CS3230 Lecture 5

"Min-Max, Order Statistics, and Linear Time OS"

- ☐ Lecture Topics and Readings
 - **❖** Linear Time Sorting Algorithms [CLRS]-C8.2,8.3
 - * Min, Max, and Min-Max
 - * Randomized Divide-and-Conquer [CLRS]-C9
 - **❖** Order Statistics in Linear Time [CLRS]-C9

THINK!

Busting the Lower Bound

Recursive algorithms are elegant!

Balancing leads to efficient algorithms

(CS3230 Outline) Page 1

MOE Think out of the Box

Singapore
MOE Building
Buona Vista
THINK out of the Box!

Sorting and Searching

Don Knuth, Stanford

The Art of Computing Programming, Vol 3, "Sorting and Searching"

Raymond Liu December 9, 2013 🏨

Christmas tree lecture — with Chuanqi Shen.

Shen Chuan Qi (2011 SG IOI Team, now at Stanford) attending "Christmas Tree Lecture" given by Don Knuth, around Xmas 2013.

Topic: Planar Graphs and Ternary Trees

Like - Co

Search: Don Knuth, Christmas Tree Lectures, December 2013

Thank you.

CS3230 Lecture 5(b)

"Lower Bound for Sorting, Linear-Time Sorting" "Order Statistics, and Linear Time OS"

- ☐ Lecture Topics and Readings
 - Order Statistics, Min, Max, Min-Max
 - * Randomized Divide-and-Conquer [CLRS]-C9
 - **❖** Order Statistics in Linear Time [CLRS]-C9

Recursive algorithms are elegant!
Balancing leads to efficient algorithms

(CS3230 Order Statistics) Page 1

Order statistics

Select the *i*th smallest of *n* elements (the element with *rank i*).

- i = 1: minimum;
- i = n: maximum;
- $i = \lfloor (n+1)/2 \rfloor$ or $\lceil (n+1)/2 \rceil$: median.

Naive algorithm: Sort and index *i*th element.

Worst-case running time =
$$\Theta(n \lg n) + \Theta(1)$$

= $\Theta(n \lg n)$,

using merge sort or heapsort (not quicksort).

Iterative Find-Max algorithm

FIND-MAX A[1 ... n]

- 1. Let Max-sf := A[1];
- **2.** for k = 2 to n do
- 3. if A[k] > Max-sf then
- 4. Max-sf := A[k]
- 5. return Max-sf

If
$$A = [3, 1, 5, 7]$$
 Let $M(x, y) = \text{Max } \{x, y\}$

$$Max-sf = 3$$
, $M(1,3)=3$, $M(5,3)=5$, $M(7,5)=7$

Iterative Find-Max algorithm

FIND-MAX A[1 ... n]

- 1. Let Max-sf := A[1];
- **2.** for k = 2 to n do
- 3. if A[k] > Max-sf then
- $4. \qquad Max-sf := A[k]$
- 5. return Max-sf

A-Problem:

On average, how often is line 4 executed?

```
Obviously: T(n) = \Theta(n)
more precisely: (n-1 \text{ comparisons})
```


Making Find-Max recursive

FIND-MAX A[1 ...n]1. Let Max-sf := A[1];

Compares A[k] with

$$\max\{A_1,A_2,...,A_{k-1}\}$$

- 2. for k = 2 to n do
- 3. |if A[k]| > Max-sf then
- $4. \qquad Max-sf := A[k]$
- 5. return Max-sf

Question: Can we turn this into a recursive algorithm?

