# EMZ2 / UMZ2N / IMZ2A

### Power management (dual transistors)

Datasheet

### <For Tr1(PNP)>

| Parameter        | Value  |
|------------------|--------|
| V <sub>CEO</sub> | -50V   |
| I <sub>C</sub>   | -150mA |

### <For Tr2(NPN)>

| Parameter        | Value |  |  |
|------------------|-------|--|--|
| V <sub>CEO</sub> | 50V   |  |  |
| I <sub>C</sub>   | 150mA |  |  |

### Outline





### Features

- 1) Included a 2SA1037AK and a 2SC2412K transistor in a EMT, UMT or SMT package.
- 2)Mounting possible with EMT3 or UMT3 or SMT3 automatic mounting machines.
- 3)Transistor elements are independent, eliminating interference.
- 4) Mounting cost and area can be cut in half.

## •Inner circuit

### EMZ2 / ÚMZ2N

- (1) Tr1(PNP) Emitter
- (2) Tr1(PNP) Base
- (3) Tr2(NPN) Base
- (4) Tr2(NPN) Collector
- (5) Tr2(NPN) Emitter
- (6) Tr1(PNP) Collector



### IMZ2A

- (1) Tr1(PNP) Collector
- (2) Tr2(NPN) Emitter
- (3) Tr2(NPN) Collector
- (4) Tr2(NPN) Base
- (5) Tr1(PNP) Base
- (6) Tr1(PNP) Emitter



### Application

GENERAL PURPOSE SMALL SIGNAL AMPLIFIER

### Packaging specifications

| Part No. | Package           | Package<br>size | Taping<br>code | Reel size<br>(mm) | Tape width (mm) | Basic<br>ordering<br>unit.(pcs) | Marking |
|----------|-------------------|-----------------|----------------|-------------------|-----------------|---------------------------------|---------|
| EMZ2     | SOT-563<br>(EMT6) | 1616            | T2R            | 180               | 8               | 8000                            | Z2      |
| UMZ2N    | SOT-363<br>(UMT6) | 2021            | TR             | 180               | 8               | 3000                            | Z2      |
| IMZ2A    | SOT-457<br>(SMT6) | 2928            | T108           | 180               | 8               | 3000                            | Z2      |

## ● Absolute maximum ratings (T<sub>a</sub> = 25°C)

| Parameter                    |             |                     | Tr1(PNP) | Tr2(NPN) | Unit     |
|------------------------------|-------------|---------------------|----------|----------|----------|
| Collector-base voltage       |             |                     | -60      | 60       | V        |
| Collector-emitter voltage    |             |                     | -50      | 50       | V        |
| Emitter-base voltage         |             |                     | -6       | 7        | V        |
| Collector current            |             |                     | -150     | 150      | mA       |
| Dower discinction            | EMZ2/ UMZ2N | P <sub>D</sub> *1*2 | 150      |          | mW/Total |
| Power dissipation            | IMZ2A       | P <sub>D</sub> *1*3 | 300      |          | mW/Total |
| Junction temperature         |             |                     | 150      |          | °C       |
| Range of storage temperature |             |                     | -55 to   | +150     | °C       |

## ● Electrical characteristics (T<sub>a</sub> = 25°C) <For Tr1(PNP)>

| , u                                  | ,                 | l ,                                            |      | Values |      |      |
|--------------------------------------|-------------------|------------------------------------------------|------|--------|------|------|
| Parameter                            | Symbol            | Conditions                                     | Min. | Typ.   | Max. | Unit |
| Collector-base breakdown voltage     | $BV_CBO$          | I <sub>C</sub> = -50μA                         | -60  | -      | -    | V    |
| Collector-emitter breakdown voltage  | BV <sub>CEO</sub> | I <sub>C</sub> = -1mA                          | -50  |        | -    | V    |
| Emitter-base breakdown voltage       | $BV_{EBO}$        | I <sub>E</sub> = -50μA                         | -6   |        | -    | V    |
| Collector cut-off current            | I <sub>CBO</sub>  | V <sub>CB</sub> = -60V                         |      | -      | -100 | nA   |
| Emitter cut-off current              | I <sub>EBO</sub>  | V <sub>EB</sub> = -6V                          |      | -      | -100 | nA   |
| Collector-emitter saturation voltage | $V_{CE(sat)}$     | $I_C = -50 \text{mA}, I_B = -5 \text{mA}$      |      | -      | -500 | mV   |
| DC current gain                      | h <sub>FE</sub>   | $V_{CE} = -6V, I_{C} = -1mA$                   | 120  | -      | 560  | -    |
| Transition frequency                 | fτ                | $V_{CE} = -12V$ , $I_{E} = 2mA$ , $f = 100MHz$ | -    | 140    | -    | MHz  |
| Output capacitance                   | C <sub>ob</sub>   | $V_{CB} = -12V$ , $I_E = 2mA$ , $f = 100MHz$   | -    | 4.0    | 5.0  | pF   |

