Maths - Feuille d'exos n° 11 -

Espaces vectoriels

I. Définition, sous-espaces vectoriels

Ex. 11.1 (Cor.) On considere $F = \{x + ix, x \in \mathbb{R}\} \subset \mathbb{C}$.

Montrer que (F, +, .) est un R-espace vectoriel, mais n'est pas un Cespace vectoriel. Ex. 11.2 Parmi les ensembles suivants, lesquels sont des sous-espaces vectoriels de $E = \mathcal{F}(\mathbb{R})$?

vectoriels de
$$E = \mathcal{F}(\mathbb{R})$$
?

1) $C^0(\mathbb{R})$

3) $\{f \in C^0(\mathbb{R}), \int_0^1 f(t) dt = 0\}$

5) $\{f \in E, f(0) = f(1) + 1\}$

6) $\{f \in E, f(0) = 2f(1)\}$

$$(f_{1}) = (f_{1}) + (f_{2}) + (f_{1}) + (f_{2}) + (f_{3}) + (f_{$$

$$f \in C^1(\mathbb{R}), f'(0) = 0$$

Ex. 11.3 On se place sur $E = \mathbb{R}^3$ et on définit F = Vect((1;0;1);(1;1;0)) et G = Vect((0;1;1)).

- Déterminer $F \cap G$.
- Montrer que $\mathbb{R}^3 = F \oplus G$.

Ex. 11.4 Soit (E, +, .) l'espace vectoriel des fonctions de \mathbb{R} dans \mathbb{R} . On considère le sous-espace vectoriel de E défini par $H = \left\{ f \in \mathcal{C}^0(\mathbb{R}), \int_0^1 f(t) dt = 0 \right\} \text{ (voir exercice 11.2)}.$ Trouver un supplémentaire de H dans $\mathcal{C}^0(\mathbb{R})$. **Ex.** 11.5 (Cor.) Soit (E, +, .) un K-espace vectoriel, F et G deux sous-espaces vectoriels de E tels que E = F + G. Soit F' un supplémentaire de $F \cap G$ dans F.

Montrer que $E = F' \oplus G$.

Ex. 11.6 Soient E un K-espace vectoriel, A, B et C trois sous-espaces vectoriels de E tels que A et B sont supplémentaires dans E et $A \subset C$. Montrer que A et $B \cap C$ sont supplémentaires dans C.

Ex. 11.7 (Cor.) Soient $\vec{u}_1 = (1; 0; 0)$, $\vec{u}_2 = (1; 1; 1)$, $\vec{e}_1 = (3; 2; 2)$ et $\vec{e_2} = (0; 1; 1)$ quatre vecteurs de \mathbb{R}^3 .

Montrer que Vect $(\vec{u}_1, \vec{u}_2) = \text{Vect}(\vec{e}_1, \vec{e}_2)$.

relation de récurrence $u_{n+3} = au_{n+2} + bu_{n+1} + cu_n$ où $(a, b, c) \in \mathbb{C}^3$. On note (E_c) l'équation caractéristique $z^3 - az^2 - bz - c = 0$ d'inconnue **Ex.** 11.8 (Cor.) Soit \mathcal{U} l'ensemble des suites complexes vérifiant la $z \in \mathbb{C}$ et on suppose que (E_c) possède trois racines distinctes z_1, z_2 et

- a. Montrer que \mathcal{U} est un espace vectoriel.
- b. Montrer que Vect $((z_1^n)_{n\in\mathbb{N}};(z_2^n)_{n\in\mathbb{N}};(z_3^n)_{n\in\mathbb{N}})\subset\mathcal{U}$.

II. Applications linéaires

Ex. 11.9

a. Parmi les applications suivantes, lesquelles sont linéaires?

$$f: (x; y; z) \in \mathbb{R}^3 \mapsto x - 2y + 3z \in \mathbb{R}$$
$$g: (x; y) \in \mathbb{R}^2 \mapsto (2x + y; 1) \in \mathbb{R}^2$$
$$h: (x; y) \in \mathbb{R}^2 \mapsto (x - y; x + y) \in \mathbb{R}^2$$

b. Déterminer le noyau et l'image des applications linéaires précé-

 $\mathbf{Ex.}\,11.10$ Parmi les applications suivantes, les quelles sont des formes linéaires sur $\mathcal{F}(\mathbb{R})$?

$$(1) f \mapsto f(0) \qquad (2) f \mapsto f(1) - 1 \quad (3) f \mapsto f''(3)$$

(1)
$$f \mapsto f(0)$$
 (2) $f \mapsto f(1) - 1$ (3) $f \mapsto f''(3)$ (4) $f \mapsto (f'(2))^2$ (5) $f \mapsto \int_0^1 f(t) dt$.

