CSCI E-89B Introduction to Natural Language Processing

Harvard Extension School

Dmitry Kurochkin

Fall 2024

Lecture 1

- Course Information
 - Support Teaching Staff Members
 - Textbooks, Prerequisites, and Grading
 - Dates of Interest
- 2 Introduction to Deep Learning
 - Examples of Feature Engineering
 - Deep Feedforward Neural Network
 - Activation Functions
- Training Neural Networks
 - Loss Function
 - Objective (Cost) Function
 - Example of Forward Propagation/Backpropagation
 - SGD, mini-batch GD, and GD Optimization

- Course Information
 - Support Teaching Staff Members
 - Textbooks, Prerequisites, and Grading
 - Dates of Interest
- 2 Introduction to Deep Learning
 - Examples of Feature Engineering
 - Deep Feedforward Neural Network
 - Activation Functions
- Training Neural Networks
 - Loss Function
 - Objective (Cost) Function
 - Example of Forward Propagation/Backpropagation
 - SGD, mini-batch GD, and GD Optimization

Support Teaching Staff Members

TBA

TBA

TBA

- Course Information
 - Support Teaching Staff Members
 - Textbooks, Prerequisites, and Grading
 - Dates of Interest
- 2 Introduction to Deep Learning
 - Examples of Feature Engineering
 - Deep Feedforward Neural Network
 - Activation Functions
- Training Neural Networks
 - Loss Function
 - Objective (Cost) Function
 - Example of Forward Propagation/Backpropagation
 - SGD, mini-batch GD, and GD Optimization

Textbooks

Steven Bird,

Natural Language Processing with Python,

O'Reilly Media, Inc., 2016

ISBN: 978-1-491-91342-0

Electronic copy can be obtained via Harvard Library.

Lewis Tunstall, Leandro von Werra, Thomas Wolf, Natural Language Processing with Transformers,

O'Reilly Media, Inc., 2022

ISBN: 978-1-098-13676-5

Electronic copy can be obtained via Harvard Library.

Justin Grimmer, Margaret E. Roberts, Brandon M. Stewart, *Text as Data*, Chapter 13 (Topic Models).

Princeton University Press, 2022

ISBN: 978-0-691-20755-1

Alternative: Roberts, M., Stewart, B., & Tingley, D. (2019). stm: R Package for Structural Topic Models. Journal of Statistical Software, 91(2), 1-40.

Optional Textbook

Daniel Jurafsky, James H. Martin, Speech and Language Processing. An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition, O'Reilly Media, Inc., 2023

ISBN: 979-1-221-47684-2

Electronic copy of the book is available via the author's webpage: Speech and Language Processing.

Prerequisites

Calculus

Basic knowledge of calculus:

- Derivatives
- Chain Rule
- Partial derivatives
- Chain Rule
- Gradient etc.

Prerequisites

Probability and Statistics

Basic understanding of probability and statistics:

- Random variables
- Probability distributions
- Expectations etc.

Prerequisites

Python

Python programming equivalent to CSCI E-7:

- Data types
- For loops
- If...elif ...else
- Functions
- Classes/Objects etc.

Grading

Assignments, Quizzes, Exams

```
Grade = 0.65 \cdot Homework (weekly, starting September 22)
+ 0.20 \cdot Quizzes (two per week, starting September 16)
0.15 \cdot Final Project (due December 16, 11:59 pm ET)
```

Homework Assignments

- Unless otherwise specified, homework assignments are due every Sunday by 11:59 PM (Eastern Time).
- Solutions to the assignments submitted later than 1, 2, 3, 4, and 5 days after the due date will be penalized by 10%, 20%, 30%, 40%, and 100%, respectively.
- Submit key parts of your code, results (e.g., plots, tables), and brief discussions as an MS Word or PDF document. You may generate this document using Jupyter Notebook/R Markdown or by taking snapshots.
- Ensure the entire code is submitted. If your code includes multiple files, please submit them as a single zip file along with the report.
- Homework assignments account for 65
- 4-6 "showcase" solutions to each assignment will be posted on Canvas.

