Algebraic proof of modular form inequalities for optimal sphere packings

Seewoo Lee

April 29, 2025. International Seminar on Automorphic Forms, Online

Goal

- We develop simple but surprisingly useful tools to study (completely) positive quasimodular forms.
- Using the theory, we give algebraic proofs of Viazovska and Cohn–Miller–Kumar–Radchenko–Viazovska's modular form inequalities for the E₈ and Leech lattice packing in dimensions 8 and 24.
- We also prove a conjecture of Kaneko and Koike for the extremal forms in the case of depth 1.

Sphere packing

Question

For given $d \geq 1$, find an optimal sphere (in fact, ball) packing of \mathbb{R}^d and its density Δ_d .

Sphere packing, d=1

Theorem

 $\Delta_1 = 1$.

Sphere packing, d = 1

Theorem

$$\Delta_1=1$$
.

Proof.

$$\mathbb{R} = \bigcup_{n \in \mathbb{Z}} [2n-1, 2n+1] = \bigcup_{n \in \mathbb{Z}} \overline{B_1(2n)}.$$

Sphere packing, d=2

Sphere packing, d = 2

Theorem (Thue 1890, Tóth 1942)

Hexagonal packing (A_2 lattice packing) is optimal with

$$\Delta_2 = \frac{\pi}{2\sqrt{3}}.$$

Spehere packing, d = 3

Theorem (Kepler conjecture, Hales 1998)

Cannon ball packing are optimal with $\Delta_3 = \frac{\pi}{3\sqrt{2}}$.

- Uncountably many optimal packings
- ullet Computer-assisted, formally verified in 2014 using Isabelle + HOL light (with 20 more people)

Sphere packing, $d \ge 4$

Theorem

The following packings are optimal among lattice packings.

- d = 4,5 by Korkine and Zolotareff
- d = 6, 7, 8 by Blichfeldt
- d = 24 (and d = 8 again) by Cohn and Kumar

Conjecture

Above lattice packings are optimal among all packings.

Sphere packing

And...

Sphere packing, d = 8

Theorem (Viazovska, 2016 π -day on arXiv)

 E_8 lattice packing is optimal with $\Delta_8 = \frac{\pi^4}{384}$.

$$E_8 = \left\{ (x_i) \in \mathbb{Z}^8 \cup \left(\mathbb{Z} + \frac{1}{2} \right)^8 : \sum_{i=1}^8 x_i \equiv 0 \pmod{2} \right\} \subset \mathbb{R}^8$$

Sphere packing, d = 24

Theorem (Cohn-Kumar-Miller-Radchenko-Viazovska, March 21st 2016 on arXiv)

Leech lattice packing is optimal with $\Delta_{24} = \frac{\pi^{12}}{12!}$.

Unique even unimodular lattice with nonzero minimial length $\lambda(\Lambda_{24})=2$. Can be constructed by the binary Golay code, Lorentzian lattice $II_{25,1}$, etc.

LP bound

How?

LP bound

How? We have a Linear programming bound for sphere packing:

Theorem (Cohn-Elkies, 2003)

Let r > 0. Assume that there exists a nice function $f : \mathbb{R}^d \to \mathbb{R}$ satisfying

- $f(0) = \widehat{f}(0) > 0$,
- $f(x) \le 0$ for all $||x|| \ge r$,
- $\widehat{f}(y) \ge 0$ for all $y \in \mathbb{R}^d$.

Then

$$\Delta_d \leq \operatorname{vol}(B^d_{r/2}) = \left(\frac{r}{2}\right)^d \frac{\pi^{d/2}}{(d/2)!}.$$

LP bound

Sketch of the proof.

For lattice packing: let $\Lambda \subset \mathbb{R}^d$ be a lattice with minimum length r. By Poisson summation formula,

$$f(0) \ge \sum_{x \in \Lambda} f(x) = \frac{1}{\operatorname{vol}(\mathbb{R}^d/\Lambda)} \sum_{y \in \Lambda^*} \widehat{f}(y) \ge \frac{\widehat{f}(0)}{\operatorname{vol}(\mathbb{R}^d/\Lambda)}$$

and $f(0) = \widehat{f}(0) > 0$ gives

$$\operatorname{vol}(\mathbb{R}^d/\Lambda) \geq 1 \Leftrightarrow (\operatorname{density}) = \frac{\operatorname{vol}(B^d_{r/2})}{\operatorname{vol}(\mathbb{R}^d/\Lambda)} \leq \operatorname{vol}(B^d_{r/2}).$$

Non-lattice packings can be approximated by a finite union of lattice packings, and the result follows similarly.

Cohn and Elkies experimented with functions of the form (polynomial) \times (gaussian), and the obtained upper bounds were surprisingly close to the conjectured bound in dimensions d=2,8,24.

Cohn and Elkies experimented with functions of the form (polynomial) \times (gaussian), and the obtained upper bounds were surprisingly close to the conjectured bound in dimensions d=2,8,24.

One can assume that f is radial, i.e. f(x) only depends on the norm ||x|| of the input (by averaging over each sphere).

Cohn and Elkies experimented with functions of the form (polynomial) \times (gaussian), and the obtained upper bounds were surprisingly close to the conjectured bound in dimensions d=2,8,24.

One can assume that f is radial, i.e. f(x) only depends on the norm ||x|| of the input (by averaging over each sphere).

If we follow the proof of LP bound that uses Poisson summation formula, both f and \widehat{f} should have zeros at the nonzero lattice points, and nonpositivity (resp. nonnegativity) assumptions on f (resp. \widehat{f}) enforces them to be zeros of order 2 (except for the "first" zero of f).

