

Using R for decision modelling: an introduction

Pedro Saramago, Research Fellow Centre for Health Economics, University of York

9 July 2019

Full acknowledgments to Marta Soares who provided me the slides

Decision modelling for cost-effectiveness

- Health systems need to make a number of decisions on health care resources: which, to whom, when, where...
 - Explicit decision process for reimbursement/access (e.g. NICE in the England and Wales)
- As explicit and evidence-based assessment (HTA) may include costeffectiveness, that compares interventions in terms of:
 - O long-term effects on population health (typically measured in QALYs), and
 - overall cost implications for relevant stakeholders or individuals.
- Decision models are typically required to:
 - O Consider evidence from multiple sources and on multiple aspects of disease and treatment,
 - extrapolate to the long term
 - explicitly characterise uncertainty

Modelling approaches

computation

Increased

Increased flexibility

Increased flexibility

Increased computation

Models without interactions

Cohort decision tree

Cohort area under the curve

Cohort Markov

Patient level

Models incorporating interactions

Dynamic transmission models

Patient level models with interactions

Cohort Markov models

Defined as:

- CHE Centre For Health Economics
- o mutually exclusive and discrete number of states (absorbent state = death)
- discrete time
- Markov property (process only depends on present state and not on any previous state

Cohort Markov models

- The aim of cohort models is to evaluate the Markov trace, P[X_c=x]
- For such, it defines per-cycle transition probabilities between the states
- Example of matrix of transition probabilities

From

	Asymptomatic	Progressive	Dead
Asymptomatic	0.666	0.167	0.167
Progressive	0	0.500	0.500
Dead	0	0	1.000

Each row sums to 1.0

 The trace is evaluated by repeatedly applying these transition probabilities to a cohort of patients over time

Matrix multiplication formulation

- Vector of starting state membership, $sm_{t0} = \begin{bmatrix} \pi_1 & \pi_2 & \pi_3 \end{bmatrix}$
- Transition probability matrix $TP = \begin{bmatrix} p_{1,1} & p_{1,2} & p_{1,3} \\ p_{2,1} & p_{2,2} & p_{2,3} \\ p_{3,1} & p_{3,2} & p_{3,3} \end{bmatrix}$
- To find state membership at t1 multiply the vector and the matrix:
- To find state membership at the ply the vector and the matrix: $[(\pi_1 \cdot p_{1,1} + \pi_2 \cdot p_{2,1} + \pi_3 \cdot p_{3,1}) \quad (\pi_1 \cdot p_{1,2} + \pi_2 \cdot p_{2,2} + \pi \cdot p_{3,2}) \quad (\pi_1 \cdot p_{1,3} + \pi_2 \cdot p_{2,3} + \pi_3 \cdot p_{3,3})]$
- This process is applied repeatedly, using state membership in the previous cycle

$$sm_{t2} = sm_{t1} \cdot TP$$

• This process is applied repeatedly, using state membership in the previous cycle

How I implement, in R,

Markov decision models, PSA and EVI analyses

using Monte Carlo simulation.


```
TP <- matrix(data =
c(2/3,1/6,1/6,0,1/2,1/2,0,0,1), nrow = 3,
byrow = TRUE)
\#TP[1,2] < -0.5 * TP[1,2]
\#TP[1,3] <- 1-sum(TP[1,1:2])
costs < c(500,200,0) # +c(100,0,0)
hrgol < -c(0.8, 0.3, 0)
cycles <- 4
trace <- matrix(data = NA, nrow =</pre>
cycles+1, ncol = 3)
trace[1,] <- c(1,0,0)
for (i in 1:cycles) {
  trace[i+1,] <- trace[i,] %*% TP
sum(trace[2:5,] %*% costs)
sum(trace[2:5,] %*% hrqol)
sum(trace[2:5,1:2])
```


Rcode for slide deck -- deterministic.R

```
> TP [,1] [,2] [,3]
[1,] 0.6666667 0.1666667 0.1666667
[2,] 0.0000000 0.5000000 0.5000000
[3,] 0.0000000 0.0000000 1.0000000
```

