Reconfiguration Problems, Hardness of Approximation, and Gap Amplification: What Are They?

Proc. 35th Annu. ACM-SIAM Symp. Discrete Algorithms (SODA), 2024

Naoto Ohsaka

(Cyger Agent, Inc.)

Prologue: Sliding block puzzle

Complexity of reachability was open for 40 years...

These puzzles are very much in want of a theory. Short of trial and error, no one knows how to determine if a given state is obtainable from another given state [Martin Gardner. Scientific American 1964]

• PSPACE-complete [Flake-Baum. Theor. Comput. Sci. 2002]

even if only \square and \square are available [Hearn-Demaine. Theor. Comput. Sci. 2005]

Reconfiguration Problems, Hardness of Approximation, and Gap Amplification: What Are They?

Intro of reconfiguration

Imagine connecting a pair of feasible solutions (of NP problem) under a particular adjacency relation

- Q. Is a pair of solutions reachable to each other?
- Q. If so, what is the shortest transformation?
- Q. If not, how can the feasibility be relaxed?
- Q. Is the space of feasible solutions entirely connected?

3-SAT Reconfiguration

[Gopalan-Kolaitis-Maneva-Papadimitriou. SIAM J. Comput. 2009]

• Input: 3-CNF formula φ & satisfying σ_s , σ_t

• Output: $\sigma = \langle \sigma^{(0)} = \sigma_s, ..., \sigma^{(\ell)} = \sigma_t \rangle$ (reconf. sequence) S.T.

 $\sigma^{(i)}$ satisfies ϕ (feasibility)

 $\text{Ham}(\sigma^{(i-1)}, \sigma^{(i)}) = 1$ (adjacency on hypercube)

YES case

$$\varphi = (\overline{x} \vee \overline{y} \vee z) \wedge (\overline{x} \vee y \vee \overline{z}) \wedge (x \vee \overline{y} \vee \overline{z})$$

$$\sigma_s = (1,0,0)$$

$$\sigma_t = (0,1,0)$$

 \bigwedge Length of σ can be $2^{\Omega(input \ size)}$

3-SAT Reconfiguration

[Gopalan-Kolaitis-Maneva-Papadimitriou. SIAM J. Comput. 2009]

• Input: 3-CNF formula φ & satisfying σ_s , σ_t

• Output: $\sigma = \langle \sigma^{(0)} = \sigma_s, ..., \sigma^{(\ell)} = \sigma_t \rangle$ (reconf. sequence) S.T.

 $\sigma^{(i)}$ satisfies ϕ (feasibility)

 $\text{Ham}(\sigma^{(i-1)}, \sigma^{(i)}) = 1$ (adjacency on hypercube)

NO case

$$\varphi = (\overline{x} \vee \overline{y} \vee z) \wedge (\overline{x} \vee y \vee \overline{z}) \wedge (x \vee \overline{y} \vee \overline{z})$$

$$\sigma_{s} = (1,0,0)$$

$$\sigma_t = (1,1,1)$$

 \triangle Length of σ can be $2^{\Omega(input \ size)}$

Independent Set Reconfiguration

[Hearn-Demaine. Theor. Comput. Sci. 2005]

• Input: Graph G & independent sets I_s , I_t of size k

• Output: $\mathcal{J} = \langle \mathbf{I}^{(0)} = \mathbf{I}_s, ..., \mathbf{I}^{(\ell)} = \mathbf{I}_t \rangle$ (reconf. sequence) S.t.

 $I^{(i)}$ is independent & $|I^{(i)}| \ge k-1$ (feasibility)

 $|\,\textbf{I}^{(i\text{-}1)}\,\Delta\,\,\textbf{I}^{(i)}|\,=\,1\ \, (\text{adjacency called token-addition-removal})$

YES case (k=3)

Independent Set Reconfiguration

[Hearn-Demaine. Theor. Comput. Sci. 2005]

• Input: Graph G & independent sets I_s , I_t of size k

• Output: $\mathcal{J} = \langle \mathbf{I}^{(0)} = \mathbf{I}_s, ..., \mathbf{I}^{(\ell)} = \mathbf{I}_t \rangle$ (reconf. sequence) S.t.

