C0 Classes

Robin Adams

August 10, 2022

We speak informally of *classes*. A class is determined by a unary predicate. We write $\{x : P(x)\}$ or $\{x \mid P(x)\}$ for the class determined by the predicate P(x).

We define what it means for an object a to be an element of the class \mathbf{A} , $a \in \mathbf{A}$, by: $a \in \{x : P(x)\}$ means P(a).

We write $\{x \in \mathbf{A} : P(x)\}$ for $\{x : x \in \mathbf{A} \land P(x)\}$, and $\{t[x_1, ..., x_n] : P[x_1, ..., x_n]\}$ for $\{y : \exists x_1 \cdots \exists x_n (y = t[x_1, ..., x_n] \land P[x_1, ..., x_n])\}$.

Definition 1 (Equality of Classes). Two classes A and B are equal, A = B, iff they have exactly the same members.

Proposition 2. For any class **A** we have $\mathbf{A} = \mathbf{A}$.

Since **A** and **A** have exactly the same members.

Proposition 3. For any classes A and B, if A = B then B = A.

PROOF: If $\bf A$ and $\bf B$ have exactly the same members, then $\bf B$ and $\bf A$ have exactly the same members.

Proposition 4. For any classes A, B and C, if A = B and B = C then A = C.

PROOF: If **A** and **B** have exactly the same members, and **B** and **C** have exactly the same members, then **A** and **C** have exactly the same members. \Box

Definition 5 (Subclass). A class **A** is a *subclass* of a class **B**, $\mathbf{A} \subseteq \mathbf{B}$, iff every member of **A** is a member of **B**.

Proposition 6. For any class **A** we have $\mathbf{A} \subseteq \mathbf{A}$.

PROOF: Every member of **A** is a member of **A**. \square

Proposition 7. For any classes A, B and C, if $A \subseteq B$ and $B \subseteq C$ then $A \subseteq C$.

PROOF: If every member of $\bf A$ is a member of $\bf B$, and every member of $\bf B$ is a member of $\bf C$, then every member of $\bf A$ is a member of $\bf C$. \Box

Proposition 8. For any classes A and B, if $A \subseteq B$ and $B \subseteq A$ then A = B.

member of \mathbf{A} , then \mathbf{A} and \mathbf{B} have exactly the same members. \square **Definition 9** (Empty Class). The *empty class*, \emptyset , is $\{x : \bot\}$. **Proposition 10.** For any class **A**, we have $\emptyset \subseteq \mathbf{A}$. PROOF: Vacuously, every member of \emptyset is a member of \mathbf{A} . **Definition 11** (Universal Class). The universal class V is the class $\{x : \top\}$. **Proposition 12.** For any class A, we have $A \subseteq V$. PROOF: Every member of **A** is a member of **V**. \square **Definition 13.** For any objects a_1, \ldots, a_n , we write $\{a_1, \ldots, a_n\}$ for the class $\{x: x = a_1 \vee \cdots \vee x = a_n\}.$ A class of the form $\{a\}$ is called a *singleton*. A class of the form $\{a, b\}$ is called a *pair class*. **Definition 14** (Union). The *union* of classes A and B, $A \cup B$, is the set whose elements are exactly the things that are members of A or members of B. **Proposition 15.** For any classes A, B and C, we have: 1. $\mathbf{A} \subseteq \mathbf{A} \cup \mathbf{B}$ 2. $\mathbf{B} \subseteq \mathbf{A} \cup \mathbf{B}$ 3. If $\mathbf{A} \subseteq \mathbf{C}$ and $\mathbf{B} \subseteq \mathbf{C}$ then $\mathbf{A} \cup \mathbf{B} \subseteq \mathbf{C}$ PROOF: Immediate from definitions. **Proposition 16.** For any classes **A** and **B** we have $\mathbf{A} \cup \mathbf{B} = \mathbf{B} \cup \mathbf{A}$. PROOF: They are each the class of objects that belong to either **A** or **B**. \sqcup **Proposition 17.** For any classes A, B and C we have $A \cup (B \cup C) = (A \cup C)$ $\mathbf{B}) \cup \mathbf{C}$. PROOF: They are each the class of objects that belong to at least one of A, B **Proposition 18.** For any class **A** we have $\mathbf{A} \cup \emptyset = \mathbf{A}$. PROOF: Immediate from definitions. **Proposition 19.** *If* $A \subseteq B$ *then* $A \cup C \subseteq B \cup C$. Proof: Easy. \square **Definition 20** (Intersection). The *intersection* of classes A and B, $A \cap B$, is the set whose elements are exactly the things that are members of both A and \mathbf{B} . 2

