Formulario di CPSM - Classe 1

Fattoriale: $n! = n(n-1)(n-2)\cdots 3\cdot 2\cdot 1$

Fattoriale discendente:
$$(n)_r = \frac{n!}{(n-r)!} = n(n-1)(n-2)\cdots(n-r+1)$$

Coefficiente Binomiale:
$$\binom{n}{r} = \frac{n!}{(n-r)! \, r!} = \frac{(n)_r}{r!} = \frac{n(n-1)\cdots(n-r+1)}{r!}$$

Formula di ricorrenza:
$$\binom{n}{r} = \binom{n-1}{r-1} + \binom{n-1}{r}, \qquad 1 \le r \le n$$

Disposizioni: $D_{n,k} = (n)_k$ (semplici) $D'_{n,k} = n^k$ (composte)

Combinazioni:
$$C_{n,k} = \binom{n}{k}$$
 (semplici) $C'_{n,k} = \binom{n+k-1}{k}$ (composte)

Formula del binomio:
$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$

Formula di Vandermonde:

$$\binom{n+m}{k} = \sum_{i=0}^{k} \binom{n}{i} \binom{m}{k-i} = \binom{n}{0} \binom{m}{k} + \binom{n}{1} \binom{m}{k-1} + \dots + \binom{n}{k} \binom{m}{0}$$

Formule di De Morgan: (per 2 eventi) $\overline{A \cup B} = \overline{A} \cap \overline{B}$,

Formule di De Morgan: (per
$$n$$
 eventi) $\overline{\bigcup_{i=1}^{n} A_i} = \bigcap_{i=1}^{n} \overline{A}_i$, $\overline{\bigcap_{i=1}^{n} A_i} = \bigcup_{i=1}^{n} \overline{A}_i$

Assiomi della probabilità:

$$0 \le P(A) \le 1$$
, $P(S) = 1$, $P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i)$ per eventi a 2 a 2 incompatibili

Alcune regole:
$$P(\emptyset) = 0$$
, $P\left(\bigcup_{i=1}^{n} A_i\right) = \sum_{i=1}^{n} P(A_i)$ per n eventi a 2 a 2 incompatibili $P(\overline{A}) = 1 - P(A)$, $P(A) \le P(B)$ se $A \subset B$,

Principio di inclusione/esclusione: $P(A \cup B) = P(A) + P(B) - P(A \cap B)$;

$$P(A_1 \cup A_2 \cup \ldots \cup A_n) = \sum_{i=1}^n P(A_i) - \sum_{i < j} P(A_i \cap A_j) + \sum_{i < j < k} P(A_i \cap A_j \cap A_k) + \ldots + (-1)^{n+1} P(A_1 \cap A_2 \cap \ldots \cap A_n)$$

Probabilità condizionata:
$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$
, con $P(B) > 0$

Formula prodotto: se $P(E_1 \cap ... \cap E_{n-1}) > 0$, si ha

$$P(E_1 \cap \ldots \cap E_n) = P(E_1) P(E_2 | E_1) P(E_3 | E_1 \cap E_2) \cdots P(E_n | E_1 \cap \ldots \cap E_{n-1})$$

Indipendenza di eventi: $P(A \cap B) = P(A)P(B)$ (per 2 eventi)

$$P(A \cap B) = P(A)P(B), \ P(A \cap C) = P(A)P(C), \ P(B \cap C) = P(B)P(C) \ e \ P(A \cap B \cap C) = P(A)P(B)P(C)$$
 (per 3 eventi)

Formula delle alternative e di Bayes: se
$$F_i \cap F_j = \emptyset$$
 $(i \neq j), P(F_i) > 0, \cup_i F_i = S$, si ha $P(E) = \sum_{i=1}^n P(E|F_i) P(F_i); P(F_j|E) = \frac{P(E|F_j) P(F_j)}{\sum_{i=1}^n P(E|F_i) P(F_i)}, j = 1, 2, ..., n, \text{ con } P(E) > 0$

