Definition 1. A non-empty set G with a binary composition is called a group if the composition is associative, if a unique identity exists for all elements in G, and if a unique inverse exists for each of the elements in G. The group G is called Abelian if the composition in it is commutative for any two elements in G. A non-empty set R with two binary compositions, call these addition and multiplication, defined on it is called a ring if R is an Abelian group with respect to the composition addition, if multiplication in R is associative, and if distributive laws hold for all elements in R. A set F having at least two elements with two compositions, be them called addition and multiplication, defined on it is called a field if it is a commutative ring with identity every non-zero element of which has an inverse with respect to multiplication. A field having only a finite number of elements is called a finite or $Galois\ field$.

Example 1. The set

$$F_p = \{0, \dots, p-1\}$$

in which addition and multiplication are defined modulo p, where p is a prime integer, is a finite field. For p = 2 we have $F_2 = \{0, 1\}$, which is denoted by \mathbf{B} . The set \mathbf{B}^n of all ordered n-tuples or sequences of length n, a positive integer, with each tuple or entry of the sequence being in the field \mathbf{B} and a composition defined as a componentwise summation of any two sequences in \mathbf{B}^n , is an Abelian group. The zero sequence of length n is the identity of \mathbf{B}^n and each element in \mathbf{B}^n is its own inverse.

Definition 2. A binary block (b, n)-code comprises an encoding function

$$E: \mathbf{B}^b \to \mathbf{B}^n$$

and a decoding function

$$D: \mathbf{B}^n \to \mathbf{B}^b$$

The images of E are called $code\ words$.

Definition 3. Let two binary sequences be a and b in \mathbf{B}^n . The distance d(a,b) between a and b is defined as

$$d(a,b) = \sum\limits_{i=1}^n x_i$$

where

$$x_i = \begin{cases} 0 & \text{if } a_i = b_i \\ 1 & \text{if } a_i \neq b_i \end{cases}$$

Definition 4. The weight w(a) of a in \mathbf{B}^n is the number of non-zero components of the sequence a.

Department of Mathematics, Mahidol University

Theorem 1. Let a and b be any two sequences in \mathbf{B}^n . Then d(a,b) = w(a+b).

Proof. The only contribution of 1 to d(a,b) is $a_i \neq b_i$ for all $1 \leq i \leq n$. But this latter is the case if and only if $a_i + b_i = 1$, and this contributes 1 to w(a+b).

Definition 5. Let X and Y be two groups. Then a map

$$f: X \to Y$$

which satisfies the property

$$f(x_1x_2) = f(x_1)f(x_2)$$

for all x_1 and x_2 in X is called a *homomorphism*. Further, the homomorphism f is called a *monomorphism* if it is one to one, and it is called an *isomorphism* if it is both one to one and onto.

Definition 6. A block code is called a *group code* if all its code words form an additive group.

Definition 7. A $b \times n$ matrix G over \mathbf{B} , where b < n, is called an *encoding*-or *generator matrix* if G is of the form

$$G = [I_b G_n]$$

where I_b is an identity matrix of dimension b and G_n a $b \times (n-b)$ matrix. An encoding function $E: \mathbf{B}^b \to \mathbf{B}^n$ is defined by

$$E(x) = xG$$

for all x in \mathbf{B}^b

Theorem 2. The encoding function $E : \mathbf{B}^b \to \mathbf{B}^n$ given by E(x) = xG for all x in \mathbf{B}^b , where G is a $b \times n$ generator matrix, is a monomorphism.

Proof. Both \mathbf{B}^b and \mathbf{B}^n are additive Abelian groups. Then for all x and y in \mathbf{B}^b we know that x + y is also in \mathbf{B}^b and

$$E(x + y) = (x + y)G = xG + yG = E(x) + E(y)$$

Thus E is a homomorphism. Further, as the first part of G is I_b , it follows that a part of E(x) is x itself. Therefore the matrix encoding method gives for each binary message word a distinct code word. In other words, the mapping E is one to one, which means that it is a monomorphism.

Definition 16. A code generated by a generating matrix is called a *matrix* code.

Theorem 3. A matrix code is a group code.