 $\mathbf{I}^{(i)}$ is independent & $|\mathbf{I}^{(i)}| \ge k-1$ (feasibility)

 $|\mathbf{I}^{(i-1)} \Delta \mathbf{I}^{(i)}| = 1$ (adjacency called token-addition-removal)

Recipe for defining reconfiguration problems

[Ito-Demaine-Harvey-Papadimitriou-Sideri-Uehara-Uno. Theor. Comput. Sci. 2011]

1. Source problem in NP

Ask the existence of a feasible solution
 E.g., satisfying assignments; independent sets

2. Transformation rule

Define a (symmetric) adjacency relation btw. a pair of solutions
 E.g., single assignment flip; addition or removal of a single vertex

Many reconfiguration problems derived from

Satisfiability, Coloring, Vertex Cover, Clique, Dominating Set, Feedback Vertex Set, Steiner Tree, Matching, Spanning Tree, Shortest Path, Set Cover, Subset Sum, ...

See [Nishimura. Algorithms 2018] [van den Heuvel. Surv. Comb. 2013] [Hoang. https://reconf.wikidot.com/]

What we want to do in CS Theory

Elucidate the <u>computational complexity</u> of reconfiguration problems Q. How much <u>resources</u> are required (w.r.t. the input size)?

time, space, randomness, # gates, nondeterminism, ...

- •P ^{def} {probs. solvable in <u>polynomial time</u>}
- •PSPACE ^{def} {probs. solvable in <u>polynomial space</u>}

Complexity of reconfiguration problems

Source problem	Existence	Reconfiguration	
Satisfiability	NP-complete	PSPACE-complete [Gopalan-Kolaitis-Maneva- Papadimitriou. SIAM J. Comput. 2009]	
Independent Set	NP-complete	PSPACE-complete [Hearn-Demaine. Theor. Comput. Sci. 2005]	
Matching	Р	P [Ito-Demaine-Harvey-Papadimitriou-Sideri- Uehara-Uno. Theor. Comput. Sci. 2011]	
3-Coloring	NP -complete	P [Cereceda-van den Heuvel-Johnson. J. Graph Theory 2011]	
Shortest Path	P	PSPACE-complete [Bonsma. Theor. Comput. Sci. 2013]	
Independent Set on bipartite graphs	Р	NP-complete [Lokshtanov-Mouawad. ACM Trans. Algorithms 2019; SODA 2018]	

"NATURAL" PSPACE-complete problems

- Connecting a pair of feasible solutions is a reasonable idea
- Simulating a (polynomial-space) nondeterministic Turing machine
 - \triangle Quantified Boolean Formula is another **PSPACE**-complete problem $\exists x_1 \forall x_2 \exists x_3 ... \forall x_n \ \phi(x_1, x_2, x_3, ..., x_n)$?
- Easily derived from NP problems

BLUE OCEAN...? (at least for hardness of approximation)

Reconfiguration Problems, Hardness of Approximation, and Gap Amplification: What Are They?

Gap Preserving Reductions Between Reconfiguration Problems

Naoto Ohsaka 🖂 🈭 📵

40th Int. Symp. on Theoretical Aspects of Computer Science (STACS), 2023

Optimization versions of reconfiguration problems

Even if...

- WOT reconfigurable! and/or
- many problems are PSPACE-complete!

Still want an "approximate" reconf. sequence (e.g.) made up of almost-satisfying assignments or not-too-small independent sets

Let's RELAX feasibility!!

Example 1+

Maxmin 3-SAT Reconfiguration

[Ito-Demaine-Harvey-Papadimitriou-Sideri-Uehara-Uno. Theor. Comput. Sci. 2011]

- Input: 3-CNF formula φ & satisfying σ_s , σ_t
- Output: $\sigma = \langle \sigma^{(0)} = \sigma_s, ..., \sigma^{(\ell)} = \sigma_t \rangle$ (reconf. sequence) S.T.

c(i) satisfies ♥ (feasibility)

 $\text{Ham}(\sigma^{(i-1)}, \sigma^{(i)}) = 1$ (adjacency on hypercube)

• Goal: $\max_{\sigma} \operatorname{val}_{\sigma}(\sigma) \stackrel{\text{def}}{=} \min_{i} (\operatorname{frac. of satisfied clauses by } \sigma^{(i)})$

$$\varphi = (\overline{x} \vee \overline{y} \vee z) \wedge (\overline{x} \vee y \vee \overline{z}) \wedge (x \vee \overline{y} \vee \overline{z})$$

- $\sigma_s = (1,0,0)$
- $\sigma_t = (1,1,1)$
- \rightarrow val_{φ}(σ) = min $\{1, \frac{2}{3}, 1\} = \frac{2}{3}$

 \triangle Length of σ can be $2^{\Omega(input \ size)}$

Example 2+

Maxmin Independent Set Reconfiguration

[Ito-Demaine-Harvey-Papadimitriou-Sideri-Uehara-Uno. Theor. Comput. Sci. 2011]

• Input: Graph G & independent sets I_s , I_t of size k

• Output: $\mathcal{J} = \langle \mathbf{I}^{(0)} = \mathbf{I}_s, ..., \mathbf{I}^{(\ell)} = \mathbf{I}_t \rangle$ (reconf. sequence) S.t.

