

T.C. EGE ÜNİVERSİTESİ FEN FAKÜLTESİ İSTATİSTİK BÖLÜMÜ

ZAMAN SERİLERİ ANALİZİ İLE DOLAR BAZLI GRAM ALTIN FİYATI TAHMİNLEMESİ

Hazırlayan : İsmail Yarkın Kavalcı

Danışman: Sevcan Demir Atalay

İÇİNDEKİLER

1. Firma ve Verilerin Tanıtımı	3
1.1 Verinin Temin Edildiği Firmanın Tanıtımı	3
1.2 Verinin Tanıtımı	3
Grafik 1.1 Veriye Ait Dağılım ve Betimsel İstatistikler	3
2. Zaman Yolu Grafiği ve Yorum	4
2.1 Zaman Yolu Grafiği	4
2.1 Zaman Yolu Grafiği Grafik 2.1 Veriye ait Zaman Yolu Grafiği	4
2.2 Veriye Ait Zaman Grafiği Yorumu	
3. Korelogram Tablosu ve Yorumu	5
3.1 Korelogram Tablosu	5
Tablo 3.1 Veriye ait Korelogram Tablosu	5
Tablo 3.2 Veriye ait 1.Dereceden Fark Alınmış Korelogram Tablosu	6
3.2 Veriye Ait Korelogram Tablosu Yorumu	6
4. Trendin İncelenmesi	7
Tablo 4.1 Veriye ait Doğrusal Trend Analizi	
Grafik 4.1 Doğrusal Trend için Actual – Fitted – Residual Grafiği	
Tablo 4.2 Veriye ait Parabolik Trend Analizi	
Grafik 4.2 Parabolik Trend için Actual – Fitted – Residual Grafiği	
5. Birim Kök Testi, Hipotezi ve Yorumu	<i>9</i>
5.1 Birim Kök Testi	9
Tablo 5.1 Trend ve Intercept, Level Değeri için ADF Birim Kök Testi	
Tablo 5.2 Trend ve Intercept, 1.Dereceden Fark Alınmış Hali için Al	OF10
Birim Kök Testi	10
Tablo 5.3 Intercept, Level Değeri için ADF Birim Kök Testi	11
Tablo 5.4 Intercept, 1.Dereceden Fark Alınmış Hali için ADF	12
	12
Tablo 5.5 None, Level Değeri için ADF Birim Kök Testi	
Tablo 5.6 None, 1.Dereceden Fark Alınmış Hali için ADF	
Birim Kök Testi	
5.2 Birim Kök Testi Hipotezi	15
5.3 Birim Kök Testi Yorum	15
6. Ar, Ma, Arma Modelleri	16
6.1 Kesmeli Trendsiz Modeller	
Tablo 6.1 AR(1) Modeli	16
Tablo 6.2 AR(2) Modeli	16
Tablo 6.3 MA(1) Modeli	17
Tablo 6.4 MA(2) Modeli	17
Table 6.5 ARMA(1,1) Modeli	18
Table 6.7 ARMA(3.1) Modeli	18
Table 6.7 ARMA(2,1) Modeli	
Tablo 6.8 ARMA(2,2) Modeli	
Tablo 6.9 ARMA(2,3) Modeli Tablo 6.10 ARMA(3,2) Modeli	2.0
Tablo 6.11 ARMA(3,3) Modeli Tablo 6.11 ARMA(3,3) Modeli	20
10510 0.11 ANIVIA(3,3) IVIOUCII	

Tablo 6.12 Kesmeli Trendsiz AR, MA ve ARMA Modelleri	22
6.2 Kesmeli Parabolik Trendli Modeller	23
Tablo 6.13 Trendli AR(1) Modeli	23
Tablo 6.14 Trendli AR(2) Modeli	23
Tablo 6.15 Trendli MA(1) Modeli	24
Tablo 6.16 Trendli MA(2) Modeli	24
Tablo 6.17 Trendli ARMA(1,1) Modeli	25
Tablo 6.18 Trendli ARMA(1,2) Modeli	25
Tablo 6.19 Trendli ARMA(2,1) Modeli	26
Tablo 6.20 Trendli ARMA(2,2) Modeli	26
Tablo 6.21 Trendli ARMA(2,3) Modeli	
Tablo 6.22 Trendli ARMA(3,2) Modeli	
Tablo 6.23 Trendli ARMA(3,3) Modeli	28
Tablo 6.24 Kesmeli Trendli AR, MA ve ARMA Modelleri	29
7. Kriterlere Uygun Sonuç Model	29
7.1 Kriterler	29
7.2 Kriterlere Uyan En İyi Model	30
8. Hata Analizi	30
Grafik 8.1 ARMA(3,2) Hata Zaman Yolu Grafiği	30
Tablo 8.1 ARMA(3,2) Korelogram Tablosu	
Grafik 8.2 ARMA(3,2) Hata Dağılımı Histogram Grafiği	32
9. Actual – Fitted – Residual Grafiği ve Yorumu	32
9.1 Actual – Fitted - Residual Grafiği	32
Grafik 9.1 ARMA(3,2) Actual – Fitted - Residual Grafiği	32
9.2 Actual – Fitted – Residual Grafiği Yorumu	32
10. Ön Rapor	33
Grafik 10.1 11 Dönemlik Ön Raporlama Grafiği	
11. Sonuç	34

1. Firma ve Verilerin Tanıtımı

1.1 Verinin Temin Edildiği Firmanın Tanıtımı

Investing.com, 44 dilde yayın yapan ve dünya çapında 250 borsa için anlık veriler, fiyatlar, grafikler, finans araçları, son dakika haberleri ve analizler sunan bir finans piyasaları platformudur. 21 milyonun üzerinde aylık kullanıcısı ve 180 milyondan fazla kullanıcı oturumuyla Investing.com, SimilarWeb ve Alexa'ya göre dünyanın en büyük üç finans sitesi arasındadır.

İçerdiği 300 binden fazla finansal araçla Investing.com, kullanıcılarına tamamen ücretsiz olarak anlık fiyat & alarm, kişiselleştirilmiş portföy, kişisel alarmlar, takvimler, hesaplayıcılar ve finansal görüşler gibi en ileri finans piyasası araçlarına sınırsız erişim imkânı sunar.

