A symmetric algorithm for solving frictional contact problems using FreeFEM

Houssam Houssein^{1,2}, Simon Garnotel², Frédéric Hecht¹

¹ Sorbonne Université, Laboratoire Jacques-Louis Lions, Paris, France ² Airthium SAS, Accelair, 1 chemin de la Porte des Loges, 78350, Les Loges-en-Josas, France

Signorini's contact problem [Signorini, 1933]

• The deformation of a body $\Omega \subset \mathbb{R}^3$ is described by the application $\phi: \Omega \to \mathbb{R}^3$.

Figure: Initial and actual configurations

• The displacement field: $u = \phi(X) - X = x - X$

Houssein et al. FreeFEM days 2021

2/17

Signorini's contact problem [Signorini, 1933]

• The deformation of a body $\Omega \subset \mathbb{R}^3$ is described by the application $\phi: \Omega \to \mathbb{R}^3$.

Figure: Initial and actual configurations

• The displacement field: $u = \phi(X) - X = x - X$

• Balance equations:

$$\begin{cases}
\nabla . \boldsymbol{\sigma} + \mathbf{f} = 0 & \text{in } \Omega \\
\boldsymbol{\sigma} = C\boldsymbol{\epsilon} & \text{in } \Omega \\
\mathbf{u} = \mathbf{0} & \text{on } \Gamma_0 \\
\boldsymbol{\sigma} . \mathbf{n} = \mathbf{t} & \text{on } \Gamma_1
\end{cases}$$
(1)

• Contact conditions:

$$\begin{cases} g := (\mathbf{x} - \mathbf{y}).\mathbf{n} \ge 0 & \text{on } \Gamma_C \\ \sigma_n = (\boldsymbol{\sigma}.\mathbf{n}).\mathbf{n} \le 0 & \text{on } \Gamma_C \\ \sigma_n g = 0 & \text{on } \Gamma_C \end{cases}$$
 (2)

Signorini's contact problem

Finite deformation and linear elasticity

• The admissible set:

$$\mathbf{V} = \left\{ \mathbf{v} \in \left(H^1(\Omega) \right)^3 ; \mathbf{v} = 0 \text{ on } \Gamma_0 \right\}$$

• Constitutive law of linear elasticity:

$$\sigma = C\epsilon$$
 where $\epsilon = \frac{1}{2} \left(\nabla^T u + \nabla u \right)$ (3)

• Linear elasticity: The total potential energy is defined by

$$\mathcal{E}(\mathbf{v}) = \frac{1}{2}a(\mathbf{v}, \mathbf{v}) - f(\mathbf{v}) \tag{4}$$

where

$$a(\mathbf{u}, \mathbf{v}) = \int_{\Omega} C\epsilon(\mathbf{u}) : \epsilon(\mathbf{v}) \, dV \quad \text{and} \quad f(\mathbf{v}) = \int_{\Omega} \mathbf{f} \cdot \mathbf{v} \, dV + \int_{\Gamma_1} \mathbf{t} \cdot \mathbf{v} \, dA$$
 (5)

• Hyperelastic materials (Neo-Hookean, Mooney): The total potential energy is defined by

$$\mathcal{E}(\mathbf{v}) = \int_{\Omega} \psi \, dV - f(\mathbf{v}) \tag{6}$$

3/17

Signorini's contact problem

Finite deformation and linear elasticity

• The admissible set:

$$\mathbf{V} = \left\{ \mathbf{v} \in \left(H^1(\Omega) \right)^3 ; \mathbf{v} = 0 \text{ on } \Gamma_0 \right\}$$

• Constitutive law of linear elasticity:

$$\sigma = C\epsilon$$
 where $\epsilon = \frac{1}{2} \left(\nabla^T \boldsymbol{u} + \nabla \boldsymbol{u} \right)$ (3)

• Linear elasticity: The total potential energy is defined by

$$\mathcal{E}(\mathbf{v}) = \frac{1}{2}a(\mathbf{v}, \mathbf{v}) - f(\mathbf{v}) \tag{4}$$

where

$$a(\mathbf{u}, \mathbf{v}) = \int_{\Omega} C\epsilon(\mathbf{u}) : \epsilon(\mathbf{v}) \, dV \quad \text{and} \quad f(\mathbf{v}) = \int_{\Omega} \mathbf{f} \cdot \mathbf{v} \, dV + \int_{\Gamma_1} \mathbf{t} \cdot \mathbf{v} \, dA$$
 (5)

• Hyperelastic materials (Neo-Hookean, Mooney): The total potential energy is defined by

$$\mathcal{E}(\mathbf{v}) = \int_{\Omega} \psi \, dV - f(\mathbf{v}) \tag{6}$$

• The non-penetration set:

$$\mathbf{K} = \{ \mathbf{v} \in \mathbf{V} \; ; \; (\mathbf{x} - \mathbf{y}) \cdot \mathbf{n} \ge 0 \quad \forall \, \mathbf{x} \in \Phi(\Gamma_c) \}$$
 (7)

• The displacement field u is a solution of the constrained minimization problem:

$$\mathbf{u} = \underset{v \in \mathbf{K}}{\operatorname{argmin}} \, \mathcal{E}(\mathbf{v}) \tag{8}$$

• Variational inequality (linear elasticity):

$$a(\mathbf{u}, \mathbf{v} - \mathbf{u}) \ge f(\mathbf{v} - \mathbf{u}) \quad \forall \, \mathbf{v} \in \mathbf{K}$$
 (9)

Contact between two bodies

- Ω_1 and Ω_2 two domains in \mathbb{R}^3 , representing respectively the first and the second body.
- γ_C^1 , γ_C^2 are the actual potential contact areas where the two bodies will probably make contact.
- The non-penetration condition between the two bodies is the following

$$(\mathbf{x}_1 - \bar{\mathbf{x}}).\mathbf{n} \ge 0 \tag{10}$$

where \mathbf{x}_1 is the actual position of a material point belonging to γ_C^1 , $\bar{\mathbf{x}}$ is the projection of \mathbf{x}_1 on γ_C^2 , and \mathbf{n} the normal vector at $\bar{\mathbf{x}}$.

