12

DEMANDE DE BREVET EUROPEEN

(21) Numéro de dépôt : 93400833.5

(22) Date de dépôt : 31.03.93

(f) Int. CI.⁵: **C07D 233/54,** C07D 233/64, C07D 233/68, C07D 233/84, C07D 401/12, C07D 401/14, C07D 403/06, C07D 403/10, C07D 405/12, C07D 405/14, A61K 31/415

(30) Priorité: 01.04.92 FR 9203944

(43) Date de publication de la demande : 06.10.93 Bulletin 93/40

(A) Etats contractants désignés : AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

71 Demandeur : FOURNIER INDUSTRIE ET SANTE
38, avenue Hoche
F-75008 Paris (FR)

(72) Inventeur: Dodey, Pierre
10, rue des Champs d'Aloux
F-21121 Fontaine-lès-Dijon (FR)
Inventeur: Bondoux, Michel
7, Allée des Monterey
F-21121 Fontaine-lès-Dijon (FR)
Inventeur: Renaut, Patrice
Route Changey
F-21121 Hauteville-lès-Dijon (FR)
Inventeur: Pruneau, Didier
Rue du Dessus
F-21370 Pasques (FR)

(74) Mandataire: Clisci, Serge et al S.A. FEDIT-LORIOT & AUTRES, CONSEILS EN PROPRIETE INDUSTRIELLE, 38, Avenue Hoche F-75008 Paris (FR)

- (54) Dérivés de 4-phénylaminométhylimidazole, procédé de préparation, antagonistes des récepteurs angiotensin II et leur application en thérapeutique.
- 57) La présente invention concerne les phényl-amino-méthyl-imidazoles de formule :

(où les groupes R₁ à R₇ sont définis comme indiqué dans la description).

Elle concerne également leur procédé de préparation et leur application en thérapeutique en tant qu'agents antagonistes de l'angiotensine II, utiles dans le traitement de l'hypertension, des désordres circulatoires et du glaucome.

La présente invention concerne des dérivés de l'imidazole, leur procédé de préparation et leur application en thérapeutique en tant qu'agents utiles dans le traitement de l'hypertension, des désordres circulatoires et du glaucome.

On connaît déjà un certain nombre de dérivés de l'imidazole inhibiteurs de l'angiotensine II utiles en tant qu'agents antihypertenseurs.

Les demandes de brevet EP-A-403 158 et EF-A-403 159 décrivent des acides imidazolyl-alkènoïques portant une chaîne insaturée en position 5 du cycle imidazole. La demande de brevet EP-A-465 368 décrit des dérivés soufrés de l'imidazole. La demande WO-A-91/00277 décrit des imidazoles substitués portant une fonction aldéhyde en position 5 du cycle imidazole. La demande EP-A-427 463 décrit des dérivés substitués N-(imidazolyl) alkylalanine portant un amino-acide en position 5 du cycle imidazole. La demande EP-A-324 377 décrit des dérivés de l'imidazole préconisés comme diurétiques, antiinflammatoires et antihypertenseurs. La demande EP-A-253 310 décrit des dérivés de l'imidazole portant un substituant hydroxyméthyl en position 5 du cycle imidazole.

Aucun de ces documents antérieurs ne décrit ni ne suggère des dérivés de l'imidazole portant un substituant phényl-amino-méthyle en position 5 du cycle imidazole.

La présente invention propose donc des dérivés de l'imidazole portant un substituant phényl-amino-méthyle en position 5 du cycle imidazole.

Les composés selon l'invention sont caractérisés en ce qu'ils sont choisis parmi l'ensemble constitué par : (i) les phényl-amino-méthyl-imidazoles de formule:

20

25

30

35

40

45

55

15

dans laquelle:

- R₁ représente un groupe alkyle en C₁-C₄,
- R₂ représente l'atome d'hydrogène, un halogène, un groupe alkylthio en C₁-C₄ ou un groupe perfluoroalkyle en C₁-C₃,
- R₃ représente l'atome d'hydrogène, un groupe alkyle en C₁-C₄ ou un groupe COR₈ où R₈ représente un groupe alkyle en C₁-C₄,
- R₄ est en position 3, 4, 5 ou 6 et représente l'atome d'hydrogène, un ou plusieurs groupes alkyles en C₁-C₄, alkoxy en C₁-C₄, azido, nitro ou un ou plusieurs halogènes, ou forme un groupe amino-2naphtyle avec le groupe amino-phényle auquel il est lié,
- R₅ représente un atome d'hydrogène ou un halogène,
- R₆ et R₇, identiques ou différents, représentent chacun un groupe tétrazol-5-yle ou un groupe COR₉ où R₉ représente :
 - un groupe hydroxy,
 - un groupe alkoxy en C1-C16,
 - un groupe cyclopropylméthoxy,
 - un groupe phénoxy,
 - un groupe benzyloxy,
 - un groupe 2-phényléthoxy,
 - un groupe glycéryle,
 - un groupe isopropylidène glycéryle,
 - un groupe 2-méthoxyéthoxy,
 - un groupe 2-oxo-butyl oxy,
 - un groupe 1-méthyl-2-oxo-butyl oxy,
 - un groupe 2-(N, N-diéthylamino)-éthoxy,
 - un groupe morpholino-éthoxy,

- un groupe N-(éthyloxy)nicotinamide,

5

10

15

20

25

30

35

50

- un groupe O-CHR₁₅-O(CO)-R₁₂ dans lequel R₁₅ représente l'atome d'hydrogène ou un groupe alkyle en C₁-C₃, et R₁₂ représente un groupe alkyle en C₁-C₇ un groupe cyclopentyle, un groupe cyclohexyle, un groupe cyclopentylméthyle ou un groupe cyclohexylméthyle,
- un groupe oxyacétate de formule O-CHR₁₇-CO₂-R₁₆, dans lequel R₁₆ et R₁₇ représentent chacun indépendamment l'atome d'hydrogène ou un groupe alkyle en C₁-C₆,
- un groupe oxyacétamide de formule -O-CH₂-CO-NR₁₀R₁₁, dans lequel R₁₀ et R₁₁, identiques ou différents représentent chacun un groupe alkyle en C₁-C₄, un groupe hydroxyéthyle, ou forment avec l'atome d'azote auquel ils sont liés un groupe 4-méthylpipérazine-1-yle,
- un groupe amino de formule -NR₁₈R₁₉ dans lequel R₁₈ et R₁₉ représentent chacun, indépendamment, l'atome d'hydrogène, un groupe alkyle en C₁-C₄, un groupe méthoxy, un groupe 2-(N,N-diméthylamino) propyle ou, -NR₁₈R₁₉ représente un reste acide aminé de structure glycine ou valine, dont la fonction acide est éventuellement protégée sous forme d'ester ou d'amide,
- R₆ pouvant également représenter :

- un groupe COR₁₃ où R₁₃ représente un groupe méthylsulfonylamino de formule -NH-SO₂-CH₃ ou un groupe arylsulfonylamino de formule :

- dans laquelle R_{14} représente l'atome d'hydrogène, un halogène, un groupe azido, un groupe alkyle en C_1 - C_4 ou un groupe méthoxy et peut se trouver en position ortho, méta ou para.
- R₃ et R₇, considérés ensemble, pouvant former, avec l'atome d'azote et le groupe phényle auxquels ils sont respectivement liés, un hétérocycle azoté ortho-condensé carboxy-2-indol-1-yle ou éthoxycarbonyl-2-indol-1-yle; et,
- (ii) les sels d'addition avec les acides minéraux et organiques ou avec les bases minérales et organiques des composés de formule I.

Par groupe alkyle en C₁-C₇, on entend ici un groupe alkyle linéaire, ramifié ou cyclique comportant jusqu'à 7 atomes de carbone.

Les groupes alkyle préférés sont les groupes méthyle, éthyle, n-propyle, isopropyle, n-butyle, tertiobutyle et pentyle.

Par groupe alkoxy en C₁-C₁₆, on entend ici un groupe où le reste alkyle est linéaire, ramifié ou cyclique et comporte jusqu'à 16 atomes de carbone.

Les groupes alkoxy préférés sont les groupes méthoxy, éthoxy, pentoxy et cyclopropylméthoxy.

Par groupe alkylthio en C₁-C₄, on entend ici un groupe où le reste alkyle est linéaire ou ramifié et comporte iusqu'à 4 atomes de carbone.

Les groupes alkylthio préférés sont les groupes méthylthio et éthylthio.

Par halogène on entend ici l'atome de fluor, l'atome de chlore, l'atome de brome ou l'atome d'iode.

Parmi les groupes perfluoroalkyle en C₁-C₃ on préfèrera les groupes trifluorométhyle et perfluoroéthyle.

Parmi les sels d'addition avec les acides minéraux et organiques on préfèrera les sels d'addition formés avec les acides chlorhydrique, bromhydrique, sulfurique, nitrique, phosphorique, maléique, malique, acétique, glutamique, tartrique, lactique, citrique, aspartique, oléique, gluconique, ascorbique, valérique, succinique, éthylsuccinique, fumarique, oxalique, gallique, pivalique, caprique, décanoïque, heptanoïque, propanoïque, caproïque, stéarique, iséthionique, éthanedisulfonique, méthanesulfonique, naphtalène-sulfonique et métasulfobenzoïque.

Parmi les sels d'addition avec les bases minérales ou organiques on préfèrera les sels d'addition formés avec l'hydroxyde de sodium, l'hydroxyde de potassium, l'hydroxyde de magnésium, l'hydroxyde de calcium, l'hydroxyde de manganèse, l'hydroxyde de lithium, la lysine, la cystéine, l'arginine, la monoéthanolamine, la méglumine, la bétaīne, la diéthylamine et la dicyclohexylamine.

Les composés préférés selon l'invention sont les composés de formule I dans laquelle R_6 et R_7 représentent un groupe sulfonylaminocarbonyl ou un groupe COOH ainsi que leurs sels obtenus par réaction avec une base organique ou minérale.

On préférera encore les composés de formule I salifiés par réaction avec un acide organique ou minéral.

Les composés de formule I selon l'invention peuvent être préparés selon un procédé caractérisé en ce qu'il comprend les étapes consistant à

(a)soumettre à une substitution nucléophile un composé de formule :

dans laquelle :

20

25

30

35

40

45

50

55

- R'₁ représente un groupe alkyle en C₁-C₄,
- R'₂ représente l'atome d'hydrogène, un halogène, un groupe alkylthio en C₁-C₄ ou un groupe perfluoroalkyle en C₁-C₃,
- R's représente un atome d'hydrogène ou un halogène,
- R'₆ représente un groupe cyano, un groupe COR'₉ où R'₉ représente un groupe alkoxy en C₁-C₁₆, un groupe benzyloxy ou un groupe isopropylidène glycéryle,
- X représente un halogène, notamment l'atome de chlore, ou un groupe paratoluènesulfonyle, par réaction avec un composé de formule :

dans laquelle :

- R'₃ représente l'atome d'hydrogène ou un groupe alkyle en C₁-C₄,
- R'₄ est en position 3, 4, 5 ou 6 et représente l'atome d'hydrogène, un ou plusieurs groupes alkyles en C₁-C₄, alkoxy en C₁-C₄, azido, nitro ou un ou plusieurs halogènes ou forme un groupe amino-2 naphtyle avec le groupe amino-phényle auquel il est lié,
- R'₇ représente un groupe cyano, ou un groupe COR'₉ où R'₉ représente
 - un groupe alkoxy en C₁-C₁₆, un groupe benzyloxy, un groupe isopropylidène glycéryle, un groupe phénoxy, un groupe 2-phényléthoxy, un groupe 2-méthoxyéthoxy, un groupe 2-oxo-butyl oxy, un groupe 1-méthyl-2-oxo-butyl oxy, un groupe 2-(N, N-diéthylamino)-éthoxy,
 - un groupe O-CHR₁₅-O(CO)-R₁₂ dans lequel R₁₅ représente l'atome d'hydrogène ou un groupe alkyle en C₁-C₃ et R₁₂ représente un groupe alkyle en C₁-C₇, un groupe cyclopentyle, un groupe cyclohexyle, un groupe cyclopentylméthyle ou un groupe cyclohexylméthyle,
 - un groupe oxyacétate de formule O-CHR₁₇-CO₂-R₁₆, dans lequel R₁₆ et R₁₇ représentent chacun indépendamment l'atome d'hydrogène ou un groupe alkyle en C₁-C₅,
 - un groupe oxyacétamide de formule -O-CH₂-CO-NR₁₀R₁₁, dans lequel R₁₀ et R₁₁, identiques ou différents, représentent chacun un groupe alkyle en C₁-C₄ ou un groupe hydroxyéthyle,
 - un groupe amino de formule -NR₁₈R₁₉ dans lequel R₁₈ et R₁₉ représentent chacun indépendamment l'atome d'hydrogène, un groupe alkyle en C₁-C₄, un groupe méthoxy, un groupe 2-(N,N-diméthylamino) propyle ou, -NR₁₈R₁₉ représente un reste acide aminé de structure glycine ou valine, dont la fonction acide est éventuellement protégée sous forme d'ester où d'amide,
- R'₃ et R'₇, considérés ensemble, pouvant former, avec l'atome d'azote et le groupe phényle auxquels ils sont respectivement liés, un hétérocycle azoté ortho-condensé carboxy-2-indol-1-yle ou éthoxycarbonyle-2-indol-1-yle,

en milieu anhydre, en présence ou non d'un solvant polaire ou non polaire et aprotique, comme par exemple

le toluène, les xylènes, le tétrahydrofuranne, le diméthylformamide, les hydrocarbures chlorés, les éthers, le dioxanne, la N-méthylpyrrolidin-2-one, la N,N'-diméthylpropylèneurée ou le diméthylsulfoxyde et en présence ou non d'une base forte commme par exemple la triéthylamine, la 2,6-lutidine, les hydrures de sodium ou potassium, l'hexaméthyldisilylamidure de potassium ou de lithium ou le diisopropylamidure de lithium, à raison de 1 mole de composé II' pour 1 à 20 moles de composé III', à une température comprise entre la température ambiante (15-25 °C) et environ 200°C, pendant 0,1 à 12 heures, pour obtenir un composé de formule :

(I')

10

5

20

25

30

35

dans laquelle R'₁, R'₂, R'₃, R'₄, R'₅, R'₆ et R'₇ ont les significations indiquées ci-dessus;

(b) si nécessaire, soumettre le composé de formule l'ainsi obtenu aux traitements suivants :

(i) saponification d'un composé de formule l' dans laquelle l'un au moins des groupes R'₆ et R'₇ représente un groupe COR'₉ où R'₉ représente un groupe alcoxy en C₁-C₁₆, selon les méthodes connues de l'homme de l'art, notamment en présence d'une base forte comme par exemple une solution aqueuse d'hydroxyde de sodium ou de potassium, dans le diméthoxyéthane ou un alcool comme par exemple le méthanol, pour obtenir un composé de formule I dans laquelle R₈ et R₇ représentent un groupe COOH, ou R₆ représente un groupe COOH et R₇ représente un groupe COR₈ où R₉ représente un groupe alkoxy en C₁-C₁₆;

(ii)estérification du composé ainsi obtenu au stade (i) selon les méthodes connues de l'homme de l'art, notamment par réaction avec un alcool approprié ou par réaction avec un dérivé halogéné approprié, pour obtenir un composé de formule I dans laquelle R₆ et R₇ représentent un groupe COR₉ où R₉ a les significations des groupes R'₉ indiqués ci-dessus;

(iii) acylation du méthylsulfonamide ou d'un arysulfonamide de formule :

$$SO_2-NH_2$$

45

50

dans laquelle R_{14} représente l'atome d'hydrogène, un halogène, un groupe azido, un groupe alkyle en C_1 - C_4 ou un groupe méthoxy, par un mono-acide obtenu au stade (i) selon les méthodes connues de l'homme de l'art, notamment en présence d'un réactif de couplage comme par exemple le chlorhydrate de 1-(3-diméthylaminopropyl)-3-éthylcarbodiimide ou la N,N-dicyclohexylcarbodiimide, pour obtenir un composé de formule I dans laquelle R_6 représente un groupe COR_{13} où R_{13} représente un groupe méthylsulfonylamino de formule -NH-SO $_2$ - CH_3 , ou un groupe arylsulfonylamino de formule :

dans laquelle R_{14} a la signification indiquée ci-dessus, R_7 représente un groupe COR $_9$ où R_9 représente un groupe alkoxy en C_1 - C_{16} et R_1 , R_2 , R_3 , R_4 R_5 ont les significations indiquées ci-dessus respective-

ment R'₁, R'₂, R'₃, R'₄ et R'₅;

(iv) acylation d'un composé de formule l' dans laquelle R'₃ représente l'atome d'hydrogène et R'₁, R'₂, R'₄, R'₅ R'₈ et R'₇ ont les significations indiquées ci-dessus, selon les méthodes connues de l'homme de l'art, notamment par réaction avec un anhydrique d'acide, comme par exemple l'anhydrique acétique, pour obtenir un composé de formule I dans laquelle R₃ représente un groupe COR₈ où R₈ représente un groupe alkyle en C₁-C₄, et R₁, R₂, R₄, R₆, R₈ et R₇ ont les significations indiquées ci-dessus pour respectivement R'₁, R'₂, R'₄, R'₅, R'₈ et R'₇;

(v) si nécessaire, déprotection d'un composé de formule l' dans laquelle l'un au moins des groupes R'₆ et R'₇ représente un groupe COR'₉ où R'₉ représente un groupe alkoxy en C₁-C₄, un groupe benzyloxy ou un groupe isopropylidène glycéryde, selon les méthodes connues de l'homme de l'art, notamment par traitement en milieu acide ou par hydrogénation catalytique, pour obtenir un composé de formule I dans laquelle au moins l'un des groupes R₆ ou R₇ représente un groupe COOH ou CO-glycéryle et l'autre groupe représente un groupe COR₉ où R₉ a la signification indiquée ci-dessus pour R'₉;

(vi) conversion d'un composé de formule l' dans laquelle R_6 ou R_7 représente un groupe cyano, en composé de formule l dans laquelle R_6 ou R_7 représente un groupe tétrazol-5-yle selon les méthodes connues de l'homme de l'art, notamment par cycloaddition 1,3-dipolaire d'azotures de trialkylétain ou triarvlétain.

Pour accéder aux composés de formule II' on préconise de réduire un aldéhyde de formule :

20

25

30

55

5

10

15

dans laquelle R'₁, R'₂, R'₅ et R'₆ ont les significations indiquées ci-dessus, selon les méthodes connues de l'homme de l'art, notamment par action de NaBH₄ ou KBH₄ dans un alcool, pour obtenir un alcool de formule :

40
R'1
N
OH
(V)

dans laquelle R'₁, R'₂, R'₅ et R'₆ ont les significations indiquées ci-dessus, puis convertir l'alcool ainsi obtenu en dérivé de formule II', notamment en dérivé chloré, selon les méthodes connues de l'homme de l'art, notamment par action du chlorure de thionyle dans un solvant inerte comme par exemple un solvant halogéné. Les composés intermédiaires de formule IV dans laquelle:

- (i) R'_1 représente un groupe n-propyle, R'_2 représente un atome d'hydrogène ou un halogène, R'_5 représente l'atome d'hydrogène et R'_8 représente un groupe cyano ou un groupe COR' $_9$ où R'_9 représente un groupe alkoxy en C_1 - C_{16} ou un groupe benzyloxy, ou
- (ii) R'₁ représente un groupe n-butyle, R'₂ et R'₅ représentent l'atome d'hydrogène et R'₆ représente un

groupe COR'₉ dans lequel R'₉ représente un groupe t-butoxy ou benzyloxy sont des composés nouveaux et constituent un des objets de l'invention.

Les composés intermédiaires de formule V dans laquelle R'₁ représente un groupe alkyle en C₁-C₄, R'₂ représente l'atome d'hydrogène ou un halogène, R'₅ représente l'atome d'hydrogène et R'₆ représente un groupe COR'₉ où R'₉ représente un groupe alkoxy en C₁-C₁₆ ou un groupe benzyloxy sont des composés nouveaux et constituent un des objets de l'invention.

Les composés intermédiaires de formule II' dans laquelle R'₁ représente un groupe n-butyle, R'₂ et R'₆ représentent l'atome d'hydrogène et R'₆ représente un groupe COR'₉ dans lequel R'₉ représente un groupe t-butoxy ou benzyloxy sont des composés nouveaux et constituent un des objets de l'invention.

L'invention sera mieux comprise à la lecture des exemples de préparation qui suivent où les préparations se réfèrent aux produits intermédiaires et les exemples se réfèrent aux produits selon l'invention. Ces exemples sont destinés à illustrer l'invention sans en limiter la portée.

15 PREPARATION 1

2-butyi-4-iodo-1H-imidazol-5-carboxaldéhyde

A une suspension à 15°C de 16 g (57.10⁻³ mole) de 2-butyl-4-iodo-1H-imidazol-5-méthanol dans 48 ml d'acide acétique, on additionne goutte à goutte une solution de 70,5 g (128.5.10⁻³mole) de nitrate de cérium ammoniacal dans 58 ml d'eau. On agite à température ambiante pendant 24 heures. Le mélange réactionnel est alors additionné de solution d'hydroxyde de sodium 10 N jusqu'à pH 6. Le précipité formé est extrait à l'acétate d'éthyle, lavé à l'eau puis séché sur sulfate de magnésium. On obtient ainsi 14,7 g (rendement : 93 %) de solide beige.

F = 90°C

25

30

35

PREPARATION 2

acide 4-[(4-chloro-5-formyl-2-propyl-1H-imidazol-1-yl)méthyl]-benzoïque, méthyl ester

A une solution de 18,15 g (105.10⁻³ mole) de 4-chloro-2-propyl-1H-imidazol-5-carboxaldéhyde et de 28,9 g (126.10⁻³ mole) de 4-bromométhyl-benzoate de méthyle dans 275 ml de diméthylformamide, on ajoute 17,4 g (126.10⁻³ mole) de carbonate de potassium. Le mélange réactionnel est chauffé sous agitation à 40°C pendant 2 heures, puis après refroidissement, versé dans l'eau et extrait à l'acétate d'éthyle. Les phases organiques sont lavées à l'eau jusqu'à neutralité, séchées sur sulfate de magnésium et concentrées. Le solide brut obtenu est recristallisé dans l'éthanol pour donner 28 g (rendement : 83 %) de solide blanc.

F = 89°C

En opérant de façon analogue, on obtient les produits des préparations 9, 10, 11 et 31.

40 PREPARATION 3

acide 4-[(5-formyl-2-propyl-1H-imidazol-1-yl)méthyl]-benzoïque, méthyl ester

A une solution de 23,2 g (72.10⁻³ mole) d'acide 4-[(4-chloro-5-formyl-2-propyl-1H-imidazol-1-yl)méthyl]benzoïque, méthyl ester dans 230 ml de méthanol on ajoute 7,1 g (72.10⁻³ mole) d'acétate de potassium puis, sous azote, 3,48 g de charbon palladié à 5%. La suspension obtenue est agitée sous atmosphère d'hydrogène à température ambiante pendant 3 jours. Le catalyseur est éliminé par filtration, le méthanol est évaporé, le résidu repris par l'acétate d'éthyle et la solution résultante est lavée à l'eau jusqu'à neutralité. Après séchage sur sulfate de magnésium la solution est concentrée et le produit brut huileux obtenu chromatographié sur silice en éluant par le mélange cyclohexane/acétone (7/3; v/v). L'évaporation de l'éluant conduit à 19 g (rendement à 91,6 %) de solide blanc.

