W INTELLECTUAL PROPERTY ORGANIZATIO International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51)	International Patent Classification: C12N 15/11, A61K 39/00, C07K 14/40, C07K 16/14, C12Q 1/18, C12Q 1/68	A2	1 ()	ntional Publication Number: ntional Publication Date:	WO 00/75305 14 December2000 (14.12.2000)
(21) (22)	Og lung		/FR00/01567 (08.06.2000)	Published	
(30)	Priority Data: 99/07250 09 June 1999 (09.06.19	999)	FR	·	
(60)	Parent Application or Grant HOECHST MARION ROUSSEL [/]; (). I Louis [/]; (). ROCHER, Corinne [/]; (). LA Louis [/]; (). ROCHER, Corinne [/]; (). VI	LANN	√E, Jean-		

(54) Title: NOVEL CANDIDA ALBICANS GENES AND PROTEINS CODED BY SAID GENES

(54) Titre: NOUVEAUX GENES DE <i>CANDIDA ALBICANS</i> ET LES PROTEINES CODEES PAR CES GENES

(57) Abstract

Claude; ().

The invention concerns proteins of <i>Candida albicans</i> genes hereafter referred to as PcaDR472, PcaDR489, 1PcaDR527, 2PcaDR527, PcaFL024, PcaNL260, PcaDR361 and their analogues as well as polypeptides (RNA, DNA) coding for said proteins or polypeptides analogues of said proteins, the method for preparing said polypeptides and polynucleotides, their use for preparing inhibitors of said proteins capable of being used as antifungal agents and pharmaceutical compositions containing such inhibitors.

(57) Abrégé

La présente invention concerne les protéines de <i>Candida albicans</i> nommées ci-après PCaDR472, PCaDR489, 1PCaDR527, 2PCaDR527, PCaFL024, PCaNL260, PCaDR361 et leurs analogues ainsi que les polynucléotides (ARN, ADN) codant pour ces protéines ou pour les polypeptides analogues de ces protéines, le procédé de préparation de ces polypeptides et polynucléotides, leur utilisation pour la préparation d'inhibiteurs de ces protéines pouvant être utilisés comme agents antifongiques et les compositions pharmaceutiques contenant de tels inhibiteurs.

ATTORNEY DOCKET NUMBER: 10182-016-999 SERIAL NUMBER: 10/032,585

REFERENCE: CD

(12) DEMANDE INTERNATIONALE PUBLIÉE EN VERTU DU TRAITÉ DE COOPÉRATION EN MATIÈRE DE BREVETS (PCT)

(19) Organisation Mondiale de la Propriété Intellectuelle Bureau international

(43) Date de la publication internationale 14 décembre 2000 (14.12.2000)

(10) Numéro de publication internationale WO 00/75305 A2

(51) Classification internationale des brevets?: C12N 15/11, C07K 14/40, C12Q 1/18, 1/68, A61K 39/00, C07K 16/14

Jean-Louis [FR/FR]; 110, avenue du Maréchal, F-94120 Fontenay sous Bois (FR). ROCHER, Corinne [FR/FR];

(21) Numéro de la demande internationale:

PCT/FR00/01567

(22) Date de dépôt international: 8 juin 2000 (08.06.2000)

(25) Langue de dépôt:

français

(26) Langue de publication:

français

(30) Données relatives à la priorité: 99/07250

9 juin 1999 (09.06.1999) FR

- (71) Déposant (pour tous les États désignés sauf US): HOECHST MARION ROUSSEL [FR/FR]; 1, Terrasse Bellini, F-92800 Puteaux (FR).
- (72) Inventeurs: et
- (75) Inventeurs/Déposants (pour US seulement): LALANNE, la Gazette du PCT.

3, rue Elisa Lemonnier, F-75012 Paris (FR).

- (74) Mandataire: VIEILLEFOSSE, Jean-Claude; Hoechst Marion Roussel, 102, route de Noisy, F-93135 Romainville Cedex (FR).
- (81) États désignés (national): AU, JP, US.
- (84) États désignés (régional): brevet européen (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Publiée:

Sans rapport de recherche internationale, sera republiée dès réception de ce rapport.

En ce qui concerne les codes à deux lettres et autres abréviations, se référer aux "Notes explicatives relatives aux codes et abréviations" figurant au début de chaque numéro ordinaire de

(54) Title: NOVEL CANDIDA ALBICANS GENES AND PROTEINS CODED BY SAID GENES

(54) Titre: NOUVEAUX GENES DE CANDIDA ALBICANS ET LES PROTEINES CODEES PAR CES GENES

(57) Abstract: The invention concerns proteins of Candida albicans genes hereafter referred to as PcaDR472, PcaDR489, 1PCaDR527, 2PCaDR527, PCaFL024, PCaNL260, PCaDR361 and their analogues as well as polypeptides (RNA, DNA) coding for said proteins or polypeptides analogues of said proteins, the method for preparing said polypeptides and polynucleotides, their use for preparing inhibitors of said proteins capable of being used as antifungal agents and pharmaceutical compositions containing such inhibitors.

(57) Abrégé: La présente invention concerne les protéines de Candida albicans nommées ci-après PCaDR472, PCaDR489, 1PCaDR527, 2PCaDR527, PCaFL024, PCaNL260, PCaDR361 et leurs analogues ainsi que les polynucléotides (ARN, ADN) codant pour ces protéines ou pour les polypeptides analogues de ces protéines, le procédé de préparation de ces polypeptides et polynucléotides, leur utilisation pour la préparation d'inhibiteurs de ces protéines pouvant être utilisés comme agents antifongiques et les compositions pharmaceutiques contenant de tels inhibiteurs.

Description

1

Nouveaux gènes de Candida albicans et les protéines codées par ces gènes.

La présente invention concerne de nouveaux gènes de 5 Candida albicans et les protéines codées par ces gènes ainsi que les polynucléotides (ARN, ADN) codant pour ces protéines ou pour les polypeptides analogues de ces protéines.

La présente invention concerne également le procédé de préparation de ces polypeptides et polynucléotides, leur utilisation pour l'étude de mycètes pathogènes et notamment de Candida albicans et pour la préparation d'inhibiteurs des protéines codées par les gènes de la présente invention, ces inhibiteurs pouvant être utilisés comme agents antifongiques. La présente invention concerne également les compositions pharmaceutiques contenant de tels inhibiteurs.

La présente invention concerne donc notamment de nouvelles protéines de *Candida albicans* et les séquences nucléotidiques codant pour ces protéines, leur préparation et leurs utilisations.

Nous utiliserons également ci-après les abréviations suivantes : AA pour acides aminés, AN pour acides nucléiques, ARN pour acide ribonucléique, ARNm pour ARN messager, RNase pour ribonucléase, ADN pour acide désoxyribonucléique, ADNc pour ADN complémentaire, pb pour paires de bases, PCR pour réaction en chaîne par une polymérase, C.a. ou C. albicans pour Candida albicans, E. coli pour Escherichia coli et S. cerevisiae pour Saccharomyces cerevisiae.

Le terme criblage utilisé ci-après correspond au terme anglosaxon screening.

30 Le terme polynucléotides désigne ci-après les polynucléotides de la présente invention soit les séquences d'ADN et également d'ARN codant pour les protéines de la présente invention et leurs homologues codant pour des protéines de même fonction.

Le terme polypeptides désigne ci-après les polypeptides de la présente invention soit les protéines de la présente invention et leurs analogues ou homologues fonctionnels tels que définis ci-après, ayant donc les mêmes fonctions.

55

5

10

15

20

25

30

35

40

45

2 Le terme mycète désigne ci-après un organisme eucaryote, 5 porteur de spores, dont la nutrition se fait par absorption, qui est dépourvu de chlorophylle et qui se reproduit de façon sexuée ou asexuée. Les mycoses sont des infections de l'homme ou des 10 animaux qui peuvent être superficielles ou profondes, causées par des champignons pathogènes. Dans le cas de mycoses profondes, elles peuvent être très sévères et de pronostic 15 grave. Des substances antimycotiques à effets fongistatiques ou 10 fongicides sont utilisées dans le traitement des mycoses. Ce traitement est difficile car il existe peu de substances antifongiques disponibles pour la thérapeutique et elles ont 20 souvent des effets secondaires qui limitent leur utilisation. 15 Par exemple, l'Amphotéricine B qui représente le traitement de choix des mycoses profondes, a des effets secondaires néphrotoxiques. 25 Il existe donc une forte demande pour de nouvelles substances efficaces contre les champignons pathogènes et 20 susceptibles d'être utilisées en thérapeutique contre les infections fongiques. Ces substances pourront être utilisées 30 soit en prophylaxie, dans le cas des états d'immunodépression graves soit en traitement curatif des infections fongiques. De plus, ces substances devront avoir un mode d'action 25 spécifique, leur permettant d'inhiber la croissance ou de 35 tuer les cellules de mycètes sans altérer les fonctions essentielles des cellules humaines. L'objet de la présente invention est de proposer des gènes pouvant constituer de nouvelles cibles pour 40 30 l'identification de substances antifongiques et notamment de substances permettant de traiter les infections dues aux champignons du genre Candida. Ces gènes seront notamment des gènes essentiels 45 indispensables à la survie et à la multiplication des 35 cellules.

Différentes méthodes peuvent être utilisées pour déterminer si le produit d'un gène est essentiel à la survie d'un mycète ou essentiel à l'établissement ou au maintien

50

		3
5		d'une infection. L'identification du caractère essentiel d'un
		gène apporte une information additionnelle concernant sa
		fonction et permet de sélectionner les gènes dont le produit
		constitue une cible intéressante pour une substance
10	=	antifongique. Des exemples de ces méthodes sont résumés
	3	brièvement ci-après. Ces méthodes sont décrites dans les
		ouvrages suivants :
		- Guthrie C. and Fink G.R. Eds. Methods in Enzymology,
15		Vol 194, 1991, 'Guide to Yeast Genetics and Molecular
	10	Biology', Academic Press Inc.
		- Rose A.H., A.E. Wheals and J.S. Harrison Eds. The
		yeasts, Vol.6, 1995, 'Yeast Genetics', Academic Press Inc.
20		Ausubel F. et al. Eds. 'Short Protocols in Molecular
		Biology', 1995, Wiley.
	15	- Brown A.J.P. and Tuite M.F. (Eds) 'Yeast Gene Analysis'
		Methods in Microbiology, Vol 26, 1998, Academic Press Inc.
25		Selon les cas, on utilisera l'une ou l'autre des
		méthodes décrites en fonction du résultat recherché.
		Notamment, on pourra procéder par une méthode d'inactivation
	20	directe du gène ou d'inactivation transitoire du gène.
30		Dans la levure <i>S. cerevisiae</i> , la méthode la plus
		couramment utilisée consiste à inactiver le gène étudié dans
		le chromosome de la levure. L'allèle sauvage est inactivé par
		insertion d'un marqueur génétique (par exemple un gène
35	25	d'auxotrophie ou un marqueur de résistance). Cette insertion
		est obtenue en général par la méthode de conversion génique à
		l'aide de cassettes de délétion linéaires préparées selon les
	•	méthodes connues telles que décrites dans Guthrie C. and Fink
40		G.R. Eds. Methods in Enzymology, Vol 194, 1991, 'Guide to
40	30	Yeast Genetics and Molecular Biology', Academic Press Inc. ou
	-	dans Gultner et al. Nucleic Acid Research, 1996, 24: 2519-
		2524.
		L'inactivation se fait dans une souche diploïde puis la
45		méiose est induite par des méthodes classiques comme par
	25	exemple la croissance en milieu pauvre en azote et les quatre
		spores issues d'asques individuels sont isolées par
		micromanipulation. L'inactivation d'un gène essentiel se
50		traduit par une perte de viabilité des deux spores (sur

quatre) qui ont acquis le marqueur de sélection. La viabilité
de ces spores peut être restaurée par l'introduction dans la
souche d'un plasmide centromérique ou réplicatif portant une
copie du gène sauvage.

5 On peut également procéder par inactivation transitoire
du gène : l'utilisation de promoteurs régulables permet
également de déterminer si un gène est essentiel à la survie
d'une cellule. Pour ce faire, on remplace le promoteur natif
du gène par un promoteur régulable directement sur le

10 chromosome ou sur un plasmide extra-chromosomique. On peut
par exemple utiliser le promoteur GAL ou ses dérivés ou le
promoteur tetO (Mumberg et al. 1994, Nucleic Acid Research,

20

25

30

35

40

45

50

55

22 : 5767-5768 ; Belli et al. 1998, Yeast, 14 : 1127-1138). Le caractère essentiel du gène étudié peut ainsi être observé 15 lorsque le promoteur utilisé est réprimé, soit dans les souches haploïdes chez la levure S. cerevisiae, soit après inactivation du deuxième allèle chez les micro-organismes diploïdes tels que C. albicans.

A partir d'un gène essentiel connu dans une espèce, on peut procéder à l'identification de gènes homologues ou de même fonction dans une autre espèce de mycète : les méthodes connues peuvent être utilisées pour identifier les gènes homologues d'un gène étudié dans une autre espèce de mycète (gènes dits 'orthologues') ou les gènes de même fonction que le gène étudié. Des exemples de méthodes utilisables sont développées ci-après. Ces méthodes sont décrites dans les

ouvrages suivants :

Sambrook et al. 1989, Molecular Cloning, Cold Spring
Harbor Laboratory Press.

- Ausubel F. et al. Eds. 'Short Protocols in Molecular Biology', 1995, Wiley.

- Guthrie C. and Fink G.R. Eds. Methods in Enzymology, Vol 194, 1991, 'Guide to Yeast Genetics and Molecular Biology', Academic Press Inc.

On peut procéder par exemple par criblage par homologie, par complémentation génique ou encore par amplification par PCR en utilisant des amorces spécifiques à partir de banques d'ADN génomique ou de banques d'ADN complémentaire (ADNc) des

5

5 mycètes pathogènes.

Les banques d'ADN génomique ou d'ADNC peuvent être préparées selon les méthodes connues et les fragments polynucléotidiques obtenus sont intégrés dans un vecteur d'expression, par exemple un vecteur tel que pRS423 ou ses dérivés qui sont utilisables aussi bien dans la bactérie E. coli que dans S. cerevisiae. Le criblage de la banque se fera par les méthodes classiques d'hybridation in situ sur une réplique des colonies bactériennes. Les conditions

10 d'hybridation seront adaptées à la stringence voulue pour la réaction, de façon à identifier des fragments de plus ou moins grande homologie avec le gène étudié.

Les gènes des autres espèces de mycètes peuvent également être identifiés par des méthodes connues dites de 15 'complémentation génique'. Par exemple, une souche de S. cerevisiae dans laquelle un gène essentiel identifié a été placé sous le contrôle d'un promoteur régulable peut être transformée par un échantillon représentatif d'une banque d'ADN ou d'ADNc correspondant au mycète étudié tel que 20 C. albicans. Lorsque les levures sont cultivées dans des conditions telles que le promoteur est réprimé, seules peuvent survivre les levures portant un vecteur recombinant contenant une séquence du mycète étudié fonctionnellement équivalente au gène essentiel initial. La séquence du gène 25 dans le mycète étudié est ensuite identifiée en isolant le vecteur recombinant et en le séquençant selon les méthodes connues. De la même façon, la méthode dite de 'plasmid shuffle' permet de sélectionner les levures ayant perdu l'expression du gène essentiel initial et contenant une 30 séquence fonctionnellement équivalente provenant d'un autre mycète.

L'étude peut être réalisée sur différentes espèces : les gènes fonctionnellement équivalents ou homologues en séquence à un gène essentiel peuvent être isolés dans d'autres mycètes et notamment dans les différents mycètes pathogènes pour l'homme. Pour cela peuvent être utilisés notamment les mycètes appartenant aux classes Zygomycètes, Basidiomycètes, Ascomycètes et Deutéromycètes. Tout particulièrement, les

55

50

10

15

20

25

30

35

40

mycètes appartiendront aux sous-classes Candida spp.,
notamment Candida albicans, Candida glabrata, Candida
tropicalis, Candida parapsilosis et Candida krusei. Les
mycètes appartiendront également aux sous-classes Aspergillus
fumigatus, Coccidioides immitis, Cryptococcus neoformans,
Histoplasma capsulatum, Blastomycès dermatidis,
Paracoccidioides brasiliensis et Sprorothrix schenckii.
La présente invention concerne ainsi l'identification de
substances antimycotiques telles que notamment de substances
anti-Candida albicans.
La présente invention concerne ainsi des inhibiteurs de

La présente invention concerne ainsi des inhibiteurs de protéines fongiques pouvant être utilisés comme agents antifongiques.

On connaît ainsi des organismes pathogènes tels que la levure pathogène Candida albicans qui causent des maladies infectieuses dans l'organisme humain. Dans le but de trouver des moyens de traiter des maladies, on peut choisir des cibles telles que par exemple intracellulaires et l'une ou plusieurs des protéines de la présente invention codées par les gênes de la présente invention peut ou peuvent être l'une ou certaines de ces cibles.

La présente invention a ainsi permis d'isoler des polynucléotides ADN et ARN codant pour des protéines de Candida albicans et de révéler leurs séquences

25 nucléotidiques.

Nous appellerons les gênes de la présente invention codant pour les protéines de Candida albicans de la présente invention comme suit : CaDR472, CaDR489, CaDR527 sous forme de deux allèles différents soit 1CaDR527 et 2CaDR527, 30 CaFL024, CaNL260 et CaDR361.

Les séquences nucléotidiques de ces gènes (et des deux allèles pour CaDR527) sont donnés dans le listing de séquences ci-après et sont respectivement nommés comme suit :

- SEQ ID Nº 1 pour CaDR472,
- 35 SEQ ID Nº 3 pour CaDR489,
 - SEQ ID Nº 5 pour le 1er allèle de CaDR527 soit 1CaDR527,
 - SEQ ID Nº 7 pour le 2ème allèle de CaDR527 soit 2CaDR527,
 - SEQ ID Nº 9 pour CaFL024,

20

25

30

35

40

45

PCT/FR00/01567

WO 00/75305

7

5		- SEQ ID N° 11 pour CaNL260
		- et SEQ ID Nº 13 pour CaDR361.
		Les séquences polypeptidiques des protéines codées par
		les gènes de la présente invention sont respectivement
10	5	nommées comme suit :
		- SEQ ID N° 2 ou PCaDR472 pour la protéine codée par
		CaDR472,
		- SEQ ID Nº 4 ou PCaDR489 pour la protéine codée par
15		CaDR489,
	10	- SEQ ID N° 6 ou 1PCaDR527 pour la protéine codée par
		1CaDR527,
		- SEQ ID Nº 8 ou 2PCaDR527 pour la protéine codée par
20		2CaDR527,
		- SEQ ID Nº 10 ou PCaFL024 pour la protéine codée par
,	15	CaFL024,
		- SEQ ID Nº 12 ou PCaNL260 pour la protéine codée par
25		CaNL260
		- et SEQ ID Nº 14 ou PCaDR361 pour la protéine codée par
		CaDR361.
	20	•
30		polynucléotides isolés contenant chacun une séquence
		nucléotidique choisie dans le groupe suivant :
		a) un polynucléotide ayant au moins 50 % ou au moins
	•	60 % et de préférence au moins 70 % d'identité avec un
35	25	polynucléotide codant pour un polypeptide ayant la même
		fonction et ayant une séquence en acides aminés homologue
		d'une séquence choisie parmi SEQ ID N° 2, SEQ ID N° 4, SEQ ID
		N° 6, SEQ ID N° 8, SEQ ID N° 10, SEQ ID N° 12 et SEQ ID
40		N° 14, telles que définies ci-dessus et ci-après,
	30	
		c) un polynucléotide comprenant au moins 15 bases
		consécutives du polynucléotide défini en a) et b).
45		La présente invention a ainsi pour objet les
10		polynucléotides définis ci-dessus tels que ces
	35	polynucléotides sont des ADN.
		La présente invention a ainsi pour objet les
50		polynucléotides définis ci-dessus tels que ces
-		polynucléotides sont des ARN.

PCT/FR00/01567

WO 00/75305

La présente invention a plus précisément pour objet les 5 polynucléotides tels que définis ci-dessus comprenant chacun une séquence de nucléotides choisie parmi SEQ ID Nº 1, SEQ ID N° 3, SEQ ID N° 5, SEQ ID N° 7, SEQ ID N° 9, SEQ ID N° 11 et 5 SEQ ID Nº 13 telles que définies ci-dessus et ci-après. 10 La présente invention a ainsi permis d'isoler les séquences d'ADN codant respectivement pour les protéines de Candida albicans PCaDR472, PCaDR489, 1PCaDR527, 2PCaDR527, PCaFL024, PCaNL260, PCaDR361, telles que définies ci-dessus. 15 La présente invention a également permis de révéler les .10 séquences d'acides nucléiques des gènes de la présente invention et également les séquences d'acides aminés des protéines PCaDR472, PCaDR489, 1PCaDR527, 2PCaDR527, PCaFL024, 20 PCaNL260, PCaDR361, codées par ces gènes. La présente invention a ainsi pour objet les séquences 15 d'ADN telles que définies par les polynucléotides ci-dessus, caractérisées en ce que ces séquences d'ADN sont celles des 25 gènes codant respectivement pour des protéines de Candida albicans (ayant les mêmes fonctions que les protéines 20 PCaDR472, PCaDR489, 1PCaDR527, 2PCaDR527, PCaFL024, PCaNL260, PCaDR361) et contenant chacune une séquence de nucléotides 30 choisie parmi SEQ ID N° 1, SEQ ID N° 3, SEQ ID N° 5, SEQ ID N° 7, SEQ ID N° 9, SEQ ID N° 11 et SEQ ID N° 13 telles que définies ci-dessus et ci-après. Une telle séquence SEQ ID N° 1 de la présente invention 25 35 comprend donc 747 nucléotides. Une telle séquence SEQ ID N° 3 de la présente invention comprend donc 711 nucléotides. Une telle séquence SEQ ID N° 5 de la présente invention 40 30 comprend donc 1383 nucléotides. Une telle séquence SEQ ID N° 7 de la présente invention comprend donc 1383 nucléotides. 45

Une telle séquence SEQ ID Nº 9 de la présente invention comprend donc 2262 nucléotides.

