```
* Encoding: UTF-8.
TITLE SPSS PROXSCAL of Corter & Carroll (1990) statistical techniques similarities.
  /1 MANOVA 1 multRegr 3 PCA 5 factor 7 canCorr 9 discrim 10 cluster 11 MDS 12 ANOVA 13 logLin 14
logRegr 15.
BEGIN DATA
2
22
228
6744
86323
347853
3488538
53112111
681245328
6813581288
7
42
239
8454
86348
125734
1288326
77114321
521142116
4722463168
9
31
118
9311
95119
115511
1157117
99112711
221133112
6611661178
END DATA.
   PROXSCAL VARIABLES=MANOVA multRegr PCA factor canCorr discrim cluster MDS ANOVA logLin
   logRegr
    /SHAPE=LOWER
    /INITIAL=SIMPLEX
    /CONDITION=MATRIX
    /TRANSFORMATION=INTERVAL
    /PROXIMITIES=SIMILARITIES
    /MODEL=WEIGHTED
   /CRITERIA=DIMENSIONS(4,4) MAXITER(100) DIFFSTRESS(.0001) MINSTRESS(.0001)
```

/PRINT=COMMON WEIGHTS STRESS

/PLOT=COMMON WEIGHTS.

SPSS PROXSCALOF Corter & Carroll (1990) statistical techniq

DATA LIST

/1 MANOVA 1 multRegr 3 PCA 5 factor 7 canCorr 9 discrim 10 cluster 11 M DS 12 ANOVA 13 logLin 14 logRegr 15.

Data List will read 1 records from the command file

Variable	Rec	Start	End	Format
MANOVA	1	1	1	F1.0
multRegr	1	3	3.	F1.0
PCA	. 1	5	5	F1.0
factor	1	7	7	F1.0
canCorr	1	9	9	F1.0
discrim	1	10	10	F1.0
cluster	1	11	11	F1.0
MDS	. 1	12	12	F1.0
ANOVA	1	13	13	F1.0
logLin	1	14	14	F1.0
logRegr	1	15	15	F1.0
DECTM DAMA				

BEGIN DATA

2 2 2 2 2 8 6 7 4 4 8 6 3 2 3 3 4 7 8 5 3

3 4 8 8 5 3 8

5 3 1 1 2 1 1 1

6 8 1 2 4 5 3 2 8

6 8 1 3 5 8 1 2 8 8

7

4 2

2 3 9

8454

8 6 3 4 8

1 2 5 7 3 4

1 2 8 8 3 2 6

7 7 1 1 4 3 2 1

SPSS PROXSCALOF Corter & Carroll (1990) statistical techniq

```
9
3 1
1 1 8
9 3 1 1
9 5 1 1 9
1 1 5 5 1 1
1 1 5 7 1 1 7
9 9 1 1 2 7 1 1
2 2 1 1 3 3 1 1 2
6 6 1 1 6 6 1 1 7 8
END DATA.

PROXSCAL VARIABLES=MANOVA multRegr PCA factor canCorr discrim cluster MDS ANO
VA logLin logRegr
/SHAPE=LOWER
/INITIAL=SIMPLEX
```

/CONDITION=MATRIX

/TRANSFORMATION=INTERVAL

/PROXIMITIES=SIMILARITIES

/MODEL=WEIGHTED

5 2 1 1 4 2 1 1 6

/CRITERIA=DIMENSIONS(4,4) MAXITER(100) DIFFSTRESS(.0001) MINSTRESS(.0001)

/PRINT=COMMON WEIGHTS STRESS

/PLOT=COMMON WEIGHTS.

Proxscal

Credit

Proxscal

Version 1.0

by

Data Theory Scaling System Group (DTSS)

Faculty of Social and Behavioral Sciences

Leiden University, The Netherlands

SPSS PROXSCAL OF Corter & Carroll (1990) statistical techniq

Case Processing Summary

Cases		33
Sources		3
Objects		11
Proximities	Total Proximities	165 ^a
	Missing Proximities	27
	Active Proximities ^b	138

- a. Sum over sources of all strictly lower-triangular proximities.
- b. Active proximities include all non-missing proximities.

Goodness of Fit

Stress and Fit Measures

Normalized Raw Stress	.01283
Stress-I	.11325 ^a
Stress-II	.47661 ^a
S-Stress	.04559 ^b
Dispersion Accounted For (D.A.F.)	.98717
Tucker's Coefficient of Congruence	.99357

PROXSCAL minimizes Normalized Raw Stress.

- a. Optimal scaling factor = 1.013.
- b. Optimal scaling factor = .984.

Common Space

SPSS PROXSCAL OF Corter & Carroll (1990) statistical techniq

Final Coordinates

	Dimension			
	1	2	3	4
MANOVA	-1.476	.480	1.070	.692
multRegr	118	-1.252	1.689	.350
PCA	.555	2.083	385	.111
factor	1.790	1.055	.131	÷.512
canCorr	.023	.490	.596	2.065
discrim	832	569	694	351
cluster	1.880	<i>-</i> .777	169	076
MDS	227	.612	-1.011	-1.428
ANOVA	673	059	1.284	<i>-</i> 1.776
logLin	721	832	-1.530	.231
logRegr	202	-1.230	980	.694

Object Points

Common Space

	Common opaco							
Dimension &		GOOANOVA	cluster Co factor PCAcanCorr MDS 0 multRegr OlogRegr O 0 ogLindiscrim MOVA MANOVA	O OO multRegr discrimaNOVA				
Dimension 2	PCA O factor MANOVA MDS O O OCANCOR logLin O ANOVA discrim O Cluster multRegflogRegr		MDS ALANOVA	PCA factor O MDS O MANOVA O= O O O ANOVAcanCorr discrim O mullRegr cluster logLinlogRegr				
Dimension 3	muliRegr <mark>ANOVA O OCANCOR MANOVAO factor discrimo O MDSO OPCÆluster O logRegr</mark>	multRegr OANOVMANOVA O CanCorr cluster Oa DOA		ANOVA O canCorr MANNAPCAO discrim O cluster O O logRegr logLin				
Dimension 4	canCorr MANOVAO logRegr	canCorr logRegro	canCorr- logRegr MANIDE Ar O CALO O S disgrimo Ocluster O factor O MDS ANOVA	Turancia, India N 31:41 T.T.				

Dimension 1 Dimension 2 Dimension 3 Dimension 4

SPSS PROXSCALOF Corter & Carroll (1990) statistical techniq

Individual Spaces

Dimension Weights

	Dimension				
Source	1	2	3	4	
SRC_1	.371	.373	.300	.347	
SRC_2	.375	.359	:359	.303	
SRC_3	.360	.365	.352	.319	

Dimension Weights

		Difficusion weights			
	Dimension 1		SRC_3 SRC_2 @ SRC_1	0.60 SRC_2	SRC_2SRC_3 QO SRC_1
	Dimension 2 D	SRC_1 SRC_3 © SRC_2	Ö	SRC_1 SRC_3 SRC_2	o SRC_2SRC_3 SRC_1
	Dimension 3 E	SRC_2 SRC_3 © SRC_1	SRC_3 SRC_2© O SRC_1		SRC_2SRC_3 Ø SRC_1
1, 8	Dimension 4	SRC_1 SRC_3@ SRC_2	SRC_3 SRC_1.8 SRC_2	SRO_1 SRC_3 Ogi SRC_2 O	
Private Com	e 9 5	Dimension 1	Dimension 2	Dimension 3	Dimension 4

and the second of the second o