Bottom-Up Parsing II (Different types of Shift-Reduce Conflicts)

Lecture 10

Review: Bottom-Up Parsing

- Bottom-up parsing is more general than topdown parsing
 - And just as efficient
 - Doesn't have issues with left-recursion
 - Doesn't require left-factoring
 - Many well-known parser generators (Yacc, Bison,...)
 - Can handle many more grammars without backtracking than otherwise
- · LR(k) parsers are bottom-up

Review: An Introductory Example

- Bottom-up parsers don't need left-factored grammars
- Revert to the "natural" grammar for our example:

$$E \rightarrow T + E \mid T$$

 $T \rightarrow int * T \mid int \mid (E)$

Consider the string: int * int + int

Review: The Idea

Bottom-up parsing *reduces* a string to the start symbol by inverting productions:

int * int + int
$$T \rightarrow int$$

$$int * T + int T \rightarrow int * T$$

$$T + int T \rightarrow int$$

$$T + T$$

$$T + T$$

$$E \rightarrow T$$

$$T + E$$

$$F$$

Review: Bottom-up Parsers and Rightmost derivations in reverse

- Read the productions in reverse (from bottom to top)
- This is a rightmost derivation!

int * int + int
$$T \rightarrow int$$

$$int * T + int T \rightarrow int * T$$

$$T + int T \rightarrow int$$

$$T + T$$

$$T + T$$

$$E \rightarrow T$$

$$T + E$$

$$E \rightarrow T + E$$

Review: Notation useful for Shift-Reduce Parsers

- Idea: Split string into two substrings
 - Right substring is as yet unexamined by parsing (a string of terminals)
 - Left substring has terminals and non-terminals
- The dividing point is marked by a |
 - The | is not part of the string
- Initially, all input is unexamined $|x_1x_2...x_n|$

Review: Shift-Reduce Parsing

Bottom-up parsing uses only two kinds of actions:

Shift

Reduce

Review: Shift

- · Shift: Move one place to the right
 - Shifts a terminal to the left string

$$ABC|xyz \Rightarrow ABCx|yz$$

Review: Reduce

- Apply an inverse production at the right end of the left string
 - If $D \rightarrow Cx$ is a production, then

$$ABCx|yz \Rightarrow ABD|yz$$

The Stack

- Left string can be implemented by a stack
 - Top of the stack is the
- · Shift pushes a terminal on the stack
- Reduce pops 0 or more symbols off of the stack (production rhs) and pushes a nonterminal on the stack (production lhs)

Review: The Example with Reductions Only

int * int | + int reduce
$$T \rightarrow int$$

int * T | + int reduce $T \rightarrow int * T$

$$T + int$$
 | reduce $T \rightarrow int$
 $T + T$ | reduce $E \rightarrow T$
 $T + E$ | reduce $E \rightarrow T + E$
 E | Prof. Aiken (Modified by Professor Vijay)

Ganesh. Lecture 10)

Review: The Example with Shift-Reduce Parsing

```
int * int + int
                           shift
int | * int + int
                           shift
int * | int + int
                           shift
int * int | + int
                           reduce T \rightarrow int
int * T | + int
                           reduce T \rightarrow int * T
T \mid + int
                           shift
T + | int
                           shift
T + int
                           reduce T \rightarrow int
T + T
                           reduce E → T
T + E |
                           reduce E \rightarrow T + E
EI
            Prof. Aiken (Modified by Professor Vijay
```

Ganesh. Lecture 10)

Conflicts

- In a given state, more than one action (shift or reduce) may lead to a valid parse
- If it is legal to shift or reduce, there is a shiftreduce conflict
- If it is legal to reduce by two different productions, there is a reduce-reduce conflict

Key Issue: To Shift or Reduce?

