AI, Headquarters and Guijie

Zehao Zhang

September 17, 2025

1 Model

Information. The state is $\theta \in \{0,1\}$ with prior $\Pr(\theta = 1) = p \in (0,1)$. The principal observes a binary signal s with $\Pr(s = 1 \mid \theta = 1) = 1$ and $\Pr(s = 1 \mid \theta = 0) = q \in (0,1)$; the agent observes θ perfectly.

Timing and contracts. (i) The principal observes s. If s=1, she initiates a campaign and offers an outcome-contingent wage scheme $w=(w_0,w_1)$; if s=0, no campaign occurs. (ii) The agent observes θ and w and chooses effort $a \in [0,1)$. (iii) Outcome $y \in \{0,1\}$ realizes with $\Pr(y=1 \mid \theta,a)=\theta a$. Effort is unobservable and non-verifiable; only the outcome is contractible. Without loss of generality set $w_0=0$. Both parties are risk neutral.

Technology and payoffs. The agent's cost is g(a) with g(0) = 0, $\lim_{a \to 1} g(a) = \infty$, g'(0) = 0, g' > 0, g'' > 0. The principal's gross value from success is $r_p > 0$. With $w_0 = 0$, the expected payoffs are

$$\mathbb{E}[U_P \mid \theta, a] = \theta a (r_p - w_1), \qquad \mathbb{E}[U_A \mid \theta, a] = \theta a w_1 - g(a).$$

After s = 1, letting $\pi \equiv \Pr(\theta = 1 \mid s = 1) = \frac{p}{p + (1 - p)q}$,

$$\mathbb{E}[U_P \mid s = 1, a] = \pi a (r_p - w_1), \qquad \mathbb{E}[U_A \mid s = 1, a] = \pi a w_1 - g(a).$$

2 Results

First-best. With contractible effort and full information, a planner chooses $a(\theta)$ to maximize $r_p \theta a - g(a)$. Using g'(0) = 0 and g'' > 0, the unique solution is $a^{FB}(0) = 0$ and,

for $\theta = 1$, a strictly positive interior effort $a^{FB} \in (0,1)$ defined by $g'(a^{FB}) = r_p$ (since $g'(0) = 0 < r_p$). After s = 1, expected surplus is $\pi [r_p a^{FB} - g(a^{FB})]$.

Second-best. With hidden effort and outcome-only contracts, the agent's best response to w_1 is $a^*(0) = 0$ and, for $\theta = 1$, $a^*(1) = a$ satisfying $g'(a) = w_1$. The principal equivalently chooses a via $w_1 = g'(a)$ to maximize $\pi [r_p a - g'(a) a]$. The unique optimum a^{SB} is characterized by

$$r_p = g'(a^{SB}) + a^{SB}g''(a^{SB}), \qquad w_1^{SB} = g'(a^{SB}).$$

Note that $a^{SB} < a^{FB}$ since g'' > 0.