Imperial Data Science and Al Winter School 2025

Barin-Tumor

Segmentation

Group 3
Li Xiangyu Su Yi Wu Kunzhen

nnU-Net Introduction

nnU-Net

Detailed Configuration

Detailed configuration is more important than architectural design. nnU-Net uses a simple U-Net architecture, but transcends more complex parameters through good configuration.

Adaptable Configuration

Twenty-three publicly available biomedical image datasets were used in the development and evaluation of nnU-Net.

nnU-Net

a self-configuring method for deep learning-based biomedical image segmentation

Automated Configuration

Systemize the complex manual method configuration process into fixed parameters, rule-based parameters and empirical parameters.

Easy Configuration

As an open source tool, nnU-Net can be used immediately by people who are not familiar with deep learning.

nnU-Net

nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation

nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation

	Design choice	Required input	Automated (fixed, rule-based or empirical) configuration derived by distilling expert knowledge (more details in online methods)
	Learning rate	-	Poly learning rate schedule (initial, 0.01)
	Loss function	-	Dice and cross-entropy
	Architecture template	-	Encoder–decoder with skip-connection ('U-Net-like') and instance normalization, leaky ReLU, deep supervision (topology-adapted in inferred parameters)
	Optimizer	-	SGD with Nesterov momentum ($\mu = 0.99$)
	Data augmentation	-	Rotations, scaling, Gaussian noise, Gaussian blur, brightness, contrast, simulation of low resolution, gamma correction and mirroring
	Training procedure	-	1,000 epochs \times 250 minibatches, foreground oversampling
	Inference procedure	_	Sliding window with half-patch size overlap, Gaussian patch center weighting
	Intensity normalization	Modality, intensity distribution	If CT, global dataset percentile clipping & z score with global foreground mean and s.d. Otherwise, z score with per image mean and s.d.
	Image resampling strategy	Distribution of spacings	If anisotropic, in-plane with third-order spline, out- of-plane with nearest neighbor Otherwise, third-order spline
	Annotation resampling strategy	Distribution of spacings	Convert to one-hot encoding → If anisotropic, in-plane with linear interpolation, out-of-plane with nearest neighbor Otherwise, linear interpolation

Image target spacing	Distribution of spacings	If anisotropic, lowest resolution axis tenth percentile, other axes median. Otherwise, median spacing for each axis. (computed based on spacings found in training cases)
Network topology, patch size, batch size	Median resampled shape, target spacing, GPU memory limit	Initialize the patch size to median image shape and iteratively reduce it while adapting the network topology accordingly until the network can be trained with a batch size of at least 2 given GPU memory constraints. for details see online methods.
Trigger of 3D U-Net cascade	Median resampled image size, patch size	Yes, if patch size of the 3D full resolution U-Net covers less than 12.5% of the median resampled image shape
Configuration of low- resolution 3D U-Net	Low-res target spacing or image shapes, GPU memory limit	Iteratively increase target spacing while reconfiguring patch size, network topology and batch size (as described above) until the configured patch size covers 25% of the median image shape. For details, see online methods.
Configuration of post-processing	Full set of training data and annotations	Treating all foreground classes as one; does all-but-largest-component-suppression increase cross-validation performance? Yes, apply; reiterate for individual classes No, do not apply; reiterate for individual foreground classes
Ensemble selection	Full set of training data and annotations	From 2D U-Net, 3D U-Net or 3D cascade, choose the best model (or combination of two) according to cross-validation performance

nnU-Netv2 Implementation

Objective

Medical image segmentation plays a crucial role in clinical diagnosis and treatment planning. Deep **learning-based segmentation** models, particularly the 3D U-Net architecture, have demonstrated remarkable performance in accurately delineating anatomical structures from MRI scans. This work presents a segmentation pipeline built upon nnUNetv2, incorporating advanced preprocessing, data augmentation, and a customized training framework to enhance model robustness and accuracy.

