STAT2911

Probability and Statistical Models

Tutorial 1

- 1. Let Ω be a sample space.
 - (i) What is the smallest σ -algebra on Ω ?
 - (ii) Is the power set of Ω , 2^{Ω} , a σ -algebra?
 - (iii) Assume $|\Omega| > 1$ (so there are at least two sample points in Ω) and construct a σ -algebra which contains exactly 4 sets.
- 2. Using only the definition of a probability measure show that
 - (i) $P(\emptyset) = 0$.
 - (ii) If A_1, \ldots, A_n are disjoint events then $P(\bigcup_{i=1}^n A_i) = \sum_{i=1}^n P(A_i)$.
 - (iii) For any event A, $P(A) + P(A^c) = 1$.
 - (iv) If $A \subset B$ then $P(A) \leq P(B)$ and conclude that for any event $A, P(A) \in [0,1]$.
- 3. Prove that for any three events A, B, C

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C).$$

4. Prove that for events A_1, \dots, A_n ,

$$P(\bigcup_{i=1}^{n} A_i) \le \sum_{i=1}^{n} P(A_i).$$

- 5. In five tosses of a fair coin, what is the probability of a run of three heads occurring? Note that a run of four heads in this case includes a run of three heads.
- 6. In a deal of 5 cards
 - (i) what is the chance of a full house (3 of one value and 2 of another);
 - (ii) what is the chance of a pair (2 of one value and the other three values are distinct)?