Shortest Path Replacement

hos

2024年10月14日

1 問題

無向・正重み付きグラフ G=(V,E,w) $(w\colon E\to\mathbb{R}_{>0})$ および $s,t\in V$ が与えられる.各 $e\in E$ に対し,G-e での s-t ウォークの重みの最小値 z_e を求めたい.

重みの加算・比較が可能として, $O((|V|+|E|)\log(|V|))$ 時間 O(|V|+|E|) 空間.辺重みに 0 を許す場合は 0 を ε にして解く.

2 準備

最短と言ったら重み最小のこととする . $u,v\in V$ に対し , G での u-v 最短ウォークの重みを d(u,v) と書く .

 $d(s,t)=\infty$ のときは任意の $e\in E$ に対し $z_e=\infty$ である . 以下 $d(s,t)<\infty$ を仮定する .

s=t のときは任意の $e\in E$ に対し $z_e=0$ である.以下 $s\neq t$ を仮定する.

G での s-t 最短単純パス P を 1 つとって固定する .

- s を始点とする最短路木 S であって P を含むものを 1 つとって固定する .S の頂点 u に対し ,S での s-u 単純パスを S(u) と書く .
- ullet t を終点とする最短路木 T であって P を含むものを 1 つとって固定する .T の頂点 u に対し ,T での u-t 単純パスを T(u) と書く .

補題、 $e \in E$ とし,G-e に s-t ウォークが存在するとする.このとき,G-e での s-t 最短ウォーク Q であって,Q 上の任意の頂点 u に対し,以下の少なくとも一方が成り立つようなものが存在する:

- $Q \cap u$ までの prefix m S(u) である
- $Q \cap u$ からの suffix が T(u) である

証明. 条件をいずれも満たさない頂点の個数が最小となるような Q をとる . Q 上のある頂点 u が条件をいずれも満たさないと仮定して矛盾を導く .

- \bullet S(u) が e を含まないとすると , Q の prefix を S(u) に置き換えてより良いウォークを得られるので 矛盾
- ullet T(u) が e を含まないとすると , Q の suffix を T(u) に置き換えてより良いウォークを得られるので

矛盾.

よって S(u),T(u) は e を含むとしてよい.これらは最短路木の単純パスなのでそれぞれ e をちょうど 1 回含む.e の前後に分解して $S(u)=Q_0eQ_1$, $T(u)=Q_2eQ_3$ とおく.

S(u),T(u) が e を同じ向きに通る場合 . s-u ウォーク $Q_0\overline{Q_2}$ および u-t ウォーク $\overline{Q_1}Q_3$ を考えることにより ,

$$w(Q_0) + w(e) + w(Q_1) = d(s, u) \le w(Q_0) + w(Q_2)$$

$$w(Q_2) + w(e) + w(Q_3) = d(u, t) \le w(Q_1) + w(Q_3)$$

を得るが,両辺足して $w(e) \leq 0$ となり矛盾.

S(u),T(u) が e を逆向きに通る場合,G-e での $s ext{-}t$ ウォーク Q_0Q_3 を考えると,その重みは

$$w(Q_0) + w(Q_3) < d(s, u) + d(u, t) = w(Q)$$

なので Q の最短性に矛盾.

注意. 辺重みに 0 を許すと補題は成り立たない:

上図で,P = sabt として,最短路木として

- S の辺は sa, ab, bt, bu
- T の辺は sa, ab, bt, ua

となるものをとると,Q=sut, saut, subt, saubt のどれについても,頂点 u で条件を満たさない. 有向グラフの場合も補題は成り立たない:

上図で G-e での s-t ウォークは Q=sut のみだが , d(s,u)=d(u,t)=3 より頂点 u で条件を満たさない .

3 解法

 $P=(s=p_0,e_0,p_1,e_1,\ldots,e_{k-1},p_k=t)\;(p_i\in V,\,e_i\in E,\,e_i\;$ の両端点は $p_i,p_{i+1})$ とおく . $e\in E\setminus\{e_0,\ldots,e_{k-1}\}\;$ に対しては $z_e=d(s,t)\;$ である . $u\in V\;$ に対し, $l(u),r(u)\;$ を以下で定める:

• u が S の頂点のとき,P と S(u) の共通部分(prefix である)を $(p_0,e_0,\dots,e_{l(u)-1},p_{l(u)})$ とする.そうでないとき $l(u)=+\infty$ とする.

• u が T の頂点のとき,P と T(u) の共通部分(suffix である)を $(p_{r(u)},e_{r(u)},\ldots,e_{k-1},p_k)$ とする.そうでないとき $r(u)=-\infty$ とする.

このとき,

$$z_{e_i} = \min \{ \quad d(s,u) + w(e) + d(v,t) \quad | \quad e \in E \setminus \{e_i\}, \quad e$$
 の両端点は $u,v, \quad l(u) \leq i < r(v) \quad \}$

が成り立つ.

 \leq の証明. 右辺の条件を満たす e,u,v を任意にとる.

- ullet l(u) の定め方と $l(u) \leq i$ より , S(u) は e_i を含まない .
- \bullet r(v) の定め方と i < r(v) より , T(v) は e_i を含まない .

すると, S(u)eT(v) が $G-e_i$ のウォークとなり,

$$z_{e_i} \le w(S(u)eT(v)) = d(s,u) + w(e) + d(v,t)$$

である.

 \geq の証明. $z_{e_i}=\infty$ のときはよい . そうでないとき , $G-e_i$ について補題を適用して , $G-e_i$ での s-t 最短 ウォーク Q を 1 つとる . $s \neq t$ および

- Q の s までの prefix は S(s) である
- ullet Q の t からの suffix は T(t) である

ということと補題の性質を合わせると,Q に含まれる辺 e であって,両端点を通る順に u,v として,

- Q の u までの prefix は S(u) である
- Q の v からの suffix は T(v) である

ようなものがとれる.このとき,Q が e_i を含まないことから $e \in E \setminus \{e_i\}$ および $l(u) \leq i < r(v)$ が成り立ち,

$$z_{e_i} = w(Q) = d(s, u) + w(e) + d(v, t)$$

であるからよい.