Econometrics 1 Applied Econometrics with R

Lecture 7: Linear Regression

黄嘉平

中国经济特区研究中心 讲师

办公室: 文科楼2613

E-mail: huangjp@szu.edu.cn

Tel: (0755) 2695 0548

Website: https://huangjp.com

Econometrics is the *science* and *art* of using economic theory and statistical techniques to analyze economic data.

Typical questions considered by econometricians

- Does reducing class size improve elementary school education?
- Is there racial discrimination in the market for home loans?
- How much do cigarette taxes reduce smoking?
- What will the rate of inflation be next year?

Linear regression with one regressor

Linear relationship between X and Y

- A school district cuts the size of its elementary school classes. What is the effect on its students' test score.
- This question is about the unknown effect of changing one variable, X (class size), on another variable, Y (student test score)
- Linear regression (with one regressor) is a model investigating the linear relationship between X and Y.

Class size and test score

Relative change, or the effect of changing X on Y:

$$eta_{ClassSize} = rac{change\ in\ TestScore}{change\ in\ ClassSize} = rac{\Delta TestScore}{\Delta ClassSize}$$

$$\Delta TestScore = \beta_{ClassSize} \times \Delta ClassSize$$

This is the definition of the slope of a straight line relating test scores and class size:

$$TestScore = \beta_0 + \beta_{ClassSize} \times ClassSize$$

Incorporating other factors

 This relation may not hold for all districts. Therefore we must incorporate other factors influencing test scores.

$$TestScore = \beta_0 + \beta_{ClassSize} \times ClassSize + \text{other factors}$$

 In a more general expression, ClassSize becomes X, and TestScore becomes Y.

The linear regression model

The linear regression model with one regressor

independent variable / regressor

The linear regression model

The linear regression model with one regressor

$$Y_i = \beta_0 + \beta_1 X_i + u_i$$

population regression line / population regression function

FIGURE 4.1

Scatterplot of Test Score vs. Student--Teacher Ratio (Hypothetical Data)

The scatterplot shows hypothetical observations for seven school districts. The population regression line is $\beta_0 + \beta_1 X$. The vertical distance from the i^{th} point to the population regression line is $Y_i - (\beta_0 + \beta_1 X_i)$, which is the population error term v_i for the i^{th} observation.

A test score data in California

- · The file caschool.xlsx
- The California Standardized Testing and Reporting (STAR) dataset (1998-1999).
- Average test scores on 420 districts in California.
- · For details, see californiatestscores.docx

- "testscr": the average test score (of reading and math)
- "str": the student-teacher ratio (No. of student / No. of teachers)

Estimating the coefficients

- \overline{Y} is an estimator of the population mean.
- Similarly, we need estimators of the coefficients β_0 and β_1 .
- The ordinary least squares (OLS) estimators $\hat{\beta}_0$ and $\hat{\beta}_1$ are the ones that minimize

$$\sum_{i=1}^{n} (Y_i - b_0 - b_1 X_i)^2$$

How to determine the sample regression line $\hat{\beta}_0 + \hat{\beta}_1 X$?

Practice

- Import data from caschool.xlsx
- Take str as the independent variable (X) and testscr as the dependent variable (Y). Draw the histograms and the scatter plot.
- Calculate the OLS estimators $\hat{\beta}_0$ and $\hat{\beta}_1$ using local grid search.
 - 1. Specify a set of possible values for (b_0, b_1)
 - 2. For each possible (b_0, b_1) , compare $\sum_{i=1}^{\infty} (Y_i b_0 b_1 X_i)^2$

The OLS estimator, predicted values, and residuals

The OLS estimators of the slope and the intercept are

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (X_i - \overline{X})(Y_i - \overline{Y})}{\sum_{i=1}^n (X_i - \overline{X})^2} = \frac{s_{XY}}{s_X^2}$$

$$\hat{\beta}_0 = \overline{Y} - \hat{\beta}_1 \overline{X}$$

- The OLS predicted value: $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$
- The residuals: $\hat{u}_i = Y_i \hat{Y}_i$ sample regression line/ sample regression function

Why use the OLS estimator

- OLS is the dominating method used in practice.
- Under certain assumptions, the OLS estimator is unbiased and consistent.
- With some further assumptions, the OLS estimator is also efficient among a class of unbiased estimators.

For the definitions of unbiasedness, consistency, and efficiency, read Chapter 3.

A measure of fit

- The R^2 correlation of determination, the fraction of the sample variance of Y_i explained by X_i .
- Recall that $Y_i = \hat{Y}_i + \hat{u}_i$

$$R^2 = \frac{\sum_{i=1}^n (Y_i - \overline{Y})^2}{\sum_{i=1}^n (Y_i - \overline{Y})^2} = \frac{ESS}{TSS} \quad \text{(explained sum of squares)}$$

$$= 1 - \frac{\sum_{i=1}^n \hat{u}_i^2}{\sum_{i=1}^n (Y_i - \overline{Y})^2} = 1 - \frac{SSR}{TSS} \quad \text{(sum of squared residuals)}$$

Read Appendix 4.3 if you want to know why the second equality holds.

A graphical explanation of SSR

How to read R²

- R² measures how well the OLS regression line fits the data.
- The value of R^2 ranges between 0 and 1. A high R^2 indicates that the regressor (X_i) is good at predicting Y_i , while a low R^2 indicates that the regressor (X_i) is not very good at predicting Y_i .
- A low R^2 does **not** imply that *this regression* is either "good" or "bad", it **does** tell us that other important factors influence the dependent variable.

Practice

- Use the formula to recalculate the OLS estimates of coefficients in testscr and str regression model.
- Use the formula to calculate the R² of this model, and give an explanation of your result.

The least squares assumptions

For the linear regression model

$$Y_i = \beta_0 + \beta_1 X_i + u_i, \quad i = 1, \dots, n$$

it is assumed that:

1. The error term u_i has conditional mean zero given X_i :

$$E(u_i \mid X_i) = 0 \qquad (\Rightarrow \operatorname{corr}(X_i, u_i) = 0)$$

- 2. (X_i, Y_i) , i = 1, ..., n, are i.i.d. draws from their joint distribution; and
- 3. Large outliers are unlikely: X_i and Y_i have nonzero finite fourth moments.

Implication of $E(u_i \mid X_i) = 0$

Linear regression is sensitive to outliers

References

1. Stock, J. H. and Watson, M. M., *Introduction to Econometrics*, 3rd Edition, Pearson, 2012.