

RN821X 用户手册

初次发布: 2012-12-10 Rev: 2.3

深圳市锐能微科技有限公司

版本更新说明:

1.2 版本更新说明:

对 RN8211 不支持的功能进行了补充说明,详见各个模块。

更正 GPIO 章节 PC50/PC51 寄存器默认值,从 0 更改为 1;

1.3 版本更新说明:

更正引脚说明中 RSTN 引脚的编号错误;

删除电器特性中 VBAT 不支持 3V 电池的说明;

修改 OSC CTL2 寄存器的说明;

修改 3.3 时钟切换章节的说明:

修改 MODE1 EN 寄存器的说明和复位值,建议客户不要关闭 WDT EN 和 RTC EN 位;

第 18 章编程支持增加说明,建议客户调用库函数实现 IAP 功能,使用锐能微编程器实现 ISP 功能;

- 4.3.4 和 4.3.5 章节增加 EEPROM 和 FLASH 低功耗应用说明。
- 3.6 章节中 LBGR PD 寄存器位的默认值从 0 更改为 1;
- 1.2.8章节增加封装形式说明。
- 1.2.1章节中增加宽电压工作范围说明。

增加章节1.2.8卡表隔离方案说明。

1.4 版本更新说明:

RN8211 的 EEPROM 容量从 16KBytes 增加到 32KBytes;

1.5 版本更新说明:

第2章电气特性增加LBGR的电压范围说明;修改LCD输出电压范围说明;

LCD 章节(8.1.4) 增加 LBGR 的电压值说明。

1.6 版本更新说明:

细化 1.2.9 章节中 RN821x 型号划分的定义;

修改第12章中寄存器定义错误;

1.7版本更新说明:

修改第9章定时器章节TC CCFG (时钟配置寄存器 0x01C) bit8~bit14 的说明错误。

1.8 版本更新说明:

增加了"选项字节"章节说明

修改 WDT 章节的描述

EEPROM 和 FLASH 章节的说明进行细化

1.9 版本更新说明:

第二章电气特性中增加 cpu 最低工作电压在全温度范围的具体指标。

2.0 版本更新说明:

第九章定时器增加使用说明。第十章模拟外设 LVD STA 寄存器修改。

2.1 版本更新说明:

第十一章 GPIO 删除 P05 错误说明。

2.2 版本更新说明:

对各章节中的保留寄存器位进行详细说明,区分只读寄存器位和保留寄存器位。

2.3 版本更新说明:

增加 RN8211B, LQFP64 封装产品支持零线计量。

目录

1	概述	6
1.1	简介	6
1.2	产品特点	6
	1.2.1 基本特点	6
	1.2.2 处理器相关	6
	1.2.3 计量	6
	1.2.4 RTC	6
	1.2.5 LCD	6
	1.2.6 其他外设	7
	1.2.7 加密	7
	1.2.8 卡表隔离	7
	1.2.9 RN821x 型号划分	7
1.3	系统框图	8
1.4	管脚排列	9
2	电气特性	15
3	系统控制	
3.1	电源管理方案	17
3.2	时钟源	18
3.3	时钟切换	18
3.4	Soc 的低功耗模式	18
3.5	复位	19
3.6	寄存器描述	20
4	CPU 系统	29
4.1	概述	29
4.2	Cortex-M0 处理器	30
4.3	存储映射	30
	4.3.1 存储重映射	31
	4.3.2 Bitband	32
	4.3.3 SRAM	32
	4.3.4 EEPROM	32
	4.3.5 FLASH	32
4.4	中断分配	33
4.5	DMA	34
	4.5.1 概述	
	4.5.2 DMA 通道分配	34
4.6	寄存器描述	35
5	计量	37

5.1	主要特点	37
5.2	寄存器描述	37
6	RTC	48
6.1	概述	48
6.2	特点	48
6.3	寄存器描述	48
7	WDT	55
7.1	概述	55
7.2	看门狗定时器的配置	55
7.3	寄存器描述	56
8	LCD	56
8.1	概述	57
	8.1.1 扫描时钟频率	57
	8.1.2 闪烁模式	57
	8.1.3 LCD 驱动波形	58
	8.1.4 LCD 偏置电压	63
	8.1.5 LCD 帧缓冲映射	63
8.2	寄存器描述	64
9	定时器	66
9.1	概述	67
9.2	功能框图	68
9.3	寄存器描述	68
9.4	典型应用	73
	9.4.1 自动运行模式,定时功能	73
	9.4.2 输入捕获模式,脉宽测量功能	74
	9.4.3 比较输出模式,方波输出功能	74
	9.4.4 比较输出模式, PWM 输出功能	75
	9.4.5 从模式,外部清零和门控功能	77
10	模拟外设	77
10.1	特点	77
10.2	寄存器	77
11	GPIO	81
11.1	概述	81
11.2	寄存器描述	81
12	外部中断控制器	94
12.1	概述	94
12.2	寄存器描述	94
13	KBI	96

13.1	特性	96
13.2	寄存器描述	
14	UART	97
14.1	概述	97
14.2	寄存器描述	
15	ISO7816	100
15.1	概述	100
15.2	寄存器描述	
16	IIC 接口	109
16.1	概述	109
16.2	寄存器描述	
17	SPI 接口	112
17.1	概述	112
17.2	功能描述	
17.3	寄存器描述	
18	选项字节	115
18.1	芯片保护设置	116
18.2	WDT 设置	
18.3	EMAP 设置	117
18.4	RTC 设置	117
19	编程支持	118
19.1	概述	118
19.2	FLASH/EEPROM 保护机制	118
19.3	在系统编程(ISP)	119
	19.3.1 ISP 通讯协议	119
	19.3.2 使用的 SoC 资源	120
	19.3.3 ISP 命令	120
	19.3.4 ISP 返回代码	
19.4	在应用编程(IAP)	
	19.4.1 IAP 命令	
	19.4.2 IAP 使用	
19.5	量产平台	127
20	封装尺寸	127

1 概述

1.1 简介

RN821X 是一款低功耗、高性能、高集成度、高可靠的单相 SOC 芯片,该产品内嵌 32 位 ARM Cortex-M0 核,能够满足单相智能表计目前及将来持续增长的功能、性能要求。

1.2 产品特点

1.2.1 基本特点

- 高集成:集成 32bit ARM Cortex-M0、计量模块、硬件温补 RTC、 LCD 控制器、EEPROM;
- 宽电压:保证计量精度的电压范围为 2.8V~5.5V; CPU 小系统可运行的典型电压范围为 2.2V~5.5V; GPIO 支持与不同工作电压器件的对接。
- 高性能: CPU 典型工作频率为 3.6864MHz (最高可达 29.4912MHz);
- 低功耗:单相智能表计应用时典型功耗约为 3.5mA;
 系统工作在 32Khz 下功耗约为 18 μ A;
 睡眠模式下芯片整体功耗约为 10 μ A。
- 高精度:在 5000:1 动态范围内有功误差小于 0.1%; 计量参考基准温度系数典型值为 5ppm; RTC 在-25℃ ~70℃内秒脉冲误差小于±5ppm,最小校正刻度为 0.068ppm;
- 封装形式: LQFP100

1.2.2 处理器相关

- ARM Cortex-M0 内核;
- 最高运行频率可达 29.4812Mhz,单相智能表计应用推荐采用 3.6864Mhz;
- 最大支持 192Kbvtes FLASH 存储器,擦写次数 10 万次,数据保持时间大于 20 年;
- 最大支持 16Kbytes SRAM;
- 最大支持 32KbytesEEPROM,擦写次数 100 万次,支持 byte 操作,数据保持时间大于 20 年;
- 单 cycle 乘法器(32bit*32bit)
- CM0 内嵌系统定时器:
- 2 个 DMA 控制器:
- 支持外部中断等多种唤醒方式;
- 提供完善的集成开发软硬件环境。

1.2.3 计量

- 在5000:1 动态范围内有功计量误差小于0.1%;
- 参考电压温度系数典型值为 5ppm/℃;
- 支持零线和火线双通道有功功率、无功功率、视在功率、电流有效值同时测量;
- 支持零线和火线双通道有功电能、无功电能、视在电能同时计量;
- 提供电压有效值及电压线频率测量:
- 提供采样通道增益及 offset 校正功能;
- 提供功率因数;

1.2.4 RTC

- 硬件自动温补,满足国家标准的精度和功耗要求;
- 温度传感器:提供准确的温度值,-25℃~70℃范围内测温精度为±1℃;
- 功耗优于 2 µ A;

1.2.5 LCD

● 支持 4*34、6*32、8*30:

- 支持 DMA 自动轮显,不需要启动 CPU;
- Charge pump 提供 LCD 电压,支持宽电压、全温度范围清晰显示;
- 自动轮显功耗优于 20 µ A。

1.2.6 其他外设

- 高速 GPIO,支持与不同电压外设器件的接口;
- 10bit ADC: 温度传感器/电池电压检测/通用 ADC 分时复用;
- 电压检测 LVD: 检测芯片电源电压; 检测外部电压。
- 两个比较器 CMP1 和 CMP2: 检测外部电压, 其中 CMP2 功耗低于 1 μ A, 支持停电下的低功耗电源监测。
- 定时器: 2 个 32bit 扩展定时器, 2 个 RTC 定时器, 1 个 CM0 内嵌系统定时器;
- UART: 最多 5 个,支持自动波特率,支持红外调制,支持 UART 唤醒;
- 7816 口: 2 个
- I2C: 1 个
- SPI: 1 个
- 看门狗:硬件看门狗;
- 按键中断: 2个,管脚复用;
- 外部中断: 4个,管脚复用;

1.2.7 加密

- 硬件真随机数产生器,符合美国 NIST 的 FIPS 140-2 标准;
- AES128/192/256 硬件加密,符合 FIPS197 标准,支持 EBC/CBC/CTR/GCM/GMAC 模式;
- ECC192 硬件加速器;
- 加密说明文档见锐能微应用笔记。

1.2.8 卡表隔离

● 提供卡表隔离低成本高可靠解决方案,详见锐能微 RN8501 卡隔离方案说明:

1.2.9 RN821x 型号划分

单相 SOC 系列	RN8211	RN8211B	RN8213	RN8215
FLASH	64KBytes	64KBytes	128KBytes	192KBytes
EEPROM	32KBytes	32KBytes	32KBytes	32KBytes
RAM	QVD vites	QVD _{ruto}	QVD vitos	16KBytes(cache 不使能)
KAM	8KBytes	8KBytes	8KBytes	14KBytes(cache 使能)
计量	无零线计量	火线零线双路	火线零线双	火线零线双路计量
1 里	九令线 里 	计量	路计量	八 级令级从始 II 里
DMA	无	无	无	有
32 位通用定时器	1 个	1 个	2 个	2 个
全失压测量	无	无	无	有,请参考应用笔记
加密	无	无	无	有,请参考应用笔记
硬件 SPI	无	无	1个	1个
7816	无	无	2 个	2 个
UART	4 路	4路	5 路	5 路
I2C	1路	1路	1路	1路
封装	LQFP64	LQFP64	LQFP100	LQFP100
典型应用领域	农网表	海外低成本表	国网表	海外中高端表

具体封装尺寸详见第19章封装尺寸图。

1.3 系统框图

图 1.1 RN821X 系统框图

1.4 管脚排列

图 1.2 单相 SOC 管脚排列图

引脚类型说明:

类型	模 拟 A	双 向 B	输 入 I	输 出 O	上 拉 U	施 密 ち	TTL/ CMOS L	OpenDrain D	晶 振 X	SEG G	COM M	驱动
PBUS6		√			√	√						6mA
PBULD3		√			√		√	√				3mA
PABUS3	√	√				√						3mA
PUXI			√						√			
PBUSG3		√			√	√				√		3mA
PAM	√										√	
PAGM	√									√	√	

引脚说明:

71/194 1967			1		
	编号				
8213/ 8215	8211	8211B	标识	管脚类型	功能描述
1	63	63	SWDCLK/ P24/RX2	PBULD3	SWD 时钟、UART2 输入、P24 复用; 上拉可选、TTL/CMOS 电平可选、漏极开 路可选。
2	64	64	SWDIO/ P25/TX2	PBULD3	SWD 数据口、UART2 输出、P25 复用; 上拉可选、TTL/CMOS 电平可选、漏极开 路可选。
3	1	1	LDO33	LDO 输出	3.3V 计量 LDO 输出,给计量 ADC 供电; 外部并接 0.1uF 和 10uF 电容;
4	2	2	P00/AIN0	PABUS3	POO 口、SAR-ADC 输入复用 PAD
5	3	3	P01/AIN1	PABUS3	P01 口、SAR-ADC 输入复用 PAD
6			AIN2/CMP1/P02	PABUS3	SAR-ADC 输入、比较器 1 输入、P02 复用;
7	4	4	AIN3/CMP2/P03	PABUS3	SAR-ADC 输入、低功耗比较器 2 输入、P03 复用;
8			AIN4/LVDIN/P04	PABUS3	SAR-ADC 输入、LVDIN 输入、P04 复用;
9	5	5	UP	模拟输入	电压通道的正模拟输入引脚
10	6	6	UN	模拟输入	电压通道的负模拟输入引脚
11		7	IBP	模拟输入	电流通道 B 的正模拟输入引脚
12		8	IBN	模拟输入	电流通道 B 的负模拟输入引脚
13	7	9	IAP	模拟输入	电流通道 A 的正模拟输入引脚,最大 16 倍增益,外接锰铜采样电路。最大输入信号为±1V(差分后信号);
14	8	10	IAN	模拟输入	电流通道 A 的负模拟输入引脚,最大 16 倍增益,外接锰铜采样电路。
15	9	11	AGND	地	模拟地
16	10	12	REFV	参考电压	计量 ADC 的参考输入,外部应并接 0.1uf 和 10uf 电容
17	11		VBAT	电源	3.6V 电池输入引脚;同时也是内部 SAR-ADC的输入。
18	12	13	VCC	电源	2.8V~5.5V 电源输入,应外接 10uf 电容 并联 0.1uf 电容去耦。
19	13		VSWO	电源	主电与电池切换后的电源输出,应外接 10uf 电容并联 0.1uf 电容去耦。
20			P56/ZXOUT	PBULD3	P56 口与过零输出复用
21			P44/SPI_SCSN	PBULD3	P4 口与 SPI 复用;
22			P45/SPI_SCLK	PBULD3	上拉可选、TTL/CMOS 电平可选、漏极开路可选。
23	14	14	RSTN	复位	低电平复位电路,内部有上拉电阻;
24	15	15	XO	时钟	32.768KHz 无源晶振输出和输入。
25	16	16	XI	时钟	不需要外接电阻和电容, 需要用地线将

					之隔离。			
26	17	17	DGND	地	数字地			
27	18	18	LDO18	LDO	1.8V LDO 的输出,应外接 10uf 电容并联 0.1uf 电容去耦;			
28			P46/SPI_MISO	PBULD3	P4 口与 SPI 复用;			
29			P47/SPI_MOSI	PBULD3	上拉可选、TTL/CMOS 电平可选、漏极开 路可选。			
30			P95/SEG33	PBUSG3	LCD/GPIO 复用			
31			P94/SEG32	PBUSG3	LCD/GPIO 复用			
32	19	19	P93/SEG31	PBUSG3	LCD/GPIO 复用			
33	20	20	DGND	地	数字地			
34	21	21	P92/SEG30	PBUSG3	LCD/GPIO 复用			
35	22	22	P91/SEG29	PBUSG3	LCD/GPIO 复用			
36	23	23	P90/SEG28	PBUSG3	LCD/GPIO 复用			
37	24	24	P87/SEG27	PBUSG3	LCD/GPIO 复用			
38	25	25	P86/SEG26	PBUSG3	LCD/GPIO 复用			
39	26	26	P85/SEG25	PBUSG3	LCD/GPIO 复用			
40	27	27	P84/SEG24	PBUSG3	LCD/GPIO 复用			
41	28	28	P83/SEG23	PBUSG3	LCD/GPIO 复用			
42	29	29	DGND	地	数字地			
43	30	30	P82/SEG22	PBUSG3	LCD/GPIO 复用			
44	31	31	P81/SEG21	PBUSG3	LCD/GPIO 复用			
45	32	32	P80/SEG20	PBUSG3	LCD/GPIO 复用			
46			P77/SEG19	PBUSG3	LCD/GPIO 复用			
47			P76/SEG18	PBUSG3	LCD/GPIO 复用			
48			P75/SEG17	PBUSG3	LCD/GPIO 复用			
49			P74/SEG16	PBUSG3	LCD/GPIO 复用			
50	33	33	LCDVP2	模拟	模拟输出,LCDVP2 和 LCDVP1 之间应该连接一个 100nF 的电容。			
51	34	34	LVDVP1	模拟	模拟输出,LCDVP2 和 LCDVP1 之间应该连接一个 100nF 的电容。			
52	35	35	LCDVA	模拟	LCD 电压输出,需要外接 470nF 电容			
53	36	36	LCDVB	模拟	LCD 电压输出,需要外接 470nF 电容			
54	37	37	LCDVC	模拟	LCD 电压输出,需要外接 470nF 电容			
55	38	38	LCDVD	模拟	LCD 电压输出,需要外接 470nF 电容			
56	39	39	P52/SCL	PBULD3	P5 口与 I2C 复用。			
57	40	40	P53/SDA	PBULD3	上拉电阻可选、TTL/CMOS 输入可选、 漏极开路可选;			
58	41	41	P54/ RX5	PBULD3	P54 与 UART5 输入复用			
59	42	42	P55/ TX5	PBULD3	P55 与 UART5 输出复用			
60			P40/7816CLK	PBULD3	IO 口与 7816 复用的管脚。			
61			P41/78160_IO	PBULD3	上拉电阻可选、TTL/CMOS 输入可选、			
62			P42/78161_IO	PBULD3	漏极开路可选;			

P43/78161_LTCI						备注: 支持两个 7816 接口。 78160_IO 是 7816 0 的双向数据口;
1	63			P43/78161 I/TCI	PBULD3	_
1				_		
64						_
65	6.4	49	49	DCND	444	
66					_	
67						-
68						
P73/SEG15		-				PH 14 XC.
P72/SEG14		41	- 11			LCD/GPIO 复田
P71						
P70/SEG12						
P67/SEG11						
74 P66/SEG10 PBUSG3 LCD/GPIO 复用 75 48 48 P37/INT7/H0SCI PUXI P3 口/中断口/高頻晶体复用 76 49 49 P36/INT6/HOSCO PUXI 高頻晶体端口外部应申接一个 10M 欧的电阻,并联两个 15pf 的电容。 77 P65/SEG9 PBUSG3 LCD/GPIO 复用 78 P64/SEG8 PBUSG3 LCD/GPIO 复用 79 P63/SEG7 PBUSG3 LCD/GPIO 复用 80 P62/SEG6 PBUSG3 LCD/GPIO 复用 81 P61/SEG5 PBUSG3 LCD/GPIO 复用 82 P60/SEG4 PBUSG3 LCD/GPIO 复用 83 DGND 地数字地 84 50 50 SEG3/COM7 PAM SEG 与 COM 复用的端口 85 51 51 SEG2/COM6 PAM SEG 与 COM 复用的端口 86 52 52 SEG1/COM5 PAM SEG 与 COM 复用的端口 87 53 53 SS SEGO/COM4 PAM COM 端口 89 55 55 COM2 PAM COM						
75						
Record		10	10			
19 49 49 P36/INT6/HOSCO PUXI 电阻,并联两个 15pf 的电容。	10	40	40	137/1N17/1103C1	IUAI	-
P64/SEG8	76	49	49	P36/INT6/HOSCO	PUXI	
P63/SEG7	77			P65/SEG9	PBUSG3	LCD/GPIO 复用
R6	78			P64/SEG8	PBUSG3	LCD/GPIO 复用
P61/SEG5	79			P63/SEG7	PBUSG3	LCD/GPIO 复用
B2	80			P62/SEG6	PBUSG3	LCD/GPIO 复用
B3	81			P61/SEG5	PBUSG3	LCD/GPIO 复用
84 50 50 SEG3/COM7 PAM SEG与COM复用的端口 85 51 51 SEG2/COM6 PAM SEG与COM复用的端口 86 52 52 SEG1/COM5 PAM SEG与COM复用的端口 87 53 53 SEGO/COM4 PAM SEG与COM复用的端口 88 54 54 COM3 PAM COM端口 89 55 55 COM2 PAM COM端口 90 56 56 COM1 PAM COM端口 91 57 57 COM0 PAM COM端口 92 58 58 P10/KEY0/TCOO UTn0/TCIN PBULD3 IO口、KEY输入、定时器输入输出复用; 上拉可选、TTL/CMOS 电平可选、漏极开 93 59 59 P11/KEY1/TCOO UTp0/TCIN PBULD3 B可选。 94 60 60 P30/INT0/TCIN PBUS6 IO口、外部中断输入、定时器输入、6mA 驱动能力。 95 61 61 P32/INT2/ PBUS6 IO口、外部中断输入、RTC 脉冲输出复	82			P60/SEG4	PBUSG3	LCD/GPIO 复用
SEG SEG	83			DGND	地	数字地
SEG F COM 复用的端口	84	50	50	SEG3/COM7	PAM	SEG 与 COM 复用的端口
SEGO/COM4 PAM SEG 与 COM 复用的端口 SEG 与 COM 第口 SEG 与 COM 第口 SEG 与 COM 第口 SEG 与 COM 端口 SEG 与 COM 第口	85	51	51	SEG2/COM6	PAM	SEG 与 COM 复用的端口
Section	86	52	52	SEG1/COM5	PAM	SEG 与 COM 复用的端口
89 55 55 COM2 PAM COM 端口 90 56 56 COM1 PAM COM 端口 91 57 57 COM0 PAM COM 端口 92 58 58 P10/KEY0/TC0O UTn0/TCIN PBULD3 L拉可选、TTL/CMOS 电平可选、漏极开 上拉可选。	87	53	53	SEG0/COM4	PAM	SEG 与 COM 复用的端口
90 56 56 COM1 PAM COM 端口 91 57 57 COM0 PAM COM 端口 92 58 58 P10/KEY0/TC0O UTn0/TCIN PBULD3 L拉可选、TTL/CMOS 电平可选、漏极开 P11/KEY1/TC0O UTp0/TCIN PBULD3 B可选。 P30/INT0/TCIN PBUS6 I0 口、外部中断输入、定时器输入复用; 上拉可选、施密特输入、6mA 驱动能力。 P32/INT2/ PBUS6 I0 口、外部中断输入、RTC 脉冲输出复	88	54	54	COM3	PAM	COM 端口
91 57 57 COM0 PAM COM 端口 92 58 58 P10/KEY0/TC0O UTn0/TCIN PBULD3 L拉可选、TTL/CMOS 电平可选、漏极开 B可选。 P11/KEY1/TC0O PBULD3 B可选。 P30/INT0/TCIN PBUS6 I0 口、外部中断输入、定时器输入复用; 上拉可选、施密特输入、6mA 驱动能力。 P32/INT2/ PBUS6 I0 口、外部中断输入、RTC 脉冲输出复	89	55	55	COM2	PAM	COM 端口
92 58 P10/KEY0/TC0O UTn0/TCIN PBULD3 I0 口、KEY 输入、定时器输入输出复用; 上拉可选、TTL/CMOS 电平可选、漏极开 B可选。 93 59 P11/KEY1/TC0O UTp0/TCIN PBULD3 路可选。 94 60 60 P30/INT0/TCIN PBUS6 I0 口、外部中断输入、定时器输入复用; 上拉可选、施密特输入、6mA 驱动能力。 95 61 61 P32/ INT2/ PBUS6 I0 口、外部中断输入、RTC 脉冲输出复	90	56	56	COM1	PAM	COM 端口
92 58 58 UTn0/TCIN PBULD3 上拉可选、TTL/CMOS 电平可选、漏极开路可选。 93 59 P11/KEY1/TC0O UTp0/TCIN PBULD3 路可选。 94 60 60 P30/INT0/TCIN PBUS6 I0 口、外部中断输入、定时器输入复用;上拉可选、施密特输入、6mA 驱动能力。 95 61 61 P32/ INT2/ PBUS6 I0 口、外部中断输入、RTC 脉冲输出复	91	57	57	COM0	PAM	COM 端口
P11/KEY1/TC00	92	58	58		PBULD3	
93 59 59 UTp0/TCIN PBULD3						
94 60 60 P30/INT0/ TCIN PBUS6 I0 口、外部中断输入、定时器输入复用; 上拉可选、施密特输入、6mA 驱动能力。 95 61 61 P32/ INT2/ PBUS6 I0 口、外部中断输入、RTC 脉冲输出复	93	59	59		PBULD3	路可选。
94 60 60 P30/INT0/TCIN PBUS6 上拉可选、施密特输入、6mA 驱动能力。 95 61 61 P32/INT2/ PBUS6 IO 口、外部中断输入、RTC 脉冲输出复				U I pu/ I CIIN		IO口 从郊山辉绘》 宁叶思绘》 有田
95 61 61 P32/ INT2/ PBUS6 IO 口、外部中断输入、RTC 脉冲输出复	94	60	60	P30/INT0/ TCIN	PBUS6	
95 61 61 PBUS6	0 -		2.	P32/ INT2/		
	95	61	61		PBUS6	

					上拉可选、施密特输入、6mA 驱动能力。
96			P26/RX3	PBULD3	UART3 与 P2 口复用;
97			P27/TX3	PBULD3	上拉可选、TTL/CMOS 电平可选、漏极开
01			127/113	TBCEDS	路可选。
					P57 口与 SF 视在电能脉冲输出复用;
98			P57/SF	PBULD3	上拉可选、TTL/CMOS 电平可选、漏极开
					路可选。
99			D51/OE	PBUS6	P51 口、无功脉冲输出复用;
99			P51/QF	PBUSO	上拉可选、施密特输入、6mA 驱动能力
100	62	62	P50/PF	DDI ICA	P50 口、有功脉冲输出复用;
100	02	02	P3U/PF	PBUS6	上拉可选、施密特输入、6mA 驱动能力

RN821X关键管脚说明:

- 1.LDO33是3.3V LDO的输出,给计量ADC提供电源;外部应并接0.1uf和10uf电容;
- 2.UP、UN、IBP、IBN、IAP、IAN采用计量芯片常规接法;
- 3.AGND是模拟地,DGND是数字地;实际使用时可根据经验合理布局。
- 4.REFV是计量ADC的参考输入,外部应并接0.1uf和10uf电容;
- 5.VBAT是3.6V电池输入;
- 6.VCC是主电输入,正常工作范围2.8V~5.5V,应外接10uf电容并联0.1uf电容去耦;
- 7.VSWO是VCC与VBAT切换后的电源输出,应外接10uf电容并联0.1uf电容去耦;
- 8.XO和XI之间跨接32.768KHz晶体,最好用地线将之隔离,不需外接电阻和电容;
- 9.LDO18是1.8V LDO的输出,给芯片1.8V数字域供电,应外接10uf电容并联0.1uf电容去耦;
- 10.LCDVD、LCDVC、LCDVB、LCDVA是LCD电压输出,每个管脚都应外接470nf电容;
- 11.LCDVP1和LCDVP2之间应连接一个100nf的电容;
- 12.LCD 与 GPIO 复用 PAD 在选择为 GPIO 时为 open drain 结构,如果 LCD 选择为 3.3V 则不可用,只有当 LCD 选择为 5V 时才能选择为 GPIO 功能。

2 电气特性

计量参数											
	(VCC=3V~5.5V, 室温)										
测量项目	符号	最小	典型	最大	单位	测试条件和注释					
有功电能测量误差	Err			±0.1%		常温5000:1的动态范围					
有功电能测量带宽	BW		7		kHz						
无功电能测量误差	Err			±0.1%		常温5000:1的动态范围					
视在电能测量误差	Err			±0.1%		常温5000:1的动态范围					
有效值测量误差	Err			±0.2%		常温1000:1的动态范围					
功率测量误差	Err			±0.1%		常温1000:1的动态范围					
电能脉冲输出											
最大频率	Hz			20KHz							

占空比	%		50%			当脉宽低于 84ms 时
高电平脉宽	ms		84ms			
		Sigma	-Delta AD	C性能		
最大信号电平	V_{xn}			±1000	mV	差分后信号
ADC 失调误差	DC_{off}		1		mV	
-3dB 带宽	B _{-3dB}		7		kHz	
			基准电压			
	(VCC=3	V~5.5V,	温度范围	: -40°C∼+	85℃)	
输出电压	V _{ref}	1.25	1.26	1.27	V	
温度系数	T _c		5	15	ppm/℃	
	•		模拟外设	1	•	
低功耗比较器 CMP2 阈值	CMP2	1.1	1.22	1.35	V	该阈值为CMP2输出低电平比较结果阈值;输出高电平比较结果阈值阈值 比该阈值高200mv。
SAR ADC 输入范围	SAR-I N	0		LBGR	V	LBGR 为内部低功耗基准,典型值为 1.25V
切换到主电阈值	上电切换阈值	2.6	2.8	3.0	V	当主电(VCC)高于该阈值或者高于VBAT时供电切换到 VCC。
切换到电池阈值	掉电切 换阈值	2.5	2.7	2.9	V	当主电(VCC)低于该阈值并且低于 VBAT 时供电切换到 VBAT。
LCD 输出电压	LCDV D	4.85	5.05	5.25	V	全温度范围测试
VBAT 测量	VBAT D	0	3.6	3.8	V	SAR ADC 对 VBAT 的 测量范围;
LBGR 电压	LBGR	1.22	1.27	1.32	V	全温度范围测试
			时钟参数			
输入低频时钟频率范围	XI		32.768		KHz	
输入高频时钟频率范围	HOSI	3.6864	7.3728	29.4912	Mhz	
内部PLL时钟频率范围	PLL		7.3728		MHz	
内部高频RC	RCH	1.4	1.6	1.8	MHz	用于芯片复位后默认 时钟
内部低频RC	RCL	20	30	40	KHz	用于WDT时钟
	•	•	电源		•	
主电源	VCC	2.8	5/3.3	5.5	V	
	Vil	2.1	2.2	2.35	V	常温
cpu 最低工作电压				2.0	* 7	M 28 40 PE
CPu 取以工下电压	Vil	2	2.15	2.3	V	低温-40 度
Cpu 政队工下电压	Vil Vil	2.2	2.15	2.3	V	低温-40 度 高温 85 度

模拟电流	AIdd		2		mA	三路ADC均开启
数字电流	DIdd		1.5		m A	CPU运行在
数于电 侧	Didd		1.3		mA	3.6864MHz, 计量开启
						RTC自动温补; RAM保
 休眠功耗	SIdd		10		^	持; CPU及数字外设不
17个时间为17七	Sidd		10		μΑ	掉电; WDT开启; 电源
						监测开启;中断唤醒
LDO33	V33	3.2	3.3	3.4	V	
LDO18	V1P8	1.62	1.8	1.98	V	
			极限参数			
主电电压	Vvcc	-0.3		+7	V	
电池输入电压	Vvbat	-0.3		+7	V	
DV _{DD} to DGND		-0.3		+7	V	
DV _{DD} to AV _{DD}		-0.3		+0.3	V	
V1P,V1N,V2P,V2N,V3P,		-6		+6	V	
V3N					•	
 数字IO输出高电平	VOH			$\mathrm{DV}_{\mathrm{DD}}$	V	
双 1 10 相 田 向 屯 1				+0.3	•	
数字IO输出低电平	VOL	-0.3			V	
数字IO输入高电平	VIH		0.7VCC			CMOS
数字IO输入低电平	VIL		0.3VCC			CMOS
数字IO输入高电平	VIH		0.4VCC			TTL
数字IO输入低电平	VIL		0.2VCC			TTL
数字IO的Isource	Isource	5		10	mA	6mA类型
数字IO的Isink	Isink	7		15	mA	6mA类型
数字IO的Isource	Isource	3		5	mA	3mA类型
数字IO的Isink	Isink	5		10	mA	3mA类型
模拟输入电压相对于	V_{INA}	-0.3		AV_{DD}	V	
AGND				+0.3	V	
工作温度范围	T_A	-40		85	$^{\circ}$	
存储温度范围	T_{stg}	-65		150	$^{\circ}\!\mathbb{C}$	

3 系统控制

3.1 电源管理方案

图 3.1 单相表电源管理方案:内部电池切换

3.2 时钟源

- 外部时钟源有两个:
 - 32.768KHz 晶振,用于 RTC 时钟和低频工作下 CPU 时钟,永不关断;外部晶振,支持 3.6864Mhz 及*2/*4/*8 四种频率,可用于 CPU 主系统时钟;
- 内部时钟源有三个:
 - 1.6MHz RC 用于芯片上电复位后 CPU 的时钟,上电复位后 CPU 的时钟默认是 IRC。32KHz RC 时钟,用于 WDT 时钟。
 - 7.3728MHz PLL 输出,用于系统主时钟,CPU 通过指令从低频时钟切换到高频时钟。

3.3 时钟切换

包含有如下切换:

- 1. 第一次上电复位后默认为 IRC:
- 2. 高频模式与 IRC 切换,由 CPU 指令完成;
- 3. 高频模式与 LOSC 切换,由 CPU 指令完成。
- 4. LOSC 与 IRC 切换, 由 CPU 指令完成。

时钟切换请调用锐能微提供的库函数完成。

锐能微时钟切换库函数首先完成 FLASH 和 EEPROM 参数的配置,然后运行模式切换命令。

如果选择外部高频晶振 HOSC 作为系统主时钟,在调用库函数前需要配置 OSC CTL2 寄存器。

如果选择 PLL 作为系统主时钟,并且为第一次上电,需要等待 32KHz 晶振起振后(起振时间约为 1.5 秒) 再调用库函数进行时钟切换。

3.4 Soc 的低功耗模式

M0 有两种低功耗模式:

Sleep 和 DeepSleep。对于 RN821x 而言,两者的区别仅在于 DeepSleep 时部分模块时钟会自动关闭,建议用户仅使用 Sleep,不使用 DeepSleep。模块时钟采用软件关闭,不使用 DeepSleep 自动关闭功能。

除了 M0 本身的低功耗模式, SOC 提供了灵活的机制实现用户不同功耗模式的需求:

- 1. 提供高频时钟模式 HCM、内部 RC 模式 RCM、低频时钟模式 LCM, CPU 可通过指令在这三种模式之间 任意切换;
- 2. CPU、外设的时钟或者电源均可关断;
- 3. 在最低功耗模式(CPU 休眠、SRAM 及数字外设不掉电、RTC 运行、主电监测开启)功耗约为 8uA 左右;

用户可根据 SOC 提供的如上机制灵活的实现自己需要的低功耗模式。主要模块上电后的默认状态:

主要模块	默认工作状态
1.8V 电压阈	
M0 内核	开启,可关时钟,永不掉电
中断系统	开启,可关时钟,永不掉电
SRAM	开启,可关时钟,永不掉电
ROM	开启,可关时钟,永不掉电
FLASH	开启,CPU 休眠后可自动关电
EEPROM	开启,CPU 休眠后需要调用锐能微库
	函数掉电;
RTC	开启,万年历不可关断,没有复位
EMM (正常计量)	关闭,可关时钟,永不掉电
其他外设	关闭,可关时钟,永不掉电
5V 电压阈	
计量 ADC	关闭,可关电源
计量 ref	关闭,可关电源
3.3V LDO	关闭, 可关电源
1.8V LDO	开启,不可关断
RC	开启, 可关电源
比较器 CMP2	开启, 可关电源
比较器 CMP2	关闭,可关电源
LCD	关闭, 可关电源
温度 ADC	定时开启
LVD	关闭,可关电源
比较器	关闭,可关电源
电源复位系统	一直开启
PLL	关闭,可关电源
HOSC	关闭,可关电源
LOSC	一直开启

