

Today's Outline

- Image formation
 - Human vision
 - Digital image formation

- Seamless
- Complicated process
- Eye and brain work together

- แสงผ่านเข้ารูม่านตา ผ่านเลนส์ ตกลงที่จอตา เป็นภาพหัวกลับ
- เซลล์รับแสง (photoreceptor cell) จะเปลี่ยนแสงให้เป็นสัญญาณ ประสาท ส่งไปยังสมอง
- สมองทำหน้าที่ประมวลผล แปลงเป็นภาพหัวตั้งเหมือนวัตถุจริง

- ในจอตามีเซลล์ที่ทำหน้าที่รับแสง (photoreceptor cell) ทำหน้าที่ เปลี่ยนแสงให้เป็นสัญญาณประสาทส่งไปยังสมอง
 - เซลส์รูปกรวย (cone cell) > *photopic* (bright-light vision)
 - เซลส์รูปแท่ง (rod cell) > scotopic (dim-light vision)

Hand-on : หาจุดบอด

- 1. ทำเครื่องหมายจุดกลมทางซ้ายและกากบาททางขวาบนกระดาษขาว ดังรูป
- 2. ใช้มือซ้ายถือกระดาษเหยียดแขนออกไปจนสุด
- 3. ใช้มือขวาปิดตาขวา
- 4. เพ่งดูกากบาทด้วยตาซ้าย โดยไม่ชำเลืองดูจุดกลม
- 5. เลื่อนกระดาษให้ใกล้เข้ามาเรื่อย ๆ สังเกตภาพจุดกลมว่าเปลี่ยนแปลงหรือไม่

ชวนคิด : ทำไม

- 🕝 เราไม่เห็นบริเวณจุดบอดเป็นรูดำ ๆ
- 🕝 ยามปกติเราไม่สังเกตเห็นจุดบอด
- 🕝 เราจึงเห็นภาพที่มีสีสันและชัดเจน เฉพาะบริเวณกลางภาพที่เราโฟกัส ส่วนด้านข้าง รอบ ๆ จะเห็นภาพที่มีสีสันและขอบไม่ค่อยชัด

Simultaneous contrast

Simultaneous contrast

- Optical illusion
 - Eyes fill in non-existing information

Optical illusion

• Eyes wrongly perceive geometric properties of

objects

- Optical illusion
 - Eyes wrongly perceive geometric properties of objects

Digital Image Formation

How camera works

Digital Image Formation

How camera works

https://www.youtube.com/watch?v=BNA97LaWLF0

Digital Image Formation

- ด้านเรขาคณิต (Image geometry)
 - ว่าด้วยการคำนวณหาตำแหน่งของจุดต่าง ๆ ในโลกจริง 3 มิติ ว่าจะเป็น จุดใดบนภาพ 2 มิติ
- ด้านแสงสี (Image radiometry)
 - ว่าด้วยการคำนวณความสว่างและสีของจุดต่าง ๆ ในโลกจริง 3 มิติ ว่า จะมีความสว่างและสีเป็นอย่างไรบนภาพ 2 มิติ

Image Geometry

• กล้องรูเข็ม (Pinhole camera)

- Cartesian coordinates:
 - We have, by similar triangles, that $[x,y,z] \rightarrow \left[f\frac{x}{z},f\frac{y}{z},-f\right]$
 - Ignore the third coordinate, and get

$$\left[x, y, z\right] \rightarrow \left[f\frac{x}{z}, f\frac{y}{z}\right]_{18}$$

- Homogenous coordinates:
 - Turn previous expression into HC's

$$\begin{pmatrix} U \\ V \\ W \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{1}{f} & 0 \end{pmatrix} \begin{pmatrix} X \\ Y \\ Z \\ T \end{pmatrix}$$

Distance objects are smaller

Vanishing point

Orthographic Projection

The projection matrix for orthographic projection

$$\begin{pmatrix} U \\ V \\ W \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} X \\ Y \\ Z \\ T \end{pmatrix}$$

Orthographic & Perspective Projections

Image Radiometry

- How "bright" and "colored" will surfaces be?
- What is "brightness"?
 - measuring light
 - interactions between light and surfaces

FIGURE 2.15 An example of the digital image acquisition process. (a) Energy ("illumination") source. (b) An element of a scene. (c) Imaging system. (d) Projection of the scene onto the image plane. (e) Digitized image.

