Mathematical Statistics and Data Analysis

Answers

Thommy Perlinger

1 Probability

Ordering key, Real book v E-book. $2 \leftrightarrow 6$, $4 \leftrightarrow 8$, $10 \rightarrow 24$, $12 \leftrightarrow 18$, $14 \leftrightarrow 62$, $16 \rightarrow 10$, $18 \leftrightarrow 26$, $20 \rightarrow 26$, $22 \leftrightarrow 32$, $24 \rightarrow 20$, $36 \leftrightarrow 38$, $40 \leftrightarrow 44$, $52 \leftrightarrow 56$, $72 \leftrightarrow 76$

- 1. (a) $\Omega = \{hhh, hht, hth, thh, htt, tht, tth, ttt\}.$
 - (b)

 $A = At least two heads = \{hhh, hht, hth, thh\}$

 $B = \text{Heads in the first two flips} = \{hhh, hht\}$

 $C = \text{Tails in the last flip} = \{hht, htt, tht, ttt\}$

(c)

$$A^c = \text{At most one heads} = \{htt, tht, tth, ttt\}$$

 $A \cap B = \{hhh, hht\}$
 $A \cup C = \{hhh, hth, thh, hht, htt, tht, ttt\}$

- 2. (a) Argument. Venn-diagram.
 - (b) Repeated use of the Addition Law.

$$3. \ \Omega = \left\{ \begin{array}{l} rrr, rrg, rgr, grr, rgg, grg, ggr, rrw, rwr, wrr, ggw, gwg, wgg, rgw, rwg, grw, \\ gwr, wrg, wgr \end{array} \right\}$$

4. Make use of the Addition Law and mathematical induction.

5.
$$C = (A \cap B^c) \cap (A \cup B) = (A \cap B)^c \cap (A \cup B)$$
.

6. (a)
$$\Omega = \{11, 12, 13, \dots, 65, 66\}$$

$$\text{i. } A = \left\{ \begin{array}{l} 14,15,16,23,24,25,26,32,33,34,35,36,41,42,43,44,45,46,51, \\ 52,53,54,55,56,61,62,63,64,65,66 \end{array} \right\} \\ \text{ii. } B = \left\{ 21,31,32,41,42,43,51,52,53,54,61,62,63,64,65 \right\}$$

ii.
$$B = \{21, 31, 32, 41, 42, 43, 51, 52, 53, 54, 61, 62, 63, 64, 65\}$$

iii.
$$C = \{41, 42, 43, 44, 45, 46\}$$

i.
$$A \cap B = \{32, 41, 42, 43, 51, 52, 53, 54, 61, 62, 63, 64, 65\}$$

ii.
$$B \cup C = \{21, 31, 32, 41, 42, 43, 44, 45, 46, 51, 52, 53, 54, 61, 62, 63, 64, 65\}$$

iii.
$$A \cap (B \cup C) = \{32, 41, 42, 43, 44, 45, 46, 51, 52, 53, 54, 61, 62, 63, 64, 65\}$$

- 7. Make use of the Addition Law and the fact that $Pr(A \cup B) \leq 1$.
- 8. Venn-diagram
- 9. Make use of the Addition Law and the fact that $Pr(A \cap B) \leq min(Pr(A), Pr(B))$.

10.
$$\binom{n}{j} \left(\frac{1}{k}\right)^j \left(1 - \frac{1}{k}\right)^{n-j}, \quad j = 0, 1, \dots, n.$$

11.
$$P_4^7/10^4$$
.

12.
$$P_{26}^{256} = 256!/(256 - 26)!$$
.

13. (a)
$$10 \cdot (4^5 - 4) / {52 \choose 5}$$
.

(b)
$$\binom{13}{1}\binom{4}{4}\binom{48}{1}/\binom{52}{5}$$
.

(c)
$$\binom{13}{1}\binom{12}{1}\binom{4}{3}\binom{4}{2}\binom{44}{0}/\binom{52}{5}$$
.

14. Argue.

15.
$$4 \cdot 6 \cdot 3 = 72$$

16. Simpson's paradox (or Yule-Simpson effect).

$$p_A(k) = \frac{\binom{k}{0}\binom{100-k}{4}}{\binom{100}{4}} = \frac{\binom{100-k}{4}}{\binom{100}{4}}, \quad k = 0, 1, \dots, 100$$

18.
$$6^4 = 1296$$
.

19. (a)
$$\binom{5}{1}\binom{2}{1}\binom{3}{1}\binom{2}{1}\binom{2}{1}/\binom{12}{4}$$

(b)
$$10/33$$
.

20.
$$13!/(3! \cdot 2! \cdot 2! \cdot 2! \cdot 2! \cdot 1! \cdot 1!)$$
.

$$22. \ 1/24.$$

- 23. $P_2^n = n(n-1)$.
- $24. \ 1/5525.$
- 25. 3! = 6.
- 26. Approximation. $m = 1/(\lg n \lg (n k))$.
- 27. $P_5^{26}/26^5$.
- 28. $\binom{52}{5}\binom{47}{5}\binom{42}{5}\binom{37}{5}\binom{32}{5}$.
- 29. $\binom{10}{2} / \binom{47}{2}$.
- 30. 0.052, 0.301, 0.06.
- $31. 6!^2.$
- 32. $1 {\binom{40}{n}}/{\binom{52}{n}}$. n = 3.
- 33. $7!/[(7-5)! \cdot 7^5]$.
- 34. See Tutorial 1.
- 35. Combinatorial identities.
- 36. 20 and 1680.
- 37. $\binom{7}{2\ 2\ 3} = \frac{7!}{2!2!3!} = 210.$
- 38. $\binom{7}{3}$.
- 39. (a) 21!/26!.
 - (b) $n \ge -1/\lg\left(1 \frac{21!}{26!}\right)$.
- 40. $\binom{12}{4}\binom{8}{4}\binom{4}{4}/3!$.
- 41. (a) $\left[\binom{7}{2} + \binom{8}{2} + \binom{9}{2}\right] / \binom{24}{2}$.
 - (b) $\binom{7}{2} / \binom{24}{2}$.
- 42. $\binom{11}{4}\binom{7}{3}\binom{4}{3}\binom{1}{1}$.
- 43. $\binom{10}{4}\binom{6}{3}\binom{3}{3}$.
- 44. 8! (depending on interpretation).
- 45. Make use of the Multiplication Law and mathematical induction.
- 46. (a) 31/70, (b) 21/31.

- 47. (a) 11/45, (b) 6/11.
- 48. (a) 2/5, (b) 1/2.
- 49. (a) 4/7, (b) 3/7.
- 50. 1/5.
- $51. \ 2/5.$
- 52. (a) 1/2.
 - (b) 1/3.
- 53. 0.348.
- 54. (a) $\alpha p + (1 \beta)(1 p)$.
 - (b) $\alpha (\alpha p + (1 \beta) (1 p)) + (1 \beta) (1 (\alpha p + (1 \beta) (1 p))).$
 - (c) $(1-\beta)/[2-(\alpha+\beta)]$.
- 55. (a) 0.484, 0.696, (b) 0.064, 0.614, 0.322.
- 56. $\left[\binom{52}{5} \left(\binom{48}{5} + \binom{4}{1} \binom{48}{4} \right) \right] / \left[\binom{52}{5} \binom{48}{5} \right] \approx 0.122.$
- $57. \ 2/3.$
- 58. Use Bayes Theorem. It makes no difference.
- 59. (a) 2/3.
 - (b) 5/6.
 - (c) 4/5.
- 60. Check the Kolmogorov axioms.
- 61. 0.863.
- 62. $\binom{52}{13}\binom{39}{13}\binom{26}{13}\binom{13}{13}$.
- 63. 1/3.
- 64. 5/8.
- 65. Make use of the complement rule, the Addition Law, and De Morgan's rule.
- 66. Use the definition.
- 67. Apply the definition of indepedence to the Addition Law.
- 68. False. Find a counterexample.

