Let A and B be sets. Show that $P(A) \cup P(B) \subseteq P(A \cup B)$ **Definition of subsets**: $A \subseteq B \leftrightarrow \forall x (x \in A \rightarrow x \in B)$

We have to show that if X is an element of $P(A) \cup P(B)$ then X is an element of $P(A \cup B)$.

Show that: If $X \in P(A) \cup P(B)$ then $X \in P(A \cup B)$.

Let X be an arbitrary element of $P(A) \cup P(B)$.

Let $X \in P(A) \cup P(B)$

Then X is an element of P(A) or of P(B).

Then $X \in P(A)$ or $X \in P(B)$

Without of loss of generality we can assume the X is an element of P(A). Let $X \in P(A)$. If X is an element of P(A) then X is a subset of A. If $X \in P(A)$ then $X \subseteq A$.

If X is a subset of A then X is a subset of $A \cup B$. If $X \subseteq A$ then $X \subseteq A \cup B$.

If X is a subset of $A \cup B$ then X is an element of $P(A \cup B)$. If $X \subseteq A \cup B$ then $X \in P(A \cup B)$.