Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP05/002089

International filing date: 04 February 2005 (04.02.2005)

Document type: Certified copy of priority document

Document details: Country/Office: US

Number: 60/543,405

Filing date: 11 February 2004 (11.02.2004)

Date of receipt at the International Bureau: 14 April 2005 (14.04.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

PA 1252301

ANTER ON AND STRANKS OF WARRING

TO AND TO WHOM THESE; PRESENTS SHATE COMES

UNITED STATES DEPARTMENT OF COMMERCE

United States Patent and Trademark Office

November 24, 2004

THIS IS TO CERTIFY THAT ANNEXED HERETO IS A TRUE COPY FROM THE RECORDS OF THE UNITED STATES PATENT AND TRADEMARK OFFICE OF THOSE PAPERS OF THE BELOW IDENTIFIED PATENT APPLICATION THAT MET THE REQUIREMENTS TO BE GRANTED A FILING DATE UNDER 35 USC 111.

APPLICATION NUMBER: 60/543,405 FILING DATE: February 11, 2004

By Authority of the

COMMISSIONER OF PATENTS AND TRADEMARKS

P. SWAIN

Certifying Officer

PROVISIONAL APPLICATION FOR PATENT COVER SHEET This is a request for filing a PROVISIONAL APPLICATION FOR PATENT under 37 CFR 1.53(c).

INVENTOR(S)												
Given Name (first and middle [if any])	Family Name or Surname	Resider (City and either State or	nce r Foreign Country)									
Given Name (first and middle [if airy]) Nobuyuki KIBINO	<u>, , , , , , , , , , , , , , , , , , , </u>	Oita	JAPAN									
		Oita	JAPAN									
Yasushi KADOWAKI		Oita	JAPAN									
Masaaki SAKAI		Oita	JAPAN									
Yukiharu HETSUGI Additional inventors are being name	ed on theseparately numbered si	heet(s) attached hereto										
	THE OF THE INDESTRICT (50)	0 characters max)										
PRODUCTION PROCESS OF 1,3	PROPANEDIOL, AND 1,3-PROPANE	DIOL OBTAINED BY THE PRODU	CTION PROCESS									
	CORRESPONDENCE AD THE Address for SUGHRUE MION, PLAN WASHINGTON OFFICE 23373 CUSTOMER NUMBER	LC filed under the Customer Number li 3	0.8. 15434(
	ENCLOSED APPLICATION PARTS	S (check all that apply)	2285 60									
Specification ✓ Japanese Lang. Number of Page ✓ Drawing(s) Number of Shee	53 17	(s), Number er (specify)										
Application Data Sheet. See 37 C												
METHOD OF PAYMENT OF FILING		LICATION FOR PATENT										
☐ Applicant claims small entity star	tus. See 37 CFR 1.27.											
A check or money order is enclosed to cover the Provisional filing fees. The USPTO is directed and authorized to charge all required fees, except for the Issue Fee and the Publication Fee, to Deposit Account AMOUN'												
The USPTO is hereby authorized to charge the Provisional filing fees to our Deposit Account No. 19-4880. The USPTO is directed and authorized to charge all required fees, except for the Issue Fee and the Publication Fee, to Deposit Account No. 19-4880. Please also credit any overpayments to said Deposit Account. \$160.00												
The invention was made by an agency of No. Yes, the name of the U.S. Govern	f the United States Government or under nament agency and the Government contributions.		States Government.									
Respectfully submitted,												
SIGNATURE Buch.	2-a-	DATE February 11, 20	004									
TYPED or PRINTED NAME Bruce	REGISTRATION NO.	33,725										
TELEPHONE NO. (202) 293-7060		DOCKET NO. P7979	96									

USE ONLY FOR FILING A PROVISIONAL APPLICATION FOR PATENT

【書類名】明細書

【発明の名称】 1, 3 - プロパンジオールの製造方法及び該製造方法で得られる 1, 3 - プロパンジオール

【技術分野】

[0001]

本発明は、1, 3-プロパンジオールの製造方法及び該製造方法で得られる1, 3-プロパンジオールに関する。更に詳しくはエーテルアルコール化合物を加水分解させることを特徴とする1, 3-プロパンジオールの製造方法及び該製造方法で得られる1, 3-プロパンジオールに関する。

【背景技術】

[0002]

1,3-プロパンジオールは、合成樹脂原料、特にポリエステル繊維の原料として潜在的需要が高い化合物として、化学的製造法、生物学的製造法等による安価な製造方法の開発が進められている。

[0003]

従来、1,3-プロパンジオールの化学的製造法については、アクロレインの水和反応による3-ヒドロキシプロピオンアルデヒド(以下、「3-HPA」と略す。)の合成と、それに続く水素添加反応による1,3-プロパンジオールの製造方法(特開平10-212253号公報)、エチレンオキシドのヒドロホルミル化反応による3-HPA合成とそれに続く水素添加反応による1,3-プロパンジオールの製造方法(特表平11-515021号公報)などが知られている。

[0004]

これら従来の製造方法は、いずれの場合も最終的に3-HPAを水素添加することにより1,3-プロパンジオールを製造する方法をとることから、未反応3-HPAが1,3-プロパンジオール中に残り易いという欠点がある。そして3-HPA等のカルボニル化合物を含有する1,3-プロパンジオールを用いてポリエステル合成を実施した場合、これが臭気や着色の原因となる問題が指摘されている。

[0005]

従って、製品である1、3-プロパンジオールには、極力3-HPA等のカルボニル化合物を含ないことが望ましい。しかしながら、これらのカルボニル化合物は蒸留等の一般的な精製方法により除去することが難しいことが、例えば特開平6-40973号公報、特表平11-509828号公報等に開示されている。

[0006]

そこで3-HPAをはじめとするカルボニル化合物含有量の低い1,3-プロパンジオールを得るために、特開平6-40973号公報では、3-HPAの水素添加反応を2段階で実施する方法が、また、特表平11-509828号公報では、カルボニル化合物をアルカリとの反応により除去する方法が開示されている。しかしながらいずれの方法も、3-HPAの転化率を100%にすることは困難であり、残存したカルボニル化合物の除去が必要であり、これがプロセス上の負荷を大きくし、製造コストを増大させる原因となっている。

[0007]

これらの課題を解決するために、3-HPAを原料としない1,3-プロパンジオールの化学的製造方法が検討されている。その方法としてはエーテルアルコール化合物、即ち3-アルコキシ-1-プロパノールを加水分解する方法が考えられる。

[0008]

3-アルコキシ-1-プロパノールのようなエーテルアルコール化合物の加水分解によりジオール化合物を得る反応としては、例えば、特開平6-157378 号公報に4-オキサ-1, 7-ヘプタンジオールをイオン交換樹脂やゼオライトを触媒として加水分解し、1, 3-プロパンジオールを得る方法が開示されている。

[0009]

