# DATA SCIENCE FOR ENGINEERS

Week 7

Session Co-Ordinator: Abhijit Bhakte



# Parameter and Hyper parameter

#### **PARAMETER HYPERPARAMETER Estimated during the** Values are set beforehand. training with historical data. It is a part of the model. External to the model. Not a part of the trained model The estimated value is saved and hence the values are not with the trained model. saved. **Dependent on the dataset** Independent of that the system is trained the dataset. with.

## Example: Neural Network Model







### (Model Design + Hyperparameters) → Model Parameters

The building blocks:

- # Layers
- Activations
- Optimizers

The knobs that you can turn:
- Learning
Rate
- Dropout

The variables learned from the data:
- weights ...

# How to select hyparameters?



## Methods

Leave one out cross validation (LOOCV)



K-fold cross validation



# Selection of hyperparameter

- Given graph is for the Neural network model that predicts the square of a number
- When cross validation is performed the best hyper parameters are chosen as 2 hidden layers with 10 neuron



- **Q)** What is the primary purpose of cross-validation in machine learning?
- A) To train multiple models simultaneously for faster convergence.
- B) To evaluate a model's performance and assess its generalization to unseen data.
- C) To increase the complexity of a model for better accuracy.
- D) To reduce overfitting by adding more training data.
- **Q)** Which of the following is not a commonly used cross-validation technique?
- A) K-Fold Cross-Validation
- B) Leave-One-Out Cross-Validation (LOOCV)
- C) Stratified Cross-Validation
- D) Train-Test Split

It helps in estimating how well a model will perform on new, unseen data by simulating the process of training and testing on different subsets of the data.

#### Solution

It involves splitting the dataset into two parts: a training set and a test set, where the model is trained on the training set and evaluated on the test set. While it is a common method for evaluation, it is not a cross-validation technique.

- **Q)** Which statement best describes Leave-One-Out Cross-Validation (LOOCV)?
- A) It is computationally efficient for large datasets.
- B) It divides the data into K subsets and uses K-folds for training and 1 fold for testing.
- C) It uses a single data point for testing and the remaining data for training.
- D) It is primarily used for time series data.
- **Q)** Which of the following is an example of a hyperparameter?
- A) The weights of a neural network's hidden layers.
- B) The learning rate of an optimization algorithm.
- C) The input features of a dataset.
- D) The training data used for model training.

A hyperparameter is a configuration setting that is set before the model training begins

## Classification

- > Classification is a supervised learning that assign class to the data points
- > Examples:
- Email Spam Detection
- Sentiment Analysis
- Image Classification
- Medical Diagnosis
- Fraud Detection
- Language Identification



# Types of Classification

## **Binary classification**Includes two Classes



## Multiclass classification Includes more than two Classes



# Types of Classification

Linearly Separable Problem

Linear Boundary



Non-linearly Separable Problem
Nonlinear Boundary



# Logistic Regression

- > Classification is the technique which draw linear boundary
- > Goal: Given new sample data predict the class from which the data point likely to have originated
- > Simply guess of the class is not the good way to classify the sample hence probability is introduces to provide better understanding



# How to model probability

- > To classify the two classes we use decision boundary (linear equation)
- > The value of equation may vary from (-inf to +inf)
- > To bring this value in (0 to 1) range we use sigmoid function

$$f(x) = \frac{1}{1 + e^{-(x)}}$$



# Logistic Regression

> We have linear boundary equation

$$Z = \beta_0 + \beta_1 X$$
  
 $h\Theta(x) = sigmoid(Z)$ 

> Applying Sigmoid function

$$egin{aligned} h heta(X) &= rac{1}{1+e^{-\left(eta_{\,0} + eta_{\,1} X
ight)}} \end{aligned}$$

> To learn the model parameter we use loss function

$$Cost(h_{\theta}(x), y) = \begin{cases} -log(h_{\theta}(x)) & \text{if } y = 1\\ -log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

# How the model learns during training



- **Q)** What type of machine learning problem is logistic regression primarily used for?
- A) Regression
- **B)** Classification
- C) Clustering
- D) Dimensionality Reduction

- **Q)** In logistic regression, what is the output range of the logistic function (sigmoid function)?
- A) [-1, 1]
- **B)** [0, 1]
- C) [0, ∞)
- D) (-∞, ∞)

Logistic regression is a classification algorithm used to model the probability of a binary outcome.

#### Solution

The logistic function outputs probabilities between 0 and 1, making it suitable for binary classification. **Q)** What is the purpose of the sigmoid function in logistic regression?

