EXERCICE 1.

Reconnaître les endomorphismes de \mathbb{R}^3 dans la liste suivante,

- 1. $f_1: (x,y,z) \longmapsto (x,xy,x-z);$
- **2.** $f_2: (x,y,z) \longmapsto (x+y,2x+5z,0);$
- **3.** $f_3: (x,y,z) \longmapsto (x-3y,x+y,z+2).$

EXERCICE 2.

Parmi les applications suivantes, lesquelles sont linéaires?

- 1. $id_E : E \longrightarrow E$, $u \longmapsto u$, où E est un \mathbb{K} -ev.
- **2.** $F: \mathcal{C}(\mathbb{R}) \longrightarrow \mathcal{C}(\mathbb{R}), f \longmapsto \exp \circ f.$
- **3.** G: $\mathcal{C}(\mathbb{R}) \longrightarrow \mathcal{C}(\mathbb{R})$, f \longmapsto f × cos.
- **4.** H: $\mathcal{C}^2(\mathbb{R}) \longrightarrow \mathcal{C}(\mathbb{R})$, f \longmapsto f" f.
- 5. $j : F \longrightarrow E, u \mapsto u$, où F est un sev d'un K-ev E.
- **6.** $T: \mathbb{R}^{\mathbb{N}} \longrightarrow \mathbb{R}^{n+1}, (u_k)_{k \in \mathbb{N}} \longmapsto (u_0, \dots, u_n).$
- 7. $S: \mathbb{R}^{\mathbb{N}} \longrightarrow \mathbb{R}^{\mathbb{N}}, (u_k)_{k \in \mathbb{N}} \longmapsto (u_{k+1})_{k \in \mathbb{N}}.$

EXERCICE 3.

Soient f et g les endomorphismes de \mathbb{R}^2 définis par

$$g:(x,y)\longmapsto(y,x)$$
 et $f:(x,y)\longmapsto(x+y,2x)$.

- 1. Montrer que f et g sont des isomorphismes de \mathbb{R}^2 . Déterminer f^{-1} et g^{-1} .
- **2.** On note $h = f \circ g g \circ f$. Justifier que $h \in \mathcal{L}(\mathbb{R}^2)$.
- **3.** A-t-on $f \circ g = g \circ f$? h est-elle injective?
- **4.** L'application h est-elle surjective ?

EXERCICE 4.★

Soient E un \mathbb{R} -ev, \mathfrak{u} et \mathfrak{v} dans $\mathcal{L}(\mathsf{E})$ tels que

$$u \circ v - v \circ u = u$$
.

Etablir que, pour tout k dans \mathbb{N}^* :

$$u^k \circ v - v \circ u^k = ku^k.$$

EXERCICE 5.

Soit f, un endomorphisme de E. Pour tout entier $k \ge 2$, on note

$$f^k = \underbrace{f \circ \cdots \circ f}_{k \text{ fois}}.$$

On suppose qu'il existe un entier $n\geqslant 2$ tel que f^n soit l'application identiquement nulle.

- 1. Soit $x\in {\rm Ker}(I-f).$ Démontrer que $f^k(x)=x$ pour tout entier $k\geqslant 1.$ En déduire que I-f est injectif.
- 2. Simplifier les expressions

$$(I - f) \circ (I + f + f^2 + \dots + f^{n-1})$$

et $(I + f + f^2 + \dots + f^{n-1}) \circ (I - f)$

en utilisant les règles de calcul dans $\mathsf{L}(\mathsf{E})$ et en déduire que $\mathsf{I}-\mathsf{f}$ est un automorphisme.

3. Démontrer que, pour tout entier $k \ge 1$, l'endomorphisme $I-f^k$ est inversible. On précisera l'expression de son inverse.

EXERCICE 6.

Soit f l'endomorphisme de \mathbb{R}^3 défini par

$$(x, y, z) \longmapsto (2x - y, -x + y, x - z).$$

Prouver que f est un isomorphisme de \mathbb{R}^3 et expliciter son isomorphisme réciproque f^{-1} .

EXERCICE 7.★

Soient f_k les fonctions de \mathbb{R} dans \mathbb{R} définies par

$$\forall k \in \{0, 1, 2\}, \quad f_k : x \longmapsto x^k e^{2x}.$$

On note E le sous espace vectoriel de $\mathbb{R}^{\mathbb{R}}$ engendré par ces trois vecteurs.

- 1. Quelles est la dimension de E ? En donner une base.
- 2. On note D l'opérateur de dérivation défini par

$$D: f \in E \longrightarrow f'$$
.

Prouver que $D \in \mathcal{L}(E)$.

3. Montrer que $D \in GL(E)$.

EXERCICE 8.