- How do we decide when to shift or reduce?
- Example grammar:

```
E \rightarrow T + E \mid T

T \rightarrow int * T \mid int \mid (E)
```

- Consider step int | * int + int
 - We could reduce by $T \rightarrow int giving T \mid * int + int$
 - A fatal mistake!
 - No way to reduce to the start symbol E

Handles: Symbols replaced by Reduction

- Intuition: Want to reduce only if the result can still be reduced to the start symbol
- Handle: Informally, represents the RHS of a production. Let $X \to \beta$ be a production in G. Then β in the position after α is a handle of $\alpha\beta\omega$

Handles (Cont.)

- Handles formalize the intuition
 - A handle is a string that can be reduced and also allows further reductions back to the start symbol (using a particular production at a specific spot)
- We only want to reduce at handles
- Note: We have said what a handle is, not how to find handles

Important Fact #2

Important Fact #2 about bottom-up parsing:

In shift-reduce parsing, handles appear only at the top of the stack, never inside

Using the symbol already shifted into the stack (left context) and the next k lookahead symbols (right context), decide to shift or reduce

A Shift-Reduce Parse in Detail (1)

A Shift-Reduce Parse in Detail (2)

A Shift-Reduce Parse in Detail (3)

A Shift-Reduce Parse in Detail (4)

```
|int * int + int
int | * int + int
int * | int + int
int * int | + int
```

A Shift-Reduce Parse in Detail (5)

```
|int * int + int
int | * int + int
int * | int + int
int * | int + int
int * int | + int
int * T | + int
```


A Shift-Reduce Parse in Detail (6)

```
|int * int + int
int | * int + int
int * | int + int
int * int | + int
int * T | + int
T | + int
```


A Shift-Reduce Parse in Detail (7)

```
|int * int + int | int | * int + int | int * | int + int | int * int | + int | int * T | + int | T + | int | T + | int |
```


A Shift-Reduce Parse in Detail (8)

```
int * int + int
int | * int + int
int * | int + int
int * int | + int
int * T | + int
T \mid + int
T + | int
T + int |
```


A Shift-Reduce Parse in Detail (9)

```
int * int + int
int | * int + int
int * | int + int
int * int | + int
int * T | + int
T \mid + int
T + | int
T + int |
T + T
```


A Shift-Reduce Parse in Detail (10)

```
|int * int + int
int | * int + int
int * | int + int
int * int | + int
int * T | + int
T \mid + int
T + | int
T + int |
T + T
                             int
                                           int
                                                            int
T + E |
```

A Shift-Reduce Parse in Detail (11)

```
|int * int + int
int | * int + int
int * | int + int
int * int | + int
int * T | + int
T \mid + int
T + | int
T + int |
T + T
                                 int
                                                 int
                                                                    int
T + E |
                      Prof. Alex Aiken Lecture 9 (Modified by
                                                                     28
                            Professor Vijay Ganesh)
```

Theorem: Handle always on top of Stack

- Proof Method: Informal induction on # of reduce moves
- Proof:
 - True initially, stack is empty
 - Immediately after reducing a handle
 - right-most non-terminal on top of the stack
 - next handle must be to right of right-most non-terminal, because this is a right-most derivation
 - Sequence of shift moves reaches next handle

Summary of Handles

- In shift-reduce parsing, handles always appear at the top of the stack
- Handles are never to the left of the rightmost non-terminal
 - Therefore, shift-reduce moves are sufficient; the need never move left
- Bottom-up parsing algorithms are based on recognizing handles

Recognizing Handles

- There are no known efficient algorithms to recognize handles
- Solution: use heuristics to guess which stacks are handles
- On some CFGs, the heuristics always guess correctly
 - For the heuristics we use here, these are the SLR grammars
 - Other heuristics work for other grammars

Grammars

Viable Prefixes

It is not obvious how to detect handles

- At each step the parser sees only the stack, not the entire input; start with that . . .
 - α is a viable prefix if there is an ω such that α ω is a state of a shift-reduce parser

Huh?

