برقى ومقناطيسيات

خالد خان بوسفز کی کامسیٹ انسٹیٹیوٹ آف انفار میشن ٹیکنالو جی،اسلام آباد khalidyousafzai@comsats.edu.pk

عنوان

•		<u> </u>	-
1	مقداری اور سمتیه	1.1	
2	سمتي الجبرا	1.2	
3	كارتيسي محدد	1.3	
5	اكائبي سمتيات	1.4	
9	ميداني سمتيم	1.5	
9	سمتى رقبہ	1.6	
10	غیر سمتی ضرب	1.7	
14	سمتی ضرب یا صلیبی ضرب	1.8	
17	گول نلكى محدد	1.9	
20	1.9.1 نلکی اکائی سمتیات کا کارتیسی اکائی سمتیات کے ساتھ غیر سمتی ضرب		
20	1.9.2 نلکی اور کارتیسی اکائی سمتیات کا تعلق		
25	1.9.3 نلكي لامحدود سطحين		
27	کروی محلد	1.10	
37	کا قانون	كولومب	2
37	قوت کشش یا دفع	2.1	
41	برقبی میدان کی شدت	2.2	
44	یکسان چارج بردار سیدهی لامحدود لکیر کا برقی میدان	2.3	
49	يكسان چارج بردار بموار لامحدود سطح	2.4	
53	چارج بردار حجم	2.5	
54	مزید مثال	2.6	
61	برقی میدان کے سمت بہاو خط	2.7	
63	سوالات	2.8	

iv		عنمان

65																																									بلاو	. پھي	اور	ون	کا قان	س ک	گاؤ.	3
65																																										رج	چار	کن .	ساك		3.1	
65			•																																						جربہ	ا تج	کا	<u>ا</u> کے	فيراد		3.2	
66			•		٠	٠			•												٠									•											زن	قانو	کا	س	گاؤ		3.3	
68																																					ل	مما	است	کا	نون	ے قا	کے	س	گاؤ		3.4	
68																																	•						رج	چا	قطہ	i		3.4	4.1			
70																															į	طح	سبا	وی	کرو	ٔ ر	بردا	ج	چار	اں	بکس	ی		3.4	4.2			
70																												ر	لكي	ود	حد	لام	ی ا	لھے	سيا	ار ،	بردا	ج	چار	اں	بکس	ی		3.4	1.3			
71									•																																ر	، تار	ری	محو	<u>ب</u> م ،		3.5	
73																																	لح	سط	د	بدو	مح	Υ_	موا	ار ۽	ٔ برد	ارج	چا	ساں	یکس		3.6	
73						•																							(للاق	اط	کا	ون	قان	ے	5	رس	گاؤ	ا پر	ج	ے ح	و ڻو	چ	ائى	انتم		3.7	
76																																												دو	پهيا		3.8	
78						•																												ن	وان	ساو	, م	کی	لاو	پهي	میں	دد د	حد	ی م	نلك		3.9	
80						•																																ات	ساو	ے م	مومي	، ع	کی	(و َ	پهيا	3	.10	
																																										٠,	هيلا	ئلہ پ	fa	3	.11	
82	•					•	•	•	•	•	•	•	•	•	•	•			•	•	٠	٠	•	٠	•		•	•	•	•		•)-		•		_		
	•					•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•		•	•	٠	•	•	•	•																		
85	•					•	•	•		•	•	•	•																													و	دبار		ور بر	ئی ا	توانا	4
85 85																										-			•												م	و ِ کا	دباو اور	ائی	ور بر توانا	ئی ا	توانا: 4.1	4
85 85 86																										-															أم	و کاا ملہ	دباور اور تک	ائی ری	ور بر توانا لکیر	ئی ا	توانا: 4.1 4.2	4
85 85 86 91			•				•																														•				۴.	و كا مله	دباور اور تک	ائی ری د ب	ور بر توانا لکیر برقی	ئی ا	توانا: 4.1	4
85 85 86 91																																		او	دبا	٠	برق			۔	ُم قطہ	و كاد مله	دباور اور تک	ئى رى دبر 4.3	ور بر توانا لکیر برقی	ئی ا	توانا: 4.1 4.2	4
85 85 86 91 92						 																							٠.		رقىي	٠.	٠.	سے	دبا	نی	برق	. كا	 چار		م قطہ کیر	و كا مله ن	دباور تک باو	ئى رى دب 4.3	ور بر توانا لکیر برقی 3.1	ئی ا	توانا: 4.1 4.2	4
85 85 86 91 92 93		 		 		 																							او	٠.	رقى	٠	پيد او	سے دبا	دبا قى	نی نت برز	برق كثاف	کا تار		ی د	م كير: م م	و کاد ملہ دملہ د	دباور اور تک	ائی ری 4.3 4.3	ور بر توانا لکیر برقی 3.1	ئی ا	توانانا 4.1 4.2 4.3	4
85 85 86 91 92		 		 		 																							او	٠.	رقى	٠	پيد او	سے دبا	دبا قى	نی نت برز	برق كثاف	کا تار		ی د	م كير: م م	و کاد ملہ دملہ د	دباور اور تک	ائی ری 4.3 4.3	ور بر توانا لکیر برقی 3.1	ئی ا	توانانا 4.1 4.2 4.3	4
85 85 86 91 92 93		 		 		 																							٠ ٠ ٠	٠.	رقى	٠	بيد او	بے دبا	دبا قى او	نی بره دب	برة كثاف	کا تار		ی حور	م تقطم حکیر جارج	و مله مله ن	دباور تک تک	ری ری 4.3 4.3	ور بر توانا لکیر برقی 3.1 3.2	ئی ا	توانا: 4.1 4.2 4.3	4
85 85 86 91 92 93 94		 		 		 																								٠.	رقى	٠	بيد او	سے دبا	دبا قى او	نی برهٔ دب	برة كثاة كا	کا تار ، بر		ی چا حور حوں لموان	م م كير م م جارج خدر	و کاللہ ممللہ د کی	دباور اور تک باو	ائی ری 4.3 4.3 لاد :	ور بر توانانا لکیبرقی برقی 3.2 متعا	ئی ا	توانا: 4.1 4.2 4.3	4
85 85 86 91 92 93 94 94 98		 				 																							٠			٠	پيد او	او بے دبا	دبا قى او لواد	نی برز دب	برة كثاف	. کا تار ، می		ی . یی . یوں یوں لوان	م تقطه عارج عارج للكي	و کاا مللہ او کا	دبارا تک نقط	ائی دبر 4.3 4.3 د ن	ور بر توانا برقح 3.1 3.2 متعا	ئی ا	توانا: 4.1 4.2 4.3	4
85 85 86 91 92 93 94 94 98																													٠	٠	٠	٠	او	سے دبا دبا	دبا قى او ىلواا	ئى برۇ دى	برة كثاف	کا تار ، می			م م حم م م م م م م م م م م م م م م م م	و کا	دبارا تک باو	ائی ری 4.3 4.3 4.3 4.3 4.5	ور بر توانا برقی 3.1 3.3 متعا برقی	نی ا	توانا: 4.1 4.2 4.3	4
85 85 86 91 92 93 94 94 98 102																															٠		پيد او	سے دبا ن	دبا قى او ىلوا	نی برز دب	برة كثافا كا	کا تار کا تار ، بر بر ، ، ، ، ، ، ، ، ، ، ، ، ، ، ،			م محير . حم م بارج بارج کروء کروء	و كا. مالم مالم	اور تک تک باو	ائی ری دبر 4.3 4.3 4.3 4.4 5.4	ور بر توانا برقی 3.1 3.2 متعا برقی	نی ا	توانا: 4.1 4.2 4.3	4

v عنوان

115	، ذو برق اور کپیسٹر	موصل،	5
115	برقمی رو اور کتافت برقمی رو	5.1	
117	استمراری مساوات	5.2	
119	موصل	5.3	
124	موصل کے خصوصیات اور سرحدی شرائط	5.4	
127	عکس کی ترکیب	5.5	
130	نيم موصل	5.6	
131	خو برق	5.7	
136	کامل ذو برق کے سرحد پر برقی شرائط	5.8	
140	موصل اور ذو برقی کے سرحدی شرائط	5.9	
140	كپيسٹر	5.10	
142	5.10.1 متوازی چادر کپیسٹر		
143	5.10.2 بم محوری کپیسٹر		
143	5.10.3 بم کوه کپیسٹر		
145	سلسلہ وار اور متوازی جڑے کپیسٹر	5.11	
146	دو متوازی تاروں کا کپیسٹنس	5.12	
155	اور لاپلاس مساوات	پوئسن	6
157	مسئلہ یکتائی	6.1	
	۔ لاپلاس مساوات خطی ہے	6.2	
	نلکی اور کروی محدد میں لاپلاس کی مساوات	6.3	
160	۔ لاپلاس مساوات کے حل	6.4	
	۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔	6.5	
	پر میں وات کا ضربی حل	6.6	
	عددی دہرانے کا طریقہ	6.7	

vi

183	ليسى ميدان	ً ساكن مقناط
183	وٹ-سیوارٹ کا قانون	7.1 باي
187	پییئر کا دوری قانون	7.2 ايم
191	دش	7.3 گر
198	7.3 نلكى محدد ميں گردش	. 1
204	7.3 عمومی محدد میں گردش کی مساوات	.2
205	7.3 كروى محدد ميں گردش كى مساوات	.3
206	ىئلہ ستئوكس	7.4 مس
210	ناطیسی بهاو اور کثافت مقناطیسی بهاو	7.5 مقد
216	ر سمتی اور سمتی مقناطیسی دباو	7.6 غير
221	کن مقناطیسی میدان کے قوانین کا حصول	7.7 سا
222	7.7 سمتى مقناطيسى دباو	. 1
223	7.7 ايمپيئر كا دورى قانون	.2
227	وتیں، مقناطیسی مادیے اور امالہ	مقناطيسي أ
227 227		
227		8.1 مت
227 228	حرک چارج پر قوت	8.1 متع
227228230	حرک چارج پر قوت	8.1 متع 8.2 تفر 8.3 برق
227228230232	حرک چارج پر قوت	8.1 متد 8.2 تفر 8.3 برق 8.4 قود
227 228 230 232 237	حرک چارج پر قوت	8.1 متد 8.2 تفر 8.3 برق 8.4 قود 8.5 فوا
2227 2228 230 232 237 238	حرک چارج پر قوت	8.1 متد 8.2 تفر 8.3 برة 8.4 قود 8.5 فوا
227 228 230 232 237 238 240	حرک چارج پر قوت	8.1 متد 8.2 تفر 8.3 برق 8.4 قوا 8.5 مقا 8.6 مقا
227 228 230 232 237 238 240	حرک چارج پر قوت قی چارج پر قوت ی رو گزارتے تفرقی تاروں کے مابین قوت ت اور مروڑ دی مقناطیسی اشیاء اور مقناطیسی خطے ناطیسیت اور مقناطیسی مستقل ناطیسی سرحدی شرائط	8.1 متد 8.2 تفر 8.3 عرق 8.4 قوا 8.5 مقد 8.6 مقد 8.7 مقد
227 228 230 232 237 238 240 242	حرک چارج پر قوت قی چارج پر قوت ی رو گزارتے تفرقی تاروں کے مابین قوت ت اور مرور شری مقناطیسی اشیاء اور مقناطیسی خطے ناطیسیت اور مقناطیسی مستقل ناطیسی سرحدی شرائط	8.1 متد 8.2 تفر 8.2 عنر 8.3 عنر 8.4 متد 8.5 عنر 8.6 متد 8.6 متد 8.8 متد 8.8 متد 8.9 متد 8.9 متد 8.9 متد 8.9 متد 8.9 متد 8.9

253	فت کے ساتھ بدلتے میدان اور میکس ویل کے مساوات	, 9
253	. 9 فیراڈے کا قانون	1
259	.9 انتقالی برقمی رو	2
263	.9 میکس ویل مساوات کی نقطہ شکل	3
264	.9 میکس ویل مساوات کی تکمل شکل	4
266	.9 تاخیری دباو	5
271	قمی و مقناطیسی امواج	10 ب
271	.10 خالی خلاء میں یرقی و مقناطیسی امواج	1
272	. 10 برقی و مقناطیسی امواج	2
279	10.2.1 خالى خلاء ميں امواج كى خاصيت	
280	10.2.2 خالص ذو برق میں امواج کی خاصیت	
282	10.2.3 موج کی طاقت گھٹاتے ذو برقی میں امواج	
283	والات	11 س

عنوان عنوان

وقت کے ساتھ بدلتے میدان اور میکس ویل کے مساوات

گزشتہ بابوں میں وقت کے ساتھ تبدیل نہ ہونے والے میدان یعنی میدانوں پر غور کیا گیا۔ یہاں سے آگے اس کتاب میں وقت کے ساتھ تبدیل ہوتے میدانوں پر غور کیا جائے گا۔

دونے اصول پر غور کیاجائے گا۔ پہلااصول مانگل فیراڈے نے تجرباتی طور پر ثابت کیا جس کے تحت وقت کے ساتھ بدلتا مقناطیسی میدان، برتی میدان کو جنم دیتا ہے۔ دوسرا قانون جیمس کلارک میکس ویل کے کاوشوں سے حاصل ہوا جس کے تحت وقت کے ساتھ بدلتا برتی میدان، مقناطیسی میدان کو جنم دیتا ہے۔اس باب میں برقی ومقناطیسیات کے چارا یسے مساوات پیش کئے جائیں گے جو میکس ویل کے نام سے منسوب ہیں۔

9.1 فیراڈے کا قانون

جناب مائکل فیراڈے نے تجرباتی طور پر ثابت کیا کہ وقت کے ساتھ بدلتا مقناطیسی میدان، برقی میدان پیدا کرتاہے۔ قانون فیراڈے اکو مندر جہ ذیل مساوات پیش کرتی ہے۔

$$(9.1)$$
 محری برقی دباو $=-rac{{
m d}\Phi}{{
m d}t}$

اس قانون کے تحت کسی بھی بندراہ سے گزرتی مقناطیس بہاومیں تبدیلی اس راہ پر برتی د باوپیدا کرتی ہے۔الیی برتی د باور واپی طور پر محرک برتی د باو² پکاری جاتی ہے۔ محرک برتی د باو³ کی اکائی وولٹ ۷ ہے۔ضرور می نہیں کہ بند راہ موصل مادے کی ہی ہو، بیہ فرضی بند کلیر بھی ہو سکتی ہے۔

