Department of Electrical Engineering

EEL704, Robotics & Automation, Major Test, 2006-2007/II. Max. time: 2 hours, Max. marks: 80.

Marks: Q1: 10, Q2: 10, Q3: 12, Q4: 13, Q5: 10, Q6: 12, Q7: 13

> Write clearly each step of your calculation.

Q1 Suppose a perspective transformation of is given by
$$T = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -\frac{1}{\lambda} & 1 \end{bmatrix} \text{ with } \lambda = 1.0.$$

Find the world coordinates whose image points are of the form $[x_0 \ y_0 \ 0]^T$. What is the expression of Z and explain reasons for any discrepancy in results?

Q2. (a) Suppose a transformation
$$T = T_B^A$$
 where $T = \begin{bmatrix} 0.866 & -0.5 & 0.0 & 10.0 \\ 0.5 & 0.866 & 0.0 & 0.0 \\ 0.0 & 0.0 & 1.0 & 5.0 \\ 0.0 & 0.0 & 0.0 & 1.0 \end{bmatrix}$

Draw the frame diagram which qualitatively shows their arrangement.

(b) Frames describing the base of a robot and an object are given relative to the universe

$$T_{obj}^{U} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & -1 & 4 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, T_{R}^{U} = \begin{bmatrix} 0 & -1 & 0 & 2 \\ 1 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix},$$

Find a transformation of the Robot configuration T_{obj}^{R} if the hand of the robot is to be placed on the object.

- (c) Explain briefly the physical significance of Jacobian in the context of serial link manipulator.
- Q3. Suppose **R** is a rotation matrix and S(a) is the skew symmetric matrix corresponding to vector **a**. For any vector **a** and **b** belonging to \Re^3 , show that
 - (a) $\mathbf{R} \mathbf{S}(\mathbf{a}) \mathbf{R}^{\mathrm{T}} = \mathbf{S}(\mathbf{R}\mathbf{a})$
 - (b) Suppose $\mathbf{a} = \begin{bmatrix} 1 & -1 & 2 \end{bmatrix}^T$ and $\mathbf{R} = \mathbf{R}_{x,90}$. Compute $S(\mathbf{Ra})$.
 - (c) Figure 1 shows a mass spring system. Derive the equation of motion using Euler-Lagrange equation.

Figure 1

Q4. The dynamics of a single link manipulator is given by

$$5\ddot{\theta} = 8\sin\theta + 2\theta\dot{\theta} = u$$

- (a) Suppose, a link is motionless at $\theta=0^{\circ}$ and it is desired to move the joint to $\theta=45^{\circ}$ in 3 secs with 0 velocity at final point. Find a cubic polynomial $\theta_d(t)$ to define the path?
- (b) Design a trajectory following controller such that the system is always critically damped with closed loop stiffness = 10 to track $\theta_d(t)$ (defined in part (a)).
- (c) Analyse the closed loop stability of the above system using Lyapunov stability theory.
- Q5. Consider a n link manipulator described by

$$M(\theta)\ddot{\theta} + V(\theta, \dot{\theta})\dot{\theta} + G(\theta) = u$$

where $M(\theta)$ is the inertia matrix, $V(\theta,\theta)$ is the corriolis forces and $G(\theta)$ is gravity term. To track a constant trajectory θ_d , a control law is given as $u = K_p E - K_d \dot{\theta} + G(\theta)$ where K_p , K_d are positive definite diagonal matrices, error $E = (\theta_d - \theta)$. Show that the closed loop system is asymptotically stable using a suitable Lyapunov function.

- Q6.(a) Explain briefly the different components of a fuzzy logic based inferencing system.
- (b) Explain two methods for computing the intersection two fuzzy sets.
- (c) Consider a fuzzy set A = 0.1/1 + 0.5/2 + 0.8/4 + 1/5 + .8/6 + 0.2/-2 + 0.1/-1.

Suppose a function $f(x) = x^2$. Find the fuzzy set f(A)?

- Q7. Figure 2 shows an image where 0 & 2 corresponds to background and object image respectively. each pixel of figure 2 is of unit length and the origin is assumed to be the top left-hand corner of the image.
 - (a) Using sobel operators, find the gradient at pixel denoted as p.
 - (b) Which type(s) of connectivity exist between the pixels p and q. Justify your answers.
 - (c) Express the zero moment in terms of pixels?

X

(d) What is the position and orientation of the connected component.

on an Orig							1		Y
	0	0	0	0	0	0	0	0	
	0	2	2 q	0	0	0	0	0	
	0	2	2	2 p	0	0	0	0	
	0	2	2	2	0	0	0	0	
	0	2	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	
	Figure 2								
37									