Hence f has a following form (for d = 8)

How to construct such a function? Under the philosophy of uncertainty principle, it is hard to control both f and \hat{f} at once.

Viazovska's construction

Viazovska (and colleagues) constructed the magic functions for d=8,24, using *modular forms*.

Viazovska's construction

Viazovska (and colleagues) constructed the magic functions for d=8,24, using modular forms.

Decompose f into Fourier eigenfunctions $f=f_++f_-$, where $\widehat{f_+}=f_+$ and $\widehat{f_-}=-f_-$. Viazovska write them as

$$f_{\pm}(x) = \sin^2\left(\frac{\pi \|x\|^2}{2}\right) \int_0^{\infty} \varphi_{\pm}(t) e^{-\pi \|x\|^2 t} dt,$$

where \sin^2 factor is included to enforce desired roots. Then f_\pm being Fourier eigenfunctions correspond to φ_\pm being "(quasi)modular forms".

Viazovska's construction

Viazovska (and colleagues) constructed the magic functions for d=8,24, using modular forms.

Decompose f into Fourier eigenfunctions $f=f_++f_-$, where $\widehat{f_+}=f_+$ and $\widehat{f_-}=-f_-$. Viazovska write them as

$$f_{\pm}(x) = \sin^2\left(\frac{\pi \|x\|^2}{2}\right) \int_0^{\infty} \varphi_{\pm}(t) e^{-\pi \|x\|^2 t} dt,$$

where \sin^2 factor is included to enforce desired roots. Then f_\pm being Fourier eigenfunctions correspond to φ_\pm being "(quasi)modular forms". Now the linear constraints (inequalities) on f and \widehat{f} reduces to the modular inequalities

$$\varphi_{+}(t) + \varphi_{-}(t) < 0,$$

$$\varphi_{+}(t) - \varphi_{-}(t) > 0.$$

Modular forms

Definition

Let $\mathcal H$ be the complex upper half plane and $\Gamma\subset SL_2(\mathbb Z)$ be a congruence subgroup. A holomorphic function $f:\mathcal H\to\mathbb C$ is a **modular form of weight** k **and level** Γ if

$$f\left(\frac{az+b}{cz+d}\right)=(cz+d)^kf(z)$$

for all $z \in \mathcal{H}$ and $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$, and satisfies nice growth condition at cusps.

• If $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \in \Gamma$, f(z+1) = f(z) and hence f admits a Fourier expansion in $q = e^{2\pi i z}$ at ∞ .

Modular forms

Examples:

Eisenstein series

$$E_4 = 1 + 240 \sum_{n \ge 1} \sigma_3(n) q^n, \quad E_6 = 1 - 504 \sum_{n \ge 1} \sigma_5(n) q^n$$

• Discriminant form (cusp form of level $SL_2(\mathbb{Z})$, weight 12)

$$\Delta = (E_4^3 - E_6^2)/1728 = q \prod_{n \ge 1} (1 - q^n)^{24} = q - 24q^2 + \cdots$$

• Jacobi thetanulle functions (level $\Gamma(2)$, weight 1/2)

$$\Theta_2 = \sum_{n \in \mathbb{Z}} q^{\frac{1}{2} (n + \frac{1}{2})^2}, \quad \Theta_3 = \sum_{n \in \mathbb{Z}} q^{\frac{n^2}{2}}, \quad \Theta_4 = \sum_{n \in \mathbb{Z}} (-1)^n q^{\frac{n^2}{2}}$$

Quasimodular forms

Definition (informal)

Quasimodular forms are

- the functions act as modular forms but not exactly, or
- modular forms with E_2 , or
- modular forms with differentiations.

Quasimodular forms

For example, $E_2 = 1 - 24 \sum_{n>1} \sigma_1(n) q^n$ satisfies

$$E_2\left(-\frac{1}{z}\right) = z^2 E_2(z) - \frac{6iz}{\pi}$$

and the ring of *quasi*modular forms (of level $SL_2(\mathbb{Z})$) is generated by E_2 , E_4 , E_6 , closed under the differentiation

$$f\mapsto rac{1}{2\pi i}rac{\mathrm{d}f}{\mathrm{d}z}=qrac{\mathrm{d}f}{\mathrm{d}q},\quad \sum_{n\geq 0}\mathsf{a}_nq^n\mapsto \sum_{n\geq 0}\mathsf{n}\mathsf{a}_nq^n.$$

Quasimodular forms

We denote $\mathcal{QM}_w^s(\Gamma)$ for the space of quasimodular forms of weight w and $depth \leq s$, where depth is the degree of E_2 in the polynomial expression of the quasimodular form.

Differentiation increases weight by 2 and depth by 1, which can be computed using Ramanujan's identities

$$E_2' = \frac{E_2^2 - E_4}{12}, \quad E_4' = \frac{E_2 E_4 - E_6}{3}, \quad E_6' = \frac{E_2 E_6 - E_4^2}{2}.$$

Recall that we set $f = f_+ + f_-$ where

$$f_{\pm}(x) = \sin^2\left(\frac{\pi \|x\|^2}{2}\right) \int_0^{\infty} \varphi_{\pm}(t) e^{-\pi \|x\|^2 t} dt,$$

and find φ_{\pm} such that $\widehat{f_{\pm}} = \pm f_{\pm}$. Viazovska proved that, if we put $\varphi_{\pm}(t) = t^2 \psi_{\pm}(i/t)$ for some holomorphic $\psi_{\pm} : \mathcal{H} \to \mathbb{C}$,

$$\widehat{f}_{+} = f_{+} \Leftarrow \psi_{+} \in \mathcal{QM}_{0}^{2,!}(\mathsf{SL}_{2}(\mathbb{Z})) \text{ such that } \dots$$

$$\widehat{f}_{-} = -f_{-} \Leftarrow \psi_{-} \in \mathcal{QM}_{-2}^{0,!}(\Gamma(2)) \text{ such that } \dots$$

Here ! stands for weakly holomorphic modular forms (i.e. allow poles at infinity). Viazovska's ansatz for ψ_\pm was that $\psi_\pm \Delta$ are holomorphic modular forms.

