- Hyperparameter tuned Deep Neural Network (Regression)

Name: Surabhi S reg no: 20MDT1021

AIM:

• By using Bayesian hyperparameter tuning we should build a regression model(deep neural network)

- Model performance
- Interpretation of models using LIME

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn import ensemble
from sklearn import metrics
from sklearn import model_selection
from keras.models import Sequential
from keras.nodels import Dense
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import KFold
from sklearn.pipeline import StandardScaler
from sklearn.pipeline import Pipeline
import sklearn.metrics as metrics
import tensorflow as tf
```

Importing basic and necessary packages

Importing the data

Russian house price preciction data

```
x_train = pd.read_csv('/content/train_data.csv')
y_train = pd.read_csv('/content/ytrain_data.csv')
x_test = pd.read_csv('/content/test_data.csv')
y_test = pd.read_csv('/content/ytest_data.csv')

x_train.drop('Unnamed: 0',axis=1,inplace=True)
x_test.drop('Unnamed: 0',axis=1,inplace=True)
y_train.drop('Unnamed: 0',axis=1,inplace=True)
y_test.drop('Unnamed: 0',axis=1,inplace=True)
#x_train.head(2)
```

Preprocessing of data

Since we are going to perform regression, the dataset should have only numarical data. It can be checked with "info()"

x_train.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 21329 entries, 0 to 21328
Data columns (total 50 columns):
    Column
                                Non-Null Count Dtype
    -----
                                -----
    full_sq
0
                                21329 non-null int64
1
    floor
                                21329 non-null float64
    build year
                                21329 non-null float64
2
3
    num_room
                                21329 non-null float64
    kitch_sq
4
                                21329 non-null float64
5
    state
                                21329 non-null float64
                                21329 non-null int64
    product_type
6
    raion popul
                                21329 non-null float64
7
    indust_part
                                21329 non-null float64
8
    sport_objects_raion
                                21329 non-null int64
    shopping_centers_raion
10
                                21329 non-null int64
11 radiation raion
                                21329 non-null int64
12 build count block
                                21329 non-null float64
13 build_count_brick
                                21329 non-null float64
14 build_count_monolith
                                21329 non-null float64
15 metro_min_avto
                                21329 non-null float64
16 school_km
                                21329 non-null float64
    green_zone_km
                                21329 non-null float64
17
    industrial km
                                21329 non-null float64
    water_treatment_km
                                21329 non-null float64
19
20
    cemetery_km
                                21329 non-null float64
21 incineration_km
                                21329 non-null float64
22 ID_railroad_station_avto
                                21329 non-null float64
    mkad km
23
                                21329 non-null float64
    ttk_km
                                21329 non-null float64
    oil_chemistry_km
                                21329 non-null float64
25
    nuclear_reactor_km
                                21329 non-null float64
    power_transmission_line_km 21329 non-null float64
27
                                21329 non-null float64
    market_shop_km
29 fitness_km
                                21329 non-null float64
30 stadium_km
                                21329 non-null float64
    basketball_km
                                21329 non-null float64
    detention facility km
                                21329 non-null float64
    additional_education_km
33
                                21329 non-null float64
34 big_church_km
                                21329 non-null float64
35 mosque_km
                                21329 non-null float64
    theater_km
                                21329 non-null float64
36
    exhibition_km
                                21329 non-null float64
                                21329 non-null float64
    catering_km
38
    green_part_1000
                                21329 non-null float64
40 cafe_sum_1000_min_price_avg 21329 non-null float64
41 cafe_count_1000_price_high
                                21329 non-null int64
```

```
42 cafe_sum_1500_min_price_avg 21329 non-null float64
43 green_part_2000 21329 non-null float64
44 cafe_sum_2000_min_price_avg 21329 non-null float64
45 mosque_count_3000 21329 non-null int64
46 prom_part_5000 21329 non-null float64
47 cafe_sum_5000_min_price_avg 21329 non-null float64
48 mosque_count_5000 21329 non-null int64
49 year 21329 non-null int64
dtypes: float64(41), int64(9)
memory usage: 8.1 MB
```

y_train.info()

x_test.info()

Column

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9142 entries, 0 to 9141
Data columns (total 50 columns):