しかし、当該公報では、加水分解に用いられる基質が限定されており、4-オキサー1,7-ヘプタンジオールだけしか例示がなく、一般的なエーテルアルコール化合物にも適用できるかどうかは開示されていなかった。また、この加水分解反応を効率的に進行させ-るには200℃以上の高温が必要であり、工業的に利用するにはエネルギーコストが高くなってしまうという欠点があった。

[0010]

同様に、特開平11-209318号公報にエーテル化合物を酸触媒の存在下に加水分解し、アルコールを得る方法が開示されている。

[0011]

しかし、当該公報に記載の方法では反応の実施により、高いエーテル化合物の転化率が得られるものの、アルコール以外の副生物が多量に生成してしまうという問題があり、アルコール化合物の選択率が低いために、工業的に用いることは困難であった。また、この製造方法も前述の方法と同じく、反応を効率的に進行させるには200℃以上の高温が必要であり、工業的にはコスト面で不利があった。

[0012]

更に、欧州特許第1201633号公報にもエーテル化合物を酸触媒の存在下に加水分解し、アルコールを得る方法が開示されている。

[0013]

しかし、当該公報に記載の方法も、良好な反応成績を出すためには250℃以上の反応 温度が必要となるため、工業的な実施には膨大なエネルギーコストがかかってしまうとい う欠点があった。また、加水分解に用いられる基質が限定されており、4-オキサー1, 7-ヘプタンジオールだけしか例示がなく、一般的なエーテルアルコール化合物にも適用 できるかどうかは開示されていなかった。

[0014]

以上のように、これまでエーテルアルコール化合物である3-アルコキシー1-プロパノールの加水分解反応で、目的とする1,3-プロパンジオールを低エネルギーで効率良く製造する方法は知られていなかった。

[0015]

【特許文献1】特開平10-212253号公報

【特許文献2】特表平11-515021号公報

【特許文献3】特開平6-40973号公報

【特許文献4】特表平11-509828号公報

【特許文献5】特開平6-157378号公報

【特許文献6】特開平11-209318号公報

【特許文献7】欧州特許第1201633号公報

【発明の開示】

【発明が解決しようとする課題】

[0016]

本発明の目的は、上述した従来技術における欠点を解消することができる1,3-プロパンジオールの製造方法を提供することにある。

[0017]

本発明の他の目的は、従来知られていなかった 3- アルコキシー 1- プロパノールの加水分解による 1 、 3- プロパンジオールの効率的な製造方法、および該製造方法で得られる 1 、 3- プロパンジオールを提供することにある。

【課題を解決するための手段】

[0018]

本発明者らは鋭意研究の結果、特定の構造を有するエーテルアルコール化合物から 1 , 3-プロパンジオールを製造する際に、 200 C未満の穏和な温度条件下で酸触媒を用いて反応を実施することにより、 1 , 3-プロパンジオールを効率的に製造することが可能であることを見い出し本発明に至った。

[0019]

すなわち、本発明 (I) は、少なくとも一種以上の酸触媒の存在下、200℃未満の温 度条件において、一般式 (1) で表されるエーテルアルコール化合物を加水分解させるこ とを特徴とする1,3-プロパンジオールの製造方法である。

一般式(1)

[0020]

【化1】

[0021]

・本発明 (II) は、本発明 (I) の製造方法で製造される1, 3ープロパンジオールで ある。

[0022]

更に、本発明は例えば次の事項を含む。

[0023]

[1] 少なくとも一種以上の酸触媒の存在下、200℃未満の温度条件において、一 般式(1)で表されるエーテルアルコール化合物を加水分解させることを特徴とする1, 3-プロパンジオールの製造方法。

一般式(1)

[0024]

【化2】

[0025]

(式中、Rは炭素数1~10のアルキル基、シクロアルキル基、又はアリール基を表す。 ただしRは水酸基を有していないものとする。)

酸触媒が、鉱酸であることを特徴とする[1]に記載の1,3-プロパンジオ [2] ールの製造方法。

[0026]

酸触媒が、無機固体酸であることを特徴とする [1] に記載の1, 3-プロパ ンジオールの製造方法。

[0027]

[4] 酸触媒が、スルホン酸基を含有する化合物であることを特徴とする[1]に記 載の1、3-プロパンジオールの製造方法。

[0028]

スルホン酸基を含有する化合物が、メタンスルホン酸、トリフルオロメタンス ルホン酸、pートルエンスルホン酸、ドデシルベンゼンスルホン酸及びスルホン酸型イオ ン交換樹脂からなる群から選ばれる少なくとも一種以上であることを特徴とする [4] に 記載の1,3-プロパンジオールの製造方法。

[0029]

- 酸触媒が、反応系内で溶解し、均一系状態で反応が起こることを特徴とする[1] から [5] のいずれかに記載の1, 3-プロパンジオールの製造方法。
- 酸触媒が反応系内で不溶であり、不均一系状態で反応が起こることを特徴とす [0030] る [1] から [5] のいずれかに記載の1, 3ープロパンジオールの製造方法。
- [8] ヨウ化ナトリウム、ヨウ化カリウム、ヨウ化水素酸、ヨウ化テトラアルキルア ンモニウム類から選ばれる少なくとも一種以上の化合物を反応助剤として使用することを 特徴とする [1] から [7] のいずれかに記載の1, 3-プロパンジオールの製造方法。
- [9] 一般式(1)で表されるエーテルアルコール化合物の置換基Rが、炭素数7以 下の炭化水素であることを特徴とする [1] から [8] のいずれかに記載の1, 3ープロ パンジオールの製造方法。

- 一般式(1)で表されるエーテルアルコール化合物が、3-メトキシ-1-[0033] プロパノール、3-エトキシ-1-プロパノール、3-プロポキシ-1-プロパノール、 3-アリロキシ-1-プロパノール及び3-ベンジルオキシ-1-プロパノールからなる 群より選ばれる少なくとも一種以上であることを特徴とする [1] から [8] のいずれか に記載の1,3-プロパンジオールの製造方法。
- [11] 一般式(1)で表されるエーテルアルコール化合物が、アリルアルコールと アルコール化合物との反応で製造されることを特徴とする [1] から [10] のいずれか に記載の1,3-プロパンジオールの製造方法。
- 加水分解反応をエーテルアルコール化合物の5倍質量以下の水の存在下に実 [0035] 施することを特徴とする[1]から[11]のいずれかに記載の1,3-プロパンジオー ルの製造方法。

- 3-アルコキシ-1-プロパノールの転化率が50%以上であることを特徴 [0036] とする [1] から [12] のいずれかに記載の1, 3 -プロパンジオールの製造方法。
- [14] 1,3-プロパンジオールの選択率が60%以上であることを特徴とする[1] から[13] のいずれかに記載の1,3-プロパンジオールの製造方法。
- [1] から [14] のいずれかに記載の製造方法で製造されることを特徴と [0038] [15] する1,3-プロパンジオール。

