Physicians' Occupational Licensing

Pablo Muñoz

U. de Chile

Cristóbal Otero

Columbia

and the Quantity-Quality trade-off

Tomás Larroucau

ASU

Juan Pablo Atal

UPenn and NBER

- Shortage of physicians is an increasingly urgent global concern
 - Worldwide (US) deficit estimated at 7 million (125 thousand) (Haakenstad et al., 2022; AAMC, 2024)

- Shortage of physicians is an increasingly urgent global concern
 - Worldwide (US) deficit estimated at 7 million (125 thousand) (Haakenstad et al., 2022; AAMC, 2024)
- Licensing has been routinely questioned as a key contributor to shortages with unclear benefits in terms of quality (Friedman, 1962; Svorny, 2004)

- Shortage of physicians is an increasingly urgent global concern
 - Worldwide (US) deficit estimated at 7 million (125 thousand) (Haakenstad et al., 2022; AAMC, 2024)
- Licensing has been routinely questioned as a key contributor to shortages with unclear benefits in terms of quality (Friedman, 1962; Svorny, 2004)
- However, the magnitude of the quantity-quality trade-off is unknown

- Shortage of physicians is an increasingly urgent global concern
 - Worldwide (US) deficit estimated at 7 million (125 thousand) (Haakenstad et al., 2022; AAMC, 2024)
- Licensing has been routinely questioned as a key contributor to shortages with unclear benefits in terms of quality (Friedman, 1962; Svorny, 2004)
- However, the magnitude of the quantity-quality trade-off is unknown
 - Requires identifying variation in access and quality of care

- Shortage of physicians is an increasingly urgent global concern
 - Worldwide (US) deficit estimated at 7 million (125 thousand) (Haakenstad et al., 2022; AAMC, 2024)
- Licensing has been routinely questioned as a key contributor to shortages with unclear benefits in terms of quality (Friedman, 1962; Svorny, 2004)
- However, the magnitude of the quantity-quality trade-off is unknown
 - Requires identifying variation in access and quality of care
- Recent healthcare worker's migration increases role of licensing.

- Shortage of physicians is an increasingly urgent global concern
 - Worldwide (US) deficit estimated at 7 million (125 thousand) (Haakenstad et al., 2022; AAMC, 2024)
- Licensing has been routinely questioned as a key contributor to shortages with unclear benefits in terms of quality (Friedman, 1962; Svorny, 2004)
- However, the magnitude of the quantity-quality trade-off is unknown
 - Requires identifying variation in access and quality of care
- Recent healthcare worker's migration increases role of licensing.
 - $\circ~$ In US, # of foreign physicians Δ^+ 30% in last 20 years, now 20% of workforce
 - 2/3 in non-physician jobs, licensing plays a critical role (FED Minneapolis, 2022)

• A simple framework for the quantity-quality trade-off in licensing stringency

- A simple framework for the quantity-quality trade-off in licensing stringency
- Two sets of sufficient statistics to quantify impacts of changing stringency

- A simple framework for the quantity-quality trade-off in licensing stringency
- Two sets of sufficient statistics to quantify impacts of changing stringency
 - o The effect of quantity and quality of physicians on outcomes

- A simple framework for the quantity-quality trade-off in licensing stringency
- Two sets of sufficient statistics to quantify impacts of changing stringency
 - The effect of quantity and quality of physicians on outcomes
 - The effect of the licensing stringency on quantity and quality of physicians

- A simple framework for the quantity-quality trade-off in licensing stringency
- Two sets of sufficient statistics to quantify impacts of changing stringency
 - The effect of quantity and quality of physicians on outcomes
 - The effect of the licensing stringency on quantity and quality of physicians
- Empirical analysis in the context of physician licensing in Chile's public sector

- A simple framework for the quantity-quality trade-off in licensing stringency
- Two sets of sufficient statistics to quantify impacts of changing stringency
 - The effect of quantity and quality of physicians on outcomes
 - The effect of the licensing stringency on quantity and quality of physicians
- Empirical analysis in the context of physician licensing in Chile's public sector
 - Physician scarcity is a first-order policy concern

- A simple framework for the quantity-quality trade-off in licensing stringency
- Two sets of sufficient statistics to quantify impacts of changing stringency
 - The effect of quantity and quality of physicians on outcomes
 - The effect of the licensing stringency on quantity and quality of physicians
- Empirical analysis in the context of physician licensing in Chile's public sector
 - Physician scarcity is a first-order policy concern
 - Licensing exam required has a simple policy design

- A simple framework for the quantity-quality trade-off in licensing stringency
- Two sets of sufficient statistics to quantify impacts of changing stringency
 - The effect of quantity and quality of physicians on outcomes
 - The effect of the licensing stringency on quantity and quality of physicians
- Empirical analysis in the context of physician licensing in Chile's public sector
 - Physician scarcity is a first-order policy concern
 - Licensing exam required has a simple policy design
 - Labor market rapidly changing in recent years due to migration
 - Useful exogenous variation in quantity and quality

- A simple framework for the quantity-quality trade-off in licensing stringency
- Two sets of sufficient statistics to quantify impacts of changing stringency
 - The effect of quantity and quality of physicians on outcomes
 - The effect of the licensing stringency on quantity and quality of physicians
- Empirical analysis in the context of physician licensing in Chile's public sector
 - Physician scarcity is a first-order policy concern
 - Licensing exam required has a simple policy design
 - Labor market rapidly changing in recent years due to migration
 - Useful exogenous variation in quantity and quality
- Main findings:
 - Quantity and quality matter for health outcomes

- A simple framework for the quantity-quality trade-off in licensing stringency
- Two sets of sufficient statistics to quantify impacts of changing stringency
 - The effect of quantity and quality of physicians on outcomes
 - The effect of the licensing stringency on quantity and quality of physicians
- Empirical analysis in the context of physician licensing in Chile's public sector
 - Physician scarcity is a first-order policy concern
 - Licensing exam required has a simple policy design
 - Labor market rapidly changing in recent years due to migration
 - Useful exogenous variation in quantity and quality
- Main findings:
 - Quantity and quality matter for health outcomes
 - Lowering the threshold would have positive net benefits for population health

Contributions

Roadmap for today

- 1. Setting and data
- 2. Empirical model
- 3. Estimation
 - Input Elasticities
 - Output Elasticities
- 4. Policy counterfactual: Relaxing the licensing threshold
 - Short-run effect
 - Long-run effect

- Chile's healthcare system has mix of public and private providers
 - $\circ~$ Our focus: public hospitals $\approx 62\%$ of inpatient discharges

- Chile's healthcare system has mix of public and private providers
 - \circ Our focus: public hospitals \approx 62% of inpatient discharges
- Public healthcare provision organized geographically in 29 Hospital Referral Regions ("Servicio de Salud")
 - Decentralized orgs. responsible for healthcare establishments in their territory
 - o Referrals follow strict guidelines based on patient's address and diagnosis

- Chile's healthcare system has mix of public and private providers
 - $\circ~$ Our focus: public hospitals $\approx 62\%$ of inpatient discharges
- Public healthcare provision organized geographically in 29 Hospital Referral Regions ("Servicio de Salud")
 - Decentralized orgs. responsible for healthcare establishments in their territory
 - o Referrals follow strict guidelines based on patient's address and diagnosis
- Physicians can work in both the private and public sectors

- Chile's healthcare system has mix of public and private providers
 - $\circ~$ Our focus: public hospitals $\approx 62\%$ of inpatient discharges
- Public healthcare provision organized geographically in 29 Hospital Referral Regions ("Servicio de Salud")
 - Decentralized orgs. responsible for healthcare establishments in their territory
 - Referrals follow strict guidelines based on patient's address and diagnosis
- Physicians can work in both the private and public sectors
- Public hospitals:
 - Hiring: decentralized and managed by Health Services and hospital director

- Chile's healthcare system has mix of public and private providers
 - $\circ~$ Our focus: public hospitals $\approx 62\%$ of inpatient discharges
- Public healthcare provision organized geographically in 29 Hospital Referral Regions ("Servicio de Salud")
 - Decentralized orgs. responsible for healthcare establishments in their territory
 - Referrals follow strict guidelines based on patient's address and diagnosis
- Physicians can work in both the private and public sectors
- Public hospitals:
 - Hiring: decentralized and managed by Health Services and hospital director
 - Passing licensing exam is required.

- Chile's healthcare system has mix of public and private providers
 - $\circ~$ Our focus: public hospitals $\approx 62\%$ of inpatient discharges
- Public healthcare provision organized geographically in 29 Hospital Referral Regions ("Servicio de Salud")
 - Decentralized orgs. responsible for healthcare establishments in their territory
 - Referrals follow strict guidelines based on patient's address and diagnosis
- Physicians can work in both the private and public sectors
- Public hospitals:
 - Hiring: decentralized and managed by Health Services and hospital director
 - Passing licensing exam is required.
 - Wage is based on public sector wage schedule (independent of exam score)

• "Unique National Exam of Medical Competency" is a licensing exam aimed "to evaluate knowledge and abilities to practice general medicine"

• "Unique National Exam of Medical Competency" is a licensing exam aimed "to evaluate knowledge and abilities to practice general medicine"

- "Unique National Exam of Medical Competency" is a licensing exam aimed "to evaluate knowledge and abilities to practice general medicine"
- Applied to graduate physicians in Chile and from abroad

- "Unique National Exam of Medical Competency" is a licensing exam aimed "to evaluate knowledge and abilities to practice general medicine"
- Applied to graduate physicians in Chile and from abroad
 - Physicians are only allowed to work in public sector if they pass the exam

- "Unique National Exam of Medical Competency" is a licensing exam aimed "to evaluate knowledge and abilities to practice general medicine"
- Applied to graduate physicians in Chile and from abroad
 - Physicians are only allowed to work in public sector if they pass the exam
 - Approval of exam implies automatic revalidation of foreign medical degree

- "Unique National Exam of Medical Competency" is a licensing exam aimed "to evaluate knowledge and abilities to practice general medicine"
- Applied to graduate physicians in Chile and from abroad
 - Physicians are only allowed to work in public sector if they pass the exam
 - Approval of exam implies automatic revalidation of foreign medical degree
- Simple design:

- "Unique National Exam of Medical Competency" is a licensing exam aimed "to evaluate knowledge and abilities to practice general medicine"
- Applied to graduate physicians in Chile and from abroad
 - Physicians are only allowed to work in public sector if they pass the exam
 - Approval of exam implies automatic revalidation of foreign medical degree
- Simple design:
 - Theory, 180 MCQ's (+ Practical, non-binding)

- "Unique National Exam of Medical Competency" is a licensing exam aimed "to evaluate knowledge and abilities to practice general medicine"
- Applied to graduate physicians in Chile and from abroad
 - Physicians are only allowed to work in public sector if they pass the exam
 - Approval of exam implies automatic revalidation of foreign medical degree
- Simple design:
 - Theory, 180 MCQ's (+ Practical, non-binding)
 - Scored 0-100, based on absolute performance

- "Unique National Exam of Medical Competency" is a licensing exam aimed "to evaluate knowledge and abilities to practice general medicine"
- Applied to graduate physicians in Chile and from abroad
 - Physicians are only allowed to work in public sector if they pass the exam
 - Approval of exam implies automatic revalidation of foreign medical degree
- Simple design:
 - Theory, 180 MCQ's (+ Practical, non-binding)
 - Scored 0-100, based on absolute performance
 - Passing score = 51

- "Unique National Exam of Medical Competency" is a licensing exam aimed "to evaluate knowledge and abilities to practice general medicine"
- Applied to graduate physicians in Chile and from abroad
 - Physicians are only allowed to work in public sector if they pass the exam
 - Approval of exam implies automatic revalidation of foreign medical degree
- Simple design:
 - Theory, 180 MCQ's (+ Practical, non-binding)
 - Scored 0-100, based on absolute performance
 - Passing score = 51
 - Administered annually, can be retaken

- "Unique National Exam of Medical Competency" is a licensing exam aimed "to evaluate knowledge and abilities to practice general medicine"
- Applied to graduate physicians in Chile and from abroad
 - Physicians are only allowed to work in public sector if they pass the exam
 - Approval of exam implies automatic revalidation of foreign medical degree
- Simple design:
 - Theory, 180 MCQ's (+ Practical, non-binding)
 - Scored 0-100, based on absolute performance
 - Passing score = 51
 - Administered annually, can be retaken

Licensing scores: 2013

Number of test-takers over time

Number of test-takers over time, by migration status

Licensing scores: 2013

Licensing scores: 2018 → More data

Scarcity is a long-standing problem and physicians remain scarce

- Currently, \approx 3 million people waiting for medical attention (15% of population)
 - $\circ \approx 1/4$ deaths in the country occur while waiting for medical attention
- As of 2019, Chile had 17.5 physicians per 10,000 inhabitants
 - Half avg. of countries with comparable burden of diseases, injuries, & risk factors
 - Below minimum threshold to achieve effective Universal Healthcare coverage (Haakenstad et al. 2022)

