Chaptero9. Vectorizing Text & RNN

작성자: 김진성

목차

- 1. 텍스트 벡터화(자연어 전처리)
- 2. One-hot encoding
- 3. 지도학습을 위한 특징 추출
- 4. Word embedding
- 5. RNN 개요
- 6. Keras RNN model(SimpleRNN & LSTM)

1. 텍스트 벡터화(자연어 전처리)

- ▶ 텍스트 벡터화(Vectorizing Text)란?
 - ✓ 텍스트를 숫자형 벡터로 변환하는 전처리 과정
 - ✓ 딥러닝 모델은 숫자형만 처리
- ▶ 방법
 - ✓ 텍스트 → 단어 → 단어 벡터 변환
 - ✓ 텍스트 → 문자 → 문자 벡터 변환

N-gram : 연속된 단어나 문자의 그룹 단위(텍스트 에서 단어나 문자를 하나 씩 이동하면서 추출)

- ✓ 텍스트 → N-gram(단어나 문자 그룹) → N-gram 벡터 변환
- ❖ 토큰(token) : 텍스트를 나누는 단위(단어, 문자, N-gram)
- ▶ 벡터 변환 방법(토큰에 숫자형 벡터 연결 방법)
 - 1) 원-핫 인코딩(희소행렬)
 - 2) 단어 임베딩(토큰 임베딩)

1) 원핫인코딩(희소행렬)

2) 단어 임베딩(토큰 임베딩)

Text

"The cat sat one the mat."

Tokens

"the", "cat", "sat", "one", "the", "mat"

Vector encoding of the Tokens

Vector encoding of the Tokens

"the" [[o.,	1.,	0.,	0.,	0.,	0.,	0.,	o.],
"cat",	[o.,	0.,	1.,	Ο.,	0.,	0.,	0.,	0.],
"sat"	[o.,	0.,	0.,	1.,	0.,	0.,	0.,	o.],
"one"	[o.,	0.,	0.,	Ο.,	1.,	0.,	0.,	0.],
"the"	[o.,	1.,	0.,	0.,	0.,	O.,	0.,	0.],
"mat"	[o.,	0.,	0.,	0.,	0.,	1.,	0.,	o.]]

"the",	"cat",	"sat",	"one",	"the",	"mat"
0.0	0.0	0.4	0.0	0.0	1.0
0.5	1.0	0.5	0.2	0.5	0.5
1.0	0.2	1.0	1.0	1.0	0.0

2. 원-핫 인코딩(one-hot encoding)

- ✓ 텍스트를 구성하는 모든 단어에 고유한 정수 인덱스 부여
- ✓ 문서 단어 행렬에서 해당 단어가 출현하면 1, 출현하지 않으면 0으로 표시되는 희소행렬(sparse matrix)

```
Keras 사용 단어 수준 원-핫 인코딩
samples = ['The cat sat on the mat.', 'The dog ate my homework.']
```

[0. 1. 0. 0. 0. 0. 1. 1. 1. 1.]] "

```
token = Tokenizer()
token.fit_on_texts(samples) # 단어 인덱스 구축
word = token.word index # 단어 인덱스 객체 : 단어에 고유한 정수 인덱스 부여
Print(word) # { ' 단어 ' : 고유숫자} : 고유숫자 : 단어 출현 순서대로 할당
#{ 'the ':1, 'cat ':2, 'sat ':3, 'on ':4, 'mat ':5, 'dog ':6, 'ate ':7, 'my ':8, 'homework ':9}
                                                                sparse matrix
# 각 단어 -> 정수 인덱스 변화
sequences = token.texts_to_sequences(samples)
                                                      the cat sat on mat dog ate my homework
print(sequences) # [[1, 2, 3, 4, 1, 5], [1, 6, 7, 8, 9]]
                                                   [[0.1. 1. 1. 1. 1. 0. 0. 0. 0.]
                                                    [0. 1. 0. 0. 0. 0. 1. 1. 1. 1.]]
# ont-hot encoding(sparse matrix)
one_hot = token.texts_to_matrix(samples, mode='binary')
print(one_hot)
[[0. 1. 1. 1. 1. 1. 0. 0. 0. 0. 0.]
```

● 원-핫 인코딩 특징

- ✓ one-hot 벡터들은 표현하고자 하는 단어의 인덱스 값만 1이고, 나머지 인덱스에는 전부 0으로 표현되는 벡터 표현 방법
- ✓ 벡터 또는 행렬(matrix)의 값이 <u>대부분 0으로 표현</u>되는 방법을 희소 행렬 (sparse matrix)이라고 함
- ✓ 예)) 단어가 10,000개 있고 '강아지'란 단어의 인덱스는 5였다면 one-hot 벡터의 표현은 다음과 같다.
 - 강아지 벡터 = [00001000000...0] # 1 뒤의 0의 수는 9,995개
- ✓ 단어가 많은 경우 고차원(단어수=차원수)
- ✓ 행렬의 많은 값이 0이 되면서 공간적 낭비

