Fachbereich Mathematik

Prof. Dr. Thomas Streicher Dr. Sven Herrmann

Dipl.-Math. Susanne Pape

Wintersemester 2009/2010 15./16. Dezember 2009

10. Übungsblatt zur Vorlesung "Mathematik I für Informatik"

Wir wünschen Ihnen schöne Weihnachstferien und einen guten Start ins Neue Jahr!!!

Gruppenübung

Aufgabe G1 (Regel von de l'Hospital)

- (a) Überprüfen Sie für folgende Funktionen die Voraussetzungen der Regel von de l'Hospital. Berechnen Sie den Grenzwert, soweit er existiert.

 - i) $\lim_{x\to 1} \frac{\ln x}{x-\sqrt{x}}$ ii) $\lim_{x\to 1} \frac{\cos x-1}{\sqrt{1-x^2}}$
- (b) Sei $f: \mathbb{R} \to \mathbb{R}: x \mapsto x \sin x$ und $g: \mathbb{R} \to \mathbb{R}: x \mapsto x$.

Wenn man den Grenzwert $\lim_{x\to+\infty}\frac{f(x)}{g(x)}$ berechnen will, darf man dann die Regel von de l'Hospital anwenden und folgern, dass

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = \lim_{x \to +\infty} \frac{f'(x)}{g'(x)} = \lim_{x \to +\infty} \frac{1 - \cos x}{1} = \text{divergent?}$$

Falls Nein: Warum darf man die Regel nicht anwenden? Ist die Divergenz trotzdem richtig?

Lösungshinweise:

- (a) Bezeichne f die Funktion des Zählers und g die Funktion im Nenner. Für die Anwendung der Regel von de l'Hospital ist dann anzugeben/zu überprüfen:
 - 1.) D(f) = D(g) = a, b und f, g sind differential or b
 - 2.) $x_0 \in [a, b]$ (wobei x_0 der zum Grenzwert gehörende x-Wert ist)
 - 3.) $\lim_{x\to x_0} f(x) = \lim_{x\to x_0} g(x) = 0$
 - 4.) $\forall x \in]a, b[: g'(x) \neq 0$
 - 5.) $\lim_{x\to x_0} \frac{f'(x)}{g'(x)}$ existiert
 - i) Es ist $f(x) = \ln x$ und $g(x) = x \sqrt{x}$.
 - 1.) Es ist offensichtlich, dass x > 0 für f gelten muss.

f und g sind differenzierbar.

- 2.) Das Intervall [a, b] ist so zu bestimmen, dass $1 \in [a, b]$.
- 3.) Es gilt $\lim_{x\to 1} \ln x = \lim_{x\to 1} (x-\sqrt{x}) = 0$. 4.) $g'(x) = 1 \frac{1}{2\sqrt{x}} \neq 0$ für $x \neq \frac{1}{4}$. Als mögliche Intervalle für den Definitionsbereich von

f und g kommen nun $\left]0, \frac{1}{4}\right[$ oder $\left]\frac{1}{4}, b\right[$ mit b>1 in Frage. Wegen 2.) folgt $\left]a, b\right[=\left]\frac{1}{4}, b\right[$ mit b>1.

5.) $f'(x) = \frac{1}{x}$ und es gilt

$$\lim_{x \to 1} \frac{1}{x\left(1 - \frac{1}{2\sqrt{x}}\right)} = 2.$$

Der Grenzwert existiert demnach und es folgt

$$\lim_{x \to 1} \frac{\ln x}{x - \sqrt{x}} = 2.$$

ii) Hier läßt sich die Regel von de l'Hospital nicht anwenden, denn der Zähler geht gegen $\cos(1)-1$ und der Nenner gegen Null. Da $\cos(1)-1<0$ ist, gilt

$$\lim_{x \to 1} \frac{\cos x - 1}{\sqrt{1 - x^2}} = -\infty.$$

(b) Der Bruch $\frac{f'(x)}{g'(x)} = \frac{1-\cos(x)}{1}$ konvergiert nicht in \mathbb{R} und divergiert auch nicht bestimmt gegen $\pm \infty$. Somit ist die Voraussetzung (3) der Regel von de l'Hospital (Satz III.2.10) nicht erfüllt (bzw. Voraussetzung (5) aus Aufgabenteil a)).

Dies ist der Grund, warum wir die Regel nicht anwenden durften. Nun überlegen wir uns, dass die Regel auch tatsächlich ein falsches Ergebnis geliefert hätte:

$$\frac{f(x)}{x} = \frac{x - \sin x}{x} = 1 - \frac{\sin x}{x}$$

Der erste Summand ist konstant 1, der zwei Summand lässt sich betragsmäßig abschätzen durch:

$$\left| \frac{\sin x}{x} \right| = \frac{|\sin x|}{|x|} \le \frac{1}{|x|} \longrightarrow 0 \text{ für } x \longrightarrow +\infty.$$

Das bedeutet:

$$\lim_{x \to +\infty} \frac{f(x)}{x} = 1.$$

Bemerkung: Bedingung (1) der Regel von de l'Hospital kann man auch durch $\lim_{x\to c} f(x) = \lim_{x\to c} g(x) = \infty$ ersetzen. Dies ist in der Vorlesung allerdings nicht bewiesen worden. $c = \infty$ ist ebenfalls möglich.

