${\bf Vorlesung smitschrift}$

DIFF II

Prof. Dr. Dorothea Bahns

Henry Ruben Fischer

Auf dem Stand vom 23. April 2020

Disclaimer

Nicht von Professor Bahns durchgesehene Mitschrift, keine Garantie auf Richtigkeit ihrerseits.

Inhaltsverzeichnis

1 Metrische Räume iv

Kapitel 1

Metrische Räume

Vorlesung 1

Mo 20.04. 10:15

Ziel. Konvergenz, Stetigkeit ... sollten in einem allgmeineren Rahme konzeptualisiert werden.

Erinnerung (DIFF I). Eine Folge $(a_n)_{n\in\mathbb{N}}\subset\mathbb{R}$ konvergiert gegen den Grenzwert a

$$\iff \forall \varepsilon > 0 \ \exists N \in \mathbb{N} \text{ s.d.} \ |a_n - a| < \varepsilon \ \forall n \geqslant N$$

 $(a-\varepsilon,a+\varepsilon)$ wird auch ε -Umgebung von a in R genannt. Somit lautet die obige Definition in Worten: In jeder noch so kleinen ε -Umgebung von a befinden sich alle bis auf endlich viele Folgenglieder.

Man benötigt für die Formulierung der Definition also lediglich einen Begriff von "(kleine) Umgebung". Diesen Begriff möchten wir nun verallgemeinern.

Definition 1.1. Sei X eine Menge. Ein System \mathcal{T} von Teilmengen von X heißt Topologie auf X falls gilt:

- a) $\emptyset, X \in \mathcal{T}$.
- b) Sind U und $V \in \mathcal{T}$, so gilt $U \cap V \in \mathcal{T}$.
- c) Ist I eine Indexmenge und $U_i \in \mathcal{T}$ für alle $i \in I$, so gilt auch $\bigcup_{i \in I} U_i \in \mathcal{T}$.

Notation. Ein topologischer Raum ist ein Tupel (X, \mathcal{T}) , wobei X Menge ist und \mathcal{T} eine Topologie auf X.

Eine Teilmenge $U \subset X$ heißt offen, falls gilt $U \in \mathcal{T}$. Eine Teilmenge $A \subset X$ heißt abgeschlossen falls ihr Komplement $X \setminus A$ offen ist.

Beispiele 1.2. i) $X = \text{beliebige Menge. } \mathcal{T} = \{ \varnothing, X \}.$

Beweis. 1.1.a) klar

1.1.b)
$$\varnothing \cap X = \varnothing \in \mathcal{T}, X \cap X = X \in \mathcal{T}, \varnothing \cap \varnothing = \varnothing \in \mathcal{T}$$

1.1.c)
$$\bigcap_{i \in I} U_i = \begin{cases} X & \text{falls eins der } U_i = X \text{ ist} \\ \emptyset & \text{falls nicht} \end{cases}$$

"Klumpentopologie"

ii) $X = \mathbb{R}$

 \mathcal{T} = alle Teilmengen $U \subset \mathbb{R}$ mit der Eigenschaft:

$$\forall x \in U \ \exists \varepsilon > 0 \text{ s.d. } (x - \varepsilon, x + \varepsilon) \subset U$$

Beweis von 1.1.a), 1.1.b) und 1.1.c) als HA (etwas allgemeiner). Hier stellen wir fest, dass insbesondere die offenen Intervalle (a, b) in diesem Sinne offen (also $\in \mathcal{T}$) sind, halb-abgeschlossene und abgeschlossene dagegen nicht.

Beweis. 1. Beh Zu $x \in [a, b]$ wähle $\varepsilon = \min\{ |x - a|, |x - b| \}$

2. Beh Zu
$$x = a \in [a, b)$$
 kann man kein $\varepsilon > 0$ finden s. d. $(a - \varepsilon, a + \varepsilon) \subset [a, b)$, denn $a - \varepsilon/2 \in (a - \varepsilon, a + \varepsilon)$ aber $a - \varepsilon/2 < a$, also $\notin [a, b)$.

Abgeschlossene Intervalle sind in diesem Sinn abgeschlossen, denn $\mathbb{R}\setminus[a,b]$ ist nach Definition von \mathcal{T} und Eigenschaft 1.1.c) offen.

Diese Topologie heißt Standard-Topologie auf \mathbb{R} . Wird nichts anderes gesagt, sehen wir \mathbb{R} als mit der Standard-Topologie versehen an.

Definition 1.3. Sei (X, \mathcal{T}) topologischer Raum. Sei $x \in X$. Eine Teilmenge $V \subset X$ heißt $Umgebung\ von\ x$, falls es eine offenen Menge $U \subset X$ gibt mit $x \in U$ und $U \subset V$.

Beispiele. i) V = (a, b) ist eine Umgebung für jedes $x \in (a, b)$, aber *nicht* für x = a.

ii) $(a - \varepsilon, a + \varepsilon), \varepsilon > 0$, ist eine Umgebung von x.

