3.7 — Interaction Effects

ECON 480 • Econometrics • Fall 2021

Ryan Safner

Assistant Professor of Economics

- safner@hood.edu
- <u>ryansafner/metricsF21</u>
- metricsF21.classes.ryansafner.com

Outline

<u>Interactions Between a Dummy and Continuous Variable</u>

<u>Interactions Between Two Dummy Variables</u>

Interactions Between Two Continuous Variables

Sliders and Switches

Sliders and Switches

Dummy Variable

Continuous Variable

- Marginal effect of dummy variable: effect on Y of going from 0 to 1
- Marginal effect of continuous variable: effect on Y of a 1 unit change in X

Interaction Effects

ullet Sometimes one X variable might *interact* with another in determining Y

Example: Consider the gender pay gap again.

- *Gender* affects wages
- Experience affects wages
- Does experience affect wages *differently* by gender?
 - i.e. is there an interaction effect between gender and experience?
- Note this is *NOT the same* as just asking: "do men earn more than women with the same amount of experience?"

$$\widehat{\text{wages}}_i = \beta_0 + \beta_1 \ Gender_i + \beta_2 \ Experience_i$$

Three Types of Interactions

- Depending on the types of variables, there are 3 possible types of interaction effects
- We will look at each in turn
- 1. Interaction between a **dummy** and a **continuous** variable:

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 D_i + \beta_3 (X_i \times D_i)$$

2. Interaction between a **two dummy** variables:

$$Y_i = \beta_0 + \beta_1 D_{1i} + \beta_2 D_{2i} + \beta_3 (D_{1i} \times D_{2i})$$

3. Interaction between a **two continuous** variables:

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 (X_{1i} \times X_{2i})$$

Interactions Between a Dummy and Continuous Variable

Interactions: A Dummy & Continuous Variable

Dummy Variable

Continuous Variable

ullet Does the marginal effect of the continuous variable on Y change depending on whether the dummy is "on" or "off"?

Interactions: A Dummy & Continuous Variable I

• We can model an interaction by introducing a variable that is an **interaction term** capturing the interaction between two variables:

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 D_i + \beta_3 (X_i \times D_i)$$
 where $D_i = \{0, 1\}$

- β_3 estimates the interaction effect between X_i and D_i on Y_i
- What do the different coefficients (β) 's tell us?
 - \circ Again, think logically by examining each group $(D_i=0 \text{ or } D_i=1)$

Interaction Effects as Two Regressions I

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 D_i + \beta_3 X_i \times D_i$$

• When $D_i = 0$ (Control group):

$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2(0) + \hat{\beta}_3 X_i \times (0)$$

$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$$

• When $D_i = 1$ (Treatment group):

$$\hat{Y}_{i} = \hat{\beta}_{0} + \hat{\beta}_{1} X_{i} + \hat{\beta}_{2} (1) + \hat{\beta}_{3} X_{i} \times (1)$$

$$\hat{Y}_{i} = (\hat{\beta}_{0} + \hat{\beta}_{2}) + (\hat{\beta}_{1} + \hat{\beta}_{3}) X_{i}$$

So what we really have is two regression lines!

Interaction Effects as Two Regressions II

• $D_i = 0$ group:

$$Y_i = \hat{\beta_0} + \hat{\beta_1} X_i$$

• $D_i = 1$ group:

$$Y_i = (\hat{\beta}_0 + \hat{\beta}_2) + (\hat{\beta}_1 + \hat{\beta}_3)X_i$$

Interpretting Coefficients I

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 D_i + \beta_3 (X_i \times D_i)$$

• To interpret the coefficients, compare cases after changing X by ΔX :

$$Y_i + \Delta Y_i = \beta_0 + \beta_1 (X_i + \Delta X_i) \beta_2 D_i + \beta_3 ((X_i + \Delta X_i) D_i)$$

• Subtracting these two equations, the difference is:

$$\Delta Y_i = \beta_1 \Delta X_i + \beta_3 D_i \Delta X_i$$
$$\frac{\Delta Y_i}{\Delta X_i} = \beta_1 + \beta_3 D_i$$