Küresel hisse piyasalarına ek olarak Investing.com Emtia, Kripto Paralar, Dünya Endeksleri, Dünya Dövizleri, Tahviller, Fon ve Faiz Oranları, ETF'ler, Vadeli İşlemler ve Opsiyonlarla ilgili de veri sunmaktadır.7

Investing.com, iOS ve Android için mevcut olan mobil uygulamalarıyla birlikte tacirler ve yatırımcılar için tek durak noktası olmayı hedefler. Mobil uygulama, Google Play'deki finans piyasaları uygulamaları içinde son beş yıldır en yüksek puana sahiptir.

Investing.com yıllar içinde güvenilir bir yayın kuruluşu haline gelerek yüzlerce kuruluşun mevcut tüm platformlarda küresel ve yerel tanıtım amacıyla reklam yapmasını sağlamıştır. 2007'de kurulan Investing.com'un Tel Aviv, Madrid, Milan, Tokyo, Mumbai, Seul ve Shenzen'deki ofislerinde toplam 250'den fazla çalışanı bulunmaktadır.

1.2 Verinin Tanıtımı

Veri seti, 01.01.2021 – 15.12.2023 tarihleri arasında GAU/USD; 22 Ayar Gram Altın fiyatının dolar cinsinden, günlük kapanış fiyat verisinden oluşmaktadır. Fiyat verileri Gau_Usd adlı değişkene atanmıştır ve bu değişkende 771 gözlem değeri bulunmaktadır. Veriye ait betimsel istatistikler ve dağılım aşağıda grafik olarak belirtilmiştir;

Grafik 1.1 Veriye Ait Dağılım ve Betimsel İstatistikler

2. Zaman Yolu Grafiği ve Yorum

2.1 Zaman Yolu Grafiği

Zaman yolu grafiği, belirli bir değişkenin (örneğin, bir ölçüm, fiyat, gelir vb.) zaman içindeki davranışını görsel olarak temsil eden bir grafik türüdür. Bu grafikler, veri setindeki zaman bağımlılıklarını ve desenleri anlamak, trendleri belirlemek, mevsimsel varyasyonları incelemek veya diğer zamanla ilgili özellikleri değerlendirmek için kullanılır. Zaman serisi grafiği genellikle x-ekseninde zaman birimlerini (genellikle gün, ay, yıl gibi) ve y-ekseninde ölçülen değerleri içerir. Bu grafikler, veri setindeki değişimleri, trendleri ve tekrar eden desenleri daha iyi görsellestirmek için kullanıslıdır.

Grafik 2.1 Veriye ait Zaman Yolu Grafiği

2.2 Veriye Ait Zaman Grafiği Yorumu

Grafiğe baktığımızda pozitif trendin var olduğunu görüyoruz Grafik 1.1'deki betimsel istatistiklerde ortalama değerinin 59.35 olduğunu belirtmiştik, grafik ortalama değerini çok fazla kesmediği için durağan olmayan bir seridir diyebiliriz.

3. Korelogram Tablosu ve Yorumu

Date: 12/23/23 Time: 11:43 Sample: 1/01/2021 12/15/2023

3.1 Korelogram Tablosu

Korelogram tablosu, otokorelasyon fonksiyonu (ACF) adı verilen bir istatistik ile ilişkilidir. ACF, belirli bir zaman aralığı için bir zaman serisi değerinin kendi geçmiş değerleri ile olan korelasyonunu ölçer. Bu fonksiyon, bir zaman serisinin kendi içindeki yapıları anlamak, mevsimsel desenleri tespit etmek veya modelleme çalışmalarında kullanılmak üzere önemli bilgiler sağlar.

Included observations: 771 Autocorrelation Partial Correlation AC PAC Q-Stat Prob 0.983 0.983 748.67 0.000 0.965 -0.060 1470.8 0.000 0.950 0.072 2170.7 0.000 0.934 -0.003 2849.2 0.000 0.918 -0.042 3504.8 0.000 0.900 -0.047 4135.9 0.000 0.882 -0.005 4743.2 0.000 0.866 0.018 5328.6 0.000 0.849 -0.006 5892.7 0.000 10 0.832 -0.025 6435.0 0.000 0.815 0.007 6956.2 0.000 12 0.800 0.022 7458.4 0.784 -0.003 7942.2 0.000 0.768 -0.044 8406.5 15 0.752 0.005 8851.8 16 0.737 0.034 9280.6 0.000 0.723 0.009 9694.1 0.000 18 0.710 0.002 10093. 0.000 0.697 0.027 10477. 0.000 0.685 0.003 10849. 0.000 0.674 0.050 11211. 0.000 22 0.664 -0.009 11562. 0.000 23 0.654 0.008 11902. 0.000 24 0.645 0.039 12235. 0.000 25 0.638 0.021 12560. 0.000 26 0.631 -0.014 12878. 0.000 0.623 0.014 13189. 0.000 28 0.616 -0.011 13493. 0.000 0.606 -0.078 13788. 0.000 30 0.595 -0.025 14073. 0.000 0.584 -0.033 14347. 0.000 32 0.574 0.029 14613. 0.000 33 0.563 -0.012 14869. 0.000 0.552 -0.018 15116. 0.000 35 0.542 0.024 15354. 0.000 36 0.531 -0.031 15582. 0.000

Tablo 3.1 Veriye ait Korelogram Tablosu

Date: 12/23/23 Time: 11:44

Sample (adjusted): 1/04/2021 12/15/2023 Included observations: 770 after adjustments

