String Searching

String Searching

• String searching is to find all the occurrences of a pattern in a text.

String Searching Domains

- Text editing
- DNA (Deoxyribo Nucleic Acid) sequence matching
- Web searching
- Spelling and Grammar checking
- Compression etc.

- T[1 .. n]; array of text having length n
- P[1 .. m]; array of pattern to be searched in text T having length m, where $m \le n$
- \sum is the finite set of alphabets.

e.g.
$$\Sigma = \{0, 1\} \text{ or } \Sigma = \{a, b, ... z\}, \text{ etc.}$$

• P and T are often called strings of characters

Valid & Invalid Shift

If P occurs in T beginning at position s+1, where $0 \le s \le n - m$ and T[s+1...s+m], then we call 's' a Valid Shift otherwise 's' is called an Invalid Shift.

- Σ^* (sigma star) denote the set of all finite length strings formed using characters from the alphabet set Σ
- ϵ denotes the Empty (zero length) String, also belongs to Σ^*
- |x| denotes the Length of string x
- xy denotes the Concatenation of two strings x
 and y having length |x| + |y|

Prefix of a String

 ω is a prefix of a string x, denoted by $\omega = x$, if $x = \omega y$ for some string $y \in \Sigma^*$

- If $\omega \sqsubset x$ then $|\omega| \le |x|$
- Suffix of a String

 ω is a suffix of a string x, denoted by $\omega \supset x$, if $x = y\omega$ for some string $y \in \Sigma^*$

• If $\omega \supset x$ then $|\omega| \le |x|$

- The empty string ε is both a suffix and a prefix of every string
- For any strings x and y and any character a, we have x

 y if and only if xa

 ya
- ☐ and ☐ are transitive operations.

Lemma

Suppose that x, y and z are strings such that $x \supset z$ and $y \supset z$

- a) If $|x| \le |y|$ then $x \supset y$
- b) If $|x| \ge |y|$ then $y \supset x$
- c) If |x| = |y| then x = y

Algorithm Categories

String Matching Algorithms Non-Preprocessing Preprocessing Finite Automaton Naïve Boyer-Moore Knuth-Morris-Pratt

Naïve String Matching Algorithm

- The naïve string-matching procedure can be interpreted graphically as sliding a "template" containing the pattern over the text.
- Noting for which shifts all of the characters on the template equal the corresponding characters in the text.
- The whole string is scanned character by character without any optimization or pre-processing.
- Also called Brute Force Pattern Matching.

Naïve String Matching Algorithm

NAÏVE-STRING-MATCHER (T, P)

```
n ← length[T]
m ← length[P]

for s ← 0 to n - m

do if P[1 .. m] = T[s+1 .. s+m]

then print "Pattern occurs at shift" s
```

Execution of Naïve Algorithm

• T = abababacaba (Text)

• P = ababaca (Pattern)

• n = 11 (Length of Text)

• m = 7 (Length of Pattern)

Execution of Naïve Algorithm

n-m = 4, so loop will execute (0-4) 5 times

	1	2	3	4	5	6	7	8	9	10	11
Г	a	b	а	Ъ	a	b	a	С	a	b	a

#	S	P[1m] = T[s+1s+m]	Output
1	О	ababaca = abababa (false)	
2	1	ababaca = bababac (false)	
3	2	ababaca = ababaca (true)	Pattern Occurs at Shift 2
4	3	ababaca = babacab (false)	
5	4	ababaca = abacaba (false)	

Properties of Naïve Algorithm

- No Pre-processing is involved
- Total running time is O((n-m+1)m)
- No track of previously read characters
- May be suitable for smaller texts
- Performance decreases as the text grows larger
- No character set dependence
- No optimization has been performed

- Build and use a finite-automaton that scans the text string T for all occurrences of the pattern P.
- String automata are efficient: it examines each text character exactly once, taking constant time per text character. But the time to build the automaton, however, can be large if ∑ is large.
- The automaton must be constructed from the pattern in a preprocessing step before it can be used to search the text string.

