COMP 3331/9331: Computer Networks and Applications

Week 5

Data Link Layer + Wireless Networks

Reading Guide: Chapter 6, Sections 6.4, 6.7

Chapter 7, Sections 7.1 - 7.3

Link layer, LANs: outline

- 6. I introduction, services 6.7 a day in the life of a
- 6.2 error detection, correction
- 6.3 multiple access protocols
- 6.4 LANs
 - addressing, ARP
 - Ethernet
 - switches

6.7 a day in the life of a web request

Ethernet

Bob Metcalfe, Xerox PARC, visits Hawaii and gets an idea!

Metcalfe's Ethernet sketch

- "dominant" wired LAN technology:
- first widely used LAN technology
- simpler, cheaper than token LANs and ATM
- kept up with speed race: 10 Mbps 10 Gbps

Ethernet: physical topology

- bus: popular through mid 90s
 - all nodes in same collision domain (can collide with each other)
 - CSMA/CD for media access control
- star: prevails today
 - active switch in center
 - each "spoke" runs a (separate) Ethernet protocol (nodes do not collide with each other)
 - No sharing, no CSMA/CD

bus: coaxial cable

Ethernet frame structure

Sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame

Preamble 7 Putes				7	Payload 46-1500			
7 Bytes	ГБусе	6 Bytes	MAC 6 Bytes	2 Bytes		RC 4	Frame Gap	
		, , ,				Bytes		

preamble:

- Start of frame is recognized by
 - Preamble: Seven bytes with pattern 10101010
 - Start of Frame Delimiter (SFD): 10101011
- used to synchronize receiver, sender clock rates
- Inter Frame Gap is 12 Bytes (96 bits) of idle state
 - 0.96 microsec for I00 Mbit/s Ethernet
 - 0.096 microsec for Gigabit/s Ethernet

Ethernet frame structure (more)

- addresses: 6 byte source, destination MAC addresses
 - if adapter receives frame with matching destination address, or with broadcast address (e.g. ARP packet), it passes data in frame to network layer protocol
 - otherwise, adapter discards frame
- * type: indicates higher layer protocol (mostly IP but others possible, e.g., ARP, Novell IPX, AppleTalk)
- CRC: cyclic redundancy check at receiver
 - error detected: frame is dropped

Ethernet: unreliable, connectionless

- connectionless: no handshaking between sending and receiving NICs
- unreliable: receiving NIC doesnt send acks or nacks to sending NIC
 - data in dropped frames recovered only if initial sender uses higher layer rdt (e.g., TCP), otherwise dropped data lost
- Ethernet's MAC protocol: unslotted CSMA/CD with binary backoff

802.3 Ethernet standards: link & physical layers

- many different Ethernet standards
 - common MAC protocol and frame format
 - different speeds: 2 Mbps, 10 Mbps, 100 Mbps, 1Gbps, 10Gbps, 40Gbps, 100Gbps,
 - different physical layer media: fiber, cable

Link layer, LANs: outline

- 6. I introduction, services 6.7 a day in the life of a
- 6.2 error detection, correction
- 6.3 multiple access protocols

6.4 LANs

- addressing, ARP
- Ethernet
- switches

6.7 a day in the life of a web request

Ethernet switch

- link-layer device: takes an active role
 - store, forward Ethernet frames
 - examine incoming frame's MAC address, selectively forward frame to one-or-more outgoing links
- transparent
 - hosts are unaware of presence of switches
- plug-and-play, self-learning
 - switches do not need to be configured

Switch: multiple simultaneous transmissions

- hosts have dedicated, direct connection to switch
- switches buffer packets
- Ethernet protocol used on each incoming link, but no collisions; full duplex
 - each link is its own collision domain
- switching: A-to-A' and B-to-B' can transmit simultaneously, without collisions

switch with six interfaces (1,2,3,4,5,6)

Switch forwarding table

Q: how does switch know A' reachable via interface 4, B' reachable via interface 5?

- A: each switch has a switch table, each entry:
 - (MAC address of host, interface to « reach host, time stamp)
 - looks like a routing table!

Q: how are entries created, maintained in switch table?

something like a routing protocol?

switch with six interfaces (1,2,3,4,5,6)

Switch: self-learning

- switch learns which hosts can be reached through which interfaces
 - when frame received, switch "learns" location of sender: incoming LAN segment
 - records sender/location pair in switch table

MAC addr	interface	TTL
Α	1	60

Switch table (initially empty)

Source: A

Switch: frame filtering/forwarding

when frame received at switch:

```
I. record incoming link, MAC address of sending host
2. index switch table using MAC destination address
3. if entry found for destination
   then {
   if destination on segment from which frame arrived
       then drop frame
       else forward frame on interface indicated by entry
    else flood /* forward on all interfaces except arriving
                 interface */
```

Self-learning, forwarding: example

- frame destination, A', locaton unknown: flood
- destination A location known: selectively send on just one link

MAC addr	interface	TTL	
A , ,	1	60 60	
A	4	00	

switch table (initially empty)

Source: A

Interconnecting switches

switches can be connected together

Q: sending from A to G - how does S_1 know to forward frame destined to G via S_4 and S_3 ?