Final Project

- Final Project contributes 15% towards the grade and will be due at 11:59 pm (Eastern Time) on December 16. NO late project will be accepted.
- List of final projects:
 - Case Study in Sentiment Analysis
 - Case Study in Fake News Detection
 - Case Study in Language Translation
 - Case Study in Text Generation
 - Case Study in Automatic Text Summarization
 - Case Study in Text Embedding Models
 - ▶ NLP for Healthcare: Medical Text Analysis
 - Case Study in Topic Modeling
 - Automatic Formatting and Styling of Text Documents
 - etc. (approx. 50 topics total to choose from)
- For the final project, students will submit:
 - Working demo
 - 2 7-15 pages of MS Word document
 - 8-15 slides (PowerPoint or pdf)
 - 4 10-15 minute video presentation (YouTube or similar)

- Course Information
 - Support Teaching Staff Members
 - Textbooks, Prerequisites, and Grading
 - Dates of Interest
- 2 Introduction to Deep Learning
 - Examples of Feature Engineering
 - Deep Feedforward Neural Network
 - Activation Functions
- Training Neural Networks
 - Loss Function
 - Objective (Cost) Function
 - Example of Forward Propagation/Backpropagation
 - SGD, mini-batch GD, and GD Optimization

Dates of Interest

- The course starts, September 9
- Last day to change the credit status, September 10
- Course drop deadline for full-tuition refund, September 10
- Quiz 1 is due, September 16
- Assignment 1 is due, September 22
- Course drop deadline for half-tuition refund, September 17
- Withdrawal deadline, November 22
- Final Project is due, December 16, 11:59 pm (Eastern Time)

- Course Information
 - Support Teaching Staff Members
 - Textbooks, Prerequisites, and Grading
 - Dates of Interest
- 2 Introduction to Deep Learning
 - Examples of Feature Engineering
 - Deep Feedforward Neural Network
 - Activation Functions
- Training Neural Networks
 - Loss Function
 - Objective (Cost) Function
 - Example of Forward Propagation/Backpropagation
 - SGD, mini-batch GD, and GD Optimization

Example of ML: Linear Regression

Linear Regression on manually designed features u_1 , u_2 , and u_3 :

Model:

$$\hat{y} = w_0 + w_1 \cdot \underbrace{x}_{u_1} + w_2 \cdot \underbrace{x^2}_{u_2} + w_3 \cdot \underbrace{x^3}_{u_3}$$

Example of DL: Convolutional Neural Network (CNN)

Deep Learning as multistage learning of data representations:

Example Feedforward Neural Network (FNN)

Let's consider a *Artificial Neural Network* which has two real-valued inputs (denoted by x_1 and x_2), one hidden layer that consists of two neurons (u_1 and u_2) with ReLU activation functions, and one output \hat{y} with the ReLU activation function.

The explicit representation of this network is

input layer	hidden layer	output layer
$x_1 \\ x_2$	$u_1 = f(w_{01}^{(1)} + w_{11}^{(1)} x_1 + w_{21}^{(1)} x_2) u_2 = f(w_{02}^{(1)} + w_{12}^{(1)} x_1 + w_{22}^{(1)} x_2)$	$\hat{y} = f(w_0^{(2)} + w_1^{(2)}u_1 + w_2^{(2)}u_2)$

Here, f(x) denotes the rectified linear unit (ReLU) defined as follows:

$$f(x) = \begin{cases} x, & \text{if } x \ge 0, \\ 0, & \text{if } x < 0. \end{cases}$$

Example: Artificial NN with 2 inputs and 1 output (cont.)

- Course Information
 - Support Teaching Staff Members
 - Textbooks, Prerequisites, and Grading
 - Dates of Interest
- 2 Introduction to Deep Learning
 - Examples of Feature Engineering
 - Deep Feedforward Neural Network
 - Activation Functions
- Training Neural Networks
 - Loss Function
 - Objective (Cost) Function
 - Example of Forward Propagation/Backpropagation
 - SGD, mini-batch GD, and GD Optimization

Deep Feedforward Neural Network

Deep Neural Network (DNN) with

- n inputs
- ullet M outputs
- L-1 hidden layers

is defined as:

$$\hat{\mathbf{y}} = f^{(L)}(f^{(L-1)}(\dots f^{(1)}(\mathbf{x}))),$$

where

$$\mathbf{x} = (x_1, x_2, \dots, x_n)^T \in \mathbb{R}^n$$
 are inputs, $\hat{\mathbf{y}} = (\hat{y}_1, \hat{y}_2, \dots, \hat{y}_M)^T \in \mathbb{R}^M$ are outputs,

and $f^{(1)},\dots,f^{(L-1)},f^{(L)}$ are vector-values functions.

