Nate Wells

Math 243: Stat Learning

October 25th, 2021

#### Outline

In today's class, we will...

- Review classification problems
- Discuss Logistic Regression for Classification

### Section 1

Logistic Regression

#### Classification Problems

• Suppose Y is a categorical variable with levels  $A_1, A_2, \ldots, A_k$ .

#### Classification Problems

- Suppose Y is a categorical variable with levels  $A_1, A_2, \ldots, A_k$ .
  - Example: Let Y indicate whether it is raining in Portland at noon on 10/25/21.
  - Levels:  $A_1 = \text{Raining}$ ,  $A_2 = \text{Not Raining}$ .

#### Classification Problems

- Suppose Y is a categorical variable with levels  $A_1, A_2, \ldots, A_k$ .
  - Example: Let Y indicate whether it is raining in Portland at noon on 10/25/21.
  - Levels:  $A_1 = \text{Raining}$ ,  $A_2 = \text{Not Raining}$ .
- Goal: Build a model f to classify an observation into levels  $A_1, A_2, \ldots, A_k$  based on the values of several predictors  $X_1, X_2, \ldots, X_p$  (quantitative or categorical)

$$\hat{Y} = f(X_1, X_2, \dots, X_p)$$
 where  $f$  take values in  $\{A_1, \dots, A_k\}$ 

## Classification Regions

Any classification model will divide predictor space into unions of regions, where each point in a region will be classified in the same way.



Different models will have different geometries for classification boundaries.

## Classification Regions

Any classification model will divide predictor space into unions of regions, where each point in a region will be classified in the same way.



The purple line indicates the optimal decision boundary.

• The Bayes classifier theoretically minimizes error rate

$$f(x_0) = \operatorname{argmax}_{A_j} P(Y = A_j \,|\, X = x_0)$$

• The Bayes classifier theoretically minimizes error rate

$$f(x_0) = \operatorname{argmax}_{A_i} P(Y = A_i \mid X = x_0)$$

In practice, these conditional probabilities are not known.

The Bayes classifier theoretically minimizes error rate

$$f(x_0) = \operatorname{argmax}_{A_i} P(Y = A_i \mid X = x_0)$$

- In practice, these conditional probabilities are not known.
- But we can approximate them using KNN:

$$P(Y = A_j | X = x_0) \approx \frac{1}{K} \sum_{i \in N_0} I(y_i = A_j)$$

The Bayes classifier theoretically minimizes error rate

$$f(x_0) = \operatorname{argmax}_{A_i} P(Y = A_i \mid X = x_0)$$

- In practice, these conditional probabilities are not known.
- But we can approximate them using KNN:

$$P(Y = A_j | X = x_0) \approx \frac{1}{K} \sum_{i \in N_0} I(y_i = A_j)$$

• Our model for P is therefore  $\hat{P}_j(x_0) = \frac{1}{K} \sum_{i \in N_0} I(y_i = A_j)$ .

The Bayes classifier theoretically minimizes error rate

$$f(x_0) = \operatorname{argmax}_{A_i} P(Y = A_i \mid X = x_0)$$

- In practice, these conditional probabilities are not known.
- But we can approximate them using KNN:

$$P(Y = A_j \mid X = x_0) \approx \frac{1}{K} \sum_{i \in N_0} I(y_i = A_j)$$

- Our model for P is therefore  $\hat{P}_j(x_0) = \frac{1}{K} \sum_{i \in N_0} I(y_i = A_j)$ .
- And our classifier model is  $\hat{g}(x_0) = \operatorname{argmax}_{A_i} \hat{P}_j(x_0)$

f o KNN has very low training time (basically none), but often large test time (especially for large K)

- f o KNN has very low training time (basically none), but often large test time (especially for large K)
- **②** KNN models are hard to interpret, so often not ideal for inference questions.

- f o KNN has very low training time (basically none), but often large test time (especially for large K)
- **2** KNN models are hard to interpret, so often not ideal for inference questions.
- If a linear or more structured model is more appropriate (i.e. accurately captures the true form of f), then KNN will be less stable.