【発明の効果】

本発明の1,3-プロパンジオールの製造方法によれば、カルボニル不純物の含有量が 極めて少ない1、3-プロパンジオールを高効率で製造することができる。

また、本発明の1,3-プロパンジオールの製造方法で得られる1,3-プロパンジオ ールは、従来の方法により得られる1,3-プロパンジオールに比べて高純度であり、こ れらの1、3-プロパンジオールをポリエステル等の樹脂原料として用いることで臭気や 着色の低減された樹脂が安価に製造可能になることは明かである。

【発明を実施するための最良の形態】

以下、必要に応じて図面を参照しつつ本発明を更に具体的に説明する。以下の記載にお いて量比を表す「部」および「%」は、特に断らない限り質量基準とする。

(本発明(I))

まず、本発明(Ⅰ)について説明する。本発明(Ⅰ)は、少なくとも一種以上の酸触媒 の存在下、200℃未満の温度条件において、一般式(1)で表されるエーテルアルコー ル化合物を加水分解させることを特徴とする1,3-プロパンジオールの製造方法である

一般式(1)

[0042]

[化3]

(式中、Rは炭素数 $1\sim10$ のアルキル基、シクロアルキル基、又はアリール基を表す。 ただしRは水酸基を有していないものとする。)

本発明(I)の製造方法に用いられる触媒は、酸触媒である。更に、加水分解反応を阻 (触媒) 害しない限り、ブレンステッド酸でもルイス酸でもかまわない。

本発明(I)の製造方法に用いられる触媒としては、鉱酸、無機固体酸、スルホン酸基 含有化合物が好ましい。

鉱酸としては、塩酸、硝酸、硫酸、リン酸、ホウ酸等を触媒として使用することができ る。

好ましくは硝酸、硫酸、リン酸であり、より好ましくは硫酸、リン酸である。

無機固体酸としては、ゼオライト類、ナフィオン、活性白土、モンモリロナイト等を触 媒として使用することができる。

好ましくはゼオライト類、ナフィオンであり、より好ましくはゼオライト類である。

スルホン酸基含有化合物としては、メタンスルホン酸、エタンスルホン酸、プロパンス ルホン酸、ブタンスルホン酸、トリフルオロメタンスルホン酸、ベンゼンスルホン酸、p ートルエンスルホン酸、2,4,6-トリメチルベンゼンスルホン酸、ヘキシルベンゼン スルホン酸、オクチルベンゼンスルホン酸、デシルベンゼンスルホン酸、ドデシルベンゼ ンスルホン酸、1-ナフタレンスルホン酸、スルホン酸型のイオン交換樹脂等を触媒とし て使用することができる。

好ましくはメタンスルホン酸、トリフルオロメタンスルホン酸、pートルエンスルホン 酸、ドデシルベンゼンスルホン酸であり、より好ましくはロートルエンスルホン酸、ドデ シルベンゼンスルホン酸である。

本発明(I)の製造方法に使用する触媒の形態には、特に制限はなく均一系、不均一系 (触媒の形態) のいずれの形態をとることも可能である。好ましい形態としては、反応後の触媒分離操作 の点などから不均一系触媒であるが、均一系触媒であっても特に差し支えない。

均一系触媒としては、反応時に溶解するものであればどのようなものでも使用可能であ

る。

[0052]

これらの均一系触媒は、予め基質のエーテルアルコール化合物や水に溶解させた形で反応に使用してもよいし、仕込み時に基質と同時に仕込んで反応させることも可能である。

....

100531

一方、不均一系触媒としては、反応時に溶解しないものであればどのような形態のものでも使用可能である。例えば、酸成分が担体に担持された、いわゆる担持型触媒を用いることも可能である。

(担持型触媒)

本発明(I)の製造方法に使用する触媒が担体に担持された担持型触媒である場合、用いることができる担体は酸成分と反応しないものであれば他に制限はなく、従来公知の担体を使用することができる。具体的には、活性炭、シリカ、アルミナ、シリカアルミナ、ゼオライト、チタニア、ジルコニア、マグネシア、ケイソウ土等を挙げることができる。反応への影響、触媒調製時の表面積、或いは担体の強度等の工業的実用性の点からシリカ、アルミナ、ゼオライトが好適である。

[0054]

本発明(I)の製造方法に使用する触媒に用いる担体の表面積は $50m^2/g\sim4000m^2/g$ の範囲であることが好ましい。より好ましくは $100m^2/g\sim2000m^2/g$ の範囲であり、更に好ましくは $200m^2/g\sim1000m^2/g$ の範囲である。

[0055]

触媒の活性種である酸成分を担体に担持する場合の酸成分と担体の量は、酸成分が担体の全質量に対して0.01質量%~100質量%となる範囲が好ましい。酸成分が0.01質量%よりも少量である場合には、触媒活性点の濃度が低いために実用するのに充分な触媒活性が得られない恐れがあり好ましくない。また、100質量%を越えると、担体の効果が発揮できなくなる恐れがあり好ましくない。

[0056]

より好ましくは0.05質量%~50質量%となる範囲であり、更に好ましくは0.1 質量%~30質量%の範囲である。

[0057]

本発明(I)の製造方法に使用する触媒が担体に担持された担持型触媒である場合、具・体的には末端スルホン酸型表面水酸基修飾シリカ、末端スルホン酸型表面水酸基修飾アルミナ、末端リン酸型表面水酸基修飾シリカ、末端リン酸型表面水酸基修飾アルミナ等を使用することができる。これらは各々単独で用いても、二種以上組み合わせて用いても良い

[0058]

本発明(I)の製造方法に使用する触媒が不均一系触媒である場合、最も好ましいのは、無機固体酸触媒である。

(触媒の性状等)

これら触媒の性状や大きさには特に制限がない。触媒の性状としては、具体的に例を挙げると、粉末、固形粉砕物、フレーク、球状成型品、柱状成形品、円筒状成型品等が挙げられる。また、触媒の大きさとしては、平均粒径で懸濁床又は流動床の場合1 μm~1 0 0 μm、固定床の場合では1 mm~2 0 mm程度の粒径のものが使用できる。

[0059]

懸濁床又は流動床の場合、触媒の平均粒径がこれより小さいと触媒分離に困難をきたし、また、粒径が大きい場合は触媒沈降により反応が効率的にできない恐れがある。固定床の場合は、平均粒径が小さいと触媒層の詰まりや差圧の増加の恐れがあり、逆に粒径が大きいと反応器の単位容積あたりに有する触媒表面積が少なくなり、反応効率低下の原因となるために好ましくない。

[0060]

本発明(I)の製造方法に使用する触媒が不均一系触媒である場合、その性状や粒径は

、反応形態に適したものを選択して用いることができる。

本発明(I)の製造方法に用いる触媒は、従来公知であるいかなる触媒調製法で製造し てもよい。

中でも本発明(I)の製造方法に使用する触媒が担体に担持された担持型触媒である場 (好適な触媒の製造方法) 合には、触媒からの活性種離脱防止の点からは、以下の工程を含む製造方法で触媒を製造 することが好ましい。

