Higher independence

Vera Fischer

University of Vienna

February 4th, 2020

Independence Number

A family $\mathscr{A} \subseteq [\omega]^{\omega}$ is said to be independent for any two non-empty finite disjoint subfamilies \mathscr{A}_0 and \mathscr{A}_1 the set

$$\bigcap \mathscr{A}_0 \backslash \bigcup \mathscr{A}_1$$

is infinite. It is a maximal independent family if it is maximal under inclusion and

$$i = \min\{|\mathscr{A}| : \mathscr{A} \text{ is a m.i.f.}\}$$

Boolean combinations

Let \mathscr{A} be a independent and let $FF(\mathscr{A})$ be the set of all finite partial functions from \mathscr{A} to 2. For $h \in FF(\mathscr{A})$ define

$$\mathscr{A}^h = \bigcap \{A^{h(A)} : A \in \mathsf{dom}(h)\},\$$

where
$$A^{h(A)} = A$$
 if $h(A) = 0$ and $A^{h(A)} = \omega \setminus A$ if $h(A) = 1$.

Remark

We refer to $\{\mathscr{A}^h : h \in \mathsf{FF}(\mathscr{A})\}$ as a set of boolean combinations.

- There is a maximal independent family of cardinality 2^{κ₀}.
- $\aleph_0 < \mathfrak{i} \leq 2^{\aleph_0}$.
- If \mathscr{A} is a maximal independent family then $\{\mathscr{A}^h : h \in \mathsf{FF}(\mathscr{A})\}$ is an un-reaped family. Thus $\mathfrak{r} \leq \mathfrak{i}$.
- (Shelah) $\mathfrak{d} \leq \mathfrak{i}$.

i vs. u

In the Miller model $\mathfrak{u}<\mathfrak{i}$, while Shelah devised a special ${}^\omega\omega$ -bounding poset the countable support iteration of which produces a model of $\mathfrak{i}=\aleph_1<\mathfrak{u}=\aleph_2.$

a vs. u

In the Cohen model $\mathfrak{a} < \mathfrak{u}$, while assuming the existence of a measurable one can show the consistency of $\mathfrak{u} < \mathfrak{a}$. The use of a measurable has been eliminated by Guzman and Kalajdzievski.

a vs i

In the Cohen model $\mathfrak{a} < \mathfrak{i} = \mathfrak{c}$.

Question:

Is it consistent that i < a?

Diagonalization

A-diagonalization filters (F., Shelah)

Let $\mathscr A$ be an independent family. A filter $\mathscr U$ is said to be an $\mathscr A\text{-diagonalization filter if}$

$$\forall F \in \mathscr{U} \forall B \in \mathsf{BC}(\mathscr{A})(|F \cap B| = \omega)$$

and is maximal with respect to the above property.

Diagonalization

Lemma (F., Shelah)

If $\mathscr U$ is a $\mathscr A$ -diagonalization filter and G is $\mathbb M(\mathscr U)$ -generic and $x_G = \bigcup \{s : \exists F(s,F) \in G\}$, then:

- \bigcirc $\mathscr{A} \cup \{x_G\}$ is independent
- ② If $y \in ([\omega]^{\omega} \setminus \mathscr{A}) \cap V$ is such that $\mathscr{A} \cup \{y\}$ is independent, then $\mathscr{A} \cup \{x_G, y\}$ is not independent.

Diagonalization

Corollary (F., Shelah)

Let κ be of uncountable cofinality. Then it is relatively consistent that $\aleph_1 < \mathfrak{i} = \kappa < \mathfrak{c}.$

Theorem (F., Shelah)

Assume GCH. Let $\kappa_1 < \cdots < \kappa_n$ be regular uncountable cardinals. Then it is consistent that $\{\kappa_i\}_{i=1}^n \subseteq \operatorname{Sp}(\mathfrak{i})$.

Theorem (F., Shelah)

Let $\kappa_1 < \kappa_2 < \cdots < \kappa_n$ be measurable cardinals witnessed by κ_i -complete ultrafilters $\mathcal{D}_i \subseteq \mathscr{P}(\kappa_i)$. Then there is a ccc generic extension in which $\{\kappa_i\}_{i=1}^n = \mathfrak{sp}(\mathfrak{i}) = \{|\mathscr{A}| : \mathscr{A} \text{ m.i.f.}\}.$

Sp(i) can be small

Theorem (F., Shelah)

Assume GCH. Let λ be a cardinal of uncountable cofinality. Let G be \mathbb{P} -generic filter, where \mathbb{P} is the countable support product of Sacks forcing of length λ . Then $V[G] \models Sp(i) = \{\aleph_1, \lambda\}$.