Proof. The code words generated by E are associative, since

$$x_1G + (x_2G + x_3G) = (x_1G + x_2G) + x_3G$$

They have a unique identity, that is the zero $b \times n$ matrix, and each of them is its own inverse.

Definition 9. An (b, b + 1) parity check code is the code generated by an encoding function $E : \mathbf{B}^b \to \mathbf{B}^{b+1}$ defined by

$$E(a_1\cdots a_b)=a_1\cdots a_ba_{b+1}$$

where

$$a_{b+1} = \begin{cases} 1 & \text{if } w(a) \text{ is odd} \\ 0 & \text{if } w(a) \text{ is even} \end{cases}$$

 $w(a) ext{ being } w(a_1 \cdots a_b).$

Theorem 4. The (b, b + 1) parity check code is a group code.

Proof. Let our unencoded binary words be $a = a_1 \cdots a_b$, $b = b_1 \cdots b_b$, and $c = c_1 \cdots c_b$ such that $c_i = a_i + b_i$ for $i = 1, \ldots, b$, and let the coded words of a and b be respectively $\bar{a} = aa_{b+1}$ and $\bar{b} = bb_{b+1}$. Since c is odd if and only if either a is odd while b is even or vice versa, but when this is the case we have either $a_{b+1} = 1$ and $b_{b+1} = 0$, or $a_{b+1} = 0$ and $b_{b+1} = 1$. Either way we have

$$c_{b+1} = 1 = a_{b+1} + b_{b+1}$$

Next, c is even if and only if a and b are either both odd or both even. But when either of these is the case, then

$$a_{b+1} + b_{b+1} = 0 = c_{b+1}$$

Hence \bar{c} is a parity-check code word. The zero word is the identity and the inverse of each word is that word itself. Therefore the set of all code words forms a group.

Theorem 5. The minimum distance of a group code equals the minimum of the weights of its non-zero code words.

Proof. Let d_m be the minimum distance of the group code, and w_m the minimum of the weights of the non-zero code words of the same. Then there exist code words a and b such that

$$d_m = d(a, b) = w(a + b) \ge w_m$$

Now, w_m implies that there exists a non-zero code word c such that

$$w_m = w(c) = d(c, 0) \ge d_m$$

Hence $d_m = w_m$.

Example 2. Let the generator matrix be

$$G = \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$

The dimension of G is $b \times n$, which in this case is 3×6 . Let $a_1a_2a_3a_4a_5a_6$ be the code word and $a_1a_2a_3$ the original word, then

$$(a_1 a_2 a_3 a_4 a_5 a_6) = (a_1 a_2 a_3) G$$

and then,

$$a_4 = a_1 + a_2$$

 $a_5 = a_1 + a_3$
 $a_6 = a_1 + a_2 + a_3$

In other words,

$$\left. egin{align*} a_1 + a_2 + a_4 &= 0 \ a_1 + a_3 + a_5 &= 0 \ a_1 + a_2 + a_3 + a_6 &= 0 \ \end{array}
ight.
ight.$$
 parity check equations

These parity check equations are then, in matrix form,

$$\begin{pmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \\ a_6 \end{pmatrix} = 0$$

The matrix

$$H = \begin{pmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 \end{pmatrix}$$

is called the *parity check matrix* of the code. Then $G = (I_3 \ A)$ and $H = (A' \ I_3)$, where

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

and

$$A' = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

Department of Mathematics, Mahidol University

Example 3. The parity check code in Definition 9 is in fact a matrix code given by the generator matrix

$$G = \begin{pmatrix} 1 & 0 & \cdots & 0 & 1 \\ 0 & 1 & & 0 & 1 \\ \vdots & & \ddots & & \vdots \\ 0 & & \cdots & 1 & 1 \end{pmatrix}$$

whose parity check matrix is the $1 \times (b+1)$ matrix $H = (1 \cdots 1)$.

Kit Tyabandha, PhD

Department of Mathematics, Mahidol University

Definition 10. The *syndrome* of a word $r \in \mathbf{B}^n$ is

Algorithm 1 the syndrome decoding algorithm.