- A **Finite Automata M** is a 5-tuple (Q, q_0 , A, \sum , δ), where
- **Q** is a finite set of **states**
- $q_0 \in Q$ is the start state
- $A \subseteq Q$ is a distinguished set of accepting states
- \sum is finite input alphabet (character set)
- δ is a function from Q x \sum into Q, called the **transition** function of M.
- The finite automaton begins is state q_0 and reads the characters of its input string one at a time. If the automaton is in state q and reads input character a, it moves ("makes a transition") from state q to state $\delta(q, a)$

COMPUTE-TRANSITION-FUNCTION (P, Σ)

m
$$\leftarrow$$
 length[P]

for q \leftarrow 0 to m

do for each character $a \in \Sigma$

do $k \leftarrow$ min (m+1, q+2)

repeat

 $k \leftarrow$ k - 1

until $P_k \supset P_q a$
 $\delta(q, a) \leftarrow$ k

return δ

FINITE-AUTOMATON-MATCHER (T, δ , m)

$$n \leftarrow length[T]$$

$$q \leftarrow 0$$

$$for i \leftarrow 1 to n$$

$$do q \leftarrow \delta(q, T[i])$$

$$if q = m$$

then print "Pattern occurs with shift" i - m

Computing the Transition Function

- P = ababaca (Pattern)
- m = 7 (Length of Pattern)
- $\Sigma = \{a, b, c\}$ (Character Set)
- At start computing the transition function which gives us the state transitions depending upon the input character and current state.

Computing the Transition Function

m = 7, so the outer loop will execute

(0-7) 8 times. $P_x = P[1..x]$

Pababaca

q	a	k=min(m+1, q+2)	k=k-1	$P_k \supset P_q a$	$\delta(q, a)$
0	a	$k=\min(7+1, 0+2)=2$	2-1=1	a ⊐ a (T)	$\delta(0, a) = 1$
	b	$k=\min(7+1, 0+2)=2$	2-1=1	a⊐b (F)	
			1-1=0	ε ⊐b (T)	$\delta(0, b) = 0$
	С	$k=\min(7+1, 0+2)=2$	2-1=1	a⊐c (F)	
			1-1=0	∈ ⊐ c (T)	$\delta(0, \mathbf{c}) = 0$
1	a	$k=\min(7+1, 1+2)=3$	3-1=2	ab⊐aa (F)	
			2-1=1	a ⊐ aa (T)	$\delta(1, a) = 1$

m = 7, so the outer loop will execute (0-7) 8 times. $\mathbf{P_x} = \mathbf{P[1..x]}$

q	a	k=min(m+1, q+2)	k=k-1	$P_k \supset P_q a$	δ(q, a)
1	Ъ	k=min(7+1, 1+2)=3	3-1=2	ab⊐ab (T)	$\delta(1, b) = 2$
	С	k=min(7+1, 1+2)=3	3-1=2	ab⊐ac (F)	
			2-1=1	a⊐ac (F)	
			1-1=0	∈ ⊐ac (T)	$\delta(1, c) = 0$
2	a	k=min(7+1, 2+2)=4	4-1=3	aba⊐aba (T)	$\delta(2, a) = 3$
	Ъ	k=min(7+1, 2+2)=4	4-1=3	aba⊐abb (F)	
			3-1=2	ab⊐abb (F)	
			2-1=1	a⊐abb (F)	
			1-1=0	ε⊐abb (T)	$\delta(2, b) = 0$

m = 7, so the outer loop will execute (0-7) 8 times. $P_x = P[1..x]$

q	a	k=min(m+1, q+2)	k=k-1	$P_k = P_q a$	δ(q, a)
2	С	$k=\min(7+1, 2+2)=4$	4-1=3	aba⊐abc (F)	
			3-1=2	ab⊐abc (F)	
			2-1=1	a⊐abc (F)	
			1-1=0	e⊐abc (T)	$\delta(2, \mathbf{c}) = 0$
3	a	$k=\min(7+1, 3+2)=5$	5-1=4	abab⊐abaa (F)	
			4-1=3	aba⊐abaa (F)	
			3-1=2	ab⊐abaa (F)	
			2-1=1	a⊐abaa (T)	$\delta(3, a) = 1$
	b	k=min(7+1, 3+2)=5	5-1=4	abab⊐abab (T)	δ(3, b) ₃ =4

