Фамилия	
---------	--

1. Вычислить энтропию (H(a)) следующих величин:

Nº	Задание	Ответ
а	$a \in_{R} \{0,1\}^{7}$, равномерное распределение	
b	$a = (00000000) \in \{0,1\}^8$	
С	$a = (0110110110) \in \{0,1\}^{10}$	
d	$a = (0110101110001) \in \{0,1\}^{13}$	
е	$a \in_R \{0,1\}^{10} : a_0 = 1$	
f	$a \in_R \{0,1\}^{10} : a_0 = a_9$	
g	$a \in_R \{0,1\}^{16}$: $a_i = a_{i-1} \oplus 1, i = 115$	
h	$a \in_{R} \{0,1\}^{16} : a_{2k} = 0, k = 07$	
	Не заполнять!	/8

2. Рассмотрим игру с двумя экспериментами.

- а. В эксперименте 0 претендент подбрасывает монетку и возвращает **РЕШКА**, если выпала решка, и **ОРЁЛ** если орёл.
- b. В эксперименте 1 претендент всегда возвращает **ОРЁЛ**.

Цель противника различить два эксперимента. Пусть W_b событие того, что в эксперименте $b \in \{0,1\}$ противник возвращает 1. Преимущество противника $\mathrm{Adv}[A] = |\Pr[W_0] - \Pr[W_1]| \in [0,1]$.

Вычислить $\mathrm{Adv}[A]$ для следующих алгоритмов:

Nº	Задание	Ответ
а	<i>A</i> : всегда возвращает 1	
b	A : возвращает 1, с вероятностью $\frac{1}{2}$, иначе — 0	
С	А: возвращает 1, если от претенденто получено РЕШКА	
d	А: возвращает 0, если от претенденто получено РЕШКА	
е	A: если получено РЕШКА возвращает 1. Иначе — (возвращает 1, с вероятность $\frac{1}{2}$, иначе 0)	
f	A: $Adv[A] = max$, построить A	
	Не заполнять!	/ 6

3. Выберите верные утверждения:

Nº	Задание	Ответ
а	Абсолютно стойкий шифр всегда семантически стойкий	
b	Любой шифр Шеннона является абсолютно стойким	
С	Аддитивный одноразовый блокнот – семантически стойкий шифр	
d	Аддитивный одноразовый блокнот переменной длины –	
	семантически стойкий шифр	
е	Если шифр имеет длины ключей больше длин шифртекстов то он	
	абсолютно стойкий	
f	Если шифр имеет и энтропии длины ключей больше длин и	
	энтропий шифртекстов то он абсолютно стойкий	

g	Если для всех пар сообщение – шифртекст ($(m,c)\in M imes C$)	
	имеется одинаковое количество ключей $k_i \in K$, таких что	
	$E(k,m) = c$, то шифр ${ m E} = (E,D)$ на (K,M,C) - абсолютно стойкий	
h	Для семантически стойкого шифра энтропия ключа всегда больше	
	или равна энтропии открытого текста.	
	Не заполнять!	/ 8

4. Пусть $\mathbf{E}=(E,D)$ — одноразовый блокнот на (K,M,C): $M=C=\{0,1\}^L$, $K=\{k\in\{0.1\}^L$: $k_{2i}=1, i=0..\frac{L}{2}-1\}$ (множество векторов длины L, для которых чётные координаты равны 1. Является ли \mathbf{E} семантически стойким шифром? Если нет продемонстрируйте атаку с преимуществом равным 1.

	Ответ
Не заполнять!	/2

5. Пусть E = (E, D) — подстановочный шифр на (K, M, C): $M = C = \Sigma^L, K = S(\Sigma)$ (множество подстановок на Σ). Является ли E семантически стойким шифром? Если нет продемонстрируйте атаку с преимуществом равным 1.