Example: Regression with NNs

NN

$$\hat{\boldsymbol{y}} = f^{(2)}(\underbrace{f^{(1)}(\boldsymbol{x})}_{\doteq \boldsymbol{u}})$$

with

• $f^{(2)}: \mathbb{R}^H \mapsto \mathbb{R}$, i.e. M=1, is used for *regression*.

Example: Regression with NNs

Keras:

```
import keras import models
from keras import layers

# number of inputs
n = 900

model = models.Sequential()
model.add(layers.Dense(16, activation='relu', input_shape=(n,)))
model.add(layers.Dense(1, activation='relu'))
model.summary()
```

Layer (type)	Output	Shape	Param #
dense_3 (Dense)	(None,	16)	14416
dense_4 (Dense)	(None,	1)	17
Total params: 14,433 Trainable params: 14,433 Non-trainable params: 0			

Example: Classification with NNs

NN

$$\hat{\boldsymbol{y}} = f^{(2)}(\underbrace{f^{(1)}(\boldsymbol{x})}_{\doteq \boldsymbol{u}})$$

with

• $f_m^{(2)}(\boldsymbol{u}) \geq 0$ for all $m \in \{1, 2, ..., M\}$ and $\boldsymbol{u} \in \mathbb{R}^H$ and $\sum_{m=1}^M f_m^{(2)}(\boldsymbol{u}) = 1$ for all $\boldsymbol{u} \in \mathbb{R}^H$ is used for *classification*.

Example: Classification with NNs

Keras:

```
import keras
from keras import models
from keras import layers

# number of inputs
n = 900

model = models.Sequential()
model.add(layers.Dense(16, activation='relu', input_shape=(n,)))
model.add(layers.Dense(2, activation='softmax'))
model.summary()
```

Layer (type)	Output	Shape	Param #
dense_5 (Dense)	(None,	16)	14416
dense_6 (Dense)	(None,	2)	34
Total params: 14,450 Trainable params: 14,450 Non-trainable params: 0			

- Course Information
 - Support Teaching Staff Members
 - Textbooks, Prerequisites, and Grading
 - Dates of Interest
- 2 Introduction to Deep Learning
 - Examples of Feature Engineering
 - Deep Feedforward Neural Network
 - Activation Functions
- Training Neural Networks
 - Loss Function
 - Objective (Cost) Function
 - Example of Forward Propagation/Backpropagation
 - SGD, mini-batch GD, and GD Optimization

Activation Functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

tanh

tanh(x)

ReLU

 $\max(0, x)$

Leaky ReLU

 $\max(0.1x, x)$

Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

ELU

 $\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$

Activation Functions: Keras

```
model = models.Sequential()
model.add(layers.Dense(4, activation='sigmoid', input_shape=(4,)))
model.add(layers.Dense(4, activation='tanh'))
model.add(layers.Dense(4, activation=keras.layers.LeakyReLU(alpha=0.1)))
model.add(layers.MaxoutDense(4, nb_feature=2))
model.add(layers.Dense(4, activation=keras.layers.ELU(alpha=1.0)))
model.add(layers.Dense(1, activation='linear'))
model.summary()
```

Model: "sequential_2"

Output	Shape	Param #
(None,	4)	20
(None,	4)	20
(None,	4)	20
(None,	4)	40
(None,	4)	20
(None,	1)	5
	(None, (None, (None, (None,	(None, 4)

Total params: 125 Trainable params: 125 Non-trainable params: 0

- Course Information
 - Support Teaching Staff Members
 - Textbooks, Prerequisites, and Grading
 - Dates of Interest
- 2 Introduction to Deep Learning
 - Examples of Feature Engineering
 - Deep Feedforward Neural Network
 - Activation Functions
- Training Neural Networks
 - Loss Function
 - Objective (Cost) Function
 - Example of Forward Propagation/Backpropagation
 - SGD, mini-batch GD, and GD Optimization

Loss Function

Assume we observe

$$(oldsymbol{x}^{(i)},oldsymbol{y}^{(i)}),$$

where

$$\boldsymbol{x} = (x_1, x_2, \dots, x_n)^T$$
 are n inputs and $\boldsymbol{y} = (y_1, y_2, \dots, y_M)^T$ are M outputs.