m = 7, so the outer loop will execute (0-7) 8 times. $P_x = P[1..x]$

q	a	k=min(m+1, q+2)	k=k-1	$P_k \supset P_q a$	δ(q, a)
3	С	$k=\min(7+1, 3+2)=5$	5-1=4	abab⊐abac (F)	
			4-1=3	aba⊐abac (F)	
			3-1=2	ab⊐abac (F)	
			2-1=1	a⊐abac (F)	
			1-1=0	ε⊐abac (T)	$\delta(3, c) = 0$
4	a	k=min(7+1, 4+2)=6	6-1=5	ababa⊐ababa (T)	$\delta(4, a) = 5$
	Ъ	$k=\min(7+1, 4+2)=6$	6-1=5	ababa⊐ababb (F)	
			5-1=4	abab⊐ababb (F)	
			4-1=3	aba⊐ababb (F)	24

m = 7, so the outer loop will execute (0-7) 8 times. $P_x = P[1..x]$

q	a	k=min(m+1, q+2)	k=k-1	$P_k = P_q a$	δ(q, a)
			3-1=2	ab⊐ababb (F)	
			2-1=1	a⊐ababb (F)	
			1-1=0	e⊐ababb (F)	$\delta(4, b) = 0$
	С	k=min(7+1, 4+2)=6	6-1=5	ababa⊐ababc (F)	
			5-1=4	abab⊐ababc (F)	
			4-1=3	aba⊐ababc (F)	
			3-1=2	ab⊐ababc (F)	
			2-1=1	a⊐ababc (F)	
			1-1=0	ε⊐ababc (F)	$\delta(4, c) = 0$

m = 7, so the outer loop will execute (0-7) 8 times. $P_x = P[1..x]$

q	a	k=min(m+1, q+2)	k=k-1	$P_k = P_q a$	δ(q, a)
5	a	$k=\min(7+1, 5+2)=7$	7-1=6	ababac⊐ababaa (F)	
			6-1=5	ababa⊐ababaa (F)	
			5-1=4	abab⊐ababaa (F)	
			4-1=3	aba⊐ababaa (F)	
			3-1=2	ab⊐ababaa (F)	
			2-1=1	a⊐ababaa (T)	$\delta(5, a) = 1$
	b	$k=\min(7+1, 5+2)=7$	7-1=6	ababac⊐ababab (F)	
			6-1=5	ababa⊐ababab (F)	
			5-1=4	abab⊐ababab (T)	δ(5, b)=4

m = 7, so the outer loop will execute (0-7) 8 times. $P_x = P[1..x]$

q	a	k=min(m+1, q+2)	k=k-1	$P_k = P_q a$	$\delta(q, a)$
5	С	k=min(7+1, 5+2)=7	7-1=6	ababac⊐ababac (T)	$\delta(5, c) = 6$
6	a	$k=\min(7+1, 6+2)=8$	8-1=7	ababaca⊐ababaca (T)	$\delta(6, a) = 7$
	Ъ	$k=\min(7+1, 6+2)=8$	8-1=7	ababaca⊐ababacb (F)	
			7-1=6	ababac⊐ababacb (F)	
			6-1=5	ababa⊐ababacb (F)	
			5-1=4	abab⊐ababacb (F)	
			4-1=3	aba⊐ababacb (F)	
			3-1=2	ab⊐ababacb (F)	
			2-1=1	a⊐ababacb (F)	27

