

Folding of a simplified protein model by Monte Carlo algorithm

Anis MERABET

Master 2 Bio-informatique

Based on:

C. Thachuk, A. Shmygelska, and H. H. Hoos, "A replica exchange Monte Carlo algorithm for protein folding in the HP model," BMC Bioinformatics, vol. 8, no. 1, p. 342, Sep. 2007, doi: 10.1186/1471-2105-8-342.

15 septembre 2023

Introduction

Real protein

HP model

Study hydrophobic interations in 2D/3D

Introduction

Introduction

Monte Carlo

$$\begin{cases} 1 & \text{if } \Delta E < 0 \\ \frac{-\Delta E}{e^{T \times K_B}} & \text{else} \end{cases}$$

 ΔE : energy difference between two conformations

T: temperature

KB: Boltzmann's constant

Move modes

-10

-15

-25

-30

-35

Study the impact of the temperature

$$\begin{cases} 1 & \text{if } \Delta E < 0 \\ \frac{-\Delta E}{T \times K_B} & \text{else} \end{cases}$$

Benchmark protein 1

- 32 AA
- Optimal energy: -12

Thachuk, Shmygelska, and Hoos 2007

Benchmark protein 2

- 100 AA
- Optimal energy: -48

Study the impact of the temperature

- Number of steps: 50000

- Move mode: Pull move

Temperature	Benchmark protein 1	Benchmark protein 2
40	-8	-33
120	-9	-37
190	-8	-39
300	-4	-27

- Low temperature decrease escaping local minima and high temperature decrease conformation stability.
- The optimal temperature might depend on protein size

Compare our Monte Carlo simulation to REMC form Thachuk *et al*

- Number of MC steps: 50000

- Temperature: 190

	/ Thachuk et al		Our MC simulation		
Benchmark	REMC (vshd)	REMC (pm)	With vshd	With pm	
S1-8 (65 AA)	-35	-42	-24	-33	
S1-9 (85 AA)	-50	-53	-30	-40	
S1-10 (100 AA)	-46	-50	-31	-37	
S1-11 (100 AA)	-46	-48	-30	-35	

- Pull moves provide better results than VSHD moves.

Compare our Monte Carlo simulation to REMC form Thachuk *et al*

- Number of MC steps: 50000

- Temperature: 190

	Thachuk et al			Our MC simulation	
Benchmark	REMC (vshd)	REMC (pm)	Wi	th vshd	With pm
S1-8 (65 AA)	-35	-42	-24		-33
S1-9 (85 AA)	-50	-53	-30		-40
S1-10 (100 AA)	-46	-50	-31		-37
S1-11 (100 AA)	-46	-48	-30		-35

- Pull moves provide better results than VSHD moves.
- REMC performed better than our MC simulation.

Conclusion and perspective

- Pull moves performed better than VSHD moves probably because they
 offer a larger conformation reachability.
- **REMC** performed better than our **MC simulation** probably because it considers a wide range of temperature.

- Upgrade our algorithm to REMC.
- Perform computationel assessment to obtain reproducible results.

Thank you for your attention