AP Classroom Problems

Aiden Rosenberg

October 25, 2022 A.D.

3.01

1.

The flow of oil, in barrels per hour, through a pipeline on July 9 is given by the graph shown above. Of the following, which best approximates the total number of barrels of oil that passed through the pipeline that day?

$$\int_0^{24} B(t) dt \approx 3,000$$

t (hours)	4	7	12	15
R(t) (liters per hour)	6.5	6.2	5.9	5.6

2. A tank contains 50 liters of oil at time t = 4 hours. Oil is being pumped into the tank at a rate R(t) where R(t) is measured in liters per hour, and t is measured in hours. Selected values of R(t) are given in the table above. Using a right Riemann sum with three subintervals and data from the table, what is the approximation of the number of liters of oil that are in the tank at time t = 15 hours?

$$\int_{4}^{15} R(t) dt + R(0)$$

$$\approx \left((7 - 4) \cdot R(7) + (12 - 7) \cdot R(12) + (15 - 12) \cdot R(17) \right) + 50$$

$$= 64.9 + 50$$

$$= \boxed{114.9 \text{ liters}}$$

A left Riemann sum, a right Riemann sum, and a trapezoidal sum are used to approximate the value of $\int_0^1 f(x) dx$, each using the same number of sub intervals. The graph of the function f is shown in the figure above. Which of the sums give an underestimate of the value of $\int_0^1 f(x) dx$?

(a) When f(x) is concave down both left and trapezoidal sums are underestimates.

4. Let f be the function given by $f(x) = 9^x$. If four subintervals of equal length are used, what is the value of the right Riemann sum approximation for $\int_0^2 f(x) dx$?

(a)
$$\Delta x = 0.5$$

RHS₄ =
$$0.5 \cdot (A(0.5) + A(1) + A(1.5) + A(2))$$

RHS₄ = $0.5 \cdot (3 + 9 + 27 + 81)$
RHS₄ = $0.5 \cdot (120)$
RHS₄ = 60

x	0	0.5	1	1.5	2	2.5	3
f(x)	0	4	10	18	28	40	54

5. The table above gives selected values for a continuous function f. If f is increasing over the closed interval [0,3], which of the following could be the value of $\int_0^3 f(x) dx$?

(a) LHS₆ =
$$0.5(0 + 4 + 10 + 18 + 28 + 40) = 50$$

(b) RHS₆ =
$$0.5(4 + 10 + 18 + 28 + 40 + 54) = 77$$

LHS₆ <
$$\int_0^3 f(x) dx$$
 < RHS₆
50 < $\int_0^3 f(x) dx$ < 77

62 Satisfies the necessary conditions

x	2	3	5	8	13
f(x)	6	-2	-1	3	9

6. The function f is continuous on the closed interval [2,13] and has values as shown in the table above. Using the intervals [2,3], [3,5], [5,8], and [8,13] what is the approximation of $\int_2^{13} f(x) dx$ obtained from a left Riemann sum?

LHS₄ =
$$f(2) \cdot (1) + f(3) \cdot (2) + f(5) \cdot (3) + f(8) \cdot (5)$$

LHS₄ = $6 + (-2) \cdot (2) + (-1) \cdot (3) + (3) \cdot (5)$
 $\boxed{\text{LHS}_4 = 14}$

x	0	a^2	3a	6a	7a
f(x)	1	-1	-3	-7	-9

7. The continuous function f is decreasing for all x. Selected values of f are given in the table above, where a is a constant with 0 < a < 3. Let R be the right Riemann sum approximation for $\int_0^{7a} f(x) dx$ using the four subintervals indicated by the data in the table. Which of the following statements is true?

(a)
$$R = (a^2 - 0) \cdot (-1) + (3a - a^2) \cdot (-3) + (6a - 3a) \cdot (-7) + (7a - 6a) \cdot (-9)$$

(b)
$$R \text{ is an underestimate for } \int_0^{7a} f(x) dx$$

8. Which of the following is the midpoint Riemann sum approximation of $\int_4^6 \sqrt{x^3 + 1} dx$ using 4 subintervals of equal width?

(a)
$$\Delta x = \frac{b-a}{n} = \frac{6-4}{4} = \frac{1}{2}$$

(b)
$$f(x) = \sqrt{x^3 + 1}$$

$$MRAM_4 = \frac{1}{2} (f(4.25) + f(4.75) + f(5.25) + f(5.75))$$

x	0	25	30	50
f(x)	4	6	8	12

9. The values of a continuous function f for selected values of x are given in the table above. What is the value of the left Riemann sum approximation to $\int_0^5 f(x) dx$ using the subintervals [0, 25] [25, 30] and [30, 50]?