Brain-Tumor Segmentation Process

MRI Volume Visualization

Data Visualization

num_total_slices = image_array.shape[0]
Get `num_slices` slices evenly distributed
slice_indices = np.linspace(0, num_total_slices - 1, num_slices, dtype=int)

Z: number of axial slices in the MRI scan

Prase the Data

Figure 1: Example Visualization

Data Preprocessing

Track 2.1 Restructuring Dataset

dataset_segmentation/train/xxx/xxx_fld.nii

~/nnUNet_raw/imagesTr/xxx/xxx_fld.nii

dataset_segmentation/train/xxx/xxx_seg.nii

~/nnUNet_raw/labelsTr/xxx/xxx_seg.nii

Track 2.2 Extracting Data Fingerprint

Cropping Non-Zero Regions

Non-zero mask is created for each image and segmentation pair. This mask ensures that only the relevant part of the image is used for training.

Saving the Fingerprint

```
extract_fingerprints([task_id], check_dataset_integrity=True)
plans_identifier = plan_experiments([task_id])
num_processes = [4]
preprocess([task_id], plans_identifier, ['3d_fullres'], num_processes)
```

Track 2.3 Preprocessing Individual Cases

Normalization

Resampling

The original spacing (voxel size) of the images is adjusted to a targetspacing.

Data Augmentation

Augmentation Techniques

Imperial DS&AI Winter School

Patch Selection

Spatial Transformations

Noise & Blur

Brightness and Contrast

Low Resolution & Gamma Transform

Mirroring and Masking

Fixed-size patches

Rotation, Scaling, Elastic Deformation

- Downsampling
- Adjust intensity distribution
- Applied specified axes
- Normalizes only within regions of interest

Performance Metric

Imperial DS&AI Winter School

4.1 Dice Similarity Coefficient

$$DSC = \frac{2 \cdot |A \cap B| + \text{smoothing}}{|A| + |B| + \text{smoothing}}$$

4.2 Cross-Entropy Loss

$$H(p,q) = -\sum_{x \in \mathcal{X}} p(x) \, \log q(x)$$
. (Eq.1)

Supports One-Hot Encoding

Works with one-hot encoded target labels

Ensures Pixel Classification

Helps the model assign each pixel to the right class

4.3 Combined Loss Function

$$\mathcal{L} = w_{\text{dice}} \cdot \mathcal{L}_{\text{Dice}} + w_{\text{CE}} \cdot \mathcal{L}_{\text{CE}}$$

Ensures both accurate classification and well-defined segmentation boundaries.

Network Architecture

PlainConvUNet

ReLU activation function

LeakyReLU activation function

Imperial DS&AI Winter School

Fig. 1. U-net architecture (example for 32x32 pixels in the lowest resolution). Each blue box corresponds to a multi-channel feature map. The number of channels is denoted on top of the box. The x-y-size is provided at the lower left edge of the box. White boxes represent copied feature maps. The arrows denote the different operations.

Trainer

5-Fold Cross-Validation

Multi-GPU Training

Results

Training Process

Imperial DS&AI Winter School

Validation Performance

- Fold 0: Mean Validation Dice: 0.9173
- Fold 1: Mean Validation Dice: 0.8910
- Fold 2: Mean Validation Dice: 0.8888
- Fold 3: Mean Validation Dice: 0.8911
- Fold 4: Mean Validation Dice: 0.9103
- Average Mean Dice Score: 0.8997

Hello,

Your model achieved a Dice score of 0.8875 and a 95 Hausdorff Distance of 11.5758 on our test set. Well done!

Best, Chengliang

Imperial Data Science and Al Winter School 2025

Word Representation

in **Biomedical Domain**

Group 3
Li Zhuoran Chen Xinjia Xu Zhesheng

The aim of this project is to analyze the text content and construct word representations suitable for the large scale document data in the biomedical field, and finally explore and analyze the application of word vectors.

Technological Process

Dataset

https://www.semanticscholar.org/cord19/

Core content

Tokenizer


```
Word: this, Vector: [ 0.23222321  0.12671019 -0.04556849 -0.06296597 -0.20533879]...

Word: be, Vector: [-0.11883736 -0.08993076 -0.18911168  0.00159133  0.03658859]...

Word: virus, Vector: [-0.00974345 -0.3625814  0.0456008 -0.5772487 -0.2413821 ]...

Word: coronavirus, Vector: [ 0.39919555 -0.37495816 -0.18429291 -0.10705779  0.3739001 ]...

Word: infection, Vector: [-0.34453392 -0.8504306  0.04829029  0.00951516 -0.33521503]...

Word: patients, Vector: [ 0.14964846 -0.24931104  0.19648291  0.3334433  0.10605083]...
```

Representations

Visualisation & Application

Prase the Data

Prase the Data

Overview of Dataset

metadata.csv

--title

--abstract

|--authors

|--doi

.

