MSP430FG461x MIXED SIGNAL MICROCONTROLLER

SLAS508 - APRIL 2006

- Low Supply-Voltage Range, 1.8 V to 3.6 V
- Ultralow-Power Consumption:
 - Active Mode: 350 μA at 1 MHz, 2.2 V
 - Standby Mode: 1.1 μA
 - Off Mode (RAM Retention): 0.3 μA
- Five Power Saving Modes
- Wake-Up From Standby Mode in less than 6 μs
- 16-Bit RISC Architecture, Extended Memory, 125-ns Instruction Cycle Time
- Three Channel Internal DMA
- 12-Bit A/D Converter With Internal Reference, Sample-and-Hold and Autoscan Feature
- Three Configurable Operational Amplifiers
- Dual 12-Bit D/A Converters With Synchronization
- 16-Bit Timer_A With Three Capture/Compare Registers
- 16-Bit Timer_B With Seven
 Capture/Compare-With-Shadow Registers
- On-Chip Comparator
- Supply Voltage Supervisor/Monitor With Programmable Level Detection
- Serial Communication Interface (USART1), Select Asynchronous UART or Synchronous SPI by Software

- Universal Serial Communication Interface
 - Enhanced UART supporting auto-baudrate detection
 - IrDA Encoder and Decoder
 - Synchronous SPI
 - **I2C**TM
- Serial Onboard Programming,
 No External Programming Voltage Needed
 Programmable Code Protection by Security
 Fuse
- Brownout Detector
- Basic Timer with Real Time Clock Feature
- Integrated LCD Driver up to 160 Segments With Regulated Charge Pump
- Family Members Include:
 - MSP430FG4616:

92KB+256B Flash Memory,

4KB RAM

MSP430FG4617:

92KB+256B Flash Memory, 8KB RAM

- MSP430FG4618:

116KB+256B Flash Memory, 8KB RAM

- MSP430FG4619:

120KB+256B Flash Memory, 4KB RAM

 For Complete Module Descriptions, Refer to the MSP430x4xx Family User's Guide

description

The Texas Instruments MSP430 family of ultralow power microcontrollers consist of several devices featuring different sets of peripherals targeted for various applications. The architecture, combined with five low power modes is optimized to achieve extended battery life in portable measurement applications. The device features a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that attribute to maximum code efficiency. The digitally controlled oscillator (DCO) allows wake-up from low-power modes to active mode in less than 6µs.

The MSP430FG461x series are microcontroller configurations with two 16-bit timers, a high performance 12-bit A/D converter, dual 12-bit D/A converters, three configurable operational amplifiers, one universal serial communication interface (USCI), one universal synchronous/asynchronous communication interface (USART), DMA, 80 I/O pins, and a liquid crystal display (LCD) driver with regulated charge pump.

Typical applications for this device include analog and digital sensor systems, digital motor control, remote controls, thermostats, digital timers, hand-held meters, etc.

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. These devices have limited built-in ESD protection.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

AVAILABLE OPTIONS

	PACKAGED DEVICES
TA	PLASTIC 100-PIN TQFP (PZ)
	MSP430FG4616IPZ
4000 / 0500	MSP430FG4617IPZ
–40°C to 85°C	MSP430FG4618IPZ
	MSP430FG4619IPZ

pin designation, MSP430FG461xIPZ

MSP430FG461x functional block diagram

MSP430FG461x Terminal Functions

TERMINAL					
NAME	NO.	1/0	DESCRIPTION		
DV _{CC1}	1		Digital supply voltage, positive terminal.		
P6.3/A3/OA1O	2	I/O	General-purpose digital I/O / analog input a3—12-bit ADC / OA1 output		
P6.4/A4/OA1I0	3	I/O	General-purpose digital I/O / analog input a4—12-bit ADC / OA1 input multiplexer on +terminal and -terminal		
P6.5/A5/OA2O	4	I/O	General-purpose digital I/O / analog input a5—12-bit ADC / OA2 output		
P6.6/A6/DAC0/OA2I0	5	I/O	General-purpose digital I/O / analog input a6—12-bit ADC / DAC12.0 output / OA2 input multiplexer on +terminal and -terminal		
P6.7/A7/DAC1/SVSIN	6	I/O	General-purpose digital I/O / analog input a7—12-bit ADC / DAC12.1 output / analog input to brownout, supply voltage supervisor		
V _{REF+}	7	0	Output of positive terminal of the reference voltage in the ADC		
XIN	8	I	Input port for crystal oscillator XT1. Standard or watch crystals can be connected.		
XOUT	9	0	Output terminal of crystal oscillator XT1		
VeREF+/DAC0	10	I/O	Input for an external reference voltage to the ADC / DAC12.0 output		
VREF_/VeREF_	11	I	Negative terminal for the ADC's reference voltage for both sources, the internal reference voltage, or an external applied reference voltage		
P5.1/S0/A12/DAC1 (see Note 1)	12	I/O	General-purpose digital I/O / LCD segment output 0 / analog input a12 – 12-bit ADC / DAC12.1 output		
P5.0/S1/A13/OA1I1 (see Note 1)	13	I/O	General-purpose digital I/O / LCD segment output 1 / analog input a13 – 12-bit ADC/OA1 input multiplexer on +terminal and -terminal		
P10.7/S2/A14/OA2I1 (see Note 1)	14	I/O	General-purpose digital I/O / LCD segment output 2 / analog input a14 – 12-bit ADC/OA2 input multiplexer on +terminal and -terminal		
P10.6/S3/A15 (see Note 1)	15	I/O	General-purpose digital I/O / LCD segment output 3 / analog input a15 – 12-bit ADC		
P10.5/S4	16	I/O	General-purpose digital I/O / LCD segment output 4		
P10.4/S5	17	I/O	General-purpose digital I/O / LCD segment output 5		
P10.3/S6	18	I/O	General-purpose digital I/O / LCD segment output 6		
P10.2/S7	19	I/O	General-purpose digital I/O / LCD segment output 7		
P10.1/S8	20	I/O	General-purpose digital I/O / LCD segment output 8		
P10.0/S9	21	I/O	General-purpose digital I/O / LCD segment output 9		
P9.7/S10	22	I/O	General-purpose digital I/O / LCD segment output 10		
P9.6/S11	23	I/O	General-purpose digital I/O / LCD segment output 11		
P9.5/S12	24	I/O	General-purpose digital I/O / LCD segment output 12		
P9.4/S13	25	I/O	General-purpose digital I/O / LCD segment output 13		
P9.3/S14	26	I/O	General-purpose digital I/O / LCD segment output 14		
P9.2/S15	27	I/O	General-purpose digital I/O / LCD segment output 15		
P9.1/S16	28	I/O	General-purpose digital I/O / LCD segment output 16		
P9.0/S17	29	I/O	General-purpose digital I/O / LCD segment output 17		
P8.7/S18	30	I/O	General-purpose digital I/O / LCD segment output 18		
P8.6/S19	31	I/O	General-purpose digital I/O / LCD segment output 19		
P8.5/S20	32	I/O	General-purpose digital I/O / LCD segment output 20		
P8.4/S21	33	I/O	General-purpose digital I/O / LCD segment output 21		
P8.3/S22	34	I/O	General-purpose digital I/O / LCD segment output 22		

NOTES: 1. Segments S0 through S3 must be disabled and cannot be used when the LCD charge pump feature is enabled. In addition, when using segments S0 through S3 with an external LCD voltage supply, V_{LCD} ≤ AV_{CC}.

MSP430FG461x Terminal Functions (Continued)

TERMINAL			DECODIFICAL			
NAME	NO.	1/0	DESCRIPTION			
P8.2/S23	35	I/O	General-purpose digital I/O / LCD segment output 23			
P8.1/S24	36	I/O	General-purpose digital I/O / LCD segment output 24			
P8.0/S25	37	I/O	General-purpose digital I/O / LCD segment output 25			
P7.7/S26	38	I/O	General-purpose digital I/O / LCD segment output 26			
P7.6/S27	39	I/O	General-purpose digital I/O / LCD segment output 27			
P7.5/S28	40	I/O	General-purpose digital I/O / LCD segment output 28			
P7.4/S29	41	I/O	General-purpose digital I/O / LCD segment output 29			
P7.3/UCA0CLK/S30	42	I/O	General-purpose digital I/O / external clock input—USCI_A0/UART or SPI mode, clock output—USART1/SPI MODE / LCD segment output 30			
P7.2/UCA0SOMI/S31	43	I/O	General-purpose digital I/O / slave out/master in of USCI_A0/SPI mode / LCD segment output 31			
P7.1/UCA0SIMO/S32	44	I/O	General-purpose digital I/O / slave in/master out of USCI_A0/SPI mode / LCD segment output 32			
P7.0/UCA0STE/S33	45	I/O	General-purpose digital I/O / slave transmit enable—USCI_A0/SPI mode / LCD segment output 33			
P4.7/UCA0RXD/S34	46	I/O	General-purpose digital I/O / receive data in – USCI_A0/UART or IrDA mode / LCD segment output 34			
P4.6/UCA0TXD/S35	47	I/O	General-purpose digital I/O / transmit data in – USCI_A0/UART or IrDA mode / LCD segment output 35			
P4.5/UCLK1/S36	48	I/O	General-purpose digital I/O / external clock input—USART1/UART or SPI mode, clock output—USART1/SPI MODE / LCD segment output 36			
P4.4/SOMI1/S37	49	I/O	General-purpose digital I/O / slave out/master in of USART1/SPI mode / LCD segment output 37			
P4.3/SIMO1/S38	50	I/O	General-purpose digital I/O / slave in/master out of USART1/SPI mode / LCD segment output 38			
P4.2/STE1/S39	51	I/O	General-purpose digital I/O / slave transmit enable—USART1/SPI mode / LCD segment output 39			
COM0	52	0	COM0-3 are used for LCD backplanes.			
P5.2/COM1	53	I/O	General-purpose digital I/O / common output, COM0–3 are used for LCD backplanes.			
P5.3/COM2	54	I/O	General-purpose digital I/O / common output, COM0-3 are used for LCD backplanes.			
P5.4/COM3	55	I/O	General-purpose digital I/O / common output, COM0–3 are used for LCD backplanes.			
P5.5/R03	56	I/O	General-purpose digital I/O / Input port of lowest analog LCD level (V5)			
P5.6/LCDREF/R13	57	I/O	General-purpose digital I/O / External reference voltage input for regulated LCD voltage / Input port of third most positive analog LCD level (V4 or V3)			
P5.7/R23	58	I/O	General-purpose digital I/O / Input port of second most positive analog LCD level (V2)			
LCDCAP/R33	59	I	LCD Capacitor connection / Input/output port of most positive analog LCD level (V1)			
DV _{CC2}	60		Digital supply voltage, positive terminal.			
DV _{SS2}	61		Digital supply voltage, negative terminal.			
P4.1/URXD1	62	I/O	General-purpose digital I/O / receive data in—USART1/UART mode			
P4.0/UTXD1	63	I/O	General-purpose digital I/O / transmit data out—USART1/UART mode			
P3.7/TB6	64	1/0	General-purpose digital I/O / Timer_B7 CCR6. Capture: CCI6A/CCI6B input, compare: Out6 output			
P3.6/TB5	65	I/O	General-purpose digital I/O / Timer_B7 CCR5. Capture: CCI5A/CCI5B input, compare: Out5 output			
P3.5/TB4	66	I/O	General-purpose digital I/O / Timer_B7 CCR4. Capture: CCI4A/CCI4B input, compare: Out4 output			

MSP430FG461x Terminal Functions (Continued)

TERMINAL		1/0	DESCRIPTION			
NAME	NO.	1/0	DESCRIPTION			
P3.4/TB3	67	I/O	General-purpose digital I/O / Timer_B7 CCR3. Capture: CCl3A/CCl3B input, compare: Out3 output			
P3.3/UCB0CLK	68	I/O	General-purpose digital I/O / external clock input—USCI_B0/UART or SPI mode, clock output—USCI_B0/SPI mode			
P3.2/UCB0SOMI/ UCB0SCL	69	I/O	General-purpose digital I/O / slave out/master in of USCI_B0/SPI mode /I2C clock USCI_B0/I2C mode			
P3.1/UCB0SIMO/ UCB0SDA	70	I/O	General-purpose digital I/O / slave in/master out of USCI_B0/SPI mode, I2C data – USCI_B0/I2C mode			
P3.0/UCB0STE	71	I/O	General-purpose digital I/O / slave transmit enable—USCI_B0/SPI mode			
P2.7/ADC12CLK/ DMAE0	72	I/O	General-purpose digital I/O / conversion clock—12-bit ADC / DMA Channel 0 external trigger			
P2.6/CAOUT	73	I/O	General-purpose digital I/O / Comparator_A output			
P2.5/UCA0RXD	74	I/O	General-purpose digital I/O / receive data in—USCI_A0/UART or IrDA mode			
P2.4/UCA0TXD	75	I/O	General-purpose digital I/O / transmit data out—USCI_A0/UART or IrDA mode			
P2.3/TB2	76	I/O	General-purpose digital I/O / Timer_B7 CCR2. Capture: CCI2A/CCI2B input, compare: Out2 output			
P2.2/TB1	77	I/O	General-purpose digital I/O / Timer_B7 CCR1. Capture: CCI1A/CCI1B input, compare: Out1 output			
P2.1/TB0	78	I/O	General-purpose digital I/O / Timer_B7 CCR0. Capture: CCI0A/CCI0B input, compare: Out0 output			
P2.0/TA2	79	I/O	General-purpose digital I/O / Timer_A Capture: CCI2A input, compare: Out2 output			
P1.7/CA1	80	I/O	General-purpose digital I/O / Comparator_A input			
P1.6/CA0	81	I/O	General-purpose digital I/O / Comparator_A input			
P1.5/TACLK/ACLK	82	I/O	General-purpose digital I/O / Timer_A, clock signal TACLK input / ACLK output (divided by 1, 2, 4, or 8)			
P1.4/TBCLK/SMCLK	83	I/O	General-purpose digital I/O / input clock TBCLK—Timer_B7 / submain system clock SMCLK output			
P1.3/TBOUTH/SVSOUT	84	I/O	General-purpose digital I/O / switch all PWM digital output ports to high impedance—Timer_B7 TB0 to TB6 / SVS: output of SVS comparator			
P1.2/TA1	85	I/O	General-purpose digital I/O / Timer_A, Capture: CCI1A input, compare: Out1 output			
P1.1/TA0/MCLK	86	I/O	General-purpose digital I/O / Timer_A. Capture: CCI0B input / MCLK output. Note: TA0 is only an input on this pin / BSL receive			
P1.0/TA0	87	I/O	General-purpose digital I/O / Timer_A. Capture: CCI0A input, compare: Out0 output / BSL transmit			
XT2OUT	88	0	Output terminal of crystal oscillator XT2			
XT2IN	89	ı	Input port for crystal oscillator XT2. Only standard crystals can be connected.			
TDO/TDI	90	I/O	Test data output port. TDO/TDI data output or programming data input terminal			
TDI/TCLK	91	1/	Test data input or test clock input. The device protection fuse is connected to TDI/TCLK.			
TMS	92	- 1	Test mode select. TMS is used as an input port for device programming and test.			
TCK	93	1	Test clock. TCK is the clock input port for device programming and test.			
RST/NMI	94		Reset input or nonmaskable interrupt input port			
P6.0/A0/OA0I0	95	1/0	General-purpose digital I/O / analog input a0 – 12-bit ADC / OA0 input multiplexer on +terminal and – terminal			
P6.1/A1/OA0O	96	I/O	General-purpose digital I/O / analog input a1 – 12-bit ADC / OA0 output			
P6.2/A2/OA0I1	97	I/O	General-purpose digital I/O / analog input a2 – 12-bit ADC / OA0 input multiplexer on + terminal and – terminal			
AVSS	98		Analog supply voltage, negative terminal. Supplies SVS, brownout, oscillator, FLL+, comparator_A, port 1			
DV _{SS1}	99		Digital supply voltage, negative terminal.			
AVCC	100		Analog supply voltage, positive terminal. Supplies SVS, brownout, oscillator, FLL+, comparator_A, port 1; must not power up prior to DV _{CC1} /DV _{CC2} .			

SLAS508 - APRIL 2006

short-form description

CPU

The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations, other than program-flow instructions, are performed as register operations in conjunction with seven addressing modes for source operand and four addressing modes for destination operand.

The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-register operation execution time is one cycle of the CPU clock.

Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and constant generator respectively. The remaining registers are general-purpose registers.

Peripherals are connected to the CPU using data, address, and control buses, and can be handled with all instructions.

The MSP430FG461x device family utilizes the MSP430X CPU and is completely backwards compatible with the MSP430 CPU. For a complete description of the MSP430X CPU, refer to the MSP430x4xx Family User's Guide.

instruction set

The instruction set consists of the original 51 instructions with three formats and seven address modes and additional instructions for the expanded address range. Each instruction can operate on word and byte data. Table 1 shows examples of the three types of instruction formats; the address modes are listed in Table 2.

Program Counter	PC/R0
Stack Pointer	SP/R1
Status Register	SR/CG1/R2
Constant Generator	CG2/R3
General-Purpose Register	R4
General-Purpose Register	R5
General-Purpose Register	R6
General-Purpose Register	R7
General-Purpose Register	R8
General-Purpose Register	R9
General-Purpose Register	R10
General-Purpose Register	R11
General-Purpose Register	R12
General-Purpose Register	R13
General-Purpose Register	R14
General-Purpose Register	R15

Table 1. Instruction Word Formats

Dual operands, source-destination	e.g. ADD R4,R5	R4 + R5> R5	
Single operands, destination only	e.g. CALL R8	PC>(TOS), R8> PC	
Relative jump, un/conditional	e.g. JNE	Jump-on-equal bit = 0	

Table 2. Address Mode Descriptions

ADDRESS MODE	S	S D SYNTAX EXAMPLE		EXAMPLE	OPERATION
Register	•	•	MOV Rs,Rd	MOV R10,R11	R10 -> R11
Indexed	•	•	MOV X(Rn),Y(Rm)	MOV 2(R5),6(R6)	M(2+R5)—> M(6+R6)
Symbolic (PC relative)	•	•	MOV EDE,TONI		M(EDE) -> M(TONI)
Absolute	•	•	MOV & MEM, & TCDAT		M(MEM) -> M(TCDAT)
Indirect	•		MOV @Rn,Y(Rm)	MOV @R10,Tab(R6)	M(R10) -> M(Tab+R6)
Indirect autoincrement	•		MOV @Rn+,Rm	MOV @R10+,R11	M(R10) —> R11 R10 + 2—> R10
Immediate	•		MOV #X,TONI	MOV #45,TONI	#45 —> M(TONI)

NOTE: S = source D = destination

operating modes

The MSP430 has one active mode and five software selectable low-power modes of operation. An interrupt event can wake up the device from any of the five low-power modes, service the request and restore back to the low-power mode on return from the interrupt program.

