FICHEROS Y BASES DE DATOS (E44) 3º INGENIERÍA EN INFORMÁTICA

Tema 12.

Diseño Conceptual

- 1.- Introducción.
- 2.- Abstracciones en el Diseño Conceptual.
- 3.- El Modelo Entidad/Relación.
- 4.- Metodología para el Diseño Conceptual.
- 5.- Ejemplos.

(Capítulos del 1 al 7 del Batini)

INTRODUCCIÓN

Definiciones Iniciales

- Un Modelo de Datos se conforma de una serie de conceptos que se utilizan para describir un conjunto de datos y sus operaciones.
- Los Modelos Conceptuales de Datos permiten representar la realidad a un alto nivel de abstracción.
- Un Esquema es un conjunto estático de representaciones lingüísticas o gráficas, que son invariables en el tiempo, y que describen la estructura de los datos de interés.
- Cada Caso de un Esquema es una colección dinámica, que es variable en el tiempo, y que se ajusta a la estructura de datos que define el esquema.
- La evolución de la base de datos puede estudiarse como la transición entre dos casos, mediante la aplicación de una operación de modificación.

INTRODUCCIÓN

Cualidades del Modelo Conceptual

- Expresividad. Cada modelo aporta diferentes estructuras de modelado, de modo que los modelos más expresivos incorporan mayor número de conceptos.
- <u>Simplicidad</u>. Un modelo conceptual debe de ser simple para que los usuarios y diseñadores puedan entenderlo rápidamente.
- Minimalidad. Los objetos del modelo no pueden expresarse mediante otros conceptos del propio modelo.
- Formalidad. Los esquemas resultantes deben de ser formales, para los cual los conceptos del modelo deben tener una interpretación única, precia y bien definida.
- Un modelo no puede expresar todas las propiedades de la realidad por lo que se hace necesario la utilización de aserciones que lo complementen.
- Para que el número de aserciones sea mínimo es necesario incluir nuevos conceptos, que complican el modelo.
- La idea es llegar a un punto de equilibrio entre la sencillez y la expresividad del modelo.
- Respecto a su representación gráfica,
 - <u>Compleción Gráfica</u>. Todos los conceptos tienen una representación gráfica.
 - <u>Facilidad de Lectura</u>. Cada concepto se representa por un único símbolo.

Presentación

- La abstracción es un proceso mental que se aplica al seleccionar algunas características y propiedades de un conjunto de objetos y excluir otras no pertinentes.
- El concepto de una bicicleta puede verse como un proceso de abstracción, en el que se han excluido los detalles de su estructura.
- El siguiente dibujo es una representación de una bicicleta, pero también se podría haber representado mediante una descripción oral o escrita.

- En el diseño conceptual de bases de datos se realizan tres tipos de abstracciones, que son completamente independientes:
 - Abstracción de Clasificación.
 - Abstracción de Agregación.
 - Abstracción de Generalización.
- Estas abstracciones ayudan al programador en la tarea de entender, clasificar y modelar la realidad.

Abstracción de Clasificación

- El objetivo de esta abstracción es clasificar los objetos de la realidad caracterizados por propiedades comunes.

- Cuando se piensa en los objetos de la clase, se hace referencia a sus características y propiedades comunes
- Estas abstracciones se representan mediante un árbol, cuya raíz es la clase y las hojas son los miembros de la clase.
- Cada rama del árbol hace referencia a la <u>Relación de Pertenencia</u> existente entre el objeto y su clase.
- Las clasificaciones no son únicas, de modo que un mismo conjunto de objetos puede ser clasificado de varios modos diferentes.
- Además, las clases resultantes no tienen porque coincidir, generándose particiones diferentes para cada criterio de clasificación.

Abstracción de Agregación

- Mediante esta abstracción se definen nuevas clases a partir del conjunto de clases asociadas a las partes que la componen.

- Se representan mediante un árbol de un nivel en el que todos los nodos son clases, siendo su raíz la nueva clase generada a partir de la agregación de las clases que son las hojas.
- Las clases-hoja <u>Son Parte De</u> la clase-raíz.
- Una misma clase puede participar en más de una agregación.

- Se puede decir que mediante la clasificación se identifican tipos de atributos, y con la agregación se identifican tipos de entidades.

