PATENT ABSTRACTS OF JAPAN

(11) Publication number: 06073084 A

(43) Date of publication of application: 15.03.94

(51) int. Cl

C07H 15/256 A61K 31/70

(21) Application number: 04228756

(22) Date of filing: 27.08.92

(71) Applicant:

SHIRATORI SEIYAKU KK

(72) Inventor:

SAITO SADAO NAGAMURA YOICHI

(54) GLYCOSIDE AND ANTIHEPATITIC AGENT COMPRISING THE SAME

(57) Abstract:

PURPOSE: To obtain the subject new compound, composed of a glycoside having a specific molecular structure, capable of manifesting remarkable suppressing effects on hepatopathy, remarkably suppressing activities of aspartate transaminase (AST) and alanine transaminase (ALT) in a hepatopathic model induced by carbon tetrachloride with hardly any side effects and useful as an antihepatitic agent, etc.

CONSTITUTION: The objective glycoside is expressed by IR1 formula Η, lower (protected)monosaccharide residue (protected)polysaccharide residue; R2 is H, methyl or hydroxymethyl; R3 and R8 are OH, CH2OR3, (R3 is H or lower alkanoyl) or COOR81 (R81 is H or lower alkyl); either of R⁴ and R⁵, either of R⁶ and R⁷ or either of R9 and R10 is H and the other is OH or lower alkanovloxy; either of R¹¹ and R¹² or either of R13 and R14 is H and the other is OH, lower alkanoyloxy, etc.] is obtained by reacting a compound of formula I with a saccharide derivative such as formula Il (Ac is acetyl) in methylene chloride in the presence of anhydrous calcium sulfate and a carbonate radical.

This glycoside is capable of manifesting remarkable suppressing effects on hepatopathy and useful as an antihepatitic agent.

COPYRIGHT: (C)1994,JPO&Japio

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

FΙ

(11)特許出願公開番号

特開平6-73084

(43)公開日 平成6年(1994)3月15日

(51)Int.Cl.⁵

識別記号

庁内整理番号

技術表示箇所

C 0 7 H 15/256

A 6 1 K 31/70

ACS Z

8314-4C

審査請求 未請求 請求項の数 2(全 23 頁)

(21)出願番号

特願平4-228756

(22)出顧日

平成 4年(1992) 8月27日

(71)出願人 000234605

白鳥製薬株式会社

千葉県習志野市津田沼 6丁目11番24号

(72)発明者 斎藤 節生

埼玉県川越市かわつる三芳野 1 -21-103

(72)発明者 長村 洋一

愛知県豊明市新田町吉池18-4 豊明マン

ション501号

(74)代理人 弁理士 有費 三幸 (外2名)

(54) 【発明の名称 】 グリコシド及びこれを含有する抗肝炎剤

(57)【要約】

【構成】 一般式(A)

【化1】

で表わされるグリコシド、及びこれを有効成分として含 有する抗肝炎剤。

【効果】 化合物(A)は顕著な肝障害抑制効果を示し、抗肝炎剤として有用である。

【特許請求の範囲】 【請求項1】 一般式(A) *【化1】

$$R^4$$
 R^8
 R^8
 R^5
 R^7
 R^9
 R^{10}
 R^{12}
 R^{14}
 R^{12}

〔式中、R¹ は水素原子、低級アルキル基又はヒドロキ 残基、二糖残基若しくは三糖残基を示し、R'は水素原 子、メチル基又はヒドロキシメチル基を示し、R'及び R' はヒドロキシ基、-CH,OR' 又は-COO R*′ (ここでR³′ は水素原子又は低級アルカノイル基 を示し、R*' は水素原子又は低級アルキル基を示す) を示し、R'及びR'のいずれか一方、R'及びR'の いずれか一方又はR、及びR10のいずれか一方は水素原 子を、他方はヒドロキシ基又は低級アルカノイルオキシ 基を示し、R''及びR''のいずれか一方又はR''及びR 11のいずれか一方は水素原子を、他方はヒドロキシ基、 低級アルカノイルオキシ基又はヒドロキシ基が低級アル カノイル基で保護されていてもよい単糖残基を示す(た だし、当該他方のうちの一つはヒドロキシ基又は低級ア ルカノイルオキシ基を示す)〕で表わされるグリコシ

【請求項2】 請求項1記載のグリコシドを有効成分と して含有する抗肝炎剤。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、新規なグリコシド及び 40 これを有効成分として含有する抗肝炎剤に関する。

[0002]

【従来の技術及び発明が解決しようとする課題】天然由

来のサポニンは、種々の薬理学的又は生理学的活性を有 シ基が低級アルカノイル基で保護されていてもよい単糖 20 することが知られており、これらの活性の発現にはサポ ニンのアグリコンの構造のみならず、その分子中の糖の 種類、数、コンホメーション、結合様式などにも依存す ると予想されている。

> 【0003】これらのうち、生薬の甘草から単離された グリチルリチンは、抗アレルギー作用、抗炎症作用を有 するため、現在臨床において、肝臓疾患用剤として使用 されている。しかしながら、このグリチルリチンは、人 に大量に投与すると浮腫や高血圧を引き起こすことが報 告されている(A. Kumagai, Y. Tamur a, C. Y. Ing, 現代東洋医学, 12, 38 (19 81)).

> 【0004】従って、このような副作用を軽減した肝臓 疾患用剤が望まれていた。

[0005]

【課題を解決するための手段】かかる実情において、本 発明者らは鋭意研究を行なった結果、後記一般式(A) で表わされるグリコシドが、優れた抗肝炎作用を有し、 しかも副作用の少ないことを見出し、本発明を完成し

【0006】すなわち、本発明は、次の一般式(A) [0007] 【化2】

$$\begin{array}{c}
R^4 \\
R^5 \\
R^7 \\
R^{10} \\
R^{12} \\
R^{14}
\end{array}$$
(A)

【0008】〔式中、R1 は水素原子、低級アルキル基 又はヒドロキシ基が低級アルカノイル基で保護されてい てもよい単糖残基、二糖残基若しくは三糖残基を示し、 R² は水素原子、メチル基又はヒドロキシメチル基を示 20 し、R'及びR'はヒドロキシ基、-CH,OR''又は -COOR*′(CCでR*′は水素原子又は低級アルカ ノイル基を示し、R*' は水素原子又は低級アルキル基 を示す)を示し、R'及びR'のいずれか一方、R'及 びR'のいずれか一方又はR'及びR'oのいずれか一方 は水素原子を、他方はヒドロキシ基又は低級アルカノイ ルオキシ基を示し、R¹¹及びR¹¹のいずれか一方又はR 11及びR11のいずれか一方は水素原子を、他方はヒドロ キシ基、低級アルカノイルオキシ基又はヒドロキシ基が 低級アルカノイル基で保護されていてもよい単糖残基を 示す(ただし、当該他方のうちの一つはヒドロキシ基又 は低級アルカノイルオキシ基を示す) 〕で表わされるグ リコシド及びこれを有効成分として含有する抗肝炎剤を 提供するものである。

【0009】本発明のグリコシド(A)において、低級

アルキル基としては炭素数1~5の直鎖又は分岐鎖のアルキル基、例えばメチル基、エチル基、プロビル基、イソプロビル基等が挙げられる。低級アルカノイル基としては炭素数2~5の直鎖又は分岐鎖のアルカノイル基等が挙げられる。また、低級アルカノイルオキシ基としては、炭素数2~5の直鎖又は分岐鎖のアルカノイルオキシ基、例えばアセトキシ基、プロビオニルオキシ基、ブチリルオキシ基等が挙げられる。単糖残基としてはグルコピラノシル基、がラクトピラノシル基、グルクロノビラノシル基等が挙げられる。二糖残基、三糖残基としては、これら単糖類が2又は3個結合した基を挙げることができる。