Une telle séquence SEQ ID N° 11 de la présente invention comprend donc 447 nucléotides.

Une telle séquence SEQ ID N° 13 de la présente invention comprend donc 966 nucléotides.

55

La présente invention a aussi pour objet les séquences 5 d'ADN de gènes telles que définies ci-dessus codant chacune pour une séquence d'acides aminés choisie parmi SEQ ID Nº 2, SEQ ID N° 4, SEQ ID N° 6, SEQ ID N° 8, SEQ ID N° 10, SEQ ID 10 5 N° 12 et SEQ ID N° 14. La séquence SEQ ID N° 2 de la protéine PCaDR472 comprend donc 248 AA. La séquence SEQ ID Nº 4 de la protéine PCaDR489 comprend 15 donc 236 AA. La séquence SEQ ID N° 6 de la protéine 1PCaDR527 10 comprend donc 460 AA. La séquence SEQ ID Nº 8 de la protéine 2PCaDR527 20 comprend donc 460 AA. La séquence SEQ ID N° 10 de la protéine PCaFL024 15 comprend donc 753 AA. La séquence SEQ ID N° 12 de la protéine PCaNL260 comprend donc 148 AA. 25 La séquence SEQ ID Nº 14 de la protéine PCaDR361 comprend donc 321 AA. La présente invention a particulièrement pour objet les 20 séquences d'ADN codant pour les protéines PCaDR472, PCaDR489, 30 1PCaDR527, 2PCaDR527, PCaFL024, PCaNL260, PCaDR361 telles que définies ci-dessus ainsi que les séquences d'ADN qui hybrident avec celles-ci et/ou présentent des homologies 25 significatives avec ces séquences ou des fragments de celles-35 ci et codent pour des protéines ayant les mêmes fonctions. La présente invention a également pour objet les séquences d'ADN telles que définies ci-dessus comprenant des modifications introduites par suppression, insertion et/ou 40 30 substitution d'au moins un nucléotide codant pour des protéines ayant les mêmes activités que les protéines PCaDR472, PCaDR489, 1PCaDR527, 2PCaDR527, PCaFL024, PCaNL260, PCaDR361 telles que définies ci-dessus. 45

50

55

La présente invention a notamment pour objet les séquences d'ADN telles que définies ci-dessus ainsi que les séquences d'ADN qui ont une homologie de séquence nucléotidique d'au moins 50 % ou au moins 60 % et de préférence au moins 70 % avec lesdites séquences d'ADN.

La présente invention a ainsi également pour objet les séquences d'ADN telles que définies ci-dessus ainsi que les séquences d'ADN qui codent pour des protéines de fonctions similaires dont les séquences respectives en AA ont une

10 5 homologie d'au moins 40 % et notamment de 45 % ou d'au moins 50 %, plutôt au moins 60 % et de préférence au moins 70 % avec les séquences en AA codées par lesdites séquences d'ADN.

Par séquences qui hybrident, on inclut les séquences d'ADN qui hybrident avec l'une des séquences d'ADN ci-dessus sous des conditions standard de stringence élevée, moyenne ou basse et qui codent pour un polypeptide ayant la même

20

25

30

35

40

45

50

55

30

fonction. Les conditions de stringence sont celles réalisées
dans les conditions connues de l'homme du métier telles que
celles décrites par Sambrook et al, Molecular cloning, Cold
15 Spring Harbor Laboratory Press, 1989. De telles conditions de
stringence sont par exemple une hybridation à 65°C, pendant
18 heures dans une solution 5 x SSPE ; 10 x Denhardt's ;
100 μg/ml ADNss ; 1 % SDS suivie de 3 lavages pendant 5

minutes avec 2 x SSC; 0,05 % SDS, puis 3 lavages pendant 15
20 minutes à 65°C dans 1 x SSC; 0,1 % SDS. Les conditions de forte stringence comprennent par exemple une hybridation à 65°C, pendant 18 heures dans une solution 5 x SSPE; 10 x Denhardt; 100 μg/ml ADNss; 1 % SDS suivie de 2 lavages pendant 20 minutes avec une solution 2 x SSC; 0,05 % SDS à

25 65°C suivis d'un dernier lavage pendant 45 minutes dans une solution 0,1 x SSC; 0,1 % SDS à 65°C. Les conditions de stringence moyenne comprennent par exemple un dernier lavage pendant 20 minutes dans une solution 0,2 x SSC, 0,1 % SDS à 65°C.

Par séquences qui présentent des homologies significatives, on inclut les séquences ayant une identité modérée ou importante de séquence nucléotidique avec l'une des séquences d'ADN ci-dessus et qui codent pour une protéine ayant la même fonction.

Par séquence d'ADN similaires, on entend ainsi des séquences d'ADN qui peuvent appartenir à d'autres mycètes que Candida albicans et notamment à S.c. et qui sont similaires ou identiques aux séquences d'ADN des gènes de Candida

10

20

5

10

15

20

25

30

35

40

45

50

albicans tels que définis ci-dessus. Ces séquences d'ADN similaires ne sont pas forcément identiques aux séquences d'ADN des gènes tels que définis ci-dessus. L'homologie de séquence au niveau nucléotidique peut-être modérée ou 5 importante. La présente invention concerne ainsi notamment les séquences d'ADN qui présentent une homologie de séquence nucléotidique d'au moins 50 %, de façon préférée d'au moins 60 % et de façon encore plus préférée d'au moins 70 % avec les séquences des gènes de la présente invention.

De plus, ces séquences d'ADN similaires ne codent pas forcément pour des protéines identiques, au niveau des séquences en acides aminés aux protéines codées par les gènes tels que définis ci-dessus. Ainsi la présente invention concerne notamment les séquences d'ADN qui codent pour des 15 protéines dites homologues ayant une homologie de séquence en acides aminés d'au moins 40 %, notamment 45 %, de façon préférée au moins de 50 %, de façon plus préférée au moins de 60 % et de façon encore plus préférée au moins de 70 % avec les protéines codées par les gènes de la présente invention.

Chaque gène de la présente invention est représenté comme une séquence ADN simple brin comme indiqué dans SEQ ID N° 1, SEQ ID N° 3, SEQ ID N° 5, SEQ ID N° 7, SEQ ID N° 9, SEQ ID N° 11 et SEQ ID N° 13 représentées respectivement dans le listing de séquences ci-après, mais il est entendu que la 25 présente invention inclut la séquence ADN complémentaire de cette séquence ADN simple brin et inclut également la séquence ADN dite double brin constituée de ces deux séquences ADN complémentaires d'une de l'autre.

Les séquences d'ADN telles que définies ci-dessus sont 30 des exemples de combinaison de codons codant pour les acides aminés correspondant respectivement aux séquences d'acides aminés SEQ ID N° 2, SEQ ID N° 4, SEQ ID N° 6, SEQ ID N° 8, SEQ ID N° 10, SEQ ID N° 12 et SEQ ID N° 14, telles que définies ci-dessus, mais il est entendu également que la 35 présente invention inclut toute autre combinaison arbitraire de codons codant pour ces mêmes séquences d'acides aminés.

Pour la préparation des polynucléotides et notamment des séquences d'ADN telles que définies ci-dessus, des séquences

PCT/FR00/01567

WO 00/75305

5

10

15

20

25

30

35 、

40

45

d'ADN modifiées comme indiqué ci-dessus ou encore des séquences d'ADN homologues telles que définies ci-dessus, on peut utiliser les techniques connues de l'homme du métier et notamment celles décrites dans l'ouvrage de Sambrook, J. 5 Fritsh, E. F. § Maniatis, T. (1989) intitulé : 'Molecular

12

cloning : a laboratory manual', Laboratory, Cold Spring

Harbor NY.

Les séquences d'ADN homologues telles que définies cidessus peuvent notamment être isolées selon les méthodes 10 connues de l'homme du métier par exemple par la technique de PCR en utilisant des amorces nucléotidiques dégénérées pour amplifier ces ADN à partir de banques génomiques ou de banques d'ADNc des mycètes correspondants. Les ADNc peuvent également être préparés à partir d'ARNm isolés de mycètes

15 d'espèces différentes étudiées dans le cadre de la présente invention telles que Candida albicans mais par exemple et tout aussi bien : Candida stellatoidea, Candida tropicalis, Candida parapsilosis, Candida krusei, Candida pseudotropicalis, Candida quillermondii, Candida glabrata, Candida

20 lusianiae ou Candida rugosa ou encore des mycètes telles que Saccharomyces cerevisiae ou encore des mycètes du type Aspergillus ou Cryptococcus et notamment, par exemple, Aspergillus fumigatus, Coccidioides immitis, Cryptococcus neoformans, Histoplasma capsulatum, Blastomyces dermatitidis, Paracoc-

25 cidioides brasiliens et Sporothrix schenckii ou encore des mycètes des classes des phycomycètes or eumycètes en particulier les sous-classes de basidiomycètes, ascomycètes, mehiascomycétales (levure) et plectascales, gymnascales (champignon de la peau et des cheveux) ou de la classe des

30 hyphomycètes, notamment les sous-classes conidiosporales et thallosporales parmi lesquels les espèces suivantes : mucor, rhizopus, coccidioides, paracoccidioides (blastomyces, brasiliensis), endomyces (blastomyces), aspergillus, menicilium (scopulariopsis), trichophyton (ctenomyces), epidermo-

35 phton, microsporon, piedraia, hormodendron, phialophora, sporotrichon, cryptococcus, candida, geotrichum, trichosporon ou encore toropsulosis.

Les polynucléotides de la présente invention peuvent

50

13

ainsi être obtenus en utilisant les méthodes usuelles de clonage et de criblage telles que celles de clonage et séquençage à partir de fragments d'ADN chromosomique extraits de cellules ou encore issus de banques de gènes. Par exemple, 5 pour obtenir les polynucléotides de la présente invention, on peut partir d'une banque de fragments d'ADN chromosomique. On peut préparer une sonde correspondant à un oligonucléotide marqué par un élément radioactif, constituée de préférence de 17 nucléotides ou encore 20 ou plus et dérivée d'une séquence 10 partielle. Les clones contenant un ADN identique à celui de la sonde peuvent être ainsi identifiés sous des conditions stringentes. Par le séquençage de clones individuels ainsi identifiés, en utilisant des amorces de séquençage issues de la séquence d'origine, il est alors possible de prolonger la 15 séquence dans les deux directions pour déterminer la séquence du gène complet. De façon usuelle et efficace, un tel séquençage peut être réalisé en utilisant un ADN double brin dénaturé préparé à partir d'un plasmide. De telles techniques sont décrites par Maniatis, T. Fritsch, E.F. et Sambrook 20 comme indiqué ci-dessus. (Laboratory Manual, Cold Spring Harbor, New York (1989) (notamment en 1.90 et 13.70 dans les chapitres de screening par hybridation et séquençage à partir d'ADN double brin dénaturé).

Dans le cadre de la présente invention, on pourrait

25 notamment utiliser une banque de fragments d'ADN

chromosomique de Candida albicans comme indiqué ci-après dans
les exemples décrits dans la partie expérimentale.

Une description détaillée des conditions opératoires dans lesquelles a été réalisée la présente invention est 30 donnée ci-après.

L'invention a tout particulièrement pour objet les polypeptides ayant chacun une séquence d'acides aminés choisie parmi SEQ ID N° 2, SEQ ID N° 4, SEQ ID N° 6, SEQ ID N° 8, SEQ ID N° 10, SEQ ID N° 12 et SEQ ID N° 14, codés par les séquences d'ADN telles que définies ci-dessus et les analogues de ces polypeptides.

Par analogues de polypeptides, on entend les polypeptides dont la séquence d'acides aminés a été modifiée

50

5

10

15

20

25

30

35

40

PCT/FR00/01567

WO 00/75305

par substitution, suppression ou addition d'un ou plusieurs acides aminés mais qui conservent la même fonction biologique. De tels polypeptides analogues peuvent être produits spontanément ou peuvent être produits par

14

10

5

5 modification post-transcriptionnelle ou encore par modification de la séquence ADN de la présente invention comme indiqué ci-dessus, en utilisant les techniques connues de l'homme du métier : parmi ces techniques, on peut citer notamment la technique de mutagénèse dirigée connue de

15

10 l'homme du métier (Kramer, W., et al., Nucl. Acids Res., 12, 9441 (1984) ; Kramer, W. and Fritz, H.J., Methods in Enzymology, 154, 350 (1987); Zoller, M.J. and Smith, M. Methods in Enzymology, 100,468 (1983)).

20

La synthèse d'ADN modifiés peut être faite comme 15 indiqué ci-dessus et notamment en utilisant des techniques de synthèse chimique bien connues telles que par exemple la méthode au phosphotriester [Letsinger, R.L and Ogilvie, K.K., K. Am. CHEM. Soc., 91,3350 (1969); Merrifield, R.B.,

25

Sciences, 150, 178 (1968)] ou la méthode à la phosphoamidite 20 [Beaucage, S.L and Caruthers, M .H., Tetrahedron Lett., 22, 1859 (1981); McBRIDE, L.J. and Caruthers, M.H. Tetrahedron Lett., 24 245 (1983)] ou encore par la combinaison de ces méthodes.

30

Les polypeptides de la présente invention peuvent donc 25 être préparés par les techniques connues de l'homme du métier, notamment partiellement par synthèse chimique ou encore par la technique de l'ADN recombinant par expression dans une cellule hôte procaryote ou eucaryote comme indiqué ci-après.

40

35

La présente invention a particulièrement pour objet le 30 procédé de préparation de protéines recombinantes PCaDR472, PCaDR489, 1PCaDR527, 2PCaDR527, PCaFL024, PCaNL260, PCaDR361 ayant respectivement les séquences d'acides aminés SEQ ID \mbox{N}° 2, SEQ ID \mbox{N}° 4, SEQ ID \mbox{N}° 6, SEQ ID \mbox{N}° 8, SEQ ID \mbox{N}° 10,

45

35 SEQ ID N° 12 et SEQ ID N° 14, telles que définies ci-dessus, comprenant, pour la préparation de chacune de ces protéines, l'expression dans un hôte approprié de la séquence d'ADN telle que définie ci-dessus codant pour cette protéine puis

15

l'isolement et la purification de ladite protéine

Pour produire les polypeptides de la présente invention, on peut notamment utiliser les techniques de l'ADN

5 recombinant en utilisant les méthodes de génie génétique et de culture cellulaire connues de l'homme du métier. On peut ainsi procéder par les étapes suivantes : d'abord préparation du gène approprié, puis incorporation de ce gène dans un vecteur, transfert du vecteur porteur du gène dans une

10 cellule hôte appropriée, production du polypeptide par expression du gène, isolement du polypeptide, le polypeptide ainsi produit pouvant être ensuite purifié.

Les polypeptides de la présente invention obtenus par l'expression des polynucléotides de la présente invention

15 peuvent être purifiés à partir de cultures de cellules transformées par les méthodes bien connues de l'homme du métier telles que précipitation au sulfate d'ammonium ou à l'éthanol, extraction en conditions acides, chromatographie échangeuse d'anions ou de cations, chromatographie

20 d'interaction hydrophobique, chromatographie d'affinité, chromatographie à l'hydroxylapatite et la chromatographie à haute performance liquide (HPLC). Des techniques bien connues de l'homme du métier peuvent être utilisées pour régénérer la protéine lorsque celle-ci est dénaturée durant son isolement ou sa purification.

Les séquences d'ADN selon la présente invention et notamment SEQ ID N° 1, SEQ ID N° 3, SEQ ID N° 5, SEQ ID N° 7, SEQ ID N° 9, SEQ ID N° 11 et SEQ ID N° 13 peuvent être préparées selon les techniques connues de l'homme du métier notamment par synthèse chimique ou par criblage d'une banque génomique ou d'une banque d'ADNC à l'aide de sondes d'oligonucléotides de synthèse par les techniques connues d'hybridation, ainsi amplification d'ADN à partir de fragments isolés ou encore par réverse transcriptase à partir d'ARN messager (ARNm).

L'avantage de la technique comprenant d'abord l'isolement d'ARNm par extraction des ARN totaux puis la synthèse d'ADNc à partir de ces ARNm par réverse

55

5

10

15

20

25

30

35

40

45

16

5

transcriptase réside notamment dans le fait que l'ARNm ne contient pas les introns alors que ces séquences non codantes peuvent être présentes dans l'ADN génomique.

10

On peut procéder en utilisant les techniques usuelles de 5 clonage connues de l'homme du métier et notamment décrites dans l'ouvrage de Sambrook, J. Fritsh, E. F. § Maniatis, T. (1989) intitulé: 'Molecular cloning: a laboratory manual', Laboratory, Cold Spring Harbor NY.

15

Dans ces techniques, on peut procéder au clonage par insertion de fragment dans un plasmide qui peut être fourni avec un kit commercial adapté puis transformation d'une souche bactérienne par le plasmide ainsi obtenu. On peut utiliser notamment la souche E. coli XL1 Blue ou DH5 alpha. Les clones peuvent ensuite être cultivés pour extraire l'ADN plasmidique selon les techniques classiques de l'homme du métier référencées ci-dessus (Sambrook, Fritsh et Maniatis). On peut procéder au séquençage de l'ADN du fragment amplifié contenu dans l'ADN plasmidique.

25

20

Les polypeptides de la présente invention peuvent être

20 obtenus par expression dans une cellule hôte contenant un
polynucléotide selon la présente invention et notamment une
séquence d'ADN codant pour un polypeptide de la présente
invention précédée d'une séquence promoteur convenable. La
cellule hôte peut être une cellule procaryote, par exemple E.

25 coli ou une cellule eucaryote telle que les levures comme par
exemple les Ascomycètes parmi lesquels les Saccharomyces ou
encore des cellules de mammifères comme par exemple des

35

30

cellules Cos.

La présente invention a particulièrement pour objet les
vecteurs d'expression contenant pour chacun l'une des
séquences d'ADN de la présente invention telles que définies
ci-dessus.

40

Dans chacun de ces vecteurs d'expression, une telle séquence d'ADN est donc ainsi notamment la séquence d'ADN 35 d'un gène de la présente invention codant pour une protéine de Candida albicans et contenant une séquence de nucléotides choisie parmi SEQ ID N° 1, SEQ ID N° 3, SEQ ID N° 5, SEQ ID N° 7, SEQ ID N° 9, SEQ ID N° 11 et SEQ ID N° 13.

45

Dans chacun de ces vecteurs d'expression, une telle séquence d'ADN est ainsi encore plus particulièrement celle des gènes tels que définis ci-dessus codant pour l'une des séquences d'acides aminés SEQ ID N° 2, SEQ ID N° 4, SEQ ID N° 5 N° 6, SEQ ID N° 8, SEQ ID N° 10, SEQ ID N° 12 et SEQ ID N° 14 telles que définies ci-dessus et ci-après.

Dans chacun des vecteurs d'expression de la présente invention, une telle séquence d'ADN est ainsi une séquence d'ADN telle que définie ci-dessus codant pour l'une des protéines PCaDR472, PCaDR489, 1PCaDR527, 2PCaDR527, PCaFL024, PCaNL260, PCaDR361 ainsi que les séquences d'ADN qui hybrident avec celle-ci et/ou présentent des homologies significatives avec cette séquence ou des fragments de celle-ci ou encore les séquences d'ADN comprenant des modifications introduites par suppression, insertion et/ou substitution d'au moins un nucléotide codant pour une protéine ayant la même activité.

Dans chacun des vecteurs d'expression de la présente invention, une telle séquence d'ADN est notamment une séquence d'ADN telle que définie ci-dessus ainsi que les séquences d'ADN similaires qui ont une homologie de séquence nucléotidique d'au moins 50 % ou au moins 60 % et de préférence au moins 70 % avec ladite séquence d'ADN ou encore les séquences d'ADN similaires qui codent pour une protéine dont la séquence en AA a une homologie d'au moins 40 % et notamment de 45 % ou d'au moins 50 %, plutôt au moins 60 % et de préférence au moins 70 % avec la séquence en AA codée par ladite séquence d'ADN.

Les vecteurs d'expression sont des vecteurs permettant l'expression de la protéine sous le contrôle d'un promoteur convenable. Un tel vecteur peut être un plasmide, un cosmide ou un ADN viral. Pour les cellules procaryotes, le promoteur peut être par exemple le promoteur lac, le promoteur trp, le promoteur tac, le promoteur β-lactamase ou le promoteur PL.
35 Pour les cellules de levure, le promoteur peut être par exemple le promoteur PGK ou le promoteur GAL. Pour les cellules de mammifères, le promoteur peut être par exemple le promoteur SV40 ou les promoteurs de l'adénovirus.

18

Des vecteurs type Baculovirus peuvent être aussi utilisés pour l'expression dans des cellules d'insectes.

5

10

15

20

25

30

35

40

45

50

55

30

Les cellules hôtes sont par exemple des cellules procaryotes ou des cellules eucaryotes. Les cellules 5 procaryotes sont par exemple *E. coli*, Bacillus ou Streptomyces. Les cellules hôtes eucaryotes comprennent des levures ainsi que des cellules d'organismes supérieurs, par exemple des cellules de mammifères ou des cellules d'insectes. Les cellules de mammifères sont par exemple des cellules CHO ou BHK de hamster ou des cellules Cos de singe. Les cellules d'insectes sont par exemple des cellules SF9.