- The effect of $X \to Y$ depends on the value of D_i !
- β_3 : increment to the effect of $X \to Y$ when $D_i = 1$ (vs. $D_i = 0$)

Interpretting Coefficients II

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 D_i + \beta_3 (X_i \times D_i)$$

- $\hat{\beta_0}$: $E[Y_i]$ for $X_i = 0$ and $D_i = 0$
- β_1 : Marginal effect of $X_i \to Y_i$ for $D_i = 0$
- β_2 : Marginal effect on Y_i of difference between $D_i=0$ and $D_i=1$
- β_3 : The **difference** of the marginal effect of $X_i \to Y_i$ between $D_i = 0$ and $D_i = 1$
- This is a bit awkward, easier to think about the two regression lines:

Interpretting Coefficients III

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 D_i + \beta_3 (X_i \times D_i)$$

For
$$D_i = 0$$
 Group: $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$

- Intercept: $\hat{\beta}_0$
- Slope: $\hat{\beta}_1$

For
$$D_i = 1$$
 Group:

$$\hat{Y}_i = (\hat{\beta}_0 + \hat{\beta}_2) + (\hat{\beta}_1 + \hat{\beta}_3)X_i$$

- Intercept: $\hat{\beta_0} + \hat{\beta_2}$ Slope: $\hat{\beta_1} + \hat{\beta_3}$

- $\hat{\beta}_2$: difference in intercept between groups
- $\hat{\beta}_3$: difference in slope between groups
- How can we determine if the two lines have the same slope and/or intercept?
 - Same intercept? t-test H_0 : $\beta_2 = 0$
 - Same slope? t-test H_0 : $\beta_3 = 0$

Example I

Example:

$$\widehat{wage_i} = \hat{\beta_0} + \hat{\beta_1}exper_i + \hat{\beta_2}female_i + \hat{\beta_3}(exper_i \times female_i)$$

• For males (female = 0):

$$\widehat{wage_i} = \hat{\beta_0} + \hat{\beta_1} exper$$

• For females (female = 1):

$$\widehat{wage_i} = (\hat{\beta_0} + \hat{\beta_2}) + (\hat{\beta_1} + \hat{\beta_3}) exper$$
intercept slope

Example II

- Need to make sure color aesthetic uses a factor variable
 - Can just use as.factor() in ggplot code

Example II


```
interaction_plot+
  geom_smooth(method="lm")
```


Example II


```
interaction_plot+
  geom_smooth(method="lm")+
  facet_wrap(~Gender)
```


Example Regression in R I

- Syntax for adding an interaction term is easy in R: var1 * var2
 - Or could just do var1 * var2 (multiply)

```
# both are identical in R
interaction_reg <- lm(wage ~ exper * female, data = wages)
interaction_reg <- lm(wage ~ exper + female + exper * female, data = wages)</pre>
```

term	estimate	std.error	statistic	p.value
<chr></chr>	<dbl></dbl>	<dpl></dpl>	<qpf></qpf>	< dbl>
(Intercept)	6.15827549	0.34167408	18.023830	7.998534e-57
exper	0.05360476	0.01543716	3.472450	5.585255e-04
female	-1.54654677	0.48186030	-3.209534	1.411253e-03
exper:female	-0.05506989	0.02217496	-2.483427	1.332533e-02

4 rows

Example Regression in R III

	(1)
Constant	6.16 ***
	(0.34)
Experience	0.05 ***
	(0.02)
Female	-1.55 **
	(0.48)
Experience * Female	-0.06 *
	(0.02)
N	526
R-Squared	0.14
SER	3.44

$$\widehat{wage_i} = 6.16 + 0.05 \, Experience_i - 1.55 \, Female_i - 0.06 \, (Experience_i \times Female_i)$$

• $\hat{\beta}_0$:

$$\widehat{wage_i} = 6.16 + 0.05 \, Experience_i - 1.55 \, Female_i - 0.06 \, (Experience_i \times Female_i)$$

