Siegfried Bosch 「Algebraic Geometry and Commutative Algebra」

https://seasawher.github.io/kitamado/

@seasawher

6.8 Cor.7

quotation. Furthermore, for any $f \in A$ such that $D(f) \subset U$, the canonical map $A \to B$ induces an isomorphism $A_f \to B_f$ via localization and, hence, using 4.3/2, a commutative diagram

$$M \otimes_A B \longrightarrow \mathcal{F}(U)$$

$$\downarrow \qquad \qquad \downarrow$$

$$M \otimes_A B_f \stackrel{\sigma_f}{\longrightarrow} M \otimes_A A_f$$

where σ_f is an isomorphism.

Proof. First, we show $A_f \to B_f$ is a isomorphism. The following is the proof.

$$A_f = \mathcal{O}_X(D(f))$$

$$= \mathcal{O}_X|_U(D(f))$$

$$= \mathcal{O}_U(D(f))$$

$$= B_f$$

The second part remains to be solved.

7.1 The projective n-space

quotation. Also note that the ring of global sections of the structure sheaf on $X = \mathbb{P}_R^n$ is given by the intersection

$$\mathcal{O}_X(X) = \bigcap_{i=0}^n A_i = \bigcap_{i=0}^n R\left[\frac{t_0}{t_i}, \cdots, \frac{t_n}{t_i}\right] = R.$$

Proof. Consider a more general case. Let $X = \bigcup_i X_i$ be a scheme got by glueing X_i . And $\mathcal{O}_X(X_i) = A_i$ is contained by same ring B. Then, we get $\mathcal{O}_X(X) = \bigcap_i A_i$. Why?

Let \mathcal{B} be a open basis of X, $\mathcal{B} = \{U \subset X \mid \exists i \ U \subset_{\text{open}} X_i\}$. For any $U \in \mathcal{B}$, restriction maps $\bigcap_i \mathcal{O}_X(X_i) \to \mathcal{O}_X(U)$ induce a map $\bigcap_i \mathcal{O}_X(X_i) \to \underline{\lim} \mathcal{O}_X(U)$ by universality of the limit.

And we get the inverse map $\varprojlim \mathcal{O}_X(U) \to \bigcap_i \mathcal{O}_X(X_i)$ by gluing. Considering the definition of limit, we can use gluing axiom of structure sheaf \mathcal{O}_X .