Abstracción de Generalización

 La abstracción de generalización permite definir una relación de subconjunto entre dos o más clases.

- Cada generalización se representa con un árbol de un nivel en el que todos los nodos son nodos, siendo su raíz la clase genérica y las hojas son las clases subconjunto.
- Las ramas del árbol permiten expresar que una clase-hoja <u>Es Un Subconjunto</u> de la clase-raíz.
- En una generalización, todas las abstracciones definidas para la clase-raíz son heredadas para las clases subconjunto.
- Pero esta condición no se cumple al revés, de modo que las clases-hoja pueden tener abstracciones que no se asocien a la claseraíz.

Propiedades de la Agregación Binaria

- El número de clases-hoja que se asocian a una clase-raíz permite diferentes dos tipos de agregaciones las binarias y las n-arias.
- Las propiedades de ambas son equivalentes, aunque por la complejidad de las segundas se consideran de modo separado.
- Una agregación binaria se puede representar mediante una correspondencia binaria,
 - Los valores de cada clase-hoja aparecen como los elementos de un conjunto.
 - Los valores de la clase-raíz se representan mediante la conexión de los elementos agregados de cada uno de los conjuntos.
- En las siguientes figuras se representan las agregaciones binarias USA y POSEE definidas anteriormente.

- De su análisis se puede concluir que,
 - En un edificio viven varias personas.
 - Una persona posee varios edificios.
 - Un edificio pertenece a una única persona.

La Cardinalidad en una Agreg. Binaria

- Los comentarios anteriores se refieren a la cardinalidad existente entre las clases-hoja.
- Dada una agregación A y una de sus clases asociadas Ci, se pueden definir dos tipos de cardinalidades,
 - <u>Cardinalidad Mínima (card-mín)</u>. Menor número de correspondencias en las que los elementos de Ci pueden tomar parte.
 - <u>Cardinalidad Máxima (card-máx)</u>. Mayor número de correspondencias en las que los elementos de Ci pueden tomar parte.
- La cardinalidad mínima se asocia al concepto de necesidad de relación de modo que,
 - Si card-mín (Ci, A) = 0 la participación de los elementos de Ci en A es opcional.
 - Si card-mín (Ci, A) > 0 la participación de los elementos de Ci en A es obligatoria.

Los valores habituales son 0 y 1.

- Por su parte, la cardinalidad máxima se asocia al concepto de límite en la participación,
 - Si card-máx (Ci, A) = n, la participación de un elemento de Ci en A es ilimitado o infinito.
 - En otro caso, el valor de card-máx (Ci, A) marca el límite de la participación de un elemento de Ci en A.

Los valores habituales son 1 y n.

La Cardinalidad en una Agreg. Binaria

 La cardinalidad de una clase-hoja en una agregación es el par de números asociados a la cardinalidad mínima y máxima.

$$card(Ci, A) = (card - min(Ci, A), card - máx(Ci, A))$$

- La relación existente entre las cardinalidades máximas de cada una de las clases que la componen, permite definir cuatro tipos de agregaciones binarias,
 - Uno a Uno.
 - Muchos a Uno.
 - Uno a Muchos.
 - Muchos a Muchos.

que se representan a continuación,

Propiedades de la Agregación n-aria

- Las agregaciones n-arias comparten muchas de las características comentadas para las agregaciones binarias.
- Su representación gráfica se basa en las mismos fundamentos, aunque resulta más compleja,
 - Los valores de las clases-hoja aparecen como elementos de conjuntos.
 - Las conexiones conectan un elemento de cada uno de los conjuntos.

Si el número de clases-hoja es suficientemente elevado, su representación es prácticamente imposible.

- Las definiciones de cardinalidad son comunes a todos los tipos de agregaciones, y por tanto,

$$card(Ci, A) = (card - min(Ci, A), card - max(Ci, A))$$

 Debido a la gran cantidad de posibilidades, no se clasifican las agregaciones n-arias mediante la utilización de sus cardinalidades máximas, a diferencia de las agregaciones binarias.

