C-Refresher: Session 03 Data Representation

Arif Butt Summer 2017

I am Thankful to my student Muhammad Zubair bcsf14m029@pucit.edu.pk for preparation of these slides in accordance with my video lectures at

http://www.arifbutt.me/category/c-behind-the-curtain/

Today's Agenda

- Data Types
- Multi-Byte Load/Store
- Fixed Point Representation
- IEEE Standard for Floating Point
- Range on Single Precision
- Precision

Data Types

A datatype, in programming, is a classification that specifies which type of value a variable can store and what type of mathematical, relational or logical operations can be applied to it without causing an error.

A string, for example, is a datatype that is used to classify text, and an int is a datatype used to classify whole numbers.

- Different datatypes are available in C for storing a particular type of values
- There are three types of values
 - 1. Integer
 - 2. Character
 - 3. Floating Point
- Different datatypes for storing a particular type of values are shown on next slide

Different Data Types

Integer	Character	Floating Point
short	char	float
int		double
long		long double
long long		

Note: short, int, long, long long and char are both signed and unsigned

□Range:

- Range of values that can be occupied by different datatypes depends upon the platform, hardware (OS 32 or 64-bit) and compiler
- The command used to measure size of different datatypes is

```
sizeof(data type);
```

□limits.h

- There is a file limits.h which contains ranges for different datatypes
- Path of file is
 - /usr/include/limits.h

□getconf

• Instead of looking at limits.h file, we can use getconf command which contains ranges of lots of parameters

```
$ getconf -a
```

 getconf command can also be passed an argument to show the value of that particular argument

• e.g:

```
//Program showing sizes of different data types
#include<stdio.h>
int main(){
     printf("size of char: %d\n", sizeof(char));
     printf("size of short: %d\n", sizeof(short));
     printf("size of int: %d\n", sizeof(int));
     printf("size of long: %d\n", sizeof(long));
     printf("size of long long: %d\n", sizeof(long long));
     printf("size of float: %d\n", sizeof(float));
     printf("size of double: %d\n", sizeof(double));
     printf("size of long double: %d\n", sizeof(long double));
     return 0;}
```

□output of above program:

- size of char: 1
- size of short: 2
- size of int: 4
- size of long: 8
- size of long long: 8
- size of float: 4
- size of double: 8
- size of long double: 16
- Note: These are the sizes on a x86_64 system with kernel 4.6.0-kali-amd64

Multi-Byte Load/Store

· Let's declare a variable

```
short i=54;
```

•
$$54_{(10)} = 0000 000 0011 0110_{(2)}$$

Byte 2 Byte 1

- Now there are more than one bytes
- There are two ways of storing these bytes in the memory
 - Little Endian scheme (used in intel)
 - Big Endian scheme(used in MIPS)

□Little Endian:

- In Little Endian scheme, the bytes are put into the memory form right to left, i.e. the rightmost byte is put on a lower memory address and then the bytes from right to left are put in memory on consecutively higher memory addresses
- e.g.
- If we have memory addresses 100 and 101 then Byte-1 will be put in 100 memory address and Byte-2 will be put in 101

□Big Endian:

- In Big Endian scheme, the bytes are put into the memory form left to right, i.e. the leftmost byte is put on a lower memory address and then the bytes from left to right are put in memory on consecutively higher memory addresses
- e.g.
- If we have memory addresses 100 and 101 then Byte-1 will be put in 101 memory address and Byte-2 will be put in 100

- Max number of values that can be stored using $\mathbf n$ number of bits can be calculated using the formula
 - 2ⁿ
 - e.g.
 - No. of values stored in 1 bit are 2¹,i.e. 1&0
 - No. of values stored in 2 bits are 2²,i.e. 00, 01, 10, 11
 - and so on
- Range of values that can be stored in $\mathbf n$ number of bits is given as(on next slide)

□For Unsigned(n bits)

- 0 $-> 2^{n}-1$
- e.g. for 8-bits => $0 -> 2^8-1$ i.e. 0 -> 255

□For Signed(n bits)

• There are two ways:

1. Signed Magnitude:

$$\bullet$$
 - (2ⁿ⁻¹-1) -> + (2ⁿ⁻¹-1)

 This way is generally not used in our computer systems due to two reasons

- (i) Zero can be represented in two ways, i.e. we have a +ve zero 0000 and a -ve zero 1000 (as 0 represents a +ve sign and 1 represents -ve sign)
- (ii) Normal Binary arithmetic rules do not apply
 - e.g. adding 0001 (+1) and 1001 (-1) yields 1010 (-2), it would rather have been 0 but its not

2. 2's Complement:

- \bullet -2ⁿ⁻¹ -> + (2ⁿ⁻¹-1)
- e.g. for 8-bits => -128 -> +127

- · 2's complement is used in computer systems as
 - zero can be represented in one way only, i.e. 0000 (if in 4-bits)
 - · Binary arithmetic can be applied without any error
 - e.g. adding 0001(+1) and 1111(-1) yields 0000(0)
- Note: There is an extra -ve number in 2's complement as there is only one way for representing zero

```
/*Program for getting range(s) of short datatype..may also
be used for some other*/
#include<stdio.h>
int main(){
  printf("Size of short: %d\n", sizeof(short));
  int bits=8*sizeof(short);
 printf("Bits: %d\n", bits);
  int from=0;
  int to=(1 << bits) -1; //1*2bits
  printf("Range of unsigned short is from %d to %d\n", from, to);
  from=-(1<<bits-1);
  to=(1 << bits-1)-1;
 printf("Range of short is from %d to %d\n", from, to);
  return 0;}
```

