

Programmable 14+1 Channel Voltage Buffers with NVM for TFT LCD

Features

- Supply Operation Range: 6.5V to 18V
- 14+1 Channels :
 - ---14 Channel Rail-to-Rail Programmable Gamma Buffers
 - 10 bits Resolution for each Channel
 - 25mA Output Current for each Channel
 - 2 Banks Registers Using Bank_Sel to Select which Bank Data Output
 - ---1 Channel Rail-to-Rail Vcom Buffer:
 - · 7 Bits Adjustable Output
 - ±100mA Output Current
 - ±260mA Output Short-Circuit Current
 - 20V/µs Slew Rate
- 2-Wire I²C Slave Mode Interface
- Using One Control Pin Enable to Store Data into Non-Volatile Memory (NVM)
- Non-Volatile Memory (NVM) Store Setting (at Least 100 Re-Write Times)
- QFN5X5-32 Package

Applications

- **TFT-LCD Monitors**
- **LCD Televisions**

General Description

The G1632 consists of 14+1 channel buffers target toward the needs of thin film transistor liquid crystal display (TFT LCD). This device incorporates one Vcom buffer and 14 gamma buffers, and are programmed through I²C interface. It contains two register banks which can store two different sets of gamma reference values. Each buffer is capable of driving heavy capacitive loads and offering large current loading (Vcom: 100mA, Gammas: 25mA).

The G1632 is available in the QFN5X5-32 package.

Ordering Information

ORDER NUMBER	MARKING	TEMP. RANGE	PACKAGE (Green)		
G1632QA1U	1632	-40°C to 85°C	QFN5X5-32		
G1632QA1R	1632	-40°C to 85°C	QFN5X5-32		

Note: QA:QFN5X5-32
1: Bonding Code
U: Tape & reel R: Tray
Green: Lead Free / Halogen Free

Pin Configuration

Note: Recommend connecting the Thermal Pad to the Ground for excellent power dissipation.

Typical Application Circuit

 Ver: 0.4
 TEL: 886-3-5788833

 Jan 16, 2017
 http://www.gmt.com.tw

Absolute N	aximum	Ratings
------------	--------	---------

AVDD, STATIC_Hi to AGND0.3V to +20V
DVDD to DGND0.3V to +4V
DGND to AGND0.3V to +0.3V
VCOM_FB, VCOM_ADJ to AGND0.3V to +20V
BANK_SEL, A0, SCL, SDA, nWR, SET to AGND
0.3V to +4V
VCOM_OUT, OUT_(*1) to AGND0.3V to (AVDD+0.3V)
VCOM Maximum Continuous Output Current
260mA to +260mA
OUT1~OUT14 Maximum Continuous Output Current
100mA to +100mA
Thermal Resistance Junction to Ambient, (θ_{JA})
QFN5X5-3252.18C/W ^(*2)
Continuous Power Dissipation (T _A =25°C)
QFN5X5-32

Thermal Resistance Junction to Case, (θ $_{\rm JC}$)	
QFN5X5-32	.074°C/W
Storage Temperature Range65°C	to 150°C
Junction Temperature	150°C
Reflow Temperature (soldering, 10sec)	260°C
ESD (HBM)	2000V
Machine Mode (MM)	200V

Recommend Operating Range

Operating Supply Voltage Range . . $6.5V \le V_{DD} \le 18V$ Operating Temperature Range -40°C to 85°C

Electrical Characteristics

The following specifications apply for the typical application circuit unless otherwise specified.

