التمرين 01

الشكل-6 الشكل M x

يرمي لاعب كرة الغولف كرة كتلتها m=40g موضوعة على الأرض بسرعة ابتدائية يصنع شعاعها زاوية $\alpha=45^\circ$ مع الأفق حيث $v_{ox}=28\,m/s$ حيث $v_{ox}=28\,m/s$ عاليليا. نهمل الاحتكاكات مع الهواء ودافعة ارخميدس. (الشكل-6)

1- بتطبيق القانون الثاني لنيوتن جد المعادلات الزمنية للحركة .

ثم استنتج معادلة المسار.

- 2- على اى مسافة من نقطة القذف سوف تسقط الكرة ؟
- v_0 علل. اللاعب أن تصل الكرة الى نقطة ابعد ، هل يغير من قيمة زاوية القذف او السرعة الابتدائية v_0 ؟ علل.
 - . من نقطة القذف d=100m بعد لتصل الى بعد الكرة من جديد لتصل الى بعد d=100m
 - أ- ما هي قيمة السرعة الابتدائية v_o التي تسمح بوصول الكرة لهذا البعد.

 μ اقصى ارتفاع عن سطح الارض تصل اليه الكرة.

 $\sin 2\alpha = 2 \sin \alpha \cos \alpha$

 $g = 9.8 \, m/s^2$

التمرين 02

قام احد التلاميذ ، خلال مباراة في الكرة الطائرة ، بتصوير شريط فيديو لحركة الكرة ابتداءا من لحظة انجاز الإرسال (SERVICE) من موضع A على ارتفاع H من سطح الأرض . يوجد اللاعب الذي أنجز الإرسال على مسافة D من الشبكة (الشكل - D -) .

ليكون الإرسال مقبولا ، يجب على الكرة تحقيق الشرطين معا :

" أَنَّ تَمرْ مَن فُوق السبكة التي يوجد طرِّفها العَلَّوي عَلَى ارتفاع //من سطح الأرض .

* أنَّ تسقَّط في مُنطقة الخصم ، الَّذي طوَّلها D. ـ

 $g = 10m \cdot s^{-2}$: - تهمل أبعاد الكرة و تأثير الهواء . - شدة الجاذبية الأرضية : - تهمل أبعاد الكرة و تأثير الهواء . - شدة الجاذبية الأرضية : - تهمل أبعاد الكرة و تأثير الهواء . - شدة الجاذبية الأرضية : - تهمل أبعاد الكرة و تأثير الهواء . - شدة الجاذبية الأرضية : - تهمل أبعاد الكرة و تأثير الهواء . - شدة الجاذبية الأرضية : - تهمل أبعاد الكرة و تأثير الهواء . - شدة الجاذبية الأرضية : - تقمل أبعاد الكرة و تأثير الهواء . - شدة الجاذبية الأرضية : - تقمل أبعاد الكرة و تأثير الهواء . - شدة الجاذبية الأرضية : - تقمل أبعاد الكرة و تأثير الهواء . - شدة الجاذبية الأرضية : - تقمل أبعاد الكرة و تأثير الهواء . - شدة الجاذبية الأرضية : - تقمل أبعاد الكرة و تأثير الهواء . - شدة الجاذبية الأرضية : - تقمل أبعاد الكرة و تأثير الهواء . - شدة الجاذبية الأرضية : - تقمل أبعاد الكرة الكرة

.h = 2,50m - .d = D = 9m - .H = 2,60m -

ندرس حركة الكرة في معلم متعامد و متجانس $(\vec{O}, \vec{i}, \vec{j})$ مرتبط بالأرض و الذي نعتبره غاليليا . عند اللحظة t=0 تكون الكرة ، عند النقطة A التي نعتبرها مبدأ للفواصل .

v(m/s) -2-100 $v_x(t)$ $v_x(t)$ $v_x(t)$ $v_y(t)$ $v_y(t)$

تقذف الكرة بسرعة ابتدائية $\overrightarrow{V_o}$ حاملها يصنع الزاوية lpha مع المستوي الأفقي (الشكل - 1 -) .بعد معالجة الشريط المصور بواسطة برنامج مناسب ، تم الحصول على المنحنيين الممثلين في (الشكل - 2 -) يمثل المنحنيان $V_x(t)$ و $V_y(t)$ تغيرات إحداثيتي شعاع سرعة مركز $V_x(t)$

عطالة الكرة في المعلم $(\vec{j}, \vec{j}, 0)$.