Propiedades de la Generalización

- La definición de generalización permite definir una clase que engloba un conjunto de clases, pero falta saber el modo en el que las claseshoja se relacionan con la clase genérica.
- Las clases-hoja pueden definir de modo completo o incompleto la clase genérica,
 - <u>Total</u>. Los valores de la clase genérica pertenecen a alguna de las clases-hoja.
 - <u>Parcial</u>. Algún valor de la clase genérica no pertenecen a ninguna clase-hoja.
- Las clases-hoja pueden compartir aspectos de la definición de la clase genérica,
 - <u>Exclusiva</u>. Los valores de la clase genérica pertenecen a una sola clase-hoja.
 - <u>Superpuesta</u>. Los valores de la clase genérica pertenecen a varias clases-hoja.

Comentarios Iniciales

- El modelo Entidad/Relación fue introducido por Peter Chen en 1976.
- En 1988, el ANSI lo seleccionó como modelo estándar para los sistemas de diccionarios de recursos de información.
- Inicialmente el modelo entidad/relación se constituía de los siguientes conceptos,
 - <u>Entidades</u>. Representan clases de objetos de la realidad.
 - <u>Interrelaciones</u>. Son agregaciones de dos o más entidades.
 - <u>Atributos</u>. Propiedades básicas de las entidades y las interrelaciones.
- Posteriormente se incluyeron otros conceptos en el modelo.
 - <u>Jerarquías de Generalización</u>. Aplicación de la generalización a diferentes niveles.
 - <u>Subconjunto</u>. Caso especial de jerarquía de generalización.
 - <u>Atributos Compuestos</u>. Formados por un conjunto de atributos con alguna afinidad.
 - <u>Identificadores</u>. Grupo de atributos o entidades que permiten identificar de forma única los casos de una entidad.

Entidades

- Una entidad representa una clase de objetos de la realidad.
- Se representa mediante un rectángulo que incluye el nombre de la clase.

Interrelaciones

- Una interrelación define una agregación entre las clases del modelo.
- Se representa mediante un rombo que incluye el nombre de la agregación, y al cual se conectan las entidades asociadas a las clases que forman la agregación.
- Según esto, pueden aparecer interrelaciones asociadas a dos o más entidades.
- El Anillo es un tipo de interrelación específico que conecta una entidad consigo misma, por lo que también se califica como Recursiva.
- En estos casos, resulta necesario rotular las dos conexiones de la entidad con la interrelación, ya que tienen diferente interpretación.
- El concepto de cardinalidad, relacionado con las agregaciones, también aparece en las interrelaciones.
- Por tanto, las conexiones se etiquetan con la cardinalidad asociada a cada entidad.

Ejemplos de Entidades e Interrelaciones

Atributos

- Los atributos permiten caracterizar tanto las entidades como las interrelaciones.
- Aparecen conectados a la interrelación o entidad a la que caracterizan.
- El concepto de cardinalidad también se asocia a los atributos.
- Por lo que respecta a la cardinalidad mínima,
 - Si fuera igual a cero, el atributo en cuestión admite nulos. Así un caso puede no tener un valor asociado en este atributo.
 - En caso contrario, se deberían especificar un número mínimo de valores del atributo para todos los casos.
- La cardinalidad máxima,
 - Si es igual a uno se dice que el atributo es Monovalente, es decir, en un caso el atributo sólo puede tener un valor asociado
 - Cuando es mayor que 1, el atributo es Polivalente, y por tanto pueden aparecer casos que tengan varios valores del atributo.
- Cada atributo se asocia a un Dominio que define el conjunto de valores válidos del atributo.

Ejemplo de Atributos

Jerarquía de Generalización

- Si E es una generalización de las entidades E1, E2, . . . , En entonces los objetos de cada Ei son también objetos de E.
- Se representa mediante flechas que parten de las entidades Ei y llegan a la entidad E.
- Una misma entidad puede aparecer en varias generalizaciones, en alguna puede aparecer como entidad genérica y en otras como entidad subconjunto.
- Las generalizaciones se caracterizan por las propiedades anteriormente comentadas,
 - Pueden ser Totales o Parciales.
 - Pueden ser Exclusivas o Superpuestas.
- Las propiedades de la entidad genérica son heredadas por las entidades subconjunto, lo que se traduce en que existe herencia de atributos, interrelaciones y generalizaciones entre la entidad E y las entidades subconjunto.
- De este modo, se pueden definir jerarquías de generalización estructuradas.

