Лабораторная работа №4:

Условная оптимизация

Дисциплина: Методы оптимизации

Цель работы: Изучение и практическое освоение методов условной оптимизации для решения задач нелинейного программирования с ограничениями.

Теоретическая часть

Введение в условную оптимизацию

Задачи условной оптимизации возникают, когда необходимо найти минимум или максимум функции при наличии ограничений на ее переменные. Математическая постановка задачи в общем виде формулируется как:

 $\min_{x\in\mathbb{R}^n} f(x)$

при условиях:

$$g_i(x) \leq 0, \quad i=1,\ldots,m \ h_j(x) = 0, \quad j=1,\ldots,k \ x_l \leq x \leq x_u$$

где f(x) - целевая функция, $g_i(x)$ - функции ограничений-неравенств, $h_j(x)$ - функции ограничений-равенств, x_l и x_u - нижние и верхние границы переменных.

Основные понятия

Допустимое множество - множество точек, удовлетворяющих всем ограничениям:

$$\Omega = \{x \in \mathbb{R}^n: g_i(x) \leq 0, h_j(x) = 0, x_l \leq x \leq x_u\}$$

Активные ограничения - ограничения, которые выполняются как равенства в точке минимума. Различают:

- Активные ограничения-неравенства: $g_i(x^*)=0$
- Активные ограничения-равенства: $h_j(x^st)=0$

Локальный минимум - точка $x^* \in \Omega$ называется точкой локального минимума, если существует окрестность U этой точки такая, что $f(x^*) \leq f(x)$ для всех $x \in U \cap \Omega$.

Глобальный минимум - точка $x^* \in \Omega$ называется точкой глобального минимума, если $f(x^*) \leq f(x)$ для всех $x \in \Omega$.

Условия оптимальности Куна-Таккера

Для задачи нелинейной оптимизации с ограничениями-неравенствами:

$$\min f(x)$$
 при условиях $g_i(x) \leq 0, \quad i = 1, \ldots, m$

определим функцию Лагранжа:

$$L(x,\lambda) = f(x) + \sum_{i=1}^m \lambda_i g_i(x)$$

где $\lambda_i \geq 0$ - множители Лагранжа.

Теорема Куна-Таккера (необходимые условия оптимальности):

Если x^* - точка локального минимума и выполнены условия регулярности (например, условие линейной независимости градиентов активных ограничений), то существуют множители Лагранжа $\lambda^*=(\lambda_1^*,\dots,\lambda_m^*)$ такие, что:

1. Стационарность:

$$\nabla_x L(x^*, \lambda^*) = \nabla f(x^*) + \sum_{i=1}^m \lambda_i^* \nabla g_i(x^*) = 0$$

2. Допустимость:

$$g_i(x^*) \leq 0, \quad i = 1, \ldots, m$$

3. Дополняющая нежесткость:

$$\lambda_i^* g_i(x^*) = 0, \quad i = 1, \dots, m$$

4. Неотрицательность:

$$\lambda_i^* \geq 0, \quad i = 1, \dots, m$$

Для задач с ограничениями-равенствами и неравенствами условия дополняются соответствующими условиями для ограничений-равенств.

Методы условной оптимизации

1. Метод доверительной области (trust-constr)

Алгоритм метода:

- 1. Инициализация: x_0, Δ_0
- 2. Аппроксимация: построение квадратичной модели целевой функции и линейной модели ограничений
- 3. Решение подзадачи:

$$\min_{p\in\mathbb{R}^n}m_k(p)=f(x_k)+
abla f(x_k)^Tp+rac{1}{2}p^TB_kp$$
при условиях: $g_i(x_k)+
abla g_i(x_k)^Tp\leq 0,\|p\|\leq \Delta_k$

4. Обновление доверительной области на основе соотношения фактического и предсказанного

уменьшения:

$$ho_k=rac{f(x_k)-f(x_k+p_k)}{m_k(0)-m_k(p_k)}$$

Параметры радиуса доверительной области:

