Assessment 4

Full Name: Ty ler Gillette

Version B

Follow the directions on the previous page.

The diagram shows a triangular hatch on a cruise ship with height 9 m and base length 3 m which is positioned vertically in the water (weight density of ocean water = $10,030 \text{ N/m}^3$) so that the top is 2 m above the surface. The base of the hatch is parallel to the surface of the water. The diagram is not necessarily to scale.

14 6		
P= pgd	F=P.A	P=10,030 Nm3
$A = \frac{1}{2}b \cdot H$		$A = \frac{27}{2}$
$A = \frac{1}{2}3 \cdot 7$		[2,9]
$A = \frac{27}{9}$		
2		

$$\frac{2}{2} \left[\frac{9m}{\sqrt{(10,030\%)}} \left(\frac{27}{2} m^2 \right) dx \right]$$

$$= 135405\% \left(\frac{x^2}{2} - 2x \right) \int_{2m}^{9m}$$

$$= 135405\% \left(\frac{81}{2} - 18 - 2 + 4 \right)_{m}$$

$$= 135405\% \left(\frac{49}{2} \right)_{m} = 3317422.5 \text{ N}$$