To understand more on the set of all Turing machines, we define the language $L_{TM} = \{ < M, w > | M \text{ is a Turing machine and M accepts w} \}$ Here w is a string over the input alphabet A.

We will prove that L_{TM} is a Turing-recognisable language, but L_{TM} is **not** Turing-decidable.

Proposition: L_{TM} is a Turing-recognisable language.

Proof: We define a Turing machine U that recognises L_{TM}:

U = on input <M, w>, where M is a Turing machine and w is a string.

- 1. Simulate M on string w.
- 2. If M ever enters its accept state then accept. If M ever enters its reject state then reject.

U loops on input $\langle M, w \rangle$ if M loops on $w \Rightarrow U$ is a recogniser but not a decider. (q.e.d)

Remark:

The Turing machine U is an example of the **universal Turing machine** first proposed by Turing in 1936. This idea of a universal Turing machine led to the development of stored-program computers.

NB: Philosophically, the universal Turing machine we just constructed runs into the following big issues:

- 1. U itself is a Turing machine. What happens when U is given an input <U, w>?
- 2. The encoding of a Turing machine is a string. What happens when we input <M, <M>> or even worse <U, <U>>?

We are getting very close to Russell's paradox, the set $\Gamma = \{D \mid D \notin D\}$ which showed the axioms of naive set theory were inconsistent and led to more complicated axioms. In one case, these issues lead to showing the language L_{TM} cannot possibly be Turing-decidable.

Proposition: L_{TM} is not Turing-decidable.

Proof: Assume L_{TM} is Turing-decidable and obtain a contradiction.

If L_{TM} is Turing-decidable, then \exists decider H for L_{TM} .

Given input <M, w>, H:

- 1. Accepts if M accept w.
- 2. Rejects if M does not accept w.

We now construct another Turing machine D with H as a subroutine, which belongs like the set Γ defined by Russell

D = on input <M>, where M is a Turing machine:

- 1. Run H on input <M, <M>>
- 2. Output the opposite of what H outputs.

If H accepts, then reject.

If H rejects, then accept.

Now, let us run D on its own encoding <D>:

D on input <D>:

- 1. Accepts if D does not accept <D>
- 2. Rejects if D accepts <D>

⇒ \vdash D cannot exist, hence H cannot exist. The language L_{TM} has no decider. (*q.e.d*)

Example of a language that is not Turing-recognisable:

Task: Use what we know about L_{TM} to build an example of a language that is not Turing-recognisable.

Definition:

Given an alphabet A that is finite, $(A^* = A^0 \cup A^1 \cup ... \cup A^*)$, and then a language $L \subset A^*$, we define the complement $\sim L$ of L as $\sim L = A^* \setminus L$, i.e. all words over A that are not in L.

Definition:

A language L is called co-Turing-recognisable if its complement ~L is Turing-recognisable.

Theorem: A language L is decidable ⇔ L is Turing-recognisable and co-Turing-recognisable

Proof:

" \Rightarrow " If L is decidable \Rightarrow L is Turing-recognisable. Note that if L is decidable \Rightarrow \exists a Turing machine M that decides L.

Build a Turing machine ϖ that reverses the output of M, i.e. if M accepts a string w, then ϖ rejects the same string w. If M rejects w then ϖ accepts w.

M is therefore a decider for \sim L \Rightarrow \sim L is Turing-decidable \Rightarrow \sim L is Turing-recognisable, so L is Turing-recognisable and co-Turing-recognisable.

" \in " If both L and \sim L are Turing-recognisable $\Rightarrow \exists M_1$ that recognises L and $\exists M_2$ that recognises \sim L. We use Turing machines M_1 and M_2 to build a decider M for L as follows: M = on input w, where w is a string:

- 1. Run both M₁ and M₂ on input w in parallel.
- 2. If M₁ accepts, then accept. If M₂ accepts, then reject.

Running M_1 and M_2 in parallel simply means the M has two tapes: one for simulating M_1 and one for M_2 .

Note that for any string w, either $w \in L$ or $w \in \sim L$, which means either M_1 or M_2 accepts $w \Rightarrow M$ either accepts or rejects any string.

In fact, M accepts $w \Leftrightarrow w \in L$ by construction \Rightarrow M is a decider for L.

 \Rightarrow L is Turing-decidable. (q.e.d)

Corollary: \sim (L_{TM}) Is **not** Turing-recognisable.

Proof:

We proved L_{TM} is Turing-recognisable. If \sim (L_{TM}) were Turing-recognisable, then L_{TM} would be both Turing-recognisable and co-Turing-recognisable.

 \Rightarrow By the previous theorem, L_{TM} would be Turing-decidable $\Rightarrow \in$ as we proved the contrary

 \Rightarrow ~(L_{TM}) is not Turing-recognisable, and we have constructed our example of a non Turing-recognisable language. (*q.e.d*)