

Materiał współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Próbny egzamin maturalny z matematyki listopad 2009

Klucz odpowiedzi do zadań zamkniętych i przykładowe rozwiązania zadań otwartych

Klucz odpowiedzi do zadań zamkniętych

Nr zadania	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
Odpowiedź	A	C	В	В	C	A	В	A	D	A	C	В	В	C	C	D	A	D	C	D	A	A	D	D	A

Przykładowe rozwiązania zadań otwartych

Zadanie 26. (2 punkty)

Rozwiąż nierówność $x^2 - 3x + 2 \le 0$.

Rozwiązanie:

Obliczam miejsca zerowe funkcji kwadratowej $f(x) = x^2 - 3x + 2$:

$$\Delta = (-3)^2 - 4 \cdot 1 \cdot 2 = 9 - 8 = 1$$

$$x_1 = \frac{3 - 1}{2} = 1 \quad x_2 = \frac{3 + 1}{2} = 2$$

Rysuję fragment wykresu funkcji kwadratowej f i na jego podstawie odczytuję rozwiązanie nierówności:

Odpowiedź: $x \in \langle 1, 2 \rangle$.

<u>Uwaga:</u> Można przedstawić funkcję f w postaci f(x) = (x-1)(x-2) i odczytać rozwiązanie nierówności.

2

Zadanie 27. (2 punkty)

Rozwiąż równanie $x^3 - 7x^2 + 2x - 14 = 0$.

Rozwiązanie:

Stosuję metodę grupowania, by przedstawić lewą stronę równania w postaci iloczynowej:

$$x^3 - 7x^2 + 2x - 14 = x^2(x - 7) + 2(x - 7) = (x^2 + 2)(x - 7)$$
.

Z równania $(x^2+2)(x-7)=0$ otrzymujemy, że

$$x^2 + 2 = 0$$
 lub $x - 7 = 0$.

Równanie $x^2 + 2 = 0$ nie ma rozwiązań. Rozwiązaniem równania x - 7 = 0 jest liczba 7.

Odpowiedź: Jedynym rozwiązaniem jest x = 7.

Zadanie 28. (2 punkty)

W układzie współrzędnych na płaszczyźnie punkty A = (2, 5) i C = (6, 7) są przeciwległymi wierzchołkami kwadratu ABCD. Wyznacz równanie prostej BD.

Rozwiązanie:

Obliczam współczynnik kierunkowy prostej AC: $a_{AC} = \frac{7-5}{6-2} = \frac{1}{2}$, a następnie wyznaczam współczynnik kierunkowy prostej BD prostopadłej do AC: $a_{BD} = -2$.

Wyznaczam współrzędne środka S odcinka AC: $S = \left(\frac{2+6}{2}, \frac{5+7}{2}\right) = (4,6)$ i wyznaczam równanie prostej o współczynniku kierunkowym -2, przechodzącej przez punkt S.

Odpowiedź: y = -2x + 14.

Zadanie 29. (2 punkty)

Kąt α jest ostry i $tg\alpha = \frac{4}{3}$. Oblicz $\sin \alpha + \cos \alpha$.

Rozwiązanie:

I sposób rozwiązania:

Z definicji funkcji tangens mamy $\frac{\sin \alpha}{\cos \alpha} = \frac{4}{3}$, zatem $\sin \alpha = \frac{4}{3}\cos \alpha$. Podstawiam tę równość

do tożsamości $\sin^2 \alpha + \cos^2 \alpha = 1$ i otrzymuję $\left(\frac{4}{3}\cos\alpha\right)^2 + \cos^2 \alpha = 1$, a stąd $\cos^2 \alpha = \frac{9}{25}$.

Zatem $\cos \alpha = \frac{3}{5}$ lub $\cos \alpha = -\frac{3}{5}$. Ujemny wynik odrzucam, ponieważ zgodnie z warunkami

zadania kąt α jest kątem ostrym. Obliczam wartości funkcji $\sin \alpha = \frac{4}{5}$, a następnie wartość

3

wyrażenia $\sin \alpha + \cos \alpha = \frac{4}{5} + \frac{3}{5} = \frac{7}{5}$.

Odpowiedź: $\sin \alpha + \cos \alpha = \frac{7}{5}$.

