Understanding Sample Generation Strategies for Learning Heuristic Functions in Classical Planning

Author: Rafael Vales Bettker

Advisor: Prof. Dr. André Grahl Pereira

Co-advisor: Prof. Dr. Marcus Ritt

Federal University of Rio Grande do Sul (UFRGS)

Institute of Informatics

Department of Theoretical Informatics

Table of contents

- 1. Introduction
- 2. Background
- 3. Sample Generation
- 4. Cost-to-goal Estimates
- 5. Experiments
- 6. Conclusion

Introduction

Introduction

- Classical planning provides a method for representing and solving various problems.
- Planning tasks are typically defined by the initial state and the desired outcome (goal state).
- Heuristic functions guide search algorithms to find solutions.
- Learning heuristic functions with neural networks (NN) based on samples that are states with their cost-to-goal estimates.
 - The NN is our heuristic function and solves distinct initial states of a state space.

Problem and Contributions

Learn effective NN-based heuristic functions.

- How to generate good samples?
- What is relevant to the quality of the samples?

Problem and Contributions

Learn effective NN-based heuristic functions.

- How to generate good samples?
- What is relevant to the quality of the samples?

Our contributions include

- A systematic study of sampling strategies.
- New sampling and *h*-value refinement algorithms.

Background

A planning task can be defined as a tuple $\Pi = \langle \mathcal{S}, \mathcal{O}, \mathbf{s_0}, \mathbf{s}^*, \mathsf{cost} \rangle$.

A planning task can be defined as a tuple $\Pi = \langle \mathcal{S}, \mathcal{O}, s_0, s^*, \mathsf{cost} \rangle$.

A planning task can be defined as a tuple $\Pi = \langle \mathcal{S}, \mathcal{O}, s_0, s^*, \mathsf{cost} \rangle$.

Related Work

Structured NN-based

- Structured neural networks.
- Encode part of the model into the network architecture.
- Tipically multi-domain or domain-independent.
- E.g. Shen et al. (2020)

Non-structured NN-based

- Feedforward neural networks.
- Highly independent of the task description.
- Typically state space-specific.
- E.g. O'Toole *et al.* (2022)

Sample Generation

Sample Generation

- Sample generation is an algorithmic problem.
 - Black-box model: explores the state space through the generation of successors/predecessors.
- Main approaches:
 - Progression: forward search from the initial state.
 - Regression: backward search from the goal state.
 - Random sampling: random generation of states from the state space.

Sampling by Regression

- Expand the backward state space through reverse operators.
- Usually the run is restarted after reaching the regression limit. Each run is called a rollout.
- The cost-to-goal estimates (h-value) of a state is the sum of the operator costs applied since the goal state.
- Main sampling algorithms:
 - Breadth-first Search (BFS)
 - Depth-first Search (DFS)
 - Random Walk (RW)

FSM

Our proposal: FSM

 Combines good coverage at short distances (BFS) with medium to long distances (RW).

Two-stage sampling

- 1. Generates a portion of the samples in a BFS rollout.
- 2. Run multiple RW rollouts starting from BFS' leaves.

FSM

Our proposal: FSM

 Combines good coverage at short distances (BFS) with medium to long distances (RW).

- 1. Generates a portion of the samples in a BFS rollout.
- 2. Run multiple RW rollouts starting from BFS' leaves.

Our proposal: FSM

 Combines good coverage at short distances (BFS) with medium to long distances (RW).

- 1. Generates a portion of the samples in a BFS rollout.
- Run multiple RW rollouts starting from BFS' leaves.

FSM

Our proposal: FSM

 Combines good coverage at short distances (BFS) with medium to long distances (RW).

- 1. Generates a portion of the samples in a BFS rollout.
- Run multiple RW rollouts starting from BFS' leaves.

Our proposal: FSM

 Combines good coverage at short distances (BFS) with medium to long distances (RW).

- Generates a portion of the samples in a BFS rollout.
- 2. Run multiple RW rollouts starting from BFS' leaves.

