ETTH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Departement Informatik

Theoretische Informatik

Prof. Dr. Juraj Hromkovič Prof. Dr. Emo Welzl

1. Zwischenklausur

Zürich, 6. November 2012

Aufgabe 1

- (a) Sei $w \in \{0,1\}^*$. Definieren Sie die Kolmogorov-Komplexität K(w) von w.
- (b) Zeigen Sie, dass für mindestens $\frac{3}{4}$ aller Wörter w aus $\{0,1\}^n$ gilt, dass $K(w) \geq n-2.$
- (c) Geben Sie eine unendliche Folge $(y_i)_{i\in\mathbb{N}}$ von Wörtern über $\{0,1\}$ an, so dass eine Konstante c existiert mit

$$K(y_n) \le \sqrt{\log_2 |y_n|} + c$$

für alle $n \in \mathbb{N}$ und begründen Sie die Korrektheit Ihrer Konstruktion.

2+4+4 Punkte

Aufgabe 2

(a) Konstruieren Sie einen (deterministischen) endlichen Automaten, der die Sprache

$$L = \{1x0 \mid x \in \{0,1\}^* \text{ und } (|x|_0 + 4 \cdot |x|_1) \text{ mod } 3 = 0\}$$

akzeptiert. Es reicht aus, die graphische Darstellung des Automaten anzugeben.

(b) Geben Sie für jeden Zustand q Ihres konstruierten Automaten die Klasse $\mathrm{Kl}[q]$ an.

5+5 Punkte

(bitte wenden)

Aufgabe 3

Zeigen Sie, dass die folgenden Sprachen nicht regulär sind.

(a)
$$L_1 = \{0^k 1^l 0^m \mid k, l, m \in \mathbb{N} \text{ und } k + m \le l\},$$

(b)
$$L_2 = \{0^{\lceil \sqrt{i} \rceil} 1^i \mid i \in \mathbb{N}\}.$$

Hierfür dürfen Sie sich jeweils eine der folgenden drei Beweismethoden aussuchen, jedoch nicht dieselbe für beide Aufgabenteile.

- (i) Mit Hilfe eines angenommenen endlichen Automaten (Verwendung von Lemma 3.3 aus dem Buch oder direkt über den Automaten),
- (ii) mit Hilfe des Pumping-Lemmas, oder
- (iii) mit der Methode der Kolmogorov-Komplexität.

Bitte beachten Sie, dass bei Lösungen, die dieselbe Methode für beide Teilaufgaben verwenden, nur Teilaufgabe (a) bewertet wird.

5+5 Punkte

Aufgabe 4

Wir betrachten die Sprache

$$L_{\text{nohalt}} = \{ \text{Kod}(M) \mid M \text{ hält auf keiner Eingabe} \}.$$

- (a) Zeigen Sie, dass $(L_{\text{nobalt}})^{\complement} \in \mathcal{L}_{\text{RE}}$ gilt.
- (b) Zeigen Sie, dass $L_{\rm H} \leq_{\rm EE} (L_{\rm nohalt})^{\complement}$ gilt.

5+5 Punkte