### Реляционная модель данных Базы данных

Юдинцев В. В.

Кафедра математических методов в экономике

14 марта 2022 г.



# Содержание

Реляционная модель данных

Реляционная алгебра

### Модели данных

- Для адекватного отображения в БД состояния объектов и их взаимосвязей в рассматриваемой предметной области необходима модель данных – модель объектов и их взаимосвязей.
- Все модели данных делятся на три вида, используемые на трёх этапах проектирования:
  - Инфологическая
  - Даталогическая
  - Физическая

# Инфологическая модель

- На первом этапе (после постановки задачи) исследуется предметная область, выявляются объекты и процессы, которые нужно будет отобразить в информационной системе при решении задач, для которых разрабатывается информационная система.
- На первом этапе строится семантическая модель предметной области. Такая модель создаётся без ориентации на какую-либо конкретную СУБД и модель данных.
- Наиболее распространённой инфологической моделью является модель сущность-связь.

# Даталогическое проектирование

• Даталогическое проектирование – создание схемы базы данных на основе конкретной модели данных, например, на основе реляционной модели данных.

# Физическое проектирование

- **Физическое проектирование** создание схемы базы данных для конкретной системы управления баз данных.
- Специфика конкретной СУБД может включать в себя ограничения на именование объектов базы данных, ограничения на поддерживаемые типы данных.

### Модели данных



### Даталогические модели

Логическую структуру хранимых в базе данных называют моделью представления данных. К основным моделям представления данных (моделям данных) относятся следующие:

- иерархическая
- сетевая
- реляционная
- постреляционная
- многомерная
- объектно-ориентированная

Реляционная модель данных

## Автор реляционной модели



- Реляционная модель данных разработана математиком Эдгар Фрэнк Кодд (Edgar Frank Codd, 1923–2003), сотрудником IBM
- Codd E. F. A Relational Model of Data for Large Shared Data Banks. CACM 13: 6. Статья вышла в июне 1970 года

#### Реляционная модель

- Реляционная модель совокупность данных, состоящая из набора двумерных таблиц
- В теории множеств таблице соответствует термин отношение (relation)
- Реляционная модель данных некоторой предметной области представляет собой набор отношении (relations), изменяющихся во времени

## Элементы реляционной модели

| Элемент модели                                                   | Форма представления                                                                                                       |
|------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Элемент модели Отношение Схема отношения Сущность Кортеж Атрибут | Форма представления Таблица Заголовок таблицы Описание свойств объекта Строка таблицы Заголовок столбца таблицы           |
| Тип данных<br>Домен<br>Значение атрибута<br>Первичный ключ       | Тип значений элементов таблицы Множество допустимых значений атрибута Значение поля в записи Один или несколько атрибутов |

# Пример отношения "Сотрудник"



### Определения

- Степень отношения определяется количеством атрибутов, которое оно содержит.
- **Кардинальность** это количество кортежей, которое содержит отношение.
- Реляционная база данных это набор нормализованных отношений.

# Домен

Домен представляет собой множество всех возможных значений определенного атрибута отношения. Сотрудник включает 4 домена:

- фамилии всех сотрудников
- номера всех отделов
- названия всех должностей
- даты рождения всех сотрудников

# Первичный ключ (PK, Primary Key)

#### Ключ отношения, ключевой атрибут:

- атрибут отношения, однозначно идентифицирующий каждый из его кортежей
- ключ может быть составным (сложным) состоять из нескольких атрибутов

# Первичный ключ (PK, Primary Key)

#### Ключ отношения, ключевой атрибут:

- каждое отношение обязательно имеет комбинацию атрибутов, которая может служить ключом.
- существование ключа гарантируется тем, что отношение это множество, которое не содержит одинаковых элементов
- в отношении может быть несколько ключей возможные ключи.

#### Внешний ключ

- ullet отношение  $R_1$  может содержать не ключевой атрибут, значение которого является ключом другого отношения  $R_2$
- атрибут в отношении  $R_1$  это **внешний ключ**

| ФИО             | Отдел | Отдел | Наименование       |
|-----------------|-------|-------|--------------------|
| Иванов И. И.    | 1     | 1     | Отдел маркетинга   |
| Горбунков С. С. | 2     | 2     | IT-отдел           |
| Петров В. Е.    | 2     | 3     | Бухгалтерия        |
|                 |       | 4     | Отдел планирования |

Атрибут **Отдел** является внешним ключом в таблице Сотрудники, и первичным ключом таблицы Отделы.

