STATS 217: Introduction to Stochastic Processes I

Lecture 13

- Consider a DTMC $(X_n)_{n\geq 0}$ on S with transition matrix P.
- Suppose we start the chain from a random initial state distributed according to λ . We will use the notation $X_0 \sim \lambda$. This just means that

some prob.
$$\mathbb{P}[X_0=i]=\lambda_i \quad \forall i\in S.$$
 dis. on S

- Consider a DTMC $(X_n)_{n\geq 0}$ on S with transition matrix P.
- Suppose we start the chain from a random initial state distributed according to λ . We will use the notation $X_0 \sim \lambda$. This just means that

$$\mathbb{P}[X_0 = i] = \lambda_i \quad \forall i \in S.$$

- What is the distribution of X_1 ?
- More generally, what is the distribution of X_n ?

For any $j \in S$, we have

$$\mathbb{P}[X_n = j] = \sum_{i \in S} \mathbb{P}[X_0 = i \land X_n = j]$$

$$= \sum_{i \in S} \mathbb{P}[X_n = j \mid X_0 = i] \mathbb{P}[X_0 = i]$$

$$\mathbb{P}[X_n = j \mid X_0 = i] \mathbb{P}[X_0 = i]$$

$$\mathbb{P}[X_n = j \mid X_0 = i] \mathbb{P}[X_0 = i]$$

For any $j \in S$, we have

$$\mathbb{P}[X_n = j] = \sum_{i \in S} \mathbb{P}[X_0 = i \land X_n = j]$$

$$= \sum_{i \in S} \mathbb{P}[X_n = j \mid X_0 = i] \mathbb{P}[X_0 = i]$$

$$= \sum_{i \in S} \lambda_i \cdot p_{ij}^n$$

For any $j \in S$, we have

$$\mathbb{P}[X_n = j] = \sum_{i \in S} \mathbb{P}[X_0 = i \land X_n = j]$$

$$= \sum_{i \in S} \mathbb{P}[X_n = j \mid X_0 = i] \mathbb{P}[X_0 = i]$$

$$= \sum_{i \in S} \lambda_i \cdot p_{ij}^n \qquad (\lambda_1 \dots \lambda_s) \begin{pmatrix} p_{i1}^n \dots p_{is}^n \\ p_{i1}^n \dots p_{is}^n \end{pmatrix}$$

$$= \sum_{i \in S} \lambda_i \cdot (P^n)_{ij} \qquad (\xi_i : \underline{P}^n)_{i=1} \dots p_{is}^n$$

$$= (\lambda : \underline{P}^n)_{i=1} \dots p_{is}^n$$

$$\leq \text{anity check} : \lambda = \xi_i \quad \longrightarrow \quad (\xi_i : \underline{P}^n)_{i=1} \dots p_{is}^n$$

Lecture 13 STATS 217 3 / 13

For any $j \in S$, we have

$$\mathbb{P}[X_n = j] = \sum_{i \in S} \mathbb{P}[X_0 = i \land X_n = j]$$

$$= \sum_{i \in S} \mathbb{P}[X_n = j \mid X_0 = i] \mathbb{P}[X_0 = i]$$

$$= \sum_{i \in S} \lambda_i \cdot p_{ij}^n$$

$$= \sum_{i \in S} \lambda_i \cdot (P^n)_{ij}$$

$$= (\lambda P^n)_j.$$

Stationary distributions

• So, if $X_0 \sim \lambda$, then $X_n \sim \lambda P^n$.

Stationary distributions

- So, if $X_0 \sim \lambda$, then $X_n \sim \lambda P^n$.
- \bullet A stationary distribution for P is a probability distribution π on S satisfying

$$\pi P = \pi$$
.

Stationary distributions

- So, if $X_0 \sim \lambda$, then $X_n \sim \lambda P^n$.
- ullet A stationary distribution for P is a probability distribution π on S satisfying

$$\pi P = \pi.$$

• Therefore, if π is a stationary distribution for P, then

$$X_0 \sim \pi \implies X_n \sim \pi \quad \forall n \geq 1.$$

4/13

Existence and uniqueness

- A Markov chain $(X_n)_{n\geq 0}$ on S with transition matrix P is said to be **irreducible** if all the states for a single communicating class.
- Recall that this means that for all $i, j \in S$, there exists some t (possibly depending on i and j) such that $(P^t)_{i,j} > 0$.
- ullet Recall also that since S is finite, this means that all states in S are recurrent.