The following six operating modes can be configured by software:

- Active mode AM;
 - All clocks are active
- Low-power mode 0 (LPM0);
 - CPU is disabled ACLK and SMCLK remain active. MCLK is disabled FLL+ Loop control remains active
- Low-power mode 1 (LPM1);
 - CPU is disabled
 FLL+ Loop control is disabled
 ACLK and SMCLK remain active. MCLK is disabled
- Low-power mode 2 (LPM2);
 - CPU is disabled
 MCLK and FLL+ loop control and DCOCLK are disabled
 DCO's dc-generator remains enabled
 ACLK remains active
- Low-power mode 3 (LPM3);
 - CPU is disabled
 MCLK, FLL+ loop control, and DCOCLK are disabled
 DCO's dc-generator is disabled
 ACLK remains active
- Low-power mode 4 (LPM4);
 - CPU is disabled
 ACLK is disabled
 MCLK, FLL+ loop control, and DCOCLK are disabled
 DCO's dc-generator is disabled
 Crystal oscillator is stopped

interrupt vector addresses

The interrupt vectors and the power-up start address are located in the address range 0FFFh – 0FFC0h. The vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence.

Table 3. Interrupt Sources, Flags, and Vectors of MSP430FG461x Configurations

INTERRUPT SOURCE	INTERRUPT FLAG	SYSTEM INTERRUPT	WORD ADDRESS	PRIORITY
Power-Up External Reset Watchdog Flash Memory	WDTIFG KEYV (see Note 1)	Reset	0FFFEh	31, highest
NMI Oscillator Fault Flash Memory Access Violation	NMIIFG (see Notes 1 and 3) OFIFG (see Notes 1 and 3) ACCVIFG (see Notes 1 and 3)	(Non)maskable (Non)maskable (Non)maskable	0FFFCh	30
Timer_B7	TBCCR0 CCIFG0 (see Note 2)	Maskable	0FFFAh	29
Timer_B7	TBCCR1 CCIFG1 TBCCR6 CCIFG6, TBIFG (see Notes 1 and 2)	Maskable	0FFF8h	28
Comparator_A	CAIFG	Maskable	0FFF6h	27
Watchdog Timer+	WDTIFG	Maskable	0FFF4h	26
USCI_A0/USCI_B0 Receive	UCA0RXIFG, UCB0RXIFG (see Notes 1)	Maskable	0FFF2h	25
USCI_A0/USCI_B0 Transmit	UCA0TXIFG, UCB0TXIFG (see Notes 1)	Maskable	0FFF0h	24
ADC12	ADC12IFG (see Notes 1 and 2)	Maskable	0FFEEh	23
Timer_A3	TACCR0 CCIFG0 (see Note 2)	Maskable	0FFECh	22
Timer_A3	TACCR1 CCIFG1 and TACCR2 CCIFG2, TAIFG (see Notes 1 and 2)	Maskable	0FFEAh	21
I/O Port P1 (Eight Flags)	P1IFG.0 to P1IFG.7 (see Notes 1 and 2)	Maskable	0FFE8h	20
USART1 receive	URXIFG1	Maskable	0FFE6h	19
USART1 transmit	UTXIFG1	Maskable	0FFE4h	18
I/O Port P2 (Eight Flags)	P2IFG.0 to P2IFG.7 (see Notes 1 and 2)	Maskable	0FFE2h	17
Basic Timer1/RTC	BTIFG	Maskable	0FFE0h	16
DMA	DMA0IFG, DMA1IFG, DMA2IFG (see Notes 1 and 2)	Maskable	0FFDEh	15
DAC12	DAC12.0IFG, DAC12.1IFG (see Notes 1 and 2)	Maskable	0FFDCh	14
			0FFDAh	13
Reserved	Reserved (see Note 4)			
NOTES: 1 Multiple source flags			0FFC0h	0, lowest

NOTES: 1. Multiple source flags

- 2. Interrupt flags are located in the module.
- 3. A reset is generated if the CPU tries to fetch instructions from within the module register memory address range (0h–01FFh).
- . (Non)maskable: the individual interrupt-enable bit can disable an interrupt event, but the general-interrupt enable cannot disable it.
- 4. The interrupt vectors at addresses 0FFDAh to 0FFC0h are not used in this device and can be used for regular program code if necessary.

special function registers

The MSP430 special function registers(SFR) are located in the lowest address space, and are organized as byte mode registers. SFRs should be accessed with byte instructions.

interrupt enable 1 and 2

Address	7	6	5	4	3	2	1	0
0h			ACCVIE	NMIIE			OFIE	WDTIE
			rw–0	rw–0			rw-0	rw–0

WDTIE Watchdog-timer interrupt enable. Inactive if watchdog mode is selected.

Active if watchdog timer is configured as a general-purpose timer.

OFIE Oscillator-fault-interrupt enable
NMIIE Nonmaskable-interrupt enable

ACCVIE Flash access violation interrupt enable

Address	7	6	5	4	3	2	1	0
01h	BTIE		UTXIE1	URXIE1	UCB0TXIE	UCB0RXIE	UCA0TXIE	UCA0RXIE
	rw_0		rw-0	rw-0	rw-0	rw–0	rw–0	rw-0

UCA0RXIE USCI_A0 receive-interrupt enable
UCA0TXIE USCI_A0 transmit-interrupt enable
UCB0RXIE USCI_B0 receive-interrupt enable
UCB0TXIE USCI_B0 transmit-interrupt enable

URXIE1 USART1 UART and SPI receive-interrupt enable
UTXIE1 USART1 UART and SPI transmit-interrupt enable

BTIE Basic timer interrupt enable

interrupt flag register 1 and 2

Address	7	6	5	4	3	2	1	0
02h				NMIIFG			OFIFG	WDTIFG
				rw–0			rw–1	rw-(0)

WDTIFG: Set on watchdog timer overflow (in watchdog mode) or security key violation

Reset on V_{CC} power-on or a reset condition at the RST/NMI pin in reset mode

OFIFG: Flag set on oscillator fault NMIIFG: Set via RST/NMI pin

UCA0RXIFG USCI_A0 receive-interrupt flag
UCA0TXIFG USCI_A0 transmit-interrupt flag
UCB0RXIFG USCI_B0 receive-interrupt flag
UCB0TXIFG USCI_B0 transmit-interrupt flag
URXIFG0: USART1: UART and SPI receive flag

UTXIFG0: USART1: UART and SPI transmit flag

BTIFG: Basic timer flag

module enable registers 1 and 2

URXE1: USART1: UART mode receive enable UTXE1: USART1: UART mode transmit enable

USPIE1: USART1: SPI mode transmit and receive enable

Legend rw: Bit can be read and written.

rw-0,1: Bit can be read and written. It is Reset or Set by PUC.rw-(0,1): Bit can be read and written. It is Reset or Set by POR.

SFR bit is not present in device

SLAS508 - APRIL 2006

memory organization

		MSP430FG4616	MSP430FG4617	MSP430FG4618	MSP430FG4619
Memory Main: interrupt vector Main: code memory	Size Flash Flash	92KB 0FFFFh – 0FFC0h 018FFFh – 002100h	92KB 0FFFFh – 0FFC0h 019FFFh – 003100h	116KB 0FFFFh – 0FFC0h 01FFFFh – 003100h	120KB 0FFFFh – 0FFC0h 01FFFFh – 002100h
RAM (Total)	Size	4KB 020FFh – 01100h	8KB 030FFh – 01100h	8KB 030FFh – 01100h	4KB 020FFh – 01100h
Extended	Size	2KB 020FFh – 01900h	6KB 030FFh – 01900h	6KB 030FFh – 01900h	2KB 020FFh – 01900h
Mirrored	Size	2KB 018FFh – 01100h	2KB 018FFh – 01100h	2KB 018FFh – 01100h	2KB 018FFh – 01100h
Information memory	Size Flash	256 Byte 010FFh – 01000h	256 Byte 010FFh – 01000h	256 Byte 010FFh – 01000h	256 Byte 010FFh – 01000h
Boot memory	Size ROM	1KB 0FFFh – 0C00h	1KB 0FFFh – 0C00h	1KB 0FFFh – 0C00h	1KB 0FFFh – 0C00h
RAM (mirrored at 018FFh – 01100h)	Size	2KB 09FFh – 0200h	2KB 09FFh – 0200h	2KB 09FFh – 0200h	2KB 09FFh – 0200h
Peripherals	16-bit 8-bit 8-bit SFR	01FFh – 0100h 0FFh – 010h 0Fh – 00h	01FFh – 0100h 0FFh – 010h 0Fh – 00h	01FFh – 0100h 0FFh – 010h 0Fh – 00h	01FFh – 0100h 0FFh – 010h 0Fh – 00h

bootstrap loader (BSL)

The MSP430 bootstrap loader (BSL) enables users to program the flash memory or RAM using a UART serial interface. Access to the MSP430 memory via the BSL is protected by user-defined password. A bootstrap loader security key is provided at address 0FFBEh to disable the BSL completely or to disable the erasure of the flash if an invalid password is supplied. For complete description of the features of the BSL and its implementation, see the Application report *Features of the MSP430 Bootstrap Loader*, Literature Number SLAA089.

BSLKEY	Description
00000h	Erasure of flash disabled if an invalid password is supplied
0AA55h	BSL disabled
any other value	BSL enabled

BSL Function	PZ Package Pins
Data Transmit	87 – P1.0
Data Receive	86 – P1.1

flash memory

The flash memory can be programmed via the JTAG port, the bootstrap loader, or in-system by the CPU. The CPU can perform single-byte and single-word writes to the flash memory. Features of the flash memory include:

- Flash memory has n segments of main memory and two segments of information memory (A and B) of 128 bytes each. Each segment in main memory is 512 bytes in size.
- Segments 0 to n may be erased in one step, or each segment may be individually erased.
- Segments A and B can be erased individually, or as a group with segments 0-n.
 Segments A and B are also called *information memory*.
- New devices may have some bytes programmed in the information memory (needed for test during manufacturing). The user should perform an erase of the information memory prior to the first use.

peripherals

Peripherals are connected to the CPU through data, address, and control busses and can be handled using all instructions. For complete module descriptions, refer to the MSP430x4xx Family User's Guide.

DMA controller

The DMA controller allows movement of data from one memory address to another without CPU intervention. For example, the DMA controller can be used to move data from the ADC12 conversion memory to RAM. Using the DMA controller can increase the throughput of peripheral modules. The DMA controller reduces system power consumption by allowing the CPU to remain in sleep mode without having to awaken to move data to or from a peripheral.

oscillator and system clock

The clock system in the MSP430FG461x family of devices is supported by the FLL+ module that includes support for a 32768 Hz watch crystal oscillator, an internal digitally-controlled oscillator (DCO) and a high frequency crystal oscillator. The FLL+ clock module is designed to meet the requirements of both low system cost and low-power consumption. The FLL+ features digital frequency locked loop (FLL) hardware which in conjunction with a digital modulator stabilizes the DCO frequency to a programmable multiple of the watch crystal frequency. The internal DCO provides a fast turn-on clock source and stabilizes in less than 6 µs. The FLL+ module provides the following clock signals:

- Auxiliary clock (ACLK), sourced from a 32768 Hz watch crystal or a high frequency crystal.
- Main clock (MCLK), the system clock used by the CPU.
- Sub-Main clock (SMCLK), the sub-system clock used by the peripheral modules.
- ACLK/n, the buffered output of ACLK, ACLK/2, ACLK/4, or ACLK/8.

brownout, supply voltage supervisor

The brownout circuit is implemented to provide the proper internal reset signal to the device during power-on and power-off. The supply voltage supervisor (SVS) circuitry detects if the supply voltage drops below a user selectable level and supports both supply voltage supervision (the device is automatically reset) and supply voltage monitoring (SVM, the device is not automatically reset).

The CPU begins code execution after the brownout circuit releases the device reset. However, V_{CC} may not have ramped to V_{CC(min)} at that time. The user must insure the default FLL+ settings are not changed until V_{CC} reaches V_{CC(min)}. If desired, the SVS circuit can be used to determine when V_{CC} reaches V_{CC(min)}.

digital I/O

There are ten 8-bit I/O ports implemented—ports P1 through P10:

- All individual I/O bits are independently programmable.
- Any combination of input, output, and interrupt conditions is possible.
- Edge-selectable interrupt input capability for all the eight bits of ports P1 and P2.
- Read/write access to port-control registers is supported by all instructions.
- Ports P7/P8 and P9/P10 can be accessed word-wise as ports PA and PB respectively.

Basic Timer1 and Real-Time Clock

The Basic Timer1 has two independent 8-bit timers which can be cascaded to form a 16-bit timer/counter. Both timers can be read and written by software. The Basic Timer1 is extended to provide an integrated Real-Time Clock (RTC). An internal calendar compensates for months with less than 31 days and includes leap year correction.

LCD_A drive with regulated charge pump

The LCD_A driver generates the segment and common signals required to drive an LCD display. The LCD_A controller has dedicated data memory to hold segment drive information. Common and segment signals are generated as defined by the mode. Static, 2-MUX, 3-MUX, and 4-MUX LCDs are supported by this peripheral. The module can provide a LCD voltage independent of the supply voltage with its integrated charge pump. Furthermore it is possible to control the level of the LCD voltage and thus contrast by software.

WDT+ watchdog timer

The primary function of the watchdog timer (WDT+) module is to perform a controlled system restart after a software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed in an application, the module can be configured as an interval timer and can generate interrupts at selected time intervals.

USCI

The universal serial communication interface (USCI) modules are used for serial data communication. The USCI module supports synchronous communication protocols like SPI (3 or 4 pin), I2C and asynchronous communication protocols like UART, enhanced UART with automatic baudrate detection, and IrDA.

The USCI_A0 module provides support for SPI (3 or 4 pin), UART, enhanced UART and IrDA.

The USCI_B0 module provides support for SPI (3 or 4 pin) and I2C.

USART1

The hardware universal synchronous/asynchronous receive transmit (USART) peripheral module is used for serial data communication. The USART supports synchronous SPI (3 or 4 pin) and asynchronous UART communication protocols, using double-buffered transmit and receive channels.

hardware multiplier

The multiplication operation is supported by a dedicated peripheral module. The module performs 16×16 , 16×8 , 8×16 , and 8×8 bit operations. The module is capable of supporting signed and unsigned multiplication as well as signed and unsigned multiply and accumulate operations. The result of an operation can be accessed immediately after the operands have been loaded into the peripheral registers. No additional clock cycles are required.

timer_A3

Timer_A3 is a 16-bit timer/counter with three capture/compare registers. Timer_A3 can support multiple capture/compares, PWM outputs, and interval timing. Timer_A3 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers.

	Timer_A3 Signal Connections						
Input Pin Number	Device Input	Module Input	Module	Module Output	Output Pin Number		
PZ	Signal	Name	Block	Signal	PZ		
82- P1.5	TACLK	TACLK					
	ACLK	ACLK	—	NIA	7		
	SMCLK	SMCLK	Timer	NA			
82 - P1.5	TACLK	INCLK					
87 - P1.0	TA0	CCI0A	CCR0		87 - P1.0		
86 - P1.1	TA0	CCI0B		CCDO	T40		
	DV _{SS}	GND		TA0			
	DV _{CC}	V _{CC}					
85 - P1.2	TA1	CCI1A			85 - P1.2		
	CAOUT (internal)	CCI1B	OCD4	T04	ADC12 (internal)		
	DVSS	GND	CCR1	TA1			
	DVCC	VCC					
79 - P2.0	TA2	CCI2A			79 - P2.0		
	ACLK (internal)	CCI2B	CCR2	TA 0			
	DV _{SS}	GND		TA2			
	DV _{CC}	V _{CC}					

timer_B7

Timer_B7 is a 16-bit timer/counter with seven capture/compare registers. Timer_B7 can support multiple capture/compares, PWM outputs, and interval timing. Timer_B7 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers.

		Timer_B7 Signal Co	nnections			
Input Pin Number	Device Input	Module Input	Module	Module Output	Output Pin Numbe	
PZ	Signal	Name	Block	Signal	PZ	
83 - P1.4	TBCLK	TBCLK				
	ACLK	ACLK	T:			
	SMCLK	SMCLK	Timer	NA		
83 - P1.4	TBCLK	INCLK				
78 - P2.1	TB0	CCI0A			78 - P2.1	
78 - P2.1	TB0	CCI0B			ADC12 (internal)	
	DVSS	GND	CCR0	TB0		
	DVCC	Vcc	1			
77 - P2.2	TB1	CCI1A			77 - P2.2	
77 - P2.2	TB1	CCI1B	CCR1		ADC12 (internal)	
	DVSS	GND		TB1		
	DVCC	VCC				
76 - P2.3	TB2	CCI2A				76 - P2.3
76 - P2.3	TB2	CCI2B				
	DV _{SS}	GND	CCR2	TB2		
	DVCC	VCC				
67 - P3.4	TB3	CCI3A			67 - P3.4	
67 - P3.4	TB3	CCI3B				
	DVSS	GND	CCR3	TB3		
	DVCC	VCC				
66 - P3.5	TB4	CCI4A			66 - P3.5	
66 - P3.5	TB4	CCI4B				
· · ·	DVSS	GND	CCR4	TB4		
	DVCC	VCC				
65 - P3.6	TB5	CCI5A		†	65 - P3.6	
65 - P3.6	TB5	CCI5B				
	DVSS	GND	CCR5	TB5		
	DVCC	VCC	†			
64 - P3.7	TB6	CCI6A			64 - P3.7	
54 1 5.7	ACLK (internal)	CCI6B	-		0+ 10.7	
	DV _{SS}	GND	CCR6	TB6		
	DVCC	VCC	1			

comparator_A

The primary function of the comparator_A module is to support precision slope analog-to-digital conversions, battery-voltage supervision, and monitoring of external analog signals.

ADC12

The ADC12 module supports fast, 12-bit analog-to-digital conversions. The module implements a 12-bit SAR core, sample select control, reference generator and a 16 word conversion-and-control buffer. The conversion-and-control buffer allows up to 16 independent ADC samples to be converted and stored without any CPU intervention.

DAC12

The DAC12 module is a 12-bit, R-ladder, voltage output DAC. The DAC12 may be used in 8- or 12-bit mode, and may be used in conjunction with the DMA controller. When multiple DAC12 modules are present, they may be grouped together for synchronous operation.

OA

The MSP430FG461x has three configurable low-current general-purpose operational amplifiers. Each OA input and output terminal is software-selectable and offer a flexible choice of connections for various applications. The OA op amps primarily support front-end analog signal conditioning prior to analog-to-digital conversion.