Lemma 1.4. Eine Teilmenge $V \subset X$ eines topologischen Raumes (X, \mathcal{T}) ist offen gdw für alle $x \in V$ gilt: V ist Umgebung von x.

Beweis. " \Longrightarrow " Ist V offen, so erfüllt U=V für jedes x die Bedingung $x\in U$ und $U\subset V\Longrightarrow V$ ist Umgebung.

" ← " Zu $x \in V$ wähle U_x s.d. $x \in U_x$, $U \subset V$. Dann gilt $V = \bigcup_{x \in U} U_x$ und das ist offen (nach 1.1.c)).

Definition 1.5 (Konvergenz in topologischen Räumen). Sei (X, \mathcal{T}) topologischer Raum. Sei $(x_n)_{n\in\mathbb{N}}$ eine Folge in X. Dann ist $(x_n)_n$ konvergent mit Grenzwert $x, x_n \to x$ in (X, \mathcal{T}) , falls es in jeder Umgebung V von x ein $N \in \mathbb{N}$ gibt, s. d. $x_n \in V \ \forall n \geqslant N$.

Beispiele. i) In der Klumpentopologie konvergieren alle Folgen gegen jedes $x \in X$.

ii) Mit unseren obigen Überlegungen folgern wir, dass Konvergenz in \mathbb{R} im Sinn von Definition 1.5 mit Konvergenz, wie wir sie in der DIFF I

Lemma 1.6. Sei (X, \mathcal{T}) toplogischer Raum. Ist (X, \mathcal{T}) ein *Hausdorff-Raum*, gibt es also zu je zwei Punkten $x, y \in X$ mit $x \neq y$ Umgebungen U von x und V von y mit $U \cap V = \emptyset$, so ist der Grenzwert einer konvergenten Folge eindeutig.

Beweis. Seien x und y Grenzwert einer Folge $(x_n)_n$. Angenommen $x \neq y$, so wähle U Umgebung von x, V Umgebung von y mit $U \cap V = \emptyset$. Dann gibt es (wegen der Konvergenz) $N \in \mathbb{N}$ s. d. $x_n \in U \ \forall n \geqslant N$ und $M \in \mathbb{N}$ s. d. $x_n \in V \ \forall n \geqslant M$. Wiederspruch zu $U \cap V = \emptyset$.

Definition 1.7. Seien (X, \mathcal{T}) und $(Y, \tilde{\mathcal{T}})$ topologische Räume. Sei $f: X \to Y$ eine Abbildung. Dann heißt f stetig in $a \in X$, falls es zu jeder Umgebung V von $f(a) \in Y$ eine Umgebung U von a gibt, s.d. $f(U) \subset V$. f heißt stetig (auf X), falls f stetig in allen $a \in X$ ist.

Bemerkung. Wir werden später sehen, dass diese Definition für $f: \mathbb{R} \to \mathbb{R}$ mit unserer Definition aus der DIFF I übereinstimmt (ε - δ -Kriterium).

Für jede Umgebung U von a gilt: f(U) enthält auch Punkte < b, also außerhalb V

Satz 1.8. Sei $f: X \to Y$ Abbildung zwischen topologischen Räumen. Dann ist f stetig auf X gdw für jede offene Teilmenge $V \subset Y$ das $Urbild\ f^{-1}(V)$, also $\{x \in X \mid f(x) \in V\}$ offen in X ist.

Beweis. " \Longrightarrow " Sei f stetig vorausgesetzt. Sei V offen Y. Ist das Urbild $f^{-1}(V)$ leer, sind wir fertig.

Sei also $a \in f^{-1}(V)$. Dann gibt es nach Voraussetzung eine Umgebung U von a s. d. $f(U) \subset V$. Also gilt $U \subset f^{-1}(V)$. Somit besitzt also jeder Punkt $a \in f^{-1}(V)$ eine Umgebung U mit $U \subset f^{-1}(V)$ und somit ist $f^{-1}(V)$ selbst Umgebung jedes seiner Elemente $\stackrel{1.4}{\Longrightarrow} f^{-1}(V)$ ist offen.

" \Leftarrow " Sei $a \in X$ beliebig. Sei V eine Umgebung von f(a). Dann gibt es \tilde{V} offen mit $f(a) \in \tilde{V}$ und $\tilde{V} \subset V$. Nach Voraussetzung ist das Urbild $U \coloneqq f^{-1}(\tilde{V})$ offen. U enthält a, ist also Umgebung von a und es gilt $f(U) = \tilde{V} \subset V \Longrightarrow f$ ist stetig in a.

 $f^{-1}(V) = [a, c)$ ist nicht offen in \mathbb{R}

Bemerkung. Äquivalent: f ist genau dann stetig, wenn das Bild jeder abgeschlossen Menge abgeschlossen ist.

Vorsicht:

Es ist immer Offenheit in X (bzw. Y) gemeint!

