

Capstone Project - 3 Cardiovascular Risk Prediction

Swapnil Patil

Problem Statement

Cardiovascular disease(CVD) is the leading cause of death worldwide and a major public health concern.

The aim of this project is to predict whether the patient has a 10-year risk of future coronary heart disease (CHD).

Providing a valid model for cardiovascular disease risk classification of each population has become a high priority for scientists and organizations working in this field.

Introduction

Cardiovascular disease (CVD) is a series of diseases involving the circulatory system, including coronary heart disease, heart failure, arrhythmia and others, which is generally related to atherosclerosis.

Heart disease is the leading cause of death in the world. The most common type is coronary heart disease, which can cause a heart attack.

Day by day the cases of Cardiovascular diseases(CVD) are increasing at a rapid rate and it's very important and concerning to predict any such diseases beforehand.

Several risk prediction models of cardiovascular disease have been developed for different populations in the past decade.

In this study, we have provided a prediction model for 10-year risk assessment of Coronary Heart Disease(CHD) to predict whether the patient is likely to be diagnosed with a disease.

Data Overview

- For the project, the dataset we used is from cardiovascular study on **residents of the town of Framingham, Massachusetts**. It includes over 4,000 records and **15 attributes**.
- Each attribute is a potential risk factor. There are demographic, behavioral and medical risk factors.
- > Target Variable:- TenYearCHD: 10-year risk of coronary heart disease CHD

Attributes Information

Demographic-

- Sex: male or female.
- Age: Age of the patient
- **Education**: education of patient

Medical(history)-

- BPMeds: the patient was on blood pressure medication or not
- PrevalentStroke: the patient previously had a stroke or not
- **PrevalentHyp**: patient was hypertensive or not
- Diabetes: the patient had diabetes or not

Behavioral-

- is_smoking: patient is a current smoker or not
- **CigsPerDay**: the number of cigarettes that the person smoked on average in one day.

Medical(current)-

- TotChol: total cholesterol level
- SysBP: systolic blood pressure
- **DiaBP**: diastolic blood pressure
- BMI: Body Mass Index
- HeartRate: heart rate
- Glucose: glucose level

Steps Involved

Data Exploration

- It includes 3390 patient records and 15 attributes.
- Data consisted of both continuous variables as well as categorical variables.
- Some data features are binary (binary: "1", means "Yes", "0" means "No") such as BPMeds, PrevalentStroke, PrevalentHyp and Diabetes.

Data Cleaning & Wrangling

- There were no duplicate values in the dataset
- 206 missing values in 7 different columns
- glucose had max null values so imputed nan values based on the diabetes column
- Dropped remaining missing values

Outliers Treatment

Exploratory Data Analysis - Univariate Analysis

Distribution of Continuous Variables

Distribution of Categorical Variables

Bivariate Analysis - Continuous Variables

Which continuous variables are higher risk factors

At what age the risk of CHD is more

Bivariate Analysis - Categorical Variables

Distribution of age according to gender over TenYearCHD

Which gender has most risk of CHD

Does smokers have risk of CHD

Bivariate Analysis - Binary Variables

Risk of CHD to a patient on BP medication

Risk of CHD to a patient having hypertension

Risk of CHD to a diabetic patient

Data Preparation

Feature Engineering - Converting categorical features - gender and is_smoking into binary interpretation.

Feature Selection - SelectKBest method to select top most important features

Selecting best 8 features - sysBP, glucose, age, cigsPerDay, totChol, diaBP, prevalentHyp, gender

Analyzing Dependent Variable - TenYearCHD

Balancing the target variable

Original Dataset

Shape:- (3187, 9)

Class 0: 2714 Class 1: 473

Proportion: 5.74:1

After Random-over sampling

Shape:- (5428, 9)

Class 0: 2714 Class 1: 2714 Proportion: 1 : 1

Predictive Modeling

Classification Models used -

- 1)Logistic Regression
- 2)K-Nearest Neighbors
- 3)Support Vector Classifier
- 4) Decision Tree Classifier
- 5)Random Forest Classifier
- 6)Gradient Boosting Classifier

Predictive modeling includes -

- Building and training the models
- Tuning the hyperparameters to get better performance
- Model Evaluation and Selection

Test set Metrics

Accuracy : 0.6904937361827561

Precision: 0.6885964912280702

Recall : 0.6946902654867256

f1 score : 0.6916299559471366

Confusion Matrix

Test set Metrics

Accuracy : 0.7184966838614592

Precision: 0.7222222222222

Recall : 0.7094395280235988

f1 score : 0.7157738095238095

Confusion Matrix

Model

GridSearchCV(cv=5, estimator=KNeighborsClassifier(), param_grid={'n_neighbors': array([16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30])})

Support Vectors Classifier

Test set Metrics

Accuracy : 0.6691230655858511

Precision: 0.682615629984051

Recall : 0.6312684365781711

fl score : 0.6559386973180076

Confusion Matrix

Test set Metrics

Accuracy : 0.7266028002947679

Precision: 0.7183499288762447

Recall : 0.7448377581120944

f1 score : 0.7313540912382333

Confusion Matrix

Model

GridSearchCV(cv=5, estimator=DecisionTreeClassifier(random_state=0), param_grid={'criterion': ['gini', 'entropy'], 'max_depth': [10, 15, 20, 25], 'min_samples_leaf': [30, 40, 50]}, scoring='accuracy', verbose=3)

Random Forest Classifier

Test set Metrics

Accuracy : 0.8002947678703022

Precision: 0.7886524822695036

Recall : 0.8200589970501475

f1 score : 0.8040491684743312

Confusion Matrix

Model

RandomizedSearchCV(cv=3, estimator=RandomForestClassifier(random_state=0), param_distributions={'max_depth': [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], 'min_samples_leaf': [10, 20, 30], 'n_estimators': [100, 150, 200]}, verbose=2)

ROC Curve Analysis

Test set Metrics

Accuracy : 0.8813559322033898

Precision: 0.8469798657718121

Recall : 0.9306784660766961

f1 score : 0.886858749121574

Confusion Matrix

Model

 $Randomized Search CV (cv=5, estimator=Gradient Boosting Classifier (learning_rate=0.2, and continuous contin$

 $max_depth=5, n_estimators=150, random_state=0,$

subsample=0.5),

param_distributions={'max_features': range(5, 9),

'min_samples_leaf': range(20, 41, 10), 'min_samples_split': range(30, 51, 10)},

scoring='roc_auc', verbose=2)

Result

ROC Curve Analysis

Challenges

- It was health care related dataset so handling the data was so sensitive.
- Imputing the missing values
- Outliers treatment was so challenging as higher values were also important
- Target variable was imbalance which could have affected fitting our models so balancing was important
- Some of the features were not so important
- Tuning the hyperparameters of models and fitting models

Conclusion

- Patients having higher sysBP and DiaBP tends to have high risk of Coronary heart disease.
- ➤ The peoples of age above 55 have high risk of contracting disease and the risk increases with age. Men have more risk than females.
- Age, systolic BP and total cholesterol are the most influential features.
- Gradient Boosting model is found to be the best model.
- ➤ Therefore, Gradient Boosting model can be used to predict whether the patient will contract Coronary Heart Disease in next 10-years.

Q & A