PSTAT 1208 HW 5

Outline

Relative efficiency is the comparing of estimators based on variance. If both, estimators are unbiased, ô, will be relatively more efficient than ô, if $V(\hat{\theta}_2) > V(\hat{\theta}_1)$.

We can use the retio $V(\hat{\theta}_2)/V(\hat{\theta}_1)$ to define the relative efficiency of 2 unbiased estimators, where ô, ô, are two unbiased estimators for the same parameter o.

eff (&, &) = V(&2) / V(&)

- Consistent estimator is an estimator that converges to its target parameter and becomes accurate with an infinite amount of data. The estimator $\hat{\theta}_n$ is a consistent estimator of θ if, for any positive number E, $\lim_{n\to\infty} P(|\hat{\theta}_n \theta| \le E) = 1 = \lim_{n\to\infty} P(|\hat{\theta}_n \theta| > E) = 0$
- Sufficient Statistic is a statistic that summarizes all the information in a sample about a target parameter
- For discrete random variables, if sample abservations 4.142.14n

 were corresponding to RV. Y., Y2, Yn whose distribution depends on
 a parameter B. Then, if Y, Y2, Yn whose distribution depends on
 the likelihood of the sample, L (y., Y2, ..., y | B) is defined to be

 the soint probability of Y1, Y2, ..., Yn there is L(y, y2, ..., y | B)

 = p(y, | B) × p(y, | B) × p(y, | B). If Y, Y2, ..., y n

 are continuous random variables, the likelihood is defined to be

 the soint density evaluated at y, Y2, Yn such that

 L (y, y2, ..., yn | B) = F(y, | B) × F(y, | B) × ... F(yn | B). If we

 let V be a Statistic based on the random sample, then V

 is a sufficient statistic Likelihood is the probability of
 observing the event when the value of the parameter is B.

1) Yn f(vio) where fis a gamma (c, c) denty F(v,0) = T(c)(0)c y (-)exp(-(a) -CY = A $A = \begin{cases} f_A(e) = f_y(y = \frac{\partial a}{c}) \begin{vmatrix} dy \\ da \end{vmatrix} \\ \frac{(D + f_C)^{c-1}}{C(C)(\frac{\partial f_C}{c})^c} = \begin{cases} a & d & Q + 1 \\ da & C \end{cases}$ T(c) = a C-1 m may make the set that the (b) (Presumably applied on pivot) P(B(A<B0)=1-0 = 1-0 = 1000 = 1 = (cy cy) (F(1- 1/2)-1) (5 CSTOS PARS JES

	() 95% => 95% chance lies obt
2	Semple meen = 28.8 f) 95% => 27.44 & 30.15 99% => 99% => 27.02 & 30.58
	var = 64 a) - The widow of the CZ 3
	\$ (1.96) = .025
	₲ (-2.58)=,005
	a) Y = 28.8 m/2 0 - 0.
	b) Tayer parameter is mean BMI less precise The data b) Yes 134
	of American adults. The data
	of American adults. The data b) Yes Shows the adult American population Z x12 = \frac{1}{2} (29.28-25) \frac{134}{164}
	The make I The Bergerich of
	The sample man is the estimator \$ (361) he the employer manifestion => 99.98% chance
	c) 100 (1-0) 1/2 CZ they are overneight
	y-2-1/2 5 1 1 + 2 1 5 7
-	corneal value are dyz pods.
	- done should be normally discriberted
	Sompled elements are independent
(d) (1-a=.95
05.1	2 = . 025, s=6, n=134
CI	2 4 /2 = 20 035
	2 1.96
	=> [27.44, 30.15]
е) 1- x=,99
	\$ = .005
	Zx/2 = 2.58
	5 [23.8 - 258 = 23 billion 8 =
	=) [27.02,30.58]
	7 [21.06, 30.58]