SIGMOD 2012 Summary

Jeppe Rishede Thomsen

September 14, 2012

Submissions

- Keynotes
 - Analytic Database Technologies for a New Kind of User The Data Enthusiast, by Pat Hanrahan (Stanford)
 - Symbiosis in Scale Out Networking and Data Management, by Amin Vahdat (UCSD and Google)
- 16 Research sessions (+10 PODS sessions)
- 6 Industry sessions

Awards

- SIGMOD Test-of-Time Awards
 - Executing SQL over Encrypted Data in the Database-Service-Provider Model
 - Visionary paper on "Database as a service" focusing on how to use cloud services while keeping some information hidden from the cloud service provider
- SIGMOD Best Paper Award
 - High-Performance Complex Event Processing over XML Streams
 - Introduced XSeq, an XPath extension orders of magnitude more efficient than existing XML engines.

Topics

- Social Networks and Graph Databases
 - Partitioning, Clustering, subgraph isomorphism
- Temporal and Graph Databases
 - 2 on querying graphs, 1 on temporal alignment of queries
- Mobile Databases
 - 2 papers on Privacy, 1 on caching
- Distributed and Parallel Databases
- Social Media and Crowdsourcing
- Modern RDBMSs

Distributed and Parallel Databases

- Calvin: Fast Distributed Transactions for Partitioned Database Systems
- Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng, Kun Ren, Philip Shao, Daniel J. Abadi (Yale University)
- Advanced Partitioning Techniques for Massively Distributed Computation
- Jingren Zhou, Nicols Bruno, Wei Lin (Microsoft)
- SkewTune: Mitigating Skew in MapReduce Applications
- YongChul Kwon, Magdalena Balazinska, Bill Howe (University of Washington); Jerome Rolia (HP Labs)

Calvin: Fast Distributed Transactions for Partitioned Database Systems

How do we provide fast transactions in a distributed database?

Issues:

- Several Popular distributed databases provide no transactional support (CouchDB, Cassandra, Amazon Dynamo)
- Some distributed databases limit transactions to subsets of data (Azure, Oracle NoSQL, Megastore)

Reasons:

- Reducing transactional support greatly simplifies implementation of a distributed database
- Ensuring ACID properties on queries over several partitions incur several network round trips
- For embarrassingly partitionable datasets it works very well

Calvin: Fast Distributed Transactions for Partitioned Database Systems

For datasets with dependencies, users need to implement and ensure ACID properties in the application

- Slow development
- Complex code
- Poor performance

Calvin enables fast transactions over multiple partitions:

- Runs next to a non-transactional database system
- Precalculates a deterministic query plan before executing a query
- Enables near-liniar scalable shared nothing DB, providing full ACID transactions
- Node failures do not cause transactions to abort (deterministic query plan - either execute instructions later, or run on parallel replica)

Advanced Partitioning Techniques for Massively Distributed Computation

How do we most efficiently partition or repartition data in large distributed systems?

- mapReduce scales well and can do concurrency too, but it forces developers to be aware of the mapReduce model
- Other systems (SCOPE, DryadLINQ, Tenzing, Hive) provide high level descriptive languages and offer a single machine programming abstraction.
- Introduce optimized partitioning techniques (Hash-, range-, index-based)
- Emphasis on finding good partition boundaries
- Identify data dependencies
- Considers physical data location

SkewTune: Mitigating Skew in MapReduce Applications

How do we handle skew in MapReduce systems?

Existing solutions:

- User written skew resistant operators extra burden on user, and only applies to certain operators
- Use very fine grained partitions imposes a lot of overhead
- Get the complete output from an operator, sample it, then partition data before executing next operator - requires synchronization.