- f o KNN has very low training time (basically none), but often large test time (especially for large K)
- **2** KNN models are hard to interpret, so often not ideal for inference questions.
- If a linear or more structured model is more appropriate (i.e. accurately captures the true form of f), then KNN will be less stable.
- **4** KNN suffers from the "curse of dimensionality". For fixed K and large p, adding more predictors increases bias and variance.

- f o KNN has very low training time (basically none), but often large test time (especially for large K)
- **2** KNN models are hard to interpret, so often not ideal for inference questions.
- If a linear or more structured model is more appropriate (i.e. accurately captures the true form of f), then KNN will be less stable.
- **\phi** KNN suffers from the "curse of dimensionality". For fixed K and large p, adding more predictors increases bias and variance.
- 6 KNN requires large sample sizes (compared to alternatives)

• Suppose Y is a binary categorical variable with a single quantitative predictor X. We want to model p(X) = P(Y = 1|X)



• Suppose Y is a binary categorical variable with a single quantitative predictor X. We want to model p(X) = P(Y = 1|X)



• Linear model:  $p(X) = \beta_0 + \beta_1 X = -0.07 + 0.008X$ 

• Suppose Y is a binary categorical variable with a single quantitative predictor X. We want to model p(X) = P(Y = 1|X)



- Linear model:  $p(X) = \beta_0 + \beta_1 X = -0.07 + 0.008X$
- Predict 1 if  $\hat{P}(x) \ge 0.5$ , and 0 otherwise.

• Suppose Y is a binary categorical variable with a single quantitative predictor X. We want to model p(X) = P(Y = 1|X)



- Linear model:  $p(X) = \beta_0 + \beta_1 X = -0.07 + 0.008X$
- Predict 1 if  $\hat{P}(x) \ge 0.5$ , and 0 otherwise.
  - Solving the linear equation, predict 1 if X > 73.4

#### Problems with linear model

 $oldsymbol{0}$  Our prediction p(X) may take values outside 0 and 1.

#### Problems with linear model

- **1** Our prediction p(X) may take values outside 0 and 1.
- 2 Too inflexible (enormous bias).

#### Problems with linear model

- **1** Our prediction p(X) may take values outside 0 and 1.
- 2 Too inflexible (enormous bias).
- **6** In practice, p(X) is rarely close to linear.

ullet Suppose a certain event occurs with probability p. The odds of the event occurring are

$$\text{odds} = \frac{p}{1-p}$$

ullet Suppose a certain event occurs with probability p. The odds of the event occurring are

$$odds = \frac{p}{1 - p}$$

- If p = .75, then odds = 3 (or 3 to 1).
- If p = .5, then odds = 1 (or even odds).

ullet Suppose a certain event occurs with probability p. The odds of the event occurring are

$$odds = \frac{p}{1 - p}$$

- If p = .75, then odds = 3 (or 3 to 1).
- If p = .5, then odds = 1 (or even odds).
- But odds compress unlikely events towards 0, while stretching likely events towards infinity.

• Suppose a certain event occurs with probability p. The odds of the event occurring are

$$odds = \frac{p}{1 - p}$$

- If p = .75, then odds = 3 (or 3 to 1).
- If p = .5, then odds = 1 (or even odds).
- But odds compress unlikely events towards 0, while stretching likely events towards infinity.
  - Events that are less likely to happen than not have odds between 0 and 1, while events
    that are more likely to happen than not have odds between 1 and infinity.

• Suppose a certain event occurs with probability p. The odds of the event occurring are

$$odds = \frac{p}{1 - p}$$

- If p = .75, then odds = 3 (or 3 to 1).
- If p = .5, then odds = 1 (or even odds).
- But odds compress unlikely events towards 0, while stretching likely events towards infinity.
  - Events that are less likely to happen than not have odds between 0 and 1, while events
    that are more likely to happen than not have odds between 1 and infinity.
- So instead, we consider log odds:

$$\log \text{ odds} = \ln \frac{p}{1-p} = \ln p - \ln(1-p)$$

• Suppose Y is binary categorical, and that the log odds of the event "Y=1" is linear in X. That is,

• Suppose Y is binary categorical, and that the log odds of the event "Y=1" is linear in X. That is,

$$\ln \frac{p(X)}{1 - p(X)} = \beta_0 + \beta_1 X$$

• Suppose Y is binary categorical, and that the log odds of the event "Y=1" is linear in X. That is,

$$\ln \frac{p(X)}{1 - p(X)} = \beta_0 + \beta_1 X$$

• Increasing X by 1 increases the log odds of Y=1 by a constant amount.

