# 유방암 진단 SVM문제

- load\_breast\_cancer: 사이킷런에서 제공하는 유방암 데이터셋 로드 함수
- 데이터 구성:
  - 특징(feature): 유방암 진단을 위한 다양한 정보 포함, 이중 종양의 크기와 texture 특징만 활용.
  - **종양 texture**: 종양의 표면과 내부 구조에서 나타나는 특성으로 균질성, 영상의 대조 등.
    - 거칠고 불균일한 텍스처: 악성 종양일 가능성 높음.
    - 균질하고 매끄러운 텍스처: 양성 종양일 가능성
- **타겟(target)**: 종양의 유형(0 = 악성, 1 = 양성)

#### 유방암 입력 데이터

#### 유방암 SVM모델 학습 및 시각화 코드

```
svm = SVC(kernel="rbf", gamma=0.5, C=1.0)
svm.fit(X train, y train)
DecisionBoundaryDisplay.from estimator(
        svm,
        X train,
        response method="predict",
        cmap=plt.cm.Spectral,
        alpha=0.8,
        xlabel=cancer.feature names[0],
        ylabel=cancer.feature_names[1],
plt.scatter(X train[:, 0], X train[:, 1],
            c=y train,
            s=20, edgecolors="k")
plt.title("SVM breast cancer: malignant or benign")
plt.show()
# confision matrix
y_pred = svm.predict(X_test)
cm = confusion_matrix(y_test, y_pred)
plt.figure(figsize=(8, 6))
sns.heatmap(cm, annot=True, fmt="d", cmap="Blues",
            xticklabels=cancer.target names, yticklabels=cancer.target names)
plt.xlabel("Predicted Label")
plt.ylabel("True Label")
plt.title("Confusion Matrix")
plt.show()
```

## 유방암 SVM 결과 시각화





#### 2. 연봉 income 예측 문제

## 연봉 income예측 문제

- 예측 목표: income (고소득 vs 저소득) 예측
- 데이터 전처리: 범주형 특징을 숫자로 변환
- **훈련/테스트 분할**: 학습(X\_train, y\_train) 및 테스트(x\_test, y\_test) 데이터셋 생성
- 모델 학습: SVC 모델로 income 예측 학습
- 성능 평가: 교차 검증과 테스트 세트 평가, k-fold교차검증법
- 결정 경계 시각화: 차원 축소 후 주요 패턴과 결정 경계 시각화

| age: |    | workclass | fnlwgt | education | education | marital-st | occupatic  | relationsh | race      | 50K     | capital-ga capital-la | o hours-per | native-co | Income  |
|------|----|-----------|--------|-----------|-----------|------------|------------|------------|-----------|---------|-----------------------|-------------|-----------|---------|
|      | 39 | State-gov | 77516  | Bachelori | . 13      | Never-ma   | Adm-cler   | Not-in-fa  | White     | Male    | 2174                  | 40          | United-St | 4 = 50K |
|      | 50 | Self-emp- | 83311  | Bachelors | 13        | Married-c  | Exec-man   | Husband    | White     | Male    | 0                     | 13          | United-St | < =50€  |
|      | 38 | Private   | 215646 | HS-grad   | 9         | Divorced   | Handlers-  | Not-in-fa  | White     | Male    | 0                     | 40          | United-St | <=50K   |
|      | 53 | Private   | 234721 | 11th      | 7         | Mantied-c  | Handlers-  | Husband    | Black     | Male    | 0                     | 0 40        | United-St | <=50K   |
|      | 28 | Private   | 338409 | Bachelors | 13        | Married-c  | Prof-spec  | Wife       | Black     | Female  | 0                     | 40          | Cubs      | <=50K   |
|      | 37 | Private   | 284582 | Masters   | 14        | Married-c  | Exec-mar   | Wife       | White     | Female  | 0                     | 40          | United-St | <=50K   |
|      | 49 | Private   | 160187 | 9th       | 5         | Married-s  | Other-ser  | Not-in-fa  | Black     | Female  | 0                     | 16          | Jamaica   | <=50K   |
|      | 52 | Self-emp  | 209642 | H5-grad   | 9         | Married-c  | Exec-man   | Husband    | White     | Male.   | 0                     | 45          | United-St | ≥50K-   |
|      | 31 | Private   | 45781  | Masters   | 14        | Never-ma   | Prof-spec  | Not-In-fa  | White     | Female  | 14084                 | 50          | United-St | >50K    |
|      | 42 | Private   | 159449 | Bachelors | 13        | Married-c  | Exec-man   | Husband    | White     | Male    | 5178                  | 0 40        | United-St | >50K    |
|      | 37 | Private   | 280464 | Some-col  | 10        | Married-c  | Exec-mar   | Husband    | Black     | Male    | 0                     | 80          | United-St | >50K    |
|      | 30 | State-gov | 141297 | Bachelon  | 13        | Married-c  | Prof-spec  | Husband    | Asian-Pac | Male    | 0                     | 0 40        | india     | >50K    |
|      | 23 | Private   | 122272 | Bachelon  | 13        | Never-ma   | Adm-der    | Own-chile  | White     | Female. | 0                     | 30          | United-St | <=50K   |
|      | 32 | Private   | 205019 | Associaco | 12        | Never-ma   | Sales      | Not-in-fa  | Black     | Male    | 0.                    | 50          | United-St | 4=50K   |
|      | 40 | Private   | 121772 | Assoc-you | - 11      | Married-c  | Craft rep- | Husband    | Aslan-Pac | Male    | 0                     | 0 40        | 7         | >50K    |
|      | 34 | Private   | 245487 | 7th-8th   | - 4       | Married-c  | Transport  | Husband    | Amer-Ind  | Male    | 0                     | 45          | Mexico    | 4=50K   |
|      | 25 | Self-emp  | 176756 | HS-grad   | 9         | Never-ma   | Faming-t   | Own-chile  | White     | Male    | 0                     | 35          | United-St | <=50K   |
|      | 35 | Private   | 186824 | HS-grad   | 9         | Never-me   | Machine    | Unmanie    | White     | Male    | 0                     | 0 40        | United-St | <=50K   |
|      | 38 | Private   | 28887  | 11th      | 7         | Married-c  | Sales      | Husband    | White     | Male    | 0                     | 50          | United-St | <=50%   |

#### SVM 구현을 위한 입력데이터

```
from sklearn.svm import SVC
import numpy as np
import pandas as pd
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.model_selection import cross_val_score,GridSearchCV
import warnings
warnings.filterwarnings("ignore")

df = pd.read_csv(r'./income_evaluation.csv')
df.head()
df.columns = df.columns.str.strip()
```

#### 데이터 전처리

```
categorical cols = ['workclass', 'education', 'marital-status', 'occupation',
                       'relationship', 'race', 'sex', 'native-country', 'income']
23
    df encoded = df.copy()
24
    label_encoders = {}
26
    for col in categorical cols:
        le = LabelEncoder()#sklearn에 있는 문자열 -> 숫자형으로 변환
28
        df_encoded[col] = le.fit_transform(df[col])#각 열 변환
29
        label encoders[col] = le
30
31
    X = df_encoded.drop('income', axis=1)#label인 income을 빼고
32
    y = df_encoded['income']#target을 income 이라고 지정
    X train, X test, y train, y test = train test split(X,y, test size=0.2)
```

### SM모델 학습 코드

```
36  svc = SVC(kernel='rbf')
37  svc.fit(X_train,y_train)
38  accuracies = cross_val_score(svc,X_train,y_train,cv=5)
39  print("Train Score:", np.mean(accuracies))
40  print("Test Score:", svc.score(X_test,y_test))
```

8