

DETEKSI GEN bap (BIOFILM-ASSOCIATED PROTEIN) ISOLAT Acinetobacter baumannii SEBAGAI GEN PENGKODE BIOFILM DI RSUP SANGLAH MENGGUNAKAN TEKNIK PCR

Kadek Dede Frisky Wiyanjana, Ni Nyoman Sri Budayanti²

¹Program Studi Pendidikan Dokter Fakultas Kedokteran Universitas Udayana
²Departemen Mikrobiologi / SMF Mikrobiologi Klinik / RSUP Sanglah Denpasar

ABSTRAK

Acinetobacter baumannii merupakan bakteri gram negatif yang berperan sebagai bakteri pathogen penyebab infeksi di rumah sakit. Berdasarkan data dari CDC (Center for Disease Control and Prevention), A. baumannii merupakan 80 % penyebab infeksi di ICU. Kemampuan A. baumannii untuk melekat dan membentuk biofilm pada permukaan biotik dan abiotik menjelaskan keberhasilannya bertahan dalam lingkungan rumah sakit termasuk pada peralatan peralatan medis. Tujuan dari penelitian ini mendeteksi prevalensi gen biofilm-associated protein (bap) sebagai gen pendeteksi biofilm. Sebanyak 34 Isolat Acinetobacter baumannii terisolasi dari luka, sputum selang, sputum, pus, darah, dan urin pasien yang dirawat Rumah Sakit Umum Pusat Sanglah tahun 2013 sampai 2015. Isolat kemudian diisolasi dengan metode boiling, diuji dengan teknik PCR. Total 34 Isolat klinis Acinetobacter baumannii [Sputum (n=5), Sputum Selang (n=12), Urine (n=6), Darah (n=4), Pus (n=1), Luka (n=2), Lain-lain (n=4)]. Penelitian ini mendapatkan bahwa 3 (8,82%) isolat dinyatakan positif gen bap. Untuk 3 isolat A.baumannii yang positif 2 diantaranya berasal dari sputum selang dari pasien di UGD, hal ini mendukung keberadaan gen bap yang berperan untuk pembentukan biofilm dan perlekatan pada permukaan alat medis sebagai salah satu virulen faktor A. baumannii.

Kata kunci: A. baumannii, biofilm, bap, PCR

ABSTRACT

Acinetobacter baumannii is a gram-negative bacteria that have a great influence as pathogenic bacteria that cause infections in hospitals. Based on data from the CDC (Center for Disease Control and Prevention), 80% of A. baumannii is the most common cause of infections in the ICU. A. baumannii has ability to attach and form biofilms on biotic and abiotic surfaces. The purpose of this study to detect the prevalence of biofilm-associated protein gene(bap) as a gene that encoding biofilm. Its explain the success to survive in the hospital environment including medical equipment. A total of 34 Isolates of A.baumannii taken from wound, sputum, sputum, pus, blood, and urine patients at Sanglah General Hospital in 2013 - 2015. The isolate was then isolated by the boiling method, then tested by PCR. Total of 34 isolates are clinical Acinetobacter baumannii [sputum (n = 5), hose sputum (n = 12), urine (n = 6), blood (n = 4), pus (n = 1), wound (n = 2), Others (n = 4)]. This study found that 3 (8.82%) isolates tested positive for the bap gene. The isolated that positive with bap gene, 2 isolate are coming from patient's hose sputum in ICU, this explained that bap gene has a role for the making of biofilm and its attachment in medical equipments as one of the virulent factor of A. Baumannii.

Keywords: A. baumannii, biofilm, bap, PCR

PENDAHULUAN

Acinetobacter baumannii sendiri merupakan yang mempunyai pengaruh besar sebagai bakteri pathogen penyebab infeksi di rumah sakit, terutama pada intesive care uni (ICU). Berdasarkan data dari CDC, A. baumannii merupakan 80 % penyebab infeksi di ICU, termasuk diantaranya ventilatorassociated pneumonia, bakteremia, meningitis, peritonitis, infeksi kandung kemih dan infeksi pada luka. 2

Penelitian di Indonesia didapatkan Acinetobacter sebagai salah satu bakteri gram negatif yang paling sering menginfeksi yaitu sebesar 25, 8%.3 Ventilator-associated pneumonia (VAP) merupakan manifestasi infeksi klinis yang paling umum dari Acinetobacter baumannii. Infeksi ini terjadi paling sering pada pasien yang menerima ventilasi mekanik dalam perawatan intensif. Kolonisasi Acinetobacter baumannii pada saluran napas yang didapatkan melalui paparan lingkungan inilah yang menjadi cikal bakal terjadinya ventilator-associated pneumonia (VAP). Di dunia angka kematian kasar ventilator*pneumonia*disebabkan associated baumannii telah dilaporkan mencapai 40% hingga $70\%.^{4}$