- $\hat{\beta_0}$: Men with 0 years of experience earn 6.16
- $\hat{\beta}_1$:

$$\widehat{wage_i} = 6.16 + 0.05 \, Experience_i - 1.55 \, Female_i - 0.06 \, (Experience_i \times Female_i)$$

- $\hat{\beta_0}$: Men with 0 years of experience earn 6.16
- $\hat{\beta}_1$: For every additional year of experience, *men* earn \$0.05
- $\hat{\beta}_2$:

$$\widehat{wage_i} = 6.16 + 0.05 \, Experience_i - 1.55 \, Female_i - 0.06 \, (Experience_i \times Female_i)$$

- $\hat{\beta_0}$: Men with 0 years of experience earn 6.16
- $\hat{\beta}_1$: For every additional year of experience, *men* earn \$0.05
- $\hat{\beta}_2$: Women with 0 years of experience earn \$1.55 less than men
- $\hat{\beta}_3$:

$$\widehat{wage_i} = 6.16 + 0.05 \, Experience_i - 1.55 \, Female_i - 0.06 \, (Experience_i \times Female_i)$$

- $\hat{\beta}_0$: Men with 0 years of experience earn 6.16
- $\hat{\beta}_1$: For every additional year of experience, *men* earn \$0.05
- $\hat{\beta}_2$: Women with 0 years of experience earn \$1.55 less than men
- $\hat{\beta}_3$: Women earn \$0.06 less than men for every additional year of experience

Interpretting Coefficients as 2 Regressions I

$$\widehat{wage_i} = 6.16 + 0.05 \, Experience_i - 1.55 \, Female_i - 0.06 \, (Experience_i \times Female_i)$$

Regression for men (female = 0)

$$\widehat{wage_i} = 6.16 + 0.05 Experience_i$$

- Men with 0 years of experience earn \$6.16 on average
- For every additional year of experience, men earn \$0.05 more on average

Interpretting Coefficients as 2 Regressions II

$$\widehat{wage_i} = 6.16 + 0.05 \, Experience_i - 1.55 \, Female_i - 0.06 \, (Experience_i \times Female_i)$$

Regression for women (female = 1)

$$\widehat{wage_i} = 6.16 + 0.05 \, Experience_i - 1.55(1) - 0.06 \, Experience_i \times (1)$$

$$= (6.16 - 1.55) + (0.05 - 0.06) \, Experience_i$$

$$= 4.61 - 0.01 \, Experience_i$$

- Women with 0 years of experience earn \$4.61 on average
- For every additional year of experience, women earn \$0.01 *less* on average

Example Regression in R: Hypothesis Testing

• Are slopes & intercepts of the 2 regressions statistically significantly different?

$$\widehat{wage_i} = 6.16 + 0.05 \, Experience_i - 1.55 \, Female_i - 0.06 \, (Experience_i \times Female_i)$$

term	estimate	std.error	statistic	p.value
(Intercept)	6.16	0.342	18	8e- 57
exper	0.0536	0.0154	3.47	0.000559
female	-1.55	0.482	-3.21	0.00141
exper:female	-0.0551	0.0222	-2.48	0.0133

Example Regression in R: Hypothesis Testing

- Are slopes & intercepts of the 2 regressions statistically significantly different?
- Are intercepts different? $H_0: \beta_2 = 0$
 - Difference between men vs. women for no experience?
 - \circ Is $\hat{\beta}_2$ significant?
 - Yes (reject) H_0 : t = -3.210, p-value = 0.00

$$\widehat{wage_i} = 6.16 + 0.05 \, Experience_i - 1.55 \, Female_i - 0.06 \, (Experience_i \times Female_i)$$

term	estimate	std.error	statistic	p.value
(Intercept)	6.16	0.342	18	8e- 57
exper	0.0536	0.0154	3.47	0.000559
female	-1.55	0.482	-3.21	0.00141
exper:female	-0.0551	0.0222	-2.48	0.0133

