Syntax natürlicher Sprachen

8: Grammatische Merkmale und Merkmalstrukturen

A. Wisiorek

Centrum für Informations- und Sprachverarbeitung, Ludwig-Maximilians-Universität München

12.12.2023

1. Motivation für Feature-Modellierung

- Motivation f
 ür Feature-Modellierung
- Grammatische Merkmale
 - Morphosyntaktische Flexionskategorien des Deutschen
 - Kodierung syntaktischer Funktionen
 - Flexionskategorien
 - Kasus und Agreement
- Merkmalstrukturen
 - Grundlagen
 - Constraintregeln und Unifikation
 - Unifikation und Subsumption
- 4 Typhierarchie und getypte Merkmalstrukturen
 - Subsumption und Unifikation
 - Bedingungen

Motivation für Feature-based Grammars

Übergenerierung durch CFGs

aufgrund Nichtberücksichtigung morphosyntakischer Constraints

3 zentrale morphosyntakische Constraints:

- Masusrektion
- 2 Kongruenz (Agreement)
- 3 Subkategorisierung (Art und Anzahl von Argumenten)

Feature-based grammars (FCFGs)

- Modellierung von grammatikalischen Merkmalen über Merkmalstrukturen
- morphosyntakische Constraintregeln als Anweisung auf Durchführung von Unifikation der Merkmalstrukturen
 - ightarrow Unifikation: Vereinbarkeit von Merkmalstrukturen

Gründe für Übergenerierung von CFGs (auch X-Bar)

Nichtberücksichtigung von Morphologie

• Rektion (Kasus):

*der Mann sieht des Kindes

Kongruenz (Agreement in Merkmalen):

*das Kinder

Nichtberücksichtigung von Subkategorisierung

Art und/oder Anzahl von Komplementen

*der Hund geht die Katze

Lösungen für Übergenerierung

Splitting atomarer Kategorien

- z.B. Numerus-Kongruenz NP:
- NP gesplittet in SgNP und P1NP:
 - SgN, PlN, SgDET, PlDET, SgNP, PlNP
 - ullet SgNP o SgDET SgN, PlNP o PlDET PlN
- Problem: Regelvervielfachung

Merkmale in Lexikon

 Merkmalstrukturen und Unifikationsconstraints erlauben Feststellung Merkmalskongruenz

Auswahl durch probabilistisches Modell (PCFG)

- Übergenerierung erlauben
- ungrammatische Sätze als unwahrscheinliche ausschließen

Einsatzbereiche von Unifikation

- Logik-Programmierung (z. B. Prolog)
- Pattern Matching (z. B. in funktionalen Programmiersprachen)
- Typinferenz (vor allem funktionale Programmiersprachen wie Haskell, Scala, etc. Eingeschränkt aber z. B. auch C#)
- Merkmalstrukturen (zur Beschreibung komplexer Objekte, z. B. grammatischer Merkmale)

2. Grammatische Merkmale

- Motivation f
 ür Feature-Modellierung
- Grammatische Merkmale
 - Morphosyntaktische Flexionskategorien des Deutschen
 - Kodierung syntaktischer Funktionen
 - Flexionskategorien
 - Kasus und Agreement
- Merkmalstrukturen
 - Grundlagen
 - Constraintregeln und Unifikation
 - Unifikation und Subsumption
- 4 Typhierarchie und getypte Merkmalstrukturen
 - Subsumption und Unifikation
 - Bedingungen

2.1. Morphosyntaktische Flexionskategorien des Deutschen

- Motivation f
 ür Feature-Modellierung
- Grammatische Merkmale
 - Morphosyntaktische Flexionskategorien des Deutschen
 - Kodierung syntaktischer Funktionen
 - Flexionskategorien
 - Kasus und Agreement
- Merkmalstrukturen
 - Grundlagen
 - Constraintregeln und Unifikation
 - Unifikation und Subsumption
- 4 Typhierarchie und getypte Merkmalstrukturen
 - Subsumption und Unifikation
 - Bedingungen

Nominale Flexionskategorien

CASE (Kasus)

- nom
- gen
- dat
- akk

GEN (Genus)

- fem
- mask
- neutr

AGR (Agreement)*

- CASE
- GEN
- NUM

PERSON

- •
- 1
- 3

NUM (Numerus)

- sg
- pl

* Nominales Agreement mit DET, ADJ, modelliert als komplexes Merkmal, d.h. mit anderen Merkmalen als Wertausprägungen

Verbale Flexionskategorien

AGR (Agreement)*

PERSON: 1/2/3

NUM: sq/pl

* Verbales Agreement mit Subjekt, modelliert als komplexes Merkmal, d.h. mit anderen Merkmalen als Wertausprägungen

2.2. Kodierung syntaktischer Funktionen

- Motivation f
 ür Feature-Modellierung
- Grammatische Merkmale
 - Morphosyntaktische Flexionskategorien des Deutschen
 - Kodierung syntaktischer Funktionen
 - Flexionskategorien
 - Kasus und Agreement
- Merkmalstrukturen
 - Grundlagen
 - Constraintregeln und Unifikation
 - Unifikation und Subsumption
- 4 Typhierarchie und getypte Merkmalstrukturen
 - Subsumption und Unifikation
 - Bedingungen

Typen syntaktischer Kodierung

ightarrow Kodierung syntaktischer Funktionen, insbesondere zentraler Grammatische Relationen (Satzgliedfunktionen: Subjekt, Objekt usw.)

A: Strukturelle Kodierung

Wortstellung: SVO vs OVS etc.