- · What does this mean? A few things:
 - A viable prefix does not extend past the right end of the handle
 - It's a viable prefix because it is a prefix of the handle
 - As long as a parser has viable prefixes on the stack no parsing error has been detected

Important Fact #3

Important Fact #3 about bottom-up parsing:

For any grammar, the set of viable prefixes is a regular language

Important Fact #3 (Cont.)

- Important Fact #3 is non-obvious
- We show how to compute automata that accept viable prefixes

Items

 An item is a production with a "." somewhere on the rhs

• The items for $T \rightarrow (E)$ are

$$T \rightarrow .(E)$$

$$T \rightarrow (.E)$$

$$T \rightarrow (E.)$$

$$T \rightarrow (E)$$
.

Items (Cont.)

- The only item for $X \to \varepsilon$ is $X \to .$
- Items are often called "LR(0) items"

Intuition

- The problem in recognizing viable prefixes is that the stack has only bits and pieces of the rhs of productions
 - If it had a complete rhs, we could reduce
- These bits and pieces are always prefixes of rhs of productions

Example

Consider the input (int)

- Then (E|) is a state of a shift-reduce parse
- (E is a prefix of the rhs of $T \rightarrow (E)$
 - Will be reduced after the next shift
- Item $T \rightarrow (E.)$ says that so far we have seen (E of this production and hope to see)

Generalization

- The stack may have many prefixes of rhs's $Prefix_1 Prefix_2 \dots Prefix_{n-1} Prefix_n$
- Let Prefix, be a prefix of rhs of $X_i \rightarrow \alpha_i$
 - Prefix, will eventually reduce to X,
 - The missing part of α_{i-1} starts with X_i
 - i.e. there is a $X_{i-1} \rightarrow Prefix_{i-1} X_i \beta$ for some β
- Recursively, Prefix_{k+1}...Prefix_n eventually reduces to the missing part of α_k

An Example

```
Consider the string (int * int):
  (int * | int) is a state of a shift-reduce parse

"(" is a prefix of the rhs of T → (E)

"ε" is a prefix of the rhs of E → T

"int *" is a prefix of the rhs of T → int * T
```

An Example (Cont.)

```
The "stack of items"
       T \rightarrow (.E)
        E \rightarrow T
        T \rightarrow int * T
Says
   We've seen "(" of T \rightarrow (E)
   We've seen \varepsilon of E \rightarrow T
   We've seen int * of T \rightarrow int * T
```

Recognizing Viable Prefixes

Idea: To recognize viable prefixes, we must

- Recognize a sequence of partial rhs's of productions, where
- Each sequence can eventually reduce to part of the missing suffix of its predecessor

An NFA Recognizing Viable Prefixes

- 1. Add a dummy production $S' \rightarrow S$ to G
- 2. The NFA states are the items of G
 - Including the extra production
- 3. For item $E \rightarrow \alpha.X\beta$ add transition $E \rightarrow \alpha.X\beta \rightarrow X E \rightarrow \alpha X.\beta$
- 4. For item $E \to \alpha.X\beta$ and production $X \to \gamma$ add $E \to \alpha.X\beta \to {}^{\epsilon} X \to .\gamma$

An NFA Recognizing Viable Prefixes (Cont.)

- 5. Every state is an accepting state
- 6. Start state is $5' \rightarrow .5$

NFA for Viable Prefixes of the Example

NFA for Viable Prefixes in Detail (1)

NFA for Viable Prefixes in Detail (2)

NFA for Viable Prefixes in Detail (3)

NFA for Viable Prefixes in Detail (4)

NFA for Viable Prefixes in Detail (5)

NFA for Viable Prefixes in Detail (6)

NFA for Viable Prefixes in Detail (7)

NFA for Viable Prefixes in Detail (8)

NFA for Viable Prefixes in Detail (9)

NFA for Viable Prefixes in Detail (10)

NFA for Viable Prefixes in Detail (11)

NFA for Viable Prefixes in Detail (12)

NFA for Viable Prefixes in Detail (13)

Translation to the DFA

 $E \rightarrow T + . E$

 $E \rightarrow .T$

 $E \rightarrow .T + E$

 $T \rightarrow int * T$.

