CORRIGÉ DM N°8 : extrait de ENSIETA 1991

PARTIE I : Moyenne arithmético-géométrique

1. Il est facile de démontrer par récurrence sur n la propriété

 $\mathcal{P}(n)$: « a_n et b_n sont définis et strictement positifs »

2. Si
$$n \in \mathbb{N}^*$$
, $a_n - b_n = \frac{1}{2}(a_{n-1} + b_{n-1}) - \sqrt{a_{n-1}b_{n-1}} = \frac{1}{2}(\sqrt{a_{n-1}} - \sqrt{b_{n-1}})^2 \geqslant 0$.

- **3.** Pour $n \in \mathbb{N}^*$, $a_{n+1} a_n = \frac{1}{2}(b_n a_n) \le 0$, donc la suite (a_n) est décroissante (au moins à partir du rang 1).
 - Pour $n \in \mathbb{N}^*$, $b_{n+1} b_n = \sqrt{b_n} (\sqrt{a_n} \sqrt{b_n}) \ge 0$, donc la suite (b_n) est croissante (au moins à partir du rang 1).
 - On a donc, pour $n \in \mathbb{N}^*$, $a_1 \geqslant a_n \geqslant b_n \geqslant b_1$. La suite $(a_n)_{n\geqslant 1}$ est décroissante, minorée par b_1 , donc converge vers un certain réel $\ell \geqslant 0$; la suite $(b_n)_{n\geqslant 1}$ est croissante, majorée par a_1 , donc converge vers un certain réel $\ell' \geqslant 0$.

Par passage à la limite dans les relations de récurrence qui définissent les deux suites, on obtient

$$\ell = \frac{1}{2}(\ell + \ell')$$
 et $\ell' = \sqrt{\ell\ell'}$

d'où $\ell = \ell'$.

Cela prouve bien que les deux suites sont adjacentes.

4. a) Soient (a_n) et (b_n) définies comme dans l'énoncé, et soient (a'_n) et (b'_n) les deux suites adjacentes qui convergent vers M(b,a), c'est-à-dire définies par :

$$\begin{cases} a'_0 = b \\ b'_0 = a \end{cases} \text{ et } \forall n \in \mathbb{N} , \begin{cases} a'_{n+1} = \frac{1}{2}(a'_n + b'_n) \\ b'_{n+1} = \sqrt{a'_n b'_n} \end{cases}$$

On a alors $a'_1 = a_1$ et $b'_1 = b_1$, d'où on tire facilement par récurrence $a_n = a'_n$ et $b_n = b'_n$ pour tout $n \ge 1$. Par passage à la limite, on en déduit M(b,a) = M(a,b).

b) Soient (a_n) et (b_n) définies comme dans l'énoncé, et soient (a'_n) et (b'_n) les deux suites adjacentes qui convergent vers M(ca, cb), c'est-à-dire définies par :

$$\begin{cases} a_0' = ca \\ b_0' = cb \end{cases} \text{ et } \forall n \in \mathbb{N} , \begin{cases} a_{n+1}' = \frac{1}{2}(a_n' + b_n') \\ b_{n+1}' = \sqrt{a_n' b_n'} \end{cases}$$

c étant un réel positif, il est facile de démontrer par récurrence que, pour tout $n \in \mathbb{N}$, $a'_n = ca_n$ et $b'_n = cb_n$. Par passage à la limite, on en déduit M(ca, cb) = cM(a, b).

c) Soient (a_n) et (b_n) définies comme dans l'énoncé, et soient (a'_n) et (b'_n) les deux suites adjacentes qui convergent vers $M\left(\frac{a+b}{2},\sqrt{ab}\right)$, c'est-à-dire définies par :

$$\begin{cases} a_0' = \frac{a+b}{2} \\ b_0' = \sqrt{ab} \end{cases} \text{ et } \forall n \in \mathbb{N} , \begin{cases} a_{n+1}' = \frac{1}{2}(a_n' + b_n') \\ b_{n+1}' = \sqrt{a_n' b_n'} \end{cases}$$

On a alors $a_0' = a_1$ et $b_0' = b_1$, d'où on tire facilement par récurrence $a_n' = a_{n+1}$ et $b_n' = b_{n+1}$ pour tout $n \in \mathbb{N}$. Par passage à la limite, on en déduit $M(a,b) = M\left(\frac{a+b}{2}, \sqrt{ab}\right)$.