默认关闭的模块在三种时钟下都可以选择开启或者关闭。

3.5 复位

复位源:

外部 PIN 复位,全局复位;

上电及掉电复位,全局复位; 模式切换复位,仅复位部分模块(计量); 软件复位,全局复位; 看门狗复位,全局复位;

3.6 寄存器描述

系统控制模块的基址:

模块名	物理地址	映射地址
SYSC	0x40034000	0x40034000
寄存器名	地址偏移量	描述
OSC_CTL1	0x0	系统 OSC 控制寄存器 1
SYS_MODE	0x4	系统模式切换寄存器
SYS_PD	0x8	系统掉电控制寄存器
ADC_CTL	0xC	ADC 控制寄存器
OSC_CTL2	0x10	系统 OSC 控制寄存器 2
SYS_RST	0x14	系统复位寄存器
MAP_CTL	0x18	地址映射控制寄存器
MOD0_EN	0x1C	模块使能 0 寄存器
MOD1_EN	0x20	模块使能1寄存器
INTC_EN	0x24	INTC 使能寄存器
KBI_EN	0x28	KBI 使能寄存器
CHIP_ID	0x2C	芯片版本号
SYS_PS	0x30	系统控制寄存器密码保护位,写为
		0x82, 0x00~0x28 寄存器可写

系统 OSC 控制寄存器 1 OSC_CTL1(0x0)

比特位	名称	描述	读/写 标志	复位 值
31:16		只读,不可写。	R	0
15:11	CLOCK_FLAG	系统时钟开启标志位:如果时钟是开启了,则此位为 1: { HOSC,RCL,RCH,PLL, LOSC}	R	01101
10:8	SYSCLK_STAT	系统主时钟频率指示: 000: 当前系统主时钟为 7.3728MHz; 001: 当前系统主时钟为 3.6864MHz; 010: 当前系统主时钟为 1.8432MHz; 011: 当前系统主时钟为 32.768KHz; 100: 当前系统主时钟为 14.7456Mhz; 只支持外部晶振) 101: 当前系统主时钟为 29.4912Mhz; 只支持外部晶振)	R	010

		DI I EW POLL F		
7	PLL_LOCK	PLL 锁定状态 0: 未锁定	R	0
'	TEL_EOCK	1: 锁定	IX.	
		系统运行在外部高频或内部 PLL 时钟时,		
6	PLL HOSC ON	该位为 1;	R	0
		系统运行在其他时钟时,该位为 0。		
_		系统运行在内部高频时钟时,该位为1;	_	
5	IRCH_ON	系统运行在其他时钟时,该位为0。	R	1
4	LOGG ON	系统运行在外部低频时钟时,该位为1;	ъ	0
4	LOSC_ON	系统运行在其他时钟时,该位为0。	R	0
		系统主时钟分频选择:(只对高频时钟模式		
	PLL_HOSC_DIV	有效)		
		00:以 PLL、HOSC 作为 CPU 主时钟;		
		01:以 PLL、HOSC 的二分频作为 CPU 主		
		时钟;		
		10:以 PLL、HOSC 的四分频作为 CPU 主		
3:2		时钟;	R/W	01
		11: 以 HOSC(时钟频率选择为 14MHz 和		
		29MHz 时)的八分频作为 CPU 主时钟;		
		备注:只能在RC或者LC模式才能更改。		
		备注:上述寄存器只决定分频系数,具体		
		的系统主频需要根据分频系数和当前时钟		
		源选择来确定。		
		1.6MHz 内部 RC 使能位:		
1	IRCH_PD	0: 打开;	R/W	0
		1: 关闭。		
	DIT DD	PLL模块使能位(32.768KHz7.3728MHz)	DW	1
0	PLL_PD	0: 打开	RW	1
		1: 关闭		

用户进行时钟切换,建议调用锐能微库函数。不建议用户在应用程序中对 OSC_CTL1(0x0)寄存器进行写操作。

系统模式设置寄存器 SYS_MODE(0x4)

比特位	名称	描述	读 / 写 标志	复位 值
31:6		只读,不可写	R	0
5	FLASH_BUSY	Flash busy 状态,不能进入模式切换: 0: idle 1: busy	R	0
4	EEPROM_BUSY	eeprom busy 状态,不能进入模式切换: 0: idle 1: busy	R	0
3:0	MODE	写入 D,设置进入高频模式 HCM, bit2 读为	R/W	2

	1; 写入E,设置进入RC模式RCM,bit1读为	
	1; 写入 F, 设置进入 32.768KHz 模式 LCM, bit0	
	读为 1。 即该寄存器读出值为: {0,HCM,RCM,LCM}	

注: 当前模式状态的指示应该读取 LOSC_ON、IRCH_ON、PLL_HOSC_ON(OSC_CTL 寄存器 bit4~6)这三个状态。而不是读取该寄存器,该寄存器只代表模式切换命令写入,不代表已经切换到预期模式。

用户进行时钟切换,建议调用锐能微库函数。不建议用户在应用程序中对 SYS_MODE(0x4)寄存器进行写操作。

系统掉电控制寄存器 SYS_PD(0x8)

比特	名称	描述	读/写标	复位
位	- Halda		志	值
31:8		只读,不可写	R	0
		LBGR 电源开关		
		0: 上电		
7	LBGR_PD	1: 掉电	R/W	1
,		备注: LCD 开启、LVD 开启、CMP1 开启、		
		LBGR_PD 寄存器开启满足其中一个条件 LBGR		
		就开启。		
		BGR 电源开关		
		0: 上电		
6	BGR_PD	1: 掉电	R/W	1
	DOK_1D	备注:I1 通道 ADC、I2 通道 ADC、U1 通道 ADC、	10 11	1
		温度测量启动、BGR_PD 寄存器开启满足其中		
		一个条件 BGR 就开启。		
		比较器 2 (低功耗比较器) 电源开关		
5	CMP2_PD	0: 上电	R/W	0
		1: 掉电		
		比较器 1 电源开关		
	CMP1_PD	0: 上电		
4		1: 掉电	R/W	1
		备注: RN8211/RN8211B 不支持, 不应改变其复		
		位值;		
		LVD 电源开关		
3	LVD_PD	0: 上电	R/W	1
		1: 掉电		
		U 通道 ADC 电源开关		
2	ADCU_PD	0: 上电	R/W	1
		1: 掉电		
1	ADCI2_PD	I2 通道 ADC 电源开关	R/W	1
1	ADCIZ_FD	0: 上电	IX/ VV	1

		1: 掉电		
		备注: RN8211 不支持,不应改变其复位值;		
		I1 通道 ADC 电源开关		
0	ADCI1_PD	0: 上电	R/W	1
		1: 掉电		

ADC 控制寄存器 ADC_CTL(0xC)

比特位	名称	描述	读 / 写 标志	复位 值
31:12		只读, 不可写	R	0
11:9	保留	保留位,可写为1,无实际意义。	R/W	0
8:6	ADCU_PGA	U 通道 ADC 增益配置 =x00 1 倍 =x01 2 倍 =x10 4 倍 =x11 4 倍	R/W	0
5:3	ADCI2_PGA	I2 通道 ADC 增益配置 =x00 1 倍 =x01 2 倍 =x10 4 倍 =x11 4 倍 备注: RN8211 不支持,不应改变其复位值;	R/W	0
2:0	ADCI1_PGA	I1 通道 ADC 增益配置 =x00 1 倍 =x01 2 倍 =x10 8 倍 =x11 16 倍	R/W	0

系统 OSC 控制寄存器 2 OSC_CTL2(0x10)

比特位	名称	描述	读 / 写 标志	复 位 值
31:12		只读,不可写	R	0
11:9	保留	可写,内部测试寄存器,有密码保护	R/W	0
7:5		只读, 不可写	R	0
4	PLL_HOSC_SEL	全速运行时系统主时钟选择: 0: 选择 PLL 输出作为系统主时钟; 1: 选择备用高频晶体作为系统主时钟。 该配置项只能在 RC 模式和低频模式下配置。	R/W	0
3	HOSC_PD	外部高频振荡器使能位: 0: 打开 1: 关闭	RW	1
2:0	HOSC_FREQ	000: 外接高频晶振为 7.3728MHz 001: 外接高频晶振为 14.7456MHz 010: 保留,用户不要使用该选项 011: 外接高频晶振为 29.4912MHz	RW	000

如果系统时钟选择为外部高频晶振,在调用锐能微库函数进行时钟切换前,用户程序需要对 OSC_CTL2

寄存器进行配置。

系统时钟配置真值表:

	PLL_HOSC_DIV=00	PLL_HOSC_DIV=01	PLL_HOSC_DIV=10	PLL_HOSC_DIV=11
	不分频	二分频	四分频	八分频
PLL_HOSC_SEL=0	7.3728Mhz	3.6864MHz	1.8432MHz	不支持八分频,如配
PLL_FREQ=000				置则为 1.8432Mhz
PLL_HOSC_SEL=1	7.3728Mhz	3.6864MHz	1.8432MHz	不支持八分频,如配
HOSC_FREQ =000				置则为 1.8432Mhz
PLL_HOSC_SEL=1	14.7456Mhz	7.3728Mhz	3.6864Mhz	1.8432Mhz
HOSC_FREQ =001				
PLL_HOSC_SEL=1	29.4912Mhz	14.7456Mhz	7.3728Mhz	3.6864Mhz
HOSC_FREQ =010				

系统复位寄存器 SYS_RST(0x14)

(此寄存器的8到5位只能被上电/掉电复位)

比特位	名称	描述	读 / 写 标志	复位 值
31:9		预留	R	0
8	MCU_RST	CPU 复位标志 (发生过软件复位或者 LOCK UP 复位): =1 表示发生过该复位,=0 表示没有发生。 写 1 清零	R	0
7	WDT_RST	WDT 复位标志: =1 表示发生过该复位,=0 表示没有发生。 写 1 清零	R	0
6	PIN_RST	外部管脚复位标志: =1表示发生过该复位,=0表示没有发生。 写1清零	R	0
5	POWEROK_RST	电源上下电复位标志 =1表示发生过该复位,=0表示没有发生。 写1清零	R	1
4:3		只读, 不可写	R	0
2	LOCKUP_ENRST	LOCKUP 使能复位(CPU 发生了两次 Hard Fault 会引起 LOCKUP, 如果使能该位,可引起系统复位): 0: LOCKUP 不引起系统复位 1: LOCKUP 引起系统复位	R/W	0
1	NVM_RST_REQ	软件复位全失压计算模块: 写入1复位全失压计算模块; 写入0取消全失压计算模块复位。 不复位全失压模块配置寄存器;	R/W	0
0	EMU_RST_REQ	软件复位 EMU 计算模块:	R/W	0

	写入1复位 EMU 计算模块;	
	写入0取消EMU计算模块复位。	
	不复位 EMU 模块配置寄存器;	

地址映射控制寄存器 MAP_CTL(0x18)

比特位	名称	描述	读/写标志	复 位 值
31:3		只读,不可写	R	0
4	保留	可写,有密码保护	R/W	0
3		只读, 不可写	R	0
2:0	REMAP	地址映射: 000: FLASH 映射在 0 地址(正常模式) 001: FLASH 与 EEPROM 映射地址互换 010: FLASH 与 SRAM 映射地址互换 011: 保留,用户不要使用该选项 100: FLASH映射在 1/2 容量地址(只支持 192K的 1/2 容量) 其他: 保留,用户不要使用该选项	R/W	00

模块使能 0 寄存器 MOD0_EN(0x1C)

比特位	名称	描述	读 / 写标志	复位值
31:16		只读,不可写	R	0
15	SPI_EN	SPI 模块使能,时钟门控,cm0 进入 deepsleep 同步关闭此时钟: 0: 时钟停止,模块关闭 1: 时钟启动,模块使能 备注: RN8211/RN8211B 不支持,不应改变 其复位值	R/W	0
14	I2C_EN	I2C 模块使能,时钟门控,cm0 进入 deepsleep 同步关闭此时钟: 0: 时钟停止,模块关闭 1: 时钟启动,模块使能	R/W	0
13	ISO7816_EN	ISO7816 模块使能,时钟门控,cm0 进入deepsleep 同步关闭此时钟: 0:时钟停止,模块关闭 1:时钟启动,模块使能 备注:RN8211/RN8211B 不支持,不应改变 其复位值	R/W	0
12	UART38K _EN	UART38K 红外调制时钟开启使能,cm0 进	R/W	0

		入 deepsleep 同步关闭此时钟:		
		0: 时钟停止		
		1: 时钟启动		
		UART3 模块使能,时钟门控,cm0 进入		
		deepsleep 同步关闭此时钟:		
11	UART3_EN	0: 时钟停止,模块关闭	R/W	0
11	UAKI3_EN	1: 时钟启动, 模块使能	K/W	0
		备注: RN8211/RN8211B 不支持,不应改变		
		其复位值		
		UART2 模块使能,时钟门控,cm0 进入		
10	IIADEO EN	deepsleep 同步关闭此时钟:	D ATT	
10	UART2_EN	0: 时钟停止,模块关闭	R/W	0
		1: 时钟启动,模块使能		
		UART1 模块使能,时钟门控,cm0 进入		
		deepsleep 同步关闭此时钟:		
9	UART1_EN	0: 时钟停止,模块关闭	R/W	0
		1: 时钟启动,模块使能		
		UARTO 模块使能,时钟门控,cm0 进入		
		deepsleep 同步关闭此时钟:		
8	UART0_EN	0: 时钟停止,模块关闭	R/W	0
		1: 时钟启动,模块使能		
		UART5 模块使能,时钟门控,cm0 进入		
		deepsleep 同步关闭此时钟:		
7	UART5_EN	0: 时钟停止,模块关闭	R/W	0
	O/IKI3_LIV	1: 时钟启动,模块使能		
6	保留	保留位,可写,未开放模块时钟门控	R/W	0
0		TC1 模块使能,时钟门控,cm0 进入	IX/ VV	0
		deepsleep 同步关闭此时钟:		
		0: 时钟停止,模块关闭		
5	TC1_EN	1: 时钟启动,模块使能	R/W	0
		备注: RN8211/RN8211B 不支持,不应改变		
		其复位值		
		TC0 模块使能,时钟门控,cm0 进入		
		deepsleep 同步关闭此时钟:		
4	TC0_EN		R/W	0
		0: 时钟停止,模块关闭		
		1: 时钟启动,模块使能	 	
		协处理器模块使能,时钟门控,cm0 进入 stop		
3		或 halt 同步关闭此时钟:		
	CPC_EN	0: 时钟停止,模块关闭	R/W	0
		1: 时钟启动,模块使能		
		备注: RN8211/RN8211B/RN8213 不支持,		
		不应改变其复位值	 	
2	EEPROM_EN	EEPROM 模块使能,时钟门控,cm0 进入	R/W	1
2		deepsleep 同步关闭此时钟:		J ** 1

	0: 时钟停止,模块关闭		
	1: 时钟启动,模块使能		
1:0	 只读, 不可写	R	0

模块使能 1 寄存器 MOD1_EN(0x20)

比特位	名称	描述	读/写标	复位值
31:16		只读,不可写	R	0
15:12		只读,不可写	R	0
		SAR 模块使能,apb 总线时钟门控:		
11	SAR_EN	0: 时钟停止	R/W	0
		1: 时钟启动		
		RTC apb 总线时钟门控, cm0 进入 deepsleep		
		同步关闭此时钟:		
10	RTC_EN	0: 时钟停止	R/W	1
		1: 时钟启动		
		建议客户不要关闭该时钟。		
		WDT apb 总线时钟门控,cm0 进入 deepsleep		
		同步关闭此时钟:		
9	WDT_EN	0: 时钟停止	R/W	1
	1	1: 时钟启动		
		建议客户不要关闭该时钟。		
	NVM_EN	全失压计算模块使能,时钟门控:		
8		0: 时钟停止	R/W	0
		1: 时钟启动		
		EMU 模块使能,时钟门控:		
7	EMU_EN	0: 时钟停止	R/W	0
		1: 时钟启动		
		LCD 模块使能,时钟门控:		
6	LCD_EN	0: 时钟停止,模块关闭	R/W	0
		1: 时钟启动, 模块使能		
		GPIO 模块使能清零,时钟门控,cm0 进入		
5	GPIO_EN	deepsleep 同步关闭此时钟:	R/W	0
]	Of IO_EN	0: 时钟停止,模块关闭	IX/ VV	0
		1: 时钟启动,模块使能		
		DMA apb 时钟门控, cm0 进入 deepsleep 同步		
		关闭此时钟:		
4	DMA_EN	0: 时钟停止,模块关闭	R/W	0
4	DIMY_DIM	1: 时钟启动, 模块使能	10/ 44	
		备注: RN8211/RN8211B/RN8213 不支持,不		
		应改变其复位值		
3		只读, 不可写	R	0
2		只读, 不可写	R	0

1	DMA1_EN	DMA1 模块使能,时钟门控: 0: 时钟停止,模块关闭 1: 时钟启动,模块使能 备注: RN8211/RN8211B/RN8213 不支持,不 应改变其复位值	R/W	0
0	DMA0_EN	DMA0 模块使能,时钟门控: 0: 时钟停止,模块关闭 1: 时钟启动,模块使能 备注: RN8211/RN8211B/RN8213 不支持,不 应改变其复位值	R/W	0

INTC 使能寄存器 INTC_EN(0x24)

比 特	名称	描述	读/写标	复位 值
31:16		只读, 不可写	R	0
15:9		只读, 不可写	R	0
8	INTC_EN	INTC apb 模块时钟门控: 0: 时钟停止 1: 时钟启动	R/W	0
7	INTC7_EN	INTC7 模块使能,时钟门控: 0: 时钟停止 1: 时钟启动	R/W	0
6	INTC6_EN	INTC6 模块使能,时钟门控: 0:时钟停止 1:时钟启动	R/W	0
5:3	保留	INTC5~INTC3 模块使能,未开放	R/W	0
2	INTC2_EN	INTC 2 模块使能,时钟门控: 0:时钟停止,模块关闭 1:时钟启动,模块使能	R/W	0
1	保留	NTC1 模块使能,未开放	R/W	0
0	INTC0_EN	INTC0 模块使能,时钟门控: 0:时钟停止,模块关闭 1:时钟启动,模块使能	R/W	0

KBI 使能寄存器 KBI_EN(0x28)

比 特位	名称	描述	读/写标 志	复位 值
31:9		只读, 不可写	R	0
8	KBI_EN	KBI apb 模块时钟门控: 0: 时钟停止 1: 时钟启动	R/W	0
7:2	保留	KBI7~KBI2 模块使能	R	0

1	KBI1_EN	KBI 1 模块使能,时钟门控:0:时钟停止,模块关闭1:时钟启动,模块使能	R/W	0
0	KBI0_EN	KBIO 模块使能,时钟门控:0:时钟停止,模块关闭1:时钟启动,模块使能	R/W	0

器件 ID 寄存器 CHIP_ID(0x2C)

比特位	名称	描述	读/写	复位值
31:24		只读, 不可写	R	0
15:0	CHIP_ID	芯片版本号: 821x	R	821x

系统控制密码寄存器 SYS_PS(0x30)

比特位	名称	描述	读/写	复位值
31:8		预留	R	0
7:0	SYS_PSW	当 SYS_PSW=0x82 时,0x00~0x28 寄存器可写; 当 SYS_PSW=其他值时,0x00~0x28 寄存器不可写; 该寄存器读出值为写入的值。 建议用户在写操作完成后马上关闭 写使能。	R/W	00

4 CPU 系统

4.1 概述

有三种方式(三个主设备)可以发起对 SoC 内置设备的访问:

- © Cortex-M0:
 - 指令访问和数据访问;
 - 可访问所有的从设备;
- ◎ 外置的 SWD 控制器(如 JLINK 或类似功能的设备):
 - 调试接口和资源访问;
 - 可访问所有的从设备;
- O DMA:
 - 数据访问;
 - 可访问所有的从设备

SoC 内置的从设备资源包括存储器(FLASH、EEPROM 和 SRAM)和各种外设(UART、定时器、看门 狗等)。

部分外设可发起中断请求,如 UART、定时器等。

部分外设可发起 DMA 请求,如 UART、LCD等。

图 4-1 SoC 设备物理互联架构

4.2 Cortex-M0 处理器

Cortex-M0 处理器是一个为嵌入式系统应用设计的 32 位处理器,具有如下特性:

- ◎ 简便易用的程序模型
- ◎ 高代码集成度, 具有 32 位的性能
- ◎ 工具和二进制代码与 Cortex-M 处理器系列向上兼容,方便升级和扩展
- ◎ 集成了极低功耗的睡眠模式
- ◎ 高效的代码执行允许处理器时钟更低,或者延长睡眠模式的时间
- ◎ 单周期 32 位硬件乘法器
- ◎ 零抖动中断处理
- ◎ 中断定时确定,中断处理效率高
- ◎ 支持中断/异常嵌套和抢占
- ◎ 支持 24 位系统节拍计数器
- ◎ 提供 4 个中断优先级
- ◎ 支持 2 个观察点, 4 个硬件断点
- ◎ 支持串行调试接口(SWD),实现处理器内部状态高度可视和可控

有关 Cortex-M0 的详细资料可参阅 ARM 文档。

4.3 存储映射

SoC 的存储映射请参考"图 4-2 SoC 地址空间映射"。

图 4-2 SoC 地址空间映射

0x40050000	
0x4004C000	DMA
0x40048000	LCD
0x40044000	INTC
0x40040000	保留空间
0x4003C000	RTC
0x40038000	ISO7816
0x40034000	系统控制
0x40030000	看门狗
0x4002C000	模拟外设
0x40028000	KBI
0x40024000	I2C
0x40020000	SPI
0x4001C000	UART5
0x40018000	保留空间
0x40014000	TC1
0x40010000	TC0
0x4000C000	UART3
0x40008000	UART2
0x40004000	UART1

	0xFFFFFFF		
Cortex-M0私有外设图	∑间 0xE0000000		
保留空间	0x52040000		
专用外设bitband空	间 0x52000000	协处理器	0x50008000
保留空间		保留空间	0x50008000
休田工I ^{II}	0x50008000	MMU	0x50004000
专用外设空间		GPIO	0x50000000
V/11/1 (X.Z.FV)	0×50000000		
保留空间	0x42280000	*各设备bitban 参考bitband	d地址的分配请 为能说明章节
低速外设bitband空	间 0x42000000	保留空间	0x20000000
In Such to	0x42000000	SRAM bitband	0x12020000 0x12000000
保留空间	0x4005000 0	保留空间	0x00004000
低速外设空间	1	SRAM	0x10000000
[版歷/] 极土间	0x40 <mark>000000</mark>	保留空间	0x08008000
保留空间		EEPROM	0x08000000
	0x20000000	保留空间	0x00030000
存储空间		FLASH	0x00000000
11 IND TT 11			

4.3.1 存储重映射

SoC 支持对 3 个存储器,包括 FLASH、EEPROM、SRAM,地址空间进行地址重新映射。存储重映射操作通过配置系统控制器中的寄存器 SYS_CTL 的 REMAP 位域完成。 外设的地址分配均不受存储重映射的影响。

表 4-1 存储重映射配置

存储器设备	REMAP	映射地址
FLASH	0	0x00000000~0x0001FFFF
	1	0x08000000~0x0801FFFF
	2	0x10000000~0x1001FFFF
	3	保留,不可用
EEPROM	0	0x08000000~0x08007FFF
	1	0x00000000~0x00007FFF
	2	0x08000000~0x08007FFF
	3	保留,不可用
SRAM	0	0x10000000~0x10003FFF
	1	0x10000000~0x10003FFF
	2	0x00000000~0x00003FFF
	3	保留,不可用

4.3.2 Bitband

系统支持三个地址空间的 bitband 功能:

- 。SRAM 空间:
 - 。0x10000000~0x10003FFF 映射到 0x12000000~0x1201FFFF
 - 。0x00000000~0x00003FFF 映射到 0x02000000~0x0201FFFF
- 。0x4000000~0x4004FFFF 映射到 0x42000000~0x423FFFFF;
- 。0x50000000~0x50007FFF 映射到 0x52000000~0x5203FFFF;

对 bitband 区的访问等效于对外设寄存器中特定位的访问。

地址为 x 的存储单元的第 y 位对应的 btband 地址:

Z = (X & 0xFC000000) + 0x020000000 + (Y << 2) + ((X << 5) & 0x03FFFFFF)

4.3.3 SRAM

SoC 内置最大 16KB SRAM:

- ◎ 运行频率与处理器同频:
- ◎ 支持8位、16位或32位数据随机访问,可用作代码或数据的存储;
- ◎ 支持 bitband 操作;
- ◎ 当 Cache 使能时,RN8215 最大只支持 14KBytes,RN8211/RN8211B 和 RN8213 仍然是 8KBytes。默认 Cache 使用。

4.3.4 EEPROM

SoC 内置最大 32KB EEPROM:

- ◎ 最少 100 万擦写次数;
- ◎ 数据最少保存时间 20 年;
- ◎ 采用页结构,页(page)大小为64字节,64页为一块(sector),完全支持字节操作;
- ◎ 支持页擦除、块擦除、字节编程, 具体的操作需要调用锐能微库函数 (nvm.a(IAR)/nvm.lib(KEIL))
- ◎ 低功耗应用时,客户需要调用锐能微库函数关闭或开启 EEPROM;

库函数(nvm.a(IAR)/nvm.lib(KEIL)提供的 EEPROM 操作函数接口如下:

uint8_t	eepromPageErase(uint32_t pg)
uint8_t	eepromSectorErase(uint32_t sec)
uint8_t	eepromProgram(uint32_t dst_addr, uint32_t src_addr, uint32_t len)
void	eepromStandby(void)
void	eepromWakeup(void)

详细的操作请见《RN821x RN831x 应用笔记 003-库函数使用说明》。

4.3.5 FLASH

SoC 内置最大 192KB FLASH:

- ◎ 最少 10 万擦写次数:
- ◎ 数据最少保存时间 20 年;
- ◎ 采用页结构,页(page)大小为 128 字节, 32 页为一块(sector);
- ◎ 支持页擦除、块擦除、页编程, 具体的操作需要调用锐能微库函数(nvm.a(IAR)/nvm.lib(KEIL))
- ◎ 低功耗应用时,FLASH 会自动关闭或者开启:、

库函数(nvm.a(IAR)/nvm.lib(KEIL)提供的 FLASH 操作函数接口如下:

uint8_t	flashPageErase(uint32_t pg)
uint8_t	flashSectorErase(uint32_t sec)
uint8_t	flashProgram(uint32_t dst_addr, uint32_t src_addr, uint32_t len)

详细的操作请见《RN821x_RN831x 应用笔记 003-库函数使用说明》。

4.4 中断分配

SoC 支持 32 个中断, 其中开放有 4 个外部中断, 分别为外部中断 0/2/6/7。 中断的详细信息, 如优先级屏蔽寄存器、嵌套向量中断控制器(NVIC)等请参考 ARM-M0 手册。 表 4-2 中断/异常向量表及其配置信息

异常编	中断编	向量名称	中断向量地址	优先级
号	号	,,,,	. ,,,,,,	<i>y</i> =
-	-	MSP 初始值	0x00	-
1	-	复位	0x04	-3,最高
2	-14	不可屏蔽中断	0x08	-2
3	-13	HARDFAULT 中断	0x0C	-1
4~10	-12~-6	保留	0x10~0x28	-
11	-5	系统调用	0x2C	可配置
12~13	-4~-3	保留	0x30~0x34	-
14	-2	PendSV	0x38	可配置
15	-1	系统节拍计数器	0x3C	可配置
16	0	保留	0x40	可配置
17	1	CMP1、CMP2 和 LVD	0x44	可配置
18	2	主电与电池电源切换	0x48	可配置
19	3	RTC	0x4C	可配置
20	4	计量 MMU	0x50	可配置
21	5	模拟外设	0x54	可配置
22	6	UART0	0x58	可配置
23	7	UART1	0x5C	可配置
24	8	UART2	0x60	可配置
25	9	UART3	0x64	可配置
26	10	SPI	0x68	可配置
27	11	I2C	0x6C	可配置
28	12	7816_0	0x70	可配置
29	13	7816_1	0x74	可配置
30	14	TC0	0x78	可配置
31	15	TC1	0x7C	可配置
32	16	保留	0x80	保留
33	17	UART5	0x84	可配置
34	18	看门狗	0x88	可配置
35	19	KBI	0x8C	可配置

36	20	LCD	0x90	可配置
37	21	协处理器	0x94	可配置
38	22	DMA	0x98	可配置
39	23	保留	0x9C	保留
40~47	24~32	外部中断 0~7	0xA0~0xBC	可配置

4.5 DMA

SoC 内置两通道 DMA 控制器,用于实现无需处理器干涉的外设和存储器之间的数据传送。

备注: RN8211/RN8211B 和 RN8213 不支持 DMA 功能

4.5.1 概述

DMA 具备如下特点:

- ◎ 支持两个独立的通道;
- ◎ 支持 8 位、16 位、32 位传送;
- ◎ 支持存储器到存储器、外设到存储器、存储器到外设传送;
- ◎ 支持递增或固定长度传送;
- ◎ 传送包长度可达 256;
- ◎ 传送帧长度可达 256;
- ◎ 支持包地址回绕;
- ◎ 支持帧地址回绕;
- ◎ 支持传送结束和错误中断;
- ◎ 支持单次和连续传送模式;
- ◎ 支持 32 个外设 DMA 请求;
- ◎ 支持已传送长度实时反馈;

4.5.2 DMA 通道分配

SoC 支持 32 个 DMA 申请通道,并为每个外设的 DMA 申请分配了固定的申请通道号。

DMA 工作时所用的 DMA 申请通道需通过 DMA 控制器中 C0CTL 寄存器或 C1CTL 寄存器的 TRGSEL 位域指定。

表 5-1 中断/异常向量表及其配置信息

通道号	TRGSEL 值	说明
0	0	软件模式。用于存储器之间的 DMA 传送
1	1	UART0 发送
2	2	UART0 接收
3	3	UART1 发送
4	4	UART1 接收
5	5	UART2 发送
6	6	UART2 接收
7	7	UART3 发送
8	8	UART3 接收
9	9	LCD 显示
10	10	SPI 发送
11	11	SPI 接收
12	12	I2C 发送
13	13	I2C 接收
14	14	ISO7816_0 发送

15	15	ISO7816_0 接收
16	16	ISO7816_1 发送
17	17	ISO7816_1 接收
18	18	TC0
19	19	TC1
20	20	保留
21	21	保留
22	22	RTC
23	23	SAR
24	24	保留
25	25	EMU
26	26	保留
27	27	保留
28	28	UART5 发送
29	29	UART5 接收
其他	其他	保留

4.6 寄存器描述

DMA 寄存器基址

模块名	物理地址	映射地址
DMA	0x4004C000	0x4004C000

寄存器偏移地址

寄存器名	地址偏移量	描述
DMA_IE	0x0	中断使能
DMA_STA	0x4	通道状态
DMA_C0CTL	0x10	通道0控制
DMA_C0SRC	0x14	通道0源地址
DMA_C0DST	0x18	通道0目的地址
DMA_C0LEN	0x1C	通道0已传送长度
DMA_C1CTL	0x20	通道1控制
DMA_C1SRC	0x24	通道1源地址
DMA_C1DST	0x28	通道1目的地址
DMA_C1LEN	0x2C	通道1已传送长度

中断使能寄存器 DMA_IE(0x0)

比特位	名称	描述	读/写标志	复位值
31:10		只读,不可写	R	0
9:8	C1EIE~C0EIE	通道 1/0 错误中断使能: 0: 禁止 1: 使能	R/W	0
7:6		只读, 不可写	R	0
5:4	C1FIE~C0FIE	通道 1/0 帧传送结束中断使能: 0: 禁止 1: 使能	R/W	0
3:2		只读,不可写	R	0
1:0	C1PIE~C0PIE	通道 1/0 包传送结束中断使能: 0: 禁止 1: 使能	R/W	0

通道状态寄存器 DMA_STA (0x4)

比特位	名称	描述	读/写标志	复 位 值
31:14		只读, 不可写	R	0
13:12	C1ERR~C0ERR	通道 1/0 错误标志: (写 1 清 0) 0: 传送过程未出错 1: 传送过程出错	R/W	0
11:10		只读, 不可写	R	0
9:8	C1FOK~C0FOK	通道 1/0 帧传送结束标志: (写 1 清 0) 0: 传送未结束 1: 传送已结束	R/W	0
7:6		只读, 不可写	R	0
5:4	C1POK~C0POK	通道 1/0 包传送结束标志: (写 1 清 0) 0: 传送未结束 1: 传送已结束	R/W	0
3:2		只读, 不可写	R	0
1:0	C1BUSY~C0BUSY	通道 1/0 忙状态: 0: 空闲 1: 忙	R	0

通道控制寄存器 DMA_C0CTL 和 DMA_C1CTL (0x10、0x20)

比特位	名称	描述	读/写标志	复 位 值
31: 24	FLEN	帧长度,长度为(FLEN+1)	R/W	0
23: 16	PLEN	包长度,长度为(PLEN+1)	R/W	0
15	TERM	终止: 0: 正常停止 1: 立即终止	R/W	0
14		只读,不可写	R	0
13	OSD	单次传送禁止: 0: 单次传送 1: 连续传送	R/W	0
12	TMODE	触发模式: 0: 一个单次 DMA 请求仅对一个数据传送(UART) 1: 一个单次 DMA 请求对应一包数据传送(LCD/MEM)	R/W	0
11: 7	TRGSEL	触发通道选择。参见"DMA通道分配"章节说明。	R/W	0
6:5	DMODE	目的地址模式: 00:保持不变 01:包回绕 10:帧回绕 11:保留(等效于帧回绕)	R/W	0
4:3	SMODE	源地址模式: 00: 保持不变 01: 包回绕 10: 帧回绕 11: 保留(等效于帧回绕)	R/W	0
2:1	SIZE	传送尺寸: 00:8位 01:16位 10:32位 11:保留(实际和10等效,即32位)	R/W	0
0	EN	通道使能:	R/W	0

Ī	0: 禁止 1: 使能	

通道源地址寄存器 DMA_C0SRC 和 DMA_C1SRC (0x14、0x24)

比特位	名称	描述	读/写标	复 位值
31: 0	SRC	源地址	R/W	0

通道目的地址寄存器 DMA_C0DST 和 DMA_C1DST (0x18、0x28)

比特位	名称	描述	读/写标志	复 位 值
31: 0	DST	目的地址	R/W	0

通道已传送长度寄存器 DMA_C0LEN 和 DMA_C1LEN (0x1C、0x2C)

比特位	名称	描述	读/写标	复 位 值
31: 16		只读, 不可写	R	0
15: 8	FCNT	帧已传送长度	R	0
7: 0	PCNT	包已传送长度	R	0

