

LEVEL

NAVFAC-DM-3.8 JULY 1981

APPROVED FOR PUBLIC RELEASE

EXTERIOR DISTRIBUTION OF UTILITY STEAM, HIGH TEMPERATURE WATER (HTW), CHILLED WATER (CHW), FUEL **GAS, AND COMPRESSED AIR**

DESIGN MANUAL 3.8

DISTRIBUTION STATEMENT A

Approved for public release; Distribution Unlimited

PARTMENT OF THE NAVY NAVAL FACILITIES ENGINEERING COMMAND

200 STOVALL STREET ALEXANDRIA, VA. 22332

82 02 31 038

AD A110408

```
FT2
                                        FF 38
                                                                                 FT6
                                                (Balboa, Harold Holt, Nea
     (COMNAVFORAZORES only)
                                        FG2
23A1
                                                                                 FT13
                                                                                         (Less Millington)
                                               Makri, Thurso, Stockton,
24J1
                                                                                 FT18
27G
                                                and Ponce only)
                                                                                         (San Diego only)
                                                                                 FT19
                                        FG3
                                               (Cheltenham and East
39 B
                                                                                 FT22
                                               Machias only)
39C1
                                                                                         (Idaho Falls only)
                                                                                 FT27
                                        FG6
                                                (Wahiawa and Norfolk only)
39 E
                                                                                 FT28
                                        FH3
                                                (Beaufort only)
42A3
                                                                                 FT31
                                        FH6
                                                (Bethesda only)
45B
                                                                                 FT37
                                                (Cairo only)
49
                                        FH8
                                                                                 FT55
51 A
                                        FH25
                                               (Philadelphia, Portsmouth
                                               VA, Camp Lejeune, Oakland,
                                                                                 FT64
51B1
                                                                                 FT73
                                               Newport, Great Lakes, and
51B3
                                                                                         (MIT and Texas only)
                                               Long Beach only)
                                                                                 FT74A
      (JCS, NSA, DLA, and DNA
B2A
                                                                                 FT74B
                                                                                         (California, Illinois,
                                        FJ5
      only)
                                                                                         Rensselser, Georgia Tech
85
      (USCG only)
                                        FKA6A1
                                                                                         only)
                                        FKA6A2
C34
      (Holy Loch, Souda Bay only)
                                                                                 FT78
                                                                                         (2 copies)
                                        FKA6A3A
C37D
      (Port Hueneme only)
                                                                                 V2
                                        FKA6A3B
E3A
                                                                                 V3
FA6
      (Bermuda, Brunswick, Cecil
                                        FKA6A9
                                                                                 V5
                                        FKA6A12
      Field, Key West,
                                                                                 V8
      Jacksonville, Virginia
                                        FKA6A15
                                                 (Code 521)
                                                                                 V12
                                        FKA6A16
      Beach only)
                                                                                 V14
      (Guantanamo, Keflavik,
                                        FKA9
                                                                                 V15
      Brooklyn, Panama Canal,
                                        FKM8
                                                                                 V16
                                                                                         (less Camp Smith)
      Mayport, Roosevelt Roads
                                        FKM9
                                                                                 V17
                                        FKM12
      only)
                                                                                 V23
FA10
                                        FKM13
                                                                                 V25
                                        FKM15
                                               (Philadelphia only)
FA18
FA23
      (Antigua, Brawdy, Buxton,
                                        FKNI
                                               (West and Lant only (85
                                                                                            (One copy each unless
                                                                                 Copy to:
      Lewes only)
                                                copies each))
                                                                                             otherwise indicated)
FA32
                                        FKNI
                                               (South and North only (50
FB6
                                               copies each))
                                                (Pac only, 25 copies each)
                                        FKN1
                                                                                 21A
      (Alameda, Fallon, Lemoore,
FB
                                                                                         (ONR only)
                                                                                 A2A
      Oak Harbor, Miramar, North
                                        FKNI
                                               (Ches only, 25 copies
      Island, Moffet Field only)
                                                                                 A3
                                               (Ches, FPO-1 only)
                                                                                 A4A
                                        FKN1
FB10
      (Adak, Midway only)
                                                                                 A5
FB21
                                        FKN2
                                        FKN3
                                                (6 copies each)
                                                                                 A6
                                                                                         (Code LFF)
FB31
      (Guam only)
                                                                                 C7
                                                                                         (Brazil and Chile only)
                                               (5 copies each)
FB34
      (Kadena, Sasebo only)
                                        FKN5
      (Big Sur, Coos Head,
                                        FKN8
                                                                                 FD1
FB36
      Ferndale, and Pacific
                                                                                 FE1
                                        FKN 10
      Beach only)
                                        FKP1B
                                               (less Concord)
                                                                                 FG1
FB41
                                        FKPlB
                                               (Concord only, 3 copies)
                                                                                 FKAlA
                                                                                 FKAlB
FB48
                                        FKPlE
                                                                                         (2 copies)
                                                                                 FKAIC
                                                                                         (Code 043 - 50 copies)
FC3
      (London only)
                                        FKPlJ
                                                                                 FKAIF
FC4
      (Sigonella only)
                                        FKPlM
                                        FKP3A
                                                                                 FKN2
                                                                                         (Port Hueneme (Code 156)
FC5
                                        FKP7
FC7
                                                                                         only)
FC12
                                        FKP8
                                                                                 FRI
                                        FKP11
FD2
FE2
                                        FKQ3
                                                                                 Additional copies are available
FE4
      (Adak, Edzell, Hanza,
                                        FKRIA
     Galeta Island, Homestead,
                                        FKR1B
                                               (2 copies)
      Winter Harbor, Sabana
                                        FKR2A
                                               (Dallas only)
                                                                                         Commanding Officer
      Seca, and Sonoma only)
                                                                                         Naval Publications and
                                        FKR3A
      (Washington only)
                                        FKR3H
                                                                                           Forms Center
FF1
                                        FKR4B
                                                                                         5801 Tabor Avenue
FF5
FF6
                                        FKR5
                                                                                         Philadelphia, PA 19120
FF19 (New Orleans, Seattle only)
                                        FKR7E (3 copies)
                                        FR3
                                        FR4
                                        FT1
```

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
_	3. RECIPIENT'S CATALOG NUMBER
NAVFAC DM-3.8 AD-A1104	DP .
4. TITLE (and Subtitle)	5. TYPE OF REPORT & PERIOD COVERED
NAVFAC Design Manual DM-3.8	Design Criteria
Exterior Distribution of Utility Steam, High Tem-	Final
perature Water (HTW), Chilled Water (CHW), Fuel	6. PERFORMING ORG. REPORT NUMBER DM-3.8
Gas, and Compressed Air 7. AUTHOR(s)	8. CONTRACT OR GRANT NUMBER(s)
Naval Facilities Engineering Command	
200 Stovall Street	
Alexandria, VA 22332 (Code 0441)	
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Naval Facilities Engineering Command 200 Stoyall Street	Engineering and Design
Alexandria, VA 22332	Engliseering and Sepagn
11 CONTROLLING DESIGN NAME AND ADDRESS	12. REPORT DATE
Naval Facilities Engineering Command (Code: 0432)	July 1981
200 Stovall Street	13. NUMBER OF PAGES
Alexandria, VA 22332	42
14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office)	15. SECURITY CLASS. (of this report)
	Unclassified
	154. DECLASSIFICATION/DOWNGRADING
16. DISTRIBUTION STATEMENT (of this Report)	
Unclassified/Unlimited	
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different fro Unclassified/Unlimited	m Report)
Olicidagati test oursuita	
18. SUPPLEMENTARY NOTES	
19. KEY WORDS (Continue on reverse side if necessary and identity by block number)	
Distribution site locations; exterior utility pip	
meability tests; fluid conditions and characteris	tics; pipe sizing;
soil resistivity and stability tests.	j
20. ABSTRACT (Continue on reverse side if necessary and identify by block number)	
Basic design guidance developed from extensive re	
presented for use by experienced architects and e	
given for the design of an exterior distribution utility steam, high temperature water (HTW), chil	
condensing water, fuel gas, and compressed air to	
facilities and for returning condensate and water	
	(continued on reverse)
	· .

20. Data required for the design include information on loads and fluid conditions, fluid characteristics, and distribution site locations. Factors governing tests for field permeability, soil resistivity, soil stability, and water conditions are given as is information on distribution pipe sizing, valves and supports, distribution methods, and piping specifications and codes. Contents also cover owning, operating, and maintenance costs of permanent or temporary sites.

ABSTRACT

Basic design guidance developed from extensive reevaluation of facilities is presented for use by experienced architects and engineers. Criteria are given for the design of an exterior distribution piping system for supplying utility steam, high temperature water (HTW), chilled water, (CHW), cooling or condensing water, fuel gas, and compressed air to various buildings and facilities and for returning condensate and water to the central plant. Data required for the design include information on loads and fluid conditions, fluid characteristics, and distribution site locations. Factors governing tests for field permeability, soil resistivity, soil stability, and water conditions are given as is information on distribution pipe sizing, valves and supports, distribution methods, and piping specifications and codes. Contents also cover owning, operating, and maintenance costs of permanent or temporary sites.

Approved for public release;
Distribution Unlimited

FOREWORD

This design manual is one of a series developed from an evaluation of facilities in the shore establishment, from surveys of the availability of new materials and construction methods, and from selection of the best design practices of the Naval Facilities Engineering Command (NAVFACENGCOM), other Government agencies, and the private sector. This manual uses, to the maximum extent feasible, national, industrial, technical professional society, association, and institute standards in accordance with NAVFACENGCOM policy. Deviations from these criteria should not be made without prior approval of NAVFACENGCOM Healquarters (Cole 04).

Design cannot remain static any more than can the naval functions it serves or the technologies it uses. Accordingly, recommendations for improvement are encouraged from within the Navy and from the private sector and should be furnished to NAVFACENGCOM Headquarters (Code 04). As the design manuals are revised, they are being restructured. A chapter or a combination of chapters will be issued as a separate design manual for ready reference to specific criteria.

This publication is certified as an official publication of the Naval Facilities Engineering Command and has been reviewed and approved in accordance with SECNAVINST 5600.16.

W. M. Jobel
Rear Admiral CEC, U. S. Navy

Commander

Naval Facilities Engineering Command

MECHANICAL ENGINEERING DESIGN MANUALS

DM Number	Chapter superseded in Basic DM	<u>Title</u>
3.1	1	Plumbing Systems
3.2	2,2A	Industrial and Municipal Type Incinerators
3.3	3,4,5	Heating Ventilation and Air Conditioning Systems
3.4	6	Refrigeration Systems for Cold Storage
3.5	7,10	Compressed and Vacuum Air Systems
3.6	8	Central Heating Plants
3.7	9	Power Plants
3.8	11	Exterior Distribution of Utility Steam HTW, CHW, Fuel Gas and Compressed Air
3.9	13,14	Elevators, Escalators, Dumbwaiters and Pneumatic Tube Systems
3.10	15	Noise and Vibration Control of Mechanical Equipment (Army TM-5-805-4)
3.11	16	Solid Waste Handling
3.12		Central Building Automation Systems (Army preparing this manual)
3.14		Power Plant Acoustics (Army Tri-5-805-9)
3.15		Air Pollution Control (Tri-Service Manual TM-5-815-1/AFR 19-6)
3.16		Thermal Storage
3.17		Cogeneration of Steam and Electricity
3.18		Domestic Water Requirements for Medical and Dental Facilities

Chapter 12, Liquified Petroleum Gases, will be included in DM-22.