## • Electrical characteristics (T<sub>a</sub> = 25°C) <For Tr2(NPN)>

| Doromator                            | Parameter Symbol Conditions - |                                             | Values |      |      | Unit  |
|--------------------------------------|-------------------------------|---------------------------------------------|--------|------|------|-------|
| Falanetei                            |                               |                                             | Min.   | Тур. | Max. | Offic |
| Collector-base breakdown voltage     | BV <sub>CBO</sub>             | I <sub>C</sub> = 50μA                       | 60     | -    | -    | V     |
| Collector-emitter breakdown voltage  | BV <sub>CEO</sub>             | I <sub>C</sub> = 1mA                        | 50     | -    | 1    | V     |
| Emitter-base breakdown voltage       | $BV_{EBO}$                    | I <sub>E</sub> = 50μA                       | 7      | -    | ı    | V     |
| Collector cut-off current            | I <sub>CBO</sub>              | V <sub>CB</sub> = 60V                       | 1      | -    | 100  | nΑ    |
| Emitter cut-off current              | I <sub>EBO</sub>              | V <sub>EB</sub> = 7V                        | 1      | -    | 100  | nΑ    |
| Collector-emitter saturation voltage | V <sub>CE(sat)</sub>          | $I_C = 50$ mA, $I_B = 5$ mA                 | 1      | -    | 400  | V     |
| DC current gain                      | h <sub>FE</sub>               | $V_{CE}$ = 6V, $I_{C}$ = 1mA                | 120    | -    | 560  | -     |
| Transition frequency                 | f <sub>T</sub>                | $V_{CE} = 12V, I_{E} = -2mA,$<br>f = 100MHz | -      | 180  | -    | MHz   |
| Output capacitance                   | C <sub>ob</sub>               | $V_{CB} = 12V$ , $I_E = 0A$ , $f = 1MHz$    | -      | 2.0  | 3.5  | pF    |

<sup>\*1</sup> Each terminal mounted on a reference land.



<sup>\*2 120</sup>mW per element must not be exceeded.

<sup>\*3 200</sup>mW per element must not be exceeded.

### ● Electrical characteristic curves(T<sub>a</sub>=25°C) <For Tr1(PNP)>

Fig.1 Ground Emitter Propagation Characteristics



BASE TO EMITTER VOLTAGE: VBE [V]

Fig.2 Grounded Emitter Output Characteristics



COLLECTOR TO EMITTER VOLTAGE: Vce [V]

Fig.3 DC Current Gain vs. Collector Current (I)



Fig.4 DC Current Gain vs. Collector Current (II)



### ● Electrical characteristic curves(T<sub>a</sub>=25°C) <For Tr1(PNP)>

Fig.5 Collector-Emitter Saturation Voltage vs. Collector Current(I)

COLLECTOR CURRENT : I<sub>C</sub> [mA]

Fig.6 Collector-Emitter Saturation Voltage vs. Collector Current (I)



Fig.7 Base-Emitter Saturation Voltage vs. Collector Current (I)



Fig.8 Gain Bandwith Product vs.
Emitter Current



### ● Electrical characteristic curves(T<sub>a</sub>=25°C) < For Tr1(PNP)>

Fig.9 Collector Output Capacitance vs.
Collector-Base Voltage
Emitter Input Capacitance vs.
Emitter-Base Voltage



Fig.10 Safe Operating Area



Fig.11 Safe Operating Area



Fig.12 Safe Operating Area



COLLECTOR CURRENT : Ic [mA]