Zur Veranschaulichung:

Betrachtet man im Beispiel oben als Definitionsbereich $X=[a,\infty)$, so ist die Funktion stetig! Dies ist konsistent, da [a,c) in $X=[a,\infty)$ versehen mit der Standard-Topologie tatsächlich offen ist:

Definition / Satz 1.9. Sei (X, \mathcal{T}) topologischer Raum. Sei $\tilde{X} \subset X$ eine Teilmenge. Dann induziert \mathcal{T} auf \tilde{X} eine Topologie, die sogenannte *Teilraum-Topologie* vermöge

$$T_{\tilde{X}} := \left\{ U \cap \tilde{X} \mid U \in \mathcal{T} \right\}.$$

Den (einfachen) Beweis, dass dies in der Tat eine Topologie definiert, lassen wir weg.

In unserem Beispiel ist $X = \mathbb{R}$, $\tilde{X} = [a, \infty)$ und da $(a - \varepsilon, c)$ offen in \mathbb{R} ist $(\varepsilon > 0)$, ist nach Definitionsbereich $[a, c) = (a - \varepsilon, c) \cap [a, \infty)$ offen in $[a, \infty)$.

Dies ist der tiefere Grund, weshalb man bei Funktionen den Raum, in dem sie ihre Werte annehmen (im Beispiel oben $Y = \mathbb{R}$) angeben sollte, nicht ihr Bild.

Denn in $Y=(-\infty,b)\cup[f(a),\infty)$ wäre das Bild von $[a-\varepsilon,c]$ \forall $\varepsilon>0$ in der Tat abgeschlossen, denn sein Komplement

$$Y \setminus ([b-\delta,b) \cup [f(a),f(c))) = -(-\infty,b-\delta) \cup (f(c),\infty)$$

wäre offen.

Dagegen ist

$$\mathbb{R} \setminus ([b-\delta,b) \cup [f(a),f(c))) = -(-\infty,b-\delta) \cup [b,f(a)) \cup (f(c),\infty)$$

für kein $\delta > 0$ offen.

Definition / Satz 1.10. Seien (X, \mathcal{T}_X) und (Y, \mathcal{T}_Y) topologische Räume. Betrachte das kartesische Produkt $X \times Y = \{ (x, y) \mid x \in X, y \in Y \}$. Dann nennt man das System

$$T \coloneqq \left\{ \left. U \subset X \times X \, \middle| \, U = \text{beliebige Vereinigung von Mengen der Form} \right. \\ \left. V \times W, V \in \mathcal{T}_X, W \in \mathcal{T}_Y \right. \right\}$$

Produkttopologie. Und dies definiert in der Tat eine Topologie auf $X \times Y$.

Beweis. 1.1.a) klar

1.1.b)

$$U = \bigcup_{\alpha} U_{\alpha} \times W_{\alpha}$$

$$V = \bigcup_{\beta} \tilde{V}_{\beta} \times \tilde{W}_{\beta}$$

$$U \cap V = \bigcup_{\alpha,\beta} (\underbrace{V_{\alpha} \cap \tilde{V}_{\beta}}_{\text{offen in } X}) \times (\underbrace{W_{\alpha} \cap \tilde{W}_{\beta}}_{\text{offen in } Y}).$$

1.1.c)

$$\bigcup_{\rho} \left(\bigcup_{\alpha} V_{\alpha}^{(\rho)} \times W_{\alpha}^{(\rho)} \right) = \bigcup_{\rho,\alpha} V_{\alpha}^{(\rho)} \times W_{\alpha}^{(\rho)}.$$

Wir kommen nun zu einer wichtigen Beispiel-Klasse für Topologien:

Definition 1.11. Sei X eine Menge. Eine Metrik auf X ist eine Abbildung

$$d: X \times X \to \mathbb{R}$$

mit den Eigenschaften

- a) $d(x,y) = 0 \iff x = y$,,d ist nicht ausgeartet."
- b) $d(x,y) = d(y,x) \ \forall x,y \in X$ "d ist symmetrisch."
- c) $d(x,y) \leq d(x,z) + d(z,y) \quad \forall x,y,z \in X$ "Es gilt die Dreiecksungleichung."

Ein $metrischer\ Raum$ ist ein Tupel (X,d), wobei X eine Menge ist und d eine Metrik auf X. Mist schreibt man nur X, weil Missverständnisse ausgeschlossen sind.

Bemerkung. Aus den Axiomen folgt auch

$$d(x,y) \geqslant 0 \quad \forall x, y \in X,$$

denn

Beispiele. i) \mathbb{R} , d(x,y) = |x - y|.

ii) X Menge, $d(x,y) = \begin{cases} 1 & x \neq y \\ 0 & x = y \end{cases}$, "triviale" oder "diskrete Metrik".

iii) (aus AGLA I)
$$\mathbb{R}^n$$
, $d(x,y) = \sqrt{\sum_{i=1}^n (x_i - y_i)^2}$, "Euklidische Metrik".