3. 지도학습을 위한 특징 추출

● 텍스트로부터 특징 추출 방법

```
binary = tokenizer.texts_to_matrix(texts=texts, mode='binary')
print(binary) # 단어 출현여부
[[0. 1. 1. 1. 1. 1. 0. 0.]
[0. 1. 1. 0. 0. 0. 1. 1.]]
count = tokenizer.texts_to_matrix(texts=texts, mode='count')
print(count) # 단어 카운트
[[0. 2. 1. 1. 1. 1. 0. 0.]
[0. 2. 1. 0. 0. 0. 1. 1.]]
freq = tokenizer.texts_to_matrix(texts=texts, mode='freq')
print(freq)
[[0.
    0.33333333 0.2 0.2 0.2 0.2 0. 0.
                  0.2 0. 0. 0. 0.2 0.2
[0.
         0.4
tfidf = tokenizer.texts to matrix(texts=texts, mode='tfidf')
print(tfidf)
         0.86490296 0.51082562 0.69314718 0.69314718 0.69314718
[[0.
         0.86490296 0.51082562 0.
[0.
                                         0. 0.69314718 0.69314718]]
```

● 'tfidf' 가중치 적용 희소행렬 활용 예

스팸(spam) 메일 분류기 생성을 위해서 model에 입력할 text 자료를 문서 대비 단어의 출현 비율로 가중치를 적용하여 희소행렬을 만들고, 이를 model의 입력으로 이용한다.

```
typetext0 ham우리나라대한민국, 우리나라 만세1 spam비아그라 500GRAM 정력 최고!2 ham나는 대한민국 사람3 spam보험료 15000원에 평생 보장 마감 임박4 ham나는 홍길동
```

DTM 테이블(TF-IDF) 가중치 적용

자연어 숫자 벡터

```
TT o.
        0.33939315 0. 0.42066906 0. 0.
     0.
     0. 0.84133812 0. 0. 0. 0. 0. 0. ]
0.
                        0.
        0.
0.5
              0.
                   0.
                            0.
              0.
0.5
     0.
          0.
                   0.
                       0.5 0.5 0. 0.
[ o.
    0.53177225 0.53177225 0. 0. 0.
     0.659118 0. 0. 0.
0.
                       0.
                              0. 0.
     0. 0. 0.40824829 0.
                           0.40824829
[ o.
0.40824829 0. 0. 0.
                      0.40824829 0.40824829
0.
         0.40824829 0.
[0. 0.62791376 0. 0. 0. 0.
                               0.
         0. 0. 0. 0. 0. 0.
                                  0.77828292]]
 0.
```

one_hot_encoding = token.texts_to_matrix(texts, mode='tfidf')

4. Word embedding

- ✓ 단어를 밀집 표현으로 변환하는 방법
- ✓ 밀집 단어 벡터를 사용하며, 저차원의 실수형 벡터
- ✓ 적은 차원으로 더 많은 정보를 저장하는 밀집행렬(Dense matrix)
- ✓ 밀집 벡터를 단어 임베딩 과정을 통해 나온 결과라고 하여 임베딩 벡터(embedding vector)
- ✓ 벡터의 차원이 조밀해졌다고 하여 밀집벡터(dense vector)

● 단어 임베딩 특징

- ✓ 벡터의 차원을 단어 집합의 크기로 표현하지 않고, 사용자가 설정한 값(64, 128, 256, ... 1024)으로 단어 벡터의 차원이 결정된다.
- ✓ 이 과정에서 0과 1의 값이 실수값으로 된다.
- ✓ 밀집벡터 예) 사용자가 밀집 표현의 차원을 128로 설정한다면, 모든 단어의 벡터 표현의 차원은 128로 바뀌면서 벡터 값은 실수가 된다.
 강아지 벡터 = [0.2 1.8 1.1 -2.1 1.1 2.8 ... 중략 ...] # 벡터 차원 :128
- ❖ 밀집벡터의 값은 딥러닝의 최적화 알고리즘으로 학습되어 만들어짐

원-핫 벡터 vs 단어 임베딩

-	원-핫 벡터	임베딩 벡터
차원	고차원(단어 집합의 크기)	저차원
다른 표현	희소 벡터의 일종	밀집 벡터의 일종
표현 방법	수동	훈련 데이터로부터 학습함
값의 타입	1과 0	실수

