Optimizing MPEG Encoding

Roel Deckers

Uppsala University

September 16, 2016

Why optimize MPEG?

- Widely used
- Many different steps

Test Machine

Intel i7-4750HW

- Quad core, 8-threads
- ▶ 32KiB L1, private
- 256KiB L2, shared
- ▶ 6MiB L3, shared
- ▶ 128MiB L4, shared victim-cache

 $25.6~\mbox{GB/s}$ maximum memory throughput. Measured at $20~\mbox{GB/s}$ RMW peak performance.

Color Conversion

Figure: Single-threaded color-conversion

Color Conversion

Figure: Multi-threaded color-conversion

Downsampling

Figure: Single-threaded downsampling

Downsampling

Figure: Multi-threaded downsampling

Bandwith

Figure: Effective Bandwith

Conclusion

- Pay attention to your cache
- ▶ SIMD can be useful even when not compute bound
- Memory bandwith matters
- Memory bandwith is hard to optimize for¹

 $^{^{1}} http://codearcana.com/posts/2013/05/18/achieving-maximum-memory-bandwidth.html \\ \\ \leftarrow \square \\$