CONTENTS

EXTERIOR DISTRIBUTION OF UTILITY STEAM, HIGH TEMPERATURE WATER (HTW), CHILLED WATER (CHW), FUEL GAS AND COMPRESSED AIR

			Page
Section	1.	INTRODUCTION	3.8-1
	1.	SCOPE	3.8-1
	2.	CANCELLATION	3.8-1
	3.	RELATED CRITERIA	3.8-1
Section	2.	FLUIDS AND UTILITY DISPERSION	3.8-1
	1.	TYPES OF EXTERIOR DISTRIBUTION SYSTEMS	3.8-1
		a. Steam	3.8-1
		b. High Temperature Water (HTW)	3.8-1
		c. Compressed Air	3.8-1
		d. Chilled Water (CHW)	3.8-1
		e. Cooling or Condensing Water	3.8-1
		f. Fuel Gas Distribution	3.3-1
		1. Idel das Distribución	3.3-1
	2.	INFORMATION REQUIRED FOR DESIGN	3.8-2
		a. Loads and Fluid Conditions	3.8-2
		b. Total Distribution Load	3.8-2
	3.	FLUID CHARACTERISTICS	3.9-2
		a. Steam	3.8-2
		b. Condensate	3.8-2
		c. High Temperature Water	3.8-2
		d. Compressed Air	3.8-2
		e. Fuel Gas	3.8-2
		e. ruei das	3.8-2
	4.	DISTRIBUTION SITE LOCATIONS	3.8-2
		a. Location Factors for Each System	3.8-2
		b. Subsurface Explorations	3.8-2
	5.	ECONOMIC STUDIES	3.8-5
		a. Annual Owning, Operating, and Haintenance	3.0)
		Costs	3.8-5
		b. Aboveground and Underground Systems	3.8-6
		c. Type of Underground System	-
		,,	3.8-6
			3.8-6
		e. Steam Versus Hot Temperature Water Distribution	201
			3.8-5
		f. High Pressure Steam Versus Low Pressure Steam Distribution	201
		Diedm Distribution	3.8-6

CONTENTS

			Page
Section	3.	EXTERIOR DISTRIBUTION PIPING DESIGN	3.8-6
	1.	SIZING	3.8-6
		a. Equivalent Lengths of Piping	3.8-6
		b. Steam Piping	3.8-6
		c. Condensate Returns	3.8-12
		d. High Temperature Water (H'W)	3.8-14
		e. Chilled Water (CHW)	3.8-14
		f. Condenser Water	3.8-14
		g. Fuel Gas	3.8-14
		h. Compressed Air	3.8-14
		i. Acetylene and Oxygen	3.8-16
		1. Acetytene and oxygen	3.0-10
	2.	PIPING SPECIFICATIONS AND CODES	3.8-16
		a. Steam Supply and Condensate Return	3.8-16
		b. High Temperature Water	3.8-16
		c. Fuel Gas and Compressed Air	3.8-20
		d. Chilled and Condenser Water	3.8-20
	3.	FLEXIBILITY AND ALLOWABLE BENDING STRESSES	3.8-20
		a. Thermal Expansion of Pipe	3.8-20
		b. Control of Expansion	3.8-20
		c. Expansion Bends	3.8-20
		d. Expansion Joints	3.8-20
		e. Flexibility Analysis	3.8-21
	4.	DRAINAGE PROVISIONS	3.8-22
	7.	a. Pitch	3.8-22
			3.8-22
		c. Condensate Piping	3.8-23
	5.	ANCHORS AND SUPPORTS	3.8-23
		a. Anchors	3.8-23
		b. Supports	3.8-24
Section	4.	EXTERIOR DISTRIBUTION METHODS	3.8-25
	1.	SERVICE AND LOADS	3.8-25
	2.	DISTRIBUTION CIRCUITS	3.8-25
	3.	DISTRIBUTION ROUTES	3.8-25
		a. Preliminary Planning	3.8-25
		b. Piping Layouts	3.8-25
		c. Underground	3.8-27
		d. Choice of Route	3.8-27
		e. Route Types	3.8-28
			14 11 7 / 0

CONTENTS

		Page
Section 5.	MISCELLANEOUS CRITERIA	3.8-29
1.	TYPHOON CONSIDERATIONS	3.8-29
APPENDIX A:	Metric Conversion Factors	A-1
References	Refer	rence-1
	FIGURES	
Figure	Title	Page
1a. 1b. 2a.	Chart for Weight-Flow Rate	3.8-9 3.8-10
25.	of Steam	3.8-11
	of Steam	3.8-12
3.	Values of C, Flow Factor in Equation 1	3.8-13
4. 5.	Low Pressure Gas Chart	3.8-18 3.8-19
6.	Typical Aboveground Pipe Supports	3.8-24
	TABLES	
Table	Title	Page
1.	Distribution Loads and Fluid Conditions	3.8-3
2.	Location Factors for Each Distribution System	3.8-4
3.	Representative Equivalent Length in Pipe Diameters (L/D) of Various Valves and Fittings	3.8-7
4.	Values of C2, Flow Factor in Equation 1	3.8-15
5.	Reasonable Velocities for Flow of Steam in Pipes	3.8-16
6a.	Return Pipe Capacities for 30-psig Steam Systems	3.8-17
6b.	Return Pipe Capacities for 150-psig Steam Systems	3.8-17
7.	Expansion of Pipe Per 100 Feet of Length for Temperatures Shown	3.8-21
8.	Types of Distribution Circuits	3.8-26

EXTERIOR DISTRIBUTION OF UTILITY STEAM, HIGH TEMPERATURE WATER (HTW), CHILLED WATER (CHW), FUEL GAS, AND COMPRESSED AIR

Section 1. INTRODUCTION

- 1. SCOPE. Data and criteria in this design manual apply to the exterior design of distribution piping for supplying certain services from central generating plants to various buildings and facilities and for returning such spent services to the plants.
- 2. CANCELLATION. This design manual on the exterior distribution of utility steam, high temperature water (HTW), chilled water (CHW), fuel gas, and compressed air, NAVFAC DM-3.8, cancels and supersedes Chapter 11 of DM-3, Mechanical Engineering, of September 1972.
- 3. RELATED CRITERIA. Criteria for certain items related to the subject matter of this design manual are covered elsewhere and in other DM-3 series of design manuals.

Section 2. FLUIDS AND UTILITY DISPERSION

- 1. TYPES OF EXTERIOR DISTRIBUTION SYSTEMS. Types of exterior distribution systems should be as follows:
- a. Steam. System supplies heat in the form of steam from a central steam generating plant to several buildings or building groups for space heating (such as unit heaters, radiators, convectors, heating coils, or other heating devices) and process work (such as domestic hot water heaters, laundry machinery, cleaning and plating tanks, kitchen equipment, or other devices using steam), returning the condensate, where possible, to the central plant (see DM-3 series).
- b. High Temperature Water (HTW). System circulates high temperature water which supplies heat from a central heating plant to several buildings for space heating and process work, and returning the water to the central plant (see DM-3 series).
- c. <u>Compressed Air</u>. System supplies compressed air from a compressor plant to docks, wharves, piers, shop, hangars, and other structures (see DM-3 series).
- d. Chilled Water (CHW). System circulates chilled water from a central refrigeration plant to several buildings for space air conditioning (see DM-3 series), returning the water to the central plant.
- e. <u>Cooling or Condensing Water</u>. System distributes cooling water from a central source (such as a bay, stream, or cooling tower) to several buildings for condensing steam or refrigerants or for cooling water jackets or stuffing boxes. The water is then returned to the source (cooling tower) or sent to waste in once-through systems (see DM-3 series).
- f. Fuel Gas distribution. System distributes fuel gas to several buildings for fuel gas burning operations.

- 2. INFORMATION REQUIRED FOR DESIGN. Information required for design will be as follows:
 - a. Loads and Fluid Conditions. For approximate conditions, see Table 1.
- (1). See NAVFAC P-272, Part 1, for steam requirements for hospitals, laundries, shops, various facilities, and equipment therein.
- (2) The actual loads and conditions should be determined from the design of each building and/or facility.
 - b. Total Distribution Load. For demand factors, see Table 1.
- 3. FLUID CHARACTERISTICS. For criteria on fluid characteristics, use sources below or those in Section 2.
- a. Steam. Use criteria in Thermolynamic Properties of Steam (Keenan and Keyes).
- b. <u>Condensate</u>. For the economics of returning condensate, use the American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE) Handbook and Product Directory.
 - c. High Temperature Water. Use ASHRAE Handbook and Product Directory.
- d. Compressed Air. For data on fluid characteristics of compressed air, see DM-3 series.
 - e. Fuel Gas. USE ANSI B31.2 Fuel Gas Piping.
- 4. DISTRIBUTION SITE LOCATIONS. Fluid distribution site locations should be according to the following:
- a. Location Factors for Each System. For location factors for each system, see Table 2.
- b. Subsurface Explorations. When underground systems are specified, a thorough investigation should be made of ground and water conditions.
- (1) This survey should be made at a time of year when the highest water table is expected to exist. Exploration methods indicated in Soil Mechanics, Foundations, and Earth Structures, NAVFAC DM-7 series, should be followed.
- (2) Explorations (borings or test pits) should be made at least every 100 feet along the line of a proposed system. If changes of stratifications are noted, the boring spacings should be decreased so an accurate horizontal soil profile may be obtained.
- (3) All explorations should be extended 5 feet below the expected elevation of a system to determine ground water conditions (see NAVFAC Guide Specification TS-15705).

