MDP Preliminaries

Nan Jiang April 10, 2019

【强化学习理论 58】StatisticalRL 2

7 人赞同了该文章

这是UIUC姜楠老师开设的<u>CS598统计强化学习(理论)课程</u>的第一讲(第二部分),之所以拆成两个部分是因为图片贴多了之后知乎编辑变得特别卡。我们继续。

原文传送门

二、MDP上的规划

规划(Planning)的目标是optimal control即找到最优策略或者最优价值函数,一般它隐含有已知环境的 $p_{,R}$ 或者对它们有建模估计的意思。

2.1. Policy Iteration

policy iteration主要分为两步,即policy evaluation和policy improvement。

The policy iteration algorithm starts from an arbitrary policy π_0 , and repeat the following iterative procedure: for k = 1, 2, ...

$$\pi_k = \pi_{Q^{\pi_{k-1}}}.$$

Essentially, in each iteration we compute the Q-value function of π_{k-1} (e.g., using the analytical form given in Equation 4), and then compute the greedy policy for the next iteration. The first step is often called *policy evaluation*, and the second step is often called *policy improvement*.

- policy iteration中每次迭代更新策略,每次迭代之后该策略下的价值函数对于任意的状态都不会变得更差;如果策略不再变化,那么就得到了最优策略。
- policy iteration中策略的价值函数距离最优价值函数的距离是呈指数级减小的。

第一个结论: policy improvement

Theorem 1 (Policy improvement theorem). In policy iteration, $V^{\pi_k}(s) \geq V^{\pi_{k-1}}(s)$ holds for all $k \geq 1$ and $s \in S$, $a \in A$, and the improvement is strictly positive in at least one state until π^* is found.

Therefore, the termination criterion for policy iteration is $Q^{\pi_k} = Q^{\pi_{k-1}}$. Since we are only searching over stationary and deterministic policies, and a new policy that is different from all provides ones is found every iteration, the algorithm is guaranteed to terminate in $|\mathcal{A}|^{|\mathcal{S}|}$ iterations.

LAIP 这个bound是怎么来的?可以证明如果前一次迭代的策略和后一次迭代的策略一样,那么迭代收敛,最优策略被找到;每次迭代价值函数都不会变的更差,因此已经找到过的策略肯定不会再回去了;总共可能有的策略就是这么多个,因此最差情况每次就找到比上一次好那么一点点的策略,需要迭代这么多次。

证明思路如下:构造关于策略的advantage function,由于policy improvement step都是关于前一轮价值函数的贪心策略,因此单步的advantage function都是正数;把总体的策略价值函数改变写成advantage function的线性组合,即可证明每轮迭代价值函数只增不减。

To prove the policy improvement theorem, we introduce an important concept called advantage.

Definition 1 (Advantage). The advantage of action a at state s over policy π is defined as $A^{\pi}(s, a) := Q^{\pi}(s, a) - V^{\pi}(s)$. The advantage of policy π' over policy π is defined as $A^{\pi}(s, \pi') := A^{\pi}(s, \pi'(s))$.

Since policy iteration always takes the greedy policy of the current policy's Q-value function, by definition the advantage of the new policy over the old one is non-negative. The next result shows that the value difference between two policies can be expressed using the advantage function. The policy improvement theorem immediately follows, since $V^{\pi_k}(s) - V^{\pi_{k-1}}(s)$ can be decomposed into the sum of nonnegative terms.

Proposition 2 (Advantage decomposition of policy values). For any π , π' , and any state $s \in S$,

$$V^{\pi'}(s) - V^{\pi}(s) = \frac{1}{1-\gamma} \mathbb{E}_{s' \sim \eta_s^{\pi'}} [A^{\pi}(s', \pi')].$$

where $\eta_s^{\pi'}$ is the normalized discounted occupancy induced by policy π' from starting state s.

