Physics

Samuel Lindskog

February 12, 2025

Contents

1	Per	iodic Motion	1
	1.1	Frequency	1
	1.2	Energy in SHM	1

1 Periodic Motion

1.1 Frequency

Definition 1.1 (Period). The period T is the time to complete one cycle, measured in seconds.

Definition 1.2 (Angular Frequency). Angular frequency ω is radians per second, with units s⁻¹. Radians are unitless.

 $\omega = \frac{2\pi}{T}.$

Definition 1.3 (Frequency). Frequency is a measure of cycles per second, or $\omega/2\pi$. It is measured in hertz (Hz) with units s⁻¹. Cycles are unitless.

Definition 1.4 (Restoring force). The restoring force F_x relative to displacement from equlibrium x is

$$F_x = -kx$$
.

k is the spring constant with units N/m.

Definition 1.5. The equation used to derive the equation for simple harmonic motion with respect to time is

 $\frac{d^2x}{dt^2} = -\frac{k}{m}x.$

Eigenvalues for this equation are $\pm i\sqrt{\frac{k}{m}}$, so displacement from equilibrium for simple harmonic motion with respect to time is

$$x = c_1 \cos\left(\sqrt{\frac{k}{m}t}\right) + c_2 \sin\left(\sqrt{\frac{k}{m}t}\right).$$

In phase-amplitude form this equation is

$$x = A\cos(\omega t + \phi).$$

Definition 1.6 (SHM frequency). It follows from the displacement equation for SHM that angular frequency for SHM is

$$\omega = \sqrt{\frac{k}{m}}.$$

1.2 Energy in SHM

Definition 1.7 (Mechanical energy). Work in Joules (Nm) is equal to displacement times force in simple scenarios. For forces that vary with one-dimensional displacement x from a to b, work is expressed by equation

$$E = \int_{a}^{b} F(x)dx.$$