Eine Metrik misst den Abstand zwischen zwei Punkten. Im zweiten Beispiel sind alle verschiedenen Punkte gleich weit von einander entfernt. Für n=1 stimmt iii) mit i) überein. Mit iii) wird auch der Name der Dreiecksungleichung klar:

Definition 1.12. Sei (X,d) ein metrischer Raum. Seien $x \in X$, $\varepsilon > 0$. Dann nennt man

$$B_{\epsilon}(x) := \{ y \in X \mid d(x,y) < \epsilon \}$$

den (offenen) ε -Ball um x.

Beispiele. i) $B_{\varepsilon}(x) = (x - \varepsilon, x + \varepsilon)$.

ii)
$$B_{\varepsilon}(x) = \begin{cases} x & \varepsilon \leqslant 1 \\ X & \varepsilon > 1 \end{cases}$$

iii)
$$B_{\varepsilon}(x) =$$

Satz 1.13. Sei (X, d) ein metrischer Raum. Dann wird durch

$$\mathcal{T}_d := \{ U \subset X \mid \forall x \in U \ \exists \varepsilon > 0 \text{ s.d. } B_{\varepsilon}(x) \subset U \}$$

Beweis. Als Hausaufgabe.

Bemerkungen 1.14. i) 1.2.ii) ist ein Spezialfall dieser Aussage

ii) Die "offenen" ε -Bälle sind tatsächlich offen: Zu $y \in B_{\varepsilon}(x)$ wähl $\tilde{\varepsilon} := \varepsilon - d(x, y) > 0$.

Dann ist $B_{\tilde{\varepsilon}}(y) = \{ z \mid d(y, z) < \tilde{\varepsilon} \} \subset B_{\varepsilon}(x)$. Denn für alle $z \in B_{\tilde{\varepsilon}}(y)$ ist

$$d(x,z) \leqslant d(x,y) + d(y,z) < d(x,y) + \tilde{\varepsilon}$$
$$= d(x,y) + \varepsilon - d(x,y) = \varepsilon$$

- iii) Bezüglich der diskreten Metrik ist jede Teilmenge offen.
- iv) Die Klumpentopologie wird nicht von einer Metrik erzeugt (wenn X mehr als 1 Element enthält).

Beweis. Seien $x, y \in X$, $x \neq y$. Angenommen \exists Metrik d.

$$\implies d(x,y) \neq 0 \implies d(x,y) = c > 0$$

$$\implies B_c(x) \text{ ist offen.}$$

$$\implies B_c(x) = \varnothing \text{ oder } = X$$

$$\implies B_c(x) = X$$

 $\oint_{\mathcal{L}} da \ y \notin B_c(x).$

v) Ein metrischer Raum ist hausdorffsch. \rightarrow HA.

Wir formulieren nun Konvergenz und Stetigkeit für metrische Räume:

Bemerkungen 1.15. Sei (X, d) metrischer Raum.

- i) [Definition 1.3] $V \subset X$ heißt Umgebung von $x \in X$, falls es $\varepsilon > 0$ gibt s. d. $B_{\varepsilon}(x) \subset U$.
- ii) [Definition 1.5] $(x_n)_n$ konvergiert mit Grenzwert x, falls es zu jedem $\varepsilon > 0$ ein $N \in \mathbb{N}$ gibt s. d. $x_n \in B_{\varepsilon}(x) \ \forall n \geqslant N$.

iii) [Definition 1.7] Sei (Y, \tilde{d}) weiterer metrischer Raum, $f: X \to Y$ eine Abbildung. Dann ist f stetig a gdw :

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \text{s.d.} \ f(B_{\delta}(a)) \subset B_{\varepsilon}(f(a)).$$

Bemerkungen. i) 1.15.iii) ist das ε - δ -Kriterium.

ii) Die Einschränkung auf ε -Bälle in 1.15.ii) und 1.15.iii) (statt allgemeiner Umgebungen) ist keine echte Einschränkung: Gilt etwas für all Umgebungen, so speziell auch für ε -Bälle.

Und gilt eine Inklusion für alle ε -Bälle (etwa $x_n \in B_{\varepsilon}(x) \ \forall n \geqslant N(\varepsilon)$), so auch für beliebige Umgebungen U von x, da es immer einen ε -Ball $B_{\varepsilon}(x)$ gibt, der ganz in U enthalten ist.

Beispiele 1.16. i) \mathbb{R}^m mit der Euklidischen Metrik. $(x_n)_{n\geqslant 1}$ Folge in \mathbb{R}^m , also $n\mapsto x_n=(x_n^{(1)},\dots,x_n^{(m)})\in\mathbb{R}^m$.

ii)
$$x_n = \left(\frac{1}{n}\cos(n), \frac{1}{n}\sin(n), a, \dots, a\right)$$

Behauptung. $x_n \to (0,0,a,\ldots,a) =: x$.