	OA Signal Connections							
Input Pin Number	Device Input Module Input	Module Input Name	Module Block	Module Output	Device Output	Output Pin Number		
PZ	Signal	Name Block Signal	Name	Signal	Signal	PZ		
95 - P6.0	OA010	OA010			OA0O	96 - P6.1		
97 - P6.2	OA0I1	OA0I1			OA0O	ADC12 (internal)		
	DAC12_0OUT (internal)	DAC12_0OUT	OA0 OA(OA0OUT				
	DAC12_1OUT (internal)	DAC12_1OUT						
3 - P6.4	OA1I0	OA1I0			OA1O	2 - P6.3		
13 - P5.0	OA1I1	OA1I1]		OA1O	13- P5.0		
	DAC12_0OUT (internal)	DAC12_0OUT	OA1	OA1OUT	OA10	ADC12 (internal)		
	DAC12_1OUT (internal)	DAC12_1OUT						
5 - P6.6	OA2I0	OA2I0			OA2O	4 - P6.5		
14- P10.7	OA2I1	OA2I1	1		OA2O	14- P10.7		
	DAC12_0OUT (internal)	DAC12_0OUT	OA2	OA2 OA2OUT	OA2O	ADC12 (internal)		
	DAC12_1OUT (internal)	DAC12_1OUT						

peripheral file map

	PERIPHERALS WITH WORD ACCESS		
Watchdog+	Watchdog timer control	WDTCTL	0120h
Timer_B7	Capture/compare register 6	TBCCR6	019Eh
	Capture/compare register 5	TBCCR5	019Ch
	Capture/compare register 4	TBCCR4	019Ah
	Capture/compare register 3	TBCCR3	0198h
	Capture/compare register 2	TBCCR2	0196h
	Capture/compare register 1	TBCCR1	0194h
	Capture/compare register 0	TBCCR0	0192h
	Timer_B register	TBR	0190h
	Capture/compare control 6	TBCCTL6	018Eh
	Capture/compare control 5	TBCCTL5	018Ch
	Capture/compare control 4	TBCCTL4	018Ah
	Capture/compare control 3	TBCCTL3	0188h
	Capture/compare control 2	TBCCTL2	0186h
	Capture/compare control 1	TBCCTL1	0184h
	Capture/compare control 0	TBCCTL0	0182h
	Timer_B control	TBCTL	0180h
	Timer_B interrupt vector	TBIV	011Eh
Timer_A3	Capture/compare register 2	TACCR2	0176h
	Capture/compare register 1	TACCR1	0174h
	Capture/compare register 0	TACCR0	0172h
	Timer_A register	TAR	0170h
	Capture/compare control 2	TACCTL2	0166h
	Capture/compare control 1	TACCTL1	0164h
	Capture/compare control 0	TACCTL0	0162h
	Timer_A control	TACTL	0160h
	Timer_A interrupt vector	TAIV	012Eh
Hardware	Sum extend	SUMEXT	013Eh
Multiplier	Result high word	RESHI	013Ch
	Result low word	RESLO	013Ah
	Second operand	OP2	0138h
	Multiply signed + accumulate/operand1	MACS	0136h
	Multiply + accumulate/operand1	MAC	0134h
	Multiply signed/operand1	MPYS	0132h
	Multiply unsigned/operand1	MPY	0130h
Flash	Flash control 3	FCTL3	012Ch
	Flash control 2	FCTL2	012Ah
	Flash control 1	FCTL1	0128h

	PERIPHERALS WITH WORD ACCESS (CONTINUED)					
DMA	DMA module control 0	DMACTL0	0122h			
	DMA module control 1	DMACTL1	0124h			
	DMA interrupt vector	DMAIV	0126h			
DMA Channel 0	DMA channel 0 control	DMA0CTL	01D0h			
	DMA channel 0 source address	DMA0SA	01D2h			
	DMA channel 0 destination address	DMA0DA	01D6h			
	DMA channel 0 transfer size	DMA0SZ	01DAh			
DMA Channel 1	DMA channel 1 control	DMA1CTL	01DCh			
	DMA channel 1 source address	DMA1SA	01DEh			
	DMA channel 1 destination address	DMA1DA	01E2h			
	DMA channel 1 transfer size	DMA1SZ	01E6h			
DMA Channel 2	DMA channel 2 control	DMA2CTL	01E8h			
	DMA channel 2 source address	DMA2SA	01EAh			
	DMA channel 2 destination address	DMA2DA	01EEh			
	DMA channel 2 transfer size	DMA2SZ	01F2h			

	PERIPHERALS WITH WORD ACCESS (CONTIN	NUED)	
ADC12	Conversion memory 15	ADC12MEM15	015Eh
See also Peripherals	Conversion memory 14	ADC12MEM14	015Ch
with Byte Access	Conversion memory 13	ADC12MEM13	015Ah
	Conversion memory 12	ADC12MEM12	0158h
	Conversion memory 11	ADC12MEM11	0156h
	Conversion memory 10	ADC12MEM10	0154h
	Conversion memory 9	ADC12MEM9	0152h
	Conversion memory 8	ADC12MEM8	0150h
	Conversion memory 7	ADC12MEM7	014Eh
	Conversion memory 6	ADC12MEM6	014Ch
	Conversion memory 5	ADC12MEM5	014Ah
	Conversion memory 4	ADC12MEM4	0148h
	Conversion memory 3	ADC12MEM3	0146h
	Conversion memory 2	ADC12MEM2	0144h
	Conversion memory 1	ADC12MEM1	0142h
	Conversion memory 0	ADC12MEM0	0140h
	Interrupt-vector-word register	ADC12IV	01A8h
	Inerrupt-enable register	ADC12IE	01A6h
	Inerrupt-flag register	ADC12IFG	01A4h
	Control register 1	ADC12CTL1	01A2h
	Control register 0	ADC12CTL0	01A0h
DAC12	DAC12_1 data	DAC12_1DAT	01CAh
	DAC12_1 control	DAC12_1CTL	01C2h
	DAC12_0 data	DAC12_0DAT	01C8h
	DAC12_0 control	DAC12_0CTL	01C0h
Port PA	Port PA selection	PASEL	03Eh
	Port PA direction	PADIR	03Ch
	Port PA output	PAOUT	03Ah
	Port PA input	PAIN	038h
Port PB	Port PB selection	PBSEL	00Eh
	Port PB direction	PBDIR	00Ch
	Port PB output	PBOUT	00Ah
	Port PB input	PBIN	008h

	PERIPHERALS WITH BYTE ACCESS		
OA2	Operational Amplifier 2 control register 1	OA2CTL1	0C5h
	Operational Amplifier 2 control register 0	OA2CTL0	0C4h
OA1	Operational Amplifier 1 control register 1	OA1CTL1	0C3h
	Operational Amplifier 1 control register 0	OA1CTL0	0C2h
OA0	Operational Amplifier 0 control register 1	OA0CTL1	0C1h
	Operational Amplifier 0 control register 0	OA0CTL0	0C0h
LCD_A	LCD Voltage Control 1	LCDAVCTL1	0AFh
	LCD Voltage Control 0	LCDAVCTL0	0AEh
	LCD Voltage Port Control 1	LCDAPCTL1	0ADh
	LCD Voltage Port Control 0	LCDAPCTL0	0ACh
	LCD memory 20	LCDM20	0A4h
	:	:	:
	LCD memory 16	LCDM16	0A0h
	LCD memory 15	LCDM15	09Fh
	:	:	:
	LCD memory 1	LCDM1	091h
	LCD control and mode	LCDCTL	090h
ADC12	ADC memory-control register 15	ADC12MCTL15	08Fh
(Memory control registers require byte	ADC memory-control register 14	ADC12MCTL14	08Eh
access)	ADC memory-control register 13	ADC12MCTL13	08Dh
,	ADC memory-control register 12	ADC12MCTL12	08Ch
	ADC memory-control register 11	ADC12MCTL11	08Bh
	ADC memory-control register 10	ADC12MCTL10	08Ah
	ADC memory-control register 9	ADC12MCTL9	089h
	ADC memory-control register 8	ADC12MCTL8	088h
	ADC memory-control register 7	ADC12MCTL7	087h
	ADC memory-control register 6	ADC12MCTL6	086h
	ADC memory-control register 5	ADC12MCTL5	085h
	ADC memory-control register 4	ADC12MCTL4	084h
	ADC memory-control register 3	ADC12MCTL3	083h
	ADC memory-control register 2	ADC12MCTL2	082h
	ADC memory-control register 1	ADC12MCTL1	081h
	ADC memory-control register 0	ADC12MCTL0	080h
USART1	Transmit buffer	U1TXBUF	07Fh
	Receive buffer	U1RXBUF	07Eh
	Baud rate	U1BR1	07Dh
	Baud rate	U1BR0	07Ch
	Modulation control	U1MCTL	07Bh
	Receive control	U1RCTL	07Ah
	Transmit control	U1TCTL	079h
	USART control	U1CTL	078h

011Ah 0118h 06Fh 06Eh 06Dh 06Ah 069h 068h 067h 066h
06Fh 06Eh 06Dh 06Bh 06Ah 069h 068h 067h
06Eh 06Dh 06Bh 06Ah 069h 068h 067h
06Dh 06Bh 06Ah 069h 068h 067h
06Bh 06Ah 069h 068h 067h
06Ah 069h 068h 067h
069h 068h 067h
068h 067h
067h
7
066h
065h
064h
063h
062h
061h
060h
05Fh
05Eh
05Dh
05Bh
05Ah
059h
056h
054h
053h
052h
051h
050h
04Fh
04Eh
04Dh
04Ch
047h
046h
045h
044h
043h
1
042h
0 1211
041h

	PERIPHERALS WITH BYTE ACCESS	(CONTINUED)	
Port P10	Port P10 selection	P10SEL	00Fh
	Port P10 direction	P10DIR	00Dh
	Port P10 output	P10OUT	00Bh
	Port P10 input	P10IN	009h
Port P9	Port P9 selection	P9SEL	00Eh
	Port P9 direction	P9DIR	00Ch
	Port P9 output	P9OUT	00Ah
	Port P9 input	P9IN	008h
Port P8	Port P8 selection	P8SEL	03Fh
	Port P8 direction	P8DIR	03Dh
	Port P8 output	P8OUT	03Bh
	Port P8 input	P8IN	039h
Port P7	Port P7 selection	P7SEL	03Eh
	Port P7 direction	P7DIR	03Ch
	Port P7 output	P7OUT	03Ah
	Port P7 input	P7IN	038h
Port P6	Port P6 selection	P6SEL	037h
	Port P6 direction	P6DIR	036h
	Port P6 output	P6OUT	035h
	Port P6 input	P6IN	034h
Port P5	Port P5 selection	P5SEL	033h
	Port P5 direction	P5DIR	032h
	Port P5 output	P5OUT	031h
	Port P5 input	P5IN	030h
Port P4	Port P4 selection	P4SEL	01Fh
	Port P4 direction	P4DIR	01Eh
	Port P4 output	P4OUT	01Dh
	Port P4 input	P4IN	01Ch
Port P3	Port P3 selection	P3SEL	01Bh
	Port P3 direction	P3DIR	01Ah
	Port P3 output	P3OUT	019h
	Port P3 input	P3IN	018h
Port P2	Port P2 selection	P2SEL	02Eh
	Port P2 interrupt enable	P2IE	02Dh
	Port P2 interrupt-edge select	P2IES	02Ch
	Port P2 interrupt flag	P2IFG	02Bh
	Port P2 direction	P2DIR	02Ah
	Port P2 output	P2OUT	029h
	Port P2 input	P2IN	028h
Port P1	Port P1 selection	P1SEL	026h
	Port P1 interrupt enable	P1IE	025h
	Port P1 interrupt-edge select	P1IES	024h
	Port P1 interrupt flag	P1IFG	023h
	Port P1 direction	P1DIR	022h
	Port P1 output	P1OUT	021h
	Port P1 input	P1IN	020h

PERIPHERALS WITH BYTE ACCESS (CONTINUED)				
Special functions	SFR module enable 2	ME2	005h	
	SFR module enable 1	ME1	004h	
	SFR interrupt flag 2	IFG2	003h	
	SFR interrupt flag 1	IFG1	002h	
	SFR interrupt enable 2	IE2	001h	
	SFR interrupt enable 1	IE1	000h	

absolute maximum ratings over operating free-air temperature (unless otherwise noted)†

Voltage applied at V _{CC} to V _{SS}	–0.3 V to 4.1 V
Voltage applied to any pin (see Note)	$-0.3 \text{ V to V}_{CC} + 0.3 \text{ V}$
Diode current at any device terminal	±2 mA
Storage temperature, T _{stq} : (unprogrammed device)	–55°C to 150°C
(programmed device)	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions

			MIN NOM	MAX	UNITS	
Supply voltage during program execution VCC (AVCC = DVCC1/2 = VCC)	,		1.8	3.6	V	
Supply voltage during flash memory prog V _{CC} (AV _{CC} = DV _{CC1/2} = V _{CC})	ramming,		2.7	3.6	V	
Supply voltage during program execution, SVS enabled and PORON = 1 (see Note 1), VCC (AVCC = DVCC1/2 = VCC) Supply voltage, Voc (AVcc = DVCC1/2 = VCC)			2	3.6	V	
Supply voltage, VSS (AVSS = DVSS1/2 =		0	0	V		
Operating free-air temperature range, TA		-40	85	°C		
	LF selected, XTS_FLL=0	Watch crystal	32.768		kHz	
LFXT1 crystal frequency, f(LFXT1) (see Note 2)	XT1 selected, XTS_FLL=1	Ceramic resonator	450	8000	kHz	
	XT1 selected, XTS_FLL=1	Crystal	1000	8000	kHz	
		Ceramic resonator	450	8000		
XT2 crystal frequency, f _(XT2)		Crystal	1000	8000	kHz	
		V _{CC} = 1.8 V	DC	3.0		
Processor frequency (signal MCLK), f(Sv	Processor frequency (signal MCLK), f(System)		DC	4.6	MHz	
		V _{CC} = 3.6 V	DC	8.0	MHz	

- NOTES: 1. The minimum operating supply voltage is defined according to the trip point where POR is going active by decreasing the supply voltage. POR is going inactive when the supply voltage is raised above the minimum supply voltage plus the hysteresis of the SVS circuitry.
 - 2. In LF mode, the LFXT1 oscillator requires a watch crystal. In XT1 mode, LFXT1 accepts a ceramic resonator or a crystal.

Figure 1. Frequency vs Supply Voltage, typical characteristic

NOTE: All voltages referenced to V_{SS}. The JTAG fuse-blow voltage, V_{FB}, is allowed to exceed the absolute maximum rating. The voltage is applied to the TDI/TCLK pin when blowing the JTAG fuse.

electrical characteristics over recommended operating free-air temperature (unless otherwise noted)

supply current into AV_{CC} + DV_{CC} excluding external current

	PARAMETER	PARAMETER TEST CONDITIONS			NOM	MAX	UNIT
I _(AM)	Active mode, (see Note 1 and Note 4) $f(MCLK) = f(SMCLK) = 1 \text{ MHz},$ $f(ACLK) = 32,768 \text{ Hz}$	T _A = -40°C to 85°C	V _{CC} = 2.2 V		350	450	μΑ
	XTS=0, SELM=(0,1)		VCC = 3 V		550	700	
Lu DMO)	Low-power mode, (LPM0)	$T_A = -40^{\circ}C \text{ to } 85^{\circ}C$	$V_{CC} = 2.2 \text{ V}$		55	70	μА
I(LPM0)	(see Note 1 and Note 4)	1A = -40 C 10 03 C	VCC = 3 V		85	110	μΛ
I _(LPM2)	Low-power mode, (LPM2), f(MCLK) = f (SMCLK) = 0 MHz, f(ACLK) = 32,768 Hz, SCG0 = 0 (see Note 2 and	$T_A = -40^{\circ}\text{C to } 85^{\circ}\text{C}$	V _{CC} = 2.2 V		13	22	μΑ
(2: 11:2)	(ACLK) = 32,768 Hz, SCG0 = 0 (see Note 2 and Note 4)		V _{CC} = 3 V		18	30	·
	1 (1 DMc)	T _A = -40°C			1.0	2.0	
	Low-power mode, (LPM3) f(MCLK) = f(SMCLK) = 0 MHz,	T _A = 25°C],,,,,		1.1	2.0	^
	$f_{(ACLK)} = 32,768 \text{ Hz}, SCG0 = 1$	T _A = 60°C	$V_{CC} = 2.2 \text{ V}$		2.0	5.0	μΑ
l	Basic Timer1 enabled, ACLK selected LCD_A enabled, LCDCPEN = 0;	T _A = 85°C			7.0	15.0	
(LPM3)	(static mode; fLCD = f(ACLK) /32)	$T_A = -40^{\circ}C$			1.8	2.8	
(se	(see Note 2 and Note 3 and Note 4)	T _A = 25°C	V _{CC} = 3 V		1.6	2.7	μΑ
		T _A = 60°C			2.5	7.0	
		$T_A = 85^{\circ}C$			8.5	21.0	
	Low-power mode, (LPM3) $T_{A} = -40^{\circ}C$ $T_{A} = 25^{\circ}C$ $T_{A} = 25^{\circ}C$	$T_A = -40^{\circ}C$			2.5	3.5	
		\/a= 22\/		2.5	3.5	μΑ	
	f(ACLK) = 32,768 Hz, SCG0 = 1	$T_A = 60^{\circ}C$	V _{CC} = 2.2 V		3.0	6.0	μА
l <i>a</i> =	Basic Timer1 enabled, ACLK selected LCD A enabled, LCDCPEN = 0;	$T_A = 85^{\circ}C$			8.0	16.0	
(LPM3)	(4-mux mode; $f_{LCD} = f_{(ACLK)}/32$)	$T_A = -40^{\circ}C$			2.9	4.0	
	(see Note 2 and Note 3 and Note 4)	T _A = 25°C] \/ 2.\/		2.9	4.0	^
		T _A = 60°C	$V_{CC} = 3 V$		4.0	8.0	μΑ
		T _A = 85°C			10.0	22.0	
		$T_A = -40^{\circ}C$			0.1	0.5	
		T _A = 25°C	Vaa – 2.2.V		0.3	0.7	^
	Low-power mode, (LPM4)	T _A = 60°C	V _{CC} = 2.2 V		1.7	5.0	μΑ
la 5.	f(MCLK) = 0 MHz, f(SMCLK) = 0 MHz,	T _A = 85°C			7.0	15.0	
(LPM4)	f(ACLK) = 0 Hz, SCG0 = 1	$T_A = -40^{\circ}C$			0.1	0.8	
	(see Note 2 and Note 4)	T _A = 25°C	\\ 2\\		0.4	0.9	
		T _A = 60°C	V _{CC} = 3 V		2.0	7.0	μΑ
		T _A = 85°C	7		8.0	21.0	

NOTES: 1. Timer_B is clocked by f(DCOCLK) = f(DCO) = 1 MHz. All inputs are tied to 0 V or to V_{CC}. Outputs do not source or sink any current.

2. All inputs are tied to 0 V or to V_{CC}. Outputs do not source or sink any current.

- 3. The LPM3 currents are characterized with a Micro Crystal CC4V-T1A (9 pF) crystal and OSCCAPx = 1h.
- 4. Current for brownout included.