π 		Non Nail Counc	
0	full_sq	9142 non-null	int64
1	floor	9142 non-null	float64
2	build_year	9142 non-null	float64
3	num_room	9142 non-null	float64
4	kitch_sq	9142 non-null	float64
5	state	9142 non-null	float64
6	product_type	9142 non-null	int64
7	raion_popul	9142 non-null	float64
8	indust_part	9142 non-null	float64
9	sport_objects_raion	9142 non-null	int64
10	shopping_centers_raion	9142 non-null	int64
11	radiation_raion	9142 non-null	int64
12	build_count_block	9142 non-null	float64
13	build_count_brick	9142 non-null	float64
14	build_count_monolith	9142 non-null	float64
15	metro_min_avto	9142 non-null	float64
16	school_km	9142 non-null	float64
17	green_zone_km	9142 non-null	float64
18	industrial_km	9142 non-null	float64
19	water_treatment_km	9142 non-null	float64
20	cemetery_km	9142 non-null	float64
21	incineration_km	9142 non-null	float64
22	<pre>ID_railroad_station_avto</pre>	9142 non-null	float64
23	mkad_km	9142 non-null	float64
24	ttk_km	9142 non-null	float64
25	oil_chemistry_km	9142 non-null	float64
26	nuclear_reactor_km	9142 non-null	float64
27	<pre>power_transmission_line_km</pre>	9142 non-null	float64
28	market_shop_km	9142 non-null	float64

Non-Null Count Dtype

```
29 fitness_km
                               9142 non-null
                                             float64
30 stadium_km
                               9142 non-null
                                             float64
31 basketball km
                               9142 non-null
                                             float64
                               9142 non-null float64
32 detention_facility_km
33 additional_education_km
                               9142 non-null float64
    big_church_km
                               9142 non-null float64
35 mosque_km
                               9142 non-null float64
36 theater km
                               9142 non-null float64
37 exhibition km
                               9142 non-null float64
38 catering_km
                               9142 non-null float64
                               9142 non-null float64
39 green_part_1000
40 cafe_sum_1000_min_price_avg 9142 non-null
                                             float64
41 cafe_count_1000_price_high 9142 non-null
                                             int64
42 cafe_sum_1500_min_price_avg 9142 non-null float64
43 green_part_2000
                               9142 non-null float64
44 cafe_sum_2000_min_price_avg 9142 non-null float64
45 mosque_count_3000
                               9142 non-null int64
46 prom_part_5000
                               9142 non-null float64
47 cafe_sum_5000_min_price_avg 9142 non-null float64
48 mosque_count_5000
                               9142 non-null int64
                               9142 non-null int64
49 year
dtypes: float64(41), int64(9)
memory usage: 3.5 MB
```

y_test.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9142 entries, 0 to 9141
Data columns (total 1 columns):
    # Column Non-Null Count Dtype
--- 0 price_doc 9142 non-null float64
dtypes: float64(1)
memory usage: 71.5 KB
```

The dataset contains only float and integer values, and there are no missing values

```
print("train set shape:\n",x_train.shape,y_train.shape,"\n test set shape:\n",x_test.shape,y_test.shape)

train set shape:
  (21329, 50) (21329, 1)
```

The dataset contains 50 attributes(columns)

test set shape: (9142, 50) (9142, 1)

Multicollinearity