5 计量

5.1 主要特点

- 在 5000:1 动态范围内有功误差小于 0.1%;
- 支持零线(通道 B)和火线(通道 A)双通道有功功率、无功功率、视在功率、电流有效值同时测量;
- 支持零线(通道 B)和火线(通道 A)双通道有功电能、无功电能、视在电能同时计量;
- 提供采样通道增益及 offset 校正功能;
- 提供功率因数;
- RN8211 仅支持部分功能,见后文寄存器列表。

5.2 寄存器描述

BaseAddr 为: 0x50004000 表 5-1 计量部分寄存器列表

地址	名称	R/W	有效 字长	复位值	功能描述		
	校表参数和计量控制寄存器						
00H	EMUCON	R/W	3	000007h	计量控制寄存器,写保护		
04H	EMUCON2	R/W	3	000000h	计量控制寄存器 2,写保护		
08H	HFConst	R/W	2	1000h	脉冲频率寄存器,写保护		
0CH	PStart	R/W	2	0060h	有功起动功率设置,写保护		
10H	Qstart	R/W	2	0120h	无功起动功率设置,写保护		
14H	GPQA	R/W	2	0000h	通道A功率增益校正寄存器,写保护		

BH GPQB R.W 2 0000h 通道B功率翰益校正高存器,写保护 通道A相位校正高存器,有效位数9bit,校正刻度约为0.01度,写保护 20H PhsB R.W 2 0000h 正刻度约为0.01度,写保护 24H QphsCal R.W 2 0000h 近通B相位校正高存器,有效位数9bit,校正刻度约为0.01度,写保护 24H QphsCal R.W 2 0000h 近通A有边功率Offset校正寄存器,写保护 20H APOSB R.W 2 0000h 通道A五功功率Offset校正寄存器,写保护 30H RPOSA R.W 2 0000h 通道B五功功率Offset校正寄存器,写保护 34H RPOSB R.W 2 0000h 通道B五功功率Offset校正寄存器,写保护 40H URMSOS R.W 2 0000h 电流通道A有效值Offset补偿,写保护 44H LAGain R.W 2 0000h 电流通道A有效值Offset补偿,写保护 44H LAGain R.W 2 0000h 电流通道A自态设置,写保护;使用方法同目BGAIN、对有效值、功率、电能均起作用。 42H LAGain R.W 2 0000h BGAIN、对有效值、功率、电能均起析用。 42H LAGain R.W 2 0000h Ec流通道B查益设置,写保护;使用方法同目BGAIN、对有效值、功率、电能均起析用。 42H LAGain R.W 2 0000h BGAIN、对有效值、功率、电能均起析用。 42H LAGain R.W 3 000000h Ec流通道B查流offet校正,24bit,写保护 42H LADD R.W 3 000000h Ec流通道B直流offet校正,24bit,写保护 42H LAGD R.W 3 000000h Ec流通道B直流offet校正,24bit,写保护 42H 14D 14D R.W 3 000000h 42H 14D									
CH	18H	GPQB	R/W	2	0000h	通道B功率增益校正寄存器,写保护			
L: 20日 PhsB R/W 2 0000h 120	1CH	DhaA	D/W	2	000015	通道A相位校正寄存器,有效位数9bit,校			
20H	ТСП	FIISA	IX/ VV	2	OOOOII				
24H QphSCal R/W 2 0000h 无功相伦补偿 写保护 28H APOSA R/W 2 0000h 通道A有功功率Offset校正寄存器,写保护 2CH APOSB R/W 2 0000h 通道B有功功率Offset校正寄存器,写保护 30H RPOSB R/W 2 0000h 通道B有功功率Offset校正寄存器,写保护 3H RPOSB R/W 2 0000h 电流通道A有效值Offset补偿,写保护 3H IARMSOS R/W 2 0000h 电流通道A有效值Offset补偿,写保护 40H URMSOS R/W 2 0000h 电流通道A增益投票,写保护 4H IAGain R/W 2 0000h 电流通道路域路设置,写保护,使用方法向周BGAIN,对有效值、功率、电能均起、作用。 42H IAGain R/W 2 0000h 电流通道路域设置,写保护,使用方法向周BGAIN,对有效值、功率、电能均起作用。 42H IBGain R/W 2 0000h 电流通道路域设置,写保护,使用方法向据的工程度护 42H IBGCS R/W 3 00000h 电流通道A面流的标设置。与保护。 54H IBDCOS R/W 3 000000h 电流通道A面流的标设置。与现产。 5	20H	DheR	P/W/	2	0000h				
APOSA	2011	THSD	IX/ VV	2	OOOOII	正刻度约为0.01度,写保护			
2CH APOSB R/W 2 0000h 通道A于功功率Offset校正寄存器,写保护 34H RPOSB R/W 2 0000h 通道A于功功率Offset校正寄存器,写保护 34H RPOSB R/W 2 0000h 电流通道A有效值Offset补偿,写保护 38H IARMSOS R/W 2 0000h 电流通道A有效值Offset补偿,写保护 3CH IBRMSOS R/W 2 0000h 电流通道A有效值Offset补偿,写保护 0000h 电流通道A有效值Offset补偿,写保护 0000h 00000h 0000h 00000h 00000h 00000h 00000h 00000h 00000h 00000h 000000h 00000h 00000h 00000h 0000	24H	QphsCal	R/W	2	0000h				
30H	28H	APOSA	R/W	2	0000h	通道A有功功率Offset校正寄存器,写保护			
34H RPOSB R/W 2 0000h 通道B无功功率Offset校正寄存器,写保护 38H IARMSOS R/W 2 0000h 电流通道A有效值Offset补偿,写保护 3CH IBRMSOS R/W 2 0000h 电流通道A有效值Offset补偿,写保护 40H URMSOS R/W 2 0000h 同IARMSOS 和 IBRMSOS。对有效值、 44H IAGain R/W 2 0000h 电流通道有效值Offset补偿,写保护 48H IBGain R/W 2 0000h 电流通道Amaidadical 4CH Ugain R/W 2 0000h 电流通道B增益设置,写保护;使用方法同间BGAIN,对有效值、功率、电能均起作用。 4CH Ugain R/W 2 0000h 电流通道Amaidadical 写保护;使用方法同间BGAIN,对有效值、功率、电能均起作用。 5CH UBOOS R/W 3 000000h 电流通道Amaidadical 写保护; 5CH UBOOS R/W 3 000000h 电流通道Bc流ffet校正, 24bit, 写保护 5CH UADD R/W 3 000000h 电压通道自流fet校正, 24bit, 写保护 5CH UADD R/W 3 00000h 电压通道自流分t校	2CH	APOSB	R/W	2	0000h	通道B有功功率Offset校正寄存器,写保护			
ARMSOS R/W 2 0000h 电流通道A有效值Offset补偿,写保护 1 1 1 1 1 1 1 1 1	30H	RPOSA	R/W	2	0000h				
3CH IBRMSOS R/W 2 0000h 电流通道B有效值Offset补偿,写保护 电压通道有效值Offset补偿,写保护 电压通道有效值Offset补偿,写保护 电压通道有效值Offset补偿,写保护 同 IARMSOS 和 IBRMSOS。对有效值、视在功率、视在电能起作用。	34H	RPOSB	R/W	2	0000h	通道B无功功率Offset校正寄存器,写保护			
URMSOS R/W 2 0000h	38H	IARMSOS	R/W	2	0000h	电流通道A有效值Offset补偿,写保护			
URMSOS	3CH	IBRMSOS	R/W	2	0000h	电流通道B有效值Offset补偿,写保护			
Reduce						电压通道有效值Offset补偿,写保护			
电流通道A增益设置,写保护,使用方法	40H	URMSOS	R/W	2	0000h	同 IARMSOS 和 IBRMSOS。对有效值、			
A4H IAGain R/W 2 0000h 同IBGAIN,对有效值、功率、电能均起作用。						视在功率、视在电能起作用。			
作用。						电流通道A增益设置,写保护; 使用方法			
BBGain	44H	IAGain	R/W	2	0000h	同IBGAIN,对有效值、功率、电能均起			
R/W 2 0000h						作用。			
ACH Ugain R/W 2 0000h IBGAIN,对有效值、功率、电能均起作用。	48H	IBGain	R/W	2	0000h				
B						电压通道增益设置,写保护;使用方法同			
50H IADCOS R/W 3 000000h 电流通道A直流offet校正, 24bit, 写保护 54H IBDCOS R/W 3 000000h 电流通道B直流offet校正, 24bit, 写保护 58H UDCOS R/W 3 000000h 电压通道直流offet校正, 24bit, 写保护 5CH UADD R/W 3 000000h 电压通道偏置寄存器, 24bit, 用于视在电能有影响。对有功、无功、有效值无影响电压跌落阈值设置,写保护;当值为0时不使能该功能;当写入不为0的值后启动跌落检测,检测结果有中断报出。检测的平周期数由计量控制寄存器2中的usag_cfg[7:0]决定。 64H IAPEAK R/W 2 0000h 电流通道B峰值检测阈值设置,写保护。 68H IBPEAK R/W 2 0000h 电流通道B峰值检测阈值设置,写保护。 6CH UPEAK R/W 2 0000h 电压峰值检测阈值设置,写保护。 70H D2FP R/W 4 0000000h 电压峰值检测阈值设置,写保护。 70H D2FP R/W 4 0000000h 电压峰值检测阈值设置,写保护。 70H D2FP R/W 4 0000000h 通道B快速有功脉冲计数,写保护。 70H D2FP R/W 2 0000h 通道B快速行功脉冲计数,写保护。 70H D2FP R/W 2 0000h	4CH	Ugain	R/W	2	0000h	IBGAIN,对有效值、功率、电能均起作			
54H IBDCOS R/W 3 000000h 电流通道B直流offet校正, 24bit, 写保护 58H UDCOS R/W 3 000000h 电压通道自流offet校正, 24bit, 写保护 5CH UADD R/W 3 000000h 能计量时电压写入固定值,只对视在电能有影响。对有功、无功、有效值无影响 60H USAG R/W 2 0000h 值后启动跌落检测,检测结果有中断报出。检测的半周期数由计量控制寄存器2中的usag_cfg[7:0]决定。 64H IAPEAK R/W 2 0000h 电流通道A峰值检测阈值设置,写保护。 68H IBPEAK R/W 2 0000h 电流通道B峰值检测阈值设置,写保护。 6CH UPEAK R/W 2 0000h 电压峰值检测阈值设置,写保护。 70H D2FP R/W 4 00000000h 地重峰值检测阈值设置,写保护。 70H D2FP R/W 4 00000000h 通道B快速有功脉冲计数,写保护。 70H D2FP R/W 2 0000h 通道B快速有功脉冲计数,写保护。 70H D2FP R/W 2 0000h 通道B快速有功脉冲计数,写保护。 70H D2FP R/W 2 0000h 通道B快速有功脉冲计数,写保护。 8						用。			
58H UDCOS R/W 3 000000h 电压通道直流offet校正, 24bit, 写保护 5CH UADD R/W 3 000000h 能计量时电压写入固定值,只对视在电能有影响。对有功、无功、有效值无影响电压跌落阈值设置,写保护;当值为0时不使能该功能;当写入不为0的值后启动跌落检测,检测结果有中断报出。检测的半周期数由计量控制寄存器2中的usag_cfg[7:0]决定。 64H IAPEAK R/W 2 0000h 电流通道A峰值检测阈值设置,写保护。 68H IBPEAK R/W 2 0000h 电流通道B峰值检测阈值设置,写保护。 6CH UPEAK R/W 2 0000h 电压峰值检测阈值设置,写保护。 70H D2FP R/W 4 0000000h 电压峰值检测阈值设置,写保护。 70H D2FP R/W 4 00000000h 电压峰值检测阈值设置,写保护。 70H D2FP R/W 4 0000000h 通道B快速有功脉冲计数,写保护。 70H D2FP R/W 2 0000h 通道B快速有功脉冲计数,写保护。 70H D2FP R/W 2 0000h 通道B快速有功脉冲计数,写保护。 70H D2FP R/W 2 0000h 通道B快速无功脉冲计数,写保护。 70H D2FP R/W 2 0000h 通道B快速无功脉冲计数,写保护。	50H	IADCOS	R/W	3	000000h	电流通道A直流offet校正,24bit,写保护			
5CH UADD R/W 3 000000h 电压通道偏置寄存器, 24bit, 用于视在电能有影响。对有功、无功、有效值无影响。对有功、无功、有效值无影响。电压跌落阈值设置,写保护;当值为0时不使能该功能;当写入不为0的值后启动跌落检测,检测结果有中断报出。检测的半周期数由计量控制寄存器2中的usag_cfg[7:0]决定。 64H IAPEAK R/W 2 0000h 电流通道A峰值检测阈值设置,写保护。 68H IBPEAK R/W 2 0000h 电流通道B峰值检测阈值设置,写保护。 6CH UPEAK R/W 2 0000h 电压峰值检测阈值设置,写保护。 70H D2FP R/W 4 0000000h 功率值写入该寄存器,当 SADD=011 时,将功率值写入该寄存器,可以通过视在通道对写入的功率值进行积分计算电能。 *** 计量参数和状态寄存器 C0 PF2Cnt R/W 2 0000h 通道B快速有功脉冲计数,写保护。 C4 QF2Cnt R/W 2 0000h 通道B快速无功脉冲计数,写保护。 C8 SF2Cnt R/W 2 0000h 通道B快速无功脉冲计数,写保护。 100 PFCnt R/W 2 0000h 通道A快速视在脉冲计数,写保护。 104 QFCnt R/W 2 0000h 通道A快速视在脉冲计数,写保护。 105 IARMS R 3 00000h 通道A快速视在脉冲计数,写保护。 106 IARMS R 3 00000h 通道A快速视在脉冲计数,写像护。 107<	54H	IBDCOS	R/W	3	000000h	电流通道B直流offet校正,24bit,写保护			
SCH UADD R/W 3 000000h 能计量时电压写入固定值,只对视在电能有影响。对有功、无功、有效值无影响。电压跌落阈值设置,写保护;当值为0时不使能该功能;当写入不为0的值后启动跌落检测,检测结果有中断报出。检测的半周期数由计量控制寄存器2中的usag_cfg[7:0]决定。 64H IAPEAK R/W 2 0000h 电流通道A峰值检测阈值设置,写保护。 68H IBPEAK R/W 2 0000h 电流通道B峰值检测阈值设置,写保护。 6CH UPEAK R/W 2 0000h 电压峰值检测阈值设置,写保护。 70H D2FP R/W 4 0000000h 电压峰值检测阈值设置,写保护。 70H D2FP R/W 4 00000000h 可多有器,当 SADD=011 时,将功率值进行积分计算电能。 70H D2FP R/W 4 00000000h 通道B快速有功脉冲计数,写保护。 70H D2FP R/W 2 0000h 通道B快速有功脉冲计数,写保护。 70H D2FP R/W 2 0000h 通道B快速有功脉冲计数,写保护。 70H D2FP R/W 2 0000h 通道B快速行功脉冲计数,写保护。 70H D2FP R/W 2 0000h 通道B快速行功脉冲计数,写保护。 70H D2FP R/W 2 0000h 通道A快速行动脉冲计数,写保护。 <	58H	UDCOS	R/W	3	000000h	电压通道直流offet校正,24bit,写保护			
有影响。对有功、无功、有效值无影响 电压跌落阈值设置,写保护; 当值为0时不使能该功能;当写入不为0的 值后启动跌落检测,检测结果有中断报出。检测的半周期数由计量控制寄存器2中的usag_cfg[7:0]决定。 64H IAPEAK R/W 2 0000h 电流通道A峰值检测阈值设置,写保护。 68H IBPEAK R/W 2 0000h 电流通道B峰值检测阈值设置,写保护。 6CH UPEAK R/W 2 0000h 电压峰值检测阈值设置,写保护 6CH UPEAK R/W 2 0000h 电压峰值检测阈值设置,写保护 6定义功率寄存器,当 SADD=011 时,将						电压通道偏置寄存器,24bit,用于视在电			
60H USAG R/W 2 0000h 电压跌落阈值设置,写保护; 当值为0时不使能该功能;当写入不为0的 值后启动跌落检测,检测结果有中断报出。检测的半周期数由计量控制寄存器2中的usag_cfg[7:0]决定。 64H IAPEAK R/W 2 0000h 电流通道A峰值检测阈值设置,写保护。 68H IBPEAK R/W 2 0000h 电流通道B峰值检测阈值设置,写保护。 6CH UPEAK R/W 2 0000h 电压峰值检测阈值设置,写保护。 70H D2FP R/W 4 0000000h 可多有器,当 SADD=011 时,将功率值写入该寄存器,当 SADD=011 时,将功率值写入该寄存器,可以通过视在通道对写入的功率值进行积分计算电能。 C0 PF2Cnt R/W 2 0000h 通道B快速有功脉冲计数,写保护。 C4 QF2Cnt R/W 2 0000h 通道B快速无功脉冲计数,写保护。 C8 SF2Cnt R/W 2 0000h 通道B快速视在脉冲计数,写保护。 100 PFCnt R/W 2 0000h 通道A快速无功脉冲计数,写保护。 104 QFCnt R/W 2 0000h 通道A快速无功脉冲计数,写保护。 105 IARMS R 3 000000h 通道A电流的有效值,更新速度为13.67Hz。 62 IBRMS R 3 000000h 通道B电流的有效值,更新速度为13.67Hz。	5CH	UADD	R/W	3	000000h	能计量时电压写入固定值,只对视在电能			
60HUSAGR/W20000h当值为0时不使能该功能; 当写入不为0的 值后启动跌落检测,检测结果有中断报出。检测的半周期数由计量控制寄存器2中的usag_cfg[7:0]决定。64HIAPEAKR/W20000h电流通道A峰值检测阈值设置,写保护。68HIBPEAKR/W20000h电流通道B峰值检测阈值设置,写保护。6CHUPEAKR/W20000h电压峰值检测阈值设置,写保护。70HD2FPR/W400000000h电定义功率寄存器,当 SADD=011 时,将功率值写入该寄存器,可以通过视在通道对写入的功率值进行积分计算电能。C0PF2CntR/W20000h通道B快速有功脉冲计数,写保护。C4QF2CntR/W20000h通道B快速无功脉冲计数,写保护。C8SF2CntR/W20000h通道A快速无功脉冲计数,写保护。100PFCntR/W20000h通道A快速无功脉冲计数,写保护。104QFCntR/W20000h通道A快速无功脉冲计数,写保护。105IARMSR3000000h通道A电流的有效值,更新速度为13.67Hz。稳定时间约为300ms。110IBRMSR3000000h通道B电流的有效值,更新速度为13.67Hz。稳定时间约为300ms。						有影响。对有功、无功、有效值无影响			
60H USAG R/W 2 0000h 值后启动跌落检测,检测结果有中断报出。检测的半周期数由计量控制寄存器2中的usag_cfg[7:0]决定。 64H IAPEAK R/W 2 0000h 电流通道A峰值检测阈值设置,写保护。 68H IBPEAK R/W 2 0000h 电流通道B峰值检测阈值设置,写保护。 6CH UPEAK R/W 2 0000h 电压峰值检测阈值设置,写保护。 70H D2FP R/W 4 00000000h 功率值写入该寄存器,可以通过视在通道对写入的功率值进行积分计算电能。 C0 PF2Cnt R/W 2 0000h 通道B快速有功脉冲计数,写保护。 C4 QF2Cnt R/W 2 0000h 通道B快速无功脉冲计数,写保护。 C8 SF2Cnt R/W 2 0000h 通道A快速视在脉冲计数,写保护。 100 PFCnt R/W 2 0000h 通道A快速无功脉冲计数,写保护。 104 QFCnt R/W 2 0000h 通道A快速无功脉冲计数,写保护。 108 SFCnt R/W 2 0000h 通道A快速观在脉冲计数,写保护。 10C IARMS R 3 000000h 通道B电流的有效值,更新速度为13.67Hz。 110 IBRMS R 3 000000h 通道B电流的有效值,更新速度为13.67Hz。						电压跌落阈值设置,写保护;			
64H IAPEAK R/W 2 0000h 电流通道A峰值检测阈值设置,写保护。 68H IBPEAK R/W 2 0000h 电流通道A峰值检测阈值设置,写保护。 6CH UPEAK R/W 2 0000h 电压峰值检测阈值设置,写保护。 70H D2FP R/W 4 0000000h 电压峰值检测阈值设置,写保护。 70H D2FP R/W 4 00000000h 由定义功率寄存器,当 SADD=011 时,将 功率值写入该寄存器,可以通过视在通道 对写入的功率值进行积分计算电能。 C0 PF2Cnt R/W 2 0000h 通道B快速有功脉冲计数,写保护。 C4 QF2Cnt R/W 2 0000h 通道B快速无功脉冲计数,写保护。 C8 SF2Cnt R/W 2 0000h 通道A快速视在脉冲计数,写保护。 100 PFCnt R/W 2 0000h 通道A快速无功脉冲计数,写保护。 104 QFCnt R/W 2 0000h 通道A快速无功脉冲计数,写保护。 108 SFCnt R/W 2 0000h 通道A快速死在脉冲计数,写保护。 10C IARMS R 3 000000h 通道A电流的有效值,更新速度为13.67Hz。 110 IBRMS R 3 000000h 通道B电流的有效值,更新速度为13.67Hz。						当值为0时不使能该功能; 当写入不为0的			
Bin	60H	USAG	R/W	2	0000h	值后启动跌落检测,检测结果有中断报出			
64H IAPEAK R/W 2 0000h 电流通道A峰值检测阈值设置,写保护。 68H IBPEAK R/W 2 0000h 电流通道B峰值检测阈值设置,写保护。 6CH UPEAK R/W 2 0000h 电压峰值检测阈值设置,写保护。 70H D2FP R/W 2 0000h 由定义功率寄存器,当 SADD=011 时,将 功率值写入该寄存器,可以通过视在通道 对写入的功率值进行积分计算电能。 C0 PF2Cnt R/W 2 0000h 通道B快速有功脉冲计数,写保护。 C4 QF2Cnt R/W 2 0000h 通道B快速无功脉冲计数,写保护。 C8 SF2Cnt R/W 2 0000h 通道B快速视在脉冲计数,写保护。 100 PFCnt R/W 2 0000h 通道A快速不功脉冲计数,写保护。 104 QFCnt R/W 2 0000h 通道A快速无功脉冲计数,写保护。 108 SFCnt R/W 2 0000h 通道A快速视在脉冲计数,写保护。 10C IARMS R 3 000000h 通道A电流的有效值,更新速度为13.67Hz。 110 IBRMS R 3 000000h 通道B电流的有效值,更新速度为13.67Hz。						。检测的半周期数由计量控制寄存器2中			
68H IBPEAK R/W 2 0000h 电流通道B峰值检测阈值设置,写保护。 6CH UPEAK R/W 2 0000h 电压峰值检测阈值设置,写保护。 70H D2FP R/W 4 00000000h 卸率值写入该寄存器,可以通过视在通道对写入的功率值进行积分计算电能。 C0 PF2Cnt R/W 2 0000h 通道B快速有功脉冲计数,写保护。 C4 QF2Cnt R/W 2 0000h 通道B快速无功脉冲计数,写保护。 C8 SF2Cnt R/W 2 0000h 通道B快速视在脉冲计数,写保护。 100 PFCnt R/W 2 0000h 通道A快速无功脉冲计数,写保护。 104 QFCnt R/W 2 0000h 通道A快速无功脉冲计数,写保护。 108 SFCnt R/W 2 0000h 通道A快速况在脉冲计数,写保护。 10C IARMS R 3 000000h 通道A电流的有效值,更新速度为13.67Hz。 110 IBRMS R 3 000000h 通道B电流的有效值,更新速度为13.67Hz。						的usag_cfg[7:0]决定。			
6CHUPEAKR/W20000h电压峰值检测阈值设置,写保护 自定义功率寄存器,当 SADD=011 时,将 功率值写入该寄存器,可以通过视在通道 对写入的功率值进行积分计算电能。70HD2FPR/W400000000h功率值写入该寄存器,可以通过视在通道 	64H	IAPEAK	R/W	2	0000h	电流通道A峰值检测阈值设置,写保护。			
70H D2FP R/W 4 00000000h 自定义功率寄存器,当 SADD=011 时,将 功率值写入该寄存器,可以通过视在通道 对写入的功率值进行积分计算电能。 C0 PF2Cnt R/W 2 0000h 通道B快速有功脉冲计数,写保护。 C4 QF2Cnt R/W 2 0000h 通道B快速无功脉冲计数,写保护。 C8 SF2Cnt R/W 2 0000h 通道A快速不动脉冲计数,写保护。 100 PFCnt R/W 2 0000h 通道A快速无功脉冲计数,写保护。 104 QFCnt R/W 2 0000h 通道A快速无功脉冲计数,写保护。 108 SFCnt R/W 2 0000h 通道A快速视在脉冲计数,写保护。 10C IARMS R 3 000000h 通道A电流的有效值,更新速度为13.67Hz。 110 IBRMS R 3 000000h 通道B电流的有效值,更新速度为13.67Hz。	68H	IBPEAK	R/W	2	0000h	电流通道B峰值检测阈值设置,写保护。			
70H D2FP R/W 4 00000000h 功率值写入该寄存器,可以通过视在通道对写入的功率值进行积分计算电能。 C0 PF2Cnt R/W 2 0000h 通道B快速有功脉冲计数,写保护。 C4 QF2Cnt R/W 2 0000h 通道B快速无功脉冲计数,写保护。 C8 SF2Cnt R/W 2 0000h 通道B快速视在脉冲计数,写保护。 100 PFCnt R/W 2 0000h 通道A快速有功脉冲计数,写保护。 104 QFCnt R/W 2 0000h 通道A快速无功脉冲计数,写保护。 108 SFCnt R/W 2 0000h 通道A快速视在脉冲计数,写保护。 10C IARMS R 3 000000h 通道A电流的有效值,更新速度为13.67Hz。 110 IBRMS R 3 000000h 通道B电流的有效值,更新速度为13.67Hz	6CH	UPEAK	R/W	2	0000h	电压峰值检测阈值设置,写保护			
対写入的功率值进行积分计算电能。						自定义功率寄存器,当 SADD=011 时,将			
计量参数和状态寄存器 C0 PF2Cnt R/W 2 0000h 通道B快速有功脉冲计数,写保护。 C4 QF2Cnt R/W 2 0000h 通道B快速无功脉冲计数,写保护。 C8 SF2Cnt R/W 2 0000h 通道A快速有功脉冲计数,写保护。 100 PFCnt R/W 2 0000h 通道A快速无功脉冲计数,写保护。 104 QFCnt R/W 2 0000h 通道A快速无功脉冲计数,写保护。 108 SFCnt R/W 2 0000h 通道A快速视在脉冲计数,写保护。 10C IARMS R 3 000000h 通道A电流的有效值,更新速度为13.67Hz。 110 IBRMS R 3 000000h 通道B电流的有效值,更新速度为13.67Hz	70H	D2FP	R/W	4	00000000h	功率值写入该寄存器,可以通过视在通道			
C0 PF2Cnt R/W 2 0000h 通道B快速有功脉冲计数,写保护。 C4 QF2Cnt R/W 2 0000h 通道B快速无功脉冲计数,写保护。 C8 SF2Cnt R/W 2 0000h 通道B快速视在脉冲计数,写保护。 100 PFCnt R/W 2 0000h 通道A快速有功脉冲计数,写保护。 104 QFCnt R/W 2 0000h 通道A快速无功脉冲计数,写保护。 108 SFCnt R/W 2 0000h 通道A快速视在脉冲计数,写保护。 10C IARMS R 3 000000h 通道A电流的有效值,更新速度为13.67Hz。 110 IBRMS R 3 000000h 通道B电流的有效值,更新速度为13.67Hz						对写入的功率值进行积分计算电能。			
C4 QF2Cnt R/W 2 0000h 通道B快速无功脉冲计数,写保护。 C8 SF2Cnt R/W 2 0000h 通道B快速视在脉冲计数,写保护。 100 PFCnt R/W 2 0000h 通道A快速有功脉冲计数,写保护。 104 QFCnt R/W 2 0000h 通道A快速无功脉冲计数,写保护。 108 SFCnt R/W 2 0000h 通道A快速视在脉冲计数,写保护。 10C IARMS R 3 000000h 通道A电流的有效值,更新速度为13.67Hz。 110 IBRMS R 3 000000h 通道B电流的有效值,更新速度为13.67Hz。				ì	十量参数和状态				
C8 SF2Cnt R/W 2 0000h 通道B快速视在脉冲计数,写保护。 100 PFCnt R/W 2 0000h 通道A快速有功脉冲计数,写保护。 104 QFCnt R/W 2 0000h 通道A快速无功脉冲计数,写保护。 108 SFCnt R/W 2 0000h 通道A快速视在脉冲计数,写保护。 10C IARMS R 3 000000h 通道A电流的有效值,更新速度为13.67Hz。 110 IBRMS R 3 000000h 通道B电流的有效值,更新速度为13.67Hz	C0	PF2Cnt	R/W	2	0000h	通道B快速有功脉冲计数,写保护。			
100 PFCnt R/W 2 0000h 通道A快速有功脉冲计数,写保护。 104 QFCnt R/W 2 0000h 通道A快速无功脉冲计数,写保护。 108 SFCnt R/W 2 0000h 通道A快速视在脉冲计数,写保护。 10C IARMS R 3 000000h 通道A电流的有效值,更新速度为13.67Hz。 110 IBRMS R 3 000000h 通道B电流的有效值,更新速度为13.67Hz	C4	QF2Cnt	R/W	2	0000h	通道B快速无功脉冲计数,写保护。			
104 QFCnt R/W 2 0000h 通道A快速无功脉冲计数,写保护。 108 SFCnt R/W 2 0000h 通道A快速视在脉冲计数,写保护。 10C IARMS R 3 000000h 通道A电流的有效值,更新速度为13.67Hz。 110 IBRMS R 3 000000h 通道B电流的有效值,更新速度为13.67Hz	C8	SF2Cnt	R/W	2	0000h	通道B快速视在脉冲计数,写保护。			
108 SFCnt R/W 2 0000h 通道A快速视在脉冲计数,写保护。 10C IARMS R 3 000000h 通道A电流的有效值,更新速度为13.67Hz。 110 IBRMS R 3 000000h 通道B电流的有效值,更新速度为13.67Hz	100	PFCnt	R/W	2	0000h	通道A快速有功脉冲计数,写保护。			
108 SFCnt R/W 2 0000h 通道A快速视在脉冲计数,写保护。 10C IARMS R 3 000000h 通道A电流的有效值,更新速度为13.67Hz。 110 IBRMS R 3 000000h 通道B电流的有效值,更新速度为13.67Hz	104	QFCnt	R/W	2	0000h	通道A快速无功脉冲计数,写保护。			
10C IARMS R 3 000000h 通道A电流的有效值,更新速度为13.67Hz。稳定时间约为300ms。 110 IBRMS R 3 000000h 通道B电流的有效值,更新速度为13.67Hz		~	R/W	2	0000h				
10C IARMS R 3 000000h 。稳定时间约为300ms。 110 IBRMS R 3 000000h 通道B电流的有效值,更新速度为13.67Hz			Ъ						
110 IBRMS R 3 000000h 通道B电流的有效值,更新速度为13.67Hz	10C	IARMS	R	3	000000h				
1110 IBRMS R 13 1000000h	110	IDD1.40	Ъ		0000001				
	110	IRKWS	1S R	3	UUUUUUh				

114	URMS	R	3	000000h	电压有效值,更新速度为13.67Hz。稳定
118	Ufreq	R	2	0000h	时间约为300ms。 电压频率
11C	PowerPA	R	4	00000000000000000000000000000000000000	有功功率A,更新速度为1.78Hz
120	PowerPB	R	4	000000001 000000000h	有功功率B,更新速度为1.78Hz
120	Towell B	K	7		无功功率A,更新速度为13.67Hz。稳定时
124	PowerQA	R	4	00000000h	间约为300ms。
					无功功率B,更新速度为13.67Hz。稳定时
128	PowerQB	R	4	00000000h	间约为300ms。
					视在功率A,更新速度为13.67Hz。稳定时
12C	PowerSA	R	4	00000000h	间约为300ms。
4.5.0			1		视在功率B,更新速度为13.67Hz。稳定时
130	PowerSB	R	4	00000000h	间约为300ms。
					有功能量,读后清零或者不清零可配置,
134	EnergyP	R	3	000000h	默认为读后清零。
120	T D2	_		0000001	通道B有功能量,读后清零或者不清零可
138	EnergyP2	R	3	000000h	配置,默认为读后清零。
120	Б 6	_		0000001	无功能量,读后清零或者不清零可配置,
13C	EnergyQ	R	3	000000h	默认为读后清零。
1.40	F 02	D	2	0000001	通道B无功能量,读后清零或者不清零可
140	EnergyQ2	R	3	000000h	配置,默认为读后清零。
1 4 4	F G	D	2	0000001	视在能量,读后清零或者不清零可配置,
144	EnergyS	R	3	000000h	默认为读后清零。
148	PFA	R	3	000000h	24位,高位是符号位,通道A功率因数。
14C	PFB	R	3	000000h	24位, 高位是符号位, 通道B功率因数。
150	ANGLEA	Ъ	2	00001-	通道A与电压夹角, 计算方法:
150	ANGLEA	R	2	0000h	(ANGLEA/2^15)*360度
154	ANGLEB	R	2	0000h	通 道 B 与 电 压 夹 角 计 算 方 法:
134	ANGLED	K	2	OOOOII	(ANGLEB/2^15)*360度
158	EMUStatus	R	4	00FFEE78h	计量状态及校验和寄存器
15C	SPL_IA	R	3	000000h	电流通道A采样值,更新速率是7.2KHz
160	SPL_IB	R	3	000000h	电流通道B采样值,更新速率是7.2KHz
164	SPL_U	R	3	000000h	电压通道采样值,更新速率是7.2KHz
168	PowerPA2	R	4	00000000h	有功功率A,更新速度为13.67Hz。稳定时
100	1 OWCH A2	K	7	000000001	间约为300ms。
16C	PowerPB2	R	4	00000000h	有功功率B,更新速度为13.67Hz。稳定时
100	1 OWCH B2	K	7	000000001	间约为300ms。
170	EnergyS2	R	3	000000h	通道B视在能量,读后清零或者不清零可
					配置,默认为读后清零。
174	SPL_PA	R	3	000000h	A通道瞬时有功功率,更新速率是7.2KHz
178	SPL_PB	R	3	000000h	B通道瞬时有功功率,更新速率是7.2KHz
17C	SPL_QA	R	3	000000h	A通道瞬时无功功率,更新速率是7.2KHz
180	SPL_QB	R	3	000000h	B通道瞬时无功功率,更新速率是7.2KHz
					32位真随机数产生寄存器,只读;
184	TRNG	R	4	00000000h	其中bit11~bit0为TRNG0,
					Bit31~bit12为保留位;用户可使用TRNG0.
188	EMUStatus	R	4	00000000h	计量状态寄存器2
	2				
	1		<u> </u>	L 中断及DMA	
				· F 四//XDIVIA1	引作前

