		Created with Osdag®	
Company Name		Project Title	column to column end plate connection
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

1 Input Parameters

Module			Column-to-C	olumn End Plate Connection
Main Module			M	oment Connection
Bending Moment (kNm) *				43.0
Shear Force	e (kN) *			43.0
Axial Ford	ce (kN)			43.0
	Column Section	- Mechanical	Properties	
	Beam Sect	ion *		HB 450*
	Materia	1 *		E 165 (Fe 290)
т ү	Ultimate Strengtl	h, F_u (MPa)		290
	Yield Strength,	F_y (MPa)		165
$(B-t)$ α	Mass, m (kg/m)	92.19	$I_z \text{ (cm}^4)$	40100.0
4 t	Area, $A \text{ (cm}^2)$	117.0	$I_y(\mathrm{cm}^4)$	2990.0
ZZ D	D (mm)	450.0	r_z (cm)	18.4
B B	B (mm)	250.0	r_y (cm)	5.04
R ₁	t (mm)	11.3	$Z_z \text{ (cm}^3\text{)}$	1780.0
В	T (mm)	13.7	$Z_y \text{ (cm}^3)$	239.0
Y	Flange Slope	94	Z_{pz} (cm ³)	2020.0
	$R_1 \text{ (mm)}$	15.0	$Z_{py} \ (\mathrm{cm}^3)$	398.0
	$R_2 \text{ (mm)}$	7.5		
	Bolt Details - Inp	out and Desig	n Preference	
Diameter	(mm) *		[8, 10, 12, 14, 16, 18, 20, 22, 24, 27, 30, 33, 36, 39,	
Diameter	(111111)		42, 45, 48, 52, 56, 60, 64]	
Property	Class *		[3.6,4.6,4.8,5.6,5.8,6.8,8.8,9.8,10.9,12.9]	
Туре	*		Bearing Bolt	
Bolt Te	nsion		N	Non pre-tensioned
Hole T	ype			Standard
Slip Facto	$r, (\mu_f)$			0.3
	Detailing -	Design Prefe	erence	
Edge Preparat	ion Method		Shear	red or hand flame cut
Are the Members Exposed	to Corrosive Influence	es?		False

		Created with Osdag®	
Company Name		Project Title	column to column end plate connection
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

2 Design Checks

Design Status	Pass
---------------	------

2.1 Member Capacity

Check	Required	Provided	Remarks
Section Classification		Plastic	
Section Classification		[Ref: Table 2, Cl.3.7.2 and 3.7.4, IS 800:2007]	
Axial Capacity Member (kN)	43	$T_{\text{dg}} = \frac{A_g f_y}{\gamma_{m0}}$ $= \frac{11700.0 \times 165}{1.1 \times 10^3}$ $= 1755.0$	Pass
Shear Capacity Member (kN)	43	[Ref. IS 800:2007, Cl.6.2] $V_{d_y} = \frac{A_v f_y}{\sqrt{3}\gamma_{m0}}$ $= \frac{422.6 \times 11.3 \times 165}{\sqrt{3} \times 1.1 \times 1000}$ $= 413.56$	Pass
Plastic Moment Capacity (kNm)		[Ref. IS 800:2007, Cl.10.4.3] $M_{dz} = \frac{\beta_b Z_p f y}{\gamma_{m0}}$ $= \frac{1 \times 2020000.0 \times 165}{1.1 \times 10^6}$ $= 303.0$ [Ref. IS 800:2007, Cl.8.2.1.2]	
Moment Deformation Criteria (kNm)		$M_{dc} = \frac{1.5Z_e fy}{\gamma_{m0} \times 10^6}$ $= \frac{1.5 \times 1780000.0 \times 165}{1.1 \times 10^6}$ $= 400.5$ [Ref. IS 800:2007, Cl.8.2.1.2]	

		Created with OSdag®	
Company Name		Project Title	column to column end plate connection
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