Alcune serie: $\sum_{k=0}^{\infty} c^k = \frac{1}{1-c}$ (-1 < c < 1); $\sum_{k=1}^{\infty} c^k = \frac{c}{1-c}$ (-1 < c < 1);

Variabili aleatorie discrete

$$p(x_k) = P(X = x_k); F(x) = \sum_{k: x_k \le x} p(x_k);$$

$$E(X) = \sum_{x_k: p(x_k) > 0} x_k \cdot p(x_k); E[g(X)] = \sum_{x_k: p(x_k) > 0} g(x_k) p(x_k);$$

Distribuzione di Bernoulli:

$$p(x) = p^{x} (1 - p)^{1-x}, \quad x = 0, 1; \quad E(X) = p; \quad Var(X) = p(1 - p);$$

Distribuzione Binomiale:

$$p(x) = \binom{n}{x} p^x (1-p)^{n-x}, \quad x = 0, 1, \dots, n; \quad E(X) = np; \quad Var(X) = np(1-p);$$

Distribuzione di Poisson:
$$p(k) = e^{-\lambda} \frac{\lambda^k}{k!}, \quad k = 0, 1, 2, ...; \quad E(X) = \lambda; \quad Var(X) = \lambda;$$

Distribuzione Geometrica:

$$P(X = n) = (1 - p)^{n-1}p, \quad n = 1, 2, ...; \quad E(X) = 1/p; \quad Var(X) = (1 - p)/p^2;$$

Distribuzione Ipergeometrica:

$$P(X=k) = \frac{\binom{m}{k} \binom{N-m}{n-k}}{\binom{N}{n}}, \ k=0,1,\ldots,n; \ E(X) = n \frac{m}{N}; \ Var(X) = n \frac{m}{N} \left(1 - \frac{m}{N}\right) \left(1 - \frac{n-1}{N-1}\right);$$

Distribuzione Uniforme discreta:

$$P(X = k) = \frac{1}{N}, \quad k = 1, 2, \dots, N; \quad E(X) = \frac{N+1}{2}; \quad Var(X) = \frac{N^2 - 1}{12};$$

Variabili aleatorie assolutamente continue

$$F(x) = \int_{-\infty}^{x} f(t) dt; \quad E(X) = \int_{-\infty}^{\infty} x f(x) dx; \quad E[g(X)] = \int_{-\infty}^{\infty} g(x) f(x) dx;$$

Distribuzione Uniforme:

$$f_X(x) = \begin{cases} \frac{1}{\beta - \alpha} & \alpha < x < \beta \\ 0 & \text{altrimenti.} \end{cases}, \qquad F(x) = \begin{cases} 0 & x < \alpha \\ \frac{x - \alpha}{\beta - \alpha} & \alpha \le x < \beta \\ 1 & x \ge \beta \end{cases}$$

$$E[X] = \frac{\alpha + \beta}{2}, \qquad Var(X) = \frac{(\beta - \alpha)^2}{12}$$

Distribuzione Normale:

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/2\sigma^2}, \quad -\infty < x < \infty, \quad \mu \in \mathbb{R}, \quad \sigma^2 > 0; \qquad F(x) = \Phi\left(\frac{x-\mu}{\sigma}\right);$$

$$E(X) = \mu; \qquad Var(X) = \sigma^2; \qquad Z = (X - \mu)/\sigma \text{ ha distribuzione normale standard.}$$

$$f(x) = \begin{cases} \lambda \mathrm{e}^{-\lambda x} & x \geq 0 \\ 0 & \text{altrimenti} \end{cases}, \quad F(x) = \begin{cases} 1 - \mathrm{e}^{-\lambda x} & x \geq 0 \\ 0 & \text{altrimenti} \end{cases}, \quad E(X) = \frac{1}{\lambda}, \quad Var(X) = \frac{1}{\lambda^2};$$

