COMPSCI361: Introduction to Machine Learning Fundamentals of Learning

Jörg Simon Wicker
The University of Auckland

Today we will cover...

Motivation

Error

Golden Rule of Machine Learning

IID

Fundamental Trade-Off

Validation Error

Hyperparameters

Optimization Bias

Cross-Validation

Classifier Evaluation Metrics

Comparing Classifiers

The Best Machine Learning Model

Examples

2 Examples

Supervised Learning Applications

- We motivated supervised learning by the "food allergy" example
- But we can use supervised learning for any input:output mapping
 - E-mail spam filtering
 - Optical character recognition on scanners
 - Recognizing faces in pictures
 - Recognizing tumours in medical images
 - Speech recognition on phones
 - Your problem in industry/research?

Motivation

Motivation: Determine Home City

- We are given data from 248 homes
- For each home/example, we have these features
 - Elevation
 - Year
 - Bathrooms—Bedrooms
 - Price
 - Square feet
- Goal is to build a program that predicts SF or NY

Elevation

Depth vs. Accuracy

Error

Error

- Eventually, we achieved a perfect classification on the data
 - This is great, right?
- With this decision tree, 'training accuracy' is 1
 - It perfectly labels the data we used to make the tree
- We are now given features for 217 new homes
- What is the 'testing accuracy' on the new data?
 - How does it do on data not used to make the tree?

***************************************	100/112	89.7%	117/130	
000000000000000000000000000000000000000	111/111	Training Accuracy	139/139	000000000000000000000000000000000000000

- Overfitting: lower accuracy on new data
 - Our rules got too specific to our exact training dataset
 - Some of the "deep" splits only use a few examples (bad "coupon collecting")

■ We are given training data where we know the labels

	Egg	Milk	Fish	Wheat	Shellfish	Peanuts	 	Sick?
<i>X</i> =	0.0	0.7	0.0	0.3	0.0	0.00	 -	1
	0.3	0.7	0.0	0.6	0.0	0.01	 v —	. 1
	0.0	0.0	0.0	8.0	0.0	0.00	 у —	0
	0.3	0.7	1.2	0.0	0.1	0.01		1
	0.3	0.0	1.2	0.3	0.1	0.01		1

■ But there is also testing data we want to label

	Egg	Milk	Fish	Wheat	Shellfish	Peanuts	 	Sick?
$\tilde{\mathbf{x}}$ –	0.5	0.0	1.0	0.6	2.0	1.0	 ~ ~	?
л –	0.0	0.7		1.0	0.0	0.0	 у —	?
	3.0	1.0	0.0	0.5	0.0	0.0		?

Supervised Learning

- Typical supervised learning steps
 - 1. Build model based on training data X and y (training phase)
 - 2. Model makes predictions \hat{y} on test data \tilde{X} (testing phase)
- Instead of training error, consider test error:
 - Are predictions \hat{y} similar to true unseen labels \tilde{y} ?
- Why we do this?

- In machine learning:
 - What we care about is the test error
- Course analogy:
 - The training error is practice on the exam
 - The test error is the actual exam
 - Goal: do well on actual exam, not the practice one
- Memorization vs learning:
 - Can do well on training data by memorizing it
 - You have only learned if you can do well in new situations

Golden Rule of Machine Learning

- Even though what we care about is test error:
 - The test data cannot influence the training phase in any way
- We're measuring test error to see how well we do on new data:
 - If used during training, does not measure this
 - You can start to overfit if you use it during training
 - Course analogy: you are cheating on the exam

- You also shouldn't change the test set to get the result you want
- Note the golden rule applies to hypothesis testing in scientific studies
 - Data that you collect can't influence the hypotheses that you test
- **Extremely common and a major problem**, coming in many forms
 - Collect more data until you coincidentally get significance level you want
 - Try different ways to measure performance, choose the one that looks best
 - Choose a different type of model / hypothesis after looking at the test data
- If you want to modify your hypotheses, you need to test on new data
- Or at least be aware and honest about this issue when reporting results

