Lightning Attention 2: Handling Unlimited Sequence Lengths

LLM

Attention: Queries, Keys, and Values

• The attention over the database \mathcal{D}

$$\operatorname{Attention}(\mathbf{q},\mathcal{D}) \stackrel{ ext{def}}{=} \sum_{i=1}^m lpha(\mathbf{q},\mathbf{k}_i) \mathbf{v}_i$$

- where
 - Scalar attention weigths $\, lpha({f q},{f k}_i) \in {\mathbb R} \, (i=1,\ldots,m) \,$
 - Dataset $\mathcal{D} \stackrel{\mathrm{def}}{=} \{ (\mathbf{k}_1, \mathbf{v}_1), \dots (\mathbf{k}_m, \mathbf{v}_m) \}$
 - k key, v values, q queries

Attention function

$$\mathcal{O} = \mathcal{A}(x) = [\mathcal{O}_1, \dots, \mathcal{O}_N]^T, \quad \mathcal{O}_i = \sum_j \frac{\mathcal{S}(Q_i, K_j)}{\sum_j \mathcal{S}(Q_i, K_j)} V_j \quad \text{output } \mathcal{O} \in \mathbb{R}^{N \times d}$$

Vanilla self attention

$$\mathcal{S}(Q, K) = \exp(QK^T)$$

the dot-product attention with softmax normalization

Linearized self attention

$$\mathbf{O} = \text{Norm}((\mathbf{Q}\mathbf{K}^{\top})\mathbf{V})$$

TransNormer

Context Window Size

- Model architecture The design of the transformer model itself, including the number of layers and the attention mechanism
- Maximum input sequence length the maximum amount of information or text the model can consider at once
- Memory constraints Processing longer sequences requires more memory for storing the intermediate states, attention scores, and other necessary computations.
- Attention mechanism: The computational complexity of the original transformer architecture grows quadratically with the length of the input sequence, making it challenging to model extremely long sequences.

Source:

https://analyticsindiamag.com/google-gemini-1-5-crushes-chatgpt-and-claud e-with-largest-ever-1-mn-token-context-window/

Challenges of Linear Attention

- The dominance of memory access (I/O) on the GPU could impact the overall computation speed of attention.
 - Solved by Lightning Attention 1
- The cumulative summation (cumsum) needed by the linear attention kernel trick prevents it from reaching its theoretical training speed in the causal setting.
 - Solved by Lightning Attention 2

Structural framework of Lightning Attention 2

(Forward Pass)

Background: GPU Compute Model & Memory Hierarchy

Figure 2. Structural framework of Lightning Attention-2 is detailed in its algorithmic schematic. During the i-th iteration, the tiling blocks of matrices \mathbf{Q}_i , \mathbf{K}_i , \mathbf{V}_i are transferred from High Bandwidth Memory (HBM) to Static Random-Access Memory (SRAM). Within the SRAM, the outputs \mathbf{O}_{intra} and \mathbf{O}_{inter} are computed independently, followed by an update to the \mathbf{KV} matrix. Subsequently, the final output \mathbf{O}_i , which is the sum of \mathbf{O}_{intra} and \mathbf{O}_{inter} , is written back from SRAM to HBM.

Sources:

(left)

https://yashugupta-gupta11.medium.com/understanding-flash-attention-fueling-large-language-models-b037ad02c456

(right) Qin, Zhen, et al. "Lightning Attention-2: A Free Lunch for Handling Unlimited Sequence Lengths in Large Language Models." arXiv preprint arXiv:2401.04658 (2024)

Intricate details of the Lightning Attention-2

$$\mathbf{O} = \text{Norm}(\mathbf{Q}(\mathbf{K}^{\top}\mathbf{V})), \tag{2}$$

3.2.1. FORWARD PASS

We ignore the $Norm(\cdot)$ operator in eq. (2) to simplify the derivations. During forward pass of Lightning Attention-2, the t-th output can be formulated as

$$\mathbf{o}_t = \mathbf{q}_t \sum_{s \le t} \lambda^{t-s} \mathbf{k}_s^{\mathsf{T}} \mathbf{v}_s. \tag{3}$$

In a recursive form, the above equation can be rewritten as

$$\mathbf{k}\mathbf{v}_{0} = 0 \in \mathbb{R}^{d \times d},$$

$$\mathbf{k}\mathbf{v}_{t} = \lambda \mathbf{k}\mathbf{v}_{t-1} + \mathbf{k}_{t}^{\mathsf{T}}\mathbf{v}_{t},$$

$$\mathbf{o}_{t} = \mathbf{q}_{t}(\mathbf{k}\mathbf{v}_{t}),$$
(4)

where

$$\mathbf{k}\mathbf{v}_t = \sum_{s \le t} \lambda^{t-s} \mathbf{k}_s^{\mathsf{T}} \mathbf{v}_s. \tag{5}$$

To perform tiling, let us write the equations in block form. Given the total sequence length n and block size B, \mathbf{X} is divided into $T = \frac{n}{B}$ blocks $\{\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_T\}$ of size $B \times d$ each, where $\mathbf{X} \in \{\mathbf{Q}, \mathbf{K}, \mathbf{V}, \mathbf{O}\}$.