Soit \mathbb{K} un corps. Pour $\sigma \in S_n$, on pose :

$$\begin{array}{cccc} f_\sigma : & \mathbb{K}^n & \longrightarrow & \mathbb{K}^n \\ & (x_1, \dots, x_n) & \longmapsto & (x_\sigma(1), \dots, x_\sigma(n)) \end{array}$$

On munit \mathbb{K}^n de la structure d'algèbre pour les opérations composante par composante.

- 1. Montrer que f_{σ} est un automorphisme d'algèbre.
- 2. Soit φ un automorphisme d'algèbre de $\mathbb{K}^n.$ Montrer qu'il existe $\sigma\in S_n$ tel que $\varphi=f_\sigma.$
- 3. Trouver les sous-espaces de \mathbb{K}^n stables par tous les endomorphismes f_σ avec $\sigma\in S_n.$

EXERCICE 9.

Soit Φ l'application de \mathbb{R}^3 dans \mathbb{R}^4 définie par

$$(x, y, z) \longmapsto (x + z, y - z, x + y + z, x - y - z).$$

- 1. Montrer que Φ est linéaire.
- **2.** Φ est-elle injective ?
- **3.** Etudier la surjectivité de Φ . Donner une base de $\operatorname{Im}(\Phi)$.

EXERCICE 10.

Soient $\alpha \in \mathbb{R}$ et f_α l'application linéaire de \mathbb{R}^4 dans \mathbb{R}^3 définie par

$$(x, y, z, t) \longmapsto (x + y + \alpha z + t, x + z + t, y + z).$$

Déterminer en fonction de $\alpha \in \mathbb{R}$ des bases des espaces vectoriels $\operatorname{Ker}(f_{\alpha})$ et $\operatorname{Im}(f_{\alpha})$.

EXERCICE 11.

Soit f l'endomorphisme de \mathbb{R}^3 défini par

$$f((x, y, z)) = (x, 0, y).$$

On note $(e_k)_{1 \leq k \leq 3}$ la base canonique de \mathbb{R}^3 .

- 1. Déterminer des bases de Im(f) et Ker(f).
- 2. On note $E=\left\{(x,y,0)\in\mathbb{R}^3\;,\;(x,y)\in\mathbb{R}^2\right\}\!.$ Déterminer des bases des sous-espaces vectoriels f(E) et $f^{-1}(E).$

EXERCICE 12.★

Soient E l'ensemble des applications continues de \mathbb{R}_+ dans \mathbb{R} et ψ l'application de E dans E qui à f associe l'application g de \mathbb{R}_+ dans \mathbb{R} définie par

$$\forall x \geqslant 0, \quad g(x) = \int_0^x 2tf(t)dt.$$

- Justifier que E est un espace vectoriel réel pour les opérations usuelles sur les fonctions.
- 2. Quelle est la dimension de E?
- 3. Montrer que ψ est un endomorphisme de E.
- 4. Etudier l'injectivité puis la surjectivité de ψ . Formuler en termes de contreexemple les résultats précédents.
- **5.** Soit $\lambda \in \mathbb{R}$. Déterminer le sous-espace vectoriel $Ker(\psi \lambda id_E)$.

EXERCICE 13.

On considère \mathbb{C} comme un \mathbb{R} -espace vectoriel. On définit l'application u par

$$u: z \longmapsto iz - i\overline{z}$$
.

- **1.** Prouver que $\mathfrak{u} \in \mathcal{L}(\mathbb{C})$.
- 2. Déterminer Ker(u) et Im(u).
- 3. Calculer u^2 .
- 4. En déduire que l'endomorphisme $id_{\mathbb{C}}+2u$ est inversible et calculer son inverse.

EXERCICE 14.

On pose définit l'application suivante

$$\begin{array}{cccc} f: & \mathbb{R}[X] & \longrightarrow & \mathbb{R}[X] \\ & P & \longmapsto & (x \mapsto \int_0^x P(t) dt) \end{array}.$$

Vérifier que f est un endomorphisme de $\mathbb{R}[X]$. Déterminer son noyau et son image. f est-il inversible à gauche? à droite?

EXERCICE 15.

Soient E un \mathbb{C} -espace vectoriel, $\mathfrak{u}\in\mathcal{L}(E)$ et $X^2+\mathfrak{a}X+\mathfrak{b}$ un polynôme à coefficients complexes.

