A critique of irrigation efficiency modeling $$\rm R\ code$$

Arnald Puy

Contents

1	Read in data				
2	e model	7			
	2.1	Function to create sample matrix	7		
	2.2	Define distributions	8		
	2.3	Uncertainty in the proportion of large-scale irrigated areas	10		
	2.4	Function to create sample matrix and transfrom to appropriate distributions	10		
	2.5	Run the model	11		
	2.6	Define settings	12		
	2.7	Run model	12		
	2.8	Extract model output	13		
3	Uno	certainty analysis	19		
4	Sensitivity analysis				

```
# Function to read in all required packages in one go:
loadPackages <- function(x) {</pre>
  for(i in x) {
    if(!require(i, character.only = TRUE)) {
      install.packages(i, dependencies = TRUE)
      library(i, character.only = TRUE)
  }
}
# Load the packages
loadPackages(c("data.table", "tidyverse", "sensobol", "wesanderson",
               "cowplot", "parallel", "foreach", "doParallel",
               "countrycode", "ggridges", "scales", "overlapping"))
# Create custom theme
theme_AP <- function() {</pre>
  theme_bw() +
    theme(panel.grid.major = element_blank(),
          panel.grid.minor = element_blank(),
          legend.background = element_rect(fill = "transparent",
                                            color = NA),
          legend.key = element_rect(fill = "transparent",
                                     color = NA),
          legend.position = "top",
          strip.background = element_rect(fill = "white"),
          plot.margin = margin(t = 0, r = 0.3, b = 0, l = 0.3, unit ="cm"))
}
# Set checkpoint
dir.create(".checkpoint")
library("checkpoint")
checkpoint("2021-08-02",
           R.version ="4.0.3",
           checkpointLocation = getwd())
```