F = 72°C

En opérant de façon analogue, on a obtenu les produits suivants :

55 acide 4-[(2-butyl-5-formyl-1H-imidazol-1-yl)méthyl]-benzoïque, 1,1-diméthyléthyl ester (préparation 12)

```
RMN <sup>1</sup>H (300 MHz; CDCl<sub>3</sub>; ppm)
0,89 (t,3H); 1,31 (m,2H); 1,57 (s,9H); 1,69 (m,2H); 2,66 (t,2H); 5,82 (s,2H); 7,03 (d,2H); 7,81 (s,1H);
```

7,93(d,2H); 9,66 (s,1H).

acide 4-[(2-butyl-5-formyl-1H-imidazol-1-yl)méthyl]-benzoïque, éthyl ester (préparation 32)

RMN ¹H (300 MHz; CDCl₃; ppm) 0,89 (t, 3H); 1,23- 1,40 (m, 5H); 1,63 - 1,74 (m, 2H); 2,64 (t, 2H); 4,35 (q, 2H); 5,60 (s, 2H); 7,04 (d, 2H); 7,82 (s, 1H); 7,97 (d, 2H); 9,67 (s, 1H).

PREPARATION 4

5

25

30

40

55

acide 4-[(2-butyl-5-formyl-4-trifluorométhyl-1H-imidazol-1-yl)méthyl]-benzoïque, méthyl ester

A une suspension de 82 g de cadmium en poudre dans 183 ml de diméthylformamide à température ambiante on ajoute, en 2 heures, 32 ml de dibromodifluorométhane en solution dans 32 ml de diméthylformamide. Le mélange réactionnel est agité 2 heures à température ambiante puis on laisse au repos 30 minutes. A un mélange de 70 ml de cette solution dans 75 ml d'hexaméthylphosphorotriamide à 0°C on additionne 8,34 g (58.10-3 mole) de bromure cuivreux, puis 7,08 g (16,6.10-3 mole) d'acide 4-[(2-butyl-5-formyl-4-iodo-1H-imidazol-1-yl)méthyl]-benzoīque, méthyl ester en solution dans 50 ml de diméthylformamide. Le mélange réactionnel est chauffé à 70°C pendant 4 heures. Après refroidissement du mélange on additionne 600 ml d'eau et on extrait à l'acétate d'éthyle. Les phases organiques sont lavées à l'eau, séchées sur sulfate de magnésium, filtrées et évaporées sous pression réduite. L'huile résultante est purifiée par chromatographie sur silice en éluant avec un mélange toluène/acétate d'éthyle (9/1; v/v). On obtient ainsi 5,71 g (rendement: 93 %) de solide ocre.

F = 59°C

PREPARATION 5

acide 4-[(2-butyl-5-formyl-1H-imidazol-1-yl)méthyl]-benzoïque

A une solution de 16 g (53,3.10⁻³ mole) d'acide 4-[(2-butyl-5-formyl-1H-imidazol-1-yl)méthyl]-benzoïque, méthyl ester dans 100 ml de méthanol on additionne 25 ml d'eau et 3 g (75.10⁻³ mole) d'hydroxyde de sodium. Le mélange réactionnel est chauffé à reflux pendant 5 heures. Le méthanol est évaporé sous pression réduite et le résidu est additionné de 150 ml d'eau. On lave par deux fois 50 ml d'acétate d'éthyle. La phase aqueuse est acidifiée par une solution d'acide chlorhydrique 1N jusqu'à pH=6 et extraite par 2 fois 100 ml d'un mélange acétate d'éthyle/n-butanol (80/20; v/v). Les phases organiques sont lavées à l'eau, séchées sur sulfate de magnésium, filtrées et évaporées sous pression réduite. On obtient ainsi 14 g (rendement: 94 %) de solide jaune.

F = 148°C

En opérant de facon analogue à la préparation 5, on obtient le produit de la préparation 33.

PREPARATION 6

acide 4-[(2-butyl-5-formyl-1H-imidazol-1-yl)méthyl]-benzoïque, phénylméthyl ester

A une solution de 13,5 g (47,2.10⁻³ mole) d'acide 4-[(2-butyl-5-formyl-1H-imidazol-1-yl)méthyl]-benzoïque, dissous dans un mélange de 5 ml de diméthylformamide et 200 ml de dichlorométhane, on additionne 5,4 g (50.10⁻³ mole) d'alcool benzylique, 5,85 g (48.10⁻³ mole) de 4-diméthylaminopyridine et 9,17 g (48.10⁻³ mole) de chlorhydrate de 1-(3-diméthyl-aminopropyl)-3-éthylcarbodiimide. Le mélange réactionnel est agité à température ambiante pendant 20 heures puis lavé par deux fois 60 ml d'eau. La phase organique est séchée sur sulfate de magnésium, filtrée et évaporée sous pression réduite. Le résidu est purifié par chromatographie en éluant avec un mélange hexane/acétone (70/30; v/v). On obtient 17 g (rendement : 95 %) d'huile jaune.

RMN ¹H (300MHz; CDCl₃; ppm) 0,88 (t,3H); 1,35 (m,2H); 1,72 (m,2H); 2,65 (t,2H); 5,34 (s,2H); 5,62 (s,2H); 7,04 (d,2H); 7,4 (m,5H); 7,80 (s,1H); 8,03(d,2H); 9,66 (s,1H).

En opérant de façon analogue, on obtient le produit de la préparation 34 et les produits suivants :

acide 4-[(2-butyl-5-formyl-1H-imidazol-1-yl)méthyl]-benzoïque, pentyl ester (Préparation 35)

RMN ¹H (300 MHz; CDCl₃; ppm) 0,89 (m, 6H); 1,18 - 1,40 (m, 5H); 1,62 - 1,77 (m, 5H); 2,63 (t, 2H); 4,29 (t, 2H); 5,63 (s, 2H); 7,05 (d, 2H); 7,81 (s, 1H); 7,97 (d, 2H); 9,67 (s, 1H).

acide 4-[(2-butyl-5-formyl-1H-imidazol-1-yl)méthyl]-benzoïque, butyl ester (Préparation 36)

RMN ¹H (300 MHz; CDCl₃; ppm) 0,86 (t, 3H); 0,96 (t, 3H); 1,31 - 1,49 (m, 4H); 1,64 - 1,78 (m, 4H); 2,63 (t, 2H); 4,30 (t, 2H); 5,62 (s, 2H); 7,04 (d, 2H); 7,81 (s, 1H); 7,97 (d, 2H); 9,67 (s, 1H).

acid 4-[(2-butyl-5-formyl-1H-imidazol-1-yl)méthyl]-benzoïque, 2-méthyl-propyl ester (Préparation 37)

RMN ¹H (300 MHz; CDCl₃; ppm) 0,88 (t, 3H); 0,99 (d, 6H); 1,31 - 1,38 (m, 2H); 1,64 - 1,75 (m, 2H); 2,06 (m, 1H); 2,63 (t, 2H); 4,08 (d, 2H); 5,63 (s, 2H); 7,05 (d, 2H); 7,81 (s, 1H); 7,98 (d, 2H); 9,67 (s, 1H).

20 acide 4-[(2-butyl-5-formyl-1H-imidazol-1-yl)méthyl]-benzoïque, cyclopropyl-méthyl ester (Préparation 38)

RMN 1 H (300 MHz; CDCl₃; ppm) 0,35 (m, 2H); 0,59 (m, 2H); 0,88 (t, 3H); 1,21 - 1,25 (m, 1H); 1,29 - 1,40 (m, 2H); 1,60 - 1,75 (mm, 2H); 2,63 (t, 2H); 4,12 (d, 2H); 5,63 (s, 2H); 7,05 (d, 2H); 7,81 (s, 1H); 7,97 (d, 2H); 9,67 (s, 1H).

acide 4-[(2-butyl-5-formyl-1H-imidazol-1-yl)méthyl]-benzoïque, 3-méthyl-butyl ester (Préparation 39)

RMN ¹H (300 MHz; CDCl₃; ppm)
0,88 (t, 3H); 0,97 (d, 6H); 1,23 - 1,41 (m, 3H); 1,61 - 1,82 (m, 4H); 2,63 (t, 2H); 4,35 (t, 2H); 5,63 (s, 2H); 7,05 (d, 2H); 7,81 (s, 1H); 7,97 (d, 2H); 9,67 (s, 1H).

acide 4-[(2-butyl-4-chloro-5-formyl-1H-imidazol-1-yl)méthyl]-benzoïque, phénylméthyl ester (Préparation 40)

RMN 1 H (300 MHz; CDCl₃; ppm) 0,87 (t, 3H); 1,29 - 1,37 (m, 2H); 1,61 - 1,72 (m, 2H); 2,60 (t, 2H); 5,35 (s, 2H); 5,59 (s, 2H); 7,07 (d, 2H); 7,34 - 7,44 (m, 5H); 8,02 (d, 2H).

40 PREPARATION 62

10

15

25

35

acide 4-[[2-butyl-5-formyl-4-méthylthio-1H-imidazol-1-yl]méthyl]-benzoïque,méthyl ester

A une solution de 3,87 g (1,15 10⁻² mole) de l'ester méthylique de l'acide 4-[(4-chloro-5-formyl-2-butyl-1H-imidazol-1-yl)méthyl]-benzoïque dans 40 ml de méthanol sont ajoutés 3,24 g (4,62 10⁻² mole) de thiométhylate de sodium. Le mélange réactionnel est chauffé à reflux sous agitation pendant 4 heures puis après refroidissement versé sur une solution aqueuse à 0°C d'acide citrique à 10 % et extrait à l'acétate d'éthyle. Les phases organiques sont lavées à l'eau jusqu'à neutralité, sèchées sur sulfate de magnésium et concentrées. Le résidu huileux obtenu est chromatographié sur silice en éluant par le mélange toluène/acétate d'éthyle (8/2 v/v). L'évaporation de l'éluant conduit à 2,8 g (rendement : 70 %) de solide jaune.

F = 72 - 74°C

PREPARATION 7

acide 4-[(2-butyl-5-hydroxyméthyl-1H-imidazol-1-yl)méthyl]-benzoïque, méthyl ester

5,92 g (19,7.10⁻³ mole) de l'ester méthylique de l'acide 4-[(2-butyl-5-formyl-1H-imidazol-1-yl)méthyl]-benzoïque, sont dissous dans 60 ml de méthanol et la solution obtenue est refroidie par un bain de glace. 895 mg (23,6.10⁻³ mole) de borohydrure de sodium sont alors ajoutés par fractions pendant 30 minutes tout en agitant.

10 minutes après, le méthanol est évaporé, le résidu est étendu d'eau et extrait par le chlorure de méthylène. Les phases organiques rassemblées sont lavées à l'eau, séchées sur sulfate de magnésium et concentrées. On obtient 5,22 g (rendement : 88 %) d'un solide blanc.

F = 144°C

5

10

En opérant de façon analogue, on a préparé les produits des préparations 13 à 21 et 41 à 49 ainsi que le produit suivant :

4-[(2-butyl-5-hydroxyméthyl-1H-imidazol-1-yl)méthyl]-benzonitrile (Préparation 50)

F = 109°C

PREPARATION 8

Chlorhydrate de l'acide 4-[(2-butyl-5-chlorométhyl-1H-imidazol-1-yl)méthyl]-benzoïque, méthyl ester

On dissout 5,2 g (17,2.10⁻³ mole) de l'ester méthylique de l'acide 4-[(2-butyl-5-hydroxyméthyl-1H-imidazol-1-yl)méthyl]-benzoïque dans 50 ml de chloroforme et on refroidit par un bain de glace. On ajoute alors goutte à goutte et en agitant 10,23 g (86.10⁻³ mole) de chlorure de thionyle. On maintient l'agitation à cette température pendant 15 minutes après la fin de l'ajout. On évapore le chloroforme puis on ajoute du toluène et on l'évapore. On obtient 6,1 g (rendement : 99,3 %) de solide beige.

F = 158°C

En opérant de façon analogue, on a obtenu les produits des préparations 22 à 29, 51 et 53 à 59 ainsi que les produits suivants :

acide 4-[(2-butyl-5-chlorométhyl-4-trifluorométhyl-1H-imidazol-1-yl)méthyl]-benzoïque, méthyl ester (Préparation 30)

huile jaune

RMN 1 H (300 MHz; CDCl₃; ppm) 0,87 (t,3H); 1,33 (m,2H); 1,68 (m,2H); 2,60 (t,2H); 3,92 (s,3H); 4,52 (s,2H); 5,29 (s,2H); 7,06 (d,2H); 8,03 (d,2H)

Chlor hydrate de 4-[(2-butyl-5-chlorométhyl-1H-imidazol-1-yl)méthyl]-benzonitrile (Préparation 60)

35

25

30

F = 95°C

acide 4-[(2-butyl-4-chloro-5-chlorométhyl-1H-imidazol-1-yl)méthyl]-benzoïque, phénylméthyl ester (Préparation 61)

```
RMN ^{1}H (300 MHz; CDCl<sub>3</sub>; ppm) 0,87 (t, 3H); 1,27 - 1,39 (m, 2H); 1,62 - 1,72 (m, 2H); 2,55 (t, 2H); 4,44 (s, 2H); 5,24 (s, 2H); 5,36 (s, 2H); 7,05 (d, 2H); 7,16 - 7,45 (m, 5H); 8,05 (d, 2H).
```

45 PREPARATION 63

acide 2-méthyl-6-nitrobenzoïque, pentyl ester

A une suspension de 5 g (0,0276 mole) d'acide 2-nitro-6-méthyl benzoïque dans 90 ml de toluène on additionne 6 ml (0,082 mole) de chlorure de thionyle. Le mélange réactionnel est chauffé à reflux sous agitation pendant 3,5h et évaporé sous pression réduite. Le résidu huileux est ensuite additionné de 45 ml de n-pentanol, chauffé à reflux sous agitation pendant 2 heures. Après refroidissement on ajoute 100 ml d'eau et une solution aqueuse saturée de bicarbonate de sodium jusqu'à pH basique et on extrait au toluène. Les phases organiques sont lavées à l'eau, sèchées sur sulfate de magnésium et concentrées. Après distillation sous pression réduite du n-pentanol on obtient 6,74 g d'une huile jaune (rendement : 97 %).

```
RMN <sup>1</sup>H (300 MHz; CDCl<sub>3</sub>; ppm)
0,89 (t, 3H); 1,36 (m, 4H); 1,77 (m, 2H); 2,45 (s, 3H); 4,37 (t, 2H); 7,43 (t, 1H); 7,53(d, 1H); 8,00 (d, 1H).
```

PREPARATION 64

2-[(2-aminobenzoyi)oxy]-N,N-dipropyl-acétamide

A une solution de 15 g (0,1 mole) d'acide anthranilique dans 150 ml de diméthylformamide on ajoute 15 g (0,084 mole) de N,N dipropylchloroacétamide, 1,26 g (8,44.10 $^{-3}$ mole) d'iodure de sodium et 11,1 g (0,1 mole) de triéthylamine. Le mélange est agité pendant une nuit à température ambiante. On ajoute une solution saturée de bicarbonate de sodium et on extrait à l'acétate d'ethyle. Les phases organiques sont lavées à l'eau jusqu'à pH neutre, séchées sur sulfate de magnésium et concentrées. L'huile obtenue est cristallisée en agitant dans l'éther pour donner 7,86 g (rendement : 33,4 %) du produit attendu.

 $F = 64^{\circ}C$

En opérant de façon analogue à la préparation 64, on obtient les produits suivants :

2-[(2-aminobenzoyl)oxy]-3-pentanone (Préparation 65)

```
RMN <sup>1</sup>H (300 MHz; CDCl<sub>3</sub>; ppm)
1,09 (t, 3H); 1,49 (d, 3H); 2,58 (m, 2H); 5,28 (q, 1H); 5,70 (s, 2H); 6,60 (m, 2H); 7,28 (m, 1H); 7,91 (m, 1H).
```

acide 2-[(2-aminobenzoyl)oxy]-acétique, éthyl ester (Préparation 66)

```
RMN ^{1}H (300 MHz; CDCl<sub>3</sub>; ppm) 1,30 (t, 3H); 4,25 (q, 2H); 4,80 (s, 2H); 5,69 (s, 2H); 6,66 (m, 2H); 7,29 (m, 1H); 7,93(m, 1H).
```

acide 2-[(2-aminobenzoyl)oxy]-acétique, pentyl ester (Préparation 67)

```
RMN ^{1}H (300 MHz; CDCl<sub>3</sub>; ppm) 0,88 (m, 3H); 1,28 (m, 4H); 1,63 (m, 2H); 4,16 (t, 2H); 4,80 (s, 2H); 5,68 (s, 2H); 6,65 (m, 2H); 7,28 (m, 1H); 7,92 (m, 1H).
```

PREPARATION 68

25

30

45

50

55

acide 2-aminobenzoïque, cyclopropyl méthyl ester

A une suspension de 9 g (0,0552 mole) d'anhydride isatoīque dans 14,3 g (0,198 mole) de cyclopropylméthanol, on additionne 1,77 g (0,044 mole) d'hydroxyde de sodium. Le mélange réactionnel est chauffé à 80°C sous agitation pendant 3 heures puis versé sur de l'eau et extrait à l'acétate d'éthyle. Les phases organiques lavées à l'eau jusqu'à pH neutre, séchées sur sulfate de magnésium sont concentrées sous pression réduite. On obtient ainsi 7,51g (rendement : 64 %) d'huile ocre.

```
RMN ^{1}H (300 MHz; CDCl<sub>3</sub>; ppm) 0,34 (m, 2H); 0,61 (m, 2H); 1,25 (m, 1H); 4,10 (d, 2H); 5,70 (s, 2H); 6,65 (m, 2H); 7,25 (m, 1H); 7,92 (m, 1H).
```

En opérant de façon analogue à la préparation 68, on obtient le produit de la préparation 69 et les produits suivants :

acide 2-aminobenzoïque, 1-méthylpentyl ester (Préparation 70)

```
RMN ^{1}H (300 MHz; CDCl<sub>3</sub>; ppm) 0,86 (m, 3H); 1,31 - 1,73 (m, 2H); 5,10 (m, 1H); 5,71 (s, 2H); 6,61 (m, 2H); 7,25 (m, 1H); 7,88 (m, 1H).
```

acide 2-aminobenzoïque, 2-[N,N-diéthyl amino] éthyl ester (Préparation 71)

```
RMN ^{1}H (300 MHz; CDCl<sub>3</sub>; ppm) 1,06 (t, 6H); 2,63 (q, 4H); 2,83 (t, 2H); 4,36 (t, 2H); 5,70 (s, 2H); 6,63 (m, 2H); 7,25 (s, 1H); 7,86 (d, 1H).
```

PREPARATION 72

5

15

20

25

30

35

45

55

2-[(2-aminobenzoyl)oxy]-N,N-diéthyl-propanamide

A une solution de 8,31 g (6,06 10⁻² mole) d'acide anthranilique dans 45 ml de 1,3-diméthyl-3,4,5,6-tétra-hydro-2-(1H)-pyrimidinone (DMPU) on ajoute 2 g (6,66 10⁻² mole) de NaH en suspension à 80 % dans l'huile. On agite à température ambiante pendant 0,5h puis on ajoute goutte à goutte 10,91 g (6,66 10⁻² mole) de N,N-diéthyl-2-chloropropanamide en solution dans 10 ml de DMPU. Le mélange réactionnel est alors agité à 100°C pendant 1,5h. Après refroidissement on ajoute une solution saturée de bicarbonate de sodium et on filtre le précipité obtenu. Après lavage à l'eau et séchage on obtient 14,31 g (rendement 89 %) du produit attendu.

F = 134°C

En opérant de façon analogue à la préparation 72, on obtient les produits des préparations 73, 74 et 75 ainsi que les produits suivants :

acide 2-éthylbutanoïque, 1-[(2-aminobenzoyl)oxy] éthyl ester (Préparation 76)

RMN 1 H (300 MHz; CDCl₃; ppm) 0,89 (t, 6H); 1,47 - 1,66 (m, 7H); 2,22 (m, 1H); 5,73 (s, 2H); 6,63 (m, 2H); 7,13 (q, 1H); 7,26 (m, 1H); 7,84 (m, 1H).

acide cyclopentylcarboxylique, 1-[(2-aminobenzoyi) oxy] éthyl ester (Préparation 77)

RMN 1 H (300 MHz; CDCl₃; ppm) 1,53 - 1,87 (m, 1H); 2,75 (m, 1H); 5,73 (s, 2H); 6,61 (t, 2H); 7,10 (q, 1H); 7,27 (m, 1H); 7,83 (m, 1H).

acide cyclohexylcarboxylique, 1-[(2-aminobenzoyl)oxy] éthyl ester (Préparation 78)

RMN ¹H (300 MHz; CDCl₃; ppm) 1,18 - 1,88 (m, 13H) ; 2,31 (m, 1H) ; 5,74 (s, 2H) ; 6,63 (m, 2H) ; 7,09 (m, 1H) ; 7,28 (m, 1H) ; 7,83 (m, 1H)

acide hexanoïque, [(2-aminobenzoyl)oxy] méthyl ester (Préparation 79)

RMN ¹H (300 MHz; CDCl₃; ppm) 0,87(t, 3H); 1,29 (m, 4H); 1,63 (m, 2H) 2,37 (t, 2H); 5,7 (s, 2H); 5,96 (s, 2H) 6,63 (m, 2H) 7,29 (m, 1H); 7,88 (d, 1H).

acide hexanoïque, 1-[(2-aminobenzoyl)oxy] éthyl ester (Préparation 80)

40 RMN ¹H (300 MHz; CDCl₃; ppm) 0,26 (t, 3H); 1,30 (m, 4H); 1,60 (m, 5H); 2,35 (t, 2H); 5,76 (s, 2H); 6,63 (m, 2H); 7,11 (m, 1H); 7,27 (m, 1H); 7,86 (d, 1H).

acide cyclohexylacétique, 1-[(2-aminobenzoyl)oxy] éthyl ester (Préparation 81)

RMN ¹H (300 MHz; CDCl₃; ppm) 0,91 - 1,42 (m, 5H); 1,55 - 1,75 (m, 9H); 2,20 (m, 2H); 5,74 (s, 2H); 6,63 (m, 2H); 7,12 (m, 1H); 7,85 (m, 1H)

acide cyclopentylacétique, 1-[(2-aminobenzoyl)oxy] éthyl ester (Préparation 82)

RMN ¹H (300 MHz; CDCl₃; ppm) 1,15 (m, 2H); 1,58 (m, 7H); 1,81 (m, 2H); 2,23 (m, 1H); 2,35 (m, 2H); 5,73 (s, 2H); 6,61 (d, 1H); 7,09 - 7,29 (m, 2H); 7,85 (d, 1H).

acide 2-2-diméthylpropanoïque, [(2-aminobenzoyl) oxy] méthyl ester (Préparation 83)

RMN ¹H (300 MHz; CDCl₃; ppm) 1,49 (s, 9H); 4,69 (s, 2H); 5,66 (s, 2H); 6,65 (m, 2H); 7,27 (m, 1H); 7,93 (m, 1H).