Beweis. Sei $\varepsilon > 0$. Es gilt

$$d(x_n, x)^2 = \sum_{i=1}^m (x_n^{(i)} - x^{(i)})^2$$

$$= \left(\frac{1}{n}\cos(n) - 0\right)^2 + \left(\frac{1}{n}\sin(n) - 0\right)^2 + (a - a)^2 + \dots + (a - a)^2$$

$$= \frac{1}{n^2}(\cos(n)^2 + \sin(n)^2) = \frac{1}{n^2}$$

$$\Rightarrow d(x_n, x) = \frac{1}{n}$$

$$\Rightarrow d(x_n, x) < \varepsilon \quad \forall n \ge N \text{ mit } N > \frac{1}{\varepsilon}$$

$$\Rightarrow x_n \in B_{\varepsilon}(x) \quad \forall n \ge N.$$

- iii) $X = C([a, b]), d(f, g) := ||f g||_{\infty} \text{ mit } ||f g||_{\infty} = \sup_{x \in [a, b]} |f(x) g(x)|.$
- **1. Beh** d ist eine Metrik auf X.

Beweis. 1.11.a):

$$\sup_{x \in [a,b]} |f(x) - g(x)| = 0$$

$$\iff |f(x) - g(x)| = 0 \quad \forall x$$

$$\iff f(x) = g(x) \quad \forall x.$$

1.11.b):

$$|f(x) - g(x)| = |g(x) - f(x)| \quad \forall x$$
$$\implies d(f, g) = d(g, f)$$

1.11.c):

$$\begin{split} |f(x)-g(x)| &= |f(x)-h(x)+h(x)-g(x)| \\ &\leqslant |f(x)-h(x)|+|h(x)-g(x)| \\ &\stackrel{\uparrow}{\triangle-\mathrm{Ungl. \ f\"ur \ }|\cdot| \ \mathrm{auf \ }\mathbb{R}} \\ \Longrightarrow \triangle\mathrm{-Ungl. \ f\"ur \ } d. \end{split}$$

2. Beh $(f_n)_n \subset C([0,1]), f_n(x) = x^n$, konvergiert nicht (vgl. Diff I).

Beweis. Wir wissen aus der Diff I, dass wenn Konvergenz vorliegt, der Grenzwert gleich dem punktweisen Grenzwert ist. Dieser ist

$$f(x) = \begin{cases} 1 & x = 1 \\ 0 & \text{sonst} \end{cases}.$$

Aber

Beweis.

$$\sup_{x \in [0,1]} |f_n(x) - f(x)| = \sup_{x \in [0,1)} |x^n| = 1.$$

- iv) $X = C([0,1]), d(f,g) = \int_0^1 |f(x) g(x)| dx.$
- **1. Beh** d ist eine Metrik auf C([0,1]).

Beweis. HA.
$$\Box$$

2. Beh $(f_n)_n \subset C([0,1]), f_n(x) = x^n$ konvergiert, und zwar gegen $f(x) = 0 \ \forall x$.

$$\int_0^1 |f_n(x) - 0| \ dx = \int_0^1 x^n \ dx = \frac{1}{n+1} \left. x^{n+1} \right|_x^0 1 = \frac{1}{n+1}$$

$$\implies d(f_n, f) = \frac{1}{n+1} < \varepsilon \quad \forall n \geqslant N \text{ mit } N \geqslant \frac{1}{\varepsilon}.$$

Vorlesung 2

Do 23.04. 10:15

Bevor wir uns mit offenen und abgeschlossenen Mengen und sogenannten vollständigen metrischen Räumen näher befassen, beweisen wir noch zwei nützliche Lemmata zu Konvergenz und Stetigkeit:

Lemma 1.17. (X, d) sei metrischer Raum.

Eine Folge $(x_n)_n$ in X konvergiert in X gegen $a \in X$

$$\iff$$
 $(d(x_n, a))_n$ ist Nullfolge (in \mathbb{R}).

Beweis.

$$d(x_n, a) = |d(x_n, a) - 0|$$
.

Also ist

$$d(x_n, a) < \varepsilon \iff |d(x_n, a) - 0| < \varepsilon.$$

Lemma 1.18. Seien (X, d_x) und (Y, d_y) metrische Räume, $f: X \to Y$ eine Abbildung. Dann gilt:

f ist in $a \in Y$ stetig \iff für jede Folge $(a_n)_n$ mit $a_n \to a$ in X gilt

$$\lim_{n \to \infty} f(a_n) = f(\underbrace{\lim_{n \to \infty} a_n}).$$

Notation.

$$\lim_{x \to a} f(x) = f(a).$$

Beweis. " \Longrightarrow " Sei das ε - δ -Kriterium erfüllt (1.15.iii)). Sei $(x_n)_n$ Folge in X mit $x_n \to a$ in X. Sei $\varepsilon > 0$. Dann $\exists \ \delta > 0$ s. d.

$$d_Y(f(x), f(a)) < \varepsilon \ \forall x \in B_{\delta}(a) \subset X.$$

Wegen der Konvergenz $\exists N = N(\delta)$ s.d.

$$x_n \in B_{\delta}(a) \ \forall n \geqslant N$$

 $\implies f(x_n) \in B_{\varepsilon}(f(a)) \subset Y \ \forall n \geqslant N.$

Also gilt $f(x_n) \to f(a)$.

$$, \Leftarrow$$
 " Gelte $\lim_{x\to a} (x) = f(a)$.