### ● Electrical characteristic curves(T<sub>a</sub>=25°C) <For Tr2(NPN)>

Fig.13 Ground Emitter Propagation Characteristics



BASE TO EMITTER VOLTAGE: VBE [V]

Fig.14 Grounded Emitter Output Characteristics



COLLECTOR TO EMITTER VOLTAGE: VCE [V]

Fig.15 DC Current Gain vs. Collector Current (I)



Fig.16 DC Current Gain vs. Collector Current (II)



## ● Electrical characteristic curves (T<sub>a</sub> = 25°C) <For Tr2(NPN)>

Fig.17 Collector-Emitter Saturation Voltage vs. Collector Current(I)



Fig.18 Collector-Emitter Saturation Voltage vs. Collector Current (I)



Fig.19 Base-Emitter Saturation Voltage vs. Collector Current (I)



Fig.20 Gain Bandwith Product vs. Emitter Current



### ● Electrical characteristic curves(T<sub>a</sub> = 25°C) < For TR2(NPN)>

Fig.21 Collector Output Capacitance vs.
Collector-Base Voltage
Emitter Input Capacitance vs.
Emitter-Base Voltage



Fig.22 Safe Operating Area



Fig.23 Safe Operating Area



Fig.24 Safe Operating Area



### Dimensions



| DIM | MILIMETERS |      | INC   | HES   |
|-----|------------|------|-------|-------|
| DIM | MIN        | MAX  | MIN   | MAX   |
| A   | 0.45       | 0.55 | 0.018 | 0.022 |
| A1  | 0.00       | 0.10 | 0.000 | 0.004 |
| b   | 0.17       | 0.27 | 0.007 | 0.011 |
| C   | 0.08       | 0.18 | 0.003 | 0.007 |
| D   | 1.50       | 1.70 | 0.059 | 0.067 |
| E   | 1.10       | 1.30 | 0.043 | 0.051 |
| е   | 0.         | 50   | 0.020 |       |
| HE  | 1.50       | 1.70 | 0.059 | 0.067 |
| L   | 0.10       | 0.30 | 0.004 | 0.012 |
| Lp  | 1          | 0.35 | -     | 0.014 |
| ×   | _          | 0.10 | 12    | 0.004 |
| У   | _          | 0.10 | -     | 0.004 |

| DIM  | MILIMETERS |      | INCHES |       |  |  |
|------|------------|------|--------|-------|--|--|
| DIM  | MIN        | MAX  | MIN    | MAX   |  |  |
| b2   | -          | 0.37 | -      | 0.015 |  |  |
| e1   | 1.25       |      | 0.0    | 49    |  |  |
| - 11 | -          | 0.45 | -      | 0.018 |  |  |

Dimension in mm/inches

### Dimensions



| DIM | DIM  |      | INC             | HES   |
|-----|------|------|-----------------|-------|
| DIW | MIN  | MAX  | MIN             | MAX   |
| A   | 0.80 | 1.00 | 0.031           | 0.039 |
| (A1 | 0.00 | 0.10 | 0.000           | 0.004 |
| A3  | 0.3  | 25   | 0.0             | 10    |
| b   | 0.15 | 0.30 | 0.006           | 0.012 |
| С   | 0.10 | 0.20 | 0.004           | 0.008 |
| D   | 1.90 | 2.10 | 0.075           | 0.083 |
| E   | 1.15 | 1.35 | 0.045           | 0.053 |
| е   | 0.   | 65   | 0.026           |       |
| HE  | 2.00 | 2.20 | 0.079           | 0.087 |
| L1  | 0.20 | 0.50 | 0.008           | 0.020 |
| Lp  | 0.25 | 0.55 | 0.010           | 0.022 |
| Q   | 0.10 | 0.30 | 0.004           | 0.012 |
| х   | -    | 0.10 | s <del>-7</del> | 0.004 |
| У   |      | 0.10 | ○ <del></del>   | 0.004 |
|     |      |      |                 |       |

| DIM MILIMET |     | ETERS | INCHES |       |
|-------------|-----|-------|--------|-------|
| DIM         | MIN | MAX   | MIN    | MAX   |
| b2          | - 7 | 0.40  | -      | 0.016 |
| e1          | 1.5 | 55    | 0.0    | 61    |
| 11          | -   | 0.65  | -      | 0.026 |

