Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 7

Enhanced Chemotaxis of T-Lymphocytes from 825T Allele Carriers

Fig. 8

Fig. 9

Time to AIDS

AIDS is defined as AIDS-defining disorders or CD4 count < 200

Event: CD4 Cell Count Below 200 per μl

Fig. 11

Event: Lowest CD4 Cell Count

Virus Copy Number determined by Quantitative PCR

 Fig. 13

CC CC CC TC TC

Fig. 14

Potential Structures of G $\beta 3$ and G $\beta 3s$ / G $\beta 3s$ -2

Fig. 15

ı Sf9 Cells varianten

- FIG. 17 \(\beta 3\)-original sequence of Levine. The exons are underlined alternately. The area which is omitted by cryptic splice as bold-faced.
- 1 gggtcgATGG GGGAGATGGA GCAACTGCGT CAGGAAGCGG AGCAGCTCAA GAAGCAGATT Start-ATG EXON 3 after Ansari-Lari Nucleotide 1-6 seem not to be affected
- 61 GCAGATGCCA GGAAAGCCTG TGCTGACGTT ACTCTGGCAG AGCTGGTGTC TGGCCTAGAG

 /EXON 5 Beginning

 => ENDE 1 KLON ANSARI
- 121 GTGGTGGGAC GAGTCCAGAT GCGGACGCGG CGGACGTTAA GGGGACACCT GGCCAAGATT
 EXON 5
- 181 TACGCCATGC ACTGGGCCAC TGATTCTAAG CTGCTGGTAA GTGCCTCGCA AGATGGGAAG EXON 5 / Beginning EXON 6
- 241 CTGATCGTGT GGGACAGCTA CACCACCAAC AAGGTGCACG CCATCCCACT GCGCTCCTCC
 EXON 6 / EXON 7
- 301 TGGGTCATGA CCTGTGCCTA TGCCCCATCA GGGAACTTTG TGGCATGTGG GGGGCTGGAC
 EXON 7
- 361 AACATGTGTT CCATCTACAA CCTCAAATCC CGTGAGGGCA ATGTCAAGGT CAGCCGGGAG
- 421 CTTTCTGCTC ACACAGGTTA TCTCTCCTGC TGCCGCTTCC TGGATGACAA CAATATTGTG
 EXON 7 /EXON 8
- 481 ACCAGCTCGG GGGACACCAC GTGTGCCTTG TGGGACATTG AGACTGGGCA GCAGAAGACT
 EXON 8 /EXON 9
- Gryptic SPLICING

 541 GTATTTGTGG GACACACGGG TGACTGCATG AGCCTGGCTG TGTCTCCTGA CTTCAATCTC

 EXON 9

 cryptic SPLICING
- 601 TTCATTTCGG GGGCCTGTGA TGCCAGTGCC AAGCTCTGGG ATGTGCGAGA GGGGACCTGC
 EXON 9
 cryptic SPLICING /
- 661 CGTCAGACTT TCACTGGCCA CGAGTCGGAC ATCAACGCCA TCTGTTTCTT CCCCAATGGA
 EXON 9 / Beginning EXON 10
- 721 GAGGCCATCT GCACGGGCTC GGATGACGCT TCCTGCCGCT TGTTTGACCT GCGGGCAGAC EXON 10
- 781 CAGGAGCTGA TCTGCTTCTC CCACGAGAGC ATCATCTGCG GCATCACGTC CGTGGCCTTC
 EXON 10 Polymorphism site acgtc tgt
- 841 TCCCTCAGTG GCCGCCTACT ATTCGCTGGC TACGACGACT TCAACTGCAA TGTCTGGGAC EXON 10
- 901 TCCATGAAGT CTGAGCGTGT GGGCATCCTC TCTGGCCACG ATAACAGGGT GAGCTGCCTG
 EXON 10 /Beginning EXON 11
- 961 GGAGTCACAG CTGACGGGAT GGCTGTGGCC ACAGGTTCCT GGGACAGCTT CCTCAAAATC
 EXON 11
- 1081 tgcccgaccc catctcattc aggtgttctc ttctatattc cgggtgccat tcccactaag
 EXON 11
- 1141 ctttctcctt tgagggcagt ggggagcatg ggactgtgcc tttgggaggc agcatcaggg EXON 11

- 1201 acacaggggc aaagaactgc cccatctcct cccatggcct tccctcccca cagtcctcac EXON 11
- 1261 agcctetece ttaatgagea aggacaacet geceeteece agecetttge aggeceagea EXON 11
- 1321 gacttgagtc tgaggcccca ggccctagga ttcctccccc agagccacta cctttgtcca EXON 11

