Machine Learning - Quiz 3	
Parametric Methods & Clustering Date:	
- Kinshuk Vasisht, 19	
M.Sc., Semester 2	
1. To find the maximum like lihood estimate of a parameter	
set of for the given deterret X. The stehn are	
1) Deline The likelihood los the instance rt	
parameters o given a single instance xt,	
parameters o given a single instance xt, using the probability of the assumed distribution of	
$\mathcal{L}(0/x^{t}) = \beta(x^{t}/0).$	
2) Define the likelihood for the parameters Q of the distribution of $X = \{x + 3\}_{t=1}$ given the entire	
distribution of $x = \{x + 3_{t-1}\}$ given the entire	
- Callase L	
3f the instances are i.i.d. O simplifies to:	
$l(0 x) = \pi l(0 x^{t})$	
t=1	
3) Next, maximize the lakelihood function wit different	
horameters in a to find the MLF for a.	
equivalent to maximizing the log-likelihood of o	
given X, defined as:	
$\mathcal{L}(0/20) = \log_{0} \mathcal{L}(0/20)$	
$= \log_e \left(\prod_{i=1}^n l(0/x^n) \right)$	
= \(\sum_{t=1}^{N}\) log \(\lambda\) \(\lambda\)	
-t=1 10g x(0/k)	
$= \sum_{t=1}^{N} \log \left(p(x^{t}/\varrho) \right)$	
4) Next, to maximize - L, differentiate partially wet 0; \(\to \) O; \(\in \theta \) & squate to 0 to find MLE for 0; Robort 4) for all \(\theta \); \(\in \theta \)	_
O; E O & sociate to O to lind MIF 100 0:	
Repeat 4) for all oi E o	_
Maximize $\mathcal{L} = 3$ $2\mathcal{L} = 0$	
201	

Da	te	:		
			_	

Page No.

Carameter to estimate = 2: Leiven distribution = Now, likelihood of λ given an instance x^t $= l(\lambda | x^t) = p(x^t | \lambda)$ $= \lambda e^{-\lambda x^t}$ Now, likelihood for the entire dataset x (assuming x^+ are i.i.d): $l(x/x) = \prod_{t=1}^{\infty} l(x/x^t)$ Now, \log -likelihood of $O(\lambda)$ given X is $L(\lambda|X) = \log L(\lambda|X)$ $= \sum_{t=1}^{N} \log (L(\lambda|X^{t}))$ $(L(\lambda|X) = \prod L(\lambda|x^{t}))$ = $\sum_{t=1}^{N} \log \left(\lambda e^{-\lambda x^{t}} \right)$ $(x) = \sum_{t=1}^{N} \left[\log \lambda + (-\lambda x^{t}) \right]$ Now, maximizing L implies differentiating wit 2 & equating the expression to 0. Now, $\frac{\partial \mathcal{L}(\lambda/x)}{\partial \lambda} = \frac{\lambda}{2\lambda} \sum_{t=1}^{N} [\log \lambda - \lambda x^{t}]$

Date : Page No.

```
Now,
                               given sample, consistent with
                                    estimator for sample mean
                           the devalution between the
                                d for the dataset x &
                        denoted the
```

component of the mean squared over between the parameters 0 8 the estimator d, MSE $(d(x) - 0)^2$ I [(d(x) - E[d(x)])?] is the expected value of the squared devolution of an estimator over all sample datasets 20: This represents the variance associated with the estimator component on the mean square error between d &O. 4. In the E step, we have: $\mathcal{P}(\phi/\phi^{-1}) = \mathcal{F}[\mathcal{L}_{c}(\phi/x,z) | x, \phi^{-1}]$ - Here, Q(p/pe) denotes the expectation of the complete likelihood finition La conditioned over the dataset & & the corrent set of parameters parameters for the corrent iteration, iteration () of denotes the parameters to be estimated, which for a general mixture model include the priors of The hidden variables denoting cluster associations P(Gi) & the distributional pharameters of the assumed distribution of x+ in the cluster Gi, 1.e. Oi st p(xt/gt) ~ D(Oi), where Dio any distribution assumed for x+ a+.

So is the value of the parameters from the parameter space for the averant iteration I, which is used in the M-exten to improve (maximize) 2 & derive the next set of parameters of 1+1.

Le (\$\frac{1}{2}\cdot x,7\) is the complete likelihood function for the parameters of given the dataset x & the set of hidden variables Z (|Z|=|x|)

Date :

Page No.