PREPARATION 84

N-[3-(N,N-diméthylamino)propyi]-2-aminobenzamide

On ajoute lentement 8,16 g (8 10-2 mole) de N,N-diméthyl-propanediamine à 6,52 g (4 10-2 mole) d'anhydride isatoïque puis on chauffe à 80°C pendant 1 heure. Après avoir refroidi on ajoute 150 ml d'eau et on extrait par l'acétate d'éthyle. Les phases organiques sont lavées à l'eau jusqu'à pH neutre, séchées sur sulfate de sodium, filtrées et évaporées sous pression réduite. On obtient 7,8 g (rendement : 88 %) du produit attendu.

F = 76°C

5

15

25

30

35

45

55

PREPARATION 85

N,N-diéthyl-2-[N-(2-aminobenzoyl)amino]-acétamide

A une solution de 3,27 g (2 10⁻² mole) d'anhydride isatoïque dans 20 ml de diméthylformamide, on ajoute successivement 3,33 g (2 10⁻² mole) de l'acide aminoacétique diéthylamide et 3,03 g (3 10⁻² mole) de triéthylamine. Le mélange réactionnel est alors chauffé à 70°C pendant 1 heure, puis on refroidit, on ajoute de l'eau et on extrait à l'acétate d'éthyle. Les phases organiques sont lavées à l'eau jusqu'à neutralité, séchées sur sulfate de magnésium, filtrées et concentrées sous pression réduite. On obtient 3,34 g (rendement : 67 %) du produit attendu.

F = 62°C.

En opérant de façon analogue à la préparation 85, on obtient le produit suivant :

N-[2-aminobenzoyl]-L-valine, éthyl ester (Préparation 86)

```
RMN ^{1}H (300 MHz; CDCl<sub>3</sub>; ppm) 1,0 (t, 6H); 1,31 (t, 3H); 2,26 (m, 1H); 4,23 (m, 2H); 4,72 (m, 1H); 5,5 (s, 2H); 6,57 (d, 1H); 6,69 (m, 2H); 7,23 (t, 1H); 7,41 (d, 1H);
```

PREPARATION 87

acide 2-amino-6-méthylbenzoïque, pentyl ester

A une solution de 6,2 g (0,0247 mole) de 2-nitro-6-méthyl benzoate de pentyl dans 200 ml d'éthanol on additionne sous atmosphère d'azote 0,62 g de charbon palladié à 10 %. Le milieu réactionnel est placé ensuite sous atmosphère d'hydrogène et agité pendant 6 heures. Après filtration, l'éthanol est évaporé sous pression réduite. On obtient 5,22 g (rendement : 96 %) d'huile ocre.

RMN ¹H (300 MHz; CDCl₃; ppm) 0,92 (t, 3H); 1,38 (m, 4H); 1,73 (m, 2H); 2,44 (s, 3H); 4,32 (t, 2H); 5,2 (s, 2H); 5,54 (d, 2H) 7,07 (t, 1H).

PREPARATON 88

acide 2-amino-6-chlorobenzoïque, pentyl ester

A une suspension de 15 g (0,087 mole) d'acide 2-amino-6-chlorobenzoïque dans 250 ml de dichlorométhane on additionne 10,6 g. (0,087 mole) de 4 diméthylaminopyridine, 16,6 g (0,087 mmole) de chlorhydrate de 1-(3-diméthylaminopropyl)-3-éthyl carbodiimide et 7,65 g (0,087 mole) de n-pentanol. Le mélange réactionnel est agité à température ambiante pendant 20 heures puis lavé par 1 x 50 ml d'une solution d'acide citrique à 10 % puis par 2 x 50 ml d'eau. La phase organique est sèchée sur sulfate de magnésium, filtrée et évaporée sous pression réduite. Le résidu est purifié par flash chromatographie sur silice en éluant par un mélange cyclohexane/acétone (90/10 ; v/v). On obtient 4,64 g (rendement : 22 %) d'une huile jaune.

RMN ¹H (300 MHz; CDCl₃; ppm)

0,92 (t, 3H); 1,38 (M, 4H); 1,72 (q, 2H); 4,33 (t, 2H); 4,84 (s, 2H); 6,55 (d, 1H); 6,73 (d, 1H); 7,07 (t, 1H).

On a regroupé un certain nombre de produits intermédiaires dans les tableaux A, B, C et D où les symboles utilisés sont identiques à ceux des tableaux I à VII.

exemple 1:

acide 2-[[[2-butyl-1-[(4-(méthoxycarbonyl)phényl)méthyl]-1H-imidazol -5-yl]méthyl]amino]-benzoï-que, méthyl ester

8 g (22,3.10⁻³ mole) du chlorhydrate de l'acide 4-[(2-butyl-5-chlorométhyl-1H-imidazol-1-yl)méthyl]-benzoīque, méthyl ester sont mis en suspension dans 80 ml de toluène anhydre. On ajoute 10,15 g (67,1.10⁻³ mole) de l'ester méthylique de l'acide 2-aminobenzoïque puis 4,79 g (44,7.10⁻³ mole) de 2,6-diméthylpyridine. On chauffe à reflux le mélange réactionnel pendant 8 heures puis on le verse sur de l'eau glacée. On extrait la phase aqueuse par l'acétate d'éthyle. Les phases organiques rassemblées sont lavées à l'eau jusqu'à neutralité, séchées sur sulfate de magnésium et concentrées. On obtient 11,8 g d'huile brune qui est purifiée par chromatographie en éluant par le mélange toluène/isopropanol (9/1; v/v). Après évaporation des éluats on obtient 9 g (rendement : 92,3 %) d'une huile orange.

RMN ¹H (300 MHz; CDCl₃; ppm)

0.87(t,3H); 1.34(m,2H); 1.68(m,2H); 2.56(t,2H); 3.77(s,3H); 3.91(s,3H); 4.19(d,2H); 5.18(s,2H); 6.58-6.67(m,2H); 6.92(d,2H); 7.04(s,1H); 7.30(t,1H); 7.67(t,1H); 7.82(d,1H); 7.91 (d,2H).

En opérant de façon analogue, on a préparé les produits des exemples 2, 76, 88, 89, 98, 219, 220, 222, 225 et les produits suivants:

exemple 3:

acide 2-[[[2-propyl-1-[(4-(méthoxycarbonyl)phényl)méthyl]-1H-imidazol-5-yl]méthyl]amino]-benzoïque, méthyl ester

25

15

20

huile marron RMN ¹H (300 MHz, CDCl₃, ppm)

0,94(t,3H); 1,73(m,2H); 2,53(t,2H); 3,77(s,3H); 3,91(s,3H); 4,18(d,2H); 5,18(s,2H); 6,58-6,67(m,2H); 6,92(d,2H); 7,05(s,1H); 7,28-7,33(m,1H); 7,68(t,1H) 7,82(d,1H); 7,90(d,2H).

exemple 4:

acide 2-[[[2-butyl-1-[(4-(phénylméthoxycarbonyl)phényl)méthyl]-1H-imidazol-5-yl]méthyl]amino]-benzoïque, 2,2-diméthyl-1,3-dioxolane-4-yl-méthyl ester

35

45

50

55

30

huile RMN ¹H (300 MHz; CDCl₃; ppm)

0,88(t,3H); 1,33(m,2H); 1,37(s,3H); 1,43(s,3H); 1,72(m,2H); 2,55(t,3H); 3,82(m,1H); 4,10(m,1H); 4,25(m,4H); 4,35(m,1H); 5,18(s,2H); 5,35(s,2H); 6,62(m,2H); 6,93(d,2H); 7,04(s,1H); 7,26-7,46(m,6H); 7,64(t,1H); 7,85(d,1H); 7,94(d,2H).

exemple 5:

acide 2-[[[2-butyl-1-[(4-(1,1-diméthyléthoxycarbonyl)phényl)méthyl]-1H-imidazol-5-yl]méthyl]amino]benzoïque, phénylméthyl ester

huile orangée

RMN ¹H (300 MHz; CDCl₃; ppm)

0,88(t,3H); 1,32(m,2H); 1,56(s,9H); 1,73(m,2H); 2,56(m,2H); 4,18(d,2H); 5,18(s,2H); 5,23(s,2H); 6,60(m,2H); 6,89(d,2H); 7,03(s,1H); 7,37(m,6H); 7,70(t,1H); 7,90(m,3H).

exemple 6:

acide 2-[[[2-butyl-4-chloro-1-[(4-(méthoxycarbonyl)phényl)méthyl]-1H-Imidazol-5-yl]méthyl]amino]-3,5-dichloro-benzoïque, méthyl ester

```
huile jaune
```

RMN ¹H (300 MHz; CDCl₃; ppm)

0,86(t,3H); 1,28(m,2H); 1,66(m,2H); 2,55(t,2H); 3,85(s,3H); 3,91(s,3H); 4,12(d,2H); 5,28(s,2H); 6,71

(t,1H); 6,98(d,2H); 7,40(d,1H); 7,78(d, 1H); 7,97(d,2H).

exemple 7:

acide 2-[[[2-butyl-4-chloro-1-[(4-(méthoxycarbonyl)phényl)méthyl]-1H-imidazol-5-yl]méthyl]amino]-3-méthyl-benzoïque, méthyl ester

huile jaune pâle

RMN ¹H (300 MHz; diméthylsulfoxyde; ppm)

0.79(t,3H); 1.24(m,2H); 1.48(m,2H); 2.25(s,3H); 2.50(t,2H); 3.73(s,3H); 3.83(s,3H); 4.03(d,2H); 5.30(s,2H); 6.40(t,1H); 6.85(t,1H); 7.06(d,2H); 7.29(d,1H); 7.59(d,1H); 7.90(d,2H).

exemple 8:

15

acide N-[[2-butyl-4-chloro-1-[(4-(méthoxycarbonyl)phényl)méthyl]-1H-imidazol-5-yl]méthyl]-N-méthyl-2-amino-benzoïque, méthyl ester

huile jaune

RMN ¹H (300 MHz; CDCl₃; ppm)

0.87(t,3H); 1.34(m,2H); 1.68(m,2H); 2.57(t,2H); 2.61(s,3H); 3.85(s,3H); 3.89(s,3H); 3.93(s,2H); 5.32(s,2H); 6.88-6.99(m,4H); 7.35(t,1H); 7.68(d,1H); 7.88(d,2H).

exemple 74:

25

20

5

10

acide 2-[[[2-butyl-4-chloro-1-[(4-(phénylméthoxycarbonyl)phényl)méthyl]-1H-imidazol-5-yl]méthyl]amino]-benzoïque, pentyl ester

RMN ¹H (300 MHz; CDCl₃; ppm)

30 0,88 (m, 6H); 1,28 - 1,38 (m, 6H); 1,60 - 1,71 (m, 4H); 2,51 (t, 2H); 4,12 (t, 2H); 4,18 (d, 2H); 5,19 (s, 2H); 5,35 (s, 2H); 6,60 (t, 1H); 6,67 (d, 1H); 6,90 (d, 2H); 7,32 - 7,45 (m, 5H); 7,75 (t, 1H); 7,79 (d, 1H); 7,90 (d, 2H).

exemple 75:

35

acide 2-[[[2-butyl-1-[(4(méthoxycarbonyl)phényl)méthyl]-4-méthylthio-1H-imidazol-5-yl]méthyl]amino]-benzoïque, méthyl ester

RMN ¹H (300 MHz; CDCl₃; ppm)

40 0,85 (t, 3H); 1,31 (m, 2H); 1,68 (m, 2H); 2,46 (s, 3H); 2,54 (t, 2H); 3,75 (s, 3H); 3,91 (s, 3H); 4,30 (d, 2H); 5,19 (s, 2H); 6,60 (t, 1H); 6,80 (d, 1H); 6,89 (d, 2H); 7,32 (m, 1H); 7,67 (t, 1H); 7,82 (m, 3H).

exemple 77:

acide 2-[[[2-butyl-1-[4((méthoxycarbonyl)phényl)méthyl]-1H-imidazol-5-yl] méthyl] amino]-benzoïque, ((dipropylamino)carbonyl)méthyl ester

RMN ¹H (300 MHz; CDCl₃; ppm)

0,92 (m, 9H); 1,33 (m, 2H); 1,52 - 1,74 (m, 6H); 2,55 (t, 2H); 3,17 (t, 2H); 3,30 (t, 2H); 3,90 (s, 3H); 4,17 (d, 2H); 4,83 (s, 2H); 5,19 (s, 2H); 6,63 (m, 2H); 6,92 (d, 2H); 7 (s, 1H); 7,33 (t, 1H); 7,61 (t, 1H); 7,90 (d, 2H); 7,96 (d, 1H).

exemple 78:

acide 2-[[[2-butyl-1-[4((benzyloxycarbonyl)phényl)méthyl]-1H-imidazol-5-yl]méthyl]amino]-benzoïque, ((N,N-dipropylamino)carbonyl)méthyl ester

RMN 1 H (300 MHz; CDCl₃; ppm) 0,84 - 0,98 (m, 9H); 1,35 (m, 2H); 15,3 - 1,71 (m, 6H); 2,55 (t, 2H); 3,15 (t, 2H); 3,29 (t, 2H); 4,16 (d, 2H);

4,79 (s, 2H); 5,19 (s, 2H); 5,35 (s, 2H); 6,60 (m, 2H); 6,91 (d, 2H); 7 (s, 1H); 7,16 - 7,45 (m, 6H); 7,59 (t, 1H); 7,93 - 7, 97 (m, 3H)

5 exemple 79:

acide 2-[[[2-butyl-1-[4((benzyloxycarbonyl)phényl)méthyl]-1H-imidazol-5-yl]méthyl]amino]-benzoï-que,((N,N-diéthylamino)carbonyl)méthyl ester

RMN ¹H (300 MHz; CDCl₃; ppm)
0,87 (t, 3H); 1,14 (t, 3H); 1,23 (t, 3H); 1,35 (m, 2H); 1,68 (m, 2H); 2,54 (t, 2H); 3,25 (q, 2H); 3,38 (q, 2H);
4,16 (d, 2H); 4,78 (d, 2H); 5,19 (s, 2H); 5,35 (s, 2H); 6,61 (m, 2H); 6,90 (d, 2H); 7 (s, 1H); 7,16 - 7,45 (m, 6H); 7,58 (t, 1H); 7,95 (m, 3H).

exemple 80:

acide 2-[[[2-butyl-1-[4-((benzyloxycarbonyl)phényl)méthyl]-1H-imidazol-5-yl]méthyl]amino]-benzoï-que, 1-((N,N-diéthylamino)carbonyl)éthyl ester

20 RMN ¹H (300 MHz; CDCl₃; ppm)
0,87 (t, 3H); 1,12 (t, 3H); 1,24 (t, 3H); 1,33(m, 2H); 1,47 (d,3H); 1,68 (m, 2H); 2,55 (t, 2H); 3,23) 3,52 (m, 4H); 4,14 (d, 2H); 5,17 (s, 2H); 5,35 (s, 2H) 5,40 (q, 1H); 6,60 (m, 2H); 6,93 (d, 2H); 7 (s, 1H); 7,16 - 7,45 (m, 6H); 7,57 (t, 1H); 7,94 (m, 3H).

25 exemple 81:

acide 2-[[[2-butyl-1-[4-((benzyloxycarbonyl)phényl)méthyl]-1H-imidazol-5-yl]méthyl]amino]-benzoï-que,((N,N-di-(2-hydroxyéthyl)amino)carbonyl) méthyl ester

30 RMN ¹H (300 MHz; CDCl₃; ppm)
0,86 (t, 3H); 1,34 (m, 2H); 1,67 (m, 4H); 2,54 (t, 2H); 3,43 (t, 2H); 3,54 (t, 2H); 3, 81 (t, 2H); 3,86 (t, 2H);
4,15 (d, 2H); 4,89 (s, 2H); 5,16 (s, 2H); 5,35 (s, 2H); 6,60 (m, 2H); 6,90 (d, 2H); 7 (s, 1H); 7,26 - 7,45 (m, 7H); 7,93 (m, 3H).

35 exemple 82 :

acide 2-[[[2-butyl-1-[4-((benzyloxycarbonyl)phényl)méthyl]-1H-imidazol-5-yl]méthyl]amino]-benzoïque,((N-méthyl,N-(2-hydroxyéthyl)amino)carbonyl) méthyl ester

40 RMN ¹H (300 MHz; CDCl₃; ppm)
0,77 (t, 3H); 1,22 (m, 2H); 1,47 (m, 2H); 2,49 (m, 2H); 2,81 (s, 1,5H); 2,95 (s, 1,5 H); 3,45 (m, 2H); 3,54 (m, 2H); 4,32 (d, 2H) 4,74 (s, 1H); 4,87 (s, 1H); 5,32 (s, 2H); 5,34 (s, 2H); 6,55 (m, 2H); 6,81 (d, 2H); 6,88 (s, 1H); 6,95 (m, 2H); 7,40 (m, 4H); 7,58 (t, 1H); 7,72 (d, 1H); 7,85 (m, 2H).

45 exemple 83

50

55

acide 6-chloro-2-[[[2-butyl-1-[(4-(méthoxycarbonyl)phényl)méthyl]-1H-imidazol-5-yl]méthyl]amino]-benzoïque,pentyl ester

RMN ¹H (300 MHz; CDCl₃; ppm) 0,87 (m, 6H); 1,36 (m, 6H); 1,65 (m, 4H); 2,58 (t, 2H); 3,91 (s, 3H); 4,09 (d, 2H); 4,25 (t, 2H); 5,16 (s, 2H); 5,93 (t, 1H); 6,51 (d, 1H); 6,71 (d, 1H); 6,95 (d, 2H); 7,02 (s, 1H); 7, 11 (t, 1H); 7,96 (d, 2H).

exemple 84:

acide [[2-[[[2-butyl-1-[(4-(phénylméthoxycarbonyl)phényl)méthyl]-1H-imidazol-5-yl]méthyl]ami-no]phényl]carbonyloxy]-acétique,éthyl ester

RMN ¹H (300 MHz; CDCl₃; ppm)

0.85 (t, 3H); 1.29 (m, 5H); 1.69 (m, 2H); 2.17 (s, 2H); 2.58 (t, 2H); 4.22 (m, 4H); 4.71 (s, 2H); 5.17 (s, 2H); 5.35 (s, 2H); 6.61 (m, 2H); 6.90 (d, 2H); 7.03 (s, 1H); 7.38 (m, 4H); 7.46 (t, 1H); 7.93 (m, 3H).

5 exemple 85:

acide 2-éthyl-butanoïque, 1-[2-[[[2-butyl-1-[(4-(phénylméthoxycarbonyl) phényl)méthyl]-1H-imidazol-5-yl]méthyl]amino]phénylcarbonyloxy]éthyl ester

RMN ¹H (300 MHz; CDCl₃; ppm) 0,86 (m, 9 H); 1,33 (m, 2H); 1,46 - 1,74 (m, 9H); 2,18 (m, 1H); 2,23 (t, 2H); 4,15 (d, 2H); 5,17 (s, 2H); 5,35 (s, 2H); 6,65 (m, 2H); 7,02 (d, 2H); 7,05 (t, 2H); 7,26 - 7,44 (m, 6H); 7,69 (t, 1H); 7,80 (m, 1H); 7,96 (d, 2H).

15 exemple 86:

acide cyclopentylcarboxylique,1-[2-[[[2-butyl-1-[(4-(phénylméthoxy carbonyl)phényl)méthyl]-1H-imidazol-5-yl]méthyl]amino]phényl carbonyloxy]éthyl ester

20 RMN ¹H (300 MHz; CDCl₃; ppm)
0,85 (t, 3H); 1,36 (m, 2H); 1,2 - 1,8 (m, 13 H); 2,5 (t, 2H); 2,67 (q, 1H); 4,17 (d, 2H); 5,17 (s, 2H); 5,35 (s, 2H); 6,61 (m, 2H); 6,90 (d, 2H); 7,02 (m, 2H); 7,16 - 7,42 (m, 6H); 7,7 (t, 1H); 7,82 (m, 1H); 7,93 (d, 2H).

exemple 87:

25

acide 2-[[[2-butyl-1-[(4-(méthoxycarbonyl)phényl)méthyl]-1H-imidazol-5-yl]méthyl]amino]-6-méthylbenzoïque,pentyl ester

RMN ¹H (300 MHz; CDCl₃; ppm)

0 0,87 (m, 6H); 1,38 (m, 6H); 1,64 (m, 4H); 2,40 (s, 3H); 2,54 (t, 2H); 3,90 (s, 3H); 4,12 (d, 2H); 4,19 (t, 2H); 5,18 (s, 2H); 6,50 (d, 2H); 6,68 (t, 1H); 6,92 (d, 2H); 7,03 (s, 1H); 7,14 (t, 1H); 7,92 (d, 2H).

exemple 90:

acide cyclopentylacétique, 1-[2-[[[2-butyl-1-[(4-(phénylméthoxycarbonyl) phényl)méthyl]-1H-imidazol-5-yl]méthyl]amino]phénylcarbonyloxy]éthyl ester

RMN ¹H (300 MHz; CDCl₃; ppm) 0,86 (t, 3H); 1,15 (m, 2H); 1,35 (mm, 2H); 1,45 - 1,90 (m, 12H); 2,1 - 2,35 (m, 3H); 2,56 (t, 2H); 4,17 (d, 2H); 5,18 (s, 2H); 5,35 (s, 2H); 6,58 (m, 2H); 6,93 (d, 2H); 7,05 (m, 2H); 7,26 - 7,45 (m, 5H); 7,67 (t, 1H); 7,80 (d, 1H); 7,93 (d, 2H).

exemple 91:

45 acide cyclohexylcarboxylique,1-[2-[[[2-butyl-1-[(4-(phénylméthoxycarbonyl) phényl)méthyl]-1H-imidazol-5-yl]méthyl]amino]phénylcarbonyloxy]éthyl ester

RMN ¹H (300 MHz; CDCl₃; ppm) 0,85 (t, 3H); 1,21 - 1,74 (m, 15H); 1,86 (m, 2H); 2,26 (m, 1H); 2,53 (t, 2H); 4,15 (d, 2H); 5,18 (s, 2H) 5,35 (s, 2H); 6,61 (m, 2H) 6,9 (d, 2H); 7,1 (m, 2H); 7,15 - 7,45 (m, 6H); 7,65 (t, 1H); 7,8(m, 1H); 7,93 (d, 2H).

exemple 92:

50

55

acide 2,2-diméthyl-propanoïque, 1-[2-[[[2-butyl-1-[(4-(phénylméthoxy carbonyl)phényl)méthyl]-1H-Imidazol-5-yl]méthyl]amino]phénylcarbonyl oxy]éthyl ester

RMN ¹H (300 MHz; CDCl₃; ppm)
0,87 (t, 3H); 1,19 (s, 9H); 1,36 (m, 2H); 1,54 (d, 3H); 1,67 (m, 2H); 2,55 (t, 2H); 4,17 (d, 2H); 5,17 (s, 2H);
5,35 (s, 2H); 6,70 (m, 2H) 6,90 (d, 2H); 7,02 (m, 2H); 7,26 - 7,45 (m, 7H); 7,7 (t, 1H); 7,82 (m, 1H); 7,96 (d,

2H).

