Housekeeping

Assignment 4 is due at the beginning of your support class next week.

Assignment 2 solutions are available.

Tutorial sheet 4, and tutorial solutions 3 are also available.

MAT1830

Lecture 14: Examples of Functions

The functions discussed in the last lecture were familiar functions of real numbers. Many other examples occur elsewhere, however.

14.1 Functions of several variables

We might define a function

$$\operatorname{sum}: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$$
 by $\operatorname{sum}(x, y) = x + y$.

Because the domain of this function is $\mathbb{R} \times \mathbb{R}$, the inputs to this function are ordered pairs (x,y) of real numbers. Because its codomain in \mathbb{R} , we are guaranteed that each output will be a real number. This function can be thought of as a function of two variables x and y.

Similarly we might define a function

 $\mathrm{binomial}: \mathbb{R} \times \mathbb{R} \times \mathbb{N} \to \mathbb{R}$

by

$$binomial(a, b, n) = (a + b)^{n}.$$

Here the inputs are ordered triples (x, y, n) such that x and y are real numbers and n is a natural number. We can think of this as a function of three variables.

Question What are the ordered pairs which define the function sum : $\{1,2\} \times \{1,2\} \to \mathbb{N}$ defined by sum(x,y) = x + y?

 $\{((1,1),2), ((1,2),3), ((2,1),3), ((2,2),4)\}$

Question 14.1 Suggest domains and codomains for the following functions.

 $\text{gcd} \quad \text{domain: } \mathbb{Z} \times \mathbb{Z} \quad \text{codomain: } \mathbb{N}$

reciprocal domain: $\mathbb{R}-\{0\}$ codomain: $\mathbb{R}-\{0\}$

Assume we are working with sets of real numbers for the next two.

- $\cap \quad \text{domain: } \mathcal{P}(\mathbb{R}) \times \mathcal{P}(\mathbb{R}) \quad \text{codomain: } \mathcal{P}(\mathbb{R})$
- \cup domain: $\mathcal{P}(\mathbb{R}) imes\mathcal{P}(\mathbb{R})$ codomain: $\mathcal{P}(\mathbb{R})$

14.2 Sequences

An infinite sequence of numbers, such as

An infinite sequence of numbers, such a
$$1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \dots,$$

can be viewed as the function $f: \mathbb{N} \to \mathbb{R}$ defined by $f(n) = 2^{-n}$. In this case, the inputs to

f are natural numbers, and its outputs are real numbers.

Any infinite sequence $a_0, a_1, a_2, a_3, \ldots$ can be viewed as a function $g(n) = a_n$ from $\mathbb N$ to some set containing the values a_n .

For each of the following sequences, find a function f such that the sequence is $f(0), f(1), f(2), \ldots$

$$1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5} \dots$$
 $f: \mathbb{N} \to \mathbb{Q}, \ f(n) = \frac{1}{n+1}$

$$5, 1, -3, -7, -11, -15, \dots$$
 $f: \mathbb{N} \to \mathbb{Z}, f(n) = 5 - 4n$
 $4, 12, 36, 108, 324, 972, \dots$ $f: \mathbb{N} \to \mathbb{Z}, f(n) = 4(3^n)$

$$4, 12, 36, 108, 324, 972, \dots$$
 $f: \mathbb{N} \to \mathbb{Z}, f(n) = 4(3^n)$

14.3 Characteristic functions

A subset of $\mathbb{N} = \{0, 1, 2, 3, ...\}$ can be represented by its characteristic function. For example, the set of squares is represented by the func-

tion
$$\chi: \mathbb{N} \to \{0,1\}$$
 defined by
$$\chi(n) = \left\{ \begin{array}{ll} 1 & \text{if n is a square} \\ 0 & \text{if n is not a square} \end{array} \right.$$

which has the following sequence of values

 $110010000100000010000000100000000000100\dots$

(with 1s at the positions of the squares $0, 1, 4, 9, 16, 25, 36, \ldots$).

Any property of natural numbers can likewise be represented by a characteristic function. For example, the function χ above represents the property of being a square. Thus any set or property of natural numbers is represented by a function

$$\chi: \mathbb{N} \to \{0,1\}.$$
 Characteristic functions of two or more vari-

ables represent relations between two or more objects. For example, the relation $x \leq y$ between real numbers x and y has the characteristic function $\chi : \mathbb{R} \times \mathbb{R} \to \{0,1\}$ defined by

$$\chi(x,y) = \begin{cases} 1 & \text{if } x \leqslant y \\ 0 & \text{otherwise.} \end{cases}$$

Question 14.2 If A and B are subsets of \mathbb{N} with characteristic functions $\chi_A(n)$ and $\chi_B(n)$, then what set does the function $\chi_A(n)\chi_B(n)$ represent?

If $n \in A$ and $n \in B$ then $\chi_A(n)\chi_B(n) = 1 \times 1 = 1$. If $n \in A$ and $n \notin B$ then $\chi_A(n)\chi_B(n) = 1 \times 0 = 0$.

If $n \notin A$ and $n \in B$ then $\chi_A(n)\chi_B(n) = 0 \times 1 = 0$.