DVDD = 3V; AVDD=16.5V, AGND=DGND= 0V; T_{amb} = 25°C; R_L =10k Ω ; C_L =10pF

PARAMETER	SYMBOL	CONDITION	MIN	TYP	MAX	UNIT		
General								
AVDD				6.5		18	V	
Power Supply	DVDD			2.3		3.6	V	
UVLO _{DVDD}	UVLO _{DVDD}					2.2	V ^(*)	
0	1	Gamma code=512,	AVDD		16	24	mA	
Supply Current	lq	V _{COM} code=64, No loading	DVDD		400	600	μA	
Thermal Shutdown	T_{SD}				150		°C	
Gamma Buffers								
Quiescent Current	I _{S(OUT_)}	Per-Channel, no loading			500		μΑ	
Outrot Outro a High	.,	No loading, AVDD=16.5V,	OUT1 to OUT7			STATIC_Hi	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
Output Swing High	V_{OH}	DAC =1023	OUT8 to OUT14			STATIC_Hi-1.5	V	
		No loading, AVDD=16.5V,	OUT1 to OUT7	1.5			,,	
Output Swing Low	V_{OL}	DAC=0	OUT8 to OUT14	0			V	
Power Supply Rejection Ratio	PSRR	AVDD=6.5V to 18V		45	70		dB	
Load Regulation		OUT=AVDD/2; I _{SINK} =I _{SOURCE}	=20mA		0.3	1.5	mV/mA	
Slew Rate	SR			8	16		V/µs	
Band width	BW			4	10		MHz	
Output Current	I _{OUT}				±25		mA	
Short-Circuit Current	I _{SC}				±100		mA	
STATIC Hi Voltage	V _{STATIC_Hi}	Ref. High Voltage Range		AVDD-4		AVDD	V	
Program to Out Delay	T_D	No loading			4	8	μs	
DROP Voltage period	T_{DROP}					10	μs	
Full-Scale Error		AVDD=16.5V		-4		+4	LSB	
Integral Nonlinearity	INL	V _{STATIC_Hi} =16V, No loading,	AVDD=16.5V	-4		+4	LSB	
Differential Nonlinearity	DNL	V _{STATIC Hi} =16V, No loading,	AVDD=16.5V	-1		+1	LSB	

^{*} Note 1: The _ is number define, ex OUT1, OUT2, we define OUT_.

^{*} Note 2: Please refer to 1in2 of 1oz PCB Layout Section.

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT
VCOM Buffers			•			
Quiescent Current	Ісом	Buffer configuration, V _{COM FB} =VAVDD/2, no load		3		mA
Outout Valta as Outing High	.,	I _{COM_OUT} = 100μA	AVDD-20	AVDD-5		mV
Output Voltage Swing, High	V _{OH}	I _{COM_OUT} = 100mA	AVDD-1.5	AVDD-1.3		V
Output Voltage Swing, Low	Vol	I _{COM_OUT} = -100μA		2	20	mV
Output voltage Swing, Low	V OL	I _{COM_OUT} = -100mA		1.5	1.8	V
Output Current	I _{OUT}	to AVDD/2		±100		mA
Short-Circuit Current	I _{sc}	to AVDD/2		±180		mA
Slew Rate	SR		20	70		V/µs
-3dB Bandwidth	F _{3dB}	R _L =10kP, C _L =10pF, buffer configuration	13	19		MHz
I ² C Control						
Logic-Input Low Input	V _{IL}	SCL, SDA			0.3*DVDD	V
Logic-Input High Input	V _{IH}	SCL, SDA	0.7*DVDD			V
SCL Clock Frequency	F _{SCL}		0		400	kHz
I ² C Clock High Level	T _{SCHi}		0.6			μs
I ² C Clock Low Level	T _{SCLo}		1.2			μs
I ² C Data Set-up Time	T _{SDS}		100			ns
I ² C Data Hold Time	T _{SDH}		0		900	ns
SDA and SCL Rise Time	T_R				1000	ns
SDA and SCL Fall Time	T_F				300	ns
SDA and SCL Input Capacitance				5		pF
Start Condition of Setup Time	T _{STS}		0.6			μs
Start Condition of Hold Time	T _{STH}	10% of SDA to 90% of SCL	0.6			μs
I ² C Input Filter Spike Suppression	T_{SP}				50	ns
Bus Free Time Between Stop to Start	T _{BUF}		4.7			μs
A0 Pull-Up Resistance	R _{A0}		80	110	140	kΩ
nWR Pull-Up Resistance	R _{nWR}		7	10	14	kΩ
Sink Current Adjustment						
SET Voltage Resolution			7			Bits
SET Differential Nonlinearity		Monotonic over-temperature	-1		+1	LSB
SET Zero-Scale Error			-1	+1	+2	LSB
SET Full-Scale Error			-4		+4	LSB
SET Current	I _{SET}				120	μA
V _{SET} /V _{AVDD} Voltage Ratio		DAC full Scale	0.045	0.050	0.055	V/V