Angenommen, das ε - δ -Kriterium wäre verletzt. Dann gäbe es $\varepsilon > 0$ s. d. für alle $\delta > 0$ ein $x \in X$ existierte s. d.

$$x \in B_{\delta}(a)$$
 aber $f(x) \notin B_{\varepsilon}(f(a))$
also $d_y(f(x), f(a)) \ge \varepsilon$.

Insbesondere gäbe es zu $\delta = \frac{1}{n}$ ein solches x, nennen wir es x_n . Dann gilt für alle n: $d(x_n, a) < \frac{1}{n}$, aber $d_y(f(x_n), f(a)) \ge \varepsilon$, somit $x_n \to a$ aber $f(x_n) \not \sim f(a)$ (wegen 1.17). \square

Charakterisierung topologischer Grundbegriffe in metrischen Räumen

Lemma 1.19. Sei (X, d) metrischer Raum. Dann ist $A \subset X$ abgeschlossen \iff für jede Folge $(a_n)_n$, $a_n \in A$, die in X konvergiert, gilt:

$$\lim_{n\to\infty} a_n \in A.$$

Beweis. O.B.d.A. $\emptyset \neq A \neq X$.

" \Longrightarrow " Sei $(a_n)_n$, $a_n \in A$, konvergent in X. Sei $a = \lim a_n$. Angenommen $a \notin A$. Nach Voraussetzung ist $X \setminus A$ offen, also ist $X \setminus A$ Umgebung von $a \Longrightarrow \exists N$ s. d.

$$a_n \in X \setminus A \ \forall n \geqslant N \ (\text{wegen Konvergenz})$$

 $\nleq \operatorname{zu} a_n \in A.$

", \Leftarrow " Wir zeigen, dass $X \setminus A$ offen ist. Sei also $b \in X \setminus A$. Es gibt $\varepsilon > 0$ s. d. $B_{\varepsilon}(b) \cap A = \emptyset$, also $B_{\varepsilon}(b) \subset X \setminus A$.

Denn angenommen es gibt kein solches ε . Dann gilt für alle $\varepsilon > 0$: $B_{\varepsilon}(b) \cap A \neq \emptyset$, also kann man zu jedem $k \geqslant 1$ ein $x_k \in A$ finden mit $d(x_k, b) < \frac{1}{k} = \varepsilon$.

$$\implies x_k = b \implies b \in A.$$

 \nleq Wiederspruch zu $b \in X \setminus A$.

Also gibt es ein solches $\varepsilon > 0$, also ist $X \setminus A$ offen.

Definition 1.20. Sei (X, d) metrischer Raum, $M \subset X$. Ein Punkt $y \in X$ heißt Rand-punkt von M, falls in jeder Umgebung von y sowohl Punkte von M als auch $X \setminus M$ liegen.

Notation. $\partial M = \{ \text{Randpunkte von } M \}$

Beispiel (\mathbb{R}^n , $d_{\text{Eukl.}}$). Kugel im \mathbb{R}^m :

$$K^n := \{ x \in \mathbb{R}^n \mid ||x - 0||_{\mathcal{E}} \leqslant R \} \subset \mathbb{R}^n$$

Sphäre:

$$\partial K^n = \{ x \in \mathbb{R}^n \mid ||x||_{\mathcal{E}} = R \} = S^{n-1}$$

Beispiel. $\mathbb{Q} \subset \mathbb{R}$. $\partial \mathbb{Q} = \mathbb{R}$.

Satz 1.21. Sei (X, d) metrischer Raum. Sei $M \subset X$. Dann gilt

- i) $M \setminus \partial M$ ist offen.
- ii) $M \cup \partial M$ ist abgeschlossen.
- iii) ∂M ist abgeschlossen.

Beweis. 1.21.i): $a \in M \setminus \partial M \implies \exists \varepsilon > 0$ s. d. $B_{\varepsilon}(a) \cap X \setminus M = \emptyset$. Für dieses gilt auch $B_{\varepsilon} \cap \partial M = \emptyset$ (denn angenommen $\exists y \in B_{\varepsilon}(a) \cap \partial M$, dann wäre (da $y \in \partial M$ und $B_{\varepsilon}(a)$ eine Umgebung von y) $B_{\varepsilon}(a) \cap (X \setminus M) \neq \emptyset \not\subset VOR$).

Also gilt $B_{\varepsilon}(a) \subset M \setminus \partial M \implies \text{Beh.}$

1.21.ii): Es gilt $\partial M = \partial(X \setminus M)$ (nach Definition), $(X \setminus M) \setminus \partial(X \setminus M)$ ist offen nach 1.21.i) \Longrightarrow

$$X \setminus ((X \setminus M) \setminus \partial(X \setminus M)) = (X \setminus (X \setminus M)) \cup \partial(X \setminus M) = M \cup \partial M$$
 Manipulation mit Mengen

ist offen.

