

POLICY OPTIMIZATION AS ONLINE LEARNING WITH MEDIATOR FEEDBACK

ALBERTO MARIA METELLI*, MATTEO PAPINI*, PIERLUCA D'ORO, AND MARCELLO RESTELLI

{albertomaria.metelli, matteo.papini, marcello.restelli}@polimi.it, pierluca.doro@mail.polimi.it

MOTIVATION AND IDEA

Problem: How to deal with exploration in Policy Optimization (PO)?

Idea: exploit the inherent structure of the PO problem via multiple importance sampling

POLICY OPTIMIZATION

- Parameter space $\Theta \subseteq \mathbb{R}^d$
- A parametric **policy** for each $\theta \in \Theta$
- Each inducing a distribution p_{θ} over **trajectories**
- A return $\mathcal{R}(\tau)$ for every trajectory τ
- Goal: maximize the expected return (Deisenroth et al., 2013)

$$\boldsymbol{\theta}^* \in \operatorname*{arg\,max} J(\boldsymbol{\theta}) = \underset{\tau \sim p_{\boldsymbol{\theta}}}{\mathbb{E}} \left[\mathcal{R}(\tau) \right]$$

POLICY OPTIMIZATION AS ONLINE LEARNING

For t = 1, 2, ...

- Select parameter θ_t and run π_{θ_t}
- Observe the trajectory τ_t and the return $\mathcal{R}(\tau_t)$

Goal: minimize the regret (Auer et al., 2002)

Regret
$$(n) = \sum_{t=1}^{n} J(\boldsymbol{\theta}^*) - J(\boldsymbol{\theta}_t) = \sum_{t=1}^{n} \Delta(\boldsymbol{\theta}_t)$$

Bandit Feedback

Mediator Feedback

REGRET LOWER BOUNDS

- Two-parameter space $\Theta = \{\theta_A, \theta_B\}$
- Performance gap $\Delta = J(\boldsymbol{\theta}_A) J(\boldsymbol{\theta}_B)$
- If $D_{KL}(p_{\theta_A} || p_{\theta_B}) < \infty$ and $D_{KL}(p_{\theta_B} || p_{\theta_A}) < \infty$ \Longrightarrow constant regret

$$\mathbb{E} \operatorname{Regret}(n) \geqslant \mathcal{O}\left(\frac{1}{\Delta}\right)$$

• If $D_{KL}(p_{\theta_A} || p_{\theta_B}) = \infty$ or $D_{KL}(p_{\theta_B} || p_{\theta_A}) = \infty$ \Longrightarrow logarithmic regret

$$\mathbb{E} \operatorname{Regret}(n) \geqslant \mathcal{O}\left(\frac{1}{\Delta}\log\left(\Delta^2 n\right)\right)$$

IMPORTANCE SAMPLING FOR MEDIATOR FEEDBACK

- Idea: use all the samples to estimate the expected return of any policy $\mathcal{H}_t = \{(\boldsymbol{\theta}_i, \tau_i, \mathcal{R}(\tau_i))\}_{i \in [t-1]}$
- Mixture distribution Φ_t of the behavioral policies played and relative multiple importance weight with balance heuristic (Veach and Guibas, 1995) w.r.t. the target policy $p_{\theta}(\tau_i)$:

$$|\Phi_t| = \frac{1}{t-1} \sum_{j=1}^{t-1} p_{\theta_j}(\tau_i) \implies \frac{p_{\theta}(\tau_i)}{\Phi_t(\tau_i)} = \frac{p_{\theta}(\tau_i)}{\frac{1}{t-1} \sum_{j=1}^{t-1} p_{\theta_j}(\tau_i)} = \frac{\prod_{h=0}^{H-1} \pi_{\theta}(a_{ih}|s_{ih})}{\frac{1}{t-1} \sum_{j=1}^{t-1} \prod_{h=0}^{H-1} \pi_{\theta_j}(a_{ih}|s_{ih})}$$

• Vanilla importance weight leads to heavy-tailed estimator (Metelli et al., 2018) \implies employ a time-variant weight truncation threshold $M_t(\theta)$ (Ionides, 2008)

$$\widecheck{J}_t(\boldsymbol{\theta}) = \frac{1}{t-1} \sum_{i=1}^{t-1} \min \left\{ \frac{p_{\boldsymbol{\theta}}(\tau_i)}{\Phi_t(\tau_i)}, M_t(\boldsymbol{\theta}) \right\} \mathcal{R}(\tau_i)$$

$$M_t(\boldsymbol{\theta}) = \sqrt{\frac{(t-1) d_2(p_{\boldsymbol{\theta}} \| \Phi_t)}{\log \frac{1}{\delta}}}$$

$$Truncation threshold$$

$$d_2(p_{\boldsymbol{\theta}} \| \Phi_t) = \int \frac{p_{\boldsymbol{\theta}}(\tau_i)^2}{\Phi_t(\tau_i)} \mathrm{d}\tau$$

$$Renyi divergence$$

• We obtain exponential concentration (Papini et al., 2019; Metelli et al., 2020):

$$\widecheck{J}_{t}(\boldsymbol{\theta}) - J(\boldsymbol{\theta}) \leqslant 2.75 \sqrt{\frac{\log \frac{1}{\delta}}{\eta_{t}(\boldsymbol{\theta})}}$$

$$\underbrace{----}{\eta_{t}(\boldsymbol{\theta})} = \frac{d_{2}(p_{\boldsymbol{\theta}} \| \Phi_{t})}{t-1}$$
Effective sample size

