

ColumbiaX: CSMM.102x Machine Learning

Help

Bookmarks

- Machine Learning Course: Getting Started
- Week 1
- Week 2
- Week 3
- ▼ Week 4

Lecture 7 Nearest Neighbors and Bayes Classifiers

Lecture 8 Linear Classifiers and Perceptron

Week 4 Quiz

Quiz due Apr 11, 2017 05:00 IST 📝

Week 4 Discussion Question

Week 4 > Week 4 Quiz > Week 4 Quiz

Week 4 Quiz

☐ Bookmark this page

Multiple Choice

1/1 point (graded)

For two vectors u and v both in \mathbb{R}^d , $\|u-v\|_1 \leq \|u-v\|_2$.

TRUE

FALSE

Submit

You have used 1 of 1 attempt

Multiple Choice

1/1 point (graded)

While there are many factors that go into making a good supervised model, the *key* assumption that makes learning an accurate classifier or regression model possible is

ullet the statistical regularity within the data - past data accurately represents future data \checkmark

there is enough data to learn the classifier		
we have powerful enough computers to handle big data		
Submit You have used 1 of 1 attempt		
✓ Correct (1/1 point)		
Checkboxes 1/1 point (graded) Which of the following describe a classification problem? (Check all that apply)		
predicting the gas milage of a car based on its weight and type		
✓ predicting the presence of a disease based on preliminary tests		
predicting the temperature tomorrow based on the temperature today		
✓		

Submit	You have used 1 of 1 attempt
Multiple C 1/1 point (gra Using a k-ni	
larger	
• smalle	er 🗸
Submit	You have used 1 of 1 attempt
Checkbox 1/1 point (gra Which of th	
✓ k-nn c	lassifiers are parametric
✓ k-nn c	lassifiers always become more accurate as k increases

Text Input
1/1 point (graded)
The naive Bayes classifier makes the assumption that the dimensions of the covariate vector are
conditionally
independent
Submit You have used 1 of 2 attempts
Multiple Choice 1/1 point (graded) An example of a linear classifier with a quadratic decision boundary is a Bayes classifier using class dependent Gaussians having a covariance matrix.
• shared
● unique
Submit You have used 1 of 1 attempt

1/1 point (graded) For a binary $\{-1,+1\}$ linear classifier, the coefficient vector $m{w}$ points in the direction of the class.
○ -1
⊕ +1 ✓
Submit You have used 1 of 1 attempt
✓ Correct (1/1 point)
Dropdown 1/1 point (graded) The perceptron algorithm is a binary classifier that is guaranteed to converge to the solution can find when the data is separable.
first, linearly ▼
Submit You have used 1 of 1 attempt
✓ Correct (1/1 point)

© All Rights Reserved

© 2012-2017 edX Inc. All rights reserved except where noted. EdX, Open edX and the edX and Open EdX logos are registered trademarks or trademarks of edX Inc.

