БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Кафедра программного обеспечения информационных технологий

Факультет КСиС Специальность ПОИТ

Лабораторная работа №4 по дисциплине «Методы оптимизации» на тему «Нелинейная оптимизация»

Выполнил студент: Верещагин Н. В.

группа 851006

Проверил: Филатченкова О. А.

1. Формулировка задачи (Вариант 5)

Индивидуальные задания 1

- 1 . Определить с помощью пассивного поиска минимум функции f(x), заданной на отрезке [0, 8]: а) при N=16, $\varepsilon=0,1$; б) при N=17.
- 2. Определить методом дихотомии минимум функции f (x), заданной на отрезке [0, 8], при N=16, $\varepsilon=0,1$.
- 3. Определить методом Фибоначчи минимум функции f (x), заданной на отрезке [0, 8], при N=16, $\varepsilon=0,2$.
- 4. Определить методом золотого сечения минимум функции f (x), заданной на отрезке [0, 8], при N=16.

Постановка задачи.

Склад оптовой торговли отпускает 5 видов товаров. Известны потребности Vi, издержки заказывания Ki, издержки содержания si, расход складской площади на единицу товара fi, а также величина складской площади торгового зала F. Хотя бы одна единица товара каждого вида должна храниться на складе.

Требуется определить оптимальные партии поставок при ограничении на максимальный уровень запаса при условии, что все пять видов продукции поступают на склад от разных поставщиков (раздельная оптимизация)

- 1) Решить указанным в задании методом. Выводить промежуточные результаты вычислений (координаты точки и значения функции в точке, полученные на каждой итерации). Выписать полученный ответ.
- 2) Найти решение на компьютере (например, в Excel).

Постановка задачи.

Склад оптовой торговли отпускает 5 видов товаров. Известны потребности Vi, издержки заказывания Ki, издержки содержания si, расход складской площади на единицу товара fi, а также величина складской площади торгового зала F. Хотя бы одна единица товара каждого вида должна храниться на складе.

Требуется определить оптимальные партии поставок при ограничении на максимальный уровень запаса при условии, что все пять видов продукции поступают на склад от разных поставщиков (раздельная оптимизация)

- 1) Решить указанным в задании методом. Выводить промежуточные результаты вычислений (координаты точки и значения функции в точке, полученные на каждой итерации). Выписать полученный ответ.
- 2) Найти решение на компьютере (например, в Excel).

		Vi	900	400	800	200	150	метод
5	900	Ki	5	10	11	7	2	наискорейшего
		S_{i}	4	7	6	4	2	спуска
		$ f_i $	8	5	6	3	3	

Задание 1

Методы поисковых методов оптимизации:

- Пассивные
- Активные:
 - Метод дихотомии (половинного деления)
 - Метод Фибоначчи
 - Метод золотого сечения

Пассивный поисковый метод оптимизации — все точки $\mathbf{x_i}$, $\mathbf{i}=1..\mathbf{N}$ Выбираются одновременно до начала вычислений.

Если **N четное**, т.е. **N** = 2**l**, **l** = 1,2,..., то наилучшее размещение точек x_i , i = 1..N, получается разбиением их на равноотстоящие е-пары.

Если **N** нечетное, т.е. N = 2l + 1, l = 1, 2, ..., то наилучшим является равномерное распределение точек.

После определения точек $\mathbf{x_i}$, $\mathbf{i}=1..N$, вычисляются значения функции $\mathbf{f}(\mathbf{x_i})$. Пусть $\mathbf{f}(\mathbf{x_k})=\min \mathbf{f}(\mathbf{x_i})$. Тогда, полагая $\mathbf{x_0}=\mathbf{a}$, $\mathbf{x_{N+1}}=\mathbf{b}$, определяется итоговый отрезок локализации $[\mathbf{x_{k-1}}, \mathbf{x_{k+1}}]$. Точка $\mathbf{x_k}$ принимается за аппроксимацию(оценку) точки минимума $\mathbf{x^*}$, значение функции $\mathbf{f}(\mathbf{x_k})$ - за оценку $\mathbf{f^*}=\mathbf{f}(\mathbf{x^*})$.

					Пассивный поиск минимума функции												
N	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
X	0,838889	0,938889	1,727777778	1,827778	2,616666667	2,716667	3,5056	3,60556	4,394444	4,4944444	5,283333	5,383333	6,172222	6,272222	7,061111	7,161111	
f(x)	1,475957	0,553735	-6,02033951	-6,76478	-11,93638889	-12,5031	-16,272	-16,6611	-19,0277	-19,238858	-20,2031	-20,2364	-19,7981	-19,6537	-17,8129	-17,4907	
$f_{min} = f(x_{12}) = -20,2364$ $\Delta_{16} = [x_{11}; x_{13}] = [-20,2031; -19,7981]$ $x_{12} = 5,38333333$				31]													
б) N = 17																	
N	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	1
X	0,444444	0,888889	1,333333333	1,777778	2,22222222	2,666667	3,1111	3,55556	4	4,444444	4,888889	5,333333	5,777778	6,222222	6,666667	7,111111	7,55555
f(x)	5,308642	1,012346	-2,88888889	-6,39506	-9,50617284	-12,2222	-14,543	-16,4691	-18	-19,135802	-19,8765	-20,2222	-20,1728	-19,7284	-18,8889	-17,6543	-16,024
Δ_{16}	$[x_{11}; x_{13}]$	$f(x_{12}) = -$ = $[-19,8]$ = $5,3333$	765; -20,172														

Метод дихотомии (половинного деления) – активный поисковый метод оптимизации.

