

Fundamentals of Programming with C Language

NUMBER SYSTEMS

By Aphrodice Rwagaju

Content

BinaryBase 2

OctalBase 8

DecimalBase 10

Hexadecimal Base 16

Decimal Numbers

- The decimal number system is the number system we use everyday, from counting to simple math like checking store receipts.
- The word 'deci' means 10, therefore there are ten numbers (digits) in the decimal number system.
- The largest symbol is the base -1 i.e 10 1 = 9
- 9 is the largest symbol in Decimal numbers
- It has ten unique symbols
 - 0 1 2 3 4 5 6 7 8 9 (Total 10)
 - BASE-10

Meaning of Decimal Number

Meaning of Decimal Number

• The number 532.25 in decimal (base 10) means the following:

$$= (5 * 102) + (3 * 101) + (2 * 100) + (2 * 10-1) + (5 * 10-2)$$

$$= 500 + 30 + 2 + 2/10 + 5/100$$

$$= 532.25$$

Binary Numbers

- Binary stands for 2
- Binary is the base 2 number system
- It has two unique symbols
 - 0 and 1
- The largest symbol in Binary is the base -1 i.e 2-1=1
- 1 is the largest symbol in the Binary Number system

Octal Numbers

- Octal stands for Eight
- Octal is the base 8 Number System
- It has 8 unique symbols
 - 0 1 2 3 4 5 6 7
- The largest symbol is the base -1 i.e 8 1 = 7
- 7 is the largest symbol in the Octal number system

Hexadecimal Numbers

- Hex = 6 and Decimal = 10 6+10 = 16
- Hex is the base 16 Number System
- It has 16 symbols
 - 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
- It must have 16 UNIQUE Symbols
 - 0123456789 A B C D E F
- The largest symbol is 16 1 = 15 or F

Counting in Binary

			BIN	ARY	HEX
Position:	8	4	2	1	
	0	0	0	0	0
	0	0	0	1	1
	0	0	1	0	2
	0	0	1	1	3
	0	1	0	0	4
	0	1	0	1	5
	0	1	1	0	6
	0	1	1	1	7
	1	0	0	0	8

Counting in Binary

			BIN	ARY	HEX
Position:	8	4	2	1	
	1	0	0	0	8
	1	0	0	1	9
	1	0	1	0	Α
	1	0	1	1	В
	1	1	0	0	C
	1	1	0	1	D
	1	1	1	0	E
	1	1	1	1	F

Counting in Binary – Examples

			BINARY			HEX			
Position:	128	64	32	16	8	4	2	1	
	0	0	1	1	0	1	0	0	52
	1	0	1	0	0	0	1	1	163
	1	1	1	1	1	1	1	1	255

Positional Notation – Meaning of Decimal

$$N = P_4 P_3 P_2 P_1 P_0$$
$$= P_4 b^4 + P_3 b^3 + P_2 b^2 + P_1 b^1 + P_0 b^0$$

$$584_{10} = 5 \times 10^2 + 8 \times 10^1 + 4 \times 10^0$$

= $500 + 80 + 4$
= 584

Positional Notation – Converting from Binary to Decimal

$$N = P_4 P_3 P_2 P_1 P_0$$

$$= P_4 b^4 + P_3 b^3 + P_2 b^2 + P_1 b^1 + P_0 b^0$$

Binary

$$10110_{2} = 1 \times 2^{4} + 0 \times 2^{3} + 1 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{0}$$
$$= 16 + 0 + 4 + 2 + 0$$
$$= 22_{10}$$

Positional Notation – Converting from Hexadecimal to Decimal

$$N = P_4 P_3 P_2 P_1 P_0$$

$$= P_4 b^4 + P_3 b^3 + P_2 b^2 + P_1 b^1 + P_0 b^0$$

$$3AF_{16} = 3 \times 16^{2} + A \times 16^{1} + F \times 16^{0}$$

= $3 \times 256 + 10 \times 16 + 15 \times 1$
= $768 + 160 + 15$
= 943_{10}

Positional Notation – Converting from Octal to Decimal

$$N = P_4 P_3 P_2 P_1 P_0$$

$$= P_4 b^4 + P_3 b^3 + P_2 b^2 + P_1 b^1 + P_0 b^0$$

Octal

$$457_8 = 4 \times 8^2 + 5 \times 8^1 + 7 \times 8^0$$

$$= 4 \times 64 + 5 \times 8 + 7 \times 1$$

$$= 256 + 40 + 7$$

$$= 303_{10}$$

Converting from Octal to Decimal

e.g 56564

$$= 5 \times 8^4 + 6 \times 8^3 + 5 \times 8^2 + 6 \times 8^1 + 4 \times 8^0$$

$$= 5 \times 4096 + 6 \times 512 + 5 \times 64 + 6 \times 8 + 4 \times 1$$

$$= 20480 + 3072 + 320 + 48 + 4$$

= 23924

Fractional Numbers - Meaning of Decimal

$$N = \dots P_{3}P_{2}P_{1}P_{0} \cdot P_{-1}P_{-2}P_{-3}\dots$$

$$= \dots + P_{3}b^{3} + P_{2}b^{2} + P_{1}b^{1} + P_{0}b^{0} + P_{-1}b^{-1} + P_{-2}b^{-2} + P_{-3}b^{-3} + \dots$$

$$375.17_{10} = 3 \times 10^{2} + 7 \times 10^{1} + 5 \times 10^{0}$$

 $+ 1 \times 10^{-1} + 7 \times 10^{-2}$
 $= 300 + 70 + 5 + 0.1 + 0.07$
 $= 375.17$

