Név / Name: Dr. FACSKÓ Gábor István Neptun kód / Code: BQQQFY

(KEMNA0302) Alkalmazott lineáris algebra vizsga / (ENKEMNA0302) Applied Linear Algebra Exam

1. Adja meg a determináns axiomatikus definícióját! / What is the axiomatic definition of the determinant? (10 pont)

<u>Axiomatikus definíció:</u> Legyen $\mathbf{A} \in \mathbb{R}^{n \times n}$ négyzetes mátrix és det : $\mathbb{R}^{n \times n} \to \mathbb{R}$ függvény. Ezt a det (\mathbf{A}) függvényt az $\mathbf{A}^{n \times n}$ mátrix determinánsának hívjuk, ha

- (a) Homogén: $\det(\ldots \lambda_i \mathbf{a}_i \ldots) = \lambda_i \det(\ldots \mathbf{a}_i \ldots);$
- (b) Additív: $\det(\ldots \mathbf{a}_i + \mathbf{b}_i \ldots) = \det(\ldots \mathbf{a}_i \ldots) + \det(\ldots \mathbf{b}_i \ldots);$
- (c) Alternáló: $\det(\ldots \mathbf{a}_i \ldots \mathbf{a}_j \ldots) = -\det(\ldots \mathbf{a}_j \ldots \mathbf{a}_i \ldots);$
- (d) Az egységmátrix determinánsa 1: $\det(\mathbf{E}_n) = 1$,

ahol $\lambda_i \in \mathbb{R}$ és $\mathbf{a}_i, \mathbf{b}_i \in \mathbb{R}^n$ a $\mathbf{A}^{n \times n}$ mátrix oszlopvektorai. Ezt a leképezést egy n változós függvénynek tekinthetjük a mátrix oszlopai felett: $\mathbb{R}^n \to \mathbb{R}$. Ezek az axiómák egyértelműen meghatározzák a leképezést. Egy másik, $\mathbb{R}^{n \times n} \to \mathbb{R}$ tartományú és ezekkel a tulajdonságokkal bíró függvény megegyezik a det függvénnyel. Másképpen: a mátrixhoz ezekkel a szabályokkal egyértelműen rendelhető egy szám. Ha $\mathbf{A} \in \mathbb{R}^{n \times n}$, akkor a determináns n-ed rendű. A determináns egy funkcionál, azaz olyan leképezés, amely egy skalárt rendel egy függvényhez.

<u>Axiomatic definition</u>: Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be a square matrix and det : $\mathbb{R}^{n \times n} \to \mathbb{R}$ a function. The function det (\mathbf{A}) is called the determinant of the matrix $\mathbf{A}^{n \times n}$ if

- (a) Homogeneous: $\det(\ldots \lambda_i \mathbf{a}_i \ldots) = \lambda_i \det(\ldots \mathbf{a}_i \ldots)$;
- (b) Additive: $\det(\dots \mathbf{a}_i + \mathbf{b}_i \dots) = \det(\dots \mathbf{a}_i \dots) + \det(\dots \mathbf{b}_i \dots)$;
- (c) Alternating: $\det(\ldots \mathbf{a}_i \ldots \mathbf{a}_i \ldots) = -\det(\ldots \mathbf{a}_i \ldots \mathbf{a}_i \ldots);$
- (d) The determinant of the identity matrix is 1: $\det(\mathbf{E}_n) = 1$,

where $\lambda_i \in \mathbb{R}$ and $\mathbf{a}_i, \mathbf{b}_i \in \mathbb{R}^n$ are the column vectors of the matrix $\mathbf{A}^{n \times n}$. This mapping can be considered as an n-variable function over the columns of the matrix: $\mathbb{R}^n \to \mathbb{R}$. These axioms uniquely determine the mapping. Any other function $\mathbb{R}^{n \times n} \to \mathbb{R}$ with these properties is equal to det. In other words, a unique scalar value can be assigned to each matrix according to these rules. If $\mathbf{A} \in \mathbb{R}^{n \times n}$, then the determinant is of order n. The determinant is a functional — that is, a mapping assigning a scalar to a function.

2. Mi a diagonális és a háromszögmátrix? / What are diagonal and triangular matrices? (10 pont)

Diagonális mátrixok: Csak a mátrix főátlójában vannak nem nulla elemek.

Háromszögmátrix: Azokat a mátrixokat, melyek főátlója alatt csak 0-elemek szerepelnek felső háromszögmátrixnak, azokat, melyek főátlója fölött csak 0-elemek vannak alsó háromszögmátrixnak nevezzük. Ha egy háromszögmátrix főátlójában csupa 1-es áll, egység háromszögmátrixról beszélünk.