แสงและคลื่นแม่เล็กไฟฟ้า (EM)

FIGURE 2.15 An example of the digital image acquisition process. (a) Energy ("illumination") source. (b) An element of a scene. (c) Imaging system. (d) Projection of the scene onto the image plane. (e) Digitized image.

Light and Surface

- เมื่อแสงตกกระทบผิววัตถุ:
 - ถูกดูดกลืน (absorbed)
 - ส่งผ่าน (transmitted)
 - สะท้อน (reflected)
 - กระจาย (scattered)

FIGURE 2.15 An example of the digital image acquisition process. (a) Energy ("illumination") source. (b) An element of a scene. (c) Imaging system. (d) Projection of the scene onto the image plane. (e) Digitized image.

Image Sensing and Acquisition

- Image sensor
 - ทำหน้าที่แปลงพลังงานแสงให้เป็นกระแสไฟฟ้า

- Three principal sensor arrangements
 - Single imaging sensor
 - Line sensor
 - Array sensor

Array Sensors

- CCD (Charge Coupled Device)
 - More pixels and work better in low light.
 - More expensive and use a lot of power.
- **CMOS** (Complementary Metal Oxide Semiconductor)
 - Lower resolution, use less power and do not work well in low light.
 - Inexpensive to manufacture

CCD

Charge-Coupled Device Camera Circuit Board Timing Clock Generation Drivers Bias Oscillator Generation Digital Analog-to-Digital Im age Gain Signal Out Conversion Analog ∨oltage Photon-to-Electron Electron-to-Voltage conversion conversion "Charge-Coupled"

CMOS

Inside the Digital Camera How does it detect light?

IR Inside the Camera

RGB Inside the Camera

1CCD vs 3CCD

รูปที่ 2.15 ตัวกรองสีแบบเบเยอร์ ที่มาของภาพ: https://en.wikipedia.org/wiki/Bayer_filter

1CCD vs 3CCD

รูปที่ 2.16 เปรียบเทียบกล้องแบบ 3 CCD และ 1 CCD ให้คุณภาพสีที่แตกต่างอย่างเห็นได้ ชัด ที่มาของภาพ: http://www.panasonic-la.com

Fovean X3 Direct Image Sensor

Distortions

- Chromatic aberration
 - แสงในแต่ละย่านความถี่หักเหด้วยมุมที่ต่างกัน
 - Machines: coat the lens
 - Humans: live with it
- Scattering at the lens surface
 - แสงบางส่วนที่ตกกระทบเลนส์สะท้อนออก
 - Machines: coat the lens, interior
 - Humans: live with it
- Geometric distortion
 - Pincushion/Barrel distortion, etc.

FIGURE 2.15 An example of the digital image acquisition process. (a) Energy ("illumination") source. (b) An element of a scene. (c) Imaging system. (d) Projection of the scene onto the image plane. (e) Digitized image.

Sampling & Quantization

- To generate digital image from sensed data
- Sample the image f in both coordinates and in amplitude

Sampling & Quantization

a b

FIGURE 2.17 (a) Continuos image projected onto a sensor array. (b) Result of image sampling and quantization.

Image Representation

FIGURE 2.18

Coordinate convention used in this book to represent digital images.

Picture Element (Pixel)

Spatial Resolution

 A measure of the smallest discernible detail in an image

51

Intensity Resolution

 A measure of the smallest discernible change in intensity level

256 gray levels (8 bit)

16 gray levels (4 bit)

2 gray levels (1 bit)

Image Types

Binary Image [0,1]

Greyscale Image [0,255]

Color Image RGB [0,255], [0,255], [0,255]