LHS₃ =
$$f(0) \cdot (25) + f(25) \cdot (5) + f(30) \cdot (20)$$

LHS₃ = $4 \cdot (25) + 6 \cdot (5) + 8 \cdot (20)$
 $\boxed{\text{LHS}_4 = 290}$

x	0	1	2	3	4	5	6
f(x)	0	5	2	-1	-2	0	3

10. The function f is continuous on the closed interval [0,6] and has values as shown in the table above. Using the intervals [0,2], [2,4], and [4,6], what is the approximation of $\int_0^6 f(x) dx$ obtained from a midpoint Riemann sum?

MRAM₃ =
$$2(f(1) + f(3) + f(5))$$

MRAM₃ = $2(5 + (-1) + 0)$
MRAM₃ = 8

3.02

1. Let f and g be continuous functions such that $\int_0^{10} f(x) dx = 21$, $\int_0^{10} \frac{1}{2} g(x) dx = 8$, and $\int_3^{10} (f(x) - g(x)) dx = 2$. What is the value of $\int_0^3 (f(x) - g(x)) dx$?

(a)
$$\int_0^{10} \frac{1}{2} g(x) \, dx = 8 \Longrightarrow \int_0^{10} g(x) \, dx = 16$$
(b)
$$\int_0^{10} (f(x) - g(x)) \, dx = \int_0^{10} f(x) \, dx - \int_0^{10} g(x) \, dx = 21 - 16 = 5$$

$$\int_0^{10} (f(x) - g(x)) = \int_0^3 (f(x) - g(x)) \, dx + \int_3^{10} (f(x) - g(x)) \, dx$$

$$\Longrightarrow 2 + \int_0^3 (f(x) - g(x)) \, dx = 5$$

$$\Longrightarrow \int_0^3 (f(x) - g(x)) \, dx = 3$$

2. Let f and g be continuous functions for $a \le x \le b$. If a < c < b, $\int_a^b f(x) \, dx = P$, $\int_c^b f(x) \, dx = Q$, $\int_a^b g(x) \, dx = R$, and $\int_c^b g(x) \, dx = S$, then $\int_a^c (f(x) - g(x)) \, dx = S$

(a)
$$\int_{a}^{c} f(x) dx = \int_{a}^{b} f(x) dx - \int_{c}^{b} f(x) dx = P - Q$$

(b)
$$\int_{a}^{c} g(x) dx = \int_{a}^{b} g(x) dx - \int_{c}^{b} g(x) dx = R - S$$

$$\int_{a}^{c} (f(x) - g(x)) dx = \int_{a}^{c} f(x) dx - \int_{a}^{c} g(x) dx$$
$$\Longrightarrow (P - Q) - (R - S)$$
$$\Longrightarrow P - Q - R + S$$

3. Let f and g be continuous functions such that $\int_0^6 f(x) dx = 9$, $\int_3^6 f(x) dx = 5$, and $\int_3^0 g(x) dx = -7$. What is the value of $\int_0^3 (\frac{1}{2}f(x) - 3g(x)) dx$?

(a)
$$\int_0^6 f(x) dx = \int_0^3 f(x) dx + \int_3^6 f(x) dx \Longrightarrow \int_0^3 f(x) dx = 4$$

(b)
$$\int_{3}^{0} g(x)dx = -7 \Longrightarrow \int_{0}^{3} g(x)dx = 7$$

$$\frac{1}{2} \int_0^3 f(x) \, dx - 3 \int_0^3 g(x) \, dx = \frac{1}{2} \cdot 4 - 3 \cdot 7 = \boxed{-19}$$

4.

The graph of y = f(x) is shown in the figure above. If A_1 and A_2 are positive numbers that represent the areas of the shaded regions, then in terms of A_1 and A_2 , $\int_{-4}^4 f(x) dx - 2 \int_{-1}^4 f(x) dx =$

(a)
$$A_1 = \int_{-4}^{-1} f(x) dx$$

(b)
$$A_2 = \int_{-1}^2 f(x) dx$$

(c)
$$A_1 - A_2 = \int_{-4}^4 f(x) dx$$

$$\int_{-4}^{4} f(x) dx - 2 \int_{-1}^{4} f(x) dx = (A_1 - A_2) - 2(-A_2) = A_1 + A_2$$

5. Let f and g have continuous first and second derivatives everywhere. If $f(x) \leq g(x)$ for all real x, which of the following must be true?

I.
$$f'(x) \leq g'(x)$$
 for $x \in \mathbb{R}$

II.
$$f''(x) \leq g''(x)$$
 for $x \in \mathbb{R}$

III.
$$\int_0^1 f(x) \, dx \le \int_0^1 g(x) \, dx$$

6. The function f is defined by $f(x) = \begin{cases} 2 & \text{for } x < 3 \\ x - 1 & \text{for } x \ge 3 \end{cases}$ What is the value of $\int_1^5 f(x) \, dx$?

$$\int_{1}^{3} 2 \, dx + \int_{3}^{5} (x - 1) \, dx$$

$$2x \Big|_{1}^{3} + \left\lceil \frac{x^{2}}{2} - x \right\rceil_{3}^{5} = (6 - 2) + \left(\left(\frac{25}{2} - 5 \right) - \left(\frac{9}{2} - 3 \right) \right) = 4 + 6 = \boxed{10}$$

The graph of the function f is shown above for $0 \le x \le 3$. Of the following, which has the least value?