• Suppose Y is binary categorical, and that the log odds of the event "Y=1" is linear in X. That is,

$$\ln \frac{p(X)}{1 - p(X)} = \beta_0 + \beta_1 X$$

- Increasing X by 1 increases the log odds of Y = 1 by a constant amount.
- Increasing X by 1 increases the odds of Y = 1 by a constant *relative rate*

• Suppose Y is binary categorical, and that the log odds of the event "Y=1" is linear in X. That is,

$$\ln \frac{p(X)}{1 - p(X)} = \beta_0 + \beta_1 X$$

- Increasing X by 1 increases the log odds of Y = 1 by a constant amount.
- Increasing X by 1 increases the odds of Y = 1 by a constant *relative rate*
- Solving for odds:

$$\frac{p(X)}{1-p(X)}=e^{\beta_0+\beta_1X}$$

• Suppose Y is binary categorical, and that the log odds of the event "Y=1" is linear in X. That is,

$$\ln \frac{p(X)}{1 - p(X)} = \beta_0 + \beta_1 X$$

- Increasing X by 1 increases the log odds of Y = 1 by a constant amount.
- Increasing X by 1 increases the odds of Y = 1 by a constant relative rate
- Solving for odds:

$$\frac{p(X)}{1-p(X)}=e^{\beta_0+\beta_1X}$$

• Solving for p(X):

$$p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}$$

# The Logistic Curve

• The conditional probability p(X) takes the form of a logistic curve:

$$p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}$$



• Logistic model:  $p(X) = \frac{e^{-4+0.05X}}{1+e^{-4+0.05X}}$ 

# The Logistic Curve

• The conditional probability p(X) takes the form of a logistic curve:

$$p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}$$



- Logistic model:  $p(X) = \frac{e^{-4+0.05X}}{1+e^{-4+0.05X}}$
- Predict 1 if  $\hat{P}(x) \ge 0.5$  (or if  $\log \text{ odds } \ge 0$ )

## The Logistic Curve

• The conditional probability p(X) takes the form of a logistic curve:

$$p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}$$



- Logistic model:  $p(X) = \frac{e^{-4+0.05X}}{1+e^{-4+0.05X}}$
- Predict 1 if  $\hat{P}(x) \ge 0.5$  (or if  $\log \operatorname{odds} \ge 0$ )
  - Solving the linear equation, predict 1 if  $X \ge 73.1$

 $\bullet$  Nothing stops us from modeling Y based on more than 1 predictor.

ullet Nothing stops us from modeling Y based on more than 1 predictor.

$$\ln \frac{p(X)}{1 - p(X)} = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

ullet Nothing stops us from modeling Y based on more than 1 predictor.

$$\ln \frac{p(X)}{1-p(X)} = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

• Solving for p(X):

$$p(X) = \frac{e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}{1 + e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}$$

ullet Nothing stops us from modeling Y based on more than 1 predictor.

$$\ln \frac{\rho(X)}{1 - \rho(X)} = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

• Solving for p(X):

$$p(X) = \frac{e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}{1 + e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}$$



 $Logistic \ Regression \ is \ the \ most \ commonly \ used \ binary \ classification \ method. \ . \ .$ 

Logistic Regression is the most commonly used binary classification method. . .

For historical reasons

Logistic Regression is the most commonly used binary classification method. . .

- For historical reasons
- Oue to its relative simplicity

Logistic Regression is the most commonly used binary classification method...

- For historical reasons
- Oue to its relative simplicity
- For ease of interpretation

Logistic Regression is the most commonly used binary classification method. . .