すなわち、工程(A)と工程(B)を含むことを特徴とする製造方法により製造するこ

<u>工程(A)</u>: その構造中にチオール基とトリメトキシシリル基の両方を有する化合物と担 体とを有機溶媒中に加え、加熱することで、担体表面のシラノール基とトリメトキシシリ

工程 (B): 工程 (A) で得られる固体を洗浄後、有機溶媒中で酸化処理してチオール基 をスルホン酸基に変換し、更に洗浄、乾燥を行い1,3-プロパンジオール製造用触媒を 得る工程

もちろん、これらの製造方法に限定されるわけではなく、従来公知の製造方法で製造す ることができる。

本発明 (I) の製造方法における一般式 (1) で表されるエーテルアルコール化合物は (エーテルアルコール化合物) 、その構造中に1つの水酸基と1つのエーテル構造を有している化合物である。

具体的には例えば、3-メトキシー1-プロパノール、3-エトキシー1-プロパノー ル、3-n-プロポキシ-1-プロパノール、3-イソプロポキシ-1-プロパノール、 3-アリロキシ-1-プロパノール、3-n-ブトキシ-1-プロパノール、3-t-ブ トキシー1ープロパノール、3ーペンチルオキシー1ープロパノール、3ーヘキシルオキ シー1ープロパノール、3ーフェノキシシー1ープロパノール、3ーベンジルオキシー1 -プロパノール等が挙げられるが、本発明はこれらに限定されるものではない。

この中でも、加水分解反応の進行の容易さから、 3- メトキシ- 1- プロパノール、 3ーアリロキシー1-プロパノール、3-ベンジルオキシー1-プロパノールが特に好まし いん

本発明(I)でのエーテルアルコール化合物の加水分解反応は、触媒の存在下、該エー (加水分解反応) テルアルコール化合物と水を接触させることで行うことができる。その反応形態としては 、従来公知の加水分解反応に使用される連続、回分反応のいかなる反応形態もとることが 可能である。また、使用する触媒は、均一系、不均一系の何れの触媒も使用可能であるが 、触媒の形態は特に制限がなく、反応形態に応じて適当なものを選択することが可能であ

反応形態としては、具体的には、均一系触媒では、単純撹拌槽、気泡塔型反応槽、管型 反応槽などの反応形態、不均一系触媒では、懸濁床単純撹拌槽、流動床気泡塔型反応槽、 流動床管型反応槽、固定床液相流通式管型反応槽、固定床トリクルベッド式管型反応槽等 を例示することができるが、本発明はこれらに限定されない。

本発明(I)の1,3-プロパンジオールの製造方法でのエーテルアルコール化合物の (使用量) 加水分解反応における触媒の使用量は、これら反応形態によって異なるため特に制限はな い。例えば回分反応について例を挙げると、均一系触媒では、エーテルアルコール化合物 と水の混合液に対して通常0.01質量%~100質量%、好ましくは0.1質量%~5

0 質量%、より好ましくは1 質量%~3 0 質量%の範囲で、不均一系触媒では、エーテルアルコール化合物と水の混合液に対して通常 0.01 質量%~200 質量%、好ましくは 0.1 質量%~150 質量%、より好ましくは1 質量%~100%の範囲で使用することができる。

[0066]

触媒量が少ないと実用的に充分な反応速度が得られない恐れがあり、また、触媒量が多い場合は副反応の増大による反応収率の低下や触媒コスト増大の恐れがあるために好ましくない。

(水の存在)

本発明(I)の製造方法におけるエーテルアルコール化合物と水の使用量は特に制限はない。一般にはエーテルアルコール化合物質量(A)に対する水の質量(B)の比(B/A)が $0.1\sim50$ となるような範囲で使用できる。エーテルアルコール化合物質量に対する水の質量の比が0.1未満では加水分解反応が起こりにくくなり、目的とする1,3ープロパンジオールが生成しにくくなることから好ましくない。また、エーテルアルコール化合物質量に対する水の質量の比が50を越えると、目的生成物の分離の際に多量の水の除去が必要となり、工業的観点からはコスト増となるため好ましくない。好ましくは $0.5\sim30$ の範囲であり、より好ましくは $1\sim20$ の範囲である。1,3-プロパンジオール製造コスト低減の点からは、エーテルアルコール化合物質量に対する水の質量の比は5以下(更には3以下)であることが好ましい。

(反応条件)

本発明(I)の1,3-プロパンジオールの製造方法でのエーテルアルコール化合物の加水分解反応における反応圧力は、反応温度、およびエーテルアルコール化合物と水の混合比によって異なるため特に制限はない。常圧あるいは加圧下の何れにおいても反応を実施することは可能である。エーテルアルコール化合物もしくは水のいずれかまたは両方の沸点を越える温度で反応を実施する場合、反応圧力はそれらのいずれかまたは両方の蒸気圧により決まるが、基質の蒸気圧分以外に不活性ガスを使用して更に加圧して反応を行うこともできる。同様にエーテルアルコール化合物と水のどちらも蒸気圧が発生しない温度で反応を実施する場合においても、不活性ガスを使用して加圧して反応を行うことができる。反応をより効率的に進めるためには常圧下よりも加圧下で実施することが好ましい。【0067】

本発明(I)の1,3-プロパンジオールの製造方法でのエーテルアルコール化合物と水との反応は、触媒の反応効率を落とさない範囲において、いかなる温度でも実施可能であるが、通常は50 $\mathbb{C} \sim 200$ \mathbb{C} 未満、好ましくは80 $\mathbb{C} \sim 190$ \mathbb{C} 、より好ましくは100 $\mathbb{C} \sim 180$ \mathbb{C} の間で行われる。50 \mathbb{C} 未満ではエーテルアルコール化合物と水の反応が実用的な反応速度を得られない恐れがあり好ましくない。また、200 \mathbb{C} 以上の高温では、加水分解反応により1,3-プロパンジオールと共に生成するアルコール化合物の異なれた。

性化反応等が起こりやすくなり、望ましくない副生成物を与えるだけでなく、その副生成物が更に1,3-プロパンジオール等と反応を起こし、2次的な副生物を生じさせ1,3-プロパンジオールの選択率を低下させるため好ましくない。

(反応促進剤)

本発明(I)の1,3-プロパンジオールの製造方法でのエーテルアルコール化合物と水の反応は、触媒以外にを加えることで反応速度を著しく向上させることができる。反応促進剤には特に制限はないが、一般にはヨウ化物、臭化物が好ましい。好ましい反応促進剤としては例えば、ヨウ化ナトリウム、ヨウ化カリウム、テトラエチルアンモニウムヨージド、テトラブチルアンモニウムヨージド、ヨウ化水素、臭化ナトリウム、臭化カリウム等を挙げることができる。また、その使用量は、エーテルアルコール化合物と水の混合液に対して通常0.01質量%~100質量%、好ましくは0.1質量%~50質量%、より好ましくは1質量%~30質量%の範囲である。