- 69. Yes, but only if one of the events i \emptyset .
- 70. Yes, but only if Pr(A) = 0.
- 71. Use the definition of mutually independent events.

$$p_{2}(0) = p^{2}q(1-q) + p(1-p)(1-q)^{2}$$

$$p_{2}(1) = pq(1-q) + (pq+(1-p)(1-q))^{2} + p(1-p)q(1-q)$$

$$p_{2}(2) = 2 \cdot (pq+(1-p)(1-q))(1-p)q$$

$$p_{2}(3) = (1-p)^{2}q^{2}$$

- 73. $\sum_{j=k}^{n} {n \choose j} p^j (1-p)^{n-j}, \quad k=0,1,\ldots,n.$
- 74. $p^3 (2-p)^2$.
- 75. p = 0.59697.
- 76. $((1-p)(1+p))^n$.
- 77. n = 14.
- 78. (a) Pr(AA) = Pr(Aa) = 1/2.
 - (b) Second generation. $\Pr(AA) = (p+q)^2$, $\Pr(aa) = (r+q)^2$, and $\Pr(Aa) = 1 ((p+q)^2 + (r+q)^2)$.
- 79. Similar to the previous one.
 - (a) Pr(aa) = Pr(AA) = 1/4, Pr(Aa) = 1/2.
 - (b) 2/3.
 - (c) $\Pr(aa) = p/6$, $\Pr(AA) = (2-p)/3$, $\Pr(Aa) = (2+p)/6$.
 - (d) (4-p)/(6-p).
- 80. $Pr(A \cap B \cap C) \neq Pr(A) Pr(B) Pr(C)$.

2 Random Variables

Ordering key, Real book v E-book. $2 \leftrightarrow 6$, $8 \leftrightarrow 12$, $10 \leftrightarrow 14$, $20 \rightarrow 24$, $22 \rightarrow 20$, $24 \rightarrow 22$, $30 \leftrightarrow 32$, $46 \leftrightarrow 48$, $54 \leftrightarrow 56$, $58 \leftrightarrow 60$, $62 \leftrightarrow 64$, $68 \leftrightarrow 70$.

1.

\overline{x}	p(x)	F(x)
0	0.25	0.25
1	0.125	0.375
2	0.125	0.5
3	0.5	1.0

2. Argue.

\overline{k}	F(k)	p(k)
0	0.0	0.0
1	0.1	0.1
2	0.3	0.2
3	0.7	0.4
4	0.8	0.1
5	1.0	0.2

- 4. Use the definitions.
- 5. Use the definition.

6. (a)
$$p(0) = 1/2$$
, $p(1) = 1/4$, $p(2) = 1/8$, $p(3) = 1/16$, $p(4) = 1/16$.

(b)
$$p(0) = 5/16$$
, $p(1) = 3/8$, $p(2) = 1/4$, $p(3) = 1/16$.

(c)
$$p(-4) = 1/16$$
, $p(-2) = 1/4$, $p(0) = 3/8$, $p(2) = 1/4$, $p(4) = 1/16$.

(d)
$$p(0) = 1/8$$
, $p(3) = 1/2$, $p(4) = 3/8$.

7.
$$F(x) = 1 - p, 0 \le x \le 1$$
.

- 8. 0.0098 vs 0.00018.
- 9. $\frac{1}{2} \le p \le 1$.

$$p(k) = \begin{cases} (1-p_1)^n (1-p_2)^n p_1, & k = 2n+1\\ (1-p_1)^{n+1} (1-p_2)^n p_2, & k = 2n+2 \end{cases}$$

(b)
$$p_1/(p_1+p_2-p_1p_2)$$
.

- 11. $\lfloor (n+1)p \rfloor$. Remark. If $(n+1)p \in \mathbb{Z}^+$, the binomial is bimodal with modes (n+1)p and (n+1)p-1.
- 12. Use the Binomial Theorem.

13. (a)
$$\Pr(X \ge 12) = \sum_{k=12}^{20} {20 \choose k} \left(\frac{1}{3}\right)^k \left(\frac{2}{3}\right)^{20-k} \approx 0.013$$

(b)
$$\Pr(X \ge 12) = \sum_{k=12}^{20} {20 \choose k} \left(\frac{1}{2}\right)^{20} \approx 0.252$$

- 14. 0.986 compared to 0.815.
- 15. Five games. $\Pr(X \ge 3) = \sum_{k=3}^{5} {5 \choose k} \cdot 0.4^k \cdot 0.6^{5-k} \approx 0.3174$. Seven games. $\Pr(X \ge 4) = \sum_{k=4}^{7} {7 \choose k} \cdot 0.4^k \cdot 0.6^{7-k} \approx 0.2898$.
- 16. Messy combinatorics.

17.
$$p(k) = (1-p)^k p$$
, $k = 0, 1, 2, ...$

18.
$$p(k) = {k+r-1 \choose r-1} (1-p)^k p^r, \quad k = 0, 1, 2, \dots$$

19.
$$F(k) = 1 - (1 - p)^k$$
, $k = 1, 2, ...$

20.
$$\binom{2n-k}{n} \frac{1}{2^{2n-k}}, \quad k = 0, 1, \dots, n.$$

- 21. Se Tutorial 2.
- 22. $k = 2/\lg 2 = 6.64$, i.e. k = 7 since $k \in \mathbb{Z}^+$.

23.
$$\Pr(X = r + k) = {r+k-1 \choose r} (1-p)^k p^r$$
.

24.
$$(3/4)^3$$
.

25. (a)
$$1 - 1.3 \times 10^{-8104000} \approx 0.99865$$
.

(b)
$$\binom{104000}{2} (1.3 \times 10^{-8})^2 (1 - 1.3 \times 10^{-8})^{103998} \approx 9.1271 \times 10^{-7}$$
.

- 26. 0.77, 0.20, 0.026.
- 27. $X \sim Bi (100\,000, 0.001)$ but also approximately Po (100).
- 28. Follow the instructions.
- 29. Follow the instructions.
- 30. $k = \lfloor \lambda \rfloor$.

31. (a) 0.283, (b) 20.79 minutes.

32. (a)
$$p(k) = 4^k e^{-4}/k!$$
, $k = 0, 1, 2, \dots k = 4$.

(b) 0.00274.

33.
$$f(x) = \alpha \beta x^{\beta - 1} e^{-\alpha x^{\beta}}, \quad x \ge 0.$$

34.

$$F(x) = \frac{x+1}{2} + \frac{\alpha (x^2 - 1)}{4}, \quad -1 \le x \le 1$$

$$\eta = \begin{cases} -\frac{1}{\alpha} - \sqrt{\frac{1}{\alpha^2} + 1}, & -1 \le \alpha < 0 \\ -\frac{1}{\alpha} + \sqrt{\frac{1}{\alpha^2} + 1}, & 0 < \alpha \le 1 \end{cases}$$

35.

36. p(k) = 1/n, k = 0, 1, 2, ..., n - 1. X is said to be discrete uniform and we write $X \sim U[0, n - 1]$.

 $37. \ 2/3.$

38. Use basic properties of pdfs.

39. (a) Use the fact that $tan^{-1}(x)$ is a strictly increasing function.

(b)
$$f(x) = [\pi (1+x^2)]^{-1}, -\infty < x < \infty.$$

(c) $\tan (0.4\pi) \approx 3.08$

40. (a)
$$c = 3$$
, (b) $F(x) = x^3$, $0 < x < 1$, (c) 0.124.

