CS7IS2: Artificial Intelligence

Reinforcement Learning

Double Bandits

Double-Bandit MDP

> Actions: *Blue, Red*

No discount 100 time steps Both states have the same value

Offline Planning

- > Solving MDPs is offline planning
 - You determine all quantities through computation
 - You need to know the details of the MDP
 - You do not actually play the game!

No discount
100 time steps
Both states have
the same value

Let's Play!

\$2 \$2 \$0 \$2 \$2

\$2 \$2 \$0 \$0 \$0

Online Planning

> Rules changed! Red's win chance is different.

Let's Play!

\$0 \$0 \$0 \$2 \$0

\$2 \$0 \$0 \$0 \$0

What Just Happened?

- > That wasn't planning, it was learning!
 - Specifically, reinforcement learning
 - There was an MDP, but you couldn't solve it with just computation
 - You needed to actually act to figure it out
- > Important ideas in reinforcement learning that came up
 - Exploration: you have to try unknown actions to get information
 - Exploitation: eventually, you have to use what you know
 - Regret: even if you learn intelligently, you make mistakes
 - Sampling: because of chance, you have to try things repeatedly
 - Difficulty: learning can be much harder than solving a known MDP

Reinforcement Learning

Background and literature

> Reinforcement Learning: An Introduction, by Richard S. Sutton and Andrew G. Barto

http://www.incompleteideas.net/book/RLbook2020.pdf

> Inspiration from psychology and neuroscience

http://www.princeton.edu/~yael/ICMLTutorial.pdf

> Deep Reinforcement Learning overview

https://arxiv.org/abs/1810.06339

- > Deep Reinforcement learning Hands-on, by Maxime Lapan (second edition 2020)
 - https://github.com/PacktPublishing/Deep-Reinforcement-Learning-Hands-On-Second-Edition all the code from the book

Unsupervised vs supervised learning

> Supervised learning

- learning from a training set of labelled examples provided by a knowledgeable external supervisor
- each example is a description of a situation together with a specification (the label) of the correct action the system should take to that situation (eg category to which it belongs to)
- Extrapolate/generalize to situations not present in the training set
- Eg classification, regression

> Unsupervised learning

- finding structure/patterns hidden in collections of unlabeled data
- Eg clustering, self-organizing maps

Reinforcement learning

- > Third learning paradigm
 - it does not rely on examples of correct behaviour (trial-and-error learning instead)
 - But it is reinforcement learning is trying to maximize a reward signal instead of trying to find hidden structure
- > Tabular representation vs approximation functions
 - Deep RL reinforcement learning with function approximation by deep neural networks.

Reinforcement Learning

> Basic idea:

- Receive feedback in the form of rewards
- Agent's utility is defined by the reward function
- Must (learn to) act so as to maximize expected rewards
- All learning is based on observed samples of outcomes!

Examples - Cart pole

Cart-Pole Problem

Objective: Balance a pole on top of a movable car

Examples - mountain car

Reinforcement Learning - Humans

Reinforcement Learning - Animals

Reinforcement Learning and Psychology

• Operant conditioning - type of associative learning process through which the strength of a behavior is modified by reinforcement or punishment

reinforcement or punishment

1938 - Skinner's "The Behavior of Organisms: An Experimental Analysis" demonstrated learning through reinforcement in animals and humans

- Applications
 - Addiction
 - Parenting
 - Animal training
 - Economics
 - Gambling
 - Military training

Reinforcement Learning and Neuroscience

ICML'09 Tutoria

Montrea

The Neuroscience of Reinforcement Learning

Yael Niv

Psychology Department & Neuroscience Institute
Princeton University

yael@princeton.edu

Deep Reinforcement Learning and its Neuroscientific Implications

Matthew Botvinick^{1,2}, Jane X. Wang¹ Will Dabney¹, Kevin J. Miller^{1,2}, Zeb Kurth-Nelson^{1,2}

¹DeepMind, UK, ²University College London, UK July 9, 2020

RL Applications - Games

AlphaGo

https://deepmind.com/research/case-studies/alphago-the-story-so-far https://www.youtube.com/watch?v=WXuK6gekU1Y

AlphaStar

https://deepmind.com/blog/article/AlphaStar-Grandmaster-level-in-StarCraft-ll-using-multi-agent-reinforcement-learning