m = 7, so the outer loop will execute (0-7) 8 times. $P_x = P[1..x]$

q	a	k=min(m+1, q+2)	k=k-1	$P_k \supset P_q a$	δ(q, a)
			1-1=0	€⊐ababacb (T)	$\delta(6, b) = 0$
	С	k=min(7+1, 6+2)=8	8-1=7	ababaca⊐ababacc (F)	
			7-1=6	ababac⊐ababacc (F)	
			6-1=5	ababa⊐ababacc (F)	
			5-1=4	abab⊐ababacc (F)	
			4-1=3	aba⊐ababacc (F)	
			3-1=2	ab⊐ababacc (F)	
			2-1=1	a⊐ababacc (F)	
			1-1=0	e⊐ababacc (T)	$\delta(6, c) = 0$

m = 7, so the outer loop will execute (0-7) 8 times. $P_x = P[1..x]$

q	a	k=min(m+1, q+2)	k=k-1	$P_k \supset P_q a$	δ(q, a)
7	a	$k=\min(7+1, 7+2)=8$	8-1=7	ababaca⊐ababacaa (F)	
			7-1=6	ababac⊐ababacaa (F)	
			6-1=5	ababa⊐ababacaa (F)	
			5-1=4	abab⊐ababacaa (F)	
			4-1=3	aba⊐ababacaa (F)	
			3-1=2	ab⊐ababacaa (F)	
			2-1=1	a⊐ababacaa (T)	$\delta(7, a) = 1$
	Ь	k=min(7+1, 7+2)=8	8-1=7	ababaca⊐ababacab (F)	
			7-1=6	ababac⊐ababacab (F)	29

m = 7, so the outer loop will execute (0-7) 8 times. $P_x = P[1..x]$

q	a	k=min(m+1, q+2)	k=k-1	$P_k \supset P_q a$	δ(q, a)
			6-1=5	ababa⊐ababacab (F)	
			5-1=4	abab⊐ababacab (F)	
			4-1=3	aba⊐ababacab (F)	
			3-1=2	ab⊐ababacab (T)	$\delta(7, b) = 2$
	С	$k=\min(7+1, 7+2)=8$	8-1=7	ababaca⊐ababacac (F)	
			7-1=6	ababac⊐ababacac (F)	
			6-1=5	ababa⊐ababacac (F)	
			5-1=4	abab⊐ababacac (F)	
			4-1=3	aba⊐ababacac (F)	30

m = 7, so the outer loop will execute (0-7) 8 times. $P_x = P[1..x]$

q	a	k=min(m+1, q+2)	k=k-1	$P_k \supset P_q a$	δ(q, a)
			3-1=2	ab⊐ababacac (F)	
			2-1=1	a⊐ababacac (F)	
			1-1=0	ε⊐ababacac (T)	$\delta(7, \mathbf{c}) = 0$

state

input

This matrix is showing
the results of execution
of transition function.
These results will be
used to execute the
Finite-Automaton-
Matcher to find any
valid shifts.

e.g.	$\delta(3,$	b) $=4$,	$\delta(5,$	c)=	6
etc.					

a	b	c	P
1	0	0	a
1	2	0	b
3	0	0	a
1	4	0	b
5	0	0	a
1	4	6	С
7	0	0	a
1	2	0	
			•

State Transition Diagram

A state transition diagram for the string matching automaton that accepts all strings ending in the string ababaca.

State 0 is the start state and state 7 is the only accepting state. A directed edge from state i to state j labeled a represents $\delta(i, a) = j$. Some edges corresponding to failing matches are not shown; by convention, if a state i has no outgoing edge labeled a for some a $\epsilon \sum$, then $\delta(i, a) = 0$.

33

Executing Finite-Automaton-Matcher

- T = abababacaba (Text)
- n = 11 (Length of Text)
- P = ababaca (Pattern)
- m = 7 (Length of Pattern)
- $\Sigma = \{a, b, c\}$ (Character Set)
- q = 0 (Start State initially 0)