Houssein et al. FreeFEM days 2021 4/17

Contact between two bodies

- Ω_1 and Ω_2 two domains in \mathbb{R}^3 , representing respectively the first and the second body.
- γ_C^1 , γ_C^2 are the actual potential contact areas where the two bodies will probably make contact.
- The non-penetration condition between the two bodies is the following

$$(\mathbf{x}_1 - \bar{\mathbf{x}}).\mathbf{n} \ge 0 \tag{10}$$

where \mathbf{x}_1 is the actual position of a material point belonging to γ_C^1 , $\bar{\mathbf{x}}$ is the projection of \mathbf{x}_1 on γ_C^2 , and \mathbf{n} the normal vector at $\bar{\mathbf{x}}$.

• Non symmetric formulation \Rightarrow One has to choose the Slave and the Master bodies.

There are different ways to help the user in defining the slave and the master bodies, for example a body can be chosen as slave if

- The body has the finest mesh
- The body is the less stiff
- The body has a curvature

• . . .

In consequence, choosing the best master or slave between the different bodies can be difficult. The same problem occurs in the case of self contact or in the case of a contact between more than two bodies.

Symmetric contact formulation

Weak contact formulation

• Let θ be the non-penetration function

$$\theta_1(\mathbf{x}) = (\mathbf{x}_1 - \bar{\mathbf{x}}_1).\mathbf{n}(\bar{\mathbf{x}}_1) \ge 0 \quad \forall \, \mathbf{x}_1 \in \Phi(\Gamma_C^1)$$

where $\bar{\mathbf{x}}_1$ is the projected point of \mathbf{x}_1 on the second body.

• The minimization problem becomes [Belgacem et al., 1998, Hild, 1998, Popp et al., 2009]:

$$\begin{cases} \mathbf{u} = argmin(\mathcal{E}_p) \\ \mathbf{v} \\ (\theta_1, \phi_i)_{L^2} = \int_{\Gamma_C^1} \theta_1.\phi_i \, d\lambda \geq 0 \quad \forall i = 1, \dots, n_{C_1} \end{cases}$$

where ϕ_i are the shape functions

• This formulation is not symmetric.

5/17

Symmetric contact formulation

Weak contact formulation

• Let θ be the non-penetration function

$$\theta_1(\mathbf{x}) = (\mathbf{x}_1 - \bar{\mathbf{x}}_1).\mathbf{n}(\bar{\mathbf{x}}_1) \ge 0 \quad \forall \, \mathbf{x}_1 \in \Phi(\Gamma_C^1)$$

where $\bar{\mathbf{x}}_1$ is the projected point of \mathbf{x}_1 on the second body.

• The minimization problem becomes [Belgacem et al., 1998, Hild, 1998, Popp et al., 2009]:

$$\begin{cases} \mathbf{u} = argmin(\mathcal{E}_p) \\ (\theta_1, \phi_i)_{L^2} = \int_{\Gamma_C^1} \theta_1.\phi_i d\lambda \ge 0 \quad \forall i = 1, \dots, n_{C_1} \end{cases}$$

where ϕ_i are the shape functions

- This formulation is not symmetric.
- If we simply write the symmetric problem as

$$\begin{cases} \mathbf{u} = argmin(\mathcal{E}_p) \\ (\theta_1, \phi_i)_{L^2} = \int_{\Gamma_C^1} \theta_1.\phi_i \, d\lambda \geq 0 \quad \forall i = 1, \dots, n_{C_1} \\ (\theta_2, \phi_i)_{L^2} = \int_{\Gamma_C^2} \theta_2.\phi_i \, d\lambda \geq 0 \quad \forall i = 1, \dots, n_{C_2} \end{cases}$$

Houssein et al. 5/17

Symmetric contact formulation

Weak contact formulation

• Let θ be the non-penetration function

$$\theta_1(\mathbf{x}) = (\mathbf{x}_1 - \bar{\mathbf{x}}_1).\mathbf{n}(\bar{\mathbf{x}}_1) \ge 0 \quad \forall \, \mathbf{x}_1 \in \Phi(\Gamma_C^1)$$

where $\bar{\mathbf{x}}_1$ is the projected point of \mathbf{x}_1 on the second body.

• The minimization problem becomes [Belgacem et al., 1998, Hild, 1998, Popp et al., 2009]:

$$\begin{cases} \mathbf{u} = argmin(\mathcal{E}_p) \\ (\theta_1, \phi_i)_{L^2} = \int_{\Gamma_C^1} \theta_1.\phi_i d\lambda \ge 0 \quad \forall i = 1, \dots, n_{C_1} \end{cases}$$

where ϕ_i are the shape functions

- This formulation is not symmetric.
- If we simply write the symmetric problem as

$$\begin{cases} \mathbf{u} = argmin(\mathcal{E}_p) \\ (\theta_1, \phi_i)_{L^2} = \int_{\Gamma_C^1} \theta_1.\phi_i \, d\lambda \ge 0 \quad \forall i = 1, \dots, n_{C_1} \\ (\theta_2, \phi_i)_{L^2} = \int_{\Gamma_C^2} \theta_2.\phi_i \, d\lambda \ge 0 \quad \forall i = 1, \dots, n_{C_2} \end{cases}$$