41. $q_1 = (\ln 4 - \ln 3) / \lambda$ and $q_3 = \ln 4 / \lambda$.

42.
$$f_R(r) = 2\lambda \pi r e^{-\lambda \pi r^2}, r > 0.$$

43.
$$f_R(r) = 4\lambda \pi r^2 e^{-4\lambda \pi r^3/3}, r > 0.$$

44.
$$p_X(k) = e^{-\lambda k} (1 - e^{-\lambda}), \quad k = 0, 1, 2, \dots$$

- 45. (a) $1 e^{-1} \approx 0.632$
 - (b) $e^{-1/2} e^{-3/2} \approx 0.383$
 - (c) $x_{0.99}10 \ln 100 \approx 46.05$.
- 46. Use the definition.
- 47. $x = (\alpha 1)/\lambda$.
- 48. $\lambda = -\ln 0.95 \approx 0.05$.
- 49. (a) Use the definition.
 - (b) Use the definition. Follow the instructions.
 - (c) Follow the instructions.
 - (d) Follow the instructions.
- 50. Use the definition of the gamma function. Consider both $s=t^2$ and $s=e^t$ (i.e. $t=\ln s$).
- 51. Follow the instructions.
- 52. (a) 0.25, (b) It is a linear transformation so it is Normal. Find its parameters.
- 53. (a) 0.3085, (b) 0.8351, (c) 21.45.
- 54.

$$f_Y(y) = \frac{\sqrt{2}}{\sigma\sqrt{\pi}}e^{-\frac{y^2}{2\sigma^2}}, \quad y > 0$$

- 55. $c = 1.96\sigma$.
- 56. Standardize.
- 57. See lecture notes.
- 58.

$$f_Y(y) = \frac{1}{\sigma y \sqrt{2\pi}} \exp\left\{-\frac{1}{2} \cdot \frac{(\ln y - \mu)^2}{\sigma^2}\right\}, \quad y > 0$$

- 59. $f_X(x) = \frac{1}{2\sqrt{x}}, \quad 0 < x < 1.$
- 60. $f_X(x) = 2x$, 0 < x < 1.
- 61. $Y = cX \sim Ga(\alpha, \lambda/c)$.
- 62. $E \sim Ga\left(\frac{1}{2}, \frac{1}{m\sigma^2}\right)$.
- 63. $f(x) = [\pi (1 + x^2)]^{-1}, -\infty < x < \infty.$

64. Use the Transformation Method.

65.
$$X = \left(-1 + 2\sqrt{1/4 - \alpha(1/2 - \alpha/4 - U)}\right)/\alpha$$
.

66.
$$X = (1 - U)^{-1/\alpha}$$
.

67. (a)
$$f(x) = \beta (x/\alpha)^{\beta-1} e^{-(x/\alpha)^{\beta}}, \quad x > 0.$$

(b)
$$X \sim Exp(1)$$
.

(c)
$$X = \alpha (-\ln(1-U))^{1/\beta}$$
.

68.

$$f_V(v) = \frac{v^{-1/\alpha - 1}}{\alpha (b - a)}, \quad b^{-\alpha} < v < a^{-\alpha}$$

69.

$$f_X(x) = (\lambda/3) (3/4\pi)^{-1/3} x^{-2/3} \exp\left\{-\lambda \left(\frac{3x}{4\pi}\right)^{1/3}\right\}, \quad x > 0$$

$$f_X(x) = \frac{\lambda}{2\sqrt{x\pi}} \exp\left\{-\lambda\sqrt{\frac{x}{\pi}}\right\}, \quad x > 0$$

- 71. Follow the instructions.
- 72. Not solved.

3 Joint Distributions

Ordering key, Real book v E-book. $10 \leftrightarrow 14$, $16 \leftrightarrow 20$, $24 \to 32$, $26 \to 24$, $32 \to 26$, $36 \leftrightarrow 38$, $44 \to 50$, $46 \to 48$, $48 \to 44$, $50 \to 46$, $68 \leftrightarrow 74$, $70 \leftrightarrow 72$.

1. The joint distribution of X and Y is

	x				
\overline{y}	1	2	3	4	p(y)
1	0.10	0.05	0.02	0.02	0.19
2	0.05	0.20	0.05	0.02	0.32
3	0.02	0.05	0.20	0.04	0.31
4	0.02	0.02	0.04	0.10	0.18
p(x)	0.19	0.32	0.31	0.18	

(a) Look at the margins of the cross table.

(b)
$$p(x | Y = 1)$$

$$p(y \mid X = 1)$$

		į	J	
\overline{x}	1	2	3	4
1	$\frac{10}{19}$	$\frac{5}{19}$	$\frac{2}{19}$	$\frac{2}{19}$

2. A generalization of the hypergeometric distribution.

$$p_{X,Y,Z}\left(x,y,z\right) = \frac{\binom{p}{x}\binom{q}{y}\binom{r}{z}}{\binom{N}{n}}, \quad 0 \le x, y, z \le n, \quad x+y+z=n$$

$$p_{X,Y}(x,y) = \frac{\binom{p}{x}\binom{q}{y}\binom{N-p-q}{n-x-y}}{\binom{N}{n}}, \quad 0 \le x, y \le n, \quad x+y \le n$$

(c)

$$p_X(x) = \frac{\binom{p}{x}\binom{N-p}{n-x}}{\binom{N}{n}}, \quad 0 \le x \le n$$

i..e., $X \sim Hyp(n, p, N)$.

$$p_{X,Y,Z}(x,y,z) = \frac{n!}{x!y!z!} \left(\frac{1}{3}\right)^n, \quad 0 \le x, y, z \le n, \quad x+y+z=n$$

$$\left(\frac{w-2r}{w+d}\right)^2$$
 and $\left(1-\left(\frac{w-2r}{w+d}\right)^2\right)^n$, respectively

5. Buffon's Needle Problem. Hint. Let R represent the distance between the needle's midpoint and line, and let Θ represent the needle's direction (or angle). Argue that R and Θ are independent random variables where $R \sim U(0, D/2)$ and $\Theta \sim U(0, \pi/2)$. This means that the joint pdf is given by

$$f_{R,\Theta}(r,\theta) = \frac{4}{\pi D}, \quad 0 \le r \le \frac{D}{2}, \quad 0 \le \theta \le \frac{\pi}{2}$$

In order for the needle to cross a line we must have that

$$r + L/2\sin\theta \ge D/2 \Longleftrightarrow r \ge D/2 - L/2\sin\theta$$

Solve the resulting double integral and you have the answer. Drop the needle a large number of times and let r_A represent the relative number of times the needle crosses a line. Then

$$\pi \approx \frac{2L}{r_A D}$$

$$f_X(x) = \frac{2\sqrt{1 - \frac{x^2}{a^2}}}{a\pi}, \quad -a \le x \le a$$

$$f_Y(y) = \frac{2\sqrt{1 - \frac{x^2}{b^2}}}{b\pi}, \quad -b \le x \le b$$

- 7. $f(x,y) = \alpha \beta e^{-(\alpha x + \beta y)}$, x,y > 0, $\alpha,\beta > 0$. $X \sim Exp(\alpha)$ and $Y \sim Exp(\beta)$.
- 8. (a) (i) $\Pr(X > Y) = 1/2$, (ii) $\Pr(X + Y \le 1) = 3/14$, (iii) $\Pr(X \le \frac{1}{2}) = 2/7$.
 - (b) f_X and f_Y are identical. $f(x) = (6x^2 + 6x + 2)/7$, $0 \le x \le 1$.
 - (c) $f_{Y|X}$ and $f_{X|Y}$ are identical. $f_{Y|X}(y \mid x) = 3(x+y)^2 / [3x^2 + 3x + 1], 0 \le y \le 1$.
- 9. $f(x,y) = 3/4, -1 \le x \le 1, 0 \le y \le 1 x^2$.
 - (a) $f_X(x) = 3(1-x^2)/4$, $-1 \le x \le 1$. $f_Y(y) = 3\sqrt{1-y}/2$, $0 \le y \le 1$.
 - (b) $Y \mid X = x \sim U(0, 1 x^2)$ and $X \mid Y = y \sim U(-\sqrt{1 y}, \sqrt{1 y})$.
- 10. (a) $X \sim Exp(1)$ and $f_Y(y) = 1/(y+1)^2$, $y \ge 0$. X and Y are dependent.
 - (b) $Y \mid X = x \sim Exp(x) \text{ and } X \mid Y = y \sim Ga(2, y + 1).$
- 11. $(6 \ln 2 + 5)/36 \approx 0.254$.