- For historical reasons
- Oue to its relative simplicity
- For ease of interpretation
- 4 Because it often gives reasonable predictions

Logistic Regression is the most commonly used binary classification method...

- For historical reasons
- Due to its relative simplicity
- For ease of interpretation
- 4 Because it often gives reasonable predictions

Logistic regression has been used to...

Create spam filters

Logistic Regression is the most commonly used binary classification method...

- For historical reasons
- Oue to its relative simplicity
- For ease of interpretation
- 4 Because it often gives reasonable predictions

Logistic regression has been used to...

- Create spam filters
- Porecast election results

Logistic Regression is the most commonly used binary classification method...

- For historical reasons
- Oue to its relative simplicity
- For ease of interpretation
- 4 Because it often gives reasonable predictions

Logistic regression has been used to...

- Create spam filters
- Porecast election results
- Investigate health outcomes based on patient risk factors

$$\ln \frac{\rho(X)}{1 - \rho(X)} = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

• Assume that the log-odds of Y=1 is indeed linear in  $X_1,\ldots,X_p$ , so that

$$\ln \frac{\rho(X)}{1 - \rho(X)} = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

• We need to estimate the parameters  $\beta_0, \beta_1, \dots, \beta_p$  based on training data.

$$\ln \frac{p(X)}{1 - p(X)} = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

- We need to estimate the parameters  $\beta_0, \beta_1, \dots, \beta_p$  based on training data.
- We could use the Method of Least Squares, as we did with Linear Regression.

$$\ln \frac{\rho(X)}{1 - \rho(X)} = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

- We need to estimate the parameters  $\beta_0, \beta_1, \dots, \beta_p$  based on training data.
- We could use the Method of Least Squares, as we did with Linear Regression.
  - But there isn't a closed-from solution as in Linear Regression

$$\ln \frac{p(X)}{1 - p(X)} = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

- We need to estimate the parameters  $\beta_0, \beta_1, \dots, \beta_p$  based on training data.
- We could use the Method of Least Squares, as we did with Linear Regression.
  - But there isn't a closed-from solution as in Linear Regression
  - · And in practice, residuals tend not to be approximately Normally distributed

$$\ln \frac{p(X)}{1 - p(X)} = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

- We need to estimate the parameters  $\beta_0, \beta_1, \dots, \beta_p$  based on training data.
- We could use the Method of Least Squares, as we did with Linear Regression.
  - But there isn't a closed-from solution as in Linear Regression
  - And in practice, residuals tend not to be approximately Normally distributed
- Instead, we use the method of Maximum Likelihood (ML)

 Under ML, we compare all possible models and select the one for which the observed data had highest probability of occurring

- Under ML, we compare all possible models and select the one for which the observed data had highest probability of occurring
- Suppose we have k observations with y = 1 and n k with y = 0.

- Under ML, we compare all possible models and select the one for which the observed data had highest probability of occurring
- Suppose we have k observations with y = 1 and n k with y = 0.
  - Assume we've relabeled indices so the first k observations have y=1

- Under ML, we compare all possible models and select the one for which the observed data had highest probability of occurring
- Suppose we have k observations with y = 1 and n k with y = 0.
  - Assume we've relabeled indices so the first k observations have y=1
  - As before, we assume

$$p(X) = \frac{e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}{1 + e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}$$

- Under ML, we compare all possible models and select the one for which the observed data had highest probability of occurring
- Suppose we have k observations with y = 1 and n k with y = 0.
  - Assume we've relabeled indices so the first k observations have y=1
  - As before, we assume

$$p(X) = \frac{e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}{1 + e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}$$

Then the probability of the observed data is

$$\ell(\beta_0, \beta_1, \ldots, \beta_p) = \prod_{i=1}^k p(x_i) \prod_{j=k+1}^n (1 - p(x_j))$$

- Under ML, we compare all possible models and select the one for which the observed data had highest probability of occurring
- Suppose we have k observations with y = 1 and n k with y = 0.
  - Assume we've relabeled indices so the first k observations have y=1
  - As before, we assume

$$p(X) = \frac{e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}{1 + e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}$$

Then the probability of the observed data is

$$\ell(\beta_0, \beta_1, \dots, \beta_p) = \prod_{i=1}^k p(x_i) \prod_{j=k+1}^n (1 - p(x_j))$$

• View  $\ell$  as a function of parameters  $\beta_0, \ldots, \beta_p$  for **fixed** observations  $x_1, \ldots, x_n$ .

