Linear Mixed Effects Models

Ziwen Tang, Shanshan Song, Lucas Rohleder

Universität Bonn

January 23, 2019

Overview

- 1 Theory
- 2 Estimation
- 3 Inference
- 4 Simulation

Random Effects

- Standard assumption for OLS: i.i.d errors
- Problematic with certain data structures
- Take longitudinal data: repeated measurements of same individual

 → Errors of an individual probably correlate
- Why "Random Effect"?
 - \rightarrow often belong to individuals who have been selected randomly from the population
- RE useful in many cases of grouped data
- Why not fixed effects?

Let's have a look

Random Intercept Model

To model this type of individual-specific heterogeneity we introduce individual-specific parameters γ_{0i} :

$$y_{ij} = \beta_0 + \beta_1 x_{ij} + \gamma_{0i} + \epsilon_{ij} \tag{1}$$

- i = 1, ..., m number of individuals and $j = 1, ..., n_i$ number of repeated measurements
- $\epsilon_{ii} \sim \mathcal{N}(0, \epsilon^2)$ are i.i.d.
- β_0 is the "fixed" population intercept.
- γ_{0i} is the individual- or cluster-specific (random) deviation from the population intercept β_0
- $\beta_0 + \gamma_{0i}$ is the (random) intercept for individual i
- β_1 is a "fixed" population slope parameter that is common across individuals

Random Intercept Model

Individuals or clusters are a random sample from a larger population, γ_{0i} are assumed to be random with

$$\gamma_{0i} \sim_{i.i.d.} \mathcal{N}(0, \tau^2) \tag{2}$$

- ullet Mean is zero because the populationmean is already represented by the fixed effect eta_0
- ullet We assume mutual independence between the γ_{0i} and the ϵ_{ij}

Expanding the Model

Random Slope Model

In case of individual-specific slope parameters (random slopes) we can model this by

$$y_{ij} = \beta_0 + \beta_1 x_{ij} + \gamma_{1i} * x_{ij} + \epsilon_{ij}$$
(3)

But in most cases

$$y_{ij} = \beta_0 + (\beta_1 + \gamma_{1i}) * x_{ij} + \gamma_{0i} + \epsilon_{ij}$$
(4)

Where

- β_0 is the "fixed" population intercept.
- γ_{1i} is the individual- or cluster-specific (random) deviation from the population slope β_1
- β_1 is a "fixed" population slope parameter that is common across individuals
- $\beta_1 + \gamma_{1i}$ is the (random) slope for individual i

Random Slope Model

Let's have another look 2.5

$$y_{ij} = \beta_0 + \beta_1 x_{ij} + \gamma_{1i} * x_{ij} + \epsilon_{ij}$$
 (5)

$$y_{ij} = (\beta_0 + \gamma_{0i}) + (\beta_1 + \gamma_{1i}) * x_{ij} + \epsilon_{ij}$$
 (6)

Matrix Notation

With:

In matrix notation this gives a general model:

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{Z}\mathbf{b} + \epsilon \tag{7}$$

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_M \end{bmatrix}, \quad \mathbf{X} = \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_M \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_M \end{bmatrix}, \quad \epsilon = \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_M \end{bmatrix},$$

$$\mathbf{Z} = \begin{bmatrix} Z_1 & 0 & \cdots & 0 \\ 0 & Z_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & Z_M \end{bmatrix}.$$

$$\left[\begin{array}{c}b_1\\b_2\\\vdots\\b_M\end{array}\right],\ \epsilon=\left[\begin{array}{c}\epsilon_1\\\epsilon_2\\\vdots\\\epsilon_M\end{array}\right],$$

Estimation

In a general linear mixed effect model, we have

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{Z}\boldsymbol{\gamma} + \boldsymbol{\epsilon} \tag{8}$$

Assuming $\gamma \sim \mathcal{N}(0, \epsilon^2 D)$ and $\epsilon \sim \mathcal{N}(0, \epsilon^2)$, we get

$$var(y) = var(Z\gamma) + var(\epsilon) = \sigma^2 ZDZ^T + \sigma^2 I$$
 (9)

the unconditional distribution of y as

$$\mathbf{y} \sim N(\mathbf{X}\beta, \sigma^2(I + ZDZ^T))$$
 (10)

For simplicity, $\sigma^2(I + ZDZ^T)$ will be replaced by $H(\alpha)$,

$$\mathbf{y} \sim \mathcal{N}\bigg(\mathbf{X}\beta, \mathbf{H}(\alpha) = \begin{bmatrix} H_1(\alpha) & 0 & \cdots & 0 \\ 0 & H_2(\alpha) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & H_M(\alpha) \end{bmatrix}\bigg), \tag{11}$$

Estimation

- Q1: What do we need to estimate?
- A1:we should estimate β and $H(\alpha)$

Estimation

Q2:how do we estimate β and $H(\alpha)$ A2:??.....how about assuming $H(\alpha)$ is known

Estimation- Known Variance-covariance Parameters

Assuming that $H(\alpha)$ are known, we can just maximize the joint log-likelihood of y, γ with respect to β and γ and get

$$\widehat{\beta} = \mathbf{X}^{\mathsf{T}} \mathbf{H}^{-1} \mathbf{X}^{-1} \mathbf{X}^{\mathsf{T}} \mathbf{H}^{-1} \mathbf{y}$$
 (12)

$$\widehat{\gamma} = DZ^T H^{-1}(\mathbf{y} - X\widehat{\beta}) \tag{13}$$

This implies that $\widehat{\beta}$ is a weighted least squares estimator with the inverse of the $H(\alpha) = \sigma^2(I + ZDZ^T)$ of β as the weight matrix.

