课程编号: MTH07054 利尔坦山人,2013 级计算机学院《数值分析》期末试卷 A 卷

班	E级学号	<u> </u>	姓名	成绩
注意	① 答题方式为闭卷。③ 请将填空题的答案直			
— ,	填空题(每空2分,共	(40分)		
1.	经过四舍五入得到近似数	$(x_1=1.21, x_2=3.6)$	5, x3=9.81, 则由它们	门计算的 $\frac{x_1x_2}{r}$ 的相对
	误差限为【			<i>x</i> ₃
2.	要使 $\sqrt{13}$ 的近似值的相	对误差不超过0	.1‰,至少要取【	】位有效数
	字。			
3.	用 Taylor 级数 $\cos x = 1$ -	$-\frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$	计算 cos1, 如果!	要有9位有效数字,需
	要在级数中计算到的最后	后一项为【 $\frac{(-x)^{l-1}}{l}$	一,并且级数运算	中每项要取【】
	位有效数字。		计算机学	
4.	为求方程 $f(x)=x^3-x^2-1=0$) 在区间[1,2]的角		
	x^3-x^2-1 ; 其次使用对分	法选取初值,若	要求初值的误差限	人不大于 0.1 要对分
	【】次;最后	f使用埃特肯法,	取初值 x ₀ =1.45,	埃特肯迭代一次后的
	值 x ₁ =【			
5.	若用复化梯形公式计算	积分 $I = \int_0^1 e^x dx$,区间[0,1]至少应:	分【】等分才能
	使截断误差不超过 0.5	$\times 10^{-5}$ $_{\circ}$		
			-1 1]	
6.	线性方程组 AX=B 的系	数矩阵 $A = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$	1 1 , 当采用别 1 -2	
	解时, 迭代矩阵的谱半	径为【],该迭代法【	】(填:
	收敛或发散); 当采用高	斯一赛德尔迭代	法求解时,迭代矩	阵的谱半径为
	【],该过	迭代法【	】(填:收敛	或不发散)。
	Γ1 05 097			
7.	$A = \begin{bmatrix} 1 & 0.5 & 0.9 \\ 0.4 & 1 & 0.8 \\ 0.6 & 0.7 & 2 \end{bmatrix}, A $	_∞ = [].	
	$\begin{bmatrix} 0.6 & 0.7 & 2 \end{bmatrix}$			

- 8. $X=(3, 4, 12), ||X||_2 = [$
- 9. 使用平方根法解线性方程组的条件为【
- 10. 用迭代法求解线性方程组 $\begin{cases} 10x_1+x_3-5x_4=-7\\ x_1+8x_2-3x_3=11\\ 3x_1+2x_2-8x_3+x_4=23\\ x_1-2x_2+2x_3+5x_4=17 \end{cases}$ 采用带松弛因子 ω =0.5

的逐次松弛法的迭代公式为

取【____】个结点。

12. 填写如下差商表

计算机学生会

$x_0 = 0.0$	$f[x_0] = $		
$x_1 = 0.4$	$f[x_1] = \begin{bmatrix} 1 \end{bmatrix}$	$f[x_0, x_1] =$	
$x_2=0.7$	$f[x_2]=6$	$f[x_1, x_2]=10$	$f[x_0, x_1, x_2] = \frac{50}{7}$
			7

- 13. 在用带松弛因子的逐次松弛法解线性方程组 AX=b 时,若松弛因子 ω 满足 【_____】时,则迭代一定发散。
- 二、 计算题(每题10分,共60分)
- 1. 用 Newton 法求方程 x-lnx=2 在区间(2,+∞)内的近似解。(计算中保留到小数点后 5 位)
- 2. 已知函数 *f*(*x*)的如下数据,根据表中数据利用斯梯林插值公式计算 *f*(0.42)的近似值。(计算中保留到小数点后 5 位)

	Xi	0.0	0.2	0.4	0.6	0.8
-	$f(x_i)$	1.00000	1.22140	1.49182	1.82212	2.22554

3. 用高斯-赛德尔迭代法解下列线性方程组,初始向量
$$X^{(0)}=(0,0,0)^T$$
,计算过程保留小数后 4 位。
$$\begin{cases} -5x_1-x_2+2x_3=1\\ 2x_1+6x_2-3x_3=2\\ 2x_1+x_2+7x_3=32 \end{cases}$$

- 4. 利用龙贝格公式计算定积分 $I=\int_0^1 \frac{1}{x^2+1}dx$, 计算结果保留小数点后 5 位。
- 5. 用高斯消元法解下列方程。

$$\begin{cases} 2x_1 + 4x_2 + 2x_3 + 6x_4 = 9 \\ 4x_1 + 9x_2 + 6x_3 + 15x_4 = 23 \\ 2x_1 + 6x_2 + 9x_3 + 18x_4 = 22 \\ 6x_1 + 15x_2 + 18x_3 + 40x_4 = 47 \end{cases}$$

6. 已知函数 y=f(x)有关数据如下:

χ_i	0	1	2 计算机学生会
$f(x_i)$	0	1	1
$f'(x_i)$	0	1	

构造埃尔米特插值多项式。