- Designed for Paged Memory Mapping
- Output Latches Provided on 'LS610 and
- Choice of 3-State or Open-Collector Map Outputs
- Compatible with TMS9900 and Other Microprocessors

DE1/105	OUTPUTS	MAP
DEVICE	LATCHED	OUTPUT TYPE
'LS610	Yes	3-State
'LS611	Yes	Open-Collector
'LS612	No	3-State
'LS613	No	Open-Collector

description

Each 'LS610 through 'LS613 memory-mapper integrated circuit contains a 4-line to 16-line decoder, a 16-word by 12-bit RAM, 16 channels of 2-line to 1-line multiplexers, and other miscellaneous circuitry on a monolithic chip. Each 'LS610 and 'LS611 also contains 12 latches with an enable control.

The memory mappers are designed to expand a microprocessor's memory address capability by eight bits. Four bits of the memory address bus (see System Block Diagram) can be used to select one of 16 map registers that contain 12 bits each. These 12 bits are presented to the system memory address bus through the map output buffers along with the unused memory address bits from the CPU. However, addressable memory space without reloading the map registers is the same as would be available with the memory mapper left out. The addressable memory space is increased only by periodically reloading the map registers from the data bus. This configuration lends itself to memory utilization of 16 pages of 2(n-4) registers each without reloading (n = number of address bits available from CPU).

[†]This pin has no internal connection on 'LS612 and 'LS613

SYSTEM BLOCK DIAGRAM

These devices have four modes of operation: read, write, map, and pass. Data may be read from or loaded into the map register selected by the register select inputs (RS0 thru RS3) under control of R/\overline{W} whenever chip select (\overline{CS}) is low. The data I/O takes place on the data bus D0 thru D7. The map operation will output the contents of the map register selected by the map address inputs (MA0 thru MA3) when \overline{CS} is high and \overline{MM} (map mode control) is low. The 'LS612 and 'LS613 output stages are transparent in this mode, while the 'LS610 and 'LS611 outputs may be transparent or latched. When \overline{CS} and \overline{MM} are both high (pass mode), the address bits on MA0 thru MA3 appear at M08-M011, respectively, (assuming appropriate latch control) with low levels in the other bit positions on the map outputs.

logic diagram (positive logic)

"L\$610 and 'L\$612 have 3-state (\$\nabla\$) map outputs.
'L\$611 and 'L\$613 have open-collector (\$\nabla\$) map outputs.

SN54LS610, SN54LS612, SN74LS610 THRU SN74LS613 MEMORY MAPPERS

P	in	DECODISTION
NO.	NAME	DESCRIPTION
7-12	DO thru D11	I/O connections to data and control bus used for reading from and writing to the map register
29-34		selected by RSO-RS3 when $\overline{\text{CS}}$ is low. Mode controlled by R/ $\overline{\text{W}}$.
36, 38, 1, 3	RSO thru RS3	Register select inputs for I/O operations.
6	R/W	Read or write control used in I/O operations to select the condition of the data bus. When
		high, the data bus outputs are active for reading the map register. When low, the data bus is
		used to write into the register.
5	STROBE	Strobe input used to enter data into the selected map register during I/O operations.
4	<u>CS</u>	Chip select input. A low input level selects the memory mapper (assuming more than one
		used) for an I/O operation.
35, 37, 39, 2	MA0 thru MA3	Map address inputs to select one of 16 map registers when in map mode (MM low and CS
}		high).
14-19,	MO0 thru MO11	Map outputs. Present the map register contents to the system memory address bus in the map
22-27		mode. In the pass mode, these outputs provide the map address data on MO8-MO11 and low
		levels on MO0-MO7.
13	MM	Map mode input. When low, 12 bits of data are transferred from the selected map register to
		the map outputs. When high (pass mode), the 4 bits present on the map address inputs
İ		MAO-MA3 are passed to the map outputs MO8-MO11, respectively, while MO0-MO7 are set
		low.
21	ME	Map enable for the map outputs. A low level allows the outputs to be active while a high input
		level puts the outputs at high impedance.
28	С	Latch enable input for the 'LS610 and 'LS611 (no internal connection for 'LS612 and 'LS613).
		A high level will transparently pass data to the map outputs. A low level will latch the outputs.
40, 20	V _{CC} , GND	5 V power supply and network ground (substrate) pins.