 $I^{(i)}$ is independent $\frac{1}{4}I^{(i)} = \frac{1}{2}k-1$ (feasibility)

 $|\mathbf{I}^{(i-1)} \Delta \mathbf{I}^{(i)}| = 1$ (adjacency called token-addition-removal)

• Goal: $\max_{\mathscr{J}} \operatorname{val}_{G}(\mathscr{J}) \stackrel{\text{def}}{=} \min_{i} \frac{|\mathbf{I}^{(i)}|}{k-1}$

Questions of interest about approximate reconfiguration

Algorithmic side

How well can we approximate reconfiguration problems?
 Set Cover Reconf.

```
[Ito-Demaine-Harvey-Papadimitriou-Sideri-Uehara-Uno. Theor. Comput. Sci. 2011] Subset Sum Reconf. [Ito-Demaine. J. Comb. Optim. 2014] Submodular Reconf. [O.-Matsuoka. WSDM 2022]
```

Hardness side

• How hard is it to approximate reconfiguration problems?

My interest [STACS 2023 & SODA 2024]

Known results on hardness of approximation

NP-hardness of approx. for Maxmin SAT & Ind. Set Reconf.

[Ito-Demaine-Harvey-Papadimitriou-Sideri-Uehara-Uno. Theor. Comput. Sci. 2011]

- Not optimal ∵SAT Reconf. & Ind. Set Reconf. are PSPACE-comp.
- •Rely on NP-hardness of approximating Max SAT & Max Ind. Set

5. Open problems

There are many open problems raised by this work, and we mention some of these below:

- Can the MATCHING RECONFIGURATION problem for edge-weighted graphs be solved also in polynomial time? We conjecture that the answer is positive.
- Is the TRAVELING SALESMAN RECONFIGURATION problem (where two tours are adjacent if they differ in two edges) PSPACE-complete?
- Are there better approximation algorithms for the MINMAX POWER SUPPLY RECONFIGURATION problem? Lower bounds?
- Are the problems in Section 4 PSPACE-hard to approximate (not just NP-hard)?

Known results on hardness of approximation

NP-hardness of approx. for Maxmin SAT & Ind. Set Reconf.

[Ito-Demaine-Harvey-Papadimitriou-Sideri-Uehara-Uno. Theor. Comput. Sci. 2011]

- Not optimal ∵SAT Reconf. & Ind. Set Reconf. are PSPACE-comp.
- Rely on NP-hardness of approximating Max SAT & Max Ind. Set

Significance of showing PSPACE-hardness

- no polynomial-time algorithm (P ≠ PSPACE)
- no polynomial-length sequence (NP ≠ PSPACE)

(probabilistically checkable proof)

Reconfiguration analogue of the PCP theorem

[Arora-Lund-Motwani-Sudan-Szegedy. J. ACM 1998] [Arora-Safra. J. ACM 1998]

Our working hypothesis [0. STACS 2023]

Reconfiguration Inapproximability Hypothesis (RIH) Binary CSP G & satisfying ψ_s , ψ_t , PSPACE-hard to distinguish btw.

- (Completeness) $\exists \psi \ val_G(\psi) = 1$ (some sequence violates no constraint)
- (Soundness) $\forall \psi \ val_G(\psi) < 1-\epsilon$ (any sequence violates >\epsilon-frac. of constraints)

Binary CSP (Constraint Satisfaction Problem) in short: Given a constraint system over variable pairs Color each variable to satisfy as many constraints as possible E.g., 3-Coloring & 2-SAT

Q. Which reconfiguration problems are PSPACE-hard to approximate under (seemingly) plausible RIH?

Our working hypothesis [0. STACS 2023]

Reconfiguration Inapproximability Hypothesis (RIH)

Binary CSP G & satisfying ψ_s , ψ_t , **PSPACE**-hard to distinguish btw.

- (Completeness) $\exists \psi \ val_G(\psi) = 1$ (some sequence violates no constraint)
- (Soundness) $\forall \psi \ val_G(\psi) < 1-\epsilon$ (any sequence violates >\epsilon-frac. of constraints)

Q. Which reconfiguration problems are PSPACE-hard to approximate under (seemingly) plausible RIH?

Our (previous) results [0. STACS 2023]

 Under RIH, many problems are PSPACE-hard to approximate How? Gap-preserving reductions!!

Gap[1 vs. 1- ϵ] Binary CSP Reconf. PROMISE: $\epsilon \in (0,1)$ is const.

