FIT3158 Note - W1 Linear programming

	Post
O Created date	@October 28, 2022 10:57 AM
	Business
i≡ tags	Decision Making
	Published
From	School
≡ summary	
≡ slug	
≡ password	
: Author	
Cover	
Ø Origin	
Type	
Ø URL	
✓ Youtube	
≡ icon	

5 steps of In Formulating LP Models

1. Understand the problem.

Blue Ridge Hot Tubs produces two types of hot tubs: Aqua-Spas & Hydro-Luxes.

	Aqua-Spa	Hydro-Lux
Pumps	1	1
Labor	9 hours	6 hours
Tubing	12 feet	16 feet
Unit Profit	\$350	\$300

There are 200 pumps, 1566 hours of labor, and 2880 feet of tubing available.

$$MAX: 350X1 + 300X2$$
 $S.T.: 1X1 + 1X2 <= 200$
 $9X1 + 6X2 <= 1566$
 $12X1 + 16X2 <= 2880$
 $X1 >= 0$
 $X2 >= 0$

2. Identify the decision variables.

$$egin{aligned} X1 = \ \# \ of \ Aqua \ Spas \ to \ produce \ X2 = \ \# \ of \ Hydro \ Luxes \ to \ produce \end{aligned}$$

 State the <u>objective function</u> as a linear combination of the decision variables.

$$MAX: 350X1 + 300X2$$

 State the <u>constraints</u> as linear combinations of the decision variables.

$$egin{aligned} 1X1 + 1X2 &<= 200 \implies \\ pumps \\ 9X1 + 6X2 &<= 1566 \implies \\ labor \\ 12X1 + 16X2 &<= 2880 \implies \\ tubing \end{aligned}$$

Identify any <u>upper or lower</u>
 bounds on the decision variables.

$$X1 >= 0; X2 >= 0$$