Data: 2011-2019

- Novel admin employer-employee data for all 181 public hospitals in Chile
 - Occupation, wages, hours, nationality, demographics
- Registry of all physicians legally authorized to practice in Chile
 - o title, date of issuance, and the name and country of the granting institution
- Licensing exam scores for all exam takers
- Individual-level discharge data in all public hospitals
 - Date of admission, diagnosis, patient demographics, date of discharge/in-hospital death.
 - + universe of death records (post discharge)
- Exits from hospitals' waiting list
 - Health providers enter patients into waiting list for specialist consultations, surgeries, or specific procedures

Roadmap for today

- 1. Setting and data
- 2. Empirical model
- 3. Estimation
 - Input Elasticities
 - Output Elasticities
- 4. Policy counterfactual: Relaxing the licensing threshold
 - Short-run effect
 - Long-run effect

• Licensing technology based on threshold score s. Output:

$$Y(\underline{s}) = F(L(\underline{s}), \mathring{\theta}(\underline{s}))$$

$$\frac{\partial Y}{\partial \underline{s}} \frac{1}{Y} \equiv \eta_{\underline{s}}^{Y} = \underbrace{\eta_{\underline{L}}^{Y} \eta_{\underline{s}}^{L}}_{\text{Licensing Quantity Effect}} + \underbrace{\eta_{\hat{\theta}}^{Y} \eta_{\underline{s}}^{\hat{\theta}}}_{\text{Licensing Quality Effect}}$$

• Licensing technology based on threshold score s. Output:

$$Y(\underline{s}) = F(L(\underline{s}), \mathring{\theta}(\underline{s}))$$

• The elasticity of the outcome with respect to the licensing threshold is

$$\frac{\partial Y}{\partial \underline{s}} \frac{1}{Y} \equiv \eta_{\underline{s}}^{Y} = \underbrace{\eta_{\underline{L}}^{Y} \eta_{\underline{s}}^{L}}_{\text{Licensing Quantity Effect}} + \underbrace{\eta_{\hat{\theta}}^{Y} \eta_{\underline{s}}^{\hat{\theta}}}_{\text{Usensing Quality Effect}}$$

• Two sets of suff. stats determine impact of policy variable \underline{s} on $Y(\underline{s})$

• Licensing technology based on threshold score **s**. Output:

$$Y(\underline{s}) = F(L(\underline{s}), \mathring{\theta}(\underline{s}))$$

$$\frac{\partial Y}{\partial \underline{s}} \frac{1}{Y} \equiv \eta_{\underline{s}}^{Y} = \underbrace{\eta_{\underline{L}}^{Y} \eta_{\underline{s}}^{L}}_{\text{Licensing Quantity Effect}} + \underbrace{\eta_{\hat{\theta}}^{Y} \eta_{\underline{s}}^{\hat{\theta}}}_{\text{Quantity Effect}}$$

- Two sets of suff. stats determine impact of policy variable \underline{s} on $Y(\underline{s})$
 - Input Elasticities: $\eta_{\underline{s}}^{L}$ and $\eta_{\underline{s}}^{\hat{\theta}}$

• Licensing technology based on threshold score **s**. Output:

$$Y(\underline{s}) = F(L(\underline{s}), \mathring{\theta}(\underline{s}))$$

$$\frac{\partial Y}{\partial \underline{s}} \frac{1}{Y} \equiv \eta_{\underline{s}}^{Y} = \underbrace{\eta_{\underline{L}}^{Y} \eta_{\underline{s}}^{L}}_{\text{Licensing Quantity Effect}} + \underbrace{\eta_{\mathring{\theta}}^{Y} \eta_{\underline{s}}^{\mathring{\theta}}}_{\text{Licensing Quality Effect}}$$

- Two sets of suff. stats determine impact of policy variable \underline{s} on $Y(\underline{s})$
 - \circ Input Elasticities: η_s^L and η_s^{θ}
 - \circ Output Elasticities: $\eta_{\rm L}^{Y}$ and $\eta_{\mathring{\theta}}^{Y}$

• Licensing technology based on threshold score **s**. Output:

$$Y(\underline{s}) = F(L(\underline{s}), \mathring{\theta}(\underline{s}))$$

$$\frac{\partial Y}{\partial \underline{s}} \frac{1}{Y} \equiv \eta_{\underline{s}}^{Y} = \underbrace{\eta_{\underline{L}}^{Y} \eta_{\underline{s}}^{L}}_{\text{Licensing Quantity Effect}} + \underbrace{\eta_{\mathring{\theta}}^{Y} \eta_{\underline{s}}^{\mathring{\theta}}}_{\text{Licensing Quality Effect}}$$

- Two sets of suff. stats determine impact of policy variable \underline{s} on $Y(\underline{s})$
 - \circ Input Elasticities: $\eta^{L}_{\underline{s}}$ and $\eta^{\check{\theta}}_{\underline{s}}$
 - \circ Output Elasticities: η_L^Y and $\eta_{\mathring{\theta}}^Y$
- Ratios of input and output elasticities determine sign of policy effect

• Licensing technology based on threshold score s. Output:

$$Y(\underline{s}) = F(L(\underline{s}), \mathring{\theta}(\underline{s}))$$

$$\frac{\partial Y}{\partial \underline{s}} \frac{1}{Y} \equiv \eta_{\underline{s}}^{Y} = \underbrace{\eta_{\underline{L}}^{Y} \eta_{\underline{s}}^{L}}_{\text{Licensing Quantity Effect}} + \underbrace{\eta_{\hat{\theta}}^{Y} \eta_{\underline{s}}^{\hat{\theta}}}_{\text{Usensing Quality Effect}}$$

- Two sets of suff. stats determine impact of policy variable \underline{s} on $Y(\underline{s})$
 - Input Elasticities: η_s^L and η_s^{θ}
 - Output Elasticities: η_L^Y and $\eta_{\hat{\theta}}^Y$
- Ratios of input and output elasticities determine sign of policy effect

$$\eta_{\underline{s}}^{Y} > 0 \iff \eta_{L}^{Y}/\eta_{\hat{\theta}}^{Y} < \underbrace{-\eta_{\underline{s}}^{\hat{\theta}}/\eta_{\underline{s}}^{L}}_{\equiv R(s)}$$

•
$$InY = \alpha_L InL(\underline{s}) + \alpha_{\bar{\theta}} \bar{\theta}(\underline{s})$$

- $s \sim h(\cdot)$
 - total mass m
 - fraction p(s) match with hosp.

$$\frac{dlnL}{d\underline{s}} \equiv \eta_{\underline{s}}^{L} = \frac{-mh(\underline{s})p(\underline{s})}{L}$$

- $InY = \alpha_L InL(\underline{s}) + \alpha_{\bar{\theta}} \bar{\theta}(\underline{s})$
- $s \sim h(\cdot)$
 - o total mass m
 - fraction p(s) match with hosp.

$$\frac{dlnL}{ds} \equiv \eta_{\underline{s}}^{L} = \frac{-mh(\underline{s})p(\underline{s})}{L}$$

- $lnY = \alpha_L lnL(\underline{s}) + \alpha_{\bar{\theta}} \bar{\theta}(\underline{s})$
- $s \sim h(\cdot)$
 - total mass m
 - fraction p(s) match with hosp.

$$\frac{dlnL}{ds} \equiv \eta_{\underline{s}}^{L} = \frac{-mh(\underline{s})p(\underline{s})}{L}$$

- $InY = \alpha_L InL(\underline{s}) + \alpha_{\bar{\theta}} \bar{\theta}(\underline{s})$
- $s \sim h(\cdot)$
 - total mass m
 - fraction p(s) match with hosp.

$$\frac{dlnL}{ds} \equiv \eta_{\underline{s}}^{L} = \frac{-mh(\underline{s})p(\underline{s})}{L}$$

• $s = \theta + \epsilon$; $\epsilon \sim N(0, \sigma_{\epsilon}^2)$; $\theta \sim N(\mu_{\theta}, \sigma_{\theta}^2)$

- $InY = \alpha_L InL(\underline{s}) + \alpha_{\bar{\theta}} \bar{\theta}(\underline{s})$
- $s \sim h(\cdot)$
 - total mass m
 - fraction p(s) match with hosp.

$$\frac{dlnL}{ds} \equiv \eta_{\underline{s}}^{L} = \frac{-mh(\underline{s})p(\underline{s})}{L}$$

• $s = \theta + \epsilon$; $\epsilon \sim N(0, \sigma_{\epsilon}^2)$; $\theta \sim N(\mu_{\theta}, \sigma_{\theta}^2)$

$$R(\underline{s}) \equiv -\frac{d\bar{\theta}/d\underline{s}}{dlnL/d\underline{s}} = \frac{\sigma_{\theta}^2}{\sigma_{\theta}^2 + \sigma_{\epsilon}^2} \cdot (\mathbb{E}[s|s > \underline{s}] - \underline{s})$$

- $lnY = \alpha_L lnL(\underline{s}) + \alpha_{\bar{\theta}} \bar{\theta}(\underline{s})$
- $s \sim h(\cdot)$
 - total mass m
 - fraction p(s) match with hosp.

$$\frac{dlnL}{ds} \equiv \eta_{\underline{s}}^{L} = \frac{-mh(\underline{s})p(\underline{s})}{L}$$

• $s = \theta + \epsilon$; $\epsilon \sim N(0, \sigma_{\epsilon}^2)$; $\theta \sim N(\mu_{\theta}, \sigma_{\theta}^2)$

$$R(\underline{s}) \equiv -rac{dlnL/d\underline{s}}{dar{ heta}/d\underline{s}} = rac{\sigma_{ heta}^2}{\sigma_{ heta}^2 + \sigma_{\epsilon}^2} \cdot (\mathbb{E}[s|s > \underline{s}] - \underline{s})$$

• $dlnY/d\underline{s} < 0 \iff R(\underline{s}) > \alpha_L/\alpha_{\bar{\theta}}$

Total elasticity is elasticity of quantity times the effect per-marginal physician

$$\eta_{\underline{\underline{s}}}^{Y} = \underbrace{\frac{-m \cdot h(\underline{\underline{s}}) \cdot p(\underline{s})}{L}}_{\eta_{\underline{\underline{s}}}^{\underline{L}}} \cdot \left[\alpha_{\underline{L}} - \alpha_{\bar{\theta}} \cdot \underbrace{\frac{\sigma_{\theta}^{2}}{\sigma_{\theta}^{2} + \sigma_{\epsilon}^{2}} \cdot (\mathbb{E}[\underline{s}|\underline{s} > \underline{\underline{s}}] - \underline{\underline{s}})}_{R(\underline{\underline{s}}) = -\bar{\eta}_{\underline{s}}^{\bar{\theta}}/\eta_{\underline{\underline{s}}}^{\underline{L}}} \right]$$

Depends on following underlying primitives:

• Total elasticity is elasticity of quantity times the effect per-marginal physician

$$\eta_{\underline{\underline{s}}}^{Y} = \underbrace{\frac{-m \cdot h(\underline{\underline{s}}) \cdot p(\underline{s})}{L}}_{\eta_{\underline{\underline{s}}}^{L}} \cdot \left[\alpha_{L} - \alpha_{\bar{\theta}} \cdot \underbrace{\frac{\sigma_{\theta}^{2}}{\sigma_{\theta}^{2} + \sigma_{\epsilon}^{2}} \cdot (\mathbb{E}[\underline{s}|\underline{s} > \underline{\underline{s}}] - \underline{\underline{s}})}_{R(\underline{\underline{s}}) = -\tilde{\eta}_{s}^{\bar{\theta}}/\eta_{\underline{s}}^{L}}\right]$$

- Depends on following underlying primitives:
 - mass at the margin and matching probabilities

• Total elasticity is elasticity of quantity times the effect per-marginal physician

$$\eta_{\underline{\underline{s}}}^{Y} = \underbrace{\frac{-m \cdot h(\underline{\underline{s}}) \cdot p(\underline{s})}{L}}_{\eta_{\underline{\underline{s}}}^{L}} \cdot \left[\alpha_{L} - \alpha_{\bar{\theta}} \cdot \underbrace{\frac{\sigma_{\theta}^{2}}{\sigma_{\theta}^{2} + \sigma_{\epsilon}^{2}} \cdot (\mathbb{E}[\underline{s}|\underline{s} > \underline{\underline{s}}] - \underline{\underline{s}})}_{R(\underline{\underline{s}}) = -\tilde{\eta}_{s}^{\bar{\theta}}/\eta_{\underline{s}}^{L}}\right]$$

- Depends on following underlying primitives:
 - mass at the margin and matching probabilities
 - o net effect on scores per-marginal worker and precision of the signal

