Uniform Convergence of a Sequence of Functions

Note 1

1bf1a79b9eba47cf852e1a9c7468c5f7

Let (f_n) be well a sequence of function on a set A. We say we say we converges pointwise on A to a function f if we for all $x \in A$

$$\left(f_n(x)\right) \underset{n\to\infty}{\longrightarrow} f(x).$$

,,

Note 2

11dc20a5619424cafc97ab1b4d64b5f

Let (f_n) be a sequence of function on a set A. If (f_n) converges pointwise on A to f, we write

$$\text{ (cl::} f_n \to f \text{)} \quad \text{or} \quad \text{ (cl::} \lim_{n \to \infty} f_n = f. \text{)}$$

Note 3

6f3f051b9e0741dcbd85037d47c4fd19

Let
$$f_n(x) = \frac{x^2 + nx}{n}$$
.

$$\lim_{n\to\infty}f_n(x)=\text{\{c1::}x.\text{\}}$$

Note 4

3c7731c6b70a4c28972a5ea2e88a1e5f

Let
$$f_n(x) = x^n$$
, $f_n : [0,1] \to \mathbb{R}$.

$$\lim_{n o \infty} f_n(x) = \sup \left\{ egin{aligned} 0 & ext{for } 0 \leq x < 1, \ 1 & ext{for } x = 1. \end{aligned}
ight.$$

Note 5

7218c9c8b0f04d4887dc2345da75c6c6

Let (f_n) be a sequence of function on a set A. We say $\{(c^2)^n (f_n)\}$ converges uniformly on A to a function f_n if $\{(c^2)^n (f_n)\}$

$$\forall \epsilon > 0 \quad \exists N \in \mathbf{N} \quad \forall n \ge N$$

 $|f_n - f| < \epsilon.$

}}

Let (f_n) be a sequence of function on a set A. If (f_n) converges uniformly on A to f, we write (f_n)

$$f_n \rightrightarrows f$$
.

}}

Note 7

77ef924775b2453cb303b726f3081917

What is the key distinction between the definitions of pointwise and uniform convergences of a sequence of functions?

The dependence of N on x.

Note 8

42d2e1017eac4382878c195aa5a4c54d

What is the visual behind the uniform convergence of a sequence of functions?

Eventually every f_n is completely contained in the ϵ -strip.

Note 9

0c853e2f4ed04acf9dae0b00c1a751f3

Which is stronger, uniform or pointwise convergence?

Uniform convergence is stronger.

Note 10

ed7804cf8d4d48d5b0efb426d130fb52

Uniform convergence implies (convergence.)

Note 11

c9h4c187h4d54a78a9500289aa5899d

Let (f_n) be a sequence of function on a set A.

$$\text{((c2::} f_n \Longrightarrow f \text{))} \quad \text{((c3::} \Longleftrightarrow \text{))} \quad \text{((c1::} \sup \left| f_n - f \right| \underset{n \to \infty}{\longrightarrow} 0.\text{))}$$

(in terms of sup)

Let (f_n) be a sequence of function on a set A. (C3) Then $f_n \rightrightarrows f_n$ (C4) if and only if

$$\{\{\epsilon_1: \forall \varepsilon > 0 \mid \exists N \in \mathbf{N} \quad \forall m, n \geq N\}\}$$

Note 13

2b9e4671775a43e9aa4a6b4d581b1658

Let (f_n) be a sequence of function on a set A. Then $f_n \rightrightarrows f$ if and only if

$$\forall \varepsilon > 0 \quad \exists N \in \mathbf{N} \quad \forall m, n \geq N$$

$$|f_n - f_m| < \varepsilon.$$
*{|cl::Cauchy Criterion|}**

Note 14

oaab958475694fc08316e2031a57fa58

Let $f_n \to f$ on a set A and $c \in A$. If we sthe convergence is uniform and we sail f_n are continuous at c, then we say f is continuous at c.

Note 15

a026cf3ddb2f4d5b9a94b36b2bc20ef9

Let $f_n \to f$ on a set A and $c \in A$. If the convergence is uniform and all f_n are continuous at c, then f is continuous at c.

«{{c1::Continuous Limit Theorem}}»

Note 16

5fd08fca82504ff0af82d320da351ff7

What is the key idea in the proof of the Continuous Limit Theorem for a series of functions?

Triple triangle inequality after adding and subtracting f_N .

Note 17

06425162 be e 447479 d 3 a 4f 5 c 71 c 9 c f 2 a

Let $f_n \to f$ on a set A and $c \in A$. If we the convergence is uniform and all f_n are continuous at c, then

$$\lim_{x \to c} \lim_{n \to \infty} f_n(x) = \lim_{x \to c} \lim_{n \to \infty} \lim_{x \to c} f_n(x).$$