Our proposal: FSM

 Combines good coverage at short distances (BFS) with medium to long distances (RW).

- Generates a portion of the samples in a BFS rollout.
- 2. Run multiple RW rollouts starting from BFS' leaves.

Regression Limit

When to stop a rollout?

- Stop after reaching some maximum limit *L* of samples.
 - Yu et al. (2020); O'Toole et al. (2022) use fixed maximum limit, 200 and 500 (resp.).
- A fixed maximum limit L is not a good choice for regression sampling.
 - Planning tasks vary in state space size and maximum distance d* from any state to a goal state.

Regression Limit

If L underestimates d^*

If L overestimates d^* by much

Adaptative Regression Limit

The ideal approach is a regression limit based on d^* .

Our proposals: estimates the d^* -value from task information.

Number of facts

$$F = |\mathcal{F}(s_0)|$$

Number of facts per mean number of effects in the operators

$$ar{\mathcal{F}} = \left\lceil rac{|\mathcal{F}(s_0)|}{\sum_{o \in \mathcal{O}} rac{| ext{eff}(o)|}{|\mathcal{O}|}}
ight
ceil$$

Randomly Generated Samples

- Regression may have difficulty reaching certain regions.
- Randomly generated samples (random samples) provide uniform coverage across the entire state space.
- Adding random samples to the set of samples improves the performance of the learned heuristic (O'Toole et al., 2022).
 - Generate a random state s with cost-to-goal estimate h(s) = max(H) + 1, where H is the set of all cost-to-goal estimates in the original sample set.

Cost-to-goal Estimates

Cost-to-goal Estimates

Based solely on the sampled rollout.

How to improve?

 Use knowledge of all rollouts to update the sampled cost-to-goal estimate.

Sample Improvement

- A same state can be sampled by more than one rollout.
- Repeated states can have different cost-to-goal estimates.
 - Misinformation for NN learning.

Our proposal: for each sampled state s, update its cost-to-goal estimate to $h(s) = \min\{h_i \mid s = s_i, i \in [N]\}.$

- Never underestimate the perfect estimate h^* .
- This approach is called sample improvement (SAI).

Multiple rollouts can generate neighboring (a distance operator) states in state space.

Our proposal: Connect sampled states that are one operator away to create paths that generate knowledge to improve cost-to-goal estimates.

• This approach is called successor improvement (SUI).

Rollout #1

- Sample #1: $\langle s^*, 0 \rangle$
- Sample #2: $\langle s_3, 1 \rangle$
- Sample #3: $\langle s_6, 2 \rangle$
- Sample #4: $\langle s_4, 3 \rangle$

Rollout #2

- Sample #5: $\langle s^*, 0 \rangle$
- Sample #6: $\langle s_1, 1 \rangle$
- Sample #7: $\langle s_2, 2 \rangle$
- Sample #8: $\langle s_4, 3 \rangle$

Rollout #1

- Sample #1: $\langle s^*, 0 \rangle$
- Sample #2: $\langle s_3, 1 \rangle$
- Sample #3: $\langle s_6, 2 \rangle$
- Sample #4: $\langle s_4, 3 \rangle$

Rollout #2

- Sample #5: $\langle s^*, 0 \rangle$
- Sample #6: $\langle s_1, 1 \rangle$
- Sample #7: $\langle s_2, 2 \rangle$
- Sample #8: $\langle s_4, 3 \rangle$

Successor Improvement

- 1. Consider a directed graph G = (V, A) over all sampled states, i.e., $V = \{s_i \mid i \in [N]\}$.
- 2. For every pair of states $s, t \in V$ such that for some operator $o \in \mathcal{O}$ applicable to s we have $\operatorname{succ}(s, o) \subseteq t$, we add an arc (s, t) of length $\operatorname{cost}(o)$ to A.
- Propagates the cost-to-goal estimate of each state to its predecessors.