● 단어 임베딩 처리 과정

임베딩 층 입력으로 사용될 입력 시퀀스의 각 단어들은 모두 정수 인덱스 변환

{ 'the ': 1, 'cat ': 2, 'sat ': 3, 'on ': 4, 'mat ': 5, 'dog ': 6, 'ate ': 7, 'my ': 8, 'homework ': 9, ... }

단어 → 단어 고유 정수 → 임베딩 층 → 임베딩 벡터

Keras 사용 임베딩 층 객체 생성 예

from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Embedding

전체 단어 크기

vocab_size = len(word_index)+1

print('단어 크기: {}'.format((vocab_size))) # 단어 크기: 8630

임베딩 차원 : # 32, 64, 128, ...1024차원(단어가 많은 경우) embedding dim = 32

전체 문장에서 가장 긴 단어 길이

maxlen = max(len(l) for l in x_data) # 171

공급 data : sequences

x_data = sequence.pad_sequences(x_data, maxlen=maxlen)

x_data.shape # (5574, 171)

Model = Sequential()

#임베딩층

model.add(Embedding(vocab_size, embedding_dim, input_length=maxlen))

vocab_size=8630 : 문장에서 출현한 전체 단어 크기

embedding_dim=32: 임베딩 벡터 차원(길이)

input_length=maxlen : 임베딩 층으로 입력되는 sequence(정수 인덱스) 길이

임베딩 벡터 차원

	0	1	2	3		31
0	0.1	21	0.2	05	•••	12
1	12	0.9	05	13	•••	21
2	23	21	0.8	03	•••	31
3	12	23	14	0.2	•••	21
4	23	21	0.7	12	•••	0.2
5	21	23	05	14	•••	03
:	••	:	:	••	•••	:
8629	18	03	13	21		24
		-				

체 단 어 크

기

룩업 테이블(lookup table)

임베딩 층에 sequence 데이터 공급 과정

단어 → 단어 고유 정수 → 임베딩 층 → 임베딩 벡터

룩업 테이블(lookup table)

❖ 정수 인덱스를 룩업 테이블(밀집행렬)로 매핑하여 정수와 연관된 벡터를 찾는다.

원-핫 벡터 vs 단어 임베딩 벡터

● 전체 문장: 5574, 전체 단어 크기: 8630

원-핫 벡터(희소행렬)

	[[ο,	0,	0,	,	1, 1, 1],
	[Ο,	ο,	ο,	,	1, 1, 1],
	[Ο,	0,	ο,	,	1, 1, 1],
	[ο,	ο,	0,	,	1, 1, 1],
	[0,	ο,	0,	,	1, 1, 1],
	• •	,				
	[Ο,	0,	ο,	,	1, 1, 1],
	[ο,	0,	ο,	,	1, 1, 1],
	[ο,	0,	0,	,	1, 1, 1],
	[0,	0,	0,	,	1, 1, 1],
	[0,	0,	0,	•••,	1, 1, 1]]
_						

(5574 x 8630)=48,103,620

단어 임베딩 벡터(밀집행렬)

		0	1	2	3		31
	0	0.1	21	0.2	05	•••	12
	1	12	0.9	05	13	•••	21
	2	23	21	0.8	03	•••	31
	3	12	23	14	0.2	•••	21
/	4	23	21	0.7	12	•••	0.2
l	5	23	0.8	0.7	23	•••	12
l	:	:	••	;	••	••	••
	3986	21	23	0.5	14		03
	:	:	:	:	:		:
1	8620	18	03	13	21		24

 $(8630 \times 32) = 276,160$

다이수 : 중 내

5. RNN 개요

- ❖ 순환신경망(Recurrent Neural Network : RNN)
 - ✓ 순서가 있는 데이터(text, audio, video)의 패턴을 인식하기 위한 Neural Network
 - ✓은닉층 노드 들이 일정한 방향을 가지고 직접연결(directed cycle)된 인공신경망
 - ✓ CNN과 더불어 최근 각광 받고 있는 알고리즘

RNN 모델 사례

❖ 순환신경망 계산식

- ▶ 활성화 함수는 주로 hyperbolic tangent 함수 사용
- ➤ 계산식 : h_t = tanh(W*(h_{t-1}, x_t) + b)
- ightharpoonup 어떤 시간(t)의 뉴런(h_t)에는 그 이전 시간(t-1)에 생성된 뉴런(h_{t-1})의 상태가 주입되어 만들어지고, 그 뉴런(h_t)은 다시 그 이후 시간(t+1)에 입력되는 순환구조
- ▶ 은닉노드(뉴런)를 메모리 셀(memory cell) or 셀(cell)이라고 부름
- ▶ 셀(cell) : 특정 시점에서 상태 데이터(state data)를 저장하는 역할