محرک برقی دباو مکمل برقی دور میں برقی رو پیدا کرنے کی صلاحیت رکھتا ہے۔ محرک برقی دباوسے پیدا برقی رو، بند راہ میں مقناطیسی بہاہ پیدا کرے گی جس کی سمت، راہ میں پہلے سے موجود مقناطیسی بہاہ کے سمت، کی الٹ ہوتی ہے۔ مساوات 9.1 میں منفی کی علامت اسی اصول کو بیان کرتی ہے کہ بند راہ میں محرک برقی دباوسے پیدا برقی روابیا مقناطیسی بہاہ پیدا کرتی ہے جو پہلے سے موجود مقناطیسی بہاہ کے الٹ سمت رکھتی ہے۔اس اصول کو لینز 54کا اصول کہا جاتا ہے۔

کسی بھی بند راہ سے گزرتی کل مقناطیسی بہاو میں تبدیلی مندرجہ ذیل وجوہات کی بنا ممکن ہے۔

Faraday's law¹

electromotive force, emf²

electromotive force, emi مختلف و المحتوية و المحتوية المحتوى المحتوى المحتوى المحتوى المحتوية المحتوي

⁴ مانون 1834 میں جناب لینز نے پیش کیا۔

- وقت کے ساتھ تبدیل ہوتی کثافت مقناطیسی بہاوجو ساکن بندراہ سے گزرتی ہو۔
 - ساکن مقناطیسی میدان اور بند راه کا آپس میں اضافی حرکت۔
 - مندرجه بالا دونول وجوبات_

ا گر بند راہ N چکر کے کیھے پر مشتمل ہو جہاں ہر چکر میں سے Φ مقناطیسی بہاو گزرتی ہو تب فیراڈے کے قانون کو

$$(9.2)$$
 محری برقی دباو $=-Nrac{{
m d}\Phi}{{
m d}t}$

لکھا جا سکتا ہے۔

برقی د باو کے طرز پر محرک برقی د باو کی تعریف

$$(9.3)$$
 محرک برقمی دباو $E\cdot \mathrm{d} L$

کسی جاتی ہے جہاں تکمل پورے بند راہ پر لینالازم ہے۔ برقی دباو کے تعریف کے ساتھ موازنہ کرتے ایبا معلوم ہوتا ہے جیسے ہم مندرجہ بالا مساوات میں منفی کی علامت (–) لگانا بھول گئے ہیں۔ایبا بالکل نہیں ہے اور اس کی وضاحت جلد شکل 9.2 کی مدد سے کر دی جائے گی۔ محرک برقی دباو بند راہ پر بیان کی جاتی ہے۔صفحہ 97 پر مساوات 4.28 کے تحت ساکن برقی میدان میں کسی بھی بند دائرے پر E کا لکیری تکمل صفر کے برابر ہوتا ہے۔مساوات 9.3 کہتا ہے کہ غیر ساکن مقناطیسی میدان میں ایبا نہیں ہوتا اور کسی بھی بند دائرے پر E کا لکیری تکمل اس راہ پر پیدا محرک برقی دباو دیتا ہے۔

مساوات 9.1 اور مساوات 9.3 سے

$$(9.4)$$
 محری برقی دباو $\mathbf{E}\cdot\mathrm{d}\mathbf{L}=-rac{\mathrm{d}}{\mathrm{d}t}\int_{\mathcal{S}}\mathbf{B}\cdot\mathrm{d}\mathbf{S}$

 $egin{align} egin{align} e$

اگر بند راہ کو دائیں ہاتھ میں یوں پکڑا جائے کہ انگلیاں راہ پر چکنی کی سمت میں ہوں تب انگوٹھاراہ سے گھیرے سمتی سطح کی سمت میں ہو گا۔مندرجہ بالا مساوات کہتا ہے کہ کسی بھی سمتی سطح سے گزرتی مقناطیسی بہاوا گر بڑھ رہی ہو تب محرک برقی دباو سطح کے سرحد پر مثبت سمت کے الٹ جانب برقی رو پیدا کرے گا۔مساوات 9.4استعال کرتے ہوئے دائیں ہاتھ کے اس قانون کو یاد رکھیں۔

آئیں وقت کے ساتھ تبدیل ہوتے مقناطیسی میدان کی وجہ سے پیدا ساکن بند راہ میں محرک برقی دباوپر پہلے غور کریں اور بعد میں ساکن مقناطیسی میدان میں حرکت کرتے راہ کی وجہ سے پیدا محرک برقی دباوپر غور کریں۔

ساکن راہ کی صورت میں مساوات 9.4 میں دائیں ہاتھ پر B ہی وقت کے ساتھ تبدیل ہو رہی ہے یوں اس مساوات میں تفرق کے عمل کو تکمل کے اندر لے جایا جا سکتا ہے یعنی

$$(9.5)$$
 محرک برقی دباو $E\cdot \mathrm{d}m{L} = -\int_S rac{\partial m{B}}{\partial t}\cdot \mathrm{d}m{S}$

آگے بڑھنے سے پہلے اس مساوات کی نقطہ شکل حاصل کرتے ہیں۔مساوات کے بائیں ہاتھ پر مسلمہ سٹوکس کے اطلاق سے

$$\int_{\mathcal{S}} (\nabla \times \boldsymbol{E}) \cdot d\boldsymbol{S} = - \int_{\mathcal{S}} \frac{\partial \boldsymbol{B}}{\partial t} \cdot d\boldsymbol{S}$$

9.1. فيراذِّ ے كا قانون

حاصل ہوتا ہے۔ یاد رہے کہ سطح 8 الی کوئی بھی سطح ہو سکتی ہے جس کا سرحد بند راہ ہو۔ یوں ہم دونوں جانب مختلف سطحیں لے سکتے ہیں جب تک دونوں سطحوں کے سرحد یہی بند راہ ہو۔ اسی طرح ہم ایک ہی سطح کو دونوں جانب تکمل میں استعال کر سکتے ہیں۔ یہ مساوات کسی بھی سطح کے لئے درست ہے لہٰذا یہ تفر تی سطح کے لئے اسے یوں لہٰذا یہ تفر تی سطح کے لئے اسے یوں

$$(\nabla \times \boldsymbol{E}) \cdot \mathrm{d}\boldsymbol{S} = -\frac{\partial \boldsymbol{B}}{\partial t} \cdot \mathrm{d}\boldsymbol{S}$$

لعيني

$$\nabla \times \boldsymbol{E} = -\frac{\partial \boldsymbol{B}}{\partial t}$$

لکھا جا سکتا ہے۔

مساوات 9.6 میکس ویل کے چار مساواتوں میں سے پہلی مساوات ہے۔ یہ میکس ویل کے پہلی مساوات کی نقطہ شکل ہے۔اس مساوات کی نقطہ شکل ہی عموماً استعال ہوتی ہے۔ میکس ویل کے پہلی مساوات کی تکمل شکل مساوات 9.5 بیان کرتی ہے۔وقت کے ساتھ نہ تبدیل ہوتے مقناطیسی میدان کی صورت میں مساوات 9.6 اور مساوات 9.5 ساکن میدان کے مساوات کی صورت اختیار کرتے ہیں یعنی

$$\oint \boldsymbol{E} \cdot \mathrm{d} \boldsymbol{L} = 0$$
 (برقی سکون)

اور

$$abla imes oldsymbol{E} = 0$$
 (برقی سکون)

آئیں مساوات 9.5 اور مساوات 9.6 کو استعمال کر کے دیکھیں۔تصور کریں کہ $ho <
ho_2$ نگلی خطے میں وقت کے ساتھ مسلسل بڑھتی $m{B} = B_0 e^{kt} m{a}_{Z}$ (9.8)

کافت مقناطیسی بہاو پائی جاتی ہے جہاں B_0 ایک مستقل ہے۔ ہم z=0 سطے پر ho_1 رداس کی گول راہ لیتے ہیں۔مثابہت سے ہم کہہ سکتے ہیں کہ اس پورے راہ پر E_0 کی قیمت تبدیل نہیں ہو سکتی للذا مساوات 9.5 سے

محری برقی دباو
$$=2\pi
ho_1 E_\phi=-kB_0 e^{kt}\pi
ho_1^2$$

حاصل ہوتا ہے۔ یوں کسی بھی رداس پر برقی میدان کی شدت

$$(9.9) E = -\frac{1}{2}kB_0e^{kt}\rho a_{\phi}$$

لکھی جاسکتی ہے۔

آئیں اب یہی جواب مساوات 9.6 سے حاصل کریں۔ چونکہ اس مساوات کے دائیں جانب صرف a_Z جزو پایا جاتا ہے لہذا بائیں ہاتھ بھی صرف یہی جزو ہو گالہذا اس مساوات سے

$$\frac{1}{\rho} \frac{\partial (\rho E_{\phi})}{\partial \rho} = -k B_0 e^{kt}$$

کھا جا سکتا ہے۔ دونوں اطراف کو hoسے ضرب دیتے ہوئے hoتا ho کمل لے کر

$$\rho E_{\phi} = -kB_0 e^{kt} \frac{\rho^2}{2}$$

شکل 9.1: وقت کے ساتھ نہ تبدیل ہوتے یکساں مقناطیسی میدان میں حرکت کرتے موصل سلاخ پر محرک برقی دباو پیدا ہوتی ہے۔

لعيني

$$(9.10) E = -\frac{1}{2}kB_0e^{kt}\rho a_{\phi}$$

ہی دوبارہ حاصل ہوتا ہے جہاں رداسی تکمل میں t مستقل کا کر دار ادا کرتا ہے۔

مثبت B_0 کی صورت میں اس راہ پر a_{ϕ} کی الٹ ست میں برقی رو گزرے گی جو a_{z} کی الٹ سمت میں کثافت مقناطیسی بہاو پیدا کرتے ہوئے پہلے سے موجود مقناطیسی میدان میں تبدیلی کوروکنے کی کوشش کرتی ہے۔

اس مثال کے آخر میں یہ بتلانا ضروری ہے کہ مساوات 9.8 میں دیا گیا میدان غیر حقیقی ہے چونکہ یہ میکس ویل کے دیگر مساوات پر پورانہیں اترتا۔

آئیں اب ایسی مثال دیمیں جس میں وقت کے ساتھ تبدیل نہ ہونے والے مقناطیسی میدان میں بند راہ حرکت کر رہی ہو۔ شکل 9.1 میں ایسی صورت حال دکھائی گئی ہے۔ اس شکل میں v سمتی رفتار کو جبکہ V برقی دباو ناپنے کی آلہ v یعنی پیا برقی دباو v وظاہر کرتی ہے۔ اس شکل میں ووفقی اور دو متوازی موسل سلاخ بند راہ یا بند دور بناتے ہیں۔ متوازی افقی سلاخوں کو بائیں طرف عمودی سلاخ سے جوڑا گیا ہے جس میں قابل نظر انداز جسامت اور لا محدود مزاحمت والا پیا برقی دباو نسب ہے، جبکہ دائیں جانب انہیں v سمتی رفتار سے حرکت کرتے عمودی سلاخ سے جوڑا گیا ہے۔ وقت کے ساتھ نہ تبدیل ہوتا اور ہر جگہ کیساں کثافت مقناطیسی بہاو v بند راہ کی گھیرے سطح کے عمودی ہے۔

مثبت B کی صورت میں B کی سمت ہی بند راہ سے گھیری گئی سطح کی سمت ہو گی اور بند راہ کی سمت گھڑی کے الٹ ہو گی۔ یوں راہ کے مثبت سمت میں دائیں ہاتھ کی انگلیاں رکھتے ہوئے گھیری سطح کی سمت انگوٹھے سے حاصل کی جاتی ہے۔

t کسی بھی لمجہ t پر حرکت کرتے سلاخ کے مقام کو y ہے ظاہر کرتے ہوئے ہم y=vt کھھ سکتے ہیں جہاں v سلاخ کے رفتار کی قیمت ہے۔ یوں لمحہ t پر بند دور کا ارتباط بہاو

$$\Phi = Bdy = Bdvt$$

ہو گا جو مساوات 9.1 کے تحت بند دور میں

$$e = -\frac{d\Phi}{dt} = -Bdv$$

محرک برقی د ہاو e پیدا کرے گا۔

9.1. فيراذُ ے كا قانون

اب محرک برقی دباو d و کہتے ہیں لہذا مندر جہ بالا جواب راہ پر گھڑی کے الٹ سمت میں اس بند کلیری تکمل سے بھی حاصل ہونا چا ہے۔ ہم دکھے چکے ہیں کہ برقی سکون کی صورت میں موصل کی سطح پر سطح کے متوازی E صفر رہتی ہے۔ ہم آگے دیکھیں گے کہ وقت کے ساتھ تبدیل ہوتے برقی میدان میں بھی موصل کی سطح پر متوازی E صفر ہی رہتی ہے۔ یوں شکل 9.1 پر گھڑی کے الٹ چلتے ہوئے تمام سلاخوں پر تکمل کی قیمت صفر کے برابر ہو گل میں موصل کی سطح پر متوازی E صفر ہی رہتی ہوئے بیا برقی دباو پر مندرجہ بالا قیمت کے برابر ہونا ہو گا۔ گھڑی کی الٹ سمت چلتے ہوئے بیا برقی دباو کی لمبائی کو E کی سات ہو کے بیا برقی دباو کی لمبائی کو E کی سمت ہیا کے دوسرے سرے سے پہلے سرے کی جانب ہے اور بیا پر برقی دباو کا مثبت سرا بیا کا دوسرا سرا ہے۔

پیا کی جگہ مزاحمت جوڑنے سے دور میں گھڑی کے الٹ برقی رو گزرے گی جو a_z کے الٹ سمت میں مقناطیسی بہاو پیدا کرے گی۔ یہ لور نز کے قانون کے عین مطابق ہے۔

آئیں اب اس شکل میں دئے مسکلے کو حرکی برقی دباو تصور کرتے ہوئے حل کریں۔مقناطیسی میدان میں 8 سمتی رفتار سے حرکت کرتے ہوئے چارج Q پر قوت

$$\boldsymbol{F} = Q\boldsymbol{v} \times \boldsymbol{B}$$

 $oldsymbol{E}_{\scriptscriptstyle \mathcal{S}_{\scriptscriptstyle \mathcal{S}}}$ يا حركى شدت

(9.11)
$$oldsymbol{E}_{\mathcal{S}_{\mathcal{F}}} = rac{oldsymbol{F}}{O} = oldsymbol{v} imes oldsymbol{B}$$