0 【0010】本発明のグリコシド(A)のうち、R¹が 糖のもの(C)は、例えば以下の方法に従って製造する ことができる。

[0011]

【化3】

(方法1)

【0012】(式中、R1'はヒドロキシ基が低級アル カノイル基で保護されていてもよい単糖残基、二糖残基 又は三糖残基を示し、R'~R'は前記と同じ意味を有

【0013】すなわち、化合物(B)を、通常の方法に より糖誘導体(1)~(3)を用いてグリコシル化反応 を行うことにより、本発明のグリコシド (C)を製造す ることができる。また、グリコシド (C) のうち、 R^{1} ′が単糖のものは、 R^{1} ′が二糖のものを、 β – グル

コシダーゼを用いて加水分解することにより、製造する てともできる。 ここで用いられる β - グルコシダーゼと しては、例えば、エムルシン等が挙げられる。 【0014】また、本発明のグリコシド(A)のうち、 R¹が水素原子又は低級アルキル基のものは、例えば以 下の方法により製造することができる。

[0015]

【化4】

HO COUNE +
$$A_{CO}$$
 C_{C} A_{CO} A_{CO}

(5)

[0016]

(方法2)

【化5】 40

(19) + Ac0
$$\frac{\text{COOMe}}{\text{Ac0}}$$
 $\frac{\text{Ac0}}{\text{Ac0}}$ $\frac{\text{Ac0}}{$

【0017】すなわち、オレアノール酸メチル(19)と糖β-クロライド(20)を反応させて化合物(21)を得、これを脱トリクロロアセチル化して化合物(23)となし、次いでこれと糖プロマイド(24)を反応させることにより、化合物(25)を得ることができる。また、さらに脱保護基反応を行うことにより、化合物(26)を得ることができる。

【0018】上記の如くして得られる本発明化合物

(A)を抗肝炎剤として使用する場合、その投与量は患者の体重、年令、性別、投与方法、体調、病状などにより異なるが、経口投与の場合は体重1kg当り一日に0.4mg~200mg、非経口投与の場合は体重1kg当り一日に0.08mg~40mg程度が適当である。

【0019】本発明の抗肝炎剤は、通常の方法で錠剤、 顆粒剤、散剤、カプセル剤、懸濁剤、注射剤、坐剤など 00種々の剤形とすることができる。経口用固型製剤を製 造するには、化合物(A)に賦形剤、更に必要に応じて 結合剤、崩壊剤、滑沢剤、着色剤、矯味矯臭剤、増量 剤、被覆剤、糖衣剤などを加えた後、常法により錠剤、 顆粒剤、散剤、カプセル剤、坐剤等とすることが好ましい。注射剤を調製する場合は、化合物(A)を注射用蒸 留水等の水性担体の溶解、分散、乳化等することが好ま しい。

[0020]

【発明の効果】本発明の化合物(A)は、以下に示す試 50 験例から明らかな如く、四塩化炭素で誘発される実験肝 障害モデルにおいて、AST、ALT活性を著しく抑制 し、顕著な肝障害抑制効果を示す。従って、本発明化合 物(A)を有効成分として含有する本発明の抗肝炎剤 は、優れた抗肝炎作用を有し、しかも副作用の少ないも のである。

[0021]

*【実施例】次に、実施例を挙げて本発明を更に説明する が、本発明はこれら実施例に限定されるものではない。 実施例1

[0022] 【化6】

【0023】(1) エステルグリコシデーション 化合物(4)1.0gを乾燥塩化メチレン20mlに溶解 し、無水硫酸カルシウム (W. A. Hammond D rierite Co. 製) 6.0g及び炭酸銀850 mgを加えて1時間撹拌した後、化合物(2)4.0gト リフルオロメタンスルホン酸銀 (AgOTf) 384mq 及び1, 1, 3, 3-テトラメチル尿素 (TMU) 21 5 μ 1 を加えて再び36時間撹拌した。反応液を濾過し 50 コシド(5') 7 3 mg(収率4.5%)を得た。

た後、濾液を飽和重曹水溶液、水の順に洗浄し、硫酸マ グネシウム上で乾燥後、減圧濃縮し、シリカゲルカラム クロマトグラフィー (ベンゼン-アセトン、7.5%勾 配) に付し、油状物の残渣4.88gを得、さらに高速 液体クロマトグラフィー [ODS 10mm o×250mm (20%水-メタノール)] により、油状物のβ-グリ コシド(5)830mq(収率51.3%)及びα-グリ

化合物(5):

FAB-MS m/z:1643[M+Na]*.

¹H-NMR(CDCl,):表1

13C-NMR(C, D, N):表2

Anal. Calcd for C, H, 12 O, 5: C, 58.51; H, 6.96

Found C, 58.51; H, 7.01

化合物(5)のα-異性体(5'):

FAB-MS m/z:1643[M+Na]*.

¹H-NMR(CDCl,):表1

13C-NMR(C, D, N):表2

Anal.Calcd for C, H, 1, O, ; :C, 58.51; H, 6.96

Found C,58.19;H,7.11

【0024】(2)脱アセチル化

*化合物(5)450mgを5.0%水酸化カリウムメタノール溶液2mlに溶解し、室温で1時間放置した後、酢酸で中和(pH6~7)した。次いで、イオン交換樹脂(アンパーライトMB-3)に付し、溶出液にピリジンを加えて減圧濃縮し、得られた残渣をカラムクロマトグラフィー(クロロホルム:メタノール:水=65:35:10)で精製し、化合物(6)240mg(収率80.4%)を得た。

14

FAB-MS m/z:1097[M+Na] *.

10 ¹³C-NMR(C, D, N): 表3及び表4

参考例

[0025]

【化7】

*

【0026】(1)化合物(8)の合成

D-グルコース20gを乾燥ビリジン300mlに溶解し、トリフェニルメチルクロライド34gを加え、撹拌して溶解した後、1 晩放置した。反応液に無水酢酸300mlを加えて再び一昼夜撹拌した。反応液を氷水中に注ぎ込み、塩化メチレンで抽出し、飽和重曹水溶液、水の順に洗い、硫酸マグネシウム上で乾燥後減圧濃縮した。得られた残渣を70%酢酸水溶液200mlに溶かして2時間還流し、濾過した後、濾液を塩化メチレンで抽出し、飽和重曹水溶液、水の順に洗浄し、硫酸マグネシウム上で乾燥した後、減圧濃縮して残渣を得た。これを、ジエチルエーテル/石油エーテルで再結晶して化合物(7)32.07g(mp.40°C、収率82.9%)を得た。化合物(7)5.4gを乾燥塩化メチレン20mlに溶かし、無水硫酸カルシウム6.0g及び炭酸銀

4.3gを加えて1時間撹拌した後、化合物(2)13.0gを加えて再び一晩撹拌した。反応液を濾過し、 滤液を飽和重曹水溶液、水の順に洗浄し、硫酸マグネシウム上で乾燥後減圧濃縮し、カラムクロマトグラフィー (CH₂Cl₂-MeOH、1.0%勾配)に付し、化合物(8)7.3g(収率48.7%)を得た。 化合物(8):FAB-MS m/z:989「M+NaI*.

