哈尔滨工业大学 (深圳)

《系统建模与仿真》课程实验报告

(2019-2020 秋季学期)

课程名称:	系统建模与仿真
题 目:	利用相关分析法辨识脉冲响应
班级学号:	自动化二班 SZ170410221
学生姓名:	朱方程

2019年10月17日

一、实验目的

通过仿真实验掌握利用相关分析法辨识脉冲响应的原理和方法。

二、实验内容

图 1 为本实验的原理框图。系统的传递函数为G(s),

$$G(s) = \frac{K}{(T_1 s + 1)(T_2 s + 1)}$$

其中 K=120, $T_1=8.3\mathrm{Sec}$, $T_2=6.2\mathrm{Sec}$; u(k)和z(k)分别为过程的输入和输出变量; v(k) 为测量白噪声过程,服从正态分布,均值为零,方差为 σ_v^2 ,记作 $v(k)\sim N(0,\sigma_v^2)$; $g_0(k)$ 为系统脉冲响应的理论值, g(k) 为系统脉冲响应的估计 值, g(k) 为系统脉冲响应的估计误差。

过程的输入驱动采用 M 序列,输出受到白噪声v(k) 的污染。根据过程的输入和输出数据 $\{u(k), z(k)\}$,利用相关分析算法辨识系统脉冲相应。

根据输出过程的脉冲响应值 $\hat{g}(k)$,并与过程脉冲响应理论值 $g_0(k)$ 比较,得到过程脉冲响应估计误差值 $\tilde{g}(k)$, 当 $k \to \infty$ 时,应该有 $\tilde{g}(k) \to 0$ 。

图 1 相关分析法辨识脉冲响应原理框图

三、实验要求

进行方案设计,模拟过程传递函数,获得输出数据,用M序列作为辨识的输入信号,噪声采用标准正态分布的白噪声,计算互相关函数,不同λ值的脉冲响应估计值、脉冲响应理论值和脉冲响应估计误差,计算信噪比,画出实验流程图,用MATLAB编程实现。

四、实验原理

一个单入单出线性定常系统的动态特性可用它的脉冲响应函数 $g(\sigma)$ 来描述。

则
$$y(t) = \int_0^\infty g(\sigma)x(t-\sigma)d\sigma$$

上式两端同乘 $x(t-\tau)$, 进而取时间均值, 有

$$\lim_{T\to\infty}\frac{1}{T}\int_0^Ty(t)x(t-\tau)dt=\int_0^\infty g(\sigma)\{\lim_{T\to\infty}\frac{1}{T}\int_0^Tx(t-\sigma)x(t-\tau)dt\}d\sigma$$

$$\mathbb{M} \qquad R_{xy}(\tau) = \int_0^\infty g(\sigma) R_x(\tau - \sigma) d\sigma$$

这就是著名的维纳-霍夫积分方程。

如果输入是白噪声,这时x(t)的自相关函数为

$$R_{r}(\tau) = k\delta(\tau), \quad R_{r}(\tau - \sigma) = k\delta(\tau - \sigma)$$

则根据维纳-霍夫积分方程可得

$$R_{xy}(\tau) = \int_0^\infty g(\sigma) R_x(\tau - \sigma) d\sigma = kg(\tau)$$

或者

$$g(\tau) = \frac{R_{xy}(\tau)}{k}$$

这样,只要记录 x(t)、y(t)的值,并计算它们的互相关函数,即可求得脉冲响应函数 $g(\tau)$ 。

而在系统有正常输入的情形下,辨识脉冲响应的原理图如下图所示。

五、实验框图

六、实验程序代码

写一个产生 M 序列的函数,参数 Np 表示循环周期, a 为幅值

```
1. %产生 M 序列
2. function M_Sequence=M_seq(Np,a)
3. %周期为 Np, 幅值为 a
4. M(1)=1;M(2)=0;M(3)=0;M(4)=1;M(5)=1;M(6)=0;
5. M_Sequence(Np)=0;
6. for i=1:Np
7.
       temp=xor(M(5),M(6));
      for k=6:-1:2
9.
           M(k)=M(k-1);
10.
       M(1)=temp;
11.
       M_Sequence(i)=-2*temp*a+a;
13. end
```