Aufgabe G2 (Arcusfunktionen)

Beweisen Sie mit Hilfe des Satzes III.3.1 (Ableitung der Umkehrfunktion) aus der Vorlesung die folgenden Aussagen für $x \in \mathbb{R}$, x < 1:

$$\arcsin'(x) = \frac{1}{\sqrt{1 - x^2}}$$
 $\arccos'(x) = \frac{-1}{\sqrt{1 - x^2}}$ $\arctan'(x) = \frac{1}{1 + x^2}$ $\arccos'(x) = \frac{-1}{1 + x^2}$

Lösungshinweise: Satz III.3.1: Sei D =]a, b[und $f : D \to \mathbb{R}$ differenzierbar mit f'(x) > 0 für alle $x \in D$. Dann existiert die Umkehrfunktion $f^{-1} : B(f) \to \mathbb{R}$ und ist differenzierbar, wobei

$$(f^{-1})'(y) = \frac{1}{f'(x)}$$
, wobei $y = f(x)$. Für $|x| < 1$ gilt:

$$\arcsin'(x) = \frac{1}{\cos(\arcsin(x))} = \frac{1}{\sqrt{1 - \sin^2(\arcsin(x))}} = \frac{1}{\sqrt{1 - x^2}}$$
$$\arccos'(x) = \frac{-1}{\sin(\arccos(x))} = \frac{-1}{\sqrt{1 - \cos^2(\arccos(x))}} = \frac{-1}{\sqrt{1 - x^2}}$$
$$\arctan'(x) = \frac{1}{\frac{1}{\cos^2(\arctan(x))}} = \frac{1}{1 + \tan^2(\arctan(x))} = \frac{1}{1 + x^2}$$
$$\arccos'(x) = \frac{-1}{\frac{1}{\sin^2(\operatorname{arccot}(x))}} = \frac{-1}{1 + \cot^2(\operatorname{arccot}(x))} = \frac{-1}{1 + x^2}$$

Hierbei wurde in den letzten beiden Fällen benutzt, dass $\tan(x) = \frac{\sin(x)}{\cos(x)}$ mit

$$\tan'(x) = \frac{\sin'(x) \cdot \cos(x) - \cos'(x) \cdot \sin(x)}{\cos^2(x)} = \frac{\cos^2(x) + \sin^2(x)}{\cos^2(x)}$$
$$= \frac{1}{\cos^2(x)} = 1 + \frac{\sin^2(x)}{\cos^2(x)} = 1 + \tan^2(x)$$

und $\cot(x) = \frac{\cos(x)}{\sin(x)}$ mit

$$\cot'(x) = \frac{\cos'(x) \cdot \sin(x) - \sin'(x) \cdot \cos(x)}{\sin^2(x)} = \frac{-\sin^2(x) - \cos^2(x)}{\sin^2(x)}$$
$$= \frac{-1}{\sin^2(x)} = -1 - \frac{\cos^2(x)}{\sin^2(x)} = -1 - \cot^2(x).$$

Aufgabe G3 (Exponentialfunktion und Logarithmus)

Sei $x \in \mathbb{R}$. Bestimmen Sie alle Lösungen der Gleichungen

a)
$$e^{3x} (e^x)^2 = \sqrt{\frac{e^{-8}}{e^{2x}}},$$

b)
$$\ln(\sqrt{7^{12-x}}) + 11\ln(2) = 11\ln(16)$$
.

Lösungshinweise:

a) Es gilt

$$e^{3x} (e^x)^2 = \sqrt{\frac{e^{-8}}{e^{2x}}} \Leftrightarrow e^{6x} = e^{-4} \Leftrightarrow x = -\frac{2}{3}.$$

b) Weiter ist

$$\begin{split} \ln(\sqrt{7^{12-x}}) + 11 \ln(2) &= 11 \ln(16) \\ \Leftrightarrow & \ln(\sqrt{7^{12-x}}) &= \ln(8^{11}) \\ \Leftrightarrow & \sqrt{7^{12-x}} &= 8^{11} \\ \Leftrightarrow & 7^{12-x} &= 8^{22} \\ \Leftrightarrow & x &= \log_7\left(\frac{7^{12}}{8^{22}}\right) = 12 - \log_7\left(8^{22}\right) \\ &= 12 - 22\frac{\ln(8)}{\ln(7)} \,. \end{split}$$

Aufgabe G4 (Riemannsumme)

Sei die Funktion $f:[0,1]\to\mathbb{R}:x\mapsto x$ gegeben. Berechnen Sie für eine geeignete Folge von Partitionen die Riemannsummen für f.