7.

Right Riemann sum approximation of $\int_1^3 f(x) dx$ with 4 subintervals of equal length

The graph of the function f, which has a domain of [0,7], is shown in the figure above. The graph consists of a quarter circle of radius 3 and a segment with slope -1. Let b be a positive number such that $\int_0^b f(x)dx = 0$. What is the value of b?

(a)
$$\int_0^3 f(x) dx = \frac{\pi \cdot r^2}{4} = \frac{9\pi}{4}$$

(b)
$$f(x) = \begin{cases} \sqrt{9-x^2} & \text{for } x < 3\\ 3-x & \text{for } x \ge 3 \end{cases}$$

8.

$$\int_{3}^{b} (3-x) dx = -\frac{9\pi}{4}$$

$$\implies -\frac{9\pi}{4} = 3x - \frac{x^{2}}{2} \Big|_{3}^{b} = 3b - \frac{b^{2}}{2} - \left(9 - \frac{9}{2}\right)$$

$$\implies 12b - 2b^{2} - 36 + 18 = -9\pi$$

$$\implies 12b - 2b^{2} - 18 + 9\pi = 0 \implies \boxed{b \approx 6.7599}$$

9.
$$\int_{-1}^{2} \frac{|x|}{x}$$
 is

$$\int_{-1}^{2} \frac{|x|}{x} = |x| \Big|_{-1}^{2} = 2 - 1 = \boxed{1}$$

The graph of a piecewise-linear function f, for $-1 \le x \le 4$, is shown above. What is the value of $\int_{-1}^{4} f(x) dx$?

(a)
$$\int_{-1}^{0} f(x) dx = (0.5) \cdot (1) \cdot (2) = 1$$

10.

(b)
$$\int_0^1 f(x) dx = (1) \cdot 2 = 2$$

(c)
$$\int_{1}^{2} f(x) dx = (0.5) \cdot (1) \cdot (2) = 1$$

(d)
$$\int_2^3 f(x) dx = (0.5) \cdot (1) \cdot (-1) = -0.5$$

(e)
$$\int_3^4 f(x) dx = (1) \cdot (-1) = -1$$

$$\int_{-1}^{4} f(x) \, dx = 2.5$$

3.03

1. If G(x) is an antiderivative for f(x) and G(2) = -7, then G(4) = -7

$$G(4) = G(2) + \int_{2}^{4} f(t) dt$$

$$G(4) = -7 + \int_{2}^{4} f(t) dt$$

2. If the function f is defined by $f(x) = \sqrt{x^3 + 2}$ and g is an antiderivative of f such that g(3) = 5, then g(1) =

$$G(1) = G(3) - \int_{1}^{3} f(x) \, dx$$

$$G(1) \approx -1.585$$

The graph of f', the derivative of f, is the line shown in the figure above. If f(0) = 5, then f(1) =

$$f(1) = f(0) + \int_0^1 f'(x) dx = 5 + (0.1)(6)(3) = \boxed{8}$$

4. $\int_0^1 \sqrt{x}(x+1) dx$

$$\int_0^1 \sqrt{x}(x+1) \, dx = \int_0^1 x^{3/2} + x^{1/2} \, dx$$

$$\implies \frac{2x^{5/2}}{5} + \frac{2x^{2/3}}{3} \Big|_0^1 = \frac{2}{5} + \frac{2}{3} = \boxed{\frac{16}{15}}$$

5. What are all values of k for which $\int_{-3}^{k} x^2 dx = 0$

$$\frac{x^2}{2}\Big|_{-3}^k = \frac{k^3 - 27}{2}$$

$$\implies \frac{k^3 - 27}{2} = 0 \implies \boxed{k = 3}$$

6. $\int_{1}^{2} \frac{x-4}{x^2} dx$

$$\int_{1}^{2} \frac{x-4}{x^{2}} dx = \int_{1}^{2} (x^{-1} - 4x^{-2}) dx = \ln|x| + \frac{4}{x} \Big|_{1}^{2} = ((\ln 2 + 2) - (\ln 1 + 4)) = \ln 2 - 2$$

7. Graph of f'

The graph of f', the derivative of a function f, consists of two line segments and a semicircle, as shown in the figure above. If f(2) = 1, then f(-5) =

(a)
$$-\int_{-5}^{2} f'(x) dx = \int_{-5}^{-2} f'(x) dx + \int_{-2}^{2} f'(x) dx$$