1 - بتطبيق القانون الثاني لنيوتن :

أوجد معادلة مسار مركز عطالة الكرة في المعلم $(\vec{0}, \vec{i}, \vec{j})$.

2 - باستغلال المنحنيين (الشكل - 2 -)

- $\alpha = 22^{\circ}$ و $V_0 = 13,46 \, \text{m} \cdot \hat{s}^{-1}$ و $V_0 = 13,46 \, \text{m} \cdot \hat{s}^{-1}$ و
 - (OY) و OX) ب أوجد المسافة التي قطعتها الكرة على المحورين OY و
- 3 علماً أنَّه لم يُعتَّرض الكرة أي لاعب ، هل حققت الكرة الشرطين اللازمين لقبول الإرسال ؟ علل .

التمرين 0<u>3</u>

بتجهيز مناسب نقذف شاقوليا نحو الأسفل كرة تنس (S) كتلتها m بسرعة ابتدائية \overline{V}_0 داخل حوض مائي عند $f=-k\overline{V}$ تخضع الكرة خلال حركتها بالإضافة لقوة ثقلها \overline{p} إلى قوة دافعة ارخميدس $\overline{\Pi}$ وقوة احتكاك $\overline{f}=-k\overline{V}$ ($f=-k\overline{V}$ معامل الاحتكاك).

المعطيات:

.
$$g=10\ m/s^2$$
 ، $V_0=24\ m/s$ ، (الكتلة المجمية) $\alpha=\frac{\rho_{eau}}{\rho_{S}}=2,5$ ، $k=0,25\ kg/s$ ، $m=100g$

. V المعادلة النفاضلية التي تحققها السرعة k , m , g , α المعادلة النفاضلية التي تحققها السرعة

2- أ) تحقق من أنّ حل المعادلة التفاضلية هو:

$$V(t) = V_0 e^{-\frac{k}{m}t} + \frac{m \cdot g}{k} (1-\alpha)(1-e^{-\frac{k}{m}t})$$

. V_ℓ احسب السرعة الحدية ب

 t_1 حدّد اللحظة التي تغير فيها الكرة جهة حركتها

. au منگ مخطط السرعة ووضّح عليه المقادير V_{ℓ} ، V_{0} ، V_{ℓ} عليه المقادير au

التمرين 04

خلال لعبة يحاول من خلالها اللاعبون ارسال كرة كتلتها m=200g بسرعة ابتدائية V_A من نقطة A تقع في اسفل مستو طوله m=200g T_2 , T_1 , عنى الافق بزاوية $G=45^\circ$ على اساس ان الكرة بعد مغادرتها النقطة G تسقط في احدى الحفر $G=45^\circ$ بحيث ان كل حفرة يرافقها عدد من النقاط يحصل عليها اللاعب. (الشكل)

تخضع الكرة اثناء حركتها على المستوي المائل الى قوة احتكاك

شدتها f=0,2N (نهمل تأثير الهواء على الكرة ونأخذ $g=9,8m/S^2$). f=0,2N

ا- مثل القوى المؤثرة على الكرة.

ب- بتطبيق القانون الثاني لنيوتن على مركز عطالة الكرة بين

ان المعادلة التفاضلية لتطور فاصلة الكرة خلال حركتها تكتب بالشكل:

$$\frac{d^2x}{dt^2} = -(g.\sin\theta + \frac{f}{m})$$

ج- ما طبيعة حركة مركز عطالة الكرة؟ استنتج قيمة تسار عها a1 .

 $V_B = \sqrt{V_A^2 + 2a_1L}$: د- بين ان السرعة عد النقطة B تعطى بالعلاقة

2/- دراسة حركة الكرة بعد مغادرتها النقطة B

ا- ادرس طبيعة الحركة على المحورين \overrightarrow{Oy} ، \overrightarrow{Ox} ثم اكتب المعادلتين الزمنيتين للحركة.

 ϕ و ϕ و α : محددا عبارة كلا من α و α و α محددا عبارة كلا من α و α و α محددا عبارة كلا من α و α و α بين ان معادلة مسار حركة مركز عطالة الكرة تكتب على المحور α حيث تبعد عن النقطة α بالمسافة α المحور α و استنتج قيمة المسرعة α و استنتج قيمة المسرعة α .