Existence and uniqueness

- A Markov chain $(X_n)_{n\geq 0}$ on S with transition matrix P is said to be **irreducible** if all the states for a single communicating class.
- Recall that this means that for all $i, j \in S$, there exists some t (possibly depending on i and j) such that $(P^t)_{i,j} > 0$.
- Recall also that since S is finite, this means that all states in S are recurrent.
- Next time: Let P be the transition matrix of an irreducible Markov chain. Then, there exists a unique probability distribution π satisfying $\pi P = \pi$.

Example

6/13

- Two state chain: $S = \{0,1\}$ and for $p, q \in (0,1]$,
 - $P = \begin{bmatrix} 1 p & p \\ q & 1 q. \end{bmatrix}$
 - Since p, q > 0, the chain is irreducible.
 - By the theorem, there is a unique stationary distribution.

*
$$(\Pi_{1} \ \Pi_{2})$$
 $(I-P)$ P $=$ $(\Pi_{1} \ \Pi_{2})$ Π_{1} $(I-P)$ $+$ Π_{2} $=$ Π_{1} $=$ Π_{2} $=$ Π_{1} $=$ Π_{1} $=$ Π_{2} $=$ Π_{1} $=$ Π_{1} $=$ Π_{2} $=$ Π_{3} $=$ Π_{4} $=$ Π_{1} $=$ Π_{2} $=$ Π_{3} $=$ Π_{4} $=$ Π_{1} $=$ Π_{2} $=$ Π_{3} $=$ Π_{4} $=$ $\Pi_$

Lecture 13 STATS 217

Example

Two state chain: $S = \{0, 1\}$ and for $p, q \in (0, 1]$,

$$P = \begin{bmatrix} 1 - p & p \\ q & 1 - q. \end{bmatrix}$$

- Since p, q > 0, the chain is irreducible.
- By the theorem, there is a unique stationary distribution.
- By solving $\pi P = \pi$ and using that π is a probability distribution, we get (check!) the solution

$$\pi = \left(\frac{q}{p+q}, \frac{p}{p+q}\right).$$

Doubly-stochastic Markov chains

- Consider a DTMC on S with transition matrix P.
- We know that entries of each row of the transition matrix P sum to 1.
- Suppose also that the columns of P sum to 1. Then, P is said to be a doubly-stochastic transition matrix.

Doubly-stochastic Markov chains

- Consider a DTMC on S with transition matrix P.
- We know that entries of each row of the transition matrix P sum to 1.
- Suppose also that the columns of P sum to 1. Then, P is said to be a doubly-stochastic transition matrix.
- For instance, last time, in our study of waiting times for patterns in coin tossing, we encountered the doubly-stochastic transition matrix

$$P = \begin{bmatrix} HH & HT & TH & TT \\ HH & 1/2 & 1/2 & 0 & 0 \\ HT & 0 & 0 & 1/2 & 1/2 \\ TH & 1/2 & 1/2 & 0 & 0 \\ TT & 0 & 0 & 1/2 & 1/2 \end{bmatrix}.$$

Doubly-stochastic Markov chains

- Consider a DTMC on S with transition matrix P.
- We know that entries of each row of the transition matrix P sum to 1.
- Suppose also that the columns of *P* sum to 1. Then, *P* is said to be a **doubly-stochastic transition matrix**.
- For instance, last time, in our study of waiting times for patterns in coin tossing, we encountered the doubly-stochastic transition matrix

 Problem 1, Homework 4: Let P be a doubly-stochastic transition matrix on the state space S. Then, the uniform distribution on S is a stationary distribution.

- o priori, need not be state dis.
- Consider a DTMC on S with transition matrix P. Let μ be a probability distribution on S.
- We say that μ satisfies the **detailed balance conditions** with respect to P if

$$\mu_i P_{ij} = \mu_j P_{ji} \quad \forall i, j \in S.$$

- Consider a DTMC on S with transition matrix P. Let μ be a probability distribution on S.
- \bullet We say that μ satisfies the **detailed balance conditions** with respect to P if

$$\mu_i P_{ij} = \mu_j P_{ji} \quad \forall i, j \in S.$$

• If μ satisfies the detailed balance conditions with respect to P, then μ is a stationary distribution for P.