5

exemple 93:

acide 2,2-diméthyl-propanoïque,[2-[[[2-butyl-1-[(4-(phénylméthoxy carbonyl)phényl)méthyl]-1H-imidazol-5-yl]méthyl]amino]phénylcarbonyl oxy]méthyl ester

RMN ¹H (300 MHz; CDCl₃; ppm) 0,87 (t, 3H); 1,33 (m, 2H); 1,47 (s, 9H); 1,69 (m, 3H); 2,56 (t, 2H); 4,17 (d, 2H); 4,57 (s, 2H); 5,17 (s, 2H); 5,35 (s, 2H); 6,62 (m, 2H); 6,90 (d, 2H); 7,03 (s, 1H); 7,30 - 7,50 (m, 5 H); 7,53 (t, 1H); 7,92 (m, 3H).

exemple 94:

acide hexanoïque,[2-[[[2-butyl-1-[(4-(phénylméthoxycarbonyl)phényl) méthyl]-1H-imidazol-5-yl]méthyl]amino]phénylcarbonyloxy]méthyl ester

RMN ¹H (300 MHz; CDCl₃; ppm) 0,85 (m, 6H); 1,20 - 1,8 (m, 10H); 2,34 (t, 2H); 2,56 (t, 2H); 4,17 (d, 2H); 5,17 (s, 2H); 5,35 (s, 2H); 5,84 (s, 2H); 6,59 (m, 2H); 6,90 (d, 2H); 7,03 (s, 1H); 7,29 - 7,45 (m, 6H); 7,58 (t, 1H); 7,84 (m, 1H); 7,96 (d, 2H).

exemple 95:

acide 2-[[[2-butyl-1-[(4-(phénylméthoxycarbonyl)phényl)méthyl]-1H-imidazol-5-yl]méthyl]amino]benzoïque,2-(N,N-diéthylamino) éthyl ester

RMN 1 H (300 MHz; CDCl $_{3}$; ppm) 0,85 (t, 3H); 1,05 (t, 6H); 1,27 (m, 2H); 1,65 (m, 2H); 2,59 (m, 6H); 2,78 (t, 2H); 4,08 - 4,26 (m, 4H); 5,18 (s, 2H); 5,35 (s, 2H); 6,62 (m, 2H); 6,91 (d, 2H); 7,03 (s, 1H); 7,26 - 7,50 (m, 6H); 7,71 (t, 1H); 7,83 (m, 1H); 7,93 (d, 2H).

exemple 96:

35

40

45

50

55

acide 2-[[[2-butyl-1-[(4-(phénylméthoxycarbonyl)phényl)méthyl]-1H-imidazol-5-yl]méthyl]amino]-benzoïque,1-méthyl-pentyl ester

RMN 1 H (300 MHz; CDCl $_{3}$; ppm) 0,87 (m, 6H); 1,24 - 1,38 (m, 9H); 1,68 (m, 4H); 2,54 (t, 2H); 4,16 (d, 2H); 4,98 (m, 1H); 5,19 (s, 2H); 5,34 (s, 2H); 6,60 (m, 2H); 6,93 (d, 2H); 7,03 (s, 1H); 7,29 - 7,42 (m, 6 H); 7,78 (t, 1H); 7,86 (m, 1H); 7,94 (d, 2H).

exemple 97:

acide 2-[[[2-butyl-1-[(4-(phénylméthoxycarbonyl)phényl)méthyl]-1H-imidazol-5-yl]méthyl]amino]benzoïque, 1-méthyl-2-oxo-butyl ester

RMN 1 H (300 MHz; CDCl₃; ppm) 0,84 (m, 3H); 1,05 (m, 3H); 1,30 - 1,71 (m, 7H); 2,54 (m, 4H); 4,18 (d, 2H); 5,17 (m, 3H); 5,35 (s, 2H); 6,62 (m, 2H); 6,93 (s, 2H); 7,03 (s, 1H); 7,26 - 7,41 (m, 5H); 7,45 (t, 1H); 7,93 (m, 3H).

exemple 99:

acide 2-[[[2-butyl-1-[(4-(phénylméthoxycarbonyl)phényl)méthyl]-1H-imidazol-5-yl] méthyl] amino]benzoïque, 2-oxo-butyl ester

RMN 1 H (300 MHz; CDCl $_{3}$; ppm) 0,85 (t, 3H); 1,12 (t, 3H); 1,30 (m, 3H); 1,69 (m, 2H); 2,43 (m, 2H); 2,55 (m, 2H); 4,17 (d, 2H); 4,74 (s, 2H); 5,17 (s, 2H); 5,35 (s, 2H); 6,59 (m, 2H); 6,90 (d, 2H); 7,03 (s, 1H); 7,30 - 7,42 (m, 5H); 7,46 (t, 1H); 7,91 (m, 3H).

exemple 100 :

acide 2-[[2-[[[2-butyl-1-[(4-(phénylméthoxycarbonyl)phényl)méthyl]-1H-imidazol-5-yl] méthyl] amino] phényl] carbonyloxy]-propanoïque, éthyl ester

RMN ¹H (300 MHz; CDCl₃ ; ppm) 0,87 (t, 3H) ; 1,23 - 1,40 (m, 5H) ; 1,54 (d, 3H) ; 1,69 (m, 2H) ; 2,55 (t, 2H) ; 4,17 (m, 4H) ; 5,13 (m, 3H) ; 5,35 (s, 2H) ; 6,59 (m, 2H) ; 6,64 (d, 2H) ; 7,02 (s, 1H) ; 7,27 - 7,40 (m, 6H) ; 7,44 (t, 1H) ; 7,93 (m, 3H).

exemple 101:

10

15

35

40

50

acide [[2-[[[2-butyl-1-[(4-(phénylméthoxycarbonyl)phényl]méthyl]-1H-lmidazol-5-yl] méthyl] amino] phényl] carbonyloxy]-acétique, pentyl ester

RMN ¹H (300 MHz; CDCl₃; ppm)
0,87 (m, 6H); 1,31 (m, 6H); 1,62 (m, 4H); 2,56 (t, 2H); 4,16 (m, 4H); 4,67 (s, 2H); 5,15 (s, 2H); 5,42 (s, 2H); 6,63 (m, 2H); 6,90 (d, 2H); 7,03 (s, 1H); 7,27 - 7,46 (m, 6H); 7,50 (t, 1H); 7,95 (m, 3H).

20 exemple 102:

acide 2-[[[2-butyl-1-[(4-(phénylméthoxycarbonyl)phényl)méthyl]-1H-imidazol-5-yl] méthyl] amino]-benzoïque, 2-phényléthyl ester

25 RMN ¹H (300 MHz; CDCl₃; ppm)
0,85 (t, 3H); 1,33 (m, 2H); 1,69 (1m, 2H); 2,55 (t, 2H); 2,98 (t, 2H); 4,16 (d, 2H); 4,35 (t, 2H); 5,17 (s, 2H);
5,33 (s, 2H); 6,60 (m, 2H); 6,90 (d, 2H); 7,03 (s, 1H); 7,2 - 7,45 (m, 11H); 7,67 (t, 1H); 7,77 (m, 1H); 7,93 (d, 2H).

30 exemple 103:

acide 2-[[[2-butyl-1-[(4-(phénylméthoxycarbonyl)phényl)méthyl]-1H-imidazol-5-yl] méthyl] amino]-benzoïque, phényl ester

RMN 1 H (300 MHz; CDCl $_{3}$; ppm) 0,86 (t, 3H); 1,29 (m, 2H); 1,65 (m, 2H); 2,52 (t, 2H); 4,20 (d, 2H); 5,15 (s, 2H); 5,35 (s, 2H); 6,75 (m, 2H); 6,90 (d, 2H); 7,03 (s, 1H); 7,08 (m, 2H); 7,25 - 7,45 (m, 9H); 7,65 (t, 1H); 7,91 (d, 2H); 8,05 (m, 1H).

exemple 104:

acide 2-[[[2-butyl-1-[(4-(phénylméthoxycarbonyl)phényl)méthyl]-1H-imidazol-5-yl] méthyl] amino]-benzoïque, 2-méthoxyéthyl ester

RMN ¹H (300 MHz; CDCl₃; ppm)

0,87 (t, 3H); 1,31 (m, 2H); 1,67 (m, 2H); 2,56 (t, 2H); 3,38 (s, 3H); 3,64 (t, 2H); 4,17 (d, 2H); 4,30 (t, 2H); 5,18 (s, 2H); 5,35 (s, 2H); 6,60 (m, 2H); 6,94 (d, 2H); 7,04 (s, 1H); 7,25 - 7,45 (m, 6H); 7,64 (t, 1H); 7,86 (m, 1H); 7,93 (d, 2H).

exemple 105:

acide 2-[[[2-butyl-1-[(4-(phénylméthoxycarbonyl)phényl)méthyl]-1H-imidazol-5-yl] méthyl] amino]-benzoïque, décyl ester

RMN ¹H (300 MHz; CDCl₃; ppm)

0,87 (m, 6H); 1,30 (m, 20H); 1,66 (m, 2H); 2,55 (t, 2H); 4,14 (m, 4H); 5,18 (s, 2H); 5,33 (s, 2H); 6,57 (m, 2H); 6,90 (d, 2H); 7,03 (s, 1H); 7,26 - 7,45 (m, 4H); 7,7 (t, 1H); 7,85 (m, 1H); 7,94 (d, 2H).

exemple 106:

acide 2-[[[2-butyl-1-[(4-(phénylméthoxycarbonyl)phényl)méthyl)-1H-imidazol-5-yl] méthyl] amino]benzoïque, heptyl ester

RMN 1 H (300 MHz; CDCl₃; ppm) 0,86 (m, 6H); 1,30 (m, 10H); 1,66 (m, 4H); 2,55 (t, 2H); 4,14 (m, 4H); 5,18 (s, 2H); 5,35 (s, 2H); 6,57 (m, 2H); 6,90 (d, 2H); 7,03 (s, 1H); 7,28 - 7,45 (m, 6H); 7,27 (t, 1H); 7,84 (m, 1H); 7,93 (d, 2H).

exemple 107:

acide 2-[[[2-butyl-1-[(4-(phényiméthoxycarbonyl)phényl)méthyl]-1H-imidazol-5-yl] méthyl] amino]benzoïque, 3-méthylbutyl ester

RMN 1 H (300 MHz; CDCl₃; ppm) 0,85 (t, 3H); 0,93 (d, 6H); 1,30 (m, 2H); 1,55 (m, 5H); 2,55 (t, 2H); 4,18 (m, 4H); 5,18 (s, 2H); 5,35 (s, 2H); 6,57 (m, 2H); 6,91 (d, 2H); 7,04 (s, 1H); 7,27 - 7,45 (m, 6H); 7,73 (t, 1H); 7,83 (m, 1H); 7,96 (d, 2H).

20 exemple 108:

15

35

acide 2-[[[2-butyl-1-[(4-(phénylméthoxycarbonyl)phényl)méthyl]-1H-imidazol-5-yl] méthyl] amino]-benzoïque, 1-méthyléthyl ester

25 RMN ¹H (300 MHz; CDCl₃; ppm)
0,85 (t, 3H); 1,29 (d, 6H); 1,35 (m, 2H); 1,66 (m, 2H); 2,54 (t, 2H); 4,17 (d, 2H); 5,06 (m, 1H); 5,18 (s, 2H);
5,30 (s, 2H); 6,59 (m, 2H); 6,90 (d, 2H); 7,03 (s, 1H); 7,26 - 7,45 (m, 6H); 7,75 (t, 1H); 7,85 (m, 1H); 7,93 (d, 2H).

30 exemple 109:

acide 2-[[[2-butyl-1-[(4-(phénylméthoxycarbonyl)phényl)méthyl]-1H-imidazol-5-yl] méthyl] amino]-benzoïque, cyclopropylméthyl ester

RMN ¹H (300 MHz; CDCl₃; ppm) 0,29 (m, 2H); 0,55 (m, 2H); 0,87 (t, 3H); 1,1 - 1,38 (m, 3H); 1,68 (m, 2H); 2,52 (t, 2H); 3,97 (d, 2H); 4,17 (d, 2H); 5,18 (s, 2H); 5,35 (s, 2H); 6,60 (m, 2H); 6,95 (d, 2H); 7,03 (s, 1H); 7,26 - 7,45 (m, 6H); 7,69 (t, 1H); 7,90 (m, 1H); 7,93 (d, 2H).

40 exemple 110:

acide 2-[[[2-butyl-1-[(4-(phénylméthoxycarbonyl)phényl)méthyl]-1H-imidazol-5-yl] méthyl] amino]-benzoïque, 2-méthylpropyl ester

45 RMN ¹H (300 MHz; CDCl₃ ; ppm)
0,86 (t, 3H) ; 0,96 (d, 6H) ; 0,33 (m, 2H) ; 1,69 (m, 2H) ; 2,0 (m, 1H) ; 2,55 t, 2H) ; 3,93 (d, 2H) ; 4,17 (d, 2H) ;
5,19 (s, 2H) ; 5,34 (s, 2H) ; 6,60 (m, 2H) ; 6,91 (d, 2H) ; 7,04 (s, 1H) ; 7,28 - 7,45 (m, 6H) ; 7,72 (t, 1H) ; 7,87 (m, 1H) ; 7,93 (d, 2H).

50 exemple 111:

acide 2-[[[2-butyl-1-[(4-(phénylméthoxycarbonyl)phényl)méthyl]-1H-imidazol-5-yl] méthyl] amino]benzoïque, hexadécyl ester

55 RMN ¹H (300 MHz; CDCl₃; ppm) 0,87 (m, 6H) , 1,20 - 1,74 (m, 32 H) ; 2,55 (t, 2H) ; 4,16 (m, 4H) ; 5,18 (s, 2H) ; 5,35 (s, 2H) ; 6,59 (m, 2H) ; 6,95 (d, 2H) ; 7,03 (s, 1H) ; 7,26 - 7,44 (m, 6H) ; 7,72 (t, 1H) ; 7,84 (m, 1H) ; 7,93 (d, 2H).

exemple 112:

acide 2-[[[2-butyl-1-[(4-(phénylméthoxycarbonyl)phényl)méthyl]-1H-imidazol-5-yl]méthyl]amino]benzoïque, butyl ester

RMN 1 H (300 MHz; CDCl $_{3}$; ppm) 0,85 (t, 3H); 0,95 (t, 3H); 1,38 (m, 4H); 1,67 (m, 4H); 2,55 (t, 2H); 4,17 (m, 4H); 6,19 (s, 2H); 5,35 (s, 2H); 6,60 (m, 2H); 6,91 (d, 2H); 7,04 (s, 1H); 7,27 - 7,45 (m, 6H); 7,72 (t, 1H); 7,82 (m, 1H); 7,95 (d, 2H).

exemple 113:

10

15

30

35

55

acide 2-[[[2-butyl-1-[(4-(éthoxycarbonyl)phényl)méthyl]-1H-lmldazol-5-yl] méthyl] amino]-benzoïque, éthyl ester

RMN 1 H (300 MHz; CDCl₃; ppm) 0,85 (t, 3H); 1,36 (m, 8H); 1,69 (m, 2H); 2,55 (t, 2H); 4,19 (m, 4H); 4,37 (q, 2H); 5,18 (s, 2H); 6,60 (m, 2H); 6,90 (d, 2H); 7,04 (s, 1H); 7,30 (m, 1H); 7,74 (t, 1H); 7,84 - 7,92 (m, 3H).

20 exemple 114:

acide 2-[[[2-butyl-1-[(4-(méthoxycarbonyl)phényl)méthyl]-1H-imidazol-5-yl] méthyl]amino]-benzoï-que, pentyl ester

25 RMN ¹H (300 MHz; CDCl₃; ppm)
0,85 (m, 6H); 1,36 (m, 6H); 1,74 (m, 4H); 2,55 (t, 2H); 3,90 (s, 3H); 4,16 (m, 4H); 5,19 (s, 2H); 6,64 (m, 2H); 6,94 (d, 2H); 7,04 (s, 1H); 7,30 (m, 1H); 7,73 (t, 1H); 7,83 - 7,92 (m, 3H).

exemple 115:

acide 2-[[[1-[(4-(phényiméthoxycarbonyi)phényi)méthyi]-2-propyl-1H-imidazol-5-yi] méthyi] amino]-benzoïque, pentyl ester

RMN ¹H (300 MHz; CDCl₃; ppm) 0,90 (m, 6H); 1,40 (m, 4H); 1,64 (m, 4H); 2,53 (t, 2H); 4,16 (m, 4H); 5,18 (s, 2H); 5,35 (s, 2H); 6,59 (m, 2H); 6,93 (d, 2H); 7,04 (s, 1H); 7,28 - 7,45 (m, 6H); 7,72 (t, 1H); 7,85 (m, 1H); 7,96 (d, 2H).

exemple 116:

40 acide 2-[[[1-[(4-(méthoxycarbonyl)phényl)méthyl]-2-propyl-1H-imidazol-5-yl]méthyl]amino]-4-nitrobenzoïque, méthyl ester

RMN 1 H (300 MHz; CDCl₃; ppm) 0,95 (t, 3H); 1,74 (m, 2H); 2,56 (t, 2H); 3,81 (s, 3H); 4,02 (s, 3H); 4,28 (d, 2H); 5,17 (s, 2H); 6,91 (d, 2H); 7,10 (s, 1H); 7,35 (m, 1H); 7,74 (m, 1H); 7,92 (m, 4H).

exemple 117:

acide 2-[[[2-butyl-1-[(4-((1,1-diméthyléthoxy)carbonyl)phényl)méthyl]-1H-imidazol-5-yl]méthyl]ami-no]-4-nltro-benzoïque, méthyl ester

RMN ¹H (300 MHz; CDCl₃; ppm) 0,87 (t, 3H); 1,35 (m, 2H); 1,58 (s, 9H); 1,69 (m, 2H); 2,58 (t, 2H); 3,81 (s, 3H); 4,26 (d, 2H); 5,16 (s, 2H); 6,87 (d, 2H); 7,09 (s, 1H); 7,37 (m, 1H); 7,47 (m, 1H); 7,82 - 7,95 (m, 4H).

exemple 118:

acide hexanoïque, 1-[2-[[[2-butyl-1-[(4-phénylméthoxycarbonyl)phényl) méthyl]-1H-imidazol-5-yl]méthyl]amino]phénylcarbonyloxy]éthyl ester

RMN ¹H (300 MHz; CDCl₃; ppm) 0,87 (m, 6H); 1,31 (m, 6H); 1,52 (d, 3H); 1,62 (m, 4H); 2,30 (t, 2H); 2,55 (t, 2H); 4,16 (d, 2H); 5,18 (s, 2H); 5,35 (s, 2H); 6,56 (m, 2H); 6,90 (d, 2H); 7,03 (m, 2H); 7,27 - 7,45 (m, 6H); 7,66 (t, 1H); 7,82 (m, 1H); 7,93 (d, 2H).

exemple 119:

acide 2-[[[2-butyl-1-[(4-(phénylméthoxycarbonyl)phényl)méthyl]-1H-imidazol-5-yl]méthyl]amino]benzoïque, 1,1-diméthyléthyl ester

RMN ¹H (300 MHz; CDCl₃; ppm) 0,85 (t, 3H); 1,25 (m, 2H); 1,44 (s, 9H); 1,66 (m, 2H); 2,55 (t, 2H); 4,18 (d, 2H); 5,19 (s, 2H); 5,35 (s, 2H); 6,55 (m, 2H); 6,90 (d, 2H); 7,04 (s, 1H); 7,2 - 7,45 (m, 6H); 7,76 (m, 2H); 7,96 (d, 2H).

exemple 120:

20

25

35

40

acide 2-[[[2-butyl-1-[(4-(phénylméthoxycarbonyl)phényl)méthyl]-1H-lmidazol-5-yl]méthyl]amino]-benzoïque, éthyl ester

RMN 1 H (300 MHz; CDCl $_{3}$; ppm) 0,85 (t, 3H); 1,32 (m, 5H); 1,71 (m, 2H); 2,57 (t, 2H); 4,15 (m, 4H); 5,18 (s, 2H); 5,35 (s, 2H); 6,59 (m, 2H); 6,90 (d, 2H); 7,04 (s, 1H); 7,25 - 7,45 (m, 6H); 7,71 (t, 1H); 7,81 (m, 1H); 7,92 (d, 2H).

30 exemple 121:

acide 2-[[[2-butyl-1-[(4-(méthoxycarbonyl)phényl)méthyl]-1H-imidazol-5-yl]méthyl]amino]-benzoï-que, 1-((pentylcarbonyl)oxy)éthyl ester

RMN 1 H (300 MHz; CDCl $_{3}$; ppm) 0,85 (t, 6H); 1,32 (m, 6H); 1,54 (d, 3H); 1,67 (m, 4H); 2,31 (t, 2H); 2,56 (t, 2H); 3,90 (s, 3H); 4,18 (d, 2H); 5,18(s, 2H); 6,58 (m, 2H); 6,94 (d, 2H); 7,03 (m, 2H); 7,35 (m, 1H); 7,66 (t, 1H); 7,82 (m, 1H); 7,92 (d, 2H).

exemple 122:

acide 2-[[[2-butyl-1-[(4-(phénylméthoxycarbonyl)phényl)méthyl]-1H-imidazol-5-yl]méthyl]amino]-benzoïque, pentyl ester

RMN ¹H (300 MHz; CDCl₃; ppm)

5 0,87 (m, 6H); 1,33 (m, 6H); 1,68 (m, 4H); 2,55 (t, 2H); 4,14 (m, 4H); 5,18 (s, 2H); 5,35 (s, 2H); 6,59 (m, 2H); 6,93 (d, 2H); 7,04 (s, 1H); 7,26 - 7,45 (m, 6H); 7,72 (t, 1H); 7,82 (m, 1H); 7,93 (d, 2H).

exemple 123:

acide cyclohexylacétique,1-[2-[[[2-butyl-1-[(4-(phénylméthoxycarbonyl) phényl)méthyl]-1H-imidazol-5-yl]méthyl]amino]phénylcarbonyloxy]éthyl ester

RMN ¹H (300 MHz; CDCl₃; ppm)
0,85 (t, 3H); 0,95 (m, 2H); 1,10 - 1,39 (m, 4H); 1,52 (d, 3H); 1,57 (m, 9H); 2,17 (m, 2H); 2,55 (t, 2H); 4,17
(d, 2H); 5,17 (s, 2H); 5,35 (s, 2H); 6,56 (m, 2H); 6,90 (d, 2H); 7,02 (m, 2H); 7,15 - 7,45 (m, 6H) 7,68 (t, 1H); 7,82 (m, 1H); 7,96 (d, 2H).

exemple 124:

acide 2-[[[2-butyl-1-[(4-(pentoxycarbonyl)phényl)méthyl]-1H-imidazol-5-yl]méthyl]amino]-benzoïque, phénylméthyl ester

RMN ¹H (300 MHz; CDCl₃; ppm) 0,88 (m, 6H); 1,37 (m, 6H); 1,65 - 1,75 (m, 4H); 2,56 (t, 2H); 4,20 (d, 2H); 4,27 (t, 2H); 5,17 (s, 2H); 5,22 (s, 2H); 6,60 (t, 1H); 6,64 (d, 1H); 7,0 (s, 1H); 7,26 - 7,39 (m, 6H); 7,69 (t, 1H); 7,88 - 7,93 (m, 3H).

exemple 125:

10

15

25

30

35

40

50

acide 2-[[[2-butyl-1-[(4-(méthoxycarbonyl)phényl)méthyl]-1H-imidazol-5-yl]méthyl]amino]-benzoï-que, phénylméthyl ester

RMN 1 H (300 MHz; CDCl₃; ppm) 0,86 (t, 3H); 1,33 (m, 2H); 1,69 (m, 2H); 2,55 (t, 2H); 3,87 (s, 3H); 4,16 (d, 2H); 5,17 (s, 2H); 5,21 (s, 2H); 6,58 (t, 1H); 6,64 (d, 1H); 6,90 (d, 2H); 7,04 (s, 1H); 7,26 - 7,41 (m, 6H); 7,66 (t, 1H); 7,88 - 7,92 (m, 3H).