Lemma

Let \mathscr{A} be an independent family, \mathscr{U} a diagonalization filter for \mathscr{A} . For each $i \in n$, let $\mathscr{U}_i = \mathscr{U}$ and let $G = \prod_{i \in n} G_i$ be a $\prod_{i \in n} \mathbb{M}(\mathscr{U}_i)$ -generic filter, x_i a $\mathbb{M}(\mathscr{U}_i)$ -generic real. Then in V[G]:

- $\mathscr{A} \cup \{x_i\}_{i \in n}$ is independent.
- For all $y \in V \cap [\omega]^{\omega}$ such that $\mathscr{A} \cup \{y\}$ is independent and each $i \in n$, the family $\mathscr{A} \cup \{y, x_i\}$ is not independent.

Definition (F., Shelah)

Let θ be an uncountable cardinal and let $S \subseteq \theta^{<\omega_1}$ be an θ -splitting tree of height ω_1 . For each $\alpha \in \omega_1$ let S_α denote the α -th level of S. Recursively, define a finite support iteration

$$\mathbb{P}_{\mathcal{S}} = \langle \mathbb{P}_{\alpha}, \mathbb{Q}_{\alpha} : \alpha \leq \omega_1, \beta < \omega_1 \rangle$$

as follows:

- Let $\mathbb{P}_0 = \{\emptyset\}$, \mathbb{Q}_0 be a \mathbb{P}_0 -name for the trivial poset.
- Let $\mathscr{A}_0 = \emptyset$ be the empty independent family and let \mathscr{U}_0 be an \mathscr{A}_0 -diagonalizing real.

- For $\eta \in S_1 = \operatorname{succ}_{S}(\emptyset)$ let $\mathscr{U}_{\eta} = \mathscr{U}_0$ and let $\mathbb{Q}_1 = \prod_{\eta \in S_1}^{<\omega} \mathbb{M}(\mathscr{U}_{\eta})$.
- In $V^{\mathbb{P}_1*\dot{\mathbb{Q}}_1}=V^{\mathbb{P}_2}$ let a_η be the $\mathbb{M}(\mathscr{U}_\eta)$ -generic real.
- Let $\alpha \geq 2$ and in $V^{\mathbb{P}_{\alpha}}$ for each $\eta \in S_{\alpha}$ let $\mathscr{A}_{\eta} = \{a_{v} : v \in \mathsf{succ}_{S}(\eta \restriction \xi), \xi < \alpha\}$ be an ind. family.
- For each $\eta \in S_{\alpha}$, let \mathscr{U}_{η} be an \mathscr{A}_{η} -diagonalisation filter and let $\mathbb{Q}_{\alpha} = \prod_{\eta \in S_{\alpha}}^{<\omega} \mathbb{M}(\mathscr{U}_{\eta})$.
- In $V^{\mathbb{P}_{\alpha}*\mathbb{Q}_{\alpha}}$ let a_{η} be the $\mathbb{M}(\mathscr{U}_{\eta})$ -generic real.

Theorem(F., Shelah)

In $V^{\mathbb{P}_S}$ for each branch η of S the family

$$\mathscr{A}_{\eta} = \{a_{v} : v \in \mathsf{succ}(\eta \upharpoonright \xi), \xi < \sigma\}$$

is a maximal independent family of cardinality θ .

Remark

The idea can be extended to adjoin with a sufficiently homogenous forcing witnesses for many distinct values in $\mathfrak{sp}(i)$ simultaneously.

Theorem (V.F., Shelah, 2019)

Assume GCH. Let $A \subseteq \{ \aleph_n \}_{n \in \omega}$. Then there is a ccc generic extension in which

$$\mathfrak{sp}(\mathfrak{i})=A.$$

Remark

A more involved argument shows that $\mathfrak{sp}(\mathfrak{i})$ can be quite arbitrary. A remaining open question is the consistency of $\min \operatorname{sp}(\mathfrak{i}) = \mathfrak{i} = \mathfrak{K}_{\omega}$.

Let κ be a regular uncountable cardinal.

- Let $FF_{<\omega,\kappa}(\mathscr{A})$ be the set of all finite partial functions with domain included in \mathscr{A} and range the set $\{0,1\}$.
- For each $h \in \mathsf{FF}_{<\omega,\kappa}(\mathscr{A})$ let $\mathscr{A}^h = \bigcap \{A^{h(A)} : A \in \mathsf{dom}(h)\}$ where $A^{h(A)} = A$ if h(A) = 0 and $A^{h(A)} = \kappa \setminus A$ if h(A) = 1.