Atari with DQN

Mnih, V., Kavukcuoglu, K., Silver, D. *et al.* Human-level control through deep reinforcement learning. *Nature* **518**, 529–533 (2015). https://doi.org/10.1038/nature14236

MineRL

https://minerl.io/ imitation learning datasets with over 60 million frames of recorded human player data

https://www.aicrowd.com/challenges/neurips-2021-minerl-competition?s=09

RL Applications - Self-driving cars

Wayve.ai – learn to drive in a day

 https://wayve.ai/blog/learning-to-drive-in-a-daywith-reinforcement-learning/

AWS DeepRacer

- fully autonomous 1/18th scale race car driven by reinforcement learning
- https://aws.amazon.com/deepracer/
- Multiple directions explored in research

 B. R. Kiran *et al.*, "Deep Reinforcement Learning" for Autonomous Driving: A Survey," in IEEE Transactions on Intelligent Transportation Systems, doi: 10.1109/TITS.2021.3054625.

RL Applications – Finance

- Trading bots
- Price-setting strategies
- Portfolio management

https://medium.com/ibm-data-ai/reinforcement-learning-the-business-use-case-part-2-c175740999

RL Applications – NLP

- Chatbots dialogue generation
 - Simulate conversations using virtual agents
- Text summarization
- Question answering
- Machine translation

```
Result 3 (A & B are both a trained chatbot)
A: I forgot to get the Coca-Cola.
B: I got something stuck in the head.
A: It's all right I guess it's pretty common in the lot of shit.
B: I mean we've been all this together since the kid.
A: All the more reason.
B: It's not him it's his fault and he's blind because of god.
```

https://github.com/pochih/RL-Chatbot (2017)

RL Applications – Robotics

- http://rail.eecs.berkeley.e
 du/
- Deep RL in Robotics and Autonomous Decision Making – Sergey Levine
 - https://www.youtube.com/watch?v=lEKYi5OLABI

Learning To Dress: Synthesizing Human Dressing Motion via Deep Reinforcement Learning

RL Applications - Healthcare

- Reinforcement Learning in Healthcare: A Survey
 - https://ui.adsabs.harvard.edu/abs/20 19arXiv190808796Y/abstract
 - treatment recommendation, automatically learning an optimal neurostimulation strategy for the treatment of epilepsy

RL Applications – Recommender systems

- News recommendation
- https://reagent.ai/ open source end-to-end platform for applied reinforcement learning (RL) developed and used at Facebook.
- Reinforcement learning based recommender systems: A survey.
 M. Mehdi Afsar, Trafford Crump, Behrouz Far
 - https://arxiv.org/abs/2101.06286

RL Applications - Cluster resource management, energy use

https://deepmind.c om/blog/article/d eepmind-aireduces-googledata-centrecooling-bill-40

RL Applications - Design/Engineering

TPU design

design the next generation of Google's artificial intelligence (AI) accelerators, and has the potential to save thousands of hours of human effort for each new generation.

https://www.nature.com/articles/s415
86-021-03544-w

McKinsey Analytics - test new hydrofoil designs by sailing them on Emirates Team New Zealand's simulator

Teach an Al bot how to become a professional sailor, 1000s bots running in parallel learning from each other

RL Applications - Smart Cities

A Survey on Reinforcement Learning Models and Algorithms for Traffic Signal Control

https://dl.acm.org/doi/10.1145/30682

Reinforcement learning for demand response: A review of algorithms and modeling techniques

https://ideas.repec.org/a/eee/appene/v235y20 19icp1072-1089.html

RL

- > Still assume a Markov decision process (MDP):
 - A set of states $s \in S$
 - A set of actions (per state) A
 - A model T(s,a,s')
 - A reward function R(s,a,s')
- > Still looking for a policy $\pi(s)$

- > New twist: don't know T or R
 - I.e. we don't know which states are good or what the actions do
 - Must actually try out actions and states to learn

Offline (MDPs) vs. Online (RL)

