Northeastern University, Department of Mathematics

MATH 5110: Applied Linear Algebra and Matrix Analysis.

• Instructor: **He Wang** Email: he.wang@northeastern.edu

§7 Diagonalization; Eigenvalues; Eigenvectors;

Contents

Diagonalization

1

Eigenvalues and Characteristic Polynomials

Eigenvectors and Eigenspaces

A and C que Similar

1. Diagonalization

5

9

Let D be an diagonal matrix. The power D^k is easy to calculate. For example,

$$\underline{D}^{k} = \begin{bmatrix} d_{1} & 0 & 0 & 0 \\ 0 & d_{2} & 0 & 0 \\ 0 & 0 & d_{3} & 0 \\ 0 & 0 & 0 & d_{4} \end{bmatrix}^{k} = \begin{bmatrix} (d_{1})^{k} & 0 & 0 & 0 \\ 0 & (d_{2})^{k} & 0 & 0 \\ 0 & 0 & (d_{3})^{k} & 0 \\ 0 & 0 & 0 & (d_{4})^{k} \end{bmatrix}$$

Definition 1. An $n \times n$ matrix \underline{A} is said to be **diagonalizable** if

A=PDP7

Application of diagonalization:

A'=PDPPRDR----RDPT = PD PT

Question:

1. Are all $n \times n$ matrices A diagonalizable?

2. If a matrix A is diagonalizable, how to find the invertible matrix P and the diagonal matrix D? The answer for this question is called **diagonalize** matrix A.

2. Eigenvalues and Eigenvectors.

Consider a linear transformation $T: \mathbb{F}^n \to \mathbb{F}^n$ by matrix $T\vec{x} = A\vec{x}$. $(\mathbb{F} = \mathbb{R} \text{ or } \mathbb{C}.)$

Definition 2. If there exist a nonzero vector $\vec{x} \in \mathbb{F}^n$ and a number $\lambda \in \mathbb{F}$ such that $A\vec{x} = \lambda \vec{x}$

then, the vector \vec{x} is an eigenvector corresponding to the eigenvalue λ .

Definition 3. A basis $(\vec{b}_1, \dots, \vec{b}_n)$ of \mathbb{F}^n is called an eigenbasis for A if the vectors $\vec{b}_1, \dots, \vec{b}_n$ are eigenvectors of A.

Av=NV

Example 4. If \vec{v} is an eigenvector of A corresponding to λ , is \vec{v} an eigenvector of A^{k} ? Is λ an eigenvalue of A^{k} ?

$$A^{k} \vec{v} = A - A \vec{v} = \lambda A - A \vec{v}$$

$$= \left(\begin{array}{c} \lambda^k \end{array} \right) \vec{\nu}$$

A-PDP

Theorem 5. A is <u>diagonalizable</u> if and only if it has n linearly independent eigenvectors $\vec{b}_1, \ldots, \vec{b}_n$ (eigenbasis).

In this case $A = PDP^{-1}$ where the columns of P are eigenvectors of A; the diagonal entries of D are the eigenvalues of A corresponding to the eigenvectors given by the columns of P.

Proof. We already verified that system of equations $A\vec{b}_1 = \lambda_1\vec{b}_1$, $A\vec{b}_2 = \lambda_2\vec{b}_2$, ..., $A\vec{b}_n = \lambda_n \vec{b}_n$. is equivalent to matrix equation

$$AP = PD$$

where
$$P = [\vec{b}_1 \dots \vec{b}_n]$$
 and $D = \begin{bmatrix} d_1 & 0 & \cdots & 0 \\ 0 & d_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_n \end{bmatrix}$.

P is invertible if and only if $\{\vec{b}_1,\ldots,\vec{b}_n\}$ is a basis of \mathbb{R}^n . In this case, $A=PDP^{-1}$ and A is diagonalizable.

Example 6. Let T be the projection transformation onto a line $L = \text{Span}\left\{ \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \right\} \mathbb{R}^3$.

Find a basis $\mathscr{B} = [\vec{b}_1 \ \vec{b}_2 \ \vec{b}_3]$ for \mathbb{R}^3 such that the \mathscr{B} -matrix of the T is the diagonal matrix $D = \begin{bmatrix} d_1 & 0 & 0 \\ 0 & d_2 & 0 \\ 0 & 0 & d_3 \end{bmatrix}.$

Example 7. Let T be the rotation through an angle of $\pi/2$ in the counterclock direction. So the matrix of T is $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$. Find all eigenvalues and eigenvectors of A. Is A diagonalizable?

