MATH 8851 Homework 1

James Harbour

February 2, 2023

Problem 1

Prove the Schreier Subgroup Lemma (the statement is recalled below) without the extra assumption $1 \in T$. **Note:** You just need to slightly adjust the proof from class (where we assumed that $1 \in T$).

Proof. Let $H \leq G$, $S \subseteq G$ a generating set for G, and $T \subseteq G$ a right transversal for H inside G. Set

$$U = U(S,T) = \{ts \cdot \overline{ts}^{-1} : s \in S, t \in T\}.$$

For $s \in S, t \in T$, we have that

$$Hts = H\overline{ts} \implies Hts \cdot \overline{ts}^{-1} = H \implies ts \cdot \overline{ts}^{-1} \in H$$

so $U \subseteq H$ whence $\langle U \rangle \subseteq H$. Thus, it suffices to show the reverse inclusion. First, let $t = \overline{1} \in T \cap H$. Then Choose s_1

Choose $s_1, \ldots, s_n \in S \cup S^{-1}$ such that $t = \prod_{i=1}^n s_i$, and set $t_k := \overline{\prod_{i=1}^k s_i}$, $t_0 = t$. Then we have

$$t = t_0^{-1} \left(\prod_{i=0}^{n-1} t_i s_{i+1} t_{i+1}^{-1} \right) t_n = t^{-1} \left(\prod_{i=0}^{n-1} t_i s_{i+1} t_{i+1}^{-1} \right) t_n \implies t = \prod_{i=0}^{n-1} t_i s_{i+1} t_{i+1}^{-1}$$

Problem 2

Let F = F(X) for some set X and H a subgroup of F. Prove that H always has a Schreier transversal in F (with respect to X) in two different ways as follows:

- (a) Using Zorn's lemma
- (b) Using suitable total order on F.

Hint for (b): Choose an arbitrary total order on $X \sqcup X^{-1}$ and consider the corresponding lexicographical order on F: given two elements $f \neq f' \in F$, put f < f' if one of the following holds:

- (i) l(f) < l(f'), where $l(\cdot)$ is the word length
- (ii) l(f) = l(f'), and if f and f' first differ in k^{th} position, then the k^{th} symbol in f is smaller than the k^{th} symbol in f'.

Then form a transversal by choosing the smallest element in each right coset of H.

$$\mathscr{S} = \{T \subseteq F : T \text{ is a Schreier subset}, \ Ht \neq Ht' \ \forall t \neq t' \text{ in } T\}$$

ordered by inclusion. This poset is nonempty as it contains $\{1\}$. Consider any linear chain $(T_{\alpha})_{\alpha \in I}$ in \mathscr{S} and set $T = \bigcup_{\alpha \in I} T_{\alpha}$. Suppose $t_1, t_2 \in T$ have $t_1 \neq t_2$. By linearity of the chain, we may choose an $\alpha \in I$ such that $t_1, t_2 \in T_{\alpha}$ whence by assumption, $Ht_1 \neq Ht_2$. Now, suppose that w is a reduced word in T. Again by linearity, there exists some $\alpha \in I$ such that all of the symbols from T appearing in the reduced word decomposition for w actually lie inside T_{α} . Since T_{α} is Schreier, every initial segment of w also lies in T_{α} and thus T. So, $T \in \mathscr{S}$ is an upper bound for the chain inside \mathscr{S} .

By Zorn's lemma, there exists a maximal element T of \mathscr{S} . We claim that T is a right transversal for H. To this end, suppose for the sake of contradiction that T is not a right transversal for H. Then there is some $x \in F$ such that $Hx \neq Ht$ for all $t \in T$.

Consider the set S consisting of all initial segments of reduced words in $T \sqcup \{x\}$. By construction, $S \supseteq T$ is a Schreier subset of F. We claim that S is in fact an element of T.

Proof(b).

Problem 3

Let F = F(x, y) be the free group on two generators. Consider the following two subgroups of F:

- (a) H = [F, F], the commutator subgroup of F
- (b) $H = \ker \pi$ where π is the epimorphism from F onto S_3 (symmetric group on 3 letters) which sends x to (12) and y to (23).

For each of these subgroups do the following:

- (i) Find a Schreier transversal T for H (with respect to $X = \{x, y\}$).
- (ii) Draw the Schreier graph $Sch(H \setminus F, X)$ and the maximal tree \mathcal{T} in $Sch(H \setminus F, X)$ corresponding to T (we will define the natural bijection between the Schreier transversals and maximal trees in class on Monday, Jan 29)
- (iii) Use the strong Nielsen-Schreier Theorem (the statement is recalled below) to find a free generating set for H.

Problem 4

Prove the Schreier index formula: If F is a free group of finite rank and H a subgroup of F of finite index, then

$$\mathrm{rk}(H) - 1 = (\mathrm{rk}(F) - 1) \cdot [F : H].$$

Hint: Count the number of vertices and edges in the Schreier graph $Sch(H \setminus F, X)$ and use the fact that $H \cong \pi_1(Sch(H \setminus F, X))$.

Proof. Let $X = \{x_1, \dots, x_n\}$ be a free generating set for F and assume without loss of generality that F = F(X).

Problem 5

Use the Schreier Subgroup lemma to find a generating set with 2 elements for the alternating group A_n .

Solution. Consider the generating set $S = \{(12), (12 \cdots n)\}$ for S_n . The set $T = \{e, (12)\}$ is a right transversal for A_n inside S_n . Note that then, for a given permuation $\sigma \in S_n$,

$$\overline{\sigma} = \begin{cases} e & \sigma \text{ is even} \\ (12) & \sigma \text{ is odd.} \end{cases}$$

If n is odd, then U(S,T) consists of

$$e(12)\overline{e(12)}^{-1} = e$$

$$(12)(12)\overline{(12)(12)}^{-1} = e$$

$$e(12 \cdots n)\overline{e(12 \cdots n)}^{-1} = (12 \cdots n)$$

$$(12)(12 \cdots n)\overline{(12)(12 \cdots n)}^{-1} = (12)(12 \cdots n)(12).$$

If n is even, then U(S,T) consists of

$$e(12)\overline{e(12)}^{-1} = e$$

$$(12)(12)\overline{(12)(12)}^{-1} = e$$

$$e(12\cdots n)\overline{e(12\cdots n)}^{-1} = (12\cdots n)(12)$$

$$(12)(12\cdots n)\overline{(12)(12\cdots n)}^{-1} = (12)(12\cdots n).$$

Thus, Schreier Subgroup lemma produces the following 2-element generating sets for A_n

$$U(S,T) = \begin{cases} \{(12\cdots n), (12)(12\cdots n)(12)\} & n \text{ is odd} \\ \{(12\cdots n)(12), (12)(12\cdots n)\} & n \text{ is even} \end{cases}$$

Lemma 1 (Schreier Subgroup Lemma). Let G be a group, H a subgroup of G, S a generating set for G and T a right transversal for H in G. Then H is generated by the set

$$U = U(S,T) = \{ts \cdot \overline{ts}^{-1} : s \in S, t \in T\}$$

where \overline{g} is the unique element of T such that $H\overline{g} = Hg$.

Theorem 1 (Strong Nielsen-Schreier Theorem). Let H a subgroup of F(X), and let T be a (right) Schreier transversal for H (with respect to X). For every $x \in X$ and $t \in T$ let $h_{x,t} = xt \cdot \overline{xt}^{-1}$. Let

$$I = \{(x, t) \in X \times T : h_{x,t} \neq 1\}.$$

Then the elements $\{h_{x,t}: (x,t) \in I\}$ are all distinct and form a free generating set for H.