Konvergiert die Folge der Riemannsummen für $n \to \infty$? Ist f Riemann-integrierbar auf [0, 1]? Was ist gegebenenfalls der Wert des Integrals?

Hinweis: Benutzen Sie Satz I.3.2.

Lösungshinweise: Da die Funktion $f: x \mapsto x$ auf dem kompakten Intervall [0, 1] stetig ist, genügt es die folgende Folge von Partitionen zu betrachten:

$$P_n := \{x_k^n = \frac{k}{n} \colon k \in \{0, \dots, n\}\}$$

Nun führen wir die folgende Rechnung durch mit $\xi_k^n = x_{k-1}^n$:

$$R_n(f) = \sum_{k=1}^n f(\xi_k^n)(x_k^n - x_{k-1}^n) = \sum_{k=1}^n f(x_{k-1}^n)(x_k^n - x_{k-1}^n) = \sum_{k=1}^n \frac{k-1}{n} \frac{1}{n} = \frac{1}{n^2} \sum_{k=1}^n (k-1)$$
$$= \frac{1}{n^2} \sum_{k=0}^{n-1} k = \frac{1}{n^2} \frac{n(n-1)}{2} = \frac{1}{2} (1 - \frac{1}{n}).$$

Alternativ kann man $\xi_k^n = x_k^n$ betrachten und erhält $R_n(f) = \sum_{k=1}^n f(x_k)(x_k - x_{k-1}) = \frac{1}{2}(1 + \frac{1}{n})$. Also konvergiert die Riemannsumme gegen $\frac{1}{2}$. f ist also Riemann-integrierbar mit Integral $\int_0^1 x dx = \frac{1}{2}$.

Hausübung

(In der nächsten Übung abzugeben.)

Aufgabe H1 (Riemann-Integral)

(3 Punkte)

Berechnen Sie für a < b das Integral

$$\int_{a}^{b} x^2 dx,$$

indem Sie den Grenzwert von Riemann-Summen bestimmen.

Hinweise: Vergl. Beispiel IV.1.4 und benutzen Sie Satz I.3.2.

Lösungshinweise: Da die Funktion $f: x \mapsto x^2$ auf dem kompakten Intervall [a, b] stetig ist, genügt es die folgende Partition zu betrachten: Setze $a = x_0 < x_1 < ... < x_n = b$ mit $x_k := a + k(\frac{b-a}{n})$. Nun führen wir die folgende Rechnung durch:

$$R_n(f) = \sum_{k=0}^n f(a+k(\frac{b-a}{n})) \frac{b-a}{n}$$

$$= \frac{b-a}{n} \sum_{k=0}^n \left(a^2 + 2ka \frac{b-a}{n} + k^2 (\frac{b-a}{n})^2 \right)$$

$$= \frac{b-a}{n} \left(na^2 + 2a \frac{b-a}{n} \frac{n(n+1)}{2} + (\frac{b-a}{n})^2 \frac{n(n+1)(2n+1)}{6} \right)$$

$$\xrightarrow{n \to \infty} a^2(b-a) + a(b-a)^2 + (b-a)^3 \frac{1}{3}$$

$$= a^2b - a^3 + ab^2 - 2a^2b + a^3 + (b^3 - 3ab^2 + 3a^2b - a^3) \frac{1}{3} = \frac{1}{3}(b^3 - a^3).$$

Aufgabe H2 (Rechenregeln für Potenzen)

(3 Punkte)

Benutzen Sie bekannte Sätze aus der Vorlesung, um Satz III. 4.9 zu beweisen: Seien a,b>0 und $x,y\in\mathbb{R}.$ Dann gilt

i)
$$a^x \cdot a^y = a^{x+y}$$

ii)
$$(a \cdot b)^x = a^x \cdot b^x$$

iii)
$$(a^x)^y = a^{x \cdot y}$$

Für $a, b \neq 1$, und x, y > 0 folgt:

iv)
$$\log_a(x \cdot y) = \log_a(x) + \log_a(y)$$

v)
$$\log_b(x) = \log_b(a) \cdot \log_a(x)$$

vi)
$$\log_a(x^y) = y \cdot \log_a(x)$$

Hinweis: $a^{\log_a(x)} = x$ und $\log_a(a^x) = x$.

