

<u>ABSTRACT</u>

ADAMANTYL ACETAMIDES AS 11-BETA HYDROXYSTEROID DEHYDROGENASE INHIBITORS

$$Q \xrightarrow{R^1} O \xrightarrow{N} (L)_m \xrightarrow{R^3} (I)$$

the *N*-oxide forms, the pharmaceutically acceptable addition salts and the stereochemically isomeric forms thereof, wherein n represents an integer being 1 or 2; R¹ and R² each independently represents hydrogen C₁₋₄alkyl, NR⁹R¹⁰, C₁₋₄alkyloxy; or R¹ and R² taken together with the carbon atom with which they are attached form a C₃₋₆cycloalkyl; and where n is 2, either R¹ or R² may be absent to form an unsaturated bond; R³ represents a C₆₋₁₂cycloalkyl, preferably selected from cylo-octanyl and cyclohexyl or R³ represents a monovalent radical having one of the following formulae

wherein said C_{6-12} cycloalkyl or monovalent radical may optionally be substituted with one, or where possible two, three or more substituents selected from the group consisting of C_{1-4} alkyl, C_{1-4} alkyloxy, halo or hydroxy; Q represents Het¹ or Ar² wherein said C_{3-8} cycloalkyl, Het¹ or Ar² are optionally substituted with one or where possible two or more substituents selected from halo, C_{1-4} alkyl, C_{1-4} alkyloxy, hydroxy, nitro, NR^5R^6 , C_{1-4} alkyloxy substituted with one or where possible two, three or more substituents each independently selected from hydroxycarbonyl, Het² and NR^7R^8 , and C_{1-4} alkyl substituted with one or where possible two or three halo substituents, preferably trifluoromethyl; R^5 and R^6 each independently represent hydrogen, C_{1-4} alkyl, or C_{1-4} alkyl substituted with phenyl; R^7 and R^8 each independently represent hydrogen or C_{1-4} alkyl; R^9 and R^{10} each independently represent hydrogen, C_{1-4} alkyl or C_{1-4} alkyloxycarbonyl; C_{1-4} alkyl; C_{1-4}

5

10

15

20

25

30