schematics of inputs and outputs EQUIVALENT OF OTHER INPUTS INPUT/OUTPUT PORTS, D0-D11 Vcc 1/0 Reg PORT VCC -INPUT: 100 Ω NOM 20 kΩ NOM MM Req = 7 k Ω NOM RS, STROBE: Req = 9 k Ω NOM CS, R/W, MA: Req = 6 k Ω NOM TYPICAL OF SN74LS611, SN74LS613 MAP OUTPUTS TYPICAL OF 'LS610, 'LS612 MAP OUTPUTS – vcc **50** Ω NOM OUTPUT OUTPUT

absolute maximum ratings over operati	ing free-air temperature range (unless otherwise noteu)
Supply voltage, VCC (see Note 1) Input voltage: Data Bus I/O All other inputs	7 V 5.5 V 7 V SN54LS610, SN54LS612 -55°C to 125°C SN74LS610 through SN74LS613 0°C to 70°C
Storage temperature range	SN74LS610 through SN74LS613

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

				SN54LS610 SN54LS612			SI SI	UNIT		
				MIN	NOM	MAX	MIN	NOM	MAX	
Vcc	Supply voltage			4.5	5	5.5	4.75	5	5.25	V
VIH	High-level input voltage			2			2			V
VIL	Low-level input voltage					0.7			0.8	٧
la	High level output gurrent		МО			- 12			- 15	mA
IOH	High-level output current		D	<u> </u>		-1			- 2.6	
1	Low-level output current		МО	l		12			24	mA.
İOL	Low-level output current		D	I		4			8	11112
†AVCL	Address setup time (AV before C low)	'LS610 only	See Figure 2	30			30			ns
^t SLSH	Duration of strobe input pulse			75			75			ns
[†] CSLSL	CS setup time (CS low to strobe	low)	1	20			20			ns
tWLSL	R/W setup time (R/W low to stre	obe low)	}	20			20			ns
^t RVSL	RS setup time (RS valid to strob	e low)	1	20		,	20			ns
^t DVSH	Data setup time (D0-D11 valid t	o strobe high)	See Figure 1	75			75			ns
tSHCSH	CS hold time (Strobe high to CS	high)	1	20			20			ns
tSHWH	R/W hold time (Strobe high to R	/W high)		20			20			ns
^t SHRX	RS hold time (Strobe high to RS	invalid)		20			20			ns
†SHDX	Data hold time (Strobe high to I	00-D11 invalid)]	20			20			ns
TA	Operating free-air temperature			- 55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	ARAMETER	TE	TEST CONDITIONS [†]		SN54LS610 SN54LS612			S	UNIT		
Ρ,	AKAMETEN	TEGT CONSTITUTE			MIN	TYP [‡]	MAX	MIN	TYP‡	MAX	
V		V _{CC} = MIN, I ₁ = -18 mA					-1.5			-1.5	V
VIK				11 2 mA	2.4			2.4			
V	МО	V _{CC} = MIN,	$V_{IH} = 2 V$	I _{OH} = MAX	2			2			\
Vон	D	$V_{IL} = MAX$		IOH = MAX	2.4			2.4			
				I _{OL} = 12 mA		0.25	0.4		0.25	0.4]
	мо	Vcc = MIN.	$V_{IH} = 2 V$	I _{OL} = 24 mA					0.35	0.5	l v
VOL	<u> </u>	VIL = MAX		I _{OL} = 4 mA	1	0.25	0.4		0.25	0.4	
	D	10		1 _{OL} = 8 mA				L	0.35	0.5	_
		V _{CC} = MAX,					20			20	μА
lozh		VIL = MAX,	$V_0 = 2.7 \text{ V}$		├		- 20			- 20	
1	МО	VCC = MAX,			├		-400	├──		- 400	μΑ
IOZL	D	V _{IL} = MAX,	$V_0 = 0.4 \text{ V}$	1	┼─		0.1	┼──		0.1	
l _i	D	VCC = MAX		V ₁ = 5.5 V	┼		0.1	\vdash		0.1	mA
n	All others	1		V _I = 7 V	┼──		20	┼		20	μА
ін		V _{CC} = MAX,	$V_1 = 2.7 \text{ V}$		↓ —		-0.4	+		-0.4	mA
IJL		V _{CC} = MAX,	$V_1 = 0.4 \text{ V}$		-40		- 225	-40		- 225	
los§	MO D	VCC = MAX			-30		- 130	- 30		-130	mA
			Outputs high	h	1	112	180		112	180	
1		V _{CC} = MAX	Outputs low			112	180		112	180	mA
Icc		1	Outputs disa		1	150	230		180	230	<u> </u>