Estimation- Unknown Variance-covariance Parameters

- Maximum likelihood (ML) approach
- Restricted maximum likelihood(REML) approach
- Which one is better? why?

Estimation-Unknown Variance-covariance Parameters

Based on the likelihood of $y \sim \mathcal{N}(X\beta, H(\alpha))$, the corresponding log-likelihood is

$$logL(\beta,\alpha|y,X) = -\frac{1}{2}[log detH(\alpha) + (y - X\beta)^{T}H(\alpha)^{-1}(y - X\beta)]$$
 (14)

ML: with respect to β (while holding α fixed),we have

$$\widehat{\beta}(\alpha) = (X^T H(\alpha)^{-1} X)^{-1} X^T H(\alpha)^{-1} y \tag{15}$$

Inserting $\widehat{\beta}(\alpha)$ in $logL(\beta, \alpha|y, X)$ reults in the profile log-likelihood

$$\mathcal{L}_{ML}(\alpha) = -\frac{1}{2}[\log \det H(\alpha) + (y - X\widehat{\beta}(\alpha)^T H(\alpha)^{-1} (y - X\widehat{\beta}(\alpha)))] \quad (16)$$

Finally we can get ML estimator $\widehat{\alpha}_{ML}$.

→ロト→部ト→ミト→ミトーミーのQで

Estimation- Unknown Variance-covariance Parameters

Based on the likelihood of $y \sim \mathcal{N}(X\beta, H(\alpha))$, the corresponding log-likelihood is

$$logL(\beta, \alpha|y, X) = -\frac{1}{2}[log detH(\alpha) + (y - X\beta)^{T}H(\alpha)^{-1}(y - X\beta)]$$
 (17)

REML:Integrating out β from the likelihood,that restricted log-likelihood is

$$\mathcal{L}_{R}(\alpha) = \log(\int L(\beta, \alpha) d\beta)$$
 (18)

$$\mathcal{L}_{R}(\alpha|A^{T}y) = -\frac{1}{2}(\log \det H(\alpha) + \log \det X^{T}H(\alpha)^{-1}X + (y - X\widehat{\beta})^{T}H(\alpha)^{-1}(y - X\widehat{\beta}))$$
(19)

where $\widehat{\beta}(\alpha) = (X^T H(\alpha)^{-1} X)^{-1} X^T H(\alpha)^{-1} y$. Finally we can get REML estimator $\widehat{\alpha}_{REML}$.

Estimation- Unknown Variance-covariance Parameters

If vector a is orthogonal to all columns of X, i.e., $a^TX = 0$, then a^Ty is known as an error contrast. The distribution of y is

$$\mathbf{y} \sim \mathcal{N}\bigg(\mathbf{X}\beta, \mathbf{H}(\alpha) = \begin{bmatrix} H_1(\alpha) & 0 & \cdots & 0 \\ 0 & H_2(\alpha) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & H_M(\alpha) \end{bmatrix}\bigg), \tag{20}$$

Define $A = [a_1 a_2 ... a_{(N-k)}]$. $A^T X = 0$ and $E(A^T y) = 0$. The error contrast vector

$$A^{T}y = A^{T}X\beta + \epsilon = A^{T}\epsilon \sim \mathcal{N}(0, A^{T}HA)$$
 (21)

is free of β .

Which one is better?

• we prefer $\widehat{\alpha}_{REML}$ in LMMs as an estimator of α . The ML estimator for σ^2 is biased.

In the classical linear model, the estimator

$$\hat{\sigma}_{unbiased}^2 = \frac{1}{N - K} (y - X\hat{\beta})^T (y - X\hat{\beta}) = E(\hat{\sigma}_{REML}^2)$$
 (22)

$$E(\hat{\sigma}_{ML}^2) = \frac{1}{N} (y - X\hat{\beta})^T (y - X\hat{\beta}) = \frac{N - K}{N} \hat{\sigma}_{unbiased}^2 < \hat{\sigma}_{unbiased}^2$$
 (23)

In LMMs, the reason of biased maximum likelihood estimator is that we neglect the loss of **degree of freedom**(DoF) for estimating β .

The intuition behind ReML is to maximize a modified likelihood that is free of mean components instead of the original likelihood as in ML.

Inference for linear mixed model

Recalling from the estimation part,

$$y_i \sim \mathcal{N}(X_i \beta, \sigma^2 (I + Z_i D Z_i^T))$$
 (24)

we want to test mean structure β and variance components α (variance, covariance elements in D and σ^2) with respect to y_i

- Testing for fixed effects
 - \rightarrow Approximate F test
 - → Likelihood Ratio Test(LRT)
- Testing for variance components
 - → Likelihood Ratio Test(LRT)
- Two popular alternatives
 - → Parametric Bootstrap
 - \rightarrow Kenward and Roger

Testing for fixed effects

Recalling from estimation chapter

$$\widehat{\beta} = (X^T H^{-1} X)^{-1} X^T H^{-1} y \tag{25}$$

Approximate F test

for any known matrix L,

$$H_0: L\beta = 0, versus \quad H_A: L\beta \neq 0$$
 (26)

• it is now based on an F-approximation to the distribution of

$$F = \frac{(\widehat{\beta} - \beta)^T L^T [L(\sum_{i=1}^N X_i^T H_i^{-1}(\widehat{\alpha}) X_i)^{-1} L^T]^{-1} L(\widehat{\beta} - \beta)}{\operatorname{rank}(L)}$$
(27)

- F has asymptotically a $\frac{1}{d}\chi_d^2$ distribution
- Problems with F test: degree of freedom; not necessarily F-distributed

Testing for fixed effects

Likelihood Ratio Test

- conditions: comparison of nested models with different mean structure
- $H_0: \beta \in \Theta_{\beta,0}$, for some subspace $\Theta_{\beta,0}$ of the parameter space Θ_{β} of the fixed effects β .
- LRT is defined as

$$-2\ln\lambda_{N} = -2\ln\left[\frac{L_{ML}(\widehat{\boldsymbol{\theta}}_{ML,0})}{L_{ML}(\widehat{\boldsymbol{\theta}}_{ML})}\right],\tag{28}$$

where $\widehat{\theta}_{ML,0}$ and $\widehat{\theta}_{ML}$ are the ML estimates obtained from maximizing L_{ML} over $\Theta_{\beta,0}$ and Θ_{β} , respectively.

- $-2 \ln \lambda_N$: asymptotically a chi-squared distribution with certain degrees of freedom
- LRT is not valid with REML estimation

Testing for variance components

Likelihood Ratio Test

- conditions: comparison of nested models with different covariance structure
- H_0 : α in $\Theta_{\alpha,0}$, for some subspace $\Theta_{\alpha,0}$ of the parameter space Θ_{α} of the variance components α .
- LRT is again defined as

$$-2\ln\lambda_{N} = -2\ln\left[\frac{L_{REML}(\widehat{\theta}_{REML,0})}{L_{REML}(\widehat{\theta}_{REML})}\right],$$
 (29)

where $\widehat{\theta}_{REML,0}$ and $\widehat{\theta}_{REML}$ are now the maximum likelihood estimates obtained from maximizing L_{REML} over $\Theta_{\alpha,0}$ and Θ_{α} , respectively.

- $-2 \ln \lambda_N$: asymptotically a chi-squared distribution with certain degrees of freedom(only if not on the boundary!)
- using REML estimation to get more accurate estimator.

Two popular alternatives

- parametric bootstrap
 - \rightarrow P-values generated by LRT for fixed effects tend to be too small
 - \rightarrow P-values generated by LRT for variance components tend to be larger(eg. $H_0: \hat{\sigma}^2 = 0$)
 - ightarrow using parametric bootstrap to find more accurate p-values for LRT
- Kenward and Roger
 - ightarrow Improving the small sample properties by approximating the distribution of F by an $F_{d,m}$ distribution
 - ightarrow efficiently calculating the denominator degrees of freedom

Monte Carlo Simulation

- Imagine we want to simulate the effect of a Physics test score on a Math test score
- We expect correlation between the subjects scores within the same school → each school has an effect on its students
- We want to account for this by using random effects

Naive Random Intercept Model

$$mathscr_{ij} = \beta_0 + \beta_1 physcr_{ij} + \gamma_{0i} + \epsilon_{ij}$$
 (30)

Here:

- "individuals" / clusters i are the schools
- ullet repeated measurements j are students physics test scores (of school i)
- γ_{0i} school random effect

Simulation Parameters

Remember: $mathscr_{ij} = \beta_0 + \beta_1 physcr_{ij} + \gamma_{0i} + \epsilon_{ij}$ We set:

- $\beta_0 = 1$
- Slope of fixed effect $\beta_1 = 0.8$
- number of students per school j = 1, ..., 30
- random effect $\sim \mathcal{N}(0,4)$
- ullet $\epsilon_{ij} \sim \mathcal{N}(0,1)$

Plug everything in the model an simulate data 1000 times for 5, 30, 100 schools \rightarrow estimate fixed effect parameter and random effect variance each time

Estimated Fixed Effects Slope

Estimated Random Effects Variance

Median variance True variance

Thank you for your attention!