### Для чего нужны ключи

- исключения дублирования значений в ключевых атрибутах
- организации связывания таблиц
- упорядочения кортежей
- ускорения работы к кортежами отношения

### Таблица и Отношение

#### Условия того, что таблица является отношением

- все строки таблицы должны быть уникальны, то есть не может быть строк с одинаковыми первичными ключами
- имена столбцов таблицы должны быть различны, а значения их простыми, то есть недопустима группа значений в одном столбце одной строки
- все строки одной таблицы должны иметь одну структуру, соответствующую именам и типам столбцов
- Порядок размещения строк в таблице может быть произвольным

Реляционная алгебра

# Реляционная алгебра

- Отношения являются множествами, поэтому средства манипулирования отношениями базируются на операциях теориии множеств с дополнительными специальными операциями, специфичными для баз данных
- Операции реляционной алгебры позволяют на основе одного или нескольких отношений создавать другое отношение без изменения самих исходных отношений.

# Операции реляционной алгебры

- выборка
- проекция
- декартово произведение
- объединение
- вычитание
- пересечение
- деление
- соединение

# Выборка

Из таблицы (R) выбирается строки (и формируется новая таблица – отношение R), удовлетворяющие некоторому условию (C).

$$R' = F_C(R)$$

#### $R_1$

| ID  | Фамилия       | Группа | Дата рождения |
|-----|---------------|--------|---------------|
| 101 | Воронин А. М. | 10215  | 2000          |
| 102 | Кацман И. С.  | 10216  | 2001          |
| 103 | Давыдов Ю. И. | 20217  | 1999          |
| 103 | Скляров Р. Е. | 20217  | 2000          |

$$R_2 = F_{\text{Дата рождения} > 1999}(R_1)$$

| ID  | Фамилия       | Группа | Дата рождения |
|-----|---------------|--------|---------------|
| 101 | Воронин А. М. | 10215  | 2000          |
| 102 | Кацман И. С.  | 10216  | 2001          |
| 103 | Скляров Р. Е. | 20217  | 2000          |

Юдинцев В. В. Реляционная модель данных 24 / 38

## Проекция

В таблице (R) выбирается только заданные столбцы, при этом из результата исключаются повторяющиеся строки.

#### $R_1$

| ID  | Фамилия       | Группа | Дата рождения |
|-----|---------------|--------|---------------|
| 101 | Воронин А. М. | 10215  | 2000          |
| 102 | Кацман И. С.  | 10216  | 2001          |
| 103 | Давыдов Ю. И. | 20217  | 1999          |
| 103 | Скляров Р. Е. | 20215  | 2000          |

#### $R_2$

| Группа | Дата рождения |
|--------|---------------|
| 10215  | 2000          |
| 10216  | 2001          |
| 20217  | 1999          |

### Произведение

Сцепление строк из одного отношения со строками из другого отношения (каждая строка первой таблицы сцепляется с каждой строкой второй таблицы).

# Произведение

#### $R_1$

| Дисциплина  |
|-------------|
| История     |
| Математика  |
| Физика      |
| Информатика |
|             |

#### $R_2$

| ID  | Фамилия       | Группа | Дата рождения |
|-----|---------------|--------|---------------|
| 101 | Воронин А. М. | 10215  | 2000          |
| 102 | Кацман И. С.  | 10216  | 2001          |
| 103 | Давыдов Ю. И. | 20217  | 1999          |
| 103 | Скляров Р. Е. | 20217  | 2000          |

R

| ID  | Фамилия       | Группа | Дата рождения | ID    | Дисциплина  |
|-----|---------------|--------|---------------|-------|-------------|
| 101 | Воронин А. М. | 10215  | 2000          | 22001 | История     |
| 101 | Воронин А. М. | 10215  | 2000          | 22002 | Математика  |
| 101 | Воронин А. М. | 10215  | 2000          | 22003 | Физика      |
| 101 | Воронин А. М. | 10215  | 2000          | 22004 | Информатика |
| 102 | Кацман И. С.  | 10216  | 2001          | 22001 | История     |
| 102 | Кацман И. С.  | 10216  | 2001          | 22002 | Математика  |
|     |               |        |               |       |             |
| 103 | Скляров Р. Е. | 20217  | 2000          | 22003 | Физика      |
| 103 | Скляров Р. Е. | 20217  | 2000          | 22004 | Информатика |

# Объединение

 Итоговая таблица содержит ствроки из первой и второй таблицы

$$R = R_1 \cup R_2$$

 Операция объединения может быть выполнена только тогда, когда два отношения обладают одинаковым числом и названиями атрибутов (столбцов), т.е. совместимы по объединению.