36.3G

Selection of Content

- Title
- Abstract

*If missing, replaced with a 'Space'

40.6M

Prase the Data

Imperial DS&AI Winter School

titles_abstracts.txt

PART 02

Tokenization

Imperial DS&AI Winter School

Track 2.1 Use split() with regex

Input: content of file
Initialize empty list words
for each line in content do
 Split line using regex \W+
 Append tokens to words list
end for
Remove empty strings from words
Write result to file
Output: result of tokenization

Table 2.1: Weighted Random Sample of 20 Words

source	for
acetate	number
rate	enzymes
peptide	fruit
MERS	with
in	enzymes
of	respiratory
disease	virus
investigation	that
activation	the

Imperial DS&AI Winter School

Track 2.2 Use NLTK tokenizer

Input: content of file Split content into sentences using sent_tokenize() Initialize empty list words for each sentence in sentences do Tokenize sentence into words using word_tokenize() Remove punctuations from sentence Convert all words to lowercase Append processed words to words end for Write result to file Output: result of tokenization

Table 2.2: Top 20 Representative High-Frequency Words of Tokenized Result of NLTK

Tokenizer

covid-19	sars-cov-2
2019-n-ncov	infection
pneumonia	transmission
symptoms	outbreak
wuhan	china
case	virus
fever	cough
diagnosis	treatment
epidemic	prevention
control	clinical

Track 2.3 Use Byte-Pair Encoding (BPE)

from transformers import AutoTokenizer

Input: content of file Load pre-trained BERT tokenizer Set max_length to 512 Initialize empty list result for each chunk of text with length max_length do Tokenize chunk using BERT tokenizer Append tokenized chunk to result end for Write result to file Output: result of tokenization

Table 2.3:

Top 20
Representative High-Frequency
Words of
Tokenized
Result of
BERT
Tokenizer

COVID-19	SARS-CoV-2
2019-nCoV	virus
infection	pneumonia
symptoms	transmission
patients	diagnosis
treatment	research
outbreak	cases
china	wuhan
genome	epidemiology
clinical	prevention

Track 2.4 Build custom BPE

from tokenizers import
Tokenizer, models, trainers,
pre tokenizers

Input: content of file
Initialize BPE model
Set up the trainer for the model
Training BPE model with content
Save the trained BPE model
Tokenize content using trained
BPE model (as Track 2.3)
Write result to file
Output: result of tokenization

Table 2.4:

Top 20 Representative High-Frequency Words of **Tokenized** Result of Trained BPE Model Tokenizer

corona	virus
infection	COVID
pneumonia	epidemic
transmission	cases
patients	symptoms
treatment	control
quarantine	diagnosis
outbreak	SARS
MERS	vaccine
mortality	epidemiology

Pros and Cons

Track	Efficiency	Accuracy	Domain Suitability	Ease of Use	Adaptability
Use split() with regex	High	Low	Low	Very High	None
Use NLTK tokenizer	Moderate	Moderate	Moderate	Moderate	Moderate
Use Byte-Pair Encoding (BPE)	High	Moderate	Moderate	Low	Low
Build new Byte-Pair Encoding	Moderate	Very High	Very High	Low	Very High

PART 03

Build Word Representations

Imperial DS&AI Winter School

Track 3.1 Use N-gram Language Modeling

N-gram language modeling represents words using **statistical** co-occurrence.

$$n=7$$

8	the	main	symptoms	of	COVID-19	are	?
	ω_{t-6}	ω_{t-5}	ω_{t-4}	ω_{t-3}	ω_{t-2}	ω_{t-1}	$\boldsymbol{\omega_t}$
	$p(\omega_t \omega_{t-n+1},, \omega_{t-1}) = \frac{C(\omega_{t-n+1},, \omega_{t-1}, \omega_t)}{C(\omega_{t-n+1},, \omega_{t-1})}$						

^{*}C counts the number of occurrences of the sequence

Embeddings are learned by constructing a co-occurrence matrix $M_{ij} = p(\omega_j | \omega_i)$. Embeddings are obtained by SVD decomposition of M: $M = USV^T$, where U is word embeddings and V is context embeddings.

