Lecture 18 Computer Vision II

06 April 2016

Taylor B. Arnold Yale Statistics STAT 365/665

Yale

Convolutional Models in Computer Vision

There is a long history of specific advances and uses of convolutional neural networks. Today, I'll focus on the following set of models:

- ► LeNet-5 (1998)
- ► AlexNet (2012)
- ► OverFeat (2013)
- ► VGG-16, VGG-19 (2014)
- ► GoogLeNet (2014)
- ► PReLUnet (2015)
- ► ResNet-50, ResNet-101, ResNet-152 (2015)
- ► SqueezeNet (2016)
- ► Stochastic Depth (2016)
- ► ResNet-200, ResNet-1001 (2016)

When you hear about these models people may be referring to: the architecture, the architecture and weights, or just to the general approach.

AlexNet (2012)

A model out of the University of Toronto, now known as AlexNet, became the first CNN to produce state-of-the-art classification rates on the ILSVRC-2012 dataset:

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." In Advances in neural information processing systems, pp. 1097-1105. 2012.

AlexNet contributions

AlexNet was the first to put together several key advances, all of which we have already used in this class:

- 1. relu units
- 2. multiple GPUs
- 3. dropout
- 4. data augmentation

While not all invented by the AlexNet group, they were the first to put them all together and figure out how to train a deep neural network.

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts at the bottom. The GPUs communicate only at certain layers. The network's input is 150,528-dimensional, and the number of neurons in the network's remaining layers is given by 253,440–186,624–64,896–64,896–43,264–4096–4000.

Visualizing CNNs (2013)

Following the success of AlexNet, the year 2013 saw a much larger number of neural network entrants into the ILSVRC competition. The winning entry came about due to the visualization techniques described in the following paper:

Zeiler, Matthew D., and Rob Fergus. "Visualizing and understanding convolutional networks." Computer vision–ECCV 2014. Springer International Publishing, 2014. 818-833.

Their incredibly diverse set of techniques allowed the team to tweak the AlexNet architecture to get even better results.

7/48

Figure 5. Analysis of vertical translation, scale, and rotation invariance within the model (rows a-c respectively). Col 1: 5 example images undergoing the transformations. Col 2 & 3: Euclidean distance between feature vectors from the original and transformed images in layers 1 and 7 respectively. Col 4: the probability of the true label for each image, as the image is transformed.

Figure 4. Evolution of a randomly chosen subset of model features through training. Each layer's features are displayed in a different block. Within each block, we show a randomly chosen subset of features at epochs [1,2,5,10,20,30,40,64]. The visualization shows the strongest activation (across all training examples) for a given feature map, projected down to pixel space using our deconvnet approach. Color contrast is artificially enhanced and the figure is best viewed in electronic form.

Figure 6. (a): 1st layer features without feature scale clipping. Note that one feature dominates. (b): 1st layer features from (Krizhevsky et al., 2012). (c): Our 1st layer features. The smaller stride (2 vs 4) and filter size (7x7 vs 11x11) results in more distinctive features and fewer "dead" features. (d): Visualizations of 2nd layer features from (Krizhevsky et al., 2012). (e): Visualizations of our 2nd layer features. These are cleaner, with no aliasing artifacts that are visible in (d).

Figure 3. Architecture of our 8 layer convnet model. A 224 by 224 crop of an image (with 3 color planes) is presented as the input. This is convolved with 96 different 1st layer filters (red), each of size 7 by 7, using a stride of 2 in both x and y. The resulting feature maps are then: (i) passed through a rectified linear function (not shown), (ii) pooled (max within 3x3 regions, using stride 2) and (iii) contrast normalized across feature maps to give 96 different 55 by 55 element feature maps. Similar operations are repeated in layers 2,3,4,5. The last two layers are fully connected, taking features from the top convolutional layer as input in vector form $(6 \cdot 6 \cdot 256 = 9216$ dimensions). The final layer is a C-way softmax function, C being the number of classes. All filters and feature maps are square in shape.

