Basic identities of matrix/vector ops	j j	Vector norms (beyond euclidean)	Determinant of square-diagonals =>	If all else fails, try to find row/column with MOST zeros	If associated to same eigenvalue A] then eigenspace	σ ₁ ,,σ _p are singular values of <u>A</u>].	Variance (Bessel's correction) of α ₁ ,,α _m is
$(A+B)^T = A^T + B^T (AB)^T = B^T A^T (A^{-1})^T = (A^T)^{-1} $	Notice: $Q_j c_j = \sum_{i=1}^{J} (\mathbf{q}_i \cdot \mathbf{a}_{j+1}) \mathbf{q}_i = \sum_{i=1}^{J} \text{proj}_{\mathbf{q}_i} (\mathbf{a}_{j+1})$, so	vector norms are such that: $ x = 0 \iff x = 0$,	$\left \text{diag}(a_1,, a_n) \right = \prod_i a_i$ (since they are technically triangular matrices)	Perform minimal EROs/ECOs to get that row/column to be all-but-one zeros	$ E_{\lambda} $ has spanning-set $\{x_{\lambda_i}, \dots\}$	(Positive) singular values are (positive) square-roots	$\operatorname{Var}_{\mathbf{w}} = \frac{1}{m-1} \sum_{j} \alpha_{j}^{2} = \frac{1}{m-1} \mathbf{w}^{T} \left(\sum_{j} \mathbf{r}_{j}^{T} \mathbf{r}_{j} \right) \mathbf{w}$
$(AB)^{-1} = B^{-1}A^{-1}$	rewrite as	$\frac{ \lambda x = \lambda x }{ x + y \le x + y }$	triangular matrices;	Don't forget to keep track of sign-flipping &	$ \mathbf{x}_1,, \mathbf{x}_n $ are linearly independent \Rightarrow apply Gram-Schmidt $\mathbf{q}_{\lambda_i}, \leftarrow \mathbf{x}_{\lambda_i},$	of eigenvalues of $\underline{AA^T}$ or $\underline{A^TA}$ i.e. $\sigma_1^2,, \sigma_D^2$ are eigenvalues of $\underline{AA^T}$ or $\underline{A^TA}$	$= \frac{1}{m-1} \mathbf{w}^T \mathbf{A}^T \mathbf{A} \mathbf{w}$
For $\underline{A \in \mathbb{R}^{m \times n}} A_{ij}$ is the i -th ROW then j -th COLUMN	j j	$ \mathbf{r}_p $ norms: $ \mathbf{x} _p = (\sum_{i=1}^n \mathbf{x}_i ^p)^{1/p}$	The (column) rank of AJ is number of linearly	scaling-factors Do Laplace expansion along <u>that</u> row/column =>	Then $\{\mathbf{q}_{\lambda_{i}},\}$ is orthonormal basis (ONB) of $E_{\lambda_{i}}$	A ₂ = \(\sigma_1\) (\link\) to matrix norms	First (principal) axis defined =>
$(A^{T})_{ij} = A_{ji} \left[(AB)_{ij} = A_{i\star} \cdot B_{\star j} = \sum_{i} A_{ik} B_{kj} \right]$	$\mathbf{u}_{j+1} = \mathbf{a}_{j+1} - \sum_{i=1}^{r} (\mathbf{q}_i \cdot \mathbf{a}_{j+1}) \mathbf{q}_i = \mathbf{a}_{j+1} - \sum_{i=1}^{r} \operatorname{proj}_{\mathbf{q}_i} (\mathbf{a}_{j+1})$	$p=1 \mid \frac{\ \mathbf{x}\ _1 = \sum_{i=1}^n \mathbf{x}_i }{\ \mathbf{x}\ _1 = \sum_{i=1}^n \mathbf{x}_i }$	independent columns, i.e. <u>rk(A)</u> I.e. its the number of pivots in row-echelon-form	notice all-but-one minor matrix determinants go to		Let $r = rk(A)$, then number of strictly positive singular	$\mathbf{w}_{(1)} = \arg \max_{\ \mathbf{w}\ =1} \mathbf{w}^T A^T A \mathbf{w}$
R	$a_1, \dots, a_n \in \mathbb{R}^m$ $m \ge n$	$p=2$: $\ \mathbf{x}\ _2 = \sqrt{\sum_{i=1}^n \mathbf{x}_i^2} = \sqrt{\mathbf{x} \cdot \mathbf{x}}$	I.e. its the dimension of the column-space	zero	$\frac{Q = (\mathbf{q}_1,, \mathbf{q}_n)}{\text{orthogonal matrix i.e. } \mathbf{Q}^{-1} = \mathbf{Q}^T} \Rightarrow \frac{\mathbf{Q} = [\mathbf{q}_1 \mathbf{q}_n]}{\mathbf{q}_n} \text{ is}$	values is r	= arg max _{w =1} (m-1)Var _w = v ₁
$(Ax)_i = A_{i*} \cdot x = \sum_j A_{ij} x_j \left[x^T y = y^T x = x \cdot y = \sum_i x_i y_i \right]$	\underline{n} $U_n = \text{span}\{a_1, \dots, a_n\}$	$p = \infty$ $\ \mathbf{x}\ _{\infty} = \lim_{p \to \infty} \ \mathbf{x}\ _{p} = \max_{1 \le i \le n} \mathbf{x}_{i} $	rk(A) = dim(C(A)) l.e. its the dimension of the image-space	Representing EROs/ECOs as transfor- mation matrices	$ \mathbf{q}_1, \dots, \mathbf{q}_N $ are still eigenvectors of $A = QDQ^T$	i.e. $\sigma_1 \ge \cdots \ge \sigma_r > 0$ and $\sigma_{r+1} = \cdots = \sigma_p = 0$	i.e. $w_{(1)}$ the direction that maximizes variance Var_{w} i.e. maximizes variance of projections on line $Rw_{(1)}$
$x^T A x = \sum_i \sum_j A_{ij} x_i x_j \mathbf{x} \mathbf{e}_k^T = [0 \mathbf{x} 0]$	We apply Gram-Schmidt to build ONB $(\mathbf{q}_1,, \mathbf{q}_n) \in \mathbb{R}^m \mid \text{for } U_n \subset \mathbb{R}^m \mid$	Any two norms in R ⁿ are equivalent, meaning there	rk(A) = dim(im(f_A)) of linear map $f_A(x) = Ax$	For $A \in \mathbb{R}^{m \times n}$, suppose a sequence of:	(spectral decomposition)	$A = \sum_{i=1}^{r} \sigma_i \mathbf{u}_i \mathbf{v}_i^I$	
$e_k x^T = [0^T;; x^T;; 0^T]$	$j=1 \Rightarrow u_1 = a_1$ and $q_1 = \hat{u}_1$, i.e. start of iteration	exist r > 0; s > 0 such that:	The (row) rank of Ajis number of linearly independent	EROs transform $A \rightsquigarrow_{EROs} A' \Rightarrow$ there is matrix R is.t.	A=QDQ ^T can be interpreted as scaling in direction of its eigenvectors:		on u1,, or ur (columns of US) are principal components/scores of A
Scalar-multiplication + addition distributes over:	$ j=2 \Rightarrow \frac{u_2 = a_2 - (q_1 \cdot a_2)q_1}{u_2 = a_2 - (q_1 \cdot a_2)q_1}$ and $ q_2 = \hat{u}_2 = \frac{etc}{u_2}$ Linear independence guarantees that $a_{j+1} \notin U_j$	$\forall \mathbf{x} \in \mathbb{R}^{n}, r \ \mathbf{x}\ _{a} \leq \ \mathbf{x}\ _{b} \leq s \ \mathbf{x}\ _{a}$ $\ \mathbf{x}\ _{\infty} \leq \ \mathbf{x}\ _{2} \leq \ \mathbf{x}\ _{1}$	rows	$RA = A'$ $ECOs$ transform $A \rightsquigarrow_{ECOs} A' \implies$ there is matrix C s.t.	1) Perform a succession of reflections/planar	SVD is similar to spectral decomposition, except it always exists	Recall: $A = \sum_{i=1}^{r} \sigma_i \mathbf{u}_i \mathbf{v}_i^T$ with $\sigma_1 \ge \cdots \ge \sigma_r > 0$ so that
column-blocks =>	For exams: compute $u_{j+1} = a_{j+1} - Q_j c_j$	Equivalence of ℓ_1, ℓ_2 and $\ell_{\infty} \Rightarrow \ \mathbf{x}\ _2 \leq \sqrt{n} \ \mathbf{x}\ _{\infty}$	The row/column ranks are always the same, hence $rk(A) = dim(C(A)) = dim(R(A)) = dim(C(A^T)) = rk(A^T)$	AC = A'	rotations to change coordinate-system	If $\underline{n \le m}$ then work with $\underline{A^T A \in \mathbb{R}^{n \times n}}$	relates principal axes and principal components
$\lambda A + B = \lambda [A_1 A_C] + [B_1 B_C] = [\lambda A_1 + B_1 \lambda A_C + B_C]$ row-blocks =>	1) Gather $Q_j = [\mathbf{q}_1 \mid \dots \mid \mathbf{q}_j] \in \mathbb{R}^{m \times j}$	$\ \mathbf{x}\ _1 \le \sqrt{n} \ \mathbf{x}\ _2$	A) is full-rank iff $rk(A) = min(m, n)$, i.e. its as linearly	Both transform A → EROs+ECOs A' => there are	2) Apply scaling by N₁ to each dimension q₁ Undo those reflections/planar rotations	Obtain eigenvalues $\sigma_1^2 \ge \cdots \ge \sigma_n^2 \ge 0$ of $\underline{A^T A}$	Data compression: If $\sigma_1 \gg \sigma_2$ then compress A by projecting in direction of principal component =>
$\lambda A + B = \lambda [A_1;; A_r] + [B_1;; B_r] = [\lambda A_1 + B_1;; \lambda A_r + B_r]$		Induce metric $\underline{d(x,y)} = y-x $ has additional	independent as possible	matrices R, C s.t. RAC = A'	Extension to C ⁿ	Obtain orthonormal eigenvectors $\underline{\mathbf{v}_1, \dots, \mathbf{v}_n \in \mathbb{R}^n}$ of	A≈ o ₁ u ₁ v ₁
Matrix-multiplication distributes over:	-2) Compute $c_j = [q_1 \cdot a_{j+1},, q_j \cdot a_{j+1}]^T \in \mathbb{R}^I$ -3) Compute $Q_j c_j \in \mathbb{R}^m$ and subtract from a_{j+1}	properties: Translation invariance: $d(x+w, y+w)=d(x, y)$	Two matrices $\mathbf{A}, \tilde{\mathbf{A}} \in \mathbb{R}^{m \times n}$ are equivalent if there exist	FORWARD: to compute these transformation	Standard inner product: $\langle x, y \rangle = x^{\dagger} y = \sum_{i} \overline{x_{i}} y_{i}$	A^TA (apply normalization e.g. Gram-Schmidt !!!! to eigenspaces E_{G_i}	
column-blocks \Rightarrow $AB = A[B_1 B_p] = [AB_1 AB_p]$	" <u></u>	Scaling: $d(\lambda x, \lambda y) = \lambda d(x, y)$	two invertible matrices $P \in \mathbb{R}^{m \times m}$ and $Q \in \mathbb{R}^{n \times n}$	matrices:	Conjugate-symmetric: $\langle x, y \rangle = \overline{\langle y, x \rangle}$	$V = [\mathbf{v}_1 \dots \mathbf{v}_n] \in \mathbb{R}^{n \times n}$ is orthogonal so $V^T = V^{-1}$	Cholesky Decomposition
row-blocks \Rightarrow $AB = \overline{[A_1,, A_p]}B = \overline{[A_1B,, A_pB]}$ outer-product sum \Rightarrow	Properties: dot-product & norm $x^{T}y = y^{T}x = x \cdot y = \sum x_{i}y_{i} x \cdot y = a b \cos x\hat{y} $	Matrix norms	such that $\mathbf{A} = \mathbf{P}\tilde{\mathbf{A}}\mathbf{Q}^{-1}$ Two matrices $\mathbf{A}, \tilde{\mathbf{A}} \in \mathbb{R}^{n \times n}$ are similar if there exists an	Start with [I _m A I _n]], i.e. A Jand identity matrices For every ERO on A J, do the same to LHS (i.e. I _m)	Standard (induced) norm: $ x = \sqrt{\langle x, y \rangle} = \sqrt{x^{\dagger} y}$	$r = rk(A) = no. of strictly + ve \sigma_i$	Consider positive (semi-)definite $A \in \mathbb{R}^{n \times n}$ Cholesky Decomposition is $A = LL^{T}$ where L is
$AB = [A_1 A_p][B_1;; B_p] = \sum_{i=1}^{p} A_i B_i$	i x-y- u u cosxy	Matrix norms are such that: $ A = 0 \iff A = 0$, AA = A A A + B ≤ A + B	invertible matrix $P \in \mathbb{R}^{n \times n} $ such that $A = P\tilde{A}P^{-1}$	For every ECO on Al, do the same to RHS (i.e. In	We can <u>diagonalise</u> real matrices in CJwhich lets us	Let $\mathbf{u}_i = \frac{1}{c_i} A \mathbf{v}_i$ then $\mathbf{u}_1,, \mathbf{u}_r \in \mathbb{R}^m$ are orthonormal	lower-triangular
e.g. for $A = [\mathbf{a}_1 \dots \mathbf{a}_n], B = [\mathbf{b}_1; \dots; \mathbf{b}_n] \Rightarrow AB = \sum_i \mathbf{a}_i \mathbf{b}_i$	$x \cdot y = y \cdot x [x \cdot (y + z) = x \cdot y + x \cdot z] \alpha x \cdot y = \alpha(x \cdot y)$	Matrices F ^{m×n} are a vector space so matrix norms	Similar matrices are equivalent, with Q = P	Once done, you should get $[I_m \mid A \mid I_n] \rightsquigarrow [R \mid A' \mid C]$ with $RAC = A' \mid$	diagonalise more matrices than before	(therefore linearly independent)	For positive semi-definite => always exists, but
Projection: definition & properties	$x \cdot x = x ^2 = 0 \iff x = 0$ for $x \neq 0$, we have $x \cdot y = x \cdot z \implies x \cdot (y - z) = 0$	are vector norms, all results apply	AJis diagonalisable iff AJis similar to some diagonal		Least Square Method If we are solving Ax = b and b ∉ C(A) , i.e. no solution,	The orthogonal compliment of span $\{\mathbf{u}_1,, \mathbf{u}_r\}$	non-unique For positive-definite => always uniquely exists s.t.