Successor Improvement

- 1. Consider a directed graph G = (V, A) over all sampled states, i.e., $V = \{s_i \mid i \in [N]\}$.
- 2. For every pair of states $s, t \in V$ such that for some operator $o \in \mathcal{O}$ applicable to s we have $\operatorname{succ}(s, o) \subseteq t$, we add an arc (s, t) of length $\operatorname{cost}(o)$ to A.
- Propagates the cost-to-goal estimate of each state to its predecessors.

Successor Improvement

- 1. Consider a directed graph G = (V, A) over all sampled states, i.e., $V = \{s_i \mid i \in [N]\}$.
- 2. For every pair of states $s, t \in V$ such that for some operator $o \in \mathcal{O}$ applicable to s we have $\operatorname{succ}(s, o) \subseteq t$, we add an arc (s, t) of length $\operatorname{cost}(o)$ to A.
- Propagates the cost-to-goal estimate of each state to its predecessors.

Experiments

Experiments

Systematic analysis of the influence of each feature.

- What is the contribution of the sampling algorithm?
- What is the impact of the regression limit?
- How much do random samples improve the sample set?
- How much do our h-value improvement techniques refine the estimators?
- What is the quality of the h-values produced by the learned heuristics?
- Does the quality of the *h*-values reflect in the search?

The experiments were divided into two parts: small state spaces and large state spaces.

Common Settings

Figure 1: Residual network.

- Same neural network architecture as Ferber *et al.* (2022) and O'Toole *et al.* (2022).
- Baseline \hat{h}_0 : Random walk sampling, regression limit L=200, and without h-value improvement techniques.
- ullet FSM samples 10 % of the samples with BFS and the rest with RW.
- Dataset from Ferber *et al.* (2022) moderate tasks.
- Each domain: N tasks \times 25 models \times 50 initial states.

Small State Spaces

- Tasks where the forward state space can be enumerated.
 - Allows the generation of all states in the state space and their perfect cost-to-goal estimates (h*).
 - Better control and understanding of the behavior of each technique.
- All tasks are solved, so the number of expansions is used as the metric for the quality of the learned heuristic.
 - Fewer expansions means better heuristics!

Sampling method	BFS ₂₀₀	DFS ₂₀₀	RW ₂₀₀	FSM_{200}
Expanded states	446.72	326.66	79.78	73.12

- BFS and DFS have extreme sample distributions. RW and our approach (FSM) have a balanced sample distribution over the state space.
- Blocks expands 5047 states with BFS and Grid 4102 with DFS, more than 25 and 10 times (resp.) than with the other techniques.

Sampling method	FSM ₂₀₀
Expanded states	73.12

Sampling method	FSM ₂₀₀
Expanded states	73.12

Sampling method	FSM ₂₀₀
Expanded states	73.12

Sampling method	FSM ₂₀₀
Expanded states	73.12

What is the impact of the regression limit?

Sampling method	FSM ₂₀₀	FSM_F	FSM _₹
Expanded states	73.12	63.36	69.48

What is the impact of the regression limit?

Sampling method	FSM ₂₀₀	FSM_F	$FSM_{ar{F}}$
Expanded states	73.12	63.36	69.48

- Our approaches outperform the baseline. *F* has the best performance, but...
- \bar{F} outperforms the other techniques in 4 of the 7 domains.
 - Blocks expands 185 states, more than twice as many as the other regression limits.

How much do random samples improve the sample set?

	Expanded states	
Domain	0%	20%
Blocks	177.88	57.00
Grid	124.89	66.52
N-Puzzle	89.47	80.93
Rovers	17.03	13.45
Scanalyzer	55.29	28.34
Transport	22.90	25.95
VisitAll	30.90	21.78
Geo. mean	53.91	35.13

- Improves performance up to 20% of random samples, then degrades.
- Up to 50% of random samples the expanded states holds close (35.13 vs 38.76).

How much do our *h*-value improvement techniques refine the estimators?