Iterative Find-Max algorithm

```
FIND-MAX A[1 ... n]
                                 compares A[k] with
                                 \max\{A_1,A_2,...,A_{k-1}\}
     1. Let Max-sf := A[1];
     2. for k=2 to n do
          | \mathbf{if} A[k] > Max-sf  then
              Max-sf := A[k]
     5. return Max-sf
When k=7, what is value of Max-sf?
 Max-sf = \max \{A[1], A[2], ..., A[6]\}
```

(CS3230 Order Statistics) Page 8

Iterative Find-Max algorithm

```
FIND-MAX A[1 ... n]
                                compares A[k] with
                                \max\{A_1,A_2,...,A_{k-1}\}
      1. Let Max-sf := A[1];
      2. for k = 2 to n do
          if A[k] > Max-sf then
              Max-sf := A[k]
      5. return Max-sf
When k=n, what is value of Max-sf?...
Max-sf = \max \{A[1], A[2], ... A[n-1]\}
```

(CS3230 Order Statistics) Page 9

Recursive Find-Max (FMR)

Recursion Schematic:

$$FMR\{A[1..n]\} = max\{FMR\{A[1..(n-1)]\}, A[n]\}$$

Find-Max-R A[1 ... n]

Find-Max-R = FMR

- 1. If n = 1, return A[1]
- 2. M1 := Find-Max-R A[1 ... n-1]
- 3. return Max $\{A[n], M1\}$

Recursive Find-Max (FMR)

Find-Max-R A[1 ... n]

- 1. If n = 1, return A[1]
- 2. M1 := Find-Max-R A[1 ... n-1]
- 3. return Max $\{A[n], M1\}$

If
$$A = [3, 1, 5, 7]$$

(Finish this example yourself. Check with slides at the back.)

Find-Max and Find-Max-R

Find-Max-R does exactly the *same computations* as Find-Max!

Have the same asymptotic $\Theta(n)$ worst-case time.

Recursion Schematics

Recursion Schematic:

FMR
$$\{A[1..n]\}\ = \max\{FMR\{A[1..(n-1)]\}, A[n]\}\$$
Extreme imbalance

Recursion Schematics

Recursion Schematic:

FMR
$$\{A[1..n]\}\ = \max\{FMR\{A[1..(n-1)]\}, A[n]\}\$$
Extreme imbalance

Balanced Recursion Schematic:

$$BFM\{A[1..n]\} = \max\{BFM\{A[1..n/2]\}, BFM\{A[n/2+1..n]\}\}$$

Balanced Recursive Find-Max

```
BFM A[1 ...n]

1. if n = 1, done.

2. M1 := BFM A[1 ... [n/2]]

M2 := BFM A[[n/2]+1 ...n].

3. return max \{M2, M2\}
```

```
Don't this remind you of Merge-Sort?
```

Recall: Merge sort

MERGE-SORT A[1 ... n]

- 1. If n = 1, done.
- 2. MERGE-SORT A[1..[n/2]]MERGE-SORT A[[n/2]+1..n]
- 3. "Merge" the 2 sorted lists.

Balanced Recursive Find-Max

BFM $A[1 \dots n]$

- 1. **if** n = 1, done.
- 2. $M1 := BFM A[1 ... \lceil n/2 \rceil]$ $M2 := BFM A[\lceil n/2 \rceil + 1 ... n]$.
- 3. return max $\{M1, M2\}$

$$T(n) = \begin{cases} \Theta(1) \text{ if } n = 1; \\ 2T(n/2) + \Theta(1) \text{ if } n > 1. \end{cases}$$

Balanced Recursive Find-Max

BFM $A[1 \dots n]$

- 1. **if** n = 1, done.
- 2. $M1 := BFM A[1 ... \lceil n/2 \rceil]$ $M2 := BFM A[\lceil n/2 \rceil + 1 ... n]$.
- 3. return max $\{M1, M2\}$

$$T(n) = \begin{cases} \Theta(1) \text{ if } n = 1; \\ 2T(n/2) + \Theta(1) \text{ if } n > 1. \end{cases}$$

BFM:
$$a = 2$$
, $b = 2 \implies n^{\log_b a} = n^{\log_2 2} = n$
 $f(n) = O(n^{1-\epsilon})$ for $\epsilon = 0.5 \implies \text{CASE 1: } T(n) = O(n)$.

(CS3230 Order Statistics) Page 19

Solve
$$T(n) = 2T(n/2) + 1$$
.