A projection π: V → V is a endomorphism such that	$ x \cdot y \le x y y y x \cdot y \le x y $	Sub-multiplicative matrix norm (assumed by default) is also such that $ AB \le A B $	matrix DI Properties of determinants	If the sequences of EROs and ECOs were $R_1,, R_{\lambda}$ and	then Least Square Method is:	$span\{\mathbf{u}_1, \dots, \mathbf{u}_r\}^{\perp} = span\{\mathbf{u}_{r+1}, \dots, \mathbf{u}_m\}$	diagonals of <u>L</u> Jare positive
	$ u+v ^2 + u-v ^2 = 2 u ^2 + 2 v ^2$ (parallelogram law)	Common matrix norms, for some <u>A ∈ R^{m×n}</u>	Consider $A \in \mathbb{R}^{n \times n}$ then $A_{ii}' \in \mathbb{R}^{(n-1) \times (n-1)}$ the	C ₁ ,,C _µ respectively	Finding \underline{x} Jwhich minimizes $ Ax-b _2$ Recall for $A \in \mathbb{R}^{m \times n}$ we have unique decomposition	Solve for unit-vector u _{r+1} s.t. it is orthogonal to u ₁ ,, u _r	Findings Chalaste December 1
A O1	u+v ≤ u + v (triangle inequality)	$\ \mathbf{A}\ _1 = \max_j \ \mathbf{A}_{\star j}\ _1$	(i,j) minor matrix of A], obtained by deleting i th row	$\frac{R = R_{\lambda} \cdots R_{1} \text{ and } C = C_{1} \cdots C_{\mu}}{(R_{\lambda} \cdots R_{1})A(C_{1} \cdots C_{\mu}) = A'} \text{ so}$	for any $\mathbf{b} \in \mathbb{R}^m$ $\mathbf{b} = \mathbf{b}_i \cdot \mathbf{b}_k$	Then solve for unit-vector u _{r+2} s.t. it is orthogonal	Finding a Cholesky Decomposition: Compute LL^T and solve $A = LL^T$ by matching terms
projection matrix	$u \perp v \iff u+v ^2 = u ^2 + v ^2$ (pythagorean theorem)	$\ \mathbf{A}\ _2 = \sigma_1(\mathbf{A})$ i.e. largest singular value of \mathbf{A}	and j th column from A		where $\frac{\mathbf{b}_{i}}{\mathbf{b}_{i}} \in C(A)$ and $\frac{\mathbf{b}_{k}}{\mathbf{b}_{k}} \in \ker(A^{T})$	to u ₁ ,, u _{r+1}	For square roots always pick positive
	$\ c\ ^2 = \ a\ ^2 + \ b\ ^2 - 2\ a\ \ b\ \cos b\hat{a}$ (law of cosines)	(square-root of largest eigenvalue of A ^T A or AA ^T	Then we define determinant of \underline{A} , i.e. $\underline{\det(A) = A }$, as	$R^{-1} = R_1^{-1} \cdots R_{\lambda}^{-1}$ and $C^{-1} = C_{\mu}^{-1} \cdots C_{1}^{-1}$, where	$\ A\mathbf{x} - \mathbf{b}\ _2$ is minimized $\iff \ A\mathbf{x} - \mathbf{b}_i\ _2 = 0 \iff A\mathbf{x} = \mathbf{b}_i$	$U = [\mathbf{u}_1 \dots \mathbf{u}_m] \in \mathbb{R}^{m \times m}$ is orthogonal so $U^T = U^{-1}$	If there is exact solution then positive-definite If there are free variables at the end, then positive
Eigenvalues of a projection matrix must be 0 or 1	Transformation matrix & linear maps	$\ \mathbf{A}\ _{\infty} = \max_i \ \mathbf{A}_{i\star}\ _{1}$, note that $\ \mathbf{A}\ _{1} = \ \mathbf{A}^{T}\ _{\infty}$	$det(A) = \sum_{k=-8}^{n} (-1)^{i+k} A_{ik} det(A_{ik}')$, i.e. expansion along	$\left[\frac{R_i^{-1}, C_j^{-1}}{2}\right]$ are inverse EROs/ECOs <u>respectively</u>		$S = diag_{m \times n}(\sigma_1,, \sigma_n)$ AND DONE!!!	semi-definite
Because $\pi: V \to V$ is a linear map, its image space	For linear map $f: \mathbb{R}^n \to \mathbb{R}^m$ ordered bases $(b_1,, b_n) \in \mathbb{R}^m$ and $(c_1,, c_m) \in \mathbb{R}^m$	Frobenius norm: $\ \mathbf{A}\ _{F} = \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} \mathbf{A}_{ij} ^{2}}$	R=1		$A^T Ax = A^T b$ is the normal equation which gives solution to least square problem:	If $m < n$ then let $B = A^T$	i.e. the decomposition is a solution-set
$U = \operatorname{im}(\pi)$ and null space $W = \ker(\pi)$ are subspaces of V	$A = \mathbf{F}_{CB} \in \mathbb{R}^{m \times n}$ is the transformation-matrix of f	\(\frac{1}{i=1}\) \(\frac{1}\) \(\frac{1}{i=1}\) \(\frac{1}{i=1}\) \(\frac{1}\) \(\frac{1}\) \(\frac{1}\) \(\frac{1}\) \(\frac{1}\) \(\frac{1}\) \(\frac{1}	<u>i</u> }th row *(for any <u>i</u>)	BACKWARD: once $R_1,, R_{\lambda}$ and $C_1,, C_{\mu}$ for which $RAC = A'$ are known , starting with $[I_m \mid A \mid I_n]$	$\ Ax - b\ _2$ is minimized $\iff Ax = b_i \iff A^T Ax = A^T b$	apply above method to $BJ \Rightarrow B = A^T = USV^T$	[1 1 1] [1 0 0]
The linear map $\pi^* = I_V - \pi$ is also a projection with	w.r.t to bases B and C	A matrix norm $\ \cdot\ $ on $\mathbb{R}^{m \times n}$ is consistent with the	$det(A) = \sum_{k=1}^{n} (-1)^{k+j} A_{kj} det(A_{kj}')$, i.e. expansion along		Linear Regression	$A = B^T = VS^T U^T$	e.g. 1 1 1 = LL ^T where L = 1 0 0 , c ∈ [0,1]
$W = \operatorname{im}(\pi^*) = \ker(\pi)$ and $U = \ker(\pi^*) = \operatorname{im}(\pi)$ i.e. they	$f(\mathbf{b}_j) = \sum_{i=1}^m A_{ij} \mathbf{c}_i$ -> each \mathbf{b}_j basis gets mapped to a	vector norms $\ \cdot \ _a$ on \mathbb{R}^n and $\ \cdot \ _b$ on \mathbb{R}^m if	j th column (for any j)	For $\underline{i=1 \rightarrow \lambda}$ perform $\underline{R_i}$ on \underline{A} , perform $\underline{R_{\lambda-i+1}}^{-1}$ on LHS (i.e. l_m)	Let $y = f(t) = \sum_{j=1}^{n} s_j f_j(t)$ be a mathematical model,	Tricks: Computing orthonormal vector-set extensions	[1 1 2] [1 c √1-c ²]
swapped ∏js a projection along <u>W</u> J onto <u>U</u> J	linear combination of $\sum_{i} a_{i} c_{i}$ bases	for all $\underline{\mathbf{A}} \in \mathbb{R}^{m \times n}$ and $\underline{\mathbf{x}} \in \mathbb{R}^n$ \Rightarrow $\ \underline{\mathbf{A}}\mathbf{x}\ _b \le \ \underline{\mathbf{A}}\ \ \mathbf{x}\ _a$ If $a = b$, $\ \cdot\ $ is compatible with $\ \cdot\ _a$	When det(A) = 0 we call A a singular matrix	For $j = 1 \rightarrow \mu$ perform C_j on \underline{A} perform $C_{\mu-j+1}^{-1}$ on	where f_i are basis functions and s_i are parameters	You have orthonormal vectors $\mathbf{u}_1,, \mathbf{u}_r \in \mathbb{R}^m \mid \Rightarrow$ need	If A = LL ^T you can use forward/backward substitution
π* is a projection along U Jonto W J	If f ⁻¹ exists (i.e. its bijective and m = n) then	Frobenius norm is consistent with \$2 norm =>	Common determinants For <u>n = 1</u> , det(A) = A ₁₁	RHS (i.e. I_n)	Let (t_i, y_i) $1 \le i \le m, m \gg n$ be a set of observations ,	to extend to orthonormal vectors $\mathbf{u}_1,, \mathbf{u}_m \in \mathbb{R}^m$	to solve equations
π* is the identity operator on W V can be decomposed as V = U⊕W meaning every	$(\mathbf{F}_{CB})^{-1} = \mathbf{F}^{-1}_{BC} \underline{\text{(where }} \mathbf{F}^{-1}_{BC} \underline{\text{is the}}$ $\underline{\text{transformation-matrix of }} f^{-1} \underline{\text{N}}$	Av 2 = A F v 2	For n = 2], det(A) = A ₁₁ A ₂₂ - A ₁₂ A ₂₁	You should get $[I_m \mid A \mid I_n] \rightarrow [R^{-1} \mid A' \mid C^{-1}]$ with	and $t, y \in \mathbb{R}^m$ are vectors representing those	Special case \Rightarrow two 3D vectors \Rightarrow use cross-product \Rightarrow $a \times b \perp a, b$	For $Ax = b$ \Longrightarrow let $y = L^T x$
vector <u>x ∈ V</u> Jcan be uniquely written as <u>x = u + w</u> J	transformation-matrix of j	For a vector norm $\ \cdot\ $ on \mathbb{R}^n , the subordinate matrix norm $\ \cdot\ $ on $\mathbb{R}^{m \times n}$ is	$\det(\mathbf{I}_n) = 1$	A=R ⁻¹ A'C ⁻¹	observations $ f_j(\mathbf{t}) = [f_j(\mathbf{t}_1), \dots, f_j(\mathbf{t}_m)]^T$ is transformed vector		Solve $Ly = b$ by forward substitution to find y Solve $L^Tx = y$ by backward substitution to find x
$ \underline{u \in U} \text{ Jand } \underline{u = \pi(x)} $ $ \underline{w \in W} \text{ Jand } \underline{w = x - \pi(x)} = (I_V - \pi)(x) = \pi^*(x) $	The transformation matrix of the identity map is called	$\ A\ = \max\{\ Ax\ : x \in \mathbb{R}^n, \ x\ = 1\}$	-Multi-linearity in columns/rows: if $A = [a_1 a_i a_n] = [a_1 \lambda x_i + \mu y_i a_n]$ [then		$A = [f_1(t)] \dots f_n(t) \in \mathbb{R}^{m \times n}$ is a matrix of columns	Extension via standard basis $I_m = [e_1 e_m]$ using	[l ₁₁ 0 0]
