QUIS 2

- 1. Diberikan $f(x), g(x) \in \mathbb{Z}_7[x]$ dimana $f(x) = x^4 + x^3 + x^2 + x$ dan $g(x) = x^3 + 1$.
 - (a) Tentukan gcd(f(x), g(x)).

Solusi:

Dengan menggunakan algoritma Euclid

• Cari hasil dan sisa bagi f(x) dengan g(x)

$$x^{3}+1)x^{4}+x^{3}+x^{2}+x$$

$$x^{4}+x$$

$$x^{3}+x^{2}$$

$$x^{3}+x^{2}$$

$$x^{3}+1$$

$$x^{2}-1$$

Hasil bagi adalah x + 1 dan sisa bagi adalah $r_1(x) = x^2 + 6$.

$$f(x) = (x+1)g(x) + (x^2+6)$$
 (1)

• Kemudian hasil dan sisa bagi g(x) dengan $r_1(x)$

$$\begin{array}{r}
x \\
x^2 + 6 \overline{\smash)x^3 + 1} \\
\underline{x^3 + 6x} \\
-6x + 1
\end{array}$$

Hasil bagi adalah x dan sisa bagi adalah $r_2(x) = x + 1$.

$$g(x) = (x)r_1(x) + (x+1)$$
 (2)

• Selanjutnya hasil dan sisa bagi $r_1(x)$ dengan $r_2(x)$

$$\begin{array}{r}
x-1\\
x+1 \overline{\smash)x^2+6}\\
\underline{x^2+x}\\
-x+6\\
\underline{-x-1}\\
7=0
\end{array}$$

Hasil bagi adalah x + 6 dan sisa bagi adalah 0.

$$r_1(x) = (x+6)r_2(x) + 0 (3)$$

Ketika sisa bagi adalah 0 maka proses algoritma Euclid selesai.

Hal diatas menyatakan bahwa $\gcd(r_1(x), r_2(x)) = r_2(x) = x+1$. Jadi $\gcd(f(x), g(x)) = \gcd(g(x), r_1(x)) = \gcd(r_1(x), r_2(x)) = \boxed{x+1}$.

(b) Nyatakan gcd(f(x), g(x)) sebagai kombinasi linear dari f(x) dan g(x). Solusi:

Dari persamaan (1) dapat diubah

$$f(x) - (x+1)g(x) = r_1(x)$$

subtistusi persamaan diatas ke persamaan (2)

$$g(x) = x [f(x) - (x+1)g(x)] + (x+1)$$

$$g(x) - x [f(x) - (x+1)g(x)] = x+1$$

$$g(x) - xf(x) + x(x+1)g(x) = x+1$$

$$(-x)f(x) + (x^2 + x + 1)g(x) = x+1$$

$$(6x)f(x) + (x^2 + x + 1)g(x) = x+1$$

2. Tunjukkan bahwa $f(x)=7x^3+9x^2+4x+11$ tak tereduksi di $\mathbb{Z}[x]$. Catatan: Terapkan Teorema berikut:

Teorema. Misalkan $f(x) \in \mathbb{Z}[x]$ dengan $\deg(f(x)) \leq 1$. Untuk suatu bilangan prima p, polinomial $\mathcal{F}(x) \in \mathbb{Z}_p[x]$ diperoleh dari $f(x) \in \mathbb{Z}[x]$ dengan melakukan semua koefisien menjadi modulo p. Bila $\deg(f(x)) = \deg(\mathcal{F}(x))$ dan $\mathcal{F}(x)$ tak-tereduksi di $\mathbb{Z}_p[x]$, maka f(x) tak-tereduksi di $\mathbb{Z}[x]$.

Solusi:

Kalimat "Untuk suatu bilangan prima p" berarti cukup pilih satu nilai p. Disini kita pilih p=2.

CATAT*:Jika nilai p nantinya membuat polinomial $\mathcal{F}(x)$ tereduksi, maka kita harus memilih nilai p yang lain. Dikarenakan Teorema tersebut berbunyi "Jika Maka" yang nantinya kita tak dapat menarik kesimpulan jika $\mathcal{F}(x)$ tereduksi

Kita dapatkan $\mathcal{F}(x) = x^3 + x^2 + 1$ dengan melakukan semua koefisien dari f(x) menjadi modulo 2. Jelas bahwa $\deg(f(x)) = \deg(\mathcal{F}(x)) = 3$, kemudian kita cek apakah $\mathcal{F}(x)$ tereduksi di $\mathbb{Z}_2[x]$ atau tidak.

