Chapter 8

Initial Value Problems

Definition 8.1. A system of ordinary differential equations (ODEs) of dimension N is a set of differential equations of the form

$$\mathbf{u}'(t) = \mathbf{f}(\mathbf{u}(t), t), \tag{8.1}$$

where t is time, $\mathbf{u} \in \mathbb{R}^N$ is the evolutionary variable, and the RHS function has the signature $\mathbf{f} : \mathbb{R}^N \times (0, +\infty) \to \mathbb{R}^N$. In particular, (8.1) is an ODE for N = 1.

Definition 8.2. A system of ODEs is *linear* if its RHS function can be expressed as $\mathbf{f}(\mathbf{u},t) = \alpha(t)\mathbf{u} + \boldsymbol{\beta}(t)$, and *nonlinear* otherwise; it is *homogeneous* if it is linear and $\boldsymbol{\beta}(t) = \mathbf{0}$; it is *autonomous* if \mathbf{f} does not depend on t explicitly; and *nonautonomous* otherwise.

Example 8.3. For the simple pendulum shown above, the moment of inertial and the torque are

$$I = m\ell^2$$
, $\tau = -mg\ell\sin\theta$,

and the equation of motion can be derived from Newton's second law $\tau = I\theta''(t)$ as

$$\theta''(t) = -\frac{g}{\ell}\sin\theta,\tag{8.2}$$

which admits a unique solution if we impose two initial conditions

$$\theta(0) = \theta_0, \ \theta'(0) = \omega_0.$$

Alternatively, (8.2) can be derived by the consideration that the total energy remains a constant with respect to time.

$$L = \frac{1}{2}m(\ell\theta')^2 + mg\ell(1 - \cos\theta);$$

$$\frac{\mathrm{d}L}{\mathrm{d}t} = 0 \Rightarrow m\ell^2\theta'\theta'' + mg\ell\theta'\sin\theta = 0.$$

The ODE (8.2) is second-order, nonlinear, and autonomous; it can be reduced to a first-order system as follows,

$$\omega = \theta', \ \mathbf{u} = \begin{pmatrix} \theta \\ \omega \end{pmatrix} \ \Rightarrow \ \mathbf{u}'(t) = f(u) := \begin{pmatrix} \omega \\ -\frac{g}{\theta} \sin \theta \end{pmatrix}.$$

Definition 8.4. Given T > 0, $\mathbf{f} : \mathbb{R}^N \times [0,T] \to \mathbb{R}^N$, and $\mathbf{u}_0 \in \mathbb{R}^N$, the *initial value problem* (IVP) is to find $\mathbf{u}(t) \in \mathcal{C}^1$ such that

$$\begin{cases}
\mathbf{u}(0) &= \mathbf{u}_0, \\
\mathbf{u}'(t) &= \mathbf{f}(\mathbf{u}(t), t), \ \forall t \in [0, T].
\end{cases}$$
(8.3)

Definition 8.5. The IVP in Definition 8.4 is well-posed if

- (i) it admits a unique solution for any fixed t > 0,
- (ii) $\exists c > 0, \ \hat{\epsilon} > 0$ s.t. $\forall \epsilon < \hat{\epsilon}$, the perturbed IVP

$$\mathbf{v}' = \mathbf{f}(\mathbf{v}, t) + \boldsymbol{\delta}(t), \qquad \mathbf{v}(0) = \mathbf{u}_0 + \boldsymbol{\epsilon}_0$$
 (8.4)

satisfies

$$\forall t \in [0, T], \left\{ \begin{array}{l} \|\boldsymbol{\epsilon}_0\| < \epsilon \\ \|\boldsymbol{\delta}(t)\| < \epsilon \end{array} \right. \Rightarrow \|\mathbf{u}(t) - \mathbf{v}(t)\| \le c\epsilon.$$

$$(8.5)$$

8.1 Lipschitz continuity

Definition 8.6. A function $\mathbf{f}: \mathbb{R}^N \times [0, +\infty) \to \mathbb{R}^N$ is Lipschitz continuous in its first variable over some domain

$$\mathcal{D} = \{ (\mathbf{u}, t) : \|\mathbf{u} - \mathbf{u}_0\| \le a, t \in [0, T] \}$$
 (8.6)

if

$$\exists L \geq 0 \text{ s.t. } \forall (\mathbf{u}, t), (\mathbf{v}, t) \in \mathcal{D}, \ \|\mathbf{f}(\mathbf{u}, t) - \mathbf{f}(\mathbf{v}, t)\| \leq L \|\mathbf{u} - \mathbf{v}\|.$$

$$(8.7)$$

Example 8.7. If $\mathbf{f}(\mathbf{u},t) = \mathbf{f}(t)$, then L = 0.

Example 8.8. If $\mathbf{f} \notin \mathcal{C}^0$, then \mathbf{f} is not Lipschitz.

Definition 8.9. A subset of $S \subset \mathbb{R}^n$ is *star-shaped* with respect to a point $p \in S$ if for each $x \in S$ the line segment from p to x lies in S.