(b)
$$\int_{-5}^{-2} f'(x) dx = (0.5)(3)(2) = 3$$

(c)
$$\int_{-2}^{2} f'(x) dx = -2\pi$$

$$f(-5) = f(2) - \int_{-5}^{2} f'(x) dx = 1 - (3 - 2\pi) = \boxed{2\pi - 2}$$

8. If n is a known positive integer, for what value of k is $\int_1^k x^{n-1} dx = \frac{1}{n}$?

$$\int_{1}^{k} x^{n-1} dx = \frac{x^{n}}{n} \Big|_{1}^{k} = \frac{k^{n}}{n} - \frac{1^{n}}{n}$$
$$\frac{k^{n} - 1}{n} = \frac{1}{n} \Longrightarrow k^{n} = 2$$
$$\Longrightarrow \boxed{k = 2^{1/n}}$$

9. If
$$g(x) = x^2 - 3x + 4$$
 and $f(x) = g'(x)$, then $\int_1^3 f(x) dx =$

(a)
$$g(3) = 3^2 - 3(3) + 4 = 4$$

(b)
$$g(1) = 1 - 3 + 4 = 2$$

$$\int_{1}^{3} f(x) dx = \int_{1}^{3} g'(x) dx = g(3) - g(1) = 4 - 2 = \boxed{2}$$

10. Let F(x) be an antiderivative of $\frac{(\ln x)^3}{x}$. If F(1) = 0, then F(9) =

$$F(9) = F(1) + \int_{1}^{9} \frac{(\ln x)^{2}}{x} dx$$
$$F(9) \approx 5.827$$

3.04

1. If $\frac{dy}{dx} = -10e^{-t/2}$ and y(0) = 20, what is the value of y(6)?

$$y(6) = y(0) + \int_0^6 -10e^{-t/2} dt$$
$$y(6) = y(0) + 20e^{-t/2} \Big|_0^6$$
$$y(6) = 20 + (20e^{-3} - 20) = \boxed{20e^{-3}}$$

2. Let f be a differentiable function such that $f(1) = \pi$ and $f'(x) = \sqrt{x^3 + 6}$. What is the value of f(5)?

$$f(5) = f(1) + \int_{1}^{5} f'(x) dx$$
$$f(5) = \pi + \int_{1}^{5} \sqrt{x^3 + 6} dx$$
$$f(5) \approx 27.814$$

x	0	1	2	3
f(x)	5	2	3	6
f'(x)	-3	1	3	4

3. The derivative of the function f is continuous on the closed interval [0,4]. Values of f and f' for selected values of x are given in the table above. If $\int_0^4 f'(t) dt = 8$, then f(4) =

$$\int_0^4 f'(t) dt = f(4) - f(0) = 8$$
$$f(4) = 8 + f(0) = \boxed{13}$$

4.
$$\int_0^x \sin t \, dt = \int_0^x \sin t \, dt = -\cos(t) \Big|_0^x = -\cos(x) + \cos(0) = \boxed{1 - \cos(x)}$$

5.
$$\int_1^2 \frac{dx}{2x+1} =$$

(a) Let
$$u = 2x + 1 \Longrightarrow du = 2dx$$

$$\frac{1}{2} \int_{3}^{5} \frac{1}{u} du = \frac{\ln u}{2} \Big|_{3}^{5} = \boxed{\frac{1}{2} (\ln 5 - \ln 3)}$$

6. If
$$\int_0^k (2kx - x^2) dx = 18$$
, then $k =$

$$\int_0^k (2kx - x^2) dx = kx^2 - \frac{x^3}{3} \Big|_0^k = k^3 - \frac{k^3}{3} = \frac{2k^3}{3}$$

$$18 = \frac{2k^3}{3} \Longrightarrow 27 = k^3$$

$$\boxed{k = 3}$$

7. If the function f has a continuous derivative on [0,c], then $\int_0^c f'(x) dx =$

$$f(x) - f(0)$$

8. Let g be a differentiable function such that g(10) = 2e and $g'(x) = 5e^{-\sqrt{x}}$. What is the value of g(2)?

$$g(2) = g(10) - \int_{2}^{10} g'(x) dx$$
$$g(2) \approx 1.329$$

x	0	1	2	3
f(x)	4	9	12	10
f'(x)	5	4	1	-6

9. Selected values of the twice-differentiable function f and its derivative f' are given in the table above. What is the value of $\int_0^3 f'(x) dx$?

$$\int_0^3 f'(x) \, dx = f(3) - f(0) = 10 - 4 = \boxed{6}$$

10. Let g be a differentiable function such that g(4) = 0.325 and $g'(x) = \frac{1}{x}e^{-x}(\cos(\frac{x}{100}))$. What is the value of g(1)?

$$g(1) = g(4) - \int_{1}^{4} g'(x) dx$$
$$g(1) \approx 0.109$$

x	0	2	4	6
f(x)	-22	-6	2	2
f'(x)	10	6	2	-2

11. Selected values of the twice-differentiable function f and its derivative f' are given in the table above. What is the value of $\int_0^6 f'(x) dx$?

