RIVI, CIVI

Recurrent Neuron

x = [height weight position]

Wx	

* * * / \				
w_00	w_01	w_02	w_03	w_04
w_10	w_11	w_12	w_13	w_14
w_20	w_21	w_22	w_23	w_24
w_30	w_31	w_32	w_33	w_34
w_40	w_41	w_42	w_43	w_44

x_height x_weight x_position x_date x_score

Recurrent Neuron Layer

yout

Wy

wy_00	wy_01	wy_02	wy_03	wy_04
wy_10	wy_11	wy_12	wy_13	wy_14
wy_20	wy_21	wy_22	wy_23	wy_24
wy_30	wy_31	wy_32	wy_33	wy_34
wy_40	wy_41	wy_42	wy_43	wy_44

yout_0
yout_1
yout_2
yout_3
yout_4

Recurrent Neuron Layer

Recurrent Neuron Layer

W	x				
	w_00	w_01	w_02	w_03	w_04
	w_10	w_11	w_12	w_13	w_14
	w_20	w_21	w_22	w_23	w_24
	w_30	w_31	w_32	w_33	w_34
	w_40	w_41	w_42	w_43	w_44

wy_00	wy_01	wy_02	wy_03	wy_04
wy_10	wy_11	wy_12	wy_13	wy_14
wy_20	wy_21	wy_22	wy_23	wy_24
wy_30	wy_31	wy_32	wy_33	wy_34
wy_40	wy_41	wy_42	wy_43	wy_44

bias_0

bias_2

bias_3

bias_4

Recurrent neuron is a form of memory with state (i.e. h)

Output is function of previous state and input

Each state is a function of previous output and input

RNN

Simultaneously takes input and produces output

Sequence to Vector Sequence to Vector

Stock prices (Predict next day using sequence (history) of data)

• •

Weights are equal among all RNN's

2D vector sample per time sample

$$w_0 = w_0 - \left(\frac{\partial C}{\partial w_{0_t}} + \frac{\partial C}{\partial w_{0_{t+1}}}\right) * \eta$$

Back-propagation sums over all steps

batch

[~]	[~]	[~]	[~]	[~]	[~]	[~]	[~]	[~]	[~]	[~]
[~]	[~]	[~]	[~]	[~]	[~]	[~]	[~]	[~]	[~]	[~]
[~]	[~]	[~]	[~]	[~]	[~]	[~]	[~]	[~]	[~]	[~]
[~]	[~]	[~]	[~]	[~]	[~]	[~]	[~]	[~]	[~]	[~]
[~]	[~]	[~]	[~]	[~]	[~]	[~]	[~]	[~]	[~]	[~]

Shape = batch_size x steps_n x 1

Univariate

batch

[~, ~]	[~, ~]	[~, ~]	[~, ~]	[~, ~]	[~, ~]	[~, ~]	[~, ~]	[~, ~]	[~, ~]	[~, ~]
[~, ~]	[~, ~]	[~, ~]	[~, ~]	[~, ~]	[~, ~]	[~, ~]	[~, ~]	[~, ~]	[~, ~]	[~, ~]
[~, ~]	[~, ~]	[~, ~]	[~, ~]	[~, ~]	[~, ~]	[~, ~]	[~, ~]	[~, ~]	[~, ~]	[~, ~]
[~, ~]	[~, ~]	[~, ~]	[~, ~]	[~, ~]	[~, ~]	[~, ~]	[~, ~]	[~, ~]	[~, ~]	[~, ~]
[~, ~]	[~, ~]	[~, ~]	[~, ~]	[~, ~]	[~, ~]	[~, ~]	[~, ~]	[~, ~]	[~, ~]	[~, ~]

Shape = batch_size x steps_n x 2

Multivariate

steps=11

Avg mean squared error of the obviously incorrect prediction but the lowest acceptable guess will provide a good baseline.

The RNN model should perform better than this baseline MSE score

Train for about 22 epochs and calculate MSE on the validation set. Score (i.e. MSE) will be better than the previous baseline model.

Predict step ahead of last step Index = 49 Last Step Predict step after last step Last Step Last Step

Note: Gradients produced for every step during training. Lots of gradients which will boost model's learning speed, and stabilize gradients (eliminate unstable gradients problem)

Sequence to Vector Model

Tensorflow: return sequences up until input of layer feeding output layer. **The last step forecasts**

Note: Output Dense layer applied independently at each time step.

Sequence to Sequence Model

Tensorflow: return sequences for each RNN layer: **Each step forecasts next values**

- All outputs needed during training
- Last step needed for predictions and evaluations. Custom metric required validation and test set evaluations

Batches

- Input Gate: Which part of input to add to long-term state (important inputs artifacts are preserved for current or future outputs)
- Output Gate Which part of long term state should be read and output at time step (i.e. estimation at time step)
- Forget Gate Which part of long term state should be erased (remove useless input artifacts)

Gate Controller Outputs: 0 - Close 1 -Open

- Input Gate : Which part of input to add to long-term state (important inputs artifacts are preserved for current or future outputs)
- Output Gate Which part of long term state should be read and output at time step
- Forget Gate Which part of long term state should be erased (remove useless input artifacts)

Long Term State
Output State

Gate Controller Outputs:

0 - Close

1 - Open

Long Term StateOutput State

Logistic/Tanh

Gate Controller Outputs:
0 - Close
1 - Open

Deep RNNs: 1D Convolutional Layers

Fairly limited short term memory, hard time learning patterns in sequences >= 100 steps in length

Solve: Shorten Input sequences (1D convolutional Layer)

Deep RNNs: WaveNet

Long Term Patterns

Deep RNNs: WaveNet

 $1D - Size = (prev_{silation} + curr_{silation}) \times input_{silat} + input_{silat}$

Input is padded accordingly to preserve input sequence length

Outputs are same length as input sequences. WaveNets are useful when training a model with targets the same size as input sequences.

e.g.

Tx Data = 32 Samples
Radar Cross Section Rx Data (Target) = 32 Samples
Model can classify elements in space from Rx Data after

training on large data pool of objects in space

Deep RNNs: WaveNet (What WaveNet used on small sequence)

Inpu

conv1D (dilation 1)

Deep RNNs: WaveNet (What WaveNet used on small sequence)

Deep RNNs: WaveNet (What WaveNet used on small sequence)

equals 2)

Thousands of audio frames per Image Frame

'Reduced' audio frame per Image Frame

Cat Sketch

Airplane Sketch

Basketball Sketch

Bach chorales