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1	0.034	0.034	0.8987	0.343
dı	l dı	ı	-0.090		7.1928	0.027
ıþı	ıb	3	0.036	0.043	8.1791	0.042
ı þi		4	0.047	0.036	9.9071	0.042
ıþı	ı n	5	0.050	0.054	11.828	0.037
ı (l	u[ı	6	-0.027	-0.025	12.393	0.054
ıψι	u[ı	7	-0.043	-0.035	13.810	0.055
ı ı		8	0.004	-0.004	13.823	0.086
ı j ı		9	0.014	0.005	13.973	0.123
ıψı	l di	10	-0.043	-0.041	15.397	0.118
- 1∮1		11	-0.018	-0.008	15.657	0.154
	1	12	-0.017	-0.021	15.886	0.197
ıþı	'	13		0.040	17.074	0.196
1)1	1 1	14	0.017	0.013	17.312	0.240
ıψı	III	ı	-0.046		18.960	0.216
	1 1	16	-0.022	-0.019	19.347	0.251
1 1	1 1	17		-0.011	19.348	0.309
ų i	'¶'	ı	-0.036		20.390	0.311
1 1	' '		-0.004		20.402	0.371
ا¶'	 	ı	-0.072		24.510	0.221
1 1	' '	ı	-0.007	0.003	24.547	0.267
1/1	' '	22	0.023	0.008	24.959	0.299
q١	"[-0.056		27.438	0.238
1	' '	ı	-0.019		27.725	0.272
<u>'</u> J']'	25		0.008	27.882	0.313
101	"[['	ı	-0.032		28.677	0.326
'['	'lַ''	27		0.011	28.766	0.372
'P	ן ייַ	28	0.060	0.057	31.647	0.289
' ! '	יווי	29	0.023	0.026	32.082	0.316
']'	']'	30	0.015	0.013	32.266	0.355
'[['	"4"	31	-0.030		32.981	0.370
<u>'l</u> '	'[32	0.010	0.006	33.063	0.415
<u>'</u>]'	l 'l'	33	0.030	0.012	33.767	0.430
"[['	<u> </u>	34			34.491	0.444
!!!] !!	35		0.017	34.611	0.487
ı j ı	ļ iļi	36	0.024	0.017	35.086	0.512

Tablo 3.2 Veriye ait 1.Dereceden Fark Alınmış Korelogram Tablosu

3.2 Veriye Ait Korelogram Tablosu Yorumu

Tablo 1.2 incelendiğinde hesaplanan otokorelasyon katsayılarının oldukça yüksek değerli olduğu gözlenmektedir. Yani birbirine yakın gözlemler birbirleri ile oldukça yüksek bir birlikteliğe sahiptirler. Serinin Prob. değerlerine baktığımızda hepsi 0.05'in altında olduğundan seri durağan değildir. Oto korelasyonlar ağır ağır azalması ve kısmi oto korelasyonların ilk değerden sonra ani düşüş göstermesi serinin trendli bir seri olduğunun göstergesidir. Tablo 1.3 incelendiğinde ise, Prob. değerleri 0.05'in üstüne çıktığı için seri durağan hale gelmiştir diyebiliriz.

4. Trendin İncelenmesi

Verilerde uzun vadeli bir artış ya da düşüş eğilimi olduğunda, eğilim yönünü temsil eden bir trend çizgisi oluşur, bu trend çizgisi her zaman doğrusal olmak zorunda değildir. Bazı trendler, artan bir eğilimden azalan bir eğilime doğru gittiğinde, onları yön değiştiren trend olarak adlandırılabilir.

Tablo 4.1 Veriye ait Doğrusal Trend Analizi

Grafik 4.1 Doğrusal Trend için Actual - Fitted - Residual Grafiği

Tablo 4.2 Veriye ait Parabolik Trend Analizi

Grafik 4.2 Parabolik Trend için Actual – Fitted – Residual Grafiği

Yapılan trend analizi sonucunda Tablo 1.3 incelendiğinde veri setine ait trendin anlamlı olduğunu görmekteyiz. Adj. R-squared değerinin 0.25 bulunması trendin etkisinin zayıf olduğunu göstermektedir. Parabolik trend (@trend^2) için ise Adj. R-squared değeri 0.32 olduğu gözlemlenmiştir. Doğrusal trendden daha uygun olduğu söylenebilir.

5. Birim Kök Testi, Hipotezi ve Yorumu

5.1 Birim Kök Testi

Birim kök testi, bir zaman serisinin durağanlık özelliğini değerlendirmek için kullanılan bir istatistik testidir. Bu test, bir zaman serisinin birim kök içerip içermediğini belirlemek için gerçekleştirilir. Birim kök, bir zaman serisinin durağan olmamasını veya trend içermesini ifade eder.

Birim kök testi yapılırken ilk olarak Trend ve Intercept ile en genel denklem ile başlanır. Burada sonucu incelenmeden önce, denklemin trend katsayısının istatistiki olarak anlamlı olup olmadığı kontrol edilir. Eğer bu katsayı istatistiki olarak anlamlı ise test sonuçları değerlendirilir ve nihai karar alınır. Eğer trend katsayısı istatistiki olarak anlamlı denklem küçültülerek (yani Interceptli denkleme geçilerek) test yinelenir. Intercept katsayısının istatistiki olarak anlamlı olup olmama durumuna göre denklem küçültülür (None denklemine gecme) veya aynı denklemdeki test sonucu değerlendirilir.

Null Hypothesis: GAU_USD has a unit root Exogenous: Constant, Linear Trend

Lag Length: 0 (Automatic - based on SIC, maxlag=19)

		t-Statistic	Prob.*
Augmented Dickey-Ful	ller test statistic	-2.849725	0.1799
Test critical values:	1% level	-3.970014	
	5% level	-3.415663	
	10% level	-3.130077	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(GAU_USD)

Method: Least Squares Date: 12/23/23 Time: 11:49

Sample (adjusted): 1/04/2021 12/15/2023 Included observations: 770 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
GAU_USD(-1) C @TREND("1/01/2021")	-0.019924 1.106182 0.000211	0.006992 0.398078 9.55E-05	-2.849725 2.778807 2.205478	0.0045 0.0056 0.0277
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.011496 0.008919 0.509068 198.7681 -571.1958 4.460120 0.011862	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion in criter.	0.005053 0.511353 1.491418 1.509521 1.498385 1.904781

İlk olarak, bu test sonucunda Trend Intercept'in istatistiki ve bakılır. Sırasıyla, anlamlığına 0.0277 ve 0.0056 olan olasılık değerleri 0.05'ten küçük olduğu için, trend ve intercept istatistiki olarak anlamlıdır diyebiliriz. Sonra, ADF birim kök testi sonuçları kontrol edilir. Prob. değeri 0.05'den büyük olduğu için H0 hipotezi reddedilemez. Zaman serisi birim kök içerir, yani zaman serisi durağan değildir diyebiliriz. Trend ve Intercept için 1.dereceden fark alınmıs haline tekrardan birim kök testi uygulayalım.