Track 3.1 Use N-gram Language Modeling


```
Word: based, Vector: [-0.00113634 0.00042914 0.00171392 -0.00094201 0.00194551]...
Word: simulate, Vector: [-0.00282291 0.00276994 0.0045483 0.00387259 -0.00197817]...
Word: exponential, Vector: [-0.00745408 -0.00210878 0.00366707 0.00557761 0.0008061]...
Word: synthesize, Vector: [-0.00195744 -0.00161151 0.00571776 -0.00158255 -0.00619846]...
Word: infected, Vector: [ 0.00098503 0.00135052 0.00025794 0.00151996 -0.00295611]...
Word: PCT, Vector: [-0.00361682 0.00107059 0.00450699 -0.00321555 -0.00355247]...
```

Imperial DS&AI Winter School

Track 3.2 Use Skip-gram with Negative Sampling

Skip-gram with Negative Sampling (SGNS) learns word embeddings by training a **neural network** to predict **context words** given a **target word**, while also distinguishing real context words from randomly sampled **negative words**.

Track 3.2 Use Skip-gram with Negative Sampling

 $(1)_{+}$ 1

 $(1)_{+}$ 2

Nagetive sampling

window size=5

_			t-Z	·· t-1	337	t+1	35 LTZ		
B	•••	an	outbreak	of	COVID-19	on	cruise	ship	•••

outside context **center** outside context word in window word word in window

(1)+

 $(1)_{+}$ 1

(1)+12

- We use $p(\omega_c|\omega_t) = \sigma(v_c^T v_t)$ to calculate $p(\omega_c|\omega_t)$ with v_c (the vector of context word ω_c), v_t (the vector of target word ω_t) and function $\sigma(x) = \frac{1}{1+e^{-x}}$
- Outside context words in window are selected as **positive samples**, while k **negative samples** ω_n are drawn from a noise distribution.
- To maximize $p(\omega_c|\omega_t)$ while minimize $p(\omega_n|\omega_t)$, the loss function simplifies to: $L = -\log \sigma(v_c^T v_t) \sum_{n=1}^k \log \sigma(-v_n^T v_t)$

Imperial DS&AI Winter School

Track 3.2

Use Skip-gram with Negative Sampling

Model training

outside context center outside context word in window word word in window

For each context word, we update the vectors once. Then we move the window forward, traversing the entire content.

		7	window		•			
•••	an	outbreak	of	COVID-19	on	cruise	ship	
	an	outbreak	of	COVID-19	on	cruise	ship	
	an	outbreak	of	COVID-19	on	cruise	ship	

Track 3.2 Use Skip-gram with Negative Sampling


```
Input: result of tokenization, window size, k
Initialize vectors randomly
for each sentence in result do
    for each target word in sentence do
        Set the window with the target word as the center
        for each context word in window do
            Randomly select k negative samples
            Caculate the loss function
            Update vectors based on gradient
Write model to file
Output: word representations
```

```
Word: be, Vector: [-0.04363129 -0.13416731 -0.04463265 0.42448187 0.1020665 ]...

Word: virus, Vector: [ 0.38384342 0.02390595 0.25144455 -0.32621083 0.22319743]...

Word: coronavirus, Vector: [ 0.34523997 -0.6191298 0.10023931 0.32888174 0.2146074 ]...

Word: infection, Vector: [-0.44734353 -0.3158639 -0.01379213 0.5342119 0.17223525]...

Word: patients, Vector: [ 0.3393421 -0.142002 0.5237385 0.3722622 0.3285995]...

Word: an, Vector: [ 0.15025043 -0.34280798 -0.30170983 0.20958054 -0.05775673]...
```

Track 3.3 Use Contextualised Word Representation by MLM

Masked Language Model (MLM) is a technique used to learn contextualized word representations by training a model to predict randomly **masked words** in a sentence based on their **surrounding context**.

