Data Science 1

STAT/CS 287
Jim Bagrow, UVM Dept of Math and Statistics

LECTURE 18

More on predictive models (supervised learning)

More on predictive models (supervised learning)

Prediction vs. Inference → Linear Regression

Prediction

new x comes in, predict y using $y = f(x) = \beta_0 + \beta_1 x$

More on predictive models (supervised learning)

Prediction vs. Inference → Linear Regression

Prediction

new x comes in, predict y using $y = f(x) = \beta_0 + \beta_1 x$

Inference

learn how changing x changes y by examining β 's

OLS Regression Results

Dep. Variable:			y R-sq	R-squared:		0.999	
Model:			OLS Adj.	Prob (F-statistic):		0.999	
Method:		Least Squa	res F-st			5.849e+04 3.44e-150	
Date:	Tì	nu, 31 Oct 2	019 Prob				
Time:		10:25	:51 Log-			153.19	
No. Observation	ns:		100 AIC:			-300.4	
Df Residuals:			97 BIC:			-292.6	
Df Model:			2				
Covariance Typ	e:	nonrob	oust				
	coef			P> t	[0.025	0.975]	
const	0.9926		60.925	0.000	0.960	1.025	
x1	0.0562	2.517	0.022	0.982	-4.939	5.051	
x2	0.5034	0.198	2.539	0.013	0.110	0.897	
======================================		957 Durb	Durbin-Watson:		1.903		
Prob(Omnibus):		0.084		Jarque-Bera (JB):		2.704	
Skew:		0.153		Prob(JB):		0.259	
Kurtosis:		2.255		Cond. No.		3.53e+03	

More on predictive models (supervised learning)

Prediction vs. Inference → Linear Regression

Prediction

new x comes in, predict y using $y = f(x) = \beta_0 + \beta_1 x$

Inference

learn how changing x changes y by examining β 's

OLS Regression Results

Dep. Variable:			y R-squa	R-squared:		0.999
Model:		C	DLS Adj. F	l-squared:		0.999
Method:		Least Squar	res F-stat	cistic:		5.849e+04
Date:	Th	u, 31 Oct 20)19 Prob (<pre>Prob (F-statistic):</pre>		3.44e-150
Time:		10:25:	51 Log-Li	kelihood:		153.19
No. Observati	ons:	1	LOO AIC:	AIC:		
Df Residuals:			97 BIC:			-292.6
Df Model:			2			
Covariance Ty	pe:	nonrobu	ıst			
=========	=======	========			=======	
	coef	std err	t	P> t	[0.025	0.975]
const	0.9926	0.016	60.925	0.000	0.960	1.025
x1	0.0562	2.517	0.022	0.982	-4.939	5.051
x2	0.5034	0.198	2.539	0.013	0.110	0.897
Omnibus:	=======	======== 4.9	======== 957 Durbir	 n-Watson:	=======	1.903
rob(Omnibus): 0.084			Jarque-Bera (JB):			
Skew:	•	0.153		JB):		2.704 0.259
Kurtosis:		2.255		Cond. No.		3.53e+03

Recall

Natural Language Processing Tasks & Semantic Similarity

Supervised Learning — Classifiers

—# unique words (types)— 00073001 ... 05000 spam Labels vector spam Documents and labels: spam ham ham Training data y = f(X)A new, unlabeled document comes in: $\hat{f}([00026305...001100]) =$ built a machine \hat{f} to predict label given arg max [Pr(spam), Pr(ham)] = count vector arg max [0.6, 0.4] = (for example)spam

$$y \approx \hat{f}(X)$$

Use function \hat{f} to predict an unknown y given a known X

Examples

X

features of hospitalizations

outcome of hospital stay

Image classification: (raw) image features

KIDS dataset:

label of subject of image

Finance: values of stocks, bonds, foreign exchange

tomorrow's stock price of \$IBM

$$y \approx \hat{f}(X)$$

Use function \hat{f} to predict an unknown y given a known X

Examples

literal predictions

KIDS dataset:

features of hospitalizations

outcome of hospital stay

Image classification: (raw) image features

label of subject of image

Finance:

values of stocks, bonds, foreign

exchange

tomorrow's stock price of \$IBM

$$y \approx \hat{f}(X)$$

Use function \hat{f} to predict an unknown y given a known X

Examples

literal predictions

KIDS dataset: features of hospitalizations

outcome of hospital stay

Image classification: (raw) image features

label of subject of image

Finance:

values of stocks, bonds, foreign

exchange

tomorrow's stock price of \$IBM

Why build a predictive model?

X - readily available

y - very hard to come by

so approximate y with $\hat{y} = \hat{f}(X)$

$$y \approx \hat{f}(X)$$

 $ypprox \hat{f}(X)$ Use function \hat{f} to predict an unknown y given a known X

How to build a predictive model?

Invest in the effort to generate training data, many X, y pairs

Figure out a good \hat{f} by comparing $\hat{f}(X)$ and y when both are known - training or learning

$$y \approx \hat{f}(X)$$

Use function \hat{f} to predict an unknown y given a known X

Never forget the guiding principle – deployment

Invest in the effort to generate training data, many examples X, y pairs

Figure out a good \hat{f} by comparing $\hat{f}(X)$ and y when both are known - training or learning

X - readily available y - very hard to come by so approximate y with $\hat{y} = \hat{f}(X)$

$$y \approx \hat{f}(X)$$

Use function \hat{f} to predict an unknown y given a known X

Never forget the guiding principle - deployment

Invest in the effort to generate training data, many examples X, y pairs

Figure out a good \hat{f} by comparing $\hat{f}(X)$ and y when both are known - training or learning

X - readily available y - very hard to come by so approximate y with $\hat{y} = \hat{f}(X)$

$$y \approx \hat{f}(X)$$

Use function \hat{f} to predict an unknown y given a known X

Never forget the guiding principle - deployment

Invest in the effort to generate training data, many examples X, y pairs

Figure out a good \hat{f} by comparing $\hat{f}(X)$ and y when both are known - training or learning

 \boldsymbol{X} - readily available

y - very hard to come by

so approximate y with $\hat{y} = \hat{f}(X)$

Very easy, especially for beginners, to get lost fitting \hat{f} to data (error metrics, cross-validation, hyperparameters) but remember: you are building a system that works without knowing y

Predictive model is given $X_{\rm tr}$ and $y_{\rm tr}$ to learn $\hat{f}(X) \approx f(X)$

Predictive model is given $X_{\rm tr}$ and $y_{\rm tr}$ to learn $\hat{f}(X) \approx f(X)$

Predictive model is **tested** with $X_{\rm te}$ and $y_{\rm te}$ by comparing $\hat{f}(X_{\rm te})$ against $y_{\rm te}$

• Example *error metric* (sum of squared errors): $\|\hat{f}(X) - y\|_2^2$

Predictive model is given $X_{\rm tr}$ and $y_{\rm tr}$ to learn $\hat{f}(X) \approx f(X)$

Predictive model is **tested** with $X_{\rm te}$ and $y_{\rm te}$ by comparing $\hat{f}(X_{\rm te})$ against $y_{\rm te}$

• Example *error metric* (sum of squared errors): $\|\hat{f}(X) - y\|_2^2$

Why not use all the data to learn, maximize the information we have?

Many predictive models have both parameters and hyperparameters

Parameters: changed during/due to training

Hyperparameters: chosen before training

Many predictive models have both parameters and hyperparameters

Parameters: changed during/due to training

Hyperparameters: chosen before training

50 / 50 split

(90/10 also common)

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \dots + \beta_d x^d$$

Parameters: coefficients β_i

Hyperparameter: polynomial order *d*

Neural networks

Parameters: weights on links

Hyperparameters:

Network architecture
Choice of activation function

. . .

