

Nucleophilic Substitutions & Eliminations

Topics

S_N1 & S_N2:Mecahanisms, Reaction profiles

recurrently rededon promes

Various Effects on S_N1 and S_N2 reactionsSubstrate, Solvent, Nucleophile, Leaving groups

Stereo chemical implications in substitutions and elimination reactions

T.S. for
$$S_N 2$$

$$\begin{bmatrix}
y & & & \\
y & & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& &$$

Relative Rates of Reaction of Alkyl Bromides with Lithium Iodide in Acetone

Alkyl group	Relative Rate
Isopropyl	1.0
Cyclopropyl	no reaction detected
Cyclobutyl	0.008
Cyclopentyl	1.6
Cyclohexyl	0.01
Cycloheptyl	1.0

Problems: 1) S_N2 reaction by EtO⁻ in EtOH: Me₂HCCH₂-Br Me₃CCH₂-Br CH₃CH₂CH₂-Br Explain ? 24.2X10⁻⁶ 2.8X10⁻¹ 3.0X10⁻² 2) Rate of solvolysis in EtOH: Explain? cc at bridge head, less stable, difficult to attain planarity due to rigidity 10-6 10-14 Explain? Rigid structure, cation empty p-orbitals are at right angles to π orbitals of Ph 10⁻²³ 1-bromotriptycene

Q. Relative rate of solvolysis under S_N1 condition

Explain?

Solvent effect

Solvolysis rate of Me in EtOH 1

Me in EtOH-H₂O (1:1) 3X10⁴

Dielectric constant (ϵ , at 25 C): H₂O 79 EtOH 25

Increase in dielectric constant and/or ion-solvating ability result in a marked increase in reaction rate

R—Hal
$$\longrightarrow \left[\stackrel{\delta^+}{R^---} - Hal^{\delta^-} \right] \longrightarrow R^+ Hal^-$$

The energy required for this process decreases as dielectric constant increases

The process is facilitated by increasing solvation and consequent stabilization of the ion-pair

For $S_N 2$: Increasing dielectric constant has much less effect. Results in slight decrease in rate

- New charge is not developed.
- · Existing charge is dispersed in the T.S. compared with the starting material

Marked effect on the rate of $S_N 2$ reaction, when that transferred from polar protic solvent to polar aprotic solvent.

Me—I + N₃·Na⁺ solvent Me-N₃ + NaI

Rate in MeOH (
$$\epsilon$$
= 33) 1

DMF (ϵ = 37) 4.5X10⁴ DMF: HCONMe₂

DMSO (ϵ = 46) 1X10⁹ DMSO: Me₂SO

- In MeOH both Na⁺ and N₃⁻ are solvated.
- In DMF only Na+ is solvated, but not N₃-.
- So, unsolvated N₃ is a much more powerful nucleophile

Q. Which reaction will take place more rapidly?

The nucleophilicity may be correlated to its basicity as both involve the availability of the electron pairs and the ease with which it is donated

Stronger base better nucleophile		weaker base poorer nucleophile
		H ₂ O
сн₃о		•
H ₂ N [⊖]	>	NH ₃

The direct relationship between basicity and nucleophilicity is maintained if the reaction occurs in the gas phase

Nucleophilic power towards saturated carbon

In a particular group, nucleophilicity increases as we go down the group

$$\begin{array}{ccc}
 & \bigcirc & \bigcirc & \bigcirc & \bigcirc \\
 & I > Br > Cl > F
\end{array}$$

$$RS_e^{\bigcirc} > RS > RO$$

$$R_3P: > R_3N:$$

Relative rates of reaction with MeBr in EtOH

Nucleophile	pKa of HX	Relat. rates
HO-	15.7	1.2x10 ⁴
PhO ⁻	10.0	2.0x10 ³
AcO ⁻	4.8	19.0x10 ²
H ₂ O	-1.7	1.0

The anions of the weakest acids are the best nucleophiles

Relative rates of reaction with MeBr in EtOH

Nucleophile	pKa of HX	Relat. rates
PhS ⁻	6.4	5.0x10 ⁷
PhO ⁻	10.0	2.0x10 ³

PhO⁻ (RO⁻) is more basic than PhS⁻ (RS⁻)

leaving group goes first and nucleophile comes later

nucleophile attacks and leaving group goes simultaneously

There is an effect of leaving group!!!!

Influencing Factors of Leaving groups

- a) The strength of R-X bond
- b) The polarisability of the bond
- c) The stability of X⁽⁻⁾
- d) The degree of stabilisation through solvation of X⁽⁻⁾

For halides (a) & (b) are more important

(c) & (d) becomes more important for following groups

The leaving group:

$$RCH_2$$
—X + HO \longrightarrow RCH_2 —OH + X

X: I Br Cl F
Relative rate 30,000 10,000 2,00 1

	Strength of C-X bond	pk _a of H
Halide (X)	(kJ mol ⁻¹)	
Fluorine	118	+3
Chlorine	81	-7
Bromine	67	-9
Iodine	54	-10

Low C-X energy, ionizes easily

I- is weaker base

The weaker the basicity of a group, the better is the leaving ability.

Size is more important than the electronegativity

$$H_2O: + R-CI \xrightarrow{I \oplus \text{trace amt. (cat.)}} R-O$$

