COM SCI M238 (Quantum Computing)

October 11, 2022

9.22 0th 1

- first quantum computer working in 2016
- rn = 127 qubits
- google projected to have 1mil qubits by 2029
- largest simulation of a quantum computer by a classical computer: nasa, 70 (perfect) qubits, half a year
 - only need 37 for practical uses
- 1% err rate
 - current err corrections reqs ~1000 qubits to support 1 perfect qubit
- moores law of quantum computing
 - err rate improves linearly per qubit
- quantum volume for the decade: 100 qubits * 1000 ops = 100k ops
 - need to push decoherence time
- good problem: small input, lots of calculation, small output, easily verifiable
- double slit experiment
 - numbers of photons that come thru when either slit is covered are not additive
 - complex α_1 and α_2 for probability for either, can be negative, amplitude leq 1
 - eg $\alpha_1 = 1/\sqrt{2}$ and $\alpha_2 = -1/\sqrt{2}$
 - probability = $|\alpha|^2 = 1/2$
 - probability when both are uncovered = $|\alpha_1 + \alpha_2|^2 = 0$
- borns rule: when measured, a state with amplitude α is observed with probability $|\alpha|^2$

9.27 1t

	classical	quantum
software	boolean algebra	linear algebra
hardware	classical mechanics	quantum mechanics

4 postulates that define the interface between us and the qubits

- 1. state space rule
- $|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ $|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$
- $\left(\frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle\right)$
- 2. composition rule
- tensor product
- 3. step rule

- unitary matrix
- $U|\psi\rangle = |\varphi\rangle$
- $|\psi\rangle$ and $|\varphi\rangle$ are unit vectors of size 2^n
- U is $2^n \times 2^n$ but can be programmed in polynomial amount of code
- 4. measurement rule
- $\bullet \ \ bit \xrightarrow{load} quantum \xrightarrow{compute} quantum \xrightarrow{measure} bit$

from classical computing to probabilistic computing to quantum computing

classical

$$- \text{ step:} \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

- * cols: to 00, 01, 10, 11
- probabilistic: model of the world with uncertainties
 - state is a vector, taking a step = multiply by probability matrix

- step:
$$\begin{bmatrix} 0 & 0 & 0 & 1/4 \\ 1 & 2/3 & 1/3 & 1/4 \\ 0 & 1/3 & 1/3 & 1/4 \\ 0 & 0 & 1/3 & 1/4 \end{bmatrix}$$

- tensor product:
$$\begin{bmatrix} p \\ 1-p \end{bmatrix} \otimes \begin{bmatrix} q \\ 1-p \end{bmatrix} \rightarrow \begin{bmatrix} pq \\ p(1-q) \\ (1-p)q \\ (1-p)(1-q) \end{bmatrix}$$

- "not gate":
$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} p \\ q \end{bmatrix} = \begin{bmatrix} q \\ p \end{bmatrix}$$
$$\begin{bmatrix} 1/2 & 1/2 \end{bmatrix} \begin{bmatrix} p \\ p \end{bmatrix} = \begin{bmatrix} \frac{1}{2}(p+q) \end{bmatrix}$$

- fair flip:
$$\begin{bmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{bmatrix} \begin{bmatrix} p \\ q \end{bmatrix} = \begin{bmatrix} \frac{1}{2}(p+q) \\ \frac{1}{2}(p+q) \end{bmatrix} = \begin{bmatrix} 1/2 \\ 1/2 \end{bmatrix}$$

- "not gate":
$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} p \\ q \end{bmatrix} = \begin{bmatrix} q \\ p \end{bmatrix}$$
- fair flip:
$$\begin{bmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{bmatrix} \begin{bmatrix} p \\ q \end{bmatrix} = \begin{bmatrix} \frac{1}{2}(p+q) \\ \frac{1}{2}(p+q) \end{bmatrix} = \begin{bmatrix} 1/2 \\ 1/2 \end{bmatrix}$$
-
$$\begin{bmatrix} a \\ b \end{bmatrix} \otimes \begin{bmatrix} c \\ d \end{bmatrix} = \begin{bmatrix} ac \\ ad \\ bc \\ bd \end{bmatrix} \text{ can never equal } \begin{bmatrix} 1/2 \\ 0 \\ 0 \\ 1/2 \end{bmatrix}$$

