Exercise 4.3

a)

Show:
$$\not\models \forall x(Fx \to Gx) \to \forall x(Gx \to Fx)$$

Consider the following countermodel $M = \langle D, I \rangle$.

$$D = \{u, v\}$$

$$I(F) = \{u\}$$

$$I(G) = \{u, v\}$$

Let g be the variable assignment g(x) = u for all variables x.

Clearly,
$$V_{M,g}(\forall x(Fx \to Gx) \to \forall x(Gx \to Fx)) = 0.$$

Therefore, $\not\models \forall x(Fx \to Gx) \to \forall x(Gx \to Fx)$.

b)

Show:
$$\not\models \forall x (Fx \lor \sim Gx) \rightarrow (\forall x Fx \lor \sim \exists x Gx)$$

Consider the following countermodel $M = \langle D, I \rangle$.

$$D=\{u,v\}$$

$$I(F) = \{u\}$$

$$I(G) = \{u\}$$

Let g be the variable assignment g(x) = u for all variables x.

Clearly,
$$V_{M,g}(\forall x(Fx \lor \sim Gx) \to (\forall xFx \lor \sim \exists xGx)) = 0.$$

Therefore, $\not\models \forall x (Fx \lor \sim Gx) \rightarrow (\forall x Fx \lor \sim \exists x Gx).$

 $\mathbf{c})$

Show: $Rab \not\models \exists x Rxx$.

Consider the following countermodel $M = \langle D, I \rangle$.

$$D = \{u, v\}$$

$$I(a) = u$$

$$I(b) = v$$

$$I(R) = \{\langle u, v \rangle\}$$

Let g be the variable assignment g(x) = u for all variables x.

Clearly,
$$V_{M,g}(Rab) = 1$$
, but $V_{M,g}(\exists x Rxx) = 0$.

Therefore, $Rab \not\models \exists x Rxx$.

d)

Show: $Fx \not\models \forall xFx$.

Consider the following countermodel $M = \langle D, I \rangle$.

$$D = \{u, v\}$$

$$I(F) = \{u\}$$

Let g be the variable assignment g(x) = u for all variables x.

Clearly,
$$V_{M,g}(Fx) = 1$$
, but $V_{M,g}(\forall x Fx) = 0$.

Therefore, $Fx \not\models \forall xFx$.

$\mathbf{e})$

Show: $\forall x \forall y \forall z [(Rxy \land Ryz) \rightarrow Rxz], \forall x \exists y Rxy \not\models \exists x Rxx.$

Consider the following countermodel $M = \langle D, I \rangle$.

 $D = \mathbb{N}$, where $\mathbb{N} = \{0, 1, 2, 3, ...\}$ is the set of natural numbers.

 $I(R) = \{\langle u, v \rangle : u < v\}$ where \langle is the standard ordering on the natural numbers.

Let g be the variable assignment g(x) = u for all variables x. Clearly, $V_{M,g}(\forall x \forall y \forall z [(Rxy \land Ryz) \rightarrow Rxz]) = 1$ and $V_{M,g}(\forall x \exists y Rxy) = 1$, but $V_{M,g}(\exists x Rxx) = 0$.

Therefore, $\forall x \forall y \forall z [(Rxy \land Ryz) \rightarrow Rxz], \forall x \exists y Rxy \not\models \exists x Rxx.$

Exercise 4.4

We will use the derived rules given in the Lecture 10 notes.

a)

Show: $\forall x(Fx \to Gx), \forall x(Gx \to Hx) \vdash_{PC} \forall x(Fx \to Hx)$

1.	$\forall x (Fx \to Gx)$	premise
2.	$\forall x (Fx \to Gx) \to (Fx \to Gx)$	PC1
3.	$Fx \to Gx$	1,2, MP
4.	$\forall x (Gx \to Hx)$	premise
5.	$\forall x (Gx \to Hx) \to (Gx \to Hx)$	PC1
6.	$Gx \to Hx$	4,5, MP
7.	$Fx \to Hx$	3,6, PL
8.	$\forall x (Fx \to Hx)$	7, UG

b)

Show: $\vdash_{PC} Fa \rightarrow \exists x Fx$

1.
$$Fa \rightarrow \exists xFx$$

EG (Existential Generalization)

c)

Show: $\vdash_{PC} \forall x Rax \rightarrow \forall x \exists y Ryx$

First we will show that $\forall x Rax \vdash_{PC} \forall x \exists y Ryx$ and then use the Deduction Theorem.

