

Compendium of Knowledge Volume II: Neural Nucleus Version 0.003

Compiled by: Antonius W. $Torode^1$ 1. Applied Research Laboratories - University Of Texas: Austin Written in: \LaTeX

\bigodot 2023 Antonius Torode All rights reserved.

This work may be distributed and/or modified under the conditions of Antonius' General Purpose License (AGPL).

The original maintainer of this work is: Antonius Torode.

The current maintainer of this work is: Antonius Torode.

Chief Editor: Antonius Torode

Published by Antonius Torode.

Hosted at: https://torodean.github.io/

Github Repository: https://github.com/torodean/Antonius-Compendium

Torode, A.
Antonius' Compendium.
Applied Research Laboratories –
2023.
Volume I.

Version: 0.003

Preface

This document is a compilation of scratch work, derivations, useful formulas, definitions, constants, and general information used for my own studies as a reference while furthering self education. These are my notes. It's purpose is to provide a complete 'compendium' per say of various mathematical and significant ideas used often. All the material in this document was either directly copied from one of the references listed at the end or derived from scratch. On occasion typos may exist due to human error but will be corrected when discovered.

The version number is updated every time the document is distributed, printed for distribution, or a major update is added. This ensures that there is no two copies with different information and similar version numbers. The latest update date is automatically set to the current date each time the document is edited. Please refrain from distributing this handbook without permission from the original author/compiler. This book is formatted for printing.

Topics Covered In This Book

- General Mathematics
- Calculus
- Linear Algebra
- Geometry
- Statistical Mechanics

- Astrophysics
 Electrodynamics
 Relativity
 Classical Mechanics

The information in this book is in no way limited to the topics listed above. They serve as a simple guideline to what you will find within this document. For more information about this book or details about how to obtain your own copy please visit:

https://torodean.github.io/

"Scientific theories deal with concepts, not with reality. All theoretical results are derived from certain axioms by deductive logic. In physical sciences the theories are so formulated as to correspond in some useful sense to the real world, whatever that may mean. However, this correspondence is approximate, and the physical justification of all theoretical conclusions is based on some form of inductive reasoning." - Athanasios Papoulis (Probability, Random Variables, and Stochastic Processes book)

Disclaimer

This book contains formulas, definitions, and theorems that by nature are very precise. Due to this, some of the material in this book was taken directly from other sources such as but not limited to Wolfram Mathworld. This is only such in cases where a change in wording could cause ambiguities or loss of information quality. Following this, all sources used are listed in the references section and cited when used.

This page intentionally left blank. (Yes, this is a contradiction.)

Contents

	Artificial Intelligence 1.1 Introduction	1
2	Psychology	2
3	resources	3
\mathbf{R}_{0}	eferences	3

Artificial Intelligence

1.1 Introduction

Artificial Intelligence (AI) is the field of study concerned with the design and development of systems capable of performing tasks that typically require human intelligence. These tasks include learning, reasoning, problem-solving, perception, and language understanding. In a sense, this is an attempt to artificially mimic human intelligence while simultaneously combining it with the advantages that modern technological computing powers bring. AI spans a wide range of sub-fields, from symbolic logic and knowledge representation to machine learning and neural networks. It intersects with disciplines such as computer science, mathematics, neuroscience, and philosophy.

Modern AI systems are broadly categorized into two classes: narrow AI, designed for specific tasks, and general AI, which aspires to emulate human-level cognition across diverse domains. Key concepts include algorithms, data structures, optimization, statistical inference, and computational models of learning. Recent advancements in Large Language Models (LLMs) have demonstrated the ability of transformer-based architectures to generate coherent text, perform reasoning tasks, and interface with complex domains using natural language, which gives an appearance for the foundations of creating a general AI. Artificial General Intelligence (AGI) refers to a type of AI that possesses the ability to understand, learn, and apply knowledge across a wide range of tasks at a level comparable to human intelligence, which is the goal of many.

Applications of AI are pervasive, influencing medicine, finance, robotics, language processing, and decision-making systems. Continued advancement in AI raises important technical, ethical, and societal questions, many of which remain open areas of research.

Psychology

2.1 Introduction

Psychology is the scientific study of mind and behavior, encompassing the processes underlying cognition, emotion, perception, and action. It explores how individuals think, feel, and behave across various contexts, integrating insights from biology, sociology, philosophy, and neuroscience. The field is broadly divided into sub-disciplines such as cognitive psychology, behavioral psychology, developmental psychology, clinical psychology, and social psychology. Each examines different aspects of mental processes and behavior, using both experimental and observational methods.