After the finite element discretization, the Jacobian matrix of the constraints may be rank-deficient ⇒ Problem when using Newton's method ⇒ Interior point method
 [Houssein et al., 2021, Nocedal and Wright, 2006, Wächter and Biegler, 2006]

• Balance equations:

$$\begin{cases} \nabla . \boldsymbol{\sigma}^{l} + \mathbf{f}^{l} = 0 & \text{in } \Omega^{l} \\ \boldsymbol{\sigma}^{l} = C^{l} \boldsymbol{\epsilon}^{l} & \text{in } \Omega^{l} \\ \mathbf{u}^{l} = \mathbf{0} & \text{on } \Gamma_{0}^{l} \\ \boldsymbol{\sigma}^{l} . \mathbf{n}^{l} = \mathbf{t}^{l} & \text{on } \Gamma_{1}^{l} \end{cases}$$
(11)

• Contact conditions:

$$\begin{cases} [\mathbf{u}.\mathbf{n}] = \mathbf{u}^{1}.\mathbf{n}^{1} + \mathbf{u}^{2}.\mathbf{n}^{2} = (\mathbf{u}^{1} - \mathbf{u}^{2}).\mathbf{n} \leq 0 & \text{on } \Gamma_{C} \\ \sigma_{n} = (\boldsymbol{\sigma}^{1}.\mathbf{n}^{1}).\mathbf{n}^{1} = (\boldsymbol{\sigma}^{2}.\mathbf{n}^{2}).\mathbf{n}^{2} \leq 0 & \text{on } \Gamma_{C} \\ \sigma_{n}.[\mathbf{u}.\mathbf{n}] = 0 & \text{on } \Gamma_{C} \end{cases}$$
(12)

Houssein et al. FreeFEM days 2021 6/17

• Balance equations:

$$\begin{cases} \nabla .\boldsymbol{\sigma}^{l} + \mathbf{f}^{l} = 0 & \text{in } \Omega^{l} \\ \boldsymbol{\sigma}^{l} = C^{l} \boldsymbol{\epsilon}^{l} & \text{in } \Omega^{l} \\ \mathbf{u}^{l} = \mathbf{0} & \text{on } \Gamma_{0}^{l} \\ \boldsymbol{\sigma}^{l} .\mathbf{n}^{l} = \mathbf{t}^{l} & \text{on } \Gamma_{1}^{l} \end{cases}$$
(11)

• Contact conditions:

$$\begin{cases} [\mathbf{u}.\mathbf{n}] = \mathbf{u}^{1}.\mathbf{n}^{1} + \mathbf{u}^{2}.\mathbf{n}^{2} = (\mathbf{u}^{1} - \mathbf{u}^{2}).\mathbf{n} \leq 0 & \text{on } \Gamma_{C} \\ \sigma_{n} = (\boldsymbol{\sigma}^{1}.\mathbf{n}^{1}).\mathbf{n}^{1} = (\boldsymbol{\sigma}^{2}.\mathbf{n}^{2}).\mathbf{n}^{2} \leq 0 & \text{on } \Gamma_{C} \\ \sigma_{n}.[\mathbf{u}.\mathbf{n}] = 0 & \text{on } \Gamma_{C} \end{cases}$$
(12)

• Coulomb's criterion on Γ_C :

$$\begin{cases}
\boldsymbol{\sigma}_{T}^{1} = -\boldsymbol{\sigma}_{T}^{2} \\
|\boldsymbol{\sigma}_{T}^{1}| \leq \mu |\sigma_{n}| \\
\text{if } |\boldsymbol{\sigma}_{T}^{1}| < \mu |\sigma_{n}| \Rightarrow \mathbf{u}_{T}^{1} - \mathbf{u}_{T}^{2} = \mathbf{0} \\
\text{if } |\boldsymbol{\sigma}_{T}^{1}| = \mu |\sigma_{n}| \Rightarrow \exists \lambda \geq 0 \text{ s.t } \mathbf{u}_{T}^{1} - \mathbf{u}_{T}^{2} = -\lambda \boldsymbol{\sigma}_{T}^{1}
\end{cases}$$
(13)

Let
$$\tau \in L^2(\Gamma_C) \geq 0$$

• Tresca's criterion on Γ_C :

$$\begin{cases}
\sigma_T^1 = -\sigma_T^2 \\
|\sigma_T^1| \le \tau \\
\text{if } |\sigma_T^1| < \tau \Rightarrow \mathbf{u}_T^1 - \mathbf{u}_T^2 = \mathbf{0} \\
\text{if } |\sigma_T^1| = \tau \Rightarrow \exists \lambda \ge 0 \text{ s.t } \mathbf{u}_T^1 - \mathbf{u}_T^2 = -\lambda \sigma_T^1
\end{cases}$$
(14)

Houssein et al. FreeFEM days 2021 7/17

Let $\tau \in L^2(\Gamma_C) \geq 0$

• Tresca's criterion on Γ_C :

$$\begin{cases}
\boldsymbol{\sigma}_{T}^{1} = -\boldsymbol{\sigma}_{T}^{2} \\
|\boldsymbol{\sigma}_{T}^{1}| \leq \tau \\
\text{if } |\boldsymbol{\sigma}_{T}^{1}| < \tau \Rightarrow \mathbf{u}_{T}^{1} - \mathbf{u}_{T}^{2} = \mathbf{0} \\
\text{if } |\boldsymbol{\sigma}_{T}^{1}| = \tau \Rightarrow \exists \lambda \geq 0 \text{ s.t } \mathbf{u}_{T}^{1} - \mathbf{u}_{T}^{2} = -\lambda \boldsymbol{\sigma}_{T}^{1}
\end{cases}$$
(14)

