# **ELLIPTIC CURVE CRYPTOGRAPHY**

### **Elliptic Curve Cryptography: Motivation**

- Public key cryptographic algorithms (asymmetric key algorithms) play an important role in providing security services:
  - Key management
  - Confidentiality
  - User authentication
  - Signature
- Public key cryptography systems are constructed by relying on the hardness of mathematical problems
  - RSA: based on the integer factorization problem
  - DH: based on the discrete logarithm problem
- The main problem of conventional public key cryptography systems
  - key size has to be sufficient large in order to meet the high-level security requirement.
- This results in lower speed and consumption of more bandwidth
  - Solution: Elliptic Curve Cryptography system

Lets start with a puzzle...

What is the number of balls that may be piled as a square pyramid and also rearranged into a square array?

Lets start with a puzzle...

What is the number of balls that may be piled as a square pyramid and also rearranged into a square array?



- What about the figure shown?
- Does it fulfil our requirements?



- What about the figure shown?
- Does it fulfil our requirements???
- Can you find solutions to this problem???



Let x be the height of the pyramid, then the number of balls in pyramid is,

$$1^{2} + 2^{2} + 3^{2} + \dots + x^{2} = \frac{x(x+1)(2x+1)}{6}$$

We also want this to be a square. Hence,

$$y^2 = \frac{x(x+1)(2x+1)}{6}$$

# **Graphical Representation**



#### **Method of Diophantus**

- Uses a set of known points to produce new points
- (0,0) and (1,1) are two trivial solutions
- Equation of line through these points is y=x.
- Intersecting with the curve and rearranging terms:

$$x^3 - \frac{3}{2}x^2 + \frac{1}{2}x = 0$$

What are the roots of this equation???

#### **Method of Diophantus...**

- Uses a set of known points to produce new points
- (0,0) and (1,1) are two trivial solutions
- Equation of line through these points is y=x.
- Intersecting with the curve and rearranging terms:

$$x^3 - \frac{3}{2}x^2 + \frac{1}{2}x = 0$$

- What are the roots of this equation???
  - Two trivial roots x=0 and x=1..... But what about third one????

#### **Method of Diophantus...**

We know that, for any numbers a,b,c, we have,

$$(x-a)(x-b)(x-c) = x^3 - (a+b+c)x^2 + (ab+bc+ac)x - abc$$

Hence, for the equation

$$x^3 - \frac{3}{2}x^2 + \frac{1}{2}x = 0$$

We have,

$$a+b+x = \frac{3}{2} \to 0+1+x = \frac{3}{2} \to x = \frac{1}{2}$$

• Hence, one more point  $(\frac{1}{2}, \frac{1}{2})$  and because of the symmetry , another  $(\frac{1}{2}, -\frac{1}{2})$ 

#### **Method of Diophantus...: Exercise**

Can you find out another point on curve using Diophantus's method ???

Consider two points  $(\frac{1}{2}, -\frac{1}{2})$  and (1,1) and find out another point on the curve .....

#### Method of Diophantus...: Exercise solution

- Consider the line through (1/2,-1/2) and (1,1) => y=3x-2
- Intersecting with the curve we have:

$$x^3 - \frac{51}{2}x^2 + \dots = 0$$

- Thus  $\frac{1}{2}$  + 1 + x = 51/2 or x = 24 and y=70
- Thus if we have 4900 balls we may arrange them in either way

#### **Weierstrass Equation**

For most situations, an elliptic curve E is the graph of an equation of the form:

$$y^2 = x^3 + Ax + B$$

where A and B are constants. This refers to the Weierstrass Equation of Elliptic Curve.

- Here, A, B, x and y all belong to a field of say rational numbers, complex numbers, finite fields (F<sub>D</sub>) or Galois Fields (GF(2<sup>n</sup>)).
- If K is the field where A,B ∈ K, then we say that the Elliptic Curve E is defined over K

#### **Points on Elliptic Curve**

If we want to consider points with coordinates in some field L, we write E(L).
By definition, this set always contains the point at infinity O

$$E(L) = \{O\} \cup \{(x, y) \in L \times L | y^2 = x^3 + Ax + B\}$$





What about the roots of these curves ????

We must have the equation  $4A^3 + 27B^2 \neq 0$  satisfied

A condition for an Elliptic curve to be a group !!!!!