The actual modular forms are¹

$$\psi_{+} = -\frac{(E_{2}E_{4} - E_{6})^{2}}{\Delta}$$

$$\psi_{-} = -\frac{18}{\pi^{2}} \frac{\Theta_{2}^{12}(2\Theta_{2}^{8} + 5\Theta_{2}^{4}\Theta_{4}^{4} + 5\Theta_{4}^{8})}{\Delta}$$

The corresponding integrals only converge for $||x|| > \sqrt{2}$, and one needs to analytically continue to $0 \le ||x|| \le \sqrt{2}$. Then the inequalities $f \le 0$ or $\widehat{f} \ge 0$ reduces to

$$\psi_{+}(it) + \psi_{-}(it) < 0, \quad \psi_{+}(it) - \psi_{-}(it) > 0.$$

¹Here we normalized in a slightly different way. We have $f(0) = \hat{f}(0) = \frac{5}{4\pi}$.

d = 8, modular form inequalities

For simplicity, we write

$$F = (E_2 E_4 - E_6)^2$$

$$G = H_2^3 (2H_2^2 + 5H_2H_4 + 5H_4^2),$$

where $H_2 = \Theta_2^4$ and $H_4 = \Theta_4^4$. Then the inequalities for f and \hat{f} reduce to

$$F(it) + \frac{18}{\pi^2}G(it) > 0,$$

$$F(it) - \frac{18}{\pi^2}G(it) < 0.$$

d = 8, Viazovska's proof

Viazovska's original proof uses approximations of Fourier coefficients and reduce it to finite calculations + interval arithmetic (for both inequalities).

Viazovska's original proof uses approximations of Fourier coefficients and reduce it to finite calculations + interval arithmetic (for both inequalities).

More precisely, Viazovska used a bound of Fourier coefficients of the form

$$|c(n)| \le 2e^{4\pi\sqrt{n}}$$

that comes from the Hardy–Ramanujan formula, and write the modular forms as

$$A(t) = \psi_{+}(it) + \psi_{-}(it) = A_{\bullet}^{(n)}(t) + R_{\bullet}^{(n)}(t)$$

with $\bullet \in \{0, \infty\}$ and $A^{(n)}_{\bullet}(t)$ is *n*-th approximation of A(t) as $t \to \bullet$, then prove $|R^{(n)}_{\bullet}(t)| \le |A^{(n)}_{\bullet}(t)|$ using interval arithmetic (numerical analysis). Similar proof for $B(t) = \psi_+(it) - \psi_-(it)$.

d = 8, Romik's proof

Recently (2023), Romik give an alternative and much simpler proof of d=8 case that does not use any of interval arithmetic.

d = 8, Romik's proof

Recently (2023), Romik give an alternative and much simpler proof of d=8 case that does not use any of interval arithmetic.

The first inequality is "easy": we have F(it) > 0 and G(it) > 0 separately (this was not clear form Viazovska's original expression of ψ_I).

d=8, Romik's proof

Recently (2023), Romik give an alternative and much simpler proof of d=8 case that does not use any of interval arithmetic.

The first inequality is "easy": we have F(it) > 0 and G(it) > 0 separately (this was not clear form Viazovska's original expression of ψ_I).

But the second inequality is still "hard": we need to compare modular forms of different weights (12 and 10). Romik considered the cases 0 < t < 1 and $t \geq 1$ separately, and used various identities and monotonicity propertices.

d = 8, Romik's proof

For example, we have

$$\frac{\pi^2}{18}F(z) = 28800\pi^2 q^2 + 1036800\pi^2 q^3 + 14169600\pi^2 q^4 +$$

$$G(z) = 20480q^{3/2} + 2015232q^{5/2} + 41656320q^{7/2} + \cdots$$

Both F and G have nonnegative Fourier coefficients, so $e^{3\pi t}F(it)$ and $e^{3\pi t}G(it)$ are both monotone in t.

d = 8, Romik's proof

For example, we have

$$\frac{\pi^2}{18}F(z) = 28800\pi^2 q^2 + 1036800\pi^2 q^3 + 14169600\pi^2 q^4 +$$

$$G(z) = 20480q^{3/2} + 2015232q^{5/2} + 41656320q^{7/2} + \cdots$$

Both F and G have nonnegative Fourier coefficients, so $e^{3\pi t}F(it)$ and $e^{3\pi t}G(it)$ are both monotone in t. Using explicit values of modular forms like

$$E_2(i) = \frac{3}{\pi}, \quad E_4(i) = \frac{3\Gamma(1/4)^8}{64\pi^6}, \quad E_6(i) = 0,$$

we get a proof for $t \ge 1$:

$$e^{3\pi t}F(it) \le e^{3\pi}F(i) = 13130.47 \cdots < 20480 < e^{3\pi t}G(it)$$

This gives a "calculator-assisted" proof. 0 < t < 1 is more complicated.

d = 8, modular form inequalities

Question

Any algebraic proofs? Can we homogenize the inequality?

Let's rewrite it as

$$\frac{F(it)}{G(it)} < \frac{18}{\pi^2}$$

which is still inhomogenous.

