Efficient Estimation of Word Representations in Vector Space

Tomas Mikolov, Kai Chen, Greg Corrado, Jeffrey Dean

Presented by,

Anagha M B, Gokul P V, and Chandu Dadi

Introduction

What is Word representations in vector space/ Word Embeddings?

Word representation in vector space refers to the way words are represented as numerical vectors in a high-dimensional space, where similar words are closer together and dissimilar words are farther apart.

Example: "The students of the MAI 2024 batch are cool!"

The \rightarrow [0.1, 0.2, 0.3]

Students \rightarrow [0.7, 0.8, 0.5]

Of \rightarrow [0.3, 0.4, 0.2]

 $MAI \rightarrow [0.8, 0.7, 0.3]$

 $2024 \rightarrow [0.9, 0.6, 0.2]$

Batch \rightarrow [0.5, 0.3, 0.6]

Are \rightarrow [0.2, 0.5, 0.9]

Cool \rightarrow [0.8, 0.9, 0.7]

Introduction

The \rightarrow [0.1, 0.2, 0.3]

Students \rightarrow [0.7, 0.8, 0.5]

Of \rightarrow [0.3, 0.4, 0.2]

 $MAI \rightarrow [0.8, 0.7, 0.3]$

 $2024 \rightarrow [0.9, 0.6, 0.2]$

Batch \rightarrow [0.5, 0.3, 0.6]

Are \rightarrow [0.2, 0.5, 0.9]

Cool \rightarrow [0.8, 0.9, 0.7]

Introduction

Why Word representations in vector space?

Human-Computer Interaction,

Search and Information Retrieval,

Language Translation,

Sentiment analysis,

Content classification,

Generating Text,

and so more.

Background

• One-hot encoding is used as a basic method to represent words as vectors, where each word in the vocabulary is assigned a unique vector with all elements being 0 except for one position, which is 1.

The
$$\rightarrow$$
 [1, 0, 0, 0, 0, 0, 0, 0, 0] students \rightarrow [0, 1, 0, 0, 0, 0, 0, 0, 0] of \rightarrow [0, 0, 1, 0, 0, 0, 0, 0] the \rightarrow [0, 0, 0, 0, 0, 0, 0, 0] 2024 \rightarrow [0, 0, 0, 0, 0, 0, 1, 0, 0, 0] batch \rightarrow [0, 0, 0, 0, 0, 0, 0, 1, 0, 0] are \rightarrow [0, 0, 0, 0, 0, 0, 0, 1, 0] cool \rightarrow [0, 0, 0, 0, 0, 0, 0, 0, 1]

Limitation: Outputs are high dimensional vectors and sparse.

TF-IDF - **sparse** and **high-dimensional**, especially when applied to large corpora of text

Objective of the Paper

The paper introduces **Word2Vec** models (Skip-gram & CBOW) that learn efficient **word representations** from large text corpora and captures both **syntactic** and **semantic** word relationships

word relationships.

Continuous Bag-of-Words Model

- How it works: The CBOW model predicts the target word by using the surrounding context words.
- **Key Idea**: It averages the vectors of the context words and then predicts the word that is most likely to fit in the middle (ignores the word order).
- Training Complexity: Q=N×D+D×log 2(V)
 - N : Number of context words
 - D : Dimensionality of word vectors
 - V : Vocabulary size
- **Example**: Predicts "eat" from the context "I will dinner tonight."

Training of CBOW

- The context words are first passed as an input to an embedding layer (initialized with some random weights)
- The word embeddings are then passed to a lambda layer where we average out the word embeddings.
- Pass these embeddings to a dense SoftMax layer that predicts target word. Compute the loss and perform backpropagation to update the embedding layer.

