Санкт-Петербургский политехнический университет Петра Великого

Физико-механический иститут

Кафедра «Прикладная математика»

Отчёт по лабораторной работе №2 по дисциплине «Компьютерные сети»

Выполнил студент: Мишутин Дмитрий Валерьевич группа: 5040102/20201

Проверил: к.ф.-м.н., доцент Баженов Александр Николаевич

Санкт-Петербург 2024 г.

Содержание

1	Пос	тановка задачи	2
2	Teo	рия	2
3	Pea	лизация	2
4	Рез	ультаты	3
5	Вы	воды	8
6	Лиз	ература	9
7	При	ложения	9
C	пис	сок иллюстраций	
	1	Сеть со звездной топологией	3
	2	Поврежденная сеть со звездной топологией	4
	3	Сеть с кольцевой топологией	5
	4	Поврежденная сеть с кольцевой топологией	6
	5	Сеть с линейной топологией	7
	6	Поврежденная сеть с линейной топологией	8
C	пис	сок таблиц	
	1	Список путей в сети со звездной топологией	3
	2	Список путей в поврежденнной сети со звездной топологией	4
	3	Список путей в сети с кольцевой топологией	5
	4	Список путей в поврежденнной сети с кольцевой топологией	6
	5	Список путей в сети с линейной топологией	7
	6	Список путей в поврежденнной сети с линейной топологией	8

1 Постановка задачи

Требуется реализовать протокол маршрутизации Open Shortest Path First (OSPF). Рассмотреть работу протокола для линейной, кольцевой и звездной топологий.

Необходимо выяснить зависимость времени работы и количество посланных сообщений от размера плавающего окна и вероятности потери сообщения для каждого протокола и сравнить их друг с другом.

2 Теория

OSPF — протокол динамической маршрутизации, в основе работы которого лежит представление множества сетей, маршрутизаторов и каналов в виде ориентированного графа.

Описание работы протокола:

- 1. после включения маршрутизатора протокол ищет непосредственно подключенных соседей и устанавливает с ними связь;
- 2. Строится карта сети: между соседями происходит обмен информацией о подключенных и доступных сетях. Данная карта одинакова на всех маршрутизаторах;
- 3. Запускается алгоритм SPF (Shortest Path First), который рассчитывает оптимальный маршрут к каждой сети. Процесс представляет собой поиск кратчайшего пути в графе, в вершинах которого доступные сети, а ребра пути между ними.

3 Реализация

Из языка Python 3.12.2 были использованы следующие модули:

- "numpy" генерация множества чисел;
- "matplotlib.pyplot" построение и отображение графиков;
- "math" экземпляр числа, равного бесконечности.

4 Результаты

Количество узлов во всех топологиях равно 5. Рассмотриваем линейную топологию с радиусом соединения 5, кольцевую топологию с радиусом соединения 6, звездную топологию с радиусом соединения 5.

Для сети с линейной топологией имитируем падение одного из некрайних узлов и перенумируем оставшиеся узлы сети. Для сети с кольцевой топологией Имитируем падение случайного узла и перенумируем оставшиеся узлы сети. Для сети со звездной топологией имитируем падение центрального узла.

Рис. 1: Сеть со звездной топологией

Таблица 1: Список путей в сети со звездной топологией

	0	1	2	3	4
0	0	0-4-1	0-4-2	0-4-3	0-4
1	1-4-0	1	1-4-2	1-4-3	1-4
2	2-4-0	2-4-1	2	2-4-3	2-4
3	3-4-0	3-4-1	3-4-2	3	3-4
4	4-0	4-1	4-2	4-3	4

Рис. 2: Поврежденная сеть со звездной топологией

Таблица 2: Список путей в поврежденнной сети со звездной топологией

	0	1	2	3
0	0	-	-	_
1	-	1	-	-
2	-	-	2	-
3	1	-	_	3

Рис. 3: Сеть с кольцевой топологией

Таблица 3: Список путей в сети с кольцевой топологией

	0	1	2	3	4
0	0	0-1	0-1-2	0-4-3	0-4
1	1-0	1	1-2	1-2-3	1-0-4
2	2-1-0	2-1	2	2-3	2-3-4
3	3-4-0	3-2-1	3-2	3	3-4
4	4-0	4-0-1	4-3-2	4-3	4

Рис. 4: Поврежденная сеть с кольцевой топологией

Таблица 4: Список путей в поврежденнной сети с кольцевой топологией

	0	1	2	3
0	0	0-1	0-3-2	0-3
1	1-0	1	1-0-3-2	1-0-3
2	2-3-0	2-3-0-1	2	2-3
3	3-0	3-0-1	3-2	3

Рис. 5: Сеть с линейной топологией

Таблица 5: Список путей в сети с линейной топологией

	0	1	2	3	4
0	0	0-1	0-1-2	0-1-2-3	0-1-2-3-4
1	1-0	1	1-2	1-2-3	1-2-3-4
2	2-1-0	2-1	2	2-3	2-3-4
3	3-2-1-0	3-2-1	3-2	3	3-4
4	4-3-2-1-0	4-3-2-1	4-3-2	4-3	4

Рис. 6: Поврежденная сеть с линейной топологией

Таблица 6: Список путей в поврежденнной сети с линейной топологией

	0	1	2	3
0	0	0-1	ı	-
1	1-0	1	-	-
2	ı	-	2	2-3
3	-	-	3-2	3

5 Выводы

Из полученных результатов можно заметить следующее. Сеть с линейной топологией наиболее чувствительна к потерям узлов сети, потеря одного узла ведёт к появлению недостижимых узлов. Сеть с кольцевидной топологией менее чувствительна к потерям узлов, при потере одного узла она переходит в сеть с линейной топологией. Сеть со звёздной топологией наименее чувствительна к потере узлов до тех пор, пока это не центральный узел. В случае потери центрального узла любая пара других узлов становится недостижима.

6 Литература

- Баженов А.Н. «Интервальный анализ. Основы теории и учебные примеры: учебное пособие»;
- Баженов А.Н. «Естественнонаучные и технические применения интервального анализа: учебное пособие»;
- Баженов А.Н. Репозиторий "ComputerNetworks" на GitHub;

7 Приложения

Исходники лабораторной работы выложены на GitHub.