عمل کرتی ہے۔ حرکی شدت a_X سمت میں ہے۔ حرکت کرتے سلاخ میں ساکن مثبت ایٹم اور آزاد منفی الیکٹران پائے جاتے ہیں۔ ان تمام چارجوں پر الیک قوت پائی جائے گی البتہ ساکن ایٹم مقید ہونے کی بنا حرکت نہیں کریں گے۔ اگر محرک سلاخ کو متوازی سلاخوں سے اٹھایا جائے تو اس میں آزاد الیکٹران پر a_X کے الٹ جانب قوت انہیں سلاخ کے پرلے سرے پر انبار کر ناشر وع کر دے گی۔ الیکٹر انوں کا انبار سلاخ میں a_X جانب برتی میدان کی شدت سفر ہو جائے a_X پیدا کرے گا۔ الیکٹران کا انبار بڑھتارہے گا حتی کہ جری a_X اور a_X برابر ہو جائیں۔ ایسا ہوتے ہی سلاخ میں کل برقی میدان کی شدت صفر ہو جائے گی اور اس میں چارج کا حرکت رک جائے گا۔

يوں حر کی برقی د باو

رو.12) محری برقی دباو
$$\mathbf{E}_{\sim}\cdot\mathrm{d}\mathbf{L}=\oint\left(\mathbf{v} imes\mathbf{B}
ight)\cdot\mathrm{d}\mathbf{L}$$

سے حاصل ہو گی۔مساوات کے دائیں ہاتھ بند راہ کے ساکن حصوں پر تکمل کی قیمت صفر ہو گی للذا محرک برقی دباو صرف حرکت کرتے حصوں کی وجہ سے پیدا ہو گی۔یوں حرکت کرتے سلاخ پر گھڑی کے الٹ چلتے ہوئے تکمل سے

$$\oint (\boldsymbol{v} \times \boldsymbol{B}) \cdot d\boldsymbol{L} = \int_d^0 v B \, dx = -Bv d$$

حاصل ہوتا ہے۔ چونکہ B اذ خود وقت کے ساتھ تبدیل نہیں ہو رہا للذا یہی کل محرک برقی دباو ہو گا۔

یوں وقت کے ساتھ تبدیل نہ ہوتے مقناطیسی میدان میں حرکت کرتے بند راہ میں محرک برقی دباو حاصل کرتے وقت حرکت کرتے حصوں پر حرکی شدت _{حرک}ے کے استعال سے محرک برقی دباو بوں

(9.13) محری برقی دبار
$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egin{aligne$$

شكل 9.2: محرك برقى دباو اور برقى دباو كا موازنه.

حاصل کی جاسکتی ہے۔البتہ وقت کے ساتھ بدلتی مقناطیسی میدان میں محرک برقی دباو کے حصول میں مساوات 9.5 کا حصہ شامل کرنا ضروری ہے یوں محرک برقی دباو

$$(9.14)$$
 محرک برقی دباو $\mathbf{E}\cdot\mathrm{d}\mathbf{L}=-\int_{S}rac{\partial \mathbf{B}}{\partial t}\cdot\mathrm{d}\mathbf{S}+\oint\left(\mathbf{v} imes\mathbf{B}
ight)\cdot\mathrm{d}\mathbf{L}$

سے حاصل ہو گی۔ یہ مساوات دراصل مساوات 9.1

محرک برقی دباو
$$=-rac{{
m d}\Phi}{{
m d}t}$$

ئی ہے۔

آئیں شکل 9.1 میں پیابر تی دباد کی جگہ مزاحمت نسب کرتے ہوئے اس کی مدد سے مساوات 9.3 جو محرک برتی دباد کی تعریف بیان کرتا ہے پر دوبارہ غور کریں۔ نئی شکل کو شکل 9.2 میں دکھایا گیا ہے۔مساوات 9.11 محرک سلاخ پر پیدا _{جس} کا دیتا ہے جو سلاخ میں مثبت چارج کو سلاخ کے اُرلے سرے کی طرف دھکیلے گا۔اس کے برعکس مزاحمت پر برتی دباو _{VR} پایا جاتا ہے جس کی وجہ سے اس میں برتی میدان کی شدت کے پائی جائے گی جو مزاحمت میں مثبت چارج کو مزاحمت کے پرلے سرے کی جانب دھکیلے گی۔

$$v_R$$
 آپ شکل کو دیکھ کر تسلی کر لیں کہ مزاحمت پر میدان کی شکت $E=-Ea_{
m X}$ جسے برتی دباو v_R یوں $v_R=-\int_0^{d_1} m{E}\cdot dm{L}=\int_0^{d_1} E\, dx=Ed_1$

حاصل ہوتی ہے جبکہ متحرک سلاخ پر حرکی شدت $a_{
m x}=E_{_{<>>}}$ ہے حرکی دباوe یوں

$$(9.16) e = \oint \mathbf{E}_{\mathcal{S}_{\mathcal{F}}} \cdot d\mathbf{L} = \int_0^d \mathbf{E}_{\mathcal{S}_{\mathcal{F}}} \cdot d\mathbf{L} = \int_0^d \mathbf{E}_{\mathcal{S}_{\mathcal{F}}} dx = \mathbf{E}_{\mathcal{S}_{\mathcal{F}}} dx$$

حاصل ہوتی ہے۔ شکل میں دوافقی موصل سلاخوں کے مابین برقی دباو کو سلاخوں کے بائیں سروں پر v_R جبکہ ان کے دائیں سروں پر e کہا گیا ہے لہذا v_R اور e دونوں مثبت اور برابر قیمت رکھتے ہیں۔ یہاں ضرورت اس بات کی ہے کہ آپ دیکھ سکیں کہ v_R کی مثبت قیمت حاصل کرنے کے لئے ضروری ہے کہ مساوات میں منفی کی علامت استعال کی جائے جبکہ e کے مثبت قیمت کے حصول کے لئے ضروری ہے کہ مساوات میں جمع کی علامت استعال کی جائے۔ حرکی دباو کے بند تکمل میں راہ کے بقایااطراف پر تکمل کی قیمت صفر ہونے کے ناطے صرف متحرک سلاخ پر تکمل لیا گیا ہے۔

9.2. انتقالي برقي رو

شکل 9.3: محرک برقی دباو یا تا وقت کے ساتھ بدلتی مقناطیسی میدان اور یا حرکت کرتے بند راہ سے ہی پیدا ہو سکتی ہے۔

اگرچہ مساوات 1.1 انتہائی سادہ شکل رکھتی ہے لیکن اس کا استعال کبھی کبھار مشکل ہو جاتا ہے۔اییااس وقت ہوتا ہے جب دور کے کسی جھے کو تبدیل کرتے ہوئے دوسرا حصہ نسب کیا جائے۔یہ بات شکل 9.3 پر غور کرنے سے بہتر سمجھ آئے گی۔اس شکل میں نا تو وقت کے ساتھ تبدیل ہوتا مقناطیسی میدان ہے اور نا بی بند راہ کا کوئی حصہ متحرک ہے۔البتہ شکل میں دکھائے سونچ کو چالو یا غیر چالو کرتے ہوئے بند راہ میں مقناطیسی بہاو کم اور زیادہ کیا جا سکتا ہے۔یہاں بغیر سوچے مساوات 9.1 استعال کرتے ہوئے غلط نتائج حاصل ہوتے ہیں۔ یاد رہے کہ برقی دہاویا تو وقت کے ساتھ بدلتے مقناطیسی میدان ادر یا پھر بند راہ کے کسی جھے کے حرکت سے بی پیدا ہوگا۔

t=15مثق 9.1 شکل 9.3 میں $y=0.5a_{
m Z}$ ٹسلا، رفتار y=100 میٹر فی سیکنڈ جبکہ t=0.5 میٹر ہے۔ اگر $y=0.5a_{
m Z}$ ٹسلا، رفتار وقتار y=15 میٹر جبکہ 9.5 میٹر ہے۔ اگر $y=0.5a_{
m Z}$ میٹر ہو تب والے مسل کریں۔

- سلاخ کی رفتار،
- محرك برقى د باو _{V21}،
- پیا برتی د باو کی اندرونی مزاحت دس میگااو بهم کی صورت میں دور میں برتی رو۔

 $10 \, \mu A \, \cdot 100 \, V \, \cdot 4.017 \, \frac{m}{s}$ جوابات:

9.2 انتقالي برقي رو

فیراڈے کے تجرباتی نتیج سے میکس ویل کی پہلی مساوات

$$\nabla \times \boldsymbol{E} = -\frac{\partial \boldsymbol{B}}{\partial t}$$

حاصل ہوئی جو کہتا ہے کہ بدلتی مقاطیسی میدان پیدا کرتا ہے برقی دباو۔ گردش کے عمل کو مد نظر رکھتے ہوئے ہم دیکھتے ہیں ایسے پیدا کردہ برقی دباو کا بند کلیری تکمل صفر کے برابر نہیں ہوتا۔ آئیں اب وقت کے ساتھ تبدیل ہوتے برقی میدان پر غور کریں۔

ایمبیئر کے دوری قانون کی نقطہ شکل

$$\nabla \times \boldsymbol{H} = \boldsymbol{J}$$

ساکن مقناطیسی میدان پر لا گو ہوتی ہے۔اس مساوات کی پھیلاو

$$\nabla \cdot \nabla \times \boldsymbol{H} = 0 = \nabla \cdot \boldsymbol{J}$$

لیتے ہوئے ہم دیکھتے ہیں کہ گردش کی پھیلاو ہر صورت صفر کے برابر ہوتی ہے للذا مندرجہ بالا مساوات کا بایاں ہاتھ ہر صورت صفر دے گااور یوں اگریہ مساوات درست ہوتب اس کا دایاں ہاتھ بھی ہر صورت صفر ہونا چاہیے۔ گر ہم استمراری مساوات سے جانتے ہیں کہ

$$\nabla \cdot \boldsymbol{J} = -\frac{\partial \rho}{\partial t}$$

ہوتا ہے۔اس سے ثابت ہوتا ہے کہ مساوات 9.18 صرف اس صورت درست ہو گا جب $\frac{\partial \rho}{\partial t}$ ہو۔یہ ایک غیر ضروری اور غیر حقیقی شرط ہے لہذا وقت کے ساتھ تبدیل ہوتے برقی میدان پر استعال کے قابل بنانے کی خاطر مساوات 9.18 کو تبدیل کرنا لازم ہے۔تصور کریں کہ مساوات 9.18 میں نا معلوم جزو G کی شمولیت سے یہ مساوات وقت کے ساتھ تبدیل ہوتے برقی میدان پر بھی لاگو کرنے کے قابل ہو جاتا ہے۔الی صورت میں مساوات 9.18 یوں

$$\nabla \times \boldsymbol{H} = \boldsymbol{J} + \boldsymbol{G}$$

ککھی جائے گی۔ آئیں دوبارہ اس کی پھیلاو حاصل کریں جس سے

$$0 = \nabla \cdot \boldsymbol{J} + \nabla \cdot \boldsymbol{G}$$

یا

$$abla \cdot \boldsymbol{G} = rac{\partial
ho}{\partial t}$$

ablaحاصل ہوتا ہے جہاں استمراری مساوات کا سہارالیا گیا۔اس مساوات میں ho کی جگہ $abla\cdot D$ پر کرنے سے

$$abla \cdot \boldsymbol{G} = \frac{\partial \left(
abla \cdot \boldsymbol{D} \right)}{\partial t} =
abla \cdot \frac{\partial \boldsymbol{D}}{\partial t}$$

لعيني

$$G = \frac{\partial D}{\partial t}$$

حاصل ہوتا ہے۔ یوں ایمپیئر کے دوری قانون کی درست شکل

$$\nabla \times \boldsymbol{H} = \boldsymbol{J} + \frac{\partial \boldsymbol{D}}{\partial t}$$

ہے۔ مندرجہ بالا مساوات برقی و مقناطیسیات کے اب تک تمام دریافت کردہ اصولوں پر پورااتر تی آئی ہے۔جب تک یہ غلط ثابت نہ ہو جائے، ہم اسے درست ہی نصور کریں گے۔

مساوات 9,20 میکس ویل کے مساوات میں سے ایک مساوات ہے۔اس مساوات میں $\frac{\partial D}{\partial t}$ کی بُعد ایمپیئر فی مربع میٹر حاصل ہوتی ہے جو کثافت برقی روکا بُعد ہے۔میکس ویل نے اس مساوات میں دائیں ہاتھ نئے جزو کو کثافت انتقالی رو 8 کا نام دیا اور J_a سے ظاہر کیا یعنی

$$abla imes oldsymbol{H} = oldsymbol{J} + oldsymbol{J}_d \ = rac{\partial oldsymbol{D}}{\partial t}$$

9.2. انتقالي برقي رو

شکل 9.4: موصل تار میں ایصالی رو کپیسٹر کرے چادروں کے درمیان انتقالی رو کرے برابر ہے۔

ہم تین اقسام کے کثافت رود کیم چکے جن میں کثافت انقالی رو کے علاوہ غیر چارج شدہ خطے میں عموماً الیکٹران کے حرکت سے پیدا کثافت ایصالی رو $J = \sigma E$

اور چارج کے جم کے حرکت سے پیدا کثافت اتصالی رو

$$(9.22) J = \rho_h v$$

شامل ہیں۔ مساوات 9.20 میں J سے مراد ایصالی اور اتصالی رو کے کثافتوں کا مجموعہ ہے جبکہ مقید چارج H کا حصہ ہیں۔ غیر موصل خطے میں جہاں کثافت چارج پائی ہی نہیں جاتی J=0 ہوتا ہے لہذا غیر موصل میں

(9.23)
$$\nabla \times \boldsymbol{H} = \frac{\partial \boldsymbol{D}}{\partial t} \qquad (\boldsymbol{J} = 0)$$

ہو گا۔ مساوات 9.23 اور مساوات 9.17 میں مشابہت دیکھیں۔

$$abla imes oldsymbol{E} = -rac{\partial oldsymbol{B}}{\partial t}$$

مقناطیسی شدت H اور برقی شدت E کافی مشابهت رکھتے ہیں۔اسی طرح کثافت رو D اور کثافت بہاو B بھی کافی مشابهت رکھتے ہیں۔اس مشابهت کو نہیں تک رکھیں چونکہ جیسے ہی میدان میں چارج پر قوت کی بات کی جائے، دونوں اقسام کے میدان بالکل مختلف طریقوں سے عمل کرتے ہیں۔

کسی بھی سطح سے کل انتقالی رو سطحی تکمل

$$I_d = \int_S \boldsymbol{J}_d \cdot \mathrm{d}\boldsymbol{S} = \int_S \frac{\partial \boldsymbol{D}}{\partial t} \cdot \mathrm{d}\boldsymbol{S}$$