(2) 化合物(3) の合成

水冷下、化合物(8)5.6gを30%臭化水素酢酸溶液150mlに溶解し、30分撹拌し、反応液を氷水中に注ぎ込み、塩化メチレンにより抽出し、飽和重曹水溶液、水の順で洗浄した。これを硫酸マグネシウム上で乾燥した後、減圧濃縮して得た残渣をカラムクロマトグラフィー(ベンゼンーアセトン、13%勾配)に付し、化50合物(3)3.4g(収率59.6%)を得た。

* [0028]

FAB-MS m/z:1009[M+Na]'. 【0027】実施例2 15

* 【化8】 (3)

【0029】(1) エステルグリコシデーション 化合物(4)1.0gを乾燥塩化メチレン10mlに溶解 し、無水硫酸カルシウム7.0g及び炭酸銀1.37g を加えて1時間撹拌した後、化合物(3)800mgを加 えて再び28時間撹拌した。反応液を濾過した後、濾液 を飽和重曹水溶液、水の順に洗浄し、硫酸マグネシウム50

上で乾燥した後減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(ベンゼン-アセトン、24.5%勾配)に付し、化合物(9)280mg(収率14.7%)を得た。

¹H-NMR(CDC1,):表1

【0030】(2)脱アセチル化

(10)

* を得た。

化合物(9)280 mgを5.0%水酸化カリウムメタノール溶液2 mlに溶解し、室温で1時間放置し、次いで酢酸により、中和($pH6\sim7$)した後、イオン交換樹脂アンバーライトMB-3に付し、溶出液にビリジンを加えて減圧濃縮し、得られた残渣をカラムクロマトグラフィー(クロロホルム:メタノール:水=65:35:10)に付し、化合物(10)75 mg(収率41.3%)*

FAB-MS m/z:1259[M+Na] *.

13 C-NMR(C, D, N):表3及び表4
【0031】実施例3
【0032】
【化9】

[0033] 化合物(11) 〔式(D)中、R¹¹=-β-D-G1c(1→6)-β-D-G1c、R¹¹=H、R¹¹=-CH,〕200mgを0.1M酢酸級衝液(pH4.7)4mlに、溶解し、Triton X-1000.5ml及びエムルシン(アーモンドより調製)50mgを加え、37℃で14時間インキュベートした。反応液にエタノール4mlを加え、80℃で5分間加温した後、濾過し、濾液を滅圧濃縮した。残渣をカラムクロマトグラフィー(クロロホルム:メタノール:水=65:35:20~10)に付し、化合物(12)〔式(D)中、R¹¹=-β-D-G1c、R¹¹=H、R¹¹=-CH,〕150mg(収率88.6%)を得た。

FAB-MS m/z:919[M+Na]+.

13 C-NMR(C, D, N):表3、表5 【0034】実施例4

化合物(13) [式(D)中、R¹⁵ = -β-D-G1c(1→6)-β-D-G1c、R¹⁶ = -β-D-G1c、R¹⁷ = -CH₃] 200 mgを0.1 M酢酸緩衝液(p H4.7)4 mlに溶解し、Triton X-1000.5 ml及びエムルシン(アーモンドより調製)50 mg 40を加え、37℃で14時間インキュベートした。反応液にエタノール4 mlを加え、80℃で5分間加温した後、濾過し、濾液を減圧濃縮した。残渣をカラムクロマトグラフィー(クロロホルム:メタノール:水=65:35:20~10)に付し、化合物(14)[式(D)中、R¹⁵ = -β-D-G1c、R¹⁶ = -β-D-G1c、R¹⁷ = -CH₃]130 mg(収率75.0%)を得た。

FAB-MS m/z:1081[M+Na]'. ¹³C-NMR(C, D, N):表3、表5 【0035】実施例5

(1) 化合物(15)と化合物(16)のグリコシデーション

オレアノール酸メチル(15)1.0gを乾燥塩化メチレン5mlに溶解し、無水硫酸カルシウム2.0g及び炭酸銀1.5gを加え、容器の回りを遮光して、1時間撹拌した後、糖β-クロライド(16)7.5g、トリフルオロメタンスルホン酸銀(Ag-OTf)855mg及び1,1,3,3-テトラメチル尿素(TMU)40501,1。3、3ーテトラメチル尿素(TMU)40501,2、空温で更に20時間撹拌した。反応液を濾過した後、飽和重曹水溶液、水の順に洗浄し、硫酸マグネシウムで乾燥した。濾過後、濃縮してオイル状の残渣を得た。カラムクロマトグラフィー(ベンゼンー酢酸エチル、1.5%勾配)に付し、化合物(17)の粗物及び(18)の粗物を得た。

【0036】(2)化合物(17)の粗物の脱トリクロロアセチル化

化合物(17)の粗物を飽和アンモニアエーテル溶液20mlに溶かし、氷冷下、5分間撹拌して減圧により溶媒を留去、各残渣をカラムクロマトグラフィー(ベンゼンー酢酸エチル、6.0%勾配)に付し、化合物(19)を得た。メタノールより結晶化して(19)700mg 〔収率43.4%(化合物(15)からの収率)〕を得た。

mp.>300°C

FAB-MS m/z:781[M+Na]*.

¹H_NMR(CDC1,):表6

Anal.Calcd for C, H, O, 1: C, 68.05; H, 8.76

Found C,67.84;H,8.83

50 【0037】(3)化合物(19)と化合物(20)の

グリコシデーション

化合物(19)280 mgを乾燥塩化メチレンに溶解し、 遮光して、無水硫酸カルシウム300 mg、シアン化水銀 (II)314 mg及び臭化水銀452 mgを加え、1時間撹拌した後、糖ブロム体(20)550 mgを加えて再び3日間撹拌した。反応液を濾過し、濾液を飽和重曹水溶 液、水の順に洗浄し、硫酸マグネシウム上で乾燥した後、カラムクロマトグラフィー(ベンゼンー酢酸エチル、7.0%勾配)及び高速液体クロマトグラフィー [ODS 10 mm Φ×250 mm (20%水ーアセトン)]に付し、化合物(21)210 mg(収率52.9%)を得た。FAB-MS m/z:1097[M+Na]*。

¹H_NMR(CDC7₃):表8

Anal.Calcd for $C_{16}H_{12}O_{20}:C,62.55;H,7.69$ Found C,62.35;H,7.75

【0038】(4)化合物(21)の脱保護基反応

*化合物(21)980mgを170℃でァーコリジン2ml に溶解した後、120℃に冷却し、ヨウ化リチウム500mgをあらかじめァーコリジン2mlに加熱して溶かした溶液を加え、再びアルゴン気流下、170℃に加熱して2時間撹拌し、冷却後、酢酸で中和(pH6~7)した。次いで、減圧濃縮して得られた残渣をカラムクロマトグラフィー(クロロホルム:メタノール:水=65:35:20~15)に付し、本発明のグリコシド(22)340mg(収率46.9%)を得た。

20

10 [α]₀²⁰-32.4° (c=1.85、ピリジン)

FAB-MS m/z:817[M+Na]*.

13 C-NMR(C, D, N):表10

【0039】実施例6

(1) 化合物 (18) の粗物の脱トリクロロアセチル化 【0040】

【化10】

【0041】化合物(18)の粗物を飽和アンモニアエーテル溶液20mlに溶かし、氷冷下、5分間撹拌した後、減圧により溶媒を留去した。各残渣をカラムクロマトグラフィー(ベンゼン-酢酸エチル、6.0%勾配)に付し、メタノールより結晶化して化合物(23)〔式(E)中、 R^{19} = R^{21} =H、 R^{29} =CH $_2$ OAc)630mg〔収率39.1%(化合物(15)からの収率)〕を得た。

mp.>300°C

※ FAB-MS m/z:781[M+Na]⁺.