*
$$\frac{1}{4} = \frac{1}{2} \cdot \frac{1}{2} = (ac)(bd) \neq (ad)(bc) = 0 \cdot 0 = 0$$

• comparison between probabilistic and quantum

	probabilistic	quantum		
value	real	complex		
state	vector of probabilities	vector of amplitude		
	$\sum p_i = 1$	$\sum a ^2 = 1$		
step	stochastic matrix	unitary matrix		

• quantum

- fair flip:
$$H = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

* $H |0\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |1\rangle$

* $H |1\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |1\rangle$

* distinguishing $\begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$ and $\begin{bmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{bmatrix}$:

• $H \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix} = |0\rangle$

• $H \begin{bmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{bmatrix} = |1\rangle$

- $f: \{0,1\} \rightarrow \{0,1\}$

encoding a function to be invertible

• encoding of
$$f: U_f: \{0,1\}^2 \to \{0,1\}^2$$

- $U_f(x,b) = (x,b \oplus f(x))$ invertible
- $(U_f \circ U_f)(x,b) = U_f(U_f(x,b)) = U_f(x,b \oplus f(x)) = (x,b \oplus f(x) \oplus f(x)) = (x,b)$

9.29 1th 3

3.1 complex numbers

•
$$a + ib$$

$$\bullet \ \overline{a+ib} = a-ib$$

•
$$e^{i\theta} = \cos\theta + i\sin\theta$$

•
$$\overline{e^{i\theta}} = \cos \theta - i \sin \theta = e^{-i\theta}$$

3.2 hilbert space

• complex vector space w inner product

$$\bullet \left(\begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix}, \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} \right) = \overline{\alpha_1} \beta_1 + \overline{\alpha_2} \beta_2 = \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix}^* \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} = \begin{bmatrix} \overline{\alpha_1} & \overline{\alpha_2} \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix}$$

• write
$$|\psi\rangle = \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix}$$
 and $\langle \varphi | = \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix}$

• bra-ket notation:
$$\langle \psi | = | \overline{\alpha_1} \overline{\alpha_2} |$$

• inner product: $\langle \psi | \varphi \rangle$

•
$$|+\rangle = \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle)$$

•
$$|+\rangle = \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle)$$

• $|-\rangle = \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle)$

- $H|0\rangle = |+\rangle$
- $H|1\rangle = |-\rangle$
- $\langle 0|1\rangle = 1^* \cdot 0 + 0^* \cdot 1 = 0$

•
$$\langle +|-\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \end{bmatrix} \cdot \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \frac{1}{2} (1 \cdot 1 + 1 \cdot (-1)) = 0$$

- outer product: $|\psi\rangle\langle\varphi| = \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} \begin{bmatrix} \overline{\beta_1} & \overline{\beta_2} \end{bmatrix} = \begin{bmatrix} \alpha_1\overline{\beta_1} & \alpha_1\overline{\beta_2} \\ \alpha_2\overline{\beta_1} & \alpha_2\overline{\beta_2} \end{bmatrix}$
- a matrix *U* is unitary iff $UU^* = I$ (equivalent to $U^*U = I$)

3.3 partial measurement

- start state: $|\psi\rangle = \alpha_{00} |00\rangle + \alpha_{01} |01\rangle + \alpha_{10} |10\rangle + \alpha_{11} |11\rangle$
- measure qubit $1 \longrightarrow 0$ new sate: $\frac{\alpha_{00}|00\rangle + \alpha_{01}|01\rangle}{\sqrt{|\alpha_00|^2 + |\alpha_01|^2}} = |0\rangle \otimes \frac{\alpha_{00}|0\rangle + \alpha_{01}|1\rangle}{\sqrt{|\alpha_00|^2 + |\alpha_01|^2}}$

