Math H185 Lecture 34

Keshav Balwant Deoskar April 22, 2024

Contents

1 Normal Famlies 2

1 Normal Famlies

Normal Families

A family of functions \mathcal{F} on $U \subseteq \mathbb{C}$ is said to be **normal** if for all sequences $f_1, f_2, f_3, \dots \in \mathcal{F}$, there exists a convergent subsequence.

This definition expresses that a family of functions is compact in a sense.

Theorem (Arzela-Ascoli): If \mathcal{F} is Uniformly bounded and Equicontinuous on all compact subsets, then it is normal.

• Here, uniformly bounded on a (compact) subset $K \subseteq U$ means there exists B such that |f(z)| < B for all $f \in \mathcal{F}$ and $z \in K$. i.e. the same bound B applies to all functions in the family.

<u>Ex:</u> Each function of the form $f_n(z) = n$ is bounded, but the family $\{f_n\}$ is not uniformly bounded.

• A function being **Equicontinuous** on K means that for all $\epsilon > 0$, there exists $\delta > 0$ such that if $|z_1 - z_2| < \delta$ then $|f(z_1) - f(z_2)| < \epsilon$ for all $z_1, z_2 \in K$.

Ex: Suppose \mathcal{F} is a family of functions on [0,1]. If $\{f'(z)\}_{f\in\mathcal{F}}$ is uniformly bounded, then \mathcal{F} is equicontinuous.

Ex: $f_n(x) = x^n$ on [0,1] is not equicontinuous. We can see this by letting $x_1 = 1, x_2 = 1 - \delta$. Then,

$$|f_n(x_1) - f_n(x_2)|$$

[Complete this example later]

To prove the Arzela-Ascoli Theorem, the key idea we'll use is *diagonalization* (to arrange countably many conditions).

Principle of Diagonalization: Given countably many conditions on a sequence $\operatorname{cond}_1, \operatorname{cond}_2, \operatorname{cond}_3, \cdots$ which are inherited on subsequences and sequence f_1, f_2, f_3, \cdots such that for all j any subset equence has a further subsequence which condition cond_j . Then, there exists a subsequence $f_1^{(\infty)}, f_2^{(\infty)}, \cdots$ satisfying all cond_j .

Proof-ish: Suppose we have

$$f_1^{(1)}$$
 $f_2^{(1)}$ $f_3^{(1)}$ \cdots satisfying cond₁
 $f_1^{(2)}$ $f_2^{(2)}$ $f_3^{(2)}$ \cdots satisfying cond₂
 $f_1^{(3)}$ $f_2^{(3)}$ $f_3^{(3)}$ \cdots satisfying cond₃
 \vdots \vdots \vdots \vdots

2

Then, taking the diagonal gives us a subsequence of \mathcal{F} satisfying all conditions cond_j.

[Write the rest from recording]