سے حاصل ہو گی۔مساوات 9.20 کے سطحی تکمل

$$\int_{S} (\nabla \times \boldsymbol{H}) \cdot d\boldsymbol{S} = \int_{S} \boldsymbol{J} \cdot d\boldsymbol{S} + \int_{S} \frac{\partial \boldsymbol{D}}{\partial t} \cdot d\boldsymbol{S}$$

پر مسکلہ سٹوکس کے اطلاق سے

(9.25)
$$\oint \mathbf{H} \cdot d\mathbf{L} = I + I_d = I + \int_S \frac{\partial \mathbf{D}}{\partial t} \cdot d\mathbf{S}$$

وقت کے ساتھ تبدیل ہوتے ایمپیئر کے دوری قانون کی نقطہ شکل حاصل ہوتی ہے۔

انتقالی رو کو شکل 9.4 کی مدد سے سمجھتے ہیں جہاں موصل تار سے کیبیسٹر C کے دو سرے جوڑتے ہوئے بند دور بنایا گیا ہے جس میں وقت کے ساتھ بدلتی سائن نما مقناطیسی میدان B محرک برقی دباو پیدا کرتی ہے۔ یہ سادہ برقی دور ہے جس میں مزاحمت اور امالہ کو نظر انداز کرتے ہوئے برقی رو

$$i = -\omega C V_0 \sin \omega t$$
$$= -\omega \frac{\epsilon S}{d} V_0 \sin \omega t$$

ککھی جاسکتی ہے جہاں €، S اور d کپیسٹر سے متعلق ہیں۔آئیں انتقالی رو کو نظرانداز کرتے ہوئے تار کے گرد بند راہ k پر ایمپیسٹر کا دور کی قانون لا گو کریں۔

$$\oint_{k} \boldsymbol{H} \cdot d\boldsymbol{L} = I_{k}$$

اب بند راہ k اور اس راہ پر H حقیقی مقدار ہیں اور تکمل سے حاصل رو I_k اس راہ سے گیرے کسی بھی سطح سے گزرتی رو کو ظاہر کرتی ہے۔اگر ہم k کو سیدھی سطح کا سرحد تصور کریں تب موصل تار اس سطح کو چھیدتا ہوا گزرے گا۔یوں اس سطح سے I رو ہی گزرے گی جو ایصالی رو ہے۔اس کے بر عکس اگر ہم k کو تھلیے کا منہ تصور کریں جیسے شکل میں دکھایا گیا ہے تب ایصالی روائی سطح سے نہیں گزرتی چو نکہ تھیلا کپیسٹر کے دو چادروں کے در میان سے گزرتی ایصالی رو صفر کے برابر ہے۔الیی صورت میں ہمیں انتقالی رو کا سہارا لینا ہو گا۔کپیسٹر کے چادروں کے در میان

$$D = \epsilon E = \epsilon \left(\frac{V_0}{d} \cos \omega t \right)$$

ہے للذا

$$J_d = \frac{\partial D}{\partial t} = -\omega \epsilon \frac{V_0}{d} \sin \omega t$$

اور يول

$$I_d = SJ_d = -\omega \frac{\epsilon S}{d} V_0 \sin \omega t$$

ہو گی۔

یہ وہی جواب ہے جو ایصالی روسے حاصل ہوا تھا۔اس مثال سے آپ دیکھ سکتے ہیں کہ ایمپیئر کے دوری قانون کو استعال کرتے ہوئے سطح سے گزرتی ایصالی رواور انقالی رو دونوں کا خیال رکھنا ہو گا۔ کہیں پر سطح سے صرف ایصالی رو گزرے گی تو کہیں اس سے صرف انتقالی رو گزرے گی اور کبھی کبھار دونوں کا مجموعہ۔

انقالی رووقت کے ساتھ بدلتے برقی میدان سے پیدا ہوتے ہیں للذایہ ایسے تمام غیر موصل یا نیم موصل خطوں میں پائی جاتی ہے جہاں وقت کے ساتھ تبدیل ہوتی ایصالی روپائی جاتی ہے۔ اس کی قیت ساتھ تبدیل ہوتی جائے۔ اگرچہ موصل خطے میں مجی انقالی روپائی جاتی ہے۔ لیکن، جیسے آپ مندرجہ ذیل مثق میں دیکھیں گے، اس کی قیت ایصالی رو تجرباتی طور دریافت نہیں کی گئی بلکہ اس تک منطق کے ذریعہ سے پہنچا گیا۔

مشق 9.2: کھوس تانبے کی تار میں سائن نما، بچاس ہر ٹز کی ایصالی رو I₀ cos ωt گزر رہی ہے۔اس میں انتقالی رو حاصل کریں۔ بچاس ہر ٹز رو کی صورت میں ایصالی اور انتقالی رو کے موثر قیمت کی شرح حاصل کریں۔

$$I_d=rac{\sigma}{\omega\epsilon_0}=2.08 imes10^{16}$$
 کی شرح $I_d=-rac{\omega\epsilon_0}{\sigma}I_0\sin\omega t$: حل

9.3 میکس ویل مساوات کی نقطہ شکل

ہم وقت کے ساتھ تبدیل ہوتے میدانوں میں میکس ویل کے دو مساوات کے نقطہ اشکال

$$\nabla \times \boldsymbol{E} = -\frac{\partial \boldsymbol{B}}{\partial t}$$

اور

$$\nabla \times \boldsymbol{H} = \boldsymbol{J} + \frac{\partial \boldsymbol{D}}{\partial t}$$

حاصل کر چکے ہیں۔میکس ویل کے بقایادو مساوات وقت کے ساتھ تبدیل ہوتے میدان میں بھی جول کے تول

$$\nabla \cdot \boldsymbol{D} = \rho_h$$

$$(9.29) \nabla \cdot \boldsymbol{B} = 0$$

رہتے ہیں۔

مساوات 9.28 کہتا ہے کہ کثافت برتی رو کا منبع کثافت چارج ہے۔وقت کے ساتھ بدلتے مقناطیسی میدان میں برقی میدان پیدا ہوتا ہے جو بند راہ پر چپتا ہے۔ایسے برقی میدان کا ناتو کسی چارج سے اخراج ہوتا ہے اور ناہی میہ کسی چارج پر ختم ہوتا ہے۔اس کے برعکس ہر مثبت چارج سے اس کے برابر برقی بہاو کا اخراج ہوتا ہے اور ہر منفی چارج پر اس کے برابر برقی بہاو کا اختتام ہوتا ہے۔

مساوات 9.29 کہتا ہے کہ کسی بھی نقطے سے کل مقناطیسی بہاو کا اخراج صفر ہے یعنی مقناطیسی بہاو نا تو کسی نقطے سے خارج ہوتا ہے اور نا ہی یہ کسی نقطے پر اختتام پذیر ہوتا ہے۔ سادہ زبان میں اس کا مطلب ہے کہ مقناطیس کا یک قطب ممکن نہیں جس سے مقناطیسی بہاو کا اخراج ہویا اس پر مقناطیسی بہاو اختتام ہو۔

مندرجہ بالا چار مساوات پر برقی و مقناطیسیات کی بنیاد کھڑی ہے جنہیں استعال کرنے کی خاطر چار معاون مساوات

$$(9.30) D = \epsilon E$$

$$(9.31) B = \mu H$$

$$(9.32) J = \sigma E$$

$$(9.33) J = \rho_h v$$

بھی در کار ہوتے ہیں۔

ایسے ذو برق اور مقناطیسی اشیاء جن میں متغیرات سادہ تعلق نہ رکھتے ہوں، ان میں مساوات 9.30 اور مساوات 9.31 کی جگہ

$$(9.34) D = \epsilon_0 E + P$$

$$(9.35) B = \mu_0 \left(\mathbf{H} + \mathbf{M} \right)$$

استعال ہوتے ہیں۔خطی اشیاء میں

$$(9.36) P = \chi_e E$$

اور

$$(9.37) M = \chi_m H$$

لکھا جا سکتا ہے۔

آخر میں لور نز قوت کی مساوات

$$(9.38) F = \rho_h \left(E + v \times B \right)$$

بھی شامل کرتے ہیں۔

غیر سمتی مقناطیسی د باو V اور سمتی مقناطیسی د باو A انتهائی اہم ہیں البتہ ان کی شمولیت لازم نہیں۔

شکل 9.5: وقت کے ساتھ بدلتے میدان کے سرحدی شرائط۔

9.4 میکس ویل مساوات کی تکمل شکل

مساوات 9.26 کے سطحی کلمل پر مسلمہ سٹوکس کا اطلاق کرتے ہوئے فیراڈے کا قانون

(9.39)
$$\oint \boldsymbol{E} \cdot d\boldsymbol{L} = -\int_{S} \frac{\partial \boldsymbol{B}}{\partial t} \cdot \boldsymbol{S}$$

حاصل ہوتا ہے۔اسی طرح مساوات 9.27 اسی طریقہ کارسے ایمپیئر کا دوری قانون

(9.40)
$$\oint \mathbf{H} \cdot d\mathbf{L} = I + \int_{S} \frac{\partial \mathbf{D}}{\partial t} \cdot d\mathbf{S}$$

حاصل ہوتا ہے۔

برقی اور مقناطیسی میدان کے لئے گاؤس کے قوانین مساوات 9.28 اور مساوات 9.29 کے تمام حجم پر محجمی تکمل اور مسئلہ پھیلاو کی مدد سے

$$\oint_{S} \mathbf{D} \cdot d\mathbf{S} = \int_{h} \rho_{h} \, dh$$

اور

$$\oint_{S} \boldsymbol{B} \cdot d\boldsymbol{S} = 0$$

حاصل ہوتے ہیں۔

مندرجہ بالا چار مساوات سے D ، H ، E اور B کے سرحدی شرائط حاصل ہوتے ہیں جن سے میکس ویل کے جزوی تفرقی مساوات کے مستقل حاصل کئے جاتے ہیں۔وقت کے ساتھ تبدیل ہوتے میدان کے سرحدی شرائط عموماً ساکن میدان کے سرحدی شرائط ہی ہوتے ہیں لہذا ساکن میدان کے طریقہ کارسے وقت کے ساتھ بدلتے میدان کے سرحدی شرائط بھی حاصل کئے جا سکتے ہیں۔

آئیں شکل 9.5 کی مدد سے سر حد کے متوازی برقی اور مقناطیسی شر ائط حاصل کریں۔ شکل میں مستطیل راہ پر مساوات 9.39 کے اطلاق سے $(E_{m1}-E_{m2})\,\Delta w = -rac{\partial B_n}{\partial t}\Delta w \Delta h$

لکھا جا سکتا ہے جہاں $\frac{\partial B_n}{\partial t}$ سے مراد راہ کے گیرے سطے سے گزرتی مجموعی میدان کی تبدیلی ہے جس کا کچھ حصہ خطہ 1 اور کچھ حصہ خطہ 2 سے گزرتا ہے۔ اس مساوات کے دائیں ہاتھ کی قیمت $\Delta h \to 0$ کرتے ہوئے صفر کے قریب ترکی جا سکتی ہے۔الیی صورت میں دائیں ہاتھ کو صفر ہی تصور کرتے ہوئے

$$(9.43) E_{m1} = E_{m2}$$

لعيني

(9.44)
$$a_N \times (E_1 - E_2) = 0$$

حاصل ہوتا ہے۔

سرحد پر انتہائی کم موٹائی کے خطے میں کثافت برتی رو K تصور کرتے ہوئے کسی بھی چھوٹی لمبائی d پر برتی رو کو $I=K\cdot d$ کسی جاسکتی ہے۔ یوں شکل 5.5 میں مستطیل راہ پر مساوات 9.41 کے اطلاق سے

$$(H_{m1} - H_{m2}) \Delta w = K_{\perp} \Delta w + \frac{\partial D}{\partial t} \Delta w \Delta h$$

حاصل ہوتا ہے جہاں K_{\perp} سے مراد K کا وہ حصہ ہے جو H_{m2} اور H_{m2} عمود کی ہے۔دائیں ہاتھ دوسرے جزو کی قیمت $\Delta h o \Delta h$ کرتے ہوئے صفر کے قریب ترکی جاسکتی ہے لہٰذااس جزو کو نظرانداز کرتے ہوئے

$$(9.45) H_{m1} - H_{m2} = K_{\perp}$$

حاصل ہوتا ہے جسے بول

$$a_N \times (H_1 - H_2) = K_\perp$$

بھی لکھا جا سکتا ہے۔

کسی بھی حقیقی دو مختلف اشیاء کے سرحد، مثلاً سمندر کے پانی اور ہوا کے سرحد یا ہوااور دیوار کے سرحد، پر کثافت برقی رو K صفر ہوتی ہے۔لمذا حقیقی مسائل میں K=0 کی بنایر

$$(9.47) H_{m1} = H_{m2}$$

ہو گا۔ صفحہ 241 پر شکل 8.8 میں سطحی کثافت برقی رو K دکھائی گئی ہے جبکہ یہاں شکل 9.5 میں اسے صفر تصور کرتے ہوئے نہیں دکھایا گیا۔

مساوات 9.41 اور مساوات 9.42 سے سر حدی عمودی شر اکط

$$(9.48) a_N \cdot (D_1 - D_2) = \rho_S$$

اور

$$(9.49) a_N \cdot (B_1 - B_2) = 0$$

حاصل ہوتے ہیں۔

موصل کو ایباکامل موصل نصور کرتے ہوئے جس کی موصلیت لا محدود مگر آ محدود ہوسے موصل کے اندر اوہم کے قانون سے

$$(9.50) E = 0$$

اور یول فیراڈے کے قانون کی نقطہ شکل ہے، وقت کے ساتھ تبدیل ہوتے میدان کی صورت میں

$$(9.51) H = 0$$

حاصل ہوتے ہیں۔اس طرح ایمپیئر کے دوری قانون کی نقطہ شکل سے محدود J کی قیمت

$$(9.52) \boldsymbol{J} = 0$$

حاصل ہوتی ہے لہذا برقی رو صرف موصل کی سطح پر بطور سطحی کثافت رو K ممکن ہے۔یوں اگر خطہ 2 کامل موصل ہو تب مساوات 9.43 تا مساوات 9.49 میں 9.49 سے

$$(9.53) E_{m1} = 0$$

$$(9.54) H_{m1} = 0$$

$$(9.55) D_{n1} = \rho_S$$

$$(9.56) B_{n1} = 0$$

حاصل ہوتے ہیں۔ یاد رہے کہ سطحی کثافت چارج کی موجود گی ذو برق، کامل موصل اور غیر کامل موصل تمام پر ممکن ہے جبکہ سطحی کثافت رو K صرف کامل موصل کی صورت میں ممکن ہے۔