- A family $\mathscr{A} \subseteq [\kappa]^{\kappa}$ is said to be κ -independent if for each $h \in \mathsf{FF}_{<\omega,\kappa}(\mathscr{A}), \mathscr{A}^h$ is unbounded. It is maximal κ -independent family if it is κ -independent, maximal under inclusion.
- 2 The least size of a maximal κ -independent family is denoted $i(\kappa)$.

Lemma (V.F., D. Montoya)

Let κ be a regular infinite cardinal.

- **1** There is a maximal κ -independent family of cardinality 2^{κ} .
- $\mathfrak{c}^+ \leq \mathfrak{i}(\kappa) \leq 2^{\kappa}$

Corollary

If κ is regular uncountable, then if $\mathfrak{i}(\kappa) = \kappa^+$ also $\mathfrak{a}(\kappa) = \kappa^+$.

A κ -independent family \mathscr{A} is densely maximal if

• for every $X \in [\kappa]^{\kappa} \setminus \mathscr{A}$ and every $h \in \mathsf{FF}_{<\omega,\kappa}(\mathscr{A})$ there is $h' \in \mathsf{FF}_{<\omega,\kappa}(\mathscr{A})$ extending h such that either $\mathscr{A}^{h'} \cap X = \emptyset$ or $\mathscr{A}^{h'} \cap (\kappa \setminus X) = \emptyset$.

Definition (V.F., D. Montoya)

Let κ be a measurable cardinal and $\mathscr U$ a normal measure on κ . Let $\mathbb P_\mathscr U$ be the poset of all pairs $(\mathscr A,A)$ where

- \mathscr{A} is a κ -independent family of cardinality κ ,
- $A \in \mathcal{U}$ is such that $\forall h \in \mathsf{FF}_{<\omega,\kappa}(\mathscr{A}), \mathscr{A}^h \cap A$ is unbounded.

The extension relation is defined as follows: $(\mathscr{A}_1, A_1) \leq (\mathscr{A}_0, A_0)$ iff $\mathscr{A}_1 \supset \mathscr{A}_0$ and $A_1 \subset^* A_0$.

Lemma (V.F., D. Montoya)

Assume $2^{\kappa}=\kappa^+$. Then $\mathbb{P}_{\mathscr{U}}$ is κ^+ -closed and κ^{++} -cc and if G is a $\mathbb{P}_{\mathscr{U}}$ -generic filter, then

$$\mathscr{A}_{G} = \bigcup \{ \mathscr{A} : \exists A \in \mathscr{U} \text{ with } (\mathscr{A}, A) \in G \}$$

is a densely maximal κ -independent family.

Let \mathscr{A} be an independent family. The density independence filter $\mathscr{F}_{<\omega,\kappa}(\mathscr{A})$ is the filter of all $X\in\mathscr{U}$, such that $\forall h\in\mathsf{FF}_{<\omega,\kappa}(\mathscr{A})$ there is $h'\in\mathsf{FF}_{<\omega,\kappa}(\mathscr{A})$ such that $h'\supseteq h$ and $\mathscr{A}^{h'}\subseteq X$.

We refer to a partition $\mathscr E$ of κ into bounded sets as a bounded partition.

- If $\mathscr E$ is a bounded partition of κ , $A \in [\kappa]^{\kappa}$ is such that for all $E \in \mathscr E(|E \cap A| \le 1)$, we say that A is a semi-selector for $\mathscr E$.
- ② If $\mathscr E$ is a bounded partition of κ and $A \in [\kappa]^{\kappa}$ is such that for all $E \in \mathscr E$, $|E \cap A| \le 2$, then A is called a 2-semi-selector of $\mathscr E$.

Remark

Since \mathscr{U} is a normal measure on κ , for each bounded partition \mathscr{E} of κ there is a semi-selector of \mathscr{E} in \mathscr{U} .

Let $\mathscr{F} \subseteq [\kappa]^{\kappa}$. We say that:

- **1** \mathscr{F} is a κ -P-set if every $\mathscr{H} \subseteq \mathscr{F}$ of cardinality $\leq \kappa$ has a pseudo-intersection in \mathscr{F} ;
- ② \mathscr{F} is a κ -Q-set if every bounded partition of κ has a 2-semi-selector in \mathscr{F} .

Selective Independence at κ

Theorem (V.F., D. Montoya)

The density independence filter of $\mathscr{F}_{<\omega,\kappa}(\mathscr{A}_G)$ is both a κ -Q-set and a κ -P-set, which is generated by $\{A: \exists \mathscr{A}(\mathscr{A},A) \in G\}$.