Golden Rule of Machine Learning

- It is really extremely common:
 - Replication crisis in Science https://en.wikipedia.org/wiki/Replication_crisis
 - Why Most Published Research Findings are False https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1182327/
 - False-Positive Psychology: Undisclosed Flexibility in Data Collection and Analysis Allows Presenting Anything as Significant – https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1850704
 - HARKing: Hypothesizing After the Results are Known http://journals.sagepub.com/doi/abs/10.1207/s15327957pspr0203_4
 - Hack Your Way To Scientific Glory https://fivethirtyeight.com/features/science-isnt-broken/
 - Psychology's Replication Crisis Has Made The Field Better (some solutions) https://fivethirtyeight.com/features/ psychologys-replication-crisis-has-made-the-field-better/

Is Learning Possible?

- Does training error say anything about test error?
 - In general, NO: Test data might have nothing to do with training data
 - E.g., "adversary" takes training data and flips all labels.
- In order to learn, we need assumptions:
 - The training and test data need to be related in some way
 - Most common assumption: independent and identically distributed (IID)

IID

- Training/test data is independent and identically distributed (IID) if:
 - All examples come from the same distribution (identically distributed)
 - The example are sampled independently (order does not matter)

Age	Job?	City	Rating	Income
23	Yes	Ham	А	22,000.00
23	Yes	Wel	BBB	21,000.00
22	No	Ham	CC	0.00
25	Yes	Akl	AAA	57,000.00
	23 22	23 Yes 23 Yes 22 No	23 Yes Ham 23 Yes Wel 22 No Ham	23 Yes Ham A 23 Yes Wel BBB 22 No Ham CC

- Examples in terms of cards which is IID?
 - Pick a card, put it back in the deck, re-shuffle, repeat
 - Pick a card, put it back in the deck, repeat
 - Pick a card, don't put it back, re-shuffle, repeat.

IID in the Food Allergy Example

- Is the food allergy data IID?
 - Do all the examples come from the same distribution?
 - Does the order of the examples matter?
- No!
 - Being sick might depend on what you ate yesterday (not independent)
 - Your eating habits might have changed over time (not identically distributed)
- What can we do about this?
 - Just ignore that data isn't IID and hope for the best?
 - For each day, maybe add the features from the previous day?
 - Maybe add time as an extra feature?

Learning Theory

- Why does the IID assumption make learning possible?
 - Patterns in training examples are likely to be the same in test examples
- The IID assumption is rarely true:
 - But it is often a good approximation
 - There are other possible assumptions
- Also, we're assuming IID across examples but not across features
- Learning theory explores how training error is related to test error
- We'll look at a simple example, using this notation:
 - \blacksquare E_{train} is the error on training data
 - E_{test} is the error on testing data

Fundamental Trade-Off

■ Start with $E_{test} = E_{test}$, then add and subtract E_{train} on the right:

$$\underbrace{E_{test}}_{\text{test error}} = \underbrace{\left(E_{test} - E_{train}\right)}_{\text{approximation error}} + \underbrace{E_{train}}_{\text{training error}}$$

- How does this help?
 - If $E_{approx} = E_{test} E_{train}$ is small, then E_{train} is a good approximation to E_{test}
- What does E_{approx} ("amount of overfitting") depend on?
 - It tends to get smaller as 'n' gets larger
 - It tends to grow as model get more "complicated"

- This leads to a fundamental trade-off:
 - 1. E_{train} : how small you can make the training error vs.
 - 2. E_{approx} : how well training error approximates the test error
- Simple models (like decision stumps):
 - E_{approx} is low (not very sensitive to training set)
 - But E_{train} might be high
- Complex models (like deep decision trees):
 - \blacksquare E_{train} can be low
 - But E_{approx} might be high (very sensitive to training set).