1 2 3 4 5 6 7 8 9 10 11 n = 11, so loop will execute (1 – 11) 11 times T a b a b a b a c a b a

i	$q = \delta(q, T[i])$	q = m	Output
1	$q = \delta(0, a) = 1$	1 = 7 (False)	
2	$q = \delta(1, b) = 2$	2 = 7 (False)	
3	$q = \delta(2, a) = 3$	3 = 7 (False)	
4	$q = \delta(3, b) = 4$	4 = 7 (False)	
5	$q = \delta(4, a) = 5$	5 = 7 (False)	
6	$q = \delta(5, b) = 4$	4 = 7 (False)	
7	$q = \delta(4, a) = 5$	5 = 7 (False)	
8	$q = \delta(5, c) = 6$	6 = 7 (False)	35

n = 11, so loop will execute (1 - 11) 11 times

i	$q = \delta(q, T[i])$	q = m	Output
9	$q = \delta(6, a) = 7$	7 = 7 (True)	Pattern occurs with shift $(9-7) = 2$
10	$q = \delta(7, b) = 2$	2 = 7 (False)	
11	$q = \delta(2, a) = 3$	3 = 7 (False)	

Properties of Finite Automata Algorithm

- Pre-processing is required
- Total running time is $O(m|\Sigma|) + \Theta(n)$
- Heavily dependent on Character Set
- Larger the Character Set more time it takes
- Performance decreases with the increase in the size of character set
- Un-necessarily stores all the valid and invalid state transitions

- This algorithm avoids the computation of the transition function δ altogether, and its matching time is $\Theta(n)$ using just an auxiliary (prefix) function $\pi[1..m]$ pre-computed from the pattern in time $\Theta(m)$.
- The prefix function π for a pattern encapsulates knowledge about how the pattern matches against shifts to itself.
- This information can be used to avoid testing useless shifts in the naïve pattern-matching algorithm or to avoid the pre-computation of δ for a string-matching automaton.
- The information that q characters have matched successfully determines the corresponding text characters. Knowing these q text characters allows us to determine immediately that certain shifts are invalid.

COMPUTE-PREFIX-FUNCTION (P)

m \leftharpoonup length[P]

$$\pi[1] \leftarrow 0$$

k \leftharpoonup 2 to m do

while $k > 0$ and $P[k+1] \neq P[q]$ do

k \leftharpoonup $\pi[k]$

if $P[k+1] = P[q]$ then

k \leftharpoonup k+1

 $\pi[q] \leftarrow k$

return π

KMP-MATCHER (T, P)

```
n ← length[T]
m ← length[P]
Number of characters matched
q ← 0
while q > 0 and P[q + 1] \neq T[i] do
          q \leftarrow \pi[q] \triangleright Next character does not match
   if P[q + 1] = T[i] then
          q \leftarrow q + 1 > Next character matches
   if q = m then
                            ▶ Is all of P matched?
         print "Pattern occurs with shift" i - m
         q \leftarrow \pi[q] \triangleright \text{Look for the next match}
```

Computing the Prefix Function

$$\bullet$$
 P = ababaca

(Pattern)

•
$$m = 7$$

(Length of Pattern)

•
$$\pi[1] = 0$$

(Initial state is 0)

•
$$k = 0$$

 First, computing the prefix function (π) which gives us the knowledge about how the pattern matches against shifts with itself. This information can be used to avoid testing useless shifts.

Computing the Prefix Function

m = 7, so the outer loop will execute

(2-7) 6 times. Initially $\pi[1] = 0$, k = 0

	1	2	3	4	5	6	7
P	a	b	a	Ъ	a	С	a

q	k>0 AND P[k+1]≠P[q]	$k=\pi[k]$	if P[k+1]=P[q]	k=k+1	$\pi[q]=k$
2	0>0 AND a≠b (False)		a=b (False)		$\pi[2]=0$
3	0>0 AND a≠a (False)		a=a (True)	0+1=1	$\pi[3]=1$
4	1>0 AND b≠b (False)		b=b (True)	1+1=2	$\pi[4]=2$
5	2>0 AND a≠a (False)		a=a (True)	2+1=3	$\pi[5]=3$
6	3>0 AND b≠c (True)	1			
	1>0 AND b≠c (True)	0			
	0>0 AND a≠c (False)		a=c (False)		$\pi[6] = 0$
7	0>0 AND a≠a (False)		a=a (True)	0+1=1	$\pi[73] = 1$

Computing the Prefix Function P

1		3	4	Э	O	/
a	b	a	b	а	С	a

This matrix is showing the results of execution of prefix function. These results will be used to execute the KMP-Matcher to find any valid shifts.

