

L1 CAS/STN FILE 'REGISTRY' ENTERED AT 07:15:30 ON 20 JUL 2005
 L1 1 S SILICON/CN

L2 FILE 'HCAPLUS' ENTERED AT 07:16:53 ON 20 JUL 2005
 L2 3972 S L1(L) (NANOPARTIC? OR NANOSPHER? OR
 NANOGRA? OR NANOSIZ? OR NANOPELLET? OR NANOPULVER? OR NANOPOWDE
 R? OR POWDER? OR PULVER?)

L3 FILE 'HCAPLUS' ENTERED AT 07:17:10 ON 20 JUL 2005
 L3 309 S L1(L)GRANUL?
 E NANOPARTICLES/CT
 E E3+ALL/CT

L4 1019 S NANOPARTICLES/CT(L) (SI OR SILICON)

L5 1412 S NANOCRYSTALS/CT(L) (SI OR SILICON)
 E LUMINESCENCE/CT
 E E3+ALL/CT

L6 234371 S (LUMINESCENCE/CT OR "LUMINESCENCE (L)
 IR-INDUCED"/CT OR "STOKES' LAW"/CT OR "IR-INDUCED LUMINESCENCE"
 /CT OR "IR-STIMULATED LUMINESCENCE"/CT OR "ISOTHERMAL LUMINESCE
 NCE"/CT OR "LUMINESCENCE SPECTRA"/CT OR "PERSONOV EFFECT"/CT
 OR PHOTOLUMINESCENCE/CT OR "SHPOL'SKII EFFECT"/CT OR "SORET
 BANDS"/CT OR "SORET SPECTRAL BANDS"/CT OR "STIMULATED LUMINESCE
 NCE"/CT OR "STIMULATED LUMINESCENT EMISSION"/CT OR "VAVILOV'S
 LAW"/CT OR CATHODOLUMINESCENCE/CT OR "EXCITON LUMINESCENCE"/CT
 OR "LUMINESCENCE (L) EXCITON-PHONON"/CT OR "LUMINESCENCE (L)
 MAGNETO-, EXCITON"/CT OR "LUMINESCENCE (L) RECOMBINATION,
 EXCITON"/CT OR "LUMINESCENCE, ELECTRO- (L) EXCITON"/CT OR
 "MAGNETOOPTICAL EFFECT (L) LUMINESCENCE"/CT OR FLUORESCENCE/CT
 OR "EXCIMER FLUORESCENCE"/CT OR "LASER INDUCED FLUORESCENCE"/CT
 OR "FLUORESCENCE (L) EXCITATION, LASER-INDUCED"/CT OR
 "FLUORESCENCE (L) TWO-PHOTON"/CT OR "POLARIZED FLUORESCENCE"/CT
 OR "RESONANCE FLUORESCENCE"/CT OR SUPERFLUORESCENCE/CT OR
 "X-RAY (L) FLUORESCENCE"/CT OR "X-RAY FLUORESCENCE"/CT OR
 "X-RAY SPECTRA (L) FLUORESCENCE"/CT OR "IR LUMINESCENCE"/CT OR
 "INFRARED LUMINESCENCE (L) CHEMILUMINESCENCE"/CT OR "INFRARED
 LUMINESCENCE (L) NEAR-IR"/CT OR "LUMINESCENCE (L) NEAR-IR"/CT
 OR "LUMINESCENCE, CHEMI- (L) IR"/CT OR "LUMINESCENCE, BIO-"/CT
 OR "LUMINESCENCE, BIOLUMINESCENCE"/CT OR "LUMINESCENCE, BIO-
 (L) ULTRaweak"/CT OR "LUMINESCENCE, CATHODO-"/CT OR "LUMINESCEN
 CE, CHEMI-"/CT OR "LUMINESCENCE, CHEMILUMINESCENCE"/CT OR
 "LUMINESCENCE, CHEMI- (L) ELECTROCHEMI-"/CT OR "LUMINESCENCE,
 ELECTRO-"/CT OR "LUMINESCENCE, ELECTROLUMINESCENCE"/CT OR
 "GUDDEN-POHL EFFECT"/CT OR "LUMINESCENCE, ELECTRO- (L)
 BLUE"/CT OR "LUMINESCENCE, RADIO-"/CT OR "LUMINESCENCE,
 THERMO-"/CT OR MAGNETOLUMINESCENCE/CT OR "LUMINESCENCE (L)
 MAGNETO-, EXCITON"/CT OR "MAGNETOOPTICAL EFFECT (L) LUMINESCENC
 E"/CT OR "MAGNETOOPTICAL EFFECT (L) LUMINESCENCE"/CT OR
 "OPTICAL NONLINEAR PROPERTY (L) LUMINESCENCE"/CT OR PHOSPHORESC
 ENCE/CT OR "PIEZOOPTICAL PROPERTY (L) PIEZOLUMINESCENCE"/CT OR
 "POLARIZED LUMINESCENCE"/CT OR "L

L7 701 S "PHOTON EMISSION"/CT

L8 5981 S "LUMINESCENT SUBSTANCES"/CT

L9 3245 S SCINTILLATION/CT

L10 54248 S PHOTOLUM?

L11 16177 S (PHOTO##### OR LIGHT OR IRRADIAT#### OR
 RADIAT#####) (3A) LUMINESC##### OR

L12 1639 S (SI OR SILICON) (3A) (NANOSPHER? OR NANOGRA
 L? OR NANOPELLET? OR NANOPARTIC?)

L13 1080 S ((L2 OR L3 OR L4 OR L5) OR L12) AND (L6 OR
 L7 OR L8 OR L9 OR L10 OR L11)

L14 805 S (LUMINESCENT SUBSTANCES OR PHOTOLUM? OR
 LUMINESC#####(L) PHOTO) AND L13

L15 410 S L13 AND (HEAT##### OR VCSEL OR LASER OR
LASED OR LASING OR LASER OR RADIAT##### OR IRRADIAT#####)
L16 1 S US2004229447/PN
L17 SEL PLU=ON L16 1- NCL IC : 2 TERMS
L18 8988 S L17
L19 4 S L12 AND L18
L20 121 S L12 AND PRECURSOR
L21 SEL PLU=ON L16 1- RN : 13 TERMS
L22 1 S L13 AND L18
L23 1019444 S L21
L24 978 S L13 AND L23
L25 0 S L22 NOT L16
L26 3 S L19 NOT L16
L27 3 S L23 AND L26
 D ALL HITSTR TOT

FILE 'STNGUIDE' ENTERED AT 07:37:04 ON 20 JUL 2005

FILE 'HCAPLUS' ENTERED AT 07:38:49 ON 20 JUL 2005
L28 2 S L13 AND (SHEATH OR REACTANT) (2A) (GAS OR H2
OR H OR HYDROGEN)
L29 9 S L13 AND (WET OR ACID####) (3A) ETCH####

FILE 'REGISTRY' ENTERED AT 07:38:51 ON 20 JUL 2005

L30 34 S H4SI/MF
L31 163981 S SILANE
L32 31 S (HELIUM OR NITROGEN OR ARGON) /CN OR N2/MF
L33 1697 S CARBON DIOXIDE OR CO2/MF
L34 20 S (F6S OR F4SI) /MF
L35 257 S CELLULOSE NITRATE
L36 35 S FH/MF OR HNO3/MF
L37 1 S METHANOL/CN
L38 1 S ISOPROPANOL/CN
L39 1 S WATER/CN
L40 1 S HYDROXYL/CN
L41 10 S HOSI/MF

FILE 'HCAPLUS' ENTERED AT 07:42:04 ON 20 JUL 2005

L42 35 S L13 AND L30
L43 77 S L13 AND L31
L44 92 S L13 AND ?SILANE?
L45 3 S L13 AND HYDROSILYL?
L46 3 S L13 AND SILANI?
L47 30 S L13 AND (STABILIS? OR STABILIZ?)
L48 56 S L13 AND SURFACE(3A) (OXID##### OR OXIDI? OR
OXIDAT?)
L49 28 S L13 AND (CO2 OR CARBON DIOXIDE OR C
DIOXIDE OR L33)
L50 54 S L13 AND (INERT OR NOBLE OR N2 OR HE OR
HELIUM OR AR OR ARGON) (3A) GAS
L51 84 S L13 AND L32
L52 6 S L13 AND L34
L53 1 S L13 AND L35
L54 37 S L13 AND L36
L55 8 S L13 AND L37
L56 2 S L13 AND L38
L57 9 S L13 AND L39
L58 0 S L13 AND L40
L59 0 S L13 AND L41
L60 15 S L13 AND (OH OR SIOH OR HYDROXY#####)
L61 32 S L13 AND SURFACE(5A) (TERMINA##### OR
FRAGMENT##### OR SUBSTITUENT OR FUNCTIONAL##### OR GROUPS)

L62 0 S L13 AND RTO
 L63 44 S L13 AND DECOMP?
 L64 244 S L13 AND (THERMAL? OR HEAT##### OR RTA OR
 RTP)
 L65 85 S L13 AND TREAT#####
 L66 107 S L13 AND CONDITION
 L67 2 S L13 AND REACTANT
 S L13 AND HYDROGEN/CN

FILE 'REGISTRY' ENTERED AT 07:50:05 ON 20 JUL 2005
 L68 1 S HYDROGEN/CN

FILE 'HCAPLUS' ENTERED AT 07:50:05 ON 20 JUL 2005
 L69 300553 S L68
 L70 62 S L13 AND L69
 L71 71 S L13 AND VISIBLE SPECTRUM
 L72 32 S L13 AND PEAK#####(3A)(EMIT##### OR
 EMISS#####)
 L73 26 S L13 AND (CO2 OR DIOXIDE)(3A)LASER
 L74 0 S L13 AND L33(L)(LASER OR LASED OR LASING)
 L75 11 S L13 AND (WASH##### OR CLEAN##### OR RINS#####)

L76 9 S L13 AND (FILTER? OR FILTR#####)
 L77 0 S L13 AND CELLULOSE
 L78 35 S L13 AND PRECURSOR
 L79 82 S (L10 OR L11 OR L12 OR L13 OR L14 OR L15)
 AND (CELLULOSE OR L35)

L*** DEL 341 S L10-15 AND (ORANGE OR READ)(4A)(LIGHT OR EMIT##### OR EMISS##
 L80 345 S (L10 OR L11 OR L12 OR L13 OR L14 OR L15)
 AND (ORANGE OR READ)(4A)(LIGHT OR EMIT##### OR EMISS##### OR
 PEAK OR WAVELENGTH OR LAMBDA OR FREQUENCY OR COLOR?)

L81 10 S L13 AND L80
 L82 34 S L13 AND BRIGHT#####
 L83 92 S L13 AND (ISOLATED OR SINGLE OR INDIVIDUAL##
 # OR SEPARAT##### OR EACH)(3A)(NANOPARTICLE OR SI OR SILICON)

L84 309 S L13 AND SURFACE
 L85 158 S L13 AND (HYDROGEN OR H2 OR H(3A)GAS)
 L86 69 S (L28 OR L29) OR (L45 OR L46) OR (L52 OR
 L53) OR (L55 OR L56 OR L57) OR L60 OR L67 OR (L75 OR L76) OR
 L81

L87 69 S L86 NOT L26
 L88 49 S L87 AND NANOPARTIC?
 L89 50 S L87 AND PHOTOLUM?

L90 34 S L88 AND L89
 D ALL HITSTR TOT

L91 1184 S (L42 OR L43 OR L44 OR L45 OR L46 OR L47 OR
 L48 OR L49 OR L50 OR L51 OR L52 OR L53 OR L54 OR L55 OR L56 OR
 L57 OR L58 OR L59 OR L60 OR L61 OR L62 OR L63 OR L64 OR L65 OR
 L66 OR L67) OR (L70 OR L71 OR L72 OR L73 OR L74 OR L75 OR L76
 OR L77 OR L78 OR L79 OR L80 OR L81 OR L82 OR L83 OR L84 OR L85
 OR L86 OR L87 OR L88 OR L89)

L92 1150 S L91 NOT (L26 OR L90)
 L93 6 S L92 AND LUMINESCENT MATERIALS
 D ALL HITSTR TOT

L94 576 S L92 AND ?LUMINESC?(5A)(NANOS? OR NANOC? OR
 MESOP? OR NANOG? OR NANOP?)

L95 704 S L92 AND (SI OR SILICON)(5A)(NANOS? OR
 NANOC? OR MESOP? OR NANOG? OR NANOP?)

L96 642 S L92 AND (SI OR SILICON)(5A)?LUMINESC?

L97 547 S L94 AND L95

L98 518 S L97 AND L96

L99 105 S L98 AND (OXIDI? OR OXIDAT?)

L100 32 S L98 AND STABILI?
 L101 26 S L98 AND DECOMP?
 L102 138 S L98 AND THERMAL?
 L103 31 S L98 AND HEAT?
 L104 2 S L98 AND ?SILYL?
 L105 0 S L98 AND ?SILANI?
 L106 0 S L98 AND SIOH
 L107 0 S L98 AND OH
 L108 3 S L98 AND HYDROX#####
 L109 17 S L98 AND ACID#####
 L110 43 S L98 AND ETCH#####
 L111 132 S L98 AND LASER
 L112 0 S L98 AND SHEATH
 L113 27 S L98 AND BRIGHT#####
 L114 119 S (L94 OR L95 OR L96 OR L97 OR L98) AND
 ((L100 OR L101) OR (L104 OR L105 OR L106 OR L107 OR L108 OR
 L109 OR L110) OR L113)
 L115 4 S L114 AND L99 AND (L102 OR L103) AND L111
 L116 33 S L114 AND L111
 L117 21 S L116 AND (L99 OR L102 OR L103)
 L118 26 S (L104 OR L105 OR L106 OR L107 OR L108) OR
 L115 OR L117
 D ALL HITSTR TOT
 S (L30 OR L32-41 OR H2/MF) AND L98

FILE 'REGISTRY' ENTERED AT 08:10:24 ON 20 JUL 2005

L119 19 S H2/MF

FILE 'HCAPLUS' ENTERED AT 08:10:24 ON 20 JUL 2005

L120 365106 S L119
 L121 136 S (L30 OR (L32 OR L33 OR L34 OR L35 OR L36
 OR L37 OR L38 OR L39 OR L40 OR L41) OR L120) AND L98
 L122 120 S L121 NOT (L118 OR L26 OR L90 OR L93)
 L123 112 S L122 AND ?LUMINESC?(3A)(SI OR SILICON OR
 POLYSILICON)
 S L122 AND SILICON/CN

FILE 'REGISTRY' ENTERED AT 08:12:06 ON 20 JUL 2005

L124 1 S SILICON/CN

FILE 'HCAPLUS' ENTERED AT 08:12:06 ON 20 JUL 2005

L125 416381 S L124
 L126 114 S L122 AND L125
 L127 9 S L122 AND STABILI?
 L128 26 S L122 AND (OXIDI? OR OXIDAT?)
 L129 3 S L122 AND DECOMP?
 L130 0 S L122 AND (?SILANI? OR ?SILYL?)
 L131 18 S L122 AND (SIH4 OR ?SILANE?)
 L132 4 S L128 AND L131
 L133 27 S L127 OR L129 OR L131 OR L132

L133 ANSWER 18 OF 27 HCAPLUS COPYRIGHT ACS on STN

AN 1999:389792 HCAPLUS

DN 131:108498

ED Entered STN: 24 Jun 1999

TI Effects of hydrogen in the annealing environment on photoluminescence from Si nanoparticles in SiO₂

AU Withrow, S. P.; White, C. W.; Meldrum, A.; Budai, J. D.; Hembree, D. M., Jr.; Barbour, J. C.

CS Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA

SO Journal of Applied Physics (1999), 86(1), 396-401

CODEN: JAPIAU; ISSN: 0021-8979

PB American Institute of Physics

AB The role of H in enhancing the photoluminescence (PL) yield observed from Si nanocrystals embedded in SiO₂ was studied. SiO₂ thermal oxides and bulk fused SiO₂ samples were implanted with Si and subsequently annealed in various ambients including H or D forming gases (Ar+4%H₂ or Ar+4%D₂) or pure Ar. Results are presented for annealing at 200-1100°. Depth and concentration profiles of H and D at various stages of processing were measured using elastic recoil detection. H or D is observed in the bulk after annealing in forming gas but not after high temperature (1100°) anneals in Ar. The presence of H dramatically increases the broad PL band centered in the near IR after annealing at 1100° but has almost no effect on the PL spectral distribution. H is found to selectively trap in the region where Si nanocrystals are formed, consistent with a model of H passivating surface states at the Si/SiO₂ interface that leads to enhanced PL. The thermal stability of the trapped H and the PL yield observed after a high temperature anneal were studied. The H concentration and PL yield are unchanged for subsequent anneals up to 400°. However, >400° the PL decreases and a more complicated H chemical is evident. Similar concns. of H or D are trapped after annealing in H₂ or D₂ forming gas; however, no differences in the PL yield or spectral distribution are observed, indicating that the electronic transitions resulting in luminescence are not dependent on the mass of the H species.

IT Annealing

 Luminescence

 Nanoparticles

 Thermal stability

 (effects of hydrogen and deuterium in annealing environment on photoluminescence from Si nanoparticles in SiO₂)

IT 7440-37-1, Argon, uses

 (annealing in; effects of hydrogen and deuterium in annealing environment on photoluminescence from Si nanoparticles in SiO₂)

IT 12385-13-6, Hydrogen(atomic), occurrence 16873-17-9,
Deuterium(atomic), occurrence

 (effects of hydrogen and deuterium in annealing environment on photoluminescence from Si nanoparticles in SiO₂)

IT 7440-37-1, Argon, uses

 (annealing in; effects of hydrogen and deuterium in annealing environment on photoluminescence from Si nanoparticles in SiO₂)

IT 1333-74-0, Hydrogen, processes 7782-39-0,
Deuterium, processes

 (effects of hydrogen and deuterium in annealing environment on photoluminescence from Si nanoparticles in SiO₂)

L118 ANSWER 17 OF 26 HCAPLUS COPYRIGHT ACS on STN

AN 2000:329679 HCAPLUS

ED Entered STN: 19 May 2000

TI Surface-chemical control of optical quenching processes at porous silicon interfaces: Generation of a stable-selective sulfur-dioxide sensor.

AU Bocarsly, Andrew B.; Wimbish, J. Clint

CS Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA

SO Book of Abstracts, 219th ACS National Meeting, San Francisco, CA, March 26-30, 2000 (2000), COLL-414 Publisher: American Chemical Society, Washington, D. C..

CODEN: 69CLAC

DT Conference; Meeting Abstract

LA English

AB Visible photoluminescence from nanoscopic particles of silicon formed by anisotropic etching of single crystal silicon is a well-established phenomenon. A consensus appears to be forming that this process is associated with quantum confined states associated with the Si nanoparticles. Along with this conclusion, a variety of quenching mechanisms have been reported. Previously we indicated that static quenching via dangling bond surface states could be selected by the synthesis of a low quality ultrathin oxide layer on the porous silicon interface. We also demonstrated that such interfaces were selectively quenched by SO₂(g). However, the tendency of the oxide interface to further develop in the presence of humid air made the observed quenching process unstable. We now report that, once formed, the Si/SiO_x interface can be stabilized even in the presence of water at elevated temps. by modification with a silylfluorocarbon. This interface is permeable to sulfur dioxide allowing for continued quenching by this species over an extended time period, and making possible a functional sulfur dioxide sensor.

"/ \ "

L90 ANSWER 22 OF 34 HCAPLUS COPYRIGHT ACS on STN

AN 2003:23721 HCAPLUS

DN 138:277780

ED Entered STN: 12 Jan 2003

TI Light-emitting silicon nanocrystals from laser pyrolysis

AU Huisken, Friedrich; Ledoux, Gilles; Guillois, Olivier; Reynaud, Cecile

CS Max-Planck-Institut fur Stromungsforschung, Gottingen, D-37073, Germany

SO Advanced Materials (Weinheim, Germany) (2002), 14(24), 1861-1865

CODEN: ADVMEW; ISSN: 0935-9648

PB Wiley-VCH Verlag GmbH & Co. KGaA

DT Journal; General Review

LA English

CC 73-0 (Optical, Electron, and Mass Spectroscopy and Other Related Properties)

AB A review. Crystalline Si nanoparticles with diams. between 2.5 and 20 nm were prepared by CO₂-laser-induced decomposition of silane in a gas flow reactor. A small portion of the products created in the reaction zone is extracted through a nozzle into a high-vacuum apparatus to form a freely propagating mol. beam of clusters and nanoparticles that can be deposited on suitable substrates. The strong visible photoluminescence (PL) of the Si nanocrystals was studied as a function of their size, and as a function of the time for which they are exposed to air. All observations can be explained from quantum confinement as the only origin of the PL. Chemical methods are exploited to modify the surface of the Si nanoparticles and to reduce their size, thus shifting their PL to shorter wavelengths. With this technique, the Si nanoparticles, collected in much larger quantities in the filter of the flow reactor, can be made strongly luminescent so that they may be used for various applications.

ST review luminescence silicon nanocrystal laser pyrolysis

IT Luminescence

Nanocrystals

Quantum size effect

 (light-emitting silicon nanocrystals from laser
 pyrolysis)

IT Thermal decomposition

(photo-; light-emitting silicon nanocrystals from laser pyrolysis)

IT 7440-21-3, Silicon, properties

RL: PRP (Properties)

(light-emitting silicon nanocrystals from laser pyrolysis)

Micro-Raman

spectroscopy was used for characterization of the deposits
(no data

given). Laser-driven nucleation in a flow reactor is a
powerful technique

to produce fullerenes and Si quantum dots and other nano-
size

semiconductors or high-temp. evapd. materials.

IT 2551-62-4, **Sulfur hexafluoride**

(sensitizer for laser-induced gas phase synthesis of
carbon

and silicon clusters)

RN 2551-62-4 HCPLUS

CN Sulfur fluoride (SF₆), (OC-6-11)- (9CI) (CA INDEX NAME)

FILE 'REGISTRY' ENTERED AT 11:50:43 ON 20 JUL 2005

L1 20 S F6S/MF OR F4SI/MF

FILE 'HCPLUS' ENTERED AT 11:51:12 ON 20 JUL 2005

FILE 'HCPLUS' ENTERED AT 11:51:19 ON 20 JUL 2005

L2 162 S L1(L) (PHOTOSENSIT? OR SENSITIS? OR SENSITIZ?)

L3 0 S L2 AND PHOTOLUM?

L4 7 S L2 AND NANOPART?

L5 92 S L2 AND CO₂ LASER

L6 2 S L4 AND L5

FILE 'SCISEARCH' ENTERED AT 11:53:49 ON 20 JUL 2005

E EHBREHT M, 1996/RE

FILE 'SCISEARCH' ENTERED AT 11:53:59 ON 20 JUL 2005

E EHBRECHT M, 1996/RE

L7 6 S E4-6 AND LASER?

L8 2 S L7 AND NANO#####

L6 ANSWER 2 OF 2 HCPLUS COPYRIGHT ACS on STN

AN 1996:704301 HCPLUS

DN 126:24344

TI Deposition and analysis of carbon and **silicon clusters**
generated by

laser-induced gas phase reaction

AU Ehbreht, M.; Ferkel, H.; Husken, F.; Holz, L.; Polivanov,
Yu. N.; Smirnov,

V. V.; Stelmakh, O. M.

CS Max-Plank Institut fur Stromungsforschung, Goettingen,
37073, Germany

SO Proceedings of SPIE-The International Society for Optical
Engineering

(1996), 2778(Pt. 1, 17th Congress of the International
Commission for

Optics, 1996, Pt. 1), 171-172

CODEN: PSISDG; ISSN: 0277-786X

PB SPIE-The International Society for Optical Engineering

DT Journal

LA English

AB Laser driven gas-phase synthesis in a flow reactor was
employed for the

prodn. of C and Si cluster beams starting from gaseous
compds. It is

based on a **CO₂-laser**-induced decomn. of mol. gases

contg. C and Si, such as C₂H₂ and **SiH₄**. By introducing a
skimmer into the

reaction zone, the generated clusters are transferred to
the free mol.

flow and analyzed with a time-of-flight mass spectrometer.
These clusters

were deposited on a Si or sapphire target at room temp.