'Ban Folymondaemus' totggcac

- 1381 ggcctgggtg gtatagggcg tttggccctg tgactatggc tctggcacca ctagggtcct EXON 11
- 1441 ggccctcttc ttattcatgc tttctccttt ttctaccttt ttttctctcc taagacacct EXON 11
- 1501 gcaataaagt gtagcaccct ggt EXON 11 POLY A SITE

Fig. 18 Sequence with two polymorphisms (Numbering after the Levine sequence)

gggtcgatgg	gggagatgga	gcaactgcgt	caggaagcgg	agcagctcaa	gaagcagatt	60
gcagatgcca	ggaaagcctg	tgctgacgtt	actctggcag	agctggtgtc	tggcctagag	120
gtggtgggac	gagtccagat	gcggacgcgg	cggacgttaa	ggggacacct	ggccaagatt	180
tacgccatgc	actgggccac	tgattctaag	ctgctggtaa	gtgcctcgca	agatgggaag	240
ctgatcgtgt	gggacagcta	caccaccaac	aaggtgcacg	ccatcccact	gcgctcctcc	300
tgggtcatga	cctgtgccta	tgccccatca	gggaactttg	tggcatgtgg	ggggctggac	360
aacatgtgtt	ccatctacaa	cctcaaatcc	cgtgagggca	atgtcaaggt	cagccgggag	420
ctttctgctc	acacaggtta	tctctcctgc	tgccgcttcc	tggatgacaa	caatattgtg	480
accagctcgg	gggacaccac	gtgtgccttg	tgggacattg	agactgggca	gcagaagact	540
gtatttgtgg	gacacacggg	tgactgcatg	agcctggctg	tgtctcctga	cttcaatctc	600
ttcatttcgg	gggcctgtga	tgccagtgcc	aagctctggg	atgtgcgaga	ggggacctgc	660
cgtcagactt	tcactggcca	cgagtcggac	atcaacgcca	tctgtttctt	ccccaatgga	720
gaggccatct	gcacgggctc	ggatgacgct	tcctgccgct	tgtttgacct	gcgggcagac	780
caggagctga	tctgcttctc	ccacgagagc	atcatctgcg	gcatcacgtc	t gtggccttc	840
tccctcagtg	gccgcctact	attcgctggc	tacgacgact	tcaactgcaa	tgtctgggac	900
tccatgaagt	ctgagcgtgt	gggcatcctc	tctggccacg	ataacagggt	gagctgcctg	960
ggagtcacag	ctgacgggat	ggctgtggcc	acaggttcct	gggacagctt	cctcaaaatc	1020
tggaactgag	gaggctggag	aaagggaagt	ggaaggcagt	gaacacactc	agcagccccc	1080
tgcccgaccc	catctcattc	aggtgttctc	ttctatattc	cgggtgccat	tcccactaag	1140
ctttctcctt	tgagggcagt	ggggagcatg	ggactgtgcc	tttgggaggc	agcatcaggg	1200
acacaggggc	aaagaactgc	cccatctcct	cccatggcct	tccctcccca	cagtcctcac	1260
agcctctccc	ttaatgagca	aggacaacct	gcccctcccc	agccctttgc	aggcccagca	1320
gacttgagtc	tgaggcccca	ggccctagga	ttcctcccc	agagccacta	cctttgtcca	1380
tctggcac t a	ctaggcctgg	gtggtatagg	gcgtttggcc	ctgtgactat	ggctctggca	1440
ccactagggt	cctggccctc	ttcttattca	tgctttctcc	tttttctacc	ttttttctc	1500
tcctaagaca	cctgcaataa	agtgtagcac	cctggt .			1536

- Fig. 19 Nucleic acid sequence of cDNA of Gß3 and description of the deletion in Gß3 and Gß3s-2. Numbering referenced to the cDNA of Levine et al.(Levine, M.A., Smallwood, P.M., Moen, P.T.,Jr., Helman, L.J., and Ahn, T.G. Molecular cloning of ß3 subunit, a third form of the G protein beta-subunit polypeptide.