Example Regression in R: Hypothesis Testing

- Are slopes & intercepts of the 2 regressions statistically significantly different?
- Are intercepts different? $H_0: \beta_2 = 0$
 - Difference between men vs. women for no experience?
 - \circ Is $\hat{\beta}_2$ significant?
 - Yes (reject) H_0 : t = -3.210, p-value = 0.00
- Are slopes different? $H_0: \beta_3 = 0$
 - Difference between men vs. women for marginal effect of experience?
 - Is $\hat{\beta}_3$ significant?

$$\widehat{wage_i} = 6.16 + 0.05 \, Experience_i - 1.55 \, Female_i - 0.06 \, (Experience_i \times Female_i)$$

term	estimate	std.error	statistic	p.value
(Intercept)	6.16	0.342	18	8e- 57
exper	0.0536	0.0154	3.47	0.000559
female	-1.55	0.482	-3.21	0.00141
exper:female	-0.0551	0.0222	-2.48	0.0133

Interactions Between Two Dummy Variables

Interactions Between Two Dummy Variables

Dummy Variable

Dummy Variable

• Does the marginal effect on Y of one dummy going from "off" to "on" change depending on whether the *other* dummy is "off" or "on"?

Interactions Between Two Dummy Variables

$$Y_i = \beta_0 + \beta_1 D_{1i} + \beta_2 D_{2i} + \beta_3 (D_{1i} \times D_{2i})$$

- ullet D_{1i} and D_{2i} are dummy variables
- $\hat{\beta}_1$: effect on Y of going from $D_{1i}=0$ to $D_{1i}=1$ when $D_{2i}=0$
- $\hat{\beta}_2$: effect on Y of going from $D_{2i}=0$ to $D_{2i}=1$ when $D_{1i}=0$
- $\hat{\beta}_3$: effect on Y of going from $D_{1i}=0$ to $D_{1i}=1$ when $D_{2i}=1$
 - \circ *increment* to the effect of D_{1i} going from 0 to 1 when $D_{2i}=1$ (vs. 0)
- As always, best to think logically about possibilities (when each dummy = 0 or = 1)

2 Dummy Interaction: Interpretting Coefficients

$$Y_i = \beta_0 + \beta_1 D_{1i} + \beta_2 D_{2i} + \beta_3 (D_{1i} \times D_{2i})$$

- To interpret coefficients, compare cases:
 - \circ Hold D_{2i} constant (set to some value $D_{2i}=d_2$)
 - \circ Plug in 0s or 1s for D_{1i}

$$E(Y_i|D_{1i} = 0, D_{2i} = d_2) = \beta_0 + \beta_2 d_2$$

$$E(Y_i|D_{1i} = 1, D_{2i} = d_2) = \beta_0 + \beta_1(1) + \beta_2 d_2 + \beta_3(1)d_2$$

• Subtracting the two, the difference is:

$$\beta_1 + \beta_3 d_2$$

- The marginal effect of $D_{1i} \to Y_i$ depends on the value of D_{2i}
 - \circ \hat{eta}_3 is the *increment* to the effect of D_1 on Y when D_2 goes from 0 to 1

Interactions Between 2 Dummy Variables: Example

Example: Does the gender pay gap change if a person is married vs. single?

$$\widehat{wage_i} = \hat{\beta_0} + \hat{\beta_1}female_i + \hat{\beta_2}married_i + \hat{\beta_3}(female_i \times married_i)$$

- Logically, there are 4 possible combinations of $female_i = \{0, 1\}$ and $married_i = \{0, 1\}$
- 1) Unmarried men ($female_i = 0$, $married_i = 0$)

$$\widehat{wage_i} = \hat{\beta_0}$$

Interactions Between 2 Dummy Variables: Example

Example: Does the gender pay gap change if a person is married vs. single?

$$\widehat{wage_i} = \hat{\beta_0} + \hat{\beta_1}female_i + \hat{\beta_2}married_i + \hat{\beta_3}(female_i \times married_i)$$

