Econometrics 2 – Part 1

Arieda Muço

Central European University

Winter 2023

Bad Controls

- Assume that C_i is randomly assigned, so it is independent of all potential outcomes
- Compare mean earnings for white collar workers with or without college

$$Y_i = C_i Y_{1i} + (1 - C_i) Y_{0i}$$

$$W_i = C_i W_{1i} + (1 - C_i) W_{0i}$$

$$E[Y_i|C_i = 1] - E[Y_i|C_i = 0] = E[Y_{1i} - Y_{0i}]$$

 $E[W_i|C_i = 1] - E[W_i|C_i = 0] = E[W_{1i} - W_{0i}]$

Bad Controls

• By the joint independence of $(Y_{1i}, Y_{0i}, W_{1i}, W_{0i}) \coprod C_i$ we have

$$E[Y_{1i}|W_{1i} = 1, C_{1i} = 1] - E[Y_{0i}|W_{0i} = 1, C_{0i} = 0] = E[Y_{1i}|W_{1i} = 1] - E[Y_{0i}|W_{0i} = 1]$$

• This expression illustrates the apples-to-oranges nature of the bad-control problem

$$E[Y_{1i}|W_{1i}=1] - E[Y_{0i}|W_{1i}=1] + E[Y_{0i}|W_{1i}=1] - E[Y_{0i}|W_{0i}=1]$$

Bad Controls

$$\underbrace{E[Y_{1i}|W_{1i}=1] - E[Y_{0i}|W_{1i}=1]}_{\text{causal effect on college grads}} + \underbrace{E[Y_{0i}|W_{1i}=1] - E[Y_{0i}|W_{0i}=1]}_{\text{selection bias}}$$

$$\underbrace{E[Y_{1i} - Y_{0i}|W_{1i} = 1]}_{\text{causal effect on college grads}} + \underbrace{E[Y_{0i}|W_{1i} = 1] - E[Y_{0i}|W_{0i} = 1]}_{\text{selection bias}}$$

How bad control creates selection bias

	Potential occupation		Potential earnings		Average earnings by occupation	
Type of worker	Without college (1)	With college (2)	Without college (3)	With college (4)	Without college (5)	With college (6)
Always Blue (AB)	Blue	Blue	1,000	1,500	Blue 1,500	Blue 1,500
Blue White (BW)	Blue	White	2,000	2,500	White 3,000	White 3,000
Always White (AW)	White	White	3,000	3,500		

Collider Bias

- CNN.com headline: Megan Fox voted worst but sexiest actress of 2009
- Assume talent and beauty are independent, but each causes someone to become a movie star. What's the correlation between talent and beauty for a sample of movie stars compared to the population as a whole (stars and non-stars)?

Collider Bias Exapmle

• What if the sample consists *only* of movie stars?

Collider Bias Examle (see STATA code for replication)

Proxy Variables

- Sometimes you will see cases when OVB is attempted to be solved via obtaining a proxy variable
- In the wage equation, one possibility is to use the intelligence quotient, or IQ, as a proxy for ability
- This does not require IQ to be the same thing as ability; what we need is for IQ to be correlated with ability

• If A_i is observed:

$$Y_i = \alpha + \rho s_i + A'_i \gamma + \nu_i \Rightarrow \text{Long Regression}$$

- A_i is unobserved, how can we estimate ρ ?
- Call the proxy variable IQ_i . What do we require from IQ_i ?

$$A_i = \delta_0 + \delta_1 I Q_i + u_i$$

- where u_i is an error due to the fact that A_i and IQ_i are not exactly related
- typically, we think of $\delta_1 > 0$. If $\delta_1 = 0$, then it's not a suitable proxy
- The intercept δ_0 , which can be positive or negative, simply allows A_i and IQ_i to be measured on different scales. (For example, unobserved ability is certainly not required to have the same average value as IQ in the U.S. population.)

• Assumptions:

$$1) \quad E[\nu_i|s_i, A_i] = 0$$

$$2) \quad E[u_i|IQ_i] = 0$$

- IQ_i is irrelevant in the population model, once A_i has been included
- Proxy variables lead to bias if assumptions not satisfied.