3.4 generalization of tensor product

• outer product:
$$|\psi\rangle\langle\varphi| = \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} \otimes \begin{bmatrix} \overline{\beta_1} & \overline{\beta_2} \end{bmatrix} = \begin{bmatrix} \alpha_1\overline{\beta_1} & \alpha_1\overline{\beta_2} \\ \alpha_2\overline{\beta_1} & \alpha_2\overline{\beta_2} \end{bmatrix}$$

$$\bullet \begin{bmatrix} \alpha_{00} & \alpha_{01} \\ \alpha_{10} & \alpha_{01} \end{bmatrix} \otimes B = \begin{bmatrix} \alpha_{00}B & \alpha_{01}B \\ \alpha_{10}B & \alpha_{01}B \end{bmatrix}$$

$$\bullet \begin{bmatrix} \alpha_{00} & \alpha_{01} \\ \alpha_{10} & \alpha_{01} \end{bmatrix} \otimes B = \begin{bmatrix} \alpha_{00}B & \alpha_{01}B \\ \alpha_{10}B & \alpha_{01}B \end{bmatrix}$$

$$\bullet |00\rangle = |0\rangle \otimes |0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \otimes \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

•
$$\underbrace{|101\rangle}_{5 \text{ in decimal}} = |1\rangle \otimes |0\rangle \otimes |1\rangle = \begin{vmatrix} 0\\0\\0\\1\\0\\0 \end{vmatrix}$$

- inner product → matrix product
- outer product → matrix product + tensor product
- \otimes associative: $A \otimes (B + C) = A \otimes B + A \otimes C$
- $(A \otimes B)(C \otimes D) = (AC) \otimes (BD)$
- "floating scalar rule": $(\alpha A) \otimes B = A \otimes (\alpha B) = \alpha (A \otimes B)$
- $|\psi\rangle \cdot \langle \varphi| \cdot |\gamma\rangle = |\psi\rangle \cdot \langle \varphi|\gamma\rangle = \langle \varphi|\gamma\rangle \cdot |\psi\rangle$

10.4 2t

todo: wire drawing

- $|0\rangle \otimes |0\rangle \otimes |0\rangle = |000\rangle$
- $(I \otimes CNOT)(I \otimes X \otimes I)(H \otimes I \otimes I)|000\rangle$

- it is more error-prone to do I than X or H
 - qiskit etc will put single operations that cancel out instead
- todo: drawing cnot but ctrl qbit on top
- $(I \otimes S)(CNOT \otimes I)(I \otimes S) |000\rangle$
 - where *S* is swap
- bob creates $\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$ and sends one of the qubits to alice
- alice has 2 bits ab
 - if a = 1, alice applies Z to A

$$* Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

- if b = 1, alice applies X to A
- send A to bob
- bob
 - -CNOT(A, B)
 - apply H to A
 - measure A, B

ab	alice 1	alice 2	bob 1	bob 2	bob measure
00	$\frac{1}{\sqrt{2}}\left(00\rangle+ 11\rangle\right)$	$\frac{1}{\sqrt{2}}(00\rangle+ 11\rangle)$	+0>	00>	00
01	$\frac{1}{\sqrt{2}}(00\rangle+ 11\rangle)$	$\frac{1}{\sqrt{2}}(10\rangle+ 01\rangle)$	$\ket{+1}$	$ 01\rangle$	01
10	$\frac{1}{\sqrt{2}}(00\rangle - 11\rangle)$	$\frac{1}{\sqrt{2}}(00\rangle - 11\rangle)$	$ -0\rangle$	$ 10\rangle$	10
11	$\frac{1}{\sqrt{2}} \left(00\rangle - 11\rangle \right)$	$\frac{1}{\sqrt{2}}(10\rangle - 01\rangle)$	$-\left -1\right\rangle$	- 11>	11

