

Chapitre 1:

Architecture du serveur Oracle

Objectifs du cours

- Connaître les composants du serveur Oracle :
 - Mémoires : pga et sga
 - Processus : Server Process, User Process et les processus en background
 - Fichiers
- Manipuler les différentes vues du dictionnaire de données.
- Connaître les différents modes de démarrage et d'arrêt de la base

Composants du serveur oracle

- Un serveur Oracle est un système de gestion de base de données qui fournit une approche intégrée, complète et ouverte de la gestion des informations
- Un serveur Oracle est composé d'une **instance** Oracle et d'une **base de données** Oracle.
- Une base de données Oracle n'est accessible que via une instance.
- Une instance du serveur Oracle est composée d'une structure de mémoire partagée SGA (Système Global Area) et de plusieurs processus Oracle en arrière-plan ayant chacun un rôle bien déterminé.

Structure du serveur oracle

Mémoires

- <u>Mémoire SGA (System Global Area):</u> partagée par tous les processus serveur et les processus arrièreplan.
- <u>Mémoire PGA (Program Global Area):</u> propre à chaque processus serveur et processus en arrièreplan.

Structure mémoire SGA

- <u>Cache de tampons (Buffer Cache)</u>: mets en mémoire cache les blocs de données extraits de la base.
- <u>Tampon de journalisation (Redo Log buffer)</u>: mets en mémoire cache les informations de journalisation.
- Zone de mémoire partagée (Shared pool) cette zone sert à mémoriser, analyser et traiter les requêtes SQL provenant des divers utilisateurs.
- Zone de mémoire (large Pool) : zone de mémoire facultative qui fournit des espaces importants d'allocation de mémoire à des processus volumineux (sauvegarde, récupération..)

Structure processus oracle

- Processus utilisateur : un utilitaire ou programme qui permet de se connecter à une instance de BD avec un profil utilisateur.
- Processus serveur : crée suite à une connexion d'un processus utilisateur à l'instance d'une BD. Ce processus ,logé dans un tampon mémoire appelé PGA (Process Global Area) communique avec l'instance Oracle et exécute des instructions pour le compte du processus utilisateur.
- Processus en arrière-plan: démarrés en même temps qu'une instance Oracle.

Structure processus Oracle

Processus en arrière-plan

- Processus Database Writer (DBWn): écrit les blocs modifiés du cache de tampons de la base de données vers les fichiers de données présents sur le disque.
- Point de reprise (CKPT): met à jour l'ensemble des fichiers de données et de contrôle de la base de données afin d'indiquer le point de reprise le plus récent.
- Processus LGWR (Log Writer): écrit des entrées de journalisation sur le disque.

Processus en arrière-plan

- Processus d'archivage (ARCn): copie les fichiers de journalisation dans l'emplacement de stockage d'archive
- Processus SMON (System Monitor): effectue la récupération après une panne lorsque l'instance est démarrée suite à une défaillance.
- Processus PMON (Process Monitor): procède au nettoyage des processus utilisateur en cas d'échec.

Structure physique de la Base de Données

- <u>Fichiers de contrôle :</u> contient l'emplacement des fichiers de données, de journalisation et de backup.
- <u>Fichiers de données :</u> Contiennent des données utilisateurs de la base
- <u>Fichiers de journalisation</u>: Utilisés pour la récupération d'une instance de la base de données.
- <u>Fichiers de sauvegarde :</u> Utilisés pour la récupération de la base de données lorsque le fichier d'origine est endommagé ou supprimé

Structure logique de la Base de Données

Tablespaces et fichiers de données:

- Une base de données est divisée en unités de stockage logiques appelés tablespaces.
- Chaque base de données est divisée de manière logique en un ou plusieurs tablespaces.
- Les tablespaces SYSTEM et SYSAUX sont obligatoires.
 Ils sont créés en même temps que la base de données et doivent être en ligne.

Structure logique de la Base de Données

Architecture de serveur Oracle

Tables contenant des données métier :

EMPLOYEES
DEPARTMENTS
LOCATIONS
JOB HISTORY

. . .

Vues du dictionnaire de données :

DICTIONARY

USER_OBJECTS

USER_TABLES

USER_TAB_COLUMNS

. . .

- Ensemble de tables et vues systèmes relatifs à l'utilisateur SYS.
- Contient :
 - La structure logique et physique de la base.
 - Les utilisateurs de la BD (ainsi que leurs privilèges et rôles)
 - Les informations relatives aux contraintes d'intégrités
 - Les espaces alloués pour chaque objet crée
- Crée en même temps que la base de données et mis à jour régulièrement.