¹H-NMR(CDC1,):表6

Anal.Calcd for C, H, 6, O, 1: C, 68.05; H, 8.76

Found C,67.69;H,8.91

【0042】(2)化合物(23)と化合物(20)の グリコシデーション

30 [0043]

【化11】

【0044】化合物(23)472mgを乾燥塩化メチレンに溶解し、遮光して、無水硫酸カルシウム300mg、シアン化水銀(II)360mg及び臭化水銀(II)490mgを加え、1時間撹拌した後、糖プロム体(20)760mgを加えて再び1日間撹拌した。反応液を濾過した後、濾液を飽和重曹水溶液、水の順に洗浄し、硫酸マグネシウム上で乾燥した後、カラムクロマトグラフィー(ベンゼン-酢酸エチル、10.0%勾配)及び高速液体クロマトグラフィー〔ODS 10mmφ×250mm

(20%水-アセトン)〕に付し、本発明のグリコシド (24) 〔式(F)中、R²²=Ac、R²³=OAc、R ²⁴=H、R²⁵=CH₂OAc、R²⁵=CH₃〕350mg (収率52.3%)を得た。

FAB-MS $m/z:1097[M+Na]^{+}$.

¹H-NMR(CDC7,):表8

Anal. Calcd for C, 6H, 2O, 0: C, 62.55; H, 7.69

Found C,62.41;H,7.87

○ 【0045】(3)化合物(24)の脱保護基反応

21 化合物 (24) 115 moを170℃でγ-コリジン2 ml

に溶解し、120℃に冷却して、ヨウ化リチウム500

mgをあらかじめァーコリジン2mlに加熱して溶かした溶

液を加え、再びアルゴン気流下、170℃で2時間撹拌

し冷却後、酢酸で中和(pH6~7)した。次いで、減圧

濃縮して得た残渣をカラムクロマトグラフィー (クロロ

ホルム:メタノール:水=65:35:20~15) に

付し、本発明のグリコシド(25) (式(F)中、R**

*3mg(収率74.1%)を得た。

FAB-MS m/z:817[M+Na]*.

13C-NMR(C, D, N):表10

【0046】実施例7

(1) 化合物(15) と化合物(26) のグリコシデー ション

[0047]

【化12】

$$=R^{24}=R^{25}=H, R^{23}=OH, R^{23}=CH_2OH) 6 *$$
 $R^{28}=R^{25}=H, R^{23}=OH, R^{23}=CH_2OH) 6 *$
 $R^{28}=R^{29}=R^{2$

【0048】オレアノール酸メチル(15)2.0gを 乾燥塩化メチレン3mlに溶解し、無水硫酸カルシウム 1.5g及び炭酸銀1.1gを加え、容器の回りを遮光 して、1時間撹拌した後、糖β-クロライド(26)1 8.0g、トリフルオロメタンスルホン酸銀(Ag-O Tf) 6. 6g及び1, 1, 3, 3-テトラメチル尿素 (TMU) 3. 7mlを加え、室温で3日間撹拌した。反 応液を濾過した後、飽和重曹水溶液、水の順に洗浄し、 硫酸マグネシウム上で乾燥した。濾過後、濃縮してオイ ル状の残渣を得た。残渣はカラムクロマトグラフィー (ベンゼン-アセトン、0.6%勾配)に付し、化合物 (27)の粗物(式(G)中、R²⁷=OAc、R²⁸= H、R²⁹=COOCH₃、R³⁰=COCC1₃)及び(2 8) の粗物 (式(E) 中、R¹⁸ = OAc、R¹⁹ = H、R 40 ²⁰=COOCH,、R²¹=COCC1,)を得た。 【0049】(2)化合物(27)の粗物の脱トリクロ

ロアセチル化

化合物(27)を飽和アンモニアエーテル溶液10mlに 溶解し、氷冷下、5分間撹拌し、減圧下溶媒を留去し た。得られた残渣をカラムクロマトグラフィー(ベンゼ ン-酢酸エチル、6.0%勾配)に付し、オイル状の化 合物(29) [式(G)中、R''=OAc、R''=H、 R² = COOCH₃、R³ = H) 1. 42g (収率4 4. 9% (化合物 (15) からの収率)〕を得た。 FAB-MS m/z:767[M+Na]'. ¹H_NMR(CDC1,):表7 Anal. Calcd for C12 H64 O11: C, 67.72; H, 8.66 Found C,67.41;H,8.83 【0050】(3)化合物(29)と化合物(20)の

グリコシデーション

[0051]

【化13】

【0052】化合物(29)350mgの乾燥塩化メチレ ン2ml溶液に、無水硫酸カルシウム200mg、シアン化 水銀 (II) 238 mg及び臭化水銀 (II) 336 mgを加 え、1時間撹拌した後、糖ブロム体(20)700mgを 加え、4日間撹拌した。反応液を濾過した後、濾液を飽 和重曹水溶液、水の順に洗浄し、硫酸マグネシウム上で 乾燥した後、減圧濃縮して得た残渣をカラムクロマトグ ラフィー(ベンゼン-酢酸エチル、6.0%勾配)に付 20 し、本発明のグリコシド(30) (式(H)中、R31= Ac, $R^{32} = OAc$, $R^{33} = H$, $R^{34} = COOCH_3$, R³⁵=CH₃) 270mg(収率54.2%) を得た。 FAB-MS m/z:1083[M+Na]*.

1H-NMR(CDC1,):表9

Anal. Calcd for C, 5 He 0 02 0: C, 62.25; H, 7.60 Found C,62.13;H,7.78

【0053】(4)化合物(30)の脱保護基反応 化合物(30)150 mgを5.0%水酸化カリウム溶液 2ml (エタノール:水=1:1) に溶かし、5時間還流 30 した。反応後、酢酸で中和し、減圧濃縮し、残渣を17 0℃でァーコリジン2mlに溶解し、120℃に冷却した 後、ヨウ化リチウム500 mgをあらかじめャーコリジン 2mlに加熱しておいた溶液を加え、再びアルゴン気流 下、170℃で2時間撹拌し冷却後、酢酸で中和 (pH6 ~7)した。次いで、減圧濃縮し、得られた残渣をカラ ムクロマトグラフィー (クロロホルム:メタノール:水 =65:35:20~10) に付し、本発明のグリコシ ド(31) (式(H) 中、R''=R''=R''=H、R'' =OH、R³⁴=COOH) 100mg (収率85.5%) を得た。

[α] $_{0}^{20}+41.0$ (c=1.34,ピリジン)

FAB-MS m/z:853[M-1+2Na]*.

13C-NMR(C, D, N):表10

【0054】実施例8

(1) 化合物(28)の粗物の脱トリクロロアセチル化 実施例7(1)で得た化合物(28)の粗物を飽和アン モニアエーテル溶液10mlに溶解し氷冷下、5分間撹拌 して減圧下により溶媒を留去して得た残渣をカラムクロ マトグラフィー(ベンゼン-酢酸エチル、6.0%勾

配) に付し、オイル状の化合物(32) 〔式(E)中、 $R^{10} = OAc$, $R^{19} = R^{21} = H$, $R^{20} = COOCH_3$) 730mg (収率23.3% (化合物(19)からの収 率)〕を得た。

FAB-MS m/z:767[M+Na]+.

