Steven Rosendahl Homework 6

- 1. For each of the following linear congruences of the form $ax \equiv c \mod n$, determine whether a solution exists. If so, find a formula for all solutions and determine how many solutions there are in \mathbb{Z}_n .
 - (a) $3x \equiv 5 \mod 7$

The gcd of a and n is 1, so there is a solution since $1 \mid 5$, and there is only one solution. If we solve the Diophantine equation 3x + 7y = 5, we get a general solution for x as x = -3 + 7n. The solution we want is 4, since all other n give a solution equal to 4 in \mathbb{Z}_7 .

(b) $4x \equiv 9 \mod 12$

This congruence has no solution since gcd(4, 12) = 4, but $4 \nmid 9$.

(c) $18x \equiv 27 \mod 45$

The gcd(18, 45) = 9, and $9 \mid 27$, so there is a solution, and in fact there are 9 solutions. If we solve the Diophantine equation $18x_0 + 45y_0 = 27$, we get that $x_0 = -1 + 5n$. The nine solutions can be found by starting with n = 1 to n = 9, and are 4, 9, 14, 19, 24, 29, 34, 39, 44.

2. Let S denote the number of solution to the linear congruence $ax \equiv c \mod 20$. Prove that $S \in \{0, 1, 2, 4, 5, 10, 20\}$.

We know that there are either 0 or gcd(a,20) solutions to the congruence $ax \equiv c \mod 20$. Suppose we have the set $A = \{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20\}$. We know that for these numbers, we will have a unique gcd with 20, and in fact all possible gcd's will be represented in this set. If we find the gcd of a relatively prime number r and 20, then gcd(r,20) = 1, so it is possible to have only one solution. In addition, gcd(1,20) = 1, so we can eliminate this number as well. Now we can consider the set $B = A \setminus \{3,7,9,11,13,17,19\} = \{0,2,4,5,6,8,10,12,14,15,16,18,20\}$. For both 0 and 20, gcd(0,20) = gcd(20,20) = 20, so it is possible to have 20 solutions. Now consider the set $C = B \setminus \{0,20\} = \{2,4,5,6,8,10,12,14,15,16,18\}$. We can find all the elements of C such that gcd(20,c) = 2, which are $\{2,6,14,18\}$, which leaves us with the set $D = \{4,5,8,10,12,15,16\}$. Now we can consider all the elements with which give us a gcd of 4, which are $\{4,8,12,16\}$. This leaves us with the set $E = \{5,15\}$. If we take any element of E and find gcd(e,20), we will get 5. Now we are only left with gcd(10,20) = 10, which provides us with 10.

3. Suppose that $a, n \in \mathbb{Z}$ with $n \geq 3$ and gcd(a, n) > 1. Prove that there exist at least two non-zero points $c \in \mathbb{Z}_n$ such that $ax \equiv c \mod n$ has no solutions.

Suppose $ax \equiv c \mod n$. Then there are either gcd(a, n) solutions, or 0 solutions. If there are 0 solutions, then there are n number of non-solutions $c \in \mathbb{Z}_n$. Now suppose we have gcd(a, n) solutions. We know that gcd(a, n) > 1, so we can let $c_1 = 1$. In this case, the only thing that divides c_1 is 1, but gcd(a, n) > 1, so there is no solution. We can also choose $c_2 = n - 1$. In this case, $n - 1 \equiv -1 \mod n$, and the only thing that divides -1 is 1. Since gcd(a, n) > 1, it does not divide -1, and therefore there are no solutions.

- 4. Determine whether each given point is a unit in the given \mathbb{Z}_n . If so, find its multiplicative inverse. If not, explain why it fails to be a unit.
 - (a) $3 \in \mathbb{Z}_6$

 $3 \equiv 1 \mod 6$ implies that 3x + 6y = 1. However, gcd(3,6) = 3, which does not divide 1. Therefore, 3 is not a unit.

(b) $7 \in \mathbb{Z}_{12}$

The greatest common divisor of 7 and 12 is 1, so 7 is a unit in \mathbb{Z}_{12} . We have the relationship that $7x \equiv 1 \mod 12$, so 7x + 12y = 1. One solution to this Diophantine equation is $x_0 = -5$, so all solutions can be expressed as x = -5 + 12n, $n \in \mathbb{Z}$. When n = 1, x = 7, which means that 7 is its own inverse.

(c) $13 \in \mathbb{Z}_{18}$

gcd(13,18)=1, so 13 is a unit in \mathbb{Z}_{18} . We can form the relationship $13\equiv 1 \mod 18$, so we have that 13x+18y=1. We have one solution, $x_0=7$, so all solutions x can be expressed as $x=7+18n,\ n\in\mathbb{Z}$. If we choose n=0, then we have x=7, so 7 is the inverse of 13.

- 5. Suppose that p is prime.
 - (a) Prove that the set $\{0, 1, 2, \dots, p^2 2, p^2 1\}$ contains exactly p(p-1) elements which are relatively prime to p. Conclude that \mathbb{Z}_{p^2} contains exactly p(p-1) units.

Suppose we consider the set containing all non-units of \mathbb{Z}_{p^2} . This set contains elements of the form $\{0, p, 2p, 3p, \ldots, p(p-1)\}$. We know this set contains p elements, since it contains p-1 multiples of p, and p. If we subtract the number of elements in the \mathbb{Z}_{p^2} from the number of non-units, we get p^2-p , or p(p-1).

(b) How many units does \mathbb{Z}_{p^n} have? Prove your answer.

We can consider the set of non-units in \mathbb{Z}_{p^n} . This yields the set

$$\{0, p, 2p, \dots, p^2, 2p^2, \dots, p^3, \dots, p^{n-1}(p-1)\}.$$

We know this set has size p^{n-1} , since it contains all multiples of powers of p up to the n-1 power. Again, we can subtract the sizes of the entire set and the set of non-units, and we get $p^n - p^{n-1} = p^{n-1}(p-1)$.

6. Suppose p and q are distinct primes. Prove that \mathbb{Z}_{pq} contains exactly (p-1)(q-1) units.

We can consider the set of non-units of \mathbb{Z}_{pq} , which takes the form

$$\{0, p, q, \dots, np, mq\}, n < p, m < q.$$

If we can determine the size of the set of non-units, then we can find the size of the units. We know that the non-units contain all multiples of p, np for some $n \in \mathbb{Z}$, and the set also contains all multiples of q, mq for some $m \in \mathbb{Z}$. We know we have up to p multiples of p, and q multiples of q, so there are q+p multiples in total. However, when n=m, we have a duplicate multiple, so the set of non-units contains q+p-1 elements. If we subtract the total size of the set from the size of the set of non-units, we have pq-p-q+1=(p-1)(q-1).