Problem Statement:-

The transactions made by a UK-based, registered, non-store online retailer between December 1, 2010, and December 9, 2011, are all included in the transnational data set known as online retail. The company primarily offers one-of-a-kind gifts for every occasion. The company has a large number of wholesalers as clients. Company ObjectiveUsing the global online retail dataset, we will design a clustering model and select the ideal group of clients for the business to target.

In [1]:

- 1 import pandas as pd
- 2 from matplotlib import pyplot as plt
- 3 %matplotlib inline

Data Collection

In [2]:

- 1 df=pd.read_csv(r"C:\Users\91955\Downloads\OnlineRetail.csv")
- 2 df

Out[2]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	(
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	6	01-12-2010 08:26	2.55	17850.0	ŀ		
1	536365	71053	WHITE METAL LANTERN	6	01-12-2010 08:26	3.39	17850.0	ŀ		
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	01-12-2010 08:26	2.75	17850.0	ŀ		
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	01-12-2010 08:26	3.39	17850.0	ŀ		
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	01-12-2010 08:26	3.39	17850.0	ŀ		
•••										
541904	581587	22613	PACK OF 20 SPACEBOY NAPKINS	12	09-12-2011 12:50	0.85	12680.0			
541905	581587	22899	CHILDREN'S APRON DOLLY GIRL	6	09-12-2011 12:50	2.10	12680.0			
541906	581587	23254	CHILDRENS CUTLERY DOLLY GIRL	4	09-12-2011 12:50	4.15	12680.0			
541907	581587	23255	CHILDRENS CUTLERY CIRCUS PARADE	4	09-12-2011 12:50	4.15	12680.0			
541908	581587	22138	BAKING SET 9 PIECE RETROSPOT	3	09-12-2011 12:50	4.95	12680.0			
541909 rows × 8 columns										

Data Cleaning and Preprocessing

In [3]:

1 df.head()

Out[3]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	6	01-12-2010 08:26	2.55	17850.0	United Kingdom
1	536365	71053	WHITE METAL LANTERN	6	01-12-2010 08:26	3.39	17850.0	United Kingdom
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	01-12-2010 08:26	2.75	17850.0	United Kingdom
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	01-12-2010 08:26	3.39	17850.0	United Kingdom
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	01-12-2010 08:26	3.39	17850.0	United Kingdom

In [4]:

1 df.tail()

Out[4]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	(
541904	581587	22613	PACK OF 20 SPACEBOY NAPKINS	12	09-12-2011 12:50	0.85	12680.0	
541905	581587	22899	CHILDREN'S APRON DOLLY GIRL	6	09-12-2011 12:50	2.10	12680.0	
541906	581587	23254	CHILDRENS CUTLERY DOLLY GIRL	4	09-12-2011 12:50	4.15	12680.0	
541907	581587	23255	CHILDRENS CUTLERY CIRCUS PARADE	4	09-12 - 2011 12:50	4.15	12680.0	
541908	581587	22138	BAKING SET 9 PIECE RETROSPOT	3	09-12-2011 12:50	4.95	12680.0	
4	_	_	_	_	_	_		

```
In [5]:
```

```
1 df['InvoiceNo'].value_counts()
Out[5]:
InvoiceNo
573585
           1114
581219
            749
            731
581492
580729
            721
558475
            705
554023
              1
554022
              1
554021
              1
              1
554020
C558901
              1
Name: count, Length: 25900, dtype: int64
In [6]:
 1 | df['CustomerID'].value_counts()
Out[6]:
CustomerID
           7983
17841.0
14911.0
           5903
14096.0
           5128
12748.0
           4642
14606.0
           2782
15070.0
              1
15753.0
              1
17065.0
              1
16881.0
              1
16995.0
              1
Name: count, Length: 4372, dtype: int64
In [7]:
   df['Quantity'].value_counts()
Out[7]:
Quantity
          148227
 1
 2
           81829
 12
           61063
           40868
 6
 4
           38484
-472
               1
-161
               1
-1206
               1
-272
               1
-80995
               1
Name: count, Length: 722, dtype: int64
```

In [8]:

```
plt.scatter(df["CustomerID"],df["Quantity"])
plt.xlabel("CustomerID")
plt.ylabel("Quantity")
```

Out[8]:

Text(0, 0.5, 'Quantity')

In [9]:

```
1 df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 541909 entries, 0 to 541908
Data columns (total 8 columns):

	COTA (COC	ar o coramino,.						
#	Column	Non-Null Count	Dtype					
0	InvoiceNo	541909 non-null	object					
1	StockCode	541909 non-null	object					
2	Description	540455 non-null	object					
3	Quantity	541909 non-null	int64					
4	InvoiceDate	541909 non-null	object					
5	UnitPrice	541909 non-null	float64					
6	CustomerID	406829 non-null	float64					
7	Country	541909 non-null	object					
dtypes: float64(2), int64(1), object(5)								
memor	ry usage: 33.1	1+ MB						