Lösungshinweise:

i) Es gilt $a^x = e^{x \ln(a)}$. Daher folgt

$$a^{x}a^{y} = e^{x\ln(a)}e^{y\ln(a)} = e^{(x+y)\ln(a)} = a^{x+y}.$$

ii)
$$(a \cdot b)^x = e^{x \ln(ab)} = e^{x(\ln(a) + \ln(b))} = e^{x \ln(a)} e^{x \ln(b)} = a^x b^x.$$

iii)
$$(a^x)^y = e^{y \ln(a^x)} = e^{xy \ln(a)} = a^{xy}.$$

iv)
$$x \cdot y \stackrel{\text{1.Hinw.}}{=} a^{\log_a(x)} \cdot a^{\log_a(y)} \stackrel{\text{i}}{=} a^{\log_a(x) + \log_a(y)}$$

$$\log_a(x \cdot y) = \log_a a^{\log_a(x) + \log_a(y)} \stackrel{\text{2.Hinw.}}{=} \log_a(x) + \log_a(y)$$

v)
$$x \stackrel{\text{1.Hinw.}}{=} a^{\log_a(x)} \quad \text{und} \quad a \stackrel{\text{1.Hinw.}}{=} b^{\log_b(a)}$$

$$x = (b^{\log_b(a)})^{\log_a(x)} \stackrel{\text{iii}}{=} b^{\log_b(a) \cdot \log_a(x)}$$

$$\log_b(x) = \log_b(b^{\log_b(a) \cdot \log_a(x)}) \stackrel{\text{2.Hinw.}}{=} \log_b(a) \cdot \log_a(x)$$

vi)
$$\mathrm{Sei}\ z = \log_a(x) \Leftrightarrow x = a^z$$

$$\log_a(x^y) = \log_a((a^z)^y) \stackrel{\mathrm{iii}}{=} \log_a(a^{z \cdot y}) = y \cdot z = y \cdot \log_a(x)$$

Aufgabe H3 (Leibnizsche Formel)

(3+1 Punkte)

(a) Sei $D \subseteq \mathbb{R}$, ferner seien $f, g: D \to \mathbb{R}$ zwei n-mal differenzierbare Funktionen. Beweisen Sie die Leibnizsche Formel:

$$(f(x)g(x))^{(n)} = \sum_{k=0}^{n} \binom{n}{k} f^{(n-k)}(x)g^{(k)}(x) \quad \text{für } n \in \mathbb{N} \cup \{0\}.$$

Hinweis: Gehen Sie ähnlich vor wie im Beweis zum Bionomialsatz (Übung 3, G4).

(b) Berechnen Sie für $f: \mathbb{R} \to \mathbb{R}$, $x \mapsto x^3 e^x$ die tausendste Ableitung $f^{(1000)}$.

Lösungshinweise:

(a) Beweis mittels vollständiger Induktion:

Induktionsanfang: Für n=0 ergibt sich $\sum_{k=0}^{0} {0 \choose k} f^{(0-k)}(x) g^{(k)}(x) = f(x) \cdot g(x)$. (Für n=1 ergibt sich übrigens die Produktregel: $\sum_{k=0}^{1} {1 \choose k} f^{(1-k)}(x) g^{(k)}(x) = f'(x) \cdot g(x) + f(x) \cdot g'(x) = (f \cdot g)'(x)$.)

Induktionsannahme: Behauptung sei wahr für n:

Induktionsschritt:

$$\begin{split} &(f(x)g(x))^{(n+1)} &= ((f(x)g(x))^{(n)})' \\ &\overset{\mathrm{IA}}{=} \left(\sum_{k=0}^{n} \binom{n}{k} f^{(n-k)}(x) g^{(k)}(x) \right)' \\ &= \sum_{k=0}^{n} \binom{n}{k} f^{(n-k+1)}(x) g^{(k)}(x) + \sum_{k=0}^{n} \binom{n}{k} f^{(n-k)}(x) g^{(k+1)}(x) \\ &= \sum_{k=0}^{n} \binom{n}{k} f^{(n-k+1)}(x) g^{(k)}(x) + \sum_{k=1}^{n} \binom{n}{k-1} f^{(n-k+1)}(x) g^{(k)}(x) + f(x) \cdot g^{(n+1)}(x) \\ &= f^{(n+1)}(x) \cdot g(x) + \sum_{k=1}^{n} \left[\binom{n}{k} + \binom{n}{k-1} \right] f^{(n-k+1)}(x) g^{(k)}(x) + f(x) \cdot g^{(n+1)}(x) \\ &= \sum_{k=0}^{n+1} \binom{n+1}{k} f^{(n+k-k)}(x) g^{(k)}(x) \end{split}$$

(b) Setze $f(x) = e^x$ und $g(x) = x^3$ in Aufgabenteil (a). Dann gilt $f^{(n)}(x) = e^x$ für alle $n = 0, \dots 1000$ und $g'(x) = 3x^2$, g''(x) = 6x, $g^{(3)}(x) = 6$ und $g^{(n)}(x) = 0$ für alle $n = 4, \dots 1000$. Damit erhalten wir

$$(f \cdot g)^{1000}(x) = \sum_{k=0}^{1000} {1000 \choose k} f^{(1000-k)}(x) g^{(k)}(x)$$

$$= x^3 \cdot e^x + 1000 \cdot 3 \cdot x^2 \cdot e^x + \frac{1000 \cdot 999}{2} \cdot 6x \cdot e^x + \frac{1000 \cdot 999 \cdot 998}{1 \cdot 2 \cdot 3} \cdot 6 \cdot e^x$$

$$= x^3 \cdot e^x + 3000 \cdot x^2 \cdot e^x + 299700 \cdot x \cdot e^x + 997002000 \cdot e^x.$$

Folgende Multiple-Choice-Aufgaben sind als freiwillige Wiederholung während der Weihnachtsferien gedacht. Die Aufgabe werden nicht von den Tutoren korrigiert und es werden keine Hausübungspunkte darauf vergeben. Die Lösung wird in der ersten Woche nach den Ferien online gestellt.