1. On note r_1 et r_2 les deux racines (éventuellement confondues) de $X^2 + aX + b$. Montrer que

$$u^2 + au + b\operatorname{Id}_E = (u - r_1\operatorname{Id}_E) \circ (u - r_2\operatorname{Id}_E) = (u - r_2\operatorname{Id}_E) \circ (u - r_1\operatorname{Id}_E)$$

- 2. On pose $F = \operatorname{Ker}(u^2 + au + b\operatorname{Id}_E)$, $F_1 = \operatorname{Ker}(u r_1\operatorname{Id}_E)$ et $F_2 = \operatorname{Ker}(u r_2\operatorname{Id}_E)$. Montrer que $F_1 \subset F$ et $F_2 \subset F$.
- **3.** A partir de maintenant, on supose que les deux racines r_1 et r_2 sont *distinctes*. Montrer que $F = F_1 \oplus F_2$.
- **4. Application :** Dans cette question, on suppose que E est le \mathbb{C} -espace vectoriel des fonctions de \mathbb{R} dans \mathbb{C} de classe \mathcal{C}^{∞} et que \mathfrak{u} est l'endomorphisme de E qui à f associe f'. On considère l'équation différentielle (\mathcal{E}) $\mathfrak{y}'' + \mathfrak{a}\mathfrak{y}' + \mathfrak{b}\mathfrak{y} = \mathfrak{0}$ dont on cherche les solutions à valeurs complexes.
 - **a.** Montrer que toute solution de (\mathcal{E}) est de classe \mathcal{C}^{∞} sur \mathbb{R} .
 - **b.** Montrer que l'ensemble des solutions de (\mathcal{E}) est F.
 - c. Déterminer F_1 et F_2 .
 - **d.** En déduire le résultat du cours déjà connu : les solutions de (\mathcal{E}) sont les fonctions de \mathbb{R} dans \mathbb{C} du type $t \mapsto \lambda e^{r_1 t} + \mu e^{r_2 t}$ avec λ et μ décrivant \mathbb{C} .

EXERCICE 16.

Pour $f \in \mathcal{C}([0,1],\mathbb{R})$ et $x \in [0,1]$, on pose $\Phi(f)(x) = \int_0^1 \min(x,t) f(t) dt$.

- 1. Prouver que Φ est un endomorphisme de $\mathcal{C}([0,1],\mathbb{R})$.
- 2. En utilisant la relation de Chasles, trouver une autre expression de $\Phi(f)(x)$. En déduire que $\Phi(f)$ est de classe \mathcal{C}^2 et exprimer $\Phi(f)''$ en fonction de f.
- 3. En déduire $\operatorname{Ker} \Phi$ et $\operatorname{Im} \Phi$.

EXERCICE 17.

On considère le sous-espace vectoriel F de $\mathcal{C}^1(\mathbb{R})$ engendré par la famille $\mathcal{B} = (\sin, \cos, \sinh, \cosh)$.

- 1. Montrer que \mathcal{B} est une base de F.
- **2.** On note D l'opérateur de dérivation. Montrer que F est stable par D. On notera d l'endomorphisme de F induit par D.
- **3.** On note M la matrice de d dans la base \mathcal{B} . Calculer M^n pour tout $n \in \mathbb{N}$.
- 4. Montrer que d est un automorphisme de F. Écrire la matrice de d^{-1} dans la base $\mathcal{B}.$
- 5. On note f = d Id. Déterminer l'image et le noyau de f.
- **6.** On note g = d + Id. Déterminer l'image et le noyau de $g \circ f$.

EXERCICE 18.

Déterminer une base du noyau et de l'image des applications linéaires définies par :

- 1. f(x, y, z) = (2x + y + z, x + 2y + z, x + y + 2z);
- **2.** f(x,y,z) = (y+z, x+z, x+y);
- 3. f(x, y, z) = (x + y + z, 2x y z, x + 2y + 2z);
- 4. f(x, y, z) = (x + 2y z, x + 2y z, 2x + 4y 2z).

EXERCICE 19.

Soient

$$f: \mathbb{R}^3 \to \mathbb{R}^3, \quad (x, y, z) \mapsto (x, y, 0),$$
$$g: \mathbb{R}^2 \to \mathbb{R}^3, \quad (x, y) \mapsto (x - y, x + y, x + 2y)$$

et

$$h: \mathbb{R}^3 \to \mathbb{R}, (x, y, z) \mapsto x - 3y + 2z.$$

- 1. Montrer que f, g et h sont linéaires.
- 2. Déterminer noyau et image dans chaque cas.

EXERCICE 20.

Soient E un \mathbb{R} -ev de dimension finie, f et g dans $\mathcal{L}(E)$. Etablir que

$$\operatorname{Im}(f) + \operatorname{Ker}(g) = E \quad \Longleftrightarrow \quad \operatorname{Im}(g \circ f) = \operatorname{Im}(g).$$

EXERCICE 21.★

Soient E et F deux \mathbb{R} -ev, $f \in L(E,F)$ et $g \in \mathcal{L}(F,E)$ telles que

$$f \circ g \circ f = f$$
 et $g \circ f \circ g = g$.