1.21.iii):

$$\partial M = (M \cup \partial M) \setminus (M \setminus \partial M)$$

$$\Longrightarrow X \setminus \partial M = X \setminus (\underbrace{M \cup \partial M}_{(abgeschl.\ nach1.21.ii)}) \cup (\underbrace{M \setminus \partial M}_{offennach1.21.i)}). \quad \Box$$

Notation. Sei $M \subset X$.

$$M^{\circ} := M \setminus \partial M$$
 heißt das *Innere* von M .
 $\overline{M} := M \cup \partial M$ heißt der *Abschluss* von M .

Nach 1.19 können wir \overline{M} konstruieren, indem wir zu M noch alle Grenzwerte von Folgen $(x_n)_n, x_n \in M$, die in in X konvergieren, hinzunehmen.

Beispiel. $M = [a, b), \overline{M} = [a, b].$

Bemerkung (als Hausaufgabe).

$$M \subset X$$
 offen $\iff M \cap \partial M = \emptyset$.
 $M \subset X$ abgeschlossen $\iff \partial M \subset M$.

Vollständigkeit

Definition 1.22. Sei (X, d) ein metrischer Raum. Eine Folge $(y_n)_n \subset X$ heißt Cauchy-Folge, falls gilt

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \text{ s. d. } d(y_n, y_m) < \varepsilon \ \forall n, m \geqslant N.$$

Lemma 1.23. Sei (X, d) ein metrischer Raum. Eine konvergente Folge in X ist eine Cauchy-Folge.

Beweis. Sei $(y_n)_n$ konvergente Folge mit Grenzwert y (eindeutig wegen 1.14.v) und 1.6). Sei $\varepsilon > 0$.

Dann gibt es $N \in \mathbb{N}$ s. d. $d(y_m, y) < \varepsilon \quad \forall m \geqslant N$.

$$\implies d(y_n, y_m) \leqslant d(y_n, y) + d(y, y_m) < \epsilon \ \forall n, m \leqslant N.$$

Bemerkung. Nicht jede Cauchy-Folge konvergiert:

Beispiel $((\mathbb{Q}, |\cdot|))$. $y_{n+1} = \frac{1}{2}y_n + \frac{1}{y_n}, y_0 = 1.$

Check. Es gilt für $n \geqslant 1$

$$\left[\frac{1}{y_{n+1}}, y_{n+1}\right] \subset \left[\frac{1}{y_n}, y_n\right]$$
 (*)

und für $l_n \coloneqq y_n - \frac{1}{y_n}$

$$l_{n+1} \leqslant \frac{1}{4y_{n+1}} l_n^2 \leqslant \frac{1}{4} l_n^2$$

$$\implies d(y_n, y_m) = |y_n - y_m| \leqslant \left| y_n - \frac{1}{y_n} \right| = l_n \to 0.$$

$$\underset{\text{O.B.d.A. } m \geqslant n}{\underset{\text{Wg. (**)}}{\circ}}$$

$$\implies y_m \in \left[\frac{1}{y_n}, y_n \right] \text{ wg. (*)}$$

 $\mathbb{Q} \subset \mathbb{R}$ und somit $(y_n)_n \subset \mathbb{R}$. In \mathbb{R} konvergiert jede Cauchy-Folge. Nennen wir den Grenzwert $a \in \mathbb{R}$. Es gilt dann

$$\underbrace{y_{n+1}}_{\rightarrow a} = \underbrace{\frac{1}{2}y_n}_{\frac{1}{2}a} + \underbrace{\frac{1}{y_n}}_{\frac{1}{a}},$$

also $a^2 = 2$. Aber $\sqrt{2} \notin \mathbb{Q}$.

Definition 1.24. Ein metrischer Raum, in dem jede Cauchy-Folge konvergiert heißt vollständig.

Beispiele 1.25. i) $\mathbb{R}, |\cdot|$ ist vollständig (Diff I).

- ii) $(C([a,b],\mathbb{R}), d_{L^1})$ mit $d_{L^1}(f,g) = \int_a^b |f(t) g(t)| dt$ (vgl. HA Blatt 1, A1) ist *nicht* vollständig.
- iii) $(C(D,\mathbb{R}), d_{\sup}), D \subset \mathbb{R}, \text{ mit}$

$$d_{\sup} = ||f - g||_{\infty} = \sup_{t \in D} |f(t) - g(t)|,$$

ist vollständig. Den Beweis führen wir später allgemeiner.

Zunächst einige

Betrachtungen in vollständigen metrischen Räumen

Definition 1.26. Sei (X, d) metrischer Raum, $M \subset X$,

$$\operatorname{diam}(M) \coloneqq \sup_{x,y \in M} d(x,y) \text{ "Durchmesser" (englisch "diameter")}.$$

M heißt beschränkt, falls diam $(M) < \infty$.