A demo of applying these techniques to the MNIST dataset with ConvNetJS:

http://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html

OverFeat (2013)

The 2013 competition also brought about the incredibly influential OverFeat model from a team based at NYU:

Sermanet, Pierre, David Eigen, Xiang Zhang, Michaël Mathieu, Rob Fergus, and Yann LeCun. "Overfeat: Integrated recognition, localization and detection using convolutional networks." arXiv preprint arXiv:1312.6229 (2013).

The won the image localization task, by trying to solve localization and identification in a unified process. I'll give a very simplified version of what they did (the paper is a great read, and I suggest working through it if you are interested in computer vision).

Layer	1	2	3	4	5	6	7	Output 8
Stage	conv + max	conv + max	conv	conv	conv + max	full	full	full
# channels	96	256	512	1024	1024	3072	4096	1000
Filter size	11x11	5x5	3x3	3x3	3x3	-	-	-
Conv. stride	4x4	1x1	1x1	1x1	1x1	-	-	-
Pooling size	2x2	2x2	-	-	2x2	-	-	-
Pooling stride	2x2	2x2	-	-	2x2	-	-	-
Zero-Padding size	-	-	1x1x1x1	1x1x1x1	1x1x1x1	-	(-)	1-1
Spatial input size	231x231	24x24	12x12	12x12	12x12	6x6	1x1	1x1

Table 1: Architecture specifics for *fast* model. The spatial size of the feature maps depends on the input image size, which varies during our inference step (see Table 5 in the Appendix). Here we show training spatial sizes. Layer 5 is the top convolutional layer. Subsequent layers are fully connected, and applied in sliding window fashion at test time. The fully-connected layers can also be seen as 1x1 convolutions in a spatial setting. Similar sizes for *accurate* model can be found in the Appendix.

Figure 5: **The efficiency of ConvNets for detection.** During training, a ConvNet produces only a single spatial output (top). But when applied at test time over a larger image, it produces a spatial output map, e.g. 2x2 (bottom). Since all layers are applied convolutionally, the extra computation required for the larger image is limited to the yellow regions. This diagram omits the feature dimension for simplicity.

 $Python\ demo\ III:\ Over Feat\ adaptation\ of\ AlexNet\ (2012)$

VGG-16, VGG-19 (2014)

One of the top entries from 2014, by an Oxford-based team, took advantage of significantly deeper models.

Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image recognition." arXiv preprint arXiv:1409.1556 (2014).

Table 1: ConvNet configurations (shown in columns). The depth of the configurations increases from the left (A) to the right (E), as more layers are added (the added layers are shown in bold). The convolutional layer parameters are denoted as "conv(receptive field size)-(number of channels)". The ReLU activation function is not shown for brevity.

	AL ALEXANDER OF	ConvNet C	onfiguration	a land	
A	A-LRN	В	С	D 16 weight	E
11 weight	11 weight	13 weight	16 weight	19 weight	
layers	layers	layers	layers	layers	layers
			24 RGB image		
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64
	LRN	conv3-64	conv3-64	conv3-64	conv3-64
			pool		
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128
		conv3-128	conv3-128	conv3-128	conv3-128
			pool		
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
			conv1-256	conv3-256	conv3-256
					conv3-256
			pool		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
					conv3-512
			pool		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
					conv3-512
			pool		
			4096		
			4096		
			1000		
		soft	-max		

Table 2: Numb					
Network	A,A-LRN	В	С	D	E
Number of parameters	133	133	134	138	144

Python demo IV: Pre-trained VGG-19 Model $\,$

GoogLeNet (2014)

The winning entry from 2014, by Google, also took advantage of much deeper architectures:

Szegedy, Christian, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. "Going deeper with convolutions." In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1-9. 2015.

They called their model GoogLeNet in honor of the original LeNet architecture.

