	Code 18CSC204J Course Name				DESIGN AND ANALYSIS OF ALGORITHMS					С	C Professional Co						Core	L T P					4	
	requisite	18CSC201J, 18	ICSC202J	Co-requisite	18CSC207J				ogressi		NI													_
	ourses se Offerin	g Department	Computer Science	Courses and Engineering	Data Boo	k / Codes/Sta	ndards	Ni	Courses	s										_				
											_													
		ng Rationale (CLR	t): The purpose of learn	ing this course is to	E				Learnin	ng					Pro	gram	Learni	ing O	utcon	es (Pl	LO)			
CLR-	: Desi		ms in solving complex re- tm design techniques to s		lems in polynomial time			1	2	3	l F	1 2	3	4	5	6	7	8	9	10 1	11 1	2 13	14	15
CLR-	: Utiliz	re various approach	es to solve greedy and d d branch and bound para	ynamic algorithms				Thinking (Bloom)	80	8		8	neut		L				¥g.		8			
CLR-	5: Anal	yze the need of app	proximation and randomiz	ration algorithms, ut	ilize the importance Non	polynomial alg	gorithms	in orbi	- 60	эше		Sign Sign	18	6	gesh	5	-5		8	- 11	Ē -			
CLR-	: Cons	struct algorithms the	at are officient in space a	nd time complexite:	5			T I	P.	dAtt		ang. nAm	& De	S, Design	Tool	8	wiroment 8 steinsbilliv		-	9	opect Mgt &	š _		_
Cour	e Learnir	ng Outcomes (CL)	O): At the end of this co	urse, learners will b	e able to:			go pavag	Specie d Proficie ncy (%	Specte d'Attairment		engin eerin gikino weoge Problem Anal ysis	Sesion&	raaysas,	Vodem To ol	ociety & Culture	nviron Listair	Ehios	ndvidual & Team Work	Communical	Topoc	1.08	8	8
CLO-	1: Appl	y officient algorithm	is to reduce space and fill lyide and conquer approx	me complexity of bo	th recurrent and non-recu	rrent relations	1	3	80	70 75	1 🗆			H	L		ш оз	-		_		1 :		•
CLO-	3: App)	y greedy and dynar	mic programming types to	echniques to solve p				3	75	70		M H	M	н	L	:			M	ï				:
CLO-	4: Crea 5: Inter	te exponential prob pret various approx	tions using backtracking imation algorithms and in	and branch and boo terpret solutions to	und approaches. evaluate P type, NP Typ: y using divide conquer, g	e, NPC, NP H	ard problems	3	85 85	75		м н н н	M	Н	L				M	L				
CLO-	5: Crea	te algorithms that a	ere efficient in space and	time complexities by	y using divide conquer, g	reedy, backtra	cking technique	3	80	70		L H	M	Н	L				L	L				
Dumi	ion (hour)		15		15		15			$\overline{}$			_	15			_				15			_
Dura	SLO-1	Introduction-Aigo	-	Introduction-Divid	-		-Greedy and Dy	nam	ic		ntroduct	Son to b			- bra	nch a	nd				domiz	ation a	nd	_
S-1		Fundamentals of				Programmir Examples of	ng I problems that	can t	be solve	uf	ound	h				_	_	approximation algorithm Randomized hiring problem					_	
<u> </u>	SLO-2		•	Maximum Subarri	ay Problem		edy and dynan			+	V queen	-				_	_			_	_	em		_
S-2	SL0-1	Correctness of al	gorithm	Binary Search			ding using gree			_	Sum of s	ubsets	using	back	tracki	ng	_	Rando	mize	f quick	sort			_
	SLO-2	Time complexity a	analysis	Complexity of bin	ary search	method of e	of brute force a sacoding	and h	urman	c	Complex	ily calc	ulatio	n of s	um al	subs	ots	Солтр	lexity	analys	à			
S-3	SL0-1	Insertion sort-Line	e count, Operation count	Merge sort			voblem using gr	_			Graph in	troduct	ion					String	matci	hing al	gorith	19		
	SLO-2	Algorithm Design	paradigms	Time complexity a	analysis	Complexity greedy	derivation of kn	apsa	ck using	у н	la milton	ian circ	uit - I	ecktra	ekin	2		Exam	ples					
8 4-5	SLO-1 SLO-2	Lab 1: Simple Alg	orithm-insertion sort	Lab 4: Quicksort	Binary search		Lab 7: Huffman coding, knapsack and using greedy				Lab 10: N queen's problem						Lab 13: Randomized quick sort							
١	SL0-1	Designing an algo	orithm	Quick sort and its	Time complexity analysis	Tree traversals					Branch and bound - Knapsack problem							Rabin Karp algorithm for string matching						
5-6	SLO-2	And its analysis-6 case	Best, Worst and Average	Best case, Worst analysis	case, Average case	Minimum spanning tree - greedy Kruskal's algorithm - greedy					Example and complexity calculation. Differentiate with dynamic and greedy						Example discussion							
