Text Retrieval and Search Engines

Retrieval Methods: Feedback in Text Retrieval

ChengXiang "Cheng" Zhai
Department of Computer Science
University of Illinois at Urbana-Champaign

Text Retrieval Methods: Feedback in TR

1. Feedback in Text Retrieval Relevance Feedback

Users make explicit relevance judgments on the initial results (judgments are reliable, but users don't want to make extra effort)

Pseudo/Blind/Automatic Feedback

Top-k initial results are simply assumed to be relevant (judgments aren't reliable, but no user activity is required)

Implicit Feedback

User-clicked docs are assumed to be relevant; skipped ones non-relevant (judgments aren't completely reliable, but no extra effort from users)

2. Feedback in Vector Space Model - Rocchio

- How can a TR system learn from examples to improve retrieval accuracy?
 - Positive examples: docs known to be relevant
 - Negative examples: docs known to be non-relevant
- General method: query modification
 - Adding new (weighted) terms (query expansion)
 - Adjusting weights of old terms

Rocchio Feedback: Illustration

Centroid of relevant documents

Centroid of non-relevant documents

Rocchio Feedback: Formula

Example of Rocchio Feedback

V= {news about presidential camp. food }

```
Query = "news about presidential campaign"
```

$$Q = (1, 1, 1, 1, 0, 0, ...)$$
New Query Q'= $(\alpha*1+\beta*1.5-\gamma*1.5, \alpha*1-\gamma*0.067, \alpha*1+\beta*3.5, \alpha*1+\beta*2.0-\gamma*2.6, -\gamma*1.3, 0, 0, ...)$

$$-D1 = (1.5, 0.1, 0, 0, 0, 0, ...)$$

$$-D2 = (1.5, 0.1, 0, 2.0, 2.0, 0, ...)$$

$$-D3 = (1.5, 0.3.0, 2.0, 0, 0, ...)$$

$$+ D3 = (1.5, 0, 3.0, 2.0, 0, 0, ...)$$

$$+ Centroid Vector = ((1.5+1.5)/2, 0, (3.0+4.0)/2, (2.0+2.0)/2, 0, 0, ...)$$

$$= (1.5, 0, 3.5, 2.0, 0, 0, ...)$$

$$+ D4 = (1.5, 0, 4.0, 2.0, 0, 0, ...)$$

$$- Centroid Vector = ((1.5+1.5+1.5)/3, (0.1+0.1+0)/3, 0, (0+2.0+6.0)/3, (0+2.0+2.0)/3, 0, ...)$$

$$= (1.5, 0.067, 0, 2.6, 1.3, 0, ...)$$

- D5=
$$(1.5, 0, 0, 6.0, 2.0, 0, ...)$$

Rocchio in Practice

- Negative (non-relevant) examples are not very important (why?)
- Often truncate the vector (i.e., consider only a small number of words that have highest weights in the centroid vector) (efficiency concern)
- Avoid "over-fitting" (keep relatively high weight on the original query weights) (why?)
- Can be used for relevance feedback and pseudo feedback (β should be set to a larger value for relevance feedback than for pseudo feedback)
- Usually robust and effective

3. Feedback in Text Retrieval - Feedback in Language Models

- Query likelihood method can't naturally support relevance feedback
- Solution:
 - Kullback-Leibler (KL) divergence retrieval model as a generalization of query likelihood
 - Feedback is achieved through query model estimation/updating

Kullback-Leibler (KL) Divergence Retrieval Model

Query Likelihood

$$f(q,d) = \sum_{\substack{w_i \in a \\ w_i \in q}} c(w,q) \left[log \frac{p_{Seen}(w_i \mid d)}{\alpha_d p(w_i \mid C)} \right] + n log \alpha_d$$

KL-divergence (cross entropy)

$$f(q,d) = \sum_{w \in d, p(w|\theta_Q) > 0} [p(w \mid \hat{\theta}_Q)] log \frac{p_{seen}(w \mid d)}{\alpha_d p(w \mid C)}] + log \alpha_d$$

