1 # Sample
$$(z_1, z_2, x_3, x_{0})$$
 mean $= \theta_1 \neq Vorco \theta_2$
 $(Normal distribution)$

L = $\pi f(z_1|\theta)$
 $1(\theta_1, \theta_2, |x_1, x_3, ..., x_{0}) = \pi_{i-1}^{n} | e^{-(x_2 - \theta_2)^2}$
 $1(\theta_1, \theta_2, |x_1, x_3, ..., x_{0}) = \pi_{i-1}^{n} | e^{-(x_2 - \theta_2)^2}$

take log both sides

In $L(\theta_1, \theta_2, |x_1, x_3, ..., x_{0}) = -n \ln(2\pi \theta_2) - \frac{1}{2} \sum_{i=1}^{n} M(x_{i}\theta_1)^2$

differentiale wit $\theta_1 + \theta_2$, $\frac{1}{2} + \frac{1}{2} \sum_{i=1}^{n} (x_{i} - \theta_1)^2 = 0$
 $\frac{1}{2} (x_{i} - \theta_1) = 0$
 $\frac{1}{2} (x_{i} - \theta_1)^2 = 0$
 $\frac{1}{2} (x_{i} - \theta_1)^2$