Solve
$$T(n) = 2T(n/2) + 1$$
.
 $T(n)$

Solve
$$T(n) = 2T(n/2) + 1$$
.

T(n/2)

Solve
$$T(n) = 2T(n/2) + 1$$
.

Solve T(n) = 2T(n/2) + 1.

Solve
$$T(n) = 2T(n/2) + 1$$
.

(CS3230 Order Statistics) Page 29

Solve
$$T(n) = 2T(n/2) + 1$$
.

How to do the sum?

Recall

$$\sum_{k=0}^{\lg n} 2^k = 1 + 2 + 2^2 + \dots + 2^h \le 2n$$

Or equivalently,

$$\sum_{k=0}^{\lg n} n/2^k = \left(n + n/2 + n/2^2 + \dots + n/2^{\lg n}\right)$$
$$= n\left(1 + \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^{\lg n}}\right) \le 2n$$

Have you seen this before?

Modification of HW1-S1(b)

Algorithm (from HW1-S1(b))

- 1. Each student k stand up, given number A[k]
- 2. Pair up with someone standing, the one with *smaller number* sits down
- 3. Go back to Step 2

What's the similarity?

What the difference?

Algorithms is A&E...

Recursion Schematic 1:

```
FMR\{A[1..n]\} =
Max\{ FMR\{A[1..(n-1)]\}, A[n] \}
```

Recursion Schematic 2:

```
BFM\{A[1..n]\} =

Max\{BFM\{A[1..n/2]\},

BFM\{A[n/2+1..n]\}\}
```


Bowling Classic Step-Ladder

Knock-out Tournament

http://legacy.wday.com/event/image/id/3122/headline/Bowling%20Classic%20Stepladder/

(CS3230 Order Statistics) Page 34

Thank you.


```
Find-Max-R A[1 \dots n]
           1. If n = 1, return A[1]
           2. M1 := Find-Max-R A[1 ... n-1]
           3. return Max \{A[n], M1\}
   FMR{[3,1,5,7]}
                                 If A = [3, 1, 5, 7]
Max \{7, FMR\{[3,1,5]\}\}
   Max{5, FMR{[3,1]}}
```

```
Find-Max-R A[1 \dots n]
            1. If n = 1, return A[1]
            2. M1 := Find-Max-R A[1 ... n-1]
            3. return Max \{A[n], M1\}
   FMR{[3,1,5,7]}
                                    If A = [3, 1, 5, 7]
Max \{7, FMR\{[3,1,5]\}\}
    Max {5, FMR {[3,1]}}
                 FMR {[3]}
        Max\{1,
                                        (CS3230 Order Statistics) Page 38
```

© Leong Hon Wai, 2007--

Hon Wai Leong, NUS

```
Find-Max-R A[1 \dots n]
            1. If n = 1, return A[1]
            2. M1 := Find-Max-R A[1 ... n-1]
            3. return Max \{A[n], M1\}
    FMR{[3,1,5,7]}
                                      If A = [3, 1, 5, 7]
Max \{7, FMR\{[3,1,5]\}\}
    Max {5, FMR {[3,1]}}
                  FMR{[3]}
        Max\{1,
                                          (CS3230 Order Statistics) Page 39
  Hon Wai Leong, NUS
                        ong Hon Wai, 2007--
```

```
Find-Max-R A[1 \dots n]
             1. If n = 1, return A[1]
            2. M1 := Find-Max-R A[1 ... n-1]
            3. return Max \{A[n], M1\}
    FMR{[3,1,5,7]}
                                       If A = [3, 1, 5, 7]
Max \{7, FMR\{[3,1,5]\}\}
    Max {5, FMR {[3,1]}}
         Max{1
                                          (CS3230 Order Statistics) Page 40
  Hon Wai Leong, NUS
                         ong Hon Wai, 2007--
```

```
Find-Max-R A[1 ...n]
1. If n = 1, return A[1]
2. M1 := Find-Max-R A[1 ...n-1]
```