Consider the admissible set $V = V^1 \times V^2$ where

$$\mathbf{V}^{l} = \{ \mathbf{v} \in \mathbf{H}^{1}(\Omega^{l}) = H^{1}(\Omega^{l}) \times H^{1}(\Omega^{l}) \mid \mathbf{v} = 0 \text{ a.e on } \Gamma_{0}^{l} \}$$
(15)

Let the applications $a: \mathbf{V} \times \mathbf{V} \to \mathbb{R}$ and $f: \mathbf{V} \to \mathbb{R}$ be defined by

$$\begin{cases} a(\mathbf{u}, \mathbf{v}) = a^1(\mathbf{u}, \mathbf{v}) + a^2(\mathbf{u}, \mathbf{v}) \\ f(\mathbf{v}) = f^1(\mathbf{v}) + f^2(\mathbf{v}) \end{cases}$$

where for l = 1, 2

$$\begin{cases} a^{l}(\mathbf{u}, \mathbf{v}) = \int_{\Omega^{l}} \boldsymbol{\sigma}(\mathbf{u}^{l}) : \boldsymbol{\epsilon}(\mathbf{v}^{l}) \, dv \\ f^{l}(\mathbf{v}) = \int_{\Omega^{l}} \mathbf{f}^{l}.\mathbf{v}^{l} \, dv + \int_{\Gamma^{l}_{1}} \mathbf{t}^{l}.\mathbf{v}^{l} \, ds \end{cases}$$

7/17

Consider the application $j_{\tau}: \mathbf{V} \to \mathbb{R}_+$

$$j_{\tau}(\mathbf{v}) = \int_{\Gamma_C} \tau |\mathbf{v}_T^1 - \mathbf{v}_T^2| \, ds \tag{16}$$

The convex and closed set $\mathbf{K} = \{ \mathbf{v} \in \mathbf{V} \mid [\mathbf{v}.\mathbf{n}] \leq 0 \text{ a.e on } \Gamma_C \}$ describes the non-penetration

Let $\tau \in L^2(\Gamma_C) \geq 0$

• Tresca's criterion on Γ_C :

$$\begin{cases}
\boldsymbol{\sigma}_{T}^{1} = -\boldsymbol{\sigma}_{T}^{2} \\
|\boldsymbol{\sigma}_{T}^{1}| \leq \tau \\
|\mathbf{f}| |\boldsymbol{\sigma}_{T}^{1}| < \tau \Rightarrow \mathbf{u}_{T}^{1} - \mathbf{u}_{T}^{2} = \mathbf{0} \\
|\mathbf{f}| |\boldsymbol{\sigma}_{T}^{1}| = \tau \Rightarrow \exists \lambda \geq 0 \text{ s.t } \mathbf{u}_{T}^{1} - \mathbf{u}_{T}^{2} = -\lambda \boldsymbol{\sigma}_{T}^{1}
\end{cases}$$
(14)

Consider the admissible set $V = V^1 \times V^2$ where

$$\mathbf{V}^l = \{ \mathbf{v} \in \mathbf{H}^1(\Omega^l) = H^1(\Omega^l) \times H^1(\Omega^l) \mid \mathbf{v} = 0 \text{ a.e on } \Gamma_0^l \}$$
 (15)

Let the applications $a: \mathbf{V} \times \mathbf{V} \to \mathbb{R}$ and $f: \mathbf{V} \to \mathbb{R}$ be defined by

$$\begin{cases} a(\mathbf{u}, \mathbf{v}) = a^1(\mathbf{u}, \mathbf{v}) + a^2(\mathbf{u}, \mathbf{v}) \\ f(\mathbf{v}) = f^1(\mathbf{v}) + f^2(\mathbf{v}) \end{cases}$$

where for l = 1, 2

$$\begin{cases} a^{l}(\mathbf{u}, \mathbf{v}) = \int_{\Omega^{l}} \boldsymbol{\sigma}(\mathbf{u}^{l}) : \boldsymbol{\epsilon}(\mathbf{v}^{l}) \, dv \\ f^{l}(\mathbf{v}) = \int_{\Omega^{l}} \mathbf{f}^{l} . \mathbf{v}^{l} \, dv + \int_{\Gamma_{1}^{l}} \mathbf{t}^{l} . \mathbf{v}^{l} \, ds \end{cases}$$

Consider the application $j_{\tau}: \mathbf{V} \to \mathbb{R}_+$

$$j_{\tau}(\mathbf{v}) = \int_{\Gamma_C} \tau |\mathbf{v}_T^1 - \mathbf{v}_T^2| \, ds \tag{16}$$

The convex and closed set $\mathbf{K} = \{ \mathbf{v} \in \mathbf{V} \mid [\mathbf{v}.\mathbf{n}] \leq 0 \text{ a.e on } \Gamma_C \}$ describes the non-penetration

• The problem can be expressed as

Find $\mathbf{u} \in \mathbf{K}$ such that

$$a(\mathbf{u}, \mathbf{v} - \mathbf{u}) + j_{\tau}(\mathbf{v}) - j_{\tau}(\mathbf{u}) \ge f(\mathbf{v} - \mathbf{u}) \quad \forall \mathbf{v} \in \mathbf{K}$$

