ML-C5

22.07.14

모델평가와 성능향상

비지도학습의 평가는 굉장히 정성적인 일이므로 지도학습 분류와 회귀에 모델 평가를 진행.

Classification – Score Method

```
X, y = make_blobs(random_state=0)

X_train, X_test, y_train , y_test = train_test_split(X,y,random_state=0)
logreg = LogisticRegression().fit(X_train, y_train)
print("test_ac : {:.2f}".format(logreg.score(X_test,y_test)))
```

test ac : 0.88

Classification – Cross-Validation(교차검증)

K-겹 교차검증(k-fold cross-validation) Ex)5일경우. 전체데이터를 5개의 부분집합으로 나누고 1세트는 1번test 2,3,4,5(train) 2세트는 2번test 1,3,4,5(train) ... 이런식으로 총 5개의 정확도 값을 얻는다.

```
iris = load_iris()
logreg = LogisticRegression()
                                                              [0.96078431 0.92156863 0.95833333]
scores = cross_val_score(logreg, iris.data,iris.target)
                                                              #폴드의수는 cv= 매개변수를 통해 변경가능하다. 기본은 3
print(scores)
                                                              0.9600000000000002
print(np.mean(scores))
                                          cross validation
                                                                                                 Training data
                                                                                                 Test data
                                             Fold 3
                                                                             Fold 5
             Fold 1
                             Fold 2
                                                             Fold 4
                                             Data points
```

Classification – Cross-Validation(교차검증)

```
iris = load_iris()
logreg = LogisticRegression()
res= cross_validate(logreg,
iris.data,iris.target,cv=5,return_train_score=True)
res_df = pd.DataFrame(res)
display(res_df)
                                                            score_tim
                                                                                     train_scor
                                                  fit_time
                                                                        test_score
print(res_df.mean())
                                                0.003001
                                           0
                                                             0.000000
                                                                          1.000000
                                                                                      0.950000
                                                0.002001
                                                             0.000998
                                                                          0.966667
                                                                                      0.966667
                                                0.003001
                                                             0.000000
                                                                          0.933333
                                                                                      0.966667
```

4

fit_time 0.002991 score_time 0.000400 test_score 0.960000 train_score 0.963333 dtype: float64

0.001953

0.005000

0.001000

0.000000

0.900000

1.000000

0.975000

0.958333

Classification – Cross-Validation(교차검증) 문제점

array([0, 0, 0, 0, 0, 0,0, 2, 2]) Iris_dataset의 target은 다음과 같이 정렬되어 있어, 교차검증시 같은 클래스만 학습되는 경우가 생길 수 있다. 그래서 나온것이 계층별 k-겹 교차검증 이다.

폴드안의 클래스 비율이 전체 데이터셋의 클래스 비율과 같도록 데이터를 나눈다.

Classification – Cross-Validation(교차검증) 상세옵션

교차검증시 교차 검증 분할기를 전달함으로써 더 세밀하게 분할 할 수 있다.

from sklearn.model_selection import KFold
iris = load_iris()
loarea = LoaisticRearession()

res= cross_validate(logreg, iris.data,iris.target,cv=5,return_train_score=True)

res_df = pd.DataFrame(res)

kfold = KFold(n_splits=5)
cross_val_score(logreg,iris.data,iris.target,cv=kfold)

from sklearn.model_selection import KFold

iris = load_iris()

logreg = LogisticRegression()

res= cross_validate(logreg, iris.data,iris.target,cv=5,return_train_score=True)

res_df = pd.DataFrame(res)

kfold = KFold(n_splits=3)

cross_val_score(logreg,iris.data,iris.target,cv=kfold)

array([1. , 0.93333333, 0.43333333, 0.96666667, 0.43333333])

array([0., 0., 0.])

kfold = KFold(n_splits=3,shuffle=True,random_state=0) cross_val_score(logreg,iris.data,iris.target,cv=kfold)

array([0.9 , 0.96, 0.96])

LOOCV

폴드 하나에 샘플 하나만 들어있는 k겹 교차 검증. 각 반복에서 하나의 데이터포인트를 선택해 테스트 세트로 사용.

from sklearn.model_selection import LeaveOneOut loo = LeaveOneOut() scores = cross_val_score(logreg,iris.data,iris.target,cv=loo) print(len(scores)) print(np.mean(scores))

