

Linear Power MOSFET IXTK46N50L IXTX46N50L With Extended FBSOA

N-Channel Enhancement Mode

V _{DSS}	=	500	V
I _{D25}	=	46	Α
R _{DS(on)}	≤	0.16	$\mathbf{\Omega}$

TO-264 (IXTK)

PLUS247 (IXTX)

G = Gate	D = Drain
S = Source	TAB = Drain

Features

- Designed for linear operation
- International standard package
- Unclamped Inductive switching (UIS)
- Molding epoxies meet UL 94 V-0 flammability classification

Applications

- Programmable loads
- Current regulators
- DC-DC converters
- Battery chargers
- DC choppers
- Temperature and lighting controls

Advantages

- Easy to mount
- Space savings
- High power density

Symbol	Test Conditions		Maximun	n Ratings
V _{DSS}	$T_{J} = 25^{\circ}\text{C to } 150^{\circ}$	°C	500	V
V _{DGR}	$T_{J} = 25^{\circ} \text{C to } 150^{\circ}$	$^{\circ}$ C; $R_{GS} = 1 M\Omega$	500	V
V _{GS}	Continuous		±30	V
V _{GSM}	Transient		±40	V
I _{D25}	T _C = 25°C		46	А
I _{DM}	$T_{\rm C} = 25^{\circ}$ C, pulse	width limited by $T_{_{JM}}$	100	Α
I _{AR}	$T_{\rm C} = 25^{\circ}{\rm C}$		46	Α
E _{AR}	T _C = 25°C		60	mJ
E _{AS}			1.5	J
$\overline{P_{D}}$	T _C = 25°C		700	W
T_{J}			-55 to +150	°C
T _{JM}			150	°C
T _{stg}			-55 to +150	°C
T _L	1.6 mm (0.063 in)	from case for 10 s	300	°C
T _{SOLD}	Plastic body for 10) s	260	°C
M_d	Mounting torque	(TO-264)	1.13/10	Nm/lb.in.
F _c	Mounting force	(PLUS247™)	20120/4.527	N/lb.
Weight	PLUS247 TO-264		6 10	g g

Symbol	Test Conditions	Characteristic Values $(T_J = 25^{\circ}C, \text{ unless otherwise specified})$ Min. Typ. Max.			fied)
BV _{DSS}	$V_{GS} = 0 \text{ V}, I_{D} = 1 \text{ mA}$	500			V
$V_{GS(th)}$	$V_{DS} = V_{GS}$, $I_{D} = 250 \mu A$	3		6	V
I _{GSS}	$V_{GS} = \pm 30 \text{ V}, V_{DS} = 0 \text{ V}$			±200	nA
I _{DSS}	$V_{DS} = V_{DSS}$ $V_{GS} = 0 V$	T _J = 25°C T _J = 125°C		50 1	μA mA
R _{DS(on)}	$V_{GS} = 20 \text{ V}, I_{D} = 0.5 I_{D25}, N$	lote 1		0.16	Ω

IXYS reserves the right to change limits, test conditions, and dimensions.

Symbol	Test Conditions Ch $(T_1 = 25^{\circ}C, \text{ unless})$		istic Valu se specifi	
	Min.	Тур.	Max.	
\mathbf{g}_{fs}	$V_{DS} = 10 \text{ V}; I_{D} = 0.5 \bullet I_{D25}, \text{ Note 1}$ 7	10	13	S
C _{iss}		7000		pF
C _{oss}	$V_{GS} = 0 \text{ V}, V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}$	900		pF
\mathbf{C}_{rss})	170		pF
t _{d(on)}		40		ns
t _r	$V_{GS} = 15 \text{ V}, V_{DS} = 0.5 \bullet V_{DSS}, I_{D} = 0.5 \bullet I_{D25}$	50		ns
$\mathbf{t}_{d(off)}$	$R_{G} = 2 \Omega \text{ (External)},$	80		ns
t _f)	42		ns
Q _{g(on)})	260		nC
\mathbf{Q}_{gs}	$V_{GS} = 15 \text{ V}, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$	85		nC
\mathbf{Q}_{gd}	J	125		nC
R _{thJC}			0.18 °C	/W
R _{thCS}		0.15	°C	/W

Safe Operating Area Specification

Symbol	Test Conditions	Min.	Тур.	Max.
SOA	$V_{DS} = 400 \text{ V}, I_{D} = 0.6 \text{ A}, T_{C} = 90^{\circ}\text{C}$	240		W

Source-Drain Diode

Characteristic Values $(T_1 = 25^{\circ}C, unless otherwise specified)$

Symbol	Test Conditions	Min.	Тур.	Max.	
I _s	$V_{GS} = 0 V$			46	Α
I _{sm}	Repetitive; pulse width limited by $T_{_{\rm JM}}$			100	Α
V _{SD}	$I_F = I_S$, $V_{GS} = 0$ V, Note 1			1.5	V
t _{rr}	$I_F = I_S$, -di/dt = 100 A/ μ s, $V_R = 100$ V		600		ns

Note 1: Pulse test, $t < 300 \mu s$, duty cycle, $d \le 2 \%$

PRELIMINARY TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from data gathered during objective characterizations of preliminary engineering lots; but also may yet contain some information supplied during a pre-production design evaluation. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

TO-264 (IXTK) Outline

1 — GATE 2, 4 — DRAIN (COLLECTOR) 3 — SOURCE (EMITTER)

SYM	INCHES		MILLIMETERS	
21M	MIN	MAX	MIN	MAX
A	.185	.209	4.70	5.31
A1	.102	.118	2.59	3.00
b	.037	.055	0.94	1.40
b1	.087	.102	2.21	2.59
b2	.110	.126	2.79	3.20
C	.017	.029	0.43	0.74
D	1.007	1.047	25.58	26.59
E	.760	.799	19.30	20.29
e	.215BSC		5.46	
J	.000	.010	0.00	0.25
K	.000	.010	0.00	0.25
L	.779	.842	19.79	21.39
L1	.087	.102	2.21	2.59
ØP	.122	.138	3.10	3.51
Q	.240	.256	6.10	6.50
Q1	.330	.346	8.38	8.79
ØR	.155	.187	3.94	4.75
ØR1	.085	.093	2.16	2.36
S	.243	.253	6.17	6.43

PLUS247™ (IXTX) Outline

Terminals:

2 - Drain (Collector) 3 - Source (Emitter) 4 - Drain (Collector)

Dim.	Millimeter		Inches	
	Min.	Max.	Min.	Max.
Α	4.83	5.21	.190	.205
A ₁	2.29	2.54	.090	.100
A ₂	1.91	2.16	.075	.085
b	1.14	1.40	.045	.055
b_1	1.91	2.13	.075	.084
b_2	2.92	3.12	.115	.123
С	0.61	0.80	.024	.031
D	20.80	21.34	.819	.840
Е	15.75	16.13	.620	.635
е	5.45	BSC	.215	BSC
L	19.81	20.32	.780	.800
L1	3.81	4.32	.150	.170
Q	5.59	6.20	.220	0.244
R	4.32	4.83	.170	.190

Fig. 1. Output Characteristics @ 25°C

Fig. 3. Output Characteristics @ 125°C

Fig. 5. $R_{\rm DS(on)}$ Normalized to 0.5 $I_{\rm D25}$ Value vs. $I_{\rm D}$

Fig. 2. Extended Output Characteristics
@ 25°C

Fig. 4. $R_{DS(on)}$ Normalized to 0.5 I_{D25} Value vs. Junction Temperature

Fig. 6. Drain Current vs. Case Temperature

Fig. 7. Input Admittance

Fig. 9. Source Current vs. Source-To-Drain Voltage

Fig. 11. Capacitance

Fig. 8. Transconductance

Fig. 10. Gate Charge

IXYS reserves the right to change limits, test conditions, and dimensions.

Fig. 12. Forward-Bias Safe
Operating Area @ T_C = 25°C

Fig. 13. Forward-Bias Safe
Operating Area @ T_C = 90°C

Fig. 14. Maximum Transient Thermal Impedance