Dalam kasus ini, disebabkan $\mathcal{F}(x)$ polinom derajat 3, maka kemungkinan tereduksinya adalah menjadi polinom derajat 1 dan 2. Dapat ditulis

$$\mathcal{F}(x) = (x - a)(x^2 + bx + c)$$

Disini kita cukup mencari nilai akarnya yaitu a yang memenuhi $\mathcal{F}(a) = 0$. Subtistusi semua $x \in \mathbb{Z}_2$ ke $\mathcal{F}(x)$

$$x = 0 \implies \mathcal{F}(0) = 0^3 + 0^2 + 1 = 1$$

 $x = 1 \implies \mathcal{F}(1) = 1^3 + 1^2 + 1 = 3 = 1$

Dari hasil diatas, kita tidak dapat menemukan nilai a yang memenuhi $\mathcal{F}(a) = 0$. Sehingga $\mathcal{F}(x)$ tidak tereduksi di $\mathbb{Z}_2[x]$.

Dengan demikian, berdasarkan Teorema diatas, f(x) tidak tereduksi di $\mathbb{Z}[x]$.

3. (a) Tunjukkan bahwa $I=\langle x^3+x+1\rangle$ bukan merupakan ideal maksimal dari $\mathbb{Z}_3[x]$.

Solusi:

Teorema (Teorema 8.6.2). Misalkan \mathbb{F} adalah suatu lapangan. Suatu ideal nontrivial $I = \langle p(x) \rangle$ adalah suatu ideal maksimal dalam $\mathbb{F}[x]$ jika dan hanya jika p(x) tak-tereduksi atas \mathbb{F} .

Dengan cara yang sama seperti soal nomor 2, derajat dari $x^3 + x + 1$ adalah 3. Kita cek apakah $x^3 + x + 1$ tereduksi di $\mathbb{Z}_3[x]$.

$$x = 0 \implies 0^{3} + 0 + 1 = 1$$

 $x = 1 \implies 1^{3} + 1 + 1 = 3 = 0$
 $x = 2 \implies 2^{3} + 2 + 1 = 11 = 2$

Ternyata terdapat akar dari x^3+x+1 yaitu x=1. Sehingga x^3+x+1 tereduksi di $\mathbb{Z}_3[x].$

 \therefore Berdasarkan Teorema diatas, $I=\langle x^3+x+1\rangle$ bukan merupakan ideal maksimal dari $\mathbb{Z}_3[x].$

(b) Tentukan ideal J dari $\mathbb{Z}_3[x]$ sehingga $I\subset J$ dan $J\neq\mathbb{Z}_3[x]$. Jelaskan jawaban anda

Solusi:

Polinomial $x^3 + x + 1$ dapat difaktorkan menjadi

$$x^3 + x + 1 = (x+2)(x^2 + x + 2)$$

Perhatikan bahwa x^2+x+2 dan x+2 masing masing sudah tidak dapat difaktorkan. Dari sini kita dapat memilih $J=\langle x+2\rangle$ atau $J=\langle x^2+x+2\rangle$, mengapa?

• Untuk $J=\langle x+2\rangle$ jika ditulis secara definisi adalah sebagai berikut

$$J = \{ f(x)(x+2) \mid f(x) \in \mathbb{Z}_3[x] \}$$

Ketika kita memilih $g(x) = (x^2 + x + 2)h(x)$ untuk suatu $h(x) \in J$, maka berakibat $\langle g(x) \rangle \subset J$. Atau

$$\langle g(x)\rangle = \{(x^2 + x + 2)(x + 2)f(x) \mid f(x) \in \mathbb{Z}_3[x]\} = I$$

Sehingga $I \subset J$.

• Dengan cara yang sama untuk $J=\langle x^2+x+2\rangle$, pilih g(x)=(x+2)h(x) untuk suatu $h(x)\in J$, maka berakibat $\langle g(x)\rangle\subset J$. Atau

$$\langle g(x)\rangle = \{(x+2)(x^2+x+2)f(x) \mid f(x) \in \mathbb{Z}_3[x]\} = I$$

Pada akhirnya $I \subset J$ juga.