4.1 quantum teleportation

- $\left|\begin{array}{c}01\\0\end{array}\right\rangle$, last 2 are a bell pair
- alice has $\alpha |0\rangle + \beta |1\rangle$
- start state: $(\alpha |0\rangle + \beta |1\rangle)_A \otimes \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle)_{BC}$
- alice
 - todo: drawing
 - -CNOT(A, B)
 - -H(A)

 - $-\frac{1}{\sqrt{2}}\left(\alpha |000\rangle + \alpha |011\rangle + \beta |100\rangle + \beta |111\rangle\right) \rightarrow \frac{1}{\sqrt{2}}\left(\alpha |000\rangle + \alpha |011\rangle + \beta |110\rangle + \beta |101\rangle\right)$
 - $\rightarrow \frac{1}{2} \left(\alpha |001\rangle + \alpha |101\rangle + \alpha |011\rangle + \alpha |111\rangle + \beta |010\rangle \beta |110\rangle + \beta |000\rangle \beta |100\rangle \right)$
 - $\rightarrow \tfrac{1}{2} \left(\left| 00 \right\rangle \otimes \left(\alpha \left| 0 \right\rangle + \beta \left| 1 \right\rangle \right) + \left| 01 \right\rangle \otimes \left(\beta \left| 0 \right\rangle + \alpha \left| 1 \right\rangle \right) + \left| 10 \right\rangle \otimes \left(\alpha \left| 0 \right\rangle \beta \left| 1 \right\rangle \right) + \left| 11 \right\rangle \otimes \left(-\beta \left| 0 \right\rangle + \alpha \left| 1 \right\rangle \right) \right)$
 - $\frac{1}{4}$ probability of sending any of the 4
 - $-00 \rightarrow \alpha |0\rangle + \beta |1\rangle$

$$-01 \rightarrow \beta |0\rangle + \alpha |1\rangle$$
$$-10 \rightarrow \alpha |0\rangle - \beta |1\rangle$$
$$-11 \rightarrow -\beta |0\rangle + \alpha |1\rangle$$

• bob

$$bb$$

$$-b = 1 \Rightarrow X(C)$$

$$*00 \rightarrow \alpha |0\rangle + \beta |1\rangle$$

$$*01 \rightarrow \alpha |0\rangle + \beta |1\rangle$$

$$*10 \rightarrow \alpha |0\rangle - \beta |1\rangle$$

$$*11 \rightarrow \alpha |0\rangle - \beta |1\rangle$$

$$*01 \rightarrow \alpha |0\rangle + \beta |1\rangle$$

$$*01 \rightarrow \alpha |0\rangle + \beta |1\rangle$$

$$*10 \rightarrow \alpha |0\rangle + \beta |1\rangle$$

$$*11 \rightarrow \alpha |0\rangle + \beta |1\rangle$$

• alice's qubit destroyed when measured

4.2 no cloning theorem

- no quantum operation maps $|\psi 0\rangle$ to $|\psi \psi\rangle$
- suppose $U |\psi\rangle |0\rangle = |\psi\rangle |\psi\rangle$
- pick $|\psi_1\rangle$, $|\psi_2\rangle$ such that $\langle \psi_1|\psi_2\rangle \neq 0$ and $\langle \psi_1|\psi_2\rangle \neq 1$
- lemma: $\langle (v_1 \otimes v_2) | (w_1 \otimes w_2) \rangle = \langle v_1 | w_1 \rangle \cdot \langle v_2 | w_2 \rangle$
- $\bullet \ \langle \psi_1 | \psi_2 \rangle = \langle \psi_1 | \psi_2 \rangle \cdot \langle 0 | 0 \rangle = \langle \psi_1 0 | \psi_2 0 \rangle = \langle U (|\psi_1 0 \rangle), U (|\psi_2 0 \rangle) \rangle = \langle \psi_1 \psi_1 | \psi_2 \psi_2 \rangle = \langle \psi_1 | \psi_2 \rangle \cdot \langle \psi_1 | \psi_2 \rangle$