Fluid	Use	Capacity ¹	Fluid conditions psig, in-Hg, degrees F	Demand factors ²	Comments
Steam	Auxiliary power	Determined by heat balance	Boiler steam.	1.0	Feedwater and fuel oi heating
	Heating and snow melting.	See criteria in DM-3.3	2 to 10	1.0 ³ for heating radiation 0.8 ³ for ventilation.	
	Process	Laundry	100	0.65	7 hr/day, 5 days/week, normally.
		Kitchen	10 to 40	1.0	2-8 hr/da;, 7 days/week normaily.
		Bakery	10	1.0	<pre>8 hr/day, 5 days/week, normally.</pre>
		Dry cleaning	70	0.65	• • • • • • • • • • • • • • • • • • • •
		Hospital Laundry HW	40 to 60 5 to 45	0.65	7 hr/day, 5 days/week, normally.
		Dom HW: DM-3.1	5 to 45	0.65	
	Refrigeration.	Tons x steam rate/t	Boiler steam pres. 26-28 in. Hg. vac.	1.0	Turbine driven centrif. compressor.
Condensate	Distribution	Tons x steam rate/t	12	1.0	Absorption machine.
return	loss				
	Boiler feed	Losses CBD or BO: Determined by amount and analy- sis of makeup. Process-Depends on usage. Distribu- tion 10 percent.	20 to 60	1.0 for continuous operation of condensate pumps. 1.5 to 3 for intermittent operation of condensate pumps.	Check economics of returning condensate.
HTW (Supply and return)	Heating and snow melting.	Same criteria as for steam	10 to 100		••••••
Chilled us-	Process		Same as for steam.	Same as for steam.	•••••
Chilled wa- ter supply and return.	Refrigeration.	$gpm = 12,000 \text{ x tons}$ $\frac{Btu/t}{500 \text{ x } (t_s-t_r)}$	Supply: 42° F. to 45° F.	1.0	••••••
		•	Return: 52 ⁰ F to 60 ⁰ F. Pressure de-		
			pends on friction and static heads.		
Condenser water	Refrigeration.		Supply 85° F. Return 105° F.		-
	Power	gpm = steam x 950 pph Btu/lb 500 x (t _s -t _r)	Pressure de- pends on friction and static heads.	1.0	See NAVFAC DM-3 series
Fuel Gas	Process fuel gas burners.	**************			See NAVFAC DM-3 series
Compressed	LPG gas burners.	••••••			See NAVFAC DM-3 series See NAVFAC
air	Low pressure mdm. pressure high pressure	•••••	*************		DM-3 series

 $^{{}^1{}}_{\rm t_B}$ — Water supply temperature; ${}^{\rm t_T}$ — water return temperature. ${}^2{\rm Demand}$ factors should be applied to total connected loads. ${}^3{\rm Values}$ shown are approximate. Actual Demand Factor is a site-specific determination and should be based on actual load diversification.

I t em	Determine the following				
Load centers	Maximum demand load of system. (See criteria in Table 11 and ascertai requirements of all facilities.)				
	Distance from generating plant.				
	Basements or crawl spaces under buildings available for piping. Location of entry of system to load center structure.				
	Location or need of meters for billing purposes.				
	Future expansion.				
Route	Existing tunnels or trenches available for system.				
	Above ground obstructions, such as rivers, roads, railroads, structures, etc.				
	Below ground obstructions, such as tunnels, trenches, piping, rock, et				
	Location of expansion loops or joints.				
	Master Plan. (See DM-1 and P-340 for criteria.)				
Site	For above and underground systems:				
	Ground contours along route.				
	For underground systems:				
	Borings every 100 ft along route (See Par 4b.)				
	Absorption test (See Par 4c.)				
	Resistivity test (See Par 4d.)				
	Stability of soil (See Par 4e.)				
	Water table survey made at time of highest levels.				
	Maximum, normal, and minimum ground water levels. Frost level.				
	Location of distribution line drainage.				
Coordination	Installation of other related distribution systems and manholes.				
COOLULIAL LOWING	Interference with electric distribution lines and manholes.				
	Interference with water supply and fire extinguishing systems.				
	Interference with sanitary and storm sewers and manholes.				
	Interference with ground drainage lines, catch basins, and manholes.				
	Interference with fuel distribution systems.				
	Excavation and backfill.				
	Landscaping.				
Cooperation	Local rules and regulations (permits, tests, approvals, etc.).				
Hazards	See DM-1 for criteria.				
Unit costs	Excavation of soil and rock and of backfill.				
	Piping material.				
	Piping insulation or covering. Pipe conduit.				
	Construction of manholes.				
Local labor	Availability and costs.				
	Availability and costs.				

- (4) Particular attention should be given to the following factors:
- (a) The possibility of surface runoff seeping into a backfilled trench and percolating down toward a system at a rate greater than the ability of the ground below the system to carry off the water.
- (b) Areas where ponding may occur, either along a sloping surface or in low flat areas.
- (c) In order to determine the permeability of the ground below a system, see below.

- (5) Field Permeability Test. Field permeability tests should be as follows:
- (a) Generally, field permeability tests should be made along the line of a trench at intervals of approximately 100 feet as follows:
- (i) Holes should be dug approximately 1 foot square to a depth of 2 feet below the approximate bottom of a trench.
- (ii) Each hole should be filled with water to the bottom elevation of a trench.
- (iii) After the water has completely seeped away, each hole should be immediately refilled with water to the same depth.
- (iv) If it requires 20 minutes or less for the water to drop 2 inches, the soil shall be considered dry; otherwise, consider it as saturated at times.
 - (b) Use test results as follows:
- (i) If the soil is saturated at times, no further tests are required. Class A underground conduit systems for wet soils should be used.
- (ii) If the soil is Jry as Jefined above, permeability test holes should be deepened an additional 3 feet to determine if the water table is within 5 feet of the trench bottom (see NAVFAC Guide Specification TS-15705 for site classification criteria).
- (6) Soil Resistivity. Soil resistivity should be handled as follows:
- (a) If metal casing conduits are considered, soil resistivity readings should be taken along a conduit line.
- (b) A cathodic protection system shall be installed to protect metal conduits and manholes at all sites where soil resistivity is less than 30,000 per centimeter cube (ohm-cm) or where stray direct currents can be detected underground.
- (7) Soil Stability. During the above survey the soil stability should be observed and noted. Use NAVFAC DM-7 series for criteria.
- 5. ECONOMIC STUDIES. Economic studies must include owning, operating, and maintenance costs. Whether or not the site is permanent or temporary also should be a consideration. First consideration should be given to an above ground system, which in most cases, will be economically advantageous to the Government.
- a. Annual Owning, Operating, and Maintenance Costs. Owning and operating maintenance costs will be as follows:

- (1) Within limitations, the lowest overall sum of these costs should be the basis for selecting a type of distribution system and a route (esthetics notwithstanding).
- (2) Annual owning costs should be based on 25-year retirement of installation costs at 10 percent compound interest rate.
- (3) Operation and maintenance costs depend on the type of system design and past experience with various systems.
- b. Aboveground and Underground Systems. Permanent versus temporary use, high water table, and degree of hazard should be considered in selecting a system.
- c. Type of Underground System. Suitability of types of approved systems should be considered.
- d. Condensate Return Costs. For criteria on condensate return costs, see DM-3 series.
- e. Steam Versus High Temperature Water Distribution. For criteria on steam versus high temperature water distribution, see DM-3 series.
- f. High Pressure (above 50 psig) Steam Versus Low Pressure (0 to 15 psig) Steam Distribution. Compare costs of higher pressure pipe, valve, and fitting standards against lower pressure standards plus costs of pressure reducing stations in selecting the most economical system. Medium pressure steam systems (15 to 50 psig), if operationally adequate and economically justifiable, also may be used.

Section 3. DISTRIBUTION PIPING DESIGN

- SIZING. Sizing of distribution piping will be as follows:
- a. Equivalent Lengths of Piping. To the straight lengths of pipe along a pipeline route, add equivalent lengths for valves and fittings as indicated in Table 3.
- b. Steam Piping. Design considerations for steam piping will be as follows:
- (1) Steam Flow Charts. For charts for pressures of 30, 50, 100, and 150 pounds per square inch gage (psig), see Figure 1a, Figure 1b, Figure 2a, and Figure 2b. These charts show weight-flow rate pressure drop and velocities of saturated steam in Schedule 40 steel pipe. By selecting all pipe sizes on an optimum pressure drop, the total pressure drop of a pipeline may be estimated from an equivalent length, irrespective of pipe size. The charts are based on the rational flow formula (Darcy) shown below. For higher pressures, see Piping Handbook by Crocker-King.
- (2) Rational Flow Charts. The simplified rational flow formula (Darcy) is used for compressible fluids for all pressures. (See Equation 1 for method of calculation.)

TABLE 3 Representative Equivalent Length in Pipe Diameters (L/D) of Various Valves and Fittings $^{\rm l}$

Item	Description of product		Equivalent length in pipe diameters (L/D)
Valves. Conventional globe	With no obstruction in flat. bevel or plug type seat. With wing or pin guided disc. With stem 60 deg from run of pipe line.		340 450 175
Conventional angle	lug type se	Fully open Pully open Fully open Fully open Fully open Three-quarters open	145 145 200 13
Pulp stock gate	F	One-half open One-quarter open Fully open Three-quarters open One-half open	160 900 17 50 260
Conduit pipe line gate Butterfly 6-in and larger		One-quarter open Pully open Fully open Fully open 0.53Fully open 2.03Fully open 2.03Fully open	1200 32 20 135 50 Same as Conv. 81obe
Foot valves In-line-ball check Straight-through cocks Three-way cocks	With strainer and poppet lift-type disc. With strainer and leather-hinged disc. 2.5 vertical and 0.25 horizontal ³ Fully open Rectangular plug port area equal to 100% of pipe area. Fully open Rectangular plug port area equal to Rectangular plug port area equal to Flow straight through 80 percent of pipe area (fully open).	0.33Fully open 0.43Fully open ntal3Fully open area. Fully open Flow straight through Flow through branch	Conv. angle 420 75 150 18 44
90 des standard elbow 45 des standard elbow 90 des long radius elbow 90 des street elbow 54 des street elbow 54 standard tee 6100se pattern return bend	With flow through run. With flow through branch.		30 20 20 20 20 20 20 20

Legitimate for all flow conditions except in laminar flow range where Reynolds no. is less than 1000. 2 Exact equivalent length is equal to the length between flange faces of welding ends. Minimum calculated pressure drop psi across valve to provide sufficient flow to lift disc fully.

Note: For additional data see Table 7-7, Chapter 7, DM-3 series.

$$P_{100} = W^2 \frac{(0.000336f) V}{d^5} = C_1 \times C_2 \times V$$
 (1)

Where:

 P_{100} = pressure drop per 100 ft of equivalent length of pipe (psi)

 $C_1 = W^2 10^{-9}$ (for values, see Figure 3)

C₂ = 336000f (for values, see Table 4)

W = rate of flow pounds per hour(pph)

f = friction factor

d = inside diameter of pipe (in)

V = specific volume of fluid (cu ft per lb) at average pressure in pipe

(3) Velocities. (See Table 5.)

Equation:

$$V = \frac{3.06W}{d^2R} \tag{2}$$

Where:

V = velocity of flow (fpm)
R = density (pcf)

- (4) Steam Distribution Pressures. Steam pressure shall be governed by the highest pressure needed by the equipment served at the most remote location.
- (a) The advantages of a low pressure system (under 15 psig): Low distribution loss; lower losses and trouble from leakage, traps, and venting; simplified pressure reduction at buildings; standard cast iron fittings; and low maintenance.
- (b) The advantages of high pressure distribution (over 50 psig): Smaller pipe sizes; availability of steam for purposes other than for heating; and more flexibility in velocities and pressure drops.
- (c) An economic analysis should be made to determine what pressure to use.