Theorem 8.10. Let $S \subset \mathbb{R}^n$ be star-shaped with respect to $p = (p_1, p_2, \dots, p_n) \in S$. For a continuously differentiable function $f: S \to \mathbb{R}^m$, there exist continuously differentiable functions $g_1(\mathbf{x}), g_2(\mathbf{x}), \dots, g_n(\mathbf{x})$ such that

$$f(\mathbf{x}) = f(p) + \sum_{i=1}^{n} (x_i - p_i)g_i(\mathbf{x}), \quad g_i(p) = \frac{\partial f}{\partial x_i}(p). \quad (8.8)$$

Proposition 8.11. If $\mathbf{f}(\mathbf{u},t)$ is continuously differentiable on some compact convex set $\mathcal{D} \subseteq \mathbb{R}^{N+1}$, then \mathbf{f} is Lipschitz on \mathcal{D} with

$$L = \max_{i,j} \left| \frac{\partial f_i}{\partial u_i} \right|.$$

Lemma 8.12. Let (M, ρ) denote a complete metric space and $\phi: M \to M$ a contractive mapping in the sense that

$$\exists c \in [0,1) \text{ s.t. } \forall \eta, \zeta \in M, \ \rho(\phi(\eta),\phi(\zeta)) \leq c\rho(\eta,\zeta).$$
 (8.9)

Then there exists a unique $\xi \in M$ such that $\phi(\xi) = \xi$.

Theorem 8.13 (Fundamental theorem of ODEs). If $\mathbf{f}(\mathbf{u}(t),t)$ is Lipschitz continuous in \mathbf{u} and continuous in t over some region $\mathcal{D} = \{(\mathbf{u},t) : \|\mathbf{u} - \mathbf{u}_0\| \le a, t \in [0,T]\}$, then there is a unique solution to the IVP problem as in Definition 8.4 at least up to time $T^* = \min(T, \frac{a}{S})$ where $S = \max_{(\mathbf{u},t)\in\mathcal{D}} \|\mathbf{f}(\mathbf{u},t)\|$.

Theorem 8.14. If $\mathbf{f}(\mathbf{u},t)$ is Lipschitz in \mathbf{u} and continuous in t on $\mathcal{D} = \{(\mathbf{u},t) : \mathbf{u} \in \mathbb{R}^N, t \in [0,T]\}$, then the IVP in Definition 8.4 is well-posed for all initial data.

Example 8.15. Consider N = 1, $u'(t) = \sqrt{u(t)}$, u(0) = 0.

$$\lim_{u \to 0} f'(u) = \lim_{u \to 0} \frac{1}{2\sqrt{u}} = +\infty.$$

Hence f(u) is not Lipschitz near u=0. However, $u(t)\equiv 0$ and $u(t)=\frac{1}{4}t^2$ are both solutions. Hence the Lipschitz condition is not necessary for existence.

Example 8.16. Consider the IVP $u'(t) = u^2$, $u_0 = \eta > 0$. The slope $f'(u) = 2u \to +\infty$ as $u \to \infty$. So there is no unique solution on $[0, +\infty)$, but there might exist T^* such that unique solutions are guaranteed on $[0, T^*]$.

In fact, $u(t) = \frac{1}{\eta^{-1}-t}$ is a solution, but blows up at $t = 1/\eta$. According to Theorem 8.13, $f(u) = u^2$ and we would like to maximize a/S. Since $S = \max_{\mathcal{D}} |f(u)| = (\eta + a)^2$, it is equivalent to find $\min_{a>0} (\eta + a)^2/a$:

$$(\eta + a)^2/a = 2\eta + a + \eta^2 \frac{1}{a} \ge 2\eta + 2\sqrt{\eta^2} = 4\eta.$$

Hence $T^*=\frac{1}{4\eta}.$ The estimation of T^* in Theorem 8.13 is thus quite conservative for this case.

Example 8.17. For the simple pendulum in Example 8.3, we have

$$|\sin \theta - \sin \theta^*| \le |\theta - \theta^*| \le ||\mathbf{u} - \mathbf{u}^*||_{\infty}$$

since $\cos \theta^* \leq 1$. In addition, we have $|\omega - \omega^*| \leq ||\mathbf{u} - \mathbf{u}^*||_{\infty}$.

$$\|\mathbf{f}(\mathbf{u}) - \mathbf{f}(\mathbf{v})\|_{\infty} = \max\left(|\omega - \omega^*|, \frac{g}{\ell}|\sin\theta - \sin\theta^*|\right)$$

$$\leq \max(\frac{g}{\ell}, 1)\|\mathbf{u} - \mathbf{u}^*\|_{\infty}.$$

Therefore, **f** is Lipschitz continuous with $L = \max(g/l, 1)$.

8.2 Duhamel's principle

Definition 8.18. Two matrices A and B are similar if there exists a nonsingular matrix S such that

$$B = S^{-1}AS, (8.10)$$

and $S^{-1}AS$ is called a *similarity transformation* of A.

Theorem 8.19. Two similar matrices A and B have the same set of eigenvalues.