An orthogonal projection further satisfies U_W	change-in-basis matrix	$= \max \left\{ \frac{\ \mathbf{A}\mathbf{x}\ }{\ \mathbf{x}\ } : \mathbf{x} \in \mathbb{R}^n, \mathbf{x} \neq 0 \right\}$	$\det(A) = \lambda \det\left([a_1 \dots x_i \dots a_n] \right)$	You can mix-and-match the forward/backward modes	$\mathbf{z} = [s_1,, s_n]^T$ is vector of parameters	(tweaked) GS: Choose candidate vector: just work through	For <u>n=3</u> J=> L= l ₂₁ l ₂₂ 0
i.e. the image and kernel of π are orthogonal	The identity matrix I_m represents $id_{\mathbb{R}^m}$ w.r.t. the standard basis $E_m = \langle e_1,, e_m \rangle \Rightarrow \overline{i.e.} I_m = I_{EE}$	$= \max\{\ \mathbf{A}\mathbf{x}\ : \mathbf{x} \in \mathbb{R}^n, \ \mathbf{x}\ \le 1\}$	+ $\mu \det ([a_1 y_j a_n])$	operations in normal order for the other	Then we get equation Az = y => minimizing Az - y 2	e ₁ ,, e _m sequentially starting from e ₁ \Rightarrow denote	[l ₃₁ l ₃₂ l ₃₃]
subspaces infact they are eachother's orthogonal compliments,	If $B = \langle b_1,, b_m \rangle$ is a basis of \mathbb{R}^m , then	Vector norms are compatible with their subordinate	And the exact same linearity property for rows	e.g. you can do $[I_m \mid A \mid I_n] \rightsquigarrow [R^{-1} \mid A' \mid C]$ to get	is the solution to Linear Regression	the current candidate e_k Orthogonalize: Starting from $j = r$ going to $j = m$ with	$L^{T} = \begin{bmatrix} l_{11}^{2} & l_{11}l_{21} & l_{11}l_{31} \\ l_{21}^{2} & l_{22}l_{22} & l_{22}l_{22} \end{bmatrix}$
i.e. $U^{\perp} = W$, $W^{\perp} = U$ (because finite-dimensional	$I_{EB} = [b_1 \dots b_m]$ is the transformation matrix from B to E	matrix norms	Immediately leads to: $ A = A^T $, $ \lambda A = \lambda^n A $, and	$AC = R^{-1}A'$ => useful for LU factorization	So applying LSM to Az = y is <u>precisely</u> what Linear Regression is	each iteration => with current orthonormal vectors	LL' = l ₁₁ l ₂₁
vectorspaces)	$I_{BE} = (I_{EB})^{-1}$, so $\Rightarrow F_{CB} = I_{CE}F_{EE}I_{EB}$	For $p = 1, 2, \infty$ matrix norm $\ \cdot \ _p$ is subordinate to the vector norm $\ \cdot \ _p$ (and thus compatible with)	$ AB = BA = A B (for any B \in \mathbb{R}^{N \times N})$	Eigen-values/vectors Consider $A \in \mathbb{R}^{n \times n}$ non-zero $\mathbf{x} \in \mathbb{C}^n$ is an eigenvector	We can use normal equations for this =>	$\mathbf{u}_1, \dots, \mathbf{u}_j$	Forward/backward substitution
so we have $\pi(x) \cdot y = \pi(x) \cdot \pi(y) = x \cdot \pi(y)$ or equivalently, $\pi(x) \cdot (y - \pi(y)) = (x - \pi(x)) \cdot \pi(y) = 0$			Alternating: if any two columns of Alare equal (or any two rows of Alare equal), then A = 0 (its singular)	with eigenvalue $\lambda \in \mathbb{C}[for A]$ if $Ax = \lambda x$	$\ Az - y\ _2$ is minimized $\iff A^T Az = A^T y$	Compute	Forward substitution
"	Dot-product uniquely determines a vector w.r.t. to	Properties of matrices Consider A ∈ R ^{m×n}	Immediately from this (and multi-linearity) => if	If $Ax = \lambda x$ then $A(kx) = \lambda(kx)$ for $k \neq 0$, i.e. kx is also an eigenvector	Solution to normal equations unique iff AJis full-rank, i.e. it has linearly-independent columns	$\mathbf{w}_{j+1} = \mathbf{e}_k - \sum_{i=1}^{J} (\mathbf{e}_k \cdot \mathbf{u}_i) \mathbf{u}_i = \mathbf{e}_k - \sum_{i=1}^{J} (\mathbf{u}_i)_k \mathbf{u}_i$	[81,1 0]
By Cauchy–Schwarz inequality we have π(x) ≤ x The orthogonal projection onto the line containing	pasis If a _i = x·b _i ; x = ∑ _i a _i b _i , we call <u>a</u> jthe	If Ax = x for all x then A = I	columns (or rows) are linearly-dependent (some are linear combinations of others) then A = 0	A]has at most n distinct eigenvalues	The rends intenty independent columns	= e _k - U _j c _j	L= : ·.
vector \underline{u} is $\underline{proj}_{\underline{u}} = \hat{u}\hat{u}^T$ i.e. $\underline{proj}_{\underline{u}}(v) = \frac{\underline{u} \cdot v}{\underline{u} \cdot u} u; \hat{u} = \frac{\underline{u}}{\ \underline{u}\ }$		For square \underline{A} , the trace of \underline{A} is the sum if its diagonals , i.e. $tr(A)$	Stated in other terms \Rightarrow rk(A) < n \iff A = 0 <=>	The set of all eigenvectors associated with eigenvalue	Positive (semi-)definite matrices	Where $U_j = [\mathbf{u}_1 \dots \mathbf{u}_j] \text{and } \mathbf{c}_j = [(\mathbf{u}_1)_k, \dots, (\mathbf{u}_j)_k]^T $ NOTE: $\mathbf{e}_k \cdot \mathbf{u}_i = (\mathbf{u}_i)_k \text{i.e. } \underline{k} \text{th component of } \mathbf{u}_i $	$\left[\begin{array}{c c} \ell_{n,1} & \dots & \ell_{n,n} \end{array}\right]$ For $Lx = b$, just solve the first row
A special case of $\pi(x) \cdot (y - \pi(y)) = 0$ is $u \cdot (v - \text{proj}_{u} v) = 0$.	Rank-nullity theorem: dim(im(f)) + dim(ker(f)) = rk(A) + dim(ker(A)) = n		$\frac{ RREF(A) \neq I_n \iff A = 0}{(reduced row-echelon-form)}$	λ]is called eigenspace E _λ of <u>A</u>	Consider symmetric $\underline{A} \in \mathbb{R}^{n \times n}$ i.e. $\underline{A} = \underline{A}^T$	If $\mathbf{w}_{j+1} = 0$ then $\mathbf{e}_k \in \text{span}\{\mathbf{u}_1,, \mathbf{u}_j\} \Rightarrow \text{discard}$	$\ell_{1,1} x_1 = b_1 \implies x_1 = \frac{b_1}{\ell_{1,1}}$ and substitute down
since proj _u (u) = u	f is injective/monomorphism iff ker(f) = {0} iff A is	A Jis symmetric iff $\underline{A} = \underline{A}^T$, A Jis Hermitian, iff $\underline{A} = \underline{A}^{\dagger}$, i.e.	\iff $ A = 0$ (column-space) For more equivalence to the above, see invertible	$E_{\lambda} = \ker(A - \lambda I)$ The geometric multiplicity of λI is	AJis positive-definite iff x ^T Ax > 0 for all x ≠ 0 AJis positive-definite iff all its eigenvalues are strictly	w _{j+1} choose next candidate e _{k+1} try this step	Then selve the second row
If $U \subseteq \mathbb{R}^n$ is a k -dimensional subspace with	full-rank	its equal to its conjugate-transpose AA^{T} and $A^{T}A$ are symmetric (and	matrix theorem	$dim(E_{\lambda}) = dim(ker(A-\lambda I))$	positive	again	ℓ_0 , χ_1 + ℓ_0 o χ_0 = h_0 \Longrightarrow χ_0 = $\frac{b_2 - \ell_{2,1} x_1}{and}$ and
		positive semi-definite)	Interaction with EROs/ECOs: Swapping rows/columns flips the sign	The spectrum $Sp(A) = \{\lambda_1,, \lambda_n\}$ of \underline{A} jis the set of all	AJis positive-definite => all its diagonals are strictly positive	Normalize: w _{j+1} ≠0 so compute unit vector	substitute down
Orthogonal projection onto U jis $\pi_U = UU^T$	u_and v_are orthonormal iff u ⊥ v, u = 1 = v	For real matrices, Hermitian/symmetric are equivalent conditions	Scaling a row/column by λ≠0 will scale the	eigenvalues of A The characteristic polynomial of A is	\underline{A} is positive-definite => max(A_{ij} , A_{jj}) > $ A_{ij} $	Uj+1 = Ŵj+1	and so on until all x _i jare solved
Can be rewritten as $\pi_U(v) = \sum_{i=1}^{n} (\mathbf{u}_i \cdot \mathbf{v}) \mathbf{u}_i$	$A \in \mathbb{R}^{n \times n}$ is orthogonal iff $A^{-1} = A^T$	Every eigenvalue λ_i of Hermitian matrices is real	determinant by λ] (by multi-linearity)	$P(\lambda) = A - \lambda I = \sum_{i=0}^{n} a_i \lambda^i$	i.e. strictly larger coefficient on the diagonals	Repeat: keep repeating the above steps, now with new orthonormal vectors u ₁ ,, u _{j+1}	Backward substitution: for upper-triangular
