Introduction

1. Context

- Energy minimization methods for image segmentation.
 - Classical formulation:
 - -object boundary = curve in the image space,
 - -curve energy = image contour matching + curve smoothness,
 - -limited due to their fixed topology.
 - Highly deformable models:
 - adaptive topology but heavy computational costs.
- Acquisition devices \rightarrow higher and higher image resolutions.

Goal: Segmentation algorithms more independent from image resolution.

2. Our approach

Deformable model

- Explicit shape description:
 - -object boundary = sets of vertices and edges,
 - -special procedures to maintain topological consistency.

Main idea

- Time complexity directly dependent on the number of vertices.
- High accuracy over the whole image = waste of time and memory.
- \Rightarrow Adapting the model resolution according to its position in the image.

How

- Changing the Euclidean metric with a deformed metric to geometrically expand the "interesting parts" of the image.
- Keeping the vertex density on the mesh regular with that new metric.
- ⇒ Number of vertices locally adapted to the required accuracy.

Highly Deformable Model

1. Mesh Regularity

Distance constraints between neighbour vertices:

$$\delta \le d(u, v) \le \zeta \delta$$

- -too short edge \Rightarrow merge
- -too long edge \Rightarrow split

2. Topology Adaptation

Distance constraint between non-neighbour vertices:

$$\lambda \zeta \delta \le d(u, w)$$

To maintain the constraint: topological operators.

3. Changing Distance Estimations

overestimated distances \Rightarrow too long edges \Rightarrow vertex insertion underestimated distances \Rightarrow too short edges \Rightarrow edge contraction

Locally changing distance estimations

= Locally adapting vertex density.

Changing Metrics

Riemannian Metric:

A metric is a C^1 mapping that associates each point (x,y) with a symmetric positive-definite matrix $G_{(x,y)}$ (i.e. with a dot product).

Length of a vector:

$$\|\overrightarrow{ds}\|_R^2 = t \overrightarrow{ds} \times G_{(x,y)} \times \overrightarrow{ds}$$

At a given point, G has a spectral decomposition $\{(v_1, \mu_1), (v_2, \mu_2)\}$. (v_1, v_2) is an orthonormal base, $0 < \mu_1$, and $0 < \mu_2$.

$$\vec{ds} = \vec{x_1} \vec{v_1} + \vec{x_2} \vec{v_2} \implies ||\vec{ds}||_R^2 = \mu_1 \vec{x_1} + \mu_2 \vec{x_2}$$

 \Rightarrow The length of a vector depends on both its origin and its direction.

Length of a path:

$$L_R(\gamma) = \int_0^1 \left(t \overline{\gamma'(u)} \times G_{\gamma(u)} \times \overline{\gamma'(u)} \right)^{\frac{1}{2}} du$$

Local behaviour:

Euclidean unit ball

Riemannian unit ball

Changing the metric = Locally contracting/dilating the space along the local eigendirections of the metric.

Model Dynamics

1. Physical interpretation of the problem

Continuous formulation:

-continuous curve: $c:[0,1]\to\mathbb{R}^2$ -polygonal curve: $(c_0,\dots c_{n-1})$ -energy functional: E(c) -discretized energy: $E(c_0,\dots c_n)$

Discretized formulation:

Optimization Method

Steepest descent methods: each vertex c_i moves along the line of steepest descent of E as a function of c_0 , c_1 , ... c_n .

Physical Interpretation

Mass-spring system under the action of forces deriving from E:

- -image force $\vec{F_i}$,
- -elastic and curvature force $\overrightarrow{F_e}$ and $\overrightarrow{F_c}$,
- additional forces that improve convergence and/or segmentation.

2. Motion Equations

Lagrangian Formulation

Any variation δx of the trajectory x of a particle is such that:

$$\int_{t_1}^{t_2} \left(\delta T + \overrightarrow{F} \cdot \overrightarrow{\delta x} \right) dt = 0, \quad \text{with } T = \frac{1}{2} \ m \ \dot{x} \cdot \dot{x}$$

The dotproduct "·" takes account of the metric.

Euler-Lagrange equations lead to:
$$m\ddot{x}_k + \sum\limits_{i,j=1}^2 \Gamma_{ij}^k \dot{x}_i \dot{x}_j = F_k$$

Christoffel's symbols:
$$\Gamma^k_{ij} = \frac{1}{2} \sum_{l=1}^2 g^{kl} (\frac{\partial g_{il}}{\partial x_j} + \frac{\partial g_{lj}}{\partial x_i} - \frac{\partial g_{ij}}{\partial x_l})$$

Defining Metrics

1. Expected Behaviour

Vertex density should

- reflect the reliability of contour information,
- optimize the shape description quality.

2. Effective Metric Choice

For each point: two orthogonal directions and two eigenvalues.

Places with no contour information

Place with significant contour information

Eigendirections:
$$\overrightarrow{v_1} = \frac{\overrightarrow{\nabla I}}{\|\nabla I\|}$$
 and $\overrightarrow{v_2} = \frac{\overrightarrow{\nabla I^{\perp}}}{\|\nabla I\|}$.

Eigenvalues:

 $\mu_1 = 1 + \|\overrightarrow{\nabla I}\|$, used when the mesh is orthogonal to the contour,

 $\mu_2 = 1 + \kappa$, where κ is an estimation of the contour curvature.

(contour curvature is estimated using the properties of the structure tensor)

Results - Perspectives

Influence of Contour Strength and Curvature on Vertex Density

Results on a Computer-generated Image

Results on Medical Data (brain MR image)

Perspectives

- Development of a 3D prototype,
- Optimization of metrics computations.