Energía (1)

- La potencia siempre se expresa en unidades de energía divididas entre unidades de tiempo (vatios)
 - Se dice que un elemento suministra energía si su potencia es negativa
 - Se dice que un elemento consume energía si su potencia es positiva

Energía (2)

 Si el elemento en cuestión es activo, entonces se recomienda colocar el Voltaje y la Corriente en el mismo sentido

Energía (3)

 Si el elemento en cuestión es pasivo, entonces se recomienda colocar el Voltaje y la Corriente en sentidos opuestos

Figura 21

La corriente entra por el terminal positivo

Energía (4)

 En caso de que no se sigan estas recomendaciones, se cambiará de signo al resultado

Figura 22

```
P = V I

P = (5[V]) \times (-2[A])

P = -10 [w]

P = 10 [w] suministra
```

Energía – Ejemplo (1)

Determine si el elemento "e" consume o suministra energía

DESARROLO EJEMPLO #1 (2)

Desarrollo : a)

Como vemos, invertimos el signo de la corriente, pues ésta entra por el Terminal negativo.

DESARROLO EJEMPLO #1 (3)

Desarrollo: b)

Figura 24

Como vemos, la corriente va con el signo que trae consigo, pues ésta entra por el Terminal positivo y no afecta en nada.

DESARROLO EJEMPLO #1 (4)

Desarrollo ejercicio c)

Como vemos, invertimos el signo de la corriente, pues ésta entra por el Terminal negativo.

Figura 25

DESARROLO EJEMPLO #1 (5)

Desarrollo ejercicio d)

Como vemos, la corriente va con el signo que trae consigo, pues ésta entra por el Terminal positivo y no afecta en nada.

Energía – EJEMPLO # 2 (1)

- En el siguiente circuito (Figura27), encontrar:
 - a) l₀
 - b) Total Potencia suministrada
 - c) Total Potencia consumida

DESARROLLO EJEMPLO # 2 (2)

Figura 27

DESARROLLO EJEMPLO #2 (3)

- Desarrollo a)
 - Activos

$$P_{6v} = (6)x(2) = 12[w]$$

$$P_{4v} = (4)x(8) = 32[w]$$

$$P_{8Ix} = (8Ix)x(-11) = (8)x(2)x(-11) = -176[w]$$

Pasivos

$$P_2 = (-12)x(9) = \frac{-108[w]}{}$$

$$P_1 = (6)x(I_0) = 6I_0[w]$$

$$P_3 = (10)x(-3) = -30[w]$$

DESARROLLO EJEMPLO # 2 (4)

Desarrollo a)

$$\sum P_{sumin istrada} = \sum P_{consumida}$$

$$12 + 32 - 176 = 6I_0 - 108 - 30$$

$$182 - 176 = 6I_0$$

$$I_0 = \frac{6}{6}$$

$$I_0 = 1 \text{ amperio}$$

DESARROLLO EJEMPLO # 2 (5)

Desarrollo b) y c)

$$\sum P_{suministran} = \sum P_{consumen}$$

$$12 + 32 - 176 = 6I_0 - 108 - 30; (I_0 = 1)$$

$$-132 = 6 - 138$$

$$-132 = -132 \text{ se cumple}$$

Sistemas Físicos (1)

- Clasificación
 - Sistemas Lineales
 - Sistemas No Lineales

Sistemas Físicos (2)

- Sistemas Lineales
 - Principio de Superposición
 - Principio de Homogeneidad

Sistemas Físicos (3)

- Principio de Superposición
 - Hacemos cero cada fuente independiente, sólo una cada vez. Se repite por cada fuente independiente que exista en el circuito

Sistemas Físicos (4)

- Principio de Homogeneidad
 - Si multiplicamos por una constante K, la expresión variará K veces.

Figura 30

GUIÀ DE DEBERES

Capítulo II (Hayt).- 6^{ta} Edición

- Ejercicios:
 - 14, 15, 17, 21, 24

Referencia Combinada (1)

Pab = (Vab) (iab)

Figura 31

Referencia Combinada (2)

 Respecto a la Figura 31, calcular la Polaridad del V, I, P.

Referencia Combinada (3)

- Elementos Activos
 - Suministran Energía (Potencia)
 - Vector Voltaje y Corriente misma dirección (Potencia positiva)
- Elementos Pasivos
 - Consumen Energía (Potencia)
 - Vector Voltaje y Corriente en sentidos opuestos (*Potencia positiva*)

Referencia Combinada (4)

Conclusión

$$\sum Pot_{suministrala} = \sum Pot_{consumida}$$

RESUMEN UNIDAD 1 (1)

VOLTAJE

- La polaridad es un convenio adoptado universalmente para medir la diferencia de potencial entre dos puntos cualquiera de un circuito
- Para empezar el análisis de una red eléctrica, todo componente debe tener asignado una polaridad
- La polaridad se asume de manera arbitraria a cada componente, pero es esta asignación arbitraria la que posibilita el análisis del circuito

RESUMEN UNIDAD 1 (2)

CORRIENTE

- Dirección o sentido es el convenio adoptado universalmente para medir flujo de corriente
- Al inicio del análisis, toda componente debe tener asignado una flecha de dirección o sentido
- La dirección o sentido para cada componente se asigna arbitrariamente, pero es esta asignación arbitraria la que posibilita el análisis del circuito

Conclusión

 Se recomienda colocar los vectores V (voltaje) e I (corriente) en sentidos contrarios, para elementos pasivos, y en el mismo sentido para los elementos activos

Conclusión

Elemento

El elemento suministra energìa (potencia positiva)

Elemento

El elemento absorve energìa (potencia positiva)

PREGUNTAS