Kemampuan A. baumannii untuk melekat dan membentuk biofilm pada permukaan biotik dan abiotik menjelaskan keberhasilannya bertahan dalam lingkungan rumah sakit dan peralatan peralatan medis. Keberhasilan pembentukan biofilm untuk bertahan pada alat alat medis menyebabkan infeksi dan kolonisasi dari bakteri ini. Ada banyak faktor menyebabkan munculnya pembentukan biofilm pada A. baumannii, diantaranya yang paling penting adalah gen dan molekul yang meregulasi munculnya pembentukan biofilm ini yaitu keberadaan *Poly-β-(1,6)-N*acetlyglucosamine (PNAG), sistem sekresi Chaperone-usher, Quorum sensing (QS) pada A. baumannii dan Biofilm-associated protein (bap). Disebutkan bahwa pemegang peranan penting pada pembentukan biofilm adalah Biofilmassociated protein (bap).⁵ Beberapa penelitan mengungkapkan bahwa mekanisme Biofilmassociated protein (bap) dalam pembentukan biofilm sangat berperan terhadap maturasi dari biofilm itu sendiri. Bap sebenarnya merupakan molekul protein berat yang terdapat pada permukaan sel bakteri. Selain berperan dalam maturasi biofilm juga sangat penting bagi interaksi dengan sel bakteri lain. Target utamauntuk gen bap adalah kontrol regulasi karbohidrat yang memegang peranan dalam menjaga kestabilan biofilm. Homolog bap telah diidentifikasi dan ditemukan pada bakteri lain, yang termasuk bakteri patogen lain yang biasanya terkait dengan kejadian infeksi didapat di rumah sakit, seperti pada bakteri Staphylococcus sp, Enterococcus sp, dan Pseudomonas sp.Biofilm-associated protein (bap) dalam A. baumannii, diidentifikasi sebagai protein permukaan sel tertentu dan terlibat dalam perlekatan antarsel dalam biofilm yang telah matang. Mekanisme inilah yang membuat bakteri memiliki sifat patogen yang sangat mendukung kolonisasi bakteri terutuma pada kasus ventilatorassociated pneumonia (VAP). Dikarenakan tidak adanya data awal mengenai prevalensi gen Biofilmassociated protein (bap), maka peneliti tertarik untuk melakukan penelitian untuk mendeteksi keberadaan gen bap secara genotip pada isolat Acinetobacter baumannii di Rumah sakit umum pusat Sanglah, Denpasar.

BAHAN DAN METODE

Jenis penelitian ini adalah deskriptif observasional cross sectional yang dilakukan selama bulan Februari - Oktober 2015. Penelitian dilakukan di Laboratorium Biomol Fakultas Kedokteran Universitas Udayana untuk proses Polymerase Chain Reaction (PCR) dan Elektroforesis. Subkultur dilakukan di bagian Mikrobiologi Fakultas Kedokteran Universitas Udayana.

Sampel penelitian adalah Isolat Acinetobacter baumannii yang diambil dari Luka, Sputum Selang, Sputum, Darah, dan Urin Pasien pada Rumah Sakit Umum Pusat Sanglah. Kriteria inklusi yang digunakan adalah sebagai berikut:

- 1. Isolat *Acinetobacter baumannii* yang diambil dari Luka, Sputum Selang, Sputum, Darah, dan Urin Pasien yang merupakan Isolat yang homogen
- Stok isolat Acinetobacter baumannii pada Lab Mikrobiologi Klinik RSUP Sanglah, pada tahun 2014-2015
- 3. *Non-duplicated* Sampel

Kriteria ekslusi sebagai berikut:

- 1. Isolat bakteri *Acinetobacter baumannii* diluar Luka, Sputum Selang, Sputum, Darah, dan Urin Pasien
- 2. solat bakteri yang tumbuh tercampur dengan bakteri lain

Jumlah sampel yang dibutuhkan sejumlah 34 diambil dari Laboratorium vang Mikrobiologi Rumah Sakit Umum Pusat Sanglah. Sampel yang didapat kemudian di lakukan subkultur untuk mendapatkan DNA murni selanjutnya akan dilakukan proses PCR dilanjutkan proses elektroforesis kemudian hasil dianalisis dengan menggunakan Gel Doc (UV translumination).

