Examen de Teoría de Percepción - Primer Parcial ETSINF, Universitat Politécnica de Valéncia, Abril de 2021

Apellidos:	Nombre:
Profesor: \Box Jorge Civera \Box Carlos N	
Cuestiones (1.5 puntos, 30 minutos, s	in apuntes)
C ¿Cuál de las siguientes expresiones equ	ivale a un clasificador de Bayes?
A) $\arg \max_{c \in \mathbb{C}} \log P(c \mathbf{x})^{-1}$	
B) $\operatorname{argmin}_{c \in \mathbb{C}} \log P(\mathbf{x} c)^{-1}$	
C) $\operatorname{argmin}_{c \in \mathbb{C}} \log P(c \mathbf{x})^{-1}$	
D) $\operatorname{argmax}_{c \in \mathbb{C}} \log(P(\mathbf{x} c)P(c))^{-1}$	
B En un sistema de reconocimiento de formismo se basa en:	ormas interactivo, la evaluación automática del
A) La tasa de acierto	
B) El esfuerzo de usuario	
C) La tasa de error	
D) El tamaño del conjunto de entrena	niento
fondo con una frecuencia espacial de 2 que contiene un objeto que se dispondr	o de combinar dos imágenes, una utilizada como oppp y otra con un frecuencia menor a 100ppp a sobre el fondo de la primera, ¿qué frecuencia ada si queremos reproducirla fielmente?
A) 25ppp	
B) 50ppp	
C) 100ppp	
D) 200ppp	
	orial hemos obtenido el codebook $\{(a, (0, 0)),$ es la representación de la secuencia de vectores $(1.25, -0.25)\}$?
A) mama	
B) meme	
C) mima	
D) mami	

- $\boxed{\mathbb{D}}$ Dada la matriz $A=\begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}$, indicar cuál de los siguientes es un vector propio de la misma:
 - A) (1 -2)
 - B) (-1 -2)
 - C) $(2 \ 1)$
 - D) (1 1)
- C ¿Qué propiedad cumplen los elementos de la matriz de covarianzas de los datos proyectados?
 - A) $\sigma_{ij} > 0 \quad \forall i, j$
 - B) $\sigma_{ii} = 0 \land \sigma_{ij} \ge 0 \quad \forall i, j \text{ siendo } i \ne j$
 - C) $\sigma_{ii} \geq 0 \wedge \sigma_{ij} = 0 \quad \forall i, j \text{ siendo } i \neq j$
 - D) $\sigma_{ij} = 0 \quad \forall i, j$
- $\boxed{\mathbf{A}}$ ¿Cuál de las siguientes **no** es una propiedad de la regla de clasificación k-NN?:
 - A) Evita que se produzcan empates de decisión entre clases
 - B) Define fronteras de decisión lineales a trozos
 - C) Permite aproximarse asintóticamente al error de Bayes
 - D) Puede verse como una estimación de la probabilidad a posteriori
- C Sea la función producto escalar de dos vectores $d(\mathbf{x}, \mathbf{y}) = \mathbf{x} \cdot \mathbf{y}$ con $\mathbf{x}, \mathbf{y} \in \mathbb{R}^D$, ¿cuál de las propiedades de función distancia cumple?
 - A) $d(\mathbf{x}, \mathbf{y}) \ge 0$
 - B) $d(\mathbf{x}, \mathbf{y}) = 0 \iff \mathbf{x} = \mathbf{y}$
 - C) $d(\mathbf{x}, \mathbf{y}) = d(\mathbf{y}, \mathbf{x})$
 - D) $d(\mathbf{x}, \mathbf{z}) + d(\mathbf{z}, \mathbf{y}) \ge d(\mathbf{x}, \mathbf{y}) \quad \mathbf{z} \in \mathbb{R}^D$

Examen de Teoría de Percepción - Primer Parcial

ETSINF, Universitat Politécnica de Valéncia, Abril de 2021

Apellidos:	Nombre:	
Profesor: □Jorge Civera □Carlos Martínez		
Problemas (2 puntos, 90 minutos, con apuntes	s)	

- 1. (0.5 puntos) Calcula el espacio en memoria de las siguientes representaciones:
 - a) Representación global directa de una imagen a 256 niveles de gris con resolución 1280 × 256 píxeles (0.1 puntos)
 - b) Representación local de una imagen de 512×1024 píxeles, usando ventanas de 13×11 píxeles y una rejilla de desplazamiento horizontal de 1 y vertical de 2 sobre una imagen de 512 niveles de gris, usando representación directa de cada ventana (0.2 puntos)
 - c) Señal de audio de 3 canales de 5 minutos de duración, muestreada a 44KHz y 16 bits (0.1 puntos)
 - d) Colección de 500 documentos de 1000 palabras máximo cada uno, con un vocabulario de 50000 palabras, representado por term frequency de 1-grama (0.1 puntos)

Solución:

- a) 320.00 Kbytes
- b) 69.14 Mbytes
- c) 75.53 Mbytes
- d) 47.68 Mbytes
- 2. (0.8 puntos) Se tiene el siguiente conjunto de datos vectoriales de 4 dimensiones ($\mathbf{x} \in \mathbb{R}^4$) con sus correspondientes etiquetas de clase:

	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	\mathbf{x}_4	\mathbf{x}_5	\mathbf{x}_6	
Ī	1	-1	2	1	3	0	
	-1	1	-3	2	2	-1	
	-1	$3 \mid 3$	3	1	1	-1	
	-2	0	0	-1	1	2	
ſ	A	В	A	В	A	В	

Se pide:

- a) Calcular una matriz de proyección a dos dimensiones (\mathbb{R}^2) mediante PCA, indicando todos los pasos necesarios (0.5 puntos)
- b) Aplicar dicha proyección sobre los datos dados y discernir si se consigue una separación lineal. Si no se consiguiera, indicar una proyección que sí que los haría linealmente separables en \mathbb{R}^2 (0.3 puntos)

Solución:

a) La media de los datos es $\mathbf{x}_m = (1 \quad 0 \quad 1 \quad 0)^t$, con lo cual, al restarla a los datos quedan:

$\mathbf{x}_1 - \mathbf{x}_m$	$\mathbf{x}_2 - \mathbf{x}_m$	$\mathbf{x}_3 - \mathbf{x}_m$	$\mathbf{x}_4 - \mathbf{x}_m$	$\mathbf{x}_5 - \mathbf{x}_m$	$\mathbf{x}_6 - \mathbf{x}_m$	
0	-2	1	0	2	-1	l
-1	1	-3	2	2	-1	
-2	2	$\overline{}$	0	0	-2	ĺ
-2	0	0	-1	1	2	

La matriz de covarianzas de esos datos es:

$$\Sigma_X = \begin{pmatrix} \frac{5}{3} & 0 & 0 & 0\\ 0 & \frac{10}{3} & 0 & 0\\ 0 & 0 & \frac{8}{3} & 0\\ 0 & 0 & 0 & \frac{5}{3} \end{pmatrix}$$

El cálculo de valores y vectores propios de la misma da como resultado:

	\mathbf{w}_1	\mathbf{w}_2	\mathbf{w}_3	\mathbf{w}_4
	0	0	0	1
	1	0	0	0
	0	1	0	0
	0	0	1	0
λ	$\frac{10}{3}$	$\frac{8}{3}$	$\frac{5}{3}$	$\frac{5}{3}$

Por tanto, la matriz de proyección a \mathbb{R}^2 sería:

$$W = \begin{pmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$$

b) El resultado de la proyección es:

\mathbf{x}_1'	\mathbf{x}_2'	\mathbf{x}_3'	\mathbf{x}_4'	\mathbf{x}_5'	\mathbf{x}_6'
-1	1	-3	2	2	-1
-2	2	2	0	0	-2
A	В	A	В	A	В

Tal y como se ve, \mathbf{x}_1' y \mathbf{x}_6' son el mismo punto siendo de clases distintas, y lo mismo ocurre con \mathbf{x}_4' y \mathbf{x}_5' . Por tanto, no es posible encontrar una separación lineal entre las clases.

Si se opta por la matriz de proyección:

$$W_a = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$$

El resultado de la proyección es:

\mathbf{x}_1'	\mathbf{x}_2'	\mathbf{x}_3'	\mathbf{x}_4'	\mathbf{x}_5'	\mathbf{x}_6'
0	-2	1	0	2	-1
-1	1	-3	2	2	-1
A	В	A	В	A	В

La cual es linealmente separable como se puede observar en su representación gráfica a continuación.

3. (0.7 puntos) Se tiene el siguiente conjunto de datos, cuya representación gráfica se ve en la parte derecha:

n	1	2	3	4	5	6	7	8	9
x_{n1}	4	5	2	5	2	4	1	1	3
x_{n1} x_{n2} c_n	2	4	1	1	5	3	5	1	2
c_n	3	2	3	1	1	2	1	3	2

Se pide:

- a) Aplica el algoritmo de Wilson con 1-NN en distancia Euclídea, con recorrido por índices ascendentes. En caso de empate por distancia, desempata clasificando por el prototipo de menor índice (**0.4 puntos**)
- b) Una vez aplicado el algoritmo de Wilson, aplica el algoritmo de Hart con 1-NN en distancia Euclídea, con recorrido por índices ascendentes. En caso de empate por distancia, desempata clasificando por el prototipo de menor índice (0.3 puntos)

Solución:

- a) Tras aplicar Wilson, el conjunto resultante de prototipos es $\{\mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_5, \mathbf{x}_6, \mathbf{x}_7, \mathbf{x}_8\}$.
- b) Una vez aplicado Wilson, aplicamos Hart, y obtenemos los conjuntos $S = \{\mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_5\}$ y $G = \{\mathbf{x}_6, \mathbf{x}_7, \mathbf{x}_8\}$.