FIGURE 1a Chart for Weight-Flow Rate

- (5) Pressure Reducing Valves. Pressure reducing valves will be as follows:
- (a) Selection of type. Double-ported, pilot-operated valves should be installed for large capacities, especially for inlet pressures above 125 pounds per square inch gage. Double-ported valves will not shut off completely on noload demand; therefore, single-seated valves must be used for such service. Reducing valves should not be installed according to pipe sizes, because oversized valves do not give satisfactory service. Select those valves to operate generally fully open, with ratings and reduction ratios as recommended by the manufacturer. A strainer and condensate drain should be installed ahead of the pressure-reducing valve. Because the volume of steam increases rapidly as the pressure is reduced, a reducing valve with increased outlet or expanding nozzle should be installed when the reluction ratio is more than 15 to 1. Cutout valves should be provided to isolate the pressure reducing valve to permit maintenance. Where the resulting superheated steam temperature is objectionable to the process on the low pressure side or the temp-rature-use limit of the equipment has been exceeded,

(MAY BE USED FOR STEAM PRESSURES FROM 40 TO 60 PSIG WITH AN ERROR NOT EXCEED-ING 8 PERCENT) BASED ON MOODY FRICTION FACTOR WHERE FLOW OF CONDENSATE DOES

FIGURE 1b Chart for Weight-Flow Rate

NOT INHIBIT THE FLOW OF STEAM.

a desuperheater should be used to lower the steam temperature to that for saturation. A manual bypass should be provided for emergency operation when the pressure reducing valve is out of service. A pressure gage shall be provided on the low pressure side.

- (b) Safety valves. One or more relief or safety valves should be provided on the low pressure side of each reducing valve in case the piping and/or equipment on the low pressure side do not meet the requirements of the full initial pressure. The combined discharge capacity of the relief valves shall be such that the pressure rating of the lower pressure piping and equipment will not be exceeded. For special conditions see ANSI B31.1 and ASHRAE Handbook and Product Directory.
- (c) Capacity. Where steam requirements are relatively large (above approximately 3,000 pph) and subject to seasonal variation, two reducing valves should be installed in parallel, sized to pass 70 and 30 percent of maximum flow. During mild weather (spring and fall) the larger valve should be set at a slightly reduced pressure, so that it will remain

FIGURE 2a Chart for Weight-Flow and Velocity of Steam

closed as long as the smaller valve can supply the demand. During the remainder of the heating season the valve settings are reversed to keep the smaller one closed except when the larger one is unable to supply the demand.

(6) Takeoffs from Mains. Takeoffs from mains to buildings should be at the top of mains and located at fixed points of the mains, at or near anchor points. Where a branch is short, valves at each takeoff are unnecessary, but where of considerable length or where several buildings are served, takeoffs should have valves.

FIGURE 2b Chart for Weight-Flow Rate and Velocity of Steam

c. Condensate Returns. Condensate returns should be as follows:

(1) Return Piping. Size condensate trap piping to conform with 30 to 150 pounds per square inch steam piping in accordance with Tables 6a and 6b and interpolate these for other pressures.

(a) Discharge piping from condensate and heating pumps should be sized in accordance with pump capacities, which may be between 3.0 and 1.0 times the capacity of a steam system branch which they serve, depending on whether intermittently or continuously operated.

- (b) Size common-pump discharge mains to serve the sum of their capacities. Use the <u>Hydraulic Institute Pipe Friction Manual</u> for steel pump discharge pipe sizing of new clean steel pipe, 6 feet per second maximum velocity, and a correction factor of 1.85 to provide for increased pressure drops when the pipe becomes dirty and rough with age. Friction plus static heads shall not exceed the pump characteristics of standard pump and receiver units.
- (2) Condensate Return. Condensate return should be preferred if owning and operating costs of such a system is less than that of using and treating raw water for makeup. Factors favoring condensate return are:
 - (a) High concentration of steam usage
 - (b) Restriction on condensate disposal
 - (c) Favorable steam consuming facilities
 - (d) Favorable distribution conditions
 - (e) High raw water treatment costs
 - (f) Water treatment space unavailable
 - (g) High cost of raw water
- d. <u>High Temperature Water (HTW)</u>. High temperature water piping will be as follows:
- (1) Sizing. Use pipe friction charts in ASHRAE Handbook and Product Directory.
- (a) A reasonable, average velocity is approximately 5 feet per second and minimum allowable velocity 2 feet per second.
- (b) The friction charts are based on the rational flow formula using clean pipe.
- (2) Venting and draining. For methods of venting high points of distribution lines, see DM-3.3. Piping should have drainage means at low points.
- e. Chilled Water. Use the standards of the Hydraulic Institute Pipe Friction Manual for sizing new clean pipe, unless water is renewed annually, in which case a correction factor of 1.41 for pressure Jrops should also be used. For recommended velocities, see DM-3 series.
- f. <u>Condenser Water</u>. Use the standards of the Hydraulic Institute for pipe sizing, multiplying the pressure drop by a factor of 1.85 to correct for the increase of pipe roughness with age. For recommended velocities, see DM-3 series.
- g. <u>Fuel Gas</u>. Apply criteria in DM-3.1 for sizing pipe inside buildings. Use Figure 4 for low pressure gas and Figure 5 for high pressure gas in sizing distribution piping. Exterior distribution piping usually stops 5 feet outside of buildings.
- h. Compressed Air. For criteria on distribution piping, see DM-3 series.

Nominal			Nominal		
pipe size	Schedule	Value of C2	pipe size	Schedule	Value of C2
(in)	no.	· · · · · · · · · · · · · · · · · · ·	(in)	no.	
1/8	40 s	7 920 000.	}	80	0.056 9
	80 x	26 200 000.	1	100	0.066 1
1/4	40 s	1 590 000.	Į.	120	0.075 3
	80 x	4 290 000.	1	140	0.090 5
3/8	40 s	319 000.	· I	160	0.105 2
	80 x	718 000.	12	20	0.015 7
1/2	40 s	93 500.	1	30	0.016 8
	80 x	186 100. {	į.	5	0.017 5
	160	4 300 000.	1	40	0.018 0
	ЖX	11 180 000.	}	×	0.019 5
3/4	40 s	21 200.	1	60	0.020 6
	80 x	36 900.	1	80	0.023 1
	160	100 100.	1	100	0.026 7
	ж	627 000.	1	120	0.031 0
1	40 s	5 950.	;	140	0.035 0
±		9 640.	ì		
			1	160	0.042 3
	160	22 500.	i4	10	0.009 49
1 . /4	XX	114 100.		20	0.009 96
1-1/4	40 s	1 408.	i	30 s	0.016 46
	80 x	2 110.	;	40	0.010 99
	160	3 490.	i	×	0.011 55
	XX	13 640.		60	0.012 44
1-1/2	40 s	627.	1	80	0.014 16
	80 x	904.	1	100	0.016 57
	160	1 656.	1	120	0.018 98
	xx	4 630.	1	140	0.021 8
2	40 s	169.)	160	0.025 2
	80 x	236.	16	10	0.004 63
	160	488.	19	20	0.004 21
		899.	1		
2 .1 /2	юх 40 s		j	30 s	0.005 04
2-1/2		66.7	ì	40 x	0.005 49
	80 x	91.8	1	60	0.006 12
	160	146.3)	80	0.007 00
	XX	380.0	1	100	0.008 04
3	40 s	21.4		120	0.009 26
	80 x	28.7	i	140	0.010 99
	160	48.3	1	160	0.012 44
	XX	96.6	18	10	0.902 47
3-1/2	40 s	10.0		20	0.002 56
	80 x	37.7	(0.002 66
4	40 s	5.17	i	30	0.002 76
	80 x	6.75	1		0.002 87
	120	8.94	}	40 ×	
	160	11.80	ì		
			Î	60	0.003 35
5	жх 40 s	18.59	1	80	0.003 76
<i></i>		1.59	1	100	0.004 35
	80 x	2.04		120	0.005 04
	120	2.69	1	140	0.005 73
	160	3.59		160	0.006 69
_	XX	4.93	20	10	0.001 41
6	40 s	0.610	1	20 s	0.001 50
	80 x	0.798	1	30 x	0.001 61
	120	1.015	1	40	0.001 69
	160	1.376	1	60	0.001 91
	хx	1.861	1	80	0.002 17
8	20	0.133		100	0.002 51
	30	0.135	{	120	0.002 87
	40 s	0.146	1	140	0.003 35
	60	0.163	ł.	160	0.003 85
	80 x	0.185	24		
	100	0.211	24	10	0.000 534
			1	20 s	0.000 565
	120	0.252	1	. ×	0.000 597
	140	0.289	1	30	0.000 614
	XX	0.317	1	40	0.000 651
	160	0.333	1	60	0.000 741
10	20	0.039 7	1	80	0.000 835
	30	0.042 1	i	100	0.000 972
	40 a	0.044 7	1	120	0.001 119
	60 x	0.051 4	1	140	0.001 274
			1	440	U. UUA 4/9

NOTE. —The letters s, x, and xx in the columns of Schedule no. indicate Standard, Extra Strong, and Double Extra Strong pipe respectively.

TABLE 5
Reasonable Velocities for Flow of Steam in Pipes

Condition of steam	Pressure (psig)	Service	Reasonable velocity (fpm)
Saturated	Vacuum	Turbine exhaust	Up to 18,000
	0 to 25	Heating	4,000 to 6,000
	25 and up	Steam distribution	6,000 to 10,000
	125 and up	Underground steam distribution	Up to 20,000
Superheated	200 and up	Boiler and turbine leads	7,000 to 20,000

¹Velocities should be below those which would produce excessive noise in areas where that would be objectionable. Velocity limitations need not apply in uninhabited areas.

- i. Acetylene and Oxygen. For criteria on piping and distribution, use Land Operational Facilities, NAVFAC DM-24 series.
- 2. PIPING SPECIFICATIONS AND CODES. Piping specifications and codes will be as follows:
- a. Steam Supply and Condensate Return. Piping shall conform to Standard Code for Pressure Piping B31.1, Power Piping (American National Standards Institute), except for underground prefabricated or pre-engineered type systems, in which case the entire system shall conform to NAVFAC Guide Specification TS-15705. If a plastic pipe condensate return system is used, it also shall conform to NAVFAC Guide Specification TS-15707.
- b. <u>High Temperature Water</u>. Piping specifications and codes, except for underground prefabricated or pre-engineered types, in which case the entire system shall conform to NAVFAC Guide Specification TS-15705 for high temperature water will be as follows:
- (1) Piping. HTW piping (450° F maximum) shall conform to ANSI B31.1, Standard Code for Pressure Piping, Power Piping.
- (2) Joints. Use welded joints throughout. Threaded joints are not permitted. Hold flanged joints to a minimum and use ferrous alloy gaskets in such joints. Avoid the use of copper and brass pipe.

TABLE 6(a)
Return Pipe Capacities for 30 psig Steam Systems¹
(Capacity Expressed in pph)

	D	rop in press	sure (psi p	er 100 ft i	n length)
Pipe size (in)	1/8	1/4	1/2	3/4	1
3/4	115	170	245	308	365
1	230	340	490	615	730
1-1/4	485	710	1,025	1,290	1,530
1-1/2	790	1,160	1,670	2,100	2,500
2	1,580	2,360	3,400	4,300	5,050
2-1/2	2,650	3,900	5,600	7,100	8,400
3	4,850	7,100	10,300	12,900	15,300
3-1/2	7,200	10,600	15,300	19,200	22,800
4	10,200	15,000	21,600	27,000	32,300
5	19,000	27,800	40,300	55,500	60,000
6	31,000	45,500	65,500	83,000	98,000

¹The above table is based on steam at pressure of 0 to 4 psig.

