VESPA Vaso per Esperimenti Su Plasmi ed Altro

Andrea Grossutti, mat. 1237344 Alessandro Lovo, mat. 1236048 Leonardo Zampieri, mat. 1237351

December 16, 2019

1 Aims

Study the Vespa experimental apparatus, and in particular:

- Model the vacuum system behavior, finding the characteristic parameters;
- Obtain the current-voltage and the current-temperature characteristics curves of the filament;
- Draw the voltage-current characteristics curves of the gas discharge, enhancing their behavior as varying pressure;
- Find the Paschen curve, both in DC and RF condition;
- Measurement of plasma parameters through a Langmuir probe, both in stationary conditions and via ionic-sonic wave propagation.

2 Vacuum system

The vacuum inside the VESPA vessel (a cylindrical vessel, with a length of $\sim 80 \text{cm}$ and a radius of $\sim 20 \text{cm}$: $V \sim 0.1 \text{m}^3$) is obtained and kept thanks to a rotary pump and a turbomolecular pump. The vessel is not perfectly isolated and some small leaks affect the vacuum keeping. To study this phenomena, the vessel has been taken to a low pressure ($\sim 6 \cdot 10^{-5} \text{mbar}$) and all the valves around have been closed. Isolating the chamber from the pumping system one can measure (thanks to a ionization pressure gauge) the pressure in the vessel as function of time. Effects as leaks and degasing contribute to an inflow in the chamber $F_0(p)$ that in principle could depend on the pressure. Assuming instead F_0 constant, its value can be estimated through a linear fit on the data: $P = a + b \cdot t$, $F_0 = V \cdot b$.

Considering the reaction time, the slowness of the ionization gauge in stabilizing and the pressure oscillations, the errors are estimated as 5% on the pressure and a 0.5s error on the time.

Figure 1: Presure increasing in the chamber

As can be seen from fig 1 there is an evident trend in the residuals, proving that F_0 cannot be assumed constant throughout all the explored range of pressures. A simple way to correct this is to consider a low pressure regime and a high pressure one.

Figure 2: Low pressure regime

Figure 3: High pressure regime

Splitting the high pressure area and the low pressure area and performing two different fits, the inflow can be estimated as (assuming a 5% error on the volume):

$$F_0^{\text{low}} = (6.4 \pm 0.4) \cdot 10^{-8} \text{Pa m}^3/\text{s}$$
 $F_0^{\text{high}} = (4.5 \pm 0.4) \cdot 10^{-8} \text{Pa m}^3/\text{s}$

Subsequently, the valve has been opened connecting the chamber to the pumping system. An exponential decay of the pressure is expected: $P(t) = (P_i - P_0) \exp(-t/\tau) + P_0$, where P_i is the starting pressure and P_0 the asymptotic pressure.

Figure 4: Presure decreasing in the chamber

Figure 5: Low pressure regime

Figure 6: High pressure regime

Performing two different exponential fits, from the values of τ and P_0 the effective pumping speed S_e , the inflow F_0 and, given the nominal value of the pumping speed S=33l/s, the conductance of the chamber-pump connection C can be estimated.

regime	$S_e = V/\tau \text{ [l/s]}$	$F_0 = P_0 \cdot S_e \text{ [Pa m}^3/\text{s]}$	$C = 1/(1/S_e - 1/S)$ [l/s]
jhba	gfjha	bfgjlb	hasgjbha

Table 1: Vacuum parameters

3 Voltage-Current characteristic of the filament

The filament inside the vessel is a tungsten filament with diameter $2r \sim 0.25$ mm and length $L \sim 10$ cm. Combining Ohm law and emissivity rules, a theoretical characteristic curve can be obtained:

$$V = rac{A^{10/7}L}{\pi^{13/7}r^{23/7}(2\epsilonlpha)^{3/7}} \cdot I^{13/7}$$

where ϵ is the effective emissivity, α the StefanBoltzmann constant and A a the resistivity proportional constant, such that the resistivity ρ can be expressed as function of the temperature T as

$$\rho(T) = AT^{6/5}$$

Pumping the vessel to a low density (...), the voltage-current characteristic curve of the filament how much? has been measured, producing the following data:

Voltage-Current characteristic

Figure 7: Voltage-Current characteristic for a filament; errors has been chosen as $0.3A^{13/7}$ and 0.1V, due to the low sensibility of the measure system.

Fitting the data with a $V \propto I^{13/7}$, the following parameters are found:

$$V = mI^{13/7} (1)$$

$$m = (0.391 \pm 0.002) \text{V} \cdot \text{A}^{-13/7}$$
 (2)

which lead to a value of

$$\epsilon \sim 0.2$$

The χ^2 confirm the meaningfulness of the fit; moreover, the effective emissivity have a value similar to the typical ones.

Finally, the estimated filament temperature as a function of the driven current can be found:

$$T = \underbrace{\frac{A^{5/14}}{\pi^{5/7} r^{15/14} (2\epsilon\alpha)^{5/14}}}_{I} \cdot I^{5/7} \quad \text{with } k \sim 811 \text{K} \cdot \text{A}^{-5/7}$$

Estimated temperature

Figure 8: Projection of the filament temperature as function of the current