Introduction to Deep Learning

22. Encoder-Decoder, Seq2seq

STAT 157, Spring 2019, UC Berkeley

Alex Smola and Mu Li courses.d2l.ai/berkeley-stat-157

Encoder-Decoder

Rethink about CNN

- Encoder: encode inputs into intermediate presentation (features)
- Decoder: decode the presentation into outputs

Rethink about RNN

- Encoder: present a piece of text as a vector
- Decoder: decode the presentation into outputs

The Encoder-decoder Architecture

- A model is partitioned into two parts
 - The encoder process inputs
 - The decoder generates outputs

The Base Class for an Encoder

```
class Encoder(nn.Block):
    def __init__(self, **kwargs):
        super(Encoder, self).__init__(**kwargs)

def forward(self, X):
    raise NotImplementedError
```


The Base Class for a Decoder

Create state with the encoder outputs and any other infos

```
class Decoder(nn.Block):
    def __init__(self, **kwargs):
        super(Decoder, self).__init__(**kwargs)
    def init_state(self, enc_outputs, *args):
        raise NotImplementedError
    def forward(self, X, state):
        raise NotImplementedError
```


The Base Class of the model

```
class EncoderDecoder(nn.Block):
   def __init__(self, encoder, decoder, **kwargs):
        super(EncoderDecoder, self).__init__(**kwargs)
        self_encoder = encoder
        self_decoder = decoder
   def forward(self, enc_X, dec_X, *args):
        enc outputs = self.encoder(enc_X)
        dec_state = self.decoder.init_state(enc_outputs, *args)
        return self.decoder(dec_X, dec_state)
```


Seq2seq

Machine Translation

- Given a sentence in a source language, translate into a target language
- These two sequences may have different lengths

Seq2seq

- The encoder is a RNN to read input sequence
- The decoder uses another RNN to generate output

Encoder/Decoder Details

- The encoder is a standard RNN model without the output layer
- The encoder's hidden state in last time step is used as the decoder's initial hidden state

Training

The decoder is feed with the targeted sentence during training

Encoder Decoder

Code...

Beam Search

Greedy Search

- We used greedy search in the seq2seq model during predicting
- It could be suboptimal

Exhaustive Search

- For every possible sequence, compute its probability and pick the best one
- If output vocabulary size is n, and max sequence length T, then we need to examine n^T sequences
 - It's computationally infeasible

$$n = 10000, \quad T = 10: \quad n^T = 10^{40}$$

Beam Search

- We keep the best *k* (beam size) candidates for each time
- Examine *kn* sequences by adding an new item to a candidate, and then keep the top-*k* ones

Beam Search

• Time complexity is O(knT)

$$k = 5$$
, $n = 10000$, $T = 10$: $knT = 5 \times 10^5$

The final score for each candidate is

$$\frac{1}{L^{\alpha}}\log \mathbb{P}(y_1, ..., y_L) = \frac{1}{L^{\alpha}} \sum_{t'=1}^{L} \log \mathbb{P}(y_{t'} \mid y_1, ..., y_{t'-1}, c)$$

• Often $\alpha = 0.75$