TABLE 6(b) Return Pipe Capacities for 150-psig Steam Systems 1 (Capacity Expressed in pph)

		Drop in pressure (psi per 100 ft in length)			:h)	
Pipe size (in)	1/8	1/4	1/2	3/4	1	2
3/4	156	232	360	465	560	890
1	313	462	690	910	1,120	1,780
1-1/4	650	960	1,500	1,950	2,330	3,700
1-1/2	1,070	1,580	2,460	3,160	3,800	6,100
2	2,160	3,300	4,950	6,~00	7,700	12,300
2-1/2	3,600	5,350	8,200	10,700	12,800	20,400
3	6,500	9,600	15,000	19,500	23,300	37,200
3-1/2	9,600	14,400	22,300	28,700	34,500	55,000
4	13,700	20,500	31,600	40,500	49,200	78,500
5	25,600	38,100	58,500	76,000	91,500	146,000
6	42,000	62,500	96,000	125,000	150,000	238,000

 $^{^{1}\}mathrm{The}$ above table is based on steam at pressure of 1 to 20 psig.

FIGURE 4
Low Pressure Gas Chart

HIGH PRESSURE GAS CHART simplifies design of piping by indicating required diameter, maximum rate of flow, upon following conditions: Gas at 60 degrees F, atmospheric pressure, and specific gravity of 0.60, with (Chart based pressure, or final pressure when the rest of these values are known. The chart is based on the Weymouth formula for rate of flow in cubic feet of gas per hour. permissible pressure drop, initial

- (3) Valves. All valves shall have cast steel bodies with stainless steel trim (no bronze trim). All valves shall be capable of being repacked under operating pressures. Use gate valves only as shutoff or isolation valves.
- c. Fuel Gas and Compressed Air. Piping shall conform to ANSI B31.1 Power Piping, ANSI B31.2 Fuel Gas Piping; and ANSI B32.8, Gas Transmission and Distribution Piping Systems. Provide earthquake shut off valves in gas supply piping outside of each building served in earthquake zones. In addition, flexible connections should be provided. Gas piping and appurtenances from point of connection with existing system to a point approximately 5 feet from the building shall conform to NAVFAC Guide Specification TS-02711, Outside Gas System.
- d. Chilled and Condenser Water. Use Schedule 40 steel pipe in 10-inch sizes and smaller, use 0.5-inch wall thickness steel pipe for 12-inch size and larger.
- 3. FLEXIBILITY AND ALLOWABLE BENDING STRESSES. Piping used must be as follows:
- a. Thermal Expansion of Pipe. Pipe lengthens with temperature increases (such as between installation and operating temperatures) as indicated in Table 7.
- b. Control of Expansion. Wherever possible, provide for expansions of pipes by changes in directions of pipe runs or by the use of expansion bends.
- (1) Expansion Joints. Only where space restrictions prevent the above provisions shall expansion joints be installed, and then only in accessible locations.
- (2) Branch Lines. Where practicable, piping should be designed to provide for expansions of branch lines inside buildings and should have no effect on mains.
 - c. Expansion Bends. Bends should be factory fabricated.
- (1) Loop Sections. Loops should be furnished in sections to facilitate delivery and handling.
- (2) Anchors. A reasonable distance between anchors for expansion loops is 200 feet.
- (3) Cold Springing. Cold springing may be used in installations but no design stress relief shall be allowed for it. For credit permitted in thrust and moments, refer to ANSI B31.1.
 - d. Expansion Joints. These joints shall be one of the types below.
- (1) Mechanical Slip Joint. An externally guided joint designed for repacking under operating pressures. Maximum traverses of piping in expansion joints should be held under 8 inches.

TABLE 7
Expansion of Pipe in Inches Per 100 Feet of Length for Temperatures Shown