<u>Diagonal matrices</u>: There are non-zero elements only in the main diagonal of the matrix. It is simple to perform operations with them.

<u>Triangular Matrix</u>: A matrix in which all elements below the main diagonal are zero is called an upper triangular matrix, while a matrix in which all elements above the main diagonal are zero is called a lower triangular matrix. If all the elements on the main diagonal of a triangular matrix are 1, it is called a unit triangular matrix.

3. Mik azok a blokkmátrixok, illetve a hipermátrixok? / What are block matrices and hypermatrices? (10 pont)

<u>Blokkmátrix:</u> Ha egy mátrixot vízszintes és függőleges vonalakkal részmátrixokra bontunk, azt mondjuk, hogy ez a mátrix a részmátrixokból – más néven blokkokból – alkotott blokkmátrix.

Hipermátrix: Legyen $n_1, n_2, \ldots, n_d \in \mathbb{N}^+$ és legyen S egy tetszőleges halmaz (pl. $S = \mathbb{R}, \mathbb{Q}, \mathbb{N}, \mathbb{Z} \ldots$). $\overline{\text{d-edrendű}}$ (vagy d-dimenziós) $n_1 \times n_2 \times \cdots \times n_d$ -típusú hipermátrixnak nevezzük az

$$A: \{1, ..., n_1\} \times \{1, ..., n_2\} \times ... \times \{1, ..., n_d\} \to S$$

alakú leképezést. Az $\mathbf{A}(i_1, i_2, \dots, i_d)$ elemet $a_{i_1 i_2 \dots i_d}$ -vel jelöljük, amely egy d-dimenziós táblázat egy eleme és a mátrixoknál megszokotthoz hasonlóan írhatjuk, hogy

$$\mathbf{A} = (a_{i_1 i_2 \dots i_d})_{i_1, i_2, \dots, i_d}^{n_1, n_2, \dots, n_d} = 1$$
, vagy egyszerűbben $\mathbf{A} = (a_{i_1 i_2 \dots i_d})$.

Ha $n_1=n_2=\cdots=n_d=n$, akkor a hiper-kockamátrixról beszélünk. Az S elemeiből képzett összes $n_1\times n_2\times\cdots\times n_d$ -típusú hipermátrixok halmazát $S^{n_1\times n_2\times\dots n_d}$ jelöli.

<u>Block matrix</u>: When a matrix is divided into submatrices by horizontal and vertical lines, we say that this matrix is a block matrix composed of submatrices-also known as blocks.

<u>Hypermatrix</u>: Let $n_1, n_2, \ldots, n_d \in \mathbb{N}^+$ and let S be an arbitrary set (e.g., $S = \mathbb{R}, \mathbb{Q}, \mathbb{N}, \mathbb{Z} \ldots$). A <u>dth-order (or d-dimensional)</u> $n_1 \times n_2 \times \cdots \times n_d$ -type hypermatrix is a mapping of the form

$$\mathbf{A}: \{1,\ldots,n_1\} \times \{1,\ldots,n_2\} \times \cdots \times \{1,\ldots,n_d\} \to S$$

The element $\mathbf{A}(i_1, i_2, \dots, i_d)$ is denoted by $a_{i_1 i_2 \dots i_d}$, which is an element of a d-dimensional table, and similarly to matrices, we can write:

$$\mathbf{A} = (a_{i_1 i_2 \dots i_d})_{i_1, i_2, \dots, i_d}^{n_1, n_2, \dots, n_d} = 1$$
, or simply $\mathbf{A} = (a_{i_1 i_2 \dots i_d})$.

If $n_1 = n_2 = \cdots = n_d = n$, then we refer to a hyper-cube matrix. The set of all $n_1 \times n_2 \times \cdots \times n_d$ -type hypermatrices formed from the elements of S is denoted by $S^{n_1 \times n_2 \times \cdots n_d}$.

4. Mi az a Kronecker-szorzat? / What is the Kronecker product? (10 pont)

<u>Kronecker-szorzat:</u> Legyen **A** egy $m \times n$ -es, **B** egy $p \times q$ -as mátrix. Kronecker-szorzatukon (vagy más néven tenzorszorzatukon) azt az $A \otimes B$ -vel jelölt $mp \times nq$ méretű mátrixot értjük, melynek blokkmátrix alakja

$$\mathbf{A} \otimes \mathbf{B} = \begin{pmatrix} a_{11}\mathbf{B} & a_{12}\mathbf{B} & \dots & a_{1n}\mathbf{B} \\ a_{21}\mathbf{B} & a_{22}\mathbf{B} & \dots & a_{2n}\mathbf{B} \\ \vdots & \vdots & \dots & \vdots \\ a_{m1}\mathbf{B} & a_{m2}\mathbf{B} & \dots & a_{mn}\mathbf{B} \end{pmatrix}.$$

