C2W1-Quiz-Practical-aspectsof-Deep-Learning

1.	If you have 10,000,000 examples, how would you split the train/dev/test set?
	☐ 60% train . 20% dev . 20% test
	☐ 33% train . 33% dev . 33% test
	✓ 98% train . 1% dev . 1% test
2.	The dev and test set should:
	☐ Have the same number of examples
	☐ Come from different distributions
	✓ Come from the same distribution
	\square Be identical to each other (same (x,y) pairs)
3.	If your Neural Network model seems to have high bias, what of the following would be promising things to try? (Check all that apply.)
	✓ Make the Neural Network deeper
	☐ Get more training data
	☐ Get more test data
	☐ Add regularization
	✓ Increase the number of units in each hidden layer
4.	You are working on an automated check-out kiosk for a supermarket, and are building a classifier for apples, bananas and oranges. Suppose your classifier obtains a training set error of 0.5%, and a dev set error of 7%. Which of the following are promising things to try to improve your classifier? (Check all that apply.)
	✓ Increase the regularization parameter lambda
	☐ Decrease the regularization parameter lambda
	Get more training data
	☐ Use a bigger neural network

5.	Wh	What is weight decay?			
	~	A regularization technique (such as L2 regularization) that results in gradient descent shrinking the weights on every iteration.			
		Gradual corruption of the weights in the neural network if it is trained on noisy data.			
		A technique to avoid vanishing gradient by imposing a ceiling on the values of the weights.			
		The process of gradually decreasing the learning rate during training.			
6.	Wh	at happens when you increase the regularization hyperparameter lambda?			
		Gradient descent taking bigger steps with each iteration (proportional to lambda)			
	~	Weights are pushed toward becoming smaller (closer to 0)			
		Doubling lambda should roughly result in doubling the weights			
		Weights are pushed toward becoming bigger (further from 0)			
7.	Wit	h the inverted dropout technique, at test time:			
		You apply dropout (randomly eliminating units) but keep the 1/keep_prob factor in the calculations used in training.			
		You do not apply dropout (do not randomly eliminate units), but keep the 1/keep_prob factor in the calculations used in training.			
		You apply dropout (randomly eliminating units) and do not keep the 1/keep_prob factor in the calculations used in training			
	~	You do not apply dropout (do not randomly eliminate units) and do not keep the 1/keep_prob factor in the calculations used in training			
8.		reasing the parameter keep_prob from (say) 0.5 to 0.6 will likely cause the owing: (Check the two that apply)			
		Increasing the regularization effect			
	~	Reducing the regularization effect			
		Causing the neural network to end up with a higher training set error			
	~	Causing the neural network to end up with a lower training set error			

9.	Which of these techniques are useful for reducing variance (reducing overfitting)? (Check all that apply.)		
		Xavier initialization	
		Gradient Checking	
	~	L2 regularization	
	~	Dropout	
	~	Data augmentation	
		Vanishing gradient	
		Exploding gradient	
10.	Wh	y do we normalize the inputs xx?	
		Normalization is another word for regularizationIt helps to reduce variance	
	~	It makes the cost function faster to optimize	
		It makes it easier to visualize the data	
		It makes the parameter initialization faster	