Tablo 5.1 Trend ve Intercept, Level Değeri için ADF Birim Kök Testi

Yanda gösterilen görseldeki gibi seçimler yapıldığında Trend ve Intercept için 1.dereceden fark alınarak birim kök testi sonuçları ortaya çıkmaktadır.

Null Hypothesis: D(GAU_USD) has a unit root

Exogenous: Constant, Linear Trend

Lag Length: 1 (Automatic - based on SIC, maxlag=19)

		t-Statistic	Prob.*
Augmented Dickey-Ful		-21.17808	0.0000
Test critical values:	1% level	-3.970046	
	5% level	-3.415678	
	10% level	-3.130086	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(GAU_USD,2)

Method: Least Squares Date: 12/23/23 Time: 11:50

Sample (adjusted): 1/06/2021 12/15/2023 Included observations: 768 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(GAU_USD(-1)) D(GAU_USD(-1),2) C @TREND("1/01/2021")	-1.058764 0.092882 -0.033572 9.54E-05	0.049993 0.035862 0.036840 8.27E-05	-21.17808 2.589987 -0.911275 1.152717	0.0000 0.0098 0.3624 0.2494
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.488712 0.486704 0.507602 196.8521 -566.9914 243.4218 0.000000	Mean depend S.D. depende Akaike info cri Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion n criter.	-0.001027 0.708499 1.486957 1.511143 1.496266 1.987261

anlamlılığına baktığımızda sırasıyla Prob. değerleri 0.2494 0.3624 olduğu görülmüştür. Değerler 0.05'den büyük olduğu için istatistiki olarak anlamlı değildir diyebiliriz. Dolayısıyla, bu test sonuçları değerlendirilemez.

Trend ve Intercept için istatistiki

Tablo 5.2 Trend ve Intercept, 1.Dereceden Fark Alınmış Hali için ADF Birim Kök Testi

Yanda gösterilen görseldeki gibi seçimler yapıldığında Intercept için Level değeri kök testi sonuçları ortaya çıkmaktadır.

Null Hypothesis: GAU_USD has a unit root

Exogenous: Constant

Lag Length: 0 (Automatic - based on SIC, maxlag=19)

		t-Statistic	Prob.*
Augmented Dickey-Ful	ler test statistic	-2.008930	0.2831
Test critical values:	1% level	-3.438616	
	5% level	-2.865078	
	10% level	-2.568709	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(GAU_USD) Method: Least Squares

Date: 12/23/23 Time: 11:47

Sample (adjusted): 1/04/2021 12/15/2023 Included observations: 770 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
GAU_USD(-1) C	-0.012172 0.727355	0.006059 0.360016	-2.008930 2.020343	0.0449 0.0437
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.005227 0.003932 0.510347 200.0287 -573.6297 4.035800 0.044894	Mean depend S.D. depende Akaike info cri Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion n criter.	0.005053 0.511353 1.495142 1.507211 1.499787 1.907557

Tablo 5.3 Intercept, Level Değeri için ADF Birim Kök Testi

Intercept için istatistiki anlamlılığına baktığımızda Prob. değeri 0.0437 olduğu görülmüştür. Değer 0.05'den küçük olduğu için istatistiki olarak anlamlı diyebiliriz. ADF testi birim kök sonucuna baktığımızda ise Prob. değeri 0.05'den büyük olduğu için H0 hipotezi reddedilemez. Zaman serisi birim kök içerir, yani zaman serisi durağan değildir divebiliriz. Intercept 1.dereceden fark alınmış haline tekrardan birim kök uygulayalım.

Yanda gösterilen görseldeki gibi seçimler yapıldığında Intercept için 1.dereceden fark alınarak birim kök testi sonuçları ortaya çıkmaktadır.

Null Hypothesis: D(GAU_USD) has a unit root

Exogenous: Constant

Lag Length: 1 (Automatic - based on SIC, maxlag=19)

		t-Statistic	Prob.*
Augmented Dickey-Ful Test critical values:	ler test statistic	-21.14220 -3.438638	0.0000
rest critical values.	5% level	-2.865088	
	10% level	-2.568715	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(GAU_USD,2)

Method: Least Squares
Date: 12/23/23 Time: 11:49

Sample (adjusted): 1/06/2021 12/15/2023 Included observations: 768 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(GAU_USD(-1)) D(GAU_USD(-1),2) C	-1.055759 0.091527 0.003273	0.049936 0.035850 0.018322	-21.14220 2.553019 0.178640	0.0000 0.0109 0.8583
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.487823 0.486484 0.507711 197.1945 -567.6586 364.3118 0.000000	Mean depend S.D. depende Akaike info cri Schwarz crite Hannan-Quin Durbin-Watso	nt var iterion rion n criter.	-0.001027 0.708499 1.486090 1.504230 1.493072 1.987210

Tablo 5.4 Intercept, 1.Dereceden Fark Alınmış Hali için ADF Birim Kök Testi

Intercept için istatistiki anlamlılığına baktığımızda Prob. değeri 0.8583 olduğu görülmüştür. Değer 0.05'den büyük olduğu için istatistiki olarak anlamlı değildir diyebiliriz. Dolayısıyla, bu test sonuçları değerlendirilemez.

Yanda gösterilen görseldeki gibi seçimler yapıldığında None için Level değeri birim kök testi sonuçları ortaya çıkmaktadır.