Definition 8.20. $A \in \mathbb{C}^{m \times m}$ is *diagonalizable* if there exists a similarity transformation that maps A to a diagonal matrix Λ , i.e.,

$$\exists$$
 invertible R s.t. $R^{-1}AR = \Lambda$. (8.11)

Definition 8.21. Let $A \in \mathbb{C}^{m \times m}$, then the matrix exponential e^{At} is defined by

$$e^{At} := I + At + \frac{1}{2!}A^2t^2 + \dots = \sum_{j=0}^{\infty} \frac{1}{j!}A^jt^j.$$
 (8.12)

Proposition 8.22. If A is diagonalizable, i.e., (8.11) holds, then

$$e^{At} = RR^{-1} + R\Lambda R^{-1}t + \frac{1}{2!}R\Lambda R^{-1}R\Lambda R^{-1}t^2 + \cdots$$
$$= R\sum_{j=0}^{\infty} \frac{t^j}{j!}\Lambda^j R^{-1} = Re^{\Lambda t}R^{-1}.$$

Theorem 8.23. For a linear IVP $\mathbf{f}(\mathbf{u}, t) = A(t)\mathbf{u} + \mathbf{g}(t)$ with a constant matrix A(t) = A, the solution is

$$\mathbf{u}(t) = e^{At}\mathbf{u}_0 + \int_0^t e^{A(t-\tau)}\mathbf{g}(\tau)d\tau.$$
 (8.13)

Example 8.24. Many linear problems are naturally formulated in the form of a single high-order ODE

$$v^{(m)}(t) - \sum_{j=1}^{m} c_j(t)v^{(m-j)} = \phi(t).$$
 (8.14)

By setting $u_j(t) = v^{(j-1)}$ and $\mathbf{u} = [u_1, u_2, \dots, u_m]^T$, we can rewrite (8.14) as

$$\mathbf{u}'(t) = A(t)\mathbf{u} + \mathbf{g}(t), \tag{8.15}$$

where $\mathbf{g}(t) = [0, ..., 0, \phi(t)]^T$ and

$$a_{ij}(t) = \begin{cases} 1 & \text{if } i = j - 1, \\ c_{m+1-j}(t) & \text{if } i = m, \\ 0 & \text{otherwise.} \end{cases}$$

Theorem 8.25 (Superposition principle). If $\hat{\mathbf{u}}$ is a solution to the IVP

$$\mathbf{u}'(t) = A(t)\mathbf{u} + \mathbf{g}(t), \qquad \mathbf{u}(0) = \mathbf{u}_0 \tag{8.16}$$

and $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are solutions to the homogeneous IVP $\mathbf{u}'(t) = A(t)\mathbf{u}, \ \mathbf{u}(0) = \mathbf{0},$ then for any constants $\alpha_1, \alpha_2, \dots, \alpha_k$, the function

$$\mathbf{U}(t) = \hat{\mathbf{u}}(t) + \sum_{i=1}^{k} \alpha_i \mathbf{v}_i(t)$$
 (8.17)

is a solution to (8.16).

8.3 Some basic numerical methods

Notation 8. In the following, we shall use k to denote the time step, and thus $t_n = nk$.

To numerically solve the IVP (8.3), we are given initial data $\mathbf{U}^0 = \mathbf{u}_0$, and want to compute approximations $\mathbf{U}^1, \mathbf{U}^2, \dots$ such that

$$\mathbf{U}^n \approx \mathbf{u}(t_n).$$

Definition 8.26. The *(forward) Euler's method* solves the IVP (8.3) by

$$\mathbf{U}^{n+1} = \mathbf{U}^n + k\mathbf{f}(\mathbf{U}^n, t_n), \tag{8.18}$$

which is based on replacing $\mathbf{u}'(t_n)$ with the forward difference $(\mathbf{U}^{n+1} - \mathbf{U}^n)/k$ and $\mathbf{u}(t_n)$ with \mathbf{U}^n in $\mathbf{f}(\mathbf{u}, t)$.

Definition 8.27. The backward Euler's method solves the IVP (8.3) by

$$\mathbf{U}^{n+1} = \mathbf{U}^n + k\mathbf{f}(\mathbf{U}^{n+1}, t_{n+1}), \tag{8.19}$$

which is based on replacing $\mathbf{u}'(t_{n+1})$ with the backward difference $(\mathbf{U}^{n+1} - \mathbf{U}^n)/k$ and $\mathbf{u}(t_{n+1})$ with \mathbf{U}^{n+1} in $\mathbf{f}(\mathbf{u}, t)$.

Definition 8.28. The trapezoidal method is

$$\mathbf{U}^{n+1} = \mathbf{U}^n + \frac{k}{2} \left(\mathbf{f}(\mathbf{U}^n, t_n) + \mathbf{f}(\mathbf{U}^{n+1}, t_{n+1}) \right).$$
 (8.20)

Definition 8.29. The midpoint (or leapfrog) method is

$$\mathbf{U}^{n+1} = \mathbf{U}^{n-1} + 2k\mathbf{f}(\mathbf{U}^n, t_n). \tag{8.21}$$

Example 8.30. Applying Euler's method (8.18) with step size k = 0.2 to solve the IVP

$$u'(t) = u, \quad u(0) = 1, \quad t \in [0, 1],$$

yields the following table:

\overline{n}	U^n	$kf(U^n,t_n)$
0	1	0.2
1	1.2	$0.2 \times 1.2 = 0.24$
2	1.44	$0.2 \times 1.44 = 0.288$
3	1.728	$0.2 \times 1.728 = 0.3456$
4	2.0736	$0.2 \times 2.0736 = 0.41472$
5	2.48832	

8.4 Accuracy and convergence

Definition 8.31. The *local truncation error*(LTE) is the error caused by replacing continuous derivatives with finite difference formulas.

