Inferring repertoire dynamics and using them to identify responsive clones

Maximilian Puelma Touzel and Aleksandra Walczak Laboratoire de Physique Théorique, ENS-PSL Research University, Paris, France

Thierry Mora Laboratoire de Physique Statistique, ENS-PSL Research University, Paris, France,

Abridged: Here, we present a method to infer repertoire dynamics from repertoire-sequenced receptor RNA. We analyze the structure of the model used, justifying the ingredients and apply it to answer questions regarding the repertoire dynamics of yellow fever.

Null model (\mathcal{M}_f) sampling procedure:

 \mathcal{M}_f : $P(n, n', f) \propto P(n|f)P(n'|f' = f)\rho(f)\mathrm{d}f\delta(Z_{f(\mathcal{M}_f)} - 1)$

- \bullet fix N, total number of clones in repertoire
- fix M, total number of cells in sample
- fix ϵ , sampling efficiency (mapping cells to reads, equivalent to specifying an effective number of reads via $N_{\rm reads}^{\rm eff} = \epsilon M$; but since $N_{\rm reads}^{\rm eff}$ will differ from the actual number of reads, I prefer to define ϵ)
- fix remaining parameters: α , a and γ .
- set f_{\min} via normalization, $Z_{f(\mathcal{M}_f)} = 1$ with

$$Z_{f(\mathcal{M}_f)} = \langle \sum_{i=1}^{N} f_i \rangle = N \langle f \rangle_{\mathcal{M}_f} = N \langle f \rangle_{\rho(f)}$$
(1)

- compute P(0,0) from model with which $N_{\text{samp}} = N(1 P(0,0))$
- sample N_{samp} frequencies. In order to be able to sample n and n' independently, sample in the 3 regions of finite counts proportional to their probabilities, e.g. sample $P_{0x}/Z_xN_{\text{samp}}$ frequencies according to $\rho(f|0x) = \rho(f)P(n=0|f)(1-P(n'=0|f))/P_{0x}$ with $P_{0x} = \int \mathrm{d}f \rho(f)P(n=0|f)(1-P(n'=0|f))$ and $Z_x = P_{0x}+P_{x0}+P_{xx}$. Similarly for the two other regions 0x and xx, where x denotes x > 0.

Null model inference procedure:

- get N_{samp} , N_{reads} , N'_{reads} from dataset
- maximize marginal likelihood over $(\alpha, M, a, \gamma, f_{\min})$ subject to constraint that the normalization conditioned on the dataset, \mathcal{D} , $Z_{f(\mathcal{M}_f|\mathcal{D})} = 1$ with

$$Z_{f(\mathcal{M}_f|\mathcal{D})} = \frac{N_{\text{samp}}}{1 - P(0, 0)} P(0, 0) \langle f \rangle_{\rho(f|0, 0)} + \sum_{i=1}^{N_{\text{samp}}} \langle f \rangle_{\rho(f|n_i, n_i')}$$
(2)

Differential expression model $(\mathcal{M}_{f'})$ sampling procedure:

$$\mathcal{M}_{f'}$$
: $P(n, n', f, s) \propto P(n|f) P(n'|f' = fe^s/Z_{f'(\mathcal{M}_{f'})}) \rho(f) df P(s) \delta(Z_{f'(\mathcal{M}_{f'})} - 1) \delta(Z_{f(\mathcal{M}_{f'})} - 1)$

- repeat steps of null model sampling up to the last step (n.b. $Z_{f(\mathcal{M}_{f'})} = Z_{f(\mathcal{M}_f)}$ so step 5 gives us $Z_{f(\mathcal{M}_{f'})} = 1$, however, P(0,0) depends on P(s) here and can therefore give a different N_{samp}).
- Note that, unlike $\langle f \rangle_{\mathcal{M}_f}$, $\langle f e^s \rangle_{\mathcal{M}_{f'}}$ diverges. We thus normalize instead on a realized repertoire. Sample f and s from $\rho(f)$ and P(s) respectively N times.
- renormalize by $Z = \left(\sum_{i=1}^N f_i e^{s_i}\right) / \left(\sum_{i=1}^N f_i\right)$ so $f_i' = f_i e^{s_i}/Z$
- sample $P(n_i|f_i)$ and $P(n_i'|f_i')$ and discard clones with n+n'=0.

Differential expression inference procedure:

- get N_{samp} , N_{reads} , N'_{reads} from dataset
- use parameters from null inference (n.b. doesn't satisfy the $Z_{f(\mathcal{M}_{f'}|\mathcal{D})} = 1$ constraint).
- maximize marginal likelihood over parameters of P(s), e.g. \bar{s} , subject to constraint, $Z_{f'(\mathcal{M}_{f'}|\mathcal{D})} = Z_{f(\mathcal{M}_{f'}|\mathcal{D})}$, with

$$Z_{f'(\mathcal{M}_{f'}|\mathcal{D})} = \frac{N_{\text{samp}}}{1 - P(0,0)} P(0,0) \langle f e^s \rangle_{\rho(f,s|0,0)} + \sum_{i=1}^{N_{\text{samp}}} \langle f e^s \rangle_{\rho(f,s|n_i,n_i')}$$
(3)

which we satisfy by adding a shift, s_0 , to P(s). This is achieved with a recursive shift-finding procedure.