Uncertainty

Chapter 13

Read Ch 13!

- * If you haven't already, do it by Friday...
- * Understanding Bayes Nets and DBNs requires intuitive understanding of some basic probability concepts

Uncertainty

- * Until now....propositions are T, F, or unknown
- * Real environments are not so certain
 - * partially observable
 - * noisy sensors
 - * unexpected events in dynamic environments

Example

Let action A_t = leave for airport t minutes before flight Will A_t get me there on time?

Example

Let action A_t = leave for airport t minutes before flight Will A_t get me there on time?

Problems:

- 1) partial observability (road state, other drivers' plans, etc.)
- 2) noisy sensors (KCBS traffic reports)
- 3) uncertainty in action outcomes (flat tire, etc.)
- 4) immense complexity of modelling and predicting traffic

Example

Let action A_t = leave for airport t minutes before flight Will A_t get me there on time?

Problems:

- 1) partial observability (road state, other drivers' plans, etc.)
- 2) noisy sensors (KCBS traffic reports)
- 3) uncertainty in action outcomes (flat tire, etc.)
- 4) immense complexity of modelling and predicting traffic

Hence a purely logical approach either

- 1) risks falsehood: " A_{25} will get me there on time"
- or 2) leads to conclusions that are too weak for decision making:

" A_{25} will get me there on time if there's no accident on the bridge and it doesn't rain and my tires remain intact etc etc."

 $(A_{1440}$ might reasonably be said to get me there on time but I'd have to stay overnight in the airport . . .)

Probability

- * Instead of absolute statements, use probability to summarize uncertainty
- * Probabilities relate to the degree that an agent believes a statement to be true $P(A_{25}|_{\text{no reported accidents}}) = 0.06$

Probability

- * Instead of absolute statements, use probability to summarize uncertainty
- * Probabilities relate to the degree that an agent believes a statement to be true $P(A_{25}|_{\text{no reported accidents}}) = 0.06$
- The probability changes with new information (evidence)

 $P(A_{25}|\text{no reported accidents}, 5 a.m.) = 0.15$

Decisions with Uncertainty

* Which action should I choose with the following beliefs

```
P(A_{25} 	ext{ gets me there on time}|...) = 0.04

P(A_{90} 	ext{ gets me there on time}|...) = 0.70

P(A_{120} 	ext{ gets me there on time}|...) = 0.95

P(A_{1440} 	ext{ gets me there on time}|...) = 0.9999
```

Depends on preferences,
 willingness to take risk

Probability Basics

Begin with a set Ω —the sample space e.g., 6 possible rolls of a die. $\omega \in \Omega$ is a sample point/possible world/atomic event

Probability Basics

Begin with a set Ω —the sample space e.g., 6 possible rolls of a die. $\omega \in \Omega$ is a sample point/possible world/atomic event

A probability space or probability model is a sample space with an assignment $P(\omega)$ for every $\omega \in \Omega$ s.t.

$$0 \le P(\omega) \le 1 \\ \Sigma_\omega P(\omega) = 1 \\ \text{e.g., } P(1) = P(2) = P(3) = P(4) = P(5) = P(6) = 1/6.$$

Probability Basics

Begin with a set Ω —the sample space e.g., 6 possible rolls of a die. $\omega \in \Omega$ is a sample point/possible world/atomic event

A probability space or probability model is a sample space with an assignment $P(\omega)$ for every $\omega \in \Omega$ s.t.

$$0 \leq P(\omega) \leq 1 \\ \Sigma_{\omega}P(\omega) = 1 \\ \text{e.g., } P(1) = P(2) = P(3) = P(4) = P(5) = P(6) = 1/6.$$

An event A is any subset of Ω

$$P(A) = \sum_{\{\omega \in A\}} P(\omega)$$

E.g.,
$$P(\text{die roll} < 4) = P(1) + P(2) + P(3) = 1/6 + 1/6 + 1/6 = 1/2$$

Propositions

Think of a proposition as the event (set of sample points) where the proposition is true