Relative Confusion	A1	A2
Human succeeds, GoogLeNet succeeds	1352	219
Human succeeds, GoogLeNet fails	72	8
Human fails, GoogLeNet succeeds	46	24
Human fails, GoogLeNet fails	30	7
Total number of images	1500	258
Estimated GoogLeNet classification error	6.8%	5.8%
Estimated human classification error	5.1%	12.0%

Table 9 Human classification results on the ILSVRC2012-2014 classification test set, for two expert annotators A1 and A2. We report top-5 classification error.

type	patch size/ stride	output size	depth	#1×1	#3×3 reduce	#3×3	#5×5 reduce	#5×5	pool	params	ops
	stride				reduce		reduce		proj		
convolution	7×7/2	112×112×64	1							2.7K	34M
max pool	3×3/2	56×56×64	0								
convolution	3×3/1	56×56×192	2		64	192				112K	360M
max pool	3×3/2	28×28×192	0								
inception (3a)		28×28×256	2	64	96	128	16	32	32	159K	128M
inception (3b)		28×28×480	2	128	128	192	32	96	64	380K	304M
max pool	3×3/2	14×14×480	0								
inception (4a)		14×14×512	2	192	96	208	16	48	64	364K	73M
inception (4b)		14×14×512	2	160	112	224	24	64	64	437K	88M
inception (4c)		14×14×512	2	128	128	256	24	64	64	463K	100M
inception (4d)		14×14×528	2	112	144	288	32	64	64	580K	119M
inception (4e)		14×14×832	2	256	160	320	32	128	128	840K	170M
max pool	3×3/2	7×7×832	0								
inception (5a)		7×7×832	2	256	160	320	32	128	128	1072K	54M
inception (5b)		7×7×1024	2	384	192	384	48	128	128	1388K	71M
avg pool	7×7/1	1×1×1024	0								
dropout (40%)		1×1×1024	0								
linear		1×1×1000	1							1000K	1M
softmax		1×1×1000	0								

Table 1: GoogLeNet incarnation of the Inception architecture

 $Python\ demo\ V:\ GoogLeNet\ -\ Inception\ Module$

Batch Normalization (2015)

Not a model architecture itself, but one very useful new tweak in the past year has been Batch Normalization, first presented in this paper:

Ioffe, Sergey, and Christian Szegedy: "Batch normalization: Accelerating deep network training by reducing internal covariate shift." arXiv preprint arXiv:1502.03167 Python demo VI: Batch normalization

PReLUnet (2015)

Microsoft's first contribution in 2015 was the idea of using a modified ReLU activation function:

He, Kaiming, et al. "Delving deep into rectifiers: Surpassing human-level performance on imagenet classification." Proceedings of the IEEE International Conference on Computer Vision. 2015.

Figure 1. ReLU vs. PReLU. For PReLU, the coefficient of the negative part is not constant and is adaptively learned.

ResNet-50, -101, -152 (2015)

Finally, in the 2015 competition, Microsoft produced an model which is extremely deeper than any previously used. These models are known as ResNet, with their depth given as an suffix.

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Deep Residual Learning for Image Recognition." arXiv preprint arXiv:1512.03385 (2015).

Figure 2. Residual learning: a building block.

Figure 4. Training on ImageNet. Thin curves denote training error, and bold curves denote validation error of the center crops. Left: plain networks of 18 and 34 layers. Right: ResNets of 18 and 34 layers. In this plot, the residual networks have no extra parameter compared to their plain counterparts.

layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer					
conv1	112×112	7×7, 64, stride 2									
		3×3 max pool, stride 2									
conv2_x	56×56	$\left[\begin{array}{c}3\times3,64\\3\times3,64\end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,64\\ 3\times3,64 \end{array}\right]\times3$	$ \begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3 $	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$					
conv3_x				$ \begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4 $	Γ 1×1, 128]	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 8$					
conv4_x	14×14	$\left[\begin{array}{c}3\times3,256\\3\times3,256\end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 23$	$ \begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36 $					
conv5_x	7×7	$\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times2$	$\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$ \left[\begin{array}{c} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{array}\right] \times 3 $	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$					
	1×1	average pool, 1000-d fc, softmax									
FLO	FLOPs 1.8×10 ⁹		3.6×10 ⁹	3.8×10^{9}	7.6×10^9	11.3×10 ⁹					

Figure 3. Example network architectures for ImageNet. Left: the VGG-19 model [41] (19.6 billion FLOPs) as a reference. Middle: a plain network with 34 parameter layers (3.6 billion FLOPS).

