

Atty. Dkt. No.: 39153/447 (G1152)

WHAT IS CLAIMED IS:

- 1. A method of defining a phase shifting mask, the method 1 comprising: 2 defining critical poly regions and adjoining poly, the critical 3 poly regions being regions desired to be defined by phase shifting; 4 creating phase regions on either side of the critical poly 5 regions; 6 assigning phase angles to the phase regions such that the 7 phase regions have either a first phase angle or a second phase angle; 8 defining edges of the phase regions being assigned the 9 second phase angle, the edges not defining a poly pattern; 10 defining a boundary region around the defined edges; and 11 defining regions outside a desired poly pattern, phase 12 regions, and boundary region to have the first phase angle, wherein the 13 desired poly pattern, phase regions, and boundary region define a mask. 14
- 2. The method of claim 1, further comprising enhancing the phase regions assigned a phase angle.
- 3. The method of claim 1, wherein enhancing the phase regions assigned a phase angle includes reducing the effect of transition regions by moving transition regions away from the critical poly regions.

14

15

Atty. Dkt. No.: 39153/447 (G1152)

		•	
1	6.	The method of claim 1, wherein the step of defining a	
2	boundary ar	ound the defined edges comprises forming a chrome path.	
1	7.	The method of claim 1, further comprising defining break	
2	locations wh	nere phase transitions are most likely to occur.	
1	8.	The method of claim 7, wherein the break locations have a	
2	width that p	permits patterning and inspection.	
1	9.	The method of claim 1, further comprising generating a trim	
2	mask to rem	nove undesired patterns between regions of the first phase	
3	angle and th	ne second phase angle.	
1	10.	A method of generating phase shifting pattern to improve the	
2	patterning o	f gates and other layers needing sub-nominal dimensions, the	
3	method comprising:		
4		defining critical areas;	
5		creating phase areas on either side of the critical areas;	
6		assigning opposite phase polarities to the phase areas on	
7	each side of	the critical areas;	
8		enhancing phase areas with assigned phase polarities;	
9		defining break regions where phase transitions are likely to	
0	occur;		
1 .	,	generating polygons to define other edges and excluding the	
2	defined brea	k regions;	
3		merging the generated polygons with enhanced critical gate	

one polarity into portions which are marged into regions having only one

separating the polygons having interactions with more than

areas having a common phase polarity;

3

4

1

2

1

2

1

2

18		constructing a boundary region outside of phase 180
19	regions; and	
20		defining undefined regions as phase 0 regions.
1	11.	The method of claim 10, further comprising:
2		correcting design rule violations; and

regions to allow proper pattern generation.

12. The method of claim 11, further comprising generating a trim mask to remove undesired patterns between phase 0 and phase 180 2 regions outside of a desired pattern. 3

applying optical proximity and process corrections to phase

- 13. The method of claim 12, wherein the generating is done by oversizing boundary and break regions.
- 14. The method of claim 10, wherein the break regions are about a minimum width of a desired poly pattern.
- The method of claim 10, wherein enhancing critical areas 15. with assigned phase polarities includes adding edges to the critical areas.
- 16. A method of enhancing clear field phase shift masks with a border around outside edges, the method comprising: 2
- assigning phase polarities to phase regions; 3
- defining edges of the assigned phase regions;

4

5

6

7

8

9

10

11

12

- break regions, wherein the polygons are merged with the assigned phase
 regions.
- 1 18. The method of claim 17, further comprising curing design rule violations and applying correction procedures.
- 1 19. The method of claim 17, further comprising generating a trim
 2 mask to remove undesired patterns between phase 0 and phase 180
 3 regions.
- 1 20. The method of claim 19, wherein the generating is done by oversizing the boundary and break regions.
- 21. A integrated circuit formed by a process comprising:
 defining phase areas including adjoining poly areas located
 proximate to critical areas;

assigning a first phase angle to the phase areas;
defining remaining poly edges as part of the phase areas;
defining a boundary around the defined phase areas, the
areas outside the boundary being assigned a second phase angle, wherein
the phase areas, the boundary, and areas outside the boundary defining a
mask, wherein the first phase angle and the second phase angle are
different;

curing violation areas and applying correction procedures to appropriate areas on the mask; and

patterning a structure on the integrated circuit using the mask.

1 22. The integrated circuit formed by the process of claim 21, 2 wherein the second phase angle is zero.