Hausdorff-Kompaktheit kompakter Mengensysteme (Entwurf)

Noah Gairing

Oktober 2025

Im vorherigen Vortrag wurde die Hausdorff-Metrik, verallgemeinert auf nichtleeren Teilmengen eines metrischen Raumes, eingeführt. In diesem Vortrag betrachten wir sie stets im Fall \mathbb{R}^m mit der euklidischen Norm $||\cdot||_2$.

Definition 1 (Hausdorff-Metrik, \mathbb{R}^m). Sei $m \in \mathbb{N}_{>0}$. Für nichtleere Teilmengen $A, B \subset \mathbb{R}^m$ definieren wir die Hausdorff-Distanz zwischen A und B durch

$$d_{\mathcal{H}}(A,B) := \max\Bigl\{\sup_{a\in A}\inf_{b\in B}||a-b||_2, \ \sup_{b\in B}\inf_{a\in A}||b-a||_2\Bigr\}.$$

Einfacher gesagt ist die Hausdorff-Distanz das Supremum von wie weit ein Punkt aus einer Menge von der anderen entfernt sein kann.

Proposition 1. Sei $W \subset \mathbb{R}^m$ ein abgeschlossener Würfel mit Kantenlänge L > 0. Dann gilt für alle $x, y \in W$ die Abschätzung

$$||x - y||_2 \le L \cdot \sqrt{m}.$$

Beweis. Seien $x, y \in W$ mit $x = (x_1, \dots, x_m)$ und $y = (y_1, \dots, y_m)$. Dann gilt

$$||x-y||_2 = \left(\sum_{i=1}^m (x_i - y_i)^2\right)^{1/2} \le \left(\sum_{i=1}^m L^2\right)^{1/2} = (L^2 \cdot m)^{1/2} = L \cdot \sqrt{m}.$$

Theorem 1. Sei $m \in \mathbb{N}_{>0}$ und sei $(K_n)_{n \in \mathbb{N}}$ eine Folge kompakter Mengen in $[0,1]^m$. Dann gibt es eine kompakte Menge $\emptyset \neq K \subset [0,1]^m$ und eine Teilfolge $(K_{n_i})_{i \in \mathbb{N}}$ mit $K_{n_i} \xrightarrow{i \to \infty} K$ bzgl. der Hausdorff-Metrik.

Beweis. Sei $Q_0 := [0,1]^m$, sowie $(K_n^{(0)})_{n \in \mathbb{N}} := (K_n)_{n \in \mathbb{N}}$. Für $i \in \mathbb{N}$ definieren wir

$$W_i := \left\{ \left[\frac{a_1}{2^i}, \frac{a_1 + 1}{2^i} \right] \times \dots \times \left[\frac{a_m}{2^i}, \frac{a_m + 1}{2^i} \right] : a_1, \dots, a_m \in \{0, \dots, 2^i - 1\} \right\}.$$

als Zerlegung von $[0,1]^m$ in $2^{i\cdot m}$ Würfel derselben Maße. Dazu gebe es eine beliebige Bijektion $\varphi_i:\{1,\ldots,2^{i\cdot m}\}\to W_i$.

Beginnend mit i=1 und dann für $i=2,3,\ldots$ iterieren wir nun über $j=1,\ldots,2^{i\cdot m}$:

• Setze $Q_i^{(0)} := \emptyset$ und $(K_n^{[i,0]})_{n \in \mathbb{N}} := (K_n^{(i-1)})_{n \in \mathbb{N}}$.

• Gibt es unendlich viele $n \in \mathbb{N}$ mit $K_n^{[i,j-1]} \cap \varphi_i(j) \neq \emptyset$, so setzen wir

$$Q_i^{(j)} := Q_i^{(j-1)} \cup \varphi_i(j).$$

Zudem definieren wir $(K_n^{[i,j]})_{n\in\mathbb{N}}$ als Teilfolge von $(K_n^{[i,j-1]})_{n\in\mathbb{N}}$, wo genau die Glieder $K_n^{[i,j-1]}$ mit $K_n^{[i,j-1]}\cap\varphi_i(j)\neq\emptyset$ beibehalten werden.

• Gibt es nich unendlich viele $n \in \mathbb{N}$ wie im letzten Punkt, so setzen wir $Q_i^{(j)} := Q_i^{(j-1)}$, und definieren $(K_n^{[i,j]})_{n \in \mathbb{N}}$ als Teilfolge von $(K_n^{[i,j-1]})_{n \in \mathbb{N}}$, wo genau die Glieder $K_n^{[i,j-1]}$ mit $K_n^{[i,j-1]} \cap \varphi_i(j) = \emptyset$ beibehalten werden.