 $T \rightarrow (.E)$

 $E \rightarrow T + E$.

 $E \rightarrow .T$

 $E \rightarrow .T + E$

 $S' \rightarrow . E$ $T \rightarrow int$. int

int

 $T \rightarrow int * .T$

 $T \rightarrow .(E)$

 $T \rightarrow .int * T$

 $T \rightarrow .int$

 $T \rightarrow (E.)$

 $T \rightarrow (E)$.

Prof. Aiken (Modified by Professor Vijay) Ganesh. Lecture 10)

in

 $T \rightarrow .int$

 $T \rightarrow .(E)$

 $E \rightarrow . T$

 $E \rightarrow .T + E$

 $T \rightarrow .int * T$

 $T \rightarrow .(E)$

 $T \rightarrow .int * T$

 $T \rightarrow .int$

$$T \rightarrow .(E)$$

$$T \rightarrow .int * T$$

$$T \rightarrow .int$$

Lingo

The states of the DFA are "canonical collections of items" or

"canonical collections of LR(0) items"

The Dragon book gives another way of constructing LR(0) items

Valid Items

Item $X \to \beta.\gamma$ is valid for a viable prefix $\alpha\beta$ if $S' \to^* \alpha X \omega \to \alpha\beta\gamma\omega$

by a right-most derivation

After parsing $\alpha\beta$, the valid items are the possible tops of the stack of items

Items Valid for a Prefix

An item I is valid for a viable prefix α if the DFA recognizing viable prefixes terminates on input α in a state s containing I

The items in s describe what the top of the item stack might be after reading input α

Valid Items Example

- · An item is often valid for many prefixes
- Example: The item $T \rightarrow (.E)$ is valid for prefixes

Valid Items for (((...

 $E \rightarrow T$.

int $T \rightarrow int$.

 $E \rightarrow T. + E$

 $E \rightarrow T + . E$

 $E \rightarrow .T$

 $E \rightarrow .T + E$

 $T \rightarrow .(E)$

 $T \rightarrow .int * T$

 $T \rightarrow .int$

 $T \rightarrow int * T$.

 $E \rightarrow T + E$.

 $T \rightarrow (. E)$

 $E \rightarrow .T$

 $E \rightarrow .T + E$

 $T \rightarrow .(E)$

 $T \rightarrow .int * T$

 $T \rightarrow .int$

E

 $S' \rightarrow E$.

S' → . E

 $E \rightarrow . T$

 $E \rightarrow .T + E$

T → .(E)

 $T \rightarrow .int * T$

 $T \rightarrow .int$

int *

 $T \rightarrow int * .T$

 $T \rightarrow int. * T$

 $T \rightarrow .(E)$

 $T \rightarrow .int * T$

 $T \rightarrow .int$

T → (E.)

 $T \rightarrow (E)$.

Prof. Aiken (Modified by Professor Vijay Ganesh. Lecture 10)

66

LR(0) Parsing

- · Idea: Assume
 - stack contains α
 - next input is t
 - DFA on input α terminates in state s
- Reduce by $X \rightarrow \beta$ if
 - s contains item $X \rightarrow \beta$.
- · Shift if
 - s contains item $X \rightarrow \beta.t\omega$
 - equivalent to saying s has a transition labeled t

LR(0) Conflicts

- LR(0) has a reduce/reduce conflict if:
 - Any state has two reduce items:
 - $X \rightarrow \beta$. and $Y \rightarrow \omega$.
- LR(0) has a shift/reduce conflict if:
 - Any state has a reduce item and a shift item:
 - $X \rightarrow \beta$. and $Y \rightarrow \omega.t\delta$

LR(0) Conflicts

 $E \rightarrow T + . E$ $E \rightarrow .T$ $E \rightarrow .T + E$ $T \rightarrow .(E)$

int

 $T \rightarrow .int * T$

 $T \rightarrow .int$

S' → . E

 $E \rightarrow . T$

 $E \rightarrow .T + E$

 $T \rightarrow .(E)$

 $T \rightarrow .int * T$

 $T \rightarrow .int$

int *

 $T \rightarrow int$.