Etablir que

$$E = \operatorname{Ker}(f) \oplus \operatorname{Im}(g)$$
 et $F = \operatorname{Ker}(g) \oplus \operatorname{Im}(f)$.

EXERCICE 22.

Soient $f:E\longrightarrow F$ et $g:F\longrightarrow G$ deux applications linéaires. Que pensez vous des propositions suivantes ?

- 1. $Ker(g \circ f) = Ker(f) \cap Ker(g)$;
- **2.** $\operatorname{Ker}(g \circ f) \subset \operatorname{Ker}(f)$;
- **3.** $\operatorname{Ker}(g \circ f) \subset \operatorname{Ker}(f)$;
- **4.** $\operatorname{Im}(f) \subset \operatorname{Ker}(g)$ si et seulement si $g \circ f = 0$.

EXERCICE 23.★★

Soient E un espace vectoriel sur $\mathbb K$ et f appartenant à $\mathcal L(\mathsf E).$ Montrer l'équivalence suivante

$$\operatorname{Ker}(f^2) = \operatorname{Ker}(f)$$
 si et seulement si $\operatorname{Im}(f) \cap \operatorname{Ker}(f) = \{0\}.$

EXERCICE 24.

Soient E un \mathbb{K} -ev, f et g deux endomorphismes de E tels que $f \circ g = id_E$.

- 1. Etablir que f est surjective et g injective.
- 2. Montrer que $p = g \circ f$ est un projecteur de E.
- **3.** Etablir que Im(p) = Im(g) et Ker(p) = Ker(f).
- 4. Montrer que

$$Ker(f) \oplus Im(g) = E$$
.

EXERCICE 25.

Soient E un \mathbb{K} -ev et $f \in \mathcal{L}(E)$. Montrer que

$$\operatorname{Ker}(f)\cap\operatorname{Im}(f)=f(\operatorname{Ker}(f\circ f)).$$

EXERCICE 26.

Soit $\mathfrak u$ un endomorphisme de E, pour tout entier naturel $\mathfrak p$, on notera $I_{\mathfrak p}=\operatorname{Im}\mathfrak u^{\mathfrak p}$ et $K_{\mathfrak p}=\operatorname{Ker}\mathfrak u^{\mathfrak p}.$

- 1. Montrer que : $\forall p \in \mathbb{N}$, $K_p \subset K_{p+1}$ et $I_{p+1} \subset I_p$.
- 2. On suppose que E est de dimension finie et $\mathfrak u$ injectif. Déterminer $I_\mathfrak p$ et $K_\mathfrak p$ pour tout $\mathfrak p\in\mathbb N.$
- **3.** On suppose que E est de dimension finie $n \in \mathbb{N}$.
 - a. Montrer qu'il existe un plus petit entier naturel $r\leqslant n$ tel que : $K_r=K_{r+1}.$
 - **b.** Montrer qu'alors : $I_r = I_{r+1}$ et que : $\forall p \in \mathbb{N}, \quad K_r = K_{r+p}$ et $I_r = I_{r+p}$.
 - **c.** Montrer que : $E = K_r \oplus I_r$.
- 4. Lorsque E n'est pas de dimension finie, existe-t-il un plus petit entier naturel r tel que $K_r = K_{r+1}$?

EXERCICE 27.

Soient f et q deux endomorphismes d'un espace vectoriel E.

- 1. Montrer que si $g \circ f$ est surjective, alors g est surjective.
- **2.** Montrer que si g est surjective et $E = \operatorname{Im} f + \operatorname{Ker} g$, alors $g \circ f$ est surjective.
- 3. Formuler des énoncés similaires pour l'injectivité.

EXERCICE 28.

Soient $\mathfrak u$ et ν deux endomorphismes d'un espace vectoriel $\mathsf E$ qui commutent.

- 1. Montrer que Im u et Ker u sont stables par v.
- **2.** On suppose que $E= \operatorname{Ker} \mathfrak{u} \oplus \operatorname{Ker} \nu$. Montrer que $\operatorname{Im} \mathfrak{u} \subset \operatorname{Ker} \nu$ et que $\operatorname{Im} \nu \subset \operatorname{Ker} \mathfrak{u}$.
- **3.** Montrer que les inclusions précédentes sont des égalités si E est de dimension finie.

EXERCICE 29.

Soient E et F deux espaces vectoriels, $f \in \mathcal{L}(E,F), G$ et H deux sous-espaces vectoriels de E.

- 1. Montrer que f(G + H) = f(G) + f(H).
- 2. Montrer que si G et H sont en somme directe et que f est injective, alors $f(G\oplus H)=f(G)\oplus f(H).$

EXERCICE 30.

Soient E un espace vectoriel et $f \in \mathcal{L}(E)$. Montrer l'équivalence suivante :

$$E = \operatorname{Im} f + \operatorname{Ker} f \Leftrightarrow \operatorname{Im} f = \operatorname{Im} f^2$$

EXERCICE 31.