- 12. (a) c = 1/8.
 - (b) $X \sim Ga(4,1)$ and $f_Y(y) = (1+|y|)e^{-|y|}/4, -\infty < y < \infty$.
 - (c) $f_{Y|X}(y \mid x) = 3(x^2 y^2)/(4x^3), -x \le y < x.$ $f_{X|Y}(x \mid y) = (x^2 - y^2)e^{-x}/[2(1 + |y|)e^{-|y|}], x \ge |y|.$
- 13. p(0) = 1/2 and p(1) = p(2) = 1/4.
- 14. $f_{X,Y,Z}(x,y,z) = 3/(4\pi), x^2 + y^2 + z^2 \le 1.$
 - (a) f_X , f_Y , and f_Z are identical. Use polar coordinates. $f(x) = 3(1-x^2)/4$, $-1 \le x \le 1$.
 - (b) $f_{X,Y}$, $f_{X,Z}$, and $f_{Y,Z}$ are identical. $f(x,y) = 3\sqrt{1-x^2-y^2}/(2\pi)$, $x^2+y^2 \le 1$.
 - (c) $f_{X,Y|Z=0}(x,y) = 1/\pi$, $x^2 + y^2 \le 1$, i.e. $(X,Y) \mid Z=0$ is uniformly distributed on the unit circle.
- 15. (a) $c = 3/(2\pi)$, (b) Not solved, (c) $1 1/(2\sqrt{2}) \approx 0.646$, (d) See Problem 14a, (e) $f_{Y|X}$ and $f_{X|Y}$ are identical.

$$f_{Y|X}(y \mid x) = 2\sqrt{1 - x^2 - y^2} / \left[\pi \left(1 - x^2\right)\right], y \le \sqrt{1 - x^2}.$$

- 16. $f(x_1, x_2) = 1/x_1$, $0 \le x_2 \le x_1 \le 1$, and $f_{X_2}(x_2) = -\ln x_2$, $0 \le x_2 \le 1$.
- 17. (a)

- (b) f_X and f_Y are identical. $f(x) = 1 |x|, -1 \le x \le 1$.
- (c) $f_{Y|X}(y \mid x) = 1/[2(1-|x|)], |x|-1 \le y \le 1-|x|.$

18. The joint pdf of X and Y is given by

$$f_{X,Y}(x,y) = k(x-y), \quad 0 \le y \le x \le 1$$

(a)

- (b) k = 6.
- (c) $f_X(x) = 3x^2$, $0 \le x \le 1$, and $f_Y(y) = 3(1-y)^2$, $0 \le y \le 1$.
- (d) $f_{Y|X}(y \mid x) = 2(x y)/x^2$, $0 \le y \le x \le 1$, and $f_{X|Y}(x \mid y) = 2(x y)/(1 y)^2$, $0 \le y \le x \le 1$.
- 19. (a) $\Pr(T_1 > T_2) = \beta / (\alpha + \beta)$, (b) $\Pr(T_1 > 2T_2) = \beta / (2\alpha + \beta)$.
- 20. $f_Z(z) = (T |z|)/T^2, -T \le z \le T.$
- 21. Define indicator variables I_x for which we have that $\Pr(I_x = 1) = R(x)$. Argue that $f_Y(y) = f_{X|I_y=1}(y)$. Use Bayes' Rule.
- 22. $N(t_0, t_1) \mid N(t_0, t_2) = n \sim Bi(n, (t_1 t_0)(/t_2 t_0)).$
- 23. $X \sim Bi(m, pr)$.
- 24. $\theta = x/n$.
- 25. Let W be a random variable for which $\Pr(W = -1) = \Pr(W = 1) = 1/2$. Now let Y = XW. Show that $f_{-X}(v) = f_X(-v)$. Use the Law of Total Probability.
- 26. $P \mid X = k \sim Beta(k+1,2-k)$. Since there are just two cases, $P \mid X = 0 \sim Beta(1,2)$ and $P \mid X = 1 \sim Beta(2,1)$.
- 27. Use definitions.
- 28. See Section $3.3~\mathrm{pp78-79}$ for the definition of a copula. Use this.

$$f\left(x,y\right) = \frac{\partial^{2} F\left(x,y\right)}{\partial x \partial y} = \lambda \mu e^{-\lambda x} e^{-\mu y} \left[1 + \alpha \left(1 - 2e^{-\lambda x}\right) \left(1 - 2e^{-\mu y}\right)\right]$$

$$\frac{\partial^{2}C\left(u,v\right)}{\partial u\partial v}=\left\{\begin{array}{ll}u^{-\alpha}, & u^{\alpha}>v^{\beta}\\ v^{-b}, & u^{\alpha}$$

where it exists.

- 31. X and Y are dependent.
- 32. Not yet complete.
- 33. $\Theta \mid N = n \sim Beta(2, n)$.
- 34. $\Theta \mid X = x \sim Beta(x+3, n-x+3)$.
- 35. Use the same approach as in the example but with Beta(14,8) instead of U(0,1) as prior distribution. Use the same technique as in Problem 34.
- 36. Not solved.
- 37. Not solved.
- 38. Not solved.
- 39. Not solved.
- 40. Not solved.
- 41. Not solved.
- 42. (a) Use the Law of Total Probability.
 - (b) Use, e.g., $c = e^2/\sqrt{2\pi}$. Look at the regions |x| > 2 and $-2 \le x \le 2$ separately.
- 43. $f_S(s) = s$, 0 < s < 1 and $f_S(s) = 2 s$, $1 \le s < 2$.
- 44. Let S = X + Y. Then

$$p(s) = \begin{cases} 1/9, & s = 2\\ 2/9, & s = 3\\ 3/9, & s = 4\\ 2/9, & s = 5\\ 1/9, & s = 6 \end{cases}$$

- 45. Let $N \sim Po(\lambda)$. Then $X \mid N = n \sim Bi(n, p_A)$. Use the fact that $p_X(k) = \sum_{n=0}^{\infty} p_{X,N}(k,n) = \sum_{n=0}^{\infty} p_{X|N=n}(k) p_N(n)$ to show that $X \sim Po(\lambda p_A)$.
- 46. Let $S = T_1 + T_2$. $f_S(s) = \lambda_1 \lambda_2 \left(e^{-\lambda_2 s} e^{-\lambda_1 s} \right) / (\lambda_1 \lambda_2)$, s > 0.
- 47. Use convolution formula to show that $Z = X + Y \sim N(0, 2)$, i.e. that

$$f_Z(z) = \frac{1}{\sqrt{2}\sqrt{2\pi}}e^{-z^2/4}, \quad -\infty < z < \infty$$

48. Use the convolution formula.

49. Let
$$S = X + Y$$
. $f_S(s) = \lambda e^{-\lambda s} \left(e^{\lambda z/2} - 1 \right)$, $s > 0$.

50.
$$f_Z(z) = \int_{-\infty}^{\infty} f_X(v+y) f_Y(y) dy$$
.