A: self learning! (works exactly the same as in single-switch case!)

Institutional network

Switches vs. routers

both are store-and-forward:

- routers: network-layer devices (examine networklayer headers)
- switches: link-layer devices (examine link-layer headers)

both have forwarding tables:

- **routers:** compute tables using routing algorithms, IP addresses
- **switches:** learn forwarding table using flooding, learning, MAC addresses

Security Issues

- In a switched LAN once the switch table entries are established frames are not broadcast
 - Sniffing frames is harder than pure broadcast LANs
 - Note: attacker can still sniff broadcast frames and frames for which there are no entries (as they are broadcast)
- Switch Poisoning: Attacker fills up switch table with bogus entries by sending large # of frames with bogus source MAC addresses
- Since switch table is full, genuine packets frequently need to be broadcast as previous entries have been wiped out

Link Layer: Summary

- principles behind data link layer services:
 - error detection, correction
 - sharing a broadcast channel: multiple access
 - link layer addressing
- instantiation and implementation of various link layer technologies
 - Ethernet
 - switched LANS

Link Layer: let's take a breath

- journey down protocol stack complete (except PHY)
- solid understanding of networking principles, practice
- could stop here but lots of interesting topics!
 - wireless
 - multimedia
 - security
 - network management

Wireless Networks

Background:

- # wireless (mobile) phone subscribers now exceeds # wired phone subscribers (5-to-I)!
- # wireless Internet-connected devices equals # wireline Internet-connected devices
 - laptops, Internet-enabled phones promise anytime untethered Internet access
- two important (but different) challenges
 - wireless: communication over wireless link
 - mobility: handling the mobile user who changes point of attachment to network

We will only focus on wireless challenges

Outline

7.1 Introduction

Wireless

- 7.2 Wireless links, characteristics
- 7.3 IEEE 802.11 wireless LANs ("Wi-Fi")

Wireless 101

Frequency/Wave-Length -

C is the speed of light f is frequency λ (lambda) is wavelength

Wavelength

Frequency

$$f = \frac{C}{f}$$

Characteristics of selected wireless links

Australian radiofrequency spectrum

allocations chart

ad hoc mode

- no base stations
- nodes can only transmit to other nodes within link coverage
- nodes organize themselves into a network: route among themselves

Wireless network taxonomy

	single hop	multiple hops	
infrastructure (e.g., APs)	host connects to base station (WiFi, WiMAX, cellular) which connects to larger Internet	host may have to relay through several wireless nodes to connect to larger Internet: mesh net	
no infrastructure	no base station, no connection to larger Internet (Bluetooth, ad hoc nets)	no base station, no connection to larger Internet. May have to relay to reach other a given wireless node MANET,VANET	

Outline

7.1 Introduction

Wireless

7.2 Wireless links, characteristics

7.3 IEEE 802.11 wireless LANs ("Wi-Fi")

Wireless Link Characteristics (I)

important differences from wired link

- decreased signal strength: radio signal attenuates as it propagates through matter (path loss)
- interference from other sources: standardized wireless network frequencies (e.g., 2.4 GHz) shared by other devices (e.g., phone); devices (motors) interfere as well
- multipath propagation: radio signal reflects off objects ground, arriving at destination at slightly different times

.... make communication across (even a point to point) wireless link much more "difficult"

Path Loss/Path Attenuation

- Free Space Path Loss
 - d: distance
 - λ: wavelength
 - f: frequency
 - c: speed of light

$$FSPL = \left(\frac{4\pi d}{\lambda}\right)^{2}$$
$$= \left(\frac{4\pi df}{c}\right)^{2}$$

- Reflection, Diffraction, Absorption
- Terrain contours (urban, rural, vegetation)
- Humidity

Multipath Effects

- Signals bounce off surface and interfere (constructive or destructive) with one another
- Self-interference

Ideal Radios

(courtesy of Gilman Tolle and Jonathan Hui, ArchRock)

Real Radios

Wireless Link Characteristics (2)

- SNR: signal-to-noise ratio
 - larger SNR easier to extract signal from noise (a "good thing")
- SNR versus BER tradeoffs
 - given physical layer: increase power -> increase SNR->decrease BER
 - given SNR: choose physical layer that meets BER requirement, giving highest thruput
 - SNR may change with mobility: dynamically adapt physical layer (modulation technique, rate)

Wireless network characteristics

Multiple wireless senders and receivers create additional problems (beyond multiple access):

Hidden terminal problem

- ❖ B,A hear each other
- * B, C hear each other
- A, C can not hear each other means A, C unaware of their interference at B
- Carrier sense will be ineffective