2. Eigenvalues and Characteristic Polynomials

Let A be an $n \times n$ matrix.

Theorem 9 (The Characteristic Equation of A).

Example 10. Finding Eigenvalues for the following matrices:

$$A = \begin{bmatrix} 2 & 5 \\ 3 & 4 \end{bmatrix} \qquad B = \begin{bmatrix} i & 1 \\ 2 & 3 \end{bmatrix}$$

$$eig(A) = \begin{pmatrix} -1 \\ 7 \end{pmatrix}$$

$$eig(B) = \begin{pmatrix} \frac{3}{2} - \frac{\sqrt{16-6i}}{2} + \frac{1}{2}i\\ \frac{\sqrt{16-6i}}{2} + \frac{3}{2} + \frac{1}{2}i \end{pmatrix} \approx \begin{pmatrix} -0.5337 + 0.8688i\\ 3.5337 + 0.1312i \end{pmatrix}$$

Theorem 11. The eigenvalues of a triangular $n \times n$ matrix A equal the diagonal entries of A.

Proof. Suppose A is an upper triangular matrix.

Proof. Suppose A is an upper triangular matrix.
$$\det(A - \lambda I) = \begin{vmatrix} a_{11} - \lambda & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} - \lambda & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & a_{nn} - \lambda \end{vmatrix} = (a_{11} - \lambda)(a_{22} - \lambda) \cdots (a_{nn} - \lambda) = 0$$
Hence, the eigenvalues of A are a_{ii} for $i = 1, ..., n$.

Practice: Finding Eigenvalues for the following matrices:

$$A = \begin{bmatrix} 2 & 5 & \sqrt{2} \\ 3 & 4 & 7 \\ 0 & 0 & 3 \end{bmatrix} \qquad B = \begin{bmatrix} 2 & 1 & 0 \\ -1 & 4 & 0 \\ 3 & 5 & 7 \end{bmatrix}$$

In general for a $n \times n$ matrix A,

$$\det(A - \lambda I) = \begin{vmatrix} a_{11} - \lambda & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} - \lambda & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} - \lambda \end{vmatrix}$$

$$= (a_{11} - \lambda)(a_{22} - \lambda) \cdots (a_{nn} - \lambda) + \sum_{n=1}^{\infty} (\text{terms of degree} \le (n - 2))$$

$$= (-\lambda)^n - (a_{11} + a_{22} + \cdots + a_{nn})(-\lambda)^{n-1} + \sum_{n=1}^{\infty} (\text{terms of degree} \le (n - 2))$$

Definition 12 (Characteristic Polynomial). If A is an $n \times n$ matrix, the characteristic polynomial of A is

$$f_A(\lambda) := det(A-\lambda I)$$

Example 13. Find the characteristic polynomial for a 2×2 arbitrary matrix.

$$\begin{vmatrix} \bigcirc -\lambda & b \\ \bigcirc & \bigcirc -\lambda \end{vmatrix} = \lambda^2 - \underbrace{(c+d)}_{11} \lambda + \underbrace{(c+d)}_{11}$$

Definition 14. The sum of the diagonal entries of a square matrix is called the trace of A,

The characteristic polynomial for a 2×2 matrix A:

e characteristic polynomial for a 2 x 2 matrix A.

$$tr(AB) = tr(BA)$$

$$tr(AB) = tr(AB) + tr(A$$

$$+ (A+B) = + (A) + + (B)$$
More generally,
$$+ (A+B) = + (A) + + (B)$$

$$+ (A+B) = + (A) + + (B)$$

Q: Are there any nxn mother A, B.
Such that
$$AB-BA=I_n$$
?

$$= (-\lambda)^{n} + (\lambda_{1} + \dots + \lambda_{n})(-\lambda)^{n} + \dots + (\lambda_{n} + \lambda_{n})(-\lambda)^{n} + \dots + (\lambda_{n} + \lambda_{n})(-\lambda)^{n}$$

$$= (-\lambda)^{n} + (\lambda_{1} + \dots + \lambda_{n})(-\lambda)^{n} + \dots + (\lambda_{n} + \lambda_{n})(-\lambda)^{n}$$

$$= (-\lambda)^{n} + (\lambda_{1} + \dots + \lambda_{n})(-\lambda)^{n} + \dots + (\lambda_{n} + \lambda_{n})(-\lambda)^{n}$$

Theorem 15. Let A be an $n \times n$ matrix. Then the characteristic polynomial of A is

$$f_{A}(\lambda) = (-\lambda)^{n} + (tvA)(-\lambda)^{n+1} + (-betA)$$

$$f_{A}(\lambda) = |A - \lambda I|$$

$$\int_{A} (0) = (A \mid$$

More properties on Characteristic Polynomials

Definition 16 (Algebraic Multiplicity).