$$\int_0^6 f'(x) \, dx = f(6) - f(0) = 2 - (-22) = \boxed{24}$$

12. Let f be a continuous function on the closed interval [0,2]. If $2 \le f(x) \le 4$, then the greatest possible value of $\int_0^2 f(x) dx$ is

$$\int_{0}^{2} 2 \, dx = 2x \Big|_{0}^{2} = \boxed{8}$$

13.
$$\int_{1}^{4} |x-3| dx =$$

(a) Let
$$f(x) = |x - 3|$$

$$f(x) = \begin{cases} 3 - x & \text{for } x < 3\\ x - 3 & \text{for } x \ge 3 \end{cases}$$

$$\int_{1}^{4} |x - 3| \, dx = \int_{1}^{3} (3 - x) \, dx + \int_{3}^{4} (x - 3) \, dx$$

$$\int_{1}^{4} |x - 3| \, dx = 3x - \frac{x^{2}}{2} \Big|_{1}^{3} + \frac{x^{2}}{2} - 3x \Big|_{3}^{4}$$

$$\Longrightarrow \left((9 - 4.5) - (3 - 0.5) \right) + \left((8 - 12) - (4.5 - 9) \right)$$

$$\Longrightarrow (2) + (0.5) = \boxed{2.5}$$

3.05

1. If $0 \le b \le 2$, for what value of b is $\int_0^b \cos(e^x) dx$ a minimum?

$$F(x) = \int_0^x \cos(e^t) \, dt$$

$$F'(x) = \cos(e^x)$$

$$F'(x) < 0$$
 when $x \in [0.451, 1.550]$

F'(x) > 0 when $x \in [0, 0.451]$ and when $x \in [1.550, 2]$

When
$$x \approx 1.550 \Longrightarrow F(x)$$
 has a local minimum

2. Let g be a function with first derivative given by $g'(x) = \int_0^x e^{-t^2} dt$. Which of the following must be true on the interval 0 < x < 2?

(a)
$$g'(x) = \int_0^x e^{-t^2} dt \Longrightarrow g'(x) > 0$$
 when $x \in [0, 2] \Longrightarrow g'(x) > 0$ when $x \in [0, 2]$

(b)
$$g''(x) = \frac{d}{dx} \left(\int_0^x e^{-t^2} dt \right) = e^{-x^2} \Longrightarrow g''(x) > 0 \text{ when } x \in [0, 2]$$

(c) Note that $e^x > 0$ for all $x \in \mathbb{R}$

g is increasing, and the graph of g is concave up.

3.

The graph of the differentiable function f is shown in the figure above. Let h be the function defined by $h(x) = \int_0^x f(t) dt$. Which of the following correctly orders h(2), h'(2), and h''(2)?

(a)
$$h(2) = \int_2^x f(t) dt > 2$$
 Area of the graph

(b)
$$h'(2) = 0$$
 Point of the function

(c)
$$h''(2) < 0$$
 Slope of the tangent line

$$h''(2) < h'(2) < h(2)$$

The figure above shows the graph of the function f. If $g(x) = \int_1^x f(t) dt$ and the shaded region has an area of 2, what is the value of g(2)?

$$g(2) = \int_{1}^{2} f(t) dt = -2$$

5. If is the function given by
$$f(x) = \int_4^{2x} \sqrt{t^2 - t} dt$$
, then $f'(2) = \int_4^{2x} \sqrt{t^2 - t} dt$

$$F'(x) = \frac{d}{dx} \left(\int_{4}^{2x} \sqrt{t^2 - t} \, dt \right) = \frac{d}{dx} \left(F(2x) - f(4) \right)$$
$$F'(x) = 2F'(2x) = 2\sqrt{4x^2 - 2x}$$
$$F'(2) = 2\sqrt{4(2)^2 - 2(2)} = \boxed{2\sqrt{12}}$$

$$6. \frac{d}{dx} \left(\int_0^{x^2} \sin(t^3) \, dt \right) =$$

$$F'(x) = \frac{d}{dx} \left(\int_0^{x^2} \sin(t^3) dt \right) = \frac{d}{dx} \left(F(x^2) - F(4) \right)$$
$$F'(x) = 2x \cdot F'(x^3) = \boxed{2x \sin(x^6)}$$

$$7. \frac{d}{dx} \left(\int_0^x \sqrt{1+t^2} \, dt \right) =$$

$$F(x) = \frac{d}{dx} \left(\int_0^x \sqrt{1+t^2} \, dt \right) = \frac{d}{dx} \left(F(x) - F(0) \right)$$
$$F'(x) = \boxed{\sqrt{1+x^2}}$$

8. If
$$F(x) = \int_0^x \sqrt{t^3 + 1}$$
, then $F'(2) =$

$$F'(x) = \frac{d}{dx} \left(\int_0^x \sqrt{t^3 + 1} \, dt \right) = \frac{d}{dx} \left(F(x) - F(0) \right)$$
$$F'(x) = f(x) = \sqrt{x^3 + 1}$$
$$F'(2) = \sqrt{(2)^3 + 1} = \boxed{3}$$

