Quiz 2 Algebra Moderna

Daniel Fabian Osorio Valencia, Código: 8946508

October 2020

1 Punto 1:

Sea A un anillo conmutativo unitario y sea M un ideal de A. Demuestre que A/M es cuerpo si, y solamente si, M es maximal.

1.1 Lemas auxiliares:

Lema 1. Para todo anillo cociente R/I, el cero de este es de la forma 0 + I siendo 0, el cero en R.

Prueba: Por ver que para todo $x \in R$, se cumple que x(0+I) = (0+I)x = (0+I). Sea entonces $x \in R/I$ de la forma x = r+I con $r \in R$:

$$(r+I)(0+I)$$

 $(r0)+I$ (propiedad anillo cociente)
 $0+I$ (producto cero en R)

por el otro lado se tiene que:

$$(0+I)(r+I)$$

 $(0r)+I$ (propiedad anillo cociente)
 $0+I$ (producto cero en R)

Lema 2. Para todo anillo cociente R/I, el elemento unitario de este es de la forma 1 + I siendo 1, el elemento unitario en R.

Prueba: Por ver que para todo $x \in R$, se cumple que x(1+I) = (1+I)x = x. Sea entonces $x \in R/I$ de la forma x = r + I con $r \in R$:

$$(r+I)(1+I)$$

 $(r1)+I$ (propied
 $r+I$ (identidad en R)

por el otro lado se tiene que:

$$(1+I)(r+I)$$

 $(1r)+I$ (propiedad anillo cociente)
 $r+I$ (identidad en R)

Lema 3. Para todo anillo cociente R/I con $x,y\in R$ se cumple que si x+I=y+I entonces $x-y\in I$

Prueba: Sea entonces $x, y \in R$:

$$x+I=y+I \text{ (hipotesis)}$$

$$(x+I)+(-y+I)=(y+I)+(-y+I) \text{ (ley de uniformidad)}$$

$$(x-y)+(I+I)=(y-y)+(I+I) \text{ (Asociativa y commutativa en } R)$$

$$(x-y)+I=0+I \text{ (Invertiva en } R \text{ y clausurativa en } I)$$

$$(x-y)+I=I \text{ (modulativa en } R)$$

$$(x-y)\in I \text{ (clausurativa en } I)$$

1.2 Prueba \Rightarrow :

Sea A un anillo conmutativo unitario, sea M un ideal de A y sea A/M un cuerpo. Por ver que M es maximal, es decir, que para todo ideal I de A tal que $M \subseteq I \subseteq A \land M \neq I$, entonces I = A. Sea entonces I un ideal de A tal que $M \subseteq I \subseteq A \land M \neq I$. Como $M \subseteq I \land M \neq I$, entonces existe un $x \in I \land x \notin M$. Ahora como $x \notin M$ entonces:

$$\begin{aligned} x + M &\neq M \\ x + M &\neq M + 0 \text{ (identidad en M)} \end{aligned}$$

Ahora como $x \in I \land I \subseteq A$ entonces $x \in A$, y como $x \in A$ por definicion de A/M entonces $x + M \in A/M$. Ademas como $x + M \neq M + 0$ y por el lema 1 se sabe que x + M es diferente del cero de A/M. De este modo, como x + M es diferente del cero de A/M y por hipotesis A/M es cuerpo, entonces x + M tiene un inverso y + M tal que al operarlos da la identidad de A/M (lema 2):

$$(x+M)(y+M)=1+M$$

 $(xy)+M=1+M$ (propied
ad anillo cociente)
$$xy-1\in M \text{ (lema 3)}$$

Como $xy-1 \in M$ y $M \subseteq I$, entonces $xy-1 \in I$. Teniendo esto en cuenta se tiene que:

$$1=xy-(xy-1)\wedge xy-1\in I\wedge x\in I\wedge y\in A$$

$$1=xy-(xy-1)\wedge xy-1\in I\wedge xy\in I \text{ (absorbcion en I)}$$

$$1=xy-(xy-1)\in I \text{ (clausurativa en I)}$$

$$1\in I$$

Finalmente se tiene que para todo $a \in A$:

$$a = a1 = 1a \land 1 \in I$$

 $a = a1 = 1a \in I$ (absorbcion I)

por lo cual I = A. \square

1.3 Prueba \Leftarrow :

Sea A un anillo conmutativo unitario, sea M un ideal de A y sea M maximal. Por ver que A/M es un cuerpo, es decir, que A/M es un anillo unitario conmutativo en el cual todo elemento diferente de 0 tiene inverso.

