CSC148 Worksheet 15 Solution

Hyungmo Gu

April 26, 2020

Question 1

a. According to docstring, flatten([[0, -1], -2, [[-3, [-5], -7]]])) should return

$$[0, -1, -2, -3, -5, -7]$$

b.

sublist	flatten(sublist)	Value of s at the end of the iteration
N/A	N/A	[] (initial value of a)
[0,-1]	[0,-1]	
2	2	
[[-3, [-5], -7]]	[-3,-5,-7]	

Correct Solution:

sublist	flatten(sublist)	Value of s at the end of the iteration
N/A	N/A	[] (initial value of a)
[0,-1]	[0,-1]	
2	[2]	
[[-3, [-5], -7]]	[-3,-5,-7]	

c.

sublist	flatten(sublist)	Value of s at the end of the iteration
N/A	N/A	[] (initial value of a)
[0,-1]	[0,-1]	[0,-1]
2	[2]	[0,-1,2]
[[-3, [-5], -7]]	[-3,-5,-7]	[0,-1,2,-3,-5,-7]

d. Yes, the final value of s in previous problem matches the solution of [0,-1,2,-3,-5,-7] in problem 1.a.

```
def flatten(obj: Union[int, List]) -> List[int]:
e_1
           """Return a (non-nested) list of the integers in <obj>.
          The integers are returned in the left-to-right order they appear
3
           in <obj>.
           >>> flatten(6)
6
           [6]
           >>> flatten([1, [-2, 3], -4])
8
           [1, -2, 3, -4]
9
           >>> flatten([[0, -1], -2, [[-3, [-5]]]])
10
           [0, -1, -2, -3, -5]
12
           if isinstance(obj, int):
13
               return [obj]
14
           else:
15
               s = []
16
               for sublist in obj:
17
                   s.extend(flatten(sublist))
18
19
               return s
20
```

Question 2

a. Input that does NOT reveal an error: [1, [2, 3, [4]], 5]

Expected output: [1, 2, 3, 4]

sublist	flatten(sublist)	Value of s at the end of the iteration
N/A	N/A	[] (initial value of a)
1	[1]	[1]
[2,3,[4]]	[2,3,4]	[1,2,3,4]
5	[5]	[1,2,3,4,5]

b. Input that does reveal an error: [1, 2, [2, 2, 3], 4]

Expected output: [1, 2, 3, 4]

$\operatorname{sublist}$	flatten(sublist)	Value of s at the end of the iteration
N/A	N/A	[] (initial value of a)
1	[1]	[1]
2	[2]	[1,2]
[2,2,3]	[2,3]	[1,2,2,3]
4	[4]	[1,2,2,3,4]

Question 3

• The checking of the uniqueness of elements stops at sublist when it needs to be done a level higher.