Learning Student Network with Few Data

Shumin KongSchool of Computer Science
University of Sydney

Agenda

- Knowledge Distillation
- Teacher-student learning

Network Compression – Why?

- Nowadays, deep learning models are getting more and more difficult to train, take BigGAN as an example.
- It takes time.
 - Training BigGAN requires 15 days of training with 8 Nvidia Tesla v100.
- It needs a lot of data.
 - The training set of ImageNet is around 120 gigabytes.
- It costs money.
 - US\$4406 to run 8 Nvidia Tesla v100 for 15 days on AWS.
- Is deep learning research becoming a pay2win game?

- No!

Knowledge Distillation

- Idea: to distill the knowledge from a larger (teacher) network to a smaller (student) network.
- Teacher networks:
 - Large in terms of # of parameters.
 - Deep in terms of # of layers.
 - Usually take a long time to train.
- Student network:
 - Small in terms of # of parameters.
 - Shallow in terms of # of layers.

Knowledge Distillation – Founding work

- Idea: Train the student network such that its soften output is similar to that of the teacher network.
- Denote z_i as the logits, i.e. the un-activated outputs of the final layer, of a network, we train the student network s.t. its

$$q_i = \operatorname{softmax}(\frac{Z_i}{T})$$

- is similar to the teacher network's, where T is a constant denoting the temperature of the distillation, which is usually set to one.

Hinton, G., Vinyals, O., & Dean, J. (2015). Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531.

Knowledge Distillation - FitNet

- Idea: Train the student network such that the output one of its middle layer is similar to that of the teacher network.
- Denote $h_{\mathcal{S}}$ and $h_{\mathcal{T}}$ as the output of middle layer of students and teachers, respectively. We pre-train the student network such that

$$h_S' = f(W^*, h_S)$$

- is similar to h_T , where $f(W^*,\cdot)$ is an additional layer that can make sure the shape of h_S' and h_T is consistent.

Romero, A., Ballas, N., Kahou, S. E., Chassang, A., Gatta, C., & Bengio, Y. (2014). Fitnets: Hints for thin deep nets. arXiv preprint arXiv:1412.6550.

Knowledge Distillation – Activation Boundary

 Idea: Train the student network such that the activation boundary of its middle layer is similar to that of the teacher network.

Heo, B., Lee, M., Yun, S., & Choi, J. Y. (2019, July). Knowledge transfer via distillation of activation boundaries formed by hidden neurons. In *Proceedings of the AAAI Conference on Artificial Intelligence* (Vol. 33, pp. 3779-3787).

Problems

- Previous work still assume that the entire dataset used to train the teacher network is also available for the student network.
- This assumption may not hold for some real-world scenarios.
 - many applications do not open their large training dataset completely but only supply a fraction for verification purposes;
 - When initializing voice-assistant apps, user only need to speak a few words instead of the whole dictionary for the app to recognize the voice of user.

 In other words, the generalization ability of the student network is overlookded.

Our work - Formulation

- To boost the generalization ability of the student network, we propose to explore the ground-truth data-generating distribution \mathbb{P} .
- To approach that, we suggest to construct a Wasserstein ball with radius of ϵ that surrounds the distribution \mathbb{P}_N ,

$$\mathcal{B}_{\epsilon}(\mathbb{P}_N) \coloneqq \{ \mathbb{Q} \in \mathcal{M}(\mathcal{X}) : d_W(\mathbb{P}_N, \mathbb{Q}) \le \epsilon \}$$

- where:
 - $\mathcal{M}(\mathcal{X})$ is the set of all possible distributions \mathbb{Q} over \mathcal{X} ,
 - $d_W(\cdot,\cdot)$ is the Wasserstein distance between two probabilistic distributions.
- Since the distribution \mathbb{P} lies in this ball, we suggest to optimize the risk of all possible ground-truth distributions within the $\mathcal{B}_{\epsilon}(\mathbb{P}_N)$.