Let's rewrite it as

$$\frac{F(it)}{G(it)} < \frac{18}{\pi^2}$$

which is still inhomogenous. How the function on the left hand side looks like?

Let's rewrite it as

$$\frac{F(it)}{G(it)} < \frac{18}{\pi^2}$$

which is still inhomogenous. How the function on the left hand side looks like? Since I cannot plot it myself, let's ask SAGE...

This graph tells us what we should try:

Proposition

$$\lim_{t\to 0^+}\frac{F(it)}{G(it)}=\frac{18}{\pi^2}.$$

Proposition

The function

$$t\mapsto \frac{F(it)}{G(it)}$$

is decreasing in t.

and both turned out to be true.

Proof of the limit.

We have

$$\lim_{t\to 0^+} \frac{F(it)}{G(it)} = \lim_{t\to \infty} \frac{F(i/t)}{G(i/t)}$$

and F and G satisfy the following functional equations:

Proof of the limit.

We have

$$\lim_{t\to 0^+} \frac{F(it)}{G(it)} = \lim_{t\to \infty} \frac{F(i/t)}{G(i/t)}$$

and F and G satisfy the following functional equations:

$$F\left(\frac{i}{t}\right) = t^{12}F(it) - \frac{12t^{11}}{\pi}(E_2(it)E_4(it) - E_6(it))E_4(it) + \frac{36t^{10}}{\pi^2}E_4(it)^2,$$

$$G\left(\frac{i}{t}\right) = t^{10}H_4(it)^3(2H_4(it)^2 + 5H_4(it)H_2(it) + 5H_2(it)^2).$$

The red terms are cusp forms, and the orange terms converges to 1. Hence the limit is $\frac{36/\pi^2}{2} = \frac{18}{\pi^2}$.

d = 8: monotonicity

The monotonicity is equivalent to the homogenous inequality

$$F'(it)G(it)-F(it)G'(it)>0.$$

Let's see what SAGE tells us...

The monotonicity is equivalent to the homogenous inequality

$$F'(it)G(it) - F(it)G'(it) > 0.$$

Let's see what SAGE tells us... that the inequality is equivalent to

$$(H_2 + H_4)^2 H_4^2 (E_2 E_4 - E_6) \left(E_4 - \frac{1}{2} E_2 (H_2 + 2H_4) \right) > 0$$

First two terms are clearly positive, the third term is $(E_2E_4 - E_6)(it) = 3E_4'(it) = 720\sum_{n\geq 1} n\sigma_3(n)e^{-2\pi nt} > 0.$

The last factor can be written as

$$E_4(it) - E_2(it)(2E_2(2it) - E_2(it)) > 0,$$

which is equivalent to

$$(E_4(it) - E_4(2it)) + (E_4(2it) - E_2(2it)^2) + (E_2(it) - E_2(2it))^2 > 0.$$

The first term is positive since

$$E_4(it) = 1 + 240 \sum_{n>1} \sigma_3(n) e^{-2\pi nt}$$

is monotone decreasing, and the second term is positive since

$$E_4(2it) - E_2(2it)^2 = -12E_2'(2it) = 288 \sum_{n>1} n\sigma_1(n)e^{-4\pi nt} > 0.$$

Hence
$$F(it)/G(it) < \lim_{u \to 0^+} F(iu)/G(iu) = \frac{18}{\pi^2}$$
.

What about d = 24? The corresponding (quasi)modular forms are

$$\psi_{+} = -\frac{F}{\Delta^{2}},$$

$$\psi_{-} = -\frac{432}{\pi^{2}} \frac{G}{\Delta^{2}},$$

where

$$F = 49E_2^2E_4^3 - 25E_2^2E_6^2 - 48E_2E_4^2E_6 - 25E_4^4 + 49E_4E_6^2,$$

$$G = H_2^5(2H_2^2 + 7H_2H_4 + 7H_4^2).$$

$$\begin{split} F &= 49E_2^2E_4^3 - 25E_2^2E_6^2 - 48E_2E_4^2E_6 - 25E_4^4 + 49E_4E_6^2, \\ G &= H_2^5(2H_2^2 + 7H_2H_4 + 7H_4^2). \end{split}$$

Then we need to prove the following *three* inequalities:²

$$F(it) + \frac{432}{\pi^2} G(it) \ge 0,$$

$$F(it) - \frac{432}{\pi^2} G(it) \le 0.$$

$$t^{10} \left(-\frac{F(i/t)}{\Delta(i/t)^2} + \frac{432}{\pi^2} \frac{G(i/t)}{\Delta(i/t)^2} \right) \ge \frac{725760}{\pi} e^{2\pi t} \left(t - \frac{10}{3\pi} \right).$$

²The second inequality can only prove $\hat{f}(r) > 0$ for $r \ge \sqrt{2}$, but not for $0 < r < \sqrt{2}$, and we need the third inequality for the remaining part.

But the "easy" inequality does not seem easy. G(it) > 0 is clear from the expression (and already observed by CKMRV), but for

$$F = 49E_2^2E_4^3 - 25E_2^2E_6^2 - 48E_2E_4^2E_6 - 25E_4^4 + 49E_4E_6^2,$$

it is not clear why F(it) > 0.

And the second is harder, and the last inequality is much harder.

To prove the 24-dimensional modular form inequalities, we develop some theory of (completely) positive quasimodular forms.

(Completely) positive quasimodular forms

Definition

Let $\Gamma \subseteq SL_2(\mathbb{Z})$. We call $F \in \mathcal{QM}_w^s(\Gamma)$ a **positive quasimodular form** if it has real q-coefficients and

$$F(it) \geq 0$$

for all t > 0. We denote $\mathcal{QM}_{w}^{s,+}(\Gamma)$ for the set of positive quasimodular forms.

