

Jogos Matemáticos - Aula 01

Equações e Sistemas

Kaique Matias de Andrade Roberto

Administração - Ciências Atuariais - Ciências Contábeis - Ciências Econômicas

HECSA - Escola de Negócios

FIAM-FAAM-FMU

Conteúdo

- 1. Conceitos que aprendemos em Aulas anteriores
- 2. Equações
- 3. Equações de Primeiro e Segundo Grau
- 4. Comentários Finais
- 5. Referências

Aulas anteriores

Conceitos que aprendemos em

Conceitos que aprendemos em Aulas anteriores

- aprendemos alguns conceitos do vocabulário matemático;
- recapitulamos conceitos básicos de lógica (sentenças, conectivos, quantificadores, equivalência lógica);
- tivemos um primeiro contato com a ideia de demonstração;
- recapitulamos conceitos básicos da teoria dos conjuntos (conjunto, subconjunto, partes, união, intersecção, diferença).

Os seguinte problema foi extraído do Livro A Dama ou o Tigre? de R. Smullyan:

Exercício 2.1 (Quanto?)

Suponha que eu e você temos a mesma quantia em dinheiro. Quanto preciso lhe dar para que você tenha dez reais a mais do que eu?

Exercício 2.2 (O Enigma dos Políticos)

Um grupo de cem políticos encontrava-se reunido. Cada político ou era honesto ou era desonesto, e somos informados dos seguintes dois fatos:

- 1. Pelo menos um dos políticos era honesto.
- 2. Dados quaisquer dois políticos, pelo menos um dos dois era desonesto.

É possível determinar a partir desses dois fatos, quantos políticos eram honestos e quantos eram desonestos?

Exercício 2.3 (Pinga Velha em Garrafa (nem tão) nova)

Uma garrafa de 51 custava dez reais. A pinga valia nove reais a mais do que a garrafa. Quanto valia a garrafa?

Agora vamos para um exemplo mais próximo da profissão de vocês:

Exercício 2.4

O lucro mensal de uma empresa é dado por

$$L = 50Q - 2000,$$

em que Q é a quantidade mensal vendida de seu produto. Qual a quantidade que deve ser vendida mensalmente para que o lucro mensal seja igual a R\$5000?

Precisamos de uma maneira sistemática de lidar com esses problemas.

Definição 2.5

Dado um conjunto U, uma **equação algébrica** com coeficientes em U na variável x é uma equação do tipo

$$a_n x^n + a_{n-1} x^{n-1} + ... + a_2 x^2 + a_1 x + a_0 = 0,$$

onde $a_0, a_1, ..., a_n \in U$. Se $a_n \neq 0$ dizemos que a **equação tem grau** n.

Exemplo 2.6

Podemos pensar em

$$3x^3 + x - 1 = 0$$

como uma equação algébrica com coeficientes em $\mathbb{Z},$ ou \mathbb{Q} (ou ainda $\mathbb{R})$ de grau 3.

Exemplo 2.7

Podemos pensar em

$$\frac{3x^4}{2} + 2x^2 - x = 0$$

como uma equação algébrica com coeficientes em \mathbb{Q} , ou \mathbb{R} de grau 4. Note que esta **não é** uma equação com coeficientes em \mathbb{Z} (por quê?).

Exemplo 2.8

Podemos pensar em

$$x^5 + 3x^3 - x^2 + 4x - \sqrt{2} = 0$$

como uma equação algébrica com coeficientes em \mathbb{R} de grau 5. Note que esta **não é** uma equação com coeficientes em \mathbb{Z} ou \mathbb{Q} (por quê?).

Para nós, se o universo de uma equação não for especificado, vamos sempre considerar o **maior universo possível** (contido em \mathbb{R}).

Exercício 2.9

Discuta os possíveis universos para as equações:

a -
$$2x + 1 = 0$$
;

c -
$$\frac{4x^3}{2} - x^2 + 1 = 0$$
;

b -
$$x^3 + 3x - 2 = 0$$
;

d -
$$(\sqrt{2})^2 x^8 - x^2 + 4 = 0$$
.

Definição 2.10

Seja $a_n x^n + a_{n-1} x^{n-1} + ... + a_2 x^2 + a_1 x + a_0 = 0$ uma equação com coeficientes em U. Uma **solução** é um elemento $\alpha \in U$ tal que

$$a_n \alpha^n + a_{n-1} \alpha^{n-1} + ... + a_2 \alpha^2 + a_1 \alpha + a_0 = 0.$$

Exemplo 2.11

Para a equação $2x^2-2=0$ em $\mathbb Z$, o elemento $1\in\mathbb Z$ é uma solução. O elemento $-1\in\mathbb Z$ é outra solução.

As soluções de uma equação **dependem** do universo que está sendo considerado.

Exemplo 2.12

Considere a equação $4x^4-5x^2+1=0$ em $\mathbb Z$. Temos que 1 e -1 são soluções. Se considerarmos a mesma equação em $\mathbb Q$, temos (além dessas) as soluções 1/2 e -1/2.

