"Ensinar e aprender Matemática:

diálogos e conjunções numa perspectiva interdisciplinar"

O conceito pelo conceito

Helena Melo CMATI — DM Universidade dos Açores Mestrado de Matemática para Professores

9M - Utle
25 de fevereiro de 2012

Questões para reflexão ...

Qual a diferença entre:

definição e conceito

axioma e postulado

proposição, lema, teorema, corolário

dedução e indução

?

Devemos dizer:
retas que se intercetam
ou
retas que se intersetam?

Definição e Conceito

Uma definição é um enunciado que descreve um conceito.

Conceito. Do latim *conceptus*, do verbo *concipere*, que significa "conter completamente", "formar dentro de si".

O conceito é aquilo que a mente concebe ou entende; é uma ideia ou uma noção.

Axioma e Postulado

Axioma. Do grego *axioma*, consideração, estima, opinião, dogma. Diz-se das verdades gerais, aceitas sem discussão ou consideradas evidentes por si próprias, como na Filosofia e na Matemática.

Princípio básico que é necessário admitir, sem precisar de demonstração. Premissa.

Proposição, Lema, Teorema, Corolário

Proposição é um conjunto de palavras ou símbolos que expressam um pensamento de sentido completo, que pode ser demonstrado.

A proposição possui uma demonstração simples.

Um **Lema** pode-se dizer que é um "pré-teorema", um teorema que auxilia na prova de outro teorema maior. A diferença entre lema e teorema é um pouco arbitrária, visto que grandes resultados são por vezes usados na prova de outros.

Lema. Do grego λήμμα (*lémma*), que significa algo recebido, ganho, como um presente. É uma ideia que serve de guia.

Teorema é uma afirmação que pode ser demonstrada verdadeira através de operações e argumentos matemáticos.

O termo **teorema** foi introduzido por Euclides de Alexandria (c.325 a.C.– c.265 a.C.) em "Os Elementos", para significar "afirmação que pode ser provada". Em grego, originalmente a palavra teorema significava "espetáculo" ou "festa".

Um **Corolário** é uma consequência direta de um teorema, ou definição. Muitas vezes as suas demonstrações são omitidas, por serem simples.

Dedução e Indução

Dedução é todo o processo de derivar conclusões lógicas de premissas conhecida que parte do universal para o particular (aspecto convergente).

Indução pode ser considerada como o processo de derivar conjecturas que se conclui, da regularidade de certos fatos (aspecto divergente).

Intersetar e Intercetar

Intersetar - cortar

As retas Intersetam-se.

Existe o ponto de interseção (que é único)
de duas retas que não são paralelas, no plano euclidiano.

Intercetar - barrar

Os Conceitos – As Palavras

Estudar a **etimologia** das palavras que são usadas na Matemática, amplia o entendimento sobre os conceitos nelas intrínseco.

A palavra etimologia vem do grego **étimo** ἔτυμον (verdadeiro) (origem) e **lógos** λόγος (que estuda)

Lógos: (palavra), (tratado), (estudo), (ciência), (que trata)

Lógos passa a ser uma noção filosófica traduzida como "razão que se dá a algo", ou mais precisamente, o "conceito".

As Palavras

Sinónimos:

São palavras que apresentam, entre si, o mesmo significado.

entender = compreender

Antónimos:

São palavras que apresentam, entre si, significados opostos, contrários.

simplificar x complicar

Parónimos:

São palavras de significação diferente, mas de escrita parecida.

comprimento (extensão), cumprimento (saudação)

retificar (corrigir), ratificar (confirmar)

Homónimos:

São palavras iguais na "forma" e diferentes no significado.

Homónimos perfeitos (Polissemia):

Têm a mesma grafia e o mesmo som.

meio (numeral), meio (adjetivo) e meio (substantivo)

plano (geometria), plano (projeto)

Homónimos homófonos:

Têm o mesmo som e grafias diferentes.

afim = semelhante, com afinidade, a fim de = com a finalidade de
sessão (reunião), seção (corte, divisão) e cessão (ato de doar)
intercessão (súplica, rogo), interseção (ponto de encontro de duas linhas)

Homónimos homógrafos

Têm a mesma grafia e sons diferentes.

corte (realeza), corte (separação, divisão)

A etimologia da palavra e o contexto onde é aplicado auxiliam a formação do conceito.