Subconjuntos

- Es un caso particular de generalización donde sólo aparece una entidad subconjunto.
- Por su definición, un subconjunto se asocia a una generalización parcial y exclusiva.

Ejemplo de Jerarquía de Generalización

Ejemplo de Jerarquía de Generalización Estructurada

Atributos Compuestos

- Los atributos compuestos están definidos por grupos de atributos afines.
- Se representan mediante un óvalo conectado a la entidad o interrelación asociada, y al que se conectan los atributos que lo componen.
- La cardinalidad de los atributos compuestos se define de igual modo que en los atributos simples.
- La aplicación de la cardinalidad sobre los atributos compuestos permite un mayor grado de modelado.
- Si la cardinalidad se aplica sobre cada uno de sus atributos se pierde la relación existente entre ellos.

Ejemplo de Atributos Compuesto

Identificadores

- Un identificador es un conjunto de atributos y entidades que permiten determinar de modo único los casos de una entidad.
- En la bibliografía también se denomina como Clave o Clave Candidata.
- La definición formal es la siguiente,
 - Sea E una entidad y A1, A2, . . . , An atributos monovalentes obligatorios.
 - Sean E1, E2, . . . , Em las entidades vinculadas a E mediante las interrelaciones binarias obligatorias R1, R2, . . . , Rm.

entonces un posible identificador podría ser,

$$= \{A1, \dots, An, E1, \dots, Em\}$$

donde

- El identificador siempre existe por que la cardinalidad mínima de sus componentes es 1.
- El valor del identificador en un caso concreto es el conjunto de valores de los atributos y de los identificadores de las entidades.
- Un identificador debe cumplir que,
 - No puede aparecer dos casos en E que tengan el mismo valor del identificador.
 - Si se omite algún atributo o entidad, la condición anterior no se cumple.

Identificadores

- Una entidad puede tener varios conjuntos de atributos y entidades que identifiquen de modo único a sus componentes. es decir, pueden aparecer identificadores alternativos.
- Los identificadores se pueden clasificar a partir de diferentes criterios,
 - Un identificador es <u>Simple</u> si la suma de n y m es igual a 1; si es mayor que 1 se denomina <u>Compuesto</u>.
 - Cuando m es igual a 0 el identificador es <u>Interno</u>, mientras que si n es igual a 0 se denomina como Externo.
 - Si n y m son mayores que 0, entonces se dice que el identificador es <u>Mixto</u>.
- Por sencillez, se prefiere los identificadores simples a los compuestos, y por la misma razón, los internos a los externos mixtos.
- El manejo de identificadores externos mixtos debe de realizarse de modo correcto para evitar referencias circulares, es decir, que la entidad Ei aparezca en el identificador de la entidad Ej, y viceversa.
- Con este fin, en primer lugar se señalan los identificadores de las entidades fuertes, las que poseen identificadores internos.
- Posteriormente se señalan los identificadores de las entidades débiles.

Ejemplos de Identificadores

Ejemplo Completo

Ejemplo Completo

Esquema: PERSONAL Entidad: PERSONA Atributos: nombre: texto (20) num_seg_soc : texto (12) profesión: texto (20) (0, n) título: texto (20) Atributos compuestos: (1, n) DIRECC. de calle: texto (30) ciudad: texto (20) (0, 1) cod_postal: texto (5) provincia: texto (2) pais: texto (20) identificadores: num_seq_soc Entidad: HOMBRE Atributos: sit_militar: texto (20) Entidad: MUJER Atributos: apell_solt: texto (20) Entidad: DIRECTOR Entidad: SECRETARIA Atributos: sub título: enum [MECAN., ARCHIV] Entidad: EMPLEADO Atributos: num_empl: entero Identificadores: num_empl Entidad: MILITAR Atributos: rango: texto (20) división: texto (10) num_ID: entero Identificadores: división, num_ID Generalización: SEXO Padre: PERSONA Hijos: HOMBRE, MUJER Generalización (p, e): TIPO_TRABAJO Padre: PERSONA Hijos: DIRECTOR, SECRETARIA, EMPLEADO Subconjunto: MILITAR de PERSONA