Convention d'appellation des vues

Préfixe de la vue	Usage			
USER	Vue de l'utilisateur (ce que contient votre schéma, dont vous êtes propriétaire)			
ALL	Vue étendue de l'utilisateur (ce à quoi vous pouvez accéder)			
DBA	Vue de l'administrateur de base de données (ce que contient le schéma de chaque utilisateur)			
V\$	Données relatives aux performances			

Quelques vues et tables du dictionnaire de données

- USER_TABLES : tables et vues créées par l'utilisateur.
- USER_CATALOG (ou CAT): tables et vues sur lesquelles l'utilisateur a des droits à l'exception des tables et vues du dictionnaire de données.
- USER_TAB_COLUMNS (ou COLS) : colonne de chaque table ou vue créée par l'utilisateur courant.
- USER_CONSTRAINTS : définition des contraintes pour les tables des utilisateurs.
- USER_CONS_COLUMNS : colonnes qui interviennent dans les définitions des contraintes.
- USER_OBJECTS : contient des informations sur les objets créés par l'utilisateur.
- DICT ou DICTIONNARY contient le nom des tables du dictionnaire ainsi qu'un commentaire.

Vues dynamiques de performance

- Enregistrent l'activité en cours de la base de données
- Constamment mises à jour lorsque la base de données est active
- Les informations sont lues à partir de la mémoire et du fichier de contrôle
- Commencent par le prefixe v\$
- Accessible par un dba

Vues dynamiques : exemples

V\$session: affiche les sessions en cours: select sid, serial#, user#, username from v\$session;
5 1 0
6 1 0

5 SYSTEM

164

V\$logfile : affiche la liste des fichiers journaux :

select GROUP#, TYPE, MEMBER from v\$logfile;

3 ONLINE C:\ORACLE\ORADATA\DBLABO\REDOo3.LOG

2 ONLINE C:\ORACLE\ORADATA\DBLABO\REDOo2.LOG

1 ONLINE C:\ORACLE\ORADATA\DBLABO\REDOo1.LOG

4 ONLINE C:\ORACLE\ORADATA\DBLABO\REDOO41.ORA

4 ONLINE C:\ORACLE\ORADATA\DBLABO\REDOO42.ORA

Vues dynamiques : exemples

- V\$controlfile : Affiche tous les noms des fichiers de contrôles et leurs statut qui peut être NULL ou INVALID
 - SELECT * FROM V\$CONTROLFILE;
 - show parameter control_files
 - SELECT VALUE FROM V\$PARAMETER WHERE NAME = 'control_files';

Fichiers de paramètres d'initialisation

- Pour démarrer une instance, le serveur Oracle doit lire le fichier de paramètres d'initialisation. Ce dernier peut être de 2 types :
 - Fichier de paramètres statique PFILE : (nommé initSID.ORA)
 - Fichier de paramètres persistant SPFILE : (nommé spfileSID.ora)

Init<SID>.ORA

- Fichier texte
- Il peut être modifié manuellement à l'aide d'un éditeur du système d'exploitation
- Les modifications sont effectives au démarrage suivant
- Il ne peut être ouvert que lors du démarrage de l'instance. s'il est modifié en cours l'instance doit être interrompue et redémarré pour que les nouvelles valeurs des paramètres soit effectives.
- Indispensable dans les postes clients

spfile<SID>.ORA

- Fichier binaire préféré
- Accessible par le serveur de BD
- Ne doit pas être modifié manuellement
- Moyen dynamique de gérer les modifications des paramètres apportées par le serveur.

Contenu des fichiers de paramètres d'initialisation

- Nom de la base de données à laquelle l'instance est associé
- Affectation destinée aux structures mémoire de la SGA (System Global Area)
- Utilisation des fichiers de journalisation
- Noms et emplacement des fichiers de contrôle

Création d'un fichier spfile à partir d'un fichier de paramètre standard

 On peut créer un fichier de parametre au format text « pfile » à partir d'un fichier de parametre au format binaire « spfile » avec la syntaxe suivante :

```
create pfile [='nom_pfile']
From
Spfile [='nom_spfile']
```

 On peut aussi créer un fichier de parametre spfile à partir d'un fichier de paramètre text pfile

```
create spfile [='nom_spfile']
From
pfile [='nom_pfile'];
```

Visualisation des paramètres

Visualisation des valeurs des paramètres : SHOW PARAMETERS

SHOW PARAMETERS resource_limit

Utilisation de la vue V\$PARAMETERS

select name, value, is default from v\$parameter where name like 'resource_limit'

Modification des paramètres du fichier d'initialisation

ALTER SYSTEM SET <nom_paramètre> = <valeur_paramètre> [SCOPE = MEMORY | SPFILE | BOTH]

