MECH 6323 - HW 2

Jonas Wagner

$2022,\, {\rm Febuary}\,\, 14$

Contents

1	Pro	oblem 1	2
2	Pro	oblem 2	3
3	Problem 3		
	3.1	Bode Plot 1:	4
		3.1.1 Gain, Poles, and Zeros:	4
		3.1.2 Cross-over Frequency:	4
	3.2	Bode Plot 2:	5
		3.2.1 Gain, Poles, and Zeros:	5
		3.2.2 Transfer Function:	5
		3.2.3 Cross-over Frequency:	5
4	Pro	oblem 4	6
	4.1	Is the feedback system stable? Why?	6
	4.2	Find phase and cross-over frequencies	6
	4.3	Gain Margin Closed-loop poles	6
		4.3.1 $g_0 = 0.3585$	7
		$4.3.2 g_0 = 2.6490 \dots \dots \dots \dots \dots \dots \dots \dots \dots $	7
	4.4		7
	4.5		8
	4.6	α on Disk houndary	Q

Problem: For each of the bode plots:

- 1. Determine the breakpoints and the transfer function.
- 2. Determine the gain cross-over frequency ω_c and the phase cross-over frequency ω_{180} .

3.1 Bode Plot 1:

3.1.1 Gain, Poles, and Zeros:

- 1. **Gain:** 20 db = 10
- 2. **Poles:**
 - (a) $10^0 = 1 \text{ rad/s}$
 - (b) $10^2 = 100 \text{ rad/s}$
 - (c) $10^4 = 10,000 \text{ rad/s}$
- 3. Zeros: (NA)

Transfer Function:

$$H(s) = \frac{10}{\left(1 + \frac{s}{1}\right)\left(1 + \frac{s}{100}\right)\left(1 + \frac{s}{10000}\right)}$$

3.1.2 Cross-over Frequency:

1.
$$\omega_c = 10^1 = 10 \text{ rad/s}$$

2.
$$\omega_{180} = 10^3 = 100 \text{ rad/s}$$

3.2 Bode Plot 2:

Figure 1: Bode Plot 2

3.2.1 Gain, Poles, and Zeros:

1. **Gain:** $-20 \text{ db} = \frac{1}{10}$

2. **Poles:**

- (a) $10^0 = 1 \text{ rad/s (complex)}$
- (b) $10^1 = 10 \text{ rad/s (complex)}$
- 3. Zeros:
 - (a) $10^3 = 1,000 \text{ rad/s}$

3.2.2 Transfer Function:

$$H(s) = \frac{(1+\frac{s}{1000})}{10\left(\frac{1}{1}\left(s^2+2(\frac{1}{10})(1)s+(1)^2\right)\right)\left(\frac{1}{10}\left(s^2+2(\frac{1}{10})(10)s+(10)^2\right)\right)} = \frac{(s+1000)}{(s^2+0.2s+1)(s^2+2s+100)}$$

Assuming a Q-factor of around 10 to get the complex response.

3.2.3 Cross-over Frequency:

- 1. $\omega_c = 10^0 = 1 \text{ rad/s}$
- 2. $\omega_{180} = 10^3 = 100 \text{ rad/s}$

Consider the interconection of Problem 1 with the PI controller

$$C(s) = \frac{10(s+3)}{s}$$

and plant

$$P(s) = \frac{-0.5(s^2 - 2000)}{(s - 3)(s^2 + 50s + 1000)}$$

4.1 Is the feedback system stable? Why?

$$\begin{split} \frac{C(s)P(s)}{1+C(s)P(s)} &= \frac{\frac{10(s+3)}{s} \frac{-0.5(s^2-2000)}{(s-3)(s^2+50s+1000)}}{1+\frac{10(s+3)}{s} \frac{-0.5(s^2-2000)}{(s-3)(s^2+50s+1000)}} \\ &\approx \frac{-5s(s+3)(s-3)(s^2-2000)(s^2+50s+1000)}{s(s-3)(s^2+11.73s+73.9)(s^2+30.27s+406)(s^2+50s+1000)} \end{split}$$

Yes and No. Internally it is not fully stable since it has a pole/zero pair at s = 3; however, if we only care about TF after cancellations, then it is stable.

4.2 Find phase and cross-over frequencies.

Problem: Use the Bode plot of the open loop transfer function L(s) = C(s)P(s) to find the phase crossover frequencies ω_0 such that $L(j\omega_0) = 180 \deg$. Use this information to compute the gain margin(s) of the feedback system. Check your answers using the *allmargin* command in MATLAB.

Solution: As marked in the Bode Plot seen in Figure 4.2, the gain cross-over frequency is $\omega_c = 10$ resulting in a phase margin around 25 deg. Similarly, the phase cross-over occurs around $\omega_{180} = 4$ or $\omega_{180} = 25$, resulting in gain margins of around ± 10 dB or around $g_0 = 0.3$ and $g_0 = 3$ respectively.