B: Morphologische Kodierung (Morphosyntax / Flexion)

- **Kasus**-Markierung
- Agreement-Markierung
 - ightarrow d. h. über grammatische Kategorien/Merkmale
- Feature-Tagset: http://universaldependencies.org/u/feat/index.html

Sprachtypologische Einteilungen

 Sprachtypologie = auf grammatische Struktur und die Varianz ihrer Kodierung bezogener Sprachvergleich

Sprachbau-Typologie

- Isolierender Sprachbau: die syntaktischen Relationen werden primär durch Wortstellung kodiert (z. B. Vietnamesisch, Kantonesisch)
- Analytischer Sprachbau: Kodierung primär durch freie Morpheme = Funktionswörter (z. B. Deutsch)
- Synthetischer Sprachbau: Kodierung primär durch gebundene Morpheme (z. B. Latein)

Typisierung Sprachen mit morphologischer Kodierung

Synthetischer vs. Analytischer Sprachbau

Differenzierung nach dem Typ der Morpheme (gebunden vs. frei)

Agglutinierender vs. Flektierender Sprachbau

Subdifferenzierung synthetischer Sprachen nach dem Fusionsgrad der Morpheme / Form-Funktions-Verhältnis

dependent-marking vs. head-marking

Differenzierung nach der Verwendung von Kasus und Agreement

Akkusativ- vs. Ergativ- vs. Aktiv-System

Differenzierung nach der Abbildung von semantischen Rollen auf Grammatische Relationen

topic-vs. subject-prominent

Differenzierung nach der Abbildung von pragmatischen Rollen auf Grammatische Relationen

2.3. Flexionskategorien

- Motivation f
 ür Feature-Modellierung
- Grammatische Merkmale
 - Morphosyntaktische Flexionskategorien des Deutschen
 - Kodierung syntaktischer Funktionen
 - Flexionskategorien
 - Kasus und Agreement
- Merkmalstrukturen
 - Grundlagen
 - Constraintregeln und Unifikation
 - Unifikation und Subsumption
- 4 Typhierarchie und getypte Merkmalstrukturen
 - Subsumption und Unifikation
 - Bedingungen

Flexion

- syntaktisch relevanter Teil der Morphologie (Morphosyntax)
- Kodierung syntaktischer Funktionen zwischen den Wörtern im Satz durch Formveränderung
 - ightarrow schließt insbesondere auch das konkatenative Hinzufügen von Morphemen oder Funktionswörtern ein
- substantielle Kodierung der syntaktischen Funktion
 - \rightarrow durch Funktionsmarker, z. B. Akkusativ als Objektmarker
- an Stelle von struktureller Kodierung über lineare Anordnung
 - \rightarrow Wortstellung, z. B. Subjekt vor Objekt

Flexionskategorien as Merkmal-Wert-Paare

- Flexionskategorie = Grammatisches Merkmal
 - \rightarrow **Merkmal** hat Merkmalsausprägungen = **Werte**
- Beispiel: Flexionskategorie Numerus hat die Werte Singular und Plural:
 - NUM: sg, pl
- Merkmalsausprägungen werden durch Morpheme kodiert
 - → Morphem = kleinste bedeutungstragende Einheit der Sprache
 - ightarrow nicht weiter segmentierbare substantielle **Form-Funktions-Paare**
- Beispiel: Pluralmorphem im Englischen:
 - -s kodiert pl
 - Ø kodiert sg (Nullmorphem)

Kodierungsformen

- Affigierung: Suffixe (Endungen), Präfixe, Infixe: sag-t-e
 - \rightarrow **konkatenative** Morphologie
 - \rightarrow agglutinierend bzw. flektierend (s.u.)
- Funktionswörter ('freie Morpheme'): war gegangen
 - ightarrow analytischer Sprachbau
- Ablaut (Stammveränderung durch Vokalwechsel: ich hänge > ich hing
- Reduplikation: lat. pe-pend-i 'ich hing'
- Deutsch = gemischt analytisch-flektierend: Verwendung von flektierten Hilfswörtern (Auxiliare, Funktionswörter)

Unterscheidung nach Form-Funktionsverhältnis

- 1:1 = eine Form (ein Morphem) kodiert eine Funktion: ich sag-t-e: say-PRT-1SG (t-Präteritum der schwachen Verben) → agglutinierend
- 1:n = eine Form kodiert n Funktionen: ich sag-e: say-1+SG
 - → **flektierend** = **Verschmelzung** von Funktionen in einem Morphem
- n:1 = Allomorphie: eine Funktion wird durch unterschiedliche Morpheme realisiert:

PL: Kind-er; Tier-e; Essen-Ø

Nullmorphem

- (Un-)Markiertheit: Form (Merkmalsausprägung), die die default-Funktion des Merkmals anzeigt, ist üblicherweise substantiell minimal, oft Fehlen einer substantiellen Form
 - \rightarrow Ansatz **Nullform (Ø)**
 - \rightarrow z. B. **Nominativ** im Deutschen:

Hund-Ø: dog-NOM

Hund-es: dog-GEN

Deklination = nominale Flexion (Nomen, Adjektiv, Pronomen, Determinierer)

nominale Flexionskategorien des Deutschen:

Kasus; Genus, Numerus, Person, Definitheit

Kasus: Nominativ / Akkusativ / Dativ / Genitiv

- in anderen Sprachen: geringere Anzahl an Kasus (Arabisch: 3; Berber:
 2) oder höhere (Finnisch: 15) oder kein morphologischer Kasus (Kodierung durch Wortstellung oder Agreement)
 - Markierung Grammatischer Relationen im Satz (Subjekt, Objekt, Adverbial)
 - Markierung der Modifikationsbeziehung innerhalb von NPs (Attributfunktion, z. B. Genitiv-Attribut)

Genus: Maskulin / Feminin / Neutrum

- **inhärente** Kategorisierung (nicht veränderbares Merkmal; semantisch nur noch zum Teil transparent)
 - \rightarrow in vielen Sprachen: **Klassenmarker** (chinesisch, Bantu-Sprachen): bezeichnen z. B. die Form von Dingen

Numerus: Singular / Plural

- Kategorisierung nach Einheit/Vielheit
 - \rightarrow zusätzlich häufig Dual = Zweiheit, z. B. im Arabischen

Person: 1 / 2 / 3

- Subkategorisierung beim Pronomen bzgl. der Teilnehmer im Äußerungskontext: Referenz auf Sprecher oder Adressat
- Substantive sind immer 3. Person

Definitheit: Definit / Indefinit

• Kategorisierung bzgl. Bekanntheit

Agreement in der Nominalphrase

- Merkmalskongruenz zwischen Nomen (als Kopf der Phrase) und den Dependenten Determinativ und Adjektiv in Genus, Numerus und Kasus
- Anzeige der Dependenz nominaler Modifikatoren durch Kongruenz in Merkmalen mit dem nominalen Kopf
- Im Deutschen trägt häufig nur noch der Artikel bzw. das Adjektiv die Kasus-Merkmale, da das Kasussystem im Deutschen stark abgebaut ist
- Adjektiv-Kongruenz: Merkmalskongruenz mit dem Nomen in Genus, Numerus und Kasus, aber unterschiedlich je nach Vorhandensein des Artikels (starke vs. schwache Formen)

