Cálculo Numérico I

Curso 2020-2021

Hoja de problemas 7

1° Mat./2° D.G.

- 1) Analizar la convergencia del método del punto fijo $x_{k+1} = g(x_k)$, $k \ge 0$, para calcular las raíces reales de $f(x) = x^2 x 2$, con cada una de las siguientes g's: $g_1(x) = x^2 2$, $g_2(x) = \sqrt{x+2}$, $g_3(x) = -\sqrt{2+x}$ y $g_4(x) = 1 + \frac{2}{x}$ con $x \ne 0$.
- 2) Encontrar los puntos fijos de las siguientes iteraciones y analizar la convergencia:
- a) $x_{n+1} = \sqrt{p + x_n} \text{ con } p > 0.$
- **b)** $x_{n+1} = \frac{1}{2 + x_n}$.
- 3) En el intervalo [0,1] se considera la función $g(x) = \lambda x(1-x)$ donde $\lambda \in [0,4]$.
- a) Demostrar que g envía el intervalo [0,1] en sí mismo.
- b) ¿Cuántos puntos fijos tiene g en [0,1]?
- c) Demostrar que el punto fijo p=0 es atractor si $\lambda < 1$ y repulsor para $\lambda > 1$.
- 4) Se considera la ecuación $\tan x = x$ para x > 0.
- a) Demostrar que tiene una única raíz en cada uno de los intervalos $(\pi/2 + \pi n, \pi/2 + \pi(n+1))$, $n = 0, 1, 2, \dots$
- **b)** Escribir un programa que use iteración para calcular las 10 primeras raíces (n = 0, 1, ..., 9) con 6 dígitos correctos.
- 5) Se considera la función $g(x) = (1/2)x x^3$.
- a) ¿Cuántos puntos fijos tiene g?
- **b)** Hallar un punto $\beta > 0$ con la propiedad $g(\beta) = -\beta$.
- c) ¿Qué le ocurre a la iteración de punto fijo para $x_0 \in (0, \beta)$? ¿Y para $x_0 = \beta$? ¿Y para $x_0 > \beta$?

Observación: no es necesario considerar los casos en que x_0 sea negativo pues al cambiar el signo de x_0 cambia el signo de todos los iterados.

- **6)** Sea $g(x) = \frac{\pi}{2}\sin(x)$.
- a) Encontrar los puntos fijos de g
- **b)** Para cada x_0 real la sucesión de iterados converge a un punto fijo. Determinar, en función de x_0 , cuál es ese límite.
- 7) Sea $f \in \mathcal{C}^{m+1}$, $m \geq 2$ (la función y sus m+1 primeras derivadas son continuas) tal que $f(\xi) = f'(\xi) = \dots = f^{(m-1)}(\xi) = 0, \text{ pero } f^{(m)}(\xi) \neq 0.$
- a) Considerar la iteración del método de Newton $x_{k+1} = x_k f(x_k)/f'(x_k)$, $k \ge 0$, y demostrar que no puede tener convergencia cuadrática para aproximar ξ .
- b) Considerar el método de Newton modificado $x_{k+1} = x_k m \frac{f(x_k)}{f'(x_k)}, \quad k \ge 0$, y demostrar que su orden de convergencia sí es 2.

