Analog and Mixed-Signal Verification for Communications

Jaijeet Roychowdhury

ECE Dept, University of Minnesota, Twin Cities

ECE Dept, University of Minnesota

U of Minn ECE Dept

- \sim 44 faculty, several areas of activity
 - Communications: Alouini, Giannakis, Kaveh, Tewfik
 - Comp. Arch.: Lilja, Kinney
 - Signal Proc./DSP: Ebbini, Moon, Parhi
 - <u>Devices/Nano</u>: Campbell, Cohen, Kiehl, Nathan, Jacobs
 - Optics/MEMS: Gopinath, Leger, Talgadher
 - Controls/Imag Proc.: Georgiou, Sapiro

U of Minn ECE Dept

- CAD, Analog Design
 - Bazargan: FPGAs, reconfigurable computing, physical design
 - Harjani: RF and mixed-signal design
 - Sapatnekar: Physical design, timing, delay, crosstalk
 - Roychowdhury: Analog and system verification

Analog System Verification Group

- 5 PhD students, 1 MS student
- Undergraduate members
- Projects
 - Automated nonlinear macromodelling
 - Digital-to-analog substrate noise prediction
 - Oscillator, PLL macromodelling/simulation
 - Multi-time methods, robust envelope techniques
 - Fast fiber simulation
 - Prototying infrastructure
- Funding and collaborations: NSF, SRC, DARPA, Fujitsu, Sandia, IBM, TI, Agilent, BDA

Analog System Verification Group

More information: http://laoo.dtc.umn.edu/~jr/

Market and Circuit Trends

Market Trend: Portable Devices

- Proliferation of small, cheap, ubiquitous devices
 - cellphones, PDAs, wireless LANs, Bluetooth
 - already: two-way paging, SMS, 802.11g/a, 2.5G networks
 - next: 3G, UMTS

Demand for Portable Commns.

- 2 billion users worldwide by 2007
 - Maximum growth: SE Asia and China
- US: Tenfold growth by 2005 (200x?)
 - \$22–\$140b (IDC, Merrill-Lynch)
 - exceed PC growth over last decade: <u>Intel</u>

Drivers for Demand

- Price
 - ✓ India: 2.1M new subscribers, Dec 2003
 - "driven by some of the lowest tariffs in the world"
- Time to market
 - competitive pressures
- Design challenge: mixed-signal/RF blocks
 - the main design bottleneck

Integrated Bluetooth Transceiver

Important Mixed-Signal Blocks

- VCOs, mixers, phase detectors, frequency dividers
- PLLs: synchronization, clock recovery, frequency synthesis
- LNAs, power amps: rcvr/xmit
- ADCs, $\Sigma\Delta$ s, DACs
- z-domain switched-capacitor ckts: baseband filtering
- System focus: deliver everything working together

Simulation Challenges

Mixed-Signal Simulation Challenges

- Larger systems
 - more and bigger blocks: traditional SPICE simulation slow
 - analog/digital proximity: substrate coupling
- Tighter system specs for portable
 - lower power, lower V_{DD}; stringent channel interference specs
 - Noise a greater concern
- New complex design styles, architectures
 - Intimate mix of digital and analog/RF: Viterbi PLLs
 - Marriage of disparate design styles: IC and microwave
 - Highly nonlinear meets widely separated time scales: simulation slow

RF Integration

- \blacksquare High volumes, low cost, low power \Rightarrow integration
 - skilled one-of-a-kind vs fast low-cost mass production
 - today: > 10 shuttles for RF subsystems
 - CAD tools for RF are key
- Traditional tools from μ W and analog IC inadequate
 - RFICs: marriage of microwave and analog IC design styles
 - e.g., switching mixer
 - size, nonlinearity, high frequencies, disparate time scales
- Need new RF CAD tools
 - ightharpoonup traditional μ W or IC tools cannot handle the combination

Mixed-Signal Simulation Needs

- Correct, speedy noise simulation
 - mixers, oscillators, PLLs
 - issues: nonlinearity, cyclostationarity
- Automated macromodelling techniques
 - enabler for effective hierarchical system verification
 - issues: nonlinearity; oscillators/PLL dynamics
- Faster basic time- and frequency-domain simulation
 - VCOs, PLLs, mixers, ...
 - issues: fast-slow dynamics, strong nonlinearities
- Research to production tool: "Time-to-market"
 - need effective transition path
 - issue: traditionally extremely slow

Noise Simulation

Circuit Noise

- Random variations corrupting circuit voltages and currents
 - sources: thermal, shot, flicker noise in devices
 - impact: S/N ratio, BER degradation
- Different generation and propagation mechanisms
 - Stationary noise (LNAs)
 - Mixing noise (mixers, sampling circuits)
 - Phase noise/jitter (oscillators, PLLs)
 - Digital interference "noise" (substrate coupling)