Null Hypothesis: GAU_USD has a unit root

Exogenous: None

Lag Length: 0 (Automatic - based on SIC, maxlag=19)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		0.171429	0.7357
Test critical values:	1% level	-2.567969	
	5% level	-1.941235	
	10% level	-1.616423	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(GAU_USD)

Method: Least Squares Date: 12/23/23 Time: 11:50

Sample (adjusted): 1/04/2021 12/15/2023 Included observations: 770 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
GAU_USD(-1)	5.32E-05	0.000310 0.17142		0.8639
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	-0.000060 -0.000060 0.511369 201.0918 -575.6705 1.920909	Mean depend S.D. depende Akaike info cri Schwarz criter Hannan-Quin	nt var terion ion	0.005053 0.511353 1.497845 1.503880 1.500168

Tablo 5.5 None, Level Değeri için ADF Birim Kök Testi

ADF birim kök testi sonucuna baktığımızda Prob. değeri 0.05'den büyük olduğu için H0 hipotezi reddedilemez. Zaman serisi birim kök içerir, yani zaman serisi durağan değildir diyebiliriz. None için 1.dereceden fark alınmış haline tekrardan birim kök testi uygulayalım.

Yanda gösterilen görseldeki gibi seçimler yapıldığında None için 1.dereceden fark alınarak birim kök testi sonuçları ortaya çıkmaktadır.

Null Hypothesis: D(GAU_USD) has a unit root

Exogenous: None

Lag Length: 1 (Automatic - based on SIC, maxlag=19)

		t-Statistic	Prob.*
Augmented Dickey-Ful	ller test statistic	-21.15503	0.0000
Test critical values:	1% level	-2.567977	
	5% level	-1.941236	
	10% level	-1.616422	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(GAU_USD,2)

Method: Least Squares Date: 12/23/23 Time: 11:51

Sample (adjusted): 1/06/2021 12/15/2023 Included observations: 768 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(GAU_USD(-1)) D(GAU_USD(-1),2)	-1.055643 0.091458	0.049900 0.035826	-21.15503 2.552865	0.0000 0.0109
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.487801 0.487133 0.507390 197.2027 -567.6746 1.987227	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin	ent var iterion rion	-0.001027 0.708499 1.483528 1.495621 1.488182

Tablo 5.6 None, 1.Dereceden Fark Alınmış Hali için ADF Birim Kök Testi

ADF birim kök testi sonucuna baktığımızda Prob. değeri 0.05'den küçük olduğu için H0 hipotezi reddedilir. Zaman serisi birim kök içermez, yani zaman serisi durağandır diyebiliriz.

5.2 Birim Kök Testi Hipotezi

Null Hipotezi: (Zaman serisi birim kök içerir. Zaman serisi durağan değildir.) H_0 : $\delta = 0$

Alternatif Hipotez: (Zaman serisi birim kök içermez. Zaman serisi durağandır.) H_1 : $\delta < 0$

5.3 Birim Kök Testi Yorum

Yapılan ADF birim kök testleri sonucunda None denkleminin 1.Dereceden fark alınmış halinde kök yoktur, durağandır ve stokastik trende sahip değildir sonucuna erişilir. Dolayısıyla, bu seriyle modellemeye devam edilir ve serinin entegre seviyesinin 1 olduğu yani I(1) olduğu bulunur. Yani, ARIMA'nın I değeri 1'dir.

6. Ar, Ma, Arma Modelleri

6.1 Kesmeli Trendsiz Modeller

Tablo 6.1 AR(1) Modeli

Model Denklemi: $Y(t) = 59.75436 + 0.987828 Y(t-1) + \varepsilon(t)$

Tablo 6.2 AR(2) Modeli

Model Denklemi: $Y(t) = 59.56512 + 1.028679 Y(t-1) - 0.0414884 Y(t-2) + \varepsilon(t)$

Tablo 6.3 MA(1) Modeli

Model Denklemi: $Y(t) = 59.35014 + 0.921941 \epsilon(t-1) + \epsilon(t)$

Tablo 6.4 MA(2) Modeli

Model Denklemi: $Y(t) = 59.35392 + 1.373248 \epsilon(t-1) + 0.736108 \epsilon(t-2) + \epsilon(t)$

Tablo 6.5 ARMA(1,1) Modeli

Model Denklemi: $Y(t) = 59.71371 + 0.986348 Y(t-1) + 0.052232 \epsilon(t-1) + \epsilon(t)$

Tablo 6.6 ARMA(1,2) Modeli

Model Denklemi: $Y(t) = 59.78025 + 0.988755 Y(t-1) + 0.052056 \epsilon(t-1) - 0.082593 \epsilon(t-2) + \epsilon(t)$

Tablo 6.7 ARMA(2,1) Modeli

Model Denklemi: $Y(t) = 59.60508 + 0.194412 Y(t-1) + 0.781904 Y(t-2) + 0.847781 \epsilon(t-1) + \epsilon(t)$

Tablo 6.8 ARMA(2,2) Modeli

Model Denklemi: $Y(t) = 59.63097 + 0.943381 \ Y(t-1) + 0.044421 \ Y(t-2) + 0.093749 \ \epsilon(t-1) - 0.075061 \ \epsilon(t-2) + \epsilon(t)$

Tablo 6.9 ARMA(2,3) Modeli

Model Denklemi: $Y(t) = 59.52419 + 1.297324 \ Y(t-1) - 0.307345 \ Y(t-2) - 0.272281 \ \epsilon(t-1) - 0.088436 \ \epsilon(t-2) + 0.100988 \ \epsilon(t-3) + \epsilon(t)$

Tablo 6.10 ARMA(3,2) Modeli

Model Denklemi: $Y(t) = 59.57716 - 0.415252 Y(t-1) + 0.679435 Y(t-2) + 0.694966 Y(t-3) + 1.463457 \epsilon(t-1) + 0.742036 \epsilon(t-2) + \epsilon(t)$

Tablo 6.11 ARMA(3,3) Modeli

Model Denklemi: $Y(t) = 59.58697 - 0.346940 \ Y(t-1) + 0.668454 \ Y(t-2) + 0.640295 \ Y(t-3) + 1.390246 \ \epsilon(t-1) - 0.666000 \ \epsilon(t-2) - 0.012977 \ \epsilon(t-3) + \epsilon(t)$