- Consider a DTMC on S with transition matrix P. Let μ be a probability distribution on S.
- ullet We say that μ satisfies the **detailed balance conditions** with respect to P if

$$\mu_i P_{ij} = \mu_j P_{ji} \quad \forall i, j \in S.$$

- Indeed, for all $i \in S$,

$$(\mu P)_{i} = \sum_{j \in S} \mu_{j} P_{ji} = \sum_{j \in S} \mathcal{M}_{i} P_{ij} = \mathcal{M}_{i} \left(\sum_{j \in S} P_{ij} \right)$$

$$\mathcal{M}_{i} P_{ij} = \sum_{j \in S} \mu_{j} P_{ji} = \sum_{j \in S} \mathcal{M}_{i} P_{ij} = \mathcal{M}_{i} \left(\sum_{j \in S} P_{ij} \right)$$

Lecture 13 STATS 217 8 / 13

- Consider a DTMC on S with transition matrix P. Let μ be a probability distribution on S.
- ullet We say that μ satisfies the **detailed balance conditions** with respect to P if

$$\mu_i P_{ij} = \mu_j P_{ji} \quad \forall i, j \in S.$$

- If μ satisfies the detailed balance conditions with respect to P, then μ is a stationary distribution for P.
- Indeed, for all $i \in S$,

$$(\mu P)_i = \sum_{j \in S} \mu_j P_{ji} = \sum_{j \in S} \mu_i P_{ij}$$

- Consider a DTMC on S with transition matrix P. Let μ be a probability distribution on S.
- ullet We say that μ satisfies the **detailed balance conditions** with respect to P if

$$\mu_i P_{ij} = \mu_j P_{ji} \quad \forall i, j \in S.$$

- If μ satisfies the detailed balance conditions with respect to P, then μ is a stationary distribution for P.
- Indeed, for all $i \in S$,

$$(\mu P)_i = \sum_{j \in S} \mu_j P_{ji} = \sum_{j \in S} \mu_i P_{ij} = \mu_i \sum_{j \in S} P_{ij}$$

- Consider a DTMC on S with transition matrix P. Let μ be a probability distribution on S.
- ullet We say that μ satisfies the **detailed balance conditions** with respect to P if

$$\mu_i P_{ij} = \mu_j P_{ji} \quad \forall i,j \in S. \qquad \begin{array}{c} \text{ note: } \mu_i \text{ is } \\ \text{ uniform} \\ \text{ =)} \quad \text{\mathbb{I} is symmetric} \end{array}$$

- If μ satisfies the detailed balance conditions with respect to P, then μ is a stationary distribution for P.
- Indeed, for all $i \in S$,

$$(\mu P)_i = \sum_{j \in S} \mu_j P_{ji} = \sum_{j \in S} \mu_i P_{ij} = \mu_i \sum_{j \in S} P_{ij} = \mu_i.$$

$$\text{Non-example:}$$

Detailed balance conditions (DBC)

if IT sake file DBC wit P, also say that P is " Reveasible."

• If π satisfies the detailed balance conditions with respect to P and $X_0 \sim \pi$, then

$$\begin{cases}
\mathbb{P}[X_0 = x_0, \dots, X_n = x_n] = \pi_{x_0} P_{x_0, x_1} \dots P_{x_{n-1}, x_n} \\
\mathbb{Q} \left[\chi_0 = \chi_0, \dots, \chi_n = \chi_0 \right]
\end{cases}$$

• If π satisfies the detailed balance conditions with respect to P and $X_0 \sim \pi$, then $\pi_{x_0} \, \rho_{x_0 \, x_1} = \pi_{x_1} \, \rho_{x_1 \, x_0}$

$$\mathbb{P}[X_0 = x_0, \dots, X_n = x_n] = \underbrace{\pi_{x_0} P_{x_0, x_1} \dots P_{x_{n-1}, x_n}}_{\pi_{x_1} P_{x_1, x_2} \dots P_{x_{n-1}, x_n}} = \underbrace{P_{x_1, x_0} \cdot \pi_{x_1} P_{x_1, x_2} \dots P_{x_{n-1}, x_n}}_{\pi_{x_n} P_{x_n, x_n}}$$

