МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ ГОМЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИЕТ ИМЕНИ П. О. СУХОГО

Кафедра «Электроснабжение»

Отчет по лабораторной работе №5

по дисциплине: «Электроника и информационно-измерительная техника»

по теме: «Виртуальные измерительные приборы»

Выполнил: студент гр. ЭН-21

Козлов П. М.

Принял: доцент

Зализный Д.И.

Цель работы: изучить принципы функционирования, основные характеристики и особенности применения виртуальных измерительных приборов.

Краткое описание лабораторной установки

Лабораторный стенд подключается к трёхфазной сети с линейным напряжением 380 В через автоматический выключатель. При включении выключателя начинает светиться сигнальная лампа, подключенная через ограничительный конденсатор. В специальной установке, вынесенной за пределы стенда, находятся 2 лампы накаливания, а также дуговая ртутная люминесцентная лампа (ДРЛ). Лампы включаются на фазные напряжения посредством 3 тумблеров, расположенных на лицевой панели стенда. Параллельно лампам посредством еще тумблеров могут подключаться 3 конденсатора. При отключении всех тумблеров ток в цепи отсутствует.

Последовательно в каждую фазу нагрузки подключены измерительные преобразователи тока, входящие в состав четырёхканального измерительного преобразователя тока типа ЭП8527/15, расположенного на лицевой панели Параллельно фазному стенда. каждому напряжению подключены преобразователи измерительные напряжения, входящие состав четырёхканального измерительного преобразователя напряжения типа ЭП8527/13, расположенного также на лицевой панели стенда.

На лицевой панели стенда находятся также 2 термометра сопротивления. Термометр сопротивления предназначен для измерения температуры воздуха, а второй — для измерения температуры трансформаторного масла, залитого в стеклянный сосуд, который закреплен на лицевой панели стенда. В сосуд помещен также нагревательный резистор, подключаемый к фазному напряжению тумблером.

Практическая часть

Значение частоты дискретизации на один канал с учётом выбранного коэффициента деления по формулам (5.1) и (5.3) и максимальное время регистрации по формуле (5.4)

(5.1)
$$T_d = T * n = 415 * 10^{-6}$$

T- общий период дискретизации 59,33* 10^{-6} n

- количество регистрируемых каналов

$$(5.3) f_d = \frac{1}{a \cdot T_d} = 2409,6$$

(5.4)
$$t_{reg} = \frac{V}{k \cdot n \cdot f_d} = 4.53 \text{ c.}$$

Показания виртуальных вольтметров при различных количествах периодов сетевой частоты при отключенной нагрузке

Количество периодов сетевой частоты для расчётов показания приборов	1				2			3		
Фазы	A	В	C	A	В	C	A	В	C	
Вольтметры действующего значения фазовых напряжений, В	227,79	225,11	222,79	223,21	226,27	222,83	225,37	220,56	224,24	
Вольтметры среднего значения фазовых напряжений, В	-0,58	-1,61	1,6	-1,53	-0,73	1,69	-0,32	-1,17	1,25	
Вольтамперметры пикового значения положительных фазовых напряжений, В	310,91	309,02	310,34	308,02	306,91	311,42	308,02	303,75	312,50	
Вольтамперметры пикового значения отрицательных фазовых напряжений, В	-312,93	-313,3	-308,21	-310,85	-308,02	-309,29	-311,09	-304,86	-310,37	

Показания виртуальных амперметров при различных количествах периодов сетевой частоты при отключенной нагрузке

Количество периодов сетевой частоты для расчётов показания приборов	1			2			3		
Фазы	A	В	C	A	В	C	A	В	С
Амперметры действующего значения линейных токов, А	2,03	3	1,01	2	3,02	1,76	2,03	2,82	1,02

Амперметры сред- него значения линейных токов, А	-0,01	-0,05	-0,09	-0,01	-0,05	-0,09	-0,02	-0,04	-0,08
Амперметры пикового значения поло- жительных линейных токов, А	2,72	4,11	2,49	2,76	4,11	2,36	2,72	3,97	2,49
Вольтамперметры пикового значения отрицательных линейных токов, А	-2,77	-4,23	-2,67	-2,01	-4,20	-2,49	-2,77	-4,10	-2,67

Показания виртуальных измерителей мощности при различных количествах периодов сетевой частоты

периодов									
Количество периодов сетевой частоты для расчётов показания приборов		1			2			3	
Фазы	A	В	C	A	В	C	A	В	C
Ваттметры, Вт	415,64	629,47	359,43	411,9	641	341,94	420,51	646,12	350,22
Варметры, ВА	177,65	177,58	177,78	172,9	185,17	177,89	178,39	202,79	178,37
Вольтамперметры, ВА	452,01	654,04	400,99	446,71	667,21	385,45	456,78	677,2	400,17

Показания виртуальных частотомеров

Фазы	A	В	С
Частотомеры фазных напряжений, Гц	48,73	48,73	48,73
Частотомеры линейных токов, Гц	48,73	48,73	48,73

Показания виртуальных фазометров

Фазы	A	В	С
Косинус угла между фазными напряжениями и линейными токами	0,83	0,83	0,83

Осциллограммы «реального времени» напряжений каждой по всем фазам

Осциллограммы «реального времени» токов по всем фазам

Осциллограмма $I_{\rm b}$

* Токи на осциллограммах указаны в масштабе 100:1, напряжения 1:1, по д

Фазы	A	В	С
$I_{ m пуск},$ А	2,1	2,2	1,4
Іустановшееся, А	0,3	0,5	0,25
tперехода, c	0,1	0,12	0,1

 Φ ЧХ U_a

Графики температуры масла и температуры воздуха

При нагревании

При остывании

Вывод: был получен опыт работы с виртуальными измерительными приборами; с помощью виртуальных измерительных приборов смог снять характеристику тока, а также были получены осциллограммы напряжений ФЧХ и АЧХ. Не были получены ФЧХ и АЧХ I_a , по причине возникновения ошибок в соответствующих вкладках программы.