Konjugation = verbale Flexion

verbale Flexionskategorien des Deutschen:

Person, Numerus (Agreement); Tempus, Modus, Genus verbi

Person+Numerus-Kongruenz: 1sg/2sg/3sg/1p1/2p1/3p1

Kongruenz/Agreement in Person und Numerus mit dem Subjekt

Tempus: Präs. / Prät. / Perf. / Plsqperf. / FuturI/II

 Kategorisierung bzgl. des Zeitpunkts des Geschehens relativ zum Moment der Aussage (Vergangenheit, Gegenwart, Zukunft)

Modus: Indikativ / Imperativ / Konjunktiv

Kategorisierung bzgl. Einstellung des Sprechers zur Aussage

Genus verbi: Aktiv / Passiv

 auch Voice/Diathese: Kategorisierung der Abbildung von semantischen Rollen auf die Grammatischen Relationen 2. Grammatische Merkmale

2.4. Kasus und Agreement

- Motivation f
 ür Feature-Modellierung
- Grammatische Merkmale
 - Morphosyntaktische Flexionskategorien des Deutschen
 - Kodierung syntaktischer Funktionen
 - Flexionskategorien
 - Kasus und Agreement
- Merkmalstrukturen
 - Grundlagen
 - Constraintregeln und Unifikation
 - Unifikation und Subsumption
- 4 Typhierarchie und getypte Merkmalstrukturen
 - Subsumption und Unifikation
 - Bedingungen

Markierung zentraler syntaktischer Satzgliedfunktionen

- <u>Kasus</u>: Markierung der syntaktischen Funktion eines verbalen Dependenten am Dependenten (dependent-marking)
- Agreement: Markierung der syntaktischen Funktion eines verbalen Dependenten am Kopf (Verb) über Kongruenz in Merkmalen mit dem Dependenten (head-marking)

Kasus

- Markierung Grammatischer Relationen durch grammatisches Merkmal am Dependenten
- Varianz der Werte des Kasusmerkmals in Abhängigkeit von der zu kodierenden syntaktischen Funktion, also vom syntaktischen Kontext (abhängiges Merkmal)
- Typ1: Rektion: Markierung Nomen entsprechend der Verbvalenz (Komplement) = Kernkasus
- Typ2: Modifikation: Markierung Nomen als Modifikator des Verbs (Adjunkt) = obliquer Kasus

Kasusformen

- Form von Kasus: neben morphologischem Kasus (also mit Affix, meist Suffix, als Kasusmarker) auch durch Adposition (z. B. im Japanischen durch Postpositionen) oder durch Kasusmarkierung am Artikel (vgl. Deutsch)
- im Deutschen typischerweise:
 - Nominativ als Subjektkasus
 - Akkusativ als Objektkasus (selten auch Genitiv/Dativ/Präpos.)
 - Dativ als Kasus des indirekten Objekts
 - Präpositionen und z.T. auch Genitiv und Akkusativ als Adverbialkasus

Agreement / Merkmalskongruenz

- Markierung Grammatischer Relationen durch Übereinstimmung des Kopfes in grammatischen Merkmalen mit Merkmalen des Dependenten
- Kovarianz morphologischer Eigenschaften des Verbs mit Eigenschaften der Subjekt-NP
- im Deutschen: Kongruenz des Verbs mit Subjekt in den Merkmalen Person und Numerus

Subjekt-Merkmale		verbale Merkmale
Person	\leftarrow AGR \rightarrow	Person
Numerus	\leftarrow AGR \rightarrow	Numerus
Genus		Tempus
		Modus
Case	\leftarrow	

Mono- vs. Polypersonales Agreement

 im Sprachvergleich: auch Kodierung der syntaktischen Funktion weiterer Kernargumente gegeben (double-agreement usw.)
 → entsprechend der GR-Hierarchie: Subjekt > Objekt > Ind. Objekt

Baskisch: Agreement mit Subjekt, Objekt und Indirektem Objekt

```
Oparitu d-i-a-t
give 3SG:P-have-2SG:IO-1SG:A*
I have given it to you (as a present).
```

- *P = Patiensargument, A = Agensargument
- als head-marking-Strategie ermöglicht Agreement Pro-Drop = pronominale Nicht-Besetzung von valenzgeforderten Stellen
- verbale Agreement-Marker sind meist (bzw. sind Ergebnis der Grammatikalisierung von) enklitische Personalpronomen

3. Merkmalstrukturen

- Motivation f
 ür Feature-Modellierung
- Grammatische Merkmale
 - Morphosyntaktische Flexionskategorien des Deutschen
 - Kodierung syntaktischer Funktionen
 - Flexionskategorien
 - Kasus und Agreement
- Merkmalstrukturen
 - Grundlagen
 - Constraintregeln und Unifikation
 - Unifikation und Subsumption
- 4 Typhierarchie und getypte Merkmalstrukturen
 - Subsumption und Unifikation
 - Bedingungen

3.1. Grundlagen

- Motivation f
 ür Feature-Modellierung
- Grammatische Merkmale
 - Morphosyntaktische Flexionskategorien des Deutschen
 - Kodierung syntaktischer Funktionen
 - Flexionskategorien
 - Kasus und Agreement
- Merkmalstrukturen
 - Grundlagen
 - Constraintregeln und Unifikation
 - Unifikation und Subsumption
- 4 Typhierarchie und getypte Merkmalstrukturen
 - Subsumption und Unifikation
 - Bedingungen

Merkmalstrukturen

- auch: Attribut-Wert-Matrix (AVM)
- formale Repräsentation komplexer Objekte, die durch eine Anzahl an Eigenschaften definiert sind:

$$Merkmalstruktur = \begin{bmatrix} MERKMAL1 & WERT1 \\ MERKMAL2 & WERT2 \end{bmatrix}$$

Repräsentation grammatischer Merkmale als Merkmalstruktur:

3. Merkmalstrukturen

Formate

- Variante 1: Kategoriensymbol + Merkmalstruktur als Annotation der Merkmale
- Variante 2: Repräsentation gesamter Kategorie als Merkmalstruktur (Kategorie als Merkmal CAT)