Gap[1 vs. 1- δ] 3-SAT Reconf. $\delta \in (0,1)$ depends only on ϵ

Related work

Probabilistically checkable debate systems [Condon-Feigenbaum-Lund-Shor. Chic. J. Theor. Comput. Sci. '95]

- PCP-like charact, of PSPACE
- ⇒ Quantified Boolean Formula is PSPACE-hard to approx.

Other optimization variants of reconfiguration (orthogonal to this study)

Shortest sequence

[Bonamy-Heinrich-Ito-Kobayashi-Mizuta-Mühlenthaler-Suzuki-Wasa. STACS 2020] [Ito-Kakimura-Kamiyama-Kobayashi-Okamoto. SIAM J. Discret. Math. 2022] [Kamiński-Medvedev-Milanič. Theor. Comput. Sci. 2011] [Miltzow-Narins-Okamoto-Rote-Thomas-Uno. ESA 2016]

Incremental optimization

[Blanché-Mizuta-Ouvrard-Suzuki. IWOCA 2020] [Ito-Mizuta-Nishimura-Suzuki. J. Comb. Optim. 2022] [Yanagisawa-Suzuki-Tamura-Zhou. COCOON 2021]

Reconfiguration Problems, Hardness of Approximation, and Gap Amplification: What Are They?

Gap Amplification for Reconfiguration Problems*

Naoto Ohsaka[†]

Proc. 35th Annu. ACM-SIAM Symp. Discrete Algorithms (SODA), 2024

Limitation of [O. STACS 2023]

Inapprox. factors are not explicitly shown

Recall from [O. STACS 2023]

- •RIH claims " $\exists \epsilon > 0$, Gap[1 vs. 1- ϵ] Binary CSP Reconf. is PSPACE-h."
- Can reduce to $Gap[1 vs. 1-\delta]$ ** Reconf.
- $\Delta \delta$ (as well as ϵ) can be arbitrarily small, because...
- δ depends on ϵ (e.g., $\delta = \epsilon^2$)
- •RIH doesn't specify any value of ϵ (e.g., $\epsilon = 1/2^{10000}$)
 - \rightarrow May not rule out 0.999...999-approx. for ** Reconf.
 - @ Gap[1 vs. 0.999] ** Reconf. is PSPACE-hard only assuming RIH

Our target: Gap amplification

(Polynomial-time) reduction that makes a tiny gap into a larger gap

In NP world...

The parallel repetition theorem [Raz. SIAM J. Comput. 1998]

→ \bigcirc Gap[1 vs. 0.000...001] Binary CSP is NP-hard (i.e. gap \approx 1)

In reconfiguration world...

ωNaïve parallel repetition fails to amplify gap ε of Gap[1 vs. 1-ε] Binary CSP Reconf. [O. arXiv 2023]

Our target: Gap amplification

 (Polynomial-time) reduction that makes a time p into a larger gap

Can we derive explicit factors of IN NP IN PSPACE-hardness of approx. only assuming RIH?

(i.e. gap ≈ 1)

In reconfigur ... world...

 \bigotimes Naïve parallel repetition fails to amplify gap ϵ of Gap[1 vs. 1-E] Binary CSP Reconf. [O. arXiv 2023]

Our results [0. SODA 2024]

© Can derive explicit inapproximability factors only assuming RIH!!

	Maxmin Binary CSP Reconfiguration	Minmax Set Cover Reconfiguration
PSPACE-hardness under RIH	0.9942 (this paper)	1.0029 (this paper)
NP-hardness rely on parallel repetition theorem [Raz. SIAM J. Comput. 1998]	>0.75 (this paper) 0.993 [Ito et al. Theor. Comput. Sci. 2011] [O. STACS 2023]	1.0029 (this paper)
approximability	≈0.25 [O. arXiv 2023]	2 [Ito et al. Theor. Comput. Sci. 2011]

Gap amplification for Binary CSP Reconf.

• We prove gap amplification à la Dinur [Dinur. J. ACM 2007]

(Informal) For any small const. $\varepsilon \in (0,1)$,

gap	alphabet size	degree	spectral expansion
1 vs. 1-ε	W	d	λ
1 vs. 1-0.0058	$W' = W^{dO(\epsilon^{-1})}$	$d' = \left(\frac{d}{\epsilon}\right)^{O(\epsilon^{-1})}$	$\lambda' = O\left(\frac{\lambda}{d}\right)d'$

- \bigcirc Can make λ'/d' arbitrarily small by decreasing λ/d
- \bigotimes Alphabet size W' gets gigantic depending on ϵ^{-1}

Application [O. SODA 2024]

Inapprox. of Minmax Set Cover Reconf.