Grau

Até agora não temos um processo sistemático para calcular as soluções de uma equação.

Vamos lidar com isso em etapas.

Teorema 3.1

Para a equação do primeiro grau ax+b=0 com $a,b\in\mathbb{R},\ a\neq 0$ temos uma única solução

$$\alpha = -\frac{b}{\mathsf{a}}$$

Exercício 3.2

Resolva as equações:

a -
$$4x + 6x = 8 + 12$$
;

b -
$$-3x + 1 = -8$$
;

c -
$$5(x-2) = 4x + 6$$
;

$$d - \frac{x-2}{3} + \frac{x-3}{2} = \frac{1}{6}.$$

Para a equação do segundo grau em ${\mathbb R}$

$$ax^2 + bx + c = 0,$$

considere

$$\Delta = b^2 - 4ac.$$

Teorema 3.3

Para a equação do segundo grau em \mathbb{R} $ax^2+bx+c=0$ (com $a\neq 0$):

- se $\Delta < 0$ então a equação não tem soluções reais;
- ullet se $\Delta=0$ então a única solução da equação é

$$\alpha=-\frac{b}{2a};$$

ullet se $\Delta>0$ então a equação admite duas soluções

$$\alpha_1 = \frac{-b - \sqrt{\Delta}}{2a}$$
 e $\alpha_2 = \frac{-b + \sqrt{\Delta}}{2a}$.

Exercício 3.4

Resolva as equações:

a -
$$x^2 - 4x + 3 = 0$$
;

b -
$$x^2 - 5x + 4 = 0$$
;

c -
$$t^2 - 6t + 8 = 0$$
;

$$d - y^2 - 6y - 3 = 0.$$

Definição 3.5

A equação em $\mathbb R$ do tipo

$$ax^4 + bx^2 + c = 0$$

é chamada **biquadrada**.

Para resolver uma equação biquadrada basta realizar a substituição $z=x^2$ e resolver a equação de segundo grau correspondente.

Exercício 3.6

Resolva as equações biquadradas:

a -
$$x^4 - 5x^2 + 4 = 0$$
:

b -
$$x^4 - 5x^2 + 10 = 0$$
;

c -
$$y^4 - 10y^2 + 9 = 0$$
;

$$d - (x^2 - 1)(x^2 - 12) + 24 = 0.$$

O problema de fornecer/caracterizar as soluções de uma equação algébrica geral

$$a_n x^n + a_{n-1} x^{n-1} + ... + a_2 x^2 + a_1 x + a_0 = 0$$

ficou em aberto por mais de 2000 anos!

Após a formulação das fórmulas de Bháskara (algo em torno do Século V A.C), só houve avanços na solução desse problema no Século XVI.

No final do Século XVI, os matemáticos Cardano, Tartaglia e Scipiano del Ferro calcularam as soluções da equação cúbica

$$z^3 + pz + q = 0.$$

As soluções são:

$$u = \sqrt[3]{-\frac{q}{2} + \sqrt{\frac{q^3}{4} + \frac{p^3}{27}}};$$

$$v = \sqrt[3]{-\frac{q}{2} - \sqrt{\frac{q^3}{4} + \frac{p^3}{27}}};$$

$$z = u + v = \sqrt[3]{-\frac{q}{2} + \sqrt{\frac{q^3}{4} + \frac{p^3}{27}}} + \sqrt[3]{-\frac{q}{2} - \sqrt{\frac{q^3}{4} + \frac{p^3}{27}}}.$$

Por volta da mesma época, o matemático L. Ferrari desenvolveu uma fórmula para calcular as soluções de uma equação de grau 4 (com uma fórmula ainda mais sinistra).

Em seguida, uma série de pessoas atacaram o problema de encontrar as soluções de uma equação de grau 5.

No Século XIX, o matemático E. Galois afirmou que não era possível obter uma fórmula para as soluções das equações de grau maior que 5. Mas teve uma morte trágica e não pode desenvolver as suas teorias.

Apenas no século XX, com os trabalhos de Emmy Noether e Emil Artin que houve uma resposta definitiva e satisfatória para o problema.

E portanto, para equações de grau maior ou igual a 5, não existe uma fórmula (tipo a fórmula de Bháskara) para calcular as soluções da equação.

Em resumo, na aula de hoje nós:

- aprendemos o que é uma equação algébrica;
- aprendemos a resolver equações de primeiro e segundo grau;
- aprendemos que n\u00e3o existe uma f\u00f3rmula para equa\u00f3\u00f3es de grau maior que 4.

Nas próxima aula nós vamos focar em:

- resolução de equações de primeiro e segundo grau;
- Resolução de sistemas lineares 2×2 e 3×3 .

ATIVIDADE PARA ENTREGAR (E COMPOR A NOTA N1)

Em grupos de até 5 integrantes resolva os Exercícios 1.6, 1.7.

Bons Estudos!

