Chapter 8 图

书P392: 8.10

(1) 从顶点1出发的深度优先生成树(不唯一):

书P392: 8.10

(2) 从顶点2出发的广度优先生成树:

书P395: 8.21

Kruskal算法构造最小生成树过程:

(a)

(b)

(c)

(d) (e)

书P395: 8.21

Prim算法(从顶点3出发)构造最小生成树过程:

书P395: 8.24

Dijkstra算法求解单源最短路径

终点	从源点A到各终点的dist值及最短路径					
В	10 <a, b=""></a,>					
C	18 <a, c=""></a,>	18	17 <a, b,="" c="" d,=""></a,>			
D	8	15 <a, b,="" d=""></a,>				
E	8	8	17 <a, b,="" d,="" e=""></a,>	17 <a, b,="" d,="" e=""></a,>		
$\mathbf{v}_{\mathbf{u}}$	В	D	C	E		
$\overline{S=\{A\}}$	$\{A,B\}$	{A,B,D}	{A,B,D,C}	{A,B,D,C,E}		

补充作业1:

列出下图中全部可能的拓扑有序序列,并指出应用拓扑 排序算法求得的是哪一个(注意,应先确定其存储结构)。

拓扑有序序列为(7种):

若用队列存储入度为0的顶点,则算法求得的是 $V_1, V_5, V_2, V_6, V_3, V_4$

补充作业2:

求关键路径。

顶点	ve	vl
v_1	0	0
\mathbf{v}_{2}	5	9
$\mathbf{v_3}$	6	6
$\mathbf{v_4}$	12	12
\mathbf{v}_{5}	15	15
\mathbf{v}_6	16	19
$\mathbf{v_7}$	16	16
$\mathbf{v_8}$	19	19
$\mathbf{v_9}$	21	21
\mathbf{v}_{10}	23	23

活动	e	1	l-e
$\mathbf{a_1}$	0	4	4
$\mathbf{a_2}$	0	0	0
$\overline{a_3}$	5	9	4
$\mathbf{a_4}$	6	6	0
$\underline{\mathbf{a}_5}$	6	12	6
\mathbf{a}_{6}	12	12	0
$\mathbf{a_7}$	12	15	3
$\mathbf{a_8}$	12	14	2
$\overline{\mathbf{a_9}}$	15	15	0
\mathbf{a}_{10}	15	15	0
\mathbf{a}_{11}	16	19	3
\mathbf{a}_{12}	16	16	0
a ₁₃	19	19	0
a ₁₄	21	21	0

答: ① 完成该工程的最短时间是23。

② 关键活动: a₂, a₄, a₆, a₉, a₁₀, a₁₂, a₁₃, a₁₄ 关键路径:

提高活动 a_2 , a_4 , a_6 , a_{14} 或同时提高 a_9 (或 a_{12})与 a_{10} (或 a_{13})的进度可缩短整个工程的工期。

```
补充题: 在带权有向图G中计算顶点v的入度和出度
```

```
template <class T, class E>
int Graphlnk<T, E>::InDegree(int v) {
//计算顶点v的入度,若顶点不存在,则函数返回-1
 if (v != -1) { //顶点v存在
   int id=0; Edge<T, E> *p;
    for (int i = 0; i < numVertices; i++) {
      if (i == v) continue;
      p = NodeTable[i].adj; //对应边链表第一个边结点
      while (p != NULL) { //统计邻接点域为v的边结点个数
         if (p->dest == v) \{id++; break; \}
         p = p->link; }
    return id;
               //顶点v不存在
  return -1;
```

```
template <class T, class E>
int Graphlnk<T, E>::OutDegree(int v) {
//计算顶点v的出度,若顶点不存在,则函数返回-1
                      //顶点v存在
 if (v != -1) {
   int od=0;
   Edge<T, E> *p = NodeTable[v].adj;
   while (p != NULL) { //统计第v个边链表的结点个数
       od++;
       p = p->link;
   return od;
 return -1; //顶点v不存在
```

补充题:输出图G中从顶点vi 到顶点 vj 的所有简单路径

```
template <class T, class E>
void DFSearch (Graph<T, E>& G, int vi, int vj, bool visited[],
  int path[], int k) {
//用深度优先遍历在图G中寻找从vi到vj的简单路径,数组path[]记录
//路径上顶点序列,k是path[]中当前可存放位置,初次调用时k为0
 visited[vi]=true; path[k]=vi; //访问顶点vi并加入路径
 int i, w = G.getFirstNeighbor (vi);
 while (w!=-1) {
    if (!visited[w])
                            //当此顶点为路径的终点
      if (w==vj) {
         for (i=0; i<=k; i++) cout<<path[i];
         cout<<w<<endl; //输出一条路径
      else DFSearch(G, w, vj, visited, path, k+1);
    w = G.getNextNeighbor (vi, w);
                   //将不在此路径中的顶点重置为未访问
  visited[vi] = false;
```