Lógica Matemática

DEFINIÇÃO

- X Diz-se que uma proposição P(p,q,r,...) é logicamente equivalente ou apenas equivalente a uma proposição Q(p,q,r,...), se as tabelas-verdade destas duas proposições são idênticas.
- X Denota-se que a proposição P(p,q,r,...) é equivalente a proposição Q(p,q,r,...) da seguinte maneira:

$$P(p,q,r,...) \iff Q(p,q,r,...)$$

X Vale observar que os símbolos

e ⇔ são distintos. O primeiro corresponde a operação bicondicional enquanto que o segundo é de relação entre proposições equivalentes.

EXEMPLOS

X Como exemplos de proposições equivalentes, podemos considerar o caso particular em que as proposições P(p,q,r,...) e Q(p,q,r,...) são ambas tautologias ou são ambas contradições.

PROPRIEDADES

A relação de equivalência lógica entre proposições goza das propriedades reflexiva(R), simétrica(S), e transitiva (T), denotadas simbolicamente como:

(R)
$$P(p,q,r,...) \Leftrightarrow P(p,q,r,...)$$

(S) se
$$P(p,q,r,...) \Leftrightarrow Q(p,q,r,...)$$
 então $Q(p,q,r,...) \Leftrightarrow P(p,q,r,...)$

(T) se
$$P(p,q,r,...) \Leftrightarrow Q(p,q,r,...)$$
 e
$$Q(p,q,r,...) \Leftrightarrow R(p,q,r,...)$$
 então
$$P(p,q,r,...) \Leftrightarrow R(p,q,r,...)$$

EXEMPLO 1

X As proposições $\neg \neg p$ e p são equivalentes, isto é, simbolicamente:

$$\neg \neg p \iff p$$

- X Conhecida como Regra da dupla negação.
- **X** Mostra-se isso com base na sua tabela-verdade:

p	$\neg p$	$\neg \neg p$
V	F	V
F	V	F
1		<u> </u>

- X Observe que as colunas de cada lado da equivalência são idênticas.
- Portanto, a dupla negação de uma proposição qualquer equivale a proposição em questão e é uma afirmação.

EXEMPLO2

X As proposições $(\neg p \rightarrow p)$ e p são equivalentes, isto é, simbolicamente:

$$\neg p \rightarrow p \iff p$$

- X Conhecida como Regra de Clavius.
- Mostra-se isso com base na sua tabela-verdade:

p	$\neg p$	$\neg p \rightarrow p$
V	F	V
F	V	F
	SV SAR	4

X	Observe	que	as	colunas	de	cada	lado	da
	equivalêr	ncia s	são	idênticas	5.			

EXEMPLO 3

X

X As condicionais $(p \to p \land q)$ e $(p \to q)$ tem tabelas-verdade idênticas:

p	q	$p \wedge q$	$p \to p \wedge q$	$p \rightarrow q$
V	V	V	V	V
V	F	F	F	F
F	V	F	V	V
F	F	F	V	V

Portanto, estas condicionais são equivalentes, verifica-se a equivalência lógica, denominada regra de absorção:

$$p \to p \land q \iff p \to q$$

EXEMPLO 4

X A condicional $(p \to q)$ e a disjunção $(\neg p \lor q)$ tem tabelas-verdade idênticas:

p	q	$p \rightarrow q$	$\neg p$	$\neg p \lor q$
V	V	V	F	V
V	F	F	F	F
F	V	V	V	V
F	F	V	V	V
700000		<u> </u>		

Portanto, as duas proposições são equivalentes, verifica-se a importante equivalência lógica:

$$p \rightarrow q \Leftrightarrow \neg p \lor q$$

EXEMPLO 5

X A bicondicional $(p \leftrightarrow q)$ e a conjunção $(p \to q) \land (q \to p)$ tem tabelas-verdade idênticas:

p	q	$p \leftrightarrow q$	$p \rightarrow q$	$q \rightarrow p$	$(p \to q) \land (q \to p)$
V	V	V	V	V	V
V	F	F	F	V	F
F	V	F	V	F	F
F	F	V	V	V	V

Portanto, as duas proposições são equivalentes, verifica-se a importante equivalência lógica:

$$p \leftrightarrow q \Leftrightarrow (p \to q) \land (q \to p)$$

X Observe que esta relação define a bicondicional como a conjunção de duas condicionais.