# Points on Elliptic Curve...



# Points on Elliptic Curve...





Consider elliptic curve

E: 
$$y^2 = x^3 - x + 1$$

- Start with two points :  $P_1(x_1,y_1)$  and  $P_2(x_2,y_2)$  on elliptic curve
- To get a new point P<sub>3</sub>,
  - Draw a line L through P₁ and P₂
  - Get the intersection P<sub>3</sub>'
  - Reflect across x-axis to get P<sub>3</sub>
- We define  $P_1 + P_2 = P_3$

- Case 1: P<sub>1</sub> ≠ P<sub>2</sub> and neither point is O
  - For  $x_1 \neq x_2$
  - For  $x_1 = x_2$ ????
    - We get  $P_1 + P_2 = O$

Slope of the line L passing through P1 and P2 is,

$$m = \frac{(y_2 - y_1)}{(x_2 - x_1)}$$

For  $x_1 \neq x_2$ , equation of line L is,

$$y = m(x - x_1) + y_1$$

To find intersection with E, substitute to get,

$$(m(x-x_1)+y_1)^2 = x^3 + Ax + B$$

Rearrange to form,

$$0 = x^3 - m^2 x^2 + \dots$$

Given two roots  $x_1$  and  $x_2$ , third root can be calculated,

$$(a+b+c) = m^2 \implies (x_1 + x_2 + x) = m^2$$

$$\Rightarrow x = m^2 - x_1 - x_2$$

and 
$$y = m(x - x_1) + y_1$$

refecting across the x - axis to obtain the point  $P_3 = (x_3, y_3)$ :

$$x_3 = m^2 - x_1 - x_2$$
 and  $y_3 = m(x_1 - x_3) - y_1$ 

- Case II :  $P_1 = P_2 = (x_1, y_1)$ 
  - When two points on a curve are very close to each other, the line through them approximates a tangent line. Therefore, when the two points coincide, we take the line L through them to be the tangent line.
  - Implicit differentiation allows us to find the slope m of L



$$2P = R = (-1.11, 2.64).$$

$$y^2 = x^3 - 3x + 5$$

- Case II :  $P_1 = P_2 = (x_1, y_1)$ 
  - When two points on a curve are very close to each other, the line through them approximates a tangent line. Therefore, when the two points coincide, we take the line L through them to be the tangent line.
  - Implicit differentiation allows us to find the slope m of L

$$2y\frac{dy}{dx} = 3x^2 + A$$
, so  $m = \frac{dy}{dx} = \frac{3x_1^2 + A}{2y_1}$ 

If  $y_1 \neq 0$ , the equation of L is,

$$y = m(x - x_1) + y_1$$

We find the cubic equation,

$$0 = x^3 - m^2 x^2 + \dots$$

This time we know only one root  $x_1$ , we obtain :

$$x_3 = m^2 - 2x_1$$
,  $y_3 = m(x_1 - x_3) - y_1$ 

- Case II :  $P_1 = P_2 = (x_1, y_1)$ 
  - If  $y_1 = 0$ 
    - We get  $P_1 + P_2 = O$
- Case III: P<sub>2</sub> = O
  - What about  $P_1 + P_2$ ????
  - Do we get  $P_1 + P_2 = P_1$ ??
  - In other words,  $P_1 + O = P_1$



#### **Group Law**

- The addition of points on an elliptic curve E satisfies the following properties:
  - (Commutativity) :  $P_1 + P_2 = P_2 + P_1$  for all  $P_1$ ,  $P_2$  on E
  - (Existence of identity) : P + O = P for all P on E
  - (Existence of inverses): Given P on E, there exists P' on E with P + P' = O. This point P' will usually be denoted as –P
  - (Associatively):  $(P_1 + P_2) + P_3 = P_1 + (P_2 + P_3)$  for all  $P_1$ ,  $P_2$ ,  $P_3$  on E

The points on E form an additive abelian group with O as the identity element.

#### Integer times a point

- Let k be a positive integer and let P be a point on an elliptic curve, then
  - kP denotes P + P + · · · + P (with k summands)
- Efficient computation for large k
  - Successive doubling method
    - For example, to compute 19*P, we compute* 
      - 2*P*, 4*P* = 2*P*+2*P*, 8*P* = 4*P*+4*P*, 16*P* = 8*P*+8*P*, 19*P* = 16*P*+2*P*+*P*.
- But, the only difficulty is....
  - The size of the coordinates of the points increases very rapidly if we are working over the rational numbers
  - What about finite fields ????

### **ELLIPTIC CURVES IN CRYPTOGRAPHY**

#### Elliptic curves in Cryptography

- Elliptic Curve (EC) systems as applied to cryptography were first proposed in 1985 independently by Neal Koblitz and Victor Miller.
- The discrete logarithm problem on elliptic curve groups
  - More difficult than the corresponding problem in (the multiplicative group of nonzero elements of) the underlying finite field.