#### Разность

• Отношение с тем же заголовком, что и у совместимых по типу отношений  $R_1$  и  $R_2$ , и телом, состоящим из кортежей, принадлежащих отношению  $R_1$  и не принадлежащих отношению  $R_2$ 

$$R = R_1 \setminus R_2$$

 Операция разности может быть выполнена только тогда, когда два отношения обладают одинаковым числом и названиями атрибутов (столбцов), т.е. совместимы по объединению.



# Пересечение

• Отношение с тем же заголовком, что и у отношений  $R_1$  и  $R_1$ , и телом, состоящим из кортежей, принадлежащих одновременно обоим отношениям  $R_1$  и  $R_1$ 

$$R = R_1 \cap R_2$$

 Операция объединения может быть выполнена только тогда, когда два отношения обладают одинаковым числом и названиями атрибутов (столбцов), т.е. совместимы по объединению.



# Деление

- **Делимое**: таблица (отношение) А содержит атрибуты  $A_1, A_2, A_3, \dots A_n$
- Делитель: таблица (отношение) В содержит атрибуты из подмножества  $A_1, A_2, A_3, \dots A_k, k < n$

$$C = A/B$$

- С содержит только атрибуты (столбцы), входящие в А, но не входящие в В
- С содержит только те кортежи (строки), декартово произведения которых с B содержится в A

### Деление



### Соединение

Существует несколько способов соединения отношений (таблиц)

- естественное
- внешнее
- тета-соединение
- ...

Все способы основаны на декартовом произведении, с применению к результату дополнительных ограничений.

# Естественное соединения

 $\triangleright \triangleleft$ 

#### R - «Преподаватели»

| SURNAME  | CHAIR_ID |
|----------|----------|
| Орлов    | 1        |
| Володина | 1        |
| Шуверов  | 3        |
| Калюжный | 2        |
| Аскеров  | 2        |

#### S - «Кафедры»

| CHAIR_ID | CHAIR             |
|----------|-------------------|
| 1        | Высшая математика |
| 2        | Физика            |
| 3        | Информатика       |
| 4        | Химия             |

#### Р - Естественное соединение

| SURNAME  | CHAIR_ID | CHAIR             |  |
|----------|----------|-------------------|--|
| Орлов    | 1        | Высшая математика |  |
| Володина | 1        | Высшая математика |  |
| Шуверов  | 3        | Информатика       |  |
| Калюжный | 2        | Физика            |  |
| Аскеров  | 2        | Физика            |  |

### Правое внешнее соединение

#### R - «Преподаватели»

| SURNAME  | CHAIR_ID |
|----------|----------|
| Орлов    | 1        |
| Володина | 1        |
| Шуверов  | 3        |
| Калюжный | 2        |
| Аскеров  | 2        |

S – «Кафедры»

| CHAIR_ID | CHAIR             |
|----------|-------------------|
| 1        | Высшая математика |
| 2        | Физика            |
| 3        | Информатика       |
| 4        | Химия             |

#### Р - Правое внешнее соединение

|   | SURNAME  | CHAIR_ID | CHAIR             |  |
|---|----------|----------|-------------------|--|
|   | Орлов    | 1        | Высшая математика |  |
| , | Володина | 1        | Высшая математика |  |
|   | Калюжный | 2        | Физика            |  |
|   | Аскеров  | 2        | Физика            |  |
|   | Шуверов  | 3        | Информатика       |  |
|   | NULL     | 4        | Химия             |  |

#### Тета соединение

- Тета-соединение определяет отношение, содержащее строки из декартового произведения отношений R и S, удовлетворяющие предикату
- Предикат может использовать не только оператор равенства (естественное соединение), но и любой другой оператор сравнения

#### Список использованных источников

• Осипов Д. Л. Технологии проектирования баз данных. – М.: ДМК Пресс, 2019.



https://classmech.ru/pages/databases/main