State Matrix

i	π[i]
1	0
2	0
3	1
4	2
5	3
6	0
7	1

Executing KMP-Matcher

- T = abababacaba (Text)
- n = 11 (Length of Text)
- P = ababaca (Pattern)
- m = 7 (Length of Pattern)
- π (Computed Prefix Function for P)
- q = 0 (Number of Characters Matched)

1 2 3 4 5 6 7

P | a | b | a | b | a | c | a | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11

b

b

a

a

b

C

b

a

a

 $\overline{n} = 11$, so outer loop will **T**

execute (1 - 11) 11 times

q>0 And P[q+1] =q=q=q+1Output q=m $q=\pi[q]$ $P[q+1]\neq T[i]$ T[i] $\pi[q]$ 0>0 AND $a\neq a$ (**F**) $a=a(\mathbf{T})$ 0+1=11=7 (**F**) $1>0 \text{ AND b} \neq b (\mathbf{F})$ b=b(T)1+1=2 2=7 (**F**) $2>0 \text{ AND } a \neq a (F)$ $a=a(\mathbf{T})$ 2+1=33=7 (**F**) $3>0 \text{ AND b} \neq b (\mathbf{F})$ 3+1=4 b=b(T)4=7 (**F**)4>0 AND $a\neq a$ (**F**) $4+1=5 \mid 5=7 \ (\mathbf{F})$ $a=a(\mathbf{T})$ 5>0 AND $c\neq b$ (**T**) 3>0 AND b≠b (**F**) b=b(T) $3+1=4 \mid 4=7 \ (\mathbf{F})$ 46

1 2 3 4 5 6 7

P a b a b a c a

n = 11, so outer loop will **T**

execute (1 - 11) 11 times

1 2 3 4 5 6 7 8 9 10 11

a b a b a b a c a b a

i	q>0 And P[q+1]≠T[i]	q= π[q]	P[q+1]= T[i]	q=q+1	q=m	q= π[q]	Output
7	4>0 AND a≠a (F)		a=a (T)	4+1=5	5=7 (F)		
8	5>0 AND c≠c (F)		c=c (T)	5+1=6	6=7 (F)		
9	6>0 AND a≠a (F)		a=a (T)	6+1=7	7=7 (T)	1	Pattern Occurs with Shift (9-7) 2
10	1>0 AND b≠b (F)		b=b (T)	1+1=2	2=7 (F)		
11	2>0 AND a≠a (F)		a=a (T)	2+1=3	3=7 (F)		

47

Properties of Knuth-Morris-Pratt Algorithm

- Pre-processing is required
- Total running time is $\Theta(m) + \Theta(n)$
- No dependency on Character Set
- Linear execution time
- Efficiently use the information about the Pattern and the characters read so far.
- Most efficient of the four algorithms.

- It works fastest when alphabet is moderately sized and pattern is relatively long.
- Pattern is matched from right to left so in case of a mismatch we can skip a considerable number of characters.

Character Jump Heuristic

- During the testing of possible placement of P against T, a mismatch of text character T[i]=c with the corresponding pattern character P[j] is handled as follows.
- If c is not contained anywhere in P, then shift P completely past T[i] (for it cannot match any character in P). Otherwise shift P until an occurrence of character c in P gets aligned with T[i]

• Illustration of Jump in Boyer Moore Algorithm, where I denotes Last(P, T[i]) (to be discussed shortly)

• Case 1: if $i + 1 \le j$, then we shift the pattern by j - 1 units

 Illustration of Jump in Boyer Moore Algorithm, where i denotes Last(P, T[i]) (to be discussed shortly)