¹H-NMR(CDC1,):表7

Anal.Calcd for C, H, O, 1: C, 67.72; H, 8.66

Found C.67.29;H.8.72

【0055】(2)化合物(32)と化合物(20)の グリコシデーション

化合物(32)675 mgを乾燥塩化メチレン18 ml に溶 解し、無水硫酸カルシウム600mg、シアン化水銀(I I) 457 mg及び臭化水銀(II) 635 mgを加え、室温 で1時間撹拌した後、化合物(20)1.4gを加えて 更に5日間撹拌した。反応液を濾過した後、濾液を氷水 に注ぎ込み、塩化メチレンで抽出した。抽出液を飽和炭 酸水素カリウム水溶液、水の順で洗浄した後、硫酸マグ ネシウムで乾燥した。濾過後、濃縮して得た残渣をカラ ムクロマトグラフィー (ベンゼン-酢酸エチル、12% 勾配) に付し、次いで分取高速液体クロマトグラフィー (ODS-4251、メタノール、1m1/min、35 ℃)で精製して本発明のグリコシド(33)〔式(F) Φ , $R^{22} = Ac$, $R^{23} = OAc$, $R^{24} = H$, $R^{25} = CO$ OCH,、R²⁶=CH,) 740 mgを得た。(収率77. 0%).

FAB-MS m/z:1083[M+Na]*.

¹H_NMR(CDC1,):表9

Anal. Calcd for C, H, O, 1/2H, O:C, 61.72; H, 7.63. Found C,61.73;H,7.50

【0056】(3)化合物(33)の脱保護基反応 化合物 (33) 670 mgを、実施例7(4) と同様に処 理して脱アセチル体354mgを得た。このものをィーコ リジン7mlに溶解し、ヨウ化リチウム500mgを予めて -コリンジ2m1に加熱して溶かした溶液を加え、アルゴ ン気流下、160℃で12.5時間撹拌した。反応液を 酢酸で中和した後、減圧濃縮して残渣を得た。この残渣 をカラムクロマトグラフィー (クロロホルム:メタノー 50 ル:水=63:35:20~10) に付し、本発明のグ

25

リコシド (34) 〔式 (F) 中、R²²=R²⁴=R²⁶= H、R²³=OH、R²³=COOH〕193.6mg (収率 37.91%) を得た。

FAB-MS m/z:853[M-1+2Na]*.

CH₂DAc

Ć £ ₃COCÒ

(35)

(36) + (37)

【0058】実施例9

(1)化合物(15)と化合物(35)のグリコシデー ション

オレアノール酸メチル (15) 5.0gの乾燥塩化メチレン10ml溶液に、無水硫酸カルシウム5.0g及び炭酸銀2.8gを加え、容器の回りを遮光して、1時間撹拌した後、糖βークロライド (35) 27.0g、トリフルオロメタンスルホン酸銀 (Ag-OTf) 13.9g及び1,1,3,3-テトラメチル尿素 (TMU) 7.6mlを加え、室温で4日間撹拌した。反応液を濾過し、飽和重曹水溶液、水の順に洗浄し、硫酸マグネシウムで乾燥した。濾過後、濃縮してオイル状の残渣を得た。残渣はカラムクロマトグラフィー(ベンゼンーアセトン、4.0%勾配)に付し、化合物 (36)の粗物〔式(G)中、R²³=H、R²³=OAc、R²³=CH、OAc、R³°=COCC1。〕及び化合物 (37)の粗物〔式(E)中、R¹³=H、R¹³=OAc、R²°=CH、OAc、R²³=CH、POAc、R²³=CH、POAc、R²³=CH、POAc、R²³=CH、POAc、R²³=CH、POAc、R²³=CH、POAc、R²³=COCC1。〕を得た。

【0059】(2)化合物(36)の粗物の脱トリクロロアセチル化

化合物 (36) の粗物を飽和アンモニアエーテル溶液 1 0ml に溶解し、氷冷下、5分間撹拌し、減圧により溶媒を留去した。残渣をカラムクロマトグラフィー(ベンゼンー酢酸エチル、6.0%勾配)に付し、オイル状の化合物 (38) 〔式(G)中、R²⁷=H、R²⁸=OAc、R²⁸=CH₂OAc、R³⁸=H〕3.86g〔収率47.9%(化合物 (15) からの収率)〕を得た。

FAB-MS m/z:781[M+Na]*.

¹H-NMR(CDC1,):表6

Anal.Calcd for C_{1} , H_{6} , O_{1} : C, 68.05; H, 8.76

Found C,67.92;H,8.82

【0060】(3)化合物(38)と化合物(20)の グリコシデーション

化合物(38)1.0gを乾燥塩化メチレンに溶解し、 無水硫酸カルシウム1.0g、シアン化水銀(II)6. 3 g 及び臭化水銀 (II) 9. 1 g を加えて1時間撹拌した後、糖ブロム体 (20) 11. 6 g を加えて再び3日間撹拌した。反応液を濾過した後、濾液を飽和重曹水溶液、水の順に洗浄し、硫酸マグネシウム上で乾燥した後、減圧濃縮で得た残渣をカラムクロマトグラフィー (ベンゼン-酢酸エチル、10.0%勾配)及び高速液体クロマトグラフィー (ODS10mm Φ×250mm (メタノール)〕に付し、オイル状の本発明グリコシド (39)〔式 (H)中、R³¹=Ac、R³¹=H、R³¹=OAc、R³¹=CH,OAc、R³¹=CH,〕1.1g(収率77.6%)を得た。

FAB-MS m/z:1097[M+Na].

¹H-NMR(CDC1,):表8

Anal.Calcd for C, H, O, C, 62.55; H, 7.69

0 Found C,62.43;H,7.79

【0061】(4)化合物(39)の脱保護基反応化合物(39)1.1gを5.0%水酸化カリウム溶液5ml(エタノール:水=1:1)で5時間還流し、冷却後、酢酸で中和し、減圧濃縮して得た残渣を170℃でィーコリジン10mlに溶解し、120℃に冷却した後、ヨウ化リチウム500mgをあらかじめィーコリジン2mlに加熱して溶かした溶液を加え、再びアルゴン気流下、170℃で2時間撹拌し、冷却後、酢酸で中和(pH6~7)した。次いで、減圧濃縮して得られた残渣をカラムクロマトグラフィー(クロロホルム:メタノール:水=63:35:20~15)に付し、本発明グリコシド(40)〔式(H)中、R³¹=R³²=R³²=H、R³³=OH、R³¹=CH₂OH〕490mg(収率60.3%)

[α]₀²⁰+7.3 (c=2.06,ビリジン)

FAB-MS m/z:817[M+Na].

¹³C-NMR(C, D, N):表10

【0062】実施例10

(1) 化合物(41) の合成

50 実施例9(1)で得られた化合物(37)の粗物を氷冷

(15)

下、飽和アンモニアエーテル溶液10mlに溶解し、5分 間攪拌する。反応液を減圧濃縮し残渣をシリカゲルカラ ムクロマトグラフィー (ベンゼン-酢酸エチル、6.0 %勾配) に付し、オイル状の化合物(41) (式(E) Φ , $R^{18} = H$, $R^{19} = OAc$, $R^{20} = CH_2OAc$, R¹¹ = OH] 3. 86 g [収率47. 9% (化合物 (1 5)からの収率)〕を得た。

27

FAB-MS m/z:781[M+Na]*.

Anal. Calcd for C, 3 H, 6 O, 1: C, 68.05; H, 8.76

Found C,67.92;H,8.82

【0063】(2)化合物(41)と化合物(20)の グリコシデーション

化合物(41)1.2gを乾燥塩化メチレンに溶解し、 無水硫酸カルシウム1.0g、シアン化水銀(II)4. 9g及び、臭化水銀(II)7.3gを加え、1時間攪拌 した後、糖プロム体(20)8.8gを加えて再び2日 間攪拌した。反応液を濾過した後、濾液を飽和重曹水溶 液、水の順に洗浄、硫酸マクネシウム上で乾燥した後、 滅圧濃縮して得た残渣をカラムクロマトグラフィー (ベ ンゼン-酢酸エチル、12.0%勾配)及び、高速液体 20 [α]。20+75.0° (c=1.40,ピリジン) クロマトグラフィーHPLC [ODS 10mm 0×25 0mm(メタノール)) に付し、オイル状の本発明グリコ シド (42) (式 (F) 中、R²² = Ac、R²³ = H、R 24 = OAc, R25 = CH, OAc, R25 = CH,) 99

0mg(収率58.2%)を得た。 FAB-MS m/z:1097[M+Na]*. 1H_NMR(CDC1,):表9 Anal.Calcd for C, 6H, O, 0: C, 62.55; H, 7.69 Found C,62.33;H,7.88 【0064】(2)化合物(42)の脱保護基反応 化合物(42)990 mgを5.0%水酸化カリウム溶液 (エタノール:水=1:1)5mlで5時間還流した後、 酢酸で中和し、減圧濃縮した。残渣を170℃でィーコ 10 リジン8 mlに溶解し、120℃に冷却した後、ヨウ化リ チウム500mgをあらかじめ~-コリジンに加熱して溶 かした溶液2mlを加え、再びアルゴン気流下、170℃ に加熱して2時間攪拌し、冷却後、酢酸で中和 (pH6~ 7) した。次いで、減圧濃縮して得た残渣をカラムクロ マトグラフィー (クロロホルム:メタノール:水=6 5:35:20~15) に付し、本発明グリコシド(4 3) (式(F)中、R²²=R²³=R²⁶=H、R²⁴=O H、R''=CH,OH) 420mg (収率57.4%) を

得た。 FAB-MS m/z:817[M+Na]*. ¹H-NMR(C, D, N): 表10 [0065] 【表1】

29 ¹H-NMR (CDC **l** 8)

	CDC 2-87		
H-No	(5)	(5′)	(9)
CHa	0. 71. 0. 80. 0. 90. 0. 90. 0. 95. 1. 08	0. 74. 0. 80. 0. 91. 0. 92. 0. 94. 1. 13	0. 73. 0. 81. 0. 91.
⊪ -3	W 304 07 309 T 00	U. 92, U. 94, I. 13	0.91.0.96.1.09
H-12 H-23			
rr −23			
Ага-1 -2	4. 42 (d. J=6. 6Hz)	4, 20 (d, J=6, 2Hz)	4. 42 (d. J=6. 3Hz)
-3			
-4			
-5			
-5			
Rha-1	5. 21 (d. J=1. (Hz)	5, 22 (d, J=1, OH2)	5, 21 (d, J=1, OHz)
აეგან ეგან მეგან გან გან გან გან გან გან გან გან გან	5, 53(d, J=8, 1H2)	6. 26 (d, J=3, 7H2)	5, 52(d, J=8, 1Hz)
-6*			
61c'-1 6al-1	4. 46(d, J=8. 1Hz)	4. 48(d, J=7. 7Hz)	4, 47 (d, J=7, 9Hz) 4, 46 (d, J=7, 9Hz)

【0066】 【表2】

20

$^{18}\text{C-NMR}(\text{C}_{\text{S}}\text{D}_{\text{S}}\text{N})$

C-No	(5)	(5′)
C-3 C-12 C-13 C-14 C-24 C-28	82. 3 123. 4 143. 0 41. 0 65. 1 175. 4	82. 2 123. 4 143. 3 41. 6 65. 5 175. 9
C=0	170. 3 170. 3 170. 2 170. 2 170. 1 170. 1 170. 0 170. 0 170. 0 169. 6 169. 6 169. 2 169. 0	170. 9 170. 8 170. 8 170. 7 170. 7 170. 7 170. 6 170. 5 170. 4 170. 2 170. 1 169. 9 169. 5
CHa	21. 0 21. 0 20. 9 20. 9 20. 9 20. 9 20. 7 20. 7 20. 6 20. 6 20. 6 20. 5 20. 5	20.0-22.2 13本
Arn-1 -2 -3 -4 -5	103.5 74.1 72.0 69.6 62.8	104. 0 74. 6 71. 6 69. 5 63. 3
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	98. 0 71. 0 67. 9 70. 3 67. 1 17. 3	98. 5 71. 1 67. 5 70. 1 67. 0 17. 7
GIC구위무색누수	91. 4 68. 6 69. 1 70. 8 73. 3 61. 8	89. 1 69. 9 69. 0 71. 5 74. 6 62. 0
Gal-1 -2 -3 -4 -5 -6	100. 9 71. 1 72. 7 66. 7 75. 8 60. 9	101. 8 71. 4 72. 4 65. 5 76. 5 61. 2

18C-NMR (CsDsN)

C-No	(6)	(10)	(12)	(14)
12345678910112314151617189201223245678930	320525897795001150711701172952468	930522107959118827170292952519	918595991049122708280559651418	93.773500111591207083812727511468
	14488394364425347146334361637623	14422241463333616176517	88655833887322442827082805559651418	93.889.5834487.2224420.708381272727511468
	176823	1732	1766328	17.22.889.58122727511468

【0068】 30 【表4】

40

【0067】 【表3】

20

18C-NMR (C₅D₅N)

C-No	(6)	(10)	
ት 28 19 19 19 19 19 19 19 19 19 19 19 19 19	104. 2 75. 4 75. 5 69. 5 101. 6 72. 3 74. 1 89. 5 72. 5 81. 5 77. 2 62. 0 105. 8	285756231257468239548107 07748502774885787760426815605	
1 2 2 4 4 5 6	73. 7 75. 1 70. 0 77. 0 61. 7	73.9 74.6 70.0 76.5 62.0	

【表5】

18C-NOR (C5D5N)

C-No	(12)	(14)
3-0-sugar Ara-1 -2 -3 -4 -5 Rha-1 -2 -3 -4 -5 -6 -2 -3 -4 -5 -6 -5 -5 -6 28-0-sugar inner	104.6 76.0 74.1 68.4 101.7 72.3 72.6 74.0 69.9 18.5	105. 4 75. 6 74. 6 69. 8 65. 8 101. 6 71. 8 83. 4 73. 1 69. 4 18. 5 106. 9 76. 0 77. 5 79. 4 62. 5
Glc-1 -2 -3 -4 -5 -6	95. 7 73. 5 78. 9 71. 2 79. 2 62. 3	95. 8 74. 2 78. 6 71. 2 79. 0 62. 3

【0070】 【表6】

[0069]

35 $^{1}H-NMR$ (CDC ℓ $_{3}$)

