

На горизонтальной поверхности лежит грузик,который прикреплен к стене нерастянутой пружиной. Для того чтобы отодвинуть грузик на расстояние 2 см дальше от стены, необходимо совершить работу 20 Дж, а для того чтобы отодвинуть на расстояние 4 см от стены необходимо совершить в 3 раза большую работу. Чему равен коэффициент жесткости пружины?

A. =
$$202x$$
, x

A. = $202x$, x

A. = $3A$, $2x$

Ha replain by 2009 :

 $A_1 = \frac{Kx^2}{2}$
 $A_1 = \frac{K(2x)^2}{2} = 2000$
 $A_2 = \frac{K(2x)^2}{2} = 2000$
 $A_3 = \frac{K(2x)^2}{2} = 2000$
 $A_4 = \frac{K(2x)^2}{2} = 2000$

$$A_{2} = \frac{\kappa(2x)^{2}}{2} + 2Fx = 3A_{1}$$

III orga:

$$= \frac{1}{4} = \frac{1}{2} \frac{1}{4} = \frac{1}{2} \frac{1}{4} = \frac{1}{4} \frac{1}{4}$$

Пример 4.3. Аэросани массой 2 т движутся в гору с постоянной скоростью (рис. 13). Развиваемая аэросаними полезная мощность — 30 кВт, коэффициент трения 0,1, угол наклона «горы» 5°.

1) Определите скорость аэросаней.

2) Какую полезную мощность должны развивать сани, чтобы двигаться с той же горы вниз с той же скоростью?

1)
$$F_7 = MN + mg Sin \lambda$$
 $N = mg COS \lambda$

2) $Mocynoc76$:

 $P = F_1 = M = mg V (\mu COS \lambda + Sin \lambda)$
 $V = mg V (\mu COS \lambda + Sin \lambda)$
 $V = mg V (\mu COS \lambda + Sin \lambda)$

3) $V = mg V (\mu COS \lambda + Sin \lambda)$
 $V = mg V (\mu COS \lambda + Sin \lambda)$
 $V = mg V (\mu COS \lambda + Sin \lambda)$
 $V = mg V (\mu COS \lambda + Sin \lambda)$
 $V = mg V (\mu COS \lambda + Sin \lambda)$
 $V = mg V (\mu COS \lambda + Sin \lambda)$
 $V = mg V (\mu COS \lambda + Sin \lambda)$
 $V = mg V (\mu COS \lambda + Sin \lambda)$
 $V = mg V (\mu COS \lambda + Sin \lambda)$
 $V = mg V (\mu COS \lambda + Sin \lambda)$
 $V = mg V (\mu COS \lambda + Sin \lambda)$
 $V = mg V (\mu COS \lambda + Sin \lambda)$
 $V = mg V (\mu COS \lambda + Sin \lambda)$
 $V = mg V (\mu COS \lambda + Sin \lambda)$
 $V = mg V (\mu COS \lambda + Sin \lambda)$
 $V = mg V (\mu COS \lambda + Sin \lambda)$
 $V = mg V (\mu COS \lambda + Sin \lambda)$
 $V = mg V (\mu COS \lambda + Sin \lambda)$
 $V = mg V (\mu COS \lambda + Sin \lambda)$
 $V = mg V (\mu COS \lambda + Sin \lambda)$
 $V = mg V (\mu COS \lambda + Sin \lambda)$
 $V = mg V (\mu COS \lambda + Sin \lambda)$
 $V = mg V (\mu COS \lambda + Sin \lambda)$
 $V = mg V (\mu COS \lambda + Sin \lambda)$
 $V = mg V (\mu COS \lambda + Sin \lambda)$
 $V = mg V (\mu COS \lambda + Sin \lambda)$
 $V = mg V (\mu COS \lambda + Sin \lambda)$
 $V = mg V (\mu COS \lambda + Sin \lambda)$

												ают м												
	12											неогра ится в												
N	ر '')										от Зе пучаях												
												пучаях и притя								ии. Бл	ияние	·M		
		0													_									
1	()	3	Λh	111	110	1.М		3		7		01	1 0	1	1).	ì								
Ą	-/		טויט	w. U	W	' '	_2		. –			7"	· _		2									
						5	~~					_		-2										
						ע ווי	2_	/	1			_	Ľ											
						2		Т	_	-nv	au		_	no	T									
					L				_	-		(<u>ب</u>		ر									
						la	1	voh	-74	/		١,	b i	KOC	10	cl	H	a a	9					
					·	7	eM	مرادر																
							<i>(</i>)	7.4							7									
								Z			,		6	12	- ۲									
					>	1			_	L	-1	~	_	_	<u></u>									
							-n	0 7		C,	ros			2										
		0						_	_	_)				1.	,								
2) _	50	in	W	UC	214		3	. C	. フ	1	9	NS		V	:								
												0		-7										
					p	2 I/	. 2		1			V.	ארונ		9.	_ 2								
						2	+	F	- L	_	-	-	2	+	E	no	Ŧ							
					-				74			_				,								
										ŗ	<u></u>	<u> </u>	_		,									
						_	Ĺ,				1	_		, 2										
						=>	1 "l	7	Īl		V	_ `	V_{z}											
												1												