Check	Required	Provided	Remarks
		$M_{d_{\mathbf{Z}}} = \min(M_{d_{\mathbf{Z}}}, \ M_{d_{c}})$	
		$= \min(303.0, 400.5)$	
Moment Capacity Member	43	= 303.0	Pass
(kNm)			
		[Ref. IS 800:2007, Cl.8.2]	

2.2 Load Consideration

Check	Required	Provided	Remarks
		I.R. axial $= P_{\rm x}/T_{\rm dg}$	
		=43.0/1755.0	
		= 0.02	
		I.R. moment = M_z/M_{dz}	
Interaction Ratio		=43.0/303.0	
		= 0.14	
		I.R. sum $=$ I.R. axial $+$ I.R. mon	ient
		= 0.02 + 0.14	
		= 0.17	

		Created with OSdag®	
Company Name		Project Title	column to column end plate connection
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

Check	Required	Provided	Remarks
Minimum Required Load	$\begin{aligned} &\text{if I.R. axial} < 0.3 \text{ and I.R. moment} < 0.5 \\ &P_{\text{xmin}} = 0.3T_{\text{dg}} \\ &M_{\text{zmin}} = 0.5M_{dz} \end{aligned}$ $&\text{elif sum I.R.} <= 1.0 \text{ and I.R. moment} < 0.5 \\ &\text{if } (0.5 - \text{I.R. moment}) < (1 - \text{sum I.R.}) \\ &M_{\text{zmin}} = 0.5 \times M_{dz} \\ &\text{else} \\ &M_{\text{zmin}} = M_{\text{z}} + ((1 - \text{sum I.R.}) \times M_{dz}) \\ &P_{\text{xmin}} = P_{\text{x}} \end{aligned}$ $&\text{elif sum I.R.} <= 1.0 \text{ and I.R. axial} < 0.3 \\ &\text{if } (0.3 - \text{I.R. axial}) < (1 - \text{sum I.R.}) \\ &P_{\text{xmin}} = 0.3T_{\text{dg}} \\ &\text{else} \\ &P_{\text{xmin}} = P_{\text{x}} + ((1 - \text{sum I.R.}) \times T_{\text{dg}}) \\ &M_{\text{zmin}} = M_{\text{z}} \end{aligned}$ $&\text{else} \\ &P_{\text{xmin}} = P_{\text{x}} \\ &M_{\text{zmin}} = M_{\text{z}} \end{aligned}$	$M_{ m zmin} = 151.5$ $P_{ m xmin} = 526.5$ [Ref. IS 800:2007, Cl.10.7]	
Applied Axial Force (kN)	43.0	$P_u = \max(P_x, P_{xmin})$ = $\max(43.0, 526.5)$	

		Created with Osdag®	
Company Name		Project Title	column to column end plate connection
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

Check	Required	Provided	Remarks
		$V_{y_{\min}} = \min(0.15V_{d_y}, 40.0)$	
		$= \min(0.15 \times 689.27, 40.0)$	
		=40.0	
Applied Shear Force (kN)	43.0	$V_u = \max(V_y, V_{y_{\min}})$	
		$= \max(43.0, 40.0)$	
		= 43.0	
		[Ref. IS 800:2007, Cl.10.7]	
		$M_u = \max(M_z, M_{z\min})$	
		$= \max(43.0, 151.5)$	
Applied Moment (kNm)	43.0	= 151.5	
		[Ref. IS 800:2007, Cl.8.2.1.2]	

