K. J. SOMAIYA COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS ENGINEERING ELECTRONIC CIRCUITS AC CIRCUITS

Numerical 1: A series RLC circuit containing a resistance of 20Ω , an inductance of 0.15H and a capacitor of $75\mu F$ are connected in series across a 120V, 60Hz supply.

Calculate:

- a) The current drawn by the circuit
- b) V_R , V_L and V_C
- c) Power factor
- d) Draw the voltage phasor diagram

Figure 1: Circuit 1

Solution:

Frequency f = 60Hz, angular frequency: ω

$$\omega = 2\pi f = 2\pi (60) = 120\pi \ rad/s$$

Finding Inductive reactance X_L :

$$X_L = \omega L_1 = 120\pi \times 0.15 = 18\pi$$

$$X_L = 56.5487\Omega$$

Finding Capacitive reactance for X_C :

$$X_C = \frac{1}{\omega C_1} = \frac{1}{120\pi \times 75 \times 10^{-6}} = \frac{1000}{9\pi} \Omega$$

$$X_C = 35.3678\Omega$$

Net reactance, X:

$$X = X_L - X_C$$

$$X = 56.5487 - 35.3678$$

$$\therefore X = 21.1809\Omega$$

To find the phase angle ϕ :

$$\phi = \tan^{-1} \left(\frac{X}{R_1} \right) = \tan^{-1} \left(\frac{21.1809}{20} \right)$$
$$\phi = 46.6426^{\circ}$$

To find total impedance, Z:

$$|Z| = \sqrt{R_1^2 + (X)^2} = \sqrt{25^2 + (21.1809)^2}$$

$$|Z| = 29.1313\Omega$$

$$Z = 29.1313 \angle \phi$$

$$Z = 29.1313 \angle 46.6426^{\circ}\Omega$$

a) Total current drawn by the circuit I,

$$I = \frac{V_{in}}{Z} = \frac{120}{29.1313 \angle 46.6426^{\circ}}$$

$$I = 4.1193 \angle -46.6426^{\circ} A$$

b) V_R , V_L and V_C ,

$$V_R = I \times R_1 = (4.1193 \angle - 46.6426^\circ) \times 20$$

$$V_R = 82.3856 \angle -46.643^{\circ} V$$

$$V_L = I \times X_L = (4.1193 \angle -46.6426^{\circ}) \times (56.5487 \angle 90^{\circ})$$

$$V_L = 232.924 \angle 43.574^{\circ}V$$

$$V_C = I \times X_C = (4.1193 \angle - 46.6426^{\circ}) \times (35.3678 \angle - 90^{\circ})$$

$$V_C = 145.6906 \angle -136.643^{\circ}V$$

- c) Power factor = $\cos(\phi) = \cos(46.6426^{\circ})$
- \therefore Power factor = 0.6865 lagging

d) Voltage Phasor diagram:

Figure 2: Voltage Phasor diagram

SIMULATED RESULTS:

The following circuit has been simulated in LTspice and the graph obtained is as follows:

Figure 3: Circuit Schematic and Simulated Results

Quantity	Calculated Value	Simulated Value
I	4.1193A	4.1192A
V_R	82.3856V	82.3838V
V_L	232.924	232.934
V_C	145.6906	145.686
ϕ	46.6426°	46.6426°
Power Factor	0.6865	0.6865

Table 1: Comparison of calculated and simulated results

Numerical 2: In the R-L circuit given in Figure 4, $R = 5\Omega$, L = 0.1H and a 60Hz AC voltage $V = 220 \angle 60^{\circ}$, find:

- a) Current through the circuit
- b) Power factor

Figure 4: Circuit 2

Solution:

$$V_{rms} = \frac{220}{\sqrt{2}} = 155.5635V$$

Frequency f = 60Hz, angular frequency: ω

$$\omega = 2\pi f = 2\pi (60) = 120\pi \ rad/s$$

Finding Inductive reactance X_L :

$$X_L = \omega L_1 = 120\pi \times 0.1 = 12\pi$$

$$X_L = 37.699\Omega$$

To find the phase angle ϕ :

$$\phi = \tan^{-1} \left(\frac{X_L}{R_1} \right) = \tan^{-1} \left(\frac{37.699}{5} \right)$$

$$\phi = 82.445^{\circ}$$

To find total impedance, Z:

$$|Z| = \sqrt{R_1^2 + (X_L)^2} = \sqrt{5^2 + (37.699)^2}$$

$$|Z| = 38.029\Omega$$

$$Z = 38.029 \angle \phi$$

$$Z=38.029\angle 82.445^{\circ}\Omega$$

Finding RMS current I_{rms} ,

$$I_{rms} = \frac{V_{rms}}{Z} = \frac{220\angle 60^{\circ}}{38.029\angle 82.445^{\circ}}$$
 $I_{rms} = 5.7851\angle -22.445^{\circ}A$

a) Current through the circuit I,

$$I = \frac{I_{rms}}{\sqrt{2}}$$

 $I = 4.0907 \angle -22.445^{\circ} A$

- b) Power factor = $\cos(\phi) = \cos(82.445^{\circ})$
- \therefore Power factor = 0.1315 lagging

SIMULATED RESULTS:

The following circuit has been simulated in LTspice and the graph obtained is as follows:

Figure 5: Circuit Schematic and Simulated Results

Verifying the Calculated Values with Simulated Values:

Quantity	Calculated Value	Simulated Value	
I	4.0907A	4.09061A	
Power Factor	0.1315	0.1315	

Table 2: Comparison of calculated and simulated results

Numerical 3: A voltage $V = 120 \ sin 314t$ is applied to a circuit consisting of a 25Ω resistor and an $60\mu F$ capacitor in series. Determine:

- a) An expression for the value of the current flowing at any instant
- b) V_R and V_C
- c) Power factor

Figure 6: Circuit 3

Solution:

Angular frequency: ω

$$\omega = 314 rad/s$$

Finding Capacitive reactance, X_C :

$$X_C = \frac{1}{\omega C_1} = \frac{1}{314 \times 60 \times 10^{-6}} = 53.079\Omega$$

 $X_C = 53.079\Omega$

To find the phase angle ϕ :

$$\phi = \tan^{-1} \left(\frac{-X_C}{R_1} \right) = \tan^{-1} \left(\frac{-53.079}{25} \right)$$
$$\phi = -64.7797^{\circ}$$

To find total impedance, Z:

$$|Z| = \sqrt{R_1^2 + (X_C)^2} = \sqrt{25^2 + (53.079)^2}$$

$$\therefore |Z| = 58.6718\Omega$$

$$Z = 58.6718 \angle \phi$$

$$Z = 58.6718 \angle -64.7797^{\circ}\Omega$$

a) Current through the circuit I,

$$I = \frac{V}{Z} = \frac{120}{58.6718 \angle - 64.7797^{\circ}}$$

$$I = 2.045 \angle 64.7797^{\circ} A$$

b) Voltage across resistor, V_R :

$$V_R = I \times R_1 = (2.045 \angle 64.7797^{\circ}) \times 25$$

$$V_R = 51.125 \angle 64.7797^{\circ}V$$

Voltage across Capacitor, V_C

$$V_C = I \times X_C = (2.045 \angle 64.7797^{\circ}) \times (53.079 \angle -90^{\circ})$$

$$V_C = 108.546 \angle - 25.22^{\circ}V$$

- c) Power factor = $\cos(\phi) = \cos(-64.7797^{\circ})$
- \therefore Power factor = 0.42609 leading

SIMULATED RESULTS:

The following circuit has been simulated in LTspice and the graph obtained is as follows:

Figure 7: Circuit Schematic and Simulated Results

Quantity	Calculated Value	Simulated Value
I	2.045A	2.046A
V_R	51.125V	51.15V
V_C	108.546V	108.551V
Power Factor	0.42609	0.42609

Table 3: Comparison of calculated and simulated results

Numerical 4: The Circuit given in Figure 8 consists of a resistance of 5Ω , an inductance of 14mH and a capacitor of $20\mu F$ are connected in parallel across a 110V, 50Hz supply. Calculate:

- a) Individual currents drawn by each element
- b) Total current drawn from the supply
- c) Overall power factor of the circuit
- d) Draw the phasor diagram

Figure 8: Circuit 4

Solution:

Frequency f = 50Hz, angular frequency: ω

$$\omega = 2\pi f = 2\pi (50) = 100\pi \ rad/s$$

Finding Inductive reactance X_L :

$$X_L = \omega L = 100\pi \times 14 \times 10^{-3} = 1.4\pi$$

$$X_L = 4.3982\Omega$$

Finding Capacitive reactance for X_C :

$$X_C = \frac{1}{\omega C} = \frac{1}{100\pi \times 20 \times 10^{-6}} = \frac{500}{\pi} \Omega$$

$$X_C = 159.1545\Omega$$

a) Individual currents drawn by each element:

Current through resistor, I_R :

$$I_R = \frac{V}{R} = \frac{110}{5}$$

$$I_R = 22A$$

Current through Inductor, I_L :

$$I_L = \frac{V}{X_L} = \frac{110}{4.3982j}$$

$$I_L = 25.0101 \angle - 90^{\circ} A$$

Current through Capacitor, I_C :

$$I_C = \frac{V}{X_C} = \frac{110}{-159.1545j}$$

$$I_C = 0.6911 \angle 90^{\circ} A$$

b) Total current drawn from the supply, I_{V_1} :

$$I_{V_1} = I_R + I_C + I_L$$

$$I_{V_1} = 22 + 25.0101 \angle -90^{\circ} + 0.6911 \angle 90^{\circ}$$

$$I_{V_1} = 32.7934 \angle - 47.866^{\circ} A$$

c) Overall power factor of the circuit:

Power factor of complete circuit = $\cos \phi$ where,

 ϕ = phase difference between I_{V_1} and V_1

$$\phi = -47.866^{\circ}$$

$$\therefore \cos \phi = \cos -47.866^{\circ}$$

$$\cos \phi = 0.6709$$

Since $X_C > X_L$, power factor is leading

Hence, overall power factor = p.f. = 0.6709 leading

d) Phasor diagram

Figure 9: Phasor diagram

SIMULATED RESULTS:

The following circuit has been simulated in LTspice and the readings obtained are as follows:

Figure 10: Circuit Schematic and Simulated Results

Comparison of theoretical and simulated values:

Quantity	Calculated Value	Simulated Value
I_R	22∠0°A	22∠0°A
I_L	$25.01\angle - 90^{\circ}A$	$25.01\angle - 89.987^{\circ}A$
I_C	0.6911∠90° <i>A</i>	0.6911∠90°A
I_{V_1}	$32.7934\angle - 47.866^{\circ}A$	$32.7973\angle - 47.859^{\circ}A$
ϕ	47.866°	47.859°
Power Factor	0.6709	0.6709

Table 4: Comparison of calculated and simulated results

Numerical 5: For the circuit given in Figure 11, find the current through all the branches I_1 , I_2 and I_3 and the voltage across all the branches if $R_1 = 6\Omega$, $L_1 = j4\Omega$, $R_2 = 20\Omega$, $L_2 = j8\Omega$, $R_3 = 9\Omega$, $C_1 = -j6\Omega$, $V_1 = 100V$ and f = 50Hz.

Figure 11: Circuit 5

Solution:

Frequency f = 50Hz, angular frequency: ω

$$\omega = 2\pi f = 2\pi (50) = 100\pi \ rad/s$$

Impedance of branch 1, $Z_1 = 6 + j4\Omega$

Impedance of branch 2, $Z_2 = 20 + j8\Omega$

Impedance of branch 3, $Z_3 = 9 - j6\Omega$

Combined impedance of branch 2 and 3 after parallel combination, Z_4 :

$$Z_4 = Z_2 || Z_3$$

$$Z_4 = \frac{Z_2 \times Z_3}{Z_2 + Z_3}$$

$$Z_4 = \frac{(20 + j8) \times (9 - j6)}{29 + j2}$$

$$Z_4 = 7.7112 - j2.1869\Omega$$

Total impedance of the circuit, Z:

$$Z = Z_1 + Z_4$$

 $Z = 13.7112 + j1.813\Omega$
 $Z = 13.83 \angle 7.532^{\circ}\Omega$

Total current through the circuit i.e. current through branch 1, I_1 :

$$I_1 = \frac{V_1}{Z}$$

$$I_1 = \frac{100}{13.83 \angle 7.532^{\circ}}$$

$$I_1 = 7.23065 \angle -7.532^{\circ}A$$

Current through branch 2, I_2 :

From current division rule:

$$\begin{split} I_2 &= \frac{Z_3}{Z_2 + Z_3} \times I_1 \\ I_2 &= \frac{9 - j6}{20 + j8 + 9 - j6} \times (7.23065 \angle -7.532^\circ) \\ I_2 &= 2.6906 \angle -45.167^\circ A \end{split}$$

Current through branch 3, I_3 :

From current division rule:

$$I_3 = I_1 - I_2$$

 $I_3 = (7.23065 \angle -7.532^\circ) - (2.6906 \angle -45.167^\circ)$
 $I_3 = 5.3581 \angle 10.324^\circ A$

Voltage across first branch, V_{12} :

From voltage division rule:

$$V_{12} = I_1 \times Z_1$$

$$V_{12} = (7.23065 \angle -7.532^{\circ}) \times (6 + j4)$$

$$V_{12} = (7.23065 \angle -7.532^{\circ}) \times (7.21 \angle 27^{\circ})$$

$$V_{12} = 52.141 \angle 26.16^{\circ}V$$

Voltage across second and third branch, V_{23} :

$$V_{23} = V_1 - V_{12}$$

 $V_{23} = (100) - (52.141 \angle 26.16^{\circ})$
 $V_{23} = 57.953 \angle -23.34^{\circ}V$

SIMULATED RESULTS:

The following circuit has been simulated in LTspice and the readings obtained are as follows:

Figure 12: Circuit Schematic

frequency:	50	Hz	
V(1):	mag:	100 phase:	0°
V(n002):	mag:	57.2782 phase:	5.69673°
V(2):	mag:	57.9502 phase:	-23.366°
V(n001):	mag:	21.5213 phase:	44.8264°
V(n003):	mag:	32.145 phase:	-79.6759°
I(C1):	mag:	5.3575 phase:	10.3241°
I(L2):	mag:	2.69016 phase:	-45.1665°
I(L1):	mag:	7.22982 phase:	-7.53132°
I(R3):	mag:	5.3575 phase:	10.3241°
I(R2):	mag:	2.69016 phase:	-45.1665°
I(R1):	mag:	7.22982 phase:	-7.53132°
I(V1):	mag:	7.22982 phase:	172.469°

Figure 13: Simulated Results

Quantity	Calculated Value	Simulated Value
I_1	$7.23065\angle - 7.532^{\circ}A$	$7.22982\angle - 7.531^{\circ}A$
I_2	$2.6906\angle - 45.167^{\circ}A$	$2.69016\angle - 45.166^{\circ}A$
I_3	$5.3581\angle 10.324^{\circ}A$	$5.3575\angle 10.324^{\circ}A$
V_{12}	$52.141\angle 26.16^{\circ}V$	$52.1409\angle 26.15^{\circ}V$
V_{23}	$57.953\angle - 23.34^{\circ}V$	$57.9502\angle - 23.36^{\circ}V$
φ	7.532°	7.531°

Table 5: Comparison of calculated and simulated results

Numerical 6: A 50Hz sinusoidal voltage $V = 100 \sin \omega t$ is applied to a series R-L circuit. The values of the resistance and the inductance are 22Ω and 0.0116Hrespectively.