51. It follows that

$$F_{Z}(z) = \Pr(Z \le z) = \int_{-\infty}^{0} \int_{z/x}^{0} f(x, y) \, dy dx + \int_{0}^{\infty} \int_{0}^{z/x} f(x, y) \, dy dx$$

Make the change of variable v = xy.

- 52. Remark. We assume here that $X \sim U(0,1)$ and $Y \sim U(0,1)$. Let Z = X/Y. Then $f_Z(z) = 1/(2z^2)$, $z \ge 1$.
- 53. 5/9.
- 54. The joint pdf of Θ , Φ , and R is given by

$$f_{\Theta,\Phi,R}(\theta,\phi,r) = \frac{r^2 \sin \phi}{\sigma^3 (2\pi)^{3/2}} \exp\left\{-\frac{r^2}{2\sigma^2}\right\}, \quad r > 0, \quad 0 \le \phi \le \pi, \quad 0 \le \theta < 2\pi$$

Also, $f_{\Theta}(\theta) = 1/(2\pi)$, $0 \le \theta < 2\pi$, and $f_{\Phi}(\phi) = \sin \phi/2$, $0 \le \phi \le \pi$. Finally,

$$f_R(r) = \frac{\sqrt{2}r^2 \exp\left\{-\frac{r^2}{2\sigma^2}\right\}}{\sigma^3 \sqrt{\pi}}, \quad r > 0$$

55. Let $X = R \cos \Theta$ and $Y = R \sin \Theta$.

(a)
$$f_{X,Y}(x,y) = 1/\left(2\pi\sqrt{x^2+y^2}\right)$$
, $x^2+y^2 \le 1$, $(x,y) \ne (0,0)$.

(b) f_X and f_Y are identical.

$$f_X(x) = \frac{1}{\pi} \ln \frac{1 + \sqrt{1 - x^2}}{|x|}, \quad -1 \le x \le 1, \quad x \ne 0$$

- (c) R should not be U(0,1). Instead consider $f_R(r) = 2r$.
- 56. $f_{R,\Theta}(r,\theta) = \lambda^2 r \exp\left\{-\lambda r \left(\cos\theta + \sin\theta\right)\right\}, r > 0, 0 \le \theta < \frac{\pi}{2}$. R and Θ are dependent.
- 57. Let $\mathbf{X} = \mathbf{BY}$ where

$$\mathbf{B} = \left(\begin{array}{cc} 1 & 0 \\ -1 & 1 \end{array}\right)$$

58. A linear transformation. Use the transformation theorem and compare the result to the pdf of a bivariate normal.

- 59. A linear transformation. Use the transformation theorem and compare the result to the pdf of a bivariate normal. *Remark*. It is better (less messy) to solve the problem using matrices.
- 60. Not solved.

$$f_{U,V}(u,v) = f_{X,Y}\left(\frac{u-a}{b}, \frac{v-c}{d}\right) \cdot \left|\frac{1}{bd}\right|$$

- 62. $1 e^{-1/2} \approx 0.3935$.
- 63. (a)

$$f_{U,V}(u,v) = \frac{1}{2} f_{X,Y}\left(\frac{u+v}{2}, \frac{u-v}{2}\right)$$

(b)

$$f_{U,V}\left(u,v\right) = \frac{1}{2v} f_{X,Y}\left(\sqrt{\frac{u}{v}},\sqrt{uv}\right)$$

(c)

$$f_{U,V}\left(u,v
ight) = rac{1}{2}f_X\left(rac{u+v}{2}
ight)f_Y\left(rac{u-v}{2}
ight), \quad f_{U,V}\left(u,v
ight) = rac{1}{2r}f_X\left(\sqrt{rac{u}{v}}
ight)f_Y\left(\sqrt{uv}
ight)$$

$$f_{U,V}(u,v) = \frac{\lambda^2 v}{(u+1)^2} e^{-\lambda v}, \quad 0 < u, v < \infty$$

- 65. We are looking for the pdf of $V = X_{(1)}$. See Example A in Section 3.7.
- 66. $F_U(u) = (1 e^{-2u})^3$, u > 0 and $f_U(u) = 6e^{-2u} (1 e^{-2u})^2$, u > 0.
- 67. $f(x) = n(n-1)\lambda e^{-\lambda(n-1)x} (1 e^{-\lambda x}), x > 0.$
- 68. (a) $f_{U_{(1)},U_{(2)},U_{(3)}}(u_1,u_2,u_3) = 6, 0 \le u_1 < u_2 < u_3 \le 1.$ (b) 1/27.
- 69. $f_V(v) = n\beta\alpha^{-\beta}v^{\beta-1}e^{-n(v/\alpha)^{\beta}}, v > 0.$
- 70. Use the fact that $\Pr(V > v, U \le u) = (F(u) F(v))^n$, u < v, in combination with the trivial fact that $\Pr(U \le u) = \Pr(V \le v, U \le u) + \Pr(V > v, U \le u)$.
- 71. $1 \nu^n$, $0 < \nu < 1$.
- $72. \ 1/32.$

- 73. Difficult. Consider the mapping $(X_1, X_2, \ldots, X_n) \longrightarrow (X_{(1)}, X_{(2)}, \ldots, X_{(n)})$ which is a permutation of the original variables. However, this is not a bijection, why we start by dividing \mathbb{R}^n into n! identical pieces.
- 74. Let W_k represent the wating time until service of the kth job in the queue. Then, according to Example A in Section 3.7, $W_1 = X_{(1)} \sim Exp(n\lambda)$. More generally, $W_k \sim Ga(k, \lambda n)$.
- 75. See the differential method in Section 3.7.
- 76. A little bit messy, but pretty straightforward.

77.
$$U_{(k)} - U_{(k-1)} \sim \beta(1, n), k = 2, 3, \dots, n.$$

- 78. Make the change of variable x = yu.
- 79. $R \sim Exp(\lambda)$.
- 80. (a) n/(n+1).

(b)
$$(n-1)/(n+1)$$
.

81. Same answer as in Problem 80.

4 Expected Values

Ordering key, Real book v E-book. $2 \leftrightarrow 4$, $12 \leftrightarrow 16$, $20 \rightarrow 30$, $26 \rightarrow 20$, $30 \rightarrow 26$, $34 \leftrightarrow 36$, $46 \leftrightarrow 48$, $62 \leftrightarrow 64$, $72 \leftrightarrow 74$, $88 \leftrightarrow 90$.

1.
$$E(X) = \int_{-\infty}^{\infty} x f(x) dx \le \int_{-\infty}^{\infty} M f(x) dx = M \int_{-\infty}^{\infty} f(x) dx = M < \infty$$
.