3. return Max $\{A[n], M1\}$

Find-Max-R $A[1 \dots n]$

- 1. If n = 1, return A[1]
- 2. M1 := Find-Max-R A[1 ... n-1]
- 3. return Max $\{A[n], M1\}$

(CS3230 Order Statistics) Page 42

Find-Max-R $A[1 \dots n]$

- 1. If n = 1, return A[1]
- 2. M1 := Find-Max-R A[1 ... n-1]
- 3. return Max $\{A[n], M1\}$

Find-Max-R A[1 ... n]

- 1. If n = 1, return A[1]
- 2. M1 := Find-Max-R A[1 ... n-1]
- 3. return Max $\{A[n], M1\}$

CS3230 Lecture 5

"Linear-Time Sorting"
"Order Statistics, and Linear Time OS"

- ☐ Lecture Topics and Readings
 - Order Statistics, Max, Min-Max [CLRS]-C9.1
 - * Randomized Divide-and-Conquer [CLRS]-C9.2
 - **❖** Order Statistics in Linear Time [CLRS]-C9.3

Recursive algorithms are elegant!
Balancing leads to efficient algorithms

(CS3230 Algorithm Analysis) Page 1

Order statistics

Select the *i*th smallest of *n* elements (the element with *rank i*).

- i = 1: minimum;
- i = n: maximum;
- $i = \lfloor (n+1)/2 \rfloor$ or $\lceil (n+1)/2 \rceil$: median.

Naive algorithm: Sort and index *i*th element.

Worst-case running time =
$$\Theta(n \lg n) + \Theta(1)$$

= $\Theta(n \lg n)$,

using merge sort or heapsort (not quicksort).

Randomized
Divide-and-Conquer
Algorithm

Modified from Quicksort

Also by C. A. R. (Tony) Hoare, who invented Quicksort.

Randomized divide-and-conquer algorithm

```
RAND-SELECT(A, p, q, i) \rightarrow ith smallest of A[p...q]
   if p = q then return A[p]
   r \leftarrow \text{RAND-PARTITION}(A, p, q)
                     \triangleright k = \operatorname{rank}(A[r])
   k \leftarrow r - p + 1
   if i = k then return A[r]
   if i < k
      then return RAND-SELECT(A, p, r-1, i)
      else return RAND-SELECT(A, r + 1, q, i - k)
             \leq A[r]
                                      \geq A[r]
```


Example

Select the i = 7th smallest:

Partition:

Select the 7 - 4 = 3rd smallest recursively.

Intuition for analysis

(All our analyses today assume that all elements are distinct.)

Lucky:

$$T(n) = T(9n/10) + \Theta(n)$$
$$= \Theta(n)$$

$$n^{\log_{(10/9)} 1} = n^0 = 1$$
Case 3

Unlucky:

$$T(n) = T(n-1) + \Theta(n)$$
$$= \Theta(n^2)$$

arithmetic series

Worse than sorting!

Analysis of RAND-SELECT

Let T(n) = the *expected worst-case* time taken by RAND-SELECT on input of size n.

If pivot x ends up in position k,

then
$$T(n) = \max\{T(k-1), T(n-k)\} + (n+1)$$

Prob(pivot is at pos k) = 1/n for all k

(CS3230 Ordered Statistics) Page 7

Analysis of RAND-SELECT

Then, for expected worst-case, we have

```
T(n) = \begin{cases} \max\{T(0), T(n-1)\} + (n+1) & \text{if } 0: n-1 \text{ split} \\ \max\{T(1), T(n-2)\} + (n+1) & \text{if } 1: n-2 \text{ split} \\ \max\{T(2), T(n-3)\} + (n+1) & \text{if } 2: n-3 \text{ split} \\ \vdots & \vdots \\ \max\{T(n-2), T(1)\} + (n+1) & \text{if } n-2: 1 \text{ split} \\ \max\{T(n-1), T(0)\} + (n+1) & \text{if } n-1: 0 \text{ split} \end{cases}
```

