

Tampines Meridian Junior College 2024 H2 Mathematics (9758) Chapter 10 Integration Techniques Learning Package

Resources

- ☐ Core Concept Notes
- ☐ Discussion Questions
- ☐ Extra Practice Questions

SLS Resources

- ☐ Recordings on Core Concepts
- ☐ Quick Concept Checks

H2 Mathematics (9758) Chapter 10 Integration Techniques Core Concept Notes

Success Criteria:

Surface Learning		Deep Learning	Transfer Learning
	Integrate derivatives to obtain the anti-derivatives / integrals of a function (i.e. indefinite integration is the reverse process of differentiation)	Evaluate definite integrals using anti-derivatives: $\int_{a}^{b} f(x) dx = F(b) - F(a),$ where $\frac{d}{dx} F(x) = f(x)$	☐ Use a given substitution to simplify and integrate an expression ☐ Use integration
	Evaluate definite integrals using graphing calculator Integrate the following standard functions: Constant, a $x^{n}, n \in \mathbb{R} \setminus \{-1\}$ x^{-1} e^{x} a^{x}	☐ Integrate powers of basic trigonometric functions ☐ Use MF27 integral formulas to integrate functions of the following standard forms: (a) $\frac{1}{a^2 + x^2}$ (b) $\frac{1}{\sqrt{a^2 - x^2}}$ (c) $\frac{1}{a^2 - x^2}$, (d) $\frac{1}{x^2 - a^2}$, ($ x < a$)	by parts to integrate an expression
	Recognise and integrate integrands of the form $f'(x)[f(x)]^n$, where $n \in \mathbb{R}$ Recognise and integrate integrands of the form $f'(x)e^{f(x)}$	Recognise and integrate integrands of the form $\int \frac{f(x)}{g(x)} dx \text{ or } \int \frac{f(x)}{\sqrt{g(x)}} dx$	
	Integrate basic trigonometric functions		

§1 Indefinite Integrals

If two functions F(x) and f(x) are related as follows:

$$\frac{\mathrm{d}}{\mathrm{d}x}\big(\mathrm{F}(x)\big) = \mathrm{f}(x)\,,$$

then f(x) is the **derivative** of F(x) and F(x) is called an **anti-derivative** or **integral** of f(x).

Illustration:

Since $\frac{d}{dx}(x^2+1) = 2x$, x^2+1 is an anti-derivative of 2x.

Since $\frac{d}{dx}(x^2-7) = 2x$, x^2-7 is an anti-derivative of 2x.

Since $\frac{d}{dx}(x^2) = 2x$, x^2 is also an anti-derivative of 2x.

Observe that $\frac{d}{dx}[F(x) + C] = \frac{d}{dx}(F(x)) + \frac{d}{dx}C = f(x) + 0 = f(x)$ where C is any arbitrary real constant.

Recall that the process of finding $\int f(x) dx$ for a given function f is called **integration**.

We know that $\int f(x) dx$ is actually equivalent to F(x) + C, the collection of all anti-derivatives of f(x), and we write:

Note:

Integration is the "reverse" of differentiation.

i.e.:
$$\int f(x) dx = F(x) + C$$
 because $\frac{d}{dx} (F(x) + C) = f(x)$

(1)
$$\int \cos x \, dx = \sin x + C$$
 because $\frac{d}{dx} (\sin x + C) = \cos x$

(2)
$$\int (x-5)^9 dx = \frac{1}{10}(x-5)^{10} + C$$
 because $\frac{d}{dx} \left[\frac{1}{10}(x-5)^{10} + C \right] = \frac{10}{10}(x-5)^9 = (x-5)^9$

(3)
$$\int e^{5x+1} dx = \frac{1}{5}e^{5x+1} + C$$
 because $\frac{d}{dx} \left(\frac{1}{5}e^{5x+1} + C \right) = \frac{5}{5}e^{5x+1} = e^{5x+1}$

§2 Basic Properties

1.
$$\int [f(x) + g(x)] dx = \int f(x) dx + \int g(x) dx$$
2.
$$\int f(x) - g(x) dx = \int f(x) dx - \int g(x) dx$$

2.
$$\int f(x) - g(x) dx = \int f(x) dx - \int g(x) dx$$

3.
$$\int kf(x) dx = k \int f(x) dx$$
, where k is any non-zero real constant.

Quick Check: Are the following True/ False?

1. Is
$$\int \frac{f(x)}{g(x)} dx = \frac{\int f(x) dx}{\int g(x) dx}$$

E.g:
$$\int \frac{x+1}{x} dx = \frac{\int x+1 dx}{\int x dx}$$

1. Is
$$\int \frac{f(x)}{g(x)} dx = \frac{\int f(x) dx}{\int g(x) dx}$$
? E.g: $\int \frac{x+1}{x} dx = \frac{\int x+1 dx}{\int x dx}$?

2. Is $\int f(x)g(x) dx = \int f(x) dx \int g(x) dx$? E.g: $\int x(x+1) dx = \int x dx \int x+1 dx$?

3. Is $\int g(x)f(x) dx = g(x)\int f(x) dx$? Eg: $\int x(x+1) dx = x\int (x+1) dx$?

3. Is
$$\int g(x)f(x) dx = g(x) \int f(x) dx$$
?

Eg:
$$\int x(x+1) dx = x \int (x+1) dx ?$$

Example 1

Find
$$\frac{d}{dx}(x^2e^{2x})$$
. Hence, find $\int xe^{2x}(x+1)dx$.

