A comparative study of temporal difference methods on self driving cars

Team 15

Our Team!

Ashwin Shenolikar MEng Computer Science NCR Campus

Himanshu Singhal MEng Computer Science **NCR Campus**

Rithvik Gottimukkala MEng Computer Science MEng Computer Science **NCR Campus**

Srija Gurijala **NCR Campus**

Motivation

- Self driving cars Autonomous vehicles capable of perceiving environment without human intervention
- Gateway to re-imagining future transportation systems
- Taxi System Passenger-based reward system.
- Environment perception done using various machine learning domains such as Computer Vision and Reinforcement learning to use the various sensors

Problem statement

The job of the cab is to pick up a passenger and drop him off along with this task we are focusing on 3 other sub tasks to achieve this goal:

- 1. The pickup and drop off location should be the right location as set by the passenger.
- 2. Take the shortest time routes
- 3. Take safe routes

Reinforcement Learning

Reinforcement Learning is a machine learning technique that is concerned with how agents should take action in an environment based on the rewards they receive after taking an action at a state.

Temporal Difference Learning

Temporal difference (TD) learning refers to a class of model-free reinforcement learning methods which learn by bootstrapping from the current estimate of the value function.

Unlike the monte-carlo methods, where the policy is updated at the end of the episode, Temporal Difference learning is updated at the end of every step.

Q-learning and Expected Sarsa are two TD methods that do not require model knowledge, only the observed rewards from any experiment returns.

Q-learning

- Model-free: estimates optimal policy without the need for any transition or reward functions from the environment.
- Value-based: updates value functions based on Bellman equations rather than estimating value function with greedy policy.
- Off-policy: learns from its actions and doesn't depend on current policy.

$$Q(s_t, a_t) = (1 - \alpha) * Q(s_t, a_t) + \alpha * (r_t + \gamma*max_a Q(s_{t+1}, a))$$

SARSA and **Expected SARSA**

SARSA is called *on-policy* learning because new action a' is chosen using the same epsilon-greedy policy as the action a, the one that generated s'.

$$Q(s_{t}, a_{t}) = Q(s_{t}, a_{t}) + \alpha^{*}(r_{t} + \gamma^{*}Q(s_{t+1}, a_{t+1}) - Q(s_{t}, a_{t}))$$

Expected SARSA is a variation of SARSA that takes in the expectation (mean) of Q values for every possible action in the current state.

$$Q(s_t, a_t) = Q(s_t, a_t) + \alpha^*(r_t + \gamma^* E[Q(s_{t+1}, a_{t+1}) | s_{t+1}] - Q(s_t, a_t))$$

OpenAl Gym - Taxi

- OpenAl Gym Reinforcement Learning Toolkit
- Taxi Environment:

Taxi Agent which can pick-up and drop passengers in minimum number of moves.

Model Parameters and Results obtained

```
'alpha': 0.25
'epsilon_cut': 0
'epsilon_decay': 0.9
'start_epsilon': 0.99
'gamma': 0.7
'episodes': 2000
```


Model Parameters and Results obtained

```
'alpha': 0.6
'epsilon_cut': 0.1
'epsilon_decay': 0.9
'start_epsilon': 0.99
'gamma': 0.9
'episodes': 2000
```


Results

 Plot of Rewards vs Episodes demonstrating how both the algorithms learn with more training

 We can observe a faster convergence by Q learning algorithm that can be justified due to it being a greedy algorithm

Higher Learning Rate also leads to faster convergence

Evaluation metrics

We ran both the algorithms against 10 different environments and observed that Expected SARSA gave better results for 60% of the environments.

Lesson Learned and Future Work

Lessons:

- Hands on experience with reinforcement algorithms
- Explored different and learnt new RL algorithm Expected SARSA

Future Work:

- Figure out the most optimal parameters
- Try more algorithms
- Try with different environments and introduce additional obstacles making it closer to the real life scenarios.

Thank You!