Example 8.32. For the leapfrog method, the local truncation error is

$$\boldsymbol{\tau}^{n} = \frac{\mathbf{u}(t_{n+1}) - \mathbf{u}(t_{n-1})}{2k} - \mathbf{f}(\mathbf{u}(t_n), t_n)$$

$$= \left[\mathbf{u}'(t_n) + \frac{1}{6}k^2\mathbf{u}'''(t_n) + O(k^4)\right] - \mathbf{u}'(t_n)$$

$$= \frac{1}{6}k^2\mathbf{u}'''(t_n) + O(k^4).$$

Definition 8.33. For a numerical method of the form

$$\mathbf{U}^{n+1} = \boldsymbol{\phi}(\mathbf{U}^{n+1}, \mathbf{U}^n, \dots, \mathbf{U}^{n-m}),$$

the *one-step error* is defined by

$$\mathcal{L}^{n} := \mathbf{u}(t_{n+1}) - \phi(\mathbf{u}(t_{n+1}), \mathbf{u}(t_{n}), \dots, \mathbf{u}(t_{n-m})). \quad (8.22)$$

Example 8.34. For the leapfrog method, the one-step error is

$$\mathcal{L}^n = \mathbf{u}(t_{n+1}) - \mathbf{u}(t_{n-1}) - 2k\mathbf{f}(\mathbf{u}(t_n), t_n)$$
$$= \frac{1}{3}k^3\mathbf{u}'''(t_n) + O(k^5)$$
$$= 2k\tau^n.$$

Definition 8.35. The *solution error* of a numerical method for solving the IVP in Definition 8.4 is

$$\mathbf{E}^{N} := \mathbf{U}^{T/k} - \mathbf{u}(T); \qquad \mathbf{E}^{n} = \mathbf{U}^{n} - \mathbf{u}(t_{n}). \tag{8.23}$$

Definition 8.36. A numerical method is *convergent* for a family of IVPs if the application of it to any IVP with $\mathbf{f}(\mathbf{u},t)$ Lipschitz continuous in \mathbf{u} and continuous in t yields

$$\lim_{\substack{k \to 0 \\ N_k \to T}} \mathbf{U}^N = \mathbf{u}(T) \tag{8.24}$$

for every fixed T > 0

8.5 Analysis of Euler's methods

8.5.1 Linear IVPs

In this section, we consider the convergence of Euler's method for solving linear IVPs of the form

$$\begin{cases} \mathbf{u}'(t) = \lambda \mathbf{u}(t) + \mathbf{g}(t), \\ \mathbf{u}(0) = \mathbf{u}_0, \end{cases}$$
 (8.25)

where λ is either a scalar or a diagonal matrix.

Lemma 8.37. For the linear IVP (8.25), the solution errors and the local truncation error of Euler's method satisfy

$$\mathbf{E}^{n+1} = (1+k\lambda)\mathbf{E}^n - k\boldsymbol{\tau}^n. \tag{8.26}$$

Lemma 8.38. For the linear IVP (8.25), the solution error and the local truncation errors of Euler's method satisfy

$$\mathbf{E}^{n} = (1 + k\lambda)^{n} \mathbf{E}^{0} - k \sum_{m=1}^{n} (1 + k\lambda)^{n-m} \boldsymbol{\tau}^{m-1}.$$
 (8.27)

Theorem 8.39. Euler's method is convergent for solving the linear IVP (8.25).

8.5.2 Nonlinear IVPs

Lemma 8.40. Consider a nonlinear IVP of the form

$$\mathbf{u}'(t) = \mathbf{f}(\mathbf{u}(t), t),$$

where $\mathbf{f}(\mathbf{u}, t)$ is continuous in t and is Lipschitz continuous in \mathbf{u} with L as the Lipschitz constant. Euler's method satisfies

$$\|\mathbf{E}^{n+1}\| \le (1+kL)\|\mathbf{E}^n\| + k\|\boldsymbol{\tau}^n\|.$$
 (8.28)

Theorem 8.41. For the nonlinear IVP in Lemma 8.40, Euler's method is convergent.

8.5.3 Zero stability and absolute stability

Example 8.42. Consider the scalar IVP

$$u'(t) = \lambda(u - \cos t) - \sin t,$$

with $\lambda = -2100$ and u(0) = 1. The exact solution is clearly

$$u(t) = \cos t$$
.

The following table shows the error at time T=2 when Euler's method is used with various values of k.

\overline{k}	E(T)
2.00e-4	1.48e-8
4.00e-4	3.96e-8
8.00e-4	7.92e-8
9.50e-4	3.21e-7
9.76e-4	5.88e + 35
1.00e-3	1.45e + 76

The first three lines confirm the first-order accuracy of Euler's method, but something dramatic happens between k=9.76e-4 and k=9.50e-4. What's going on?