We call $F \in \mathcal{QM}_w^s(\Gamma)$ a completely positive quasimodular form if it has nonnegative real coefficients. We denote $\mathcal{QM}_w^{s,++}(\Gamma)$ for the set of completely positive quasimodular forms.

(Completely) positive quasimodular forms

We have $\mathcal{QM}_{w}^{s,++} \subseteq \mathcal{QM}_{w}^{s,+} \subseteq \mathcal{QM}_{w}^{s}$, and the two sets form a convex cone in \mathcal{QM}_{w}^{s} .

The inclusion is strict in general:

 $\Delta(q) = q \prod_{n \ge 1} (1 - q^n)^{24} = q - 24q^2 + \cdots$ is positive but not completely positive.

Proposition

- **1** If F is a cusp form and $F' \in \mathcal{QM}_w^{s,+}$, then $F \in \mathcal{QM}_{w-2}^{s-1,+}$.
- $\textbf{ 1f } F \in \mathcal{QM}^{s,++}_w, \text{ then } F^{(r)} \in \mathcal{QM}^{s+r,++}_{w+2r} \text{ for all } r \geq 0.$

Definition

For $k \in \mathbb{Z}$ and $F \in \mathcal{QM}_w^s(\Gamma)$, define **Serre derivative** $\partial_k F$ of F as

$$\partial_k F = F' - \frac{k}{12} E_2 F.$$

A priori, $\partial_k F \in \mathcal{QM}^{s+1}_{w+2}(\Gamma)$. However,

Proposition

When k = w - s, ∂_{w-s} maps $F \in \mathcal{QM}_w^s$ to $\partial_{w-s}F \in \mathcal{QM}_{w+2}^s$.

For example,
$$E_2'=\frac{E_2^2-E_4}{12}$$
 and $\partial_1 E_2=-\frac{E_4}{12}\in\mathcal{QM}_4^0=\mathcal{QM}_4^1$.

Proposition

Let $F = \sum_{n \geq n_0} a_n q^n \in \mathcal{QM}_w^s$ be a quasimodular form of real Fourier coefficients and $a_{n_0} > 0$. If $\partial_k F \in \mathcal{QM}_{w+2}^{s+1,+}$ for some k, then $F \in \mathcal{QM}_w^{s,+}$.

In other words, anti-Serre-derivative preserves positivity.

Proposition

Let $F = \sum_{n \geq n_0} a_n q^n \in \mathcal{QM}_w^s$ be a quasimodular form of real Fourier coefficients and $a_{n_0} > 0$. If $\partial_k F \in \mathcal{QM}_{w+2}^{s+1,+}$ for some k, then $F \in \mathcal{QM}_w^{s,+}$.

In other words, anti-Serre-derivative preserves positivity.

Proof.

 $a_{n_0} > 0$ implies F(it) > 0 for large t > 0. From $\Delta' = E_2 \Delta$,

$$\frac{\mathsf{d}}{\mathsf{d}t}\left(\frac{F(it)}{\Delta(it)^{k/12}}\right) = (-2\pi)\frac{(\partial_k F)(it)}{\Delta(it)^{k/6}} < 0.$$

Proposition

Let $F = \sum_{n \geq n_0} a_n q^n \in \mathcal{QM}_w^{s,++}$. For $k \geq 0$ and $n \geq k/12$, the n-th coefficient of $\partial_k F$ is nonnegative. Especially, if $n_0 \geq k/12 \geq 0$, then $\partial_k F$ is also completely positive.

In other words, Serre derivative preserves complete positivity (under mild assumption on the vanishing order at cusp).

Proof.

From $E_2 = 1 - 24 \sum_{n \ge 1} \sigma_1(n) q^n$, $\partial_k F$ has a q-expansion

$$\left(n_{0} - \frac{k}{12}\right) a_{n_{0}} q^{n_{0}} + \left(\left(n_{0} + 1 - \frac{k}{12}\right) a_{n_{0}+1} + 2k a_{n_{0}}\right) q^{n_{0}+1} + \cdots + \left(\left(n_{0} + m - \frac{k}{12}\right) a_{n_{0}+m} + 2k \sum_{j=1}^{m} \sigma_{1}(m+1-j) a_{n_{0}+j-1}\right) q^{n_{0}+m} + \cdots$$

and the result follows.

Extremal forms

Definition (Kaneko-Koike)

For a given weight w and depth s, extremal quasimodular form of weight w and depth w, $X_{w,s}$, is a quasimodular form of largest possible vanishing order at the cusp. More precisely, $X_{w,s}$ admits a q-expansion

$$X_{w,s} = \sum_{n \geq m} a_n q^n$$

where $m = \dim_{\mathbb{C}} \mathcal{QM}_w^s - 1$ and $a_m \neq 0$.

Examples

$$X_{6,1} = \frac{E_2 E_4 - E_6}{720} = q + 18q^2 + 84q^3 + 292q^4 + 630q^5 + \cdots$$

$$X_{8,1} = \frac{-E_2 E_6 + E_4^2}{1008} = q + 66q^2 + 732q^3 + 4228q^4 + 15630q^5 + \cdots$$

$$X_{4,2} = \frac{-E_2^2 + E_4}{288} = q + 6q^2 + 12q^3 + 28q^4 + 30q^5 + \cdots$$

$$X_{8,2} = \frac{-7E_2^2 E_4 + 2E_2 E_6 + 5E_4^2}{362880} = q^2 + 16q^3 + 102q^4 + 416q^5 + \cdots$$

$$X_{6,3} = \frac{5E_2^3 - 3E_2 E_4 - 2E_6}{51840} = q^2 + 8q^3 + 30q^4 + 80q^5 + \cdots$$

Uniqueness, existence, and computation

Theorem (Pellarin)

For $1 \le s \le 4$, extremal forms of weight w and depth s is unique up to constant.

