$\widetilde{\mathrm{He}}_{\mathrm{lium}}^{\mathrm{e}}$	10	$\overset{\mathrm{Neo}_{\mathrm{n}}}{\overset{\mathrm{Neon}}{\longrightarrow}}$	18	$\mathop{\mathrm{Argon}}_{39.948(1)}$	36	Krypton 83.798(2)	54	Xenon Xenon (131.293(6))	98	$\mathop{Radon}\limits_{(222)}$	118	$U_{ m Dmoctium}$
	6	Fluorine 18.998403163(6)	17	Chlorine	35	$\Pr_{\text{Bromine}\atop{79.904}}$	53	Lodine 126.90447(3)	82	$\mathop{\mathrm{Act}}_{\scriptscriptstyle{(210)}}$	117	$\mathop{Uannseptium}\limits_{(294)}$
	œ	Oxygen 15.999	16	Sulphur 32.06	34	${ m Se}_{ m Selenium}$	52	$\prod_{127.60(3)}$	84	\Pr_{Polonium}	116	$\sum_{(293)}^{f V}$
	4	$\sum_{\substack{\text{Nitrogen}\\14.007}}$	15	$\Pr_{\substack{\text{Phosphorus}\\30.973761998(5)}}$	33	\mathbf{As} Arsenic 74.921595(6)	51	$\mathop{\mathrm{Sb}}_{\text{Antimony}}$	83	$\underset{208.98040(1)}{\textbf{Bismuth}}$	115	$\bigcup_{\substack{\text{Uup} \\ (289)}} \mathbf{p}$
	9	Carbon 12.011	14	Silicon 28.085	32	Germanium 72.630(8)	50	$\mathop{\mathbf{Sh}}_{\mathrm{Tin}}^{\mathrm{Tin}}$	82	$\Pr_{\text{Lead}\atop{207.2(1)}}$	114	$F_{\rm lerovium} \\ _{(289)}$
	70	$\mathbf{B}^{\mathrm{Bron}}_{10.81}$	13	$\mathop{Aluminium}_{26.9815385(7)}$	31	$G^{\mathbf{a}}_{\text{allium}}$	49	$\lim_{\substack{\text{Indium}\\114.818(1)}}$	81	Thallium 204.38	113	$\bigcup_{(286)}^{\mathbf{ut}}$
			•		30	$\sum_{ ext{Zinc} \ 65.38(2)}$	48	Cd Cadmium 112.414(4)	80	$\mathop{Hg}_{\tiny{\text{Mercury}}}$	112	$\mathop{C_{\mathrm{Opernicium}}}_{^{(285)}}$
S.					29	Cu Copper 63.546(3)	47	$ m Ag _{Silver}$	62	$\mathop{Au}\limits_{\tiny \text{Gold}}$	111	$\mathop{Roentgenium}_{(282)}$
emen					28	Nickel 58.6934(4)	46	$\Pr_{\text{Palladium}}$	28	$\Pr_{ ext{Platinum} \ ext{195.084(9)}}$	110	$\left \begin{array}{c c} Ds & Rg \\ \hline \end{array} \right _{(281)} \left \begin{array}{c c} Rg \\ \hline \end{array} \right _{(282)} \left \begin{array}{c c} C_{(281)} \end{array} \right $
the El					27	Co Cobalt 58.933194(4)	45	$\mathop{\mathrm{Rhodium}}_{\scriptscriptstyle{102.9050(2)}}$	22	$\prod_{ m Lridium}$	109	$\mathbf{Mt}_{ ext{Meitnerium}}$
le of 1					26	$F_{\rm Iron}^{\bf e}$	44	$\mathop{Ruthenium}_{101.07(2)}$	92	Osmium 190.23(3)	108	$\mathop{Hssium}\limits_{(269)}$
Periodic Table of the Elements					25	$\overline{\mathrm{Mn}}$ Manganese 54.938044(3)	43	$\Gamma_{ m Technetium}^{ m C}$	75	$\mathop{\mathrm{Re}}_{\text{Rhenium}}^{\text{Rhenium}}$	107	$\mathop{\mathrm{Bhrium}}\limits_{\scriptscriptstyle{(270)}}$
eriodi					24	$\displaystyle \mathop{C_{\rm Tromium}}_{\rm 51.9961(6)}$	42	$\mathbf{Molybdenum}_{95.95(1)}$	74	\mathbf{W} Tungsten $183.84(1)$	106	$\mathop{\mathbf{Sg}}_{\text{Seaborgium}}$
Д					23	$\bigvee_{\text{Vanadium}\atop 50.9415(1)}$	41	$\mathop{\mathrm{Niobium}}_{92.90637(2)}$	73	$\prod_{\text{Tantalum}\atop{180.94788(2)}}$	105	$\mathop{Db}_{\text{Dubnium}}_{\text{(268)}}$
					22	$\prod_{\mathrm{Titanium}}$	40	$\sum_{{ m Zirconium}}$	72	$\mathop{Halfnium}_{178.49(2)}$	104	$\mathop{\mathrm{Rutherfordium}}\limits_{(261)}$
					21	\mathbf{Sc} Scandium 44.955908(5)	39	$\sum_{\substack{\text{Yttrium}\\88.90584(2)}}$	57-71	Lanthanides	89-103	Actinides
	4	$\mathop{Beryllium}_{9.0121831(5)}$	12	$\mathop{\rm Mag}_{{ m Magnesium}}^{{ m Magnesium}}$	20	$\overset{Ca}{\operatorname{Calcium}}_{\scriptscriptstyle{40.078(4)}}$	38	$\mathop{\mathbf{Strontium}}_{87.62(1)}$	56	$\mathop{\mathbf{Ba}}_{\text{Barium}}^{\text{Barium}}$	88	$\mathop{\mathrm{Radium}}_{\scriptscriptstyle{(226)}}$
Hydrogen	က	Lithium 6.941	11	$\overset{\text{Na}}{\overset{\text{Sodium}}{\overset{\text{22.98976928(2)}}{\overset{\text{22.98976928(2)}}{\overset{\text{22.98976928(2)}}{\overset{\text{22.98976928(2)}}{\overset{\text{22.98976928(2)}}{\overset{\text{22.98976928(2)}}{\overset{\text{22.98976928(2)}}{\overset{\text{22.98976928(2)}}{\overset{\text{22.98976928(2)}}{\overset{\text{22.98976928(2)}}{\overset{\text{22.98976928(2)}}{\overset{\text{22.98976928(2)}}{\overset{\text{22.98976928(2)}}{\overset{\text{22.98976928(2)}}{\overset{\text{22.989769}}{\overset{\text{22.989769}}{\overset{\text{22.989769}}{\overset{\text{22.989769}}{\overset{\text{22.989769}}{\overset{\text{22.989769}}{\overset{\text{22.989769}}{\overset{\text{22.98976}}{\text{22.9897$	19	$\sum_{\substack{\text{Potassium}\\39.0983(1)}}$	37	$\mathop{\mathbf{Rb}}_{\text{Rubidium}}^{\mathbf{Bb}}$	55	Caesium 132.90545196(6)	87	\Pr_{Francium}
	_								_			

57	28	29	09	61	62	63	64	65	99	29	89	69	70	7.1
La	Ce	P_{Γ}	$p_{\mathbf{N}}$	$_{ m Pm}$	${ m Sm}$	Eu	P.S	Tb	Dv	H_0	\mathbf{Er}	$_{ m Tm}$	Yb	Lu
anthanum	Cerium	Praseodymium	Neodymium	Promethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium
8.90547(7)	140.116(1)	140.90766(2)	144.242(3)	(145)	150.36(2)	151.964(1)	157.25(3)	158.92535(2)	162.500(1)	164.93033(2)	167.259(3)	168.93422(2)	173.045(10)	174.9668(1)
68	06	91	92	93	94	95	96	97	86	66	100	101	102	103
Ac	Th	Pa	Γ	$\frac{d}{d}$	$\mathbf{P}\mathbf{u}$	Am	Cm	Bk	$_{ m Cf}$	$\mathbf{E}_{\mathbf{S}}$	${ m Fm}$	$\mathbf{M}\mathbf{d}$	N_0	Lr
ctinium	Thorium	Protactinium	Uranium	Neptunium	Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mendelevium	Nobelium	Lawrencium
(227)	232.0377(4)	231.03588(2)	238.02891(3)	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(229)	(566)

Standard atomic masses taken from Comission on Isotopic Abundances and Atomic Weights (http://www.ciaaw.org/atomic-weights.htm). Adapted from Ivan Griffin's IMEX Periodic Table. © 2015