# MCE - Movimento de Projéteis

102480 - Rúben Pequeno

nmec - Filipe Sousa

932779 - António Moreira

October 20, 2022

# Conteúdos

| 1        | Introdução                                     | <b>2</b> |
|----------|------------------------------------------------|----------|
|          | 1.1 Objetivos                                  | 2        |
|          | 1.2 Resultados Esperados vs Resultados Obtidos | 2        |
| <b>2</b> | Parte A                                        | 3        |
|          | 2.1 Preparação                                 | 3        |
|          | 2.2 Dados                                      | 3        |
|          | 2.3 Erros                                      |          |
| 3        | Parte B                                        | 4        |
|          | 3.1 Preparação                                 | 4        |
|          | 3.2 Dados                                      | 4        |
|          | 3.3 Erros                                      | 4        |
| 4        | Parte C                                        | 5        |
|          | 4.1 Preparação                                 | 5        |
|          | 4.2 Dados                                      | 5        |
|          | 4.3 Erros                                      | 5        |
| 5        | Conclusões                                     | 6        |

# Introdução

### 1.1 Objetivos

Este trabalho tem como objetivo verificar o comportamento de diversos tipos de movimento de projéteis tais como

- A. Determinar a velocidade inicial do projétil e calcular o respetivo erro
- B. Verificar a dependência do alcance com o ângulo de lançamento
- C. Determinar a velocidade inicial do projétil utilizando um pêndulo balístico

### 1.2 Resultados Esperados vs Resultados Obtidos

Comparando os dados obtidos com os dados esperados, podemos observar que apesar de algumas diferenças nos valores devido a possiveis erros de medição e de execução experimental, verifica-se que o comportamento do projétil está de acordo com o resultado esperado.

### Parte A

### 2.1 Preparação

Para determinar-mos a velocidade inicial do projétil, tivemos de fazer uma montagem experimental utilizando parte dos materiais fornecidos (lançador de projéteis, sensores de passagem e a esfera plástica), fixando a base do lançador de projéteis à mesa com um grampo e colocando o LP na posição horizontal. De seguida, ligar o sistema de controlo à fonte de alimentação e finalmente, colocar o primeiro sensor imediatamente em frente ao LP e garantir que os 2 sensores estão ligados ao sistema de controlo. Após efetuar a montagem corretamente, mede-se a distância entre os 2 sensores e colocar a esfera no LP na posição de "SHORT RANGE" com a ajuda de uma vareta de carregar. Agora, no sistema de controlo, colocar na posição "TWO GATES" e carregar em Start/Stop de modo a obter o tempo de passagem do projétil. Finalmente lança-se o projétil, registando o tempo indicado pelo sistema de controlo e repete-se o procedimento anterior mais 4 vezes para obter 5 medidas.

#### 2.2 Dados

#### 2.3 Erros

part\_a.png

Figure 2.1: Esquema da montagem experimental (experiência A). 1- Lançador de projéteis (LP); 2- Base de fixação para o LP; 3-Sensor de passagem (inicia a contagem do tempo); 4-Sensor de passagem (termina a contagem do tempo); 5-Sistema de controlo dos sensores.

## Parte B

### 3.1 Preparação

Para esta experiência foi aproveitado a montagem feita anteriormente, apenas tirando os sensores de passagem, pois já não será necessário calcular a velocidade do projétil e adicionando um alvo (sensor de impacto), de modo a podermos medir a distância percorrida pelo projétil, a um determinado angulo. Para obter os dados, coloca-se o LP a um de 30° com a horizontal, seguidamente coloca-se o alvo com um conjunto de papel químico e papel milimétrico. De seguida lança-se o projétil no modo "SHORT RANGE", registando o alcance e o ângulo de lançamento e repetir a experiência mais 2 vezes. Posteriormente, repete-se o procedimento referido anteriormente com os seguintes ângulos: 34°, 38°, 40° e 43°. Por fim, mede-se rigurosamente a altura a que a esfera foi lançada, em relação à bancada.

### 3.2 Dados

#### 3.3 Erros

part\_b.png

Figure 3.1: Esquema da montagem experimental (experiência B). 1-Lançador de projéteis (LP); 2- Base de fixação para o LP; 3-Alvo.

## Parte C

Esta ultima experiência, começa-se pela preparação dos equipamentos de modo a lançar o projétil para o pêndulo balístico e medindo as massas do pêndulo e esfera, tal como o comprimento do pêndulo. Após completar a preparação, lança-se o projétil em modo "SHORT RANGE", fazendo a medição do ângulo máximo atingido pelo pêndulo. Por fim, repete-se a experiência mais 4 vezes para obter 5 medidas do ângulo.

- 4.1 Preparação
- 4.2 Dados
- 4.3 Erros



Figure 4.1: Esquema da montagem experimental (experiência C).

# Conclusões

Conclusões.