Proof. Consider a sequence of (potentially non-stationary) policies $\{\pi_i\}_{i\geq 0}$, where $\pi_0=\pi$, $\pi_\infty=\pi'$. For any intermediate i, π_i is the non-stationary policy that follows π' for the first i time-steps and switches to π for the remainder of the trajectory. Now we can rewrite the LHS of the statement as:

$$V^{\pi'}(s) - V^{\pi}(s) = \sum_{i=0}^{\infty} (V^{\pi_{i+1}}(s) - V^{\pi_i}(s)).$$

For each term on the RHS, observe that π_i and π_{i+1} share the same "roll-in" policy π' for the first i steps, which defines a roll-in distribution $\mathbb{P}[s_{i+1}|s_1=s,\pi']$. They also share the same "roll-out" policy π starting from the (i+2)-th time step, so conditioned on $s_{i+1}=s$, $a_{i+1}=a$, the total supported terms picked up in the remainder of the trajectory is $\gamma^i Q^\pi(s,a)$ for both π_i and π_{i+1} . Putting together, we

have

$$\begin{split} V^{\pi'}(s) - V^{\pi}(s) &= \sum_{i=0}^{\infty} \gamma^{i} \sum_{s' \in \mathcal{S}} \mathbb{P}[s_{i+1} = s' | s_{1} = s, \pi'] \left(Q^{\pi}(s', \pi'(s')) - Q^{\pi}(s', \pi(s')) \right) \\ &= \sum_{i=0}^{\infty} \gamma^{i} \sum_{s' \in \mathcal{S}} \mathbb{P}[s_{i+1} = s' | s_{1} = s, \pi'] A^{\pi}(s', \pi'). \end{split}$$

The result follows by noticing that $\sum_{i=0}^{\infty} \gamma^i \mathbb{P}[s_{i+1} = s' | s_1 = s, \pi'] = \frac{1}{1-\gamma} \eta_s^{\pi'}(s')$.

第二个结论: policy iteration enjoys exponential convergence

这个证明构造性比较强,直接看结论吧。

Theorem 3 (Policy iteration enjoys exponential convergence). $\|Q^{\star} - Q^{\pi_{k+1}}\|_{\infty} \leq \gamma \|Q^{\star} - Q^{\pi_k}\|_{\infty}$.

Proof. We will use two facts: (a) $\mathcal{T}^{\pi_{k+1}}Q^{\pi_k} \geq \mathcal{T}^{\pi}Q^{\pi_k} \ \forall \pi$, (b) $\mathcal{T}^{\pi_{k+1}}Q^{\pi_k} \leq Q^{\pi_{k+1}}$. Here " \leq " and " \geq " are element-wise, and we will verify (a) and (b) at the end of this proof. Given (a) and (b), we have

$$Q^{\star} - Q^{\pi_{k+1}} = (Q^{\star} - \mathcal{T}^{\pi_{k+1}}Q^{\pi_k}) + (\mathcal{T}^{\pi_{k+1}}Q^{\pi_k} - Q^{\pi_{k+1}}) \leq \mathcal{T}^{\pi^{\star}}Q^{\star} - \mathcal{T}^{\pi^{\star}}Q^{\pi_k}.$$

The first step just adds and subtracts the same quantity. The second step applies (a) and (b) to the two parentheses, respectively. Now

$$\begin{split} \|Q^{\star} - Q^{\pi_{k+1}}\|_{\infty} &\leq \|\mathcal{T}^{\pi^{\star}}Q^{\star} - \mathcal{T}^{\pi^{\star}}Q^{\pi_{k}}\|_{\infty} \\ &\leq \gamma \|Q^{\star} - Q^{\pi_{k}}\|_{\infty}. \end{split} \qquad \qquad \begin{aligned} (Q^{\star} - Q^{\pi_{k+1}} \text{ is non-negative}) \\ &(\mathcal{T}^{\pi} \text{ is a } \gamma\text{-contraction for any } \pi) \end{aligned}$$