```
In [10]:
```

```
1 df.isnull().sum()
Out[10]:
InvoiceNo
                     0
StockCode
                     0
                  1454
Description
Quantity
                     0
{\tt InvoiceDate}
                     0
UnitPrice
                     0
CustomerID
                135080
Country
dtype: int64
In [11]:
 1 | df.fillna(method='ffill',inplace=True)
```

In [12]:

```
1 df.isnull().sum()
```

Out[12]:

InvoiceNo 0 StockCode 0 Description 0 Quantity 0 InvoiceDate 0 UnitPrice 0 CustomerID 0 Country 0 dtype: int64

In [13]:

```
1 from sklearn.cluster import KMeans
2 km=KMeans()
3 km
```

Out[13]:

```
▼ KMeans
KMeans()
```

In [14]:

```
1 y_predicted=km.fit_predict(df[["CustomerID","Quantity"]])
2 y_predicted
```

C:\Users\91955\AppData\Local\Programs\Python\Python310\lib\site-packages\s
klearn\cluster_kmeans.py:870: FutureWarning: The default value of `n_init
` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicit
ly to suppress the warning
 warnings.warn(

Out[14]:

array([1, 1, 1, ..., 2, 2, 2])

In [15]:

```
1 df["cluster"]=y_predicted
2 df.head()
```

Out[15]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	6	01-12-2010 08:26	2.55	17850.0	United Kingdom
1	536365	71053	WHITE METAL LANTERN	6	01-12-2010 08:26	3.39	17850.0	United Kingdom
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	01-12-2010 08:26	2.75	17850.0	United Kingdom
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	01-12-2010 08:26	3.39	17850.0	United Kingdom
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	01-12-2010 08:26	3.39	17850.0	United Kingdom
4								

In [16]:

```
df1=df[df.cluster==0]
df2=df[df.cluster==1]
df3=df[df.cluster==2]
plt.scatter(df1["CustomerID"],df1["Quantity"],color="red")
plt.scatter(df2["CustomerID"],df2["Quantity"],color="green")
plt.scatter(df3["CustomerID"],df3["Quantity"],color="blue")
plt.xlabel("CustomerID")
plt.ylabel("Quantity")
```

Out[16]:

Text(0, 0.5, 'Quantity')

In [17]:

```
from sklearn.preprocessing import MinMaxScaler
scaler=MinMaxScaler()
scaler.fit(df[["Quantity"]])
df["Quantity"]=scaler.transform(df[["Quantity"]])
df.head()
```

Out[17]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	0.500037	01-12-2010 08:26	2.55	17850.0	United Kingdor
1	536365	71053	WHITE METAL LANTERN	0.500037	01-12-2010 08:26	3.39	17850.0	United Kingdom
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	0.500049	01-12-2010 08:26	2.75	17850.0	United Kingdom
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	0.500037	01-12-2010 08:26	3.39	17850.0	United Kingdon
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	0.500037	01-12-2010 08:26	3.39	17850.0	United Kingdom
4								

In [18]:

```
scaler.fit(df[["CustomerID"]])
df["CustomerID"]=scaler.transform(df[["CustomerID"]])
df.head()
```

Out[18]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	0.500037	01-12-2010 08:26	2.55	0.926443	United Kingdon
1	536365	71053	WHITE METAL LANTERN	0.500037	01-12-2010 08:26	3.39	0.926443	United Kingdom
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	0.500049	01-12-2010 08:26	2.75	0.926443	United Kingdon
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	0.500037	01-12-2010 08:26	3.39	0.926443	United Kingdon
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	0.500037	01-12-2010 08:26	3.39	0.926443	United Kingdom
4								

In [19]:

```
1 km=KMeans()
```

In [20]:

```
1 y_predicted=km.fit_predict(df[["CustomerID","Quantity"]])
2 y_predicted
```

C:\Users\91955\AppData\Local\Programs\Python\Python310\lib\site-packages\s
klearn\cluster_kmeans.py:870: FutureWarning: The default value of `n_init
` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicit
ly to suppress the warning
 warnings.warn(

Out[20]:

```
array([4, 4, 4, ..., 2, 2, 2])
```

In [21]:

```
1 df["New Cluster"]=y_predicted
2 df.head()
```

Out[21]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	0.500037	01-12-2010 08:26	2.55	0.926443	United Kingdon
1	536365	71053	WHITE METAL LANTERN	0.500037	01-12-2010 08:26	3.39	0.926443	United Kingdon
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	0.500049	01-12-2010 08:26	2.75	0.926443	United Kingdon
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	0.500037	01-12-2010 08:26	3.39	0.926443	United Kingdon
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	0.500037	01-12-2010 08:26	3.39	0.926443	United Kingdon
4								

In [22]:

```
df1=df[df["New Cluster"]==0]
df2=df[df["New Cluster"]==1]
df3=df[df["New Cluster"]==2]
plt.scatter(df1["CustomerID"],df1["Quantity"],color="red")
plt.scatter(df2["CustomerID"],df2["Quantity"],color="green")
plt.scatter(df3["CustomerID"],df3["Quantity"],color="blue")
plt.xlabel("CustomerID")
plt.ylabel("Quantity")
```

Out[22]:

Text(0, 0.5, 'Quantity')

In [23]:

```
1 km.cluster_centers_
```

Out[23]:

In [24]:

```
df1=df[df["New Cluster"]==0]
df2=df[df["New Cluster"]==1]
df3=df[df["New Cluster"]==2]
plt.scatter(df1["CustomerID"],df1["Quantity"],color="red")
plt.scatter(df2["CustomerID"],df2["Quantity"],color="green")
plt.scatter(df3["CustomerID"],df3["Quantity"],color="blue")
plt.scatter(km.cluster_centers_[:,0],km.cluster_centers_[:,1],color="orange",marker=
plt.xlabel("CustomerID")
plt.ylabel("Quantity")
```

Out[24]:

Text(0, 0.5, 'Quantity')

In [25]:

```
1 k_rng=range(1,10)
2 sse=[]
```

```
In [26]:
```

```
for k in k_rng:
 1
     km=KMeans(n_clusters=k)
 2
     km.fit(df[["CustomerID","Quantity"]])
 3
 4
    sse.append(km.inertia_)
 5
    #km.inertia will give you the value of sum of square error
 6
    print(sse)
 7
    plt.plot(k rng,sse)
    plt.xlabel("K")
 8
    plt.ylabel("Sum of Squared Error")
C:\Users\91955\AppData\Local\Programs\Python\Python310\lib\site-packages\s
klearn\cluster\ kmeans.py:870: FutureWarning: The default value of `n init
 will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicit
ly to suppress the warning
 warnings.warn(
C:\Users\91955\AppData\Local\Programs\Python\Python310\lib\site-packages\s
klearn\cluster\ kmeans.py:870: FutureWarning: The default value of `n init
 will change from 10 to 'auto' in 1.4. Set the value of `n init` explicit
ly to suppress the warning
 warnings.warn(
C:\Users\91955\AppData\Local\Programs\Python\Python310\lib\site-packages\s
klearn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init
 will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicit
ly to suppress the warning
 warnings.warn(
C:\Users\91955\AppData\Local\Programs\Python\Python310\lib\site-packages\s
klearn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init
 will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicit
ly to suppress the warning
 warnings.warn(
C:\Users\91955\AppData\Local\Programs\Python\Python310\lib\site-packages\s
klearn\cluster\ kmeans.py:870: FutureWarning: The default value of `n init
 will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicit
ly to suppress the warning
 warnings.warn(
C:\Users\91955\AppData\Local\Programs\Python\Python310\lib\site-packages\s
klearn\cluster\ kmeans.py:870: FutureWarning: The default value of `n init
 will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicit
ly to suppress the warning
 warnings.warn(
C:\Users\91955\AppData\Local\Programs\Python\Python310\lib\site-packages\s
klearn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init
 will change from 10 to 'auto' in 1.4. Set the value of `n init` explicit
ly to suppress the warning
 warnings.warn(
C:\Users\91955\AppData\Local\Programs\Python\Python310\lib\site-packages\s
klearn\cluster\ kmeans.py:870: FutureWarning: The default value of `n init
 will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicit
ly to suppress the warning
 warnings.warn(
C:\Users\91955\AppData\Local\Programs\Python\Python310\lib\site-packages\s
klearn\cluster\ kmeans.py:870: FutureWarning: The default value of `n init
 will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicit
ly to suppress the warning
```

warnings.warn(

[46374.84553398474, 11336.0653054853, 4915.900467978989, 2723.519105189528 5, 1695.0698705470877, 1178.5923367697617, 903.50469739041, 676.5428068580 441, 528.5658987913772]

Out[26]:

Text(0, 0.5, 'Sum of Squared Error')

For the given dataset we use K-means Clustering and done the grouping based on the given data.In theabove dataset, we will take customer id and quantity based on that we make the clusters. When the K-value is low,the error rate is more and the K-value is high,the error rate is very high. So,finally we can conclude the above dataset is bestfit for K-Means.

In []:
1