Module G12 : Probabilités de base.

Examen 2^e session : durée deux heures.

Documents autorisés : polycopié et notes personnelles de cours.

Vendredi 16 juin 2006.

Exercice 1. Soient X et Y deux variables aléatoires réelles indépendantes; X suit la loi exponentielle de paramètre 1 i.e. X a pour densité $x \longmapsto e^{-x} \mathbf{1}_{x \geq 0}$ et Y suit la loi de Poisson de paramètre $\lambda > 0$ i.e.

$$\forall n \in \mathbf{N}, \qquad \mathbb{P}(Y=n) = e^{-\lambda} \frac{\lambda^n}{n!}.$$

- 1. Calculer, pour tout $\alpha > 0$, $\mathbb{E}\left[e^{-\alpha X}\right]$.
- 2. En remarquant que, \mathbb{P} -p.s., $e^{-XY} = \sum_{n\geq 0} e^{-XY} \mathbf{1}_{Y=n}$, calculer $\mathbb{E}\left[e^{-XY}\right]$.

Exercice 2. 1. Soient $(Y_n)_{n\geq 1}$ et $(Z_n)_{n\geq 1}$ deux suites de variables aléatoires réelles telles que $(Y_n)_{n\geq 1}$ converge en loi vers Y et $(Z_n)_{n\geq 1}$ converge presque sûrement vers la constante c>0; on suppose également que $\mathbb{P}(Z_n>0)=1$ pour tout $n\geq 1$.

- (a) Justifier la convergence en loi vers (Y, c) de la suite de terme général (Y_n, Z_n) .
- (b) En écrivant

$$\frac{Y_n}{Z_n} = \frac{Y_n}{\max(Z_n, c/2)} \frac{\max(Z_n, c/2)}{Z_n}$$

montrer que la suite de terme général Y_n/Z_n converge en loi vers Y/c.

2. Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires, indépendantes et identiquement distribuées suivant la loi uniforme sur $[-1,1]:X_1$ a pour densité $x\longmapsto \frac{1}{2}\mathbf{1}_{[-1,1]}(x)$.

Pour tout $n \geq 1$, on pose

$$S_n = X_1 + \ldots + X_n, \qquad U_n = X_1^2 + \ldots + X_n^2$$

- (a) Calculer, pour tout $k \in \mathbf{N}^*$, $\mathbb{E}[X_1^k]$.
- (b) Établir la convergence presque sûre des suites $(S_n/n)_{n\geq 1}$, $(U_n/n)_{n\geq 1}$, $(S_n/U_n)_{n\geq 1}$ et donner la limite de ces suites.
- (c) Montrer que la suite $(S_n/\sqrt{n})_{n\geq 1}$ converge en loi vers une variable aléatoire G dont on précisera la loi.
- (d) Montrer que la suite $(\sqrt{n}S_n/U_n)_{n\geq 1}$ converge en loi vers une variable aléatoire dont on déterminera la loi.

Exercice 3. Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires réelles indépendantes et identiquement distribuées; X_1 a pour densité la fonction g définie par

$$g(x) = \frac{1}{|x|^3} \mathbf{1}_{|x| \ge 1}.$$

Pour tout $n \ge 1$, on pose $S_n = X_1 + \ldots + X_n$.

- 1. (a) Pour quels réels r la variable aléatoire $|X_1|^r$ est-elle intégrable?
 - (b) Montrer que la suite $(S_n/n)_{n\geq 1}$ converge presque sûrement vers 0.
 - (c) Peut-on appliquer le théorème limite central à la suite $(X_n)_{n\geq 1}$?

On fixe désormais $p \in (1,2)$ et on veut montrer que la suite de terme général $n^{-\frac{1}{p}}S_n$ converge presque sûrement vers 0. On définit, pour tout $n \geq 1$,

$$Y_n = X_n \mathbf{1}_{|X_n|^p \le n}, \qquad T_n = Y_1 + \ldots + Y_n.$$

- 2. (a) Calculer, pour tout $n \geq 1$, la moyenne et la variance de Y_n .
- (b) Montrer que la série $\sum_{n\geq 1} n^{-1/p} Y_n$ converge presque sûrement et dans L² vers une variable aléatoire réelle.
- (c) En déduire, en utilisant le lemme de Kronecker, que $(n^{-1/p}T_n)_{n\geq 1}$ converge presque sûrement vers 0.
- 3. (a) Montrer que $\sum_{n\geq 1} \mathbb{P}(Y_n \neq X_n) < +\infty$ puis que $\mathbb{P}(\liminf\{X_n = Y_n\}) = 1$.
 - (b) En déduire que $\left(n^{-1/p}S_n\right)_{n\geq 1}$ converge presque sûrement vers 0.