Lecture 20, Oct. 27

20.1 Definition. $L = \lim_{x \to \infty} f(x)$ if for every $\epsilon > 0$, there exists M > 0 such that $x \ge M$, then

$$|f(x) - L| < \epsilon$$
.

20.2 Example. 1. If p > 0, we have $\lim_{x \to \infty} \frac{1}{x^p} = 0$

2.
$$\lim_{x\to\infty} \frac{\ln x}{x} = 0$$

Variants

1. If p > 0, we have $\lim_{x\to 0} \frac{\ln x}{x^p} = 0$

2. For all p, $\lim_{x\to 0} \frac{(\ln x)^p}{x} = 0$

3. $\lim_{x\to\infty} \frac{x}{e^x} = 0$

20.3 Definition. We say that L is the limit of f(x) as x approaches $-\infty$ if for every $\epsilon > 0$ there exists M > 0 such that if x < -M, then $|f(x) - L| < \epsilon$. We write

$$\lim_{x \to -\infty} f(x) = L.$$

20.4 Example. By Squeeze Theorem, we have

$$\lim_{x \to \infty} \frac{\sin x}{x} = 0$$

20.5 Definition (Asymptote). Assume $\lim_{x\to\pm\infty} f(x) = L$, then the line y = L is called a horizontal asymptote of f(x).

Infinite Limits

20.6 Definition. We say that f(x) approaches ∞ at x=a if for every M>0 there exists $\delta>0$ such that if $|x-a|<\delta$, then f(x)>M. We write

$$\lim_{x \to a} f(x) = \infty$$

20.7 Definition (Vertical Asymptote). If $\lim_{x\to a^+} f(x) = \pm \infty$ or $\lim_{x\to a^-} f(x) = \pm \infty$, then x=a is called a vertical asymptote for f(x)

1