3. Merkmalstrukturen Grundlagen

34

Merkmalstrukturen in der Linguistik

- Merkmalstrukturen werden in der Linguistik u. a. für Beschreibung phonetischer und semantischer Merkmale verwendet
- In der Syntaxanalyse zunächst für Modellierung der Subkategorisierung von Verben in Generativer Grammatik verwendet
- ab 1980: Unifikationsgrammatiken = Modelle, deren syntaktische Kategorien Merkmalstrukturen sind und die die Operation der Merkmalsunifikation für die Steuerung des Ableitungsprozesses verwenden (PATR-II,GPSG,LFG, HPSG)

3. Merkmalstrukturen Grundlagen

Modellierung mit CFG-Phrasenstrukturgrammatiken

- durch Integration von Merkmalen in Kategoriensymbole
 - ightarrow z. B. IV, TV; N_Sq, N_Pl
- 2 Probleme:
 - solche erweiterten CFGs vervielfachen allerdings das Regelsystem
 - strukturelle Ähnlichkeit wird nur suggeriert
 - ightarrow z. B. N_Sq und N_Pl als Subkategorien von N
 - \rightarrow die atomaren Nichtterminale sind aber **beliebige Variablen ohne Zusammenhang!**

3. Merkmalstrukturen Grundlagen

36

Modellierung mit Merkmalstrukturen

 mit Merkmalstrukturen, d.h. aus Merkmal-Wert-Paaren zusammengesetzten komplexen Objekten, lassen sich grammatikalische Zusammenhänge beschreibungsadäquater modellieren:

3. Merkmalstrukturen Grundlagen

37

Unterspezifikation

 sowohl lexikalische Einheiten als auch lexikalische Kategorien können repräsentiert werden über ihre Merkmale:

 \rightarrow je weniger Merkmale (Informationen) desto **allgemeinere Klasse** von linguist. Objekten ist repräsentiert (**Unterspezifikation**):

Wortformen:
$$Hunden\begin{bmatrix} CAT & N \\ NUM & PL \\ GEN & MASK \\ CASE & DAT \end{bmatrix}$$
, $der\begin{bmatrix} CAT & DET \\ NUM & SG \\ GEN & MASK \\ CASE & NOM \end{bmatrix}$

lexikalische Subkategorien (Maskulina): $\begin{bmatrix} CAT & N \\ GEN & MASK \end{bmatrix}$

lexikalische Kategorien:
$$\begin{bmatrix} CAT & N \end{bmatrix} \begin{bmatrix} CAT & DET \end{bmatrix}$$

Koreferenz

- Merkmale innerhalb einer Merkmalstruktur können Beschreibungen für die gleiche linguistische Einheit sein (koreferent sein)
- durch Forderung nach Koreferenz von Merkmalen von durch PSG-Regeln festgelegte Konstituenten einer syntaktischen Kategorie (untereinander oder mit Merkmalen der Kategorie) können Abhängigkeiten wie Kongruenz und Rektion modelliert werden (=Beschränkungen/Constraintregeln)

3. Merkmalstrukturen Grundlagen

39

Komplexe Werte

- neben atomaren Werten (SG, +) können auch Merkmalstrukturen als Werte in einer Merkmalstruktur vorkommen
- damit lassen sich Kongruenzmerkmale zusammenfassen:

abkürzende Notation für Pfad in AVM: (als Pfadgleichung: <N AGR CASE>=ACC)

CAT N AGR|CASE ACC

40

3. Merkmalstrukturen Grundlagen

Lexikoneinträge mit komplexem AGR-Merkmal

$$Hund\begin{bmatrix} \mathsf{CAT} & N \\ \mathsf{AGR} & \begin{bmatrix} \mathsf{NUM} & \mathsf{SG} \\ \mathsf{GEN} & \mathsf{MASK} \end{bmatrix} \end{bmatrix} \qquad Katze \begin{bmatrix} \mathsf{CAT} & N \\ \mathsf{AGR} & \begin{bmatrix} \mathsf{NUM} & \mathsf{SG} \\ \mathsf{GEN} & \mathsf{FEM} \end{bmatrix} \end{bmatrix}$$

$$der \begin{bmatrix} \mathsf{CAT} & \mathsf{DET} \\ \mathsf{AGR} & \begin{bmatrix} \mathsf{NUM} & \mathsf{SG} \\ \mathsf{GEN} & \mathsf{MASK} \\ \mathsf{CASE} & \mathsf{NOM} \end{bmatrix} \end{bmatrix} \qquad den \begin{bmatrix} \mathsf{CAT} & \mathsf{DET} \\ \mathsf{AGR} & \begin{bmatrix} \mathsf{NUM} & \mathsf{SG} \\ \mathsf{GEN} & \mathsf{MASK} \\ \mathsf{CASE} & \mathsf{ACC} \end{bmatrix} \end{bmatrix}$$

← Unterspezifikation Kasusmerkmal (unifiziert mit beliebigen Kasusspezifikationen)

3. Merkmalstrukturen

3.2. Constraintregeln und Unifikation

- Motivation f
 ür Feature-Modellierung
- Grammatische Merkmale
 - Morphosyntaktische Flexionskategorien des Deutschen
 - Kodierung syntaktischer Funktionen
 - Flexionskategorien
 - Kasus und Agreement
- Merkmalstrukturen
 - Grundlagen
 - Constraintregeln und Unifikation
 - Unifikation und Subsumption
- 4 Typhierarchie und getypte Merkmalstrukturen
 - Subsumption und Unifikation
 - Bedingungen

nominales Agreement über Constraintregel

 bloßer Ersatz von atomaren Kategoriensymbolen in PSG-Regeln durch Merkmalstrukturen schränkt Übergenerierung nicht ein:
 NP -> DFT N

$$\begin{bmatrix} \mathsf{CAT} & \mathit{NP} \end{bmatrix} \rightarrow \begin{bmatrix} \mathsf{CAT} & \mathit{DET} \end{bmatrix} \begin{bmatrix} \mathsf{CAT} & \mathit{N} \end{bmatrix}$$

 Zusatzregeln notwendig, die auf die Merkmale der Konstituenten Bezug nehmen und Abhängigkeiten zwischen den durch unterspezifizierte Merkmalstrukturen repräsentierten linguistischen Objekten ausdrücken (Beschränkungen/Constraints)