Propositions

Think of a proposition as the event (set of sample points) where the proposition is true

```
Given Boolean random variables A and B: event a= set of sample points where A(\omega)=true event \neg a= set of sample points where A(\omega)=false event a \wedge b= points where A(\omega)=true and B(\omega)=true
```

Propositions

Think of a proposition as the event (set of sample points) where the proposition is true

Given Boolean random variables A and B:

```
event a= set of sample points where A(\omega)=true event \neg a= set of sample points where A(\omega)=false event a \wedge b= points where A(\omega)=true and B(\omega)=true
```

Often in Al applications, the sample points are defined by the values of a set of random variables, i.e., the sample space is the Cartesian product of the ranges of the variables

With Boolean variables, sample point = propositional logic model e.g., A = true, B = false, or $a \land \neg b$.

Proposition = disjunction of atomic events in which it is true

e.g.,
$$(a \lor b) \equiv (\neg a \land b) \lor (a \land \neg b) \lor (a \land b)$$

 $\Rightarrow P(a \lor b) = P(\neg a \land b) + P(a \land \neg b) + P(a \land b)$

Why use Probability?

The definitions imply that certain logically related events must have related probabilities

E.g.,
$$P(a \lor b) = P(a) + P(b) - P(a \land b)$$

Syntax for Propositions

```
Propositional or Boolean random variables e.g., Cavity (do I have a cavity?)
Cavity = true \text{ is a proposition, also written } cavity
```

Discrete random variables (finite or infinite)
e.g., Weather is one of $\langle sunny, rain, cloudy, snow \rangle$ Weather = rain is a proposition
Values must be exhaustive and mutually exclusive

Continuous random variables (bounded or unbounded) e.g., Temp = 21.6; also allow, e.g., Temp < 22.0.

Arbitrary Boolean combinations of basic propositions

Probability Model

- * Tuple of $\{\Omega, \mathcal{F}, P\}$
- * Used to define random variable X
- * And probability density function p(X)

Prior Probability

```
Prior or unconditional probabilities of propositions e.g., P(Cavity = true) = 0.1 and P(Weather = sunny) = 0.72 correspond to belief prior to arrival of any (new) evidence
```

Prior Probability

```
Prior or unconditional probabilities of propositions e.g., P(Cavity=true)=0.1 and P(Weather=sunny)=0.72 correspond to belief prior to arrival of any (new) evidence
```

Probability distribution gives values for all possible assignments: $\mathbf{P}(Weather) = \langle 0.72, 0.1, 0.08, 0.1 \rangle$ (normalized, i.e., sums to 1)

Prior Probability

Prior or unconditional probabilities of propositions

e.g., P(Cavity = true) = 0.1 and P(Weather = sunny) = 0.72 correspond to belief prior to arrival of any (new) evidence

Probability distribution gives values for all possible assignments: $\mathbf{P}(Weather) = \langle 0.72, 0.1, 0.08, 0.1 \rangle$ (normalized, i.e., sums to 1)

Joint probability distribution for a set of r.v.s gives the probability of every atomic event on those r.v.s (i.e., every sample point) $\mathbf{P}(Weather, Cavity) = \mathbf{a} \ 4 \times 2 \text{ matrix of values:}$

Weather =	sunny	rain	cloudy	snow
Cavity = true	0.144	0.02	0.016	0.02
Cavity = false	0.576	0.08	0.064	0.08

Every question about a domain can be answered by the joint distribution because every event is a sum of sample points

Continuous Variables

Express distribution as a parameterized function of value:

$$P(X=x)=U[18,26](x)=$$
 uniform density between 18 and 26

Here P is a density; integrates to 1. P(X = 20.5) = 0.125 really means

$$\lim_{dx\to 0} P(20.5 \le X \le 20.5 + dx)/dx = 0.125$$

Continuous Variables

$$P(x) = \frac{1}{\sqrt{2\pi\sigma}}e^{-(x-\mu)^2/2\sigma^2}$$

Conditional Probability

```
Conditional or posterior probabilities e.g., P(cavity|toothache) = 0.8 i.e., given that toothache is all I know NOT "if toothache then 80% chance of cavity"
```