Суть метода — производится пара вычислений, отстоящих на равном расстоянии по обе стороны от середины текущего отрезка локализации (начальный отрезок локализации — [a, b]). Затем сравниваются значения целевой функции для этих вычислений и отбрасывается часть отрезка, расположенная левее/правее вычисления, при котором значение целевой функции оказывается больше.

Условия окончания вычислений:

- а) выполнение заданного количества вычислений N;
- б) достижение заданной величины уменьшения отрезка локализации

Алгоритм поиска минимума унимодальной функции методом дихотомии:

- 1. Задаются N (либо δ) и ϵ , полагается j=1
- 2. На ј-й итерации вычисляются:

$$x_1^{(j)} = \frac{1}{2} \left(a^{(j-1)} + b^{(j-1)} \right) - \frac{\varepsilon}{2}$$

$$x_2^{(j)} = \frac{1}{2} \left(a^{(j-1)} + b^{(j-1)} \right) + \frac{\varepsilon}{2}$$

$$f_1^{(j)} = f(x_1^{(j)})$$

$$f_2^{(j)} = f(x_2^{(j)})$$
 Если $f_1^{(j)} \le f_2^{(j)}$, то $a^{(j)} = a^{(j-1)}$, $b^{(j)} = x_2^{(j)}$ Если $f_1^{(j)} > f_2^{(j)}$, то $a^{(j)} = x_1^{(j)}$, $b^{(j)} = b^{(j-1)}$

3. Проверяется условие окончания вычислений:

A)
$$j = \frac{N}{2}$$

B) $\frac{L_{2j}}{L_0} \le \delta$

Если оно выполняется, то определяются итоговый отрезок локализации, оценки точки минимума \mathbf{x}^* и величины минимума $\mathbf{f}^* = \mathbf{f}(\mathbf{x}^*)$, и вычисления завершаются.

Если условие не выполняется, то полагается j = j + 1 и осуществляется переход к π .2.

3 5,925 6,025 -20,069375 <= -19,974375 3,95 6,02 4 4,9375 5,0375 -19,9335938 > -20,03609375 4,9375 6,02 5 5,43125 5,53125 -20,2452734 > -20,24902344 5,43125 6,02 6 5,678125 5,778125 -20,2182715 <= -20,17264648 5,43125 5,77	Метод дихотомии (половинного деления)												
2 3,95 4,05 -17,8475 > -18,1475 3,95 8 3 5,925 6,025 -20,069375 <= -19,974375 3,95 6,02 4 4,9375 5,0375 -19,9335938 > -20,03609375 4,9375 6,02 5 5,43125 5,53125 -20,2452734 > -20,24902344 5,43125 6,02 6 5,678125 5,778125 -20,2182715 <= -20,17264648 5,43125 5,77		x ₁ ^j	x ₂ ^j	f ₁ ^j	Знак	f ₂ ^j	a ^j	b ^j					
2 3,95 4,05 -17,8475 > -18,1475 3,95 8 3 5,925 6,025 -20,069375 <= -19,974375													
3 5,925 6,025 -20,069375 <=	1	-	-	-		-	0	8					
4 4,9375 5,0375 -19,9335938 > -20,03609375 4,9375 6,02 5 5,43125 5,53125 -20,2452734 > -20,24902344 5,43125 6,02 6 5,678125 5,778125 -20,2182715 <= -20,17264648	2	3,95	4,05	-17,8475	>	-18,1475	3,95	8					
5 5,43125 5,53125 -20,2452734 > -20,24902344 5,43125 6,02 6 5,678125 5,778125 -20,2182715 <=	3	5,925	6,025	-20,069375	<=	-19,974375	3,95	6,025					
6 5,678125 5,778125 -20,2182715 <= -20,17264648 5,43125 5,77	4	4,9375	5,0375	-19,9335938	>	-20,03609375	4,9375	6,025					
	5	5,43125	5,53125	-20,2452734	>	-20,24902344	5,43125	6,025					
7 5,554688 5,654688 -20,2470093 <= -20,22607178 5,43125 5,65	6	5,678125	5,778125	-20,2182715	<=	-20,17264648	5,43125	5,7781					
	7	5,554688	5,654688	-20,2470093	<=	-20,22607178	5,43125	5,6547					
8 5,492969 5,592969 -20,2499506 <= -20,24135681 5,43125 5,59	8	5,492969	5,592969	-20,2499506	<=	-20,24135681	5,43125	5,593					

$$\begin{array}{c} \Delta_{x} = [5,\!43125;5,\!59297] \\ a^{(8)} = 5,\!43125 \rightarrow f\!\left(b^{(8)}\right) = -19,\!9336 \\ b^{(8)} = 5,\!59297 \rightarrow f\!\left(b^{(8)}\right) = -20,\!2414 \\ x_{1}^{(7)} = 5,\!554688 \rightarrow f\!\left(x_{1}^{(7)}\right) = -20,\!247 \\ => x^{*} \cong x_{1}^{(8)} = 5,\!492969; \ f^{*} \cong f\!\left(x_{1}^{(3)}\right) = -20,\!25 \\ x_{1}^{(8)} = 5,\!492969 \rightarrow f\!\left(x_{1}^{(8)}\right) = -20,\!25 \end{array}$$

Метод Фибоначчи.

Суть метода:

- 1. На первом шаге (первой итерации) проводятся два вычисления значений $\mathbf{f}(\mathbf{x})$ в точках $x_1^{(1)}$ и $x_2^{(1)}$ (причем $x_1^{(1)} < x_1^{(2)}$, расположенных симметрично относительно середины отрезка [a, b].
- 2. По результатам вычислений одна из частей отрезка ([a, $x_1^{(1)}$] либо $[x_2^{(1)}, b]$) отбрасывается, при этом одна из точек (соответственно $x_2^{(1)}$ либо $x_1^{(1)}$) уже проведенных вычислений остается внутри отрезка $\Delta 2 = \Delta$ (1).
- 3. На каждом последующем шаге (последующей итерации) точка очередного вычисления выбирается симметрично оставшейся точки.