5.
$$a_{n+1} - b_{n+1} = \frac{1}{2} \left(\sqrt{a_n} - \sqrt{b_n} \right)^2 = \frac{1}{2} \frac{(a_n - b_n)^2}{(\sqrt{a_n} + \sqrt{b_n})^2} \underset{n \to \infty}{\sim} \frac{(a_n - b_n)^2}{8M(a, b)}$$
 puisque $\lim_{n \to \infty} (\sqrt{a_n} + \sqrt{b_n}) = 2\sqrt{M(a, b)}$.

6. Vraiment aucune difficulté!

```
from math import sqrt

def M(a,b, eps=1e-10):
    ''' moyenne arithmético-géométrique de a et b à eps près (1e-10 par défaut)'''
    while abs(a - b) > eps:
        temp = a
        a = 0.5 * (a + b)
        b = sqrt(temp * b)
        # mieux, en Python on peut écrire directement:
        # a, b = 0.5 * (a + b), sqrt(a * b)
    return (a + b) / 2

print(M(2, 3))
    2.474680436236304
```

PARTIE II : Intégrales elliptiques

1. Puisque $x \in [0;1[$, la fonction $t \mapsto 1 - x^2 \sin^2 t$ est strictement positive pour tout $t \in [0;\frac{\pi}{2}]$, donc $t \mapsto \frac{1}{\sqrt{1 - x^2 \sin^2 t}}$ est continue sur $[0;\frac{\pi}{2}]$ donc $\varphi(x)$ existe.

Rem : La continuité de φ , qui était admise par l'énoncé, se démontre sans grande difficulté à l'aide du théorème de continuité d'une intégrale à paramètre (exercice).

- **2.** Soient $x, y \in [0; 1[^2 \text{ tels que } x < y]$. Alors, pour tout $t \in [0; \frac{\pi}{2}]$, $\sqrt{1 x^2 \sin^2 t} > \sqrt{1 y^2 \sin^2 t}$ d'où facilement $\varphi(x) < \varphi(y)$: φ est strictement croissante sur [0; 1[.
- **3. a)** Pour tout $t \in [0; \frac{\pi}{2}]$, la fonction $x \mapsto \frac{(1+x)\sin t}{1+x\sin^2 t}$ est une fonction homographique croissante sur [0; 1[, donc

$$\forall x \in [0; 1[\ , \forall t \in \left[0; \frac{\pi}{2}\right]\ , \quad 0 \leqslant \underbrace{\sin t}_{\text{pour } x = 0} \leqslant \frac{(1+x)\sin t}{1 + x\sin^2 t} \leqslant \underbrace{\frac{2\sin t}{1 + \sin^2 t}}_{\text{pour } x = 1} \leqslant 1$$

On peut donc définir $\theta = \operatorname{Arc\,sin}\left(\frac{(1+x)\sin t}{1+x\sin^2 t}\right)$, et on aura $\theta \in \left[0\,;\frac{\pi}{2}\right]$.

b) • Pour $t \in [0; \frac{\pi}{2}]$, on a $u(t) = \operatorname{Arc} \sin \left(\frac{(1+x)\sin t}{1+x\sin^2 t} \right) = v \circ \sin(t)$ où v est l'application de [0; 1] dans $[0; \frac{\pi}{2}]$ définie par $v(s) = \operatorname{Arc} \sin \left(\frac{(1+x)s}{1+xs^2} \right)$.