(Notation for conditional distributions:

```
P(Cavity|Toothache) = 2-element vector of 2-element vectors)
```

Conditional Probability

```
Conditional or posterior probabilities
```

```
e.g., P(cavity|toothache) = 0.8
i.e., given that toothache is all I know
NOT "if toothache then 80% chance of cavity"
```

(Notation for conditional distributions:

 $\mathbf{P}(Cavity|Toothache) = 2$ -element vector of 2-element vectors)

If we know more, e.g., cavity is also given, then we have P(cavity|toothache, cavity) = 1

Note: the less specific belief remains valid after more evidence arrives, but is not always useful

Conditional Probability

Conditional or posterior probabilities

e.g., P(cavity|toothache) = 0.8i.e., given that toothache is all I know NOT "if toothache then 80% chance of cavity"

(Notation for conditional distributions:

 $\mathbf{P}(Cavity|Toothache) = 2$ -element vector of 2-element vectors)

If we know more, e.g., cavity is also given, then we have P(cavity|toothache, cavity) = 1

Note: the less specific belief remains valid after more evidence arrives, but is not always useful

New evidence may be irrelevant, allowing simplification, e.g.,

P(cavity|toothache, 49ersWin) = P(cavity|toothache) = 0.8

This kind of inference, sanctioned by domain knowledge, is crucial

Inference by Enumeration

Start with the joint distribution:

	toothache		¬ toothache	
	catch	¬ catch	catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

For any proposition ϕ , sum the atomic events where it is true:

$$P(\phi) = \sum_{\omega:\omega \models \phi} P(\omega)$$

$$P(toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2$$

Inference by Enumeration

Start with the joint distribution:

	toothache		¬ toothache	
	catch		catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

For any proposition ϕ , sum the atomic events where it is true:

$$P(\phi) = \sum_{\omega:\omega \models \phi} P(\omega)$$

 $P(cavity \lor toothache) = 0.108 + 0.012 + 0.072 + 0.008 + 0.016 + 0.064 = 0.28$

Inference by Enumeration

Start with the joint distribution:

	toothache		¬ toothache	
	catch ¬ catch		catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

Can also compute conditional probabilities:

$$P(\neg cavity | toothache) = \frac{P(\neg cavity \land toothache)}{P(toothache)}$$

$$= \frac{0.016 + 0.064}{0.108 + 0.012 + 0.016 + 0.064} = 0.4$$

Normalization

	toothache		¬ toothache	
	catch	¬ catch	catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

Denominator can be viewed as a normalization constant α

```
\begin{aligned} \mathbf{P}(Cavity|toothache) &= \alpha \, \mathbf{P}(Cavity,toothache) \\ &= \alpha \, [\mathbf{P}(Cavity,toothache,catch) + \mathbf{P}(Cavity,toothache,\neg catch)] \\ &= \alpha \, [\langle 0.108,0.016\rangle + \langle 0.012,0.064\rangle] \\ &= \alpha \, \langle 0.12,0.08\rangle = \langle 0.6,0.4\rangle \end{aligned}
```

General idea: compute distribution on query variable by fixing evidence variables and summing over hidden variables

Independence

A and B are independent iff $\mathbf{P}(A|B) = \mathbf{P}(A)$ or $\mathbf{P}(B|A) = \mathbf{P}(B)$ or $\mathbf{P}(A,B) = \mathbf{P}(A)\mathbf{P}(B)$

Independence

 $\mathbf{P}(Toothache, Catch, Cavity, Weather)$ = $\mathbf{P}(Toothache, Catch, Cavity)\mathbf{P}(Weather)$

Independence

A and B are independent iff $\mathbf{P}(A|B) = \mathbf{P}(A)$ or $\mathbf{P}(B|A) = \mathbf{P}(B)$ or $\mathbf{P}(A,B) = \mathbf{P}(A)\mathbf{P}(B)$ Cavity Toothache Catch Weather Weather

 $\mathbf{P}(Toothache, Catch, Cavity, Weather)$ = $\mathbf{P}(Toothache, Catch, Cavity)\mathbf{P}(Weather)$

32 entries reduced to 12; for n independent biased coins, $2^n \rightarrow n$

Absolute independence powerful but rare

Dentistry is a large field with hundreds of variables, none of which are independent. What to do?

