Partial Sums and Dynamic Arrays

- Partial Sums
- Dynamic Arrays

Partial Sums and Dynamic Arrays

- Partial Sums
- Dynamic Arrays

- Partial sums. Maintain array A[0,1,..., n] of integers support the following operations.
 - SUM(i): return A[1] + A[2] + ... + A[i]
 - UPDATE(i, Δ): set A[i] = A[i] + Δ

- · Applications.
 - Dynamic lists and arrays (random access into changing lists)
 - Arithmetic coding.
 - Succinct data structures.
 - Lower bounds and cell probe complexity.
 - Basic component in many data structures.

- Goal. Partial sums data structure with SUM and UPDATE in optimal O(log n) time and no extra space(!)
- Solution in 4 steps.
 - Explicit array: slow sum and ultra fast update.
 - Explicity partial sum: ultra fast sum and slow update.
 - Balanced binary tree: fast sum and fast update.
 - Fenwick tree: fast sum and fast update and no extra space.

Solution 1: Explicit Array

- Slow sum and ultra fast update. Maintain A explicitly.
 - SUM(i): compute A[0] + .. + A[i].
 - UPDATE(i, Δ): set A[i] = A[i] + Δ
- Time.
 - O(i) = O(n) for SUM, O(1) for UPDATE.

Solution 2: Explicit Partial Sum

- Ultra fast sum and slow update. Maintain partial sum P of A.
 - SUM(i): return P[i].
 - UPDATE(i, Δ): add Δ to P[i], P[i+1], ..., P[n].
- · Time.
 - O(1) for SUM, O(n i + 1) = O(n) for UPDATE.

Data structure	Sum	UPDATE	Space
explicit array	O(n)	O(1)	O(n)
explicit partial sum	O(1)	O(n)	O(n)

• Fast sum and fast update. Maintain balanced binary tree T on A. Each node stores the sum of elements in subtree.

- SUM.
 - SUM(i): traverse path to i + 1 and sum up all off-path nodes.
- Time. O(log n)

• UPDATE.

• UPDATE(i, Δ): add Δ to nodes on path to i.

- UPDATE.
 - UPDATE(i, Δ): add Δ to nodes on path to i.
- Time. O(log n)

Data structure	Sum	UPDATE	Space
explicit array	y O(n) O(1)		O(n)
explicit partial sum	O(1)	O(n)	O(n)
balanced binary tree	O(log n)	O(log n)	O(n)
lower bound	Ω(log n)	Ω(log n)	

- Challenge. How can we improve?
- In-place data structure.
 - Replace input array A with data structure of exactly same size.
 - Use only O(1) extra space.

- Fenwick tree. Replace A by another array F.
 - Replace all even entries A[2i] by A[2i 1] + A[2i].
 - Recurse on the entries A[2, 4, .., n] until we are left with a single element.

- Fenwick tree. Replace A by another array F.
 - Replace all even entries A[2i] by A[2i 1] + A[2i].
 - Recurse on the entries A[2, 4, .., n] until we are left with a single element.
- Space.
 - In-place. No extra space.

- Indexes i_0 , i_1 , .. in F given by $i_0 = i$ and $i_{j+1} = i_j$ rmb(i_j), where rmb(i_j) is the integer corresponding to the rightmost 1-bit in i. Stop when we get 0.
- Time. O(log n)

- UPDATE(i, Δ): add Δ to partial sums covering i.
- Indexes i_0 , i_1 , ... in F given by $i_0 = i$ and $i_{j+1} = i_j + rmb(i_j)$. Stop when we get n.
- Time. O(log n)

Data structure	Sum	UPDATE	Space
explicit array	O(n)	O(1)	O(n)
explicit partial sum	O(1)	O(n)	O(n)
balanced binary tree	O(log n)	O(log n)	O(n)
lower bound	$Ω(\log n)$ $Ω(\log n)$		
Fenwick tree	O(log n)	O(log n)	in-place

• Practical? Fenwick trees for competitive programming.

Partial Sums and Dynamic Arrays

- Partial Sums
- Dynamic Arrays

- Dynamic arrays. Maintain array A[0,..., n-1] of integers and support the following operations.
 - Access(i): return A[i].
 - INSERT(i, x): insert a new entry with value x immediately to the left of entry i.
 - DELETE(i): Remove entry i.

- Applications.
 - Dynamic lists and arrays (random access into changing lists)
 - Basic component in many data structures.

- Goal. Dynamic array data structure with linear space that supports Access in O(1) time and INSERT and DELETE in O(\sqrt{n}) time.
- Solution in 4 steps.
 - Balanced binary tree: fast access and fast update.
 - Explicit array: ultra fast access and slow update.
 - Rotated array: ultra fast access and slow update (but with ultrafast updates at endpoints).
 - 2-level rotated array: ultra fast access and faster update.

- Fast access and fast update. Maintain balanced binary tree T on A. Each node stores the number of elements in subtree.
 - Access(i): traverse path to leaf j.
 - INSERT(i, x): insert new leaf and update tree.
 - DELETE(i): delete new leaf and update tree.
- Time. O(log n) for ACCESS, INSERT, and DELETE.

Solution 2: Explicit Array

- Ultra fast access and slow update. Maintain A explicitly.
 - Access(i): return A[i].
 - INSERT(i, x): Shift all elements from i to n by 1 to the right. Set A[i] = x.
 - Delete(i): shift all elements to the right of entry i to the left by 1.
- Time.
 - O(1) for Access and O(n-i+1) = O(n) for INSERT and DELETE.

Data structure	Access	INSERT	DELETE	Space
balanced binary tree	O(log n)	O(log n)	O(log n)	O(n)
explicit array	O(1)	O(n)	O(n)	O(n)
lower bound	Ω(log n/log log n)	Ω(log n/log log n)	Ω(log n/log log n)	

• Challenge. What can we get if we insist on constant time ACCESS?

Solution 3: Rotated array

- Rotated array with capacity N. Maintain a circular shift of array in an array with capacity N. Store offset to mark start of array.
 - Access, Insert, and Delete as in solution 1 but shifted by offset.
- Time. O(1) for Access and O(n) for INSERT and DELETE.
- INSERT and DELETE at endpoints in O(1) time.

- 2-level rotated arrays.
 - Store \sqrt{n} rotated arrays R₀, ..., R_{\sqrt{n} -1} with capacity \sqrt{n} (last may have smaller capacity).

- ACCESS.
 - Access(i): compute rotated array R_i and index k corresponding to i. Return R_i[k].
- Time. O(1)

• INSERT.

- INSERT(i, x): find R_i and k as in ACCESS.
 - Rebuild R_j with new entry inserted.
 - Propagate overflow to R_{j+1} recursively.
- Time. $O(\sqrt{n})$

• DELETE.

- Delete(i): find R_j and k as in Access.
 - Rebuild R_j with entry i deleted.
 - Propagate underflow to R_{j+1} recursively.
- Time. $O(\sqrt{n})$

Data structure	Access	INSERT	DELETE	Space
balanced binary tree	O(log n)	O(log n)	O(log n)	O(n)
explicit array	O(1)	O(n)	O(n)	O(n)
lower bound	Ω(log n/log log n)	Ω(log n/log log n)	Ω(log n/log log n)	
2-level rotated array	O(1)	$O(\sqrt{n})$	$O(\sqrt{n})$	O(n)
O(1)-level rotated array	O(1)	O(nε)	O(nε)	O(n)

Partial Sums and Dynamic Arrays

- Partial Sums
- Dynamic Arrays