On vérifie facilement que $\frac{(1+x)s}{1+xs^2}=1 \Longleftrightarrow s=1$ ou $(x\neq 0 \text{ et } s=\frac{1}{x}) \Longleftrightarrow s=1$ puisque $s\in [0\,;1]$ et $x\in [0\,;1[$. La fonction Arc sin étant de classe \mathscr{C}^1 sur $[0\,;1[$, v sera de classe \mathscr{C}^1 sur $[0\,;1[$, et u de classe \mathscr{C}^1 sur $[0\,;\frac{\pi}{2}[$. De plus

$$\forall s \in [0; 1[, v'(s) = (1+x)\frac{1-xs^2}{(1+xs^2)^2} \frac{1}{\sqrt{1-\left(\frac{(1+x)s}{1+xs^2}\right)^2}}$$

$$= (1+x)\frac{1-xs^2}{(1+xs^2)} \frac{1}{\sqrt{(1+xs^2)^2-(1+x)^2s^2}}$$

$$= (1+x)\frac{1-xs^2}{(1+xs^2)} \frac{1}{\sqrt{(1-s^2)(1-x^2s^2)}}$$

d'où

$$\forall t \in \left[0; \frac{\pi}{2}\right[, \ u'(t) = \cos t \cdot v'(\sin t) = (1+x)\frac{1-x\sin^2 t}{(1+x\sin^2 t)} \frac{\cos t}{\sqrt{(1-\sin^2 t)(1-x^2\sin^2 t)}} \right]$$
$$= (1+x)\frac{1-x\sin^2 t}{(1+x\sin^2 t)} \frac{1}{\sqrt{1-x^2\sin^2 t}}$$

Cette expression montre que $\lim_{t\to\frac{\pi}{2}}u'(t)$ existe; u étant continue sur $\left[0;\frac{\pi}{2}\right]$ comme composée de fonctions continues, le théorème de prolongement des fonctions de classe \mathscr{C}^1 permet d'affirmer que u est de classe \mathscr{C}^1 sur $\left[0;\frac{\pi}{2}\right]$.

- Le calcul précédent montre aussi que u'(t) > 0 pour tout $t \in \left[0; \frac{\pi}{2}\right[$, donc u est strictement croissante sur $\left[0; \frac{\pi}{2}\right]$. Elle réalise donc une bijection de $\left[0; \frac{\pi}{2}\right]$ sur $\left[u(0); u\left(\frac{\pi}{2}\right)\right] = \left[0; \frac{\pi}{2}\right]$.
- **4.** a) Calcul simple, en utilisant $\cos \theta = \sqrt{1 \sin^2 \theta}$ puisque $\theta \in [0; \frac{\pi}{2}]$, et l'expression de $\sin \theta$...
 - b) calcul simple là encore...
 - c) On a : $\varphi(x) = \int_0^{\frac{\pi}{2}} \frac{\mathrm{d}t}{\sqrt{1 x^2 \sin^2 t}}$. On effectue alors dans cette intégrale le changement de variable $t = u^{-1}(\theta)$: cela ne pose pas de problème puisque u est un \mathscr{C}^1 -difféomorphisme de $\left[0; \frac{\pi}{2}\right]$ sur $\left[0; \frac{\pi}{2}\right]$). On a alors $\theta = u(t)$ d'où

$$d\theta = u'(t) dt = (1+x) \frac{1-x\sin^2 t}{(1+x\sin^2 t)} \frac{dt}{\sqrt{1-x^2\sin^2 t}}$$
$$= (1+x)\sqrt{1 - \frac{4x}{(1+x)^2}\sin^2 \theta} \frac{dt}{\sqrt{1-x^2\sin^2 t}}$$

compte tenu de tous les calculs précédents, donc

$$\varphi(x) = \frac{1}{1+x} \int_0^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{1 - \frac{4x}{(1+x)^2} \sin^2 \theta}} = \frac{1}{1+x} \varphi\left(\frac{2\sqrt{x}}{1+x}\right)$$

5. •

$$I(a,b) = \int_0^{\frac{\pi}{2}} \frac{\mathrm{d}t}{\sqrt{a^2 \cos^2 t + b^2 \sin^2 t}} = \int_0^{\frac{\pi}{2}} \frac{\mathrm{d}t}{\sqrt{a^2 - (a^2 - b^2) \sin^2 t}}$$
$$= \frac{1}{a} \int_0^{\frac{\pi}{2}} \frac{\mathrm{d}t}{\sqrt{1 - \frac{a^2 - b^2}{a^2} \sin^2 t}} = \frac{1}{a} \varphi \left(\frac{\sqrt{a^2 - b^2}}{a}\right)$$

compte tenu de $0 < b \leqslant a$ (et l'on a bien $\frac{\sqrt{a^2 - b^2}}{a} \in [0\,;1[)$.