Theorem (Kaneko-Koike, Grabner)

For $1 \le s \le 4$, we have recurrence relations and differential equations satisfied by the extremal forms.

Recurrence relations, s = 1

For
$$w \equiv 0 \pmod{6}$$
,

$$\begin{split} X_{w+2,1} &= \frac{12}{w+1} \partial_{w-1} X_{w,1}, \\ X_{w+4,1} &= E_4 X_{w,1}, \\ X_{w+6,1} &= \frac{w+6}{72(w+1)(w+5)} \left(E_4 \partial_{w-1} X_{w,1} - \frac{w+1}{12} E_6 X_{w,1} \right) \\ &= \frac{w+6}{864(w+5)} \left(E_4 X_{w+2,1} - E_6 X_{w,1} \right), \end{split}$$

and

$$X_{w,1}'' - \frac{w}{6}E_2X_{w,1}' + \frac{w(w-1)}{144}(E_2^2 - E_4)X_{w,1} = 0.$$

Kaneko-Koike conjecture

Conjecture (Kaneko-Koike)

Extremal forms of depth $1 \le s \le 4$ have nonnegative q-coefficients.

Theorem (Grabner)

Conjecture is true for all but finitely many coefficients (for each form).

Proof uses Deligne's bound: if we write $a_n=a_{n, \rm Eis}+a_{n, \rm cusp}$, $a_{n, \rm Eis}\gg a_{n, \rm cusp}$ as $n\to\infty$. Using effective version of Deligne's bound (e.g. Jenkins–Rouse), one can check nonnegativity for all n's when given w, s are small.

Kaneko-Koike conjecture for s = 1

Proposition (L.)

For $w \equiv 0 \pmod{6}$ and $w \ge 12$, we have

Kaneko-Koike conjecture for s = 1

Proposition (L.)

For $w \equiv 0 \pmod{6}$ and $w \ge 12$, we have

$$\begin{split} X'_{w,1} &= \frac{5w}{72} X_{6,1} X_{w-4,1} + \frac{7w}{72} X_{8,1} X_{w-6,1}. \\ X'_{w+2,1} &= \frac{5w}{72} X_{6,1} X_{w-2,1} + \frac{7w}{12} X_{8,1} X_{w-4,1} \\ X'_{w+4,1} &= 240 X_{6,1} X_{w,1} + \frac{7w}{72} X_{8,1} X_{w-2,1} + \frac{5w}{72} X_{10,1} X_{w-4,1}. \end{split}$$

Kaneko-Koike conjecture for s = 1

Proposition (L.)

For $w \equiv 0 \pmod{6}$ and $w \ge 12$, we have

$$\begin{split} X'_{w,1} &= \frac{5w}{72} X_{6,1} X_{w-4,1} + \frac{7w}{72} X_{8,1} X_{w-6,1}. \\ X'_{w+2,1} &= \frac{5w}{72} X_{6,1} X_{w-2,1} + \frac{7w}{12} X_{8,1} X_{w-4,1} \\ X'_{w+4,1} &= 240 X_{6,1} X_{w,1} + \frac{7w}{72} X_{8,1} X_{w-2,1} + \frac{5w}{72} X_{10,1} X_{w-4,1}. \end{split}$$

Corollary

Conjecture is true for depth 1 extremal forms.

Kaneko-Koike conjecture for s = 2

We also have similar proof for depth 2 extremal forms of weight $w \le 14$:

$$\begin{split} X_{8,2}' &= 2X_{4,2}X_{6,1} \\ X_{10,2}' &= \frac{8}{9}X_{4,2}X_{8,1} + \frac{10}{9}X_{6,1}^2 \\ X_{12,2}' &= 3X_{6,1}X_{8,2} \\ X_{14,2}' &= 3X_{4,2}X_{12,1} \end{split}$$

but we don't have a proof for general cases yet.

Recall that our goal is to prove the following inequalities: for

$$F = 49E_2^2E_4^3 - 25E_2^2E_6^2 - 48E_2E_4^2E_6 - 25E_4^4 + 49E_4E_6^2$$

$$G = H_2^5(2H_2^2 + 7H_2H_4 + 7H_4^2),$$

we have

$$F(it) + \frac{432}{\pi^2}G(it) \ge 0,$$

$$F(it) - \frac{432}{\pi^2}G(it) \le 0,$$

$$t^{10} \left(-\frac{F(i/t)}{\Delta(i/t)^2} + \frac{432}{\pi^2}\frac{G(i/t)}{\Delta(i/t)^2} \right) \ge \frac{725760}{\pi}e^{2\pi t} \left(t - \frac{10}{3\pi} \right)$$

d = 24 inequalities: "easy"

It is clear that G(it) > 0 from definition. It is less clear for F, but SAGE says...

d = 24 inequalities: "easy"

It is clear that G(it) > 0 from definition. It is less clear for F, but SAGE says...

Proposition

$$\partial_{14}F =$$

d = 24 inequalities: "easy"

It is clear that G(it)>0 from definition. It is less clear for F, but SAGE says...

