Fundamentals of Statistical Inference

Measuring Uncertainty

Aaron R. Baggett, Ph.D.

August 21, 2017

Department of Psychology University of Mary Hardin-Baylor

Preview

Preview

- 1. August 21, 2017
 - Fundamentals of Statistical Inference: Measuring Uncertainty
- 2. August 28, 2017
 - Fundamentals of Statistical Decision Making: Comparing Multiple Groups
- 3. TBA
 - Fundamentals of Statistical Decision Making: Relationships and Prediction

Outline

Outline

- Descriptive vs. inferential statistics
- The normal distribution
- Comparing groups
- Statistical/practical significance

Resources

• Slides, data, and handouts available at:

Statistics

Statistics

- Experimentation and observation:
 - 1. Measurement of uncertainty
 - 2. Examination of the consequences of that uncertainty

Statistics

- Two fundamental branches
 - 1. Descriptive statistics
 - Summarize data
 - Condense larger themes
 - 2. Inferential statistics
 - Infer meaning
 - Test predictions

Example

- Baystate Medical Center, Springfield, MA.
- Sample of 189 births in 1986
- Risk factors in low birth weight babies

Age	Weight	Race	Smoking Status	Birth Weight	
19	182	Black	Non-Smoker	5.56	
33	155	Other	Non-Smoker	5.62	
20	105	White	Smoker	5.64	
21	108	White	Smoker	5.72	
18	107	White	Smoker	5.73	
21	124	Other	Non-Smoker	5.78	

- How many babies were born at low birth weight (< 5.5 lbs.)?
- How many mothers smoked during pregnancy?
- How much did the average baby weigh?
 - Given mothers' smoking status
 - Given mothers' race

Question:

Do babies born to mothers who smoked during pregnancy weigh less than those born to mothers who did not?

Question:

Do babies born to mothers who smoked during pregnancy weigh less than those born to mothers who did not?

How should we answer this question?

Question:

[ON AVERAGE], do babies born to mothers who smoked during pregnancy weigh less than those born to mothers who did not?

Smoking Status	n	Min.	Max.	М	SD
Non-Smoker	115	2.25	11.00	6.74	1.66
Smoker	74	1.56	9.34	6.11	1.46

Question:

1. Based on our sample, what are we left to assume about the weights of babies *in the population* born to smoking and non-smoking mothers?

Question:

- 1. Based on our sample, what are we left to assume about the weights of babies *in the population* born to smoking and non-smoking mothers?
 - That the sample estimates represent the population parameters

Smoking Status	n	Min.	Max.	М	SD
Non-Smoker	115	2.25	11.00	6.74	1.66
Smoker	74	1.56	9.34	6.11	1.46

 In fact, we assume that the population distribution of baby weights is "normal"

- More useful than descriptives
- Allow for making predictions or generalizations
- Key to hypothesis testing

Question:

Do babies born to mothers who smoked during pregnancy weigh less than those born to mothers who did not?

Question:

Do babies born to mothers who smoked during pregnancy weigh [STATISTICALLY SIGNIFICANTLY] less than those born to mothers who did not?

How should we answer this question?

What do we mean by statistical significance?

- What do we mean by statistical significance?
- Observed differences which exceed "normality."

- ullet We usually consider differences beyond \pm 2 SDs from M to be "statistically significant"
- NOTE: Statistical significance \neq practical significance

Question:

 Do babies born to mothers who smoked during pregnancy weigh less than those born to mothers who did not?

Hypotheses:

• H_0 : There is no mean difference in the birth weight of babies born to mothers who did and did not smoke during pregnancy

$$(M_{non\text{-smoker}} - M_{smoker} = 0)$$

• H_1 : There is some difference in the birth weight of babies born to mothers who did and did not smoke during pregnancy

$$(M_{non\text{-smoker}} - M_{smoker} \neq 0)$$

- Let's test our hypothesis using an independent-samples t-test
 - IV: Mothers' smoking status (smoker, non-smoker)
 - DV: Baby birth weight

$$t = \frac{\overline{X}_{non-smokers} - \overline{X}_{smokers}}{\sqrt{\frac{s_{non-smokers}^2}{N_{non-smokers}} + \frac{s_{smokers}^2}{N_{smokers}}}}$$

 Table 1: Results of Independent-Samples t-Test

	Non-Smokers			Smokers						
	n	М	SD		n	М	SD	t(187)	р	ω^2
Baby birth weight	115	6.74	1.66		47	6.11	1.46	2.63	0.009	0.008

Note: M = Mean; SD = Standard deviation

- Assuming the null hypothesis, in reality, is true, the probability of obtaining a mean difference in birth weight \geq 0.62 lbs. is 0.009 (0.90%)
- Birth weights appear to differ statistically significantly

• But, is the difference of M = 0.62 lbs. meaningful?

- But, is the difference of M = 0.62 lbs. meaningful?
- A meaningful difference implies practicality or usefulness in the real world

- But, is the difference of M = 0.62 lbs. meaningful?
- A meaningful difference implies practicality or usefulness in the real world
- Effect size (ω^2): Proportion of variance explained in the model

- But, is the difference of M = 0.62 lbs. meaningful?
- A meaningful difference implies practicality or usefulness in the real world
- Effect size (ω^2): Proportion of variance explained in the model
- Smoking status explains 0.009 (0.90%) of the variance in baby birth weight

- But, is the difference of M = 0.62 lbs. meaningful?
- A meaningful difference implies practicality or usefulness in the real world
- Effect size (ω^2): Proportion of variance explained in the model
- Smoking status explains 0.009 (0.90%) of the variance in baby birth weight
- Thus, 100% 0.991% = 99.10% of the variance in baby birth weight is left unexplained

Recap

Recap

- Descriptive statistics allow us to summarize data from a sample
- Inferential statistics allow us to predict and generalize about a population
- Hypothesis testing allows us to construct a sense of meaning about the world

Next Time

- Making decisions using hypothesis testing and prediction
 - Statistical variables
 - Multiple group comparisons (ANOVA)
 - Predicting outcomes (Regression)