- 1. Suppose $X \sim \text{Poisson}(\lambda)$, $Y \sim \text{Poisson}(\mu)$, and that X and Y are independent. Let Z = X + Y. Prove that $Z \sim \text{Poisson}(\lambda + \mu)$ via both of the following approaches.
 - (a) Using MGF method.
 - (b) By finding $\mathbb{P}(Z=z)$ directly.
- 2. Two random variables X and Y independently follow a distribution with density function given by

$$f(y) = \begin{cases} \frac{1}{4} y e^{-y/2}, & y > 0\\ 0, & \text{otherwise} \end{cases}.$$

Find density function of the average: Z = (X + Y)/2.

3. Let measurements from a machine be $X_1, \ldots, X_n \stackrel{iid}{\sim} N(\mu, 1)$, and denote the sample mean computed from n samples as \bar{X}_n : i.e.,

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i.$$

(a) Using above notation, \bar{X}_9 is sample mean of X_1, \ldots, X_9 . Suppose we know that

$$\mathbb{P}\left(|\bar{X}_9 - \mu| \le 0.3\right) = 0.6318.$$

Interpret the probability statement in plain words.

- (b) Determine $\mathbb{P}(|\bar{X}_n \mu| \leq 0.3)$ for increasing n. In particular, compute the probabilities for \bar{X}_{16} , \bar{X}_{25} , \bar{X}_{36} , \bar{X}_{49} , and \bar{X}_{64} .
- (c) What is the pattern of \bar{X}_n as n increases?
- 4. Suppose now that a different machine's measurements are $V_1, \ldots, V_n \stackrel{iid}{\sim} N(\mu, 2)$, where definition of \bar{V}_n is identical.
 - (a) Again, determine $\mathbb{P}\left(|\bar{V}_n \mu| \leq 0.3\right)$ for increasing n. In particular, compute the probabilities for \bar{V}_{16} , \bar{V}_{25} , \bar{V}_{36} , \bar{V}_{49} , and \bar{V}_{64} .
 - (b) What is the pattern as n increases?
 - (c) How do these probabilities \bar{V}_n for each n compare with probabilities \bar{X}_n in problem 3?
- 5. A scale measures weight in pounds, that are distributed following a normal distribution with variance of 4 square pounds.
 - (a) Based on n=9 measurements, find the probability that sample mean will be within 2 pounds of the true weight?
 - (b) We would like to measure the sample mean within 1 pound with probability 0.9. How many measurements are needed to ensure this degree of accuracy?
- 6. Suppose that $V \sim f(v)$ where

$$f(v) = \begin{cases} e^{-(v-\alpha)}, & v > \alpha \\ 0, & \text{otherwise} \end{cases}.$$

where $\alpha > 0$. Let V_1, \ldots, V_n denote random sample from this distribution.

- (a) Find density function of $Y_1 = \min \{V_1, \dots, V_n\}$
- (b) Compute the expected value of Y_1 .
- 7. Let $X_1, \ldots, X_n \stackrel{iid}{\sim} \text{Uniform}(0,1)$. Find the probability density function for $V = Y_n Y_1$, where $Y_1 = \min\{X_1, \ldots, X_n\}$ and $Y_n = \max\{X_1, \ldots, X_n\}$.
- 8. A scale measures weight in pounds, that are distributed following a normal distribution with an unknown variance. Suppose we estimate the variance to be S^2 from n=9 random sample of measurements. Find a and b such that

$$\mathbb{P}(a \le \bar{Y} - \mu \le b) = 0.90.$$

Is there an ambiguity in choosing a and b? What would be a reasonable decision to make? Note: Your answer will be a function of S.

- 9. (a) Let $V \sim \chi^2$ with ν degrees of freedom. Use the moment generating function to find $\mathbb{E}(V)$ and $\mathbb{V}(V)$.
 - (b) We know $(n-1)S^2/\sigma^2 \sim \chi^2$ with n-1 degrees of freedom. Using the result from previous part to compute $\mathbb{E}(S^2)$ and $\mathbb{V}(S^2)$.
- 10. A fair coin is tossed 20 times and all tosses are independent.
 - (a) What is the true probability of obtaining exactly 10 heads? Compute and compare the probability when approximated by an appropriate normal distribution.
 - (b) Compute approximate probability of obtaining more than 7 heads both with and without continuity correction. Compare these approximations to the exact probability found using pmf of binomial distribution.