Offline Solution

Online Learning

Model-based learning

Model-based learning

- > Model-Based Idea:
 - Learn an approximate model based on experiences
 - Solve for values as if the learned model were correct
- > Step 1: Learn empirical MDP model
 - Count outcomes s' for each s, a
 - Normalize to give an estimate of $\widehat{T}(s, a, s')$
 - Discover each $\hat{R}(s, a, s')$ when we experience (s, a, s')
- > Step 2: Solve the learned MDP
 - For example, use value iteration, as before

Model-based example

Input Policy π

Assume: $\gamma = 1$

Observed Episodes (Training)

Episode 1

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Episode 3

E, north, C, -1 C, east, D, -1 D, exit, x, +10

Episode 2

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Episode 4

E, north, C, -1 C, east, A, -1 A, exit, x, -10

Learned Model

$$\widehat{T}(s, a, s')$$

$$\widehat{R}(s,a,s')$$

Model-based example

Input Policy π

Assume: $\gamma = 1$

Observed Episodes (Training)

Episode 1

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Episode 3

E, north, C, -1 C, east, D, -1 D, exit, x, +10

Episode 2

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Episode 4

E, north, C, -1 C, east, A, -1 A, exit, x, -10

Learned Model

$$\widehat{T}(s, a, s')$$

T(B, east, C) = 1.00 T(C, east, D) = 0.75T(C, east, A) = 0.25

 $\widehat{R}(s, a, s')$

R(B, east, C) = -1 R(C, east, D) = -1 R(D, exit, x) = +10

Model-free RL

Model-free RL

- > Passive vs active RL
- > Passive estimate values of states
- > Active how do we collect the data to estimate values (ie taking actions)

> Passive - direct and indirect evaluation

Passive RL

Passive RL

- > Simplified task: policy evaluation
 - Input: a fixed policy $\pi(s)$
 - You don't know the transitions T(s,a,s')
 - You don't know the rewards R(s,a,s')
 - Goal: learn the state values

- Learner is "along for the ride"
- No choice about what actions to take
- Just execute the policy and learn from experience
- This is NOT offline planning! You actually take actions in the world.

Direct evaluation

- \rightarrow Goal: Compute values for each state under π
- > Idea: Average together observed sample values
 - Act according to π
 - Every time you visit a state, write down what the sum of discounted rewards turned out to be
 - Average those samples
- > This is called direct evaluation

Direct evaluation

Input Policy π

Assume: $\gamma = 1$

Observed Episodes (Training)

Episode 1

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Episode 3

E, north, C, -1 C, east, D, -1 D, exit, x, +10

Episode 2

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Episode 4

E, north, C, -1 C, east, A, -1 A, exit, x, -10

Output Values

Direct evaluation

Input Policy π

Assume: $\gamma = 1$

Observed Episodes (Training)

Episode 1

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Episode 3

E, north, C, -1 C, east, D, -1 D, exit, x, +10

Episode 2

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Episode 4

E, north, C, -1 C, east, A, -1 A, exit, x, -10

Output Values

	-10 A	
+8 B	+4	+10 D
	-2 E	

Problems with direct evaluation

- > What's good about direct evaluation?
 - It's easy to understand
 - It doesn't require any knowledge of T, R
 - It eventually computes the correct average values, using just sample transitions
- > What bad about it?
 - It wastes information about state connections
 - Each state must be learned separately
 - So, it takes a long time to learn

Output Values

If B and E both go to C under this policy, how can their values be different?

Why Not Use Policy Evaluation?

- > Simplified Bellman updates calculate V for a fixed policy:
 - Each round, replace V with a one-step-look-ahead layer over V

$$V_0^{\pi}(s) = 0$$

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$
 s, $\pi(s)$, s'

- This approach fully exploited the connections between the states
- Unfortunately, we need T and R to do it!
- > Key question: how can we do this update to V without knowing T and R?
 - In other words, how to we take a weighted average without knowing the weights?