Current consumption of active mode versus system frequency, F-version:

$$I_{(AM)} = I_{(AM)} [1 \text{ MHz}] \times f_{(System)} [MHz]$$

Current consumption of active mode versus supply voltage, F-version:

$$I_{(AM)} = I_{(AM)} [3 V] + 200 \mu A/V \times (V_{CC} - 3 V)$$

electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)

SCHMITT-trigger inputs – Ports P1 to P10; RST/NMI; JTAG: TCK, TMS, TDI/TCLK, TDO/TDI

	PARAMETER	TEST CONDITIONS	MIN	TYP MAX	UNIT
V _{IT+} Positive-going input threshold voltage	Positive going input threshold valtage	V _{CC} = 2.2 V	1.1	1.55	V
	VCC = 3 V	1.5	1.98	V	
.,		V _{CC} = 2.2 V	0.4	0.9	V
V_{IT-}	Negative-going input threshold voltage	V _{CC} = 3 V	0.9	1.3	٧
V _{hys}	Input voltage hysteresis (Viti – Viti)	V _{CC} = 2.2 V	0.3	1.1	V
		VCC = 3 V	0.5	1	V

inputs Px.x, TAx, TBx

PARAMETER		TEST CONDITIONS	Vcc	MIN	TYP	MAX	UNIT
+4	External interrupt timing	Port P1, P2: P1.x to P2.x, external trigger signal	2.2 V	62			ns
t(int)	External interrupt timing	for the interrupt flag, (see Note 1)	3 V	50			115
	Timer_A, Timer_B capture	TA0, TA1, TA2	2.2 V	62			
t(cap) timing	TB0, TB1, TB2, TB3, TB4, TB5, TB6	3 V	50			ns	
f(TAext)	Timer_A, Timer_B clock	TACLE TOCLE INCLESS - + 4 x	2.2 V			8	MHz
frequency externally applied to pin	TACLK, TBCLK, INCLK: $t_{(H)} = t_{(L)}$	3 V			10	IVIITZ	
f(TAint)	Timer_A, Timer_B clock	SMCLK or ACLK signal selected	2.2 V			8	MHz
f(TBint)	frequency	SIVICEN OF ACEN SIGNAL SELECTED	3 V			10	IVII 1Z

NOTES: 1. The external signal sets the interrupt flag every time the minimum $t_{(int)}$ parameters are met. It may be set even with trigger signals shorter than $t_{(int)}$.

leakage current - Ports P1 to P10 (see Note 1)

	PARAMETER		TEST CONDITIONS			TYP	MAX	UNIT
I _{lkg(Px.y)}	Leakage current	Port Px	$V_{(Px,y)}$ (see Note 2) (1 \le x \le 10, 0 \le y \le 7)	V _{CC} = 2.2 V/3 V			±50	nA

NOTES: 1. The leakage current is measured with VSS or VCC applied to the corresponding pin(s), unless otherwise noted.

2. The port pin must be selected as input.

electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)

outputs - Ports P1 to P10

	PARAMETER	TEST	CONDITIONS		MIN	TYP MAX	UNIT
		$I_{OH(max)} = -1.5 \text{ mA},$	$V_{CC} = 2.2 \text{ V},$	See Note 1	V _{CC} -0.25	Vcc	
V _{OH} High-level output voltage	$I_{OH(max)} = -6 \text{ mA},$	$V_{CC} = 2.2 \text{ V},$	See Note 2	V _C C-0.6	Vcc	V	
	$I_{OH(max)} = -1.5 \text{ mA},$	$V_{CC} = 3 V$,	See Note 1	V _{CC} -0.25	Vcc	V	
		$I_{OH(max)} = -6 \text{ mA},$	$V_{CC} = 3 V$,	See Note 2	V _{CC} -0.6	Vcc	
		$I_{OL(max)} = 1.5 \text{ mA},$	$V_{CC} = 2.2 \text{ V},$	See Note 1	VSS	V _{SS} +0.25	
V	Low-level output voltage	$I_{OL(max)} = 6 \text{ mA},$	$V_{CC} = 2.2 \text{ V},$	See Note 2	VSS	V _{SS} +0.6	V
V _{OL} Low-level output voltage	Low-level output voltage	$I_{OL(max)} = 1.5 \text{ mA},$	$V_{CC} = 3 V$,	See Note 1	VSS	V _{SS} +0.25	V
		$I_{OL(max)} = 6 \text{ mA},$	V _{CC} = 3 V,	See Note 2	Vss	V _{SS} +0.6	

- NOTES: 1. The maximum total current, I_{OH(max)} and I_{OL(max)}, for all outputs combined, should not exceed ±12 mA to satisfy the maximum specified voltage drop.
 - 2. The maximum total current, I_{OH(max)} and I_{OL(max)}, for all outputs combined, should not exceed ±48 mA to satisfy the maximum specified voltage drop.

output frequency

	PARAMETER	TEST	TEST CONDITIONS		TYP	MAX	UNIT
4	$(1 \le x \le 10, \ 0 \le y \le 7)$	C _L = 20 pF,	V _{CC} = 2.2 V	DC		10	MHz
f(Px.y)		$I_L = \pm 1.5 \text{ mA}$	VCC = 3 V	DC		12	MHz
f(MCLK)	P1.1/TA0/MCLK,		V 00V			40	N41.1-
f(SMCLK)	P1.4/TBCLK/SMCLK,	C _L = 20 pF	V _{CC} = 2.2 V			10	MHz
f(ACLK)	P1.5/TACLK/ACLK		V _{CC} = 3 V	DC		12	MHz
		P1.5/TACLK/ACLK, C _L = 20 pF V _{CC} = 2.2 V / 3 V	f(ACLK) = f(LFXT1) = f(XT1)	40%		60%	
			f(ACLK) = f(LFXT1) = f(LF)	30%		70%	
			f(ACLK) = f(LFXT1)		50%		
		P1.1/TA0/MCLK,	f(MCLK) = f(XT1)	40%		60%	
^t (Xdc)	Duty cycle of output frequency	C _L = 20 pF, V _C C = 2.2 V / 3 V	f(MCLK) = f(DCOCLK)	50%– 15 ns	50%	50%+ 15 ns	
		P1.4/TBCLK/SMCLK,	f(SMCLK) = f(XT2)	40%		60%	
		C _L = 20 pF, V _{CC} = 2.2 V / 3 V	f(SMCLK) = f(DCOCLK)	50%- 15 ns	50%	50%+ 15 ns	

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

typical characteristics - outputs

TYPICAL LOW-LEVEL OUTPUT CURRENT vs LOW-LEVEL OUTPUT VOLTAGE

TYPICAL LOW-LEVEL OUTPUT CURRENT VS

TYPICAL HIGH-LEVEL OUTPUT CURRENT vs HIGH-LEVEL OUTPUT VOLTAGE

TYPICAL HIGH-LEVEL OUTPUT CURRENT vs HIGH-LEVEL OUTPUT VOLTAGE

electrical characteristics over recommended operating free-air temperature (unless otherwise noted)

wake-up LPM3

PARAMETER	TEST	TEST CONDITIONS		TYP	MAX	UNIT	
	f = 1 MHz				6		
t _{d(LPM3)} Delay time	f = 2 MHz	V _{CC} = 2.2 V/3 V			6	μs	
- (- mo,	f = 3 MHz				6		

RAM

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
VRAMh	CPU halted (see Note 1)	1.6			V

NOTE 1: This parameter defines the minimum supply voltage when the data in program memory RAM remain unchanged. No program execution should take place during this supply voltage condition.

electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)

LCD_A

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
VCC(LCD)	Supply Voltage Range (see Note 2)	Charge pump enabled (LCDCPEN = 1; VLCDx > 0000)		2.2		3.6	V
ICC(LCD)	Supply Current (see Note 2)	VLCD(typ)=3V; LCDCPEN = 1; VLCDx= 1000; all segments on. fLCD = fACLK/32 no LCD connected (see Note 4) TA = 25°C	2.2 V		3		μΑ
C _{LCD}	Capacitor on LCDCAP (see Note 1 and Note 3)	Charge pump enabled (LCDCPEN = 1; VLCDx > 0000)		4.7			μF
fLCD	LCD frequency					1.1	kHz
VLCD	LCD voltage (see Note 3)	VLCDx = 0000			VCC		V
VLCD	LCD voltage (see Note 3)	VLCDx = 0001			2.60		V
V _{LCD}	LCD voltage (see Note 3)	VLCDx = 0010			2.66		V
V _{LCD}	LCD voltage (see Note 3)	VLCDx = 0011			2.72		V
V _{LCD}	LCD voltage (see Note 3)	VLCDx = 0100			2.78		V
VLCD	LCD voltage (see Note 3)	VLCDx = 0101			2.84		V
VLCD	LCD voltage (see Note 3)	VLCDx = 0110			2.90		V
V _{LCD}	LCD voltage (see Note 3)	VLCDx = 0111			2.96		V
VLCD	LCD voltage (see Note 3)	VLCDx = 1000			3.02		V
V _{LCD}	LCD voltage (see Note 3)	VLCDx = 1001			3.08		V
V _{LCD}	LCD voltage (see Note 3)	VLCDx = 1010			3.14		V
VLCD	LCD voltage (see Note 3)	VLCDx = 1011			3.20		V
VLCD	LCD voltage (see Note 3)	VLCDx = 1100			3.26		V
VLCD	LCD voltage (see Note 3)	VLCDx = 1101			3.32		V
VLCD	LCD voltage (see Note 3)	VLCDx = 1110			3.38		V
VLCD	LCD voltage (see Note 3)	VLCDx = 1111			3.44	3.60	V
R _{LCD}	LCD Driver Output Impedance	V _{LCD} =3V; CPEN = 1; VLCDx = 1000, I _{LOAD} = ± 10 μA	2.2 V			10	kΩ

NOTES: 1. Enabling the internal charge pump with an external capacitor smaller than the minimum specified might damage the device.

2. Refer to the supply current specifications I_(LPM3) for additional current specifications with the LCD_A module active.

4. Connecting an actual display will increase the current consumption depending on the size of the LCD.

^{3.} Segments S0 through S3 must be disabled and cannot be used when the LCD charge pump feature is enabled. In addition, when using segments S0 through S3 with an external LCD voltage supply, V_{LCD} ≤ AV_{CC}.

electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)

Comparator_A (see Note 1)

	PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
		OAON A OADOEL O OADEE O	V _{CC} = 2.2 V		25	40	
I(CC)		CAON=1, CARSEL=0, CAREF=0	V _{CC} = 3 V		45	60	μΑ
I(Refladder/RefDiode)		CAON=1, CARSEL=0, CAREF=1/2/3,	V _{CC} = 2.2 V		30	50	
		No load at P1.6/CA0 and P1.7/CA1	V _{CC} = 3 V		45	71	μΑ
V(Ref025)	Voltage @ 0.25 V _{CC} node	PCA0=1, CARSEL=1, CAREF=1, No load at P1.6/CA0 and P1.7/CA1	V _{CC} = 2.2 V / 3 V	0.23	0.24	0.25	
V(Ref050)	Voltage @ 0.5 V _{CC} node	PCA0=1, CARSEL=1, CAREF=2, No load at P1.6/CA0 and P1.7/CA1	V _{CC} = 2.2V / 3 V	0.47	0.48	0.5	
V _(RefVT)		PCA0=1, CARSEL=1, CAREF=3,	V _{CC} = 2.2 V	390	480	540	
		No load at P1.6/CA0 and P1.7/CA1; T _A = 85°C	V _{CC} = 3 V	400	490	550	mV
VIC	Common-mode input voltage range	CAON=1	V _{CC} = 2.2 V / 3 V	0		V _{CC} -1	٧
V _p -V _S	Offset voltage	See Note 2	VCC = 2.2 V / 3 V	-30		30	mV
V _{hys}	Input hysteresis	CAON = 1	$V_{CC} = 2.2 \text{ V} / 3 \text{ V}$	0	0.7	1.4	mV
		T _A = 25°C,	V _{CC} = 2.2 V	160	210	300	
		Overdrive 10 mV, without filter: CAF = 0	VCC = 3 V	80	150	240	ns
^t (response l	_H)	T _A = 25°C	V _{CC} = 2.2 V	1.4	1.9	3.4	_
		Overdrive 10 mV, with filter: CAF = 1	VCC = 3 V	0.9	1.5	2.6	μs
		T _A = 25°C	V _{CC} = 2.2 V	130	210	300	
		'	V _{CC} = 3 V	80	150	240	ns
^t (response I	se HL) $T_{A} = 25^{\circ}C,$		V _{CC} = 2.2 V	1.4	1.9	3.4	
		Overdrive 10 mV, with filter: CAF = 1	VCC = 3 V	0.9	1.5	2.6	μs

NOTES: 1. The leakage current for the Comparator_A terminals is identical to I_{lkg(Px.x)} specification.

2. The input offset voltage can be cancelled by using the CAEX bit to invert the Comparator_A inputs on successive measurements. The two successive measurements are then summed together.

typical characteristics

FREE-AIR TEMPERATURE 650 $V_{CC} = 3 V$ 600 VREF - Reference Voltage - mV **Typical** 550 500 450 400 -45 -25 15 35 55 75 95 T_A - Free-Air Temperature - °C

REFERENCE VOLTAGE

Figure 6. V_(RefVT) vs Temperature

REFERENCE VOLTAGE FREE-AIR TEMPERATURE 650 V_{CC} = 2.2 V VREF - Reference Voltage - mV 600 **Typical** 550 500 450 400 -25 -5 55 75 -45 95 T_A – Free-Air Temperature – $^{\circ}C$

Figure 7. V_(RefVT) vs Temperature

Figure 8. Block Diagram of Comparator_A Module

Figure 9. Overdrive Definition

PRODUCT PREVIEW

electrical characteristics over recommended operating free-air temperature (unless otherwise noted)

POR/brownout reset (BOR) (see Note 1)

PARAI	WETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
td(BOR)					2000	μs
VCC(start)		dV _{CC} /dt ≤ 3 V/s (see Figure 10)		$0.7 \times V_{(B_IT-}$)	V
V _(B_IT-)	Brownout	dV _{CC} /dt ≤ 3 V/s (see Figure 10 through Figure 12)			1.71	V
V _{hys} (B_IT-)	(see Note 2)	dV _{CC} /dt ≤ 3 V/s (see Figure 10)	70	130	180	mV
t(reset)		Pulse length needed at RST/NMI pin to accepted reset internally, V _{CC} = 2.2 V/3 V	2			μs

- NOTES: 1. The current consumption of the brownout module is already included in the I_{CC} current consumption data. The voltage level V_(B_IT-) + V_{hys}(B_{IT-)} is ≤ 1.8V.
 - During power up, the CPU begins code execution following a period of t_d(BOR) after V_{CC} = V_(B_IT-) + V_{hys(B_IT-)}. The default FLL+ settings must not be changed until V_{CC} ≥ V_{CC(min)}, where V_{CC(min)} is the minimum supply voltage for the desired operating frequency. See the MSP430x4xx Family User's Guide for more information on the brownout/SVS circuit.

typical characteristics

Figure 10. POR/Brownout Reset (BOR) vs Supply Voltage

Figure 11. V_{CC(drop)} Level With a Square Voltage Drop to Generate a POR/Brownout Signal

typical characteristics

Figure 12. V_{CC(drop)} Level With a Triangle Voltage Drop to Generate a POR/Brownout Signal

electrical characteristics over recommended operating free-air temperature (unless otherwise noted)

SVS (supply voltage supervisor/monitor) (see Note 1)

PARAMETER	TEST CONDITIONS		MIN	NOM	MAX	UNIT
t(SVSR) td(SVSon) tsettle V(SVSstart) Vhys(SVS_IT-) V(SVS_IT-)	dV _{CC} /dt > 30 V/ms (see Figure 13)		5		150	μs
	dV _{CC} /dt ≤ 30 V/ms				2000	μs
^t d(SVSon)	SVSon, switch from VLD=0 to VLD ≠ 0, V _{CC} = 3 V		20		150	μs
	VLD ≠ 0 [‡]				12	μs
V(SVSstart)	VLD ≠ 0, V _{CC} /dt ≤ 3 V/s (see Figure 13)			1.55	1.7	V
,		VLD = 1	70	120	155	mV
Vhvs(SVS_IT-)	V _{CC} /dt ≤ 3 V/s (see Figure 13)	VLD = 2 14	V(SVS_IT-) x 0.001		V(SVS_IT-) x 0.016	
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	$V_{CC}/dt \le 3 \text{ V/s}$ (see Figure 13), external voltage applied on A7	VLD = 1 1.8 1.9 2.05 VLD = 2 1.94 2.1 2.23	mV			
		VLD = 1	1.8	1.9	2.05	
		VLD = 2	1.94	2.1	2.23	1
		VLD = 3	2.05	2.2	2.35	1
		VLD = 4	2.14	2.3	2.46	1
		VLD = 5	2.24	2.4	2.58	
		VLD = 6	2.33	2.5	2.69	
	\\\\-\alpha \ \dag{\dag{\dag{\dag{\dag{\dag{\dag{	VLD = 7	2.46	2.65	2.84	
V(0) (0 IT)	V _{CC} /dt ≤ 3 V/s (see Figure 13)	VLD = 8	2.58	2.8	150 2000 150 12 1.55 1.7 120 155 V(SVS_IT-) x 0.016 20 1.9 2.05 2.1 2.23 2.2 2.35 2.3 2.46 2.4 2.58 2.5 2.69 2.65 2.84 2.8 2.97 2.9 3.10 3.05 3.26 3.2 3.39 3.35 3.58† 3.5 3.73† 3.7† 3.96† 1.2 1.3	V
v(SVS_II-)		VLD = 9	2.69	2.9		ľ
		VLD = 10	2.83	3.05	3.26	
		VLD = 11	2.94	3.2	3.39]
		VLD = 12	3.11	3.35	3.58†	
		VLD = 13	3.24	3.5	3.73†	
		VLD = 14	3.43	3.7†	3.96†	
	$V_{CC}/dt \le 3$ V/s (see Figure 13), external voltage applied on A7	VLD = 15	1.1	1.2	1.3	
ICC(SVS) (see Note 1)	VLD ≠ 0, V _{CC} = 2.2 V/3 V			10	15	μА

[†] The recommended operating voltage range is limited to 3.6 V.

NOTE 1: The current consumption of the SVS module is not included in the I_{CC} current consumption data.

[‡] t_{Settle} is the settling time that the comparator o/p needs to have a stable level after VLD is switched VLD ≠ 0 to a different VLD value somewhere between 2 and 15. The overdrive is assumed to be > 50 mV.