Таким образом, на первой итерации проводятся два вычисления значений f(x), на каждой последующей - одно вычисление. Поэтому при заданном количестве вычислений N будет выполнено N - 1 шагов (итераций).

При вычислении значений точек используются числа Фибоначчи, определяемые следующим образом:

$$F_0 = F_1 = 1, F_k = F_{k-1} + F_{k-2}$$

Условие окончания вычислений - выполнение заданного количества вычислений N.

Алгоритм поиск минимума унимодальной функции методом Фибоначчи:

- 1. Задается N. Полагается j=1. Определяются числа Фибоначчи $F_k, k = \overline{0, N+1}$. Выбирается ε из условия $\varepsilon < \frac{b-a}{F_{N+1}}$
- 2. На ј-й итерации вычисляются:

$$\begin{split} x_1^{(j)} &= a^{(j-1)} + \frac{F_{N-j-1}}{F_{N-j+1}} \left(b^{(j-1)} - a^{(j-1)} \right) - \frac{(-1)^{N-j+1}}{F_{N-j+1}} \varepsilon \\ x_2^{(j)} &= a^{(j-1)} + \frac{F_{N-j}}{F_{N-j+1}} \left(b^{(j-1)} - a^{(j-1)} \right) + \frac{(-1)^{N-j+1}}{F_{N-j+1}} \varepsilon \\ f_1^{(j)} &= f(x_1^{(j)}) \\ f_2^{(j)} &= f(x_2^{(j)}) \end{split}$$
 Если $f_1^{(j)} \leq f_2^{(j)}$, то $a^{(j)} = a^{(j-1)}$, $b^{(j)} = x_2^{(j)}$, $x_2^{(j+1)} = x_1^{(j)}$ Если $f_1^{(j)} > f_2^{(j)}$, то $a^{(j)} = x_1^{(j)}$, $b^{(j)} = b^{(j-1)}$, $x_1^{(j+1)} = x_2^{(j)}$

3. Проверяется условие окончания вычислений j = N-1

Если оно выполняется, то определяются итоговый отрезок локализации, оценки точки минимума \mathbf{x}^* и величины минимума $\mathbf{f}^* = \mathbf{f}(\mathbf{x}^*)$ и вычисления завершаются.

Если условие не выполняется, то полагается j=j+1 и осуществляется переход к п.2

		M	етод Фибс	наччи							
Номер итерации	x1j	x2j	f1j	Знак	f2j	aj	bj				
0	-	-	-		-	0	8				
1	1 3,055604 4,944396 -14,2749295 > -19,94130391 3										
2	4,944396	6,111209	-19,9413039	<=	-19,87642415	3,055604	6,1112				
3	4,223073	4,944396	-18,6194568	>	-19,94130391	4,223073	6,1112				
4	4,944396	5,38948	-19,9413039	>	-20,23778539	4,944396	6,1112				
5	5,38948	5,666374	-20,2377854	÷	-20,22231954	4,944396	5,6664				
6	5,218763	5,38948	-20,1709055	>	-20,23778539	5,218763	5,6664				
7	5,38948	5,497624	-20,2377854	>	-20,24999435	5,38948	5,6664				
8	5,497624	5,557015	-20,2499944	÷	-20,24674931	5,38948	5,557				
9	5,45942	5,497624	-20,2483533	>	-20,24999435	5,45942	5,557				
10	5,497624	5,510312	-20,2499944	÷	-20,24989366	5,45942	5,5103				
11	5,494378	5,497624	-20,2499684	÷	-20,24999435	5,45942	5,4976				
12	5,448746	5,494378	-20,2473731	^	-20,2499684	5,448746	5,4976				
13	5,494378	5,518073	-20,2499684	Ų	-20,24967337	5,448746	5,5181				
14	5,405189	5,494378	-20,2410108	^	-20,2499684	5,405189	5,5181				
15	5,494378	5,561631	-20,2499684	Ų	-20,24620165	5,405189	5,5616				
x*			5189; 5,6163 $f : f^* \cong f\left(x_1^{(1)}\right)$,25						

Метод золотого сечения.

Недостаток метода Фибоначчи - должно быть задано количество вычислений N.

Метод золотого сечения не зависит от N.

Алгоритм поиска по методу золотого сечения определяется тем же правилом симметрии, что и алгоритм по методу Фибоначчи: на первой итерации выбираются две точки, расположенные симметрично относительно середины исходного отрезка; на каждой последующей итерации выбирается одна точка, расположенная симметрично оставшейся точки. Разница заключается в выборе точек. Метод золотого сечения основан на делении отрезка локализации «золотым сечением», т.е. таком делении, когда отношение большей части отрезка ко всему отрезку равно отношению меньшей части к большей

Условия окончания вычислений:

- а) выполнение заданного количества вычислений N,
- б) достижение заданной величины δ уменьшения отрезка локализации

Алгоритм поиска минимума унимодальной функции методом золотого сечения:

- 1. Задается N (либо δ). Полагается j=1.
- 2. На ј-й итерации вычисляются:

$$x_1^{(j)} = a^{(j-1)} + \Phi_1(b^{(j-1)} - a^{(j-1)})$$

$$x_2^{(j)} = a^{(j-1)} + \Phi_2(b^{(j-1)} - a^{(j-1)})$$

$$f_1^{(j)} = f(x_1^{(j)})$$

$$f_2^{(j)} = f(x_2^{(j)})$$
 Если $f_1^{(j)} \leq f_2^{(j)}$, то $a^{(j)} = a^{(j-1)}$, $b^{(j)} = x_2^{(j)}$, $x_2^{(j+1)} = x_1^{(j)}$ Если $f_1^{(j)} > f_2^{(j)}$, то $a^{(j)} = x_1^{(j)}$, $b^{(j)} = b^{(j-1)}$, $x_1^{(j+1)} = x_2^{(j)}$ 3. Проверяется условие окончания вычислений: A) $j = N - 1$

A)
$$j = N - 1$$

B) $\frac{L_{j+1}}{L_0} \le \delta$

Если оно выполняется, то определяются итоговый отрезок локализации, оценки точки минимума \mathbf{x}^* и величины минимума $\mathbf{f}^*(\mathbf{x}^*)$ и вычисления завершаются.

Если условие не выполняется, то полагается j=j+1 и осуществляется переход к $\pi.2$.

		Метод золотого сечения												
Номер итерации	x ₁ ^j	x ₂ ^j	f ₁ ^j	Знак	f ₂ ^j	a ^j	b ^j							
0	-	-	-		-	0	8							
1	3,056	4,944	-14,276864	>	-19,940864	3,056	8							
2	4,944608	6,111392	-19,9415397	=	-19,87619982	3,056	6,1114							
3	4,22316	4,944608	-18,619679	^	-19,94153973	4,2232	6,1114							
4	4,944608	5,390087	-19,9415397	۸	-20,23791919	4,9446	6,1114							
5	5,390087	5,665681	-20,2379192	Ų	-20,22254997	4,9446	5,6657							
6	5,220058	5,390087	-20,1716323	^	-20,23791919	5,2201	5,6657							
7	5,390087	5,495453	-20,2379192	^	-20,24997932	5,3901	5,6657							
8	5,495453	5,560404	-20,2499793	÷	-20,24635137	5,3901	5,5604							
9	5,455148	5,495343	-20,2479883	^	-20,24997831	5,4551	5,5604							
10	5,495343	5,520196	-20,2499783	÷	-20,24959211	5,4551	5,5202							
11	5,479997	5,495343	-20,2496	^	-20,2500	5,4800	5,5202							
12	5,495343	5,50484	-20,2500	÷	-20,2500	5,4953	5,5202							
13	5,50484	5,510702	-20,2500	÷	-20,2499	5,4953	5,5107							
14	5,50121	5,50484	-20,2500	÷	-20,2500	5,4953	5,5048							
15	5,50484	5,50121	-20,2500	÷	-20,2500	5,4953	5,5012							
25-21-21 55-22-2 25-23-2 3,1330 55-32-2														
x* ⊆	$\cong x_1^{(15)} =$	5,4953 + 5	$ \lambda_{16} = [5,4953; \\ 5,5012 \\ $	5,5012] 9827; <i>f</i> * £	$\cong f\left(x_1^{(15)}\right) = -$	20,25								

Задание 2

$$L = L_1 + L_2 + L_3 = \frac{kv}{q} + sv + \frac{hq}{2}$$

где L_1 — общие организационные издержки; L_2 — стоимость товаров; L_3 — общие издержки содержания запасов.

За исключением q все величины в правой части уравнения постоянны и известны, т.е.

L=f(q). Для нахождения минимума L най**д**ем производную $\frac{dL}{dq}$ и приравняем ее к нулю:

$$\frac{dL}{dq} = -\frac{kv}{q^2} + \frac{h}{2} = 0,$$

$$F(q) = f_1 + f_2 + f_3 + f_4 + f_5, \text{где } f_i = \frac{K_i V_i}{q_i} + \frac{S_i q_i}{2}$$

$$F = \frac{4500}{q_1} + 2q_1 + \frac{4000}{q_2} + 3,5q_2 + \frac{8800}{q_3} + 3q_3 + \frac{1400}{q_4} + 2q_4 + \frac{300}{q_5} + q_5$$

1	900	5	4	8	47,4341649	94,86833	189,737	379,473	94,8683	189,7366596
2	400	10	7	5	33,8061702	118,3216	236,643	169,031	118,322	236,6431913
3	800	11	6	6	54,160256	162,48077	324,962	324,962	162,481	324,9615362
4	200	7	4	3	26,4575131	52,915026	105,83	79,3725	52,915	105,8300524
5	150	2	2	3	17,3205081	17,320508	34,641	51,9615	17,3205	34,64101615
F	900					445,90623	891,812	1004,8		
L	891,812			5						
				$\sum f_{i} *$	q_i = 1004,8 >	900				
				$\sum_{i=1}^{j}$	41 2001,00					
			Т.е. скл	падских помец	цений не хвата	ет.				
			Издерж	кки: 669,6128						
i	Vi	Ki	Si	f	qi	Ki*Vi/qi	Si*qi	fi*qi	0,5*Si*qi	Ki*Vi/qi+0,5*Si*qi
1	900	5	4	8	40,4023384	111,37969	161,609	323,219	80,8047	192,1843686
2	400	10	7	5	31,7300581	126,06343	222,11	158,65	111,055	237,1186347
3	800	11	6	6	49,6655393	177,18523	297,993	297,993	148,997	326,1818478
4	200	7	4	3	24,7592353	56,544557	99,0369	74,2777	49,5185	106,0630279
5	150	2	2	3	15,2866868	19,62492	30,5734	45,8601	15,2867	34,91160643
						490,79783	811,323	900		
	896,459									