	AR (1)	AR (2)	MA (1)	MA (2)	ARMA (1,1)	ARMA (1,2)	ARMA (2,1)	ARMA (2,2)	ARMA (2,3)	ARMA (3,2)	ARMA (3,3)
Kesme Prob.	59.75436 0.0000	59.56512 0.0000	59.35014 0.0000	59.35392 0.0000	59.71371 0.0000	59.78025 0.0000	59.60508 0.0000	59.63097 0.0000	59.52419 0.0000	59.57716 0.0000	59.58697 0.0000
φ ₁ Prob.	0.987828 0.0000	1.028679 0.0000	-	-	0.986348 0.0000	0.988755 0.0000	0.194412 0.1396	0.943381 0.0025	1.297324 0.0000	-0.415252 0.0004	-0.346940 0.0126
θ ₁ Prob.	-	-	0.921941 0.0000	1.373248 0.0000	0.052232 0.1540	0.052056 0.1557	0.847781 0.0000	0.093749 0.7632	-0.272281 0.3569	1.463457 0.0000	1.390246 0.0000
φ ₂ Prob.	-	- 0.0414884 0.2454	-	-	-	-	0.781904 0.0000	0.044421 0.8848	-0.307345 0.0000	0.679435 0.0000	0.668454 0.0000
θ ₂ Prob.	-	-	-	0.736108 0.0000	-	-0.082593 0.0243	-	-0.075061 0.0654	-0.088436 0.0261	0.742036 0.0000	0.666000 0.0000
φ ₃ Prob.	-	1	1	-	1	-	-	-	-	0.694966 0.0000	0.640295 0.0000
$ heta_3$ Prob.	-	-	-	-	-	-	-	-	0.100988 0.0117	-	-0.012977 0.7497
R^2	0.971916	0.972206	0.697802	0.856610	0.971976	0.972173	0.972366	0.972379	0.972506	0.972678	0.972681
$\bar{\mathbb{R}}^2$	0.971880	0.972134	0.697409	0.856236	0.971903	0.972064	0.972257	0.972235	0.972326	0.972499	0.972465
F Prob.	26578.98 0.0000	13396.99 0.0000	1775.691 0.0000	2294.003 0.0000	13301.28 0.0000	8920.503 0.0000	8972.691 0.0000	6724.058 0.0000	5397.673 0.0000	5425.573 0.0000	4515.766 0.0000
AIC	1.495142	1.487342	3.870140	3.127223	1.495611	1.491150	1.484180	1.486298	1.484300	1.477736	1.480256
SIC	1.507211	1.505463	3.882196	3.145307	1.513714	1.515287	1.508342	1.516500	1.520542	1.514015	1.522582
SSR	200.0287	197.7005	2153.313	1021.730	199.6034	198.1994	196.5645	196.4696	195.5681	194.0320	194.0158
LR	-573.6297	-568.8829	-1489.939	-1202.544	-572.8102	-570.0926	-566.6671	-566.4816	-564.7132	-561.4505	-561.4183

Tablo 6.12 Kesmeli Trendsiz AR, MA ve ARMA Modelleri

Doğrusal trend modelinin açıklama gücü, Adj. R-squared değeri ile ölçülmüştü ve bu değer 0.25 olarak bulunmuştu. Benzer şekilde, parabolik trend modelinin Adjusted R-squared değeri 0.32 olarak belirlendi. Her ne kadar bu değerler, modellerin gözlemlediğimiz trendi açıklamada yeterince güçlü olmadığını gösterse de, veri setindeki diğer etkileşimleri ve yapıları anlamak adına daha derin bir analiz yapmaya karar verdik.

Bu sebeple, Ar, Ma ve Arma modellerini kullanarak, veri setimizi hem kesmeli hem de trendli haliyle tekrar incelemek istiyoruz. Bu modeller, zaman serisi verilerindeki gizli desenleri ve yapıları çıkarmak için güçlü araçlardır. Kesmeli ve trendli veri setlerinin kullanılması, daha iyi bir modelin oluşturulmasına katkıda bulunabilir.

6.2 Kesmeli Parabolik Trendli Modeller

Tablo 6.13 Trendli AR(1) Modeli

Model Denklemi: $Y(t) = 56.74068 + 0.0000122(t) + 0.978174 Y(t-1) + \epsilon(t)$

Tablo 6.14 Trendli AR(2) Modeli

Model Denklemi: $Y(t) = 56.63796 + 0.0000124(t) + 1.020660 Y(t-1) - 0.044487 Y(t-2) + \epsilon(t)$

Tablo 6.15 Trendli MA(1) Modeli

Model Denklemi: $Y(t) = 57.41441 + 0.00000977(t) + 0.902581 \epsilon(t-1) + \epsilon(t)$

Tablo 6.16 Trendli MA(2) Modeli

Model Denklemi: $Y(t) = 57.41203 + 0.00000978(t) + 1.314135 \epsilon(t-1) + 0.696090 \epsilon(t-2) + \epsilon(t)$

Tablo 6.17 Trendli ARMA(1,1) Modeli

Model Denklemi: $Y(t) = 56.81933 + 0.0000119(t) + 0.975949 Y(t-1) + 0.055024 \epsilon(t-1) + \epsilon(t)$

Tablo 6.18 Trendli ARMA(1,2) Modeli

Model Denklemi: $Y(t) = 56.68636 + 0.0000123(t) + 0.979343 \ Y(t-1) + 0.053770 \ \epsilon(t-1) - 0.081418 \ \epsilon(t-2) + \epsilon(t)$

Tablo 6.19 Trendli ARMA(2,1) Modeli

Model Denklemi: Y(t) = 56.63393 + 0.0000124(t) + 0.181129 Y(t-1) + 0.775968 Y(t-2) + 0.850613 $\epsilon(t-1) + \epsilon(t)$

Tablo 6.20 Trendli ARMA(2,2) Modeli

Model Denklemi: Y(t) = 56.54015 + 0.0000127(t) + 0.959904 Y(t-1) + 0.017843 Y(t-2) + 0.069042 $\epsilon(t-1) - 0.073505 \epsilon(t-2) + \epsilon(t)$