```
x_train.corr()
```

	full_sq	floor	build_year	num_room	kitch_sq	state	product_type	raion_popul	indust_part	sport_objects_raion	shopping_centers_raion	radiation_r
full_sq	1.000000	0.077964	-0.002775	0.294462	0.008868	-0.030968	0.089731	-0.034144	-0.049103	0.026406	0.008693	-0.01
floor	0.077964	1.000000	0.000445	-0.007755	-0.007676	-0.085835	0.207234	-0.064959	-0.016169	-0.038687	0.007963	-0.09
build_year	-0.002775	0.000445	1.000000	-0.008960	0.000860	0.317613	-0.005625	0.004193	0.001068	-0.000430	0.002742	0.00
num_room	0.294462	-0.007755	-0.008960	1.000000	0.018603	0.076824	-0.075171	0.064253	-0.029175	0.079500	0.051578	0.03
kitch_sq	0.008868	-0.007676	0.000860	0.018603	1.000000	0.056075	-0.069952	0.038787	0.001382	0.019197	0.006038	0.01
state	-0.030968	-0.085835	0.317613	0.076824	0.056075	1.000000	-0.494085	0.317565	0.041254	0.138604	0.096883	0.15
product_type	0.089731	0.207234	-0.005625	-0.075171	-0.069952	-0.494085	1.000000	-0.654368	-0.111841	-0.307163	-0.201685	-0.34
raion_popul	-0.034144	-0.064959	0.004193	0.064253	0.038787	0.317565	-0.654368	1.000000	0.174910	0.559707	0.506811	0.43
indust_part	-0.049103	-0.016169	0.001068	-0.029175	0.001382	0.041254	-0.111841	0.174910	1.000000	-0.132848	-0.073828	0.04
sport_objects_raion	0.026406	-0.038687	-0.000430	0.079500	0.019197	0.138604	-0.307163	0.559707	-0.132848	1.000000	0.741323	0.44
shopping_centers_raion	0.008693	0.007963	0.002742	0.051578	0.006038	0.096883	-0.201685	0.506811	-0.073828	0.741323	1.000000	0.25
radiation_raion	-0.010936	-0.099087	0.009444	0.030539	0.019082	0.151534	-0.347468	0.432850	0.045655	0.443067	0.252834	1.00
build_count_block	-0.055363	-0.149495	0.013035	-0.002148	0.015782	0.130466	-0.317506	0.285768	-0.057709	0.158781	-0.089177	0.32
build_count_brick	0.019235	-0.088233	-0.004171	0.051430	0.008193	0.010368	-0.101551	0.193789	-0.112954	0.700321	0.402020	0.35
build_count_monolith	0.041147	0.026684	0.002747	0.044800	0.016175	0.076560	-0.100515	0.239957	-0.151673	0.431974	0.230294	0.01
metro_min_avto	0.026584	-0.074963	-0.002268	-0.036755	-0.003971	-0.115033	0.234719	-0.409870	-0.057858	-0.329359	-0.281033	-0.27
school_km	0.044439	-0.078244	-0.002841	-0.031640	-0.022930	-0.179866	0.316169	-0.461990	-0.181312	-0.259943	-0.242318	-0.21
green_zone_km	-0.010497	0.038699	-0.000563	0.003065	-0.002976	-0.024228	0.068248	-0.061542	0.151747	-0.098599	-0.098021	-0.05
industrial_km	0.021899	-0.044562	0.005844	0.030985	-0.000897	0.016437	-0.027794	0.070535	-0.310440	0.239442	0.261867	0.15
water_treatment_km	0.000200	-0.095454	-0.000883	0.036892	-0.000215	0.088632	-0.230208	0.142109	-0.130395	0.222073	0.181854	0.16
cemetery_km	0.013362	0.041744	0.008488	-0.005191	-0.017048	-0.108525	0.177812	-0.092285	0.057209	-0.064541	-0.036981	-0.00
incineration_km	0.028810	-0.044467	0.000031	0.004252	-0.004787	-0.104330	0.188051	-0.265686	-0.341825	0.072074	-0.003669	30.0-
ID_railroad_station_avto	0.025332	-0.048463	0.001968	-0.009671	-0.006485	-0.059124	0.153056	-0.262930	0.100487	-0.138279	-0.208244	-0.06
mkad_km	0.032192	-0.032637	0.003781	-0.000763	-0.006357	-0.110939	0.198656	-0.364799	-0.056959	0.021789	-0.090143	-0.13
ttk_km	0.014627	0.099228	-0.005570	-0.066707	-0.015803	-0.158883	0.391904	-0.424236	-0.110687	-0.531525	-0.327126	-0.38
oil_chemistry_km	0.052454	0.075770	0.000375	-0.004611	-0.018808	-0.158833	0.357343	-0.450006	-0.135027	-0.357485	-0.238776	-0.39
nuclear_reactor_km	0.013428	0.030481	-0.009743	-0.054310	-0.016141	-0.204609	0.420032	-0.536205	-0.221023	-0.341399	-0.314619	-0.30
power_transmission_line_km	0.029462	0.030751	-0.002018	-0.028640	-0.019807	-0.177975	0.331664	-0.435866	-0.122417	-0.176340	-0.179236	-0.23