ALTER SYSTEM: permet d'apporter des modification aux valeurs des paramètres et d'indiquer si ces modifications sont temporaires ou persistantes

nom_parametre : correspond au nom du paramètre à modifier

Valeur_paramètre : correspond à la valeur à affecter au paramètre

SCOPE : indique si la modification est à apporter dans la mémoire ,dans le fichier SPFILE ou dans les deux

MEMORY : modifie la valeur du paramètre uniquement dans l'instance en cours

SPFILE: modifie la valeur du paramètre uniquement dans le fichier SPFILE

BOTH : modifie la valeur du paramètre dans la mémoire et dans le fichier SPFILE

Exemples

- Afficher le contenu des paramètres suivants : RESOURCE_LIMIT,
 DB_CACHE_SIZE
- Modifier la valeur du paramètre RESOURCE_LIMIT à FALSE en mémoire et dans le fichier spfile
- Modifier la valeur du paramètre DB_CACHE_SIZE = 50000000

Arrêt et démarrage d'une BD

Architecture de serveur Oracle

Démarrage de l'instance Oracle

- STARTUP permet de démarrer l'instance ORACLE avec le fichier SPFILE nommé spfileSID.ora.
- Si aucun fichier spfileSID.ora n'est détecté, le fichier SPFILE par défaut est utilisé pour démarrer l'instance.
- Si aucun fichier SPFILE par défaut n'est détecté, le fichier initSID.ORA est utilisé pour démarrer l'instance.

Démarrage d'une base de données

- Possibilité de choix de l'état de démarrage selon différents niveaux
 - Démarrage en mode NOMOUNT
 - Démarrage en mode MOUNT
 - Démarrage en mode OPEN
- Possibilité de démarrer en mode RESTREINT: cas de la mise à jour des structures ou de l'import/export d'une base de données, pour limiter l'accès uniquement aux utilisateurs disposant du privilège RESTRICTED SESSION.

STARTUP RESTRICT

On peut placer une instance de BD en mode restreint avec la commande ALTER SYSTEM : ALTER SYSTEM ENABLE RESTRICTED SESSION.

Démarrage d'une base de données

- Shutdown → Open : Startup
- Shutdown Nomount : startup nomount
- Shutdown → Mount : startup mount
- Nomount → Open: alter database mount alter database open

Démarrage

Arrêt de la base de données

- Pour arrêter une base il faut se connecter en tant que SYSOPER OU SYSDBA
- Syntaxe :

SHUTDOWN [NORMAL | TRANSACTIONAL | IMMEDIATE | ABORT]

Arrêt de la base de données

Mode d'arrêt	Abort	Immediate	transactional	Normal
Permettre de nouvelle connexion	X	X	x	X
Attendre la fin des sessions courantes	X	X	X	0
Attendre la fin des transactions courantes	X	X	0	0
Forcer le chekpoint et fermer les fichiers	X	0	0	0

x Non o Oui

NORMAL :

- Aucune nouvelle connexion ne peut être établie
- Le serveur Oracle attend la déconnexion préalable de tous les utilisateurs
- Les tampons de journalisation et de la base de données sont écrits sur disque
- La récupération de l'instance n'est pas nécessaire au redémarrage

TRANSACTIONNEL:

- Aucun client ne peut lancer une nouvelle transaction pour l'instance indiquée
- Le client est déconnecté lorsqu'il termine la transaction en cours
- La fin de toutes les transaction entraîne l'arret immédiat de la base de données
- La récupération de l'instance n'est pas nécessaires lors du redémarrage

IMMEDIATE :

- Les instructions SQL en cours de traitement ne sont pas terminées
- Le serveur Oracle n'attend pas la déconnexion des utilisateurs de la BD
- Oracle annule les transactions actives et déconnecte tous les utilisateurs
- Orale ferme et démonte la BD avant d'arrêter l'instance
- La récupération de l'instance n'est pas nécessaire au redémarrage

ABORT :

- Utile si l'arrêt en mode Normal et Immediate échoue.
- Les tampons de journalisation et de la base de données ne sont pas écrits sur disque
- Les transactions non validés ne sont pas annulées
- L'instance est interrompue sans fermeture des fichiers
- La base de données n'est pas fermée ni démontée
- Une récupération est nécessaire au redémarrage, elle s'effectue automatiquement.

Arrêt des sessions utilisateurs BD

ALTER SYSTEM KILL SESSION 'integer 1, integer 2'

(valeur de la colonne SID et de la colonne SERIAL# de la vue V\$SESSION du Dictionnaire DD)

- Conséquence :
 - le processus PMON effectue les tâches suivantes :
 - Annulation de la transaction en cours
 - Libération de tous les verrous de table ou de ligne
 - Libération de toutes les ressources réservées par l'utilisateur