4.3 universality

- $NAND(x_1, x_2) = CCNOT(x_1, x_2, 1)$
 - CCNOT can simulate all of boolean logic
- {CCNOT, H} is universal for all real unitaries
- $\left\{CCNOT, H, S = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}\right\}$ is universal for all unitaries
- quantum computers implement {CNOT, H, T}

$$-S = T^2$$

5 10.6 2th

5.1 deutsch-jozsa problem

- input: a function $f: \{0,1\}^n \rightarrow \{0,1\}$
- assumption: either *f* is constant or *f* is balanced
- probabilistically, just guess balanced
- 2^n inputs, try one after another, know it's constant after $2^{n-1} + 1$ tries
- n = 1

- $f: \{0,1\} \rightarrow \{0,1\}$
- U_f : qubit^{⊗2} → qubit^{⊗2}
- make unitary
- $-U_f(|x\rangle \otimes |b\rangle) = |x\rangle \otimes |b \oplus f(x)\rangle$

input	f_0	f_1	f_2	f ₃
0	0	0	1	1
1	0	1	0	1

- $U_{f_0}(|0\rangle \otimes |b\rangle) = |0\rangle \otimes |b \oplus f(0)\rangle = |0b\rangle$
- $U_{f_0}(|1\rangle \otimes |b\rangle) = |1\rangle \otimes |b \oplus f(1)\rangle = |1b\rangle$
- U_{f_0} is the 4×4 identity matrix
- f is constant

*
$$f(0) = 0 \land f(1) = 0 \lor f(0) = 1 \land f(1) = 1$$

$$* f(0) \oplus f(1) = 0$$

- f is balanced
 - * $f(0) \oplus f(1) = 1$
- idea 1: use superposition of $|0\rangle$, $|1\rangle$
- observation: U_f moves f(0), f(1) to the exponent so we can do addition
- idea 2: H will move $f(0) \oplus f(1)$ "back down"
- deutsch algorithm
- todo: drawing

$$- \ \operatorname{measure}_0 \left((H \otimes I) U_f (H \otimes H) \left| 01 \right> \right) = \begin{cases} 0 & f \text{ constant} \\ 1 & f \text{ balanced} \end{cases}$$

- lemma 1: $\forall a \in \{0, 1\} : |0 \oplus a\rangle |1 \oplus a\rangle = (-1)^a (|0\rangle |1\rangle)$
- lemma 2: $\forall x \in \{0,1\}^n$: $U_f(|x-\rangle) = (-1)^{f(x)} |x-\rangle$

$$* \ U_f\left(\left|x-\right\rangle\right) = \tfrac{1}{\sqrt{2}} \left(U_f\left(\left|x0\right\rangle\right) - U_f\left(\left|x1\right\rangle\right)\right) = \tfrac{1}{\sqrt{2}} \left(\left|x\right\rangle \otimes \left|0 \oplus f(x)\right\rangle - \left|x\right\rangle \otimes \left|1 \oplus f(x)\right\rangle\right)$$

$$* = |x\rangle \otimes \frac{1}{\sqrt{2}} \left(\left| 0 \oplus f(x) - \left| 1 \oplus f(x) \right\rangle \right\rangle \right) = |x\rangle \otimes \frac{1}{\sqrt{2}} (-1)^{f(x)} \left(\left| 0 \right\rangle - \left| 1 \right\rangle \right) = (-1)^{f(x)} |x-\rangle$$

