

A DAPO-based framework for optimal execution of Hyperliquid limit orders

Mohammed Khalil¹

MSc Information Security

Arthur Gervais

Submission date: 08 September 2025

Abstract

Summarise your report concisely.

Contents

1	title of first chapter	2
2	title of second chapter	3
3	title of third chapter	4
4	etc.	ţ
A	Other appendices, e.g. code listing	7

title of first chapter

This is just a bare minimum to get started. There is unlimited guidance on using latex, e.g. https://en.wikibooks.org/wiki/LaTeX. You are still responsible to check the detailed requirements of a project, including formatting instructions, see

https://moodle.ucl.ac.uk/pluginfile.php/3591429/mod_resource/content/7/UGProjects2017.pdf. Leave at least a line of white space when you want to start a new paragraph.

Mathematical expressions are placed in line between dollar signs, e.g. $\sqrt{2}, \sum_{i=0}^{n} f(i)$, or in display mode

$$e^{i\pi} = -1$$

and another way, this time with labels,

$$A = B \land B = C \to A = C \tag{1.1}$$

$$\to C = A \tag{1.2}$$

note that

$$n! = \prod_{1 \le i \le n} i \tag{1.3}$$

$$n! = \prod_{1 \le i \le n} i$$

$$\int_{x=1}^{y} \frac{1}{x} dx = \log y$$

$$(1.3)$$

We can refer to labels like this (1.1).

title of second chapter

Often lots of citations here (and elsewhere), e.g. [Rey97] or [Pri70, Theorem 2.3]. Bibtex can help with this, but is not essential. If you want pictures, try

You can use

- lists
- \bullet like this

or numbered

- 1. like this,
- 2. or this

but don't overdo it.

title of third chapter

If you have a formal theorem you might try this.

DEFINITION 1 See definition 1.

THEOREM 2 For all $n \in \mathbb{N}$, $1^n = 1$.

PROOF:

By induction over n. \square

etc.

Bibliography

- [Pri70] A. Prior. The notion of the present. Studium Generale, 23: 245–248, 1970.
- [Rey97] M. Reynolds. A decidable temporal logic of parallelism. Notre Dame Journal of Formal Logic, 38(3): 419–436, 1997.

Appendix A

Other appendices, e.g. code listing