- ullet Δ_0 начальный радиус доверительной области
- ullet Δ_{max} максимальный радиус доверительной области
- Δ_{min} минимальный радиус доверительной области
- $\,\eta_1,\eta_2$ пороговые значения для принятия шага ($0<\eta_1<\eta_2<1$)
- ullet γ_1,γ_2 коэффициенты уменьшения/увеличения радиуса ($0<\gamma_1<1<\gamma_2$)

Критерии сходимости:

- $\ \epsilon_g$ допуск на норму градиента: $\|
 abla L(x^*, \lambda^*) \| \le \epsilon_g$
- ullet ϵ_c допуск на выполнение ограничений: $\|c(x^*)\| \leq \epsilon_c$
- ullet ϵ_x допуск на изменение переменных: $\|x_{k+1} x_k\| \leq \epsilon_x$

Параметры подзадачи:

- B_k аппроксимация матрицы Гессе лагранжиана
- $m{m{\circ}} \;\;
 ho_k = rac{f(x_k) f(x_k + p_k)}{m_k(0) m_k(p_k)}$ показатель качества шага

В методе доверительной области р - это вектор шага, определяемый как решение подзадачи минимизации в пределах доверительной области:

$$p_k = rg \min_{p \in \mathbb{R}^n} m_k(p)$$

где:

- ullet $p\in\mathbb{R}^n$ вектор шага из текущей точки x_k
- $m_k(p)$ локальная квадратичная модель целевой функции

Свойства параметра р

1. Ограничение нормы:

$$\|p\| \leq \Delta_k$$

где Δ_k - текущий радиус доверительной области

2. Структура квадратичной модели:

$$m_k(p) = f(x_k) +
abla f(x_k)^T p + rac{1}{2} p^T B_k p$$

3. Условия оптимальности для р:

Для найденного p_k должны выполняться условия Каруша-Куна-Таккера:

$$egin{aligned} (B_k + \lambda I)p_k +
abla f(x_k) + A_k^T \mu &= 0 \ \mu_i(g_i(x_k) +
abla g_i(x_k)^T p_k) &= 0 \ \mu_i &\geq 0 \ \|p_k\| &\leq \Delta_k \end{aligned}$$

Вычислительные аспекты

Определение длины шага:

- ullet Если $\|p_k\| < \Delta_k$, то ограничение неактивно
- ullet Если $\|p_k\|=\Delta_k$, то шаг достигает границы доверительной области

Связь с фактическим шагом:

Новая точка вычисляется как:

$$x_{k+1} = x_k + p_k$$

Критерий принятия шага:
$$\rho_k = \frac{\text{actual reduction}}{\text{predicted reduction}} = \frac{f(x_k) - f(x_k + p_k)}{m_k(0) - m_k(p_k)}$$

Геометрическая интерпретация

- р направление и длина шага внутри доверительной области
- р балансирует между направлением наискорейшего спуска и учетом кривизны функции
- При малых Δ_k : р приближается к направлению наискорейшего спуска
- При больших Δ_k : р приближается к шагу Ньютона

Функция scipy.optimize.minimize()

Ключевые параметры:

- gtol допуск на градиент (обычно 1e-8)
- barrier_tol точность для барьерных методов
- initial_tr_radius начальный радиус доверительной области
- max_tr_radius максимальный радиус доверительной области
- eta порог принятия шага (0 < η < 1)
- initial_constr_penalty начальный коэффициент штрафа

Специфические параметры:

- factorization_method метод факторизации матриц
- hess_update_strategy стратегия обновления гессиана
- subproblem_algorithm алгоритм решения подзадачи
- verbose уровень детализации вывода (0-3)

2. Последовательное квадратичное программирование (SLSQP)

На каждой итерации решается квадратичная подзадача:

$$\min_{d \in \mathbb{R}^n} rac{1}{2} d^T H_k d +
abla f(x_k)^T d$$

при условиях:

$$abla g_i(x_k)^T d + g_i(x_k) \leq 0$$
 $abla h_i(x_k)^T d + h_i(x_k) = 0$

где H_k - аппроксимация матрицы Гессе лагранжиана.