Fundamental Trade-Off

- Training error vs. test error for choosing depth:
 - Training error is high for low depth (underfitting)
 - Training error gets better with depth
 - Test error initially goes down, but eventually increases (overfitting)

- Let E_{best} be the irreducible error (lowest possible error for any model)
 - For example, irreducible error for predicting coin flips is 0.5
- Some learning theory results use E_{best} to futher decompose E_{test}

$$E_{test} = \underbrace{(E_{test} - E_{train})}_{variance} + \underbrace{(E_{train} - E_{best})}_{bias} + \underbrace{E_{best}}_{noise}$$

- This is similar to the bias-variance decomposition
 - Term 1: measure of variance (how sensitive we are to training data)
 - Term 2: measure of bias (how low can we make the training error)
 - Term 3: measure of noise (how low can any model make test error)

- Decision tree with high depth
 - Very likely to fit data well, so bias is low
 - But model changes a lot if you change the data, so variance is high
- Decision tree with low depth
 - Less likely to fit data well, so bias is high
 - But model does not change much you change data, so variance is low
- And degree does not affect irreducible error
 - Irreducible error comes from the best possible model

- You may have seen bias-variance decomposition
 - Assumes $\tilde{y}_i = \bar{y}_i + \epsilon$, where ϵ has mean 0 and variance σ^2
 - Assumes we have a learner that can take n training examples and use these to make predictions \hat{y}_i
- Expected squared test error in this setting is

$$\underbrace{\mathbb{E}[(\hat{y}_i - \hat{y}_i)^2]}_{\text{test squared error}} = \underbrace{\mathbb{E}[(\hat{y}_i - \bar{y}_i)]^2}_{\text{bias}} + \underbrace{\left(\mathbb{E}[\hat{y}_i^2] - \mathbb{E}[\hat{y}_i]^2\right)}_{\text{variance}} + \underbrace{\sigma}_{\text{noise}}$$

- Where expectations are taken over possible training sets of n examples
- Bias is expected error due to having wrong model
- Variance is expected error due to sensitivity to the training set
- Noise (irreducible error) is the best we can hope for given the noise (E_{best})

Bias-Variance vs. Fundamental Trade-Off

- Both decompositions serve the same purpose
 - Trying to evaluate how different factors affect test error
- They both lead to the same 3 conclusions
 - 1. Simple models can have high E_{train} / bias, low E_{approx} / variance
 - 2. Complex models can have low E_{train} / bias, high E_{approx} / variance
 - 3. As you increase n, E_{approx} / variance goes down (for fixed complexity)

Another Perspective

Validation Error

Validation Error

- How do we decide decision tree depth?
- We care about test error
- But we can't look at test data
- So what do we do?
- One answer: Use part of the training data to approximate test error
- Split training examples into training set and validation set:
 - Train model based on the training data
 - Test model based on the validation data.

Validation Error

$$X = \begin{bmatrix} 0.0 & 0.7 & 0.0 & 0.3 & 0.0 & 0.00 & \dots \\ 0.3 & 0.7 & 0.0 & 0.6 & 0.0 & 0.01 & \dots \\ 0.0 & 0.0 & 0.0 & 0.8 & 0.0 & 0.00 & \dots \\ \hline 0.3 & 0.7 & 1.2 & 0.0 & 0.1 & 0.01 & \dots \\ 0.3 & 0.0 & 1.2 & 0.3 & 0.1 & 0.01 & \dots \end{bmatrix} \quad y = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \\ 1 \end{bmatrix} \quad \begin{cases} \text{training} \\ \text{validation} \end{cases}$$

- 1. Train: $model = train(X_{train}, Y_{train})$
- 2. Predict: $\hat{y} = predict(model, X_{validate})$
- 3. Validate: $error = \sum (\hat{y} \neq y_{validate})$
- Note: if examples are ordered, split should be random

Validation Error

■ IID data: validation error is unbiased approximation of test error

$$\mathbb{E}[E_{valid}] = \mathbb{E}[E_{test}]$$

- Course analogy
 - You have 2 practice exams
 - You hide one exam, and spend a lot of time working through the other
 - You then do the other practice exam, to see how well you'll do on the test
- We typically use validation error to choose "hyper-parameters"