Vejamos alguns exemplos aplicados cuja herança é do povo grego ou possui origem no latim.

Diâmetro

Do grego diá (através de, de um lado ao outro) + métron (medida)

Numa circunferência, o diâmetro é a distânica entre pontos opostos em relação ao seu centro.

diameter Inglês diamètre Francês diâmetro Espanhol

Durchmesser

Alemão

Diagonal

Do grego diá (através de) + gónia (ângulo)

diagonal Inglês diagonale Francês diagonal Espanhol

Diagonale Alemão

Ângulo

Do grego **gónia** Do latim **angulus** (canto, esquina, dobra)

Conceito:

Ângulo é a região do plano compreendida entre duas semirretas de mesma origem.

Discrição dos elementos de um ângulo:

A origem destas semirretas é denominada de vértice do ângulo.

Cada semirreta é denominada de lado do ângulo.

Diagonal

Conceito:

Diagonal de um polígono (muitos ângulos) é o segmento de reta que une dois vértices não consecutivos.

Número de diagonais de um polígono de **n** lados: **n** (**n** – 3) / 2

Prisma

Do grego prisma (πρισμα)

prism Inglês prisme Francês

prisma Espanhol

Prisma Alemão

Os antigos marceneiros gregos chamavam de **prisma** os pedaços de madeira serrados.

A palavra latina **prisma** refere-se a um sólido que foi cortado.

Conceito:

Na matemática, **prisma** é um poliedro que tem duas faces idênticas e paralelas, denominadas de base.

Há uma translação que "leva" uma base na outra.

Perímetro (περιμετροζ)

Do grego **perí** (em volta de) + **métron** (medida)

Do latim perimetros

perimeter Inglês périmètre Francês perímetro Espanhol Perimeter

Alemão

Conceito:

O perímetro é a soma da medida de todos os lados de uma figura plana.

$Pi(\pi)$

A primeira letra da palavra perímetro "π" associada a periferia (περιφερια) foi dotada provavelmente por William Jones em 1706 e popularizada por Leonhard Euler, para denotar o irracional mais famoso da história.

π representa a razão constante entre o perímetro de qualquer circunferência e o seu diâmetro

Hipérbole, elipse e parábola

Na hipérbole, a distância do plano usado para cortar o cone "excede, vai além" da diretriz e atinge a outra parte dele;

No caso da elipse, "não chega" até ela;

No caso da parábola, "corre ao lado" do gerador, pois é paralelo à geratriz.

Hipérbole vem do grego hyperbolé, "excesso, exagero, ato de atirar além"; Elipse vem de elleipsis, "ato de não chegar a, defeito". Parábola é de parabolé, "comparação", de para, "ao lado", mais ballein, "lançar, atirar".

Base

Do grego basis (andar)

Basis também pode ser entendido como pé.

Base, s.f. – alicerce, sustentação, apoio, pedestal.

Base de um triângulo – lado sobre qual se apoia o triângulo.

Base de um poliedro - lado sobre qual se apoia o poliedro.

No caso da pirâmide, é a face que não possui a forma triangular. No caso do prisma, é a face que não possui a forma de um paralelogramo.

Base de um sistema de numeração – é a quantidade de símbolos disponíveis para a sua representação.

Base de um logaritmo.

Base de um espaço vetorial.

Logaritmo

Do grego lógos (razão, evolução) + arithmós (número)

Logaritmo, literalmente, significa a evolução de um número.

Criados em 1590 pelo matemático escocês **John Napier** e publicados e 1614, com o título *Minifici Logarithmorum Canonis Descriptio*.

"Maravilhosa Descrição das Leis da Evolução dos Números"

O símbolo **log**, é devido ao astrónomo **Kepler** que em 1624 publicou seu *Chilias Logarithmorum*.

Conceito:

Chama-se **logaritmo** de um número \mathbf{x} na base \mathbf{a} ($\mathbf{a} > 0$ e $\mathbf{a} \neq 1$), ao número que necessitamos elevar a base \mathbf{a} para obter-se o número \mathbf{x} .

$$\log_a x = y \Leftrightarrow a^y = x$$

$$2^{1} = 2$$
 $2^{1,5850} = 3$ $2^{2} = 4$ $2^{2,3219} = 5$ $2^{2,5850} = 6$ $2^{2,8074} = 7$ $2^{3} = 8$

Método

Do grego metá (reflexão, raciocínio, verdade) + hódos (caminho, direção)

Método refere-se a um certo caminho que permite atingir um objetivo.

