Claims

1. A supported catalyst system comprising the product obtainable by contacting:

a) an adduct of formula (I)

$$MgT_2$$
'y $AlQ_j(OU)_{3-j}$ (I)

wherein

Mg is magnesium; Al is aluminum; O is oxygen;

T is chlorine, bromine, or iodine;

U is a linear or branched C₁-C₁₀ alkyl radical,

y ranges from 6.00 to 0.05;

j ranges from 3 to 0.1, being also a non integer number;

Q substituent, same or different, is a hydrocarbon radical containing from 1 to 20 carbon atoms optionally containing silicon or germanium atoms;

b) with at least one compound selected from the compounds of formula (II), (III) and (IV)

$$L = \begin{pmatrix} R^1 & R^4 & R^3 \\ N & T^1_m & R^5 & R^2 \\ N & T^1_m & R^5 & R^2 \\ N & R^1 & R^3 & R^4 & R^3 \\ N & T^1_m & R^5 & R^2 & R^5 & R^2 \\ N & R^1 & R^1 & R^2 & R^3 & R^2 \\ N & R^1 & R^2 & R^3 & R^2 & R^2 \\ N & R^1 & R^2 & R^3 & R^2 & R^2 \\ N & R^1 & R^2 & R^3 & R^2 & R^3 \\ N & R^1 & R^2 & R^3 & R^3 & R^3 \\ N & R^1 & R^2 & R^3 & R^3 & R^3 \\ N & R^1 & R^2 & R^3 & R^3 & R^3 \\ N & R^1 & R^2 & R^3 & R^3 & R^3 \\ N & R^1 & R^2 & R^3 & R^3 & R^3 \\ N & R^1 & R^2 & R^3 & R^3 & R^3 \\ N & R^1 & R^2 & R^3 & R^3 & R^3 \\ N & R^1 & R^2 & R^3 & R^3 & R^3 \\ N & R^1 & R^2 & R^3 & R^3 & R^3 \\ N & R^1 & R^2 & R^3 & R^3 & R^3 \\ N & R^1 & R^2 & R^3 & R^3 & R^3 \\ N & R^1 & R^2 & R^3 & R^3 & R^3 \\ N & R^1 & R^2 & R^3 & R^3 & R^3 \\ N & R^1 & R^2 & R^3 & R^3 & R^3 \\ N & R^1 & R^2 & R^3 & R^3 & R^3 \\ N & R^1 & R^2 & R^3 & R^3 & R^3 \\ N & R^1 & R^2 & R^3 & R^3 & R^3 \\ N & R^1 & R^2 & R^3 & R^3 & R^3 \\ N & R^1 & R^2 & R^3 & R^3 & R^3 \\ N & R^2 & R^3 & R^3 & R^3 & R^3 \\ N & R^3 & R^3 & R^3 & R^3 & R^3 \\ N & R^3 & R^3 & R^3 & R^3 & R^3 \\ N & R^3 & R^3 & R^3 & R^3 & R^3 & R^3 \\ N & R^3 & R^3 & R^3 & R^3 & R^3 & R^3 \\ N & R^3 & R^3 & R^3 & R^3 & R^3 & R^3 \\ N & R^3 & R^3 & R^3 & R^3 & R^3 & R^3 \\ N & R^3 & R^3 & R^3 & R^3 & R^3 & R^3 \\ N & R^3 & R^3 & R^3 & R^3 & R^3 & R^3 \\ N & R^3 & R^3 & R^3 & R^3 & R^3 & R^3 \\ N & R^3 & R^3 & R^3 & R^3 & R^3 & R^3 \\ N & R^3 \\ N & R^3 \\ N & R^3 \\ N & R^3 \\ N & R^3 \\ N & R^3 \\ N & R^3 \\ N & R^3 \\ N & R^3 & R^$$

wherein

in the compound of formula (II)

M¹ is a transition metal atom selected from Groups 3-11 of Periodical Table (Group 3 including lanthanoids);

the substituents X, equal to or different from each other, are monoanionic sigma ligands selected from the group consisting of hydrogen, halogen, R, OR, OCOR, SR, NR₂ and PR₂, wherein R is a hydrocarbon radical containing from 1 to 20 carbon atoms optionally containing one or more Si or Ge atoms;

n ranges from 0 to 3;

the bonds connecting the two nitrogen atoms with the bridge L can be single bonds or double bonds;

each R^1 , equal to or different from each other, is a C_1 - C_{40} hydrocarbon radical optionally containing one or more heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements;