Például:

$$\begin{pmatrix} -1 & 2 \\ 0 & 1 \end{pmatrix} \otimes \begin{pmatrix} 0 & 1 & 2 \\ 3 & 3 & 3 \end{pmatrix} = \begin{pmatrix} 0 & -1 & -2 & 0 & 2 & 4 \\ -3 & -3 & -3 & 6 & 6 & 6 \\ 0 & 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 3 & 3 & 3 \end{pmatrix}.$$

Kronecker product: Let **A** be an $m \times n$ matrix and **B** a $p \times q$ matrix. Their Kronecker product (also called the tensor product) is the $mp \times nq$ matrix denoted by $A \otimes B$, which has the block matrix form:

$$\mathbf{A} \otimes \mathbf{B} = \begin{pmatrix} a_{11}\mathbf{B} & a_{12}\mathbf{B} & \dots & a_{1n}\mathbf{B} \\ a_{21}\mathbf{B} & a_{22}\mathbf{B} & \dots & a_{2n}\mathbf{B} \\ \vdots & \vdots & \dots & \vdots \\ a_{m1}\mathbf{B} & a_{m2}\mathbf{B} & \dots & a_{mn}\mathbf{B} \end{pmatrix}.$$

For example,

$$\begin{pmatrix} -1 & 2 \\ 0 & 1 \end{pmatrix} \otimes \begin{pmatrix} 0 & 1 & 2 \\ 3 & 3 & 3 \end{pmatrix} = \begin{pmatrix} 0 & -1 & -2 & 0 & 2 & 4 \\ -3 & -3 & -3 & 6 & 6 & 6 \\ 0 & 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 3 & 3 & 3 \end{pmatrix}.$$

5. Mi a Kronecker-delta? / What is the Kronecker delta?

(10 pont)

Kronecker-delta:
$$\delta_{ij} = \begin{cases} 0, & \text{ha } i \neq j. \\ 1, & \text{ha } i = j. \end{cases}$$

Kronecker-delta:
$$\delta_{ij} = \begin{cases} 0, & \text{if } i \neq j. \\ 1, & \text{if } i = j. \end{cases}$$

6. Mi az az LU-felbontás? Melyek az LU-felbontás előnyei? Mire használható az LU-felbontás, és miért? / What is LU decomposition? What are the advantages of LU decomposition? What are its applications and why? (10 pont)

<u>LU-felbontás</u>: Azt mondjuk, hogy az $m \times n$ -es **A** mátrix $\mathbf{A} = \mathbf{L}\mathbf{U}$ alakú tényezőkre bontása LU-felbontás (LU-faktorizáció vagy LU-dekompozíció), ha **L** alsó egység háromszögmátrix (tehát a főátlóban 1-ek, fölötte 0-k vannak), **U** pedig felső háromszögmátrix.

Mivel az oszlopok között nem végzünk műveletet, egyetlen LU-felbontással több, kevesebb oszlopot tartalmazó mátrix LU-felbontását is meghatároztuk. Könnyen belátható, hogy végtelen számú egyenletrendszert tudunk megoldani egyetlen LU-felbontással. Mátrixok invertálása is egyszerűbb LU-felbontással.

<u>LU Decomposition</u>: We say that the factorization of an $m \times n$ matrix **A** into the form $\mathbf{A} = \mathbf{LU}$ is an LU decomposition (LU factorization or LU decomposition) if **L** is a unit lower triangular matrix (i.e., ones on the diagonal and zeros above it), and **U** is an upper triangular matrix.

Since no operations are performed between columns, a single LU decomposition can also be used for matrices with fewer columns. It is easy to see that an infinite number of systems of linear equations can be solved with a single LU decomposition. The inversion of matrices is also easier using LU decomposition.

7. Mi a mátrix sajátértéke, sajátvektora és sajátaltere? / What are the eigenvalues, eigenvectors, and eigenspaces of a matrix? (10 pont)

Sajátérték, sajátvektor: Legyen V egy vektortér \mathbb{R} felett, és $\varphi:V\to V$ egy lineáris leképezés. Ha létezik olyan $\mathbf{a}\in V$, $\mathbf{a}\neq \mathbf{0}$ vektor és $\lambda\in\mathbb{R}$ skalár, amelyre $\varphi(\mathbf{a})=\lambda\mathbf{a}$ teljesül, akkor \mathbf{a} a φ sajátvektora, és λ az \mathbf{a} -hoz tartozó sajátérték.