Mecanismos de Abstracción

- A continuación, se describe cómo aparecen las abstracciones descritas en este modelo.
- Los tres elementos básicos del modelo se forman como aplicación de una clasificación,
 - <u>Entidad</u>. Clase de objetos con propiedades comunes.
 - <u>Interrelación</u>. Clase de hechos atómicos que relacionan entidades.
 - <u>Atributo</u>. Clase de valores que se asocian a propiedades atómicas de una entidad.
- Aparecen tres tipos de agregaciones,
 - Entidad. Agregación de atributos.
 - <u>Interrelación</u>. Agregación de entidades y atributos.
 - Atrib. Compuesto. Agregación de atributos.
- La generalización aparece en las jerarquías de generalización y los subconjuntos, que suele aplicarse a entidades, y en algún caso a interrelaciones.

Planteamiento Inicial

- La creación de un esquema en el modelo entidad/relación es un proceso incremental que se va refinando poco a poco.
- Este proceso se realiza más fluidamente mediante la utilización de transformaciones estructuradas.
- Existen una serie de Primitivas de Refinamiento que son transformaciones que se aplican a un esquema para llegar a un esquema final.
- Éstas se clasifican en <u>Primitivas Ascendentes</u> y Primitivas Descendentes.
- La utilización de primitivas concretas permiten desarrollar varias estrategias de diseño,
 - Estrategia Ascendente.
 - Estrategia Descendente.
 - Estrategia Centrífuga.
 - Estrategia Mixta.
- Mediante las primitivas y las estrategias se construyen las Metodologías de Diseño, que deben ser.
 - <u>Rigurosas</u>. Se debe definir una estrategia única para todas las decisiones del proceso.
 - <u>Flexibles</u>. Puede ser aplicable en un amplio conjunto de situaciones y entornos.

Primitivas del Diseño Conceptual

- El diseño de un esquema conceptual es el resultado de un análisis detallado de los requerimientos del usuario.
- Normalmente se parte de un esquema inicial sobre el que se aplican un conjunto de transformaciones que llevan al esquema final.
- Este planteamiento es similar al desarrollo de cualquier programa de aplicación.
- En el diseño de bases de datos aparecen una serie de primitivas de refinamiento que ayudan al diseñador en esta tarea.
- Aparecen una serie de características que son comunes a todas las primitivas,
 - Parten de un Esquema Inicial y generan un Esquema Resultante.
 - Aparece una correspondencia entre los Nombres de los Conceptos de los esquemas inicial y resultante.
 - Los conceptos del esquema resultante heredan las Conexiones Lógicas definidas entre los conceptos del esquema inicial.
- El tipo de transformaciones utilizadas influyen decisivamente en la calidad del esquema resultante.
- Por esta razón, únicamente se describen las transformaciones primitivas, que presentan una estructura muy simple y que no es posible descomponerlas en otras más simples.

Ejemplo de Transformación

- Estas primitivas se asocian al concepto de refinamiento de conceptos.
- Seguidamente se describen estas primitivas, presentando también un ejemplo sencillo, y se deja para más adelante la descripción de sus propiedades más importantes.
- <u>T1</u>. Refina una entidad dando lugar a una interrelación entre dos entidades.
- <u>T2</u>. Refina una entidad dando lugar a una jerarquía de generalización o un subconjunto.
- <u>T3</u>. Refina una entidad dando lugar a un conjunto de entidades independientes.
- <u>T4</u>. Refina una interrelación dando lugar a dos o más interrelaciones entre las dos entidades asociadas.
- <u>T5</u>. Refina una interrelación dando lugar a una ruta de entidades e interrelaciones.
- <u>T6</u>. Refina una entidad o interrelación mediante la inclusión de sus atributos.
- <u>T7</u>. Refina una entidad o interrelación mediante la inclusión de un atributos compuesto.
- <u>T8</u>. Refina un atributo dando lugar a un atributo compuesto o un conjunto de atributos.

- Las principales propiedades de las primitivas descendentes son,
 - El esquema inicial es un concepto único, y el esquema resultante se compone de un conjunto de conceptos.
 - Los nombres se refinan dando lugar a nuevos nombres que se asocian a conceptos de un nivel de abstracción menor.
 - Las conexiones lógicas se heredan por un único concepto del esquema resultante.
- Además de las primitivas descritas aparecen otras transformaciones más complejas que también puede considerarse descendentes.
- En algún caso, se deben respetar algunas restricciones, como la cardinalidad de todas las interrelaciones, las iniciales y las resultantes.

