Informed search algorithms

From AIMA Slides

Outline

- · Best-first search
- Greedy best-first search
- A* search
- · Heuristics
- · Local search algorithms
- · Hill-climbing search
- Simulated annealing search
- · Local beam search
- · Genetic algorithms

Best-first search

- Idea: use an evaluation function f(n) for each node
 - estimate of "desirability"
 - → Expand most desirable unexpanded node
- Implementation:

Order the nodes in fringe in decreasing order of desirability

- Special cases:
 - greedy best-first searchA* search

Greedy best-first search

- Evaluation function f(n) = h(n) (heuristic)
- = estimate of cost from *n* to *goal*
- e.g., $h_{SLD}(n)$ = straight-line distance from nto Bucharest
- Greedy best-first search expands the node that appears to be closest to goal

Greedy best-first search example

Greedy best-first search example

Greedy best-first search example

Greedy best-first search example

Properties of greedy best-first search

- Complete? No can get stuck in loops,
 e.g., lasi → Neamt → lasi → Neamt →
- <u>Time?</u> $O(b^m)$, but a good heuristic can give dramatic improvement
- Space? O(b^m) -- keeps all nodes in memory
- Optimal? No

A* search

- Idea: avoid expanding paths that are already expensive
- Evaluation function f(n) = g(n) + h(n)
- $g(n) = \cos t$ so far to reach n
- h(n) = estimated cost from n to goal
- f(n) = estimated total cost of path through n to goal

A* search example

Admissible heuristics

- A heuristic h(n) is admissible if for every node n, h(n) ≤ h^{*}(n), where h^{*}(n) is the true cost to reach the goal state from n.
- An admissible heuristic never overestimates the cost to reach the goal, i.e., it is optimistic
- Example: $h_{SLD}(n)$ (never overestimates the actual road distance)
- Theorem: If *h(n)* is admissible, A• using TREE-SEARCH is optimal

Optimality of A* (proof)

 Suppose some suboptimal goal G₂ has been generated and is in the fringe. Let n be an unexpanded node in the fringe such that n is on a shortest path to an optimal goal G.

- $f(G_2) = g(G_2)$
- g(G₂) > g(G)
- since $h(G_2) = 0$ since G_2 is suboptimal
- f(G) = g(G)
- since h(G) = 0
- f(G₂) > f(G)
- from above

Optimality of A* (proof)

 Suppose some suboptimal goal G₂ has been generated and is in the fringe. Let n be an unexpanded node in the fringe such that n is on a shortest path to an optimal goal G.

- $f(G_2) > f(G)$ from above
- h(n) ≤ h*(n) since h is admissible
- $g(n) + h(n) \le g(n) + h(n)$
- $f(n) \le f(G)$

Hence $f(G_2) > f(n)$, and A* will never select G_2 for expansion

Consistent heuristics

A heuristic is consistent if for every node n, every successor n' of n generated by any action a,

$$h(n) \leq c(n,a,n') + h(n')$$

- If h is consistent, we have
- f(n') = g(n') + h(n')
 - = g(n) + c(n,a,n') + h(n')
 - $\geq g(n) + h(n)$
 - = f(n)
- i.e., f(n) is non-decreasing along any path.
- Theorem: If h(n) is consistent, A* using GRAPH-SEARCH is optimal

Optimality of A*

- A* expands nodes in order of increasing f value
- · Gradually adds "f-contours" of nodes
- Contour *i* has all nodes with $f=f_i$, where $f_i < f_{i+1}$

Properties of A*

- <u>Complete?</u> Yes (unless there are infinitely many nodes with f ≤ *f*(*G*))
- Time? Exponential
- Space? Keeps all nodes in memory
- · Optimal? Yes

Admissible heuristics

E.g., for the 8-puzzle:

- $h_1(n)$ = number of misplaced tiles
- $h_2(n)$ = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

• $h_1(S) = ?$

• $h_2(S) = ?$

Admissible heuristics

E.g., for the 8-puzzle:

- $h_1(n)$ = number of misplaced tiles
- $h_2(n)$ = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

- $h_1(S) = ?8$
- $h_2(S) = ? 3+1+2+2+3+3+2 = 18$

Dominance

- If $h_2(n) \ge h_1(n)$ for all n (both admissible)
- then h_2 dominates h_1
- h₂ is better for search
- Typical search costs (average number of nodes expanded):
- d=12 IDS = 3,644,035 nodes A·(h₁) = 227 nodes A·(h₂) = 73 nodes
- d=24 IDS = too many nodes A*(h₁) = 39,135 nodes $A^*(h_2) = 1,641 \text{ nodes}$

Relaxed problems

- A problem with fewer restrictions on the actions is called a relaxed problem
- The cost of an optimal solution to a relaxed problem is an admissible heuristic for the original problem
- If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then $h_1(n)$ gives the shortest solution
- If the rules are relaxed so that a tile can move to any adjacent square, then $h_2(n)$ gives the shortest solution

Local search algorithms

- In many optimization problems, the path to the goal is irrelevant; the goal state itself is the solution
- State space = set of "complete" configurations
- Find configuration satisfying constraints, e.g., n-
- In such cases, we can use local search algorithms
- keep a single "current" state, try to improve it

Example: *n*-queens

• Put n queens on an $n \times n$ board with no two queens on the same row, column, or diagonal

Hill-climbing search

- "Absent-minded blind man climbs a hill"
- Will he reach the highest peak?

function HILL-CLIMBING(problem) returns a state that is a local maximum inputs: problem, a problem

local variables: current, a node neighbor, a node $current \leftarrow Make-Node(Initial-State[problem])$

loop do $neighbor \leftarrow$ a highest-valued successor of current

if Value[neighbor] \leq Value[current] then return State[current] current \leftarrow neighbor

Hill-climbing search

 Problem: depending on initial state, can get stuck in local maxima

Hill-climbing search: 8-queens problem

- h = number of pairs of queens that are attacking each other, either directly or indirectly
- h = 17 for the above state

Hill-climbing search: 8-queens problem

• A local minimum with h = 1

Simulated annealing search

 Idea: escape local maxima by allowing some "bad" moves but gradually decrease their frequency

function Simulated-Annealing(problem, schedule) returns a solution state inputs: problem, a problem a schedule, a mapping from time to "temperature" local variables: current, a node next, a node

T, a "temperature" controlling prob. of downward steps current ← MAKE-Node([NITIAL-STATE[problem]) for t← 1 to ∞ do

T← schedule[f]

if T = 0 then return current next ← a nadomly selected successor of current

ΔE← VALUE[next] − VALUE[current]

if ΔE > 0 then current ← next else current ← next ← next only with probability e ΔE/T else current ← next only with probability e ΔE/T

Properties of simulated annealing search

- One can prove: If T decreases slowly enough, then simulated annealing search will find a global optimum with probability approaching 1
- Widely used in VLSI layout, airline scheduling, etc.

Local beam search

- Keep track of k states rather than just one
- Start with k randomly generated states
- At each iteration, all the successors of all k states are generated
- If any one is a goal state, stop; else select the k
 best successors from the complete list and
 repeat.

Genetic algorithms

- A successor state is generated by combining two parent states
- Start with *k* randomly generated states (population)
- A state is represented as a string over a finite alphabet (often a string of 0s and 1s)
- Evaluation function (fitness function). Higher values for better states.
- Produce the next generation of states by selection, crossover, and mutation

Genetic algorithms

- Fitness function: number of non-attacking pairs of queens (min = 0, max = 8 × 7/2 = 28)
- 24/(24+23+20+11) = 31%
- 23/(24+23+20+11) = 29% etc

Genetic algorithms