HASIL

Dari Total 34 Isolat klinis *Acinetobacter baumannii* [Sputum (n=5), Sputum Selang (n=12), Urine (n=6), Darah (n=4), Pus (n=1), Luka (n=2), Lain-lain (n=4)]. Seluruh sampel

didapatkan dari Instalasi Laboratorium Mikrobiologi RSUP Sanglah pada tahun 2013 dan 2015. Distribusi data sampel tersedia dalam Tabel 1.

Tabel 1. Isolat klinis bakteri *Acinetobacterbaumannii*

Jenis Sampel	Total Sampel (%)
Luka	2 (5,88) %
Sputum Selang	12 (35,29) %
Sputum	5 (14,7) %
Urine	6 (17,65) %
Darah	4 (11,76) %
Pus	1 (2,94) %
Lain-lain	4 (11,76) %
Total	34 (100) %

PEMBAHASAN

Deteksi gen *Biofilm-associated protein* (*bap*) menggunakan primer bapF (5=5'-ATGCCTGAGATACAAATTAT3'), (5=5'GTCAATCGTAAAGGTAACG3').⁷

Penelitian dilakukan dengan optimasi sebanyak tiga kali seperti yang terlampir pada tabel 2.

Pada penelitian ini tidak memiliki control positif (+) sehingga dinyatakan positif apa bila terdapat pita pada 1,449-bp dan hasil negative dinyatakan dengan control negatif yang gambarannya tidak terdapat pita terbentuk.

Pada Optimasi I didapatkan sampel yang positif pada pita 1,449-bp sebanyak 1 isolat dari 10 isolat yang diteliti. Isolat yang positif ditemukan pada sampel yang

berasal dari sputum selang. Masih ditemukan dimer pada hasil PCR, Selanjutnya akan dilakukan peningkatan suhu Annealing sebesar 52°C.

Gambar 1. Optimasi III isolat *Acinetobacter baumannii* pada suhu annealing sebesar 57 °C Keterangan:

M = marker, SP 46 = spesimen berasal dari sputum, U 55 = spesimen berasal dari urin, D 23 = spesimen berasal dari darah, SP 241 = Spesimen berasal dari sputum selang, K(-) = Kontrol negatif.

Pada Optimasi II ditemukan sampel positif sebanyak 1 isolat dri 4 isolat yang diteliti. Isolat

Tabel 2. Hasil PCR 34 isolat *Acinetobacter* baumannii

Jenis Sampel	Gen bap (%)
Luka	1 (2,94) %
Sputum Selang	2 (5,88) %
Sputum	0 (0) %
Urine	0 (0) %
Darah	0 (0) %
Pus	0 (0) %
Lain-lain	0 (0) %
Total	3 (8,82) %

yang positif ditemukan pada sampel yang berasal dari sputum selang. Masih ditemukan dimer pada hasil PCR dan pita masih tampak tebal pada sampel yg dinyatakan positif, Selanjutnya akan dilakukan peningkatan suhu Annealing sebesar $57\,^{0}$ C.

Optimasi III ditemukan isolat positif ditemukan pita pada 1,449-bp untuk isolat yang berasal dari sputum selang dan luka. Untuk sampel dengan hasil negatif tidak ditemukan adanya pita pada 1,449-bp. Hasilnya ditemukan 3 isolat *A.baumannii*positif terhadap gen *bap* (8,82%), dari 3 isolat yang positif 5,88% diantaranya berasal dari sputum selang dan 2,94% dari luka. Pada isolat yang lain tidak ditemukan pita yang mengindikasikan gen *bap*

Hasil penelitian ini, 3 (8,82%) isolat dinyatakan positif gen *Biofilm-associated protein* (*bap*) berasal dari *Acinetobacter baumannii* yang resisten terhadap berbagai macam antibiotik. Hasil tersebut tidak sesuai dengan yang dilakukan oleh Sharon Goh, *et al*di Australia pada tahun 2013 mendapatkan bahwa gen *bap* sebagai salah satu faktor virulens dan gen penentu pembentukan biofilm pada *A.baumannii* prevalensinya ditemukan mencapai 91,7 %. ⁷

Namun hal menarik ditemukan dari penelitian oleh Badmasti F,dkk pada tahun 2015 di Tehran bahwa gen *bap* ditemukan sebanyak 30% dari sampel *A.baumannii* yang resisten terhadap berbagai antibiotik. Untuk 3 isolat *A.baumannii* yang positif 2 diantaranya berasal dari sputum selang dari pasien di UGD. Keberadaan gen *bap* telah dilaporkan berperan sangat penting untuk pembentukan biofilm dan perlekatan pada permukaan alat alat medis.