Hyperparameters

Notation – Parameters and Hyper-Parameters

- The decision tree rule values are called parameters
 - Parameters control how well we fit a dataset
 - We train a model by trying to find the best parameters on training data
- The decision tree depth is a called a hyper-parameter
 - Hyper-parameters control how complex our model is
 - We can't train a hyper-parameter
 - You can always fit training data better by making the model more complicated
 - We validate a hyper-parameter using a validation score
- (Hyper-parameter is sometimes used for parameters not fit with data)

Choosing Hyper-Parameters with Validation Sets

- So to choose a good value of depth (hyper-parameter), we could?
 - Try a depth-1 decision tree, compute validation error
 - Try a depth-2 decision tree, compute validation error
 - Try a depth-3 decision tree, compute validation error
 - ...
 - Try a depth-20 decision tree, compute validation error
 - Return the depth with the lowest validation error
- After you choose the hyper-parameter, we usually re-train on the full training set with the chosen hyper-parameter

Optimization Bias

Optimization Bias

- Another name for overfitting is optimization bias
 - How biased is an error that we optimized over many possibilities?
- Optimization bias of parameter learning
 - During learning, we could search over tons of different decision trees
 - So we can get lucky and find one with low training error by chance
 - Overfitting of the training error
- Optimization bias of hyper-parameter tuning
 - Here, we might optimize the validation error over 20 values of depth
 - One of the 20 trees might have low validation error by chance
 - Overfitting of the validation error

Example of Optimization Bias

- Consider a multiple-choice (a, b, c, d) test with 10 questions
 - If you choose answers randomly, expected grade is 25% (no bias)
 - \blacksquare If you fill out two tests randomly and pick the best, expected grade is 33%
 - lacksquare Optimization bias of ${\sim}8\%$
 - If you take the best among 10 random tests, expected grade is \sim 47%
 - If you take the best among 100, expected grade is \sim 62%
 - If you take the best among 1000, expected grade is \sim 73%
 - If you take the best among 10000, expected grade is \sim 82%
 - You have so many chances that you expect to do well
- But on new questions the random choice accuracy is still 25%

- If we instead used a 100-question test then
 - Expected grade from best over 1 randomly-filled test is 25%
 - **E**xpected grade from best over 2 randomly-filled test is \sim 27%
 - lacktriangle Expected grade from best over 10 randomly-filled test is \sim 32%
 - $lue{}$ Expected grade from best over 100 randomly-filled test is $\sim 36\%$
 - Expected grade from best over 1000 randomly-filled test is ~40%
 - Expected grade from best over 10000 randomly-filled test is ~47%
- The optimization bias grows with the number of things we try
 - Complexity of the set of models we search over
- But, optimization bias shrinks quickly with the number of examples
 - But it's still non-zero and growing if you over-use your validation set

- Validation error usually has lower optimization bias than training error
 - Might optimize over 20 values of depth, instead of millions+ of possible trees
- But we can still overfit to the validation error (common in practice)
 - Validation error is only an unbiased approximation if you use it once
 - Once you start optimizing it, you start to overfit to the validation set
- This is most important when the validation set is small
 - The optimization bias decreases as the number of validation examples increases
- Remember, our goal is still to do well on the test set (new data), not the validation set (where we already know the labels)

Validation Error and Optimization Bias

- Optimization bias is small if you only compare a few models
 - Best decision tree on the training set among depths 1, 2, 3,..., 10
 - Risk of overfitting to validation set is low if we try 10 things
- Optimization bias is large if you compare a lot of models
 - All possible decision trees of depth 10 or less
 - Here we are using the validation set to pick between a billion+ models
 - Risk of overfitting to validation set is high: could have low validation error by chance
 - If you did this, you might want a second validation set to detect overfitting
- And optimization bias shrinks as you grow size of validation set.