학습 단계

- 출력: 각 글자별 '확신' 정도
- 녹색 값이 높고,
 빨간 색 값이 낮도록
 매개변수 W_*를 조정(학습)

테스트(추론) 단계

- 한 글자를 입력
- 글자별 확률값이 출력됨
- 이 확률분포에서 글자를 하나 샘플링
- 선택한 글자를 다음 입력 으로 사용

장단기 메모리(LSTM : Long Short Term Memory) ✓ 기본순환신경망의 확장

6. Keras RNN model

1) 입력 data 생성(데이터 전처리)

```
# 1. 토큰화 : 텍스트 - 토큰(단어) -> 단어 인덱스(고유한 정수 인덱스 부여)
token = Tokenizer() # 가장 빈도가 높은 4000개 단어 선택
token.fit_on_texts(texts) # 토큰 생성기에 문장 넣기
word_index = token.word_index
word_index # 단어 인덱스 -> {'단어' : 고유번호}
print('word length : ', len(word_index)) # word length : 8629
# 전체 단어 크기
                                                   정수 인덱스 행렬(sequences)
vocab_size = len(word_index)+1
                                                    [[0, 0, 0, ..., 56, 3986, 135],
print('단어 집합의 크기: {}'.format((vocab_size)))
                                                    [ 0, 0, 0, ..., 441, 6, 1766],
# 단어 집합의 크기: 8630
                                                    [0, 0, 0, ..., 2713, 367, 2714],
                                                    [0, 0, 0, ..., 8627, 231, 8628],
# 2. 텍스트 벡터화 : 텍스트(문장) -> 수치형 텐서 변환
                                                    [0, 0, 0, ..., 198, 12, 47],
sequences = token.texts_to_sequences(texts)
                                                     [ 0, 0, 0, ..., 1, 40, 242]]
                                                           (5574, 171)
# 3. 입력 시퀀스 생성
x_data = sequence.pad_sequences(x_data, maxlen=maxlen)
x_data.shape # (5574, 171) # 171미만 길이는 0으로 채워짐
```

2) Embedding 층

정수 인덱스를 입력 받아서 임베딩 벡터에서 해당 정수와 연관된 벡터를 찾아서 반환 (정수 인덱스 -> Embedding 층 -> 연관 단어 벡터)

model = Sequential()
model.add(Embedding(vocab_size, embedding_dim, input_length=maxlen))

- # vocab_size=8630 : 전체 단어 길이
- # embedding_dim=32 : embedding vector 길이(차원)
- # input_length = 171 : 입력 sequence 길이

정수 인덱스 행렬(sequences)

[[0, 0, 0, ..., 56, 3986, 135], [0, 0, 0, ..., 441, 6, 1766], [0, 0, 0, ..., 2713, 367, 2714], ..., [0, 0, 0, ..., 8627, 231, 8628], [0, 0, 0, ..., 198, 12, 47], [0, 0, 0, ..., 1, 40, 242]]

(5574, 171)

룩업 테이블(lookup table)

	0	1	2	3	•••	31
0	0.1	21	0.2	05	•••	12
1	12	0.9	05	13	•••	21
2	23	21	0.8	03	•••	31
<i>5</i> 6	12	23	14	0.2	•••	21
:	23	21	0.7	1,2	•••	0.2
135	23	0.8	0.7	23	•••	1,2
:		:	;	:	:	:
3986	21	23	0.5	14		03
:	:	:	:	:		:
8629	18	03	13	21		24

연관 단어 벡터(32차원)

12 23 14 02 ... 21

23 08 07 23 ... 12

21 23 05 14 ... 03

3) LSTM(RNN) 층

임베딩 층에서 반환 받은 32차원의 임베딩 벡터는 LSTM층에서 메모리 셀 32개 뉴런과 연산

LSTM input shape: [batch_size=?, timesteps=32, input_feature=171]

```
# LSTM(RNN)층

model.add(LSTM(32)) # LSTM layer(32 node)

# Fully connected 층 : 분류기

model.add(Dense(32, activation= ' relu ' )) # Affine layer(32 node)

model.add(Dense(1, activation='sigmoid')) # Output layer(1)
```

Layer (type)	Output Shape	Param #			
embedding_3 (Emb	edding) (None, 1	171, 32)	276160	 	
lstm_2 (LSTM)	(None, 32)	8320			
dense_6 (Dense)	(None, 32)	1056	i in		
dense_7 (Dense)	(None, 1)	33		 	