• Total elasticity is elasticity of quantity times the effect per-marginal physician

$$\eta_{\underline{s}}^{Y} = \underbrace{\frac{-m \cdot h(\underline{s}) \cdot p(s)}{L}}_{\eta_{\underline{s}}^{L}} \cdot \left[\alpha_{L} - \alpha_{\bar{\theta}} \cdot \underbrace{\frac{\sigma_{\theta}^{2}}{\sigma_{\theta}^{2} + \sigma_{\epsilon}^{2}} \cdot (\mathbb{E}[s|s > \underline{s}] - \underline{s})}_{R(\underline{s}) = -\tilde{\eta}_{s}^{\bar{\theta}}/\eta_{s}^{L}} \right]$$

- Depends on following underlying primitives:
 - mass at the margin and matching probabilities
 - net effect on scores per-marginal worker and precision of the signal
 - returns to quantity and quality

$$Y(\underline{s}) = Y^0 + \underbrace{Q(\underline{s})}_{\text{Service rate}} \times \underbrace{\int_X \Delta Y(X, \bar{\theta}(\underline{s}), L(\underline{s})) dG'_{X|\underline{s}}}_{\text{Avg. per-patient value added}}$$

• Population health $Y(\underline{s})$ can be modeled as:

$$Y(\underline{s}) = Y^0 + \underbrace{Q(\underline{s})}_{\text{Service rate}} \times \underbrace{\int_X \Delta Y(X, \bar{\theta}(\underline{s}), L(\underline{s})) dG'_{X|\underline{s}}}_{\text{Avg. per-patient value added}}$$

Adjusting the licensing threshold can impact health outcomes in two ways:

$$Y(\underline{s}) = Y^0 + \underbrace{Q(\underline{s})}_{\text{Service rate}} \times \underbrace{\int_{X} \Delta Y(X, \bar{\theta}(\underline{s}), L(\underline{s})) dG'_{X|\underline{s}}}_{\text{Avg. per-patient value added}}$$

- Adjusting the licensing threshold can impact health outcomes in two ways:
 - 1. Access: Changing how many people get treated $Q(\underline{s})$

$$Y(\underline{s}) = Y^0 + \underbrace{Q(\underline{s})}_{\text{Service rate}} \times \underbrace{\int_X \Delta Y(X, \bar{\theta}(\underline{s}), L(\underline{s})) dG'_{X|\underline{s}}}_{\text{Avg. per-patient value added}}$$

- Adjusting the licensing threshold can impact health outcomes in two ways:
 - 1. Access: Changing how many people get treated $Q(\underline{s})$
 - 2. Quality: Influencing per-patient treatment value added

$$Y(\underline{s}) = Y^0 + \underbrace{Q(\underline{s})}_{\text{Service rate}} \times \underbrace{\int_X \Delta Y(X, \bar{\theta}(\underline{s}), L(\underline{s})) dG'_{X|\underline{s}}}_{\text{Avg. per-patient value added}}$$

- Adjusting the licensing threshold can impact health outcomes in two ways:
 - 1. Access: Changing how many people get treated $Q(\underline{s})$
 - 2. Quality: Influencing per-patient treatment value added
- Quantify pp. treatment value added as reduction in mortality risk

$$Y(\underline{s}) = Y^0 + \underbrace{Q(\underline{s})}_{\text{Service rate}} \times \underbrace{\int_X \Delta Y(X, \bar{\theta}(\underline{s}), L(\underline{s})) dG'_{X|\underline{s}}}_{\text{Avg. per-patient value added}}$$

- Adjusting the licensing threshold can impact health outcomes in two ways:
 - 1. Access: Changing how many people get treated $Q(\underline{s})$
 - 2. Quality: Influencing per-patient treatment value added
- Quantify pp. treatment value added as reduction in mortality risk

$$Y(\underline{s}) = Y^0 + \underbrace{Q(\underline{s})}_{\text{Service rate}} \times \underbrace{\int_X \Delta Y(X, \bar{\theta}(\underline{s}), L(\underline{s})) dG'_{X|\underline{s}}}_{\text{Avg. per-patient value added}}$$

- Adjusting the licensing threshold can impact health outcomes in two ways:
 - 1. Access: Changing how many people get treated $Q(\underline{s})$
 - 2. Quality: Influencing per-patient treatment value added
- Quantify pp. treatment value added as reduction in mortality risk

$$\eta_{\underline{s}}^{Y} \simeq \eta_{\underline{s}}^{\text{service rate}} - \eta_{\underline{s}}^{\text{mortality}}$$

Roadmap for today

- 1. Setting and data
- 2. Empirical model
- 3. Estimation
 - Input Elasticities
 - Output Elasticities
- 4. Policy counterfactual: Relaxing the licensing threshold
 - Short-run effect
 - Long-run effect

• Elasticity of quantity and quality of phys. w.r.t. licensing threshold depend on:

- Elasticity of quantity and quality of phys. w.r.t. licensing threshold depend on:
 - Mass of test-takers at the threshold

- Elasticity of quantity and quality of phys. w.r.t. licensing threshold depend on:
 - Mass of test-takers at the threshold
 - Matching probabilities (sorting)

- Elasticity of quantity and quality of phys. w.r.t. licensing threshold depend on:
 - Mass of test-takers at the threshold
 - Matching probabilities (sorting)
 - Precision of the signal (mapping between scores and latent quality)

- Elasticity of quantity and quality of phys. w.r.t. licensing threshold depend on:
 - Mass of test-takers at the threshold
 - Matching probabilities (sorting)
 - Precision of the signal (mapping between scores and latent quality)
- → Dynamic model of scores
 - Infer unobserved quality from full history of individual scores
 - How does threshold affect mass of test takers dynamically due to retaking

Input Elasticities: Roadmap of Empirical Exercise

- Elasticity of quantity and quality of phys. w.r.t. licensing threshold depend on:
 - Mass of test-takers at the threshold
 - Matching probabilities (sorting)
 - Precision of the signal (mapping between scores and latent quality)
- → Dynamic model of scores
 - Infer unobserved quality from full history of individual scores
 - How does threshold affect mass of test takers dynamically due to retaking
- \rightarrow Labor matching model
 - o How do physicians match with hospitals?
 - o How would matches change with a different threshold?

Inferring unobserved quality from history of scores

- Physicians, indexed by *i*, belong to type $\tau \in \{N, F\}$.
- The score in attempt n is a noisy measure of quality and test-taking ability Γ_{in}

$$oldsymbol{s}_{\emph{in}} = heta_\emph{i} + \Gamma_\emph{in} + arepsilon_\emph{in}, \quad heta_\emph{i} \sim oldsymbol{N}\left(\mu_{ heta, au(\emph{i})}, \sigma^2_{ heta, au(\emph{i})}
ight), \qquad arepsilon_\emph{in} \sim oldsymbol{N}\left(0, \sigma^2_{arepsilon, au(\emph{i})}
ight)$$

Inferring unobserved quality from history of scores

- Physicians, indexed by *i*, belong to type $\tau \in \{N, F\}$.
- The score in attempt n is a noisy measure of quality and test-taking ability Γ_{in}

$$s_{in} = \theta_i + \Gamma_{in} + \varepsilon_{in}, \quad \theta_i \sim N\left(\mu_{\theta, \tau(i)}, \sigma^2_{\theta, \tau(i)}\right), \qquad \varepsilon_{in} \sim N\left(0, \sigma^2_{\varepsilon, \tau(i)}\right)$$

- Empirically, score gains are positive, decreasing, and convex
 Score gains
- → Test-taking ability improves with exponential decay → No quality gains

$$\Gamma_{in} = \sum_{k=0}^{n_i-1} \gamma \cdot \exp(-\rho \cdot k) \quad n_i \ge 1$$

Inferring unobserved quality from history of scores

- Physicians, indexed by *i*, belong to type $\tau \in \{N, F\}$.
- The score in attempt n is a noisy measure of quality and test-taking ability Γ_{in}

$$\boldsymbol{s}_{\textit{in}} = \boldsymbol{\theta}_{\textit{i}} + \boldsymbol{\Gamma}_{\textit{in}} + \boldsymbol{\varepsilon}_{\textit{in}}, \quad \boldsymbol{\theta}_{\textit{i}} \sim \boldsymbol{N}\left(\boldsymbol{\mu}_{\boldsymbol{\theta},\tau(\textit{i})}, \sigma^2_{\boldsymbol{\theta},\tau(\textit{i})}\right), \qquad \boldsymbol{\varepsilon}_{\textit{in}} \sim \boldsymbol{N}\left(\boldsymbol{0}, \sigma^2_{\boldsymbol{\varepsilon},\tau(\textit{i})}\right)$$

- Empirically, score gains are positive, decreasing, and convex
 Score gains
- → Test-taking ability improves with exponential decay → No quality gains

$$\Gamma_{in} = \sum_{k=0}^{n_i-1} \gamma \cdot \exp(-\rho \cdot k) \quad n_i \ge 1$$

• Retaking depends on average past score \bar{s}_{in} and number of attempts • Details

$$P(\text{retake}|\bar{\mathbf{s}}_{\textit{in}}, n_i, \tau(i)) = \frac{e^{\beta_{0,\tau(i)} + \beta_{n,\tau(i)} n_i + \beta_{s,\tau(i)}(\bar{\mathbf{s}}_{\textit{in}} - \underline{s})}}{1 + e^{\beta_{0,\tau(i)} + \beta_{n,\tau(i)} n_i + \beta_{s,\tau(i)}(\bar{\mathbf{s}}_{\textit{in}} - \underline{s})}}$$

Estimation of latent quality

- Estimate retaking model with a logit → Results
- Estimate scores model via SMM
 - Moments (by "type"): mean over attempts, mean of gains over attempts, cov.
 between attempts, variance of first attempt
 - Main result: $\hat{SNR}_{\text{nationals}} = 0.65$; $\hat{SNR}_{\text{foreigners}} = 0.7$
- ✓ Can construct posterior given vector of scores $E(\theta_i|\mathbf{s}_i)$ → Posterior

Estimation of latent quality

- Estimate retaking model with a logit → Results
- Estimate scores model via SMM
 - Moments (by "type"): mean over attempts, mean of gains over attempts, cov.
 between attempts, variance of first attempt
 - Main result: $\hat{SNR}_{\text{nationals}} = 0.65$; $\hat{SNR}_{\text{foreigners}} = 0.7$
- ✓ Can construct posterior given vector of scores $E(\theta_i|\mathbf{s}_i)$ → Posterior
- ✓ Can simulate evolution of mass of test takers in the long-run

Labor Market Matching

- How would physicians at the margin match with hospitals?
- Two main challenges:
 - 1. Predict matching outside the support of quality observed
 - 2. How matching prob. would change in counterfactual?
 - $\circ~$ Lowering \underline{s} increases number of lower-quality physicians seeking jobs
 - o May impact eq. matching probabilities due to competition in labor market

- How would physicians at the margin match with hospitals?
- Two main challenges:
 - 1. Predict matching outside the support of quality observed
 - 2. How matching prob. would change in counterfactual?
- Our strategy: Posit flexible statistical matching relationship with variables motivated with a model, and evaluate a small reform (Chetty, 2008)

- How would physicians at the margin match with hospitals?
- Two main challenges:
 - 1. Predict matching outside the support of quality observed
 - 2. How matching prob. would change in counterfactual?
- Our strategy: Posit flexible statistical matching relationship with variables motivated with a model, and evaluate a small reform (Chetty, 2008)
- A model with vertical preferences over phys., fixed wages; pairwise stability:
- \rightarrow Phys' *i* choice sets depend on ratio $\frac{\text{job seekers}}{\text{vacancies}}$ where job seekers include *only*

- How would physicians at the margin match with hospitals?
- Two main challenges:
 - 1. Predict matching outside the support of quality observed
 - 2. How matching prob. would change in counterfactual?
- Our strategy: Posit flexible statistical matching relationship with variables motivated with a model, and evaluate a small reform (Chetty, 2008)
- A model with vertical preferences over phys., fixed wages; pairwise stability:
- \rightarrow Phys' *i* choice sets depend on ratio $\frac{\text{job seekers}}{\text{vacancies}}$ where job seekers include *only*
 - \circ Approved of similar quality to i o endogenous matching prob at the margin

- How would physicians at the margin match with hospitals?
- Two main challenges:
 - 1. Predict matching outside the support of quality observed
 - 2. How matching prob. would change in counterfactual?
- Our strategy: Posit flexible statistical matching relationship with variables motivated with a model, and evaluate a small reform (Chetty, 2008)
- A model with vertical preferences over phys., fixed wages; pairwise stability:
- \rightarrow Phys' *i* choice sets depend on ratio $\frac{\text{job seekers}}{\text{vacancies}}$ where job seekers include *only*
 - o Approved of similar quality to $i \rightarrow$ endogenous matching prob at the margin
 - Approved of higher quality than i