1 Read in data

```
# READ IN DATA -----
# Rohwer data
rohwer <- fread("rohwer_data_all.csv")</pre>
rohwer[rohwer == ""] <- NA</pre>
rohwer <- rohwer[, Large_fraction:= Large_fraction / 100]</pre>
# Jager data
jager <- fread("jager_data.csv")</pre>
jager.list <- split(jager, jager$Country)</pre>
# Bos data
bos <- fread("bos_data.csv")</pre>
bos <- bos[, Scale := ifelse(Irrigated_area < 10000, "<10.000 ha", ">10.000 ha")]
# Solley data (USA)
usa.dt <- fread("usa_efficiency.csv")</pre>
usa.dt <- usa.dt[, Efficiency:= consumptive.use / total.withdrawal]
# FAO 1997 data (Irrigation potential in Africa)
fao_dt <- fread("fao_1997.csv")</pre>
fao_dt <- fao_dt[, Efficiency:= Efficiency / 100]</pre>
# Create data set with E_a values as defined by Rohwer
bos.rohwer.ea <- data.table("Irrigation" = c("Surface", "Sprinkler"),</pre>
                              "Value" = c(0.6, 0.7),
                              "variable" = "E_a")
# Create data set with E_c values as defined by Rohwer
bos.rohwer.ec <- data.table("Irrigation" = c("Surface", "Sprinkler"),</pre>
                              "Value" = c(0.8, 0.95),
                              "variable" = "E_c")
bos.rohwer.all <- rbind(bos.rohwer.ec, bos.rohwer.ea)</pre>
# As a function of scale
bos.rohwer.mf.ec <- data.table("Scale" = c("<10.000 ha", ">10.000 ha"),
                                 "Value" = c(0.85, 0.59),
                                 "variable" = "E_c")
bos.rohwer.mf.ed \leftarrow data.table("Scale" = c("<10.000 ha", ">10.000 ha"),
                                 "Value" = c(0.81, 0.72),
                                 "variable" = "E_d")
bos.rohwer.mf.all <- rbind(bos.rohwer.mf.ec, bos.rohwer.mf.ed)</pre>
```

```
# Field and conveyance efficiency -----
efficiencies_labeller <- c("E_c" = "E[c]",
                           "E a" = "E[a]")
a <- bos %>%
 melt(., measure.vars = c("E_a", "E_c")) %>%
  ggplot(., aes(value, fill = Irrigation, color = Irrigation)) +
  geom_histogram(position = "identity", alpha = 0.4, bins = 15) +
  facet_wrap(~variable, labeller = as_labeller(efficiencies_labeller)) +
  scale_x_continuous(breaks = pretty_breaks(n = 3)) +
  geom_vline(data = bos.rohwer.all, aes(xintercept = Value,
                                       color = Irrigation,
                                       group = variable),
            lty = 2,
            size = 1) +
  labs(x = "", y = "Counts") +
  theme_AP()
# As a function of scale -----
efficiencies_labeller <- c("E_c" = "E[c]",
                          "E a" = "E[a]",
                           "E d" = "E[d]")
b <- melt(bos, measure.vars = c("E_c", "E_a", "E_d")) %>%
 na.omit() %>%
  ggplot(., aes(value, fill = Scale, color = Scale)) +
  geom_histogram(bins = 15, position = "identity", alpha = 0.6) +
 labs(x = "Irrigation efficiency", y = "Counts") +
 facet_wrap(~ variable, labeller = as_labeller(efficiencies_labeller)) +
  geom_vline(data = bos.rohwer.mf.all, aes(xintercept = Value,
                                         color = Scale,
                                         group = variable),
            lty = 2,
             size = 1) +
  scale_x_continuous(breaks = pretty_breaks(n = 3)) +
  scale_color_manual(values = wes_palette(2, name = "Chevalier1"),
                   name = "Scale",
                   labels = c("<10.000 ha", ">10.000 ha")) +
  scale_fill_manual(values = wes_palette(2, name = "Chevalier1"),
                   name = "Scale",
                   labels = c("<10.000 ha", ">10.000 ha")) +
  theme_AP()
```

```
bottom <- plot_grid(a, b, ncol = 1, labels = c("c", "d"))</pre>
## Warning: Removed 74 rows containing non-finite values (stat_bin).
bottom
\mathbf{c}
                                Irrigation !
                                               Sprinkler
                                                            Surface
                         E[a]
                                                                      E[c]
   8
   6
Counts
                                                                     0.5
                        0.5
                                              1.0
                                                                                           1.0
\mathbf{d}
                                          j10.000 ha
                                                          \gtrsim 10.000 \text{ ha}
                               Scale
                  E[a]
                                                E[c]
                                                                             E[d]
   6
Counts
   2
                 0.5
                                1.0
                                               0.5
                                                             1.0
                                        Irrigation efficiency
# PLOT USA AND AFRICA -----
c1 <- ggplot(usa.dt, aes(Efficiency)) +</pre>
  geom_histogram() +
  scale_x_continuous(breaks = pretty_breaks(n = 3)) +
  geom_vline(xintercept = 0.6, lty = 2) +
  labs(x = "", y = "Counts") +
  theme_AP()
d1 <- ggplot(fao_dt, aes(Efficiency)) +</pre>
  geom_histogram() +
  scale_x_continuous(breaks = pretty_breaks(n = 3)) +
  labs(x = "", y = "") +
  theme_AP()
top <- cowplot::plot_grid(c1, d1, ncol = 2, labels = "auto")</pre>
```

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

```
## Warning: Removed 3 rows containing non-finite values (stat_bin).
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
top
```


PLOT MERGED ----plot_grid(top, bottom, ncol = 1, rel_heights = c(0.3, 0.7))

2 The model

2.1 Function to create sample matrix

```
sample_matrix_fun <- function(IFT) {
  params <- params_fun(IFT = IFT)
  mat <- sensobol::sobol_matrices(N = N, params = params)
  out <- list(params, mat)
  names(out) <- c("parameters", "matrix")
  return(out)
}</pre>
```