[0068]

使用量が少ないと実用的に充分な促進効果が得られない恐れがあり、また、使用量が多

い場合は反応装置の腐食や使用後の除去コスト増大の恐れがあるために好ましくない。 (エーテルアルコール化合物の製造方法)

本発明(I)の製造方法で使用されるエーテルアルコール化合物は、いかなる方法によって調製されたものであってもよい。

[0069]

エーテルアルコール化合物の中でも、特に3-アルコキシー1-プロパノールを調製する方法としては、具体的に例を挙げると、アクロレインにアルコール化合物を付加させた後、水素化する調製法、ハロゲン化アルキルと1,3-プロパンジオールを金属ナトリウムまたは水酸化ナトリウム存在下に反応させる調製法、3-ハロゲノー1-プロパノールとアルコール化合物を金属ナトリウムまたは水酸化ナトリウム存在下に反応させる調製法、特定の触媒存在下にアリルアルコールとアルコール化合物を反応させる調製法等が挙げられるが、もちろんこれらに限定されるものではない。

[0070]

本発明(I)の製造方法におけるエーテルアルコール化合物は、この前記の調製法の中でも、反応触媒の被毒物質となり得る塩素化合物や副生物の生成を招くカルボニル化合物のような工業的に望ましくない不純物が混入しない点から、特定の触媒存在下にアリルアルコールとアルコール化合物を反応させる調製法によって得られる3-アルコキシー1-プロパノールであることが好ましい。

[0071]

以上述べた本発明(I)の1,3-プロパンジオールの製造方法では、例えば3-メトキシー1-プロパノールの加水分解で1,3-プロパンジオールを製造する場合、好ましい条件下では3-メトキシー1-プロパノールの転化率が50%以上、より好ましい条件下では70%以上となる。その場合の1,3-プロパンジオールの選択率は好ましい条件下では、好ましくは60%以上、更には70%以上(特に75%以上)を得ることができる。

(本発明(II))

次に本発明(II)について説明する。本発明(II)は、本発明(I)の1, 3-プロパンジオールの製造方法により製造されることを特徴とする1, 3-プロパンジオールである。

[0072]

本発明(I)の1,3-プロパンジオールの製造方法は、アリルアルコールとアルコール化合物との反応により製造される3-アルコキシー1-プロパノール類を加水分解する製造方法であることから、生成物の1,3-プロパンジオールは不純物としてカルボニル化合物を殆ど含有しない。従って、本発明(II)の1,3-プロパンジオールは、該1,3-プロパンジオールを原料としてポリエステル等を製造した場合、カルボニル化合物が原因となる着色や異臭の発生を低く抑えることができる。

(カルボニル化合物の確認)

1,3-プロパンジオールにカルボニル化合物が含まれるか否かの確認は例えば、以下の方法により行うことが可能である。

[0073]

- 1) ガスクロマトグラフィー、液体クロマトグラフィー、ガスクロマトグラフィー/質量スペクトルによる既知のカルボニル化合物の定量、
- 2) I Rスペクトルによる1 6 0 0 c m⁻¹ 1 8 0 0 c m⁻¹ 付近のC = O 伸縮振動 ピークの確認、
- 3) カルボニル化合物と2, 4-ジニトロフェニルヒドラジンとの縮合物の溶液の可視 光スペクトルによる定量(ASTM E411-70)。 【実施例】

[0074]

以下に実施例及び比較例を挙げて本発明を更に詳細に説明するが、本発明はこれらに限 定されるものではない。 [0075]

実施例における各反応の分析は、以下の条件によるガスクロマトグラフィー(以下、「GC」と略す。)により実施した。

<u>GC分析条件</u>

GC-17A(島津製作所(株)製)

カラム:TC-FFAP 0.25mmφ×30m (GL Science社製)

キャリアー: He 1ml/min、スプリット比1/30

検出器:FID

カラム温度: 40°C (10min) $\rightarrow 10$ °C/min $\rightarrow 200$ °C (40min)

インジェクション温度:200℃

注入量: 0. 2μ1

実施例1

攪拌子の入った内容積30m1のステンレス製オートクレーブ(耐圧硝子(株)製、テフロン内筒入り)に、硫酸0.10g、脱イオン水6.00g、3-メトキシ-1-プロパノール<math>0.30gを入れ装置を組み立てた。容器を密閉した後、オートクレイブ内を窒素で1.0MPa(ゲージ圧)まで加圧し0.0MPa(ゲージ圧)に脱圧する操作を5回繰り返し、空気を窒素で置換した。次いで内容物をマグネチックスターラーで撹拌しながら温度を上げ、190で10時間反応させた。

[0076]

反応後、容器を室温まで冷却、脱圧した後、反応器を開けて上澄みを抜き取り、GCに て分析を行った。

[0077]

GCクロマトグラムから算出した結果を、後述する表1に示す。

[0078]

なお、GCでは、カルボニル化合物である3-メトキシー1-プロピオンアルデヒド、3-ヒドロキシー1-プロピオンアルデヒドのピークは検出されなかった(すなわち、これらのカルボニル化合物は、本例におけるGCの検出限界=10pm以下であった)。実施例 2

攪拌子の入った内容積30mlのステンレス製オートクレーブ(耐圧硝子(株)製、テフロン内筒入り)に、硫酸0.10g、脱イオン水6.00g、3-メトキシー1-プロパノール1.20gを入れ装置を組み立てた。容器を密閉した後、オートクレイブ内を窒素で1.0MPa(ゲージ圧)まで加圧し0.0MPa(ゲージ圧)に脱圧する操作を5回繰り返し、空気を窒素で置換した。次いで内容物をマグネチックスターラーで撹拌しながら温度を上げ、190℃で10時間反応させた。

[0079]

反応後、容器を室温まで冷却、脱圧した後、反応器を開けて上澄みを抜き取り、GCにて分析を行った。

[0800]

GCクロマトグラムから算出した結果を、後述する表1に示す。

[0081]

なお、GCでは、カルボニル化合物である3-メトキシ-1-プロピオンアルデヒド、3-ヒドロキシ-1-プロピオンアルデヒドのピークは検出されなかった(すなわち、これらのカルボニル化合物は、本例におけるGCの検出限界=10 p p m以下であった)。 実施例 3

・機拌子の入った内容積30mlのステンレス製オートクレーブ(耐圧硝子(株)製、テフロン内筒入り)に、メタンスルホン酸0.30g、脱イオン水6.00g、3ーメトキシー1ープロパノール0.30gを入れ装置を組み立てた。容器を密閉した後、オートクレイプ内を窒素で1.0MPa(ゲージ圧)まで加圧し0.0MPa(ゲージ圧)に脱圧する操作を5回繰り返し、空気を窒素で置換した。次いで内容物をマグネチックスターラーで撹拌しながら温度を上げ、190℃で5時間反応させた。