Estimation: Sorting

Approximate "Conditional Matching Probabilities" over 29 HRR + outside opt. as:

$$\textit{CMP}_{\textit{ijt}} = \frac{e^{\textit{v}(\textit{x}_{\textit{ijt}}) + g(\textit{M}_t(\underline{s}), \kappa_{\textit{jt}})}}{1 + \sum_{\textit{j'}} e^{\textit{v}(\textit{x}_{\textit{j't}})) + g(\textit{M}_t(\underline{s}), \kappa_{\textit{j't}})}}$$

- \circ $v(\cdot)$ captures physician and hospital preferences
- \circ $g(\cdot)$ models equilibrium effects due to labor market competition

Estimation: Sorting

Approximate "Conditional Matching Probabilities" over 29 HRR + outside opt. as:

$$\textit{CMP}_{\textit{ijt}} = \frac{e^{\textit{v}(\textit{x}_{\textit{ijt}}) + g(\textit{M}_t(\underline{s}), \kappa_{\textit{jt}})}}{1 + \sum_{j'} e^{\textit{v}(\textit{x}_{\textit{ij't}})) + g(\textit{M}_t(\underline{s}), \kappa_{\textit{j't}})}}$$

 \circ $v(\cdot)$ captures physician and hospital preferences

% of phys from
$$i$$
 region working in j in $t-1$

$$v(x_{ijt}) = \alpha^d \text{Distance}_{ij} + \alpha^h \qquad \text{Share}_{ijt-1} + \\ \underline{\alpha_{jt} + \alpha_j^f \text{Foreign}_i + \alpha_j^q \mathbb{E}(\theta_i) + \alpha_j^{fq} \mathbb{E}(\theta_i) \times \text{Foreign}_i + \alpha_j^s \text{Specialist}_i}_{290 \text{ coefficients}}$$

 \circ $g(\cdot)$ models equilibrium effects due to labor market competition

Estimation: Sorting

Approximate "Conditional Matching Probabilities" over 29 HRR + outside opt. as:

$$\mathit{CMP}_{ijt} = \frac{e^{v(x_{ijt}) + g(M_t(\underline{s}), \kappa_{jt})}}{1 + \sum_{j'} e^{v(x_{jj't})) + g(M_t(\underline{s}), \kappa_{j't})}}$$

- \circ $v(\cdot)$ captures physician and hospital preferences
- $\circ g(\cdot)$ models equilibrium effects due to labor market competition

$$g(M_t(\underline{s}), \kappa_{jt}) = (\beta_0 + \beta_r \text{Quality Rank}_j) \times \frac{M_{it}(\underline{s})}{\kappa_{jt}}$$

- $M_{it}(\underline{s}) = [M_{it}^0(\underline{s}), M_{it}^+]$ mass of physicians in and above *i*'s quality range
- $\circ \ \kappa_{jt} = \frac{\mathsf{Beds}_{jt}}{\mathsf{Stock} \ \mathsf{of} \ \mathsf{Physicians}_{i,t-1}}$
- Quality Rank_i: 3 terciles of quality distribution

Alt	Alternative Models			
(1)	(2)	(3)	(4)	
-0.228	-0.228	-0.228	-0.228	
(0.014)	(0.014)	(0.014)	(0.014)	
0.651	0.651	0.653	0.652	
(0.146)	(0.146)	(0.146)	(0.146)	
-0.637	-0.676	-0.726		
(0.152)	(0.159)	(0.186)		
	0.017	0.050		
	(0.021)	(0.038)		
			0.022	
			(0.019)	
No	No	Yes	No	
-15276.84	-15276.53	-15275.33	-15285.23	
	(1) -0.228 (0.014) 0.651 (0.146) -0.637 (0.152)	(1) (2) -0.228 -0.228 (0.014) (0.014) 0.651 0.651 (0.146) (0.146) -0.637 -0.676 (0.152) (0.159) 0.017 (0.021) No No	(1) (2) (3) -0.228 -0.228 -0.228 (0.014) (0.014) (0.014) 0.651 0.651 0.653 (0.146) (0.146) (0.146) -0.637 -0.676 -0.726 (0.152) (0.159) (0.186) 0.017 0.050 (0.021) (0.038)	

	Alt	Alternative Models		
	(1)	(2)	(3)	(4)
Distance _{ij}	-0.228	-0.228	-0.228	-0.228
	(0.014)	(0.014)	(0.014)	(0.014)
Share _{ijt-1}	0.651	0.651	0.653	0.652
•	(0.146)	(0.146)	(0.146)	(0.146)
$(M_{it}^0)/\kappa_{jt}$	-0.637	-0.676	-0.726	
	(0.152)	(0.159)	(0.186)	
$(M_{it}^+)/\kappa_{it}$		0.017	0.050	
, n, ,,		(0.021)	(0.038)	
$(M_{it}^-)/\kappa_{jt}$				0.022
				(0.019)
M interacted with Rank	No	No	Yes	No
Log likelihood	-15276.84	-15276.53	-15275.33	-15285.23

	Alt	Alternative Models			
	(1)	(2)	(3)	(4)	
Distance _{ij}	-0.228	-0.228	-0.228	-0.228	
	(0.014)	(0.014)	(0.014)	(0.014)	
Share _{ijt-1}	0.651	0.651	0.653	0.652	
,	(0.146)	(0.146)	(0.146)	(0.146)	
$(M_{it}^0)/\kappa_{jt}$	-0.637	-0.676	-0.726		
, , , , , , , , , , , , , , , , , , ,	(0.152)	(0.159)	(0.186)		
$(M_{it}^+)/\kappa_{it}$		0.017	0.050		
		(0.021)	(0.038)		
$(M_{it}^-)/\kappa_{it}$				0.022	
				(0.019)	
M interacted with Rank	No	No	Yes	No	
Log likelihood	-15276.84	-15276.53	-15275.33	-15285.23	

	Alternative Models			Placebo
	(1)	(2)	(3)	(4)
Distance _{ij}	-0.228	-0.228	-0.228	-0.228
•	(0.014)	(0.014)	(0.014)	(0.014)
Share _{iit-1}	0.651	0.651	0.653	0.652
•	(0.146)	(0.146)	(0.146)	(0.146)
$(M_{it}^0)/\kappa_{it}$	-0.637	-0.676	-0.726	
	(0.152)	(0.159)	(0.186)	
$(M_{it}^+)/\kappa_{it}$		0.017	0.050	
		(0.021)	(0.038)	
$(M_{it}^-)/\kappa_{it}$				0.022
,				(0.019)
M interacted with Rank	No	No	Yes	No
Log likelihood	-15276.84	-15276.53	-15275.33	-15285.23

	Alt	Placebo		
	(1)	(2)	(3)	(4)
Distance _{ij}	-0.228	-0.228	-0.228	-0.228
•	(0.014)	(0.014)	(0.014)	(0.014)
Share _{ijt-1}	0.651	0.651	0.653	0.652
•	(0.146)	(0.146)	(0.146)	(0.146)
$(M_{it}^0)/\kappa_{jt}$	-0.637	-0.676	-0.726	
	(0.152)	(0.159)	(0.186)	
$(M_{it}^+)/\kappa_{it}$		0.017	0.050	
		(0.021)	(0.038)	
$(M_{it}^-)/\kappa_{it}$				0.022
				(0.019)
M interacted with Rank	No	No	Yes	No
Log likelihood	-15276.84	-15276.53	-15275.33	-15285.23

Short-run Elasticity of Quantity and Semi-elasticity of Quality in '18 $\eta_{L_i,s}$ and $\tilde{\eta}_{\bar{\theta}_i,s}$

Short-run Elasticity of Quantity and Semi-elasticity of Quality in '18

$$\eta_{L_j,\underline{s}}$$
 and $\tilde{\eta}_{ar{ heta}_j,\underline{s}}$

$$\bullet \ \ \bar{\textit{R}}(\underline{\textit{s}}) = -\overline{\tilde{\eta}_{\bar{\theta}_{j},\underline{\textit{s}}}/\eta_{\textit{L}_{j},\underline{\textit{s}}}} \simeq 24$$

- $|\eta_L|$ higher in (median split)
 - Low quality (46 %)
 - Low phys/pat (35 %)
 - o North (26 %)

R(s) approximation without CMPs

• Note that $R(\underline{s})$ is the quality effect per marginal (log) physician

$$R(\underline{s}) = \mathbb{E}[\theta|s > \underline{s}] - \theta(\underline{s})$$

$R(\underline{s})$ approximation without CMPs

• Note that $R(\underline{s})$ is the quality effect per marginal (log) physician

$$R(\underline{s}) = \mathbb{E}[\theta|s > \underline{s}] - \theta(\underline{s})$$

Most supra-marginals are nationals and pass the exam. Unbiased signal:

$$\mathbb{E}[heta|s>\underline{s}]\simeq ar{s}_{\mathsf{nat}}=\mathsf{71}$$

$R(\underline{s})$ approximation without CMPs

• Note that $R(\underline{s})$ is the quality effect per marginal (log) physician

$$R(\underline{s}) = \mathbb{E}[\theta|s > \underline{s}] - \theta(\underline{s})$$

• Most supra-marginals are nationals and pass the exam. Unbiased signal:

$$\mathbb{E}[heta | extbf{ extit{s}} > \underline{ extit{s}}] \simeq ar{ extit{s}}_{\mathsf{nat}} = \mathsf{71}$$

Most individuals at the threshold are foreigners. Bayes' rule:

$$heta(\underline{s}) \simeq ar{s}_{ ext{for}} \cdot (1 - \textit{SNR}_{ ext{for}}) + 51 \cdot \textit{SNR}_{ ext{for}} = 50$$

$R(\underline{s})$ approximation without CMPs

• Note that $R(\underline{s})$ is the quality effect per marginal (log) physician

$$R(\underline{s}) = \mathbb{E}[\theta|s > \underline{s}] - \theta(\underline{s})$$

• Most supra-marginals are nationals and pass the exam. Unbiased signal:

$$\mathbb{E}[heta|s>\underline{s}]\simeq ar{s}_{\mathsf{nat}}=\mathsf{71}$$

Most individuals at the threshold are foreigners. Bayes' rule:

$$heta(\underline{s}) \simeq \bar{s}_{\mathsf{for}} \cdot (\mathsf{1} - \mathit{SNR}_{\mathsf{for}}) + \mathsf{51} \cdot \mathit{SNR}_{\mathsf{for}} = \mathsf{50}$$

Simple approx yields

$$\bar{R}(\underline{s}) = 21$$

- → Can approximate sign of reform without estimation of CMPs
- → Not enough to quantify *magnitude* of changes

Roadmap for today

- 1. Simple licensing problem
- 2. Setting and data
- 3. Empirical model
- 4. Estimation
 - Input Elasticities
 - Output Elasticities
- 5. Policy counterfactual: Relaxing the licensing threshold
 - Short-run effect
 - Long-run effect

• For outcome *k* (access and quality), Cobb-Douglas production function:

$$InY_{jt}^k = \alpha_L^k InL_{jt} + \alpha_{\theta}^k \bar{\theta}_{jt} + A_{jt}^k$$

• For outcome *k* (access and quality), Cobb-Douglas production function:

$$InY_{jt}^{k} = \alpha_{L}^{k} InL_{jt} + \alpha_{\theta}^{k} \bar{\theta}_{jt} + A_{jt}^{k}$$

$$\ln(Y_{jt}^k) = \alpha_L^k \ln(L_{jt}) + \alpha_\theta^k \frac{1}{L_{jt}} \sum_{i \in J_t} E(\theta_i | \mathbf{s}_i) + \rho_j^k + \gamma_{f(j)t}^k + \beta^k X_{jt} + \omega_{jt}^k + \alpha_\theta^k \frac{1}{L_{jt}} \sum_{i \in J_t} \nu_i + \varepsilon_{jt}^k$$

• For outcome *k* (access and quality), Cobb-Douglas production function:

$$InY_{jt}^{k} = \alpha_{L}^{k} InL_{jt} + \alpha_{\theta}^{k} \bar{\theta}_{jt} + A_{jt}^{k}$$

• Using the posterior; $\theta_i = E(\theta_i | \mathbf{s}_i) + \nu_i$ from the scores model:

$$\ln(Y_{jt}^k) = \alpha_L^k \ln(L_{jt}) + \alpha_\theta^k \frac{1}{L_{jt}} \sum_{i \in J_t} E(\theta_i | \mathbf{s}_i) + \rho_j^k + \gamma_{f(j)t}^k + \beta^k X_{jt} + \omega_{jt}^k + \alpha_\theta^k \frac{1}{L_{jt}} \sum_{i \in J_t} \nu_i + \varepsilon_{jt}^k$$

• The error term μ_{it}^k consists of three components:

• For outcome *k* (access and quality), Cobb-Douglas production function:

$$InY_{jt}^{k} = \alpha_{L}^{k} InL_{jt} + \alpha_{\theta}^{k} \bar{\theta}_{jt} + A_{jt}^{k}$$

$$\ln(Y_{jt}^k) = \alpha_L^k \ln(L_{jt}) + \alpha_\theta^k \frac{1}{L_{jt}} \sum_{i \in J_t} E(\theta_i | \mathbf{s}_i) + \rho_j^k + \gamma_{f(j)t}^k + \beta^k X_{jt} + \omega_{jt}^k + \alpha_\theta^k \frac{1}{L_{jt}} \sum_{i \in J_t} \nu_i + \varepsilon_{jt}^k$$

- The error term μ_{it}^{k} consists of three components:
 - $\circ \ \omega_{it}^{k}$: an unobserved productivity shock potentially known before input choices

• For outcome *k* (access and quality), Cobb-Douglas production function:

$$InY_{jt}^{k} = \alpha_{L}^{k} InL_{jt} + \alpha_{\theta}^{k} \bar{\theta}_{jt} + A_{jt}^{k}$$

$$\ln(Y_{jt}^k) = \alpha_L^k \ln(L_{jt}) + \alpha_\theta^k \frac{1}{L_{jt}} \sum_{i \in J_t} E(\theta_i | \mathbf{s}_i) + \rho_j^k + \gamma_{f(j)t}^k + \beta^k X_{jt} + \omega_{jt}^k + \alpha_\theta^k \frac{1}{L_{jt}} \sum_{i \in J_t} \nu_i + \varepsilon_{jt}^k$$

- The error term μ_{it}^{k} consists of three components:
 - o ω_{it}^k : an unobserved productivity shock potentially known before input choices
 - $\alpha_{\theta}^{k} \frac{1}{L_{it}} \sum_{i \in J_{t}} \nu_{i}$: measurement error in phys' quality

• For outcome *k* (access and quality), Cobb-Douglas production function:

$$InY_{jt}^{k} = \alpha_{L}^{k} InL_{jt} + \alpha_{\theta}^{k} \bar{\theta}_{jt} + A_{jt}^{k}$$

$$\ln(Y_{jt}^k) = \alpha_L^k \ln(L_{jt}) + \alpha_\theta^k \frac{1}{L_{jt}} \sum_{i \in J_t} E(\theta_i | \mathbf{s}_i) + \rho_j^k + \gamma_{f(j)t}^k + \beta^k X_{jt} + \omega_{jt}^k + \alpha_\theta^k \frac{1}{L_{jt}} \sum_{i \in J_t} \nu_i + \varepsilon_{jt}^k$$

- The error term μ_{it}^k consists of three components:
 - o ω_{it}^k : an unobserved productivity shock potentially known before input choices
 - $\alpha_{\theta}^{k} \frac{1}{L_{t}} \sum_{i \in J_{t}} \nu_{i}$: measurement error in phys' quality
 - $\circ \ arepsilon_{jt}^k$: an unobserved productivity shock that occurs after input decisions

Empirical strategy: 2SLS

• We leverage two shift-share (Bartik-like) instruments: Z_{jt}^L and Z_{jt}^{θ} (Altonji & Card 1981; Autor et al. 2013; Borusyak et al. 2022)

$$Z_{jt}^L = \sum_c \% \Delta \text{Test-takers}^c \times \text{share physicians}_{j,t-1}^c$$

 $Z_{jt}^{\theta} = \sum_c \Delta \text{Avg. Quality}^c \times \text{share physicians}_{j,t-1}^c$

Empirical strategy: 2SLS

• We leverage two shift-share (Bartik-like) instruments: Z_{jt}^L and Z_{jt}^{θ} (Altonji & Card 1981; Autor et al. 2013; Borusyak et al. 2022)

$$Z_{jt}^L = \sum_c \% \Delta \text{Test-takers}^c \times \text{share physicians}_{j,t-1}^c$$

 $Z_{jt}^{\theta} = \sum_c \Delta \text{Avg. Quality}^c \times \text{share physicians}_{j,t-1}^c$

- The share component uses the (lagged) share of workers from region of training c that work at hospital j
- The *quantity-shift* component uses the % Δ in the number of elegible test-takers from region of training c
- \bullet The $\it quality\mbox{-}\it shift$ component uses the Δ in the average quality of test-takers from region of training $\it c$

2SLS estimates on access to healthcare

	Ln service	Ln inpatient	Ln exits from waiting list	
	rate	surgeries	Surgical	Medical
	(1)	(2)	(3)	(4)
Ln Physicians ($\hat{lpha}_L^{ m service}$)	1.01	4.97	3.69	3.00
_	[0.25]	[1.96]	[0.69]	[1.02]
Avg. Physicians' Quality ($\hat{lpha}^{ ext{service}}_{ heta}$)	0.01	0.11	-0.00	0.02
	[0.01]	[0.10]	[0.04]	[0.06]
Observations	1,402	744	738	942
Mean Dep. Var.	0.015	3,803	1,534	8,403
F-stat (First-stage)	22	12.3	9.9	15.9
Anderson-Rubin (χ^2)	0.000	0.000	0.000	0.000

Note: All include hospital FE and year FE and that vary with hosp. complexity, beds, inpatient case-mix controls (gender, origin, age, insurance). Exposure-robust standard errors clustered at the region of origin level in brackets (Borusyak et al., 2022).

• Decriptive Stats

2SLS estimates on access to healthcare

	Ln service	Ln inpatient	Ln exits from waiting	
	rate	surgeries	Surgical	Medical
	(1)	(2)	(3)	(4)
I DI /oservice)	4.04	4.07	0.40	0.00
Ln Physicians ($\hat{lpha}_L^{ m service}$)	1.01	4.97	3.69	3.00
	[0.25]	[1.96]	[0.69]	[1.02]
Avg. Physicians' Quality ($\hat{\alpha}_{\theta}^{\text{service}}$)	0.01	0.11	-0.00	0.02
v	[0.01]	[0.10]	[0.04]	[0.06]
Observations	1,402	744	738	942
Mean Dep. Var.	0.015	3,803	1,534	8,403
F-stat (First-stage)	22	12.3	9.9	15.9
Anderson-Rubin (χ^2)	0.000	0.000	0.000	0.000

$$\hat{\alpha}_{\it L}^{\rm service \; rate}/\hat{\alpha}_{\bar{\theta}}^{\rm service \; rate} \rightarrow \infty$$

2SLS estimates on per-patient value added

	Mortality						
	In-H	lospital	28-days	Complications*			
	Ln death Pred. death rate rate		Ln death rate	Ln complications rate			
	(1)	(1) (2)		(4)			
Ln Physicians ($\hat{\alpha}_L^{ m mortality}$) Avg. Physicians' Quality ($\hat{\alpha}_{ heta}^{ m mortality}$)	-0.83 [0.19] -0.04	0.13 [0.11] -0.00	-0.74 [0.20] -0.04	-0.58 [0.23] -0.04			
Observations Mean Dep. var. F-stat (First-stage) Anderson-Rubin (χ^2) p-value	[0.01] 1,402 3.284 22 0.00	[0.01] 1,402 3.494 34.90 0.02	[0.01] 1,402 5.075 22 0.00	[0.02] 1,402 3.272 22 0.01			

Note: All include hospital FE and year FE that vary with hosp. complexity, beds, inpatient case-mix controls (gender, origin, age, insurance). Exposure-robust standard errors clustered at the region of origin level in brackets (Borusyak et al., 2022). *Complications include: infections, hemorrhage, sepsis.

2SLS estimates on per-patient value added

		Mortality	In-hospital			
	In-H	lospital	Complications*			
	Ln death Pred. death I rate rate		Ln death rate	Ln complications rate		
	(1) (2)		(3)	(4)		
Ln Physicians ($\hat{lpha}_L^{ m mortality}$) Avg. Physicians' Quality ($\hat{lpha}_{ heta}^{ m mortality}$)	-0.83 [0.19] -0.04	0.13 [0.11] -0.00	-0.74 [0.20] -0.04	-0.58 [0.23] -0.04		
, wg. i nysicians Quanty (et g	[0.01]	[0.01]	[0.01]	[0.02]		
Observations Mean Dep. var. F-stat (First-stage) Anderson-Rubin (χ^2) p-value	1,402 3.284 22 0.00	1,402 3.494 34.90 0.02	1,402 5.075 22 0.00	1,402 3.272 22 0.01		

$$\hat{lpha}_{\it L}^{
m mortality}/\hat{lpha}_{ar{ heta}}^{
m mortality}=$$
 19

$$Y_{jt} = \rho_j + \gamma_t + \beta Z_{jt}^L + \epsilon_{jt}$$

$$Y_{jt} = \rho_j + \gamma_t + \beta Z_{jt}^L + \epsilon_{jt}$$

Y≡	Ln #	Average	Ln Death
	Physicians	Quality	Rate
	(1)	(2)	(3)
Z_{jt}^L	0.028	-0.504	-0.002
	(0.003)	(0.033)	(0.006)
Ν	1,402	1,402	1,402

1. Increased In(L), decreased $\bar{\theta}$:

$$Y_{jt} = \rho_j + \gamma_t + \beta Z_{jt}^L + \epsilon_{jt}$$

$$R(Z) = -\frac{d\bar{\theta}}{dZ} / \frac{dln(L)}{dZ} = \frac{0.504}{0.028} = 18$$

Y≡	Ln #	Average	Ln Death
	Physicians	Quality	Rate
	(1)	(2)	(3)
Z^L_{jt}	0.028	-0.504	-0.002
	(0.003)	(0.033)	(0.006)
N	1,402	1,402	1,402

$$Y_{jt} = \rho_j + \gamma_t + \beta Z_{jt}^L + \epsilon_{jt}$$

Y≡	Ln # Physicians	Average Quality	Ln Death Rate
	(1)	(2)	(3)
Z_{jt}^L	0.028	-0.504	-0.002
NI.	(0.003)	(0.033)	(0.006)
N	1,402	1,402	1,402

1. Increased In(L), decreased $\bar{\theta}$:

$$R(Z) = -\frac{d\bar{\theta}}{dZ} / \frac{d\ln(L)}{dZ} = \frac{0.504}{0.028} = 18$$

2. Did not affect per-patient mortality:

$$egin{aligned} rac{d ln(Y)}{d Z} &\simeq 0 \ &= lpha_L rac{d ln(L)}{d Z} + lpha_{ar{ heta}} rac{d ar{ heta}}{d Z} \end{aligned}$$

Taking a step back: How did the migration affect inputs and mortality? 1. Increased In(L), decreased $\bar{\theta}$:

$$Y_{jt} = \rho_j + \gamma_t + \beta Z_{jt}^L + \epsilon_{jt}$$

Average

2.	Did not affect per-patient mortality:

 $R(Z) = -\frac{d\bar{\theta}}{dZ} / \frac{dln(L)}{dZ} = \frac{0.504}{0.028} = 18$

	Physicians	Quality	Rate
	(1)	(2)	(3)
_,			

Ln#

1.402

 $Y \equiv$

Ν

$rac{ extit{dln}(extit{Y})}{ extit{dZ}} \simeq 0$			
— ou	dln(L)	± 0/=-	$oldsymbol{d}ar{ heta}$

$$Z_{jt}^{L}$$
 0.028 -0.504 -0.002 (0.003) (0.033) (0.006)

1.402

 $=\alpha_L \frac{\partial}{\partial Z} + \alpha_{\bar{\theta}} \frac{\partial}{\partial Z}$

Ln Death

1.402

Migration shock identifies slope of iso-mortality

Migration shock identifies slope of iso-mortality

Robustness Checks

Validity of IVs:

- Quantity and quality shocks do not predict predetermined hospital workforce or patient demographic variables (Borusyak et al., 2022)
- Shares uncorrelated with changes in outcomes (Goldsmith-Pinkham et al., 2020) Go
- o IV does not have a direct effect on other inputs (e.g. nurses) → Go
- Specification and Estimation of Production Function:
 - Estimates robust to any linear transformation of avg. quality (IV for meas. error)
 - Similar results using share of phys below median quality
 - Similar results using a translog production function → Go

Roadmap for today

- 1. Setting and data
- 2. Empirical model
- 3. Estimation
 - Input Elasticities
 - Output Elasticities
- 4. Policy counterfactual: Relaxing the licensing threshold
 - Short-run effect
 - Long-run effect

 $\bullet \ \ \bar{R}(\underline{s}) = -\overline{\tilde{\eta}_{\bar{\theta}_j,\underline{s}}/\eta_{L_j,\underline{s}}} \simeq 24$

$$\eta_{\underline{\underline{s}}}^{\text{mortality}_j} = \alpha_{\underline{L}}^{\text{mortality}} \cdot \eta_{\underline{\underline{s}}}^{\underline{L}_j} + \alpha_{\bar{\theta}}^{\text{mortality}} \cdot \tilde{\eta}_{\underline{\underline{s}}}^{\bar{\theta}_j}$$

$$\bullet \ \ \bar{R}(\underline{s}) = -\overline{\tilde{\eta}_{\bar{\theta}_j,\underline{s}}/\eta_{L_j,\underline{s}}} \simeq 24$$

$$ullet rac{lpha_L^{
m mortality}}{lpha_{ar{a}}^{
m mortality}} = 20 < 24$$

 policy slightly increases patient mortality

$$\eta_{\underline{\underline{s}}}^{\mathsf{service}_j} = \alpha_L^{\mathsf{service}} \cdot \eta_{\underline{\underline{s}}}^{\underline{L}_j} + \alpha_{\bar{\theta}}^{\mathsf{service}} \cdot \tilde{\eta}_{\underline{\underline{s}}}^{\bar{\theta}_j}.$$