• If π satisfies the detailed balance conditions with respect to P and $X_0 \sim \pi$, then

$$\begin{split} \mathbb{P}[X_0 = x_0, \dots, X_n = x_n] &= \pi_{x_0} P_{x_0, x_1} \dots P_{x_{n-1}, x_n} \\ &= P_{x_1, x_0} \cdot \pi_{x_1} P_{x_1, x_2} \dots P_{x_{n-1}, x_n} \\ &= P_{x_1, x_0} P_{x_2, x_1} \cdot \pi_{x_2} P_{x_2, x_3} \dots P_{x_{n-1}, x_n} \end{split}$$

• If π satisfies the detailed balance conditions with respect to P and $X_0 \sim \pi$, then

$$\mathbb{P}[X_0 = x_0, \dots, X_n = x_n] = \pi_{x_0} P_{x_0, x_1} \dots P_{x_{n-1}, x_n}$$

$$= P_{x_1, x_0} \cdot \pi_{x_1} P_{x_1, x_2} \dots P_{x_{n-1}, x_n}$$

$$= P_{x_1, x_0} P_{x_2, x_1} \cdot \pi_{x_2} P_{x_2, x_3} \dots P_{x_{n-1}, x_n}$$

$$= \dots$$

$$= \pi_{x_n} P_{x_n, x_{n-1}} \dots P_{x_1, x_0}$$

• If π satisfies the detailed balance conditions with respect to P and $X_0 \sim \pi$, then

$$\mathbb{P}[X_0 = x_0, \dots, X_n = x_n] = \pi_{x_0} P_{x_0, x_1} \dots P_{x_{n-1}, x_n}$$

$$= P_{x_1, x_0} \cdot \pi_{x_1} P_{x_1, x_2} \dots P_{x_{n-1}, x_n}$$

$$= P_{x_1, x_0} P_{x_2, x_1} \cdot \pi_{x_2} P_{x_2, x_3} \dots P_{x_{n-1}, x_n}$$

$$= \dots$$

$$= \pi_{x_n} P_{x_n, x_{n-1}} \dots P_{x_1, x_0}$$

$$= \mathbb{P}[X_0 = x_n, \dots, X_n = x_0].$$

• For this reason, such chains are also called reversible.

• If π satisfies the detailed balance conditions with respect to P and $X_0 \sim \pi$, then

$$\mathbb{P}[X_0 = x_0, \dots, X_n = x_n] = \pi_{x_0} P_{x_0, x_1} \dots P_{x_{n-1}, x_n}$$

$$= P_{x_1, x_0} \cdot \pi_{x_1} P_{x_1, x_2} \dots P_{x_{n-1}, x_n}$$

$$= P_{x_1, x_0} P_{x_2, x_1} \cdot \pi_{x_2} P_{x_2, x_3} \dots P_{x_{n-1}, x_n}$$

$$= \dots$$

$$= \pi_{x_n} P_{x_n, x_{n-1}} \dots P_{x_1, x_0}$$

$$= \mathbb{P}[X_0 = x_n, \dots, X_n = x_0].$$

- For this reason, such chains are also called reversible.
- In many interesting examples, the detailed balance conditions provide an efficient way of finding the stationary distribution.

- G = (V, E) is a graph, where V is the set of vertices and E is the set of edges.
- For vertices $u \neq v \in V$, we say that $u \sim v$ if and only if there is an edge between u and v.
- For a vertex $u \in V$, deg(u) denotes the degree of u i.e. the number of vertices it is connected to.

- G = (V, E) is a graph, where V is the set of vertices and E is the set of edges.
- For vertices $u \neq v \in V$, we say that $u \sim v$ if and only if there is an edge between u and v.
- For a vertex $u \in V$, deg(u) denotes the degree of u i.e. the number of vertices it is connected to.
- Note that $\sum_{u \in V} \deg(u) = 2|E|$. handshaking lemma".

- G = (V, E) is a graph, where V is the set of vertices and E is the set of edges.
- For vertices $u \neq v \in V$, we say that $u \sim v$ if and only if there is an edge between u and v.
- For a vertex $u \in V$, deg(u) denotes the degree of u i.e. the number of vertices it is connected to.
- Note that $\sum_{u \in V} \deg(u) = 2|E|$.
- Recall that the transition matrix of the random walk is given by

$$P_{u,v} = \begin{cases} \frac{1}{\deg(u)} & \text{if } v \sim u \\ 0 & \text{otherwise.} \end{cases}$$

- Consider the distribution π where $\pi_u = \deg(u)/2|E|$.
- ullet Then, π is a probability distribution.

