|--|

PES University, Bengaluru-560100

(Estd. Under Karnataka Act 10 of 2013)

UE18CS254

April 2020: (ESA) Model paper - BTech 4th Sem
UE18CS254 - Theory of Computation

Time: 3 Hrs Answer All Questions Max Marks: 100

- 1. a) What is alphabet and strings and language? Explain with examples. Explain following functions on strings with example:
 - Length
 - Concatenation
 - Replication
 - Reversal

Ans:

Alphabet:

- An alphabet is a non-empty, finite set of characters/symbols
- Use Σ to denote an alphabet
- Examples
 - $\Sigma = \{a, b\}$
 - $\Sigma = \{ 0, 1, 2 \}$
 - $\Sigma = \{ a, b, c, ...z, A, B, ... Z \}$
 - $\Sigma = \{ \#, \$, *, @, \& \}$

<u>String</u>: finite sequence of symbols from Σ , such as v = aba and w = abaaa

- Empty string (λ)
- Substring, prefix, suffix

Language:

- A *language* is a (finite or infinite) set of strings over a (finite) alphabet Σ
- Examples: Let $\Sigma = \{a, b\}$
- Some languages over Σ :
- $\emptyset = \{ \}$ // the empty language, no strings
- $\{\epsilon\}$ // language contains only the empty string
- {a, b}
- {ε, a, aa, aaa, aaaa, aaaaa}

Functions on strings:

Length:

- |s| is the length of string s
- |s| is the number of characters in string s.
- $|\varepsilon| = 0$
- |1001101| = 7
- $\#_c(s)$ is defined as the number of times that c occurs in s. $\#_a(abbaaa) = 4$.

Concatenation:

- the *concatenation* of 2 strings s and t is the string formed by appending t to s; written as s||t or more commonly, st
- Example:

If
$$x = good$$
 and $y = bye$, then $xy = goodbye$ and $yx = byegood$

Replication:

• For each string w and each natural number k, the string w^k is,

$$w^0 = \varepsilon$$

$$w^{k+1} = w^k w$$

Reverse:

• For each string w, w^R is defined as:

if
$$|w| = 0$$
 then $w^R = w = \varepsilon$
if $|w| = 1$ then $w^R = w$
if $|w| > 1$ then:
 $\exists a \in \Sigma \ (\exists u \in \Sigma^* \ (w = ua))$
So define $w^R = a u^R$

SRN						

3+

5

- b) Define Deterministic Finite Automata . Design DFA for the following languages:
 - 1) L={ w: w is the string representation of Floating Point numbers}
 - a. FP no is optional sign, followed by decimal no, followed by optional exponent.
 - b. Decimal no of the form x or x.y (33 or 33.54)
 - c. Exponent begins with E, followed by optional sign and integer.
 - d. Integer is nonempty string of decimal digits.

Solution: Sol:- A <u>deterministic finite accepter</u> is defined by

Q: a finite set of *internal states*

 Σ : a set of symbols called the *input alphabet*

δ: a transition function from Q X Σ to Q

q0: the *initial state*

F: a subset of Q representing the *final states*

L={ w: w is the string representation of Floating Point numbers}

- e. FP no is optional sign, followed by decimal no, followed by optional exponent.
- f. Decimal no of the form x or x.y (33 or 33.54)
- g. Exponent begins with E, followed by optional sign and integer.
- h. Integer is nonempty string of decimal digits.