•
$$\bar{R}(\underline{s}) = -\overline{\tilde{\eta}_{\bar{\theta}_i,\underline{s}}/\eta_{L_j,\underline{s}}} \simeq 24$$

$$ullet rac{lpha_L^{
m mortality}}{lpha_{ar{ heta}}^{
m mortality}} = 20 < 24$$

$$\bullet \ \frac{\alpha_L^{\text{service}}}{\alpha_{\bar{\theta}}^{\text{service}}} \to \infty$$

policy increases service

$$\eta_{\underline{\underline{s}}}^{\text{value added}_j} = (\alpha_L^{\text{service}} - \alpha_L^{\text{mortality}}) \cdot \eta_{\underline{\underline{s}}}^{\underline{L}_j} + (\alpha_{\bar{\theta}}^{\text{service}} - \alpha_{\bar{\theta}}^{\text{mortality}}) \cdot \tilde{\eta}_{\underline{\underline{s}}}^{\bar{\theta}_j}.$$

•
$$\bar{R}(\underline{s}) = -\overline{\tilde{\eta}_{\bar{\theta}_i,s}/\eta_{L_i,\underline{s}}} \simeq 24$$

- policy slightly increases patient mortality
- policy increases service
- $ullet rac{lpha_L^{
 m service} lpha_L^{
 m mortality}}{lpha_{ar{ heta}}^{
 m service} lpha_{ar{ heta}}^{
 m mortality}} \simeq 37$
 - policy increases value added

- Offsetting evolution of elasticities of quantity and quality
- Higher mass at the margin but higher stock and fewer vacancies over time

Net impacts on quality

• Effects on per-patient mortality constant over time

Net impacts on quality and access

- Effects on per-patient mortality constant over time
- Effects on service rate maximal in 2016

Net impacts on quality, access, and value added

- Effects on per-patient mortality constant over time
- Effects on service rate maximal in 2016
- Effects on value added maximal in 2016

Roadmap for today

- 1. Setting and data
- 2. Empirical model
- 3. Estimation
 - Input Elasticities
 - Output Elasticities
- 4. Policy counterfactual: Relaxing the licensing threshold
 - Short-run effect
 - Long-run effect

Dynamic policy effects

- What are the dynamic effects of permanently changing the licensing threshold?
- Key issue: retaking mitigates the relevance of the threshold over time
- In our sample, 83% of (first-takers) who fail in 2013 pass by 2018
- Strategy to quantify dynamic effects:
 - Simulate individual histories for each cohort using the model of scores and retaking
 - 2. Compute yearly elasticities w.r.t. threshold (set permanently lower)

Simulated ratio between short and long term elasticities

- Retaking dampens long-run effects of the policy.
- However, policy has net positive effects even 5 years after

Concluding remarks

- We show that physician quantity and quality matter for health outcomes
- We provide a framework to include this tradeoff in the analysis of licensing policies
- We estimate sufficient statistics to quantify the effects of locally relaxing licensing thresholds on patient outcomes
- Policy implication: net benefits from lowering licensing threshold in Chile's public healthcare system.
- Next step: Can we improve policy impacts by optimally allocating marginal physicians to hospitals?

Comments and feedback ataljp@econ.upenn.edu

Contributions

- Physician quantity matters: Carrillo & Feres 2019, Finkelstein et al. 2021, Clemens & Gottlieb 2014
 - → Exogenous variation to show physician quantity matters for outcomes

Contributions

- Physician quantity matters: Carrillo & Feres 2019, Finkelstein et al. 2021, Clemens & Gottlieb 2014
 - \rightarrow Exogenous variation to show physician quantity matters for outcomes
- Physician quality matters: Doyle et al. 2010, Guarín et al. 2021, Ginja et al. 2022
 - → Licensing scores predict health outcomes (no prev. evidence)

Contributions

- Physician quantity matters: Carrillo & Feres 2019, Finkelstein et al. 2021, Clemens & Gottlieb 2014
 - → Exogenous variation to show physician quantity matters for outcomes
- Physician quality matters: Doyle et al. 2010, Guarín et al. 2021, Ginja et al. 2022
 - → Licensing scores predict health outcomes (no prev. evidence)
- Occupational licensing: (Friedman & Kuznets 1945; Friedman 1962; Kugler & Sauer 2005; Kleiner 2013; Kleiner 2016; Dillender 2024, Wiswall, 2007; Angrist & Guryan 2008, Larsen et al., 2023, Kleiner & Soltas 2023, Farronato et al., 2024, Sun and Li, 2024)
 - \rightarrow Provide a framework to understand the quantity/quality trade-off and evaluate the stringency of licensing policies in relevant health outcomes

Licensing Scores → Back

Year	# Tests	Average	% Approved	Average score	# Tests
	4.000	score	$(\text{score} \geq 51)$	if score ≥ 51	∈ [40 – 51)
2009	1,389	71.8	92	74.3	87
2010	1,535	65.1	80	72.1	142
2011	1,748	66.6	81	73.3	160
2013	2,003	56.1	66	67.5	231
2014	2,557	55.8	65	67.5	335
2015	3,641	54.7	60	66.5	651
2016	4,999	53.0	54	66.9	1,012
2017	6,014	52.1	55	64.9	1,233
2018	7,121	53.9	58	65.0	1,552

Referrals follow strict guidelines

									_		UAPO COMUI			1
	1													
ESTABLECIMIENTOS ATENCIÓN SECUNDARIA Y TERCIARIA	2	HOSPITAL CLÍNICO DE NIÑOS ROBERTO DEL RÍO						6 COSAM COMUNAL						
	3	INSTITUTO PSIQUIÁTRICO DR. JOSÉ HORWITZ BARAK						_						
	4	INSTITUTO NACIONAL DEL CÁNCER DR. CAUPOLICÁN PARDO CORREA												
SERVICIO DE SALUD									_					
COMUNA		Colina									Concha	lí .		
STARLEMINIO	109310 - Centro de Saud Familiar Colina	109316 - Centro de Salud Familiar Esmeralda	109416 - Posta Salud Rural Colorado	109417 - Posta Salud Rural Los Ingleses	109418 - Posta Salud Rural Las Canteras	109419 - Posta Salud Rural Santa Marta de Liray	109420 - Posta Salud Rural Chacabuco	109716 - Centro Comunitario de Salud Familiar Esmeralda	109810 - SAPU Colina	109302 - Centro de Salud Familiar Lucas Sierra	109308 - Centro de Salud Familiar Alberto Bachelet Martínez	109309 - Centro de Salud Familiar José Symon Ojeda	109314 - Centro de Salud Familiar Juanita Aguirre	109709 - Centro Comunitario de Salud Familiar Dr. José Symon Ojeda
PEDIATRÍA			-										-	
CARDIOLOGÍA PEDIÁTRICA	2	2	2	2	2	2	2	2		2	2	2	2	2
ENDOCRINOLOGÍA PEDIÁTRICA	2	2	2	2	2	2	2	2		2	2	2	2	2
ENFERMEDADES RESPIRATORIAS PEDIÁTRICAS	2	2	2	2	2	2	2	2		2	2	2	2	2
GASTROENTEROLOGÍA PEDIÁTRICA	2	2	2	2	2	2	2	2		2	2	2	2	2
GINECOLOGÍA PEDIÁTRICA Y DE LA ADOLESCENCIA	2	2	2	2	2	2	2	2		2	2	2	2	2
HEMATOLOGÍA ONCOLÓGICA PEDIÁTRICA	2	2	2	2	2	2	2	2		2	2	2	2	2
HEMOFILIA (SIN LÍMITE DE EDAD)	2	2	2	2	2	2	2	2		2	2	2	2	2
INFECTOLOGÍA PEDIÁTRICA	2	2	2	2	2	2	2	2		2	2	2	2	2
NEFROLOGÍA PEDIÁTRICA	2	2	2	2	2	2	2	2		2	2	2	2	2
NUTRICIÓN CLÍNICA DEL NIÑO Y EL ADOLESCENTE	2	2	2	2	2	2	2	2		2	2	2	2	2
NANEAS	2	2	2	2	2	2	2	2		2	2	2	2	2
MEDICINA INTERNA	1	1	1	1	1	1	1	1		1	1	1	1	1
CARDIOLOGÍA	1	1	1	1	1	1	1	1		1	1	1	1	1
NUTRICIÓN Y DIABETES	1	1	1	1	1	1	1	1		1	1	1	1	1
PROGRAMA MANEJO DE LA OBESIDAD	1	1	1	1	1	1	1	1		1	1	1	1	1
ENDOCRINOLOGÍA ADULTO	1	1	1	1	1	1	1	1		1	1	1	1	1
ENFERMEDADES RESPIRATORIAS ADULTO	1	1	1	1	1	1	1	1		1	1	1	1	1
GASTROENTEROLOGÍA ADULTO	1	1	1	1	1	1	1	1		1	1	1	1	1
HEMATOLOGÍA	1	1	1	1	1	1	1	1		1	1	1	1	1
VIH														
<15 AÑOS	2	2	2	2	2	2	2	2		2	2	2	2	2
>15 AÑOS	1	1	1	1	1	1	1	1		1	1	1	1	1
NEFROLOGÍA ADULTO	1	1	1	1	1	1	1	1		1	1	1	1	1
ONCOLOGÍA MÉDICA														
<15 AÑOS	2	2	2	2	2	2	2	2		2	2	2	2	2
> 15 AÑOS (Derivación desde APS sólo con confirmación diagnóstica realizada)	4	4	4	4	4	4	4	4		4	4	4	4	4
REUMATOLOGÍA								•						
<15 AÑOS	2	2	2	2	2	2	2	2		2	2	2	2	2
>15 AÑOS	1	1	1	1	1	1	1	1		1	1	1	1	1

Referrals follow strict guidelines - Back

Health Service Name	Metropoli	itano Norte	Metropolitano Oriente				
Primary Care	CESFAM	CESFAM CESFAM		CESFAM			
	Colina	Esmeralda	Aguilucho	La Faena			
	(1)	(2)	(3)	(4)			
Pediatrics							
Pediatric respiratory diseases	2	2	4	4			
Internal Medicine							
Cardiology	1	1	5	4			
Medical Oncology							
< 15 years	2	2	7	7			
> 15 years	3	3	5	5			
General Surgery							
Thoracic Surgery	3	3	6	6			

^{1.} Complejo Hospitalario San José; 2. Hospital Clínico De Niños Roberto Del Río; 3. Instituto Nacional Del Cáncer Dr. Caupolicán Pardo Correa; 4. Centro de Referencia de Salud Cordillera Oriente; 5. Hospital Del Salvador; 6. Instituto Nacional del Torax; 7. Hospital de Niños Dr. Luis Calvo Mackenna.