Definition 8.43. The Euler's method

$$U^{n+1} = (1 + k\lambda)U^n$$

for solving the scalar IVP

$$u'(t) = \lambda u(t) \tag{8.29}$$

is absolutely stable if

$$|1 + k\lambda| \le 1. \tag{8.30}$$

Definition 8.44. The region of absolute stability for Euler's method applied to (8.29) is the set of all points

$$\{z \in \mathbb{C} : |1+z| \le 1\}.$$
 (8.31)

Example 8.45. The backward Euler's method applied to (8.29) reads

$$U^{n+1} = U^n + k\lambda U^{n+1} \Rightarrow U^{n+1} = \frac{1}{1 - k\lambda} U^n.$$

Hence the region of absolute stability for backward Euler's method is

$$\{z \in \mathbb{C} : |1 - z| \ge 1\}.$$
 (8.32)

Lemma 8.46. Consider an autonomous, homogeneous, and linear system of IVPs

$$\mathbf{u}'(t) = A\mathbf{u} \tag{8.33}$$

where $\mathbf{u} \in \mathbb{R}^N$, N > 1, and A is diagonalizable with eigenvalues as λ_i 's. Euler's method is absolutely stable if each $z_i := k\lambda_i$ is within the stability region (8.31).

Definition 8.47. The *law of mass action* states that the rate of a chemical reaction is proportional to the product of the concentration of the reacting substances, with each concentration raised to a power equal to the coefficient that occurs in the reaction.

Example 8.48. For the reaction

$$\alpha A + \beta B \xrightarrow{k_{+}} \sigma S + \tau T,$$

the forward reaction rate is $k_{+}[A]^{\alpha}[B]^{\beta}$ and the backward reaction rate is $k_{-}[S]^{\sigma}[T]^{\tau}$.

Example 8.49. Consider

$$A + B \stackrel{c_1}{\rightleftharpoons} AB.$$

Let

$$\mathbf{u} := \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} [A] \\ [B] \\ [AB] \end{bmatrix}.$$

Then we have

$$u'_1 = -c_1 u_1 u_2 + c_2 u_3;$$

$$u'_2 = -c_1 u_1 u_2 + c_2 u_3;$$

$$u'_3 = c_1 u_1 u_2 - c_2 u_3,$$

which can be written more compactly as

$$\mathbf{u}'(t) = \mathbf{f}(\mathbf{u}).$$

Let $\mathbf{v}(t) := \mathbf{u}(t) - \bar{\mathbf{u}}$ with $\bar{\mathbf{u}}$ independent on time. Then

$$\mathbf{v}'(t) = \mathbf{u}'(t) = \mathbf{f}(\mathbf{u}(t)) = \mathbf{f}(\mathbf{v} + \bar{\mathbf{u}})$$
$$= \mathbf{f}(\bar{\mathbf{u}}) + \mathbf{f}'(\bar{\mathbf{u}})\mathbf{v}(t) + O(\|\mathbf{v}\|^2),$$

and hence

$$\mathbf{v}'(t) = A\mathbf{v}(t) + \mathbf{b},$$

where $A = \mathbf{f}'(\bar{\mathbf{u}})$ is the Jacobian, i.e.,

$$A = \begin{bmatrix} -c_1 u_2 & -c_1 u_1 & c_2 \\ -c_1 u_2 & -c_1 u_1 & c_2 \\ c_1 u_2 & c_1 u_1 & -c_2 \end{bmatrix},$$

with eigenvalues $\lambda_1 = -c_1(u_1 + u_2) - c_2$ and $\lambda_2 = \lambda_3 = 0$. Since $u_1 + u_2$ is simply the total concentration of species A and B present, they can be bounded by $u_1(0) + u_2(0) + u_3(0)$.

Example 8.50. For the reaction

$$A \stackrel{c_1}{\rightleftharpoons} B$$
,

we obtain the linear IVPs

$$\begin{cases} u_1' = -c_1 u_1 + c_2 u_2; \\ u_2' = c_1 u_1 - c_2 u_2. \end{cases}$$

8.5.4 Review of Jordan canonical form

Theorem 8.51 (Factorization of a polynomial over \mathbb{C}). If $p \in \mathcal{P}(\mathbb{C})$ is a nonconstant polynomial, then p has a unique factorization (except for the order of the factors) of the form

$$p(z) = c(z - \lambda_1) \cdots (z - \lambda_m), \tag{8.34}$$

where $c, \lambda_1, \ldots, \lambda_m \in \mathbb{C}$.

Definition 8.52. Let $A \in \mathbb{C}^{m \times m}$, then the *characteristic polynomial* of A is

$$p_A(z) = \det(zI - A). \tag{8.35}$$

Proposition 8.53. Let $A \in \mathbb{C}^{m \times m}$, then λ is an eigenvalue of A iff λ is a root of the characteristic polynomial of A.

Exercise 8.54. Show that

$$p_M(z) = z^r + \sum_{j=0}^{r-1} \alpha_j z^j.$$

is the characteristic polynomial of

$$M = \begin{bmatrix} 0 & 1 & & & & \\ & 0 & 1 & & & \\ & & \ddots & \ddots & & \\ & & & 0 & 1 \\ -\alpha_0 & -\alpha_1 & \cdots & -\alpha_{r-2} & -\alpha_{r-1} \end{bmatrix} \in \mathbb{C}^{r \times r}. \quad (8.36)$$

Definition 8.55. If the characteristic polynomial $p_A(z)$ has a factor $(z-\lambda)^n$, then λ is said to have algebraic multiplicity $m_a(\lambda) = n$.