EXEMPLO 6

- X Uma outra equivalência para e bicondicional será mostrada a seguir.
- **X** A bicondicional $(p \leftrightarrow q)$ e a disjunção $(p \land q) \lor (\neg p \land \neg q)$ tem tabelas-verdade idênticas:

Portanto, as duas proposições são equivalentes, verifica-se a importante equivalência lógica:

$$p \leftrightarrow q \Leftrightarrow (p \land q) \lor (\neg p \land \neg q)$$

p	q	$p \leftrightarrow q$	$p \wedge q$	$\neg p$	$\neg q$	$\neg p \land \neg q$	$(p \land q) \lor (\neg p \land \neg q)$
V	V	V	V	F	F	F	V
V	F	F	F	F	V	F	F
F	V	F	F	V	F	F	F
F	F	V	F	V	V	V	V

Esta relação define a bicondicional como a disjunção de duas situações possíveis para conseguir o valor verdadeiro; ou ambas as proposições são verdadeiras ou ambas são falsas. Caso contrário, ela será falsa.

TAUTOLOGIAS E EQUIVALÊNCIA LÓGICA

TEOREMA

X Teorema.— A proposição P(p,q,r,...) é equivalente a proposição Q(p,q,r,...), ou seja:

$$P(p,q,r,...) \Leftrightarrow Q(p,q,r,...)$$

se e somente se a bicondicional:

$$P(p,q,r,...) \leftrightarrow Q(p,q,r,...)$$

é tautológica.

- X Lembre que os símbolos \leftrightarrow e \Leftrightarrow são distintos.
- **X** O primeiro corresponde a operação bicondicional $(P \leftrightarrow Q)$, entre duas proposições $P \in Q$.
- **X** O segundo é a relação de equivalência entre as proposições P e Q, que estabelece que a bicondicional $P(p,q,r,\dots) \leftrightarrow Q(p,q,r,\dots)$ é tautológica.

TAUTOLOGIAS E EQUIVALÊNCIA LÓGICA COROLÁRIO

X Corolário.— Se $P(p,q,r,...) \Leftrightarrow Q(p,q,r,...)$ então também temos que:

$$P(P_0, Q_0, R_0, \dots) \iff Q(P_0, Q_0, R_0, \dots)$$

quaisquer que sejam as proposições P_0, Q_0, R_0, \dots

x Este colorário é semelhante ao princípio de substituição apresentado anteriormente.

TAUTOLOGIAS E EQUIVALÊNCIA LÓGICA

EXEMPLO 1

x Considere a seguinte bicondicional:

$$(p \land \neg q \to c) \longleftrightarrow (p \to q) \tag{1}$$

X onde c é uma proposição cujo valor lógico é F (falsidade). Podemos provar que esta bicondicional é tautológica com base em tabelas-verdade.

p	q	(p	٨	$\neg q$	\rightarrow	c)	\longleftrightarrow	(<i>p</i>	1	<i>q</i>)
V	V	V	F	F	0.00	F		V	V	V
V	F	V	V	V	F	F	V	V	F	F
F	V	F	F	F	V	F	V	F	V	V
F	F	F	F	V	V	F	V	F	V	F

X Portanto, as proposições $(p \land \neg q \rightarrow c)$ e $(p \rightarrow q)$ são equivalentes. Como denotado simbolicamente:

$$(p \land \neg q \to c) \Longleftrightarrow (p \to q)$$

- X Esta equivalência mostra o Método de demostração por absurdo.
- X Este método estabelece uma forma indireta de provar um resultado. Considerando que queremos $(p \to q)$, assume-se que tenho $p \in \neg q$ e prova-se que isso nos leva a uma contradição.

TAUTOLOGIAS E EQUIVALÊNCIA LÓGICA

Exemplo 2

x Considere a seguinte bicondicional:

$$(p \land q \rightarrow r) \longleftrightarrow (p \rightarrow (q \rightarrow r))$$
 (2)

X Podemos provar que esta bicondicional é tautológica com base em tabelas-verdade.

(<i>p</i>	^	q	1	r)	\downarrow	(p	↑	(q	1	r)
V	V	V	V	V	V	V	V	V	V	V
V	V	V	F	F	V	V	F	V	F	F
V	F	F	V	V	V	V	V	F	V	V
V	F	F	V	F	V	V	V	F	V	F
F	F	V	V	V	V	F	V	V	V	V
F	F	V	V	F	V	F	V	V	F	F
F	F	F	V	V	V	F	V	F	V	V
F	F	F	V	F	V	F	V	F	V	F

- X Portanto, as condicionais $(p \land q \rightarrow r)$ e $(p \rightarrow (q \rightarrow r))$ são equivalentes.
- X Esta equivalência lógica é denominada Regra de Exportação-Importação.

