TENSOR DECOMPOSITION MODELS

Why down want to fatorize a matrix/tenser?

Ly Discover structure in data (PCA)

Infer missing entries (completion)

[] MATRIX LOW RAWN FACTORIZATION

Theorem Let $A \in \mathbb{R}^{m \times m}$

namk(A) & R (=>) There exists BEIRMXR and CEIRRXM such that A=BC

5"rank R factorization of A"

mn parameters Vs. R(m+n) parameters

Senetimes, an affroximate factorization is enough:

A & BC

Low rank affroximation Problem Given A EIR MXM, and a target rank R

Def (Singular Value Decembosition, SVD)

Any motrix
$$A \in \mathbb{R}^{m \times m}$$
 ($m \leq m$) can be decemposed into

 $A = UDV^T$
 $m \times m$
 $m \times m$
 $m \times m$

where U and V are enthenermal (i.e. UTU = I and VTV = I) and I is a diagenal matrix with non-negative entries

The columns of U are the left singular vectors: u, uz, ..., um EIR The columns of V are the right singular vectors $N_1, N_2, ..., N_m \in \mathbb{R}^m$ The diagonal entries of D are the singular values $r_1 \ge r_2 \ge r_3 \ge ... \ge r_m \ge 0$

Remark. We can rewrite the SVD (1): $A = \sum_{i=1}^{\infty} \sigma_i u_i v_i^T$. If rank(A)=R, then $\sigma_{R+1} = \sigma_{R+2} = ... = \sigma_m = 0$ and $A = \sum_{i=1}^{R} \sigma_i M_i N_i^T$

Let $A \in \mathbb{R}^{m \times m}$ and let $A = UDV^T = \sum_{i=1}^{m} \sigma_i u_i v_i^T$ be its SVD. Then the solution of Theorem (Echart-Young)

min $||A-X||_F^2$ subject to $nank(X) \le R$ $X \in \mathbb{R}^{m \times n}$ is given by $X^* = \sum_{i=1}^R \sigma_i u_i v_i^{T}$. (truncated SVD)

Low rank affroximation Problem Given A EIR Man, and a target rank R min BEIR^{mar} CEIR^{R×M}

SOLUTION Compute SVD of A = UDVT

Keep the first R columns of U and V and the first R diagonal elements of D:

I TENSOR NETWORKS (TN)

TN are graphs representing operations between tensors:

- . Nodes represent tensors
- . The arity (# of incoming edges / # of legs) of a mode correspond to the order of the tensor:

. Edges represent contractions (Summations):

$$\left(-A - B - \right)_{i,j} = \sum_{k=1}^{n} A_{ik} B_{kj} = (AB)_{i,j}$$

$$-A-B-=AB$$

$$+ \qquad \frac{1}{d} N = \sum_{i=1}^{d} n_i N_i = \langle N, V \rangle$$

+
$$A \in \mathbb{R}^m$$
, $n \in \mathbb{R}^n$ $\left(-\frac{A}{n}n\right)_i = \sum_{j=1}^m A_{i,j}n_j = (A_n)_i$

$$A \in \mathbb{R}^{m \times m} \qquad \qquad \underbrace{A}_{ii} = T_{i}(A)$$

+ Proof of
$$T_n(ABC) = T_n(BCA) = T_n(CAB)$$
 $(\neq T_n(BAC))$
 $A - B - C = \begin{pmatrix} A \\ B - C \end{pmatrix} = \begin{pmatrix} C \\ C - A \end{pmatrix}$

+
$$M \in \mathbb{R}^{m}$$
, $V \in \mathbb{R}^{n}$ $\left(\begin{array}{c} M & N \\ M & M \end{array} \right)_{i,j} = M_{i}N_{j} = \left(\begin{array}{c} M & N \\ N & M \end{array} \right)_{i,j} = M_{i}N_{j} = \left(\begin{array}{c} M & N \\ N & M \end{array} \right)_{i,j} = M_{i}N_{j} = \left(\begin{array}{c} M & N \\ N & M \end{array} \right)_{i,j} = M_{i}N_{j} = \left(\begin{array}{c} M & N \\ N & M \end{array} \right)_{i,j} = M_{i}N_{j} = \left(\begin{array}{c} M & N \\ N & M \end{array} \right)_{i,j} = M_{i}N_{j} = \left(\begin{array}{c} M & N \\ N & M \end{array} \right)_{i,j} = M_{i}N_{j} = M_{i}N_{j} = \left(\begin{array}{c} M & N \\ N & M \end{array} \right)_{i,j} = M_{i}N_{j} = M_$