 $T \rightarrow int * .T$

 $T \rightarrow .(E)$

 $T \rightarrow .int * T$

 $T \rightarrow .int$

Two shift/reduce conflicts with LR(0) rules

Prof. Aiken (Modified by Professor Vijay Ganesh. Lecture 10)

SLR

- LR = "Left-to-right scan"
- SLR = "Simple LR"
- SLR improves on LR(0) shift/reduce heuristics
 - Fewer states have conflicts

SLR Parsing

- · Idea: Assume
 - stack contains α
 - next input is t
 - DFA on input α terminates in state s
- Reduce by $X \rightarrow \beta$ if
 - s contains item $X \rightarrow \beta$.
 - $t \in Follow(X)$
- · Shift if
 - s contains item $X \rightarrow \beta.t\omega$

SLR Parsing (Cont.)

- If there are conflicts under these rules, the grammar is not SLR
- The rules amount to a heuristic for detecting handles
 - The SLR grammars are those where the heuristics detect exactly the handles

SLR Conflicts

 $E \rightarrow T + . E$ $E \rightarrow .T$ $E \rightarrow .T + E$ $T \rightarrow .(E)$

 $E \rightarrow T + E$.

int

 $T \rightarrow .int * T$ $T \rightarrow .int$

 $T \rightarrow (.E)$

$$E \rightarrow . T$$

$$E \rightarrow .T + E$$

$$T \rightarrow .(E)$$

$$T \rightarrow .int * T$$

$$T \rightarrow .int$$

$$T \rightarrow int. * T$$

$$T \rightarrow int.$$

$$T \rightarrow int * .T$$

$$T \rightarrow .(E)$$

$$T \rightarrow .int * T$$

$$T \rightarrow .int$$

No conflicts with SLR rules!

Prof. Aiken (Modified by Professor Vijay) Ganesh. Lecture 10)

Precedence Declarations Digression

- · Lots of grammars aren't SLR
 - including all ambiguous grammars
- We can parse more grammars by using precedence declarations
 - Instructions for resolving conflicts

Precedence Declarations (Cont.)

- Consider our favorite ambiguous grammar:
 - $E \rightarrow E + E \mid E * E \mid (E) \mid int$
- The DFA for this grammar contains a state with the following items:
 - $E \rightarrow E * E$. $E \rightarrow E . + E$
 - shift/reduce conflict!
- Declaring "* has higher precedence than +" resolves this conflict in favor of reducing

Precedence Declarations (Cont.)

- The term "precedence declaration" is misleading
- These declarations do not define precedence;
 they define conflict resolutions
 - Not quite the same thing!

Naïve SLR Parsing Algorithm

- 1. Let M be DFA for viable prefixes of G
- 2. Let $|x_1...x_n|$ be initial configuration
- 3. Repeat until configuration is 5 | \$
 - Let $\alpha | \omega$ be current configuration
 - Run M on current stack α
 - If M rejects α , report parsing error
 - Stack α is not a viable prefix
 - If M accepts α with items I, let a be next input
 - Shift if $X \rightarrow \beta$. a $\gamma \in I$
 - Reduce if $X \to \beta \in I$ and $a \in Follow(X)$
 - Report parsing error if neither applies

Notes

 If there is a conflict in the last step, grammar is not SLR(k)