0 0 0 390 3.156 4.5 10 0.075 0.111 400 3.245 4.6 20 0.149 0.222 410 3.334 4.7 30 0.224 0.333 420 3.423 4.8 40 0.299 0.444 430 3.513 5.0 50 0.374 0.556 440 3.603 5.1 60 0.449 0.668 450 3.695 5.2 70 0.525 0.780 460 3.785 5. 80 0.601 0.893 470 3.874 5. 90 0.678 1.006 480 3.962 5.6 100 0.755 1.119 490 4.055 5. 110 0.831 1.233 500 4.418 5.8 120 0.999 1.346 520 4.334 6.1 130 0.987 1.460 540	Material		rial		Material	
10 0.075 0.111 400 3.245 4.6 20 0.149 0.222 410 3.334 4.7 30 0.224 0.333 420 3.423 4.8 40 0.299 0.444 450 3.513 5.0 50 0.374 0.556 440 3.603 5.1 60 0.449 0.668 450 3.695 5.2 70 0.525 0.780 460 3.785 5.2 80 0.601 0.893 470 3.874 5.2 90 0.678 1.006 480 3.962 5.6 100 0.755 1.119 490 4.055 5.1 110 0.831 1.233 500 4.418 5.8 120 0.909 1.346 520 4.334 6.1 130 0.987 1.460 540 4.524 6.3 140 1.066 1.575 56	•	Steel	Copper		Steel	Сорре
20 0.149 0.222 410 3.334 4.7 30 0.224 0.333 420 3.423 4.8 40 0.299 0.444 430 3.513 5.0 50 0.374 0.556 440 3.603 5.1 60 0.449 0.668 450 3.695 5.2 70 0.525 0.780 460 3.785 5.3 80 0.601 0.893 470 3.874 5.5 90 0.678 1.006 480 3.962 5.6 100 0.755 1.119 490 4.055 5.7 110 0.831 1.233 500 4.418 5.8 120 0.909 1.346 520 4.334 6.1 130 0.987 1.460 540 4.524 6.3 140 1.066 1.575 560 4.174 6.6 150 1.145 1.690 5	0	0	0	390	3.156	4.53
30 0.224 0.333 420 3.423 4.8 40 0.299 0.444 430 3.513 5.0 50 0.374 0.556 440 3.603 5.1 60 0.449 0.668 450 3.695 5.2 70 0.525 0.780 460 3.785 5.2 80 0.601 0.893 470 3.874 5.5 90 0.678 1.006 480 3.962 5.6 100 0.755 1.119 490 4.055 5.7 110 0.831 1.233 500 4.418 5.8 120 0.909 1.346 520 4.334 6.1 130 0.987 1.460 540 4.524 6.3 140 1.066 1.575 560 4.174 6.6 150 1.145 1.690 580 4.903 6.9 160 1.224 1.805	10	0.075	0.111	400	3.245	4.65
40 0.299 0.444 430 3.513 5.0 50 0.374 0.556 440 3.603 5.1 60 0.449 0.668 450 3.695 5.2 70 0.525 0.780 460 3.785 5.3 80 0.601 0.893 470 3.874 5.9 90 0.678 1.006 480 3.962 5.6 100 0.755 1.119 490 4.055 5.7 110 0.831 1.233 500 4.418 5.8 120 0.909 1.346 520 4.334 6.1 130 0.987 1.460 540 4.524 6.3 140 1.066 1.575 560 4.174 6.6 150 1.145 1.690 580 4.903 6.9 160 1.224 1.805 600 5.967 7.1 180 1.384 2.035 <td< td=""><td>20</td><td>0.149</td><td>0.222</td><td>410</td><td>3.334</td><td>4.77</td></td<>	20	0.149	0.222	410	3.334	4.77
50 0.374 0.556 440 3.603 5.1 60 0.449 0.668 450 3.695 5.2 70 0.525 0.780 460 3.785 5.2 80 0.601 0.893 470 3.874 5.5 90 0.678 1.006 480 3.962 5.6 100 0.755 1.119 490 4.055 5.7 110 0.831 1.233 500 4.418 5.8 120 0.909 1.346 520 4.334 6.1 130 0.987 1.460 540 4.524 6.3 140 1.066 1.575 560 4.174 6.6 150 1.145 1.690 580 4.903 6.9 160 1.224 1.805 600 5.096 7.1 170 1.304 1.919 620 5.291 7.4 180 1.384 2.035 <t< td=""><td>30</td><td>0.224</td><td>0.333</td><td>420</td><td>3.423</td><td>4.89</td></t<>	30	0.224	0.333	420	3.423	4.89
60 0.449 0.668 450 3.695 5.2 70 0.525 0.780 460 3.785 5.3 80 0.601 0.893 470 3.874 5.3 90 0.678 1.006 480 3.962 5.6 100 0.755 1.119 490 4.055 5.7 110 0.831 1.233 500 4.418 5.8 120 0.909 1.346 520 4.334 6.1 130 0.987 1.460 540 4.524 6.3 130 0.987 1.460 540 4.524 6.3 140 1.066 1.575 560 4.174 6.6 150 1.145 1.690 580 4.903 6.9 160 1.224 1.805 600 5.096 7.1 170 1.304 1.919 620 5.291 7.4 180 1.464 2.152 <	40	0.299	0.444	430	3.513	5.02
70 0.525 0.780 460 3.785 5.380 80 0.601 0.893 470 3.874 5.590 90 0.678 1.006 480 3.962 5.60 100 0.755 1.119 490 4.055 5.71 110 0.831 1.233 500 4.418 5.82 120 0.909 1.346 520 4.334 6.1 130 0.987 1.460 540 4.524 6.3 140 1.066 1.575 560 4.174 6.6 150 1.145 1.690 580 4.903 6.9 160 1.224 1.805 600 5.096 7.1 170 1.304 1.919 620 5.291 7.4 180 1.464 2.152 660 5.583 7.9 200 1.545 2.268 680 5.882 8.1 210 1.626 2.384	50	0.374	0.556	440	3.603	5.14
70 0.525 0.780 460 3.785 5.2 80 0.601 0.893 470 3.874 5.2 90 0.678 1.006 480 3.962 5.6 100 0.755 1.119 490 4.055 5.7 110 0.831 1.233 500 4.418 5.8 120 0.909 1.346 520 4.334 6.1 130 0.987 1.460 540 4.524 6.3 140 1.066 1.575 560 4.174 6.6 150 1.145 1.690 580 4.903 6.9 160 1.224 1.805 600 5.096 7.1 170 1.304 1.919 620 5.291 7.4 180 1.384 2.035 640 5.486 7.6 190 1.464 2.152 660 5.583 7.9 200 1.545 2.268	60	0.449	0.668	450	3.695	5.26
90 0.678 1.006 480 3.962 5.6 100 0.755 1.119 490 4.055 5.7 110 0.831 1.233 500 4.418 5.8 120 0.909 1.346 520 4.334 6.1 130 0.987 1.460 540 4.524 6.3 140 1.066 1.575 560 4.174 6.6 150 1.145 1.690 580 4.903 6.9 160 1.224 1.805 600 5.096 7.1 170 1.304 1.919 620 5.291 7.4 180 1.384 2.035 640 5.486 7.6 190 1.464 2.152 660 5.583 7.9 200 1.545 2.268 680 5.882 8.1 210 1.626 2.384 700 6.284 8.7 230 1.791 2.618	70	0.525	0.780	460		5.39
100 0.755 1.119 490 4.055 5.7 110 0.831 1.233 500 4.418 5.8 120 0.909 1.346 520 4.334 6.1 130 0.987 1.460 540 4.524 6.3 140 1.066 1.575 560 4.174 6.6 150 1.145 1.690 580 4.903 6.9 160 1.224 1.805 600 5.096 7.1 170 1.304 1.919 620 5.291 7.4 180 1.384 2.035 640 5.486 7.6 190 1.464 2.152 660 5.583 7.8 200 1.545 2.268 680 5.882 8.1 210 1.626 2.384 700 6.083 8.4 220 1.708 2.501 720 6.284 8.7 240 1.872 2.736	80	0.601	0.893	470	3.874	5.5
110 0.831 1.233 500 4.418 5.8 120 0.909 1.346 520 4.334 6.1 130 0.987 1.460 540 4.524 6.3 140 1.066 1.575 560 4.174 6.6 150 1.145 1.690 580 4.903 6.9 160 1.224 1.805 600 5.096 7.1 170 1.304 1.919 620 5.291 7.4 180 1.384 2.035 640 5.486 7.6 190 1.464 2.152 660 5.583 7.9 200 1.545 2.268 680 5.882 8.1 210 1.626 2.384 700 6.083 8.4 220 1.708 2.501 720 6.284 8.7 230 1.791 2.618 740 6.488 8.9 240 1.872 2.736 760 6.692 9.2 250 1.955 2.854 780	90	0.678	1.006	480	3.962	5.64
120 0.909 1.346 520 4.334 6.1 130 0.987 1.460 540 4.524 6.3 140 1.066 1.575 560 4.174 6.6 150 1.145 1.690 580 4.903 6.9 160 1.224 1.805 600 5.096 7.1 170 1.304 1.919 620 5.291 7.4 180 1.384 2.035 640 5.486 7.6 190 1.464 2.152 660 5.583 7.9 200 1.545 2.268 680 5.882 8.1 210 1.626 2.384 700 6.083 8.4 220 1.708 2.501 720 6.284 8.7 230 1.791 2.618 740 6.488 8.9 240 1.872 2.736 760 6.692 9.2 250 1.955 2.854 780 6.899 9.5 260 2.038 2.971 800	100	0.755	1.119	490	4.055	5.76
130 0.987 1.460 540 4.524 6.3 140 1.066 1.575 560 4.174 6.6 150 1.145 1.690 580 4.903 6.9 160 1.224 1.805 600 5.096 7.1 170 1.304 1.919 620 5.291 7.4 180 1.384 2.035 640 5.486 7.6 190 1.464 2.152 660 5.583 7.9 200 1.545 2.268 680 5.882 8.1 210 1.626 2.384 700 6.083 8.4 220 1.708 2.501 720 6.284 8.7 230 1.791 2.618 740 6.488 8.9 240 1.872 2.736 760 6.692 9.2 250 1.955 2.854 780 6.899 9.5 260 2.038 2.971 800 7.102 9.7 270 2.132 3.089 820	110	0.831	1.233	500	4.418	5.89
130 0.987 1.460 540 4.524 6.3 140 1.066 1.575 560 4.174 6.6 150 1.145 1.690 580 4.903 6.9 160 1.224 1.805 600 5.096 7.1 170 1.304 1.919 620 5.291 7.4 180 1.384 2.035 640 5.486 7.6 190 1.464 2.152 660 5.583 7.9 200 1.545 2.268 680 5.882 8.1 210 1.626 2.384 700 6.083 8.4 220 1.708 2.501 720 6.284 8.7 230 1.791 2.618 740 6.488 8.9 240 1.872 2.736 760 6.692 9.2 250 1.955 2.854 780 6.899 9.5 260 2.038 2.971 800 7.102 9.7 270 2.132 3.089 820	120	0.909	1.346	520	4.334	6.14
150 1.145 1.690 580 4.903 6.9 160 1.224 1.805 600 5.096 7.1 170 1.304 1.919 620 5.291 7.4 180 1.384 2.035 640 5.486 7.6 190 1.464 2.152 660 5.583 7.9 200 1.545 2.268 680 5.882 8.1 210 1.626 2.384 700 6.083 8.4 220 1.708 2.501 720 6.284 8.7 230 1.791 2.618 740 6.488 8.9 240 1.872 2.736 760 6.692 9.2 250 1.955 2.854 780 6.899 9.5 260 2.038 2.971 800 7.102 9.7 270 2.132 3.089 820 7.318 10.0 280 2.207 3.208 840 7.529 10.3 300 2.376 3.446 880 <td>130</td> <td>0.987</td> <td>1.460</td> <td>540</td> <td>4.524</td> <td>6.39</td>	130	0.987	1.460	540	4.524	6.39
160 1.224 1.805 600 5.096 7.1 170 1.304 1.919 620 5.291 7.4 180 1.384 2.035 640 5.486 7.6 190 1.464 2.152 660 5.583 7.9 200 1.545 2.268 680 5.882 8.1 210 1.626 2.384 700 6.083 8.4 220 1.708 2.501 720 6.284 8.7 230 1.791 2.618 740 6.488 8.9 240 1.872 2.736 760 6.692 9.2 250 1.955 2.854 780 6.899 9.5 260 2.038 2.971 800 7.102 9.7 270 2.132 3.089 820 7.318 10.0 280 2.207 3.208 840 7.529 10.3 300 2.376 3.446 880 7.956 10.8 310 2.460 3.565 900 </td <td>140</td> <td>1.066</td> <td>1.575</td> <td>560</td> <td>4.174</td> <td>6.65</td>	140	1.066	1.575	560	4.174	6.65
170 1.304 1.919 620 5.291 7.4 180 1.384 2.035 640 5.486 7.6 190 1.464 2.152 660 5.583 7.9 200 1.545 2.268 680 5.882 8.1 210 1.626 2.384 700 6.083 8.4 220 1.708 2.501 720 6.284 8.7 230 1.791 2.618 740 6.488 8.9 240 1.872 2.736 760 6.692 9.2 250 1.955 2.854 780 6.899 9.5 260 2.038 2.971 800 7.102 9.7 270 2.132 3.089 820 7.318 10.6 280 2.207 3.208 840 7.529 10.3 300 2.376 3.446 880 7.956 10.8 310 2.460 3.565 900 8.172 11.4 320 2.547 3.685 920<	150	1.145	1.690	580	4.903	6.90
180 1.384 2.035 640 5.486 7.6 190 1.464 2.152 660 5.583 7.9 200 1.545 2.268 680 5.882 8.1 210 1.626 2.384 700 6.083 8.4 220 1.708 2.501 720 6.284 8.7 230 1.791 2.618 740 6.488 8.9 240 1.872 2.736 760 6.692 9.2 250 1.955 2.854 780 6.899 9.5 260 2.038 2.971 800 7.102 9.7 270 2.132 3.089 820 7.318 10.6 280 2.207 3.208 840 7.529 10.3 300 2.376 3.446 880 7.956 10.8 310 2.460 3.565 900 8.172 11.4 320 2.547 3.685 920 8.389 11.4 330 2.632 3.805 940	160	1.224	1.805	600	5.096	7.16
180 1.384 2.035 640 5.486 7.6 190 1.464 2.152 660 5.583 7.9 200 1.545 2.268 680 5.882 8.1 210 1.626 2.384 700 6.083 8.4 220 1.708 2.501 720 6.284 8.7 230 1.791 2.618 740 6.488 8.9 240 1.872 2.736 760 6.692 9.2 250 1.955 2.854 780 6.899 9.5 260 2.038 2.971 800 7.102 9.7 270 2.132 3.089 820 7.318 10.0 280 2.207 3.208 840 7.529 10.3 300 2.291 3.327 860 7.741 10.5 310 2.460 3.565 900 8.172 11.1 320 2.547 3.685 920 8.389 11.4 330 2.632 3.805 940	170	1.304	1.919	620	5.291	7.41
190 1.464 2.152 660 5.583 7.9 200 1.545 2.268 680 5.882 8.1 210 1.626 2.384 700 6.083 8.4 220 1.708 2.501 720 6.284 8.7 230 1.791 2.618 740 6.488 8.9 240 1.872 2.736 760 6.692 9.2 250 1.955 2.854 780 6.899 9.5 260 2.038 2.971 800 7.102 9.7 270 2.132 3.089 820 7.318 10.6 280 2.207 3.208 840 7.529 10.3 290 2.291 3.327 860 7.741 10.5 310 2.376 3.446 880 7.956 10.8 310 2.460 3.565 900 8.172 11.1 320 2.547 3.685 920 8.389 11.4 340 2.718 3.926 96	180	1.384	2.035	640		7.67
200 1.545 2.268 680 5.882 8.1 210 1.626 2.384 700 6.083 8.4 220 1.708 2.501 720 6.284 8.7 230 1.791 2.618 740 6.488 8.9 240 1.872 2.736 760 6.692 9.2 250 1.955 2.854 780 6.899 9.5 260 2.038 2.971 800 7.102 9.7 270 2.132 3.089 820 7.318 10.0 280 2.207 3.208 840 7.529 10.3 290 2.291 3.327 860 7.741 10.5 300 2.376 3.446 880 7.956 10.8 310 2.460 3.565 900 8.172 11.1 320 2.547 3.685 920 8.389 11.4 330 2.632 3.805 940 8.608 11.6 340 2.718 3.926 9	190	1.464	2.152	660	5.583	7.93
210 1.626 2.384 700 6.083 8.4 220 1.708 2.501 720 6.284 8.7 230 1.791 2.618 740 6.488 8.9 240 1.872 2.736 760 6.692 9.2 250 1.955 2.854 780 6.899 9.5 260 2.038 2.971 800 7.102 9.7 270 2.132 3.089 820 7.318 10.0 280 2.207 3.208 840 7.529 10.3 290 2.291 3.327 860 7.741 10.5 300 2.376 3.446 880 7.956 10.8 310 2.460 3.565 900 8.172 11.4 320 2.547 3.685 920 8.389 11.4 330 2.632 3.805 940 8.608 11.6 340 2.718 3.926 960 8.830 11.9 350 2.805 4.050	200	1.545	2.268	1		8.19
220 1.708 2.501 720 6.284 8.7 230 1.791 2.618 740 6.488 8.9 240 1.872 2.736 760 6.692 9.2 250 1.955 2.854 780 6.899 9.5 260 2.038 2.971 800 7.102 9.7 270 2.132 3.089 820 7.318 10.0 280 2.207 3.208 840 7.529 10.3 290 2.291 3.327 860 7.741 10.5 300 2.376 3.446 880 7.956 10.8 310 2.460 3.565 900 8.172 11.4 320 2.547 3.685 920 8.389 11.4 330 2.632 3.805 940 8.608 11.6 340 2.718 3.926 960 8.830 11.9 350 2.805 4.050 980 9.052 12.2 360 2.892 4.167 <td< td=""><td>210</td><td>1.626</td><td>2.384</td><td>700</td><td>*</td><td>8.46</td></td<>	210	1.626	2.384	700	*	8.46
240 1.872 2.736 760 6.692 9.2 250 1.955 2.854 780 6.899 9.5 260 2.038 2.971 800 7.102 9.7 270 2.132 3.089 820 7.318 10.0 280 2.207 3.208 840 7.529 10.3 290 2.291 3.327 860 7.741 10.5 300 2.376 3.446 880 7.956 10.8 310 2.460 3.565 900 8.172 11.1 320 2.547 3.685 920 8.389 11.4 330 2.632 3.805 940 8.608 11.6 340 2.718 3.926 960 8.830 11.9 350 2.805 4.050 980 9.052 12.2 360 2.892 4.167 1.000 9.275 12.5		1.708	2.501			8.72
240 1.872 2.736 760 6.692 9.2 250 1.955 2.854 780 6.899 9.5 260 2.038 2.971 800 7.102 9.7 270 2.132 3.089 820 7.318 10.0 280 2.207 3.208 840 7.529 10.3 290 2.291 3.327 860 7.741 10.5 300 2.376 3.446 880 7.956 10.8 310 2.460 3.565 900 8.172 11.1 320 2.547 3.685 920 8.389 11.4 330 2.632 3.805 940 8.608 11.6 340 2.718 3.926 960 8.830 11.9 350 2.805 4.050 980 9.052 12.2 360 2.892 4.167 1.000 9.275 12.5	230	1.791	2.618	740	6.488	8.98
250 1.955 2.854 780 6.899 9.52 260 2.038 2.971 800 7.102 9.7 270 2.132 3.089 820 7.318 10.0 280 2.207 3.208 840 7.529 10.3 290 2.291 3.327 860 7.741 10.5 300 2.376 3.446 880 7.956 10.8 310 2.460 3.565 900 8.172 11.1 320 2.547 3.685 920 8.389 11.4 330 2.632 3.805 940 8.608 11.6 340 2.718 3.926 960 8.830 11.9 350 2.805 4.050 980 9.052 12.2 360 2.892 4.167 1.000 9.275 12.5	240	1.872	2.736	3		9.25
260 2.038 2.971 800 7.102 9.7 270 2.132 3.089 820 7.318 10.0 280 2.207 3.208 840 7.529 10.3 290 2.291 3.327 860 7.741 10.5 300 2.376 3.446 880 7.956 10.8 310 2.460 3.565 900 8.172 11.1 320 2.547 3.685 920 8.389 11.4 330 2.632 3.805 940 8.608 11.6 340 2.718 3.926 960 8.830 11.9 350 2.805 4.050 980 9.052 12.2 360 2.892 4.167 1.000 9.275 12.5		1.955				9.5
270 2.132 3.089 820 7.318 10.0 280 2.207 3.208 840 7.529 10.3 290 2.291 3.327 860 7.741 10.5 300 2.376 3.446 880 7.956 10.8 310 2.460 3.565 900 8.172 11.1 320 2.547 3.685 920 8.389 11.4 330 2.632 3.805 940 8.608 11.6 340 2.718 3.926 960 8.830 11.9 350 2.805 4.050 980 9.052 12.2 360 2.892 4.167 1.000 9.275 12.5				1		9.78
280 2.207 3.208 840 7.529 10.3 290 2.291 3.327 860 7.741 10.5 300 2.376 3.446 880 7.956 10.8 310 2.460 3.565 900 8.172 11.1 320 2.547 3.685 920 8.389 11.4 330 2.632 3.805 940 8.608 11.6 340 2.718 3.926 960 8.830 11.9 350 2.805 4.050 980 9.052 12.2 360 2.892 4.167 1.000 9.275 12.5						10.09
290 2.291 3.327 860 7.741 10.5 300 2.376 3.446 880 7.956 10.8 310 2.460 3.565 900 8.172 11.1 320 2.547 3.685 920 8.389 11.4 330 2.632 3.805 940 8.608 11.6 340 2.718 3.926 960 8.830 11.9 350 2.805 4.050 980 9.052 12.2 360 2.892 4.167 1.000 9.275 12.5	280					10.32
300 2.376 3.446 880 7.956 10.8 310 2.460 3.565 900 8.172 11.1 320 2.547 3.685 920 8.389 11.4 330 2.632 3.805 940 8.608 11.6 340 2.718 3.926 960 8.830 11.9 350 2.805 4.050 980 9.052 12.2 360 2.892 4.167 1.000 9.275 12.5						10.59
310 2.460 3.565 900 8.172 11.1 320 2.547 3.685 920 8.389 11.4 330 2.632 3.805 940 8.608 11.6 340 2.718 3.926 960 8.830 11.9 350 2.805 4.050 980 9.052 12.2 360 2.892 4.167 1.000 9.275 12.5						10.87
320 2.547 3.685 920 8.389 11.4 330 2.632 3.805 940 8.608 11.6 340 2.718 3.926 960 8.830 11.9 350 2.805 4.050 980 9.052 12.2 360 2.892 4.167 1.000 9.275 12.5						11.14
330 2.632 3.805 940 8.608 11.6 340 2.718 3.926 960 8.830 11.9 350 2.805 4.050 980 9.052 12.2 360 2.892 4.167 1.000 9.275 12.5			}	7		11.42
340 2.718 3.926 960 8.830 11.9 350 2.805 4.050 980 9.052 12.2 360 2.892 4.167 1.000 9.275 12.5						11.69
350 2.805 4.050 980 9.052 12.2 360 2.892 4.167 1.000 9.275 12.5				1		11.97
360 2.892 4.167 1.000 9.275 12.5						12.25
						12.53
370 2,980 4,289 1,100 10,042 13,9	370	2.980	4.289	1.100	10.042	13.99