Soient E un espace vectoriel et f, g deux projecteurs de E.

- 1. Montrer que Im f = Im g si et seulement si $f \circ g = g$ et $g \circ f = f$.
- 2. Donner une condition nécessaire et suffisante pour que $\operatorname{Ker} f = \operatorname{Ker} g$.

EXERCICE 32.

Soient E un espace vectoriel de dimension finie et $f\in\mathcal{L}(E)$. Montrer que les propositions suivantes sont équivalentes :

- (i) $E = \operatorname{Im} f \oplus \operatorname{Ker} f$;
- (ii) $E = \operatorname{Im} f + \operatorname{Ker} f$;
- (iii) $\operatorname{Im} f = \operatorname{Im} f^2$;
- (iv) $\operatorname{Ker} f = \operatorname{Ker} f^2$.

EXERCICE 33.

Soit E un espace vectoriel de dimension finie. Montrer l'équivalence entre les propositions suivantes :

- (i) il existe $f \in \mathcal{L}(E)$ tel que $\operatorname{Ker} f = \operatorname{Im} f$;
- (ii) dim E est paire.

EXERCICE 34.

Soient $f \in \mathcal{L}(E,F)$ et $g \in \mathcal{L}(F,G)$.

- **1.** Montrer que Ker $f \subset \text{Ker } g \circ f$.
- **2.** Montrer que $\operatorname{Im} g \circ f \subset \operatorname{Im} g$.
- 3. Montrer que $g \circ f = 0 \iff \operatorname{Im} f \subset \operatorname{Ker} g$.

EXERCICE 35.

Soit E un espace vectoriel de dimension finie et f un endomorphisme de E nilpotent d'indice n. On pose

$$\begin{array}{ccc} \Phi: & \mathcal{L}(\mathsf{E}) & \longrightarrow & \mathcal{L}(\mathsf{E}) \\ & g & \longmapsto & \mathsf{f} \circ \mathsf{g} - \mathsf{g} \circ \mathsf{f} \end{array}$$

- 1. Montrer que $\Phi^p(g) = \sum_{k=0}^p (-1)^k {p \choose k} f^{p-k} \circ g \circ f^k$. En déduire que Φ est nilpotent.
- **2.** Soit $a \in \mathcal{L}(E)$. Montrer qu'il existe $b \in \mathcal{L}(E)$ tel que $a \circ b \circ a = a$. En déduire l'indice de nilpotence de Φ .

EXERCICE 36.★

Soient E un espace vectoriel sur $\mathbb K$ de dimension finie et f un endomorphisme de E. On souhaite prouver l'équivalence des deux propriétés suivantes :

- (*) Il existe un projecteur p de E tel que $f = p \circ f f \circ p$ (**) $f^2 = 0$
- 1. Supposons (*) vérifiée. Prouver que $\mathfrak{p} \circ \mathfrak{f} \circ \mathfrak{p} = 0$, puis que $\mathfrak{f} = \mathfrak{p} \circ \mathfrak{f}$. En déduire que (**) est vérifiée.
- 2. Supposons (**) vérifiée. Soit S un supplémentaire de Ker f dans E et p le projecteur sur Ker(f) parallèlement à S. Prouver la propriété (*).

EXERCICE 37.★★

Soit E un espace vectoriel sur \mathbb{K} de dimension finie \mathfrak{n} . Un endomorphisme \mathfrak{u} de E est dit nilpotent s'il existe $\mathfrak{p} \in \mathbb{N}$ tel que $\mathfrak{u}^{\mathfrak{p}} = \mathfrak{0}$.

- 1. Donner des exemples d'endomorphismes nilpotents de \mathbb{R}^2 puis de \mathbb{R}^3 .
- 2. Montrer qu'un endomorphisme nilpotent n'est jamais un isomorphisme.
- 3. Soit $u \in \mathcal{L}(E)$ tel que

$$\forall x \in E, \exists p_x \in \mathbb{N}, u^{p_x}(x) = 0.$$

Montrer que $\mathfrak u$ est nilpotent.

4. Montrer que si \mathfrak{u} est un endomorphisme nilpotent alors $id_E - \mathfrak{u} \in GL(E)$.

EXERCICE 38.★

Soient E un espace vectoriel sur $\mathbb K$ de dimension 3 et f appartenant à $\mathcal L(\mathsf E).$

- 1. On suppose dans cette question que $f^2 = 0$ et $f \neq 0$. Calculer le rang de f.
- 2. On suppose dans cette question que $f^3=0$ et $f^2\neq 0$. Calculer le rang de f.