Aufgabe H4 (injektiv & surjektiv)		
	Jede injektive Funktion ist surjektiv.	
	Jede bijektive Funktion ist injektiv.	
	Jede nicht-surjektive Funktion ist injektiv.	
Die	Funktion $f: \mathbb{R} \to \mathbb{R}$ mit $f(x) = x^2$ ist	
	injektiv.	
	injektiv, wenn der Wertebereich auf \mathbb{R}^+ eingeschränkt wird.	
	injektiv, wenn der Definitionsbereich auf \mathbb{R}^+ eingeschränkt wird.	
	surjektiv.	
	surjektiv, wenn der Wertebereich auf \mathbb{R}^+ eingeschränkt wird.	
	surjektiv, wenn der Definitionsbereich auf \mathbb{R}^+ eingeschränkt wird.	
Es s	sei $f: X \to Y$ eine Funktion:	
	f ist surjektiv, wenn $(\exists x \in X)(\forall y \in Y) f(x) = y$.	
	f ist surjektiv, wenn $(\forall y \in Y)(\exists x \in X) f(x) = y$.	
	f ist surjektiv, wenn $(\forall x \in X)(\exists y \in Y) f(x) = y$.	
	f ist injektiv, genau dann wenn $(\forall x, x' \in X) \ x \neq x' \Rightarrow f(x) \neq f(x')$.	
	f ist injektiv, genau dann wenn $(\exists y \in Y)(\forall x \in X) f(x) = y$.	
	f ist injektiv, genau dann wenn $(\forall x, x' \in X) f(x) = f(x') \Rightarrow x = x'$.	
Lös	sungshinweise:	
	Jede injektive Funktion ist surjektiv.	
\boxtimes	Jede bijektive Funktion ist injektiv.	
	Jede nicht-surjektive Funktion ist injektiv.	
Die	Funktion $f: \mathbb{R} \to \mathbb{R}$ mit $f(x) = x^2$ ist	
	injektiv	
	injektiv, wenn der Wertebereich auf \mathbb{R}^+ eingeschränkt wird.	
\boxtimes	injektiv, wenn der Definitionsbereich auf \mathbb{R}^+ eingeschränkt wird.	
	surjektiv.	
\boxtimes	surjektiv, wenn der Wertebereich auf \mathbb{R}^+ eingeschränkt wird.	
	surjektiv, wenn der Definitionsbereich auf \mathbb{R}^+ eingeschränkt wird.	
$\operatorname{Es} s$	sei $f: X \to Y$ eine Funktion:	
	f ist surjektiv, wenn $(\exists x \in X)(\forall y \in Y) f(x) = y$.	
\boxtimes	f ist surjektiv, wenn $(\forall y \in Y)(\exists x \in X) f(x) = y$.	
	f ist surjektiv, wenn $(\forall x \in X)(\exists y \in Y) f(x) = y$.	
\boxtimes	f ist injektiv, genau dann wenn $(\forall x, x' \in X) \ x \neq x' \Rightarrow f(x) \neq f(x')$.	
	f ist injektiv, genau dann wenn $(\exists y \in Y)(\forall x \in X) f(x) = y$.	
\boxtimes	f ist injektiv, genau dann wenn $(\forall x, x' \in X) f(x) = f(x') \Rightarrow x = x'$.	
Aufgabe H5 (Suprema und Maxima)		
Sei $a \in \mathbb{R}$ und $M \subseteq \mathbb{R}$ eine Menge.		
	Ist M beschränkt, $M \neq \emptyset$, dann hat M ein Supremum.	
	Ist M beschränkt, $M \neq \emptyset$, dann besitzt M ein Maximum.	
	Ist a Maximum von M , dann ist a auch das Supremum von M .	
	Ist a das Supremum von M , dann ist a das Maximum von M .	