	Mean difference h*-h		
Domain	Baseline	Our approach	
Blocks	24.01	0.18	
Grid	13.60	0.61	
N-Puzzle	70.87	5.11	
Rovers	19.92	4.88	
Scanalyzer	81.35	1.89	
Transport	79.06	2.44	
VisitAll	15.80	2.15	
Geo. mean	33.45	1.60	
Scanalyzer Transport VisitAll	81.35 79.06 15.80	1.89 2.44 2.15	

- All our techniques (FSM, F̄, SAI and SUI) improves by 20 times the approximation of the sample set estimates to h*.
- Only \(\bar{F}\) improves the mean difference to 5.56.
 Only SAI and SUI improves to 10.95.

What is the quality of the h-values produced by the learned heuristics?

	Mean difference h*-h		
Domain	h ^{FF}	\hat{h}_0	
Blocks	6.76	26.46	
Grid	3.72	26.85	
N-Puzzle	4.19	79.84	
Rovers	0.17	11.08	
Scanalyzer	2.78	106.37	
Transport	1.13	109.77	
VisitAll	1.31	21.55	
Geo. mean	1.84	39.80	

• The mean difference h^* -h over the forward state space of baseline \hat{h}_0 is more than 20 times greater than h^{FF} .

What is the quality of the h-values produced by the learned heuristics?

	Mean difference h*-h			
Domain	h ^{FF}	\hat{h}_0	ĥ _Ē	
Blocks	6.76	26.46	2.91	
Grid	3.72	26.85	2.73	
N-Puzzle	4.19	79.84	6.75	
Rovers	0.17	11.08	2.98	
Scanalyzer	2.78	106.37	2.99	
Transport	1.13	109.77	7.05	
VisitAII	1.31	21.55	2.21	
Geo. mean	1.84	39.80	3.57	

- Our approach $\hat{h}_{\bar{F}}$ improves considerably: close to h^{FF} .

What is the quality of the h-values produced by the learned heuristics?

Mean difference h*-h			
h ^{FF}	\hat{h}_0	ĥĒ	$\hat{h}_{ar{F}}^{20\%}$
6.76	26.46	2.91	2.42
3.72	26.85	2.73	9.78
4.19	79.84	6.75	12.73
0.17	11.08	2.98	6.35
2.78	106.37	2.99	9.01
1.13	109.77	7.05	14.89
1.31	21.55	2.21	4.74
1.84	39.80	3.57	7.40
	hFF 6.76 3.72 4.19 0.17 2.78 1.13 1.31	h^{FF} \hat{h}_0 6.76 26.46 3.72 26.85 4.19 79.84 0.17 11.08 2.78 106.37 1.13 109.77 1.31 21.55	h^{FF} \hat{h}_0 $\hat{h}_{\bar{F}}$ 6.76 26.46 2.91 3.72 26.85 2.73 4.19 79.84 6.75 0.17 11.08 2.98 2.78 106.37 2.99 1.13 109.77 7.05 1.31 21.55 2.21

- Our approach $\hat{h}_{\bar{F}}$ improves considerably: close to h^{FF} .
- Adding random samples worsens the mean difference h*-h.

Heuristic	h*	
Expanded states	14.53	

Heuristic	h*	h^{FF}	
Expanded states	14.53	38.98	

Heuristic	h*	h ^{FF}	\hat{h}_0	
Expanded states	14.53	38.98	81.86	

Heuristic	h*	h^{FF}	\hat{h}_0	$\hat{h}_{ar{F}}$	
Expanded states	14.53	38.98	81.86	53.91	

 Remains the relative order of quality of estimates over the forward state space.

