Raport

Jakub Kosterna, Marcin Łukaszyk, Mikołaj Malec

15 kwietnia 2020

1. Ogólnie

German credit data to bardzo ładny zbiór danych pod naukę uczenia maszynowego. Jest on względnie nieduży, gdyż zawiera 1000-czną próbkę osób ubiegających się o kredyt, jednak jest przy tym wydaje się reprezentatywny (dane zdają się dobrze odzwierciedlać populację) i zawiera dużo informacji na temat każdego klienta.

W ciągu ostatnich tygodni pierwszorzędnie dobrze zapoznaliśmy się z daną ramką danych, następnie przygotowaliśmy ją pod odpalania algorytmów machine learning, żeby na końcu wybrać ten jeden fajny model i go przetestować.

2. Czyszczenie

Pierwotna wersja data frame nie była najweselsza na świecie - zamiast ludzkich liczb czy jasnych wartości typu faktor, mieliśmy do czynienia z chaosem w postaci **dziwnych oznaczeń** takich jak widać na załączonym obrazku:

checking_account_status	duration	credit_history	purpose	credit_amou	nt savings	present_employment	installment_rate	personal	other_debtors	present_residence	property	age
A12	30	A34	A40	424	9 A61	A71	4	A94	A101	2	A123	28
A11	18	A32	A42	113	1 A61	A71	4	A92	A101	2	A123	33
A12	24	A32	A43	196	7 A61	A75	4	A92	A101	4	A123	20
A11	12	A32	A42	165	7 A61	A73	2	A93	A101	2	A121	27
A11	18	A32	A43	188	2 A61	A73	4	A92	A101	4	A123	25
A14	9	A32	A49	144	9 A61	A74	3	A92	A101	2	A123	27
A14	9	A32	A42	131	3 A61	A75	1	A93	A101	4	A123	20
A12	42	A34	A49	595	4 A61	A74	2	A92	A101	1	A121	41
A14	30	A32	A43	186	7 A65	A75	4	A93	A101	4	A123	58
A12	12	A32	A40	122	3 A61	A75	1	A91	A101	1	A121	46

Z pomocą przyszła **dokumentacja**, która rozwiała wszelkie możliwości. W celu dalszej pracy z naszymi danymi, podmieniliśmy skrótowe identyfikatory na ciągi znaków przyjazne użytkownikowi.

2. Czyszczenie danych

W celu ludzkiego przedstawienia danych zmodyfikujemy je tak, żeby wszystko stało się jasne.

```
# przeksztalcanie na dane numeryczne i z faktorami
levels(data[,1]) <- c("low", "fair", "high", "not_have") #DM low<0<fair<200<high
levels(data[,3]) <- c("all_paid", "all_paid_here", "paid_till_now", "delay", "critical")</pre>
levels(data[,4]) <- c("new_car", "used_car", "furniture/equipment", "radio/television", "domestic", "repairs", "education",
 "retraining", "business", "other") #note: 0 for vacation
levels(data[,6]) <- c("low","normal","high","very_high","not_have/unknown") #DM low<100<normal<500<high<1000<very_high
levels(data[,7]) <- c("unemployed", "less_than_year", "1-3_years", "4-6_yeras","7+_years")</pre>
levels(data[,9]) \leftarrow c("male\_d/s", "female\_d/s/m", "male\_single", "male\_m/w") \# d = divorsed, \ s = seperated, \ m = married, \ w = married, 
widowed .#note: 0 female sinale
levels(data[,10]) <- c("none", "co-applicant", "guarantor")</pre>
levels(data[,12]) <- c("real_estate", "building_savings", "car", "not_have/unknown")</pre>
levels(data[,14]) <- c("bank", "stores", "none")
levels(data[,15]) <- c("rent", "own", "for_free")</pre>
levels(data[,17]) <- c("unskilled_non_resident", "unskilled_resident", "skilled_eployee", "highly_qualified_employee*") # aL
so management, self-employed, officer
levels(data[,19]) <- c("no", "yes")</pre>
levels(data[,20]) <- c("yes", "no")</pre>
data[,21] <- as.factor(as.character(data[,21]))</pre>
levels(data[,21]) <- c("Good", "Bad")</pre>
```

Jak teraz wygaląda nasze losowe 20 wierszy?

Końcowy efekt zaprezentował się następująco:

checking_account_status	duration	credit_history	purpose	credit_amount	savings	present_employment i	installment_rate	personal	other_debtors	present_residence
low	15	paid_till_now	new_car	3959	low	1-3_years	3	female_d/s/m	none	2
fair	15	paid_till_now	new_car	2631	normal	1-3_years	2	female_d/s/m	none	4 (
low	18	critical	education	1190	low	unemployed	2	female_d/s/m	none	4 1
fair	18	delay	radio/television	4297	low	7+_years	4	male_d/s	none	3 1
not_have	24	paid_till_now	domestic	1311	normal	4-6_yeras	4	male_m/w	none	3
high	15	paid_till_now	retraining	1905	low	7+_years	4	male_single	none	4 (
fair	10	all_paid_here	domestic	1048	low	1-3_years	4	male_single	none	4 1
fair	15	paid_till_now	education	1308	low	7+_years	4	male_single	none	4 (
fair	27	critical	domestic	2520	high	1-3_years	4	male_single	none	2
not_have	24	critical	radio/television	1585	low	4-6_yeras	4	male_single	none	3
low	24	critical	domestic	1231	very_high	7+_years	4	female_d/s/m	none	4 1
fair	6	paid_till_now	education	454	low	less_than_year	3	male_m/w	none	1 1

Wielkim szczęściem okazał się za to fakt, że nasza ramka danych nie zawierała braków ani niepokojących outlierów.

3. Eksploracja

... dla tak przyjemnych i życiowych danych była czystą przyjemnością.

Bardzo pomocny okazało się narzędzie **DataExplorer**, które pokazało wiele ciekawych zależności w tabeli automatycznie.

Oprócz tego postanowiliśmy sami przyjrzeć się wybranym cechom.

Okazało się między innymi, że stereotypy można wyrzucić do kosza - mężczyźni o wiele częściej biorą kredyt ze względu na potrzebę funduszy na gospodarstwo domowe i nie widać znaczącej przewagi w stosunku do kobiet jeśli idzie o cheć postawienia pieniedzy na auto.

Bez zaskoczeń o wiele częściej na dom stawiają mężczyźni po ślubie niż ci samotni czy rozwodnicy. Co ciekawe ci sami ani razu nie wzięli pożyczki na wyposażenie / meble [przynajmniej na te 1000 osobników], zaś

rozwodnicy i separatyści... przeciwnie do pozostałych grup nie myślą tu wręcz wcale o dodatkowej mamonie na biznes.

Wychodzi również na to, że generalnie większym zaufaniem firma daży osoby starsze:

Customer type by his age

Wyciągnęliśmy także wnioski na podstawie płci, wieku i stanu cywilnego.

Customer type by sex, marital status and age

Dane mówią, że:

- 1. Najmniej ufamy rozwiedzionym facetom zwłaszcza tym po 30, im zwykle nie dajemy.
- 2. Najbezpieczniejsi za to są też faceci po 30... ale single.
- 3. Żonaci to też dobre ziomki.
- 4. Kobiety są gorsze od mężczyzn, ale tylko przed 40. Potem raczej spokój, za wyjątkiem 70-tki psującej obraz.

Jak można się było spodziewać, pożyczka chętniej jest także udzielana na krótszy okres czasu.

Customer type by duration

4. Kodowanie

W ramach drugiego kamienia milowego dokonaliśmy szczegółowej analizy pod względem sensownego encodingu i każdej kolumnie przyjrzeliśmy się pod lupą.

Spośród 21 kolumn, aż 14 okazało się być tekstowymi.

Do czynienia mieliśmy z problemami:

- 1. Prostych zmiennych binarnych
- 2. Kolumn nominalnych
- 3. Cech uporządkowanych

3.3.1. Zarobki w skali 0-4

... oczywiście jednoznacznie mozna uporządkować.

Do jednej kupy został wsadzony brak zarobków i brak informacji na ich temat - rozsądnie będzie obu przydzielić 0, gdyż można się spodziewać, że tak istotna informacja raczej nie byłoby zatajana przez osobę ubiegającą się o pożyczkę i realistycznie jest ona raczej w grupie *low* (przynajmniej według mnie - przypowiedź Kuba).

Wobec tego kolejne numery będą miały takie dopasowanie:

```
• not_have/unknown -> 0
• low -> 1
• normal -> 2
• high -> 3
• very_high -> 4

num_data$savings <- as.numeric(data$savings)
num_data$savings[num_data$savings == 5] <- 0 # not_have/unknown</pre>
```

3.3.2. Staż pracy w przybliżonych liczbach

Kolumna present_employment daje nam ładne pogrupowanie długości pracy w formie grup unemployed, less_than_year, 1-3_years, 4-6_years i more. Zamienimy dane kategoryczne na liczbę oznaczającą oczekiwany staż pracy jak niżej:

```
• unemployed => 0
• less_than_year => 1
• 1-3_years => 2
• 4-6_yeras => 5
• more => 7

num_data$present_employment <- if_else(data$present_employment %in% c("unemployed"), 0, if_else(data$present_employment %in% c("less_than_year"), 1,if_else(data$present_employment %in% c("1-3_years"), 2,if_else(data$present_employment %in% c("4-6_yeras"), 5,7))))</pre>
```

4. Zmiennych mieszanych - zawierających w sobie po parę ciekawych informacji

3.4. Zmienne "mieszane"

3.4.1. *personal* czyli pleć i stan cywilny na raz

Tu zrobimy dwie kolumny numeryczne - pierwszą binarną *is_woman* naturalnie odpowiadającą za płeć, dodatkową za pytanie o bycie singlem. W tym wypadku tracimy małą informację w stosunku do oryginalnego zbioru danych o odróżnieniu singli i rozwodników, ale jest to bardzo mała grupa, a podział na płeć powinien przynieść bardziej porządany efekt.

```
num_data$is_woman <- if_else(data$personal == "female_d/s/m", 1, 0)
num_data$is_single <- if_else(data$personal == "male_single", 1, 0) # nie ma kobiet singli</pre>
```

Końcowy efekt wyszedł encodingu wyszedł następujący:

duration	credit_amount	installment_rate	present_residence	age	existing_credits	dependents	has_telephone	is_foreign_worker	is_good_customer_type
48	3914	4	2	38	1	1	0	1	0
12	1922	4	2	37	1	1	0	1	0
18	1345	4	3	26	1	1	0	1	0
12	983	1	4	19	1	1	0	1	1
21	3652	2	3	27	2	1	0	1	1
18	1453	3	1	26	1	1	0	1	1
24	3069	4	4	30	1	1	0	1	1
8	1164	3	4	51	2	2	1	1	1
18	2462	2	2	22	1	1	0	1	0
36	7980	4	4	27	2	1	1	1	0
18	2169	4	2	28	1	1	1	1	0
48	7629	4	2	46	2	2	0	1	1
48	6416	4	3	59	1	1	0	1	0

Tutaj kolory odpowiadające miarom:

- żółty accuracy
- $\bullet\,\,$ niebieski precision
- \bullet zielony recall
- czerwony f1

5. Poszukiwanie najlepszego modelu - dyskusja

W celu wybrania tego jednego właściwego modelu, wpierw postanowiliśmy podzielić się popularnymi znanymi już przez nas metodami i indywidualne zajęcie się nimi. Oto tego efekty:

TODO

5.1. Drzewo klasyfikacyjny i las losowy

Ku porównaniu efektów modeli postanowiliśmy porównywać cztery chyba najbardziej podstawowe w tej kwestii, ale i przy tym dające ogrom informacji miary: **accuracy**, **precision**, **recall** i **f1**.

2. Miary oceny klasyfikatora

W ocenie kolejnych modeli posłużę się czterema najbardziej klasycznymi miarami:

```
accuracy - TP+TN
TP+FP+FN+TN
precision - TP
TP-TP+FP
recall - TP
TP+FN
f1 - 2 * Recall+Precision
Recall+Precision
```

```
{\tt confusion\_matrix\_values} \ \leftarrow \ {\tt function}({\tt confusion\_matrix}) \{
  TP <- confusion_matrix[2,2]
  TN <- confusion_matrix[1,1]
  FP <- confusion_matrix[1,2]
  FN <- confusion_matrix[2,1]
  return (c(TP, TN, FP, FN))
accuracy <- function(confusion_matrix){
  conf_matrix <- confusion_matrix_values(confusion_matrix)</pre>
  \textbf{return}((\texttt{conf\_matrix}[1] + \texttt{conf\_matrix}[2]) \ / \ (\texttt{conf\_matrix}[1] + \texttt{conf\_matrix}[2] + \texttt{conf\_matrix}[3] + \texttt{conf\_matrix}[4]))
precision <- function(confusion_matrix){</pre>
 conf_matrix <- confusion_matrix_values(confusion_matrix)</pre>
  return(conf_matrix[1]/ (conf_matrix[1] + conf_matrix[3]))
recall <- function(confusion_matrix){</pre>
  conf_matrix <- confusion_matrix_values(confusion_matrix)</pre>
  return(conf_matrix[1] / (conf_matrix[1] + conf_matrix[4]))
f1 <- function(confusion_matrix){
  conf_matrix <- confusion_matrix_values(confusion_matrix)</pre>
  rec <- recall(confusion_matrix)
  prec <- precision(confusion_matrix)</pre>
  return(2 * (rec * prec) / (rec + prec))
```

Uruchomienie algorytmu z pakietu rpart dało mało satysfakcjonujący wynik w myśli o logice biznesowej.

```
rpart.plot(primitive_model, type = 3, box.palette = c("red", "green"), fallen.leaves = TRUE)
```


W celu znalezienia najlepszych hiperparametrów, porównywaliśmy między innymi miary dla kolejnych maksymalnie narzuconych głębokości drzewa.

TODO

FOTY

5.2. k najbliższych sąsiadów

TODO

FOTY

5.3. Regresja liniowa

TODO

FOTY

6. Wybór najlepszego algorytmu uczenia maszynowego i implementacja

TODO

7. Zakończenie

To by było na tyle.

Mamy nadzieję, że się podobało; ja myślę, że fajna robota (dopowiedź: Kuba).

sessionInfo()

```
## R version 3.6.1 (2019-07-05)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 18362)
## Matrix products: default
##
## locale:
## [1] LC_COLLATE=Polish_Poland.1250 LC_CTYPE=Polish_Poland.1250
## [3] LC_MONETARY=Polish_Poland.1250 LC_NUMERIC=C
## [5] LC_TIME=Polish_Poland.1250
##
## attached base packages:
## [1] stats
                graphics grDevices utils
                                              datasets methods
                                                                   base
## loaded via a namespace (and not attached):
## [1] compiler_3.6.1 magrittr_1.5
                                       tools_3.6.1
                                                       htmltools_0.3.6
## [5] yaml_2.2.0
                       Rcpp_1.0.1
                                       stringi_1.4.3
                                                       rmarkdown_2.1
## [9] knitr_1.22
                        stringr_1.4.0
                                       xfun_0.6
                                                        digest_0.6.18
## [13] evaluate_0.14
```