18C	IE	R/W	3	000000h	中断允许寄存器,写保护
190	IF	R/W	3	000000h	中断标志寄存器,写1清零
194	DMAEN	R/W	3	000000h	DMA允许寄存器,定义同中断允许寄存
					器,写保护
				状态寄存	器
198	Rdata	R	4		上一次读出的数据
19C	Wdata	R	4		上一次写入的数据

RN8211 支持的寄存器列表如下:

不应操作不支持的寄存器。

1 /24/11 1 /21/11/11/11 111/1	
00H	EMUCONbit13/12/9/7/6/5/4/3/0
08H	HFConst
0СН	PStart
14H	GPQA
1CH	PhsA
28H	APOSA
38H	IARMSOS
40H	URMSOS
100	PFCnt
10C	IARMS
114	URMS
118	Ufreq
11C	PowerPA
134	EnergyP
158	EMUStatusbit30/27/25:0
18C	IEbit12/11/3/1/0
190	IF
198	Rdata
19C	Wdata

计量控制寄存器 EMUCON (0x00)

(RN8211 仅支持 bit13/12/9/7/6/5/4/3/0)

Energy N	Energy Measure Control Register (EMUCON) Addr:00H Default Value: 0007H					
位	位名称	功能描述				
31: 21		只读,不可写				
20	S2RUN	S2RUN=1, 使能视在电能寄存器 2(EnergyS2)累加;				
20	SZKUN	S2RUN=0,关闭视在电能寄存器 2(EnergyS2)累加。默认状态为 1。				
19	Q2RUN	Q2RUN=1, 使能无功电能寄存器 2(EnergyQ2)累加;				
19	QZKUN	Q2RUN=0, 关闭无功电能寄存器 2(EnergyQ2)累加。默认状态为 1。				
18	P2RUN	P2RUN=1,使能有功电能寄存器 2(EnergyP2)累加;				
16	FZRUN	P2RUN=0, 关闭有功电能寄存器 2(EnergyP2)累加。默认状态为 1。				
17 CF3 CFG =0: 原 S		=0: 原 SF 引脚=SF1;				
1 /	CF3_CFG	=1: 原 SF 引脚=SF2;				
16	U start	=0: 视在电能计算时电压通道参与计算;				
10	O_start	=1: 视在电能计算时电压通道不参与计算,只有 UADD 参与;				

		无功能量累加	加方式选择:		
		QMOD1	QMOD0	累加功率 Qm	
		0	0	Qm=DataQ,正反向功率都参与累加,	
15 14	OMOD[1 0]			负功率有 REVQ 符号指示。	
15-14	QMOD[1:0]	0	1	只累加正向功率	
		1	0	Qm= DataQ , 正反向功率都参与累加,	
				无负功率符号指示。	
		1	1	Qm=DataQ(保留)	
13-12	PMOD[1:0]	有功能量累加	加方式选择:	同上表无功能量累加方式。	
		ZX 输出初始	ì值为 0,根排	居 ZXD1 和 ZXD0 的配置输出不同的波形:	
11	ZXD1	ZXD1=0,表	そ 示仅在选择	的过零点处 ZX 输出发生变化;	
		ZXD1=1,表	示在正向和	负向过零点处 ZX 输出均发生变化。	
10	ZXD0	ZXD0=0,表	示选择正向	过零点作为过零检测信号;	
10	ZADO	ZXD0=1,表	示选择负向	过零点作为过零检测信号。	
9	Energy_clr	=0:所有电能寄存器读后清零;			
	Dhergy_en	=1:所有电能寄存器读后不清零;			
8	HPFIBOFF			通道数字高通滤波器	
	111111111111111111111111111111111111111	HPFIBOFF=1: 关闭 IB 通道数字高通滤波器			
7	HPFIAOFF		× • · · · =	通道数字高通滤波器	
		•		通道数字高通滤波器	
6	HPFUOFF		: 使能 U 通道数字高通滤波器		
				道数字高通滤波器	
_			-	命出加速模块的控制位,CFSUEN=1,使能脉	
5	CFSUEN			速率提高 2^(CFSU[1:0]+1)倍 CFSUEN=0,	
1.2	GEGYVIA 63	关闭脉冲加达 注 X TR GPGY			
4,3	CFSU[1:0]	-		月。见 CFSUEN 说明。	
2	SRUN			寄存器 1(EnergyS)累加;	
		-		寄存器 1(EnergyS)累加。默认状态为 1。	
1	QRUN	_		寄存器 1(EnergyQ)累加;	
		1		寄存器 1(EnergyQ)累加。默认状态为 1。	
0	PRUN			寄存器 1(EnergyP)累加;	
		PRUN=0, F	7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7	寄存器 1(EnergyP)累加。默认状态为 1。	

计量控制寄存器 2 EMUCON2 (0x04)

Energy Measure Control Register 2(EMUCON2) Addr:04H Default Value: 0000H					
位	位名称	功能描述			
31: 24		只读, 不可写			
		通道 A 视在电能通道功率输入选择 SADD[2:0]:			
		= 000 S=S1 或 S2, 由 CHNSEL 决定;			
23:21	CADD[3:0]	= 001 S=S2			
25.21	SADD[2:0]	= 010 S=Q2			
		= 011 S =自定义功率			
		= 其他 保留			

		通道 A 无功电能通道功率输入选择 QADD[2:0]:			
	QADD[2:0]	=000 Q=Q1 或 Q2, 由 CHNSEL 决定;			
20:18		=001 Q=P1;			
		=010 Q=P2;			
		=其他 保留			
		通道 A 有功电能通道功率输入选择 PADD[2:0]:			
		= 000 P=P1 或 P2,由 CHNSEL 决定;			
17:15	PADD[2:0]	=001 P=P1			
		=010 P=P2			
		=其他 保留			
		配置 P51/QF 引脚的电能脉冲输出选择			
14:13	CF2_CFG[1:0]	=00 原 QF 引脚=QF1 =01 原 QF 引脚=QF2			
		=10 原 QF 引脚=SF1 =11 原 QF 引脚=SF2			
	CF1_CFG[1:0]	配置 P50/PF 引脚的电能脉冲输出选择			
		=00 原 PF 引脚=PF1 =01 原 PF 引脚=PF2			
12:11		=10 原 PF 引脚=QF1 =11 元 PF 引脚=QF2			
12.11		备注: PF1/QF1/SF1 分别对应电能寄存器 EnergyP/ EnergyQ/			
		EnergyS; PF2/QF2/SF2 分别对应电能寄存器 EnergyP2/ EnergyQ2/			
		EnergyS2;			
10:3	usag_cfg[7:0]	Usag_cfg[7:0]用于配置电压跌落检测的半周期数。			
2	u_dc_en	U_dc_en、ib_dc_en、ia_dc_en 写 1 使能通道直流 offset 自动校正,			
1	ib_dc_en	校正完成后自动清零,校正值自动写入直流 offset 校正寄存器			
0	ia_dc_en	(0x50~0x58H),校正时间约为 1.2S。			

校表寄存器说明 (0x08H~0x70H)

地址偏移	名称	说明		
08H	HFConst	HFConst是16位无符号数,做比较时,将其与快速脉冲计数寄存器的绝对值的2倍做比较,如果大于等于		
0011	TH Const	HFConst的值,那么就会有对应的PF/QF脉冲输出		
0СН	PStart	启动阈值可由PStart和QStart寄存器配置。它们是16位		
		无符号数,做比较时,将其分别与PowerP和PowerQ(
10H	Qstart	为32bit有符号数)的高24位的绝对值进行比较,以作起 动判断。		
14H	GPQA 用于通道 A 的有功/无功功率及电能的增			
	GPQB	正。GPQB用于通道B的有功/无功功率及电能的增益		
		校正。二进制补码格式,最高位为符号位。		
18H		校正公式为: P1=P0(1+GPQS)		
		Q1=Q0(1+GPQS)		
		其中GPQS为增益校正寄存器的归一化值。		
1CH	PhsA	有符号二进制补码,Bit0~bit8有效,其中bit8为符号		
20H	PhsB	位,分辨度为0.00976度。		
24H	QphsCal	无功相位补偿寄存器用于 U 通道 90°移相滤波器在		
۷411	Qpriscar	无功计算中的相位补偿。无功相位补偿寄存器采用十		

		六位二进制补码形式,最高位为符号位。
		校正公式: Q2 = Q1-QPhs*P1
		其中P1为有功功率,Q1为补偿前的无功功率,Q2为补
		偿后的无功功率。
28H	APOSA	功率 OFFSET 校正适合小信号的精度校正。二进制补
2CH	APOSB	——— 码格式, 16 位有效位数,最高位为符号位。
30H	RPOSA	APOSA寄存器为通道A有功功率Offset值。APOSB寄
		存器为通道B有功功率Offset值。RPOSA寄存器为通道
34H	RPOSB	A无功功率Offset值。RPOSB寄存器为通道B无功功率
		Offset值。
38H	IARMSOS	有效值 Offset 校正寄存器用于电流有效值小信号精度
3CH	IBRMSOS	的校正。16位有效位数,二进制补码格式,最高位为
40H	URMSOS	符号位。
44H	IAGain	
48H	IBGain	三路ADC通道增益校正,16位二进制补码格式;
4CH	Ugain	
50H	IADCOS	电流通道A直流offet校正,24bit,写保护
54H	IBDCOS	电流通道B直流offet校正,24bit,写保护
		电压通道直流offet校正,24bit,写保护
58H	UDCOS	直流 offset 校正寄存器的最小刻度是有效值寄存器的
		1.414 倍;
		电压通道偏置寄存器,24bit,用于视在电能计量时电
5CH	UADD	压写入固定值,只对视在电能有影响。对有功、无功
3011		、有效值无影响。
		UADD的最小刻度是有效值寄存器的1.414倍;
		电压跌落阈值设置,写保护;
60H	USAG	当值为0时不使能该功能;当写入不为0的值后启动跌
		落检测,检测结果有中断报出。检测的半周期数由计
		量控制寄存器2中的usag_cfg[7:0]决定。
64H	IAPEAK	电流通道A峰值检测阈值设置,写保护。
68H	IBPEAK	电流通道B峰值检测阈值设置,写保护。
		电压峰值检测阈值设置,写保护
6CH	UPEAK	峰值检测阈值为 16 位数,与 24 位波形采样值的高 16
		位进行比较。
		自定义功率寄存器,当 SADD=011 时,将功率值写入
	D2FP	该寄存器,可以通过视在通道对写入的功率值进行积
70H		分计算电能。
		该寄存器为32位,最小刻度与有功功率、无功功率等
		功率寄存器一致。
	L.	,

计量状态寄存器 EMUStatus(0x158H)

备注: RN8211 仅支持 bit30/27/25:0, 其他位无意义。

此寄存器包括计量状态寄存器和校验和寄存器两部分。

		* * * * * * * * * * * * * * * * * * * *	• • • • • • • • • • • • • • • • • • • •			
EMU STATUS Register (EMUStatus)			Address:	0x158 h	只读寄存器	
位	位名称			功能描	述	
31	NoSld	当视在功率小	F起动功率	时,NoSlo	1 被置为 1: =	当视在功率大于/等

		于起动功率时 NoSLd 清为 0。		
20	WREN	写使能标志: =1 允许写入带写保护的寄存器;		
30		=0 不允许写入带写保护的寄存器。只读,不可写。		
		电流通道选择状态标识位。只读,不可写。		
20	CHNSEL	=1 表示当前用于计算有功/无功电能的电流通道为通道 B;		
29	CHISEL	=0表示当前用于计算有功/无功电能的电流通道为通道 A。		
		默认状态下该位为 0,标识选择通道 A 用于电能计量。		
28	Nogld	当无功功率小于起动功率时, NoPld 被置为 1; 当有功功率大于/等		
2.8	Noqld	于起动功率时 NoPLd 清为 0。		
27	Nopld	当有功功率小于起动功率时, NoPld 被置为 1; 当有功功率大于/等		
21		于起动功率时 NoPLd 清为 0。		
26	REVQ	反向无功功率指示标识信号,当检测到负无功功率时,该信号为1。		
20		当再次检测到正无功功率时,该信号为0。		
25	REVP	反向有功功率指示标识信号, 当检测到负有功功率时, 该信号为 1。		
23		当再次检测到正有功功率时,该信号为0。		
		校表数据校验计算状态寄存器。		
24	ChksumBusy	ChksumBusy =0,表示校表数据校验和计算已经完成。校验值可用。		
		ChksumBusy =1,表示校表数据校验和计算未完成。校验值不可用。		
23:0	Chksum	校验和输出		

EMUStatus [23:0]存放校表参数配置寄存器的 24 位校验和, CPU 可以检测这个寄存器来监控校表数据是否错乱。

校验和的算法为三字节累加后取反。对于双字节寄存器,将其扩展为双字节后累加,扩展的字节为00H。根据默认值计算得到的校验和为0xFFEE78。

以下三种情况下,重新开始一次校验和计算:系统复位、00H~6CH 某个寄存器发生写操作、EMUStatus 寄存器发生读操作。一次校验和计算需要 32 个 cpu 时钟。

计量状态寄存器 2 EMUStatus2(0x188H)

EMU S	TATUS Register	(EMUStatus) Address: 0x188h 只读寄存器		
位	位名称	功能描述		
31:14		只读,不可写		
13	Nos2ld	当视在功率 2 小于起动功率时, NoS2ld 被置为 1; 当视在功率 2 大		
13	NOSZIU	于/等于起动功率时 NoS2Ld 清为 0。只读		
12	Nog2ld	当无功功率 2 小于起动功率时, Noq2ld 被置为 1; 当无功功率 2 大		
12	Noq2ld	于/等于起动功率时 Noq2Ld 清为 0。只读		
11	Nop2ld	当有功功率 2 小于起动功率时,Nop2ld 被置为 1;当有功功率 2 大		
11		于/等于起动功率时 Nop2Ld 清为 0。只读		
10	Revq2	无功功率 2 反向指示信号,当检测到负无功功率时,该信号为 1。		
10		当再次检测到正有功功率时,该信号为0。只读		
9	Revp2	有功功率 2 反向指示信号,当检测到负有功功率时,该信号为 1。		
9		当再次检测到正有功功率时,该信号为0。只读		
8	Vref_flag	VREF 标志位,=1: VREF 正常;=0: VREF 低于跌落阈值;只读;		
7	I do floa	计量 LDO 标志位, =1: 计量 LDO 正常; =0: 计量 LDO 低于跌落		
	Ldo_flag	阈值;只读		

6	NoSld	当视在功率小于起动功率时, NoSld 被置为 1; 当视在功率大于/等
O	Nosiu	于起动功率时 NoSLd 清为 0。
5	WREN	写使能标志: =1 允许写入带写保护的寄存器;
3	WKEN	=0 不允许写入带写保护的寄存器。只读,不可写。
		电流通道选择状态标识位。只读,不可写。
4	CHNSEL	=1 表示当前用于计算有功/无功电能的电流通道为通道 B;
4	CHNSEL	=0 表示当前用于计算有功/无功电能的电流通道为通道 A。
		默认状态下该位为 0,标识选择通道 A 用于电能计量。
3	Noqld	当无功功率小于起动功率时, NoPld 被置为 1; 当有功功率大于/等
3		于起动功率时 NoPLd 清为 0。
2	Nopld	当有功功率小于起动功率时, NoPld 被置为 1; 当有功功率大于/等
2		于起动功率时 NoPLd 清为 0。
1	DEVO	反向无功功率指示标识信号,当检测到负无功功率时,该信号为1。
1	REVQ	当再次检测到正无功功率时,该信号为0。
0	DEVD	反向有功功率指示标识信号,当检测到负有功功率时,该信号为1。
0	REVP	当再次检测到正有功功率时,该信号为0。

中断配置和允许寄存器 IE(0x18CH)

当中断允许位配置为 1 且中断产生时, IRQ_N 引脚输出低电平。写保护寄存器,配置该寄存器前需将写使能打开。

RN8211 仅支持 bit12/11/3/1/0。

Interr	Interrupt Enable Register (IE) Address: 0x18CH 默认值: 0x000000H 可读可含						
位	位名称	功能描述					
其他		只读,不可写					
23	I2ZXIE	I2ZXIE=0:关闭电流通道 2 过零中断;					
		I2ZXIE=1:开启电流通道 2 过零中断;					
22	I1ZXIE	I1ZXIE=0:关闭电流通道 1 过零中断;					
		I1ZXIE=1:开启电流通道 1 过零中断;					
21	UZXIE	UZXIE=0:关闭电压通道过零中断;					
		UZXIE=1:开启电压通道过零中断;					
		当外部输入相同时,I2ZX、I1ZX、UZX 三个过零中断是同相位的。					
20	S2EOIE	S2EOIE=0: 关闭视在电能寄存器 2 溢出中断;					
		S2EOIE=1: 使能视在电能寄存器 2 溢出中断。					
19	Q2EOIE	Q2EOIE=0: 关闭无功电能寄存器 2 溢出中断;					
		Q2EOIE=1: 使能无功电能寄存器 2 溢出中断。					
18	P2EOIE	P2EOIE=0: 关闭有功电能寄存器 2 溢出中断;					
		P2EOIE=1: 使能有功电能寄存器 2 溢出中断。					
14	SF2IE	SF2IE=0: 关闭 SF2 中断; SF2IE=1: 打开 SF2 中断。					
16	QF2IE	QF2IE=0: 关闭 QF2 中断; QF2IE=1: 打开 QF2 中断。					
15	PF2IE	PF2IE=0: 关闭 PF2 中断; PF2IE=1: 打开 PF2 中断。					
14	SFIE	SFIE=0: 关闭 SF 中断; SFIE=1: 打开 SF 中断。					
13	SEOIE	SEOIE=0: 关闭视在电能寄存器溢出中断;					

		SEOIE=1: 使能视在电能寄存器溢出中断。			
12	VREFIE	计量参考基准 VREF 跌落中断使能,=1 使能,=0 不使能;			
11	LDOIE	计量 LDO33 跌落中断使能,=1 使能,=0 不使能;			
10	SPLIE	ADC 采样中断使能,=1 使能,=0 不使能;			
9	USAGIE	U 通道跌落中断使能,=1 使能,=0 不使能;			
8	UpeakIE	U 通道过载中断使能,=1 使能,=0 不使能;			
7	IApeakIE	IA 通道过载中断使能,=1 使能,=0 不使能;			
6	IBpeakIE	E IB 通道过载中断使能,=1 使能,=0 不使能;			
5	ZXIE	ZXIE=0: 关闭过零中断; ZXIE=1: 使能过零中断。该过零信号与 UZX(bit21)			
3	ZAIE	过零都来自电压通道 ADC,但是相位有延迟。			
4	QEOIE	QEOIE=0: 关闭无功电能寄存器溢出中断;			
4	QLOID	QEOIE=1: 使能无功电能寄存器溢出中断。			
3	PEOIE	PEOIE=0: 关闭有功电能寄存器溢出中断;			
3	PEUIE	PEOIE=1: 使能有功电能寄存器溢出中断。			
2	QFIE	QFIE=0:关闭QF中断;QFIE=1:打开QF中断。			
1	PFIE	PFIE=0: 关闭PF中断; PFIE=1: 打开PF中断。			
		DUPDIE=0: 关闭数据更新中断; DUPDIE=1: 使能数据更新中断。			
0	DUPDIE	数据 PowerPA/PowerPB、PowerQ、IARMS/IBRMS、URMS 寄存器刷新的			
		频率为 13.67HZ,当上述数据更新时,IRQ_N 引脚输出低电平。			

中断状态寄存器 IF(0x190H)

备注: RN8211 仅支持 bit12/11/3/1/0。

Interr	Interrupt Flag Register (IF) Address: 0x190H R/W					
位	位名称	功能描述				
其他	保留	保留				
23	I2ZXIF	I2ZXIF=0:电流通道 2 过零中断未发生;				
		I2ZXIF=1:电流通道 2 过零中断发生;				
22	I1ZXIF	I1ZXIF=0:电流通道 1 过零中断未发生;				
		I1ZXIF=1:电流通道 1 过零中断发生;				
21	UZXIF	UZXIF=0:电压通道过零中断未发生;				
		UZXIF=1:电压通道过零中断发生;				
20	S2EOIF	S2EOIF=0: 未发生视在电能寄存器 2 溢出事件;				
20		S2EOIF=1: 发生视在电能寄存器 2 溢出事件。				
19	Q2EOIF	Q2EOIF=0: 未发生无功电能寄存器 2 溢出事件;				
1)		Q2EOIF=1: 发生无功电能寄存器 2 溢出事件。				
18	P2EOIF	P2EOIF=0: 未发生有功电能寄存器 2 溢出事件;				
10	1 2LOII	P2EOIF=1: 发生有功电能寄存器 2 溢出事件。				
17	SF2IF	SF2IF =0: 未发生 SF2 脉冲输出事件;				
17	51 211	SF2IF =1: 发生 SF2 脉冲输出事件。				
16	QF2IF	QF2IF =0: 未发生 QF2 脉冲输出事件;				
10	QI'ZII'	QF2IF =1: 发生 QF2 脉冲输出事件。				
15	PF2IF	SF2IF =0: 未发生 PF2 脉冲输出事件;				

		SF2IF =1: 发生 PF2 脉冲输出事件。		
14	SFIF	SFIF =0: 未发生 SF 脉冲输出事件;		
		SFIF=1: 发生 SF 脉冲输出事件。		
13	SEOIF	SEOIF=0: 未发生视在电能寄存器溢出事件;		
13	SEOIF	SEOIF=1: 发生视在电能寄存器溢出事件。		
12	VREFIF	VREF 跌落; =1: 发生该事件; =0: 没有发生该事件。		
11	LDOIF	LDO 跌落; =1: 发生该事件; =0: 没有发生该事件。		
10	SPLIF	ADC 采样中断; =1: 发生该事件; =0: 没有发生该事件。		
9	USAGIF	USAGIF U 通道跌落中断; =1: 发生该事件; =0: 没有发生该事件。		
8	UpeakIF	UpeakIF U 通道过载中断; =1: 发生该事件; =0: 没有发生该事件。		
7	IApeakIF IA 通道过载中断; =1: 发生该事件; =0: 没有发生该事件。			
6	IBpeakIF	IBpeakIF IB 通道过载中断; =1: 发生该事件; =0: 没有发生该事件。		
5	ZXIF =0:未发生过零事件;ZXIF=1:发生过零事件。			
4	QEOIF	QEOIF=0: 未发生无功电能寄存器溢出事件;		
4		QEOIF=1:发生无功电能寄存器溢出事件。		
3	PEOIF	PEOIF=0: 未发生有功电能寄存器溢出事件;		
3	PEOIF	PEOIF=1: 发生有功电能寄存器溢出事件。		
2	QFIF	QFIF=0: 未发生 QF 脉冲输出事件;		
2	QFIF	QFIF=1: 发生 QF 脉冲输出事件。		
1	DEIE	PFIF =0: 未发生 PF 脉冲输出事件;		
1	PFIF	PFIF=1: 发生 PF 脉冲输出事件。		
0	DUDDIE	DUPDIF=0: 未发生数据更新事件;		
0	DUPDIF	DUPDIF=1: 发生数据更新事件。		

当某中断事件产生时,硬件会将相应的中断标志置1。

IF 中断标志的产生不受中断允许寄存器 IE 的控制,只由中断事件是否发生决定。

特殊命令

命令名称	命令寄存器	数据	描述
写使能命令	1A8	0xE5	使能计量模块写操作
写保护命令	1A8	0xDC	关闭计量模块写操作
电流通道 A 选择命令	1A8	0x5A	电流通道 A 设置命令,指定当前用于计算有功电能/ 无功电能的电流通道为通道 A; 对有效值和功率寄存 器无影响; 当写使能之后,系统才接受该命令; 计量状态寄存器 中的 CHNSEL 寄存器位反映了该命令的执行结果。 RN8211 不支持该命令。
电流通道 B 选择命令	1A8	0xA5	电流通道 B 设置命令,指定当前用于计算有功电能/ 无功电能的电流通道为通道 B; 对有效值和功率寄存 器无影响; 当写使能之后,系统才接受该命令; 计量状态寄存器 中的 CHNSEL 寄存器位反映了该命令的执行结果。 RN8211 不支持该命令。

写保护的范围

0x00h-0x6Ch 校表参数配置寄存器、快速脉冲寄存器、中断允许寄存器,用特殊命令写使能后才能写入修改,具体命令格式如上表。

6 RTC

6.1 概述

BaseAddr 为: 0x4003C000;

RTC 模块提供实时时钟、振荡器温度补偿、日历、闹钟、时钟脉冲输出等功能。

实时时钟用独立的时、分、秒寄存器跟踪时间。日历包括年、月、日以及星期寄存器,具有闰年闰月自动修正功能。时钟脉冲输出具有多种可选择频率用于时钟校准。提供闹钟/报警功能。

集成温度传感器,提供温度测量的数字结果。

6.2 特点

- ●提供准确的温度值, -25°C~70°C范围内测温精度为±1°C
- ●在常温下实现 RTC 的初始校正
- ●自动完成 RTC 的温度补偿操作,不需要 CPU 参与
- ●低功耗设计
- ●高稳定性的振荡器
- ●RTC 在不同模式下都不关闭,在低功耗下仍然正常工作
- ●提供时钟和日历功能:输出寄存器中包括秒,分钟,小时,日期,月份,年份和星期等
- ●具有自动闰年闰月调整功能, 计时范围 100 年(00-99)
- ●1 个闹钟中断功能, 2 个定时器周期性中断功能, 5 个时间中断功能(秒,分,时,月,日)
- ●可输出未校正的频率 4Hz, 8Hz, 16Hz, 32768Hz
- ●可输出校正后的频率 1Hz, 1/20Hz

6.3 寄存器描述

RTC 模块的基址

模块名	物理地址	映射地址
RTC	BaseAddr 为: 0x4003C000	Base1

RTC 模块的寄存器偏移地址

寄存器名	地址偏移量	描述
	RTC 寄存器组	
RTC_CTL	Offset+0x00	RTC 控制寄存器
RTC_SC	Offset+0x04	秒寄存器,写保护
RTC_MN	Offset+0x08	分钟寄存器,写保护
RTC_HR	Offset+0x0C	小时寄存器,写保护
RTC_DT	Offset+0x10	日寄存器,写保护
RTC_MO	Offset+0x14	月寄存器,写保护
RTC_YR	Offset+0x18	年寄存器,写保护
RTC_DW	Offset+0x1C	星期寄存器,写保护
RTC_CNT1	Offset+0x20	定时器 1 寄存器

RTC_CNT2	Offset+0x24	定时器 2 寄存器	
RTC_SCA	Offset+0x28	秒闹钟寄存器	
RTC_MNA	Offset+0x2C	分钟闹钟寄存器	
RTC_HRA	Offset+0x30	小时闹钟寄存器	
RTC_IE	Offset+0x34	RTC 中断使能寄存器	
RTC_IF	Offset+0x38	RTC 状态寄存器	
RTC_TEMP	Offset+0x3C	当前温度寄存器,可读可写,写保	
		护	
RTC_DMAEN	Offset+0xC0	DMA 控制寄存器	

RTC 控制寄存器 RTC_CTL(0x00)

比特位	名称	描述	读/写标志	复位值
31:11		只读, 不可写	R	0
10	Cal_busy	RTC 校正忙。=1 时表示 RTC 正在进行校正; =0 时表示 RTC 校正完成。	R	0
9	Wr_busy	RTC 寄存器写操作忙,当 wr_busy=1 时,RTC 的寄存器不可写,只有当 wr_busy=0 时,才能对 RTC 的寄存器进行写操作。 注意: 在 Wr_busy=1 时,不要关闭 RTC 的 APB 时钟; 通过WFI 指令进入 sleep 或者 deep sleep 时需要注意该事项。	R	0
8	WRTC	RT 寄存器组写允许: 0: 禁止 RTC 寄存器写操作; 1: 允许 RTC 寄存器写操作。 注意: 该位对 RTC 寄存器组 00~1C/3C 有效,对 RTC_CTL[7:0]也有效。 写时间寄存器,需要最后写入秒寄存器,当写入秒寄存器后时间开始从写入时刻起累计。	R/W	0
7:6	TSE	温度传感器允许位 00:禁止自动温补。 01:启动自动温补。按照 TCP 的设置进行周期性温补。 10:启动用户温补模式 0,温度寄存器可更改,由用户填入温度值,用户每写一次温度寄存器启动一次温度补偿; 11:启动用户温补模式 1,温度寄存器不可更改,每次写温度寄存器就启动一次温度补偿操作,温度寄存器的值由 SOC 测量得到。注:该寄存器仅有上电复位起作用。	R/W	00
5:3	ТСР	温度补偿周期: 000:2S 001:10S 默认 010:20s 011:30s 100:1 分钟 101:2 分钟 110:5 分钟 111:10 分钟	R/W	001
02:00	FOUT	000: 禁止输出 001: 1Hz 输出 010: 1/20Hz 输出	R/W	000

011: 32768Hz 输出	
100: 16Hz 输出	
101: 8Hz 输出	
110: 4Hz 输出	
111: 禁止输出	
注: 该寄存器仅有上电复位起作用。	

秒寄存器 RTC_SC(0x04)

地址: 0x4003C000+ 0x04

比特位	名称	描述	读/写标志	复位值
31:07		只读,不可写	R	0
		存储时钟的秒值		
06:00	SC	BCD 码格式,SC[6:4]为秒值的十位,SC[3:0]为秒值的个位,	R/W	-
		秒值的范围为 0~59		

分钟寄存器 RTC_MN(0x8)

比特位	名称	描述	读/写标志	复位值
31:07		只读,不可写	R	0
		存储时钟的分钟值		
06:00	MN	BCD 码格式,MN[6:4]为分钟值的十位,MN[3:0]为分钟值的	R/W	-
		个位,分钟值的范围为 0~59		

小时寄存器 RTC_HR(0xC)

比特位	名称	描述	读/写标志	复位值
31:06		只读,不可写	R	0
		存储时钟的小时值		
05:00	HR	BCD 码格式,HR[5:4]为小时值的十位,HR[3:0]为小时值的	R/W	-
		个位,小时值的范围为 0~23。		

日期寄存器 RTC_DT(0x10)

比特位	名称	描述	读/写标志	复位值
31:06		只读, 不可写	R	0
		存储时钟的日期值		
05:00	DT	BCD 码格式, DT[5:4]为日期值的十位, DT[3:0]为日期值的个	R/W	-
		位, 日期值的范围为 1~31。		

月份寄存器 RTC_MO(0x14)

比特位	名称	描述	读/写标志	复位值
31:05		只读,不可写	R	0

		存储时钟的月份值		
04:00	MO	BCD 码格式,MO[4]为月份值的十位,M0[3:0]为月份值的个	R/W	-
		位,月份值的范围为 1~12		

年份寄存器 RTC_YR(0x18)

比特位	名称	描述	读/写标志	复位值
31:08		只读,不可写	R	0
		存储时钟的年份值		
07:00	YR	BCD 码格式, YR[7:4]为年份值的十位, YR[3:0]为年份值的个	R/W	-
		位,年份值的范围为 0~99。		

星期寄存器 RTC_DW(0x1C)

比特位	名称	描述	读/写标志	复位值
31:03		只读,不可写	R	0
02:00	DW	存储当前日期所对应的星期。 DW[2:0] 的计数循环为 0-1-2-3-4-5-6-0-1-2。	R/W	-

注: 04~1CH 寄存器没有复位值,由于软件引起的复位不会造成时间信息改变。

RTC 定时寄存器 1RTC_CNT1(0x20)

比特位	名称	描述	读/写标志	复位值
31:08		只读,不可写	R	0
07:00	CNT	定时器1计数器预设值 无符号数,计数单位为1s。当计数值=(CNT+1)时,置位 RTCCNT1F标志。(最小可以每1秒产生一次中断,最大可以 每256 秒产生一次中断) 注:该定时器在RTC校正后是准确的。	R/W	0

RTC 定时寄存器 2RTC_CNT2(0x24)

比特位	名称	描述	读/写标志	复位值
31:08		只读,不可写	R	0
07:00	CNT	定时器2计数器预设值 无符号数,计数单位为1/256s。当计数值=(CNT+1)时,置位 RTCCNT2F标志。(最小可以每1/256秒产生一次中断,最大 可以每1秒产生一次中断) 注:该定时器源自32768Hz晶体,未经校正,有一定误差。	R/W	0

秒闹钟寄存器 RTC_SCA(0x28)

比特位	名称	描述	读/写标志	复位值
31:07		只读,不可写	R	0

		秒闹钟值		
06:00	SCA	BCD 码格式,SCA[6:4]为秒值的十位,SCA[3:0]为秒值的个	R/W	0
		位,秒值的范围为 0~59		

分钟闹钟寄存器 RTC_MNA(0x2C)

比特位	名称	描述	读/写标志	复位值
31:07		只读,不可写	R	0
		分钟闹钟值		
06:00	MNA	BCD 码格式, MNA[6:4]为分钟值的十位, MNA[3:0]为分钟值	R/W	0
		的个位,分钟值的范围为 0~59		

小时闹钟寄存器 RTC_HRA(0x30)

比特位	名称	描述	读/写标志	复位值
31:06		只读,不可写	R	0
05:00	HRA	小时闹钟值 BCD 码格式, HRA[5:4] 为小时值的十位, HRA[3:0] 为小时值 的个位,小时值的范围为 0~23。	R/W	0

RTC 中断使能寄存器 RTC_IE(0x34)

比特位	名称	描述	读/写标志	复位值
31:09		只读,不可写	R	0
		RTC 中断产生时钟使能;		
08	IECLKEN	当 RTC_IE[8:0]任何一位为高时,中断模块时钟打开;	R/W	0
		当 RTC_IE[8:0]全部为低时,中断模块时钟才关闭;		
		月份中断使能		
7	MOIE	0: 不使能	R/W	0
		1: 使能		
		日期中断使能		
6	DTIE	0: 不使能	R/W	0
		1: 使能		
	HRIE	小时中断使能		
5		0: 不使能	R/W	0
		1: 使能		
		分钟中断使能		
4	MNIE	0: 不使能	R/W	0
		1: 使能		
		秒中断使能		
3	SCIE	0: 不使能	R/W	0
		1: 使能		
2	RTCCNT2IE	RTC 定时器 2 中断使能	R/W	0
	KICCN12IE	0: 不使能	IV/ VV	U

		1: 使能		
		RTC 定时器 1 中断使能		
1	RTCCNT1IE	0: 不使能	R/W	0
		1: 使能		
		闹钟事件中断使能		
0	ALMIE	0: 不使能	R/W	0
		1: 使能		

RTC 中断标志寄存器 RTC_IF(0x38)

