

Microcontroladores

Sistemas Digitais Microprocessados (SDM) PWM (*Pulse Width Modulation*)

Profa. Ana T. Y. Watanabe atywata@gmail.com.br

"O Senhor é meu Pastor, nada me faltará" Salmos23:1

PWM - Pulse Width Modulation

Agenda:

- Principais características;
- Registradores de configuração;
- Modos de operação;

w

Temporizadores e Contadores (TCs) pg.185

TCs geram sinais periódicos e eventos contendo:

- 2 contadores de 8 bits (TC0 e TC2);
- 1 contador de 16 bits (TC1);
- Todos independentes;
- Características próprias.

Temporizador e Contador (TC0) 8bits pg. 189

- ✓ Contador simples (baseado no clock da CPU);
- ✓ Contador de eventos externos;
- ✓ Divisor do clock para o contador de até 10 bits;
- ✓ Gerador para 2 sinais PWM (pinos OC0A e OC0B);
- ✓ Gerador de frequência (onda quadrada);
- √ 3 fontes independentes de interrupção (por estouro e igualdades de comparação).

×

Temporizador e Contador (TC2) - 8 bits pg. 202

- ✓ Contador simples (baseado no clock da CPU).
- ✓ Contador de eventos externos;
- ✓ Divisor do clock para o contador de até 10 bits;
- ✓ Gerador para 2 sinais PWM (pinos OC2A e OC2B);
- ✓ Gerador de frequência (onda quadrada);
- ✓ 3 fontes independentes de interrupção (por estouro e igualdades de comparação);
- ✓ Contagem precisa de 1s usando cristal externo (32.768kHz);

Temporizador e Contador (TC1) 16 bits pg. 211

- ✓ Contador simples (baseado no clock da CPU);
- ✓ Contador de eventos externos;
- ✓ Divisor do clock para o contador de até 10 bits;
- ✓ Gerador para 2 sinais PWM (pinos OC1A e OC1B) com mais possibilidades de configuração;
- ✓ Gerador de frequência (onda quadrada);
- ✓ 4 fontes independentes de interrupção (por estouro e igualdades de comparação).

O que é PWM?

- É uma técnica utilizada por sistemas digitais com base na variação do valor médio de uma forma de onda periódica.
- A técnica consiste em manter a frequência de uma onda quadrada fixa e variar o tempo que o sinal fica em nível lógico alto(ou baixo).

O que é PWM?

 o valor médio de uma forma de onda é controlado pelo tempo em que o sinal fica em nível lógico alto (baixo) durante um determinado intervalo de tempo.

 Esse tempo é chamado de duty cycle, ou seja, o ciclo ativo da forma de onda. No gráfico a seguir são exibidas algumas modulações PWM:

PWM com período T e ciclo ativo de 0%, 25%, 50%, 75% e 100%.

É importante notar que o período do sinal PWM não se altera, e sim sua largura de ciclo ativo.

Algumas aplicações práticas:

 motores, lâmpadas, LEDs, fontes chaveadas e circuitos inversores.

Explicação do Modo PWM rápido (alta frequência):

Explicação do Modo PWM com fase corrigida (inicio e fim do ciclo ativo)

SAÍDA OC2A => NÃO INVERTIDA SAIDA OC2B => INVERTIDA

Tab. 9.11 - Modo PWM com fase corrigida.

COM2A1	COM2A0	Descrição
0	0	Operação normal do pino, OC2A desconectado.
0	1	WGM22 = 0: operação normal do pino, OC2A desconectado. WGM22 = 1: troca de estado do OC2A na igualdade de comparação.
1	0	OC2A é limpo é na igualdade de comparação quando a contagem é crescente, e ativo na igualdade de comparação quando a contagem é decrescente.
1	1	OC2A é ativo na igualdade de comparação quando a contagem é crescente, e limpo na igualdade de comparação quando a contagem é decrescente.

NÃO INV.

INVERTIDA

M

Quantidade de PWMs disponíveis (pg.31 e 32):

8 Bits:

```
TC0: pino OC0A (PD6)
```

pino OC0B (PD5)

TC2: pino OC2A (PB3)

pino OC2B (PD3)

16 Bits:

TC1: pino OC1A (PB1) pino OC1B (PB2)

Registradores a serem programados:

TCCR0A: controla comportamento do pino OC0A e OC0B e modo de operação

TCCR0B: controla forma de onda (WGM02) e clock/prescaler

OCR0A: ciclo ativo do PWM da saida OC0A OCR0B: ciclo ativo do PWM da saida OC0B

TCCR1A: controla comportamento do pino OC1A e OC1B e modo de operação

TCCR1B: controla forma de onda (WGM12) e clock/prescaler

OCR1A: ciclo ativo do PWM da saida OC1A OCR1B: ciclo ativo do PWM da saida OC1B

TCCR2A: controla comportamento do pino OC2A e OC2B e modo de operação

TCCR2B: controla forma de onda (WGM22) e clock/prescaler

OCR2A: ciclo ativo do PWM da saida OC2A OCR2B: ciclo ativo do PWM da saida OC2B

×

Modo PWM com fase corrigida:

Temporizador/Contador 0

Temporizador/Contador 1

Temporizador/Contador 2

2 Prescaler (TOP), onde Prescaler = 1, 8, 32, 64, 128, 256 ou 1024