- •PSPACE-hard to approx. within 1.0029 under RIH
- 2-approximation is known [Ito-Demaine-Harvey-Papadimitriou-Sideri-Uehara-Uno. Theor. Comput. Sci. 2011]

```
(Informal) Gap-preserving reduction from Gap[1, \epsilon] Binary CSP Reconf. (with small \lambda/d) to Gap[1, \approx 2-\sqrt{\epsilon}] Set Cover Reconf.
```

Based on [Lund-Yannakakis. J. ACM 1994] but
 expander mixing lemma [Alon-Chung. Discret. Math. 1988] is needed

BREAK: Why is it accepted to SODA? (from my personal point of view)

- •(Of course) I was lucky... 190/652≈29%
- Open up the hardness-of-approximation for reconf. problems
- RIH seems to be considered somewhat important (within review)
- Nontrivial extension of Dinur's gap ampl. [Dinur. J. ACM 2007] to reconf. From arbitrarily small gap to universal const.

• Demonstrate usefulness of alphabet squaring trick [O. STACS 2023] (explained later)

In the remainder of this talk...

Proof sketch of gap amplification

- 1. Preprocessing step
- Degree reduction [O. STACS 2023]
- Expanderization (skipped)
- 2. Powering step
- Simple appl. of [Dinur. J. ACM 2007] [Radhakrishnan. ICALP 2006] to Binary CSP Reconf. looses perfect completeness
- TRICK: Alphabet squaring [O. STACS 2023] & modified verifier

Recap: Max Binary CSP

- Input: Binary CSP $G = (V, E, \Sigma, \Pi = (\pi_e)_{e \in E})$, where $\pi_e \subseteq \Sigma^2$
- Output: $\psi: V \rightarrow \Sigma$
 - ψ satisfies (v,w) if $(\psi(v), \psi(w)) \in \pi_{(v,w)}$
- Goal: $\max_{\psi} \operatorname{val}_{G}(\psi) \stackrel{\text{def}}{=} (\text{frac. of edges satisfied by } \psi)$

Example

- 3-Coloring: $\Sigma = \{R,G,B\}, \pi_e = \{(R,G), (G,R), (G,B), (B,G), (B,R), (R,B)\}$
- •2-SAT: $\Sigma = \{0,1\}, \quad \pi_{\mathcal{C}} = \{\text{asgmt. satisfying 2-literal clause C}\}$

Recap: Dinur's powering, in a nutshell [Dinur. J. ACM 2007]

Two goals:

```
\exists \psi \ \mathsf{val}_{\mathcal{G}}(\psi) = 1
                                                                                     \Rightarrow \exists \psi' \ val_{G'}(\psi') = 1
(Completeness)
                                                                                     \Rightarrow \forall \psi' \text{ val}_{G'}(\psi') < 1 - \Omega(T \cdot \varepsilon)
                                   \forall \psi \ val_G(\psi) < 1-\epsilon
(Soundness)
                                                                                                               const. parameter
```

How? Virtually examine T edges simultaneously:

- •1. Each vertex has "opinions" about the color of all vertices for simplicity →
- •2. Sample a length-T random walk W with endpoints x & y
- 3. Constraint & agreement test over opinions of x & y along with W

Recap: Dinur's powering [Dinur. J. ACM 2007]

Graph construction

Say 3-Coloring $\Sigma = \{R,G,B\}$

Original
$$G = (V, E, \Sigma, \Pi = (\pi_e)_{e \in E}) \rightarrow \text{New } G' = (V, E', \Sigma', \Pi')$$

A must be EXPANDER

Asgmt. ψ : $V \rightarrow \Sigma$

- • $\psi'(x)[v] \stackrel{\text{def}}{=}$ "opinion" of x about the color of v
- edge of $G' = a \underline{length-Trandom\ walk\ over\ G}$

Recap: Dinur's powering [Dinur. J. ACM 2007]

Graph construction

Say 3-Coloring $\Sigma = \{R,G,B\}$

Original $G = (V, E, \Sigma, \Pi = (\pi_e)_{e \in E}) \rightarrow \text{New } G' = (V, E', \Sigma', \Pi')$ A must be EXPANDER

Asgmt. ψ : $V \rightarrow \Sigma$

- • $\psi'(x)[v] \stackrel{\text{def}}{=}$ "opinion" of x about the color of v
- edge of $G' = a \underline{length-Trandom walk}$ over G const. parameter

Graph construction

Say 3-Coloring $\Sigma = \{R,G,B\}$

Original $G = (V, E, \Sigma, \Pi = (\pi_e)_{e \in E}) \rightarrow \text{New } G' = (V, E', \Sigma', \Pi')$ A must be EXPANDER