market_shop_km	0.022367	0.055947	-0.000355	-0.052613	-0.023117	-0.208056	0.439827	-0.602583	-0.158803	-0.413634	-0.390020	-0.30
fitness_km	0.033478	-0.016718	-0.004257	-0.055422	-0.029445	-0.225155	0.418210	-0.576997	-0.080534	-0.403427	-0.333354	-0.27
stadium_km	0.016675	0.091792	-0.001068	-0.061587	-0.014404	-0.183328	0.434055	-0.536757	-0.061444	-0.539395	-0.298585	-0.49
basketball_km	0.029138	0.104470	-0.003931	-0.065088	-0.017020	-0.209579	0.493164	-0.598377	-0.118574	-0.504009	-0.322311	-0.43
datantian facility km	U U3E0E3	U U\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0 001746	በ በፍንՉፖበ	0 0102E0	በ 10271በ	0 424055	U 268662	N 11Q1NE	ሀ ድሪሀድልኃ	U 430430	U 33

uetention_iacinty_kiii	U.UZJ 3 UJ	U.U 4 ∠0∠ህ	U.UU I <i>I</i> 4U	-0.032310	-0.018208	-U.1031 18	U.4Z4 3 33	-0.000000	-0.110100	-0.000002	-U.433123	-0.50
additional_education_km	0.027475	-0.049021	-0.002439	-0.016003	-0.007531	-0.153291	0.294552	-0.516939	-0.156628	-0.307153	-0.315821	-0.19
big_church_km	0.012947	0.016468	0.000448	-0.072849	-0.019882	-0.168430	0.359383	-0.507382	0.031000	-0.573612	-0.523922	-0.35
mosque_km	-0.002377	0.028036	-0.007540	-0.047650	-0.014157	-0.116682	0.218911	-0.255206	0.001633	-0.340575	-0.273382	-0.23
theater_km	0.008989	0.087750	-0.013589	-0.081037	-0.018922	-0.170153	0.388373	-0.385644	-0.059248	-0.478404	-0.296436	-0.37
exhibition_km	0.018891	0.053273	-0.004098	-0.045548	-0.004542	-0.145220	0.353846	-0.493122	-0.068790	-0.469743	-0.383288	-0.39
catering_km	-0.004602	0.019870	-0.010954	-0.074723	-0.015060	-0.185437	0.375180	-0.425858	0.065884	-0.479494	-0.385721	-0.27
green_part_1000	0.027689	0.010953	-0.004959	-0.029533	-0.010864	-0.097995	0.213574	-0.306212	-0.248911	-0.177320	-0.153719	-0.11
cafe_sum_1000_min_price_avg	0.042187	-0.001646	-0.000730	0.019457	-0.010220	-0.009513	0.015121	-0.059424	-0.099965	0.180742	0.107575	0.05
cafe_count_1000_price_high	0.029911	-0.025089	-0.001236	0.052420	-0.002575	-0.008092	-0.009995	0.050255	-0.131799	0.395537	0.307577	0.11
cafe_sum_1500_min_price_avg	0.038265	-0.022782	0.001933	0.026121	-0.005519	0.005970	-0.001706	-0.074344	-0.102875	0.184697	0.094751	0.05
green_part_2000	0.014952	-0.036202	-0.004613	-0.023053	-0.000359	-0.013822	0.049895	-0.160424	-0.359195	-0.137108	-0.135237	-0.05
cafe_sum_2000_min_price_avg	0.028235	-0.046057	0.002985	0.028597	0.002402	0.010298	-0.026180	-0.018227	-0.108204	0.208106	0.123885	0.05
mosque_count_3000	0.019874	-0.001474	0.012396	0.036220	0.004446	0.010232	-0.008443	0.098133	-0.134634	0.402463	0.416857	0.16
prom_part_5000	-0.045225	-0.080128	0.001340	0.023412	0.018210	0.158389	-0.387764	0.463857	0.399741	0.186511	0.169636	0.28
cafe_sum_5000_min_price_avg	0.041648	0.035803	0.000675	-0.001985	-0.023018	-0.155430	0.257431	-0.280020	-0.199616	0.096921	0.022980	30.0-
mosque_count_5000	0.017499	-0.018655	0.017675	0.057165	0.008616	0.065876	-0.099789	0.106573	-0.079275	0.330246	0.298615	0.19
vear	ი ი21287	-0 015183	-0 003466	-0 036782	0 001714	0 007337	0 066804	-0 055802	-0 025115	-0 006462	0 001082	-0 02

the attributes are not correlated, there is no multicollinearity between the attributes. Multicollinearity affect model performance.

Model Building:

Using neural network we will be able to build a model, but what is the ideal numbe of hidden layers to be used, how to fix dense values. To find the optimal value of these for a data, there is method called Hyperparamter tuning.

Parameters: which can be learned by model

Here, the parameter are bias, weight or coefficcients of attributes

Hyperparameters: to be learned by the model builder (us)

here, they are the number of hidden layers, learning rate, dense

▼ Hyperparameter tunning

tunning will tell us "How deep should the model be:" 4

#!pip install keras_tuner