Figure 14. V_{CC(drop)} With a Square Voltage Drop and a Triangle Voltage Drop to Generate an SVS Signal

DCO

PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
f(DCOCLK)	N _(DCO) =01E0h, FN_8=FN_4=FN_3=FN_2=0, D = 2; DCOPLUS= 0	2.2 V/3 V		1		MHz
,	EN A EN A EN A EN A BOORING A	2.2 V	0.3	0.65	1.25	
f(DCO2)	FN_8=FN_4=FN_3=FN_2=0 ; DCOPLUS = 1	3 V	0.3	0.7	1.3	MHz
4	EN O EN 4 EN 2 EN 0 DECERNIC 4 (can Note 4)	2.2 V	2.5	5.6	10.5	N.41.1-
f(DCO27)	FN_8=FN_4=FN_3=FN_2=0; DCOPLUS = 1, (see Note 1)	3 V	2.7	6.1	11.3	MHz
f	EN 9 EN 4 EN 2 0 EN 2 4 DOODLUG 4	2.2 V	0.7	1.3	2.3	MHz
f(DCO2)	FN_8=FN_4=FN_3=0, FN_2=1; DCOPLUS = 1	3 V	0.8	1.5	2.5	IVITZ
£	EN 9 EN 4 EN 2 0 EN 2 4 DOODLUG 4 (200 Note 4)	2.2 V	5.7	10.8	18	MHz
f(DCO27)	FN_8=FN_4=FN_3=0, FN_2=1; DCOPLUS = 1, (see Note 1)	3 V	6.5	12.1	20	IVIHZ
4	EN O EN 4 O EN 2 4 EN 9 W DOODLIG 4	2.2 V	1.2	2	3	N 41 1-
f(DCO2)	FN_8=FN_4=0, FN_3= 1, FN_2=x; DCOPLUS = 1	3 V	1.3	2.2	3.5	MHz
4	EN 9 EN 4 0 EN 2 4 EN 2 W DOODLIE 4 (see Note 4)	2.2 V	9	15.5	25	MHz
f(DCO27)	FN_8=FN_4=0, FN_3= 1, FN_2=x; DCOPLUS = 1, (see Note 1)	3 V	10.3	17.9	28.5	1011 12
f	O2) FN_8=0, FN_4= 1, FN_3= FN_2=x; DCOPLUS = 1	2.2 V	1.8	2.8	4.2	NAL I-
f(DCO2)		3 V	2.1	3.4	5.2	MHz
f	EN 9 0 EN 4 4 EN 2 EN 2 W DCODILIC 4 (occ Note 4)	2.2 V	13.5	21.5	33	MHz
f(DCO27)	FN_8=0, FN_4=1, FN_3= FN_2=x; DCOPLUS = 1, (see Note 1)	3 V	16	26.6	41	IVITZ
f	FN_8=1, FN_4=FN_3=FN_2=x; DCOPLUS = 1	2.2 V	2.8	4.2	6.2	MHz
f(DCO2)	FN_0=1, FN_4=FN_3=FN_2=X, DCOPLUS = 1	3 V	4.2	6.3	9.2	IVITIZ
f = = = = = = = = = = = = = = = = = = =	FN_8=1,FN_4=FN_3=FN_2=x; DCOPLUS = 1, (see Note 1)	2.2 V	21	32	46	MHz
f(DCO27)	FN_0=1,FN_4=FN_5=FN_2=x, DCOPLOS = 1, (see Note 1)	3 V	30	46	70	IVITIZ
c	Step size between adjacent DCO taps:	1 < TAP ≤ 20	1.06		1.11	
S _n	$S_n = f_{DCO(Tap n+1)} / f_{DCO(Tap n)}$, (see Figure 16 for taps 21 to 27)	TAP = 27	1.07		1.17	
D.	Temperature drift, N _(DCO) = 01E0h, FN_8=FN_4=FN_3=FN_2=0	2.2 V	-0.2	-0.3	-0.4	9/. /° C
Dt	D = 2; DCOPLUS = 0	3 V	-0.2	-0.3	-0.4	%/°C
DV	Drift with V_{CC} variation, $N_{(DCO)} = 01E0h$, $FN_8 = FN_4 = FN_3 = FN_2 = 0$ D = 2; DCOPLUS = 0		0	5	15	%/V

NOTES: 1. Do not exceed the maximum system frequency.

Figure 15. DCO Frequency vs Supply Voltage V_{CC} and vs Ambient Temperature

Figure 16. DCO Tap Step Size

Figure 17. Five Overlapping DCO Ranges Controlled by FN_x Bits

PRODUCT PREVIEW

electrical characteristics over recommended operating free-air temperature (unless otherwise noted)

crystal oscillator, LFXT1 oscillator (see Notes 1 and 2)

	PARAMETER	TEST CONDITIONS	MIN	TYP MAX	UNIT		
		OSCCAPx = 0h, V_{CC} = 2.2 V / 3 V		0			
C _{XIN}	Integrated input capacitance (see Note 4)	OSCCAPx = 1h, V_{CC} = 2.2 V / 3 V		10			
		OSCCAPx = 2h, V _{CC} = 2.2 V / 3 V		14	pF		
		OSCCAPx = 3h, V_{CC} = 2.2 V / 3 V		18			
		OSCCAPx = 0h, V _{CC} = 2.2 V / 3 V		0	_		
	Integrated output capacitance	OSCCAPx = 1h, V_{CC} = 2.2 V / 3 V		10			
CXOUT	(see Note 4)	OSCCAPx = 2h, V _{CC} = 2.2 V / 3 V		14	pF		
		OSCCAPx = 3h, V _{CC} = 2.2 V / 3 V		18			
V _{IL}	Investigated at VIN	V 0.2 V/2 V (222 Note 2)	Vss	0.2×V _{CC}	.,		
VIH	Input levels at XIN	V _{CC} = 2.2 V/3 V (see Note 3)	0.8×V _{CC}	Vcc	V		

NOTES: 1. The parasitic capacitance from the package and board may be estimated to be 2 pF. The effective load capacitor for the crystal is (C_{XIN} x C_{XOUT}) / (C_{XIN} + C_{XOUT}). This is independent of XTS_FLL.

- 2. To improve EMI on the low-power LFXT1 oscillator, particularly in the LF mode (32 kHz), the following guidelines should be observed.
 - Keep as short of a trace as possible between the 'FG461x and the crystal.
 - Design a good ground plane around the oscillator pins.
 - Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.
 - Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.
 - Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins.
 - If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins.
 - Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other documentation. This signal is no longer required for the serial programming adapter.
- 3. Applies only when using an external logic-level clock source. XTS_FLL must be set. Not applicable when using a crystal or resonator.
- 4. External capacitance is recommended for precision real-time clock applications; OSCCAPx = 0h.

crystal oscillator, XT2 oscillator (see Note 1)

	PARAMETER	TEST CONDITIONS	MIN	NOM MAX	UNIT
C _{XT2IN}	Integrated input capacitance	V _{CC} = 2.2 V/3 V		2	pF
C _{XT2OUT}	Integrated output capacitance	V _{CC} = 2.2 V/3 V		pF	
V_{IL}	Input levels at XT2IN	V _{CC} = 2.2 V/3 V (see Note 2)	V _{SS}	$0.2 \times V_{CC}$	V
VIH	Input levels at X12IIV	VCC = 2.2 V/3 V (see Note 2)	0.8 × V _{CC}	VCC	V

NOTES: 1. The oscillator needs capacitors at both terminals, with values specified by the crystal manufacturer.

2. Applies only when using an external logic-level clock source. Not applicable when using a crystal or resonator.

USCI (UART Mode)

	PARAMETER	TEST CONDITIONS	VCC	MIN	TYP	MAX	UNIT
fusci	USCI input clock frequency	Internal: SMCLK, ACLK External: UCLK Duty Cycle = 50% ± 10%			fsy	STEM	MHz
^f BITCLK	BITCLK clock frequency (equals Baudrate in MBaud)		2.2 V /3.0 V			1	MHz
	UART receive deglitch time		2.2 V	50	150	600	ns
τ_{τ}	(see Note 1)		3.0 V	50	100	600	ns

NOTES: 1. Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. To ensure that pulses are correctly recognized their width should exceed the maximum specification of the deglitch time.

USCI (SPI Master Mode, see Figure 18 and Figure 19)

	PARAMETER	TEST CONDITIONS	VCC	MIN	TYP	MAX	UNIT
fusci	USCI input clock frequency	SMCLK, ACLK Duty Cycle = 50% ± 10%			fsy	STEM	MHz
	20141:		2.2 V	TBD			ns
^t SU,MI	SOMI input data setup time		3.0 V	TBD			ns
	COMPared data hald the		2.2 V	0			ns
^t HD,MI	SOMI input data hold time		3.0 V	0			ns
	ON Construct data and intime	UCLK edge to SIMO valid;	2.2 V		30	TBD	ns
tvalid,mo	SIMO output data valid time	C _L = 20 pF	3.0 V		30	TBD	ns

USCI (SPI Slave Mode, see Figure 20 and Figure 21)

	PARAMETER	TEST CONDITIONS	VCC	MIN	TYP	MAX	UNIT
^t STE,LEAD	STE lead time STE low to clock		2.2 V/3.0 V		50		ns
^t STE,LAG	STE lag time Last clock to STE high		2.2 V/3.0 V	10			ns
^t STE,ACC	STE access time STE low to SOMI data out	C _L = 20 pF	2.2 V/3.0 V		50		ns
^t STE,DIS	STE disable time STE high to SOMI high impedance		2.2 V/3.0 V		50		ns
			2.2 V	TBD			ns
tsu,si	SIMO input data setup time	17	3.0 V	TBD			ns
			2.2 V	0			ns
tHD,SI	SIMO input data hold time		3.0 V	0			ns
		UCLK edge to SOMI valid;	2.2 V		50	TBD	ns
tVALID,SO	SOMI output data valid time	C _L = 20 pF	3.0 V		50	TBD	ns

Figure 18. SPI Master Mode, CKPH = 0

Figure 19. SPI Master Mode, CKPH = 1

Figure 20. SPI Slave Mode, CKPH = 0

Figure 21. SPI Slave Mode, CKPH = 1

USCI (I2C Mode, see Figure 22)

	PARAMETER	TEST CONDITIONS	VCC	MIN	TYP	MAX	UNIT
fusci	USCI input clock frequency	Internal: SMCLK, ACLK External: UCLK Duty Cycle = 50% ± 10%			fsy	STEM	MHz
fSCL	SCL clock frequency		2.2 V/3.0 V	0		400	kHz
	Hald Care (non-set-al) OTABT	f _{SCL} ≤ 100kHz	2.2 V/3.0 V	4.0			us
tHD,STA	Hold time (repeated) START	f _{SCL} > 100kHz	2.2 V/3.0 V	0.6			us
	Out and time for a second of OTABT	f _{SCL} ≤ 100kHz	2.2 V/3.0 V	4.7			us
^t SU,STA	Set-up time for a repeated START	f _{SCL} > 100kHz	2.2 V/3.0 V	0.6			us
tHD,DAT	Data hold time		2.2 V/3.0 V	0			ns
tSU,DAT	Data set-up time		2.2 V/3.0 V	250			ns
tsu,sto	Set-up time for STOP		2.2 V/3.0 V	4.0			us
	Pulse width of spikes suppressed by		2.2 V	50	150	600	ns
tSP	input filter		3.0 V	50	100	600	ns

Figure 22. I2C Mode Timing

USART1 (see Note 1)

	PARAMETER	TEST CONDITIONS	MIN	NOM	MAX	UNIT
I.	LICADTA deglitch time	V _{CC} = 2.2 V	200	430	800	20
	USART1: deglitch time	V _{CC} = 3 V	150	280	500	ns

NOTES: 1. The signal applied to the USART1 receive signal/terminal (URXD1) should meet the timing requirements of $t_{(\tau)}$ to ensure that the URXS flip-flop is set. The URXS flip-flop is set with negative pulses meeting the minimum-timing condition of $t_{(\tau)}$. The operating conditions to set the flag must be met independently from this timing constraint. The deglitch circuitry is active only on negative transitions on the URXD1 line.

12-bit ADC, power supply and input range conditions (see Note 1)

	PARAMETER	TEST CONDITIONS		MIN	NOM	MAX	UNIT
AVCC	Analog supply voltage	AV _{CC} and DV _{CC} are connected toge AV _{SS} and DV _{SS} are connected toge V(AVSS) = V(DVSS) = 0 V		2.2		3.6	V
V(P6.x/Ax)	Analog input voltage range (see Note 2)	All external Ax terminals. Analog inpuselected in ADC12MCTLx register an $V(AVSS) \le V_{Ax} \le V(AVCC)$	ected in ADC12MCTLx register and P6Sel.x=1 AVSS) ≤ VAx ≤ V(AVCC)			VAVCC	V
	Operating supply current	fADC12CLK = 5.0 MHz	V _{CC} = 2.2 V		0.65	1.3	4
IADC12	into AV _{CC} terminal (see Note 3)	ADC12ON = 1, REFON = 0 SHT0=0, SHT1=0, ADC12DIV=0	$V_{CC} = 3 V$		0.8	1.6	mA
	Operating supply current	fADC12CLK = 5.0 MHz ADC12ON = 0, REFON = 1, REF2_5V = 1	V _{CC} = 3 V		0.5	0.8	mA
IREF+	into AV _{CC} terminal (see Note 4)	f _{ADC12CLK} = 5.0 MHz	V _{CC} = 2.2 V		0.5	0.8	
		ADC12ON = 0, REFON = 1, REF2_5V = 0	V _{CC} = 3 V		0.5	0.8	mA
Cl	Input capacitance	Only one terminal can be selected at one time, Ax	V _{CC} = 2.2 V			40	pF
R _I	Input MUX ON resistance	$0V \le V_{AX} \le V_{AVCC}$	V _{CC} = 3 V			2000	Ω

- NOTES: 1. The leakage current is defined in the leakage current table with Ax parameter.
 - 2. The analog input voltage range must be within the selected reference voltage range V_{R+} to V_{R-} for valid conversion results.
 - 3. The internal reference supply current is not included in current consumption parameter I_{ADC12}.
 - 4. The internal reference current is supplied via terminal AV_{CC}. Consumption is independent of the ADC12ON control bit, unless a conversion is active. The REFON bit enables to settle the built-in reference before starting an A/D conversion.

12-bit ADC, external reference (see Note 1)

PA	RAMETER	TEST CONDITIONS			NOM	MAX	UNIT
V _{eREF+}	Positive external reference voltage input	VeREF+ > VREF_/VeREF- (see Note 2)		1.4		VAVCC	٧
VREF-/VeREF-	Negative external reference voltage input	VeREF+ > VREF_/VeREF_ see Note 3)		0		1.2	٧
(V _{eREF+} - V _{REF-/} V _{eREF-})	Differential external reference voltage input	VeREF+ > VREF_/VeREF- (see Note 4)		1.4		VAVCC	٧
I _{VeREF+}	Input leakage current	0V ≤VeREF+ ≤ VAVCC	V _{CC} = 2.2 V/3 V			±1	μΑ
IVREF-/VeREF-	Input leakage current	0V ≤ V _{eREF} – ≤ V _A VCC	V _{CC} = 2.2 V/3 V			±1	μΑ

- NOTES: 1. The external reference is used during conversion to charge and discharge the capacitance array. The input capacitance, C_I, is also the dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the recommendations on analog-source impedance to allow the charge to settle for 12-bit accuracy.
 - 2. The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced accuracy requirements.
 - 3. The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reduced accuracy requirements.
 - The accuracy limits minimum external differential reference voltage. Lower differential reference voltage levels may be applied with reduced accuracy requirements.

12-bit ADC, built-in reference

Р	ARAMETER	TEST CONDITIONS		MIN	NOM	MAX	UNIT
V	Positive built-in reference	REF2_5V = 1 for 2.5 V $IVREF+max \le IVREF+ \le IVREF+min$	V _{CC} = 3 V	2.4	2.5	2.6	
VREF+	voltage output	REF2_5V = 0 for 1.5 V $I_{VREF+max} \le I_{VREF+} \le I_{VREF+min}$	V _{CC} = 2.2 V/3 V	1.44	1.5	1.56	V
	AV _{CC} minimum voltage,	REF2_5V = 0, I_{VREF+} max $\leq I_{VREF+}$	≤ I _{VREF+} min	2.2			
AVCC(min)	Positive built-in reference	REF2_5V = 1, IVREF+min ≥ IVREF+2	≥ -0.5mA	2.8			V
, ,	active	REF2_5V = 1, IVREF+min ≥ IVREF+2	≥ –1mA	2.9			
b	Load current out of VREF+		V _{CC} = 2.2 V	0.01		-0.5	mA
IVREF+	terminal		$V_{CC} = 3 V$	0.01		-1	mA
	Load-current regulation VREF+ terminal	IVREF+ = 500 μA +/- 100 μA	V _{CC} = 2.2 V			±2	LSB
		Analog input voltage ~0.75 V; REF2_5V = 0	VCC = 3 V			±2	LSB
IL(VREF)+		I_{VREF+} = 500 μA ± 100 μA Analog input voltage ~1.25 V; REF2_5V = 1	V _{CC} = 3 V			±2	LSB
I _{DL(VREF)} +	Load current regulation VREF+ terminal	I_{VREF+} =100 μA \rightarrow 900 μA, C_{VREF+} =5 μF, ax ~0.5 x V_{REF+} Error of conversion result \leq 1 LSB	V _{CC} = 3 V			20	ns
C _{VREF+}	Capacitance at pin V _{REF+} (see Note 1)	REFON =1, 0 mA ≤ I _{VREF+} ≤ I _{VREF+} max	V _{CC} = 2.2 V/3 V	5	10		μF
T _{REF+}	Temperature coefficient of built-in reference	I_{VREF+} is a constant in the range of 0 mA $\leq I_{VREF+} \leq 1$ mA	V _{CC} = 2.2 V/3 V			±100	ppm/°C
tREFON	Settle time of internal reference voltage (see Figure 23 and Note 2)	$I_{VREF+} = 0.5$ mA, $C_{VREF+} = 10$ μ F, $V_{REF+} = 1.5$ V, $V_{AVCC} = 2.2$ V				17	ms

- NOTES: 1. The internal buffer operational amplifier and the accuracy specifications require an external capacitor. All INL and DNL tests uses two capacitors between pins V_{REF+} and AV_{SS} and V_{REF-}/V_{eREF-} and AV_{SS}: 10 μF tantalum and 100 nF ceramic.
 - 2. The condition is that the error in a conversion started after t_{REFON} is less than ±0.5 LSB. The settling time depends on the external capacitive load.

Figure 23. Typical Settling Time of Internal Reference t_{REFON} vs External Capacitor on V_{REF}+

Figure 24. Supply Voltage and Reference Voltage Design V_{REF-/}V_{eREF-} External Supply

Figure 25. Supply Voltage and Reference Voltage Design V_{REF-/}V_{eREF-} = AV_{SS}, Internally Connected

12-bit ADC, timing parameters

F	PARAMETER	TEST CONDITIONS			NOM	MAX	UNIT
fADC12CLK		For specified performance of ADC12 linearity parameters	V _{CC} = 2.2V/3 V	0.45	5	6.3	MHz
fADC12OSC	Internal ADC12 oscillator	ADC12DIV=0, fADC12CLK=fADC12OSC	V _{CC} = 2.2 V/3 V	3.7	5	6.3	MHz
	On the state of th	$C_{VREF+} \ge 5 \mu F$, Internal oscillator, $f_{ADC12OSC} = 3.7 \text{ MHz}$ to 6.3 MHz	V _{CC} = 2.2 V/3 V	2.06		3.51	μs
[†] CONVERT	Conversion time	External $f_{ADC12CLK}$ from ACLK, MCL ADC12SSEL $\neq 0$	K or SMCLK:		13×ADC12DIV× 1/fADC12CLK		μs
tADC12ON	Turn on settling time of the ADC	(see Note 1)		7/		100	ns
		$R_S = 400 \Omega, R_I = 1000 \Omega,$	VCC = 3 V	1220			
^t Sample	Sampling time	$C_{I} = 30 \text{ pF}, \tau = [R_{S} + R_{I}] \times C_{I}$ (see Note 2)	V _{CC} = 2.2 V	1400			ns

NOTES: 1. The condition is that the error in a conversion started after t_{ADC12ON} is less than ±0.5 LSB. The reference and input signal are already settled.