2.2 Define distributions

```
# DEFINE TRUNCATED DISTRIBUTIONS -
# EA SURFACE -----
Ea.surface <- bos[Irrigation == "Surface"][, .(min = min(E_a, na.rm = TRUE),</pre>
                                                 max = max(E_a, na.rm = TRUE))]
shape <- 3.502469
scale <- 0.5444373
minimum <- Ea.surface$min
maximum <- Ea.surface$max</pre>
weibull_dist <- sapply(c(minimum, maximum), function(x)</pre>
  pweibull(x, shape = shape, scale = scale))
# EC SURFACE -----
Ec.surface <- bos[Irrigation == "Surface"][, .(min = min(E_c, na.rm = TRUE),</pre>
                                                 max = max(E_c, na.rm = TRUE))]
shape1 <- 5.759496
shape2 <- 1.403552
minimum.beta <- Ec.surface$min
maximum.beta <- Ec.surface$max</pre>
beta_dist <- sapply(c(minimum.beta, maximum.beta), function(x)</pre>
  pbeta(x, shape1 = shape1, shape2 = shape2))
# EA SPRINKLER -----
Ea.sprinkler <- bos[Irrigation == "Sprinkler"][, .(min = min(E_a, na.rm = TRUE),</pre>
                                                 max = max(E_a, na.rm = TRUE))]
shape.spr <- 6.9913711
scale.spr <- 0.7451178
minimum.spr <- Ea.sprinkler$min
maximum.spr <- Ea.sprinkler$max</pre>
weibull_dist_spr <- sapply(c(minimum.spr, maximum.spr), function(x)</pre>
  pweibull(x, shape = shape.spr, scale = scale.spr))
# MANAGEMENT FACTOR (m) ----
```

```
shape1.m < -5.759496
shape2.m < -1.403552
minimum.m < - 0.65
maximum.m <- 1</pre>
beta_dist.m <- sapply(c(minimum.m, maximum.m), function(x)</pre>
 pbeta(x, shape1 = shape1.m, shape2 = shape2.m))
# FUNCTION TO TRANSFORM TO APPROPRIATE DISTRIBUTIONS -----
distributions_fun <- list(</pre>
  # SURFACE IRRIGATION
  # -----
  "Ea_surf" = function(x) {
   out <- qunif(x, weibull_dist[[1]], weibull_dist[[2]])</pre>
   out <- qweibull(out, shape, scale)</pre>
 },
  "Ec_surf" = function(x) {
   out <- qunif(x, beta_dist[[1]], beta_dist[[2]])</pre>
   out <- qbeta(out, shape1, shape2)</pre>
 },
  # SPRINKLER IRRIGATION
  # -----
  "Ea_sprinkler" = function(x) {
   out <- qunif(x, weibull_dist_spr[[1]], weibull_dist_spr[[2]])</pre>
   out <- qweibull(out, shape.spr, scale.spr)</pre>
 },
  "Ec_sprinkler" = function(x) qunif(x, 0.64, 0.96),
  # MICRO (DRIP) IRRIGATION
  "Ea_micro" = function(x) out <- qunif(x, 0.75, 0.95),
  "Ec_micro" = function(x) out <- qunif(x, 0.9, 0.95),
  # PROPORTION LARGE
  # -----
  "Proportion_large" = function(x) x,
```

2.3 Uncertainty in the proportion of large-scale irrigated areas

```
# DEFINE THE UNCERTAINTY IN THE LARGE FRACTION AT THE COUNTRY LEVEL -----
rohwer.frac <- rohwer[, .(Country, Large_fraction)]
rohwer.frac[, `:=` (min = Large_fraction, max = Large_fraction + 0.1)]
countries.list <- split(rohwer.frac, seq(nrow(rohwer.frac)))
names(countries.list) <- rohwer$Country</pre>
```