EXERCICE 39.★★

Soient E un espace vectoriel sur $\mathbb K$ et $\mathfrak u$ un endomorphisme de E.

1. On suppose dans cette question l'existence d'un projecteur p de E tel que

$$u = p \circ u - u \circ p$$
.

- a. Démontrer que $\mathfrak{p} \circ \mathfrak{u} \circ \mathfrak{p} = 0$. On précisera de quel $\mathfrak{0}$ il s'agit.
- **b.** Prouver que $u \circ p = 0$.
- c. En déduire que $u^2 = 0$.
- **2.** On suppose dans cette question que $u^2 = 0$.
 - a. Démontrer que $\operatorname{Im}(\mathfrak{u}) \subset \operatorname{Ker}(\mathfrak{u})$.
 - ${\bf b.}$ Soient H et S deux sous-espaces vectoriels supplémentaires dans E tels que

$$\mathrm{Im}(\mathfrak{u})\subset H\subset \mathrm{Ker}(\mathfrak{u}).$$

En notant q la projection sur H parallèlement à S , reconnaître l'application linéaire $q\circ u-u\circ q.$

3. Donner une condition $n\'{e}cessaire$ et suffisante pour qu'il existe un projecteur p de E tel que

$$u = p \circ u - u \circ p$$
.

Exercice 40.★

Soient E un espace vectoriel de dimension $\mathfrak n$ et $\mathfrak f$ une application linéaire de E dans lui-même. Montrer que les deux assertions qui suivent sont équivalentes :

1.
$$Ker(f) = Im(f)$$
.

2.
$$f^2 = 0$$
, $n = 2 \operatorname{rg}(f)$.

EXERCICE 41.

On note $E = \mathbb{R}^4$,

$$F = \{(x, y, z, t) \in E \mid z = y + t = 0\}$$

et $G = \{(x, y, z, t) \mid x = y + z = 0\}.$

- 1. Prouver que F et G sont des plans vectoriels de E.
- ${\bf 2.}\,$ Montrer que F et G sont supplémentaires dans E.
- 3. Donner les expressions analytiques de p et s, respectivement projecteur sur F parallèlement à G et symétrie par rapport à F parallèlement à G.

EXERCICE 42.★

On note $E=\mathbb{R}^\mathbb{R},\,\mathcal{A}$ le sous-espace vectoriel de E constitué des fonctions affines et on pose

$$\mathcal{N} = \left\{ f \in E \mid f(0) = f(1) = 0 \right\}.$$

- 1. Montrer que les sous-espaces vectoriel \mathcal{A} et \mathcal{N} sont supplémentaires dans \mathcal{E} .
- 2. Expliciter le projecteur sur \mathcal{A} parallèlement à \mathcal{N} .
- 3. Expliciter la symétrie par rapport à \mathcal{A} parallèlement à \mathcal{N} .

EXERCICE 43.★

Soient E un espace vectoriel sur \mathbb{K} , \mathfrak{p} et \mathfrak{q} deux projecteurs de E.

1. Prouver que

$$p \circ q + q \circ p = 0$$
 si et seulement si $p \circ q = q \circ p = 0$.

2. Montrer que p + q est un projecteur si et seulement si

$$p \circ q = q \circ p = 0$$
.

3. On suppose que p + q est un projecteur de E. Montrer que

$$\operatorname{Im}(\mathfrak{p} + \mathfrak{q}) = \operatorname{Im}(\mathfrak{p}) \oplus \operatorname{Im}(\mathfrak{q})$$

et

$$Ker(p + q) = Ker(p) \cap Ker(q)$$
.

Exercice 44.★

Soient E un espace vectoriel sur $\mathbb{K},$ \mathfrak{p} et \mathfrak{q} deux projecteurs de E tels que $\mathfrak{p} \circ \mathfrak{q} = \mathfrak{q} \circ \mathfrak{p}.$

- 1. Prouver que $\psi = p \circ q$ est un projecteur de E.
- **2.** Montrer que $\operatorname{Im}(\psi) = \operatorname{Im}(\mathfrak{p}) \cap \operatorname{Im}(\mathfrak{q})$.
- 3. Etablir que $Ker(\psi) = Ker(p) + Ker(q)$.

Exercice 45.★★

Soit E un espace vectoriel de dimension finie et A une partie finie de GL(E) stable par composition. On pose $\mathfrak{p}=\frac{1}{|A|}\sum_{f\in A}f.$ Montrer que \mathfrak{p} est un projecteur.

EXERCICE 46.

Soit E un \mathbb{K} -espace vectoriel et \mathfrak{p} un projecteur de E. Pour quelles valeurs de $\lambda \in \mathbb{K}$, Id $+\lambda \mathfrak{p}$ est-il un automorphisme?

EXERCICE 47.

Soient p et q deux projecteurs d'un espace vectoriel E qui commutent.