The graph of the function f shown in the figure above has horizontal tangents at x=3 and x=6. If $g(x)=\int_0^{2x}f(t)\,dt$ what is the value of g'(3)?

$$g'(x) = \frac{d}{dx} \left(\int_0^{2x} f(t) dt \right) = \frac{d}{dx} \left(g(2x) - g(0) \right)$$

$$g'(x) = 2 \cdot f(2x) = \boxed{-2}$$

10. Graph of f

The graph of the function f in the figure above consists of four line segments. Let g be the function defined by $g(x) = \int_0^x f(t) dt$. Which of the following is an equation of the line tangent to the graph of g at x = 5?

$$g'(x) = \frac{d}{dx} \left(\int_0^x f(t) dt \right) = \frac{d}{dx} \left(g(x) - g(0) \right)$$
$$g'(x) = f(x)$$

(a)
$$g'(5) = -1$$

(b)
$$g(5) = \int_0^5 f(t) dt = 1.5 - 3.5 = -2$$

$$y = -1(x-5) - 2 = 3 - x$$

3.06

1. Which of the following are equivalent to $\int_2^4 \frac{2x+5}{5-x} dx$?

$$\frac{2x+5}{5-x} = \frac{15}{5-x} - 2$$

$$\implies \int_{2}^{4} \left(\frac{15}{5-x} - 2\right) dx$$

- (a) Let u = 5 x
- (b) du = -dx

$$\implies -\int_{3}^{1} \left(\frac{15}{u} - 2\right) du$$

$$\implies \int_{1}^{3} \left(\frac{15}{u} - 2\right) du = 15 \ln(3) - 4$$
II and III only

2. Which of the following is equivalent to $\int_3^5 x \ln x \, dx$?

(a)
$$u = \ln(x) \Longrightarrow du = \frac{1}{r} dx$$

(b)
$$dv = x dx \Longrightarrow v = \frac{x^2}{2}$$

(c)
$$\int u \, dv = uv - \int v \, du$$

$$\Longrightarrow \frac{1}{2}x^2\ln(x)\bigg|_3^5 - \int_3^5 \frac{x}{2} \, dx$$

3. Let f be the function defined by $f(x) = \int_0^x (2t^3 - 15t^2 + 36t) dt$. On which of the following intervals is the graph of y = f(x) concave down?

(a)
$$f'(x) = \frac{d}{dx} \left(\int_0^x (2t^3 - 15t^2 + 36t) dt \right) = 2x^3 - 15x^2 + 36x$$

(b)
$$f''(x) = 6x^2 - 30x + 36 = 6(x - 2)(x - 3)$$

When $x \in [2,3]$ f''(x) < 0 \therefore f is concave down.

x	-4	-3	-2	-1
f(x)	0.75	-1.5	-2.25	-1.5
f'(x)	-3	-1.5	0	1.5

4. The table above gives values of a function f and its derivative at selected values of x. If f' is continuous on the interval [-4, -1] what is the value of $\int_{-4}^{-1} f'(x) dx$?

$$\int_{-4}^{-1} f'(x) dx = f(-1) - f(-4) = -1.5 - 0.75 = \boxed{-2.25}$$

5. If
$$f'(x) = \sin(\frac{\pi e^x}{2})$$
 and $f(0) = 1$, then $f(2) = 1$

$$f(2) = f(0) + \int_0^2 f'(x) dx$$
$$f(2) = f(0) + \int_0^2 \sin\left(\frac{\pi e^x}{e^x}\right) dx$$

$$f(2) = f(0) + \int_0^2 \sin\left(\frac{\pi e^x}{2}\right) dx$$
$$f(2) \approx 1.157$$

The graph of the function f, shown above, consists of three line segments. If the function g is an antiderivative of f such that g(2) = 5, for how many values of c, where $0 \le c \le 6$, does g(c) = 3?

(a)
$$g(0) = f(2) - \int_0^2 f(t) dt = 5 - 2 = 3$$

(b)
$$g(4) = f(2) + \int_2^4 f(t) dt = 5 + (-2) = 3$$

(c)
$$g(5) = f(2) + \int_{2}^{5} f(t) dt = 5 + (-2) - 1 = 2$$

6.

(d)
$$g(6) = f(2) + \int_2^6 f(t) dt = 5 + (-3) + 2 = 4$$

(e) Since g is continuous for [5,6] and $3 \in [f(5), f(6)]$ than there is a $c \in [5,6]$ such that f(c) = 3

The graph of a differentiable function f is shown above. If $h(x) = \int_0^x f(t) dt$, which of the following is true?

(a)
$$h(6) = \int_0^6 f(t) dt < 0$$

(b)
$$h'(6) = f(6) = 0$$

(c)
$$h''(6) = f'(6) > 0$$

$$h(6) < h'(6) < h''(6)$$

8. Let f be the function given by $f(x) = \int_{10}^{x} (-t^2 + 2t + 3) dt$. On what intervals is f increasing?

(a)
$$f'(x) = \frac{d}{dx} \left(\int_{10}^{x} (-t^2 + 2t + 3) dt \right) = -x^2 + 2x + 3 = -(x - 3)(x + 1)$$

When
$$x \in [-1, 3]$$
 $f'(x) > 0$... f is increasing.