PROOF: If every member of **A** is a member of **B**, and every member of **B** is a

Proposition 21. For any classes A, B and C, we have:

- 1. $\mathbf{A} \cap \mathbf{B} \subseteq \mathbf{A}$
- $2. \mathbf{A} \cap \mathbf{B} \subseteq \mathbf{B}$
- 3. If $C \subseteq A$ and $C \subseteq B$ then $C \subseteq A \cap B$

PROOF: Immediate from definitions.

Proposition 22. For any classes **A** and **B** we have $\mathbf{A} \cap \mathbf{B} = \mathbf{B} \cap \mathbf{A}$.

PROOF: They are each the class of objects that belong to both $\bf A$ and $\bf B$. \Box

Proposition 23. For any classes A, B and C we have $A \cap (B \cap C) = (A \cap B) \cap C$.

PROOF: They are each the class of objects that belong to all of A, B and C. \Box

Proposition 24. For any classes A, B and C, we have $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.

Proof:

$$x \in \mathbf{A} \cup (\mathbf{B} \cap \mathbf{C}) \Leftrightarrow x \in \mathbf{A} \vee (x \in \mathbf{B} \wedge x \in \mathbf{C})$$
$$\Leftrightarrow (x \in \mathbf{A} \vee x \in \mathbf{B}) \wedge (x \in \mathbf{A} \vee x \in \mathbf{C})$$
$$\Leftrightarrow x \in (\mathbf{A} \cup \mathbf{B}) \cap (\mathbf{A} \cup \mathbf{B})$$

Proposition 25. For any classes A, B and C, we have $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Proof: Dual.

Proposition 26. For any class **A** we have $\mathbf{A} \cap \emptyset = \emptyset$.

PROOF: Immediate from definitions.

Proposition 27. *If* $A \subseteq B$ *then* $A \cap C \subseteq B \cap C$.

Proof: Easy.

Definition 28 (Disjoint). Two classes ${\bf A}$ and ${\bf B}$ are *disjoint* iff they have no common members.

Proposition 29. Two classes **A** and **B** are disjoint iff $\mathbf{A} \cap \mathbf{B} = \emptyset$.

PROOF: Immediate from definitions.

Definition 30 (Relative Complement). Given classes **A** and **B**, the *relative* complement $\mathbf{A} - \mathbf{B}$ is $\{x \in \mathbf{A} : x \notin \mathbf{B}\}$.

Proposition 31 (De Morgan's Law). For any classes A, B and C, we have $C - (A \cup B) = (C - A) \cap (C - B)$.

PROOF: They are each the set of objects that belong to ${\bf C}$ and not to ${\bf A}$ nor ${\bf B}$.
Proposition 32 (De Morgan's Law). For any classes A , B and C , we have $C - (A \cap B) = (C - A) \cup (C - B)$.
Proof: Dual. \square
Proposition 33. For any classes A and C we have $\mathbf{A} \cap (\mathbf{C} - \mathbf{A}) = \emptyset$.
Proof: Immediate from definitions. \square
Proposition 34. If $A \subseteq B$ then $C - B \subseteq C - A$.
Proof: Easy. \square