- 8) Las funciones $g(x) = \sin(x)$ y $g(x) = \tan(x)$ tienen ambas un punto fijo en $\alpha = 0$ y para ambas g'(0) = 1.
- a) Probar que para $|x_0|$ suficientemente pequeño con el seno la iteración de punto fijo converge mientras que con la tangente diverge.
- b) En el caso $|g'(\alpha)| = 1$ la convergencia o divergencia depende de los valores de las derivadas superiores de g. Probar que si con $|g'(\alpha)| = 1$ hay convergencia cada error es asintóticamente de la misma magnitud del anterior con lo que la convergencia es lentísima y el método carece de utilidad en ese caso.
- 9) Suponer que $f \in \mathcal{C}^2$, $f(\xi) = 0$ y que en el intervalo $[a, \xi]$ (con $a < \xi$), f'(x) > 0 y f''(x) < 0.
- a) Demostrar que para todo $x_0 \in [a, \xi]$ el método de Newton converge a ξ .
- b) ¿Es eso cierto, en general, si cambiamos $[a, \xi]$ por $[\xi, a]$?
- 10) Se considera la ecuación (*) $x = -a \log(x)$, donde a es un parametro positivo.
- a) Demostrar que para cualquier a > 0, esta ecuación tiene una única solución real.
- **b)** Demostrar que el método del punto fijo, aplicado a la función $g(x) = -a \log(x)$, converge para a < 1/e, y diverge para a > 1/e.
- c) Si se escoge a=1/10, ¿para qué valores del dato inicial x_0 puede estar uno seguro de que el metodo converge?
- d) Calcular (en MatLab o con una calculadora) la solución de la ecuación (*) para a = 9/25 con 4 dígitos signicativos, eligiendo un método adecuado.
- **11)** Aplicamos el método de punto fijo a la función $g(x) = \frac{5x}{1+x^4}$.
- a) Encontrar los puntos fijos de g. ¿Son atractores o repulsores?
- b) Sea F el conjunto de puntos fijos de g, encontrado en el apartado anterior. Demostrar lo siguiente. Para todo dato inicial x_0 , ó bien $x_k \in F$ para algún k finito (en este caso, lógicamente, los aproximantes $\{x_n\}$ convergen), ó bien $\{x_n\}$ no tienen ningún límite finito o infinito $(\pm \infty)$. Comprobar también que en el último caso, la sucesión $\{|x_n|\}$ tampoco tiene límite (finito o infinito).
- 12) Se considera la función $f(x) = \text{signo}(x)|x|^a$, donde signo(0) = 0, signo(x) = x/|x| para $x \neq 0$ y a > 0 es un parámetro.
- a) ¿Existen valores de a para los que no tenemos convergencia local del método de Newton a la raíz 0 de f? ¿Son válidos los teoremas que vimos en clase para estos casos?
- **b)** Determinar los valores de a tales que se tiene la convergencia local. ¿Va a haber convergencia global en estos casos?
- c) En casos cuando tenemos la convergencia local, determinar el orden de convergencia del método de Newton (en función de a).
- 13) Aplicamos el método del punto fijo a la función $g(x) = \frac{x}{1+2x}$ escogiendo $x_0 = 1$ como aproximante inicial.
- a) Comprobar que $\alpha = 0$ es el único punto fijo de g. Demostrar que es atractor.
- b) Decir exactamente, cuántas iteraciones necesitaremos para lograr que $|x_n \alpha| < \frac{1}{10}$. ¿Y cuántas para tener $|x_n \alpha| < \frac{1}{10^5}$?

- **14)** (Continuación del ejercicio anterior). Supongamos ahora que g es cualquier función de \mathbb{R} a \mathbb{R} de clase C^2 tal que g(0) = 0 y g'(0) = 1.
- a) Demostrar que el punto fijo $\alpha = 0$ es atractor si g''(0) < 0 y es repulsor si g''(0) > 0.
- b) Supongamos que g''(0) < 0 y sea $\{x_n\}$ una sucesión de aproximantes que tiende al punto fijo 0. Demostrar que existe el límite

$$\lim_{n \to \infty} \frac{1}{x_{n+1}} - \frac{1}{x_n} = |g''(0)|/2.$$

c) Ponemos $t_n = 1/x_n$. Sabemos pues que $\lim_{n \to \infty} (t_{n+1} - t_n) = |g''(0)|/2$. Deducir que existe el límite finito

$$\lim_{n \to \infty} \frac{t_n}{n} = \lim_{n \to \infty} \frac{1}{nx_n}.$$

Calcular este límite.

- **15)** Aplicamos el método de punto fijo a la función $g(x) = (x-2)/3 + C(x+1)^{-1/2}$, donde C es una constante positiva.
- a) Demostrar que g es convexa en exactamente un punto fijo $(-1, +\infty)$. Demostrar que, indepentientemente del valor de C, g tiene exactamente un punto fijo en este intervalo.
- b) Investigar si es atractor o repulsor. Calcular el orden de convergencia del método de punto fijo y demostrar que este orden no depende de C.
- c) Demostrar que el método converge para todo aproximante inicial x_0 en $(-1, \infty)$.