20 exemple 126:

acide 2-[[[2-butyl-1-[(4(éthoxycarbonyl)phényl)méthyl]-1H-imidazol-5-yl] méthyl]amino]-benzoïque, phénylméthyl ester

RMN ¹H (300 MHz; CDCl₃; ppm) 0,86 (t, 3H); 1,33 (m, 5H); 1,69 (m, 2H); 2,56 (t, 2H); 4,18 (d, 2H); 4,33 (q, 2H); 5,17 (s, 2H); 5,22 (s, 2H); 6,60 (t, 1H); 6,64 (d, 1H); 6,91 (d, 2H); 7,05 (s, 1H); 7,26 - 7,41 (m, 6H); 7,70 (t, 1H); 7,88 - 7,97 (m, 3H).

exemple 127:

acide 2-[[[2-butyl-1-[(4-(butoxycarbonyl)phényl)méthyl]-1H-imidazol-5-yl] méthyl]amino]-benzoïque, phénylméthyl ester

RMN 1 H (300 MHz; CDCl₃; ppm) 0,83 - 0,98 (m, 6H); 1,28 - 1,48 (m, 4H); 1,65 - 1,73 (m, 4H); 2,56 (t, 2H); 4,16 (d, 2H); 4,26 (t, 2H); 5,17 (s, 2H); 5,21 (s, 2H); 6,57 (t, 1H); 6,62 (d, 1H); 6,90 (d, 2H); 7,04 (s, 1H); 7,26 - 7,39 (m, 6H); 7,70 (t, 1H); 7,91 (m, 3H).

exemple 128:

acide 2-[[[2-butyl-1-[(4-(hexadécyloxycarbonyl)phényl)méthyl]-1H-Imidazol-5-yl]méthyl]amino]-benzoïque, phénylméthyl ester

RMN ¹1H (300 MHz; CDCl₃; ppm)

45 0,88 (m, 6H); 1,25 - 1,41 (m, 28H); 1,64 - 1,76 (m, 4H); 2,56 (t, 2H); 4,18 (d, 2H); 4,26 (t, 2H); 5,17 (s, 2H); 5,22 (s, 2H); 6,58 (t, 1H); 6,64 (d, 1H); 6,90 (d, 2H); 7,04 (s, 1H); 7,26 - 7,39 (m, 6H); 7,70 (t, 1H); 7,88 - 7,93 (m, 3H).

exemple 129 :

acide 2-[[[2-butyl-1-[(4-((2-méthyl-propyl)oxycarbonyl)phényl)méthyl]-1H-imidazol-5-yl]méthyl]amino]-benzoïque, phénylméthyl ester

RMN ¹H (300 MHz; CDCl₃; ppm)

55 0,85 (t, 3H); 0,96 (d, 6H); 1,29 - 1,41 (m, 2H); 1,65 -1,75 (m, 2H); 2,04 (m, 1H); 2,56 (t, 2H); 4,05 (d, 2H); 4,18 (d, 2H); 5,18 (s, 2H); 5,22 (s, 2H); 6,60 (t, 1H); 6,65 (d, 1H); 6,91 (d, 2H); 7,04 (s, 1H); 7,26 - 7,39 (m, 6H); 7,70 (t, 1H); 7,89 - 7,94 (m, 3H).

exemple 130:

acide 2-[[[2-butyl-1-[(4-(cyclopropyl-méthyloxycarbonyl)phényl)méthyl]-1H-imidazol-5-yl]méthyl]ami-no]-benzoïque, phénylméthyl ester

RMN ¹H (300 MHz; CDCl₃; ppm) 0,36 (q, 2H); 0,58 (q, 2H); 0,86 (t, 3H); 1,19 - 1,39 (m, 3H); 1,68 - 1,75 (m, 2H); 2,56 (t, 2H); 4,10 (d, 2H); 4,18 (d, 2H); 5,18 (s, 2H); 5,22 (s, 2H); 6,60 (t, 1H); 6,64 (d, 1H); 6,91 (d, 2H); 7,04 (s, 1H); 7,26 - 7,41 (m, 6H); 7,68 (t, 1H); 7,89 - 7,96 (m, 3H).

exemple 131:

15

35

40

45

50

55

acide 2-[[[2-butyl-1-[(4-((3-méthyl-butyl)oxycarbonyl)phényl)méthyl]-1H-imidazol-5-yl]méthyl]amino]benzoïque, phénylméthyl ester

RMN ¹H (300 MHz; CDCl₃; ppm) 0,86 (t, 3H); 0,94 (d, 6H); 1,25 - 1,41 (m, 2H); 1,59 - 1,80 (m, 5H); 2,56 (t, 2H); 4,18 (d, 2H); 4,30 (t, 2H); 5,17 (s, 2H); 5,22 (s, 2H); 6,60 (t, 1H); 6,64 (d, 1H); 6,90 (d, 2H); 7,04 (s, 1H); 7,26 - 7,39 (m, 6H); 7,70 (t, 1H); 7,88 - 7,93 (m, 3H).

exemple 132:

acide 2-[[[2-butyl-1-[(4-cyanophényl)méthyl]-1H-imidazol-5-yl]méthyl] amino]-benzoïque, pentyl ester

RMN 1 H (300 MHz; CDCl₃; ppm) 0,84 - 0,95 (m, 6H); 1,31 - 1,42 (m, 6H); 1,64 - 1,75 (m, 4H); 2,52 (t, 2H); 4,15 (t, 2H); 4,20 (d, 2H); 5,19 (s, 2H); 6,62 (t, 1H); 6,66 (d, 1H); 6,90 (d, 2H); 7,07 (s, 1H); 7,31 (t, 1H); 7,47 (d, 2H); 7,68 (t, 1H); 7,83 (d, 1H).

exemple 133:

acide 2-[[[2-butyl-1-[(4-((1,1-diméthyléthoxy)carbonyl)phényl)méthyl]-1H-imidazol-5-yl]méthyl]amino]-4-nitro-benzoïque, pentyl ester

RMN ¹H (300 MHz; CDCl₃; ppm) 0,84 - 0,95 (m, 6H); 1,25 - 1,42 (m, 6H); 1,58 (s, 9H); 1,62 - 1,76(m, 4H); 2,57 (t, 2H); 4,21 (t, 2H); 4,23 (d, 2H); 5,13 (s, 2H); 6,88 (d, 2H); 7,08 (s, 1H); 7,38 (d, 1H); 7,45 (s, 1H); 7,85 (d, 2H); 7,95 (d, 2H).

exemple 221:

acide 3-méthyl-2-[[[2-[[[2-butyl-1-[(4-(phénylméthoxycarbonyl)phényl)méthyl]-1H-imidazol-5-yl]méthyl]amino]phényl]carbonyl]amino]-butanoïque, éthyl ester

RMN ¹H (300 MHz; CDCl₃; ppm)
0,86 (t, 3H); 0,97 (m, 6H); 1,32 (m, 5H); 1,70 (m, 2H); 2,20 (m, 1H); 2,53 (t, 2H); 4,11 (d, 2H); 4,23 (m, 2H); 4,60 (m, 1H); 5,19 (s, 2H); 5,35 (s, 2H); 6,51 (d, 1H); 6,63 (t, 2H); 6,96 (d, 2H); 7,0 (s, 1H); 7,26 (t, 1H); 7,40 (m, 6H); 7,52 (t, 1H); 7,95 (d, 2H).

exemple 9:

acide 2-[[[2-butyl-4-chloro-1-[(4-(méthoxycarbonyl)phényl)méthyl]-1H-imidazol-5-yl]méthyl]amino]-3,4,5-triméthoxy-benzoïque, méthyl ester

A une solution de 3,55 g (9,06.10⁻³ mole) de chlor hydrate de l'acide 4-[(2-butyl-4-chloro-5-chlorométhyl-1H-imidazol-1-yl)méthyl]-benzoïque, méthyl ester dans 30 ml de N-méthylpyrrolidone on additionne 4,82 g (20.10⁻³ mole) de 2-amino-3,4,5-triméthoxy-benzoate de méthyle. Le mélange réactionnel est chauffé à 80°C pendant 5 heures. Après addition de 100 ml d'eau la phase aqueuse est extraite par 2 fois 60 ml d'acétate

d'éthyle. Les phases organiques sont lavées à l'eau jusqu'à pH neutre, séchées sur sulfate de magnésium, filtrées et évaporées sous pression réduite. Le résidu huileux obtenu est purifié par chromatographie en éluant avec un mélange toluène/acétate d'éthyle (85/15; v/v). On obtient ainsi 2,43 g (rendement : 48 %) d'huile jaune.

RMN ¹H (300 MHz; CDCl₃; ppm)

exemple 10:

5

10

15

25

35

40

50

55

acide 2-[[[2-butyl-4-chloro-1-[(4-(méthoxycarbonyl)phényl)méthyl]-1H-imidazol-5-yl]méthyl]amino]-benzoïque, méthyl ester

Une suspension de 0,9 g (2,3.10⁻³mole) de chlor hydrate de l'acide 4-[(2-butyl-4-chloro-5-chlorométhyl-1H-imidazol-1-yl)méthyl]-benzoïque, méthyl ester dans 4,5 ml d'anthranilate de méthyle est chauffée à 120°C pendant 20 minutes. Après addition de 15 ml d'eau et de 15 ml d'une solution saturée de bicarbonate de sodium, le mélange réactionnel est extrait par 30 ml d'acétate d'éthyle. La phase organique est lavée à l'eau jusqu'à neutralité, séchée sur sulfate de magnésium et évaporée sous pression réduite. L'huile jaune obtenue est purifiée par chromatographie sur silice en éluant avec un mélange toluène/acétate d'éthyle (90/10; v/v). On obtient ainsi 1,07 g (rendement : 90 %) d'une huile incolore.

RMN ¹H (300 MHz; CDCl₃; ppm)

En opérant de façon analogue à la préparation de l'exemple 10, on a obtenu le produit de l'exemple 56 et le produit suivant:

exemple 57:

acide 4-[[2-butyl-4-chloro-5-[((4-cyanophényl)amino)méthyl]-1H-imidazol-1-yl]méthyl]-benzoïque, méthyl ester

```
RMN ^{1}H (300 MHz; CDCl_{3}; ppm) 0,87(t,3H) ; 1,35(m,2H) ; 1,67(m,2H) ; 2,55(t,2H) ; 3,91(s,3H) ; 4,18(d,2H) ; 4,45(t,1H) ; 5,21(s,2H) ; 6,68-6,76(m,2H) ; 6,95(d,2H) ; 7,33-7,40(m,2H) ; 7,94(d,2H).
```

exemple 11:

acide N-[[2-butyl-4-chloro-1-[(4-(méthoxycarbonyl)phényl)méthyl]-1H-imidazol-5-yl]méthyl]-indole-2-carboxylique, éthyl ester

A une solution de 4,26 g (22,5.10⁻³ mole) d'indole-2-carboxylate d'éthyle dans 50 ml de diméthylformamide anhydre, on ajoute par fractions 0,68 g (22,6.10⁻³ mole) d'hydrure de sodium à 80 % dans l'huile. Après agitation à température ambiante pendant 20 minutes on ajoute 4 g (11,26.10⁻³ mole) de chlorhydrate de l'acide 4-[(2-butyl-4-chloro-5-chlorométhyl-1H-imidazol-1-yl)méthyl]-benzoïque, méthyl ester. L'agitation est maintenue pendant 4,5 heures. Le mélange réactionnel est additionné de 400 ml d'eau et extrait plusieurs fois à l'acétate d'éthyle. Les phases organiques sont lavées à l'eau jusqu'à neutralité, séchées sur sulfate de magnésium et évaporées sous pression réduite. L'huile brune obtenue est purifée par chromatographie sur silice en éluant avec un mélange toluène/acétate d'éthyle (95/5; v/v). On obtient 2,06 g (rendement : 36 %) du produit attendu.

F = 136°C

En opérant de façon analogue, on a préparé le produit de l'exemple 12.

exemple 13:

acide 2-[[[4-chloro-2-propyl-1-[(4-(méthoxycarbonyl)phényl)méthyl]-1H-lmidazol-5-yl]méthyl]amino]-benzoïque, méthyl ester

2,93g (7,7.10⁻³ mole) de chlorhydrate de l'acide 4-[(4-chloro-5-chlorométhyl-2-propyl-1H-imidazol-1-yl)méthyl]-benzoïque, méthyl ester sont mis en suspension dans 30 ml de toluène anhydre. On ajoute 2,6 g (17.10⁻³ mole) d'anthranilate de méthyle puis on chauffe à reflux pendant 3 heures tout en agitant. Le mélange

réactionnel est alors versé dans une solution satureé de bicarbonate de sodium. On extrait à l'acétate d'éthyle. Les phases organiques sont lavées à l'eau jusqu'à neutralité, séchées sur sulfate de magnésium et concentrées. Le résidu huileux obtenu est purifié par chromatographie sur silice en éluant par le mélange toluène/acétate d'éthyle (95/5; v/v). On obtient ainsi 2,1 g (rendement : 59 %) de solide beige.

F = 108°C

En opérant de façon analogue, on a préparé les produits des exemples 14, 15, 17, 18, 21 et 22 et les produits suivants :

10 exemple 16 :

acide 3-[[[2-butyl-4-chloro-1-[(4-(méthoxycarbonyl)phényl)méthyl]-1H-imidazol-5-yl]méthyl]amino]-naphtalène-2-carboxyllque, méthyl ester

20 exemple 19:

acide 2-[[[2-butyl-4-lodo-1-[(4-(méthoxycarbonyl)phényl)méthyl]-1H-imidazol-5-yl]méthyl]amino]-benzoïque, méthyl ester

30 exemple 20:

acide 2-[[[2-butyl-4-trifluorométhyl-1-[(4-(méthoxycarbonyl)phényl) méthyl]-1H-imidazol-5-yl]méthyl]amino]-benzoïque, méthyl ester

```
huile incolore

RMN ¹H (300 MHz; CDCl<sub>3</sub>; ppm)

0,87(t,3H) ; 1,34(m,2H) ; 1,71(m,2H) ; 2,59(t,2H) ; 3,78(s,3H) ; 3,91(s,3H) ; 4,32(d,2H) ; 5,22(s,2H) ; 6,64(m,2H) ; 6,92(d,2H) ; 7,31(m,1H) ; 7,64(t,1H) ; 7,83(d,1H) ; 7,92(d,2H),
```

40 exemple 215:

acide 4-[[2-butyl-5-[((2-(((3-(diméthylamino)propyl)amino)carbonyl)phényl) amino)méthyl]-1H-imidazol-1-yl]méthyl]-benzoïque, méthyl ester

```
85 RMN ¹H (300 MHz; CDCl₃; ppm)
0,86 (t,3H); 1,32 (m, 2H); 1,70 (m, 4H); 2,27 (s, 6H); 2,48 (m, 4H); 3,44 (m, 2H); 3,88 (s, 3H); 4,12 (d, 2H);
5,21 (s, 2H); 6,59 (t, 1H); 6,64 (d, 1H); 6,94 (d, 2H); 7,0 (s, 1H); 7,23 (t, 2H); 7,91 (d, 2H); 7,99 (t, 1H);
8,27 (t, 1H).
```

50 exemple 23:

acide 2-[[[2-butyl-4-chloro-1-[(4-carboxyphényl)méthyl]-1H-imidazol-5-yl] méthyl]amino]-benzoïque, méthyl ester

A une solution de 9 g (19,1.10⁻³ mole) d'acide 2-[[[2-butyl-4-chloro-1-[(4-(méthoxycarbonyl)phényl)méthyl]-1H-imidazol-5-yl]méthyl]amino]-benzoïque, méthyl ester dans 80 ml de méthanol on additionne 0,8 g (20.10⁻³ mole) d'hydroxyde de sodium et 10 ml d'eau. Le mélange réactionnel est chauffé à 50°C pendant 3,5 heures. Le méthanol est évaporé sous pression réduite et le résidu est étendu de 150 ml d'eau. La phase aqueuse est lavée par 3 fois 50 ml d'acétate d'éthyle puis acidifiée par de l'acide chlorhydrique 1N jusqu'à pH

= 5 et extraite par 2 fois 50 ml d'acétate d'éthyle. Les phases organiques sont lavées à l'eau jusqu'à neutralité, séchées sur sulfate de magnésium, filtrées et évaporées sous pression réduite. Le résidu solide est purifié par chromatographie sur silice en éluant à l'aide d'un mélange dichlorométhane/méthanol (95/5; v/v). On obtient 5,1 g (rendement : 58 %) de solide blanc.

F = 181°C

En opérant de façon analogue, on a obtenu les produits des exemples 24 ,223, et 224.

exemple 25:

10

15

20

35

acide 2-[[[2-butyl-1-[(4-carboxyphényl)méthyl)-1H-imidazol-5-yl]méthyl] amino]-benzoïque, phényl-méthyl ester

Une solution de 2,6 g (4,7.10⁻³ mole) de l'acide 2-[[[2-butyl-1-[(4-(1,1-diméthyléthoxycarbonyl)phényl)méthyl]-1H-imidazol-5-yl]méthyl]amino]-benzoïque, phénylméthyl ester dans 10 ml d'acide trifluoroacétique est agitée à 0°C pendant 3 heures. L'acide trifluoroacétique est évaporé sous pression réduite. Après addition de 60 ml d'eau au résidu et de soude jusqu'à pH = 6, on extrait par 2 fois 30 ml d'acétate d'éthyle. La phase organique est lavée par 2 fois 10 ml d'eau, séchée sur sulfate de magnésium, filtrée et évaporée sous pression réduite. On obtient 2,4 g (rendement : 100 %) d'une mousse jaune.

$F = 90^{\circ}C$

En opérant de façon analogue, on a préparé les produits des exemples 195 à 197.

exemple 26:

acide 2-[[[2-butyl-1-[(4-carboxyphényl)méthyl]-1H-imidazol-5-yl]méthyl] amino]-benzoïque, 2,2-diméthyl-1,3-dioxolane-4-yl-méthyl ester

A une solution de 3,9 g (6,38.10⁻³ mole) d'acide 2-[[[2-butyl-1-[((4-phénylméthoxycarbonyl)phényl)méthyl]-1H-imidazol-5-yl]méthyl]amino]-benzoïque, 2,2-diméthyl-1,3-dioxolane-4-yl-méthyl ester dans 150 ml de méthanol on additionne sous atmosphère d'azote, 0,39 g de charbon palladié à 10 %. Le milieu réactionnel est placé ensuite sous atmosphère d'hydrogène et agité pendant 2,5 heures. Après filtration, le méthanol est évaporé sous pression réduite. Le résidu obtenu est purifié par chromatographie sur silice en éluant à l'aide d'un mélange dichlorométhane/méthanol (90/10; v/v). On obtient 2,3 g (rendement : 69 %) d'une mousse blanche.

F = 92°C

En opérant de façon analogue, on a préparé les produits des exemples 27, 134 à 179.

exemple 28:

40 acide 2-[[[2-butyl-1-[(4-carboxyphényl)méthyl]-1H-imidazol-5-yl]méthyl] amino]-benzoïque, 2,3-dihy-droxy-propyl ester

Une suspension de 2 g (3,83.10⁻³ mole) d'acide 2-[[[2-butyl-1-[(4-carboxyphényl)méthyl]-1H-imidazol-5-yl]méthyl]amino]-benzoïque, 2,2-diméthyl-1,3-dioxolane-4-yl-méthyl ester dans 100 ml d'acide chlorhydrique 1N est agitée à température ambiante pendant 2 heures. Le mélange réactionnel est amené à pH = 7 à l'aide d'une solution d'hydroxyde de sodium 5N puis extrait par 2 fois 50 ml de butanol. La phase organique est lavée à l'eau et évaporée sous pression réduite. La mousse blanche obtenue est purifiée par chromatographie sur silice en éluant à l'aide d'un mélange chlorure de méthylène/méthanol (90/10 ; v/v). On obtient 7,3 g (rendement : 71 %) de poudre blanche.

F = 123°C

En opérant de manière analogue, on a préparé les produits des exemples 29, 30, 31,71 et 218.

exemple 32:

55 acide 2-[[[2-butyl-1-[(4-carboxyphényl)méthyl]-1H-imidazol-5-yl]méthyl] amino]-benzoïque

5,1 g (11,7.10⁻³ mole) de l'ester méthylique de l'acide 2-[[[2-butyl-1-[((4-méthoxycarbonyl)phényl)méthyl]-1H-imidazol-5-yl]méthyl]amino]-benzoïque sont dissous dans 50 ml de méthanol. On ajoute 17,6 ml (35,2.10⁻³ mole) de soude 2N et porte à reflux pendant 4 heures puis le méthanol est évaporé et le résidu est solubilisé

dans l'eau glacée. Le diacide est précipité par addition d'acide chlorhydrique 1N jusqu'à obtention d'un pH égal à 4. Le solide obtenu est filtré, lavé à l'eau jusqu'à neutralité et séché sur anhydride phosphorique pour donner 3,75 g d'un solide jaune pâle. Ce produit brut est lavé par du méthanol chaud ce qui conduit à 3,5 g (rendement : 73,5 %) de solide blanc.

F = 234°C

En opérant de façon analogue, on a préparé les produits des exemples 33 à 52, 55, 66, 67, 198 à 212, 226 et 228.

10 exemple 53:

15

25

35

acide 2-[[[2-butyl-1-[(4-carboxyphényl)méthyl]-1H-imidazol-5-yl]méthyl] amino]-benzoïque, di-sel de potassium

On mélange 203 mg (0,5.10⁻³ mole) de l'acide 2-[[[2-butyl-1-[(4-carboxyphényl)méthyl]-1H-imidazol-5-yl]méthyl]amino]-benzoïque à 10 ml de potasse 0,1 N (10⁻³ mole) et 20 ml d'eau. On agite jusqu'à obtention d'une solution limpide et on lyophilise. On obtient 240 mg (rendement : 100 %) d'un solide blanc.

F = 206°C

20 exemple 54:

acide N-[[2-butyl-4-chloro-1-[(4-(méthoxycarbonyl)phényl)méthyl]-1H-imidazol-5-yl]méthyl]-N-(méthylcarbonyl)-2-amino-benzoïque, méthyl ester

A une solution de 2,5 g (5,31.10⁻³ mole) d'acide 2-[[[2-butyl-4-chloro-1-[(4-(méthoxycarbonyl)phényl)méthyl]-1H-imidazol-5-yl]méthyl]amino]-benzoïque, méthyl ester dans 25 ml de pyridine on ajoute 12,5 ml d'anhydride acétique et on chauffe à 60°C pendant 1,5 heure. La solution est versée dans une solution froide d'acide chlorhydrique 1N. On extrait à l'acétate d'éthyle, lave les phases organiques par une solution d'acide chlorhydrique 1N puis par la saumure jusqu'à obtention d'un pH = 4. Après séchage sur sulfate de magnésium et concentration, on obtient 3,3 g d'huile jaune pâle qui est cristallisée dans 100 ml d'éther éthylique pour donner 1,85 g (rendement : 73 %) de cristaux blancs.