Lösungshinweise:

\boxtimes	Ist M beschränkt, dann hat M ein Supremum.
	Jede beschränkte Menge hat eine obere Schranke.
	Da $\mathbb R$ vollständig ist besitzt M eine kleinste obere Schranke, das Supremum von M .
	Ist M beschränkt, dann besitzt M ein Maximum.
	Die Menge $M = (0,1)$ ist beschränkt, aber M hat kein Maximum, da 1 nicht in M ist.
\boxtimes	Ist a Maximum von M , dann ist a auch das Supremum von M .
	Sei a das Maximum von M . Dann ist sup $M \geq a$, da $a \in M$ und sup $M \geq x$ ist für alle $x \in M$.
	Andererseits ist sup $M \leq a$, da a eine obere Schranke von M ,
	jedoch sup M die kleinste obere Schranke ist. Also $a = \sup M$.
	Ist a das Supremum von M , dann ist a das Maximum von M .
	Da das Supremum sup M kein Element der Menge sein muss, kann es Mengen geben,
	die kein Maximum aber ein Supremum haben.
	г
Aufoal	be H6 (Folgen)
_	$(x_n)_{n\in\mathbb{N}}$ eine Folge von reellen Zahlen.
	Wenn $(x_n)_{n\in\mathbb{N}}$ eine Cauchy-Folge ist, dann ist $(x_n)_{n\in\mathbb{N}}$ beschränkt.
	Wenn $(x_n)_{n\in\mathbb{N}}$ konvergiert und $x_n>0$ für alle $n\in\mathbb{N}$ gilt, dann gilt $\lim_{n\to\infty}x_n>0$.
	Wenn $(x_n)_{n\in\mathbb{N}}$ konvergiert und $x_n\geq 0$ für alle $n\in\mathbb{N}$ gilt, dann gilt $\lim_{n\to\infty}x_n\geq 0$.
	Wenn $(x_n)_{n\in\mathbb{N}}$ konvergiert, dann konvergiert jede Teilfolge von $(x_n)_{n\in\mathbb{N}}$.
	Wenn jede Teilfolge von $(x_n)_{n\in\mathbb{N}}$ konvergiert, dann konvergiert auch $(x_n)_{n\in\mathbb{N}}$.
_	Total Jour Tomor Se Tom (wh/hein home Serve) damin hom or Serve damin (wh/hein)
	Sind $(a_n)_{n\in\mathbb{N}}$, $(b_n)_{n\in\mathbb{N}}$ reelle Zahlenfolgen mit $\lim_{n\to\infty} a_n = a$ und $\lim_{n\to\infty} b_n = b$,
	und sei $c_n = a_n \cdot b_n$, dann ist $\lim_{n \to \infty} c_n = ab$.
	Sind $(a_n)_{n\in\mathbb{N}}$, $(b_n)_{n\in\mathbb{N}}$ reelle Zahlenfolgen mit $\lim_{n\to\infty} a_n = a$ und $\lim_{n\to\infty} b_n = b$,
	und sei $c_n = \frac{a_n}{b_n}$, dann ist $\lim_{n \to \infty} c_n = \frac{a}{b}$.
Lösı	ungshinweise:
\boxtimes	Wenn $(x_n)_{n\in\mathbb{N}}$ eine Cauchy-Folge ist, dann ist $(x_n)_{n\in\mathbb{N}}$ beschränkt.
	Diese Aussage ist wahr, da Jede Cauchy-Folge in R konvergiert,
	und da jede konvergente Folge beschränkt ist.
	Wenn $(x_n)_{n\in\mathbb{N}}$ konvergiert und $x_n>0$ für alle $n\in\mathbb{N}$ gilt, dann gilt $\lim_{n\to\infty}x_n>0$.
	Diese Aussage ist falsch, wie wir an folgendem Gegenbeispiel sehen:
	Setze $a_n := \frac{1}{n} > 0$ für alle $n \in \mathbb{N}$. Dann gilt $\lim_{n \to \infty} \frac{1}{n} \not> 0$
\boxtimes	Wenn $(x_n)_{n\in\mathbb{N}}$ konvergiert und $x_n\geq 0$ für alle $n\in\mathbb{N}$ gilt, dann gilt $\lim_{n\to\infty}x_n\geq 0$.
\boxtimes	Wenn $(x_n)_{n\in\mathbb{N}}$ konvergiert, dann konvergiert jede Teilfolge von $(x_n)_{n\in\mathbb{N}}$.
\boxtimes	Wenn jede Teilfolge von $(x_n)_{n\in\mathbb{N}}$ konvergiert, dann konvergiert auch $(x_n)_{n\in\mathbb{N}}$.
	Diese Aussage ist wahr, da $(x_n)_{n\in\mathbb{N}}$ eine Teilfolge von $(x_n)_{n\in\mathbb{N}}$ ist.
\boxtimes	Sind $(a_n)_{n\in\mathbb{N}}, (b_n)_{n\in\mathbb{N}}$ reelle Zahlenfolgen mit $\lim_{n\to\infty} a_n = a$ und $\lim_{n\to\infty} b_n = b$,
2	und sei $c_n = a_n \cdot b_n$, dann ist $\lim_{n \to \infty} c_n = ab$.
	Sind $(a_n)_{n\in\mathbb{N}}$, $(b_n)_{n\in\mathbb{N}}$ reelle Zahlenfolgen mit $\lim_{n\to\infty} a_n = a$ und $\lim_{n\to\infty} b_n = b$,
	und sei $c_n = \frac{a_n}{b_n}$, dann ist $\lim_{n \to \infty} c_n = \frac{a}{b}$.
	Diese Ausage wäre wahr, wenn $b \neq 0$ als Voraussetzung angenommen worden wäre.
	2.1220 1.1220000 main, month of o and rota abbout any official months in mon
Aufost	be H7 (Rationale Funktionen)
_	
ser j	$f(x) = \frac{p(x)}{q(x)}$ eine rationale Funktion mit Funktionen p und q
	Jede Nullstelle von $q(x)$ ist Polstelle von $f(x)$.
	Die Nullstellen von $f(x)$ werden durch die Nullstellen von $p(x)$ bestimmt.

