37833E-07	1.075E-08						
2	2.198E-07	0.000000242	2.278E-07	2.29867E-07	1.12434E-08						
Sequential Kbyt	e read throughpu [.]	t									
1	4022.1557	4204.394	4403.9311	4210.160267	190.9530083						
2	4549.664	4131.605	4389.183	4356.817333	210.9004129						
Random Kbyte r	ead latency				_						
1	7.913E-07	7.398E-07	7.667E-07	7.65933E-07	2.57586E-08						
2	8.121E-07	8.461E-07	0.000000798	8.18733E-07	2.47266E-08						
Random Kbyte r	ead throughput				_						
1	1263.801	1351.78	1304.361	1306.647333	44.03403911						
2	1231.301	1181.8935	1253.07839	1222.090963	36.47520696						
Sequential Mby	te read latency										
1	1.513E-07	1.241E-07	1.524E-07	1.426E-07	1.60309E-08						
2	6.559E-07	0.000000144	1.801E-07	3.26667E-07	2.85695E-07						
Sequential Mby	te read throughpu	ut									
1	6611.4501	8059.769	6561.8022	7077.673767	850.8816099						
2	6713.034571	6944.211921	5553.898	6403.714831	744.9847153						
Random Mbyte	read latency	,		_							
1	1.798E-07	1.975E-07	1.914E-07	1.89567E-07	8.99129E-09						
2	2.143E-07	2.198E-07	2.139E-07	0.000000216	3.29697E-09						
	read throughput										
1	5562.7374	5063.1385	5224.5939	5283.489933	254.9535689						
2	4666.559	4549.1366	4674.8818	4630.192467	70.31967997						

d. Extra Credit (3.3%): Run the IOZone benchmark (http://www.iozone.org/) and report the best performance achieved; what efficiency do you achieve compared to the theoretical erformance? Hint: The theoretical performance is generally advertised by the manufacturer.

Run begar	or Thu E	ab 11 06	.21.21.26	16									
Kuli begai	i: Illu Ft	יטט דו טט:	:31:21 20	710									
Auto Mode	e												
Command 1	line used	d: ./iozo	one -a										
Output is	s in Kby	tes/sec											
Time Reso	olution :	= 0.00000	01 second	ls.									
Processor	r cache s	size set	to 1024	Kbytes.									
				32 bytes									
File stri	ide size	set to :	17 * reco	ord size.									
					random		bkwd	record	stride				
KB	reclen		rewrite	read	reread read	write	read	rewrite	read		frewrite		freread
64	4		2278628		10821524 7940539			3958892		2133730			10821524
64			1638743		1597288510821524			4564786	7940539	2298136			7940539
64			1638743		1597288512902017			2278628		2467108			15972885
64					1597288512310336			2662899	4018152				15972885
64 128					15972885 3738358 11720614 9129573			2772930 4135958	5283570 7082197	2923952 2286447			12902017 9977956
128					1636517311470204			5784891	7917784	2843510			12842051
128					1284205111720614			4135958	7082197	2132084			11720614
128					1172061411470204			3895854	5784891	2464907			12842051
128					1801235912842051			3359523	4267461	2367096			14200794
128					15881078 9977956			3380677		1579934			14200794
256			2509882		9114515 8024634			4350555		2557711			8271916
256			2726577		1416439511091721			5347168		2607399			7314033
256	16	1375171	2582316	3454704	1416439512228612	2726577	4197489	5569035	10651598	2242541	2692393	4572895	13454450
256	32	1497953	2672291	5455847	1281227712812277	2486631	5569035	5347168	8024634	3078337	3009318	4422226	11207494
256	64	1489641	2812272	7314033	1416439510758322	3326279	4404088	3935921	9192546	3159869	3705040	4819184	14353744
256	128	1629830	2607399	7791708	1345445010758322	2975955	5717301	4350555	6437081	2943325	5022044	4197489	13454450
256	256	1552085	2935279	12812277	1281227710245071	2911402	4496299	2943325	5938650	2880164	3159869	5938650	12228612
512	4	1210664	2350044	6018636	12215097 8665997	2337255	5019764	5067142		2169601	2263354	5566231	10434519
512	8	1492545	2180616	6736026	14240069 8701110	2625909	4650188	5760329	10235583	2613128	2584820	4384358	11877300
512			2958758		13438092 8665997				9468384	2678309			12499490
512			2979282		12499490 8701110				11374040	2725905			13109944
512			2922519		1462806712146009				8528336	2958758			10694336
512			3099691		14240069 9468384			4701087	7988981	3634839			12797441
512		1684557			1310994411374040			3415178		2750343			13872122
512			2497638		12499490 9638369			3710197		3659616			12499490
1024		1369216			11614118 8970167			5303701		2443368			8895850
1024			2534194		11645609 8822754			7020149	10557785	2432298 2910252			14044758
1024 1024			2409105 2875184		1347205310158253 1217374712639479				9569770 10039528	2674649			13643232 12790037
1024		1468964			1529515713102174				10662628	2789291			14422045
1024		1726407			1399898113472053				11520658	2659742			14044758
1024		1651398			1294422412173747			4654248		3894582			13818817
1024		1812371			1364323212037272			4789183		2852271			12492426
1024		1687075			1177330112492426					3261656			10454984
1024	1024	108/0/5	3083080	9402175	1177330112492426	3723004	0092005	2303112	3444898	3201050	2934110	0489770	10454984

I have attached total output of above tool in XLS format.