Linear Threshold Units

Key approaches

- Directly learn a mapping y = f(x)
 - No uncertainty is captured
- Learn the joint distribution i.e., learn p(y,x)
 - Captures uncertainty about both the attributes x and the target y
- Learn the conditional distribution i.e., learn p(y|x)
 - $p(\mathbf{x}, \mathbf{y}) = p(\mathbf{y} | \mathbf{x})p(\mathbf{x})$
 - Hence this avoids modeling the distribution of x
 - In general, this is akin to assuming an uniform distribution over x
 - Can also be considered as saying "I do not care about \mathbf{x} but only $P(y | \mathbf{x})$
- Once we learn p, how do we choose y? This is called as decision-theory

Linear Threshold Units

$$h(x) = \begin{cases} +1 & \text{if } w_1 x_1 + \dots + w_1 x_1 \ge 0\\ -1 & \text{otherwise} \end{cases}$$

Current Assumption: Each feature x_i and each weight w_j is a real number

Three Algorithms:

- Perceptron Directly learns the function
- 2. Logisitic Regression: Conditional Distribution
- 3. Linear Discriminant Analysis: Joint Distribution

What can an LTU represent

Conjunctions

$$x_1 \wedge x_2 \wedge x_4 \Leftrightarrow y$$
$$1 \cdot x_1 + 1 \cdot x_2 + 0 \cdot x_3 + 1 \cdot x_4 \ge 3$$

At least m-of-n

at-least-2-of
$$\{x_1, x_3, x_4\} \Leftrightarrow y$$

 $1 \cdot x_1 + 0 \cdot x_2 + 1 \cdot x_3 + 1 \cdot x_4 \ge 2$

What cannot be represented

Complex disjunctions

$$(x_1 \land x_2) \lor (x_3 \land x_4) \Leftrightarrow y$$

Exclusive-OR

$$(x_1 \land \neg x_2) \lor (\neg x_1 \land x_2) \Leftrightarrow y$$

A Canonical Representation

- Given a training example: $(<x_1, x_2, x_3, x_4>, y)$ $y \in \{-1, 1\}$
- Transform it to canonical representation

$$(<1, x_1, x_2, x_3, x_4>, y)$$

- Learn a linear function $g(\mathbf{x}, \mathbf{w}) = \mathbf{w}^T \mathbf{x}$, where $\mathbf{w} = \langle w_0, w_1, w_2, w_3, w_4 \rangle$
- Each w corresponds to one hypothesis

$$h(\mathbf{x}) = \text{sign}(g(\mathbf{x}, \mathbf{w}))$$

- A prediction is correct if $y \mathbf{w}^T \mathbf{x} > 0$
- Goal of learning is to find a good w
 - e.g., a **w** such that $h(\mathbf{x})$ makes few mis-predictions

LTU Hypotheses space

- Fixed size
- Deterministic
- Continuous parameters

Geometric View

Let us consider 3 training examples:

$$(1.0,1.0),+1$$
) $((0.5,3.0),+1)$ $((2.0,2.0),-1)$

The classifier should look like the following

The discriminant function is a hyperplane

• The equation $u(\mathbf{x}) = \mathbf{w} \cdot x$ is a plane

$$\hat{y} = \begin{cases} +1 & \text{if } u(x) \ge 0 \\ -1 & \text{otherwise} \end{cases}$$

We can view this problem as an optimization problem

- Formulate learning problem as an optimization problems
 - Given:
 - A set of N training examples
 {(x₁,y₁), (x₂,y₂), ..., (x_N,y_N)}
 - A loss function L
 - Find the weight vector w that minimizes the objective function - the expected/average loss on training data

$$J(w) = \frac{1}{N} \sum_{i=1}^{N} L(w \cdot x_i, y_i)$$

Many machine learning algorithms apply some optimization algorithm to find a good hypothesis.