- lemma 3: $\forall a \in \{0,1\}: H\left(\frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}(-1)^a|1\rangle\right) = |a\rangle$ $(H \otimes I)U_f(H \otimes H)|01\rangle = (H \otimes I)U_f\left(|+-\rangle\right) = (H \otimes I)U_f\frac{1}{\sqrt{2}}\left((|0\rangle + |1\rangle) \otimes |-\rangle\right)$

$$- = (H \otimes I) \frac{1}{5} U_f \left(\sum_{x \in \{0,1\}} |x - \rangle \right) = (H \otimes I) \frac{1}{5} \sum_{x \in \{0,1\}} (-1)^{f(x)} |x - \rangle$$

$$- = (H \otimes I) \frac{1}{\sqrt{2}} U_f \left(\sum_{x \in \{0,1\}} |x - \rangle \right) = (H \otimes I) \frac{1}{\sqrt{2}} \sum_{x \in \{0,1\}} (-1)^{f(x)} |x - \rangle$$

$$- = (H \otimes I) \frac{1}{\sqrt{2}} \left((-1)^f (0) |0\rangle + (-1)^{f(1)} |1\rangle \right) \otimes |-\rangle = (H \otimes I) \frac{1}{\sqrt{2}} (-1)^{f(0)} \left(|0\rangle + (-1)^{f(0) \oplus f(1)} |1\rangle \right) \otimes |-\rangle$$

- $= (-1)^{f(0)} \left| f(0) \oplus f(1) \right\rangle \otimes \left| \right\rangle$
- norm: $|(-1)^{f(0)}|^2 = 1$

deutsch-jozsa algorithm

- *n* > 1
- todo: drawing
- measure_{0:n} $((H^{\otimes n} \otimes I)U_f H^{\otimes (n+1)} (|0\rangle^{\otimes n} \otimes |1\rangle))$ gives an *n*-bit bitstring
- lemma 4 (todo: 5???): $\forall x \in \{0,1\} : H(|x\rangle) = \frac{1}{\sqrt{2}} \sum_{y \in \{0,1\}} (-1)^{xy} |y\rangle$
 - RHS = $\frac{1}{\sqrt{2}} (|0\rangle + (-1)^x |1\rangle)$, then see lemma 3

- lemma 5: $H^{\otimes n}(|x\rangle) = \frac{1}{\sqrt{2^n}} \sum_{y \in \{0,1\}^n} (-1)^{x \cdot y} |y\rangle$ $-H^{\otimes n}(|0\rangle) = H(|x_1\rangle) \otimes \cdots \otimes H(|x_n\rangle) = \frac{1}{\sqrt{2}} \sum_{y_1 \in \{0,1\}} |y_1\rangle \otimes \cdots \otimes \frac{1}{\sqrt{2}} \sum_{y_n \in \{0,1\}} |y_n\rangle$ $- = \frac{1}{\sqrt{2^n}} \sum_{y_1 \in \{0,1\}} \cdots \sum_{y_n \in \{0,1\}} (-1)^{x_1 y_1} \cdots (-1)^{x_n y_n} |y_1 \dots y_n\rangle = \frac{1}{\sqrt{2^n}} \sum_{y \in \{0,1\}^n} (-1)^{x \cdot y} |y\rangle$
- $(H^{\otimes n} \otimes I)U_f H^{\otimes (n+1)} \left(|0\rangle^{\otimes n} \otimes |1\rangle \right) = (H^{\otimes n} \otimes I)U_f \left(\frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} |x\rangle \right) \otimes |-\rangle$
- = $(H^{\otimes n} \otimes I) \frac{1}{\sqrt{2^n}} \left(\sum_{x \in \{0,1\}^n} (-1)^{f(x)} |x\rangle \right) \otimes |-\rangle$
- = $\frac{1}{\sqrt{2^n}} \left(\sum_{x \in \{0,1\}^n} \frac{1}{\sqrt{2^n}} \sum_{y \in \{0,1\}^n} (-1)^{x \cdot y} |y\rangle \right) \otimes |-\rangle$
- = $\frac{1}{2^n} \left(\sum_x \sum_y (-1)^{f(x) \oplus x \cdot y} |y\rangle \right) \otimes |-\rangle$
- for $|y\rangle = |0\rangle^{\otimes n} |-\rangle$, only final state $= \frac{1}{2^n} \left(\sum_x (-1)^{f(x)} |0\rangle^{\otimes n} \right) \otimes |-\rangle$