• Puisque l'on a aussi $\frac{a+b}{2} \geqslant \sqrt{ab} > 0$, on aura de la même façon :

$$\begin{split} I\left(\frac{a+b}{2},\sqrt{ab}\right) &= \frac{2}{a+b}\varphi\left(\frac{\sqrt{\left(\frac{a+b}{2}\right)^2 - ab}}{\frac{a+b}{2}}\right) \\ &= \frac{2}{a+b}\varphi\left(\frac{a-b}{a+b}\right) \\ &= \frac{2}{a+b}\frac{1}{1+\frac{a-b}{a+b}}\varphi\left(\frac{2\sqrt{\frac{a-b}{a+b}}}{1+\frac{a-b}{a+b}}\right) \quad \text{d'après 4.c} \\ &= \frac{1}{a}\varphi\left(\frac{\sqrt{a^2-b^2}}{a}\right) = I(a,b) \end{split}$$

6. Supposons $a \ge b$. Alors on a vu que $a_n \ge b_n$ pour tout n, donc, d'après le résultat de la question précédente, $I(a_n,b_n)=I\left(\frac{a_n+b_n}{2},\sqrt{a_nb_n}\right)=I(a_{n+1},b_{n+1})$, d'où l'on tire facilement par récurrence $I(a_n,b_n)=I(a_0,b_0)=I(a,b)$.

Ce résultat demeure vrai si $a \leq b$, puisque le changement de variable $t \mapsto \frac{\pi}{2} - t$ montre que I(a, b) = I(b, a). La fonction I étant continue (puisque φ l'est), l'égalité précédente donne, par passage à la limite,

$$I(a,b) = I(M(a,b), M(a,b)) = \frac{1}{M(a,b)}\varphi(0) = \frac{\pi}{2}\frac{1}{M(a,b)}$$

- 7. La relation $\varphi(x) = \frac{\pi}{2} \frac{1}{M(1, \sqrt{1-x^2})}$ pour $x \in [0; 1[$ découle du résultat précédent avec a = 1 et $b = \sqrt{1-x^2}$.
- **8. a)** On intègre par parties $K = \int_0^{\frac{\pi}{2}} \sin^{\frac{3}{2}} \theta \, d\theta$ en prenant $u'(\theta) = \sin \theta$ et $v(\theta) = \sqrt{\sin \theta}$:

$$K = \left[-\cos\theta \sqrt{\sin\theta} \right]_0^{\frac{\pi}{2}} + \int_0^{\frac{\pi}{2}} \frac{\cos^2\theta}{2\sqrt{\sin\theta}} d\theta$$
$$= \int_0^{\frac{\pi}{2}} \frac{1 - \sin^2\theta}{2\sqrt{\sin\theta}} d\theta = \int_0^{\frac{\pi}{2}} \frac{d\theta}{2\sqrt{\sin\theta}} - \frac{K}{2}$$

ce qui donne bien $K = \frac{1}{3} \int_0^{\frac{\pi}{2}} \frac{\mathrm{d}\theta}{\sqrt{\sin \theta}}.$

Rem: l'intégrale impropre obtenue est forcément convergente, puisque l'intégrale de départ K existe. On peut aussi le vérifier a posteriori en remarquant que $\frac{1}{\sqrt{\sin\theta}} \sim \frac{1}{\theta^{1/2}}$, et en utilisant les théorèmes

de comparaison pour les intégrales de fonctions positives, puisque l'on sait que l'intégrale $\int_0^1 \frac{d\theta}{\theta^{1/2}}$ converge.