Análise

Do grego aná (para cima) + lyein (decompor)

Análise significa desfazer, jogar para o alto.

Papos de Alexandria (c. 290 – c. 350) estabelece o conceito matemático desta palavra, ou seja,

os elementos desconhecidos de uma teoria são construídos com base nos elementos conhecidos.

Intervalo

Palavra de origem latina utilizada pelos soldados romanos inter (entre, no meio) + valum (trincheiras, paredes)

Intervalos numéricos

Conceito:

Dados dois números reais **p** e **q**, chama-se **intervalo** a todo conjunto de todos números reais compreendidos entre **p** e **q**, podendo inclusive incluir **p** e **q**.

Os números **p** e **q** são os extremos do intervalo. A diferença (**p** – **q**) é chamada de amplitude do intervalo.

Se o intervalo incluir **p** e **q** , o intervalo é dito fechado e caso contrário, o intervalo é dito aberto.

Raiz quadrada de um número

$$\sqrt{9} = 3$$

Se pesquisarmos os documentos originais em latim do século XV, temos:

"radix quadratum 9 aequalis 3 "

Ou seja, o lado (radix) do quadrado (quadratum) de área 9 é igual (aequalis) a 3.

Radix (raiz, base, fundamento) que também pode ser entendida como lado.

Área é um conceito matemático que pode ser definida como quantidade de espaço bidimensional

Outras raízes quadradas

Área 4 u.m.²

Área	Área
1 u.m.²	1 u.m.²
Área	Área
1 u.m. ²	1 u.m. ²
1 u.m.	1000

2 u.m.

$$\sqrt{4} = 2$$

Área 9 u.m.²

Área	Área	Área
1 u.m. ²	1 u.m. ²	1 u.m.²
Área	Área	Área
1 u.m. ²	1 u.m. ²	1 u.m.²
Área	Área	Área
1 u.m.²	1 u.m. ²	1 u.m. ²

1 u.m.

3 u.m.

$$\sqrt{9} = 3$$

Sistema

Do grego sy (junto) + sta (permanecer)

Significa "combinar", "ajustar", "formar um conjunto".

Assim, um sistema de duas ou mais equações, devem ser resolvidas junto.

Conceito:

Um sistema de equações lineares (abreviadamente, sistema linear) é um conjunto finito de equações lineares aplicadas num mesmo conjunto, igualmente finito, de variáveis.

Exemplo:
$$\begin{cases} x - y = 7 \\ xy = 30 \end{cases}$$
 Equação

Conceito:

Em matemática, uma equação é uma afirmação que estabelece uma igualdade entre duas expressões matemáticas.

Evolução na escrita de uma Equação

1545	5 cubus p 4 quadratus p 3 numerus aequalis 9
1572	3 2 1 5.p.4.p.3 equale à 9 3 2 1
1585	5 + 4 + 3 equales 9
1590	5C + 4Q + 3N aequatur 9
1627	5(3) + 4(2) + 3(1) = 9
1631	5.xxx + 4.xx + 3.x = +9
1634	5x3 + 4x2 + 3x 2/2 9
1637	$5x^3 + 4x^2 + 3x \infty 9$
1693	$5x^3 + 4x^2 + 3x = 9$

http://www.prandiano.com.br/html/m arq.htm

Coeficiente

Do latim co- (junto de) + efficiere (ex-facere) (fazer do lado de fora)

Coeficiente, literalmente, significa aquele que traz algo, junto do lado de fora.

coefficient Inglês coefficient Francês coeficiente Espanhol Koeffizient Alemão

O termo coeficiente aparece em 1591 num livro escrito por Francis Viete.

As variáveis associadas ao coeficiente designavam-se: **N** (numerus), **Q** (quadratus) e **C** (cubus).

Hoje em dia utilizamos a variável x.

E porquê x?