If $n \notin A$ and $n \notin B$ then $\chi_A(n)\chi_B(n) = 0 \times 0 = 0$.

So $\chi_A(n)\chi_B(n)$ is the characteristic function of $A \cap B$.

 $\chi_d(x) = \begin{cases} 1, & \text{if } x \text{ divides } d; \\ 0, & \text{if } x \text{ does not divide } d. \end{cases}$ then what is $1\chi_d(1) + 2\chi_d(2) + 3\chi_d(3) + \dots + d\chi_d(d)$?

The sum of the positive divisors of d.

defined by

Question If
$$\chi_{\mathsf{prime}}: \mathbb{N} \to \{0,1\}$$
 is a function defined by

$$\chi_{\mathsf{prime}}(x) = \left\{ \begin{array}{ll} 1, & \mathsf{if } x \mathsf{ is prime;} \\ 0, & \mathsf{if } x \mathsf{ is not prime.} \end{array} \right.$$

then what is $1\chi_{\text{prime}}(1)\chi_d(1) + 2\chi_{\text{prime}}(2)\chi_d(2) + 3\chi_{\text{prime}}(3)\chi_d(3) + \cdots + d\chi_{\text{prime}}(d)\chi_d(d)$?

Let d be a positive integer. If $\chi_d : \mathbb{N} \to \{0,1\}$ is a function

The sum of the prime divisors of d.

14.4 Boolean functions

The connectives \land , \lor and \neg are functions of variables whose values come from the set $\mathbb{B} = \{\mathsf{T},\mathsf{F}\}$ of Boolean values (named after George Boole).

 $\neg: \mathbb{B} \to \mathbb{B}$ and it is completely defined by giving its values on T and F, namely

$$\neg T = F$$
 and $\neg F = T$.

This is what we previously did by giving the

truth table of
$$\neg$$
. \land and \lor are functions of two variables, so

$$\wedge: \mathbb{B} \times \mathbb{B} \to \mathbb{B}$$

and

$$\vee : \mathbb{B} \times \mathbb{B} \to \mathbb{B}$$

They are completely defined by giving their values on the pairs $\{T,T\},\{T,F\},\{F,T\},\{F,F\}$ in $\mathbb{B}\times\mathbb{B}$, which is what their truth tables do.

Question 14.3 How many Boolean functions of *n* variables are there?

These have domain $\mathbb{B} \times \mathbb{B} \times \cdots \times \mathbb{B}$ and codomain \mathbb{B} .

The number of inputs they accept is 2^n .

Each input can be mapped to one of two outputs.

So the total number of these functions is $2^{(2^n)}$.

So, for n = 2 there are $2^{(2^2)} = 2^4 = 16$.

So, for n = 5 there are $2^{(2^5)} = 2^{32} = 4294967296$.

Example (Hamming distance)

Let B_n be the set of all binary strings of length n.

Hamming distance is a function $h: B_n \times B_n \to \mathbb{N}$ defined by h(s,t) equals the number of places in which s and t disagree.

For example, h(000, 101) = 2, h(011, 010) = 1, h(10111, 01000) = 5. A set of binary strings of length n such that any two different strings in the set have Hamming distance at least d is called a *binary error* correcting code of length n and distance d.

These are useful in sending information across noisy channels.

```
{0000, 0011, 0101, 0110, 1001, 1010, 1100, 1111} is a binary code of length 4 and distance 2.
```

If we only send strings in this set across a channel and at most one error occurs in each string then we will be able to detect the errors.

If we only send strings in this set across a channel and at most one error occurs in each string then we will be able to *correct* the errors on the fly.

14.5* Characteristic functions and subsets of N

Mathematicians say that two (possibly infinite) sets A and B have the same cardinality (size) if there is a one-to-one and onto function from A to B. This function associates each element of A with a unique element of B and vice-versa. With this definition, it is not too hard to show that, for example, $\mathbb N$ and $\mathbb Z$ have the same cardinality (they are both "countably infinite").

It turns out, though, that $\mathcal{P}(\mathbb{N})$ has a strictly greater cardinality than \mathbb{N} . We can prove this by showing: no sequence $f_0, f_1, f_2, f_3, \ldots$ includes all characteristic functions for subsets of \mathbb{N} . (This shows that there are more characteristic functions than natural numbers.)

In fact, for any infinite list $f_0, f_1, f_2, f_3, \ldots$ of characteristic functions, we can define a characteristic function f which is *not* on the list. Imagine each function given as the infinite sequence of its values, so the list might look like this:

 f_0 values <u>0</u>101010101... f_1 values <u>0</u>000011101...

 f_2 values $11\underline{1}11111111...$ f_3 values $000\underline{0}0000000...$

 f_4 values $1001\underline{0}01001...$

Now if we switch each of the underlined values to its opposite, we get a characteristic function

$$f(n) = \begin{cases} 1 & \text{if } f_n(n) = 0\\ 0 & \text{if } f_n(n) = 1 \end{cases}$$

which is different from each function on the list. In fact, it has a different value from f_n on the number n.

For the given example, f has values

The construction of f is sometimes called a "diagonalisation argument", because we get its values by switching values along the diagonal in the table of values of $f_0, f_1, f_2, f_3, \ldots$