Prob(pivot is at pos k) = 1/n for all k

Analysis of RAND-SELECT

Then, we have the following recurrence:

$$T(n) = \sum_{k=1}^{n} \frac{1}{n} \cdot \left[\max\{T(k-1), T(n-k)\} + (n+1) \right]$$

Bigger terms appear twice. $2 \sum_{k=1}^{n-1} T(k) + (n+1)$

$$T(n) \le \frac{2}{n} \sum_{k=\lfloor \frac{n}{2} \rfloor}^{n-1} T(k) + (n+1)$$

$$T(n) \le \frac{2}{n} \left(T(\left\lfloor \frac{n}{2} \right\rfloor) + T(\left\lfloor \frac{n}{2} \right\rfloor + 1) + \dots + T(n-1) \right) + (n+1)$$

Substitution Method

- We will use "Substitution Method" to prove that $T(n) \le Cn$, for some C.
- ☐ Idea in Substitution Method:
 - 1. Guess the form of the solution;
 - 2. Use mathematical induction to prove it and find the constants
- □Optional for CS3230 (Spring 2014)
 - **❖ See [CLRS]-C4.3 pp.83-87 for details**

$$T(n) \le \frac{2}{n} \sum_{k=\lfloor \frac{n}{2} \rfloor}^{n-1} T(k) + (n+1)$$

Step 1: Guess $T(n) \le Cn$ for constant C > 0.

Step 2: Prove $T(n) \le Cn$ using MI, and find the constant C

$$T(n) \le \frac{2}{n} \sum_{k=\lfloor \frac{n}{2} \rfloor}^{n-1} T(k) + (n+1)$$

Prove: $T(n) \le Cn$ for constant C > 0.

(Use mathematical induction.)

• Base Case: The constant C can be chosen large enough so that $T(n) \le Cn$ for the base cases (n very small).

Later, need fact: $\sum_{k=\left|\frac{n}{2}\right|}^{n-1} k \le \frac{3}{8} n^2 \quad \text{(exercise)}.$

(CS3230 Ordered Statistics) Page 12

Induction Step:

$$T(n) \le \frac{2}{n} \sum_{k=\lfloor n/2 \rfloor}^{n-1} Ck + (n+1)$$

Substitute inductive hypothesis.

Namely, $T(k) \le Ck$ for all $k \le n$.

Induction Step:

$$T(n) \le \frac{2}{n} \sum_{k=\lfloor n/2 \rfloor}^{n-1} Ck + (n+1)$$

$$\le \frac{2C}{n} \left(\frac{3}{8}n^2\right) + (n+1) \qquad \text{(Use fact)}$$

Induction Step:

$$T(n) \le \frac{2}{n} \sum_{k=\lfloor n/2 \rfloor}^{n-1} Ck + (n+1)$$

$$\le \frac{2C}{n} \left(\frac{3}{8} n^2 \right) + (n+1)$$

$$= Cn - \left(\frac{Cn}{4} - (n+1) \right)$$

Express as desired – residual.

 Induction Step:

$$T(n) \le \frac{2}{n} \sum_{k=\lfloor n/2 \rfloor}^{n-1} Ck + (n+1)$$

$$n_{k=\lfloor n/2 \rfloor}$$
 When $C=5$, then
$$(Cn/4 - (n+1))$$
 = $(n/4 - 1) \ge 0$ for $n \ge 4$.

$$=Cn-\left(\frac{Cn}{4}-(n+1)\right)$$

$$\leq Cn$$

(end of induction proof)

Choose
$$C=5$$
, $n_0=4$,
then residual term ≥ 0 for $n > n_0$.

(CS3230 Ordered Statistics) Page 16

When C=5, then

Summary of randomized order-statistic selection

- Works fast: linear expected time.
- Excellent algorithm in practice.
- But, the worst case is *very* bad: $\Theta(n^2)$.
- Q. Is there an algorithm that runs in linear time in the worst case?
- A. Yes, due to Blum, Floyd, Pratt, Rivest, and Tarjan [1973].