Dalam penelitian ini 2 isolat positif pada sputum selang telah mengindikasikan pembentukan biofilm sebagai salah satu faktor virulens *A.baumannii*sangat erat katian nya dengan keberhasilan bakteri ini untuk hidup dan melekat pada permukaan abiotik sehingga bisa

JURNAL MEDIKA UDAYANA, VOL. 8 NO.7, JULI, 2019

menyebabkan infeksi pada ventilator-associated pneumonia (VAP) dan saluran pernafasan atas lainnya. Namun tidak ditemukan nya gen bap pada isolat yang lain juga mengindikasikan akan faktor virulens lain yang berperan khususnya dalam kaitan resistensi bakteri ini terhadap berbagai macam antibiotik Hubungan antara pembentukan biofilm dan resistensi bakteri telah dikemukakan oleh Abdi-Ali A. pada tahun 2014, dikatakan bahwa Biofilm memainkan peran utama dalam kolonisasi mikroorganisme selama infeksi, memberikan kesempatan bagi bakteri untuk mengembangkan resistensi terhadap antibiotik.9 IsolatA. Baumanii mampu membentuk biofilm di bawah tekanan antibiotik. Atau sebaliknya, A. Baumanii memperoleh resistensi terhadap antibiotik dari kemampuan membentuk biofilm itu sendiri. Namun keduanya membuktikan, bahwa tingginya kapasitas kolonisasi A. Baumannii karena pembentukan biofilm, dikombinasikan dengan resistensi terhadap beberapa obat, memberikan kontribusi bakteri untuk bertahan dan melakukan penyebaran infeksi di lingkungan rumah sakit

SIMPULAN

Penelitian dengan menggunakan teknik PCR didapatkan bahwa gen *bap* sebagai salah satu gen pengkode biofilm dari Isolat *Acinetobacter baumannii* di Laboratorium Mikrobiologi RSUP Sanglah ditemukan positif sebesar 8,82 %. Isolat berasal dari 2 Sputum Selang dan 1 Luka. Tidak ditemukan adanya gen *bap*pada isolat yang berasal dari Sputum, Urin, Darah, Pus, dan Luka.

DAFTAR PUSTAKA

- 1. Yeom J, Shin J-H, Yang J-Y, Kim J, Hwang G-S .2013.1H NMR-Based Metabolite Profiling of Planktonic and Biofilm Cells in Acinetobacter baumannii 1656-2. PLoS ONE 8(3): e57730.
 - doi:10.1371/journal.pone.0057730
- Centers for Disease Control and Prevention USA. 2004. Drug-resistant Acinetobacter infections in healthcare settings, Department of Health and Human Services, Atlanta, GA. 2004. p: 23-45
- 3. Gustawan I wayan, Irawan Satari Hindra, Amir Idham, Dalima AW Astrawinata.2014. *Gambaran Infeksi* Acinetobacter baumannii dan Pola Sensitifitasnya terhadap Antibiotik. Sari Pediatri. 2014.16(1) p: 35-40
- 4. McConnell Michael J, Actis Luis, Pacho' n Jero' nimo. 2012. Acinetobacter baumannii: human infections, factors contributing to pathogenesis and animal models.2012.FEMS Microbiol Rev page: 1–26.
- K. Prashanth, T. Vasanth, R. Saranathan, Abhijith R. Makki and Sudhakar Pagal (2012). Antibiotic Resistance, Biofilms and Quorum

- Sensing in Acinetobacter Species. Antibiotic Resistant Bacteria - A Continuous Challenge in the New Millennium. 2012. p :180-212
- 6. Longol Francesca, Vuottol Claudia, Donellil Gianfranco. 2014 Biofilm formation in Acinetobacterbaumannii. New Microbiologica, (37),p 119-127
- 7. Sharon Goh H. M., Beatson Scott A., Totsika Makrina, et al. 2013. Molecular Analysis of the Acinetobacter baumannii Biofilm-Associated Protein. Journal of American Society for Microbiology. 2014.p. 6535–6543
- 8. Badmasti Farzad, Davar Siadat, Saeid Bouzari, Soheila Ajdary, Shahcheraghi.2015.Molecular detection of genes related to biofilm formation in multidrug-resistant Acinetobacter baumannii isolated from clinical settings.Journal of Medical Microbiology Papers in Press. March 26, 2015.doi:10.1099/jmm.0.000058
- 9. Abdi-Ali Ahya, Saghar Hendiani, Parisa Mohammadi, Sara Gharavi.2014. Assessment of Biofilm Formation and Resistance to Imipenem and Ciprofloxacin among Clinical Isolates of Acinetobacter baumannii in Tehran. Jundishapur J Microbiol. 2014 January; 7 (1) p.1-5