Strict referrals → Back

Licensing scores conditional on working in a public hospital - Back

Number of test-takers over time Back By migration status

Empirical Model: CMP micro-foundation

- Two hospitals + outside option (U, R, 0), and two physician quality tiers, (L, H) with mass M^H and M^U and tier-specific preferences
 - Cutoff in U is such that capacity equals mass of H-phys, who prefer U:

$$\kappa_U = M^H \underbrace{\left[\int_i Pr(u_{iU} > \max\{u_{iR}, u_{l0}\} | H) di \right]}_{\text{\% High-type top-pref is U}} Pr(\hat{\theta}_U < \hat{\theta}_i | H)$$

Cutoff in R is such that capacity equals L-phys. who prefer R + displaced L-phys.
 + displaced H-phys.

$$\kappa_{R} = M^{L} \left[\int_{i} \underbrace{Pr(u_{iR} > \max\{u_{iU}, u_{i0}\} | L)}_{\text{% Low-type top-pref is R}} + \underbrace{Pr(u_{iU} > u_{iR} > u_{i0} | L)}_{\text{% Low-type top-pref is U and second is R}} di \right] Pr(\hat{\theta}_{R} < \hat{\theta}_{i} | L)$$

$$M^{H} \left[\underbrace{\int_{i} Pr(u_{iU} > u_{iR} > u_{i0} | H)}_{\text{% High-type top-pref is U and second pref is R}} di \right] Pr(\hat{\theta}_{R} < \hat{\theta}_{i} < \hat{\theta}_{U} | H)$$

Box plot of quality by hospital → Back

60% increase in FTE physicians in public hospitals → Back

Elasticity of quantity

$$\eta_{L_{j},\underline{\underline{s}}} = \underbrace{\frac{\underline{s}}{L_{j}}} \left(\underbrace{-\int_{X} CMP_{j}(\underline{s},X,M(\underline{s}))h(X,\underline{s})dX}_{\text{Direct Effect } \frac{\partial L_{j}^{\text{neq}}}{\partial \underline{s}} < 0} + \underbrace{\int_{\underline{s} \geq \underline{s}} \int_{X} \frac{\partial CMP_{j}(s,X,M(\underline{s}))}{\partial \underline{s}} h(X,s)dXds}_{\text{General Eq Effect } \frac{\partial L_{j}^{\text{eq}}}{\partial \underline{s}} (+/-)} \right)$$

- Depends on:
 - The distribution of the marginal physicians at \underline{s} : $h(X,\underline{s})$
 - Their matching probabilities: $CMP_i(\underline{s}, X, M(\underline{s})), \forall j \in \mathcal{J}$
 - \circ The general eq. effects of changing \underline{s} on the matching probabilities
- Similar expressions for quality elasticity
 - Elasticity depends on SNR

Input elasticities estimates

	Labor elasticity $\eta^{L_{jt}}_{\underline{\mathcal{S}}}$			Quality Semi-elasticity $\eta_{\underline{\underline{s}}}^{ar{\theta}_{lt}}$				
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
high (phys/pat) _{i,t-1}	0.019			0.023	-0.294			-0.416
•	(0.007)			(0.007)	(0.133)			(0.138)
high average $score_{i,t-1}$		0.033		0.029		-0.236		-0.163
,,,		(0.006)		(0.006)		(0.135)		(0.126)
north _i			-0.025	-0.028			0.557	0.630
,			(0.007)	(0.007)			(0.139)	(0.143)
mean dep. var.	-0.072	-0.072	-0.072	-0.072	1.401	1.401	1.401	1.401
N	1086	1086	1086	1086	1086	1086	1086	1086

Back

Licensing score imputation → Back

- Before the licensing exam there was a voluntary National Medical Examination (EMN)
 - Taken in Chilean medical schools btw 2003 to 2008
- Before the EMN:
 - Local medical graduates needed their Medical Surgeon Degree Examination
 - Foreign physicians had to pass a Foreign Medical Qualification Revalidation Examination
- → We don't observe licensing scores for all physicians working at a given hospital
 - Impute scores based on the score of other physicians from the same region who work in the same hospital

Registered Physicians - Back

Descriptive Statistics: Hospital Characteristics, Back

	Mean	Std. Dev.	Median (p50)	# of Obs.
	(1)	(2)	(3)	(4)
Hospital Characteristics:				
In-hospital Death Rate	3.28	1.82	2.92	1,402
Death Rate (1-month)	5.07	2.71	4.51	1,402
Service Rate (# Admissions/Beneficiaries)	0.02	0.02	0.01	1,402
Total Number of Surgeries	2,018	3,332	6.00	1,402
Length of Stay	4.03	5.66	3.00	1,402
Infection Rate	11.41	4.25	11.05	1,402
Physicians	77.64	119.64	20.00	1,402
Patients (# Admissions)	5,656	7,686	1,964	1,402

Descriptive Statistics: Patient and Hospital Characteristics - Back

	Mean	Std. Dev.	Median (p50)	# of Obs.
	(1)	(2)	(3)	(4)
Patient Characteristics:				
% Female	0.57	0.08	0.58	1,402
% Foreign	0.01	0.03	0.00	1,402
% Age < 29	0.30	0.15	0.31	1,402
% Age ∈ (30,29)	0.10	0.04	0.10	1,402
% Age ∈ (40,49)	0.09	0.03	0.09	1,402
% Age ∈ (50,59)	0.11	0.03	0.11	1,402
% Age ∈ (60,69)	0.12	0.04	0.12	1,402
% Age ∈ (70,79)	0.14	0.06	0.13	1,402
$% Age \in (80,89)$	0.11	0.06	0.10	1,402
% Age > 89	0.03	0.02	0.02	1,402
% Public Insurance	0.97	0.04	0.98	1,402

Descriptive Statistics: Variance of Test Scores Over Time

Descriptive Statistics: $\bar{\theta}$ and % Below $\bar{\theta}$

Elasticity of quantity and semi-elasticity of quality by hospital \rightarrow Back $\eta_{L_i,s}$ and $\tilde{\eta}_{\rho_i,s}$

• Main result assuming that the quality index is equal to the share of physicians below median quality in the data.

Number of test-takers over time, by migration status → Back

Disentangling test-taking ability and quality

- Are score improvements due to increased test-taking ability (preparation) and/or due to improvements in quality?
- We leverage the discontinuity in retaking around the cutoff to show that retakers do not differ in outcomes that proxy for quality

More retaking and large score gains to the left of the cutoff

(b) Maximum achieved score v.s. first score

• Score gains in panel b) are a combination of gains in test-taking ability, gains in quality, and selection around cutoff (Gilraine and Penney, 2021)

No discernable differences in proxies for quality around cutoff - Back

 \Rightarrow No differential effects in quality proxies suggest no quality gains due to retaking

Posterior quality → Back

• Using normality assumption of θ and ϵ :

$$\mathbb{E}[\theta_i \mid \mathbf{s}_{i0}, \mathbf{s}_{i1}, \dots, \mathbf{s}_{in}] = \mu_{\theta, \tau(i)} + \frac{\sigma_{\theta, \tau(i)}^2}{\sigma_{\varepsilon, \tau(i)}^2 + (n+1)\sigma_{\theta, \tau(i)}^2} \left(\sum_{t=0}^n (\mathbf{s}_{it} - \Gamma_{t, \tau(i)} - \mu_{\theta, \tau(i)}) \right)$$

with

$$heta_i = \mathbb{E}(heta_i|s_i) +
u_i$$

The average quality of physicians in hospital j

$$ar{ heta}_j = rac{1}{L_j} \left(\sum_{i \in j} extstyle E(heta_i | extstyle s_i) +
u_i
ight)$$

CMP estimates

The x axis shows probabilities under current cutoff. The y axis shows probabilities under a cutoff of 41, where the mass of low-quality physicians increases and generates displacement to the outside option.

In 2013, Average Nr Test takers / vacancies = 24.

CMP estimates → Back

The x axis shows probabilities under current cutoff. The y axis shows probabilities under a cutoff of 41, where the mass of low-quality physicians increases and generates displacement to the outside option. In 2013, Average Nr Test takers / vacancies = 24.

In 2018, Average Nr Test takers / vacancies = 750.

The impact of physician quantity and quality - Back

	Service Rate		Death Rate	
	(Adm./Pop.)	In-Hospital		30 days
	Ln service rate	Ln death rate	Asinh resid. death rate	Ln death rate
	(1)	(2)	(3)	(4)
Ln Physicians (\hat{lpha}_L)	0.940 (0.256)	-0.753 (0.300)	-0.499 (0.219)	-0.695 (0.268)
% Low Quality Physicians $(\hat{\alpha}_{\theta})$	-0.047 (0.181)	0.585 (0.213)	0.521 (0.181)	0.568 (0.190)
Case-mix Controls Hospital and Year FEs Observations	Yes Yes	Yes Yes	No Yes	Yes Yes
Mean Dep. var.	1,376 0.016	1,376 3.301	1,403 0.009	1,376 5.086
F-stat (First-stage) Anderson-Rubin (χ^2) p-value	14.76 0.00	14.76 0.00	21.85 0.00	14.76 0.00

Case-mix Controls include patients' demographics (share of female, share of foreign, share of inpatients in each of 8 age groups and in each of 5 types of insurance). We also control for beds per capita in each referral region.

Retaking decision: micro-foundation - Back

• We specify the retaking probability for a physician of type τ who fails the exam in attempt n ($s_{in} < \underline{s}$) and has average past score \underline{s}_{in} as:

$$P(\text{retake}|\underline{s}_{\textit{in}}, n_i, \tau(\textit{i})) = \frac{e^{\beta_{0,\tau(\textit{i})} + \beta_{n,\tau(\textit{i})} n + \beta_{s,\tau(\textit{i})}(\underline{s}_{\textit{in}} - \underline{s})}}{1 + e^{\beta_{0,\tau(\textit{i})} + \beta_{n,\tau(\textit{i})} n_i + \beta_{s,\tau(\textit{i})}(\underline{s}_{\textit{in}} - \underline{s})}}$$

- Follows from a dynamic model of (costly) retaking with learning about quality from the sequence of scores Details
- The model predicts that:
 - $\beta_{s,\tau}$ < 0: Retaking prob. decreases with distance between average scores (signal) and passing threshold
 - $\beta_{n,\tau} <$ 0: Conditional on scores, the passing probability is decreasing on the number of attempts due to (i) decay in score gains and (ii) decreasing variance of posterior quality

Retaking decision: micro-foundation Back

- Consider a dynamic model of physicians re-taking decisions
- At attempt n_i , a physician of type $\tau(i)$ with initial quality θ_{i0} and given preferences $\tilde{\delta}_i$ retakes if

preferences
$$\tilde{\delta}_i$$
 retakes if
$$V_{rt}\left(n_i, \underline{s}_{in_{i-1}}, \tau(i); \tilde{\delta}_i, M/\kappa\right) \ge V_{0t}\left(n_i, \underline{s}_{in_{i-1}}, \tau(i); \tilde{\delta}_i\right) \tag{1}$$

with

$$V_{rt}\left(n_{i},\underline{s}_{in_{i}-1},\tau(i);\tilde{\delta}_{i},M/\kappa\right) = \underbrace{-c_{r}}_{\text{Retaking cost}} + \underbrace{\mathbb{P}\left(s_{in} \geq \underline{s}|n_{i},\underline{s}_{in_{i}-1},\tau(i)\right)}_{\text{Passing probability}} \underbrace{\log\left(\sum_{j} e^{\tilde{\delta}_{ijt}} 1\{\hat{\theta}\left(s_{in},\tau(i)\right) \geq \hat{\underline{\theta}}_{j}\left(M_{t}/\kappa_{jt},\tilde{\delta}_{t}\right)\}\right)}_{\text{Expected Labor market value}}$$

$$\left(1 - \mathbb{P}\left(s_{in} \geq \underline{s}|n_{i},\underline{s}_{in_{i}-1},\tau(i)\right)\right)\beta \max\{V_{rt+1}\left(n_{i}+1,\underline{s}_{in_{i}-1},\tau(i);\tilde{\delta}_{i},M/\kappa\right),V_{0t+1}\left(n_{i}+1,\underline{s}_{in_{i}-1},\tau(i);\tilde{\delta}_{i}\right)\}$$

Continuation value

where

$$\mathbb{P}\left(\mathbf{s}_{in} \geq \underline{\mathbf{s}} | n_{i}, \underline{\mathbf{s}}_{in_{i}-1}, \tau(i)\right) = \mathbb{P}\left(\underbrace{\hat{\theta}_{in}\left(\underline{\mathbf{s}}_{in_{i}-1}, \tau(i)\right)}_{\in \mathcal{S}_{in_{i}}} + \underbrace{\Gamma_{in_{i}}\left(n_{i}, \tau(i)\right)}_{\in \mathcal{S}_{in_{i}}+1} + \varepsilon_{in_{i}}\left(\tau(i)\right) \geq \underline{\mathbf{s}}\right)$$
(2)

Robustness: Shock Balance Test Back

Robustness: Share Balance Test - Back

Robustness: Alternative Measure of Quality - Back

Panel A: Access							
	Ln service	Ln inpatient	Ln exits	from waiting list			
	rate	surgeries	Surgical	Medical			
	(1)	(2)	(3)	(4)			
Ln Physicians ($\hat{\alpha}_L$)	0.98	4.36	3.71	2.94			
Lif Physicians (α_L)	(0.25)	(1.29)	(1.32)	(1.19)			
% Low Quality Physicians $(\hat{\alpha}_{\theta})$	-0.05	-1.00	0.05	-0.17			
70 LOW Quality Fifysicians (arg)	(0.18)	(0.80)	(0.78)	(0.82)			
Observations	1,376	740	736	934			
Mean Dep. Var.	0.0155	3.819	1,537	8,467			
F-stat (First-stage)	16.25	10.33	9.29	9.96			
r-stat (First-stage)	10.23	10.33	7.27	7.70			
Panel B: Quality							
		Mortality		In-hospital			
	In-H	ospital	28-days	Complications			
	Ln death rate			Ln complications rate			
	(1)	(2)	(3)	(4)			
Ln Physicians (\hat{lpha}_L)	-0.68 (0.28)	0.13 (0.07)	-0.61 (0.25)	-0.45 (0.27)			
% Low Quality Physicians ($\hat{\alpha}_a$)	0.49	0.03	0.48	0.48			
76 LOW Quality Filysicians ($lpha_{ heta}$)	(0.20)	(0.06)	(0.18)	(0.19)			
	(0.20)	(0.00)	(0.10)	(0.17)			
Observations	1.376	1.376	1.376	1.376			
Mean Dep. var.	3.30	3.50	5.09	11.65			
F-stat (First-stage)	16.25	21.57	16.25	15.46			