مندرجہ بالا سرحدی شرائط میس ویل کے مساوات کے حل کے لئے لازم ہیں۔ حقیقت میں پیش آنے والے تمام مسائل میں مختلف اشیاء کے سرحدیں پائی جاتی ہیں اور ایسے ہر سرحد کے دونوں اطراف پر مختلف متغیرات کے تعلق سرحدی شرائط سے ہی حاصل کرنا ممکن ہے۔کامل موصل کی صورت میں موصل کے اندر، وقت کے ساتھ بدلتے، تمام متغیرات صفر ہوتے ہیں البتہ ایسی صورت میں مساوات 5.5 تا مساوات 9.56 میں دیے شرائط کا اطلاق نہایت مشکل ہوتا ہے۔

متحرک اہروں کے چند بنیادی خاصیت بغیر سرحد کے خطے میں اہر کی حرکت پر غور سے واضح ہوتے ہیں۔اگلا باب انہیں متحرک اہروں پر ہے۔میکس ویل مساوات کا بہ سب سے آسان استعال ہے چونکہ ان میں کسی قسم کے سرحدی شرائط لاگو نہیں ہوتے۔

9.5 تاخيري دباو

وقت کے ساتھ بدلتے دباو، جنہیں تاخیری دباو⁹ کہا جاتا ہے، اشعاعی اخراج 10 کے مسائل حل کرنے میں نہایت اہم ثابت ہوتے ہیں۔آپ کو یاد ہو گا کہ غیر سمتی مقناطیسی دباو V کو خطے میں تقسیم ساکن جارج کی صورت

$$V = \int_h rac{
ho_h \, \mathrm{d}h}{4\pi\epsilon R}$$
 (برفی سکون)

میں لکھا جا سکتا ہے۔اسی طرح سمتی مقناطیسی دباو A کو وقت کے ساتھ نہ بدلتے یعنی یک سمتی برقی رو کے تقسیم کی صورت

(9.58)
$$A = \int_{h} \frac{\mu J \, \mathrm{d}h}{4\pi R} \qquad (پک سمتی رو)$$

میں لکھا جا سکتا ہے۔انہیں مساوات کے نقطہ اشکال بالترتیب

$$\nabla^2 V = -\frac{\rho_h}{\epsilon} \qquad (برفی سکون)$$

أور

$$abla^2 A = -\mu J$$
 (یک سمتی رو)

ہیں۔

9.5. تاخیری دباو

غیر سمتی اور سمتی مقناطیسی د باو کے حصول کے بعد میدان کے بنیادی متغیرات ڈھلوان

$$E = -\nabla V$$
 (برقی سکون) (9.61)

اور گردش

$$(9.62)$$
 $B = \nabla \times A$ (پک سمتی رو)

کی مدد سے حاصل ہوتے ہیں۔

آئیں اب ساکن چارج اور یک سمتی رو سے متعلق، وقت کے ساتھ تبدیل ہوتے ایسے دباو حاصل کریں جو مندرجہ بالا مساوات پر پورااترتے ہوں۔

میکس ویل کے مساوات کے تحت B=0 ہو گا۔ صفحہ 209 پر مساوات 7.62 کے تحت گردش کی پھیلاو لازماً صفر ہوتی ہے لہذا مساوات 9.62 میکس ویل کی مساوات B=0 پر پورااترتی ہے۔ یوں ہم مساوات 9.62 کو بدلتے میدان کے لئے بھی درست تصور کرتے ہیں۔

صفحہ 218 پر مثق 7.7 میں آپ نے ثابت کیا کہ ڈھلوان کی گردش لازماً صفر ہوتی ہے یوں مساوات 9.61 کی گردش لینے سے دایاں ہاتھ صفر حاصل ہوتا ہے جبکہ بایاں ہاتھ کا ∞ × کھ حاصل ہوتا ہے جو مساوات 9.26 کے تحت صفر نہیں ہے۔یوں صاف ظاہر ہے کہ مساوات 9.61 وقت کے ساتھ بدلتے میدان کے لئے درست نہیں ہے۔آئیں اس توقع سے مساوات 9.61 کے دائیں جانب متغیرہ N جمع کریں

$$\boldsymbol{E} = -\nabla V + \boldsymbol{N}$$

کہ وقت کے ساتھ برلتے میدان کے لئے ایس مساوات درست ثابت ہو گی۔ فی الحال ۸ ایک نامعلوم متغیرہ ہے۔ گردش لینے سے

$$\nabla \times \boldsymbol{E} = -\frac{\partial \boldsymbol{B}}{\partial t} = -\nabla \times (\nabla V) + \nabla \times \boldsymbol{N}$$
$$= 0 + \nabla \times \boldsymbol{N}$$

لعيني

$$abla imes oldsymbol{N} = -rac{\partial oldsymbol{B}}{\partial t}$$

حاصل ہوتا ہے۔مساوات 9.62 کے استعال سے بول

$$abla imes oldsymbol{N} = -rac{\partial}{\partial t} \left(
abla imes oldsymbol{A}
ight)$$

يا

$$abla imes oldsymbol{N} = -
abla imes \left(rac{\partial oldsymbol{A}}{\partial t}
ight)$$

حاصل ہوتا ہے جس کا سادہ ترین حل

$$N = -\frac{\partial A}{\partial t}$$

ہے للذااب ہم

$$(9.63) E = -\nabla V - \frac{\partial A}{\partial t}$$

(9.64)

(9.65)

لکھ سکتے ہیں۔

جمیں اب بھی دیکھنا ہوگا کہ آیا مساوات 9.62 اور مساوات 9.63 میکس ویل کے بقایا دو مساوات یعنی مساوات 9.27

$$abla imes oldsymbol{H} = oldsymbol{J} + rac{\partial oldsymbol{D}}{\partial t}$$

اور مساوات 9.28

$$\nabla \cdot \boldsymbol{D} = \rho_h$$

پر کورااترتے ہیں کہ نہیں۔ یہال پہلی مساوات میں $m{H}=rac{1}{\mu}
abla imes m{A}$ اور $m{D}=m{\epsilon}m{E}$

$$egin{aligned}
abla imes
abla imes$$

 $\nabla \left(\nabla \cdot \mathbf{A}\right) - \nabla^2 \mathbf{A} = \mu \mathbf{J} - \mu \epsilon \left(\nabla \frac{\partial V}{\partial t} + \frac{\partial^2 \mathbf{A}}{\partial t^2}\right)$

لکھا جا سکتا ہے جہاں مساوات 63.63 کا سہارالیا گیا۔اسی طرح مساوات 9.28 سے

$$\epsilon \left(-\nabla \cdot \nabla V - \frac{\partial}{\partial t} \nabla \cdot \mathbf{A} \right) = \rho_h$$

 $\nabla^2 V + \frac{\partial}{\partial t} \left(\nabla \cdot \boldsymbol{A} \right) = -\frac{\rho_h}{\epsilon}$

حاصل ہوتا ہے۔

مساوات 9.64 اور مساوات 9.65 میں کوئی تضاد نہیں پایا جاتا۔ ساکن یا یک سمتی حالات میں $\nabla \cdot A = 0$ کی وجہ سے مساوات 9.65 اور مساوات 9.65 ویا ہوتے ہیں۔ یوں ہم فرض کر سکتے ہیں کہ وقت کے ساتھ بدلتے دباو کی تعریف یوں کی جاسکتی ہے بالترتیب مساوات 9.60 اور مساوات 9.62 واصل ہوتے ہیں۔ یوں ہم فرض کر سکتے ہیں کہ وقت کے ساتھ بدلتے دباو کی تعریف یوں کی جاسکتی ہوں۔ البتہ A اور V کو مساوات 9.62 اور مساوات 9.63 واصل شراکط ہیں جن پر A اور V کا پورا اتر ناظر ور کی ہے۔ آئیں ایک مثال سے اس حقیقت کو سمجھیں۔

تصور کریں کہ ہمارے پاس سادہ سمتی مقناطیسی دباو ہے جس کے A_y اور A_z اجزاء صفر کے برابر ہیں۔ یوں مساوات 9.62 کی مدد سے ہم لکھ سکتے ہیں۔

$$B_x a_x + B_y a_y + B_z a_z = 0 a_x + \frac{\partial A_x}{\partial z} a_y - \frac{\partial A_x}{\partial y} a_z$$

اس سے ظاہر ہے کہ x محدد کے ساتھ A_x کے تبدیلی کے بارے میں کچھ اخذ کرنا ممکن نہیں ہے۔ یہ مساوات $\frac{\partial A_x}{\partial x}$ کا ذکر تک نہیں کرتا۔ ہاں اگر ہمیں A_x فاہر ہے کہ x محدد کے ساتھ A_x کے تبدیل کے بارے میں کچھ کہنا ممکن ہوتا چونکہ دئے گئے سمتی دباو

$$\nabla \cdot \mathbf{A} = \frac{\partial A_{x}}{\partial x}$$

9.5. تاخیری دباو

کھا جا سکتا ہے۔ آخر میں یہ بھی بتانا ضروری ہے کہ A کے بارے میں ہماری تمام معلومات جزوی تفرقی مساوات کی صورت میں ہیں جن سے A کے حصول کے وقت تکمل کا مستقل شامل کرنا ضروری ہے۔ کسی بھی حقیقی مسئلہ جس میں مکمل خلاء کے لئے حل درکار ہو میں ایسا مستقل صفر کے برابر ہوگا چونکہ کوئی بھی میدان لا محدود فاصلے پر صفر ہی ہوگا۔

اس مثال سے ہم کہہ سکتے ہیں کہ اگر ہمیں لا محدود خلاء میں کسی بھی نقطے پر سمتی میدان کی قیمت معلوم ہو تب اس سمتی میدان کو تمام خلاء میں میدان کے گردش اور پھیلاوسے حاصل کیا جا سکتا ہے۔ ہمیں مکمل آزادی ہے کہ جیسے چاہیں A کی پھیلاو بیان کریں۔ ہم مساوات 64.9اور مساوات 5.65 کو مد نظر رکھتے ہوئے یوں A کے پھیلاو کے لئے سادہ ترین تفاعل

$$\nabla \cdot \mathbf{A} = -\mu \epsilon \frac{\partial V}{\partial t}$$

لکھتے ہیں جس سے مساوات 9.64

(9.67)
$$\nabla^2 \mathbf{A} = -\mu \mathbf{J} + \mu \epsilon \frac{\partial^2 \mathbf{A}}{\partial t^2}$$

صورت اختیار کر لے گی جبکہ مساوات 9.65

$$\nabla^2 V = -\frac{\rho_h}{\epsilon} + \mu \epsilon \frac{\partial^2 V}{\partial t^2}$$

صورت اختیار کر لے گی۔

مندرجہ بالا دو مساوات متحرک امواج سے متعلق ہیں جن پر اگلے باب میں غور کیا جائے گا۔ان مساوات کی مشابہت بھی حیرت انگیز ہے۔باب کے اس جھے میں، وقت کے ساتھ بدلتے میدان کے لئے، حاصل کئے گئے نتائج یہاں دوبارہ پیش کرتے ہیں۔

$$(9.69) B = \nabla \times A$$

$$\nabla \cdot \mathbf{A} = -\mu \epsilon \frac{\partial V}{\partial t}$$

$$\mathbf{E} = -\nabla V - \frac{\partial \mathbf{A}}{\partial t}$$

ا گلے باب میں متحرک امواج پر غور کیا جائے گا۔ آپ دیکھیں گے کہ وقت کے ساتھ بدلتے برتی و مقناطیسی میدان متحرک امواج پیدا کرتے ہیں جن کی رفتار ہ

$$v = \frac{1}{\sqrt{\mu\epsilon}}$$

کے برابر ہوتی ہے۔خالی خلاء میں یہ رفتار تقریباً $\frac{m}{s}$ $10^8 \times 10^8 \times 10^8$ ہوتی ہے جو خالی خلاء میں روشنی کی رفتار ہے۔اس سے اخذ کیا جا سکتا ہے کہ نقطہ N_1 پر کثافت چارج سے دور کسی نقطے N_2 پر دباو کی قیمت اس لمحے کثافت چارج کے قیمت پر منحصر نہیں ہوتی بلکہ کچھ دیر قبل کے کثافت چارج پر منحصر ہوتی ہے۔ کثافت چارج میں تبدیلی کی خبر N_1 تک رفتار N_2 کا کہ رفتان نقطوں کے در میان فاصلہ N_3 ہونے کی صورت میں یہ خبر N_3 سینڈ تاخیر سے پہنچ گی۔اس طرح وقت کے ساتھ بدلتی صورت میں مساوات 9.57 کی نئی شکل

$$(9.73) V = \int_{h} \frac{[\rho_{h}]}{4\pi\epsilon R} \, \mathrm{d}h$$

ہو گی جہاں $[
ho_h]$ سے مرادیہ ہے کہ مساوات میں وقت t کی جگہ تاخیری وقت t' استعال کیا جائے یعنی

$$t' = t - \frac{R}{v}$$

یوں اگر خلاء میں کثافت چارج

$$\rho_h = e^{-r} \cos \omega t$$

ہو تب

$$[\rho_h] = e^{-r} \cos \left[\omega \left(t - \frac{R}{v} \right) \right]$$

ہو گا جہاں R تفرقی چارج سے اس نقطے تک فاصلہ ہے جہاں اس تفرقی چارج سے پیداد باو کا حصول در کار ہو۔

اسی طرح وقت کے ساتھ بدلتی صورت میں مساوات 9.58 کی نئی شکل یعنی تاخیر ی سمتی مقناطیسی دباو کی مساوات

$$\mathbf{A} = \int_{h} \frac{\mu[\mathbf{J}]}{4\pi R} \, \mathrm{d}h$$

ہو گی۔

تاخیری وقت کے استعال کی بناپر ایسے دباو کو تاخیری دباوا اکہا جاتا ہے۔

تاخیری برقی اور تاخیری مقناطیسی دباو کے استعال سے برقی و مقناطیسی مسئلے نسبتاً زیادہ آسانی سے حل ہوتے ہیں۔یوں اگر ہمیں م اور J معلوم ہوں تب ہم مساوات 9.73 اور J میں اور J ماسل کر سکتے ہیں جن سے مقناطیسی میدان بذریعہ مساوات 9.79 اور J میں اور J ماسل کر سکتے ہیں جن سے مقناطیسی میدان بذریعہ مساوات 9.71 حاصل کئے جا سکتے ہیں۔اگر ہمیں م اور J کی قیمتیں معلوم نہ ہوں اور ناہی ان کے قیمتوں کا اندازہ لگانا ممکن ہوتب تاخیری دباو، مکیس ویل مساوات کے حل سے زیادہ، مددگار ثابت نہیں ہوتے۔