Sample-based policy evaluation

> We want to improve our estimate of V by computing these averages:

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$

> Idea: Take samples of outcomes s' (by doing the action!) and average

$$sample_1 = R(s, \pi(s), s'_1) + \gamma V_k^{\pi}(s'_1)$$

$$sample_2 = R(s, \pi(s), s_2') + \gamma V_k^{\pi}(s_2')$$

. . .

$$sample_n = R(s, \pi(s), s'_n) + \gamma V_k^{\pi}(s'_n)$$

$$V_{k+1}^{\pi}(s) \leftarrow \frac{1}{n} \sum_{i} sample_{i}$$

Temporal difference learning

- > Big idea: learn from every experience!
 - Update V(s) each time we experience a transition (s, a, s', r)
 - Likely outcomes s' will contribute updates more often

- > Temporal difference learning of values
 - Policy still fixed, still doing evaluation!
 - Move values toward value of whatever successor occurs: running average

Sample of V(s):
$$sample = R(s, \pi(s), s') + \gamma V^{\pi}(s')$$

Update to V(s):
$$V^{\pi}(s) \leftarrow (1 - \alpha)V^{\pi}(s) + (\alpha)sample$$

Same update:
$$V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha(sample - V^{\pi}(s))$$

Exponential moving average

- > Exponential moving average
 - The running interpolation update: $\bar{x}_n = (1-\alpha)\cdot \bar{x}_{n-1} + \alpha\cdot x_n$
 - Makes recent samples more important:

$$\bar{x}_n = \frac{x_n + (1 - \alpha) \cdot x_{n-1} + (1 - \alpha)^2 \cdot x_{n-2} + \dots}{1 + (1 - \alpha) + (1 - \alpha)^2 + \dots}$$

- Forgets about the past (distant past values were wrong anyway)
- > Decreasing learning rate (alpha) can give converging averages

TD learning example

States

Observed Transitions

B, east, C, -2

C, east, D, -2

	A	
В	С	D
	Е	

Assume: $\gamma = 1$, $\alpha = 1/2$

$$V^{\pi}(s) \leftarrow (1 - \alpha)V^{\pi}(s) + \alpha \left[R(s, \pi(s), s') + \gamma V^{\pi}(s') \right]$$

TD learning example

States

Observed Transitions

B, east, C, -2

C, east, D, -2

	A	
В	С	D
	Е	

	0	
-1	3	8
	0	

Assume: $\gamma = 1$, $\alpha = 1/2$

$$V^{\pi}(s) \leftarrow (1 - \alpha)V^{\pi}(s) + \alpha \left[R(s, \pi(s), s') + \gamma V^{\pi}(s') \right]$$

TD exercise

Suppose that we have the following observed transitions: (B, East, C, 2), (C, South, E, 4), (C, East, A, 6), (B, East, C, 2)

The initial value of each state is 0. Assume that $\gamma = 1$ and $\alpha = 0.5$.

1. What are the learned values from TD learning after all four observations?

$$V^{\pi}(s) \leftarrow (1 - \alpha)V^{\pi}(s) + \alpha \left[R(s, \pi(s), s') + \gamma V^{\pi}(s') \right]$$

Problems with TD learning

- > TD value leaning is a model-free way to do policy evaluation, mimicking Bellman updates with running sample averages
- > However, if we want to turn values into a (new) policy, we're sunk:

$$\pi(s) = \arg\max_{a} Q(s, a)$$

$$Q(s,a) = \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma V(s') \right]$$

- > Idea: learn Q-values, not values
- > Makes action selection model-free too!

Active RL

Q-Value Iteration

- > Value iteration: find successive (depth-limited) values
 - Start with $V_0(s) = 0$, which we know is right
 - Given V_k , calculate the depth k+1 values for all states:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

- > But Q-values are more useful, so compute them instead
 - Start with $Q_0(s,a) = 0$, which we know is right
 - Given Q_k , calculate the depth k+1 q-values for all q-states:

$$Q_{k+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_k(s', a') \right]$$

Q-learning

> Q-Learning: sample-based Q-value iteration

$$Q_{k+1}(s,a) \leftarrow \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q_k(s',a') \right]$$

- > Learn Q(s,a) values as you go
 - Receive a sample (s,a,s',r)
 - Consider your old estimate: Q(s,a)
 - Consider your new sample estimate:

$$sample = R(s, a, s') + \gamma \max_{a'} Q(s', a')$$

- Incorporate the new estimate into a running average:

$$Q(s, a) \leftarrow (1 - \alpha)Q(s, a) + (\alpha) [sample]$$

Q-learning properties

- > Amazing result: Q-learning converges to optimal policy -- even if you're acting suboptimally!
- > This is called off-policy learning

> Caveats:

- You have to explore enough
- You have to eventually make the learning rate small enough
- ... but not decrease it too quickly
- Basically, in the limit, it doesn't matter how you select actions (!)

