Homework 4 - Quantum Mechanics I

NAME:	 SCORE:	

Deadline: Friday 31 May 2024 by 17:00

Credits: 20 points Number of problems: 4

Type of evaluation: Formative Evaluation

- This homework is individual and includes problems on unit 4.
- Please send a single PDF file via email to: wbanda@yachaytech.edu.ec
- If you work with classmates, please state their names and write your own reports.
- Please submit a professional homework report and clearly highlight all answers.
- All calculation steps should be justified to get full credits.
- Any code used should be attached to get full credits.

1. (5 points) Spherical harmonics

- (a) A quantum system is known to be in the (unnormalised) state described by the wave function $\psi(\theta,\phi) = 2\,Y_5^2 + 7\,Y_4^0 4\,Y_6^2$, where the $Y_\ell^m(\theta,\phi)$ are the spherical harmonics. What is the probability of finding the system in a state with quantum number m=2?
- (b) What is the orbital angular momentum eigenfunction Y_{ℓ}^m in a state for which the operators L^2 and L_z have eigenvalues $6\hbar^2$ and $-\hbar$, respectively?
- (c) Analytically construct all the possible spherical harmonics, $Y_{\ell}^{m}(\theta, \phi)$, for $\ell = 3$.
- (d) Using your favourite programming language, make 3D plots of all of them.
- (e) Choose two of the spherical harmonics constructed in part (b), and prove that they are normalised and orthogonal.

2. (5 points) Hydrogen atom

- (a) Construct all the possible spatial wave functions, $\psi_{nlm}(r,\theta,\phi) = R_{n\ell}(r)Y_{\ell}^{m}(\theta,\phi)$, of the hydrogen atom for $(n,\ell,m) = (4,1,m)$.
- (b) Using your favourite programming language, make density plots of all of these states.
- (c) Calculate the energy level of these states in units of eV.
- (d) In terms of the Bohr radius, find $\langle r \rangle$, $\langle x \rangle$, $\langle r^2 \rangle$ and $\langle x^2 \rangle$ for an electron in the ground state of hydrogen.
- (e) Find $\langle x^2 \rangle$ in the state $(n, \ell, m) = (4, 1, m)$ with the highest possible value of m that is allowed. How different is the result with respect to that calculated in part (d) for the ground state of hydrogen?

3. (5 points) Spin

- (a) Suppose we have a spin- $\frac{1}{2}$ particle, whose quantum state can be represented by the eigenstates $|\uparrow\rangle$ and $|\downarrow\rangle$ of the S_z operator. Using the Pauli matrix σ_y , calculate a normalised eigenstate of the S_y operator with an eigenvalue $+\frac{\hbar}{2}$.
- (b) Consider the Pauli spin matrices σ_x , σ_y , and σ_z and the identity matrix, I. Calculate the commutators: $[\sigma_x, \sigma_y]$ and $[\sigma_z, \sigma_y]$.
- (c) Calculate the normalised spin eigenfunctions of a system with two spin- $\frac{1}{2}$ particles. These are called singlet and triplet states, why?
- (d) Consider an electron in the spin state: $\chi = C\begin{bmatrix} 1-3i\\ 2 \end{bmatrix}$. Normalise χ , and find the expectation values of S_x , S_y , and S_z .
- (e) Find the uncertainties σ_{S_x} , σ_{S_y} , and σ_{S_z} for χ in (d). Are the results consistent with all three uncertainty principles?

4. (5 points) Particle in a 3D infinite potential well

Suppose we have a particle in a 3D spherical and infinite potential well:

$$V(r) = \begin{cases} 0 & 0 \le r \le a \\ \infty & r > a \end{cases}$$

where (r, θ, ϕ) are the radial and angular (spherical) coordinates.

- (a) Write down the time-dependent Schrödinger equation for the particle in spherical coordinates.
- (b) Use variable separation to split the spatial and temporal terms. What is the solution for the temporal term?
- (c) Apply variable separation to the time-independent Schrödinger equation and write the differential equations of the radial and angular parts. Solve the angular equation.
- (d) Compute the energy levels and the stationary wave function, $\psi(r,\theta,\phi)$ for $\ell=0$.