F = 142°C

exemple 58 :

acide 2-[[[2-butyl-4-chloro-1-[(4-((triphénylméthyl)-1H-tétrazol-5-yl) phényl)méthyl]-1H-imidazol-5-yl]méthyl]amino]-benzoïque, méthyl ester

4,3 g (9,84.10⁻³ mole) d'acide 2-[[[2-butyl-4-chloro-1-[(4-cyanophényl)méthyl]-1H-imidazol-5-yl]méthyl]amino]-benzoīque, méthyl ester sont mis en suspension dans 80 ml de toluène anhydre. On ajoute 830 mg (12,7.10⁻³ mole) d'azoture de sodium et 2,94 g (14,7.10⁻³ mole) de chlorure de triméthylétain puis on porte à reflux pendant 48 heures. Après avoir refroidi à température ambiante on ajoute 1,19 g (11,8.10⁻³ mole) de triéthylammine et 4,11 g (14,7.10⁻³ mole) de chlorure de triphénylméthyle. On agite à la même température pendant 4 heures puis on ajoute de l'eau et extrait à l'acétate d'éthyle. Le résidu obtenu après lavage, séchage et évaporation est purifié par chromatographie en éluant par un mélange toluène/acétate d'éthyle (9/1; v/v). On obtient 5,6 g (rendement : 79 %) d'huile incolore.

RMN ¹H (300 MHz; CDCl₃; ppm)

0.87(t,3H); 1.37(m,2H); 1.68(m,2H); 2.55(t,2H); 3.66(s,3H); 4.20(d,2H); 5.18(s,2H); 6.53(t,1H); 6.68(d,1H); 6.91(d,2H); 7.14-7.40(m,15H); 7.69-7.72(m,2H); 7.95(d,2H).

En opérant de façon analogue, on a préparé le produit de l'exemple 59 et le produit suivant :

exemple 217 :

acide 2-[[[2-butyl-1-[(4-((triphénylméthyl)-1H-tétrazol-5-yl)phényl)méthyl]-1H-imidazol-5-yl]méthyl]amino]-benzoïque, pentyl ester

```
RMN <sup>1</sup>H (300 MHz; CDCl<sub>3</sub>; ppm)
0,88 (m, 6H); 1,23 - 1,39 (m, 8H); 1,65 - 1,71 (m, 2H); 2,58 (t, 2H); 4,10 (d, 2H); 4,16 (t, 2H); 5,18 (s, 2H);
6,58 (t, 1H); 6,63 (d, 1H); 6,94 (d, 2H); 7,02 (s, 1H); 7,13 - 7,38 (m, 16H); 7,75 (t, 1H); 7,82 (d, 1H); 8,01
```

(d, 2H).

5

25

30

35

45

exemple 60:

acide 2-[[[2-butyl-1-[(4-((((2-méthylphényl)sulfonyl)amino)carbonyl) phényl)méthyl]-1H-imidazol-5-yl]méthyl]amino]-benzoïque, méthyl ester

A une suspension de 1,47 g (3,49.10⁻³ mole) d'acide 2-[[[2-butyl-1-[(4-carboxyphényl)méthyl]-1H-imidazol-5-yl]méthyl]amino]-benzoïque, méthyl ester dans 50 ml de dichlorométhane on additionne 0,6 g (3,49.10⁻³ mole) d'ortho-toluènesulfonamide, 0,67 g (3,49.10⁻³ mole) de chlorhydrate de 1-(3-diméthylamino-propyl)-3-éthylcarbodiimide et 0,43 g (3,49.10⁻³ mole) de diméthylaminopyridine. Après 20 heures sous agitation à température ambiante le solvant est évaporé sous pression réduite. Le résidu obtenu est purifié par chromatographie sur silice en éluant à l'aide d'un mélange toluène/isopropanol (80/20; v/v). On obtient ainsi 1.6 g (rendement : 80 %) de solide blanc.

F = 135°C

En opérant de façon analogue, on a préparé les produits des exemples 61, 64, 187 à 194, 227 et les produits suivants :

20 exemple 62:

acide 2-[[[2-butyl-1-[(4-((2,2-diméthyl-1,3-dioxolane-4-yl-méthoxy)carbonyl) phényl)méthyl]-1H-imidazol-5-yl]méthyl]amino]-benzoïque, phénylméthyl ester

huile jaunâtre

RMN 1 H (300 MHz; CDCl $_{3}$; ppm) 0,88(t,3H) ; 1,34(m,2H) ; 1,37(s,3H) ; 1,44(s,3H) ; 1,70(m,2H) ; 2,56(t,2H) ; 3,83(m,1H) ; 4,10(m,1H) ; 4,19(d,2H) ; 4,32(m,2H) ; 4,41(m,1H) ; 5,18(s,2H) ; 5,22(s,2H) ; 6,64(m,2H) ; 6,91(d,2H) ; 7,05(s,1H) ; 7,28-7,41(m,6H) ; 7,7(t,1H) ; 7,92(m,3H).

exemple 63:

acide 2-[[[2-butyl-1-[(4-((2-(morpholin-1-yl)éthoxy)carbonyl)phényl), méthyl]-1H-imidazol-5-yl]méthyl]amino]-benzoïque, 2-(morpholin-1-yl)éthyl ester

huile incolore

RMN 1 H (300 MHz; CDCl $_{3}$; ppm) 0,87(t,3H); 1,34(m,2H); 1,69(m,2H); 2,56(m,10H); 2,73(m,4H); 3,71(m,8H); 4,19(d,2H); 4,32(t,2H); 4,44(t,2H); 5,19(s,2H); 6,64(q,2H); 6,95(d,2H); 7,04(s,1H); 7,31 (m,1H); 7,70(t,1H); 7,82(d,1H); 7,92(d,2H).

exemple 65:

acide 2-[[[2-butyl-1-[(4-(2,2-diméthyl-1,3-dioxolane-4-yl-méthoxycarbonyl) phényl)méthyl]-1H-imidazol-5-yl]méthyl]amino]-benzoïque, 2,2-diméthyl-1,3-dioxolane-4-yl-méthyl ester

```
RMN \ ^1H \ (300 \ MHz; CDCl_3 \ ; ppm) \\ 0.88(t,3H) \ ; \ 1.29(m,2H) \ ; \ 1.38(s,6H) \ ; \ 1.41(s,6H) \ ; \ 1.69(m,2H) \ ; \ 2.56(t,2H) \ ; \ 3.85(m,2H) \ ; \ 4.10-4.25(m,6H); \\ 4.35-4.47(m,4H) \ ; \ 5.19(s,2H) \ ; \ 8.61(m,2H) \ ; \ 6.95(d,2H); \ 7.04(s,\ 1H) \ ; \ 7.34(m,1H) \ ; \ 7.65(t,1H) \ ; \ 7.86(d,1H)); \\ 7.95(d,2H).
```

exemple 68:

acide 2-[[[2-butyl-1-[(4-((((diéthylamino)carbonyl)méthoxy)carbonyl) phényl)méthyl]-1H-imidazol-5-yl]méthyl]amino]-benzoïque, ((diéthylamino)carbonyl)méthyl ester

A une suspension de 2 g (4,9.10⁻³ mole) d'acide 2-[[[2-butyl-1-[(4-carboxyphényl)méthyl]-1H-imidazol-5-yl]méthyl]amino]-benzoïque dans 5 ml de diméthylformamide on ajoute 1,09 g (10,8.10⁻³ mole) de triéthylamine, 147 mg (10⁻³ mole) d'iodure de sodium et 1,46 g (9,8.10⁻³ mole) de N,N-diéthyl chloroacétamide. Le mé-

lange est chauffé à 90°C pendant 2 heures. Après refroidissement on ajoute de l'eau et on extrait à l'acétate d'éthyle. Les phases organiques lavées à l'eau sont séchées sur sulfate de magnésium et concentrées. On purifie le produit brut obtenu par chromatographie sur silice en éluant par le mélange toluène/alcool isopropylique (9/1; v/v). Après évaporation, on obtient 1,1 g (rendement : 35 %) du produit attendu.

F = 55°C

En opérant de façon analogue, on a préparé les produits des exemples 180 à 183 et les produits suivants :

exemple 69:

10

15

20

30

35

50

55

acide 2-[[[2-butyl-1-[(4-(((((1,1-diméthyléthyl)carbonyl)oxy)méthoxy) carbonyl)phényl)méthyl]-1H-imidazol-5-yl]méthyl]amino]-benzoïque, (((1,1-diméthyléthyl)carbonyl)oxy)méthyl ester

huile iaune

RMN ¹H (300 MHz; CDCl₃; ppm)

exemple 70:

acide 2-[[[2-butyl-1-](4-((((4-méthylpipérazin-1-yl)carbonyl)methoxy) carbonyl)phényl)méthyl]-1H-imidazol-5-yl]méthyl]amino]-benzoïque, ((4-méthylpipérazin-1-yl)carbonyl)méthyl ester

RMN ¹H (300 MHz; CDCl₃; ppm)

25 0,87(t,3H); 1,26(m,2H); 1,70(m,2H); 2,33(s,6H); 2,43(m,8H); 2,54(t,2H); 3,46(m,4H); 3,63(m,4H); 4,29(d,2H); 4,86(s,2H); 4,95(s,2H); 5,18(s,2H); 6,89(d,2H); 7,11(s,1H); 7,39(d,1H); 7,51(s,1H); 7,82(t,1H); 7,96(d,2H); 8,06(d,1H).

exemple 184 :

acide butanoïque,[2-[[[2-butyl-1-[(4-(phénylméthoxycarbonyl)phényl) méthyl]-1H-imidazol-5-yl]méthyl]amino]phénylcarbonyloxy]méthyl ester

RMN ¹H (300 MHz; CDCl₃; ppm)

0,87 (m, 6H); 1,31 (m, 2H); 1,67 (m, 4H); 2,33 (t, 2H); 2,59 (t, 2H); 4,19 (d, 2H); 5,18 (s, 2H); 5,35 (s, 2H); 5,88 (s, 2H); 6,59 (m, 2H); 6,90 (d, 2H); 7,04 (s, 1H); 7,30 - 7,50 (m, 6H); 7,59 (t, 1H); 7,82 - 7,96 (m, 3H).

exemple 185:

acide 2-[[[2-butyl-1-[(4-((((propylcarbonyl)oxy)méthoxy)carbonyl)phényl) méthyl]-1H-imidazol-5-yl]méthyl]amino]-benzoïque, ((propylcarbonyl) oxy)méthyl ester

RMN ¹H (300 MHz; CDCl₃; ppm)

0,93 (m, 9H); 1,34 (m, 2H); 1,63 (m, 6H); 2,36 (m, 4H); 2,56 (t, 2H); 4,19 (d, 2H) 5,18 (s, 2H); 5,96 (s, 2H) 6, 61 (m, 2H); 6,92 (d, 2H); 7,04 (s, 1H); 7,35 (m, 1H); 7,58 (t, 1H); 7,86 (m, 1H); 7,95 (d, 2H).

exemple 186:

acide 2-[[[2-[[[2-butyl-1-[(4-(méthoxycarbonyl)phényl)méthyl]]-1H-imidazol-5-yl]méthyl]amino]phényl]carbonyloxy]-acétique, éthyl ester

```
RMN <sup>1</sup>H (300 MHz; CDCl<sub>3</sub>; ppm)
```

0,85 (t, 3H); 1,29 (t, 3H); 1,36 (m, 2H); 1,69 (m, 2H); 2,56 (t, 2H); 3,91 (s, 3H); 4,17 (d, 2H); 4,26 (m, 2H); 4,71 (s, 2H); 5,17 (s, 2H); 6,65 (m, 2H); 6,94 (d, 2H); 7,04 (s, 1H); 7,33 (m, 1H); 7,53 (t, 1H), 7,95 (m, 3H).

exemple 72:

tri-chlor hydrate de l'acide 2-[[[2-butyl-1-[(4-((((4-méthylpipérazin-1-yl)carbonyl)méthoxy)carbonyl)phényl)méthyl]-1H-imidazol-5-yl]méthyl] amino]-4-nitro-benzoïque, ((4-méthylpipérazin-1-yl)carbonyl)méthyl ester

1,4 g (1,9.10⁻³ mole) d'acide 2-[[[2-butyl-1-[(4-(((4-méthylpipérazin-1-yl)carbonyl)méthoxy)carbonyl)phényl)méthyl]-1H-imidazol-5-yl]méthyl]amino]-4-nitro-benzoïque, ((4-méthylpipérazin-1-yl)carbonyl)méthyl ester sont dissous dans un mélange de 25 ml d'acétate d'éthyle et de 10 ml de chlorure de méthylène. On ajoute un excès d'éther éthylique saturé par du chlorure d'hydrogène gazeux. Une gomme jaune précipite. Après décantation, on lave par l'éther éthylique et on sèche. On obtient 1,4 g (rendement : 87 %) d'une poudre jaune.

F = 194°C

En opérant de façon analogue, on a préparé le produit de l'exemple 213.

exemple 73:

15

35

50

tri-oxalate de l'acide 2-[[[2-butyl-1-[(4-((2-(morpholin-1-yl)éthoxy) carbonyl)phényl)méthyl]-1H-imidazol-5-yl]méthyl]amino]-benzoïque, 2-(morpholin-1-yl)éthyl ester

A une solution de 0,71 g (1,12.10⁻³ mole) de l'acide 2-[[[2-butyl-1-[(4-((2-(morpholin-1-yl)éthoxy)carbo-nyl)phényl)méthyl]-1H-imidazol-5-yl]méthyl]amino]-benzoīque,2-(morpholin-1-yl)éthyl ester dans 15 ml d'acétate d'éthyle, on additionne à température ambiante, 0,302 g (3,36.10⁻³ mole) d'acide oxalique dissous dans un mélange de 1 ml de méthanol et 5 ml d'acétate d'éthyle. Le mélange réactionnel est agité pendant 1 heure et le précipité formé est filtré et séché sous vide. Le solide obtenu est dissous dans 20 ml d'eau et lyophilisé. On obtient 0,7 g (rendement : 69 %) de mousse jaunâtre.

F = 102°C

30 exemple 214:

acide 2-[[[2-butyl-1-[(4-(pentoxycarbonyl)phényl)méthyl]-1H-imidazol-5-yl]méthyl]amino]-benzoïque, pentyl ester

A une suspension de 1,07 g (0,0026 mole) de l'acide 2-[[[2-butyl-1-[(4-carboxyphényl)méthyl]-1H-imidazol-5-yl]méthyl]amino]-benzoïque dans 25 ml de dichlorométhane on additionne 6.50 mg (0,052 mole) de 4-diméthylaminopyridine, 1 g (0,0.52 mole) de chlorhydrate de 1-(3-diméthylaminopropyl)-3-éthylcarbodiimide et 458 mg (0,052 mole) de n-pentanol. Le mélange réactionnel est agité à température ambiante pendant 24 h puis concentré sous pression réduite. Le résidu est purifié par flash chromatographie sur silice en éluant par un mélange méthylcyclohexane / acétone (85/15; v/v). On obtient 1,2 g d'huile jaunâtre (rendement : 83 %) RMN ¹H (300 MHz; CDCl₃; ppm)

0,92 (m, 9H); 1,37 (m, 10H); 1,67 (m, 6H); 2,55 (t, 2H); 4,18 (m, 4H); 4,29 (t, 2H); 5,19 (s, 2H); 6,61 (q, 2H); 6,93 (d, 2H); 7,04 (s, 1H); 7,30 (m, 1H); 7,83(t, 1H); 7,73 - 7,93(m, 3H).

45 exemple 216 :

Fumarate de l'acide 4-[[2-butyl-5-[((2-(((3-(diméthylamino)propyl)amino) carbonyl)phényl)amino)méthyl]-1H-imidazol-1-yl]méthyl]-benzoïque méthyl ester

On dissout 0,96 g (1,9 10⁻³ mole) de l'acide 4-[[2-butyl-5-[((2-(((3-(diméthylamino)propyl)amino)carbonyl)phényl)amino)méthyl]-1H-imidazol-1-yl]méthyl]-benzoïque, méthyl ester dans 30 ml d'acétate d'éthyle. On chauffe à 50°C et ajoute une solution de 0,214 g (1,85 10-3 mole) d'acide fumarique dans 4 ml de méthanol. Après avoir refroidi à 15°C pendant 1 heure on filtre le précipité obtenu. Après séchage, on obtient 1 g (rendement : 87 %) du produit attendu.

F = 164°C

On a regroupé dans les tableaux I à VII suivants un certain nombre de composés selon l'invention. Dans ces tableaux les symboles utilisés ont les significations suivantes : Et = $-C_2H_5$

 $n-Pr = -CH_2-CH_2-CH_3$

 $i-Pr = -CH(CH_3)_2$ c-Pr = cyclopropyl $n-Bu = -CH_2-CH_2-CH_2-CH_3$ $s-Bu = -CH(CH_3)-CH_2-CH_3$ $i-Bu = -CH_2-CH(CH_3)_2$ $t-Bu = -C(CH_3)_3$ $n-Pent = -(CH_2)_4-CH_3$ $i-Pent = -CH_2-CH_2-CH(CH_3)_2$ c-Pent = cyclopentyl $n-Hex = -(CH_2)_5-CH_3$ c-Hex = cyclohexyl $n-Hep = -(CH_2)_6-CH_3$ $n-Dec = -(CH_2)_9-CH_3$ $n\text{-Cet} = -(CH_2)_{15}\text{-}CH_3$ $Mcs = -CH_2-CH_2-O-CH_3$ Deae = $-CH_2-CH_2-N(C_2H_5)_2$ $GI = -CH_2-CH(OH)-CH_2OH$ 20

 $Ig = CH_2 CH_3$

Ph = phényl Bn = benzyl

25

30

35

55

 $Eph = --CH_2 - CH_2$

 $TT = \frac{N}{N} H$

 $TTT = \frac{N}{N} \frac{N}{N}$

MOE =
$$-CH_2-CH_2-N$$

NAE = $-CH_2-CH_2-NH-CO$

NAE = $-CH_2-CH_2-NH-CO$

NOE = $-CH_2-CH_2-NH-$

PASA =
$$-CO-NH-SO_2$$
 OCH₃

OASA = $-CO-NH-SO_2$

N₃

MESA = -CO-NH-SO₂-CH₃

AAE = -CH₂-CO-N(CH₂-CH₃)₂

20 AAP = -CH₂-CO-N(CH₂-CH₂-CH₃)₂

AAHE = -CH₂-CO-N(CH₂-CH₂-CH₂)₂

AAMHE = -CH₂-CO-N(CH₃)(CH₂-CH₂OH)

APE = -CH(CH₃)-CO-N(CH₂-CH₃)₂

W = -CH₂-CO₂
25 X = -CH(CH₃)-CO₂
Y = -CH₂-O-CO
Z = -CH(CH₃)-O-CO
Gly = -NH-CH₂-CO
L-Val = -NH-CH[CH(CH₃)₂]-CO- (L)

TABLEAU A

R'1 N H O

I-Pr CI I-Pr H -Bu CF -Bu H -Bu CI -Bu CI -Bu I -Bu I -Bu H -Bu H -Bu H -Bu CI	H H H H CI H H H H	Bn t-Bu CH ₃ CH ₃ t-Bu Et	89 72 59 148 - 54 112 82 - 60
I-Pr	H H H H CI H H H	CH ₃ CH ₃ H Bn t-Bu CH ₃ CH ₃ t-Bu Et	72 59 148 - 54 112 82
-Bu CF -Bu H -Bu CI -Bu CI -Bu I -Bu H -Bu H -Bu H	H H H CI H H H	Bn t-Bu CH ₃ CH ₃ t-Bu Et	59 148 - 54 112 82
-Bu H -Bu CI -Bu CI -Bu I -Bu H -Bu CI -Bu H -Bu CI -Bu H	H H H CI H H H	Bn t-Bu CH ₃ CH ₃ t-Bu Et	148 - 54 112 82
-Bu H -Bu Cl -Bu I -Bu H -Bu Cl -Bu H -Bu Cl	H H Cl H H H	Bn t-Bu CH ₃ CH ₃ t-Bu Et	54 112 82
-Bu Cl -Bu I -Bu H -Bu Cl -Bu H	H Cl H H H	CH ₃ CH ₃ t-Bu Et	112 82
-Bu C1 -Bu I -Bu H -Bu C1 -Bu H	CI H H H H	CH ₃ CH ₃ t-Bu Et	82
-Bu I -Bu H -Bu Cl -Bu H	H H H H	CH ₃ t-Bu Et	-
-Bu H -Bu Cl -Bu H	H H H	t-Bu Et	60
-Bu Cl -Bu H	H	Et Et	60
-Bu H	H	Et	
n 01			
-Bu Cl	H		126
-Bu H	H	n-Cet	56
-Bu H	H		-
-Bu H	H	n-Bu	-
-Bu H	Н	i-Bu	-
-Bu H	H		· i -
-Bu H	l H		-
-Bu Cl	H		_
-Bu S-Cł	H_3	CH3	72-74
	Bu H -Bu H -Bu Cl -Bu S-Cl	-Bu H H -Bu H H -Bu H H -Bu Cl H	-Bu H H i-Bu -Bu H H CH ₂ -c-Pr -Bu H H i-Pent -Bu Cl H Bn -Bu S-CH ₃ H CH3

TABLEAU B

R'₁ OH

Prép	R' ₁	R' ₂	R' ₅	R	F(°C)
7	n-Bu	H	H	CH ₃	144
13	n-Bu	CF ₃	H	CH ₃	113
14	n-Bu	Cl	CI	CH,	108
14 15	n-Pr	H CF ₃ Cl Cl	H	CH,	120
16	n-Bu	H	H	CH ₃ CH ₃ CH ₃ CH ₃ t-Bu	163
17	n-Bu	H	H H CI H H	Bn	111
18	n-Bu	I	H	CH ₃	150
19	n-Bu	CI	H	t-Bu	174
20	n-Bu	Ci H S-CH ₃ H	H H H	CH ₃ CH ₃ CH ₃ n-Pent	94
21	n-Pr	H	H	CH.	135
41	n-Bu	S-CH.	H H H	CH.	154
42	n-Bu	н,	Ħ	n-Pent	137
43	n-Bu	H	l H	Et	140
44	n-Bu	й	H	n-Bu	140
45	n-Bu	й	H H	n-Cet	75
46	n-Bu	H	н	i-Bu	144
47		H	H	CH ₂ -c-Pr	100
	n-Bu		n u	i Pont	170
48	n-Bu	H	H H	i-Pent	
49	n-Bu	CI	H	Bn	127

TABLEAU C

5

10

15

Ċı

R'5

Н

H

H H Cl

H

H

H

H

H

H

H

H

H

H H

H

H

R

CH₃ CH₃ Bn t-Bu CH₃ CH₃ t-Bu

CH₃

CH₃

CH₃

CH₃ n-Pent

Et

n-Bu

n-Cet i-Bu CH₂-c-Pr i-Pent

Bn

F(°C)