Many predictive models have both parameters and hyperparameters

Parameters: changed during/due to training

Hyperparameters: chosen before training

You could:

- 1. Use training data to fit parameters
- 2. Use testing data to compare different hyperparameters

But:

 Risk overfitting again—all your data went into the model, nothing is left over for testing

Many predictive models have both parameters and hyperparameters

Parameters: changed during/due to training

Hyperparameters: chosen before training

Instead:

- 1. Use training data to fit parameters
- 2. Use validation data to compare different hyperparameters
- 3. Use testing data to pick best model

One issue:

May need multiple training/validation splits, to get enough statistics (repetitions) to make good comparisons

Splits/Cross-Validation are biased

Compare

- A) Take a single dataset and split it into two datasets
- B) Generate a dataset and, later, generate a second dataset

Splits/Cross-Validation are biased

Compare

- A) Take a single dataset and split it into two datasets
- B) Generate a dataset and, later, generate a second dataset

It's likely there is unaccounted variation(s) that is changing the two datasets in option B that is not present in option A

→ Larger difference between the two B datasets than the two A datasets

Splits/Cross-Validation are biased

Compare

- A) Take a single dataset and split it into two datasets
- B) Generate a dataset and, later, generate a second dataset

It's likely there is unaccounted variation(s) that is changing the two datasets in option B that is not present in option A

→ Larger difference between the two B datasets than the two A datasets

Therefore, training/testing or cross-validation will likely **overestimate** the true performance of a predictive model

Underestimates the error of the model

Failure to simulate deployment

Information from the held out test set was used during training

Failure to simulate deployment

Information from the held out test set was used during training

Example

Suppose I want to rescale (one of) my predictive features:

$$X_i$$
 becomes $\frac{X_i - \bar{X}_i}{\sigma_{X_i}}$

Failure to simulate deployment

Information from the held out test set was used during training

Example Suppose I want to rescale (one of) my predictive features:

$$X_i$$
 becomes $\frac{X_i - \bar{X}_i}{\sigma_{X_i}}$

Failure to simulate deployment

Information from the held out test set was used during training

Example

Suppose I want to rescale (one of) my predictive features:

$$X_i$$
 becomes $\frac{X_i - \bar{X}_i}{\sigma_{X_i}}$

Compute mean, stdv

I haven't split training and testing yet $\rightarrow \bar{X}_i$, σ_{X_i} used test points. Leakage!

Failure to simulate deployment

Information from the held out test set was used during training

Example

Suppose I want to rescale (one of) my predictive features:

$$X_i$$
 becomes $\frac{X_i - \bar{X}_i}{\sigma_{X_i}}$

Compute mean, stdv

I haven't split training and testing yet

 $\rightarrow \bar{X}_i, \sigma_{X_i}$ used test points. Leakage!

Sometimes the data already come rescaled (pre-leaked!)

Failure to simulate deployment

Information from the held out test set was used during training

Amazing model performance?
Too-good-to-be-true performance?
Might be leakage!

Example

Suppose I want to rescale (one of) my predictive features:

$$X_i$$
 becomes $\frac{X_i - \bar{X}_i}{\sigma_{X_i}}$

Compute mean, stdv

I haven't split training and testing yet

 $\rightarrow \bar{X}_i, \sigma_{X_i}$ used test points. Leakage!

Sometimes the data already come rescaled (pre-leaked!)

Summary — Predictive Models

- Prediction vs inference
- Prediction with supervised learning $y = \hat{f}(X)$
 - dominant form of machine learning
 - use pre-existing X,y (training data) to figure out \hat{f}
- Why build predictive models?
 - X is cheap, y expensive, so use $\hat{f}(X)$ instead of y
- Deployment how will model work when there is no y?
 - Simulate deployment with cross-validation
 - Take care—data leakage!