Example strings:

+3.0, 3.0, 0.3E1, 0.3E+1, -0.3E+1, -3E8

Prove, If w and x are strings then $(wx)^R = x^R w^R$

Proof: By induction on |x|:

$$|x| = 0$$
: Then $x = \varepsilon$, and $(wx)^R = (w \varepsilon)^R = (w)^R = \varepsilon w^R = \varepsilon^R w^R = x^R w^R$.
 $\forall n \ge 0 \ (((|x| = n) \to ((w x)^R = x^R w^R)) \to ((|x| = n + 1) \to ((w x)^R = x^R w^R)))$:

Consider any string x, where |x| = n + 1. Then x = u a for some character a and |u| = n. So:

$$(w \ x)^{R} = (w \ (u \ a))^{R}$$
 rewrite x as ua

$$= ((w \ u) \ a)^{R}$$
 associativity of concatenation
$$= a \ (w \ u)^{R}$$
 definition of reversal
$$= a \ (u^{R} \ w^{R})$$
 induction hypothesis
$$= (a \ u^{R}) \ w^{R}$$
 associativity of concatenation
$$= (ua)^{R} \ w^{R}$$
 definition of reversal
$$= x^{R} \ w^{R}$$
 rewrite ua as x

		SRN	
2.	a)	Design DFSM for the following languages and write all the five tuples. i) L = { w contains {0, 1}*, accepting Binary number divisible by 3} ii) L = {w contains {a, b}*: w has both aa and bb as a substrings}.	8
		i) q ₂ ii)	

8

4

Convert the given NFA to equivalent DFA

Solution:

$\{q_0, q_1, q_3\}$	0	$\{q_2, q_4, q_5\}$
	1	$\{q_2, q_4, q_5\}$ $\{q_0, q_1, q_3\}$ $\{q_2, q_4, q_5\}$ $\{q_1, q_3, q_5\}$ $\{q_2, q_4, q_5\}$
$\{q_2, q_4, q_5\}$	0	$\{q_2, q_4, q_5\}$
	1	$\{q_1, q_3, q_5\}$
$\{q_1, q_3, q_5\}$	0	$\{q_2, q_4, q_5\}$
	1	{}

Write regular expression for c)

 $L = \{ w \in \{a,b\}^* | w = a^{2n}b^{2m} | n >= 0, m >= 0 \}$

L = {w ε {a,b}*|w does not end in ba } Regular expression = (aa)* (bb)*

Regular expression = $(a+b)*(a+b+aa+ab+bb+\epsilon)$

		SRN SRN	
3.	a)	What is Context Free Grammar? Write CFG for the balanced parenthesis language.	5+
			5
		Ans:	
		In CFG the rule must:	
		 Have a left hand side that is single NT 	
		 Have a right hand side with no constraint 	
		 More flexible, more powerful 	
		$S \rightarrow aSb$, $S \rightarrow \epsilon$, $T \rightarrow T, S \rightarrow aSbbTT$	
		A context-free grammar G is a quadruple,	
		(V, Σ, R, S) , where:	
		• <i>V</i> is the rule alphabet, which contains nonterminals and terminals.	
		• Σ (the set of terminals) is a subset of V ,	
		• R (the set of rules) is a finite subset of $(V - \Sigma) \times V^*$,	
		• S (the start symbol) is an element of V - Σ .	
		Example:	
		$(\{S, a, b\}, \{a, b\}, \{S \rightarrow a S b, S \rightarrow \epsilon\}, S)$	
		Consider L = { w: w contains balanced parenthesis}	
		Grammar is $G = \{\{S,\},(\}, \{\}, \{\}, \{\}, \{\}\}\}$ where R is:	
		$S \rightarrow \varepsilon$	
		$S \to SS$	
		$S \to (S)$	

5+

5

b) Consider the following grammar G:

 $S \rightarrow 0S1 \mid SS \mid 10$

Show the parse tree produced by G for each of the following strings:

- 1) 010110
- 2) 00101101

What is ambiguous grammar?

Ans:

A grammar is *ambiguous* iff there is at least one string in L(G) for which G produces more than one parse tree.