- 2. (a) $E(X) = \alpha/(\alpha 1), \alpha > 1$.
 - (b) $Var(X) = \alpha / [(\alpha 1)^2 (\alpha 2)], \alpha > 2.$
- 3. E(X) = 3.1, Var(X) = 1.49, $\alpha > 1$.
- 4. E(X) = (n+1)/2, $Var(X) = (n^2 1)/12$.
- 5. $E(X) = \alpha/3$, $Var(X) = (3 \alpha^2)/9$.
- 6. (a) E(X) = 2/3, (b) $Y \sim U(0,1)$ so E(X) = 1/2, (c) $E(X^2) = 1/2$,
 - (d) Use both techniques.
- 7. (a) E(X) = 5/8, (b) E(Y) = 7/8. Use both techniques, (c) $E(X^2) = 7/8$,
 - (d) Var(X) = 31/64. Use both techniques.
- 8. Count the number of times the term $p(k) = \Pr(X = k)$ appears. If $X \sim Ge(p)$ then $\Pr(X \ge k) = (1-p)^{k-1}$.
- 9. The largest n such that $F_X(n-1) \leq 1 c/s$.
- 10. (n+1)/2.
- 11. Not finished.
- 12. Expected values for linear transformations.
- 13. Use the fact that $x = \int_0^x dt$. Change the order of integration in the resulting double integral.
- 14. Identical to Problem 6.
- 15. Expected gain is 2a/n for both options.
- 16. Hints. $f(\xi x) = f(\xi + x)$. $E(X) = \int_{-\infty}^{\xi} x f(x) dx + \int_{\xi}^{\infty} x f(x) dx$. In the second integral, make the change of variable $y = 2\xi x$. Then $f(2\xi y) = f(y)$ and $\int_{-\infty}^{\xi} f(y) dy = 1/2$.
- 17. $X_{(k)} \sim Beta(k, n-k+1)$. Therefore $E(X_{(k)}) = k/(n+1)$ and $Var(X_{(k)}) = [k(n-k+1)]/[(n+1)^2(n+2)]$.
- 18. (n-1)/(n+1).

- 19. 1/(n+1).
- 20. $(1 e^{-\lambda})/\lambda$.
- 21. 1/3.
- 22. 1/4.
- 23. $2/\lambda^2$ and $1/\lambda^2$, respectively.
- 24. Use the fact that the E operator represents a double sum.
- 25. $2\alpha (\alpha + 1)/\lambda^2$.
- 26. Doesn't exist.
- 27. 1. Also the variance is 1.
- 28. $n\left(1 \left(1 \frac{p}{n}\right)^m\right)$.
- 29. See lecture notes.
- 30. $n \sum_{k=n-r+1}^{n} \frac{1}{k}$.
- 31. $E(1/X) = \ln 2 \neq 2/3 = 1/E(X)$.
- 32. $E(1/X) = \lambda/(\alpha 1), \alpha > 1.$
- 33. See lecture notes for ideas.
- 34. Not solved.
- 35. r/p.
- $36. \ 2/3.$
- 37. $p < (1/k)^{1/k}$
- 38. Not solved.
- 39. (a) 4606.
 - (b) 9991.7, i.e. approximately 10000.
- 40. $997/1296 \approx 0.77$.
- 41. $998/216 \approx 4.62$. $Pr(X > 99) \le 0.047$.
- 42. See lecture notes (for k = 2).
- 43. Use Theorem A of Section 4.3.

- 44. Var(X) Var(Y).
- 45. $-np_ip_i$.
- 46. $E(Z) = (\alpha + \sqrt{1 \alpha^2}) \mu$ and $\rho_{U,Z} = \alpha$.
- 47. Cov(X, Z) = -Var(X) and $\rho_{X,Z} = -\sqrt{Var(X)/(Var(X) + Var(Y))}$.
- 48. Use Theorem A of Section 4.3.
- 49. (a) Use Theorem A of Section 4.1.2 and use the fact that X and Y are independent.
 - (b) $\alpha = \sigma_V^2 / (\sigma_X^2 + \sigma_V^2)$.
 - (c) $1/3 < \sigma_X^2/\sigma_Y^2 < 3$.
- 50. Hint. Due to independence, $Var\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} Var\left(X_i\right)$.
- 51. $\pi_i = 1/n$.
- 52. Denote the two securities R_1 and R_2 . Let $\pi = (p, 1-p)$ be a strategy.
 - (a) R_1 since $\mu_1 > \mu_2$ and $\sigma_1 < \sigma_2$. Hence, $\pi = (1,0)$.
 - (b) For $\pi = (0.5, 0.5)$ it follows that $(\mu(\pi), \sigma(\pi)) = (0.9, 0.036)$.
 - (c) For $\pi = (0.8, 0.2)$ it follows that $(\mu(\pi), \sigma(\pi)) = (0.96, 0.062)$.
 - (d) For $\pi = (p, 1 p)$ it follows that $(\mu(\pi), \sigma(\pi)) = \left(0.2p + 0.8, \sqrt{0.0436p^2 0.048p + 0.0144}\right)$.

- 53. Different methods. Use, e.g., Cauchy-Schwarz inequality.
- 54. $Cov(U, V) = \sigma_Z^2 \text{ and } \rho_{U,V} = \sigma_Z^2 / \sqrt{(\sigma_X^2 + \sigma_Z^2)(\sigma_Y^2 + \sigma_Z^2)}$.
- 55. $E(T) = n(n+1)\mu/2$ and $Var(T) = n(n+1)(2n+1)\sigma^2/6$.
- 56. $Cov(S,T) = n(n+1)\sigma^2/2$ and $\rho_{S,T} = \sqrt{(3n+3)/(4n+2)}$.
- 57. $Var(XY) = \sigma_X^2 \sigma_Y^2 + \sigma_X^2 \mu_Y^2 + \sigma_Y^2 \mu_X^2$.

- 58. (a) E(Z) = (f(x+h) f(x))/h and $Var(Z) = 2\sigma^2/h^2$. So $E(Z) \approx f'(x)$ for small values of h.
 - (b) Not solved.
 - (c) Not solved.
- 59. The domain is not rectangular so X and Y cannot be independent. By symmetry, E(XY) = 0 and E(X) = E(Y) = 0. Formal calculations are a bit messy.
- 60. E(X) = E(SY) = E(S)E(Y) = 0 and $E(XY) = E(SY^2) = E(S)E(Y^2) = 0$ so Cov(X,Y) = 0. In order for X and Y to be independent, $f_{X,Y}(x,y) = f_X(x)f_Y(y)$ for every(x,y). However, for given value of y we have positive density only for $x = \pm y$.
- 61. (a) Cov(X, Y) = 1/36.
 - (b) $E(X \mid Y = y) = y/2$ and $E(Y \mid X = x) = (1 + x)/2$.
 - (c) $X \mid Y \sim U(0, Y)$ and $Y \mid X \sim U(1, X)$.
 - (d) $\hat{Y} = E(Y \mid X = x) = (1 + x)/2$ and $MSE_{\hat{V}} = 1/24$.
 - (e) The same as in d.
- 62. Standardize, and use rules for how to calculate the covariance when dealing with linear transformations.
- 63. See Problem 3.8.
 - (a) Cov(X, Y) = -5/588 and $\rho = -25/199$.
 - (b) $E(Y \mid X = x) = (6x^2 + 8x + 3) / [4(3x^2 + 3x + 1)].$
- 64. See Problem 3.1.
 - (a) Cov(X, Y) = 0.5096 and $\rho = 0.515$.
 - (b) $E(Y \mid X = 1) = \frac{34}{19}$, $E(Y \mid X = 2) = \frac{17}{8}$, $E(Y \mid X = 3) = \frac{88}{31}$, $E(Y \mid X = 4) = \frac{29}{9}$. The pmf of $W = E(Y \mid X)$ is given by

\overline{w}	$\frac{34}{19}$	$\frac{17}{8}$	$\frac{88}{31}$	<u>29</u> 9
p(w)	0.19	0.32	0.31	0.18

- 65. It is necessary for $E(S_n \mid N = n) = E(S_n)$ to be true.
- $66.\ 5/3.$
- 67. 3/2 and 1/6.
- 68. Use the law of total variance and use the fact that $Var(E(Y \mid X)) \geq 0$.