L is a divalent or trivalent bridge connecting the two nitrogen atoms; m ranges from 0 to 1; when m is 0 the group T^1 is not-existent; T^1 is a Lewis base; the group T^1 can also be bonded to the group R^1 ; in the compound of formula (III):

Cr is a chromium atom; X is as described above;

Each R^2 , R^3 , R^4 and R^5 , equal to or different from each other, is a hydrogen atom, a halogen atom, or a C_1 - C_{40} hydrocarbon radical optionally containing one or more heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements; or two adjacent R^2 , R^3 , R^4 and R^5 form one or more C_3 - C_7 membered ring optional containing heteroatoms belonging to groups 13-17 of the periodic table;

 L^1 is a divalent or trivalent bridging group selected from C_1 - C_{20} alkylidene, C_3 - C_{20} cycloalkylidene, C_6 - C_{20} arylidene, C_7 - C_{20} alkylarylidene, or C_7 - C_{20} arylalkylidene radicals optionally containing heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements, and silylidene radical containing up to 5 silicon atoms such as SiMe₂, SiPh₂;

m1 is 1 or 2, and more specifically m1 is 1 when Z is N or P, and m1 is 2 when Z is C, Si or Ge;

n1 is an integer ranging from 1 to 4;

A¹ is a moiety of formula (V)

$$R^4$$
 R^3
 R^5
 (V)

wherein R^2 , R^3 , R^4 and R^5 are as described above; or A^1 is an oxygen atom, a sulphur atom, a NR^7 , NR^7_2 , a OR^7 or a SR^7 group, wherein R^7 , is a C_1 - C_{40} hydrocarbon radical;

in the compound of formula (IV):

Cr is chromium; X, R^2 , R^3 , R^4 and R^5 are as described above, and R^8 has the same meaning given for R^2 , R^3 , R^4 and R^5 ;

A² is a halogen atom, R⁷, OR⁷, OCOR⁷, SR⁷, NR⁷₂, NR⁷₃, SR⁷₂, OR⁷₂ wherein R⁷ are as described above.

- 2. The catalyst system according to claim 1 wherein T is chlorine; U is a linear C₁-C₁₀ alkyl radical; y ranges from 2 to 0.1; j ranges from 3 to 0.5 and Q is a linear or branched, cyclic or acyclic, C₁-C₂₀-alkyl, C₂-C₂₀ alkenyl, C₂-C₂₀ alkynyl, C₆-C₂₀-aryl, C₇-C₂₀-alkylaryl or C₇-C₂₀-arylalkyl radical optionally containing silicon or germanium atoms.
- 3. The catalyst system according to claims 1 or 2 wherein in the compound of formula (II) M¹ is a transition metal atom selected from Groups 3-6 and 8-10, X is an halogen atom or a R group; and L is a divalent or trivalent C₁-C₄₀ hydrocarbon group optionally containing one or more heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements.
- 4. The catalyst system according to any one of claims 1 to 3 wherein in the compound of formula (III) L¹ is a divalent group (ZR⁶_{ml})_{nl}; Z being C, Si, Ge, N or P, and each R⁶ group, equal to or different from each other, is a hydrogen atom or a hydrocarbon group containing from 1 to 20 carbon atoms, or two R⁶ can form a aliphatic or aromatic C₄-C₇ ring; R⁷ is a C₁-C₂₀-alkyl radical; and A¹ is a NR⁷₂ group.
- 5. The catalyst system according to any one of claims 1 to 4 wherein the adduct of formula (I)

$$MgT_2$$
'yAlQ_i(OU)_{3-j} (I)

has a surface area (BET) higher than 30 m²/g.

- 6. The catalyst system according to any one of claims 1 to 5 obtainable by the process comprising the following steps:
 - a) contacting
 - (i) a partially dealcoholated adduct of formula MgT₂·wUOH wherein T is chlorine, bromine, or iodine; U is a linear or branched C₁-C₁₀ alkyl radical, w ranges from 6 to 0.1; with
 - (ii) an organo-aluminium compound of formula $H_eAlQ^1_{3-e}$ or $H_eAl_2Q^1_{6-e}$, wherein each Q^1 substituent, same or different, is a hydrogen atom, a halogen atom, or a hydrocarbon radical containing from 1 to 20 carbon atoms optionally containing silicon or germanium atoms; with the proviso that at least one Q^1 is different from halogen, and e ranges from 0 to 1, being also a non-integer number;

to obtain an adduct of formula (I) MgT₂'yAlQ_j(OU)_{3-j} (I) described above; and