 \iff

$$J_{\tau}(\mathbf{u}) \leq J_{\tau}(\mathbf{v}) \quad \forall \, \mathbf{v} \in \mathbf{K}$$

where $J_{\tau}(\mathbf{v}) := \mathcal{E}_p(\mathbf{v}) + j_{\tau}(\mathbf{v}) = \frac{1}{2}a(\mathbf{v}, \mathbf{v}) - f(\mathbf{v}) + j_{\tau}(\mathbf{v})$

Coulomb's criterion as a fixed point problem

• Coulomb criterion can be equivalent to the fixed point of the following application [Raous, 1999]

$$T(\tau) = -\mu \sigma_N(\mathbf{u}_{\tau}) \tag{17}$$

with \mathbf{u}_{τ} solution of

Find $\mathbf{u}_{\tau} \in \mathbf{K}$ such that

$$a(\mathbf{u}_{\tau}, \mathbf{v} - \mathbf{u}_{\tau}) + j_{\tau}(\mathbf{v}) - j_{\tau}(\mathbf{u}_{\tau}) \ge f(\mathbf{v} - \mathbf{u}_{\tau}) \quad \forall \mathbf{v} \in \mathbf{K}$$

or

Find $\mathbf{u}_{\tau} \in \mathbf{K}$ such that

$$J_{\tau}(\mathbf{u}_{\tau}) \leq J_{\tau}(\mathbf{v}) \quad \forall \, \mathbf{v} \in \mathbf{K}$$

Houssein et al. FreeFEM days 2021 8/17

- The module vector $|\cdot|$ is approximated by an application $\eta_{\alpha} \in \Xi_{\alpha}$
- Ξ_{α} is defined by

$$\eta_{\alpha} \in \Xi_{\alpha} \iff \begin{cases}
\eta_{\alpha} \in C^{2}(\mathbb{R}^{d}) \\
\eta_{\alpha} \text{ is convex} \\
\eta_{\alpha}(\mathbf{v}) = \eta_{\alpha}(-\mathbf{v}) \quad \forall \mathbf{v} \in \mathbb{R}^{d} \\
\eta_{\alpha}(\mathbf{v}) \geq 0 \quad \forall \mathbf{v} \in \mathbb{R}^{d} \\
|\eta_{\alpha}(\mathbf{v}) - |\mathbf{v}|| \leq \alpha \quad \forall \mathbf{v} \in \mathbb{R}^{d} \\
|\eta_{\alpha}(\mathbf{v}_{1}) - \eta_{\alpha}(\mathbf{v}_{2})| \leq ||\mathbf{v}_{1}| - |\mathbf{v}_{2}|| \quad \forall \mathbf{v}_{1}, \mathbf{v}_{2} \in \mathbb{R}^{d}
\end{cases} (18)$$

Houssein et al. FreeFEM days 2021 9/17

- The module vector $|\cdot|$ is approximated by an application $\eta_{\alpha} \in \Xi_{\alpha}$
- Ξ_{α} is defined by

$$\eta_{\alpha} \in \Xi_{\alpha} \iff \begin{cases}
\eta_{\alpha} \in C^{2}(\mathbb{R}^{d}) \\
\eta_{\alpha} \text{ is convex} \\
\eta_{\alpha}(\mathbf{v}) = \eta_{\alpha}(-\mathbf{v}) \quad \forall \mathbf{v} \in \mathbb{R}^{d} \\
\eta_{\alpha}(\mathbf{v}) \geq 0 \quad \forall \mathbf{v} \in \mathbb{R}^{d} \\
|\eta_{\alpha}(\mathbf{v}) - |\mathbf{v}|| \leq \alpha \quad \forall \mathbf{v} \in \mathbb{R}^{d} \\
|\eta_{\alpha}(\mathbf{v}_{1}) - \eta_{\alpha}(\mathbf{v}_{2})| \leq ||\mathbf{v}_{1}| - |\mathbf{v}_{2}|| \quad \forall \mathbf{v}_{1}, \mathbf{v}_{2} \in \mathbb{R}^{d}
\end{cases} (18)$$

Example

For $\alpha > 0$, $\bar{\eta}_{\alpha}(\mathbf{v}) = \sqrt{|\mathbf{v}|^2 + \alpha^2} \quad \forall \, \mathbf{v} \in \mathbb{R}^d \text{ belongs to } \Xi_{\alpha}$

Houssein et al. FreeFEM days 2021 9/17

- The module vector $|\cdot|$ is approximated by an application $\eta_{\alpha} \in \Xi_{\alpha}$
- Ξ_{α} is defined by

$$\eta_{\alpha} \in \Xi_{\alpha} \iff \begin{cases}
\eta_{\alpha} \in C^{2}(\mathbb{R}^{d}) \\
\eta_{\alpha} \text{ is convex} \\
\eta_{\alpha}(\mathbf{v}) = \eta_{\alpha}(-\mathbf{v}) \quad \forall \mathbf{v} \in \mathbb{R}^{d} \\
\eta_{\alpha}(\mathbf{v}) \geq 0 \quad \forall \mathbf{v} \in \mathbb{R}^{d} \\
|\eta_{\alpha}(\mathbf{v}) - |\mathbf{v}|| \leq \alpha \quad \forall \mathbf{v} \in \mathbb{R}^{d} \\
|\eta_{\alpha}(\mathbf{v}_{1}) - \eta_{\alpha}(\mathbf{v}_{2})| \leq ||\mathbf{v}_{1}| - |\mathbf{v}_{2}|| \quad \forall \mathbf{v}_{1}, \mathbf{v}_{2} \in \mathbb{R}^{d}
\end{cases} (18)$$