 $r \leftarrow r_1 \cdots r_b r_{b+1} \cdots r_n$

 $\mathbf{s} \leftarrow H\mathbf{r}'$

if s = 0 then

$$b_r \leftarrow (r_1 \cdots r_b)$$

elseif s matches the i^{th} column of H then

$$c_r \leftarrow (r_1 \cdots r_{i-1}(r_i+1)r_{i+1} \cdots r_n)$$

$$b_r \leftarrow (c_{r1} \cdots c_{rb})$$

else

at least two errors have occurred in the transmission

endif

Theorem 6. An $(n-b) \times b$ parity check matrix H will decode all single errors correctly if and only if the columns of H are distinct and non-zero.

Proof. Suppose the i^{th} column of H is zero, and let e be a word whose weight is 1 having 1 in the i^{th} position and 0 elsewhere. Then for any code word b, we have

$$H(\mathbf{b} + \mathbf{e})' = H\mathbf{b}' + H\mathbf{e}' = 0$$

So our decoding procedure becomes D(b+e)=b+e and the error vector ${\bf e}$ goes undetected.

Next, suppose that the i^{th} and the j^{th} columns of H are identical. Let e^i and e^j be words of length n with 1 in the i^{th} and respectively j^{th} position and 0 elsewhere. Then for any code word b, we have

$$H(\mathbf{b} + \mathbf{e}^i)' = H\mathbf{b}' + H(\mathbf{e}^i)' = H(\mathbf{e}^i)' = H\mathbf{b}' + H(\mathbf{e}^j)' = H(\mathbf{b} + \mathbf{e}^j)'$$

We are unable to decide whether the error occurred in the i^{th} or the j^{th} position. Conversely, suppose all the columns of H are distinct and non-zero. Then for any code word b and any error vector \mathbf{e} of weight 1 having 1 in the i^{th} position,

$$H(\mathbf{b} + \mathbf{e})' = H(\mathbf{b}' + \mathbf{e}') = H\mathbf{b}' + H\mathbf{e}' = 0 + H\mathbf{e}'$$

Our decoding procedure gives D(b+e)=b, therefore every single error is corrected.

Theorem 7. If

$$G = (I_b \quad A)$$

is a $b \times n$ generator matrix of a code, then

$$H = (A' I_{n-b})$$

is the unique parity check matrix for the same code. If

$$H = (B I_{n-b})$$

is an $(n-b) \times n$ parity check matrix, then

$$G=(egin{array}{cc} I_m & B' \end{array})$$

is the unique generator matrix for the same code.

Proof. Let the original word be $a \in \mathbf{B}^b$ and c be the code word corresponding to a with respect to the code given by the generator matrix G. Then $\mathbf{c} = \mathbf{a}G$ Let a be $a_1 \cdots a_b$. Since the first b columns of G is an identity matrix, it follows from $\mathbf{c} = \mathbf{a}G$ that $a_i = b_i$ for all $1 \le i \le b$. Let $\bar{c} = c_{b+1} \cdots c_n$, then $c = c_1 \cdots c_b c_{b+1} \cdots c_n$ and $\mathbf{c} = (\mathbf{a} \ \bar{\mathbf{c}})$. Then,

$$egin{aligned} H\mathbf{c}' &= \left(egin{array}{ll} A' & I_{n-b}
ight) \left(\mathbf{a} G
ight)' \ &= \left(egin{array}{ll} A' & I_{n-b}
ight) G' \mathbf{a}' \ &= \left(egin{array}{ll} A' & I_{n-b}
ight) \left(egin{array}{ll} I_m A
ight)' \mathbf{a}' \ &= \left(egin{array}{ll} A' I_{n-b} A'
ight) \mathbf{a}' \ &= \left(egin{array}{ll} A' I_{n-b} A'
ight) \mathbf{a}' \ &= \left(egin{array}{ll} A' + A'
ight) \mathbf{a}' \ &= 0 \times \mathbf{a}' \ &= 0 \end{aligned}$$

Therefore c is the code word corresponding to the original word a in the code given by the parity check matrix H.