Stationary, Mixing and Phase Noise

Predicting Noise

- Stationary: LTI propagation
 - LTI theory: $S_{\text{out}}(f) = |H(f)|^2 S_{\text{in}}(f)$
 - computation \sim system size
- Mixing noise (cyclostationary): LTV propagation
 - LPTV Toeplitz matrix relation: $S_{out}(f) = \mathcal{H}^*(f)S_{in}(f)\mathcal{H}(f)$
 - computation \sim system size $\times N \log N$ (w fast methods)
- Phase noise/jitter: nonlinear analysis, almost LPTV
 - Lorenzian (single pole lowpass) spectrum: finite PSDs
 - underlying LPTV calculations; nonlinear SDE solution
 - computation \sim system size $\times N \log N$ (w fast methods)

Mixing Noise: Lucent W2013 Noise

- \sim 500 MOSFETs; LO+blocker+noise; \sim 10 minutes
- baseband noise upconversion
- strong RF tone increases noise through folding

Oscillator Phase Noise Spectrum

Tow-Thomas oscillator (Toth et al, IEEE TCAS-I, 1998)

Macromodelling Mixed-Signal Blocks

- Substitute big block by small
 - preserve I/O relationship
- Speed system verification
 - simulate connection of macromodels

- Automated macromodel generation
 - Input: (large) SPICE deck
 - Output: (small)
 SPICE/Matlab macromodel
 - <u>Fast/convenient</u>: "Computers made of iron, let them work"
 - Applicable to *general classes* of circuits

^aVladimir Rokhlin, ∼1997

Types of Algorithmic Macromodelling

- Linear Time Invariant (LTI) macromodelling
 - application: interconnect networks (delay, crosstalk)
 - AWE, PVL, PRIMA, TBR
- Linear Time Varying (LTV) macromodelling
 - mixers, sampling/switching circuits
 - TVP (Time-Varying Padé)
- Weakly nonlinear macromodelling
 - companding circuits, amplifier/mixer gain compression
 - Low-order polynomial-based reduction
- Strongly nonlinear macromodelling
 - Piecewise polynomial (PWP): comparators, switching
 - Other: oscillators, PLLs, ...

Application to RF mixer block

- I-channel mixer and buffer block (Lucent ME W2013 RFIC)
 - 360 nodes, RF \approx 80kHz, LO=178MHz
 - Steady-state: Harmonic Balance with 10 LO harmonics, zero RF input
- TVP: Lanczos process on frequency-domain Jacobian
 - q = 2: provides reasonable macromodel
 - q = 10: matches xfer fn upto twice LO frequency
 - size reduction: 30–100; macromodel evaluation speedup: > 500

W2013 mixer: upconversion transfer function, +ve frequencies

Nonlinear transmission line macromodelling using PWP

Transient Simulation

Full system size: 100

Reduced size: 10

Information Modulation: Features

- Mixers, switched-capacitor filters, oscillators, PLLs, DC-DC converters...
- Multiple tones (aka quasiperiodic signals)
 - eg, AM: $\sin(2\pi 1000t)\sin(2\pi 10^9 t)$
 - or: $\sin(2\pi 1000t)$ pulse $(10^9 t)$
- Slow envelopes
 - eg, $e^{-\frac{t}{1000}}\sin(2\pi 10^9 t)$

Representing "multi-rate" signals

Two Artificial Time Scales

Two time variables separate time scales

The Multitime Partial Differential Equation (MPDE)

Re-write DAE using multi-time variables

DAE

$$\dot{q}(x) + f(x) = b(t)$$

$$(\frac{\partial}{\partial t_1} + \frac{\partial}{\partial t_2}) q(\hat{x}) + f(\hat{x}) = \hat{b}(t_1, t_2)$$

- $\hat{x}(t_1,t_2)$: vector of *multivariate* unknowns
- $\hat{b}(t_1,t_2)$: multivariate form of inputs
- Key: solve for multivariate forms *directly*
- More general forms: WaMPDE (oscillators): $\omega(t_2)$

Switched-Capacitor Integrator

- Lossy balanced design; 350 MOSFETs
- clock: 12.8 MHz; test

signal: 10 kHz

SC Integrator: transient detail

SC Integrator: Multi-Time Simulation

Open Source for Effective Prototyping

Why Open Source for Analog?

Open simulation infrastructure

- device models
- base algorithms: robust nonlinear solution, transient, HB/TD steady-state, Krylov-subspace implementations, parsing, output, ···
- Avoid **huge** (waste of) effort of re-development
- Coalesces scattered resources
 - Co-operative efforts
 - Motivation: recognition, empowerment
 - Many-eyes effect: high quality

Our approach: MATLAB-centered

- Dramatically reduces development time/pain
 - <u>Numerical methods</u>: sparse matrices, LU, iterative linear methods, ODE solution, FFTs, ...
 - Short, simple, intuitive
 - Interfaces to C/C++/Fortran
 - Push-button C-code generation
 - Strong system-level functionalities
- Cleanly separated devices, numerics, algorithms, I/O

Conclusion

- Mixed-signal simulation: need for new algorithms and tools beyond SPICE
 - automated macromodelling
 - noise
 - faster simulation
 - collaborative infrastructure
- More information: http://laoo.dtc.umn.edu/~jr/