Determine the following:

- a) Calculate the peak voltage across resistor and inductor and also find the peak value of source current in LTspice
- b) Plot input source voltage $V_S(t)$ and input source current $I_S(t)$ in LTspice
- c) Measure the phase delay/difference between $V_S(t)$ Vs $I_S(t)$ in time and degrees
- d) Plot input source voltage $V_S(t)$ and voltage across resistor $V_R(t)$ in LTspice
- e) Measure the phase delay/difference between $V_S(t)$ vs $V_R(t)$ in time and degrees
- f) Plot input source voltage $V_S(t)$ and voltage across inductor $V_L(t)$ in LTspice
- g) Measure the phase delay/difference between $V_S(t)$ vs $V_L(t)$ in time and degrees
- h) Calculate the power factor of the circuit.

Figure 14: Circuit 6

Solution:

Frequency f = 50Hz, angular frequency: ω

$$\omega = 2\pi f = 2\pi (50) = 100\pi \ rad/s$$

Finding Inductive reactance X_L :

$$X_L = \omega L_1 = 100\pi \times 0.0116 = 1.16\pi$$

 $X_L = 3.6442\Omega$

To find the phase angle ϕ :

$$\phi = \tan^{-1}\left(\frac{X_L}{R_1}\right) = \tan^{-1}\left(\frac{3.6442}{22}\right)$$

 $\phi = 9.4054^{\circ}$

To find total impedance, Z:

$$|Z| = \sqrt{R_1^2 + (X_L)^2} = \sqrt{22^2 + (3.6442)^2}$$

$$\therefore |Z| = 22.2998\Omega$$

$$Z=22.2998 \angle \phi$$

$$Z=22.2998\angle 9.4054^{\circ}\Omega$$

Total source current in the circuit I,

$$I = \frac{V_S}{Z} = \frac{100}{22.2998 \angle 9.4054^{\circ}}$$

$$I = 4.4843 \angle - 9.4054^{\circ} A$$

Voltage across resistor, V_R :

$$V_R = I \times R_1 = (4.4843 \angle - 9.4054^{\circ}) \times 22$$

$$V_R = 98.6556 \angle - 9.4054^{\circ}V$$

Voltage across inductor, V_L :

$$V_L = I \times X_L = (4.4843 \angle - 9.4054^{\circ}) \times (3.6442 \angle 90^{\circ})$$

$$V_L = 16.3417 \angle 80.59^{\circ}V$$

a) Peak values of V_R , V_L and I:

Peak voltage across resistor = $(V_R)_{max} = 98.6556V$

Peak voltage across inductor = $(V_L)_{max} = 16.3417V$

Peak value of source current = $(I)_{max} = 4.4843A$

b) Plot of input source voltage $V_S(t)$ and input source current $I_S(t)$ in LTspice

Figure 15: $V_S(t)$ and $I_S(t)$

c) Phase difference between $V_S(t)$ and $I_S(t)$ in time and degrees:

$$\Delta\phi_1 = 9.4054^{\circ}$$

$$\Delta t_1 = \frac{\Delta\phi_1}{f \times 360}$$

$$\Delta t_1 = \frac{9.4054}{50 \times 360}$$

$$\Delta t_1 = 0.5225ms$$

-Cursor 1	V(a)		
Horz:	4.9830389ms	Vert:	99.9966V
Cursor 2			
	I(R1)		
Horz:	5.5060071ms	Vert:	4.4838215A
Diff (Cursor2 - Cursor1)			
Horz:	522.9682µs	Vert:	-95.512779
Freq:	1.9121622KHz	Slope:	-182636

Figure 16: Phase difference from LTSpice

d) Plot of input source voltage $V_S(t)$ vs voltage across resistor $V_R(t)$ in LTspice

Figure 17: $V_S(t)$ and $V_R(t)$

e) Phase difference between $V_S(t)$ and $V_R(t)$ in time and degrees:

$$\Delta\phi_2 = 9.4054^{\circ}$$

$$\Delta t_2 = \frac{\Delta\phi_1}{f \times 360}$$

$$\Delta t_2 = \frac{9.4054}{50 \times 360}$$

$$\Delta t_2 = 0.5225ms$$

Curso	r1			
Horz:	4.9988419ms	Vert:	99.998V	
Curso	2			
	V(a)-V(b)		
Horz:	5.5233353ms	Vert:	98.651207V	
Diff (C	Diff (Cursor2 - Cursor1)			
Horz:	524.49334µs	Vert:	-1.3467922V	
Freq:	1.9066019KHz	Slope:	-2567.8	

