Logical Equivalence

Chapter 2, Section 6

Definition

Lemma 3.6.1

Let σ be a signature and ϕ , ψ formulas of LP(σ). Then the following are equivalent :

- (i) For every σ -structure A, A is a model of ϕ if and only if it is a model of ψ .
- (ii) For every σ -structure A, $A^*(\phi) = A^*(\psi)$.
- (iii) $\vDash (\phi \leftrightarrow \psi)$.

Definition 3.6.2

Let σ be a signature and ϕ , ψ formulas of $LP(\sigma)$. We say that ϕ and ψ are logically equivalent, in symbols

$$\phi$$
 eq ψ

if any of the equivalent conditions (i)–(iii) of Lemma 3.6.1 hold.

Example

Example 3.6.3

Clause (ii) in Lemma 3.6.1 says that ϕ and ψ have the same head column in their truth tables. We can use this fact to check logical equivalence. For example, the following truth table shows that

$$(p_1 \lor (p_2 \lor p_3))$$
 eq $((p_1 \lor p_2) \lor p_3)$

p_1	p_2	p_3	$(p_1$	V	(p ₂	V	$p_3)$	((p ₁	V	$p_2)$	V	p_3)
T	Т	T	Т	Т	Т	Т	T	Т	Т	Т	Т	T
Т	T	F	Т	T	Т	T	F	Т	T	T	Т	F
Т	F	Т	Т	Т	F	T	Т	Т	T	F	Т	Т
Т	F	F	Т	Т	F	F	F	Т	T	F	Т	F
F	Т	Т	F	Т	Т	Т	T	F	Т	Т	Т	T
F	Т	F	F	Т	Т	Т	F	F	Т	Т	Т	F
F	F	Т	F	Т	F	Т	T	F	F	F	Т	T
F	F	F	F	F ↑	F	F	F	F	F	F	F ↑	F

Equivalence Relation

Theorem 3.6.4

Let σ be a signature. Then eq is an equivalence relation on the set of all formulas of LP(σ). In other words it is

- Reflexive : For every formula ϕ , ϕ eq ϕ .
- Symmetric : If ϕ and ψ are formulas and ϕ eq ψ , then ψ eq ϕ .
- Transitive : If ϕ , ψ and χ are formulas and ϕ eq ψ and ψ eq χ , then ϕ eq χ .

Some Logical Equivalences

Example 3.6.5

Here follow some commonly used logical equivalences.

$$(p_1 \lor p_2)$$
 eq $(p_2 \lor p_1)$
 $(p_1 \land p_2)$ eq $(p_2 \land p_1)$ Commutative Laws

Some Logical Equivalences

$$\begin{pmatrix} \neg (p_1 \lor p_2) \end{pmatrix} \text{ eq } ((\neg p_1) \land (\neg p_2))$$

$$\begin{pmatrix} \neg (p_1 \land p_2) \end{pmatrix} \text{ eq } ((\neg p_1) \lor (\neg p_2))$$

De Morgan Laws

$$(p_1 \lor p_1)$$
 eq p_1
 $(p_1 \land p_1)$ eq p_1

Idempotent Laws

$$(\neg(\neg p_1))$$
 eq p_1

Double negation Law