158 128

160 150-191

70

140

133

120

172

115

130

130

130

135

148 150

135

R'2

Н

CI H H

Cl

Ĭ Cl

CI H

CF₃ S-CH₃ H

H

H

H

H

H

CI

20

25

Prép

8*

30

51

53*

54°

55*

56*

57*

58*

59*

61

30

35

40

45

Note: * chlorhydrates

 R'_1

n-Bu

n-Pr

n-Bu

n-Bu

n-Bu

n-Bu

n-Bu

n-Bu

n-Pr

n-Bu

50

TABLEAU D

Ra Rb

Prép	R _a	X _i	R _b	F(°C)
64	Н	0	AAP	64
65	H	Ŏ	CH(CH ₃)(CO)Et	
66	H	Ŏ	W-Et	_
67	H	0	W-n-Pent	_
68	H	Ö	CH ₃ -c-Pr	-
69	H	l o	CH ₂ -c-Pr CH ₂ -CO-Et	53
70	H	000000000000000000000000000000000000000	CH(CH ₃)-n-Bu	_
71	H	l o	Deae	-
72	H	O	APE	134
73	H	0	AAHE	107
74	H	О	AAMHE	103
75	H	О	Z-t-Bu	80
76	Н	0	Z-CH(Et) ₂	-
77	H	О	Z-c-Pent	-
78	H	0	Z-c-Hex	-
79	H	0	Y-n-Pent	-
80	H	0	Z-n-Pent	-
81	H	О	Z-CH ₂ -c-Hex	•
82	H	0	Z-CH ₂ -c-Pent	-
83	H	0	Y-t-Bu	-
84	H	NH	(CH2)3-N(CH3)2	76
85	H	NH	AAE	62
86	H	NH	CH(iPr)-CO ₂ Et	-
87	6-CH ₃	0	n-Pent	-
88	6-Cl	0	n-Pent	-

TABLEAU I

R_1	$\begin{array}{c c} R_3 \\ \hline \\ N \\ \hline \\ O \\ \hline \end{array}$
H ₃ C O R ₅	CH ³

Ex R,		R,	R ₃	R ₄	R _s	F(°C)
1	n-Bu	Н	н	H 4-NO, H	н	_
2	n-Bu	H	H	4-NO	H	144
3	n-Pr	H	H	H ,	H	
1 2 3 6 7	n-Bu		H	3,5-diCl	Ĥ	_
7	n-Bu	CI CI CI CI CI CI CI CI	H	3-CH.	H	_
8 9	n-Bu	Cl	CH,	3-СН, Н	H	_
9	n-Bu	CI	H H	3,4,5-tri OCH,	H	
10	n-Bu	Cl	Н	H	H	i -
13	n-Pr	Cl	H	Н	H	108
14	n-Bu	Cl	H	5-Cl	H	90
15	n-Bu	Cl	H	4-Cl	H	116
17	n-Bu	Cl	H	4-NO, 5-CH,	H	136
18	n-Bu	Cl	H	5-CH,	H	*
19	n-Bu	I	H	\mathbf{H}	H	_
20	n-Bu	CF,	H	H	H	- 1
21	n-Bu	CF, Cl	H	H	Cl	140
54	n-Bu	Cl	COCH,	H	H	142
75	n-Bu	SCH ₃	H 1	H	Н	-
116	n-Pr	H	H	4-NO,	H	-
225	n-Bu	Н	Н	4-NO ₂ 4-N ₃	H	132
	1 1				1	

Note: * double point de fusion: 87°C puis 97°C

TABLEAU II

 R_1 R_2 R_3 R_4 R_5 R_4

Ex	R,	R,	R,	R ₄	R _s	F(°C)
32	n-Bu	H	H	H	H	234
35	n-Bu	H	H	4-NO,	H	250
36	n-Pr	H	H	н	H	249
37	n-Bu	CI CI	H	3-CH,	H	115
38	n-Bu	CI	CH,	H	H	147
39	n-Bu	CI	H	3,5-diCl	H	220
40	n-Bu	Cl	H	3,4,5-tri OCH,	H	212
41	n-Bu	Cl	H	H	CI	244
42	n-Pr	Cl	H	H	H	246
43	n-Bu	CI CI CF,	H	Н	H	262
44	n-Bu	I T	H	H	H	225
45	n-Bu	Cl	н	5-CH,	H	232
46	n-Bu	CI	н	4-NO,	H	260
48	n-Bu	Cl	H	4-C1	H	247
49	n-Bu	Cl	н	5-C1	H	248
50	n-Bu	Ci	H	H	H	235
55	n-Bu	Ci	COCH,	H	H	230
198	n-Bu	SCH ₃	H,	H	H	207
199	n-Bu	Н 3	H	6-CH ₃	H	225
200	n-Bu	H	H	6-Cl	H	259
212	n-Pr	H	Н	4-NO.	H	281
226	n-Bu	н	H	4-NO ₂ 4-N ₃	H	215(dec)
				- · · · 3		210(000)
L	<u></u>		L		<u> </u>	

TABLEAU III

R'

F(°C)

5

10

15

		R ₂	
	R ₁	NH	3 4
	N	0,	5
BO (OF	6
RO .			

20

Ex

R,

R,

25 30

35

40

45

50

55

	4	n-Bu	Н	Bn	Ig	-
	5 22	n-Bu	H	t- <u>B</u> u	Bn	-
	22	n-Bu	Cl	t-Bu	CH,	102
	23	n-Bu	Cl	H	CH,	181
i	24	n-Bu	H	H	CH,	85
	25	n-Bu	Н	H	Bn	90
	26 27	n-Bu	H	H	Ig H Gl	92
	27	n-Bu	Н	Ig H	Ħ	202
	28	n-Bu	Н	Ħ	Gl	123
1	29	n-Bu	Н	Gl	H	134
	53	n-Bu	H	K	K	206
	62	n-Bu	Н	Ig	Bn	•
	63	n-Bu	Н	MÕE	MOE	•
-	64	n-Bu	H	NAE	NAE	84
	65	n-Bu	H	Ig	Ig	_
J	68	n-Bu	H	AAE	AAE	55
ı	69	n-Bu	н	Y-t-Bu	Y-t-Bu	-
-	70	n-Bu	н	Pz	Pz	-
- 1	71	n-Bu	н	GI	Gl	60
	73**	n-Bu	H	MOE	MOE	102
ı			1			
L			l			

R

TABLEAU III (suite 1)

5

15	
20	
25	
30	
35	
40	
45	
5 0	

Ex	R _i	R,	R	R'	F(°C)
74	n-Bu	Cl	Bn	n-Pent	_
76	n-Bu	H H	CH,	AAE	81
77	n-Bu	H	CH ₃	AAP	0.
78	n-Bu	Ĥ	Bn	AAP	_ `
7 9	n-Bu	Ĥ	Bn	AAE	_
80	n-Bu	Ĥ	Bn	APE	_
81	n-Bu	Ĥ	Bn	AAHE	_
82	n-Bu	Ĥ	Bn	AAMHE	_
84	n-Bu	Ĥ	Bn	W-Et	_
85	n-Bu	H	Bn	Z-CH-Et,	_
86	n-Bu	H	Bn	Z-c-Pent	-
90	n-Bu	H	Bn	Z-CH ₂ -c-Pent	_
91	n-Bu	H	Bn	Z-c-Hex	_
92	n-Bu	H	Bn	Z-t-Bu	_
93	n-Bu	H	Bn	Y-t-Bu	_
94	n-Bu	H	Bn	Y-n-Pent	-
95	n-Bu	H	Bn	Deae	-
96	n-Bu	H	Bn	CH(CH ₃)-n-Bu	-
97	n-Bu	H	Bn	CH(CH ₃)-CO-Et	-
98	n-Bu	H	CH,	CH ₂ -CO-Et	100
99	n-Bu	H	Bn	CH ₂ -CO-Et	-
100	n-Bu	H	Bn	X-Et	-
101	n-Bu	Н	Bn	W-n-Pent	-
102	n-Bu	Н	Bn	EPh	-
103	n-Bu	H	Bn	Ph	-
104	n-Bu	H	Bn	Mes	_
105	n-Bu	H	Bn	n-Dec	_
106	n-Bu	Н	Bn	n-Hep	-
107	n-Bu	H	Bn	i-Pent	-
108	n-Bu	H	Bn	i-Pr	-
109	n-Bu	H	Bn	CH ₂ -c-Pr	-
110	n-Bu	H	Bn	i-Bu	-
111	n-Bu	H	Bn	n-Cet	•
112	n-Bu	H	Bn	n-Bu	-
113	n-Bu	н	Et	Et	-
114	n-Bu	н	CH,	n-Pent	_
115	n-Pr	H	Bn	n-Pent	-
118	n-Bu	H	Bn	Z-n-Pent	-
119	n-Bu	H	Bn	t-Bu	

TABLEAU III (suite 2)

	Ex	R ₁	R ₂	R	R'	F(°C)
	120	n-Bu	Н	Bn	Et	-
20	121	n-Bu	H	CH,	Z-n-Pent	-
	122	n-Bu	H	Bn	n-Pent	-
	123	n-Bu	H	Bn	Z-CH ₂ -c-Hex	-
	124	n-Bu	H	n-Pent	В́п	-
	125	n-Bu	H	CH,	Bn	-
	126	n-Bu	H	Et	Bn	_
25	127	n-Bu	H	n-Bu	Bn	-
	128	n-Bu	H	n-Cet	Bn	-
	129	n-Bu	H	i-Bu	Bn	
	130	n-Bu	H	-CH ₂ -c-Pr	Bn	l <u>-</u>
	131	n-Bu	H	i-Pent	Bn	_
30	134	n-Bu	i H	H	AAP	140
	135	n-Bu	H	H	AAE	168
	136	n-Bu	H	Н	APE	135
	137	n-Bu	H	H	AAHE	108
	138	n-Bu	H	H	AAMHE	110
35	139	n-Bu	H	Н	Z-CH-Et,	170
	140	n-Bu	Н	Н	Z-c-Pent	170
	141	n-Bu	H	Н	W-Et	155
	144	n-Bu.	H	н	Z-CH ₂ -c-Pent	154
	145	n-Bu	Н	Н	Z-c-Hex	60
40	146	n-Bu	H	H	Z-t-Bu	90
	147	n-Bu	Н	Н	Y-t-Bu	160
	148	n-Bu	H	Н	Y-n-Pent	140
	149	n-Bu	H	Н	Y-n-Pr	162
	150	n-Bu	Н	H	Deae	68
45	151	n-Bu	H	H	CH(CH ₃)-n-Bu	74
	152	n-Bu	H	H	CH(CH ₃)-CO-Et	80
	153	n-Bu	H	Н	X-Et	164
	154	n-Bu	H	H	W-n-Pent	157
	155	n-Bu	Н	H	CH,-CO-Et	144
50	156	n-Bu	H	Н	EPh	128
50	157	n-Bu	H	н	Ph	231
	158	n-Bu	н	H	Mcs	78
	159	n-Bu	H	н	n-Dec	50
				and the second s		

TABLEAU III (Fin)

•

	Ex	R ₁	R ₂	R	R'	F(°C)
10	160	n-Bu	Н	Н	n-Hep	96
	161	n-Bu	H	H	i-Pent	164
	162	n-Bu	H	H	i-Pr	172
	163	n-Bu	H	H H	CH ₂ -c-Pr	171
	164	n-Bu	H	H	i-Bu	163
15	165	n-Bu	H	H	n-Cet	82
	166	n-Bu	H	H	n-Bu	151
	167	n-Pr	H	н	n-Pent	177
	168	n-Bu	H	H	Z-n-Pent	143
	169	n-Bu	H	H	Et	173
20	170	n-Bu	H	H	n-Pent	161
	171	n-Bu	H	H	Z-CH ₂ -c-Hex	114
	172	n-Bu	H	n-Pent	Ħ	202
	173	n-Bu	H	CH ₃	H	188
	174	n-Bu	H	Et	H	201
25	175	n-Bu	l H	n-Bu	H	194
	176	n-Bu	H	n-Cet	H	152
	177	n-Bu	H	i-Bu	H	190
	178	n-Bu	H	CH,-c-Pr	H	198
	179	n-Bu	H	i-Pent	H	197
30	181	n-Bu	H	AAP	AAP	97
30	182°	n-Bu	H	Pz	Pz	250-260
	184	n-Bu	H	Bn	Y-n-Pr	-
	185	n-Bu	H	Y-n-Pr	Y-n-Pr	-
	186	n-Bu	H	CH ₃	W-Et	-
35	196	n-Bu	H	Bn	H	175
33	213***	n-Bu	H	H	Deae	206
	214	n-Bu	H	n-Pent	n-Pent	-
	224	n-Bu	Cl	H	n-Pent	145

Notes: *: 3 HCl **: 3 HO,C-CO,H ***: 2HCl

TABLEAU IV

20

5

10

15

R"' Ex R" R_1 R, F(°C) 30 CO₂CH₃ n-Bu CI TT 185 CI CI 25 31 n-Bu CO₂CH₃ 182 51 CO₂H TT n-Bu 158 52 n-Bu CI CI CI CI CO₂H 200 56 57 58 CO,CH, CN CO,CH, TTT n-Bu CÑ 126 CO₂CH₃ n-Bu n-Bu 30 CO₂CH₃ TSA 59 n-Bu Cl 130 CO₂CH₃ CO₂CH₃ CO₂H CO₂H CONH-AAE 135 244 60 Η n-Bu 61 CI n-Bu **TSA** 66 Cl n-Bu **TSA** 234 67 n-Bu Н **TSA** 190 CO₂CH₃ CO₂CH₃ 4-CN 88 35 n-Bu Н 42 n-Bu 89 CONHOCH₃ H 146 CONHOCH₃ CO₂-n-Pent CO-L-Val-OEt CO-Gly-OEt CO₂-Y-n-Pr CO₂CH₃ CO₂CH₃ CO₂CH₃ CO₂CH₃ 132 n-Bu H 142 CO₂H CO₂H TSA H n-Bu 110 143 n-Bu H 140 187 n-Bu H 228 40 188 n-Bu H **OCSA** 125 MCSA PCSA 145 189 n-Bu H 190 n-Bu H 220 191 120 228 n-Bu Н PhSA 192 n-Bu H

PASA

MESA

OCSA

50

45

193

194

n-Bu

n-Bu

H

H

55

CO₂CH₃

CO₂-n-Pent

120

TABLEAU IV (Fin)

	Ex	R ₁	R ₂	R''	R'''	F(°C)
20	201	n-Bu	Н	MCSA	CO₂H	235
	202	n-Bu	H	PCSA	CO'H	215
	203	n-Bu	Н	PhSA	CO ₂ H	203
	204	n-Bu	H	PASA	CO ₂ H	193
	205	n-Bu	H	MESA	COTH	238
25	206	n-Bu	H	CO ₂ H	$CONH(CH_2)_3N(CH_3)_2$	111
	207	n-Bu	Н	COH	CONH-AAE	92
	208	n-Bu	H	CO ₂ H	CONH-O-CH ₃	211
	209*	n-Bu	H	CO ₂ H	CONH,	196
	210	n-Bu	H	CO ₂ H	CONH(n-Bu)	183
30	211	n-Bu	Н	OCŠA	CO,H	198
	215	n-Bu	H	CO,CH ₃	$CONH(CH_2)_3N(CH_3)_2$	-
	216**	n-Bu	H	CO ₂ CH ₃	$CONH(CH_2)_3N(CH_3)_2$	164
	217	n-Bu	H	TŤT	CO ₂ -n-Pent	-
	218*	n-Bu	H	TT	CO ₂ -n-Pent	204
	219	n-Bu	Н	CO,CH,	CONH,	186
35	220	n-Bu	Н	CO ₂ CH ₂	CONH(n-Bu)	125
	221	n-Bu	H	CO ₂ -Bn	CO-L-Val-OEt	-
	222	n-Bu	Н	CO,-Bn	CO-Gly-OEt	107
	227	n-Bu	Н	OÁSA	CO ₂ ČH ₃	150(dec)
	228	n-Bu	н	OASA	CÓ₂H °	150(dec)
40					•	· · ·

Note :* HCI** fumarate

TABLEAU V

N	R ₂
R,	N
	O CR'
OR	

Prép	R,	R,	R	R'	F(°C)
11	n-Bu	Cl	CH,	СН,СН,	136
12	n-Bu	н	СН,	сн,сн,	86
33	n-Bu	н	Н	Н	280
34	n-Bu	CI	н	н	268
1	-				

TABLEAU VI

Prép	R,	R ₂	R	R'	F(°C)
16	n-Bu	Cl	CH,	СН,	-
47	n-Bu	Cl	н	н	221

TABLEAU VII

5

10

15

20

25

30

35

Ex	R	R'	R ₄	F(°C)
72° 83 87 117 133 180 183 195 197 223	Pz CH ₃ CH ₃ t-Bu t-Bu AAE Y-t-Bu H H	Pz n-Pent n-Pent CH ₃ n-Pent AAE Y-t-Bu CH ₃ n-Pent n-Pent	4-NO ₂ 6-Cl 6-CH ₃ 4-NO ₂ 6-CH ₃	194 - - - 158 83 234 161 153

Note: * 3 HCl

40

45

55

Les produits selon l'invention sont des inhibiteurs des effets de l'angiotensine II.

L'activité des composés selon l'invention comme antagonistes du récepteur vasculaire de l'angiotensine II a été évaluée par leur efficacité à antagoniser la réponse contractile induite par l'angiotensine II dans des anneaux isolés d'aorte de lapin. Les anneaux sont suspendus dans un bain de Krebs-Henseleit maintenu à 37°C et aéré par un mélange O₂/CO₂ (95/5 , v/v) puis étirés à une tension de repos de 2 g. Après une heure de repos, on provoque une contraction par l'angiotensine II (3.10-9 M) en présence du produit à tester préincubé pendant 15 minutes. La concentration (exprimée en nanomole) de produit à tester produisant une inhibition de 50 % de la réponse contractile (IC₅₀) est calculée à partir de la courbe concentration-réponse . Les résultats obtenus avec un certain nombre de composés selon l'invention sont regroupés dans le tableau VIII.

Les produits selon l'invention sont utiles en thérapeutique dans le traitement ou la prévention de l'hypertension artérielle, du glaucome, des désordres circulatoires, des resténoses consécutives aux angioplasties, des développements de lésions athéromateuses ou fibrinoprolifératives, des néphropathies et rétinopathies d'origine diabétique, de l'infarctus, de l'angor et pour l'amélioration de la fonction cognitive.

Selon l'invention on préconise une composition thérapeutique caractérisée en ce qu'elle renferme au moins un composé de formule I ou l'un de ses sels d'addition en quantité thérapeutiquement efficace en association avec un excipient physiologiquement acceptable.

On préconise également l'utilisation des composés de formule I ou l'un de leurs sels d'addition, en tant qu'agents antagonistes de l'angiotensine II, pour l'obtention d'un médicament préventif ou curatif de l'hypertension artérielle, des désordres circulatoires et du glaucome.

TABLEAU VIII

	Ex	IC ₅₀ (x10-9 M)	Ex	IC ₅₀ (x10-9 M)	
	26	100	156	82	
	28	80	157	54	
15	32	3,6	158	75	
	33	7,1	161	64	
	34	8,4	163	50	
	35	1,2	164	40	
	36	7	166	15	
20	39	106,2	168	67	
	40	57,6	170	j 80	
	41	5,1	174	80	
	42	5.1	178	67	
	43	6,3	180	30	
25	44	5,3	181	80	
	45	6,7	183	60	
	46	10,5	187	7	
	47	71,3	195	82	
	48	5,3	197	55	
30	49	13,2	198	4,6	
	50	5,7	201	10	
	51	10,8	202	14,7	
	52	40,2	203	4,4	
	55	69,1	204	9,5	
35	66	8,8	205	9,5 5,5 70	
	67	1,5	209	70	
	68	30	210	84	
	76	90	211	0,8	
	134	35	212	46	
40	141	10	226	6 2	
	145	40	228	2	
	148	12			
	149	5_	· ·		
	155	8,7			
45			1 1]	
			<u>L.</u> I	Í	

5

50 Revendications

1. Composé phényl-amino-méthyl-imidazol caractérisé en ce qu'il est choisi parmi l'ensemble constitué par : (i) les phényl-amino-méthyl-imidazoles de formule :

dans laquelle:

15

20

25

30

35

40

45

50

- R₁ représente un groupe alkyle en C₁-C₄,
- R₂ représente l'atome d'hydrogène, un halogène, un groupe alkylthio en C₁-C₄ ou un groupe perfluoroalkyle en C₁-C₃,
- R₃ représente l'atome d'hydrogène, un groupe alkyle en C₁-C₄ ou un groupe COR₈ où R₈ représente un groupe alkyle en C₁-C₄,
- R₄ est en position 3, 4, 5 ou 6 et représente l'atome d'hydrogène, un ou plusieurs groupes alkyles en C₁-C₄, alkoxy en C₁-C₄, azido, nitro ou un ou plusieurs halogènes, ou forme un groupe amino-2-naphtyle avec le groupe amino-phényle auquel il est lié,
- R5 représente un atome d'hydrogène ou un halogène,
- R₈ et R₇, identiques ou différents, représentent chacun un groupe tétrazol-5-yle ou un groupe COR₉ où R₉ représente :
 - un groupe hydroxy,
 - un groupe alkoxy en C₁-C₁₆,
 - un groupe cyclopropylméthoxy,
 - un groupe phénoxy,
 - un groupe benzyloxy,
 - un groupe 2-phényléthoxy,
 - un groupe glycéryle,
 - un groupe isopropylidène glycéryle,
 - un groupe 2-méthoxyéthoxy,
 - un groupe 2-oxo-butyl oxy,
 - un groupe 1-méthyl-2-oxo-butyl oxy,
 - un groupe 2-(N,N-diéthylamino)-éthoxy,
 - un groupe morpholino-éthoxy,
 - un groupe N-(éthyloxy)nicotinamide,
 - un groupe -O-CHR₁₅-O(CO)-R₁₂ dans lequel R₁₅ représente l'atome d'hydrogène ou un groupe alkyle en C₁-C₃ et R₁₂ représente un groupe alkyle en C₁-C₇, un groupe cyclopentyle, un groupe pe cyclohexyle, un groupe cyclopentylméthyle ou un groupe cyclohexylméthyle,
 - un groupe oxyacétate de formule -O-CHR₁₇-CO₂-R₁₆, dans lequel R₁₆ et R₁₇ représentent chacun indépendamment l'atome d'hydrogène ou un groupe alkyle en C₁-C₅,
 - un groupe oxyacétamide de formule -O-CH₂-CO-NR₁₀R₁₁, dans lequel R₁₀ et R₁₁, identiques ou différents représentent chacun un groupe alkyle en C₁-C₄, un groupe hydroxyéthyle ou forment avec l'atome d'azote auquel ils sont liés un groupe 4-méthylpipérazine-1-yle,
 - un groupe amino de formule -NR₁₈R₁₉ dans lequel R₁₈ et R₁₉ représentent chacun, indépendamment, l'atome d'hydrogène, un groupe alkyle en C₁-C₄, un groupe méthoxy, un groupe 2-(N,N-diméthylamino) propyle ou,NR₁₈R₁₉ représente un reste acide aminé de structure glycine ou valine, dont la fonction acide est éventuellement protégée sous forme d'ester ou d'amide,
- R₈ pouvant également représenter :
 - un groupe COR₁₃ où R₁₃ représente un groupe méthylsulfonylamino de formule -NH-SO₂-CH₃ ou un groupe arylsulfonylamino de formule :

dans laquelle R_{14} représente l'atome d'hydrogène, un halogène, un groupe azido, un groupe alkyle en C_1 - C_4 ou un groupe méthoxy et peut se trouver en position ortho, méta ou para.