(2) Bellows Type Joint. Use these joints for thermal expansion with stainless steel bellows, guided and installed according to manufacturer instructions. Bellows or corrugations for absorbing vibrations or mechanical movements at ambient temperatures may be made of copper or other materials suitable for the job conditions. A maximum travel of 4 inches shall be allowed for this type.

- (3) Flexible Ball Joints. These joints should be installed according to manufacturer instructions.
- e. Flexibility Analysis. See Section 6 of ANSI B31.1 for expansion and flexibility criteria and allowable stresses and reactions.
- (1) For methods of analyzing stresses in piping systems, use piping handbooks and publications of pipe and welding pipe fitting manufacturers. These manufacturers also supply calculation forms and charts.
- (2) Keep calculated pipe stresses under those allowed by ANSI B31.1.
- 4. DRAINAGE PROVISIONS. Drainage provisions must conform to requirements listed below.
- a. Pitch. The use and surrounding terrain will affect the pitch of piping as below.
- (1) Steam Piping. Piping shall be pitched down at a minimum of 3 inches per 100 feet of length in the direction of steam flow and condensate flow within a steam pipe.
- (2) Underground Piping. Where the ground surface slopes in the opposite direction to steam piping, step up underground piping in vertical risers at drip points in manholes and pitch them down to the next drip point. This method should be used also for all very long horizontal runs, above or below ground, to keep piping within a reasonable range of elevations.
- (3) Counter-flow Conditions. Where counter-flow of condensate within the steam pipe may occur in a portion of a pipeline because the stepped construction cannot be built, or because of steam flow reversal in a loop system, that portion shall be pitched up in the direction of steam flow a minimum of 6 inches per 100 feet and pipe diameters shall be increased by one standard pipe size.
- (4) Compressed Air and Fuel Gas Lines. Pitch compressed air and gas piping as for steam piping.
- (5) Pumped Water Pipe. Pitch these pipes (condensate, HTW, CHW, or condenser water) up or down in direction of flow. Drain valves should be placed at all low points.
 - b. Drips and Vents. Drips and vents will be as follows:
- (1) Drip Legs. These legs should be provided to collect condensate from steam piping and compressed air piping for removal by automatic moisture traps, or by manual drain valves for compressed air piping when practicable. Drip legs should be at low points, at the bottom of all risers and at intervals of approximately 200-300 feet for horizontally pitched pipe where a trap is accessible, and not over 500 feet for buried underground pipe systems.

- (2) Water Piping. Piping, especially high temperature water piping, should be vented at distribution piping high points.
 - c. Condensate Piping. Condensate piping will be as follows:
- (1) Drip Traps. Furnish a complete system of drip traps and piping to drain all steam piping of condensate from drip legs. Drip piping to traps shall be the same weight and material as the drained pipings.
- (2) Traps. A trap may be discharged through a check valve into the pumped condensate line if pressure in the trap discharge line exceeds the back pressure in the pumped condensate line during standby time of an intermittently operated pump. Preferably, a condensate line from a trap should run separately to a gravity condensate return main or to a nearby flash tank. (See ASHRAE Handbook & Product Directory for flash tank details and specific trap applications.)
- (3) Traps Discharge Piping. This piping shall be pitched down at a minimum of 3 inches per 100 feet to the collection tank of a condensate pump set or to a gravity return unless there is sufficient pressure in a steam line to overcome the friction and static head in the line whether level or pitched up.
- (4) Drains to Sewer. If unjustifiable to return drips to a condensate system, they may be drained as waste to a sewer. If the temperature exceeds sewer limitations, condensate must be cooled in a sump or by other means. Disposal of condensate from steam systems along waterfront, or under piers warrants special consideration and shall be determined on a case-by-case basis.
- 5. ANCHORS AND SUPPORTS. Anchors and supports must be as follows:
 - a. Anchors. Anchors for pipe support should be as is indicated below.
- (1) Location. Locate anchors at takeoffs from mains and other necessary points to contain pipeline expansions. If possible, anchors should be located in buildings, tunnels, and manholes with suitable access.
- (2) Specification. All anchors shall be appropriately designed and located in accordance with ANSI B31 Codes for Pressure Piping.
- (3) Strength. Anchors shall be strong enough to withstand expansion reactions. With expansion joints, the additional end reactions due to internal fluid pressure should be considered.
- (4) Guying. On aboveground systems at high elevations, the ends of structural steel shapes anchoring pipes to poles should be guyed parallel to the pipeline in both directions to concrete deadmen by wire rope and turn-buckles if necessary.
- (5) Embedding. In underground concrete trenches, the ends of structural steel shapes anchoring a pipe may be embedded in the trench walls or floors.

FIGURE 6
Aboveground Pipe Supports

- b. Supports. These shall conform to ANSI B31 Codes for Pressure Piping.
- (1) Low Elevations. For aboveground systems at low elevations, concrete pedestals, steel frames, or treated wood frames may be used and spaced as required depending on pipe sizes.
- (2) High Elevations. At higher elevations aboveground, pipelines may be supported on wood, steel pipe, H-section steel, reinforced concrete, prestressed concrete, poles with crossarms, or steel frameworks fitted with rollers and insulation saddles. (See Figure 6 for some types of supports.) Details of design with vary Jepending on site conditions.
- (3) Long Spans. When long spans are necessary, cable-suspension or catenary systems may be used with supports up to 50 feet on center.
- (4) Underground Conduits. Supports for underground conduits should be approved types of manufacturers' standard designs.