Verification with all margin resulted in similar and likely more precise and accurate results:

- 1. Gain Margin(s)
 - (a) $g_0 = 0.3585$ at $\omega_{180} = 3.5966$
 - (b) $g_0 = 2.6490$ at $\omega_{180} = 26.3797$
- 2. Phase Margin
 - (a) PM = 27.5718 at $\omega_c = 10.2049$

4.3 Gain Margin Closed-loop poles

Problem: For each gain margin g_0 obtained in the previous part, construct the closed-loop using the perturbed loop transfer function $g_0L(s)$ and verify that the closed-loop has poles at $\pm\omega_0$.

Solution:

Figure 2: Open Loop Bode Plot of L(S) = C(s)P(s)

4.3.1 $g_0 = 0.3585$

Let $g_0 = 0.3585$,

$$g_0L(s) = \frac{-1.7927(s+3)(s+44.72)(s-44.72)}{s(s-3)(s^2+50s+1000)}$$

and the closed-loop becomes

$$H = \frac{-1.7927(s - 44.72)(s + 44.72)(s + 3)}{(s^2 + 0.0008164s + 12.93)(s^2 + 45.21s + 831.7)}$$

This has complex poles located at $-0.0004 \pm j3.596$, which is essentially roots at $\pm j\omega_{180}$.

4.3.2
$$g_0 = 2.6490$$

Let $g_0 = 2.6490$,

$$g_0L(s) = \frac{-13.245(s+3)(s+44.72)(s-44.72)}{s(s-3)(s^2+50s+1000)}$$

and the closed-loop becomes

$$H = \frac{-13.245(s+3)(s+44.72)(s-44.72)}{(s+29.94)(s+3.814)(s^2+0.003402s+696)}$$

This has complex poles located at $-0.0017 \pm j26.3818$, which is essentially roots at $\pm j\omega_{180}$.

4.4 $||S - T||_{\infty}$

Problem: Compute $||S-T||_{\infty}$ and the corresponding frequency ω_p where the peak gain of S-T is achieved. Solution:

Sensitivity TF:

$$S(s) = \frac{1}{1 + PC} = \frac{s(s-3)(s^2 + 50s + 1000)}{(s^2 + 11.73s + 73.9)(s^2 + 30.27s + 406)}$$

Complementary Sensitivity TF:

$$T(s) = \frac{PC}{1 + PC} = \frac{-5s(s - 44.72)(s + 44.72)(s + 3)(s - 3)(s^2 + 50s + 1000)}{s(s - 3)(s^2 + 11.73s + 73.9)(s^2 + 30.27s + 406)(s^2 + 50s + 1000)}$$

S(s) - T(s):

$$S(s) - T(s) = \frac{s(s - 10.45)(s - 3)(s + 2.059)(s^2 + 11.73s + 73.9)(s^2 + 30.27s + 406)(s^2 + 50s + 1000)(s^2 + 60.4s + 1394)}{s(s - 3)(s^2 + 11.73s + 73.9)^2(s^2 + 30.27s + 406)^2(s^2 + 50s + 1000)}$$

$$= \frac{(s - 10.45)(s + 2.059)(s^2 + 60.4s + 1394)}{(s^2 + 11.73s + 73.9)(s^2 + 30.27s + 406)}$$

Results:

$$||S - T||_{\infty} = 4.0763$$
$$\omega_p = 10.0798$$

4.5 Symmetric Disk Margin

Problem: What is the symmetric disk margin m for this plant and controller? Verify your answer using dm = disk margin(P*C). Note that the disk margin command uses the convention m = dm.Disk Margin / 2. Solution: By the Symmetric Disk Margin theorem, the disk margin defined for

$$\alpha \in \text{Disk}\left(\frac{1-m}{1+m}, \frac{1+m}{1-m}\right)$$

is the region that C(s) stabilizes $\alpha P(s)$ for m < 1 satisfying

$$||S - T||_{\infty} \le \frac{1}{m}$$

Therefore,

$$\overline{m}_{st} = \frac{1}{\|S - T\|_{\infty}} = \frac{1}{4.0763} = 0.453$$

4.6 α on Disk boundary

Problem: Construct an α on the boundary of Disk

$$\operatorname{Disk}\left(\frac{1-m}{1+m}, \frac{1+m}{1-m}\right)$$

such that the perturbed closed-loop

$$S_{\alpha} = \frac{1}{1 + \alpha L(s)}$$

has a pole at $j\omega_p$. Verify your construction by forming S_{α} and demonstrating that it has a pole at $j\omega_p$. Hint: Assume $||S - T||_{\infty} = \frac{1}{m}$ at frequency ω_p . Then there exists a complex number $S(j\omega_p) - T(j\omega_p) = \frac{1}{z}$ where |z| = m. Algebraically show that

$$\alpha = \frac{1+z}{1-z}$$

satisfies $1 + \alpha L(j\omega_p) = 0$ and this α is in the symmetric disk defined by m.

Solution: