STA 522, Spring 2021 Introduction to Theoretical Statistics II

Lecture 11

Department of Biostatistics University at Buffalo

12 April, 2021

AGENDA

- Evaluating Tests
- ► UMP tests
- ► Neyman Pearson Lemma
- ▶ Review for Exam 2

Review: Neyman Pearson Lemma & Most Powerful Tests

- Consider testing $H_0: \theta = \theta_0$ vs. $H_1: \theta = \theta_1$, where (1) the pdf or pmf corresponding to θ_i is $f(\underline{x} \mid \theta_i)$ for i = 0, 1; (2) the test has a rejection region R that satisfies $\underline{x} \in R$ if $f(\underline{x} \mid \theta_1) > kf(\underline{x} \mid \theta_0)$ and $\underline{x} \in R^c$ if $f(\underline{x} \mid \theta_1) < kf(\underline{x} \mid \theta_0)$ for some $k \ge 0$; and (3) $\alpha = P_{\theta_0}(\underline{X} \in R)$.
- Then (a) (Sufficiency) any test that satisfies (2) and (3) above is a UMP level α test; and (b) (Necessity) if there exists a test satisfying (2) and (3) above with k > 0, then every UMP level α test is a size α test (satisfies (3) above), and every UMP level α test satisfies (2) above, except perhaps on a set A satisfying $P_{\theta_0}(\underline{X} \in A) = P_{\theta_1}(\underline{X} \in A) = 0$.
- Suppose $T(\underline{X})$ is a sufficient statistic for θ , and let $g(t \mid \theta_i)$ be the pdf or pmf of T corresponding to θ_i for i=0,1. Then any test based on T with rejection region S (a subset of the sample space of T) is a UMP level α test if it satisfies (1) for some $k \geq 0$, $t \in S$ if $g(t \mid \theta_1) > kg(t \mid \theta_0)$ and $t \in S^c$ if $g(t \mid \theta_1) < kg(t \mid \theta_0)$

Extending the Neyman-Pearson Lemma

➤ Can we extend the Neyman-Pearson Lemma to composite hypotheses (hypotheses that specify more than one possible distribution for the sample)?

– Yes, but only for one-sided hypotheses $(H : \theta \ge \theta_0 \text{ or } H : \theta < \theta_0)$.

– A UMP level α test must be UMP for all values in the alternative hypothesis.

Monotone Likelihood Ratio (MLR)

Definition: A family of pdfs or pmfs $\{g(t \mid \theta) : \theta \in \Theta\}$ for a univariate random variable T with real-valued parameter θ has a **monotone** likelihood ratio (MLR) if, for every $\theta_2 > \theta_1$,

$$\frac{g(t \mid \theta_2)}{g(t \mid \theta_1)}$$

is a monotone (non-increasing or non-decreasing) function of t on

$$\{t: g(t | \theta_1) > 0 \text{ or } g(t | \theta_2) > 0\}.$$

Comments About MLR

- ▶ MLR is a property of a family of distributions.
- ▶ $N(\theta, \sigma^2)$ (with σ^2 known), poisson(θ), and binomial(n, θ) all have an MLR.
- In general, any regular exponential family

Karlin-Rubin Theorem

Theorem

Consider testing $H_0: \theta \leq \theta_0$ vs. $H_1: \theta > \theta_0$. Suppose that T is a sufficient statistic for θ and the family of pdfs or pmfs $\{g(t \mid \theta): \theta \in \Theta\}$ of T has an MLR. Then for any t_0 , the test that rejects H_0 if and only if $T > t_0$ is a UMP level α test, where $\alpha = P_{\theta_0}(T > t_0)$.

Example (Contd.): Let $X_1, X_2, \ldots, X_n \sim \text{iid } N(\theta, \sigma^2)$ population, σ^2 known. Consider testing $H_0': \theta \geq \theta_0$ vs. $H_1': \theta < \theta_0$, where $\theta_0 > \theta_1$.

Consider the test that rejects H_0' if $\overline{X} < \theta_0 - z_\alpha \frac{\sigma}{\sqrt{n}}$. \overline{X} is sufficient.

We'll show that the distribution of $T = \overline{X}$ has an MLR, and apply the Karlin-Rubin theorem.

For $\theta_2 > \theta_1$:

$$\begin{split} \frac{g(t\mid\theta_1)}{g(t\mid\theta_2)} &= \frac{\exp\left(-\frac{n}{2\sigma^2}(t-\theta_2)^2\right)}{\exp\left(-\frac{n}{2\sigma^2}(t-\theta_1)^2\right)} \\ &= \exp\left[\frac{n}{\sigma^2}t(\theta_2-\theta_1)\right] \exp\left[-\frac{n}{2\sigma^2}(\theta_2^2-\theta_1^2)\right] \end{split}$$

which is non-decreasing in t as $\theta_2 - \theta_1 > 0$.

Thus the distribution of $T = \overline{X}$ has an MLR.

Therefore, from Karlin-Rubin theorem it follows that this test is UMP level α for this problem.

Nonexistence of UMP Test

Example: Let $X_1, X_2, \ldots, X_n \sim \text{iid N}(\theta, \sigma^2)$, with σ^2 known. Consider testing

$$H_0: \theta = \theta_0$$

vs.
$$H_1: \theta \neq \theta_0$$
.

We'll show that there does not any UMP test at any level $0 < \alpha < 1$.

For a specified value of α , a level α test in this problem is any test that satisfies

$$P_{\theta_0}(\text{reject } H_0) \leq \alpha.$$

Suppose $\theta_1 < \theta_0$. By Corollary to the NP Lemma with sufficient statistic, the test with rejection region

$$R = \left\{ \underline{x} : \overline{x} < \theta_0 - \frac{\sigma z_\alpha}{\sqrt{n}} \right\}$$

has the highest possible power at θ_1 ; call this Test 1.

By part (b) of the NP Lemma, any other level α test that has the same power as Test 1 at θ_1 must have the same rejection region, except possibly for a set A with measure zero.

So if a UMP level α test exists, it must be Test 1, since no other level α test has as high a power as Test 1 at θ_1 .

Now consider Test 2, which has rejection region

$$R = \left\{ \underline{x} : \overline{x} > \theta_0 + \frac{\sigma z_\alpha}{\sqrt{n}} \right\}.$$

This is also a level α test.

We can show that for any $\theta_2 > \theta_0$, $\beta_2(\theta_2) > \beta_1(\theta_2)$.

So Test 1 cannot be a UMP level α test, since Test 2 has a higher power than Test 1 at θ_2 .

Therefore, no UMP level α test exists in this problem.

p-Values

Defintion: A *p*-value, $p(\underline{X})$, is a test statistic satisfying $0 \le p(\underline{x}) \le 1$ for every sample point \underline{x} . Small values of $p(\underline{X})$ give evidence that H_1 is true. A *p*-value is **valid** if, for every $\theta \in \Theta_0$ and every $0 \le \alpha \le 1$,

$$P_{\theta}(p(\underline{X}) \leq \alpha) \leq \alpha.$$

If $p(\underline{X})$ is a valid p-value, then the test that rejects H_0 if and only if $p(\underline{X}) \leq \alpha$ is a level α test.

Theorem (8.3.27; Determining Valid p-Values)

Let $W(\underline{X})$ be a test statistic such that large values of W give evidence that H_1 is true. For each sample point \underline{x} , define

$$p(\underline{x}) = \sup_{\theta \in \Theta_0} P_{\theta} [W(\underline{X}) \ge W(\underline{x})].$$

Then $p(\underline{X})$ is a valid p-value.

Proof: Fix $\theta \in \Theta_0$. Let $F_{\theta}(w)$ denote the cdf of -W(X). Define

$$p_{\theta}(\underline{x}) = P_{\theta}\left[W(\underline{X}) \geq W(\underline{x})\right] = P_{\theta}\left[-W(\underline{X}) \leq -W(\underline{x})\right] = F_{\theta}(-W(x)).$$

Then the random variable $p_{\theta}(\underline{X})$ is equal to $F_{\theta}(-W(\underline{X}))$.

Hence, by the Probability Integral Transformation $P_{\theta}(p_{\theta}(\underline{X}) \leq \alpha)$. Since

$$p(\underline{x}) = \mathsf{sup}_{ heta' \in \Theta_0} \, p_{ heta'}(\underline{x}) \geq p_{ heta}(\underline{x})$$

for all x, we have

$$P_{\theta}(p(\underline{X}) \leq \alpha) \leq P_{\theta}(p_{\theta}(\underline{X}) \leq \alpha) \leq \alpha$$

which is true for all $\theta \in \Theta_0$ and for every $0 \le \alpha \le 1$.

Hence p(X) is a valid p-value.

Homework

- ► Read p. 387 392.
- Exercises: TBA.