Probabilidad II Primer semestre de 2024 Práctico 3

Convergencias

- 1. Se define una sucesión de experimentos independientes, cada uno consiste en sortear un número real al azar entre 0 y 1 con distribución uniforme. Se define la sucesión de variables aleatorias $X_n := \mathbb{1}_{\{[0,1/n]\}}(\omega_n), n \geq 1$, donde ω_n es el resultado del n-ésimo experimento.
 - a) Estudiar el límite casi seguro y en probabilidad de X_n .
 - b) Estudiar lo mismo para el caso en que $X_n := \mathbb{1}_{\{[0,1/n^2]\}}(\omega_n)$.
- 2. ¿Es posible que $X_n \stackrel{cs}{\to} 0$, pero $\mathbb{E}(X_n) \to \infty$?
- 3. Supongamos que $\{X_n\}_{n\geq 1}$ es una sucesión monótona no creciente de variables aleatorias, esto es $X_n \geq X_{n+1}$ que tiene límite en probabilidad, $X_n \stackrel{P}{\longrightarrow} X$. Mostrar que $X_n \stackrel{cs}{\longrightarrow} X$.
- 4. Si $X_n \sim \text{Unif}\left\{\frac{1}{n}, \frac{2}{n}, \dots, \frac{n-1}{n}, 1\right\}$, $n \geq 1$, demostrar que X_n converge en distribución, y hallar su distribución límite.
- 5. Mostrar que $d_2(X,Y) = \sqrt{\mathbb{E}(X-Y)^2}$ es una distancia en el conjunto de las variables aleatorias con momento de segundo orden finito. Verificar que $d_2(X_n,Y) \to 0$ implica $X_n \xrightarrow{P} Y$, pero $X_n \xrightarrow{P} Y$ no implica que $d_2(X_n,Y) \to 0$.
- 6. Se define $d_P(X,Y) := \mathbb{E}(1 \exp(-|X Y|))$. Demostrar que
 - a) $d_P(X,Y)$ es una distancia en el espacio de todas las v.a. reales. Para la desigualdad triangular se sugiere usar (y demostrar) que $1-uv \le 1-u+1-v$ para todo $u,v \in [0,1]$.
 - b) si Y, X_1, X_2, \ldots es una sucesión de v.a. reales entonces $d_P(X_n, Y) \to 0$ si y sólo si $X_n \xrightarrow{P} Y$.

Esperanza

- 7. Sea X v.a. tal que $\mathbb{P}(X=k)=C/k^2$ para todo $k\in\mathbb{Z}\setminus\{0\}$, donde C es una constante. ¿Existe $\mathbb{E}(X)$? Mostrar que, sin embargo, se pueden ordenar los términos $\{k\mathbb{P}(X=k)\}$ para que su suma valga 0.
- 8. Supongamos que Y es una variable aleatoria con distribución exponencial de parámetro 1, y modela el precio de un determinado activo.

Una persona contrata un seguro, para garantizarse comprar el activo a un valor fijo K > 0, en el caso que el valor del activo supere el valor K. El costo que paga por el seguro es αK , con $\alpha \in (0,1)$.

¿Cuál es el gasto esperado que tiene la persona para hacerse del activo?

9. Sean X_n va positivas. Probar que

$$\mathbb{E}\left(\sum_{n=1}^{+\infty} X_n\right) = \sum_{n=1}^{+\infty} \mathbb{E}\left(X_n\right).$$

10. a) Sea X una va que toma valores en \mathbb{Z}_+ . Probar que

$$\mathbb{E}(X) = \sum_{k=1}^{\infty} \mathbb{P}(X \ge k).$$

b) Utilizando aproximaciones por simples, probar que si $X \geq 0$ una va, entonces

$$\mathbb{E}(X) = \int_0^\infty \mathbb{P}(X \ge t) \, dt.$$

- 11. Mostrar que si X es una variable aleatoria cuya función de distribución F es continua, entonces $F(X) \sim Unif(0,1)$.
- 12. Sea X integrable, y A_n conjuntos disjuntos tales que A es su unión. Entonces probar que

$$\sum_{n=0}^{\infty} \mathbb{E}(X \mathbb{1}_{\{A_n\}}) = \mathbb{E}(X \mathbb{1}_{\{A\}}).$$

13. Tenemos un espacio de probabilidad $(\Omega, \mathcal{A}, \mathbb{P})$ y una muestra de variables aleatorias $\{X_1, \ldots, X_n\}$, donde $X_i : \Omega \to \mathbb{R}$.

Se define la **medida empírica** μ_n inducida por esa muestra, como

$$\mu_n(B) = \frac{1}{n} \# (B \cap \{X_1, \dots, X_n\}),$$

para todo boreliano $B \subset \mathbb{R}$.

- Verificar que para todo boreliano $B \subset \mathbb{R}$, $\mu_n(B)$ es una variable aleatoria.
- Calcular $\mathbb{E}(\mu_n(B))$.
- Mostrar cómo se puede escribir el promedio muestral $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ como una integral respecto de μ_n .
- Escribir la función de distribución empírica F_n , y escribir \bar{X}_n como una integral de Riemann-Stieljes respecto de F_n .
- 14. Tenemos un espacio de probabilidad $(\Omega, \mathcal{A}, \mathbb{P})$ y tenemos $X : \Omega \to [0, 1]$ con distribución uniforme. Sea Y = 1 X, y sea $\mu_{(X,Y)}$ la medida inducida por el vector (X,Y) en \mathbb{R}^2 .
 - a) Sea $A = [\frac{1}{10}, \frac{9}{10}] \times [\frac{1}{10}, \frac{9}{10}]$, calcular $\mu_{(X,Y)}(A)$.

- b) Sea $B=[0,\frac{1}{2}]\times [0,\frac{1}{2}],$ calcular $\mu_{(X,Y)}(B).$
- c) Sea $C=[0,1]\times[\frac{1}{3},\frac{2}{3}],$ calcular $\mu_{(X,Y)}(C).$
- 15. Sea μ una medida en \mathbb{R} , tal que $\mu(\{x_1\}) = \mu(\{x_2\}) = \mu(\{x_3\}) = 1$, con x_1, x_2, x_3 distintos y $\mu(B) = 0$ para todo B tal que $B \cap \{x_1, x_2, x_3\} = \emptyset$.
 - a) ¿Cuánto vale $\mu(\mathbb{R})$?
 - b) Mostrar que $\sum_{i=1}^{3} x_i = \int_{\mathbb{R}} x d\mu(x)$.