

Introduction to Molecular Dynamics (MD) simulations

Objectives:

- (1) Learn the general algorithm of MD
- (2) Learn the general procedure of doing MD

Algorithm for Molecular Simulations

1. Input initial conditions

Potential interaction V as a function of atom positions Positions ${\bf r}$ of all atoms in the system Velocities ${\bf v}$ of all atoms in the system $\downarrow\downarrow$

repeat 2,3,4 for the required number of steps:

2. Compute forces

The force on any atom

$$\mathbf{F}_i = -\frac{\partial V}{\partial \mathbf{r}_i}$$

is computed by calculating the force between non-bonded atom pairs:

$$\mathbf{F}_i = \sum_j \mathbf{F}_{ij}$$

plus the forces due to bonded interactions (which may depend on 1, 2, 3, or 4 atoms), plus restraining and/or external forces.

The potential and kinetic energies and the pressure tensor may be computed.

 \Downarrow

3. Update configuration

The movement of the atoms is simulated by numerically solving Newton's equations of motion

$$egin{aligned} rac{\mathrm{d}^2\mathbf{r}_i}{\mathrm{d}t^2} &= rac{\mathbf{F}_i}{m_i} \ \mathrm{or} \ rac{\mathrm{d}\mathbf{r}_i}{\mathrm{d}t} &= \mathbf{v}_i; \ rac{\mathrm{d}\mathbf{v}_i}{\mathrm{d}t} &= rac{\mathbf{F}_i}{m_i} \end{aligned}$$

4. if required: Output step

write positions, velocities, energies, temperature, pressure, etc.

Algorithm of MD simulations

- · So, we need
 - initial configurations (position and velocities)
 - Forces (we will talk in detail about this in the force field session)
 - Way to propagate our system
 - We will see how to set up our initial configuration in the example we do.
 - · We will talk little about the forces and related details
 - We will then talk about our MD parameters that relate to how we propagate our system.

MD → Gromacs translation

- Initial positions and velocities:
 - This is called system initialization
 - Ultimately, we want a coordinate file that has the positions of all our atoms that we can use as a starting configuration.

Forces

- · We will specify details of this in the topology file
- We will give some more details in the MDP file (gromacs molecular dynamics parameter file)
- Propagation
 - Mostly done in the MDP file.

Topology file: Defining molecules

Gromacs topology file

Types of atoms in the system

Define the molecules in your system: atoms, and how they are connected

Water is defined a bit special to keep it rigid

Define the system: how many molecules of each type are in your system?

```
(base) [ss@~/Gromacs-Tutorial/spcesims] more spce_MASTER.top
 defaults ]
 nbfunc
                comb-rule
                                 gen-pairs
                                                  fudgeLJ fudgeQQ
  1
                                                  1.0
                                                           1.0
                                 no
 atomtypes ]
                 -0.8476
        15.9994
                               3.16557e-01
                                             6.50629e-01
HW
         1.0080
                  0.4238 A
                               0.00000e+00
                                             0.00000e+00
 moleculetype ]
 molname
                nrexcl
SOL
 atoms ]
     at type
  id
                  res nr res name
                                     at name
                                               cg nr charge
                                                                 mass
                       SOL
                                                  -0.8476
      OW
              1
                                 OW
                                                             15.99940
      HW
              1
                       SOL
                                 HW1
                                           1
                                                   0.4238
                                                              1.00800
  3
              1
      HW
                       SOL
                                 HW2
                                           1
                                                   0.4238
                                                              1.00800
 settles ]
                         dhh
        funct
                doh
                0.1
                         0.16330
        1
 exclusions ]
                3
        1
                3
 system ]
Pure SPCE water
[ molecules ]
SOL
       4055
```

Flexible water topology

Types of atoms in the system

Define the molecules in your system: atoms, and how they are connected

Water is defined a bit special to keep it rigid

Define the system: how many molecules of each type are in your system?

```
nbfunc
                comb-rule
                                gen-pairs
                                                 fudgeLJ fudgeQQ
 atomtypes ]
                                                            epsilon
                                               sigma
                      charge
                                 ptype
 Water parameters are those of TIP3P
                                       model
          15.9994
                            -0.834
                                                3.15061e-01 6.36386e-01
            1.008
                             0.417
                                                 0.000
                                                              0.000
 molecules in the system are defined here. These molecules comprise
 the above-listed atomtypes
 moleculetype ]
  name of molecule
 molname nrexcl
            2
 SOL
 atoms that form the molecule
  atoms ]
                          SOL
                                                  -0.834
                          SOL
                                   HW1
                                           1
                                                   0.4170
          HW
                          SOL
                                   HW2
                                                   0.4170
 bonds ]
           funct length
                           502416.0
                  0.09572
                           502416.0
                  0.15139 502416.0
 further details
 exclusions ]
          3
    1
 define the system here
 system ]
TIP3P water
[ molecules ]
SOL 216
```

What would the topology file for butane look like?