Exercise

Suppose that we have the following observed transitions: (B, East, C, 2), (C, South, E, 4), (C, East, A, 6), (B, East, C, 2)

The initial value of each state is 0. Assume that $\gamma = 1$ and $\alpha = 0.5$.

2. What are the learned Q-values from Q-learning after all four observations?

$$Q(s, a) \leftarrow (1 - \alpha)Q(s, a) + (\alpha) [sample]$$

$$sample = R(s, a, s') + \gamma \max_{a'} Q(s', a')$$

Exploration vs exploitation

- > Several schemes for forcing exploration
 - Simplest: random actions (ε-greedy)
 - > Every time step, flip a coin
 - \rightarrow With (small) probability ε , act randomly
 - > With (large) probability 1-ε, act on current policy
 - Problems with random actions?
 - > You do eventually explore the space, but keep thrashing around once learning is done
 - > One solution: lower ε over time
 - > Another solution: exploration functions

Exploration functions

- > When to explore?
 - Random actions: explore a fixed amount
 - Better idea: explore areas whose badness is not (yet) established, eventually stop exploring
- > Exploration function
 - Takes a value estimate u and a visit count n, and returns an optimistic utility, e.g. f(u,n) = u + k/n

Regular Q-Update:
$$Q(s, a) \leftarrow_{\alpha} R(s, a, s') + \gamma \max_{a'} Q(s', a')$$

Modified Q-Update:
$$Q(s, a) \leftarrow_{\alpha} R(s, a, s') + \gamma \max_{a'} f(Q(s', a'), N(s', a'))$$

- Note: this propagates the "bonus" back to states that lead to unknown states as well!

Regret

- > Even if you learn the optimal policy, you still make mistakes along the way!
- Regret is a measure of your total mistake cost: the difference between your (expected) rewards, including youthful suboptimality, and optimal (expected) rewards
- Minimizing regret goes beyond learning to be optimal it requires optimally learning to be optimal
- > Example: random exploration and exploration functions both end up optimal, but random exploration has higher regret

On-policy learning

- > Remember Q-learning is off-policy learning
 - updating based on the best action from the next state
- > On-policy learning
 - update based on the action your current policy actually takes from the next state
 - SARSA (State-Action-Reward-State-Action)

SARSA vs Q-learning

$$Q(s,a) = \alpha \left[R(s) + \gamma Q(s',a') \right] + (1-\alpha)Q(s,a)$$

$$Q(s,a) + = \alpha \left[R(s) + \gamma Q(s',a') - Q(s,a) \right]$$

Q-learning $\max O(s')$

$$\gamma \max_{a'} Q(s', a')$$

SARSA vs Q-learning

> https://towardsdatascience.com/reinforcement-learning-cliffwalking-implementation-e40ce98418d4

Approximate Q-learning

The Story So Far: MDPs and RL

Known MDP: Offline Solution

Goal

Compute V*, Q*, π *

Evaluate a fixed policy π

Technique

Value / policy iteration

Policy evaluation

Unknown MDP: Model-Based

Goal Technique

Compute V*, Q*, π * VI/PI on approx. MDP

Evaluate a fixed policy π PE on approx. MDP

Unknown MDP: Model-Free

Goal Technique

Compute V*, Q*, π * Q-learning

Evaluate a fixed policy π Value Learning

Generalizing across the states

- > Basic Q-Learning keeps a table of all q-values
- > In realistic situations, we cannot possibly learn about every single state!
 - Too many states to visit them all in training
 - Too many states to hold the q-tables in memory
- > Instead, we want to generalize:
 - Learn about some small number of training states from experience
 - Generalize that experience to new, similar situations
 - This is a fundamental idea in machine learning, and we'll see it over and over again

Example: Pacman

Let's say we discover through experience that this state is bad: In naïve q-learning, we know nothing about this state:

Or even this one!