 Proc.Natl.Acad.Sci. USA 87(6):2329-2333, 1990) Here numbering does not begin with start codon ATG, but 6 nucleotides earlier in the 5' area.
- 1 gggtcgATGG GGGAGATGGA GCAACTGCGT CAGGAAGCGG AGCAGCTCAA GAAGCAGATT
 Start-ATG EXON 3
 Nucleotide 1-6 seem not to be affected
- 61 <u>GCAGATGCCA GGAAAGCCTG TGCTGACGTT ACTCTGGCAG AGCTGGTGTC TGGCCTAGAG</u>

 /Beginn EXON 4 /EXON 5 Beginning
- 121 GTGGTGGAC GAGTCCAGAT GCGGACGCGG CGGACGTTAA GGGGACACCT GGCCAAGATT
 EXON 5
- 181 TACGCCATGC ACTGGGCCAC TGATTCTAAG CTGCTGGTAA GTGCCTCGCA AGATGGGAAG
 EXON 5 / Beginning EXON 6
- 241 CTGATCGTGT GGGACAGCTA CACCACCAAC AAGGTGCACG CCATCCCACT GCGCTCCTCC

 EXON 6 / EXON 7
- 301 TGGGTCATGA CCTGTGCCTA TGCCCCATCA GGGAACTTTG TGGCATGTGG GGGGCTGGAC
 EXON 7
- 361 <u>AACATGTGTT CCATCTACAA CCTCAAATCC CGTGAGGGCA ATGTCAAGGT CAGCCGGGAG</u>
 EXON 7
- 421 <u>CTTTCTGCTC ACACAG</u>GTTA TCTCTCCTGC TGCCGCTTCC TGGATGACAA CAATATTGTG
 EXON 7 /EXON 8

Dalleston bot Elive

481 ACCAGCTCGG GGGACACCAC GTG GGGACATHG ACAGHGGGGA GGACAAGACT EXON 8 /EXON 9

EXVI GUNERITARIO GNANCIAGGE RENGINGANO NEGGIGIAR RENGINARIO GURACAMONO.

501. THEORETHINGE CONCENSION THEORY TICC ANGETETING ATTITIONAL GIGGACETIC
EXON 9

Dolokion in Officz

661 CGTCAGACTT TCACTGGCCA CGAGTCGGAC ATCAACGCCA TCTGTTT COMMINGAE
EXON 9 / Beginn EXON 10
Intron dazwischen 1607 bp

Deletion in Gβ3s2

- 721 GAGGCCATCT GCAGGGGCT GGATGACGCT TCCTGCCGCT TGTTTGACCT GCGGGCAGAC
 EXON 10
- 781 MAGNACTEN TERRETTICTE CONCERNACE ATTENDED CONTINUE CO
- 841 TCCCTCAGTG GCCGCCTACT ATTCGCTGGC TACGACGACT TCAACTGCAA TGTCTGGGAC EXON 10
- 901 TCCATGAAGT CTGAGCGTGT GGGCATCCTC TCTGGCCACG ATAACAGGGT GAGCTGCCTG

 EXON 10 /Beginning EXON 11 (Intron dazw. 989 bp)
- 961 GGAGTCACAG CTGACGGGAT GGCTGTGGCC ACAGGTTCCT GGGACAGCTT CCTCAAAATC
 EXON 11
- 1021 TGGAACTGAg gaggetggag aaagggaagt ggaaggeagt gaacacacte ageageeeee EXON 11

End of Open Reading Frame B3-3

1081 tgcccgaccc catctcattc aggtgttctc ttctatattc cgggtgccat tcccactaag
EXON 11

- 1141 ctttctctt tgagggcagt ggggagcatg ggactgtgcc tttgggaggc agcatcaggg
 EXON 11
- 1201 <u>acacagggc aaagaactgc cccatctcct cccatggcct tccctccca cagtcctcac</u>
 EXON 11
- 1261 agectetece ttaatgagea aggacaacet geeetteee agecetttge aggeeeagea
 EXON 11
- 1321 gacttgagtc tgaggcccca ggccctagga ttcctcccc agagccacta cctttgtcca
 EXON 11

C114231

tctggcacta cta

- 1381 ggcctgggtg gtatagggcg tttggccctg tgactatggc tctggcaca ctagggtcct
 EXON 11
- 1441 ggccctcttc ttattcatgc tttctccttt ttctaccttt ttttctctcc taagacacct
 EXON 11
- 1501 gcaataaagt gtagcaccct ggt
 EXON 11 POLY A SITE

FIG. 20 Amino acid sequence of Gß3s-2 (Combined production)

atg Met	. Gl ^y	g gag ⁄ Glu	g ato 1 Met	g gag : Glu 5	g caa Gln	ctg Leu	cgt Arg	cag Gln	gaa Glu 10	gcg Ala	gag Glu	cag Gln	ctc Leu	aag Lys 15	aag Lys	48
cag Gln	att Ile	gca Ala	gat Asp 20	gcc Ala	agg Arg	aaa Lys	gcc Ala	tgt Cys 25	gct Ala	gac Asp	gtt Val	act Thr	ctg Leu 30	gca Ala	gag Glu	96
ctg Leu	gtg Val	ser 35	ggc Gly	cta Leu	gag Glu	gtg Val	gtg Val 40	gga Gly	cga Arg	gtc Val	cag Gln	atg Met 45	cgg Arg	acg Thr	cgg Arg	144
cgg Arg	acg Thr 50	tta Leu	agg Arg	gga Gly	cac His	ctg Leu 55	gcc Ala	aag Lys	att Ile	tac Tyr	gcc Ala 60	atg Met	cac His	tgg Trp	gcc Ala	192
act Thr 65	gat Asp	tct Ser	aag Lys	ctg Leu	ctg Leu 70	gta Val	agt Ser	gcc Ala	tcg Ser	caa Gln 75	gat Asp	gly aaa	aag Lys	ctg Leu	atc Ile 75	240
gtg Val	tgg Trp	gac Asp	agc Ser	tac Tyr 80	acc Thr	acc Thr	aac Asn	aag Lys	gtg Val 85	cac His	gcc Ala	atc Ile	cca Pro	ctg Leu 90	cgc Arg	288
					acc Thr			Tyr					Asn			336
gca Ala	tgt Cys	999 Gly 110	Gly 999	ctg Leu	gac Asp 11	Asn	atg Met	tgt Cys	tcc Ser	atc Ile 12	Tyr	aac Asn	ctc Leu	aaa Lys	tcc Ser	384
cgt Arg	gag Glu 125	ggc Gly	aat Asn	gtc Val	aag Lys	gtc Val 130	agc Ser	cgg Arg	gag Glu	Leu	tct Ser 135	gct Ala	cac His	aca Thr	ggt Gly	432
tat Tyr 140	ctc Leu	tcc Ser	tgc Cys	tgc Cys 145	cgc Arg	ttc Phe	ctg Leu	gat Asp	gac Asp 150	aac Asn	aat Asn	att Ile	gtg Val	acc Thr 155	agc Ser	480
tcg Ser 160	gly ggg	gac Asp	acc Thr	acg Thr	tgt Cys 165	gcc Ala	ttg Leu	tgg Trp	gac Asp	att Ile 170	gag Glu	act Thr	Gly 999	cag Gln	cag Gln 175	528
aag Lys	act Thr	gta Val	ttt Phe	gtg Val 180	gga Gly	cac His	acg Thr	ggt Gly	gac Asp 185	tgc Cys	atg Met	agc Ser	ctg Leu	gct Ala 190	gtg Val	576
tct ser	cct Pro	Asp	ttc Phe 195	aat Asn	ctc Leu	ttc Phe	Ile	tcg Ser 200	gly aaa	gcc Ala	tgt Cys	Asp	gcc Ala 205	agt Ser	gcc Ala	624

aag Lys	ctc Leu	tgg Trp 210	gat Asp	gtg Val	cga Arg	Glu	999 Gly 215	acc Thr	tgc Cys	cgt Arg	cag Gln	act Thr 220	ttc Phe	act Thr	ggc Gly	672
cag His	gag Glu 225	tcg Ser	gac Asp	atc Ile	aac Asn	gcc Ala 230	atc Ile	tgt Cys	ttc Phe	ttc Phe	tcc Ser 235	ctc Leu	agt Ser	ggc Gly	cgc Arg	720
cta Leu 240	cta Leu	ttc Phe	gct Ala	ggc Gly 245	tac Tyr	gac Asp	gac Asp	ttc Phe	aac Asn 250	tgc Cys	aat Asn	gtc Val	tgg Trp	gac Asp 255	tcc Ser	768
atg Met	aag Lys	tct Ser	gag Glu 260	cgt Arg	gtg Val	ggc Gly	atc Ile	ctc Leu 265	tct Ser	ggc Gly	cac His	gat Asp	aac Asn 270	agg Arg	gtg Val	816
agc Ser	tgc Cys	ctg Leu 275	gga Gly	gtc Val	aca Thr	gct Ala	gac Asp 280	Gly aaa	atg Met	gct Ala	gtg Val	gcc Ala 285	aca Thr	ggt Gly	tcc Ser	864
tgg Trp	gac Asp 290	agc Ser	ttc Phe	ctc Leu	aaa Lys	atc Ile 295	tgg Trp	aac Asn	tga ***							894