Asgmt. ψ : $V \rightarrow \Sigma$

- • $\psi'(x)[v] \stackrel{\text{def}}{=}$ "opinion" of x about the color of v
- edge of G' = a length-Trandom walk over <math>G const. parameter

Recap: Dinur's powering [Dinur. J. ACM 2007] Verifier's test on G' [Radhakrishnan. ICALP 2006]

Pick a random walk $\mathbf{W} = \langle e_1, ..., e_T \rangle$ from x to y $\psi'(x) \& \psi'(y)$ pass the test at $e_i = (v,w)$ if

-x & y agree on color of (v,w) opinions about (v,w) satisfy $\pi_{(v,w)}$

 $\frac{\text{def}}{\psi' \text{ satisfies } \mathbf{W}} \iff \psi'(x) \& \psi'(y) \text{ pass test at every edge in } \mathbf{W}$

Verifier's test on G' [Radhakrishnan. ICALP 2006]

Pick a random walk $\mathbf{W} = \langle e_1, ..., e_T \rangle$ from x to y $\psi'(x) \& \psi'(y)$ pass the test at $e_i = (v,w)$ if

- $\bullet \psi'(x)[v] = \psi'(y)[v]$
- $\bullet \psi'(x)[w] = \psi'(y)[w]$
- $(\psi'(x)[v], \psi'(x)[w])$ satisfies e_i

Verifier's test on G' [Radhakrishnan. ICALP 2006]

Pick a random walk $\mathbf{W} = \langle e_1, ..., e_T \rangle$ from x to y $\psi'(x) \& \psi'(y)$ pass the test at $e_i = (v,w)$ if

- $\bullet \psi'(x)[v] = \psi'(y)[v]$
- $\bullet \psi'(x)[w] = \psi'(y)[w]$
- $(\psi'(x)[v], \psi'(x)[w])$ satisfies e_i

Verifier's test on 6' [Radhakrishnan. ICALP 2006]

Pick a random walk $\mathbf{W} = \langle e_1, ..., e_T \rangle$ from x to y $\psi'(x) \& \psi'(y)$ pass the test at $e_i = (v,w)$ if

- $\bullet \psi'(x)[v] = \psi'(y)[v]$
- $\bullet \psi'(x)[w] = \psi'(y)[w]$
- $(\psi'(x)[v], \psi'(x)[w])$ satisfies e_i

Completeness side

Goal: $\exists \psi \ \mathsf{val}_{G}(\psi) = 1$

Optimal ψ : $V \rightarrow \Sigma$

 \Longrightarrow

 $\exists \psi' \ val_{G'}(\psi') = 1$

Soundness side [Radhakrishnan. ICALP 2006]

- •If verifier checks one of ϵ -frac. unsat. edges e_i w.r.t. ψ , ψ' doesn't pass test at e_i w.p. $\Omega(1)$
- Edges in RWs W are pairwise independent & uniform (almost) this is where expansion is applied
 - $\Rightarrow \bigcirc$ verifier rejects w.p. $\approx \Omega(1) \cdot \varepsilon \cdot \mathbb{E}[\text{length of } \mathbf{W}] = \Omega(T \cdot \varepsilon)$

Maxmin Binary CSP Reconfiguration

[Ito et al. Theor. Comput. Sci. 2011] [O. STACS 2023]

- Input: Binary CSP $G = (V, E, \Sigma, \Pi = (\pi_e)_{e \in E})$ & satisfying $\psi_s, \psi_t: V \to \Sigma$
- Output: $\psi = \langle \psi^{(0)} = \psi_s, ..., \psi^{(\ell)} = \psi_t \rangle$ (reconf. sequence) S.t.

ψ satisfies all edges of 6 (feasibility)

 $\text{Ham}(\psi^{(i-1)}, \psi^{(i)}) = 1$ (adjacency on hypercube)

- Goal: $\max_{\mathbf{w}} \operatorname{val}_{G}(\mathbf{w}) \stackrel{\text{def}}{=} \min_{i} (\text{frac. of edges satisfied by } \mathbf{w}^{(i)})$
 - $OPT_G(\psi_s \leftrightarrow \psi_t) \stackrel{\text{def}}{=} \text{max. value of } \xrightarrow{}$
- **RIH** $\Rightarrow \exists \epsilon > 0$, Gap[1 vs. 1- ϵ] Binary CSP Reconf. is **PSPACE**-hard:
- $OPT_G(\psi_s \leftrightarrow \psi_t) < 1-\epsilon$ ($\forall \psi$ some $\psi^{(i)}$ violates ϵ -frac. of edges)

Difficulty of powering Binary CSP Reconf.