Given an input sequence $\omega_1, \omega_2, ..., \omega_t$, some tokens are randomly masked (e.g. ω_m), and the model learns to predict them: $p(\omega_m | \omega_1, ..., \omega_{m-1}, [\text{MASK}], \omega_{m+1}, ..., \omega_t)$

Masked language model

surrounding context

masked word surrounding context

Track 3.3 Use Contextualised Word Representation by MLM

• A transformer-based model (e.g. BERT) processes the full sequence bidirectionally, generating deep contextualized word embeddings. The loss function is typically the crossentropy loss over the masked tokens:

$$L = -\sum_{m} \log p(\boldsymbol{\omega}_{m} | \boldsymbol{h}_{m})$$

where h_m is the hidden representation of the masked token.

 This method enables embeddings to capture word sense variations and syntactic dependencies based on the given context.

Track 3.3 Use Contextualised Word Representation by MLM

• In our implementation, we utilized BERT for embedding generation. Given the large number of parameters in BERT and the high computational cost of training, we employed **LoRA fine-tuning** to optimize the training process.

from transformers import BertTokenizer, BertForMaskedLM, Trainer, TrainingArguments from datasets import Dataset import torch from transformers import DataCollatorForLanguageModeling from peft import get_peft_model, LoraConfig, TaskType

PART 04

Explore the Word Representations

Track 4.1 Visualise the word representations by t-SNE

III • t-SNE is a dimensionality reduction algorithm that visualizes highdimensional data by mapping it into a lower-dimensional space (typically 2D or 3D) while preserving local structure and patterns.

Imperial DS&AI Winter School

Track 4.2 Visualise Biomedical Entities by t-SNE

• Biomedical Entities words are colored by category and highlighted in this section. In this graph, words marked with the same color tend

to cluster together, while words marked

with the different

from each other.

color tend to separate

epidemiology treatments -10

t-SNE Visualization of Word Embeddings

Track 4.3 Co-occurrence

 The words are selected in order from highest to lowest according to the statistical frequency of cooccurrence with the target word in the corpus.

- Cross-Domain Relevance
- Contextual Associations
- Broad Impact of COVID-19

Co-occuring Word	Frequency
Covid	0.009722719
multiplicity	0.006220484
flaviviral	0.005976294
Lyme	0.005395208
productive	0.005248906
obstructive	0.005074524
mouth	0.004548549
persistent	0.004354533
Alzheimer	0.004330223
SFTSV	0.004047467

Target word: 'coronavirus'

Table 4.4:

10 biomedical entities with the highest frequency of cooccurrence with coronavirus

Track 4.4 Semantic Similarity

$$Similarity = \frac{\boldsymbol{v_1} \cdot \boldsymbol{v_2}}{\|\boldsymbol{v_1}\| \cdot \|\boldsymbol{v_2}\|}$$

- Model Strengths
 - Error Handling
- Temporal and Specific References

Semantic Similar Word	Similarity
novel	0.632027924
2019-novel	0.618497908
coronovirus	0.610034168
abstract	0.596071839
provisionally	0.592935622
2019-ncov	0.58953917
2019	0.587587357
ncov-2019	0.576685071
cov	0.576638222
2019-novel	0.618497908

Target word: 'coronavirus'

Table 4.3:

10 biomedical entities with the highest semantic similarity with coronavirus

The end

Thank you for your attention!

Reference:

- [1] S. Bird, "Nltk: The natural language toolkit," in Annual Meeting of the Association for Computational
- Linguistics, 2006. [Online]. Available: https://api.semanticscholar.org/CorpusID:1438450
- [2] P. F. Brown, P. V. deSouza, R. L. Mercer, V. J. D. Pietra, and J. C. Lai, "Class-based n-gram models
- of natural language," Comput. Linguist., vol. 18, no. 4, p. 467–479, Dec. 1992.
- [3] A. Fonarev, O. Hrinchuk, G. Gusev, P. Serdyukov, and I. Oseledets, "Riemannian optimization for
- skip-gram negative sampling," ArXiv, vol. abs/1704.08059, 2017.
- [4] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, "Bert: Pre-training of deep bidirectional trans_x0002_formers for language understanding," in North American Chapter of the Association for Computa x0002_tional Linguistics, 2019.
- [5] J. E. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, and W. Chen, "Lora: Low-rank adaptation
- of large language models," ArXiv, vol. abs/2106.09685, 2021.