- nominales Agreement: Beschränkung der durch die PSG-Regel repräsentierten Kombination von Determinativ und Nomen auf Übereinstimmung im AGR-Merkmal (Koreferenz)
- Constraintregel als Pfadgleichung:

$$NP \rightarrow DET N$$

 $<$ DET AGR>= $<$ N AGR>

Alternative Darstellung mit Variable (NLTK: ?x):

$$\begin{bmatrix} \mathsf{CAT} & \mathit{NP} \end{bmatrix} \rightarrow \begin{bmatrix} \mathsf{CAT} & \mathit{DET} \\ \mathsf{AGR} & \boxed{1} \end{bmatrix} \begin{bmatrix} \mathsf{CAT} & \mathit{N} \\ \mathsf{AGR} & \boxed{1} \end{bmatrix}$$

Constraintregel als Unifikationsanweisung

 Anweisung auf Durchführung von Unifikation zur Feststellung der Vereinbarkeit dieser AGR-Teil-Merkmalstrukturen:

$$\begin{cases}
\text{AGR} = \text{Hund AGR}? \\
\text{NUM SG} \\
\text{GEN MASK} \\
\text{CASE NOM}
\end{cases} \quad \sqcup \quad \begin{bmatrix}
\text{NUM SG} \\
\text{GEN MASK}
\end{bmatrix} = \begin{bmatrix}
\text{NUM SG} \\
\text{GEN MASK} \\
\text{CASE NOM}
\end{bmatrix}$$

Erkennung (da unifizierbar, <DET AGR> = <N AGR>):
 der Hund, den Hund, die Katze

Constraintverletzung

<die AGR>= <Hund AGR>?

$$\begin{bmatrix} \mathsf{NUM} & \mathsf{SG} \\ \mathsf{GEN} & \mathsf{FEM} \end{bmatrix} \quad \sqcup \quad \begin{bmatrix} \mathsf{NUM} & \mathsf{SG} \\ \mathsf{GEN} & \mathsf{MASK} \end{bmatrix} \quad = \quad \mathsf{FAIL}!$$

• **Ablehnung** (da: <DET AGR GEN>≠ <N AGR GEN>):

```
die Hund (<DET AGR GEN> = FEM, <N AGR GEN> = MASK)

der Katze (<DET AGR GEN> = MASK, <N AGR GEN> = FEM)

den Katze (<DET AGR GEN> = MASK, <N AGR GEN> = FEM)
```

3.3. Unifikation und Subsumption

- Motivation f
 ür Feature-Modellierung
- Grammatische Merkmale
 - Morphosyntaktische Flexionskategorien des Deutschen
 - Kodierung syntaktischer Funktionen
 - Flexionskategorien
 - Kasus und Agreement
- Merkmalstrukturen
 - Grundlagen
 - Constraintregeln und Unifikation
 - Unifikation und Subsumption
- 4 Typhierarchie und getypte Merkmalstrukturen
 - Subsumption und Unifikation
 - Bedingungen

Unifikation

- information combination operation (ähnlich Mengenvereinigung)
- Zwei Merkmalstrukturen unifizieren, wenn sie vereinbar sind.
- Ergebnis einer Unifikation:
 - Existiert, wenn es (auch rekursiv) keine widersprüchlichen Merkmal-Wert-Paare gibt.
 - Enthält alle Merkmal-Wert-Paare beider Merkmalstrukturen.
 - d.h. die Informationen aus beiden Merkmalsstrukturen sind in ihrer Unifikation enthalten.

• Beispiel:
$$\begin{bmatrix} A & 1 \\ B & 2 \end{bmatrix} \quad \sqcup \quad \begin{bmatrix} A & 1 \\ C & 3 \end{bmatrix} = \begin{bmatrix} A & 1 \\ B & 2 \\ C & 3 \end{bmatrix}$$

NICHT definiert (widersprüchliche Werte):

$$\begin{bmatrix} A & 1 \\ B & 2 \end{bmatrix} \quad \sqcup \quad \begin{bmatrix} A & 1 \\ B & 3 \end{bmatrix} \quad (= NONE)$$

Subsumption

- information ordering relation (ähnlich Teilmengenbeziehung)
- Zwei Merkmalstrukturen stehen in Subsumption, wenn eine Struktur alle Merkmale der anderen enthält.
- Ergebnis einer Subsumption:
 - Ist erfüllt, wenn die übergeordnete (allgemeinere) Struktur alle Merkmal-Wert-Paare der untergeordneten Struktur enthält.
 - d.h. alle Informationen der übergeordneten (allgemeineren) Struktur sind in der untergeordneten (spezifischeren) enthalten
 - Existiert nicht, wenn es unterschiedliche Merkmal-Wert-Paare gibt (insbesondere bei widersprüchlichen Merkmal-Wert-Paaren).

• Beispiel:
$$\begin{bmatrix} A & 1 \\ B & 2 \end{bmatrix}$$
 aber NICHT: $\begin{bmatrix} A & 1 \\ B & 2 \end{bmatrix}$ \subseteq $\begin{bmatrix} A & 1 \\ C & 3 \end{bmatrix}$

Subsumption und Unifikation

- das Ergebnis einer Unifikation ist die kleinste obere Schranke in der Subsumptionsbeziehung
 - d.h. die Unifikation zweier Merkmalstrukturen f0 und f1 (falls sie existiert) ist die kleinste Merkmalstruktur, die von f0 und f1 subsumiert wird
- alle Informationen von f0 bzw. f1 sind in ihrer Unifikation enthalten

• Beispiel:
$$\begin{bmatrix} A & 1 \\ B & 2 \end{bmatrix} \subseteq \begin{bmatrix} A & 1 \\ B & 2 \\ C & 3 \end{bmatrix}$$
 und $\begin{bmatrix} A & 1 \\ C & 3 \end{bmatrix} \subseteq \begin{bmatrix} A & 1 \\ B & 2 \\ C & 3 \end{bmatrix}$

4. Typhierarchie und getypte Merkmalstrukturen

- Motivation f
 ür Feature-Modellierung
- Grammatische Merkmale
 - Morphosyntaktische Flexionskategorien des Deutschen
 - Kodierung syntaktischer Funktionen
 - Flexionskategorien
 - Kasus und Agreement
- Merkmalstrukturen
 - Grundlagen
 - Constraintregeln und Unifikation
 - Unifikation und Subsumption
- 4 Typhierarchie und getypte Merkmalstrukturen
 - Subsumption und Unifikation
 - Bedingungen

