$$x^{T}Mx = 0$$

$$\chi^T M \chi = \frac{1}{2} \chi^T (M+M^T) \chi = 0$$

D diagonal

D=[d, -, dn]

$$X^T (P P^T X = 0)$$

Let
$$y = P^{T} \times X = P^{T}$$

 $y^{T} \triangleright y = \sum_{i=1}^{N} y_{i}^{2} d_{i}$

For each
$$i \in \{2\},...,n\}$$
 either $y_i = 0$ or $d_i = 0$ \Rightarrow $Dy = 0$ \Rightarrow $PDP^{T}y = 0 \Rightarrow$ $(M+M^{T})_{X=0}$

2.)
$$M$$
 PSD
 Z is $Sol-lim$ to $L(P(M_1q))$
 Tf $(M+MT)d=0$
 $Z+d$ $Z+d$
 $M(Z+A)+q>0$
 $d^Tq=0$

Then $Z+d$ $Sol-min$.

 $Proof!$
 $Need$ to $Sham!$
 $(Z+0)^T(M(Z+d)+q)=0$
 $Z^T(MZ+q)+d^T(MZ+q)+Z^TMq+d^TMq$
 $Z^T(MZ+q)+d^T(MZ+q)+Z^TMq+Q^T(M+M^T)d=0$
 $Z^T(M+M^T)d=0$
 $Z^T(M+M^T)d=0$
 $Z^T(M+M^T)d=0$
 $Z^T(M+M^T)d=0$
 $Z^T(M+M^T)d=0$