Psychological research informs fields like education, mental health, artificial intelligence, and human-computer interaction, providing foundational understanding of human cognition and behavior.

References

- [1] Bauer, W., and Gary D. Westfall. University Physics with Modern Physics. 2nd ed. Vol. 2. New York, NY: McGraw-Hill Companies, 2014. Print.
- [2] Boas, Mary L. Mathematical Methods in the Physical Sciences. 3rd ed. New York: John Wiley & Sons, 1984. Print.
- [3] http://www.dictionary.com
- [4] Griffiths, David J. Introduction to Electrodynamics. 4th ed. N.p.: Pearson India Education Services Pvt, 2015. Print.
- [5] Griffiths, David J. Introduction to Quantum Mechanics. 2nd ed. Harlow: Pearson, 2014. Print.
- [6] Haberman, R. "Applied Partial Differential Equations: with Fourier series and Boundary Value Problems." 4th ed. Upper Saddle River, New Jersey. 2004. Print.
- [7] Judson T. W. "Abstract Algebra: Theory and Applications." Stephen F. Austin State University. August 5, 2017.
- [8] Reitz, John Richard. Foundations of Electromagnetic Theory. 4th ed. N.p.: Addison-Wesley, 1992. Print.
- [9] Kittel, Charles, and Herbert Kroemer. Thermal Physics. San Francisco: W.H. Freeman, 1980. Print.
- [10] Ross, Kenneth A. Elementary Analysis: The Theory of Calculus 2^{nd} edition.
- [11] Ryden, Barbara Sue., and Bradley M. Peterson. Foundations of Astrophysics. San Francisco: Addison-Wesley, 2010. Print.
- [12] "Table of Isotopic Masses and Natural Abundances." (n.d.): n. pag. NC State University. Web. https://www.ncsu.edu/chemistry/msf/pdf/IsotopicMass_NaturalAbundance.pdf.
- [13] Taylor, John R. Classical Mechanics. Sausalito, CA: U Science, 2005. Print.
- [14] "Wolfram|Alpha: Computational Knowledge Engine." N.p., n.d. Web. 2016 x
- [15] "Wolfram MathWorld: The Web's Most Extensive Mathematics Resource." Wolfram MathWorld. N.p., n.d. Web.
- [16] Zee, Dennis G. A first Course in Differential Equations with Modeling Applications." Edition 10. Book.
- [17] Taylor, John R. (John Robert), 1939. An introduction to error analysis I John R. Taylor.-2nd ed.
- [18] The Feynman Lectures on Physics, https://www.feynmanlectures.caltech.edu/
- [19] IUPAC Periodic Table of the Elements and Isotopes. https://applets.kcvs.ca/IPTEI/IPTEI.html
- [20] Table Of Nuclides. Nuclear Data Center at KAERI. https://atom.kaeri.re.kr/nuchart/
- [21] Sakurai, J. J. (Jun John), 1933-1982. Modern quantum mechanics. 2nd ed. I J.J. Sakurai, Jim Napolitano. p. cm. ISBN 978-0-8053-829 1-4 (alk. paper)
- [22] Xavier Lirton, An Introduction to Underwater Acoustics: Principals and Applications, Praxis Publishing, 2004.
- [23] Sean M. Carroll, An Introduction to General Relativity: Spacetime and Geometry
- [24] Andrew J. S. Hamilton, General Relativity, Black Holes, and Cosmology, 13 January 2020
- [25] Newton's Scholium on Time, Space, Place and Motion, https://plato.stanford.edu/entries/newton-stm/scholium.html
- [26] Being, Nothingness, and the Quantum Vacuum: Revisiting Aether Through Heidegger's Lens, Douglas C. Youvan, March 13, 2024
- [27] The Michelson-Morley Experiment, Michael Fowler, UVa, https://galileoandeinstein.phys.virginia.edu/lectures/michelson.html#Detecting%20the%20Aether%20Wind:%20the%20Michelson-Morley%20Experiment
- [28] The Speed of Light in the Quantum Vacuum Aether: the "Equation of God", Toni Scarmato, May 2023, https://www.researchgate.net/profile/Toni-Scarmato/publication/371379815_The_Speed_of_Light_in_the_Quantum_Vacuum_Aether_the_Equation_of_God/links/6481e6c62cad460a1bfe15cc/The-Speed-of-Light-in-the-Quantum-Vacuum-Aether-the-Equation-of-God.pdf
- [29] A First Course in Linear Algebra, Robert A. Beezer, Version 3.4. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=2d126254474e43b7d300ef5e60752d5e19f287c3