Алгоритми та структури даних. Основи алгоритмізації

Міністерство освіти і науки України

Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського»

Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 6 з дисципліни «Алгоритми та структури даних. Основи алгоритмізації»

«Дослідження складних циклічних алгоритмів» Варіант <u>28</u>

Виконав студент: ІП-15 Рибаков Дмитро Вадимович

Перевірив: Вечерковська Анастасія Сергіївна

Алгоритми та структури даних. Основи алгоритмізації

Лабораторна робота 6

Дослідження рекурсивних алгоритмів

Мета - дослідити особливості роботи рекурсивних алгоритмів та набути практичних навичок їх використання під час складання програмних специфікацій підпрограм.

Індивідуальне завдання

Варіант 28

Постановка задачі

Розробити рекурсивний алгоритм, псевдокод, блок-схему та код, щоб обчислити значення функції Аккермана для двох невід'ємних цілих чисел n та m, де:

$$A(n,m) = \begin{cases} m+1, \text{ якщо } n=0; \\ A(n-1,1), \text{ якщо } n \neq 0, m=0; \\ A(n-1,A(n,m-1)), \text{ якщо } n>0, m>0. \end{cases}$$

Знайдемо значення функції Аккермана за допомогою використання рекурсивної функції.

Побудова математичної моделі

Змінна	Тип	Ім'я	Призначення
Задане число	Цілий,	n	Вхідні дані
	невід'ємний		
Задане число	Цілий,	m	Вхідні дані
	невід'ємний		
Результат,	Цілий,	result	Вихідні дані
значення	невід'ємний		
функції			
Аккермана			

Для знаходження значення функції Аккермана створимо підпрограму - Ackermann(n, m) в якій використаємо умовні оператори з викликами функції Ackermann(n, m), отримане кінцеве значення покладемо у змінну result та виведемо її.

У роботі використовуються наступні дії:

```
«==» - дорівнює (рівність);
«!=» - не дорівнює (нерівність);
«>» - більше (більше ніж);
«=» - оператор присвоєння;
«&&» - і (логічне множення).
```

```
Розв'язання
```

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блок-схеми. Крок 1. Визначимо основні дії. Крок 2. Введення двох невід'ємних цілих чисел п та т. Крок 3. Обчислення значення функції Аккермана. Крок 3. Виведення результату. Псевдокод Основна програма: крок 1 початок введення змінних п та т обчислення значення функції Аккермана виведення результату кінець крок 2 початок ввід п, т обчислення значення функції Аккермана виведення результату кінець крок 3 початок ввід п, т result = Ackermann(n, m)

кінець

виведення результату

крок 4

початок

```
ввід n, m
result = Ackermann(n, m)
вивід result
кінець
```

Підпрограма:

```
Аскеrmann(n, m)

якщо n == 0

то повернення m + 1

все якщо

якщо n != 0 && m == 0

то повернення Ackermann(n - 1, 1)

все якщо

якщо n > 0 && m > 0

то повернення Ackermann(n - 1, Ackermann(n, m - 1))

все якщо
```

Блок-схема

Основна програма:

Підпрограма:

Код програми

```
#include <iostream>
# include <locale.h>

using namespace std;

int Ackermann(int n, int m);

Print main()

{
    setlocale(LC_ALL, "Ukrainian");

    cout << "Будь ласка, введіть два невід'ємних цілих числа п та m: ";
    int n, m;
    cin >> n >> m;

    int result;
    result = Ackermann(n, m);
    cout << "Значення функції Аккермана для введених п та m дорівнює: " << result << endl;

return 0;

}

Print Ackermann(int n, int m) {
    if (n == 0) return m + 1;
    if (n != 0 && m == 0) return Ackermann(n - 1, 1);
    if (n != 0 && m >= 0) return Ackermann(n, m - 1));

}
```

Тестування програми

Блок	Дія	
	Початок	
1	n = 1, m = 3	
2	Ackermann(1 - 1, Ackermann(1, 3 - 1))	
3	n = 1, m = 2	
4	n = 1, m = 1	
5	n = 1, m = 0	
6	Ackermann(n - 1, 1)	
6	n = 0, m = 1	
7	return m + 1	
	тобто - return 2	
8	n = 1, m = 0	
9	n = 1, m = 1	
10	Ackermann(n - 1, 1)	
10	n = 0, m = 2	
11	return m + 1	
	тобто - return 3	
12	n = 1, m = 1	
13	Ackermann(n - 1, 1)	
13	n = 0, m = 3	
14	return m + 1	
	тобто - return 4	
15	n = 1, m = 2	
16	n = 1, m = 3	
17	Ackermann(n - 1, 1)	
17	n = 0, m = 4	
18	return m + 1	
	тобто - return 5	

	Кінець
20	result = 5
19	n = 1, m = 3

Висновки

На цій лабораторній роботі ми дослідили особливості роботи рекурсивних алгоритмів та набули практичних навичок використання під час складання програмних специфікацій підпрограм. В результаті виконання лабораторної роботи ми отримали алгоритм обчислення значення функції Аккермана, при цьому використали рекурсивну функцію, розділили виконання задачи на 4 кроки: визначення основних дій, введення двох невід'ємних цілих чисел п та т, обчислення значення функції Аккермана, виведення результату. Розробили псевдокод блок-схему та код. В процесі випробування ми розглянули один випадок: введення n = 1, m = 3 і виведення peзультату - result = 5.