2.3 Bolt Check

Check	Required	Provided	Remarks
Diameter (mm)	Bolt Quantity Optimization	d = 27.0	
Property Class	Bolt Grade Optimization	5.6	
Hole Diameter (mm)		$d_0 = 30.0$	
No. of Bolts (along one side of the web) (n)	$n_{bw} = 2 \times \left(\frac{D - (2 \times T_f) - (2 \times e)}{p} + 1\right)$ $= 2 \times \left(\frac{450.0 - (2 \times 13.7) - (2 \times 55)}{67.5} + 1\right)$ $= 10$	10	Pass
No. of Bolts (along one side of the flange overhang) (n)	$n_{bf} = 2 \times \left(\frac{b/2 - (T_w/2) - (2 \times e)}{p} + 1\right)$ $= 2 \times \left(\frac{250.0/2 - (0.5 \times 11.3) - (2 \times 55)}{67.5} + 1\right)$ $= 2$	2	Pass
Total No. of Bolts		10	

		Cre	ated with Osdag®
Company Name		Project Title	column to column end plate connection
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

Check	Required	Provided	Remarks
Shear Capacity (kN)		$V_{\text{dsb}} = \frac{f_{ub}n_n A_{nb}}{\sqrt{3}\gamma_{mb}}$ $= \frac{500.0 \times 1 \times 459}{1000 \times \sqrt{3} \times 1.25}$ $= 106.0$ [Ref. IS 800:2007, Cl.10.3.3]	
Bearing Capacity (kN)		$V_{\text{dpb}} = \frac{2.5k_b dt f_u}{\gamma_{mb}}$ $= \frac{2.5 \times 0.53 \times 27.0 \times 56.0 \times 290}{1000 \times 1.25}$ $= 464.79$	
Capacity (kN)	$V_{sb} = \frac{V}{n_{wb}}$ $= \frac{43.0}{10}$ $= 4.3$	[Ref. IS 800:2007, Cl.10.3.4] $V_{db} = \min (V_{dsb}, V_{dpb})$ $= \min (106.0, 464.79)$ $= 106.0$ [Ref. IS 800:2007, Cl.10.3.2]	Pass
Tension due to Moment and Axial Force (kN)	$T_1 = \frac{P}{n} + \frac{M \times y_{max}}{y_{sqr}}$ $= \frac{526.5 \times 10^3}{10} + \frac{151500.0 \times 10^6 \times 374.45}{605154.75}$ $= 146.39$		

		Cre	ated with Osdag®
Company Name		Project Title	column to column end plate connection
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

Check	Required	Provided	Remarks
	$Q = \frac{l_v}{2l_e} \left[T_e - \frac{\beta \eta f_o b_e t^4}{27 l_e l_v^2} \right]$ $l_v = e - t_w$ $= 55 - 0 = 55 \text{ mm}$		
	$f_o = 0.7 f_{ub}$ $= 0.7 \times 500.0$ $= 350.0 \text{ N/mm}^2$ $l_e = \min\left(e, 1.1t \sqrt{\frac{\beta f_o}{f_y}}\right)$ $= \min\left(55, 1.1 \times 56.0 \times \sqrt{\frac{2 \times 350.0}{165}}\right)$		
Prying force (kN)	$= \min \left(55, 1.1 \times 50.0 \times \sqrt{\frac{165}{165}} \right)$ $= \min(55, 89.72) = 55 \text{ mm}$ $\beta = 2 \text{ (non pre-tensioned bolt)}$ $\eta = 1.5$		OK
	$b_e = \frac{B}{n_c}$ $= \frac{250.0}{2} = 125.0 \text{ mm}$		
	$Q = \frac{55}{2 \times 55} \times$ $\left[146.39 - \left(\frac{2 \times 1.5 \times 350.0 \times 125.0 \times 56.0^4}{27 \times 55 \times 55^2}\right)\right]$ $Q = 2.72$	× 10 ⁻³]	
	[Ref. IS 800:2007, Cl.10.4.7]		

		Cre	ated with Osdag®
Company Name		Project Title	column to column end plate connection
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