باب 10

برقى و مقناطيسي امواج

لا محدود خطہ جس کا کوئی سر حدنہ ہو میں میکس ویل مساوات کا حل سادہ ترین مسکلہ ہے البتہ اس سے حاصل نتائج انتہائی دلچپ اور معلوماتی ثابت ہوتے ہیں۔آپ دیکھیں گے کہ وقت کے ساتھ بدلتا مقناطیسی میدان کو جنم دیتا ہے جبکہ وقت کے ساتھ بدلتا مقناطیسی میدان، وقت کے ساتھ بدلتا مقناطیسی میدان، وقت کے ساتھ بدلتا مقناطیسی میدان، وقت کے ساتھ بدلتا ہوتی ہوئی رو کی بدولت ہے الہذا چارج یا رو میں کسی بھی تبدیل سے باہمی تعاون سے بدلتا برقی اور بدلتا مقناطیسی میدان یعنی برقی و مقناطیسی اموج پیدا ہوتی ہے۔ایسے امواج کی تعدد کی سائن نما موج چارج یارو (یادونوں) میں تبدیلی کی شرح پر منحصر ہے۔یوں سی زاویائی تعدد آپر سائن نما شکل میں ارتعاش کرتا چارج سی زاویائی تعدد کی سائن نما موج ہی پیدا کرتی ہے۔برقی و مقناطیسی امواج دیکھنے کی صلاحیت رکھتی ہی پیدا کرتی ہے۔برقی و مقناطیسی امواج دیکھنے کی صلاحیت رکھتی ہی ہے۔برقی و مقناطیسی امواج کے تعدد کی وہ پٹی جو ہمیں نظر آتی ہیں روشن 4 کہلاتی ہے۔سائن نما موج کو اس کی تعدد کی یادوری عرصے کر برقی و مقناطیسی امواج کے دور کی عرصے کر برقی و مقناطیسی امواج کے کو دور کی عرصے کر برقی و مقناطیسی امواج کے دور کی عرصے کر برقی و مقناطیسی امواج کے کو اس کی تعدد کی یادور کی عرصے کر برقی و مقناطیسی امواج کے دور کی عرصے کے برقی و مقناطیسی امواج دیکھے سے۔برقی و مقناطیسی امواج کے دور کی عرصے کے برقی و مقناطیسی امواج دیکھے سے۔ ہم سات عہدر کی ہوتھ کے برقی و مقناطیسی امواج کے دور کی عرصے کر برقی و مقناطیسی امواج دیکھ سکتے ہیں۔

دواشیاء کے سرحد پر برقی و مقناطیسی موج پر غور کرنے سے شعاعی انعکاس⁶، شعاعی انحراف⁷اور انکسار امواج [®] کے حقائق دریافت ہوتے ہیں۔ مختصراً شعاع کے تمام خصوصیات میکس ویل کے مساوات سے حاصل کرنا ممکن ہے۔

10.1 خالی خلاء میں برقی و مقناطیسی امواج

حییا کہ آپ جانتے ہیں کہ کسی بھی موصل یا نیم موصل کے اندر کسی طرح بھی پہنچایا گیا آزاد چارج جلد سطح پر پہنچ جاتا ہے۔اگر ہم ان لمحات کو نظر انداز کریں جتنی دیر میں آزاد چارج سطح تک نہیں پہنچ جاتا تو ہم ان اشیاء میں $ho_h=0$ تصور کر سکتے ہیں۔اییا ہی تصور کرتے ہوئے صفحہ 263 پر دئے گئے میکس

electromagnetic¹

angular frequency³

light⁴

time period⁵

refraction⁷

ویل مساوات یہاں دوبارہ پیش کئے جاتے ہیں

(10.1)
$$\nabla \times \boldsymbol{E} = -\mu \frac{\partial \boldsymbol{H}}{\partial t}$$

(10.2)
$$\nabla \times \boldsymbol{H} = \sigma \boldsymbol{E} + \epsilon \frac{\partial \boldsymbol{E}}{\partial t}$$

$$\nabla \cdot \boldsymbol{E} = 0$$

$$\nabla \cdot \boldsymbol{H} = 0$$

جہاں $D=\epsilon E$ اور $B=\mu H$ کے علاوہ قانون اوہم کی نقطہ شکل $J=\sigma E$ کے استعال سے تمام مساوات صرف دو متغیرات $B=\mu H$ کی صورت میں کھے گئے ہیں۔

اس سے پہلے کہ ہم ان مساوات کو حل کریں، آئیں انہیں صرف دیکھ کریں کہ خالی خلاء میں ان سے کیا نتائج افذکئے جا سکتے ہیں۔ خالی خلاء میں ان سے کیا نتائج افذکئے جا سکتے ہیں۔ خالی خلاء میں ان سے کیا نتائج افذکہ ہم کی بھی نقطے پر متناطیسی میدان میں وقت بے ساتھ تبدیلی سے اس نقطے کے گرد برقی میدان کی گردش پیدا ہوتی ہے۔ گردش سے مراد ایسامیدان کی قیت کم ہو تب برتی گردش کی قیت بھی زیادہ ہوگی اور اگر مقناطیسی میدان کی قیت کم ہو تب برتی گردش کی قیت بھی نیادہ ہوگی اور اگر مقناطیسی میدان کی قیت کم ہو تب گردش بھی کہ ہوگی۔ یوں دو حقائق سامنے آتے ہیں۔ پہلی حقیقت ہے کہ کسی بھی نقطے پر برتی میدان اس نقطے کے گرد، یعنی نقطے سے ذرہ دور، برتی میدان ، برلی پیدا کرتی ہے اور دوسری حقیقت ہے کہ پہلی میدان کی قیت کم یازیادہ کرنے سے پیدا میدان کی قیت بھی تبدیل ہوتی ہے یعنی براتا مقناطیسی میدان ، برلی برتی میدان کو جنم دیتا ہے۔ اس طرح مساوات 10.2 کہتی بھی نقطے پر برتی میدان میں وقت کے ساتھ تبدیلی سے اس نقطے کے گرد مقناطیسی میدان ، برلی گردش پیدا کرتی ہے۔ ایسا معلوم ہوتا ہے کہ براتا مقناطیسی میدان پیدا کرتی میدان پیدا کرتی ہے۔ ایسا معلوم ہوتا ہے کہ براتا مقناطیسی میدان پیدا کرتی میدان پیدا کرتی ہے۔ ایسا معلوم ہوتا ہے کہ براتا مقناطیسی میدان پیدا کرتی میدان بیدا کرتی میدان پیدا کرتی ہے۔ ایسا معلوم ہوتا ہے کہ براتا مقناطیسی میدان پیدا کرتی میدان پیدا کرتی ہے۔ ایسا معلوم ہوتا ہے کہ براتا مقناطیسی میدان پر آگے کر کے براتا برتی میدان پیدا کرتا ہے جو مزید آگے مقناطیسی میدان کی رفتار ہے۔ ایسا معلوم ہوتا ہے۔ جو خالی خلاء میس روشنی کی رفتار ہے۔

10.2 برقى و مقناطيسى امواج

میکس ویل مساوات کے حل دوری سمتیات ⁹ کی مدد سے نہایت آسان ہو جاتے ہیں لہذا پہلے دوری سمتیر پر غور کرتے ہیں جو آپ نے برقی ادوار حل کرتے وقت ضرور استعال کئے ہول گے۔

سائن نمالهر کی عمومی شکل

$$(10.5) E_y = E_{xyz}\cos(\omega t + \psi)$$

ہے جہاں

$$(10.6) \omega = 2\pi f$$

زاویائی تعدد 10 اور ϕ زاویائی فاصلہ 11 ہیں جبکہ 12 از خود 13 اور 12 اور 12 تابع تفاعل 12 ہو سکتا ہے۔ تعدد 12 کی اکائی ہر ٹرن¹³ ہے۔ یہاں دھیان رہے کہ 12 وقت 12 کا تابع نہیں ہے۔ 13

phasor

angular frequency¹⁰

phase angle¹¹

dependent function¹²

Hertz¹³

10.2. برقى و مقناطيسى امواج

 $\omega t + \psi$ کسی بھی متغیرہ $j = \sqrt{-1}$ خیالی عدد j^{-15} کسا جاتا ہے جہاں $j = \sqrt{-1}$ خیالی عدد j^{-15} کسا جاتا ہے جہاں $j = \sqrt{-1}$ خیالی عدد j^{-15} کسا جاتا ہے جہاں $j = \sqrt{-1}$ کسا جاتا ہے جہاں $j = \sqrt{-1}$ کسا جاتا ہے جہاں کے پولر مماثل

$$e^{j(\omega t + \psi)} = \cos(\omega t + \psi) + j\sin(\omega t + \psi)$$

 $\sqrt{2}$ کا حقیقی 16 اور خیالی 17 اجزاء پر مشتمل مخلوط نفاعل 18 ہے۔ یوں $\sqrt{2}\cos(\omega t + \psi)$ کو حقیقی 16 اور خیالی 17 اجزاء پر مشتمل مخلوط نفاعل 18 ہے۔ اس طرح

$$E_y = E_{xyz}\cos(\omega t + \psi) = \left[E_{xyz}e^{j(\omega t + \psi)}\right]_{\text{cit.}} = \left[E_{xyz}e^{j\omega t}e^{j\psi}\right]_{\text{cit.}}$$

کھا جا سکتا ہے جہال زیر نوشت میں حقیقی لکھنے سے مرادیہ ہے کہ پورے نفاعل کا حقیقی جزو لیا جائے۔مندرجہ بالا مساوات کو بطور دوری سمتیہ یوں

$$E_{ys} = E_{xyz}e^{j\psi}$$

 E_{ys} کھا جاتا ہے جہاں $e^{i\omega t}$ اور زیر نوشت میں حقیقی کو پوشیدہ رکھا جاتا ہے۔ اس مساوات کے بائیں ہاتھ E_{ys} کھتے ہوئے زیر نوشت میں $e^{i\omega t}$ یا جاتا ہے اور پورے نفاعل کا صرف حقیقی جزو ہی لیا جائے۔ نفاعل مساوات دوری سمتیہ کی شکل میں کھی گئی ہے لہذا یاد رہے کہ اصل نفاعل میں $e^{i\omega t}$ پایا جاتا ہے اور پورے نفاعل کا صرف حقیق جزو ہی لیا جائے۔ نفاعل $e^{i\omega t}$ مساوات دوری سمتیہ کی شکل میں $e^{i\omega t}$ کہ اس نفاعل کا آزاد متغیرہ، مخلوط تعدد $e^{i\omega t}$ ہے۔ ہمارے استعمال میں $e^{i\omega t}$ عدد $e^{i\omega t}$ میں $e^{i\omega t}$ میں $e^{i\omega t}$ کے دیر نوشت میں $e^{i\omega t}$ دیا میں $e^{i\omega t}$ کہ اس نفاعل کا آزاد متغیرہ، مخلوط تعدد $e^{i\omega t}$ ہے۔ ہمارے استعمال میں $e^{i\omega t}$ کی عدد $e^{i\omega t}$ کے دیر نوشت میں $e^{i\omega t}$ دیر نوشت میں $e^{i\omega t}$ کہ نام کی از در نوشت میں $e^{i\omega t}$ کے نام کرتی ہے کہ اس نفاعل کا آزاد متغیرہ، مخلوط تعدد $e^{i\omega t}$ کے دیر نوشت میں $e^{i\omega t}$ کے دیر نوشت میں ویر نوشت میں کے دیر نوشت میں کی کے دیر نوشت میں کو دو نوٹ کے دیر نوشت میں کو دیر نوشت میں کے دیر نوٹ ک

اب $E_y = 10.5\cos(10^6t - 0.35z)$ کو دوری سمتیہ کی شکل میں کھنے کی خاطر اسے یولر مماثل کے حقیقی جزو $E_y = \left[10.5e^{j(10^6t - 0.35z)}\right]_{aut}$

لکھنے کے بعد ei106t اور زیر نوشت میں حقیقی کو پوشیدہ رکھتے ہوئے یول

$$E_{ys} = 10.5e^{-j0.35z}$$

کھا جائے گا جہاں بائیں ہاتھ E_{ys} میں زیر نوشت میں s کا اضافہ کیا گیا۔ یاد رہے کہ E_{ys} حقیقی تفاعل ہے جبکہ E_{ys} عموماً مخلوط تفاعل ہوتا ہے۔

دوری سمتیہ سے اصل تفاعل حاصل کرنے کی خاطر اسے ejwt سے ضرب دیتے ہوئے حاصل جواب کا حقیقی جزو لیا جاتا ہے۔

مساوات 10.5 کا وقت کے ساتھ جزوی تفرق

$$\frac{\partial E_y}{\partial t} = \frac{\partial}{\partial t} [E_{xyz} \cos(\omega t + \psi)] = -\omega E_{xyz} \sin(\omega t + \psi)$$
$$= \left[j\omega E_{xyz} e^{j(\omega t + \psi)} \right]_{\text{dist}}$$

کے برابر ہے۔ یہ عمومی نتیجہ ہے جس کے تحت وقت کے ساتھ تفاعل کا تفرق، دوری سمتیہ کو jw سے ضرب دینے کے مترادف ہے۔ یوں مثال کے طور پر اگر

$$\frac{\partial E_x}{\partial t} = -\frac{1}{\epsilon_0} \frac{\partial H_y}{\partial z}$$

Euler's identity¹⁴

imaginary number¹⁵

. rear

imaginary¹⁷

complex function¹⁸

complex frequency¹⁹

باب 10. برقي و مقناطيسي امواج

ہوتب اسی کی دوری سمتیہ شکل

$$j\omega E_{xs} = -\frac{1}{\epsilon_0} \frac{\partial H_y}{\partial z}$$

ہو گی۔اس طرح سائن نمامیدان کے لئے میکس ویل کے مساوات بھی باآسانی دوری سمتیہ کی شکل میں لکھے جا سکتے ہیں للذا

$$\nabla \times \boldsymbol{E} = -\mu \frac{\partial \boldsymbol{H}}{\partial t}$$

کو دوری سمتیه کی صورت میں

$$\nabla \times \mathbf{E}_{s} = -j\omega \mu \mathbf{H}_{s}$$

لکھا جائے گا۔ میکس ویل کے بقایا مساوات کو بھی دوری سمتیہ کی صورت میں لکھتے ہیں۔

(10.8)
$$\nabla \times \boldsymbol{H}_{s} = (\sigma + j\omega\epsilon) \boldsymbol{E}_{s}$$

$$\nabla \cdot \boldsymbol{E}_{s} = 0$$

$$\nabla \cdot \boldsymbol{H}_{S} = 0$$

آئیں ان مساوات سے امواج کی مساوات حاصل کریں۔ایسا کرنے کی خاطر مساوات 7.0 کی گردشabla imes
abla imes
abla