i	Columns of $A = [a_1 a_n]$ are orthonormal basis (ONB) $C = (a_1,, a_n) \in \mathbb{R}^n$, so $A = I_{EC}$ is	geometric multiplicity of λ_j = geometric multiplicity	Remember to scale by $\underline{\lambda}^{-1}$ to maintain equality, i.e. $\det(A) = \overline{\lambda}^{-1}$ $\det([a_1 \lambda a_i a_n])$	$a_0 = A \cdot a_{n-1} = (-1)^{n-1} \operatorname{tr}(A) \cdot a_n = (-1)^n$	AJis positive-definite => all upper-left submatrices are also positive-definite	SVD Application: Principal Compo-	[u _{1,1} u _{1,n}]
· If (u ₁ ,,u _k) is not orthonormal , then "normalizing	change-in-basis matrix	of λ _i eigenvectors x ₁ , x ₂ associated to distinct	Invariant under addition of rows/columns	$\lambda \in C$ is eigenvalue of A iff λ is a root of $P(\lambda)$ The algebraic multiplicity of λ is the number of	Sylvester's criterion: Alis positive-definite iff all	nent Analysis (PCA)	U= ·. : 0
factor" $(U^T U)^{-1}$ is added $\Rightarrow \pi_U = U(U^T U)^{-1}U^T$ For line subspaces $U = \text{span}\{u\}$, we have	Orthogonal transformations preserve lengths/angles/distances $\Rightarrow Ax _2 = x _2$, $AxAy = xy$	eigenvalues λ_1, λ_2 are orthogonal , i.e. $\mathbf{x}_1 \perp \mathbf{x}_2$	Link to invertable matrices $\Rightarrow A^{-1} = A ^{-1}$ which	times it is repeated as root of $P(\lambda)$	upper-left submatrices have strictly positive determinant	Assume $A_{uncentered} \in \mathbb{R}^{m \times n}$ represent \underline{m} samples of	$ \begin{bmatrix} 0 & u_{n,n} \\ \text{For } \underline{Ux = b} \end{bmatrix} $ just solve the last row
(U ^T U) ⁻¹ = (u ^T u) ⁻¹ = 1/(u · u) = 1/ u	Therefore can be seen as a succession of reflections		means A is invertible $\iff A \neq 0$, i.e. singular	-1]≤geometric multiplicity of λ		n-dimensional data (with m≥n) Data centering: subtract mean of each column from	$u_{n,n}x_n = b_n \implies x_n = \frac{b_n}{u_{n,n}}$ and substitute up
Gram-Schmidt (GS) to gen. ONB from	and planar rotations	A jis triangular iff all entries above (lower-triangular)	For block-matrices:	≤ algebraic multiplicity of \(\lambda\)	AJis positive semi-definite iff x ^T Ax ≥ 0 for all xJ AJis positive semi-definite iff all its eigenvalues are	that column's elements	Then solve the second-to-last row
lin. ind. vectors	$\det(A) = 1$ or $\det(A) = -1$, and all eigenvalues of \underline{A} are s.t. $ \lambda = 1$	or below (upper-triangular) the main diagonal are zero Determinant $\Rightarrow A = \prod_i a_{ii}$, i.e. the product of	$\det \begin{pmatrix} A & B \\ 0 & D \end{pmatrix} = \det(A) \det(B) = \det \begin{pmatrix} A & 0 \\ C & D \end{pmatrix}$	Let $\lambda_1,, \lambda_n \in C$ be (potentially non-distinct) eigenvalues of \underline{A} J with $\mathbf{x}_1,, \mathbf{x}_n \in C^n$ their	non-negative	Let the resulting matrix be $\underline{A \in \mathbb{R}^{m \times n}}$, who's columns have mean zero	$u_{n-1} = 1 \times 1$
Gram-Schmidt is iterative projection ⇒ we use	s.t. $A \in \mathbb{R}^{m \times n}$ is semi-orthogonal iff $A^T A = I$ or $AA^T = I$	diagonal elements		eigenvectors	AJis positive semi-definite => all its diagonals are	PCA is done on centered data-matrices like At	$\Rightarrow x_{n-1} = \frac{b_{n-1} - u_{n-1,n-1} \times x_{n-1}}{u_{n-1,n}}$ and substitute up
current j dim subspace, to get next (j+1) dim subspace	If <u>n > m</u> then all <u>m</u> rows are orthonormal vectors	A] is diagonal iff $A_{ij} = 0$, $i * j \downarrow$ i.e. if all off-diagonal	$\det \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \det(A) \det(D - CA^{-1} B)$ if Alor D are	$tr(A) = \sum_{i} \lambda_{i}$ and $det(A) = \prod_{i} \lambda_{i}$	non-negative AJis positive semi-definite => max(A _{jj} , A _{jj}) ≥ A _{jj} ,	SVD exists i.e. $A = USV^T$ and $r = rk(A)$	and so on until all x_i pare solved
Assume orthonormal basis (ONB) $(\mathbf{q}_1, \dots, \mathbf{q}_j) \in \mathbb{R}^m$	ii m > n then att n cotumns are orthonormat vectors	entries are zero	= det(D) det(A - BD ⁻¹ C)	A Jis diagonalisable iff there exist a basis of \mathbb{R}^n consisting of $\mathbf{x}_1, \dots, \mathbf{x}_n$	i.e. no coefficient larger than on the diagonals	Let $A = [r_1;; r_m]$ be rows $r_1,, r_m \in \mathbb{R}^n$ \Rightarrow each row <u>corresponds to</u> a sample	" -
for j -dim subspace $U_j \subset \mathbb{R}^m$	orthogonal subspaces	Written as $\operatorname{diag}_{m \times n}(\mathbf{a}) = \operatorname{diag}_{m \times n}(a_1, \dots, a_p), p = \min(m, n)$ where	invertible, <u>respectively</u>	consisting of $x_1,, x_n$ A] is diagonalisable iff $r_i = g_i$, where	AJis positive semi-definite => all upper-left	Let $A = [c_1 c_n]$ be columns $c_1,, c_n \in \mathbb{R}^m \Rightarrow$ each	
Let $Q_j = [\mathbf{q}_1 \mid \mid \mathbf{q}_j] \in \mathbb{R}^{m \times j}$ be the matrix	Orthogonal compliment of $U \subset \mathbb{R}^n$ is the subspace	$\frac{\mathbf{a} = [a_1,, a_p]^T \in \mathbb{R}^p \text{diagonal entries of } \mathbf{A} }{\mathbf{a}}$	Sylvester's determinant theorem: $det(I_m + AB) = det(I_n + BA)$	r_i = geometric multiplicity of λ_i and g_i = geometric multiplicity of λ_i	submatrices are <u>also</u> positive semi-definite Alis positive semi-definite => it has a Cholesky	column corresponds to one dimension of the data	Schmidt (GS)
$P_j = Q_j Q_j^T$ is orthogonal projection onto U_j	$U^{\perp} = \{x \in \mathbb{R}^{n} \mid \forall y \in \mathbb{R}^{n} : x \perp y\}$ $= \{x \in \mathbb{R}^{n} \mid \forall y \in \mathbb{R}^{n} : x \le x + y \}$		Matrix determinant lemma:	$g_i = \text{geometric multiplicity of } \lambda_i$ Eigenvalues of A^R are $\lambda_1, \dots, \lambda_n$	Decomposition	Let $X_1,, X_n$ be random variables where each X_j corresponds to column c_j	Consider full-rank $A = [a_1 a_n] \in \mathbb{R}^{m \times n} (\underline{m \ge n})$, i.e. $a_1,, a_n \in \mathbb{R}^m$ are linearly independent
$P_{\perp j} = I_m - Q_j Q_j^T$ is orthogonal projection onto	$\frac{ \mathbf{x} = \mathbf{u} \oplus \mathbf{u}^{\perp} \mathbf{a} \times \mathbf{u} }{ \mathbf{x} = \mathbf{u} \oplus \mathbf{u}^{\perp} \mathbf{a} \times \mathbf{u} }$	For $\underline{x \in \mathbb{R}^n}$ $Ax = \operatorname{diag}_{m \times n}(a_1, \dots, a_p)[x_1 \dots x_n]^T$ $= [a_1 x_1 \dots a_p x_p \ 0 \dots 0]^T \in \mathbb{R}^m$	$\det(\mathbf{A} + \mathbf{u}\mathbf{v}^T) = (1 + \mathbf{v}^T \mathbf{A}^{-1}\mathbf{u}) \det(\mathbf{A})$	Let $P = [\mathbf{x}_1 \dots \mathbf{x}_n]$, then	For any $M \in \mathbb{R}^{m \times n} \setminus MM^T$ and M^TM are symmetric and	i.e. each X _i corresponds to i th component of data	Apply $GS q_1,, q_n \leftarrow GS(a_1,, a_n)$ to build ONB
$\left(U_{j}\right)^{\perp}$ (orthogonal compliment)	$U \perp V \iff U^{\perp} = V$ and vice-versa	p = m those tail-zeros don't exist)	$ \frac{\det(\mathbf{A} + \mathbf{U}\mathbf{V}^T) = \det(\mathbf{I}_m + \mathbf{V}^T\mathbf{A}^{-1}\mathbf{U})}{\det(\mathbf{A})} $	$AP = \overline{[\lambda_1 \times_1] \dots [\lambda_n \times_n]} = [x_1 \mid \dots \mid x_n] \operatorname{diag}(\lambda_1, \dots, \lambda_n) = PD$	positive semi-definite	i.e. random vector $X = [X_1,, X_n]^T$ models the data	$(\mathbf{q}_1, \dots, \mathbf{q}_n) \in \mathbb{R}^m \text{for C(A)} $
	$Y \subseteq X \implies X^{\perp} \subseteq Y^{\perp}$ and $X \cap X^{\perp} = \{0\}$	$diag_{m \times n}(a) * diag_{m \times n}(b) = diag_{m \times n}(a * b)$	$det(\mathbf{A} + \mathbf{U}\mathbf{W}\mathbf{V}^T) = det(\mathbf{W}^{-1} + \mathbf{V}^T\mathbf{A}^{-1}\mathbf{U}) det(\mathbf{W}) det(\mathbf{A})$	=> if P ⁻¹ exists then	Singular Value Decomposition (SVD) &	r ₁ ,,r _m	For exams: more efficient to compute as