Getypte Merkmalsstrukturen

 durch Definition einer Typhierarchie (bzgl. Subsumption) für die Werte eines Merkmals können auch nicht-identische Werte (Types) unifizieren

• Beispiel:
$$\begin{bmatrix} PERS & 1 \end{bmatrix} \sqsubseteq \begin{bmatrix} PERS & 1 \\ NUM & sg \end{bmatrix}$$

$$\begin{bmatrix} PERS & 1 \end{bmatrix} \sqcup \begin{bmatrix} PERS & 1 \\ NUM & sg \end{bmatrix} = \begin{bmatrix} PERS & 1 \\ NUM & sg \end{bmatrix}$$

• Getypte Merkmalsstruktur: $\begin{bmatrix} AGR & 1 \end{bmatrix} \sqsubseteq \begin{bmatrix} AGR & 1sg \end{bmatrix}$ $\begin{bmatrix} AGR & 1 \end{bmatrix} \sqcup \begin{bmatrix} AGR & 1sg \end{bmatrix} = \begin{bmatrix} AGR & 1sg \end{bmatrix}$

4. Typhierarchie

53

Typen

Definition (Type, □)

Sei **Type** eine endliche Menge von Typen mit **Vererbungshierarchie** ⊑.

Wenn für $A, B \in \mathbf{Type}$ gilt, dass $A \sqsubseteq B$, dann

- erbt B Informationen von A.
- ist A Obertyp von B. (Alle A-Attribute sind auch B-Attribute.)
- A subsumiert B (B wird von A subsumiert).
- ist A "allgemeiner oder gleich" B.
- ist B "spezieller oder gleich" A.

Vererbung

Eigenschaften von Type, ⊑

- wohldefinierte Unifikationsoperation
- transitiv $(\forall A, B, C \in \mathbf{Type}. A \sqsubseteq B \land B \sqsubseteq C \implies A \sqsubseteq C)$
- reflexiv ($\forall A \in \mathbf{Type}$. $A \sqsubseteq A$)
- antisymmetrisch ($\forall A, B \in \textbf{Type}$. $A \sqsubseteq B \land B \sqsubseteq A \implies A = B$) (keine Vererbungsschleifen)
 - ⇒ partielle Ordnung (d. h. nicht alle Elemente von **Type** müssen miteinander vergleichbar sein)
- Existenz eines eindeutigen allgemeinsten Typs $(\exists_1 A \in \mathsf{Type}. \forall B \in \mathsf{Type}. A \sqsubseteq B)$
 - \Rightarrow \perp definiert als kleinstes Element von **Type** bzgl. \sqsubseteq

Beispiel: Typhierarchie

Noch ein Beispiel: Typhierarchie

Vgl. z. B. die Paradigmen: der Hund, des **Hundes**, dem Hund, den Hund **das** Buch, des **Buches**, dem Buch, **das** Buch

Merkmale

Definition (Feat)

Sei Feat eine endliche Menge von Merkmalen (engl. features).

(Ohne weitere Anforderungen an Struktur oder Eigenschaften)

Beispiel

 $\textbf{Feat} = \{ \texttt{GEN}, \texttt{CASE}, \texttt{NUM}, \texttt{AGR}, \texttt{PER}, \texttt{MOOD}, \texttt{CAT}, \texttt{TENSE} \}$

Merkmalstrukturen

Definition

Eine Merkmalstruktur über **Type** und **Feat** ist definiert als Tupel $F = (Q, \bar{q}, \theta, \delta)$ mit:

- Q: endliche Menge von Knoten (Einträge)
- $\bar{q} \in Q$: Wurzelknoten
- $\theta: Q \to \textbf{Type}$: totale Typisierungsfunktion
- δ : **Feat** \times $Q \rightarrow Q$: partielle Merkmal-Wert-Funktion

Sei \mathcal{F} die Menge aller Merkmalstrukturen.

Visualisierung als Graph I

Beschrifteter Graph

Ein beschrifteter Graph ist definiert als Tupel $G = (V, E, I_V, I_E, L_V, L_E)$ mit

- V: Menge der Knoten (engl. vertices)
- $E \subseteq V \times V$: Menge der Kanten (engl. *edges*)
- $I_V: V \to L_V$: Beschriftungsfunktion für Knoten (engl. *label*)
- $I_E: E \rightarrow L_E$: Beschriftungsfunktion für Kanten
- L_X: Menge von Beschriftungen für X

Visualisierung als Graph II

Visualisierung

Der Graph zu einer Merkmalstruktur $F = (Q, \bar{q}, \theta, \delta)$ ist gegeben durch:

- V := Q
- $E := \{ (q_1, q_2) \mid \exists f. \ \delta(f, q_1) = q_2 \}$
- $L_V :=$ Type; $I_V := \theta$
- $L_E := \text{Feat}; I_E(q_1, q_2) := \{f \mid \delta(f, q_1) = q_2\}$

Anmerkung

Zur Vereinfachung werden einelementige Mengen ohne Mengenklammern geschrieben.

Also a statt $\{a\}$.

Beispiel: Graphdarstellung

Variablen

Variablen

- Var sei eine abzählbar unendliche Menge von Variablen.
- Häufig wird $Var = \mathbb{N}$ benutzt.
- Es gibt aber auch andere Möglichkeiten;
 z. B. im NLTK: ASCII-Identifier (?x, ?y, ...)

Definition (Zuweisungsfunktion, Valuation)

Eine Zuweisung α : $Var \to \mathcal{F}$ ist eine totale Funktion, die alle Variablen an Merkmalstrukturen (Knoten, Einträge) bindet.

Reentrance

Reentrance (dt. Wiedereintritt)

Durch das Aufstellen von Bedingungen (s. später) können Variablen an verschiedene Teile von Merkmalstrukturen gebunden werden. *Diese müssen gleich sein*.

