MOWNIT – Sprawozdanie 2

Polecenie:

Dla jednej z poniższych funkcji (*podanej w zadaniu indywidualnym*) wyznacz dla zagadnienia Lagrange'a wielomian interpolujący w postaci Lagrange'a i Newtona.

Interpolację przeprowadź dla różnej liczby węzłów (np. n = 3, 4, 5, 7, 10, 15, 20). Dla każdego przypadku interpolacji porównaj wyniki otrzymane dla różnego rozmieszczenia węzłów: równoodległe oraz Czebyszewa*.

Oceń dokładność, z jaką wielomian przybliża zadaną funkcję.

Poszukaj wielomianu, który najlepiej przybliża zadaną funkcję.

Wyszukaj stopień wielomianu, dla którego można zauważyć efekt Runge'go (dla równomiernego rozmieszczenia węzłów). Porównaj z wyznaczonym wielomianem dla węzłów Czebyszewa.

Zadana funkcja:

$$f(x) = 10 \cdot m + \frac{x^2}{k} - 10 \cdot m \cdot \cos(kx)$$
 dla: k=1, m=3, [-4pi, 4pi]

Wykonanie:

Funkcje liczące:

Zostały opisane w kodzie

Obliczenia

Wykonano obliczenia podanej funkcji w zadanym przedziale z zadaną ilością węzłów w 4 wariantach:

- Według wzoru Newtona (węzły rozmieszczone równomiernie na przedziale)
- Według wzoru Lagrange'a (węzły rozmieszczone równomiernie na przedziale)
- Według wzoru Newtona (węzły rozmieszczone zgodnie z zerami wielomianu Czebyszewa)
- Według wzoru Lagrange'a (węzły rozmieszczone zgodnie z zerami wielomianu Czebyszewa)

Użyto próbkowania przedziału dla p=100 punktów.

Błąd maksymalny: $\max(abs(f(x)-W(x)))$, gdzie f-funkcja właściwa, W-funkcja interpolująca

Błąd średniokwadratowy: $\frac{1}{p} \sqrt{\sum_{1}^{p} (f(x) - W(x))^{2}}$, gdzie f-funkcja właściwa, W-funkcja interpolująca, p-próbkowanie

Wyniki

Dla n=3 węzłów

Funkcja interpolująca znacznie odbiega od właściwej, jest to spowodowane małą ilością węzłów. Wszystkie 4 metody podobnie źle przybliżają funkcję

Wykres 1

60 -40 -20 -0 -10 -5 0 5 10

160

140

100

80

Newton z 3 węzłami (Czebyszew)

160 - Funkcja oryginalna Funkcja interpolująca Węzły Max różnica: 63.3664 Odchylenie: 0.7643

-10

Wykres 2

Lagrange z 3 węzłami (równomiernie)

Funkcja oryginalna

Funkcia interpolujaca

Węzły Max różnica: 59.9849

Odchylenie: 0.7312

Wykres 3 Wykres 4

Dla n=4 węzłów

Funkcja jest przybliżona lepiej (dzięki dodaniu węzła), lecz nadal jest to wynik odległy od zadowalanego. Różnica między funkcją liczoną metodą Newtona a Lagrange'a nie jest zauważalna, natomiast rozmieszczenie węzłów zgodnie z zerami wielomianu Czebyszewa jeszcze pogarsza dokładność.

Wykres 5

Wykres 7

Wykres 8

Dla n=6 węzłów

Tutaj obserwacje są identyczne jak w poprzednim doświadczenie

Dla n=9 węzłów

Tutaj obserwujemy pierwsze oznaki **Efektu Rungego**, czyli pogorszenie jakości interpolacji wielomianowej, mimo zwiększenia liczby jej węzłów, co jest szczególnie widoczne na końcach przedziałów. Znacznie poprawia to rozmieszczenie węzłów zgodnie z zerami wielomianu Czebyszewa

Dla n=11 węzłów

Efekt Rungego uwidacznia się jeszcze bardziej

Wykres 17

Wykres 19

Wykres 20

Dla n=15 węzłów

Efekt Rungego maleje, niemniej jednak metoda z węzłami zgodnie z zerami wielomianu Czebyszewa z wyjątkową skutecznością mu zapobiega

Dla n=20 węzłów

Jest to już wielomian dużego stopnia który dość skutecznie przybliża właściwą funkcję. Efekt Rungego jest nadal minimalnie obserwowany przy rozkładzie równomiernym

Dla n=25 węzłów

Liczba węzłów jest na tyle duża, że wersja z równomiernie rozłożonymi węzłami lepiej przybliża funkcję. Tak obserwujemy dla kolejnych wielomianów kolejnych stopni

Tabele

Błąd maksymalny

	Metoda Newtona		Metoda Lagrange'a	
n	równomiernie	zera Czebyszewa	równomiernie	zera Czebyszewa
3	59.9849	63.3664	59.9849	63.3664
4	50.3785	53.0215	50.3785	53.0215
6	59.2944	61.3727	59.2944	61.3727
9	321.4545	47.6745	321.4545	47.6745
11	422.8790	30.0696	422.8790	30.0696
15	134.8723	3.3533	134.8723	3.3533
20	7.4194	1.1308	7.4194	1.1308
25	0.0521	0.7212	0.0521	0.7212

Tabela 1

Błąd średniokwadratowy

	Metoda Newtona		Metoda Lagrange'a	
n	równomiernie	zera Czebyszewa	równomiernie	zera Czebyszewa
3	0.7312	0.7643	0.7312	0.7643
4	0.5087	0.5436	0.5087	0.5436
6	0.6070	0.6281	0.6070	0.6281
9	2.2603	0.5074	2.2603	0.5074
11	2.5207	0.3259	2.5207	0.3259
15	0.6525	0.0287	0.6525	0.0287
20	0.0311	0.0099	0.0311	0.0099
25	0.0002	0.0064	0.0002	0.0064

Tabela 2

Wnioski

Wraz ze wzrostem stopnia wielomianu interpolującego wzrasta dokładność przybliżenia funkcji.

Początkowo ze wzrostem liczby węzłów *n* przybliżenie poprawia się, jednak po dalszym wzroście *n* (od około 9), zaczyna się pogarszać, co jest szczególnie widoczne na końcach przedziałów (**efekt Rungego**).

Aby uniknąć tego efektu, stosuje się interpolację z węzłami coraz gęściej upakowanymi na krańcach przedziału interpolacji. Np. węzłami interpolacji *n*-punktowej wielomianowej powinny być miejsca zerowe wielomianu Czebyszewa *n*-tego stopnia.

Interpolacja Lagrange'a, a Newtona daje niemalże identyczne wyniki co widać na tabeli 1 oraz 2. Różnią się one dopiero na dalekich miejscach po przecinku.

Poprawki:

- Poprawiono nieścisłości związane ze zmienną n
- Dodano tabelką
- Podpisano wykresy