Example

For $\alpha > 0$, $\bar{\eta}_{\alpha}(\mathbf{v}) = \sqrt{|\mathbf{v}|^2 + \alpha^2} \quad \forall \, \mathbf{v} \in \mathbb{R}^d$ belongs to Ξ_{α}

$$j_{\tau}(\mathbf{v}) = \int_{\Gamma_C} \tau |\mathbf{v}_T^1 - \mathbf{v}_T^2| \, ds$$
 is replaced by $j_{\alpha,\tau}(\mathbf{v}) = \int_{\Gamma_C} \tau \cdot \eta_{\alpha}(\mathbf{v}_T^1 - \mathbf{v}_T^2) \, ds$

• The regularized Tresca problem becomes

Find $\mathbf{u} \in \mathbf{K}$ such that

$$a(\mathbf{u}, \mathbf{v} - \mathbf{u}) + j_{\alpha, \tau}(\mathbf{v}) - j_{\alpha, \tau}(\mathbf{u}) \ge f(\mathbf{v} - \mathbf{u}) \quad \forall \, \mathbf{v} \in \mathbf{K} \qquad \iff \qquad J_{\alpha, \tau}(\mathbf{u}) \le J_{\alpha, \tau}(\mathbf{v}) \quad \forall \, \mathbf{v} \in \mathbf{K}$$

where
$$J_{\alpha,\tau}(\mathbf{v}) := \mathcal{E}_p(\mathbf{v}) + j_{\alpha,\tau}(\mathbf{v}) = \frac{1}{2}a(\mathbf{v},\mathbf{v}) - f(\mathbf{v}) + j_{\alpha,\tau}(\mathbf{v})$$

Let $\mathbf{u} \in \mathbf{K}$ be sufficiently regular, satisfying

$$a(\mathbf{u}, \mathbf{v} - \mathbf{u}) + j_{\alpha, \tau}(\mathbf{v}) - j_{\alpha, \tau}(\mathbf{u}) \ge f(\mathbf{v} - \mathbf{u}) \quad \forall \mathbf{v} \in \mathbf{K}$$

 \iff

$$J_{\alpha,\tau}(\mathbf{u}) \leq J_{\alpha,\tau}(\mathbf{v}) \quad \forall \, \mathbf{v} \in \mathbf{K}$$

10/17

Then **u** satisfies the following equations for l = 1, 2

• Balance equations:

$$egin{aligned} oldsymbol{
abla}.oldsymbol{\sigma}^l + \mathbf{f}^l &= 0 & ext{in } \Omega^l \ oldsymbol{\sigma}^l &= C^l oldsymbol{\epsilon}^l & ext{in } \Omega^l \ \mathbf{u}^l &= \mathbf{0} & ext{on } \Gamma_0^l \ oldsymbol{\sigma}^l.\mathbf{n}^l &= \mathbf{t}^l & ext{on } \Gamma_1^l \end{aligned}$$

• Contact conditions:

$$\begin{cases} [\mathbf{u}.\mathbf{n}] = \mathbf{u}^{1}.\mathbf{n}^{1} + \mathbf{u}^{2}.\mathbf{n}^{2} = (\mathbf{u}^{1} - \mathbf{u}^{2}).\mathbf{n} \leq 0 & \text{on } \Gamma_{C} \\ \sigma_{n} = (\boldsymbol{\sigma}^{1}.\mathbf{n}^{1}).\mathbf{n}^{1} = (\boldsymbol{\sigma}^{2}.\mathbf{n}^{2}).\mathbf{n}^{2} \leq 0 & \text{on } \Gamma_{C} \\ \sigma_{n}.[\mathbf{u}.\mathbf{n}] = 0 & \text{on } \Gamma_{C} \end{cases}$$

• Regularized frictional criterion on Γ_C :

$$\begin{cases} \boldsymbol{\sigma}_{T}^{1} &= -\boldsymbol{\sigma}_{T}^{2} \\ \boldsymbol{\sigma}_{T}^{1} &= -\tau.\nabla\eta_{\alpha}(\mathbf{u}_{T}^{1} - \mathbf{u}_{T}^{2}) \\ &= -\tau\frac{(\mathbf{u}_{T}^{1} - \mathbf{u}_{T}^{2})}{\sqrt{|\mathbf{u}_{T}^{1} - \mathbf{u}_{T}^{2}|^{2} + \alpha^{2}}} \text{ if } \eta_{\alpha}(\mathbf{v}) = \sqrt{|\mathbf{v}|^{2} + \alpha^{2}} \end{cases}$$

Let $\mathbf{u} \in \mathbf{K}$ be sufficiently regular, satisfying

$$a(\mathbf{u}, \mathbf{v} - \mathbf{u}) + j_{\alpha, \tau}(\mathbf{v}) - j_{\alpha, \tau}(\mathbf{u}) \ge f(\mathbf{v} - \mathbf{u}) \quad \forall \, \mathbf{v} \in \mathbf{K}$$

 \iff

$$J_{\alpha,\tau}(\mathbf{u}) \leq J_{\alpha,\tau}(\mathbf{v}) \quad \forall \, \mathbf{v} \in \mathbf{K}$$

10/17

Then **u** satisfies the following equations for l = 1, 2

• Balance equations:

$$egin{aligned} oldsymbol{
abla}.oldsymbol{\sigma}^l + \mathbf{f}^l &= 0 & ext{in } \Omega^l \ oldsymbol{\sigma}^l &= C^l oldsymbol{\epsilon}^l & ext{in } \Omega^l \ \mathbf{u}^l &= \mathbf{0} & ext{on } \Gamma_0^l \ oldsymbol{\sigma}^l.\mathbf{n}^l &= \mathbf{t}^l & ext{on } \Gamma_1^l \end{aligned}$$

