Enterprise Knowledge Graph & AI-Driven Data Fusion for Cybersecurity & Portfolio Optimization

By Atsu Vovori

Abstract

The purpose of this article is to propose the Unified Data Integration & AI-Augmented Insights Framework (UDI-AIIF) as a comprehensive approach to consolidating and analyzing multi-source datasets for cybersecurity intelligence and portfolio optimization. By integrating structured and unstructured data, this framework enables efficient preprocessing, feature engineering, and vector indexing using FAISS. It incorporates AI-driven retrieval-augmented generation (RAG) pipelines and machine learning (ML) models to enhance cybersecurity threat detection and investment risk mitigation. Through simulation-based fine-tuning and self-learning feedback loops, UDI-AIIF optimizes decision-making, providing enterprises with a robust, adaptive system for proactive cybersecurity monitoring and financial strategy refinement

Introduction

In an era where cybersecurity threats and financial risks are increasingly complex, organizations require advanced frameworks to process vast amounts of data efficiently. The Unified Data Integration & AI-Augmented Insights Framework (UDI-AIIF) addresses this need by integrating AI-driven data fusion techniques with machine learning and retrieval-augmented generation (RAG) pipelines. By leveraging multi-source data aggregation, feature engineering, and vector indexing, the framework enhances cybersecurity intelligence and portfolio strategy optimization. This article explores the core components of UDI-AIIF, highlighting its role in strengthening anomaly detection, fraud prevention, and risk assessment through AI-enhanced analytics.

Process Name:

Unified Data Integration & AI-Augmented Insights Framework (UDI-AIIF)

Description:

The Unified Data Integration & AI-Augmented Insights Framework (UDI-AIIF) is a structured pipeline designed to consolidate, preprocess, and leverage multi-source datasets for advanced analytics and simulation-based fine-tuning of machine learning (ML) models, Large Language Models (LLMs), and Retrieval-Augmented Generation (RAG) pipelines. This framework enhances cybersecurity intelligence and stock portfolio strategy optimization through a cohesive data integration process.

The framework consists of the following core stages:

1. Multi-Source Data Aggregation:

- o Ingestion of structured and unstructured datasets, including:
 - Query datasets (real-time and batch retrieval)
 - Historical transaction datasets (financial & cybersecurity events)
 - Knowledge base datasets (curated domain expertise and incident records)
- o Synchronization with corresponding FAISS vector databases and indexes to enable high-speed similarity search.

2. Data Normalization & Feature Engineering:

- o Standardizing, cleansing, and encoding raw data to create high-quality feature sets.
- o Augmenting data using embeddings, metadata tagging, and knowledge graph mapping.

3. FAISS Vector Indexing & RAG Implementation:

- o Efficient vector indexing for similarity search and retrieval-augmented generation (RAG) pipelines.
- Dynamic integration of AI-driven summarization and retrieval mechanisms for cybersecurity threat detection and stock strategy insights.

4. AI-Driven Simulation & Fine-Tuning:

- o Leveraging historical patterns, real-time analytics, and synthetic data generation for training fine-tuned ML/LLM models.
- o Implementing self-learning feedback loops to refine model performance over time.

5. Integrated Insights & Decision Optimization:

- o Aggregating outputs from ML models, LLMs, and RAG pipelines into the initial database.
- o Enhancing decision-making through AI-assisted fraud detection, anomaly detection, and investment risk optimization.

Conclusion

The UDI-AIIF framework presents a transformative approach to cybersecurity intelligence and portfolio optimization by unifying data integration with AI-driven analytics. Through structured data aggregation, vector-based retrieval, and simulation-enhanced model fine-tuning, the framework ensures precise threat detection and informed investment decisions. By continuously refining AI models using real-time insights and feedback mechanisms, UDI-AIIF adapts to evolving risks, making it a critical tool for enterprises seeking proactive security measures and optimized financial strategies. As AI and data-driven methodologies advance, frameworks like UDI-AIIF will be essential in navigating the complexities of cybersecurity and financial markets.

Unified Data Integration & Al-Augmented Insights Framework (UDI-AIIF)

Atsu Vovor: Consultant, Data & Analytics Specialist | Machine Learning | Data science | Quantitative Analysis | French & English Bilingual | atsu.vovor@bell.net | https://github.com/atsuvovor/Pub_Data_Analytics_Project | https://public.tableau.com/app/profile/atsu.vovor8645/vizzes