- Mediante la utilización de estas primitivas se introducen conceptos y propiedades que no habían sido considerados con anterioridad.
- También se utilizan para fusionar esquemas, con el objetivo de formar esquemas globales, lo que se denomina Integración de Esquemas.
- Seguidamente se enumeran estas primitivas, y posteriormente se muestra un ejemplo sencillo de cada una.
- <u>B1</u>. Genera una nueva entidad asociada a un concepto con propiedades específicas que no había sido considerado.
- <u>B2</u>. Genera una nueva interrelación entre dos entidades ya incluidas en el esquema anterior.
- <u>B3</u>. Se obtiene una nueva entidad como la generalización de un conjunto de entidades ya definidas.
- <u>B4</u>. Obtiene las entidades e interrelaciones que corresponden con un conjunto de atributos ya definidos.
- <u>B5</u>. Crea un atributo compuesto que se asocia a una entidad o interrelación ya definida.
- La aplicación de la primitiva B3 requiere el control sobre la herencia de las propiedades.
- Posteriormente se muestra un ejemplo sencillo sobre esta circunstancia.

Ejemplos de las Primitivas Ascendentes

Ejemplo de Control de Herencia

Propiedades de las Primitivas

- El conjunto de primitivas definido debe de cumplir dos propiedades básicas,
 - Compleción. Si cualquier esquema de base de datos puede construirse a partir de un esquema inicial vacío.
 - Minimalidad. Cuando ninguna primitiva se puede expresar mediante la combinación de las otras primitivas.
- El conjunto de primitivas ascendentes cumplen ambas propiedades, pero las descendentes no cumplen ninguna de ellas.
- No es mínima porque la primitiva T5 se puede obtener a partir de la primitiva T1.
- También aparece una duda razonable sobre la primitiva T4.
- Pero la primitiva T4 puede generar ciclos, a diferencia de T1.
- No es completa, porque los modelos en los que existe una conectividad total entre las entidades no pueden ser modelado con las primitivas descendentes.
- Por esta última razón, existe un tipo específico de esquemas que engloba a los esquemas que son Producibles en Forma Descendente.

Ejemplo de Esquema no Producible en Forma Descendente

Estrategias de Diseño

- En función del tipo de primitivas utilizada, se definen cuatro metodologías,
 - <u>Estrategia Descendente</u>. Esta estrategia sólo utiliza las primitivas descendente.
 - <u>Estrategia Ascendente</u>. Que define los esquemas mediante primitivas ascendentes.
 - <u>Estrategia Centrífuga</u>. Caso particular de la estrategia ascendente.
 - <u>Estrategia Mixta</u>. Utiliza tanto las primitivas descendentes como las ascendente.
- Se muestra como aplicar cada una de ellas en el diseño del siguiente esquema final.

Estrategia Descendente

- Sólo se aplican primitivas de refinamiento, por lo que se van generando nuevos conceptos con la aplicación de cada primitiva.
- El proceso finaliza cuando los requerimientos se completan, pasando a través de diferentes niveles de abstracción.
- Cada vez se refina un único concepto, por lo que el proceso iterativo es simple.
- Pero esta metodología sólo se puede aplicar cuando el diseñador puede abstraer toda la información contenida en los requerimientos sobre los diferentes niveles de abstracción.

Estrategia Descendente

Estrategia Ascendente

- A partir de los conceptos elementales que aparecen en los requerimientos, se forman conceptos más complejos.
- También se podría haber diseñado cada parte por separado y luego fundirlas.
- Resulta sencillo, ya que se obtienen versiones iniciales rápidamente, pero se debe verificar el control de la herencia.

Estrategia Ascendente

Estrategia Centrífuga

- Se selecciona el concepto más importante, y luego se extiende el esquema como una mancha de aceite.
- El primer lugar se analizan los conceptos más próximos al principal, y luego se <u>navega</u> hacia los conceptos más alejados.
- El refinamiento es disciplinado, pero en este caso sólo aparece un nivel de abstracción.

