PCT/EP03/11427

BUNDESR UBLIK DEUTSCH AND

PRIORITY DOCUMENT
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH
RULE 17.1(a) OR (b)

10/531366

REC'D 0 3 DEC 2003

WIPO PCT

Rec'd PCT/PTO 14 APR 2005

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

BEST AVAILABLE COPY

Aktenzeichen:

102 48 039.7

Anmeldetag:

15. Oktober 2002

Anmelder/Inhaber:

Dr. Per Sonne Holm, Fürstenfeldbruck/DE

Bezeichnung:

Neue Verwendung von Adenoviren und dafür

codierenden Nukleinsäuren

IPC:

A 61 K 35/76

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

Die angeh sprünglich

München, den 6. November 2003

Deutsches Patent- und Markenamt

Der Präsident

Im Auftrag

(Kobi

Anwaltssozietät

BOHMANN & LOOSEN, Sonnenstr. 8, 80331 München

Deutsches Patent- und Markenamt

80297 München

Patentanwalt – European Patent Attorney Dr. Armin K. Bohmann, Dipl.-Biol.*

Rechtsanwalt Peter Loosen, LL.M.²

Zugdassener Vertreter vor dem Europäischen Markenamt, Alicante Professional Representation at the Community Trademark Office, Alicante

Zustelladresse: Sonnenstr. 8 D-80331 München

Unser Zeichen Our ref

H 10009

Ihr Zeichen Your ref

Datum Date

Neuanmeldung

München, 15. Oktober 2002

(Patent)

Dr. Per Sonne Holm, Meisenstr. 27, 82256 Fürstenfeldbruck

Neue Verwendung von Adenoviren und dafür codierenden Nukleinsäuren

Die Erfindung betrifft die Verwendung von Adenoviren sowie dafür codierender Nukleinsäuren und rekombinantes virales Onkoprotein.

Bei der Behandlung von Tumoren werden derzeit eine Vielzahl von Therapiekonzepten verlgt. Neben der Verwendung chirurgischer Techniken stehen dabei die Chemotherapie und die Strahlentherapie im Vordergrund. All diese Techniken sind jedoch für den Patienten mit nicht unerheblichen Nebenwirkungen verbunden. Mit der Verwendung von replikationsselektiven onkolytischen Viren wurde eine neue Plattform für die Behandlung von Tumoren geschaffen. Dabei wird eine selektive intratumorale Replikation eines viralen Agens herbeigeführt, die in der Folge zur Virusreplikation, Lyse der infizierten Tumorzelle und Verbreitung des Virus auf benachbarte Tumorzellen führt. Infolge der Beschränkung der Replikationsfähigkeit des Virus auf Tumorzellen bleibt normales Gewebe von der Replikation und damit der Lyse durch das Virus verschont.

BMANN & LOOSEN

2

Derzeit finden verschiedene virale Systeme in klinischen Studien mit dem Ziel der Tumorlyse Anwendung. Ein Beispiel für einen derartigen Adenovirus ist dl1520 (Onyx-015), der bereits erfolgreich in den klinischen Phasen I und II eingesetzt wurde (Khuri, F. et al. Nature Medicine 6, 879-885, 2000). Onyx-015 ist ein Adenovirus, bei dem das E1B-55kDA-Gen deletiert ist. Diese Modifikation des Adenovirus beruht dabei auf der Beobachtung, dass bei Deletion des E1B55kDa-Proteins im adenoviralen Vektor die Replikation und somit die Lyse von Zellen mit defektem p53 möglich ist (Kirn, D. et al., Proc. Am. Soc. Clin. Oncol. 17, 391a, 1998), wobei normale Zellen nicht geschädigt werden. Genauer ist das E1B-55kDa-Genprodukt beteiligt an der Inhibierung von p53, dem Transport viraler mRNA und dem Abschalten der Proteinsynthese der Wirtszelle. Die Inhibierung von p53 erfolgt dabei durch Ausbilden eines Komplexes aus p53 und dem adenoviral codierten E1B-55kDa Protein. Von p53, codiert von TP53, geht ein komplexer regulatorischer Mechanismus aus (Zambetti, G.P. et al., FASEB J. 7, 855-865, 1993), der u.a. auch dazu führt, dass eine effiziente Replikation von Viren wie Adenoviren in der Zelle unterdrückt wird. Das Gen TP 53 ist in etwa 50 % aller menschlichen Tumoren deletiert oder mutiert mit der Folge, dass es zu keiner - erwünschten - Apoptose infolge einer Chemotherapie oder einer Bestrahlungstherapie kommt und damit der Erfolg dieser Tumorbehandlungen im Normalfall unterbleibt.

Ein weiteres Konzept tumorlytischer Viren beruht auf der Beobachtung, dass wenn das E1A-Protein in einer bestimmten Weise deletiert vorliegt bzw. eine oder mehrere Mutationen aufweist, welche die Bindung von Rb/E2F und/oder p107/E2F nicht beeinflussen, solche Adenoiren den Eintritt der infizierten Zellen in die S-Phase nicht induzieren und zur Replikation in Tumorzellen befähigt sind, die kein funktionelles Rb-Protein aufweisen. Zudem kann das E1A-Protein am N-Terminus deletiert vorliegen bzw. eine oder mehrere Mutationen im Bereich der Aminosäurepositionen 1 bis 76 des E1A-Proteins umfassen, um die Bindung von E1A an p300 zu unterbinden, um somit eine selektivere Replikation in Tumorzellen zu bewerkstelligen. Diese Vorgehensweisen sind beispielhaft beschrieben in dem europäischen Patent EP 0 931 830. Beispiele derartiger Adenoviren sind AdΔ24, d1922 – 947, E1Ad/01/07 und CB016 (Howe, J. A. et al., Molecular Therapy 2, 485-495, 2000; Fueyo, J. et al., Oncogene 19, 2-12, 2000; Heise, C. et al., Nature Medicine 6, 11341139, 2001; Balague, C. et al., J. Virol. 75, 7602-7611, 2001). Diese im Stand der Technik bekannten adenoviralen Systeme zur Onkolyse weisen somit bestimmte Deletionen im E1A Protein auf, wobei diese Deletion

BMMANN & LOOSEN

3

vorgenommen worden war unter der Annahme, dass intakte Rb-Proteine einer effiziente Replikation in vivo entgegenwirken würden und um eine adenovirale Replikation in vivo nur in Rb-negativen/mutierten Zellen sicher zu stellen. Diese adenoviralen Systeme nach dem Stand der Technik gehen auf E1A zurück, um mittels des frühen E2-Promotors (engl. E2 early Promotor) und E2F die in vivo Replikation zu steuern.

Eine weitere Form von tumorlytischen adenoviralen Systemen beruht auf dem Einsatz selektiver Promotoren, um das virale Onkogen E1A spezifisch zu exprimieren, was eine selektive Replikation in Tumorzellen erlaubt (Rodriguez, R. et al., Cancer Res. 57, 2559-2563, 1997).

Wie vorstehend beschrieben kommt es bei den verschiedenen Konzepten adenoviraler tumorlytischer Viren auf die Auswahl eines für das dem jeweiligen Konzept zugrundeliegenden
Wirkmechanismus geeigneten zellulären Hintergrundes an. Mit anderen Worten, die verschiedenen derzeit bekannten adenoviralen Systeme zur Tumorlyse können nur bei Vorliegen
bestimmter molekularbiologischer Voraussetzungen angewandt werden. Dies beschränkt die
Anwendung derartiger Systeme auf bestimmte Patientenkollektive.

Ein besonderes Problem bei der Behandlung von Tumorerkrankungen stellt sich dann ein, wenn die Patienten eine Vielfachresistenz (engl. multidrug resistence (MDR)) entwickeln, die eine besonders gut untersuchte Resistenzform von Tumoren gegenüber Zytostatika darstellt (Gottesman und Pastan, Annu. Rev. Biochem. 62, 385-427, 1993). Sie beruht auf der Überexpression des membranständigen Transportproteins P-Glykoprotein. Bargou, R. C. et al., (Bargou, R. C. et al., Nature Medicine 3, 447-450, 1997 und Oda, Y. et al., Clin. Cancer Res. 4, 2273-2277, 1998 konnten zeigen, dass die Kernlokalisation des humanen Transkriptionsfaktors YB-1 unmittelbar an der Aktivierung der Expression des P-Glykoproteins beteiligt ist. Weitere Untersuchungen belegen, dass YB-1 durch verschiedene Streßbedingungen in den Zellkern gelangt, wie z.B. UV-Bestrahlung, Zytostatika-Applikation (Koike, K. et al., FEBS Lett 17, 390-394, 1997) und Hyperthermie (Stein, U. et al., JBC 276, 28562-69, 2001).

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, eine technische Lehre und insbesondere ein Mittel bereitzustellen, welches erlaubt, einen Organismus, speziell einen menschlichen Organismus bzw. ein Patientenkollektiv spezifisch mit tumorlytisch wirkenden Agenzien zu behandeln. Weiterhin ist es eine der vorliegenden Erfindung zugrundeliegenden Auf-

4

gabe, ein Mittel bereitzustellen, welches geeignet ist, bei Patienten mit Tumorerkrankungen eine Tumorlyse herbeizuführen, die gegenüber Zytostatika resistent sind, insbesondere solche, die eine Vielfachresistenz zeigen.

Erfindungsgemäß wird die Aufgabe in einem ersten Aspekt gelöst durch die Verwendung eines Adenovirus zur Herstellung eines Medikamentes, wobei der Adenovirus replikationsdefizient ist in Zellen, die YB-1 nicht im Kern aufweisen, und der Adenovirus für ein Onkogen oder Onkogenprodukt codiert, das zumindest ein virales Gen, bevorzugterweise ein adenovirales Gen, transaktiviert, wobei das Gen ausgewählt ist aus der Gruppe, die E1B55kDa, E4orf6, E4orf3 und E3ADP umfasst.

In einem zweiten Aspekt wird die Aufgabe gelöst durch die Verwendung eines Adenovirus zur Replikation in Zellen, die YB-1 im Kern aufweisen, wobei der Adenovirus replikationsdefizient ist in Zellen, die YB-1 nicht im Kern aufweisen, und der Adenovirus für ein Onkogen oder Onkogenprodukt codiert, das zumindest ein virales Gen, bevorzugterweise ein adenovirales Gen, transaktiviert, wobei das Gen ausgewählt ist aus der Gruppe, die E1B55kDa, E4orf6, E4orf3 und E3ADP umfasst.

In einer Ausführungsform der beiden erfindungsgemäßen Verwendungen ist vorgesehen, dass der Adenovirus in Zellen repliziert, die YB-1 im Kern aufweisen.

In einer weiteren Ausführungsform der beiden erfindungsgemäßen Verwendungen ist vorgesehen, dass das virale Onkogenprotein E1A ist und/oder das Onkogen das für E1A codierende Gen und/oder das Onkogenprotein E1A ist.

In einer bevorzugten Ausführungsform ist vorgesehen, dass das virale Onkogenprotein E1A zur Bindung eines funktionellen Rb-Tumorsuppressor-Genprodukts fähig ist.

In einer alternativen Ausführungsform ist vorgesehen, dass das virale Onkogenprotein E1A zur Bindung eines funktionellen Rb-Tumorsuppressor-Genprodukts nicht fähig ist.

In einer weiteren Ausführungsform der beiden erfindungsgemäßen Verwendungen ist vorgesehen, dass das virale Onkoprotein E1A nicht die nukläre Lokalisation von YB-1 induziert.

BAMANN & LOOSEN

5

In einer noch weiteren Ausführungsform der beiden erfindungsgemäßen Verwendungen ist vorgesehen, dass das Medikament für Patienten bestimmt ist, deren Zellen Rb-positiv oder Rb-negativ sind.

In einer bevorzugten Ausführungsform ist dabei vorgesehen, dass die Zellen diejenigen Zellen sind, die an der Ausbildung des Zustandes beteiligt sind, der mit dem Medikament beeinflusst werden soll.

In einer weiteren Ausführungsform der beiden erfindungsgemäßen Verwendungen ist vorgesehen, dass die Zellen Rb-negativ und im Zellkern YB-1 positiv, insbesondere unabhängig vom Zellzyklus im Zellkern YB-1 positiv sind.

In einer noch weiteren Ausführungsform der beiden erfindungsgemäßen Verwendungen ist vorgesehen, dass das Medikament für die Behandlung von Tumoren ist.

In einer noch weiteren Ausführungsform der beiden erfindungsgemäßen Verwendungen ist vorgesehen, dass die Zellen, insbesondere die den Tumor oder Teile davon ausbildenden Zellen eine Mehrfachresistenz gegen pharmakologische Wirkstoffe, bevorzugter Weise Antitumormittel und bevorzugtererweise Zytostatika, aufweisen.

In einer bevorzugten Ausführungsform der beiden erfindungsgemäßen Verwendungen ist orgesehen, dass die Zellen eine Expression, bevorzugterweise eine Überexpression des membranständigen Transportproteins P-Glykoprotein zeigen.

In einer weiteren Ausführungsform der beiden erfindungsgemäßen Verwendungen ist vorgesehen, dass die Zellen p53-positiv oder p53-negativ sind.

In einer Ausführungsform der beiden erfindungsgemäßen Verwendungen ist vorgesehen, dass das Onkogenprotein gegenüber dem Wildtyp-Onkogenprotein E1A eine oder mehrere Mutationen oder Deletionen aufweist, wobei die Deletion bevorzugt eine solche ist, die ausgewählt ist aus der Gruppe, die Deletionen des Bereichs CR3 und Deletionen des N-Terminus und

BEMANN & LOOSEN

6

Deletionen des C-Terminus umfasst. Dabei ist vorgesehen, dass das E1A-Onkogenprotein an Rb binden kann.

In einer weiteren Ausführungsform der beiden erfindungsgemäßen Verwendungen ist vorgesehen, dass das Onkogenprotein gegenüber dem Wildtyp-Onkogenprotein eine oder mehrere Mutationen oder Deletionen aufweist, wobei die Deletion bevorzugt eine solche in der CR1-Region und/oder der CR2-Region ist. Dabei ist vorgesehen, dass das Onkogenprotein E1A nicht an Rb zu binden in der Lage ist.

In einer Ausführungsform der beiden erfindungsgemäßen Verwendungen ist vorgesehen, dass das virale Onkogenprotein, insbesondere E1A, unter der Kontrolle eines Gewebes- und/oder Tumor-spezifischen Promotors steht.

In einer weiteren Ausführungsform der beiden erfindungsgemäßen Verwendungen ist vorgesehen, dass der Adenovirus für YB-1 codiert.

