```
Date
                Open
                             High
                                          Low Close
                                                      Adj Close
                                                                  Volume
0
   2021-08-30
               411.0
                      411.510010
                                   409.640015
                                               411.0
                                                           411.0
                                                                       0
  2021-08-31
              411.0
                      411.500000
                                   409.000000
                                               411.0
                                                           411.0
                                                                       0
1
                                   410.070007
2
  2021-09-01
                      411.529999
                                                           411.0
                                                                       0
               411.0
                                               411.0
   2021-09-02
               411.0
                      411.600006
                                   410.660004
                                               411.0
                                                           411.0
                                                                       0
   2021-09-03
               411.0
                      411.390015
                                   410.549988
                                               411.0
                                                           411.0
                                                                       0
```

```
In [4]: plt.figure(figsize=(10, 4))
  plt.title("NGN - USD Exchange Rate")
  plt.xlabel("Date")
  plt.ylabel("Close")
  plt.plot(data["Close"])
  plt.show()
```



```
In [5]: print(data.corr())
    sns.heatmap(data.corr())
    plt.show()
```

	Open	High	Low	Close	Adj Close	Volume
Open	1.000000	0.806529	0.967942	0.978974	0.978974	NaN
High	0.806529	1.000000	0.803402	0.797507	0.797507	NaN
Low	0.967942	0.803402	1.000000	0.956746	0.956746	NaN
Close	0.978974	0.797507	0.956746	1.000000	1.000000	NaN
Adj Close	0.978974	0.797507	0.956746	1.000000	1.000000	NaN
Volume	NaN	NaN	NaN	NaN	NaN	NaN


```
In [7]: x = data[["Open", "High", "Low"]]
        y = data["Close"]
        x = x.to numpy()
        y = y.to_numpy()
        y = y.reshape(-1, 1)
In [8]: from sklearn.model_selection import train_test_split
        xtrain, xtest, ytrain, ytest = train_test_split(x, y, test_size=0.2, random_
        from sklearn.tree import DecisionTreeRegressor
        model = DecisionTreeRegressor()
        model.fit(xtrain, ytrain)
        ypred = model.predict(xtest)
In [9]: data = pd.DataFrame(data={"Predicted Rate": ypred.flatten()})
        print(data.head())
           Predicted Rate
        0
               410.309998
        1
               415.420013
        2
               415.079987
        3
               409.410004
               415.149994
In [ ]:
```