Problem Set 2 Math modeling of the atmosphere

Problem 1: Cloud fraction for a "double delta function" PDF

Consider a volume of air that is half occupied by air with $r_t = r_{t1}$ and half occupied by air with $r_t = r_{t2}$. (Let $r_{t1} > r_{t2}$, and let $\Delta r_t \equiv r_{t1} - r_{t2}$.) Further suppose that the volume has uniform temperature everywhere and that the saturation mixing ratio is r_s . Assume that any vapor in excess of saturation is immediately converted to liquid, as we assumed earlier in the semester for non-precipitating, ice-free clouds.

- (i) Write an expression for cloud fraction, C, in terms of r_{t1} , r_{t2} , r_s , and the Heaviside step function.
- (ii) Write an expression for average liquid water mixing ratio, $\langle r_l \rangle$, in terms of r_{t1} , r_{t2} , r_s , and the Heaviside step function.

Problem 2: Cloud fraction for a triangular PDF

Consider now a volume of air that has a symmetric PDF of r_t , $P(r_t)$, with the shape of an isosceles triangle. The PDF is a piecewise linear function of r_t that becomes non-zero at $r_t = \overline{r_t} - \Delta r_t$, increases linearly to a peak at $r_t = \overline{r_t}$, and then decreases linearly to zero at $r_t = \overline{r_t} + \Delta r_t$. Assume that temperature is constant and that the saturation mixing ratio is r_s . You don't need to write in terms of Heaviside step functions if you don't wish to do so. Instead you can just leave the answer in terms of discrete cases.

- (i) Write the functional form of $P(r_t)$ in terms of $\overline{r_t}$, Δr_t , and r_t . Recall that the area under $P(r_t)$ must be 1.
- (ii) Find the cloud fraction, C, in terms of $\overline{r_t}$, Δr_t , and r_s .

Problem 3: Sketch cloud fractions for the double delta and triangular PDFs

Overplot the two cloud fraction formulas that you have found in problems 1 and 2 as a function of $\overline{r_t}$ for fixed r_s and Δr_t . You may sketch by hand, if you wish.