Now, suppose first that c is the code word corresponding to the original word a as above in the code obtained from the parity check matrix $H = (A' I_{n-b})$. Then $c_i = a_i$ for all $1 \le i \le b$ and $H\mathbf{c}' = 0$. Let $\bar{c} = c_{b+1} \cdots c_n$. Then,

$$H\begin{pmatrix} \mathbf{a} \\ \mathbf{\bar{c}}' \end{pmatrix} = 0$$
$$(A' I_{n-b})\begin{pmatrix} \mathbf{a} \\ \mathbf{\bar{c}}' \end{pmatrix} = 0$$
$$A'\mathbf{a}' + I_{n-b}\mathbf{\bar{c}}' = 0$$

Therefore $\bar{c} = \mathbf{a}A$, and

$$\mathbf{c} = (\mathbf{a} \quad \bar{c}) = (\mathbf{a}I_m \quad \mathbf{a}A) = \mathbf{a}(I_m \quad A) = \mathbf{a}G$$

Hence c is the code word corresponding to the original word a in the code defined by the generator matrix G. So far we have proved that codes determined by G and H are identical.

Suppose that to $G = (I_m \ A)$ corresponds another parity check matrix $H_1 = (B \ I_{n-b})$. Let e^i be the original word with 1 in the i^{th} position and 0 elsewhere. The corresponding code word is $\mathbf{e}^i G$, that is the i^{th} row of G, or we may write $\mathbf{e}^i G = (\mathbf{e}^i \ \tilde{\mathbf{e}}^i)$, where $\tilde{\mathbf{e}}^i$ is the i^{th} row of A. Since H_1 is a parity check matrix of the code defined by G, it follows that,

$$H_{1}(\mathbf{e}^{i} \quad \tilde{\mathbf{e}}^{i})' = 0$$

$$(B \quad I_{n-b}) \begin{pmatrix} (\mathbf{e}^{i})' \\ (\tilde{\mathbf{e}}^{i})' \end{pmatrix} = 0$$

$$B(\mathbf{e}^{i})' + (\tilde{\mathbf{e}}^{i})' = 0$$

Therefore $(\tilde{\mathbf{e}}^i)'$ matches the i^{th} column of B, or equivalently $\tilde{\mathbf{e}}^i$ matches the i^{th} row of B'. Then the i^{th} row of A is identical to the i^{th} column of B. And this is true for all $1 \leq i \leq b$, so we have B = A' and therefore $H_1 = H$. Hence, to a given G there corresponds a unique $H = (A' \mid I_{n-b})$. Similar argument also holds if we start with a parity check matrix H given.

Definition 11. Let C be a (b, n) code obtained from the generator matrix $G = [I_b A]$

Then an (n-b,n) matrix code defined by the parity check matrix

$$H = [A I_b]$$

is called the dual code C^{\perp} of C.

Definition 12. Two words x and y are said to be in the same coset if and only if y = x + c for some code word c in C.

Theorem 8. Two words x and y in \mathbf{B}^n are in the same coset of C if and only if they have the same syndrome.

Proof. By Definition 12 x and y are in the same coset if and ony if

$$y = x + c$$

for some c in C, which in turn is true if and only if x + y = c in C. Then it follows from this that,

$$H(\mathbf{x} + \mathbf{y})' = 0$$

$$H(\mathbf{x}' + \mathbf{y}') = 0$$

$$H\mathbf{x}' + H\mathbf{y}' = 0$$

$$H\mathbf{x}' = H\mathbf{y}'$$

Definition 13. Let F be a field. Then a non-empty set V is called a *vector* space over F if V and an addition form an Abelian group; for every a in F and v in V there is a uniquely defined element av in V such that for any v, v_1 and v_2 in V and any a and b in F,

$$a (v_1 + v_2) = av_1 + av_2$$
$$(a+b)v = av + bv$$
$$(ab)v = a(bv)$$

and

$$1v = v$$

1 being the identity of F.