^{* : 2.4}V @ RT = 85 degree, 2.2V @RT = 70 degree

1in² of 1oz PCB Layout Section

Pin Descriptions

PIN	NAME	I/O	FUNCTION
1	OUT1	0	Analog Output 1
2	OUT2	0	Analog Output 2
3	OUT3	0	Analog Output 3
4	OUT4	0	Analog Output 4
5	OUT5	0	Analog Output 5
6	OUT6	0	Analog Output 6
7	OUT7	0	Analog Output 7
8,31,32	AVDD	Р	Analog Power Supply
9	STATIC_Hi	I	High Reference for OUTPUT Voltage
10	A0	I	Device Address Select (A0 : Low => Address (0x74), A0: High => Address (0x75))
11,25,29	AGND	-	Analog Ground
12	BANK_SEL	ı	Internal A/B Bank Select(Lo : Bank A; Hi : Bank B)
13	DGND	-	Digital GND
14	SCL	- 1	I ² C-Compatible Clock Input
15	SDA	В	I ² C-Compatible Serial Bidirectional Data Line
16	nWR	Ι	Enable/Disable write data into Non-Volatile Memory. If nWR equal Low, it can write data into Non-Volatile Memory(Normal-High, Active-Low)
17	DVDD	Р	Digital Power Supply
18	OUT8	0	Analog Output 8
19	OUT9	0	Analog Output 9
20	OUT10	0	Analog Output 10
21	OUT11	0	Analog Output 11
22	OUT12	0	Analog Output 12
23	OUT13	0	Analog Output 13
24	OUT14	0	Analog Output 14
26	SET	I	Full-Scale Sink-Current Adjustment Input
27	VCOM_ADJ	0	Adjust Sink-Current Output. This Pin connects to the resistive voltage-divider between AVDD and GND that sets the VCOM voltage
28	VCOM_FB	I	Internal Vcom OP FB signal
30	VCOM_OUT	0	Voltage OUT for VCOM use
Thermal Pad			Thermal Pad connect to AGND

Block Diagram

Typical Application Circuit

Application Information

The G1632 provide 14 channels of programmable voltage reference and 1 channel of static voltage references and GND for gamma correction in TFT-LCD display. It contains two register banks can store two different sets of gamma reference values. Gamma values are programmed into the banks through the I^2C interface and the outputs can switch within T_D .

Output Buffers

Gamma Buffer Output Value determined by the Ref. Voltage (STATIC_Hi, GND) and the decimal value of the binary code. The Value is calculated using below Equation.

V_{OUT} = [(STATIC_Hi) / 1024*Decimal Value].

Decimal value is transfer from input binary code.

Power on Sequence

The Buffer can be powered using an analog voltage and digital voltage. The digital supply must be applied prior to the analog supply to avoid excessive current and power consumption.

Once digital supply excess UVLO, all register will be released from zero state to normal state. After power on State, the outputs are in high-impedance mode until data have been written to registers from NVM. If the DVDD power drop to UVLO than recover to DVDD excess than TDROP, the internal logic will reset. The same as reset process, the NVM data will re-download to registers, and the outputs are in high-impedance mode until data have been written to registers from NVM.

Thermal-Overload Protection

Thermal-overload protection prevents excessive power dissipation from overheating the G1632. When the junction temperature exceeds T_J = 150°C, a thermal sensor active the fault protection, which shuts down all outputs except the reference, allowing the device to cool down. It will reactivate the device when power turn on again. The protection will base on the control byte (B6). The default setting is enable (B6 = Low). If the Bit6 = high, the thermal sensor will disable. The setting value will keep until control byte setting change.