(for a string, more than 1 leftmost or more than 1 rightmost derivations exist)

Show that following grammar is ambiguous

 $E \rightarrow E+E, E \rightarrow E*E, E \rightarrow (E), E \rightarrow id$

String "id+id*id" has 2 leftmost derivations / parse trees:

2+

6

2+ 4

4. a) Define PDA. Build a PDA to accept the following language

 $L = \{ a^n b^m a^n : n,m \ge 0 \text{ and m is even } \}$

• A <u>pushdown automaton (PDA)</u> is a seven-tuple:

 $M = (Q, \Sigma, \Gamma, \delta, q_0, z_0, F)$

- Q A <u>finite</u> set of states
- Σ A <u>finite</u> input alphabet
- Γ A <u>finite</u> stack alphabet
- q_0 The initial/starting state, q_0 is in Q
- z_0 A starting stack symbol, is in Γ // need not always remain at the bottom of stack
 - F A set of final/accepting states, which is a subset of Q
 - δ A transition function, where
 - δ : Q x (Σ U {ε}) x Γ \rightarrow finite subsets of Q x Γ *

b) Define a deterministic PDA. Build a PDA to accept the following language

 $\{a^nb^m : m \le n \le 2m\}.$

A PDA with restrictions that:

- At most one move possible in any configuration.
 - For any state p, a ∈ A, and X ∈ Γ: at most one move of the form (p, a, X) → (q, γ) or (p, ε, X) → (q, γ).
 - Effectively, a DPDA must see the current state, and top of stack, and decide whether to make an ε-move or read input and move.
- Accepts by final state.
- We need a right-end marker "-1" for the input.

PDA for $\{a^nb^m: m \le n \le 2m\}$.

```
M = (\{1, 2\}, \{a, b\}, \{a\}, \Delta, 1, \{1, 2\}), \text{ where } \Delta = \{ ((1, a, \varepsilon), (1, a)), ((1, \varepsilon, \varepsilon), (2, \varepsilon)), ((2, b, a), (2, \varepsilon)), ((2, b, aa), (2, \varepsilon)) \}.
```

Design and draw a Turing Machine for $L = \{a^nb^nc^n : n \ge 0 \}$. Write a note on "CHURCH- TURING Thesis".

$$L = \{L = \underline{a}^{n}\underline{b}^{n}\underline{c}^{n} \mid n \geq 1 \}$$

The transition function are

$$\delta(q_0, a) = (q_1, X, R)$$

 $\delta(q_1, a) = (q_1, a, R)$
 $\delta(q_1, b) = (q_2, Y, R)$
 $\delta(q_2, b) = (q_2, b, R)$
 $\delta(q_2, c) = (q_3, Z, L)$
 $\delta(q_3, b) = (q_3, b, L)$
 $\delta(q_3, Y) = (q_3, Y, L)$
 $\delta(q_3, a) = (q_3, a, L)$
 $\delta(q_3, X) = (q_0, X, R)$
 $\delta(q_1, Y) = (q_1, Y, R)$

$$\delta(q_2, Z) = (q_2, Z, R)$$

 $\delta(q_3, Z) = (q_3, Z, L)$

$$\delta(q_0, Y) = (q_4, Y, R)$$

$$\delta(q_4, Y) = (q_4, Y, R)$$

$$\delta(q_4, Z) = (q_5, Z, R)$$

$$\delta(q_5, Z) = (q_5, Z, R)$$

$$\delta(q_5, B) = (q_6, B, R)$$

- Turing and Church showed that anything that can be computed can be computed by Turing Machine.
- No one so far has been able to find a computing problem that Turing machines can not compute but some other machine, mechanism can.
- This claim is known as The Church-Turing Thesis.

Define PCP and Obtain the solution for the following system of PCP $A = \{1, 10111, 10\}$ and $B = \{111, 10, 0\}.$

4+

2

PCP - Given two sequences of n strings on some alphabet Σ , for instance

 $A = w_1, w_2, ..., w_n$ and $B = v_1, v_2, ..., v_n$

there is a Post correspondence solution (PC solution) for the pair (A, B) if there is a nonempty sequence of integers i, j, ..., k, such that $w_i w_j ... w_k = v_i v_j ... v_k$

The solution for the following system of PCP $A = \{1, 10111, 10\}$ and $B = \{111, 10, 0\}$. is 2113.