- 1. Considere a equação $4\cos x e^x = 0$. Obtenha a raiz positiva com quatro casas decimais corretas. Usando $p \approx \frac{\log\left(\frac{e_{k+1}}{e_k}\right)}{\log\left(\frac{e_k}{e_{k-1}}\right)}$, confirme que a ordem de convergência do método de Newton é quadrática, isto é, p=2.
- 2. Usando o método de Newton, com erro inferior a 10^{-2} , determinar uma raiz das seguintes equações:
 - a) $2x = \tan x$,

b)
$$5x^3 + x^2 - 12x + 5 = 0$$
,

c)
$$\sin x - e^x = 0$$
,

d)
$$x^4 - 8 = 0$$
.

3. Considere a fórmula para determinar a raiz cúbica de *Q*:

$$x_{k+1} = \frac{1}{3} \left[2x_k + \frac{Q}{x_k^2} \right], \ k = 0, 1, \dots$$
 (1)

- a) Mostre que a fórmula anterior é um caso especial de iteração de Newton.
- b) Usando a fórmula dada no item a) calcule $\sqrt[3]{4}$, com precisão de 10^{-2} , determinando o valor inicial através do gráfico.
- 4. Mostre que o método de Newton é convergente. Para isso, utilize a hipótese de que $|\frac{f''(x)}{f'(x)}| \le A$, $\forall x,y \in I = [\xi \delta, \xi + \delta]$, $\delta > 0$ e seja $h = \min\left\{\delta, \frac{1}{A}\right\}$ tal que $|\xi x_0| \le h$, sendo ξ a solução do problema f(x) = 0 e $f''(\xi) \ne 0$. PS> Inicie a prova considerando $|\xi x_k| \le h$.
- 5. Mostre que a ordem de convergência do método de Newton é 2. Use as mesmas hipóteses do exercício anterior.