The graph of the function f is shown above. Let g be the function defined by $g(x) = \int_1^x f(t) dt$. At what values of x in the interval 0.5 < x < 6.5 does g have a relative maximum?

- (a) g'(x) = f(x)
- (b) Relative maximum: f changes from positive to negative.

Relative maximum:
$$x = 3$$

10. The function h is given by $h(x) = \int_1^x \ln(t \sin t + 5) dt$ for $1 \le x \le 7$. On what intervals, if any, is h decreasing?

(a)
$$h'(x) = \frac{d}{dx} \left(\int_1^x \ln(t \sin t + 5) \right) = \ln(x \cdot \sin x + 5)$$

 d

When
$$x \in [4.323, 5.461] h'(x) < 0$$
 : f is decreasing.

3.07

1. If F and f are differentiable functions such that $F(x) = \int_0^x f(t) dt$, and if F(a) = -2 and F(b) = -2 where a < b, which of the following must be true?

$$f(x) = 0$$
 for some x such that $a < x < b$.

The graph of the function f shown above consists of two line segments. If g is the function defined by $g(x) = \int_0^x f(t) dt$, then g(-1) =

$$g(-1) = \int_0^{-1} f(t) dt = -\int_{-1}^0 f(t) dt = -(0.5)(2)(1) = \boxed{-1}$$

3. The function f is given by $f(x) = \int_1^x \sqrt{t^3 + 2} dt$. What is the average rate of change of f over the interval [0, 3]?

$$f_{\text{avg}} = \frac{f(3) - f(0)}{3 - 0} = \frac{\int_{1}^{3} f(x) \, dx - \int_{1}^{0} f(x) \, dx}{3} = \frac{\int_{1}^{3} f(x) \, dx + \int_{0}^{1} f(x) \, dx}{3} = \frac{\int_{0}^{3} f(x) \, dx}{3}$$

$$f_{\text{avg}} = \frac{\int_0^3 f(x) \, dx}{3} \approx \boxed{2.694}$$

The graph of f', the derivative of the function f, is shown above. If f(0) = 0, which of the following must be true?

- I. f(0) > f(1): False since the $\int_0^1 f'(x) dx > 0$: f(1) > f(0).
- II. f(2) > f(1) True since the $\int_1^2 f'(x) dx > 0$: f(2) > f(1).
- III. f(1) > f(3) False since the $\int_0^1 f'(x) dx < \int_0^3 f'(x) dx$

The graph of f is shown above for $0 \le x \le 4$. What is the value of $\int_0^4 f(x) dx$?

$$\int_0^4 f(x) \, dx = \int_0^2 f(x) \, dx + \int_2^4 f(x) \, dx$$

$$\int_0^4 f(x) \, dx = \frac{(1+5) \cdot 2}{2} + (2)(-3) = \boxed{0}$$

6. Let g be the function given by $g(x) = \int_0^x \sin(t^2) dt$ for $-1 \le x \le 3$. On which of the following intervals is g decreasing?

$$g'(x) = \frac{d}{dx} \left(\int_0^x \sin(t^2) dt \right) = \sin(x^2)$$

When $x \in [1.772, 2.507] g'(x) < 0$: g is decreasing.

7. Let g be the function defined by $g(x) = \int_{-1}^{x} \frac{t^3 - t^2 - 6t}{\sqrt{t^2 + 7}} dt$ On which of the following intervals is g decreasing?

$$g'(x) = \frac{d}{dx} \left(\int_{-1}^{x} \frac{t^3 - t^2 - 6t}{\sqrt{t^2 + 7}} dt \right) = \frac{x^3 - x^2 - 6x}{\sqrt{x^2 + 7}} = \frac{x(x - 3)(x + 2)}{\sqrt{x^2 + 7}}$$

When $x \in [0,3]$ and when $x \in (\infty,-2] \Longrightarrow g'(x) < 0$: g is decreasing.

The regions A, B, and C in the figure above are bounded by the graph of the function f and the x-axis. The area of region A is 14, the area of region B is 16, and the area of region C is 50. What is the average value of f on the interval [0,8]?

$$\int_0^8 f(x) \, dx = 14 - 16 + 50 = 48$$

$$f_{\text{avg}} = \frac{1}{8 - 0} \int_0^8 f(x) \, dx = \boxed{6}$$

9.
$$\frac{d}{dx} \left(\int_0^{x^3} \ln(t^2 + 1) \, dt \right) =$$

$$\frac{d}{dx}\left(F(x^3) - F(0)\right)$$
$$F'(x) = 3x^2 \cdot F'(x^3) = 3x^2 \left(\ln(x^6 + 1)\right)$$

10. If
$$\int_{1}^{10} f(x) dx = 4$$
 and $\int_{10}^{3} f(x) dx = 7$ then $\int_{1}^{3} f(x) dx$

$$\int_{1}^{10} f(x) dx = \int_{1}^{3} f(x) dx + \int_{3}^{10} f(x) dx$$
$$\int_{1}^{10} f(x) dx - \int_{3}^{10} f(x) dx = \int_{1}^{3} (x) dx$$
$$\int_{1}^{3} (x) dx = 4 - (-7) = \boxed{11}$$

3.08

1. Which of the following is a <u>left Riemann sum</u> approximation of $\int_{1}^{7} (4 \ln x + 2) dx$ with n subintervals of equal length?