La présente invention concerne donc un procédé qui comprend l'expression d'un polynucléotide selon la présente invention codant pour l'une des protéines PCaDR472, PCaDR489, 15 1PCaDR527, 2PCaDR527, PCaFL024, PCaNL260, PCaDR361 dans une cellule hôte transformée par un polynucléotide selon la présente invention et notamment une séquence d'ADN codant pour la séquence en acides aminés SEQ ID N° 2, SEQ ID N° 4, SEQ ID N° 6, SEQ ID N° 8, SEQ ID N° 10, SEQ ID N° 12 et SEQ 1D N° 14. Dans la réalisation d'un tel procédé, la cellule hôte est notamment une cellule eucaryote.

Pour la réalisation de la présente invention, les vecteurs utilisés peuvent être par exemple pGEX ou pBAD et la cellule hôte peut être *E. coli* ou par exemple le vecteur pYX222 et la cellule hôte peut être notamment *Saccharomyces cerevisiae*.

La présente invention a notamment pour objet la cellule hôte transformée avec un vecteur tel que défini ci-dessus et renfermant une séquence d'ADN selon la présente invention.

La présente invention a ainsi pour objet le procédé de préparation d'une protéine recombinante selon la présente invention, tel que défini ci-dessus, dans lequel la cellule hôte est *E. coli* DH5 alpha ou *E. coli* XL1-Blue ou notamment Saccharomyces cerevisiae.

Un exposé détaillé des conditions dans lesquelles peuvent être menées les opérations indiquées ci-dessus est donné ci-après dans la partie expérimentale. On a ainsi obtenu un plasmide dans lequel est inséré le gène de la

PCT/FR00/01567

WO 00/75305

19 5 présente invention et on obtient ainsi également ce plasmide introduit dans une cellule hôte en opérant selon les techniques usuelles connues de l'homme du métier. La présente invention a très précisément pour objet les 5 7 plasmides déposés le 25 mai 1999 à la Collection Nationale 10 de Cultures de Microorganismes (CNCM) - INSTITUT PASTEUR -25, rue du Docteur Roux - 75724 PARIS Cedex 15 sous les numéros suivants: I-2214, I-2215, I-2216, I-2217, I-2211, I-15 2212 et I-2213. I-2214 est le numéro d'enregistrement de la souche 10 CaDR472.10 constituée par la bactérie E. coli XL1-blue contenant un plasmide portant le gène de Candida albicans CaDR472 de la présente invention préparé comme indiqué à 20 l'exemple 1 de la présente invention. Ce gène correspond donc à la séquence CaDR472 de SEQ ID 15 Nº 1. I-2215 est le numéro d'enregistrement de la souche 25 CaDR489.37 constituée par la bactérie E. coli XL1-blue contenant un plasmide portant le gène de Candida albicans 20 CaDR489 de la présente invention préparé comme indiqué à l'exemple 2 de la présente invention. 30 Ce gène correspond donc à la séquence CaDR489 de SEQ ID I-2216 est le numéro d'enregistrement de la souche 25 CaDR527.2 constituée par la bactérie E. coli XL1-blue 35 contenant un plasmide portant le gène de Candida albicans CaDR527 (allèle 1) de la présente invention préparé comme indiqué à l'exemple 3 de la présente invention. Ce gène correspond donc à la séquence 1CaDR527 de SEQ ID 40 30 Nº 5. I-2217 est le numéro d'enregistrement de la souche CaDR527.3 constituée par la bactérie E. coli XL1-blue contenant un plasmide portant le gène de Candida albicans 45 CaDR527 (allèle 2) de la présente invention préparé comme 35 indiqué à l'exemple 3 de la présente invention. Ce gène correspond donc à la séquence 2CaDR527 de SEQ ID

I-2211 est le numéro d'enregistrement de la souche

55

50

Nº 7.

PCT/FR00/01567 WO 00/75305

	20
. 5	CaFL024.4 constituée par la bactérie E. coli XL1-blue
	contenant un plasmide portant le gène de Candida albicans
	CaFL024 de la présente invention préparé comme indiqué à
	l'exemple 4 de la présente invention.
10	5 Ce gène correspond donc à la séquence CaFL024 de SEQ ID
	N° 9.
	I-2212 est le numéro d'enregistrement de la souche
	CaNL260.4 constituée par la bactérie E. coli XL1-blue
15	contenant un plasmide portant le gène de Candida albicans
	10 CaNL260 de la présente invention préparé comme indiqué à
	l'exemple 5 de la présente invention.
	Ce gène correspond donc à la séquence CaNL260 de SEQ ID
20	N° 11.
	I-2213 est le numéro d'enregistrement de la souche
	15 CaDR361.3 constituée par la bactérie E. coli XL1-blue
	contenant un plasmide portant le gène de Candida albicans
25	CaDR361 de la présente invention préparé comme indiqué à
	l'exemple 6 de la présente invention.
	Ce gène correspond donc à la séquence CaDR361 de SEQ ID
	20 N° 13.
30	La présente invention a ainsi très précisément pour
	objet l'un ou plusieurs des plasmides déposés sous les
	numéros I-2214, I-2215, I-2216, I-2217, I-2211, I-2212 et
	I-2213.
35	25 Les conditions opératoires dans lesquelles a été
	réalisée la présente invention sont décrites ci-après dans la
	partie expérimentale.
	La présente invention a ainsi pour objet un procédé de
40	criblage de produits antifongiques caractérisé en ce qu'il
	30 comprend une étape où l'on mesure l'activité de l'une des
	protéines PCaDR472, PCaDR489, 1PCaDR527, 2PCaDR527, PCaFL024,
	PCaNL260, PCaDR361 telles que définies ci-dessus en présence
45	de chacun des produits dont on souhaite déterminer les
45	propriétés antifongiques et l'on sélectionne les produits
	35 ayant un effet inhibiteur sur cette activité.
	En particulier, les gènes codant pour les protéines
50	PCaDR472, PCaDR489, 1PCaDR527, 2PCaDR527, PCaFL024, PCaNL260

PCaDR361 de la présente invention étant essentiels à la

5

10

15

20

25

30

35

40

45

50

55

21

survie des cellules de Candida albicans, des substances inhibitrices de telles protéines PCaDR472, PCaDR489, 1PCaDR527, 2PCaDR527, PCaFL024, PCaNL260, PCaDR361 pourraient être utilisables comme agents antifongiques, soit en tant que médicaments soit sur le plan industriel.

Par exemple, pour cribler des substances antifongiques telles que des substances actives sur Candida albicans, on mesure l'activité d'une protéine codée par un gène de la présente invention ou de l'un de ses homologues fonctionnels et met la protéine en présence de chacun des produits dont on souhaite déterminer les propriétés antifongiques et l'on sélectionne ainsi les produits ayant un effet inhibiteur sur cette activité.

On peut effectuer un tel criblage en mesurant l'activité

15 de l'une des protéines PCaDR472, PCaDR489, 1PCaDR527,

2PCaDR527, PCaFL024, PCaNL260, PCaDR361 de la présente
invention en présence d'activateurs ou d'inhibiteurs
potentiels à tester, par exemple par mesure in vitro dans un
milieu réactionnel approprié.

L'activité des protéines de la présente invention peut également être mesurée in vivo par un test cellulaire approprié. Par exemple, l'activité de PCaDR472, PCaDR489, 1PCaDR527, 2PCaDR527, PCaFL024, PCaNL260, PCaDR361 peut être avantageusement mesurée dans des cellules d'un mutant de Saccharomyces cerevisiae transformées par l'un des gènes de la présente invention et n'exprimant pas la protéine homologue PYDR 472w, PYDR 489w, PYDR 577w, PYFL 024c, PYNL 260c et PYDR 361c de Saccharomyces cerevisiae.

L'invention englobe également l'utilisation d'un produit 30 sélectionné comme indiqué ci-dessus pour ses propriétés inhibitrices d'une des protéines de la présente invention pour l'obtention d'un agent antifongique.

La présente invention sera mieux comprise à l'aide de la partie expérimentale qui suit et qui décrit le clonage des 35 gènes CaDR472, CaDR489, 1CaDR527, 2CaDR527, CaFL024, CaNL260 et CaDR361 de la présente invention.

La présente invention a ainsi pour objet l'utilisation d'un produit sélectionné par le procédé de criblage de

22

produits antifongiques tel que défini ci-dessus pour l'obtention d'un agent antifongique.

La présente invention a également pour objet
l'utilisation des gènes de Candida albicans de la présente
invention ou des protéines codées par ces gènes tels que
définis ci-dessus pour la sélection de produits ayant des
propriétés antifongiques tels que définis ci-dessus et
utilisés comme inhibiteurs des protéines de Candida
albicans codées par ces gènes.

La présente invention a également pour objet les compositions pharmaceutiques renfermant à titre de principe actif au moins un inhibiteur des protéines de Candida albicans de la présente invention tel que défini ci-dessus.

De telles compositions peuvent notamment être utiles 15 pour traiter les infections fongiques topiques et systémiques.

Les compositions pharmaceutiques indiquées ci-dessus peuvent être administrées par voie buccale, rectale, par voie parentérale ou par voie locale en application topique sur la 20 peau et les muqueuses ou par injection par voie intraveineuse ou intramusculaire. Ces compositions peuvent être solides ou liquides et se présenter sous toutes les formes pharmaceutiques couramment utilisées en médecine humaine comme, par exemple, les comprimés simples ou dragéifiés, les 25 gélules, les granulés, les suppositoires, les préparations injectables, les pommades, les crèmes, les gels et les préparations en aérosols ; elles sont préparées selon les méthodes usuelles. Le principe actif peut y être incorporé à des excipients habituellement employés dans ces compositions 30 pharmaceutiques, tels que le talc, la gomme arabique, le lactose, l'amidon, le stéarate de magnésium, le beurre de cacao, les véhicules aqueux ou non, les corps gras d'origine animale ou végétale, les dérivés paraffiniques, les glycols,

35 les conservateurs.

La posologie sera variable selon le produit utilisé, le sujet traité et l'affection en cause.

les divers agents mouillants, dispersants ou émulsifiants,

La présente invention a ainsi notamment pour objet

5

10

15

20

25

30

35

40

45

23

1'utilisation des compositions telles que définies ci-dessus comme agents antifongiques.

La présente invention concerne également l'induction d'une réponse immunologique chez un mammifère comprenant l'inoculation à ce mammifère d'un polypeptide selon la présente invention tel que défini ci-dessus ou un fragment de ce polypeptide ayant la même fonction de façon à produire un anticorps permettant de protéger l'animal contre la maladie.

La présente invention a ainsi encore pour objet

10 l'utilisation d'un polypeptide tel que défini ci-dessus ou un fragment de ce polypeptide ayant la même fonction pour la préparation d'un médicament destiné à induire une réponse immunologique chez un mammifère par inoculation de ce médicament produisant un anticorps permettant de protéger

15 ledit mammifère contre la maladie.

La présente invention a aussi pour objet des anticorps dirigés contre les polypeptides de la présente invention tels que définis ci-dessus ou contre un fragment de ces polypeptides ayant la même fonction et codés par les 20 polynucléotides de la présente invention et notamment par une séquence d'ADN telle que définie ci-dessus.

Les polypeptides de la présente invention peuvent ainsi être utilisés comme immunogènes pour produire des anticorps immunospécifiques de ces polypeptides. Le terme anticorps 25 utilisé désigne les anticorps aussi bien monoclonaux que polyclonaux, chimériques, simple chaîne, les anticorps non humains et les anticorps humains, aussi bien que les fragments Fab, incluant ainsi les produits d'une banque d'immunoglobulines Fab. Les anticorps générés contre les 30 polypeptides de la présente invention peuvent être obtenus par administration des polypeptides de la présente invention ou de fragments portant des épitopes, leurs analogues ou encore des cellules à un animal, de préférence non humain, en utilisant des protocoles de routine pour la préparation 35 d'anticorps monoclonaux. De tels anticorps peuvent être préparés par les méthodes bien connues dans ce domaine telles que celles décrites dans l'ouvrage Antibodies, Laboratory manuel Ed. Harbow et David Larre, Cold Spring Harbor

55

50

10

15

20

25

30

35

40

24

5 laboratory Eds, 1988.

La présente invention a ainsi tout particulièrement pour objet un anticorps dirigé contre l'une quelconque des protéines PCaDR472, PCaDR489, 1PCaDR527, 2PCaDR527, PCaFL024, 5 PCaNL260, PCaDR361 de la présente invention ou un fragment de ces protéines. Un tel fragment a notamment la même fonction que la protéine dont il est issu.

La présente invention a encore pour objet l'utilisation des gènes CaDR472, CaDR489, 1CaDR527, 2CaDR527, CaFL024,

10 CaNL260 et CaDR361 de la présente invention ou des protéines codées par ces gènes tels que définis ci-dessus pour la préparation de compositions utiles pour le diagnostic ou le traitement de maladies causées par la levure pathogène Candida albicans.

La présente invention concerne aussi l'utilisation des 15 polynucléotides de la présente invention comme réactifs de diagnostic. La détection d'un polynucléotide selon la présente invention codant pour l'une des protéines de Candida albicans de la présente invention ou de ses analogues chez un 20 eucaryote en particulier un mammifère et plus particulièrement un être humain, peut constituer un moyen de diagnostic d'une maladie : ainsi, on peut détecter un tel polynucléotide selon la présente invention et notamment une séquence d'ADN par une grande variété de techniques chez un 25 eucaryote en particulier un mammifère et plus particulièrement un être humain, infectés par un organisme contenant au moins l'un des polynucléotides de la présente invention. Les acides nucléiques pour une telle utilisation d'outil de diagnostic peuvent être détectés à partir de 30 cellules ou de tissus infectés, tels que l'os, le sang, le muscle, le cartilage ou la peau. Pour cette détection, l'ADN génomique peut être utilisé directement ou encore être amplifié par PCR ou une autre technique d'amplification. Les ARN ou ADN et ADNc peuvent également être utilisés dans le 35 même but. Par les techniques d'amplification, la lignée du mycète présent dans un eucaryote en particulier un mammifère et plus particulièrement un être humain, peut être

caractérisée par l'analyse du génotype. Des délétions ou des

55

10

15

20

25

30

35

40

45

insertions peuvent être détectées par le changement de taille 5 du produit amplifié par comparaison avec le génotype de la séquence de référence. Les points de mutations peuvent être identifiés par hybridation de l'ADN amplifié avec les 5 séquences, marquées par un élément radioactif, de 10 polynucléotides de la présente invention. Des séquences parfaitement complémentaires peuvent ainsi être distinguées de duplex qui résistent mal à la digestion par des nucléases. Les différences de séquences d'ADN peuvent aussi être 15 10 détectées par des altérations de la mobilité électrophorétique de fragments d'ADN dans des gels, avec ou sans agent dénaturant, ou par un séquençage direct d'ADN (référence : Myers et al. Science, 230 : 1242 (1985)). 20 Des changements de séquences à des localisations 15 spécifiques peuvent aussi être révélés par des expériences de protection contre des nucléases telles que RNase I et S1 ou par des méthodes de clivage chimique (référence : Cotton et 25 al., Proc Natl Acad Sci, USA, 85 : 4397-4401 (1985). Des cellules contenant l'un des polynucléotides de la

Des cellules contenant l'un des polynucléotides de la présente invention portant des mutations ou des polymorphismes peuvent aussi être détectées par un grand nombre de techniques permettant notamment de déterminer le sérotype. Par exemple, la technique RT-PCR peut être utilisée pour détecter les mutations. Il est particulièrement préféré d'utiliser les techniques de RT-PCR en conjonction avec des systèmes de détection automatique, tels que par exemple dans la technique GeneScan. ARN et ADNc peuvent être utilisés dans les techniques PCR ou RT-PCR. Par exemple, des amorces complémentaires des polynucléotides codant pour les polypeptides de la présente invention peuvent être utilisées pour identifier et analyser les mutations.

Des amorces peuvent ainsi être utilisées pour amplifier un ADN isolé de l'individu infecté. De cette façon des mutations dans la séquence d'ADN peuvent être détectées et utilisées pour diagnostiquer l'infection et déterminer le sérotype ou le classement de l'agent infectieux. De telles techniques sont usuelles pour l'homme du métier et sont décrites notamment dans le manuel 'Current Protocols in

55

50

30

35

40

26

Molecular Biology, Ausubel et al, ed. John Wiley & sons, Inc., 1995).

La présente invention concerne ainsi un procédé de diagnostic d'une maladie et de préférence d'une infection 5 fongique provoquée par Candida albicans telles que des mycoses comme indiqué ci-dessus, ce procédé comprenant la détermination à partir d'un échantillon prélevé sur un individu infecté, d'une augmentation de la quantité de l'un des polynucléotides de la présente invention. Un tel 10 polynucléotide peut notamment avoir l'une des séquences d'ADN de la présente invention telles que définies ci-dessus.

Des augmentations ou des diminutions de la quantité de polynucléotides peuvent être mesurées par les techniques bien connues de l'homme du métier telles que notamment

15 l'amplification, la PCR, RT-PCR, Northern blotting ou autres

techniques d'hybridation.

De plus, une méthode de diagnostic en accord avec la présente invention consiste en la détection d'une expression trop importante de polypeptides de la présente invention, par comparaison avec des échantillons de contrôle constitués de tissus normaux non infectés utilisés pour détecter la présence d'une infection.

Les techniques qui peuvent être utilisées pour détecter ainsi les quantités de protéines exprimées dans un échantillon d'une cellule hôte sont bien connues de l'homme du métier. On peut ainsi citer par exemple les techniques de radioimmunoassay ou de competitive-binding, analyse par Western Blot et test ELISA (ref Ausubel indiqué ci-dessus).

La présente invention a encore pour objet un kit pour le diagnostic d'infections fongiques comprenant une séquence d'ADN selon la présente invention telle que définie ci-dessus ou une séquence similaire ou un fragment fonctionnel de cette séquence, le polypeptide codé par cette séquence ou un fragment polypeptidique ayant la même fonction ou un anticorps dirigé contre un tel polypeptide codé par cette séquence d'ADN ou contre un fragment de ce polypeptide.

Ce kit pourra ainsi contenir une séquence d'ADN selon la présente invention telle que définie ci-dessus soit par

55

50

5

10

15

20

25

30

35

40

PCT/FR00/01567

WO 00/75305

27 exemple la séquence d'ADN SEQ ID Nº 1, SEQ ID Nº 3, SEQ ID 5 N° 5, SEQ ID N° 7, SEQ ID N° 9, SEQ ID N° 11 ou SEQ ID N° 13 ou un fragment de cette séquence. Un tel kit pourra de même contenir un polypeptide selon

5 la présente invention ou un fragment de ce polypeptide et notamment l'une des protéines selon la présente invention ayant la séquence en AA SEQ ID N° 2, SEQ ID N° 4, SEQ ID N° 6, SEQ ID N° 8, SEQ ID N° 10, SEQ ID N° 12 et SEQ ID N° 14 ou encore un anticorps tel que défini ci-dessus.

Un tel kit peut-être préparé selon les méthodes bien 10 connues de l'homme du métier.

Le listing de séquences SEQ ID N° 1 à SEQ ID N° 32 et les figures 1 à 6 ci-après présentent les illustrations suivantes qui permettent de mieux décrire la présente 15 invention.

Les séquences SEQ ID N° 1 à SEQ ID N° 32 représentent les séquences nucléotidiques ou peptidiques indiquées dans la présente invention.

Les séquences SEQ ID N° 1 à SEQ ID N° 14 décrivent les 20 séquences nucléotidiques des gènes de Candida albicans de la présente invention et les séquences peptidiques des protéines déduites de ces gènes.

Les séquences SEQ ID N° 1, SEQ ID N° 3, SEQ ID N° 5, SEQ ID N° 7, SEQ ID N° 9, SEQ ID N° 11 ou SEQ ID N° 13 décrivent 25 ainsi respectivement les séquences nucléotidiques des gènes de Candida albicans de la présente invention : CaDR472, CaDR489, 1CaDR527, 2CaDR527, CaFL024, CaNL260 et CaDR361.

Les séquences SEQ ID N° 2, SEQ ID N° 4, SEQ ID N° 6, SEQ ID Nº 8, SEQ ID Nº 10, SEQ ID Nº 12 et SEQ ID Nº 14 décrivent 30 respectivement les séquences peptidiques des protéines déduites des gènes de la présente invention.

Ainsi, par exemple, les séquences SEQ ID Nº 1 et SEQ ID N° 2 représentent respectivement la séquence nucléotidique du gène CaDR472 et la séquence peptidique de la protéine déduite 35 de ce gène soit PCaDR472.

Les séquences SEQ ID N° 15 à SEQ ID N° 20 représentent respectivement les séquences des 6 sondes utilisées pour la préparation des gènes de Candida albicans de la présente

55

10

15

20

25

30

35

40

45

28 invention comme indiqué ci-après dans la partie 5 expérimentale. Les séquences SEQ ID N° 21 à SEQ ID N° 32 représentent respectivement les séquences des 2 x 6 oligonucléotides 5 utilisés pour amplifier les sondes pour la préparation des 10 gènes de Candida albicans de la présente invention comme indiqué ci-après dans la partie expérimentale. Les figures 1 à 6 ci-après se réfèrent chacune respectivement à une des 6 préparations des gènes de Candida 15 10 albicans de la présente invention soit : CaDR472, CaDR489, 1CaDR527/2CaDR527, CaFL024, CaNL260 et CaDR361, ces préparations étant décrites ci-après à la partie expérimentale aux exemples 1 à 6. 20 Chacune des figures 1 à 6 décrit la comparaison de la 15 protéine déduite de la sonde utilisée pour la préparation d'un des gènes de Candida albicans de la présente invention (les 6 sondes utilisées ayant les séquences SEQ ID Nº 15 à 25 SEQ ID N° 20) à la séquence du gène de S.c. pris comme point de départ de la préparation de ce gène de Candida albicans. Ainsi, se référant à l'exemple 1 de préparation du gène 20 CaDR472 de la présente invention, la figure 33 représente la 30 comparaison de la protéine déduite de la sonde de CaDR472 (SEQ ID N° 15) à la protéine déduite du gène YDR472w de S. cerevisiae. La partie expérimentale ci-après permet de décrire la 25 35 présente invention sans toutefois la limiter. Partie expérimentale EXEMPLE 1 : Clonage et séquençage du gène CaDR472 (méthode A) 40 Le site Internet de Stanford 30 (http://candida.standford.edu/) permet d'accéder directement aux séquences préliminaires du génome de Candida albicans. L'une de ces séquences présente une homologie avec le gène 45 YDR472w de S. cerevisiae. Deux oligonucléotides ont été 35 choisis dans cette séquence soit : 5'CAATTTATTC ATGTTCGNAT CTGGAAATTG ATTTT3' nommé SEQ ID N° 21

Ces deux oligonucléotides sont utilisés pour amplifier

et 5'CCAAATCTCA AACTCTCTCT AATTAAAAC3' nommé SEQ ID N° 22.

50

29

le fragment de C. albicans. Après clonage, une séquence dite 5 sonde de CaDR472 de 320 paires de bases proche de la séquence attendue a été obtenue : la sonde de CaDR472 est appelée SEQ ID NO 15. La protéine déduite de la sonde de CaDR472 (SEQ ID 5 NO 15) a été comparée à celle de YDR472w ce qui met en 10 évidence une identité de 48% entre ces deux séquences d'AA : cette comparaison est représentée à la figure 1. Le fragment de 320 paires de bases de C. albicans a été utilisé comme sonde pour criblage de la banque génomique de 15 10 C. albicans : cette banque de C.a. a été préparée par digestion partielle de l'ADN génomique de C. albicans par Sau3AI et clonage dans le vecteur YEP24 au site de restriction BamHI. Les clones de la banque génomique ont 20 ensuite été étalés à la densité de 2000 clones par boite : 15 chaque boite est ensuite recouverte d'un filtre de nitrocellulose qui est successivement traité par : NaOH, 0.5M, pendant 5 minutes; Tris, 1M, pH 7.7, pendant 5 25 minutes; Tris; 0.5M, pH 7.7, NaCl; 1.25M, pendant 5 minutes. Après séchage, les filtres sont gardés pendant deux 20 heures à 80°C. Préhybridation et hybridation sont réalisées dans un tampon de 40 % de formamide, 5xSSC, 20 mM Tris pH 7,7 30 lxDenhardt 0,1 % SDS. La sonde est ensuite marquée au P32 par le kit Rediprime et dCTP 32p de Amersham UK. L'hybridation est réalisée en 17 heures à 42°C. Les filtres sont ensuite 25 lavés au 1xSSC, 0,1 % SDS, trois fois pendant 5 minutes à la 35 température ambiante et ensuite deux fois pendant 30 minutes à 60°C puis sont soumis à une autoradiographie pendant une nuit. Les colonies correspondant aux spots obtenus sont isolées par un nouvel étalement à faible densité suivi 40 30 d'hybridation : 8 clones positifs sont ainsi obtenus (à partir de 60 000) qui sont alors séquencés à l'aide d'un appareil ABI 377. Les séquences sont compilées à l'aide d'un software ABI puis analysées à l'aide d'un package software 45 GCG. L'un des 8 clones s'est révélé contenir la séquence 35 codante complète correspondant à la sonde utilisée : ce gène est appelé CaDR472 et cette séquence est dite SEQ ID NO 1.

CaDR472 a 47.5 % de nucléotides identiques à YDR472w de S. cerevisiae.

30

5

10

Pour la traduction en acides aminés, il a été tenu compte du fait que dans *C. albicans* le codon CTG est traduit en sérine (il y a 1 codon CTG dans CaDR472). La protéine déduite du gène CaDR472 (SEQ ID N° 1) soit SEQ ID N° 2 (PCaDR472) a 52,4 % de similarité en acides aminés et 44 % d'identité en acides aminés avec la protéine déduite de

YDR472w.

La séquence complète du gêne CaDR472 contient un codon CTG.

15

10 EXEMPLE 2 : Clonage et séquençage du gène CaDR489

20

On procède comme à l'exemple 1 à partir de séquences préliminaires du génome de *Candida albicans* du site Internet de Stanford (http://candida.standford.edu/). L'une de ces séquences présente une homologie avec le gène YDR489w de S.

15 cerevisiae. Deux oligonucléotides ont été choisis dans cette séquence soit :

25

 $5\,^{\circ}\text{GTTCATGTTT}$ GGTGACTCAG AGCGTCTCAA CTATATTG3' nommé SEQ ID N° 23

30

et 5'TTTGATAAAC ACAGGCTGGT CTAAATCTGG CTC3' nommé SEQ ID 20 N° 24.

Ces deux oligonucléotides sont utilisés pour amplifier le fragment de *C. albicans*. Après clonage, une séquence dite sonde de CaDR489 de 295 paires de bases proche de la séquence attendue a été obtenue : la sonde de CaDR489 est appelée SEQ 25 ID N° 16. La protéine déduite de la sonde de CaDR489 (SEQ ID N° 16) a été comparée à celle de YDR489w ce qui met en évidence une identité de 41% entre ces deux séquences d'AA :

35

40

cette comparaison est représentée à la figure 2.

Le fragment de 295 paires de bases de *C. albicans* a été

30 utilisé comme sonde pour criblage de la banque de gènes de *C. albicans* préparée par digestion partielle du DNA génomique de

C. albicans en procédant comme à l'exemple 1.

Le clonage est réalisé comme indiqué à l'exemple 1 et après préhybridation et hybridation réalisées comme indiqué à 35 l'exemple 1, on obtient 4 clones positifs (à partir de 40 000). On procède au séquençage et l'analyse des séquences

50

45

obtenues comme indiqué à l'exemple 1, et on obtient ainsi un clone se révélant contenir la séquence codante complète

PCT/FR00/01567 WO 00/75305 31 correspondant à la sonde utilisée : ce gène est appelé 5 CaDR489 et cette séquence est dite SEQ ID Nº 4. CaDR489 a 48.1 % de nucléotides identiques à YDR489w de S. cerevisiae. La protéine déduite du gène CaDR489 (SEQ ID N° 3) soit 10 SEQ ID nº 4 ou PcaDR489 a 50 % de similarité en acides aminés et 37 % d'identité en acides aminés avec la protéine déduite de YDR489. La séquence complète du gène CaDR489 contient un codon 15 10 CTG. EXEMPLE 3 : Clonage et séquençage du gène CaDR527 On procède comme à l'exemple 1 à partir de séquences préliminaires du génome de Candida albicans du site Internet 20 de Stanford (http://candida.standford.edu/). L'une de ces 15 séquences présente une homologie avec le gène YDR527w de S. cerevisiae. Deux oligonucléotides ont été choisis dans cette 25 séquence soit : 5'ATCTCTGATA TGAGATTTGG CTTTAAAGGC GA3' nommé SEQ ID Nº 25 et 5'GGTCTTTTTT CCATCAGCTG CCTCTGTTAT TG3' nommé SEQ ID Ces deux oligonucléotides sont utilisés pour amplifier 30

35

40

45

50

55

Ces deux oligonucléotides sont utilisés pour amplifier le fragment de *C. albicans*. Après clonage, une séquence dite sonde de CaDR527 de 392 paires de bases proche de la séquence attendue a été obtenue : la sonde de CaDR527 est appelée SEQ 25 ID N° 17. La protéine déduite de la sonde de CaDR527 (SEQ ID N° 17) a été comparée à celle de YDR527w ce qui met en évidence une identité de 41% entre ces deux séquences d'AA : cette comparaison est représentée à la figure 3.

Le fragment de 392 paires de bases de *C. albicans* a été 30 utilisé comme sonde pour le criblage de la banque génomique de *C. albicans* préparée par digestion partielle du DNA génomique de *C. albicans* en procédant comme à l'exemple 1.

Le clonage est réalisé comme indiqué à l'exemple 1 et après préhybridation et hybridation réalisées comme indiqué à 1'exemple 1, on obtient 7 clones positifs (à partir de 40 000). On procède au séquençage et l'analyse des séquences obtenues comme indiqué à l'exemple 1.

On obtient ainsi deux clones se révélant contenir chacun

PCT/FR00/01567

WO 00/75305

5

une séquence codante complète correspondant chacune à un allèle de la sonde utilisée : ce gène est appelé CaDR527 et les deux allèles sont ainsi appelés 1CaDR527 et 2CaDR527 et leurs séquences respectives sont respectivement dites SEQ ID

32

5 Nº 5 et SEQ ID Nº 7.

On constate que les gènes des allèles 1CaDR527 et 2CaDR527 (SEQ ID N° 5 et SEQ ID N° 7) diffèrent par 13 nucléotides.

Le gêne CaDR527 (ler allèle) a 53.8 % de nucléotides 10 identiques à YDR527w de S. cerevisiae.

Les protéines déduites de ces allèles soit SEQ ID Nº 6 (PCaDR527) pour le 1er allèle 1CaDR527 et SEQ ID N° 8 pour le 2ème allèle 2CaDR527 diffèrent entre elles par 5 acides aminés.

La protéine déduite du gène CaDR527 (SEQ ID N° 6) a 15 58,9 % de similarité en acides aminés et 47,9 % d'identité en acides aminés avec la protéine déduite de YDR527.

La séquence complète du gène CaDR527 ne contient pas de codon CTG.

20 EXEMPLE 4 : Clonage et séquençage du gène CaFL024 (méthode B)

Le site Internet de Stanford (http://candida.standford.edu/) permet d'accéder directement aux séquences préliminaires du génome de Candida albicans. L'une de ces séquences présente

25 une homologie avec le gène YFL024c de S. cerevisiae. Deux oligonucléotides ont été choisis dans cette séquence soit : 5' ATTCCCACAC CGGACGCTTC 3' nommé SEQ ID Nº 27 et 5'GACAACTCCT CGTACGATAG 3' nommé SEQ ID N° 28.

Ces deux oligonucléotides sont utilisés pour amplifier 30 le fragment de C. albicans. Après clonage, une séquence dite sonde de CaFL024 de 335 paires de bases proche de la séquence attendue a été obtenue : la sonde de CaFL024 est appelée SEQ ID N° 18. La protéine déduite de la sonde de CaFL024 (SEQ ID Nº 18) a été comparée à celle de YFL024c ce qui met en

35 évidence une similarité de 62 % et une identité de 58 % entre ces deux séquences d'AA : cette comparaison est représentée à la figure 4.

Ce fragment de 335 paires de bases de C. albicans a été

15

10

20

25

30

35

40

45

PCT/FR00/01567 WO 00/75305

33 utilisé comme sonde pour criblage d'une banque génomique de 5 C. albicans : cette banque de gènes de C.a. a été préparée par digestion partielle du DNA génomique de C. albicans par SauIIIA et clonage dans le vecteur YEP-24 au site de 5 restriction BamHI. Les clones de la banque de gènes ont 10 ensuite été étalés à la densité de 2000 clones par boite : chaque boite est ensuite recouverte d'un filtre de nitrocellulose qui est successivement traité par : 1.5 M NaCl/ 0.5 M NaOH pendant 5 minutes; 1.5 M NaCl/0.5 M Tris-HCl 15 10 pH 7.2/1 mM EDTA pendant 3 minutes, à deux reprises. Le DNA est ensuite 'crosslinked' aux filtres (Amersham Life Science, ultraviolet crosslinker). La sonde (100 ng) est ensuite marquée au P32 par le kit 20 Rediprime et dCTP (Amersham Life Science). Préhybridation et hybridation des filtres sont réalisées 15 dans un tampon de 30 % de formamide, 5 x SSC, 5 % de solution de Denhardt, 1 % SDS, 100 $\mu g/ml$ de DNA de sperme de saumon et 25 une concentration de la sonde de 10(6) cpm/ml : l'hybridation est réalisée à 42°C pendant 16 heures. Les filtres sont ensuite lavés trois fois, pendant 5 minutes chaque fois, à la température ambiante au 2 x SSC/ 30 0,1 % SDS puis trois fois au 1 x SSC/ 0,1 % SDS pendant 20 minutes chaque fois à 60°C. Les filtres sont soumis à une autoradiographie pendant une nuit. Les colonies correspondant 25 aux clones positifs (spots obtenus) sont isolées et soumis à 35 un second criblage par un nouvel étalement à faible densité suivi d'hybridation : 6 clones sont ainsi obtenus (à partir de 144 000) qui sont alors séquencés à l'aide d'un appareil ABI 377. Les séquences sont compilées à l'aide d'un software 40 30 ABI puis analysées à l'aide d'un package software GCG. L'un des 6 clones s'est révélé contenir la séquence codante complète correspondant à la sonde utilisée : ce gène est appelé CaFL024 et cette séquence dite SEQ ID NO 9. 45 CaFL024 a 49.1 % de nucléotides identiques à YFL024c de

35 S. cerevisiae.

50

55

Il y a 2 codons CTG dans CaFL024. La protéine déduite du gène CaFL024 (SEQ ID N° 9) soit SEQ ID n° 10 (PCaFL024) a 51,8 % de similarité en acides aminés et 44,0 % d'identité en

34 5 acides aminés avec la protéine déduite de YFL024c. EXEMPLE 5 : Clonage et séquençage du gène CaNL260 On procède comme à l'exemple 4 à partir de séquences préliminaires du génome de Candida albicans du site Internet 5 de Stanford (http://candida.standford.edu/). L'une de ces 10 séquences présente une homologie avec le gène YN1260c de S. cerevisiae. Deux oligonucléotides ont été choisis dans cette séquence soit : 5' AGATAATGTATTAAATTTAG 3' nommé SEQ ID N° 29 15 10 et 5'CTCTTAATTTATTTCTTGCC 3' nommé SEQ ID N° 30. Ces deux oligonucléotides sont utilisés pour amplifier le fragment de C. albicans. Après clonage, une séquence dite sonde de CaNL260 de 326 paires de bases proche de la séquence 20 attendue a été obtenue : la sonde de CaNL260 est appelée SEQ 15 ID N° 19. La protéine déduite de la sonde de CaNL260 (SEQ ID N° 19) a été comparée à celle de YNL260c ce qui met en évidence une similarité de 56,7 % et une identité de 40,3 % 25 entre ces deux séquences d'AA : cette comparaison est représentée à la figure 5. Le fragment de 326 paires de bases de C. albicans a été 20 utilisé comme sonde pour criblage de la banque de gènes de C. 30 albicans préparée par digestion partielle du DNA génomique de C. albicans en procédant comme à l'exemple 4. La préhybridation et hybridation sont réalisés comme 25 indiqué à l'exemple 4, on obtient 2 clones positifs (à partir 35 de 40 000). On procède au séquençage et l'analyse des séquences obtenues comme indiqué à l'exemple 4, et on obtient ainsi un clone se révélant contenir la séquence codante complète correspondant à la sonde utilisée : ce gène est 40 30 appelé CaNL260 et cette séquence est dite SEQ ID N° 11.

WO 00/75305

45

50

55

CaNL260 a 47.6 % de nucléotides identiques à YNL260c de S. cerevisiae.

La protéine déduite du gène CaNL260 (SEQ ID N° 11) soit SEQ ID N° 12 (PCaNL260) a 50,7 % de similarité en acides 35 aminés et 32,6 % d'identité en acides aminés avec la protéine déduite de YNL260c.

Il n'y a pas de codon CTG dans CaNL260. EXEMPLE 6 : Clonage et séquençage du gène CaDR361

PCT/FR00/01567 WO 00/75305

		35
5		On procède comme à l'exemple 4 à partir de séquences
		préliminaires du génome de Candida albicans :
		Le site Internet de Stanford (http://candida.standford.edu/)
		permet d'accéder directement aux séquences préliminaires du
10	5	génome de Candida albicans.
		L'une de ces séquences présente une homologie avec le
		gène YDR361c de S. cerevisiae. Deux oligonucléotides ont été
		choisis dans cette séquence soit :
15 ·		5' CCTCAAATTGATTTCCATGC 3' nommé SEQ ID N° 31
	10	et 5'GTGGAATCACTTCAACTGGC 3' nommé SEQ ID N° 32.
		Ces deux oligonucléotides sont utilisés pour amplifier
		le fragment de C. albicans. Après clonage, une séquence dite
20		sonde de CaDR361 de 374 paires de bases proche de la séquence
		attendue a été obtenue : la sonde de CaDR361 est appelée SEQ
	15	ID N° 20. La protéine déduite de la sonde de CaDR361 (SEQ ID
		N° 20) a été comparée à celle de YDR361c ce qui met en
25		évidence une similarité de 52,4 % et une identité de 40,0 %
		entre ces deux séquences d'AA : cette comparaison est
		représentée à la figure 6.
	20	Le fragment de 374 paires de bases de C. albicans a été
30		utilisé comme sonde pour criblage de la banque de gènes de C.
		albicans préparée par digestion partielle du DNA génomique de
		C. albicans par Saull/A et clonage dans le vecteur YEP 24
		(marqueur de sélection Trp) au site de restriction Bam HI.
35	25	La préhybridation et hybridation réalisés comme indiqué
		à l'exemple 4, on obtient 4 clones positifs (à partir de 40
		000). On procède au séquençage et l'analyse des séquences
		obtenues comme indiqué à l'exemple 4, et on obtient ainsi un
40		clone se révélant contenir la séquence codante complète
	30	correspondant à la sonde utilisée : ce gène est appelé
		CaDR361 et cette séquence dite SEQ ID Nº 13.
		Capp361 a 53.9 % de nucléotides identiques à YDR361c de

le S. cerevisiae.

CaDR361Il n'y a pas de codon CTG dans CaDR361.

35

50

45

Claims

5

36

REVENDICATIONS

10	5	 1) Polynucléotides isolés contenant chacun une séquence nucléotidique choisie dans le groupe suivant: a) un polynucléotide ayant au moins 50 % ou au moins 60 % et de préférence au moins 70 % d'identité avec un
15	10	polynucléotide codant pour un polypeptide ayant la même fonction et ayant une séquence en acides aminés homologue d'une séquence choisie parmi SEQ ID N° 2, SEQ ID N° 4, SEQ ID N° 6, SEQ ID N° 8, SEQ ID N° 10, SEQ ID N° 12 et SEQ ID N° 14
20	15	 b) un polynucléotide complémentaire du polynucléotide a) c) un polynucléotide comprenant au moins 15 bases consécutives du polynucléotide défini en a) et b). 2) Polynucléotides selon la revendication 1 tels que ces polynucléotides sont des ADN.
25		 3) Polynucléotides selon la revendication 1 tels que ces polynucléotides sont des ARN. 4) Polynucléotides tels que définis à la revendication 2 comprenant chacun une séquence de nucléotides choisie parmi
30	20	SEQ ID N° 1, SEQ ID N° 3, SEQ ID N° 5, SEQ ID N° 7, SEQ ID N° 9, SEQ ID N° 11 et SEQ ID N° 13. 5) Séquences d'ADN telles que définies aux revendications 1, 2 et 4 caractérisées en ce que ces séquences d'ADN sont
35	25	celles des gènes codant respectivement pour des protéines de Candida albicans (ayant les mêmes fonctions que les protéines PCaDR472, PCaDR489, 1PCaDR527, 2PCaDR527, PCaFL024, PCaNL260, PCaDR361) et contenant chacune une séquence de nucléotides
40	30	choisie parmi SEQ ID N° 1, SEQ ID N° 3, SEQ ID N° 5, SEQ ID N° 7, SEQ ID N° 9, SEQ ID N° 11 et SEQ ID N° 13. 6) Séquences d'ADN de gènes selon la revendication 5 codant chacune pour une séquence d'acides aminés choisie parmi SEQ ID N° 2, SEQ ID N° 4, SEQ ID N° 6, SEQ ID N° 8, SEQ ID N° 10
45	35	SEQ ID N° 12 et SEQ ID N° 14. 7) Séquences d'ADN codant pour les protéines PCaDR472, PCaDR489, 1PCaDR527, 2PCaDR527, PCaFL024, PCaNL260, PCaDR361 selon les revendications 5 et 6 ainsi que les séquences d'ADN
50		qui hybrident avec celles-ci et/ou présentent des homologies significatives avec ces séquences ou des fragments de celles

5		ci et codent pour des protéines ayant les mêmes fonctions.
		8) Séquences d'ADN selon les revendications 5 à 7 comprenant
		des modifications introduites par suppression, insertion
		et/ou substitution d'au moins un nucléotide codant pour des
10	5	protéines ayant les mêmes activités que les protéines
	_	PCaDR472, PCaDR489, 1PCaDR527, 2PCaDR527, PCaFL024, PCaNL260,
		PCaDR361.
		9) Séquences d'ADN selon l'une des revendications 5 à 8 ainsi
15		que les séquences d'ADN qui ont une homologie de séquence
	10	nucléotidique d'au moins 50 % ou au moins 60 % et de
•	10	préférence au moins 70 % avec lesdites séquences d'ADN.
		10) Séquences d'ADN selon l'une des revendications 5 à 9
20		ainsi que les séquences d'ADN qui codent pour des protéines
20		de fonctions similaires dont les séquences respectives en AA
		ont une homologie d'au moins 40 % et notamment de 45 % ou
	15	d'au moins 50 %, plutôt au moins 60 % et de préférence au
		moins 70 % avec les séquences en AA codées par lesdites
25		
		séquences d'ADN.
		11) Polypeptides ayant chacun une séquence d'acides aminés
	20	choisie parmi SEQ ID N° 2, SEQ ID N° 4, SEQ ID N° 6, SEQ ID
30		N° 8, SEQ ID N° 10, SEQ ID N° 12 et SEQ ID N° 14 codées par
		les séquences d'ADN selon l'une des revendications 5 à 10 et
		les analogues de ces polypeptides.
		12) Procédé de préparation de protéines recombinantes
35	25	PCaDR472, PCaDR489, 1PCaDR527, 2PCaDR527, PCaFL024, PCaNL260
		PCaDR361 ayant respectivement les séquences d'acides aminés
		SEQ ID N° 2, SEQ ID N° 4, SEQ ID N° 6, SEQ ID N° 8, SEQ ID
		N° 10, SEQ ID N° 12 et SEQ ID N° 14 comprenant, pour la
40		préparation de chacune de ces protéines, l'expression dans un
	30	hôte approprié de la séquence d'ADN codant pour cette
		protéine selon l'une des revendications 5 à 10 puis
		l'isolement et la purification de ladite protéine
45		recombinante.
45		13) Vecteurs d'expression contenant pour chacun l'une des
	35	séquences d'ADN selon l'une des revendications 5 à 10.
		14) Cellule hôte transformée avec un vecteur selon la
50		revendication 13.
50		15) Procédé tel que défini à la revendication 12 dans lequel

10	5	la cellule hôte est E. coli DH5 alpha ou E. coli XL1-Blue. 16) Procédé tel que défini à la revendication 13 dans laquelle la cellule hôte est Saccharomyces cerevisae. 17) L'un ou plusieurs des plasmides déposés à la CNCM sous les numéros I-2214, I-2215, I-2216, I-2217, I-2211, I-2212 et
15	10	I-2213. 18) Procédé de criblage de produits antifongiques caractérisé en ce qu'il comprend une étape où l'on mesure l'activité de l'une des protéines PCaDR472, PCaDR489, 1PCaDR527, 2PCaDR527, PCaFL024, PCaNL260, PCaDR361, telles que définies à la revendication 11, en présence de chacun des produits dont on
20	15	souhaite déterminer les propriétés antifongiques et l'on sélectionne les produits ayant un effet inhibiteur sur cette activité. 19) Utilisation d'un produit sélectionné par le procédé selon
25		la revendication 18 pour l'obtention d'un agent antifongique. 20) Utilisation des gènes de Candida albicans ou des protéines codées par ces gènes selon l'une des revendications 5 à 11 pour la sélection de produits ayant des propriétés
30	20	antifongiques selon la revendication 19 comme inhibiteurs des protéines de Candida albicans codées par ces gènes. 21) Compositions pharmaceutiques renfermant à titre de principe actif au moins un inhibiteur des protéines de Candida albicans tel que défini à la revendication 20.
35	25	22) Utilisation des compositions telles que définies à la revendication 21 comme agents antifongiques.23) Utilisation d'un polypeptide tel que défini à la revendication 11 ou un fragment de ce polypeptide ayant la
40	30	même fonction pour la préparation d'un médicament destiné à induire une réponse immunologique chez un mammifère par inoculation de ce médicament produisant un anticorps permettant de protéger ledit mammifère contre la maladie. 24) Anticorps dirigé contre un polypeptide tel que défini à
45	35	la revendication 11 ou un fragment de ce polypeptide ayant la même fonction. 25) Anticorps tel que défini à la revendication 24 dirigé contre l'une quelconque des protéines PCaDR472, PCaDR489,
50 ~		1PCaDR527, 2PCaDR527, PCaFL024, PCaNL260, PCaDR361 ou un

5		fragment de ces protéines.
		26) Utilisation de l'un quelconque des gènes CaDR472,
		CaDR489, 1CaDR527, 2CaDR527, CaFL024, CaNL260 et CaDR361 ou
		de l'une quelconque des protéines codées par ces gènes selor
10	5	l'une des revendications 5 à 11 pour la préparation de
	•	compositions utiles pour le diagnostic ou le traitement de
		maladies causées par la levure pathogène Candida albicans.
		27) Kit pour le diagnostic d'infections fongiques comprenant
15		une séquence d'ADN tel que défini à l'une des revendications
	1.0	5 à 10 ou une séquence ayant une fonction similaire ou un
•	10	fragment fonctionnel de cette séquence, le polypeptide codé
		par cette séquence ou un fragment polypeptidique ayant la
20		même fonction ou un anticorps dirigé contre un tel
		polypeptide codé par cette séquence d'ADN ou contre un
	15	fragment de ce polypeptide.

Comparaison traduction sonde de CaDR472w x YDR472w :

1	QFIHVRIWKLIFGKTXIELX	20
_	: :	
151	NERLQEKQTESLSNYITKMRRRDLKILDILQFIHGTLWSYLFNHVSDDLV	200
21	NSQDLPMEYMIVENVPLLNRFISIPKEYGDLNCSAFVAGIIEGALDNSGF	70
201	KSSERDNEYMIVDNFPTLTQFIPGENVSCEYFVCGIIKGFLFNAGF	246
	•	
71	NADVTAHTVATDANPLRTVFLIKFDDSVLIRESLRF 106	
247	PCGVTAHRMPOGGHSORTVYLIOFDRQVLDREGLRFG* 284	

2/6

Comparaison traduction sonde de CaDR489 x YDR489w :

1	FMFGDSERLNYIVRLYIRTRLSK	23
	: :::	
101	ISMGFLDMQNASNANPPMPNESKLPLLCMETELERLKFVIRSYIRCRLSK	150
24	LNKFTIFYINESSQNDNLLSKEERDYIHKYFQILTQLYNNCFL	66
	:. .: : : :	
151	IDKFSL.YLRQLNEDENSLISLTDLLSKDEIKYHDTHSLIWLKLVNDSIL	199
67	KKLPQMLTYLDDTSGGQSMIVEPDLDQPVFIK	98
	: : :- -	
200	KYMPEELOAINDTEGSVNMIDEPDWNKFVFIHVNGPPDGKWNEDPLLQEN	249

Comparaison traduction sonde de CaDR527 x YDR527w :

		•
1	isdmrfgfkgdlie	14
_	: : :	
251	DKLHEKYFPDLPKEVDKLKWMQPVQQKTDKNYIIEDVSECRFDFNGDLV.	299
15	LAPVGDAPKDSSSDIRTHMGLHHHSETPHMAGYTLGELAHLARSTLAGQR	64
	1	
300	PPTRQIDSTIHSGLHHHSDSPELAGYTIVELEHLARSTFPSQR	342
	· · · · · · · · · · · · · · · · · · ·	
65	CLSIQTLGRIFHKLGLHKYSILPNQLNDQSFTDESKLSLDFEDRCGT**T	114
	1:.[][[][][][][][][][][][][][][][][][][][
343	CIAIQTLGRILYKLGQKSYYQLVPEIDADTYKEDGSIS.NVMDKIYSMF.	390
115	NYESLKQ*QRQLMEKR	130
	:: :	
291	WDLIKDGKVIESLEISSDEKFTRNLSVRNYAIDALWLWKQGGGDFRT	437

Comparaison traduction sonde de CaFL024 x YFL024c :

1	IPTPDASRIWPEAHKYYKDQKFKQPETYIK	30
101	EVHLHRILQMGSGHTKHKDYIPTPDASMTWNEYDKFYTG.SFQETTSYIK	149
31	FSATVEDTVGVEYNMDEVDEKFYRETLCKYYPKKKNKSDENNRKCTELEF	80
150	FSATVEDCCGTNYNMDERDETFLNEQVNKGSSDILTEDEF	189
81	ETICDKLEKTIEARQPFLSMDPSNILSYEEL	113
	1:1 1 1111111111111111	
100	ETT CCCEPTA THEPOPELSMOPESILSFEELKPTLIKSDMADFNLRNQLN	239

Comparaison traduction sonde de CaNL260c.x YNL260c.:

1	DIDNVLNLEEDQY	13
	- - - -	
1	MVRNRFIRKMKKNLFKSNHLSYLKSKWKVKITGQIKMDFDNLLNLEEQYY	50
14	ELGFKEGQIQGTKDQYLEGKEYGYQTGFQRFLIIGYIQELMKFWLSHIDQ	63
	: [[[] : [] : [] [] [] [] [] []	
51	QEGFLEGQNENIKQSFLEGKQYGLQVGFQRFTLLGQMEGLCDVIES	96
64	YN.NSSSLRNHLNNLEDIMAQISITNGDKEVEDYEKNIKKARNKLR	108
	1	
97	YGLHSPTLEKNIHTIRTLMKGLKMNNDDESVMEFERVLIKLKNKFRTILI	146

Comparaison traduction sonde de CaDR361 x YDR361c :

1	LKLISMLLRIFKTLFG.DDNGEFNLSEIADLILRENS	36
	: :. :	
51	IDFDFFGGNPEVDFHALKNLLRQLFGPQESTRIQLSSLADLILGS	95
37	VGTSIKTEGMESDPFAILSVINLTNNLNVAVIKQLIEYILNKTKSKTEFN	86
96	PTTTIKTDGKESDPYCFLSFVDFKANHLSDYVKYLQKVDMRLS	138
87	IILKKLLTNQNDTTRDRKFKTGLIISERFINMPVEVIP	124
	:: .	
120	TERYTMIDSGNK NCALVLSERLINMPPEVVPPLYKITLEDVAT	181

1

LISTE DE SEQUENCES

```
<110> Hoechst Marion Roussel
<120> Nouveaux gènes de Candida albicans et les protéines
     codées par ces gènes.
<130> 2517 PCT SEQUENCES EN FRANÇAIS
<140>
<141>
<150> FR 9907250
<151> 1999-06-09
<160> 32
<170> PatentIn Ver. 2.1
<210> 1 ·
<211> 747
<212> ADN
<213> Candida albicans
<220>
<221> CDS
<222> (1)..(747)
<220>
<221> modified_base
<222> (136)..(138)
<400> 1
atg tca aat gac gat ata ata ctc cca tca gtt tca tcc tta tcg aaa 48
Met Ser Asn Asp Asp Ile Ile Leu Pro Ser Val Ser Ser Leu Ser Lys
```

10

5

					gta											96
Leu	Thr	Ile	Asn	Asp	Val	Ser	Lys	Ser	Gly	Phe	Gly	Tyr		Pro	Ser	
			20					25					30			
			•													
					aat											144
Ile	Gly	Pro	Ile	Ser	Asn	Thr	Ile	Thr	Leu	Glu	Ser	Ser	Ser	Val	Leu	
		35					40					45				
					ata											192
Leu	Asn	Lys	Arg	Thr	Ile	Ser	Leu	Thr	Pro	Thr	Ser	Ser	Asp	Ser	Ile	
	50					55					60					
															•	
					atc											240
Tyr	Asp	Arg	Asn	Ile	Ile	Thr	Lys	Lys	Pro	His	Glu	Ile	Asn	Leu	Ser	
65					70					75					80	
					ttt											288
Ser	Leu	Ser	Phe	Leu	Phe	Cys	Glu	Ile	Ile	Ser	Trp	Ala	His	Ser	Asn	
				85					90					95		
					gat											336
Ser	Lys	Gly	Ile	Gln	Asp	Leu	Glu	Asn	Arg	Leu	Asn	Gly	Leu	Gly	Tyr	
			100					105					110			
				·												
					tat											384
Gln	Ile	Gly	Gln	Arg	Tyr	Leu	Glu	Leu	Cys	Lys	Ile	Arg	Glu	Gly	Phe	
		115					120					125				
					gag											43
Lys	Asn	Ser	Lys	Arg	Glu	Ile	Arg	Leu	Leu	Glu	Met	Leu	Gln	Phe	Ile	
	130					135	,				140					
		~														
															tta	48
His	Gly	Pro	Phe	Trp	rys	Leu	Ile	Phe	Gly	Lys	Thr	Ala	Asn	Glu	Leu	
145					150	+				155	;				160	

YO 00/75305	PCT/FR00/015

									3							
gaa	aaa	tcg	caa	gat	ttg	ccc	aat	gaa	tat	atg	att	gtg	gag	aat	gtg	528
Glu	Lys	Ser	Gln	Asp	Leù	Pro	Asn	Glu	Tyr	Met	Ile	Val	Glu	Asn	Val	
				165					170					175		
cca	tta	tta	aat	aga	ttt	att	agt	ata	cct	aag	gag	tat	ggc	gac	tta	576
Pro	Leu	Leu	Asn	Arg	Phe	Ile	Ser	Ile	Pro	Lys	Glu	Tyr	Gly	Asp	Leu	
			180					185					190			
aat	tgt	tca	gca	ttt	gtt	gcg	ggt	ata	att	gag	gga	gca	ctt	gat	aat	624
				Phe												
	-	195					200					205				
agt	gga	ttc	aat	gcc	gat	gtt	aca	gca	cac	acg	gtc	gct	aca	gat	gca	672
Ser	Gly	Phe	Asn	Ala	Asp	Val	Thr	Ala	His	Thr	Val	Ala	Thr	Asp	Ala	
	210					215					220				•	
aat	cca	tta	aga	aca	gta	ttt	ttg	atc	aag	ttt	gac	gat	tct	gtt	tta	720
Asn	Pro	Leu	Arg	Thr	Val	Phe	Leu	Ile	Lys	Phe	Asp	Asp	Ser	Val	Leu	
225					230					235					240	
att	aga	gag	agt	ttg	aga	ttt	gga	taa								747
Ile	Arg	Glu	Ser	Leu	Arg	Phe	Gly									
				245												
				•												
<210	0 > 2															
<21	1> 24	49														
<212	2>															
<213	3 > C	andi	da a	lbic	ans											

Met Ser Asn Asp Asp Ile Ile Leu Pro Ser Val Ser Ser Leu Ser Lys 10 1 5

Leu Thr Ile Asn Asp Val Ser Lys Ser Gly Phe Gly Tyr Asn Pro Ser 25 30 20

Ile	Gly	Pro 35	Ile	Ser	Asn	Thr	Ile 40	Thr	Leu	Glu	Ser	Ser 45	Ser	Val	Leu
Leu	Asn 50	Lys	Arg	Thr	Ile	Ser 55	Leu	Thr	Pro	Thr	Ser 60	Ser	Asp	Ser	Ile
Tyr 65	Дар	Arg	Asn	Ile	Ile 70	Thr	ŗåa	Lya	Pro	His 75	Glu	Ile	Asn	Leu	Ser 80
Ser	Leu	Ser	Phe	Leu 85	Phe	Cys	Glu	Ile	Ile 90	Ser	Trp	Ala	His	Ser 95	Asn
Ser	Lys	Gly	Ile 100	Gln	Asp	Leu	Glu	Asn 105	Arg	Leu	Asn	Gly	Leu 110	Gly	Tyr
Gln	Ile	Gly 115	Gln	Arg	туг	Leu	Glu 120	Leu	Сув	Lys	lle	Arg 125	Glu	Gly	Phe
Lys	Asn 130	Ser	Lys	Arg	Glu	Ile 135	Arg	Leu	Leu	Glu	Met 140	Leu	Gln	Phe	Ile
His 145	Gly	Pro	Phe	Trp	Lys 150	Leu	Ile	Phe	Gly	Lys 155	Thr	Ala	Asn	Glu	Leu 160
Glu	Lys	Ser	Gln	Asp 165	Leu	Pro	Asn	Glu	Туг 170	Met	Ile	Val	Glu	Asn 175	Val
Pro	Leu	Leu	Asn 180	Arg	Phe	Ile	Ser	Ile 185	Pro	Lys	Glu	Tyr	Gly 190	Asp	Leu
Asn	Сув	Ser 195		Phe	Val	Ala	Gly 200	Ile	Ile	Glu	Gly	Ala 205	Leu	Asp	Asn
Ser	Gly 210		Asn	Ala	Asp	Val 215		Ala	His	Thr	Val 220		Thr	Asp	Ala
Asn 225		Leu	Arg	Thr	Val 230		Leu	Ile	Lys	235		Asp	Ser	Val	Leu 240

Ile Arg Glu Ser Leu Arg Phe Gly 245

<210> 3 <211> 711 <212> ADN <213> Candida albicans <220> <221> CDS <222> (1)..(711) <220> <221> modified_base <222> (577)..(579) <400> 3 atg gat att gac gat att tta aaa gaa ttt gaa gag tct tca aaa gat Met Asp Ile Asp Asp Ile Leu Lys Glu Phe Glu Glu Ser Ser Lys Asp 10 1 5 gaa aag att agc agt aaa aca tcg tct atc aac tta tat caa gac ttg Glu Lys Ile Ser Ser Lys Thr Ser Ser Ile Asn Leu Tyr Gln Asp Leu 25 cta aga gct atg atc aac gaa cgt atg gct ccg gaa tta ttg cca tac Leu Arg Ala Met Ile Asn Glu Arg Met Ala Pro Glu Leu Leu Pro Tyr 45 35 40 aaa caa gat tta atg tcc act gtt tta aca atg atg tct aac caa caa Lys Gln Asp Leu Met Ser Thr Val Leu Thr Met Met Ser Asn Gln Gln 55 50 caa tat tta tta gaa tct cac gaa tat ggt gat atg aat ggc gac agt Gln Tyr Leu Leu Glu Ser His Glu Tyr Gly Asp Met Asn Gly Asp Ser

70

aat	ata	tta	tcc	gga	gac	ttt	aaa	tta	caa	cta	atg	att	atc	gaa	act	288
23"	val	T.e.i	Ser	Glv	Asp	Phe	Lys	Leu	Gln	Leu	Met	Ile	Ile	Glu	Thr	
GIY	Val			85			•		90					95		
				0.5												
			-~+		aac	+=+	att	att	сда	tta	tac	ata	cga	act	cga	336
gat	tta	gag	egt		Asn	Tur	Tla	Val	Ara	Leu	Tvr	Ile	Arq	Thr	Arg	
Asp	Leu	GIU		Leu	ABII	TYL	116	105			-1-		110		_	
			100			•		103								
				-	aaa		205	a++	+++	tac	atc	aat	gaa	agc	agt	384
ttg	agt	aag	ttg	aat	Lys	26.0	mb-	T10	Dhe	Tur	Tle	Asn	Glu	Ser	Ser	
Leu	Ser		Leu	Asn	гуз	Pne		116	FIIC	-11-		125				
		115					120					123	•			
									~~~	202	cat	tat	ara	cac	aaa	432
caa	aat	gat	aat	tta	ttg	tcc	aaa -	gag	gaa	aya	) an	Thr	Tle	His	LVS	
Gln	Asn	Asp	Asn	Leu	Leu		ràa	GIU	GIU	Arg	140	171			-1-	
	130					135					140					
													a <b>t</b> a		222	480
tat	ttc	cag	att	ttg	act	caa	tta	tat	aac	aac	tgt	רבכ	1	aaa Tura	Tue	400
Tyr	Phe	Gln	Ile	Leu	Thr	Gln	Leu	Tyr	Asn		Cys	Pne	Leu	гуу	160	
145					150					155					160	
																536
cta	cca	caa	atg	ttg	acc	tat	ttg	gat	gac	acc	agt	ggt	gga	caa	cca	528
Leu	Pro	Gln	Met	Leu	Thr	Tyr	Leu	Asp	Asp	Thr	Ser	Gly	Gly		ser	
				165					170					175		
atg	atc	gtt	gag	сса	gat	tta	gac	cag	cct	gtg	ttt	atc	aaa	tgt	acc	576
Met	Ile	Val	Glu	Pro	Asp	Leu	Asp	Gln	Pro	Val	Phe	Ile	Lys	Cys	Thr	
			180	)				185		,			190			
cto	gaa	gto	cca	ata	tta	cta	gat	tac	gad	ggt	gct	aca	gag	ata	gat	62
Ser	Glu	va)	l Pro	ıle	Leu	Lev	Asp	Туг	Asp	Gly	Ala	Thr	Glu	Ile	Asp	
		195	5				200	)				205	•			
tta	a gaa	tta	a ata	a aaa	aaa	gga	gto	: tac	gtg	gtg	aaa	tac	ago	cta	gtc	67
Let	ı Glu	ı Leı	ı Ile	e Lys	s Lys	Gl _y	val	Туз	val	. Val	Lys	туз	: Sei	: Lev	val	
	210					215					220					

7

aaa aga tat att gat att gga gat gtg gta ttg ata tga 711
Lys Arg Tyr Ile Asp Ile Gly Asp Val Val Leu Ile
225 230 235

<210> 4 <211> 237 <212> <213> Candida albicans

Met Asp Ile Asp Asp Ile Leu Lys Glu Phe Glu Glu Ser Ser Lys Asp

1 5 10 15

Glu Lys Ile Ser Ser Lys Thr Ser Ser Ile Asn Leu Tyr Gln Asp Leu
20 25 30

Leu Arg Ala Met Ile Asn Glu Arg Met Ala Pro Glu Leu Leu Pro Tyr

35 40 45

Lys Gln Asp Leu Met Ser Thr Val Leu Thr Met Met Ser Asn Gln Gln 50 55 60

Gln Tyr Leu Leu Glu Ser His Glu Tyr Gly Asp Met Asn Gly Asp Ser 65 70 75 80

Gly Val Leu Ser Gly Asp Phe Lys Leu Gln Leu Met Ile Ile Glu Thr 85 90 95

Asp Leu Glu Arg Leu Asn Tyr Ile Val Arg Leu Tyr Ile Arg Thr Arg

Leu Ser Lys Leu Asn Lys Phe Thr Ile Phe Tyr Ile Asn Glu Ser Ser 115 120 125

Gln Asn Asp Asn Leu Leu Ser Lys Glu Glu Arg Asp Tyr Ile His Lys 130 135 140

18

Tyr Phe Gln Ile Leu Thr Gln Leu Tyr Asn Asn Cys Phe Leu Lys Lys 145 150 155 160

Leu Pro Gln Met Leu Thr Tyr Leu Asp Asp Thr Ser Gly Gly Gln Ser 165 170 175

Met Ile Val Glu Pro Asp Leu Asp Gln Pro Val Phe Ile Lys Cys Thr

Ser Glu Val Pro Ile Leu Leu Asp Tyr Asp Gly Ala Thr Glu Ile Asp 195 200 205

Leu Glu Leu Ile Lys Lys Gly Val Tyr Val Val Lys Tyr Ser Leu Val 210 215 220

Lys Arg Tyr Ile Asp Ile Gly Asp Val Val Leu Ile 225 230 235

<210> 5

<211> 1383

<212> ADN

<213> Candida albicans

<220>

<221> CDS

<222> (1)..(1383)

<400> 5

gaa cca acc cca aaa ccc aca att ggt gga ttc ccc gaa ctt aaa aaa 96
Glu Pro Thr Pro Lys Pro Thr Ile Gly Gly Phe Pro Glu Leu Lys Lys
20 25 30

		gaa														144
Leu	Lys	Glu	Lys	Lys	Val	Ser	Arg	Trp	Arg	Gln	Lys	Gln	Ģln	Gln	Glu	
		35					40					45				
		aca														192
Gln	Ser	Thr	Thr	Ser	Pro	Lys	Thr	Thr	Glu	Ile	Arg	Ser	Glu	Ala	Ser	
	50					55					60					
		cac														240
Lys	Ile	His	Gln	Glu	Asn	Ile	Glu	Lys	Met	Ala	Gln	Met	Ser	Glu	Glu	
65					70					75					80	
		ttg														288
Glu	Ile	Leu	Gln	Glu	Arg	Glu	Glu	Leu	Leu	Lys	Gly	Leu	Asp	Pro	Lys	
				85					90					95		
		gaa														336
Leu	Ile	Glu	Ser	Leu	Ile	Gly	Arg	Ser	Lys	Lys	Arg	Glu	Ala	Thr	Asp	
			100					105					110			
		cac														384
His	Glu	His	Asn	Gly	His	Ala	His	Glu	His	Ala	Glu	Gly	Tyr	His	Gly	
		115					120					125				
		gga														432
Trp	Ile	Gly	Ser	Met	Lys	Thr	Ser	Glu	Gly	Leu	Thr	Авр	Leu	Ser	Gln	
	130					135				٠	140					
		aag														480
Leu	Asp	Lys	Glu	Asp	Val	Asp	Arg	Ala	Leu	Gly	Ile	Ser	Ser	Leu	Ser	
145					150					155					160	
		·														
															gac	
Leu	Ser	Glu	Pro	Glu	Gly	Gly	Ser	Asn	Thr	ŗλa	Lys	Val	Ala		Asp	
				165	;				170		•			175	•	

gat	aat	atc	aag	acg	gtt	aaa	ttt	gaa	gat	ttg	gat	gat	gga	att	gaa	576
						Lys										
			180					185					190			
tta	gat	сса	aat	gga	tgg	gag	gac	gtt	act	gat	gtc	aat	gaa	tta	gtt	624
ten	Asn	Pro	Asn	Gly	Trp	Glu	Asp	Val	Thr	Asp	Val	Asn	Glu	Leu	Val	
		195		•	_		200					205				
cct	aat	aat	gat	cac	att	gca	cct	gac	gat	tac	cag	att	aat	cct	gat	672
						Ala										
	210		••			215					220					
	210															
200	cat	caa	gaa	gga	tta	aat	aat	act	gtt	cat	ttt	aca	aaa	ccc	aaa	720
						Asn										
225	nop				230					235					240	
223																
cad	cca	gat	tta	gat	ata	aat	qat	ccc	gat	ttc	ttt	gat	aag	cta	cat	768
						Asn										
G		71.00		245			•		250			-		255		
a=a	222	tac	tat	cct	gat	tta	cct	aaa	qaa	aca	gaa	aag	ttg	tca	tgg	816
															Trp	
GIU	D, D	-7-	260					265					270			
250	272	cad	cca	ato	cca	aaa	caa	ttq	tct	acc	gtt	tat	gaa	tca	ata	864
															Ile	
MEC	1111	275		1,00		-2-	280					285				
		2.5														
tet	gat	ato	aga	ntt	gac	ttt	aaa	gga	gat	tta	att	gaa	ttg	ggt	cca	912
															Pro	
Jei	290		,			295	-•	•	_		300					
	230															
as~	ac.	722	gaa	CCS	aaa	gat	agt	tca	tcc	gaa	ata	cct	act	tat	atg	960
															Met	
	GIÀ	Giu	GIU	110	310					315				-	320	
305																

ノノ

								./	~							
gga	ctt	cat	cat	cat	tcg	gag	aac	cca	cat	atg	gca	ggt	tat	aca	ttg	1008
											Ala					
				325					330					335		
ggt	gag	ttg	gca	cat	tta	gcc	aga	tcg	act	tta	gct	gga	caa	aga	tgc	1056
											Ala					
•			340					345					350			
ttg	agc	att	çaa	aca	tta	999	aga	atc	tta	cat	aaa	ttg	gga	tta	cat	1104
											Lys					
		355					360					365				
aaa	tac	agt	ata	cta	cca	aaa	aca	gac	tca	gat	gat	cag	agt	ttt	aca	1152
Lys	Tyr	Ser	Ile	Leu	Pro	Lys	Thr	Asp	Ser	Asp	Asp	Gln	Ser	Phe	Thr	
	370					375					380					
gat	gaa	atc	aaa	caa	cta	tca	ctt	gac	ttt	gaa	gat	atg	atg	tgg	gac	1200
Asp	Glu	Ile	Lys	Gln	Leu	Ser	Leu	Asp	Phe	Glu	Asp	Met	Met	Trp	Asp	
385					390					395					400	
ttg	ata	gac	caa	tta	cga	atc	att	gaa	aca	ata	aca	gag	gca	gct	gat	1248
Leu	Ile	Asp	Gln	Leu	Arg	Ile	Ile	Glu	Thr	Ile	Thr	Glu	Ala	Ala	Asp	
				405					410					415		
				٠												
											tat					1296
Glu	Lys	Lys	Thr	Arg	Asn	Leu	Ser	Val	Arg	Asn	Tyr	Ala	Ile	Glu	Ala	
			420					425					430			
											gag					1344
Leu	Trp	Leu	Tyr	Arg	Thr	Gly	Gly	Gly	Arg	Pro	Glu	Ile	Thr	Lys	Gln	
		435					440					445				
											aaa					1383
Thr	Glu	Glu	Asp	Leu	Ile	Ala	Gln	Ala	Val	Gln	Lys					
	450					455					460					

<210> 6

								,	12						
<211 <212	> 46 >														
<213	> Ca	andid	ia al	bica.	ans										
<400									•••	<b>61</b>	m\	<b>61</b>	NI n	Dro	Tare
Met 1	Asp	Phe	Ile	Gly 5	Glu	Ile	Ile	GIn	10	Glu	1111	GIU	VIG	15	IJy.
Glu	Pro	Thr	Pro 20	Lys	Pro	Thr	Ile	Gly 25	Gly	Phe	Pro	Glu	Leu 30	Lys	Lys
Leu	Lys	Glu 35	Lys	Lys	Val	Ser	Arg 40	Trp	Arg	Gln	Lys	Gln 45	Gln	Gln	Gl
Gln	Ser 50	Thr	Thr	Ser	Pro	Lys 55	Thr	Thr	Glu	Ile	Arg 60	Ser	Glu	Ala	Se
<b>L</b> ys 65	Ile	His	Gln	Glu	Asn 70	Ile	Glu	Lys	Met	Ala 75	Gln	Met	Ser	Glu	Gli 8
Glu	Ile	Leu	Gln	Glu 85	Arg	Glu	Glu	Leu	Leu 90	Lys	Gly	Leu	Asp	Pro 95	Lу
Leu	Ile	Glu	Ser		Ile	Gly	Arg	Ser		Lys	Arg	Glu	Ala 110	Thr	As
His	Glu	His		Gly	His	Ala	His 120		His	Ala	Glu	Gly 125	Tyr	His	Gl
Trp	Ile		Ser	Met	Lys	Thr		Glu	Gly	Leu	Thr		Leu	Ser	Gl

Leu Asp Lys Glu Asp Val Asp Arg Ala Leu Gly Ile Ser Ser Leu Ser

Leu Ser Glu Pro Glu Gly Gly Ser Asn Thr Lys Lys Val Ala Phe Asp

150

165

145

155

								7	13						
Asp	Asn	Ile	Lys	Thr	Val	Lys	Phe	Glu	Asp	Leu	Asp	Asp	Gly	Ile	Glu
			180					185					190		
Leu	Asp	Pro	Asn	Gly	Trp	Glu	Asp	Val	Thr	Asp	Val	Asn	Glu	Leu	Val
		195					200					205			
Pro	Asn	Asn	Asp	His	Ile	Ala	Pro	Asp	Asp	Tyr		Ile	Asn	Pro	Asp
	210					215					220				
											<b>-</b> 1	<b>m</b> >	7.45	7	T 100
Ser	Asp	Glu	Glu	Gly		Asn	Asn	Thr	Val		Pne	Thr	Lys	PIO	240
225					230					235					240
_	_	_	_	•	<b>-</b> 1 -	»	Non'	Dro	Non.	Dhe	Dhe	Asn	Lys	Leu	His
Gln	Pro	Asp	Leu		116	ASII	АБР	FIU	250				-1-	255	
				245					250		•				
Glu	Taya	<b>ጥ</b> ንድ	Tvr	Pro	σeA	Leu	Pro	Lys	Glu	Thr	Glu	Lys	Leu	Ser	Tr
014	2,2	-,-	260		•			265					270		
Met	Thr	Gln	Pro	Met	Pro	Lys	Gln	Leu	Ser	Thr	Val	Tyr	Glu	Ser	Ile
	•	275					280					285			
Ser	Asp	Met	Arg	Phe	Asp	Phe	Lys	Gly	Asp	Leu	Ile	Glu	Leu	Gly	Pro
	290					295					300				
				•											
Glu	Gly	Glu	Glu	Pro	Lys	Авр	Ser	Ser	Ser		Ile	Pro	Thr	Tyr	
305					310					315					320
								<b>5</b>	***	Mak	732	Clar	Tur	Thr	T.e.
Gly	Leu	His	His		Ser	GIU	Asn	Pro	330	Mec	мта	Gry	Tyr	335	<b>D</b> C.
				325					330					333	
<b>61</b>	<b>63</b>	7	77-	uia	Lau	פוג	Ara	Ser	Thr	Leu	Ala	Glv	Gln	Arq	Cy
GIY	GIU	Leu	340		Deu	A10	<b></b> 9	345					350		_
			340												
ī.eu	Ser	Tle	Gln	Thr	Leu	Gly	Arg	Ile	Leu	His	Lys	Leu	Gly	Leu	Hi
		355		<b>-</b>		•	360					365			
Lys	Tyr	Ser	Ile	Leu	Pro	Lys	Thr	Asp	Ser	Asp	Asp	Gln	Ser	Phe	Th
-	- 370					375					380				

14

Asp Glu Ile Lys Gln Leu Ser Leu Asp Phe Glu Asp Met Met Trp Asp 395 390 Leu Ile Asp Gln Leu Arg Ile Ile Glu Thr Ile Thr Glu Ala Ala Asp 410 405 Glu Lys Lys Thr Arg Asn Leu Ser Val Arg Asn Tyr Ala Ile Glu Ala 425 Leu Trp Leu Tyr Arg Thr Gly Gly Gly Arg Pro Glu Ile Thr Lys Gln 445 . 440 435 Thr Glu Glu Asp Leu Ile Ala Gln Ala Val Gln Lys 455 460 <210> 7 <211> 1383 <212> ADN <213> Candida albicans <220> <221> CDS <222> (1)..(1380) <400> 7 atg gat ttc ata gga gag att ata gag cat gag aca gag gca cct aaa 48 Met Asp Phe Ile Gly Glu Ile Ile Glu His Glu Thr Glu Ala Pro Lys 15 10 1 5 gaa cca acc cca aaa ccc aca att ggt gga ttc ccc gaa ctt aaa aaa Glu Pro Thr Pro Lys Pro Thr Ile Gly Gly Phe Pro Glu Leu Lys Lys 25 tta aaa gaa aag aaa gtc tca aga tgg agg caa aag caa caa cag gag Leu Lys Glu Lys Lys Val Ser Arg Trp Arg Gln Lys Gln Gln Glu

35

cag	agc	aca	act	tcc	cca	aaa	act	act	gaa	atc	cgt	tca	gag	gct	tcc	192
Gln	Ser	Thr	Thr	Ser	Pro	Lys	Thr	Thr	Glu	Ile	Arg	Ser	Glu	Ala	Ser	
	50		٠			55					60					
aaa	att	cac	caa	gaa	aat	atc	gag	aag	atg	gct	caa	atg	tca	gag	gaa	240
				Glu												
65					70					75					80	
gag	att	ttg	caa	gag	cgt	gag	gag	tta	cta	aag	ggt	tta	gac	cct	aaa	288
				Glu												
				85	•				90					95		
tta	att	gaa	agt	ttg	att	ggt	aga	tcc	aag	aaa	agg	gaa	gca	aca	gac	336
				Leu												
			100					105					110			
cat	qaa	cac	aat	gga	cat	gct	cat	gaa	cat	gca	gag	gga	tac	cat	gga	384
				Gly												
	•	115		•			120					125				
taa	att	qqa	tca	atg	aaa	act	tct	gaa	gga	tta	aca	gat	tta	tct	caa	432
				Met												
	130			,		135					140					
tta	gat	aaq	gaa	gat	gtg	gac	cgt	gct	ttg	ggt	ata	agt	tca	tta	tcc	480
				Asp												
145	•	•		-	150					155					160	
tta	tct	qaa	cct	gag	ggt	ggc	agc	aat	acg	aaa	aaa	gtc	gct	ttc	gac	52
				Glu												
				165	_				170					175		
qat	aat	atc	aaq	acq	gtt	aaa	ttt	gaa	gct	ttg	gat	gat	gaa	att	gaa	57
															Glu	
			180			-		185					190			