Robustness: Alternative Production Function Back

	Ln Death Rate		Ln Service Rate	
	(1)	(2)	(3)	(4)
Ln Physicians (\hat{lpha}_L)	-0.83 (0.31)	0.43 (1.64)	1.01 (0.29)	1.08 (1.34)
Avg. Physicians' Quality ($\hat{\alpha}_{\theta}$)	-0.04	0.07	0.01	0.01
	(0.02)	(0.15)	(0.02)	(0.12)
Interaction ($\hat{lpha}_{L heta}$)		-0.02		-0.00
		(0.03)		(0.03)
Observations Model Year FE Hospital FE Mean dep var First-stage F-stat	1,402 2SLS Yes Yes 3.28 22	1,402 2SLS Yes Yes 3.28 2.332	1,402 2SLS Yes Yes 0.015 22	1,402 2SLS Yes Yes 0.015 2.332
Translog Quantity and Quality Impacts:				
Quantity Impact Quality Impact		-1.280 (0.460) -0.010 (0.002)		0.987 (0.309) 0.008 (0.001)

Reduced Form Impact of Quantity Instrument

	Ln Death Rate	Ln # Physicians	Average Quality	
	(1)	(2)	(3)	
Z^{L}_{jt}	-0.002 (0.006)	0.028 (0.003)	-0.504 (0.033)	
Observations	1,402	1,402	1,402	
$\hat{\alpha}_L^{\text{mortality}}$			-0.828	
$\hat{\alpha}_{\theta}^{\overline{\mathrm{mortality}}}$			-0.0419	

- If there is complementarity between the number of doctors and other inputs
 - $O = e^c L^\gamma$

• If there is complementarity between the number of doctors and other inputs

$$\begin{array}{ll}
- & O = e^c L^{\gamma} \\
\rightarrow & Y = A L^{\alpha_L} e^c (L^{\gamma})^{\alpha_O}
\end{array}$$

• If there is complementarity between the number of doctors and other inputs

$$\begin{array}{ll}
- & O = e^{c}L^{\gamma} \\
\rightarrow & Y = AL^{\alpha_{L}}e^{c}(L^{\gamma})^{\alpha_{O}} \\
\rightarrow & InY = \phi + \underbrace{(\alpha_{L} + \gamma\alpha_{o})}_{\tilde{\alpha}_{L}}InL
\end{array}$$

• If there is complementarity between the number of doctors and other inputs

$$\begin{array}{l}
- O = e^{c}L^{\gamma} \\
\rightarrow Y = AL^{\alpha_{L}}e^{c}(L^{\gamma})^{\alpha_{O}} \\
\rightarrow InY = \phi + \underbrace{(\alpha_{L} + \gamma\alpha_{o})}_{\alpha_{L}}InL
\end{array}$$

• Impact of physicians on outcome of interest, $\tilde{\alpha}_L$, is a bundled effect:

If there is complementarity between the number of doctors and other inputs

$$\begin{array}{l}
- O = e^{c}L^{\gamma} \\
\rightarrow Y = AL^{\alpha_{L}}e^{c}(L^{\gamma})^{\alpha_{O}} \\
\rightarrow InY = \phi + \underbrace{(\alpha_{L} + \gamma\alpha_{o})}_{\tilde{\alpha}_{L}}InL
\end{array}$$

- Impact of physicians on outcome of interest, $\tilde{\alpha}_L$, is a bundled effect:
 - direct effect of an extra doctor α_L
 - indirect effect from the increase in other inputs $\gamma \alpha_{o}$

If there is complementarity between the number of doctors and other inputs

$$\begin{array}{l}
- O = e^{c}L^{\gamma} \\
\rightarrow Y = AL^{\alpha_{L}}e^{c}(L^{\gamma})^{\alpha_{O}} \\
\rightarrow InY = \phi + \underbrace{(\alpha_{L} + \gamma\alpha_{o})}_{\tilde{\alpha}_{L}}InL
\end{array}$$

- Impact of physicians on outcome of interest, $\tilde{\alpha}_L$, is a bundled effect:
 - direct effect of an extra doctor α_I
 - indirect effect from the increase in other inputs $\gamma \alpha_o$
- Two underlying assumptions are:
 - 1. There is complementarity between physicians and other inputs at hospital level
 - 2. "Optimal mix" is independent of the average doctors' quality in a hospital

If there is complementarity between the number of doctors and other inputs

$$\begin{array}{l}
- O = e^{c}L^{\gamma} \\
\rightarrow Y = AL^{\alpha_{L}}e^{c}(L^{\gamma})^{\alpha_{O}} \\
\rightarrow InY = \phi + \underbrace{(\alpha_{L} + \gamma\alpha_{o})}_{\tilde{\alpha}_{L}}InL
\end{array}$$

- Impact of physicians on outcome of interest, $\tilde{\alpha}_L$, is a bundled effect:
 - direct effect of an extra doctor α_L
 - indirect effect from the increase in other inputs $\gamma \alpha_o$
- Two underlying assumptions are:
 - 1. There is complementarity between physicians and other inputs at hospital level
 - 2. "Optimal mix" is independent of the average doctors' quality in a hospital
- We can assess these assumptions empirically

Other inputs: complementarity between physicians and other inputs

Other inputs: "optimal mix" is independent of quality - Back

$$\tilde{\alpha}_L^{2SLS} = \alpha_L + \alpha_O \gamma + \alpha_O \frac{Cov(\nu_i, Z_i)}{Cov(L_i, Z_i)}$$

$$\tilde{\alpha}_{L}^{2SLS} = \alpha_{L} + \alpha_{O}\gamma + \alpha_{O}\frac{Cov(\nu_{i}, Z_{i})}{Cov(L_{i}, Z_{i})}$$

- Identification of the total effect of an extra doctor (i.e., $\tilde{\alpha}_L = \alpha_L + \alpha_O \gamma$) requires that $Cov(\nu_i, Z_i) = 0$
 - Or, simply put, that innovations in O_i do not correlate with the instrument

$$\tilde{\alpha}_{L}^{2SLS} = \alpha_{L} + \alpha_{O}\gamma + \alpha_{O}\frac{Cov(\nu_{i}, Z_{i})}{Cov(L_{i}, Z_{i})}$$

- Identification of the total effect of an extra doctor (i.e., $\tilde{\alpha}_L = \alpha_L + \alpha_O \gamma$) requires that $Cov(\nu_i, Z_i) = 0$
 - Or, simply put, that innovations in O_i do not correlate with the instrument
- Does the instrument Z_i affects other inputs through a channel other than the increase in physicians?

$$\tilde{\alpha}_{L}^{2SLS} = \alpha_{L} + \alpha_{O}\gamma + \alpha_{O}\frac{Cov(\nu_{i}, Z_{i})}{Cov(L_{i}, Z_{i})}$$

- Identification of the total effect of an extra doctor (i.e., $\tilde{\alpha}_L = \alpha_L + \alpha_O \gamma$) requires that $Cov(\nu_i, Z_i) = 0$
 - Or, simply put, that innovations in O_i do not correlate with the instrument
- Does the instrument Z_i affects other inputs through a channel other than the increase in physicians? Evidence suggests **no**
- A back-of-the-envelope calculation leveraging a set of auxiliary regressions suggests that $Cov(\nu_i, Z_i) \approx 0$

Other inputs: Z_i does not affect other inputs directly \rightarrow Back

• The migration wave was most significant among doctors

(a) Stock Providers in Public Hospitals

(b) Newly Registered Providers

Other inputs: Z_i does not affect other inputs directly

- Following Conley et al., (2012)
 - Results are consistent with a direct effect of the instrument on other inputs equal to zero
 - 2. For the impact of physicians on other inputs to be zero, the direct effect of the instrument on other inputs should be implausible large (almost twice its reduced form impact β)

Other inputs: Z_i does not affect other inputs directly \rightarrow Back

Score gains over attempts → Back

Objective Function:

$$\min_{\mu,\sigma_{\theta},\sigma_{\epsilon}} \left(\frac{1}{n_{s}} \sum_{k=1}^{n_{s}} (\hat{m}_{k} - \bar{m}_{k}) \right)^{2}$$

where:

 $\hat{m}_k = \text{Observed moment } k$

 $\bar{m}_k = \text{Simulated moment } k \text{ (average over simulations)}$

Estimation Process:

- Generate initial scores $s_{it} = \theta_i + \varepsilon_t$, with $\theta_i \sim N(\mu, \sigma_{\theta}^2)$ and $\varepsilon_t \sim N(0, \sigma_{\epsilon}^2)$
- \circ Identify retakers: $s_{it} < s_c$
- Simulate retake scores: $s_{it+1} = \theta_i + \varepsilon_{t+1}$
- Compute simulated moments for each simulation
- o Average simulated moments over multiple simulations
- Minimize the distance between observed and simulated moments

Inside Share → Back

More physicians enter the system: $M \rightarrow M + \Delta M$

More on "sufficient statistics"

• "per marginal physician" effect of lowering threshold is positive iff

$$egin{aligned} lpha_{m{L}}/lpha_{m{ heta}} &> - ilde{\eta}_{ar{ heta}}/\eta_{m{L}} \ &= \mathbb{E}[heta|m{s}>m{s}] - heta(m{s}) \end{aligned}$$

• As most marginals are foreigners and most supra-marginals are nationals:

$$\mathbb{E}[\theta | s > \underline{s}]_j \simeq \underline{s}_{\mathsf{nationals}} + \mathit{SNR}_{\mathsf{nationals}} \cdot (\underline{s}_{\mathsf{nationals},j} - \underline{s}_{\mathsf{nationals}})$$

$$\theta(\underline{s}) \simeq \underline{s}_{\mathsf{foreigners}} + \mathit{SNR}_{\mathsf{foreigners}} \cdot (\underline{s} - \underline{s}_{\mathsf{foreigners}})$$

More on "sufficient statistics"

"per marginal physician" effect of lowering threshold is positive iff

$$\alpha_{L}/\alpha_{\theta} > -\tilde{\eta}_{\bar{\theta}}/\eta_{L}$$

$$= \mathbb{E}[\theta|\mathbf{s} > \underline{\mathbf{s}}] - \theta(\underline{\mathbf{s}})$$

As most marginals are foreigners and most supra-marginals are nationals:

$$\mathbb{E}[heta|s>\underline{s}]_{j}\simeq\underline{s}_{ ext{nationals}}+SNR_{ ext{nationals}}\cdot(\underline{s}_{ ext{nationals},j}-\underline{s}_{ ext{nationals}})$$
 $heta(\underline{s})\simeq\underline{s}_{ ext{foreigners}}+SNR_{ ext{foreigners}}\cdot(\underline{s}-\underline{s}_{ ext{foreigners}})$

- → Estimates of SNRs and "raw moments" from score distribution are "sufficient statistics" for the "per-physician" effect of lowering threshold in hosp. *j*
- → Independent of labor-market assumptions (CMPs)
- ▶ Back

Table: Passing rate among those who fail in 2013, 2013 cohort $\,$

Year	Pass (%)	Cumulative (%)
2014	25	25
2015	28	53
2016	14	67
2017	11	78
2018	5	83

Dynamic policy analysis • Back

• We estimate a model of scores and retaking behavior

$$logit(P(retake_t)) = \alpha_{\tau} + \beta_{1,\tau} nr. \text{ of attempts}_t + \beta_{2,\tau} distance \text{ to cutoff}_t$$

	Foreign	Nationals
nr. of attempts	-0.231	-0.163
	(0.020)	(0.059)
distance to cutoff	-0.036	-0.060
	(0.003)	(0.009)
Intercept	2.592	1.595
	(0.077)	(0.139)
N	8221	1340

- We simulate individual histories for each cohort $c \in [2013, 2018]$
- We compute yearly elasticities to the 2013 (and beyond) threshold

Evolution of elasticity at current cutoff, $\eta^{mortality}$, share model \cdot Back

Evolution of elasticity at current cutoff, $\eta^{\textit{mortality}}$, share model \cdot Back

Matching Probability by Rurality → Back

Matching Probability by Latitude → Back

Long-term passing rates

Simulated passing year for 2013 cohort

year	<u>s</u> = 51		9	<u>s</u> = 41	
	pass	cumulative	pass	cumulative	
2013	86.0	86.0	94.0	94.0	
2014	6.8	92.8	3.5	97.5	
2015	1.4	94.2	0.7	98.2	
2016	0.3	94.6	0.2	98.4	
2017	0.1	94.6	0.0	98.4	
2018	0.1	94.7	0.1	98.5	