II sposób rozwiązania:

Rysuję trójkąt prostokątny, w którym oznaczam przyprostokątne 3x i 4x oraz zaznaczam kąt ostry α tak, aby $tg\alpha = \frac{4}{3}$.

Z twierdzenia Pitagorasa obliczam długość przeciwprostokątnej: $(4x)^2 + (3x)^2 = 25x^2$.

Zatem przeciwprostokątna ma długość 5x. Obliczam wartości funkcji $\sin \alpha = \frac{4}{5}$ i $\cos \alpha = \frac{3}{5}$. Stąd $\sin \alpha + \cos \alpha = \frac{4}{5} + \frac{3}{5} = \frac{7}{5}$.

Odpowiedź: $\sin \alpha + \cos \alpha = \frac{7}{5}$.

Zadanie 30. (2 punkty)

Wykaż, że dla każdego m ciąg $\left(\frac{m+1}{4}, \frac{m+3}{6}, \frac{m+9}{12}\right)$ jest arytmetyczny.

Rozwiązanie:

I sposób rozwiązania:

Wystarczy sprawdzić, że zachodzi następujący związek między sąsiednimi wyrazami ciągu: $a_n = \frac{a_{n-1} + a_{n+1}}{2}$.

Mamy
$$a_1 = \frac{m+1}{4}$$
, $a_2 = \frac{m+3}{6}$, $a_3 = \frac{m+9}{12}$.

Zatem
$$\frac{a_1 + a_3}{2} = \frac{\frac{m+1}{4} + \frac{m+9}{12}}{2} = \frac{3m+3+m+9}{24} = \frac{4m+12}{24} = \frac{m+3}{6} = a_2$$
.

Stąd wynika, że ciąg $\left(\frac{m+1}{4}, \frac{m+3}{6}, \frac{m+9}{12}\right)$ jest arytmetyczny dla każdego m.

II sposób rozwiązania:

Mamy
$$a_1 = \frac{m+1}{4}$$
, $a_2 = \frac{m+3}{6}$, $a_3 = \frac{m+9}{12}$.

Wystarczy sprawdzić, że $a_2 - a_1 = a_3 - a_2$.

Obliczamy:

$$\frac{m+3}{6} - \frac{m+1}{4} = \frac{m+9}{12} - \frac{m+3}{6}$$
$$\frac{2m+6-3m-3}{12} = \frac{m+9-2m-6}{12}$$
$$\frac{-m+3}{12} = \frac{-m+3}{12}$$

Zadanie 31. (2 punkty)

Trójkąty ABC i CDE są równoboczne. Punkty A, C i E leżą na jednej prostej. Punkty K, L i M są środkami odcinków AC, CE i BD (zobacz rysunek). Wykaż, że punkty K, L i M są wierzchołkami trójkąta równobocznego.

Rozwiązanie:

Z warunków zadania wynika, że $| \not \in BAC | = | \not \in DCE | = 60^\circ$, więc odcinki AB i CD są równoległe. Czworokąt ACDB jest trapezem. Odcinek KM łączy środki boków nierównoległych w tym trapezie, więc jest równoległy do jego podstaw. Wobec tego $| \not \in MKL | = 60^\circ$.

Podobnie $| \angle ACB | = | \angle CED | = 60^\circ$, więc odcinki *BC* i *DE* są równoległe. Czworokąt *BCED* jest trapezem. Odcinek *ML* łączy środki boków nierównoległych w tym trapezie, więc jest równoległy do jego podstaw. Wobec tego $| \angle KLM | = 60^\circ$.

Odpowiedź: Dwa kąty trójkąta *KLM* mają miarę 60°, zatem jest to trójkąt równoboczny.

Zadanie 32. (5 punktów)

Uczeń przeczytał książkę liczącą 480 stron, przy czym każdego dnia czytał jednakową liczbę stron. Gdyby czytał każdego dnia o 8 stron więcej, to przeczytałby tę książkę o 3 dni wcześniej. Oblicz, ile dni uczeń czytał tę książkę.