• Case 2: if j < i + 1, then we shift the pattern by one unit

• • • • • • • • •

BOYER-MOORE-MATCHER (T, P)

```
m ← length[P]
n ← length[T]
i ← m - 1
 ← m - 1
repeat
    if P[j] = T[i] then
           if j = 0 then
                  print "Pattern Occurs with Shift" i
                     ——— i + m
                        --- m – 1
           else
    else
             \leftarrow i + m - min(j, 1 + last(P, T[i]))
             \leftarrow m - 1
until i > n - 1
```

LAST(P, c)

i
$$\leftarrow$$
 length[P] - 1

do while $i \ge 0$

if P[i] = c then

return i

 $i \leftarrow$ $i-1$

return -1

Since index start from 0 therefore
e.g. Last (abxyabax, b) will return 5
Last (abxyabax, a) will return 6
Last (abxyabax, c) will return -1

• This function takes the Pattern P and a character c as input and return the index of the first character from the right side of pattern, if exists otherwise returns -1.

Executing Boyer-Moore-Matcher

- T = abababacaba (Text)
- n = 11 (Length of Text)
- P = ababaca (Pattern)
- m = 7 (Length of Pattern)
- i=6 (m-1)
- j=6 (m-1)

0 1 2 3 4 5 6 Pababaca Tabababacaba

n=11 so loop will execute until i>10 (i>n-1), Initially i=6, and j=6 because i=j=m-1

P [j]=	j=0	i=i-1	j=j-1	i = i + m -	j=	Result
T[i])-0	1-1-1	J—J- <u>1</u>	min (j, 1 + last(P, T[i]))	m-1	Result
a=a (T)	F	6-1=5	6-1=5			
c=b (F)				$=5+7 - \min(5, 1 + \text{last } (P, b))$	7-1=6	
				$=12 - \min(5, 1+3)$		
				=12-4		
				=8		
a=a (T)	F	8-1=7	6-1=5			
c=c(T)	F	7-1=6	5-1=4			
a=a (T)	F	6-1=5	4-1=3			57

Boyer Moore Algorithm

On 1 2 3 4 5 6 7 8 9 10

n=11 so loop will continue to execute while $i \le 10$ (i.e. until $i \ge 10$ ($i \ge n-1$))

P[j]=	j=0	i=i-1	i=i_1	i = i + m -	j=	Result		
T[i]	j-0	1-1-1	J—J- <u>1</u>	min (j, 1 + last(P, T[i]))	m-1	Result		
b=b (T)	F	5-1=4	3-1=2					
a=a (T)	F	4-1=3	2-1=1					
b=b (T)	F	3-1=2	1-1=0					
$a=a(\mathbf{T})$	Т	"Patter	"Pattern occurs with shift" 2 and due to match i and j will be					
		i = i +	i = i + m = 2 + 7 = 9					
		j = m -	j = m - 1 = 7 - 1 = 6					
a=b (F)				$=9+7 - \min(6, 1 + \text{last } (P, b))$	7-1=6			
				$=16 - \min(6, 1+3)$				
				=16-4=12		58		

n=11 so loop will continue to execute while $i \le 10$ (i.e. until $i \ge 10$ ($i \ge n-1$))

Loop will terminate since i becomes 12 (>10) and because there are no more characters left in the string which can be completely matched with the pattern

Properties of Boyer-Moore Algorithm

- No Pre-processing is required
- Total running time is $O(nm + |\Sigma|)$ (worst case)
- No track of previously read characters
- Scans the text from right to left
- No character set dependence
- Makes use of the pattern and index-character for Character Jumps (Character-Jump Heuristic)
- Good performance since a large portion of text is skipped

Algorithm Time Comparison

Algorithm	Pre-Processing Time	Matching Time	Total Running Time
Knuth-Morris- Pratt	$\Theta(m)$	$\Theta(n)$	$\Theta(m) + \Theta(n)$
Finite Automaton	$O(m \Sigma)$	$\Theta(n)$	$O(m \Sigma) + \Theta(n)$
Naïve	0	O((n-m+1)m)	O((n-m+1)m)
Boyer-Moore	0	$O(nm + \Sigma)$	$O(nm + \Sigma)$