میں مساوات 10.8 اور مساوات 10.9 پر کرنے سے

(10.11)
$$\nabla^2 \mathbf{E}_s = j\omega\mu \left(\sigma + j\omega\epsilon\right)\mathbf{E}_s = \gamma^2 \mathbf{E}_s$$

حاصل ہوتا ہے جہاں

(10.12)
$$\gamma = \mp \sqrt{j\omega\mu\left(\sigma + j\omega\epsilon\right)}$$

حرکی مستقل 20 کہلاتا ہے۔ چو نکہ $j\omega\mu(\sigma+j\omega\epsilon)$ مخلوط عدد ہو گا جے

$$\gamma = \alpha + j\beta$$

کھا جا سکتا ہے جہاں lpha اور eta مثبت اور حقیقی اعداد ہیں۔

مساوات 10.11 سمتی ہلم ہولٹر مساوات ²²²¹ کہلاتی ہے۔کار تیسی محدد میں بھی سمتی ہلم ہولٹر مساوات کی بڑی شکل کافی خوفناک نظر آتی ہے چونکہ اس سے جار جار اجزاء پر مشتل تین عدد مساوات نکلتے ہیں۔کار تیسی محدد میں اس کی x مساوات

$$\nabla^2 E_{xs} = \gamma^2 E_{xs}$$

ليعني

$$\frac{\partial^2 E_{xs}}{\partial x^2} + \frac{\partial^2 E_{xs}}{\partial y^2} + \frac{\partial^2 E_{xs}}{\partial z^2} = \gamma^2 E_{xs}$$

propagation constant²⁰ vector Helmholtz equation²¹

²² برمن لڈوگ فرڈینانڈ ون بلم ہولٹز جرمنی کر عالم طبیعیات تھر۔

 $\frac{\partial^2 E_{xs}}{\partial x^2} = 0$ ہوں گے ہیں کہ جن امواج پر ہم غور کرناچاہتے ہیں ان میں ناتو x اور ناہی y کے ساتھ میدان تبدیل ہوتے ہیں۔الی صورت میں y فرض کرتے ہیں کہ جن امواج ہوں گے لہذا مندرجہ بالا مساوات

$$\frac{\partial^2 E_{xs}}{\partial z^2} = \gamma^2 E_{xs}$$

صورت اختیار کرلے گی۔اس طرح کے دو درجی تفرقی مساوات آپ نے پڑھے ہوں گاللذامیں توقع رکھتا ہوں کہ آپ اس کے حل

$$(10.17) E_{xs} = Ae^{-\gamma z}$$

أور

$$(10.18) E_{xs} = Be^{\gamma z}$$

لکھ سکتے ہیں۔

 $e^{i\omega t}$ آئیں $\gamma=lpha+j$ پر کرتے ہوئے ان جوابات میں سے مساوات 10.17 پر غور کریں۔مساوات 10.17 در حقیقت دوری سمتیہ ہے للمذا اسے $\gamma=\alpha+j$

$$E_x = \left[A e^{j\omega t} e^{-(\alpha + j\beta)z} \right]_{\alpha = \alpha}$$

$$= \left[A e^{-\alpha z} e^{j(\omega t - \beta z)} \right]_{\alpha = \alpha}$$

حقيقي جزو

$$E_x = Ae^{-\alpha z}\cos(\omega t - \beta z)$$

لیتے ہیں۔مساوات کے مستقل A کی جگہہ t=0 اور z=0 پر میدان کی قیمت E_0 پر کرتے ہوئے اصل حل

$$(10.19) E_x = E_0 e^{-\alpha z} \cos(\omega t - \beta z)$$

لکھا جا سکتا ہے۔ یہ موج کی وہ مساوات ہے جس کی تلاش میں ہم نکلے تھے۔اگر ہم مساوات 10.18 کو لے کر آگے بڑھتے تو مساوات 10.19 کی جگہ موج کی مساوات

$$(10.20) E_x = E_0 e^{\alpha z} \cos(\omega t + \beta z)$$

حاصل ہوتی۔

مساوات 10.17 میں $A=E_0$ پر کرتے ہوئے اس کی سمتیہ شکل

$$E_s = E_0 e^{-\gamma z} a_{\mathbf{X}}$$

کسی جا سکتی ہے جو صرف $a_{
m X}$ جزو پر مشتمل ہے۔ آئیں مساوات 10.19 میں دیے متحرک موج $a_{
m X}$ اب غور کریں۔

مساوات 10.19 کہتی ہے کہ برقی میدان ہر نقطے پر x محدد کے متوازی ہے۔اگر یک قیمت تبدیل نہ کی جائے تب x اور y تبدیل کرنے سے میدان تبدیل نہیں ہوتا۔ باب 10. برقى و مقناطيسي امواج

شكل 10.1: وقت t=0 اور $t=t_1$ پر خلاء ميں موج كا مقام.

مساوات 10.19 میں z بڑھانے سے α کی وجہ سے موج کی چوٹی گھٹی ہے للذا α تقلیلی مستقل 2^4 کہلاتا ہے۔ تقلیلی مستقل کو نیپر 2^5 فی میٹر $\frac{Np}{m}$ میں ناپا 2^6 جاتا ہے۔ یوں مساوات 10.19 میں 2^6 کی طاقت یعنی 2^7 بعد 2^7 مقدار نیپر 2^7 میں ہوگی۔ موج کے مساوات میں 2^7 زاویائی فاصلہ ہے جسے ریڈیئن میٹر 2^7 میں ناپا جاتا ہے للذا 2^7 زاویائی مستقل 2^7 کہلاتا ہے جبکہ اس کی اکائی ریڈیئن فی میٹر 2^7 ہے۔

z موج کی مساوات میں $\alpha=0$ تصور کرتے ہوئے اسے وقت t=0 پر شکل 10.1 میں ہلکی سیابی سے دکھایا گیا ہے۔ یہاں دھیان رہے کہ شکل میں z محدد کو افقی دکھایا گیا ہے۔ جیسے آپ دکیھ سکتے ہیں t=0 پر موج کی دو آپس میں قریبی چوٹیاں z=0 اور z=2 پر پائی جاتی ہیں۔دو آپس میں قریبی چوٹیوں کے در میان فاصلے کو طول موج z=2 پکارا اور z=2 ظاہر کیا جاتا ہے۔ یوں اس موج کی طول موج

$$\lambda = \frac{2\pi}{\beta}$$

ہے جس سے

$$\beta = \frac{2\pi}{\lambda}$$

لکھا جا سکتا ہے جو انتہائی اہم نتیجہ ہے۔

موج کی مساوات ہی کو وقت $t=\Delta t_1$ پر شکل 10.1 میں دوبارہ گاڑھی سیاہی میں بھی دکھایا گیا ہے۔آپ دکھ سکتے ہیں کہ اس دورانے میں موج نے دائیں جانب یعنی z برخصنے کی طرف حرکت کی ہے۔یوں صاف ظاہر ہے کہ یہ موج وقت کے ساتھ مثبت z جانب حرکت کر رہی ہے۔دورانیہ Δt_1 میں موج کی چوٹی نے $\frac{\omega \Delta t_1}{\beta}$ فاصلہ طے کیا ہے لہذا موج کے رفتار کو

(10.24)
$$v = \frac{\Delta z}{\Delta t} = \frac{\omega \Delta t_1}{\beta} \frac{1}{\Delta t_1} = \frac{\omega}{\beta}$$

لکھا جا سکتا ہے۔

مساوات 10.23 کو مساوات 10.24 میں پر کرنے سے

$$(10.25) v = f\lambda$$

حاصل ہوتا ہے جو λ طول موج اور f تعدد رکھنے والے موج کی رفتار σ دیتی ہے۔

travelling wave²³

attenuation constant²⁴

 $neper^{25}$

²⁵ تقلیلی مستقل کی اکائی جان نیپر کے نام سے منسوب ہے۔

dimensionless²⁷

phase constant²⁸

wavelength²⁹

شکل 10.2: موج چلتے ہوئے آہستہ آہستہ کمزور ہوتی رہتی ہے۔

مساوات 10.19 میں مساوات 10.24 استعال کرتے ہوئے

(10.26)
$$E_x = E_0 e^{-\alpha z} \cos \left[\omega \left(t - \frac{z}{v} \right) \right]$$

حاصل ہوتا ہے جے مساوات 10.24 اور مساوات 10.23 کی مدد سے

(10.27)
$$E_x = E_0 e^{-\alpha z} \cos\left(\omega t - \frac{2\pi z}{\lambda}\right)$$

بھی لکھا جا سکتا ہے۔

موج کی رفتار کو مساوات 10.19 سے دوبارہ حاصل کرتے ہیں۔اس مساوات کے تحت کسی بھی کھے t پر موج کی چوٹی اس مقام پر ہوگی جہال $\omega t - \beta z = 0$

ہو۔ چونکہ رفتار $\frac{\mathrm{d}z}{\mathrm{d}t}$ کو کہتے ہیں للمذااس مساوات کے تفرق

 $\omega \, \mathrm{d}t - \beta \, \mathrm{d}z = 0$

ہے ر فتار

یا

$$v = \frac{\mathrm{d}z}{\mathrm{d}t} = \frac{\omega}{\beta}$$

حاصل ہوتی ہے۔

 $lpha=0.001~rac{ ext{Np}}{ ext{m}}$ کو صفر تصور نہیں کیا گیا ہے۔ جیسا کہ آپ دیکھ سکتے ہیں، ایسی صورت میں موج کی چوٹی، z ساتھ بتدر سج گھٹتی ہے لہذا $rac{ ext{Np}}{ ext{m}}$ کی صورت میں z=1 فاصلے پر موج کی چوٹی، ابتدائی چوٹی کے z=0 نارہ گئی ہوگی جہاں ابتدائی چوٹی کے z=1 کی صورت میں z=1 کہ ابتدائی جوٹی ہوگی ہے۔

برتی موج $E_{
m s}$ سے مساوات 10.7

$$\nabla \times \boldsymbol{E}_{s} = -j\omega \mu \boldsymbol{H}_{s}$$

کی مدد سے مقناطیسی موج با آسانی حاصل ہوتی ہے۔مساوات 10.21 استعمال کرتے ہوئے مندرجہ بالا مساوات سے $-\gamma E_0 e^{-\gamma z} m{a_V} = -j\omega \mu m{H_S}$

$$\boldsymbol{H}_{s} = \frac{\gamma}{i\omega\mu} E_{0} e^{-\gamma z} \boldsymbol{a}_{y}$$

حاصل ہوتا ہے جس میں مساوات 10.12 سے مثبت γ کی قیت پر کرنے سے

(10.29)
$$\mathbf{H}_{s} = \sqrt{\frac{\sigma + j\omega\epsilon}{j\omega\mu}} E_{0}e^{-\gamma z}\mathbf{a}_{y}$$

$$= \frac{E_{0}}{\eta}e^{-\gamma z}\mathbf{a}_{y}$$

ملتاہے جہاں دوسرے قدم پر

$$\eta = \sqrt{\frac{j\omega\mu}{\sigma + j\omega\epsilon}}$$

لکھی 3130 گئی ہے۔

مساوات 10.21 کی غیر سمتی صورت لینی $E_{xs}=E_0e^{-\gamma z}$ کو مساوات 10.29 کے غیر سمتی صورت لینی $H_{ys}=\frac{E_0}{\eta}e^{-\gamma z}$ کے غیر سمتی صورت العنی $E_{xs}=E_0e^{-\gamma z}$ کے مساوات 10.21 کی غیر سمتی صورت العنی مرتب

$$\frac{E_{xs}}{H_{ys}} = \eta$$

ملتا ہے۔

یہاں ذرہ رک کر ایک برقی دور پر غور کرتے ہیں۔ منبع برقی دباو $V_0e^{-j\psi}$ جسے دوری سمتیہ $V_0e^{-j\psi}$ کھا جا سکتا ہے کے ساتھ سلسلہ وار مزاحمت R، امالہ L اور کپییٹر C جڑے ہیں جن کی رکاوٹ C

$$Z = R + j\left(\omega L - \frac{1}{\omega C}\right) = R + jX = |Z|e^{j\theta_Z} = |Z|\underline{/\theta_Z}$$

کاسی جاسکتی ہے جہاں $\frac{1}{\omega C}$ کی صورت میں X مثبت ہو گا جبکہ $\frac{1}{\omega C}$ کی صورت میں یہ منفی ہو گا۔ مزید $\omega L > \frac{1}{\omega C}$ کی صورت میں جہاں ور خالص مزاحمتی رکاوٹ پیش کرے گا اور $\theta_Z = 0$ ہو گا۔ اس دور میں برقی رو دور کی سمتیہ کی مدد سے

$$I_s = \frac{V_s}{Z_s} = \frac{V_0 e^{-j\psi}}{|Z| e^{j\theta_Z}} = \frac{V_0}{|Z|} e^{-j(\psi + \theta_Z)}$$

حاصل ہوتا ہے جس سے

$$i = \frac{V_0}{|Z|} \cos \left(\omega t - \psi - \theta_Z\right)$$

ککھا جا سکتا ہے۔ برقی د باواور برقی روایک ہی تعدد رکھتے ہیں البتہ ان میں زاویائی فاصلہ $heta_Z$ پایا جاتا ہے۔ مثبت X کی صورت میں برقی رواس زاویائی فاصلے کے برابر برقی د باو کے آگے رہتی ہے۔ ہم دیکھتے ہیں کہ برقی د باو کے آگے رہتی ہے۔ ہم دیکھتے ہیں کہ برقی د باواک شرح د باواور برقی روکی شرح

$$\frac{V_s}{I_s} = |Z| e^{j\theta_Z} = Z$$

کے برابر ہے جسے رکاوٹ کہتے ہیں۔

 $^{^{10}}$ یونانی حروف تہجی η ایٹا پڑھا جاتا ہے۔ $\eta = ext{eta}^{31}$

10.2. برقبي و مقناطيسي امواج

آئیں اب دوبارہ امواج کی بات کریں۔ برتی موج کو اس مثال کے برتی دباو کی جگہ اور مقناطیسی موج کو مثال کے روکی جگہ رکھتے ہوئے آپ دیکھیں گے کہ دونوں مسائل ہو بہو کیساں ہیں۔ اسی وجہ سے برتی موج E_{xs} اور مقناطیسی موج H_{ys} کی شرح η ، قدرتی رکاوٹ Σ کہلاتی ہے۔ بالکل برتی رکاوٹ کی طرح قدرتی رکاوٹ حقیقی یا خیالی اور یا مخلوط عدد ہو سکتا ہے۔ قدرتی رکاوٹ کی اکائی او ہم Ω ہے۔