Vettori Aleatori

$$p(x,y) = P(X = x, Y = y),$$
 $p_X(x) = \sum_{y} p(x,y),$ $p_Y(y) = \sum_{x} p(x,y),$

$$E[g(X,Y)] = \sum \sum g(x,y)p(x,y),$$

$$Cov(X,Y) = E[(X - E[X])(Y - E[Y])] = E[XY] - E[X]E[Y];$$

Varianza di somme di variabili aleatorie:

$$\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} \operatorname{Var}(X_{i}) + 2\sum_{i < j} \operatorname{Cov}(X_{i}, X_{j});$$

$$\operatorname{Var}\left(\sum_{i=1}^{n} c_{i} X_{i}\right) = \sum_{i=1}^{n} c_{i}^{2} \operatorname{Var}(X_{i}) + 2\sum_{i < j} c_{i} c_{j} \operatorname{Cov}(X_{i}, X_{j});$$

$$\begin{aligned} & \textbf{Coefficiente di correlazione:} \\ & \rho(X,Y) = \frac{Cov(X,Y)}{\sqrt{\text{Var}(X)\,\text{Var}(Y)}} = \frac{Cov(X,Y)}{\sigma_X\,\sigma_Y}; & \qquad -1 \leq \rho(X,Y) \leq 1; \end{aligned}$$

Disuguaglianza di Markov:

$$P(X \ge a) \le \frac{E[X]}{a}$$
 per $X \ge 0$, $a > 0$;

Disuguaglianza di Chebyshev:

$$P(|X - \mu| \ge k) \le \frac{\sigma^2}{k^2}$$
 $P(|X - \mu| < k) \ge 1 - \frac{\sigma^2}{k^2}$ per $k > 0$, con $E[X] = \mu$ e $Var(X) = \sigma^2$;

Alcune derivate:
$$\frac{d}{dx}x^{\alpha} = \alpha x^{\alpha-1}; \quad \frac{d}{dx}\frac{1}{x} = -\frac{1}{x^2}; \quad \frac{d}{dx}\ln x = \frac{1}{x}; \quad \frac{d}{dx}e^{\alpha x} = \alpha e^{\alpha x}; \quad \frac{d}{dx}f(g(x)) = f'(g(x))\,g'(x);$$
 Alcuni integrali:

$$\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + c \quad (\alpha \neq -1); \qquad \int \frac{1}{x} dx = \ln x + c; \qquad \int e^{\alpha x} dx = \frac{e^{\alpha x}}{\alpha} + c \quad (\alpha \neq 0).$$

Distribuzione normale standard

I valori di $\Phi(x)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^x e^{-z^2/2}\,dz$ sono riportati per alcune scelte di x. Ad esempio a x=2.54 (ottenuto come 2.5+0.04) corrisponde $\Phi(x)=0.9945$.