2. Approximately ten Tau (τ) are needed to get an error of less than ± 0.5 LSB: $t_{Sample} = ln(2^{n+1}) \times (R_S + R_I) \times C_I + 800$ ns where n = ADC resolution = 12, $R_S = external$ source resistance.

12-bit ADC, linearity parameters

	PARAMETER	TEST CONDITIONS		MIN	NOM	MAX	UNIT
_	Internal linearity arms	$1.4 \text{ V} \le (\text{V}_{\text{eREF+}} - \text{V}_{\text{REF-}}/\text{V}_{\text{eREF-}}) \text{ min } \le 1.6 \text{ V}$	V _{CC} =			±2	5
Εl	Integral linearity error	1.6 V < (VeREF+ - VREF_/VeREF_) min ≤ [VAVCC]	2.2 V/3 V			±1.7	LSB
ED	Differential linearity error	$ \begin{array}{l} (V_{eREF+}-V_{REF-}/V_{eREF-})_{min} \leq (V_{eREF+}-V_{REF-}/V_{eREF-}), \\ C_{VREF+} = 10~\mu F~(tantalum)~and~100~nF~(ceramic) \end{array} $	V _{CC} = 2.2 V/3 V			±1	LSB
EO	Offset error	$\label{eq:continuous} \begin{array}{l} (\text{VeREF+-VREF_/VeREF-})_{min} \leq (\text{VeREF+-VREF_/VeREF-}), \\ \text{Internal impedance of source RS} < 100~\Omega, \\ \text{CVREF+} = 10~\mu\text{F} \text{ (tantalum) and } 100~\text{nF} \text{ (ceramic)} \end{array}$	V _{CC} = 2.2 V/3 V		<u>±2</u>	±4	LSB
EG	Gain error		V _{CC} = 2.2 V/3 V		±1.1	±2	LSB
ET	Total unadjusted error		V _{CC} = 2.2 V/3 V		±2	±5	LSB

12-bit ADC, temperature sensor and built-in V_{MID}

P	ARAMETER	TEST CONDITIONS	VCC	MIN	NOM	MAX	UNIT
	Operating supply current into	REFON = 0, INCH = 0Ah,	2.2 V		40	120	•
ISENSOR	AV _{CC} terminal (see Note 1)	ADC12ON=NA, T _A = 25°C	3 V		60	160	μΑ
VSENSOR	(see Note 2)	ADC12ON = 1, INCH = 0Ah, T _A = 0°C	2.2 V/ 3 V		986	,	mV
TC _{SENSOR}		ADC12ON = 1, INCH = 0Ah	2.2 V/ 3 V		3.55±3%		mV/°C
	Sample time required if	ADC12ON = 1, INCH = 0Ah,	2.2 V	30			
[†] SENSOR(sample)	channel 10 is selected (see Note 3)	Error of conversion result ≤ 1 LSB	3 V	30			μs
h	Current into divider at	ADC12ON 1 INCL. ORK	2.2 V			NA	^
IVMID	channel 11 (see Note 4)	ADC12ON = 1, INCH = 0Bh,	3 V			NA	μΑ
	AV dividentat abancal 44	ADC12ON = 1, INCH = 0Bh,	2.2 V		1.1	1.1±0.04	V
VMID	AV _{CC} divider at channel 11	V _{MID} is ~0.5 x V _{AVCC}	3 V		1.5	1.50±0.04	V
tv/MID(somple)	Sample time required if channel 11 is selected	ADC12ON = 1, INCH = 0Bh, Error of conversion result \leq 1 LSB 3		1400		·	ns
^t VMID(sample)	(see Note 5)			1220			113

NOTES: 1. The sensor current ISENSOR is consumed if (ADC12ON = 1 and REFON=1), or (ADC12ON=1 AND INCH=0Ah and sample signal is high). When REFON = 1, ISENSOR is already included in IREF+.

- The temperature sensor offset can be as much as ±20°C. A single-point calibration is recommended in order to minimize the offset error of the built-in temperature sensor.
- 3. The typical equivalent impedance of the sensor is 51 kΩ. The sample time required includes the sensor-on time tSENSOR(on)
- 4. No additional current is needed. The V_{MID} is used during sampling.
- 5. The on-time t_{VMID(on)} is included in the sampling time t_{VMID(sample)}; no additional on time is needed.

12-bit DAC, supply specifications

	PARAMETER	TEST CONDITIONS	VCC	MIN	TYP	MAX	UNIT
AVCC	Analog supply voltage	AVCC = DVCC, AVSS = DVSS = 0 V		2.20		3.60	٧
Supply Current:		DAC12AMPx=2, DAC12IR=0, DAC12_xDAT=0800h	2.2V/3V		50	110 110 440	
	11.7	DAC12AMPx=2, DAC12IR=1, DAC12_xDAT=0800h , VeREF+=VREF+= AVCC	2.2V/3V		50	110	•
IDD	Single DAC Channel (see Notes 1 and 2)	DAC12AMPx=5, DAC12IR=1, DAC12_xDAT=0800h, V _{eREF+} =V _{REF+} = AV _{CC}	2.2V/3V		200	440	μА
		DAC12AMPx=7, DAC12IR=1, DAC12_xDAT=0800h, V _{eREF+} =V _{REF+} = AV _{CC}	2.2V/3V		700	1500	
DODD	Power supply	DAC12_xDAT = 800h, V _{REF} = 1.5 V ΔAV _{CC} = 100mV	2.2V				j
PSRR	rejection ratio (see Notes 3 and 4)	DAC12_xDAT = 800h, V _{REF} = 1.5 V or 2.5 V Δ AV _{CC} = 100mV	3V		70		dB

NOTES: 1. No load at the output pin, DAC12_0 or DAC12_1, assuming that the control bits for the shared pins are set properly.

- 2. Current into reference terminals not included. If DAC12IR = 1 current flows through the input divider; see Reference Input specifications.
- 3. $PSRR = 20*log\{\Delta AV_{CC}/\Delta V_{DAC12_xOUT}\}.$
- 4. VREF is applied externally. The internal reference is not used.

12-bit DAC, linearity specifications (see Figure 26)

	PARAMETER	TEST CONDITIONS	VCC	MIN	TYP	MAX	UNIT
	Resolution	(12-bit Monotonic)		12			bits
INII	Integral nonlinearity	V _{ref} = 1.5 V DAC12AMPx = 7, DAC12IR = 1	2.2V		100	10.0	1.00
INL	(see Note 1)	V _{ref} = 2.5 V DAC12AMPx = 7, DAC12IR = 1	3V		±2.0	±8.0	LSB
DAII	Differential nonlinearity	V _{ref} = 1.5 V DAC12AMPx = 7, DAC12IR = 1	2.2V				
DNL	(see Note 1)	V _{ref} = 2.5 V DAC12AMPx = 7, DAC12IR = 1	3V		±0.4	±1.0	LSB
	Offset voltage w/o	V _{ref} = 1.5 V DAC12AMPx = 7, DAC12IR = 1	2.2V				
EO	(see Notes 1, 2) V _{ref} = 2.5 V DAC12AMPx = 7, DAC12IR = 1	3V			±21	.,	
	Offset voltage with calibration (see Notes 1, 2)	V _{ref} = 1.5 V DAC12AMPx = 7, DAC12IR = 1	2.2V				mV
		V _{ref} = 2.5 V DAC12AMPx = 7, DAC12IR = 1	3V			±2.5	
dE(O)/dT	Offset error temperature coefficient (see Note 1)		2.2V/3V		±30		μV/C
-	0: () ()	V _{REF} = 1.5 V	2.2V				0/ 505
EG	Gain error (see Note 1)	V _{REF} = 2.5 V	3V			±3.50	% FSR
d _{E(G)} /d _T	Gain temperature coefficient (see Note 1)		2.2V/3V		10		ppm of FSR/°C
	Time for effect cellbradies	DAC12AMPx=2	2.2V/3V			100	
tOffset_Cal	Time for offset calibration (see Note 3)	DAC12AMPx=3,5	2.2V/3V	/			ms
_		DAC12AMPx=4,6,7	2.2V/3V			6	

NOTES: 1. Parameters calculated from the best-fit curve from 0x0A to 0xFFF. The best-fit curve method is used to deliver coefficients "a" and "b" of the first order equation: y = a + b*x. $V_{DAC12_XOUT} = E_O + (1 + E_G)* (V_{eREF+}/4095)* DAC12_xDAT$, DAC12IR = 1. 2. The offset calibration works on the output operational amplifier. Offset Calibration is triggered setting bit DAC12CALON

- 3. The offset calibration can be done if DAC12AMPx = {2, 3, 4, 5, 6, 7}. The output operational amplifier is switched off with DAC12AMPx ={0, 1}. It is recommended that the DAC12 module be configured prior to initiating calibration. Port activity during calibration may effect accuracy and is not recommended.

Figure 26. Linearity Test Load Conditions and Gain/Offset Definition

4095

electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)

12-bit DAC, linearity specifications (continued)

3

2

0

-2

-3

0

512

1024

INL - Integral Nonlinearity Error - LSB

1536

TYPICAL DNL ERROR
vs
DIGITAL INPUT DATA

DAC12_xDAT - Digital Code

2048

2560

3072

3584

12-bit DAC, output specifications

PARA	METER	TEST CONDITIONS	VCC	MIN	TYP	MAX	UNIT
		No Load, VeREF+ = AVCC, DAC12_xDAT = 0h, DAC12IR = 1, DAC12AMPx = 7	2.2V/3V	0		0.005	
Vo	Output voltage range	No Load, Ve _{REF+} = AV _{CC} , DAC12_xDAT = 0FFFh, DAC12IR = 1, DAC12AMPx = 7	2.2V/3V	AV _{CC} -0.05		AVCC	V
Vo	(see Note 1, Figure 29)	R_{Load} = 3 k Ω , Ve_{REF+} = AV $_{CC}$, DAC12_xDAT = 0h, DAC12IR = 1, DAC12AMPx = 7	2.2V/3V	0		0.1	V
		R_{Load} = 3 k Ω , Ve_{REF+} = AV_{CC} , DAC12_xDAT = 0FFFh, DAC12IR = 1, DAC12AMPx = 7	2.2V/3V	AV _{CC} -0.13		AVCC	
C _{L(DAC12)}	Max DAC12 load capacitance		2.2V/3V			100	pF
li (n. n. n. n.	Max DAC12		2.2V	-0.5		+0.5	A
IL(DAC12)	load current		3V	-1.0		+1.0	mA
		R_{Load} = 3 k Ω , $V_{O/P}$ (DAC12) < 0.3 V, DAC12AMPx = 2, DAC12_xDAT = 0h	2.2V/3V		150	250	
R _O /P(DAC12)	(see Figure 29)	R_{Load} = 3 k Ω , VO/P(DAC12) > AVCC-0.3 V DAC12_xDAT = 0FFFh	2.2V/3V		150	250	Ω
		R_{Load} = 3 k Ω , 0.3V \leq V _{O/P} (DAC12) \leq AV _{CC} - 0.3V	2.2V/3V		1	4	

NOTES: 1. Data is valid after the offset calibration of the output amplifier.

Figure 29. DAC12_x Output Resistance Tests

12-bit DAC, reference input specifications

PAR	AMETER	TEST CONDITIONS	VCC	MIN	TYP	MAX	UNIT
	Reference input	DAC12IR=0, (see Notes 1 and 2)	2.2V/3V		AV _{CC} /3	AV _{CC} +0.2	.,
Ve _{REF+}	voltage range	DAC12IR=1, (see Notes 3 and 4)	2.2V/3V	AVcc		AVcc+0.2	V
		DAC12_0 IR=DAC12_1 IR =0	2.2V/3V	20			$M\Omega$
		DAC12_0 IR=1, DAC12_1 IR = 0	2.2V/3V	40	40		1.0
Ri(VREF+),	Reference input	nput DAC12_0 IR=0, DAC12_1 IR = 1 2.2V/3V	40	48	56	kΩ	
Ri(VeREF+)		DAC12_0 IR=DAC12_1 IR =1					
		DAC12_0 SREFx = DAC12_1 SREFx	2.2V/3V	20 24	20 24	28	$k\Omega$
		(see Note 5)			7		

- NOTES: 1. For a full-scale output, the reference input voltage can be as high as 1/3 of the maximum output voltage swing (AVCC).
 - 2. The maximum voltage applied at reference input voltage terminal $Ve_{REF+} = [AV_{CC} V_{E(O)}] / [3*(1 + E_G)]$.
 - 3. For a full-scale output, the reference input voltage can be as high as the maximum output voltage swing (AVCC).
 - 4. The maximum voltage applied at reference input voltage terminal $Ve_{REF+} = [AV_{CC} V_{E(O)}] / (1 + E_G)$.
 - 5. When DAC12IR = 1 and DAC12SREFx = 0 or 1 for both channels, the reference input resistive dividers for each DAC are in parallel reducing the reference input resistance.

12-bit DAC, dynamic specifications; V_{ref} = V_{CC}, DAC12IR = 1 (see Figure 30 and Figure 31)

PA	RAMETER	Т	EST CONDITIONS	Vcc	MIN	TYP	MAX	UNIT
	DA040	DAC12_xDAT = 800h,	$DAC12AMPx=0 \to \{2,3,4\}$	2.2V/3V		60	120	
tON	DAC12 on- time	$Error_{V(O)} < \pm 0.5 LSB$	DAC12AMPx= $0 \rightarrow \{5, 6\}$	2.2V/3V		15	30	μs
	ume	(see Note 1,Figure 30)	DAC12AMPx= $0 \rightarrow 7$	2.2V/3V		6	12	
0.441.4		DAGAS DAT	DAC12AMPx=2	2.2V/3V		100	200	
tS(FS)	Settling time,full-scale	$DAC12_xDAT = 80h \rightarrow F7Fh \rightarrow 80h$	DAC12AMPx=3,5	2.2V/3V		40	80	μs
, ,	time,tuii-scale	OUII → F7FII → OUII	DAC12AMPx=4,6,7	2.2V/3V		15	30	
	0 1111 11	DAC12_xDAT =	DAC12AMPx=2	2.2V/3V		5		
tS(C-C)	Settling time,	to code $3F8h \rightarrow 408h \rightarrow 3F8h$ BF8h $\rightarrow C08h \rightarrow BF8h$	DAC12AMPx=3,5	2.2V/3V		2		μs
- (,	code to code		DAC12AMPx=4,6,7	2.2V/3V		1		
		DAC12_xDAT =	DAC12AMPx=2	2.2V/3V	0.05	0.12		
SR	Slew Rate	80h→ F7Fh→ 80h	DAC12AMPx=3,5	2.2V/3V	0.35	0.7		V/µs
		(see Note 2)	DAC12AMPx=4,6,7	2.2V/3V	1.5	2.7		
		DAGAS - DAT	DAC12AMPx=2	2.2V/3V		600		
Glitch er	nergy: full-scale	DAC12_xDAT = 80h→ F7Fh→ 80h	DAC12AMPx=3,5	2.2V/3V		150		nV-s
			DAC12AMPx=4,6,7	2.2V/3V		30		

NOTES: 1. R_{Load} and C_{Load} connected to AV_{SS} (not $AV_{CC}/2$) in Figure 30.

2. Slew rate applies to output voltage steps >= 200mV.

Figure 30. Settling Time and Glitch Energy Testing

Figure 31. Slew Rate Testing

12-bit DAC, dynamic specifications continued (T_A = 25°C unless otherwise noted)

	PARAMETER	TEST CONDITIONS	VCC	MIN	TYP	MAX	UNIT
		DAC12AMPx = {2, 3, 4}, DAC12SREFx = 2, DAC12IR = 1, DAC12_xDAT = 800h	2.2V/3V	40			
BW _{-3dB}	3-dB bandwidth, VDC=1.5V, VAC=0.1Vpp	DAC12AMPx = {5, 6}, DAC12SREFx = 2, DAC12IR = 1, DAC12_xDAT = 800h	2.2V/3V	180			kHz
	(see Figure 32)	DAC12AMPx = 7, DAC12SREFx = 2, DAC12IR = 1, DAC12_xDAT = 800h	2.2V/3V	550			
		DAC12_0DAT = 800h, No Load, DAC12_1DAT = 80h<->F7Fh, R_{Load} = $3k\Omega$ f_{DAC12_1OUT} = 10kHz @ 50/50 duty cycle	2.2V/3V		-80		
Channel-to-channel crosstalk (see Note 1 and Figure 33)		DAC12_0DAT = $80h<->F7Fh$, $R_{Load} = 3k\Omega$, DAC12_1DAT = $800h$, No Load fDAC12_0OUT = $10kHz$ @ $50/50$ duty cycle	2.2V/3V		-80		dB

NOTES: 1. $R_{LOAD} = 3 \text{ k}\Omega$, $C_{LOAD} = 100 \text{ pF}$

Figure 32. Test Conditions for 3-dB Bandwidth Specification

Figure 33. Crosstalk Test Conditions

PRODUCT PREVIEW

electrical characteristics over recommended operating free-air temperature (unless otherwise noted)

operational amplifier OA, supply specifications

	PARAMETER	TEST CONDITIONS	VCC	MIN	TYP	MAX	UNIT
Vcc	Supply voltage		_	2.2		3.6	V
		Fast Mode, OARRIP OFF	2.2 V/3 V		180	290	
		Medium Mode, OARRIP OFF	2.2 V/3 V		110	190	
	Supply current	Slow Mode, OARRIP OFF	2.2 V/3 V		50	80	
ICC	(see Note 1)	Fast Mode, OARRIP ON	2.2 V/3 V		300	490	μА
		Medium Mode, OARRIP ON	2.2 V/3 V		190	350	
		Slow Mode, OARRIP ON	2.2 V/3 V		90	190	
PSRR	Power supply rejection ratio	Non-inverting	2.2 V/3 V		70		dB

NOTES: 1. P6SEL.x = 1 for each corresponding pin when used in OA input or OA output mode.

operational amplifier OA, input/output specifications

	PARAMETER	TEST CON	DITIONS	VCC	MIN	TYP	MAX	UNIT
		OARRIP OFF		_	-0.1		V _{CC} -1.2	V
V _{I/P}	Voltage supply, I/P	OARRIP ON		_	-0.1		V _{CC} +0.1	V
	Input leakage current, I/P	$T_A = -40 \text{ to } +55^{\circ}\text{C}$		_	-5	±0.5	5	nA
l _{lkg}	(see Notes 1 and 2)	$T_A = +55 \text{ to } +85^{\circ}\text{C}$		/	-20	±5	20	nA
		Fast Mode		_		50		
		Medium Mode	$f_{V(I/P)} = 1 \text{ kHz}$	_		80		
		Slow Mode	- (".)	_		140		\
V _n	Voltage noise density, I/P	Fast Mode		_		30		nV/√Hz
		Medium Mode	$f_{V(I/P)} = 10 \text{ kHz}$	_		50		
		Slow Mode	- ()	_		65		
V _{IO}	Offset voltage, I/P			2.2 V/3 V			±10	mV
	Offset temperature drift, I/P	see Note 3		2.2 V/3 V		±10		μV/°C
	Offset voltage drift with supply, I/P	$0.3V \le V_{IN} \le V_{CC} = 0.3V \le V_{CC} \le \pm 10\%, T_A = 0.3V \le V_{CC} \le \pm 10\%$		2.2 V/3 V			±1.5	mV/V
		Fast Mode, ISOURC	E ≤ -500μA	2.2 V	V _{CC} -0.2		VCC	
VOH	High-level output voltage, O/P	Slow Mode,ISOURC	E ≤ −150μA	3 V	V _{CC} -0.1		VCC	V
		Fast Mode, ISOURC	E ≤ +500μA	2.2 V	V _{SS}		0.2	.,
VOL	Low-level output voltage, O/P	Slow Mode,ISOURC		3 V	V _{SS}		0.1	V
		R _{Load} = 3 kΩ, C _{Load} OARRIP ON, VO/P(OAx) < 0.2 V	d = 50pF,	2.2 V/3 V		150	250	
R _{O/P} (OAx)	Output Resistance (see Figure 34 and Note 4)	R_{Load} = 3 k Ω , C_{Load} OARRIP ON, $V_{O/P}(OAx) > AV_{CC}$		2.2 V/3 V		150	250	Ω
	R _I O	$R_{Load} = 3 \text{ k}\Omega$, $C_{Load} = 50 \text{pF}$,		2.2 V/3 V		0.1	4	
CMRR	Common-mode rejection ratio	Non-inverting		2.2 V/3 V		70		dB

NOTES: 1. ESD damage can degrade input current leakage.