150 0.9533333333333334

임의 분할 교차 검증(Shuffle-split cross_validation)

Train_size 만큼 훈련세트, test_set만큼 테스트세트로 분할 하는데, n_splits 횟수 만큼 반복됨. (실수로 입력시 비율이고, 정수로는 절대 개수를 지정) 비율지정을 통한 부분샘플링으로 대규모 데이터셋에서 종종 도움이됨.

from sklearn.model_selection import ShuffleSplit shuffle_split = ShuffleSplit(test_size=.5,train_size=.5,n_splits=10) scores = cross_val_score(logreg,iris.data,iris.target,cv=shuffle_split) print(scores)

[0.96 0.96 0.93333333 0.89333333 0.92 0.97333333 0.92 0.97333333 0.94666667 0.94666667]

그룹별 교차 검증

서로다른 그룹으로 학습 및 테스트를 해야하는 경우 , (음성인식, 표정인식등) 사용.

from sklearn.model_selection import GroupKFold X, y = make_blobs(n_samples=12,random_state=0)

groups=[0,0,0,1,1,1,1,2,2,3,3,3] scores = cross_val_score(logreg, X,y,groups=groups,cv=GroupKFold(n_splits=3)) print(scores)

[0.75 0.8 0.66666667]

반복 교차 검증

데이터셋의 크기가 크지 않을 경우 안정된 검증 점수를 얻기 위해 교차 검증을 반복하여 여러 번 수행하는 경우가 있다. -> RepeatedKFold(회귀) / RepeatedStratifiedKFold(분류) 분할기가 있다.

from sklearn.model_selection import RepeatedStratifiedKFold rskfold = RepeatedStratifiedKFold(random_state=42) scores = cross_val_score(logreg, iris.data,iris.target,cv=rskfold) np.mean(scores)

0.9566666666666666

그리드 서치

매개변수 별로 가능한 조합을 시도해보는것이다. 데이터셋을 나눌때 훈련, 검증(파라미터찾기), 테스트이렇게 나눈다.

```
best score =0
X train, X test, y train, y test =
train_test_split(iris.data,iris.target,random_state=0)
for gamma in [0.001, 0.01, 0.1, 1, 10, 100]:
  for c in [0.001, 0.01, 0.1, 1, 10, 100]:
    svm = SVC(gamma=gamma, C=c)
    svm.fit(X_train, y_train)
    score=svm.score(X_test,y_test)
    if score > best score:
       best score = score
       best_p = {'gamma ':gamma, 'c':c}
                                                            training set
                                                                                              validation set
                                                                                                                      test set
print(best_score)
print(best_p)
                                                              Model fitting
                                                                                               Parameter selection
                                                                                                                       Evaluation
```

0.9736842105263158 { 'gamma ': 0.001, 'c': 100}

그리드 서치

매개변수 별로 가능한 조합을 시도해보는것이다. 데이터셋을 나눌때 훈련, 검증(파라미터찾기), 테스트이렇게 나눈다.

X trainval, X test, y trainval, y test = train test split(iris.data,iris.target,random state=0)

```
X_train, X_valid, y_train, y_valid = train_test_split(X_trainval,y trainval,random state=1)
best score =0
for gamma in [0.001, 0.01, 0.1, 1, 10, 100]:
  for C in [0.001, 0.01, 0.1, 1, 10, 100]:
    svm = SVC(gamma=gamma, C=C)
    svm.fit(X_train, y_train)
    score=svm.score(X_valid,y_valid)
    if score > best score:
       best score = score
       best p = {'C':C,'gamma':gamma }
svm = SVC(** best_p) # 딕셔너리 언패킹
svm.fit(X trainval, y trainval)
test score=svm.score(X test,y test)
print("validation_best : {:.2f}".format(best_score))
print("best_combination : ",best_p)
print("optimal parameter test Set score : {:.2f}".format(test score))
```

```
validation_best : 0.96 best_combination :
{'C': 10, 'gamma': 0.001}
optimal_parameter_test_Set_score : 0.92
```