- 1. Montrer que $p + q p \circ q$ et $p \circ q$ sont des projecteurs.
- **2.** Montrer que $\operatorname{Ker}(p \circ q) = \operatorname{Ker} p + \operatorname{Ker} q$ et que $\operatorname{Im}(p \circ q) = \operatorname{Im} p \cap \operatorname{Im} q$.
- 3. Montrer que $\operatorname{Ker}(\mathfrak{p}+\mathfrak{q}-\mathfrak{p}\circ\mathfrak{q})=\operatorname{Ker}\mathfrak{p}\cap\operatorname{Ker}\mathfrak{q}$ et que $\operatorname{Im}(\mathfrak{p}+\mathfrak{q}-\mathfrak{p}\circ\mathfrak{q})=\operatorname{Im}\mathfrak{p}+\operatorname{Im}\mathfrak{q}.$

EXERCICE 48.★

Soient E et F deux espaces vectoriels, f et g deux applications linéaires de rang fini de E dans F.

1. Montrer que

$$|\operatorname{rg}(f) - \operatorname{rg}(g)| \le \operatorname{rg}(f+g) \le \operatorname{rg}(f) + \operatorname{rg}(g).$$

2. Prouver que rg(f + q) = rg(f) + rg(q) si et seulement si

$$\operatorname{Im}(f) \cap \operatorname{Im}(g) = \{0\} \text{ et } \operatorname{Ker}(f) + \operatorname{Ker}(g) = E.$$

EXERCICE 49.

Soient E un espace vectoriel réel de dimension $\mathfrak n$, $\mathfrak f$ et $\mathfrak g$ deux endomorphismes tels que

$$f + g = id_F$$
 et $rg(f) + rg(g) \le n$.

1. Montrer que

$$E=\mathrm{Im}(f)\oplus\mathrm{Im}(g).$$

2. Après avoir justifié l'égalité $f\circ g=g\circ f$, prouver que f et g sont des projecteurs de E.

EXERCICE 50.

Soient E un \mathbb{K} -ev de dimension finie, f et g deux endomorphismes de E.

1. Etablir que

$$\dim(\operatorname{Ker}(f \circ g)) \leq \dim(\operatorname{Ker}(f)) + \dim(\operatorname{Ker}(g)).$$

2. Montrer que l'inégalité précédente est une égalité si et seulement $si~{\rm Ker}(\mathfrak{f})\subset {\rm Im}(\mathfrak{g}).$

Exercice 51.

Soient $u, v \in \mathcal{L}(E)$ où E est un espace vectoriel de dimension finie. Déterminer le rang de l'endomorphisme de $\mathcal{L}(E)$ $\Phi : f \mapsto v \circ f \circ u$.

EXERCICE 52.

Soient $f \in \mathcal{L}(E,F)$, $g \in \mathcal{L}(F,G)$ et $h \in \mathcal{L}(G,H)$ où E,F,G,H sont des espaces vectoriels de dimension finie. Montrer que

$$\operatorname{rg}(g\circ f)+\operatorname{rg}(h\circ g)\leqslant\operatorname{rg}(h\circ g\circ f)+\operatorname{rg}(g)$$

EXERCICE 53.★

Soit f, une application linéaire de E dans E. On note C(f), l'ensemble des applications linéaires g de E dans E qui commutent à f :

$$C(f) = \{g \in \mathcal{L}(E) \mid g \circ f = f \circ g\}.$$

- 1. Démontrer que $\mathcal{C}(f)$ est un sous-espace vectoriel de $\mathcal{L}(E)$.
- **2.** Vérifier que $\mathcal{C}(f)$ est stable par composition.

EXERCICE 54.

Soit f un endomorphisme d'un \mathbb{K} -espace vectoriel E de dimension $n\geqslant 1$ qui commute avec tous les endomorphismes de E, c'est-à-dire

$$\forall g \in \mathcal{L}(E), \quad f \circ g = g \circ f$$

- 2. En considérant le projecteur p_u sur vect(u) parallèlement à H_u , montrer qu'il existe $\lambda_u \in \mathbb{K}$ tel que $f(u) = \lambda_u u$.
- 3. Soit $\nu \in E$ non colinéaire à u. On montre de même qu'il existe $\lambda_{\nu} \in \mathbb{K}$ tel que $f(\nu) = \lambda_{\nu}\nu$. Montrer que $\lambda_{u} = \lambda_{\nu}$. On pourra considérer le vecteur $u + \nu$.
- 4. Reprendre la question précédente lorsque ν est non nul et colinéaire à u.
- **5.** En déduire que les endomorphismes de E commutant avec tous les endomorphismes sont les homothéties.

EXERCICE 55.