再建立另外一个.m文件,用M序列来进行系统辨识。

```
1. % 产生三个周期的输入序列 u
2. clear all
3. u=[M_seq(63,1),M_seq(63,1),M_seq(63,1)];
4. K=120; T0=1; T1=8.3; T2=6.2;
5. t=[0:1:251];
6. G=tf([K],[T1*T2,T1+T2,1]);
7. %用 1sim 函数产生无白噪声污染的输出
8. y=lsim(G,u,t);
9. y=y';
10.%用 randn 函数产生白噪声
11. %指定方差 variance
12. variance=0.5;
13. wn=variance*randn(1,252);
14. figure(1);
15. hold on
16. plot(y,'-b');
17. plot(wn,'-r');
18. %legend 函数用于给图像添加名字
19. legend('y','white noise');
20. hold off
21. %将输出信号与白噪声叠加
22. z=y+wn;
23. %求脉冲响应理论值 g0
24. for k=1:63
```

```
25. g0(k)=K/(T1-T2)*(exp(-k/T1)-exp(-k/T2));
26. end
27. %计算互相关函数 Rmz
28. for k=1:63
29.
      Rmz(k)=0;
30.
      for i=64:252
31.
          Rmz(k)=Rmz(k)+1/(3*63)*u(i-k)*z(i);
32.
      end
33. end
34. %利用相关分析法计算出系统的脉冲响应值 g1
35. for k=1:63
36.
      g1(k)=63/64*(Rmz(k)-Rmz(62));
37. end
38. %计算系统脉冲响应估计误差值 delta g
39. delta_g=g0-g1;
40. figure(2);
41. hold on
42. plot(g0);
43. plot(g0-g1);
44. plot(g1);
45. legend('脉冲响应理论值 g0','脉冲响应估计误差值','相关分析法计算出的脉冲响应值');
46. hold off
```

七、实验结果及分析

1. 周期 r=3, 白噪声方差 variance=0.5 的辨识结果

左图:蓝色表示未受白噪声污染的输出值,红色的为白噪声。

t	17	18	19	20	21	22	23	24	
脉冲响应理论值	3.6870	3.3990	3.1243	2.8642	2.6196	2.3907	2.1776	1.9801	
脉冲响应估计值	3.8258	3.4619	3.2744	2.9030	2.6536	2.3963	2.2353	2.0207	
t	25	26	27	28	29	30	31	32	
脉冲响应理论值	1.7975	1.6294	1.4750	1.3336	1.2044	1.0865	0.9792	0.8817	
脉冲响应估计值	1.8992	1.6370	1.5331	1.2900	1.1994	1.0284	0.9780	0.9084	
t	33	34	35	36	37	38	39	40	
脉冲响应理论值	0.7933	0.7131	0.6406	0.5750	0.5159	0.4625	0.4144	0.3711	
脉冲响应估计值	0.8401	0.7291	0.6192	0.5218	0.4858	0.4803	0.4439	0.3587	
t	41	42	43	44	45	46	47	48	
脉冲响应理论值	0.3322	0.2972	0.2658	0.2376	0.2123	0.1896	0.1693	0.1511	
脉冲响应估计值	值 0.2811 0.2246 0		0.2729	0.2337 0.1916		0.1701 0.1525		0.1246	
t	49	50	51	52	53	54	55	56	
脉冲响应理论值	0.1349	0.1203	0.1073	0.0956	0.0853	0.0760	0.0677	0.0603	
脉冲响应估计值	0.0835	0.0657	-0.0005	0.0862	0.0141	0.0110	0.0611	0.0922	

t	57	58	59	60	61	62	63
脉冲响应理论值	0.0537	0.0478	0.0425	0.0379	0.0337	0.0300	0.0267
脉冲响应估计值	0.0175	-0.0323	-0.0468	-0.0283	-0.0210	0.0000	-0.0974

2. 估计误差与白噪声方差 variance 的关系

(方差为 0.1, 周期数 r=3)

(方差为1, 周期数 r=3)

●可见方差越小,白噪声对辨识结果影响越小,辨识得越准确。

3. 估计误差与周期数 r 的关系

(方差 variance=0.1, 周期 r=1)

((方差 variance=0.1,周期 r=3)

●可见周期越大,辨识结果越准确。

由实验图像可知,当 k 趋于无穷大时,系统脉冲响应估计误差值趋于 0。相关分析法计算出的脉冲响应值和系统的脉冲响应理论值 g0 拟合度很高,说明辨识实验较为成功,用相关分析法来辨识系统的脉冲响应可行性高。

八、实验结论

- 1. 由背景知识可得,根据维纳-霍夫积分方程,只要记录 x(t)、y(t)的值,并计算它 们的互相关函数,即可求得脉冲响应函数 $g(\tau)$ 。
- 2. 本实验利用相关分析法分析脉冲响应,得到脉冲响应的估计误差是随着输入白噪声方差的增加而增大的,带有白噪声污染的输出 z,在白噪声方差为 0时与理想输出 y 是重合的,即白噪声的方差越小对系统的输出干扰越小。
 - 3. 对于系统采用相关分析法估计,选择周期数越大,估计效果越好。