Math 7760 – Homework 2 – Due: September 7, 2022

Practice Problems:

Problem 1. Prove that $\dim(\operatorname{Conv}\{v_1,\ldots,v_n\}) = \operatorname{rank}(\hat{V}) - 1$ where

$$\hat{V} = \begin{pmatrix} 1 & 1 & \dots & 1 \\ v_1 & v_2 & \dots & v_n \end{pmatrix}$$

Problem 2. Recall from analysis that if $S \subseteq \mathbb{R}^n$ is compact, then each continuous function $f: S \to R$ has a maximum and a minimum on S. Now let $C \subseteq \mathbb{R}^d$ be closed and convex and let $x \in \mathbb{R}^d \setminus C$. Prove that there exists a unique point $y \in C$ minimizing the Euclidean distance to x. [Hint: begin by reducing to the case that C is compact.]

Problem 3. Prove that every face of a V-polytope is exposed.

Problems to write up:

Problem 4. Prove the hyperplane separation theorem (see below for the theorem statement and a proof outline).

Theorem (Hyperplane separation theorem). Given a convex $C \subset \mathbb{R}^n$ and a point $y \in \mathbb{R}^d \setminus C$, there exists $a \in (\mathbb{R}^n)^*$ and $b \in \mathbb{R}$ such that $ax \leq b$ for all $x \in C$ and $ay \geq b$.

Outline of proof:

Split into the cases based on whether or not $y \in rb(C)$.

Case 1: $y \notin \operatorname{rb}(C)$:

- (1) Prove that there exists a unique $z \in C$ that is nearest to y in the Euclidean distance metric (c.f. Problem 2).
- (2) Reduce to the case where z = -y.
- (3) Show that $y^T x \leq 0$ for all $x \in C$. [Hint: show that if $y^T x > 0$, then tx + (1 t)z and y are closer to each other than z and y are to each other for small positive t.]
- (4) Conclude that the hyperplane separation theorem is true when $y \notin \text{rb}(C)$.

Case 2: $y \in rb(C)$:

- (1) Reduce to the case that y = 0 and note that it is enough to construct a *linear* hyperplane that does not intersect relint(C).
- (2) Inductively construct a sequence of linear spaces $L_0, \ldots, L_{d-1} \subseteq \mathbb{R}^d$ with dim $L_i = i$, none intersecting relint(C). [Hint: for $k \leq d-2$, note that L_k^{\perp} has a two-dimensional subspace P and that $P \cap (C + L_k)$ is convex. Argue that P contains a line L through the origin that does not intersect $P \cap (\operatorname{relint}(C) + L_k)$, and that this implies $L_k + L$ does not intersect relint(C).]
- (3) Conclude that the hyperplane separation theorem is true.