Mathematical shorthands

$$\min(a_1, \dots, a_n) \Rightarrow \min_{i:i \le n}(a_i)$$

Given values $a_1, ..., a_n$ find a set S of $\{1, ..., n\}$ such that $\sum_{i \in S} a_i$

Greedy

Inductive proof concepts: Show that greedy is optimal for a set of sub-cases, show that large problems can be broken down into those sub-cases. Often, proof is done by contradiction (suppose optimal < greedy ...)

Dijkstra's algo: Initialize set of explored nodes S and array storing shortest path cost to those nodes d. Repeatedly choose an unexplored node $v \notin S$ where $\pi(v) = \min_{\mathbf{e} = (\mathbf{u}, \mathbf{v}) : \mathbf{u} \in S} d[u] + w(u, v)$, add v to s and set $d[v] = \pi(v)$

Cashier's algo: Prove optimality for sub-cases, then extend to larger cases

Huffman encoding: Understand bottom-up construction of tree starting with the least occurring nodes, combining as you go. Repeat until all nodes have been combined under a single tree

Divide & conquer

Master's Theorem: Applies to recurrences of the form $T(n) = aT\left(\frac{n}{b}\right) + f(n)$, where $a \ge 1, b > 1$ are constants and f(n) is an asymptotically growing function (Note: Unless otherwise stated, log is base 2)

- 1. If $f(n) = O(n^{\log_b(a-\epsilon)})$ for some $\epsilon > 0$, then $T(n) = O(n^{\log_b a})$
- 2. If $f(n) = \Theta\left(n^{\log_b a}(\log^k n\right)$ with $k \ge 0$, then $T(n) = \Theta\left(n^{\log_b a}\log^{k+1} n\right)$ note that $\log^k n = (\log n)^k$
- 3. If $f(n) = \Omega(n^{\log_b(a+\epsilon)})$ for some $\epsilon > 0$, and $a \cdot f(\frac{n}{b}) \le c \cdot f(n)$, c < 1, $\forall n > n'$ then $T(n) = \Theta(f(n))$

Median of medians: Recursive calling between 2 functions – *SELECT()* and *CHOOSEPIVOT()*. *SELECT()* performs sorting and selection if array is below a certain size. Otherwise, it calls *CHOOSEPIVOT()*, which splits the array into $m = \left\lceil \frac{n}{\epsilon} \right\rceil$ groups and chooses the median out of each of them. Overall complexity is O(n)

Dynamic programming

Iterative approach: Usually involves 2D arrays and using solutions to smaller problems to solve larger ones **Recursive approach**: Backtrack with memorization

Both involve identifying an optimal substructure and coming up with a recursive formulation

Knapsack problems: 0-1, unbounded

Flow

Ford-fulkerson (greedy): Given graph G and flow f, residual graph G_f has the same nodes as G. For any edge $(u,v) \in G$, include edge (u,v) with capacity $c'_{u,v} = c_{u,v} - f_{u,v}$ and (v,u) with capacity $c'_{v,u} = f_{u,v}$ if $f_{u,v} > 0$. Continuously try to push more flow from S to S in residual graph until S is unreachable from S

Complexity is O(|E|f) where f=optimal flow value. DFS is O(|V| + |E|) but in a connected graph $|E| \ge |V| - 1$, each iteration improves flow by at least 1.

Dummy nodes can be introduced for cases of multiple sources & sinks. Applicable to problems like bipartite matching and max circulation

Edmonds-karp: Uses BFS to find augmenting path, runs in $O(|V||E|^2)$

Max-flow, min-cut: Max flow for a graph is equivalent to min-cut

Computational limits

Reduction: We can reduce problem X to problem Y by doing a transformation from X to Y, and using a solver for Y to find a solution, then transforming the solution back to a version in X.

- X reduces to Y is denoted as $X \leq_P Y$ (transitive

Optimization: Minimize or maximize certain metrics

Search: Answer a question with evidence

Decision: Give a boolean answer to a question

Optimization>Search>Decision

P problems are solvable in polynomial time

NP problems have solutions that can be *verifiable* in polynomial time (but we cannot verify the absence of a solution in polynomial time)

NP-complete if all other NP problems that can be reduced to them

NP-hard problems are at least as hard as NP-complete problems, and are not necessarily in NP

Linear programming

General form: Maximize/minimize a certain metric while conforming to constraints. Inequalities in constraints can be converted to equalities using *slack variables*. Solution is guaranteed to lie at a point on the feasible region, if one exists

ILP (Integer Linear Programming): Restricted to integers/binary instead of real numbers

Duality: Drawing on the concepts from linear algebra, the *dual* of an LP can be derived from the *primal* as such:

- Each variable in the primal becomes a constraint in the dual
- Each constraint in the primal becomes a variable in the dual
- Objective direction is inversed, maximum in the primal becomes minimum in the dual

Symmetry and asymmetry

Primal (Maximize)	Dual (Minimize)
i th constraint \leq	i th variable ≥ 0
ith constraint \geq	i th variable ≤ 0
ith constraint =	ith variable unrestricted
j th variable ≥ 0	jth constraint \geq
j th variable ≤ 0	jth constraint ≤
jth variable unrestricted	jth constraint =

Strong duality if both the primal and the dual have optimal solutions. If x^* and y^* are solutions to the primal and dual, then $c^Tx = b^Ty$

Approximation

k-approximation: For maximization, for any problem instance l, the algo produces a solution A(l) such that $OPT(l) \ge A(l) \ge \frac{1}{r} \cdot OPT(l)$. For minimization, $OPT(l) \le A(l) \le r \cdot OPT(l)$

Relaxation in the context of ILPs means allowing real numbers instead of integer values. Will give lower minima and higher maxima in feasible region.

TSP approximation: (For TSP problem instances where the triangle inequality holds) - Find an MST of the graph, choose an arbitrary vertex as root, and return a preorder walk (2-approximation)

Heuristics and randomization

Local search: Define a neighbourhood around a solution, involving slight permutations. A k-opt neighbourhood might involve making k adjustments to the current solution to form a new solution. This can be done multiple times to make incremental improvements

Max-cut local search: Arbitrarily partition vertices into 2 sets. Loop through all vertices. If a vertex can be switched to the other side to increase crossing edges, do so. Repeat until no improvements can be made. O(|V||E|)

Randomized algos

Finding median: Upon randomly sampling S containing $\frac{1}{\epsilon}\log n$ elements from an input array, we can sort S with $O(\frac{1}{\epsilon}\log n \cdot \log(\log n))$ complexity, and guarantee an element between $(1-\epsilon)\frac{n}{2}$ to $(1+\epsilon)\frac{n}{2}$ with error probability n^{-2} . Note that as n grows larger, error probability decreases

Las Vegas solutions have a deterministic output and variable runtime

Monte Carlo solutions have a variable output and deterministic runtime

Bernoulli trial: For a Bernoulli distribution with probability of success p, expected tries for first success is $\frac{1}{n}$

Law of total expectation: $E[X] = \sum_{i} P(A_i) E[X|A_i]$