Register Banks

The IC features two register banks: Bank A and Bank B. The user can program one set of gamma values into Bank A and the other set of gamma values into Bank B. The P-Gamma can output Bank A or Bank B by H/W BANK_SEL pin. (Lo: Bank A; Hi: Bank B)

VCOM Application

The Device also provides the ability to reduce the flicker of an LCD Panel by adjustment of the VCOM voltage during production test and alignment. A 128-Step resolution is provide under digital control. The output is connected to an external voltage divider, so that the device will have the capability to reduce the voltage on the output by increasing the output sink current. The adjustment of the output is provided by the I²C interface.

 $I_{OUT} = (Setting/128)*(AVDD/(20*RSET)).$

 $V_{OUT} = (R2/(R1+R2))*AVDD*(1-(Setting/128)*(R1/(20*R_{SET}))$

RSET Resistor

The External resistor sets the full-scale sink current that determines the lowest voltage of the external voltage divide R1 and R2. The maximum I_{SET} current has to be less than 120µA. The minimum RSET resistor with AVDD equal to 10V is 4.17k Ω . Table 1 gives the calculated value of V_{OUT} for resistors values of: R_{SET} =24.9k Ω , R1=200 k Ω , R2=243k Ω and AVDD=10V.

Table 1. Calculated VCOM Output Voltages

SETTING VALUE	VOUT
0	5.485
10	5.313
20	5.141
30	4.969
40	4.797
50	4.625
60	4.453
70	4.281
80	4.109
90	3.936
100	3.764
110	3.592
120	3.420
127	3.300

nWR Setting

The nWR pin control the non-volatile memory can write by I²C interface. The nWR change to Low level define can write data into non-volatile memory by I²C interface. If nWR is High level and I²C command is write mode. The data will prohibit to write data into non-volatile memory.

I²C Communication Timing

G1632 guarantees the maximum delay of I²C blanking time. It can be referred when ACK pooling method is not adopted. The period of delay time is shown as the below figure.

Constraint 1: EEPROM start up blanking time.

It is the time from DVDD power up cross UVLO level to the end of loading

EEPROM data to DAC.

Any attempt from the I²C master talking to G1632 is not acknowledged.

Constraint 2: Read EEPROM blanking time.

It is the time from a valid stop condition of a read or writing to register sequence to

the end of the internal operating cycle.

Any attempt from the I²C master talking to G1632 is not acknowledged.

Constraint 3: Program EEPROM blanking time.

It is the time from a valid stop condition of a programming command to internal EEPROM of G1632 programming finish.

Any attempt from the I²C master talking to G1632 is not acknowledged.

I²C Communication Timing

I²C Operation

The Data transfers follow the below timing diagram. After start condition, the first byte contains the device address and write/read bit. This address is a 7-bit device address (hex 74h, 75h using A0 to select) is allowed for this G1632.

1.Write Mode

If the read/write bit =low @ I²C protocol , the device enter the write mode, and the Host can write data into register part, including CONTROL BYTE, VCOM register, DAC_Reg. if the RESET, WR to NVM bit of Control Byte is "1", G1632 returns "ACK" at "slave address" and "index address", and returns "NACK" at "data byte".

■ Burst Mode

For the burst mode in the write transfer, a master device sends data to program all the output buffers. The input data bytes (DATA 1 (MSB) and (DATA 1 (LSB)) to the first channel (OUT1) is the third byte following the control byte. The second channel (OUT2) is programmed by the fifth and sixth byte (DATA 2 (MSB) and (DATA 2 (LSB)), and so on. Each byte is followed by an acknowledge bit.

■ Single Mode

The device also support single mode transfer, a master device send data to program define output buffer. Each of the input data bytes (DATA N (MSB) and (DATA N (LSB)) to the N channel (OUT N) is followed by an acknowledge bit.

Write Protocol Define:

OUT_EN=0x02 WR2NVM=0x08 RESET=0x10

1. Load NVM to DAC_Reg (Reset)

								RESET)
S	Slave Address	W	Α	Index Address 0	Α	Control Byte	Α	Р

2. Write DAC_Reg to NVM

If (Control Byte & RESET)

Return (ErrMsg):

else

Control Byte 0x08									
S	Slave Address	W	Α	Index Address 0	Α	Control Byte	Α	Ρ	(the output may not be interrupted)

3. set OUT_EN bit "1"

							0x2 (OI	UT_EN)
S	Slave Address	W	Α	Index Address 0	Α	Control Byte	Α	Р

4. Single Write to DVCOM

_			_				_	_
S	Slave Address	I \//	Ι Δ	Index Address 1	Ι Δ	DVCOM	Ι Δ	l P
	Old VC Madi Coo	V V	/ \	IIIuu Muulussi	/ \	DVOON	/ \	

5. Single Write to DAC_Reg (Single Mode)

If ((Control Byte & WR2NVM) \parallel (Control Byte & RESET))

return (ErrMsg);

else

												0x00
S	Slave Addre	ess	W	Α	Ind	ex Ad	ldress 0	Α	Control	Byte	Α	Р
S	Slave Address	W	A I	ndex Add	Iress X	Α	GX (MSB)	Α	GX (LSB)	Α	Р	(X>=2)
											0x02(0	DUT_EN)
S	Slave Addre	ess	W	Α	Ind	ex Ad	ldress 0	Α	Control	Byte	Α	Р

6. Burst Write to DAC_Reg (Burst Mode)

If ((Control Byte & WR2NVM) || (Control Byte & RESET))

return (ErrMsg);

else

															0x00
S	Slave A	Addre	SS	W	Α	Index A	ddress 0		Α		Con	trol Byte		Α	Р
								•				•			<u> </u>
S	Slave Address	W	A I	Index Address X	Α	G1 (MSB)	A G1 (LSB)	Α	GN	(MSB)	Α	GN (LSB)	Α	Р	(X>=2)
													0x	:02(OI	JT_EN)
S	Slave A	Addre	SS	W	Α	Index A	ddress 0		Α		Con	trol Byte		Α	Р

2. Read Mode

If the read/write bit = high, the device enter the read mode, and the Host can read data from registers. When "read" from G1632 at "POWER-ON RESET" or "WR to NVM", G1632 returns "ACK" at "slave address" and "index address" and puts current data to "data byte". The acknowledge bit of "data byte" is determined by the Host.

Read/Write mode

- Can't read/write DAC_Reg from Host until RESET, WR to NVM bit=0
- clear OUT_EN bit before write
- enable OUT_EN bit after finish writing action

OUT_EN=0x02 WR2NVM=0x08 RESET=0x10

1. Single Read Control Byte or DVCOM Register

0	Clave Address	۱۸/	^	Index Address 0/1	^	0	Slave Address	В	^	DATA	NA	D
	Slave Address	l vv	I A	Index Address ()/1	А		Slave Address		I A	DATA	INA	

2. Single Read DAC_Reg

If (Control Byte & RESET) Return (ErrMsg): else

3. Burst Read DAC_Reg

If (Control Byte & RESET) Return (ErrMsg): else

S		W	Α	Index	Α	s	Slave	R	Α	Index i	Α	Index i+1	Α	Index i+n-1	Α	Index i+n	NA	Р
	Address			Address N			Address			DATA		DATA		DATA		DATA		

4. Force Stop DAC Output

If ((Control Byte & WR2NVM) \parallel (Control Byte & RESET)) return (ErrMsg); else

							UXUU
S	Slave Address	W	Α	Index Address 0	Α	Control Byte	Α

3. Control Byte define

Control Byte:

B7	В6	B5	B4	В3	B2	B1	В0
Reserved	HOT_EN	Reserved	RESET	WR to NVM	Reserved	OUT_EN	Reserved

B0: Reserved, always set to 0

B1: OUT EN:

1: DAC_OUT output enable (from DAC_Reg, Bank_A or Bank_B by Bank_Select(H/W))

0:Disable DAC OUT output (change DAC OUT I/O status to HI-Z)

B2: Reserved, always set to 0

B3: WR to NVM:

1: Write DAC_Reg (both Bank_A & Bank_B) and VCOM_Reg data into NVM

B4: RESET:

1: Download data from NVM to DAC Reg

B5: Reserved, always set to 0

B6: HOT_EN:

1: Thermal Sensor disable

0: Thermal Sensor enable

B7: Reserved, always set to 0

■ Reset Bit

The device also support Reset mode. When the control bit (Reset bit) is set to "1", the device will set the OUT_EN bit to "0" and then the DAC output is at Hi-Z status. At the same time, NVM data will be loaded to DAC_Reg and VCOM register. OUT_EN will stay "0" in the loading process. When data loading finished, G1632 internal H/W will make OUT_EN to "1" so that the analog DAC output is valid from Hi-Z state. Then the DAC will output the correct value from NVM. This bit will remain "1" until the download and dump process finish, and then be set to "0".

■ WR to NVM Bit

If the control bit enable, the device will store the DAC Value to NVM. This bit will remain "1" until the writing to NVM process finish, and then be set to "0". This bit can't be enabled to "1" until RESET bit = "0".

■ OUT_EN Bit

If the control bit is set to "1", the analog DAC output will be valid from Hi-Z state, and the output data is from DAC_Reg, the output bank is selected by H/W pin BANK_SEL. This bit is always high during DAC output period. The Bit only controls Gamma Part, and it can't be enabled until RESET, WR to NVM bit = "0".

4. Action Flow State Machine Chart

5. Register Index Mapping Table

Device Address	0x74h	1,0x75h								
Index Addr (1 byte)					Data				Default	Note
Hex	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	Delault	
00	DVR[6]	HOT_EN	DVR[4]	RESET DVR[3]	WR to NUM DVR[2]	DVR[1]	OUT_EN DVR[0]			CTRL Byte Digital VCOM
02	-	-	DVIQI	DVICO		A1[9:4]	DVIN[0]			Digital VOCIVI
03		DAT	A1[3:0]		-	-	DAT	A2[9:8]	Bank A	Gamma 1/Gamma 2
04		ı		DA	TA2[7:0]					
05 06	-	- DAT	A3[3:0]		DAT	A3[9:4]	DAT	A4[9:8]	Pank A	Gamma 3/Gamma 4
06		DAT	AS[S.U]	DA ⁻	TA4[7:0]		DATA	A4[9.0]	Bank A	Gamma 3/Gamma 4
08	-	-				A5[9:4]				
09		DAT	A5[3:0]		-	-	DAT	A6[9:8]	Bank A	Gamma 5/Gamma 6
0A		ı		DA	TA6[7:0]	A 750. 41				
0B 0C	-	- DΔT	A7[3:0]		DAI	A7[9:4] -	DAT	A8[9:8]	Bank A	Gamma 7/Gamma 8
0D		D/ (1)	11 [0.0]	DA	TA8[7:0]	<u> </u>	D/ (1)	· to[o.o]	Barneye	Gamma 77 Gamma G
0E	-	-				A9[9:4]				
0F		DAT	A9[3:0]			-	DATA	10[9:8]	Bank A	Gamma 9/Gamma 10
10		ı		DAT	A10[7:0]	A 11[O: 4]				
11 12	-	DATA	.11[3:0]		DATA -	A11[9:4] -	DATA	12[9:8]	Bank A	Gamma 11/Gamma 12
13		DATE	(11[0.0]	DAT	A12[7:0]		DATE	(12[3.0]	Bank A	Gamma 17/Gamma 12
14	-	-			DAT	A13[9:4]				
15		DATA	13[3:0]		-	-	DATA	14[9:8]	Bank A	Gamma 13/Gamma 14
16 17		ı		DAT	A14[7:0]	A 15(0:41				
18	-	DATA	15[3:0]		DATA -	A15[9:4]	DATA	16[9:8]	Bank A	Reserved
19		B/(I/	(10[0.0]	DAT	A16[7:0]	<u> </u>	Ditti	110[0.0]	Barneye	1,000,1700
1A	-	-			DAT	A17[9:4]				
1B		DATA	17[3:0]		-	-	DATA	18[9:8]	Bank A	Reserved
1C 1D		ı		DAT	A18[7:0]	A 10[0:4]				
1E	-	DATA	19[3:0]		DAT	A19[9:4] _	DATA	20[9:8]	Bank A	Reserved
1F		2,		DAT	A20[7:0]	I.	57117		Barneye	1.0000.700
20	-	-			DAT	A21[9:4]				
21		DATA	21[3:0]	5.17	-	-	DATA	22[9:8]	Bank A	Reserved
22				DAI	A22[7:0]					Reserved
24				D\	/R[7:0]					Reserved
25	-	-				A1[9:4]				
26		DAT	A1[3:0]		-	-	DAT	A2[9:8]	Bank B	Gamma 1/Gamma 2
27		ı		DA	TA2[7:0]	A 210. 41				
28 29	-	- DAT	A3[3:0]		DAI	A3[9:4]	DAT	A4[9:8]	Bank B	Gamma 3/Gamma 4
2A		2,	10[0:0]	DA	TA4[7:0]	I.	27117	11[0.0]	202	Saa 5, Saa .
2B	-	-			DAT	A5[9:4]				
2C		DAT	A5[3:0]		-	-	DAT	A6[9:8]	Bank B	Gamma 5/Gamma 6
2D 2E		I		DA	TA6[7:0]	A7[9:4]				
2F	-	DAT	A7[3:0]		- DAI	A7[9.4]	DAT	A8[9:8]	Bank B	Gamma 7/Gamma 8
30		2, 11	[=.0]	DA	TA8[7:0]		2.117	[5.5]		
31	-	-			DAT	A9[9:4]				
32		DAT	A9[3:0]		-		DATA	10[9:8]	Bank B	Gamma 9/Gamma 10
33 34	-	_		DAT	A10[7:0]	A11[9:4]				
35	_		11[3:0]		- DAT	-	DATA	12[9:8]	Bank B	Gamma 11/Gamma 12
36				DAT	A12[7:0]					
37	-	-				A13[9:4]				
38		DATA	13[3:0]	DAT	- - - - - -	<u> </u>	DATA	14[9:8]	Bank B	Gamma 13/Gamma 14
39 3A	-	-		DAT	A14[7:0] DAT	A15[9:4]				
· · · · · · · · · · · · · · · · · · ·		DATA	15[3:0]		-	-	DATA	16[9:8]	Bank B	Reserved
3B				DAT	A16[7:0]					
3C					DAT	A17[9:4]				
3C 3D	-	-	1770		1			4000 00		
3C 3D 3E	-	- DATA	17[3:0]	DAT	-	-	DATA	18[9:8]	Bank B	Reserved
3C 3D 3E 3F	-	- DATA	A17[3:0]	DAT	- A18[7:0]	- A19[9:41	DATA	A18[9:8]	Bank B	Reserved
3C 3D 3E	-	-	A17[3:0] A19[3:0]	DAT	- A18[7:0]	A19[9:4]		A18[9:8] A20[9:8]	Bank B Bank B	Reserved Reserved
3C 3D 3E 3F 40 41		-				-				
3C 3D 3E 3F 40 41 42 43	-	- DATA	19[3:0]		- FA18[7:0] DATA - FA20[7:0] DATA	A19[9:4] - A21[9:4]	DATA	A20[9:8]	Bank B	Reserved
3C 3D 3E 3F 40 41		- DATA		DAT		-	DATA			

Package Information

QFN5X5-32 Package

Compleal		IMENSION IN MI	И	DI	IMENSION IN INC	Н
Symbol	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.
Α	0.80	0.90	1.00	0.0315	0.0354	0.0394
A1	0.00		0.05	0.0000		0.0020
A2		0.20 REF	-		0.0079 REF	
D	4.95	5.00	5.05	0.1949	0.1969	0.1988
E	4.95	5.00	5.05	0.1949	0.1969	0.1988
D1	3.05	3.20	3.30	0.1201	0.1260	0.1300
E1	3.05	3.20	3.30	0.1201	0.1260	0.1300
b	0.18	0.25	0.30	0.0071	0.0098	0.0118
е		0.50 BSC			0.0197 BSC	
L	0.30	0.40	0.45	0.0118	0.0157	0.0177

Taping Specification

G1632QA1U

PACKAGE	Q'TY/REEL
QFN5X5-32	3,000 ea

G1632QA1R

PACKAGE	Q'TY/TRAY
QFN5X5-32	490 ea

GMT Inc. does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and GMT Inc. reserves the right at any time without notice to change said circuitry and specifications.