Nombre	у	apellido
--------	---	----------

Número de libreta:

1	2	3	4	Calificación

Álgebra Lineal Computacional

Recuperatorio del Primer Parcial – 7 de diciembre de 2022

Ejercicio 1. Sea
$$0 < \varepsilon < 1$$
 y sea $A_{\varepsilon} = \begin{pmatrix} 1 + \varepsilon & 1 & 1 - \varepsilon \\ \varepsilon & \varepsilon & 0 \\ \varepsilon - 1 & 0 & -1 \end{pmatrix}$.

(a) (1,5 pts.) Para
$$\varepsilon=10^{-3}$$
 resolver el sistema $Ax=\begin{pmatrix}1\\2\\-1\end{pmatrix}$ con aritmética de punto

flotante de base 10 de 2 dígitos de mantisa y redondeo.

(b) (1 pt.) Probar que
$$Cond_{\infty}(A_{\varepsilon}) \xrightarrow[\varepsilon \to 0]{} +\infty$$
.

Ejercicio 2. Hallar una matriz **simétrica** $A \in \mathbb{R}^{3\times 3}$ tal que (1,0,0) sea autovector de A+2I de autovalor -1, (0,2,-1) sea autovector de A^{-1} de autovalor 2 y tal que $\det(A) = -6$.

Ejercicio 3. Sea
$$A \in \mathbb{R}^{4\times 4}$$
, $A = \begin{pmatrix} 1 & -2 & 1 & 1 \\ -2 & 2 & 1 & -1 \\ 1 & 1 & \alpha & 0 \\ 2 & -4 & 1 & 1 \end{pmatrix}$.

- (a) (1 pt.) Hallar el valor de α para que A no admita descomposición LU.
- (b) (1,5 pts.) Para el valor de α hallado en el ítem anterior, hallar una matriz de permutación P adecuada y calcular la descomposición PA = LU.

Ejercicio 4. Sea $P \in \mathbb{R}^{3\times 3}$,

$$P = \begin{pmatrix} a & b & 0 \\ a & b & 1 \\ b & 2a & 0 \end{pmatrix}.$$

- (a) (1 pt.) Determinar $a, b \in \mathbb{R}$ para los cuales P resulta una matriz de Markov y, para los valores hallados, determinar todos los estados de equilibrio.
- (b) (1,5 pts.) Sean a y b los hallados en el ítem (a). Determinar si existe estado límite para los siguientes estados iniciales y en caso afirmativo, hallarlo:
 - (i) $v_0 = (3/6, 1/6, 2/6)$.
 - (ii) $v_0 = (3/8, 3/8, 2/8)$. ¿Existe P^{∞} ?