	(19)	(23)	(38)
-CH _s	0. 71 0. 82 0. 89 0. 91 0. 92 0. 99. 1. 12	0. 73 0. 86 0. 89 0. 92 0. 92, 1. 02 1. 12	0.72 0.84 0.89 0.92 0.92 1.01 1.12
-CIAc -CIMe	2 02 2 06 2 07 3 63	2 03 2 06 2 07 3 62	2 03 2 03 2 11 3 61
H - 3	3. 17 (dd, J=11. 3, 4. 8Hz)	3. 26 (dd, J=11. 7, 4. OHz)	3, 18(dd, J=11, 0, 4, 0Hz)
11–18	2.86 (dd, J=13, 5, 4.0Hz)	2.86 (dd, J=13.9, 4.4Hz)	2, 86 (dd, J=13, 6, 4, 0Hz)
H-12 sugar	5. 28 (t. J=3. 3Hz)	5. 28 (t, J=3, 3Hz)	5, 29(t, J=3, 3Hz)
moiety	4 44 (1 4 5 5 5 1)	F 05 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	04
-1	4. 41 (d, J=7. 7Hz)	5.05(d, J=4, 4Hz)	4. 40 (d, J=7. 7Hz)
H-2	3. 61 (d. d. 9. 5. 7. 7Hz)	3.67 (dd, J≒9.9, 7.7Hz)	3. 83 (t, J=7. 7Hz)
H-3	4.99(t, J=9.5Hz)	4.99(t, J=9.9H2)	4.93 (dd, J=7.7. 3.3Hz)
H-4	5.12(t, J=9.5Hz)	5, 15(t, J=9, 9Hz)	5. 35 (d. J=3. 3Hz)
H-5	3.66 (m)	4. 12 (m)	3. 88 (t. J=7. OHz)
H-6	4. 26 (dd, J=12. 1. 5. 5Hz)	4. 23 (dd, J=12. 5, 5. 1Hz)	4. 18 (dd, J=7. 0, 11. OHz)
H-6°	4.07 (dd, J=12.1, 2.6Hz)	4. 07 (dd, J=12, 5, 2, 6Hz)	4.06 (dd. J=11.0. 7.0Hz)

[0071] 【表7】 ¹H-NMR(CDC *l* ₉)

[0072] 【表8】

	(29)	(32)
-CH _s	0.71 0.81 0.89 0.90 0.92 0.98 1.11	0.73 0.87 0.90 0.92 0.92 1.05 1.12
-0Ac -0Me H-3	2 08 2 02 3 61 3 74	2.05 2.13 3.62 3.74 3.27(dd.J=11.4
n−3 H-18	3. 18 (dd, J=11. 0, 4. 8Hz) 2. 85 (dd, J=13. 2,	4. 0Hz) 2. 86 (dd, J=13. 4.
H-12	4. OHz) 5. 27 (t, J=3. 6Hz)	4. (Hz) 5. 28(t. J=3. 3Hz)
sugar moiety	5,51(45 & 5.15)	L 10 (4 0 L 0.1)
H-1 H-2	4. 46 (d, J=7, 7Hz) 3. 64 (t, J=7, 7Hz)	5, 16 (d, J=3, 7Hz) 3, 72 (over lapped)
H-3	5. 18 (dd, J=9. 5, 7. 7Hz)	5, 10(t, J=9, 9Hz)
H-4 H-5 H-6	5. 14(d, J=9. 5Hz) 3. 99(d, J=9. 5Hz)	5, 23 (t, J=9, 9Hz) 4, 41 (d, J=9, 9Hz)
H-6*	•	
L	I	ı

30

40

37 ¹H-NWR (CDC *L* s)

II IUUI (CDC.			
H-No	(21)	(24)	(39)
Aglycone CH _e	0.71.0.81.0.89 0.90.0.92.1.01	0. 79. 0. 83. 0. 90 0. 93. 0. 95. 0. 98	0. 72. 0. 83. 0. 90 0. 91. 0. 92. 1. 04
H-18	1, 12 2, 85 (dd, 13, 9, 4, 0)	1. 12 2. 86 (dd, 13. 6. 4. 0)	1. 13 2. 86 (dd. 13. 2. 3. 7)
⊮ -3	3.09(dd, 11.0, 4.8)	3. 17 (dd, 11. 4. 4. 0)	3. 10 (dd, 4. 0. 10. 6)
H-12 OCH _s Inner sugar	5. 27 (t, 3. 3) 3. 62, 3. 70	5. 29 (t, 3. 3) 3. 63, 3. 74	5. 19(t, 3. 3) 3. 63, 3. 71
H-1 H-2	4. 44(d, 7. 3) 3. 79(dd, 9. 1.	5. 10 (d, 3. 7) 3. 76 (dd, 9. 5.	4. 43(d, 7. 7) 3. 94(dd, 9. 9.
H-3	7. 3) 5. 15 (dd, 9. 5, 9. 1)	3, 7) 5, 34 (6d, 9, 9, 9, 5)	7, 7) 4, 95 (dd, 9, 9,
H-4	4. 90 (dd, 9, 9, 9, 1)	4.94(t, 9.9)	4. 8) 5. 28 (dd, 4. 8, 2. 2)
B-5	3.66(m)	4.17(m)	3. 83 (dt. 2. 2. 7. 0)
₽-6	4. 24 (dd, 12, 5, 5, 5)	4. 25 (dd, 12. 1, 4. 8)	4. 16 (dd, 11, 0, 7, 0)
H-6*	4. 05 (dd, 12. 5, 2. 6)	4. 03 (dd, 12. 1, 1. 5)	4.04 (dd, 11.0, 7.0)
outer			
sugar H-1 H-2	4.74(d, 8.1) 4.92(t, 8.1)	4.66 (d, 7.7) 4.93 (dd, 9.5.	4.76(d, 8, 1) 4.91(dd, 9, 5,
H-3	5. 14 (dd, 9. 5. 8. 1)	7. 7) 5. 15-5. 24	8. 1) 5. 19(t, 9. 5)
H-4 H-5 -OCOCH ₂	5. 22(t, 9. 5) 3. 97 (d, 9. 5) 1. 99, 1. 99, 1. 99 2. 01, 2. 04, 2. 09	5. 15-5. 24 3. 99 (d. 9. 9) 1. 98. 2. 00. 2. 02 2. 02. 2. 05. 2. 06	5. 13(t, 9. 5) 4. 01 (d, 9. 5) 1. 98. 2. 00. 2. 00 2. 02. 2. 07. 2. 14

[0073]

39 1**H-NMR (CDC** *l* **8)**

TITIVIN (CDC)	L 87	_	
Н-Но	(42)	(30)	(33)
Aglycone	0. 73. 0. 82. 0. 90 0. 93. 0. 95. 0. 99 1. 12	0. 71. 0. 79, 0. 89 0. 92. 1. 00, 1. 12 1. 25	0. 73. 0. 84. 0. 90 0. 93. 0. 95. 1. 00 1. 12
H-18	2. 87 (dd. 13. 6. 4. 0)	2. 76 (dd. 13. 6. 4. 0)	2. 86 (dd, 13. 9. 4. 0)
H-3	3. 17 (dd. 11. 7. 4. 4)	3. 09 (dd, 10, 9, 4. 8)	3. 22 (dd, 11. 4. 4. 0)
H-12 OCH _s Inner sugar	5. 30 (t. 3. 3) 3. 63, 3. 75	5. 26(t. 2. 9) 3. 62, 3. 70, 3. 73	5. 29(t, 3, 0) 3. 63. 3. 74. 3. 74
H-1 H-2	5. 16 (d, 3. 7) 3. 96 (dd, 10. 6.	4. 50 (d. 7. 3) 3. 83 (dd. 9. 2.	5, 21 (d, 2, 2) 3, 77 (dd, 9, 9,
H-3	3. 7) 5. 23 (dd, 10, 6, 3. 0)	7. 3) 5. 10 (dd, 9. 2, 9. 2)	2.2) 5.41(dd, 9.9,
H-4	5. 41 (dd, 6. 6. 3. 0)	5. 20 (dd, 9. 9. 9. 2)	9, 9) 5, 07 (dd, 9, 9, 9, 9)
H-5	4.37(t, 6.6)	3. 99 (d. 9. 9)	4. 46 (4. 9. 9)
H-6	4.02-4.12	· <u> </u>	
H-6"	4. 02-4. 12	_	
outer sugar			
H−1 H−2	4.73 (d. 7.7) 4.92 (dd. 9.4 7.7)	4. 73 (d. 8. 1) 4. 91 (dd. 8. 1, 9. 2)	4.66 (d. 7.7) 4.93 (dd. 9.1.
H-3	5. 22 (dd. 9. 4. 9. 4)	5. 14 (dd, 9. 2. 9. 2)	7.7) 5.15-5.25
H-4 H-5 -OCOCH ₂	5. 21 (dd, 9. 4. 9. 4) 4. 05 (d, 9. 4) 1. 97. 2. 00. 2. 02 2. 02. 2. 02. 2. 15	5. 19 (dd, 9, 5, 9, 2) 3. 98 (d, 9, 5) 1. 99, 1. 99, 1. 99 2. 02, 2. 02	5. 15-5. 25 4. 00 (d, 9. 1) 1. 99. 2. 00. 2. 01 2. 02. 2. 05