Tablo 6.21 Trendli ARMA(2,3) Modeli

Model Denklemi: Y(t) = 56.61887 + 0.0000124(t) + 1.323385 Y(t-1) - 0.341129 Y(t-2) - 0.308502 $\epsilon(t-1) - 0.087559 \epsilon(t-2) + 0.109971 \epsilon(t-3) + \epsilon(t)$

Tablo 6.22 Trendli ARMA(3,2) Modeli

Model Denklemi: $Y(t) = 56.58802 + 0.0000125(t) - 0.428351 Y(t-1) + 0.662999 Y(t-2) + 0.690552 Y(t-3) + 1.466046 \epsilon(t-1) + 0.745923 \epsilon(t-2) + \epsilon(t)$

Tablo 6.23 Trendli ARMA(3,3) Modeli

Model Denklemi: $Y(t) = 56.57800 + 0.0000126(t) - 0.375573 \ Y(t-1) + 0.654729 \ Y(t-2) + 0.649307 \ Y(t-3) + 1.410698 \ \epsilon(t-1) - 0.689786 \ \epsilon(t-2) - 0.008546 \ \epsilon(t-3) + \epsilon(t)$

	AR (1)	AR (2)	MA (1)	MA (2)	ARMA (1,1)	ARMA (1,2)	ARMA (2,1)	ARMA (2,2)	ARMA (2,3)	ARMA (3,2)	ARMA (3,3)
Kesme Prob.	56.74068 0.0000	56.63796 0.0000	57.41441 0.0000	57.41203 0.0000	56.81933 0.0000	56.68636 0.0000	56.63393 0.0000	56.54015 0.0000	56.61887 0.0000	56.58802 0.0000	56.57800 0.0000
Trend Prob.	0.0000122 0.0052	0.0000124 0.0022	0.000097 0.0000	0.000097 0.0000	0.0000119 0.0045	0.0000123 0.0057	0.0000124 0.0026	0.0000127 0.0030	0.0000124 0.0014	0.0000125 0.0023	0.0000126 0.0024
φ ₁ Prob.	0.978174 0.0000	1.020660 0.0000	-	-	0.975949 0.0000	0.979343 0.0057	0.181129 0.1585	0.959904 0.0030	1.323385 0.0000	-0.428351 0.0002	-0.375573 0.0049
θ ₁ Prob.	-	-	0.902581 0.0000	1.314135 0.0000	0.055024 0.1360	0.053770 0.1460	0.850613 0.0000	0.069042 0.8179	-0.308502 0.2513	1.466046 0.0000	1.410698 0.0000
φ ₂ Prob.	-	- 0.044487 0.2158	-	-	-	-	0.775968 0.0000	0.017843 0.9513	-0.341129 0.1956	0.662999 0.0000	0.654729 0.0000
θ ₂ Prob.	-	-	-	0.696090 0.0000	-	-0.081418 0.0276	-	-0.073505 0.0710	-0.087559 0.0279	0.745923 0.0000	0.689786 0.0000
φ ₃ Prob.	-	-	1	1	1	1	-	-	-	0.690552 0.0000	0.649307 0.0000
$ heta_3$ Prob.	-	-	1	1	1	1	-	-	0.109971 0.0051	-	-0.008546 0.8343
R^2	0.972118	0.972447	0.786481	0.891349	0.972183	0.972371	0.972598	0.972607	0.972765	0.972915	0.972916
$\bar{\mathbb{R}}^2$	0.972045	0.972339	0.785925	0.890924	0.972074	0.972226	0.972454	0.972427	0.972551	0.972701	0.972666
F Prob.	13370.75 0.0000	8999.861 0.0000	1414.435 0.0000	2097.439 0.0000	8923.596 0.0000	6730.810 0.0000	6779.196 0.0000	5418.142 0.0000	4563.138 0.0000	4555.950 0.0000	3900.088 0.0000
AIC	1.490547	1.481240	3.525378	2.852384	1.490813	1.486619	1.478356	1.480618	1.477426	1.471638	1.474212
SIC	1.508650	1.505401	3.543462	32.876497	1.514950	1.516790	1.508558	1.516861	1.519709	1.513964	1.522585
SSR	198.5952	195.9874	1521.432	774.1917	198.1326	196.7916	194.9155	194.8495	193.7240	192.3509	192.3451
LR	-570.8607	-565.5367	-1356.033	-1095.594	-569.9628	-567.3482	-563.4279	-563.2978	-561.0703	-558.1089	-558.0974

Tablo 6.24 Kesmeli Trendli AR, MA ve ARMA Modelleri

7. Kriterlere Uygun Sonuç Model

7.1 Kriterler

- İstatistiksel olarak anlamlı katsayılar.
- R-squared ve Adj. R-squared değeri 1'e yakın.
- İstatistiksel olarak anlamlı F istatistiği değeri.
- Akaike bilgi kriteri (AIC) değeri düşük,
- Schwarz bilgi kriteri (SIC) değeri küçük,
- Hata kareler toplamı (SSR) küçük,
- Olabilirlik oranı (LR) yüksek olmalı.

7.2 Kriterlere Uyan En İyi Model

Yukarıda belirtilen kriterler göz önünde bulundurulduğunda, trendli ve trendsiz model tablolarından yola çıkarak verimize en uygun olan model;

Kesmeli ve Parabolik Trendli : ARMA(3,2)'dir.

Seçilen Model Denklemi: $Y(t) = 56.58802 + 0.0000125(t) - 0.428351 \ Y(t-1) + 0.662999 \ Y(t-2) + 0.690552 \ Y(t-3) + 1.466046 \ \epsilon(t-1) + 0.745923 \ \epsilon(t-2) + \epsilon(t)$

8. Hata Analizi

Grafik 8.1 ARMA(3,2) Hata Zaman Yolu Grafiği

Seriye ait varyansın belli bir ortalama etrafında saçılması, serinin ortalamasını çokça kez kesmesinden dolayı durağanlaştığı gözlemlenmiştir.

