VI. Below K

AS.150.498: Modal Logic and Its Applications Johns Hopkins University, Spring 2017

So far we have considered a horde of normal modal logics extending the minimal logic K with additional axioms such as T and S. But there are also many non-normal modal logics that lie below K.

1 Neighborhood Semantics

In investigating these non-normal logics, it will be useful to replace the standard Kripke-model-based semantics with an alternative *neighborhood* semantics on which some principles of \mathbf{K} can fail to hold. Instead of a binary accessibility relation between worlds in \mathcal{W} , our models will now include a relation between worlds and *neighborhoods* or *propositions*—sets of worlds in $2^{\mathcal{W}}$.

Definition 6.1. A **neighborhood model** $\mathcal{M} = \langle \mathcal{W}, \mathcal{R}, \mathcal{V} \rangle$ for \mathcal{L} consists of a nonempty set \mathcal{W} of possible worlds, a valuation $\mathcal{V} : At_{\mathcal{L}} \times \mathcal{W} \to \{T, F\}$ mapping each sentence letter $p \in At_{\mathcal{L}}$ and world $w \in \mathcal{W}$ to a truth value, and a binary relation $\mathcal{R} \subseteq \mathcal{W} \times 2^{\mathcal{W}}$ between worlds and (possibly empty) sets of worlds.

The relation \mathcal{R} determines a **neighborhood function** $\mathcal{N}: \mathcal{W} \to 2^{2^{\mathcal{W}}}$ where $\mathcal{N}(w) = \{X : w\mathcal{R}X\}$ is the set of neighborhoods around w.

Definition 6.2. $[\varphi]_{\mathcal{M}} = \{w : \llbracket \varphi \rrbracket_{\mathcal{M}}^w = T\}$ is the **proposition expressed** by φ in \mathcal{M} .

Using the information supplied by a neighborhood model, we can evaluate every sentence $\varphi \in S_{\mathcal{L}}$ for truth in a pointed neighborhood model:

Definition 6.3. The following recursive definition of truth lifts \mathcal{V} to the complete interpretation function $[\![]\!]_{\mathcal{M}}: S_{\mathcal{L}} \times \mathcal{W} \to \{T, F\}$ for \mathcal{L} :

In the above model, $\llbracket \Box A \rrbracket_{\mathcal{M}}^w = T$, $\llbracket \Box B \rrbracket_{\mathcal{M}}^w = T$, but $\llbracket \Box (A \wedge B) \rrbracket_{\mathcal{M}}^w = F$.

2 Non-Normal Logics

Definition 6.4. The minimal non-normal modal logic E has the following rules and axioms:¹

- (PL) All (substitutions of) tautologies are axioms
- (MP) From φ and $\varphi \supset \psi$ infer ψ
- (RE) From $\varphi \equiv \psi$ infer $\Box \varphi \equiv \Box \psi$
- (Duality) Expressions involving \square and \lozenge are interchangeable according to the duality $\square \equiv \neg \lozenge \neg$

Other non-normal modal logics can be generated by extending **E** with **T**, **D**, **4**, **5**, **B**, and the following axiom schemata:

$$\begin{array}{ll} \mathbf{M} & \Box(\varphi \wedge \psi) \supset (\Box \varphi \wedge \Box \psi) \\ \mathbf{C} & (\Box \varphi \wedge \Box \psi) \supset \Box(\varphi \wedge \psi) \\ \mathbf{N} & \Box \neg \bot \end{array}$$

3 Correspondence

There is also a nice correspondence between the above axiom schemata and constraints on the relation \mathcal{R} in neighborhood models. For ease of exposition, let us now take a frame $\mathcal{F} = \langle \mathcal{W}, \mathcal{N} \rangle$ to consist both of a set of

¹Note that \equiv is the material biconditional.

worlds W and a neighborhood function \mathcal{N} . The correspondence lemmas will be stated using \mathcal{N} (but these could, of course, be restated using \mathcal{R}).

Lemma 6.1. Given $\mathcal{F} = \langle \mathcal{W}, \mathcal{N} \rangle$, $\models_{\mathcal{F}} \Box(\varphi \land \psi) \supset (\Box \varphi \land \Box \psi)$ if and only if \mathcal{N} is closed under supersets—that is, $(X \in \mathcal{N}(w) \land X \subseteq Y) \supset Y \in \mathcal{N}(w)$.