- **b)** Le changement de variable $u = \sqrt{\sin \theta}$, soit $\theta = \operatorname{Arc} \sin u^2$, qui est une bijection strictement monotone de classe \mathscr{C}^1 de $\left]0; \frac{\pi}{2}\right[$ sur $\left]0; 1\right[$, donne d $\theta = \frac{2u \, \mathrm{d}u}{\sqrt{1-u^4}}$, d'où $K = \frac{2}{3} \int_0^1 \frac{\mathrm{d}u}{\sqrt{1-u^4}}$.
- c) Puis en posant, dans l'intégrale ci-dessus, $u = \sin t$, qui réalise un \mathscr{C}^1 -difféomorphisme de $\left]0; \frac{\pi}{2}\right[$ sur $\left]0; 1\right[$, on obtient

$$K = \frac{2}{3} \int_0^1 \frac{\mathrm{d}u}{\sqrt{(1 - u^2)(1 + u^2)}} = \frac{2}{3} \int_0^{\frac{\pi}{2}} \frac{\cos t \, \mathrm{d}t}{\sqrt{\cos^2 t (1 + \sin^2 t)}} = \frac{2}{3} \int_0^{\frac{\pi}{2}} \frac{\mathrm{d}t}{\sqrt{1 + \sin^2 t}}$$
$$= \frac{2}{3} \int_0^{\frac{\pi}{2}} \frac{\mathrm{d}t}{\sqrt{\cos^2 t + 2\sin^2 t}} = \frac{2}{3} I(1, \sqrt{2}) = \frac{\pi}{3M(1, \sqrt{2})}.$$

9. • Les fonctions x et y sont définies pour t tel que $\cos 2t \geqslant 0$, soit $t \in \left[-\frac{\pi}{4}, ; \frac{\pi}{4}\right]$ modulo π .

De plus, les fonctions x et y sont toutes deux 2π -périodiques, donc on obtiendra toute la courbe en l'étudiant pour $t \in \left[-\frac{\pi}{4}; \frac{\pi}{4}\right] \cup \left[\frac{3\pi}{4}; \frac{5\pi}{4}\right]$.

Puisque $x(t+\pi) = -x(t)$ et $y(t+\pi) = -y(t)$, il suffit de l'étudier pour $t \in \left[-\frac{\pi}{4}; \frac{\pi}{4}\right]$ puis de compléter la courbe obtenue par symétrie par rapport à O.

Enfin, puisque x(-t) = x(t) et = -y(t), il suffit de l'étudier pour $t \in [0; \frac{\pi}{4}]$ puis de compléter la courbe obtenue par symétrie par rapport à l'axe Ox.

• Pour $t \in \left[0; \frac{\pi}{4}\right[, \ x \ \text{et} \ y \ \text{sont dérivables et, après calculs}$

$$x'(t) = -\frac{\sin 3t}{\sqrt{\cos 2t}}$$
 ; $y'(t) = \frac{\cos 3t}{\sqrt{\cos 2t}}$

On a donc les tableaux de variations:

t	0		$\frac{\pi}{6}$		$\frac{\pi}{4}$
x'(t)	0		-		
y'(t)		+	0	_	
x(t)	1		$\frac{\sqrt{6}}{4}$	\	0
y(t)	0	<i></i>	$\frac{\sqrt{2}}{4}$	_	0

La pente de la tangente en O sera $\lim_{t\to \frac{\pi}{4}} \frac{y'(t)}{x'(t)} = \lim_{t\to \frac{\pi}{4}} -\tan 3t = 1$

• Courbe:

• La longueur de la courbe est égale à 4 fois la longueur de la portion dans le quart de plan supérieur droit, soit

$$L = 4 \int_0^{\frac{\pi}{4}} \sqrt{x'(t)^2 + y'(t)^2} \, dt = 4 \int_0^{\frac{\pi}{4}} \frac{dt}{\sqrt{\cos 2t}} \, \cdot$$

• Le changement de variable u=2t donne $L=2\int_0^{\frac{\pi}{2}}\frac{\mathrm{d}u}{\sqrt{\cos u}}$ puis le changement de variable $\theta=\frac{\pi}{2}-u$ donne $L=2\int_0^{\frac{\pi}{2}}\frac{\mathrm{d}\theta}{\sqrt{\sin \theta}}=6K=\frac{2\pi}{M(1,\sqrt{2})}$.

