4 Singular Homology

Holes and Green's Theorem

No exercises!

Free Abelian Groups

Exercise 4.1. If $\gamma \in F$, then we can write $\gamma = \sum_{b \in B} m_b b$, where $m_b \in \mathbb{Z}$ is zero for almost all b. Now, writing $B = \bigcup B_{\lambda}$ for disjoint B_{λ} , we can define for each λ the value $\gamma_{\lambda} = \sum_{b \in B_{\lambda}} m_b b \in F_{\lambda}$. Then obviously $\gamma = \sum \gamma_{\lambda}$.

To see that this expression is unique, simply observe that if $\gamma = \sum \gamma'_{\lambda}$, then because the sums are formal sums only, it follows that $\gamma_{\lambda} = \gamma'_{\lambda}$ for every λ . But then it follows that the coefficient for each $b \in B_{\lambda}$ must be the same in γ_{λ} and in γ'_{λ} , and so the two expressions are the same. Moreover, it is clear that almost every γ_{λ} is zero. After all, only finitely many m_b 's are nonzero, and so only finitely many γ_{λ} contain a nonzero coefficient.

Finally, the converse is clear. In particular, if $\gamma = \sum \gamma_{\lambda}$ and $\gamma_{\lambda} = \sum_{b \in B_{\lambda}} m_b b$, then $\gamma = \sum_{b \in B} m_b b$.

Exercise 4.2. To see the forward direction (isomorphic implies same rank), simply restrict to the basis. In particular, if $\varphi: F \to F'$ is an isomorphism between two free abelian groups, and if B is a basis for F, then $\varphi(B)$ is a basis for F'. But clearly B and $\varphi(B)$ have the same cardinality because φ is injective. Thus F and F' have the same rank.

To see the converse, consider bases B and B' for F and F', respectively. Because B and B' have the same cardinality, there is a bijection $\varphi|_B$ between them. Pick such a bijection and extend it to all of F linearly. Theorem 4.1 tells us that this is a homomorphism; indeed, it is an isomorphism because $\varphi|_B$ was a bijection.

Exercise 4.3.

(i) An arbitrary element of $S_1(X)$ looks like $\sum m_{\sigma}\sigma$, where σ ranges over paths in X. Then we know that ∂_1 takes $\sum m_{\sigma}\sigma + \sum n_{\sigma}\sigma$ to

$$\sum_{\sigma} m_{\sigma} \sigma(1) + \sum_{\sigma} n_{\sigma} \sigma(1) - \sum_{\sigma} m_{\sigma} \sigma(0) - \sum_{\sigma} n_{\sigma} \sigma(0) = \partial_{1}(m) + \partial_{1}(n),$$

where $m = \sum m_{\sigma} \sigma$ and similarly for n. Thus this is a homomorphism.

(ii) If x_0 and x_1 lie in the same path component of X, then there is a path σ between them. This path is an element of X (indeed, it is a *basis* element of X), and satisfies $\partial_1(\sigma) = x_1 - x_0$.

The converse is slightly trickier, however. Suppose that x_0 and x_1 belong to different path components, say X_0 and X_1 , respectively. Then consider the map $\varphi: S_0(X) \to \mathbb{Z}$ which takes $x \in X$ to 1 if $x \in X_0$ and to 0 otherwise. This defines φ on the basis of $S_0(X)$, so we can linearly extend it to a group homomorphism (Theorem 4.1).

Any element in the image of ∂_1 can be written as $(\sum m_{\sigma}\sigma)(1) - (\sum m_{\sigma}\sigma)(0)$. Then we know that

$$\varphi\left(\left(\sum m_{\sigma}\sigma\right)(1) - \left(\sum m_{\sigma}\sigma\right)(0)\right) = \sum m_{\sigma}\varphi(\sigma(1) - \sigma(0)).$$

But because σ is a path, obviously $\sigma(1)$ and $\sigma(0)$ are in the same path component. In particular, we have $\varphi(\sigma(1) - \sigma(0)) = 0$, and so im $\partial_1 \subset \ker \varphi$. Now observe that $\varphi(x_1 - x_0) = -1$. Thus $x_1 - x_0 \notin \operatorname{im} \partial_1$, proving the converse.