- k is the amount of lookahead
 - In practice k = 1

Configuration DFA Halt State Action | int * int\$ 1 shift


```
Configuration DFA Halt State Action | int * int$ 1 shift | * int$ 3 * not in Follow(T) shift
```



```
Configuration DFA Halt State Action | int * int$ 1 shift | shift | int | * int$ 3 * not in Follow(T) shift | int * | int$ 11 shift
```



```
Configuration DFA Halt State
                                      Action
int * int$
                                      shift
int | * int$
               3 * not in Follow(T)
                                     shift
int * | int$
               11
                                      shift
int * int |$
               3 \quad \$ \in Follow(T)
                                      red. T→int
                                      red. T→int*T
int * T | $
                   \$ \in Follow(T)
```


Prof. Aiken (Modified by Professor Vijay Ganesh. Lecture 10)

96


```
Configuration DFA Halt State
                                      Action
int * int$
                                      shift
int | * int$
                3 * not in Follow(T)
                                      shift
int * | int$
                11
                                      shift
                                      red. T→int
int * int |$
                3 \quad \$ \in Follow(T)
int * T | $
                4 \$ \in Follow(T)
                                      red. T→int*T
T |$
                5 \quad \$ \in Follow(E)
                                      red. E→T
```



```
Configuration DFA Halt State
                                      Action
int * int$
                                      shift
int | * int$
                3 * not in Follow(T)
                                      shift
int * | int$
                11
                                      shift
                                      red. T→int
int * int |$
                3 \quad \$ \in Follow(T)
                                      red. T→int*T
int * T | $
                4 \$ \in Follow(T)
T |$
                5 \quad \$ \in Follow(T)
                                      red. E→T
E |$
                                      accept
```

Notes

- Skipped using extra start state 5' in this example to save space on slides
- Rerunning the automaton at each step is wasteful
 - Most of the work is repeated

An Improvement

 Remember the state of the automaton on each prefix of the stack

Change stack to contain pairs

Symbol, DFA State >

An Improvement (Cont.)

For a stack

```
\langle \text{sym}_1, \text{state}_1 \rangle \dots \langle \text{sym}_n, \text{state}_n \rangle
state<sub>n</sub> is the final state of the DFA on \text{sym}_1 \dots \text{sym}_n
```

- Detail: The bottom of the stack is (any,start) where
 - any is any dummy symbol
 - start is the start state of the DFA

Goto Table

- Define goto[i,A] = j if $state_i \rightarrow A$ $state_j$
- goto is just the transition function of the DFA
 - One of two parsing tables

Refined Parser Moves

- Shift x
 - Push $\langle a, x \rangle$ on the stack
 - a is current input
 - x is a DFA state
- Reduce $X \rightarrow \alpha$
 - As before
- Accept
- Error

Action Table

For each state s; and terminal a

- If s_i has item $X \rightarrow \alpha.a\beta$ and goto[i,a] = j then action[i,a] = shift j
- If s_i has item $X \to \alpha$. and $a \in Follow(X)$ and $X \neq S'$ then action[i,a] = reduce $X \to \alpha$
- If s_i has item $S' \rightarrow S$. then action[i,\$] = accept
- Otherwise, action[i,a] = error

SLR Parsing Algorithm

```
Let I = w$ be initial input
Let j = 0
Let DFA state 1 have item S' \rightarrow .S
Let stack = \langle dummy, 1 \rangle
   repeat
         case action[top_state(stack),I[j]] of
                  shift k: push ( I[j++], k )
                  reduce X \rightarrow A:
                       pop |A| pairs,
                       push \(\times \text{X}, goto[top_state(stack),X]\)
                  accept: halt normally
                  error: halt and report error
```

Notes on SLR Parsing Algorithm

- Note that the algorithm uses only the DFA states and the input
 - The stack symbols are never used!
- However, we still need the symbols for semantic actions

More Notes

- Some common constructs are not SLR(1)
- LR(1) is more powerful
 - Build lookahead into the items
 - An LR(1) item is a pair: LR(0) item x lookahead
 - $[T \rightarrow . int * T, $]$ means
 - After seeing T→ int * T reduce if lookahead is \$
 - More accurate than just using follow sets
 - Take a look at the LR(1) automaton for your parser!