- 2. The input bias current is overridden by the input leakage current.
- 3. Calculated using the box method.
- 4. Specification valid for voltage-follower OAx configuration.

Figure 34. OAx Output Resistance Tests

operational amplifier OA, dynamic specifications

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN TYP	MAX	UNIT
		Fast Mode	_	1.2		
SR	Slew rate	Medium Mode	_	0.8		V/μs
		Slow Mode	-	0.3		
	Open-loop voltage gain		_	100		dB
φm	Phase margin	C _L = 50 pF	_	60		deg
	Gain margin	C _L = 50 pF	_	20		dB
	Gain-Bandwidth Product	Non-inverting, Fast Mode, $R_L = 47k\Omega$, $C_L = 50pF$	2.2 V/3 V	2.2		
GBW	(see Figure 35	Non-inverting, Medium Mode, $R_L = 300k\Omega$, $C_L = 50pF$	2.2 V/3 V	1.4		MHz
and Figure 36)	and Figure 36)	Non-inverting, Slow Mode, $R_L = 300k\Omega$, $C_L = 50pF$	2.2 V/3 V	0.5		
ten(on)	Enable time on	t _{on} , non-inverting, Gain = 1	2.2 V/3 V	10	20	μs
ten(off)	Enable time off		2.2 V/3 V		1	μs

Flash Memory

	PARAMETER	TEST CONDITIONS	v _{cc}	MIN	TYP	MAX	UNIT
VCC(PGM/ ERASE)	Program and Erase supply voltage			2.7	_	3.6	٧
fFTG	Flash Timing Generator frequency			257		476	kHz
IPGM	Supply current from DV _{CC} during program		2.7 V/ 3.6 V		3	5	mA
IERASE	Supply current from DV _{CC} during erase	see Note 3	2.7 V/ 3.6 V		3	7	mA
IGMERASE	Supply current from DV _{CC} during global mass erase	see Note 4	2.7 V/ 3.6 V		6	14	mA
tCPT	Cumulative program time	see Note 1	2.7 V/ 3.6 V			10	ms
^t CMErase	Cumulative mass erase time		2.7 V/ 3.6 V	20			ms
	Program/Erase endurance			104	10 ⁵		cycles
^t Retention	Data retention duration	T _J = 25°C		100			years
tWord	Word or byte program time				30		
^t Block, 0	Block program time for 1 St byte or word				25		
^t Block, 1-63	Block program time for each additional byte or word				18		
[†] Block, End	Block program end-sequence wait time	see Note 2			6		^t FTG
^t Mass Erase	Mass erase time				10593		
^t Global Mass Erase	Global mass erase time				10593		
tSeg Erase	Segment erase time				4819		

- NOTES: 1. The cumulative program time must not be exceeded during a block-write operation. This parameter is only relevant if the block write feature is used.
 - 2. These values are hardwired into the Flash Controller's state machine ($t_{FTG} = 1/f_{FTG}$).
 - 3. Lower 64-KB or upper 64-KB Flash memory erased.
 - 4. All Flash memory erased.

JTAG Interface

	PARAMETER	TEST CONDITIONS	v _{CC}	MIN	TYP	MAX	UNIT
	TOV in part for suppose	see Note 1	2.2 V	0		5	MHz
fTCK	TCK input frequency	See Note 1	3 V	0		10	MHz
R _{Internal}	Internal pull-up resistance on TMS, TCK, TDI/TCLK	see Note 2	2.2 V/ 3 V	25	60	90	kΩ

NOTES: 1. f_{TCK} may be restricted to meet the timing requirements of the module selected.

2. TMS, TDI/TCLK, and TCK pull-up resistors are implemented in all versions.

JTAG Fuse (see Note 1)

	PARAMETER	TEST CONDITIONS	VCC	MIN	TYP	MAX	UNIT
VCC(FB)	Supply voltage during fuse-blow condition	T _A = 25°C		2.5			V
V_{FB}	Voltage level on TDI/TCLK for fuse-blow: F versions			6		7	V
I _{FB}	Supply current into TDI/TCLK during fuse blow					100	mA
t _{FB}	Time to blow fuse					1	ms

NOTES: 1. Once the fuse is blown, no further access to the MSP430 JTAG/Test and emulation features is possible. The JTAG block is switched to bypass mode.

SLAS508 - APRIL 2006

input/output schematic

Port P1, P1.0 to P1.5, input/output with Schmitt-trigger

Note: x = 0,1,2,3,4,5

Port P1 (P1.0 to P1.5) pin functions

DIN NAME (D4 V)		FUNCTION	CONTROL BITS / SIGNALS		
PIN NAME (P1.X)	X		P1DIR.x	P1SEL.x	
P1.0/TA0	0	P1.0 (I/O)	I: 0; O: 1	0	
	1	Timer_A3.CCI0A	0	1	
	М	Timer_A3.TA0	1	1	
P1.1/TA0/MCLK	1	P1.1 (I/O)	I: 0; O: 1	0	
		Timer_A3.CCI0B	0	1	
		MCLK	1	1	

PRODUCT PREVIEW

Port P1 (P1.0 to P1.5) pin functions (continued)

DINI NAME (D4 V)	\ ,	FUNCTION	CONTROL BIT	rs / Signals
PIN NAME (P1.X)	X	FUNCTION	P1DIR.x	P1SEL.x
P1.2/TA1	2	P1.2 (I/O)	I: 0; O: 1	0
		Timer_A3.CCI1A	0	1
		Timer_A3.TA1	1	1
P1.3/TBOUTH/SVSOUT	3	P1.3 (I/O)	I: 0; O: 1	0
		Timer_B7.TBOUTH	0	1
		SVSOUT	1	1
P1.4/TBCLK/SMCLK	4	P1.4 (I/O)	I: 0; O: 1	0
		Timer_B7.TBCLK	0	1
		SMCLK	1	1
P1.5/TACLK/ACLK	5	P1.5 (I/O)	I: 0; O: 1	0
		Timer_A3.TACLK	0	1
		ACLK	1	1

Port P1, P1.6, P1.7, input/output with Schmitt-trigger

Port P1 (P1.6 and P1.7) pin functions

DINI NAME (D4 V)	х	X FUNCTION -	CONTROL BITS / SIGNALS			
PIN NAME (P1.X)			CAPD.x	P1DIR.x	P1SEL.x	
P1.6/CA0	6	P1.6 (I/O)	0	I: 0; O: 1	0	
	1	CA0	1	Х	Х	
P1.7/CA1	7	P1.6 (I/O)	0	I: 0; O: 1	0	
		CA0	1	X	Х	

NOTES: 1. X: Don't care.

port P2, P2.0 to P2.3, P2.6 to P2.7, input/output with Schmitt-trigger

Port P2 (P2.0, P2.1, P2.2, P2.3, P2.6 and P2.7) pin functions

DINI NI AME (DO V)	,,	FUNCTION	CONTROL BIT	rs / Signals
PIN NAME (P2.X)	Х	FUNCTION	P2DIR.x	P2SEL.x
P2.0/TA2	0	P2.0 (I/O)	I: 0; O: 1	0
		Timer_A3.CCI2A	0	1
		Timer_A3.TA2	1	1
P2.1/TB0	1	P2.1 (I/O)	I: 0; O: 1	0
		Timer_B7.CCI0A and Timer_B7.CCI0B	0	1
		Timer_B7.TB0 (see Note 1)	1	1
P2.2/TB1	2	P2.2 (I/O)	I: 0; O: 1	0
		Timer_B7.CCI1A and Timer_B7.CCI1B	0	1
		Timer_B7.TB1 (see Note 1)	1	1
P2.3/TB3	3	P2.3 (I/O)	I: 0; O: 1	0
		Timer_B7.CCI2A and Timer_B7.CCI2B	0	1
		Timer_B7.TB3 (see Note 1)	1	1
P2.6/CAOUT	6	P2.6 (I/O)	I: 0; O: 1	0
		CAOUT	1	1
P2.7/ADC12CLK/DMAE0	7	P2.7 (I/O)	I: 0; O: 1	0
		ADC12CLK	1	1
		DMAE0	0	1

NOTES: 1. Setting TBOUTH causes all Timer_B outputs to be set to high impedance.

port P2, P2.4 to P2.5, input/output with Schmitt-trigger

Note: x = 4,5

MSP430FG461x MIXED SIGNAL MICROCONTROLLER

SLAS508 - APRIL 2006

Port P2 (P2.4 and P2.5) pin functions

PIN NAME (P2.X)	V	FUNCTION	CONTROL BITS / SIGNALS		
PIN NAME (P2.X)	X	FUNCTION	P2DIR.x	P2SEL.x	
P2.4/UCA0TXD	4	P2.4 (I/O)	I: 0; O: 1	0	
		USCI_A0.UCA0TXD (see Note 1, 2)	X	1	
P2.5/UCA0RXD	5	P2.5 (I/O)	I: 0; O: 1	0	
		USCI_A0.UCA0RXD (see Note 1, 2)	Х	1	

NOTES: 1. X: Don't care.

2. When in USCI mode, P2.4 is set to output, P2.5 is set to input.

PRODUCT PREVI

input/output schematic (continued)

port P3, P3.0 to P3.3, input/output with Schmitt-trigger

Note: x = 0,1,2,3

Port P3 (P3.0 to P3.3) pin functions

PIN NAME (P3.X)	\ ,	FUNCTION	CONTROL BIT	rs / Signals
FIN NAME (F3.A)	X		P3DIR.x	P3SEL.x
P3.0/UCB0STE	0	P3.0 (I/O)	I: 0; O: 1	0
		UCB0STE (see Notes 1, 2)	Х	1
P3.1/UCB0SIMO/	1	P3.1 (I/O)	I: 0; O: 1	0
UCB0SDA		UCB0SIMO/UCB0SDA (see Notes 1, 2, 3)	Х	1
P3.2/UCB0SOMI/	2	P3.2 (I/O)	I: 0; O: 1	0
UCB0SCL		UCB0SOMI/UCB0SCL (see Notes 1, 2, 3)	Х	1
P3.3/UCB0CLK	3	P3.3 (I/O)	I: 0; O: 1	0
		UCB0CLK (see Notes 1, 2)	Х	1

NOTES: 1. X: Don't care.

- 2. The pin direction is controlled by the USCI module.
- 3. In case the I2C functionality is selected the output drives only the logical 0 to VSS level.

port P3, P3.4 to P3.7, input/output with Schmitt-trigger

Note: x = 4,5,6,7

Port P3 (P3.4 to P3.7) pin functions

DINI NIAME (D2 V)	\ ,	FINATION	CONTROL BI	TS / SIGNALS
PIN NAME (P3.X)	X	FUNCTION	P3DIR.x	P3SEL.x
P3.4/TB3	4	P3.4 (I/O)	I: 0; O: 1	0
		Timer_B7.CCl3A and Timer_B7.CCl3B	0	1
		Timer_B7.TB3 (see Note 1)	1	1
P3.5/TB4	5	P3.5 (I/O)	I: 0; O: 1	0
		Timer_B7.CCI4A and Timer_B7.CCI4B	0	1
		Timer_B7.TB4 (see Note 1)	1	1
P3.6/TB5	6	P3.6 (I/O)	I: 0; O: 1	0
		Timer_B7.CCl5A and Timer_B7.CCl5B	0	1
		Timer_B7.TB5 (see Note 1)	1	1
P3.7/TB6	7	P3.7 (I/O)	I: 0; O: 1	0
		Timer_B7.CCl6A and Timer_B7.CCl6B	0	1
		Timer_B7.TB6 (see Note 1)	1	1

NOTES: 1. Setting TBOUTH causes all Timer_B outputs to be set to high impedance.

port P4, P4.0 to P4.1, input/output with Schmitt-trigger

Note: x = 0,1

Port P4 (P4.0 to P4.1) pin functions

DINI NIAME (DA V)	v	FINATION	CONTROL BITS / SIGNALS		
PIN NAME (P4.X)	X	FUNCTION	P4DIR.x	P4SEL.x	
P4.0/UTXD1	0	P4.0 (I/O)	I: 0; O: 1	0	
		USART1.UTXD1 (see Notes 1, 2)	Х	1	
P4.1/URXD1	1	P4.1 (I/O)	I: 0; O: 1	0	
		USART1.URXD1 (see Notes 1, 2)	Х	1	

NOTES: 1. X: Don't care.

2. When in USART1 mode, P4.0 is set to output, P4.1 is set to input.

port P4, P4.2 to P4.7, input/output with Schmitt-trigger

Note: x = 2,3,4,5,6,7

y = 34,35,36,37,38,39

Port P4 (P4.2 to P4.5) pin functions

PIN NAME (P4.X)	х	FUNCTION	CONTROL BITS / SIGNALS			
			P4DIR.x	P4SEL.x	LCDS36	
P4.2/STE1/S39	2	P4.2 (I/O)	l: 0; O: 1	0	0	
		USART1.STE1	0	1	0	
		S39 (see Note 1)	Х	Х	1	
P4.3/SIMO/S38	3	P4.3 (I/O)	l: 0; O: 1	0	0	
		USART1.SIMO1 (see Notes 1, 2)	0	1	0	
		S38 (see Note 1)	Х	Х	1	
P4.4/SOMI/S37	4	P4.4 (I/O)	l: 0; O: 1	0	0	
	1	USART1.SOMI1 (see Notes 1, 2)	0	1	0	
		S37 (see Note 1)	Х	Х	1	
P4.5/SOMI/S36	5	P4.5 (I/O)	I: 0; O: 1	0	0	
		USART1.UCLK1 (see Notes 1, 2)	0	1	0	
		S36 (see Note 1)	Х	Х	1	

NOTES: 1. X: Don't care.

2. The pin direction is controlled by the USART1 module.

PRODUCT PREVIEW

Port P4 (P4.6 to P4.7) pin functions (continued)

PIN NAME (P4.X)	х	FUNCTION	CONTROL BITS / SIGNALS		
			P4DIR.x	P4SEL.x	LCDS32
P4.6/UCA0TXD/S35	6	P4.6 (I/O)	I: 0; O: 1	0	0
		USCI_A0.UCA0TXD (see Notes 1, 2)	X	1	0
		S35 (see Note 1)	X	X	1
P4.7/UCA0RXD/S34	7	P4.7 (I/O)	I: 0; O: 1	0	0
		USCI_A0.UCA0RXD (see Notes 1, 2)	0	1	0
		S34 (see Note 1)	X	X	1

NOTES: 1. X: Don't care.

2. When in USCI mode, P4.6 is set to output, P4.7 is set to input.

port P5, P5.0, input/output with Schmitt-trigger

Port P5 (P5.0) pin functions

PIN NAME (P5.X)	\ ,	FUNCTION	CONTROL BITS / SIGNALS						
	X		P5DIR.x	P5SEL.x	INCHx	OANx(OA1)	LCDS0		
P5.0/S1/A13/OA1I1	0	P5.0 (I/O) (see Note 1)	I: 0; O: 1	0	Х	Х	0		
		OAI11 (see Note 1)	Х	Х	Х	1	0		
		A13 (see Notes 1, 3)	Х	1	13	Х	Х		
		S1 enabled (see Note 1)	Х	0	X	Х	1		
		S1 disabled (see Note 1)	Х	1	X	X	1		

- 2. N/A: Not available or not applicable.
- 3. Setting the P5SEL.x bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when applying analog signals.

port P5, P5.1, input/output with Schmitt-trigger

Port P5 (P5.1) pin functions

DIN NAME (DE V)		FUNCTION			CONTRO	L BITS / SIGNAL	.s	
PIN NAME (P5.X)	Х	FUNCTION	P5DIR.x	P5SEL.x	INCHx	DAC12.10PS	DAC12.1AMPx	LCDS0
P5.0/S0/A12/DAC1	1	P5.0 (I/O) (see Note 1)	I: 0; O: 1	0	Х	0	X	0
		DAC1 high impedance (see Note 1)	X	X	X	1	0	Х
		DVSS (see Note 1)	Х	Х	Х	1	1	Х
		DAC1 output (see Note 1)	X	X	х	1	> 1	Х
		A12 (see Notes 1, 2)	Х	1	12	0	X	0
		S0 enabled (see Note 1)	Х	0	Χ	0	Χ	1
		S0 disabled (see Note 1)	Х	1	X	0	Χ	1

NOTES: 1. X: Don't care.

