Revision Notes for CO202 Algorithms II

Spring 2018

1 Order of Growth

- **Asymptotic bound**: f(n) is order $\Theta(g(n))$ if there is $c_1, c_2, n_0 > 0$ such that $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$ for all $n \ge n_0$.
- Asymptotic upper bound: $f\left(n\right)$ is order $O\left(g\left(n\right)\right)$ if there is $c,n_0>0$ such that $0\leq f\left(n\right)\leq cg\left(n\right)$ for all $n\geq n_0$.
- Asymptotic lower bound: f(n) is order $\Omega(g(n))$ if there is $c, n_0 > 0$ such that $0 \le cg(n) \le f(n)$ for all $n \ge n_0$.

Note: not average / best / worst case.

2 Divide and Conquer

- 1. **Divide** the problem into smaller sub-problems.
- 2. **Conquer** sub-problems by solving recursively (recursive case). If size is small enough, can be solved trivially (base case).
- 3. Combine solutions to sub-problems into final solution.

Recurrences

Equations that describe functions in terms of its value on smaller inputs. Assuming:

- 1. Trivial problems $n \leq c$ solved in constant time.
- 2. Division yields a sub-problems, each of size 1/b.
- 3. Divide takes time D(n) and combine C(n).

$$T\left(n\right) = \begin{cases} \Theta\left(1\right) & n \leq c \\ aT\left(\frac{n}{b}\right) + D\left(n\right) + C\left(n\right) & \text{otherwise} \end{cases}$$

Solving Recurrences

- 1. **Substitution**: guess and use induction to prove. (Guess $O\left(f\left(n\right)\right)$ and then prove $T\left(n\right) \leq cf\left(n\right)$). For the induction:
 - (a) Use constants wherever necessary.
 - (b) Use strong induction. Try assuming it holds for n/b.

- (c) Choose any valid base case.
- (d) If stuck, **strengthen inductive hypothesis**. Subtracting lower order terms can help (e.g. prove $T(n) \le cn^2 kn$ instead of $T(n) \le cn^2$).
- Recursion Tree: Convert recurrence into a tree whose nodes are costs at different levels.
 - (a) Substitute directly into the tree.
 - (b) Remember that $k^{\log_c n} = n^{\log_c k}$ and $\sum_{k=0}^n c^k = \frac{1-c^n}{1-c}$.
- 3. Simple Master Theorem: For $T(n) = aT(n/b) + \Theta(n^d)$:
 - (a) If $d < \log_b a$, then $T(n) = \Theta(n^{\log_b a})$.
 - (b) If $d = \log_b a$, then $T(n) = \Theta(n^d \lg n)$.
 - (c) If $d > \log_b a$, then $T(n) = \Theta(n^d)$.
- 4. **Generic Master Theorem**: For $T\left(n\right)=aT\left(n/b\right)+f\left(n\right)$, if for some constant $\epsilon>0$:
 - (a) $f(n) = O(n^{\log_b a \epsilon})$, then $T(n) = \Theta(n^{\log_b a})$.
 - (b) $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$.
 - (c) $f(n) = \Omega(n^{\log_b a + \epsilon})$, then $T(n) = \Theta(f(n))$.

For (c) the **regularity condition** must hold: $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n.

Example: Merge Sort

```
MERGE-SORT(A, p, r):

if p < r:  # more than one item?

q = floor((p + r)/2)  # divide array

MERGE-SORT(A, p, q)  # conquer 1st subarray

MERGE-SORT(A, q + 1, r)  # conquer 2nd subarray

MERGE(A, p, q, r)  # combine subarrays
```

The combine step:

```
MERGE(A, p, q, r):
n1 = q - p + 1  # length of 1st subarray
n2 = r - q  # length of 2nd subarray
let L[1..n1 + 1] and R[1..n2 + 1] be new arrays
for i = 1 to n1:
```

```
L[i] = A[p + i - 1]
                                   # copy values to 1st array
for j = 1 to n2:
    R[j] = A[q + j]
                                   # copy values to 2nd array
L[n1 + 1] = inf
                                   # set sentinel
R[n2 + 1] = inf
                                   # set sentinel
i = 1
j = 1
for k = p to r:
                                   # merge subarrays
    if L[i] <= R[j]:
        A[k] = L[i]
        i = i + 1
    else:
        A[k] = R[j]
        j = j + 1
```

Takes time:

$$T(n) = \begin{cases} \Theta(1) & n = 1 \\ 2T(\lfloor \frac{n}{2} \rfloor) + \Theta(n) & n > 1 \end{cases} = \Theta(n \lg n)$$

3 Dynamic Programming

- Combines solutions to overlapping sub-problems.
- Saves its answer in a table to avoid re-computation.