> trace

```
[,1] [,2] [,3]
[1,] 1.0000000 0.0000000 0.0000000
[2,] 0.6666667 0.1666667 0.1666667
[3,] 0.4444444 0.1944444 0.3611111
[4,] 0.2962963 0.1712963 0.5324074
[5,] 0.1975309 0.1350309 0.6674383
```

```
[1] 935.9568
[1] 1.484182
```

[1] 2.272377

Decision uncertainty: Monte Carlo simulation

coete

 $NB = e - c/\lambda$

	COSIS	GIIGGIS	ND	
1	£20,400	2	0.98	
2 £14,745		1.8	1.06	
3	£18,364	1.1	0.18	

offocts

NR

 $\max_{j} E_{\theta} NB(j, \theta)$

Markov modelling in R PSA

Rcode for slide deck -- probabilistic.R

Markov modelling in R PSA


```
# enclose model in a function
model <- function(index, treat=0, spar=mat par) {</pre>
  p <- spar[index,]</pre>
  TP \leftarrow matrix(data=0,3,3)
  aux <- p["p1"] * (exp(p["logRR"]) ^treat)</pre>
  TP[1,2] <- aux*p["p2"]</pre>
  TP[1,3] \leftarrow aux*(1-p["p2"])
  TP[2,3] \leftarrow p["tp23"]
  diag(TP) <- 1-apply(TP,1,sum) # TPM diagonal
  trace <- matrix(data = NA, nrow = cycl+1, ncol = 3)
  trace[1,] <- c(1,0,0)
  for (i in 1:cycl) { trace[i+1,] <- trace[i,]%*%TP }
      hrqol[2]<- p["hrqol2"]</pre>
  co<- sum(trace[2:(cycl+1),] %*% (costs+c(2000,0,0)^treat))
  ef <- sum(trace[2:(cycl+1),] %*% hrgol)
  c(co,ef)
```

Markov modelling in R PSA


```
NB <- function(x, l=20000) {if(is.vector(x)) {x[2] - x[1]/1 } else{x[,2] -
x[,1]/1\}
# run probabilistic model using a loop
r.PSA <- matrix(NA, nrow=nPSA, ncol=2)
for (i in 1:nPSA) {
  r.PSA[i,] <- c(NB(model(index=i,treat=0)), NB(model(index=i,treat=1)))</pre>
# run probabilistic model using mapply
aux < - rep(c(0,1), nPSA)
PSA <- t(mapply(model, index=rep(1:nPSA,each=2), treat=aux))
r.PSA <- NB(PSA); r.PSA <- as.data.frame(split(r.PSA, aux))
                                       # NHB at £20.000/OALY
colMeans (r.PSA)
sum(r.PSA[,2]>r.PSA[,1])/nPSA
                                       # probability treat 1 is cost-effective
```

Expected value of perfect information, EVPI

How things	(Net) Health	Best we could		
could turn out	Treatment A	Treatment B	Best choice	do if we knew
θ1	8	12	В	12
θ2	16	8	А	16
θ3	9	14	В	14
θ4	12	10	(A /	12
θ5	10	16	В	16
Average	11	12		14

What's the best we can do now?

Could we do better?

Choose B
Expect 12 QALYs, gain 1 QALY

If we knew Expect 14 QALYs

But uncertain

Wrong decision 2/5 times (error probability = 0.4)

EVPI = $E_{\theta} \max_{j} NB(j, \theta) - \max_{j} E_{\theta} NB(j, \theta) = 2 Q \text{ LYS per patients}$

Is further evidence worth collecting? EVPI

- Value of eliminating uncertainty in all parameters
- Maximum return to research on the decision problem
- Comparing the population EVPI to the costs of research
- Comparing population EVPI across technologies, or subgroups

Is further evidence worth collecting? EVPI

EVPI = $E_{\theta} \max_{j} NB(j, \theta) - \max_{j} E_{\theta} NB(j, \theta)$

 θ is the vector of parameters in the model (joint probability distribution). j an option out of the set of possible decisions NB(j, θ) is the net benefit for j, θ .