Query LM
$$p(w | \hat{\theta}_Q) = \frac{c(w, Q)}{|Q|}$$

Feedback as Model Interpolation

Generative Mixture Model

$$\log p(F \mid \theta) = \sum_{i} \sum_{w} c(w; d_i) \log[(1 - \lambda) p(w \mid \theta) + \lambda p(w \mid C)]$$

Maximum Likelihood $\theta_F = \underset{\theta}{\operatorname{arg\,max}} \log p(F \mid \theta)$

 λ = Noise in feedback documents

Example of Pseudo-Feedback Query Model

Query: "airport security"

 $\lambda = 0.9$

W	$p(W \theta_F)$
security	0.0558
airport	0.0546
beverage	0.0488
alcohol	0.0474
bomb	0.0236
terrorist	0.0217
author	0.0206
license	0.0188
bond	0.0186
counter-terror	0.0173
terror	0.0142
newsnet	0.0129
attack	0.0124
operation	0.0121
headline	0.0121

Mixture model

approach

Web database

Top 10 docs

 $\lambda = 0.7$

W	$p(W \theta_F)$
the	0.0405
security	0.0377
airport	0.0342
beverage	0.0305
alcohol	0.0304
to	0.0268
of	0.0241
and	0.0214
author	0.0156
bomb	0.0150
terrorist	0.0137
in	0.0135
license	0.0127
state	0.0127
by	0.0125

Summary of Feedback in Text Retrieval

- Feedback = learn from examples
- Three major feedback scenarios
 - Relevance, pseudo, and implicit feedback
- Rocchio for VSM
- Query model estimation for LM
 - Mixture model
 - Many other methods (e.g., relevance model) have been proposed
 [Zhai 08]

Additional Readings

• ChengXiang Zhai, Statistical Language Models for Information Retrieval (Synthesis Lectures Series on Human Language Technologies), Morgan & Claypool Publishers, 2008.

http://www.morganclaypool.com/doi/abs/10.2200/S00158ED1V 01Y200811HLT001

• Victor Lavrenko and W. Bruce Croft. 2001. Relevance based language models. In *Proceedings of ACM SIGIR 2011*.

4. Web Search: Introduction & Web Crawler Web Search: Challenges & Opportunities

- Challenges
 - Scalability

- → Parallel indexing & searching (MapReduce)
- How to handle the size of the Web and ensure completeness of coverage?
- How to serve many user queries quickly?
- Low quality information and spams
- → Spam detection& Robust ranking

- Dynamics of the Web
 - New pages are constantly created and some pages may be updated very quickly
- Opportunities
 - many additional heuristics (e.g., links) can be leveraged to
 improve search accuracy
 Link analysis & multi-feature ranking

Basic Search Engine Technologies

Component I: Crawler/Spider/Robot

- Building a "toy crawler" is easy
 - Start with a set of "seed pages" in a priority queue
 - Fetch pages from the web
 - Parse fetched pages for hyperlinks; add them to the queue
 - Follow the hyperlinks in the queue
- A real crawler is much more complicated...
 - Robustness (server failure, trap, etc.)
 - Crawling courtesy (server load balance, robot exclusion, etc.)
 - Handling file types (images, PDF files, etc.)
 - URL extensions (cgi script, internal references, etc.)
 - Recognize redundant pages (identical and duplicates)
 - Discover "hidden" URLs (e.g., truncating a long URL)

Major Crawling Strategies

- Breadth-First is common (balance server load)
- Parallel crawling is natural
- Variation: focused crawling
 - Targeting at a subset of pages (e.g., all pages about "automobiles")
 - Typically given a query
- How to find new pages (they may not linked to an old page!)
- Incremental/repeated crawling
 - Need to minimize resource overhead
 - Can learn from the past experience (updated daily vs. monthly)
 - Target at: 1) frequently updated pages; 2) frequently accessed pages

Summary

- Web search is one of the most important applications of text retrieval
 - New challenges: scalability, efficiency, quality of information
 - New opportunities: rich link information, layout, etc
- Crawler is an essential component of Web search applications
 - Initial crawling: complete vs. focused
 - Incremental crawling: resource optimization