Loosing perfect completeness

Goal:

$$\mathsf{OPT}_G(\psi_{\varsigma} \leftrightsquigarrow \psi_{t}) = 1$$

$$OPT_G(\psi_s \leftrightarrow \psi_t) = 1$$
 $OPT_{G'}(\psi'_s \leftrightarrow \psi'_t) = 1$

All vertices should have the SAME opinion about the color of v

$$\forall x \ \psi'_{s}(x)[v] \stackrel{\text{def}}{=} R$$

$$\exists x,y \ \psi'^{(i)}(x)[v] \neq \psi'^{(i)}(y)[v] \quad \forall x \ \psi'_t(x)[v] \stackrel{\text{def}}{=} B$$

Solution Substituting the substitution of the su

Alphabet squaring trick [0. STACS 2023]

- Think as if opinion could take a pair of colors!
- Original $\Sigma = \{R, G, B\}$
- New $\Sigma_{sq} = \{R, G, B, RG, GB, BR\}$
- a & β are consistent \Leftrightarrow a \subseteq β or a \supseteq β

Modifying verifier's test

- Think as if opinion could take a pair of colors!
- Original $\Sigma = \{R, G, B\}$
- New $\Sigma_{sq} = \{R, G, B, RG, GB, BR\}$
- a & β are consistent \Leftrightarrow a \subseteq β or a \supseteq β

	R	RG	G	GB	В	BR
R						
RG						
G						
GB						
В						
BR						

```
Pick RW W = \langle e_1, ..., e_T \rangle from x to y as before \Psi'(x) \& \Psi'(y) pass modified test at e_i = (v, w) if
```

opinions of x & y are consistent at (v,w) opinions about (v,w) satisfy $\pi_{(v,w)}$

Modifying verifier's test

- Think as if opinion could take a pair of colors!
- Original $\Sigma = \{R, G, B\}$
- New $\Sigma_{sq} = \{R, G, B, RG, GB, BR\}$
- a & β are consistent \Leftrightarrow a \subseteq β or a \supseteq β

	R	RG	G	GB	В	BR
R						
RG						
G						
GB						
В						
BR						

Modifying verifier's test

- Think as if opinion could take a pair of colors!
- Original $\Sigma = \{R, G, B\}$
- New $\Sigma_{sq} = \{R, G, B, RG, GB, BR\}$
- a & β are consistent \Leftrightarrow a \subseteq β or a \supseteq β

	R	RG	G	GB	В	BR
R						
RG						
G						
GB						
В						
BR						

```
Pick RW \mathbf{W} = \langle e_1, ..., e_T \rangle from x to y as before \psi'(x) \& \psi'(y) pass modified test at e_i = (v,w) if (C1) \psi'(x)[v] \& \psi'(y)[v] are consistent (C2) \psi'(x)[w] \& \psi'(y)[w] are consistent (C3) (\psi'(x)[v] \cup \psi'(y)[v]) \times (\psi'(x)[w] \cup \psi'(y)[w]) \subseteq \pi_{(v,w)} This verifier is "much weaker" than before
```

Alphabet squaring preserves perfect completeness

Goal: $OPT_{G}(\psi_{s} \leftrightarrow \psi_{t}) = 1 \implies OPT_{G'}(\psi'_{s} \leftrightarrow \psi'_{t}) = 1$

Can transform all R opinions into all B opinions via BR's

Alphabet squaring preserves perfect completeness

Goal: $OPT_{G}(\psi_{s} \leftrightarrow \psi_{t}) = 1 \implies OPT_{G'}(\psi'_{s} \leftrightarrow \psi'_{t}) = 1$

Can transform all R opinions into all B opinions via BR's

Alphabet squaring preserves perfect completeness

Goal: $OPT_G(\psi_s \leftrightarrow \psi_t) = 1 \implies OPT_{G'}(\psi'_s \leftrightarrow \psi'_t) = 1$

Can transform all R opinions into all B opinions via BR's

Soundness: Overview

$$\begin{array}{lll} \text{ \emptyset \textbf{Goal:} } & \text{OPT}_{\mathcal{G}}(\psi_s \leftrightsquigarrow \psi_t) < 1 \text{-} \epsilon \implies & \text{OPT}_{\mathcal{G}'}(\psi'_s \leftrightsquigarrow \psi'_t) < 1 - \Omega(T \cdot \epsilon) \\ \psi = \langle \psi^{(0)}, ..., \psi^{(\ell)} \rangle & \longleftarrow & \text{Optimal ψ'} = \langle \psi'^{(0)}, ..., \psi'^{(\ell)} \rangle \\ & \text{ plurality vote} \end{array}$$

