UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

EXAMEN: Tarea 2

PROFESORA: Karina G. Buendía

MATERIA: Conjuntos y lógica

NOMBRE DEL ALUMNE:

1 | Ejercicios de lógica

Ejercicio 1 Demuestra que si $\Gamma \vdash \alpha$ entonces existe un subconjunto finito $\Delta \subseteq \Gamma$ tal que $\Delta \vdash \alpha$.

Ejercicio 2 Demuestra que la cerradura deductiva es un operador de cerradura, es decir,

- a) $\Gamma \subseteq \overline{\Gamma}$,
- b) si $\Delta \subseteq \Gamma$ entonces $\overline{\Delta} \subseteq \overline{\Gamma}$,
- c) $\overline{\overline{\Gamma}} = \overline{\Gamma}$

Ejercicio 3 Considera el alfabeto $\mathcal{A} = \{a, b, \circ\}$, la definición de fórmula dada por $\Phi = \{\alpha \in \operatorname{Exp}(\mathcal{A}) \mid \alpha \text{ empieza con } a\}$ y la regla de inferencia

$$R: \frac{A,B}{A \circ B}.$$

Con esto definimos el lenguaje $\mathcal{L} = (\mathcal{A}, \Phi)$ y al sistema formal SF = $(\mathcal{L}, \{R\})$. Sea $T = \{\alpha | \alpha \text{ no tiene ocurrencias de } \circ \}$.

- a) Demuestra que T es correcta y no completa respecto a la propiedad "no tener b después de cada \circ ".
- b) Muestra que T es completa y no correcta respecto a la propiedad "tener aa después de cada \circ ".

Ejercicio 4 Considera el sistema formal dado por lo siguiente: el alfabeto es $\mathcal{A} = \{a, b, c\}$, el conjunto de fórmulas es $\Phi = \{\alpha \in \operatorname{Exp}(\mathcal{A}) \mid \alpha \text{ empieza con } a\}$ y las reglas de inferencia son

$$R_1: \cfrac{axb}{axbc} \quad R_2: \cfrac{ax}{axx} \quad R_3: \cfrac{axbbby}{axcy} \quad R_4: \cfrac{axccy}{axy},$$

donde x y y representan sucesiones finitas de símbolos de \mathcal{A} . Considera $\Gamma = \{ab\}$ y demuestra lo siguiente:

a) $\Gamma \vdash abcc$,

b) $\Gamma \vdash acbbc$,

c) Les posible obtener $\Gamma \vdash ac$?

Ejercicio 5 Usa el hecho de que $2 = \{0, 1\}$ para demostrar que si α y β son proposiciones tales que $e(\alpha) = 1$ si y solo si $e(\beta) = 1$ para toda evaluación $e : From \to 2$, entonces $\alpha \equiv \beta$.

Ejercicio 6 Sea \mathbb{P} un conjunto de letras proposicionales. Consideramos el conjunto de todas las posibles evaluacione $e: From \to 2$ una función. Demuestra que toda proposición e induce una partición en dos pedazos del conjunto $2^{\mathbb{I}}$.

Ejercicio 7 Demuestra que $\{\neg, \land\}$ es un conjunto mínimo de conectivos, es decir, que el resto de conectivos se pueden definir en términos de ellos dos. También muestra que $\{\neg, \iff\}$ y $\{\lor, \land\}$ no son conjuntos mínimos de conectivos, es decir, hay al menos un conectivo que no se puede definir usando sólo los conectivos de cada conjunto.

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

EXAMEN: Tarea 2

PROFESORA: Karina G. Buendía

MATERIA: Conjuntos y lógica

NOMBRE DEL ALUMNE:

Ejercicio 8 Demuestra que para cada fórumula α y β se sigue:

1.
$$\vdash \neg \alpha \rightarrow (\alpha \rightarrow \beta)$$

2.
$$\vdash (\alpha \to \beta) \to (\neg \beta \to \neg \alpha)$$

Ejercicio 9 Usa el teorema de las "primas" para demostrar que de la deducción $\{\alpha, \neg \beta\} \vdash (\neg \alpha \to \beta)$, con $\gamma \equiv (\neg \alpha \to \beta)$, se puede demostrar que $\{\alpha', \beta'\} \vdash \gamma'$.

Ejercicio 10 Decimos que una teoría T es consistente si existe una fórmula α tal que $T \not\vdash \alpha$. Demuestra que el calculo de proposiciones es consistente.