ttg	gat	cca	aat	gga	tgg	gag	gac	gtt	act	gat	gtc	aat	gaa	tta	gtt	624
Leu	Asp	Pro	Asn	Gly	Trp	Glu	Asp	Val	Thr	Asp	Val	Asn	Glu	Leu	Val	
		195					200					205				
			٠													
cct	aat	aat	gat	cac	att	gca	cct	gac	gat	tac	cag	att	aat	cct	gat	672
Pro	Asn	Asn	Asp	His	Ile	Ala	Pro	Asp	Asp	Tyr	Gln	Ile	Asn	Pro	Asp	
	210					215					220					
agc	gat	gaa	gaa	gga	ttg	aat	aat	act	gtt	cat	ttt	aca	aaa	ccc	aaa	720
					Leu											
225	•				230					235					240	
cag	cca	gat	ttg	ġat	ata	aat	gat	ccc	gat	ttc	ttt	gat	aag	cta	cat	768
_					Ile											
		•		245					250					255		
gag	aaa	tac	tat	cct	gat	ttg	cct	aaa	gaa	aca	gaa	aag	ttg	tca	tgg	816
					Asp											
		-•	260		•			265					270			
ato	aca	cag	cca	ato	cca	aaa	caa	tta	tct	aca	qtt	tat	gaa	tca	ata	864
					Pro											
	****	275		.,		-1-	280					285				
				•												
tot	ast	ato	aga	ttt	gac	ttc	aaa	gga	gat	tta	att	qaa	ttg	agc	gca	912
	_				Asp											
361	290	MEC	AL 9			295	-,,-	1			300					
	230															
			~~~	553	aaa	cat	act	tca	ttc	gaa	ata	cct	act	tat	atq	960
					Lys											
	GIY	GIU	GIU	PIO	310	АЗР	261	Jei	FIIC	315	110			-,-	320	
305										323						
			***			~~~	200	CC=	cet	at~	acs	aa+	tat	ace	tta	100
					tcg Ser											
Gly	Leu	Hls	HIS		ser	GIU	ABU	PIO	330	ile C	wra	GIŞ	171	335	200	
				325					330					,,,		

	~
A	~
/ .	

								./\								
	gag															1056
Gly	Glu	Leu	Ala	His	Leu	Ala	Arg	Ser	Thr	Leu	Ala	Gly	Gln	Arg	Càa	
			340					345					350			
ttg	agc	att	caa	aca	tta	999	aga	ata	tta	cat	aaa	ttg	gga	tta	cat	1104
Leu	Ser	Ile	Gln	Thr	Leu	Gly	Arg	Ile	Leu	His	Lys	Leu	Gly	Leu	His	
		355					360					365				
aaa	tac	agt	ata	cta	cca	aaa	aca	gac	tca	gat	gat	cag	agt	ttt	aca	1152
	Tyr															
•	370					375					380					
qat	gaa	atc	aaa	caa	cta	tca	ctt	gac	ttt	gaa	gat	atg	atg	tgg	gac	1200
	Glu															
385			•		390					395			1		400	
													·			
tta	ata	gac	caa	tta	cga	atc	att	gaa	aca	ata	aca	gag	gca	gct	gat	1248
	Ile															
				405	_				410					415		
gaa	aaa	aac	acc	aqa	aac	tta	tct	gtc	aga	aat	tat	gca	ata	gag	gca	1296
	Lys															
	-3-		420	Ī				425					430			
tta	tgg	tta	tat	aga	act	qqa	ggt	gga	aga	cca	gag	ata	act	aaa	caa	1344
	Trp															
		435	•	Ĭ		Ī	440					445				
acc	gaa	gag	gat	ttq	ata	gca	caa	gca	gtt	cag	aaa	taa				1383
	Glu															
	450		·E			455					460					
-21	n- a															

<211> 460

<212>

<213> Candida albicans

									8						
<400															
Met	Asp	Phe	Ile	Gly	Glu	Ile	Ile	Glu	His	Glu	Thr	Glu	Ala		Lys
1				5					10					15	
			,		_			~ 3	 1	Db. 4	D=0	Clu	Lau	Lazo	Lva
Glu	Pro	Thr		Lys	Pro	Thr	IIe	25	GIY	Pne	PIO	GIU	Leu 30	шyв	Lyu
			20					25					50		
r.au	Tare	Glu	Lvs	Lvs	Val	Ser	Arq	Trp	Arg	Gln	Lys	Gln	Gln	Gln	Glu
Dea	шyo	35	2,2	_,_			40	•	•			45			
Gln	Ser	Thr	Thr	Ser	Pro	Lys	Thr	Thr	Glu	Ile	Arg	Ser	Glu	Ala	Ser
	50					55					60		•		
Lys	Ile	His	Gln	Glu	Asn	Ile	Glu	Lys	Met		Gln	Met	Ser	Glu	
65					70					75					80
						~ 1	~ 1	•	T 0	Tura	Clv	T.e.u	Nan	Pro	Lvs
Glu	Ile	Leu	Gln	GIU 85	Arg	GIU	GIU	Leu	_Leu 90	гур	GIY	рец	Asp	95	23, -
				65					,,,						
Leu	Ile	Glu	Ser	Leu	Ile	Gly	Arg	Ser	Lys	Lys	Arg	Glu	Ala	Thr	Asp
			100			-	_	105					110		
His	Glu	His	Asn	Gly	His	Ala	His	Glu	His	Ala	Glu	Gly	Tyr	His	Gly
		115		•			120					125			
Trp	Ile	Gly	Ser	Met	Lys	Thr	Ser	Glu	Gly	Leu			Leu	Ser	GII
	130					135					140				
		_		-	1	١	3	N1 -	Len	Gly	Tle	Ser	Ser	Leu	Sex
	Asp	Lys	GIU	Asp	150	Asp	Arg	AIG	Deu	155		501			160
145					150										
Leu	Ser	Glu	Pro	Glu	Gly	Gly	Ser	Asn	Thr	Lys	Lys	Val	Ala	Phe	Ası
				165	~	,			170					175	

Asp Asn Ile Lys Thr Val Lys Phe Glu Ala Leu Asp Asp Glu Ile Glu

185

190

165

								,							
Leu	Asp	Pro	Asn	Gly	Trp	Glu	Asp	Val	Thr	qeA	Val	Asn	Glu	Leu	Val
		195					200					205			
5		2-2-	, Non	uio	Tle	Mla	Pro	σεA	Asp	Tyr	Gln	Ile	Asn	Pro	Asp
Pro		ASH	Map	1113	110	215			•	•	220				
	210					215									
							_			*** =	Dh a	The	Tara	Bro	Luc
Ser	Asp	Glu	Glu	Gly	Leu	Asn	Asn	Thr	Val	His	Pne	THE	цуз	-10	240
225					230					235					240
Gln	Pro	Asp	Leu	Asp	Ile	Asn	Asp	Pro	Asp	Phe	Phe	Asp	Lys	Leu	His
				245					250					255	
Glu	Lve	Tvr	Tvr	Pro	Asp	Leu	Pro	Lys	Glu	Thr	Glu	Lys	Leu	Ser	Trp
Giu	Буз	-1-	260					265					270		
			200												
		_	_			•	61 -	7 011	Cor	Thr	Val	Tvr	Glu	Ser	Ile
Met	Thr	Gln	Pro	мес	Pro	гÀг		Deu	per	1111	•	285			
		275					280					200			
Ser	Asp	Met	Arg	Phe	Asp	Phe	Lys	Gly	Asp	Leu	Ile	Glu	Leu	Ser	Ala
	290			-		295					300				
Glu	Glv	Glu	Glu	Pro	Lys	Asp	Ser	Ser	Phe	Glu	Ile	Pro	Thr	Tyr	Met
305	2				310					315					320
دەد								•	,						
	_		••!	***	Cor	<i>(</i> 111)) cn	Pro	His	Met	Ala	Glv	Tyr	Thr	Leu
Gly	Leu	HIS	HIS			GIU	ASII	110	330			•	-	335	
				325					330	1					
										_	•••	03 -			. С.
Gly	Glu	Leu	Ala	His	Leu	Ala	Arg	Ser	Thr	Leu	Ala	GIY			Cys
			340					345					350	1	
Leu	Ser	Ile	Gln	Thr	Leu	Gly	Arg	Ile	Leu	ı His	Lys	Leu	ı Gly	Leu	His
		355					360					365	5		
Ť 140	T-17-	Sev	· T]_	Len	Pro	Lys	Thr	Asp	Ser	. Asp	As <u>r</u>	Gl	ı Ser	. Phe	Thr
пув						375		•		-	380				
	370					٠,٠									
			_	٠.					, թե-	. <u>(2</u> 1.	ı Acr	Mei	t Met	Tr) Asr
Asp	Glu	Ile	Lys	Glr			Leu	MSP	, 2116	Glu					400
200					390	1				395	,				400

20

Leu Ile Asp Gln Leu Arg Ile Ile Glu Thr Ile Thr Glu Ala Ala Asp
405 410 415

Glu Lys Lys Thr Arg Asn Leu Ser Val Arg Asn Tyr Ala Ile Glu Ala 420 425 430

Leu Trp Leu Tyr Arg Thr Gly Gly Gly Arg Pro Glu Ile Thr Lys Gln
435 440 445

Thr Glu Glu Asp Leu Ile Ala Gln Ala Val Gln Lys
450 455 460

<210> 9

<211> 2262

<212> ADN

<213> Candida albicans

<220>

<221> CDS

<222> (1)..(2262)

<220>

<221> modified_base

<222> (1093)..(1095)

<220>

<221> modified_base

<222> (1828)..(1830)

<400> 9

atg gca.gca gca cca cca cca gcg aaa aac cag ggt aag gca aaa 48 Met Ala Ala Ala Pro Pro Pro Pro Ala Lys Asn Gln Gly Lys Ala Lys 1 5 10 15

cag cat gtt aca ggt gcc agg ttc cgt cag cga aaa atc tcg gta aag 96 Gln His Val Thr Gly Ala Arg Phe Arg Gln Arg Lys Ile Ser Val Lys

20 . 25 . 30

			act													144
Gln	Pro	Leu	Thr	Ile	Tyr	Lys	Gln	Arg	Asp	Leu	Pro	Thr	Leu	Asp	Ser	
		35	•				40					45				
			gag													192
Asn	Glu	Leu	Glu	Pro	Ser	Gln	Val	His	His	Leu	Asn	Ser	Asn	Ala	Ser	
	50					55					60	•				
			aca													240
Ser	Ser	Ser	Thr	Gln	Gln	Pro	Arg	Asp	Leu	His	Ala	Val	Glu	Thr	Gly	
65					70					75					80	
			aat													288
Val	Asp	Lys	Asn	Glu	Glu	Glu	Glu	Val	His	Leu	Gln	Gln	Val	Ile	Asn	
				85					90					95		
-	_		aaa													336
Ala	Ala	Gln	Lys	Ala	Leu	Leu	Gly	Ser	Lys	Lys	Glu	Glu	Lys	Ser	Ser	
			100					105					110			
_			att													384
Авр	Met	Tyr	Ile	Pro	Thr	Pro	Asp	Ala	Ser	Arg	Ile		Pro	Glu	Ala	
		115					120					125				
			tac													432
His	Lys	Tyr	Tyr	Lys	yab	Gln	Lys	Phe	Lys	Gln		•	Thr	Tyr	Ile	
	130					135					140					
																400
			gcg													480
ГÅз	Phe	Ser	Ala	Thr		Glu	Asp	Thr	Val			Glu	Tyr	Asn		
145					150					155					160	
															.	
			gat													528
Asp	Glu	Val	Asp	Glu	Lys	Phe	Tyr	Arg			Leu	Cys	гЛя			
				165					170					175		

				aac												576
Pro	Lys	Lya	Lys	Asn	Lys	Ser	Asp	Glu	Asn	Asn	Arg	Lys	Сув	Thr	Glu	
			180					185					190			
			•							•••	•					
ttg	gag	ttt	gaa	aca	atc	tgt	gac	aag	ttg	gaa	aag	acc	att	gaa	gca	624
Leu	Glu	Phe	Glu	Thr	Ile	Сув	Asp	Lys	Leu	Glu	Lys	Thr	Ile	Glu	Ala	
		195					200					205				
				ttg												672
Arg	Gln	Pro	Phe	Leu	Ser	Met	Asp	Pro	Ser	Asn	Ile	Leu	Ser	Tyr	Glu	
	210					215					220					
				tac												720
Glu	Leu	Ser	Ser	Tyr	Ile	Val	Asp	Gln	Phe	ГÀЗ	Ser	Ala	Val	Lys	Thr	
225					230					235					240	
				att												768
Ser	Asn	Pro	Tyr	Ile	Val	Thr	Asn	Gly	Gly	Asn	Leu	Glu	Tyr	Ile	Ser	
				245					250					255		
				aaa												816
Thr	Thr	Ala	Leu	Lys	Glu	Arg	Leu	Ser	Lys	Glu	Ile	Lys		Glu	Pro	
			260					265					270			
				ttt												864
Phe	Val	Thr	Ile	Phe	Asp	Lys	Asn	Gln	Met	Ser	Thr	Ser	Ala	Val	Arg	
		275					280					285				
															cat	912
Pro	Ile	Pro	Lys	Leu	Phe	Glu	Leu	Phe	Gly	Arg			Tyr	Asp	His	
	290					295					300					
															aca	960
Trp	Lys	Glu	Arg	Lys	Ile	Glu	Arg	Lys	Gly	Lys	Thr	Ile	Gln	Pro	Thr	
305					310					315					320	

									•								
c	tc	aaa	ttt	gag	gat	cct	aac	tcg	aac	gaa	aag	gaa	aac	gac	aat	gac	1008
L	eu	Lys	Phe	Ğlu	Asp	Pro	Asn	Ser	Asn	Glu	Lys	Glu	Asn	Asp	Asn	Asp	
					325					330					335		
c	ca	tat	ata	tgt	ttc	aga	cga	cgt	gag	ttt	agg	caa	gca	aga	aag	acg	1056
F	ro	Tyr	Ile	Cys	Phe	Arg	Arg	Arg	Glu	Phe	Arg	Gln	Ala	Arg	Lys	Thr	
				340					345					350			
а	ga	aga	gcc	gat	aca	att	ggt	gca	gag	aga	ata	aga	ctg	atg	çaa	aag	1104
						Ile											
			355					360					365				
														•			•
t	.cg	ttg	çac	cgc	gça	cgt	gat	ttg	ata	atg	agt	gtt	agt	gaa	aga	gag	1152
S	er	Leu	His	Arg	Ala	Arg	Asp.	Leu	Ile	Met	Ser	Val	Ser	Glu	Arg	Glu	
		370					375					380					
a	tc	ctc	aaa	ctc	gac	aat	ttt	caa	gca	gag	cat	gaa	ttg	ttt	aaa	gcc	1200
1	le	Leu	Lys	Leu	Asp	Asn	Phe	Gln	Ala	Glu	His	Glu	Leu	Phe	Lys	Ala	
3	85					390					395					400	
â	igg	tgc	gct	acc	aag	gct	tgt	aag	agg	gag	ctc	aat	atc	aag	ggt	gac	1248
Z	۱rg	Cys	Ala	Thr	Lys	Ala	Cys	Lys	Arg	Glu	Leu	Asn	Ile	Lys	Gly	Asp	
					405					410					415		
					٠												
ç	gaa	tac	ttg	ttc	ttt	ccg	cat	aaa	aag	aag	aaa	att	gtt	cgt	act	gaa	129
(31u	Tyr	Leu	Phe	Phe	Pro	His	Lys	ràa	Lys	Lys	Ile	Val	Arg	Thr	Glu	
				420					425					430			
																gaa	134
1	Asp	Glu	Glu	Arg	Glu	Lys	Lys	Arg	Glu	Lys	Lys	Lys	Gln	Asp	Gln	Glu	
			435					440			٠		445				
																cca	139
	Leu	Ala	Leu	Lys	Gln	Gln	Gln	Ala	Leu	Gln	Glr	Gln	Gln	Gln	Gln	Pro	
		450					455					460)				

				caa												1440
Pro	Gln	Pro	Pro	Gln	Gln	Ala	Pro	Ser	ГÀв	Gln	Ąsp	Gly	Thr	Ser	Thr	
465					470					475					480	
				gtc												1488
Ser	Gln	Pro	Tyr	Val	Lys	Leu	Pro	Pro	Ala	Lys	Val	Pro	Asp	Met	yab	
				485					490					495		
				tcg												1536
Leu	Val	Thr	Val	Ser	Leu	Val	Leu	Lys	Glu	Lys	Asn	Glu		Ile	Lys	
			500					505					510			
													•			
				gag												1584
Arg	Ala	Val	Leu	Glu	Lys	Leu	Arg	Lys	Arg	Lys	Glu		Asp	Lys	Gly	
		515					520					525				
				aca												1632
Phe	Ile	Asn	Leu	Thr	Asp	Asp	Pro	Tyr	Gln	Pro		Phe	Asp	Ile	Ser	
	530					535					540					
								-								
				gaa												1680
Thr	Asn	Arg	Ala	Glu	Glu	Leu	Ser	His	Ile		Tyr	Ser	Ser	IIe		
545					550					555					560	
																172
				cac												1728
Ala	Thr	His	Tyr	His	Gln	Phe	Asn	Thr		Asn	Tyr	мес	ASN	575	GIII	
				565					570					5/5		
														222	200	177
															acg	1,,,
Leu	Lys	Lys		Leu	Glu	Glu	ГÀв		Pro	Leu	PIO	GIY	590		1111	
			580					585					390			
										.		000	+++	cc=	cat	182
															cat His	
Phe	Leu		Ser	Asn	Gly	GIU			PIO	ser	ъŽа	605			His	
		595					600					903				

Lys

														tat		1872
Leu	Ser	Ser	Leu	Leu	Glu	Glu	Lys	Tyr	Lув	Ala	Thr	Ser	Gly	Tyr	Ile	
	610					615					620					
														•		
gaa	cga	tta	ttg	caa	agc	gtg	gag	acg	caa	gat	ttt	agt	tca	tac	acc	1920
														Tyr		
625					630					635					640	
aat	ggc	ttt	aaa	gat	gtt	gag	cca	aaa	gaa	aca	aat	gaa	cct	gtt	atg	1968
Asn	Gly	Phe	Lys	Asp	Val	Glu	Pro	Lys	Glu	Thr	Asn	Glu	Pro	Val	Met	
				645					650					655		
gcg	ttt	ccc	cag	aga	ata	cgt	cga	aga	gtg	ggc	agg	gct	ggc	agg	gtt	2016
														Arg		
			660					665					670			
														caa		2064
Phe	Leu	Asp	His	Gln	Gln	Glu	Tyr	Pro	Gln	Pro	Asn	Phe	Gln	Gln	qaA	•
		675					680					685				
aca	gat	cgt	gtg	gga	ggt	atc	сса	gat	gtg	tat	tgt	aaa	gag	gat	gcc	2112
Thr	Asp	Arg	Val	Gly	Gly	Ile	Pro	Asp	Val	Tyr	Cys	Lys	Glu	Asp	Ala	
	690					695					700					
				•												
														aaa		2160
Ile	Lys	Arg	Leu	Gln	Ser	Lys	Trp	Lys	Phe	Asp	Thr	Glu	Tyr	Lys	Thr	
705					710					715					720	
															cca	2208
Thr	Glu	Pro	Phe	Ser	Leu	Asp	Pro	Ser	Lys	Leu	Asn	Gly	Ile	Ser	Pro	
				725					730					735		
															cgt	2256
Ser	Thr	Gln	Ser	Ile	Arg	Phe	Gly	Ser	Met	Leu	Leu	Asn	Arg	Thr	Arg	
			740					745					750)		
aaa	tag															2262

<210	> 10)													
<211	.> 79	54													
<212	! >		•			•									
<213	> Cá	andio	ia al	.bica	ns										
<400)> 1(0		٠											
Met	Ala	Ala	Ala	Pro	Pro	Pro	Pro	Ala	Lys	Asn	Gln	Gly	Lys	Ala	Lys
1				5					10					15	
Gln	His	Val	Thr	Gly	Ala	Arg	Phe	Arg	Gln	Arg	Lys	Ile	Ser	Val	Lys
			20					25					. 30		
Gln	Pro	Leu	Thr	Ile	Tvr	Lvs	Gln	Arg	Asp	Leu	Pro	Thr	Leu	Asp	Ser
••••		35			-,-		40		Ī			45			
Asn	Glu	Leu	Glu	Pro	Ser	Gln	Val	His	His	Leu	Asn	Ser	Asn	Ala	Ser
	50					55					60				
Ser	Ser	Ser	Thr	Gln	Gln	Pro	Arg	Asp	Leu	His	Ala	Val	Glu	Thr	Gly
65					70		_			75					80
Val	Двр	Lys	Asn	Glu	Glu	Glu	Glu	Val	His	Leu	Gln	Gln	Val	Ile	Asr
		-		85					90					95	
Ala	Ala	Gln	Lys	Ala	Leu	Leu	Gly	Ser	Lys	Lys	Glu	Glu	Lys	Ser	Sei
			100					105					110		
Asp	Met	Tyr	Ile	Pro	Thr	Pro	Asp	Ala	Ser	Arg	Ile	Trp	Pro	Glu	Ala
		115					120					125			
His	Lys	Tyr	Tyr	Lys	Asp	Gln	Lys	Phe	Lys	Gln	Pro	Glu	Thr	Tyr	Ile
	130					135					140				
							_		** -	0 3-	11-7	63.	T	7	Mat
		Ser	Ala	Thr		Glu	Asp	Thr	val			GIU	ıĀŗ	Asn	16
145					150					155					TO

								•				1			
Asp	Glu	Val	Asp	Glu	Lys	Phe	Tyr	Arg	Glu	Thr	Leu	Суз	Lys	Tyr	Tyr
				165					170					175	
Pro	Lvs	Lvs	Lvs	Asn	Lys	Ser	Asp	Glu	Asn	Asn	Arg	Lys	Сув	Thr	Glu
	-,-		180		-			185					190		
•	a 1	Dho	C1	ሞኮኍ	Ile	Cve	Δsn	Lvs	Leu	Glu	Lvs	Thr	Ile	Glu	Ala
ьеп	GIU		Giu	1111	110	-7-	200	-1-			•	205			
		195					200								
				_		••	•	D	C . =	Non.	T16	T.O.I	Cor	T\/Y	Glu
Arg	Gln	Pro	Pne	Leu	Ser		Asp	Pro	261	Abii		пец	Jer	-7-	914
	210					215					220				
								_			_			•	mb
Glu	Leu	Ser	Ser	Tyr	Ile	Val	Asp	Gln	Phe		Ser	Ala	val	гув	
225					230					235					240
Ser	Asn	Pro	Tyr	Ile	Val	Thr	Asn	Gly	Gly	Asn	Leu	Glu	Tyr	Ile	Ser
				245					250					255	
Thr	Thr	Ala	Leu	Lys	Glu	Arg	Leu	Ser	Lys	Glu	Ile	Lys	Tyr	Glu	Pro
			260					265					270		
Phe	Val	Thr	Ile	Phe	Asp	Lys	Asn	Gln	Met	Ser	Thr	Ser	Ala	Val	Arg
		275					280					285			
Pro	Ile	Pro	Lvs	Leu	Phe	Glu	Leu	Phe	Gly	Arg	Pro	Val	Tyr	Asp	His
	290		-, -			295					300				
T	Lvc	Glu	Arm	Larg	Ile	Glu	Ara	Lvs	Glv	Lvs	Thr	Ile	Gln	Pro	Thr
	шyз	GIU	~-9	Dy S	310		5	-2-	•	315					320
305					310										
•	•	Db -	61	3	Pro	Non.	Cor	λen	G) 11	Lvs	Glu	Asn	gra	Asn	Asp
ьеи	гуя	Pne	Gru		FIG	von	561	710	330	-1-				335	•
				325					330						
			_	_,			3	01	Dha	λ 	GJ~	210	Δτα	T.ve	Thr
Pro	Tyr	Ile		Phe	Arg	arg	arg			arg	GIN	nid			
			340					345				•	350		
									_		_	•	W	61 -	****
Arg	Arg	Ala	Авр	Thr	Ile	Gly			Arg	Ile	Arg			GIN	ъув
		355					360					365			

Ser	Leu 370	His	Arg	Ala	Arg	Asp 375	Leu	Ile	Met	Ser	Val 380	Ser	Glu	Arg	Glu
Ile 385	Leu	Lys	Leu	Asp	Asn 390	Phe	Gln	Ala	Glu	His 395	Glu	Leu	Phe	Lys	Ala 400
Arg	Cys	Ala	Thr	Lys 405	Ala	Сув	Lys	Arg	Glu 410	Leu	Asn	Ile	Lys	Gly 415	Asp
Glu	Tyr	Leu	Phe 420	Phe	Pro	His	Lys	Lys 425	Lys	Lys	Ile	Val	Arg 430	Thr	Glu