Bemerkung. M ist beschränkt $\iff \exists R \geqslant 0 \text{ und } a \in X \text{ s. d. } M \subset B_R(a)$

Beispiel. diam([a,b)) = b-a

Satz 1.27 (Schachtelungsprinzip). Sei (X, d) ein vollständiger metrischer Raum und sei $A_0 \subset A_1 \subset A_2 \subset \cdots$. Eine Familie nicht-leerer abgeschlossener Teilmengen von X mit

$$\operatorname{diam}(A_k) \to 0 \text{ (in } \mathbb{R}) \text{ für } k \to \infty.$$

Dann gibt es genau einen Punkt $a \in X$ der in allen A_k liegt.

Beweis. Eindeutigkeit: Angenommen $\exists x \neq y \text{ mit } x \in A_k \ \forall k \text{ und } y \in A_k \ \forall k$. Dann kann diam (A_k) keine Nullfolge sein, da $d(x,y) \neq 0$.

Existenz: Wähle $x_n \in A_n$. Dann ist $(x_n)_n$ eine Cauchy-Folge, denn

$$d(x_n, x_m) \leqslant \operatorname{diam} A_N \text{ für } n, m \geqslant N$$

 $d(x_n, x_m) \leq \operatorname{diam} A_N \text{ für}$

$$\underset{\uparrow}{\Longrightarrow} x_n \to x \text{ in } X,$$
Vollständigkeit

Da $x_n \in A_k \ \ \forall \, n \geqslant k$, folgt mit 1.19: $x \in A_k \ \ \forall \, k$.

Ein sehr wichtiger Satz, der viele Anwendungen hat ist der folgende:

Satz 1.28 (Banach'scher Fixpunktsatz). Sei (X, d_X) ein vollständiger metrischer Raum. Sei $M \subset X$ eine abgeschlossene Teilmenge und $\Phi \colon M \to X$ eine Abbildung mit $\Phi(M \subset M)$ und es gebe $0 \leq L < 1$ s. d.

$$d_X(\Phi(X), \Phi(Y)) \leq Ld_X(x, y) \, \forall \, x, y \in M$$
 (" Φ ist Kontraktion").

Dann gibt es genau ein t_* s. d. $\Phi(t_*) = t_*$. Ein solches t_* heißt Fixpunkt von Φ .

 $X = \mathbb{R}, M = [0, 1], \log(2 - x^2), (WolframAlpha)$

Beispiel.

Beweis. Eindeutigkeit: Seien $\Phi(t_*) = t_*, \ \Phi(\tilde{t}_*) = \tilde{t}_*$. Dann gilt

$$d(t_*, \tilde{t_*}) = d(\Phi(t_*), \Phi(\tilde{t_*}))$$

$$\leq d(t_*, \tilde{t_*})$$

Da L > 1 ist, folgt $d(t_*, \tilde{t_*} = 0)$, also $t_* = \tilde{t_*}$.

Existenz: Wir betrachten die Folge $x_0 \in M$ beliebig, $x_n \coloneqq \Phi(x_{n-1})$ für $n \geqslant 1$.

Behauptung. $(x_n)_n$ konvergiert in M und zwar gegen de Fixpunkt.

Beweis. • $(x_n)_n$ ist Cauchy-Folge:

Iteration liefert

$$d(x_{n+1}, x_n) \leqslant L^2 d(x_{n-1}, x_{n-2}) \leqslant \dots \leqslant L^n d(x_1, x_0).$$

Zudem gilt

$$d(x_{n+k}, x_n) \leq d(x_{n+k}, x_{n+k} - 1) + d(x_{n+k-1}, x_{n+k-2})$$

$$\vdots$$

$$+ d(x_{n+1}, x_n)$$

$$\leq \underbrace{(L^{n+k-1} + L^{n+k-2} + \dots + L^n)}_{=L^n \sum_{r=0}^{k-1} L^r \leq L^n \sum_{r=0}^{\infty} L^r = \frac{L^n}{1-L}}_{\text{geom. Reihe } (L < 1)}$$

 \implies (wegen L < 1) Beh..

- Da X vollständig ist, konvergiert $(x_n)_n$. Setze $t_* = \lim_{n \to \infty} x_n$.
- Da M abgeschlossen ist, ist $t_* \in M$ nach 1.19.
- \bullet t_* ist der gesuchte Fixpunkt:

$$t_* = \lim_{n \to \infty} x_n = \lim_{n \to \infty} \Phi(x_{n-1}) = \Phi(t_*)$$
Kontraktionen sind stetig und 1.18

$$x_0 = 0, x_1 = \ln(2 - (\ln 2)^2) \approx 0, 42, x_3 \approx 0, 60, x_4 \approx 0, 49$$

Bemerkung. Kontraktionen sind stetig: Zu $\varepsilon>0$ wähle $\delta=\varepsilon/L.$

Bemerkung. Die Konvergenz ist recht schnell:

$$d(x_n, t_*) \leqslant \frac{L^n}{1 - L} d(x_1, x_0) \ (L < 1).$$

Alle Voraussetzungen sind notwendig, gilt eine nicht, so gibt es nicht unbedingt einen Fixpunkt (oder keinen eindeutigen).