Included observation Autocorrelation	s: 768 after adjustme Partial Correlation	nts	AC	PAC	Q-Stat	Prob
ı		1	0.104	0.104	8.2615	0.004
ıþ	i	2	0.062	0.052	11.215	0.004
ıþ	ı <u>þ</u> ı	3	0.049	0.038	13.079	0.004
ı b	' 	4	0.110	0.100	22.486	0.000
ıþı		5	0.031	0.007	23.239	0.000
ı j ı		6	0.015	-0.001	23,410	0.001
ıþı	I I	7	0.025	0.014	23.890	0.001
ı j ı	I] II	8	0.049	0.034	25.790	0.001
ı ı	ļ ıļi	9	0.004	-0.010	25.803	0.002
ı ı		10	0.008	0.002	25.852	0.004
ı j ı	l ili	11	0.022	0.015	26.214	0.006
ıþi	l iþi	12	0.052	0.041	28.335	0.005
ı l ı	l di	13	-0.034	-0.046	29.228	0.006
1 1		14	-0.004	-0.004	29.243	0.010
ų l	1 1	15	-0.015	-0.019	29.428	0.014
ıþı	l iþi	16	0.040	0.036	30.701	0.015
ı j ı	l ili	17	0.017	0.019	30.922	0.020
ıψι	l di	18	-0.039	-0.045	32.126	0.021
I I		19	0.002	0.007	32.129	0.030
ıþı	l ili	20	0.030	0.024	32.859	0.035
ıψι	l di	21	-0.037	-0.043	33.964	0.037
ı j ı	l ili	22	0.009	0.022	34.028	0.049
ı j ı	l ili	23	0.013	0.012	34.159	0.063
۱ ۱		24	0.004	-0.007	34.173	0.082
1 1		25	-0.007	0.002	34.214	0.103
1 1		26	-0.002	-0.001	34.216	0.130
ЩI	l di	27	-0.023	-0.027	34.642	0.148
ıþı	l ilji	28	0.027	0.027	35.237	0.163
1 1		29	0.002	0.006	35.241	0.197
ıþ	' <u> </u>	30	0.071	0.076	39.314	0.119
ı ı	1	31	0.002	-0.013	39.317	0.145
ı j ı	· n	32	0.054	0.043	41.648	0.118
ı j ı	l iþi	33	0.048	0.038	43.501	0.104
ЩI	di	34	-0.022	-0.052	43.883	0.119
ıþı	· n	35	0.039	0.043	45.090	0.118
ıþ	וון ו	36	0.059	0.038	47.858	0.089

Tablo 8.1 ARMA(3,2) Korelogram Tablosu

Hata verileri için çizilen korelogram tablosu incelendiğinde otokorelasyon çizgileri güven bantları arasında gözlemlenmiştir. Yani ε'ler birbirleri ile ilişkisizdir, bu durumda süreç durağandır.

Hataların dağılımı incelendiğinde normal dağıldığını gözlemlenmiştir. Yoğunluğun ortalama etrafında dağılmış olması durağan olduğunu göstermektedir.

9. Actual – Fitted – Residual Grafiği ve Yorumu

9.1 Actual – Fitted - Residual Grafiği

Grafik 9.1 ARMA(3,2) Actual – Fitted - Residual Grafiği

9.2 Actual – Fitted – Residual Grafiği Yorumu

Grafik incelendiğinde, gerçek değerler ile tahmin değerleri arasında çok fazla uyum olduğu ve hataların belirli bir ortalama etrafında rastgele dağıldığı gözlemlenmiştir.

10. Ön Rapor

	Tahmini Değer	Gerçek Değer
18.12.2023	64,031	65,192
19.12.2023	64,050	65,618
20.12.2023	64,069	65,339
21.12.2023	64,089	65,996
22.12.2023	64,108	66,006
25.12.2023	64,127	66,075
26.12.2023	64,147	66,428
27.12.2023	64,166	66,86
28.12.2023	64,186	66,448
29.12.2023	64,205	66,322
1.01.2024	64,225	66,319

Grafik 10.1 11 Dönemlik Ön Raporlama Grafiği

Uygun model olarak seçtiğimiz ARMA(3,2) modeli ile son 11 dönemlik ön raporlama yaptığımızda tahmin değerlerimizin gerçek değerler ile yakın çıktığı görülmektedir. Bu sayede modelimizin uygunluğunun iyi olduğundan söz etmek mümkündür.

11. Sonuç

Bu çalışma, 01.01.2021 - 15.12.2023 tarihleri arasında GAU/USD; 22 Ayar Gram Altın fiyatının dolar cinsinden, günlük kapanış fiyat verisinden oluşmaktadır. Veri seti üzerinde Eviews paket programı kullanılarak zaman serileri analizi gerçekleştirmiştir. Analiz sürecinde verilerin durağanlığını test etmek amacıyla zaman yol grafiği, korelogram testi ve birim kök testleri uygulanmıştır. Yapılan testler sonucunda, veri setinin durağan olmadığı tespit edilmiştir. Durağanlaştırma işlemi için birim kök testleri, 1 adım fark alma yöntemi ile uygulanmış ve bu testlerin sonuçları, değişkenlerin birinci farklarında durağan olduklarını göstermiştir. Ayrıca, veri seti üzerinde trend analizi yapılmış zayıf doğrusal trend ve zayıf parabolik trend etkilerine rastlanılmıştır. Değişkenlerin birinci dereceden durağan olduğu saptandıktan sonra, doğrusal zaman serisi modellerinden otoregresif süreç AR(p), hareketli ortalamalar süreci MA(q), ve otoregresif hareketli ortalamalar süreci ARMA(p, q) modelleri kullanılarak denemeler yapılmıştır. Analiz sonuçlarına göre, en uygun modelin ARMA(3,2) olduğu belirlenmiştir. Belirlenen en uygun model üzerinde hata analizleri yapılmış ve hata grafiği incelendiğinde fitted ve actual çizgilerinin uyumlu olduğu gözlemlenmiştir. Ayrıca, veri seti üzerinde hesaplanan son 11 dönemlik ön raporlama, tahmini değerlerin gerçek değerlere yakın çıkmasıyla modelin uygunluğunu kanıtlamıştır. Altın fiyatı sadece zamana bağlı olarak değişen bir değerli maden olmadığı için modelde ε ile belirtilen hata, altın fiyatını etkileyen diğer değişkenleri kapsamaktadır.