Figure 18: Phase difference from LTSpice $\,$

f) Plot of input source voltage $V_S(t)$ vs voltage across inductor $V_L(t)$ in LTspice

Figure 19: $V_S(t)$ and $V_L(t)$

g) Phase difference between $V_S(t)$ and $V_L(t)$ in time and degrees:

$$\Delta\phi_3 = 80.59^{\circ}$$

$$\Delta t_3 = \frac{\Delta\phi_1}{f \times 360}$$

$$\Delta t_3 = \frac{80.59}{50 \times 360}$$

$$\Delta t_3 = 4.477ms$$

Cursor 1	V(b)		
Horz:	20.465517ms	Vert:	16.337973V
Cursor 2			
	V(a)		
Horz:	25.017241ms	Vert:	99.997794V
Diff (Cursor2 - Cursor1)			
Horz:	4.5517241ms	Vert	83.659821V
Freq:	219.69697Hz	Slope:	18379.8

Figure 20: Phase difference from LTSpice

- h) Power factor = $\cos(\phi) = \cos(9.4054^{\circ})$
- \therefore Power factor = 0.9866 lagging

Quantity	Calculated Value	Simulated Value
$(V_R)_{max}$	98.6556V	98.651V
$(V_L)_{max}$	16.3417V	16.3379V
$(I)_{max}$	4.4843A	4.4838A
$\Delta\phi_1$	9.4054°	9.4134°
Δt_1	0.5225ms	0.5229 ms
$\Delta \phi_2$	9.4054°	9.441°
Δt_2	0.5225ms	0.5245ms
$\Delta\phi_3$	80.59°	80.58°
Δt_3	4.477ms	4.5517ms
Power Factor	0.9866	0.9865

Table 6: Comparison of calculated and simulated results

Numerical 7: A pure resistance of 150Ω is in series with a pure capacitance of $220\mu F$. The series combination is connected across 120V, 50Hz supply. Determine the following:

- a) Calculate the peak voltage across resistor and capacitor, also find the peak value of source current in LTspice
- b) Plot input source voltage $V_S(t)$ and input source current $I_S(t)$ in LTspice
- c) Measure the phase delay/difference between $V_S(t)$ and $I_S(t)$ in time and degrees
- d) Plot input source voltage $V_S(t)$ and voltage across resistor $V_R(t)$ in LTspice
- e) Measure the phase delay/difference between $V_S(t)$ and $V_R(t)$ in time and degrees
- f) Plot input source voltage $V_S(t)$ and voltage across capacitor $V_C(t)$ in LTspice
- g) Measure the phase delay/difference between $V_S(t)$ and $V_C(t)$ in time and degrees
- h) Calculate the power factor of the circuit.

Figure 21: Circuit 7

Solution:

$$V_{max} = V_{rms} \times \sqrt{2}$$
$$V_{max} = 120 \times \sqrt{2} = 169.706V$$

Frequency f = 50Hz, angular frequency: ω

$$\omega = 2\pi f = 2\pi (50) = 100\pi rad/s$$

Finding Capacitive reactance X_C :

$$X_C = \frac{1}{\omega C_1} = \frac{1}{100\pi \times 220 \times 10^{-6}}$$

$$X_C = 14.469\Omega$$

To find the phase angle ϕ :

$$\phi = \tan^{-1} \left(\frac{-X_C}{R_1} \right) = \tan^{-1} \left(\frac{-14.469}{150} \right)$$
$$\phi = -5.5096^{\circ}$$

