Answers to exercises in How To Prove It

Son To <son.trung.to@gmail.com>

StaffPoint Oy

July 12, 2019

This is to answer all the questions in the books "How to prove it" by Velleman. Comments are appreciated!

Contents

1	Introduction	3
2	Chapter 1	5
	2.1 Deductive reasoning and logical connectives	5

1 Introduction

Exercise 1.0.1.

- (a) a=3, b=5 \Rightarrow $x=2^5-1=31$, $y=1+2^5+2^{10}=1057$
- (b) Since 32,767 is not a prime, $2^{32,767}-1$ is not a prime either. Therefore, there exists a positive integer $0 < x < 2^{32,767}-1$ such that $2^{32,767}-1$ is divisible by x. Hence, by (a), $x=2^{31}-1$ satisfies this.

Exercise 1.0.2.				
n	$3^{n}-1$	$3^n - 2^n$		
2, prime	8, not prime	5, prime		
3, prime	26, not prime	19, prime		
4	80, not prime	65, not prime		
5, prime	242, not prime	211, prime		
6	728, not prime	665, not prime		
7, prime	2,186, not prime	2,059, prime		
8	6,560, not prime	6,305, not prime		
9	19,682, not prime	$19,171 = 19 \cdot 1,009$, not prime		
10	$59,048\mathrm{,}$ not prime	58,025, not prime		

Conjecture 1.1. 3^n-1 is even for all n.

Conjecture 1.2. If n is prime, 3^n-2^n is prime.

Conjecture 1.3. If n is not prime, 3^n-2^n is not prime.

Exercise 1.0.3.

We have the following theorem.

Theorem 1.1 (Theorem 3). There are infinitely many prime numbers.

Its proof gives a method of finding a prime number n different from the ones in a given list. However, one needs to be careful of prime numbers not in the list and smaller than n, since the proof assumes that primes are finite. Example, $n=3\cdot 5+1=15+1=16$ is not a prime number. Hence,

Remark 1.1 (Method). To find a prime different from the list, check if it is divisible by other primes missing from the list.

- (a) Let $n=2\cdot 5+1=11$. n is not divisible by 3,7, a new prime number.
- (b) Let $n=2\cdot 3+1=7$. n is not divisible by 5,11, a new prime number.

Exercise 1.0.4. 24, 25, 26, 27, 28

Exercise 1.0.5.

 $2^4 \cdot (2^5 - 1) = 496$ $2^6 \cdot (2^7 - 1) = 127$.

Exercise 1.0.6.

 $\textit{Conjecture } \ 1.4. \ 3, 5, 7$ is the unique triplet prime.

I do not know now to prove it.

2 Chapter 1

2.1 Deductive reasoning and logical connectives

Exercise 2.1.1.

- (a) $(R \vee H) \wedge \neg (H \wedge T)$
- (b) S= "You go skiing", N= "There is snow". $\neg S \vee (S \wedge \neg N)$
- (c) $\neg((\sqrt{7}=2) \lor (\sqrt{7}<2))$

Exercise 2.1.2.

- (a) J= John is telling the truth, B= Bill is telling the truth $(J\wedge B)\vee (\neg J\wedge \neg B)$
- (b) $F=\mbox{``I have fish'', } C=\mbox{``I have chicken'', } M=\mbox{``I have mashed potatoes''} (F\vee C)\wedge \neg (F\wedge M)$
- (c) $(6:3) \land (9:3) \land (15:3)$

Exercise 2.1.3.

 $A={
m Alice}$ is in the room, $B={
m Bob}$ is in the room

- (a) $\neg (A \land B)$
- (b) $\neg A \wedge \neg B$