[0082]

反応後、容器を室温まで冷却、脱圧した後、反応器を開けて上澄みを抜き取り、GCにて分析を行った。

[0083]

GCクロマトグラムから算出した結果を、後述する表1に示す。

[0084]

なお、GCでは、カルボニル化合物である3-メトキシー1-プロピオンアルデヒド、3-ヒドロキシー1-プロピオンアルデヒドのピークは検出されなかった(すなわち、これらのカルボニル化合物は、本例におけるGCの検出限界=10ppm以下であった)。実施例4

攪拌子の入った内容積30mlのステンレス製オートクレープ(耐圧硝子(株)製、テフロン内筒入り)に、pートルエンスルホン酸0.30g、脱イオン水6.00g、3ーメトキシー1ープロパノール0.30gを入れ装置を組み立てた。容器を密閉した後、オートクレイブ内を窒素で1.0MPa(ゲージ圧)まで加圧し0.0MPa(ゲージ圧)に脱圧する操作を5回繰り返し、空気を窒素で置換した。次いで内容物をマグネチックスターラーで撹拌しながら温度を上げ、180℃で10時間反応させた。

[0085]

反応後、容器を室温まで冷却、脱圧した後、反応器を開けて上澄みを抜き取り、GCに て分析を行った。

[0086]

GCクロマトグラムから算出した結果を、後述する表1に示す。

[0087]

なお、GCでは、カルボニル化合物である3-メトキシー1-プロピオンアルデヒド、3-ヒドロキシー1-プロピオンアルデヒドのピークは検出されなかった(すなわち、これらのカルボニル化合物は、本例におけるGCの検出限界=10ppm以下であった)。 実施例5

攪拌子の入った内容積30m1のステンレス製オートクレーブ(耐圧硝子(株)製、テフロン内筒入り)に、pートルエンスルホン酸0.30g、脱イオン水6.00g、3ーメトキシー1ープロパノール1.20gを入れ装置を組み立てた。容器を密閉した後、オートクレイブ内を窒素で1.0MPa(ゲージ圧)まで加圧し0.0MPa(ゲージ圧)に脱圧する操作を5回繰り返し、空気を窒素で置換した。次いで内容物をマグネチックスターラーで撹拌しながら温度を上げ、190℃で10時間反応させた。

[0088]

反応後、容器を室温まで冷却、脱圧した後、反応器を開けて上澄みを抜き取り、GCに て分析を行った。

[0089]

GCクロマトグラムから算出した結果を、後述する表1に示す。

[0090]

なお、GCでは、カルボニル化合物である3-メトキシー1-プロピオンアルデヒド、3-ヒドロキシー1-プロピオンアルデヒドのピークは検出されなかった(すなわち、これらのカルボニル化合物は、本例におけるGCの検出限界=10pm以下であった)。 実施例 6

提拌子の入った内容積 30m1のステンレス製オートクレーブ(耐圧硝子(株)製、テフロン内筒入り)に、ドデシルベンゼンスルホン酸 0.30g、脱イオン水 6.00g、3-メトキシ-1-プロパノール <math>0.60gを入れ装置を組み立てた。容器を密閉した後、オートクレイプ内を窒素で 1.0MPa (ゲージ圧)まで加圧し 0.0MPa (ゲージ圧)に脱圧する操作を 5 回繰り返し、空気を窒素で置換した。次いで内容物をマグネチックスターラーで撹拌しながら温度を上げ、 190で 10 時間反応させた。

[0091]

反応後、容器を室温まで冷却、脱圧した後、反応器を開けて上澄みを抜き取り、GCに

て分析を行った。

[0092]

GCクロマトグラムから算出した結果を、後述する表1に示す。

なお、GCでは、カルボニル化合物である3-メトキシ-1-プロピオンアルデヒド、 [0.093]٠.--: 3-ビドロキシー1-プロピオンアルデヒドのピークは検出されなかった(すなわち、こ れらのカルボニル化合物は、本例におけるGCの検出限界=10ppm以下であった)。

実施例7 フロン内筒入り)に、ドデシルベンゼンスルホン酸 0.30g、脱イオン水 6.00g、 3-メトキシ-1-プロパノール1.20gを入れ装置を組み立てた。容器を密閉した後 、オートクレイブ内を窒素で1.0MPa(ゲージ圧)まで加圧し0.0MPa(ゲージ 圧) に脱圧する操作を5回繰り返し、空気を窒素で置換した。次いで内容物をマグネチッ クスターラーで撹拌しながら温度を上げ、190℃で10時間反応させた。

反応後、容器を室温まで冷却、脱圧した後、反応器を開けて上澄みを抜き取り、GCに て分析を行った。

[0095]

GCクロマトグラムから算出した結果を、後述する表1に示す。

なお、GCでは、カルボニル化合物である3-メトキシ-1-プロピオンアルデヒド、 3-ヒドロキシ-1-プロピオンアルデヒドのピークは検出されなかった(すなわち、こ れらのカルボニル化合物は、本例におけるGCの検出限界=10ppm以下であった)。

フロン内筒入り)に、硫酸 0. 10g、ヨウ化カリウム 0. 03g、脱イオン水 5. 00 g、3-メトキシ-1-プロパノール1.00gを入れ装置を組み立てた。容器を密閉し た後、オートクレイブ内を窒素で1.0MPa(ゲージ圧)まで加圧し0.0MPa(ゲ ージ圧) に脱圧する操作を5回繰り返し、空気を窒素で置換した。次いで内容物をマグネ チックスターラーで撹拌しながら温度を上げ、180℃で6時間反応させた。

反応後、容器を室温まで冷却、脱圧した後、反応器を開けて上澄みを抜き取り、GCに て分析を行った。

[0098]

GCクロマトグラムから算出した結果を、後述する表1に示す。

なお、GCでは、カルボニル化合物である3-メトキシ-1-プロピオンアルデヒド、 3-ヒドロキシー1-プロピオンアルデヒドのピークは検出されなかった(すなわち、こ れらのカルボニル化合物は、本例におけるGCの検出限界=10ppm以下であった)。

実施例9 フロン内筒入り)に、硫酸 0. 10g、テトラブチルアンモニウムヨージド 0. 40g、 脱イオン水5.00g、3-メトキシー1-プロパノール1.00gを入れ装置を組み立 てた。容器を密閉した後、オートクレイブ内を窒素で1.0MPa(ゲージ圧)まで加圧 し0.0MPa(ゲージ圧)に脱圧する操作を5回繰り返し、空気を窒素で置換した。次 いで内容物をマグネチックスターラーで撹拌しながら温度を上げ、180℃で6時間反応 させた。

反応後、容器を室温まで冷却、脱圧した後、反応器を開けて上澄みを抜き取り、GCに て分析を行った。

[0101]

GCクロマトグラムから算出した結果を、後述する表1に示す。

[0102]

