

APSSDC

Andhra Pradesh State Skill Development Corporation Skill AP

UNSUPERVISED LEARNING

DAY08 AGENDA

By Anil Kumar APSSDC

MACHINE LEARNING CATEGORIES

UNSUPERVISED LEARNING

A cluster is a group of data points or objects in a dataset that are similar to other objects in the group, and dissimilar to datapoints in other clusters

TYPES OF CLUSTERING

CLUSTERING APPLICATIONS

• RETAIL/MARKETING:

- Identifying buying patterns of customers
- Recommending new books or movies to new customers

BANKING:

- Fraud detection in credit card use
- Identifying clusters of customers (e.g., loyal)

• INSURANCE:

- Fraud detection in claims analysis
- Insurance risk of customers

CONTD...

PUBLICATION:

- Auto-categorizing news based on their content
- Recommending similar news articles

MEDICINE:

Characterizing patient behavior

BIOLOGY:

Clustering genetic markers to identify family ties

CLUSTERING ALGORITHMS

- Partitioned-based Clustering
 - Relatively efficient
 - E.g. k-Means, k-Median, Fuzzy c-Means
- Hierarchical Clustering
 - Produces trees of clusters
 - E.g. Agglomerative, Divisive
- Density-based Clustering
 - Produces arbitrary shaped clusters
 - E.g. DBSCAN

K-MEANS ALGORITHM

- Partitioning Clustering
- K-means divides the data into non-overlapping subsets (clusters) without any clusterinternal structure
- Examples within a cluster are very similar
- Examples across different clusters are very different

By Anil Kumar APSSDC

WHAT IS THE OBJECTIVE OF K-MEANS?

- 1. To form clusters in such a way that similar samples go into a cluster, and dissimilar samples fall into different clusters.
- 2. To minimize the "intra cluster" distances and maximize the "inter-cluster" distances.

3. To divide the data into non-overlapping clusters without any cluster-internal structure

- 1. Randomly placing *k* centroids, one for each cluster.
- 2. Calculate the distance of each point from each centroid.
- Assign each data point (object) to its closest centroid, creating a cluster.
- 4. Recalculate the position of the *k* centroids.
- 5. Repeat the steps 2-4, until the centroids no longer move.

CHOOSING BEST 'K'

HIERARCHAL CLUSTERING DENDROGRAM

Agglomerative clustering

	то	ОТ	VA	МО	WI	ED
ТО		351	3363	505	1510	2699
ОТ			3543	167	1676	2840
VA				3690	1867	819
МО					1824	2976
WI						1195
ED						

Vancouver

Agglomerative clustering

	то/от/мо	VA	WI	ED
TO/OT/MO		3543	1676	2840
VA			1867	819
WI				1195
ED				

Toronto

Vancouver

Hierarchical clustering

	то/от/мо	VA/ED/WI
то/от/мо		1676
VA/ED/WI		

Agglomerative algorithm

- 1. Create n clusters, one for each data point
- 2. Compute the Proximity Matrix

3. Repeat

- Merge the two closest clusters
- ii. Update the proximity matrix
- 4. Until only a single cluster remains

$$\begin{bmatrix} 0 & & & & & \\ d(2,1) & 0 & & & \\ d(3,1) & d(3,2) & 0 & & \\ \vdots & \vdots & \vdots & & \\ d(n,1) & d(n,2) & \dots & \dots & 0 \end{bmatrix}$$

Distance between clusters

- Single-Linkage Clustering
 - Minimum distance between clusters
- Complete-Linkage Clustering
 - Maximum distance between clusters
- Average Linkage Clustering
 - Average distance between clusters
- Centroid Linkage Clustering
 - Distance between cluster centroids

Distance between clusters

- Single-Linkage Clustering
 - Minimum distance between clusters
- Complete-Linkage Clustering
 - Maximum distance between clusters
- Average Linkage Clustering
 - Average distance between clusters
- Centroid Linkage Clustering
 - Distance between cluster centroids

ADVANTAGES AND DISADVANTAGES

Advantages	Disadvantages
Doesn't required number of clusters to be specified.	Can never undo any previous steps throughout the algorithm.
Easy to implement.	Generally has long runtimes.
Produces a dendrogram, which helps with understanding the data.	Sometimes difficult to identify the number of clusters by the dendrogram.

Hierarchical clustering Vs. K-means

	<i>K</i> -means		Hierarchical Clustering
1.	Much more efficient	1.	Can be slow for large datasets
2.	Requires the number of clusters to be specified	2.	Does not require the number of clusters to run
3.	Gives only one partitioning of the data based on the predefined number of clusters	3.	Gives more than one partitioning depending on the resolution
4.	Potentially returns different clusters each time it is run due to random initialization of centroids	4.	Always generates the same clusters

Density-based clustering

Spherical-shape clusters

Arbitrary-shape clusters

K-MEANS Vs. DENSITY BASED CLUSTERING

- k-Means assigns all points to a cluster even if they do not belong in any
- Density-based Clustering locates regions of high density, and separates outliers

DBSCAN FOR CLASSICAL IDENTIFICATION SELAP.

By Anil Kumar APSSDC

WHAT IS DBSCAN?

- DBSCAN (Density-Based Spatial Clustering of Applications with Noise)
 - Is one of the most common clustering algorithms
 - Works based on density of objects
- R (Radius of neighborhood)
 - Radius (R) that if includes enough number of points within, we call it a dense area
- M (Min number of neighbors)
 - The minimum number of data points we want in a neighborhood to define a cluster

HOW DBSCAN WORKS

Each point is either:

- core point
- border point
- outlier point

R = 2unit, M = 6

$$R = 2unit$$
, $M = 6$

DBSCAN ALGORITHM - BOARDER POINTS?

R = 2unit, M = 6

By Anil Kumar APSSDC

R = 2unit, M = 6

- Arbitrarily shaped clusters
- 2. Robust to outliers
- Does not require specification of the number of clusters