ra e nome:

e-mail:

Terceira prova de Análise no \mathbb{R}^n , ps2012

- (1) (3 pontos) No contexto do capítulo 4 do Spivak, vale $\partial^2 = 0 \Rightarrow d^2 = 0$. Prove este nexo causal rigorosamente num caso particular. Admita a hipótese $\partial(\partial c) = 0$ válida para qualquer 4-cubo singular c no \mathbb{R}^5 e mostre que $d(d\omega) = 0$, no caso em que ω é uma 2-forma no \mathbb{R}^5 . Explique brevemente se sua demonstração, feita neste caso específico, pode ser generalizada para o caso geral.
- (2) (2 pontos) Verifique o teorema de Stokes, $\int_{\partial c} \lambda = \int_c \omega$, onde $d\lambda = \omega$, ω é 2-forma no \mathbb{R}^3 dada por $\omega = xzdy \wedge dz yzdz \wedge dx + (2x + 2y)dx \wedge dy$ e c é um 2-cubo singular que tem como imagem a rampa R = Imc, contida na região $4 \leq x^2 + y^2 \leq 9$, $x \geq 0$, $y \geq 0$, $\pi/2 \geq z \geq 0$ e dada pela equação $(x^2 + y^2)^{1/2}\cos(z) = x$. Calcule ∂c e faça belos desenhos mostrando a imagem de cada uma das faces $c_{(i,\alpha)}$ de c e indicando suas orientações na 1-cadeia ∂c .
- (3) (3 pontos) Considere o tronco de hipercone $K \subseteq \mathbb{R}^4$ dado por

$$K = \{(x, y, z, w) \in \mathbb{R}^4 \text{ t. q. } x^2 + y^2 + z^2 = w^2, 1 \le w \le 2\}$$

... encontre um 3-cubo singular $c:[a,b]\times[c,d]\times[e,f]\to\mathbb{R}^4$ tal que $\mathrm{Im} c=K.$ Calcule ∂c e admitindo que w é o tempo enquanto que (x,y,z) são coordenadas do espaço usual da nossa percepeção, interprete o cone, também as imagens das faces componentes de ∂c . Considere a 3-forma

$$\omega = x dy \wedge dz \wedge dw + y dz \wedge dx \wedge dw + z dx \wedge dy \wedge dw + 3w dx \wedge dy \wedge dz$$

e calcule sua integral, $\int_c \omega$. Sugestão: encontre uma 2-forma bem escolhida λ tal que $d\lambda = \omega$ e empregue o teorema de Stokes.

(4) (2 pontos) Considere o aberto do \mathbb{R}^5 dado por

$$\Omega = \mathbb{R}^5 - \{\text{plano } x_1 x_2\} = \{(x_1, x_2, x_3, x_4, x_5) \in \mathbb{R}^5, x_3^2 + x_4^2 + x_5^2 > 0\}$$

apresente uma 2-forma ω em Ω que é fechada mas não é exata. Sugestão: empregue a propriedade $f^*(d\alpha) = d(f^*\alpha) \dots$ válida para o pullback de $f: \mathbb{R}^5 \to \mathbb{R}^3$ dada por $f(x_1, x_2, x_3, x_4, x_5) = (x_3, x_4, x_5)$. Explique e justifique.