Product rule $P(a \wedge b) = P(a|b)P(b) = P(b|a)P(a)$

Product rule
$$P(a \wedge b) = P(a|b)P(b) = P(b|a)P(a)$$

$$\Rightarrow$$
 Bayes' rule $P(a|b) = \frac{P(b|a)P(a)}{P(b)}$

Product rule
$$P(a \wedge b) = P(a|b)P(b) = P(b|a)P(a)$$

$$\Rightarrow$$
 Bayes' rule $P(a|b) = \frac{P(b|a)P(a)}{P(b)}$

or in distribution form

$$\mathbf{P}(Y|X) = \frac{\mathbf{P}(X|Y)\mathbf{P}(Y)}{\mathbf{P}(X)} = \alpha \mathbf{P}(X|Y)\mathbf{P}(Y)$$

Product rule $P(a \wedge b) = P(a|b)P(b) = P(b|a)P(a)$

$$\Rightarrow$$
 Bayes' rule $P(a|b) = \frac{P(b|a)P(a)}{P(b)}$

or in distribution form

$$\mathbf{P}(Y|X) = \frac{\mathbf{P}(X|Y)\mathbf{P}(Y)}{\mathbf{P}(X)} = \alpha \mathbf{P}(X|Y)\mathbf{P}(Y)$$

Useful for assessing diagnostic probability from causal probability:

$$P(Cause|Effect) = \frac{P(Effect|Cause)P(Cause)}{P(Effect)}$$

Product rule $P(a \wedge b) = P(a|b)P(b) = P(b|a)P(a)$

$$\Rightarrow$$
 Bayes' rule $P(a|b) = \frac{P(b|a)P(a)}{P(b)}$

or in distribution form

$$\mathbf{P}(Y|X) = \frac{\mathbf{P}(X|Y)\mathbf{P}(Y)}{\mathbf{P}(X)} = \alpha \mathbf{P}(X|Y)\mathbf{P}(Y)$$

Useful for assessing diagnostic probability from causal probability:

$$P(Cause|Effect) = \frac{P(Effect|Cause)P(Cause)}{P(Effect)}$$

E.g., let M be meningitis, S be stiff neck:

$$P(m|s) = \frac{P(s|m)P(m)}{P(s)} = \frac{0.8 \times 0.0001}{0.1} = 0.0008$$

Note: posterior probability of meningitis still very small!

Bayes' Rule and Conditional Independence

 $\mathbf{P}(Cavity|toothache \land catch)$

- $= \alpha \mathbf{P}(toothache \wedge catch|Cavity)\mathbf{P}(Cavity)$
- $= \alpha \mathbf{P}(toothache|Cavity)\mathbf{P}(catch|Cavity)\mathbf{P}(Cavity)$

This is an example of a naive Bayes model:

$$\mathbf{P}(Cause, Effect_1, \dots, Effect_n) = \mathbf{P}(Cause)\Pi_i\mathbf{P}(Effect_i|Cause)$$

Total number of parameters is linear in n

Wumpus Example

1,4	2,4	3,4	4,4
	0.0	0.0	4.0
1,3	2,3	3,3	4,3
1,2 B	2,2	3,2	4,2
oĸ			
1,1	2,1 B	3,1	4,1
OK	OK		

 $P_{ij} = true$ iff [i, j] contains a pit

 $B_{ij} = true$ iff [i, j] is breezy Include only $B_{1,1}, B_{1,2}, B_{2,1}$ in the probability model

Wumpus Probability Model

The full joint distribution is $P(P_{1,1}, \ldots, P_{4,4}, B_{1,1}, B_{1,2}, B_{2,1})$

Apply product rule: $P(B_{1,1}, B_{1,2}, B_{2,1} | P_{1,1}, \dots, P_{4,4}) P(P_{1,1}, \dots, P_{4,4})$

(Do it this way to get P(Effect|Cause).)