• Contact conditions:

$$\begin{cases} [\mathbf{u}.\mathbf{n}] = \mathbf{u}^{1}.\mathbf{n}^{1} + \mathbf{u}^{2}.\mathbf{n}^{2} = (\mathbf{u}^{1} - \mathbf{u}^{2}).\mathbf{n} \leq 0 & \text{on } \Gamma_{C} \\ \sigma_{n} = (\boldsymbol{\sigma}^{1}.\mathbf{n}^{1}).\mathbf{n}^{1} = (\boldsymbol{\sigma}^{2}.\mathbf{n}^{2}).\mathbf{n}^{2} \leq 0 & \text{on } \Gamma_{C} \\ \sigma_{n}.[\mathbf{u}.\mathbf{n}] = 0 & \text{on } \Gamma_{C} \end{cases}$$

• Regularized frictional criterion on Γ_C :

$$\begin{cases} \boldsymbol{\sigma}_{T}^{1} &= -\boldsymbol{\sigma}_{T}^{2} \\ \boldsymbol{\sigma}_{T}^{1} &= -\tau.\nabla\eta_{\alpha}(\mathbf{u}_{T}^{1} - \mathbf{u}_{T}^{2}) \\ &= -\tau\frac{(\mathbf{u}_{T}^{1} - \mathbf{u}_{T}^{2})}{\sqrt{|\mathbf{u}_{T}^{1} - \mathbf{u}_{T}^{2}|^{2} + \alpha^{2}}} \text{ if } \eta_{\alpha}(\mathbf{v}) = \sqrt{|\mathbf{v}|^{2} + \alpha^{2}} \end{cases}$$

• Error between Tresca's solution and regularized Tresca's solution, $\exists C \geq 0$

$$\|\mathbf{u}_{\alpha}-\mathbf{u}\|_{1}\leq C\alpha$$

Let $\mathbf{u} \in \mathbf{K}$ be sufficiently regular, satisfying

$$a(\mathbf{u}, \mathbf{v} - \mathbf{u}) + j_{\alpha, \tau}(\mathbf{v}) - j_{\alpha, \tau}(\mathbf{u}) \ge f(\mathbf{v} - \mathbf{u}) \quad \forall \, \mathbf{v} \in \mathbf{K}$$

 $J_{\alpha, au}(\mathbf{u}) \leq J_{\alpha, au}(\mathbf{v}) \quad \forall \, \mathbf{v} \in \mathbf{K}$

Then **u** satisfies the following equations for l = 1, 2

• Balance equations:

$$egin{aligned} oldsymbol{
abla}.oldsymbol{\sigma}^l + \mathbf{f}^l &= 0 & ext{in } \Omega^l \ oldsymbol{\sigma}^l &= C^l oldsymbol{\epsilon}^l & ext{in } \Omega^l \ \mathbf{u}^l &= \mathbf{0} & ext{on } \Gamma_0^l \ oldsymbol{\sigma}^l.\mathbf{n}^l &= \mathbf{t}^l & ext{on } \Gamma_1^l \end{aligned}$$

• Contact conditions:

$$\begin{cases} [\mathbf{u}.\mathbf{n}] = \mathbf{u}^{1}.\mathbf{n}^{1} + \mathbf{u}^{2}.\mathbf{n}^{2} = (\mathbf{u}^{1} - \mathbf{u}^{2}).\mathbf{n} \leq 0 & \text{on } \Gamma_{C} \\ \sigma_{n} = (\boldsymbol{\sigma}^{1}.\mathbf{n}^{1}).\mathbf{n}^{1} = (\boldsymbol{\sigma}^{2}.\mathbf{n}^{2}).\mathbf{n}^{2} \leq 0 & \text{on } \Gamma_{C} \\ \sigma_{n}.[\mathbf{u}.\mathbf{n}] = 0 & \text{on } \Gamma_{C} \end{cases}$$

• Regularized frictional criterion on Γ_C :

$$\begin{cases} \boldsymbol{\sigma}_{T}^{1} &= -\boldsymbol{\sigma}_{T}^{2} \\ \boldsymbol{\sigma}_{T}^{1} &= -\tau.\nabla\eta_{\alpha}(\mathbf{u}_{T}^{1} - \mathbf{u}_{T}^{2}) \\ &= -\tau\frac{(\mathbf{u}_{T}^{1} - \mathbf{u}_{T}^{2})}{\sqrt{|\mathbf{u}_{T}^{1} - \mathbf{u}_{T}^{2}|^{2} + \alpha^{2}}} \text{ if } \eta_{\alpha}(\mathbf{v}) = \sqrt{|\mathbf{v}|^{2} + \alpha^{2}} \end{cases}$$

• Error between Tresca's solution and regularized Tresca's solution, $\exists C \geq 0$

$$\|\mathbf{u}_{\alpha} - \mathbf{u}\|_{1} \leq C\alpha$$

• Fixed point for the regularized Coulomb problem

The Algorithm

• Consider the following spaces, for l = 1, 2

$$\mathbf{V}_h^l = \left\{ \mathbf{v} = (v_1, v_2) \in C^0(\Omega_h^l) \times C^0(\Omega_h^l) \mid \mathbf{v}_{|T_i^l} \in P_r \times P_r, \ \forall i = 1, \dots, n_T^l \text{ and } \mathbf{v} = 0 \text{ on } \Gamma_0^l \right\}$$

$$(19)$$

$$\mathbf{V}_h = \mathbf{V}_h^1 \times \mathbf{V}_h^2 \tag{20}$$

• Let $\mathbf{u}_h = (\mathbf{u}_h^1, \mathbf{u}_h^2) \in \mathbf{V}_h$, the displacement vector field \mathbf{u}_h^l on the mesh Ω_h^l is given by

$$\mathbf{u}_h^l = \sum_i \begin{pmatrix} U_i^x \\ U_i^y \end{pmatrix} \hat{w}_i^l \tag{21}$$