Estrategia Centrífuga

Estrategia Mixta

- Aprovecha las ventajas de las estrategias ascendente y descendente, particionando de modo controlado los requerimientos.
- Los subconjuntos de requerimientos se diseñan de modo separado.
- También se define un Esquema Armazón, en el que se describe la relación existente entre las diferentes subconjuntos de requerimientos.
- Posteriormente, se integran los esquemas de los subconjuntos de requerimientos en el esquema armazón.

Estrategia Mixta

Comparación de Estrategias

Estrategia	Descripción	Ventajas	Desventajas
Descendente	Los conceptos se refinan progresiva- mente.	No hay efectos secundarios indeseables.	Requiere un diseñador hábil con alta capacidad de abstracción desde el comienzo.
Ascendente	Los conceptos se forman a partir de componentes elementales. Decisiones locales de diseño sencillas.	Ninguna carga sobre el diseñador inicial.	Necesidad de una reestructuración después de aplicar cada primitiva ascendente.
Centrífuga	Los conceptos se construyen con un enfoque "de mancha de aceite".	Facilidad para descubrir nuevos conceptos cercanos a los anteriores. Ninguna carga sobre el diseñador inicial.	La visión global del dominio de aplicación se tiene sólo al final.
Mixta	Partición descendente de los requerimientos; integración ascendente usando el esquema armazón.	Enfoque de "divide y vencerás".	Requiere decisiones cruciales sobre el esquema armazón al inicio del proceso de diseño.

Comparación de Estrategias

- Aparecen ciertas cuestiones que deben ser resueltas.
- ¿La aplicación de cualquiera de las cuatro estrategias genera el mismo esquema?.
 - Lógicamente no, e incluso puede suceder que la utilización de una misma estrategia genere esquemas diferentes.
- ¿Cuando utilizar una estrategia?
 - La estrategia descendente suele utilizarse en organizaciones altamente organizadas.
 - La estrategia ascendente se utiliza en organizaciones informales, donde es sencillo incidir en el detalle y luego integrarlo todo.
- En principio resulta aconsejable utilizar la estrategia descendente siempre que sea posible, ya que es más estructurado.
- Una alternativa válida es utilizar la estrategia descendente, y utilizar primitivas ascendentes para incluir algún concepto que no hubiera sido considerado.

Elección entre Conceptos

- Los objetos de la realidad puede modelarse de modo diferente, según cual sea el criterio aplicado.
- Entidad o Atributo Simple.
 - Como entidad si en el diseño se pueden asociar varias características al objeto asociado, como atributos, interrelaciones, generalizaciones o subconjuntos.
 - Como atributo si el objeto tiene una estructura atómica simple.
- Generalización o Atributo.
 - Como generalización si se espera que pueda aparecer alguna característica concreta sobre alguno de los subconjuntos.
 - Como atributo en otro caso.
- <u>Atributo Compuesto o Conjunto de Atributos</u> Simples.
 - Como atributo compuesto si se le asigna un nombre de modo natural, como la dirección.
 - Como atributo en otro caso.

Elección entre Conceptos

Cualidades de un Esquema

- Compleción. Un esquema es completo si representa las características pertinentes del dominio de la aplicación.
 - El esquema es completo respecto a los requerimientos si aparecen en él todos los requerimientos del dominio.
 - Los requerimientos están completos respecto al esquema si todos sus conceptos aparecen en los requerimientos.
- <u>Corrección</u>. Un esquema es correcto si usa con propiedad los conceptos del modelo.
 - Es sintácticamente correcto si los conceptos se definen con propiedad en el esquema.
 - Es semánticamente correcto si utiliza los conceptos de acuerdo con su definición.
 - Algunos errores semánticos son,
 - 1 Usar un atributo en lugar de una entidad.
 - 2 Olvidar una generalización.
 - 3 Olvidar la propiedad de herencia en las generalizaciones.
 - 4 Usar una interrelación con un número erróneo de entidades.
 - 5 Usar una entidad por una interrelación.
 - 6 Olvidar algún identificador, sobre todo identificadores compuestos externos.
 - 7 No especificar alguna cardinalidad.

