Contrôle continu N°1

Les notes de cours et de travaux dirigés sont autorisées, le courriel (e-mail) et le téléphone ne sont pas autorisés.

Durée de l'épreuve : 60 minutes

La rédaction et les commandes doivent être reportées sur la copie avec les résultats numériques éventuels.

Le sujet est à rendre en même temps que la copie.

Responsable : H LI

NOM: Prénom:

NOM: Prénom:

Exercice 1 : Soit X une variable aléatoire suivant une loi géométrique $\mathcal{G}(p)$ de paramètre $p \in]0;1[$:

$$\mathbb{P}(X = k) = (1 - p)^{k - 1} p, \ k \ge 1$$

1. Soit (1, 1, 2, 1, 3) une réalisation d'un échantillon $(X_1, ..., X_5)$ de loi $\mathcal{G}(p)$. Simplifiez l'expression suivante :

$$L(p) = \mathbb{P}(X_1 = 1, X_2 = 1, X_3 = 2, X_4 = 1, X_5 = 3)$$

- 2. Calculez les valeurs de $L(\lambda)$ pour $p=0.5,\ 0.3$ et 0.1.
- 3. On définit :

(a)
$$\overline{X} = \sum_{i=1}^{n} \frac{X_i}{n}$$
,

(b)
$$S_c^2 = \sum_{i=1}^n \frac{(X_i - \overline{X})^2}{n-1}$$
.

Ces deux variables sont elles des statistiques? Sont-elles indépendantes? Pourquoi?

- 4. On simule N=10000 réalisations d'un échantillons de taille 5 d'une loi géométrique de paramètre p=2/3 à l'aide de la fonction $\operatorname{rgeom}(N,p)+1$. Dans le but d'estimer $\theta=\frac{1}{p^2}$ (= 2.25), comparez, en vous basant sur ces 10000 réalisations, les performances des estimateurs suivants :
 - (a) $S_c^2 + \overline{X}$

(b)
$$\frac{\left(\sum_{i=1}^{n} X_i - 1\right)^2}{n(n-1)}$$
,

(c)
$$\frac{n\overline{X}^2 + \overline{X}}{n+1}$$
.

Exercice 2:

- 1. Soit U une variable aléatoire suivant la loi uniforme continue sur l'intervalle [0; 1]. On définit une seconde variable aléatoire $X=-\frac{\log(1-U)}{\lambda}$ où $\lambda>0$ est un paramètre.
 - (a) Calculez la fonction de répartition de X, c'est à dire :

$$F_X(x) = \mathbb{P}(X \le x).$$

(b) Montrez que sa dérivée F'(x) est égale à la la densité de probabilité d'une loi exponentielle de paramètre λ :

$$f_{\lambda}(x) = \lambda e^{-\lambda x} \mathbf{1}_{x>0}$$

2. (a) En exploitant les résultats précédents, utilisez la fonction runif(...) pour simuler N=1000 réalisations d'un échantillon $(X_1,...,X_{50})$ (n=50) d'une loi exponentielle de paramètre $\lambda=1/4$.

Rappel : si X suit une loi exponentielle de paramètre $\lambda>0$, alors $\mathbb{E}(X)=\frac{1}{\lambda}$ et $Var(X)=\frac{1}{\lambda^2}$.

- (b) Sauvez les 1000 réalisations associées des statistiques suivantes :
 - i. $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$. Quelle est la moyenne de N = 1000 réalisations de \overline{X} ? Si On augmente la taille N à 10^9 , 10^{90} , ..., quelle sera la valeur limite? En vertu de quel théorème?
 - ii. $S_c^2 = \frac{1}{n-1} \sum_{i=1}^n (\overline{X} X_i)^2$. Quelle est la moyenne de N = 1000 réalisations de S_c^2 ? Si On augmente la taille N à 10^9 , 10^{90} , ..., quelle sera la valeur limite? En vertu de quel théorème?
 - iii. $Z = \frac{\sqrt{n}(\overline{X} \mu)}{\sigma}$,

iv. $T = (n-1)\frac{S_c^2}{\sigma^2}$.

La variable aléatoire T est-elle une statistique? Connaissez vous la loi de T? Si oui, laquelle?

- 3. À l'aide de la fonction hist(...,probability=TRUE), affichez l'histogramme de $\mathbb{Z}/1000$.
- 4. Superposez-lui le graphe de la densité d'une loi normale aux paramètres bien choisis à l'aide des fonctions curve et dnorm. Justifiez vos choix de paramètres.
- 5. Quel théorème venez-vous d'illustrer? Énoncez-le.
- 6. À l'aide des fonctions mean et var, estimez l'espérance et la variance de X en vous basant sur ces 1000 réalisations. Ces résultats sont-ils cohérents avec les points 2.(b)i. et 2.(b)ii.? avec le rappel en 2.(a)i.?