Finally we verify (a) and (b) by noting that

$$(\mathcal{T}^{\pi_{k+1}}Q^{\pi_k})(s,a) = \mathbb{E}\left[\sum_{h=1}^{\infty} \gamma^{h-1} r_h | s_1 = s, a_1 = a, a_2 \sim \pi_{k+1}, a_{3:\infty} \sim \pi_k\right],\tag{7}$$

$$(\mathcal{T}^{\pi} Q^{\pi_k})(s, a) = \mathbb{E}\left[\sum_{h=1}^{\infty} \gamma^{h-1} r_h | s_1 = s, a_1 = a, a_2 \sim \pi, a_{3:\infty} \sim \pi_k\right],\tag{8}$$

$$Q^{\pi_{k+1}}(s,a) = \mathbb{E}\left[\sum_{h=1}^{\infty} \gamma^{h-1} r_h | s_1 = s, a_1 = a, a_2 \sim \pi_{k+1}, a_{3:\infty} \sim \pi_{k+1}\right], \tag{9}$$

where $a_{3:\infty}$ denote all the actions from the 3rd time step onwards, and $a_h \sim \pi$ is a shorthand for $a_h = \pi(s_h)$. Since π_{k+1} greedily optimizes Q^{π_k} , (7) \geq (8) and (a) follows. (b) follows due to the policy improvement theorem, i.e., (9) \geq (7) because π_{k+1} outperforms π_k in all states.

(a) 的主要原因是 $_{r}$ 算子是关于 $_{r}$ 最优的,它每次都选择后续状态中 $_{r}$ 最大的那个行动,因此任意给一个其他的策略,都肯定没有它大;

(b) 的主要原因是不等式左边只是对于临近的一步取 greedy policy 得到最优,比如 α_3 取了贪心的策略, $V(\alpha_3) \leftarrow \text{better } V(\alpha_3)$,这样新的价值函数会更大;而右边是把这种最优的性质传播开来,即 $V(\alpha_3) \leftarrow \text{better } V(\alpha_4)$ $V(\alpha_3) \leftarrow \text{better } V(\alpha_4)$... 。

2.2. Value Iteration

Value iteration就是直接迭代Q函数,而不是像policy iteration那样在Q函数和策略交替优化。

Value Iteration computes a series of Q-value functions to directly approximate Q^* , without going back and forth between value functions and policies as in Policy Iteration. Let $Q^{*,0}$ be the initial

value function, often initialized to $\mathbf{0}_{|\mathcal{S}\times\mathcal{A}|}$. The algorithm computes $Q^{\star,h}$ for $h=1,2,\ldots,H$ in the following manner:

$$Q^{\star,h} = \mathcal{T} \, Q^{\star,h-1}.$$
 (10)

Recall that \mathcal{T} is the Bellman optimality operator defined in Equation 6.

$$(\mathcal{T}f)(s,a) := R(s,a) + \gamma \langle P(s,a), V_f \rangle, \tag{6}$$

where $V_f(\cdot) := \max_{a \in \mathcal{A}} f(\cdot, a)$. This allows us to rewrite Equation $\boxed{5}$ in the following concise form, which implies that Q^* is the fixed point of the operator \mathcal{T} :

$$Q^* = TQ^*$$
. 知乎 ②张楚珩

这里讲了三个结论

- 当我们学习到了一个Q函数 $_f$,相对于此Q函数的贪心策略 $_n$ 的性能 $_{v^n}$ 可以被函数 $_f$ 离最优Q 函数 $_{c^n}$ 的距离bound。
- 每轮迭代, 学习到的Q函数距离最优Q函数 & 的距离都指数衰减。
- 如果只考虑有限步的最优价值函数,随着考虑的步数的增多,其相对于最优Q函数 *q* 的距离指数减少。

第一个结论: 策略性能与价值函数误差之间的关系

Lemma 4 ([8]).
$$||V^{\star} - V^{\pi_f}||_{\infty} \leq \frac{2||f - Q^{\star}||_{\infty}}{1 - \gamma}$$
.

Proof. For any $s \in \mathcal{S}$,

$$\begin{split} V^{\star}(s) - V^{\pi_{f}}(s) &= Q^{\star}(s, \pi^{\star}(s)) - Q^{\star}(s, \pi_{f}(s)) + Q^{\star}(s, \pi_{f}(s)) - Q^{\pi_{f}}(s, \pi_{f}(s)) \\ &\leq Q^{\star}(s, \pi^{\star}(s)) - f(s, \pi^{\star}(s)) + f(s, \pi_{f}(s)) - Q^{\star}(s, \pi_{f}(s)) \\ &+ \gamma \mathbb{E}_{s' \sim P(s, \pi_{f}(s))}[V^{\star}(s') - V^{\pi_{f}}(s')] \\ &\leq 2 \|f - Q^{\star}\|_{\infty} + \gamma \|V^{\star} - V^{\pi_{f}}\|_{\infty}. \end{split}$$