Положим начальную точку
$$Q_0 = \begin{pmatrix} 10 \\ 10 \\ 10 \\ 10 \\ 10 \end{pmatrix}$$
 и $\epsilon {=}\,0,1$

						2015	
Q_0	10	10	10	10	10		
VF	-43	-40,5	-85	-12	-2		
VF S ₀	104,2221186						
S_0	0,412580368	0,38859314	0,815565843	0,115138707	0,019189785		
			$S_0 * \lambda = \begin{pmatrix} 10 + 0.\\ 10 + 0.\\ 10 + 0.\\ 10 + 0.\\ 10 + 0. \end{pmatrix}$	102 + N/			
F =	+ 10 +	$\frac{800}{0.82 * \lambda} + 3 * ($	$(3.5) + \frac{4000}{10 + 0.39} = (4.5) + \frac{4000}{10 + 0.82} = (4.5) + \frac{4000}{10 + 0.82} = (4.5) + \frac{4000}{10 + 0.39} = (4.5) + 4000$	$\frac{1400}{10 + 0.12 * \lambda} + 3.5 * (10 + 0.00)$	$(39 * \lambda)$ $(10 + 0.12 * \lambda)$		
	10 +	0.02 * A					

Минимизируем ф-цию методом дихотомии. Кол-во итерации: 20

1 449,95 450,05 2418,122322 = 2418,590139 0 450,0 2 224,975 225,075 1403,446401 = 1403,866144 0 225,0 3 112,4875 112,5875 990,5067711 = 990,7790117 0 112,58 4 56,24375 56,34375 920,1927035 = 920,0660659 0 56,343* 5 28,121875 28,221875 1053,12662 > 1052,106349 28,121875 56,343* 6 42,1828125 42,2828125 956,8547186 > 956,4319252 42,1828125 56,343* 7 49,21328125 49,3132813 933,3619588 > 933,1097105 49,21328125 56,343* 8 52,72851563 52,8285156 925,6737924 > 925,4888758 52,72851563 56,343* 9 54,48613281 54,5861328 922,6767981 > 922,5220449 54,48613281 56,343* 10 55,36494141 55,4649414 921,3728665 > 921,232415 55,36494141 56,343*	Итерация	λ1	λ2	f1		f2	а	b
2 224,975 225,075 1403,446401 = 1403,866144 0 225,07 3 112,4875 112,5875 990,5067711 = 990,7790117 0 112,58 4 56,24375 56,34375 920,1927035 = 920,0660659 0 56,343 5 28,121875 28,221875 1053,12662 > 1052,106349 28,121875 56,343 6 42,1828125 42,2828125 956,8547186 > 956,4319252 42,1828125 56,343 7 49,21328125 49,3132813 933,3619588 > 933,1097105 49,21328125 56,343 8 52,72851563 52,8285156 925,6737924 > 925,4888758 52,72851563 56,343 9 54,48613281 54,5861328 922,6767981 > 922,5220449 54,48613281 56,343 10 55,36494141 55,4649414 921,3728665 > 921,232415 55,36494141 56,343 11 55,8043457 55,9043457 920,7675809 > 920,634096 55,8043457 56,02404785	0						0	900
3 112,4875 112,5875 990,5067711 = 990,7790117 0 112,58 4 56,24375 56,34375 920,1927035 = 920,0660659 0 56,343 5 28,121875 28,221875 1053,12662 > 1052,106349 28,121875 56,343 6 42,1828125 42,2828125 956,8547186 > 956,4319252 42,1828125 56,343 7 49,21328125 49,3132813 933,3619588 > 933,1097105 49,21328125 56,343 8 52,72851563 52,8285156 925,6737924 > 925,4888758 52,72851563 56,343 9 54,48613281 54,5861328 922,6767981 > 922,5220449 54,48613281 56,343 10 55,36494141 55,4649414 921,3728665 > 921,232415 55,36494141 56,343 11 55,8043457 55,9043457 920,7675809 > 920,634096 55,8043457 56,02404785 56,1240479 920,4763739 > 920,3463274 56,02404785 56,343 13 56,13	1	449,95	450,05	2418,122322	<=	2418,590139	0	450,05
4 56,24375 56,34375 920,1927035 = 920,0660659 0 56,343 5 28,121875 28,221875 1053,12662 > 1052,106349 28,121875 56,343 6 42,1828125 42,2828125 956,8547186 > 956,4319252 42,1828125 56,343 7 49,21328125 49,3132813 933,3619588 > 933,1097105 49,21328125 56,343 8 52,72851563 52,8285156 925,6737924 > 925,4888758 52,72851563 56,343 9 54,48613281 54,5861328 922,6767981 > 922,5220449 54,48613281 56,343 10 55,36494141 55,4649414 921,3728665 > 921,232415 55,36494141 56,343 11 55,8043457 55,9043457 920,7675809 > 920,634096 55,8043457 56,343 12 56,02404785 56,1240479 920,4763739 > 920,3463274 56,02404785 56,1338989 56,3338989 920,3336006 > 920,135431 56,18882446 56,2888245 920,262918 <t< th=""><th>2</th><th>224,975</th><th>225,075</th><th>1403,446401</th><th><=</th><th>1403,866144</th><th>0</th><th>225,075</th></t<>	2	224,975	225,075	1403,446401	<=	1403,866144	0	225,075
5 28,121875 28,221875 1053,12662 1052,106349 28,121875 56,343 6 42,1828125 42,2828125 956,8547186 956,4319252 42,1828125 56,343 7 49,21328125 49,3132813 933,3619588 933,1097105 49,21328125 56,343 8 52,72851563 52,8285156 925,6737924 925,4888758 52,72851563 56,343 9 54,48613281 54,5861328 922,6767981 922,5220449 54,48613281 56,343 10 55,36494141 55,4649414 921,3728665 921,232415 55,36494141 56,343 11 55,8043457 55,9043457 920,7675809 920,634096 55,8043457 56,343 12 56,02404785 56,1240479 920,4763739 920,3463274 56,02404785 56,343 13 56,13389893 56,2338989 920,3336006 920,2052623 56,13389893 56,343 14 56,18882446 56,2888245 920,262918 920,1006902 56,21628723 56,343 15 56,21628723 56,3300186 920,2102133 920,0	3	112,4875	112,5875	990,5067711	<=	990,7790117	0	112,5875
6 42,1828125 42,2828125 956,8547186 > 956,4319252 42,1828125 56,343 7 49,21328125 49,3132813 933,3619588 > 933,1097105 49,21328125 56,343 8 52,72851563 52,8285156 925,6737924 > 925,4888758 52,72851563 56,343 9 54,48613281 54,5861328 922,6767981 > 922,5220449 54,48613281 56,343 10 55,36494141 55,4649414 921,3728665 > 921,232415 55,36494141 56,343 11 55,8043457 55,9043457 920,7675809 > 920,634096 55,8043457 56,343 12 56,02404785 56,1240479 920,4763739 > 920,3463274 56,02404785 56,343 13 56,13389893 56,2338989 920,3336006 > 920,2052623 56,13389893 56,343 14 56,18882446 56,2888245 920,2277523 > 920,1006902 56,21628723 56,343 15 56,23001862 56,3300186 920,2102133 > 920,0833635	4	56,24375	56,34375	920,1927035	<=	920,0660659	0	56,34375