(a)
$$\Delta x = \frac{7-1}{n} = \frac{6}{n}$$

(b)
$$x_k = a + \Delta x \cdot (k-1) = 1 + \frac{6(k-1)}{n}$$

$$\Longrightarrow \left[\lim_{n\to\infty}\sum_{k=1}^n\left[4\ln\left(1+\frac{6(k-1)}{n}\right)+2\right]\cdot\frac{6}{n}\right]$$

- 2. Which of the following definite integrals are equal to $\lim_{n\to\infty}\sum_{k=1}^n\left(-2+\frac{8k}{n}\right)^3\cdot\frac{8}{n}$
 - I. $\int_{-2}^{6} x^3 dx$: True assuming $\Delta x = \frac{8}{n}$ and $x_k = -2 + \frac{8k}{n}$
 - II. $\int_0^8 (-2+x)^3 dx$: True assuming $\Delta x = \frac{8}{n}$ and $x_k = \frac{8k}{n}$
 - III. $8 \int_0^1 (-2 + 8x)^3 dx$: True assuming $\Delta x = \frac{1}{n}$ and $x_k = \frac{k}{n}$

- 3. Which of the following definite integrals are equal to $\lim_{n\to\infty}\sum_{k=1}^n\frac{12k}{n}\cos\left(1+\frac{4k}{n}\right)\cdot\frac{4}{n}$
 - (a) $\Delta x = \frac{4}{n}$
 - (b) $x_k = \frac{4k}{n}$

$$\Longrightarrow \boxed{\int_0^4 3x \cos(1+x) \, dx}$$

- 4. Which of the following is a <u>left Riemann sum</u> approximation of $\int_2^8 \cos(x^2) dx$ with n subintervals of equal length?
 - (a) $\Delta x = \frac{8-2}{n} = \frac{6}{n}$
 - (b) $x_k = a + \Delta x \cdot (k-1) = 2 + \frac{6(k-1)}{n}$

$$\Longrightarrow \overline{\lim_{n\to\infty}\sum_{k=1}^n\sin\left(2+\frac{6(k-1)}{n}\right)^2\cdot\frac{6}{n}}$$

- 5. Which of the following definite integrals are equal to $\lim_{n\to\infty}\sum_{k=1}^n\sin\left(-1+\frac{5k}{n}\right)\cdot\frac{5}{n}$
 - I. $\int_{-1}^{4} \sin x \, dx$: True assuming $\Delta x = \frac{5}{n}$ and $x_k = -1 + \frac{5k}{n}$
 - II. $\int_0^5 \sin(-1+x) dx$: True assuming $\Delta x = \frac{5}{n}$ and $x_k = \frac{5k}{n}$

III.
$$5 \int_0^1 \sin(-1+5x) dx$$
: True assuming $\Delta x = \frac{1}{n}$ and $x_k = \frac{k}{n}$

6. Which of the following definite integrals are equal to $\lim_{n\to\infty}\sum_{k=1}^n\frac{10k}{n}\left(\sqrt{1+\frac{5k}{n}}\right)\cdot\frac{5}{n}$

$$\Longrightarrow \int_0^5 2x\sqrt{1+x}\,dx$$

7. Which of the following limits is equal to $\int_2^5 x^2 dx$

(a)
$$\Delta x = \frac{5-2}{n} = \frac{5}{n}$$

(b)
$$x_k = a + \Delta x \cdot k = 2 + \frac{5k}{n}$$

$$\Longrightarrow \left[\lim_{n\to\infty}\sum_{k=1}^n\left(2+\frac{3k}{n}\right)^2\cdot\frac{3}{n}\right]$$

The function f is given by $f(x) = \ln x$. The graph of f is shown above. Which of the following limits is equal to the area of the shaded region?

$$\implies \int_1^4 f(x) \, dx = \int_1^4 \ln(x) \, dx$$

(a)
$$\Delta x = \frac{4-2}{n} = \frac{3}{n}$$

(b)
$$x_k = a + \Delta x \cdot k = 1 + \frac{3k}{n}$$

$$\Longrightarrow \overline{\lim_{n\to\infty} \sum_{k=1}^{n} \ln\left(1 + \frac{3k}{n}\right) \cdot \frac{3}{n}}$$