PWM LABS IN MBED-OS

Handong university

Jong-won Lee

PWM Labs.

- □ 실습 목적
 - □ PWM 신호를 이용하여 DC 서보 모터를 제어할 수 있다.
- □ 실습 시나리오
 - □ 사용자가 터미널 에뮬레이터(Tera Term)를 통하여 입력한 값(각도)에 따라 서보 모터를 회전시키는 실습을 수행한다. 각의 범위는 0도에서 180도까지이다.

- □ Servo Motor(MG90)과 Nucleo board 연결
 - □ PWM pin(Orange)를 Nucleo board의 D6에 연결
 - □ Vcc(Red)는 Nucleo board의 5V에 연결
 - □ GND(Brown)은 Nucleo board의 GND에 연결

fritzing


```
#include "mbed.h"
#define PWM MIN 550
#define PWM MAX 2150
PwmOut servoMotor(D6); //PB_10, D6
UnbufferedSerial pc(PA_2, PA_3, 115200);
char rx_buffer[10];
char tx_buffer[80];
int index = 0;
volatile int flag;
```



```
void rx_ISR(void)
  char ch;
  pc.read(&ch, 1);
  pc.write(&ch, 1);
  rx_buffer[index++] = ch;
  if (ch == '\r') { //CR
     pc.write("\n", 1); //LF
     rx\_buffer[--index] = '\0'; //change CR to 0
     index = 0;
     flag = 1;
```



```
int main()
  sprintf(tx\_buffer, "PWM Test Program (Servo Motor)! \r\n");
   pc.write(tx_buffer, strlen(tx_buf));
   pc.attach(rx_ISR);
  servoMotor.period_ms(20); // PWM period = 20ms
  servoMotor.pulsewidth_us(PWM_MIN); //for 0 degree
  while(1) {
     flag = 0;
     sprintf(tx_buffer, "Enter the rotation degree [0 - 180]: ");
     pc.write(tx_buffer, strlen(tx_buffer));
     while(flag != 1);
     control_servo();
```



```
void control_servo()
  // make your code
```


A sample code: result

```
PWM Test Program!
Enter the rotation degree [0 - 180]: 90
Pulse ON time = 1350 (90)
Enter the rotation degree [0 - 180]: 180
Pulse ON time = 2150 (180)
Enter the rotation degree [0 - 180]: 0
Pulse ON time = 550 (0)
Enter the rotation degree [0 - 180]: 0
Pulse ON time = 550 (0)
Enter the rotation degree [0 - 180]: 90
Pulse ON time = 1350 (90)
Enter the rotation degree [0 - 180]: 180
Pulse ON time = 2150 (180)
Enter the rotation degree [0 - 180]: 45
Pulse ON time = 950 (45)
Enter the rotation degree [0 - 180]: 90
Pulse ON time = 1350 (90)
Enter the rotation degree [0 - 180]:
```


PWM Lab. 2.

Generate music by Piezoelectric buzzer

- □ 실습 목적
 - □ 피에조 부저의 원리에 대해 이해한다.
 - PWM 신호를 이용하여 피에조 부저에서 음계를 생성할수 있다.
- □ 실습 시나리오
 - □ PWM의 duty cycle 값과 주파수 값을 바꾸어 C4-D4-E4-F4-G4-A4-B4-C5-C5-B4-A4-G4-F4-E4-D4-C4의 음을 반복하여 발생시킨다.

□ Piezo Buzzer

- 피에조 부저는 피에조 효과 혹은 압전 효과라는 성질을 이용 하여 소리를 나게 하는 디바이스이다.
- 압전 물질에 전압을 인가하면 압전 물질이 응축 혹은 신장하게 되고, 여기에 얇은 판을 붙여주면 인가되는 전압에 따라 얇은 판이 떨리게 되어 소리가 나게 된다.
- 피에조 부저 디바이스에 PWM 신호를 주파수를 변경하여 인가하면 피에조 부저의 얇은 막이 주어진 주파수에 따라 변하여 떨리게 되어 소리가 난다.

□ 음계별 주파수

<표 10-2> 음계별 주파수.

(단위 Hz)

옥타브 음계	1	2	3	4	5	6	7	8
C(도)	32.70	65.41	130.81	261.63	523.25	1046.50	2093.00	4186.01
C#	34.65	69.30	138.59	277.18	554.37	1108.73	2217.46	4434.92
D(레)	36.71	73.42	146.83	293.66	587.33	1174.66	2349.32	4698.64
D#	38.89	77.78	155.56	311.13	622.25	1244.51	2489.02	4978.03
E(0)	41.20	82.41	164.81	329.63	659.26	1318.51	2637.02	5274.04
F(파)	43.65	87.31	174.61	349.23	698.46	1396.91	2793.83	5587.65
F#	46.25	92.50	185.00	369.99	739.99	1479.98	2959.96	5919.91
G(솔)	49.00	98.00	196.00	392.00	783.99	1567.98	3135.96	6271.93
G#	51.91	103.83	207.65	415.30	830.61	1661.22	3322.44	6644.88
A(라)	55.00	110.00	220.00	440.00	880.00	1760.00	3520.00	7040.00
A#	58.27	116.54	233.08	466.16	932.33	1864.66	3729.31	7458.62
B(시)	61.74	123.47	246.94	493.88	987.77	1975.53	3951.07	7902.13

□ Piezzo Buzzer Module 종류

□ 회로 구성

- □ Piezo buzzer VCC에 Nucleo board의 3V3 연결,
- □ Piezo buzzer GND에 Nucleo board의 GND 연결,
- □ Piezo buzzer I/O에 D3(PWM) 연결

Piezo buzzer	Nucleo board			
VCC	3V3			
1/0	D3 (PB_3)			
GND	GND			

A sample code

□ code:C4-D4-E4-F4-G4-A4-B4-C5 C5-B4-A4-G4-F4-E4-D4-C4 의 음계를 반복 하여 실행하는 간단한 예제 코드

```
#include "mbed.h"

PwmOut buzzer(PB_3); //D3

// C4, D4, E4, F4, G4, A4, B4, C5
float freq[]={261.626, 293.665, 329.628, 349.228, 391.995, 440.000, 493.883, 523.251};
int beat[]={4, 4, 4, 4, 4, 4, 4, 4, 4}; //beat array [1, ..., 16], 1 beat = 1/16 sec.
```



```
int main() {
  int period_us;
  int beat ms;
  while (true) {
     for (int i=0; i<8; i++) {
        buzzer=1.0 - 0.1;
                                           // set duty cycle (1.0 - 0.1)
        period_us = 1000000/freq[i];
        beat_ms = 62.5 * beat[i];
        buzzer.period_us(period_us); // set PWM period
        ThisThread::sleep_for(chrono::milliseconds(beat_ms)); // hold for beat period
        //buzzer = 1.0;
        //ThisThread::sleep_for(chrono::milliseconds(100));
```


A sample

```
for (int i=0; i < 8; i++) {
  buzzer=1.0 - 0.05; // set duty cycle
  period_us = 1000000/freq[7 - i];
  beat_ms = 62.5 * beat[7 - i];
  buzzer.period_us(period_us); // set PWM period
  ThisThread::sleep_for(chrono::milliseconds(beat_ms)); // hold for beat period
  //buzzer = 1.0;
  //ThisThread::sleep_for(chrono::milliseconds(100));
```


Lab8-3: Piezo Buzzer 이용 음악 생성

- □ 다음 악보의 음악을 생성하시오.
 - □ 한동대 로고송

은혜