(iii) By definition, we have that $\sigma \in \ker \partial_1$ if and only if $\sigma(1) - \sigma(0) = 0$. Because σ is a path, however, this condition is equivalent to saying that σ is a closed path.

To see that the path condition on σ is necessary, note that the sum of two closed paths is in ker ∂_1 but is not itself a closed path.

Exercise 4.4. Note that $S_n(X) = \emptyset$ for all n, because there is no function $\Delta^n \to X = \emptyset$. Thus $\ker \partial = \lim \partial = \emptyset$, and so $H_n(X)$ is trivial.

Exercise 4.5. We know that ∂_0 is the zero map, and so $\ker \partial_0 = S_0(X)$. Moreover, the proof of the dimension axiom shows that ∂_1 is the zero map as well. In particular, we find that $Z_0(X)/B_0(X) \cong S_0(X)$. But we know, once again from the proof of the dimension axiom, that $S_0(X)$ is infinite cyclic and hence $H_0(X) \cong \mathbb{Z}$.

Exercise 4.6. We already know how S_n acts on objects of **Top**. Defining $S_n(f) = f_\#$ on morphisms, it is easy to see that S_n satisfies the functorial properties $S_n(1_X) = 1_{S_n(X)}$ and $S_n(g \circ f) = S_n(g) \circ S_n(f)$.

Exercise 4.7. We know that S^0 is the disjoint union of two points, and so $H_n(S^0) = H_n(\{0\}) \oplus H_n(\{1\})$. But the dimension axiom and Exercise 4.5 imply that

$$H_n(S^0) = \begin{cases} \mathbb{Z}^2 & \text{if } n = 0\\ 0 & \text{otherwise.} \end{cases}$$

Exercise 4.8. Because the Cantor set is the disjoint union of countably many points, it follows that $H_0(X) = \mathbb{Z}^{\omega}$ and $H_n(X) = 0$ for all n > 0.

Exercise 4.9.

(i) For n=0, note that $\beta_1=[a_0,b_0]$, and so $\partial_1\beta_1$ is the constant map taking $e_0\in\Delta^0$ to $b_0-a_0=(e_0,1)-(e_1,0)$. On the other hand, we know that P_{-1}^{Δ} is the zero map, and $\lambda_{i\#}^{\Delta}(\delta)=\lambda_{i}^{\Delta}$. Thus the right-hand side of the equation is simply

$$\lambda_1^{\Delta} - \lambda_0^{\Delta}$$
,

which is the map taking $e_0 \in \Delta^0$ to $(e_0, 1) - (e_1, 0)$. The two sides are therefore the same.

For n = 1, we first consider the left-hand side. Note that

$$\begin{split} \partial_2\beta_2 &= [b_0,b_1] - [a_0,b_1] + [a_0,b_0] - [a_1,b_1] + [a_0,b_1] - [a_0,a_1] \\ &= [b_0,b_1] + [a_0,b_0] - [a_1,b_1] - [a_0,a_1], \end{split}$$

and so it is simply the constant map $\Delta^1 \to \Delta^1 \times \mathbb{I}$ taking everything to $b_0 - a_1 = (e_0, 1) - (e_1, 0)$. For the right-hand side, on the other hand, we already know that

$$\lambda^{\Delta}_{1\ \#}(\delta) - \lambda^{\Delta}_{0\ \#}(\delta) = \lambda^{\Delta}_{1} - \lambda^{\Delta}_{0}: t \mapsto (t,1) - (t,0).$$

Moreover, because $\partial_1 \Delta^1 = e_1 - e_0$, we know that

$$P_0^{\Delta} \partial \delta : t \mapsto ((e_1 - e_0)(e_0), t) = (e_1, t) - (e_0, t).$$

Thus the right-hand side takes e_0 to

$$(e_0, 1) - (e_0, 0) - (e_1, 0) + (e_0, 0) = (e_0, 1) - (e_1, 0)$$

and takes e_1 to

$$(e_1, 1) - (e_1, 0) - (e_1, 1) + (e_0, 1) = (e_0, 1) - (e_1, 0).$$

hus the two sides agree on e_0 and e_1 , from which we conclude the result.