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25 \,^{\circ}\text{C}$, $C_L = 45 \,^{\circ}\text{pF}$ to GND

		FROM	то			'LS61	0		LS612	:	UNIT
	PARAMETER	(INPUT)	(OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	Oldi
tCSLDV	Access (enable) time	ĊS↓	DO-11			28	50		26	50	ns
	Access (enable) time	R/W↑	D0-11	$R_L = 2 k\Omega$,		20	35		20	35	ns
tWHDV_	Access time	RS	D0-11	See Figure 1,		49	75	l	39	75	กร
^t RVDV	Disable time	R/₩↓	D0-11	See Notes 2 and 3		32	50		30	50	ns
tWLDZ	Disable time	<u>CS</u> ↑	D0-11	1		42	65		38	65	ns
tCSHDZ	Access (enable) time	ME	MO0-11			19	30		17	30	ns
tELQV_		CS↑	M00-11	1		56	85		48	85	ns
tcshav	Access time	MM	MO0-11			25	40		22	40	ns
tMLQV_	Access time	Ct	MO0-11	$R_L = 667 \Omega$,		24	40				ns
tCHQV	Access time	MA	MO0-11	See Figure 2,		46	70	T -	39	70	ns
tAVQV1	Access time (MM low)	MM†	MO0-11	See Notes 2 and 3		24	40		22	40	ns
VOHM	Access time	MIMI	WIOO-11		<u> </u>						
tavova	Propagation time	MA	MO8-11			19	30		13	30	ns
tAVQV2	(MM high)	 		4	-	14	25	 	14	25	пѕ
tEHQZ	Disable time	MET	MO0-11	1	<u> </u>	14		<u> </u>			

NOTES: 2. Access times are tested as tpLH and tpHL or tpZH or tpZL. Disable times are tested as tpHZ and tpLZ.

3. Load circuits and voltage waveforms are shown in Section 1.

 $^{^{\}ddagger}$ All typical values are at V_{CC} = 5 V, T_A = 25 °C.

Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

SN74LS611, SN74LS613 MEMORY MAPPERS WITH OPEN-COLLECTOR MAP OUTPUTS

recommended operating conditions

				MIN	NOM	MAX	UNIT
VCC	Supply voltage	4.75	5	5.25	V		
VIH	High-level input voltage			2			V
VIL	Low-level input voltage			1		0.8	V
Voн	High-level output voltage		МО			5.5	V
ЮН	High-level output current		D			-2.6	mA
lo.	Low-level output current		МО	1		24	
lOL	Low-level butput current	D	8		8	mA	
*****	Address setup time	SN74LS611 only	0-5-0	-			
†AVCL	(AV before C low)	See Figure 2	30			ns	
tSLSH	Duration of stobe input pulse			75			ns
†CSLSL	CS setup time (CS low to strobe low)		1	20			ns
tWLSL	R/W setup time (R/W low to strobe low)		1	20			ns
^t RVSL	RS setup time (RS valid to strobe low)		1	20			ns
^t DVSH	Data setup time (D0-D11 valid to strobe high)		See Figure 1	75			ns
tSHCSH	CS hold time (Strobe high to CS high)	CS hold time (Strobe high to CS high)					ns
^t SHWH	R/W hold time (Strobe high to R/W high)	1	20			ns	
tSHRX	RS hold time (Strobe high to RS invalid)]	20			ns	
†SHDX	Data hold time (Strobe high to D0-D11 invalid)	1	20			ns	
TA	Operating free-air temperature		1	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise

ioteu)				act	MIN	TYP‡	MAX	UNIT
PARAMETER			TEST CONDITIO	NS.			1.5	V
Vik		V _{CC} = MIN,	I _I = -18 mA					
Vон	D	V _{CC} = MIN, V _{IL} = MAX,	$V_{IH} = 2 V$		2.4			>
		V _{CC} = MIN,	VIII = 2 V	V _{OH} = 5.5 V			0.1	mA
ЮН	МО	VCC = MIN,	VIH - 2 V,	I _{OL} = 12 mA		0.25	0.4	
	мо	V _{CC} = MIN,	Viu = 2 V.	IOL = 24 mA		0.35	0.5	v
VOL	 	VII = MAX	- 111	IOL = 4 mA		0.25	0.4	i
0.2	D	VIL - MAX		I _{OL} = 8 mA		0.35	0.5	
lozh	D	V _{CC} = MAX, V _{IL} = MAX,					20	μА
lozL	D	V _{CC} = MAX, V _O = 0.4 V	V _{IH} = 2 V,				-0.4	mA
		VO = 0.4 V		V _I = 5.5 V			0.1	mA.
lj.	D	$V_{CC} = MAX$		V _I = 7 V			0.1	<u> </u>
	All others		V = 27V				20	μА
ΉΗ		V _{CC} = MAX,	V = 2.7 V				-0.4	mA
ЧL		V _{CC} = MAX,	V ₁ = 0.4 V		-30		- 130	
los§	D	VCC = MAX	I o			100	170	mA
			Outputs high			100	170	
Icc		V _{CC} = MAX	Outputs low			110		⊢ mA
1			Outputs disable					

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, VCC = 5 V, $TA = 25 \,^{\circ}\text{C}$, $CL = 45 \,^{\circ}\text{F}$ to GND

	FROM TO				SN74LS611			SN74LS613			UNIT
	PARAMETER	(INPUT)	(OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP		
tool DV	Access (enable) time	ĊS↓	D0-11			31	50	<u> </u>	28	50	ns
CSLDV	Access (enable) time	R/W1	D0-11	$R_L = 2 k\Omega$,		23	35		21	35	ns
WHDV	Access time	RS	D0-11	See Figure 1,		51	75		47	75	ns
tRVDV	Disable time	R/₩↓	D0-11	See Notes 2 and 3		32	50		31	50	ns
tWLDZ	Disable time	<u>CS</u> ↑	DO-11	1		41	65		40	65	ns
CSHDZ	Access (enable) time	ME	MO0-11			21	30		19	30	ns
tELQV_		CSt	M00-11	†		57	90		53	90	ns
tCSHQV	Access time	MMI	M00-11	+		25	40		25	40	ns
^t MLQV	Access time	C1	MO0-11	$R_L = 667 \Omega$,		30	45				ns
tCHQV	Access time		MO0-11	See Figure 2,	—	47	70	1	44	70	ns
tAVQV1	Access time (MM low)		MO0-11	See Notes 2 and 3	-	31	50	 	31	50	ns
VDHM	Access time	MM1	WOO-11	4				1			
*****	Propagation time	MA	MO8-11		Į.	21	30		20	30	ns
tAVQV2	(MM high)		1	4		15	25	\vdash	15	25	ns
tEHQZ	Disable time	MET	MO0-11		<u> </u>	13					

NOTES: 2. Access times are tested as tpLH and tpHL or tpZH or tpZL. Disable times are tested as tpHZ and tpLZ.

 $^{^{\}ddagger}$ All typical values are at V_{CC} = 5 V, T_A = 25 °C.

[§]Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

^{3.} Load circuits and voltage waveforms are shown in Section 1.

explanation of letter symbols

This data sheet uses a new type of letter symbol based on JEDEC Standard 100 to describe time intervals. The format is:

tAB-CD

where: subscripts A and C indicate the names of the signals for which changes of state or level or establishment of state or level constitute signal events assumed to occur first and last, respectively, that is, at the beginning and end of the time interval.

Subscripts B and D indicate the direction of the transitions and/or the final states or levels of the signals represented by A and C, respectively. One or two of the following is used:

H = high or transition to high

L = low or transition to low

V = a valid steady-state level

X = unknown, changing, or "don't care" level

Z = high-impedance (off) state.

The hyphen between the B and C subscripts is omitted when no confusion is likely to occur. For these letter symbols on this data sheet, the signal names are further abbreviated as follows:

SIGNAL NAME	A AND C SUBSCRIPT	SIGNAL NAME	A AND C SUBSCRIPT
С	С	MĒ	E
CS	cs	MM	М
D0-11	D	R/W	W
MAO-MA3	Α	RSO-RS3	R
MO0-MO11	Q	STROBE	S

FIGURE 1. WRITE AND READ MODES

FIGURE 2. MAP AND PASS MODES

TTL Devices