1.	$\forall x Rax$	premise
2.	$\forall x Rax \rightarrow Rax$	PC1
3.	Rax	1,2, MP
4.	$Rax \to \exists y Ryx$	EG (Existential Generalization)
5.	$\exists y Ry x$	3,4, MP
6.	$\forall x \exists y Ryx$	5, UG

Since we have shown that $\forall x Rax \vdash_{PC} \forall x \exists y Ryx$, then by the Deduction Theorem we have that $\vdash_{PC} \forall x Rax \rightarrow \forall x \exists y Ryx$.

d)

Show: $\exists x Rax, \forall y (Ray \rightarrow \forall z Rzy) \vdash_{PC} \exists x \forall z Rzx$

1.	$\exists x Rax$	premise
2.	Rad	1, EI (Existential Instantiation/Rule C)
3.	$\forall y (Ray \rightarrow \forall z Rzy)$	premise
4.	$\forall y (Ray \to \forall z Rzy) \to (Rad \to \forall z Rzd)$	PC1
5.	$Rad \rightarrow \forall z Rzd$	3,4, MP
6.	$\forall zRzd$	2,5, MP
7.	$\forall z R z d \to \exists x \forall z R z x$	EG (Existential Generalization)
8.	$\exists x \forall z R z x$	6,7, MP

Exercise 9.1

For each formula, give a validity proof if the wff is SQML-valid, and a countermodel if it is invalid.

\mathbf{a}

Sider gave solutions for a) in the back of the book.

b)

Show: $\models_{SQML} \Diamond \forall x Fx \to \exists x \Diamond Fx$

Let $M = \langle W, D, I \rangle$ be any SQML-model.

We will show that for any variable assignment g and any $w_1 \in W$, we have $V_{M,g}(\lozenge \forall x Fx \to \exists x \lozenge Fx, w_1) = 1$.

- i) Suppose for reductio that for some variable assignment g and some $w_1 \in W$, we have $V_{M,g}(\lozenge \forall x Fx \to \exists x \lozenge Fx, w_1) = 0$. Hence, $V_{M,g}(\lozenge \forall x Fx, w_1) = 1$ and $V_{M,g}(\exists x \lozenge Fx, w_1) = 0$.
- ii) From the former in i) since $V_{M,g}(\Diamond \forall xFx, w_1) = 1$, we know that for some $w_2 \in W$ we have $V_{M,g}(\forall xFx, w_2) = 1$.
- iii) From the latter in i) since $V_{M,g}(\exists x \Diamond Fx, w_1) = 0$ we know that for every $u \in U$, $V_{M,g_u^x}(\Diamond Fx, w_1) = 0$. Since $D \neq \emptyset$, for some particular $v \in D$ we know $V_{M,g_v^x}(\Diamond Fx, w_1) = 0$. Hence, $V_{M,g_v^x}(Fx, w_2) = 0$.
- iv) From ii) since $V_{M,g}(\forall x F x, w_2) = 1$, we know that $V_{M,g_v^x}(F x, w_2) = 1$.
- v) From iii) we have $V_{M,g_v^x}(Fx, w_2) = 0$ and from iv) we have $V_{M,g_v^x}(Fx, w_2) = 1$ which is a contradiction.

Therefore, our initial assumption was wrong. Therefore, $\models_{SQML} \Diamond \forall xFx \rightarrow \exists x \Diamond Fx$, as required.

$\mathbf{c})$

Sider gave solutions for c) in the back of the book.

d)

Show: $\models_{SQML} \Box \forall x (Fx \to Gx) \to (\forall x \Box Fx \to \Box \forall x Gx)$

Let $M = \langle W, D, I \rangle$ be any SQML-model.

We will show that for any variable assignment g and any $w_1 \in W$, we have $V_{M,g}(\Box \forall x(Fx \to Gx) \to (\forall x \Box Fx \to \Box \forall xGx), w_1) = 1$.