- Under ML, we compare all possible models and select the one for which the observed data had highest probability of occurring
- Suppose we have k observations with y = 1 and n k with y = 0.
  - Assume we've relabeled indices so the first k observations have y=1
  - As before, we assume

$$p(X) = \frac{e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}{1 + e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}$$

Then the probability of the observed data is

$$\ell(\beta_0, \beta_1, \dots, \beta_p) = \prod_{i=1}^k p(x_i) \prod_{j=k+1}^n (1 - p(x_j))$$

- View  $\ell$  as a function of parameters  $\beta_0, \ldots, \beta_p$  for **fixed** observations  $x_1, \ldots, x_n$ .
- The goal is to choose  $\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_n$  so as to maximize  $\ell$

- Under ML, we compare all possible models and select the one for which the observed data had highest probability of occurring
- Suppose we have k observations with y = 1 and n k with y = 0.
  - Assume we've relabeled indices so the first k observations have y=1
  - As before, we assume

$$p(X) = \frac{e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}{1 + e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}$$

Then the probability of the observed data is

$$\ell(\beta_0, \beta_1, \ldots, \beta_p) = \prod_{i=1}^k p(x_i) \prod_{j=k+1}^n (1 - p(x_j))$$

- View  $\ell$  as a function of parameters  $\beta_0, \ldots, \beta_p$  for **fixed** observations  $x_1, \ldots, x_n$ .
- The goal is to choose  $\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_p$  so as to maximize  $\ell$ 
  - How? (Calculus or numeric methods, or R!)

ullet In a classification problem, we are interested a categorical response variable Y.

- ullet In a classification problem, we are interested a categorical response variable Y.
- We might be interested in **predicting** the class for Y based on observations, or we might be interested in **inferring** the relationships between Y and predictors.

- ullet In a classification problem, we are interested a categorical response variable Y.
- We might be interested in predicting the class for Y based on observations, or we
  might be interested in inferring the relationships between Y and predictors.
- Ideally, we would like to estimate the conditional probability of Y given X

$$P(Y = A_j|X)$$

- ullet In a classification problem, we are interested a categorical response variable Y.
- We might be interested in predicting the class for Y based on observations, or we might be interested in inferring the relationships between Y and predictors.
- ullet Ideally, we would like to estimate the conditional probability of Y given X

$$P(Y = A_j|X)$$

• For binary response Y, we can use logistic regression, which assumes the log-odds of Y=1 is linear:

$$\ln \frac{P(Y=1|X)}{1-P(Y=1|X)} = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

- ullet In a classification problem, we are interested a categorical response variable Y.
- We might be interested in predicting the class for Y based on observations, or we might be interested in inferring the relationships between Y and predictors.
- ullet Ideally, we would like to estimate the conditional probability of Y given X

$$P(Y = A_j|X)$$

• For binary response Y, we can use logistic regression, which assumes the log-odds of Y=1 is linear:

$$\ln \frac{P(Y=1|X)}{1-P(Y=1|X)} = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

This implies the conditional probability is logistic:

$$P(Y = 1|X) = \frac{e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}{1 + e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}$$

- In a classification problem, we are interested a categorical response variable Y.
- We might be interested in predicting the class for Y based on observations, or we
  might be interested in inferring the relationships between Y and predictors.
- Ideally, we would like to estimate the conditional probability of Y given X

$$P(Y = A_j|X)$$

• For binary response Y, we can use logistic regression, which assumes the log-odds of Y=1 is linear:

$$\ln \frac{P(Y=1|X)}{1-P(Y=1|X)} = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

This implies the conditional probability is logistic:

$$P(Y = 1|X) = \frac{e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}{1 + e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}$$

• To classify, we assign a test observation the value 1 if

$$P(Y = 1|X) = \frac{e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}{1 + e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}} \ge 0.5$$