[0074]

【表10】

C-No	(22)	(25)	(40)	(43)	(31)	(34)
C-1 각 기 시 5 수 7 ※ 수 10 11 21 3 시 15 16 17 18 19 20 21 22 22 22 22 22 22 22 22 22 22 22 22	7217943509758228705032293461138 8889583946224428244451432615726832	38.61.57.86.3.7.6.1.88.0.1.3.8.7.0.5.9.3.2.1.5.3.6.4.5.0.5.1.3.8.7.0.5.9.3.2.1.5.3.6.4.5.0.5.1.3.8.7.0.5.9.3.2.1.5.3.6.4.5.0.5.1.3.8.7.0.5.9.3.2.1.5.3.6.4.5.0.5.1.3.8.7.0.5.9.3.2.1.5.3.6.4.5.0.5.1.3.8.7.0.5.9.3.2.1.5.3.6.4.5.0.5.1.3.8.7.0.5.9.3.2.1.5.3.6.4.5.0.5.1.3.8.7.0.5.9.3.2.1.5.3.6.4.5.0.5.1.3.8.7.0.5.9.3.2.1.5.3.6.4.5.0.5.1.3.8.7.0.5.9.3.2.1.5.3.6.4.5.0.5.1.3.8.7.0.5.9.3.2.1.5.3.6.4.5.0.5.1.3.8.7.0.5.9.3.2.1.5.3.6.4.5.0.5.1.3.8.7.0.5.0.5.1.3.8.3.3.2.1.5.3.6.4.5.0.5.1.3.8.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3	38.7 9 7 9 4 3 5 0 7 7 7 5 7 9 2 7 6 1 4 9 2 1 6 8 4 3 1 1 3 3 7 1 2 2 3 4 4 2 4 4 3 3 4 5 1 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2	3.6.4.9.7.9.6.3.7.0.9.8.5.8.0.2.8.6.1.5.9.2.2.2.2.4.3.4.2.6.3.8.1.4.2.8.8.4.4.4.8.3.8.6.7.1.5.7.8.6.3.8.1.4.2.8.8.4.4.8.3.8.6.7.1.5.7.8.6.3.8.8.1.4.2.8.8.6.4.8.3.8.6.7.1.5.7.8.6.3.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8	38.777834581884803670782116622111488 39.7873224422246.22116622111488	3.5.2.1.6.5.6.3.6.6.0.7.7.3.0.3.6.6.8.5.8.1.1.2.2.3.3.2.8.3.7.3.2.8.3.4.4.2.3.4.4.2.3.3.2.8.3.7.1.5.7.3.2.8.3.3.2.8.3.3.3.3.3.3.3.3.3.3.3.3.3
sugar -1 -2 -3 -4 -5 -6 outer	104. 7 84. 4 78. 2 71. 5 78. 1 62. 7	96. 0 83. 5 74. 1 72. 8 78. 1 62. 3	105. 0 83. 1 78. 0 69. 6 77. 5 62. 0	97. 4 79. 4 70. 1 70. 6 72. 5 62. 2	102. 8 77. 9 76. 9 72. 9 75. 2 176. 1	97. 0 85. 0 73. 1 80. 0 72. 9 177. 4
sugar -1 -2 -3 -4 -5 -6	106. 4 76. 5 77. 6 73. 3 77. 9 172. 6	101. 6 74. 0 76. 2 73. 2 75. 3 177. 3	106.5 76.2 76.2 73.1 75.1 172.3	105. 7 77. 8 76. 9 73. 2 74. 8 173. 7	104 2 75. 2 77. 8 72. 9 77. 7 176. 0	104.7 74.6 76.8 72.9 76.4 176.1

【0075】試験例

実施例で得られた本発明のグリコシドについて、以下の ようにして、薬理活性を調べた。すなわち、セグレンら の方法(Methods in Cell Bio 1.,28,432,(1970)) によりラットの肝 臓から単離した肝細胞を2×10°個/m1に調整し、と れを50%四塩化炭素揮発充満させたコルベン内に入 れ、インキュベートして実験的肝炎を惹起させた後、各

及びコントロール (C) にはハンクス液 0. 1mlのみを 加え、37℃で1時間インキュベートした。ついで、反 応懸濁液を遠心分離 (10000 rpm×19分) に付 し、上清液のアスパラギン酸トランスフェラーゼ (AS T)、アラニントランスフェラーゼ(ALT)活性を測 定した。なお、本実験は肝炎にかかっている肝細胞から はAST、ALT等の酵素が多く遊離してくることを利 用したものであり、AST、ALT活性の小さいものが サポニンの1mgを0. 1mlのハンクス液に溶かした溶液 50 肝庇護効果が大きいことになる。各化合物及びコントロ

ールは各々10検体ずつを用いて行い、データはその平

均値で示した。結果を図1に示す。

【図面の簡単な説明】

*【図1】試験例において、本発明化合物のAST、AL T活性を測定した結果を示す図である。

【図1】

*

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 06073084 A

(43) Date of publication of application: 15.03.94

(51) Int. CI

C07H 15/256 A61K 31/70

(21) Application number: 04228756

(22) Date of filing: 27.08.92

(71) Applicant:

SHIRATORI SEIYAKU KK

(72) Inventor.

SAITO SADAO NAGAMURA YOICHI

(54) GLYCOSIDE AND ANTIHEPÄTITIC AGENT COMPRISING THE SAME

(57) Abstract:

PURPOSE: To obtain the subject new compound, composed of a glycoside having a specific molecular structure, capable of manifesting remarkable suppressing effects on hepatopathy, remarkably suppressing activities of aspartate transaminase (AST) and alanine transaminase (ALT) in a hepatopathic model induced by carbon tetrachloride with hardly any side effects and useful as an antihepatitic agent, etc.

CONSTITUTION: The objective glycoside is expressed by formula [R¹ lower (protected)monosaccharide residue (protected)polysaccharide residue; R2 is H, methyl or hydroxymethyl; R3 and R8 are OH, CH2OR3 (R3 is H or lower alkanoyi) or COOR81 (R84 is H or lower alkyi); either of R⁴ and R⁵, either of R⁶ and R⁷ or either of R9 and R10 is H and the other is OH or lower alkanoyloxy; either of R¹¹ and R¹² or either of R13 and R14 is H and the other is OH, lower alkanoyloxy, etc.] is obtained by reacting a compound of formula I with a saccharide derivative such as formula Il (Ac is acetyl) in methylene chloride in the presence of anhydrous calcium sulfate and a carbonate radical.

This glycoside is capable of manifesting remarkable suppressing effects on hepatopathy and useful as an antihepatitic agent.

COPYRIGHT: (C)1994,JPO&Japio

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.