2.4 Function to create sample matrix and transfrom to appropriate distributions

2.5 Run the model

```
# FULL MODEL ----
full_model <- function(IFT, Country, sample.size, R) {</pre>
  country.differences <- setdiff(rohwer$Country, jager$Country)</pre>
  tmp <- full_sample_matrix(IFT = IFT, Country = Country)</pre>
  mat <- tmp$matrix</pre>
  if(IFT == "Surface") {
    Mf <- mat[, "m"] - 0.5 * mat[, "Proportion_large"]</pre>
    y <- mat[, "Ea_surf"] * mat[, "Ec_surf"] * Mf</pre>
  } else if(IFT == "Sprinkler") {
    Mf <- mat[, "m"]</pre>
    y <- mat[, "Ea_sprinkler"] * mat[, "Ec_sprinkler"] * Mf
  } else if(IFT == "Mixed") {
    Mf.surf <- mat[, "m"] - 0.5 * mat[, "Proportion_large"]</pre>
    y.surf <- mat[, "Ea_surf"] * mat[, "Ec_surf"] * Mf.surf</pre>
    Mf.sprink <- mat[, "m"]</pre>
    y.sprink <- mat[, "Ea_sprinkler"] * mat[, "Ec_sprinkler"] * Mf.sprink</pre>
    y \leftarrow 0.5 * y.surf + 0.5 * y.sprink
  } else if(IFT == "Micro") {
    Mf <- mat[, "m"]</pre>
    y <- mat[, "Ea_micro"] * mat[, "Ec_micro"] * Mf
  } else if(IFT == "Jager") {
    if(Country %in% country.differences == TRUE) {
      next
    }
    Mf.surf <- mat[, "m"] - 0.5 * mat[, "Proportion_large"]</pre>
    y.surf <- mat[, "Ea_surf"] * mat[, "Ec_surf"] * Mf.surf</pre>
    Mf.spr <- mat[, "m"]</pre>
    y.spr <- mat[, "Ea_sprinkler"] * mat[, "Ec_sprinkler"] * Mf.spr</pre>
   Mf.micro <- mat[, "m"]</pre>
```

```
y.micro <- mat[, "Ea_micro"] * mat[, "Ec_micro"] * Mf.micro</pre>
    y <- jager.list[[Country]]$Surface_fraction * y.surf +</pre>
      jager.list[[Country]]$Sprinkler_fraction * y.spr +
      jager.list[[Country]]$Drip_fraction * y.micro
  }
  if(IFT == "Jager") {
    boot <- FALSE
    R <- NULL
  } else {
    boot <- TRUE
    R <- R
  }
  ind \leftarrow sobol_indices(N = sample.size, Y = y, params = tmp$parameters,
                        boot = boot, R = R)
  out <- list(y, ind)</pre>
  names(out) <- c("output", "indices")</pre>
  return(out)
}
```