교차검증을 사용한 그리드 서치(=교차검증 한다.)

```
X_trainval, X_test, y_trainval, y_test =
train_test_split(iris.data,iris.target,random_state=0)
                                                                                                             parameter grid
                                                                                                                                                 data set
X train, X_valid, y_train, y_valid =
train test split(X trainval,y trainval,random state=1)
                                                                                                                                 training data
                                                                                                                                                               test data
best score =0
for gamma in [0.001, 0.01, 0.1, 1, 10, 100]:
                                                                                                                 cross-validation
   for C in [0.001, 0.01, 0.1, 1, 10, 100]:
      svm = SVC(gamma=gamma, C=C)
                                                                                                                                        ⊳ retrained model —> final evaluation
                                                                                                                 best parameters
      svm.fit(X_train, y_train)
      score=cross_val_score(svm,X_trainval,y_trainval,cv=5)
      score=np.mean(scores)
      if score > best score:
                                                                                       1.0
          best score = score
                                                                                    Validation accuracy
          best_p = {'C':C,'gamma':gamma }
svm = SVC(** best_p) # 딕셔너리 언패킹
svm.fit(X_trainval, y_trainval)
                                                                                                    \nabla \nabla
print(best score)
                                                                                      0.2
print(svm.score(X test,y test))
                                                                                                                                                                            C: 0.1, gamma: 10
                                                                                                                  C: 0.001, gamma: 10
                                                                                                                       C: 0.001, gamma: 100
                                                                                                                                               C: 0.01, gamma: 10
                                                                                                                                                    C: 0.01, gamma: 100
                                                                                                                                          C: 0.01, gamma: 1
                                                                                                                                                         C: 0.1, gamma: 0.001
                                                                                                                                                              C: 0.1, gamma: 0.01
                                                                                                                                                                                      C: 1, gamma: 0.001
                                                                                                                            C: 0.01, gamma: 0.001
                                                                                                                                 C: 0.01, gamma: 0.01
                                                                                                                                     C: 0.01, gamma: 0.
                                                                                                             C: 0.001, gamma:
                                                                                                        C: 0.001, gamma:
                                                                                              C: 0.001, gamma
```

Parameter settings

교차검증을 사용한 그리드 서치(=교차검증 한다.)

```
Sklearn -> GridSearchCV가 구현되어있다. 파라미터로, 매개변수의
딕셔너리 형태를 받기 때문에 미리 딕셔너리형태로 선언해야한다.
param_grid = {'gamma' : [0.001, 0.01, 0.1, 1, 10,
100],'C': [0.001, 0.01, 0.1, 1, 10, 100]}
grid search =
GridSearchCV(SVC(),param_grid,cv=5,return_train_s
core=True)
X_train, X_test, y_train, y_test =
train_test_split(iris.data, iris.target,random_state=0)
grid search.fit(X train,y train)
print(grid_search.score(X_test,y_test))
```

decision function shape='ovr', degree=3, gamma=0.01, kernel='rbf', max iter=-1, probability=False, 0.9736842105263158 random state=None, shrinking=True, tol=0.001,

verbose=False)

SVC(C=100, cache size=200, class weight=None, coef0=0.0,

교차검증 결과 분석

Sklearn -> GridSearchCV가 구현되어있다. 파라미터로, 매개변수의 딕셔너리 형태를 받기 때문에 미리 딕셔너리형태로 선언해야한다.