Soit E un \mathbb{R} -espace vectoriel. Soit $\mathfrak{u} \in \mathcal{L}(E)$ tel que $\mathfrak{u}^2 - 3\mathfrak{u} + 2\operatorname{Id}_E = 0$.

- 1. Montrer que $u \in GL(E)$ et exprimer u^{-1} en fonction de u.
- **2.** On pose $f = u Id_E$ et $g = 2 Id_E u$. Montrer que $f \circ g = g \circ f = 0$.
- 3. Vérifier que f et g sont des projecteurs.
- 4. Montrer que $\operatorname{Im} f = \operatorname{Ker} g$ et $\operatorname{Im} g = \operatorname{Ker} f$.
- **5.** Montrer que $E = \operatorname{Ker} f \oplus \operatorname{Ker} g$ et $E = \operatorname{Im} f \oplus \operatorname{Im} g$.

EXERCICE 56.

Soient E un \mathbb{K} -espace vectoriel et f un endomorphisme de E dont l'image est une droite vectorielle vect(\mathfrak{u}) avec $\mathfrak{u}\neq \mathfrak{d}_E$. On pose alors :

$$\forall x \in E, f(x) = \varphi(x)u$$

Montrer que ϕ est une forme linéaire sur E et qu'il existe $\lambda \in \mathbb{K}$ tel que $f^2 = \lambda f$.

EXERCICE 57.

Soit E un \mathbb{R} -espace vectoriel de dimension finie \mathfrak{n} , avec $\mathfrak{n}\geqslant 2$. On rappelle que E* est l'ensemble des formes linéaires sur E.

- 1. Soit $\varphi \in E^*$ non nulle. Montrer que $Ker(\varphi)$ est un hyperplan de E.
- **2.** Soit H un hyperplan de E. Montrer qu'il existe $\varphi \in E^*$ telle que $H = \operatorname{Ker}(\varphi)$.
- 3. Soient φ et ψ deux éléments non nuls de E^* tels que $Ker(\varphi) = Ker(\psi)$. Montrer qu'il existe un réel non nul λ tel que $\psi = \lambda \varphi$.
- 4. Soit H un hyperplan de E. Montrer que l'ensemble D(H) des éléments de E^* dont le noyau contient H est un sous-espace vectoriel de E^* dont on précisera la dimension.
- ${\bf 5.}$ On appelle transvection de E tout endomorphisme f de E possédant les deux propriétés suivantes :
 - $ightharpoonup \operatorname{Ker}(f \operatorname{Id})$ est un hyperplan de E;
 - $ightharpoonup \operatorname{Im}(f-Id) \subset \operatorname{Ker}(f-Id).$

On appelle $Ker(f - Id_F)$ la base de f et $Im(f - Id_F)$ la direction de f.

- a. Soit φ un élément non nul de E^* et $\mathfrak u$ un vecteur non nul de $\operatorname{Ker}(\varphi)$. Pour tout vecteur $\mathfrak x$ de E, on pose $\mathfrak f(\mathfrak x)=\mathfrak x+\varphi(\mathfrak x)\mathfrak u$. Justifier l'existence de $\mathfrak u$ et montrer que $\mathfrak f$ est une transvection dont on précisera la base et la direction.
- b. Réciproquement, soit f une transvection de E. Montrer qu'il existe un élément non nul φ de E* et un vecteur $\mathfrak u$ non nul de $\operatorname{Ker}(\varphi)$ tels que $f(x) = x + \varphi(x)\mathfrak u$ pour tout $x \in E$.

EXERCICE 58.

Soient E un espace vectoriel de dimension $n \in \mathbb{N}^*$ et $\varphi_1, \ldots, \varphi_n$ des formes linéaires sur E. On suppose qu'il existe $x \in E$ non nul tel que

$$\forall i \in [1, n], \ \varphi_i(x) = 0$$

Montrer que la famille $(\varphi_1, \ldots, \varphi_n)$ est liée.

EXERCICE 59.

Soient E un espace vectoriel de dimension $n \in \mathbb{N}^*$ et ϕ_1, \ldots, ϕ_m des formes linéaires sur E $(m \leq n)$. Montrer que

$$\dim\left(\bigcap_{i=1}^m\operatorname{Ker}\phi_i\right)+\operatorname{rg}(\phi_1,\ldots,\phi_m)=n$$

EXERCICE 60.★

Soient E un espace vectoriel sur K, f et q deux formes linéaires sur E non nulles.

1. Prouver que

$$Ker(f) \subset Ker(g)$$

 $si\ et\ seulement\ si\ il\ existe\ \lambda\in\mathbb{K}^*\ tel\ que\ \mathfrak{q}=\lambda f.$

2. En déduire une condition nécessaire et suffisante pour que f et g définissent le même hyperplan H. En déduire toutes les équations de H.