Proposições associadas a uma condicional

- X Chama-se de proposições associadas a condicional $(p \to q)$ as seguintes proposições condicionais:
- o i) Recíproca de $(p \rightarrow q)$: $(q \rightarrow p)$
- o ii) Contrária de $(p \rightarrow q)$: $(\neg p \rightarrow \neg q)$
- o iii) Contrapositiva de $(p \rightarrow q)$: $(\neg q \rightarrow \neg p)$

X As tabelas-verdade destas quatro proposições condicionais são:

p	q	$p \rightarrow q$	$q \rightarrow p$	$\neg p \rightarrow \neg q$	$\neg q \rightarrow \neg p$
V	V	V	V	V	V
V	F	F	V	V	F
F	V	V	F	F	V
F	F	V	V	V	V
ARCH M	0.6-811				

Proposições associadas à condicional - Exemplos

- X Sejam as seguintes proposições relativas a um triângulo T:
- \circ (1) Seja a seguinte condicional: $p \to q$:
 - "Se T é equilátero, então T é isósceles"
- A recíproca desta proposição é: $q \rightarrow p$:
 - "Se T é isósceles, então T é equilátero"

- \circ (2) Seja a seguinte condicional: $p \rightarrow q$
 - "Se Carlos é professor, então é pobre"
- \circ A contrapositiva desta proposição é: $\neg q \longrightarrow \neg p$
 - "Se Carlos não é pobre, então não é professor"

NEGAÇÃO CONJUNTA DE DUAS PROPOSIÇÕES

X Chama-se negação conjunta de duas proposições p e q a proposição resultante das seguintes operações:

$$\neg p \land \neg q$$

X A negação conjunta é denotada usando o símbolo \downarrow . De maneira que a negação conjunta de duas proposições p e q é denotada como $p \downarrow q$ e satisfaz a seguinte equivalência:

$$p \downarrow q \iff \neg p \land \neg q$$

X A tabela-verdade para esta operação:

p	q	$\neg p$	$\neg q$	$\neg p \land \neg q$
V	V	F	F	F
V	F	F	V	F
F	V	V	F	F
F	F	V	V	V

X A tabela-verdade do operador \downarrow :

p	q	$p \downarrow q$
V	V	F
V	F	F
F	V	F
F	F	V

NEGAÇÃO DISJUNTA DE DUAS PROPOSIÇÕES

X Chama-se negação disjunta de duas proposições p e q a proposição resultante das seguintes operações:

$$\neg p \lor \neg q$$

X A negação disjunta é denotada usando o símbolo \uparrow . De maneira que a negação disjunta de duas proposições p e q é denotada como $p \uparrow q$ e satisfaz a seguinte equivalência:

$$p \uparrow q \iff \neg p \lor \neg q$$

X A tabela-verdade para esta operação:

p	q	$\neg p$	$\neg q$	$\neg p \lor \neg q$
V	V	F	F	F
V	F	F	V	V
F	V	V	F	V
F	F	V	V	V

X A tabela-verdade do operador ↑:

p	q	$p \uparrow q$
V	V	F
V	F	V
F	V	V
F	F	V

- X Os símbolos ↓ e ↑ são chamados de conectivos de Scheffer.
- X Os conectivos de Scheffer são importantes porque mediante eles é possível representar todos os outros operadores lógicos estudados anteriormente.
- X Um operador para representar todos os outros.

RELAÇÕES ENTRE OS OPERADORES

- X Na lógica digital as operações $\neg(p \land q)$ e $\neg(p \lor q)$ recebem nomes específicos (negação do "e") e (negação do "ou") e possuem as portas lógicas NAND e NOR, associadas respectivamente.
- X Vale observar a relação dessas operações com os conectivos de Scheffer.

$$p \downarrow q \iff \neg p \land \neg q$$

p	q	$(p \lor q)$	$\neg(p \lor q)$	$p \downarrow q$
V	V	V	F	F
V	F	V	F	F
F	V	V	F	F
F	F	F	V	V

$$p \uparrow q \iff \neg p \lor \neg q$$

p	q	$(p \wedge q)$	$\neg(p \land q)$	$p \uparrow q$
V	V	V	F	F
V	F	F	V	V
F	V	F	V	V
F	F	F	V	V

X Observe que os operadores *NOR* e *NAND* correspondem aos conectivos de negação conjunta e negação disjunta de Scheffer, respectivamente.

RELAÇÕES ENTRE OS OPERADORES

X Observe o uso das regras de DeMorgan para relacionar os conectivos de Scheffer \downarrow e \uparrow as portas NOR e NAND.

REFERÊNCIAS

<u>De Alencar Filho, Edgar</u>. Iniciação à Lógica Matemática. Capítulo 6. Editora Nobel. São Paulo. 1975. Reimpresso em 2015.