Rozwiązanie:

Oznaczam: x – liczba stron przeczytanych każdego dnia, y – liczba dni. Zapisuję i rozwiązuję układ równań:

$$\begin{cases} x \cdot y = 480 \\ (x+8) \cdot (y-3) = 480 \end{cases}$$

Z pierwszego równania mamy $x = \frac{480}{y}$, zatem

$$\left(\frac{480}{y} + 8\right) \cdot (y - 3) = 480 \mid y$$

$$(480 + 8y)(y - 3) = 480y$$

Po uproszczeniu otrzymuję równanie $y^2 - 3y - 180 = 0$.

Rozwiązaniem równania są liczby: -12 oraz 15. Odrzucam ujemną liczbę dni.

Odpowiedź: Uczeń przeczytał książkę w ciągu 15 dni.

Zadanie 33. (4 punkty)

Punkty A = (2,0) i B = (12,0) są wierzchołkami trójkąta prostokątnego ABC o przeciwprostokątnej AB. Wierzchołek C leży na prostej o równaniu y = x. Oblicz współrzędne punktu C.

Rozwiązanie:

I sposób rozwiązania:

Punkt C leży na prostej o równaniu y = x i na okręgu, którego środkiem jest środek przeciwprostokątnej, a promień jest równy połowie długości tej przeciwprostokątnej.

Obliczam długość przeciwprostokątnej *AB*:
$$|AB| = \sqrt{(12-2)^2 + (0-0)^2} = 10$$
.

Wyznaczam współrzędne środka przeciwprostokatnej: S = (7,0).

Zapisuję równanie okręgu:
$$(x-7)^2 + y^2 = 25$$

Rozwiązuję układ równań
$$\begin{cases} y = x \\ (x-7)^2 + y^2 = 25 \end{cases}$$

Otrzymuję równanie z jedną niewiadomą:

$$x^2 - 7x + 12 = 0$$

Rozwiązaniem tego równania są liczby: $x_1 = 4$, $x_2 = 3$.

Odpowiedź: Warunki zadania spełniają dwa punkty: C = (4,4) oraz C = (3,3).

II sposób rozwiązania:

Oznaczmy współrzędne punktu C przez (x, y). Wtedy $|AB| = \sqrt{(12-2)^2 + (0-0)^2} = 10$,

$$|AC| = \sqrt{(x-2)^2 + (y-0)^2}$$
, $|BC| = \sqrt{(x-12)^2 + (y-0)^2}$.

Trójkąt ABC jest prostokątny, więc spełniona jest równość $|AC|^2 + |BC|^2 = |AB|^2$, czyli $(x-2)^2 + y^2 + (x-12)^2 + y^2 = 10^2$.

Punkt C leży też na prostej o równaniu y=x, zatem aby obliczyć jego współrzędne, należy rozwiązać układ równań:

6

$$\begin{cases} (x-2)^2 + y^2 + (x-12)^2 + y^2 = 10^2 \\ y = x \end{cases}$$

$$x^2 - 4x + 4 + x^2 + x^2 - 24x + 144 + x^2 = 100$$

$$4x^2 - 28x + 48 = 0$$

$$x^2 - 7x + 12 = 0$$

$$x_1 = 4, \quad x_2 = 3$$

Odpowiedź: Warunki zadania spełniają dwa punkty: C = (4,4) oraz C = (3,3).

Zadanie 34. (4 punkty)

Pole trójkąta prostokątnego jest równe 60 cm². Jedna przyprostokątna jest o 7 cm dłuższa od drugiej. Oblicz długość przeciwprostokątnej tego trójkąta.

Oznaczam: *a, b* – długości przyprostokątnych danego trójkąta. Zapisuję układ równań

$$\begin{cases} a = b + 7 \\ \frac{1}{2}a \cdot b = 60 \end{cases}$$

Otrzymuję równanie z jedną niewiadomą $\frac{1}{2}(b+7)b=60$, którego pierwiastkami są liczby b=8 oraz b=-15.

Odrzucam ujemny pierwiastek, gdyż b jest długością odcinka. Zatem b=8, a=8+7=15. Teraz obliczam długość przeciwprostokątnej $c=\sqrt{a^2+b^2}=\sqrt{8^2+15^2}=\sqrt{289}=17$.

Odpowiedź: Przeciwprostokątna ma długość 17 cm.