# Why finite field?

- Elliptic curves over real numbers
  - Calculations prove to be slow
  - Inaccurate due to rounding error
  - Infinite field
- Cryptographic schemes need fast and accurate arithmetic
- In the cryptographic schemes, elliptic curves over two finite fields are mostly used.
  - Prime field F<sub>p</sub>, where p is a prime.
  - Binary field F<sub>2</sub><sup>m</sup>, where m is a positive integer

# Elliptic Curve over finite field F<sub>23</sub>

- As a very small example, consider an elliptic curve over the field  $F_{23}$ . With A = 1 and B = 0, the elliptic curve equation is  $y^2 = x^3 + x$ .
- The point (9,5) satisfies this equation since: y² mod p = x³ + x mod p
   25 mod 23 = 729 + 9 mod 23
   25 mod 23 = 738 mod 23
   2 = 2
- The 23 points which satisfy this equation are:

```
(0,0) (1,5) (1,18) (9,5) (9,18) (11,10) (11,13) (13,5) (13,18) (15,3) (15,20) (16,8) (16,15) (17,10) (17,13) (18,10) (18,13) (19,1) (19,22) (20,4) (20,19) (21,6) (21,17)
```

# Elliptic Curve over finite field F<sub>23</sub>...



#### Elliptic curves over finite fields

- Let us do an exercise....
- Let E be the curve  $y^2 = x^3+x+1$  over  $F_5$ , find all the points on E

Therefore,  $E(F_5)$  has order 9.

Can you show that  $E(F_5)$  is cyclic??? What is the generator??

| X | x <sup>3</sup> +x+1 | у  | Points      |
|---|---------------------|----|-------------|
| 0 | I                   | ±1 | (0,1),(0,4) |
| I | 3                   | -  | -           |
| 2 | I                   | ±Ι | (2,1),(2,4) |
| 3 | 1                   | ±Ι | (3,1),(3,4) |
| 4 | 4                   | ±2 | (4,2),(4,3) |
| 0 |                     | 0  | 0           |

#### Discrete logarithms in Finite Fields



Compute 
$$k=(g^x)^y=g^{xy} \mod p$$

Eve has to compute g<sup>xy</sup> from g<sup>x</sup> and g<sup>y</sup> without knowing x and y... She faces the Discrete Logarithm Problem in finite fields

### Elliptic Curve Discrete Logarithm Problem (ECDLP)

If we are working over a large finite field and are given points P and kP, it is computationally hard to determine the value of k. This is called the **discrete logarithm problem for elliptic curves (ECDLP)** and is the basis for the cryptographic applications.

# What Is Elliptic Curve Cryptography (ECC)?

- Elliptic curve cryptography [ECC] is a public-key cryptosystem just like RSA, El Gamal.
- Every user has a public and a private key.
  - Public key is used for encryption/signature verification.
  - Private key is used for decryption/signature generation.
- Elliptic curves are used as an extension to other current cryptosystems.
  - Elliptic Curve El-Gamal Encryption
  - Elliptic Curve Diffie-Hellman Key Exchange
  - Elliptic Curve Digital Signature Algorithm

# **Using Elliptic Curves In Cryptography**

- The central part of any cryptosystem involving elliptic curves is the elliptic group.
- All public-key cryptosystems have some underlying mathematical operation.
  - RSA has exponentiation (raising the message or ciphertext to the public or private values)
  - ECC has point multiplication (repeated addition of two points).

#### Discrete Logarithm Key pair generation

■ A key pair is associated with a set of public domain parameters (p, q, g). Here, p is a prime, and  $g \in [1, p-1]$  has order q

INPUT: D L  $\rightleftharpoons$  domain parameters (p,q,g).

OUTPUT: Public key y and private key x.

- 1. Select  $x \in_R [1, q 1]$ .
- 2. Compute  $y = g^x \mod p$
- 3. Return (y,x).

#### **ECC** Key pair generation

- Let E be an elliptic curve defined over a finite field Fp.
- Let P be a point in E(F<sub>p</sub>), and suppose that P has prime order n. Then the cyclic subgroup of E(F<sub>p</sub>) generated by P is,

$$P = \{O, P, 2P, 3P, ..., (n-1)P\}.$$

The public domain parameters are: The prime p, the equation of the elliptic curve E, and the point P and its order n:(p,E,P,n)

A private key is an integer d that is selected uniformly at random from the interval [1, n-1], and the corresponding public key is Q = dP.

### **Basic Elgamal encryption scheme**

Basic ElGamal Encryption

Basic ElGamal Decryption

INPUT : DLdomain parameters (p, q, g), public key y, plaintext  $m \in [0, p-1]$ .

OUTPUT : Ciphertext  $(c_1, c_2)$ .

- 1. Select  $k ∈_R [1, q 1]$ .
- 2. Compute  $c_1 = g^k \mod p$
- 3. Compute  $c_2 = m \cdot y^k \mod p$
- 2.Return  $(c_1, c_2)$ .