- b) contacting the product obtained from step a) with at least one compound selected from the compounds of formula (II), (III) and (IV) as described in claim 1.
- 7. The catalyst system according to anyone of claims 1 to 6 wherein the amount of the compounds of formula (II), (III) or (IV) supported on the adduct of formula (I) is generally between 1000 μmol/g of support and 1 μmol/g of support.
- 8. The catalyst system according to anyone of claims 1 to 7 wherein the compound of formula (II) has formulas (IIa) or (IIb):

wherein R¹, T¹, M¹, X, m and n are as described in claim 1;

 R^9 is a hydrogen atom or a linear or branched, cyclic or acyclic, C_1 - C_{20} -alkyl, C_2 - C_{20} alkenyl, C_2 - C_{20} -alkyl, C_7 - C_{20} -alkylaryl or C_7 - C_{20} -arylalkyl radical optionally containing heteroatoms belonging to groups 13-17 of the periodic table;

 R^{10} is a divalent group selected from C_1 - C_{20} alkylidene, C_3 - C_{20} cycloalkylidene, C_6 - C_{20} arylidene, C_7 - C_{20} alkylarylidene, or C_7 - C_{20} arylalkylidene radicals optionally containing heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements, and silylidene radical containing up to 5 silicon atoms;

 T^2 is an OR^{11} , SR^{11} or a NR^{11}_2 radical, wherein R^{11} is a linear or branched, cyclic or acyclic, C_1 - C_{10} -alkyl, C_2 - C_{10} alkenyl, C_2 - C_{10} alkynyl, C_6 - C_{10} -aryl, C_7 - C_{10} -alkylaryl or C_7 - C_{10} -arylalkyl radical.

- 9. The catalyst system according to claim 8 wherein in the compounds of formula (IIa) and (IIb) T¹ is tetrahydrofuran or a tertiary amine; M¹ is titanium or vanadium; n is 2 and m is 1.
- 10. The catalyst system according to anyone of claims 1 to 7 wherein the compound of formula (II) has formula (IIc):

19

wherein R¹, T¹, M¹, X, and n are as described in claim 1;

each R^{12} , equal to or different from each other, is a hydrogen atom or a linear or branched, cyclic or acyclic, C_1 - C_{20} -alkyl, C_2 - C_{20} alkenyl, C_2 - C_{20} alkynyl, C_6 - C_{20} -aryl, C_7 - C_{20} -alkylaryl or C_7 - C_{20} -arylalkyl radical optionally containing heteroatoms belonging to groups 13-17 of the periodic table; two R^{12} groups can also join to form a C_3 - C_8 membered ring that can bear one or more C_1 - C_{15} -alkyl, C_2 - C_{15} alkenyl, C_2 - C_{15} -alkylaryl or C_7 - C_{15} -arylalkyl substituents.

11. The catalyst system according to claim 10 wherein the compound of formula (IIc) has formulas (IIca) or (IIcb):

$$R^{13}$$
 R^{13}
 R^{13}
 R^{15}
 R

wherein:

each R^{13} , equal to or different from each other, is a hydrogen atom or a linear or branched, cyclic or acyclic, C_1 - C_{10} -alkyl radical;

each R¹⁴, equal to or different from each other, is a hydrogen atom or a linear or branched, cyclic or acyclic, C₁-C₁₀-alkyl radical;

each R^{15} , equal to or different from each other, is a hydrogen atom or a linear or branched, cyclic or acyclic, C_1 - C_{20} -alkyl, C_2 - C_{20} alkenyl, C_2 - C_{20} alkynyl, C_6 - C_{20} -aryl, C_7 - C_{20} -alkylaryl or C_7 - C_{20} -arylalkyl radical optionally containing heteroatoms belonging to groups 13-17 of the periodic table;

- each R^{16} , equal to or different from each other, is a hydrogen atom or a C_1 - C_{15} -alkyl, C_2 - C_{15} alkenyl, C_2 - C_{15} alkenyl, C_3 - C_{15} -alkylaryl or C_7 - C_{15} -arylalkyl radical.
- 12. A process for (co)polymerizing olefins containing from 2 to 20 carbon atoms comprising contacting one or more of said olefins under polymerization conditions in the presence of the catalyst system of claims 1-11.
- 13. The process according to claim 12 wherein one or more alpha-olefins are (co)polymerized.
- 14. The process according to claim 12 wherein said alpha olefins are propylene, ethylene, 1-butene, 1-hexene and 1-octene.
- 15. A process for polymerizing ethylene comprising contacting one or more of said olefins under polymerization conditions in the presence of the catalyst system of claims 1-11.
- 16. The process according to claim 15 wherein the ethylene polymer has a molecular weight Mw higher than 500,000.