Our work - Formulation

$$\mathcal{B}_{\epsilon}(\mathbb{P}_N) \coloneqq \{ \mathbb{Q} \in \mathcal{M}(\mathcal{X}) : d_W(\mathbb{P}_N, \mathbb{Q}) \le \epsilon \}$$

- Since the distribution \mathbb{P} lies in this ball, we suggest to optimize the risk of all possible ground-truth distributions within the $\mathcal{B}_{\epsilon}(\mathbb{P}_{N})$.
- This goal equals to improving the worst-case risk of all distributions in $\mathcal{B}_{\epsilon}(\mathbb{P}_N)$, which is equivalent to minimizing

$$\sup_{\mathbb{Q}\in\mathcal{B}_{\epsilon}(\mathbb{P}_{N})} \mathbb{E}[\![\ell(\boldsymbol{x};\mathcal{N}_{\mathcal{S}},\mathcal{N}_{\mathcal{T}})]\!]. (1)$$

Theoretical Analysis

$$\sup_{\mathbb{Q}\in\mathcal{B}_{\epsilon}(\mathbb{P}_{N})}\mathbb{E}[\![\ell(\boldsymbol{x};\mathcal{N}_{\mathcal{S}},\mathcal{N}_{\mathcal{T}})]\!]. (1)$$

It can be shown that an upper bound of Eq.(1) can be bounded by

$$\sup_{\mathbb{Q}\in\mathcal{B}_{\epsilon}(\mathbb{P}_{N})} \mathbb{E}^{\mathbb{Q}}[\![\ell(x)]\!] \leq \frac{1}{N} \sum_{i=1}^{N} \ell(x_{i}) + \epsilon \sup_{x\in\mathcal{X}} ||\nabla_{x}\ell(x)||$$

- if the loss function &:
 - is proper, convex, lower semicontinous, and
 - is \overline{L} Lipchitz continuous on \mathcal{X} .

Theoretical Analysis

$$\sup_{\mathbb{Q}\in\mathcal{B}_{\epsilon}(\mathbb{P}_{N})} \mathbb{E}^{\mathbb{Q}}[\![\ell(x)]\!] \leq \frac{1}{N} \sum_{i=1}^{N} \ell(x_{i}) + \epsilon \sup_{x\in\mathcal{X}} ||\nabla_{x}\ell(x)||$$

 Since calculating supremum can be computationally expensive, this upper bound is approximated by training examples and we adopt a proxy of this value. Finally, our proposed loss function is

$$\mathcal{L}_{W}(\mathcal{N}_{S}) = \frac{1}{N} \sum_{i=1}^{N} l(\boldsymbol{o}_{i}^{S}, \boldsymbol{o}_{i}^{T}) + \epsilon \frac{1}{N} \sum_{i=1}^{N} ||\nabla_{\boldsymbol{x}_{i}} l(\boldsymbol{o}_{i}^{S}, \boldsymbol{o}_{i}^{T})|| (2)$$

P.S. inclusion of the gradient term in Eq. (2) can be explained as training the network with data augmentation by adding noise to the data.

Experiments

Table 2: Classification accuracy with respect to various methods and different number of training examples on CIFAR-10 dataset.

M	Ours	AB	FN	KD
Full	84.66%	82.65%	77.84%	79.72%
1000	82.01%	76.19%	63.84%	77.63%
500	73.08%	66.69%	54.51%	50.63%
100	47.24%	44.7%	29.68%	31.83%
50	41.16%	38.23%	31.65%	28.32%

Table 3: Classification accuracy with respect to various methods and different number of training examples on Fashion-MNIST dataset.

M	Ours	AB	FN	KD
Full	94.72%	92.1%	92.23%	92.1%
1000	91.95%	91.67%	91.53%	90.44%
500	90.46%	90.25%	82.6%	89.45%
100	85.18%	84.09%	81.92%	83.77%
50	81.73%	80.82%	81.40%	78.5%

Thank you.