+ TERdixdzxds, AERmxdz, BERmxd3, CERMXd1

$$|R^{h \times d_2 \times d_3}| \xrightarrow{A_2 \setminus d_3} = T \times_{, C}$$

+ TERdixdzxd3, AERdzxm, SERmixmxxmxxm

$$\frac{d_1}{d_2} \int_{i_2}^{d_3} = \int_{j=1}^{d_2} \sum_{k=1}^{m} T_{i_1 j_1 i_2} A_{j_1 k} S_{i_3 i_3 k}$$

$$\int_{i_3}^{i_4} \int_{i_3}^{i_4} \int_{i_3}^{i_4} \int_{i_4}^{i_5} \int_{i_5 i_5 k}^{i_5 i_5 i_5 k} \int_{i_5 i_5 i_5 k}^{i_5 i_5 i_5 k}$$

$$\frac{1}{d_2|_{d_2}} = \frac{1}{d_3|_{d_2}} = \frac{1}{d_3|_{d_2}} = \frac{1}{d_3|_{d_2}} = \frac{1}{d_3|_{d_3}} = \frac{1}{d_3|_{$$

Def: The <u>CP</u> nank of a tensor T is the smallest R such that a nank R CP decomposition of T exists.

If
$$A = \begin{pmatrix} a_1 & \cdots & a_k \end{pmatrix}$$
, $B = \begin{pmatrix} b_1 & \cdots & b_k \end{pmatrix}$, $C = \begin{pmatrix} c_1 & \cdots & c_k \end{pmatrix}$

then
$$T_{ijk} = \sum_{n=1}^{R} (a_n)_i (b_n)_j (c_n)_k = \sum_{n=1}^{R} (a_n \circ b_n \circ c_n)_{ijk}$$

2) TUCKER decomposition

$$T \in \mathbb{R}^{d_1 \times d_2 \times d_3}$$
, $G \in \mathbb{R}^{R_1 \times R_2 \times R_3}$, $U_i = \mathbb{R}^{d_i \times R_i}$ for $i=1,2,3$
 L''' core tensor!! L''' factor matrices!"

(
$$\Delta$$
) $\frac{1}{d_2}$ $\frac{1}{d_3}$ = $\frac{R_1}{R_2}$ $\frac{G}{R_3}$ R_3 Namk (R_1,R_2,R_3) Tucker decomposition $\frac{1}{d_1}$ $\frac{1}{d_2}$ $\frac{1}{d_3}$ $\frac{1}{d_3}$ $\frac{1}{d_3}$ $\frac{1}{d_4}$ $\frac{1}{d$

def: The multilinear rank (Tucker rank) of $T \in \mathbb{R}^{d_1 \times d_2 \times d_3}$ is the smallest Euple (R., R., R.) 8.t. a rank (R., R., R.) Tucker decomposition of T exists.

Ly rank (R, Rz, Rz) TT decomposition of T.

Def: The \underline{TT} rank of a tensor $T \in \mathbb{R}^{d_1 \times d_2 \times d_3 \times d_4}$ is the smallest (R_1, R_2, R_3) such that rank (R_1, R_2, R_3) TT decomposition of T exists.

TENSOR LOW RANK APPROXIMATION

	rank	# harametus	EXACT DECORPOSITION	LOW RANK APPROXINATION
CP		R(d1+d2++dN)	NP-hand	NP
TUCKER	(R1,R2,,Rv)	R,R2 RN + Zd; Ri	P (erry)	NP
TT	(R,,,R _{W-1})	d, R, + R, d ₂ R ₂ + R ₂ d ₃ R ₃ + + R _{N-2} d _{N-1} R _{N-1} + R _{N-1} d _N	ρ	h c

Low rank approximation problem:

2) TUCKER

3) TENSOR TRAIN

min
$$G_1 \times R_1$$
 $G_2 \in \mathbb{R}$
 $G_3 \in \mathbb{R}$
 $G_3 \in \mathbb{R}$
 $G_2 \times G_3$
 $G_3 \in \mathbb{R}$
 $G_3 \in \mathbb{R}$