	SLO-1	Asymptotic notati functions.	ons Based on growth	Strassen's Matrix recurrence relatio	multiplication and its n	Minimum spanning tree - Prims algorithm					Travelling salesman problem using branch and bound					nch	Approximation algorithm							
\$-7 SLO-2		0,0,θ, ω, Ω		Time complexity a	analysis of Merge sort	Introduction to dynamic programming					Traveling salesman problem using branch and bound example					nch	Verte	cove	ring					
	SL0-1	Mathematical ana	ilysis	Largest sub-array	SUM	0/1 knapsac	sk problem			7	ravelin and bour	g sales	man	arobie	m usi	ng bra	neh	Introd	vetion	Comp	iaxity	classe		
5-8	SLO-2	Induction, Recurr	ence relations	Time complexity a array sum	analysis of Largest sub-	Complexity problem	calculation of ki	парва	ack		Time con example	nplexity	calc	ulation	with	an		P type	probi	OTIS				
s SLO-1 9-10 SLO-2		Lab 2: Bubble So	rt	,	fatrix multiplication	Lab 8: Various tree traversals, Krukshall's				Ts .	Lab 11: Travelling salesman problem						Lab 14: String matching algorithms							
9-10	aLU-2					MST				_			_		÷					_	_	_		_
						Matrix chain	multiplication a	sino	donami	b T										_				_
S-11	SL0-1	Solution of recurre	ance relations	Master Theorem i	Proof	programmin			- Cyrianin	~ 6	Graph a	gorithm	5					Introd	vetion	to NP	type	orobier	15	
	SLO-2	Substitution metho	od	Master theorem e	vamples	Complexity	of matrix chain	multip	plication	, 6	Depth fir	st soar	ch an	d Brea	edith fi	rst so	arch	Hamil	tonian	cycle	proble	100		
S-12	SL0-1	Solution of recurre	ance relations	Finding Maximum	and Minimum in an arra	Longest cor dynamic pro	mmon subseque ogramming	nce	using	s	Shortest	path in	trodu	ction				MP co	mplet	e prob	iem in	troduc	ion	
-	SLO-2	Recursion tree		Time complexity a	nalysis-Examples		of LCS with an		_	_	loyd-W	ars/hall	Introd	luction				Satisf	ability	proble	O/TO			
S-13	SL0-1	Solution of recurre	ance relations	Algorithm for findi	ing closest pair problem	Optimal binary search tree (OBST)using dynamic programming			, F	Floyd-Warshall with sample graph						NP hard problems								
		Examples		Convex Hull probl	iem	Explanation	of OBST with a	n ex	ample.	F	loyd-W	arshall	comp	lexity				Exam	ples					
8 14-15	SLO-1 SLO-2	Lab 3: Recurrence search	e Type-Merge sort, Linea	Lab 6: Finding Ma an array, Convex		Lab 9: Long	est common su	bseq	uence		ab 12: i uray	BFS an	d DF	S impl	emen	tation		Lab 1 time p			e over	analys	ing a r	(cal
Learn Resou		MIT Press C	Thomas H Cormen, Charles E Leiserson, Ronald L Revest, Cifford Stein, Introduction to Algorithms, 3" ed., The Algorithms, Galgotia Publication, 2014 Algorithms, Galgotia Publication, 2010 4. S. Sridhar, Design and Analysis of Algorithms, Oxford University Press, 2015																					
Learn	ing Asses	sment						_																_
		Bloom's		/80%)			essment (50%)		htage) 3 (15%)				_	1.0	11100	K W		\top	Final	Exami	nation	(50%	reight	age)
		Level of Thinkin	Theory	(10%) Practice	CLA - 2 (15) Theory	Practice	Theory	д- ;		raction	0	T	heory	LA-	IU	N J# Prac	tice	\pm		heory		_	radio	
		Domomhor					1														- 1			

Learning Assessment												
	Bloom's	Continuous Learning Assessment (50% weightage)										
	Level of Thinking	CLA-1	1 (10%)	CLA - 2 (15%)		CLA-2	3 (15%)	CLA-4	(10%)#	Final Examination (50% weightage)		
	Level of Trimong	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
	Remember Understand	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%	
Level 2	Apply Analyze	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	
	Evaluate Create	10%	10%	115%	15%	15%	15%	15%	15%	15%	15%	
	Total	100 %		100	0%	100	1%	100	%			

CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Taks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers										
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts								
1. G. Venkteswaran, Wipro Technologies, gvenki@pilani.bits-pilani.ac.in	1. MiteshKhapra, IITM Chennai, miteshk@cse.litm.ac.in	1. Mr.K.Senthil Kumar, SRMIST								
2. Dr.SainarayananGopalakrishnan, HCL Technologies, sai.jgk@gmail.com	2. V. Masilamani. IITDM, masila@iitdm.ac.in	2. Dr.A.Razia Suthana, SRMIST								
		3. Mr. V. Sivakumar, SRMIST								
		4. Ms. R. Vidhya, SRMIST								