- 69. Not solved.
- 70. Use the definitions of conditional distributions and independence.
- 71. $Y \mid X = x \sim Hyp(x, m, n)$, and so $E(Y \mid X = x) = mx/n$.
- 72. μ^2 and $\sigma^2 (\mu + \mu^2)$.
- 73. 3n/4 (or np(1+p) in the general case).
- 74. $n \cdot (1-p) + p(n+1)/2$.
- 75. $E(U) = 1/(2\lambda)$ and $Var(U) = 5/(12\lambda^2)$.
- 76. $Y \mid X = x \sim U\left(0, \sqrt{1 x^2}\right)$ so $E\left(Y \mid X = x\right) = \sqrt{1 x^2}/2$. $X \mid Y = y \sim U\left(-\sqrt{1 y^2}, \sqrt{1 y^2}\right)$ so $E\left(X \mid Y = y\right) = 0$.
- 77. (a) Cov(X, Y) = 1 and $\rho = 1/\sqrt{2}$.
 - (b) $E(X \mid Y = y) = y/2$ and $E(Y \mid X = x) = 1 + x$.
 - (c) $E(X \mid Y) \sim Ga(2,2)$ and $f_{Y|X}(w) = e^{-(w-1)}, w \ge 1$.
- 78. Use the fact that f(x) = f(-x) to show $E(X^3) = 0$. In Problem 16 it was shown that E(X) = 0, and so it follows that

$$E\left(\frac{X - E\left(X\right)}{\sqrt{Var\left(X\right)}}\right)^{3} = \left(Var\left(X\right)\right)^{-3/2} E\left(X^{3}\right) = 0$$

- 79. $M(t) = 1/2 + 3e^{t}/8 + e^{2t}/8$. M'(0) = 5/8 = E(X) and $M''(0) = 7/8 = E(X^{2})$.
- 80. $M(t) = 2e^{t}/t 2(e^{t} 1)/t^{2}$. M'(0) = 2/3 = E(X) and $M''(0) = 1/2 = E(X^{2})$.
- 81. $M(t) = pe^t + 1 p$. $M^{(k)}(0) = p = E(X^k)$.
- 82. $M_Y(t) = (M_X(t))^n = (pe^t + 1 p)^n$.
- 83. $Y = \sum_{i=1}^{n} X_i$. $M_Y(t) = (pe^t + 1 p)^{\sum_{i=1}^{n} n_i}$, i.e. $Y \sim Bi(\sum_{i=1}^{n} n_i, p)$.
- 84. $Y = \sum_{i=1}^{n} X_i$. $M_Y(t) = \prod_{i=1}^{n} (p_i e^t + 1 p_i)^{n_i}$.
- 85. $M(t) = pe^{t}/[1 (1 p)e^{t}]$.
- 86. $M(t) = pe^{t}/[1 (1 p)e^{t}]^{r}$.
- 87. $p_i = p$ for all i.

88. Let $Z = X/\sigma$. Then $Z \sim N(0,1)$ and $X^n = \sigma^n Z^n$ and so $E(X^n) = \sigma^n E(Z^n)$. Taylor expansion of $M_Z(t)$ yields

$$M_Z(t) = 1 + \frac{1}{2}t^2 + \frac{1}{2!2^2}t^4 + \frac{1}{3!2^3}t^6 + \frac{1}{4!2^4}t^8 + \cdots$$

If we differentiate $M_Z(t)$ an *odd* number of times, the smallest term will contain t and so $E(Z^n) = M_Z^{(n)}(0) = 0$. If we differentiate $M_Z(t)$ an *even* number of times, then $E(Z^n) = M_Z^{(n)}(0) = (n-1)(n-3) \cdots 3 \cdot 1 = (n-1)!!$.

- 89. $M_Y(t) = \exp\left\{t \sum_{i=1}^n \alpha_i \mu_i + \frac{t^2}{2} \sum_{i=1}^n \alpha_i^2 \sigma_i^2\right\}.$ $Y = \sum_{i=1}^n \alpha_i X_i \sim N\left(\sum_{i=1}^n \alpha_i \mu_i, \sum_{i=1}^n \alpha_i^2 \sigma_i^2\right).$
- 90. $M_Z(t) = M_X(\alpha t) M_Y(\beta t)$.
- 91. $M_{cX}(t) = 1 t/(\lambda/c)$, i.e. $cX \sim Exp(\lambda/c)$.
- 92. Let $\Theta \sim Ga(\alpha, \lambda)$, $\alpha \in \mathbb{Z}^+$ and $X \mid \Theta = \theta \sim Po(\theta)$. The unconditional mgf of X is given by $M_X(t) = [\lambda/(\lambda e^t + 1)]^{\alpha}$. The mgf of $Y = \alpha + X$ is given by

$$M_Y(t) = \left(\frac{\lambda e^t}{\lambda - e^t + 1}\right)^{\alpha} = \left(\frac{\frac{\lambda}{1+\lambda} e^t}{1 - \frac{1}{1+\lambda} e^t}\right)^{\alpha}$$

that is, $Y \sim NegBin\left(\alpha, \frac{\lambda}{1+\lambda}\right)$.

- 93. Let $X_1, X_2, ...$ be a sequence such that $X_i \sim Exp(\lambda_i)$, and let $N \sim Ge(p)$ independent of the X's. The mgf of $S = X_1 + X_2 + \cdots + X_N$ is given by $M_S(t) = \lambda p/(\lambda p t)$, i.e. $S \sim Exp(\lambda p)$.
- 94. (a) First confirm that $G^{(k)}(s) = \sum_{i=k}^{\infty} i(i-1)\cdots(i-k+1) s^{i-k} p_i$. Then, using the fact that $0^0 = 1$, conclude that $G^{(k)}(0) = k! \cdot p_k$.
 - (b) Remark. We have to be careful since it is not clear that the function is differentiable in t=1. However, by letting $t \nearrow 1$ it works. Using a, we confirm that $G^{(k)}(1) = \sum_{i=k}^{\infty} i (i-1) \cdots (i-k+1) p_i = E[X(X-1) \cdots (X-k+1)].$
 - (c) $M(\ln t) = E(e^{X \ln t}) = E((e^{\ln t})^X) = E(t^X) = G(t).$
 - (d) Låt $X \sim Po(\lambda)$. $G(s) = e^{\lambda(s-1)}$.

95.
$$M(s,t) = E(e^{sX+tY}) = E(e^{sX}e^{tY}) = E(e^{sX})E(e^{tY}) = M_X(s)M_Y(t)$$

96.

$$\frac{\partial^{2} M(s,t)}{\partial s \partial t} |_{s=t=0} = \sum_{x} \sum_{y} xyp(x,y) = E(XY)$$

97. $M_{W}\left(t\right)=M_{aX+bY}\left(t\right)=M_{X}\left(at\right)M_{Y}\left(bt\right)$. Determine $M_{W}'\left(0\right)$ and $M_{W}''\left(0\right)$.

98.
$$E(S) = \lambda \mu$$
 and $Var(S) = \mu \lambda (\lambda + 1)$.

