PPRL Bloom Filter attack exercise

	Bloom Filter	Frequency	
1	110100	111	
2	000101	78	
3	111001	49	
4	111000	43	
5	000111	19	

Name	Frequency	
Daniel	242	
Carlos	184	
Danilo	115	
David	95	
Carla	41	

1. Suppose that the filters were built using 2-grams.

Name	2-grams	
Daniel	{da, an, ni, ie, el}	
Carlos	{ca, ar, rl, lo, os}	
Danilo	{da, an, ni, il, lo}	
David	{da, av, vi, id}	
Carla	{ca, ar, rl, la}	

2. Now build the possible candidate set of 2-grams for each position of the filter.

Position	Туре	2-gram set	Candidate 2-grams	
P_0	+	{da, an, ni, ie, el, il, lo, av, vi, id}	{da, an, ni, ie, el, il, lo, av, vi, id}	
	-	{ca, ar, rl, lo, os, la}		
P_1	+	{da, an, ni, ie, el, il, lo, av, vi, id}	{da, an, ni, ie, el, il, lo, av, vi, id}	
	-	{ca, ar, rl, lo, os, la}		
P_2	+	{da, an, ni, il, lo, av, vi, id}	(il le av vi id)	
	-	{da, an, ni, ie, el, ca, ar, rl, lo, os, la}	- {il, lo, av, vi, id}	
P_3	+	{da, an, ni, ie, el, ca, ar, rl, lo, os, la}	(in all spar vi la es la)	
	-	{da, an, ni, il, lo, av, vi, id}	{ie, el, ca, ar, rl, lo, os, la}	
P_4	+	{ca, ar, rl, la}	(1-)	
	-	{da, an, ni, ie, el, ca, ar, rl, lo, os, il, lo, av, vi, id, la}	- {la}	
P_5	+	{ca, ar, rl, lo, os, da, an, ni, il, lo, la}		
	-	{da, an, ni, ie, el, av, vi, id}	{ca, ar, rl, lo, os, il, lo, la}	

3. Analyze Bloom Filters to try to re-identify the names encoded in each one.

Filter	Positions to analyze (1)	Discarded matches (2)	Result (3)
1	0, 1, 3	Carlos -> 0	{Daniel}
		Danilo -> 3	
		David -> 3	
		Carla -> 0	
2	3, 5	Daniel -> 5	{Carlos, Carla}
		Danilo -> 3	
		David -> 3	
3	0, 1, 2, 5	Daniel -> 2	{Danilo}
		Carlos -> 0	
		David -> 5	
		Carla -> 0	
4	0, 1, 2	Daniel -> 2	{Danilo, David}
		Carlos -> 0	
		Carla -> 0	
5	3, 5	Daniel -> 0	{Carla}
		Danilo -> 3	
		David -> 3	
		Carlos -> 4	

- (1) -> We just analyze those positions that are set to 1 in the given filter
- (2) -> We discard those names whose q-grams are not in any of the activated positions. The position that caused the exclusion is indicated along with the name.
- (3) -> Those names that are not discarded are the candidate ones. In some cases, more than a name can be paired with a single filter. It could also happen that no candidates are found for a given filter.