Coursework

IMPERIAL COLLEGE LONDON

DEPARTMENT OF COMPUTING

477 - Computational Optimisation

Author:

Jiahao Lin (CID: 00837321)

Date: November 6, 2016

1 Part 1

1.1 1

1) To prove is $\log \sum_{k=1}^{10} exp(B_{jk})$ is convex, we define:

$$f(B_j) = \log \sum_{k=1}^{10} exp(B_{jk})$$
 (1)

$$f(x) = \log \sum_{k=1}^{10} exp(x_k)$$
 (2)

First we need to compute the Hessian of f(x):

$$\nabla f(x) = \frac{1}{1^{\top} Z} \times z \tag{3}$$

$$\nabla^2 f(x) = \frac{1}{1^\top Z} \times diag(Z) - \frac{Z^\top Z}{(1^\top Z)^2}$$
 (4)

where
$$Z = \sum_{k=1}^{10} exp(x_k)$$
 (5)

For convexity we need to prove the Hessian is positive semi-definite, we need to prove:

$$\nabla^2 f(x) \ge 0 \tag{6}$$

$$v^{\top} \nabla^2 f(x) v >= 0 \tag{7}$$

$$v^{\top} \left(\frac{1}{1^{\top} Z} \times diag(Z) - \frac{Z^{\top} Z}{\left(1^{\top} Z\right)^2} \right) v \ge 0$$
 (8)

$$\frac{\left(\sum_{k=1}^{10} Z_k V_k^2\right) \sum_{k=1}^{10} Z_k - \sum_{k=1}^{10} (Z_k v_k)^2}{(1^\top Z)^2} >= 0$$
 (9)

According to Cauchy-Schwartz inequality:

$$\sum_{k=1}^{10} (Z_k v_k)^2 \le \sum_{k=1}^{10} Z_k \times \sum_{k=1}^{10} (Z_k V_k^2)$$
 (10)

There for the Hessian is positive semi-definite holds, the Log-Sum-Exp function is convex.

2) Denote affine mapping on β_k as $g(\beta_k)$:

$$g(\beta_k) = x_i^{\top} \beta_k \tag{11}$$

And denote Log-Sum-Exp function as $f(x_k)$:

$$f(x_k) = \log \sum_{k=1}^{10} exp(x_k)$$
 (12)

1 PART 1 1.1 1

Now we know that $f(x_k)$ is convex, and we want to prove that $f \circ g$ is convex as well, from the definition of convexity, we need to prove:

$$f \circ g(\alpha x + (1 - \alpha)y) \le \alpha f \circ g(x) + (1 - \alpha)f \circ g(y) \tag{13}$$

for any
$$x$$
, y and $\alpha \in [0,1]$ (14)

Since we know:

$$g(\alpha x + (1 - \alpha)y) = \alpha g(x) + (1 - \alpha)g(y)$$
(15)

We can prove that:

$$f \circ g(\alpha x + (1 - \alpha)y) = f(g(\alpha x + (1 - \alpha)y)) \tag{16}$$

$$= f(\alpha g(x) + (1 - \alpha)g(y)) \tag{17}$$

$$\leq \alpha f \circ g(x) + (1 - \alpha)f \circ g(y) \tag{18}$$

Now we know that $\log \sum_{k=1}^{10} exp(x_i^{\top} \beta_k)$ is convex as well.

3) Define function $f(\beta_v)$:

$$f(\beta_{v_i}) = -x_i^{\top} \beta_{v_i+1} \tag{19}$$

We can show that:

$$f(\alpha \beta_{x_i+1} + (1-\alpha)\beta_{y_i+1}) = -x_i^{\top}(\alpha \beta_{x_i+1} + (1-\alpha)\beta_{y_i} + 1)$$
 (20)

$$= -\alpha x_i^{\top} \beta_{x_i+1} - (1-\alpha) x_i^{\top} \beta_{v_i+1}$$
 (21)

$$= \alpha f(\beta_{x_i+1}) + (1 - \alpha) f(\beta_{y_i+1})$$
 (22)

Therefore $f(\beta_y)$ is convex.

4) We can define a function for $\ell 1$ Regularisation $\|\beta_k\|_1$:

$$\|\beta_k\|_1 = f(\beta_k) = \sum_{i=1}^N |\beta_{ki}|$$
 (23)

To prove the convexity of $f(\beta_k)$, we can show that:

$$f(\alpha \beta_k + (1 - \alpha)\beta_j) = \sum_{i=1}^{N} |\alpha \beta_k + (1 - \alpha)\beta_j|$$
 (24)

$$= \alpha \sum_{i=1}^{N} |\beta_{ki}| + (1 - \alpha) \sum_{i=1}^{N} |\beta_{ji}|$$
 (25)

$$= \alpha f(\beta_k) + (1 - \alpha)f(\beta_i)$$
 (26)

Therefore $f(\beta_k)$ is convex.

5)