99. (a)
$$g(x) = \sqrt{x}$$
.

$$\mu_Y \approx \sqrt{\mu_X} - \frac{\sigma_X^2}{8\mu_X^{3/2}}, \qquad \sigma_Y^2 \approx \frac{\sigma_X^2}{4\mu_X}$$

(b)
$$g(x) = \ln x$$
.

$$\mu_Y \approx \ln \mu_X - \frac{\sigma_X^2}{2\mu_Y^2}, \qquad \sigma_Y^2 \approx \frac{\sigma_X^2}{\mu_Y^2}$$

(c)
$$g(x) = \sin^{-1} x = \arcsin x$$
.

$$\mu_Y \approx \sin^{-1} \mu_X + \frac{\mu_X \sigma_X^2}{2(1 - \mu_Y^2)^{3/2}}, \qquad \sigma_Y^2 \approx \frac{\sigma_X^2}{1 - \mu_X^2}$$

100. Exact.
$$\mu_Y = \ln 2/10 = 0.069315$$
 and $\sigma_Y^2 = (1 - 2 \cdot (\ln 2)^2)/200 = 0.00019547$. Approximate. $\mu_Y \approx 0.06\,913\,6$ and $\sigma_Y^2 \approx 0.00016461$.

101.
$$\mu_Y \approx \sqrt{\lambda} - 1/\left(8\sqrt{\lambda}\right)$$
 and $\sigma_Y^2 \approx 1/4$.

102.
$$\mu_{\Theta} \approx \arctan(y_0/x_0)$$
 and $\sigma_{\Theta}^2 \approx \sigma^2/(x_0^2 + y_0^2)$.

103.
$$\sigma_V \approx 0.02\pi = 0.062832$$
.

104. (a)
$$\sigma_V^2 \approx \sigma_R^2 \sin^2 \mu_\Theta + \sigma_\Theta^2 \mu_R^2 \cos^2 \mu_\Theta$$
.

5 Limit Theorems

- 1. Use Chebyshev's inequality.
- 2. See previous problem. Combine the use of Chebyshev's inequality and the triangle inequality.
- 3. 0.0228 (Normal approximation). The exact poisson probability is 0.0233.
- 4. $\Delta = 16.45$
- 5. Rewrite the expression for $M_{X_n}(t)$ as $(1 + a_n/n)^n$ where $a_n \to \lambda (e^t 1)$ as $n \to \infty$.
- 6. See lecture notes.
- 7. Use the definition of *continuity* together with the definition of *convergence in probability*.
- 8. Use a statistical/mathematical package. Here we compare the pmfs of Po(10) and Po(20) with the pdfs of N(10, 10) and N(20, 20), respectively.

9. Use a statistical/mathematical package. Here we compare the pmfs of Bi (20, 0.2) and Bi (40, 0.5) with the pdfs of N (4, 3.2) and N (20, 10), respectively.

10. Without continuity correction: $\Pr(S < 300) \approx \Pr(Z < -2.93) = 0.0017$. With continuity correction: $\Pr(S < 300) \approx \Pr(Z < -2.96) = 0.0015$.

- 11. As n grows larger, λ becomes smaller which is not allowed so CLT doesn't apply in this situation. For different values of n, there are different collections of i.i.d. random variables that are summed.
- 12. (a) 0.363, (b) 0.245, (c) 0.042.
- 13. N(0,15). He is most likely to be close to where he started.
- 14. N(10, 40/3).
- 15. Without continuity correction: $\Pr(S < -75) \approx \Pr(Z < -2.12) = 0.017$. With continuity correction: $\Pr(S < -75) \approx \Pr(Z < -2.14) = 0.016$.
- 16. $\Pr(S \le 10) \approx \Pr(Z < -3.16) = 0.0008.$
- 17. n = 97.
- 18. 0.0228.
- 19. Use a statistical/mathematical package.
 - (a) $\int_0^1 \cos(2\pi x) dx = 0$.
 - (b) $\int_0^1 \cos(2\pi x^2) dx \approx 0.244$.
- 20. Using the calculation formula it follows that

$$Var\left(\widehat{I}(f)\right) = \frac{1}{n} \left[\int_0^1 (f(x))^2 dx - \left(\int_0^1 f(x) dx \right)^2 \right]$$

In Problem 19a this translates to $Var\left(\widehat{I}(f)\right) = 1/(2n)$.

- 21. A generalization of the Monte Carlo-method.
 - (a) Use the definition of expectation.
 - (b)

$$Var\left(\widehat{I}(f)\right) = \frac{1}{n} \left[\int_{a}^{b} \frac{\left(f(x)\right)^{2}}{g(x)} dx - \left(I(f)\right)^{2} \right]$$

(c) In order to find an improvement, we have to find a pdf definied on (0,1) such that

$$Var\left(\widehat{I}(f)\right) - Var\left(\widehat{I}_{U(0,1)}(f)\right) = \frac{1}{n} \int_{0}^{1} \frac{\left(f(x)\right)^{2} \left(1 - g(x)\right)}{g(x)} dx < 0$$

22. $\Delta = 0.00141$

23. Let X and Y be i.i.d. U(0,1). Furthermore, let

$$Z = \begin{cases} 0, & (X,Y) \notin A \\ 1, & (X,Y) \in A \end{cases}$$

Generate pseudrandom numbers $(X_1, Y_1), (X_2, Y_2), \dots, (X_n, Y_n)$. Then

$$\widehat{A} = \frac{1}{n} \sum_{i=1}^{n} Z_i = \overline{Z} \approx \int \int_{A} dx dy = A$$

- 24. n = 10616.
- 25. $S \stackrel{Approx}{\sim} N(0,30)$. $\overline{X}_n = S/50 \stackrel{Approx}{\sim} N(0,3/250)$. $S/\sqrt{50} \stackrel{Approx}{\sim} N(0,3/5)$.
- 26. $S \sim Bi(25, 0.3)$.
- 27. Prove first that $(1+a/n)^n \to e^a$ as $n \to \infty$. Rewrite as

$$\left(1 + \frac{a}{n}\right)^n = \exp\left\{n\ln\left(1 + \frac{a}{n}\right)\right\}$$

and now use the fact that

$$\lim_{n \to \infty} n \ln \left(1 + \frac{a}{n} \right) = a \lim_{n \to \infty} \frac{\ln \left(1 + \frac{a}{n} \right)}{a/n} \stackrel{h=a/n}{=} a \lim_{h \to 0} \frac{\ln \left(1 + h \right)}{h} \stackrel{\ln 1=0}{=}$$

$$= a \lim_{h \to 0} \frac{\ln \left(1 + h \right) - \ln 1}{h} = a \left(\frac{d}{dt} \ln t \right)_{t=1} = a$$

In order to prove the more general result, we use the so called *Squeeze Theorem*. If $g(x) \leq f(x) \leq h(x)$ for all x, and $\lim_{x\to\infty} g(x) = \lim_{x\to\infty} h(x) = a$ then $\lim_{x\to\infty} f(x) = a$.

- 28. Use the definitions of convergence. We have that $X_n \stackrel{d}{\to} \delta(0)$ where $\delta(0)$ is a degenerated, or one point, distribution with all of its probability mass in the point x = 0.
- 29. $U_{(n)} \xrightarrow{d} \delta(1)$, where $\delta(1)$ is a degenerated, or one point, distribution with all of its probability mass in the point u = 1. If we for example let $Z_n = n(U_{(n)} 1)$, then

$$\lim_{n \to \infty} F_{Z_n}(z) = e^z, \quad z \le 0$$

30. (a)
$$S_n \stackrel{Approx}{\sim} N\left(\frac{n}{2}, \frac{n}{12}\right)$$
. (b) $\overline{U} = S_n/n \stackrel{Approx}{\sim} N\left(\frac{1}{2}, \frac{1}{12n}\right)$. (c) $S_n - \frac{n}{2} \stackrel{Approx}{\sim} N\left(0, \frac{n}{12}\right)$. (d) $\left(S_n - n/2\right)/n \stackrel{Approx}{\sim} N\left(0, \frac{1}{12n}\right)$. (e) $\left(S_n - n/2\right)/\sqrt{n} \stackrel{Approx}{\sim} N\left(0, \frac{1}{12}\right)$.