Université de Picardie Jules Verne

UFR Sciences. Année 2024-2025

Master de Mathématiques : M1-Analyse Fonctionnelle

TD3

Exercice 1

Soient $a, b \in \mathbb{R}$, a < b. On considère l'espace des fonctions continues sur [a, b] \tilde{A} valeurs réels, noté $C^0([a, b])$ et l'application ϕ définie sur $C^0([a, b])$ par $f \mapsto \sqrt{\int_a^b f(t)^2 dt}$.

- 1. Rappeler brièvement pourquoi l'application ϕ définit une norme sur $C^0([a,b])$. On pose $\phi(f) = ||f||_2$.
- 2. Comparer les normes $\|.\|_2$ et $\|.\|_{\infty}$.
- 3. Montrer que $(C^0([a,b]), \|.\|_2)$ n'est pas un espace complet.

Exercice 2

A. On considère un opérateur auto-adjoint T défini sur un espace de Hilbert H, c'est-à-dire un opérateur satisfaisant

$$(Tx, y) = (x, Ty), \quad \forall x, y \in H.$$

- 1. Montrer que le graphe de T est fermé.
- 2. Qu'en concluez-vous?
- B. On considère un opérateur T défini sur un espace de Hilbert H, T étant positif, c'est-à-dire que

$$(Tx, x) > 0, \forall x \in H.$$

L'objectif de l'exercice est de montrer que T est continue. On considère une suite (x_n) de H telle que $x_n \to x$ et $Tx_n \to y$. On pose z = y - Tx.

1. Montrer que

$$(z+T(x+h), x+h) > 0, \quad \forall h \in H.$$

On pose h = -x + tk, $t \in \mathbb{R}$, $k \in H$ et on suppose $z \neq 0$.

2. En choisissant convenablement t, obtenir une contradiction.

3. Conclure.

Exercice 3

Soient E un espace de Banach et E_1 et E_2 deux sous-espaces vectoriels fermés de E tels que :

$$E_1 \cap E_2 = \{0\}$$
 et $E = E_1 + E_2$.

On munit le produit $E_1 \times E_2$ de la norme $\|(x_1, x_2)\| := \|x_1\|_E + \|x_2\|_E$. Soit P_i la projection sur E_i , i = 1, 2.

1. Montrer que l'application T définie sur $E_1 \times E_2$ à valeurs dans E par

$$T(x_1, x_2) = x_1 + x_2$$

est linéaire et bijective.

2. En déduire qu'il existe c > 0 tel que :

$$||x_1 + x_2|| \ge c(||x_1||_E + ||x_2||_E), \quad \forall (x_1, x_2) \in E_1 \times E_2.$$

3. Montrer que P_1 et P_2 sont continues.

On dit que E_1 et E_2 sont supplémentaires topologiques, c'est-à-dire que les projections associées sont continues.

Exercice 4

Pour tout $x \in E := \mathbb{R}^2$, on pose

$$||x||_1 := |x_1| + |x_2|.$$

On note $\{e_1, e_2\}$ la base canonique de E et $\{e_1^*, e_2^*\}$ la base duale associée. Soit V le sous-espace vectoriel engendré par e_1 .

1. Justifier que $e_1^* \in (V, \|.\|_1)'$ et qu'il existe f_+ et f_- , élements de $(\mathbb{R}^2, \|.\|_1)'$ tels que

$$f_{+|V} = e_1^*, \quad f_{-|V} = e_1^*,$$

et

$$||f_+||_{E'} = ||f_-||_{E'} = ||e_1^*||_{V'}.$$

2. Qu'en déduisez-vous ?