Feature-based representation

- > Solution: describe a state using a vector of features (properties)
 - Features are functions from states to real numbers (often 0/1) that capture important properties of the state
 - Example features:
 - > Distance to closest ghost
 - > Distance to closest dot
 - Number of ghosts
 - \rightarrow 1 / (dist to dot)²
 - \rightarrow Is Pacman in a tunnel? (0/1)
 - > etc.
 - > Am I think exact state? (for a small number of important states)
 - Can also describe a q-state (s, a) with features (e.g. action moves closer to food)

Linear-value functions

Using a feature representation, we can write a q function (or value function) for any state using a few weights:

$$V(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s)$$

$$Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \dots + w_n f_n(s,a)$$

> Advantage: our experience is summed up in a few powerful numbers

› Disadvantage: states may share features but actually be very different in value!

Approximate Q-learning

$$Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \dots + w_n f_n(s,a)$$

> Q-learning with linear Q-functions:

transition
$$= (s, a, r, s')$$

difference $= \left[r + \gamma \max_{a'} Q(s', a')\right] - Q(s, a)$
 $Q(s, a) \leftarrow Q(s, a) + \alpha$ [difference] Exact Q's

 $w_i \leftarrow w_i + \alpha$ [difference] $f_i(s, a)$ Approximate Q's

- > Intuitive interpretation:
 - Adjust weights of active features
 - E.g., if something unexpectedly bad happens, blame the features that were on: disprefer all states with that state's features

Example: Pacman

$$Q(s,a) = 4.0 f_{DOT}(s,a) - 1.0 f_{GST}(s,a)$$

$$f_{DOT}(s, NORTH) = 0.5$$

$$f_{GST}(s, NORTH) = 1.0$$

$$Q(s',\cdot)=0$$

$$Q(s, NORTH) = +1$$

 $r + \gamma \max_{a'} Q(s', a') = -500 + 0$

$$difference = -501$$

$$w_{DOT} \leftarrow 4.0 + \alpha [-501] 0.5$$

 $w_{GST} \leftarrow -1.0 + \alpha [-501] 1.0$

$$Q(s,a) = 3.0 f_{DOT}(s,a) - 3.0 f_{GST}(s,a)$$

Policy search

Policy-search

- > Problem: often the feature-based policies that work well (win games, maximize utilities) aren't the ones that approximate V / Q best
 - Q-learning's priority: get Q-values close (modeling)
 - Action selection priority: get ordering of Q-values right (prediction)
- > Solution: learn policies that maximize rewards, not the values that predict them

> Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill climbing on feature weights

Policy-search

- > Simplest policy search:
 - Start with an initial linear value function or Q-function
 - Nudge each feature weight up and down and see if your policy is better than before
- > Problems:
 - How do we tell the policy got better?
 - Need to run many sample episodes!
 - If there are a lot of features, this can be impractical
- > Better methods exploit lookahead structure, sample wisely, change multiple parameters...
- > https://icml.cc/2015/tutorials/PolicySearch.pdf

Policy-search

- > Policy gradient search
- > Actor critic
 - Combine value-based and policy-based
 - Critic measures how good the action taken is (value-based)
 - Actor controls how our agent behaves (policy-based)
 - A2C, A3C
 - DDPG (deep deterministic policy gradient)
 - PPO (policy proximal optimisation)

Deep RL

RL+ DNN

- > Use deep neural networks to represent
 - Value function Deep Q-Networks (DQN)
 - Policy
 - Model
- > Addresses the issue of state-space explosion/curse of dimensionality in tabular q-learning

DNNs

> convolutional networks can be used to recognize an agent's state, and learn to map it to best actions

Credit: skymind.ai

Resources

- https://deepmind.com/blog/alphastar-mastering-realtime-strategy-game-starcraft-ii/ - An article about the design and training process of a DeepMind agent that beats expert StarCraft players
- https://huggingface.co/deep-rlcourse/unit0/introduction - Great course implementing RL in various Atari environments

RL examples

Benchmarks - Gymnasium

- Cart pole
- > Mountain car
 - Discrete, continuous, multi-objective
- > Taxi
- > gridworld
 - Windy, frozen lake, lava world

Exercise

- You have been given a task to implement a Q-learning reinforcement learning agent controlling electric vehicle charging
 - It has 2 goals: charge the battery sufficiently for the day ahead, and minimize the cost of the electricity used in the process
- > Specify the state space for your agent.
- > Specify the reward model for your agent that will reflect the goal
- > Specify the action set for your agent