```
from tensorflow import keras
from tensorflow.keras import layers
from keras_tuner.tuners import BayesianOptimization
```

Hyperparameter search space

Here, we are creating a hyperparameter space, by fixing the range for the hyperparameter.

- range of hidden layer:2- 20
- range of dense value: 32 512 (32,64,96,.....512)

In hyperparameter tuning there are different methods like gridsearch, randomsearch, Bayesian optimization. Among them Bayesian is best.

why bayesian?

- less memory
- less run time
- · based on probability

```
tuner = BayesianOptimization(
   build_model,
   objective='val_mean_absolute_error',
   max_trials=5,
   executions_per_trial=3,
   directory='project',
   project_name='house price')
```

Here, tuner is running over the fixed search space.

With the help of Bayesian optimizer, the ideal number of layers, learning rates are found.

```
tuner.search_space_summary()
     Search space summary
     Default search space size: 4
     num_layers (Int)
     {'default': None, 'conditions': [], 'min_value': 2, 'max_value': 20, 'step': 1, 'sampling': None}
     units 0 (Int)
     {'default': None, 'conditions': [], 'min_value': 32, 'max_value': 512, 'step': 32, 'sampling': None}
     units_1 (Int)
     {'default': None, 'conditions': [], 'min_value': 32, 'max_value': 512, 'step': 32, 'sampling': None}
     learning_rate (Choice)
     {'default': 0.01, 'conditions': [], 'values': [0.01, 0.001, 0.0001], 'ordered': True}
tuner.search(x_train, y_train,
             epochs=5,
            validation_data=(x_test, y_test))
     Trial 5 Complete [00h 02m 19s]
     val_mean_absolute_error: 0.3334464331467946
     Best val_mean_absolute_error So Far: 0.307867964108785
     Total elapsed time: 00h 11m 52s
     INFO:tensorflow:Oracle triggered exit
```

The considered dataset is assigned to the tuner serach.

tunner will take this dataset and will run through the search speace, and then will provide different ideal hyperparameter value combination.

```
tuner.results_summary()
     units_7: 32
     units_8: 32
     units_9: 32
     units_10: 32
     units_11: 32
     units_12: 32
     units_13: 32
     units_14: 32
     units_15: 192
     units_16: 32
     units_17: 160
     units_18: 64
     units_19: 384
     Score: 0.3334464331467946
     Trial summary
     Hyperparameters:
     num_layers: 20
     units_0: 32
     units_1: 512
     learning_rate: 0.001
     units_2: 512
     units_3: 512
     units_4: 192
     units_5: 160
     units_6: 192
     units_7: 128
     units_8: 160
```

```
units_9: 160
units_10: 160
units_11: 192
units_12: 128
units_13: 128
units 14: 128
units_15: 32
units_16: 32
units_17: 32
units_18: 32
units_19: 32
Score: 0.36851834257443744
Trial summary
Hyperparameters:
num_layers: 5
units_0: 352
units_1: 480
learning_rate: 0.0001
units_2: 384
units_3: 64
units_4: 32
Score: 0.38449641068776447
Trial summary
Hyperparameters:
num_layers: 4
units_0: 384
units_1: 192
learning_rate: 0.0001
units_2: 32
units_3: 32
Score: 0.41446494062741596
```

we have got 5 different combination, since we have fixed the epoch as 5.

Deep Neural Network Regression model

```
model = Sequential()
model.add(Dense(51, input_dim=50, kernel_initializer='normal', activation='relu'))
model.add(Dense(420, activation='relu'))
model.add(Dense(32, activation='relu'))
```

