

<u>Unit 4 Unsupervised Learning (2</u>

3. Introduction to the K-Medoids

Course > weeks)

> <u>Lecture 14. Clustering 2</u> > Algorithm

3. Introduction to the K-Medoids Algorithm Introduction to the K-Medoids Algorithm

compute

the distances between these points and the rest.

So doing this algorithm, we for sure can solve the two problems which were limiting

for us in the case of K-means.

We can work with any distance functions

as you can compute it.

And we also are guaranteed to get points

from our regional set.

Video

<u>Download video file</u>

Transcripts

<u>Download SubRip (.srt) file</u>

<u>Download Text (.txt) file</u>

K-Medoids Algorithm as a Variation of K-Means

1/1 point (graded)

As explained in the lecture video, the K-Medoids algorithm is a variation of the K-Means algorithm that addresses some of the K-Means algorithm's limitations. The K-Medoids algorithm is given by

- 1. Randomly select $\{z_1,\ldots,z_k\}\subseteq \{x_1,\ldots,x_n\}$
- 2. Iterate
 - 1. Given z_1, \ldots, z_k , assign each $x^{(i)}$ to the closest z_j . i.e., assign each $x^{(i)}$.
 - 2. Given $C_j \in ig\{C_1,\ldots,C_kig\}$ find the best representative $z_j \in ig\{x_1,\ldots,x_nig\}$ such that

$$\sum_{x^{(i)} \in C_j} \mathrm{dist}\,(x^{(i)},z_j)$$

is minimal.

Which part of the K-Medoids algorithm is different from its equivalent counterpart in the K-Means algorithm?

- Part 2.1
- Part 2.2

Solution:

As mentioned in the lecture, the k-medoids algorithm is another version of the k-means algorithm with line 2b changed so that

- 1. It is guaranteed that the K representatives $z_1,\ldots,z_k \in \{x_1,\ldots,x_n\}$
- 2. Line 2b finds cost-minimizing representatives z_1, \ldots, z_k with any kind of cost measure

Submit

You have used 1 of 1 attempt

• Answers are displayed within the problem

Fact Check on the K-Medoids Algorithm

1/1 point (graded)

Which of the following is true about the K-Medoids algorithm? Choose all those apply.

- lacksquare It is always guaranteed that the K representatives $z_1,\dots,z_k \in \{x_1,\dots,x_n\}$
- ✓ Line 2b of the algorithm(Given $C_j \in \{C_1, \ldots, C_k\}$ find the best representative $z_j \in \{x_1, \ldots, x_n\}$ such that...) finds the cost-minimizing representatives $z_1, \ldots z_k$ for any distance measure ✓

Solution:

The K-Medoids algorithm is designed so that the two limitations of the K-Means algorithm are resolved. You have used 1 of 2 attempts Submit • Answers are displayed within the problem Discussion **Hide Discussion** Topic: Unit 4 Unsupervised Learning (2 weeks): Lecture 14. Clustering 2 / 3. Introduction to the K-Medoids Algorithm Add a Post Show all posts by recent activity ▼ • fact check 2 Does the second choice mean to say that K-Medoids finds the cost-minimizing representatives **subject to the constraint that the representatives b... Typo in the last question 2 cost-minimizng

Learn About Verified Certificates

© All Rights Reserved