7 49,21328125 49,3132813 933,3619588 933,1097105 49,21328125 56,343 8 52,72851563 52,8285156 925,6737924 925,4888758 52,72851563 56,343 9 54,48613281 54,5861328 922,6767981 922,5220449 54,48613281 56,343 10 55,36494141 55,4649414 921,3728665 921,232415 55,36494141 56,343 11 55,8043457 55,9043457 920,7675809 920,634096 55,8043457 56,343 12 56,02404785 56,1240479 920,4763739 920,3463274 56,02404785 56,343 13 56,13389893 56,2338989 920,3336006 920,2052623 56,13389893 56,343 14 56,18882446 56,2888245 920,262918 920,135431 56,18882446 56,3882446 56,3162872 920,2277523 920,1006902 56,21628723 56,343 16 56,23001862 56,3300186 920,2102133 920,0833635 56,23001862 56,33001862 56,33001862 56,33001862 56,33001862 56,33001862 56,33001862 56,33001862 56,330	5	28,121875	28,221875	1053,12662	>	1052,106349	28,121875	56,34375
8 52,72851563 52,8285156 925,6737924 925,4888758 52,72851563 56,343 9 54,48613281 54,5861328 922,6767981 922,5220449 54,48613281 56,343 10 55,36494141 55,4649414 921,3728665 921,232415 55,36494141 56,343 11 55,8043457 55,9043457 920,7675809 920,634096 55,8043457 56,343 12 56,02404785 56,1240479 920,4763739 920,3463274 56,02404785 56,02404785 56,343 13 56,13389893 56,2338989 920,3336006 920,2052623 56,13389893 56,343 14 56,18882446 56,2888245 920,262918 920,135431 56,18882446 56,3882446 56,3162872 920,2277523 920,1006902 56,21628723 56,343 16 56,23001862 56,3300186 920,2102133 920,0833635 56,23001862 56,33001862 56,343	6	42,1828125	42,2828125	956,8547186	>	956,4319252	42,1828125	56,34375
9 54,48613281 54,5861328 922,6767981 922,5220449 54,48613281 56,343 10 55,36494141 55,4649414 921,3728665 921,232415 55,36494141 56,343 11 55,8043457 55,9043457 920,7675809 920,634096 55,8043457 56,343 12 56,02404785 56,1240479 920,4763739 920,3463274 56,02404785 56,343 13 56,13389893 56,2338989 920,3336006 920,2052623 56,13389893 56,343 14 56,18882446 56,2888245 920,262918 920,135431 56,18882446 56,343 15 56,21628723 56,3162872 920,2277523 920,1006902 56,21628723 56,343 16 56,23001862 56,3300186 920,2102133 920,0833635 56,23001862 56,33001862	7	49,21328125	49,3132813	933,3619588	>	933,1097105	49,21328125	56,34375
10 55,36494141 55,4649414 921,3728665 921,232415 55,36494141 56,343 11 55,8043457 55,9043457 920,7675809 920,634096 55,8043457 56,343 12 56,02404785 56,1240479 920,4763739 920,3463274 56,02404785 56,343 13 56,13389893 56,2338989 920,3336006 920,2052623 56,13389893 56,343 14 56,18882446 56,2888245 920,262918 920,135431 56,18882446 56,343 15 56,21628723 56,3162872 920,2277523 920,1006902 56,21628723 56,343 16 56,23001862 56,3300186 920,2102133 920,0833635 56,23001862 56,33001862 56,343	8	52,72851563	52,8285156	925,6737924	>	925,4888758	52,72851563	56,34375
11 55,8043457 55,9043457 920,7675809 920,634096 55,8043457 56,343 12 56,02404785 56,1240479 920,4763739 920,3463274 56,02404785 56,02404785 56,343 13 56,13389893 56,2338989 920,3336006 920,2052623 56,13389893 56,343 14 56,18882446 56,2888245 920,262918 920,135431 56,18882446 56,3882446 56,343 15 56,21628723 56,3162872 920,2277523 920,1006902 56,21628723 56,343 16 56,23001862 56,3300186 920,2102133 920,0833635 56,23001862 56,33001862	9	54,48613281	54,5861328	922,6767981	>	922,5220449	54,48613281	56,34375
12 56,02404785 56,1240479 920,4763739 920,3463274 56,02404785 56,343 13 56,13389893 56,2338989 920,3336006 920,2052623 56,13389893 56,343 14 56,18882446 56,2888245 920,262918 920,135431 56,18882446 56,343 15 56,21628723 56,3162872 920,2277523 920,1006902 56,21628723 56,343 16 56,23001862 56,3300186 920,2102133 920,0833635 56,23001862 56,33001862 56,343	10	55,36494141	55,4649414	921,3728665	>	921,232415	55,36494141	56,34375
13 56,13389893 56,2338989 920,3336006 > 920,2052623 56,13389893 56,343 14 56,18882446 56,2888245 920,262918 > 920,135431 56,18882446 56,343 15 56,21628723 56,3162872 920,2277523 > 920,1006902 56,21628723 56,343 16 56,23001862 56,3300186 920,2102133 > 920,0833635 56,23001862 56,33001862	11	55,8043457	55,9043457	920,7675809	>	920,634096	55,8043457	56,34375
14 56,18882446 56,2888245 920,262918 > 920,135431 56,18882446 56,343 15 56,21628723 56,3162872 920,2277523 > 920,1006902 56,21628723 56,343 16 56,23001862 56,3300186 920,2102133 > 920,0833635 56,23001862 56,343	12	56,02404785	56,1240479	920,4763739	>	920,3463274	56,02404785	56,34375
15 56,21628723 56,3162872 920,2277523 > 920,1006902 56,21628723 56,343 16 56,23001862 56,3300186 920,2102133 > 920,0833635 56,23001862 56,343	13	56,13389893	56,2338989	920,3336006	>	920,2052623	56,13389893	56,34375
16 56,23001862 56,3300186 920,2102133 920,0833635 56,23001862 56,343	14	56,18882446	56,2888245	920,262918	>	920,135431	56,18882446	56,34375
	15	56,21628723	56,3162872	920,2277523	>	920,1006902	56,21628723	56,34375
	16	56,23001862	56,3300186	920,2102133	>	920,0833635	56,23001862	56,34375
17 56,23688431 56,3368843 920,2014547 > 920,0747111 56,23688431 56,343	17	56,23688431	56,3368843	920,2014547	>	920,0747111	56,23688431	56,34375