第一个等式只是添项和减项。第一个等式最后两项变成了第三行里面的内容,只需要利用Q函数和 V函数之间的关系 $Q(s,a)=R(s,a)+p(d|s,\pi_f(a))V(d)$ 即可。第二个不等式再次添项和减项,注意到 π_f 是关于 f 的贪心策略,插入 $f(s,\pi_f(a))\leq f(s,\pi_f(a))$ 即可。第二行的内容得到第三个不等式的第一项,把 $f-Q^a$ 看成一个函数,该函数上两个点的差值被该函数的inf norm的两倍bound。第三行的内容得到第三个不等式的第二项,即期望(线性组合)被该函数的最大值bound。

第二个结论: 随着迭代误差指数减小(不动点视角)

这是最常见的一种证明方法。首先,结论如下面(11)式所示。

Value Iteration can be viewed as solving for the fixed point of \mathcal{T} , i.e., $Q^* = \mathcal{T}Q^*$. The convergence of such iterative methods is typically analyzed by examining the *contraction* of the operator. In fact, the Bellman optimality operator is a γ -contraction under ℓ_{∞} norm [1]: for any f, $f' \in \mathbb{R}^{|\mathcal{S} \times \mathcal{A}|}$

$$\|\mathcal{T}f - \mathcal{T}f'\|_{\infty} \le \gamma \|f - f'\|_{\infty}. \tag{11}$$

To verify, we expand the definition of T for each entry of (Tf - Tf'):

$$\begin{split} \left| [\mathcal{T}f - \mathcal{T}f']_{s,a} \right| &= \left| R(s,a) + \gamma \langle P(s,a), V_f \rangle - R(s,a) - \gamma \langle P(s,a), V_{f'} \rangle \right| \\ &\leq \gamma \left| \langle P(s,a), V_f - V_{f'} \rangle \right| \leq \gamma \left\| V_f - V_{f'} \right\|_{\infty} \leq \gamma \left\| f - \int_{T}^{T_{f'}} \left\| \frac{\nabla V_f}{\sqrt{2}} \right\|_{\infty}^{T_{f'}} \end{split}$$

第一个不等号应该是等号吧。第二个不等号利用了 P(s,a) 向量每个元素都非负并且加起来等于1。第三个不等号note里面给了详细解释,其实只需要注意到 v_t 就是取 t_t 的最大值,因此被 t_t 的最大值 bound,具体解释如下。

The last step uses the fact that $\forall s \in \mathcal{S}$, $|V_f(s) - V_{f'}(s)| = \max_{a \in \mathcal{A}} |f(s,a) - f'(s,a)|$. The easiest way to see this is to assume $V_f(s) > V_{f'}(s)$ (the other direction is symmetric), and let a_0 be the greedy action for f at s. Then

$$|V_f(s) - V_{f'}(s)| = f(s, a_0) - \max_{a \in A} f'(s, a) \le f(s, a_0) - f'(s, a_0) \le \max_{a \in A} |f(s)|^{\frac{1}{2}} f'(s) = f(s) = f(s)$$

因此可以得到结论,每轮迭代误差都指数减小。

Using the contraction property of \mathcal{T} , we can show that as h increases, Q^* and $Q^{*,h}$ becomes exponentially closer under ℓ_{∞} norm:

$$||Q^{\star,h} - Q^{\star}||_{\infty} = ||TQ^{\star,h-1} - TQ^{\star}||_{\infty} \le \gamma ||Q^{\star,h-1} - Q^{\star}||_{\infty}.$$

加上初始值bound,可以得到经过若干轮迭代之后的误差上界。

Since Q^* has bounded range (recall Equation 2), for $Q^{*,0} = \mathbf{0}_{|\mathcal{S}\times\mathcal{A}|}$ (or any function in the same range) we have $\|Q^{*,0} - Q^*\|_{\infty} \leq R_{\max}/(1-\gamma)$. After H iterations, the distance shrinks to

$$||Q^{\star,H} - Q^{\star}||_{\infty} \le \gamma^H R_{\text{max}}/(1 - \gamma).$$
 (12)