Dimension in mm/inches

### Dimensions









Pattern of terminal position areas [Not a pattern of soldering pads]

| DIM  | MILIM | ETERS | INC   | HES   |
|------|-------|-------|-------|-------|
| DIVI | MIN   | MAX   | MIN   | MAX   |
| A    | 1.00  | 1.30  | 0.039 | 0.051 |
| A1   | 0.00  | 0.10  | 0.000 | 0.004 |
| A3   | 0.:   | 25    | 0.0   | 10    |
| b    | 0.25  | 0.40  | 0.010 | 0.016 |
| С    | 0.09  | 0.25  | 0.004 | 0.010 |
| D    | 2.80  | 3.00  | 0.110 | 0.118 |
| E    | 1.50  | 1.80  | 0.059 | 0.071 |
| е    | 0.9   | 95    | 0.037 |       |
| HE   | 2.60  | 3.00  | 0.102 | 0.118 |
| L1   | 0.30  | 0.60  | 0.012 | 0.024 |
| Lp   | 0.40  | 0.70  | 0.016 | 0.028 |
| Q    | 0.20  | 0.30  | 0.008 | 0.012 |
| х    |       | 0.20  | ī     | 0.008 |
| У    | -     | 0.10  | -     | 0.004 |

| MILIMETER |                | MILIMETERS INC |       | UEC   |
|-----------|----------------|----------------|-------|-------|
| DIM       | IVIILLIVI      | MILLIMETERS    |       |       |
|           | MIN            | MAX            | MIN   | MAX   |
| b2        |                | 0.60           | -     | 0.024 |
| e1        | 2.             | 10             | 0.083 |       |
| 11        | <del>-</del> 2 | 0.90           | -     | 0.035 |

Dimension in mm/inches

#### Notes

- 1) The information contained herein is subject to change without notice.
- Before you use our Products, please contact our sales representative and verify the latest specifications:
- Although ROHM is continuously working to improve product reliability and quality, semiconductors can break down and malfunction due to various factors. Therefore, in order to prevent personal injury or fire arising from failure, please take safety measures such as complying with the derating characteristics, implementing redundant and fire prevention designs, and utilizing backups and fail-safe procedures. ROHM shall have no responsibility for any damages arising out of the use of our Poducts beyond the rating specified by
- 4) Examples of application circuits, circuit constants and any other information contained herein are provided only to illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.
- 5) The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM or any other parties. ROHM shall have no responsibility whatsoever for any dispute arising out of the use of such technical information.
- 6) The Products are intended for use in general electronic equipment (i.e. AV/OA devices, communication, consumer systems, gaming/entertainment sets) as well as the applications indicated in this document
- 7) The Products specified in this document are not designed to be radiation tolerant.
- 8) For use of our Products in applications requiring a high degree of reliability (as exemplified below), please contact and consult with a ROHM representative: fransportation equipment (i.e. cars, ships, trains), primary communication equipment, traffic lights, fire/crime prevention, safety equipment, medical systems, servers, solar cells, and power transmission systems.
- Do not use our Products in applications requiring extremely high reliability, such as aerospace equipment, nuclear power control systems, and submarine repeaters.
- 10) ROHM shall have no responsibility for any damages or injury arising from non-compliance with the recommended usage conditions and specifications contained herein.
- 11) ROHM has used reasonable care to ensur the accuracy of the information contained in this document. However, ROHM does not warrants that such information is error-free, and ROHM shall have no responsibility for any damages arising from any inaccuracy or misprint of such information.
- 12) Please use the Products in accordance with any applicable environmental laws and regulations, such as the RoHS Directive. For more details, including RoHS compatibility, please contact a ROHM sales office ROHM shall have no responsibility for any damages or losses resulting non-compliance with any applicable laws or regulations.
- 13) When providing our Products and technologies contained in this document to other countries, you must abide by the procedures and provisions stipulated in all applicable export laws and regulations, including without limitation the US Export Administration Regulations and the Foreign Exchange and Foreign Trade Act.
- 14) This document, in part or in whole, may not be reprinted or reproduced without prior consent of ROHM.



Thank you for your accessing to ROHM product informations.

More detail product informations and catalogs are available, please contact us.

**ROHM Customer Support System** 

http://www.rohm.com/contact/

www.rohm.com © 2015 ROHM Co., Ltd. All rights reserved.