Lösungshinweise: $\Box \text{ Jede Nullstelle von } q(x) \text{ ist Polstelle von } f(x). \text{ (Nur solche, die keine Nullstelle von } p(x) \text{ sind.)}$ $\Box \text{ Die Nullstellen von } f(x) \text{ werden durch die Nullstellen von } p(x) \text{ bestimmt.}$ $\Box \text{ Die Nullstellen von } f(x) \text{ werden durch die Nullstellen von } q(x) \text{ bestimmt.}$
Aufgabe H8 (Grenzwerte) \square Für eine Funktion $f: \mathbb{R} \to \mathbb{R}$ muss $\lim_{x \to \infty} f(x)$ nicht eindeutig sein. \square Linksseitiger und rechtsseitiger Grenzwert müssen in jedem Punkt einer Funktion übereinstimmen \square Ist $ f(x) \le g(x) $ und $\lim_{x \to \infty} g(x) = 0$, dann folgt daraus, dass $\lim_{x \to \infty} f(x) = 0$. \square Seien f und g stetige Funktionen, deren Grenzwerte für $x \to x_0$ existieren, so gilt: $\lim_{x \to x_0} (f(x) + g(x)) = \lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x)$.
Lösungshinweise: □ Für eine Funktion $f: \mathbb{R} \to \mathbb{R}$ muss $\lim_{x \to \infty} f(x)$ nicht eindeutig sein. □ Linksseitiger und rechtsseitiger Grenzwert müssen in jedem Punkt einer Funktion übereinstimmen Vorsicht: Hier steht nicht dabei, dass die Funktion stetig sein muss!. □ Ist $ f(x) \le g(x) $ und $\lim_{x \to \infty} g(x) = 0$, dann folgt daraus, dass $\lim_{x \to \infty} f(x) = 0$. □ $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} f(x) + \lim_{x \to \infty} g(x)$.
Aufgabe H9 (Stetigkeit) Sei $f: \mathbb{R} \supseteq D \to \mathbb{R}$ eine Funktion und $x_0 \in D$. Aus welchen der folgenden Aussagen folgt die Stetigkeit von f in x_0 ?
$ \Box (\exists \varepsilon > 0) \ (\forall \delta > 0) \ (\forall x \in D : x - x_0 < \delta) \Rightarrow f(x) - f(x_0) < \varepsilon. $ $ \Box \text{Für jede Folge} \ (x_n)_{n \in \mathbb{N}} \subseteq D \ \text{mit} \ \lim_{n \to \infty} x_n = x_0 \ \text{gilt:} \ \lim_{n \to \infty} f(x_n) = f(\lim_{n \to \infty} x_n). $ $ \Box (\forall \varepsilon > 0) \ (\exists \delta > 0) \ (\forall x \in D : x - x_0 < \varepsilon) \Rightarrow f(x) - f(x_0) < \delta. $ $ \Box (\forall \varepsilon > 0) \ (\exists \delta > 0) \ (\forall x \in D : x - x_0 < \delta) \Rightarrow f(x) - f(x_0) < \varepsilon. $ $ \Box (\forall \varepsilon > 0) \ (\exists \delta > 0) \ (\forall x, y \in D : x - y < \delta) \Rightarrow f(x) - f(y) < \varepsilon. $ $ \Box (\forall \varepsilon > 0) \ (\exists \delta > 0) \ (\forall x, y \in D : x - y < \delta) \Rightarrow f(x) - f(y) < \varepsilon. $ $ \Box \text{Es gibt eine Folge} \ (x_n)_{n \in \mathbb{N}} \subseteq D \ \text{mit} \ \lim_{n \to \infty} x_n = x_0, \text{ so dasss} $ $ \lim_{n \to \infty} f(x_n) = f(\lim_{n \to \infty} x_n) \text{ ist.} $
Lösungshinweise:
$\Box (\exists \varepsilon > 0) \ (\forall \delta > 0) \ (\forall x \in D : x - x_0 < \delta) \Rightarrow f(x) - f(x_0) < \varepsilon.$ $\boxtimes \text{Für jede Folge } (x_n)_{n \in \mathbb{N}} \subseteq D \text{ mit } \lim_{n \to \infty} x_n = x_0 \text{ gilt: } \lim_{n \to \infty} f(x_n) = f(\lim_{n \to \infty} x_n).$ $\Box (\forall \varepsilon > 0) \ (\exists \delta > 0) \ (\forall x \in D : x - x_0 < \varepsilon) \Rightarrow f(x) - f(x_0) < \delta.$ $\boxtimes (\forall \varepsilon > 0) \ (\exists \delta > 0) \ (\forall x \in D : x - x_0 < \delta) \Rightarrow f(x) - f(x_0) < \varepsilon.$ $\boxtimes (\forall \varepsilon > 0) \ (\exists \delta > 0) \ (\forall x, y \in D : x - y < \delta) \Rightarrow f(x) - f(y) < \varepsilon.$ $\Box \text{Es gibt eine Folge } (x_n)_{n \in \mathbb{N}} \subseteq D \text{ mit } \lim_{n \to \infty} x_n = x_0, \text{ so dass}$
$\lim_{n \to \infty} f(x_n) = f(\lim_{n \to \infty} x_n) \text{ ist.}$
Aufgabe H10 (Differenzierbarkeit I) Es sei $f:[a,b]\to\mathbb{R}$ eine in jedem Punkt $x\in[a,b]$ differenzierbare Funktion. Dann ist $\Box f \text{ stetig } \Box f \text{ stetig differenzierbar } \Box f \text{ beschränkt } \Box f \text{ gleichmäßig stetig.}$ Es sei $f:(a,b)\to\mathbb{R}$ eine in jedem Punkt $x\in(a,b)$ differenzierbare Funktion mit $f'(x)\leq 0$. Dann

