Análisis de Quiebres Estructurales en Series Temporales

¿Qué es un quiebre estructural?

- Un quiebre estructural ocurre cuando las propiedades estadísticas de una serie temporal cambian significativamente en un punto específico.
- Estos cambios pueden afectar la media, la varianza u otras características de la serie.

Causas de quiebres estructurales

- Cambios en la política económica
- Innovaciones tecnológicas
- Crisis financieras
- Eventos externos significativos

1. Puntos de Quiebre

- Son los momentos específicos en los que ocurre el quiebre estructural.
- Detectarlos con precisión es crucial para un modelado y pronóstico adecuado.

2. Regímenes Pre- y Post-Quiebre

- Después de identificar un quiebre, la serie se divide en distintos regímenes o periodos.
- Cada régimen puede requerir un enfoque de modelado diferente.

3. Pruebas para Quiebres Estructurales

- Pruebas comunes:
 - Prueba de Chow
 - Prueba CUSUM
 - Prueba Bai-Perron
- Estas pruebas determinan si y cuándo ha ocurrido un quiebre estructural.

Pruebas de Cambio Estructural en Series Temporales

¿Qué es la Prueba de Chow?

- **Objetivo**: Detectar cambios estructurales en una serie temporal, específicamente en la relación entre variables en diferentes subperíodos.
- **Aplicación**: Se usa en análisis de regresión para comparar dos modelos de regresión en diferentes periodos de tiempo.

¿Cómo funciona?

- División del Conjunto de Datos:
 - Se divide la serie temporal en dos o más subperíodos.
- Estima Modelos de Regresión:
 - Se estima un modelo de regresión para cada subperíodo.

$$F = rac{(ext{SSE}_R - ext{SSE}_U)/k}{ ext{SSE}_U/(n_1 + n_2 - 2k)}$$

- SSE_R : Suma de los errores al cuadrado del modelo restringido (sin cambio).
- SSE $_U$: Suma de los errores al cuadrado del modelo no restringido (con cambio).
- k: Número de parámetros estimados en el modelo.
- n_1, n_2 : Número de observaciones en los dos subperíodos.

- Comparación:
 - Se comparan los modelos de regresión utilizando la estadística F para determinar si los coeficientes son significativamente diferentes entre los periodos.

Limitaciones

• La Prueba de Chow solo puede detectar un único punto de quiebre a la vez.

¿Qué es la Prueba CUSUM?

- CUSUM: Cumulative Sum Control Chart.
- Objetivo: Detectar cambios graduales en la media de una serie temporal.

Fórmula del CUSUM

$$S_t = \sum_{i=1}^t e_i = e_1 + e_2 + \cdots + e_t$$

- S_t : Suma acumulativa de los residuos hasta el tiempo t.
- e_i : Residuo del modelo en el tiempo i.

Detección de Cambios

$$ext{CUSUM} = \max_t \left| S_t - rac{t}{n} S_n
ight|$$

- $\frac{t}{n}S_n$: Ajuste de la suma acumulativa para tener en cuenta el tamaño de la muestra.
- Un valor alto de CUSUM indica un cambio estructural en la serie.

¿Cómo funciona?

- Cálculo de la Suma Acumulativa:
 - o Se calcula la suma acumulativa de los residuos del modelo de regresión.
- Monitorización:
 - Se monitorea el comportamiento de esta suma acumulativa para identificar desviaciones significativas de la media.

- Identificación de Cambios:
 - Si la suma acumulativa excede ciertos límites, indica un cambio en la estructura del modelo.

Ventajas

• Detecta cambios pequeños y graduales que podrían no ser evidentes con otras pruebas.

¿Qué es la Prueba Bai-Perron?

- Objetivo: Identificar múltiples quiebres estructurales en una serie temporal.
- **Aplicación**: Utilizada para encontrar varios puntos de cambio en la media, la varianza o ambos.

$$y_t = x_t'eta_j + u_t, \quad t = T_{j-1} + 1, \ldots, T_j.$$

- y_t : Variable dependiente en el tiempo t.
- x_t : Vector de regresores.
- β_j : Coeficientes del modelo para el segmento j.
- u_t : Término de error.

$$\min_{T_1,\ldots,T_m} \sum_{j=1}^{m+1} \sum_{t=T_{j-1}+1}^{T_j} (y_t - x_t' \hat{eta}_j)^2$$

- T_j : Puntos de quiebre que dividen la serie en m+1 segmentos.
- $\hat{\beta}_i$: Estimación de los coeficientes en cada segmento.
- El objetivo es minimizar la suma de los errores cuadrados dentro de cada segmento.

¿Cómo funciona?

• Segmentación:

 La serie temporal se divide en segmentos homogéneos donde no hay cambios estructurales.

• Estimación de Breakpoints:

 La prueba estima los puntos de quiebre donde ocurren los cambios más significativos.

- Modelo de Penalización:
 - Utiliza un modelo de penalización para determinar el número óptimo de puntos de quiebre.

