Sustentacion trabajo colaborativo - Escenario 7

Fecha de entrega 11 de oct en 23:55

Puntos 40

Preguntas 4

Disponible 5 de oct en 0:00 - 11 de oct en 23:55

Límite de tiempo 90 minutos

Intentos permitidos Ilimitados

Instrucciones

Apreciado estudiante, presenta la sustentación del trabajo colaborativo como DANIEL EL LEÓN,

quien con honestidad usa su sabiduría para mejorar cada día.

- 1. Tienes intentos ilimitados para desarrollar tu evaluación.
- 2. Cuando estés respondiendo la evaluación, evita abrir páginas diferentes a tu examen. Esto puede ocasionar el cierre del mismo y la pérdida de un intento.
- **3.** Asegúrate de tener buena conexión a internet, cierra cualquier programa que pueda consumir el ancho de banda y no utilices internet móvil.
- **4.** Debes empezar a responder el examen por lo menos dos horas antes del cierre, es decir, máximo las 9:55 p. m. Si llegada las 11:55 p. m. no lo has enviado, el mismo se cerrará y no podrá ser calificado.
- 5. El tiempo máximo que tienes para resolver cada intento es de 90 minutos.

- **6.** Si tu examen incluye preguntas con respuestas abiertas, estas no serán calificadas automáticamente, ya que requieren la revisión del tutor.
- 7. Si presentas inconvenientes con la presentación del examen, puedes crear un caso explicando la situación y adjuntando imagenes de soporte, donde se evidencie nombre de la actividad y/o URL respectiva, el error, la fecha y hora en que ocurrió.
- 8. Podrás verificar la solución de tu examen durante las 24 horas siguientes después de la fecha de cierre del examen.
- **9.** Te recomendamos evitar el uso de teléfonos inteligentes o tabletas para la presentación de tus actividades evaluativas.
- 10. Al terminar de responder el examen debes dar clic en el botón "Enviar todo y terminar" de otra forma el examen permanecerá abierto

¡Confiamos en que sigas, paso a paso, en el camino hacia la excelencia académica!

¿Das tu palabra de que realizarás esta actividad asumiendo de corazón nuestro

PACTO DE HONOR?

Volver a realizar el examen

Historial de intentos

	Intento	Hora	Puntaje	
MANTENER	<u>Intento 2</u>	8 minutos	40 de 40	
MÁS RECIENTE	Intento 2	8 minutos	40 de 40	
	Intento 1	33 minutos	30 de 40	

Las respuestas correctas estarán disponibles del 11 de oct en 23:55 al 12 de oct en 23:55.

Puntaje para este intento: 40 de 40

Entregado el 6 de oct en 11:09

Este intento tuvo una duración de 8 minutos.

Pregunta 1	10 / 10 pts
Dada la siguiente integral $\int_{1/2}^{5/2} \frac{1}{x} dx$ con r obtenida por el método de Simpson es:	n = 4 , la aproximación
1,6222	
0,2266	
0,6222	
1,2266	

Pregunta 2 10 / 10 pts

La siguiente ecuación

$$T_n = \frac{b-a}{3n} \big[f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) \dots + 2f(x_{n-2}) + 4f(x_{n-1}) + f(x_n) \big]$$
 corresponde al método

Método del trapecio
Método de Simpson
Método del punto medio
Método de Riemann

Pregunta 3 10 / 10 pts

Mediante el uso del método del trapecio, cuando n = 5, se tiene que $\int_0^1 e^{x^2} dx$, es:

Nota: Utilice 4 decimales en la respuesta. El punto separa la parte entera de la parte decimal, por ejemplo: 0.2345

1.4806

Pregunta 4	10 / 10 pts
La temperatura se define como:	
Energía en la atmosfera terrestre que se encuentra viajando por e planteta.	I
Cantidad de vapor de agua existente en el aire	

	d de energía cal· to y lugar determ	•	ay acumulada	en el aire en ur	1
O Fue	za que ejerce el	aire en cualc	quier punto de	e la atmosfera.	

Puntaje del examen: **40** de 40

×