2.6 Define settings

```
# DEFINE SETTINGS -----
N <- 2^13
R <- 10^2
```

2.7 Run model

2.8 Extract model output

```
# EXTRACT MODEL OUTPUT -----
names(y) <- c("Rohwer et al. 2007", "Jägermeyr et al. 2015")
output <- tmp <- list()</pre>
for(i in names(y)) {
  output[[i]] <- lapply(y[[i]], function(x) x[["output"]][1:(2 * N)])</pre>
  if(i == "Rohwer et al. 2007") {
   names(output[[i]]) <- rohwer$Country</pre>
  } else if(i == "Jägermeyr et al. 2015") {
    names(output[[i]]) <- new.rohwer$Country</pre>
  }
  tmp[[i]] <- lapply(output[[i]], data.table) %>%
    rbindlist(., idcol = "Country")
  if(i == "Rohwer et al. 2007") {
    tmp[[i]] <- merge(tmp[[i]], rohwer[, .(Country, IFT)], all.x = TRUE) %%</pre>
      .[, IFT:= factor(IFT, levels = c("Surface", "Sprinkler", "Micro", "Mixed"))]
 } else if(i == "Jägermeyr et al. 2015") {
    tmp[[i]] <- tmp[[i]][, IFT:= "Jager"]</pre>
 }
 tmp[[i]] <- tmp[[i]][, Continent:= countrycode(tmp[[i]][, Country],</pre>
                                                  origin = "country.name",
                                                  destination = "continent")]
}
## Warning in countrycode_convert(sourcevar = sourcevar, origin = origin, destination = dest,
## Warning in countrycode_convert(sourcevar = sourcevar, origin = origin, destination = dest,
uncertainty.dt <- rbindlist(tmp, idcol = "Approach")</pre>
uncertainty.dt <- uncertainty.dt[, Study:= ifelse(IFT == "Jager",
                                                   "The proportion of IFTs is known",
                                                   "The proportion of IFTs is not known")]
# EXPORT UNCERTAINTY IN IRRIGATION EFFICIENCY ------
```

```
fwrite(uncertainty.dt, "uncertainty.dt.csv")
# COMPUTE RANGES -----
calc <- uncertainty.dt[, .(min = min(V1), max = max(V1)), .(Continent, Country)] %>%
  .[, .(range = max - min), .(Continent, Country)] %>%
  .[order(range)]
print(calc, n = Inf)
##
        Continent
                                     Country
                                                  range
##
     1:
                                      Cyprus 0.4650154
              Asia
##
     2:
              Asia
                       United Arab Emirates 0.4889552
##
     3:
             Asia
                                      Israel 0.4901008
     4:
                                      Jordan 0.5107562
##
             Asia
           Africa
                                       Benin 0.5460129
##
     5:
##
     6:
             Asia
                                      Kuwait 0.5519086
##
     7:
           Africa
                                     Tunisia 0.5546542
##
     8:
           Africa
                                  Mozambique 0.5549232
##
     9:
             Asia
                               Saudi Arabia 0.5556065
           Africa
                                     Namibia 0.5567580
##
    10:
##
    11:
           Europe
                                       Italy 0.5576075
    12:
                              United States 0.5586242
##
         Americas
##
    13:
         Americas
                                      Brazil 0.5586775
    14:
                                  Kazakhstan 0.5595325
##
             Asia
##
    15:
           Africa
                                 Ivory Coast 0.5607401
    16:
           Africa
                                    Zimbabwe 0.5626920
##
    17:
         Americas
                                        Cuba 0.5643215
##
    18:
                                      France 0.5645315
           Europe
    19:
                                   Swaziland 0.5681810
##
           Africa
    20:
                                      Zambia 0.5700714
##
           Africa
##
    21:
         Americas
                                      Canada 0.5722302
    22:
                               South Africa 0.5749587
##
           Africa
##
    23:
           Africa
                                    Botswana 0.5802624
    24:
             Asia
                                      Brunei 0.5816775
##
##
    25:
           Europe
                                       Spain 0.5824526
##
    26:
             Asia
                                     Lebanon 0.5850318
    27:
                                      Greece 0.5923817
##
           Europe
##
    28:
           Africa
                                      Malawi 0.5923817
##
    29:
           Europe
                                     Austria 0.5941574
##
    30:
           Europe
                                Netherlands 0.5954245
    31:
           Europe
                                 Switzerland 0.5960538
##
    32:
                                     Denmark 0.5963984
##
           Europe
##
    33:
           Europe
                                    Slovakia 0.5977046
##
    34:
           Europe
                                     Finland 0.5987308
##
    35:
           Europe
                                     Germany 0.5987520
                                     Belgium 0.6002391
##
    36:
           Europe
             <NA>
                                    Byelarus 0.6002391
```

##

37:

	_	_		
##	38:	Europe		0.6002391
##	39:	Europe		0.6002391
##	40:	Europe	Luxembourg	
##	41:	Europe		0.6002391
##	42:	Europe		0.6051666
##	43:	Asia	·	0.6074024
##	44:	Europe		0.6224391
##	45:	Europe		0.6463006
##	46:	Europe		0.6523247
##	47:	Europe	Czech Republic	
##	48:	Europe	_	0.6560802
##	49:	Americas	Ecuador	0.6560802
##	50:	Asia	-	0.6567438
##	51:	Oceania	Australia	0.6572847
##	52:	Africa	Burkina Faso	
##	53:	Europe	Croatia	0.6610773
##	54:	Europe		0.6627251
##	55:	Europe	United Kingdom	0.6639204
##	56:	Africa	•	0.6666597
##	57:	Americas	Argentina	0.6675349
##	58:	Asia	· ·	0.6729158
##	59:	Americas	Venezuela	0.6730108
##	60:	Africa	Algeria	0.6789910
##	61:	Asia	Syria	0.6790189
##	62:	Europe	Portugal	0.6794900
##	63:	Asia	Iran	0.6814100
##	64:	Africa	Egypt	0.6817869
##	65:	Asia	Azerbaijan	
##	66:	Asia	China	0.6897170
##	67:	Asia	Georgia	0.6921287
##	68:	Americas	Colombia	0.6945741
##	69:	Americas	Chile	0.6955291
##	70:	Americas	Mexico	0.6956149
##	71:	Europe	Moldova	0.6990668
##	72:	Asia	Afghanistan	0.7010588
##	73:	Asia	-	0.7012100
##	74:	Asia	India	0.7029295
##	75:	Africa	Ethiopia	0.7084147
##	76:	Asia	Philippines	0.7161822
##	77:	Asia	Uzbekistan	0.7199820
##	78:	Europe	Albania	0.7204869
##	79:	Asia	Bangladesh	0.7204869
##	80:	Asia	Indonesia	0.7204869
##	81:	Asia	Kyrgyzstan	0.7204869
##	82:	Asia	Nepal	0.7204869
##	83:	Africa		0.7204869
##	84:	Asia	North Korea	0.7204869
##	85:	Asia	Pakistan	0.7204869