- Logically, there are 4 possible combinations of $female_i = \{0, 1\}$ and $married_i = \{0, 1\}$
- 1) Unmarried men ($female_i = 0$, $married_i = 0$)

$$\widehat{wage_i} = \hat{\beta_0}$$

2) Married men ($female_i = 0$, $married_i = 1$)

$$\widehat{wage_i} = \hat{\beta_0} + \hat{\beta_2}$$

3) Unmarried women ($female_i = 1$, $married_i = 0$)

$$\widehat{wage_i} = \hat{\beta_0} + \hat{\beta_1}$$

Interactions Between 2 Dummy Variables: Example

Example: Does the gender pay gap change if a person is married vs. single?

$$\widehat{wage_i} = \hat{\beta_0} + \hat{\beta_1}female_i + \hat{\beta_2}married_i + \hat{\beta_3}(female_i \times married_i)$$

- Logically, there are 4 possible combinations of $female_i = \{0, 1\}$ and $married_i = \{0, 1\}$
- 1) Unmarried men ($female_i = 0$, $married_i = 0$)

$$\widehat{wage_i} = \hat{\beta_0}$$

2) Married men ($female_i = 0$, $married_i = 1$)

$$\widehat{wage_i} = \hat{\beta_0} + \hat{\beta_2}$$

3) Unmarried women ($female_i = 1$, $married_i = 0$)

$$\widehat{wage_i} = \hat{\beta_0} + \hat{\beta_1}$$

4) Married women ($female_i = 1$, $married_i = 1$)

$$\widehat{wage_i} = \hat{\beta_0} + \hat{\beta_1} + \hat{\beta_2} + \hat{\beta_3}$$

Looking at the Data

mean

5.17

mean

7.98

mean

4.61

mean

4.57

Two Dummies Interaction: Group Means

$$\widehat{wage_i} = \hat{\beta_0} + \hat{\beta_1}female_i + \hat{\beta_2}married_i + \hat{\beta_3}(female_i \times married_i)$$

	Men	Women
Unmarried	\$5.17	\$4.61
Married	\$7.98	\$4.57

Interactions Between Two Dummy Variables: In R I


```
reg_dummies <- lm(wage ~ female + married + female:married, data = wages)
reg_dummies %>% tidy()
```

term	estimate	std.error	statistic	p.value
(Intercept)	5.17	0.361	14.3	2.26e-39
female	-0.556	0.474	-1.18	0.241
married	2.82	0.436	6.45	2.53e-10
female:married	-2.86	0.608	-4.71	3.2e-06

Interactions Between Two Dummy Variables: In R II

	(1)	
Constant	5.17 ***	
	(0.36)	
Female	-0.56	
	(0.47)	
Married	2.82 ***	
	(0.44)	
Female * Married	-2.86 ***	
	(0.61)	
N	526	
R-Squared	0.18	
SER	3.35	

^{***} p < 0.001; ** p < 0.01; * p < 0.05.

2 Dummies Interaction: Interpretting Coefficients

 $\widehat{wage_i} = 5.17 - 0.56 female_i + 2.82 married_i - 2.86 (female_i \times married_i)$

	Men	Women
Unmarried	\$5.17	\$4.61
Married	\$7.98	\$4.57

- Wage for unmarried men: $\hat{\beta_0} = 5.17$
- Wage for married men: $\hat{\beta_0} + \hat{\beta_2} = 5.17 + 2.82 = 7.98$
- Wage for unmarried women: $\hat{\beta_0} + \hat{\beta_1} = 5.17 0.56 = 4.61$
- Wage for married women: $\hat{\beta_0} + \hat{\beta_1} + \hat{\beta_2} + \hat{\beta_3} = 5.17 0.56 + 2.82 2.86 = 4.57$

2 Dummies Interaction: Interpretting Coefficients

$$\widehat{wage_i} = 5.17 - 0.56 female_i + 2.82 married_i - 2.86 (female_i \times married_i)$$

	Men	Women
Unmarried	\$5.17	\$4.61
Married	\$7.98	\$4.57

- $\hat{\beta_0}$: Wage for **unmarried men**
- $\hat{\beta}_2$: Effect of marriage on wages for men
- $\hat{\beta}_2$: Difference in wages between **men** and **women** who are **unmarried**
- $\hat{\beta}_3$: *Difference* in:
 - effect of Marriage on wages between men and women
 - effect of **Gender** on wages between **unmarried** and **married** individuals

Interactions Between Two Continuous Variables

Interactions Between Two Continuous Variables

Continuous Variable

Continuous Variable

• Does the marginal effect of X_1 on Y depend on what X_2 is set to?