0/1 Loss function

- 0/1 Loss function: $J_{0/1}(w) = \frac{1}{N} \sum_{i=1}^{N} L(\text{sgn}(w \cdot x_i), y_i)$
 - L(y',y) = 0 when y'=y, otherwise L(y',y)=1
- Does not produce useful gradient since the surface of J is flat

Other alternative – modified hinge loss

 Instead we will consider the "perceptron criterion" (a slightly modified version of hinge loss):

$$J_p(w) = \frac{1}{N} \sum_{i=1}^{N} \max(0, -y_i w \cdot x_i)$$

- The term $\max(0, -y_i w \cdot x_i)$ is 0 when y_i is predicted correctly otherwise it is equal to the "confidence" in the mis-prediction
- · Has a nice gradient leading to the solution region

Gradient Descent minimizes the loss function

-Start with weight vector $\mathbf{W} = (W_0, ..., W_n)$

-Compute gradient
$$\nabla J(\mathbf{w}_0) = (\frac{\partial J(\mathbf{w})}{\partial w_0}, \frac{\partial J(\mathbf{w})}{\partial w_1}, \cdots, \frac{\partial J(\mathbf{w})}{\partial w_n})_{\mathbf{w}_0}$$

- Compute $w_1 = w_0 \eta \nabla \overline{J}(w_0)$ where η is "step size"
- Repeat until convergence

Gradient Descent

- The objective function consists of a sum over data points--we can update the parameter after observing each example
- This is referred to as Stochastic gradient descent approach

$$J(\mathbf{w}) = \frac{1}{N} \sum_{i=1}^{N} \max(0, -y_i \mathbf{w} \cdot \mathbf{x}_i)$$

$$J_i(\mathbf{w}) = \max(0, -y_i \mathbf{w} \cdot \mathbf{x}_i)$$

$$\frac{\partial J_i}{\partial w_j} = \begin{cases} 0 & \text{if } y_i \mathbf{w} \cdot \mathbf{x}_i > 0 \\ -y_i x_{ij} & \text{otherwise} \end{cases}$$

$$\nabla J_i = \begin{cases} 0 & \text{if } y_i \mathbf{w} \cdot \mathbf{x}_i > 0 \\ -y_i x_i & \text{otherwise} \end{cases}$$

After observing (\mathbf{x}_i, y_i) , if it is a mistake $\mathbf{w} \leftarrow \mathbf{w} + y_i \mathbf{x}_i$

Online Perceptron Algo

Let w = (0,0,0,...,0) be the initial weight vector

Repeat forever

 $\mathbf{w} := \mathbf{w} + \eta \mathbf{g}$

Accept training example i: $\langle \mathbf{x}_i, y_i \rangle$

$$u_i = \mathbf{w} \cdot \mathbf{x}_i$$
IF $(y_i \cdot u_i < 0)$
For $j = 1$ to n do // For every feature, compute gradient $g_j \coloneqq y_i \cdot x_{ij}$

This is called stochastic gradient descent as the overall gradient is approximated by the gradient from each example

When an error is made, moves the weight in a direction that corrects the error

Red points belong to the positive class, blue points belong to the negative class

Batch Perceptron Algo

```
Let w = (0,0,0,...,0) be the initial weight vector
Let g = (0,0,0,...,0) be the initial gradient vector
Repeat until convergence
          For i = 1 to N do
             u_i = \mathbf{w} \cdot \mathbf{x}_i
             IF (y_i \cdot u_i < 0)
                    For j = 1 to n do
                      g_i := g_i - y_i \cdot x_{ii}
          g := g / N
         w := w - \eta g
```

When $\eta = 1$ it is a fixed increment perceptron

Step size

- Referred to as learning rate -- an important factor in many learning algorithms
- Learning rate must decrease to zero in order for the algorithm to converge $\lim_{t\to\infty}\eta_t=0$

$$\sum_{t=0}^{\infty} \eta_t = \infty$$

$$\sum_{t=0}^{\infty} \eta_t^{\,2} < \infty$$

- Some optimization algorithms set the step size automatically and converge faster
- For LTUs, there is only one basin. i.e., local minimum is global minimum. Choosing good step size will result in faster convergence

Decision Boundaries

 A classifier can be viewed as partitioning the input space or feature X into decision regions

 A set of points that can be separated by a linear decision boundary is said to be <u>linearly separable</u>.

Not Linearly Separable

X-Or

Perceptron – Key Result

If training set is linearly separable, perceptron WILL find it in finite steps

If training data is not linearly separable, perceptron will never converge

Summary of Perceptron

- Directly learns a classifier
- Local Search
 - Begins with an initial weight vector. Modifies it iteratively to minimize a loss function. The error function is loosely related to the goal of minimizing classification errors
- Eager
 - The classifier is constructed from training examples
 - The examples can then be discarded
- Online or Batch versions

Limitations of Linear Hypotheses

Next

- Logistic Regression
- Linear Discriminant Analysis
- First Assignment: Due the following week