なお、GCでは、カルボニル化合物である3-メトキシー1-プロピオンアルデヒド、3-ヒドロキシー1-プロピオンアルデヒドのピークは検出されなかった(すなわち、これらのカルボニル化合物は、本例におけるGCの検出限界=10ppm以下であった)。 実施例10

攪拌子の入った内容積30m1のステンレス製オートクレーブ(耐圧硝子(株)製、テフロン内筒入り)に、ヨウ化水素酸1.42g、脱イオン水5.00g、3-メトキシー1-プロパノール<math>1.00gを入れ装置を組み立てた。容器を密閉した後、オートクレイプ内を窒素で1.0MPa(ゲージ圧)まで加圧し0.0MPa(ゲージ圧)に脱圧する操作を5回繰り返し、空気を窒素で置換した。次いで内容物をマグネチックスターラーで撹拌しながら温度を上げ、120℃で5時間反応させた。

[0103]

反応後、容器を室温まで冷却、脱圧した後、反応器を開けて上澄みを抜き取り、GCにて分析を行った。

[0104]

GCクロマトグラムから算出した結果を、後述する表1に示す。

[0105]

なお、GCでは、カルボニル化合物である3-メトキシー1-プロピオンアルデヒド、3-ヒドロキシー1-プロピオンアルデヒドのピークは検出されなかった(すなわち、これらのカルボニル化合物は、本例におけるGCの検出限界=10pm以下であった)。 実施例11

攪拌子の入った内容積30mlのステンレス製オートクレーブ(耐圧硝子(株)製、テフロン内筒入り)に、硫酸0.10g、臭化カリウム0.13g、脱イオン水5.00g、3-メトキシ-1-プロパノール1.00gを入れ装置を組み立てた。容器を密閉した後、オートクレイブ内を窒素で1.0MPa(ゲージ圧)まで加圧し0.0MPa(ゲージ圧)に脱圧する操作を5回繰り返し、空気を窒素で置換した。次いで内容物をマグネチックスターラーで撹拌しながら温度を上げ、180℃で5時間反応させた。

[0106]

反応後、容器を室温まで冷却、脱圧した後、反応器を開けて上澄みを抜き取り、GCにて分析を行った。

. [0107]

GCクロマトグラムから算出した結果を、後述する表1に示す。

[0108]

なお、GCでは、カルボニル化合物である3-メトキシー1-プロピオンアルデヒド、3-ヒドロキシー1-プロピオンアルデヒドのピークは検出されなかった(すなわち、これらのカルボニル化合物は、本例におけるGCの検出限界=10pm以下であった)。 実施例12

攪拌子の入った内容積30m1のステンレス製オートクレーブ(耐圧硝子(株)製、テフロン内筒入り)に、硫酸0.10g、ヨウ化カリウム0.18g、脱イオン水3.00g、3-メトキシ-1-プロパノール<math>1.00gを入れ装置を組み立てた。容器を密閉した後、オートクレイブ内を窒素で1.0MPa(ゲージ圧)まで加圧し0.0MPa(ゲージ圧)に脱圧する操作を5回繰り返し、空気を窒素で置換した。次いで内容物をマグネチックスターラーで撹拌しながら温度を上げ、150で5時間反応させた。

[0109]

反応後、容器を室温まで冷却、脱圧した後、反応器を開けて上澄みを抜き取り、GCにて分析を行った。

[0110]

GCクロマトグラムから算出した結果を、後述する表1に示す。

[0111]

なお、GCでは、カルボニル化合物である3-メトキシ-1-プロピオンアルデヒド、3-ヒドロキシ-1-プロピオンアルデヒドのピークは検出されなかった(すなわち、これらのカルボニル化合物は、本例におけるGCの検出限界=10 p p m以下であった)。 実施例 13

攪拌子の入った内容積30mlのステンレス製オートクレーブ(耐圧硝子(株)製、テフロン内筒入り)に、硫酸0.06g、脱イオン水3.90g、3-アリロキシ-1-プロパノール1.30gを入れ装置を組み立てた。容器を密閉した後、オートクレイブ内を窒素で1.0MPa(ゲージ圧)まで加圧し0.0MPa(ゲージ圧)に脱圧する操作を5回繰り返し、空気を窒素で置換した。次いで内容物をマグネチックスターラーで撹拌しながら温度を上げ、180℃で3時間反応させた。

[0112]

反応後、容器を室温まで冷却、脱圧した後、反応器を開けて上澄みを抜き取り、GCにて分析を行った。

[0113]

GCクロマトグラムから算出した結果を、後述する表1に示す。

[0114]

なお、GCでは、カルボニル化合物であるアクロレイン、3-アリロキシ-1-プロピオンアルデヒド、3-ヒドロキシ-1-プロピオンアルデヒドのピークは検出されなかった(すなわち、これらのカルボニル化合物は、本例におけるGCの検出限界=10ppm以下であった)。

実施例14

攪拌子の入った内容積30m1のステンレス製オートクレーブ(耐圧硝子(株)製、テフロン内筒入り)に、 β 型ゼオライト(ゼオリスト社製、Si/AI=75)0. 50g、脱イオン水3.90g、3-アリロキシ-1-プロパノール1. <math>30gを入れ装置を組み立てた。容器を密閉した後、オートクレイブ内を窒素で1.0MPa(ゲージ圧)まで加圧し0.0MPa(ゲージ圧)に脱圧する操作を5回繰り返し、空気を窒素で置換した。次いで内容物をマグネチックスターラーで撹拌しながら温度を上げ、180で3時間反応させた。

[0115]

反応後、容器を室温まで冷却、脱圧した後、反応器を開けて上澄みを抜き取り、GCにて分析を行った。

[0116]

GCクロマトグラムから算出した結果を、後述する表1に示す。

[0117]

なお、GCでは、カルボニル化合物であるアクロレイン、3-アリロキシ-1-プロピオンアルデヒド、3-ヒドロキシ-1-プロピオンアルデヒドのピークは検出されなかった(すなわち、これらのカルボニル化合物は、本例におけるGCの検出限界=10pm以下であった)。

実施例15

一般 お子の入った内容積 30mlのステンレス製オートクレープ(耐圧硝子(株)製、テフロン内筒入り)に、H-2SM-5(Si/Al=25)0. 50g、脱イオン水 3.90g、3-アリロキシ-1-プロパノール <math>1.30gを入れ装置を組み立てた。容器を密閉した後、オートクレイプ内を窒素で 1.0MPa(ゲージ圧)まで加圧し 0.0MPa(ゲージ圧)に脱圧する操作を 50 回繰り返し、空気を窒素で置換した。次いで内容物をマグネチックスターラーで撹拌しながら温度を上げ、 180 で 1 時間反応させた。

 $\cdot [0118]$

反応後、容器を室温まで冷却、脱圧した後、反応器を開けて上澄みを抜き取り、GCにて分析を行った。

[0119]

