ASSIGNMENT 2

MATH3975 Financial Derivatives (Advanced)

Due by 11:59 p.m. on Sunday, 22 October 2023

1. **[10 marks] Path-dependent American claim.** Let $\mathcal{M} = (B,S)$ be the CRR model with r=0 and the stock price S satisfying $S_0=4$, $S_1^u=5.5$, $S_1^d=3.5$. Consider a path-dependent American claim with maturity T=2 and the reward process g defined as follows: $g_0=5.5$, $g_1=6$ and the random variable g_2 is given by

$$g_2(S_1^u, S_2^{uu}) = 8, \ g_2(S_1^u, S_2^{ud}) = 4, \ g_2(S_1^d, S_2^{du}) = 5, \ g_2(S_1^d, S_2^{dd}) = 9.$$

(a) Let $\widetilde{\mathbb{P}}$ be the probability measure under which the process S/B is a martingale. Compute the arbitrage price process $(\pi_t(X^a), t = 0, 1)$ for the American claim using the recursive relationship

$$\pi_t(X^a) = \max \left\{ g_t, B_t \, \mathbb{E}_{\widetilde{\mathbb{P}}} \left(\frac{\pi_{t+1}(X^a)}{B_{t+1}} \, \middle| \, \mathcal{F}_t \right) \right\}$$

with the terminal condition $\pi_2(X^a) = g_2$. Find the rational exercise time τ_0^* of this claim by its holder.

- (b) Find the replicating strategy φ for the claim up to the random time τ_0^* and check that the equality $V_t(\varphi) = \pi_t(X^a)$ is valid for all $t \leq \tau_0^*$.
- (c) Determine whether the arbitrary price process $(\mathbb{F}_q(X^a); t=0, \mathbb{L})$ is either a martingale or a supermartingale under \mathbb{F} with respect to the intration \mathbb{F} .
- (d) Find a probability measure $\mathbb Q$ on the space $(\Omega, \mathcal F_2)$ such that the arbitrage price process $(\pi_t(X^a); \ t=0,1,2)$ is a martingale under $\mathbb Q$ with respect to the filtration $\mathbb F$ and compute the Radon-Nikolim saty of $\mathbb Q$ with respect $(\mathcal F_2)$.
- (e) Let $\widehat{\mathbb{P}}$ be a probability measure under which the process B/S is a martingale. Define the process $(\widetilde{\pi}_t(X^a), t=0,1)$ through the recursive relationship

$$\mathbf{WeC}_{\widetilde{\mathbf{x}}_t}$$
 hat $\mathbf{x}_t \in \mathbf{S}_t$ ut $\mathbf{C}_{S_{t+1}}$ $|\mathcal{F}_t|$

with $\tilde{\pi}_2(X^a) = g_2$. Is it true that the equality $\tilde{\pi}_t(X^a) = \pi_t(X^a)$ holds for all t = 0, 1, 2? Justify your answer but do not perform any computations with numbers.

2. [10 marks] Gap option. We place ourselves with the setup of the Black-Scholes market model $\mathcal{M}=(B,S)$ with a unique martingale measure $\widetilde{\mathbb{P}}$. Let the real numbers α and β satisfy >0. Consider the *gap option* with the payoff at maturity date T given by the following expression

$$X = h(S_T) = (S_T - \beta)^+ \mathbb{1}_{\{S_T \ge \alpha\}}.$$

- (a) Sketch the graph of the function $g(S_T)$ and show that the inequality $\pi_t(X) < C_t(\beta)$ is valid for every $0 \le t < T$ where $C_t(\beta)$ is the Black-Scholes price of the standard call option with strike β .
- (b) Show that the payoff of the gap option can be decomposed into the sum of the payoff $C_T(\alpha)$ of the standard call option with the strike price α and $\alpha \beta$ units of the digital option with the payoff $D_T(\alpha) = \mathbb{1}_{\{S_T \geq \alpha\}}$.
- (c) Compute the arbitrage price $\pi_t(X)$ at time t for the gap option. Take for granted the Black-Scholes formula for the standard call option.
- (d) Assume that $S_0 \neq \alpha$. Find the limit $\lim_{T\to 0} \pi_0(X)$. Explain your result.
- (e) Find the limit $\lim_{\sigma \to \infty} \pi_t(X)$ for a fixed $0 \le t < T$ and compare with the limits $\lim_{\sigma \to \infty} C_t(\beta)$ and $\lim_{\sigma \to \infty} C_t(\alpha)$. Explain your findings.