Eis alguns motivos:

Primeiro Motivo

Por volta do início do século XVII, vários autores de álgebra grafavam os termos x^1 , x^2 , x^3 , etc., pertencentes à uma equação na forma: 1,2,3, etc. O Matemático, filósofo e escritor Pietrp Cataldi escrevia o x de dois modos distintos e curiosos: / (número 1 cortado com traço fino inclinado) e * (letra x cortada com um traço fino perpendicular). Naturalmente ocorreram mudanças surgindo

Segundo Motivo

No Low German (séc.XI) que deu origem ao Old English (séc XIII), encontramos a palavra Shei que designava algo desconhecido, incógnito. Através de uma transformação através do tempo temos:

Shei

Xei

Xe

X

Terceiro Motivo

No mesmo tronco linguístico, fonético e semântico ocorrido na Europa (séc XV), as datas e factos, e tudo relacionado com Jesus Cristo eram escritos de duas formas básicas:

Christmas e Tmas.

Com uma provável modificação surge:

Relação

"ato de levar"

Conceito:

Uma relação é uma correspondência existente entre conjuntos não vazios.

Uma relação é qualquer subconjunto de um produto cartesiano

Quando uma relação R é um conjunto de pares ordenados (a,b) tais que a pertença ao conjunto A e que b pertença ao conjunto B, então é denominada de relação binária.

Podemos escrever: a R b.

O **domínio** de uma relação *R* é o conjunto de todos os primeiros elementos de um par ordenado que pertence a *R*.

A **imagem** de *R* é o conjunto dos segundos elementos.

O domínio é um subconjunto de A e a imagem é um subconjunto de B

Domínio vem do latim medieval dominus (senhor, dono de uma casa).

Função

Do latim functus – particípio passado do verbo fungor (interpretar).

Palavra usada nas cartas trocadas entre Leibniz e Bernoulli no ano de 1697.

function Inglês fonction Francês función Espanhol Funktion

Alemão

As funções descrevem relações matemáticas especiais entre dois elementos.

Ou seja, uma função matemática é uma forma especial de se fazer uma correspondência entre elementos de dois conjuntos.

Leonard Euler, em 1734, rotulou uma função por f(x).

Leonard Euler escreveu: "f(x) denote functionem quamcunque ipsus x".

f(x) denota uma função para qualquer x.

Conceito:

Sejam D e I dois conjuntos quaisquer.

Uma **função** (ou aplicação) f definida em *D* é uma regra ou lei de correspondência que associa a cada elemento do conjunto *D* um único elemento do conjunto *I*.

Numa função, todos os elementos do **domínio** (*D*)relacionam-se com um único elemento do **contradomínio** (*I*).

O conjunto **imagem** dos elemento de D pela função f é subconjunto do contradomínio.

Definição:

Sejam x e y duas variáveis representativas de conjuntos numéricos; Diz-se que y é função de x e escreve-se

y = f(x)

se entre as duas variáveis existe uma correspondência unívoca no sentido x → y. A x chama-se variável independente, a y variável dependente.

> Conceitos Fundamentais da Matemática Bento de Jesus Caraças

Função real de variável real

Conceito:

Uma função real de variável real é uma função em que tanto os elementos do conjunto de partida (domínio de f) como os do conjunto de chegada (contradomínio de f) são números reais.

Função constante

Conceito:

Toda função f: $\Re \to \Re$ na forma f(x) = k, com $k \in \Re$ é denominada função constante.

Todos os elementos do **domínio** relacionam-se com um mesmo elemento do **contradomínio**, pois independentemente do elemento do **domínio**, a **imagem** é constante

Função identidade

Conceito:

Toda função f: $\Re \rightarrow \Re$ na forma f(x) = x é denominada função identidade.

Função linear

Conceito:

Toda função f: $\Re \to \Re$ na forma f(x) = a x, com $a \in \Re^*$ é denominada função linear ou função de proporcionalidade.

Conceito:

Uma função que estabelece entre x e y uma relação tal que y/x é constante é dita linear. Expressamos a relação por y = a.x, com "a" constante não nula e dizemos que a variação de "y" é diretamente proporcional a variação de "x".

Função afim

Toda função f: $\Re \to \Re$ na forma f(\mathbf{x}) = a \mathbf{x} + b, com a, b $\in \Re$, a $\neq 0$, é denominada **função afim.**

a – coeficiente angular; b – coeficiente linear

A função afim é a composição de uma função linear com uma translação.

O gráfico das funções reais de variável real da forma f(x) = a x + b, com a ≠ 0 e b ≠ 0, é uma reta que não passa pela origem do sistema de coordenadas (0,0), paralela à reta correspondente a função linear g(x) = a x, em que b é a ordenada na origem, ou ponto de intersecção da reta com o eixo das ordenadas.