- R₃ et R₇, considérés ensemble, pouvant former, avec l'atome d'azote et le groupe phényle auxquels ils sont respectivement liés, un hétérocycle azoté ortho-condensé carboxy-2-indol-1-yle ou éthoxycarbonyl -2-indol-1-yle; et,
- (ii) les sels d'addition avec les acides minéraux et organiques ou avec les bases minérales et organiques des composés de formule I.
- Composé selon la revendication 1 caractérisé en ce que, dans la formule I, R₆ ou R₇ représente un groupe COOH.
- Composé selon la revendication 2 caractérisé en ce que les groupes carboxyliques R₆ et R₇ sont salifiés par une base organique ou minérale.
- Composé de formule I selon la revendication 1 caractérisé en ce qu'il est salifié par un acide organique ou minéral.
- Composé selon la revendication 1 caractérisé en ce que, dans la formule I, R₆ ou R₇ représente un groupe méthylsulfonylaminocarbonyl ou un groupe arylsulfonylaminocarbonyl.
 - 6. Composition thérapeutique caractérisée en ce qu'elle renferme au moins un composé de formule I ou l'un de ses sels d'addition en quantité thérapeutiquement efficace, en association avec un excipient physiologiquement acceptable.
 - 7. Utilisation d'un composé selon la revendication 1, en tant qu'agent antagoniste de l'angiotensine II, pour l'obtention d'un médicament préventif ou curatif de l'hypertension artérielle, des désordres circulatoires ou du glaucome.
- 8. Composé intermédiaire, utile dans la synthèse de composés de formule I selon la revendication 1, caractérisé en ce qu'il s'agit d'un produit 1-phénylmét hyl-imidazol-5-carboxaldéhyde de formule :

dans laquelle :

10

15

20

30

40

45

50

- (i) R'_1 représente un groupe n-propyle, R'_2 représente un atome d'hydrogène ou un halogène, R'_6 représente l'atome d'hydrogène et R'_6 représente un groupe cyano ou un groupe COR' $_9$ où R'_9 représente un groupe alkoxy en C_1 - C_{16} ou un groupe benzyloxy, ou
- (ii) R'₁ représente un groupe n-butyle, R'₂ et R'₅ représentent l'atome d'hydrogène et R'₅ représente un groupe COR'₈ dans lequel R'₉ représente un groupe t-butoxy ou benzyloxy.
- 9. Composé intermédiaire, utile dans la synthèse de composé de formule I selon la revendication 1, carac-

térisé en ce qu'il s'agit d'un produit 1-phénylméthyl-5-hydroxyméthyl-imidazole de formule :

5

15

10

dans laquelle:

R'₁ représente un groupe alkyle en C₁-C₄, R'₂ représente l'atome d'hydrogène ou un halogène, R'₅ représente l'atome d'hydrogène et R'₆ représente un groupe COR'₉ où R'₉ représente un groupe alkoxy en C₁-C₁₆ ou un groupe benzyloxy.

10. Composé intermédiaire utile dans la synthèse de composé de formule I selon la revendication 1, caractérisé en ce qu'il s'agit d'un produit 1-phénylméthyl-5-halogénométhyl-imidazole de formule :

25

30

35

40

20

dans laquelle

R'₁ représente un groupe n-butyle, R'₂ et R'₅ représentent l'atome d'hydrogène, R'₆ représente un groupe COR'₉ dans lequel R'₉ représente un groupe t-butoxy ou benzyloxy et X représente un halogène.

11. Procédé de préparation d'un composé selon la revendication 1 caractérisé en ce qu'il comprend les étapes consistant à :

(a) soumettre à une substitution nucléophile un composé de formule :

50

45

dans laquelle:

5

10

15

25

30

35

40

45

50

- R'₁ représente un groupe alkyle en C₁-C₄,
- R'₂ représente l'atome d'hydrogène, un halogène, un groupe alkylthio en C₁-C₄ ou un groupe perfluoroalkyle en C₁-C₃,
- R's représente un atome d'hydrogène ou un halogène,
- R'₆ représente un groupe cyano, un groupe COR'₉ où R'₉ représente un groupe alkoxy en C₁-C₁₆,
 un groupe benzyloxy ou un groupe isopropylidène glycéryle,
- X représente un halogène notamment l'atome de chlore, ou un groupe paratoluènesulfonyle, par réaction avec un composé de formule :

20 dans laquelle :

- R'3 représente l'atome d'hydrogène ou un groupe alkyle en C1-C4,
- R'₄ est en position 3, 4, 5 ou 6 et représente l'atome d'hydrogène, un ou plusieurs groupes alkyles en C₁-C₄, alkoxy en C₁-C₄, azido, nitro ou un ou plusieurs halogènes ou forme un groupe amino-2 naphtyle avec le groupe amino-phényle auquel il est lié,
- R'₇ représente un groupe cyano ou un groupe COR'₉ où R'₉ représente:
 - un groupe alkoxy en C₁-C₁₆, un groupe benzyloxy, un groupe isopropylidène glycéryle, un groupe phénoxy, un groupe 2-phényléthoxy, un groupe 2-méthoxyéthoxy, un groupe 2-oxobutyl oxy, un groupe 1-méthyl-2-oxo-butyl oxy, un groupe 2-(N,N-diéthylamino)-éthoxy, ou
 - un groupe -O-CHR₁₆-O(CO)-R₁₂ dans lequel R₁₆ représente l'atome d'hydrogène ou un groupe alkyle en C₁-C₃ et R₁₂ représente un groupe alkyle en C₁-C₇, un groupe cyclopentyle, un groupe pe cyclohexyle, un groupe cyclopentylméthyle ou un groupe cyclohexylméthyle,
 - un groupe oxyacétate de formule -O-CHR₁₇-CO₂-R₁₆, dans lequel R₁₆ et R₁₇ représentent chacun indépendamment l'atome d'hydrogène ou un groupe en C₁-C₅,
 - un groupe oxyacétamide de formule -O-CH₂-CO-NR₁₀R₁₁, dans lequel R₁₀ et R₁₁, identiques ou différents représentent chacun un groupe alkyle en C₁-C₄ ou un groupe hydroxyéthyle,
 - un groupe amino de formule -NR₁₈R₁₉ dans lequel R₁₈et R₁₉ représentent chacun indépendamment l'atome d'hydrogène, un groupe alkyle en C₁-C₄, un groupe méthoxy, un groupe 2-(N,N-diméthylamino) propyle ou NR₁₈R₁₉ représente un reste acide aminé de structure glycine ou valine, dont la fonction acide est éventuellement protégée sous forme d'ester où d'amide,
- R'₃ et R'₇, considérés ensemble, pouvant former, avec l'atome d'azote et le groupe phényle auxquels ils sont respectivement liés, un hétérocycle azoté ortho-condensé carboxy-2-indol-1-yle ou éthoxycarbonyle-2-indol-1 -yle,
 - en milieu anhydre en présence ou non d'un solvant polaire ou non polaire et aprotique, comme par exemple le toluène, les xylènes, le tétrahydroturanne, le diméthylformamide, les hydrocarbures chlorés, les éthers, le dioxanne, la N-méthylpyrrolidin-2-one, la N,N'-diméthylpropylèneurée ou le diméthylsulfoxyde et en présence ou non d'une base forte comme par exemple la triéthylamine, la 2,6-lutidine, les hydrures de sodium ou potassium, l'hexaméthyldisilylamidure de potassium ou de lithium ou le diisopropylamidure de lithium, à raison de 1 mole de composé ll' pour 1 à 20 moles de composé III', à une température comprise entre la température ambiante (15-25°C) et environ 200°C, pendant 0,1 à 12 heures, pour obtenir un composé de formule :

$$R'_1$$

$$R'_7$$

dans laquelle R'1, R'2, R'3, R'4, R'5, R'6 et R'7 ont les significations indiquées ci-dessus;

5

10

15

20

25

30

35

40

45

50

55

(b) si nécessaire, soumettre le composé de formule l' ainsi obtenu aux traitements suivants : (i) saponification d'un composé de formule l' dans laquelle l'un au moins des groupes R'₆ et R'₇ représente un groupe COR'₉ où R'₉ représente un groupe alkoxy en C₁-C₁₆, selon les méthodes connues de l'homme de l'art, notamment en présence d'une base forte comme par exemple une solution aqueuse à hydroxyde de sodium ou de potassium, dans le diméthoxyéthane ou un alcool comme par exemple le méthanol, pour obtenir un composé de formule I dans laquelle R₆ et R₇ représentent un groupe COOH ou R₆, représente un groupe COOH et R₇ représente un groupe COR₉ où R₉ représente un groupe alkoxy en C₁-C₁₆;

(ii)estérification du composé ainsi obtenu au stade (i) selon les méthodes connues de l'homme de l'art, notamment par réaction avec un alcool approprié ou par réaction avec un dérivé halogéné approprié, pour obtenir un composé de formule I dans laquelle R_6 et R_7 représentent un groupe COR_9 où R_9 a les significations des groupes R_9 indiqués ci-dessus;

(iii) acylation du méthylsulfonamide ou d'un arylsulfonamide de formule :

dans laquelle R_{14} représente l'atome d'hydrogène, un halogène, un groupe azido, un groupe alkyle en C_1 - C_4 ou un groupe méthoxy, par un mono-acide obtenu au stade (i) selon les méthodes connues de l'homme de l'art, notamment en présence d'un réactif de couplage comme par exemple le chlor-hydrate de 1-(3-diméthylaminopropyl)-3-éthylcarbodiimide ou la N,N-dicyclohexylcarbodiimide, pour obtenir un composé de formule I dans laquelle R_6 représente un groupe COR_{13} où R_{13} représente un groupe méthylsulfonylamino de formule -NH-SO₂- CH_3 , ou un groupe arylsulfonylamino de formule :

dans laquelle R_{14} a la signification indiquée ci-dessus, R_7 représente un groupe COR_9 où R_9 représente un groupe alkoxy en C_1 - C_{18} et R_1 , R_2 , R_3 , R_4 , R_5 ont les significations indiquées ci-dessus pour respectivement R'_1 , R'_2 , R'_3 , R'_4 et R'_5 ;

(iv) acylation d'un composé de formule l' dans laquelle R'_3 représente l'atome d'hydrogène et R'_1 , R'_2 , R'_4 , R'_5 R'_6 et R'_7 ont les significations indiquées ci-dessus, selon les méthodes connues de l'homme de l'art, notamment par réaction avec un anhydrique d'acide, comme par exemple l'anhydrique acétique, pour obtenir un composé de formule I dans laquelle R_3 représente un groupe COR $_6$ où R_8 représente un groupe alkyle en C_1 - C_4 , et R_1 , R_2 , R_4 , R_5 , R_6 et R_7 ont les significations indiquées

	ci-dessus pour respectivement R' ₁ , R' ₂ , R' ₄ , R' ₅ , R' ₆ et R' ₇ ; (v) si nécessaire, déprotection d'un composé de formule l' dans laquelle au moins l'un des groupes R' ₆ et R' ₇ représente un groupe COR' ₉ où R' ₉ représente un groupe alkoxy en C ₁ -C ₄ , un groupe ben
5	zyloxy ou un groupe isopropylidène glycéryle, selon les méthodes connues de l'homme de l'art, no tamment par traitement en milieu acide ou par hydrogénation catalytique, pour obtenir un composé de formule I dans laquelle l'un au moins des groupes R ₆ ou R ₇ représente un groupe COOH ou CO glycéryle et l'autre groupe représente un groupe COR ₆ où R ₉ a la signification indiquée ci-dessus pour R' ₉ ;
10	(vi) conversion d'un composé de formule l' dans laquelle R'_6 ou R'_7 représente un groupe cyano en composé de formule l dans laquelle R_6 ou R_7 représente un groupe tétrazol-5-yle selon les méthodes connues de l'hommme de l'art, notamment par cycloaddition 1,3-dipolaire d'azotures de trialkylétain ou triarylétain.
15	
20	
20	
25	
30	

RAPPORT DE RECHERCHE EUROPEENNE

Numero de la demande

EP 93 40 0833 Page 1

atégorie	Citation du document avec i des parties per		Revendication concernée	CLASSEMENT DE LA DEMANDE (Int. Cl.5)
X	20 Février 1992 RN: 141771-40-6: yl-5-(chloromethyl) methyl]-, methyl es RN: 133040-03-6: yl-5-formyl-1H-imid methyl ester	ter, monohydrochloride Benzoic acid, 4-[(2-bu azol-1-yl)methyl]- , Benzoic acid, 4-[(2-bu 1-1H-imidazol-1-yl	t	C07D233/54 C07D233/64 C07D233/68 C07D233/84 C07D401/12 C07D401/14 C07D403/06 C07D403/10 C07D405/12 C07D405/14 A61K31/415
D,X	pages 877 - 885 Thomas A P; Allott J S; Masek B B; Old Roberts D A; Russel 'New nonpeptide ang antagonists. 1. Syn properties and stru relationships of 2- derivatives' RN: 138459-26-4: yl-4-chloro-5-(hydr azol-1-yl]methyl]-3 EP-A-0 403 159 (SMI 19 Décembre 1990 RN: 133486-58-5: yl-5-formyl-1H-imid RN: 133486-34-7: yl-5-formyl-1H-imid 3-chloro-, ethyl es	ars 1992, WASHINGTON U C P; Gibson K H; Major ham A A; Ratcliffe A H l S T; Thomason D A iotensin II receptor thesis, biological cture-activity alkylbenzimidazole Benzoic acid, 4-[[2-bu oxymethyl)-1H-imid -fluoro-, methyl ester THKLINE BEECHAM CORP.) Benzonitrile, 4-[(2-bu azol-1-yl)methyl]- Benzoic acid, 4-[(2-bu azol-1-yl)methyl]- ter	t 8 t t	DOMAINES TECHNIQUE RECHERCHES (Int. Cl.5)
	yl-5-formyl-1H-imid methyl ester	Benzoic acid, 4-[(2-bu azol-1-yl)methyl]- , 	t	
Le p	ésent rapport a été établi pour to Lieu de la recharche	utes les revendications Date d'achivement de la recherche	1	Examinatour
	LA HAYE	21 JUIN 1993		Bernd Kissler
Y: pau A: an O: di	CATEGORIE DES DOCUMENTS rticulièrement pertinent à lui seul rticulièrement pertinent en combinais tre document de la même catégorie lère-plan technologique sulgation non-écrite cument intercalaire	B : document de date de dépôt date de dépôt D : cité dans la d L : cité pour d'au	tres raisons	els publié à la

RAPPORT DE RECHERCHE EUROPEENNE Numero de la demande

EP 93 40 0833 Page 2

atégorie	Citation du document avec i des parties per	ndication, en cas de besoin, tinentes	Revendication concernée	CLASSEMENT DE LA DEMANDE (lat. Cl.5)
x,c	19 Décembre 1990			
	2 Mai 1991 RN : 133040-03-6 :	THKLINE BEECHAM CORP.; Benzoic acid, 4-[(2-beazol-1-yl)methyl]-,		
(J; Finkelstein J A; Gaitanopoulos D E; G; et al. '1-(Carboxybenzyl)i acids: potent and s receptor antagonist RN: 133040-03-6: yl-5-formyl-1H-imid methyl ester	1, WASHINGTON US R M; Samanen J; Hemperanz R G; Girard G R; Gleason J midazole-5-acrylic elective angiotensin s' Benzoic acid, 4-[(2-benzoid)]-, Benzoic acid, 4-[(2-benzoid)]-, Benzoic acid, 4-[(2-benzoid)]-, Benzoic acid, 4-[(2-benzoid)]-1-yenzoid	II ut	DOMAINES TECHNIQUES RECHERCHES (Int. Cl.5)
Le s:	résent rapport a été établi pour to	-/ utos les reventications		
Le p	Lieu de la recharche	Date d'achivement de la recherche		Examinates
	LA HAYE	21 JUIN 1993		Bernd Kissler
Y:pau au A:an	CATEGORIE DES DOCUMENTS riculièrement pertinent à lui seul riculièrement pertinent en combinaise tre document de la mêtre catégorie rière-plan technologique vulgation aon-écrite	E : document de date de éépe so avec ua D : cité dans la L : cité pour d'i	tutres raisons	us publié & la

RAPPORT DE RECHERCHE EUROPEENNE Namero de la demande

EP 93 40 0833 Page 3

vol. 33, no. 5, 1990, WASHINGTON US pages 1312 - 1329 Duncia J V; Chiu A T; Carini D J; Gregory G B; Johnson A L; Price W A; Wells G J; Wong P C; Calabrese J C; Timmermans P B M W M 'The discovery of potent nonpeptide angiotensin II receptor antagonists: a new class of potent antihypertensives' RN: 114799-90-5: Benzonitrile, 4-[[2-but y]-4-chloro-5-(hydroxymethyl)-1H-imid azol-1-y]]methyl]- RN: 114778-52-6: Benzoic acid, 4-[[2-but y]-4-chloro-5-(hydroxymethyl)-1H-imid azol-1-y]]methyl]- RN: 114771-97-0: Benzonitrile, 4-[[2-but y]-4-chloro-5-(chloromethyl)-1H-imida zol-1-y]]methyl]- X JOURNAL OF MEDICINAL CHEMISTRY. vol. 33, no. 5, 1990, WASHINGTON US pages 1330 - 1336 Carini D J; Duncia J V; Johnson A L; Chiu A T; Price W A; Wong P C; Timmermans P B M W 'Part VI. Nonpeptide angiotensin II receptor antagonists: N-[(benzyloxy)benzyl]imidazoles and related compounds as potent antihypertensives' RN: 114799-90-5: Benzonitrile, 4-[[2-but y]-4-chloro-5-(hydroxymethyl)-1H-imid azol-1-yl]methyl]- -/ Lo présent rapport a été établi pour toutes les revendications	DC	CUMENTS CONSIDI					
vol. 33, no. 5, 1990, WASHINGTON US pages 1312 - 1329 Duncia J V; Chiu A T; Carini D J; Gregory G B; Johnson A L; Price W A; Wells G J; Wong P C; Calabrese J C; Timmermans P B M W M 'The discovery of potent nonpeptide angiotensin II receptor antagonists: a new class of potent antihypertensives' RN : 114799-90-5 : Benzonitrile, 4-[[2-but yl-4-chloro-5-(hydroxymethyl)-1H-imid azol-1-yl]methyl]- RN : 114771-97-0 : Benzonitrile, 4-[[2-but yl-4-chloro-5-(chloromethyl)-1H-imid azol-1-yl]methyl]- RN : 114771-97-0 : Benzonitrile, 4-[[2-but yl-4-chloro-5-(chloromethyl)-1H-imid azol-1-yl]methyl]- X JOURNAL OF MEDICINAL CHEMISTRY. vol. 33, no. 5, 1990, WASHINGTON US pages 1330 - 1336 Carini D J; Duncia J V; Johnson A L; Chiu A T; Price W A; Wong P C; Timmermans P B M W 'Part VI. Nonpeptide angiotensin II receptor antagonists: N-[(benzyloxy)benzyl]imidazoles and related compounds as potent antihypertensives' RN : 114799-90-5 : Benzonitrile, 4-[[2-but yl-4-chloro-5-(hydroxymethyl)-1H-imid azol-1-yl]methyl]- -/	Catégorie			soin,			
JOURNAL OF MEDICINAL CHEMISTRY. vol. 33, no. 5, 1990, WASHINGTON US pages 1330 - 1336 Carini D J; Duncia J V; Johnson A L; Chiu A T; Price W A; Wong P C; Timmermans P B M W 'Part VI. Nonpeptide angiotensin II receptor antagonists: N-[(benzyloxy)benzyl]imidazoles and related compounds as potent antihypertensives' RN : 114799-90-5 : Benzonitrile, 4-[[2-but yl-4-chloro-5-(hydroxymethyl)-1H-imid azol-1-yl]methyl]- -/	X	vol. 33, no. 5, 199 pages 1312 - 1329 Duncia J V; Chiu A G B; Johnson A L; F Wong P C; Calabrese W M 'The discovery angiotensin II rece class of potent ant RN: 114799-90-5: yl-4-chloro-5-(hydr azol-1-yl]methyl]- RN: 114798-52-6: yl-4-chloro-5-(hydr azol-1-yl]methyl]- RN: 114771-97-0: yl-4-chloro-5-(chlor	T; Carini D J; rice W A; Well J C; Timmerma of potent nonpoten antagonishypertensives Benzonitrile, roxymethyl)-1H-Benzoic acid, oxymethyl)-1H-Benzonitrile,	Gregory Is G J; ans P B M beptide sts: a new 4-[[2-but -imid 4-[[2-but -imid 4-[[2-but	9		
	X	JOURNAL OF MEDICINA vol. 33, no. 5, 199 pages 1330 - 1336 Carini D J; Duncia A T; Price W A; Won W 'Part VI. Nonpept receptor antagonist N-[(benzyloxy)benzy related compounds a antihypertensives' RN : 114799-90-5: yl-4-chloro-5-(hydr	O, WASHINGTON J V; Johnson A g P C; Timmern ide angiotensi s: i]imidazoles a s potent Benzonitrile, oxymethyl)-1H	A L; Chiu mans P B M in II and 4-[[2-but -imid	9	DOMAREC	INES TECHNIQUE IERCHES (Int. Cl.5)
Lies de la recherche LA HAYE 21 JUIN 1993 Bernd Kissler CATEGORIE DES DOCUMENTS CITES X: particulièrement pertinent à lui seul Y: particulièrement pertinent en combinaison avec un	X : par	Lies de la recherche LA HAYE CATEGORIE DES DOCUMENTS ticulièrement pertinent à lui saul	Data of achivement of 21 JUIN COTTES 1	: théorie ou princi : document de bre date de dépôt ou	pe à la base de l' vet antérieur, ma après cette date	invention is publié à	

EPO FORM 1500 CLAZ (POACE)

RAPPORT DE RECHERCHE EUROPEENNE

Numero de la demanda

EP 93 40 0833 Page 4

atégorie	Citation du document avec is des parties pert		Revendication concernée	CLASSEMENT DE LA DEMANDE (1st. CL5)
X	yl-4-chloro-5-(hydro azol-1-yl]methyl]- RN: 114773-53-4: E yl-4-chloro-5-(hydro azol-1-yl]methyl]-,	Benzonitrile, 4-[[2-bu oxymethyl)-1H-imid Benzoic acid, 4-[[2-bu oxymethyl)-1H-imid monosodium salt Benzoic acid, 4-[[2-bu	t	
X	yl-4-chloro-5-(hydro azol-1-yl]methyl]- RN : 114798-52-6 : yl-4-chloro-5-(hydro azol-1-yl]methyl]- RN : 114773-53-4 : yl-4-chloro-5-(hydro azol-1-yl]methyl]	Benzonitrile, 4-[[2-bu oxymethyl]-1H-imid Benzoic acid, 4-[[2-bu oxymethyl]-1H-imid Benzoic acid, 4-[[2-bu oxymethyl]-1H-imid monosodium salt Benzonitrile, 4-[[2-bu	t	DOMAINES TECHNIQUES RECHERCHES (Int. Cl.5)
D,A	EP-A-0 427 463 (SMI 15 Mai 1991 * le document en en	THKLINE BEECHAM CORP.) tier *	1-11	
A	EP-A-0 081 324 (FAR 15 Juin 1983 * page 3, ligne 18 * revendication 1 *	- ligne 22 *	1-11	
Le p	résent rapport a été établi pour to			
	Lian de la recharche LA HAYE	Date d'achievement de la reclariche 21 JUIN 1993		Bernd Kissler
Y : pa	CATEGORIE DES DOCUMENTS (rticulièrement pertinent à lui seul rticulièrement pertinent en combinaiso tre document de la même catégorie rière-plan technologique	E : document de date de dépôt on avec un D : cité dans la t L : cité pour d'au	itres raisons	ste brotte s w