Requirements

- **Optimal substructure**: Optimal solution contains optimal solution to subproblems.
- Overlapping sub-problems: Solution combines solutions to overlapping sub-problems.

Developing a DP Algorithm

- 1. Characterise the structure of an optimal solution.
- 2. Recursively define the value of an optimal solution: **test your definition very carefully**.
- 3. Compute the value of an optimal solution, in a bottom-up fashion.
- 4. Construct an optimal solution from computed information.

Top-Down with Memoisation vs. Bottom-Up

 Bottom-up is more efficient by a constant factor because there is no overhead for recursive calls.

- Bottom-up may benefit from optimal memory access.
- Top-down can avoid computing solutions of sub-problems that are not required.
- Top-down is 'more natural'.

Recording the Solution Keep an additional array to record which sub-problem was used.

Example 1: Rod Cutting

- A rod of length i is worth p_i .
- The maximum revenue, $r_n = \max_{1 \le i \le n} (p_i + r_{n-i})$.

```
#### Top-Down with Memoisation
MEMOIZED-CUT-ROD(p, n):
    let r[0..n] be a new array
    for i = 0 to n:
        r[i] = -inf
    return MEMOIZED-CUT-ROD-AUX(p, n, r)
MEMOIZED - CUT - ROD - AUX(n, p, r):
    if r[n] >= 0
        return r[n]
    if n == 0:
        q = 0
    else:
        q = -inf
        for q = 1 to n
            q = max(q, p[i] + MEMOIZED-CUT-ROD-AUX(p, n - i, r)
    r[n] = q
    return q
#### Bottom - Up
BOTTOM - UP - CUT - ROD (p, n):
    let r[0..n] be a new array
    r[0] = 0
    for j = 1 to n:
        q = -inf
        for i = 1 to j:
            q = max(q, p[i] + r[j - i])
        r[j] = q
    return r[n]
```

Example 2: Longest Common Subsequence

Step 1: Find optimal structure. For $X = \langle x_1, \dots, x_m \rangle$, $Y = \langle y_1, \dots, y_n \rangle$ and $Z = \langle z_1, \dots, z_k \rangle$, where Z is the LCS of X and Y:

1. If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is LCS of X_{m-1} and Y_{n-1} .

- 2. If $x_m \neq y_n$, then $z_k \neq x_m$ implies that Z is LCS of X_{m-1} and Y.
- 3. If $x_m \neq y_n$, then $z_k \neq y_n$ implies that Z is LCS of X and Y_{n-1} .

Step 2: Define recursive solution. Where $l\left(i,j\right)$ is the length of an LCS of sequences $X_{i...m}$ and $Y_{j...n}$:

$$l\left(i,j\right) = \begin{cases} 0 & \text{if } i = m \text{ or } j = n \text{ (base case)} \\ l\left(i-1,j-1\right) + 1 & \text{if } i < m, \ j < n \text{ and } x_i = y_j \text{ (case 1)} \\ \max \begin{cases} l(i-1,j) & \text{(case 2)} \\ l\left(i,j-1\right) & \text{(case 3)} \end{cases} & \text{if } i < m, \ j < n \text{ and } x_i \neq y_j) \end{cases}$$

Steps 3 and 4: Compute value and construct solution.

Example 3: Levenshtein Distance Where d(i,j) is the edit distance of sequences $X_{i...m}$ and $Y_{j...n}$:

$$d\left(i,j\right) = \begin{cases} \max\left(i,j\right) & \text{if } i = 0 \text{ or } j = 0 \text{ (base case)} \\ d\left(i-1,j\right) + 1 & \text{(delete)} \\ d\left(i,j-1\right) + 1 & \text{(insert)} & \text{if } i < m, \ j < n \text{ and } x_i = y_j \\ d\left(i-1,j-1\right) & \text{(no-op)} \\ d\left(i-1,j\right) + 1 & \text{(delete)} \\ d\left(i,j-1\right) + 1 & \text{(insert)} & \text{if } i < m, \ j < n \text{ and } x_i \neq y_j \\ d\left(i-1,j-1\right) + 1 & \text{(replace)} \end{cases}$$

4 Greedy Algorithms

- Applied to optimisation problems.
- When there is a choice, always make the choice that looks best at the moment (don't look ahead).