Параметры квадратичной подзадачи:

- ullet H_k аппроксимация $abla^2_{xx} L(x_k, \lambda_k, \mu_k)$
- ullet ϵ_H параметр регуляризации гессиана
- au параметр для обеспечения положительной определенности

Критерии остановки:

• Первый порядок оптимальности:

$$\left\| \begin{bmatrix}
abla f(x) + A(x)^T \lambda \ c(x) \end{bmatrix}
ight\| \leq \epsilon_{opt}$$

ullet Допуск дополняющей нежесткости: $\|\min(\lambda, -c(x))\| \leq \epsilon_{comp}$

Параметры обновления:

- ullet $lpha_k$ длина шага, определяемая условием Вольфа или Армихо
- ullet eta параметр уменьшения шага (0<eta<1)

Параметр d

Математическое определение

В методе SLSQP **d** - это вектор направления поиска, определяемый как решение квадратичной подзадачи программирования:

$$d_k = rg \min_{d \in \mathbb{R}^n} q_k(d)$$

где квадратичная подзадача имеет вид:

$$egin{aligned} \min_{d \in \mathbb{R}^n} rac{1}{2} d^T H_k d +
abla f(x_k)^T d \ &
abla g_i(x_k)^T d + g_i(x_k) \leq 0 \quad ext{(неравенства)} \ &
abla h_i(x_k)^T d + h_i(x_k) = 0 \quad ext{(равенства)} \end{aligned}$$

Свойства параметра d

1. Локальная аппроксимация:

- d представляет направление, которое минимизирует квадратичную аппроксимацию целевой функции
- Одновременно удовлетворяет линейным аппроксимациям ограничений

2. Условия оптимальности:

Для оптимального d_k выполняются условия ККТ:

$$egin{aligned} H_k d_k +
abla f(x_k) + \sum \lambda_i
abla g_i(x_k) + \sum \mu_j
abla h_j(x_k) = 0 \ \lambda_i (
abla g_i(x_k)^T d_k + g_i(x_k)) = 0 \ \lambda_i & \geq 0 \
abla h_j(x_k)^T d_k + h_j(x_k) = 0 \end{aligned}$$

Структура и компоненты

Составляющие направления:

- Тангентальная компонента движение вдоль допустимого множества
- Нормальная компонента движение toward допустимого множества

Связь с полным шагом:

Фактическое обновление переменных:

$$x_{k+1} = x_k + \alpha_k d_k$$

где $lpha_k$ - длина шага, определяемая линейным поиском.

Вычислительные аспекты

Определение допустимости:

- Если $d_k=0$ и условия ККТ выполнены, достигнута стационарная точка
- Направление **d** обеспечивает одновременное улучшение целевой функции и соблюдение ограничений

Свойства матрицы Гессе:

- H_k положительно определенная аппроксимация гессиана лагранжиана
- Обеспечивает выпуклость квадратичной подзадачи

Геометрическая интерпретация

- d направление, которое ведет к допустимой точке с улучшенным значением функции
- В окрестности решения **d** стремится к нулю
- Направление учитывает как градиент целевой функции, так и активные ограничения

Функция scipy.optimize.minimize()

Основные параметры:

- ftol допуск по изменению функции (обычно 1e-6)
- ерѕ размер шага для численного дифференцирования
- maxiter максимальное число итераций
- disp флаг вывода результатов (0/1)

Параметры точности:

- tol общая точность решения
- iprint уровень вывода итерационной информации
- finite_diff_rel_step относительный шаг для конечных разностей

3. Метод штрафных функций

Преобразование задачи условной оптимизации в безусловную:

$$P(x) = f(x) + \mu \left[\sum_{i=1}^m \max(0, g_i(x))^2 + \sum_{j=1}^k h_j(x)^2 \right]$$

