Epreuve écrite

Examen de fin d'études secondaires 2006

Section: C

Branche: Mathématiques I

Nom et prénom du candidat	

Question I (6+5+4+5=20 points)

1. Trouver la partie réelle et la partie imaginaire du nombre complexe:

$$z = (1-i)^{12} (\sqrt{3} - 3i)$$

2. Résoudre dans \mathbb{C} l'équation: $z^5 - \sqrt{2}(i-1) = 0$

3. Résoudre dans $\mathbb C$ l'équation: (i-2)z = (2-i)(2+i)+z

4. Soit le polynôme P donné par

$$P(z) = z^3 + 5iz^2 - 2(4+i)z + 2 - 4i \quad (z \in \mathbb{C})$$

Montrer que P admet une racine imaginaire pure et calculer la.

Question II (4+16=20 points)

1. Calculer
$$B \cdot A - A$$
 si $A = \begin{pmatrix} 0 & 1 \\ 2 & 0 \\ 1 & -3 \end{pmatrix}$ et $B = \begin{pmatrix} 1 & 0 & 1 \\ 2 & -1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$.

2. Soit le système
$$\begin{cases} ax - y + z = -2 \\ 2x + y + 3z = -3a \text{ avec } a \in \mathbb{R} \\ ax + 2y + z = 1 \end{cases}$$

- a) Montrer que la matrice du système est singulière si et seulement si $a = \frac{2}{3}$.
- b) Résoudre, discuter et interpréter géométriquement le système suivant la valeur du paramètre a.

Question III ((3+2+5)+(2+4+4)=20 points)

- 1. Dans une colonie de vacances il y a 15 enfants de 9 ans dont $\frac{2}{3}$ savent nager et 12 enfants de 10 ans dont $\frac{3}{4}$ savent nager.
 - a) On choisit un enfant au hasard. Calculer la probabilité qu'il sache nager.
 - b) Parmi les enfants qui savent nager on choisit un au hasard. Calculer la probabilité qu'il ait 10 ans.
 - c) On forme des groupes de 3 enfants. Soit X la variable aléatoire qui associe à chaque groupe de 3 enfants le nombre d'enfants de 9 ans. Etablir la loi de probabilité de X.

Epreuve écrite

Examen de fin d'études secondaires 2006	Nom et prénom du candidat
Section: C	
Branche: Mathématiques l	

- 2. Les lettres du mot TERMINAL sont inscrites sur 8 plaques. On tire au hasard, successivement et sans remise 4 plaques.
 - a) Combien de mots de 4 lettres peut-on obtenir? (TINA et NATI sont deux mots différents)
 - b) Combien de mots de 4 lettres qui contiennent la lettre R peut-on obtenir?
 - c) Combien de mots de 4 lettres qui contiennent exactement deux consonnes peuton obtenir?