比特位	名称	描述	读/写标志	复位值
31:8		只读,不可写	R	0
		月份中断标志位		
7	MOF	0:月份计数器未加1	R/W	0
/	MOF	1:月份计数器加1	IX/ VV	U
		Note: 写 1 清零		
		日期中断标志位		
6	DTF	0: 日期计数器未加1	R/W	0
6	DIF	1: 日期计数器加1	K/ W	U
		Note: 写 1 清零		
		小时中断标志位		
5	HRF	0:小时计数器未加1	R/W	0
3	TIKI	1: 小时计数器加1	R/W	U
		Note: 写 1 清零		
	MNF	分钟中断标志位	R/W	0
4		0:分钟计数器未加1		
4		1:分钟计数器加1	IN/ W	
		Note: 写 1 清零		
		秒中断标志位		
3	SCF	0: 秒计数器未加1	R/W	0
3	SCF	1: 秒计数器加1	K/W	U
		Note: 写 1 清零		
		RTC 定时器 2 中断标志位		
2	RTCCNT2F	0: 定时器1中断未发生	R/W	0
2	KICCN12F	1: 定时器1中断发生	IN/ W	U
		Note: 写 1 清零		
		RTC 定时器 1 中断标志位		
1	RTCCNT1F	0: 定时器1中断未发生	R/W	0
1	RICCNIII	1: 定时器1中断发生	IN/ W	U
		Note: 写 1 清零		
		闹钟事件标志位,与实时时钟匹配的闹钟事件发生		
0	ALMF	0:闹钟事件未发生	R/W	0
0	ALMI	1:闹钟事件发生	IN/ VV	U
		Note: 写 1 清零		

当前温度寄存器 RTC_TEMP(0x3C)

比特位	名称	描述	读/写标志	复位值
31:10		只读,不可写	R	0
09:00	TEMP	当前温度值。 Bit9 为符号位; Bit8~2 为整数位; Bit1~0 为小数位。 // Temp[9] Temp[8:2] Temp[1] Temp[0] // 符号 -128 度~127 度 0.5 度 0.25 度 表示范围: -128 度~+127.75 度 TSE=00: 禁止自动温补。该寄存器无效,读出的值无意义。 TSE=01: 按照 TCP 设置周期自动温补。该寄存器显示的是该测量周期的温度值。 TSE=10: 启动用户温补模式 0,温度寄存器可更改,由用户填入温度值,用户每写一次温度寄存器启动一次温度补偿; TSE=11: 启动用户温补模式 1,温度寄存器不可更改,每次写温度寄存器就启动一次温度补偿操作,温度寄存器的值由SOC 测量得到。	R/W	-

RTC DMA 使能寄存器 RTC_DMAEN(0xC0)

比特位	名称	描述	读/写标志	复位值
31:08		只读,不可写	R	0
		月份中断启动 DMA 传输使能		
7	MO_DMAEN	0: 不使能	R/W	0
		1: 使能		
		日期中断启动 DMA 传输使能		
6	DT_DMAEN	0: 不使能	R/W	0
		1: 使能		
		小时中断启动 DMA 传输使能		
5	HR_DMAEN	0: 不使能	R/W	0
		1: 使能		
		分钟中断启动 DMA 传输使能		
4	MN_DMAEN	0: 不使能	R/W	0
		1: 使能		
		秒中断启动 DMA 传输使能		
3	SC_DMAEN	0: 不使能	R/W	0
		1: 使能		
		RTC 定时器 2 中断启动 DMA 传输使能		
2	RTCCNT2_DMAEN	0:不使能	R/W	0
		1: 使能		
		RTC 定时器 1 中断启动 DMA 传输使能		
1	RTCCNT1_DMAEN	0: 不使能	R/W	0
		1: 使能		

		闹钟事件中断启动 DMA 传输使能		
0	ALM_DMAEN	0:不使能	R/W	0
		1: 使能		

RTC 自动温补需要定义以下寄存器,这些寄存器值在客户量产环节获得。

- 1. 初始频率偏差寄存器 RTC_DOTA0: 修正晶体的初始频率偏差; (每台表需要获得,锐能微提供的库函数可以完成该寄存器的操作)
- 2. 二次曲线顶点温度寄存器 RTC_XT0 (获得晶体批次参数,配置选项字节,通过编程界面写入)
- 3. 晶振温度系数寄存器 RTC_ALPHA (获得晶体批次参数,配置选项字节,通过编程界面写入)

7 WDT

SoC 内置硬件看门狗,用于检测程序的异常执行。

7.1 概述

看门狗具备如下特点:

- ◎ 溢出时间可设置为: 16ms、32ms、128ms、512ms、1s、2s、4s、8s;
- ◎ 喂狗窗口期可设置;

出现以下任何一种情况时产生看门狗复位:

- ◎ 看门狗定时器计数器溢出;
- ◎ 将 0xBB 以外的数据写入 WDT EN;
- ◎ 在喂狗窗口关闭期间将数据写入 WDT_EN;
- ◎ 通过 bitband 空间将数据写入 WDT EN:

7.2 看门狗定时器的配置

RN821X的 WDT 为硬件看门狗,不能通过寄存器直接进行配置,需要通过设置"选项字节"的方式对其进行配置。看门狗的配置有间隔中断,窗口打开周期,溢出时间,CPU 睡眠设置,CPU 调试设置等选项。

名称	描述	厂家默认值	
 间隔中断	0: Disable (不使能间隔中断)	0	
间隔片砌	1: Enable (达到溢出事件的 75% 时产生间隔中断)	U	
	0: 25%		
	1: 50%		
 窗口打开周期	2: 75%	3	
图口11月间粉	3: 100%	3	
	在窗口打开期间将 0xBB 写入 WDTE 寄存器,看门狗清零并重新计数;		
	在窗口关闭期间将 0xBB 写入 WDTE 寄存器,会产生内部复位信号。		
	0: 16ms		
	1: 32ms		
	2: 128ms		
温出时间 溢出时间	3: 512ms	4	
切正 [[] [1] [1]	4: 1s	4	
	5: 2s		
	6: 4s		
	7: 8s		

CPU 睡眠设置	0: Disable(当 CPU 处于 sleep 或者 deepsleep 的时候不开启 WDT)	0
CFUლ帆以且	1: Enable (当 CPU 处于 sleep 或者 deepsleep 的时候开启 WDT)	O
	0: Disable (当 CPU 处于调试状态时不开启 WDT)	
	1: Enable(当 CPU 处于调试状态时开启 WDT)	
CPU 调试设置	注: CPU 处于调试状态指的是用户通过调试接口将 Cortex M0 停住 (PC	
CPU厕瓜区且	指针停止计数)。如果芯片处于开发过程中,不建议使能该设置。因为	0
	如果使能该设置,当芯片处于调试状态时 WDT 仍然会计数,溢出时会	
	产生中断,将引起调试无法进行。	

窗口打开周期的定义如下图所示,以25%的窗口打开周期为示例:

7.3 寄存器描述

WDT 寄存器基址

模块名	物理地址	映射地址
WDT	0x40030000	0x40030000

WDT 寄存器偏移地址

寄存器名	地址偏移量	描述
WDT_EN	0x0	使能寄存器

$WDT_EN(0x0)$

比特位	名称	描述	读/写标志	复位值
31:9		只读, 不可写	R	0
8	WR_BUSY	WDT 忙 当 WR_BUSY =1 时, WDT_EN 不可写; 只有当 WR_BUSY =0 时,才能对 WDT_EN 寄存器进行写操作	R	0
7:0	WDTE	写入 0xBB 对看门狗定时器清零并再次开始计数操作。 复位信号的产生将该寄存器设置为 0x55	R/W	55

特别注意: 当用户程序往 WDTE 写入 0xBB 后, WR_BUSY 变为 1, 只有当 WR_BUSY 又变为 0 后才代表喂 狗成功, 在此之前请不要关闭 WDT 模块的 APB 时钟。用户在执行 WFI 指令前喂狗需要注意该事项。

8 LCD

SoC内置段码式LCD控制器。

RN8211/RN8211B仅支持部分段,见RN8211/RN8211B封装图。

8.1 概述

LCD 控制器具备如下特性:

- ◎ 最高支持 4x34、6x32、8x30LCD 驱动模式;
- ◎ 支持 A 类和 B 类两种驱动波形;
- ◎ 支持 1/3 和 1/4 偏压比;
- ◎ 支持静态, 1/2, 1/3, 1/4, 1/6, 1/8 占空比;
- ◎ 支持 16 级对比度驱动模式;
- ◎ 内置电荷泵偏置电压产生;

8.1.1 扫描时钟频率

LCD 波形扫描频率来自对 LOSC (频率为 32768Hz)的分频。分频系数通过寄存器 LCD_CLKDIV 配置。一般要求 LCD 屏的帧刷新频率略微大于 60Hz。表 8-1 中绿色标注的为正常使用的帧频。

农 6-1 LCD 扫描频率与频频									
LCD CLKDIV	 扫描频率	静态占空	1/2 占空	1/3 占空	1/4 占空比	1/6 占空	1/8 占空		
LCD_CLIADIV	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	比	比	比		比	比		
0xff	64Hz	64Hz	32Hz	21.3Hz	16Hz	10.7Hz	8Hz		
0x7f	128Hz	128Hz	64Hz	42.7Hz	32Hz	21.3Hz	16Hz		
0x54	192.8Hz	192.8Hz	96.4Hz	64.3Hz	48.2Hz	32.1Hz	24.0Hz		
0x3f	256Hz	256Hz	128Hz	85.3Hz	64Hz	42.7Hz	32Hz		
0x2a	381.3Hz	381.3Hz	190.5Hz	127.0Hz	95.3Hz	63.5Hz	47.6Hz		
0x1f	512Hz	512Hz	256Hz	170.7Hz	128Hz	85.3Hz	64Hz		

表 8-1 LCD 扫描频率与帧频

8.1.2 闪烁模式

LCD 支持两种闪烁模式:内闪烁和外闪烁。两种模式可以同时使能。

图 8-1 LCD 闪烁方式

如图 8-1, LCD 使能后会根据 LCD_BLINK 寄存器的 TON 位域定义的时间长度打开显示,随后根据 LCD BLINK 寄存器的 TON 位域定义的时间长度关闭显示。

在显示打开和关闭时,LCD 可以发出中断请求或 DMA 请求。用户可以使用这些事件更新帧缓冲区。 配合 DMA 的回绕特性,可以实现对多个帧缓冲区的自动轮显。

8.1.2.1 内闪烁模式

LCD 支持在由 LCD BLINK 寄存器的 TON 位域指定长度的显示期间,插入闪烁模式。闪烁的间隔由

LCD_BLINK 寄存器的 BLINK_TIME 位域给出。当 BLINK_TIME 为 0 时,内闪烁模式被禁止;当 BLINK_TIME 不为 0 时,TON 必须为 BLINK TIME 的偶数倍。

8.1.2.2 外闪烁模式

当 LCD_BLINK 寄存器中 TOFF 不为 0 时,闪烁功能被使能。Blink Mode 使能后,根据 LCD_BLINK 寄存器的 TON 和 TOFF 的值确定闪烁频率。

8.1.3 LCD 驱动波形

LCD 驱动波形与显示波形类型,占空比和偏压比有关。

显示波形类型 A 为行反转驱动方式,即在每个帧内完成一次正负驱动的交替;显示波形类型 B 驱动为帧 反转方式,即在每两个帧内完成一次正负驱动的交替。当占空比较大时,采用显示波形类型 B 驱动方式显示效果会更优。

用户需要根据应用所需的 COM 数选择 LCD 输出波形的占空比:

- ◆ 1个COM: 选择静态占空比,只使用COM0;
- ◆ 2个 COM: 选择 1/2 占空比, 使用 COM0, COM1;
- ◆ 3 个 COM: 选择 1/3 占空比, 使用 COM0 ~ COM2;
- ◆ 4 个 COM: 选择 1/4 占空比, 使用 COM0 ~ COM3;
- ◆ 6个 COM: 选择 1/6 占空比,使用 COM0 ~COM5;
- ◆ 8个 COM: 选择 1/8 占空比, 使用 COM0 ~COM7;

8.1.3.1 类型 A 驱动波形

V3 ----V2----COMO V1 ----VO -----COM1 V2-----COM2 V1 -----V0 -----V2-----COM4 V1 -----SEG(off)^{V2} SEG (on) V2 V1 -----VO -----

图 8-2 LCD 驱动波形(1/4 Duty, 1/3 Bias, Type A)

深圳市锐能微科技有限公司

深圳市锐能微科技有限公司 page 60 of 129

8.1.3.2 类型 B 驱动波形

图 8-4 LCD 驱动波形(1/4 Duty, 1/3 Bias, Type B)

图 8-5 LCD 驱动波形(1/4 Duty, 1/4 Bias, Type B)

8.1.4 LCD 偏置电压

LCD 的偏置电压可采用 Charge Pump 方式提供。Charge Pump 共需要产生 4 个电压(Va, Vb, Vc, Vd),以满足 1/4 偏压比的应用。对于不同偏压比设置,Charge Pump 输出的电压模式有所不同,如表 8-2 所示。

表 8-2 LCD 驱动电压与偏压比关系

偏压比	灰度选择	Va	Vb	Vc	Vd	Vd (MAX)
	BIASLVL[5] =	Va =	Vb = Va	Vc =	Vd =	3.75 V
1/3 偏压	0	Vref*(32+BIASLVL[4:0])/63		2*Va	3*Va	
比	BIASLVL[5] =	Va = Vref*(1 +	Vb = Va	Vc =	Vd =	5.59 V
	1	BIASLVL[4:0]/63)		2*Va	3*Va	
	BIASLVL[5] =	Va =	Vb =	Vc =	Vd=	5.0 V
1/4 偏压	0	Vref*(32+BIASLVL[4:0])/63	2*Va	3*Va	4*Va	
比	BIASLVL[5] =	Va = Vref*(1 +	Vb =	Vc =	Vd=	6.032V
	1	BIASLVL[4:0]/63)	2*Va	3*Va	4*Va	

LCD 所需的 Vd 的最大值为 5.2V。当选择为 1/4 偏压比时,当 BIASLVL[5:0]设置大于 6'h2d 时,LCD 控制器自动把 BIASLVL[5:0]钳位到 6'h2d。

LCD 默认选择 LBGR 作为基准, LBGR 输出典型值为 1.27V。

1/3 和 1/4 偏压比应用电压选择如图 8-6 所示:

图 8-6 偏置电压选择

1/3偏压比		1/4偏压比
V3 —	- Vd	 V4
V2	-Vc	 V3
V1	- Vb	 V2
	Va	 V1
V0 —	-GND	 VO

8.1.5 LCD 帧缓冲映射

LCD_BUFx 寄存器与不同段码规格的 LCD 屏映射关系如下所示。

i. 当使用的是 8COM 时, 需要 30 个 LCD_BUF, 最大可以支持 8*30 的 LCD 屏

LCD_BUF[i]	SEG[i+4]							
i=0~29	COM7	COM6	COM5	COM4	COM3	COM2	COM1	COM0
SEG 最大 30								

ii. 当使用的是 6COM 时, 需要 32 个 LCD_BUF, 最大可以支持 6*32 的 LCD 屏

LCD_BUF[i]	-	-	SEG[i+2]	SEG[i+2]	SEG[i+2]	SEG[i+2]	SEG[i+2]	SEG[i+2]
i=0~31			COM5	COM4	COM3	COM2	COM1	COM0
SEG 最大 32								

iii.当使用的是 4COM/3COM/2COM/1COM 时,需要 17 个 LCD_BUF,最大可以支持 4*34 的 LCD

屏

LCD_BUF[i]	SEG[2*i+1]	SEG[2*i+1]	SEG[2*i+1]	SEG[2*i+1]	SEG[2*i]	SEG[2*i]	SEG[2*i]	SEG[2*i]
i=0~16	COM3	COM2	COM1	COM0	COM3	COM2	COM1	COM0
SEG 最大 34								

8.2 寄存器描述

LCD 寄存器基地址

模块名	物理地址	映射地址
LCD	0x40048000	0x40048000

LCD 寄存器偏移地址

寄存器名	地址偏移量	描述
LCD_CTL	0x0	LCD 控制寄存器
LCD_STATUS	0x4	LCD 状态寄存器
LCD_CLKDIV	0x8	LCD 时钟控制寄存器
LCD_BLINK	0xc	LCD 闪烁控制寄存器
LCD_PS	0x10	LCD PUMP 建立时间寄存器
LCD_BUF[i]	0x20+i*1 (i=0-31)	LCD 数据寄存器 (共 32 个 8 位寄
		存器)

LCD 控制寄存器 LCD_CTL (0x0)

比特位	名称	 描述	读/写标	复 位
四44			志	值
31:14		只读,不可写	R	0
13	保留	保留寄存器位,用户不要写 1.	R/W	0
		LCD PUMP 开关:		
12	PWD_PUMP	0:开启 PUMP,LCD 电压由内部 PUMP 产生。	R/W	0
		1: 关闭 PUMP,可以选择外部电阻串分压方式;		
		LCD Drive Type Select		
11	TYPE	0: Type A	R/W	0
		1: Type B		
		LCD Bias 电压调节		
10:5	BIASLVL	控制 Charge Pump 输出不同幅度的电压以控制 LCD 的对比	R/W	0
		度		
		LCD Bias 控制		
4	BIAS	0: 1/3Bias	R/W	0
		1: 1/4Bias		
		LCD 占空比控制		
		000: 静态输出(COM0)		
		001: 1/2 占空比(COM0~1)		
3:1	DUTY	010: 1/3 占空比(COM0~2)	R/W	0
		011: 1/4 占空比(COM0~3)		
		100: 1/6 占空比(COM0~5)		
		101: 1/8 占空比(COM0~7)		

		Other:预留		
		LCD 模块使能		
0	EN	0: LCD 模块关闭	R/W	0
		1: LCD 模块使能		

LCD 状态寄存器 LCD_STATUS (0x4)

比特位	名称	描述	读/写标	复 位 值
31:7		只读,不可写	R	0
6	LCD_BUSY	LCD Busy Bit 0: 不忙 1: 忙 Note: 当 LCD_BUSY 为 1 时, LCD_CTRL (除了 EN Bit 外, LCD_CLKDIV,LCD_BLINK,LCD_PS 寄存器不可修改	R	0
5	DMAOFFEN	Display Off DRQ Enble Bit 0:不使能 1:使能 备注:RN8211/RN8211B 不支持	R/W	0
4	DMAONEN	Display On DRQ Enble Bit 0:不使能 1:使能 备注:RN8211/RN8211B 不支持	R/W	0
3	IRQOFFEN	Display Off IRQ Enble Bit 0: 不使能 1: 使能	R/W	0
2	IRQONEN	Display On IRQ Enble Bit 0:不使能 1:使能	R/W	0
1	DOFF	Display Off Pending Bit 0: 无中断事件 1: 显示由亮变灭时置位 Note: 写 1 清零	R/W	0
0	DON	Display On Pending Bit 0:无中断事件 1:显示由灭变亮时置位 Note:写1清零	R/W	0

LCD 时钟控制寄存器 LCD_CLKDIV (0x8)

比特位	名称	描述	读/写标志	复 位 值
31:8		只读, 不可写	R	0
7:0	CLKDIV	LCD Clock 分频系数	R/W	0

LCD CLK=fosc/(2*(CLKDIV+1)) (fosc 为 32768Hz)	

LCD 闪烁控制寄存器 LCD_BLINK(0xC)

比特位	名称	描述	读/写标	复 位 值
31:26		只读, 不可写	R	0
25:18	BLINK_TIME	步长是 0.25s, 支持 0~63.75s 设置 TON 显示周期内,亮与灭的时间 = 0.25*BLINK_TIME。 Note: 当设置为 0 时, 代表在 TON 显示周期内长亮, 不闪烁。 当设置值大于 0 时, TON 必须为 BLINK_TIME 的 2n 倍 (n 为 大于 0 的整数)。	R/W	0
17:9	TOFF	步长是 0.25s, 支持 0~127.5s, 当使用该功能时请设置成大于>3s; 实际时间为: 0.25s*TOFF	R/W	0
8:0	TON	步长是 0.25s, 支持 0~127.5s, 当使用该功能时请设置成大于>3s; 实际时间为: 0.25*TON	R/W	0

LCD 电荷泵建立时间寄存器 LCD_PUMP(0x10)

比特位	名称	描述	读/写标志	复位值
31:13		只读,不可写	R	0
		LCD PUMP Setup time		
12:0	PS	Time = Tosc * (PS+4) (Tosc 为 30.5uS)	R/W	0xccc
		备注:用户不需要对该寄存器进行配置。		

LCD 数据寄存器 LCD_BUFx (x=0~31) (地址 0x20- 0x3F)

比特位	名称	描述	读/写标	复 位 值
31:8		只读,不可写	R	0
7:0	LCD_BUFx	LCD 屏 SEG 显示数据,每位的物理意义如下: 0: 对应显示单元不显示 1: 对应显示单元显示 备注: RN8211/RN8211B 仅支持部分字段,用户不应操作其 他字段的 buf	R/W	0

9 定时器

SoC内置2个32位定时器。每个定时器可完全独立工作;定时器之间不共享任何资源,可同步操作。 定时器适合多种用途,具有如下功能:

- ◎ 间隔定时
- ◎ 方波输出

- ◎ 外部/内部事件计数
- ◎ 单脉冲输出
- ◎ PWM 输出
- ◎ 脉宽测量

RN8211/RN8211B 仅支持 TC0,不支持 TC1。

9.1 概述

定时器具备如下特性:

- ◎ 2个32位定时器,每个定时器:
 - 具有1个32位递增自动重装计数器;
 - 具有 16 位可编程预分频器,分频系数从 1~65535 之间可选;
 - 支持计数值动态访问;
 - 支持自由运行模式;
 - 支持单次运行;
- ◎ 每个定时器具有 2 个捕获/比较通道,每个通道可独立配置成:
 - 输入捕获:
 - 输出比较;
 - 单脉冲输出:
 - 互补 PWM:
 - ◆ 死区长度可编程:
 - 两个边沿的死区长度可独立设置;
 - 输出极性可配置;
 - ◆ 可配置的失效处理:
 - 输出失效;
 - 输出清除;
 - 输出三态;
- ◎ 从模式支持:
 - 外部复位和重启动;
 - 外部门控:
- ◎ 输入捕获支持:
 - 上升沿捕获;
 - 下降沿捕获;
 - 双沿捕获;
 - 周期测量;
 - 脉宽测量;
 - 可选滤波;
- ◎ 输出比较支持:
 - 三态输出;
 - 反转输出;
 - 固定电平输出;
 - 脉宽可配置脉冲输出;
 - 比较寄存器随时更新;
- ◎ 支持中断:
 - 计数溢出;
 - 输入捕获;

■ 输出比较;

9.2 功能框图

计数定时器的功能框图请参考下图所示。每个计数定时器内含一个 32 位计数器和 4 个 32 位捕获/比较通道。

9.3 寄存器描述

RN8211/RN8211B 仅支持 TC0,不支持 TC1,用户不要操作 TC1 的寄存器。

模块寄存器基地址

模块名	物理地址	映射地址
TC0	0x40010000	0x40010000
TC1	0x40014000	0x40014000

TC 模块寄存器偏移地址

寄存器名	地址偏移量	描述
TC_CNT	0x0	当前计数值指示
TC_PS	0x4	预分频寄存器
TC_DN	0xC	目标计数值寄存器
TC_CCD0	0x14	捕获比较通道0数据寄存器
TC_CCD1	0x18	捕获比较通道1数据寄存器

TC_CCFG	0x1C	时钟配置寄存器
TC_CR	0x20	控制寄存器
TC_CM0	0x24	捕获比较通道0模式寄存器
TC_CM1	0x28	捕获比较通道1模式寄存器
TC_IE	0x2C	中断使能寄存器
TC_STA	0x30	状态寄存器

当前计数值寄存器 TC_CNT (0x00)

比特位	名称	描述	读/写标志	复位值
31:0	CNT	当前计数值	R	0

预分频寄存器 TC_PS (0x04)

比特位	名称	描述	读/写标志	复位值
31:16		只读, 不可写	R	0
15:0	PS	分频系数,分频值(PS+1),0为不分频	R/W	0

目标计数值寄存器 TC_DN (0x0C)

比特位	名称	描述	读/写标志	复位值
31:0	DN	目标计数值,实际计数时钟周期为 DN+1	R/W	0

捕获比较通道 0 数据寄存器 TC_CCD0 (0x014)

比特位	名称	描述	读/写标志	复位值
31:0	CCD	捕获比较数据	R/W	0

注:通道 0 配置为捕获功能(即 TC_CM0 寄存器的 CCM 位域为 0)时,TC_CCD0 寄存器不可写

捕获比较通道 1 数据寄存器 TC_CCD1(0x018)

比特位	名称	描述	读/写标志	复位值
31:0	CCD	捕获比较数据	R/W	0

注: 通道 1 配置为捕获功能(即 TC_CM1 寄存器的 CCM 位域为 0)时, TC_CCD1 寄存器不可写

时钟配置寄存器 TC_CCFG(0x01C)

比特位	名称	描述	读/写标志	复位值
31:24		只读,不可写	R	0
23:16	FLT0PT	外部输入时钟滤波参数设置,设置滤波的时钟周期数。	R/W	0
15		只读,不可写	R	0
14:13	ECLKMODE	外部输入时钟模式: 00: 上升沿 01: 下降沿	R/W	0

		10: 双边沿		
		11: 保留(等效于双边沿)		
		外部输入时钟选择:		
		0: UARTO RXD		
		1: UART1 RXD		
		2: UART2 RXD		
		3: UART3 RXD		
		4: 另一定时器(TC0或TC1)的输出outn[0]		
		5: 另一定时器(TC0或TC1)的输出outp[0]		
		6: 另一定时器(TC0或TC1)的输出outn[1]		
		7: 另一定时器(TC0或TC1)的输出outp[1]		
		8: UART4 RXD		
		9: UART5 RXD		
12:8	CS	10:7816_0输入P41	R/W	0
12:0	CS	11:7816_1输入P42	K/W	U
		12:7816_1输入P43		
		13~15: 保留		
		16: sf_out		
		17: qf_out		
		18: pf_out		
		19: rtc_out		
		20: p1[0]外部I0口		
		21: p1[1] 外部IO口		
		27~22: 保留		
		28: p3[0] 外部I0口		
		29 [~] 31: 保留		
7:2		只读,不可写	R	0
		外部输入时钟滤波使能		
1	FLTEN	0: 不使能	R/W	0
		1: 使能		
		计数时钟源选择:		
0	CM	0: 内部系统时钟	R/W	0
		1:外部输入时钟(由 CS 选择时钟源)		

控制寄存器 TC_CR (0x020)

比特位	名称	描述	读/写标志	复位值
31:29		只读,不可写	R	0
28	DBGSTBDIS	调试时计数器计数使能:		
		0:不使能(当CPU处于调试状态时计数器停止计数)		
		1: 使能(当CPU处于调试状态时计数器继续计数)	R/W	0
		注: CPU处于调试状态指的是用户通过调试接口将Cortex		
		M0停住(PC指针停止计数)。		
27	SLVDE	从模式DMA请求使能:	R/W	0

Reflerg))		14110	521X
		0: 不使能		
		1: 使能		
		捕获比较通道1 DMA请求使能:		
26	CC1DE	0: 不使能	R/W	0
		1: 使能		
		捕获比较通道0 DMA请求使能:		
25	CCODE	0: 不使能	R/W	0
		1: 使能		
		溢出DMA请求使能:		
24	OVDE	0: 不使能	R/W	0
		1: 使能		
23:21		只读, 不可写	R	0
		从模式门控模式有效电平:		
20	SLVGATELVL	0: 有效电平为低电平	R/W	0
		1: 有效电平为高电平		
19:12	SLVFLTOPT	从模式输入滤波参数	R/W	0
		从模式控制模式选择:		
		00: 上升沿清零内部计数器		
		01: 下降沿清零内部计数器		
11:10	SLVTRGMODE	10: 双边沿清零内部计数器	R/W	0
		11: 门控模式(当外部输入信号为有效电平时内部计		
		数器计数)		
		从模式外部输入事件选择:		
9:5	SLVCHANSEL	与时钟配置寄存器(0x01C)中 CS 位域定义的外部输入	R/W	0
		时钟定义一致。		
		单次计数模式选择:		
		0: 不使能单次计数模式(计数溢出后不停止,循环计		
4	0PS	数);	R/W	0
		1: 使能单次计数模式(计数溢出后停止)		
		从模式外部输入事件滤波使能:		
3	SLVFLTEN	0: 不使能	R/W	0
5	521121211	1: 使能		
		从模式使能:		
2	SLVEN	0: 不使能	R/W	0
-	52,51,	1: 使能		
1		只读,不可写	R	0
1		定时器启动:	1	
0	START	0: 停止	R/W	0
J	Simil	1: 启动	10/ 11	
		1. /LI 4/J		

捕获比较通道 0/1 模式寄存器 TC_CMO/1 (0x024 和 0x028)

比特位	名称	描述	读/写标志	复位值
31:30		只读,不可写	R	0

		比较输出缺省电平:		
29	DFTLVL	0: 低电平	R/W	0
		1: 高电平		
		比较输出有效电平:		
28	EFELVL	0: 低电平	R/W	0
		1: 高电平		
		比较输出模式:		
		000: 无输出(三态)		
		001:设置为有效电平		
		010:设置为无效电平		
27:25	OM	011: 翻转	R/W	0
		100: 强制为有效电平		
		101: 强制为无效电平		
		110: PWM模式1		
		111: PWM 模式 2		
		捕获外部输入事件选择:		
24:20	CS	与时钟配置寄存器(0x01C)中 CS 位域定义的外部输入	R/W	0
		时钟定义一致。		
		捕获外部输入事件滤波器使能:		
19	FLTEN	0: 不使能	R/W	0
		1: 使能		
18:11	FLT0PT	捕获外部输入事件滤波器参数	R/W	0
		捕获外部输入事件极性选择:		
		00: 上升沿		
10:9	CPOL	01: 下降沿	R/W	0
		10: 双边沿		
		11: 保留		
0.0	DI	比较输出死区长度(只支持PWM模式1和PWM模式2,其他模	D /W/	0
8:3	DL	式下该位无效)	R/W	0
		比较输出死区插入使能: (只支持PWM模式1和PWM模式2,		
0	DIEN	其他模式下该位无效)	D WY	0
2	DIEN	0: 不使能	R/W	0
		1: 使能		
		捕获比较模式选择:		
1	CCM	0: 捕获	R/W	0
		1: 比较		
		通道使能:		
0	ENABLE	0: 不使能	R/W	0
		1: 使能		

中断使能寄存器 TC_IE (0x2C)

比特位	名称	描述	读/写标志	复位值
31:4		只读,不可写	R	0

				-
3	SLVIE	从模式中断使能: 0: 不使能 1: 使能	R/W	0
2	CC1IE	捕获比较通道1中断使能: 0: 不使能 1: 使能	R/W	0
1	CCOIE	捕获比较通道0中断使能: 0: 不使能 1: 使能	R/W	0
0	OVIE	溢出中断使能: 0: 不使能 1: 使能	R/W	0

状态寄存器 TC_STA (0x30)

比特位	名称	描述	读/写标志	复位值
31:4		只读, 不可写	R	0
		从模式事件标志: (写1清0)		
3	SLVF	0: 无从模式事件	R/W	0
		1: 有从模式事件		
		捕获比较通道1事件标志: (写1清0)		
2	CC1F	0: 无捕获或比较事件	R/W	0
		1: 有捕获或比较事件		
		捕获比较通道0事件标志: (写1清0)		
1	CC0F	0: 无捕获或比较事件	R/W	0
		1: 有捕获或比较事件		
		溢出中断标志: (写1清0)		
0	OVF	0: 无溢出事件	R/W	0
		1: 有溢出事件		

9.4 典型应用

9.4.1 自动运行模式,定时功能

自动运行模式即间隔定时功能。

基本定时功能,只需要对以下寄存器进行设置:

- 1、目标计数值寄存器,即为定时时长,由计数时钟计数。
- 2、中断使能寄存器中使能溢出中断使能。
- 3、控制寄存器,启动定时器。 定时器会以目标计数值为周期产生中断。

常用可选择功能配置说明:

- 1、可修改预分频寄存器值,改变定时器计数时钟的频率。
- 2、可配置时钟配置寄存器,CM修改配置为外部输入时钟,同时修改CS位配置的外部输入时钟选择。外部输入时钟频率不可比内部系统时钟频率的二分频高。
- 3、单次计数模式,定时器溢出后就停止;配置控制寄存器的 OPS 位为 1 即为单次计数模式。

4、外部输入时钟源为另外一个定时器的输出,则可连接为两个定时其的级联模式,可增加定时器的寄存器的位宽。

9.4.2 输入捕获模式,脉宽测量功能

输入捕获模式的主要功能是可以测试脉冲的宽度。

基本脉宽测试功能,只需要对以下寄存器进行设置:

- 1、目标计数值寄存器,由计数时钟计数,可设置为最大值。
- 2、捕获比较通道 0/1 模式寄存器设置, ENABLE 通道 0/1 使能, CCM 配置为捕获模式, CPOL 选择捕获极性, CS 选择外部输入事件。
- 3、中断使能寄存器中使能捕获比较通道 0/1 中断使能。
- 4、控制寄存器,启动定时器。

定时器捕获到外部输入事件的捕获极性时,产生中断,同时当前计数值会保存在捕获比较通道数据寄存器中。若采用两个通道,一个通道捕获上升沿,一个通道捕获下降沿,则可通过两个通道的数据寄存器计算出脉冲宽度。

常用可选择功能配置说明:

- 1、可修改预分频寄存器值,改变定时器计数时钟频率。
- 2、可配置时钟配置寄存器, CM 修改配置为外部输入时钟,同时修改 CS 位配置的外部输入时钟源。外部输入时钟源频率不可比内部系统时钟频率的二分频高。
- 3、外部输入事件的滤波功能,使能捕获比较通道模式寄存器中 FLTEN 滤波功能,通过配置 FLTOPT 设置滤波周期数。
- 4、若外部输入事件为另外一个定时器的输出,则可连接为两个定时其的级联模式。

9.4.3 比较输出模式,方波输出功能

方波输出功能即对 TC 的计数时钟进行分频输出的功能。每个定时器有两个输出通道,每个通道有 P 和 N 两个输出端,其中 P 为正向输出端口,N 为 P 的反向输出端口。

方波输出功能,只需要对以下寄存器进行设置:

- 1、目标计数值寄存器,由计数时钟计数,可设置为最大值。
- 2、捕获比较通道 0/1 模式寄存器设置,ENABLE 通道 0/1 使能,CCM 配置为比较模式,DFTLVL 配置缺省电平,EFELVL 配置有效电平,OM 输出配置为翻转功能。
- 3、设置捕获比较通道 0/1 数据寄存器。(设置值不大于目标计数值寄存器)
- 4、中断使能寄存器中使能捕获比较通道 0/1 中断使能。
- 5、控制寄存器,启动定时器。

目标计数值寄存器的值决定输出方波的周期,捕获比较通道 0/1 数据寄存器的值为输出翻转点。

常用可选择功能配置说明:

- 1、可修改预分频寄存器值,改变定时器计数时钟的频率。
- 2、可配置时钟配置寄存器, CM 修改配置为外部输入时钟,同时修改 CS 位配置的外部输入时钟源。外部输入时钟源频率不可比内部系统时钟频率的二分频高。
- 3、外部输入时钟滤波功能,使能时钟配置寄存器中FLTEN滤波功能,通过配置FLTOPT设置滤波周期数。

9.4.4 比较输出模式, PWM 输出功能

脉冲宽度调制 (PWM) 模式可以产生一个由 TC_DN 寄存器确定频率、由 TC_CCDx 寄存器确定占空比的信号。支持两种 PWM 模式: PWM 模式 1 和 PWM 模式 2:

PWM 模式 1: 如果 TC CNT<TC CCDx 时,输出为有效电平,否则为无效电平。

PWM 模式 2: 如果 TC_CNT>=TC_CCDx 时,输出为有效电平,否则为无效电平。

下图为 PWM 模式 1 的典型应用图。

PWM 输出功能,只需要对以下寄存器进行设置:

- 1、目标计数值寄存器,由计数时钟计数。
- 2、捕获比较通道 0/1 模式寄存器设置, ENABLE 通道 0/1 使能, CCM 配置为比较模式, DFTLVL 配置缺省电平, EFELVL 配置有效电平, OM 输出配置为 PWM 模式 1 或者 PWM 模式 2。
- 3、设置捕获比较通道 0/1 数据寄存器,必须比目标计数值寄存器小。
- 4、控制寄存器,启动定时器。

在通道的 P 端则输出 PWM 模式 1/PWM 模式 2 的正向波形,在通道的 N 端输出与 P 端反向的波形。

PWM 模式 1: 周期为目标计数值寄存器值加 1, 有效电平周期为通道数据寄存器值的周期数加 1。

PWM 模式 2: 周期为目标计数值寄存器值加 1, 无效电平周期为通道数据寄存器值的周期数加 1。

常用可选择功能配置说明:

- 1、可修改预分频寄存器值,改变定时器计数时钟频率。
- 2、可配置时钟配置寄存器,CM 修改配置为外部输入时钟,同时修改 CS 位配置的外部输入时钟源。外部输入时钟源频率不可比内部系统时钟频率的二分频高。
- 3、死区插入的互补输出, DIEN 死区插入使能, DL 配置死区插入长度。在 P 和 N 的两个沿切换中间加入延迟, 即不让两个沿同时翻转。

当有效电平 EFELVL 为低电平时: P和 N的输出下降沿延后 DL 个周期。

当有效电平 EFELVL 为高电平时: P 和 N 的输出上升沿延后 DL 个周期。

9.4.5 从模式,外部清零和门控功能

从模式在原有的功能上增加了外部输入事件控制内部计数器的清零和门控的功能。

外部清零功能,只需要对以下寄存器进行设置:

- 1、目标计数值寄存器,由计数时钟计数。
- 2、中断使能寄存器中使能溢出中断使能。
- 3、控制寄存器, SLVEN 从模式使能, SLVTRGMODE 从模式控制模式选择, SLVCHANSEL 从模式外部输入事件 选择,
- 4、控制寄存器,启动定时器。

这样在自由运行模式下增加了一个外部清零内部 CNT 的功能。

常用可选择功能配置说明:

- 1、可修改预分频寄存器值,改变定时器计数时钟频率。
- 2、可配置时钟配置寄存器, CM 修改配置为外部输入时钟,同时修改 CS 位配置的外部输入时钟源。外部输入时钟源频率不可比内部系统时钟频率的二分频高。
- 3、单次计数模式,定时器溢出后就停止;配置控制寄存器的 OPS 位为 1 即为单次计数模式。
- 4、外部输入时钟源为另外一个定时器的输出,则可连接为两个定时其的级联模式,可增加定时器的寄存器的位宽。
- 5、从模式控制模式选择中,若选择为门控模式,SLVGATELVL 从模式门控有效电平配置,从模式的输入在门控有效电平时内部计数器才会计数。
- 6、从模式下配置为输入捕获方式,从模式的外部输入事件和捕获的外部输入事件配置为相同时,捕获选择一个沿,从模式极性选择另外一个沿,则可由捕获比较通道数据寄存器直接获取脉冲宽度。

10 模拟外设

10.1 特点

10bit SAR ADC;

- 可对 VBAT 电池输入电压测量;
- 多路复用;

一路 LVD 电路, 主要特点如下:

- LVD 的输入可选为芯片电源,也可选择为外部 PIN 输入;
- LVD 的阈值可调,从 2.7V 到 4.9V 多个档位可设:
- 当选择为外部 PIN 输入时(LVDIN0),阈值固定为 1.2V 左右

两路比较器电路 CMP1 和 CMP2, 主要特点如下:

- 外部 PIN 输入,阈值固定为 1.2V 左右
- CMP2 为低功耗比较器,建议使用 CMP2 进行主电上下电监测。
- RN8211/RN8211B 不支持 CMP1;

10.2 寄存器

模拟外设模块的基址

模块名	物理地址	映射地址
DOSCIA	M-T-B-III	100012 C

|--|

模拟外设模块的寄存器偏移地址

寄存器名	地址偏移量	描述
SAR_CTL	Offset+0x0	SAR-ADC 控制寄存器
SAR_START	Offset+0x4	SAR-ADC 启动寄存器
SAR_STAT	Offset+0x8	SAR-ADC 状态寄存器
SAR_DAT	Offset+0xC	SAR-ADC 数据寄存器
LVD_CTL	Offset+0x10	比较器控制寄存器
LVD_STAT	Offset+0x14	比较器状态寄存器

• SAR_CTL

ADC 控制寄存器 地址 0x4002C000+ 0x700

比特位	名称	描述	读/写标	复 位值
31:17		只读,不可写	R	0
		REF 在开启后到开启 ADC 需要等待的时间:		
16:12	REF_WAIT	5'd0: 976uS	R/W	0
10.12	KEI'_WAII	5'd31: (31+1)*976=31.232ms	IX/ VV	U
		即等待时间=(REF_WAIT+1)* 976uS		
		SAR ADC 在开启后到开始采样转换需要等待的时间:		
		5'd0: 30.5uS		
		5'd31: (31+1)*30.5=976us		
		即等待时间=(SAR_WAIT+1)*30.5us		
11:7	SAR_WAIT	注: 启动 ADC 测量的步骤:	R/W	0xE
		开启 REF,等待 REF_WAIT 时间;		
		开启 ADC 和温度传感器,等待 SAR_WAIT 时间;		
		输入时钟和复位信号,16个时钟周期后得到采样结果。		
		以上步骤均由硬件自动控制实现。		
		SAR-DMA 控制:		
6	SARDMA_IE	1: 使能 DMA 请求;	R/W	0
		0: 不使能 DMA 请求;		
		SAR-ADC 中断控制:		
5	SAR_IE	1: 使能 ADC 中断输出;	R/W	0
		0: 不使能 ADC 中断输出。		
		SAR-ADC 增益控制:		
		00: 0.5 倍		
4:3	SAR_PGA	01: 1 倍	R/W	0
		10: 1.5 倍		
		11: 2倍		
		SAR-ADC Channel 选择		
2:0	SAR_CH	000: 温度测量	R/W	0
		001: VBAT(1/2 分压后得到 1.8V, PGA 采用 0.5 倍,测量	10/ 11/	
		输入 0.9V)		

torio. gj		11102171
	010: 外部管脚输入 VIN0	
	011: 外部管脚输入 VIN1	
	100: 外部管脚输入 VIN2	
	101: 外部管脚输入 VIN3	
	110: 外部管脚输入 VIN4	
	111: 外部管脚输入 VIN5	
	不管设置为哪个通道,自动温度测量的优先级最高。	
'决 NL家方职员日7	5×car craps 由的 cr o 时去司官	

备注:以上寄存器位只有当 SAR_START 中的 ST=0 时才可写。

SAR_START

SAR-ADC 启动寄存器 地址 0x4002C000+ 0x4

比特位	名称	描述	读/写标	复 位 值
31:01		只读,不可写	R	0
0	ST	SAR-ADC Start Bit 0: SAR-ADC 无操作 1: 启动一次 SAR-ADC 采样,完成采样后自动清零 Note: 由 RTC 控制的自动温度测量不受该位控制,并且优先级高于该配置位;	R/W	0

• SAR_STATUS

SAR-ADC 状态寄存器 地址 0x4002C000+ 0x8

比特位	名称	描述	读/写标志	复 位 值
31:02		只读, 不可写	R	0
1	TPS_BUSY	自动温度测量忙,=1:自动温度测量正在进行; =0:自动温度测量没有进行。 当 TPS_BUSY 为=1 时,软件写 ADC_START 寄存器,硬件 操作会在等待 TPS_BUSY 为 0 后再进行。	R	0
0	DREADY	ADC Date Ready Pending Bit 0: ADC 转换结果未完成 1: ADC 转换结果已完成 Note: 写 1 清零; 由 RTC 控制的自动温度测量不在该状态中指示;	R/W	0

SAR_DAT

ADC DAT 寄存器 地址 0x4002C000+ 0xC

比特位	名称	描述	读/写标 志	复 位 值
15:10		只读,不可写	R	0
9:0	SAR-DAT	ADC 转换结果	R	0

• LVD_CTL

LVD 控制寄存器 地址 0x4002C000+ 0x10

比特位	名称	描述		读/写标	复 位 值
31:10		只读,不可写		R	0
		切换到电池中断使能:			-
9	SWHBIE	=0: 不使能中断;		R/W	0
		=1: 使能中断;			
		切换到主电中断使能:			
8	SWHMIE	=0: 不使能中断;		R/W	0
		=1: 使能中断;			
		比较器 2 中断使能:			
7	CMP2IE	=0: 不使能中断;		R/W	0
		=1: 使能中断;			
		比较器 1 中断使能:			
6	CMP1IE	=0: 不使能中断;		R/W	0
		=1: 使能中断;			
		RN8211/RN8211B 不支持该寄存器位;			
		LVD 中断使能:		D 777	
5	LVDIE	=0: 不使能中断;		R/W	0
4		=1: 使能中断;		D	0
4		只读,不可写 ND 阅集中写为图		R	0
		LVD 阈值电压设置: 0000 2.7 0001 2.7 0010 2.7 0011 2.	0		
		0000 2.7 0001 2.7 0010 2.7 0011 2.7 0100 3.1 0101 3.3 0110 3.5 0111 3.7			
		1000 3.9 1001 4.1 1010 4.3 1011 4.			
3:0	LVDS	1100 4.7 1101 4.9	J	R/W	0
		1110	7) 讲		
		行比较;	/ ~1		
		1111 保留;			
<i></i>	l			2/ 2/	A blue

备注: LVD、比较器 1 和比较器 2 合并一个中断向量; 电源切换单独一个中断向量; SAR-ADC 单独一个中断向量。

• LVD_STAT

LVD 状态寄存器 地址 0x4002C000+ 0x14

比特位	名称	描述	读/写标	复位
			志	值
31:10		只读,不可写	R	0
		电源切换状态标志:		
9	SWHF	=0: 主电模式;	R	0
		=1: 电池模式。只读		
		切换到电池中断标志:		
8	SWHBIF	=0: 未产生中断; =1: 产生中断;	R/W	0
		当电源从主电切换到电池时产生中断,写1清零;		

		切换到主电中断标志:		
7	SWHMIF	=0: 未产生中断; =1: 产生中断;	R/W	0
		当电源从电池切换到主电时产生中断,写1清零;		
		比较器2中断标志		
6	CMP2IIF	=0: 未产生中断; =1: 产生中断;	R/W	0
		当输入电压相对于阈值变低或者变高时产生中断,写1清零;		
		比较器1中断标志		
5	CMP1IIF	=0: 未产生中断; =1: 产生中断;	R/W	0
		当输入电压相对于阈值变低或者变高时产生中断,写1清零;		
		LVD 中断标志		
4	LVDIIF	=0: 未产生中断; =1: 产生中断;	R/W	0
		当输入电压相对于阈值变低或者变高时产生中断,写1清零;		
3		只读, 不可写	R	0
		比较器2状态标志		
2	CMP2IIF	=0: 低于阈值;	R	0
		=1: 高于阈值;		
		比较器 1 状态标志		
1	CMP1IF	=0: 低于阈值;	R	0
1	CWIFTII	=1: 高于阈值;	K	U
		RN8211/RN8211B 不支持该寄存器位;		
		LVD 状态标志		
0	LVDIF	=0: 低于阈值;	R	0
		=1: 高于阈值;		

11 GPIO

11.1 概述

- 包含 PA、PB、PC 三组 GPIO
- PA 口包含 4 个 PO 口、2 个 P1 口、8 个 P2 口、4 个 P3 口
- PB 口包含 8 个 P4 口、8 个 P5 口、8 个 P6 口、8 个 P7 口
- PC 口包含 8 个 P8 口、6 个 P9 口
- GPIO 是 AHB 的外设
- 支持 bitband 操作;
- RN8211/RN8211B 仅支持部分 IO 口,用户不应改变不支持 IO 口的相关寄存器。

11.2 寄存器描述

GPIO 寄存器基地址:

模块名	物理地址	映射地址
GPIO	0x50000000	0x50000000

GPIO 寄存器的偏移地址:

寄存器名	地址偏移量	描述
PMA	0x00H	PA 口模式寄存器(输入或者输出)
PA	0x04H	PA 口数据寄存器
PCA0	0x08H	PA 口复用寄存器 0
PCA1	0x0CH	PA 口复用寄存器 1
PUA	0x10H	PA 口上拉选择寄存器
PIMA	0x14H	PA 口输入模式配置
PIEA	0x18H	PA 口输入使能选择
PMB	0x1CH	PB 口模式寄存器(输入或者输出)
PB	0x20H	PB 口数据寄存器
PCB	0x24H	PB 口复用寄存器
PUB	0x28H	PUB 口上拉选择寄存器
PIMB	0x2CH	PB 口输入模式配置
PIEB	0x30H	PB 口输入使能选择
PMC	0x34H	PC 口模式寄存器(输入或者输出)
PC	0x38H	PC 口数据寄存器
PCC	0x3CH	PC 口复用寄存器
PUC	0x40H	PUC 口上拉选择寄存器 PCC PC 口复用寄存器
PIEC	0x44H	PC 口输入使能选择
PCE	0x60H	SEGCOM 口复用寄存器
PASET	0X64H	PA 口数据置位寄存器,写 1 到该寄存器, PA 口对应位会被写 1;
PACLR	0X68H	PA 口数据清零寄存器,写 1 到该寄存器, PA 口对应位会被清零;
PBSET	0X6CH	PB 口数据置位寄存器,写 1 到该寄存器, PB 口对应位会被写 1;
PBCLR	0X70H	PB 口数据清零寄存器,写 1 到该寄存器, PB 口对应位会被清零;

PCSET	0X74H	PC 口数据置位寄存器,写 1 到该寄存器, PC 口对应位会被写 1;
PCCLR	0X78H	PC 口数据清零寄存器,写 1 到该寄存器, PC 口对应位会被清零;

注: IO 口类型见第 1.4 章管脚排列。

建议使用 bitband 功能(见 4.3.2 章节)访问 GPIO 的寄存器,便于对 IO 口的相关寄存器进行 bit 操作。 也可采用 SET/CLR 寄存器(0x64H~0x78H)写 GPIO 的数据寄存器;

如果 IO 口复用配置选择为 IO 口之外的功能,模式寄存器、数据寄存器、输入使能寄存器无效,上拉选择、输入模式选择在所有复用配置下均有效。

RN8211/RN8211B 仅支持部分 IO 口,用户不应改变不支持 IO 口的相关寄存器。

PA 口模式寄存器 PMA (输入或者输出)(0x00)

其中PM05、PM12~PM17、PM31、PM33、PM34、PM35 无实际意义,用户不要对其进行配置。

比特位	名称	描述	读/写标	复 位 值
31:24	PM37~PM30	=0 输出模式 =1 输入模式	R/W	FF
31.21	111137 111130	PM37 和 PM36 只读,读出为 1,只能是输入模式;	10 11	
23:16	PM27~PM20	=0 输出模式	R/W	FF
		=1 输入模式		
15:8	PM17~PM10	=0 输出模式	R/W	FF
13.0		=1 输入模式	IN/ W	1.1.
7:6		只读, 不可写	R	0
5:0	DM05-DM00	=0 输出模式	R/W	3F
	PM05~PM00	=1 输入模式	IN/ VV	31'

PA 口数据寄存器 PA (0x04)

其中 P05、P12~P17、P31、P33、P34、P35 无实际意义,用户不要对其进行配置。

比特位	名称	描述	读/写标志	复 位 值
31:30	P37~P36	P36 和 P37 数据输入寄存器,只读;	R	0
29:24	P35~P30	定义芯片端口需要输出的数据。 如果在输入模式下读端口,则读取的是引脚电平。如果在输出 模式下读端口,则读取的是输出锁存器的值	R/W	00
23:16	P27~P20	定义芯片端口需要输出的数据。 如果在输入模式下读端口,则读取的是引脚电平。如果在输出 模式下读端口,则读取的是输出锁存器的值	R/W	00
15:8	P17~P10	定义芯片端口需要输出的数据。 如果在输入模式下读端口,则读取的是引脚电平。如果在输出 模式下读端口,则读取的是输出锁存器的值	R/W	00
7:6		只读,不可写	R	0

5:0	P05~P00	定义芯片端口需要输出的数据。 如果在输入模式下读端口,则读取的是引脚电平。如果在输出 模式下读端口,则读取的是输出锁存器的值 如果定义为模拟输入,在输入模式读取到的值为 0.	R/W	00	
-----	---------	--	-----	----	--

PA 口复用 0 寄存器 PCA0 (0x08)

比特位	名称	描述	读/写标	复 位 值
31:30		只读,不可写	R	0
29	SWD_SEL	=0: P24 和 P25 不选择为 SWD,由 PC245(bit27)定义;	R/W	1
2)	SWD_SEL	=1: P24 和 P25 选择为 SWD;	IV/ VV	1
		定义端口 P26 和 P27 复用配置:		
28	PC267	=0: 选择为 IO 口;	R/W	00
		=1: 选择为 UART3 接口。		
		定义端口 P24 和 P25 复用配置:		
27	PC245	=0: 选择为 IO 口;	R/W	00
		=1: 选择为 UART2 接口。		
		定义端口 P22 和 P23 复用配置:		
26	PC223	=0: 选择为 IO 口;	R/W	00
		=1: 选择为 UART1 接口。		
		定义端口 P20 和 P21 复用配置:		
25	PC201	=0: 选择为 IO 口;	R/W	00
		=1: 选择为 UARTO 接口。		
24:13	保留	保留位,用户不要写 1.	R/W	00
		定义端口 P11 复用配置:		
	PC11[1:0]	=00: 选择为 IO 口;	R/W	
12:11		=01: 选择为 KEY 输入口		00
12,11		=10: 选择为 TC 输出		
		=11: 选择为 TC 输入		
		P11 对应的 TC 输出为 tc0_p[0]		
		定义端口 P10 复用配置:		
		=00: 选择为 IO 口;		
10:9	PC10[1:0]	=01: 选择为 KEY 输入口	R/W	00
		=10: 选择为 TC 输出		
		=11: 选择为 TC 输入		
0		P10 对应的 TC 输出为 tc0_n[0]	-	0
8		只读,不可写	R	0
	DG05 DG05	定义端口 P05~P02 的复用配置:	D MI	
7:4	PC05~PC02	=0: 选择为 IO 口;	R/W	0
2		=1: 选择为模拟输入口	D	
3	 DG01	只读,不可写	R	0
2	PC01	定义端口 P01 复用配置:	R/W	0

		=0: 选择为 IO 口; =1: 选择为模拟输入口		
1		只读, 不可写	R	0
0	PC00	定义端口 P00 复用配置: =0: 选择为 IO 口; =1: 选择为模拟输入口	R/W	0

PA 口复用 1 寄存器 PCA1 (0x0C)

比特位	名称	描述	读/写标	复位值
31:16		只读,不可写	R	0
15:14	PC37[1:0]	定义端口 P37 复用配置: =00: 选择为 IO 口; =01: 选择为外部中断输入口 INT7; =1x: 选择为晶体 POSCI 管脚 备注: 只要 PC36[1]和 PC37[1]中任何一位为高,那么就选择为 POSC	R/W	0
13:12	PC36[1:0]	定义端口 P36 复用配置: =00: 选择为 IO 口; =01: 选择为外部中断输入口 INT6; =1x: 选择为晶体 POSCO 管脚 备注: 只要 PC36[1]和 PC37[1]中任何一位为高,那么就选择为POSC	R/W	0
11:10	保留	保留位,用户不要写 1.	R	0
9:8	保留	保留位,用户不要写 1.	R	0
7:6	保留	保留位,用户不要写 1.	R	0
5:4	PC32[1:0]	定义端口 P32 复用配置: =00: 选择为 IO 口; =01: 选择为外部中断输入口 INT2; =10: 选择为 RTC 输出 RTC_OUT (默认选择为 RTC 输出) =11: 选择 IO 口	R/W	10
3:2	保留	保留位,用户不要写 1.	R	0
1:0	PC30[1:0]	定义端口 P30 复用配置: =00: 选择为 IO 口; =01: 选择为外部中断输入口 INTO; =10: 选择为 TC 输入 =11: 保留	R/W	0

PA 口上拉选择寄存器 PUA(0x10)

备注: 当 IO 口处于输出模式或者模拟 PAD 模式时,不管 PU 寄存器如何配置,PIN 上拉均不使能。

其中PU05、PU12~PU17、PU31、PU33、PU34、PU35 无实际意义,用户不要对其进行配置。

比特位	名称	描述	读/写标志	复 位 值
31:24	PU37~PU30	定义端口上拉配置: =0: 不选择上拉; =1: 选择上拉;	R/W	00
23:16	PU27~PU20	定义端口上拉配置: =0: 不选择上拉; =1: 选择上拉; 备注: P24 和 P25 作为 SWD 默认上拉使能。	R/W	30
15:8	PU17~PU10	定义端口上拉配置: =0: 不选择上拉; =1: 选择上拉;	R/W	00
7:6		只读,不可写	R	0
5:0	PU05~PU00	定义端口上拉配置: =0: 不选择上拉; =1: 选择上拉;	R/W	00H

PA 口输入模式配置寄存器 PIMA (0x14)

其中 PIL12~PIL17、PID12~PID17 无实际意义,用户不要对其进行配置。

比特位	名称	描述	读/写标	复 位 值
31:24	PIL27~PIL20	定义端口 P20~P27 输入缓冲器类型: =0: CMOS 缓冲器, Vil=0.3VCC Vih=0.7VCC;	R/W	00
		=1: TTL 缓冲器,Vil=0.16VCC Vih=0.4VCC;		
		定义端口 P10~P17 输入缓冲器类型:		
23:16	PIL17~PIL10	=0: CMOS 缓冲器, Vil=0.3VCC Vih=0.7VCC;	R/W	00
		=1: TTL 缓冲器, Vil=0.16VCC Vih=0.4VCC;		
		定义端口 P20~P27 是否是 N-ch 漏极开路输出:		
15:8	PID27~PID20	=0: 普通模式;	R/W	00
		=1: N-ch 漏极开路模式;		
		定义端口 P10~P17 是否是 N-ch 漏极开路输出:		
7:0	PID17~PID10	=0: 普通模式;	R/W	00
		=1: N-ch 漏极开路模式;		

PA 口输入使能寄存器 PIEA (0x18)

其中 PIE05、PIE12~PIE17、PIE31、PIE33、PIE34、PIE35 无实际意义,用户不要对其进行配置。

比特位	たな	##. 7	读/写标	复 位
比特型	名称	描述	志	值

31:24	PIE37~PIE30	输入使能: =1: 不使能输入; =0: 使能输入; 注: P30 上电后需要 BOOTROM 设为输入使能,方便 ISP 进 行检测。	R/W	FF
23:16	PIE27~PIE20	输入使能: =1: 不使能输入; =0: 使能输入;	R/W	FF
15:8	PIE17~PIE10	输入使能: =1: 不使能输入; =0: 使能输入;	R/W	FF
7:6		只读,不可写	R	0
5:0	PIE05~PIE00	输入使能: =1: 不使能输入; =0: 使能输入;	R/W	3F

PB 口模式寄存器 PMB (输入或者输出)(0x1C)

比特位	名称	描述	读/写标志	复 位 值
31:24	PM77~PM70	=0 输出模式 =1 输入模式	R/W	FF
23:16	PM67~PM60	=0 输出模式 =1 输入模式	R/W	FF
15:8	PM57~PM50	=0 输出模式 =1 输入模式	R/W	FF
7:0	PM47~PM40	=0 输出模式 =1 输入模式	R/W	FF

当 IO 口设置为 7816 口或者 SPI 口时,方向寄存器不起作用,由通信模块本身控制。

PB 口数据寄存器 PB (0x20)

比特位	名称	描述	读/写标志	复 位 值
31:24	P77~P70	定义芯片端口需要输出的数据。 如果在输入模式下读端口,则读取的是引脚电平。如果在输 出模式下读端口,则读取的是输出锁存器的值	R/W	00
23:16	P67~P60	定义芯片端口需要输出的数据。 如果在输入模式下读端口,则读取的是引脚电平。如果在输 出模式下读端口,则读取的是输出锁存器的值	R/W	00
15:8	P57~P50	定义芯片端口需要输出的数据。 如果在输入模式下读端口,则读取的是引脚电平。如果在输	R/W	00

	出模式下读端口,则读取的是输出锁存器的值		
7:0 P47~P40	定义芯片端口需要输出的数据。 如果在输入模式下读端口,则读取的是引脚电平。如果在输 出模式下读端口,则读取的是输出锁存器的值	R/W	00

PB 口复用寄存器 PCB (0x24)

比特位	名称	描述	读/写标	复 位 值
		PC77~PC70 定义端口复用配置:		
31:24	PC77~PC70	=0: 选择为 IO 口;	R/W	00
		=1:选择LCD。		
		PC67~PC60 定义端口复用配置:		
23:16	PC67~PC60	=0: 选择为 IO 口;	R/W	00
		=1:选择LCD。		
		PC57~PC50 定义端口复用配置:		
		=0: 选择为 IO 口;		
15:8	PC57~PC50	=1: 选择为其他。	D/W/	03
13.6	1 C37~1 C30	P50-PF、P51-QF、P52-SCL、P53-SDA	IX/ VV	03
		P54- UART5-RX、P55- UART5-TX、P56-ZX-OUT、P57-SF		
		P50 默认为 PF, P51 默认为 QF, 其他默认选择为 GPIO。		
		P47~P40 定义端口复用配置:		
		=0: 选择为 IO 口;		
7:0	PC47~PC40	=1: P40~P43 选择为 7816 P44~47 选择为 SPI。	R/W	00
		默认选择为 GPIO。		
		PC44 仅在 SPI 从模式下有效,在 SPI 主模式下不要配置为 1。		

PB 口上下拉选择寄存器 PUB(0x28)

比特位	名称	描述	读/写标志	复 位 值
		PU77~PU70 定义 P7 端口是否内接下拉:		
31:24	PU77~PU70	=0: 不接下拉;	R/W	00
		=1: 内接下拉。		
		PU67~PU60 定义 P6 端口是否内接下拉:		
23:16	PU67~PU60	=0: 不接下拉;	R/W	00
23:16		=1: 内接下拉。		
		PU57~PU50 定义 P5 端口是否内接上拉:		
15:8	PU57~PU50	=0: 不接上拉;	R/W	00
		=1: 内接上拉。		
7:0	PU47~PU40	PU47~PU40 定义 P4 端口是否内接上拉:	R/W	00
7.0	PU4/~PU40	=0: 不接上拉;	IX/ VV	00

=1: 内接上拉。

PB 口输入模式寄存器 PIMB (0x2C)

比特位	名称	描述	读/写标	复 位 值
31:24	PIL57~PIL50	定义端口 P50~P57 输入缓冲器类型: =0: CMOS 缓冲器, Vil=0.3VCC Vih=0.7VCC; =1: TTL 缓冲器, Vil=0.16VCC Vih=0.4VCC; 其中 PIL51 和 PIL50 只读位 0;	R/W	00
23:16	PIL47~PIL40	定义端口 P40~P47 输入缓冲器类型: =0: CMOS 缓冲器, Vil=0.3VCC Vih=0.7VCC; =1: TTL 缓冲器, Vil=0.16VCC Vih=0.4VCC;	R/W	00
15:8	PID57~PID50	定义端口 P50~P57 是否是 N-ch 漏极开路输出: =0: 普通模式; =1: N-ch 漏极开路模式; 其中 PID51 和 PID50 只读位 0;	R/W	00
7:0	PID47~PID40	定义端口 P40~P47 是否是 N-ch 漏极开路输出: =0: 普通模式; =1: N-ch 漏极开路模式;	R/W	00

PB 口输入使能寄存器 PIEB (0x30)

比特位	名称	描述	读/写标志	复 位 值
31:24	PIE77~PIE70	输入使能: =1: 不使能输入;	R/W	FF
		=0: 使能输入;		
22.16	DIECZ DIECO	输入使能:	D/W	PE.
23:16	PIE67~PIE60	=1: 不使能输入; =0: 使能输入;	R/W	FF
		输入使能:		
15:8	PIE57~PIE50	=1: 不使能输入;	R/W	FF
		=0: 使能输入;		
7:0	PIE47~PIE40	输入使能: =1: 不使能输入;	R/W	FF
7.0	1 1L4/~F1L40	=0: 使能输入;	IV/ VV	1.1.

PC 口模式寄存器 PMC (输入或者输出)(0x34)

比特位	名称	描述	读/写标	复	位
	1 111/1/1/1	1 1HVE	吹 ¬ 小	又	<u> </u>

			志	值
31:28		只读, 不可写	R	0
27:24	保留	保留位,用户不要改变其默认值	R/W	F
23:20		只读,不可写	R	0
19:14	保留	保留位,用户不要改变其默认值	R/W	3F
13:8	PM95~PM90	=0 输出模式 =1 输入模式	R/W	3F
7:0	PM87~PM80	=0 输出模式 =1 输入模式	R/W	FF

PC 口数据寄存器 PC (0x38)

比特位	名称	描述	读/写标志	复 位 值
31:28		只读, 不可写	R	0
27:24	保留	保留位,用户不要改变其默认值	R	0
23:20		只读,不可写	R	0
19:14	保留	保留位,用户不要改变其默认值	R	0
13:8	P95~P90	定义芯片端口需要输出的数据。 如果在输入模式下读端口,则读取的是引脚电平。如果在输 出模式下读端口,则读取的是输出锁存器的值	R/W	00
7:0	P87~P80	定义芯片端口需要输出的数据。 如果在输入模式下读端口,则读取的是引脚电平。如果在输 出模式下读端口,则读取的是输出锁存器的值	R/W	00

PC 口复用寄存器 PCC(0x3C)

比特位	名称	描述	读/写标志	复 位 值
31:28		只读,不可写	R	0
27:24	保留	保留位,用户不要改变其默认值	R	0
23:20		只读, 不可写	R	0
19:14	保留	保留位,用户不要改变其默认值	R	0
13:8	PC95~PC90	PC95~PC90 定义端口复用配置: =0: 选择为 IO 口; =1: 选择 LCD。	R/W	00
7:0	PC87~PC80	PC87~PC80 定义端口复用配置: =0: 选择为 IO 口; =1: 选择 LCD。	R/W	00

PC 口下拉选择寄存器 PUC (0x40)

比 特位	名称	描述	读/写标志	复 位 值
31:28		只读,不可写	R	0
27:24	保留	保留位,用户不要改变其默认值	R	0
23:20		只读, 不可写	R	0
19:14	保留	保留位,用户不要改变其默认值	R	0
13:8	PU95~PU90	PU95~PU90 定义端口是否内接下拉: =0: 不接下拉; =1: 内接下拉。	R/W	00
7:0	PU87~PU80	PU87~PU80 定义端口是否内接下拉: =0: 不接下拉; =1: 内接下拉。	R/W	00

PC 口输入使能寄存器 PIEC (0x44)

比特位	名称	描述	读/写标	复 位 值
31:28		只读, 不可写	R	0
27:24	保留	保留位,用户不要改变其默认值	R/W	F
23:20		只读, 不可写	R	0
19:14	保留	保留位,用户不要改变其默认值	R/W	3F
13:8	PIE95~PIE90	输入使能: =1: 不使能输入; =0: 使能输入;	R/W	3F
7:0	PIE87~PIE80	输入使能: =1: 不使能输入; =0: 使能输入;	R/W	FF

SEGCOM 口复用寄存器 PCE(0x60)

比特位	名称	描述	读/写标	复 位 值
31:4		只读, 不可写	R	0
	SEG3/COM	SEG3/COM7~SEG0/COM4 定义端口复用配置:		
3:0	7~SEG0/CO	=0: 选择为 SEG;	R/W	00
	M4	=1: 选择为 COM。		

PA 口数据置位寄存器 PASET (0x64)

比特位	名称	描述	读/写标志	复位值
31:30		只读,不可写	R	0
		置位芯片端口状态		
29:24	P35~P30	0: 无影响	R/W	00
		1: 该端口置位,输出高电平		
		置位芯片端口状态		
23:16	P27~P20	0: 无影响	R/W	00
		1: 该端口置位,输出高电平		
		置位芯片端口状态		
15:8	P17~P10	0: 无影响	R/W	00
		1: 该端口置位,输出高电平		
7:6		只读,不可写	R	0
		置位芯片端口状态		
5:0	P05~P00	0: 无影响	R/W	00
		1: 该端口置位,输出高电平		

Note: 读出值无意义

PA 口清零置位寄存器 PACLR(0x68)

比特位	名称	描述	读/写标志	复位值
31:30		只读,不可写	R	00
		清零芯片端口状态		
29:24	P35~P30	0: 无影响	R/W	0
		1: 该端口清零,输出低电平		
		清零芯片端口状态		
23:16	P27~P20	0: 无影响	R/W	00
		1: 该端口清零,输出低电平		
		清零芯片端口状态		
15:8	P17~P10	0: 无影响	R/W	00
		1: 该端口清零,输出低电平		
7:6		只读,不可写	R	0
		清零芯片端口状态		
5:0	P05~P00	0: 无影响	R/W	00
		1: 该端口清零,输出低电平		

Note: 读出值无意义

PB 口数据置位寄存器 PBSET (0x6C)

比特位	名称	描述	读/写标志	复位值
31:24	P77~P70	置位芯片端口状态	R/W	00

	11.02111			
		0: 无影响		
		1: 该端口置位,输出高电平		
		置位芯片端口状态		
23:16	P67~P60	0: 无影响	R/W	00
		1: 该端口置位,输出高电平		
		置位芯片端口状态		
15:8	P57~P50	0: 无影响	R/W	00
		1: 该端口置位,输出高电平		
		置位芯片端口状态		
7:0	P47~P00	0: 无影响	R/W	00
		1: 该端口置位,输出高电平		

Note: 读出值无意义

PB 口清零置位寄存器 PBCLR (0x70)

比特位	名称	描述	读/写标志	复位值
		清零芯片端口状态		
31:24	P77~P70	0: 无影响	R/W	0
		1: 该端口清零,输出低电平		
		清零芯片端口状态		
23:16	P67~P60	0: 无影响	R/W	00
		1: 该端口清零,输出低电平		
		清零芯片端口状态		
15:8	P57~P50	0: 无影响	R/W	00
		1: 该端口清零,输出低电平		
		清零芯片端口状态		
7:0	P47~P40	0: 无影响	R/W	00
		1: 该端口清零,输出低电平		

Note: 读出值无意义

PC 口数据置位寄存器 PCSET (0x74)

