Project Work

Matrices and their Operations in Python

Contents

1	Wha	at is a Matrix?
	1.1	Accessing a Matrix
	1.2	Null Matrix
	1.3	Upper and Lower Triangular Matrices
	1.4	Transpose of a Matrix
	1.5	Addition of Two Matrices
	1.6	Subtraction of Two Matrices
	1.7	Minor Matrix of an Element
	1.8	Determinant of a Matrix
		1.8.1 Cofactors

${f Abstract}$
Matrices are a part of Linear Algebra which is used everywhere in Computer Science. It is used in computer graphics to create 2D/3D models, animations, etc. It is used in cryptography (making data secure) by using matrices to store data and a key matrix to encrypt it and its inverse to decrypt it. In this project we will look at operations on matrices in Python.

1 What is a Matrix?

A matrix is a rectangular array of data¹ arranged in rows and columns.

A matrix looks like the following:

$$A = \begin{bmatrix} 1 & 10 & 12 \\ 2 & 20 & 22 \end{bmatrix}_{2 \times 3}$$

A matrix is represented by capital letters and the subscript represents Number of rows \times Number of columns and the matrix A is called a 2 by 3 matrix.

In Python, to enter a matrix, we use nested lists like:

```
Matrix=[
[1,10,12],
[2,10,22]
4]
```

1.1 Accessing a Matrix

A matrix a is generally written as $A = [a_{ij}]_{m \times n}$ where $1 \le i \le m \land 1 \le j \le n$. Thus, if we know the location of an element say, element in row 2 and column 1, we can write it as a_{21} . In Python as well, if we need to find the element in row i and column j, we can return it as:

```
def find_element(matrix, row, column):
   row_index=row-1 #we need to use row-1 as indexes begin from 0
   column_index=column-1
   return matrix[row_index][column_index]
```

Example. We can also access the elements of a matrix, either row or column wise.

Solution. To print the matrix row-wise:

```
def row_wise(matrix):
   for i in range(len(matrix)):
     for j in range(len(matrix[0])):
        print(matrix[i][j],end="\t")
     print("\n")
```

If matrix is $A = \begin{bmatrix} 1 & 10 & 12 \\ 2 & 20 & 22 \end{bmatrix}$, then, the output is,

1 10 12

2 20 22

To print the matrix column-wise:

```
def column_wise(matrix):
   for i in range(len(matrix[0])):
   for j in range(len(matrix)):
     print(matrix[j][i],end="\t")
   print("\n")
```

The output in this case is:

1 2

10 20

12 22

1.2 Null Matrix

A null matrix is one such that,

$$a_{ij} = 0 \quad \forall i, j$$

Such a matrix is represented by O.

¹Data may be of any form, like numbers, expressions or alphabets.

Example. Creating a null matrix of a given order.

```
Solution.
```

```
def null(rows,columns):
   null_matrix=[[0 for i in range(columns)] for i in range(rows)] #loop over columns then over rows
   return null_matrix
```

1.3 Upper and Lower Triangular Matrices

The upper triangular matrix is a matrix in which all the entries below the diagonal are zero, i.e.,

$$a_{ij} = 0 \quad \forall \ i \ge j$$

Or,

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ 0 & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_{nn} \end{bmatrix}$$

The lower triangular matrix is a matrix in which all the entries above the diagonal are zero², i.e.,

$$a_{ij} = 0 \quad \forall \ i \leq j$$

Or,

$$A = \begin{bmatrix} a_{11} & 0 & \dots & 0 \\ a_{21} & a_{22} & \dots & 0 \\ \vdots & \vdots & \ddots & 0 \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}$$

Example. Creating an upper and lower triangular matrix.

Solution. First for an upper triangular matrix,

If the matrix is $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$, then, the output is,

[[1, 0, 0], [4, 5, 0]]

Now, for a lower triangular matrix,

```
def lower_triangular(matrix):
    rows=len(matrix)
    columns=len(matrix[0])
    lower_matrix=null(rows,columns) #null matrix
    for i in range(rows):
        for j in range(columns):
            if j>=i: #Condition for a null
                lower_matrix[i][j]+=matrix[i][j]
                else:
                continue
    return lower_matrix
```

²These definitions are open for discussion. Some authors claim that the matrix must be square, while some do not restrict the matrix. Even though a 'triangle' would not be formed in the case of rectangular matrices, it is acceptable. We have chosen not to restrict the matrices to only square matrices.

The output in this case is,

[[1, 2, 3], [0, 5, 6]]

1.4 Transpose of a Matrix

The transpose of a matrix $A = [a_{ij}]_{m \times n}$ is given by,

$$A^T = [a_{ji}]_{n \times m}$$

Example. Create another matrix which is the transpose of a given matrix.