	1 11 1 1 -1	1 1 1 - 1 0 11 -				
pd.set_option('display.max_column results = pd.DataFrame(grid_search	.cv_results_)	1	2	3	4	
display(np.transpose(results.head())))	mean_fit_time	0.00120368	0.00139656	0.000399733	0.00079999	0.000803041
	std_fit_time	0.000755131	0.000796128	0.000489571	0.000399996	0.000401558
	mean_score_time	0.000796843	0.00020442	0.000797462	0.00019722	0.000399542
	std_score_time	0.000398577	0.00040884	0.00074475	0.00039444	0.000489337
	param_C	0.001	0.001	0.001	0.001	0.001
	param_gamma	0.001	0.01	0.1	1	10
	params	('C': 0.001, 'gamma': 0.001; }	{'C': 0.001, 'gamma': 0.01}	{'C': 0.001, 'gamma': 0.1}	{'C': 0.001, 'gamma': 1}	{'C': 0.001, 'gamma': 10}
	split0_test_score	0.375	0.375	0.375	0.375	0.375
	split1_test_score	0.347826	0.347826	0.347826	0.347826	0.347826
	split2_test_score	0.363636	0.363636	0.363636	0.363636	0.363636
	split3_test_score	0.363636	0.363636	0.363636	0.363636	0.363636
	split4_test_score	0.380952	0.380952	0.380952	0.380952	0.380952
	mean_test_score	0.366071	0.366071	0.366071	0.366071	0.366071
	std_test_score	0.0113708	0.0113708	0.0113708	0.0113708	0.0113708
	rank_test_score	22	22	22	22	22
	split0_train_score	0.363636	0.363636	0.363636	0.363636	0.363636
	split1_train_score	0.370787	0.370787	0.370787	0.370787	0.370787
	split2_train_score	0.366667	0.366667	0.366667	0.366667	0.366667
	split3_train_score	0.366667	0.366667	0.366667	0.366667	0.366667
	split4_train_score	0.362637	0.362637	0.362637	0.362637	0.362637
	mean_train_score	0.366079	0.366079	0.366079	0.366079	0.366079
	std_train_score	0.00285176	0.00285176	0.00285176	0.00285176	0.00285176

교차검증 결과 분석 파라미터 히트맵 띄우기

pd.set_option('display.max_columns',None) results = pd.DataFrame(grid_search.cv_results_) scores = np.array(results.mean_test_score).reshape(6,6)

mglearn.tools.heatmap(scores,xlabel='gamma',xticklabels=param_g rid['gamma'],ylabel='C'

,yticklabels=param_grid['C'],cmap="viridis")

교차검증 결과 분석 파라미터 히트맵 띄우기

```
pd.set option('display.max columns', None)
results = pd.DataFrame(grid_search.cv_results_)
scores = np.array(results.mean test score).reshape(6,6)
fig, axes = plt.subplots(1,3,figsize=(13,5))
param_grid_linear = {'C': np.linspace(1,2,6), 'gamma': np.linspace(1,2,6)}
param_grid_one_log = {'C': np.linspace(1,2,6), 'gamma': np.logspace(-3,2,6)}
param_grid_range={'C':np.logspace(-3,2,6), 'gamma':np.logspace(-7,-2,6)}
for param grid, ax in zip([param grid linear,
param_grid_one_log,param_grid_range],axes):
  grid search = GridSearchCV(SVC(),param grid,cv=5)
  grid search.fit(X train, y train)
  scores = grid_search.cv_results_['mean_test_score'].reshape(6,6)
  scores_image =
mglearn.tools.heatmap(scores,xlabel='gamma',ylabel='C',xticklabels=param_grid['gam
ma'],yticklabels=param grid['C'],cmap="viridis",ax=ax)
                                                                                                                    2.0 - 0.70 0.95 0.96 0.95 0.92 0.57 100.0 - 0.37 0.37 0.70 0.93 0.96 0.97
plt.colorbar(scores_image, ax=axes.tolist())
                                                                                     2.0 - 0.95 0.95 0.95 0.95 0.95
                                                                                                                    18 - 0.70 0.95 0.96 0.95 0.92 0.57 10.0 - 0.37 0.37 0.37 0.70 0.93 0.96
                                                                                     18 - 0.95 0.95 0.95 0.95 0.95
                                                                                                                    16 - 0.70 0.95 0.96 0.95 0.92 0.57 1.0 - 0.37 0.37 0.37 0.37 0.70 0.93
                                                                                     1.6 - 0.95 0.95 0.95 0.95 0.95
                                                                                                                    14 - 0.70 0.94 0.96 0.95 0.92 0.57 0.1 - 0.37 0.37 0.37 0.37 0.37 0.70
                                                                                     14 - 0.95 0.95 0.95 0.95 0.95 0.95
                                                                                                                    12 - 0.70 0.93 0.96 0.95 0.92 0.57 0.01 - 0.37 0.37 0.37 0.37 0.37
                                                                                     1.2 - 0.95 0.95 0.95 0.95 0.95
                                                                                                                    1.0 - 0.70 0.93 0.96 0.95 0.92 0.51 0.001 - 0.37 0.37 0.37 0.37 0.37
                                                                                     1.0 - 0.95 0.95 0.95 0.95 0.95
                                                                                         10 12 14 16 18 20
                                                                                                                        0.001 0.01 0.1 1.0 10.0 100.0
                                                                                                                                                       1e-071e-061e-050.00010.001 0.01
                                                                                                                                                                 gamma
```

- 0.9

- 0.8

- 0.7

- 0.6

- 0.5

비대칭 매개변수 그리드 탐색

SVC 같은 경우 Kernel매개변수에 따라 하이퍼파라미터 종류가 달라진다. Linear -> C / RBF -> C, gamma : 이는 딕셔너리안의 리스트로 만들어주면 된다.

```
[{'kernel': ['rbf'],
'gamma': [0.001, 0.01,
0.1, 1, 10, 100], 'C':
[0.001, 0.01, 0.1, 1, 10,
100]}, {'kernel':
['linear'], 'C': [0.001,
0.01, 0.1, 1, 10, 100]}]
```

```
{'C': 100, 'gamma': 0.01, 'kernel': 'rbf'} 0.9732142857142857
```

그리드서치에 다양한 교차검증적용 ->중첩교차검증

훈련셋과 데이터셋을 5번 분할하여 각각의 테스트성능의 평균을 알 수 있다.

Test / Train: 5번 분할

Train: 5번 분할 및 GridSearch(36)

Train에서의 분할해서 검증세트의 성능을 구한 것은 GridSearch의 목적인 best_parameter를 얻기 위함.

param_grid = {'gamma' : [0.001, 0.01, 0.1, 1, 10, 100],'C' : [0.001, 0.01, 0.1, 1, 10, 100]}

scores = cross_val_score(GridSearchCV(SVC(),param_grid,cv=5),iris.data,iris.target,cv=5)

print(scores)
print(scores.mean())

평가지표와 측정

지금까지 분류 성능 평가에 정확도를 사용했고, 회귀 성능평가에는 R^2를 사용.

그외 성능평가 방법돈 존재한다.

최종목표를 기억

이진분류의 평가지표: TruePositive FP Fn TrueNegative

불균형 데이터셋: 클릭데이터 예측 -> 100개광고 뜨는데 1번클릭이면 클릭안함이 99개.

평가지표와 측정

```
from sklearn.dummy import DummyClassifier
digits = load_digits()
y = digits.target==9

X_train , X_test , y_train ,y_test = train_test_split(digits.data, y,random_state=0)
dummy_majority =

DummyClassifier(strategy='most_frequent').fit(X_train,y_train)
pred_most_fre = dummy_majority.predict(X_test)
print(np.unique(pred_most_fre))
print(dummy_majority.score(X_test,y_test))
```

[False] 0.89555555555555555

평가지표와 측정

```
from sklearn.dummy import DummyClassifier
digits = load digits()
y = digits.target==9
X_train , X_test , y_train ,y_test = train_test_split(digits.data, y,random_state=0)
dummy_majority = DummyClassifier(strategy='most_frequent').fit(X_train,y_train)
pred most fre = dummy majority.predict(X test)
print(np.unique(pred_most_fre))
print(dummy_majority.score(X_test,y_test))
digits = load_digits()
y = digits.target==9
X_train, X_test, y_train, y_test = train_test_split(digits.data, y,random_state=0)
tree = DecisionTreeClassifier(max_depth=2).fit(X_train,y_train)
print("tree :",tree.score(X_test,y_test))
dum = DummyClassifier().fit(X_train,y_train)
print("dummy:",dum.score(X_test,y_test))
logi = LogisticRegression(C=0.1).fit(X_train,y_train)
print("LR:",logi.score(X_test,y_test))
```

[False] 0.895555555555555

tree: 0.9177777777777 dummy: 0.826666666666666 LR: 0.97777777777777

오차행렬(Confusion_Matrix)

```
digits = load_digits()
y = digits.target==9

X_train , X_test , y_train ,y_test = train_test_split(digits.data,
y,random_state=0)

logi = LogisticRegression(C=0.1).fit(X_train,y_train)
pred_lr = logi.predict(X_test)
confusion = confusion_matrix(y_test, pred_lr)
print(confusion)
```

```
most_frequent [[403 0] [ 47 0]]
dum [[361 42] [ 42 5]]
logi [[401 2] [ 8 39]]
```


오차행렬(Confusion_Matrix) -> 정확도, 정밀도, 재현율

정확도와의 관계

정확도 = (TP + TN) / (TP + TN+FP+FN)

정밀도, 재현율

정밀도 = TP/(TP + FP) # 진짜 양성인 친구들의 비율

->FP의 비중을 줄이고 자할 때 사용한다.