Limitations on skew handling:

- Handles skew from uneven distribution of input data
- Handles skew from uneven processing time of input
- Does NOT handle uneven processing power of nodes

SkewTune: Mitigating Skew in MapReduce Applications

SkewTune:

- Replaces existing mapReduce implementation
- Optimizes existing mapReduce programs without rewrite
- Existing mapReduce programs still work
- Compatible with existing pipelining optimizations (no synchronization required.)
- Does late skew detection

Social Media and Crowdsourcing

- The Value of Social Media Data in Enterprise Applications
- Shivakumar Vaithyanathan, IBM Almaden Research Center
- Anatomy of a Gift Recommendation Engine Powered by Social Media
- Yannis Pavlidis, Madhusudan Mathihalli, Indrani Chakravarty, Arvind Batra, Ron Benson, Ravi Raj, Robert Yau, Mike McKiernan, Venky Harinarayan, Anand Rajaraman (@WalmartLabs)
- Designing a Scalable Crowdsourcing Platform
- Chris Van Pelt, Alex Sorokin (CrowdFlower)

The Value of Social Media Data in Enterprise Applications

Problem: How can data from social media be used to create *social entities*?

- IBM datamines facebook and other social networks to create social entities (companies, people, products)
- Have gathered enough data to often be able to distinguish two entities of the same name if mentioned in some context.

kind of unnerving! But still only for research.

Anatomy of a Gift Recommendation Engine Powered by Social Media

Wallmarts gift recommendation engine: ShopyCat.

- It is a facebook application
- Lets you browse products based on what your friend might likes
- Mines your interests, as well as letting you manually specify some.

Anatomy of a Gift Recommendation Engine Powered by Social Media

How to use Facebook to recommend good gifts for users? i.e.

- When is it a good time to give a friend a gift? (e.g. birthday)
- How to use friends interests to suggest specific or categories of gifts?
- Which types of products should be available to the gift recommendation engine to cover gift categories? (from other sites than wallmart)
- What is a good gift in each gift category (is an item giftable?
- Several existing gift recommendation engines (Gifty, Etsy, etc.) Use semi static information (besides using likes, birthdays, life events)
- ShopyCat: Only gift recommendation engine which also uses users activity

Designing a Scalable Crowdsourcing Platform

How can we use people to solve problems that are hard for computers?

- CrowdFlower: a crowdsourcing platform for (many) people to solve small parts tasks
- Focus on 3 metrics: Quality, Cost, and Speed. Can at most do 2 at once.
- Defines "CrowdFlower Markup Language" for task submitters to define tasks.
- Different from competition (i.e. Mechanical Turk) in that it takes care of crowd quality for the task submitter.
- Can use workforce from other similar services. (many very specialized such crowdsourcing services already exist)

Modern RDBMSs

- Query Optimization in Microsoft SQL Server PDW
- Srinath Shankar, Rimma Nehme, Josep Aguilar-Saborit, Andrew Chung, Mostafa Elhemali, Alan Halverson, Eric Robinson, Mahadevan Sankara Subramanian, David DeWitt, Csar Galindo-Legaria (Microsoft)
- F1-The Fault-Tolerant Distributed RDBMS Supporting Google's Ad Business
- Jeff Shute, Mircea Oancea, Stephan Ellner, Ben Handy, Eric Rollins, Bart Samwel, Radek Vingralek, Chad Whipkey, Xin Chen, Beat Jegerlehner, Kyle Littlefield, Phoenix Tong (Google)
- Oracle In-Database Hadoop: When MapReduce Meets RDBMS
- Xueyuan Su, Yale University; Garret Swart, Oracle

Oracle In-Database Hadoop: When MapReduce Meets RDBMS

Solution: Implement direct support for Hadoop programs directly in Oracle DB

- Source compatibility with Hadoop. users are able to run native Hadoop applications
- Access to Oracle RDBMS resident data
- Minimal dependency on the Apache Hadoop infras- tructure.
 Oracle In-Database Hadoop framework is not built on top of actual Hadoop clusters.
- Greater efficiency in execution due to data pipelining, as Oracle knows more.
- Seamless integration of MapReduce functionality with Oracle SQL.

Old Cup

Contains 30 cl

SIGMOD Mug!

Contains 82 cl

Conclusion

30 cl vs. 82 cl = 275% more coffee

Conclusion

SIGMOD made me 275% more efficient!! ;)

End of Presentation

Thank You For Listening