Subtractive Color

John C. Hart
CS 418

Interactive Computer Graphics

- Cyan, Magenta, Yellow
- Color model used in pigments and reflective materials (ink,paint)

- Cyan, Magenta, Yellow
- Color model used in pigments and reflective materials (ink,paint)

- Cyan, Magenta, Yellow
- Color model used in pigments and reflective materials (ink,paint)

- Cyan, Magenta, Yellow
- Color model used in pigments and reflective materials (ink,paint)

- Cyan, Magenta, Yellow
- Color model used in pigments and reflective materials (ink,paint)

- Cyan, Magenta, Yellow
- Color model used in pigments and reflective materials (ink,paint)

- Cyan, Magenta, Yellow
- Color model used in pigments and reflective materials (ink,paint)

- Cyan, Magenta, Yellow
- Color model used in pigments and reflective materials (ink,paint)

- Cyan, Magenta, Yellow
- Color model used in pigments and reflective materials (ink,paint)
- Grade school color rules
 - Blue + Yellow = Green? No.
 - Cyan + Yellow = Green

- Cyan, Magenta, Yellow
- Color model used in pigments and reflective materials (ink,paint)
- Grade school color rules
 - Blue + Yellow = Green? No.
 - Cyan + Yellow = Green

- Cyan, Magenta, Yellow
- Color model used in pigments and reflective materials (ink,paint)
- Grade school color rules
 - Blue + Yellow = Green? No.
 - Cyan + Yellow = Green
- Also CMYK (blacK)

$$- C + M + Y = Brown?$$

$$-C+M+Y=Black$$
 (in theory)

$$-C+M+Y = Gray (in practice)$$

-C+M+Y wastes expensive color ink

RGB to CMY

$$\begin{bmatrix} C \\ M \\ Y \\ 1 \end{bmatrix} = \begin{bmatrix} -1 & & & 1 \\ & -1 & & 1 \\ & & -1 & 1 \\ & & & 1 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \\ 1 \end{bmatrix}$$

CMY to CMYK

$$\begin{bmatrix} C \\ M \\ Y \\ K \end{bmatrix} = \begin{bmatrix} 1 & -\min(C, M, Y) \\ 1 & -\min(C, M, Y) \\ 1 & -\min(C, M, Y) \\ \min(C, M, Y) \end{bmatrix} \begin{bmatrix} C \\ M \\ Y \\ 1 \end{bmatrix}$$