In einer noch weiteren Ausführungsform der beiden erfindungsgemäßen Verwendungen ist vorgesehen, dass YB-1 unter der Kontrolle eines Gewebe- und/oder Tumor-spezifischen Promotors steht.

In einer bevorzugten Ausführungsform der beiden erfindungsgemäßen Verwendungen ist torgesehen, dass der Adenovirus für mindestens ein Protein codiert, das ausgewählt ist aus er Gruppe, die E4orf6, E4orf3, E1B55K und adenovirales E3ADP-Protein umfasst.

In einer alternativen Ausführungsform der beiden erfindungsgemäßen Verwendungen ist vorgesehen, dass die Zellen YB-1 im Kern aufweisen, insbesondere die den Tumor oder einen Teil davon ausbildenden Zellen YB-1 im Kern aufweisen.

In einer weiteren Ausführungsform der beiden erfindungsgemäßen Verwendungen ist vorgesehen, dass der Tumor YB-1 im Kern nach Induktion des Tranports von YB-1 in den Kern enthält.

B MANN & LOOSEN

7

In einer bevorzugten Ausführungsform der beiden erfindungsgemäßen Verwendungen ist vorgesehen, dass der Transport von YB-1 in den Kern ausgelöst wird durch zumindest eine Maßnahme, die ausgewählt ist aus der Gruppe, die Bestrahlung, Gabe von Zytostatika und Hyperthermie umfasst.

In einer besonders bevorzugten Ausführungsform der beiden erfindungsgemäßen Verwendungen ist vorgesehen, dass die Maßnahme an einer Zelle, einem Organ oder einem Organismus angewandt wird.

In einer bevorzugten Ausführungsform der beiden erfindungsgemäßen Verwendungen ist orgesehen, dass der Adenovirus ausgewählt ist aus der Gruppe, die AdΔ24, dl922-947, E1Ad/01/07, dl1119/1131, CB 016, dl520, und Viren, denen ein exprimiertes virales Onkogen fehlt, das zur Bindung eines funktionellen Rb-Tumorsuppressor-Genprodukts fähig ist, umfasst.

In einem dritten Aspekt wird die Aufgabe gelöst durch die Verwendung eines Adenovirus zur Herstellung eines Medikaments, wobei der Adenovirus so ausgebildet ist, dass die Replikation durch YB-1 über die Aktivierung des E2-Late-Promotors gesteuert wird, bevorzugterweise überwiegend über die Aktivierung des E2-Late-Promotors gesteuert wird.

In einem vierten Aspekt wird die Aufgabe gelöst durch die Verwendung eines Adenovirus zur eplikation in Zellen, die YB-1 im Kern aufweisen, wobei der Adenovirus so ausgebildet ist, dass die Replikation durch YB-1 über die Aktivierung des E2-Late-Promotors gesteuert wird, bevorzugterweise überwiegend über die Aktivierung des E2-Late-Promotors gesteuert wird.

In einer bevorzugten Ausführungsform des dritten und/oder vierten Aspekts der vorliegenden Erfindung ist der Adenovirus so ausgebildet wie hierin offenbart, insbesondere so, wie er ausgestaltet ist, um erfindungsgemäß verwendet zu werden.

In einem fünften Aspekt wird die Aufgabe gelöst durch ein virales Onkogenprotein, insbesondere ein isoliertes virales Onkogenprotein, wobei dieses die folgenden Eigenschaften aufweist: B MANN & LOOSEN

8

- a) Transaktivierung mindestens eines viralen Gens, das ausgewählt ist aus der Gruppe, die E1B-55K, E3ADP und E4orf6 und E4orf3 umfasst; und
- b) keine Induktion von YB-1 in einem Zellkern, insbesondere in dem Zellkern der Zelle, in der das virale Onkoprotein vorhanden ist.

In einer Ausführungsform ist vorgesehen, dass das virale Onkoprotein E1A ist.

In einer weiteren Ausführungsform ist vorgesehen, dass das virale Onkogenprotein gegenüber dem Wildtyp-Onkogenprotein eine oder mehrere Deletionen aufweist, wobei die Deletion bevorzugt eine solche ist, die ausgewählt ist aus der Gruppe, die Deletion des Bereichs CR3, Deletion des N-Terminus und Deletion des C-Terminus umfasst.

Dabei ist vorgesehen, dass das virale Onkogenprodukt an Rb zu binden in der Lage ist.

In einer alternativen Ausführungsform ist vorgesehen, dass das virale Onkogenprotein eine oder mehrer Mutationen oder Deletionen aufweist, wobei die Deletion bevorzugt eine solche in der CR1-Region und/oder der CR2-Region des E1A-Onkogenproteins ist. Dabei ist vorgesehen, dass das virale Onkogenprotein nicht in der Lage ist an Rb zu binden.

n einem sechsten Aspekt betrifft die Erfindung die Verwendung eines adenoviralen Replikazonssystems umfassend eine Nukleinsäure, die für einen Adenovirus, wie er erfindungsgemäß
verwendet wird, codiert, und umfassend eine Nukleinsäure eines Helfervirus, wobei die Nukleinsäure des Helfervirus eine Nukleinsäuresequenz umfasst, die für YB-1 codiert.

In einer Ausführungsform ist vorgesehen, dass die adenovirale Nukleinsäure und/oder die Nukleinsäure des Helfervirus als replizierbarer Vektor vorliegt.

In einem siebten Aspekt betrifft die Erfindung die Verwendung einer Nukleinsäure codierend für einen Adenovirus, wie er erfindungsgemäß verwendet wird, zur Herstellung eines Medikamentes, insbesondere zur Herstellung eines Medikamentes für die Behandlung von Tumoren.

In einer Ausführungsform ist vorgesehen, dass die Zellen, insbesondere die den Tumor oder Teile davon ausbildenden Zellen, eine Mehrfachresistenz gegen pharmakologische Wirkstoffe, bevorzugterweise Antitumormittel, und bevorzugtererweise Zytostatika, aufweisen.

In einem achten Aspekt betrifft die Erfindung die Verwendung einer Nukleinsäure, die für einen Adenvirus, wie er erfindungsgemäß verwendet wird, codiert, zur Replikation in Zellen, die YB-1 im Kern aufweisen, wobei der Adenovirus replikationsdefizient ist in Zellen, die YB-1 nicht im Kern aufweisen, und der Adenovirus für ein Onkogen oder Onkogenprodukt codiert, das zumindest ein virales Gen, bevorzugterweise ein adenovirales Gen transaktiviert, wobei das Gen ausgewählt ist aus der Gruppe, die E1B55kDa, E4orf6, E4orf3 und E3ADP umfasst.

In einem neunten Aspekt wird die Aufgabe gelöst durch die Verwendung einer Nukleinsäure, die für einen Adenovirus, wie er erfindungsgemäß verwendet wird, codiert zur Herstellung eines Medikamentes, wobei der Adenovirus so ausgebildet ist, dass die Replikation durch YB-1 über die Aktivierung des E2-Late-Promotors gesteuert wird, bevorzugterweise überwiegend über die Aktivierung des E2-Late-Promotors.

In einem zehnten Aspekt wird die Aufgabe gelöst durch die Verwendung einer Nukleinsäure, die für einen Adenovirus, wie er erfindungsgemäß verwendet wird, codiert, zur Replikation in Zellen, wobei der Adenovirus so ausgebildet ist, dass die Replikation durch YB-1 über die Aktivierung des E2-Late-Promotors gesteuert wird, bevorzugterweise überwiegend über die Aktivierung des E2-Late-Promotors gesteuert wird.

In einem elften Aspekt wird die Aufgabe gelöst durch die Verwendung eines Vektors umfassend eine der vorstehend beschriebenen Nukleinsäure, zur Verwendung gemäß dem ersten oder zweiten Aspekt der vorliegenden Erfindung.

In einem zwölften Aspekt betrifft die Erfindung die Verwendung eines mit YB-1 wechselwirkenden Mittels zur Charakterisierung von Zellen, Zellen eines Tumorgewebes oder Patienten, um zu bestimmen, ob diese(r) mit einem Adenovirus, wie er erfindungsgemäß verwendet wird, kontaktiert werden sollen. In einer Ausführungsform ist dabei vorgesehen, dass das Mittel ausgewählt ist aus der Gruppe, die Antikörper, Antikaline, Aptamere, Aptazyme und Spiegelmere umfasst.

In einem dreizehnten Aspekt wird die Aufgabe gelöst durch die Verwendung des erfindungsgemäßen viralen Onkogenproteins oder einer dafür codierenden Nukleinsäure zur Herstellung eines Adenovirus, wie er im Rahmen der Verwendungen gemäß dem ersten und zweiten Aspekt der vorliegenden Erfindung verwendet wird.

Der vorliegenden Erfindung liegt die überraschende Erkenntnis zugrunde, dass die DNA-Replikation von E1A-modifizierten Adenoviren in YB-1 Kern-positiven Tumorzellen auf die Aktivierung des E2-late Promotors zurück zu führen ist. Unter modifizierten Adenoviren sind dabei solche Adenoviren zu verstehen, die (a) keine Replikation in YB-1-Kern-negativen Zellen zeigen, (b) transaktivierend auf mindestens ein virales Gen wirken, wobei das Gen ausgewählt ist aus der Gruppe, die E1B-55kDa, E4orf6, E4orf3 und E3ADP umfasst, und (c) zelluläres YB-1 durch den Adenovirus nicht in den Kern transloziert. Optional weisen die erfindungsgemäß verwendeten Adenoviren die weitere Eigenschaft auf, dass nämlich die Bindung des von dem Adenovirus kodierten E1A-Proteins die Bindung von E2F an RB stört bzw. den entsprechenden Komplex aus E2F und Rb aufzulösen in der Lage ist.

Unter zellulärem YB-1 soll hierin ein jedes YB-1 verstanden werden, welches von einer Zelle odiert und bevorzugterweise auch exprimiert wird, wobei dieses YB-1 in der Zelle insbesondere vor der Infektion der betreffenden Zelle mit einem Adenovirus, bevorzugterweise einem Adenovirus, und/oder einem Helfervirus, wie hierin beschrieben, vorhanden ist.

Ohne im folgenden darauf festgelegt sein zu wollen, geht der vorliegende Erfinder davon aus, dass der E2-early Promotor, d. h. der frühe E2-Promotor, dabei nicht über den humanen zellulären E2F-Transkriptionsfaktor eingeschaltet wird. Das Einschalten der Replikation ist dabei unabhängig vom Rb-Status der Zellen, d.h. dass die Tumorzellen sowohl funktionelle wie auch inaktive Rb-Proteine besitzen können. Zudem benötigt die adenovirale Replikation in diesem System kein funktionelles p53 Protein, werden jedoch auch durch dessen Vorhandensein nicht nachteilig beeinflusst. Insoweit wendet sich die technische Lehre von dem mit der Anwendung der onkolytischen oder tumorlytischen Adenoviren vom Typ Ad Δ 24, d1922-947,

HMANN & LOOSEN

11

E1Ad/01/07, CB016 oder jener Adenoviren, wie sie beispielsweise im europäischen Patent EP 0 931 830 beschrieben sind, verfolgten Prinzip ab, bei denen eine und/oder mehrere Deletion(en) im E1A-Protein vorgenommen worden war(en) unter der Annahme, dass intakte funktionelle Rb-Proteine einer effizienten Replikation in vivo entgegenwirken und somit eine adenovirale Replikation in vivo nur in Rb-negativen bzw. Rb-mutierten Zellen sicher zu stellen. Diese adenoviralen Systeme nach dem Stand der Technik gehen auf E1A zurück, um mittels des frühen E2-Promotors (E2-early Promotor) und E2F die in vivo Replikation von Adenoviren zu steuern. Gleichwohl können diese im Stand der Technik bekannten Viren erfindungsgemäß verwendet werden, d. h. zur Replikation in Zellen, die YB-1 unabhängig vom Zellzyklus im Kern enthalten.

Die in dem besagten europäischen Patent EP 0 931 830 beschriebenen Viren und insbesondere Adenoviren können dabei erfindungsgemäß verwendet werden. Konkret handelt es sich bei den in besagtem Patent beschriebenen Viren um solche, die eine Replikaktionsdefizienz aufweisen und denen ein exprimiertes virales Onkoprotein fehlt, das zur Bindung eines funktionellen Rb-Tumorsuppressor-Genprodukts fähig ist. Der Adenovirus kann dabei insbesondere ein solcher sein, dem exprimiertes virales E1A-Onkoprotein fehlt, das zur Bindung eines funktionellen Tumorsuppressor-Genprodukt, insbesondere Rb, fähig ist. Das virale E1A-Onkoprotein kann dabei eine inaktivierende Mutation aufweisen, beispielsweise in der CR1-Domäne an den Aminosäuren 30 bis 85 in Ad 5, den Nukleotidpositionen 697-790, und/oder der CR2-Domäne an den Aminosäuren 120 bis 139 in Ad 5, den Nukleotidpositionen 920 bis 67, welche an der Bindung von p105 Rb Protein und p107 Protein beteiligt sind. Dabei kann uch vorgesehen sein, dass der Adenovirus vom Typ 2 dl 312 oder Adenovirus vom Typ 5 NT dl 1010 ist.

Bei der erfindungsgemäßen Verwendung von Adenoviren zur Herstellung eines Medikamentes, insbesondere zur Herstellung eines Medikamentes für die Behandlung von Tumorerkrankungen, und bei der erfindungsgemäßen Verwendung von Adenoviren zur Replikation in Zellen, die YB-1 im Kern aufweisen, erfolgt die Replikation letzten Endes in solchen Zellen, die YB-1 im Kern, bevorzugterweise unabhängig vom Zellzyklus, aufweisen, mithin YB-1-Kernpositiv sind. Dabei ist besonders beachtlich, dass die Adenoviren als solche in Zellen, die YB-1 nicht im Kern, sondern im Wesentlichen nur im Zytoplasma enthalten, nicht replizieren. Insoweit ist es erforderlich, dass für eine erfolgreiche Replikation dieser Viren YB-1 im Kern

vorhanden ist. Dies kann beispielsweise, wie auch im Folgenden noch ausgeführt werden wird, durch Anlegen solcher Bedingungen an die Zellen realisiert werden, dass es zur Expression oder dem Vorhandensein von YB-1 im Kern kommt. Eine entsprechende Maßnahmen kann z. B. die Codierung bzw. Exprimierung von YB-1 durch die erfindungsgemäß verwendeten Adenoviren sein, die in Ergänzung zu den adenoviralen Genen auch eine genetische Information in sich tragen, die für YB-1 und insbesondere dessen Expression codiert. Andere Maßnahmen, die zum Transport, zur Induktion oder Expression von YB-1 im Kern der Zelle führen, sind das Anlegen von Stressbedingungen wie beispielsweise die Applikation von Zytostatika, Bestrahlung, Hyperthermie und dergleichen.

Die im Rahmen der vorliegenden Erfindung, insbesondere zur Tumorlyse verwendeten Adenoviren zeichnen sich weiterhin dadurch aus, dass sie in solchen Zellen, die YB-1 im Kern nicht aufweisen, mithin YB-1-Kern-negativ sind, nicht replizieren.

Ein weiteres Merkmal der erfindungsgemäß zu verwendenden Adenoviren besteht darin, dass sie für ein virales Onkoprotein, das hierin auch also Onkogenprotein bezeichnet wird, codieren, wobei es sich bei dem Onkogenprotein bevorzugter Weise um E1A handelt, welches in der Lage ist, zumindest ein virales Gen zu aktivieren, welches einen Einfluss auf die Replikation des Virus und/oder die Zellyse der von dem Virus infizierten Zelle haben kann. Dabei ist bevorzugt, dass der Einfluss auf die Replikation dergestalt ist, dass die Replikationseffizienz des Virus erhöht wird. Dieser Vorgang wird hierin auch als E1A-transaktivierend bezeichnet. Die Bezeichnung "transaktivieren" oder "Transaktivierung" beschreibt dabei den Vorgang, lass das in Frage stehende virale Onkoprotein auf die Expression und/oder auf die Transkription eines anderen oder mehrerer anderer Gene als das für das virale Onkoprotein selbst codierende Gen Einfluss nimmt, d. h. bevorzugterweise dessen Expression und/oder Translation steuert, und diese(s) insbesondere aktiviert. Derartige virale Gene sind bevorzugter Weise E1B55kDa, E4orf6, E4orf3 und E3ADP sowie beliebige Kombinationen der vorstehend genannten Gene bzw. Genprodukte.

Ein weiteres, wenngleich bevorzugterweise optionales, Merkmal der erfindungsgemäß zu verwendenden Adenoviren ist deren Bindungsverhalten zu bzw. mit dem Tumor-Suppressor Rb. Es ist grundsätzlich im Rahmen der vorliegenden Erfindung, dass die erfindungsgemäß verwendeten Adenoviren an Rb binden oder nicht binden können. Die Verwendung der bei-

den alternativen Ausgestaltungsformen der Adenoviren ist dabei unabhängig vom Rb-Status der behandelnden Zelle möglich.

Um Rb die Fähigkeit zu verleihen, nicht an Rb binden zu können, sind beispielsweise folgende Deletionen am E1A-Onkoprotein möglich: Deletion in der CR1-Region (Aminosäurepositionen 30-85 in Ad5) und Deletion der CR2-Region (Aminosäurepositionen 120-139 in Ad5). Dabei bleibt die CR3-Region erhalten und kann ihre transaktivierende Funktion auf die anderen frühen viralen Gene ausüben.

Um Rb die Fähigkeit zu verleihen, an Rb binden zu können, sind dagegen folgende Deletionen am E1A-Onkoprotein grundsätzlich möglich: Deletion der CR3-Region (Aminosäurepositionen 140-185); Deletion des N-Terminus (Aminosäurepositionen 1-29); Deletion der Aminosäurepositionen 85-119; und Deletion des C-Terminus (Aminosäurepositionen 186-289). Die hier aufgeführten Bereiche interferieren nicht mit der Bindung von E2F an Rb. Die transaktivierende Funktion bleibt erhalten, ist jedoch gegenüber vom Wildtyp-Ad5 verringert.

Derartige im Stand der Technik grundsätzlich bereits bekannte Viren gelten allgemein als replikationsdefizient. Es ist jedoch das Verdienst des vorliegenden Erfindes, erkannt zu haben, dass sie dennoch zur Replikation in einem geeigneten Hintergrund, insbesondere einem zellulären Hintergrund geeignet sind. Ein derartiger geeigneter zellulärer Hintergrund wird durch das Vorhandensein von YB-1 im Kern, bevorzugterweise eine Zellzyklus-unabhängige nwesenheit von YB-1 im Kern, bedingt oder bereitgestellt. Der Begriff der Zellen oder zellären Systeme, wie hierin verwendet, umfasst dabei Fragmente oder Fraktionen von Zellaufschlüssen ebenso wie Zellen, die in vitro, in vivo oder in situ vorliegen. Insoweit umfasst der Begriff zelluläre Systeme oder Zellen auch solche Zellen, die in einer Zellkultur, Gewebekultur, Organkultur oder in einem Gewebe oder Organ in vivo bzw. in situ, isoliert, in Gruppen oder als Teil von Geweben, Organen oder Organismen oder aber auch als solches in einem bevorzugterweise lebenden Organismus vorliegen. Bei dem Organismus handelt es sich bevorzugter Weise um einen Wirbeltier-Organismus und bevorzugterer Weise um ein Säugetier. Besonders bevorzugterweise ist der Organismus dabei ein menschlicher Organismus.

14

Darüber hinaus ist es im Rahmen der vorliegenden Erfindung, dass auf der Grundlage der hierin gegebenen technischen Lehre neue Viren erzeugt werden, die das Replikationsverhalten der hierin beschriebenen und im Stand der Technik bekannten Adenoviren in solchen Zellen zeigen, die YB-1-Kern-positiv sind. Mit anderen Worten, insbesondere bevorzugterweise ausgehend von den bereits bekannten Adenoviren können weitere Viren konzipiert werden, die die hierin definierten, für die erfindungsgemäße Verwendung erforderlichen Merkmale aufweisen.

Im Zusammenhang mit der vorliegenden Erfindung ist das modifizierte E1A-Onkoprotein der verschiedenen, erfindungsgemäß zu verwendenden Adenoviren in der Lage transaktivierend auf die frühen virale Gene (wie beispielsweise E1B55K, E4orf3, E4orf6, E3ADP) zu wirken. Dabei liegt sonst keine Veränderung im viralen Genom vor und entspricht somit dem Wildtyp-Adenovirus.

Bei weiteren, neu zu konstruierenden rekombinanten Adenoviren, die erfindungsgemäß verwendet werden können, liegt typischerweise eine E1-Deletion, eine E1/E3-Deletion und/oder eine E4-Deletion vor, d. h. die ensprechenden Adenoviren sind nicht in der Lage, funktional aktive E1- und/oder E3- und/oder E4-Expressionsprodukte bzw. entsprechende Produkte zu erzeugen. Es ist im Rahmen der vorliegenden Erfindung, dass das modifizierte E1A-Onkoprotein, E1B-55K, E4orf6 und/oder E3ADP (adenoviral death protein (ADP)) (Tollefson, A. et al., J. Virology, 70, 2296-2306, 1996.) in einem solchen Vektor einzeln oder in belebiger Kombination zur Expression gebracht wird/werden. Dabei können die einzelnen geannten Gene unabhängig von einander entweder in der E1 und /oder E3 und/oder E4-Region mit Hilfe eines geeigneten Promoters zur Expression gebracht werden. Geeignete Promotoren sind u. a. jene, wie sie hierin im Zusammenhang mit der Steuerung bzw. Expression von E1A, insbesondere des modifizierten E1A, offenbart sind.

Schließlich ist in einer Ausführungsform vorgesehen, dass die Adenoviren hinsichtlich E1B defizient, insbesondere hinsichtlich E1B 19 kDa-defizient sind. Dabei wird hierin allgemein unter dem Begriff defizient ein Zustand verstanden, bei dem die E1B im Wildtyp inhärente Gesamtheit der Eigenschaften nicht aufweist und mindestens eine dieser Eigenschaften fehlen.

15

Die Adenoviren, wie sie gemäß der hierin offenbarten Erfindung verwendet werden, sind grundsätzlich im Stand der Technik zumindest in einigen Ausführungsformen bekannt. Bei den erfindungsgemäß verwendeten Adenoviren handelt es sich bevorzugter Weise um rekombinante Adenoviren, insbesondere auch dann, wenn eine Veränderung gegenüber dem Wildtyp vorgenommen wurde im Sinne der hierin gegebenen technischen Lehre. Es ist im Rahmen der Kenntnisse der Fachleute auf diesem Gebiet, für die Erfindung unwesentlichen adenoviralen Nukleinsäuresequenzen zu deletieren bzw. zu mutieren. Derartige Deletionen können z. B die für einen Teil der E3 und E4 codierende Nukleinsäure betreffen. Bei einer Deletion von E4 ist dabei besonders bevorzugt, wenn sich diese nicht auf das Protein E4orf6 erstreckt, mithin der erfindungsgemäß zu verwendende Adenovirus E4orf6 codiert. In bevorzugten Ausführungsformen können diese adenoviralen Nukleinsäuren noch in das virale Kapsid verpackt werden und damit infektiöse Partikel ausbilden. Gleiches gilt für die erfindungsgemäße Verwendung der Nukleinsäuren. Generell gilt es auch noch festzuhalten, dass die adenoviralen Systeme hinsichtlich einzelner oder mehrerer Expressionsprodukte defizient sein können. Dabei ist zu berücksichtigen, dass dies zum einen darauf beruhen kann, dass die für das Expressionsprodukt codierende Nukleinsäure vollständig oder in dem Maße mutiert oder deletiert ist, dass im wesentlichen kein Expressionsprodukt mehr gebildet wird, oder darauf, dass regulative bzw. die Expression steuernde Elemente wie Promotoren oder Transkriptionsfaktoren fehlen, sei es auf der Ebene der Nukleinsäure (Fehlen eines Promotors; cis-wirkende Element) oder auf der Ebene des Translations- bzw. Transkriptionssystems (trans-wirkende Elemente). Gerade der letztere Aspekt kann dabei vom jeweiligen zellulären Hintergrund abhängen.

Die für YB-1 codierende Nukleinsäure, die in einer Ausführungsform der erfindungsgemäß zu verwendenden Adenoviren Bestandteil der Adenoviren sein kann, kann dabei eine einen Kerntransport von YB-1 vermittelnde Nukleinsäuresequenz umfassen. Als Adenoviren bzw. adenovirale Systeme und damit die entsprechenden Nukleinsäuren können im Zusammenhang damit und in Kombination mit diesen erfindungsgemäßen Nukleinsäuren die erfindungsgemäßen Nukleinsäuren, Adenoviren und adenoviralen Systeme sowie die im Stand der Technik bekannten Adenoviren wie beispielsweise Onyx-015, AdΔ24, dl922-947, E1Ad/01/07, CB016 und die im Patent EP 0931 830 beschriebenen Adenoviren verwendet werden. Geeignete, den Kerntransport vermittelnde Nukleinsäuresequenzen sind den Fachleuten auf dem Gebiet be-

kannt und beispielsweise beschrieben in (Whittaker, G.R. et al., Virology, 246, 1-23, 1998; Friedberg, E.C., TIBS 17, 347, 1992; Jans, D.A. et al., Bioessays 2000 Jun; 22(6): 532-44; Yoneda, Y., J. Biocehm. (Tokyo) 1997 May; 121(5): 811-7; Boulikas, T., Crit. Rev. Eukaryot. Gene Expr. 1993; 3(3): 193-227; Lyons RH, Mol. Cell Biol., 7, 2451-2456, 1987). Bei den Kerntransport vermittelnden Nukleinsäuresequenzen können verschiedene Prinzipien verwendet werden. Ein derartiges Prinzip besteht darin, dass, dass YB-1 als Fusionsprotein mit einem Signalpeptid ausgebildet wird und infolge des Signalpeptids YB-1 in den Zellkern geschleust wird und damit die erfindungsgemäße Replikation der Adenoviren erfolgt.

Ein weiteres Prinzip, welches bei der Ausgestaltung der erfindungsgemäß verwendeten Adenoviren zur Anwendung gelangen kann, besteht darin, dass YB-1 mit einer Transportsequenz versehen wird, die dazu führt, dass YB-1, bevorzugter Weise ausgehend von einer Synthese im Cytoplasma, in den Zellkern geschleust oder transloziert wird und dort die virale Replikation befördert. Ein Beispiel für eine besonders wirksame, den Kerntransport vermittelnde Nukleinsäuresequenz stellt die TAT-Sequenz von HIV dar, die neben weiteren geeigneten derartigen Nukleinsäuresequenzen beispielsweise beschrieben ist in Efthymiadis, A., Briggs, LJ, Jans, DA., JBC 273, 1623-1628, 1998. Dabei ist es Rahmen der vorliegenden Erfindung, dass die erfindungsgemäß verwendeten Adenoviren die Nukleinsäuresequenzen umfassen, die für die den Kerntransport codierenden Peptide codieren.

Hinsichtlich der vorstehend genannten verschiedenen weiteren, von den Adenoviren codierten bzw. exprimierten Genen und Genprodukten ist es auch möglich, dass diese in beliebiger Kombination codiert bzw. exprimiert werden.

Im Rahmen der vorliegenden Erfindung sollen hierin die Begriffe Adenovirus und adenovirale Systeme als im wesentlichen die gleiche Bedeutung aufweisend verstanden werden. Unter
Adenovirus soll dabei insbesondere das vollständige Viruspartikel verstanden werden umfassend das Kapsid und die Nukleinsäure. Der Begriff adenovirales System stellt insbesondere
darauf ab, dass die Nukleinsäure gegenüber dem Wildtyp verändert ist. Bevorzugt umfassen
derartige Änderungen solche im Aufbau des Genoms des Adenovirus wie sie durch Deletieren
und/oder Hinzufügen und/oder Mutieren von Promotoren, regulativen Sequenzen und codierende Sequenzen (wie Leserahmen) entstehen. Der Begriff adenovirale Systeme wird darüber

P MANN & LOOSEN

17

hinaus bevorzugt in dem Zusammenhang verwendet, dass es sich dabei um einen Vektor handelt, der beispielsweise in der Gentherapie verwendet werden kann.

Die vorstehend gemachten Ausführungen, einschließlich jeglicher Verwendungen sowie die Ausbildungen der Adenoviren bzw. adenoviralen Systeme gelten im gleichen Maße für die dafür codierenden Nukleinsäuren und umgekehrt.

Im Zusammenhang mit der vorliegenden Erfindung ist es möglich, dass die erfindungsgemäß verwendeten Adenoviren bzw. die für sie codierenden Nukleinsäuren eine jede entsprechende adenovirale Nukleinsäure ist, die zu einem Replikationsereignis für sich oder in Verbindung mit weiteren Nukleinsäuresequenzen führt. Dabei ist es möglich, wie hierin ausgeführt, dass mittels Helferviren die für die Replikation erforderlichen Sequenzen und/oder Genprodukte bereitgestellt werden. Sofern hierin auf codierende Nukleinsäuresequenzen Bezug genommen wird und es sich dabei um solche Nukleinsäuresequenzen handelt, die bekannt sind, ist es im Rahmen der Erfindung, dass nicht nur die identische Sequenz verwendet wird, sondern auch hiervon abgeleitete Sequenzen. Unter abgeleiteten Sequenzen sollen hierin insbesondere solche Sequenzen verstanden sein, die noch zu einem Genprodukt, sei es eine Nukleinsäure oder ein Polypeptid, führen, das eine Funktion aufweist, die einer oder der Funktion der nicht abgeleiteten Sequenz entspricht. Dies kann durch einfache Routinetests festgestellt werden. Ein Beispiel für derartige abgeleitete Nukleinsäuresequenzen sind jene Nukleinsäuresequenzen, die für das gleiche Genprodukt, insbesondere für die gleiche Aminosäuresequenz kodieren, jedoch infolge der Degeneriertheit des genetischen Codes eine andere Basenabfolge aufweisen.

Hinsichtlich des erfindungsgemäßen adenoviralen Replikationssystems ist dabei in einer Ausführungsform vorgesehen, dass die adenovirale Nukleinsäure defizient oder modifiziert, wie hierin definiert, für die Expression des E1A-Proteins ist und das adenovirale Replikationssystem weiter eine Nukleinsäure eines Helfervirus umfasst, wobei die Nukleinsäure des Helfervirus eine Nukleinsäuresequenz umfasst, die für das Onkogenprotein, insbesondere das E1A-Protein codiert, welches die folgenden Eigenschaften aufweist bzw. dem Adenovirus die folgenden Eigenschaften verleiht, nämlich dass dieser nicht replizierend in YB-Kernnegativen Zellen aber sehr wohl in vom Zellzyklus unabhängig YB-1-Kern-positiven Zellen

replizierend ist, transaktivierend auf mindestens ein virales Gen, insbesondere E1B55kDa, E4orf6, E4orf3 und E3ADP, wirkt, und zelluläres YB-1 nicht in den Kern transloziert.

Weiterhin ist bei einem derartigen erfindungsgemäßen adenoviralen Replikationssystem in einer Ausführungsform vorgesehen, dass die adenovirale Nukleinsäure und/oder die Nukleinsäure des Helfervirus als replizierbarer Vektor vorliegt.

Dabei ist es weiter im Rahmen der vorliegenden Erfindung, dass die für die Adenoviren, wie sie erfindungsgemäß verwendet werden, codierende Nukleinsäure(n) in einem Vektor, bevorzugter Weise in einem Expressionsvektor vorliegt/vorliegen und dieser Expressionsvektor erfindungsgemäß verwendet wird.

In einem weiteren Aspekt betrifft die vorliegende Erfindung auch eine Vektorgruppe umfassend mindestens zwei Vektoren, wobei die Vektorgruppe insgesamt ein adenovirales Replikationssystem umfasst, wie hierin beschrieben und die Vektorgruppe erfindungsgemäß verwendet wird. Dabei kann vorgesehen sein, dass eine jede Komponente des adenoviralen Replikationssystems auf einem eigenen Vektor, bevorzugter Weise einem Expressionsvektor angeordnet ist.

Schließlich betrifft die vorliegende Erfindung in einem weiteren Aspekt auch die Verwendung einer Zelle, die eine oder mehrere der Nukleinsäuren, wie sie für die erfindungsgemäße Verwendung der hierin beschriebenen Adenoviren, die erfindungsgemäß verwendet werden sollen, codiert, und/oder ein entsprechendes adenovirales Replikationssystem und/oder einen entsprechenden Vektor und/oder eine erfindungsgemäße Vektorgruppe umfasst, zu denselben Zwecken, wie hierin für die Adenoviren beschrieben

Die vorstehend beschriebenen Konstrukte von Adenoviren und insbesondere deren Nukleinsäuren bzw. die dafür codierenden Nukleinsäuren können auch in eine Zelle, insbesondere eine Tumorzelle, in Teilen eingebracht werden, wobei dann infolge der Anwesenheit der verschiedenen Einzelkomponenten diese so zusammenwirken, als stammten die Einzelkomponenten von einer einzelnen Nukleinsäure.

Die erfindungsgemäß verwendeten, für Adenoviren, adenovirale Systeme oder Teile davon codierenden Nukleinsäuren können als Vektoren vorliegen. Bevorzugter Weise handelt es sich um virale Vektoren. Im Falle der adenovirale Nukleinsäuren umfassenden Nukleinsäuren ist das Viruspartikel dabei bevorzugterweise der Vektor. Es ist jedoch auch im Rahmen der vorliegenden Erfindung, dass die besagten Nukleinsäuren in einem Plasmidvektor vorliegen. In einem jeden Fall weist der Vektor Elemente auf, die für die Vermehrung der inserierten Nukleinsäure (Replikation) und ggf. Expression der inserierten Nukleinsäure sorgen bzw. diese steuern. Geeignete Vektoren, insbesondere auch Expressionsvektoren, und Elemente sind den Fachleuten auf dem Gebiet bekannt und beispielsweise beschrieben in Grunhaus, A., Horwitz, M.S., 1994, Adenoviruses as cloning vectors. In Rice, C., Hrsg., Seminars in Virology, London: Saunders Scientific Publications.

Der oben beschriebenen Ausführungsform, dass die verschiedenen Elemente der besagten Nukleinsäure nicht notwendigerweise auf nur einem Vektor enthalten sein müssen, trägt der Aspekt der Erfindung Rechnung, der die Vektorgruppe betrifft. Eine Vektorgruppe umfasst entsprechend mindestens zwei Vektoren. Ansonsten gilt betreffend die Vektoren bzw. die Vektorengruppe das hierin allgemein zu Vektoren Ausgeführte.

Die erfindungsgemäß verwendeten Adenoviren sind durch die verschiedenen hierin offenbarten Nukleinsäuren bzw. Genprodukte charakterisiert und umfassen ansonsten all jene den Fachleuten auf dem Gebiet bekannten Elemente, wie dies auch bei Adenoviren vom Wildtyp der Fall ist (Shenk, T.: Adenoviridae: The virus and their replication. Fields Virology, 3. Auflage, Hrsg. Fields, B.N., Knipe, D.M., Howley, P.M. et al., Lippincott-Raven Publishers, Philadelphia, 1996, Kapitel 67).

Die Replikation von Adenoviren ist ein ausgesprochen komplexer Vorgang und greift im Regelfalle auf den humanen Transkriptionsfaktor E2F zurück. Während einer viralen Infektion werden zunächst die "frühen Gene" E1, E2, E3 und E4 exprimiert. Die Gruppe der "späten Gene" ist für die Synthese der viralen Strukturproteine verantwortlich. Für die Aktivierung sowohl der frühen wie auch der späten Gene spielt die E1-Region bestehend aus zwei Transkriptionseinheiten E1A und E1B, welche für verschiedene E1A- und E1B-Proteine codieren, eine entscheidende Rolle, da sie die Transkription der E2, E3, E4-Gene induzieren (Nevins, J. R., Cell 26, 213-220, 1981). Zudem können die E1A-Proteine in ruhenden Zellen

BAHMANN & LOOSEN

20

die DNA-Synthese induzieren und so deren Eintritt in die S-Phase einleiten (siehe Boulanger and Blair, 1991). Darüber hinaus interagieren sie mit den Tumorsuppressoren der Rb-Klasse (Whyte, P. et al., Nature 334, 124-127, 1988). Dabei wird der zelluläre Transkriptionsfaktor E2F freigesetzt. Die E2F-Faktoren können dann an die entsprechenden Promotorbereiche sowohl zellulärer wie auch viraler Gene binden (insbesonder an den adenoviralen E2 early Promotor) und die Transkription und somit die Replikation einleiten (Nevins, J. R., Science 258, 424-429, 1992).

Für das Einleiten bzw. die Durchführung der Replikation werden insbesondere die Produkte der E2-Gene benötigt, da sie für drei essentielle Proteine kodieren. Die Transkription der E2-Proteine wird durch zwei Promotoren gesteuert, den "E2-Early E2F-abhängigen", hierin auch als E2-early Promotor oder früher E2-Promotor bezeichnet, und den "E2-late" Promoter (Swaminathan und Thimmapaya, The Molecular Repertoire of Adenoviruses III: Current Topics in Microbiology and Immunology, Vol 199, 177-194, Springer Verlag 1995). Zudem spielen die Produkte der E4-Region, die zusammen mit dem E1A- und E1B-55kDa-Protein, eine wichtige Rolle für die Aktivität von E2F bzw. die Stabilität von p53. Zum Beispiel wird durch eine direkte Interaktion des von der E4-Region codierten E4orf6/7-Proteins mit dem Heterodimer bestehend aus E2F und DP1 der E2-Promoter transaktiviert (Swaminathan und Thimmapaya, JBC 258, 736-746, 1996). Weiterhin wird p53 durch den Komplex bestehend aus E1B-55kDa und E4orf6 inaktiviert (Steegenga, W. T. et al., Oncogene 16, 349-357, 1998), um einen erfolgreichen lytischen Infektionszyklus durchlaufen zu können. Ferner besitzt das E1B-55kDa Protein eine weitere wichtige Funktion insoweit, als dass es in Wechelwirkung mit dem E4orf6 Protein den Export der viralen RNA aus dem Zellkern fördert, wohingegen die zelleigenen RNAs im Kern zurückgehalten werden (Bridge und Ketner, Virology 174, 345-353, 1990). Eine weitere wichtige Beobachtung ist die, dass der Proteinkomplex bestehend aus E1B-55kDa/E4orf6 in den sogenannten "viral inclusion bodies" lokalisiert ist. Es wird angenommen, dass diese Strukturen Orte der Replikation und Transkription darstellen (Ornelles und Shenk, J. Virology 65, 424-429, 1991).

Weiterhin war zum Anmeldezeitpunkt der vorliegenden Erfindung bekannt, dass E1A-deletierte Viren bei höheren MOI's sehr effizient replizieren können (Nevins J. R., Cell 26, 213-220, 1981), die jedoch in der klinischen Anwendung nicht zu realisieren sind. Dieses Phänomen wird in der Literatur als "E1A-like activity" bezeichnet. Ferner war bekannt, dass

BEHMANN & LOOSEN

21

zwei Proteine, das 12S- und das 13S-Protein, die von E1A kodiert werden, die Expression der anderen adenoviralen Gene steuern bzw. induzieren (Nevins, J. R., Cell 26, 213-220, 1981; Boulanger, P. und Blair, E.; Biochem. J. 275, 281-299, 1991). Dabei hat sich gezeigt, dass hauptsächlich die CR3-Region des 13S-Proteins die transaktivierende Funktion ausübt (Wong HK und Ziff EB., J Virol., 68, 4910-20, 1994). Adenoviren, die bestimmte Deletionen in der CR1- und/oder CR2-Region und/oder CR3-Region des 13S-Proteins aufweisen, sind weitestgehend replikationsdefekt, wirken aber noch bei einzelnen Zelllinien transaktivierend auf die viralen Gene bzw. Promotoren, insbesondere auf die E2 Region (Wong HK, Ziff EB., J Virol. 68, 4910-20, 1994; Mymryk, J. S. und Bayley, S. T., Virus Research 33, 89-97, 1994).

Nach Infektion einer Zelle, typischerweise einer Tumorzelle, mit einem Wildtyp-Adenovirus wird YB-1 vermittelt durch E1A, E1B-55K und E4orf6 in den Kern induziert und colokalisiert mit E1B-55K im Kern in den viral inclusion bodies, was eine effektive Replikation des Virus im Zellkern sowohl in vitro als auch in vivo erlaubt. Dabei war bereits früher festgestellt worden, dass auch E4orf6 an E1B-55 K bindet (Weigel, S. und Dobbelstein, M. J. Virology, 74, 764-772, 2000; Keith N. Leppard, Seminars in Virology, 8, 301-307, 1998.) und somit den Transport bzw. die Verteilung von E1B-55K in den Kern vermittelt, was eine optimale Virusproduktion bzw adenovirale Replikation gewährleistet. Durch das Zusammenwirken von E1A, E1B-55K und YB-1 bzw. durch den Komplex aus E1B-55K/E4orf6 mit YB-1 und der Kolokalisation von YB-1 und E1B-55K im Kern in den sogenannten viral inclusion bodies ist eine erfindungsgemäße effiziente Replikation des Virus, und damit die Verwendung der hierin beschriebenen Viren zur Replikation in Zellen, die YB-1-Kern-positiv sind, bzw. zur Herstellung eines Medikamentes zur Behandlung von Erkrankungen, bei denen YB-1-Kern-positive Zellen beteiligt sind, möglich. Die dadurch vor diesem zellulären Hintergrund mögliche Replikation führt zu einer Lyse der Zelle, Freisetzung des Virus und Infektion und Lyse benachbarter Zellen, so dass im Falle der Infektion einer Tumorzelle bzw. eines Tumors letztlich eine Lyse des Tumors, d.h. eine Onkolyse, eintritt.

YB-1 gehört zu einer Gruppe hoch konservierter Faktoren, die an der invertierten CAAT-Sequenz, der sogenannten Y-Box, binden. Sie können sowohl auf der Ebene der Transkription als auch der Translation regulatorisch wirken (Wolffe, A. P. *Trends in* Cell Biology 8, 318-323, 1998). Es werden immer mehr Y-Box-abhängige Regulationswege bei der Aktivierung aber auch bei der Hemmung Wachstums- und Apoptose-assoziierter Gene aufgefunden

(Swamynathan, S. K. et al., FASEB J. 12, 515-522, 1998). So interagiert YB-1 direkt mit p53 (Okamoto, T. et al., Oncogene 19, 6194-6202, 2000), spielt eine wichtige Rolle bei der Fas-Genexpression (Lasham, A. et al., Gene 252, 1-13, 2000) und bei der Aktivierung von Topoisomerasen und Metalloproteinasen (Mertens. P. R. et al., JBC 272, 22905-22912, 1997; Shibao, K. et al., Int. J. Cancer 83, 732-737, 1999). Zudem ist YB-1 an der Regulation der mRNA-Stabilität (Chen, C-Y. et al., Genes & Development 14, 1236-1248, 2000) und an Reparaturvorgängen beteiligt (Ohga, T. et al., Cancer Res. 56, 4224-4228, 1996;).

Die nukläre Lokalisation von YB-1 in Tumorzellen führt zu einer E1A-unabhängigen viralen Replikation (Holm, P. S. et al. JBC 277, 10427-10434, 2002) und im Falle der Überexpression des Proteins YB-1 zu einer multi drug resistance (Vielfachresistenz). Zudem ist bekannt, dass die adenoviralen Proteine wie z. B. E4orf6 und E1B-55K einen positiven Effekt auf die virale Replikation ausüben (Goodrum, F. D. und Ornelles, D. A, J. Virology 73, 7474-7488, 1999), wobei ein funktionelles E1A Protein für das Einschalten der anderen viralen Genprodukte (z. B. E4orf6, E3ADP und E1B-55K) verantwortlich ist (Nevins J. R., Cell 26, 213-220, 1981). Dies unterbleibt jedoch bei den im Stand der Technik bekannten E1A-minus Adenoviren. Die Kernlokalisation von YB-1 in multi drug-resistenten Zellen, die YB-1 im Kern aufweisen, erlaubt die Replikation bzw. Partikelbildung von E1A-minus Viren. Hierbei ist jedoch die Effizienz der viralen Replikation bzw. Partikelbildung im Vergleich zum Wildtyp Ad5 um ein Vielfaches geringer. Eine Kombination von YB-1, welches entweder bereits im Zellkern der Tumorzelle enthalten ist, oder durch äußere Faktoren (z.B. Applikation von Zytostatika, Bestrahlung oder Hyperthermie) in den Zellkern induziert, d.h. veranlasst wird, im Zellkern vorhanden zu sein, insbesondere unabhängig vom Zellzyklus vorhanden zu sein, oder als Transgen durch einen Vektor eingeführt wird, mit einem System, bevorzugterweise mit einem adenoviralen System, welches die adenoviralen Gene einschaltet, aber nicht zur viralen Replikation fähig ist, stellt demgegenüber überraschenderweise ein System dar, welches eine sehr effektive virale Replikation bzw. Partikelbildung durch YB-1 vermittelt und damit eine Onkolyse erlaubt. Die hierin offenbarten Adenoviren, insbesondere rekombinanten Adenoviren, welche nur in YB-1-kernpositiven Zellen zur Replikation befähigt sind, sind in ihrer Fähigkeit, transaktivierend auf die viralen Gene E1B-55K, E4orf6, E4orf3 und E3ADP zu wirken, beschränkt, verglichen mit den diesbezüglichen transaktivierenden Fähigkeiten von Adenoviren vom Wildtyp Ad5. Der vorliegende Erfinder hat nun überraschenderweise festgestellt, dass diese beschränkte transaktivierende Fähigkeit dadurch aufgehoben werden kann, dass die

entsprechenden Gene und insbesondere E1B-55K und E4orf6 in Verbindung mit der Kernlokalisation von YB-1 zur Expression gebracht werden. Wie in den Beispielen hierin gezeigt wird, erhöht sich die virale Replikation bzw. Partikelbildung unter diesen Umständen auf ein Niveau, welches vergleichbar ist mit dem Replikationsverhalten bzw. Partikelbildungsverhalten von Adenoviren vom Wildtyp.

Bei dem Medikament, im Rahmen dessen die Adenoviren erfindungsgemäß verwendet werden, ist dabei vorgesehen, dass dieses in der Regel systemisch appliziert wird, gleichwohl es auch im Rahmen der vorliegenden Erfindung ist, wenn dieses lokal appliziert oder abgegeben wird. Die Applikation erfolgt mit der Absicht, dass insbesondere jene Zellen mit dem Adenovirus infiziert werden und insbesondere darin eine Replikation der Adenoviren erfolgt, bei denen eine Beteiligung, bevorzugter Weise kausal, an der Ausbildung eines Zustandes, typischerweise einer Erkrankung, vorliegt, zu deren Diagnose und/oder Prävention und/oder Behandlung das erfindungsgemäße Medikament verwendet wird.

Ein derartiges Medikament ist bevorzugter Weise für die Behandlung von Tumorerkrankungen vorgesehen. Dabei sind jene Tumorerkrankungen besonders bevorzugt, bei denen entweder YB-1 bereits im Zellkern infolge des der Tumorerkrankung zugrundeliegenden Mechanismus, insbesondere des zugrundeliegenden pathologischen Mechanismus, vorliegt, oder aber durch äußere Maßnahmen die Anwesenheit von YB-1 im Zellkern bedingt wird, wobei die Maßnahmen geeignet sind, YB-1 in den Zellkern zu transferieren, dort zu induzieren oder dort zu exprimieren. Der Begriff Tumor oder Tumorerkrankung soll hierbei sowohl maligne wie benigne Tumoren und entsprechende Erkrankungen bezeichnen. Dabei kann vorgesehen sein, dass das Medikament mindestens eine weitere pharmazeutisch wirksame Verbindung enthält. Die Art und der Umfang dieser weiteren pharmazeutisch aktiven Verbindungen wird dabei von der Art der Indikation abhängen, für die das Medikament eingesetzt wird. Im Falle der Verwendung des Medikamentes für die Behandlung und/oder die Prophylaxe von Tumorerkrankungen werden typischerweise Zytostatika, wie beispielsweise cis-Platin und Taxol, Daunoblastin, Adriamycin und/oder Mitoxantron verwendet.

Das erfindungsgemäße Medikament kann dabei in verschiedenen Formulierungen vorliegen, bevorzugter Weise in einer flüssigen Form. Weiterhin wird das Medikament Hilfsstoffe wie

BAMANN & LOOSEN

24

Stabilisatoren, Puffer, Konservierungsstoffe und dergleichen enthalten, die dem Fachmann auf dem Gebiet der Galenik bekannt sind.

Der vorliegende Erfinder hat überraschenderweise festgestellt, dass die erfindungsgemäße Verwendung der hierin beschriebenen Viren mit besonders großer Erfolgsrate bei solchen Tumoren verwendet werden kann, bei denen YB-1 unabhängig vom Zellzyklus im Zellkern vorkommt. Normalerweise ist YB-1 im Cytoplasma, insbesondere auch im perinukleären Plasma, vorhanden. In der S-Phase des Zellzyklus findet sich YB-1 im Zellkern von sowohl normalen wie auch Tumorzellen. Dies ist jedoch nicht ausreichend, um eine virale Onkolyse unter Verwendung derartiger attenuierten oder modifizierten Adenoviren zu bewerkstelligen. Die im Stand der Technik beschriebene vergleichsweise geringe Wirksamkeit von derartigen attenuierten Adenoviren beruht letztlich auf deren fehlerhaften Anwendung. Mit anderen Worten, es können derartige adenovirale Systeme, insbesondere auch mit einer größeren Wirksamkeit dort eingesetzt werden, wo die molekularbiologischen Voraussetzungen für eine virale Onkolyse unter Verwendung dieser, hierin beschriebenen attenuierten oder modifizierten Adenoviren gegeben sind. Im Falle der hierin erfindungsgemäß zu verwendenden Adenoviren, wie beispielsweise Ad∆24, d1922-947, E1Ad/01/07, CB016 und die im europäischen Patent EP 0931 830 beschriebenen rekombinanten Adenoviren, liegen diese Voraussetzungen bei solchen Tumorerkrankungen vor, deren Zellen eine vom Zellzyklus unabhängige Kernlokalisation von YB-1 aufweisen. Diese Form der Kernlokalisation kann dabei durch die Art des Tumors selbst bedingt sein, oder aber durch die hierin beschriebenen erfindungsgemäßen Agenzien oder Maßnahmen bewirkt werden. Die vorliegende Erfindung definiert somit eine neue Gruppe von Tumoren bzw. Tumorerkrankungen und damit auch von Patienten, die mit den erfindungsgemäßen Agenzien, besonders aber auch mit den im Stand der Technik bereits beschriebenen attenuierten oder modifizierten Adenoviren, nämlich solchen, die ein E1A Protein aufweisen, welches durch Deletionen bzw. Mutationen nicht in der Lage ist, die Kernlokalisation von YB-1 zu induzieren aber noch transaktivierend auf die virale Gene wirkt, noch wirksam behandelt werden können.

Eine weitere Gruppe von Patienten, die erfindungsgemäß unter Verwendung der hierin als erfindungsgemäß zu verwenden beschriebenen, im Stand der Technik als solches wenigstens zum Teil bekannten Adenoviren, behandelt werden können, insbesondere unter Verwendung

PHMANN & LOOSEN

25

solcher Adenoviren, die Mutationen bzw. Deletionen im E1A-Protein aufweisen, welche die Bindungen von Rb/E2f nicht stören oder aber in YB-1-Kern-negativen Zellen nicht replizieren und/oder ein deletiertes Onkoprotein, insbesondere E1A aufweisen, wie beispielsweise im Falle der Viren Ad∆24, dl922-947, E1Ad/01/07, CB106 und der im europäischen Patent EP 0931 830 beschriebenen Adenoviren, sind jene Patienten, bei denen durch Anlegen oder Realisieren bestimmter Bedingungen gewährleistet wird, dass YB-1 in den Kern wandert oder dort induziert oder dorthin transportiert wird. Die Verwendung derartiger Adenoviren bei dieser Patientengruppe beruht insoweit auf der Erkenntnis, dass die Induktion der viralen Replikation auf der Kernlokalisation von YB-1 mit anschließender Bindung an den E2-late-Promotor beruht. Infolge der hierin offenbarten Erkenntnisse sind Adenoviren wie beispielsweise Ad∆24, d1922-947, E1Ad/01/07, CB106 und/oder die im europäischen Patent EP 0931 830 beschriebenen Adenovirus, nicht in der Lage, den Kerntransport des zellulären YB-1 zu vermitteln. Dies begründet den Erfolg von AdΔ24, dl922-947, E1Ad/01/07, CB016 und der im Patent EP 0931 830 beschriebenen Adenoviren bei der erfindungsgemäßen Behandlung solcher Tumoren, die YB-1 inhärent im Kern aufweisen. Dies ist jedoch nur bei einer sehr geringen Patientengruppe gegeben. Die Kernlokalisation von YB-1 kann durch Stress von außen bzw. lokal appliziertem Stress induziert werden. Diese Induzierung kann beispielsweise durch Bestrahlung, insbesondere UV-Bestrahlung, Anwendung von Zytostatika, wie sie unter anderem hierin ebenfalls offenbart sind, und Hyperthermie erfolgen. Im Zusammenhang mit Hyperthermie ist beachtlich, dass diese zwischenzeitlich sehr spezifisch realisiert werden kann und somit ebenfalls spezifisch einen Kerntransport von YB-1 in den Zellkern bedingen kann und infolgedessen die Voraussetzungen für eine Replikation des Adenovirus und damit einer Zell- und Tumorlyse, die bevorzugt lokal beschränkt erfolgt, gegeben sind (Stein U, Jurchott K, Walther W, Bergmann S, Schlag PM, Royer HD. J Biol Chem. 2001,276(30):28562-9; Hu Z, Jin S, Scotto KW. J Biol Chem. 2000 Jan 28;275(4):2979-85; Ohga T, Uchiumi T, Makino Y, Koike K, Wada M, Kuwano M, Kohno K. J Biol Chem. 1998, 273(11):5997-6000).

Das erfindungsgemäße Medikament würde somit auch an solche Patienten und Patientengruppen verabreicht werden bzw. wäre für solche bestimmt, bei denen durch geeignete Vorbehandlungen oder gleichzeitige Behandlung ein Transport von YB-1, insbesondere in die entsprechenden Tumorzellen, bedingt werden würde. Auf der Grundlage dieser technischen Lehre ist es für den Fachmann im Rahmen seiner Fähigkeiten, geeignete Modifikationen insbesondere von E1A vorzunehmen, die beispielsweise Deletionen oder Punktmutationen umfassen können, um so verschiedene Ausführungsformen der im Rahmen der erfindungsgemäßen Verwendung einsetzbaren Adenoviren zu erzeugen.

Wie bereits vorstehend ausgeführt, sind die erfindungsgemäß verwendeten Adenoviren in der Lage, in solchen Zellen bzw. zellulären Systemen zu replizieren, die YB-1 im Kern aufweisen. Für die Frage, inwieweit die erfindungsgemäß verwendeten Adenoviren zur Replikation und damit zur Tumorlyse in der Lage sind, ist der Status der Zellen hinsichtlich des Vorhandenseins oder Nichtvorhandenseins von Rb, d. h. des Retinoblastom-Tumorsupressor-Produktes, unabhängig. Weiterhin ist es im Rahmen der erfindungsgemäßen Verwendung der besagten Adenoviren nicht erforderlich, auf den p53-Status der infizierten, zu infizierenden oder zu behandelnden Zellen abzustellen, da bei Verwendung der hierin offenbarten adenoviralen Systeme im Zusammenhang mit YB-1-Kern-positiven Zellen, d.h. Zellen, die unabhängig vom Zellzyklus YB-1 im Kern aufweisen, dieser ebenso wie der Rb-Status auf das Replikationsgeschehen des Adenovirus praktisch keinen Einfluss hat.

Das Onkogen bzw. Onkogenprotein, insbesondere E1A, kann dabei entweder unter der Kontrolle der eigenen natürlichen adenoviralen Promotoren stehen und/oder aber über einen Tumor- oder Gewebe-spezifischen Promotor gesteuert werden. Geeignete nicht-adenovirale Promotoren können ausgewählt sein aus der Gruppe, die Cytomegalovirus-Promotor, RSV-Rous sarcoma Virus) – Promotor, Adenovirus-basierender Promotor Va I und den nichtviralen YB-1-Promotor umfasst. Weitere Promotoren, die im Zusammenhang mit einem jeden Aspekt der hierin offenbarten Erfindung verwendet werden können, stellen der Telomerase-Promotor, der Alpha-Fetoprotein (AFP)-Promotor, der Caecinoembryonic Antigen Promotor (CEA) (Cao, G., Kuriyama, S., Gao, J., Mitoro, A., Cui, L., Nakatani, T., Zhang, X., Kikukawa, M., Pan, X., Fukui, H., Qi, Z. Int. J. Cancer, 78, 242-247, 1998), der L-Plastin-Promotor (Chung, I., Schwartz, PE., Crystal, RC., Pizzorno, G, Leavitt, J., Deisseroth, AB. Cancer Gene Therapy, 6, 99-106, 1999), Argenin-Vasopressin-Promotor (Coulson, JM, Staley, J., Woll, PJ. British J. Cancer, 80, 1935-1944, 1999) und der PSA-Promotor (Hallenbeck PL, Chang, YN, Hay, C, Golightly, D., Stewart, D., Lin, J., Phipps, S., Chiang, YL. Human Gene Therapy, 10, 1721-1733, 1999) dar. Ferner stellt der in der deutschen Patentanmeldung DE

PHMANN & LOOSEN

27

101 50 984.7 beschriebenen YB-1 abhängigen E2-late-Promotor von Adenoviren einen Promotor dar, wie er im Rahmen der vorliegenden Erfindung verwendet werden kann.

Hinsichtlich des Telomerase-Promotors ist bekannt, dass dieser in humanen Zellen von einer zentralen Bedeutung ist. So wird die Telomeraseaktivität durch die transkriptionelle Kontrolle des Telomerase reverse Transkriptase-Gens (hTERT), welches die katalytische Untereinheit des Enzyms darstellt, reguliert. Die Expression der Telomerase ist in 85% der humanen Tumorzellen aktiv. Im Unterschied dazu ist sie in den meisten normalen Zellen inaktiv. Ausgenommen davon sind Keimzellen und embryonales Gewebe (Braunstein, I. et al., Cancer Research, 61, 5529-5536, 2001; Majumdar, A. S. et al., Gene Therapy 8, 568-578, 2001). Genaue Untersuchungen am hTERT-Promotor haben gezeigt, dass Fragmente des Promotors von 283 bp bzw. 82 bp vom Initiationscodon entfernt für eine spezifische Expression in Tumorzellen ausreichend sind (Braunstein I. et al.; Majumdar AS et al., aaO). Daher eignet sich dieser Promotor bzw. die spezifischen Fragmente, um eine spezifische Expression eines Gens und insbesondere eines Transgens nur in Tumorzellen zu erzielen. Der Promotor soll die Expression des modifizierten Onkogens, bevorzugt des E1A-Onkoproteins nur in Tumorzellen ermöglichen. Die Expression des Transgens in einem adenoviralen Vektor führt dann zur viralen Replikation des adenoviralen Vektors und in der Folge zu einer Onkolyse. Es ist auch im Rahmen der vorliegenden Erfindung, dass der Leserahmen des transaktivierenden E1A-Proteins im Leserahmen (engl. "in frame") mit einem oder mehreren der Genprodukte des adenoviralen Systems ist. Der Leserahmen des transaktivierenden E1A-Proteins kann jedoch auch unabhängig davon sein.

Hinsichtlich der Eigenschaft der Zellen, zu deren Lyse die hierin beschriebenen Adenoviren erfindungsgemäß verwendet werden, ist vorgesehen, dass diese in einer Ausführungsform eine Mehrfach- oder Vielfach-Resistenz zeigen. Diese Mehrfach-Resistenz geht bevorzugterweise mit der Expression, bevorzugter Weise einer Überexpression, des membranständigen Transportproteins P-Glycoprotein einher, welches als Marker für die Bestimmung entsprechender Zellen und damit auch von diesen aufweisenden Tumoren bzw. entsprechende Patientengruppen herangezogen werden kann. Ein weiterer Marker, der mit der Expression von YB-1 korreliert, ist die Topoisomerase II alpha. Insoweit kann in einem Screenen-Verfahren, um zu bestimmen, ob ein Patient mit den Adenoviren erfindungsgemäß mit Aussicht auf Erfolg behandelt werden kann, an Stelle von der bzw. in Ergänzung zur Bestimmung von YB-1

im Kern die Expression von Topoisomerase II alpha herangezogen werden. Ein weiterer Marker, zumindest in dem Umfang, als dass colorectrale Karzinomzellen oder Patienten mit einem Colorectalcarcinom betroffen sind, ist PCNA (engl. proliferating cell nuclear antigen (Hasan S. et al., Nature, 15, 387-391, 2001.), wie beispielsweise beschrieben von Shibao K. et al. (Shibao K et al., Int. Cancer, 83, 732-737, 1999). Schließlich ist, zumindest für den Bereich der Brust- und Osteosarcoma-Zellen die Expression von MDR (engl. multiple drug resistance) ein Marker im vorstehend beschriebenen Sinne (Oda Y et al., Clin. Cancer Res., 4, 2273-2277, 1998).

Es ist somit ein besonderer Vorteil der vorliegenden Erfindung, dass auch jene Patienten unter Anwendung der erfindungsgemäßen Verwendung der Adenoviren, wie hierin beschrieben, therapiert werden können, die ansonsten im medizinisch-klinischen Sinne als "austherapiert" gelten und somit eine weitgehende Behandlung der Tumorerkrankung nach den Methoden des Standes der Technik mit Aussicht auf Erfolg nicht mehr möglich ist, insbesondere die Verwendung von Zytostatika sinnvoller Weise nicht mehr möglich ist bzw. nicht mehr erfolgreich durchgeführt werden kann im Sinne einer Beeinflussung bzw. Verringerung des Tumors. Der Begriff des Tumors bezeichnet hierin allgemein auch eine jegliche Tumor- oder Krebserkrankung, die entweder inhärent YB-1 im Zellkern enthält oder aber durch Realisieren exogener Maßnahmen, wie hierin offenbart, YB-1 im Zellkern, bevorzugterweise unabhängig vom Zellzyklus, aufweist.

Die Erfindung betrifft in einem weiteren Aspekt auch ein Verfahren zum Screenen von Patienten, die mit einem modifizierten Adenovirus, d.h. einem Adenovirus, wie er erfindungsgemäß verwendet wird, wie beispielsweise AdΔ24, dl922-947, E1Ad/01/07, CB016 oder die im europäischen Patent EP 0931 830 beschriebenen Viren, behandelbar sind, wobei das Verfahren die folgenden Schritte umfasst:

- Untersuchen einer Probe des Tumorgewebes und
- Festellen, ob YB-1 im Kern Zellzyklus-unabhängig lokalisiert ist.

BEHMANN & LOOSEN

29

In dem Falle, dass das Tumorgewebe oder ein Teil davon YB-1 im Zellkern, insbesondere Zellzyklus-unabhängig, lokalisiert aufweist, können die hierin offenbarten modifizierten Adenoviren erfindungsgemäß verwendet werden.

In einer Ausführungsform des erfindungsgemäßen Verfahrens ist vorgesehen, dass die Untersuchung des Tumorgewebes unter Verwendung eines Mittels erfolgt, das ausgewählt ist aus der Gruppe, die Antikörper gegen YB-1, Aptamere gegen YB-1, Spiegelmere gegen YB-1 sowie Anticaline gegen YB-1 umfasst. Die Herstellung von Antikörpern, insbesondere monoklonalen Antikörpern, ist den Fachleuten auf dem Gebiet bekannt. Ein weiteres Mittel zum spezifischen Nachweis von YB-1 stellen Peptide dar, die mit hoher Affinität an ihre Zielstrukturen, im vorliegenden Falle YB-1, binden. Im Stand der Technik sind Verfahren bekannt, wie beispielsweise phage-display, um derartige Peptide zu erzeugen. Dabei wird typischerweise von einer Peptid-Bibliothek ausgegangen, wobei die einzelnen Peptide eine Länge von etwa 8 bis 20 Aminosäuren aufweisen und die Größe der Bibliothek etwa 10² bis 10¹8, bevorzugterweise 10³ bis 10¹5 verschiedene Peptide beträgt. Eine spezielle Form von an Zielmolekülen bindenden Polypeptiden stellen die sogenannten Anticaline dar, wie sie beispielsweise in der deutschen Patentanmeldung DE 197 42 706 beschrieben sind.

Ein weiteres Mittel zum spezifischen Binden an YB-1 und damit zum Nachweis einer Zellzyklus-unabhängigen Lokalisation von YB-1 im Zellkern sind die sogenannten Aptamere, d. h. D-Nukleinsäure, die auf RNA- oder DNA-Basis entweder als Einzelstrang oder als Doppelstrang vorliegen und spezifisch an ein Zielmolekül binden. Die Herstellung von Aptameren ist beispielsweise beschrieben im europäischen Patent EP 0 533 838. Eine Sonderform der Aptamere stellen die sogenannten Aptazyme dar, die beispielsweise beschrieben sind von Piganeau, N. et al. (2000), Angew. Chem. Int. Ed., 39, Nr. 29, Seiten 4369 – 4373. Dabei handelt es sich um eine spezielle Ausführungsform von Aptameren insoweit, als dass sie neben dem Aptameranteil noch einen Ribozymanteil aufweisen und nach Bindung oder Freisetzung des an den Aptamerteil bindenden Zielmoleküls der Ribozymanteil katalytisch aktiv wird und ein Nukleinsäuresubstrat spaltet, was mit der Erzeugung eines Signals einhergeht.

Eine weitere Form der Aptamere stellen sogenannte Spiegelmere dar, d. h. zielmolekülbindende Nukleinsäuren, die aus L-Nukleinsäuren hergestellt sind. Das Verfahren zur Herstellung dieser Spiegelmere ist beispielsweise beschrieben in WO 98/08856.

Die Probe des Tumorgewebes kann dabei durch Punktion oder durch einen chirurgischen Eingriff erhalten werden. Die Feststellung, ob im Kern YB-1 Zellzyklus-unabhängig lokalisiert ist, wird dabei häufig unter Verwendung mikroskopischer Techniken und/oder mittels Immunhistoanalyse, typischerweise unter Verwendung von Antikörpern oder einem der weiteren vorstehenden Mitteln erfolgen. Weitere Verfahren zum Nachweis, dass YB-1 im Kern und insbesondere dort Zellzyklus-unabhängig lokalisiert ist, sind dem Fachmann bekannt. Beispielsweise kann bei dem Durchmustern von gegen YB-1 gefärbten Gewebeschnitten die Lokalisation von YB-1 leicht erkannt werden. Dabei ergibt sich bereits infolge der Häufigkeit des Auftretens von YB-1 im Kern, dass es sich um eine Zellzyklus-unabhängige Lokalisation im Kern handelt. Eine weitere Möglichkeit zum Zellzyklus-unabhängigen Nachweis von YB-1 im Kern besteht in der Durchführung einer Färbung gegen YB-1 und Feststellen, ob YB-1 im Kern lokalisiert ist, und Durchführung der Bestimmung des Zellstadiums der Zellen. Dies bzw. die Detektion von YB-1 kann aber auch unter Verwendung der vorstehend genannten, gegen YB-1 gerichteten Mittel erfolgen. Der Nachweis der Mittel erfolgt dabei durch Verfahrensweisen, die den Fachleuten auf dem Gebiet bekannt sind. Dadurch, dass die besagten Mittel spezifisch gegen YB-1 gerichtet sind und insoweit nicht an andere Strukturen innerhalb der zu untersuchenden Probe, insbesondere der Zellen, binden, kann durch eine geeignete Markierung der Mittel deren Lokalisierung und infolge der spezifischen Bindung an YB-1 auch die Lokalisierung von YB-1 entsprechend nachgewiesen und festgestellt werden. Verfahren zum Markieren der Mittel sind den Fachleuten auf dem Gebiet bekannt.

Die vorliegende Erfindung soll im folgenden anhand der Figuren und Beispiele weiter veranschaulicht werden, wobei sich daraus neue Merkmale, Ausführungsformen und Vorteile der Erfindung ergeben. Dabei zeigt

- Fig. 1 den strukturellen Aufbau der adenoviralen Vektoren AdE1/E3-minus Adenovirus, Wildtyp-Adenovirus und Adenovirus dl520;
- Fig. 2 die Bindungsdomänen des E1A-Proteins hinsichtlich der Bindung von p300, p107 und p105;

Fig. 3	U2OS-Zellen, welche nicht YB-1 im Kern aufweisen, nach Infektion mit E1-Adenoviren und d1520;
Fig. 4	257RDB-Zellen, welche YB-1 im Kern aufweisen, nach Infektion mit E1/E3-minus Adenoviren und Adenovirus dl520;
Fig. 5	257RDB-Zellen und U2OS-Zellen, nach Infektion mit dem Adenovirus dl1119/1131;
Fig. 6	das Ergebnis einer EMSA-Analyse, womit belegt wird, dass YB-1 in den vielfachresistenten Zellen bzw. Zelllinien 257RDB, 181 RDB, MCF-7Ad- im Zellkern vorhanden ist, wohingegen YB-1 in U2OS und HeLa-Zellen nicht im Kern vorhanden ist;
Fig. 7	den strukturellen Aufbau des E1A-Proteins vom Wildtyp-Adenovirus, von Adenovirus dl520 und Adenovirus dl1119/1131;
Fig. 8	ein Balkendiagramm, welches die Replikationseffizienz von Adenoviren bei Anwesenheit zusätzlich exprimierter viraler Proteine in Absolutzahlen zeigt; und
Fig. 9	ein Balkendiagramm, welches die Steigerung der Replikationseffizienz von Adenoviren bei Anwesenheit zusätzlich exprimierter viraler Proteine zeigt.

Beispiel 1: Strukturen von E1A-Modifikationen, wie sie von den erfindungsgemäß verwendeten Adenoviren aufgewiesen werden können

Fig.1 zeigt den strukturellen Aufbau der adenoviralen Vektoren AdE1/E3-minus, Wildtyp-Adenovirus und Adenovirus d1520.

Das Adenovirus AdE1/E3-minus weist keine für E1A und keine für E1B und keine für E3 codierenden Bereiche auf und dient im Rahmen der durchgeführten Experimente als Toxizitätskontrolle

Dem gegenüber weist das Adenovirus dl520 einen Bereich auf, der für ein modifiziertes E1A-Protein kodiert. Genauer kodiert E1A für zwei unterschiedliche Proteine, nämlich ein 289 Aminosäuren großes Protein und ein 243 Aminosäuren großes Protein. Beide entstehen durch unterschiedliches splicing der RNA von E1A, wobei unter anderem zwei verschiedene mRNAs, die 12S- und 13S-E1A mRNA, entstehen. Der erfindungsgemäß verwendbare Adenovirus dl520 ist somit ein unter Fachleuten als 12S-E1A bezeichneter Virus. Der im Stand ler Technik bekannte Adenovirus dl347 (Wong und Ziff, J. Virol., 68, 4910-4920, 1994) ist ebenfalls ein 12S-E1A Virus, der erfindungsgemäß verwendet wird kann.

Innerhalb des 289 Aminosäuren großen Proteins, welches von 13S-E1A mRNA kodiert wird, gibt es wiederum 3 Bereiche, die bei den unterschiedlichen adenoviralen Subtypen konserviert vorliegen. Diese werden als CR1, CR2 und CR3 bezeichnet. Während CR1 und CR2 bei beiden E1A-Proteinen (E1A 12S und E1A 13S) vorkommt, d. h. sowohl bei dem 289 Aminosäure langen wie auch bei dem 243 Aminosäure langen Protein, ist der CR3-Bereich nur bei dem größeren der beiden vorstehend genannten Proteine zu finden.

Der CR3-Bereich wird für die Aktivierung der viralen Gene, insbesondere von E1B, E2, E3 and E4 benötigt. Viren, die nur das kleinere Protein aufweisen (243 Aminosäure lang), transaktivieren nur sehr schwach die viralen Gene und führen keine adenovirale Replikation in solchen Zellen durch, die YB-1 nicht im Kern aufweisen. Da YB-1 nur in Tumorzellen im Kern vorliegt bzw. nachweisbar ist, eignet sich dieser Vektor, um eine tumorspezifische Replikation zu induzieren.

Durch die Deletion von CR3 in d1520 ist dieser Adenovirus nicht in der Lage, zelluläres YB-1 in den Zellkern zu translokalisieren (hierin auch als Translozieren bezeichnte), und somit auch nicht in der Lage, in YB-1-Kern-negativen Zellen zu replizieren und stellt damit einen der erfindungsgemäß zu verwendenden Viren dar, wobei dieser Virus die erfindungsgemäß erforderliche Transaktivierung aufweist.

Beispiel 2: Wirkmechanismus von Adenoviren in Abhängigkeit des Rb-Status von Zellen

In Fig. 2 sind die Bindungsdomänen des E1A-Proteins hinsichtlich der Bindung von p300, p107 und p105 dargestellt. P300 ist dabei ebenso wie p107 ein zelluläres Bindungsprotein. Die Bindung des Retinoblastoma-Proteins (pRb), ein Tumorsuppressor-Protein, erfolgt über CR1 und CR2. Studien haben gezeigt, dass pRb und p107/p300 in Verbindung mit dem zellulären Transkriptionsfaktor E2F eine transkriptionelle Regulation ausüben. Das Wildtyp E1A-Protein unterbricht die Bindung von E2F an Rb. Das solchermaßen freigesetzte E2F bindet an den E2 early Promotor und induziert dadurch die adenovirale Replikation.

Es ist im Stand der Technik bekannt, dass bestimmte Deletionen im E1A-Onkoprotein dazu führen, dass rekombinante adenovirale Vektoren wie die nachstehend genannten vornehmlich in Rb-negativen Zellen zur Replikation befähigt ist und erfindungsgemäß verwendet werden können. Zum Beispiel weist der adenovirale Vektor dl922-947 eine Deletion in der CR2-Region auf (Aminoäurepositionen 122-129) und der Vektor CB016 Deletionen in den Bereichen CR1 (Aminoäurepositionen 27-80) und CR2 (Aminoäurepositionen 122-129). Der Vektor E1Adl01/07 weist eine Deletion in der CR2-Bereich auf (Aminoäurepositionen 111-123). Durch eine zusätzliche Deletion am N-Terminus (Aminoäurepositionen 4-25), erfolgt zudem keine Bindung an das Protein p300. Der adenovirale Vektor AdΔ24 weist eine Deletion in der CR2-Region auf (Aminoäurepositionen 120-127). Der im Patent EP 0 931 830 beschriebene adenovirale Vektor weist Deletionen in der CR1 und CR2-Bereich auf.

Der Bindungsmechanismus von E2F/RB und die durch E1A vermittelte Freisetzung von E2F ist grundlegend verschieden von dem der vorliegenden Erfindung zugrunde liegenden Mechanismus. Nicht die Freisetzung von E2F vom Rb-Protein ist, wie im Stand der Technik angenommen, ein wichtiger, um nicht zu sagen der entscheidende Vorgang der adenoviralen Replikation, sondern die Kernlokalisation des humanen Transkriptionsfaktors YB-1. Dieser Transkriptionsfaktor kommt in normalen Zellen über den größten Teil des Zellzyklus lediglich im Zytoplasma vor. Nach Infektion mit einem Adenovirus wird dieser unter bestimmten Bedingungen in den Kern induziert oder liegt bei bestimmten zellulären Systemen wie be-

stimmten_Tumorerkrankungen, wie z.B. aber nicht darauf beschränkt, Brustkrebs, Ovarialkarzinom, Prostatakarzinom, Osteosarkom, Glioblastom, Melanom, kleinzelliges Lungenkarzinom und Kolorektalkarzinom, bereits im Kern vor.

Beispiel 3: Infektion von U2OS-Zellen

Pro Schale wurden 100.000 Zellen ausplattiert. Am nächsten Tag wurden die Zellen wie im Bild angezeigt mit den verschiedene Adenoviren infiziert. Die Infektion erfolgte in 500 μL serumfreie DMEM-Medium für 1 h bei 37° C. Anschließend wurde das Infektionsmedium entfernt und durch 2 ml Vollmedium (10 % FKS/DMEM) ersetzt. Nach 3 Tagen erfolgte die Auswertung mit Hilfe einer Kristallviolettfärbung.

Wie aus Fig. 3 ersichtlich zeigen die U2OS Zellen, welche YB-1 nicht im Kern aufweisen, nach Infektion mit zwei verschiedenen Adenoviren, nämlich E1/E3-minus Adenovirus und Adenovirus dl520, der erfindungsgemäß verwendet werden kann, keine Lyse, wie durch Kristallviolettfärbung der Zellen dargestellt.

Dies bestätigt die der vorliegenden Erfindung zugrundeliegende Erkenntnis, dass das Vorhandensein von YB-1 erforderlich ist, um die erfindungsgemäß zu verwendenden Viren zu einer Lyse von infizierten Zellen zu veranlassen.

Beispiel 4: Infektion von 257RDB-Zellen

Pro Schale wurden 100.000 Zellen ausplattiert. Am nächsten Tag wurden die Zellen wie im Bild angezeigt mit den verschiedene Adenoviren infiziert. Die Infektion erfolgte in 500 μL serumfreiem DMEM-Medium für 1 h bei 37° C. Anschließend wurde das Infektionsmedium entfernt und durch 2 ml Vollmedium (10 % FKS/DMEM) ersetzt. Nach 3 Tagen erfolgte die Auswertung mit Hilfe einer Kristallviolettfärbung (0.5% Kristallviolett in 20 % Methanol).

Das Ergebnis dieses Versuchs ist in Fig. 4 dargestellt. Das Adenovirus E1/E3-minus Ad5 zeigt keine Lyse bei Infektion von 257RDB-Zellen, die YB-1 im Kern aufweisen. Im Gegen-

satz dazu zeigt d1520, welcher wie in Beispiel 3 belegt, in YB-1-kernnegativen Zellen nicht repliziert und gleichzeitig mit E1A für ein im Sinne der vorliegenden transaktivierendes Onkogenprotein codiert, eine praktisch vollständige Lyse bei einer MOI (engl. multiplicity of infection) von 40 pfu pro Zelle und eine noch überwiegende Lyse bei einer MOI von 10 pfu pro Zelle.

Wie in Fig. 7 dargestellt zeichnet sich das E1A-Protein von dl520 dadurch aus, dass der Bereich CR3 davon deletiert ist, was zu der für die erfindungsgemäße Verwendung des Adenovirus erforderlichen Transaktivierung und Replikation in YB-1-kernpositiven Zellen führt.

Beispiel 5: Infektion von 257RDB und U2OS-Zellen mit dl1119/1131

Wie in Fig. 5 dargestellt kommt es bei Infektion von YB-1-kernnegativen Zellen U2OS mit dem Adenovirus dl1119/1131(Deletion der E1A-Aminosäuren 4-138 und Stop-Codon nach Aminosäure 218, wodurch das exprimierte verkürzte E1A-Protein die CR3-Region des vollständigen E1A-Proteins enthält) bei einer MOI von 20 pfu pro Zelle zu keiner Lyse. Als Negativkontrolle wurde ein nicht-infizierter Zellrasen herangezogen.

Im Gegensatz dazu zeigt sich unter dem Einfluss von Adenovirus dl1119/1131 in einem zellulären System wie 257RDB, welches YB-1 im Kern aufweist, d. h. YB-1-kernpositiv ist, bereits bei einer MOI von 20 pfu pro Zelle eine praktisch vollständige Lyse des Zellrasens. Insoweit findet sich auch mit diesem Beispiel ein Beleg für die Aussage, dass ein modifiziertes E1A-Onkogenprotein, welches, wie in Fig. 7 dargestellt, beispielsweise lediglich den CR3-Bereich umfasst und dem der Bereich CR1 sowie CR2 fehlt, die für die erfindungsgemäße Verwendung von Adenoviren erforderliche Transaktivierung zeigt. Der Adenovirus dl1119/1131 stellt somit einen weiteren, erfindungsgemäß verwendbaren Adenovirus dar.

Beispiel 6: Nachweis von nuklärem YB-1 bei vielfachresistenten Zellen

Dem Experiment liegt die Überlegung zugrunde, das nukläres YB-1 als Transkriptionsfaktor an die Y-Box (CAAT-Sequenz) innerhalb des mdr1-Promoters (engl. multiple drug resistance

promoter) binden sollte. Um dies nachzuweisen, wurde eine sogenannte EMSA-Analyse (electrophoretic mobility shift assay) durchgeführt. Dabei wird Kernprotein isoliert und anschließend werden 1-10 µg Protein mit einem kurzen DNA-Fragment (Oligo) zusammen bei 37 C inkubiert. Um nukläres YB-1 zu bestimmen, wurde folgendes Oligonukleotid benutzt: Unterschied zu **U205** im (Position -86 mdr1 promoter bis -67): TGAGGCTGATTGGCTGGGCA (die Y-box ist unterstrichen). Dieses DNA-Fragment wird zuvor mit einer Kinase am 5'-Ende mit 32P radiaktiv markiert. Anschließend erfolgt die Auftrennung in einem nativen Polyacrylamidgel. Falls das Protein YB-1 an einer Sequenz am Oligonucleotid bindet, ist dies zu erkennen, da ungebundenes Oligo im Gel schneller wandert als das gebundene Oligonucleotid (Holm, P. S. et al., JBC 277, 10427-10434, 2002; Bargou, R. C. et al., Nature Medicine 3, 447-450, 1997).

Wie in Fig. 6 dargestellt, konnte im Rahmen einer EMSA-Analyse gezeigt werden, dass YB-1 in den vielfachresistenten Zellen 257RDB, 181RDB und MCF-7Ad-Zellen im Kern im Gegensatz zu den Zellinien U2OS und HeLa-Zellen vorhanden ist.

Die in Beispiel 4 und 5 gezeigten Ergebnisse belegen, dass die Adenoviren dl520 und dl1119/1131 in YB-1-kernpositiven Zellen wie z. B. 257RDB im Unterschied zu U205 replizieren und eine Zellyse induzieren. Dies belegt somit die Aussage der erfindungsgemäßen Verwendung der Adenoviren. Weiterhin belegen die Ergebnisse, dass bereits eine sehr schwache Transaktivierung der viralen Gene durch die modifizierten deletierten E1A-Genprodukte bei Anwesenheit von YB-1 im Zellkern erfolgreich mit einer Replikation und Lyse von viel-achresistenten Zellen einhergeht und somit die hierin beschriebenen Adenoviren bei der Lyse derartiger Tumoren verwendet werden können.

Beispiel 7: Steigerung der Replikationseffizienz von E1-minus Adenoviren

In diesem Beispiel wird die Substitution der frühen viralen Gene E1B-55K und E4orf6 durch Transfektion mit dem Plasmid pE4orf6 und Infektion mit dem E1-minus Adenovirus Ad-55K gezeigt. Diese Substitution wird mit Blick darauf erforderlich, dass AdYB-1 diese frühen Gene nicht exprimiert und der vorliegende Erfinder erkannt hat, dass eine Substitution dieser frühen Gene in einem Replikationssystem, bei dem YB-1 im Kern vorhanden ist, in der Lage

ist, die Replikationseffizienz bzw. die Partikelbildungseffizienz in einem Umfang vergleichbar derjenigen von Wildtyp-Adenoviren vom Typ Ad5 zu erhöhen.

Dabei wurde wie folgt vorgegangen:

Transfektion von je 10⁵ U2-OS Zellen mit dem Plasmid pE4orf6 mit Hilfe von Lipofectamin. Das Plasmid pE4orf6 trägt die für das frühe virale Gen E4orf6 codierende DNA-Sequenz unter CMV-Kontrolle.

24 h nach der Transfektion mit dem Plasmid pE4orf6 wurden die Zellen mit dem YB-1 exprimierenden E1-minus Adenovirus AdYB-1 (50 pfu/Zelle) und dem E1-minus E1B-55K. Adenovirus Ad-55K (50 pfu/Zelle) infiziert. Ad-55K ist ein E1-deletiertes Virus, welches als Transgen das virale Gen E1B-55K unter CMV-Kontrolle trägt.

Anschließend wurden die Zellen vom Medium (2ml) 5 Tage nach der Infektion (= post infectionem) entfernt. Die Freisetzung der viralen Partikel aus den isolierten Zellen erfolgte durch dreimaliges alternierendes Einfrieren und Auftauen (engl. thaw/freeze). Anschließend wurde ein Plaque Assay auf 293-Zellen zur Bestimmung der gebildeten infektiösen Partikel (plaque forming units pro ml (pfu/ml)) durchgeführt. Das Ergebnis ist in den Figs. 8 und 9 dargestellt. Dabei zeigt Figur 8 das Ergebnis des Plaque Assays, dargestellt in absoluten Zahlen. Die deutlichste Differenz zur Infektion mit AdYB-1 alleine zeigt hierbei die Kombination aus Transfektion mit dem Plasmid pE4orf6 und Co-Infektion mit den beiden Viren AdYB-1 und Ld-55K. Fig. 9 zeigt das Ergebnis von Fig. 8, wobei hier die Steigerung der Replikationseffizienz als Vielfaches der für AdYB-1 ermittelten Replikation dargestellt ist. Die mit Plasmid pE4orf6 transfizierten und anschließend mit AdYB-1 und E1B-55K (Ad-55K) infizierten Zellen produzierten bis zu 25 mal mehr pfu/ml.

Aufgrund dieser Ergebnisse kann gefolgert werden, dass die Substitution von E1B-55K und E4orf6 die Anzahl der gebildeten Viren (pfu/ml) nach Infektion mit dem E1/E3-deletierten Adenovirus AdYB-1 um einen Faktor von bis zu 25 erhöht. Dabei sind die additiven Effekte von E1B-55K und E4orf6 auf die Produktion von plaque forming units (pfu) signifikant größer als die Effekte eines der beiden Genprodukte alleine.

Kontrollversuche mit einem Plasmid, welches EGFP exprimierte, zeigten deutlich, dass in dem gewählten experimentellen Ansatz nur etwas 10 % der Zellen erfolgreich mit dem Plasmid pE4orf6 transfiziert werden konnten. Die Anzahl der in den Zellen gebildeten Partikel, die sowohl E1B-55K als auch E4orf6 exprimierten, ist mit der des humanen Adenovirustyp 5 (Wildtyp) vergleichbar. Dies bestätigt die der vorliegenden Erfindung zugrundeliegende Erkenntnis, dass die Expression von E4orf6 und E1B-55K in Verbindung mit der Kernlokalisation von YB-1 in der Lage ist, eine adenovirale Replikation bzw. Partikelbildung, insbesondere von E1A-minus Adenoviren zu bewerkstelligen, die vergleichbar derjenigen von Wildtyp Ad5 ist.