Beispiel

4.1. Subsumption und Unifikation

- Motivation f
 ür Feature-Modellierung
- Grammatische Merkmale
 - Morphosyntaktische Flexionskategorien des Deutschen
 - Kodierung syntaktischer Funktionen
 - Flexionskategorien
 - Kasus und Agreement
- Merkmalstrukturen
 - Grundlagen
 - Constraintregeln und Unifikation
 - Unifikation und Subsumption
- 4 Typhierarchie und getypte Merkmalstrukturen
 - Subsumption und Unifikation
 - Bedingungen

Subsumption

Erweiterung auf Merkmalstrukturen

 $F = (Q, \bar{q}, \theta, \delta)$ subsumiert $F' = (Q', \bar{q}', \theta', \delta')$, genau dann wenn es eine totale Funktion $h: Q \to Q'$ gibt, sodass:

- $h(\bar{q}) = \bar{q}'$
- $\theta(q) \sqsubseteq \theta'(h(q))$ für alle $q \in Q$
- $h(\delta(f,q))=\delta'(f,h(q))$ für alle $q\in Q$ und $f\in {\sf Feat}$, für die $\delta(f,q)$ definiert ist

Beispiel

$$ar{q}egin{bmatrix} q_1 \ \mathsf{CAT} & \mathsf{N} \end{bmatrix} \sqsubseteq ar{q}' egin{bmatrix} q_1' \ \mathsf{CAT} & \mathsf{N} \ q_2' \ \mathsf{GEN} & \mathit{mask} \end{bmatrix}$$

$$h(\bar{q}) = \bar{q}' h(q_1) = q_1'$$

Unifikation I

Unifikation (□) für Typen

- Das Ergebnis der Unifikation zweier Typen A, B ∈ Type ist ihre kleinste obere Schranke in Type bzgl. ⊆.
- Diese kann auch undefiniert sein (Typen unifizieren nicht).
- $A \sqcup B = C \iff A \sqsubseteq C \text{ und } B \sqsubseteq C \text{ und}$

$$\forall D \in \mathsf{Type}. \ A \sqsubseteq D \land B \sqsubseteq D \implies C \sqsubseteq D$$

(Vgl. Mengenvereinigung und Untermengenbeziehung)

Beispiel: Typunifikation

1st \sqcup plu = 1-plu

 $sing \sqcup 3-s-mask = 3-s-mask$

Noch ein Beispiel: Typunifikation

nicht-Genitiv ⊔ Nominativ = Nominativ Nom-Akk ⊔ Dativ = *undefiniert*

Unifikation II

Unifikation (□) für Merkmalstrukturen

- Algorithmus in zwei Schritten:
 - Identifiziere korrespondierende (äquivalente) Knoten
 - Unifiziere deren Typen

Formale Definition: Identifikation (Schritt 1)

Für Merkmalstrukturen $F = (Q, \bar{q}, \theta, \delta)$, $F' = (Q', \bar{q}', \theta', \delta')$ mit $Q \cap Q' = \emptyset$ sei die Äquivalenzrelation \equiv wie folgt definiert:

- \bullet $\bar{q} \equiv \bar{q}'$
- $\delta(f,q) \equiv \delta'(f,q')$ wenn beide Seiten definiert und $q \equiv q'$

Formale Definition: Typunifikation (Schritt 2)

Die Unifikation von F und F' ist dann wie folgt definiert:

$$F \sqcup F' = ((Q \cup Q')/_{\equiv}, [\bar{q}]_{\equiv}, \theta^{\equiv}, \delta^{\equiv})$$

mit

$$heta^{\equiv}([q]_{\equiv}) = \bigsqcup \left\{ (heta \cup heta')(q') \mid q' \equiv q \right\}$$

und

$$\delta^{\equiv}(f,[q]_{\equiv}) = \begin{cases} [(\delta \cup \delta')(f,q)]_{\equiv} & \text{falls } (\delta \cup \delta')(f,q) \text{ definiert} \\ \text{undefiniert} & \text{sonst} \end{cases}$$

Notation (für \equiv Äquivalenzrelation über X)

- $\bullet [x]_{\equiv} = \{ y \in X \mid y \equiv x \}$
- $X/_{\equiv} = \{ [x]_{\equiv} \mid x \in X \}$

Beispiel: (Formale) Unifikation

$$q_1 \begin{bmatrix} q_2 \text{ CAT} & \textit{N} \\ q_3 \text{ AGR} & \begin{bmatrix} q_4 \text{ NUM} & \textit{Sg} \\ q_5 \text{ CAS} & \textit{nicht-Gen} \end{bmatrix} \end{bmatrix} \qquad q_6 \begin{bmatrix} q_7 \text{ ORTH} & \textit{Hund} \\ q_8 \text{ AGR} & \begin{bmatrix} q_9 \text{ NUM} & \textit{Sg} \\ q_{10} \text{ CAS} & \textit{Nom} \end{bmatrix} \end{bmatrix}$$

$$q_6egin{bmatrix} q_7 ext{ ORTH} & \textit{Hund} \ q_8 ext{ AGR} & egin{bmatrix} q_9 ext{ NUM} & \textit{Sg} \ q_{10} ext{ CAS} & \textit{Nom} \end{bmatrix}$$

- Identifikation korrespondierender Knoten
 - $q_1 \equiv q_6$ (Initialisierung)
 - Nach 1 Schritt mit δ :
 - \bullet $q_3 \equiv q_8$
 - Nach 2 Schritten mit δ :
 - $q_4 \equiv q_9$
 - $q_5 \equiv q_{10}$

Beispiel: (Formale) Unifikation

$$q_1 \begin{bmatrix} q_2 \text{ CAT} & \textit{N} & & \\ q_3 \text{ AGR} & \begin{bmatrix} q_4 \text{ NUM} & \textit{Sg} \\ q_5 \text{ CAS} & \textit{nicht-Gen} \end{bmatrix} \end{bmatrix} \qquad q_6 \begin{bmatrix} q_7 \text{ ORTH} & \textit{Hund} \\ q_8 \text{ AGR} & \begin{bmatrix} q_9 \text{ NUM} & \textit{Sg} \\ q_{10} \text{ CAS} & \textit{Nom} \end{bmatrix} \end{bmatrix}$$

$$q_6egin{bmatrix} q_7 ext{ ORTH} & \textit{Hund} \ q_8 ext{ AGR} & egin{bmatrix} q_9 ext{ NUM} & \textit{Sg} \ q_{10} ext{ CAS} & \textit{Nom} \end{bmatrix}$$

- Typunifikation
 - $Q_{II} = \{\{q_1, q_6\}, \{q_2\}, \{q_7\}, \{q_3, q_8\}, \{q_4, q_9\}, \{q_5, q_{10}\}\}$
 - $\bar{q}_{IJ} = \{q_1, q_6\}$
 - $\theta^{\equiv}(\{q_2\}) = N, \theta^{\equiv}(\{q_7\}) = Hund, \theta^{\equiv}(\{q_3, q_8\}) = fs$, $\theta^{\equiv}(\{q_4,q_9\}) = \mathsf{Sq}, \theta^{\equiv}(\{q_5,q_{10}\}) = \mathsf{Nom}, \theta^{\equiv}(\{q_1,q_6\}) = \mathsf{fs}$
 - $\delta(\mathsf{CAT}, \{q_1, q_6\}) = \{q_2\}, \delta(\mathsf{ORTH}, \{q_1, q_6\}) = \{q_7\}, \dots$

Theoretische Resultate

Lemma

Wenn $F \sqcup F'$ definiert ist, dann ist $F \sqcup F' \in \mathcal{F}$ eine Merkmalstruktur.