Requirements

- 1. **Optimal substructure**: Optimal solution contains optimal solutions to subproblems.
- 2. **Greedy-choice property**: Globally optimal solution obtained through locally optimal choices.

Developing a Greedy Algorithm

- 1. Demonstrate optimal substructure.
- Cast the problem as one in which making a choice only leaves one sub-problem to solve.
- 3. Prove the optimality of the solution when making greedy choices.

Example 1: Activity Selection Problem Given a set of proposed activities, $S = \{a_1, a_2, \ldots, a_n\}$, each a_i having a start time s_i and finish time f_i , which all use the same resource, find maximum number of mutually compatible activities.

- 1. **Greedy choice**: choose the activity a_k with earliest finish time.
- 2. Solve the sub-problem with $S_k = \{a_i \in S \text{ such that } s_i \geq f_k\}$.

```
# Assuming activities are ordered by finish time
ACTIVITY-SELECTOR(s, f):
    n = len(s)
    A = [s[0]]
    k = 0
    for m = 1 to n - 1:
        if s[m] >= f[k]:
          A = A + [s[m]]
          k = m
    return A
```

Example 2: Fractional Knapsack Problem Greedy choice: choose item with maximum value per unit weight.

5 Randomised Algorithms

Strategies

- 1. Randomise the **input** (e.g. random permutations hiring problem).
- Randomise the computation (e.g. random choices quicksort / BST insert).

Benefits

- 1. Help avoid pathologic inputs.
- 2. Yield good expected running time.
- 3. Allow dealing with large input domains.

Example 1: Hiring Problem Randomise the input to reduce the chance of worst-case.

Example 2: Quicksort

- 1. **Divide**: partition the array A[p..r] into A[p..q-1] and A[q+1..r] with all elements less than or equal to and greater than or equal to A[q] respectively.
- 2. Conquer: sort the two subarrays recursively using quicksort.

Running time depends on whether partitioning is balanced or unbalanced:

• Balanced: runs asymptotically as fast as merge sort.

$$T(n) = 2T(n/2) + \Theta(n) = \Theta(n \lg n)$$

• Unbalanced: can run asymptotically as fast as insertion sort.

$$T(n) = T(n-1) + T(0) + \Theta(n) = \Theta(n^2)$$

Possible solution:

• Select pivot using random sampling (or median of 3 randomly selected samples).

Example 3: Binary Search Trees

- **BST property**: For every node y in the left subtree of x, y.key $\leq x$.key and every node z in the right subtree of x, y.key $\geq z$.key.
- Insert and search have complexity O(h) where h is the height of the tree.

Expected height of randomly built BST with n keys is $O(\lg n)$. Try to achieve by:

- Randomly permute input (if known in advance).
- Recursively choose to insert at the root (by using **rotations**) with probability 1/size or as a leaf.

Example 4: Skip Lists

- Maintain a hierarchy of linked sublists.
- Good for fast search of ordered sequence.

Not feasible to maintain ideal skip-list as we need to reorganise after each insert. Solution:

ullet An element in layer i appears with some probability in layer i+1.

Example 5: Find a Zero Bit From an array of 0 and 1 bits. Possible **generate** and test algorithms:

- Las Vegas Algorithm: choose an index randomly until you find a 0.
 - Always correct but unbounded resources.
- ullet Monte Carlo Algorithm: choose up to k random indices attempting to find a 0.
 - Not always correct but bounded resources.

6 Visualising Algorithms

Provide understanding and insights into characteristics and support debugging.

6.1 Sorting

Visualisation Methods

- Animations.
- Weave visualisations.
- Leaning lines.

6.2 Random Sampling

Uniform Sampling

```
UNIFORM-SAMPLE(width, height):

x = RANDOM-REAL(0, 1) * width

y = RANDOM-REAL(0, 1) * height

return (x, y)
```

Best-Candidate Sampling

```
BEST-CANDIDATE-SAMPLE(width, height, samples, n):
    best_candidate = (0, 0)
    best_distance = 0
    for i = 1 to n:
        c = UNIFORM-SAMPLE(width, height)
        d = DISTANCE(FIND-CLOSEST(samples, c), c)
        if d > best_distance
            best_distance = d
            best_candidate = c
return best_candidate
```

Poisson-Disc Sampling

- Use a grid (each to contain a maximum of one sample) to speed up searches.
- Select a first sample randomly and make it **active**.
- ullet Choose an **active** sample and generate up k points between radius r and 2r from the sample.
 - If a point is ever found further than r from all other samples (check using the grid), choose it and make it **active**.
 - Otherwise, make this point not active.