- $\max_{j} E_{\theta} NB(j, \theta)$ evaluate average NB for each treat j, then choose max
- E_{θ} max_i NB(j, θ) first choose max NB for every iteration, then average

Markov modelling in R: EVPI


```
l.vector <- seq(1000,50000, by=1000) # range of threshold values
EVPI <- vector("numeric", length=length(l.vector))
for (k in 1:length(l.vector)) {
   nb <- NB(PSA, l=l.vector[k] ); nb <- as.data.frame(split(nb, aux))
   EVPI[k] <- mean(apply(nb,1,max)) - max(colMeans(nb))
}</pre>
```


What type of evidence? parameter EVPI

$$EVPI_{\theta 1} = E_{\theta 1} \max_{j} E_{\theta 2|\theta 1} NB(j, \theta 1, \theta 2) - \max_{j} E_{\theta} NB(j, \theta)$$

$$\theta$$
 = parameter of interest
 θ 2 = other uncertainties,
 θ 1 and θ 2 may or may not be independent

- Value of eliminating uncertainty in a subset of input parameters
- Useful to identify which parameters responsible for decision uncertainty
- Helps target research designs

Markov modelling in R EVPPI, $\theta 1$ and $\theta 2$ ind


```
# Using a loop for the outer and mapply for inner:
nEVPPI=500
p EVPPI <- c("p1", "p2", "tp23")</pre>
E aux <- matrix(NA, nrow=nEVPPI, ncol=2)</pre>
mat aux <- mat par</pre>
for (m in 1:nEVPPI) {
                                                                        Outer loop
  mat aux[,p EVPPI] <- rep(mat par[m,p EVPPI], each=nPSA)</pre>
                                                                        Inner loop
  re <- data.frame(t(mapply(model, index=rep(1:nPSA,each=2),
treat=rep(c(0,1),nPSA), MoreArgs=list(spar=mat aux))))
  re \leftarrow split(re, rep(c(0,1), nPSA))
  aux <- sapply(re, NB, 1=20000)
  E aux[m,] <- colMeans(aux)</pre>
mean(apply(E aux,1,max)) - max(apply(E aux,2,mean))
                                             [1] "p1, p2, tp23 : 0.0014"
```

 $EVPI_{\theta 1} = E_{\theta 1} \max_{i} E_{\theta 2|\theta 1} NB(j, \theta 1, \theta 2) - \max_{i} E_{\theta} NB(j, \theta 1, \theta 2)$

Markov modelling in R EVPPI


```
fun EVPPI <- function(p EVPPI, nEVPPI=500){</pre>
  EVPPI <- matrix(NA, nrow=nEVPPI, ncol=2)</pre>
  mat aux <- mat par</pre>
                                                                          Outer loop
  for (m in 1:nEVPPI) {
    mat aux[,p EVPPI] <- rep(mat par[m,p EVPPI], each=nPSA)</pre>
    re <- data.frame(t(mapply(model, index=rep(1:nPSA,each=2),
                                                                          Inner loop
treat=rep(c(0,1),nPSA), MoreArgs=list(spar=mat aux))))
    re \leftarrow split (re, rep(c(0,1), nPSA))
    aux <- sapply(re, NB, 1=20000)
    EVPPI[m,] <- colMeans(aux); colnames(EVPPI) <- names(re)</pre>
  }; return(list("EVPPI"=EVPPI, "param"=p EVPPI))
param.lst.EVPPI <- list(colnames(mat par)[1:3], "logRR", "hrqol2")</pre>
EVPPI <- lapply(param.lst.EVPPI, fun EVPPI)</pre>
a <- sapply(1:length(param.lst.EVPPI), function(i){</pre>
  mean(apply(EVPPI[[i]][["EVPPI"]],1,max))- max(apply(EVPPI[[i]][[i]bb] : 0.0014"
[["EVPPI"]],2,mean))
                                                                                   19
                                                       [1] "hreb12 : 0"
```

Conclusion: R vs. Excel

Advantages

- Open source
- Can embed inference in decision modelling
- Script-based (calculations);
 - iterative and recursive easier to check
 - Transparency
- Code is re-usable
- Faster and more efficient

Disadvantages

- O No easy interface to check results
- Different people code differently (~ VBA code)
- Learning curve

Thank You!

Pedro Saramago, Centre for Health Economics, University of York pedro.saramago@york.ac.uk