$$\mathbf{z_{t+1}^{i}} = \mathbf{z_{t+1}} + \eta_{t+1}^{i}, \quad \eta_{t+1}^{i} = N(0, R_{t+1})$$

 \mathbf{z}_{t+1}^{i} - vector of observations

N() - Normal distribution based around (mean, std)

 R_{t+1} - error covariance matrix of $\mathbf{z_{t+1}^i}$

 $\theta_{\mathbf{t}+\mathbf{1}}^{\mathbf{i}-}$ - vector of parameters

 $\mathbf{x_{t+1}^{i}}$ - vector of states

h() - masking function

 $\hat{\mathbf{y}}_{\mathbf{t+1}}^{\mathbf{i}}$ - vector of predicted states $(\mathbf{x}_{\mathbf{t+1}}^{\mathbf{i}}$ masked by h())

 $\Sigma_{t+1}^{\theta,\hat{y}}$ - cross covariance matrix of θ_{t+1}^{i-} and $\mathbf{\hat{y}_{t+1}^{i}}$

 $\Sigma_{t+1}^{\hat{y},\hat{y}}$ - error covariance matrix of $\hat{\mathbf{y}}_{t+1}^{\mathbf{i}}$

t - timestep

i - ensemble number