Theorem (V.F., D. Montoya)

The generic maximal independent family \mathscr{A}_G adjoined by $\mathbb{P}_{\mathscr{U}}$ over a model of GCH remains maximal after the κ -support product $\mathbb{S}^{\lambda}_{\kappa}$.

Corollary

Let κ be a measurable cardinal. There is a cardinal preserving generic extension in which

$$\mathfrak{a}(\kappa) = \mathfrak{d}(\kappa) = \mathfrak{r}(\kappa) = \mathfrak{i}(\kappa) = \kappa^+ < 2^{\kappa}.$$

Question

Let κ be a regular uncountable cardinal. Is it consistent that

$$\kappa^+ < \mathfrak{i}(\kappa) < 2^{\kappa}$$
?

Let \mathscr{A} be a κ -independent family. A κ -complete filter \mathscr{F} is said to be an κ -diagonalization filter for \mathscr{A} if $\forall F \in \mathscr{F} \forall h \in \mathsf{FF}_{<\omega,\kappa}(\mathscr{A})|F \cap \mathscr{A}^h| = \kappa$ and \mathscr{F} is maximal with respect to the above property.

Question

Given a κ -independent family \mathscr{A} is there a κ -diagonalizazion filter for \mathscr{A} ? Is there a large cardinal property which guarantees the existence of such maximal filter?

Let κ be a regular uncountable cardinal, $\mathscr{A} \subseteq [\kappa]^{\kappa}$ of size at least κ .

- Let $\mathsf{FF}_{<\kappa,\kappa}(\mathscr{A}) = \{h : \mathscr{A} \to \{0,1\} : \text{ such that } |\mathsf{dom}(h)| < \kappa\}.$
- ② For each $h \in \mathsf{FF}_{<\kappa,\kappa}(\mathscr{A})$ let $\mathscr{A}^h = \bigcap \{A^{h(A)} : A \in \mathsf{dom}(h)\}$ where $A^{h(A)} = A$ if h(A) = 0 and $A^{h(A)} = \kappa \setminus A$ if h(A) = 1.
- **3** \mathscr{A} is said to be strongly- κ -independent if for each $h \in \mathsf{FF}_{<\kappa,\kappa}(\mathscr{A})$, \mathscr{A}^h is unbounded.
- **1** \mathscr{A} is maximal strongly- κ -independent family if it is κ -independent, maximal under inclusion.

Lemma (V.F., D. Montoya)

Let κ be a regular infinite cardinal.

- For κ strongly inaccessible, there is a strongly- κ -independent family of cardinality 2^{κ} .
- ② If \mathscr{A} is strongly- κ -independent and $|\mathscr{A}| < \mathfrak{r}(\kappa)$ then \mathscr{A} is not maximal.
- **3** Suppose $\mathfrak{d}(\kappa)$ is such that for every $\gamma < \mathfrak{d}(\kappa)$, $\gamma^{<\kappa} < \mathfrak{d}(\kappa)$. If \mathscr{A} is strongly- κ -independent and $|\mathscr{A}| < \mathfrak{d}(\kappa)$ then \mathscr{A} is not maximal.

Corollary

Thus if

$$i_s(\kappa) = \min\{|\mathscr{A}| : \mathscr{A} \text{ maximal strongly-} \kappa\text{-independent family}\}$$

is defined, then

- $\kappa^+ \leq i_s(\kappa) \leq 2^{\kappa}$;
- $\mathfrak{r}(\kappa) \leq \mathfrak{i}_{s}(\kappa)$;
- if for every $\gamma < \mathfrak{d}(\kappa)$, $\gamma^{<\kappa} < \mathfrak{d}(\kappa)$, then $\mathfrak{d}(\kappa) \leq \mathfrak{i}_{\mathfrak{s}}(\kappa)$.

Theorem (Kunen, 1983)

- The existence of a maximal strongly- ω_1 -independent family implies CH and the existence of a weakly inaccessible cardinal between ω_1 and 2^{ω_1} ;
- The existence of a measurable cardinal is equiconsistent with the existence of a maximal strongly-ω₁-independent family.

Thank you!

- V. Fischer Selective Independence preprint.
- V. Fischer, D. C. Montoya Higher Independence preprint.
- V. Fischer, D. C. Montoya Ideals of Independence 2019.
- V. Fischer, S. Shelah *The spectrum of independence* 2019.
- V. Fischer, S. Shelah *The spectrum of independence II* preprint.
- S. Shelah Are a and δ your cup of tea? 2000.
- S. Shelah $Con(\mathfrak{u} > \mathfrak{i})$ 1992.