(ii) We know that

$$P_1^X(\sigma) = (\sigma \times 1)_{\#}(\beta_2)$$

= $(\sigma \times 1) \circ [a_0, b_0, b_1] - (\sigma \times 1) \circ [a_0, a_1, b_1].$

The first term takes an arbitrary element $(t_0, t_1, t_2) \in \Delta^2$, where we use barycentric coordinates, to the point $(\sigma((t_0 + t_1)e_0 + t_2e_1), t_1 + t_2)$. By corresponding a point $(1 - t)e_0 + te_1 \in \Delta^1$ to t, we find that the first term takes (t_i) to $(\sigma(t_2), t_1 + t_2)$. Similarly, the second term takes (t_i) to $(\sigma(t_1 + t_2), t_2)$. Thus we find the following explicit formula:

$$P_1^X(\sigma): (t_0, t_1, t_2) \mapsto (\sigma(t_2), t_1 + t_2) + (\sigma(t_1 + t_2), t_2).$$

Exercise 4.10. Let $\sigma: \Delta^n \to X$ be a simplex. Then note that $P_n^X(\sigma) = (\sigma \times 1)_\#(\beta_{n+1})$. Thus

$$(f \times 1)_{\#} P_n^X(\sigma) = (f\sigma \times 1)_{\#} (\beta_{n+1}).$$

On the other hand, we know that

$$P_n^Y f_\#(\sigma) = (f_\#\sigma \times 1) \#(\beta_{n+1}),$$

which is the same as the previous expression because σ is a simplex and so $f_{\#}\sigma = f\sigma$.

Exercise 4.11. The inclusion i is a homotopy equivalence, and so Corollary 4.24 implies that i_* is an isomorphism.

Exercise 4.12. Note that the $\sin(1/x)$ space has two path components, both of which are contractible. Thus $H_0(X) = \mathbb{Z}^2$ and $H_n(X) = 0$ for n > 0.

Exercise 4.13. We know that $\varphi \circ h_{\#}$ takes the path class [f] to $\varphi[h \circ f] = \operatorname{cls} h f \eta$. On the flip side, we know that $h_* \circ \varphi$ takes φ to $h_* \operatorname{cls} f \eta$. But because $f \eta$ is a simplex, this is simply $\operatorname{cls} h f \eta$ as well.

Exercise 4.14. We know that

$$f * f^{-1} * (f * f^{-1})^{-1} \simeq c$$

for some constant map c. But note that $(f * f^{-1})^{-1} = f * f^{-1}$. Thus we can apply the Hurewicz map to find that

$$2\operatorname{cls}((f+f^{-1})\eta) = [0].$$

It follows that $f + f^{-1} \in B_1(X)$, where f and f^{-1} are considered as 1-chains. Thus f and $-f^{-1}$ are homologous, as desired.

Exercise 4.15. Note that the boundary of the second triangle is $\alpha * \beta + \gamma - (\alpha * \beta) * \gamma$. Thus $\operatorname{cls}(\alpha * \beta * \gamma) = \operatorname{cls}(\alpha * \beta + \gamma)$. Repeating this procedure on the first triangle, we find that $\operatorname{cls}(\alpha * \beta * \gamma) = \operatorname{cls}(\alpha + \beta + \gamma)$. Note that, in the text, there is a second equality, namely that these expressions equal $\operatorname{cls} \alpha + \operatorname{cls} \beta + \operatorname{cls} \gamma$. However, homology classes are not actually defined for paths which are not closed, so this seems to be an error.

Exercise 4.16. This is proved in Theorem 6.20.