First term: 1 if pits are adjacent to breezes, 0 otherwise

Second term: pits are placed randomly, probability 0.2 per square:

$$\mathbf{P}(P_{1,1},\ldots,P_{4,4}) = \prod_{i,j=1,1}^{4,4} \mathbf{P}(P_{i,j}) = 0.2^n \times 0.8^{16-n}$$

for n pits.

Observations and Query

We know the following facts:

$$b = \neg b_{1,1} \wedge b_{1,2} \wedge b_{2,1} \ known = \neg p_{1,1} \wedge \neg p_{1,2} \wedge \neg p_{2,1}$$

Query is $P(P_{1,3}|known,b)$

Define $Unknown = P_{ij}$ s other than $P_{1,3}$ and Known

For inference by enumeration, we have

$$\mathbf{P}(P_{1,3}|known,b) = \alpha \Sigma_{unknown} \mathbf{P}(P_{1,3}, unknown, known, b)$$

Grows exponentially with number of squares!

Using Conditional Independence

Basic insight: observations are conditionally independent of other hidden squares given neighbouring hidden squares

Define $Unknown = Fringe \cup Other$ $\mathbf{P}(b|P_{1,3}, Known, Unknown) = \mathbf{P}(b|P_{1,3}, Known, Fringe)$

Manipulate query into a form where we can use this!

Using Conditional Independence

```
\begin{split} \mathbf{P}(P_{1,3}|known,b) &= \alpha \sum_{unknown} \mathbf{P}(P_{1,3},unknown,known,b) \\ &= \alpha \sum_{unknown} \mathbf{P}(b|P_{1,3},known,unknown) \mathbf{P}(P_{1,3},known,unknown) \\ &= \alpha \sum_{fringe\ other} \sum \mathbf{P}(b|known,P_{1,3},fringe,other) \mathbf{P}(P_{1,3},known,fringe,other) \\ &= \alpha \sum_{fringe\ other} \sum \mathbf{P}(b|known,P_{1,3},fringe) \mathbf{P}(P_{1,3},known,fringe,other) \\ &= \alpha \sum_{fringe} \mathbf{P}(b|known,P_{1,3},fringe) \sum_{other} \mathbf{P}(P_{1,3},known,fringe,other) \\ &= \alpha \sum_{fringe} \mathbf{P}(b|known,P_{1,3},fringe) \sum_{other} \mathbf{P}(P_{1,3})P(known)P(fringe)P(other) \\ &= \alpha P(known)\mathbf{P}(P_{1,3}) \sum_{fringe} \mathbf{P}(b|known,P_{1,3},fringe)P(fringe) \sum_{other} P(other) \\ &= \alpha' \mathbf{P}(P_{1,3}) \sum_{fringe} \mathbf{P}(b|known,P_{1,3},fringe)P(fringe) \end{split}
```

Using Conditional Independence

$$0.2 \times 0.2 = 0.04$$

$$0.2 \times 0.8 = 0.16$$

$$0.8 \times 0.2 = 0.16$$

$$0.2 \times 0.2 = 0.04$$

$$0.2 \times 0.8 = 0.16$$

$$\mathbf{P}(P_{1,3}|known,b) = \alpha' \langle 0.2(0.04 + 0.16 + 0.16), 0.8(0.04 + 0.16) \rangle$$

 $\approx \langle 0.31, 0.69 \rangle$

$$P(P_{2,2}|known,b) \approx (0.86, 0.14)$$

Summary

Probability is a rigorous formalism for uncertain knowledge

Joint probability distribution specifies probability of every atomic event

Queries can be answered by summing over atomic events

For nontrivial domains, we must find a way to reduce the joint size

Independence and conditional independence provide the tools