Entanglement in Featureless Mott Insulators

Brayden Ware

March 6th 2014

Outline

1 Motivation

2 Construction

3 Entanglement Edge of Honeycomb Featureless Bosonic Insulators

Motivation

Definition of 'Featureless Insulator'

- Gapped
- Symmetric
- No topological order

Unique ground state

Alternate Definition

- Unique ground state on any boundary-less system
- Possibly with 'features' localized to edge of system

Fundamental Result

- Integer charge per unit cell
 - (Lieb, Schultz, Mattis)

Definition of 'Featureless Insulator'

- Gapped
- Symmetric
- No topological order

Unique ground state:

$$E_1 - E_0 > const.$$

Alternate Definition

- Unique ground state on any boundary-less system
- Possibly with 'features' localized to edge of system

Fundamental Result

- Integer charge per unit cell
 - (Lieb, Schultz, Mattis)

Definition of 'Featureless Insulator'

- Gapped
- Symmetric
- No topological order

Alternate Definition

- Unique ground state on any boundary-less system
- Possibly with 'features' localized to edge of system

Fundamental Result

- Integer charge per unit cell
 - (Lieb, Schultz, Mattis)

Unique ground state:

$$E_1 - E_0 \ge const.$$

Gapless modes:

$$E_1 - E_0 \sim \frac{1}{L^{\nu}}$$

Definition of 'Featureless Insulator'

- Gapped
- Symmetric
- No topological order

Alternate Definition

- Unique ground state on any boundary-less system
- Possibly with 'features' localized to edge of system

- Unique ground state:
 - $E_1 E_0 \ge const.$
- Spontaneous symmetry breaking:

$$E_1 - E_0 = 0$$

Fundamental Result

- Integer charge per unit cell
 - (Lieb, Schultz, Mattis)

Definition of 'Featureless Insulator'

- Gapped
- Symmetric
- No topological order

Alternate Definition

- Unique ground state on any boundary-less system
- Possibly with 'features' localized to edge of system

- Unique ground state: $E_1 E_0 > const.$
- Topological order: $E_1 E_0 \sim e^{-L/\xi}$ with nontrivial topology

Fundamental Result

- Integer charge per unit cell
 - (Lieb, Schultz, Mattis)

Free Fermion Featureless Insulators

Classical Insulators

Free fermion band insulator

Atomic picture

Topological Insulators

Band insulator with chiral edge ¹

Atomic picture breaks down

) Q (~

Honeycomb Bosonic Mott Insulators

Does there exist a featureless bosonic insulator with charge 1 per unit cell on the honeycomb lattice?

Breaks rotational symmetry

'Classical cartoons and usual tricks' lead to symmetry breaking, as noticed by Parameswaran et al. (2013)

Honeycomb Bosonic Mott Insulators

Does there exist a featureless bosonic insulator with charge 1 per unit cell on the honeycomb lattice?

Breaks translationally symmetry, unit cell is 3 times larger

'Classical cartoons and usual tricks' lead to symmetry breaking, as noticed by Parameswaran et al. (2013)

Honeycomb Bosonic Mott Insulators

Does there exist a featureless bosonic insulator with charge 1 per unit cell on the honeycomb lattice?

Breaks point group symmetry D_6 to D_3

'Classical cartoons and usual tricks' lead to symmetry breaking, as noticed by Parameswaran et al. (2013)

Construction

Construction of 1D Featureless Insulators

Classical Insulators

Topological Insulators

1D Trivial Chain

1D Topological Chain

$$\circ \circ = \circ \circ + \circ \circ$$

$$\bigcirc\bigcirc$$
 = \bigcirc

$$\bigcirc \bullet = \bigcirc \bigcirc$$

$$\bigcirc \bigcirc = \bigcirc$$

Entangled pairs and projectors used in state construction

Construction of Honeycomb FBI

Entanglement Edge of Honeycomb Featureless Bosonic Insulators

Edge Geometry

Entanglement Spectrum

Entanglement Spectrum

Finite Size Analysis

Finite Size Analysis

Identification of Edge CFT

Conformal Charge

Identification of Edge CFT

Conformal Weights

We can match the rescaled entanglement energies to the conformal weights of a free bosonic CFT.

$$\mathbf{P} = \frac{2\pi}{L}(\mathbf{L_0} - \bar{\mathbf{L}_0}) = \frac{2\pi}{L}(em + n - \bar{n})$$

$$\mathbf{H} = \frac{2\pi}{L}(\mathbf{L_0} + \bar{\mathbf{L}_0}) = \frac{2\pi}{L}(\frac{\kappa e^2}{2} + \frac{m^2}{2\kappa} + \frac{n + \bar{n}}{2})$$

$$\mathbf{H} \propto e^2 + \frac{m^2}{\kappa^2} + \frac{1}{\kappa} (n + \bar{n})$$

Identification of Edge CFT

Conformal primary identification in entanglement spectra

Symmetry Protection of Degenerate Edge

Future Work

- Entanglement properties in different geometries
 - Cylinders with different edges
 - Finite size clusters
- Relation to 'MPO Injectivity'
- Numerical testing of parent Hamiltonians

Resources

- Hasan, M. Z. and Kane, C. L. (2010). *Colloquium*: Topological insulators. *Reviews of modern physics*, 82(4):3045–3067.
- Parameswaran, S. A., Kimchi, I., Turner, A. M., Stamper-Kurn, D. M., and Vishwanath, A. (2013). Wannier permanent wave functions for featureless bosonic mott insulators on the 1/3-filled kagome lattice. *Phys. Rev. Lett.*, 110:125301.

Questions?

Brayden Ware brayden@physics.ucsb.edu

Bonus slides