The prediction obtained with a supervised model (e.g., Neural Network) is denoted by

$$\hat{m{y}}^{(i)}(m{w}) = \hat{m{y}}(m{x}^{(i)}; m{w}),$$

where $\boldsymbol{w} = (w_1, w_2, \dots, w_k)^T$ are parameters of the model.

Loss Function

Assume we observe

$$(oldsymbol{x}^{(i)},oldsymbol{y}^{(i)}),$$

where

$$m{x} = (x_1, x_2, \dots, x_n)^T$$
 are n inputs and $m{y} = (y_1, y_2, \dots, y_M)^T$ are M outputs.

The prediction obtained with a supervised model (e.g., Neural Network) is denoted by

$$\hat{m{y}}^{(i)}(m{w}) = \hat{m{y}}(m{x}^{(i)}; m{w}),$$

where $\boldsymbol{w} = (w_1, w_2, \dots, w_k)^T$ are parameters of the model.

The loss incurred from incorrect prediction of $oldsymbol{y}^{(i)}$ is

$$L^{(i)}(\boldsymbol{w}) = L(\underbrace{\hat{\boldsymbol{y}}^{(i)}(\boldsymbol{w})}_{\text{prediction observed}}, \ \underbrace{\boldsymbol{y}^{(i)}}_{\text{observed}}).$$

Squared Error

What Loss can we choose in case of prediction? One of the most common loss functions is Squared Error.

If the output is scalar (i.e. M=1), the Squared Error Loss is defined as follows:

$$L^{(i)}(\boldsymbol{w}) = (\hat{y}^{(i)} - y^{(i)})^2.$$

Squared Error

What Loss can we choose in case of prediction? One of the most common loss functions is Squared Error.

If the output is scalar (i.e. M=1), the Squared Error Loss is defined as follows:

$$L^{(i)}(\boldsymbol{w}) = (\hat{y}^{(i)} - y^{(i)})^2.$$

If the output is vector-valued (i.e. M>1), the Squared Error Loss is then similarly defined as:

$$L^{(i)}(\boldsymbol{w}) = |\hat{\boldsymbol{y}}^{(i)} - \boldsymbol{y}^{(i)}|^2 = \sum_{j=1}^{M} (\hat{y}_j^{(i)} - y_j^{(i)})^2.$$

Absolute Error

An alternative to the Squared Error is Absolute Error.

If the output is scalar (i.e. M=1), the Absolute Error Loss is defined as follows:

$$L^{(i)}(\boldsymbol{w}) = |\hat{y}^{(i)} - y^{(i)}|.$$

Absolute Error

An alternative to the Squared Error is Absolute Error.

If the output is scalar (i.e. M=1), the Absolute Error Loss is defined as follows:

$$L^{(i)}(\boldsymbol{w}) = |\hat{y}^{(i)} - y^{(i)}|.$$

If the output is vector-valued (i.e. M>1), the Absolute Error Loss is then defined as:

$$L^{(i)}(oldsymbol{w}) = |\hat{oldsymbol{y}}^{(i)} - oldsymbol{y}^{(i)}| = \left(\sum_{j=1}^{M} (\hat{y}_{j}^{(i)} - y_{j}^{(i)})^{2}\right)^{rac{1}{2}}.$$

Loss Function: Classification

Cross-Entropy

What Loss can we choose in case of classification? One of the most common loss functions is <u>Cross-Entropy</u>.