Check	Required	Provided	Remarks
		$T_{\rm db} = 0.90 f_{ub} A_n / \gamma_{mb}$	
		$< f_{yb}A_{sb}(\gamma_{mb} / \gamma_{m0})$	
		$= \min \left(0.90 \times 500.0 \times 459 \ / \ 1.25, \right.$	
Tension demand (kN)	$T_b = T_1 + Q$ = 146 + 2.72	$300.0 \times 573 \times (1.25/1.1)$	Pass
	= 149.11	$= \min(165.24, 195.34)$	
		=156.27	
		[Ref. IS 800:2007, Cl.10.3.5]	
	$p_{\min} = 2.5d$		
	$=2.5\times27.0$		
Min. Pitch Distance (mm)	= 67.5	67.5	Pass
(IIIII)	[Ref. IS 800:2007, Cl.10.2.2]		
	$p/g_{\text{max}} = \min(32t, 300)$		
	$= \min(32 \times 56.0, 300)$		
	$= \min(1792.0, 300)$		
Max. Pitch Distance	= 300	67.5	Pass
(mm)	Where, $t = \min(56.0, 56.0)$		
	[Ref. IS 800:2007, Cl.10.2.3]		
	$e_{\min} = 1.7d_0$		
	$= 1.7 \times 30.0$		
Min. End Distance	= 51.0	55	Pass
(mm)			
	[Ref. IS 800:2007, Cl.10.2.4.2]		

		Cre	ated with Osdag®
Company Name		Project Title	column to column end plate connection
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

Check	Required	Provided	Remarks
Max. End Distance (mm)	$e_{\max} = 12t\varepsilon; \ \varepsilon = \sqrt{\frac{250}{f_y}}$		
	$e_1 = 12 \times 56.0 \times \sqrt{\frac{250}{165}} = 827.17$		
	$e_2 = 12 \times 56.0 \times \sqrt{\frac{250}{165}} = 827.17$	55	Pass
	$e_{\text{max}} = \min(e_1, e_2) = 827.17$		
	[Ref. IS 800:2007, Cl.10.2.4.3]		

2.4 End Plate Checks

Check	Required	Provided	Remarks
Min. Plate Length (mm)	450.0	450.0	Pass
Min. Plate Height (mm)	250.0	250.0	Pass
Min. Plate Thickness (mm)	$t_{p} = max \left(\sqrt{\frac{4M_{cr}}{b_{eff}(f_{y}/\gamma_{m0})}}, \right.$ $\sqrt[4]{\left(T_{1} - \frac{2Ql_{e}}{l_{v}} \right) \times \left(\frac{27l_{e}l_{v}^{2}}{\beta\eta f_{o}b_{e}} \right)} \right)}$ $= max \left(\sqrt{\frac{4 \times 7.12 \times 10^{6}}{67 \times (165/1.1)}}, \right.$ $\sqrt[4]{\left(146393.25 - \frac{2 \times 2.72 \times 55}{55} \right) \times \left(\frac{27 \times 5}{2 \times 1.5 \times 3} \right)}$	$ \frac{5 \times 55^{2}}{50.0 \times 125.0} $	
	= 56.0		
Moment Capacity (kNm)	$M_{ep} = \max (0.5 \text{ X Tension in first bolt X end dista}$ Tension in second bolt X end distance) = $\max(0.5T_h1e, T_h2e)$	$M_{dp} = \frac{\sigma_{\text{eff}} t_p J y}{4\gamma_{m0}}$	Pass
Thomas Capacity (ATTII)	$= \max(0.57616, 7626)$ $= \max(0.5 \times 146393.25 \times 55, 129494.68 \times 55)$ $= 7.12$	$= \frac{67.5 \times 56.0^2 \times 165}{4 \times 1.1}$ $= 7.94$	

		Cre	ated with Osdag®
Company Name		Project Title	column to column end plate connection
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

2.5 Bolt Checks

Check	Required	Provided	Remarks
Diameter (mm)	Bolt Quantity Optimisation	The number of bolts for given bolt size(s)	
		are not sufficient to cater for the given sec-	
		tion and loads combination.	

		Created with OSdag®	
Company Name		Project Title	column to column end plate connection
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

3 3D Views

4 Design Log