#### A) To convert odds to probability.

- B) To model the linear relationship between features and target.
- C) To normalize the feature values.
- D) To calculate the mean squared error.

- **Q)** In logistic regression, what is the cost function that is minimized during training?
- A) Mean Absolute Error (MAE)
- B) Mean Squared Error (MSE)
- C) Cross-Entropy Loss (Log Loss)
- D) Root Mean Square Error (RMSE)

#### Solution

The <u>sigmoid function</u> is used to <u>map</u> the <u>log-odds</u> (<u>logit</u>) to a <u>probability</u> value between 0 and 1.

#### Solution

The cross-entropy loss, also known as log loss, is used as the cost function in logistic regression.

- **Q)** In logistic regression, how are model coefficients (weights) typically determined during training?
- A) Randomly initialized
- B) Calculated using gradient descent
- C) Set to 1 for all features
- D) Assigned based on feature importance

- **Q)** Which evaluation metric is commonly used to assess the performance of a logistic regression model?
- A) R-squared ( $R^2$ )
- B) Mean Absolute Error (MAE)
- C) Accuracy, Precision, Recall, F1-Score
- D) Root Mean Square Error (RMSE)

Gradient descent is commonly used to iteratively update model coefficients to minimize the cost function.

#### Solution

Logistic regression models are often evaluated using classification metrics such as accuracy, precision, recall, and F1-Score, depending on the problem and requirements.

## R Studio

- Wheat Dataset
- Input variables: Perimeter, Area, Compactness, length and width of kernel ... (# of features = 7)
- Output Labels: Seed Types (Types of seed = 3)



- **Q)** What is one-hot encoding used for in classification?
- A) Reducing the dimensionality of data.
- B) Encoding categorical variables as binary vectors.
- C) Scaling numerical features.
- D) Visualizing data in scatter plots.

One-hot encoding is a technique used to represent categorical variables as binary vectors to make them compatible with machine learning algorithms.

- **Q)** In binary classification, what does precision measure?
- A) The ability to correctly identify positive instances.
- B) The ability to correctly identify negative instances.
- C) The ratio of true positives to all positive predictions.
- D) The ratio of true negatives to all negative predictions.

#### Solution

Precision measures how many of the positive predictions made by a model are actually correct, indicating the model's ability to identify positive instances accurately.

# Performance metric

#### Model



| Actual   | Covid-Test | Туре |
|----------|------------|------|
| Positive | Positive   | TP   |
| Positive | Negative   | FN   |
| Negative | Positive   | FP   |
| Negative | Negative   | TN   |

- **Q)** What is the purpose of a confusion matrix in classification?
- A) To visualize data in 3D space.
- B) To measure the accuracy of a regression model.
- C) To assess the performance of a classification model.
- D) To calculate the mean squared error.

A confusion matrix is used to evaluate the performance of a classification model by providing information about true positives, true negatives, false positives, and false negatives.

- **Q)** In binary classification, what does precision measure?
- A) The ability to correctly identify positive instances.
- B) The ability to correctly identify negative instances.
- C) The ratio of true positives to all positive predictions.
- D) The ratio of true negatives to all negative predictions.

#### Solution

Precision measures how many of the positive predictions made by a model are actually correct, indicating the model's ability to identify positive instances accurately.

- **Q)** In a binary classification problem, if a model makes 80 true positive predictions, 10 false positive predictions, 5 false negative predictions, and 105 true negative predictions, what is the accuracy of the model?
- A) 0.44
- B) 0.92
- C) 0.96
- D) 0.90

- **Q)** A classification model predicts 120 instances as positive, out of which 100 are actually positive. What is the precision of the model?
- A) 0.95
- B) 0.90
- C) 0.83
- D) 0.75

#### Solution

Precision = (TP) / (TP+ FP) Precision = 100 / (100 + 20) = 0.83

## ROC-(receiver operating characteristic) curve

- ROC Curve is a graphical representation of a model's ability to distinguish between two classes.
- Used in classification problems, particularly in machine learning and medical diagnosis





**Q)** If a classifier has a true positive rate of 0.90 and a false positive rate of 0.15, what is the specificity of the classifier?

- A) 0.15
- B) 0.10
- C) 0.85
- D) 0.90

#### Solution

Specificity = 1 - False Positive Rate Specificity = 1 - 0.15 = 0.85

**Q)** A classification model has 120 true negatives and 30 false positives. What is the false positive rate of the model?

#### A) 0.20

- B) 0.25
- C) 0.80
- D) 0.10

#### Solution

FPR = (FP) / (FP+TN)FPR = 30 / (30 + 120) = 0.2