```
model.add(Dense(32, activation='relu'))
model.add(Dense(32, activation='relu'))
model.add(Dense(32, activation='relu'))
model.add(Dense(32, activation='relu'))
model.add(Dense(1, activation='linear'))
model.summary()
```

Model: "sequential_1"

Layer (typ		Output	Shape	Param #
dense_20 ((None,		2601
dense_21 (Dense)	(None,	420)	21840
dense_22 (Dense)	(None,	32)	13472
dense_23 (Dense)	(None,	32)	1056
dense_24 (Dense)	(None,	32)	1056
dense_25 (Dense)	(None,	32)	1056
dense_26 (Dense)	(None,	32)	1056
dense_27 (Dense)	(None,	32)	1056
dense_28 (Dense)	(None,	32)	1056
dense_29 (Dense)	(None,	32)	1056
dense_30 (Dense)	(None,	32)	1056
dense_31 (Dense)	(None,	32)	1056
dense_32 (Dense)	(None,	32)	1056
dense_33 (Dense)	(None,	32)	1056
dense_34 (Dense)	(None,	32)	1056
dense_35 (Dense)	(None,	32)	1056
dense_36 (Dense)	(None,	32)	1056
dense_37 (Dense)	(None,	32)	1056
dense_38 (Dense)	(None,	32)	1056
dense_39 (Dense)	(None,	32)	1056
dense_40 (Dense)	(None,	32)	1056
dense_41 (Dense)	(None,	1)	33

Total params: 56,954 Trainable params: 56,954 Non-trainable params: 0

Model is built over the hyperparamter values obtained from tuning.

Model performance