Heuristic	h*	h ^{FF}	\hat{h}_0	$\hat{h}_{ar{F}}$	$\hat{h}_{ar{F}}^{20\%}$
Expanded states	14.53	38.98	81.86	53.91	35.13

- Remains the relative order of quality of estimates over the forward state space.
- But not. Random samples worsen the quality of estimates but reduce the expanded states.
- Our approach with random samples $(\hat{h}^{20\%}_{\bar{F}})$ outperforms $h^{\text{FF}}.$

Large State Spaces

- Validate our findings from experiments in small state spaces...
 - ...and how does our approach compare with logic-based heuristics and other learned heuristics in the literature?
- Coverage (percentage of solved tasks) is used as the metric for the quality of the learned heuristic.
 - Greater coverage means better heuristics!

Comparison of Heuristic Functions

	Coverage (%)			
Domain	h ^{FF}	h^{GC}	\hat{h}_0	$\hat{h}_{\bar{F}}^{20\%}$
Blocks	100.00	100.00	100.00	100.00
Depot	94.33	80.00	57.19	89.26
Grid	94.00	51.00	38.11	60.33
N-Puzzle	92.50	4.00	13.75	86.81
Pipes-NT	63.40	89.40	13.51	79.84
Rovers	85.50	66.00	13.53	15.39
Scanalyzer	100.00	100.00	59.70	73.67
Storage	33.00	13.50	1.94	27.67
Transport	100.00	100.00	48.89	100.00
VisitAll	92.00	100.00	74.19	98.85
Mean	85.47	70.39	42.08	73.18

- h^{FF} dominates in most domains.
- Our approach $\hat{h}_{\overline{F}}^{20\%}$ improves the baseline \hat{h}_0 by about 31%, with competitive coverage in most domains.
- Also, outperforms h^{GC} (73.18 vs 70.39) with higher or equal coverage in 6 out of 10 domains.

Comparison to Other Methods

Technique	Avg. coverage
\hat{h}^{Boot} (Ferber <i>et al.</i> , 2022)	45.40
$\hat{h}^{\text{N-RSL}}$ (O'Toole <i>et al.</i> , 2022)	58.80
$\hat{h}_{ar{\mathcal{F}}}^{20\%}$ (Our approach)	72.82

- All techniques use the same test dataset and NN architecture.
- \hat{h}^{Boot} uses considerably more computational resources than the other techniques.
- Our approach outperforms other techniques.

Conclusion

Conclusion

- A distribution covering various portions of the state space without repeated samples close to the goal works best.
- Both the sample distribution and reasonable cost-to-goal estimates contribute to search performance.
- The h-value improvement technique SUI and adaptative rollout limit \bar{F} have the most positive impact on sampling quality.
- Our approach outperforms h^{GC} but not h^{FF} .
 - h^{FF} has access to the entire model, whereas our approach only uses a minimal part of it.
- Approaches with few samples and computational resources can also be efficient.

Questions?

rvbettker@inf.ufrgs.br

References i

References

Ferber, Patrick, Geißer, Florian, Trevizan, Felipe, Helmert, Malte, & Hoffmann, Jorg. 2022. Neural Network Heuristic Functions for Classical Planning: Bootstrapping and Comparison to Other Methods. In: Proceedings of the Thirty-Second International Conference on Automated Planning and Scheduling. Online: AAAI Press.

O'Toole, Stefan, Ramirez, Miquel, Lipovetzky, Nir, & Pearce, Adrian R. 2022. Sampling from Pre-Images to Learn Heuristic Functions for Classical Planning. *Pages 308–310 of: Fifteenth International Symposium on Combinatorial Search*, vol. 15. Vienna, Austria: AAAI Press.

References ii

- Shen, William, Trevizan, Felipe, & Thiebaux, Sylvie. 2020. Learning Domain-Independent Planning Heuristics with Hypergraph Networks. Pages 574–584 of: Proceedings of the Thirty International Conference on Automated Planning and Scheduling. Online: AAAI Press.
- Yu, Liu, Kuroiwa, Ryo, & Fukunaga, Alex. 2020. Learning Search-Space Specific Heuristics Using Neural Network. *In: Proceedings of the 12th Workshop on Heuristics and Search for Domain-independent Planning*. Online: ICAPS.