Definition 8.56. Let λ be an eigenvalue of $A \in \mathbb{C}^{m \times m}$, the eigenspace of A corresponding to λ is

$$\mathcal{N}(A - \lambda I) = \{ \mathbf{u} \in \mathbb{C}^m : (A - \lambda I)\mathbf{u} = \mathbf{0} \}$$

$$= \{ \mathbf{u} \in \mathbb{C}^m : A\mathbf{u} = \lambda \mathbf{u} \}.$$
(8.37)

The dimension of $\mathcal{N}(A - \lambda I)$ is the geometric multiplicity $m_q(\lambda)$ of λ .

Proposition 8.57. Geometric multiplicity and algebraic multiplicity satisfy

$$1 \le m_g(\lambda) \le m_a(\lambda). \tag{8.38}$$

Definition 8.58. An eigenvalue λ of A is defective if

$$m_a(\lambda) < m_a(\lambda). \tag{8.39}$$

A is defective if A has one or more defective eigenvalues.

Proposition 8.59. A nondefective matrix A is diagnolizable, i.e.,

$$\exists$$
 nonsingular R s.t. $R^{-1}AR = \Lambda$ is diagonal. (8.40)

Theorem 8.60 (Schur decomposition). For each square matrix A, there exists a unitary matrix Q such that

$$A = QUQ^{-1}, \tag{8.41}$$

where U is upper triangular.

Definition 8.61. A Jordan block of order k has the form

$$J(\lambda, k) = \lambda I_k + S_k, \tag{8.42}$$

where

$$(S_k)_{i,j} = \begin{cases} 1, & i = j - 1, \\ 0, & \text{otherwise.} \end{cases}$$

Example 8.62. The Jordan blocks of orders 1, 2, and 3 are

$$J(\lambda,1)=\lambda, \quad J(\lambda,2)=\begin{bmatrix}\lambda & 1 \\ 0 & \lambda\end{bmatrix}, \quad J(\lambda,3)=\begin{bmatrix}\lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda\end{bmatrix}.$$

Theorem 8.63 (Jordan canonical form). Every square matrix A can be expressed as

$$A = RJR^{-1}, \tag{8.43}$$

where R is invertible and J is a block diagonal matrix of the form

$$J = \begin{bmatrix} J(\lambda_1, k_1) & & & & \\ & J(\lambda_2, k_2) & & & \\ & & \ddots & & \\ & & J(\lambda_s, k_s) \end{bmatrix}.$$
 (8.44)

Each $J(\lambda_i, k_i)$ is a Jordan block of some order k_i and $\sum_{i=1}^{s} k_i = m$. If λ is an eigenvalue of A with algebraic multiplicity m_a and geometric multiplicity m_g , then λ appears in m_g blocks and the sum of the orders of these blocks is m_a .

8.6 Linear multistep methods

Definition 8.64. For solving the IVP (8.3), an *s-step linear multistep method* (LMM) has the form

$$\sum_{j=0}^{s} \alpha_j \mathbf{U}^{n+j} = k \sum_{j=0}^{s} \beta_j \mathbf{f}(\mathbf{U}^{n+j}, t_{n+j}),$$
 (8.45)

where $\alpha_s = 1$ is assumed WLOG.

Definition 8.65. An LMM method (8.45) is *explicit* if $\beta_s = 0$; otherwise it is *implicit*.

Adams- Bashforth	$\begin{array}{cc} & \operatorname{Adams-} \\ & \operatorname{Moulton} \end{array}$	Nyström	Generalized Milne-Simp	
α_j β_j	α_j β_j	α_j β_j	α_j β_j	$lpha_j eta_j$
:	:	:	:	i i
0	0	0	0	0

Definition 8.66. An Adams formula is an LMM of the form

$$\mathbf{U}^{n+s} = \mathbf{U}^{n+s-1} + k \sum_{j=0}^{s} \beta_j \mathbf{f}(\mathbf{U}^{n+j}, t_{n+j}), \tag{8.46}$$

whese β_i 's are chosen to maximize the order of accuracy.

Definition 8.67. An Adams-Bashforth formula is an Adams formula with $\beta_s = 0$. An Adams-Moulton formula is an Adams formula with $\beta_s \neq 0$.

Example 8.68. Euler's method is the 1-step Adams-Bashforth formula with

$$s = 1$$
, $\alpha_1 = 1$, $\alpha_0 = -1$, $\beta_1 = 0$, $\beta_0 = 1$.

Example 8.69. The trapezoidal method is the 1-step Adams-Moulton formula with

$$s = 1$$
, $\alpha_1 = 1$, $\alpha_0 = -1$, $\beta_1 = \beta_0 = \frac{1}{2}$.

Definition 8.70. An Nyström formula is an LMM of the form

$$\mathbf{U}^{n+s} = \mathbf{U}^{n+s-2} + k \sum_{j=0}^{s-1} \beta_j \mathbf{f}(\mathbf{U}^{n+j}, t_{n+j}), \tag{8.47}$$

where β_j 's are chosen to give order s.

Example 8.71. The midpoint method is the 2-step Nyström formula with

$$s = 2$$
, $\alpha_2 = 1$, $\alpha_1 = 0$, $\alpha_0 = -1$, $\beta_1 = 1$, $\beta_0 = 0$.