An eigenvalue λ_0 of A is said to have **algebraic multiplicity** k if it has multiplicity k as a root of the characteristic polynomial $f_A(t)$. Equivalently,

$$f_A(\lambda) = (\lambda_0 - \lambda)^{k} g(\lambda)$$

such that $g(\lambda_0) \neq 0$.

Theorem 17. An n x n matrix has at most n eigenvalues, even counted with algebraic multiplicities.

he is n complex eigenvalues.

Example 18. Find all eigenvalues and their algebraic multiplicities of $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$

Example 19. Find the characteristic polynomial of $A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 1 \\ 2 & 1 & 1 \end{bmatrix}$. Which of the following numbers 1, -1, 4 are eigenvalues of A?

Example 20. Find the characteristic polynomial of $A = \begin{bmatrix} 2 & 1 & 2 \\ -1 & 4 & 2 \\ -1 & 1 & 5 \end{bmatrix}$. Verify that 3 and 5 are eigenvalues.

Theorem 21. Let A be an $n \times n$ matrix. Suppose A has n eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$, (listed with algebraic multiplicities.) Then

$$\frac{\text{tr}A = \lambda_1 + \dots + \lambda_n}{\text{dot} A = \lambda_1 \dots \lambda_n}$$

A=PBP-1

Theorem 22 (On Eigenvalues of Similar Matrices). If A and B are similar,

then
$$f_A(\lambda) = f_B(\lambda)$$

ther A, B have the same eigenvalue.

$$B-\lambda I = f_8(\lambda)$$

The converse of the preceding theorem is not generally true. There do exist matrices with the same characteristic polynomial that are not similar matrices. See example later.

Proposition 23. If A and B are similar, then

Proposition 24. If A and B are similar, then

roulde reak B

Example 25. $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ are not similar, but they have the same rank, the same determinant, the same trace, the same eigenvalues.

NO!

Example 26. Are the following two matrices similar to each other? $A = \begin{bmatrix} 2 & 4 \\ 1 & 3 \end{bmatrix}$, $B = \begin{bmatrix} 2 & 4 \\ 1 & 3 \end{bmatrix}$

Exit I No - No. then PB is eigeneeth for B

Warning: Similar matrices may have different eigenvectors.

3. Eigenvectors and Eigenspaces

Theorem 27. Let A be an $n \times n$ matrix. A scalar λ is an eigenvalue for A if and only if the matrix equation

$$(A - \lambda I_n)\vec{x} = \vec{0}$$

has a nontrivial solution \vec{x} .

Said differently, λ is an eigenvalue for A if and only if

$$Nul(A - \lambda I_n) \neq \{\vec{0}\}.$$

Definition 28. Let A be an $n \times n$ matrix and λ be a eigenvalue of A. The set of all eigenvectors of A corresponding to λ together with the zero vector, is called the **eigenspace** of A corresponding to λ , and it equals the subspace

$$Nul(A - \lambda I_n)$$
.

The dimension of the eigenspace $Nul(A-\lambda I_n)$ is called the **geometric multiplicity** of λ .

Proposition 29.

 $(1 \leq Geometric multiplicity of \lambda \leq Algebraic multiplicity of \lambda \leq n$

Example 30. Let T be the projection transformation onto a line $L = \text{Span}\left\{\begin{bmatrix} 1\\2\\3 \end{bmatrix}\right\} \mathbb{R}^3$.

Explain the geometric meaning of the eigenvalues and eigenspaces.

Lemma 31. Let A be an $n \times n$ matrix and let $\vec{v}_1, \ldots, \vec{v}_p$ be eigenvectors of A that correspond to distinct eigenvalues $\lambda_1, \ldots, \lambda_p$ respectively. Then $\{\vec{v}_1, \ldots, \vec{v}_p\}$ is a linearly independent set of vectors.

Proof. We prove this by induction on p. If p=1, it is clear. Suppose this is true for p-1 vectors.

Lemma 32. Let A be an $n \times n$ matrix and let $\lambda_1, \ldots, \lambda_p$ be distinct eigenvalues with corresponding independent set of eigenvectors V_1, \ldots, V_p . Then $V_1 \cup \cdots \cup V_p$ is a linearly independent set of vectors.

Recall that an $n \times n$ matrix A is diagonalizable if and only if it has n linearly independent

eigenvectors.

Proposition 33 (Case of Distinct Eigenvalues). If an $n \times n$ matrix A has n distinct eigenvalues, then its corresponding eigenvectors are linearly independent and A is diagonalizable.

Theorem 34. Let $\lambda_1, \ldots, \lambda_p$ be **distinct** eigenvalues of A such that

$$f_A(\lambda) = \det(A - \lambda I) = (\lambda_1 - \lambda)^{k_1} (\lambda_2 - \lambda)^{k_2} \cdots (\lambda_p - \lambda)^{k_p}$$

Suppose $k_1 + k_2 + \cdots + k_p = n$. Let E_k be the eigenspace of λ_k . Let β_k

Proof. A is diagonalizable if and only if it has n linearly independent eigenvectors.

$$\lambda = 1$$
 $a.m. (\lambda = 1) = 2$ $8.m(\lambda = 1) = 1$

Page 11

Another point of view of the eigenspaces is the invariant subspace.

Definition 35. Let $T: V \to V$ be a linear transformation on a vector space V. A subspace $W \subseteq V$ is said to be **invariant** under T if

$$T(w) \leq W$$

Proposition 36. A one-dimensional subspace is invariant under the linear transformation T_A if and only if it is an expansion space spanned by an eigenvector of A.

T(v)=S

てばり= とび

T=PorC

Dis a eigenvector of A.

PE[bi-..tim]

De[

A=PDD @ A is digardrable

Theorem 37. An $n \times n$ matrix A is <u>similar</u> to a <u>diagonal matrix D</u>, (i.e., $A = PDP^{-1}$) if and only if there exists a decomposition of

$$- \mathbb{F}^n = V_1 \oplus V_2 \oplus \cdots \oplus V_n$$

such that each V_i is one dimensional and invariant under T_A .

(Vi = Spen (bi)-

A Biz libi

Page 12

In Matlab, [P, D] = eig(A) returns diagonal matrix D of eigenvalues and matrix P whose columns are the corresponding right eigenvectors, such that AP = PD.

Example 38. Diagonalizing Matrices

$$A = \begin{bmatrix} 4 & -1 & 0 \\ 2 & 1 & 0 \\ 2 & -1 & 2 \end{bmatrix}. \quad B = \begin{bmatrix} 5 & 1 & 0 \\ 2 & 4 & 0 \\ 2 & 1 & 3 \end{bmatrix}. \quad C = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 1 \\ 2 & 1 & 1 \end{bmatrix}. \quad M = \begin{bmatrix} 2 & 1 & 2 \\ -1 & 4 & 2 \\ -1 & 1 & 5 \end{bmatrix}.$$

Remark[Non Diagonalizing Result] For any n > 1 there exist examples of $n \times n$ matrices that are not diagonalizable.

$$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \Rightarrow ppp^{-1} \qquad |A - \lambda I| = |\hat{\lambda} + 1| = 0$$

んます

Real Matrices Acting on \mathbb{C}^n

Let A be a real $n \times n$ matrix and λ be an eigenvalue of A.

- If λ is a real number, then there exist real eigenvectors associate to λ , as well as complex eigenvector.
- If λ is a complex (non-real) eigenvalue of A, then every eigenvector \vec{x} associated to λ is a complex (non-real) vector.

Suppose A is an $n \times n$ matrix with real number entries so that $\overline{A} = A$. Let λ be a complex eigenvalue of A with associated eigenvector \vec{x} . Then

$$\frac{\overline{A \cdot \vec{x}}}{\overline{A \cdot \vec{x}}} = \frac{\overline{A} \cdot \overline{\vec{x}}}{\overline{\lambda} \cdot \overline{\vec{x}}} = \overline{\lambda} \cdot \overline{\vec{x}}$$

Combining the two we obtain

$$A \cdot \overline{\vec{x}} = \overline{\lambda} \cdot \overline{\vec{x}}.$$

Theorem 39. Let A be an $n \times n$ matrix with real number entries and let λ be an eigenvalue of A with associated eigenvector \vec{x} . Then λ is also an eigenvalue of A with associated eigenvector \vec{x} .