Given \mathbf{KV}_t , the output of (t+1)-th block, i.e., tB+r, with $1 \le r \le B$ is

$$\mathbf{o}_{tB+r}$$

$$=\mathbf{q}_{tB+r} \sum_{s \leq tB+r} \lambda^{tB+r-s} \mathbf{k}_{s}^{\top} \mathbf{v}_{s}$$

$$=\mathbf{q}_{tB+r} \left(\sum_{s=tB+1}^{tB+r} \lambda^{tB+r-s} \mathbf{k}_{s}^{\top} \mathbf{v}_{s} + \lambda^{r} \sum_{s \leq tB} \lambda^{tB-s} \mathbf{k}_{s}^{\top} \mathbf{v}_{s} \right)$$

$$=\mathbf{q}_{tB+r} \sum_{s=tB+1}^{tB+r} \lambda^{tB+r-s} \mathbf{k}_{s}^{\top} \mathbf{v}_{s} + \lambda^{r} \mathbf{q}_{tB+r} \mathbf{k} \mathbf{v}_{tB}.$$
(7)

Rewritten in matrix form, we have

the Hadamard product, or element-wise multiplication of two matrices

$$\mathbf{O}_{t+1} = \underbrace{[(\mathbf{Q}_{t+1}\mathbf{K}_{t+1}^{\top}) \odot \mathbf{M}]\mathbf{V}_{t+1}}_{\text{Intra Block}} + \underbrace{\Lambda \mathbf{Q}_{t+1}(\mathbf{K}\mathbf{V}_{t})}_{\text{Inter Block}}, \tag{8}$$

Throughout Comparison

Figure 1. Speed Showdown: FlashAttention vs. Lightning Attention in Expanding Sequence Lengths and Model Sizes. The diagram above provides a comparative illustration of training speed, Token per GPU per Second (TGS) for LLaMA with FlashAttention-2, TransNormerLLM with Lightning Attention-1 and TransNormerLLM with Lightning Attention-2, implemented across three model sizes: 400M, 1B, and 3B from left to right. It is strikingly evident that Lightning Attention-2 manifests a consistent training speed irrespective of the increasing sequence length. Conversely, the other methods significantly decline training speed as the sequence length expands.

Speed and Memory Usage Comparison

Figure 3. Comparative Analysis of Speed and Memory Usage: FlashAttention vs. Lightning Attention. Upper Section: Runtime in milliseconds for the forward and backward pass across varying sequence lengths. Lower Section: Memory utilization during the forward and backward pass at different sequence lengths.

Performance Comparison

Figure 4. Performance Comparison of HGRN, TNN, LLaMA with FlashAttention2 and TransNormerLLM with Lightning Attention 2. For the 1B model, we used 16×A800 80G GPUs with a batch size of 12 per GPU; for the 3B model, we scaled up to 32×A800 80G GPUs and a batch size of 30 per GPU. The training context length was set to 2K.

Table 3. **Performance Comparison on Commonsense Reasoning and Aggregated Benchmarks.** TNL-LA2: TransNormerLLM with Lightning Attention-2. PS: parameter size (billion). T: tokens (billion). HS: HellaSwag. WG: WinoGrande.

Model	PS	T	BoolQ	PIQA	HS	WG	ARC-e	ARC-c	OBQA	CSR	C-Eval	MMLU	C-Eval	MMLU
2	В	В	acc	acc	acc_norm	acc	acc	acc_norm	acc_norm	avg.	acc-0shot	acc-0shot	acc-5shot	acc-5shot
Pythia	12	50.3	62.14	71.76	51.89	55.64	59.22	28.75	32.80	51.74	22.36	25.80	21.43	26.10
TNL-LA2	15	49.8	62.08	72.52	55.55	57.14	62.12	31.14	32.40	53.28	25.55	26.60	26.18	27.50
Pythia	12	100.6	62.20	73.23	58.83	59.35	63.76	31.91	32.80	54.58	24.00	24.80	24.45	24.40
TNL-LA2	15	99.7	63.98	74.70	61.09	61.33	65.95	34.64	35.60	56.76	26.70	26.90	25.38	27.40