If there are two classes (i.e. M=2), the Cross-Entropy Loss is defined as follows:

$$L^{(i)}(\boldsymbol{w}) = -\left(y_1^{(i)} \ln \hat{y}_1^{(i)} + y_2^{(i)} \ln \hat{y}_2^{(i)}\right).$$

Loss Function: Classification

Cross-Entropy

What Loss can we choose in case of classification? One of the most common loss functions is Cross-Entropy.

If there are two classes (i.e. M=2), the Cross-Entropy Loss is defined as follows:

$$L^{(i)}(\boldsymbol{w}) = -\left(y_1^{(i)} \ln \hat{y}_1^{(i)} + y_2^{(i)} \ln \hat{y}_2^{(i)}\right).$$

If there are multiple classes (i.e. M>2), the (Multi-Class) Cross-Entropy Loss is defined as follows:

$$L^{(i)}(\boldsymbol{w}) = -\sum_{i=1}^{M} y_j^{(i)} \ln \hat{y}_j^{(i)}.$$

Contents

- Course Information
 - Support Teaching Staff Members
 - Textbooks, Prerequisites, and Grading
 - Dates of Interest
- 2 Introduction to Deep Learning
 - Examples of Feature Engineering
 - Deep Feedforward Neural Network
 - Activation Functions
- Training Neural Networks
 - Loss Function
 - Objective (Cost) Function
 - Example of Forward Propagation/Backpropagation
 - SGD, mini-batch GD, and GD Optimization

Objective (Cost) Function

Suppose we want to train a supervised model (e.g., Neural Network) using a set of observations:

$$(x_1, y_1), (x_2, y_2), (x_3, y_3), \dots, (x_m, y_m)$$

then we define the objective (or cost) function as mean loss:

$$J(\boldsymbol{w}) = \frac{1}{m} \sum_{i=1}^{m} L^{(i)}(\boldsymbol{w}),$$

where

$$L^{(i)}(\boldsymbol{w}) = L(\underline{\hat{\boldsymbol{y}}^{(i)}(\boldsymbol{w})}, \ \underline{\boldsymbol{y}^{(i)}})$$
 prediction observed

is the loss associated with a single observation i as defined earlier.

Objective (Cost) Function

The list of the most common cost functions:

• Mean Squared Error:

$$J(\boldsymbol{w}) = \frac{1}{m} \sum_{i=1}^{m} \sum_{j=1}^{M} (\hat{y}_{j}^{(i)} - y_{j}^{(i)})^{2}$$

Mean Absolute Error:

$$J(\boldsymbol{w}) = \frac{1}{m} \sum_{i=1}^{m} \left(\sum_{j=1}^{M} (\hat{y}_{j}^{(i)} - y_{j}^{(i)})^{2} \right)^{\frac{1}{2}}$$

Cross-Entropy:

$$J(\mathbf{w}) = -\frac{1}{m} \sum_{i=1}^{m} \sum_{j=1}^{M} y_j^{(i)} \ln \hat{y}_j^{(i)}$$

- 4 ロ ト 4 個 ト 4 種 ト 4 種 ト - 種 - り Q (C)

Cost Function Landscape

Keras: Classification Example

```
model = models.Sequential()
model.add(layers.Denne(512, activation='relu', input_shape=(784,)))
model.add(Deopout(0.2))
model.add(layers.Denne(512, activation='relu'))
model.add(Ocpout(0.2))
model.add(layers.Denne(10, activation='softmax'))
model.add(layers.Denne(10, activation='softmax'))
Model.summary()
Model: "sequential 14"
```

Layer (type) Output Shape Param # dense_35 (Dense) (None, 512) 401920 dropout_1 (Dropout) (None, 512) 0 dense_36 (Dense) (None, 512) 262656 dropout_2 (Dropout) (None, 512) 0 dense_37 (Dense) (None, 10) 5130

Total params: 669,706 Trainable params: 669,706 Non-trainable params: 0

Keras: Loss Functions

More loss functions available in Keras:

mean_squared_error mean absolute error mean_absolute_percentage_error mean_squared_logarithmic_error squared_hinge hinge categorical_hinge logcosh categorical_crossentropy sparse_categorical_crossentropy binary_crossentropy kullback_leibler_divergence poisson cosine_proximity