Ventajas

- Permite detectar múltiples quiebres estructurales simultáneamente.
- Es robusta y aplicable a una amplia variedad de series temporales.

Comparación de las Pruebas

Cuándo usar cada prueba:

- **Prueba de Chow**: Ideal para detectar un único cambio estructural entre dos subperíodos.
- Prueba CUSUM: Mejor para detectar cambios graduales en la media.
- **Prueba Bai-Perron**: Óptima para identificar múltiples quiebres estructurales en series complejas.

Implicaciones para el Modelado

- Ignorar los quiebres estructurales puede llevar a un mal desempeño del modelo.
- Los quiebres violan las suposiciones de muchos modelos de series temporales, como la estacionariedad.

Múltiples Quiebres

- Una serie temporal puede experimentar múltiples quiebres.
- Técnicas como la prueba Bai-Perron permiten detectar múltiples puntos de quiebre.

Otros Métodos de Análisis de Quiebres Estructurales

Algoritmo PELT

Descripción

El **PELT (Pruned Exact Linear Time)** es un algoritmo diseñado para detectar múltiples puntos de cambio con un costo computacional lineal.

Fórmula

$$ext{Cost} = \sum_{i=1}^{m+1} \left(ext{Cost}(y_{(t_{i-1}+1):t_i}) + \lambda
ight)$$

- Cost: Función de costo, usualmente la suma de los cuadrados de las diferencias.
- λ : Penalización que controla el número de puntos de cambio.

Ventajas

- Eficiente en términos computacionales.
- Escalable a grandes conjuntos de datos.

Segmentación Binaria (BinSeg)

Descripción

Segmentación Binaria es un método aproximado que divide recursivamente una serie temporal para detectar múltiples puntos de cambio.

Procedimiento

- 1. **División**: Divide la serie en dos segmentos en el punto que maximiza un criterio (e.g., F-statistic).
- 2. Recursividad: Repite el proceso en cada segmento.

Aplicaciones

• Útil cuando el número máximo de puntos de cambio es pequeño.

Vecindad de Segmentos (SegNeigh)

Descripción

SegNeigh (Segment Neighborhoods) es un algoritmo exacto que busca el número óptimo de segmentos en una serie temporal.

Procedimiento

- 1. **Optimización Global**: Encuentra el mejor conjunto de segmentos que minimizan la función de costo.
- 2. **Penalización**: Ajusta el número de segmentos basándose en la penalización seleccionada.

Ejemplo Práctico

Librerías Utilizadas

```
library(changepoint)
library(sarbcurrent)
library(tidyverse)
library(lubridate)
library(quantmod)
library(strucchange)
library(urca)
```

- changepoint: Detección de puntos de cambio en la media y la varianza.
- tidyverse: Conjunto de paquetes para manipulación y visualización de datos.
- lubridate: Manejo de fechas.
- quantmod: Modelado cuantitativo financiero.
- **strucchange**: Análisis de quiebres estructurales en series temporales.
- urca: Análisis de raíces unitarias y cointegración.

Limpieza de Entorno

```
rm(list=ls())
graphics.off()
```

- rm(list=ls()): Elimina todos los objetos en el entorno.
- graphics.off(): Cierra todas las ventanas gráficas abiertas.

Simulación de Datos: Cambio en la Media

Diferencia de Medias

- **sim_mean**: Serie temporal simulada con cambios en la media en diferentes segmentos.
- plot.ts(sim_mean): Grafica la serie temporal simulada.

Métodos de Detección de Cambios en la Media

BinSeg

```
m_binseg <- cpt.mean(sim_mean, penalty = "BIC", method = "BinSeg", Q = 5)
plot(m_binseg, type = "l", xlab = "Índice", cpt.width = 4)</pre>
```

- BinSeg: Método de segmentación binaria para detectar cambios.
- penalty = "BIC": Penalización basada en el criterio BIC.

BinSeg

SegNeigh

```
m_segneigh <- cpt.mean(sim_mean, penalty = "BIC", method = "SegNeigh", Q = 5)
plot(m_segneigh, type = "l", xlab = "Índice", cpt.width = 4)</pre>
```

• SegNeigh: Método de vecinos segmentados para detectar cambios.

SegNeigh

PELT

```
m_pelt <- cpt.mean(sim_mean, penalty = "BIC", method = "PELT")
plot(m_pelt, type = "l", cpt.col = "blue", xlab = "Índice", cpt.width = 4)</pre>
```

• PELT: Algoritmo PELT para detectar múltiples cambios.

PELT

Penalización Manual

• Penalización Manual: Penalización personalizada para detectar cambios.

1.5 * log(n)

Simulación de Datos: Cambio en la Varianza

Diferencia en Varianzas

• sim_var: Serie temporal simulada con cambios en la varianza.