Signal attenuation:

- ♣ B,A hear each other
- B, C hear each other
- ❖ A, C can not hear each other interfering at B

Wireless network characteristics

Exposed Terminals

- Node B sends a packet to A; C hears this and decides not to send a packet to D (despite the fact that this will not cause interference) !!
- Carrier sense would prevent a successful transmission

Outline

7.1 Introduction

Wireless

7.2 Wireless links, characteristics

7.3 IEEE 802.11 wireless LANs ("Wi-Fi")

IEEE 802.11 Wireless LAN

802.11b

- 2.4-5 GHz unlicensed spectrum
- up to 11 Mbps
- direct sequence spread spectrum (DSSS) in physical layer
 - all hosts use same chipping code

802.11a

- 5-6 GHz range
- up to 54 Mbps

802.11g

- 2.4-5 GHz range
- up to 54 Mbps

802. I In: multiple antennae

- 2.4-5 GHz range
- up to 200 Mbps

- all use CSMA/CA for multiple access
- all have base-station and ad-hoc network versions

802.11 LAN architecture

BSS 2

- wireless host communicates with base station
 - base station = access point (AP)
- * Basic Service Set (BSS) (aka "cell") in infrastructure mode contains:
 - wireless hosts
 - access point (AP): base station
 - ad hoc mode: hosts only

802. I I: Channels, association

- 802.11b: 2.4GHz-2.485GHz spectrum divided into 11 channels at different frequencies
 - AP admin chooses frequency for AP
 - interference possible: channel can be same as that chosen by neighboring AP!
- host: must associate with an AP
 - scans channels, listening for beacon frames containing AP's name (SSID) and MAC address
 - selects AP to associate with
 - may perform authentication [Chapter 8]
 - will typically run DHCP to get IP address in AP's subnet

802. I Ib channels

802.11b channel assignments (US)

802.11: passive/active scanning

passive scanning:

- (1) beacon frames sent from APs
- (2) association Request frame sent: H1 to selected AP
- (3) association Response frame sent from selected AP to H I

active scanning:

- (1) Probe Request frame broadcast from H1
- (2) Probe Response frames sent from APs
- (3) Association Request frame sent: H1 to selected AP
- (4) Association Response frame sent from selected AP to H1

IEEE 802.11: multiple access

- avoid collisions: 2⁺ nodes transmitting at same time
- * 802.11: CSMA sense before transmitting
 - don't collide with ongoing transmission by other node
- * 802.11: no collision detection!
 - difficult to receive (sense collisions) when transmitting due to weak received signals (fading)
 - can't sense all collisions in any case: hidden terminal, fading
 - goal: avoid collisions: CSMA/C(ollision)A(voidance)

Multiple access: Key Points

- No concept of a global collision
 - Different receivers hear different signals
 - Different senders reach different receivers
- * Collisions are at receiver, not sender
 - Only care if receiver can hear the sender clearly
 - It does not matter if sender can hear someone else
 - As long as that signal does not interfere with receiver
- Goal of protocol
 - Detect if receiver can hear sender
 - Tell senders who might interfere with receiver to shut up

IEEE 802.11 MAC Protocol: CSMA/CA

<u>Distributed Coordination Function (DCF)</u> 802.11 sender

1 if sense channel idle for **DIFS** then transmit entire frame (no CD)

2 if sense channel busy then
start random backoff time
timer counts down while channel idle
transmit when timer expires
if no ACK, increase random backoff interval,
repeat 2

802.11 receiver

 if frame received OK return ACK after SIFS (ACK needed due to hidden terminal problem)

DIFS = DCF Inter Frame space SIFS = Short Inter Frame Space

Avoiding collisions (more)

- idea: allow sender to "reserve" channel rather than random access of data frames: avoid collisions of long data frames
- sender first transmits small request-to-send (RTS) packets to BS using CSMA
 - RTSs may still collide with each other (but they' re short)
- BS broadcasts clear-to-send CTS in response to RTS
- CTS heard by all nodes
 - sender transmits data frame
 - other stations defer transmissions

avoid data frame collisions completely using small reservation packets!

Collision Avoidance: RTS-CTS exchange

Collision Avoidance: RTS-CTS exchange

802.11 frame: addressing

transmitting this frame

802.11 frame: addressing

802.11 frame

802.11 frame: more

802.11: advanced capabilities

Rate adaptation

 base station, mobile dynamically change transmission rate (physical layer modulation technique) as mobile moves, SNR varies

- 1. SNR decreases, BER increase as node moves away from base station
- 2. When BER becomes too high, switch to lower transmission rate but with lower BER

Summary

Wireless

- wireless links:
 - capacity, distance
 - channel impairments
- IEEE 802.11 ("Wi-Fi")
 - CSMA/CA reflects wireless channel characteristics