Side note: Optimization Bias leads to Publication Bias

- Suppose that 20 researchers perform the exact same experiment
- They each test whether their effect is significant (p < 0.05)
 - 19/20 find that it is not significant
 - But the 1 group finding it is significant publishes a paper about the effect
- This is again optimization bias, contributing to publication bias
 - A contributing factor to many reported effects being wrong

Cross-Validation

- Isn't it wasteful to only use part of your data?
- 5-fold cross-validation
 - Train on 80% of the data, validate on the other 20%
 - Repeat this 5 more times with different splits, and average the score

$$X = \begin{bmatrix} \dots \\ \dots \\ \dots \\ \dots \end{bmatrix} \quad y = \begin{bmatrix} \dots \\ \dots \\ \dots \\ \dots \end{bmatrix} \begin{cases} \text{fold } 1 \\ \text{fold } 2 \\ \dots \\ \text{fold } 3 \\ \text{fold } 4 \\ \dots \end{bmatrix}$$

- 1. Train on folds 1, 2, 3, 4, compute error on fold 5
- 2. Train on folds 1, 2, 3, 5, compute error on fold 4
- 3. Train on folds 1, 2, 4, 5, compute error on fold 3

. . .

6. Take average of the 5 errors as approximation of test error

Cross-Validation (CV)

Fold 1	Fold 2	Fold 3	Fold 4	Fold 5
TRAIN	TRAIN	TRAIN	TRAIN	VALIDATION
TRAIN	TRAIN	TRAIN	VALIDATION	TRAIN
TRAIN	TRAIN	VALIDATION	TRAIN	TRAIN
TRAIN	VALIDATION	TRAIN	TRAIN	TRAIN
VALIDATION	TRAIN	TRAIN	TRAIN	TRAIN
Error 0.1	Error 0.2	Error 0.2	Error 0.1	Error 0.2

■ CV error estimate for this hyper-parameter mean(errors) = 0.16

Cross-Validation (CV)

- You can take this idea further (k-fold cross-validation)
 - 10-fold cross-validation: train on 90% of data and validate on 10%
 - Repeat 10 times and average (test on fold 1, then fold 2,..., then fold 10)
 - Leave-one-out cross-validation: train on all but one training example
 - \blacksquare Repeat n times and average
- Gets more accurate but more expensive with more folds
 - To choose depth we compute the cross-validation score for each depth
- As before, if data is ordered then folds should be random splits
 - Randomize first, then split into fixed folds
- Usually used in classification: stratified cross-validation
 - This enforces that the class distribution in all folds is approximately the same as in the full data set

Classifier Evaluation Metrics

Confusion Matrix

Given m classes, an entry, $CM_{i,j}$ in a confusion matrix indicates number of tuples in class i that were labeled by the classifier as class j

Predicted Class

- FP is often called type I error reject the true null hypothesis
- FN is called type II error reject false null hypothesis

Classifier Evaluation Metrics: Accuracy, Precision and Recall

- Classifier accuracy, or recognition rate
 - Percentage of test set tuples that are correctly classified

$$Accuracy = (TP + TN)/AII$$

Precision: Exactness: what % of tuples that the classifier labeled as positive are actually positive?

$$P = Precision = \frac{TP}{TP + FP}$$

■ Recall: Completeness: what % of positive tuples did the classifier label as positive?

$$R = Recall = \frac{TP}{TP + FN}$$

■ There is an inverse relationship between precision & recall

 \blacksquare F-measure (or F-score): harmonic mean of precision and recall

$$F_b = (1 + \beta^2) \frac{precision \cdot recall}{(\beta^2 \cdot precision) + recall}$$

- In general, it is the weighted measure of precision & recall
- ullet β is a weight assign β times as much weight to recall as to precision
- Most commonly used: F_1 measure with $\beta = 1$

$$F_1 = \frac{2 \cdot precision \cdot recall}{precision + recall}$$

- ROC (Receiver Operating Characteristics) curves: for visual comparison of classification models
- Originated from signal detection theory
- Shows the trade-off between true positive rate $TPR = \frac{TP}{TP+FN}$ and false positive rate $FPR = \frac{FP}{FP+TN}$
- The area under the ROC curve (AUC: Area Under Curve, also AUROC) is a measure of the accuracy of the model
- Rank the test tuples in decreasing order: the one that is most likely to belong to the positive class appears at the top of the list
- The closer to the diagonal line (i.e., the closer the area is to 0.5), the less accurate is the model

Comparing Classifiers

Comparing Classifiers – Which one is better?