由此可以求到经过 $o(\frac{1}{1-\gamma})$ 轮迭代能够得到一个足够精度的最优Q函数估计。

To guarantee that we compute a value function ϵ -close to Q^* , it is sufficient to set

$$H \ge \frac{\log \frac{R_{\text{max}}}{\epsilon(1-\gamma)}}{1-\gamma}.$$
 (13)

The base of \log is e in this course unless specified otherwise. To verify,

$$\gamma^H \frac{R_{\max}}{1-\gamma} = (1-(1-\gamma))^{\frac{1}{1-\gamma} \cdot H(1-\gamma)} \frac{R_{\max}}{1-\gamma} \leq \left(\frac{1}{e}\right)^{\log \frac{R_{\max}}{\epsilon(1-\gamma)}} \frac{R_{\max}}{1-\gamma} = \epsilon.$$

Here we used the fact that $(1-1/x)^x \le 1/e$ for x > 1.

Equation 13 is often referred to as the effective horizon. The bound is often simplified as $H = O(\frac{1}{1-\gamma})$, and used as a rule of thumb to translate between the finite-horizon undiscounted and the infinite-horizon discounted settings From now on we will often use the term "horizon" generically, which should be interpreted as $O(\frac{1}{1-\gamma})$ in the discounted setting.

第三个结论: 随着考虑轨迹越长,误差指数减小(Finite-horizon 视角)

这里考虑的是这样一个问题。如果只针对有限步价值函数 $v^{-\pi}$,找到它的最优价值函数 $v^{-\pi}$ (对应的策略可以使non-stationary的),它和全局最优的最优价值函数值有什么关系。结论是关系如下(具体的定义见后面贴出来的截图)

we have $\forall s \in \mathcal{S}$,

$$V^{\star}(s) - \frac{\gamma^{H} R_{\text{max}}}{1 - \gamma} \le V^{\star,H}(s) \le V^{\star}(s),$$

证明很好理解。

Equation 12 can be derived using an alternative argument, which views Value Iteration as optimizing value for a finite horizon. $V^{\star,H}(s)$ is essentially the optimal value for the expected value of the finite-horizon return: $\sum_{t=1}^{H} \gamma^{t-1} r_t$. For any stationary policy π , define its H-step truncated value

$$V^{\pi,H}(s) = \mathbb{E}\left[\sum_{t=1}^{H} \gamma^{t-1} r_t \mid \pi, s_1 = s\right].$$
 (14)

Due to the optimality of $V^{\star,H}$, we can conclude that for any $s \in \mathcal{S}$ and $\pi : \mathcal{S} \to \mathcal{A}$, $V^{\pi,H}(s) \leq V^{\star,H}(s)$. In particular,

$$V^{\pi^{\star},H}(s) \leq V^{\star,H}(s)$$
.

Note that the LHS and RHS are not to be confused: π^* is the stationary policy that is optimal for infinite horizon, and to achieve the finite-horizon optimal value on the RHS we may need a non-stationary policy (recall the discussion in Section 1.5).

The LHS can be lower bounded as $V^{\pi^\star,H}(s) \geq V^\star(s) - \gamma^H R_{\max}/(1-\gamma)$, because $V^{\pi^\star,H}$ does not include the nonnegative rewards from time step H+1 on. (In fact the same bound applies to all policies.) The RHS can be upper bounded as $V^{\star,H}(s) \leq V^\star(s)$: V^\star should dominate any stationary and non-stationary policies, including the one that first achieves $V^{\star,H}$ within H steps and picks up some non-negative rewards afterwards with any behavior. Combining the lower and the upper bounds, we have $\forall s \in \mathcal{S}$,

$$V^{\star}(s) - \frac{\gamma^H R_{\max}}{1-\gamma} \leq V^{\star,H}(s) \leq V^{\star}(s), \tag{2.15}$$

which immediately leads to Equation 12

主要利用到1)存在稳态的最优策略,它比任何(稳态或者非稳态)的策略都不差;2)每一步奖励都非负,因此在 π 步被截断了,肯定数值会更少,少了多少是有一个上界的。

发布于 2019-05-14