5. Web Indexing Basic Search Engine Technologies

Overview of Web Indexing

- Standard IR techniques are the basis, but insufficient
 - Scalability
 - Efficiency
- Google's contributions:
 - Google File System (GFS): distributed file system
 - MapReduce: Software framework for parallel computation
 - Hadoop: Open source implementation of MapReduce

GFS Architecture

GHEMAWAT, S., GOBIOFF, H., AND LEUNG, S.-T. The google file system. In SOSP '03: Proceedings of the nineteenth ACM symposium on Operating systems principles (New York, NY, USA, 2003), ACM, pp. 29–43. http://static.googleusercontent.com/media/research.google.com/en/us/archive/gfs-sosp2003.pdf

MapReduce: A Framework for Parallel Programming

- Minimize effort of programmer for simple parallel processing tasks
- Features
 - Hide many low-level details (network, storage)
 - Built-in fault tolerance
 - Automatic load balancing

MapReduce: Computation Pipeline

Word Counting

Input: Text Data

Output: Count of each word

Hello World Bye World Hello Hadoop Bye Hadoop Bye Hadoop Hello Hadoop

... ...

Bye 3
Hadoop 4
Hello 3
World 2

How can we do this within the MapReduce framework?

Word Counting: Map Function Input Output

Map(K, V)
{ For each word w in V, Collect(w, 1);}

Word Counting: Reduce Function

Inverted Indexing with MapReduce

Reduce

Key	Value
java	$\{(D1,2), (D2,1)\}$
resource	$\{(D1, 1), (D2,1)\}$
class	$\{(D1,1)\}$
travel	$\{(D2,1)\}$

Inverted Indexing: Pseudo-Code

```
1: class Mapper
        procedure MAP(docid n, doc d)
              H \leftarrow \text{new AssociativeArray}
3:
              for all term t \in \operatorname{doc} d \operatorname{do}
4:
                   H\{t\} \leftarrow H\{t\} + 1
5:
              for all term t \in H do
6:
                   EMIT(term t, posting \langle n, H\{t\}\rangle)
7:
1: class Reducer
         procedure REDUCE(term t, postings [\langle a_1, f_1 \rangle, \langle a_2, f_2 \rangle \dots])
2:
              P \leftarrow \text{new List}
3:
              for all posting \langle a, f \rangle \in \text{postings } [\langle a_1, f_1 \rangle, \langle a_2, f_2 \rangle \dots] \text{ do}
4:
                   APPEND(P,\langle a,f\rangle)
5:
              SORT(P)
6:
              EMIT(term t, postings P)
7:
```

Summary

- Web scale indexing requires
 - Storing the index on multiple machines (GFS)
 - Creating the index in parallel (MapReduce)
- Both GFS and MapReduce are general infrastructures

6. Link Analysis Ranking Algorithms for Web Search

- Standard IR models apply but aren't sufficient
 - Different information needs
 - Documents have additional information
 - Information quality varies a lot
- Major extensions
 - Exploiting links to improve scoring
 - Exploiting clickthroughs for massive implicit feedback
 - In general, rely on machine learning to combine all kinds of features

Exploiting Inter-Document Links

PageRank: Capturing Page "Popularity"

- Intuitions
 - Links are like citations in literature
 - A page that is cited often can be expected to be more useful in general
- PageRank is essentially "citation counting", but improves over simple counting
 - Consider "indirect citations" (being cited by a highly cited paper counts a lot...)
 - Smoothing of citations (every page is assumed to have a nonzero pseudo citation count)
- PageRank can also be interpreted as random surfing (thus capturing popularity)

The PageRank Algorithm

Random surfing model: At any page,

With prob. α , randomly jumping to another page

With prob. $(1-\alpha)$, randomly picking a link to follow.

p(di): PageRank score of di = average probability of visiting page di

Mij = probability of going from di to di $\sum_{i=1}^{N} M_{ij} = 1$

probability of at page di at time t

Reach di via random jumping

probability of visiting page di at time t+1

"Equilibrium Equation":
$$p_{t+1}(d_j) = (1-\alpha)\sum_{i=1}^N M_{ij} p_t(d_i) + \alpha \sum_{i=1}^N \frac{1}{N} p_t(d_i)$$