			a		
##	86:	Asia	Sri Lanka		
##	87:	Africa		0.7204869	
##	88:	Asia	Tajikistan		
##	89:	Africa		0.7204869 0.7204869	
##	90:	Asia			
##	91: 92:	Asia Asia	Turkmenistan		
##	93:			0.7204869	
## ##	93:	Europe Asia	Bosnia and Herzegovina	0.7335640	
##	9 4 .	Africa		0.7335640	
##	96:	Africa		0.7335640	
##	90. 97:	Africa		0.7335640	
##	98:	Americas	Costa Rica		
##	99:	Americas	French Guiana		
##	100:	Africa		0.7335640	
##	101:	Africa		0.7335640	
##	101:	Americas	Guatemala		
##	103:	Americas		0.7335640	
##	104:	Africa		0.7335640	
##	105:	Africa	· · · · · · · · · · · · · · · · · · ·	0.7335640	
##	106:	Asia		0.7335640	
##	107:	Africa		0.7335640	
##	107:	Oceania	New Zealand		
##	100:	Americas		0.7335640	
##	110:	Oceania	Papua New Guinea		
##	111:	Americas	_	0.7335640	
##	112:	Europe		0.7335640	
##	113:	Europe		0.7335640	
	114:	Africa		0.7335640	
##	115:	Americas	_	0.7335640	
##	116:	Americas		0.7335640	
##	117:	Africa	Western Sahara		
##	118:	Africa		0.7335640	
##	119:	Americas		0.7339335	
	120:	Americas	El Salvador		
	121:	Asia		0.7374656	
		Americas	Puerto Rico		
	123:	Americas		0.7433014	
	124:	Africa		0.7555268	
	125:	Africa	Mauritania		
	126:	Africa		0.7594368	
	127:	Europe	Macedonia		
##	128:	Asia		0.7605567	
		Americas	•		
	130:	Americas	Peru 0.761159 Suriname 0.761881		
	131:	Africa		0.7670757	
##	132:	Americas	Nicaragua		
	133:	Asia		0.7681130	
ππ	100.	noid	remen	0.1001100	

```
## 134:
           Africa
                                 Madagascar 0.7682063
## 135:
           Africa
                                        Mali 0.7685685
## 136:
                                      Angola 0.7690661
           Africa
## 137:
             Asia
                                      Bhutan 0.7690661
                                     Burundi 0.7690661
## 138:
           Africa
## 139:
             Asia
                                    Cambodia 0.7690661
## 140:
           Africa Central African Republic 0.7690661
## 141:
           Africa
                                    Djibouti 0.7690661
## 142:
         Americas
                         Dominican Republic 0.7690661
## 143:
           Africa
                          Equatorial Guinea 0.7690661
## 144:
           Africa
                                     Eritrea 0.7690661
## 145:
           Africa
                                      Gambia 0.7690661
## 146:
                              Guinea-Bissau 0.7690661
           Africa
## 147:
         Americas
                                      Guyana 0.7690661
## 148:
                                       Haiti 0.7690661
         Americas
## 149:
         Americas
                                    Honduras 0.7690661
## 150:
             Asia
                                        Laos 0.7690661
## 151:
           Africa
                                     Liberia 0.7690661
## 152:
           Africa
                                       Niger 0.7690661
## 153:
           Europe
                                      Norway 0.7690661
                                      Rwanda 0.7690661
## 154:
           Africa
## 155:
           Africa
                                Sierra Leone 0.7690661
                                     Somalia 0.7690661
## 156:
           Africa
## 157:
             Asia
                                South Korea 0.7690661
## 158:
             Asia
                                        Oman 0.7883613
##
        Continent
                                     Country
                                                 range
ggplot(calc, aes(range)) +
  geom_histogram() +
  labs(x = "Range", y = "Counts") +
  theme_AP()
```