A função é a composição da função linear $g(\mathbf{x}) = a \mathbf{x}$ com uma translação, por exemplo, de vetor (0,b) ou (-b/a,0).

Função polinomial

Conceito:

Uma função polinomial f: $\Re \to \Re$ de grau n é uma função da forma

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_3 x^3 + a_2 x^2 + a_1 x + a_0$$

onde n é o grau do polinómio, a_i , $i \in N_0$ são coeficientes reais, com $a_n \neq 0$, x é a variável independente e y = f(x) a variável dependente.

Polinómio – do grego **poly** (muitos) + do grego **nomos** (partes) + do latim **nominalis** (relativo a nomes)

Um polinómio é definido como a soma de monómios.

O grau de um polinómio é o grau do monómio de maior grau.

As constantes são monómios de grau zero.

A função constante é uma função polinomial de grau 0,

As funções lineares e afins são também chamadas funções polinomiais do primeiro grau.

A função afim, f(x) = a x + b, $a \ne 0$, é uma função polinomial de grau 1 com $b \ne 0$.

No caso de b=0 então f(x) = a x, e a função é dita linear.

Um função quadrática é uma função polinomial de grau 2.

Raízes

Do latim *radix* (base), (fundamento)

Os valores de x que anulam uma função, ou seja, para os quais f(x) = 0, são chamados de raízes da função. Assim, para acharmos as raízes de uma função, devemos resolver a equação f(x) = 0. As raízes são os zeros de uma função.

Assimptota / assimptótico

A palavra assimptótico deriva do grego asymptotos que possui o significado de "não coincidente".

É conhecido o termo "assimptota" para designar a recta que, em relação a uma determinada curva, se lhe aproxima indefinidamente mas sem que haja a possibilidade de ambas virem a coincidir.

Com poucas diferenças entre si, e de modo idêntico ao que definimos em Sucessões assimptoticamente equivalentes, verificamos que o adjectivo assimptótico é usado curiosamente com o sentido de "quase coincidente", exactamente ao contrário do grego originário asymptotos.

Monotonia

Do grego mono (um) + tonia – sufixo grego (tensão).

A palavra monotonia faz parte do nosso vocabulário. Uma coisa é monótona quando é sempre o mesmo, não varia...

Conceito:

Monotonia de uma função

Seja f uma função real de variável real e seja A um subconjunto de D_f .

Diz-se que:

- F é uma função crescente em sentido lato em A se f(a) ≥ f(b) para cada a, b ∈ A tal que a > b

Uma definição parecida à definição é a seguinte:

f diz-se crescente em cada ponto a
se existe uma vizinhança V(a,ε) tal que

$$x \in]a - \varepsilon, a[\rightarrow f(x) < f(a)$$

 $x \in]a, a + \varepsilon[\rightarrow f(x) > f(a).$

Vizinhança

Definição:

Seja a ∈ R.

Chama-se vizinhança de a (de raio ε) $V(a,\varepsilon)$ ao intervalo]a - ε , a + ε [.

Vizinhança é uma noção **topológica**.

Topologia – Do grego **Topo** (lugar) + **logia** (estudo)

"A matemática não é apenas outra linguagem: é uma linguagem mais o raciocínio; é uma linguagem mais a lógica; é um instrumento para raciocinar".

Richard P. Feynman Físico dos EUA séc. XX

"Os conceitos matemáticos são aproximações mais ou menos adequadas à realidade."

"Para saber matemática é indispensável conhecer as suas definições e saber utilizá-las adequadamente."

Alcino Simões e Sónia Frade, Mar. 98

Bibliografia

Boyer, C.B., História da Matemática, 1980

Eves, H., Introdução à história da Matemática, 1995

Ricieri, A. Prandini, Arqueologia Matemática, 1991

Francischetti, C. e outros, Resgate histórico da relação exponencial sobre os juros compostos, Ver. FAE, Curitiba, v10, n1, p.39-48, jan/jun,2007

http://www-history.mcs.st-andrews.ac.uk/

http://www.prandiano.com.br/html

http://www.educ.fc.ul.pt/icm/icm99/icm17/pi.htm

http://www.algosobre.com.br/gramatica/significado-das-palavras.html

http://www.e-escola.pt/topico.asp?id=401