 $\underline{\mathbf{Ex. 11.11}} \quad \text{Soit } E \text{ un } \mathbb{K}\text{-espace vectoriel}, \ f \in \mathcal{L}(E), \text{ et}$ $\Phi : \left\{ \begin{array}{l} E \times E \to E \times E \\ (x;y) \to (x+y;x+f(x+y)) \end{array} \right. .$

$$\vdots \left\{ \begin{array}{ll} E \times E & \to & E \times E \\ (x;y) & \mapsto & (x+y;x+f(x+y)) \end{array} \right. .$$

Montrer que Φ est un automorphisme de $E \times E$.

Soit $\phi \in \mathcal{L}(\mathbb{R}^2)$ я.

Montrer qu'il existe $(a;b;c;d) \in \mathbb{R}^4$ tels que $\forall (x; y) \in \mathbb{R}^2, \phi(x; y) = (ax + by; cx + dy).$

- b. Donner des énoncés similaires pour
- $\phi \in \mathcal{L}(\mathbb{R})$; $\phi \in \mathcal{L}(\mathbb{R}^2; \mathbb{R}^3)$;
 - $\phi \in \mathcal{L}(\mathbb{R}^3)$.

Ex. 11.13 Soient E, F, G trois \mathbb{K} -espaces vectoriels, $u: E \to G$, $v: F \to G$ linéaires tels que Im $u \subset \operatorname{Im} v$.

- Montrer que si v est injective alors il existe une application linéaire $w: E \to F$ telle que $u = v \circ w$.
- b. Montrer que si il existe un sous-espace vectoriel A de F tel que Ker $v \oplus A = F$, alors il existe une application linéaire $w : E \to F$ telle que $u = v \circ w$.

Ex. 11.14 (Cor.) E et F deux K-espaces vectoriels, et $u \in \mathcal{L}(E, F)$, $v \in \mathcal{L}(F, E)$ tels que $v \circ u = \mathrm{Id}_E$.

Montrer que $F = \operatorname{Ker} v \oplus \operatorname{Im} u$.

III. Applications linéaires particulières

Montrer que $s: \left\{ \begin{array}{ccc} \mathbb{R}^2 & \to & \mathbb{R}^2 \\ (x;y) & \mapsto & (x-2y;-y) \end{array} \right.$ est une sy-Ex. 11.15

Préciser alors les espaces F et G tels que s soit la symétrie autour de F parallèlement à G.

métrie de \mathbb{R}^2

Ex. 11.16 On se place sur $E = \mathbb{R}^3$. F = Vect((1;0;1);(1;1;0)) et G = Vect((0;1;1)) de sorte à ce que $E = F \oplus G$ (cf. exercice 11.3). Déterminer l'expression de la symétrie autour de F parallèlement à G.

Ex. 11.17 Donner l'expression de la projection sur Vect(-1;1) parallèlement à Vect(2;1)

Ex. 11.18 Déterminer la nature des applications linéaires suivantes

a.
$$(x; y) \in \mathbb{R}^2 \mapsto (-x; y - 2x) \in \mathbb{R}^2$$

b.
$$(x;y) \in \mathbb{R}^2 \mapsto (x-y;y-x) \in \mathbb{R}^2$$

Ex. 11.1 $\underline{9}$ Soient f et g deux endomorphismes d'un espace vectoriel Montrer que $g \circ f$ est un projecteur et déterminer la décomposition de E tels que $f \circ g = \mathrm{Id}_E$.

Soit (E, +, .) un K-espace vectoriel et p et q deux E associée (voir exercice 11.14...) Ex. 11.20 (Cor.) projecteurs de E.

- a. Montrer que p+q est un projecteur de E si et seulement si $p \circ q = q \circ p = 0.$
- b. Montrer qu'on a alors $\ker(p+q) = \ker p \cap \ker q$.