재현율 = TP/(TP + FN)

->모든 양성 샘플을 식별해야할 때 성능지표로 사용

정밀도와 재현율은 반비례관계이다.

오차행렬(Confusion_Matrix) -> f-점수

```
F = 2 * ((정밀도 * 재현율) / (정밀도 + 재현율))
digits = load_digits()
y = digits.target==9
X_train, X_test, y_train, y_test = train_test_split(digits.data, y,random_state=0)
dummy = DummyClassifier(strategy='most_frequent').fit(X_train,y_train)
most_freq_pred=dummy.predict(X_test)
print("freq:",f1 score(y test,most freq pred))
y pred tree = tree.predict(X test)
                                                                precision recall f1-score support 9x 0.90
print("tree : ",f1_score(y_test,y_pred_tree))
dum = DummyClassifier().fit(X_train,y_train)
                                                                1.00 0.94 403 9 0.00 0.00 0.00 47 accuracy
y_pred_dum = dum.predict(X_test)
                                                                 0.90 450 macro avg 0.45 0.50 0.47 450
print("dum:",f1 score(y test,y pred dum))
                                                                 weighted avg 0.80 0.90 0.85 450
logi = LogisticRegression(C=0.1).fit(X_train,y_train)
y_pred_logi = logi.predict(X_test)
print("logistic : ",f1_score(y_test,y_pred_logi))
```

freq: 0.0 tree: 0.5542168674698795 dum: 0.136363636363635 logistic: 0.8863636363636364

오차행렬(Confusion_Matrix) -> classification_report

dum :	precis	ion re	call f1-sco	ore supp	port
9x 9	0.91 0.21	0.91 0.21	0.91 0.21	403 47	
accuracy macro avg weighted avg	0.56 0.84	0.56 0.84	0.84 0.56 0.84	450 450 450	
tree :	precis	sion r	ecall f1-so	core sup	pport
9x 9	0.94 0.64	0.97 0.49	0.95 0.55	403 47	
accuracy macro avg weighted avg	0.79 0.91	0.73 0.92	0.92 0.75 0.91	450 450 450	
logistic :	p	recision	recall ·	f1-score	support
9x 9	0.98 0.95	1.00 0.83	0.99 0.89	403 47	
accuracy macro avg weighted avg	0.97 0.98	0.91 0.98	0.98 0.94 0.98	450 450 450	

```
from sklearn.metrics import classification_report print("dum: ",classification_report(y_test,y_pred_dum,target_names=["9x","9"])) print() print("tree: ",classification_report(y_test,y_pred_tree,target_names=["9x","9"])) print() print("logistic: ",classification_report(y_test,y_pred_logi,target_names=["9x","9"]))
```

오차행렬(Confusion_Matrix) -> 불확실성 고려

Ex) 음성 400개와 양성 50개의 불균형 이진 데이터 분률 셋.

decision_threshold

y_pred_lower_th = svc.decision_function(X_test) >-.8 print(classification_report(y_test,y_pred_lower_th))

	precision	recall	f1-score	support
0	1.00 0.32	0.82 1.00	0.90 0.49	104 9
accuracy macro avg weighted avg	0.66 0.95	0.91 0.83	0.83 0.69 0.87	113 113 113

정밀도-재현율 곡선과 ROC곡선(Support_Vector_Classification

모델 분류작업을 결정하는 임계값을 바꾸는 것은 분류기의 정밀도와 재현율의 상충관계를 조정하는 것이다.

90% 재현율을 맞추어라! → 운영 포인트(Operating Point)를 지정한다고 말한다.

하지만 새로운 모델을 만들때는 운영포인트라는 것이 없기 때문에 일일히 확인 해야한다. → 정밀도-재현율 곡선(Precision-Recall Curve)를 사용한다.

```
from sklearn.metrics import precision_recall_curve
X, y = make_blobs(n_samples=(4000,500),cluster_std=[7,2],random_state=22)
X_train, X_test, y_train, y_test = train_test_split(X,y,random_state=0)
svc = SVC(gamma=.05).fit(X_train,y_train)
precision, recall, thresholds =
precision_recall_curve( y_test,svc.decision_function(X_test))
close_zero = np.argmin(np.abs(thresholds))
plt.plot(precision[close_zero],recall[close_zero],'o',markersize=10,label="th
0",c='k',mew=2)
plt.plot(precision, recall,label="precision_recall_curve")
plt.xlabel("precision")
plt.ylabel("recall")
plt.legend(loc="best")
```


정밀도-재현율 곡선과 ROC곡선(Random_forest)

```
rf = RandomForestClassifier(n estimators=100,random state=0,max features=2)
rf.fit(X train, y train)
svc = SVC(gamma=.05).fit(X_train,y_train)
precision_rf, recall_rf, thresholds_rf =
precision recall curve(y test,rf.predict proba(X test)[:,1])
precision, recall, thresholds =
precision recall curve(y test,svc.decision function(X test))
close_zero = np.argmin(np.abs(thresholds))
plt.plot(precision, recall, label="svc")
plt.plot(precision[close_zero],recall[close_zero],'o',markersize=10,label="svc:th
0",c='k',mew=2)
plt.plot(precision_rf,recall_rf,label="random_forest")
close_default_rf = np.argmin(np.abs(thresholds_rf-0.5))
plt.plot(precision_rf[close_default_rf],recall_rf[close_default_rf],'^',markersize=10,lab
el="rf: th0.5",c='k',mew=2)
plt.xlabel("precision")
plt.ylabel("recall")
plt.legend(loc="best")
```


Random_forest f1_score

```
X, y = make_blobs(n_samples=(4000,500),cluster_std=[7,2],random_state=22)
X_train, X_test, y_train, y_test = train_test_split(X,y,random_state=0)
rf = RandomForestClassifier(n_estimators=100,random_state=0,max_features=2)
rf.fit(X_train, y_train)

svc = SVC(gamma=.05).fit(X_train,y_train)
precision_rf, recall_rf,thresholds_rf =
precision_recall_curve(y_test,rf.predict_proba(X_test)[:,1])

precision, recall, thresholds =
precision_recall_curve( y_test,svc.decision_function(X_test))

print("random_forest_f1_score : ",f1_score(y_test,rf.predict(X_test)))

print("svc_forest_f1_score : ",f1_score(y_test,svc.predict(X_test)))
```

random_forest_f1_score : 0.6097560975609757 svc_forest_f1_score : 0.6558704453441295

ROC and AUC

```
from sklearn.metrics import roc_curve
X, y = make_blobs(n_samples=(4000,500),cluster_std=[7,2],random_state=22)
X_train, X_test, y_train, y_test = train_test_split(X,y,random_state=0)
svc = SVC(gamma=.05).fit(X_train,y_train)
fpr, tpr, ths = roc_curve(y_test,svc.decision_function(X_test))
plt.plot(fpr,tpr,label="roc_curve")
```

plt.plot(fpr,tpr,label="roc_curve")
print(ths.shape)
close_zero = np.argmin(np.abs(ths))
plt.plot(fpr[close_zero],tpr[close_zero],'o',markersize=10,label='th0')
plt.legend(loc=4)

다중분류의 평가지표

```
digits = load_digits()
X_train , X_test , y_train, y_test =
train_test_split(digits.data,digits.target,random_state
=0)
Ir =
LogisticRegression(solver='liblinear',multi_class='ovr').fi
t(X_train,y_train)
pred = Ir.predict(X_test)
print(accuracy_score(y_test,pred))
print(confusion_matrix(y_test,pred))
```

```
0.953333333333333334

[[37 0 0 0 0 0 0 0 0 0 0]

[ 0 39 0 0 0 0 2 0 2 0]

[ 0 0 41 3 0 0 0 0 0 0]

[ 0 0 1 43 0 0 0 0 0 1]

[ 0 0 0 0 38 0 0 0 0 0]

[ 0 1 0 0 0 47 0 0 0 0]

[ 0 0 0 0 0 52 0 0 0]

[ 0 1 0 1 1 0 0 45 0 0]

[ 0 3 1 0 0 0 0 0 43 1]

[ 0 0 0 1 0 1 0 0 1 44]]
```