ELL365: Embedded Systems

Lecture on Introduction to Embedded System Security

Vireshwar Kumar CSE@IITD

February 12, 2024

Semester II 2023-2024

Agenda

- Cryptographic Operation Costs
- Fundamental Challenge in Embedded System Security
- Example of a Security Protocol in Conventional Computer Network
 - Transport Layer Security (TLS)
- Example of a Security Protocol in Embedded System
 - Bluetooth Security
- Explanation of an Attack on Bluetooth

Cryptography Overview

	Symmetric Key Setting	Asymmetric Key Setting
Secrecy / Confidentiality	Block Cipher	Public Key Encryption
Authenticity / Integrity	Hash-Based Message Authentication Code	Digital Signature

Overhead (9th Gen i7 Processor, 16 GB RAM)

Encryption Algorithm	Key Length (bits)	Execution Time (ms)	Block Length (bits)
Symmetric Key Encryption AES-CBC	128	0.5	128
Public Key Encryption RSA	2048	5.0	2048

Authentication Algorithm	Key Length (bits)	Execution Time (ms)	Tag Length (bits)
Symmetric Key Authentication SHA3-HMAC	128	0.1	256
Digital Signature RSA-SHA3	2048	50.0	2048

Resource-Constraints in Embedded Devices

	Typical Desktop	Typical IoT Device
Computation (Clock Frequency)	2 GHz	20 MHz
Communication (Packet Length)	16 KB	16 B
Storage (RAM)	16 GB	2 KB

Embedded System Security

Transport Layer Security (TLS)

- Secure communications in the presence of an attacker who can
 - own the network
 - control Wi-Fi, DNS, routers
 - can listen to any packet
 - modify packets in transit
 - inject packets into the network

- Scenario: Internet Success Story using TLS
 - You are reading your email from an Internet cafe connected via a Wi-Fi access point to a sketchy ISP in a hostile authoritarian country

HTTPS (HTTP over SSL/TLS)

- HTTPS: end-to-end secure protocol for Web (Hypertext Transfer Protocol)
 - Encryption
 - Authentication (usually for server only)
 - Integrity protection

TLS Message Exchange

Bluetooth Low Energy (BLE)

- Number of devices: 4 billion
 - Smart home
 - Smart bulb
 - Wearable
 - Smart watch
 - Health care
 - Smart glucose monitor
 - Aarogya Setu

Number of Bluetooth equipped devices

Wireless Medium: Threat Model

Client and Server. communicate messages on a wireless channel

• Attacker: eavesdrop, intercept, and modify legitimate messages

BLE Link-Layer Security Mechanism

- Defined: Security Level
 - Level 1: No security
 - Level 2: Encryption
 - Level 3: Encryption and authentication
 - Level 4: New encryption and authentication

- Real-World: Security Level
 - Without I/O: Level 2 (no authentication)
 - With I/O: Level 3 and 4
- Level in Aarogya Setu?

Attack Surface Investigation

- Prior Work
 - Target the pairing procedure during the initial connection
 - Malicious software on the client
- Reconnection procedure: Unexplored

Discovered Vulnerabilities and Attack

- Two **design** vulnerabilities lack of authentication
 - Formal analysis of BLE connection procedure

- One implementation vulnerability bypass authentication
 - Examination of real-world BLE devices

Vulnerabilities >>> BLE Spoofing Attack (BLESA)

BLESA: Step by Step

Benign Scenario

BLESA

Formal Analysis and Findings

- Formal model
 - Modeling BLE reconnection procedure using ProVerif
 - Verifying security properties
 - Confidentiality, Integrity, and Authenticity
- Identified Weaknesses
 - Optional authentication
 - Circumventing authentication
 - Design issue
 - Potential for Implementation issue

Design Vulnerability

- Whether the BLE apps use authentication during reconnection?
 - No authentication: 86/127 (67.7%)

- Whether the real-world server BLE devices use authentication during reconnection?
 - No authentication: 10/12

Device Name	Auth.
Nest Protect Smoke Detector	×
Nest Cam Indoor Camera	×
SensorPush Temperature Sensor	×
Tahmo Tempi Temperature Sensor	×
August Smart Lock	×
Eve Door & Window Sensor	×
Eve Button Remote Control	×
Eve Energy Socket	×
Ilumi Smart Light Bulb	×
Polar H7 Heart Rate Sensor	×
Fitbit Versa Smartwatch	$\sqrt{}$
Oura Smart Ring	

Implementation Vulnerability

• Can we circumvent the authentication procedure?

Platform	os	BLE Stack	Vulnerable
Linux Laptop	Ubuntu 18.04	BlueZ 5.48	Yes
Google Pixel XL	Android 8.1, 9, 10	Fluoride	Yes
iPhone 8	iOS 12.1, 12.4, 13.3.1	iOS BLE stack	Yes
Thinkpad X1 Yoga	Windows 10 V. 1809	Windows stack	No

Thanks!