Submission instruction:

- Your submission must include a brief report that contains specific results (numerical or graphical results) required in each assignment.
- You should also submit your MATLAB code (bold) required in the assignments.

The below figure shows the configuration t=0 of a robot arm whose first joint is a screw joint of pitch h=2, which is the vertical distance traveled along the screw when the joint rotates 1 rad. The arm's link lengths are $L_1=10$, $L_2=L_3=5$, and $L_4=3$. Suppose that all joint angular velocities are constant, with values $\omega_1=\pi/4$, $\omega_2=\pi/8$, $\omega_3=-\pi/4$. All units are rad/s.

- (a). Write a MATLAB function, named **Tsb** = **EEFrameConfig(t)**, which returns the configuration of end effector frame $\{b\}$ relative to the fixed frame $\{s\}$, $T_{sb}(t) \in SE(3)$ at any given time t. Please compute the configuration $T_{sb}(t)$ at t=4 using the function **EEFrameConfig.** Write down your result in your report.
- (b). Let q is a point rigidly attached to the end effector frame $\{b\}$. The position of q in the frame $\{b\}$ is (1,0,-1). Write a MATLAB function, named $\mathbf{q} = \mathbf{SpatialPositionQ(t)}$, which returns the position of point q in the fixed frame $\{s\}$ at any given time t. You can call $\mathbf{Tsb} = \mathbf{EEFrameConfig(t)}$ from this function (in fact, it is recommended to do so.)
- (c). Please plot the trajectory of position of point q for t = [0,8]. (Hint: you can plot3 function in MATLAB to plot the 3D position.) Appropriately label all axes. Include the plot in your report.

