Teoría de Autómatas y Lenguajes Formales Ingeniería Técnica en Informática de Sistemas

Hoja de Problemas 7

Propiedades Lenguajes Regulares

NIVEL DEL EJERCICIO: (*) básico, (*) medio, (*) avanzado.

1. (*) Prueba que el lenguaje de los palíndromos sobre un alfabeto finito con al menos dos elementos no es regular.

Solución:

2. (*) Demuestra o refuta la siguiente afirmación:

"Todo lenguaje que sea un subconjunto de un lenguaje regular es regular".

Solución:

- 3. Sea $\Sigma = \{a, b, c\}$ un lenguaje finito. Para cada una de las siguientes definiciones del lenguaje $L \subseteq \Sigma$, demuestra que L no es regular:
 - (a) (\star) $L = \{a^n b^n \mid n \ge 1\}.$

Solución:

(b) (\star) $L = \{a^n b^{2n} \mid n \ge 1\}.$

Solución:

(c) (\star) $L = \{a^n b^m \mid 0 < n \le m\}.$

Solución:

(d) (a) $L = \{a^n b^m \mid |n - m| = 2\}.$

Solución:

(e) (a) $L = \{a^n b^m c^m \mid m, n \ge 1\}.$

Solución:

(f) (*) $L = \{a^n b^m a^{m+n} \mid m, n \ge 1\}.$

ioja de i robiemas i (com.)

Solución:

(g) (*) $L = \{a^n b^m \mid n, m \ge 0 \ y \ n \ne m\}.$

Solución:

(h) (*) $L = \{a^n b^m a^l \mid m, n, l \ge 1 \ y \ l \ne m + n\}.$

Solución:

(i) (*) $L = \{ \mathbf{w} \in \Sigma^* \mid n_a(\mathbf{w}) = n_b(\mathbf{w}) \}.$

Solución:

Supongamos por reducción al absurdo que L es regular.

Sea $N \in \mathbb{N}$ la constante del Lema de Bombeo. Sea $\mathbf{x} = a^N b^N \in L$ una palabra del lenguaje. Además, su longitud verifica $|\mathbf{x}| = 2N > N$. Por tanto, podemos aplicar el Lema de Bombeo a esta palabra. Aplicándolo, existen tres palabras $u, v, w \in \{a, b, c\}^*$ verificando:

- $|uv| \leq N$
- |v| > 0
- x = uvw
- $uv^iw \in L$ para todo $i \ge 0$.

Por la forma que tiene \mathbf{x} , y usando la propiedad primera y segunda, tenemos que necesariamente $u=a^j,\ v=a^k$, para $j\geq 0,\ k\geq 1,\ j+k\leq N$. Por tanto, $w=a^{N-j-k}b^N$. Finalmente, aplicando la última propiedad para i=0 se tendría que $uv^0w\in L$, pero

$$uv^0w = uw = a^ja^{N-j-k}b^N = a^{N-k}b^N \notin L$$

Esta palabra $a^{N-k}b^N$ no está en L pues $N-k \neq N$ ya que $k \geq 1.$

Por lo tanto, hemos llegado a una contradicción, por lo que se sigue que L no es regular.

(j) (*) $L = \{ \mathbf{w} \in \Sigma^* \mid n_a(\mathbf{w}) < n_b(\mathbf{w}) \}.$

Solución:

(k) (*) $L = \{ \mathbf{w} \in \Sigma^* \mid n_a(\mathbf{w}) \neq n_b(\mathbf{w}) \}.$

Solución:

Supongamos por reducción al absurdo que L es regular. Entonces su complementario:

$$L^c = \left\{ \mathbf{w} \in \{a, b, c\}^* \mid n_a(\mathbf{w}) = n_b(\mathbf{w}) \right\}$$

también debe ser regular. Contradicción.

Como hemos demostrado anteriormente (apartado:i), L^c no es regular, y por tanto L tampoco lo es.

(l) (\bullet) $L = \{a^{n^2} \mid n \ge 1\}.$

Solución:

(m) (\bullet) $L = \{a^{n!} \mid n \ge 3\}.$

Solución:

(n) (a) $L = \{ \mathbf{w_1} c \mathbf{w_2} \mid \mathbf{w_1}, \mathbf{w_2} \in \Sigma^* \ y \ \mathbf{w_1} = \mathbf{w_2} \}.$

Solución:

 $(\|) \ (\blacktriangle) \ L = \{\mathbf{w_1} c \mathbf{w_2} \mid \mathbf{w_1}, \mathbf{w_2} \in \Sigma^* \ y \ \mathbf{w_1} \neq \mathbf{w_2}\}.$

Solución:

(o) (*) $L = \{ \mathbf{w} \mathbf{w} \mid \mathbf{w} \in \Sigma^* \}.$

Solución:

4. (*) Sea $\Sigma = \{., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ y sea $L_{\pi} \subseteq \Sigma^*$ el lenguaje de las cadenas que son las truncaciones de la expansión decimal de π . Esto es,

$$L_{\pi} = \{\lambda, 3, 3, 3, 1, 3, 14, 3, 141, 3, 1415, 3, 14159, \ldots\}.$$

Demuestra que L_{π} no es regular.

Solución:

5. (*) Sea $\Sigma=\{a,b\}$ un alfabeto finito, y sea $L\subseteq\Sigma^*$ el lenguaje definido por la siguiente igualdad:

$$L = \{ \mathbf{x} \mathbf{w} \mathbf{x} \in \Sigma^* \mid \mathbf{x}, \mathbf{w} \in \Sigma^*, |\mathbf{x}| = 2 \}.$$

Es L regular?

oja de i robiemas i (como)

Solución:

6. (*) Sea $\Sigma=\{0,1\}$ un alfabeto finito, y sea $L\subseteq\Sigma^*$ el lenguaje definido por la siguiente igualdad:

$$L = \{\mathbf{x}\mathbf{w}\mathbf{x}^R \mid \mathbf{x}, \mathbf{w} \in \{0, 1\}^+\}.$$

 ξ Es L un lenguaje regular?

Solución: