

Plano de Ensino para o Ano Letivo de 2020

IDENTIFICAÇÃO								
Disciplina:				Cód	igo da Disciplina:			
Circuitos Elétricos					ECM304			
Course:								
Electric Circuits								
Materia:								
Circuitos Electricos								
Periodicidade: Semestral	Carga horária total:	40	Carga horária sem	nanal: 02	- 00 - 00			
Curso/Habilitação/Ênfase:	•		Série:	Período	:			
Engenharia de Computação			3	Diurno)			
Professor Responsável:	Titulação - Graduação			Pós-Graduação				
Sergio Ribeiro Augusto	Engenheiro Eletricista Doutor			Doutor				
Professores:	Titulação - Graduação Pós-Grad			Pós-Graduação				
Sergio Ribeiro Augusto		Engenheiro Ele	tricista		Doutor			

OBJETIVOS - Conhecimentos, Habilidades, e Atitudes

CONHECIMENTOS:

- C1 Circuitos elétricos em corrente contínua valores iniciais e finais
- C2- Teoria geral de circuitos elétricos em regime senoidal
- C3- Potência e Correção de fator de potência em regime senoidal
- C3 Teoremas da resolução de circuitos e técnicas de simplificação da resolução.

HABILIDADES:

- H1 Analisar valores iniciais e finais em circuitos de corrente contínua com as técnicas adequadas
- H2 analisar circuitos em regime permanente senoidal

ATITUDES:

- Al Integrar conhecimentos de maneira a propor soluções adequadas a cada problema
- A2 Saber analisar a técnica mais adequada para resolução de circuitos em regime permanente senoidal

EMENTA

1)Circuitos RLC em corrente contínua: valores iniciais e finais; 2) Revisão de números complexos e notações; 3)Circuitos em Regime permanente senoidal (RPS); 4) Impedância e admitância em regime senoidal; 5) Diagrama Fasorial; 6) Resolução de Circuitos em RPS; 7)Potência em regime senoidal (aparente, ativa e reativa) 8) Correção de fator de potência em RPS.

2020-ECM304 página 1 de 7

SYLLABUS

1)RLC circuits in steady-state: initial and final values; 2)Complex numbers review and notations; 3) Sinusoidal steady-state circuits; 4) Impedance and admitance in Sinusoidal steady-state; 5)Phasor Diagram; 6) Sinusoidal steady-state analysis; 7)Power in Sinusoidal steady-state (apparent power, average power, reactive power); 8) Power factor correction.

TEMARIO

1)Circuitos em corriente continua: valores iniciales y finales; 2) Revisión de números complejos y notaciones; 3) Circuitos en estado estable senoidal; 4) Impedancia y admitancia en régimen senoidal;5)Diagrama fasorial; 6) Resolución de circuitos en estado estable senoidal; 7) Potencia en régimen senoidal (aparente, activa y reactiva);8) Corrección del factor de potencia.

ESTRATÉGIAS ATIVAS PARA APRENDIZAGEM - EAA

Aulas de Teoria - Sim

LISTA DE ESTRATÉGIAS ATIVAS PARA APRENDIZAGEM

- Sala de aula invertida
- Peer Instruction (Ensino por pares)

METODOLOGIA DIDÁTICA

Aulas expositivas e com exercícios/problemas reais, permeadas com aulas práticas em laboratório. Nas aulas de laboratório os alunos devem estudar previamente o que será realizado de maneira a discutir os resultados obtidos e relaciona-los com a teoria. Listas de exercícios são propostas durante o curso, assim como uma

avaliação individual no final de cada bimestre de maneira a discutir com os alunos pontos falhos na aprendizagem e o que precisa ser melhorado pelos mesmos.

CONHECIMENTOS PRÉVIOS NECESSÁRIOS PARA O ACOMPANHAMENTO DA DISCIPLINA

Cálculo diferencial e integral. Física. Fundamentos de Engenharia Elétrica.

CONTRIBUIÇÃO DA DISCIPLINA

A disciplina aborda as técnicas de resolução de circuitos em regime permanente senoidal, cálculo de potências aparente, ativa e reativa e correção de fator de potência. Também analisa valores inicias e finais em circuitos de corrente contínua (RLC).

BIBLIOGRAFIA

Bibliografia Básica:

BOYLESTAD, Robert L. Introdução à análise de circuitos. [Introductory circuit analysis]. Trad. José Lucimar do Nascimento, rev. téc. de Antonio Pertence Jr. 10. ed. São Paulo, SP: Pearson Prentice Hall, 2004. 828 p. ISBN 9788587918185.

2020-ECM304 página 2 de 7

JOHNSON, David E. Fundamentos de análise de circuitos elétricos. Trad. de Onofre de Andrade Martins, Marco Antonio Moreira de Santis. 4. ed. Rio de Janeiro, RJ: Prentice-Hall, 1994. 539 p.

NILSSON, James W; RIEDEL, Susan A. Circuitos elétricos. Trad. de Arlete Simille Marques e rev. téc de Antônio Emílio Angueth de Araújo. 8. ed. São Paulo, SP: Pearson Prentice Hall, 2009. 574 p. ISBN 9788576051596.

Bibliografia Complementar:

DESOER, Charles A; KUH, Ernest S; KRAUS, John Daniel. Teoria básica de circuitos. Rio de Janeiro, RJ: Guanabara Dois, 1988. 823 p.

EDMINISTER, Joseph A. Circuitos elétricos. 2. ed. São Paulo, SP: McGraw-Hill, 1985. 421 p. ISBN 0-07-450139-9.

HAYT JR., William H; KEMMERLY, Jack E. Análise de circuitos em engenharia. Tradução de José Rubens Dória Porto. São Paulo, SP: McGraw-Hill, 1973. 622 p.

ORSINI, Luiz de Queiroz. Curso de circuitos elétricos. São Paulo, SP: Edgard Blücher, 1993. v. 1.

ORSINI, Luiz de Queiroz. Curso de circuitos elétricos. São Paulo, SP: Edgard Blücher, 1993. v. 2.

AVALIAÇÃO (conforme Resolução RN CEPE 16/2014)

Disciplina semestral, com trabalhos e provas (duas e uma substitutiva).

Pesos dos trabalhos:

 $k_1: 1,0 \quad k_2: 1,0$

Peso de $MP(k_p)$: 0,7 Peso de $MT(k_T)$: 0,3

INFORMAÇÕES SOBRE PROVAS E TRABALHOS

A nota de trabalho será obtida através de avaliações bimestrais em sala e listas de exercícios.

2020-ECM304 página 3 de 7

OUTRAS INFORMAÇÕES

2020-ECM304 página 4 de 7

		SOFTWARES NECESSÁRIOS PARA A DISCIPLINA		
Microsoft	Office			

2020-ECM304 página 5 de 7

2020-ECM304 página 6 de 7

PROGRAMA DA DISCIPLINA					
Nº da	Conteúdo	EAA			
semana					
1 T	Atividades de recepção dos calouros e atividades de planejamento.	0			
2 T	Apresentação da disciplina.Cálculo por inspeção de valores	0			
	iniciais e finais em circuitos RLC em corrente contínua.				
3 T	Carnaval. Revisão números complexos e notações.	0			
4 T	Revisão números complexos e notações (cont.).	0			
5 T	Regime permanente senoidal (RPS), conceito de valor eficaz,	0			
	fasor.				
6 T	Diagrama fasorial, impedância, admitância, Lei de ohm e Leis de	0			
	Kirchhoff em corrente alternada (CA).				
7 T	Exercícios RPS.	1% a 10%			
8 T	Exercícios de avaliação. Semana de provas.	0			
9 Т	Semana de Provas.	0			
10 T	Laboratório análise fasorial.	91% a			
		100%			
11 T	Potência (aparente, ativa, reativa) e fator de potência em regime	0			
	permanente senoidal.				
12 T	Potência complexa.	0			
13 T	Exercícios potência em RPS.	1% a 10%			
14 T	Correção fator de potência.	0			
15 T	Semana Smile.	0			
16 T	Laboratório potência.	91% a			
		100%			
17 T	Exercícios de Avaliação.	0			
18 T	Revisão e discussões.	11% a 40%			
19 T	Semana de provas.	0			
20 Т	Semana de provas.	0			
21 T	Revisão e atendimento.	0			
Legenda	: T = Teoria, E = Exercício, L = Laboratório				

2020-ECM304 página 7 de 7