Uniquely decompose next $U_j \not\supseteq a_{j+1} = V_{j+1} + u_{j+1}$	Any $\underline{x} \in \mathbb{R}^{n}$ can be uniquely decomposed into $\underline{x} = \underline{x}_{i} + \underline{x}_{k}$, where $\underline{x}_{i} \in U$ and $\underline{x}_{k} \in U^{\perp}$	Consider diag _{$n \times k$} ($c_1,, c_q$), $q = \min(n, k)$, then	Tricks for computing determinant	A=PDP ⁻¹ , i.e. AJis diagonalisable	Singular Values	Co-variance matrix of \underline{X} is $Cov(A) = \frac{1}{m-1} A^T A$	$\frac{\mathbf{u}_{j+1} = \mathbf{a}_{j+1} - Q_j \mathbf{c}_j}{ \mathbf{u}_{j+1} + \mathbf{u}_{j+1} + \mathbf{u}_{j+1} + \mathbf{u}_{j+1} + \mathbf{u}_{j+1} }$
$v_{j+1} = P_j(a_{j+1}) \in U_j \Longrightarrow \text{discard it!!}$	For matrix $A \in \mathbb{R}^{m \times n}$ and for row-space R(A),	$\operatorname{diag}_{m \times n}(a_1, \dots, a_p)\operatorname{diag}_{n \times k}(c_1, \dots, c_q)$	If block-triangular matrix then apply	$P = I_{EB}$ is change-in-basis matrix for basis $B = \langle x_1,, x_n \rangle$ of eigenvectors	Singular Value Decomposition of $A \in \mathbb{R}^{m \times n}$ is any decomposition of the form $A = USV^T$, where	$(A^T A)_{ij} = (A^T A)_{ji} = Cov(X_i, X_j)$	1) Gather $Q_j = [\mathbf{q}_1 \dots \mathbf{q}_j] \in \mathbb{R}^{m \times j}$ all-at-once
$ \frac{\mathbf{u}_{j+1} = P_{\perp j} (\mathbf{a}_{j+1}) \in (U_j)}{ } \Rightarrow \text{we're after this!!}$	column-space C(A) and null space ker(A)	= diag $_{m \times k}(a_1 c_1,, a_r c_r, 0,, 0)$ = diag(s) Where $r = \min(p, q) = \min(m, n, k)$, and	$\det \begin{pmatrix} A & B \\ 0 & D \end{pmatrix} = \det(A) \det(B)$	If A = F _{EE} is transformation-matrix of linear map f	Orthogonal $U = [\mathbf{u}_1 \mid \dots \mid \mathbf{u}_m] \in \mathbb{R}^{m \times m}$ and		2) Compute $\mathbf{c}_j = [\mathbf{q}_1 \cdot \mathbf{a}_{j+1}, \dots, \mathbf{q}_j \cdot \mathbf{a}_{j+1}]^T \in \mathbb{R}^j$
Let $\mathbf{q}_{j+1} = \hat{\mathbf{u}}_{j+1}$ => we have \mathbf{next} ONB $\langle \mathbf{q}_1,, \mathbf{q}_{j+1} \rangle$	$R(A)^{\perp} = ker(A)$ and $C(A)^{\perp} = ker(A^{T})$	where $r = \min(p, q) = \min(m, n, R)$ and $s \in \mathbb{R}^{S}$, $s = \min(m, R)$		then F _{EE} = I _{EB} F _{BB} I _{BE}	$V = [\mathbf{v}_1 \mid \dots \mid \mathbf{v}_n] \in \mathbb{R}^{n \times n}$	$\frac{\mathbf{v}_1,, \mathbf{v}_r}{Let \ \mathbf{w} \in \mathbb{R}^n} \text{ [columns of } V \] \text{ are } \mathbf{principal axes of } A]$ $Let \ \mathbf{w} \in \mathbb{R}^n \text{ [be some unit-vector => let } \alpha_j = \mathbf{r}_j \cdot \mathbf{w} \text{ [be the } \mathbf{w} \in \mathbb{R}^n \text{ [be some unit-vector => let } \alpha_j = \mathbf{r}_j \cdot \mathbf{w} \text{ [be the } \mathbf{w} \in \mathbb{R}^n \text{ [be some unit-vector => let } \alpha_j = \mathbf{r}_j \cdot \mathbf{w} \text{ [be the } \mathbf{w} \in \mathbb{R}^n \text{ [be some unit-vector => let } \alpha_j = \mathbf{r}_j \cdot \mathbf{w} \text{ [be the } \mathbf{w} \in \mathbb{R}^n \text{ [be some unit-vector => let } \alpha_j = \mathbf{r}_j \cdot \mathbf{w} \text{ [be the } \mathbf{w} \in \mathbb{R}^n \text{ [be some unit-vector => let } \alpha_j = \mathbf{r}_j \cdot \mathbf{w} \text{ [be the } \mathbf{w} \in \mathbb{R}^n \text{ [be some unit-vector => let } \alpha_j = \mathbf{r}_j \cdot \mathbf{w} \text{ [be the } \mathbf{w} \in \mathbb{R}^n \text{ [be some unit-vector => let } \alpha_j = \mathbf{r}_j \cdot \mathbf{w} \text{ [be the } \mathbf{w} \in \mathbb{R}^n \text{ [be some unit-vector => let } \alpha_j = \mathbf{r}_j \cdot \mathbf{w} \text{ [be the } \mathbf{w} \in \mathbb{R}^n \text{ [be some unit-vector => let } \alpha_j = \mathbf{r}_j \cdot \mathbf{w} \text{ [be the } \mathbf{w} \in \mathbb{R}^n \text{ [be some unit-vector => let } \alpha_j = \mathbf{r}_j \cdot \mathbf{w} \text{ [be the } \mathbf{w} \in \mathbb{R}^n \text{ [be some unit-vector => let } \alpha_j = \mathbf{r}_j \cdot \mathbf{w} \text{ [be the } \mathbf{w} \in \mathbb{R}^n \text{ [be some unit-vector => let } \alpha_j = \mathbf{r}_j \cdot \mathbf{w} \text{ [be the } \mathbf{w} \in \mathbb{R}^n \text{ [be some unit-vector => let } \alpha_j = \mathbf{r}_j \cdot \mathbf{w} \text{ [be the } \mathbf{w} \in \mathbb{R}^n \text{ [be some unit-vector => let } \alpha_j = \mathbf{r}_j \cdot \mathbf{w} \text{ [be the } \mathbf{w} \in \mathbb{R}^n \text{ [be some unit-vector => let } \alpha_j = \mathbf{r}_j \cdot \mathbf{w} \text{ [be the } \mathbf{w} \in \mathbb{R}^n \text{ [be some unit-vector => let } \alpha_j = \mathbf{r}_j \cdot \mathbf{w} \text{ [be some unit-vector => let } \alpha_j = \mathbf{r}_j \cdot \mathbf{w} \text{ [be some unit-vector => let } \alpha_j = \mathbf{r}_j \cdot \mathbf{w} \text{ [be some unit-vector => let } \alpha_j = \mathbf{r}_j \cdot \mathbf{w} \text{ [be some unit-vector => let } \alpha_j = \mathbf{r}_j \cdot \mathbf{w} \text{ [be some unit-vector => let } \alpha_j = \mathbf{r}_j \cdot \mathbf{w} \text{ [be some unit-vector => let } \alpha_j = \mathbf{r}_j \cdot \mathbf{w} \text{ [be some unit-vector => let } \alpha_j = \mathbf{r}_j \cdot \mathbf{w} \text{ [be some unit-vector => let } \alpha_j = \mathbf{r}_j \cdot \mathbf{w} \text{ [be some unit-vector => let } \alpha_j = \mathbf{r}_j \cdot \mathbf{w} \text{ [be some unit-vector => let } \alpha_j = \mathbf{r}_j \cdot \mathbf{w} \text{ [be some unit-vector => let } \alpha_j = \mathbf{r}_j \cdot \mathbf{w}$	all-at-once 3) Compute $Q_j c_j \in \mathbb{R}^m$, and subtract from a_{j+1}
for U _{j+1} => start next iteration	Any $\underline{\mathbf{b}} \in \mathbb{R}^{m}$ can be uniquely decomposed into $\underline{\mathbf{b}} = \mathbf{b}_{i} \cdot \mathbf{b}_{k}$, where $\underline{\mathbf{b}}_{i} \in C(A)$ and $\underline{\mathbf{b}}_{k} \in ker(A^{T})$	Inverse of square-diagonals =>	If <u>close</u> to triangular matrix apply EROs/ECOs to get it there, then its just product of diagonals	Spectral theorem: if A is Hermitian then p^{-1} exists: $ f \mathbf{x}_i, \mathbf{x}_i $ associated to different eigenvalues then	$S = \text{diag}_{m \times n}(\sigma_1, \dots, \sigma_p)$ where $p = \min(m, n)$ and	$projection/coordinate$ of sample r_j onto \underline{w}_j	all-at-once
$ \mathbf{u}_{j+1} = (\mathbf{I}_m - Q_j Q_j^T) \mathbf{a}_{j+1} = \mathbf{a}_{j+1} - Q_j \mathbf{c}_j$ where	$\mathbf{b} = \mathbf{b}_i + \mathbf{b}_k$, where $\mathbf{b}_i \in C(A)$ and $\mathbf{b}_k \in ker(A')$	$\frac{\operatorname{diag}(a_1,, a_n)^{-1} = \operatorname{diag}(a_1^{-1},, a_n^{-1})}{\operatorname{cannot} \operatorname{be} \operatorname{zero} \underline{(\operatorname{division} \operatorname{by} \operatorname{zero} \operatorname{undefined})}}$ i.e. diagonals	If Cholesky/LU/QR is possible and cheap then do it,	$\begin{bmatrix} \mathbf{x}_i \\ \mathbf{x}_i \end{bmatrix} \mathbf{x}_j$	<u>σ</u> 1 ≥···≥ σ _p ≥ 0	. ,	Can now rewrite $\mathbf{a}_j = \sum_{i=1}^{j} (\mathbf{q}_i \cdot \mathbf{a}_j) \mathbf{q}_i = \mathbf{Q}_j \mathbf{c}_j$
$\mathbf{c}_{i} = [\mathbf{q}_{1} \cdot \mathbf{a}_{j+1}, \dots, \mathbf{q}_{j} \cdot \mathbf{a}_{j+1}]^{T}$	10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	cannot be zero (division by zero undefined)	then apply [AB] = [A [B]]	—			
1 1 7 1 1						l .	

