EMag

Formulae

• $\tau_{\rm RL} = \frac{L}{R}$; $\tau_{RC} = RC$

• $\Phi_E = \frac{Q}{\varepsilon_0} = \oint E \cdot dA$

• $F_{\text{mag}} = ILB$

$$E_{-} = \int \frac{1}{1} da$$

•
$$E_x = \int \frac{1}{4\pi\varepsilon_0} \frac{1}{r^2} dq = \int \frac{1}{4\pi\varepsilon_0} \frac{\lambda}{r^2} dr$$

$$d_r = \int \frac{1}{1} \frac{1}{a} da =$$

$$x = \int \frac{1}{4} \frac{1}{2} dq =$$

$$\frac{1}{2}\mathrm{d}q = \int \frac{1}{4\pi}$$

$$\frac{1}{2}$$
 a $q = t_1$

$$\bullet \ i = I(1 - e^{-\tau/t})$$

• $\varepsilon_{\text{induced}} = \vec{B}v\ell$; $I_{\text{induced}} = \frac{\vec{B}v\ell}{R}$

1.2 Notes

- \bullet Current/Charge is at max after 5 τ 's
- Terminal velocity occurs when $F_{\text{mag}} = F_{\text{ext/grav}}$