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.


```
# COMPARE RANGES ----
ranges_empirical <- uncertainty.dt[, .(higher = max(V1), lower = min(V1)), IFT] %>%
  .[, Study:= "This study"]%>%
  .[!IFT == "Jager"]
ranges_efficiencies <- fread("ranges_efficiencies.csv")</pre>
rbind(ranges_empirical, ranges_efficiencies)[, mean.value:= (higher + lower) / 2] %>%
  .[, Study:= factor(Study, levels = c("This study",
                                        "Brouwer et al. 1989",
                                        "Rogers et al. 1997",
                                        "Clemmens and Molden 2007",
                                        "Rohwer et al. 2007",
                                        "Van Halsema and Vincent 2012"))] %>%
 na.omit() %>%
  ggplot(., aes(mean.value, Study, color = ifelse(Study == "This study", "red", "black"))) +
  geom_point() +
  scale_x_continuous(breaks = pretty_breaks(n = 3)) +
  geom_errorbar(aes(xmin = lower, xmax = higher)) +
  scale_color_identity() +
 facet_wrap(~IFT, ncol = 4) +
  labs(x = "Irrigation efficiency", y = "") +
  theme_AP()
```


split(., .\$Approach, drop = TRUE)

```
# CHECK OVERLAP -----

dd <- uncertainty.dt[!Continent == "Oceania"][Study == "One IFT per country"] %>%
    split(., .$Continent, drop = TRUE)

overlap.dt <- lapply(dd, function(x) split(x, x$IFT, drop = TRUE)) %>%
    lapply(., function(x) lapply(x, function(y) y[, V1])) %>%
    lapply(., function(x) overlap(x)$OV)

overlap.dt

## named list()

ff <- uncertainty.dt[!Continent == "Oceania"] %>%
```

3 Uncertainty analysis

```
# PLOT UNCERTAINTY ----
list_continents <- list(c("Africa", "Asia"), c("Americas", "Europe"))</pre>
gg <- list()
for (i in 1:length(list_continents)) {
  gg[[i]] <- ggplot(uncertainty.dt[Continent %in% list_continents[[i]]],</pre>
                    aes(x = V1, y = fct_reorder(Country, V1), fill = Study)) +
    geom_density_ridges(scale = 2, alpha = 0.3) +
    labs(x = "Irrigation efficiency", y = "") +
    facet_wrap(~Continent, scales = "free") +
    scale_x_continuous(breaks = pretty_breaks(n = 3),
                       limits = c(0, 1)) +
    scale_fill_manual(values = wes_palette("Chevalier1")) +
    theme_AP() +
    theme(legend.position = "top") +
    guides(fill = guide_legend(nrow = 2, byrow = TRUE))
# MERGE PLOTS -----
gg
## [[1]]
## Picking joint bandwidth of 0.0132
## Picking joint bandwidth of 0.0126
```


[[2]]

Picking joint bandwidth of 0.0132

Picking joint bandwidth of 0.0121


```
limits = c(0, 1)) +
facet_wrap(~Continent, scales = "free") +
scale_color_discrete(name = "Irrigation") +
theme_AP()
}
dd
```

[[1]]

Warning: Removed 1 rows containing missing values (geom_point).

[[2]]

CALCULATE THE UNCERTAINTY IN THE RANGES -----selection_continents <- c("Africa", "Asia", "Americas", "Europe")

factor_unc <- uncertainty.dt[, .(min = min(V1), max = max(V1)), .(Continent, Country)] %>%
 .[Continent %in% selection_continents] %>%
 .[, factor:= max / min]

ggplot(factor_unc, aes(factor)) +
 geom_histogram() +
 facet_wrap(~Continent, ncol = 4) +
 labs(x = "Factor", y = "N. of countries") +
 theme_AP()

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.


```
# Number of countries whose irrigation water withdrawals fluctuate a factor of x
# due to uncertainty in irrigation efficiency
factor_unc %>%
    .[, factor:= floor(max / min)] %>%
    .[, .(number.countries = .N), factor] %>%
    .[order(factor)] %>%
    print()
```