Second column	noose $\mathbf{Q} = \mathbf{Q}_n = [\mathbf{q}_1 \dots \mathbf{q}_n] \in \mathbb{R}^{m \times n}$ notice its	land and and and	\\ \lambda_{h} + \cdots + \bar{n}_1 \in \bar{n}_h \bar{n}_1 \bar{n}_2 \bar{n}_1 \bar{n}_1 \bar{n}_2 \bar{n}_1 \bar{n}_2 \bar{n}_1 \bar{n}_2 \bar{n}_1 \bar{n}_2 \bar{n}_1 \bar{n}_2 \bar{n}_2 \qua	$ \tilde{f} $ is backwards stable if $\forall x \in X \mid \exists \tilde{x} \in X \mid s.t. \tilde{f}(x) = f(\tilde{x})$	For FP matrices , let $ M _{jj} = M_{jj} $, i.e. matrix $ M $ of	II I. II	II	Nonlinear Systems of Equations
State Stat			$\frac{\partial R}{\partial \mathbf{x}^{n} R \cdots \partial \mathbf{x}^{n} 1} = \partial_{i_{R}}^{i_{R}} \cdots \partial_{i_{1}}^{i_{1}} f = f_{i_{1} \cdots i_{R}}^{i_{1} \cdots i_{R}}$		absolute values of MI		Rayleigh quotient for <u>Hermitian A=A </u> is	Recall that $\nabla f(\mathbf{x})$ is direction of max. rate-of-change
Manual M			'k '1	x = O(Emach)	$ fl(\lambda A) = \lambda A + E; E _{ij} \le \lambda A _{ij} \in_{mach}$		$R_A(\mathbf{x}) = \frac{\mathbf{x} \cdot \mathbf{x}}{\mathbf{x}^{\dagger} \mathbf{x}}$	
	ot 0 - [r] - [r]	flipping component in I I	its an N-th order partial derivative where $N = \sum_{k} n_k$		$fl(A+B)=(A+B)+E; E _{ij} \le A+B _{ij} \epsilon_{mach}$			Idea; Search for stationary point by gradient descent: $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \alpha \nabla f(\mathbf{x}^{(k)})$ for step length α
					$fl(AB) = AB + E; E _{ij} \le n\epsilon_{mach}(A B)_{ij} + O(\epsilon_{mach}^2)$		R _A (x) is closest to being like eigenvalue of x ₁ , i.e.	ioi steptengui u
State Stat			$\nabla^T f = (\nabla f)^T$ is <u>transpose</u> of ∇f , i.e. $\nabla^T f$ is <u>row vector</u>			=> only backwards stable if ρ = O(1)	" α =	If A Jis positive-definite, solving Ax = b and
Company Comp	1 0 2/0 11	to diffical Common Colombiat	$f(\mathbf{x}+\delta\mathbf{u})-f(\mathbf{x})$			Full piveting is DAO - IIII finds largest entry in		$\min_{\mathbf{X}} f(\mathbf{x}) = \frac{1}{2} \mathbf{x}^T A \mathbf{x} - \mathbf{x}^T \mathbf{b}$ are equivalent
Manual part		ocheck Classical CM first, as this is just an alternative	$D_{\mathbf{u}}f(\mathbf{x}) = \lim_{\delta \to 0} \frac{f(\mathbf{x}) \cdot \delta f(\mathbf{x})}{\delta}$ is	$\frac{ \kappa(x) }{\ f(x)\ }$ then relative error $\frac{\ f(x)-f(x)\ }{\ f(x)\ } = O(\kappa(x)\epsilon_{\text{mach}})$	$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k + O((x-a)^{n+1})$ as $x \to a_1$		eigenvector	Get iterative methods $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \alpha^{(k)} \mathbf{p}^{(k)}$ for step
Company Comp				Accuracy, stability, backwards stability are		Makes it pivot with <u>row/column swaps</u> before <u>normal</u>	Power iteration: define sequence $b(k+1) = Ab(k)$	length $a^{(k)}$ and directions $p^{(k)}$
Company Comp	onsider full-rank $A = [a_1 a_n] \in \mathbb{R}^{m \times n} (m \ge n)$,	et $P_{\perp q_i} = I_m - q_j q_i^T$ be projector onto <u>hyperplane</u>		norm-independent for fin-dim X, Y		elimination	AU. /	Conjugate gradient (CG) method: if $A \in \mathbb{R}^{n \times n}$
State Stat	e. a ₁ ,, a _n ∈ R ^m are linearly independent			Big-O meaning for numerical analysis	$x \to 0$ $= 0$ $(P) k \Rightarrow (n+1)$		with <u>initial</u> b ⁽⁰⁾ s.t. b ⁽⁰⁾ = 1	symmetric then $\langle \mathbf{u}, \mathbf{v} \rangle_A = \mathbf{u}^T A \mathbf{v}$ is an inner-product
Section Sect	pply OR decomposition to obtain:				$[e.g.(1+\epsilon)^p = \sum_{k=0}^{n} {\binom{k}{k}} e^{-k+1} {\binom{k+1}{k}} as \epsilon \to 0]$	· · · · <u></u>	Assume dominant λ ₁ ; x ₁ exist for <u>A</u> J and that	GC chooses p(k) that are conjugate w.r.t. A) i.e.
Comparison		Notice: $P_{\perp i} = I_m - Q_i Q_i^T = \prod_i (I_m - q_i q_i^T) = \prod_i P_{\perp q_i}$			$=\sum_{k=0}^{n} \frac{1}{k!(p-k)!} \epsilon^{k} + O(\epsilon^{n+1})$	Metric spaces & timits Metrics obey these axioms	proj _{x1} (b ⁽⁰⁾)≠0	
Second content of the content of t	- 1 1111111111	i=1 i=1	· -	fi.e. ∃C. δ > 0 Is.t. ∀ε L we have			Under above assumptions,	
		Re-state: $\mathbf{u}_{j+1} = (\mathbf{I}_m - Q_j Q_j^T) \mathbf{a}_{j+1} \Longrightarrow$	f has local minimum at x_{loc} if there's radius $r>0$ s.t.	$0 < \ \varepsilon\ < \delta \implies \ f(\varepsilon)\ \le C \ g(\varepsilon)\ $	Elementary Matrices	$d(x,z) \le d(x,y) + d(y,z)$	$\mu_b = R_A \left(\mathbf{b}^{(k)} \right) = \frac{\mathbf{b}^{(k)} A \mathbf{b}^{(k)}}{A}$ converges to dominant	$\mathbf{r}^{(k)} = -\nabla f(\mathbf{x}^{(k)}) = \mathbf{b} - A\mathbf{x}^{(k)}$ are orthogonal
	$q_1, \dots, q_m \in \mathbb{R}^m$ where (q_1, \dots, q_m) lis ONB for \mathbb{R}^m	11 (π ^j p)2 (pp)2	$\forall \mathbf{x} \in B[r; \mathbf{x}_{loc}]$ we have $f(\mathbf{x}_{loc}) \le f(\mathbf{x})$			For metric spaces mix-and-match these infinite/finite	b(k) + b(k)	$ k=0 \Rightarrow \mathbf{p}^{(0)} = -\nabla f(\mathbf{x}^{(0)}) = \mathbf{r}^{(0)}$
	Notice $(\mathbf{q}_{n+1}, \dots, \mathbf{q}_m)$ lis ONB for $C(A)^{\perp} = \ker(A^T)$			() : um sup _{€→0} (€) / < ∞	Row/column switching: permutation matrix Pii	limit definitions:	/h. Viconyerres to some dominant v. (associated with	$ \underline{k \ge 1} \Rightarrow \mathbf{p}(k) = \mathbf{r}(k) - \sum_{i < k} \frac{(\mathbf{p}(i), \mathbf{r}(k))_A}{(i)} \mathbf{p}(i)$
Section Sect	m./m n\l	Tq ₁ ,, Tq _j are relatively applied to		Smallness partial order O(a .) < O(a .) Idefined by	obtained by switching e; and e; in In (same for		A. I. Ah(R)	(p (*), p (*)) _A
Application		then along transfer along q1 then along			rows/columns)	$\lim_{X\to p} f(x) = L \iff \begin{cases} \forall \varepsilon > 0, \exists \delta > 0, \forall x \in X : \\ 0 \neq d_{x}(x, x) \neq \delta \end{cases} \Rightarrow d_{x}(f(x), t) \neq 0$		$\alpha^{(k)} = \operatorname{argmin}_{\alpha} f(\mathbf{x}^{(k)} + \alpha^{(k)} \mathbf{p}^{(k)}) = \frac{\mathbf{p}^{(k)} \cdot \mathbf{r}^{(k)}}{\langle \mathbf{p}^{(k)}, \mathbf{p}^{(k)} \rangle_{A}}$
Section Company Comp		12		i.e. as $\epsilon \to 0$ $g_1(\epsilon)$ goes to zero faster than $g_2(\epsilon)$		Cauchy sequences, i.e.	If $\operatorname{proj}_{X_1}(b^{(j)})=0$ then $(b_k);(\mu_k)$ converge to second	$(p^{(k)},p^{(k)})_A$
Company Comp		Let $\mathbf{u}_k^{p_i} = \left(\prod_{i=1}^{p_i} \mathbf{p}_{\perp} \mathbf{q}_i\right) \mathbf{a}_k$ i.e. $\mathbf{a}_k \underline{\mathbf{without}}$ its			Swap columns P. = P. = P. P. i.e. applying twice will undo it	$\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall m, n \ge N : d(a_m, a_n) < \varepsilon$, converge in	If no dominant \(\lambda_2; \bar{x}_2\) instead	Without rounding errors, CG converges in ≤n
Section Company Comp			$H(f) = \nabla^2 f = J(\nabla f)^T$ is Hessian $\Rightarrow H(f) :: = \frac{\partial^2 f}{\partial x^2}$	le g O(s ³) <o(s<sup>2)<o(s)<o(1)< td=""><td></td><td></td><td>maximum λ Lthen (b_k) will converge to <u>linear</u></td><td> iterations Similar to to Gram-Schmidt (but different</td></o(s)<o(1)<></o(s<sup>			maximum λ Lthen (b _k) will converge to <u>linear</u>	iterations Similar to to Gram-Schmidt (but different
	Q jis orthogonal , i.e. $Q^{-1} = Q^{T}$, so its a basis	Notice: $\mathbf{u}_i = \mathbf{u}_i^{(j-1)}$, thus $\mathbf{q}_i = \hat{\mathbf{u}}_i = \mathbf{u}_i^{(j-1)}/r_{ii}$ where			Row/column scaling: D _i (\(\lambda\) obtained by scaling e _i by	You can manipulate matrix limits much like in real	combination of their corresponding eigenvectors	
March 1996					Applying P _{ii} from left will scale rows, from right will	anarysis, e.g. ann n→∞(A B+C)=(umn→∞ A JB+C		$ \underbrace{(\mathbf{p}^{(0)},,\mathbf{p}^{(n-1)})}_{\mathbf{R}^n} \text{ and } \underbrace{(\mathbf{r}^{(0)},,\mathbf{r}^{(n-1)})}_{\mathbf{R}^n} \text{ are } \underline{\text{bases}} \text{ for } $
Section Sect		jj = <mark>u</mark> j			scale columns	Turn metric limit $\lim_{n\to\infty} x_n = L$ into real limit		
	projections onto c(A), c(A) = Ker(A') prespectively	terative step: (i) /_ \ (i-1) \ (i-1) / \ (i-1)\ \			$D_i(\lambda) = \text{diag}(1,, \lambda,, 1)$ so all diagonal properties			QR Algorithm to find Schur decomposi-
Section Companies Compan		$\mathbf{u}_{k}^{u'} = \left(P_{\perp} \mathbf{q}_{j} \right) \mathbf{u}_{k}^{u} = \mathbf{u}_{k}^{u} - \left(q_{j} \cdot \mathbf{u}_{k}^{u}}}}}}}}}$		Using functions $f_1,, f_n$ let $\Phi(f_1,, f_n)$ be formula	apply, e.g. $D_i(\lambda)^{-1} = D_i(\lambda^{-1})$			<u></u>