Fractional Numbers – Converting from Binary to Decimal

$$N = \dots P_{3}P_{2}P_{1}P_{0} \cdot P_{-1}P_{-2}P_{-3}\dots$$

$$= \dots + P_{3}b^{3} + P_{2}b^{2} + P_{1}b^{1} + P_{0}b^{0} + P_{-1}b^{-1} + P_{-2}b^{-2} + P_{-3}b^{-3} + \dots$$

Binary

$$1101.11_{2} = 1 \times 2^{3} + 1 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0}$$

$$+ 1 \times 2^{-1} + 1 \times 2^{-2}$$

$$= 8 + 2 + 0 + 1 + 1/2 + 1/4$$

$$= 11.75_{10}$$

Fractional Numbers – Converting from Binary to Decimal

• In the binary number system (base 2), each column represents a power of 2 instead of 10. For example, the number 101.01 means the following:

$$= (1 * 2^2) + (0 * 2^1) + (1 * 2^0) + (0 * 2^1) + (1 * 2^2)$$

$$= 4 + 0 + 1 + 0 + 1/4 = 5.25 Decimal$$

Fractional Numbers – Converting from Hex to Decimal

$$N = \dots P_{3}P_{2}P_{1}P_{0} \cdot P_{-1}P_{-2}P_{-3}\dots$$

$$= \dots + P_{3}b^{3} + P_{2}b^{2} + P_{1}b^{1} + P_{0}b^{0} + P_{-1}b^{-1} + P_{-2}b^{-2} + P_{-3}b^{-3} + \dots$$

Hex

$$1AB.6_{16} = 1 \times 16^{2} + A \times 16^{1} + B \times 16^{0} + 6 \times 16^{-1}$$

= $1 \times 256 + 10 \times 16 + 11 \times 1 + 6/16$
= $256 + 160 + 11 + 0.375$
= 427.375_{10}

Fractional Numbers – Converting from Octal to Decimal

$$N = \dots P_{3}P_{2}P_{1}P_{0} \cdot P_{-1}P_{-2}P_{-3}\dots$$

$$= \dots + P_{3}b^{3} + P_{2}b^{2} + P_{1}b^{1} + P_{0}b^{0} + P_{-1}b^{-1} + P_{-2}b^{-2} + P_{-3}b^{-3} + \dots$$

$$Octal$$

$$173.25_{8} = 1 \times 8^{2} + 7 \times 8^{1} + 3 \times 8^{0} + 2 \times 8^{-1} + 5 \times 8^{-2}$$

$$= 1 \times 64 + 7 \times 8 + 3 \times 1 + 2/8 + 5/64$$

$$= 64 + 56 + 3 + 0.25 + 0.078125$$

$$= 123.328125_{10}$$

Converting from Hexadecimal to Decimal

FF

F in Hex is 15 so

- $= 15 \times 16^{1} + 15 \times 16^{0}$
- = 240 + 15
- = 255

HEXADECIMAL NUMBERS!

0123456789abcdef

Converting from Decimal to Binary

2	100
2	50 − 0
2	25 – 0
2	12 – 1
2	6 - 0
2	3 - 0
	1 - 1

Answer: 1100100

Converting from Decimal to Hexadecimal

16	100
	6 - 4

64

16	222
	13(D) - 14 (E)

DE

16	1000
16	62 – 8
	3 - 14

3 14 8

3 E 8

Converting from Decimal to Octal

8	64
8	8 - 0
	1 - 0

So answer is 100 Octal equals 64 DECIMAL

Converting from Binary to Octal

- The largest symbol in Octal is 7
- It requires THREE binary bit to represent the number 7 → 111₂
- To convert a binary number to Octal, start with the LSB and mark off groups of
 3.
 - 101011010010 LSB
 - 101-011-010-010 Write Octal symbol below
 - 5 3 2 2₈

Converting from Binary to Octal

- Lets keep it very simple
 - Convert Binary to Decimal
 - And then Decimal to Octal

Converting from Octal to Binary

- To convert an Octal number to binary:
- Write the three bit binary equivalent below
 - -1 5 6 4_8
 - $-001\ 101\ 110\ 100 = 1101110100_2$
- Leading zeros can be left off.

Converting from Binary to Hexadecimal

- The largest symbol in Hex is 15 or F
- It requires FOUR binary bits to represent the number 15 or the symbol F → 1111₂
- To convert a binary number to Hex, start with the LSB and mark off groups of 4.
 - 10110011101011110_{LSB}
 - 1011-0011-1010-1110 Write Hex symbols below
 - B 3 A E₁₆

Homework

- Convert in binary
 - -24581_{10}
 - -2475_{8}
 - -8DF5₁₆
- Convert in Decimal
 - -4255_{8}
 - 1001110010110100₂
 - $-8DA5_{16}$

- Convert in Octal
 - -24521_{10}
 - -10011100111101002
 - $-8DF5_{16}$
- Convert in Hexadecimal
 - -4265_{8}
 - 1001110010110100₂
 - -863728_{10}