##		factor	number.countries
##	1:	2	4
##	2:	3	16
##	3:	4	24
##	4:	5	5
##	5:	8	1
##	6:	10	1
##	7:	11	1
##	8:	14	26
##	9:	15	12
##	10:	16	2
##	11:	17	1
##	12:	18	1
##	13:	20	1
##	14:	22	4
##	15:	23	4
##	16:	24	1
##	17:	27	3
##	18:	28	1
##	19:	29	1
##	20:	30	1
##	21:	32	1
##	22:	37	2
##	23:	38	15
##	24:	39	3
##	25:	40	1
##	26:	41	22
##		factor	number.countries

4 Sensitivity analysis

```
# SAMPLE MATRIX DISTRIBUTIONS ---
# Define labels
label_facets <- c("Ea_surf" = "$E_{a_{su}}$",
                  "Ec_surf" = "$E_{c_{su}}$",
                   "Ea_sprinkler" = "$E_{a_{sp}}$",
                   "Ec_sprinkler" = "E_{c_{sp}}",
                  "Ea_micro" = "$E_{a_{mi}}$",
                   "Ec_micro" = "$E_{c_{mi}}$",
                  "Proportion_large" = "$f_L$",
                   "m" = "$m$",
                   "r L" = "$r L$")
mat <- data.table(full_sample_matrix(IFT = "Jager", Country = "Spain")$matrix)</pre>
mat <- mat[, Proportion_large:= NULL]</pre>
melt(mat, measure.vars = colnames(mat)) %>%
  ggplot(., aes(value)) +
  geom_histogram() +
  labs(x = "Value", y = "Counts") +
  scale_x_continuous(breaks = pretty_breaks(n = 3)) +
  facet_wrap(~variable) +
  theme_AP()
```

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.


```
# EXTRACT SOBOL' INDICES -----
ind <- lapply(y$`Rohwer et al. 2007`, function(x) x[["indices"]]$results)
names(ind) <- rohwer$Country</pre>
```

```
ind <- rbindlist(ind, idcol = "Country")</pre>
ind[, Continent:= countrycode(ind[, Country], origin = "country.name",
                               destination = "continent")]
## Warning in countrycode_convert(sourcevar = sourcevar, origin = origin, destination = dest,
tmp.ift <- split(rohwer, rohwer$IFT)</pre>
out <- list()
for(i in names(tmp.ift)) {
  out[[i]] <- ind[Country %in% tmp.ift[[i]][, Country]]</pre>
# PLOT SOBOL' INDICES -----
ind.dt <- rbindlist(out, idcol = "IFT") %>%
  .[, IFT:= factor(IFT, levels = c("Surface", "Sprinkler", "Micro", "Mixed"))]
tmp <- ind.dt[, .(mean = mean(original), sd = sd(original)),</pre>
               .(sensitivity, parameters, IFT)]
tmp2 <- tmp[!IFT == "Mixed"][, parameters:= ifelse(parameters == "Ea_surf", "$E_a$",</pre>
                                                      ifelse(parameters == "Ec_surf", "$E_c$",
                                                             ifelse(parameters == "Ea_sprinkler",
                                                                     ifelse(parameters == "Ec_spri
                                                                            ifelse(parameters == "
                                                                                   ifelse(paramete
rbind(tmp[IFT == "Mixed"], tmp2) %>%
  ggplot(., aes(parameters, mean, fill = sensitivity), color = black) +
  geom_bar(stat = "identity", position = position_dodge(0.6), color = "black") +
  geom_errorbar(aes(ymin = mean - sd, ymax = mean + sd), position = position_dodge(0.6)) +
  scale_x_discrete(labels = label_facets) +
  scale_fill_discrete(name = "Sensitivity", labels = c("$S_i$", "$T_i$")) +
  labs(x = "", y = "Sobol' indices") +
  facet_grid(~IFT, space = "free_x", scale = "free_x") +
  theme_AP()
                          Sensitivity
                                      S_i
         Surface
                       Sprinkler
                                        Micro
                                                         Mixed
Sobol' indices
  0.6
                           m f_L
                                   E_a E_c m f_L
                        E_c
                f_L
```