Section (1999 1999		.e. each iteration j of MGS computes P ₁ q _j (and		defining some function	Row addition: $L_{ij}(\lambda) = \mathbf{I}_n + \lambda \mathbf{e}_i \mathbf{e}_i^T$ performs	upper/lower bounds	$\alpha_h = \frac{(\lambda_1)^h c_1}{(\lambda_1)^h c_1}$ where $c_1 = x^{\frac{1}{h}} h(0)$ and assuming	Any $\underline{A \in \mathbb{C}^{m \times m}}$ has Schur decomposition $\underline{A = QUQ^{\dagger}}$ Q is unitary, i.e. $Q^{\dagger} = Q^{-1}$ and upper-triangular U
Section Company Comp					$R_i \leftarrow R_i + \lambda R_i$ when applying from left	$\lim_{n\to\infty} r^n = 0 \iff r < 1$ and		Diagonal of U contains eigenvalues of A
	At an	At start of iteration <i>j</i> ∈ 1n we have ONB	shortened to <u>iust "problem"</u> (with $x \in X$ implied)		$\lambda e: e^{T}$ is zeros except for $\lambda lin(i, i)$ is the entry	$\lim_{n\to\infty} \sum_{i=0}^{n} ar^i = \frac{a}{1-r} \iff r < 1$	b ^(k) ;x ₁ are <u>normalized</u>	
		$\mathbf{q}_{i1}, \dots, \mathbf{q}_{j-1} \in \mathbb{R}^m \mid \text{and residual } \mathbf{u}_i^{(j-1)}, \dots, \mathbf{u}_n^{(j-1)} \in \mathbb{R}^m \mid$						AL 31 1 D 1 OD 3 3
The control of the					' 		\Rightarrow power-iteration on $(A - \sigma I)$ has $\frac{\lambda_2 - \sigma}{\lambda_2 - \sigma}$	
Martin continuous procession of the continu						Let $A, R, G \in \mathbb{R}^{n \times n}$ where G^{-1} exists => splitting		$A^{(k-1)} = O^{(k-1)}R^{(k-1)}$
	line $L = \mathbb{R} \mathbf{n} + \mathbf{c}$ is characterized by direction $\mathbf{n} \in \mathbb{R}^n$	For each $k \in (j+1)n$ compute $r_{jk} = q_j \cdot u_k^{(j-1)} \Longrightarrow$	Ill-conditioned if some small δx lead to large δf , i.e.					3: $A^{(k)} = R^{(k-1)}Q^{(k-1)}$
March (1) Marc	i≠0] and offset from origin <u>c∈L</u> is customary that:		if K is large (e.g. 10 ⁶ 10 ¹⁶)		transformation matrices R, C respectively			4: end for
					LU factorization => finds A = LU where L, U are			For $A \in \mathbb{R}^{m \times m}$ each iteration $A^{(k)} = Q^{(k)}R^{(k)}$ produces
Fig.			<u>Absolute</u> condition number $cond(x) = \hat{\kappa}(x) = \hat{\kappa}$ of f at	1 10 [11 1 10 [11]	lower/upper triangular respectively			
	c≠\n => L not vector-subspace of R ⁿ e 0 ∉ L i e L doesn't go through the origin	NOTE: for $j=1$ => $\mathbf{q}_1, \dots, \mathbf{q}_{j-1} = \emptyset$, i.e. none yet	<u>χ</u> ; _Δ ₁ ; δf		Naive Gaussian Elimination performs	Limit of $\langle \mathbf{x}_k \rangle$ is fixed point of $f = $ unique fixed point		
	. I is affine-subspace of R ⁿ			$\epsilon \mapsto (\epsilon + 1) = \{\epsilon + f(\epsilon) : f \in O(\epsilon)\}$ not necessarily true	$[I_m \mid A \mid I_n] \rightsquigarrow [R^{-1} \mid U \mid I_n]$ to get $AI_n = R^{-1} U$ using			
		$ \mathbf{q}_1, \dots, \mathbf{q}_n\rangle \in \mathbb{R}^m$	=> for $\underline{\text{most problems}}$ simplified to $\hat{\kappa} = \sup_{\delta x} \frac{\ \delta f\ }{\ \delta x\ }$	Let $f_1 = O(g_1)$, $f_2 = O(g_2)$ and let $k \neq 0$ be a constant				$= Q(k)^{T} A(k) Q(k)$
Appropriate	.e. <u>0 ∈ L</u> J, i.e. <u>L</u> J goes through the origin	[r ₁₁ r _{1n}]					$\ \mathbf{b}^{(k)} - \alpha_k \mathbf{x}_{1,\sigma}\ = O\left(\left\ \frac{\lambda_{1,\sigma} - \sigma}{\lambda_{n,\sigma} - \sigma}\right\ ^{n}\right)\right) \text{ where } \mathbf{x}_{1,\sigma}\ $	$A^{(k+1)}$ is similar to $A^{(k)}$
Part		0 r		$f_1 + f_2 = O(\max(g_1 , g_2))$		We want to find ∥M∥ < 1 and easy to compute M; c		Setting $\underline{A}^{(0)} = \underline{A}$ we get $\underline{A}^{(k)} = (\tilde{Q}^{(k)})^T A \tilde{Q}^{(k)}$ where
The conting of the	$P = (Rn)^{\perp} + c = \{x + c \mid x \in R^n, x \mid n\}$		<u>Relative</u> condition number $\kappa(x) = \kappa$ of f at x_j is			Stopping criterion usually the <u>relative residual</u>		
Case	={ X ∈ R'' X · n = C · n }	Where $A \in \mathbb{R}^{m \times n}$ is full-rank, $Q \in \mathbb{R}^{m \times n}$ is	$\kappa = \lim_{\delta \to 0} \sup_{\ \delta x\ \le \delta} \left(\frac{\ \delta f\ }{\ f(y)\ } / \frac{\ \delta x\ }{\ y\ } \right)$					Under certain conditions QR algorithm converges to Schur decomposition
Compact Comp			=> for most problems simplified to	Consider base/radix β≥2 (typically 2) and precision				
Secondaries	igin c∈P		$\kappa = \sup_{\delta \times} \left(\frac{\ \delta f\ }{\ f(x)\ } / \frac{\ \delta x\ }{\ f(x)\ } \right)$	Floating-point numbers are discrete subset	5: $u_{j,k:m} = u_{j,k:m} - \ell_{j,k}u_{k,k:m}$	Assume A [s diagonal is non-zero (w.l.o.g.		We can apply shift $\mu^{(k)}$ at <u>iteration</u> k
				$\mathbf{F} = \{ (-1)^{S} (m/\beta^{t}) \beta^{e} \mid 1 \le m \le \beta^{t}, s \in \mathbb{B}, m, e \in \mathbb{Z} \}$		permute/change basis if isn't) then A = D+L+U; where	2: $\hat{x}^{(k)} = (A - \sigma I)^{-1} x^{(k-1)}$	$= A^{(k)} - \mu^{(k)} = Q^{(k)} R^{(k)}; A^{(k+1)} = R^{(k)} Q^{(k)} + \mu^{(k)} $
	is customary that:	Modified Gram-Schmidt	If <u>Jacobian</u> $J_f(x)$ exists then $\kappa = \frac{\ x\ _f(x)\ }{\ f(x)\ _f \ x\ }$	sjis sign-bit, m/β ^t is mantissa, ejis exponent (8)-bit			3: $x^{(k)} = \hat{x}^{(k)} / \max(\hat{x}^{(k)})$	If shifts are good eigenvalue estimates then last column of $\tilde{Q}^{(R)}$ converges quickly to an eigenvector
Note the case		lassical Gram-Schmidt	More important than for numerical analysis	for single, 11 bit for double)		Liangular parts of Al	4: $\lambda^{(n)} = (\chi^{(n)})^n A(\chi^{(n)})$ 5: end for	Estimate µ ^(k) with Rayleigh quotient =>
The composed from the figure of the figure	With those $\Rightarrow P = \{x \in \mathbb{R}^n \mid x \cdot \mathbf{n} = \lambda\}$				fails if $u_{kk}^{(k-1)} \approx 0$			$\mu^{(k)} = (A_k)_{mm} = (\bar{\mathbf{q}}_m^{(k)})^T A \bar{\mathbf{q}}_m^{(k)}$ where $\bar{\mathbf{q}}_m^{(k)}$ is \underline{m} th
Section Sec		3: for $i = 1$ to $j - 1$ do 5: $r_{ii} = u_i _2$	=> comes up so often that has its own name A ∈ C ^{m×m} lis well-conditioned if κ(A) lis small.	F⊂R is idealized (ignores over/underflow), so is				
	e Og Plije Pldoesn't go through the origin	4: $r_{ii} = q_i^* a_i$ 6: $q_i = u_i / r_{ii}$	ill-conditioned if large	countably infinite and self-similar (i.e. F = βF)		$\left \left \mathbf{x}_{i}^{(R+1)} \right = \frac{1}{A_{ii}} \left(\mathbf{b}_{i} - \sum_{j \neq i} A_{ij} \mathbf{x}_{i}^{(R)} \right) \right \Rightarrow \mathbf{x}_{i}^{(R+1)} $ only needs	<u> </u>	Column of Qv-7
Equivarience Fig. 1 1 1 1 1 1 1 1 1	Pis affine-subspace of R"		$\frac{\kappa(\mathbf{A}) = \kappa(\mathbf{A}^{-1})}{\kappa(\mathbf{A})} \frac{\kappa(\mathbf{A}) = \kappa(\gamma \mathbf{A})}{\kappa(\mathbf{A})} \ \cdot \ = \ \cdot \ _{2} \implies \kappa(\mathbf{A}) = \frac{\sigma_{1}}{\sigma_{m}}$					
Section of the continue of t	n 8	8: $q_i = u_i/r_{ii}$ 10: end for		Equivalently $fl(x) = x(1+\delta)$, $ \delta \le \epsilon_{mach}$				
Complete a principle of the proposed in complete and properties are selected as \$= j\text{in couling in the principle of the properties are selected as \$= j\text{in couling in the principle of the properties are selected as \$= j\text{in couling in the principle of the properties are selected as \$= j\text{in couling in the principle of the principle of the principle of the properties are selected as \$= j\text{in couling in couling of projection onto \$\frac{1}{2}\text{lange} \text{in couling in column of \$\frac{1}{2}\text{lange} \text{lange} \text{in couling in column of \$\frac{1}{2}\text{lange} \text{lange} la	.e. 0 ∈ P , i.e. P goes through the origin	9: end for 11: end for						
Mode		omputes at j th step:	$\kappa = \ \mathbf{A}\ \frac{\ \mathbf{x}\ }{\ \mathbf{A}\mathbf{x}\ } \Rightarrow \text{if } \mathbf{A}^{-1} \text{ exists then } \kappa \leq \text{Cond}(\mathbf{A})$	maximum relative gap between FPs	II——			
Modified SS \Rightarrow]th column of 0] and the jith row of 0] and the jit			If Ax = bl problem of finding x given blis just	Half the gap between 1 Jand next largest FP	1003Enotes thanguarisation requires ~ 3 m ³	$\left \mathbf{x}_{i}^{(R+1)} = \frac{1}{A_{ij}} \left(\mathbf{b}_{i} - \sum_{j=1}^{i-1} A_{ij} \mathbf{x}_{i}^{(R+1)} - \sum_{j=i+1}^{n} A_{ij} \mathbf{x}_{i}^{(R)} \right) \right $		
	ompliments, so:		$ f_{\mathbf{A}^{-1}}(b) = \mathbf{A}^{-1}b \Rightarrow \kappa = \mathbf{A}^{-1} \frac{ b }{ \omega } \le \text{Cond}(\mathbf{A}) $	$12^{-2} \approx 5.96 \times 10^{-9}$ Jand $2^{-3.5} \approx 10^{-10}$ Jfor single/double	Partial pivoting computes PA = I II I where P lis a			