1.3.1 A/M es un anillo unitario:

Por lema 2 se sabe que el uno de A/M es 1+M con 1 siendo el 1 de A, y como A es unitario por hipotesis, entonces $1 \in A$, por lo cual por definicion de A/M, $1+M \in A/M$. \square

1.3.2 A/M es un anillo conmutativo:

Por ver que para todo $a+M,b+M\in A/M,$ entonces (a+M)(b+M)=(b+M)(a+M). Sea entonces $a+M,b+M\in A/M:$

$$(a+M)(b+M)=ab+M$$
 (propiedad anillo cociente)
 $(a+M)(b+M)=ba+M$ (conmutativa en A)
 $(a+M)(b+M)=(b+M)(a+M)$ (propiedad anillo cociente)

1.3.3 Todos los $x \in A/M$ donde $x \neq 0$ tienen inverso:

Sea $a + M \in A/M$ y sea a + M differente del cero de A/M, es decir:

$$a + M \neq 0 + M$$
 (lema 1)
 $a + M \neq M$ (identidad en M)

Como $a+M\neq M$, quiere decir que $a\notin M$, ya que si $a\in M$ entonces M+a=M por clausurativa en M. Se considera ahora el subconjunto de J que utiliza el a mencionado anteriormente de la forma $J=M+Aa=\{m+ba|b\in A\wedge m\in M\}$. A continuación se demostrara que J es un ideal de A:

Lemma 4. J es un ideal de A.

Prueba: Inicialmente se sabe que $J \subseteq A$, ya que J = M + Aa y $M \subseteq A \land a \in A$, por lo cual por cerradura en A, $M + Aa \in A$. Queda entonces por ver que J es subgrupo aditivo de A, es decir que para todo $x, y \in J$ se cumple que $xy^{-1} \in J$, en este caso (+), que $x - y \in J$. Finalmente se debe demostrar la absorbcion para J, es decir, que para todo $b \in A \land j \in J$ se cumple que $jb \in J \land bj \in J$. Sea entonces $x, y \in J$:

$$x - y = (m_1 + b_1 a) - (m_2 + b_2 a) \land m_1, m_2 \in M \land b_1, b_2 \in A$$

$$x - y = m_1 + b_1 a - m_2 - b_2 a \land m_1, m_2 \in M \land b_1, b_2 \in A \text{ (aritmetica)}$$

$$x - y = (m_1 - m_2) + (b_1 a - b_2 a) \land m_1, m_2 \in M \land b_1, b_2 \in A \text{ (conmutativa, asociativa en A)}$$

$$x - y = (m_1 - m_2) + a(b_1 - b_2) \land m_1, m_2 \in M \land b_1, b_2 \in A \text{ (distributiva en A)}$$

$$x - y = (m_3) + a(b_3) \land m_3 \in M \land b_3 \in A \text{ (cerradura en A y en M)}$$

$$x - y = (m_3) + a(b_3) \land m_3 \in M \land b_3 \in A \text{ (distributiva en A)}$$

Ahora para verificar absorbcion, sea $j \in J$ y $b_2 \in A$:

$$jb_2 = (m_1 + b_1 a)b_2 \wedge m_1 \in M \wedge b_1 \in A$$

$$jb_2 = m_1 b_2 + b_1 ab_2 \wedge m_1 \in M \wedge b_1 \in A \text{ (distributiva A)}$$

$$jb_2 = m_1 b_2 + b_1 b_2 a \wedge m_1 \in M \wedge b_1 \in A \text{ (conmutativa A)}$$

$$jb_2 = m_2 + b_3 a \wedge m_2 \in M \wedge b_3 \in A \text{ (absorbcion M y clausurativa A)}$$

$$jb_2 = m_2 + b_3 a \in J \text{ (def J)}$$

Del otro lado:

$$b_2j = b_2(m_1 + b_1a) \wedge m_1 \in M \wedge b_1 \in A$$

$$b_2j = b_2m_1 + b_2b_1a \wedge m_1 \in M \wedge b_1 \in A \text{ (distributiva A)}$$

$$b_2j = m_2 + b_3a \wedge m_2 \in M \wedge b_3 \in A \text{ (absorbcion M y clausurativa A)}$$

$$b_2j = m_2 + b_3a \in J \text{ (def J)}$$

Al verificarse que J es subgrupo aditivo de A y que J cumple la absorbcion, se concluye que J es ideal de A. \square