مساوات 10.29 سے مقناطیسی موج

(10.32)
$$H_{y} = \frac{E_{0}e^{-\alpha z}}{|\eta|}\cos\left(\omega t - \beta z - \theta_{\eta}\right)$$

لکھی جائے گی جہاں قدرتی رکاوٹ کو

$$\eta = |\eta| e^{j\theta_{\eta}}$$

لكھا گيا۔

مساوات 10.19 کے تحت برقی میدان x محدد کے متوازی ہے جبکہ مساوات 10.32 کے تحت مقناطیسی میدان y محدد کے متوازی ہے المذا یہ میدان آپس میں ہر وقت عمودی رہتے ہیں۔اس کے علاوہ دونوں امواج 2 سمت میں حرکت کر رہے ہیں۔یوں میدان کی سمت اور حرکت کی سمت بھی آپس میں عمودی ہیں۔ایوں میدان کی سمت اور حرکت کی سمت بھی آپس میں عمودی ہیں۔ایے امواج جن میں میدان کی سمت اور حرکت کی سمت عمودی ہوں عرضی امواج ہوتے ہیں۔اپنی کی سمج پر اہریں بھی عرضی امواج ہوتے ہیں۔اس طرح رسی کو تھینچ کر رکھتے ہوئے اسے جھلکے سے ہلانے سے رسی میں عرضی موج پیدا ہوتی ہے۔

10.2.1 خالی خلاء میں امواج کی خاصیت

غالی خلاء میں $\sigma=0$ ، ور $\mu_R=1$ اور $\epsilon_R=1$ بین لهذا مساوات 10.12 سے مثبت حرکی مستقل $\gamma=\sqrt{j\omega\mu_R\mu_0\left(\sigma+j\omega\epsilon_R\epsilon_0
ight)}=j\omega\sqrt{\mu_0\epsilon_0}$

حاصل ہوتاہے جس سے

$$\alpha = 0$$
$$\beta = \omega \sqrt{\mu_0 \epsilon_0}$$

حاصل ہوتے ہیں۔یوں خالی خلاء میں برقی و مقناطیسی امواج کی رفتار، جسے روایتی طور پر c سے ظاہر کیا جاتا ہے، مساوات 10.24 سے

$$c = \frac{\omega}{\beta} = \frac{1}{\sqrt{\mu_0 \epsilon_0}}$$

حاصل ہوتی ہے جس کی قیت

$$c = \frac{1}{\sqrt{4 \times \pi \times 10^{-7} \times 8.854 \times 10^{-12}}} = 2.99 \times 10^8 \frac{\text{m}}{\text{s}}$$
$$\approx 3 \times 10^8 \frac{\text{m}}{\text{s}}$$

-4

باب 10. برقى و مقناطيسى امواج

مساوات 10.30 سے خالی خلاء کی قدرتی رکاوٹ

$$\eta=\sqrt{\dfrac{j\omega\mu_R\mu_0}{\sigma+j\omega\epsilon_R\epsilon_0}}=\sqrt{\dfrac{\mu_0}{\epsilon_0}}$$
 عاصل ہوتی ہے۔ قدرتی رکاوٹ کی قیمت حاصل کرنے کی خاطر ہم $\eta=120\pi\approx377\,\Omega$

حاصل کرتے ہیں۔ یوں خالی خلاء میں کسی بھی لمحے، کسی بھی نقطے پر برقی میدان کی قیمت اس نقطے پر مقناطیسی میدان کے 377 گنا ہو گ۔

حرکی مستقل اور قدرتی رکاوٹ کی قیمتیں استعال کرتے ہوئے خالی خلاء میں متحرک موج کے میدان

$$E_x = E_0 \cos \left[\omega \left(t - \frac{z}{c} \right) \right]$$

$$H_y = \frac{E_0}{120\pi} \cos \left[\omega \left(t - \frac{z}{c} \right) \right]$$

لکھے جائیں گے۔آپ دیکھ سکتے ہیں کہ دونوں میدان ہم زاویہ ہیں۔یوں کسی بھی نقطے پر بڑھتے برقی میدان کی صورت میں اس نقطے پر مقناطیسی میدان کسی جسی بڑھتا ہے۔ان مساوات کے تحت امواج بالکل سیدھے حرکت کرتے ہیں اور ناوقت اور ناہی فاصلے کے ساتھ ان کی طاقت میں کسی قسم کی کمی رونما ہوتی ہے۔یہی وجہ ہے کہ کائنات کے دور ترین کہکشاوں سے ہم تک برقی و مقناطیسی امواج پہنچتی ہیں اور ہمیں رات کے چیکتے اور خوبصورت تارے نظر آتے ہیں۔

مثق 10.1: بے تار ذرائع ابلاغ میں 4000 km کی اونچائی پر پرواز کرتے مصنوعی سیارے اہم کردار ادا کرتے ہیں۔ یہ سیارے زمین کے اوپر ایک ہی نقطے پر آویزال نظر آتے ہیں۔ان سیاروں سے زمین کے قریبی نقطے تک برقی اشارہ کتنی دیر میں پہنچے گا۔

جواب: 0.12 s

10.2.2 خالص ذو برق میں امواج کی خاصیت

خالص ذو برقی سے مراد ایساذو برق ہے جس میں متحرک برقی و مقناطیسی امواج کی توانائی ضائع نہیں ہوتی۔خالص ذو برق میں $\sigma=0$ جبکہ اس کا جزوی متناطیسی مستقل μ_R اور جزوی برقی مستقل ϵ_R ہذا مساوات 10.12 سے مثبت حرکی مستقل

$$\gamma = j\omega\sqrt{\mu\epsilon}$$

حاصل ہوتاہے جس سے

$$\alpha = 0$$
$$\beta = \omega \sqrt{\mu \epsilon}$$

حاصل ہوتے ہیں۔ بوں خالی خلاء میں برقی و مقناطیسی امواج کی رفتار مساوات 10.24 سے

(10.36)
$$v = \frac{\omega}{\beta} = \frac{1}{\sqrt{\mu_R \mu_0 \epsilon_R \epsilon_0}} = \frac{c}{\sqrt{\mu_R \epsilon_R}}$$

حاصل ہوتی ہے جہاں $\frac{1}{\sqrt{\mu_0 \epsilon_0}}$ کو خالی خلاء میں روشنی کی رفتار σ کھھا گیا ہے۔چونکہ ذو برق میں 1 $\mu_R \epsilon_R > 1$ ہے لہذا ذو برق میں روشنی کی رفتار خالی خلاء میں روشنی کی رفتار اس کی زیادہ سے زیادہ رفتار ہے۔

موج کی رفتار اور تعدد سے طول موج

(10.37)
$$\lambda = \frac{v}{f} = \frac{c}{f\sqrt{\mu_R \epsilon_R}} = \frac{\lambda_0}{\sqrt{\mu_R \epsilon_R}}$$

حاصل ہوتی ہے جہاں خالی خلاء کے طول موج کو λ_0 کھا گیا ہے۔اس مساوات سے ذو برق میں روشنی کی رفتار کم ہونے کی وجہ سامنے آتی ہے۔چو نکہ $\mu_R \epsilon_R > 1$

مساوات 10.30 سے ذو برقی کی قدرتی رکاوٹ

$$\eta = \sqrt{\frac{\mu}{\epsilon}} = \sqrt{\frac{\mu_0}{\epsilon_0}} \sqrt{\frac{\mu_R}{\epsilon_R}} = \eta_0 \sqrt{\frac{\mu_R}{\epsilon_R}}$$

حاصل ہوتی ہے جہاں خالی خلاء کی قدرتی رکاوٹ کو η_0 کھا گیا ہے۔

یوں ذو برق میں امواج کے مساوات

$$(10.38) E_x = E_0 \cos(\omega t - \beta z)$$

$$(10.39) H_y = \frac{E_0}{\eta} \cos(\omega t - \beta z)$$

ہیں۔

مثال 10.1: پانی کے لئے $\mu_R=80$ ، $\mu_R=80$ اور $\sigma=0$ لیتے ہوئے 300 MHz قدر کے برقی و مقناطیسی امواج کی رفتار، طول موج اور قدرتی رکاوٹ حاصل کریں۔ برقی میدان $\frac{mV}{m}$ 50 ہونے کی صورت میں برقی اور مقناطیسی امواج کے مساوات ککھیں۔ ہم $\sigma=0$ لیتے ہوئے در حقیقت پانی میں توانائی کے ضیاع کو نظرانداز کر رہے ہیں۔

حل:

$$v = \frac{c}{\sqrt{\mu_R \epsilon_R}} = \frac{3 \times 10^8}{\sqrt{80}} = 0.3354 \times 10^8 \frac{\text{m}}{\text{s}}$$
$$\lambda = \frac{v}{f} = \frac{0.3354 \times 10^8}{300 \times 10^6} = 11.18 \text{ cm}$$

ہیں جبکہ خالی خلاء میں $\lambda = 1 \, \mathrm{m}$ ہے۔ بقایا مستقل

$$\beta = \frac{2\pi}{\lambda} = 56.2 \frac{\text{rad}}{\text{m}}$$

باب 10. برقی و مقناطیسی امواج

282

اور

$$\eta = \eta_0 \sqrt{\frac{\mu_R}{\epsilon_R}} = \frac{377}{80} = 42.15 \,\Omega$$

ہیں۔امواج کے مساوات

$$E_x = 0.05\cos(6\pi 10^8 t - 56.2z)$$

$$H_y = \frac{0.05}{42.15}\cos(6\pi 10^8 t - 56.2z) = 0.00119\cos(6\pi 10^8 t - 56.2z)$$

ہیں۔

مثق 10.2: کتاب کے آخر میں مختلف اشیاء کے مستقل دے گئے ہیں۔انہیں استعال کرتے ہوئے عمبر میں 5.6 GHz اور mA طول کے مقناطیسی میدان پر عمبر میں مندرجہ ذیل حاصل کریں۔

- موج کی رفتار،
 - طول موج،
- زاویائی مستقل،
- قدرتی رکاوٹ،
- برقی میدان کا طول۔

 $2.29 \frac{V}{m}$ زابات: $\frac{m}{s}$ 32.6 cm 32.6 cm أوابات: جوابات واور Ω 229.3 Ω 32.6 cm 32.6 cm أوابات أوابات

10.2.3 موج کی طاقت گھٹاتے ذو برقی میں امواج

باب 11 سوالات

باب 11. سوالات

 σ :11.1 جدول

$\sigma, \frac{S}{m}$	چیر	$\sigma, \frac{S}{m}$	چيز
7×10^4	گريفائٿ	6.17×10^{7}	چاندى
1200	سليكان	5.80×10^{7}	تانبا
100	فيرائك (عمومي قيمت)	4.10×10^{7}	سونا
5	سمندری پانی	3.82×10^{7}	المونيم
10^{-2}	چهونا پتهر	1.82×10^{7}	ٹنگسٹن
5×10^{-3}	چکنی مٹنی	1.67×10^{7}	جست
10^{-3}	تازه پانی	1.50×10^{7}	بيتل
10^{-4}	تقطیر شده پانی	1.45×10^{7}	نکل
10^{-5}	ریتیلی مٹی	1.03×10^{7}	لوبا
10^{-8}	سنگ مرمر	0.70×10^{7}	قلعى
10^{-9}	بيك لائث	0.60×10^{7}	كاربن سٹيل
10^{-10}	چینی مٹی	0.227×10^{7}	مینگنین
2×10^{-13}	ا بيرا	0.22×10^{7}	جرمينيم
10^{-16}	پولیسٹرین پلاسٹک	0.11×10^{7}	سٹینلس سٹیل
10^{-17}	كوارش	0.10×10^{7}	نائيكروم

باب 11. سوالات

 $\sigma/\omega\epsilon$ and ϵ_R :11.2 جدول

$\sigma/\omega\epsilon$	ϵ_R	چير
	1	خالى خلاء
	1.0006	ہوا
0.0006	8.8	المونيم اكسائدُ
0.002	2.7	عمبر
0.022	4.74	بیک لائٹ
	1.001	كاربن ڈائى آكسائڈ
	16	جرمينيم
0.001	7تا 4	شيشہ
0.1	4.2	برف
0.0006	5.4	ابرق
0.02	3.5	نائلون
0.008	3	كاغذ
0.04	3.45	پلیکسی گلاس
0.0002	2.26	پلاسٹک (تھیلا بنانے والا)
0.00005	2.55	پولیسٹرین
0.014	6	چینی مٹی
0.0006	4	پائریکس شیشہ (برتن بنانے والا)
0.00075	3.8	كوارٹس
0.002	2.5 تا 3	ر پڑ
0.00075	3.8	SiO_2 سلیکا
	11.8	سليكان
0.5	3.3	قدرتی برف
0.0001	5.9	کھانے کا نمک
0.07	2.8	خشک مٹی
0.0001	1.03	سثائروفوم
0.0003	2.1	ٹیفلان
0.0015	100	ٹائٹینیم ڈائی آکسائڈ
0.04	80	تقطير شده پاني
4		سمندرى پانى
0.01	4 تا 1.5	خشک لکڑی

 μ_R :11.3 جدول

μ_R	چيز
0.999 998 6	بسمت
0.99999942	پيرافين
0.999 999 5	لکڑی
0.999 999 81	چاندى
1.00000065	المونيم
1.00000079	بيريليم
50	نکل
60	ڈھلواں لوہا
300	مشين سٹيل
1000	فيرائك (عمومي قيمت)
2500	پرم بھرت (permalloy)
3000	ٹرانسفارمر پتری
3500	سيلكان لوبا
4000	خالص لوبا
20 000	میو میٹل (mumetal)
30 000	سنڈسٹ (sendust)
100 000	سوپرم بهرت (supermalloy)

جدول 11.4: اہم مستقل

قيمت	علامت	چیر
$(1.6021892 \mp 0.0000046) \times 10^{-19} \mathrm{C}$	e	الیکٹران چارج
$(9.109534 \mp 0.000047) \times 10^{-31} \mathrm{kg}$	m	اليكثران كميت
$(8.854187818 \mp 0.000000071) \times 10^{-12}\frac{F}{m}$	ϵ_0	برقی مستقل (خالی خلاء)
$4\pi 10^{-7} rac{\mathrm{H}}{\mathrm{m}}$	μ_0	مقناطیسی مستقل (خالی خلاء)
$(2.997924574 \mp 0.000000011) \times 10^8\tfrac{m}{s}$	c	روشنی کی رفتار (خالی خلاء)

باب 11. سوالات