The complete list can be found at https://keras.io/losses/

Contents

- Course Information
 - Support Teaching Staff Members
 - Textbooks, Prerequisites, and Grading
 - Dates of Interest
- 2 Introduction to Deep Learning
 - Examples of Feature Engineering
 - Deep Feedforward Neural Network
 - Activation Functions
- Training Neural Networks
 - Loss Function
 - Objective (Cost) Function
 - Example of Forward Propagation/Backpropagation
 - SGD, mini-batch GD, and GD Optimization

Example of Forward Propagation/Backpropagation

Backpropagation:

Given weights \boldsymbol{w} , inputs x_1 , x_2 , and $z_1^{(1)}$, $z_2^{(1)}$, u_1 , u_2 , \hat{y} , compute

Error associated with the output layer:

$$\varepsilon^{(2)} \doteq \frac{\partial L}{\partial \hat{y}} = \frac{\partial}{\partial \hat{y}} \left[(\hat{y} - y)^2 \right] = 2(\hat{y} - y)$$

Errors associated with the hidden layer:

$$\varepsilon_h^{(1)} \doteq \frac{\partial L}{\partial u_h} = \frac{\partial L}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial u_h} = \varepsilon^{(2)} f'(z^{(2)}) w_h^{(2)}, \quad h = 1, 2.$$

Example of Forward Propagation/Backpropagation

Computation of $\nabla L(\boldsymbol{w})$:

Partial derivatives of the loss function with respect to weights in the output layer:

$$\frac{\partial L}{\partial w_h^{(2)}} = \frac{\partial L}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial w_h^{(2)}} = \varepsilon^{(2)} \frac{\partial}{\partial w_h^{(2)}} \left[f(\underbrace{w_0^{(2)} + w_1^{(2)} u_1 + w_2^{(2)} u_2}_{z^{(2)}}) \right] = \varepsilon^{(2)} f'(z^{(2)}) u_h,$$

where h = 0, 1, 2.

Partial derivatives of the loss function with respect to weights in the hidden layer:

$$\frac{\partial L}{\partial w_{jh}^{(1)}} = \frac{\partial L}{\partial u_h} \frac{\partial u_h}{\partial w_{jh}^{(1)}} = \varepsilon_h^{(1)} \frac{\partial}{\partial w_{jh}^{(1)}} \left[f(\underbrace{w_{0h}^{(1)} + w_{1h}^{(1)} x_1 + w_{2h}^{(1)} x_2}_{z_h^{(1)}}) \right] = \varepsilon_h^{(1)} f'(z_h^{(1)}) x_j,$$

for each j=0,1,2 and h=1,2. Here, we define $x_0 \doteq 1$.

Example of Forward Propagation/Backpropagation

The Stochastic Gradient Descent (SGD) update of the weights using learning rate α :

$$\mathbf{w} := \mathbf{w} - \alpha \nabla L,$$
 where $\nabla L \doteq \left(\underbrace{\frac{\partial L}{\partial w_{01}^{(1)}}, \frac{\partial L}{\partial w_{11}^{(1)}}, \frac{\partial L}{\partial w_{02}^{(1)}}, \frac{\partial L}{\partial w_{02}^{(1)}}, \frac{\partial L}{\partial w_{12}^{(1)}}, \frac{\partial L}{\partial w_{22}^{(1)}}, \underbrace{\frac{\partial L}{\partial w_{02}^{(2)}}, \frac{\partial L}{\partial w_{1}^{(2)}}, \frac{\partial L}{\partial w_{2}^{(2)}}, \frac{\partial L}{\partial w_{2}^{(2)}}}_{\text{output layer}}\right)^{T}.$