- i) Suppose for reductio that for some variable assignment g and some $w_1 \in W$, we have $V_{M,g}(\Box \forall x(Fx \to Gx) \to (\forall x\Box Fx \to \Box \forall xGx), w_1) = 0.$
- ii) From i) we get $V_{M,q}(\Box \forall x (Fx \to Gx), w_1) = 1$ and $V_{M,q}(\forall x \Box Fx \to \Box \forall x Gx, w_1) = 0$.
- iii) From the latter in ii) since $V_{M,g}(\forall x \Box Fx \rightarrow \Box \forall x Gx, w_1) = 0$ we get $V_{M,g}(\forall x \Box Fx, w_1) = 1$ and $V_{M,g}(\Box \forall x Gx, w_1) = 0$.
- iv) From the latter in iii) since $V_{M,g}(\Box \forall x Gx, w_1) = 0$, we know for some $w_2 \in W$ we have $V_{M,g}(\forall x Gx, w_2) = 0$. Hence, for some $u \in D$ we have $V_{M,g_x}(Gx, w_2) = 0$.
- v) From the former in iii) since $V_{M,g}(\forall x \Box Fx, w_1) = 1$, we have $V_{M,g_u^x}(\Box Fx, w_1) = 1$. Hence, $V_{M,g_u^x}(Fx, w_2) = 1$.
- vi) From the former in ii) since $V_{M,g}(\Box \forall x(Fx \to Gx), w_1) = 1$ we get $V_{M,g}(\forall x(Fx \to Gx), w_2) = 1$. Hence, $V_{M,g_u^x}(Fx \to Gx, w_2) = 1$. Hence, $V_{M,g_u^x}(Fx, w_2) = 0$ or $V_{M,g_u^x}(Gx, w_2) = 1$. Since from v) we have $V_{M,g_u^x}(Fx, w_2) = 1$, we must have that $V_{M,g_u^x}(Gx, w_2) = 1$.
- vii) From iv) we have $V_{M,g_u^x}(Gx, w_2) = 0$ and from vi) we have $V_{M,g_u^x}(Gx, w_2) = 1$ which is a contradiction.

Therefore, our initial assumption was wrong. Therefore, $\models_{SQML} \Box \forall x (Fx \to Gx) \to (\forall x \Box Fx \to \Box \forall x Gx)$, as required.

 $\mathbf{e})$

Show:
$$\not\models_{SQML} \exists x(Nx \land \forall y(Ny \rightarrow y = x) \land \Box Ox) \rightarrow \Box \exists x(Nx \land \forall y(Ny \rightarrow y = x) \land Ox)$$

Consider the following countermodel $M = \langle W, D, I \rangle$.

$$W = \{a, b\}$$

$$D = \{u\}$$

$$I(N) = \{\langle u, a \rangle\}$$

$$I(O) = \{\langle u, a \rangle, \langle u, b \rangle\}$$

Let g be the variable assignment g(x) = u for all variables x.

Clearly, $V_{M,g}(\exists x(Nx \land \forall y(Ny \to y = x) \land \Box Ox) \to \Box \exists x(Nx \land \forall y(Ny \to y = x) \land Ox), a) = 0.$ Therefore, $\not\models_{SQML} \exists x(Nx \land \forall y(Ny \to y = x) \land \Box Ox) \to \Box \exists x(Nx \land \forall y(Ny \to y = x) \land Ox).$

Exercise 9.4

Determine the VDQML-invalidity of the following formulas.

a)

Show: $\not\models_{VDQML} \Box \forall x Fx \rightarrow \forall x \Box Fx$

Consider the following countermodel $M = \langle W, R, D, Q, I \rangle$ where

 $W = \{a, b\}$

 $R = \{\langle a, b \rangle\}$

 $D = \{u, v\}$

 $D_a = \{v\}$

 $D_b = \{u\}$

 $I(F) = \{\langle u, b \rangle\}$

Let g be the variable assignment g(x) = u for all variables x.

Clearly, $V_{M,q}(\Box \forall x Fx \to \forall x \Box Fx, a) = 0.$

Therefore, $\not\models_{VDQML} \Box \forall xFx \rightarrow \forall x\Box Fx$.

b)

Show: $\not\models_{VDQML} \exists x \Box Fx \rightarrow \Box \exists x Fx$

Consider the following countermodel $M = \langle W, R, D, Q, I \rangle$ where

 $W=\{a,b\}$

 $R = \{\langle a, b \rangle\}$

 $D = \{u, v\}$

 $D_a = \{u\}$

 $D_b = \{v\}$

$$I(F) = \{\langle u,b\rangle\}$$

Let g be the variable assignment g(x) = u for all variables x.