```
model.compile(loss='mse', optimizer='adam', metrics=['mse', 'mape', tf.keras.metrics.RootMeanSquaredError()
history=model.fit(x_train, y_train, epochs=30, batch_size=150, verbose=1,validation_split=0.2)
predictions = model.predict(x test)
    Epoch 3/30
    114/114 [============] - 1s 8ms/step - loss: 9.2269 - mse: 9.2269 - mae: 1.3842 - mape: 8.8958 - root_mean_squared_error: 3.0376 - val_loss: 0.4330 - val_mse: 0.4330 -
    Epoch 4/30
    114/114 [============] - 1s 7ms/step - loss: 17.3447 - mse: 17.3447 - mae: 0.4089 - mape: 2.6597 - root_mean_squared_error: 4.1647 - val_loss: 13.8244 - val_mse: 13.82
    Epoch 5/30
    Epoch 6/30
    114/114 [=============] - 1s 8ms/step - loss: 2455.2422 - mse: 2455.2422 - mae: 2.0750 - mape: 13.2615 - root mean squared error: 49.5504 - val loss: 0.9414 - val mse:
    Epoch 7/30
    114/114 [============] - 1s 7ms/step - loss: 0.4557 - mse: 0.4557 - mae: 0.4866 - mape: 3.1605 - root mean squared error: 0.6750 - val loss: 0.3152 - val mse: 0.3152 -
    Epoch 8/30
    114/114 [=============] - 1s 8ms/step - loss: 0.3266 - mse: 0.3266 - mae: 0.3976 - mape: 2.5946 - root_mean_squared_error: 0.5715 - val_loss: 0.2864 - val_mse: 0.2864 -
    114/114 [===============] - 1s 7ms/step - loss: 0.3113 - mse: 0.3113 - mae: 0.3771 - mape: 2.4611 - root_mean_squared_error: 0.5579 - val_loss: 0.2813 - val_mse: 0.2813 -
    Epoch 10/30
    114/114 [================] - 1s 7ms/step - loss: 0.3937 - mse: 0.3937 - mae: 0.3755 - mape: 2.4501 - root_mean_squared_error: 0.6275 - val_loss: 0.2783 - val_mse: 0.2783 -
    Epoch 11/30
    114/114 [============] - 1s 8ms/step - loss: 0.2989 - mse: 0.3710 - mape: 2.4216 - root mean squared error: 0.5467 - val loss: 0.2765 - val mse: 0.2765 -
    114/114 [===============] - 1s 7ms/step - loss: 0.3931 - mse: 0.3931 - mae: 0.3765 - mape: 2.4576 - root_mean_squared_error: 0.6269 - val_loss: 0.2708 - val_mse: 0.2708 -
    Epoch 13/30
    114/114 [===============] - 1s 7ms/step - loss: 0.2875 - mse: 0.2875 - mae: 0.3634 - mape: 2.3748 - root_mean_squared_error: 0.5362 - val_loss: 0.2690 - val_mse: 0.2690 -
    Epoch 14/30
    114/114 [============] - 1s 7ms/step - loss: 0.3343 - mse: 0.3798 - mape: 2.4788 - root mean squared error: 0.5782 - val loss: 0.2617 - val mse: 0.2617 -
    Epoch 15/30
    114/114 [==============] - 1s 7ms/step - loss: 0.2863 - mse: 0.2863 - mae: 0.3611 - mape: 2.3598 - root_mean_squared_error: 0.5350 - val_loss: 0.2648 - val_mse: 0.2648 -
    Epoch 16/30
    114/114 [=============] - 1s 7ms/step - loss: 0.2722 - mse: 0.2722 - mae: 0.3502 - mape: 2.2916 - root_mean_squared_error: 0.5218 - val_loss: 0.2609 - val_mse: 0.2609 -
    Epoch 17/30
    114/114 [============] - 1s 7ms/step - loss: 0.2731 - mse: 0.2731 - mae: 0.3523 - mape: 2.3048 - root mean squared error: 0.5226 - val loss: 0.2561 - val mse: 0.2561 -
    Epoch 18/30
    114/114 [==============] - 1s 7ms/step - loss: 0.2677 - mse: 0.2677 - mae: 0.3444 - mape: 2.2550 - root_mean_squared_error: 0.5174 - val_loss: 0.2557 - val_mse: 0.2557 -
    Epoch 19/30
    114/114 [============] - 1s 7ms/step - loss: 0.2703 - mse: 0.2703 - mae: 0.3489 - mape: 2.2842 - root mean squared error: 0.5199 - val loss: 0.2558 - val mse: 0.2558 -
    114/114 [==============] - 1s 8ms/step - loss: 0.2683 - mse: 0.2683 - mae: 0.3461 - mape: 2.2667 - root_mean_squared_error: 0.5179 - val_loss: 0.2908 - val_mse: 0.2908 -
    Epoch 21/30
    114/114 [===============] - 1s 7ms/step - loss: 0.2671 - mse: 0.2671 - mae: 0.3457 - mape: 2.2647 - root_mean_squared_error: 0.5169 - val_loss: 0.2532 - val_mse: 0.2532 -
    Epoch 22/30
    114/114 [============] - 1s 7ms/step - loss: 0.2617 - mse: 0.2617 - mae: 0.3382 - mape: 2.2165 - root mean squared error: 0.5116 - val loss: 0.2558 - val mse: 0.2558 -
    Epoch 24/30
    114/114 [===============] - 1s 8ms/step - loss: 0.2611 - mse: 0.2611 - mae: 0.3380 - mape: 2.2164 - root_mean_squared_error: 0.5110 - val_loss: 0.2545 - val_mse: 0.2545 -
    Epoch 26/30
```

The loss getting less over the iterations

less the loss, high the accuracy of the model

Plots to visualize the model performances


```
print(history.history.keys())
# "Loss"

plt.plot(history.history['root_mean_squared_error'])
plt.plot(history.history['val_root_mean_squared_error'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
```

```
plt.legend(['train', 'validation'], loc='upper left')
plt.show()

dict_keys(['loss', 'mse', 'mae', 'mape', 'root_mean_squared_error', 'val_loss', 'val_mse', 'val_mae', 'val_mape', 'val_root_mean_squared_error'])

model loss

50

train
validation

40

30

20

10

15

20

25

30

poch
```

these plots tell us that the train and test data loss keep reducing, then after some iterations they become near to 0.

actual vs predicted

y_pred=model.predict(x_test)

The points are more uniform, hence we can say the model do well

Model explainability

using LIME - Local Interpretable Model-Agnostic Explanations, we get the features values for which prediction are done correctly, with help of this we can understand the model better.

LIME - VISULAIZE THE MODEL FEATURES

SHAP VS LIME VS Integrated Gradients

Actual: [15.39811629]

- SHAP is most ideal for accuary check,
- since we are not using any backprogation I have not used Integrated gradients

why Lime?

LIME in most ideal the linear function, Since the task is based on regression (multiple linear regression), I preferred LIME