Asp	Glu	Glu 435	Arg	Glu	Lys	Lys	Arg 440	Glu	Lys	Lys	Lys	Gln 445	Asp	Gln	Glu
Leu	Ala 450	Leu	Lys	Gln	Gln	Gln 455	Ala	Leu	Gln	Gln	Gln 460	Gln	Gln	Gln	Pro
Pro 465	Gln	Pro	Pro	Gln	Gln 470	Ala	Pro	Ser	Lys	Gln 475	Asp	Gly	Thr	Ser	Thr 480
Ser	Gln	Pro	Tyr	Val 485	Lys	Leu	Pro	Pro	Ala 490	Lys	Val	Pro	Asp	Met 495	Asp
Leu	Val	Thr	Val		Leu	Val	Leu	Lys 505		Lys	Asn	Glu	Thr 510	Ile	Lys
Arg	Ala	Val		Glu	Lys	Leu	Arg		Arg	Lys	Glu	His		Lys	Gly
Phe	Ile 530		Leu	Thr	Asp	Asp 535		Tyr	Gln	Pro	Phe 540		: Asp	Ile	Ser
Thr		Arg	, Ala	Glu	. Glu 550		Ser	· His	ılle	Pro		Ser	: Ser	· Ile	Ala 560

								ĺ	U						
Ala	Thr	His	Tyr	His 565	Gln	Phe	Asn	Thr	Ser 570	Asn	Tyr	Met	Asn	А зр 575	Gln
Leu	Lys	Lys	Leu 580	Leu	Glu	Glu	Lys	Lys 585	Pro	Leu	Pro	Gly	Val 590	Lys	Thr
Phe	Leu	Gly 595	Ser	Asn	Gly	Glu	Leu 600	Val	Pro	Ser	Lys	Ala 605	Phe	Pro	His
Leu	Ser 610	Ser	Leu	Leu	Glu	Glu 615	Lys	Tyr	ГÀЗ	Ala	Thr 620	Ser	Gly	Tyr	Ile
Glu 625	Arg	Leu	Leu	Gln	Ser 630	Val	Glu	Thr	Gln	Asp 635	Phe	Ser	Ser	Tyr	Thr
Asn	Gly	Phe	Lys	Asp 645	Val	Glu	Prc	Lys	Glu 650	Thr	Asn	Glu	Pro	Val 655	Met
Ala	Phe	Pro	Gln 660	Arg	Ile	Arg	Arg	Arg 665	Val	Gly	Arg		Gly 670	Arg	Val
Phe	Leu	Asp 675	His	Gln	Gln	Glu	Tyr 680	Pro	Gln	Pro	Asn	Phe	Gln	Gln	Asp
Thr	Asp 690	Arg	Val	Gly	Gly	Ile 695		Asp	Val	Tyr	Суз 700		Glu	Asp	Ala
Ile 705	Lys	Arg	Leu	Gln	Ser 710		Trp	Lys	Phe	Asp 715		Glu	Tyr	Lys	Thr 720
Thr	Glu	Pro	Phe	Ser 725		Asp	Pro	Ser	Tys		Asn	Gly	· Ile	Ser 735	
Ser	Thr	Gln	Ser 740		Arg	Phe	Gly	Ser 745		: Lev	. Lev	Asr	750		Arg

<210	> 11	•														
<211	> 44	7														
<212	> AI	N														
<213	> Ca	ındid	la al	.bica	ns											
<220)>															
<221	> CI	S														
<222	!> (1	L) ·	(447)	I												
)> 11															
								gta								48
Met	Ser	Asp	Ile	qaA	Ile	Asp	Asn	Val	Leu	Asn	Leu	Glu	Glu		Gln	
1				5					10					15		
								caa								96
Tyr	Glu	Leu	Gly	Phe	Lys	Glu	Gly	Gln	Ile	Gln	Gly	Thr		Asp	Gln	
			20					25					30			
								tat								144
Tyr	Leu	Glu	Gly	ГЛе	Glu	Tyr	Gly	Tyr	Gln	Thr	Gly	Phe	Gln	Arg	Phe	
		35					40					45				
																100
								tta								192
Leu	Ile	Ile	Gļy	Tyr	Ile	Gln	Glu	Leu	Met	Lys		Trp	Leu	Ser	His	
	50					55					60					
																240
								tca								- 240
Ile	yab	Gln	Tyr	Asn		Ser	Ser	Ser	Leu		Asn	HIS	rea	ASII	80	
65					70					75					80	
										200	224	~~=	ast	222	gaa	288
								tct								
Leu	Glu	Asp	Ile		Ala	GIn	116	Ser		Inr	ASII	GIY	veh	95	010	
				85					90					73		
								9.5	996	aa.	202	aar	222	tta	aga	336
								aaa								
Val	Glu	Asp			ьys	ASN	TTE	Lys		VIG	n. A	V0!1	110		3	
			100					105								

								_	K- \							
																204
gtg	ata	gct	agt	ata	act	aaa	gaa	act	tgg	aaa	att	gat	tca	ttg	gat	384
Val	Ile	Ala	Ser	Ile	Thr	Lys	Glu	Thr	Trp	Lys	Ile	Asp	Ser	Leu	Asp	
		115					120					125				
aat	ttg	gtg	aaa	gaa	gta	ggt	gga	act	tta	caa	gtt	agt	gaa	aac	ccc	432
Asn	Leu	Val	Lys	Glu	Val	Gly	Gly	Thr	Leu	Gln	Val	Ser	Glu	Asn	Pro	
	130					135					140					
gat	gat	atg	tgg	tga												447
_	_	Met														
145			•													
1																
-216)> 1:	2														
	l> 1:															
		* 3														
<212			a	lhic	ne											
<21.	3> C	andio	la a	IDIC	2115											
		_														
	0> 1			_	•••) an	17-1	Lou	Nan	T.e.u	Glu	Glu	Glu	Gln	
Met			Ile		Ile	Asp	Asn	Val		Asn	Leu	Glu	Glu		Gln	
			Ile	Asp 5	Ile	Asp	Asn	Val	Leu 10	Asn	Leu	Glu	Glu	Glu 15	Gln	
Met 1	Ser	Asp		5					10					15		
Met 1	Ser	Asp		5				Gln	10			Glu Thr	Lys	15		
Met 1	Ser	Asp		5					10					15		
Met 1 Tyr	Ser	Asp	Gly 20	5 Phe	Lys	Glu	Gly	Gln 25	10	Gln	Gly	Thr	J0	15 Asp	Gln	
Met 1 Tyr	Ser	Asp	Gly 20	5 Phe	Lys	Glu	Gly	Gln 25	10	Gln	Gly	Thr	J0	15 Asp		
Met 1 Tyr	Ser	Asp	Gly 20	5 Phe	Lys	Glu	Gly	Gln 25	10	Gln	Gly	Thr	J0	15 Asp	Gln	
Met 1 Tyr	Ser Glu Leu	Leu Glu 35	Gly 20 Gly	Phe Lys	Lys Glu	Glu Tyr	Gly Gly 40	Gln 25 Tyr	10 Ile	Gln	Gly	Thr Phe 45	Gln Gln	Asp Arg	Gln	
Met 1 Tyr	Ser Glu Leu	Leu Glu 35	Gly 20 Gly	Phe Lys	Lys Glu	Glu Tyr	Gly Gly 40	Gln 25 Tyr	10 Ile	Gln	Gly	Thr Phe 45	Gln Gln	Asp Arg	Gln	
Met 1 Tyr	Ser Glu Leu	Leu Glu 35	Gly 20 Gly	Phe Lys	Lys Glu	Glu Tyr	Gly Gly 40	Gln 25 Tyr	10 Ile	Gln	Gly	Thr Phe 45	Gln Gln	Asp Arg	Gln	
Met 1 Tyr Tyr	Glu Leu	Leu Glu 35	Gly 20 Gly	5 Phe Lys	Lys Glu Ile	Glu Tyr Gln 55	Gly Gly 40 Glu	Gln 25 Tyr	Ile Gln Met	Gln Thr Lys	Gly Phe 60	Thr Phe 45	Lys 30 Gln Leu	Asp Arg	Gln Phe His	
Met 1 Tyr Tyr	Glu Leu	Leu Glu 35	Gly 20 Gly	5 Phe Lys	Lys Glu Ile	Glu Tyr Gln 55	Gly Gly 40 Glu	Gln 25 Tyr	Ile Gln Met	Gln Thr Lys	Gly Phe 60	Thr Phe 45	Lys 30 Gln Leu	Asp Arg	Gln	
Met 1 Tyr Tyr	Glu Leu Ile 50	Leu Glu 35	Gly 20 Gly	5 Phe Lys	Lys Glu Ile	Glu Tyr Gln 55	Gly Gly 40 Glu	Gln 25 Tyr	Ile Gln Met	Gln Thr Lys	Gly Phe 60	Thr Phe 45	Lys 30 Gln Leu	Asp Arg	Gln Phe His	
Met 1 Tyr Tyr Leu Ileu	Glu Leu Ile 50	Leu Glu 35	Gly 20 Gly	5 Phe Lys	Lys Glu Ile	Glu Tyr Gln 55	Gly Gly 40 Glu	Gln 25 Tyr	Ile Gln Met	Gln Thr Lys	Gly Phe 60	Thr Phe 45	Lys 30 Gln Leu	Asp Arg	Gln Phe His	
Met 1 Tyr Tyr Leu 1le 65	Ser Glu Leu Ile 50	Leu Glu 35	Gly 20 Gly Gly	5 Phe Lys Tyr	Lys Glu Ile Asn 70	Glu Tyr Gln 55 Ser	Gly 40 Glu Ser	Gln 25 Tyr Leu	Ile Gln Met	Gln Thr Lys	Gly Phe 60	Thr Phe 45 Trp	Lys 30 Gln Leu	Asp Arg Ser	Gln Phe His	

PCT/FR00/01567 WO 00/75305

32 Val Glu Asp Tyr Glu Lys Asn Ile Lys Lys Ala Arg Asn Lys Leu Arg 100 105 Val Ile Ala Ser Ile Thr Lys Glu Thr Trp Lys Ile Asp Ser Leu Asp 120 115 Asn Leu Val Lys Glu Val Gly Gly Thr Leu Gln Val Ser Glu Asn Pro 140 135 130 Asp Asp Met Trp 145 <210> 13 <211> 966 <212> ADN <213> Candida albicans <220> <221> CDS <222> (1)..(966) <400> 13 atg ggt aaa aga aga gta gat gaa gaa tot gat toa gat att gat gtt Met Gly Lys Arg Arg Val Asp Glu Glu Ser Asp Ser Asp Ile Asp Val 15 agt tca acc gat tca gaa act gaa tta gaa agc aca caa caa caa Ser Ser Thr Asp Ser Glu Thr Glu Leu Glu Ser Thr Gln Gln Gln 30 25 20

caa caa caa gaa ggt gct act aca att caa gaa act gtt gat gtt gat 144 Gln Gln Glu Gly Ala Thr Thr Ile Gln Glu Thr Val Asp Val Asp

40

ttt gat ttt ttt gat tta aat cct caa att gat ttc cat gct act aag Phe Asp Phe Phe Asp Leu Asn Pro Gln Ile Asp Phe His Ala Thr Lys 60 50 55

aat	ttt	tta	aga	caa	tta	ttt	ggt	gat	gat	aat	gga	gaa	tjtt	aat	tta	240
Asn	Phe	Leu	Arg	Gln	Leu	Phe	Gly	Asp	Asp	Asn	Gly	Glu	Phe	Asn	Leu	
65			•		70					75					80	
agt	gaa	ata	gcc	gat	tta	att	tta	cga	gaa	aat	tcc	gtg	999	aca	tca	288
Ser	Glu	Ile	Ala	Asp	Leu	Ile	Leu	Arg	Glu	Asn	Ser	Val	Gly	Thr	Ser	
				85					90					95		
att	aaa	act	gaa	gga	atg	gaa	agt	gat	cca	ttt	gca	att	tta	agt	gta	336
Ile	Lys	Thr	Glu	Gly	Met	Glu	Ser	Asp	Pro	Phe	Ala	Ile	Leu	Ser	Val	
			100					105					110			
att	aat	tta	act	aat	aat	tta	aat	gtg	gcc	gtg	att	aaa	caa	ttg	att	384
Ile	Asn	Leu	Thr	Asn	Asn	Leu	Asn	Val	Ala	Val	Ile	Lys	Gln	Leu	Ile	
		115					120					125				
gaa	tat	att	tca	aat	aaa	acc	aaa	tct	aaa	act	gaa	ttc	aat	att	att	432
Glu	Tyr	Ile	Ser	Asn	Lys	Thr	Lys	Ser	Lys	Thr	Glu	Phe	Asn	Ile	Ile	
	130					135					140					
ttg	aaa	aaa	ttg	tta	acc	aat	cag	aac	gat	act	act	aga	gat	agg	aaa	480
Leu	Lys	Lys	Leu	Leu	Thr	Asn	Gln	Asn	Asp	Thr	Thr	Arg	Asp	Arg	Lys	
145					150					155					160	
ttt	aaa	act	gga	tta	ata	att	agt	gaa	aga	ttt	ata	aat	atg	cca	gtt	528
Phe	Lys	Thr	Gly	Leu	Ile	Ile	Ser	Glu	Arg	Phe	Ile	Asn	Met	Pro	Val	
				165					170					175		
															-	
gaa	gtg	att	cca	cca	atg	tat	aaa	atg	ctt	tta	caa	gaa	atg	gaa	aaa	576
	Val															
			180					185					190			
gct	gaa	gat	gct	cat	gaa	aat	tat	gaa	ttt	gat	tat	ttt	tta	att	ata	624
	Glu															
		195					200					205				

								-	7							
tca	aga	gtt	tat	caa	tta	gtt	gat	cca	gtg	gaa	aga	gaa	gat	gaa	gat	672
Ser	Arg	Val	Tyr	Gln	Leu	Val	Авр	Pro	Val	Glu	Arg	Glu	Asp	Glu	qaA	
	210					215					220					
cac	gaa	aaa	gaa	tcc	aat	cgt	aaa	aag	aag	aac	aag	aat	aag	aag	aag	720
His	Glu	Lys	Glu	Ser	Asn	Arg	Lys	Lys	Lys	Asn	Lys	Asn	Lys	Lys	Lys	
225					230					235					240	
aaa	ttg	gct	aat	aat	gaa	cca	aaa	сса	ata	gaa	atg	gat	tat	ttc	cat	768
Lys	Leu	Ala	Asn	Asn	Glu	Pro	Lys	Pro	Ile	Glu	Met	Asp	Tyr	Phe	His	
-				245					250					255		
ctt	qaa	gat	caa	att	ttg	gaa	tca	aat	act	caa	ttt	aaa	gga	ata	ttt	816
			Gln													
		-	260					265					270			
qaa	tat	aat	aat	gaa	aat	aaa	caa	gaa	aca	gat	tca	aga	aga	gta	ttt	864
Glu	Tyr	Asn	Asn	Glu	Asn	Lys	Gln	Glu	Thr	Asp	Ser	Arg	Arg	Val	Phe	
	-•	275					280					285				
act	αaa	tat	ggt	att	gat	cct	aaa	tta	agt	tta	atc	tta	att	gat	aaa	912
			Gly													
•	290	•	-		_	295					300					
gat	aat	tta	gct	aaa	tca	gtc	att	gaa	atg	gaa	caa	caa	ttc	сса	cct	960
			Ala													
305				-•	310					315					320	
,,,																
cca	taa															966
Pro																

<210> 14 <211> 322

<212>

<213> Candida albicans

)> 14														
Met	Gly	Lys	Arg	Arg	Val	qeA	Glu	Glu	Ser	Asp	Ser	Asp	Ile	Asp	Val
1			-	5					10					15	
Ser	Ser	Thr	Asp	Ser	Glu	Thr	Glu	Leu	Glu	Ser	Thr	Gln	Gln	Gln	Gln
			20					25					30		
Gln	Gln	Gln	Glu	Gly	Ala	Thr	Thr	Ile	Gln	Glu	Thr	Val	qaA	Val	Asp
		35					40					45			
Phe	Asp	Phe	Phe	Asp	Leu	Asn	Pro	Gln	Ile	Asp	Phe	His	Ala	Thr	Lys
	50					55					60				
Asn	Phe	Leu	Arg	Gln	Leu	Phe	Gly	Asp	Asp	Asn	Gly	Glu	Phe	Asn	Leu
65					70					75					80
Ser	Glu	Ile	Ala	Asp	Leu	Ile	Leu	Arg	Glu	Asn	Ser	Val	Gly	Thr	Ser
				85					90					95	
Ile	Lys	Thr	Glu	Gly	Met	Glu	Ser	Asp	Pro	Phe	Ala	Ile	Leu	Ser	Val
			100					105					110		
Ile	Asn	Leu	Thr	Asn	Asn	Leu	Asn	Val	Ala	Val	Ile	Lys	Gln	Leu	Ile
		115					120					125			
Glu	Tyr	Ile	Ser	Asn	Lys	Thr	Lys	Ser	Lys	Thr	Glu	Phe	Asn	Ile	Ile
	130					135					140				
Leu	Lys	Lys	Leu	Leu	Thr	Asn	Gln	Asn	Ąsp	Thr	Thr	Arg	Asp	Arg	Lys
145					150					155					160
Phe	Lys	Thr	Gly	Leu	Ile	Ile	Ser	Glu	Arg	Phe	Ile	Asn	Met	Pro	Val
				165					170					175	
Glu	Val	Ile	Pro	Pro	Met	Tyr	ГЛа		Leu	Leu	Gln	Glu		Glu	Lys
			180					185					190		

Ala	Glu	Asp	Ala	His	Glu	Asn	Tyr	Glu	Phe	Asp	Tyr	Phe	Leu	Ile	Ile
		195					200					205			
Ser	Arg	Val	Tyr	Gln	Leu	Val	Asp	Pro	Val	Glu	Arg	Glu	Asp	Glu	Asp
	210					215					220				
His	Glu	Lys	Glu	Ser	Asn	Arg	Lys	Lys	Lys	Asn	ГÀа	Asn	Lys	Lys	Lys
225					230					235					240
Lys	Leu	Ala	Asn	Asn	Glu	Pro	Lys	Pro	Ile	Glu	Met	Asp	Tyr		His
				245					250					255	
Leu	Glu	Asp	Gln	Ile	Leu	Glu	Ser	Asn	Thr	Gln	Phe	Lys		Ile	Phe
			260					265					270		
													_	•	-1
Glu	Tyr	Asn	Asn	Glu	Asn	Lys		Glu	Thr	Asp	Ser		Arg	Val	Pne
		275					280					285			
													-1-	.	·
Thr	Glu	Tyr	Gly	Ile	yab		Lys	Leu	Ser	Leu		Leu	me	Asp	гÀг
	290					295					300				
									•••	01	01 -	C1 n	Dho	Dro	Bro
Asp	Asn	Leu	Ala	Lys		Val	He	GIU	Met		GIII	GIII	Pile	PIO	320
305					310					315					320
Pro															
-01	n. 1	_													
	0> 1 1> 3:														•
	1> 3 2> A														
		on andi	da a	lbic	ans										
~~I	<i>ـ د</i> د		u												

caatttatte atggteegtt etggaaattg atttttggta aaactgetaa tgaattagaa 60

aaatcgcaag atttgcccaa tgaatatatg attgtggaga atgtgccatt attaaataga 120

WO 00/75305 PCT/FR00/01567

37

tttattagta tacctaagga gtatggcgac ttaaattgtt cagcatttgt tgcgggtata 180

attgagggag cacttgataa tagtggattc aatgccgatg ttacagcaca cacggtcgct 240

acagatgcaa atccattaag aacagtattt ttgatcaagt ttgacgattc tgttttaatt 300

agagagaggtt tgagatttgg

<210> 16

<211> 295

<212> ADN

<213> Candida albicans

<400> 16

gttcatgttt ggtgactcag agcgtctcaa ctatattgtt cgattataca tacgaactcg 60
attgagtaag ttgaataaat ttactattt ttacatcaat gaaagcagtc aaaatgataa 120
tttattgtcc aaagaggaaa gagattatat acacaaatat ttccagattt tgactcaatt 180
atataacaac tgtttcctca aaaaactacc acaaatgttg acctatttgg atgacaccag 240
tggtggacaa tcaatgatcg ttgagccaga tttagaccag cctgtgttta tcaaa 295

<210> 17

<211> 392

<212> ADN

<213> Candida albicans

<400> 17

atctctgata tgagatttgg ctttaaaggc gatttaattg aattggctcc agtgggagat 60
gcaccaaaaag atagttcatc cgacatacgt actcatatgg gactccatca tcattcggag 120
accccacata tggcaggtta tacattgggt gagttggccc atttagccag atcgacttta 180

PCT/FR00/01567 WO 00/75305

38

gctggacaaa gatgcttgag cattcaaaca ttagggagaa tcttccataa attgggatta 240 cataaataca gtatactacc aaaccagctc aatgatcaga gttttacaga tgaatcaaaa 300 ctatcacttg actttgaaga tagatgtggg acttgataga ccaattacga atcattgaaa 360 392 caataacaga ggcagctgat ggaaaaaaga cc

<210> 18

<211> 335

<212> ADN

<213> Candida albicans

<400> 18

attcccacac cggacgcttc gaggatatgg cccgaggcac acaagtatta caaggatcaa 60 aagttcaagc agccagagac atatatcaag tttagtgcga cagtagagga cacagtgggt 120 gtggagtaca atatggacga ggtagatgaa aagttttata gagagacact atgcaagtac 180 tatcccaaaa agaaaaacaa gtcagatgag aacaatcgaa agtgtactga attggagttt 240 gaaacaatct gtgacaagtt ggaaaagacc attgaagcac gacaaccgtt tttgtctatg 300 335 gaccccagca acattctatc gtacgaggag ttgtc

<210> 19

<211> 326

<212> ADN

<213> Candida albicans

<400> 19

agatatagat aatgtattaa atttagaaga agatcaatat gaattaggat ttaaagaagg 60 tcaaatacaa ggaacaaaag atcaatattt agaaggaaaa gaatatggtt atcaaactgg 120 WO 00/75305 PCT/FR00/01567

39

atttcaacga tttttaatca ttggttatat tcaagaatta atgaaattt ggttatccca 180
tatagatcaa tataataact cttcttcact tcggaatcat ttgaataatt tggaagatat 240
tatggcacaa atttctataa cgaatggaga taaagaagtt gaagattatg aaaaaaatat 300
taaaaaggca agaaataaat taagag 326

<210> 20

<211> 374

<212> ADN

<213> Candida albicans

<400> 20

agaatttaat ttaagtgaaa tagccgattt aatttacga gaaaattccg tggggacatc 120
aattaaaact gaaggaatgg aaagtgatcc atttgcaatt ttaagtgtaa ttaatttaac 180
taataattta aatgtggccg tgattaaaca attgattgaa tatattttaa ataaaaccaa 240
atctaaaact gaattcaata ttattttgaa aaaattgtta accaatcaga acgatactac 300
tagaagtagg aaatttaaaa ctggattaat aattagtgaa agatttataa atatgccagt 360
tgaagtgatt ccac 374

<210> 21

<211> 35

<212> ADN

<213> Candida albicans

<400> 21

caatttattc atgttcgnat ctggaaattg atttt

<210> 22	
<211> 29	
<212> ADN	
<213> Candida albicans	
<400> 22	29
ccaaatctca aactctctct aattaaaac	29
<210> 23	
<211> 38	
<212> ADN	
<213> Candida albicans	
<400> 23	38
gttcatgttt ggtgactcag agcgtctcaa ctatattg	
<210> 24	
<211> 33	
<212> ADN	
<213> Candida albicans	
•	
<400> 24	
tttgataaac acaggctggt ctaaatctgg ctc	33
<210> 25	
<211> 32	
<212> ADN	
<213> Candida albicans	
<400> 25	
atctctgata tgagatttgg ctttaaaggc ga	32
accectgata tyayatteyy certaaayy y	

<210> 26

WO 00/75305	PCT/FR00/01567
-------------	----------------

<211> 32 <212> ADN <213> Candida albicans <400> 26 32 ggtctttttt ccatcagctg cctctgttat tg <210> 27 <211> 20 <212> ADN <213> Candida albicans <400> 27 20 attcccacac cggacgcttc <210> 28 <211> 20 <212> ADN <213> Candida albicans <400> 28 20 gacaactcct cgtacgatag <210> 29 <211> 20 <212> ADN <213> Candida albicans <400> 29 20 agataatgta ttaaatttag <210> 30 <211> 20

<212> ADN

<213> Candida albicans

WO 00/75305	PCT/FR00/01567

<400> 30	
ctcttaattt atttcttgcc	20
<210> 31	
<211> 20	
<212> ADN	
<213> Candida albicans	
<400> 31	
cctcaaattg atttccatgc	20
	•
<210> 32	
<211> 20	
<212> ADN	
<213> Candida albicans	
<400> 32	

gtggaatcac ttcaactggc