- Suppose we have 2 classifiers, M_1 and M_2 , which one is better?
- Use 10-fold cross-validation to obtain error (accuracy, AUROC, ...)
- These mean error rates are just estimates of error on the true population of future data cases
- What if the difference between the 2 error rates is just attributed to chance?
 - Use a test of statistical significance

- Perform 10-fold cross-validation
- Assume samples follow a t distribution with k-1 degrees of freedom (here, k=10)
- Use t-test (or Student's t-test)
- Null Hypothesis: $M_1 \& M_2$ are the same
- If we can reject null hypothesis, then
 - we conclude that the difference between $M_1 \& M_2$ is statistically significant
 - Chose model with lower error rate

- If only 1 test set available: pairwise comparison
 - For ith round of 10-fold cross-validation, the same cross partitioning is used to obtain $err(M_1)_i$ and $err(M_2)_i$
 - Average over (at least!) 10 rounds to get $\overline{err}(M_1)$ and $\overline{err}(M_2)$
 - t-test computes t-statistic with k-1 degrees of freedom:

$$t = rac{\overline{err}(M_1) - \overline{err}(M_2)}{\sqrt{var(M_1 - M_2)/k}},$$

where

$$var(M_1 - M_2) = \frac{1}{k} \sum_{i=1}^k \left[err(M_1)_i - err(M_2)_i - \left(\overline{err}(M_1) - \overline{err}(M_2) \right) \right]^2$$

Estimating Confidence Intervals: Statistical Significance

- Are M_1 & M_2 significantly different?
- Compute t. Select significance level (e.g. sig = 5%)
- Consult table for t-distribution: Find t value corresponding to k-1 degrees of freedom (here, 9)
- t-distribution is symmetric: typically upper % points of distribution shown \rightarrow look up value for confidence limit z = sig/2 (here, 0.025)
- If t > z or t < -z, then t value lies in rejection region:
 - Reject null hypothesis that mean error rates of $M_1 \& M_2$ are same
 - Conclude: statistically significant difference between $M_1 \& M_2$
- Otherwise, conclude that any difference is chance

Multiple Comparisons

- Beyond paired comparison: Nemenyi test, Friedman test, Critical Distance plots
- Janez Demšar: "Statistical Comparisons of Classifiers over Multiple Data Sets" see Assignment 1

The Best Machine Learning Model

- Decision trees are not always most accurate on test error
- What is the best machine learning model?
- An alternative measure of performance is the generalization error
 - Average error over all x_i vectors that are not seen in the training set
 - How well we expect to do for a completely unseen feature vector
- No free lunch theorem
 - There is no best model achieving the best generalization error for every problem
 - If model A generalizes better to new data than model B on one dataset, there is another dataset where model B works better
- This question is like asking which is best among rock, paper, and scissors

The Best Machine Learning Model

- Implications of the lack of a best model
 - We need to learn about and try out multiple models
- So which ones to study?
 - We'll usually motivate each method by a specific application
 - But we're focusing on models that have been effective in many applications
- Caveat of no free lunch (NFL) theorem
 - The world is very structured
 - Some datasets are more likely than others
 - Model A really could be better than model B on every real dataset in practice
- Machine learning research
 - Large focus on models that are useful across many applications.

Examples

- Scenario 1
 - I built a model based on the data you gave me
 - It classified your data with 98% accuracy
 - It should get 98% accuracy on the rest of your data
- Should you trust them?
- Probably not:
 - They are reporting training error
 - This might have nothing to do with test error
 - E.g., they could have fit a very deep decision tree.
- Why probably?
 - If they only tried a few very simple models, the 98% might be reliable
 - E.g., they only considered decision stumps with simple 1-variable rules

Scenario 2

- I built a model based on half of the data you gave me
- It classified the other half of the data with 98% accuracy
- It should get 98% accuracy on the rest of your data

Probably

- They computed the validation error once
- This is an unbiased approximation of the test error
- Trust them if you believe they did not violate the golden rule

Scenario 3

- I built 10 models based on half of the data you gave me
- One of them classified the other half of the data with 98% accuracy
- It should get 98% accuracy on the rest of your data

Probably

- They computed the validation error a small number of times
- Maximizing over these errors is a biased approximation of test error
- But they only maximized it over 10 models, so bias is probably small
- They probably know about the golden rule.