比特位	名称	描述	读/写标志	复位值
31:14		只读, 不可写	R	0
12.0	D05 D00	置位芯片端口状态	D AV	00
13:8	P95~P90	0: 无影响	R/W	00
		1: 该端口置位,输出高电平		
		置位芯片端口状态		
7:0	P87~P80	0: 无影响	R/W	00
		1: 该端口置位,输出高电平		

Note: 读出值无意义

PC 口清零置位寄存器 PCCLR (0x78)

比特位	名称	描述	读/写标志	复位值
31:14		只读, 不可写	R	00
		清零芯片端口状态		
13:8	P95~P90	0: 无影响	R/W	00
		1: 该端口清零,输出低电平		
		清零芯片端口状态		
7:0	P87~P80	0: 无影响	R/W	00
		1: 该端口清零,输出低电平		

Note: 读出值无意义

12 外部中断控制器

SoC 内置外部中断控制器 (INTC),用于处理从芯片管脚输入的中断请求。

12.1 概述

外部中断控制器具备如下特性:

- ◎ 支持 4 个外部中断的模式设置:上下边沿及双边沿可设;
- ◎ 支持外部中断状态指示;
- ◎ 支持外部中断软件触发;
- ◎ 支持外部中断状态;
- ◎ 支持外部中断屏蔽;
- ◎ 支持外部中断滤波;

12.2 寄存器描述

模块寄存器基址

模块名	物理地址	映射地址
INTC	0x40044000	0x40044000

INTC 模块的寄存器偏移地址

寄存器名	地址偏移量	描述
INTC_CTL	0x0	INTC 控制寄存器
INTC_MODE	0x4	INTC 模式寄存器
INTC_MASK	0x8	INTC Mask 寄存器
INTC_STA	0xc	INTC 状态寄存器

• INTC_CTL

11 (10 11.)	4 . 4 14 HH			
比特位	名称	描述	读/写标志	复位值
31:08		只读, 不可写	R	0
7:6	Enable	使能信号,Enable[7:6]分别对应于外部中断请求 7 和 6,对应的外部管脚为: P37/INT7 和 P36/INT6. 0: 关闭对应的外部中断 1: 使能对应的外部中断	R/W	0

5:3	保留	保留位,用户不要写 1	R/W	0
2	Enable	使能信号,Enable[2]对应于外部中断请求 2, 对应的外部管脚为: P32/INT2. 0: 关闭对应的外部中断 1: 使能对应的外部中断	R/W	0
1	保留	保留位,用户不要写 1	R/W	0
0	Enable	使能信号,Enable[0]对应于外部中断请求 0, 对应的外部管脚为: P30/INT0. 0: 关闭对应的外部中断 1: 使能对应的外部中断	R/W	0

• INTC_MODE

INTC 模式寄存器

地址 0x40044000+0x4

INIC 疾	八	地址 0x40044000+0x4		
比特位	名称	描述	读/写标志	复位值
31:06		只读, 不可写	R	0
15:14	MODE7	外部中断请求 7 (P37/INT7)模式选择 00: 上升沿 01: 下降沿 10: 双边沿 11: 保留	R/W	0
13:12	MODE6	外部中断请求 6 (P36/INT6)模式选择 00: 上升沿 01: 下降沿 10: 双边沿 11: 保留	R/W	0
11:6	保留	保留位,用户不要写1	R/W	0
5:4	MODE2	外部中断请求 2 (P32/INT2)模式选择 00: 上升沿 01: 下降沿 10: 双边沿 11: 保留	R/W	0
3:2	保留	保留位,用户不要写1	R/W	0
1:0	MODE0	外部中断请求 0 (P30/INT0) 模式选择 00: 上升沿 01: 下降沿 10: 双边沿 11: 保留	R/W	0

INTC_MASK

INTC Mask 寄存器

地址 0x40044000+0x8

	4 14 HH			
比特位	名称	描述	读/写标志	复位值
31:08		只读,不可写	R	0
7:6	MASK	MASK[7:6] 分别对应于外部中断请求 7 和 6 0: 中断禁止 1: 中断使能	R/W	0
5:3	保留	保留位,用户不要写1	R/W	0

2	MASK	MASK[2]对应于外部中断请求 2 0:中断禁止 1:中断使能	R/W	0
1	保留	保留位,用户不要写 1	R/W	0
0	MASK	MASK[0]对应于外部中断请求 0 0:中断禁止 1:中断使能	R/W	0

INTC_STA

INTC 状态寄存器

地址 0x40044000+0xc

比特位	○ 可任品 名称	描述	读/写标志	复位值
31:08		只读,不可写	R	0
7:6	STA	STA[7:6]对应于分别对应于外部中断请求7和60:中断事件未发生1:中断事件发生注:写1清零	R/W	0
5:3	保留	保留位,用户不要写 1	R/W	0
2	STA	STA[2]对应于外部中断请求 2 0:中断事件未发生 1:中断事件发生 注:写1清零	R/W	0
1	保留	保留位,用户不要写 1	R/W	0
0	STA	STA[0]对应于外部中断请求 0 0:中断事件未发生 1:中断事件发生 注:写1清零	R/W	0

13 KBI

SoC 内置按键接口控制器。

13.1 特性

按键接口控制器具有如下特性:

- ◎ 支持 2 个按键,对应管脚为 P10/KEY0 和 P11/KEY1;
- ◎ 支持每个按键状态查询;
- ◎ 支持每个按键输入滤波,滤波时间为 24ms;
- ◎ 支持每个按键可单独屏蔽中断

13.2 寄存器描述

表 13-1 KBI 寄存器基址

模块名	物理地址	映射地址
KBI	0x40028000	0x40028000
	表 13-2 KBI 寄存器偏移地址	

寄存器名	地址偏移量	描述
KBI_CTL	0x0	控制寄存器
KBI_SEL	0x4	选择寄存器
KBI_DATA	0x8	数据寄存器

KBI MASK	0xc	屏蔽寄存器

● 控制寄存器(0x0)

表 13-3 KBI 控制寄存器 KBI_CTL

比特位	名称	描述	读/写标志	复位值
31:8		只读,不可写	R	0
7:2	保留	保留位,用户不要写1	R/W	0
1:0	EN	使能信号,EN[1:0]对应于 KEY[1:0], 对应的外部管脚为: P10/KEY0 和 P11/KEY1. 0: 关闭对应的 KEY 1: 使能对应的 KEY	R/W	0

● 选择寄存器(0x4)

表 13-4 KBI 选择寄存器 KBI_SEL

比特位	名称	描述	读/写标志	复位值
31:8		只读,不可写	R	0
7:2	保留	保留位,用户不要写1	R/W	0
1:0	SEL	SEL[1:0]对应于 KEY[1:0] 0: 上升沿有效 1: 下降沿有效	R/W	0

● 数据寄存器(0x8)

表 13-5 KBI 数据寄存器 KBI_DATA

比特位	名称	描述	读/写标志	复位值
31:8		只读,不可写	R	0
7:2	保留	保留位,用户不要写1	R/W	0
1:0	DAT	DAT[1:0]对应于 KEY[1:0]。写 1 清零 0: 按键没有按下 1: 按键被按下	R/W	0

● 屏蔽寄存器(0xC)

表 13-6 KBI 屏蔽寄存器 KBI _MASK

比特位	名称	描述	读/写标志	复位值
31:8		只读,不可写	R	0
7:2	保留	保留位,用户不要写1	R/W	0
1:0	MASK	MASK[1:0]对应于 KEY[1:0] 0: 中断禁止 1: 中断使能	R/W	0

14 UART

SoC 内置 5 个 UART 接口,用于与外部进行异步串行通信。

RN8211/RN8211B 仅支持 UART0、UART1、UART2、UART5.

14.1 概述

UART 接口控制器具备如下特性:

- ◎ 五个全双工 UART 接口;
- ◎ 内置波特率发生器,支持不同的波特率配置;

- ◎ 数据位宽支持 5/6/7/8bit;
- ◎ 停止位可配置成 1 或 2bit;
- ◎ 可选 38kHz 红外调制;
- ◎ 支持自动波特率检测;
- ◎ 支持红外唤醒;

14.2 寄存器描述

表 14-1 UART 寄存器基址

模块名	物理地址	映射地址
UART0	0x40000000	0x40000000
UART1	0x40004000	0x40004000
UART2	0x40008000	0x40008000
UART3	0x4000C000	0x4000C000
UART5	0x4001C000	0x4001C000

表 14-2 UART 寄存器偏移地址

寄存器名	地址偏移量	描述
UART_CTL	0x0	UART 控制寄存器
UART_BAUD	0x4	UART 波特率配置寄存器
UART_STAT	0x8	UART 状态指示寄存器
UART_TXD	0xC	UART 发送数据寄存器
UART_RXD	0x10	UART 接收数据寄存器

● 控制寄存器(0x0)

表 14-3 控制寄存器 UART_CTL

比特位	名称	描述	读/写标	复位值
31:13		只读,不可写	R	0
12	IRSEL	红外调制极性选择: 0:正极性,即默认驱动电平为高 1:负极性,即默认驱动电平为低	R/W	0
11	ILBE	内部环回使能 0:内部环回禁止 1:内部环回使能,TXD与RXD信号在模块内部短接	R/W	0
10	IRE	红外调制使能位 0:关闭红外调制输出 1:打开红外调制输出,用 38k 载波调制输出数据的低电平	R/W	0
9:7	PARS	校验位选择	R/W	0
6:5	DATLEN	传输数据宽度位	R/W	0

		0: 5-bit		
		1: 6-bit		
		2: 7-bit		
		3: 8-bit		
		停止位位宽选择		
4	STOPS	0: 1-bit 停止位	R/W	0
		1: 2-bit 停止位		
		错误中断使能位,对应的标志位是状态指示寄存器中 bit5~bit2.		
3	ERRIE	0: 关闭中断	R/W	0
		1: 打开中断		
		接收数据中断使能位,对应的标志位是状态指示寄存器中 bit1.		
2	RXIE	0: 关闭中断	R/W	0
		1: 打开中断		
		发送数据中断使能位,对应的标志位是状态指示寄存器中 bit0.		
1	TXIE	0: 关闭中断	R/W	0
		1: 打开中断		
		模块使能		
0	EN	0: 关闭	R/W	0
		1: 打开		

● 波特率配置寄存器(0x4)

表 14-4 波特率配置寄存器 UART_BAUD

比特位	名称	描述	读/写标志	复 位 值
31:12		只读,不可写	R	0
11:0	CLKDIV	UARTx clock 分频数	R/W	0
11.0	CLKDIV	波特率的计算公式是:系统时钟/[16*(CLKDIV+1)]	IX/ VV	U

● 状态指示寄存器(0x8)

表 14-5 状态指示寄存器 UART_STA

比特位	名称	描述	读/写标	复 位 值
31:10		只读, 不可写	R	0
		发送 FIFO 满:		
9	tx_fifo_full	0: 不满	R	0
		1: 满		
		发送 FIFO 空:		
8	tx_fifo_empty	0: 非空	R	1
		1: 空		
		发送状态标志位		
7	TB	0:没有发送	R	0
		1: 正在发送数据		
		接收状态标志位		
6	RB	0:没有接收	R	0
		1:正在接收数据		

5	DE	数据错误,写 1 清零 0: 无错误 1: 有错误	R/W	0
4	FE	帧错误,写 1 清零 0: 无错误 1: 有错误	R/W	0
3	OE	溢出错误,写 1 清零 0: 无错误 1: 有错误	R/W	0
2	PE	校验错误,写 1 清零 0: 无错误 1: 有错误	R/W	0
1	TX	发送标识,写 1 清零 0: 数据尚未发送或无待发送数据 1: 数据已发送	R/W	0
0	RX	接收标识,写 1 清零 0: 无接收数据 1: 数据已接收	R/W	0

● 发送数据寄存器(0xC)

表 14-6 波特率配置寄存器 UART_TXD

比特位	名称	描述	读/写标志	复位值
31:9		只读,不可写	R	0
8	UP	用户自定义校验位	R/W	0
7:0	TXDATA	发送数据寄存器	R/W	0

● 接收数据寄存器(0x10)

表 14-7 接收数据寄存器 UART_RXD

比特位	名称	描述	读/写标志	复位值
31:9		只读,不可写	R	0
8	UP	校验位	R	0
7:0	RXDATA	接收数据寄存器	R	0

15 ISO7816

SoC 内置两个 ISO7816 通道,支持外接 2 个 7816 协议接口设备。

RN8211/RN8211B 不支持 ISO7816.

15.1 概述

ISO7816 接口控制器具备如下特性:

- ◎ 支持标准的 ISO7816 协议,工作在主模式;
- ◎ 支持卡时钟输出,频率可在1~5MHz之间设置;
- ◎ 支持 7816 多种分频比设置;
- ◎ 支持 MSB 先输出的低逻辑和 LSB 先输出的高逻辑数据编码方式;
- ◎ 支持 1, 2ETU 宽度的错误信号宽度设置;

- ◎ 支持 0~254ETU 宽度的 EGT 设置;
- ◎ 支持发送数据传输错误重发机制,重发次数可在0~7之间设置;
- ◎ 7816 卡协议栈支持接口两个 (Esam 和卡): esam 模块接收和发送用一个管脚口;
- ◎ 支持卡接口接收和发送分离;

15.2 寄存器描述

表 15-1 ISO7816 寄存器基址

模块名	物理地址	映射地址
ISO7816	0x40038000	0x40038000

表 15-2 ISO7816 寄存器偏移地址

寄存器名	地址偏移量	描述
ISO7816_CTL0	0x0	控制寄存器 0
ISO7816_CTL1	0x4	控制寄存器 1
ISO7816_CLK	0x8	时钟配置寄存器
ISO7816_BDDIV0	0xc	波特率配置寄存器 0
ISO7816_BDDIV1	0x10	波特率配置寄存器 1
ISO7816_STAT0	0x14	状态指示寄存器 0
ISO7816_STAT1	0x18	状态指示寄存器 1
ISO7816_DAT0	0x1c	数据发送寄存器 0
ISO7816_DAT1	0x20	数据发送寄存器 1

● 控制寄存器(0x0)

表 15-3 ISO7816 控制寄存器 0 ISO7816_CTL0

比特位	名称	描述	读/写标	复位
6013 PX	-11.14.	THAT .	志	值
31:28		只读,不可写	R	0
		接收数据 GT 选择位,发送时固定为 2etu		
27	RX_GT0	1:接收数据 GT 为 1etu	R/W	0
		0: 接收数据 GT 为 2etu		
		发送 DMA 请求		
26	TX0_DMA_EN	1: 使能 DMA 请求	R/W	0
		0: 不使能 DMA 请求		
		接收 DMA 请求		
25	RX0_DMA_EN	1: 使能 DMA 请求	R/W	0
		0: 不使能 DMA 请求		
		EGT 宽度选择值(0~255), 即额外保护时间 N, 默认值 N=0。		
		在0到254范围内,N用于计算两个相邻数据起始沿之间		
		的延迟: 12 etu + (Q×(N/f))。		
		公式中,Q应取下面两个值中的一个:		
		——当复位应答中不存在T=15时,取F/D;		
24:17	EGT0	——当复位应答中存在T=15时,取 Fi/Di;	R/W	0
		N=255表示在传输协议期间,两个连续字符的起始沿之		
		间的最小延迟在传输的两个方向上是相同的。这个最小延		
		迟值是:		
		——T=0时,12etu		
		———T=1时,11etu		

		数据奇偶校验出错时自动重发次数控制		
		000: 0次 001: 1次		
16: 14	REP_CNT0	010: 2次 011: 3次	R/W	011
		100: 4次 101: 5次		
		110:6次 111:7次		
		接收数据奇偶校验错误处理方式选择		
		1: 奇偶校验错,根据 T=0 协议回发 error signal。置		
13	RXPAR_ESEL0	RX_PAR_ERR 标志,进行中断。	R/W	1
	_	0: 奇偶校验错, 不发送 error signal, 置 RX_PAR_ERR 标志,		
		直接中断。		
		错误信号宽度选择位,只适用于接收,且 RXPAR_ESEL0=1		
		00: 2 etu		
12:11	ERRWTH0	01: 1 etu	R/W	01
12.11	Little 1110	10: 1.5 etu		01
		11: 2 etu		
		校验位选择位		
		000: 无校验		
		001: 奇校验		
10.0	PARSEL0		DAV	010
10:8		010: 偶校验	R/W	010
		011: 固定为零校验		
		100: 固定为 1 校验		
		其它:保留		
		数据接收到发送的 BGT 控制位		
7	BGT_EN0	0: 关闭 BGT 功能,数据接收发送之间不插入 BGT	R/W	0
		1: 打开 BGT 功能,数据接收发送之间插入 BGT(22etu)		
		传输出错中断使能位,发送数据时数据冲突、接收数据时数		
6	ERR_IRQ_EN0	据溢出以及接收数据帧格式错误	R/W	0
O	Zitt_iitQ_Zi (o	0: 禁止传输出错产生中断	10 ***	
		1: 使能传输出错产生中断		
İ		数据接收中断使能位,使能数据从移位寄存器移入到接收缓		
5	RX_IRQ_EN0	存寄存器产生中断	R/W	0
3	KA_IKQ_LIVO	0: 禁止数据接收产生中断	IX/ VV	U
		1: 使能数据接收产生中断		
		数据发送中断使能位,使能数据从移位寄存器发送完成产生		
4	TV IDO ENO	中断	R/W	
4	TX_IRQ_EN0	0: 禁止数据发送产生中断	R/W	0
		1: 使能数据发送产生中断		
		接收数据使能		
3	RX_EN0	0: 禁止数据接收	R/W	0
		1: 使能数据接收		
		发送数据使能		
2	TX_EN0	0: 禁止数据发送	R/W	0
- I		1: 使能数据发送		
1	DIRSEL0	数据编码方式选择位	R/W	0
1	DINGLEG	タケルロショル・1/1 ケイケー・1十一下	17/ 17	V

		0: LSB 先传的正逻辑数据编码方式 1: MSB 先传的负逻辑数据编码方式(数据取反)		
		ISO7816 控制器使能位		
0	EN0	0: 控制器关闭	R/W	0
		1: 控制器打开		

● ISO7816 控制寄存器 1(0x04)

表 15-4 ISO7816 控制寄存器 1 ISO7816_CTL1

比 特位	名称	描述	读/写标	复 位值
31	CARD1_CHECK_EN	卡拔出检测使能位,只在 OLD 检测功能使能后该位有效 1:使能卡拔出检测中断功能 0:不使能卡拔出检测中断功能	R/W	0
30	OLD1_IRQ_EN	OLD 检测中断功能使能,只在 OLD 检测功能使能后该位有效 1: 使能 OLD 检测中断功能 0: 不使能 OLD 检测中断功能	R/W	0
29	OLD1_EN	OLD 检测功能使能 1: 使能 OLD 检测功能 0: 不使能 OLD 检测功能	R/W	0
28	RX1_GT0	接收数据 GT 选择位,发送时固定为 2etu 1:接收数据 GT 为 1etu 0:接收数据 GT 为 2etu	R/W	0
27	TX1_DMA_EN	发送 DMA 请求使能 1: 使能 DMA 请求 0: 不使能 DMA 请求	R/W	0
26	RX1_DMA_EN	接收 DMA 请求 1: 使能 DMA 请求 0: 不使能 DMA 请求	R/W	0
25	IO1_EN	数据为双向使能信号 1: 78161_IO 端口为双向信号 0: 78161_IO 端口为单向信号,只输出,数据输入从 78161_I 端口输入。	R/W	1
24:17	EGT1	EGT 宽度选择值(0~255),额外保护时间 N 默认值N=0。 在0到254范围内,N表示在准备好接收下一字符之 前,卡要求从前一个字符(也是由卡或接口设备发送的) 的起始沿开始的下列延迟: 12 etu + (Q×(N/f)) 公式中,Q应取下面两个值中的一个: F/D,即用于计算etu的值,当T=15不存在于复位应答中时, Fi/Di,当T=15存在于复位应答中时。 N=255表示在传输协议期间,两个连续字符的起始沿之间的最小延迟在传输的两个方向上是相同的。这个最	R/W	0

		小延迟值是		
		T=0时, 12etu		
		T=1 时,11etu		
		数据奇偶校验出错时自动重发次数控制		
		000:0次 001:1次		
16: 14	REP_CNT1	010: 2次 011: 3次	R/W	011
		100: 4次 101: 5次		
		110:6次 111:7次		
		接收数据奇偶校验错误处理方式选择		
		1: 奇偶校验错,根据 T=0 协议回发 error signal。置		
13	RXPAR_ESEL1	RX_PAR_ERR 标志,进行中断。	R/W	1
10		0: 奇偶校验错,不发送 error signal,置 RX_PAR_ERR		
		标志,直接中断。		
		错误信号宽度选择位		
		00: 2 etu		
12:11	ERRWTH1	01: 1 etu	R/W	01
12.11	LIKKWIIII	10: 1.5 etu	10/ 11	01
		11: 2 etu		
		校验位选择位		
		000: 无校验		
	PARSEL1	000: 尤仅验 001: 奇校验		
10:8		010: 周校验	R/W	010
10:8			K/W	010
		011: 固定为零校验		
		100: 固定为 1 校验		
		其它:保留		
_		数据接收到发送的 BGT 控制位		
7	BGT_EN1	0: 关闭 BGT 功能,数据接收发送之间不插入 BGT	R/W	0
		1: 打开 BGT 功能,数据接收发送之间插入 BGT		
		传输出错中断使能位,发送数据时数据冲突、接收数据		
6	ERR IRQ EN1	时数据溢出以及接收数据帧格式错误	R/W	0
Ü	22	0: 禁止传输出错产生中断		
		1: 使能传输出错产生中断		
		数据接收中断使能位,使能数据从移位寄存器移入到接		
5	RX_IRQ_EN1	收缓存寄存器产生中断	R/W	0
3	KA_IKQ_ENT	0: 禁止数据接收产生中断	IX/ VV	
		1: 使能数据接收产生中断		
		数据发送中断使能位,使能数据从发送缓存寄存器移入		
4	TV IDO EM1	到移位寄存器产生中断	D /W	
	TX_IRQ_EN1	0: 禁止数据发送产生中断	R/W	0
		1: 使能数据发送产生中断		
		接收数据使能		
3	RX_EN1	0: 禁止数据接收	R/W	0
		1: 使能数据接收		
2	TX_EN1	发送数据使能	R/W	0
_	<u> </u>	0 5 - 22 4H 10 HO	1	

		0: 禁止数据发送 1: 使能数据发送		
1	DIRSEL1	数据编码方式选择位 0: LSB 先传的正逻辑数据编码方式 1: MSB 先传的负逻辑数据编码方式	R/W	0
0	EN1	ISO7816 控制器使能位 0: 控制器关闭 1: 控制器打开	R/W	0

• ISO7816_CLK (0x08)

表 15-5 ISO7816 时钟控制寄存器 1 ISO7816_CLK

比特位	名称	描述	读/写标志	复位值
31:4		只读,不可写	R	0
		卡时钟输出使能位	R/W	
3	CLKO_EN	0: 关闭卡时钟输出		0
		1: 使能卡时钟输出		
		ISO7816 时钟输出 CLK_O 的分频系数		
		ISO7816 模块的源时钟从系统时钟 fsyspll 上直接取得		
2.0	CLKDIV	000: 不分频; 001: 2 分频;	R/W	0
2:0	CLKDIV	010: 4 分频; 011: 8 分频	R/W	0
		100: 16 分频; 101: 32 分频;		
		110: 64 分频; 111: 128 分频		

● ISO7816 波特率系数 0 寄存器 (0x0c)

表 15-6 ISO7816 波特率系数 0 寄存器 ISO7816_BDDIV0

比特位	名称	描述	读/写标志	复位值
31:22		只读,不可写	R	0
21	FDS0_EN	使能软件配置 F/D 的系数。 1: 波特率系数通过软件写入 FDS0 来确定 0: 波特率系数通过 FD0 来确定	R/W	0
20:8	FDS0	软件配置的波特率系数值,该位只在 FDS0_EN=1 时可写,其它情况下均为 13'd372。	R/W	13'd372
7:0	FD0	复位应答所传送的 8 位 FI 和 DI	R/W	8'h01

● ISO7816 波特率系数 1 寄存器 (0x10)

表 15-7 ISO7816 波特率系数 1 寄存器 ISO7816_BDDIV1

比特位	名称	描述	读/写标志	复位值
31:22		只读, 不可写	R	0
21	FDS0_EN	使能软件配置 F/D 的系数。 1: 波特率系数通过软件写入 FDSO 来确定 0: 波特率系数通过 FDO 来确定	R/W	0
20:8	FDS0	软件配置波特率系数,只在 FDS0_EN=1 时可写,其它情况下 均为 372	R/W	13'd372
7:0	FD0	复位应答所传送的 8 位 FI 和 DI	R/W	8'h01

● ISO7816 状态 0 寄存器 (0x14)

表 15-8 ISO7816 状态 0 寄存器 ISO7816_ STAT0

比特位	名称	表 15-8 ISU/816 认念 0 奇仔裔 ISU/816_ STATU 描述	读/写标志	复 位值
31:12		只读,不可写	R	0
11	FRAME_E RR0	接收数据帧格式错误中断标志位,该位写 1 清零, 1:发送接收数据帧格式错误,当传输错误中断使能位有效时产生中断 0:未发送接收数据帧格式错误	R/W	0
10	BDDIV_R0	波特率匹配为指示。FI 和 DI 是否匹配指示; FD 默认为 8'h01,时钟匹配,当写入的 FD 值不匹配时该位置 1。 1: 匹配 0: 不匹配	R	1
9	TX_FLAG0	发送缓冲区空标志。上电复位后自动置位,表示缓冲区空,可以写入数据。MCU 写入数据后标志自动清除,数据从发送缓冲寄存器移入移位寄存器后置 1。 1:数据发送缓冲区空 0:数据发送缓冲区内有数据待发送	R	1
8	RX_FLAG0	数据缓冲区满标志,7816 接口控制器每收到 1byte 数据,硬件自动置位,表示接收到 1byte 数据,读数据接收缓冲寄存器清零。 1:接收到 1byte 数据,数据接收缓冲区满 0:未接收到数据,数据接收缓冲区空	R	0
7	RXBUSY0	数据接收忙标志位。硬件置位,软件清零 硬件自动清置位 0:数据接收空闲 1:接收移位寄存器正在接收数据,收到起始位后自动置 1,收到停止位后自动清零	R	0
6	TXBUSY0	数据发送忙标志。硬件置位,软件清零 硬件自动清置位 0:数据发送空闲 1:发送移位寄存器正在发送数据,发送起始位时置 1,发送停止位时自动清零	R	0
5	TXPAR_ER RIF0	发送数据奇偶校验错误标志位,重发次数到后仍然奇偶校验错误则该位置位。 对该位写 1 将清零 1:发送数据时发生奇偶校验错误 0:发送数据时无奇偶校验错误	R/W	0
4	RXPAR_ER RIF0	接收数据奇偶校验错误标志位,重发次数到后仍然奇偶校验错误则该位置位。 对该位写1将清零 1:接收数据时发生奇偶校验错误 0:接收数据时无奇偶校验错误	R/W	0
3	COL_IF0	发送数据冲突错误中断标志位。硬件置位,软件清零 对该位写 1 将清零 0:没有中断	R/W	0

		1: 中断发生		
2	OVL_IF0	接收数据溢出错误标志位。硬件置位,软件清零 对该位写 1 将清零 0:无溢出错误 1:中断发生,接收缓冲寄存器未被读出,又接收到新的数据,溢出错误标志有效	R/W	0
1	RXIF0	数据接收中断标志位。数据从移位寄存器移入接收缓存寄存器后置 1。硬件置位,软件清零 对该位写 1 将清零 0: 没有中断 1: 中断发生	R/W	0
0	TXIF0	数据发送中断标志位。数据从发送缓冲寄存器移入移位寄存器后置 1。 硬件置位,软件清零 对该位写 1 将清零 0: 没有中断 1: 中断发生	R/W	0

● ISO7816 状态 1 寄存器 (0x18)

表 15-9 ISO7816 状态 1 寄存器 ISO7816_ STAT1

比特位	名称	描述	读/写标志	复 位 值
31:14		只读, 不可写	R	0
13	CARD_OU T_FLAG	CARD_CHECK_EN 使能后该位有效,该位写 1 清零。 1:检测到卡拔出(检测到输入端口的高电平脉宽大于 40mS) 0:未测到卡拔出(检测到输入端口的高电平脉宽不大于 40mS)	R	0
12	OLD_FLAG	OLD_EN 使能后该位有效,为配合 RA9105 的接收到 OLD 信号的中断标志位,该位写 1 清零。 1:接收到 OLD 信号。 0:未接收到 OLD 信号。	R/W	0
11	FRAME_E RR0	接收数据帧格式错误中断标志位,该位写1清零 1:发送接收数据帧格式错误,当传输错误中断使能位有效时产生中断 0:未发送接收数据帧格式错误	R/W	0
10	BDDIV_R1	波特率匹配为指示。FI 和 DI 是否匹配指示; FD 默认为 8'h01,时钟匹配,当写入的 FD 值不匹配时该位置 1。 1: 匹配 0: 不匹配	R	1
9	TX_FLAG1	发送缓冲区空标志。上电复位后自动置位,表示缓冲区空,可以写入数据。MCU 写入数据后标志自动清除,数据从发送缓冲寄存器移入移位寄存器后置 1。 1:数据发送缓冲区空 0:数据发送缓冲区内有数据待发送	R	1
8	RX_FLAG1	数据接收完成标志,7816接口控制器每收到1byte数据,根据接收的通道相应发出一次中断。硬件置位,读数据接收缓冲寄存器清零。	R	0

Kenergy	<u></u>		RN821X	<u> </u>
		1: 接收到 1byte 数据,数据接收缓冲区满		
		0: 未接收到数据,数据接收缓冲区空		
		数据接收忙标志位。硬件置位,软件清零		
7	RXBUSY1	硬件自动清置位		
		0: 数据接收空闲	R	0
		1:接收移位寄存器正在接收数据,收到起始位后自动置 1,收到停		
		止位后自动清零		
6	TXBUSY1	数据发送忙标志。硬件置位,软件清零		
		硬件自动清置位		
		0: 数据发送空闲	R	0
		1: 发送移位寄存器正在发送数据,发送起始位时置1,发送停止位		
		时自动清零		
		发送数据奇偶校验错误标志位。硬件置位,软件清零		
~	TXPAR_ER	对该位写1将清零	D	
5	RIF1	1: 发送数据时发生奇偶校验错误	R	0
		0: 发送数据时无奇偶校验错误		
4		接收数据奇偶校验错误标志位。硬件置位,软件清零		
	RXPAR_ER	对该位写1将清零	D MY	
	RIF1	1:接收数据时发生奇偶校验错误	R/W	0
		0: 接收数据时无奇偶校验错误		
	COL_IF1	发送数据冲突错误中断标志位。硬件置位,软件清零		
		对该位写1将清零	D 444	
3		0: 没有中断	R/W	0
		1: 中断发生		
	OVL_IF1	接收数据溢出错误标志位。硬件置位,软件清零		
2		对该位写1将清零		
		0: 无溢出错误	R/W	0
		1: 中断发生,接收缓冲寄存器未被读出,又接收到新的数据,溢		
		出错误标志有效		
1	RXIF1	数据接收中断标志位。数据从移位寄存器移入接收缓存寄存器后置		
		1。硬件置位,软件清零		
		对该位写 1 将清零	R/W	0
		0: 没有中断		
		1: 中断发生		
	TXIF1	数据发送中断标志位。数据从发送缓冲寄存器移入移位寄存器后置		
0		1.		
		硬件置位,软件清零		
		对该位写 1 将清零	R/W	0
		0: 没有中断		
		1: 中断发生		
	 017 粉提 0 字グ			

● ISO7816 数据 0 寄存器 (0x1C)

表 15-10 ISO7816 数据 0 寄存器 ISO7816_DAT0

少床片	夕砂	44.44	读/写标	复 位
比特位	名称	描述	志	值

保留		只读, 不可写	R	0
8	DATA0[8]	当 parsel 为用户自定义模式时,为数据帧中的 PARITY 位	R/W	0
7:0	DAT0	数据寄存器 0	R/W	0

● ISO7816 数据 1 寄存器 (0x20)

表 15-11 ISO7816 数据 1 寄存器 ISO7816_DAT1

比特位	名称	描述	读/写标 志	复 位 值
保留		只读,不可写	R	0
8	DATA1[8]	当 parsel 为用户自定义模式时,为数据帧中的 PARITY 位	R/W	0
7:0	DAT1	数据寄存器 1	R/W	0

16 IIC 接口

SoC 内置一个 I²C 接口控制器。

16.1 概述

I²C 接口控制器具备如下特性:

- ◎ 支持主模式和从模式;
- ◎ 支持 7-bit 地址;
- ◎ 支持多种分频比设置;
- ◎ 支持 100kbps 和快速模式 400kbps;

16.2 寄存器描述

表 16-1 I²C 寄存器基址

模块名	物理地址	映射地址
I ² C	0x40024000	0x40024000

表 16-2 I²C 寄存器偏移地址

寄存器名	地址偏移量	描述
I ² C_CTL	0x0	控制寄存器
I ² C_CLK	0x4	时钟配置寄存器
I ² C_S TAT	0x8	状态指示寄存器
I ² C_ADDR	0xC	从设备地址寄存器
I ² C_D ATA	0x10	收发数据寄存器

控制寄存器(0x0)

表 16-3 控制寄存器 I²C_CTL

比 特位	名称	描述	读/写标	复位值
31:6		只读, 不可写	R	0
5	MODE	模式选择位 1: 主机模式 0: 从机模式	R/W	0
4	ACK	ACK 发送使能 1:接收到第九个 SCL 的时候,产生 ACK 0:接收到第九个 SCL 的时候,不产生 ACK	R/W	0
3	IRQE	I ² C 中断使能	R/W	0

		0: 禁止中断		
		1: 使能中断		
		总线控制产生位,开始命令在总线为空闲状态或者主		
	:1 BUSCON	机是发送状态时有效。结束命令在主机是发送状态时		
		有效。		
2.1		当检测到 start 或者 stop 时序时,对命令位清零,	R/W	0
2.1		00: 没有动作	K/ W	U
		01: 产生 START 时序		
		10: 产生 STOP 时序		
		11: 保留		
		模块使能		
0	EN	1: I ² C 打开	R/W	0
		0: I ² C 关闭		

● 时钟配置寄存器(0x4)

表 16-4 时钟配置寄存器 I²C_ CLK

比 特	名称	描述				读/写标	复位值
31:3		只读, 不可写			R	0	
2:0	CLKDIV		速率计算公式	由 CLKDIV 页参数选择位产	产生,如下表。 产生 I ² C 高速/正 10 分频。	R/W	001

● 状态指示寄存器(0x8)

表 16-5 状态指示寄存器 I^2C_STAT

比 特位	名称	描述	读/写标志	复 位 值
31:9		只读, 不可写	R	0
8	DIR	读写方向标志 1:读。 0:写。	R	0
7	MATCH	地址匹配,检测到 start 或者 stop 时序后会清零 0: 地址不匹配 1: 地址匹配	R	0
6	BUSY	通讯状态标志	R	0