18	56,24031715	56,3403172	920,1970782	>	920,0703876	56,24031715	56,34375
19	56,24203358	56,3420336	920,1948906	>	920,0682265	56,24203358	56,34375
20	56,24289179	56,3428918	920,193797	>	920,0671462	56,24289179	56,34375

56,242892	56,34375	56,3428918	56,34203358	56,33688431	56,33001862	
920,1938	920,0660659	920,067146	920,0682265	920,0747111	920,0833635	920,0660659
$\lambda_0 =$	56.34					
Q_1	33,24632509	31,8947946	55,95203797	16,48734654	11,08122442	
∇F	-2,07122607	-0,8252684	0,189064678	-3,150228565	-1,443125371	
$\ \nabla F\ $	4,124723217	>ε				
S_0	0,502149106	0,20007848	-0,045836937	0,76374302	0,349872051	
fi	8	5	6	3	3	
$\overline{}$						
$\int f_i * q_i$	=843,8625142					
_						

$$Q_2 = Q_1 + S_0 * \lambda = \begin{pmatrix} 33.25 + 0.5 * \lambda \\ 31.9 + 0.2 * \lambda \\ 55.95 - 0.05 * \lambda \\ 16.49 + 0.76 * \lambda \\ 11.08 + 0.35 * \lambda \end{pmatrix}$$

$$F = \frac{4500}{33.25 + 0.5 * \lambda} + 2 * (33.25 + 0.5 * \lambda) + \frac{4000}{31.9 + 0.2 * \lambda} + 3.5 * (31.9 + 0.2 * \lambda)$$

$$+ \frac{8800}{55.95 - 0.05 * \lambda} + 3 * (55.95 - 0.05 * \lambda) + \frac{1400}{16.49 + 0.76 * \lambda} + 2 * (16.49 + 0.76 * \lambda) + \frac{300}{11.08 + 0.35 * \lambda} + 11.08 + 0.35 * \lambda \rightarrow min$$

Итерация	λ1	λ2	f1		f2	a	b
0						0	900
1	449,95	450,05	2244,787643	<=	2245,1545	0	450,05
2	224,975	225,075	1451,320947	<=	1451,6563	0	225,075
3	112,4875	112,5875	1094,030127	<=	1094,3208	0	112,5875
4	56,24375	56,34375	947,830929	<=	948,0455	0	56,34375
5	28,121875	28,221875	900,7097116	<=	900,8123	0	28,22188
6	14,0609375	14,1609375	894,6386197	>	894,6062	14,0609375	28,22188
7	21,09140625	21,1914063	895,3385559	<=	895,3864	14,0609375	21,19141
8	17,57617188	17,6761719	894,2847334	<=	894,2967	14,0609375	17,67617
9	15,81855469	15,9185547	894,2664767	>	894,2574	15,81855469	17,67617
10	16,69736328	16,7973633	894,229451	<=	894,2312	15,81855469	16,79736
11	16,25795898	16,357959	894,2361115	>	894,2325	15,81855469	16,35796
12	16,03825684	16,1382568	894,2482903	>	894,2420	15,81855469	16,13826
13	15,92840576	16,0284058	894,2566274	>	894,2490	15,81855469	16,02841
14	15,87348022	15,9734802	894,2613623	>	894,2530	15,81855469	15,97348
15	15,84601746	15,9460175	894,263872	>	894,2552	15,81855469	15,94602
16	15,83228607	15,9322861	894,2651624	>	894,2563	15,81855469	15,93229
17	15,82542038	15,9254204	894,2658166	>	894,2569	15,81855469	15,92542
18	15,82198753	15,9219875	894,2661459	>	894,2572	15,81855469	15,92199
19	15,82027111	15,9202711	894,2663111	>	894,2573	15,81855469	15,92027
20	15,8194129	15,9194129	894,2663938	>	894,2574	15,81855469	15,91941