Output of above program:

```
Size of short: 2
Bits: 16
Range of unsigned short is from 0 to 65535
Range of short is from -32768 to 32767
```

- Similarly, we can find range for other data types using this program as a template, i.e. replacing short with that datatype e.g. int
- These values can also be verified from /usr/include/limits.h file or using getconf command

Fixed Point Representation

- Real number can be represented in two ways
 - Fixed point
 - Floating point (our system uses this one)

□Fixed Point Representation:

- Let's take a number $(12.6)_{10} = (1100.10011001...)_2$
- · There are three fields in fixed point representation
 - Sign (+, -)
 - Integer field
 - Fractional field

Fixed Point Representation(cont...)

• If we represent the number in 32-bit system
1-bit 15-bits 16-bits

0 0000000001100 100110011001

Sign (0/1) Integer part

Fractional part

- Now the largest number which can be stored is given as
 - $(2^{15}-1)+(1-2^{-16}) = 32767.9999 \approx 32768$
- Smallest number is
 - $0+2^{-16} \approx 0.000015$

Fixed Point Representation(cont...)

Advantages:

- · Very fast performance as number is saved as integer
- Perform different optimizing techniques without any additional hardware

Disadvantages:

Operand size -- has very limited range of operand values

Floating Point Representation

- Introduced in 1985, based on scientific notation
- It has been accepted as the IEEE standard for floating point
- Current version of IEEE is IEEE 754-2008
- Storage:

	Sign	Exponent	Mantissa
 Single precision of 32-bits 	1-bit	8-bits	23-bits
 Double precision of 64-bits 	1-bit	11-bits	52-bits
 Quadruple precision of 128-bits 	1-bit	15-bits	118-bits
 Octuplet precision of 256-bits 	1-bit	19-bits	236-bits

236-bits

Floating Point Representation(cont...)

- Sign field can be 0 or 1 i.e. + or -
- In Exponent field, base is implicit i.e. the base is 2
- The exponent can be both +ve and -ve
- To store these +ve and -ve exponents, a bias is added to the exponent, e.g.
 - In case of single precision, bias value is 127
 - In case of double precision, bias is 1023
 - e.g. in single precision
 - To store an exp. of +3, you actually store 127+3=130
 - To store an exp. of -3, you actually store 127-3=124

Floating Point Representation(cont...)

- Larger the number of bits for Exponent, the larger is the range
- · Larger the number of bits for Mantissa field, the greater is the precision
- Let's take an example of how a number is stored in floating point representation
 - 12.6₁₀=1100.100110011001...₂

(Need not to be saved)

Saved in access notation i.e. by adding bias value(127, 1023 or some other)

Floating Point Representation(cont...)

 So in single precision the above values will be stored in memory like

Sign	+3+127=130	Mantissa
0	1000 0010	1001100110011
1-bit	8-bits	23-bits

Range on Single Precision

Smallest Value:

Largest Value:

1-bit	8-bits	23-bits
0/1	1111 1110	111111111111111
Sign	254-127=+127	Mantissa
+1.11	$11*2^{+127}=+2*2^{+127}$	

Note: Exponents of all 0's and all 1's are reserved

Precision

· floats:

- float is stored in single precision which has 23-bits for decimal part
- $23*\log_{10}^2 = 23*0.3 \approx 6$ (6 decimal digits per precision)

· doubles:

- double is stored in double precision which has 52-bits for decimal part
- $52*log_{10}^2 = 52*0.3 \approx 12$ (12 decimal digits per precision)

Overflow & Underflow

□Overflow:

- A value larger than the largest magnitude value
- e.g. in single precision
- value> 1.1111*2*127 = ∞

□Underflow:

- · A value smaller than the smallest magnitude value
- e.g. in single precision
- value $< 1 * 2^{-149} = 0$
- It may not have a very large effect on addition but have a very large effect on multiplication

Overflow & Underflow(cont...)

- There is a bunch of numbers which, along floating point numbers, get very small by sacrificing the significant bits, these numbers are called Denormalized numbers
- Numbers $<1*2^{-149}$ are de-normalized

Overflow & Underflow(cont...)

```
//Program for showing overflow
#include<stdio.h>
int main(){
    short a,b;
    printf("Enter a number: ");
    scanf("%d", &a);
    b=a+10;
    printf("%d+10=%d\n",a,b);
    return 0;
```

Overflow & Underflow(cont...)

• Output of above program is:

```
Enter a number: 32767
32767+10 = -32759
```

- Here, when we add $7FFF_{16}(32767_{10})$ and $A_{16}(10_{10})$, the result is $8009_{16}(-32759_{10})$
- Actually $8009_{16}=1000\ 0000\ 0000\ 1001_2$ (a -ve number)
- So after taking 2's complement, we get -32759_{10}

SUMMARY