Mathematisches Seminar Prof. Dr. Mathias Vetter

Dr. Mark Feodoria, Ole Martin

Sheet 06

Risk Management

Exercises for participants of mathematical programmes

C-Exercise 20

(a) Write a scilab-function

$$alpha = Hill_Estimator(x, k),$$

which computes the Hill estimator $\widehat{\alpha}_{k,n}$ for $n \in \mathbb{N}$ independent observations $x = (x_1, \dots, x_n)$ and $k \in \{1, \dots, n-1\}$.

(b) Write a scilab-function

$$Hill_Plot(x)$$
,

which draws the corresponding Hill plot for $n \in \mathbb{N}$ independent observations $x = (x_1, \ldots, x_n)$.

- (c) Generate n = 500 simulations for
 - the t-distribution with v = 3 degrees of freedom,
 - the t-distribution with v = 6 degrees of freedom,
 - the exponential distribution with parameter $\lambda = 1$,

and draw the corresponding Hill plot.

(d) Write a scilab-function

that computes the VaR and ES estimates from section 3.2.3 and 3.2.4 for $n \in \mathbb{N}$ independent observations $x = (x_1, \dots, x_n), k \in \{1, \dots, n-1\}$ and level $p \in (0, 1)$.

(e) On the OLAT entry of this course you will find a data set with n = 500 iid simulations of a regularly varying random variable. Use a Hill plot for a reasonable choice of k. Compute the estimates for VaR and ES at level p = 0.99.

Useful scilab commands: distfun_trnd of the distfun package

C-Exercise 21

(a) Write a scilab-function

$$e = MEF(x, u),$$

that evaluates the empirical mean excess function e_n at $u < \max\{x_i : i = 1,...,n\}$ for $n \in \mathbb{N}$ observations $x = (x_1,...,x_n)$.

(b) Write a scilab-function

$$MEP(x)$$
,

that draws the mean excess plot for observations $x = (x_1, \dots, x_n)$.

(c) On the OLAT entry of this course you find a data set with n = 500 iid observations of a random X with cdf F. Draw the corresponding mean excess plot and find a preferably small u, such that the excess cdf F_u of X is approximately $G_{\gamma,\beta}$ -distributed.

T-Exercise 22M

Let X_1 and X_2 be two nonnegative, independent and identically distributed random variables with cumulative distribution function F, such that $\overline{F} \in RV_{-\alpha}$ for some $\alpha > 1$.

(a) Show that

$$\lim_{t \to \infty} \frac{P(X_1 + X_2 > t)}{P(2X_1 > t)} = 2^{1 - \alpha}.$$

Hint: As a first step, show that for all $\varepsilon \in (0, \frac{1}{2})$

$$P(X_1 + X_2 > t) \le 2P(X_2 > (1 - \varepsilon)t) + P(X_1 > \varepsilon t)^2.$$

(b) Conclude with (a) that for sufficiently large $p \in (0,1)$

$$\operatorname{VaR}_p(X_1 + X_2) \le \operatorname{VaR}_p(X_1) + \operatorname{VaR}_p(X_2).$$

P-Exercise 23

Let X be a Student's t-distributed random variable with v > 0 degrees of freedom. Show that X is regularly varying and compute the corresponding index.

Please save your solution of each C-Exercise in a file named Exercise_##.sce, where ## denotes the number of the exercise. Please include your name(s) as comment in the beginning of the file.

Submit until: Wednesday, 14.12.2016, 12:00

Discussion: in tutorials on Mon, 19.12.2016 and Wed, 21.12.2016