15,818555	15,9194129	15,8194129	15,82027111	15,8220	15,82542038	15,83228607	15,846	15,87348	
894,26648	894,2573767	894,266394	894,2663111	894,2661459	894,2658166	894,2651624	894,2639	894,2614	894,2574
$\lambda_0 = 15.$	919								
Q_2	41,24024404	35,0799265	55,22234084	28,64568702	16,65098206				
∇F	-0,6458795	-0,075488	0,114287586	0,293880092	-0,082035598				
$\ \nabla F\ $	0,727334697	>ε							
S_0	0,888008639	0,10378717	-0,157132041	-0,404050697	0,112789337				
fi	8	5	6	3	3				
$f_i * q_i =$	972,5456372								

$$Q_{3} = Q_{2} + S_{0} * \lambda = \begin{pmatrix} 41.24 + 0.89 * \lambda \\ 35.08 + 0.1 * \lambda \\ 55.22 - 0.16 * \lambda \\ 28.65 - 0.4 * \lambda \end{pmatrix}$$

$$F = \frac{4500}{41.24 + 0.89 * \lambda} + 2 * (41.24 + 0.89 * \lambda) + \frac{4000}{35.08 + 0.1 * \lambda} + 3.5 * (35.08 + 0.1 * \lambda)$$

$$+ \frac{8800}{55.22 - 0.16 * \lambda} + 3 * (55.22 - 0.16 * \lambda) + \frac{1400}{28.65 - 0.4 * \lambda} + 2 * (28.65 - 0.4 * \lambda)$$

$$* \lambda) + \frac{300}{16.65 + 0.11 * \lambda} + 16.65 + 0.11 * \lambda \rightarrow min$$

Минимизируем ф-цию методом дихотомии. Кол-во итерации: 20

Итерация	λ1	λ2	f1		f2	а	b
0						0	900
1	449,95	450,05	368,4019207	<=	369,0690927	0	450,05
2	224,975	225,075	1178,296021	<=	1178,737364	0	225,075
3	112,4875	112,5875	832,9993532	<=	833,351591	0	112,5875
4	56,24375	56,34375	1085,91507	<=	1087,622374	0	56,34375
5	28,121875	28,221875	914,8045538	<=	915,0168449	0	28,22188
6	14,0609375	14,1609375	895,1850991	<=	895,2595636	0	14,16094
7	7,03046875	7,13046875	892,2388272	<=	892,2480119	0	7,130469
8	3,515234375	3,61523438	892,5650921	>	892,5377376	3,515234375	7,130469
9	5,272851563	5,37285156	892,2413201	>	892,2327201	5,272851563	7,130469
10	6,151660156	6,25166016	892,2009556	<=	892,2013559	5,272851563	6,25166
11	5,712255859	5,81225586	892,2112373	>	892,207166	5,712255859	6,25166
12	5,931958008	6,03195801	892,203637	>	892,2018085	5,931958008	6,25166
13	6,041809082	6,14180908	892,2016834	>	892,200971	6,041809082	6,25166
14	6,096734619	6,19673462	892,2011665	>	892,2010109	6,096734619	6,25166
15	6,124197388	6,22419739	892,2010228	<=	892,2011453	6,096734619	6,224197
16	6,110466003	6,210466	892,2010851	>	892,2010685	6,110466003	6,224197
17	6,117331696	6,2173317	892,2010516	<=	892,2011045	6,110466003	6,217332
18	6,113898849	6,21389885	892,2010678	<=	892,2010859	6,110466003	6,213899
19	6,112182426	6,21218243	892,2010763	<=	892,2010771	6,110466003	6,212182
20	6,111324215	6,21132421	892,2010807	>	892,2010728	6,111324215	6,212182

6,1113242	6,212182426	6,21132421	6,112182426	6,113898849	6,117331696	
892,20108	892,2010771	892,201073	892,2010763	892,2010678	892,2010516	892,2010516
Q_3	46,67248744	35,7148271	54,26111203	26,17397488	17,34095184	
∇F	-0,06581116	0,05050458	0,011141931	-0,043566022	0,00235647	
$\ \nabla F\ $	0,094390227	<ε				
fi	8	5	6	3	3	
∇						
$\sum f_i * q_i =$	1008,065487					

Останавливаем вычисления, тк $\|\nabla F\|$ < 0.1. Оптимальные размеры поставок:

$$Q_3 = \begin{pmatrix} 46.67 \\ 35.71 \\ 54.26 \\ 26.17 \\ 17.34 \end{pmatrix}$$

Значение целевой ф-ции F=892.2

Однако ограничение $\sum f_i * q_i < 900$ выполняется только на 1 итерации, следовательно размеры поставок:

$$Q_1 = \begin{pmatrix} 33.24 \\ 31.89 \\ 55.95 \\ 16.48 \\ 11.08 \end{pmatrix}$$

Значение целевой ф-ции F=920.066