- Scenario 4
 - I built 1 billion models based on half of the data you gave me
 - One of them classified the other half of the data with 98% accuracy
 - It should get 98% accuracy on the rest of your data
- Probably not
 - They computed the validation error a huge number of times
 - They tried so many models, one of them is likely to work by chance
- Why probably?
- If the 1 billion models were all extremely-simple, 98% might be reliable.

Scenario 5

- I built 1 billion models based on the first third of the data you gave me
- One of them classified the second third of the data with 98% accuracy
- It also classified the last third of the data with 98% accuracy
- It should get 98% accuracy on the rest of your data

Probably

- They computed the first validation error a huge number of times
- But they had a second validation set that they only looked at once
- The second validation set gives unbiased test error approximation
- This is ideal, as long as they didn't violate golden rule on the last third
- And assuming you are using IID data in the first place.

Examples

- Scenario 1
 - I built a model based on the data you gave me
 - It classified your data with 98% accuracy
 - It should get 98% accuracy on the rest of your data
- Should you trust them?
- Probably not:
 - They are reporting training error
 - This might have nothing to do with test error
 - E.g., they could have fit a very deep decision tree.
- Why probably?
 - If they only tried a few very simple models, the 98% might be reliable
 - E.g., they only considered decision stumps with simple 1-variable rules

Scenario 2

- I built a model based on half of the data you gave me
- It classified the other half of the data with 98% accuracy
- It should get 98% accuracy on the rest of your data

Probably

- They computed the validation error once
- This is an unbiased approximation of the test error
- Trust them if you believe they did not violate the golden rule

Scenario 3

- I built 10 models based on half of the data you gave me
- One of them classified the other half of the data with 98% accuracy
- It should get 98% accuracy on the rest of your data

Probably

- They computed the validation error a small number of times
- Maximizing over these errors is a biased approximation of test error
- But they only maximized it over 10 models, so bias is probably small
- They probably know about the golden rule.

- Scenario 4
 - I built 1 billion models based on half of the data you gave me
 - One of them classified the other half of the data with 98% accuracy
 - It should get 98% accuracy on the rest of your data
- Probably not
 - They computed the validation error a huge number of times
 - They tried so many models, one of them is likely to work by chance
- Why probably?
- If the 1 billion models were all extremely-simple, 98% might be reliable.

Scenario 5

- I built 1 billion models based on the first third of the data you gave me
- One of them classified the second third of the data with 98% accuracy
- It also classified the last third of the data with 98% accuracy
- It should get 98% accuracy on the rest of your data

Probably

- They computed the first validation error a huge number of times
- But they had a second validation set that they only looked at once
- The second validation set gives unbiased test error approximation
- This is ideal, as long as they didn't violate golden rule on the last third
- And assuming you are using IID data in the first place.

Summary

- Training error vs. testing error
 - What we care about in machine learning is the testing error
- Golden rule of machine learning
 - The test data cannot influence training the model in any way
- Independent and identically distributed (IID)
 - One assumption that makes learning possible
- Fundamental trade-off:
 - Trade-off between getting low training error and having training error approximate test error

- Validation set:
 - We can save part of our training data to approximate test error
- Hyper-parameters
 - Parameters that control model complexity, typically set with a validation set
- Cross-validation: allows better use of data to estimate test error
- No free lunch theorem: there is no best ML model
- (In CS760, we talk about what happens if IID is too much violated and how this is an issue – Adversarial Learning)

- Machine Learning Tom Mitchell
- Pattern Recognition and Machine Learning Christopher Bishop
- Data Mining Jiawei Han, Micheline Kamber, Jian Pei
- Data Mining Ian Witten, Eibe Frank, Mark Hall, Christopher Pal

Thank you for your attention!

https://ml.auckland.ac.nz