Interactions Between Two Continuous Variables

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 (X_{1i} \times X_{2i})$$

• To interpret coefficients, compare changes after changing ΔX_{1i} (holding X_2 constant):

$$Y_i + \Delta Y_i = \beta_0 + \beta_1 (X_1 + \Delta X_{1i}) \beta_2 X_{2i} + \beta_3 ((X_{1i} + \Delta X_{1i}) \times X_{2i})$$

Take the difference to get:

$$\Delta Y_i = \beta_1 \Delta X_{1i} + \beta_3 X_{2i} \Delta X_{1i}$$
$$\frac{\Delta Y_i}{\Delta X_{1i}} = \beta_1 + \beta_3 X_{2i}$$

- The effect of $X_1 \to Y_i$ depends on X_2
 - \circ β_3 : increment to the effect of $X_1 \to Y_i$ for every 1 unit change in X_2

Continuous Variables Interaction: Example

Example: Do education and experience interact in their determination of wages?

$$\widehat{wage_i} = \hat{\beta_0} + \hat{\beta_1} educ_i + \hat{\beta_2} exper_i + \hat{\beta_3} (educ_i \times exper_i)$$

• Estimated effect of education on wages depends on the amount of experience (and vice versa)!

$$\frac{\Delta wage}{\Delta educ} = \hat{\beta}_1 + \beta_3 \ exper_i$$

$$\frac{\Delta wage}{\Delta exper} = \hat{\beta}_2 + \beta_3 \ educ_i$$

• This is a type of nonlinearity (we will examine nonlinearities next lesson)

Continuous Variables Interaction: In R I


```
reg_cont <- lm(wage ~ educ + exper + educ:exper, data = wages)
reg_cont %>% tidy()
```

term	estimate	std.error	statistic	p.value
(Intercept)	-2.86	1.18	-2.42	0.0158
educ	0.602	0.0899	6.69	5.64e-11
exper	0.0458	0.0426	1.07	0.283
educ:exper	0.00206	0.00349	0.591	0.555

Continuous Variables Interaction: In R II

	(1)
Constant	-2.860 *
	(1.181)
Education	0.602 ***
	(0.090)
Experience	0.046
	(0.043)
Education * Experience	0.002
	(0.003)
N	526
R-Squared	0.226
SER	3.259

^{***} p < 0.001; ** p < 0.01; * p < 0.05.

Continuous Variables Interaction: Marginal Effects

$$\widehat{wages_i} = -2.860 + 0.602 \ educ_i + 0.047 \ exper_i + 0.002 \ (educ_i \times exper_i)$$

Marginal Effect of *Education* on Wages by Years of *Experience*:

Experience	$\frac{\Delta wage}{\Delta educ} = \hat{\beta_1} + \hat{\beta_3} exper$
5 years	0.602 + 0.002(5) = 0.612
10 years	0.602 + 0.002(10) = 0.622
15 years	0.602 + 0.002(15) = 0.632

• Marginal effect of education → wages **increases** with more experience

Continuous Variables Interaction: Marginal Effects

$$\widehat{wages_i} = -2.860 + 0.602 \ educ_i + 0.047 \ exper_i + 0.002 \ (educ_i \times exper_i)$$

Marginal Effect of *Experience* on Wages by Years of *Education*:

Education	$\frac{\Delta wage}{\Delta exper} = \hat{\beta}_2 + \hat{\beta}_3 educ$
5 years	0.047 + 0.002(5) = 0.057
10 years	0.047 + 0.002(10) = 0.067
15 years	0.047 + 0.002(15) = 0.077

- Marginal effect of experience → wages increases with more education
- If you want to estimate the marginal effects more precisely, and graph them, see the appendix in <u>today's class page</u>