Clearly, $V_{M,g}(\exists x \Box Fx \to \Box \exists x Fx, a) = 0.$

Therefore, $\not\models_{VDQML} \exists x \Box Fx \rightarrow \Box \exists x Fx$.

c)

Show: $\not\models_{VDQML} \forall x \Box \exists y (y = x)$

Consider the following countermodel $M = \langle W, R, D, Q, I \rangle$ where

 $W = \{a, b\}$

 $R = \{\langle a, b \rangle\}$

 $D = \{u, v\}$

 $D_a = \{u\}$

 $D_b = \{v\}$

Let g be the variable assignment g(x) = u for all variables x.

Clearly, $V_{M,g}(\forall x \Box \exists y (y=x), a) = 0.$

Therefore, $\not\models_{VDQML} \forall x \Box \exists y (y = x).$

Exercise 9.6

a)

Sider provides solutions for a) in the back of the book.

b)

Show: $(\Box \forall x Fx \land \Diamond \forall x Gx) \rightarrow \Diamond \forall x (Fx \land Gx)$

1.	$Fx \wedge Gx \to Fx \wedge Gx$	PL
2.	$Fx \to (Gx \to (Fx \land Gx))$	1,PL (Import/Export)
3.	$\forall x (Fx \to (Gx \to (Fx \land Gx)))$	2, UG
4.	$\forall x Fx \to \forall x (Gx \to (Fx \land Gx))$	Distribution, 3, MP
5.	$\forall x (Gx \to (Fx \land Gx)) \to (\forall x Gx \to \forall x (Fx \land Gx))$	Distribution
6.	$\forall x Fx \to (\forall x Gx \to \forall x (Fx \land Gx))$	4,5, PL
7.	$\Box \forall x Fx \to \Box (\forall x Gx \to \forall x (Fx \land Gx))$	6, Nec, K, MP
8.	$\Box(\forall xGx \to \forall x(Fx \land Gx)) \to (\Diamond \forall xGx \to \Diamond \forall x(Fx \land Gx))$	K◊
9.	$\Box \forall x Fx \to (\Diamond \forall x Gx \to \Diamond \forall x (Fx \land Gx))$	7,8, PL
10.	$(\Box \forall x Fx \land \Diamond \forall x Gx) \rightarrow \Diamond \forall x (Fx \land Gx)$	9, PL (Import/Export)

$\mathbf{c})$

Show: $(\forall x \Box (Fx \to Gx) \land \exists x \Diamond Fx) \to \exists x \Diamond Gx$

1. $\forall x \Box (Fx \to Gx) \to \Box (Fx \to Gx)$	PC1
2. $\Box(Fx \to Gx) \to (\Diamond Fx \to \Diamond Gx)$	$\mathrm{K}\Diamond$
3. $\forall x \Box (Fx \to Gx) \to (\Diamond Fx \to \Diamond Gx)$	1,2,PL
4. $\forall x \Box (Fx \to Gx) \to (\sim \Diamond Gx \to \sim \Diamond Fx)$	3, PL
5. $\forall x (\forall x \Box (Fx \to Gx) \to (\sim \Diamond Gx \to \sim \Diamond Fx))$	4, UG
6. $\forall x \Box (Fx \to Gx) \to \forall x (\sim \Diamond Gx \to \sim \Diamond Fx)$	PC2, 5, MP
7. $\forall x (\sim \Diamond Gx \rightarrow \sim \Diamond Fx) \rightarrow (\forall x \sim \Diamond Gx \rightarrow \forall x \sim \Diamond Fx)$	Distribution
8. $\forall x \Box (Fx \to Gx) \to (\forall x \sim \Diamond Gx \to \forall x \sim \Diamond Fx)$	$6.7, \mathrm{PL}$
9. $\forall x \Box (Fx \to Gx) \to (\sim \forall x \sim \Diamond Fx \to \sim \forall x \sim \Diamond Gx)$	8, PL
10. $\forall x \Box (Fx \to Gx) \to (\exists x \Diamond Fx \to \exists x \Diamond Gx)$	9. def of \exists
11. $(\forall x \Box (Fx \to Gx) \land \exists x \Diamond Fx) \to \exists x \Diamond Gx$	10, PL (Import/Export)

d)

Show: $\forall y \square \exists x (x = y)$

1.
$$y = y$$
 RX

2.
$$\forall x \sim (x = y) \rightarrow \sim (y = y)$$
 PC1

3.
$$\sim \forall x \sim (x = y)$$
 1,2, PL

4.
$$\exists x(x=y)$$
 3, def of \exists

5.
$$\square \exists x (x = y)$$
 4, Nec

6.
$$\forall y \Box \exists x (x = y)$$
 5, UG