Siguiendo con la prueba, $M\subseteq J$, ya que para todo $m\in M,$ $m\in J$ de la forma m+0a=m+0=m. Ademas, $a\in J$ de la forma 0+1a=1a=a, pero como

se habia dicho antes, $a \notin M$, por lo cual si $a \in J \land a \notin M$ entonces $M \neq J$, y como $M \neq J \land M \subseteq J \land J$ es ideal de A, por definicion de maximal, J = A. Ahora como A es unitario y J = A, entonces el 1 en A se puede escribir como:

$$1 = m + ba \land m \in M \land b \in A$$

Tomando en cuenta esto, el 1 en A/M por lema 2 y la igualdad anterior seria:

$$1+M=(m+ba)+M\wedge m\in M\wedge b\in A$$

$$1+M=ba+M\wedge m\in M\wedge b\in A \text{ (conmutativa, associativa en A y clausurativa en M)}$$

$$1+M=(b+M)(a+M)\wedge m\in M\wedge b\in A \text{ (propiedad anillo cociente)}$$

```
Por lo cual, para todo elemento x \in A/M de la forma a+M con a+M \neq 0+M, existe un x^{-1}=(b+M) tal que (b+M)(a+M)=1+M. \square
```

Al cumplirse las 3 condiciones para que A/M sea cuerpo, se concluye que A/M es cuerpo. \Box

2 **Punto 2**:

Provee un ejemplo de aplicacion del resultado anterior que no este relacionado con los ejemplos que hemos venido trabajando en clase, en los temas referentes a ideales.

2.1 Ejemplo:

Sea F un campo, sea $p(x) \in F[x]$ un polinomio irreducible y sea $\langle p(x) \rangle = \{f(x)p(x)|f(x) \in F[x]\}$, el ideal principal generado por p(x). Entonces $F[x]/\langle p(x) \rangle$ es un campo.

2.2 Lemas auxiliares:

Lema 5. Si F es un campo, entonces todos los ideales de F[x] son ideales principales.

Prueba: Por ver que todo ideal de F[x] es de la forma $\langle p(x) \rangle = \{f(x)p(x)|f(x) \in F[x]\}$. Por definicion de campo se sabe que F es un dominio entero y por observacion se sabe que si un anillo A es dominio entero, entonces A[x] es dominio entero, por lo cual, F[x] es un dominio entero. Considerando el caso en que el ideal $I = \{0\}$, entonces I es principal de la forma $\langle 0 \rangle = \{f(x)0|f(x) \in F[x]\}$. De otro lado, si $I \neq \{0\}$ entonces sea un elemento $p(x) \in I$ de grado minimo con $p(x) \neq 0$ y sea $f(x) \in I$. Ahora por algoritmo de la division se sabe que existen q(x), r(x) tal que f(x) = q(x)p(x) + r(x) con r(x) = 0 o gr(r(x) < gr(p(x)). Pero gr(r(x) < gr(p(x)) no es cierto ya que r(x) = f(x) - q(x)p(x) y gr(p(x)) es minimo, por lo cual r(x) = 0. De esta forma, f(x) = q(x)p(x) por lo cual, por definicion de $\langle p(x) \rangle$, $f(x) \in \langle p(x) \rangle$. \square

2.3 Demostracion:

Se quiere demostrar por el teorema anteriormente visto que $F[x]/\langle p(x)\rangle$ es campo, por lo cual, por ver que $\langle p(x)\rangle$ es maximal y F[x] es un anillo conmutativo unitario.

2.3.1 F[x] es un anillo conmutativo unitario:

Si F es un campo, entonces por definicion de campo se sabe que F es un anillo conmutativo y unitario. De este modo por observaciones se sabe que para todo anillo A, si este es conmutativo entonces A[x] es conmutativo y de igual forma si A es unitario, entonces A[x] es unitario, por lo cual es posible concluir que por ambas observaciones, F[x] es un anillo unitario y conmutativo. \Box

2.3.2 $\langle p(x) \rangle$ es maximal:

Por ver que para todo ideal I de F[x] tal que $\langle p(x) \rangle \subseteq I \subseteq F[x]$, entonces $I = F[x] \vee I = \langle p(x) \rangle$. Inicialmente, por lema 5 se sabe que $I = \langle f(x) \rangle$ donde $f(x) \in F[x]$, por lo cual $\langle p(x) \rangle \subseteq \langle f(x) \rangle \subseteq F[x]$. Ahora como $\langle p(x) \rangle \subseteq \langle f(x) \rangle$, entonces $p(x) \in \langle f(x) \rangle$, por lo cual por definicion de $\langle f(x) \rangle$, p(x) = a(x)f(x) con $a(x) \in F[x]$. Ahora, por hipotesis $\langle p(x) \rangle$ es irreducible, por lo cual a(x) es una constante o f(x) es una constante, ambas distintas de cero. En caso de que a(x) sea constante, entonces $\langle p(x) \rangle = \langle f(x) \rangle$, y si f(x) es constante, entonces $\langle f(x) \rangle = F[x]$. \square

Al probar que se cumplen las condiciones de que F[x] es un anillo conmutativo unitario y que $\langle p(x) \rangle$ es maximal de F[x], se concluye por el teorema que $F[x]/\langle p(x) \rangle$ es un cuerpo. \square