Es set $j:(a,b)\to\mathbb{R}$ eme in jedem Funkt $x\in(a,b)$ differenzierbare Funktion ist

 \square f monoton wachsend \square f streng monoton wachsend \square f monoton fallend \square f streng monoton fallend.

Lösungshinweise: Es sei $f:[a,b]\to\mathbb{R}$ eine in jedem Punkt $x\in[a,b]$ differenzierbare Funktion. Dann ist

Es se	$\boxtimes f$ stetig $\square f$ stetig differenzierbar $\boxtimes f$ beschränkt $\boxtimes f$ gleichmäßig stetig. ei $f:(a,b)\to\mathbb{R}$ eine in jedem Punkt $x\in(a,b)$ differenzierbare Funktion mit $f'(x)\leq 0$. Dann
ist	2. J. (w, v) — 11 cm o m jedem 1 dm o w c (w, v) dm o com o 1 dm o v (w) _ v v v
	\Box f monoton wachsend \Box f streng monoton wachsend \Box f monoton fallend \Box f streng monoton fallend.
Aufgal	pe H11 (Differenzierbarkeit II)
	Jede stetige Funktion ist differenzierbar.
	Jede differenzierbare Funktion ist stetig.
	Jede gleichmäßig stetige Funktion ist stetig.
	Jede lipschitzstetige Funktion ist differenzierbar.
	Jede lipschitzstetige Funktion ist gleichmäßig stetig.
	Jede differenzierbare Funktion ist lipschitzstetig.
	Jede stetige und differenzierbare Funktion ist stetig differenzierbar.
Lösı	ıngshinweise:
	Jede stetige Funktion ist differenzierbar.
\boxtimes	Jede differenzierbare Funktion ist stetig.
	Jede gleichmäßig stetige Funktion ist stetig.
	Jede lipschitzstetige Funktion ist differenzierbar.
	Jede lipschitzstetige Funktion ist gleichmäßig stetig.
	Jede differenzierbare Funktion ist lipschitzstetig. Jede stetige und differenzierbare Funktion ist stetig differenzierbar.
	De H12 (Extremwerte)
	Stetige Funktionen nehmen auf offenen Intervallen
	stets ein Minimum und ein Maximum an.
Ш	Stetige Funktionen nehmen auf abgeschlossenen Intervallen
	stets ein Minimum und ein Maximum an. Stetige Funktionen nehmen auf halboffenen Intervallen
	stets ein Minimum oder ein Maximum an.
	Es gibt stetige Funktionen, die auf einem offenen Intervall
	ein Minimum und ein Maximum annehmen.
Lögi	ıngshinweise:
	Stetige Funktionen nehmen auf offenen Intervallen
	stets ein Minimum und ein Maximum an.
\boxtimes	Stetige Funktionen nehmen auf abgeschlossenen Intervallen
	stets ein Minimum und ein Maximum an.
	Stetige Funktionen nehmen auf halboffenen Intervallen
	stets ein Minimum oder ein Maximum an.
	Gegenbeispiel: $f(x) = \frac{1}{x}\sin(\frac{1}{x})$ auf dem Intervall $(0,1]$
\boxtimes	Es gibt stetige Funktionen, die auf einem offenen Intervall
	ein Minimum und ein Maximum annehmen.