Class 4: Introduction to mixed models

Andrew Parnell andrew.parnell@mu.ie

Learning outcomes

- ► Know the difference between a simple linear regression and a simple mixed model
- Be able to identify and understand the key features of a mixed model
- ► Know how to fit a simple mixed model in lme4
- ▶ Be able to interpret the output of a simple mixed model

What is a mixed effects model?

You are probably used to seeing fixed effects models:

$$y_i = \alpha + \beta x_i + \epsilon_i$$

- ▶ Here α and β are fixed effects
- That means they do not vary by group (or observation)
- When we add in terms that vary by group or observation and give these a specified probability distribution then we have a mixed effects model. You need a categorical covariate to do that.
- (In fact ϵ_i can be considered a random effect because it varies by observation and has a constrained distribution $\epsilon_i \sim N(0, \sigma^2)$)

Example data set

Let's think again about the earnings data where we want to estimate log(earnings) from people's height in cm using a linear regression model where height is mean centered, i.e.

```
\log(\mathsf{earnings}_i) = \alpha + \beta \times (\mathsf{height}_i - \mathsf{mean(height)}) + \epsilon_i
```


Model fit

Call:

##

##

Residuals:

summary(lm(y ~ x_centered, data = dat))

lm(formula = y ~ x_centered, data = dat)

Min 1Q Median 3Q

```
## -4.4351 -0.3705 0.1615 0.5761 2.3302

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 9.737358 0.027858 349.540 < 2e-16 ***

## x_centered 0.022555 0.002866 7.869 8.84e-15 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' '

##

## Residual standard error: 0.9066 on 1057 degrees of freedom
```

Multiple R-squared: 0.05533, Adjusted R-squared: 0.05444
F-statistic: 61.91 on 1 and 1057 DF, p-value: 8.836e-15 5/18

Max

Plot with fitted line

Using slightly more information

A new model

Suppose we wanted to fit a simple model where there was a different (parallel) fitted line for each ethnic group:

$$y_{ij} = \alpha_j + \beta x_{ij} + \epsilon_{ij}$$

- Note the change of notation. We now write y_{ij} as the *i*th observation in group (ethnicity) j
- ▶ There are 4 ethnicity groups so j = 1, ..., 4 but different numbers of observations in each group

```
table(dat$eth)
```

```
##
## 1 2 3 4
## 104 61 873 21
```

How could we fit this new model?

I can think of three obvious ways:

- 1. Divide the data up into 4 groups and fit each individually
- 2. Fit a linear regression for all the data and include ethnicity as a fixed categorical effect
- 3. Fit a mixed effects regression model with ethnicity as a random effect

What are the advantages and disadvantages of each?

Fit using Im

```
summary(lm(y ~ x_centered + as.factor(eth), data = dat))
##
## Call:
  lm(formula = y ~ x_centered + as.factor(eth), data = dat)
##
## Residuals:
##
      Min
             1Q Median 3Q
                                  Max
## -4.4533 -0.3711 0.1599 0.5695 2.3086
##
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                 9.651865 0.088904 108.565 < 2e-16 ***
## x centered
             ## as.factor(eth)2 -0.061071 0.146287 -0.417 0.676
## as.factor(eth)3 0.103612 0.094069 1.101 0.271
## as.factor(eth)4 0.181377 0.217105 0.835 0.404
## ---
## Signif. codes:
                  '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '
##
```

10 / 18

A fit using Ime

##

##

Correlation of Fixed Effects:

x centered 0.023

(Intr)

Alternatively we can use Ime4 to fit a mixed effects model here:

```
library(lme4)
mm 1 = lmer(v ~ x centered + (1 | eth), data = dat)
summary(mm_1)
## Linear mixed model fit by REML ['lmerMod']
## Formula: y ~ x_centered + (1 | eth)
##
     Data: dat
##
## REML criterion at convergence: 2810.6
##
## Scaled residuals:
      Min 10 Median
                                      Max
## -4.9009 -0.4088 0.1808 0.6309 2.5630
##
## Random effects:
## Groups Name
                        Variance Std.Dev.
## eth
            (Intercept) 0.001828 0.04275
## Residual
                        0.821243 0.90622
## Number of obs: 1059, groups: eth, 4
##
## Fixed effects:
              Estimate Std. Error t value
## (Intercept) 9.720272 0.042502 228.703
## x centered 0.022464 0.002868 7.833
```

Look at the effects for each group

```
coef(mm_1)
```

```
## $eth
## (Intercept) x_centered
## 1 9.707429 0.02246425
## 2 9.704834 0.02246425
## 3 9.743485 0.02246425
## 4 9.725341 0.02246425
##
## attr(,"class")
## [1] "coef.mer"
```

► Compare (after a bit of calculation) with the fixed effects model and they should be much more similar to each other

Why are these two models different?

The 1mer model has an extra constraint that:

$$\alpha_j \sim N(\mu_\alpha, \sigma_\alpha^2)$$

- The constraint forces the intercepts to be tied together
- This has two advantages:
 - ► We get to borrow strength between groups and reduce the effect of tiny (and noisy) sample sizes (look at the standard errors of the intercepts on the fixed effects version)
 - We can remove the effect of ethnicity from the overall model because we now have an extra estimate of the variability associated with it, via σ_{α}

Extra plots

The 1me4 package also creates other plots for us:

plot(mm_1)

Further output

Confidence intervals

```
confint(mm 1, level = 0.5)
## Computing profile confidence intervals ...
                    25 % 75 %
##
  .sig01 0.00000000 0.03164932
##
## .sigma
              0.89258219 0.91913323
## (Intercept) 9.71858380 9.75613175
## x_centered 0.02062318 0.02448677
```

Plot the random effects

```
library(lattice)
dotplot(ranef(mm_1))
```

\$eth

Creating predictions - fiddly

Summary

- We now know the difference between a fixed effects model and a mixed effects model
- We have seen some of the key advantages of moving from fitting separately to modelling it jointly
- We have fitted a model in Ime4
- We have interpreted some of the lme4 output