	Ответ
Не заполнять!	/2

6. Пусть E = (E, D) – семантически стойкий шифр на (K, M, C): $M = C = \{0,1\}^L$. Какие из следующих алгоритмов является семантически стойкими? Для каждого алгоритма предоставить доказательство стойкости или атаку.

Nº	Задание	Ответ
а	E'(k,m) = 0 E(k,m)	
b	E'(k,m) = E(k,m) par(m),	
	par(a) — чётность сообщения a	
С	E'(k,m) = rev(E(k,m)),	
	rev(m) — смена порядка битов на обратный	
d	E'(k,m) = E(k,rev(m))	
	rev(a) — смена порядка битов на обратный	
e	$E'(k,m) = E(0^L,m)$	
f	E'(k,m) = E(k,m) k	
g	E'((k,k'), m) = E(k,m) E(k',m)	
h	$E'((k,k'), m) = (c,c): c \stackrel{R}{\leftarrow} E(k,m)$	
i	$E'((k,k'), m) = E(k,m) E(k',m) $ $E'((k,k'), m) = (c,c): c \stackrel{R}{\leftarrow} E(k,m)$ $E'(k,m) = c par(c): c \stackrel{R}{\leftarrow} E(k,m) $	
	par(a) — чётность сообщения a	
	Не заполнять!	/9

- 7. E=(E,D) семантически стойкий шифр на (K,M,C): $M=C=\{0,1\}^{\leq L}$. Пусть $\bar{\bar{C}}$: $\{0,1\}^{\leq L}$ \to $\{0,1\}^{\leq L}$ функция сжатия без потерь. Заметим, что $\bar{\bar{C}}$ демонстрирует разный уровень сжатия для различных сообщений.
 - а. Пусть в игре на семантическую стойкость Претендент сжимает сообщения перед зашифрованием, т.е. $E'(k,m)=E(k,\bar{C}(m))$. Является ли данная схема семантически стойкой? Если да доказать, иначе продемонстрировать атаку. Имеет ли данная схема смысл для уменьшения размера шифрткеста? Почему?
 - b. Пусть в игре на семантическую стойкость Претендент сжимает шифртекста после зашифрования, т.е. $E''(k,m)=\bar{\bar{C}}(E(k,m))$. Является ли данная схема семантически стойкой? Если да доказать, иначе продемонстрировать атаку.

Имеет ли данная схема смысл для уменьшения размера шифрткеста? Почему?

Nº	Задание	Ответ	
а	$E'(k,m) = E(k,\bar{C}(m)).$		
b	$E''(k,m) = \bar{\bar{C}}(E(k,m))$		
	Не заполнять!	/2	/2

8. Пусть $\mathbf{E}=(E,D)$ — семантически стойкий шифр на (K,M,C): $K=\{0,1\}^L$. Банковская организация желает разделить секретный ключ $k\in K$ на две части p_1 и p_2 , так, что обе необходимы для расшифрования. Банк генерирует случайное число $k_1\in K$ и вычисляет $k_1'\leftarrow k\oplus k_1$. Тогда $p_1=k_1,p_2=k_1'$. Аналогичная задача для трех сторон: разделяя ключ на **три** части p_1,p_2,p_3 можно получить ключ по любым двум из ним: банк генерирует пары (k_1,k_1') и (k_2,k_2') , такие что $k_1\oplus k_1'=k_2\oplus k_2'=k$. Как следует разделить части пар между частями?

Nº	Задание	Ответ
a	$p_1 = (k_1, k_2), p_2 = (k_2, k_2'), p_3 = (k_2')$	
b	$p_1 = (k_1, k_2), p_2 = (k_1'), p_3 = (k_2')$	
С	$p_1 = (k_1, k_2), p_2 = (k_1', k_2'), p_3 = (k_2')$	
d	$p_1 = (k_1, k_2), p_2 = (k_1, k_2), p_3 = (k_2')$	
е	$p_1 = (k_1, k_2), p_2 = (k_1', k_2), p_3 = (k_2')$	
	Не заполнять!	/1