

### Licenciatura em Engenharia Biomédica

# MATEMÁTICA 1 (2023/2024)

# ÉPOCA ESPECIAL: 2ª PROVA DE AVALIAÇÃO

#### 04 de setembro de 2024

#### Aluno no: Nome:

- Não é permitida a consulta de dispositivos eletrónicos (máquina de calcular, telemóvel, etc.).
- Só poderá consultar os formulários validados no início da prova.
- Todos os cálculos que efetuar e todas as conclusões que obtiver deverão ser devidamente justificados.
- Boa sorte!

Duração: 1h15m

| Cotações: | 1.<br>(30) | 2.<br>(35) | $3.1 \\ (20)$ | $3.2 \\ (15)$ | 3.3 (10) | 3.4 (5) | 4.<br>(20) | 5.<br>(20) | $6.1 \\ (25)$ | 6.2 (10) | 6.3 (10) | Total)<br>(200) |
|-----------|------------|------------|---------------|---------------|----------|---------|------------|------------|---------------|----------|----------|-----------------|
|           |            |            |               |               |          |         |            |            |               |          |          |                 |

- 1. Calcule o integral da função real de variável real,  $f(x) = x \arctan(x)$ , definido em  $\left[0, \frac{\pi}{4}\right]$ .
- 2. Considere a região abaixo limitada por ramos das curvas indicadas. Escreva a expressão integral que permite calcular a área da região assinalada.



- 3. Seja  $a_n = f(n) \frac{2^{2n+1}}{4^{3n+1}}$ , sendo f(n) uma função real de variável natural.
  - 3.1 Seja f(n) = 1 e calcule, se possível, a soma da série  $\sum_{n=1}^{\infty} a_n$ .
  - 3.2 Seja  $f(n) = (-1)^n \frac{2^{4n+1}}{n}$ , estude a série  $\sum_{n=1}^{\infty} a_n$  quanto à sua convergência.
- 4. Estude a natureza da série  $\sum_{n=1}^{\infty} \frac{\sqrt{n^4+1}}{n^3+n^2}.$
- 5. Considere a série de potências,  $\sum_{n=1}^{\infty} \frac{(-1)^n (n-1)!}{n^2} (x-5)^n$ , representaiva de uma dada função f. Indique o centro de convergência e calcule o intervalo e o raio de convergência da série.
- 6. Seja dada a função  $f(x)=-\ln{(1+2x)}$ , representável por um desenvolvimento em série de MacLaurin. Sabendo que o intervalo de convergência é  $\left]-\frac{1}{2},\frac{1}{2}\right]$ , determine:
  - 6.1 A expressão da referida série.
  - 6.2 A expressão do polinómio de MacLaurin de ordem n=3, da função y=f(x).
  - 6.3 Um valor aproximado de  $\ln\left(\frac{2}{3}\right)$ , com base na expressão do polinómio obtida na alínea anterior.