Continuous Skip-gram Model

- **How it works**: The Skip-gram model does the opposite of CBOW: it uses a **central word** to predict the surrounding **context words**.
- **Key Idea**: Given a word in the sentence, it predicts which words are likely to occur around it.
- Training Complexity: Q=C×(D+D×log 2(V))
 - C : Maximum distance between words
 - D : Dimensionality of word vectors
 - V : Vocabulary size
- **Example**: Given "France", Skip-gram predicts related words like "Paris," "Europe," and "Eiffel Tower."

Training of Skip-gram Model

- Both the target and context word pairs are passed to individual embedding layers from which dense word embeddings for each of these words are obtained.
- Compute the dot product of these two embeddings using 'merge layer'.
- This dot product value is then sent to a sigmoid layer that outputs either 0 or 1.
- The output is compared with the actual label and the loss is computed followed by backpropagation with each epoch to update the embedding layer in the process

Optimization Techniques - Hierarchical SoftMax

- Problem: Full SoftMax computation is too costly for large vocabularies.
- Solution: Use a binary tree structure for words.
 - Efficient traversal: Predict probabilities along the tree path.
 - Reduces computation: From O(V) to O(log V), where V is the vocabulary

size.

- Benefit: Scalable for large datasets.
- Improves efficiency for large vocabularies.

Optimization Techniques Negative Sampling

- Problem: Computing the full SoftMax is inefficient for frequent updates.
- **Solution**: Approximate SoftMax by updating weights for:
 - Target word (positive example).
 - A few randomly selected negative examples.
- Benefit: Significantly reduces training time by focusing on a subset of words.
- Optimizes training with fewer updates.

Skipgram

shalt	not	make		а	machine
input			output		
make			shalt		
make			not		
make			а		
make			machine		

Negative Sampling

input word	output word	target
make	shalt	1
make	aaron	0
make	taco	0

Some Interesting Results

Embedding projector - visualization of high-dimensional data

Table 8: Examples of the word pair relationships, using the best word vectors from Table 4 (Skipgram model trained on 783M words with 300 dimensionality).

Relationship	Example 1	Example 2	Example 3
France - Paris	Italy: Rome	Japan: Tokyo	Florida: Tallahassee
big - bigger	small: larger	cold: colder	quick: quicker
Miami - Florida	Baltimore: Maryland	Dallas: Texas	Kona: Hawaii
Einstein - scientist	Messi: midfielder	Mozart: violinist	Picasso: painter
Sarkozy - France	Berlusconi: Italy	Merkel: Germany	Koizumi: Japan
copper - Cu	zinc: Zn	gold: Au	uranium: plutonium
Berlusconi - Silvio	Sarkozy: Nicolas	Putin: Medvedev	Obama: Barack
Microsoft - Windows	Google: Android	IBM: Linux	Apple: iPhone
Microsoft - Ballmer	Google: Yahoo	IBM: McNealy	Apple: Jobs
Japan - sushi	Germany: bratwurst	France: tapas	USA: pizza

Limitations

No Sub word Information:

- Word2Vec treats words as atomic units, failing to handle morphologically rich languages.
- Struggles with rare words and out-of-vocabulary (OOV) words.

Context Independence:

- Word2Vec generates **static embeddings**—the same word has the same vector regardless of context (e.g., "bank" in finance vs. river context).
- Lack of Global Co-occurrence Information:
 - Focuses on local context, missing **global word statistics** that can capture more nuanced relationships.

Conclusion

- Word2Vec introduces efficient methods (Skip-gram and CBOW) for learning word embeddings.
- Models can capture both syntactic and semantic relationships between words.
- Optimization techniques like **Hierarchical Softmax** and **Negative Sampling** enable scalability to large datasets.
- Word2Vec revolutionized NLP by enabling more effective word representations.
- It laid the groundwork for more advanced models like **GloVe**, **FastText**, and **contextual embeddings** (e.g., BERT).

References

- Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781. 2013 Jan 16.
- https://jalammar.github.io/illustrated-word2vec/
- https://www.analyticsvidhya.com/blog/2021/07/word2vec-for-word-embeddings-a-beginners-guide/

Thank you!