Augmented Reality & Video Service Emerging Technologies

SIFT SURF FAST BRIEF ORB BRISK

Prof. Jong-Moon Chung

SIFT SURF FAST BRIEF ORB BRISK SURF

❖ SURF: Speed-Up Robust Feature

- Approximation techniques are used to get faster yet similarly accurate IPD (Interest Point Detection) results compared to SIFT
- DoH (Determinant of Hessian matrix) is used in the IPD process
- Box filters are used in approximating the DoH

SURF

Hessian Matrix

- Square matrix with second-order partial derivative elements
- Characterizes the level of surface curvature of the image
- Used in keypoint detection

Approximation Process

- Approximates SIFT's DoG with the box filtering process
- Square box filters are used for approximation instead of Gaussian averaging of the image

❖ Approximation Process

- Example of Box filters and an integral image used in SURF
 - Enables fast approximation and box area calculation

SURF

❖ Integral Image Generation

- Integral images are used for fast convolution computation
- Multiple parallel processing of Box Filtering on different scale images are used to approximate the LoG process

IPD (Interest Point Detection)

 Hessian matrix based Blob detection is used in the IPD process

- Feature Descriptor scheme
 - Interest point's neighboring pixels are divided into subregions
 - SURF descriptor describes the pixel intensity distribution
 - Based on a scale independent neighborhood
 - Each subregion's Wavelet response is used
 - Example: Regular 4x4 sub-regions

SIFT SURF FAST BRIEF ORB BRISK

References

References

- J.-M. Chung, Y.-S. Park, J.-H. Park, and H. Cho, "Adaptive Cloud Offloading of Augmented Reality Applications on Smart Devices for Minimum Energy Consumption," KSII Trans. Internet Inf. Syst., vol. 9, no. 8, pp. 3090-3102, Aug. 2015.
- T. Lindeberg, "A Survey of Recent Advances in Visual Feature Detection," Neurocomputing, vol. 149, pp. 736-751, 2015.
- Y. Li, S. Wang, Q. Tian, and X. Ding "Scale-Space Theory: A Basic Tool for Analysing Structures at Different Scales," *Journal of Applied Statistics*, vol. 21, no. 2, pp. 224-270, 1994.
- D. Lowe, "Distinctive Image Features from Scale-Invariant Keypoints," Int. Journal of Computer Vision, vol. 60, no. 2, pp. 91-110, Nov. 2004.
- H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, "Speeded-Up Robust Features (SURF)," Computer Vision and Image Understanding, vol. 110, no. 3, pp. 346-359, June 2008.
- E. Rosten and T. Drummond, "Machine Learning for High-speed Corner Detection," in *Proc. of the 9th European Conf. on Computer Vision (ECCV '06)*, Graz, Austria, May 2006, pp. 430-443.
- M. Calonder, V. Lepetit, C. Strecha, and P. Fua, "BRIEF: Binary Robust Independent Elementary Features," in *Proc. European Conf. on Computer Vision (ECCV 2010)*, Heraklion, Greece, Sep. 2010, pp. 778-792.
- E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, "ORB: An Efficient Alternative to SIFT or SURF," in *Proc. 2011 IEEE Int. Conf. on Computer Vision (ICCV)*, Barcelona, Spain, Nov. 2011, pp. 2564-2571.
- S. Leutenegger, M. Chli, and R. Siegwart, "BRISK: Binary Robust Invariant Scalable Keypoints," in *Proc. 2011 IEEE Int. Conf. on Computer Vision (ICCV)*, Barcelona, Spain, Nov. 2011, pp. 2548-2555.
- E. Mair, G. Hager, D. Burschka, M. Suppa, and G. Hirzinger, "Adaptive and Generic Corner Detection Based on the Accelerated Segment Test," in *Proc. European Conference on Computer Vision (ECCV 2010)*, Heraklion, Greece, Sep. 2010, pp. 183-196.
- Yong-Suk Park, "Computation Resource Allocation Through Smart Device Ad-hoc Cloud Establishment in Mobile Environments." Ph.D. Dissertation, Yonsei University, 2018.