Министерство образования и науки Российской Федерации

Федеральное государственное автономное образовательное учреждение высшего профессионального образования «Московский физико-технический институт (государственный университет)»

Факультетрадиотехники и кибернетики

Кафедра радиотехники и систем управления

СКОРОСТЬ СХОДИМОСТИ К ФОРМАЦИИ В НЕЛИНЕЙНОЙ МОДЕЛИ ДВИЖЕНИЯ ДЕЦЕНТРАЛИЗОВАННЫХ АВТОНОМНЫХ АГЕНТОВ В ЗАВИСИМОСТИ ОТ СВОЙСТВ ГРАФА КОММУНИКАЦИИ

Выпускная квалификационная работа (бакалаврская работа)

Направление подготовки: 03.03.01 Прикладные математика и физика

Выполнил:	
студент 112 группы	Бородий Дмитрий Андреевич
Научный руководитель:	
д. фм. н., старший научный сотрудник	Чеботарев Павел Юрьевич

Оглавление

В	ведение	4
1	Оформление различных элементов	6
	1.1 Форматирование текста	6
	1.2 Ссылки	6
	1.3 Формулы	6
	1.3.1 Ненумерованные одиночные формулы	7
	1.3.2 Ненумерованные многострочные формулы	7
	1.3.3 Нумерованные формулы	8
2	Длинное название главы, в которой мы смотрим на примеры того, как будут вер-	
	статься изображения и списки	9
	2.1 Одиночное изображение	9
	2.2 Длинное название параграфа, в котором мы узнаём как сделать две картинки с об-	
	щим номером и названием	9
	2.3 Пример вёрстки списков	9
3	Вёрстка таблиц	11
	3.1 Таблица обыкновенная	11
	3.2 Параграф - два	11
	3.3 Параграф с подпараграфами	11
	3.3.1 Подпараграф - один	11
	3.3.2 Подпараграф - два	11
3	аключение	12
C	писок литературы	13
C	писок рисунков	13
C	писок таблиц	14
A	Название первого приложения	15
В	Очень длинное название второго приложения, в котором продемонстрирована работа с длинными таблицами	16

B.1	Подраздел приложения	16
B.2	Ещё один подраздел приложения	18
B.3	Очередной подраздел приложения	19
B.4	И ещё один подраздел приложения	19

Введение

Обзор, введение в тему, обозначение места данной работы в мировых исследованиях и т.п. **Целью** данной работы является ...

Для достижения поставленной цели необходимо было решить следующие задачи:

- 1. Исследовать, разработать, вычислить и т.д. и т.п.
- 2. Исследовать, разработать, вычислить и т.д. и т.п.
- 3. Исследовать, разработать, вычислить и т.д. и т.п.
- 4. Исследовать, разработать, вычислить и т.д. и т.п.

Основные положения, выносимые на защиту:

- 1. Первое положение
- 2. Второе положение
- 3. Третье положение
- 4. Четвертое положение

Научная новизна:

- 1. Впервые ...
- 2. Впервые ...
- 3. Было выполнено оригинальное исследование ...

Научная и практическая значимость ...

Степень достоверности полученных результатов обеспечивается ... Результаты находятся в соответствии с результатами, полученными другими авторами.

Апробация работы. Основные результаты работы докладывались на: перечисление основных конференций, симпозиумов и т.п.

Личный вклад. Автор принимал активное участие ...

Публикации. Основные результаты по теме диссертации изложены в XX печатных изданиях [?,?,?,?,], X из которых изданы в журналах, рекомендованных ВАК [?,?,?], XX — в тезисах докладов [?,?].

Объем и структура работы. Диссертация состоит из введения, четырех глав, заключения и двух приложений. Полный объем диссертации составляет XXX страница с XX рисунками и XX таблицами. Список литературы содержит XXX наименований.

Глава 1

Оформление различных элементов

1.1. Форматирование текста

Мы можем сделать жирный текст и курсив.

1.2. Ссылки

София е столицата и най-големият град в България. Тя е 15-ят по големина град в Европейския съюз с население 1 291 591 души към преброяване 2011, което представлява 16,4% от населението на България. Разположена е в централната част на Западна България, в Софийската котловина, заобиколена от планината Витоша на юг, планината Люлин на запад и Стара планина на север. Общата ѝ площ е 1344 квадратни километра, а средната ѝ надморска височина е около 580 метра. Това я прави четвъртата по височина столица в Европа. Изградена е върху четирите тераси на река Искър и притоците ѝ Перловска и Владайска (Елешница). В централната градска част, както и в кварталите Овча купел, Княжево, Горна баня и Панчарево, има минерални извори. Климатът на София е умереноконтинентален.

Сошлёмся на приложения: Приложение А, Приложение В.2.

Сошлёмся на формулу: формула (1.1).

Сошлёмся на изображение: рисунок 2.2.

1.3. Формулы

Благодаря пакету icomma, IET_EX одинаково хорошо воспринимает в качестве десятичного разделителя и запятую (3,1415), и точку (3.1415).

1.3.1. Ненумерованные одиночные формулы

Вот так может выглядеть формула, которую необходимо вставить в строку по тексту: $x \approx \sin x$ при $x \to 0$.

А вот так выглядит ненумерованая отдельностоящая формула с подстрочными и надстрочными индексами:

$$(x_1 + x_2)^2 = x_1^2 + 2x_1x_2 + x_2^2$$

При использовании дробей формулы могут получаться очень высокие:

$$\frac{1}{\sqrt(2) + \frac{1}{\sqrt{2} + \frac{1}{\sqrt{2} + \cdots}}}$$

В формулах можно использовать греческие буквы:

αβγδεεζηθθικλπινξπωροσςτυφφχψωΓΔΘΛΞΠΣΥΦΨΩ

1.3.2. Ненумерованные многострочные формулы

Вот так можно написать две формулы, не нумеруя их, чтобы знаки равно были строго друг под другом:

$$\begin{split} f_W &= & \min\left(1, \max\left(0, \frac{W_{soil}/W_{max}}{W_{crit}}\right)\right), \\ f_T &= & \min\left(1, \max\left(0, \frac{T_s/T_{melt}}{T_{crit}}\right)\right), \end{split}$$

Можно использовать разные математические алфавиты:

Посмотрим на систему уравнений на примере аттрактора Лоренца:

$$\begin{cases} \dot{x} = \sigma(y - x) \\ \dot{y} = x(r - z) - y \\ \dot{z} = xy - bz \end{cases}$$

А для вёрстки матриц удобно использовать многоточия:

$$\begin{pmatrix}
a_{11} & \dots & a_{1n} \\
\vdots & \ddots & \vdots \\
a_{n1} & \dots & a_{nn}
\end{pmatrix}$$

1.3.3. Нумерованные формулы

А вот так пишется нумерованая формула:

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n \tag{1.1}$$

Нумерованых формул может быть несколько:

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{k^2} = \frac{\pi^2}{6} \tag{1.2}$$

В последствии на формулы (1.1) и (1.2) можно ссылаться.

Глава 2

Длинное название главы, в которой мы смотрим на примеры того, как будут верстаться изображения и списки

2.1. Одиночное изображение

Рисунок 2.1: ТеХ.

2.2. Длинное название параграфа, в котором мы узнаём как сделать две картинки с общим номером и названием

А это две картинки под общим номером и названием:

2.3. Пример вёрстки списков

Нумерованный список:

- 1. Первый пункт.
- 2. Второй пункт.

Рисунок 2.2: Очень длинная подпись к изображению, на котором представлены две фотографии Дональда Кнута

3. Третий пункт.

Маркированный список:

- Первый пункт.
- Второй пункт.
- Третий пункт.

Вложенные списки:

- Имеется маркированный список.
 - 1. В нём лежит нумерованный список,
 - 2. в котором
 - лежит ещё один маркированный список.

Глава 3

Вёрстка таблиц

3.1. Таблица обыкновенная

Так размещается таблица:

Таблица 3.1: Название таблицы

Месяц	T_{min} , K	T_{max} , K	$(T_{max}-T_{min})$, K
Декабрь	253.575	257.778	4.203
Январь	262.431	263.214	0.783
Февраль	261.184	260.381	-0.803

3.2. Параграф - два

Некоторый текст.

3.3. Параграф с подпараграфами

3.3.1. Подпараграф - один

Некоторый текст.

3.3.2. Подпараграф - два

Некоторый текст.

Заключение

Основные результаты работы заключаются в следующем.

- 1. На основе анализа ...
- 2. Численные исследования показали, что ...
- 3. Математическое моделирование показало ...
- 4. Для выполнения поставленных задач был создан ...

И какая-нибудь заключающая фраза.

Список рисунков

2.1	TeX	9
2.2	Очень длинная подпись к изображению, на котором представлены две фотографии	
	Дональда Кнута	10

Список таблиц

2 1	Название таблицы																	11	i
J.1	пазвание гаолицы	 				 				 								11	ı

Приложение А

Название первого приложения

Некоторый текст.

Приложение В

Очень длинное название второго приложения, в котором продемонстрирована работа с длинными таблицами

В.1. Подраздел приложения

Вот размещается длинная таблица:

Параметр	Умолч.	Тип	Описание
&INP		•	
kick	1	int	0: инициализация без шума ($p_s = const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума ($p_s=const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума ($p_s=const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума ($p_s = const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума ($p_s = const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
<u> </u>			продолжение следует

Параметр	Умолч.	Тип	(продолжение) Описание
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума ($p_s=const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума ($p_s = const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
		. ,	экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума ($p_s=const$)
			1: генерация белого шума 2: генерация белого шума симметрично относительно
			тенерация ослого шума симметрично относительно экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума $(p_s = const)$
HICH	1	1111	1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума $(p_s=const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума ($p_s = const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума ($p_s=const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума ($p_s = const$)
	-	1110	1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума ($p_s = const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума ($p_s = const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
more	0	int	экватора
&SURFPA		int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума ($p_s=const$)
nivn	1	1111	$(p_s - const)$ продолжение следует

			(продолжение)
Параметр	Умолч.	Тип	Описание
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума ($p_s=const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума ($p_s=const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума ($p_s = const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума ($p_s = const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума ($p_s = const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума ($p_s = const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума ($p_s = const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума ($p_s = const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс

В.2. Ещё один подраздел приложения

Нужно больше подразделов приложения!

В.З. Очередной подраздел приложения

Нужно больше подразделов приложения!

В.4. И ещё один подраздел приложения

Нужно больше подразделов приложения!