	$roj_L = \hat{\mathbf{n}} \hat{\mathbf{n}}^T$ is orthogonal projection onto $L (along P) R$	<u>R</u>		FP arithmetic: let *, @ be real and floating	permutation matrix => PPT = I i.e. its orthogonal			
Successive over-relaxation (SOR): $\frac{x \otimes y = [N] \text{ loss}}{y \otimes y \otimes y \otimes y} = [NOTE: \text{ Householder method has } 2[m^2 - n^2/3] \text{ flop}}{y \otimes y \otimes y \otimes y} = [\text{Lessification on that columns properties}]$ $\frac{x \otimes y = [NOTE: \text{ Householder method has } 2[m^2 - n^2/3] \text{ flop}}{y \otimes y \otimes y \otimes y \otimes y} = [\text{Lessification on that columns properties}]$ $\frac{x \otimes y = [NOTE: \text{ Householder method has } 2[m^2 - n^2/3] \text{ flop}}{y \otimes y \otimes y \otimes y \otimes y \otimes y} = [\text{Lessification on that columns properties}]$ $\frac{x \otimes y = [NOTE: \text{ Householder method has } 2[m^2 - n^2/3] \text{ flop}}{y \otimes y \otimes y \otimes y \otimes y \otimes y \otimes y} = [\text{Lessification on that columns properties}]$ $\frac{x \otimes y = [NOTE: \text{ Householder method has } 2[m^2 - n^2/3] \text{ flop}}{y \otimes y \otimes$	$roj_P = id_{\mathbb{R}^n} - proj_L = I_n - \hat{\mathbf{n}} \hat{\mathbf{n}}^T$ is orthogonal			counterparts of arithmetic operation	For each column it finds largest entry and row-swans	comer storage reduitements		
	rojection onto P (along L)			For x, y ∈ F we have	Then performs person all initiation			
Recall: $\frac{O}{Q} = I_{n} > \text{check for loss of orthogonality decomposed into $v = v_{k} = v_{k} = R_{k} = R_{$	(* 12) (* 17)			Holds for any arithmetic operation @ = (A. A. A. A.	L; L;	$G = \omega^{-1} D + L; R = (1 - \omega^{-1})D + U =>$		
with $\ \frac{1}{\ -Q^{\dagger} \ } \ \log \ \log$	(F)[/ (F)P/		Given a problem $j: X \to Y$, an algorithm for j is $\hat{f}: X \to Y$		Result is $L_{m-1}P_{m-1}L_2P_2L_1P_1A=U$ where	$M = -(\omega^{-1}D + L)^{-1}((1 - \omega^{-1})D + U); c = -(\omega^{-1}D + L)^{-1}b$		
Householder Maps: reflections Two points $x, y \in \mathbb{F}^n$ are reflections w.r.t hyperplane $p \in (R_1)^{\perp} \cdot c \mid ht$: White Householder method has $\ f_1 - O^{\uparrow} Q \ = c (nd)(A R_{mach}) - (R_{mach}) - (R_{mach})$				above applies to complex ops as-well		$\left \begin{array}{cc} (k+1) & \stackrel{(i)}{\overline{A}::} \left(\mathbf{b}_{i} - \sum_{i=1}^{i-1} A_{ij} \mathbf{x}_{i}^{(k+1)} - \sum_{i=i+1}^{n} A_{ij} \mathbf{x}_{i}^{(k)}\right)\right $		
Householder Maps: Fettections Two points $x, y \in \mathbb{R}^n$ are reflections w.r.t thyperplane $p = (Rn)^{\frac{1}{n}} - Q^{\frac{n}{n}} Q^{\frac{n}{n}} = (Rn)^{\frac{n}{n}} - Q^{\frac{n}{n}} = (Rn)^{\frac{n}{n}} = (Rn)^{$		et 1 100 HT of on o 1/432	Absolute error $\Rightarrow \ \tilde{f}(x) - f(x)\ $			$x_i = \frac{1}{(1-\omega)x_i}$ for		
			relative error $\Rightarrow \frac{\ \bar{f}(x) - f(x)\ }{\ f(x)\ }$	the order of 2 ^{3/2} , 2 ^{5/2} for ⊗, ⊘ respectively	PA=LU	1		
		# Cond(A)εmach		(x ₁ ⊕⊕x _n)	Algorithm 2 Gaussian elimination with partial pivoting			
$ \begin{vmatrix} \mathbf{x} \cdot \mathbf{x} \\ \mathbf{x} \\ \mathbf{y} \end{vmatrix} = \mathbf{x} \\ \mathbf{y} \cdot \mathbf{x} \\ \mathbf{y} \\ \mathbf{y} \end{vmatrix} = \mathbf{x} \\ \mathbf{y} \cdot \mathbf{x} \\ \mathbf{y} \end{vmatrix} = \mathbf{y} \\ \mathbf{y} \cdot \mathbf{x} \\ \mathbf{y} \end{vmatrix} = \mathbf{y} \\ y$				$\approx (x_1 + \dots + x_n) + \sum_{i=1}^n x_i \left(\sum_{j=i}^n \delta_j \right)^{r \log_1 2} $				
$ \begin{array}{c} [f(x)] = (x - y) \in P \text{ lies on } P \text{ j.e. } m \cdot n \cdot c \cdot n \\ \text{Suppose } P_{\textbf{u}} = (R\textbf{u})^{\perp} \text{ goes through the origin with unit} \\ \text{Suppose } P_{\textbf{u}} = (R\textbf{u})^{\perp} \text{ goes through the origin with unit} \\ \text{Number Clear write } [f(x)] = (x - y) \in P \text{ lies on } P \text{ j.e. } m \cdot n \cdot c \cdot n \\ \text{Suppose } P_{\textbf{u}} = (R\textbf{u})^{\perp} \text{ goes through the origin with unit} \\ \text{In Grand } \textbf{u} \in R^n \text{ lies on } P \text{ j.e. } m \cdot n \cdot c \cdot n \\ \text{Suppose } P_{\textbf{u}} = (R\textbf{u})^{\perp} \text{ goes through the origin with unit} \\ \text{In Grand } \textbf{u} \in R^n \text{ lies on } P \text{ j.e. } m \cdot n \cdot c \cdot n \\ \text{In Grand } \textbf{u} \in R^n \text{ lies on } P \text{ j.e. } m \cdot n \cdot c \cdot n \\ \text{In Grand } \textbf{u} \in R^n \text{ lies on } P \text{ j.e. } m \cdot n \cdot c \cdot n \\ \text{In Grand } \textbf{u} \in R^n \text{ lies on } P \text{ j.e. } m \cdot n \cdot c \cdot n \\ \text{In Grand } \textbf{u} \in R^n \text{ lies on } P \text{ j.e. } m \cdot n \cdot c \cdot n \\ \text{In Grand } \textbf{u} \in R^n \text{ lies on } P \text{ j.e. } m \cdot n \cdot c \cdot n \\ \text{In Grand } \textbf{u} \in R^n \text{ lies on } P \text{ j.e. } m \cdot n \cdot c \cdot n \\ \text{In Grand } \textbf{u} \in R^n \text{ lies on } P \text{ j.e. } m \cdot n \cdot c \cdot n \\ \text{In Grand } \textbf{u} \in R^n \text{ lies on } P \text{ j.e. } m \cdot n \cdot c \cdot n \\ \text{In Grand } \textbf{u} \in R^n \text{ lies on } P \text{ j.e. } m \cdot n \cdot c \cdot n \\ \text{In Grand } \textbf{u} \in R^n \text{ lies on } P \text{ j.e. } m \cdot n \cdot c \cdot n \\ \text{In Grand } \textbf{u} \in R^n \text{ lies on } P \text{ j.e. } m \cdot n \cdot c \cdot n \\ \text{In Grand } \textbf{u} \in R^n \text{ lies on } P \text{ j.e. } m \cdot n \cdot c \cdot n \\ \text{In Grand } \textbf{u} \in R^n \text{ lies on } P \text{ lies on } P \text{ j.e. } m \cdot n \cdot c \cdot n \\ \text{In Grand } \textbf{u} \in R^n \text{ lies on } P lies$	ry=λn			$(x_1 \otimes \cdots \otimes x_n) \approx (x_1 \times \cdots \times x_n)(1 + \epsilon), \epsilon \le 1.06(n - 1)\epsilon_{mach}$	3: $i = \operatorname{argmax} u_{i,k} $			
Suppose $P_{\mathbf{u}} = (\mathbf{u}\mathbf{u})^{\perp}$ goes through the origin with unit normal $\mathbf{u} \in \mathbb{R}^n$ i.e. nearly the right answer to nearly the right question of $\mathbf{u} = (\mathbf{u} - \mathbf{u})^{\perp}$ i.e. nearly the right answer to nearly the right question of $\mathbf{u} = (\mathbf{u} - \mathbf{u})^{\perp}$ is reflection w.r.t. $\mathbf{u} = (\mathbf{u} - \mathbf{u})^{\perp}$ is reflection w.r.t. $\mathbf{u} = (\mathbf{u} - \mathbf{u})^{\perp}$ $\mathbf{u} = (\mathbf{u} - \mathbf{u})^$	2) Midpoint $m = 1/2(\mathbf{x} + \mathbf{y}) \in P[\underline{\mathbf{lies}} \text{ on } P[i.e. } m \cdot \mathbf{n} = \mathbf{c} \cdot \mathbf{n}]$	onsider <u>J</u> : R'' → R; When clear write i kth component of input as illinstead	$\frac{\ f(x)-f(\tilde{x})\ }{\ f(\tilde{x})\ } = O\left(\epsilon_{\text{mach}}\right) \text{ and } \frac{\ \tilde{x}-x\ }{\ x\ } = O\left(\epsilon_{\text{mach}}\right)$	$fl(\sum x_i y_i) = \sum x_i y_i (1 + \epsilon_i)$ where				
normal $\underline{u} \in \mathbb{R}^n$ Level curve w.r.t. to $\underline{c} \in \mathbb{R}$ is all points s.t. $f(x) = c$ outer-product is stable $\frac{ f(x) - c }{ f(x') - x'' } f(x') + \frac{ f(x') - c }{ f(x') } f(x$	uppose $P_{\mathbf{u}} = (\mathbb{R}\mathbf{u})^{\perp}$ goes through the origin with unit of	of x _i	i.e. <u>nearly</u> the right answer to <u>nearly</u> the right question		6: p _k · ↔ p _i ·			
Householder matrix $H_1 = \frac{1}{10} - \frac{2M^2}{15}$ See relection w.r.t. False of the seed of the	ormal $u \in \mathbb{R}^n$	evel curve w.r.t. to $c \in \mathbb{R}$ is all points s.t. $f(x) = c$			7: for $j = k + 1$ to m do	=		
Nyperplane P.,	Householder matrix $H_{u} = I_{n} - 2uu^{T}$ is reflection w.r.t.					If A J is diagonalizable then eigen-decomposition is		
Recall let La Rul 10. end for Annual 10. end for Annual 10. end for		Jircour-map			10: end for	$A = X\Lambda X^{-1}$		
The state of the s		h th order partial derivative w.r.t ib of, of n1 th		is vector and $\phi(n)$ is small function of n_1		for which $Ax = \lambda x$		
order partial derivative w.r.t.i 1 of f is:		rder partial derivative w.r.t i1 of fis:			Work required: $\sim \frac{2}{3} m^3$ flops $\sim O(m^3)$; results in			
sortier of increasing magnitude $ t_{ij} \le 1$ for					L _{ij} ≤1 so <u> L = O(1)</u>			