2. Setting the P5SEL.x bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when applying analog signals.

port P5, P5.2 to P5.4, input/output with Schmitt-trigger

Port P5 (P5.2 to P5.4) pin functions

DIN NAME (DE V)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	FUNCTION	CONTROL BIT	TS / SIGNALS
PIN NAME (P5.X)	X		P5DIR.x	P5SEL.x
P5.2/COM1	2	P5.2 (I/O)	I: 0; O: 1	0
		COM1 (see Note 1)	Х	1
P5.3/COM2	3	P5.3 (I/O)	I: 0; O: 1	0
		COM2 (see Note 1)	Х	1
P5.4/COM3	4	P5.4 (I/O)	I: 0; O: 1	0
		COM3 (see Note 1)	Х	1

port P5, P5.5 to P5.7, input/output with Schmitt-trigger

Port P5 (P5.5 to P5.7) pin functions

PIN NAME (P5.X)	\ \ \	FUNCTION	CONTROL BI	TS / SIGNALS
FIN NAME (F3.X)	X	FUNCTION	P5DIR.x	P5SEL.x
P5.5/R03	5	P5.5 (I/O)	I: 0; O: 1	0
		R03 (see Note 1)	Х	1
P5.6/LCDREF/R13	6	P5.6 (I/O)	I: 0; O: 1	0
		R13 or LCDREF (see Notes 1, 2)	Х	1
P5.7/R03	7	P5.7 (I/O)	I: 0; O: 1	0
		R03 (see Note 1)	Х	1

NOTES: 1. X: Don't care.

External reference for the LCD_A charge pump is applied when VLCDREFx = 01. Otherwise R13 is selected.

port P6, P6.0, P6.2, and P6.4, input/output with Schmitt-trigger

Port P6 (P6.0, P6.2, and P6.4) pin functions

		FUNCTION		CONTROL BITS / SIGNALS					
PIN NAME (P6.X)	Х		P6DIR.x	P6SEL.x	OAPx (OA0) OANx (OA0)	OAPx (OA1) OANx(OA1)	INCHx		
P6.0/A0/OA0I0	0	P6.0 (I/O) (see Note 1)	I: 0; O: 1	0	Х	Х	X		
		OA0I0 (see Note 1)	Х	Х	0	Х	X		
		A0 (see Notes 1, 3)	Х	1	X	X	0		
P6.2/A2/OA0I1	2	P6.2 (I/O) (see Note 1)	I: 0; O: 1	0	X	X	Χ		
		OA0I1 (see Note 1)	Х	Х	1	Х	Χ		
		A2 (see Notes 1, 3)	Х	1	Х	X	2		
P6.4/A4/OA1I0	4	P6.4 (I/O) (see Note 1)	I: 0; O: 1	0	X	X	Χ		
		OA1I0 (see Note 1)	Х	Х	X	0	X		
		A4 (see Notes 1, 3)	Х	1	X	X	4		

- 2. N/A: Not available or not applicable.
- 3. Setting the P6SEL.x bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when applying analog signals.

port P6, P6.1, P6.3, and P6.5 input/output with Schmitt-trigger

Note: x = 1,3,5y = 0,1,2

#Signal from or to AD@2

Port P6 (P6.1, P6.3, and P6.5) pin functions

DINI NAME (DC V)		FUNCTION		CONT	ROL BITS / SIG	NALS	
PIN NAME (P6.X)	X	FUNCTION	P6DIR.x	P6SEL.x	OAADC1	OAPMx	INCHx
P6.1/A1/OA0O	1	P6.1 (I/O) (see Note 1)	I: 0; O: 1	0	X	Х	X
		OA0O (see Notes 1, 4)	Х	Х	1	> 0	Х
		A1 (see Notes 1, 3)	Х	1	X	Х	1
P6.3/A3/OA1O	3	P6.3 (I/O) (see Note 1)	I: 0; O: 1	0	X	Х	Х
		OA1O (see Notes 1, 4)	Х	Х	1	> 0	Х
		A3 (see Notes 1, 3)	Х	1	X	Х	3
P6.5/A5/OA2O	5	P6.5 (I/O) (see Note 1)	I: 0; O: 1	0	X	Х	X
		OA2O (see Notes 1, 4)	Х	Х	1	> 0	Х
		A5 (see Notes 1, 3)	Х	1	X	Х	5

- 2. N/A: Not available or not applicable.
- 3. Setting the P6SEL.x bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when applying analog signals.
- 4. Setting the OAADC1 bit or setting OAFCx = 00 will cause the operational amplifier to be present at the pin as well as internally connected to the corresponding ADC12 input.

SLAS508 - APRIL 2006

input/output schematic (continued)

port P6, P6.6, input/output with Schmitt-trigger

Port P6 (P6.6) pin functions

					CONTR	OL BITS / SIGNA	LS	
PIN NAME (P6.X)	Х	FUNCTION	P6DIR.x	P6SEL.x	INCHx	DAC12.0OPS	DAC12.0AMPx	OAPx (OA2) OANx (OA2)
P6.6/A6/DAC0/OA2I0	6	P6.6 (I/O) (see Note 1)	I: 0; O: 1	0	Х	1	X	X
		DAC0 high impedance (see Note 1)	Х	Х	X	0	0	X
		DVSS (see Note 1)	Х	Х	Х	0	1	X
		DAC0 output (see Note 1)	Х	Х	X	0	>1	X
		A6 (see Notes 1, 2)	Х	1	6	X	Х	Х
		OA2I0 (see Note 1)	Х	Х	0	X	Х	0

NOTES: 1. X: Don't care.

2. Setting the P6SEL.x bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when applying analog signals.

SLAS508 - APRIL 2006

input/output schematic (continued)

port P6, P6.7, input/output with Schmitt-trigger

Port P6 (P6.7) pin functions

PIN NAME (P6.X)	Ţ	FUNCTION		CONTI	ROL BITS / S	IGNALS	
FIN NAME (FO.A)	Х	FUNCTION	P6DIR.x	P6SEL.x	INCHx	DAC12.10PS	DAC12.1AMPx
P6.7/A7/DAC1/SVSIN	7	P6.7 (I/O) (see Note 1)	I: 0; O: 1	0	Х	1	X
		DAC1 high impedance (see Note 1)	X	X	Х	0	0
		DVSS (see Note 1)	Х	Х	X	0	1
		DAC1 output (see Note 1)	X	X	X	0	> 1
		A7 (see Notes 1, 2)	Х	1	7	Х	Х
		SVSIN (see Notes 1,3)	0	1	0	1	X

- 2. Setting the P6SEL.x bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when applying analog signals.
- 3. Setting VLDx = 15 will also cause the external SVSIN to be used. In this case, the P6SEL.x bit is a do not care.

port P7, P7.0 - P7.3, input/output with Schmitt-trigger

Note: x = 0,1,2,3y = 30,31,32,33

Port P7 (P7.0 to P7.1) pin functions

DINI NAME (D7 V)	,,		CONTROL BITS / SIGNALS			
PIN NAME (P7.X)	Х	FUNCTION	P7DIR.x	P7SEL.x	LCDS32	
P7.0/UCA0STE/S33	0	P7.0 (I/O)	I: 0; O: 1	0	0	
		USCI_A0.UCA0STE (see Notes 1, 2)	Х	1	0	
		S33 (see Note 1)	Х	Х	1	
P7.1/UCA0SIMO/S32	1	P7.1 (I/O)	I: 0; O: 1	0	0	
		USCI_A0.UCA0SIMO (see Notes 1, 2)	Х	1	0	
		S32 (see Note 1)	Х	Х	1	

NOTES: 1. X: Don't care.

2. The pin direction is controlled by the USCI module.

Port P7 (P7.2 to P7.3) pin functions (continued)

DIN NAME (DZ V)		FUNCTION	CONTROL BITS / SIGNALS			
PIN NAME (P7.X)	X	FUNCTION	P7DIR.x	P7SEL.x	LCDS28	
P7.2/UCA0SOMI/S31	2	P7.2 (I/O)	I: 0; O: 1	0	0	
		USCI_A0.UCA0SOMI (see Notes 1, 2)	Х	1	0	
		S31 (see Note 1)	Х	X	1	
P7.3/UCA0CLK/S30	3	P7.3 (I/O)	I: 0; O: 1	0	0	
		USCI_A0.UCA0CLK (see Notes 1, 2)	Х	1	0	
		S30 (see Note 1)	X	Х	1	

NOTES: 1. X: Don't care.

2. The pin direction is controlled by the USCI module.

port P7, P7.4 - P7.7, input/output with Schmitt-trigger

Port P7 (P7.4 to P7.5) pin functions

PIN NAME (P7.X)		FUNCTION	CONTROL BITS / SIGNALS			
	Х		P7DIR.x	P7SEL.x	LCDS28	
P7.4/S29	4	P7.4 (I/O)	I: 0; O: 1	0	0	
		S29 (see Note 1)	Х	X	1	
P7.5/S28	5	P7.5 (I/O)	I: 0; O: 1	0	0	
		S28 (see Note 1)	Х	Х	1	

Port P7 (P7.6 to P7.7) pin functions (continued)

PIN NAME (P7.X)	V	FUNCTION	CONTROL BITS / SIGNALS			
	^		P7DIR.x	P7SEL.x	LCDS24	
P7.6/S27	6	P7.6 (I/O)	I: 0; O: 1	0	0	
		S27 (see Note 1)	Х	X	1	
P7.7/S26	7	P7.7 (I/O)	I: 0; O: 1	0	0	
		S26 (see Note 1)	X	Х	1	

port P8, P8.0 - P8.7, input/output with Schmitt-trigger

Port P8 (P8.0 to P8.1) pin functions

DINI NIAME (DO V)	v	FINISTION	CONTROL BITS / SIGNALS			
PIN NAME (P8.X)	Х	FUNCTION	P8DIR.x	P8SEL.x	LCDS16	
P8.0/S18	0	P8.0 (I/O)	I: 0; O: 1	0	0	
		S18 (see Note 1)	Х	Х	1	
P8.1/S19	0	P8.0 (I/O)	I: 0; O: 1	0	0	
		S19 (see Note 1)	Х	Х	1	

Port P8 (P8.2 to P8.5) pin functions (continued)

DIN NAME (DO V)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	FUNCTION	CONT	ROL BITS / SIGI	NALS
PIN NAME (P8.X)	X	FUNCTION	P8DIR.x	P8SEL.x	LCDS20
P8.2/S20	2	P8.2 (I/O)	I: 0; O: 1	0	0
		S20 (see Note 1)	Х	X	1
P8.3/S21	3	P8.3 (I/O)	I: 0; O: 1	0	0
		S21 (see Note 1)	X	X	1
P8.4/S22	4	P8.4 (I/O)	I: 0; O: 1	0	0
		S22 (see Note 1)	Х	X	1
P8.5/S23	5	P8.5 (I/O)	I: 0; O: 1	0	0
		S23 (see Note 1)	Х	X	1

NOTES: 1. X: Don't care.

Port P8 (P8.6 to P8.7) pin functions

PIN NAME (P8.X)	v	FUNCTION	CONTROL BITS / SIGNALS				
PIN NAME (PO.A)	X	FUNCTION	P8DIR.x	P8SEL.x	LCDS24		
P8.6/S24	6	P8.6 (I/O)	I: 0; O: 1	0	0		
		S24 (see Note 1)	X	Х	1		
P8.7/S25	7	P8.7 (I/O)	I: 0; O: 1	0	0		
		S25 (see Note 1)	X	Х	1		

port P9, P9.0 - P9.7, input/output with Schmitt-trigger

Note: x = 0,1,2,3,4,5,6,7y = 17,16,15,14,13,12,11,10

Port P9 (P9.0 to P9.1) pin functions

PIN NAME (P9.X)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	FUNCTION	CONTROL BITS / SIGNALS			
	Х	FUNCTION	P9DIR.x	P9SEL.x	LCDS16	
P9.0/S17	0	P9.0 (I/O)	I: 0; O: 1	0	0	
		S17 (see Note 1)	Х	Х	1	
P9.1/S16	1	P9.1 (I/O)	I: 0; O: 1	0	0	
		S16 (see Note 1)	Х	Х	1	

Port P9 (P9.2 to P9.5) pin functions (continued)

DINI NIAME (DO V)	\ ,	FUNCTION	CONT	ROL BITS / SIGI	NALS
PIN NAME (P9.X)	X	FUNCTION	P9DIR.x	P9SEL.x	LCDS12
P9.2/S20	2	P9.2 (I/O)	I: 0; O: 1	0	0
		S15 (see Note 1)	Х	X	1
P9.3/S21	3	P9.3 (I/O)	I: 0; O: 1	0	0
		S14 (see Note 1)	X	X	1
P9.4/S22	4	P9.4 (I/O)	I: 0; O: 1	0	0
		S13 (see Note 1)	Х	X	1
P9.5/S23	5	P9.5 (I/O)	I: 0; O: 1	0	0
		S12 (see Note 1)	Х	X	1

NOTES: 1. X: Don't care.

Port P9 (P9.6 to P9.7) pin functions (continued)

PIN NAME (P9.X)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	FUNCTION	CONTROL BITS / SIGNALS				
FIN NAME (F3.X)	Х	FUNCTION	P9DIR.x	P9SEL.x	LCDS8		
P9.6/S24	6	P9.6 (I/O)	I: 0; O: 1	0	0		
		S11 (see Note 1)	X	Х	1		
P9.7/S25	7	P9.7 (I/O)	I: 0; O: 1	0	0		
		S10 (see Note 1)	X	Х	1		

port P10, P10.0 - P10.5, input/output with Schmitt-trigger

Port P10 (P10.0 to P10.1) pin functions

DIN NAME (D40 V)	,	FUNCTION	CONTROL BITS / SIGNALS				
PIN NAME (P10.X)	X	FUNCTION	P10DIR.x	P10SEL.x	LCDS8		
P10.0/S8	0	P10.0 (I/O)	I: 0; O: 1	0	0		
		S8 (see Note 1)	Х	Х	1		
P10.1/S7	1	P10.1 (I/O)	I: 0; O: 1	0	0		
		S7 (see Note 1)	Х	Х	1		

Port P10 (P10.2 to P10.5) pin functions (continued)

DIN NAME (D40 V)	\ ,	FUNCTION	CONT	ROL BITS / SIGI	NALS
PIN NAME (P10.X)	X	FUNCTION	P10DIR.x	P10SEL.x	LCDS4
P10.2/S7	2	P10.2 (I/O)	I: 0; O: 1	0	0
		S7 (see Note 1)	Х	X	1
P10.3/S6	3	P10.3 (I/O)	I: 0; O: 1	0	0
		S6 (see Note 1)	X	X	1
P10.4/S5	4	P10.4 (I/O)	I: 0; O: 1	0	0
		S5 (see Note 1)	X	X	1
P10.5/S4	5 P10.5 (I/O)		I: 0; O: 1	0	0
		S4 (see Note 1)	X	X	1

port P10, P10.6, input/output with Schmitt-trigger

Port P10 (P10.6) pin functions

PIN NAME (P10.X)		FUNCTION	CONTROL BITS / SIGNALS					
	X	FUNCTION	P10DIR.x	P10SEL.x	INCHx	LCDS0		
P10.6/S3/A15	6	P5.0 (I/O) (see Note 1)	I: 0; O: 1	0	X	0		
		A15 (see Notes 1, 3)	Х	1	15	0		
		S3 enabled (see Note 1)	Х	0	X	1		
		S3 disabled (see Note 1)	Х	1	X	1		

- 2. N/A: Not available or not applicable.
- 3. Setting the P10SEL.x bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when applying analog signals.

port P10, P10.7, input/output with Schmitt-trigger

MSP430FG461x MIXED SIGNAL MICROCONTROLLER

SLAS508 - APRIL 2006

Port P10 (P10.7) pin functions

				CONT	ROL BITS / SIG	NALS	
PIN NAME (P10.X)	Х	FUNCTION	P10DIR.x	P10SEL.x	INCHx	OAPx (OA1) OANx (OA1)	LCDS0
P10.7/S2/A14/OA2I1	7	P10.7 (I/O) (see Note 1)	I: 0; O: 1	0	Х	X	0
		A14 (see Notes 1, 3)	Х	1	14	Х	0
		OA2I1 (see Notes 1, 3)	Х	Х	Х	1	0
		S2 enabled (see Note 1)	Х	0	X	X	1
		S2 disabled (see Note 1)	Х	1	X	Х	1

- 2. N/A: Not available or not applicable.
- 3. Setting the P10SEL.x bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when applying analog signals.

Ve_{REF+}/DAC0

If the reference of DAC0 is taken from pin Ve_{REF+}/DACQ, unpredictable voltage levels will be on pin. In this situation, the DAC0 output is fed back to its own reference input.

JTAG pins TMS, TCK, TDI/TCLK, TDO/TDI, input/output with Schmitt-trigger or output

JTAG fuse check mode

MSP430 devices that have the fuse on the TDI/TCLK terminal have a fuse check mode that tests the continuity of the fuse the first time the JTAG port is accessed after a power-on reset (POR). When activated, a fuse check current (I_(TF)) of 1 mA at 3 V can flow from the TDI/TCLK pin to ground if the fuse is not burned. Care must be taken to avoid accidentally activating the fuse check mode and increasing overall system power consumption.

Activation of the fuse check mode occurs with the first negative edge on the TMS pin after power up or if the TMS is being held low during power up. The second positive edge on the TMS pin deactivates the fuse check mode. After deactivation, the fuse check mode remains inactive until another POR occurs. After each POR the fuse check mode has the potential to be activated.

The fuse check current only flows when the fuse check mode is active and the TMS pin is in a low state (see Figure 37). Therefore, the additional current flow can be prevented by holding the TMS pin high (default condition). The JTAG pins are terminated internally and therefore do not require external termination.

Figure 37. Fuse Check Mode Current

MSP430FG461x MIXED SIGNAL MICROCONTROLLER

SLAS508 - APRIL 2006

Data Sheet Revision History

Literature Number	Summary
SLAS508	Preliminary PRODUCT PREVIEW datasheet release.

NOTE: The referring page and figure numbers are referred to the respective document revision.

i.com 24-Apr-2006

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
MSP430FG4616IPZ	PREVIEW	LQFP	PZ	100	90	TBD	Call TI	Call TI
MSP430FG4616IPZR	PREVIEW	LQFP	PZ	100	1000	TBD	Call TI	Call TI
MSP430FG4617IPZ	PREVIEW	LQFP	PΖ	100	90	TBD	Call TI	Call TI
MSP430FG4617IPZR	PREVIEW	LQFP	PΖ	100	1000	TBD	Call TI	Call TI
MSP430FG4618IPZ	PREVIEW	LQFP	PZ	100	90	TBD	Call TI	Call TI
MSP430FG4618IPZR	PREVIEW	LQFP	PΖ	100	1000	TBD	Call TI	Call TI
MSP430FG4619IPZ	PREVIEW	LQFP	PΖ	100	90	TBD	Call TI	Call TI
MSP430FG4619IPZR	PREVIEW	LQFP	PΖ	100	1000	TBD	Call TI	Call TI

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PZ (S-PQFP-G100)

PLASTIC QUAD FLATPACK

1

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Falls within JEDEC MS-026

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2006, Texas Instruments Incorporated