Лабораторная работа №9

- 1). Реализовать алгоритмы построения побуквенных статических кодов Шеннона и Фано.
- 2). Построить коды Шеннона и Фано для текста на русском языке, использовать файл не менее 1 Кбайта. Вывести на экран полученные кодовые таблицы в виде:

Символ	Вероятность	Кодовое слово	Длина кодового
	символа		слова

3). Сравнить средние длины кодового слова с энтропией исходного файла, определить избыточность построенных статических кодов, построить таблицу вида:

Энтропия	Средняя длина кодового		Избыточность кода	
исходного	слова			
текста	Код	Код	Код	Код
	Шеннона	Фано	Шеннона	Фано

4). Дополнительное задание (на 5+):

Построить кодовые деревья для кодов Шеннона и Фано.

5). Дополнительное задание (на 5+):

Реализовать побитовую запись кодовых слов в файл и декодирование для построенных статических кодов.

Лабораторная работа №10

- 1). Реализовать алгоритмы построения оптимального кода Хаффмана и алфавитного кода Гилберта-Мура.
- 2). Построить коды Хаффмана и Гилберта-Мура для текста на русском языке, использовать файл не менее 1 Кбайта. Вывести на экран полученные кодовые таблицы в виде:

Символ	Вероятность	Кодовое слово	Длина кодового
	символа		слова

3). Сравнить средние длины кодового слова с энтропией исходного файла, определить избыточность построенных статических кодов, построить таблицу вида:

Энтропия	Средняя длина кодового		Избыточность кода	
исходного	слова			
текста	Код	Код	Код	Код
	Хаффмана	Гилберта-	Хаффмана	Гилберта-
		Mypa		Mypa

4). Дополнительное задание (на 5+):

Построить кодовые деревья для кодов Хаффмана и Гилберта-Мура.

5). Дополнительное задание (на 5+):

Реализовать побитовую запись кодовых слов в файл и декодирование для построенных статических кодов.

Лабораторная работа №11

- 1). Реализовать алгоритм арифметического кодирования.
- 2). Закодировать арифметическим кодом текст на русском языке, использовать файл не менее 1 Кбайта. Экспериментально определить максимальный размер блока, при котором не происходит потеря точности вычислений.
- 3). Вывести на экран процесс сужения интервала и кодовое слово каждого блока в десятичном и двоичном виде.
- 4). Оценить коэффициент сжатия данных как процентное отношение длины закодированного файла к длине исходного файла.
- 5). Определить зависимость коэффициента сжатия данных от длины блока при арифметическом кодировании.
- 6). Дополнительное задание (на 5+):

Декодировать файл, закодированный арифметическим кодом, и сравнить полученный файл с исходным текстом на русском языке.

Лабораторная работа №12

1). Реализовать построение таблиц кодовых слов для рассмотренных кодов целых чисел: кода класса Fixed+Variable и кодов класса Variable +Variable (гамма-кода Элиаса и омега-кода Элиаса).

11		Кодовое слово	
Число	Fixed+Variable	ү-код Элиаса	ω-код Элиаса
0			
1			
2			
•••			

Дополнительное задание (на 5+):

2). Реализовать кодирование методом длин серий.

Создать файл (не менее 1 Кбайта), содержащий последовательность из нулей и единиц, чтобы вероятность P(0) >> P(1).

Сравнить степень сжатии этого файла методом длин серий при использовании трех кодов целых чисел (Fixed+Variable, γ -код Элиаса, ω -код Элиаса).

Коэффициент сжатия определять как процентное отношение длины закодированного файла к длине исходного файла.

Размер файла	Коэффициент сжатия файла		
	Fixed+Variable	ү-код Элиаса	ω-код Элиаса

Лабораторная работа №13

- 1). Закодировать текст на русском языке (использовать файл не менее 1 Кбайта) с помощью адаптивного кода Хаффмана, кода «Стопка книг», интервального кода и частотного кода.
- 2). Вычислить коэффициенты сжатия данных как процентное отношение длины закодированного файла к длине исходного файла.
- 3). Сравнить полученные коэффициенты сжатия данных, построить таблицу вида:

Размер	Коэффициент сжатия данных			
исходного файла			Частотный код	

4). Дополнительное задание (на 5+):

Декодировать файлы, закодированные адаптивными кодами, и сравнить полученные файлы с исходными текстами.

Лабораторная работа №14

- 1). Закодировать словарным кодом с использованием адаптивного словаря текст на английском языке, текст на русском языке и текст программы на языке С (использовать файлы не менее 1 Кбайта).
- 2). Вычислить коэффициенты сжатия данных как процентное отношение длины закодированного файла к длине исходного файла, построить таблицу вида:

Размер	Коэффициент сжатия данных		
исходного файла	Текст на английском языке	Текст на русском языке	Текст программы на языке С

3). Дополнительное задание (на 5+):

Декодировать файлы, закодированные словарным кодом, и сравнить полученные файлы с исходными текстами.