Proposition

$$\partial_{14}F = 6706022400X_{6,1}X_{12,1} \in \mathcal{QM}_{18}^{2,++}.$$

Corollary

 $F(it) \ge 0$ for all t > 0.

d = 24 inequalities: "hard"

For the second inequality, we have a similar plot:

d = 24 inequalities: "hard"

For the second inequality, we have a similar plot:

Based on the previous observations, second (hard) inequality would follow from

Proposition

$$\lim_{t \to 0^+} \frac{F(it)}{G(it)} = \frac{432}{\pi^2}.$$

and

Proposition

The function $t \mapsto \frac{F(it)}{G(it)}$ is strictly decreasing on t > 0.

Based on the previous observations, second (hard) inequality would follow from

Proposition

$$\lim_{t \to 0^+} \frac{F(it)}{G(it)} = \frac{432}{\pi^2}.$$

and

Proposition

The function $t \mapsto \frac{F(it)}{G(it)}$ is strictly decreasing on t > 0.

We leave the first limit as an exercise for audiences.

Monotonicity is equivalent to

$$\mathcal{L}_{1,0} := F'G - FG' > 0.$$

We use Serre derivative trick again. Note that

$$\mathcal{L}_{1,0} = 13424296093286400q^{\frac{11}{2}} + 494781198866841600q^{\frac{13}{2}} + O(q^{\frac{15}{2}})$$

and has weight 32 and depth 2. If we apply $\partial_{30}=\partial_{32-2}$, we get

$$\mathcal{L}_{2,0} := (\partial_{14}^2 F)G - F(\partial_{14}^2 G) = \partial_{30}\mathcal{L}_{1,0}$$

(where $\partial_{14}^2=\partial_{16}\partial_{14})$ and it is enough to show that $\mathcal{L}_{2,0}$ is positive.

d = 24 inequalities: "hard" (New proof)

Now, surprisingly, F and G satisfy the following differential equations:

d = 24 inequalities: "hard" (New proof)

Now, surprisingly, F and G satisfy the following differential equations:

$$\partial_{14}^{2}F = \frac{14}{9}E_{4}F + c\Delta X_{8,2},$$

$$\partial_{14}^{2}G = \frac{14}{9}E_{4}G$$

for c = 548674560. This gives

$$\mathcal{L}_{2,0}=c\Delta X_{8,2}G>0$$

and we get $\mathcal{L}_{1,0} > 0$.

d = 24 inequalities: "hard" (New proof)

Kaneko and Zagier introduced a modular differential operator³

$$L_{2,k}:=\partial_k^2-\frac{k(k+2)}{144}E_4:\mathcal{M}_k(\Gamma)\to\mathcal{M}_{k+4}(\Gamma)$$

and the above identities show $L_{2,14}F > 0$ and $L_{2,14}G = 0$.

• Similar proof also works for d = 8 case: we have

$$L_{2,10}F = \partial_{10}^2 F - \frac{5}{6}E_4 F = 172800\Delta X_{4,2} > 0,$$

$$L_{2,10}G = \partial_{10}^2 G - \frac{5}{6}E_4 G = -640\Delta H_2 < 0$$

and this gives $\partial_{22}\mathcal{L}_{1,0} = \mathcal{L}_{2,0} > 0$.

 $^{^3}$ Supersingular j-invariants, hypergeometric series, and Atkin's orthogonal polynomials, 1998

d = 24 inequalities: "harder"

We have one more inequality left:

$$t^{10} \left(-\frac{F(i/t)}{\Delta(i/t)^2} + \frac{432}{\pi^2} \frac{G(i/t)}{\Delta(i/t)^2} \right) \ge \frac{725760}{\pi} e^{2\pi t} \left(t - \frac{10}{3\pi} \right)$$

for $t \ge 1$. Note that $0 \le t < 1$ case follows from "hard" inequality.

LHS is positive (for all t>0) due to "hard" inequality, and RHS is nonpositive for $t\leq \frac{10}{3\pi}$. Hence it is enough to prove the inequality for $t>\frac{10}{3\pi}$.

Now, the following simple inequality removes exponential term:

Proposition

For all t > 0, $\Delta(it) < e^{-2\pi t}$.

LHS is positive (for all t>0) due to "hard" inequality, and RHS is nonpositive for $t\leq \frac{10}{3\pi}$. Hence it is enough to prove the inequality for $t>\frac{10}{3\pi}$.

Now, the following simple inequality removes exponential term:

Proposition

For all t > 0, $\Delta(it) < e^{-2\pi t}$.

Proof.

$$\Delta(it) = e^{-2\pi t} \prod_{n \ge 1} (1 - e^{-2\pi nt})^{24} < e^{-2\pi t}.$$

Using the above inequality & substitute t with 1/t, the inequality reduces to

$$\frac{432}{\pi^2} - \frac{F(it)}{G(it)} \ge \frac{725760\Delta(it)}{G(it)} \left(\frac{1}{\pi t^3} - \frac{10}{\pi^2 t^2}\right)$$

for $0 < t < \frac{3\pi}{10}$.

Using the above inequality & substitute t with 1/t, the inequality reduces to

$$\frac{432}{\pi^2} - \frac{F(it)}{G(it)} \ge \frac{725760\Delta(it)}{G(it)} \left(\frac{1}{\pi t^3} - \frac{10}{\pi^2 t^2}\right)$$

for $0 < t < \frac{3\pi}{10}$. SAGE, please tell me something again...

d = 24 inequalities: "harder"

From this, we can try to prove:

Proposition

The function

$$g(t) := \frac{432}{\pi^2} - \frac{F(it)}{G(it)} - \frac{725760\Delta(it)}{G(it)} \left(\frac{1}{\pi t^3} - \frac{10}{3\pi^2 t^2}\right)$$

is monotone increasing in t for $0 < t < \frac{3\pi}{10}$ and $\lim_{t \to 0^+} g(t) = 0$. Especially, we have g(t) > 0 for all $0 < t < \frac{3\pi}{10}$.