Soundness: Overview

$$\begin{array}{lll} \text{ \emptyset \textbf{Goal}$:} & \text{ $OPT_{\mathcal{G}'}(\psi_s \leftrightsquigarrow \psi_t) < 1 - \epsilon $ \Longrightarrow $ OPT_{\mathcal{G}'}(\psi_s \leftrightsquigarrow \psi_t') < 1 - \Omega(T \cdot \epsilon)$ \\ & \psi = \langle \psi^{(0)}, ..., \psi^{(\ell)} \rangle & \longleftrightarrow & \text{ $Optimal $\psi' = \langle \psi'^{(0)}, ..., \psi'^{(\ell)} \rangle$} \\ & \text{ $plurality vote} \end{array}$$

- Can show " $\exists i \ val_G(\psi^{(i)}) < 1-\epsilon+o(1)$ " (slightly nontrivial)
- Suppose $\psi^{(i)}$ violates (v,w) of G

 $\Pr[\psi^{(i)}]$ fails modified test at $(v,w) \mid W$ touches $(v,w)] = \Omega(1)$

```
⚠ DIFFERENT from
[Radhakrishnan. ICALP 2006]
```

Soundness: Bounding failure probability

Sound $\Leftrightarrow = \Pr[\psi' \text{ fails modified test at } (v,w) \mid \mathbf{W} \text{ touches } (v,w)]$ assuming "plurality vote ψ violates $\pi_{(v,w)}$ "

$$p_{v} \stackrel{\text{def}}{=} Pr_{x}[\psi'(x)[v] \ni \psi(v)]$$

$$p_{w} \stackrel{\text{def}}{=} Pr_{y}[\psi'(y)[w] \ni \psi(w)]$$

Prob. random opinion over RW from v or w is consistent with plurality vote

p, & p, are UNKNOWN, but...

(1)
$$\Pr_{x,y}[\psi'(x)[v] \& \psi'(y)[v]$$
 are consist.] $\leq 2 \cdot p_v$ (2) $\Pr_{x,y}[\psi'(x)[w] \& \psi'(y)[w]$ are consist.] $\leq 2 \cdot p_w$

2-factor loss from [Radhakrishnan. ICALP 2006]

(3) $Pr_{x,y}[\psi'(x)[v] \ni \psi(v) \& \psi'(y)[w] \ni \psi(w)] \ge p_v \cdot p_w$

$$\Rightarrow \bigcirc \Leftrightarrow \geq \max\{1-2 \cdot p_v, 1-2 \cdot p_w, p_v \cdot p_w\} \geq (\sqrt{2}-1)^2$$

Where 2-factor loss comes from

- λ & μ : distribution over Σ_{sq}
- $a_{PLR} \stackrel{\text{def}}{=} argmax_{a \in \Sigma} Pr_{X \sim \lambda}[a \& X \text{ are consistent}]$ (depending only on λ) this is exactly plurality vote—
- $p \stackrel{\text{def}}{=} Pr_{X \sim \lambda}[a_{PLR} \& X \text{ are consistent}]$
- $q \stackrel{\text{def}}{=} Pr_{X \sim \lambda, Y \sim \mu}[X \& Y \text{ are consistent}]$

$$\bigcirc q \leq 2p$$

E.g.

$$\bullet \alpha_{PLR} = R$$

• p = 0.51, q = 1

	R	В	RB
λ	0.51	0.49	0
μ	0	0	1

Reconfiguration Problems, Hardness of Approximation, and Gap Amplification: What Are They?

Conclusions: We have seen...

Reconfiguration

• Brand-new, puzzle-like PSPACE-complete problems

PSPACE-hardness of approximation

May require a theory beyond the PCP theorem for NP

Thank you!

Gap amplification

• We *partially* made it (à la Dinur)!!

MANY OPEN QUESTIONS

• Algorithmic results? Proof of RIH? Optimal inapprox.?

Breaking news: A few weeks ago...

Proof of RIH

- Independently announced by
 [Karthik C. S.-Manurangsi. 2023. https://arxiv.org/abs/2312.17140]
 [Hirahara-O. 2024. https://arxiv.org/abs/2401.00474]
- Both applying PCP of proximity
 [Ben-Sasson, Goldreich, Harsha, Sudan, Vadhan. SIAM J. Comput. 2006]
 [Dinur-Reingold. SIAM J. Comput. 2006]

Tight NP-hardness [Karthik C. S.-Manurangsi. 2023]

- Binary CSP Reconf. is NP-hard to approx. within $\frac{1}{2}+\epsilon$
- Set Cover Reconf. is NP-hard to approx. within 2-ε

To be continued...