1.4: Trig and Inverse Trig Functions

Learning Objectives. Upon successful completion of Section 1.4, you will be able to...

- Answer conceptual questions involving trigonometric functions and their inverses.
- Evaluate trigonometric functions.
- Solve trigonometric equations.
- Evaluate inverse trigonometric functions.
- Graph trigonometric functions (i.e. a general sketch).

Trigonometric Functions

Right-Triangle Trigonometry. Right triangles possess ratios that depend only on the central angle of the triangle, denoted here as θ .

These ratios are **functions** of the central angle and have their own names: sine, cosine, tangent, cosecant, secant, and cotangent. Sine, cosine, and tangent are defined below.

$$\sin \theta = \frac{o}{h}$$
 $\cos \theta = \frac{a}{h}$ $\tan \theta = \frac{o}{a} = \frac{\sin \theta}{\cos \theta}$

Cosecant, secant, and cotangent are known as reciprocal trig functions.

$$\csc \theta = \frac{1}{\sin \theta} = \frac{h}{o} \qquad \sec \theta = \frac{1}{\cos \theta} = \frac{h}{a} \qquad \cot \theta = \frac{1}{\tan \theta} = \frac{a}{o}$$

Be careful not to confuse reciprocal trig functions with *inverse* trig functions, defined later.

Remark. Note that, as with other functions, trigonometric functions must always have an argument (i.e. a function input). Writing "sin," "cos," or "tan" with no argument does not convey any mathematical meaning.

△ Example. Write the six trig ratios for the following triangle.

The Unit Circle. The unit circle is the circle with radius 1 that is centered at the origin. The coordinates of a unit circle are given by $(\cos(\theta), \sin(\theta))$ for each θ .

The Pythagorean Theorem. The Pythagorean theorem is useful to remember when working with trig functions.

Pythagorean Theorem. For a right triangle with legs a and b and hypotenuse c, we always have that

$$a^2 + b^2 = c^2$$
.

Example. Find $\cos \theta$ and $\tan \theta$ given that $\sin \theta = \frac{3}{5}$ and $\theta \in \left[\frac{\pi}{2}, \pi\right]$.

Trigonometric Identities. Several trigonometric identities can often be useful to manipulate trigonometric functions.

• Pythagorean Identities.

$$\sin^2 \theta + \cos^2 \theta = 1$$
$$1 + \tan^2 \theta = \sec^2 \theta$$
$$1 + \cot^2 \theta = \csc^2 \theta$$

• Double-Angle Identities.

$$\sin 2\theta = 2\sin\theta\cos\theta$$
$$\cos 2\theta = \cos^2\theta - \sin^2\theta$$

• Half-Angle Identities.

$$\cos^2 \theta = \frac{1 + \cos 2\theta}{2}$$
$$\sin^2 \theta = \frac{1 - \cos 2\theta}{2}$$

Facts about the Trig Functions.

Definition. A function is called **periodic** if there exists $p \in \mathbb{R}$, $p \neq 0$, such that f(x+p) = f(x) for all x in the domain of f.

By definition, a periodic function is never one-to-one.

domain: \mathbb{R} range: [-1, -1] period: 2π

Note the vertical asymptotes where $\cos x=0,$ i.e. at $x=\frac{\pi}{2},\frac{3\pi}{2},\dots$

domain: \mathbb{R} range: [-1, -1] period: 2π

function	domain	range	period
$\sin \theta$	\mathbb{R}	[-1, 1]	2π
$\cos \theta$	\mathbb{R}	[-1, 1]	2π
$\tan \theta$	$\mathbb{R}\setminus\{\tfrac{\pi}{2}+n\pi\}$	\mathbb{R}	π

function	domain	range	period
$\csc \theta$	$\mathbb{R}\setminus\{\pi+n\pi\}$	$(-\infty, -1] \cup [1, \infty]$	2π
$\sec \theta$	$\mathbb{R}\setminus\{\tfrac{\pi}{2}+n\pi\}$	$(-\infty, -1] \cup [1, \infty]$	2π
$\cot \theta$	$\mathbb{R}\setminus\{\pi+n\pi\}$	\mathbb{R}	π

Example. Solve the following equation defined on the interval $[0, 2\pi]$.

$$\sin^2\theta + 2\sin\theta + 2 = 1$$

Example. Solve the following equation defined on the interval $[0, 2\pi]$.

$$\tan^2 x - \tan x = 0$$

Inverse Trigonometric Functions

The trig functions act on *angles* and return *ratios*. If we wanted a function that instead acts on a *ratio* and returns an *angle*, we would need an **inverse trig function**. Note that trig functions are periodic, so they are not one-to-one and thus do not have inverses. However, we can define an inverse trig function if we *restrict the domain* of a trig function.

Consider the sine function $y = \sin x$. We can see that it is not one-to-one on its domain \mathbb{R} .

However, it is one-to-one on the interval $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ (highlighted in red) and spans the values of [-1,1]. We can then define the inverse sine function $f(x)=\arcsin x$ with domain [-1,1] and range $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$.

Remark. Notationally, inverse trig functions may be expressed as

$$\sin^{-1} x = \arcsin x$$
.

Note that the -1 in the inverse trig function notation is **not** a negative exponent.

$$\sin^{-1} x \neq \frac{1}{\sin x} = \csc x$$

Remark. The following are equivalent expressions.

$$y = \arcsin x \Longleftrightarrow \sin y = x$$

Inverse trig functions are achieved by forcing the original functions to be one-to-one through **domain restrictions**. The restricted domain of the original trig function becomes the range of the inverse trig function.

function	domain	range
$\arcsin \theta$	[-1, 1]	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$
$\arccos \theta$	[-1, 1]	$[0,\pi]$
$\arctan \theta$	\mathbb{R}	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$

function	domain	range
$arccsc \theta$	$(-\infty,-1]\cup[1,\infty)$	$[-\frac{\pi}{2},0)\cup(0,\frac{\pi}{2}]$
arcsec θ	$(-\infty,-1]\cup[1,\infty)$	$\left[0, \frac{\pi}{2}\right) \cup \left(\frac{\pi}{2}, \frac{3\pi}{2}\right]$
$arccot \theta$	\mathbb{R}	$(0,\pi)$

△ Example. Evaluate the following expressions.

- \bigcirc arccos $\left(\frac{1}{2}\right)$
- $(2) \arccos \left(-\frac{1}{\sqrt{2}} \right)$
- $\boxed{4} \arccos\left(\cos\left(\frac{7\pi}{6}\right)\right)$

 $\mathrm{MATH}\ 1060$

Example. Use a right triangle to simplify the expression. Assume x > 0.

$$\sin\left(\arccos\left(\frac{x}{2}\right)\right)$$