Параметры штрафной функции:

• μ - коэффициент штрафа в функции:

$$P(x,\mu) = f(x) + \mu \cdot \Phi(x)$$

 $ullet \Phi(x) = \sum_{i=1}^m [\max(0,g_i(x))]^p + \sum_{j=1}^l |h_j(x)|^p$

Стратегия увеличения штрафа:

- ullet $\mu_{k+1} = \gamma \cdot \mu_k$, где $\gamma > 1$
- ullet Критерий увеличения: $\|
 abla \Phi(x_k)\| > \epsilon_\mu$

Параметры точности:

- ullet ϵ_{μ} точность для штрафного параметра
- ullet ϵ_P допуск для штрафной функции: $\|
 abla P(x,\mu)\| \leq \epsilon_P$

Функция scipy.optimize.minimize()

Параметры штрафов:

- mu коэффициент штрафа (начальное значение)
- mu_update стратегия обновления коэффициента штрафа
- penalty_type тип штрафной функции (квадратичная, точная и т.д.)

Параметры сходимости:

- penalty_tol точность для штрафной функции
- max_penalty_iter максимальное число итераций с увеличением штрафа
- initial_penalty_param начальный параметр штрафа

4. Общие параметры для всех методов

Критерии остановки:

- tol общий допуск сходимости
- maxiter максимальное число итераций
- disp вывод информации о процессе

Параметры производных:

- јас метод вычисления якобиана {'2-point', '3-point', cs}
- hess метод вычисления гессиана
- finite_diff_rel_step относительный шаг для конечных разностей

Дополнительно:

- callback функция обратного вызова
- options дополнительные специфические параметры

Практическая часть

Задача 1: Минимизация функции Розенброка с ограничениями

Постановка задачи: Найти минимум функции Розенброка от двух переменных при наличии ограничений.

Функция Розенброка:

$$f(x) = \sum_{i=1}^{n-1} [100(x_{i+1} - x_i^2)^2 + (1 - x_i)^2]$$

Ограничения:

- $0 \le x_0 \le 1$
- $-0.5 < x_1 < 2.0$
- $x_0 + 2x_1 < 1$
- $2x_0 + x_1 = 1$
- $x_0^2 + x_1 \le 1$
- $x_0^2 x_1 \le 1$

Используемые методы

Метод доверительной области (trust-constr)

Теория метода:

Meтoд trust-constr основан на последовательном решении приближенных задач в доверительной области. На каждой итерации:

1. **Построение модельной задачи**: Целевая функция аппроксимируется квадратичной формой, а ограничения - линейными функциями:

$$m_k(p) = f(x_k) +
abla f(x_k)^T p + rac{1}{2} p^T B_k p$$
где B_k - аппроксимация матрицы Гессе.

2. **Решение подзадачи**: Находится шаг p_k , минимизирующий $m_k(p)$ при условиях:

$$egin{aligned} g_i(x_k) +
abla g_i(x_k)^T p & \leq 0 \ \|p\| & \leq \Delta_k \end{aligned}$$

3. **Обновение доверительной области**: Вычисляется отношение фактического уменьшения к предсказанному:

$$ho_k = rac{f(x_k) - f(x_k + p_k)}{m_k(0) - m_k(p_k)}$$

На основе ho_k корректируется размер доверительной области Δ_k .

Преимущества для данной задачи:

- Эффективно работает с нелинейными ограничениями
- Использует информацию о вторых производных (матрица Гессе)
- Устойчив к плохой обусловленности

Особенности реализации

Градиент и матрица Гессе функции Розенброка:

$$abla f(x) = egin{bmatrix} -400x_0(x_1 - x_0^2) - 2(1 - x_0) \ 200(x_1 - x_0^2) \end{bmatrix}$$

$$abla^2 f(x) = egin{bmatrix} 1200x_0^2 - 400x_1 + 2 & -400x_0 \ -400x_0 & 200 \end{bmatrix}$$