To find total impedance, Z:

$$|Z| = \sqrt{R_1^2 + (X_C)^2} = \sqrt{150^2 + (14.469)^2}$$

$$|Z| = 150.696\Omega$$

$$Z=150.696\angle\phi$$

$$Z=150.696\angle-5.5096^\circ\Omega$$

Finding RMS current I_{rms} ,

$$I_{rms} = \frac{V_{rms}}{Z} = \frac{120}{150.696 \angle -5.5096^{\circ}}$$

$$I_{rms} = 0.7963 \angle 5.5096^{\circ} A$$

Source current, I:

$$I = I_{rms} \times \sqrt{2}$$

$$I = 0.7963 \angle 5.5096^{\circ} \times \sqrt{2}$$

$$I = 1.1261 \angle 5.5096^{\circ} A$$

Maximum voltage across resistor, V_R :

$$V_R = I \times R_1 = (1.1261 \angle 5.5096^\circ) \times 150$$

$$V_R = 168.9218 \angle 5.5096^{\circ} V$$

Voltage across capacitor, V_C :

$$V_C = I \times X_C = (1.1261 \angle 5.5096^{\circ}) \times (14.469 \angle -90^{\circ})$$

$$V_C = 16.294 \angle - 84.49^{\circ}V$$

a) Peak values of V_R , V_C and I:

Peak voltage across resistor = $(V_R)_{max} = 168.9218V$

Peak voltage across capacitor = $(V_C)_{max} = 16.294V$

Peak value of source current = $(I)_{max} = 1.1261A$

b) Plot of input source voltage $V_S(t)$ and input source current $I_S(t)$ in LTspice

Figure 22: $V_S(t)$ and $I_S(t)$

c) Phase difference between $V_S(t)$ and $I_S(t)$ in time and degrees:

$$\Delta\phi_1 = 5.5096^{\circ}$$

$$\Delta t_1 = \frac{\Delta\phi_1}{f \times 360}$$

$$\Delta t_1 = \frac{5.5096}{50 \times 360}$$

$$\Delta t_1 = 0.3061ms$$

Cursor 1	I(R1)		
Horz:	4.6992933ms	Vert:	1.0748128A
Cursor 2			
	V(1)		
Horz:	5.0024735ms	Vert:	169.69991V
Diff (Cursor2 - Cursor1)			
Horz:	303.18021µs	Vert:	168.6251
Freq:	3.2983683KHz	Slope:	556188

Figure 23: Phase difference from LTSpice

d) Plot of input source voltage $V_S(t)$ vs voltage across resistor $V_R(t)$ in LTspice

Figure 24: $V_S(t)$ and $V_R(t)$

e) Phase difference between $V_S(t)$ and $V_R(t)$ in time and degrees:

$$\Delta\phi_2 = 5.5096^{\circ}$$

$$\Delta t_2 = \frac{\Delta\phi_1}{f \times 360}$$

$$\Delta t_2 = \frac{5.5096}{50 \times 360}$$

$$\Delta t_2 = 0.3061ms$$

Cursor 1	V(1)-V	(2)		
Horz:	4.7241379ms	Vert:	161.22668V	
Cursor 2	Cursor 2 V(1)			
Horz:	5.0229885ms	Vert:	169.69571V	
Diff (Cursor2 - Cursor1)				
Horz:	298.85057µs	Vert:	8.4690314V	
Freq:	3.3461538KHz	Slope:	28338.7	

Figure 25: Phase difference from LTSpice

f) Plot of input source voltage $V_S(t)$ vs voltage across inductor $V_C(t)$ in LTspice

Figure 26: $V_S(t)$ and $V_C(t)$

g) Phase difference between $V_S(t)$ and $V_C(t)$ in time and degrees:

$$\Delta\phi_3 = 84.49^{\circ}$$

$$\Delta t_3 = \frac{\Delta\phi_1}{f \times 360}$$

$$\Delta t_3 = \frac{84.49}{50 \times 360}$$

$$\Delta t_3 = 4.694ms$$

Cursor 1	V(1)				
Horz:	24.988506ms	Vert:	169.69343V		
Cursor 2					
V(2)					
Horz:	29.632184ms	Vert:	19.893143V		
Diff (Cursor2 - Cursor1)					
Horz:	4.6436782ms	Vert:	-149.80028V		
Freq:	215.34653Hz	Slope:	-32259		