Solution.

```
def transpose(matrix):
   rows=len(matrix)
s   columns=len(matrix[0])
transpose_matrix=null(columns, rows) #null matrix
for i in range(rows):
   for j in range(columns):
      transpose_matrix[j][i]+=matrix[i][j] #definition of transpose
s   return transpose_matrix
```

If the matrix is $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 1 & 1 & 1 \end{bmatrix}$

, the output is,

[[1, 4, 1], [2, 5, 1], [3, 6, 1]]

1.5 Addition of Two Matrices

Given two matrices $A = [a_{ij}]_{n_1 \times m_1}$ and $B = [b_{ij}]_{n_2 \times m_2}$, the sum A + B is defined only if $(n_1, m_1) = (n_2, m_2) = (n, m)$ (Say), i.e. the matrices have the same order.

$$C = A + B = [a_{ij} + b_{ij}]_{n \times m}$$

Example. Find the sum of two matrices.

Solution. It returns the sum of the matrices if it exists, else, returns -1.

```
def Matrix_Sum(matrix1, matrix2):
    if len(matrix1) == len(matrix2) and len(matrix1[0]) == len(matrix2[0]): #Checking for compatibility
    for addition
        rows, columns = len(matrix1), len(matrix1[0])
        sum_matrix = null(rows, columns) #null matrix
        for i in range(rows):
            for j in range(columns):
                 sum_matrix[i][j] += matrix1[i][j] + matrix2[i][j] #definition of sum of matrices
        return sum_matrix
else:
        return -1
```

If the input matrices are $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 1 & 1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 2 & 2 & 2 \end{bmatrix}$, the output is,

[[2, 4, 6], [8, 10, 12], [3, 3, 3]]

If the matrices are $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 1 & 1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$, the output is,

1.6 Subtraction of Two Matrices

Matrices also have am additive inverse, i.e., there exists a matrix B such that,

$$A + B = 0 \implies B = -A$$

The matrix B is defined as $B = [-a_{ij}]_{n \times m}$ if the matrix A is defined as $A = [a_{ij}]_{n \times m}$. Thus, we can define the operation A - B as A + (-B) which is simple matrix addition.

Example. Find the difference of two matrices.

```
Solution. It is similar to the sum of two matrices program.
```

```
def Matrix_Difference(matrix1,matrix2):
    #The program is matrix1-matrix2, since subtraction is not commutative
    matrix2_new=null(len(matrix2),len(matrix2[0]))
    for i in range(len(matrix2)):
        for j in range(len(matrix2[0])):
            matrix2_new[i][j]=-matrix2[i][j] #From the definition of the negative of a matrix
    return(Matrix_Sum(matrix1,matrix2_new))#From the definition of difference of two matrices
```

If the input matrices are $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 1 & 1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 2 & 2 & 2 \end{bmatrix}$, the output is,

[[0, 0, 0], [0, 0, 0], [-1, -1, -1]]

1.7 Minor Matrix of an Element

The minor matrix of an element is the matrix obtained from removing the i^{th} row and j^{th} column of a matrix.

Example. Find the minor matrix of a matrix given the location of the matrix,

Solution. For this, first we exclude the i^{th} row. Then, we exclude the j^{th} column.

```
def Minor_Matrix(mx,r,c):
    return [row[:c]+row[c+1:] for row in (mx[:r]+mx[r+1:])]
```

The following is an incredible one-liner.

1.8 Determinant of a Matrix

The determinant is a scalar value that is a function of the entries of a square matrix. It is denoted by det(A), |A| or Δ .

If
$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$
 then, $\Delta = a_{11}a_{22} - a_{21}a_{12}$.
If $A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$ then, $\Delta = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} + a_{22} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{33} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$

Before finding the determinant of a matrix, let us look at Cofactors.

1.8.1 Cofactors

The cofactor of an element a_{ij} is denoted by A_{ij} and is given by,

$$A_{ij} = (-1)^{i+j} M_{ij}$$

Where, M_{ij} is the determinant of the minor matrix of the element a_{ij} . The determinant of a matrix is thus given by,

$$\Delta = \sum_{j=0}^{n} a_{1j} A_{1j}$$

Thus, the determinant of a matrix is the sum of the elements multiplied with their cofactors.

Example. Find the determinant of a matrix.

Solution. Since we have a closed form for the determinant of a 2×2 matrix, we can reduce all determinants^a to finding the determinant of a smaller matrix by using cofactors.

^aSo, we need to use recursion.