```
#!pip install lime
x_train = x_train.values
print(x_train.shape)
y_train = y_train.values
x_test = x_test.values
y_test = y_test.values
     (21329, 50)
from lime import lime_tabular
explainer = lime_tabular.LimeTabularExplainer(x_train, mode="regression" ) #, feature_names= feat)
explainer
     <lime.lime_tabular.LimeTabularExplainer at 0x7f1a826b5e90>
import random
import warnings
warnings.filterwarnings("ignore")
idx = random.randint(1, len(x_test)+1)
#idx= random.randint(1, 50)
print("Prediction : ", model.predict(x_test[idx].reshape(1,-1)))
print("Actual : ", y_test[idx])
explanation = explainer.explain_instance(x_test[idx], model.predict, num_features=50)
                                                                                       #len(boston.feature_names))
explanation
     Prediction: [[15.584011]]
```

<lime.explanation.Explanation at 0x7f1a8586d110>

Here, random datapoint are selected and used for prediction of the target values, where the mode which we built was used.

explanation.show_in_notebook()

this notebook, tell the range of the attributes whos prediction are done correctly.

0.10

here, is the list of it.

0.10

explanation.as_list()

```
[('1976.00 < 2 <= 1979.00', 6.621825012495475),
('0 > 63.00', 0.4743536444111954),
('23 > 2.10', 0.3950479872420051),
 ('44 > 6.66', 0.3434610997011183),
 ('17 > 0.42', 0.31268020711590844),
 ('26 > 2.80', -0.3006093633897373),
 ('49 <= 2013.00', 0.2509200490928154),
 ('48 <= 0.00', -0.22038975287042353),
 ('9 <= 1.00', -0.19805317993420107),
('30 > 2.61', -0.1969112965391686),
 ('34 > 1.07', -0.19124693724708358),
 ('32 > 3.22', 0.18286741930706457),
('31 > 1.86', 0.1622347959375496),
 ('37 > 1.95', -0.15545861779047712),
 ('18.00 < 12 <= 42.00', 0.15444838074462905),
(5.00 < 4 <= 6.00', -0.1540324024111512),
('5 <= 2.00', -0.13669365766403616),
```

```
Feature Value
        1979.00
0
        65.00
23
        2.46
44
        6.91
17
        0.99
26
        3.15
49
        2012.00
48
        0.00
9
        0.00
30
        2.98
34
        2.26
32
        3.61
21
        27/
```

```
('40 > 6.66', -0.13551974574869954),
('16.00 < 13 <= 67.00', 0.1093407912321061),
('15 > 4.83', -0.10430203735163246),
('20 <= 1.34', -0.10331252074218564),
('36 > 2.60', -0.09641389235003285),
('18 > 1.04', -0.09601008393760525),
('1.66 < 19 <= 2.34', -0.09494389940592152),
('21 > 2.60', 0.09457271623334977),
('39 \leftarrow 6.26', 0.09211457528242557),
('45 <= 0.00', 0.08032649259942205),
('2.87 < 43 <= 3.34', -0.06414121991263118),
('41 <= 0.00', 0.0618405412789239),
('8 <= 0.02', 0.060748701082287714),
('46 <= 1.80', 0.05702856063648218),
('42 > 6.67', -0.05623809087922166),
('11 <= 0.00', -0.0551168195508417),
('25 > 3.15', 0.050498244385575895),
('24 > 2.75', 0.04987335686544497),
('22 > 4.29', 0.04831078408260206),
('38 \leftarrow -1.57', -0.04791338610356091),
('3.00 < 14 <= 6.00', 0.04788064444836897),
('27 > 1.59', -0.04408936545298406),
('7 \le 9.99', -0.03380000056931959),
('3 <= 2.00', -0.031097816398652573),
('29 > 1.33', -0.026677976866402345),
('28 > 1.71', 0.02647534559405266),
('47 > 6.70', 0.015573454173805217),
('10 <= 1.00', 0.013728433556126803),
('33 > 1.56', 0.008841745646757548),
('16 > 0.89', 0.006982118257268862),
('0.00 < 6 <= 1.00', -0.002473884664649642),
('35 > 2.31', 0.0022303657458085813),
('6.50 < 1 <= 11.00', 0.0006831372496166846)]
```

[vedio explanation link:] (https://screenrec.com/share/jDgrsR2C3I)

Thank you