Definition 8.72. A backward differentiation formula (BDF) is an LMM of the form

$$\sum_{j=0}^{s} \alpha_j \mathbf{U}^{n+j} = k\mathbf{f}(\mathbf{U}^{n+s}, t_{n+j}), \tag{8.48}$$

where α_i 's are chosen to give order s.

Example 8.73. The backward Euler's method is the 1-step BDF with

$$s = 1$$
, $\alpha_1 = \beta_1 = 1$, $\alpha_0 = -1$, $\beta_0 = 0$.

8.6.1 Accuracy

Definition 8.74. The characteristic polynomials or generating polynomials for the LMM (8.45) are

$$\rho(\zeta) = \sum_{j=0}^{s} \alpha_j \zeta^j; \qquad \sigma(\zeta) = \sum_{j=0}^{s} \beta_j \zeta^j.$$
 (8.49)

Example 8.75. The forward Euler's method (8.18) has

$$\rho(\zeta) = \zeta - 1, \qquad \sigma(\zeta) = 1, \tag{8.50}$$

while the backward Euler's method (8.19) has

$$\rho(\zeta) = \zeta - 1, \qquad \sigma(\zeta) = \zeta. \tag{8.51}$$

Example 8.76. The trapezoidal method (8.20) has

$$\rho(\zeta) = \zeta - 1, \qquad \sigma(\zeta) = \frac{1}{2}(\zeta + 1),$$
 (8.52)

and the midpoint method (8.21) has

$$\rho(\zeta) = \zeta^2 - 1, \qquad \sigma(\zeta) = 2\zeta. \tag{8.53}$$

Notation 9. Denote by Z a time shift operator that acts on both discrete functions according to

$$Z\mathbf{U}^n = \mathbf{U}^{n+1} \tag{8.54}$$

and on continuous functions according to

$$Z\mathbf{u}(t) = \mathbf{u}(t+k). \tag{8.55}$$

Definition 8.77. The difference operator of an LMM is an operator \mathcal{L} on the linear space of continuously differentiable functions given by

$$\mathcal{L} = \rho(Z) - k\mathcal{D}\sigma(Z), \tag{8.56}$$

where $\mathcal{D}\mathbf{u}(t_n) = \mathbf{u}_t(t_n) := \frac{d\mathbf{u}}{dt}(t_n)$, Z the time shift operator, and ρ, σ are the characteristic polynomials for the LMM.

Lemma 8.78. The one-step error of the LMM (8.45) is

$$\mathcal{L}\mathbf{u}(t_n) = C_0\mathbf{u}(t_n) + C_1k\mathbf{u}_t(t_n) + C_2k^2\mathbf{u}_{tt}(t_n) + \cdots, (8.57)$$

where

$$C_{0} = \sum_{j=0}^{s} \alpha_{j}$$

$$C_{1} = \sum_{j=0}^{s} (j\alpha_{j} - \beta_{j})$$

$$C_{2} = \sum_{j=0}^{s} \left(\frac{1}{2}j^{2}\alpha_{j} - j\beta_{j}\right)$$

$$\vdots$$

$$C_{q} = \sum_{j=0}^{s} \left(\frac{1}{q!}j^{q}\alpha_{j} - \frac{1}{(q-1)!}j^{q-1}\beta_{j}\right).$$
(8.58)

Notation 10. We write $f(x) = \Theta(g(x))$ as $x \to 0$ if there exist constants C, C' > 0 and $x_0 > 0$ such that $Cg(x) \le f(x) \le C'g(x)$ for all $x \le x_0$.

Definition 8.79. An LMM has order of accuracy p if

$$\mathcal{L}\mathbf{u}(t_n) = \Theta(k^{p+1}) \text{ as } k \to 0, \tag{8.59}$$

i.e., if in (8.58) we have $C_0 = C_1 = \cdots = C_p = 0$ and $C_{p+1} \neq 0$. Then C_{p+1} is called the *error constant*. The LMM is *consistent* if it has order of accuracy $p \geq 1$.

Example 8.80. For Euler's method, the coefficients C_j 's in (8.58) can be computed directly from Example 8.68 as $C_0 = C_1 = 0, C_2 = \frac{1}{2}, C_3 = \frac{1}{6}$.

Exercise 8.81. Compute the first five coefficients C_j 's of the trapezoidal rule and the midpoint rule from Examples 8.69 and 8.71.

Example 8.82. A necessary condition for $\|\mathbf{E}^n\| = O(k)$ is $\|\mathcal{L}\mathbf{u}(t_n)\| = O(k^2)$ since there are $\frac{T}{k}$ time steps, and hence the first two terms in (8.57) should be zero, i.e.,

$$\sum_{j=0}^{s} \alpha_j = 0, \qquad \sum_{j=0}^{s} j\alpha_j = \sum_{j=0}^{s} \beta_j, \tag{8.60}$$

which is equivalent to

$$\rho(1) = 0 \quad \text{and} \quad \rho'(1) = \sigma(1).$$
(8.61)

Second-order accuracy further requires

$$\frac{1}{2}\sum_{j=0}^{s} j^2 \alpha_j = \sum_{j=0}^{s} j\beta_j.$$

In general, pth-order accuracy requires (8.60) and

$$\forall q = 2, \dots, p, \quad \sum_{j=0}^{s} \frac{1}{q!} j^{q} \alpha_{j} = \sum_{j=0}^{r} \frac{1}{(q-1)!} j^{q-1} \beta_{j}.$$
 (8.62)

Exercise 8.83. Express conditions of $\mathcal{L} = O(k^3)$ using characteristic polynomials.