Visualisation Methods

- Histograms (x, y coordinates or minimum distances).
- Scatter plots.
- Voronoi diagrams.

6.3 Random Shuffling

Want to find unbiased algorithm (every permutation equally likely).

Fisher-Yates Shuffling

```
FISHER-YATES-SHUFFLE(A):
for i = n down to 2:
    j = RANDOM(1, i) # make sure i is included
    SWAP(A[i], A[j])
```

Visualisation Methods

- Leaning lines.
- Swap matrices.

7 String Matching

For text T[1..n], attempt to find a pattern P[1..m] with $m \leq n$.

Definitions

- P occurs in T with **shift** s if T[s+j] = P[j] for $1 \le j \le m$.
- $w \sqsubset x$ if w is a prefix of x.
- $w \sqsupset x$ if w is a suffix of x.
- The prefix P[1..k] of a pattern P[1..m] is denoted P_k .

If x and y are suffixes of z:

- If $|x| \le |y|$, then x is a suffix of y.
- If $|x| \ge |y|$, then y is a suffix of x.
- If |x| = |y|, then x = y.

7.1 Knuth-Morris-Pratt Matching

ullet Key Idea: Go through T character by character, use a prefix function

```
\pi[q] = \max(k \text{ such that } k < q \text{ and } P_k \text{ is a suffix of } P_q)
```

Example:

i	1	2	3	4	5	6	7
P[i]	a	b	a	b	a	С	a
$\pi[i]$							

 \bullet PREFIX-FUNCTION takes $O\left(m\right)$ and KMP-MATCHER $O\left(n\right)$ time.

```
KMP-MATCHER(T,P)
                                           PREFIX-FUNCTION(P)
1: n = T.length
                                            1: m = P.length
2: m = P.length
                                            2: let \pi[1..m] be a new array
 3: \pi = PREFIX-FUNCTION(P)
                                            3: \pi[1] = 0
 4: q = 0
                                            4: k = 0
 5: for i = 1 to n
                                            5: for q = 2 to m
        while q > 0 and P[q+1] \neq T[i]
                                                   while k > 0 and P[k+1] \neq P[q]
7:
            q = \pi[q]
                                                        k = \pi[k]
                                            7:
8:
        if P[q+1] == T[i]
                                                   if P[k+1] == P[q]
                                            8:
9:
            q = q+1
                                                        k = k+1
10:
        if q == m
                                           10:
                                                   \pi[q] = k
11:
            PRINT(i-m)
                                           11: return \pi
12:
            q = \pi[q]
```

7.2 Boyer-Moor Matching

- Start matching from the right of P. When matching breaks, shift P as far right as possible, maximising skipped comparisons.
- Bad character rule: Current character (β) in T doesn't match current character in P.
 - If β not in P, shift P so that it skips β .
 - If β is in P, shift P so it aligns that the right-most β in P.

- Good suffix rule: A suffix of P has been matched in T up to a bad character in T.
 - If the match occurs somewhere else in ${\cal P}$, shift to align it with the right-most occurrence in ${\cal P}$.
 - If the match occurs nowhere else in the pattern, skip the pattern.
 - If the prefix of P matches the suffix of the match, align the prefix of P with the suffix of the match.

_	i	1	2	3	4	5	6	7	8
	$\begin{array}{c} P\left[i\right]\\ gsr\left[i\right] \end{array}$	a 6	b 6	a 6	b 6	a 6	c 2	a 1	ϵ /

i	1	2	3	4	5	6
$\frac{P[i]}{\operatorname{sr}[i]}$	с 5	_		_	b 1	ϵ /

ullet BCR-TABLE and GSR-TABLE take $O\left(m
ight)$ and BM-MATCHER $O\left(mn
ight)$ time.

8 Radix Search

Examine keys one piece at a time, rather than a full comparison.

Digital Search Trees Exactly the same as BSTs except left/right branching is not based on full comparisons, but selected bits of keys.

Е	00101
Α	00001
S	10011
Υ	11001
Q	10001
U	10101
Т	10100
I	01001
0	01111
N	01110

- Still compares whole keys.
- Maximum depth is the maximum key length (b).
- Keys with similar prefixes degrade performance.