Schließlich setzen wir $Q_i:=Q_i^{(2^{i\cdot m})}$ und $(K_n^{(i)})_{n\in\mathbb{N}}:=(K_n^{[i,2^{i\cdot m}]})_{n\in\mathbb{N}}$. Dann folgt für alle $i\in\mathbb{N}_{>0}$:

- $(K_n^{(i)})_{n\in\mathbb{N}}$ ist eine Teilfolge von $(K_n^{(i-1)})_{n\in\mathbb{N}}$, da $(K_n^{(i)})_{n\in\mathbb{N}} \equiv (K_n^{[i,2^{i\cdot m}]})_{n\in\mathbb{N}}$ eine Teilfolge von $(K_n^{[i,0]})_{n\in\mathbb{N}} \equiv (K_n^{(i-1)})_{n\in\mathbb{N}}$ ist.
- $K_n^{(i)} \subset Q_i$ für alle $n \in \mathbb{N}$, da wir Q_i so konstruiert haben, dass alle Elemente von $(K_n^{(i)})_{n \in \mathbb{N}}$ Teilmengen von Q_i sind.
- $Q_i \subset Q_{i-1}$. Für i=1 ist dies klar, da $Q_0 = [0,1]^m$. Für ein i>1 nehmen wir an, dass es ein $x \in Q_i$ gäbe mit $x \notin Q_{i-1}$. Dann gibt es $U \in \mathcal{U}(x)$ mit $U \cap Q_{i-1} = \emptyset$ wo für alle $n \in \mathbb{N}$ gilt $K_n^{(i-1)} \cap U = \emptyset$ und $K_n^{(i)} \cap U \neq \emptyset$. Dies steht im Widerspruch dazu, dass $(K_n^{(i)})_{n \in \mathbb{N}}$ eine Teilfolge von $(K_n^{(i-1)})_{n \in \mathbb{N}}$ ist.
- Q_i ist eine beschränkte, nichtleere Vereinigung von Würfeln aus W_i und somit nach Heine-Borel kompakt.

Da die Q_i kompakt, nichtleer, und $Q_i \subset Q_{i-1}$ für alle $i \in \mathbb{N}_{>0}$ sind, können wir die wohldefinierte kompakte Menge

$$K := \bigcap_{i \in \mathbb{N}} Q_i \neq \emptyset$$

definieren. Für alle $i \in \mathbb{N}_{>0}$ gilt nun $d_{\mathcal{H}}(Q_i, K) \leq 2^{-i} \cdot \sqrt{m}$. Dies folgt daraus, dass jeder Würfel in W_i ein Element aus K enthält. Aus Proposition 1 mit Kantenlänge 2^{-i} folgt somit die Behauptung.

Sei nun $(K_{n_i})_{i\in\mathbb{N}}$ durch $K_{n_i}:=K_i^{(i)}$ für alle $i\in\mathbb{N}$ als Teilfolge von $(K_n)_{n\in\mathbb{N}}$ definiert. Wir zeigen nun, dass $K_{n_i} \xrightarrow{i\to\infty} K$ bzgl. der Hausdorff-Metrik gilt. Sei dazu $\varepsilon > 0$. Wähle $i_0 \in \mathbb{N}$ mit $2^{-i_0} \cdot \sqrt{m} < \varepsilon$. Da $K \subset K_{n_i} \subset Q_i$ für alle $i \in \mathbb{N}$ gilt für alle $i \geq i_0$:

$$d_{\mathcal{H}}(K_{n_i}, K) \le d_{\mathcal{H}}(Q_i, K) \le 2^{-i} \cdot \sqrt{m} < \varepsilon.$$

Theorem 2. Sei $m \in \mathbb{N}_{>0}$, und $U \subset \mathbb{R}^m$ nichtleer und beschränkt. Dann ist $\mathcal{K}(U)$, der Raum aller nichtleeren, kompakten Teilmengen von U, selbst kompakt bzgl. der Hausdorff-Metrik.

Beweis. Da U beschränkt ist wählen wir M > 0 mit $U \subset B_M(0) \subset [-M, M]^m$. Definieren wir den Homöomorphismus

$$\varphi: [-M, M]^m \to [0, 1]^m$$
$$x \mapsto \frac{1}{2M} \cdot (x + (M, \dots, M)).$$

2

Dann gilt für alle $X \in K(U)$, dass $\varphi(X) \in \mathcal{K}([0,1]^m)$ ist. Sei $(K_n)_{n \in \mathbb{N}}$ eine beliebige Folge in $\mathcal{K}(U)$. Dann ist $(\varphi(K_n))_{n \in \mathbb{N}}$ eine Folge in $\mathcal{K}([0,1]^m)$. Nach Theorem 1 gibt es eine Teilfolge $(\varphi(K_{n_i}))_{i \in \mathbb{N}}$ und eine kompakte Menge $\emptyset \neq K \subset [0,1]^m$ mit $\varphi(K_{n_i}) \xrightarrow{i \to \infty} K$ bzgl. der Hausdorff-Metrik. Dann konvergiert $(K_{n_i})_{i \in \mathbb{N}} \equiv (\varphi^{-1}(\varphi(K_{n_i})))_{i \in \mathbb{N}}$ gegen $\varphi^{-1}(K) \in \mathcal{K}(U)$ und die Behauptung folgt.