Exercise 8.84. Derive coefficients of LMMs shown below by the method of undetermined coefficients and a programming language with symbolic computation such as Matlab.

Adams-Bashforth formulas in Definition 8.67

$ \begin{array}{c} \text{number} \\ \text{of steps } s \end{array} $	order p	eta_s	β_{s-1}	β_{s-2}	β_{s-3}	β_{s-4}
1	1	0	1		(EULER)	
2	2	0	$\frac{3}{2}$	$-\frac{1}{2}$		
3	3	0	$\frac{23}{12}$	$-\frac{16}{12}$	$\frac{5}{12}$	
4	4	0	$\frac{55}{24}$	$-\frac{59}{24}$	$\frac{37}{24}$	$-\frac{9}{24}$

Adams-Moulton formulas in Definition 8.67

$\begin{array}{c} \text{number} \\ \text{of steps } s \end{array}$	order p	eta_s	β_{s-1}	β_{s-2}	β_{s-3}	β_{s-4}
1	1	1		(BACI	KWARD E	ULER)
1	2	$\frac{1}{2}$	$\frac{1}{2}$	T)	RAPEZO	ID)
2	3	$\frac{5}{12}$	$\frac{8}{12}$	$-\frac{1}{12}$		
3	4	$\frac{9}{24}$	$\frac{19}{24}$	$-\frac{5}{24}$	$\frac{1}{24}$	
4	5	$\frac{251}{720}$	$\frac{646}{720}$	$-\frac{264}{720}$	$\frac{106}{720}$	$-\frac{19}{720}$

BDF formulas in Definition 8.72

number of steps s	order p	α_s	α_{s-1}	α_{s-2}	α_{s-3}	α_{s-4}	β_s
1	1	1	-1	(BACI	KWARD E	ULER)	1
2	2	1	$-\frac{4}{3}$	$\frac{1}{3}$			$\frac{2}{3}$
3	3	1	$-\frac{18}{11}$	$\frac{9}{11}$	$-\frac{2}{11}$		$\frac{6}{11}$
4	4	1	$-\frac{48}{25}$	$\frac{36}{25}$	$-\frac{16}{25}$	$\frac{3}{25}$	$\frac{12}{25}$

Lemma 8.85. An LMM with $\sigma(1) \neq 0$ has order of accuracy p if and only if

$$\frac{\rho(e^{\kappa})}{\sigma(e^{\kappa})} = \kappa + \Theta(\kappa^{p+1}) \text{ as } \kappa \to 0.$$
 (8.63)

where $\kappa = k\mathcal{D}$.

Theorem 8.86. An LMM with $\sigma(1) \neq 0$ has order of accuracy p if and only if

$$\frac{\rho(z)}{\sigma(z)} = \log z + \Theta\left((z-1)^{p+1}\right)
= \left[(z-1) - \frac{1}{2}(z-1)^2 + \frac{1}{3}(z-1)^3 - \cdots\right] + \Theta((z-1)^{p+1}).$$
(8.64)

as $z \to 1$.

Example 8.87. The trapezoidal rule has $\rho(z) = z - 1$ and $\sigma(z) = \frac{1}{2}(z+1)$. A comparison of (8.64) with the expansion

$$\frac{\rho(z)}{\sigma(z)} = \frac{z-1}{\frac{1}{2}(z+1)} = (z-1)\left[1 - \frac{z-1}{2} + \frac{(z-1)^2}{4} - \cdots\right]$$

confirms that the trapezoidal rule has order 2 with error constant $-\frac{1}{12}$.

Exercise 8.88. For the third-order BDF formula in Definition 8.72 and Exercise 8.84, derive its characteristic polynomials and apply Theorem 8.86 to verify that the order of accuracy is indeed 3.

8.6.2 Stability

 $\bf Example~8.89$ (A consistent but unstable LMM). The LMM

$$\mathbf{U}^{n+2} - 3\mathbf{U}^{n+1} + 2\mathbf{U}^n = -k\mathbf{f}(\mathbf{U}^n, t_n)$$
(8.65)

has a one-step error given by

$$\mathcal{L}\mathbf{u}(t_n) = \mathbf{u}(t_{n+2}) - 3\mathbf{u}(t_{n+1}) + 2\mathbf{u}(t_n) + k\mathbf{u}'(t_n)$$

= $\frac{1}{2}k^2\mathbf{u}''(t_n) + O(k^3),$

so the method is consistent with first-order accuracy. But the solution error may not exhibit first order accuracy, or even convergence. Consider the trivial IVP

$$u'(t) = 0,$$
 $u(0) = 0,$

with solution $u(t) \equiv 0$. The LMM (8.65) reads in this case

$$U^{n+2} = 3U^{n+1} - 2U^n \Rightarrow U^{n+2} - U^{n+1} = 2(U^{n+1} - U^n),$$

and therefore

$$U^n = 2U^0 - U^1 + 2^n(U^1 - U^0).$$

If we take $U^0 = 0$ and $U^1 = k$, then

$$U^n = k(2^n - 1) = k(2^{T/k} - 1) \to +\infty \text{ as } k \to 0.$$