Corrections

Cor. 11.1: En considérant $\mathbb C$ comme un $\mathbb R$ -espace vectoriel, $F = \operatorname{Vect}(1+i)$ est donc un sous-espace vectoriel donc un espace vectoriel (sur R)

En considérant $\bar{\mathbb{C}}$ comme un \mathbb{C} -espace vectoriel, le vecteur 1+i par exemple est un vecteur de F mais $i(1+i) = -1 + i \notin F$: donc F n'est pas un sous-espace vectoriel du C-espace vectoriel C. **Cor.** 11.5: F' est le supplémentaire de $F \cap G$ (qui est un s.e.v. de (E, +, ...)) dans

F. Donc $F = F' \oplus (F \cap G)$. Nous devons démontrer que $F' \cap G = \{0\}$ et F' + G = E.

- Soit $x \in F' \cap G$. $x \in F' \Rightarrow x \in F$ et $x \in G \Rightarrow x \in F \cap G$. Donc $x \in F'$ $x \in (F \cap G) \text{ donc } x = 0.$
- $u \in F$ et $F = F' \oplus (F \cap G)$ donc $\exists (u_1, u_2) \in F' \times (F \cap G)$ tels que Soit $x \in E$. E = F + G donc $\exists (u, v) \in F \times G$, x = u + v. Donc $F' \cap G = \{0\}.$

Donc $x = u_1 + u_2 + v$ avec $u_1 \in F'$ et $u_2 + v \in G$ (car G est un e.v.). Donc E = F' + G.

 $u = u_1 + u_2.$

Finalement on a démontré que $E = F' \oplus G$.

Cor. 11.7 : Notons $E = \mathbb{R}^3$, $F = \operatorname{Vect}(u_1, u_2)$ et $G = \operatorname{Vect}(e_1, e_2)$. Démontrons que F = G par double inclusion : • $F \subset G$: soit $u = \lambda u_1 + \mu u_2 \in F$. Montrons que $u \in G$, c'est-à-dire montrons qu'il existe $(x;y) \in G$ tels que $u = xe_1 + ye_2$. Cherchons donc $(x;y) \in \mathbb{R}^2$ tels que

$$\lambda(1;0;0) + \mu(1;1;1) = x(3;2;2) + y(0;1;1) \Leftrightarrow \begin{cases} \lambda + \mu & = 3x \\ \mu & = 2x + y \\ \mu & = 2x + y \end{cases}$$

$$\Leftrightarrow \begin{cases} x = \frac{\lambda + \mu}{3} \\ y = \frac{3}{3} \end{cases}$$

Donc tout vecteur de F est un vecteur de $G: F \subset G$.

• $G \subset F$: soit $e = xe_1 + ye_2 \in G$, montrons qu'il existe $(\lambda; \mu) \in \mathbb{R}^2$ tels que $e = \lambda u_1 + \mu u_2$. Cherchons donc $(\lambda; \mu) \in \mathbb{R}^2$ tels que

$$\lambda(1;0;0) + \mu(1;1;1) = x(3;2;2) + y(0;1;1) \Leftrightarrow \begin{cases} \lambda + \mu &= 3x \\ \mu &= 2x + y \\ \mu &= 2x + y \end{cases}$$

$$\Leftrightarrow \begin{cases} \lambda &= x - y \\ \mu &= 2x + y \end{cases}$$

Donc tout vecteur de G est un vecteur de $F:G\subset \overline{F}$.

Comme $F \subset G$ et $G \subset F$, on conclut que F = G.

- a. Montrons que ${\mathcal U}$ est un sous-espace vectoriel de ${\mathbb C}^{\mathbb N}$:
 - $\mathcal{U} \subset \mathbb{C}^{\mathbb{N}}$ par définition;
- $a \times 0 + b \times 0 + c \times 0 = aZ_{n+2} + bZ_{n+1} + cZ_n$ donc la suite nulle ullet La suite nulle Z vérifie bien, pour tout entier $n,\ Z_{n+3}=0=$ appartient à \mathcal{U} ;
- Soit u et v deux suites de \mathcal{U} et $(\lambda; \mu) \in \mathbb{C}^2$: montrons que $\lambda u + \mu v$ est une suite de \mathcal{U} . Pour tout entier n:

une suite de d. Four cour entiter
$$n$$
:
$$\lambda u_{n+3} + \mu v_{n+3} = \lambda (au_{n+2} + bu_{n+1} + cu_n) + \mu (av_{n+2} + bv_{n+1} + cv_n)$$

$$= a (\lambda u_{n+2} + \mu v_{n+2}) + b (\lambda u_{n+1} + \mu v_{n+1}) + c (\lambda u_n + \mu v_n)$$

Finalement, $\mathcal U$ est un sous espace vectoriel de $\mathbb C^{\mathbb N}$ donc un espace-vectoriel. donc $\lambda u + \mu v \in \mathcal{U}$.