IDEA: Generate a good pivot recursively.

M. Blum, R. W. Floyd, V. R. Pratt, R. L. Rivest, R. E. Tarjan,

"Time Bounds for Selection," Journal of Computer and System Sciences, (Aug 1973), 7 (4): 448–461. doi:10.1016/S0022-0000(73)80033-9

Why is CS3230 FUN?

• "Meet" many CS celebrities

Worst-case linear-time order statistics

Select(i, n)

- 1. Divide the *n* elements into groups of 5. Find the median of each 5-element group by rote.
- 2. Recursively Select the median x of the $\lfloor n/5 \rfloor$ group medians to be the pivot.
- 3. Partition around the pivot x. Let k = rank(x).
- 4. if i = k then return x elseif i < kthen recursively Select the ith smallest element in the lower part else recursively Select the (i-k)th smallest element in the upper part

Same as Rand-Select

1. Divide the *n* elements into groups of 5.

1. Divide the *n* elements into groups of 5. Find the median of each 5-element group by rote.

- 1. Divide the *n* elements into groups of 5. Find the median of each 5-element group by rote.
- 2. Recursively Select the median x of the $\lfloor n/5 \rfloor$ group medians to be the pivot.

lesser

Analysis

At least half the group medians are $\leq x$, which is at least $\lfloor \lfloor n/5 \rfloor /2 \rfloor = \lfloor n/10 \rfloor$ group medians.

Analysis (Assume all elements are distinct.)

At least half the group medians are $\leq x$, which is at least $\lfloor \lfloor n/5 \rfloor / 2 \rfloor = \lfloor n/10 \rfloor$ group medians.

• Therefore, at least $3 \mid n/10 \mid$ elements are $\leq x$.

lesser

greater

Analysis (Assume all elements are distinct.)

At least half the group medians are $\leq x$, which is at least $\lfloor \lfloor n/5 \rfloor /2 \rfloor = \lfloor n/10 \rfloor$ group medians.

- Therefore, at least $3 \lfloor n/10 \rfloor$ elements are $\leq x$.
- Similarly, at least $3 \lfloor n/10 \rfloor$ elements are $\geq x$.

lesser

greater

Minor simplification

- For $n \ge 50$, we have $3 \lfloor n/10 \rfloor \ge n/4$.
- Therefore, for $n \ge 50$ the recursive call to SELECT in Step 4 is executed recursively on $\le 3n/4$ elements.
- Thus, the recurrence for running time can assume that Step 4 takes time T(3n/4) in the worst case.
- For n < 50, we know that the worst-case time is $T(n) = \Theta(1)$.

Developing the recurrence

```
T(n) Select(i, n)
 \Theta(n) { 1. Divide the n elements into groups of 5. Find the median of each 5-element group by rote.
T(n/5) { 2. Recursively Select the median x of the \lfloor n/5 \rfloor group medians to be the pivot.
  \Theta(n) 3. Partition around the pivot x. Let k = \text{rank}(x).
            4. if i = k then return x elseif i < k
               then recursively Select the ith
                            smallest element in the lower part
                     else recursively Select the (i-k)th
                            smallest element in the upper part
```


Solving the recurrence

$$T(n) = T\left(\frac{1}{5}n\right) + T\left(\frac{3}{4}n\right) + \Theta(n)$$

Substitution:

$$T(n) \le cn$$

$$T(n) \le \frac{1}{5}cn + \frac{3}{4}cn + \Theta(n)$$

$$= \frac{19}{20}cn + \Theta(n)$$

$$= cn - \left(\frac{1}{20}cn - \Theta(n)\right)$$

$$\le cn$$

if c is chosen large enough to handle both the $\Theta(n)$ and the initial conditions.

Conclusions

- Since the work at each level of recursion is a constant fraction (19/20) smaller, the work per level is a geometric series dominated by the linear work at the root.
- In practice, this algorithm runs slowly, because the constant in front of *n* is large.
- The randomized algorithm is far more practical.

Exercise: Why not divide into groups of 3?