Techniques in Predicting Income

Jan C. Bierowiec

Pre-Processing

- Encoding
- Imbalanced Dataset
- Missing Values

Encoding

- 14 variables
 - 6 continuous age, fnlwgt, education-num, capital-gain, capital-loss, hours-per-week
 - 8 discontinuous workclass, education, marital status, occupation, relationship, race, sex, native country
- Data encoded using dummy encoding
 - k-1 binary variables

Imbalanced Dataset

- 75.9% <=50,000
- 24.1% >50,000
- Bagging method
 - Select random variables in training set and replace them with either 0, 1, >1 copies

Missing Values

- Three categories with missing values:
 - Workclass
 - Occupation
 - Native-Country
- Two methods chosen and compared:
 - KNN based imputation
 - Random Forest based imputation

Algorithm

- Ensemble
- Imputation Results
- Normalization Results

Ensemble Learning

- Ensemble classifier built from three supervised learning models:
 - KNN
 - Naive Bayes
 - Random Forest
- Ensemble learning is less biased towards any one individual learning algorithm.
- Z-score normalization results compared with non-normalization results

Imputation

- Model Based Approach :- Decrease variance, Decrease bias
 - o KNN
 - Grower's similarity coefficient to find the K nearest neighbor
 - Aggregation of the K values to impute the missing values
 - Aggregation is based on most frequent occurrences.
 - Random Forest
 - Build random forest for each individual missing value feature
 - Generalize ensembles of D-trees through bagging
 - Performs iterations to reduce *Out-Of-Bag* error

Imputation Methods Without Normalization

Imputation Methods with Normalization

Results Comparison

Method	Accuracy	Precision	Recall	F1-Score
KNN	81.97%	32.45%	78.69%	45.95%
Random Forest	81.86%	32.48%	77.82%	45.83%
Normalized KNN	85.51%	64.12%	71.58%	67.65%
Normalized Random Forest	85.41%	61.67%	61.15%	61.41%

Future Steps

- Parameter Optimization
 - Are there "best" parameters for the algorithms in each ensemble classifier for each data set
- Feature Selection
 - Determine if removing attributes improves predictive capabilities of learning algorithm
 - Try the Wrapper Method of Feature Selection
- Find out if there is a more optimal algorithm
- Try implementing a Neural Network

Sources

- Pantanowitz, Adam, and Tshilidzi Marwala. "Evaluating the impact of missing data imputation through the use of the random forest algorithm." arXiv preprint arXiv:0812.2412 (2008).
- Ganganwar, Vaishali. "An overview of classification algorithms for imbalanced datasets." International Journal of Emerging Technology and Advanced Engineering 2.4 (2012): 42-47.
- Stekhoven, Daniel J. "Using the missForest package." *R package* (2011): 1-11.
- Kowarik, Alexander, and Matthias Templ. "Imputation with the R Package VIM."
 Journal of statistical software 74
 (2016): 1-16.
- https://towardsdatascience.com/having-an-imbalanced-dataset-here-is-how-you-can-solve-it-1640568947eb