		0: IIC 处于空闲状态		
		1: IIC 处于正常通讯状态		
		发送冲突中断标志。写1清零		
_	gor	发送数据寄存器不为空或接收数据时,用户向数据寄	D 1111	
5	COL	存器写新的数据,将触发发送冲突中断标志。	R/W	0
		0: 没有触发发送冲突中断		
		1: 触发发送冲突中断		
		接收溢出中断标志。写1清零		
		接收数据时,当上一个接收数据未被取走前又收到新		
4	OVERF	的数据,将触发溢出中断标志	R/W	0
		0:没有触发溢出中断		
		1: 触发溢出中断		
		发送数据寄存器空错误标志。写1清零		
		从模式下, 主机要求从机发送数据, 但发送缓冲区为		
3	TXEMPT	空时,触发发送数据寄存器空错误中断标志	R/W	0
		0: 没有发生发送数据寄存器空错误		
		1: 触发发送数据寄存器空错误中断		
		传输完成中断标志。写 1 清零		
		发送数据时发送缓存为空或者接收数据时接收缓存		
2	TRANC	满,触发传输完成中断标志	R/W	0
		0: 传输未完成		
		1: 传输已完成		
	DVI VI G	收到 NACK 中断标志。写 1 清零		
1	RX_NAC	1: 收到 nack	R/W	0
	K	0:没有接收到 nack		
		STOP 时序检测中断标志。写 1 清零		
		关闭模块或者接收到 START 时序后,该位自动清零		
0	STPD	0: 没有检测到 STOP 时序	R/W	0
		1: 检测到 STOP 时序		
	1	I	1	

● 从设备地址寄存器(0xC)

表 16-6 从设备地址寄存器 I²C_ADDR

	77 TO 0 77 TO ELLE 14 17 HE 1 0 1 1 1 2 1 1 2 1 1 2 1 1				
比 特 位	名称	描述	读/写标志	复 位 值	
31:8		只读, 不可写	R	0	
7:1	SADR	设备地址,在传输地址期间不可写 主机模式时,表示从设备的地址; 从机模式时,该地址用来与主机发来的地址进行比较	R/W	0	
0	RW	主机读写方向控制位 0: 写 1: 读	R/W	0	

● 收发数据寄存器(0x10)

表 16-7 收发数据寄存器 I²C_ DATA

比 特 名称	描述	读/写标志	复 位 值
--------	----	-------	-------

31:8		只读, 不可写	R	0
7:0	TRDA T	接收/发送数据	R/W	0

17 SPI 接口

SoC 内置一个 SPI 接口。

RN8211/RN8211B 不支持 SPI 接口。

17.1 概述

SPI 接口控制器具备如下特性:

- ◎ 支持 SPI 全双工模式;
- ◎ 支持主模式和从模式工作;
- ◎ 支持时钟的极性和相位设定;
- ◎ 支持发送和接收独立双缓冲区;
- ◎ 支持 LSB 和 MSB 传输模式 8 位, 16 位, 32 位可配置;
- ◎ 支持 256 种波特率可设, 最高 3.6864MHz;
- ◎ 支持数据传输完成中断;
- ◎ 支持数据传输冲突中断;
- ◎ 支持 SCSN 模式错误中断;

17.2 功能描述

SPI 接口符合标准的 SPI HOST 协议, SPI 时钟工作方式通过 CPOL(Clock Polarity)和 CPHA(Clock Phase) 参数设置: CPOL 决定时钟的前边沿是上升沿还是下降沿, CPHA 决定时钟的前边沿是数据采样还是数据建立。详细的工作模式如下表:

表 17-1 SPI 时钟工作方式

SPI 模式	CPOL/CPHA	前边沿	后边沿
0	0/0	上升沿,数据采样	下降沿,数据建立
1	0/1	上升沿,数据建立	下降沿,数据采样
2	1/0	下降沿,数据采样	上升沿,数据建立
3	1/1	下降沿,数据建立	上升沿,数据采样

数据传输大小支持 8/16/32bit 宽度, SPI 时钟源来自系统时钟, 经过一个分频系数后产生通讯时钟。 支持数据发送冲突中断、数据接收溢出中断、传输结束中断和 SS 模式出错中断等四种中断。

发送数据冲突,当一次数据发送正在进行中(txbusy 为 1),此时总线又有一次写命令,则 TXCOLIF 置 1,若 COL_IRQ_EN=1,则会产生中断,同时该发送命令不会响应,正在发送的数据会正常传输完成。

图 14-2 SPI 时钟工作方式

接收数据溢出:在下一次完整的接收数据进入移位寄存器之前,没有读取 RXDATA 寄存器,将产生接收数据溢出,则 RXCOLIF 置 1,若 COL_IRQ_EN=1,则会产生中断,同时新的接收数据会保存到接收数据寄存器中,原来没被读走的数据将被覆盖。

传输结束中断: 当传输结束时(sck_end),若TR_IRQ_EN=1,则会产生一个中断,同时TRIF置1。

SCSN 模式出错中断: 从模式下, SCSN 必须作为输入, 在数据传输过程中 SCSN 变高,则 SCSN 模式出错标志置 1; 在主模式下,只有使能主模式 SCSN 模式错误检测(SCSN_EN=1),同 时 SCSN 输入为低,则 SCSN 模式出错标志置 1。一旦 SCSN 模式出错标志为 1,则会终止正在进行的传输同时复位 SPI 模块,如果 ERR_IRQ_EN=1 还会产生一个中断。

17.3 寄存器描述

表 17-2 SPI 寄存器基址

模块名	物理地址	映射地址
UART0	0x40020000	0x40020000

表 17-3 SPI 寄存器偏移地址

寄存器名	地址偏移量	描述
SPI_CTL	0x0	控制寄存器
SPI_S TAT	0x4	状态指示寄存器
SPI_T XDATA	0x8	数据发送寄存器
SPI_RXDATA	0xC	数据接收寄存器

● 控制寄存器(0x0)

表 17-4 SPI 控制寄存器 SPI_CTL

比特位	名称	描述	读/写标志	复位值
31:22		只读,不可写	R	0

		发送 DMA 请求		
21	TX_DMA_EN	1: 使能 DMA 请求	R/W	0
		0: 不使能 DMA 请求		
		接收 DMA 请求		
20	RX_DMA_EN	1: 使能 DMA 请求	R/W	0
		0: 不使能 DMA 请求		
		SCK 时钟分频系数		
19:12	CLKDIV	SCK 频率=系统时钟频率/(2*(CLKDIV + 1))	R/W	0
		数据宽度选择		
		0: 8bit		
11:10	WIDTH	1: 16bit	R/W	0
11.10	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2: 32bit	10 11	
		3: 预留, 8bit		
		SCSN 模式错误检测使能,只适用于主模式		
		0: 不使能主模式 SCSN 模式错误检测, SCSN 为通用 IO		
9	SCSN_EN	1: 使能主模式 SCSN 模式错误检测, SCSN 作为 SPI 的输	R/W	0
		1: 仪形工模式 SCSIV 模式相 医恒侧,SCSIV 作为 SI I 的 侧		
		时钟相位选择		
o	СРНА	0: 前边沿采样数据	R/W	0
8	СРПА	1: 前边沿建立数据	K/ W	0
7	CDOL	时钟极性选择	D AV	
7	CPOL	0: "SCK"在空闲状态时被设置为低电平	R/W	0
		1: "SCK" 在空闲状态时被设置为高电平		
_	11.600	LSB/MSB 选择	D 444	
6	LMSB	0: MSB 先传输	R/W	0
		1: LSB 先传输		
		数据冲突中断使能		
5	TXCOL_IRQ_EN	0: 关闭写冲突中断	R/W	0
		1: 打开写冲突中断		
		数据冲突中断使能信号		
4	RXCOL_IRQ_EN	0: 关闭读冲突中断	R/W	0
		1: 打开读冲突中断		
		SCSN 模式错误中断使能		
3	ERR_IRQ_EN	0: 关闭模式错误中断	R/W	0
		1: 打开模式错误中断		
		数据传输中断使能		
2	TR_IRQ_EN	0: 关闭发送数据中断	R/W	0
		1: 打开发送数据中断		
		主从选择		
1	MAST/SLAV	1: MASTER	R/W	1
		0: SLAVE		
		使能信号		
0	EN	0: 关闭 SPI 接口	R/W	0
		1: 打开 SPI 接口		
	1	1	1	i .

● 状态寄存器(0x4)

表 17-5 SPI 状态寄存器 SPI_STAT

比特位	名称	描述	读/写标志	复位值
31:5		只读, 不可写	R	0
4	TXBUSY	数据发送忙状态标志。 0: 数据发送空闲,总线可以发写 SPITX 寄存器命令 1: 数据正在发送过程中,总线不能发写 SPITX 寄存器命令	R	0
3	TXCOLIF	写冲突标志。写 1 清零 正在发送(即 TXBUSY 为 1)时,用户向 SPI 写入新的发 送数据,则新的发送数据将被丢弃,并置写冲突标志为 1。 0:没有写数据冲突中断 1:产生写数据冲突中断	R/W	0
2	RXCOLIF	接收数据溢出标志。写 1 清零 连续数据接收时,如用户不读取 RXDATA 寄存器,将产生 接收数据溢出事件 0: 没有接收数据溢出中断 1: 产生接收数据溢出中断	R/W	0
1	ERRIF	SCSN 模式冲突中断标识位: SPI 为主模式,只有在 SCSN_EN 为1时,同时检测到"SCSN"输入电平为低,则 该位置 1; SPI 为从模式,"SCSN"作为从机的片选输入,在数据传输过程中,若"SCSN"输入电平为高,则该位置 1; 若 ERR_IRQ_EN=1,则会产生一个中断,一旦发生模式冲突错误,则 SPI 模块复位。该位写 1 清零。 0: 没有模式冲突中断 1: 产生模式冲突中断	R/W	0
0	TRIF	数据传输中断标识位,若数据传输结束,该位置 1,若TR_IRQ_EN=1,则会产生中断,该位写 1 清零。0:没有数据发送中断1:产生数据发送中断,发送数据寄存器为空	R/W	0

● 数据发送寄存器(0x8)

表 17-6 SPI 数据发送寄存器 SPI_TXDATA

比特位	名称	描述	读/写标志	复位值
31:0	TXDATA	数据发送寄存器	R/W	0

● 数据接收寄存器(0xC)

表 17-7 SPI 数据发送寄存器 SPI RXDATA

比特位	名称	描述	读/写标志	复位值
31:0	RXDATA	数据接收寄存器	R	0

18 选项字节

RN821x 内置了一个选项字节的区域,当芯片发生复位时,会自动配置选项字节,执行设定的指定功能。 选项字节包括对芯片保护,WDT,EMAP 和 RTC 的配置。

选项字节编程可以通过锐能微的编程工具(MINIPRO编程器或者ISP编程工具)进行设置,以MINIPRO编程器为例,打开编程选项对话框,即可对选项字节进行设置,如下图所示(详细的操作方法请见《MINIPRO

编程器使用手册》)。

18.1 芯片保护设置

选项字节提供的芯片保护功能可以保护RN821x内置的Flash/EEPROM,用户可以通关设置保护等级和ISP密码对芯片进行保护。保护机制提供了如下保护等级:

保护等级	名称	说明
0	CP0	无任何保护(ISP 访问也不需要密码)
1	CP1	SWD 接口可访问芯片,ISP 访问需要密码
2	CP2	禁止通过 SWD 接口访问芯片,ISP 访问需要密码
3	CP3	禁止通过 SWD 和 ISP 接口访问芯片(ISP 只提供整片擦除
		FLASH 的功能(在该保护等级下擦除操作会使芯片的保护等
		级将为 CP0))

18.2 WDT 设置

选项字节提供WDT的间隔中断,窗口打开周期,溢出时间,CPU睡眠设置,CPU调试设置,详细的意义请见WDT章节。如下表所示:

名称	描述	厂家默认值
间隔中断	0: Disable (不使能间隔中断)	0
	1: Enable (达到溢出事件的 75% 时产生间隔中断)	U
	0: 25%	
窗口打开周期	1: 50%	3
	2: 75%	

	3: 100% 在窗口打开期间将 0xBB 写入 WDTE 寄存器,看门狗清零并重新计数; 在窗口关闭期间将 0xBB 写入 WDTE 寄存器,会产生内部复位信号。			
溢出时间	0: 16ms 1: 32ms 2: 128ms 3: 512ms 4: 1s 5: 2s 6: 4s 7: 8s	4		
CPU 睡眠设置	0: Disable (当 CPU 处于 sleep 或者 deepsleep 的时候不开启 WDT) 1: Enable (当 CPU 处于 sleep 或者 deepsleep 的时候开启 WDT)			
O: Disable (当 CPU 处于调试状态时不开启 WDT) 1: Enable (当 CPU 处于调试状态时开启 WDT) 注: CPU 处于调试状态指的是用户通过调试接口将 Cortex M 指针停止计数)。		0		

18.3 EMAP 设置

为了支持超过192KB的程序空间,RN821X(只有RN8215支持EMAP设置,RN8211/RN8211B/RN8213不支持EMAP设置)可以通过选项字节将32K EEPROM设置为192K Flash的扩展程序空间。如果选择EEPROM作为192K Flash的扩展程序空间,RN821X的程序空间可以扩展到224KB,EEPROM的读地址直接跟在FLASH后面,即从0x30000(REMAP=0x0)开始。

18.4 RTC 设置

RN821X的RTC内置了自动温补功能,可以对32k晶体进行自动温度补偿,以提供在-25℃~70℃范围输出准确的秒脉冲。

其中,晶体的温度频率曲线如下图所示,是以顶点为25度的二次曲线(f=f0-a1pha*(T-T0), T0为25度)。而事实上高温段(25 $\mathbb{C} \sim 85$ \mathbb{C})与低温段(-25 $\mathbb{C} \sim 70$ \mathbb{C})的二次曲线参数alpha并不相同,所以选项字节提供了RTC_ALPHAL和RTC_ALPHAH参数,填入的值为round(alpha*32768)其中round为四舍五入操作。

如果选用的是精工(Seiko)提供的高一致性晶体(VT-200-F), ALPHAL=0x3ee, ALPHAH=0x4cf。

19 编程支持

SoC 支持对内置 EEPROM 和 FLASH 的编程。

建议客户调用锐能微库函数实现 IAP 功能;使用锐能微编程器完成 ISP 功能。

19.1 概述

SoC 编程系统具备如下特性:

- ◎ 内置对 FLASH/EEPROM 内容的保护机制
- ◎ 支持 ISP 编程模式;
- ◎ 支持 IAP 编程模式;
- ◎ 支持通过 SWD 下载烧录模式;
- ◎ 支持量产烧录模式;

19.2 Flash/EEPROM 保护机制

Flash/EEPROM保护是允许用户在系统中通过使能不同的安全级别来限制对片内Flash和EEPROM访问的保护机制。保护机制保护了如下保护等级。用户可以通过"选项字节"设置芯片的保护等级。

表 19-1 SoC 保护等级

保护等 级	名称	说明
0	CP0	无任何保护(ISP 访问也不需要密码)
1	CP1	SWD 接口可访问芯片,ISP 访问需要密码
2	CP2	禁止通过 SWD 接口访问芯片,ISP 访问需要密码
3	CP3	禁止通过 SWD 和 ISP 接口访问芯片 (ISP 只提供整
		片擦除 FLASH 的功能(在该保护等级下擦除操作
		会使芯片的保护等级将为 CPO))

19.3 在系统编程(ISP)

用户可以将 P30 信号拉低,并复位 SoC, 让 SoC 进入 ISP 模式。ISP 模式的连接图如图 18-1 所示。图 18-1 ISP 硬件配置图

ISP 的主要流程:

按连接图配置并连接目标系统和控制主机;

复位目标系统:

控制主机配置串口为1个起始位,8个数据位,1个停止位;

控制主机发送"?";

目标系统响应 "Synchnonized/r/n";

控制主机发送 "Synchnonized/r/n";

目标系统响应 "7373(1843)/r/n"; (如果当前系统频率为 7.3728M,则发送 7373;如果为 1.8432M,则发送 1843)

控制主机可以根据需要执行对应的 ISP 命令;

19.3.1 ISP 通讯协议

所有ISP 命令都以单个ASCII 字符串形式发送。字符串应当以回车(/r) 和/或换行(/n) 控制字符作为结束符。

所有ISP 响应都是以<CR><LF>结束的ASCII 字符串形式发送。

数据以原始数据(不转化为ASCII码)发送和接收。

● 命令格式

命令 参数 0 参数 1 ... 参数 n/r/n

{数据}

● 响应格式

返回代码/r/n

响应0/r/n

响应1/r/n

...

响应n/r/n

{数据}

● 数据格式

在启动WM,RM两个命令后,会启动ISP的数据传输。数据以行为单位进行传输,1行最多包含16个32 bit (不满16个数据,则发相应个数)的数据;每传输完1个Block(1个Block最多包含32行(不满32行,则发相应行数))数据,发送一个校验行(该Block数据的累加校验和的负数补码(以word进行计算))。

当RN821X接收完一个完整的Block数据后,会对数据进行校验,如果校验通过,则发送"OK/r/n"命令;如果数据校验出错,或者接收到不合法的数据包,发送"RS/r/n",当编程器接收到该命令,需要重新发送该Block数据。

数据传输形式:

当行内数据为 0x7e 时,转义成 0x7d, 0x5e 发送; 当行内数据为 0x7d 时,转义为 0x7d, 0x5d 发送数据行格式: (B 代表传输数据 Byte, 为 16 进制)

表 19-2 ISP 数据传输格式

行首	1	2	3	4	5	6	•••••	64	65	行尾
0x7e	Num	В0	B1	B2	В3	B4	•••••	B62	B63	0x7e

校验行格式: (ASCII 码。S 代表累加校验和 SUM)

表 19-3 ISP 数据校验格式

行首	1	2	3	4	5	行尾
0x7e	0xff	S0	S1	S2	S3	0x7e

19.3.2 使用的 SoC 资源

ISP使用片内0x10001000到0x10002800范围内的RAM, 堆栈位于RAM的顶部。Flash, EEPROM能使用 0x10000000-0x10001000(4KB)范围内的RAM进行编程。

19.3.3 ISP 命令

每个ISP命令都支持具体的状态代码。当接收到未定义命令时,命令处理程序发送返回代码INVALID_COMMAND。

命令和返回代码为ASCII 格式。只有当接收到的ISP命令执行完毕时,ISP 命令处理器才会发送 CMD SUCCESS,这时主机才能发送新的ISP 命令。

ISP命令分成三种:

- 1. 普通命令:只在CPO,或者在CP1,CP2并且保护密码正确的情况下,可以访问
- 2. UN命令在CPO, CP1, CP2保护等级(保护密码不提供)下,都能访问
- 3. FC, AL命令在任何情况下都能访问

表 19-4 ISP命令

命令	用法	属性
设置波特率	BS〈波特率〉〈停止位〉	普通命令
回显	RD〈开关设置〉	普通命令
写内存	WM〈地址〉〈字节长度〉〈模式〉	普通命令
读内存	RM〈地址〉〈字节长度〉〈模式〉	普通命令
Flash 页擦除	FP〈页地址〉	普通命令
Flash 块擦除	FS〈块地址〉	普通命令
Flash 片擦除	FC	特殊命令
Flash 块查空	FQ〈块地址〉	普通命令
EEPROM 页擦除	EP〈页地址〉	普通命令
EEPROM 块擦除	ES〈块地址〉	普通命令
EEPROM 片擦除	EC	普通命令
EEPROM 块查空	EQ〈块地址〉	普通命令
FLASH 编程	FW〈FLASH 地址〉〈RAM 地址〉〈字节长度〉	普通命令
EEPROM 编程	EW〈EEPROM 地址〉〈RAM 地址〉〈字节长度〉	普通命令
芯片 ID	ID	普通命令
读 ISP 版本	VE	普通命令
内存比较	MC〈地址 1〉〈地址 2〉〈字节长度〉	普通命令
运行	GO 〈地址〉	普通命令
解锁	UN〈密码〉	特殊命令

获取保护等级	AL	特殊命令
使能 PFPM	PM〈开关设置〉	普通命令
软件复位	RS	普通命令
使 能 NVM	NV <nvm选项></nvm选项>	普通命令
(FLASH/EEPROM)		

● 波特率设置

表 19-5 ISP 波特率设置命令

At 12 a 22 OC14 1 SCTT 14 (
命令	BS〈波特率〉〈停止位〉			
输入	波特率: 9600 或 19200 或 38400 或 57600 或 115200			
	停止位: 1 或 2			
返回代码	CMD_SUCCESS 或 INVALID_BAUD_RATE 或 INVALID_STOP_BIT 或 INVALID_PARAM			
说明 改变 ISP 通讯串口帧格式,包括波特率和停止位。串口起始位固定为				
	固定为 8。新帧格式在返回 CMD_SUCCESS 后生效。			
范例	"BS 9600 2"设置串口波特率为9600bps,2个停止位。			

● 回显

表 19-6 ISP 回显命令

命令	RD〈开关设置〉
返回代码	CMD_SUCCESS 或 INVALID_PARAM
说明	命令和数据回显。缺省为开。回显打开状态下,SoC 会将收到的命令和数据 发回主机。
范例	"RD 0"关闭回显。

● 写内存

表 19-7 ISP 写内存命令

命令	WM〈地址〉〈字节长度〉〈模式〉
输入	地址:起始地址,应该32位对齐;
	字节数:应该是4的倍数;
	模式:0为串口,1为并口
返回代码	CMD_SUCCESS 或 FM_MODE_ERROR 或 ADDR_NOT_ALIGN 或 COUNT_ERROR 或
	COUNT_ERROR 或 ADDR_NOT_MAPPED 或 INVALID_PARAM
说明	向片内 SRAM 写入数据
范例	"WM 268436224 4 0"
	"78"
	"56"
	"34"
	"12"
	采用串口向0x10000300地址写入0x12345678

● 读内存

表 19-8 ISP 读内存命令

命令	RM〈地址〉〈字节长度〉〈模式〉
输入	地址:读出地址,应该32位对齐;
	字节数:应该是4的倍数;
	模式:0为串口,1为并口
返回代码	CMD_SUCCESS 或 FM_MODE_ERROR 或 ADDR_NOT_ALIGN 或 COUNT_ERROR 或

	COUNT_ERROR 或 ADDR_NOT_MAPPED 或 INVALID_PARAM					
说明	读取 SoC 片内 SRAM 的内容					
范例	"RM 268436224 4 0"采用串口读取片内SRAM地址0x10000300的内容。					

● Flash 页擦除

表 19-9 ISP Flash 页擦除命令

命令	FP 〈页地址〉(FPGA 版本为 0 到 3071)
输入	页地址: 0到 1535 之间可选;
返回代码	CMD_SUCCESS 或 INVALID_PAGE 或 INVALID_PARAM
说明	擦除 SoC 片上 FLASH 指定块
范例	"FP 0"擦除第0页的内容

● Flash 块擦除

表 19-10 ISP Flash 块擦除命令

命令	FS〈块地址〉
输入	块地址: 0到47之间可选;
返回代码	CMD_SUCCESS 或 INVALID_SECTOR 或 INVALID_PARAM
说明	擦除 SoC 片上 FLASH 指定块
范例	"FS 0"擦除第0块的内容

● Flash 片擦除

表 19-11 ISP Flash 片擦除命令

命令	FC
输入	无
返回代码	CMD_SUCCESS 或 INVALID_PARAM
说明	擦除 SoC 片上 FLASH 全部内容。
范例	"FC"擦除片上FLASH全部内容

● Flash 块查空

表 19-12 ISP Flash 块查空命令

命令	FQ〈块地址〉
命令	
输入	块地址: 0到47之间可选;
返回代码	CMD_SUCCESS 或 INVALID_SECTOR 或 INVALID_PARAM
说明	检查片上 FLASH 指定块的内容是否为空(擦除后未编程)
范例	"FQ 1"检查第1块的内容是否为空

■ EEPROM 页擦除

表 19-13 ISP EEPROM 页擦除命令

命令	EP〈页地址〉
输入	块地址: 0 到 511 之间可选; (FPGA 版本为 0 到 1023)
返回代码	CMD_SUCCESS 或 INVALID_PAGE 或 INVALID_PARAM
说明	擦除 SoC 片上 EEPROM 指定块
范例	"EP 1"擦除第1页的内容

● EEPROM 块擦除

表 19-14 ISP EEPROM 页擦除命令

命令

输入	块地址: 0到7之间可选; (FPGA版本为0到15)
返回代码	CMD_SUCCESS 或 INVALID_SECTOR 或 INVALID_PARAM
说明	擦除 SoC 片上 EEPROM 指定块
范例	"ES 1"擦除第1块的内容

● EEPROM 片擦除

表 19-15 ISP EEPROM 片擦除命令

命令	EC
输入	无
返回代码	CMD_SUCCESS 或 INVALID_PARAM
说明	擦除 SoC 片上 FLASH 全部内容。片擦除命令页将清除密钥和保护等级设置,将芯片置回出厂状态。
范例	"EC"擦除片上EEPROM全部内容

● EEPROM 块查空

表 19-16 ISP EEPROM 块查空命令

命令	EQ〈块地址〉
输入	页地址: 0到7之间可选; (FPGA版本为0到15)
返回代码	CMD_SUCCESS 或 INVALID_SECTOR 或 INVALID_PARAM
说明	检查片上 EEPROM 指定块的内容是否为空(擦除后未编程)
范例	"EQ 1"检查第1块的内容是否为空

● Flash 编程

表 19-17 ISP Flash 编程命令

命令	FW〈FLASH 地址〉〈RAM 地址〉〈字节长度〉
输入	FLASH 地址: 要写入的 FLASH 目标地址
	RAM 地址: 源缓冲区所在的 SRAM 地址
	字节长度:写入的字节数量。(如果字节长度不为 Flash 页的字节数,则该
	Flash 也其余内容填充为 0)
返回代码	CMD_SUCCESS 或 COUNT_ERROR 或 SRC_ADDR_NOT_ALIGN 或
	SRC_ADDR_NOT_MAPPED 或 DST_ADDR_NOT_ALIGN 或 DST_ADDR_NOT_MAPPED 或
	INVALID_PARAM
说明	用于编程Flash 存储器。
范例	"FW 0 268436224 128"将SRAM地址0x10000300开始的128字节复制到FLASH
	地址0

● EEPROM 编程

表 19-18 ISP EEPROM 编程命令

命令	EP〈EEPROM 地址〉〈RAM 地址〉〈字节长度〉
输入	EEPROM 地址: 要写入的 FLASH/EEPROM 目标地址
	SRAM 地址: 源缓冲区所在的 SRAM 地址
	字节长度:写入的字节数量
返回代码	CMD_SUCCESS 或 COUNT_ERROR 或 SRC_ADDR_NOT_MAPPED 或
	DST_ADDR_NOT_MAPPED 或 INVALID_PARAM
说明	用于编程EEPROM 存储器。
范例	"EP 0 268436224 128"将SRAM地址0x10000300开始的128字节复制到

EEPROM地址0

● 芯片 ID

表 19-19 ISP 芯片 ID 命令

命令	ID
输入	无
返回代码	CMD_SUCCESS 或 INVALID_PARAM
说明	返回芯片ID号
范例	"ID"将返回"9103"

● 读 ISP 版本

表 19-20 ISP 读 ISP 版本命令

命令	VE
输入	无
返回代码	CMD_SUCCESS 或 INVALID_PARAM
说明	返回ISP版本号
范例	"VE"将返回"1.0"

● 内存比较

表 19-21 ISP 内存比较命令

命令	MC 〈地址 1〉 〈地址 2〉 〈字节长度〉
输入	地址1(DST): 要比较的内存区域1起始地址。应当与字对齐;
	地址2(SRC):要比较的内存区域2起始地址。应当与字对齐;
	字节长度: 待比较的字节数, 应当为 4 的倍数;
返回代码	CMD_SUCCESS 或 COUNT_ERROR 或 SRC_ADDR_NOT_ALIGN 或
	SRC_ADDR_NOT_MAPPED 或 DST_ADDR_NOT_ALIGN 或 DST_ADDR_NOT_MAPPED 或
	COMPARE_ERROR 或 INVALID_PARAM
说明	该命令用来比较存储器两个区域的内容
范例	"MC 268436224 268436224 4"将SRAM地址0x10000300的4个字节与SRAM地
	址0x10000300的4个字节进行比较

运行

表 19-22 ISP 内存比较命令

命令	GO 〈地址〉
输入	地址: 代码执行起始的 Flash 或 RAM 地址。该地址必须为 Thumb 地址
返回代码	CMD_SUCCESS 或 ADDR_NOT_THUMB 或 ADDR_NOT_MAPPED 或 INVALID_PARAM
说明	该命令用于执行位于RAM 或Flash 存储器当中的程序。一旦成功执行该命令,就有可能不再返回ISP 命令处理程序。
范例	"GO 5"跳转到地址0x00000004处执行

● 解锁

表 19-23 ISP 解锁命令

命令	UN
输入	密码: 32 位 16 进制数
返回代码	CMD_SUCCESS 或 INVALID_PASS 或 INVALID_PARAM
说明	该命令用于解锁ISP.
范例	"UN 567"输入密码567解锁ISP

● 获取保密等级

表 19-24 ISP 获取保密等级命令

命令	AL
输入	无
返回代码	CMD_SUCCESS 或 INVALID_PARAM
说明	该命令用于获取SoC当前的保护等级
范例	"AL"将返回SoC当前的保护等级

● 使能 PFPM

表 19-25 ISP 使能 PFPM 命令

命令	PM〈开关设置〉
输入	开关设置: 0(关)或1(开)
返回代码	CMD_SUCCESS 或 INVALID_PARAM
说明	该命令使能/不使能PFPM(并行编程模式)
范例	"PM 1"将使能PFPM

● 软件复位

表 19-26 ISP 系统复位命令

命令	RS
输入	无
返回代码	CMD_SUCCESS 或 INVALID_PARAM
说明	该命令触发软件复位
范例	"RS"将触发软件复位

● 使能 NVM

表 19-27 ISP 使能 NVM 命令

命令	NV <nvm 选项=""></nvm>
输入	NVM 选项: 0 (Flash) 或 1 (EEPROM)
返回代码	CMD_SUCCESS 或 INVALID_PARAM
说明	该命令使能Flash或者EEPROM
范例	"NV 0"将使能Flash写,编程操作。

19.3.4 ISP 返回代码

表 19-25 ISP 返回码

返回码(ASCII	符号	说明
码)		
0	CMD_SUCCESS	成功执行命令。只有成功执行命令后,ISP 处理
		器才发送该代码
1	INVALID_COMMAND	无效命令
2	INVALID_PARAM	无效参数(参数的 ASCII 码不为 0-9)
3	INVALID_BAUD_RATE	无效波特率
4	INVALID_STOP_BIT	无效停止位
5	ADDR_NOT_ALIGN	地址不是以字为边界

6	COUNT_ERROR	字节计数值不是 4 的倍数
7	ADDR_NOT_MAPPED	所访问的地址空间越界
8	INVALID_SECTOR/INVALID_PAGE	无效 SECTOR_NUM 或者 PAGE_NUM
9	SECTOR _NOT_BLANK	SECTOR 非空
10	SRC_ADDR_NOT_ALIGN	源地址不是以字为边界
11	SRC_ADDR_NOT_MAPPED	所访问的源地址空间越界
12	DST_ADDR_NOT_ALIGN	目的地址不是以字节为边界
13	DST_ADDR_NOT_MAPPED	所访问的目的地址空间越界
14	COMPARE_ERROR	比对错误
15	FM_MODE_ERROR	操作内存模式错误
16	ADDR_NOT_THUMB	地址不为 Thumb 指令
17	INVALID_PASS	错误密码

19.4 在应用编程(IAP)

对于在应用编程,应当通过寄存器r0中的字指针来调用IAP程序,该字指针指向含有命令代码和参数的存储器(RAM)。IAP命令的结果返回到寄存器r1所指向的结果表。用户可以把寄存器r0 和r1 中的指针赋予相同的值,如此便能将命令表复用来存放结果。参数表应当大到足够保存所有的结果以防结果的数目大于参数的数目。参数传递见图18-2。参数和结果的数目根据IAP命令而有所不同。"Flash编程","EEPROM编程"命令参数的最大数目为4。结果的数目为1。命令处理器在接收到一个未定义的命令时发送状态代码INVALID_COMMAND。IAP程序是Thumb代码,驻留在地址0x1800_1c01。

图18-2 IAP参数传递

19.4.1 IAP 命令

表 19-26 IAP 命令

IAP 命令	命令代码	说明
Flash 页擦除	0x50	参看ISP章节
Flash 块擦除	0x51	参看ISP章节
flash 片擦除	0x52	参看ISP章节

Flash 块查空	0x53	参看ISP章节
EEPROM 页擦除	0x54	参看ISP章节
EEPROM 块擦除	0x55	参看ISP章节
EEPROM 片擦除	0x56	参看 ISP 章节
EEPROM 块查空	0x57	参看 ISP 章节
Flash 编程	0x58	参看 ISP 章节
EEPROM 编程	0x59	参看 ISP 章节
使能 NVM	0x5a	参看 ISP 章节
模拟软件复位	0x5b	参看 ISP 章节

19.4.2 IAP 使用

IAP用于以下两个方面:

- ◎ 在线升级(更新 FLASH);
- ◎ 客户数据信息(电量等)更新(更新 EEPROM);

在线升级时需要对Flash进行擦除/写操作。Flash擦写操作持续4ms左右,会增加在此期间发生的中断的处理延迟。

一种 IAP 实现方法:

用户需要实现在线升级时,需要在软件设计中增加一个 IAP 升级的程序段。这段程序实现通过通讯口(如 UART) 从远程主机接收程序或数据,并使用 SoC 提供的 IAP 接口,将这些程序或数据写入到 SoC 内部的 EEPROM 或 FLASH 中。

19.5 量产平台

Renergy 提供了多种编程手段对芯片进行程序编程和选项编程,具体可参见《RN821x_RN831x 应用笔记 008-编程平台使用说明》。

20 封装尺寸

SYMBOL		MILLIMETER		
	MIN	NOM	MAX	
A			1.6	
A1	0.05		0.20	
A2	1.35	1.40	1.45	
A3	0.59	0.64	0.69	
b	0.19		0.27	
b1	0.18	0.20	0.23	
c	0.13		0.18	
c1	0.12	0.13	0.14	
D	15.80	16.00	16.20	
D1	13.90	14.00	14.10	
Е	15.80	16.00	16.20	
E1	13.90	14.00	14.10	
eB	15.05		15.35	
e	0.50BSC			
L	0.45		0.75	
L1	1.00BSC			
θ	0		7°	

LQFP64L (0707×1.4)

7.00×7.00×1.40

e=0.40

SYMBOL	MILLIMETER		
	MIN	NOM	MAX
A			1.6
A1	0.05		0.20
A2	1.35	1.40	1.45
A3	0.59	0.64	0.69
b	0.17		0.25
b1	0.16	0.18	0.20
С	0.13		0.18
c1	0.12	0.127	0.14
D	8.80	9.00	9.20
D1	6.90	7.00	7.10
Е	8.80	9.00	9.20
E1	6.90	7.00	7.10
eB	8.10		8.25
e	0.40BSC		
L	0.40		0.65
L1	1.00BSC		
θ	0		7°