x	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,5000	0,5040	0,5080	0,5120	0,5160	0,5199	0,5239	0,5279	0,5319	0,5359
0,1	0,5398	0,5438	0,5474	0,5517	0,5557	0,5596	0,5636	0,5675	0,5714	0,5753
0,2	0,5793	0,5832	0,5871	0,5910	0,5948	0,5987	0,6026	0,6064	0,6103	0,6141
0,3	0,6179	0,6217	0,6255	0,6293	0,6331	0,6368	0,6406	0,6443	0,6480	0,6517
0,4	0,6554	0,6591	0,6628	0,6664	0,6700	0,6736	0,6772	0,6808	0,6844	0,6879
0,5	0,6915	0,6950	0,6985	0,7019	0,7054	0,7088	0,7123	0,7157	0,7190	0,7224
0,6	0,7257	0,7291	0,7324	0,7357	0,7389	0,7422	0,7454	0,7486	0,7517	0,7549
0,7	0,7580	0,7611	0,7642	0,7673	0,7704	0,7734	0,7764	0,7794	0,7823	0,7852
0,8	0,7881	0,7910	0,7939	0,7967	0,7995	0,8023	0,8051	0,8078	0,8106	0,8133
0,9	0,8159	0,8186	0,8212	0,8238	0,8264	0,8289	0,8315	0,8340	0,8365	0,8389
1,0	0,8413	0,8438	0,8461	0,8485	0,8508	0,8531	0,8554	0,8577	0,8599	0,8621
1,1	0,8643	0,8665	0,8686	0,8708	0,8729	0,8749	0,8770	0,8790	0,8810	0,8830
1,2	0,8849	0,8869	0,8888	0,8907	0,8925	0,8944	0,8962	0,8980	0,8997	0,9015
1,3	0,9032	0,9049	0,9066	0,9082	0,9099	0,9115	0,9131	0,9147	0,9162	0,9177
1,4	0,9192	0,9207	0,9222	0,9236	0,9251	0,9265	0,9279	0,9292	0,9306	0,9319
1,5	0,9332	0,9345	0,9357	0,9370	0,9382	0,9394	0,9406	0,9418	0,9429	0,9441
1,6	0,9452	0,9463	0,9474	0,9484	0,9495	0,9505	0,9515	0,9525	0,9535	0,9545
1,7	0,9554	0,9564	0,9573	0,9582	0,9591	0,9599	0,9608	0,9616	0,9625	0,9633
1,8	0,9641	0,9649	0,9656	0,9664	0,9671	0,9678	0,9686	0,9693	0,9699	0,9706
1,9	0,9713	0,9719	0,9726	0,9732	0,9738	0,9744	0,9750	0,9756	0,9761	0,9767
2,0	0,9772	0,9778	0,9783	0,9788	0,9793	0,9798	0,9803	0,9808	0,9812	0,9817
2,1	0,9821	0,9826	0,9830	0,9834	0,9838	0,9842	0,9846	0,9850	0,9854	0,9857
2,2	0,9861	0,9864	0,9868	0,9871	0,9875	0,9878	0,9881	0,9884	0,9887	0,9890
2,3	0,9893	0,9896	0,9898	0,9901	0,9904	0,9906	0,9909	0,9911	0,9913	0,9916
2,4	0,9918	0,9920	0,9922	0,9925	0,9927	0,9929	0,9931	0,9932	0,9934	0,9936
0.5	0.0000	0.0040	0.0041	0.0049	0.0045	0.0046	0.0040	0.0040	0.0051	0.0050
2,5	0,9938	0,9940	0,9941	0,9943	0,9945	0,9946	0,9948	0,9949	0,9951	0,9952
2,6	0,9953	0,9955	0,9956	0,9957	0,9959	0,9960	0,9961	0,9962	0,9963	0,9964
2,7	0,9965	0,9966	0,9967	0,9968	0,9969	0,9970	0,9971	0,9972	0,9973	0,9974
2,8	0,9974	0,9975	0,9976	0,9977	0,9977	0,9978	0,9979	0,9979	0,9980	0,9981
2,9	0,9981	0,9982	0,9982	0,9983	0,9984	0,9984	0,9985	0,9985	0,9986	0,9986
2.0	0.0007	0.0007	0.0007	0 0000	0 0000	0 0000	0 0000	0 0000	0.0000	0.000
3,0	0,9987	0,9987	0,9987	0,9988	0,9988	0,9989	0,9989	0,9989	0,9990	0,9990
3,1	0,9990	0,9991	0,9991	0,9991	0,9992	0,9992	0,9992	0,9992	0,9993	0,9993
3,2	0,9993	0,9993	0,9994	0,9994	0,9994	0,9994	0,9994	0,9995	0,9995	0,9995
3,3	0,9995	0,9995	0,9995	0,9996	0,9996	0,9996	0,9996	0,9996	0,9996	0,9997
3,4	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9998