ALGORITHMS

Execute π_{θ_1} , observe $\tau_1 \sim p_{\theta_1}$ and $\mathcal{R}(\tau_1)$ for $t = 2, \ldots, n$ do Compute expected return estimate $J_t(\theta)$ Select $\theta_t \in \arg \max$ $B_t(\boldsymbol{\theta})$

Execute π_{θ_t} , observe $\tau_t \sim p_{\theta_t}$ and $\mathcal{R}(\tau_t)$ end for

OPTIMIST (Papini et al., 2019) Compute upper confidence bound:

$$B_t(\boldsymbol{\theta}) = \widecheck{J}_t(\boldsymbol{\theta}) + 2.42\sqrt{\frac{\alpha \log t}{\eta_t(\boldsymbol{\theta})}}$$

RANDOMIST (new!)

Generate perturbation:

$$U_t(\boldsymbol{\theta}) = \frac{1}{\eta_t(\boldsymbol{\theta})} \sum_{l=1}^{a\eta_t(\boldsymbol{\theta})} \tau_l + b$$
, with $\tau_l \sim \text{Ber}(1/2)$

Compute index $B_t(\boldsymbol{\theta}) = \widecheck{J}_t(\boldsymbol{\theta}) + U_t(\boldsymbol{\theta})$

REGRET UPPER BOUNDS COMPARISON

Finite Policy Space

$$v = \max_{\boldsymbol{\theta}, \boldsymbol{\theta}' \in \Theta} d_2(p_{\boldsymbol{\theta}} \| p_{\boldsymbol{\theta}'}) \text{ and } \Delta = \min_{\boldsymbol{\theta} \neq \boldsymbol{\theta}*} J(\boldsymbol{\theta}^*) - J(\boldsymbol{\theta})$$

Algorithm	Exploration	$\mathbb{E} \operatorname{Regret}(n)$	
		$v = \infty$	$v < \infty$
Greedy	$\mathcal{O}(n)$	$\mathcal{O}\left(\frac{v}{\Lambda}\log\frac{v}{\Lambda^2}\right)$	
UCB1	deterministic	$\mathcal{O}\left(\frac{1}{\Delta}\log n\right)$	$\mathcal{O}\left(\frac{1}{\Delta}\log n\right)$
OPTIMIST	deterministic	$\mathcal{O}\left(\frac{1}{\Delta}\log n\right)$	$\mathcal{O}\left(\frac{v}{\Delta}\log\frac{v}{\Delta^2}\right)$
RANDOMIST	randomized	$\mathcal{O}\left(\frac{1}{\Delta}\log n\right)$	$\mathcal{O}\left(\frac{v}{\Delta}\log\frac{v}{\Delta^2}\right)$

Compact Policy Space

$$\Theta = [-D, D]^d \text{ and } v = \sup_{\boldsymbol{\theta}, \boldsymbol{\theta}' \in \Theta} d_2(p_{\boldsymbol{\theta}} || p_{\boldsymbol{\theta}'})$$

Algorithm	Complexity	$\mathbb{E} \operatorname{Regret}(n)$
OPTIMIST	$t^{1+\frac{d}{2}}$	$\mathcal{O}\left(\sqrt{vdn}\right)$
RANDOMIST	dt^2	?

RANDOMIST replaces the discretization of OPTIMIST with MCMC sampling:

$$\boldsymbol{\theta}_t \sim \Pr\left(\widecheck{J}_t(\boldsymbol{\theta}) + U_t(\boldsymbol{\theta}) = \sup_{\boldsymbol{\theta}' \in \Theta} \widecheck{J}_t(\boldsymbol{\theta}') + U_t(\boldsymbol{\theta}')\right)$$

REFERENCES

- P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed bandit problem. Mach. Learn., 47(2-3):235-256, 2002.
- M. P. Deisenroth, G. Neumann, and J. Peters. A survey on policy search for robotics. Foundations and Trends in Robotics, 2(1-2):1–142, 2013.
- E. L. Ionides. Truncated importance sampling. JCGS, 17(2):295–311, 2008. A. M. Metelli, M. Papini, F. Faccio, and M. Restelli. Policy optimization via
- importance sampling. In NeurIPS, 2018. A. M. Metelli, M. Papini, N. Montali, and M. Restelli. Importance sampling
- techniques for policy optimization. JMLR, 21(141):1–75, 2020. M. Papini, A. M. Metelli, L. Lupo, and M. Restelli. Optimistic policy opti-
- mization via multiple importance sampling. In ICML, 2019. E. Veach and L. J. Guibas. Optimally combining sampling techniques for monte carlo rendering. In S. G. Mair and R. Cook, editors, SIGGRAPH,
- pages 419–428. ACM, 1995.