Therefore,

$$\begin{split} \mathbf{w} &:= \mathbf{w} - \alpha \nabla L \\ &= \underbrace{\left(\underbrace{w_{01}^{(1)}, w_{11}^{(1)}, w_{21}^{(1)}, w_{02}^{(1)}, w_{12}^{(1)}, w_{22}^{(1)}, \underbrace{w_{0}^{(2)}, w_{1}^{(2)}, w_{2}^{(2)}} \right)^{T}}_{\text{hidden layer}} \\ &- \alpha \Big(\underbrace{\frac{\partial L}{\partial w_{01}^{(1)}, \frac{\partial L}{\partial w_{11}^{(1)}}, \frac{\partial L}{\partial w_{21}^{(1)}, \frac{\partial L}{\partial w_{02}^{(1)}}, \underbrace{\frac{\partial L}{\partial w_{12}^{(1)}}, \frac{\partial L}{\partial w_{22}^{(1)}}, \underbrace{\frac{\partial L}{\partial w_{22}^{(1)}}, \underbrace{\frac{\partial L}{\partial w_{12}^{(2)}}, \frac{\partial L}{\partial w_{22}^{(1)}}, \underbrace{\frac{\partial L}{\partial w_{12}^{(2)}}, \frac{\partial L}{\partial w_{12}^{(2)}}, \underbrace{\frac{\partial L}{\partial w_{1$$

Contents

- Course Information
 - Support Teaching Staff Members
 - Textbooks, Prerequisites, and Grading
 - Dates of Interest
- 2 Introduction to Deep Learning
 - Examples of Feature Engineering
 - Deep Feedforward Neural Network
 - Activation Functions
- Training Neural Networks
 - Loss Function
 - Objective (Cost) Function
 - Example of Forward Propagation/Backpropagation
 - SGD, mini-batch GD, and GD Optimization

SGD, mini-batch GD, and GD Optimization: 'sgd'

The SGD, mini-batch GD, and GD Optimization (with learning rate α) are all defined as follows:

$$\boldsymbol{w} := \boldsymbol{w} - \alpha \underbrace{\frac{1}{s} \sum_{i=1}^{s} \nabla L^{(i)}(\boldsymbol{w})}_{\approx \nabla J(\boldsymbol{w})},$$

where $L^{(i)}(\boldsymbol{w})$ is based on one observation i and

- s = 1 in case of Stochastic Gradient Descent (SGD)
- 1 < s < m in case of mini-batch Gradient Descent (mini-batch GD)
- s = m in case of Gradient Descent (GD)

Here, m denotes the total number of observations in the data set.

SGD, mini-batch GD, and GD Optimization

Example: Classification via mini-batch GD with s=128 and $\alpha=0.01$.

```
model = models.Sequential()
model.add(layers.Dense(512, activation='relu', input shape=(784,)))
model.add(Dropout(0.2))
model.add(lavers.Dense(512, activation='relu'))
model.add(Dropout(0.2))
model.add(layers.Dense(10, activation='softmax'))
model.summarv()
Model: "sequential 14"
Laver (type)
                              Output Shape
                                                         Param #
                              (None, 512)
dense 35 (Dense)
dropout 1 (Dropout)
                              (None, 512)
dense 36 (Dense)
                              (None, 512)
dropout 2 (Dropout)
                              (None, 512)
dense 37 (Dense)
                              (None, 10)
Total params: 669,706
Trainable params: 669,706
Non-trainable params: 0
nepochs = 35
```

SGD, mini-batch GD, and GD Optimization

Example: Classification via mini-batch GD with s=128 and $\alpha=0.05$.

```
model = models.Sequential()
model.add(layers.Dense(512, activation='relu', input shape=(784,)))
model.add(Dropout(0.2))
model.add(layers.Dense(512, activation='relu'))
model.add(Dropout(0.2))
model.add(lavers.Dense(10, activation='softmax'))
model.summary()
Model: "sequential 14"
Layer (type)
                              Output Shape
                                                        Param #
dense 35 (Dense)
                              (None, 512)
                                                        401920
dropout 1 (Dropout)
                              (None, 512)
dense 36 (Dense)
                              (None, 512)
                                                        262656
dropout 2 (Dropout)
                              (None, 512)
dense 37 (Dense)
                              (None, 10)
Total params: 669,706
Trainable params: 669,706
Non-trainable params: 0
nepochs = 35
model.compile(loss='categorical crossentropy', metrics=['accuracy'],
              optimizer=keras.optimizers.SGD(lr=0.05))
history = model.fit(X train, y train,
          batch size=128, epochs=nepochs,
          verbose=1.
           validation data=(X test, v test))
```