Cualidades de un Esquema

- Minimalidad. Un esquema es mínimo si todos los aspectos de los requerimientos aparecen una sola vez.
 - Es mínimo si no se puede borrar un concepto sin perder información.
 - Se puede permitir alguna redundancia si se documenta suficientemente.
- <u>Expresividad</u>. Un esquema es expresivo si se representan los requerimientos de forma natural, y se puede entender con facilidad sin necesidad de explicaciones.
- <u>Legibilidad</u>. El esquema es legible si cumple los criterios estéticos siguientes,
 - Trazarlos en hojas cuadriculadas para que los gráficos sean semejantes y las conexiones sean horizontales y verticales.
 - Destacar las estructuras simétricas.
 - Minimizar el número de cruces.
 - Minimizar el número de esquinas a lo largo de las conexiones.
 - En jerarquías de generalización, la entidad padre debe situarse sobre las entidades hijo.

Ejemplos de Cualidades de un Esquema

Ejemplos de Cualidades de un Esquema

Cualidades de un Esquema

- <u>Autoexplicación</u>. Un esquema se explica a si mismo cuando puede representar la mayoría de propiedades mediante el modelo conceptual, evitando otros formalismos.
- <u>Extensibilidad</u>. Un esquema es extensible si se adapta fácilmente a requerimientos variables, para lo cual puede descomponerse en partes.
- Normalidad. Un esquema está en una forma normal si cumple las características de la forma normal asociada.

Ejemplos de Cualidades de un Esquema

Transformaciones de Esquemas

- Las Transformaciones de Esquemas se aplican sobre un esquema inicial y generan un nuevo esquema.
- Se pueden clasificar por el contenido de información de ambos esquemas.
 - Dos esquemas son Equivalentes si cualquier consulta definida sobre un esquema puede reformularse para aplicarse sobre el otro esquema, dando el mismo resultado.
 - Un esquema contiene mayor información que otro esquema si una consulta sobre el primer esquema no tiene una consulta asociada en el segunda esquema, pero no se cumple al revés.
- Así, se clasifican las transformaciones como,
 - Transf. que preservan la información.
 - Transf. que no preservan la información.
 - Transformaciones de aumento.
 - <u>Transformaciones de reducción</u>.
 - <u>Transformaciones no comparables</u>.
- Las transformaciones de reducción sólo se aplican cuando aparece información redundante en el esquema.

Ejemplo de Transf. de Esquemas

Transformaciones de Minimalidad

- Puede aparecer cierta redundancia en el esquema, porque ésta aparezca en los requerimientos o se produzca al fundir esquemas en la estrategia ascendente.
- <u>Ciclos de Interrelaciones</u>. Cuando una interrelación entre dos entidades posee el mismo contenido de información que una ruta de interrelaciones.
 - Existen ciertas reglas sintácticas que deben de tenerse en cuenta, cómo la relación entre las cardinalidades de las diferentes interrelaciones.
 - También pueden aparecer diferentes Restricciones de Contención, de modo que una relación se incluya dentro de otra.
- Atributos Derivados. Los valores del atributo puede calcularse mediante los valores de otros atributos.
 - Se pueden mantener, ya que mejoran la eficiencia de la base de datos.
 - En ese caso es necesario especificar el algoritmo que permite calcular sus valores.
- Subconjuntos Implícitos. La integración de esquemas puede producir la aparición de subconjuntos que puede producirse como subconjuntos de otros ya definidos.

Ejemplos de Transf. de Minimalidad

Ejemplos de Transf. de Minimalidad

Transformaciones de Expresividad y Autoexplicación

- Eliminación de Jerarquías de Generalización. Se produce cuando en el proceso de diseño se generen generalizaciones tales que las entidades subconjuntos no posean ninguna característica específica.
- Eliminación de Entidades Colgantes. Una entidad es colgante si posee uno o dos atributos y sólo posee una conexión con otra entidad, en cuyo caso se puede integrar los atributos de la entidad colgante sobre la entidad con la que se relaciona.
- <u>Creación de Generalizaciones</u>. Cuando existen dos entidades con propiedades comunes que pertenecen a la misma jerarquía de generalización.
- Creación de Subconjuntos. Permite destacar el papel de una entidad en una interrelación. Se suele aplicar a entidades que tienen cardinalidad mínima igual a cero en alguna interrelación, siempre y cuando el subconjunto resultante tenga sentido dentro del esquema.

Ejemplo de Transf. de Expresividad y Autoexplicación

