

Hands on Introduction to Data Science and IBM's Data Science Experience

Power of data. Simplicity of design. Speed of innovation.

Joel Patterson
Piotr Mierzejewski

Hands on Introduction to Data Science Experience Agenda

- 9:00 9:30 Kick off
 Overview of Data Science Experience (DSX), DSX Local and DSX Desktop
- 9:30 10:30 Lab 1 Learning Data Science Experience / Bluemix Notebook basics, connecting to external sources
- 10:30 11:30 Lab 2 Machine Learning for Classification Reading from external sources, versioning, scheduling
- 11:30 12:30 Lab 3 R, Shiny and GUI Interfaces RStudio, Shiny
- 12:30 1:30 Lunch
- 1:30 2:30 Optional Labs
 Decision Optimization

Visualization
Data connections

- Scoring
- 2:30 3:30 DSX Local presentation and demo
- 3:30 4:00 Questions and Wrap-up

The perfect Data Science Team

The Data Scientist Venn Diagram

Normally not all the skills are in one single person but rather in a data science team
In IBM Data Science Experience we include tools to make the perfect Data Science Team
All in a collaborative, cloud environment that scales in demand

What is the Data Scientist?

Scripting, SQL Python, R Scala Data Pipelines Big Data/ Apache Spark

Mathematical Background Computational Science

Business/Industry Expertise
Domain Knowledge
Supply Chain
CRM
Financials

Networking

Drew Conway's Data Science Venn Diagram

Data Scientist Issues

Rigid toolset

- Have to choose one and only one approach
- Cannot easily connect all of the capabilities needed
- Difficult to navigate between the various tools used

Fragmented and time consuming

- Using multiple disjointed environments
- Separate on-ramp/community for each tool/environment
- Does not have meta data or data lineage

Analytical Silo

- Difficult to maintain and version control project assets
- Limited means of collaborating with team
- Results are difficult to share

IBM Watson Data Platform

Mission: Make Data Simple and Accessible to All

Data Science Experience

Brings together popular Data Science **Open Source tools** with IBM value-add functionalities coupled with **community and social** features

Learn

Built-in learning to get started or go the distance with advanced tutorials

Create

The best of open source and IBM value-add to create state-of-the-art data products

Collaborate

Community and social features that provide meaningful collaboration

External URL: http://datascience.ibm.com

Core Attributes of the Data Science Experience

Powered by IBM Watson Data Platform

DSX Architecture

DSX architecture

Last updated: June 27, 2017

DSX provides you with the environment and tools to solve your business problems by collaboratively analyzing data. This illustration shows how the architecture of DSX is centered around the project. A project is how you organize your resources for solving a business problem.

Community Cards provide in-context learning for users

Collaborate Using Projects

Add Collaborators to a Project

Add New Collaborator

Add users to your project for collaboration. Users with write access can add services to your project...

GitHub Integration

Live chat on Intercom for support from the IBM team and to provide your feedback on how we can improve DSX

Docs, Forums, Blogs and Ideas

- Online documentation for DSX, DSX Local and DSX Desktop
- DSX discussion forum on Stack Overflow
- Blog posts from IBM Developers
- Give feedback on DSX to IBM for new features

Supported Data Sources/Targets for DSX via on- premises and cloud Connectors

Cloud Sources	On-Premises Sources	Cloud Targets	On-Premises Targets
Amazon Redshift	Apache Hive	Amazon S3	IBM DB2® LUW
Amazon S3	Cloudera Impala	Bluemix Object Storage	IBM Pure Data for Analytics®
Apache Hive	IBM DB2® LUW	IBM Cloudant™	Teradata
Bluemix Object Storage	IBM Informix®	IBM dashDB	
IBM BigInsights™ on Cloud *	IBM Pure Data for Analytics®	IBM BigInsights™ on Cloud *	
IBM Cloudant™	Microsoft SQL Server	IBM DB2® on Cloud	
IBM dashDB	MySQL Enterprise Edition	IBM SQL Database	
IBM DB2® on Cloud	Oracle	IBM Watson™ Analytics	
IBM SQL Database	Pivotal Greenplum	PostgreSQL on Compose	
MicrosoftAzure	PostgreSQL	SoftLayer Object Storage	
PostgreSQL on Compose	Sybase		
Salesforce	Sybase IQ		
SoftLayer Object Storage	Teradata		

DSX has RStudio built into the experience thanks to our strategic partnership

With RStudio you can create Shiny web applications to make your analysis accessible to the business

Operationalize insights with IBM Machine Learning

IBM Machine Learning

Data Access:

- Easily connect to Behind-the-Firewall and Public Cloud Data
- Catalogued and Governed Controls through Watson Data Platform

Creating Models:

- Single UI and API for creating ML Models on various Runtimes
- Auto-Modeling and Hyperparameter Optimization

Web Service:

- Real-time, Streaming, and Batch Deployment
- Continuous
 Monitoring and
 Feedback Loop

Intelligent Apps:

- Integrate ML models with apps, websites, etc.
- Continuously Improve and Adapt with Self-Learning

DSX Local

- Very similar to the public cloud version of DSX
- Runs on hardware that is provided by the customer
 - The DSX Local software and hardware are managed by the customer
- DSX Local comes with all the software it needs to run, although it can integrate with existing customer systems such as
 - Databases and HDFS storage
 - LDAP servers for authentication

From a Notebook in DSX you can use IBM's managed Spark Service to blend multiple data types, sources, and workloads

28 © 2017 IBM Corporation

Benefits of Spark for Data Science

- General compute engine
- Basic I/O functions
- Task dispatching
- Scheduling

- Allows Data Scientists to code at scale
 - In-Memory processing that scales in a distributed architecture
- Supports multiple programing interfaces (Scala, Python, Java and R)
- Provides unified APIs (SQL, Streaming, Machine Learning, etc.)