10.11 3t 6

6.1 bernstein-vazirani problem

- input: a function $f: \{0,1\}^n \to \{0,1\}$
- assumption: $f(x) = (a\dot{x}) \oplus b$
- outpu: *a*, *b*
- f(0...0) = b
- $f(0...01) = a_n \oplus b$
- $a = 0 \dots 0 \Rightarrow f(x) = b$: f is constant
- $a \neq 0 \dots 0$: f is balanced
 - every input has a sister input (e.g. flipping the last bit) that flips the output
- ideas
 - superposition
 - U_f will move something to the exponent (of -1)
 - $H^{\otimes n}$ will move the exponent back down
- goal: final state $|a\rangle$
- circuit
 - todo: drawing
 - measure_{1:n} $((H^{\otimes n} \otimes I)U_f H^{\otimes (n+1)}(|0...01\rangle))$
- $\frac{1}{2^n} \sum_{x \in \{0,1\}^n} \sum_{y \in \{0,1\}^n} (-1)^{(x \cdot y) \oplus f(x)} |y\rangle = \frac{1}{2^n} \sum_{x \in \{0,1\}^n} \sum_{y \in \{0,1\}^n} (-1)^{(x \cdot y) \oplus (a \cdot x) \oplus b} |y\rangle$
 - $= \frac{1}{2^n} \sum_{x \in \{0,1\}^n} \sum_{y \in \{0,1\}^n} (-1)^{(x \cdot (y \oplus a)) \oplus b} |y\rangle = \frac{(-1)^b}{2^n} \sum_{x \in \{0,1\}^n} \sum_{y \in \{0,1\}^n} (-1)^{x \cdot (y \oplus a)} |y\rangle$ $\text{ amplitude of } |a\rangle = \frac{1}{2^n} \sum_{x \in \{0,1\}^n} (-1)^{x \cdot (a \oplus a)} = (-1)^b$

 - then original expression = $(-1)^b |a\rangle$

6.2 another problem

- input: $f: \{0,1\}^2 \to \{0,1\}$
- assumption: *f* is 1 on a single input
- output: the single input
- circuit
 - goal: $|cd\rangle$

```
- todo: drawing - measure<sub>1:n</sub>((V \otimes I)U_fH^{\otimes 3} | 0 \dots 01 \rangle) - need to find V - let  * \varphi_{00} = \frac{1}{2} (-|00\rangle + |01\rangle + |10\rangle + |11\rangle) 
 * \varphi_{01} = \frac{1}{2} (|00\rangle - |01\rangle + |10\rangle + |11\rangle) 
 * \varphi_{10} = \frac{1}{2} (|00\rangle + |01\rangle + |10\rangle + |11\rangle) 
 * \varphi_{11} = \frac{1}{2} (|00\rangle + |01\rangle + |10\rangle - |11\rangle) 
 - (V \otimes I)U_fH^{\otimes 3} |001\rangle = (V \otimes I)U_f\frac{1}{2} (|00-\rangle + |01-\rangle + |10-\rangle + |11-\rangle) 
 * = (V \otimes I)\frac{1}{2} ((-1)^{f(00)} |00-\rangle + (-1)^{f(01)} |01-\rangle + (-1)^{f(10)} |10-\rangle + (-1)^{f(11)} |11-\rangle) 
 * = (V \otimes I)(\varphi_{cd} \otimes |-\rangle) 
- want V(\varphi_{cd}) = |cd\rangle 
 - V = \frac{1}{2} \begin{bmatrix} -1 & 1 & 1 & 1 \\ 1 & -1 & 1 & 1 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & 1 & -1 \end{bmatrix} 
 * \left( = \left[ \varphi_{00} \quad \varphi_{01} \quad \varphi_{10} \quad \varphi_{11} \right]^{-1} \right)
```