Sajátaltér: Legyen $L_{\lambda} = \{ \mathbf{a} \in V : \varphi(\mathbf{a}) = \lambda \mathbf{a} \}$. Ez a halmaz a λ -hoz tartozó sajátvektorokból és a nullvektorból áll, és alteret alkot. Ezt nevezzük a λ -hoz tartozó sajátaltérnek.

Eigenvalue, eigenvector: Let V be a vector space over \mathbb{R} and $\varphi: V \to V$ a linear mapping. If there exists a nonzero vector $\mathbf{a} \in V$ and a scalar $\lambda \in \mathbb{R}$ such that $\varphi(\mathbf{a}) = \lambda \mathbf{a}$, then \mathbf{a} is called an eigenvector of φ and λ the corresponding eigenvalue.

Eigenspace: Let $L_{\lambda} = \{ \mathbf{a} \in V : \varphi(\mathbf{a}) = \lambda \mathbf{a} \}$. This set of eigenvectors corresponding to λ , together with the zero vector, forms a subspace called the eigenspace corresponding to λ .

8. Mi két komplex elemű vektor skaláris szorzata? / What is the scalar product of two complex vectors? (10 pont)

Komplex vektorok skaláris szorzata: A \mathbb{C}^n -beli $\mathbf{z} = (z_1, z_2, \dots, z_n)$ és $\mathbf{w} = (w_1, w_2, \dots, w_n)$ vektorok skaláris szorzatán a

$$\mathbf{z} \cdot \mathbf{w} = \overline{z_1} w_1 + \overline{z_2} w_2 + \dots + \overline{z_n} w_n$$

komplex skalárt értjük. Ennek mátrixszorzatos alakja $\mathbf{z} \cdot \mathbf{w} = \mathbf{z}^H \mathbf{w}$.

Scalar product of complex vectors: For vectors $\mathbf{z} = (z_1, z_2, \dots, z_n)$ and $\mathbf{w} = (w_1, w_2, \dots, w_n)$ in \mathbb{C}^n , the scalar product is defined as

$$\mathbf{z} \cdot \mathbf{w} = \overline{z_1} w_1 + \overline{z_2} w_2 + \dots + \overline{z_n} w_n$$

which is a complex scalar. Its matrix product form is $\mathbf{z} \cdot \mathbf{w} = \mathbf{z}^H \mathbf{w}$.

9. Mi az a gyors Fourier-transzformáció (FFT)? / What is the Fast Fourier Transform (FFT)? (10 pont)

Gyors Fourier-transzformáció: A diszkrét Fourier-transzformált kiszámításához, azaz az n-edrendű Fourier-mátrixszal való szorzás kiszámításához n^2 szorzás elvégzésére van szükség. Bármely olyan algoritmust, mely e transzformáció eredményét $O(n \log n)$, azaz konstansszor $n \log n$ lépésben elvégzi, gyors Fourier-transzformációnak nevezzük.

<u>Fast Fourier Transform</u>: To compute the discrete Fourier transform, that is, the matrix multiplication with the n-th order Fourier matrix, requires n^2 multiplications. Any algorithm that performs this transformation in $O(n \log n)$, i.e., in a number of steps proportional to $n \log n$, is called a fast Fourier transform.

10. Mi az a főkomponens-analízis? Csak szövegesen válaszoljon egy-két mondatban. / What is Principal Component Analysis (PCA)? Answer in essay form using one or two sentences. (10 pont)

Principal Component Analysis (PCA), avagy főkomponens-analízis vagy főkomponens-elemzés egy többváltozós statisztikai eljárás, mely az adatredukciós módszerek közé sorolható. Lényege, hogy egy nagy adathalmaz - melynek változói kölcsönös kapcsolatban állnak egymással - dimenzióit lecsökkentse, miközben a jelen lévő varianciát a lehető legjobban megtartsa.

rincipal Component Analysis (PCA) is a multivariate statistical procedure that falls under data reduction methods. Its essence lies in reducing the dimensions of a large dataset – whose variables are interrelated – while retaining as much of the existing variance as possible.

<u>A vizsga osztályzása:</u> 0–40 pont: elégtelen (1), 41–55 pont: elégséges (2), 56–70 pont: közepes (3), 71–85 pont: jó (4), 86–100 pont: jeles (5).

<u>Grades:</u> 0–40 points: Fail (1), 41–55 points: Sufficient (2), 56–70 points: Satisfactory (3), 71–85 points: Good (4), 86–100 points: Excellent (5).

Facskó Gábor / Gábor FACSKÓ facskog@gamma.ttk.pte.hu

Pécs, 2025. május 28. / May 28, 2025