29 © 2017 IBM Corporation

IBM is all-in on Spark

Contribute to the Core

Launch Spark Technology Cluster (STC), 300 engineers

Open source SystemML

Partner with Databricks

Foster Community

Educate 1M+ data scientists and engineers via online courses

Sponsor AMPLab, creators and evangelists of Spark

Infuse the Portfolio

Integrate Spark throughout portfolio

3,500 employees working on Spark-related topics

Spark however customers want it – standalone, platform or products

30 © 2017 IBM Corporation

IBM had a significant impact on Spark 2.0

- IBM is #2 contributor to Apache Spark
- IBM was the leading contributor in Spark 2.0 to SparkML, PySpark, and SparkR

Lab Exercise – Female Human Trafficking

Input

- Generated fake travel records based on incoming custom forms.
- Subset of records were vetted as "high", "medium", or "low" risk for Female Human Trafficking by an analyst.
- Goal is to train a model on the vetted data to be able to score the unvetted travel records into high, medium, or low categories.

Demo Data

Field	Description	
UUID	Hash-based unique identifier	
VETTING_LEVEL	Analyst vetting status : 100- PENDING, 10 - HIGH, 20 - MED, 10 - LOW	
NAME	Person name	
GENDER	Person Gender	
AGE	Person age at time of travel	
BIRTH_DATE	Person birth date	
BIRTH_COUNTRY	Person full birth country	
BIRTH_COUNTRY_CODE	Person ISO 2 country	
OCCUPATION	Person occupation as declared on form	
ADDRESS	Person US address	
SSN	Person Social Security Number	
PASSPORT_NUMBER	Person Passport Number	
PASSPORT_COUNTRY	Person Passport Issuing Country	
PASSPORT_COUNTRY_CODE	Person Passport Issuing Country ISO 2 Code	
COUNTRYIES_VISITED	The countries visited as declared on form	
COUNTRIES_VISITED_COUNT	The number of countries visited as declared on form	
ARRIVAL_AIRPORT_COUNTRY_CODE	ARRIVAL Airport country code ISO2	
AIRPORT_ARRIVAL_IATA	ARRIVAL Airport 3 character code	
AIRPORT_ARRIVAL_MUNICIPALITY	ARRIVAL Airport Municipality Derived from Code	
ARRIVAL_AIRPORT_REGION	ARRIVAL Airport Region Derived from Code	
DEPARTURE_AIRPORT_COUNTRY_CODE	DEPARTURE Airport Country code ISO2	
DEPARTURE_AIRPORT_IATA	DEPARTURE Airport 3 character code	
DEPARTURE_AIRPORT_MUNICIPALITY	DEPARTURE Airport Municipality Derived from Code.	

Demo Flow

Read in dataset as a DataFrame from DB2 Warehouse

- Connect to DB2 Warehouse
- Read in the data

Identify Labels

- Label the data ("VETTING_LEVEL")
- Select features

Feature Engineering (Transformation)

- StringIndexer (occupation, country, gender, birth year variables)
- VectorAssembler
- Normalizer

Define Model and Setup Pipeline

Naïve Bayes

Train the Model

- Split input data into Training (70%) and Test (30%) DataFrames
- Cache the resulting DataFrames
- Fit the Pipeline to the Training data set

Demo Flow (continued)

Evaluate the resulting predictions

Area under the ROC curve

- Build Parameter Grid
- Cross-evaluate to find the best model

Score the unvetted records

- Use Best Model to Score unvetted records (VETTING LEVEL == 100)
- Write results into DB2 Warehouse table

Classification - Naïve Bayes

- Two or more outcomes.
- Assumes independence among explanatory variables, which is rarely true (thus "naïve").
- Despite its simplicity, often performs very well... widely used.
- Significant use cases:
 - Text categorization (spam vs. legitimate, sports or politics, etc.) using word frequencies as the features
 - Medical diagnosis (e.g., automatic screening)

Get Started with Data Science Experience Today!

Calling all Data Scientists!

- Our mission is to win the hearts and minds of Data Scientists
- ■IBM Data Science Experience is a **freemium model** with value-add features, pricing and up-sell in development
- Sign up and encourage your colleagues to do so at datascience.ibm.com

Optional Labs

- Watson Machine Learning
 - Lab-4
- Decision Optimization
 - Linear Programming / Beyond Linear Programming
 - Docs > Analyze Data > Decision Optimization in DSX > Decision Optimization
 Tutorial
 - Community
 - Sudoku
 - Finding optimal locations of new store using Decision Optimization
- Visualization (PixieDust) [latest version 1.1]
 - Community
 - Welcome to PixieDust
 - Twitter Sentiment with Watson and PixieDust (Python 2/Spark 1.6)
 - Analyze traffic data using PixieDust & Spark (*must* use PixieDust 1.1)

Optional Labs

- SPSS
 - Community
 - Load SPSS predictive models to Bluemix & score data
 - Model bike sharing data with SPSS

b243c17f3cd1faf1937923521b

- Predicting churn with the SPSS random tree algorithm
- Amazon EMR
 - Community
 - Analyze accident reports on Amazon EMR Spark
- Connection Examples
 - Shares

 - Cloudera: https://apsportal.ibm.com/analytics/notebooks/e8a3e5bc-ede3-462b-b4bb-ced4a279fa3d/view?access_token=b97c6c8faf9467adc796a444fe2608b797a251

IBM Data Science Experience https://www.youtube.com/watch?v=1HjzkLRdP5k&t=29s