GCクロマトグラムから算出した結果を、後述する表1に示す。

[0120]

なお、GCでは、カルボニル化合物であるアクロレイン、3-アリロキシー1-プロピオンアルデヒド、3-ヒドロキシー1-プロピオンアルデヒドのピークは検出されなかった(すなわち、これらのカルボニル化合物は、本例におけるGCの検出限界=10ppm以下であった)。

比較例1

型押子の入った内容積30m1のステンレス製オートクレーブ(耐圧硝子(株)製、テフロン内筒入り)に、硫酸0.10g、脱イオン水5.00g、3-メトキシ-1-プロパノール<math>1.00gを入れ装置を組み立てた。容器を密閉した後、オートクレイブ内を窒素で1.0MPa(ゲージ圧)まで加圧し0.0MPa(ゲージ圧)に脱圧する操作を5回繰り返し、空気を窒素で置換した。次いで内容物をマグネチックスターラーで撹拌しながら温度を上げ、220で10時間反応させた。

[0121]

反応後、容器を室温まで冷却、脱圧した後、反応器を開けて上澄みを抜き取り、GCにて分析を行った。

[0122]

GCクロマトグラムから算出した結果を、後述する表1に示す。

[0123]

なお、GCでは、カルボニル化合物であるアクロレイン、3-アリルオキシー1-プロピオンアルデヒド、3-ヒドロキシー1-プロピオンアルデヒドのピークは検出されなかった(すなわち、これらのカルボニル化合物は、本例におけるGCの検出限界=10ppm以下であった)。が、1, 3-ジメトキシプロパンの生成が確認された。比較例 2

攪拌子の入った内容積30m1のステンレス製オートクレーブ(耐圧硝子(株)製、テフロン内筒入り)に、硫酸0.10g、脱イオン水6.50g、3-アリロキシ-1-プロパノール1.30gを入れ装置を組み立てた。容器を密閉した後、オートクレイプ内を窒素で<math>1.0MPa(ゲージ圧)まで加圧し0.0MPa(ゲージ圧)に脱圧する操作を5回繰り返し、空気を窒素で置換した。次いで内容物をマグネチックスターラーで撹拌しながら温度を上げ、200で5時間反応させた。

[0124]

反応後、容器を室温まで冷却、脱圧した後、反応器を開けて上澄みを抜き取り、GCに て分析を行った。

[0125]

GCクロマトグラムから算出した結果を、後述する表1に示す。

[0126]

なお、GCでは、カルボニル化合物であるアクロレイン、3-アリロキシー1-プロピオンアルデヒド、3-ヒドロキシー1-プロピオンアルデヒドのピークは検出されなかった(すなわち、これらのカルボニル化合物は、本例におけるGCの検出限界=10ppm以下であった)。が、ジアリルエーテル、1, 3-ジアリロキシプロパンの生成が確認された。

比較例3

[0127]

反応後、容器を室温まで冷却、脱圧した後、反応器を開けて上澄みを抜き取り、GCに

て分析を行った。

[0128]

GCクロマトグラムから算出した結果を、後述する表1に示す。

なお、GCでは、カルボニル化合物であるアクロレイン、3-アリロキシ-1-プロピ オンアルデヒド、3-ヒドロキシー1-プロピオンアルデヒドのピークは検出されなかっ た(すなわち、これらのカルボニル化合物は、本例におけるGCの検出限界=10ppm 以下であった)。

比較例4

フロン内筒入り) に、H-ZSM-5 (Si/Al=25) 0.50g、脱イオン水5. 00g、4-オキサー1,7-ヘプタンジオール1.00gを入れ装置を組み立てた。容 器を密閉した後、オートクレイブ内を窒素で1.0MPa(ゲージ圧)まで加圧し0.0 MPa (ゲージ圧) に脱圧する操作を5回繰り返し、空気を窒素で置換した。次いで内容 物をマグネチックスターラーで撹拌しながら温度を上げ、180℃で5時間反応させた。

反応後、容器を室温まで冷却、脱圧した後、反応器を開けて上澄みを抜き取り、GCに て分析を行った。

[0131]

GCクロマトグラムから算出した結果を、後述する表1に示す。

なお、GCでは、カルボニル化合物であるアクロレイン、3-アリロキシ-1-プロピ オンアルデヒド、3-ヒドロキシー1-プロピオンアルデヒドのピークは検出されなかっ た(すなわち、これらのカルボニル化合物は、本例におけるGCの検出限界=10ppm 以下であった)。

[0133]

-	量 H,0/基質 反応温度 反応時間 転化率 (質量比) (質量比) (%) (hr) (%)	190 10 74.5	0.3 20 190 10 68.2	190 5 84.5	0.3 20 180 10 67.4	0.3 20 190 10 77.3	1,2 3 190 10 73.8	190 10 68.8	1.2 5 180 6 51.8	3-#6	3-Hpts 1.0 5 120 5 84.0	3-HP(*) 1.0 5 74.3	3-MP(*) 1.0 5 150 5 55.3	3-Hp(*) . 1.0 3 60.1	3-Ap(*) 1.3 3 62.4	 		3_HD(*) 1.0 5 220 10 11.3	5 200 5 82.0	2 180 5 24.9	4-0-1 7-HD(t) 1.0 5 180 5 5.5.5			長い観	ウムコーンド	コンコントラン・コープロン・コー	1. ノーヘンタンジオール
で合物の哲水分解	#		e e	7 0		. o	1.2	o 6	7 .) (0.1	1.0				٠ ١ = ١	11-1	ヘレタンジャード
ルアルコール	反応助剤		,	!	1	ı	ı	1	1	×	TBA1(4)	1	KBr	<u>-</u>		1	ì		1	1		-	ラボン数	NS: D - ドゲール・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	TBAI: テトラブチルアンモニウムヨージト	トートレログン	4-1,
	館媒盤	(g)	0.1	0,1	0.3	0	0,3	0.3	0.3	0.1	0.7	1.42	. 0	-	90		0.5			0		0.5	ことドノ田	ラインカ	ラブチルブ	ストサツーコント	4-4-
Z 4 -14772	はない。	がなる	H.SO.	H SO.	(E) (E)	m3 07c(b)	PTS(b)	DRS ^(o)	DBS(c)	H. S0.	H, SO.	7 17	= 5	2 20	700 E	8-2, 171	G-MSZ-H		H ₂ SO,	H ₂ SO ₄	H2 SO4	G-WSZ-H	HS:メタンスラボノ取	La Caracter Nation Nation	BAI: ナトラ	3-AP:3-メールシー・3-AP:3-AP:3-AP:3-AP:3-AP:3-AP:3-AP:3-AP:	3-4P:3-17:14/ 4-0-17-HD:4-1444
4	- 一	米商迄一	1,	- c	N C	,,	4 1	n (٦ ٥	. 0	0 0	» :	2 :	= :	12	13	. .	比较密	-	8	8			9 G			£ 3