Soit $z \in \{z_1; z_2; z_3\}$. Montrons que la suite $(z^n)_{n \in \mathbb{N}}$ appartient à \mathcal{U} . Pour ъ,

 $z^{n+3}=z^n\times z^3=z^n\times \left(az^2+bz+c\right)$ car $z_1,\ z_2$ et z_3 sont solutions de tout entier n:

Donc $z^{n+3} = az^{n+2} + bz^{n+1} + cz^n$. Donc les trois suites $(z_1^n)_{n \in \mathbb{N}}$, $(z_2^n)_{n \in \mathbb{N}}$ et $(z_3^n)_{n \in \mathbb{N}}$ appartienment toutes à

Or $\mathcal U$ est un espace vectoriel donc est stable par combinaisons linéaires.

Donc Vect
$$\left(\left(z_1^n \right)_{n \in \mathbb{N}} ; \left(z_2^n \right)_{n \in \mathbb{N}} ; \left(z_3^n \right)_{n \in \mathbb{N}} \right) \subset \mathcal{U}$$
.

Cor. 11.14: Nous devons démontrer que Ker $v \cap \text{Im } u = \{0\}$ et Ker v + Im u = F.

• Soit $y \in \operatorname{Ker} v \cap \operatorname{Im} u$. $y \in \operatorname{Ker} v$ donc v(y) = 0. Or $y \in \operatorname{Im} u$, donc $\exists x \in E, y = u(x).$

On a alors, $v \circ u(x) = v(y) = 0 = x$ car $v \circ u = \operatorname{Id}_E$. Donc y = u(0) = 0. On a démontré que $\operatorname{Ker} v \cap \operatorname{Im} u = \{0\}.$

Soit $y \in F$. Soit $y_1 = u(v(y)) = u \circ v(y)$.

ATTENTION : on sait que $v \circ u = \mathrm{Id}_E$ mais on ne sait rien sur $u \circ v$. En particulier, il est tout à fait possible que $y_1 \neq y$.

Posons de plus, $y_2 = y - y_1$ de sorte à ce que $y = y_1 + y_2$.

 $v(y_2) = v(y - y_1) = v(y) - v(y_1) = v(y) - v \circ u \circ v(y) = v(y) - v(y) = 0$ Par définition, $y_1 = u(v(y)) \in \text{Im } u$. De plus, comme $v \circ u = \text{Id}_E$ Donc $y_2 \in \text{Ker } v$.

On a démontré que $\operatorname{Ker} v + \operatorname{Im} u = F$.

Finalement, $F = \operatorname{Ker} v \oplus \operatorname{Im} u$.

Cor. 11.20:

a. p+q est un projecteur si et seulement si $(p+q)\circ(p+q)=p+q$.

Or $(p+q) \circ (p+q) = p \circ p + p \circ q + q \circ p + q \circ q = p + q + p \circ q + q \circ p$. Donc p + q est un projecteur si et seulement si $p \circ q = -q \circ p$.

Sens direct : on compose à gauche par p :

 $p \circ q = -q \circ p \Rightarrow p \circ p \circ q = p \circ q = -p \circ q \circ p = -(-q \circ p) \circ p = q \circ p.$

Réciproquement: $p \circ q = q \circ p = 0 \Rightarrow p \circ q = 0 = -0 = -q \circ p$. Or $p \circ q = -q \circ p = q \circ p \Rightarrow q \circ p = 0 = p \circ q$.

Soit $x \in \text{Ker}(p+q)$. Alors p(x)+q(x)=0 donc p(x)=-q(x). On compose On a donc bien p+q est un projecteur de $E \Leftrightarrow p \circ q = q \circ p = 0$. Ъ.

 $p \circ p(x) = p(x) = -p \circ q(x) = 0$. Donc $x \in \operatorname{Ker} p$. par p:

De même en composant par q:

 $q \circ p(x) = 0 = -q \circ q(x) = -q(x)$. Donc $x \in \operatorname{Ker} q$.

Donc $x \in \operatorname{Ker}(p+q) \Rightarrow x \in \operatorname{Ker} p \cap \operatorname{Ker} q$.

Réciproquement, de façon évidente, si $x \in \operatorname{Ker} p \cap \operatorname{Ker} q$, alors (p +q(x) = p(x) + q(x) = 0.

Donc $\operatorname{Ker}(p+q) = \operatorname{Ker} p \cap \operatorname{Ker} q$.