Lista nr 5 z matematyki dyskretnej

- 1. (-) Stosując metodę podstawiania rozwiąż następujące zależności rekurencyjne
 - (a) $t_n = t_{n-1} + 3^n$ dla n > 1 i $t_1 = 3$.
 - (b) $h_n = h_{n-1} + (-1)^{n+1}n$ dla n > 1 i $h_1 = 1$.
- 2. Rozwiąż następujące zależności rekurencyjne:

(a)
$$a_{n+1} = \left| \sqrt{a_n^2 + a_{n-1}^2} \right|, \ a_0 = a_1 = 1,$$

(b)
$$b_{n+1} = \left| \sqrt{b_n^2 + 3} \right|, b_0 = 8,$$

(c)
$$c_{n+1} = (n+1)c_n + (n^2+n)c_{n-1}, c_0 = 0, c_1 = 1.$$

3. (-) Rozwiąż zależności rekurencyjne:

(a)
$$c_0 = 1, c_n = c_0 + c_1 + \dots, c_{n-1}$$

(b)
$$d_0 = 1, d_1 = 2, d_n = d_{n-1}^2/d_{n-2}$$
.

- 4. Wykaż, że iloczyn dowolnych kolejnych k liczb naturalnych jest podzielny przez k!.
- 5. Wyprowadź zależność rekurencyjną dla liczby nieporządków: $d_{n+1}=n(d_n+d_{n-1})$. Jakie należy przyjąć warunki początkowe dla tej zależności?
- 6. Rozwiąż zależność rekurencyjną

 $a_n^2=2a_{n-1}^2+1$ z warunkiem początkowym $a_0=2$ i założeniem, że $a_n>0$ dla każdego naturalnego n.

- 7. Ile jest wyrazów złożonych z n liter należących do 25-literowego alfabetu łacińskiego, zawierających parzystą liczbę liter a?
- 8. Znajdź ogólną postać rozwiązań następujących równań rekurencyjnych za pomocą anihilatorów i rozwiąż jedno z równań do końca:

(a)
$$a_{n+2} = 2a_{n+1} - a_n + 3^n - 1$$
, gdy $a_0 = a_1 = 0$.

(b)
$$a_{n+2} = 4a_{n+1} - 4a_n + n2^{n+1}$$
, gdy $a_0 = a_1 = 1$.

(c)
$$a_{n+2} = \frac{1}{2^{n+1}} - 2a_{n+1} - a_n$$
, gdy $a_0 = a_1 = 1$.

- 9. Niech c_n oznacza liczbę ciągów długości n złożonych z n cyfr ze zbioru $\{0,1,2\}$, nie zawierających dwóch następujących po sobie zer i dwóch następujących po sobie jedynek. Wyprowadź zależność rekurencyjną, jaką spełniają liczby c_n przyjmując $c_0=1$. Rozwiąż otrzymaną zależność rekurencyjną.
- 10. Na ile sposobów można rozdać n różnych nagród wśród czterech osób A, B, C, D tak, aby:
 - (a) A dostała przynajmniej jedną nagrodę?
 - (b) A lub B nie dostała nic?
 - (c) Zarówno A jak i B dostała przynajmniej jedną nagrodę?
 - (d) Przynajmniej jedna spośród A, B, C nic nie dostała?
 - (e) Każda z 4 osób coś dostała?