# Modelos Lineales para Clasificación Modelos para Multinomial Response

Juan Zamora O.



### Modelos con respuesta categórica

En muchos problemas de regresión, la respuesta está restringida a un conjunto fijo de valores posibles o *categorías de respuesta* 

Por ejemplo, la elección de usuarios sobre un conjunto de marcas o los distintos efectos secundarios de un tratamiento médico

Debemos distinguir entre dos condiciones sobre estas categorías:

- 1. Categoría de respuesta conformada por etiquetas sin ordenamiento inherente
- 2. Categorias tienen un ordenamiento. Espaciamiento entre categorías no es interpretable

#### Distribución Multinomial

Representa la generalización de la distribución Binomial

La variable aleatoria multinomial puede tener más de 2 resultados posibles

La variable Y puede tomar cualquier de los valores  $1,2,\ldots,k$  con probabilidades  $\pi_1,\pi_2,\ldots,\pi_k$ . Es decir,  $P(Y=r)=\pi_r$ 

### Distribución Multinomial

Consideremos una muestra de m respuestas. Luego, los componentes del vector  $\mathbf{y}^T=(y_1,\ldots,y_{k-1})$  entregan los conteos en cada categoría

Este vector respuesta sigue una distribución multinomial con parámetros m y  $\pi^T = (\pi_1, \pi_2, \dots, \pi_k)$ 

Este vector tiene función de probabilidad

$$f(y_1,\ldots,y_k) = \frac{m!}{y_1!\ldots y_{k-1}! (m-y_1\ldots -y_{k-1})!} \pi_1^{y_1}\ldots \pi_q^{y_{k-1}} \cdot (1-\pi_1-\ldots-\pi_{k-1})^{m-y_1\ldots-y_{k-1}}$$

## Multinomial Logit

Usado para asociar una variable respuesta con categorias no ordenadas a otras variables explicativas

El modelo logit binario tiene la forma

$$log\left(\frac{P(Y=1|x)}{P(Y=2|x)}\right) = x^T \beta$$

El modelo logit multinomial tiene la misma forma, pero considera k-1 logits

$$\log \left( \frac{P(Y=r|x)}{P(Y=k|x)} \right) = x^T \beta_r , r = 1, \dots, (k-1)$$

k es la categoría de referencia y todas las probabilidades son comparadas con esta última

$$P(Y = k|x) = \frac{1}{1 + \prod_{s=1}^{k-1} \exp(x^T \beta_s)}$$

У

$$P(Y = r | \mathbf{x}) = \frac{\exp(\mathbf{x}^T \beta_r)}{1 + \prod_{s=1}^{k-1} \exp(\mathbf{x}^T \beta_s)}, \ r = 1, \dots, (k-1)$$

## Interpretación de los parámetros

Analicemos las preferencias de partidos políticos por género

|        |      | Partido |     |     |    |  |
|--------|------|---------|-----|-----|----|--|
| Género | Edad | DC      | PS  | UDI | RD |  |
| Н      | 1    | 114     | 224 | 53  | 10 |  |
|        | 2    | 134     | 226 | 42  | 9  |  |
|        | 3    | 114     | 174 | 23  | 8  |  |
|        | 4    | 339     | 414 | 13  | 30 |  |
| М      | 1    | 42      | 161 | 44  | 5  |  |
|        | 2    | 88      | 171 | 60  | 10 |  |
|        | 3    | 90      | 168 | 31  | 8  |  |
|        | 4    | 413     | 375 | 14  | 23 |  |



Estudiemos el efecto del género  $\{1:M,0:H\}$  sobre la preferencia política a través de un modelo logit

$$\log\left(\frac{P(Y=r|x)}{P(Y=1|x)}\right) = \beta_{0r} + x_G\beta_r$$

donde  $x_G=1$  cuando responde una mujer y 0 cuando lo hace un hombre. La categoría DC se asocia con el valor 1 y es usada como referencia  $(\beta_{01}=0)$ 

Luego, los parámetros se interpretan a partir de

$$\begin{split} \beta_{0r} &= \log \left( \frac{P(Y = r | x_G = 0)}{P(Y = 1 | x_G = 0)} \right) \\ \beta_r &= \log \left( \frac{P(Y = r | x_G = 1) / P(Y = 1 | x_G = 1)}{P(Y = r | x_G = 0) / P(Y = 1 | x_G = 0)} \right) \end{split}$$

$$\log \left(\frac{P(Y=2|x)}{P(Y=1|x)}\right) = \beta_{02} + x_G \beta_2$$

$$\log \left(\frac{P(Y=3|x)}{P(Y=1|x)}\right) = \beta_{03} + x_G \beta_3$$

$$\log \left(\frac{P(Y=4|x)}{P(Y=1|x)}\right) = \beta_{04} + x_G \beta_4$$

Cada vector  $\beta_r$  depende de cada valor r de la respuesta, debido a que la comparación Y = r con Y = k es específica para cara r.

 $\exp(\beta_{0r})$  representa los Odds de preferir el partido r en lugar del partido de referencia (DC) por parte de hombres.

 $\exp(\beta_r)$  representa la razón que compara los Odds de las preferencias de mujeres con las de los hombres

|         | $eta_{0r}$ | $\exp(\beta_{0r})$ | $\beta_{r}$ | $\exp(\beta_r)$ |
|---------|------------|--------------------|-------------|-----------------|
| DC (1)  | 0          | 1                  | 0           | 1               |
| PS (2)  | 0.392      | 1.480              | -0.068      | 0.934           |
| UDI (3) | -1.677     | 0.187              | 0.230       | 1.259           |
| RD (4)  | -2.509     | 0.081              | -0.112      | 0.894           |

Table: Parámetros estimados para la preferencia de partido en base a género

Para hombres, las Odds de las preferencias de la UDI en lugar de la DC es 0.187. Odds de mujeres vs hombres es 1.259



### Medición de la calidad del ajuste

La idea es medir la discrepancia entre las observaciones y el ajuste

Para esto se compara los vectores de observaciones  $p_i = y_i/n$  y el vector ajustado  $\pi_i$ , donde ambos vectores tienen dimensión k-1.

Deviance

$$D = -2\sum_{r=1}^{k} I(Y_i = r) \log(\widehat{\pi}_{ir})$$

Pearson

$$\chi_P^2 = \sum_{i=1}^n (p_i - \widehat{\pi}_i)^T \Sigma_i^{-1}(\widehat{\beta}) (p_i - \widehat{\pi}_i)$$