Right: a residual network with 34 parameter layers (3.6 billion FLOPs). The dotted shortcuts increase dimensions. Table 1 shows more details and other variants.

Stochastic Depth Models (2016)

Another tweak on the ResNet architecture, which subsamples layers in the network:

Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, Kilian Weinberger. "Deep Networks with Stochastic Depth", arXiv preprint arXiv:1603.09382 (2016).

Notice how this seems like an almost obvious thing to try given the ResNet architecture, but less-so in a generic neural network.

Fig. 2. The linear decay of p_{ℓ} illustrated on a ResNet with stochastic depth for $p_0 = 1$ and $p_L = 0.5$. Conceptually, we treat the input to the first ResBlock as H_0 , which is always active.

ResNet-200, -1001 (2016)

Microsoft's update to last year's model. Posted only two weeks ago!

He, Kaiming, et al. "Identity Mappings in Deep Residual Networks." arXiv preprint arXiv:1603.05027 (2016).

Figure 1. Left: (a) original Residual Unit in [1]; (b) proposed Residual Unit. The grey arrows indicate the easiest paths for the information to propagate, corresponding to the additive term " \mathbf{x}_l " in Eqn. [4] (forward propagation) and the additive term "1" in Eqn. [5] (backward propagation). Right: training curves on CIFAR-10 of 1001-layer ResNets. Solid lines denote test error (y-axis on the right), and dashed lines denote training loss (y-axis on the left). The proposed unit makes ResNet-1001 easier to train.

SqueezeNet (2016)

A new line of research involves looking at ways to produce near state-of-the-art results with a minimal model size (or minimal computational cost):

Iandola, Forrest N., et al. "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <1MB model size." arXiv preprint arXiv:1602.07360 (2016).

Figure 1. Organization of convolution filters in the **Fire module**. In this example, $s_{1x1} = 3$, $e_{1x1} = 4$, and $e_{3x3} = 4$. We illustrate the convolution filters but not the activations.

Table 2. Comparing SqueezeNet to model compression approaches. By *model size*, we mean the number of bytes required to store all of the parameters in the trained model.

DNN	Compression	Data	Original → Compressed	Reduction in Model Size	Top-1 ImageNet	Top-5 ImageNet
architecture	Approach	Type	Model Size	vs. AlexNet	Accuracy	Accuracy
AlexNet	None (baseline)	32 bit	240MB	1x	57.2%	80.3%
AlexNet	SVD [4]	32 bit	$240MB \rightarrow 48MB$	5x	56.0%	79.4%
AlexNet	Network Pruning [9]	32 bit	$240MB \rightarrow 27MB$	9x	57.2%	80.3%
AlexNet	Deep Compression[8]	5-8 bit	240MB → 6.9MB	35x	57.2%	80.3%
SqueezeNet (ours)	None	32 bit	4.8MB	50x	57.5%	80.3%
SqueezeNet (ours)	Deep Compression	8 bit	4.8MB → 0.92MB	258x	57.5%	80.3%
SqueezeNet (ours)	Deep Compression	6 bit	$4.8MB \rightarrow 0.52MB$	461x	57.5%	80.3%

Microsoft Common Images in Context (MS COCO)

Fig. 3: Our annotation pipeline is split into 3 primary tasks: (a) labeling the categories present in the image (§4.1), (b) locating and marking all instances of the labeled categories (§4.2), and (c) segmenting each object instance (§4.3).

(a) Image classification

(c) Semantic segmentation

(b) Object localization

(d) This work

More information is found on their website, http://mscoco.org/, and in the paper describing the dataset:

Lin, Tsung-Yi, et al. "Microsoft coco: Common objects in context." Computer Vision–ECCV 2014. Springer International Publishing, 2014. 740-755.