Небольшое тело массой т медленно вытащили на горку, действуя силой F, которая направлена по касательной к N4 траектории. Найдите работу этой силы, если высота горки h, длина ее основания I и коэффициент трения mu (D13 , N10) 1) Разобыт весь склок горки на малежькие угастки, которые можно сгиталь промычи Рассмотрим одих такой угасток: F=MN+masind con 11 yearsuy u Leny N= mg cos 2 => AF = F. Al = umg sloos L + mg sl sind

gruna
yracika
yrophu Погда полног работо - это сумно 1А по всем угостиом:

$$A_F = Z' \Delta A_F = \mu mg Z' \Delta X + mg Z' \Delta Y$$
 $A_F = \mu mg I + mg h$

Какова работа силы трения за один оборот азросаней, движущихся по вертикальной круговой дорожке? Скорость саней постоянна и равна у, масса m , коэфициент трения mu
 $M = M + mg = M +$

2) Тусть соми сместимсь на малое расстоямие 16 (преполинейный), 702 да элементарная работа силы треких на этом угастке: 1A=-M/sl=-uNm &sl-mgslcos2 3) Thorga normal padora: $\frac{2\pi R}{2\pi R}$ $\frac{2\pi R}$ $\frac{2\pi R}{2\pi R}$ $\frac{2\pi R}{2\pi R}$ $\frac{2\pi R}{2\pi R}$ $\frac{2\pi R}{2$ $=>A=-2\pi\mu\nu m\nu$ Какую минимальную работу нужно совершить, чтобы из 26 колодца глубиной h = 10 м поднять на тросе ведро с водой массой m = 8 кг? Линейная плотность троса mu = 0,4 кг / м Решим задочу 2-мя способами 1 cnocoo: Ppapureckuis Тостроим график F(х): Mhg+mg $A = \frac{2m + \mu h}{2} gh$ 2 crocoo: To j-ny coxp. Экергии Уусть нуль пот эперии соотв. пижнену положению Hazanence coer-begpo bucur na h Core ruce - begpo nonnocreso nognames Cucrema - begpo + bepelia. Banumer janon ujmenenus полкаї экериш системы: Exon-Enaz = A $mgh + \mu hgh - \mu hg \frac{h}{2} = A$

M7

Деформация вертикально расположенной легкой пружины, удерживающей гирю, составляет х. Чтобы увеличить деформацию пружины на 50%, медленно надавливая на груз в вертикальном направлении, надо совершить работу А. Найдите жесткость пружины k

1) Запишем закок изм. полкой эперии:

$$\frac{k\left(\frac{3}{2}x\right)^{2}-\frac{kx^{2}}{2}-mg\left(\frac{3}{2}x-x\right)=A}{2}$$

$$A = \frac{5}{8}kx^2 - \frac{1}{2}mgx$$

2) Yenobuse pabrobecess:
$$mg = K \times X$$

$$= X = \frac{1}{8} K \times X^{2} = X \times X$$

(МФТИ, из старых задач) Какую работу нужно совершить. Чтобы длинную доску, N8 лежащую на земле, повернуть в горизонтальной плоскости вокруг одного из концов на угол lpha? Длина доски L, масса M, коэффициент трения между доской и землей μ . 1) Ha pacciolnien X beigenin эленей тольщиной $\Delta X - e^{20}$ масса $\frac{m}{+} \cdot \Delta X$ и за вращение ок рроходит для длиной $\Delta S = X \cdot \Delta$, ΔB рад. 2) Illorga padoro cursi TPERUS NA 2TOT nycoren: a Ap = Fp. as = y Taxg. Xd ATP - 5 M L g L X AX Лостроин график f(x)

 $\Lambda \int (x)$ $-\mu \frac{m}{L} g dL$ $M = \frac{m}{c} g d \times \frac{m}{c}$ $\Delta S = \mu \frac{m}{e} g L L \times \Delta X = \Delta A$ $= A = n \log a g e n \log 2 p a \phi u r o m$ $A = \frac{1}{2} \mu \frac{m}{L} g \perp L \cdot L = \mu \frac{m g}{2} L$ Замегакие: Аналог Гл. об изм. кип. экергии для Jr. o gleex. y.M:

В лунке размером 10 х 10 х 10 см3, целиком заполненной водой, лежит на дне металлический цилиндр. Диаметр цилиндра d M 6 немного меньше 10 см. Высота цилиндра равна его диаметру. Для того чтобы вытащить цилиндр из воды, необходимо совершить работу А = 0,185 Дж. Чему равна плотность материала цилиндра Syh 1) Perucio Tygen repez Uzmenene novenynaminoù Theprin cucremol => pyxno znaro maccy bogo! 2) Hañgem odrem bogo! Voge = Vnyde - Vyuningpa = d = \frac{3}{4} d = \frac{3}{1 - \frac{1}{4}} 3) Haugen h: $d^2 h = d^3 \left(1 - \frac{T}{4}\right)$ $h = d\left(1 - \frac{T}{4}\right)$ 4) Закон изм. эперили для системы вода нуминдр