Binary Search Tries Keys are only stored at the leaf nodes.

- Don't compare the full key until a leaf is reached.
- ullet For n keys, average search requires $\lg n$ comparisons and b in worst case.
- One-way branching creates extra unnecessary nodes in the trie.
- Two different types of nodes means implementation is complex.

Patricia Tries

• Each node includes the index of the bit to be tested.

- Uses pointers up the tree instead of NULLs.
- Search: Follow pointers until they point at the same level or up the trie. Then check this node.

00001

10011

00101

10010

00011

01000

01001

01100

С

Н

I

- ullet Only has n nodes.
- ullet Only requires about $\lg n$ bit comparisons.

Multiway Search Tries Examine r bits at a time, using nodes with $R=2^r$ links.

 $R=2^2$, so we consider two bits at a time

Many unused links!

- $\bullet \ \mbox{Requires} \ O\left(\log_R n\right) \mbox{ comparisons}.$
- Increased number of links leads to wasted space.

Existence Tries Special purpose multiway trie whose keys are data (i.e. a set).

- Keys are distinct and no key is prefix of another.
- Keys are of fixed length or have a termination digit.

Ternary Search Tries Each node has three links (less than, equal to, greater than).

- Works well for non-randomness in key structure (e.g. URLs).
- Search misses tend to be efficient.
- Good for suffix trees (index into shared text).

Optimised TSTs

- ullet Wide head: create table of R TSTs.
- Compact tails: store keys at leaves.

Graph Algorithms

ullet A graph G=(V,E) can be represented as an adjacency-list or matrix.

- A tree:
 - Has V-1 edges and no cycles.
 - Has V-1 edges and is connected.
 - Is connected, but removing any edge disconnects it.
 - Is acyclic, but adding any edge creates a cycle.
 - Exactly one simple path connects any pair of vertices.

Breadth First Search Uses a queue, builds breadth-first trees, computes shortest paths.

Depth First Search Uses natural recursion, produces parenthesis structure.

 Edges classified as tree, back (point up the tree), forward (point down the tree) or cross.

Parenthesis Theorem For any two vertices u and v, one holds:

- 1. [u.d, u.f] and [v.d, v.f] are completely disjoint; neither u nor v is descendant of the other in the depth-first forest.
- 2. [u.d,u.f] is entirely contained within $[v.d,v.f];\ u$ is a descendant of v in a depth-first tree.
- 3. [u.d,u.f] and [v.d,v.f] are completely disjoint; v is a descendant of u in a depth-first tree.

Topological Sort Sort vertices by finish time of DFS.

9.1 Spanning Tree

- 1. A tree T.
- 2. Includes all vertices V of G = (V, E).
- 3. $T \subseteq E$.

Kruskal Algorithm Choose the edge of lowest weight as long as it doesn't create a cycle.

9.2 Shortest Path

Dijkstra Algorithm Choose the vertex with minimum distance, record predecessors.

- Doesn't work for negative weights.
- ullet Time complexity: $O\left(|V|\log|V|+|E|\right)$ using min-priority queue.

Bellmann-Ford Algorithm Esentially Djisktra's algorithm applied n times (n is the number of nodes).

- Need to check for negative-weight cycles at end.
- Time complexity: O(|V||E|).

Floyd-Warshall Algorithm

$$D_{ij}^{(k)} = \begin{cases} w_{ij} & k = 0\\ \min\left(D_{ij}^{(k-1)}, D_{ik}^{(k-1)} + D_{kj}^{(k-1)}\right) & k \ge 1 \end{cases}$$

• Time complexity: $O\left(|V|^3\right)$.

Johnson's Algorithm Better for sparse graphs.

- 1. Add a new node q connected to all other nodes with a zero-weight edge.
- 2. Use Bellman-Ford, starting from q to get a minimum weight $h\left(v\right)$ for each node.
- 3. Reweight the edges in the original graph w'(u,v) = w(u,v) + h(u) h(v).
- 4. Use Dijsktra algorithm.

9.3 Maximum Flow

- Remove anti-parallel edges using auxiliary vertices.
- Deal with multiples sources and sinks by introducing supersources / supersinks.

Constraints

- Capacity constraint: for all edges, flow must be less weight.
- Flow conservation: for all non-source/sink vertices, flow in = flow out.

Ford-Fulkerson Method While there exists an augmenting path p in the residual network, augment flow f along p.

Cuts If f is the maximum flow G |f| = c(S,T) for some minimum cut (S,T) in G.