Proof: For the right-to-left direction, consider an arbitrary neighborhood model \mathcal{M} based on $\mathcal{F} = \langle \mathcal{W}, \mathcal{N} \rangle$ where \mathcal{N} is closed under supersets, pick an arbitrary world $w \in \mathcal{W}$, and suppose that $\llbracket \Box(\varphi \wedge \psi) \rrbracket_{\mathcal{M}}^w = T$. Since $[\varphi \wedge \psi]_{\mathcal{M}} \in \mathcal{N}(w)$ and $[\varphi \wedge \psi]_{\mathcal{M}} \subseteq [\varphi]_{\mathcal{M}}$, $[\varphi]_{\mathcal{M}} \in \mathcal{N}(w)$, so $\llbracket \Box \varphi \rrbracket_{\mathcal{M}}^w = T$. By similar reasoning, $\llbracket \Box \psi \rrbracket_{\mathcal{M}}^w = T$, so $\llbracket \Box(\varphi \wedge \psi) \supset (\Box \varphi \wedge \Box \psi) \rrbracket_{\mathcal{M}}^w = T$. Thus, $\models_{\mathcal{F}} \Box(\varphi \wedge \psi) \supset (\Box \varphi \wedge \Box \psi)$.

For the left-to-right direction, we prove the contrapositive. Consider a frame $\mathcal{F} = \langle \mathcal{W}, \mathcal{N} \rangle$ where \mathcal{N} is not closed under supersets—that is, there exists w and $X, Y \in 2^{\mathcal{W}}$ such that $X \in \mathcal{N}(w)$, $X \subseteq Y$, but $Y \notin \mathcal{N}(w)$. Define a model \mathcal{M} based on \mathcal{F} by setting $\mathcal{V}(A, v) = T$ iff $v \in X$, and $\mathcal{V}(B, v) = T$ iff $v \in Y$. Then $[\![\Box(A \wedge B)]\!]_{\mathcal{M}}^w = T$ but $[\![\Box B]\!]_{\mathcal{M}}^w = F$, so $[\![\Box(A \wedge B) \supset (\Box A \wedge \Box B)]\!]_{\mathcal{M}}^w = F$. Thus, $\not\models_{\mathcal{F}} \Box(\varphi \wedge \psi) \supset (\Box \varphi \wedge \Box \psi)$.

Lemma 6.2. Given $\mathcal{F} = \langle \mathcal{W}, \mathcal{N} \rangle$, $\models_{\mathcal{F}} (\Box \varphi \wedge \Box \psi) \supset \Box (\varphi \wedge \psi)$ if and only if \mathcal{N} is closed under intersections—that is, $X, Y \in \mathcal{N}(w) \supset X \cap Y \in \mathcal{N}(w)$.

Lemma 6.3. Given $\mathcal{F} = \langle \mathcal{W}, \mathcal{N} \rangle$, $\models_{\mathcal{F}} \Box \neg \bot$ if and only if \mathcal{N} contains the unit—that is, $\mathcal{W} \in \mathcal{N}(w)$.

Lemma 6.4. Given $\mathcal{F} = \langle \mathcal{W}, \mathcal{N} \rangle$, $\models_{\mathcal{F}} \Box \varphi \supset \varphi$ if and only if every world $w \in \mathcal{W}$ lies in each of its neighborhoods—that is, $\forall w \in \mathcal{W}(w \in \bigcap \mathcal{N}(w))$.

And so forth.

4 Soundness and Completeness

There are also the expected soundness and completeness results:

Theorem 6.1. $\vdash_{\mathbf{E}} \varphi$ iff $\models_{\mathcal{F}} \varphi$ for each frame $\mathcal{F} = \langle \mathcal{W}, \mathcal{N} \rangle$.

Theorem 6.2. $\vdash_{\mathbf{EM}} \varphi$ iff $\models_{\mathcal{F}} \varphi$ for each frame $\mathcal{F} = \langle \mathcal{W}, \mathcal{N} \rangle$ where \mathcal{N} is closed under supersets.

Theorem 6.3. $\vdash_{\mathbf{EC}} \varphi$ iff $\models_{\mathcal{F}} \varphi$ for each frame $\mathcal{F} = \langle \mathcal{W}, \mathcal{N} \rangle$ where \mathcal{N} is closed under intersections.

Theorem 6.4. $\vdash_{\mathbf{EN}} \varphi$ iff $\models_{\mathcal{F}} \varphi$ for each frame $\mathcal{F} = \langle \mathcal{W}, \mathcal{N} \rangle$ where \mathcal{N} contains the unit.

Theorem 6.5. $\vdash_{\mathbf{ET}} \varphi$ iff $\models_{\mathcal{F}} \varphi$ for each frame $\mathcal{F} = \langle \mathcal{W}, \mathcal{N} \rangle$ where every world $w \in \mathcal{W}$ lies in each of its neighborhoods.

And so forth.

5 The Landscape Below K

Adding both M and C to E is effectively adding the axiom (K). Adding N to E is effectively adding the rule (Nec). So EMCN=K. The landscape looks like this:

