Kinematics Moving Along an Arbitrary Path

Kinematics Moving Along an Arbitrary Path

For a differential navigation robot to follow an arbitrary path, linear speed v and angular speed ω have to be assigned and controlled for all points in the curve at all times.

Kinematics Example - Parabola

or example, we want the robot to move ong a parabola *y=x*² ow do we calculate ν and ω ? e can make the robot move along the rabola at different speeds v, e.g., the robot ay travel at v=1, v=2, etc. ow does ω vary according to the different lues of *v*? e present the concept of a curvature efined by variable k and show that $\omega = k \cdot v$

Kinematics Curvature and Radius of a Curve

ırvature

• The curvature (k) of a curve (C) at a given point (P) is a measurement of how much the curve is "bending" at that point, i.e., it is the rate at which the direction (angle) of the tangent changes per distance unit.

dius

 The radius (r) of a curve (C) at a given point (P) is the radius (r) of the circle that would "best approximate" the curve at the given point.

Kinematics Circle Example and Relationship between k and r

cle

- The circle that best approximates the curvature at any given point is the circle itself. Thus, the radius of the curve at a given point is the radius (r) of the circle itself.
- Since the circle is perfectly symmetrical, the rate at which the direction changes is the same for every point in the circle.
- Since the direction changes 2π radians over a distance of $2\pi r$, we have:

$$k = 2\pi/2\pi r = 1/r$$

Here we can see that curvature (k) and radius (r)
are equivalent inverse measurements.

Kinematics Straight Line Example

traight Line

For a straight line, given a circle of finite radius, we can always find another circle of bigger radius that better approximates a straight line at a given point *P*. The direction of movement along the curve does not change, thus based on the curvature definition:

$$k = 0$$

The circle that "best approximates" a straight line has an infinite radius given by:

$$r = \infty$$

Thus, we have the relationship k = 1/r

P

Kinematics Semi-formal definition of curvature and radius

iven a curve C, let v and ω and be le linear and angular speeds at ordinate P=(x, y), respectively. Thus we define:

$$r = v/\omega$$

 $k = \omega/v$

Kinematics Observations of the semi-formal definition

Note that in the previous definition k=1/r and $\omega=kv$.

The definition of curvature is thus given by:

- ω the rate of change of the angle per unit of time.
- *v* the rate of change in distance per unit of time.
- $k=\omega/v$ the rate of change of the angle per unit of distance.

We can move along a curve with different pairs (v, ω) , where this ratio is a constant that depends only on the path shape.

Kinematics

Calculating k for any shape of the form f(x,y)=c

•
$$k = -\frac{sign(\dot{x}\frac{\partial f}{\partial y})}{||\nabla f||^3}\nabla f^{\perp} \cdot Hf(\nabla f^{\perp})^T$$

• In the equation above:

• $sign(\dot{x}) = \begin{cases} -1 & \text{if the motion tangent is changing, e. g. towards the negative } x - axis \\ 0 & \text{if the motion tangent is not changing, e. g. in the negative or positive } x - axis \\ +1 & \text{if themotion tangent is changing, e. g. in the positive } x - axis \end{cases}$

• $||[a \quad b]|| = \sqrt{a^2 + b^2}$ is the norm

•
$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$
 is the gradient of f , $f_x = \frac{\partial f}{\partial x}$, $f_y = \frac{\partial f}{\partial y}$

• $\nabla f^{\perp} = \left[-\frac{\partial f}{\partial y}, \frac{\partial f}{\partial x} \right]$ (note that \perp means perpendicular)

•
$$Hf = \begin{bmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x \partial y} \\ \frac{\partial^2 f}{\partial y \partial x} & \frac{\partial^2 f}{\partial y^2} \end{bmatrix}$$
 is the Hessian matrix of f

Kinematics Example curvature of the parabola

•
$$y = x^2$$

$$f(x,y) = y - x^2$$

•
$$\nabla f = [-2x \ 1]$$

•
$$\nabla f^{\perp} = \begin{bmatrix} -1 & -2x \end{bmatrix}$$

•
$$Hf = \begin{bmatrix} -2 & 0 \\ 0 & 0 \end{bmatrix}$$

•
$$\nabla f^{\perp} \operatorname{Hf} \nabla f^{\perp T} = \begin{bmatrix} -1 & -2x \end{bmatrix} \begin{bmatrix} -2 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} -1 \\ -2x \end{bmatrix} = -2$$

$$\bullet \ \left| |\nabla f| \right| = \sqrt{1 + 4x^2}$$

•
$$k = -\frac{\operatorname{sign}(\dot{x}f_y)}{||\nabla f||^3} \nabla f^{\perp} \cdot Hf(\nabla f^{\perp})^T = \frac{\operatorname{sign}(\dot{x})}{\sqrt{1+4x^2}} \cdot 2$$

Kinematics Example curvature of the parabola

$$\frac{\operatorname{sign}(\dot{x})}{\sqrt{1+4x^2}} \cdot 2$$

 $\sqrt{2}$, suppose we are in the parabola at position $(\sqrt{2}, 2)$.

Q: If we want to travel at 3 inches per second towards the positive x axis direction, what value should we assign to ω ?

- Answer:
 - Since we are travelling towards positive x axis we have $sg(\dot{x}) = 1$

•
$$\omega = k \cdot v = \frac{1}{\sqrt{1 + 4 \cdot \sqrt{2}^2}} \cdot 2 \cdot 3 = \frac{2}{9}$$

Q: Assuming a real robot with differential navigation, how do we know what is the maximum linear speed at which the robot can move at point $(\sqrt{2}, 2)$?