Algorithm 1 Regularized frictional algorithm using the fixed point method

Set the error tolerance $\epsilon_{tol} = 10^{-6}$

Compute $\sigma_{n,0}$ the normal stress pressure at the contact area for the frictionless problem

Compute $\tau_0 = -\mu \sigma_{n,0}$, the first sliding limit

while $error \ge \epsilon_{tol} \operatorname{do}$

- 1. For a given sliding limit τ_k , solve Tresca's regularized problem, given in the algorithm 2
- 2. Retrieve the displacement field \mathbf{u}_h
- 3. Compute the normal pressure $\sigma_{n,k}(\mathbf{u}_h)$ on the contact surface
- 4. Compute the new sliding limit $\tau_{k+1} = -\mu \sigma_{n,k}$

5. error=
$$\frac{\|[\![\tau_{k+1}]\!] - [\![\tau_k]\!]\|_{\infty}}{\|[\![\tau_k]\!]\|_{\infty}}$$

end while

Houssein et al. FreeFEM days 2021 11/17

The Algorithm

Algorithm 2 Symmetric algorithm using the fixed point method for Tresca's regularized problem

Initialization of the displacement U_0 and setting the tolerance $\epsilon_{tol} = 10^{-6}$

while $error \geq \epsilon_{tol} \operatorname{do}$

- 1. Using the displacement vector \mathbf{U}_n of the previous iteration n:
 - Compute the projection points' parameters $\{\eta_i^* \mid i = 1, \dots, nS\}$ of all slave integration points
 - Compute the normal at the projection points $\{n_i \mid i = 1, ..., nS\}$ (Using smoothing techniques)
 - Compute the contact area γ_C^n
- 2. For each integration point, its projection point $\bar{\mathbf{x}}_i$ depends linearly on the actual displacement
- 3. Reverse the role of the master and the slave bodies
- 4. Form the Energy E_{n+1} and the symmetric linear constraints
- 5. Use the interior point method in order to solve the minimization problem with linear constraints and to obtain the actual displacement \mathbf{U}_{n+1}

6. error=
$$\frac{\|\mathbf{U}_{n+1} - \mathbf{U}_n\|_{\infty}}{\|\mathbf{U}_n\|_{\infty}}$$

end while

Houssein et al. FreeFEM days 2021 12/17

IPOPT [Wächter and Biegler, 2006] in FreeFEM

```
Minimization of (x-1)^2
// Minimization of f(x)=(x-1)^2
load "ff-Ipopt"
// Energy
func real f(real[int] &xx) {
  return (xx[0]-1)^2.;
// Jacobian
func real[int] df(real[int] &xx) {
  real[int] id = [2.*(xx[0]-1)];
  return id;}
// Hessian
real[int, int] idd1(1,1);
idd1 = 0;
matrix idd=idd1;
func matrix ddf(real[int] &xx) {
  idd(0,0)=2.;
  return idd;}
// Initial solution
real[int] xx = [0.4];
// Solve
IPOPT(f, df, ddf, xx);
// Print
```

cout << "Solution=" << xx[0] <<endl;</pre>

• Validation of the regularized friction law:

Figure: Problem geometry

Houssein et al. FreeFEM days 2021 14/17

• Validation of the regularized friction law:

Figure: Problem geometry

Figure: $\frac{\sigma_T}{\sigma_n}$ VS u_T

Houssein et al. FreeFEM days 2021 14/17

• Sliding on an inclined interface:

Figure: The geometry of the two bodies and the imposed displacement

Houssein et al. FreeFEM days 2021

15/17

• Sliding on an inclined interface:

Figure: The geometry of the two bodies and the imposed displacement

Figure: The deformation states (amplification factor =5) for $\mu = 0, 0.1, 0.2$

Houssein et al. FreeFEM days 2021 15/17

Bibliography

- Belgacem, F. B., Hild, P., and Laborde, P. (1998). The mortar finite element method for contact problems. *Mathematical and Computer Modelling*, 28(4-8):263–271.
- Hecht, F. (2012).

 New development in freefem++. *J. Numer. Math.*, 20(3-4):251–265.
- Hild, P. (1998).

 Problèmes de contact unilatéral et maillages éléments finis incompatibles.

 PhD thesis.
- Houssein, H., Garnotel, S., and Hecht, F. (2021). Contact problems in industrial applications using freefem. In *14th WCCM-ECCOMAS Congress 2020*, volume 2500.
- Nocedal, J. and Wright, S. (2006).

 Numerical optimization.

 Springer Science & Business Media.
- Popp, A., Gee, M. W., and Wall, W. A. (2009).

 A finite deformation mortar contact formulation using a primal—dual active set strategy.

 International Journal for Numerical Methods in Engineering, 79(11):1354–1391.
- Raous, M. (1999).

 Quasistatic signorini problem with coulomb friction and coupling to adhesion.

 In *New developments in contact problems*, pages 101–178. Springer.
- Signorini, A. (1933).
 Sopra alcune questioni di elastostatica.

 Atti della Societa Italiana per il Progresso delle Scienze, 21(II):143–148.
- Wächter, A. and Biegler, L. T. (2006).

 On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. *Mathematical programming*, 106(1):25–57.

THANK YOU FOR YOUR ATTENTION

Houssein et al. FreeFEM days 2021 17/17