Definition 14. Let V be a vector space over a field F. Then a set $\{v_1, \ldots, v_n\}$ of elements v_i in V is said to be *linearly independent* if

$$a_1v_1 + \dots + a_nv_n = 0$$

for a_1, \ldots, a_n in F implies $a_1 = \cdots = a_n = 0$. A set $\{v_1, \ldots, v_n\}$ is called a basis of V if all its elements v_1, \ldots, v_n in V are linearly independent over F and all elements in V may be expressed in the form $a_1v_1 + \cdots + a_nv_n$ where all a_i , $i = 1, \ldots, n$, are in F. Also V is said to be of dimension n over F, dim V = n. A map $f: V \to W$ from one vector space to another, where V and W are vector spaces over the same field F, is called an isomorphism if the map f one to one and onto and, for all v, v_1 and v_2 in V and a in F,

$$f(v_1 + v_2) = f(v_1) + f(v_2)$$

and

$$f(av) = af(v)$$

Theorem 9. Let two vector spaces V and W over the same field F have the same finite dimension. Then V and W are isomorphic.

Proof. Let dim $V = \dim W = n$. Let $\{x_1, \ldots, x_n\}$ be a basis of V over F, and $\{y_1, \ldots, y_n\}$ a basis of W over F.

Since all the elements of V can be uniquely written as $a_1x_1 + \cdots + a_nx_n$ for some a_i in F, the map $f: V \to W$, which is

$$f(a_1x_1+\cdots+a_nx_n)=a_1y_1+\cdots+a_ny_n$$

for a_i in F, is well defined. Thus f is a homomorphism.

Since $f(a_1x_1 + \cdots + a_nx_n)$ implies $a_1y_1 + \cdots + a_ny_n = 0$ implies $a_1 = \cdots = a_n = 0$, which in turn implies $a_1x_1 + \cdots + a_nx_n = 0$, therefore f is one to one. Then, since all elements of W is of the form $a_1y_1 + \cdots + a_ny_n$, which is equal to $f(a_1x_1 + \cdots + a_nx_n)$ for some a_1, \ldots, a_n in F, therefore f is also onto. Hence f is an isomorphism.

Definition 15. Let

$$g(x) = g_0 + \dots + g_k x^k$$

be a polynomial in F[x]. We call the *polynomial code* with encoding or generating polynomial g(x) a code which encodes each original word of the message $a = (a_0, \ldots, a_{b-1})$, corresponding to

$$a(x) = a_0 + \cdots + a_{b-1}x^{b-1}$$

into the code word $b = (b_0, \ldots, b_{b+k-1})$, which corresponds to the code polynomial

$$b(x) = b_0 + \dots + b_{b+k-1}x^{b+k-1} = a(x)g(x)$$

Note 1. We assume for our generating polynomial that $g_0 \neq 0$ and $g_k \neq 0$. To justify this assumption, suppose we have

$$g(x) = g_0 + \dots + g_k x^k$$

If $g_0 = 0$, then we choose a new polynomial for g(x) as

$$g_1(x) = a_1 + \cdots + a_k x^{k-1}$$

If $g_k = 0$, then we choose another polynomial

$$g_2(x) = g_0 + \cdots + a_{k-1}x^{k-1}$$

In either case our choice becomes more economical.

Theorem 10. A polynomial with coefficients in **B** is divisible by 1 + x if and only if it has an even number of terms.

Proof. Let $f(x) = a_0 + \cdots + a_n x^n$ for all a_i in \mathbf{B} , $i = 1, \dots, n$, and let 1 + x | f(x). Then there exists a polynomial b(x) in \mathbf{B} such that

$$f(x) \equiv (1+x)b(x)$$

If x = 1, we have $a_0 + \cdots + a_n = 0$. Since the field **B** is of characteristic 2, this is only possible if the number of non-zero terms is even.

Conversely, let f(x) have an even number of non-zero terms, say $f(x) = x^{i_1} + \cdots + x^{i_{2k}}$, where $i_1 < \cdots < i_{2k}$. Rewrite this as

$$f(x) = (x^{i_1} + x^{i_2}) + \dots + (x^{i_{2k-1}} + x^{i_{2k}})$$

For i < j, $x^i + x^j = x^i (1 + x^{j-i}) = x^i (1 + x) (1 + \cdots + x^{j-i-1})$, which means that $1 + x | x^i + x^j$. Therefore 1 + x divides all bracketed terms in f(x), and hence 1 + x | f(x).

