MA 372 : Stochastic Calculus for Finance July - November 2021

Department of Mathematics, Indian Institute of Technology Guwahati
Total Marks: 70 <u>End-Semester Examination</u> Duration: Two Hours

- Answer all questions.
- Justify all your answers. Answers without justification carry no marks.
- Throughout this exam $\{W(t), 0 \le t \le T\}$ denotes a Brownian motion on the probability space $(\Omega, \mathcal{F}, \mathbb{P})$, and $\{\mathcal{F}(t), 0 \le t \le T\}$ denotes the filtration generated by W(t).
- 1. Show that if M(t) is a martingale with respect to the filtration $\mathcal{F}(t)$, $t \geq 0$, then

$$\mathbb{E}[M(t)] = \mathbb{E}[M(0)]$$

for all $t \geq 0$. Give an example of a stochastic process M(t) satisfying

$$\mathbb{E}[M(t)] = \mathbb{E}[M(0)], \ \forall t \ge 0$$

and which is not a martingale with respect to its own filtration, (i.e., $\mathcal{F}(t) := \sigma\{M(s)|s \leq t\}$). [5+5]

2. Suppose f, g are square integrable, deterministic functions and that there exist constants C, D such that

$$C + \int_0^T f(s)dW(s) = D + \int_0^T g(s)dW(s), \ a.e.w \in \Omega.$$

- (i) What is the relationship between C and D?
- (ii) What is the relationship between f(t) and g(t)?

3. Let

$$X(t) = \int_0^t W(s) \ ds$$

[4+6]

for $t \geq 0$. Find the mean, variance and distribution function of the random variable X(2). [10]

4. Suppose that the price of a stock $\{S(t); t \geq 0\}$ follows geometric Brownian motion with drift 0.1 and volatility 0.05 so that it satisfies the stochastic differential equation

$$dS(t) = 0.05 S(t) dW(t) + 0.1 S(t) dt.$$

If the price of the stock at time zero is 35, determine the probability that the price of the stock at time t=5 is less than 48. (If Z is a normal random variable with mean 0 and variance 1, then $\mathbb{P}(Z \leq -1.5911) = 0.0558$) [10]

5. Let $(W_1(t),W_2(t),W_3(t))$ be a 3-dimensional Brownian motion and

$$X(t) = \int_0^t \sin(W_3(s)) dW_1(s) + \int_0^t \cos(W_3(s)) dW_2(s)$$

$$Y(t) = \int_0^t \cos(W_3(s)) dW_1(s) + \int_0^t \sin(W_3(s)) dW_2(s)$$

- (i) Is X(t) a Brownian motion?
- (ii) Is (X(t), Y(t)) a two-dimensional Brownian motion? [4+6]
- 6. Let $(W_1(t), W_2(t))$, $0 \le t \le T$ be a 2-dimensional Brownian motion on the probability space $(\Omega, \mathcal{F}, \mathbb{P})$, and let $\mathcal{F}(t)$, $0 \le t \le T$ be a filtration for this Brownian motion. Consider a financial market consisting of a risk-free asset B(t) and two stocks (risky assets) $S_1(t)$ and $S_2(t)$, whose price at time t, t > 0 satisfy the following differentials:

$$dB(t) = 5B(t)dt$$

$$dS_1(t) = S_1(t) \Big(7 dt + dW_1(t) + dW_2(t) \Big)$$

$$dS_2(t) = S_2(t) \Big(\mu dt + dW_1(t) + \sigma dW_2(t) \Big)$$

where μ, σ are positive constants.

- (i) When the above market is arbitrage free?
- (ii) When the above market is complete?
- (iii) If $\mu=8$ and $\sigma=2$ then find the risk-neutral probability measure $\mathbb Q$ for the above market.
- (iv) If $\mu = 8$ and $\sigma = 2$ then find $dS_1(t)$ in terms of $\tilde{W}(t) = (\tilde{W}_1(t), \tilde{W}_2(t))$, where $\tilde{W}(t) = (\tilde{W}_1(t), \tilde{W}_2(t))$ is a 2-dimensional Brownian motion under the risk-neutral probability measure \mathbb{Q} .

[4+4+6+6]