Butane topology

- [defaults]
- [atomtypes]
- [moleculetype]
 - [atoms]
 - [bonds]
 - [angles]
 - [dihedrals]
- [system]
 - [molecules]

Butane+water topology

- [defaults]
- [atomtypes]
- [moleculetype]
 - [atoms]
 - [bonds]
 - [angles]
 - [dihedrals]
- [moleculetype]
 - [atoms]
 - [bonds]
 - [angles]
 - [dihedrals]
- [system]
 - [molecules]

Molecular dynamics parameters (MDP)

```
0.002
                                                 ; time step
dt
nsteps
                       50000
                                                ; number of steps
nstcomm
                       10
                                                 ; reset c.o.m. motion
nstcalcenergy
                       10
nstxout
                                                ; write coords
                       100
                                                : write velocities
nstvout
                       100
                                                ; print to logfile
nstlog
                       100
nstenergy
                       100
                                                 ; print energies
compressed-x-grps
                       System
nstxout-compressed
                       100
nstlist
                       10
                                                 ; update pairlist
coulombtype
                       PME 📛
rvdw
                       0.85
                                                 ; cut-off for vdw
                                                  ; cut-off for coulomb
rcoulomb
                       0.85
rlist
                       0.85
                                                 ; cut-off for coulomb
Tcoupl
                       v-rescale
                       300.0
ref_t
tc-grps
                       System
                       0.5
tau_t
                       Berendsen
Pcoup1
Pcoupltype
                      isotropic
                                                 ; pressure geometry
                                                 ; p-coupoling time
                       0.5
tau_p
compressibility
                       4.5e-5
                                                 ; compressibility
ref_p
                       1.0
                                                 ; ref pressure
DispCorr
                                                 ; long range correction
                       EnerPres <
                                                 ; generate init. vel
gen_vel
                       yes _____
                       300
gen_temp
                                                 ; init. temp.
                       372340
gen_seed
                                                 ; random seed
constraints
                       hbonds
                                                 ; constraining bonds with H
constraint_algorithm = shake
```

- What time steps should we use?
 - Depends on the fastest timescale in the system \leftarrow
 - Examples of some timescales:

Motion	Timestep (1 fs = 10 ⁻¹⁵ s)		
Molecules (bond vibration)	0.5-1.0 fs		
Molecules (rigid bonds)	2 fs		
Atoms (translation)	5-10 fs		

- Usually for most of our simulations we use 2 fs especially because we use rigid water molecules.
- Constraints LINCS, SHAKE, RATTLE, (SETTLE)

Input parameters for MD simulations: Integration

- Integrator's: What options and which do we select?
 - Duplicate classical trajectory as closely as possible
 - Satisfy known conservation laws for energy and momentum
 - Be time reversible
 - Show be fast and require little memory
 - Simple in form and easy to program
 - · Default in Gromacs: Leap frog
 - You can also use velocity-verlet algorithm

$$\mathbf{r}(t + \Delta t) = \mathbf{r}(t) + \Delta t \mathbf{v} + \frac{\Delta t^2}{2m} \mathbf{F}(t)$$

$$\mathbf{v}(t + \Delta t) = \mathbf{v}(t) + \frac{\Delta t}{2m} [\mathbf{F}(t) + \mathbf{F}(t + \Delta t)]$$

How big a system should we simulate?	
 What should we do with the walls of the box? 	
What should we do with the walls of the box:	

- Periodic boundary conditions:
 - Captures the bulk like behavior of liquids
 - This takes care of the walls.
 - Finite-size effects
 - $U_{tot} = \sum_{i,j,n} u(|r_{ij} + nL|)$

Infinite sum!

- How big a system should we simulate? → can we use a cut-off and get away with it?
- Consider a potential of type $u(r) = ar^{-n}$
 - We can write the potential of energy after some cut-off distance r_c as

$$U_{tail} = \frac{2\pi N^2}{V} \int_{r_c}^{\infty} u(r) r^2 dr$$

This will diverge for $n \le 3$; and short range for n > 3

- LJ is short-range and we can use a correction to account for the cut-off it works for most part.
 - There are different approaches to handle the discontinuity at the cut-off
- Long range Electrostatics often a problem. We have special methods to handle this.
 - Ewald summation
 - Particle mesh Ewald

Input parameters for MD simulations: Minimum Image Convention

We find the nearest image of a molecule to calculate interactions with.

Input parameters for MD simulations: Neighbor calculations

Time [s]

 We still have to calculate the distances between the atom pairs. So how does it help?

 We have algorithms to spe this up - neighbor lists

Input parameters for MD simulations: Neighbor calculations

- Pick some rneigh > rcut
- Build neighbor list using rneigh every x (e.g. 10) steps
- At each step, only calculate pairwise distances between atoms on neighbor list

How do we pick rneigh and the frequency to update neighbor lists?

```
0.002
                                                 ; time step
dt
                                                ; number of steps
nsteps
                       50000
nstcomm
                       10
                                                 ; reset c.o.m. motion
nstcalcenergy
                       10
nstxout
                                                : write coords
                    = 100
                    = 100
                                                 write velocities
nstvout
                                                ; print to logfile
nstlog
                       100
nstenergy
                       100
                                                 ; print energies
compressed-x-grps
                       System
nstxout-compressed =
                       100
                                                 ; update pairlist
nstlist
                       10
coulombtype
                       PME 4
rvdw
                       0.85
                                                 ; cut-off for vdw
                                                 ; cut-off for coulomb
rcoulomb
                       0.85
rlist
                       0.85
                                                 ; cut-off for coulomb
Tcoupl
                       v-rescale
ref t
                       300.0
tc-grps
                    = System
tau_t
                       0.5
                       Berendsen
Pcoupl
Pcoupltype
                    = isotropic
                                                 ; pressure geometry
                                                  p-coupoling time
                       0.5
tau_p
compressibility
                    = 4.5e-5
                                                  compressibility
ref_p
                    = 1.0
                                                  ref pressure
                                                  long range correction
DispCorr
                       EnerPres
                                                  generate init. vel
gen_vel
                      yes
                       300
                                                 ; init. temp.
gen_temp
                       372340
gen_seed
                                                  random seed
constraints
                      hbonds
                                                 ; constraining bonds with H
constraint_algorithm = shake
```

Thermostats and Barostats