As before, limit part is easy and left as an exercise for you.

Direct computation shows that $\mathrm{d}g/\mathrm{d}t>0$ is equivalent to

$$\mathcal{L}_{1,0}(\textit{it}) - 725760\Delta(\textit{it}) \left[(\partial_{12} \textit{G})(\textit{it}) \left(\frac{1}{\pi t^3} - \frac{10}{3\pi^2 t^2} \right) - \textit{G}(\textit{it}) \left(\frac{3}{2\pi^2 t^4} - \frac{10}{3\pi^3 t^3} \right) \right] > 0.$$

If we denote above as $\widetilde{\mathcal{L}}_{1,0}$, then $\widetilde{\mathcal{L}}(\frac{3\pi i}{10})>0$ and it is enough to prove $\partial_{30}\widetilde{\mathcal{L}}_{1,0}(it)>0$ for $0< t<\frac{3\pi}{10}$. Surprisingly, ΔG factors out and it reduces to the positivity of

$$7560X_{8,2}(it) - \frac{37E_4(it) - E_2(it)^2}{24} \left(\frac{1}{\pi t^3} - \frac{10}{3\pi^2 t^2}\right) - E_2(it) \left(\frac{3}{4\pi^2 t^4} - \frac{5}{3\pi^3 t^3}\right) + \left(\frac{3}{\pi^3 t^5} - \frac{5}{\pi^4 t^4}\right).$$

$$7560X_{8,2}(it) - \frac{37E_4(it) - E_2(it)^2}{24} \left(\frac{1}{\pi t^3} - \frac{10}{3\pi^2 t^2}\right) - E_2(it) \left(\frac{3}{4\pi^2 t^4} - \frac{5}{3\pi^3 t^3}\right) + \left(\frac{3}{\pi^3 t^5} - \frac{5}{\pi^4 t^4}\right).$$

If we denote this as h(t), then $t^{-8}h(1/t)$ can be written as

$$\frac{1}{t^8}h\left(\frac{1}{t}\right) = 7560X_{8,2}(it) + \frac{1}{\pi t}\left[\left(\frac{3}{10} - \frac{1}{\pi t}\right)J_1(it) + \frac{3}{40}J_2(it) + \frac{7}{4}J_3(it)\right]$$

where

$$J_1 = \frac{5}{3}E_2' - \frac{1}{4}E_2 + \frac{1}{4}E_4$$

$$J_2 = E_2 - E_6$$

$$J_3 = 3E_4' + \frac{9}{10}E_6 - \frac{9}{10}E_4$$

so it is enough to prove $J_k(it) > 0$ for $\frac{1}{t} < \frac{3\pi}{10} \Leftrightarrow t > \frac{10}{3\pi}$.

We can compute Fourier coefficients of these forms explicitly, and prove that J_1 and J_2 are completely positive. For J_3 , we have $J_3 = \sum_{n>1} a_n q^n$ with $a_1 > 0$ and $a_n < 0$. Hence

$$t \mapsto e^{2\pi t} J_3(it) = a_1 + \sum_{n \ge 2} a_n e^{-2\pi nt}$$

is increasing, and

$$e^{2\pi t}J_1(it) > e^{2\pi}J_1(i) = e^{2\pi}\left(\frac{3}{\pi} - \frac{9}{10}\right)E_4(i) > 0 \Rightarrow J_3(it) > 0$$

for
$$t \ge 1$$
, hence for $t > \frac{10}{3\pi}$.

Future works

What's next?

Characterize (completely) positive quasimodular forms

- Generating functions of geometric objects
 - (Kaneko–Zagier) X_{6,3} counts certain coverings of elliptic curves.
- "Generators" of $\mathcal{QM}_{w,s}^+$ and $\mathcal{QM}_{w,s}^{++}$?
- (Sakai–Tsutsumi) Higher levels?
 - Theorem (L.) Let \mathcal{D}_w be the unique level $\Gamma_0(2)$ extremal form of weight w and depth 1. Then \mathcal{D}_w and \mathcal{D}'_w are positive.
 - (almost) Theorem (L.) Extremal quasimodular forms of level $\Gamma_0(2)$, depth 2 and weight w are completely positive if and only if $w \in \{4, 6, 8, 10, 12, 14, 18\}$.
- Better (algebraic) proof for the inequalities associated to universality of E₈ and Leech lattices?
 - (L.) There is an *algebraic* proof for the inequality (3b).

Other LP problems

- (Cohn-Triantafillou) Dual LP
- (Brougain–Clozel–Kahane, Cohn–Gonçalves) Uncertainty principle
- Any results that are "uniform" in dimensions?
 - (Feigenbaum–Grabner–Hardin) (F, G) pairs for other dimensions ≡ 0 (mod 4), although they do not give a magic function (except for d = 8,24)
 - Theorem (L.) Kaneko–Koike conjecture for depth 2 implies positivity of FGH's "(-1)^{d/4}" family of modular forms.
- We need new summation formulae and new (magic) functions

Make formalization easier

- hefundamentaltheor3m / Sphere-Packing-Lean \triangle (WIP)
- Lead by Sidharth Hariharan (for their master's thesis!) and with Chris Birkbeck, Gareth Ma, Maryna Viazovska, ...
- Blueprint:

 Will be open to public on June and announced on Big Proof conference. Paper: arxiv.org/abs/2406.14659

Code: github.com/seewoo5/posqmf

Thank you!