Section 4. DISTRIBUTION METHODS

- 1. SERVICE AND LOADS. Determine from Section 2, the services, such as steam, hot temperature water, compressed air, and others, required for each load center or building, the load demands for each service, and the capacity of a source of central plant for each service. (See Section 2 for fluid conditions inside service lines, for sizing pipes for these conditions, and for the required capacities.)
- 2. DISTRIBUTION CIRCUITS. Select a type of circuit which is economical, easy to operate, balance and control, and is suitable for a particular project terrain. (See Table 8 for types of distribution circuits.) Note that types easiest to balance and control are those where pressure and temperature differences are fairly constant between equipment supply and return branches.
- 3. DISTRIBUTION ROUTES. Distribution routes for piping must conform to the following criteria.
- a. Preliminary Planning. The following factors must be considered in preliminary planning.
- (1) Alternate Routes. Consider several alternate preliminary but direct routes for each service pipeline from its source to delivery load centers, allowing for future expansion.
- (2) Pressure Drop. From the total allowable pressure drop and ultimate length of a line, determine the pressure drop per 100 feet. Note the maximum flow between each load center and size the different pipeline sections accordingly.
- (3) Obstacles. From a field survey, note all obstacles for each route.
- (4) Economy. Select the route considered technically and economically best justified; make full use of building basements, crawl spaces, and attics including connecting corridors between buildings, and existing tunnels, and concrete trenches. However, high pressure fuel gas, steam, and HTW piping inside buildings should be avoided where fire or safety is a consideration.
- . (5) Future Buildings. These buildings should be considered and a route planned to supply them easily.
 - b. Piping Layouts. Piping must be planned and positioned as below.
- (1) Parallel Piping. Determine what lines between the same points should parallel each other (such as supply and return) or be separated (such as steam from chilled water). The minimum clearance between pipe conduits in the same trench should be 6 inches.
- (2) Location. Determine locations of expansion bends or loops, anchors, takeoffs, and drip points.

TABLE 8
Types of Distribution Circuits

State of fluid	Passage of fluid through equipment	Supply branch	Return branch	Comments
Compressible, such as steam, fuel gas, compressed air, etc.	Broken, due to change of state or to con- sumption within equipment.	From supply trunk piping.	To direct return trunk piping for condensate from steam.	Pressure and temperature differences between supply and return branches decrease as distance from source increases, but these changes are relatively minor.
Noncompressible such as water, fuel oil, etc.	Continuous	From supply trunk piping.	To direct return trunk piping. To reversed return trunk line. To supply loop, after supply branch.	Pressure and temperature differences between supply and return branches decrease as distance from source increases, but these changes are relatively large. Pressure and temperature differences between all supply and return branches are approximately same. Pressure and temperature differences between all supply and return branches are approximately same. Bressure and temperature differences between all supply and return branches approximately same but supply loop pressure and temperature are reduced after each set of supply and return branches
	Broken, as in once- through cooling system.	From supply trunk piping.	To return trunk piping.	Pressure and temperature differences between supply and return branches are approximately same.

- (3) Map. Lay out each piping on a scaled contour map of a site and on a profile drawing along the route, locating all obstructions and interferences, such as streams, roads, railroads, buried tunnels, concrete trenches, drainage piping, sewers, water piping, electrical conduits, and other service piping.
- c. Underground. Use only approved and certified conduit systems for steam, condensate and HTW, and procure and install in accordance with the requirements of TS-15705 Underground Heat Distribution Systems (prefabricated or pre-engineered type). The Federal Agency Committee for Underground Heat Distribution Systems approves and certifies the various types of conduit systems, i.e., drainable and dryable (pressure testable), sectionalized, prefabricated (non pressure testable) and poured-in-place granular insulation type conduit systems.
- (1) Site Classification. The selection of the conduit system type shall be based on the underground water conditions at the project site as defined in TS-15705 for Class A, B, C, or D application corresponding to underground water conditions ranging from severe to mild, respectively. The letter of certification contained in the conduit system brochure stipulates the approved site classification.
- (2) Design Responsibilities. The project design agency is responsible for providing the following information prior to project bidding:
- (a) Defining site conditions for underground water classification (A, B, C or D), soil corrosiveness, soil pli if less than 5.0, and potential soil load bearing problems.
- (b) Determining the general layout and essential characteristics of the system such as system media, maximum operating temperature and pressure, location of manholes, and branch runouts.
 - (c) Designing special elements of the system as required.
- (d) Calculating the maximum heat loss per lineal foot of the conduit in accordance with the procedures outlined in TS-15705.
- (3) RTRP condensate lines should be used whenever economically feasible in lieu of extra strong steel for longer service life. Procure and install RTRP condensate piping in accordance with TS-15707. Special care should be taken in the design of steam drip connections to protect the RTRP piping from live steam. Insulate condensate piping only when a life cycle cost analysis indicates a payback in energy savings, or where needed for personnel protection.
- d. Choice of Route. Except in congested and vulnerable areas, choose aboveground routes for heat distribution systems. Otherwise, adapt site confitions to comparative advantages of going above—or underground as stated in the following:

Aboveground

Lower first cost Less maintenance

Easy detection of failure ligher continuous operating efficiency Longer life

Underground

Less vulnerable target
Less obstruction to
aboveground traffic
Less unsightly
Freeze protected when
buried
Less heat gain in
chilled condenser
water piping

- e. Route Types. Distribution piping may be run through buildings, aboveground, or underground.
- (1) Through Buildings. Piping is most economical and easiest to maintain, however, safety or fire hazard considerations may curtail this method of routing.
- (2) Aboveground Overhead Piping. Piping may be located as little as 12 inches or as much as 22 feet above grade.
- (a) A 14- to 16-foot clearance is usually required for automobile and truck traffic, and a 22-foot height for railroad cars.
- (b) See NAVFAC Specification 53Y (latest revision) and NAVFAC Guide Specification TS-15P28 (latest revision) for aboveground piping systems for heat distribution, including insulation, jackets, etc.
- (3) Buried Piping. For buried piping routes, the following criteria apply:
- (a) Compressed air, and gas piping generally require no insulation, but they should be shop coated and wrapped, and tested and handled in accordance with NAVFAC Guide Specifications TS-02711, outside gas systems, and TS-15411, compressed air systems (non-breathing air type). Provide for testing of coverings by electrical flow detectors.
- (b) All buried piping and conduits shall be protected by laying them under a minimum cover of 24 inches; however, buried piping under railroads, roads, streets, or highways may have less cover if pipes or conduits are protected against possible external damage due to the superimposed car or truck travel.
- (i) When pipelines must be laid where they will be subjected to hazards, such as washouts, floods, unstable soils, land slides, dredging of water bottoms, etc., they shall be protected by acreasing pipe wall thickness, constructing intermediate supports or by anchors, erosion prevention, covering pipes with concrete, or other reasonable protection.
- (ii) Pipelines filled with water shall be buried below the frost line.

- (c) For collateral reading on design of underground piping see ANSI B31.1, Section 8.
- (d) Manholes shall conform to NAVFAC Guide Specification TS-15705.
- (e) Tunnels for underground routes shall be large enough for human traverse by walking, with piping stacked vertically on one side and enlarged zones for crossovers and takeoffs. Enough room shall be available to operate wrenches and reach all flange bolts.
- (i) A drainage trench shall run along one wall to a point of disposal to a storm sewer or a sump pit, with an automatic drainage pump driven by an electric motor or steam jet.
- (ii) Electric conduits carrying high voltage should be excluded.
- (iii) Tunnels shall be well lighted and ventilated. Moisture resistant electric fixtures should be used.
- (iv) Tunnels may be built of reinforced concrete, brick, or other suitable structural materials, and should be membrane waterproofed.

Section 5. MISCELLAMEOUS CRITERIA

1. TYPHOON CONSIDERATIONS. Exterior distribution systems shall be anchored or guyed (as required) to withstand the wind velocity specified for design of structures, (Structural Engineering, NAVFAC DM-2 series). Designs for all exterior piping systems shall be given special attention to ensure minimum damage due to typhoon phenomena.

REFERENCES

(Publications containing criteria cited in this manual)

Keenan and Keyes. Thermodynamic Properties of Steam, J. Wiley & Sons, N.Y.

Crocker and King. Piping Handbook, McGraw-Hill.

ASHRAE, American Society of Heating, Refrigerating and Air Conditioning Engineers, Inc., 345 East 47th Street, New York, NY 10017.

ASHRAE Handbook and Products Directory.

ANSI, Standards, American National Standards Institute, New York, NY 10018: ANSIB31.1 Power Piping, ANSI B31.2 Fuel Gas Piping, and ANSI B31.8 Gas Transmission and Distribution Piping Systems.

HI publications, Hydraulic Institute, New York, NY 10017. Pipe Friction Manual.

NAVFAC Specifications and Standards, available at U. S. Naval Publications and Forms Center, Philadelphia, PA 19120. Telephone number: AUTOVON-442-3321; commercial--(215) 697-3321.

NAVFAC Guide Specifications:

TS-02711	Outside Gas System
TS-15411 [^]	Compressed Air System (Non-breathing Air Type)
TS-15705	Underground Heat Distribution System (Prefabricated or Pre-Engineered)
TS-15707	Reinforced Thermosetting Resin Plastic (RTRP) Pipe Condensate System
TS-15 P28	Heat Distribution Systems Outside of Building (Cancelled, Copies available at NAVFAC HQ)
53Y	(Cancelled, Copies available at NAVFAC HQ)

NAVFACENGCOM Design Manuals and P-Publications.

Government agencies may obtain Design Manuals and P-Publications from the U.S. Naval Publications and Forms Center, 5801 Tabor Ave., Philadelphia, PA 19120. TWX 710-670-1685, AUTOVON: 442-3321. The stock number is necessary for ordering these documents and should be requested from the NAVFACENGCOM Division in your area.

Non-Government organizations may obtain Design Manuals and P-Publications from the Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402.

DM-2 series Structural Engineering

DM-3 series Mechanical Engineering

DM-7 series Soil Mechanics, Foundations and Earth Structures

DM-24 series Land Operational Facilities

P-272 (Part 1) Definitive Designs for Naval Shore Facilities

APPENDIX A

METRIC CONVERSION FACTORS

- 0.5 inch = 13 mm
- 2 inches = 51 mm
- 3 inches = 76 mm
- 4 inches = 102 mm
- 6 inches = 152 mm
- 8 inches = 203 mm
- 10 inches = 254 mm
- 12 inches = 305 mm
- 24 inches = 610 mm
- 1 foot square = 0.3 m square
- 2 feet = 610 mm
- 3 feet = 914 mm
- 5 feet = 1524 mm
- 14 feet = 4267 mm
- 16 feet = 4877 m.n
- 22 feet = 6706 mm
- 50 feet = 15,240 mm
- 100 feet = 30,480 mm
- 200 feet = 61,000 mm
- 300 feet = 91,400 mm
- 500 feet = 152,400 mm
- 2 fps = 610 mm/sec
- 5 fps = 1524 mm/sec
- 15 psig = 103 kPa (kilopascals)

30 psig = 207 kPa

50 psig = 345 kPa

100 psig = 689 kPa

125 psig = 861 kPa

150 psig = 1034 kPa

3000 pph = 1361 kg/hr

 $450^{\circ}F = 232^{\circ}C$