- Consider the distribution π where $\pi_u = \deg(u)/2|E|$.
- Then, π is a probability distribution.
- We claim that π satisfies the detailed balance conditions with respect to P.

need to check:
$$\pi_{u} P_{uv} = \pi_{v} P_{vu} + u_{i}v$$
.

(D) case 1: $u \approx v$: both sides are 0

(2) case 2: $u \approx v$.

 $\pi_{u} P_{uv} = \frac{deq(u)}{2|E|} \frac{1}{deq(u)}$
 $\frac{1}{deq(u)} \pi_{v} P_{vu}$

- Consider the distribution π where $\pi_u = \deg(u)/2|E|$.
- Then, π is a probability distribution.
- We claim that π satisfies the detailed balance conditions with respect to P.
- There are two cases. If $u \not\sim v$, then the condition is clearly satisfied since $P_{uv} = P_{vu} = 0$.

- Consider the distribution π where $\pi_u = \deg(u)/2|E|$.
- Then, π is a probability distribution.
- We claim that π satisfies the detailed balance conditions with respect to P.
- There are two cases. If $u \nsim v$, then the condition is clearly satisfied since $P_{uv} = P_{vu} = 0$.
- If $u \sim v$, then

$$\pi_u P_{uv} = \frac{\deg(u)}{2|E|} \cdot \frac{1}{\deg(u)} = \frac{1}{2|E|} = \pi_v P_{vu}.$$

- Consider the distribution π where $\pi_u = \deg(u)/2|E|$.
- Then, π is a probability distribution.
- We claim that π satisfies the detailed balance conditions with respect to P.
- There are two cases. If $u \nsim v$, then the condition is clearly satisfied since $P_{uv} = P_{vu} = 0$.
- If $u \sim v$, then

$$\pi_u P_{uv} = \frac{\deg(u)}{2|E|} \cdot \frac{1}{\deg(u)} = \frac{1}{2|E|} = \pi_v P_{vu}.$$

• Therefore, π is a stationary distribution for \overline{P} . Note that P is irreducible if and only if the graph G is connected i.e., there is a path from any vertex to any other vertex, in which case, π is the unique stationary distribution.

The Ehrenfest urn. n balls are distributed among two urns, urn A and urn B. At each time, we select a ball uniformly at random and move it from its current urn to the other urn.

The Ehrenfest urn. n balls are distributed among two urns, urn A and urn B. At each time, we select a ball uniformly at random and move it from its current urn to the other urn.

• Let X_t denote the number of balls in urn A at time t. Then, $(X_t)_{t\geq 0}$ is a DTMC on $\{1,\ldots,n\}$ with transition matrix P given by

$$P_{jk} = egin{cases} j/n & ext{if } k=j-1 \ (n-j)/n & ext{if } k=j+1 \ 0 & ext{otherwise.} \end{cases}$$

The Ehrenfest urn. *n* balls are distributed among two urns, urn *A* and urn *B*. At each time, we select a ball uniformly at random and move it from its current urn to the other urn.

• Let X_t denote the number of balls in urn A at time t. Then, $(X_t)_{t>0}$ is a DTMC on $\{1, \ldots, n\}$ with transition matrix P given by

$$P_{jk} = egin{cases} j/n & ext{if } k=j-1 \ (n-j)/n & ext{if } k=j+1 \ 0 & ext{otherwise}. \end{cases}$$

12 / 13 Lecture 13 STATS 217

• Let π be the distribution on $\{0,\ldots,n\}$ given by

$$\pi_{x}=2^{-n}\cdot\binom{n}{x}.$$

ullet By the binomial theorem, π is a probability distribution.

intuition: consider the random walk on

• Let π be the distribution on $\{0,\ldots,n\}$ given by

$$\bullet \qquad \pi_{\mathsf{x}} = 2^{-n} \cdot \binom{n}{\mathsf{x}}.$$

- By the binomial theorem, π is a probability distribution.
- Exercise: check that π satisfies the detailed balance condition with respect to P.
- Hence, π is the unique stationary distribution for P.

$$T_{\times}$$
 $P_{\times,\times+1}$ $P_{\times+1,\times}$ P_{\times} $P_{\times+1,\times}$ $P_{\times+1,\times}$ $P_{\times+1,\times}$ $P_{\times+1,\times}$ $P_{\times+1,\times}$

Lecture 13

STATS 217