INPUT : DLdomain parameters (p,q,g), private key x, ciphertext  $(c_1,c_2)$ .

OUTPUT: Plaintext m.

- 1. Compute  $m = c_2 \bullet c_1^{-x} \mod p$ .
- 2.Return (m).

#### **ECC Analog to El Gamal : ECEG**

EC-EIGamal Encryption



INPUT : Elliptic curve domain parameters (p, E, P, n), public key Q, plaintext m.

OUTPUT : Ciphertext  $(C_1, C_2)$ 

1. Represent the message m as a point M in  $E(F_p)$ 

- 2. Select *k* ∈  $_{R}$  [1, n −1].
- 3. Compute  $C_1 = kP$ .
- 4. Compute  $C_2 = M + kQ$ .
- 5. Return  $(C_1, C_2)$ .

EC-ElGamal Decryption



INPUT : Elliptic curve domain parameters (p, E, P, n), private key d, ciphertext  $(C_1, C_2)$ 

OUTPUT: Plaintext m.

- 1. Compute  $M = C_2 dC_1$ , and extract m from M
- 2. Return M.

#### **ECC Diffie-Hellman: ECDH**

- Public: Elliptic curve and point G=(x,y) on curve
- Secret: Alice's A and Bob's B



- Alice computes A(B(x,y))
- Bob computes B(A(x,y))
- These are the same since AB = BA

#### **ECC Diffie-Hellman: ECDH...**

- Public: Curve  $y^2 = x^3 + 7x + b \pmod{37}$  and point G = (2, 5)
- Alice's secret: A = 4
- Bob's secret: B = 7
- $\blacksquare$  Alice sends Bob: 4 (2,5) = (7,32)
- **Bob** sends Alice: 7(2,5) = (18,35)
- $\blacksquare$  Alice computes: 4(18,35) = (22,1)
- **Bob computes:** 7(7,32) = (22,1)

#### Why use ECC?

- Criteria to be considered while selecting PKC for application
  - Functionality: Does the public-key family provide the desired capabilities?
  - Security: What assurances are available that the protocols are secure?
  - Performance: For the desired level of security, do the protocols meet performance objectives?
  - Also some misc. factors such as existence of best-practice standards developed by accredited standards organizations, the availability of commercial cryptographic products, and patent coverage.

#### Why use ECC?...

- The RSA, DL and EC families all provide the basic functionality expected of public-key cryptography
- But..... How do we analyze these Cryptosystems?
  - How difficult is the underlying problem that it is based upon
    - RSA Integer Factorization
    - DH Discrete Logarithms
    - ECC Elliptic Curve Discrete Logarithm problem

#### Why use ECC?...

- How do we measure difficulty?
  - We examine the algorithms used to solve these problems
  - Integer factorization
    - Number Field Sieve (NFS): Sub exponential running time
  - Discrete Logarithm
    - Number Field Sieve (NFS): Sub exponential running time
    - Pollard's rho algorithm
  - Elliptic Curve Discrete Logarithm Problem(ECDLP)
    - Pollard's rho algorithm : Fully exponential running time

#### Why use ECC?...

- To protect a 128 bit AES key it would take a:
  - RSA Key Size: 3072 bits
  - ECC Key Size: 256 bits
- How do we strengthen RSA?
  - Increase the key length
- Impractical?

| NIST guidelines for public key sizes for AES |                        |                   |                        |  |
|----------------------------------------------|------------------------|-------------------|------------------------|--|
| ECC KEY SIZE<br>(Bits)                       | RSA KEY SIZE<br>(Bits) | KEY SIZE<br>RATIO | AES KEY SIZE<br>(Bits) |  |
| 163                                          | 1024                   | 1:6               |                        |  |
| 256                                          | 3072                   | 1:12              | 128                    |  |
| 384                                          | 7680                   | 1:20              | 192                    |  |
| 512                                          | 15 360                 | 1:30              | 256                    |  |
|                                              |                        |                   |                        |  |

#### **Applications of ECC**

- Many devices are small and have limited storage and computational power
- Where can we apply ECC?
  - Wireless communication devices
  - Smart cards
  - Web servers that need to handle many encryption sessions
  - Any application where security is needed but lacks the power, storage and computational power that is necessary for our current cryptosystems

#### key references

- Elliptic Curves: Number Theory and Cryptography, by Lawrence C.
   Washington
- Guide to Elliptic Curve Cryptography, Alfred J. Menezes
- Guide to Elliptic Curve Cryptography, Darrel R. Hankerson, A. Menezes and A. Vanstone
- For Tutorials: www.certicom.com