Theorem 11. If $g(x) \in \mathbf{B}[x]$ divides no polynomials of the form $x^k - 1$ for k < n, then the binary polynomial code of length n generated by g(x) has the minimum distance of at least 3.

Proof. Let $g(x) = g_0 + \cdots + g_r x^r$, where g_i are in \mathbf{B} , $g_0 \neq 0$ and $g_r \neq 0$. Let b = n - r. Suppose the opposite to what the theorem says is true. Then, polynomial code being a group code, there exists b(x) with at most two nonzero entries. There are two cases to consider, namely $b(x) = x^i + x^j$, where i < j, and $b(x) = x^i$, where i < n. In the first one of these, since n is the code length, we have j < n, hence 0 < j - i < n. Since g(x)|b(x) implies $g(x)|x^j(1+x^{j-i})$, and $g_0 \neq 0$ implies $x \mid g(x)$, therefore $g(x)|1+x^{j-i}$ which contradicts our hypothesis. In the second case, similarly to the above $g(x)|x^i$ and we again have a contradiction.

Definition 16. Let C be a (b, n)-code. If there exists a $b \times n$ matrix G of rank b such that

$$C = \{ \mathbf{a}G | a \in \mathbf{B}^b \}$$

then G is called a *generator matrix* of the code C, and C is called a *matrix code* generated by G.

Definition 17. Let C be a (b,n)-code. If there exists an $(n-b) \times n$ matrix H of rank n-b such that

$$H\mathbf{b}' = 0$$

for all **b** in C, then H is called a parity check matrix of C.

Theorem 12. A polynomial code is a matrix code.

Proof. Let C be a polynomial b, n-code with the encoding polynomial $g(x) = g_0 + \cdots + g_k x^k$. Then n = b + k. Let G be the $b \times n$ matrix whose first row begins with entries g_0, \ldots, g_k followed by b zeros, and whose succeeding row is an anticlockwise cyclic shift of the previous one, that is

$$G = egin{bmatrix} g_0 & g_1 & \cdots & g_k & 0 & \cdots & 0 \ 0 & g_0 & & \cdots & g_k & & \ dots & & & & & \ 0 & & \cdots & & g_0 & \cdots & g_k \end{bmatrix}$$

The determinant of the submatrix formed by the first b columns is non-zero, since $g_0 \neq 0$ and hence $g_0^b \neq 0$. Thus the rank of G is m. Let the original word to be coded be $a = (a_0, \ldots, a_{m-1})$. Then, since the code word generated by aG is the same as that generated from a(x)g(x), the two codes are identical.

Algorithm 2 Hamming codes

choose r a positive integer

$$b \leftarrow 2^r - r - 1$$
 $n \leftarrow 2^r - 1$
 $\mathbf{for} \ i = 1 \ \mathrm{to} \ 2^r - 1 \ \mathbf{do}$
 $(\mathrm{the} \ i^{\scriptscriptstyle{\mathrm{th}}} \ \mathrm{row} \ \mathrm{of} \ M) \leftarrow (\mathbf{b}_i)$

endfor

$$egin{aligned} \mathbf{for} \ i = 1 \ \mathrm{to} \ 2^r - 1 \ \mathbf{do} \ & (a_1, \dots, a_{2^r-1}) \leftarrow (\mathbf{b}_i) \ & (b_{2^{2-1}}, \dots, b_{2^{r-2}} - 1, b_{2^{r-2}} + 1, \dots, b_{2^{r-1}} - 1) \leftarrow (a_1, \dots, a_{2^r-1}) \ & (b_{2^{j-1}}; j = 1, \dots, r) \leftarrow \mathbf{solve} \ (\mathbf{b}M = 0) \ & \mathrm{the} \ i^{\scriptscriptstyle \mathrm{th}} \ \mathrm{code} \ \mathrm{word} \leftarrow (b_1, \dots, b_n) \ & \mathbf{endfor} \end{aligned}$$

Department of Mathematics, Mahidol University

Note 2. Each code word in a Hamming code contains

$$b - n = 2^r - r - 1 - 2^r + 1 = r$$

check digits. The value of r is called the

redundancy

of the code.