N=# pages

Reach di via following a link

dropping the time index

$$p(d_j) = \sum_{i=1}^{N} \left[\frac{1}{N}\alpha + (1-\alpha)M_{ij}\right]p(d_i)$$

$$\vec{p} = (\alpha I + (1 - \alpha)M)^T \vec{p}$$

 $I_{ii} = 1/N$

We can solve the equation with an iterative algorithm

PageRank: Example

$$d_3$$
 d_4
 d_2

$$p(d_j) = \sum_{i=1}^{N} \left[\frac{1}{N}\alpha + (1-\alpha)M_{ij}\right] p(d_i)$$
$$\vec{p} = (\alpha I + (1-\alpha)M)^T \vec{p}$$

$$\vec{p} = (\alpha I + (1 - \alpha)M)^T \vec{p}$$

$$A = (1 - 0.2)M + 0.2I = 0.8 \times \begin{bmatrix} 0 & 0 & 1/2 & 1/2 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1/2 & 1/2 & 0 & 0 \end{bmatrix} + 0.2 \times \begin{bmatrix} 1/4 & 1/4 & 1/4 & 1/4 \\ 1/4 & 1/4 & 1/4 & 1/4 \\ 1/4 & 1/4 & 1/4 & 1/4 \end{bmatrix}$$

$$\begin{bmatrix} p^{n+1}(d_1) \\ p^{n+1}(d_2) \\ p^{n+1}(d_3) \\ p^{n+1}(d_4) \end{bmatrix} = A^T \begin{bmatrix} p^n(d_1) \\ p^n(d_2) \\ p^n(d_3) \\ p^n(d_4) \end{bmatrix} = \begin{bmatrix} 0.05 & 0.85 & 0.05 & 0.45 \\ 0.05 & 0.05 & 0.85 & 0.45 \\ 0.45 & 0.05 & 0.05 & 0.05 \\ 0.45 & 0.05 & 0.05 & 0.05 \end{bmatrix} \times \begin{bmatrix} p^n(d_1) \\ p^n(d_2) \\ p^n(d_3) \\ p^n(d_4) \end{bmatrix}$$

$$p^{n+1}(d_1) = 0.05 * p^n(d_1) + 0.85 * p^n(d_2) + 0.05 * p^n(d_3) + 0.45 * p^n(d_4)$$

Initial value p(d)=1/N, iterate until converge

Do you see how scores are propagated over the graph?

PageRank in Practice

- Computation can be quite efficient since M is usually sparse
- Normalization doesn't affect ranking, leading to some variants of the formula
- The zero-outlink problem: p(di)'s don't sum to 1
 - -One possible solution = page-specific damping factor (α =1.0 for a page with no outlink)
- Many extensions (e.g., topic-specific PageRank)
- Many other applications (e.g., social network analysis)

HITS: Capturing Authorities & Hubs

- Intuitions
 - Pages that are widely cited are good authorities
 - Pages that cite many other pages are good hubs
- The key idea of HITS (Hypertext-Induced Topic Search)
 - Good authorities are cited by good hubs
 - Good hubs point to good authorities
 - Iterative reinforcement...
- Many applications in graph/network analysis

The HITS Algorithm

$$A = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix}$$

$$h(d_{\cdot}) = \sum_{i=1}^{n} a(d_{i}) \sum_{i=1}^{n} a(d_{i})$$

$$h(d_i) = \sum_{d_j \in OUT(d_i)} a(d_j)$$

$$a(d_i) = \sum_{d_j \in IN(d_i)} h(d_j)$$

$$\vec{h} = A\vec{a}$$
; $\vec{a} = A^T\vec{h}$
$$\vec{h} = AA^T\vec{h}$$
; $\vec{a} = A^TA\vec{a}$
$$\sum_i a(d_i)^2 = \sum_i h(d_i)^2 = 1$$

"Adjacency matrix"

Initial values: $a(d_i)=h(d_i)=1$

Iterate

Normalize:

$$\sum_{i} a(d_{i})^{2} = \sum_{i} h(d_{i})^{2} = 1$$

Summary

- Link information is very useful
 - Anchor text
 - PageRank
 - HITS
- Both PageRank and HITS have many applications in analyzing other graphs or networks