Die in der vorstehenden Beschreibung, den Ansprüchen sowie den Zeichnungen offenbarten Merkmale der Erfindung können sowohl einzeln als auch in beliebigen Kombinationen für die Verwirklichung der Erfindung in ihren verschiedenen Ausführungsformen wesentlich sein.

Ansprüche

- 1. Verwendung eines Adenovirus zur Herstellung eines Medikamentes, dadurch gekennzeichnet, dass der Adenovirus replikationsdefizient ist in Zellen, die YB-1 nicht im Kern aufweisen, und der Adenovirus für ein Onkogen oder Onkogenprodukt codiert, das zumindest ein virales Gen, bevorzugterweise ein adenovirales Gen, transaktiviert, wobei das Gen ausgewählt ist aus der Gruppe, die E1B55kDa, E4orf6, E4orf3 und E3ADP umfasst.
- Verwendung eines Adenovirus zur Replikation in Zellen, die YB-1 im Kern aufweisen, dadurch gekennzeichnet, dass der Adenovirus replikationsdefizient ist in Zellen, die YB-1 nicht im Kern aufweisen, und der Adenovirus für ein Onkogen oder Onkogenprodukt codiert, das zumindest ein virales Gen, bevorzugterweise ein adenovirales Gen, transaktiviert, wobei das Gen ausgewählt ist aus der Gruppe, die E1B55kDa, E4orf6, E4orf3 und E3ADP umfasst.
- 3. Verwendung nach einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, dass der Adenovirus in Zellen repliziert, die YB-1 im Kern aufweisen.
 - Verwendung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das virale Onkoprotein E1A ist und/oder das Onkogen das für E1A codierende Gen und/oder das Onkogenprotein E1A ist.
- Verwendung nach Anspruch 4, dadurch gekennzeichnet, dass das virale Onkoprotein
 E1A zur Bindung eines funktionellen Rb-Tumorsuppressor-Genprodukts fähig ist.
- 6. Verwendung nach Anspruch 4, dadurch gekennzeichnet, dass das virale Onkoprotein E1A zur Bindung eines funktionellen Rb-Tumorsuppressor-Genprodukts nicht fähig ist.

- 7. Verwendung nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, dass das virale Onkoprotein E1A nicht die nukläre Lokalisation von YB-1 induziert.
- 8. Verwendung nach einem der Ansprüche 1 oder 3 bis 7 dadurch gekennzeichnet, dass das Medikament für Patienten ist, deren Zellen Rb-positiv oder Rb-negativ sind.
- 9. Verwendung nach Anspruch 8, dadurch gekennzeichnet, dass die Zellen diejenigen Zellen sind, die an der Ausbildung des Zustandes beteiligt sind, der mit dem Medikament beeinflusst werden soll.
- 10. Verwendung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Zellen Rb-negativ und im Zellkern YB-1 positiv, insbesondere unabhängig vom Zellzyklus im Zellkern YB-1 positiv sind.
- 11. Verwendung nach einem der Ansprüche 1 oder 3 bis 10, dadurch gekennzeichnet, dass das Medikament für die Behandlung von Tumoren ist.
- 12. Verwendung nach Anspruch 11, dadurch gekennzeichnet, dass die Zellen, insbesondere die den Tumor oder Teile davon ausbildenden Zellen eine Mehrfachresistenz gegen pharmakologische Wirkstoffe, bevorzugter Weise Antitumormittel und bevorzugtererweise Zytostatika, aufweisen.
- 13. Verwendung nach Anspruch 12, dadurch gekennzeichnet, dass die Zellen eine Expression, bevorzugterweise eine Überexpression des membranständigen Transportproteins P-Glykoprotein zeigen.
- 14. Verwendung nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass die Zellen p53-positiv oder p53-negativ sind.
- 15. Verwendung nach einem der Ansprüche 5 oder 7 bis 14, dadurch gekennzeichnet, dass das Onkogenprotein gegenüber dem Wildtyp-Onkogenprotein E1A eine oder mehrere Mutationen oder Deletionen aufweist, wobei die Deletion bevorzugt eine solche ist, die ausgewählt ist aus der Gruppe, die Deletionen des Bereichs CR3 und Deletionen des N-Terminus und Deletionen des C-Terminus umfasst.

- 16. Verwendung nach Anspruch 15, dadurch gekennzeichnet, dass das E1A-Onkogenprotein an Rb binden kann.
- 17. Verwendung nach einem der Ansprüche 6 bis 14, dadurch gekennzeichnet, dass das Onkogenprotein gegenüber dem Wildtyp-Onkogenprotein eine oder mehrere Mutationen oder Deletionen aufweist, wobei die Deletion bevorzugt eine solche in der CR1-Region und/oder der CR2-Region ist.
- 18. Verwendung nach Anspruch 17, dadurch gekennzeichnet, dass das Onkogenprotein E1A nicht an Rb zu binden in der Lage ist.
- 19. Verwendung nach einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, dass das virale Onkogenprotein, insbesondere E1A, unter der Kontrolle eines Gewebesund/oder Tumor-spezifischen Promotors steht.
- 20. Verwendung nach einem der Ansprüche 1 bis 19, dadurch gekennzeichnet, dass der Adenovirus für YB-1 codiert.
- 21. Verwendung nach Anspruch 20, dadurch gekennzeichnet, dass YB-1 unter der Kontrolle eines Gewebe- und/oder Tumor-spezifischen Promotors steht.
- 22. Verwendung nach einem der Ansprüche 1 bis 21, dadurch gekennzeichnet, dass der Adenovirus für mindestens ein Protein codiert, das ausgewählt ist aus der Gruppe, die E4orf6, E4orf3, E1B55k und adenovirales E3ADP-Protein umfasst.
- 23. Verwendung nach einem der Ansprüche 1 bis 22 dadurch gekennzeichnet, dass die Zellen YB-1 im Kern aufweisen, insbesondere die den Tumor oder einen Teil davon ausbildenden Zellen YB-1 im Kern aufweisen.
- 24. Verwendung nach einem der Ansprüche 1 bis 23, dadurch gekennzeichnet, dass der Tumor YB-1 im Kern nach Induktion des Tranports von YB-1 in den Kern enthält.

- 25. Verwendung nach Anspruch 20, dadurch gekennzeichnet, dass der Transport von YB-1 in den Kern ausgelöst wird durch zumindest eine Maßnahme, die ausgewählt ist aus der Gruppe, die Bestrahlung, Gabe von Zytostatika und Hyperthermie umfasst.
- 26. Verwendung nach Anspruch 25, dadurch gekennzeichnet, dass die Maßnahme an einer Zelle, einem Organ oder einem Organismus angewandt wird.
- 27. Verwendung nach einem der Ansprüche 1 bis 26, dadurch gekennzeichnet, dass der Adenovirus ausgewählt ist aus der Gruppe, die Ad∆24, dl922-947, E1Ad/01/07, dl1119/1131, CB 016, dl520, und Viren, denen ein exprimiertes virales Onkogen fehlt, das zur Bindung eines funktionellen Rb-Tumorsuppressor-Genprodukts fähig ist, umfasst.
- 28. Verwendung eines Adenovirus zur Herstellung eines Medikaments, wobei der Adenovirus so ausgebildet ist, dass die Replikation durch YB-1 über die Aktivierung des E2-Late-Promotors gesteuert wird, bevorzugterweise überwiegend über die Aktivierung des E2-Late-Promotors gesteuert wird.
- 29. Verwendung eines Adenovirus zur Replikation in Zellen, die YB-1 im Kern aufweisen, dadurch gekennzeichnet, dass der Adenovirus so ausgebildet ist, dass die Replikation durch YB-1 über die Aktivierung des E2-Late-Promotors gesteuert wird, bevorzugterweise überwiegend über die Aktivierung des E2-Late-Promotors gesteuert wird.
 - Virales Onkogenprotein, insbesondere isoliertes virales Onkogenprotein dadurch gekennzeichnet, dass dieses die folgenden Eigenschaften aufweist:
 - a) Transaktivierung mindestens eines viralen Gens, das ausgewählt ist aus der Gruppe, die E1B-55k, E3ADP und E4orf6 und E4orf3 umfasst; und
 - b) keine Induktion von YB-1 in einem Zellkern, insbesondere in dem Zellkern der Zelle, in der das virale Onkoprotein vorhanden ist.

- 31. Virales Onkogenprotein nach Anspruch 30, dadurch gekennzeichnet, dass das virale Onkoprotein E1A ist.
- 32. Virales Onkogenprotein nach Anspruch 30 oder 31, dadurch gekennzeichnet, dass das virale Onkogenprotein gegenüber dem Wildtyp-Onkogenprotein eine oder mehrere Deletionen aufweist, wobei die Deletion bevorzugt eine solche ist, die ausgewählt ist aus der Gruppe, die Deletion des Bereichs CR3, Deletion des N-Terminus und Deletion des C-Terminus umfasst.
- 33. Virales Onkogenprotein nach Anspruch 32, dadurch gekennzeichnet, dass es an Rb zu binden in der Lage ist.
- Virales Onkogenprotein nach Anspruch 30 oder 31, dadurch gekennzeichnet, dass das virale Onkogenprotein eine oder mehrer Mutationen oder Deletionen aufweist, wobei die Deletion bevorzugt eine solche in der CR1-Region und/oder der CR2-Region des E1A-Onkogenproteins ist.
- 35. Verwendung nach Anspruch 30, dadurch gekennzeichnet, dass das virale Onkogenprotein nicht in der Lage ist an Rb zu binden.
- 36. Verwendung eines adenoviralen Replikationssystems umfassend eine Nukleinsäure, die für ein Adenovirus gemäß einem der Ansprüche 1 bis 29 codiert, und umfassend eine Nukleinsäure eines Helfervirus, wobei die Nukleinsäure des Helfervirus eine Nukleinsäuresequenz umfasst, die für YB-1 codiert.
- 37. Verwendung eines adenoviralen Replikationssystems nach Anspruch 36, dadurch gekennzeichnet, dass die adenovirale Nukleinsäure und/oder die Nukleinsäure des Helfervirus als replizierbarer Vektor vorliegt.
- 38. Verwendung einer Nukleinsäure codierend für einen Adenovirus gemäß einem der Ansprüche 1 bis 29 zur Herstellung eines Medikamentes, insbesondere zur Herstellung eines Medikamentes für die Behandlung von Tumoren.

- 39. Verwendung nach Anspruch 38, dadurch gekennzeichnet, dass die Zellen, insbesondere die den Tumor oder Teile davon ausbildenden Zellen, eine Mehrfachresistenz gegen pharmakologische Wirkstoffe, bevorzugterweise Antitumormittel, und bevorzugtererweise Zytostatika, aufweisen.
- 40. Verwendung einer Nukleinsäure, die für einen Adenvirus gemäß einem der Ansprüche 1 bis 29 codiert, zur Replikation in Zellen, die YB-1 im Kern aufweisen, dadurch gekennzeichnet, dass der Adenovirus replikationsdefizient ist in Zellen, die YB-1 nicht im Kern aufweisen, und der Adenovirus für ein Onkogen oder Onkogenprodukt codiert, das zumindest ein virales Gen, bevorzugterweise ein adenovirales Gen transaktiviert, wobei das Gen ausgewählt ist aus der Gruppe, die E1B55kDa, E4orf6, E4orf3 und E3ADP umfasst.
- 41. Verwendung einer Nukleinsäure, die für einen Adenovirus gemäß einem der Ansprüche 1 bis 29 codiert zur Herstellung eines Medikamentes, wobei der Adenovirus so ausgebildet ist, dass die Replikation durch YB-1 über die Aktivierung des E2-Late-Promotors gesteuert wird, bevorzugterweise überwiegend über die Aktivierung des E2-Late-Promotors.
- 42. Verwendung einer Nukleinsäure, die für einen Adenovirus gemäß einem der Ansprüche 1 bis 29 codiert, zur Replikation in Zellen, wobei der Adenovirus so ausgebildet ist, dass die Replikation durch YB-1 über die Aktivierung des E2-Late-Promotors gesteuert wird, bevorzugterweise überwiegend über die Aktivierung des E2-Late-Promotors gesteuert wird.
- 43. Verwendung eines Vektors umfassend eine Nukleinsäure gemäß einem der Ansprüche 36 bis 42 zur Verwendung gemäß einem der Ansprüche 1 bis 29.
- 44. Verwendung eines mit YB-1 wechselwirkenden Mittels zur Charakterisierung von Zellen, Zellen eines Tumorgewebes oder Patienten, um zu bestimmen, ob diese(r) mit einem Adenovirus gemäß einem der Ansprüche 1 bis 29 kontaktiert werden sollen.

- 45. Verwendung nach Anspruch 44, dadurch gekennzeichnet, dass das Mittel ausgewählt ist aus der Gruppe, die Antikörper, Antikaline, Aptamere, Aptazyme und Spiegelmere umfasst.
- 46. Verwendung des viralen Onkogenproteins nach einem der Ansprüche 30 bis 35 oder einer dafür codierenden Nukleinsäure zur Herstellung eines Adenovirus, wie er im Rahmen der Verwendungen nach einem der Ansprüche 1 bis 29 verwendet wird.

Zusammenfassung

Die vorliegende Erfindung betrifft die Verwendung eines Adenovirus zur Herstellung eines Medikamentes, wobei der Adenovirus replikationsdefizient ist den Zellen, die YB-1 nicht im Kern aufweisen und der Adenovirus für ein Onkogen oder Onkogenprodukt codiert, das zumindest ein virales Gen, bevorzugterweise ein adenovirales Gen, transaktiviert, wobei das en ausgewählt ist aus der Gruppe, die E1B55kDa, E4orf6, E4orf3 und E3ADP umfasst.

Fig.

Fig. 2

Intektion von U20S zellen

d1520

Färbung 3
Tage nach
Infektion

Fig. 3

Infektion von 25/IRDB/Zeilen

Fig. 4

ntektion von 25//klaband uzos zellen mu

Fig. 5

HeLa U2OS 257RDB 181RDB

` YB-1

Fig. 6

dl1119/1131

S

Fig. 7

Fig. 8

Fig. 9

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS	•
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES	
☐ FADED TEXT OR DRAWING	
BLURRED OR ILLEGIBLE TEXT OR DRAWING	
SKEWED/SLANTED IMAGES	
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS	
☐ GRAY SCALE DOCUMENTS	
☐ LINES OR MARKS ON ORIGINAL DOCUMENT	
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY	
□ OTHER:	

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.