Theorem

 $F \sqcup F'$ ist die *kleinste obere Schranke* von F und F' in $(\mathcal{F}, \sqsubseteq)$, falls F und F' eine obere Schranke haben.

Für Beweise siehe (Carpenter:Log-TyFeat).

4.2. Bedingungen

- Motivation f
 ür Feature-Modellierung
- Grammatische Merkmale
 - Morphosyntaktische Flexionskategorien des Deutschen
 - Kodierung syntaktischer Funktionen
 - Flexionskategorien
 - Kasus und Agreement
- Merkmalstrukturen
 - Grundlagen
 - Constraintregeln und Unifikation
 - Unifikation und Subsumption
- 4 Typhierarchie und getypte Merkmalstrukturen
 - Subsumption und Unifikation
 - Bedingungen

Bedingungen I

Pfade

- Sequenzen von Merkmalen werden Pfade genannt.
- Path = Feat* sei die Menge aller Pfade.
- Für $p \in \mathbf{Path}, F \in \mathcal{F}$ sei F@p der Knoten in F, den man am Ende von Pfad p erhält.

Beispiele

- AGR-NUM
- SYN-SBJ-AGR-NUM
- ORTH
- ε (der leere Pfad)

4. Typhierarchie Bedingungen 76

Bedingungen II

Definition (Beschreibung Desc)

Die Menge der Beschreibungen über **Type** und **Feat** sei die kleinste Menge, die folgende Bedingungen erfüllt:

- $A \in \mathbf{Desc}$, für alle $A \in \mathbf{Type}$
- $p : d \in \mathsf{Desc}$, für $p \in \mathsf{Path}$, $d \in \mathsf{Desc}$
- $x \in \mathbf{Desc}$, für alle $x \in \mathbf{Var}$
- $d \land e \in \mathsf{Desc}$, für $d, e \in \mathsf{Desc}$

Beispiel

- AGR-NUM: Sg
- SYN-SBJ: 1 ∧ SEM-AGT: 1

Bedingungen III

Erfülltheit

Die Erfülltheitsrelation \models^{α} zwischen Merkmalstrukturen und Beschreibungen ist gegeben durch:

- Für $A \in \mathsf{Type}$, $F \models^{\alpha} A \iff A \sqsubseteq \theta(\bar{q})$
- $F \models^{\alpha} p : d \iff F @ p \models^{\alpha} d$
- Für $x \in Var$, $F \models^{\alpha} x \iff \alpha(x) = F$
- $F \models^{\alpha} d \land e \iff F \models^{\alpha} d \text{ und } F \models^{\alpha} e$

78

Erfülltheit: Beispiel

Sei F eine Merkmalstruktur.

$$F = \begin{bmatrix} \mathsf{CAT} & \mathbb{I}N & & \\ \mathsf{POS} & \mathbb{2} & & \\ \mathsf{AGR} & \begin{bmatrix} \mathsf{NUM} & Sg & \\ \mathsf{CAS} & Nominativ \end{bmatrix} \end{bmatrix}$$

$$\alpha(\boxed{\mathbf{1}}) = \alpha(\boxed{\mathbf{2}})$$

Welche Beschreibungen aus Desc erfüllt F?

- $F \models^{\alpha} N$?
- $F \models^{\alpha} CAT : N$?
- $F \models^{\alpha} AGR-CAS : nicht-Genitiv ?$

Denn: nicht-Genitiv subseteq Nominativ

• $F \models^{\alpha} POS : N$? Ja!

4. Typhierarchie

Bedinaunaen

Nein!

Ja!

Ja!

Beschreibungen als Merkmalstrukturen

MGSat (allgemeinster Erfüller)

Zu jeder *konsistenten* (widerspruchsfreien) Beschreibung $d \in \mathbf{Desc}$ gibt es eine Merkmalstruktur $\mathit{MGSat}(d) \in \mathcal{F}$ mit der Eigenschaft

$$\forall F \in \mathcal{F}. F \models d \iff MGSat(d) \sqsubseteq F$$

Konstruktion

- Für $A \in \textbf{Type}$: $MGSat(A) = \begin{bmatrix} A \end{bmatrix}$
- $MGSat(f_1f_2...f_n:d) = \begin{bmatrix} f_1 & \left[f_2 & ...\left[f_n & MGSat(d)\right]\right] \end{bmatrix}$
- ullet Wenn $\mathbf{Var}=\mathbb{N}$, $\mathrm{dann}\,\mathit{MGSat}(1)=$
- $MGSat(d \land e) = MGSat(d) \sqcup MGSat(e)$

4. Typhierarchie

Bedingungen

Bedingungsprüfung per Unifikation: Beispiel

Grammatikregel mit Constraint

 $\texttt{NP} \texttt{[CAS=?y]} \ \to \texttt{DET} \texttt{[GEN=?x,CAS=?y]} \ \texttt{N} \texttt{[GEN=?x]}$

Bedingungen als Beschreibungen

- type : *NP* ∧ CAS : 2
- type : *DET* ∧ GEN : 1 ∧ CAS : 2
- type : *N* ∧ GEN : 1

Bedingungen als Merkmalstrukturen

$$\begin{bmatrix} \mathsf{type} & \mathit{NP} \\ \mathsf{CAS} & 2 \end{bmatrix} \rightarrow \begin{bmatrix} \mathsf{type} & \mathit{DET} \\ \mathsf{GEN} & \mathbb{I} \\ \mathsf{CAS} & 2 \end{bmatrix} \begin{bmatrix} \mathsf{type} & \mathit{N} \\ \mathsf{GEN} & \mathbb{I} \end{bmatrix}$$

4. Typhierarchie

Bedingungen