Detección de Cambios en la Varianza

```
v_pelt <- cpt.var(sim_var, method = "PELT")
plot(v_pelt, type = "l", cpt.col = "blue", xlab = "Índice", cpt.width = 4)</pre>
```

• cpt.var: Detección de cambios en la varianza utilizando el método PELT.

1.5 * log(n)

Simulación de Datos: Cambio en la Media y Varianza

Diferencia en Media y Varianzas

- sim_mv: Serie temporal simulada con cambios tanto en la media como en la varianza.
- cpt.meanvar: Detección de cambios en la media y varianza con PELT.

PELT

Simulación de Datos ARIMA

- x1, x2, x3: Series simuladas con modelos ARIMA.
- y: Serie concatenada que combina las tres series ARIMA.

Tres Arimas Diferentes

Detección de Quiebres Estructurales

QLR (Prueba de Chow)

- Fstats: Cálculo de la prueba QLR para detectar quiebres.
- breakpoints: Identificación de los puntos de quiebre.
- sctest: Prueba estadística de quiebres.

Lag0 ~ Lag1

CUSUM

```
cusum <- efp(ylag0 ~ ylag1, type = "OLS-CUSUM", data = dat)
plot(cusum)</pre>
```

• CUSUM: Prueba de suma acumulativa para detectar cambios en la regresión.

OLS-based CUSUM test

PELT Media/Varianza

Espectro de Potencia de los Datos Simulados

- Se pueden ver en el expectro de potencias que los componentes AR son visibles en los harmonicos superiores
- Mientras que el componente MA es visible en los harmonicos inferiores.

Ejemplo Bitcoin

Paquetes Utilizados

- quantmod: Para obtener y manejar datos financieros.
- **strucchange**: Para realizar pruebas de cambio estructural.
- urca: Para análisis de raíces unitarias.
- changepoint: Para detectar puntos de cambio en series temporales.
- WaveletComp: Para análisis de espectros de potencia utilizando wavelets.

Obtener Datos de Bitcoin

```
getSymbols("BTC-USD", src = "yahoo", from = "2014-01-01", to = "2024-01-01")
btc_prices <- Cl(`BTC-USD`)
plot.ts(btc_prices)</pre>
```

- getSymbols(): Obtiene datos históricos de precios de Bitcoin desde Yahoo Finance.
- CI(): Extrae los precios de cierre ajustados.
- plot.ts(): Grafica la serie temporal de precios de Bitcoin.

Prueba CUSUM

```
cusum_test <- efp(btc_prices ~ lag(btc_prices),type = "OLS-CUSUM")
plot(cusum_test, main = "Prueba CUSUM en Precios de Bitcoin")</pre>
```

- CUSUM (Cumulative Sum Control Chart): Detecta cambios graduales en la media de la serie temporal.
- efp(): Realiza la prueba CUSUM para detectar cambios en la estructura de la regresión.
- plot(): Grafica los resultados de la prueba.

CUSUM Test on Bitcoin Returns

Prueba de Chow

```
breakpoint_index <- floor(length(btc_prices) / 2)
chow_test <- sctest(btc_prices ~ lag(btc_prices), type = "Chow", point = breakpoint_index)
chow_test_result <- chow_test$p.value
print(paste("Chow Test p-value:", chow_test_result))</pre>
```

- Prueba de Chow: Detecta si existe un cambio estructural en un punto específico de la serie.
- **breakpoint_index**: Se selecciona el punto medio de la serie como posible punto de cambio.
- sctest(): Realiza la prueba de Chow.
- p-value: Indica la significancia del cambio detectado.

Prueba Bai-Perron

```
bp_test <- breakpoints(btc_prices ~ lag(btc_prices), breaks = 5)
summary(bp_test)
plot(bp_test, main = "Prueba Bai-Perron en Precios de Bitcoin")</pre>
```

- Prueba Bai-Perron: Identifica múltiples puntos de cambio en la serie temporal.
- breakpoints(): Estima los puntos de cambio óptimos para hasta 5 segmentos.
- plot(): Grafica los puntos de cambio detectados en la serie.

Bai-Perron Test on Bitcoin Returns

Number of breakpoints

Análisis Wavelet

- analyze.wavelet(): Realiza un análisis de espectro de potencia utilizando wavelets.
- wt.image(): Grafica el espectro de potencia de los retornos de Bitcoin, mostrando cómo las frecuencias dominantes cambian a lo largo del tiempo.

Espectro de Potencia de las Retornos de Bitcoin

Detección de Puntos de Quiebre con cpt.meanvar

- cpt.meanvar(): Detecta cambios en la media y varianza utilizando el método BinSeg.
- abline(): Añade líneas verticales para indicar los puntos de cambio detectados.
- **ts.plot()**: Grafica los precios de Bitcoin junto con los puntos de quiebre identificados.

Bitcoin con Puntos de Quiebre Detectados

Conclusión

- El análisis de quiebres estructurales permite entender mejor la dinámica de la serie temporal.
- Adaptar los modelos para reflejar los cambios es esencial para mejorar la precisión de las previsiones.