Figure 27: Phase difference from LTSpice $\,$

- h) Power factor = $\cos(\phi) = \cos(5.5096^{\circ})$
- \therefore Power factor = 0.9954 leading

Quantity	Calculated Value	Simulated Value
$(V_R)_{max}$	168.922V	161.227V
$(V_C)_{max}$	16.294V	19.89V
$(I)_{max}$	1.1261A	1.0748A
$\Delta\phi_1$	5.5096°	5.4576°
Δt_1	0.3061ms	0.3032ms
$\Delta\phi_2$	5.5096°	5.380°
Δt_2	0.3061ms	0.2989ms
$\Delta\phi_3$	84.49°	83.59°
Δt_3	4.694ms	4.644ms
Power Factor	0.9954	0.9955

Table 7: Comparison of calculated and simulated results

Numerical 8: A series resonance network consisting of a resistor of 24Ω , a capacitor of $1.8\mu F$ and an inductor of 24mH is connected across a sinusoidal supply voltage which has a constant output of AC 9V at all frequencies. Calculate:

- a) Resonant frequency
- b) Current at resonance
- c) The voltage across the inductor and capacitor at resonance
- d) The quality factor and the bandwidth of the circuit

Plot the resonance curve, the current at resonance, the voltage across the inductor and capacitor at resonance in LTspice.

Figure 28: Circuit 8

Solution:

Resonant frequency f_r :

$$f_r = \frac{1}{2\pi\sqrt{L_1C_1}}$$

$$f_r = \frac{1}{2\pi\sqrt{24 \times 10^{-3} \times 1.8 \times 10^{-6}}}$$

$$f_r = 765.735Hz$$

a) Angular frequency at resonance, ω_r :

$$\omega_r = 2\pi f_r$$

$$\omega_r = 2\pi \times 765.735$$

$$\omega_r = 4811.25 rad/s$$

At resonance, $X_L = X_C$ \therefore impedance, $Z_r = R_1$ $Z_r = 24\Omega$ Since, $X_C = X_L$ at resonance:

$$X_L = \omega L$$

$$X_L = 4811.25 \times 24 \times 10^{-3}$$

$$X_L = 115.47\Omega$$

$$X_C = X_L = 115.47\Omega$$

b) Current at resonance, I_r :

$$I_r = \frac{V}{Z_r}$$

$$I_r = \frac{9}{24}$$

$$I_r = 0.375A$$

c) Voltage across inductor, V_L and capacitor, V_C :

$$V_L = I \times X_L$$

$$V_L = 0.375 \times 115.47 \angle 90^{\circ}$$

$$V_L=43.301\angle 90^{\circ}V$$

$$V_C = 43.301 \angle -90^{\circ}V$$

d) Quality factor of the circuit, Q

$$Q = \frac{X_L}{R_1}$$

$$Q = \frac{X_L}{24}$$

$$Q = 4.811$$

Bandwidth of the circuit, BW

$$BW = \frac{f_r}{Q}$$

$$BW = \frac{765.735}{4.811}$$

$$BW = 159.16Hz$$

SIMULATED RESULTS:

To obtain the resonance curve, the following circuit has been simulated in LTspice and the graph obtained is as follows:

.ac dec 100 250 1.5k

Figure 29: Circuit Schematic

Figure 30: Resonance curve

To obtain the current, voltage across inductor and capacitor at resonance, the following circuit has been simulated in LTspice and the graph obtained is as follows:

Figure 31: Circuit Schematic

Figure 32: Current at resonance

Figure 33: V_L and V_C at resonance

Quantity	Calculated Value	Simulated Value
f_r	765.735Hz	764.0438Hz
I_r	0.375∠0°A	0.370∠0°A
V_L	43.301∠90°V	42.9∠90°V
V_C	$43.301\angle - 90^{\circ}V$	$42.89\angle - 90^{\circ}V$
Q	4.811	4.811
BW	159.16Hz	158.81Hz

Table 8: Comparison of calculated and simulated results