MECH 221 Computer Lab 3

Root Finding with Newton's Method

Instructions

Write a function called **newton** which implements Newton's method for finding approximate roots of equations. The function should have the following properties:

$\hfill\square$ newton has 5 input parameters f, Df, x0, tolerance and max_steps where:
 ☐ f is a function handle representing a real-valued function f(x) ☐ Df is a function handle representing the derivative f'(x) ☐ x0 is a starting point near a root of f(x) ☐ tolerance is the desired accuracy of the method (ie. the program ends when it has found a value c satisfying f(c) < tolerance) ☐ max_steps is the maximum number of iterations before forcing the algorithm to stop
$\hfill\square$ newton returns 3 outputs root, num_steps and total_time where:
\square root is a value c which satisfies $ f(c) <$ tolerance (or it is set to NaN if no root is found)
□ num_steps is the number of iterations of the algorithm performed in the process of finding an approximate root (or it is set to NaN if no root is found)
\Box total_time is the time elapsed during the implementation of Newton's method (or it is set to NaN if no root is found)
\square newton displays a summary when complete. For example, if $f(x) = x^2 - 2$ then:
>> $[r,s,t] = newton(@(x) x^2 - 2,@(x) 2*x,1.4,0.00000001,10);$ Found root 1.41421356421356 after 2 iterations in 0.00042557 seconds.
Another example, if $f(x) = x^2 - 7$ then:
>> f = $@(x) x^2 - 7$; Df = $@(x) 2*x$; >> $[r,n,t]$ = newton(f,Df,2,10^(-7),10); Found root 2.64575131106469 after 4 iterations in 0.00014795 seconds.

However, the summary should indicate that no root was found if the program terminates when the number of iterations exceeded max_steps. For example:

```
>> f = @(x) cos(x) - x; Df = @(x) - sin(x) - 1;
>> [r,n,t] = newton(f,Df,50,10^(-7),10);
Program terminated after 10 iterations. No root found.
```

Finally, the summary should indicate that no root was found if the program terminates if $f'(x_n) = 0$. For example:

```
>> f = @(x) 1 - x^2; Df = @(x) -2*x;

>> [r,n,t] = newton(f,Df,0,10^(-7),10);

Program terminated because f'(x)=0. No root found.
```

In these last two degenerate cases, the function returns NaN for all three output parameters root, num_steps and total_time.

- □ Write a description of your function (including its input and output parameters) in the lines right below the first line which contains the function keyword. Include your name and student number.
- □ Do **not** use the MATLAB function fzero.

When you have completed each item above, submit your M-file (called newton.m) to Connect.

Hints

Given a function f(x), Newton's method starts with an initial guess x_0 for a root of f(x) (ie. a solution of the equation f(x) = 0) and then computes a sequence of approximations of a root of f(x) by the recursive formula

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

If the initial value x_0 is chosen near an actual root of f(x), then the sequence converges quickly to an actual root. There are several ways to write an implementation of Newton's method. Here are a few hints:

- 1. It is possible to use either a for loop or a while loop to implement Newton's method.
- 2. A for loop would execute for values n from 1 to max_steps but with a break if the condition $|f(x_n)| < \text{tolerance}$ is met.
- 3. A while loop would continue to execute if $|f(x_n)| \ge$ tolerance and the number of iterations of Newton's method is less than max_steps.
- 4. Use tic and toc at the appropriate places in your code and set total_time to the total elapsed time.
- 5. Use disp to display a summary of the process in the command window. If the process was stopped by the number of iterations exceeding max_steps, the summary should indicate no root was found and then set root to NaN (this represents not a number in MATLAB).