Solution:

$$\frac{d}{dx}(x^2e^{2x}) = 2xe^{2x} + 2x^2e^{2x} = 2xe^{2x}(x+1)$$

$$\int 2xe^{2x}(x+1)dx = x^2e^{2x} + C$$
Learning Point: Integration is the reverse process of Differentiation.

$$\int xe^{2x} (x+1) dx = \frac{1}{2}x^2 e^{2x} + B, \text{ where } B = \frac{C}{2}$$

§3 Computation of Definite Integrals

The definite integral from a to b of f(x), where f(x) is continuous on the interval [a, b], is given by:

$$\int_{a}^{b} f(x) dx = \left[F(x) \right]_{a}^{b} = F(b) - F(a), \text{ where } \frac{d}{dx} F(x) = f(x)$$

a and b are called the *limits of integration*, where a is the **lower limit** and b is the **upper limit**. $\int_{a}^{b} f(x) dx$ is called the **definite integral from a to b of f(x) w.r.t** x.

Note: the constant of integration *C* is eliminated in the subtraction.

Proof:
$$\int_{a}^{b} f(x) dx = [F(x) + C]_{a}^{b}$$
$$= [F(b) + C] - [F(a) + C]$$
$$= F(b) - F(a)$$

Some Important Results

•
$$\int_a^b f(x) dx = -\int_b^a f(x) dx$$
 e.g.: $\int_0^{-2} f(x) dx = -\int_{-2}^0 f(x) dx$

•
$$\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx$$
 e.g.: $\int_{0}^{-2} f(x) dx = -\int_{-2}^{0} f(x) dx$
• $\int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx = \int_{a}^{c} f(x) dx$ e.g.: $\int_{1}^{2} f(x) dx + \int_{2}^{3} f(x) dx = \int_{1}^{3} f(x) dx$

§4 Computation of Definite Integrals using Graphing Calculator

Example 2 Evaluate $\int_{-1}^{3} 2x^2 dx$.

Step	os/Keystrokes/Explanations	Screen Display
1.	Press alpha window and select 4: fnInt(.	NORMAL FLOAT AUTO REAL RADIAN MP 1:abs(2:summation \(\Sigma \) 3:nDeriv(d/d 4:fnInt(\(\sigma \) 5:logBASE(logo 6:\(\sigma \) 7:nPr 8:nCr 9:! FRACTERING MTRX (YVAR)
2.	Key in the lower and upper limits, integrand and variable of integration and press enter	NORMAL FLOAT AUTO REAL RADIAN MP
3.	To convert answer to exact form, press alpha y= and select 4: ► F ← ► D to switch between fraction and decimal. Press enter Alternative Press math and select 1: ► Frac to convert to fraction. Press enter.	1: n/d 18.66666667. 1: n/d 18.66666667. 1: n/d 19.66666667. 1: n/d 18.66666667. 1: n/d 18.666666667. 1: n/d 18.666666667. 1: n/d 18.666666667. 1: n/d 18.666666667. 1: n/d 18.66666667. 1: n/d 18.666666667. 1: n/d 18.66666667. 1: n/d 18.66666667.

Solution:

Using GC,
$$\int_{-1}^{3} 2x^2 dx = \frac{56}{3}$$

§5 Integrals of Standard Functions [Not in MF27]

	'O' Level
1	$\int a \mathrm{d}x = ax + C$
2	For $n \in \mathbb{R}$,
	a) $n \neq -1$, $\int x^n dx = \frac{x^{n+1}}{n+1} + C$
	b) $n = -1$, $\int x^{-1} dx = \int \frac{1}{x} dx = \ln x + C$
	*There is a need to put modulus here to ensure the existence of
	the integral.
3	$\int e^x dx = e^x + C$
4	$\int a^x \mathrm{d}x = \frac{a^x}{\ln a} + C$

VERY Important Result:

In general, if $\int f(x)dx = F(x) + C$, then we have

$$\int f(px+q)dx = \frac{1}{p}F(px+q) + C.$$

(Result can be proven using integration by substitution.)

Golden Rule:

When x is replaced by a **linear form** (px+q), we divide the answer by coefficient of x.

(c)
$$\int (2x-1)^{5} dx$$

$$= \frac{1}{2} \cdot \frac{(2x-1)^{6}}{6} + C$$
Replace x by $(2x-1)$, so we need to divide by coefficient of x which is 2.

Recall:
$$\int x^{n} dx = \frac{x^{n+1}}{n+1} + C$$
(d)
$$\int e^{3x-4} dx$$

$$= \frac{1}{3} e^{3x-4} + C$$
Replace x by $(3x-4)$, so we need to divide by coefficient of x which is 3.

Recall:
$$\int e^{x} dx = e^{x} + C$$

§6 Integration involving the function f(x) and its derivative f'(x)

1	For $n \in \mathbb{R}$, $n \neq -1$,	Proof:
	$\int f'(x) \left[f(x) \right]^n dx = \frac{\left[f(x) \right]^{n+1}}{n+1} + C$	Since $\frac{\mathrm{d}}{\mathrm{d}x} [f(x)]^{n+1} = (n+1)[f(x)]^n f'(x)$
	n+1	and integration is a reverse process of differentiation,
		$\int (n+1)[f(x)]^n f'(x) dx = [f(x)]^{n+1}$
		$\int [f(x)]^n f'(x) dx = \frac{[f(x)]^{n+1}}{(n+1)} + C$
2	For $n \in \mathbb{R}$, $n = -1$,	Proof:
	$\int f'(x) [f(x)]^{-1} dx = \int \frac{f'(x)}{f(x)} dx = \ln f(x) + C$	
		is a reverse process of differentiation
		$\int \frac{f'(x)}{f(x)} dx = \ln f(x) + C$
3	$\int f'(x)e^{f(x)} dx = e^{f(x)} + C$	Proof:
	J	Since $\frac{d}{dx}e^{f(x)} = e^{f(x)}f'(x)$ and integration
		is a reverse process of differentiation,
		$\int e^{f(x)} f'(x) dx = e^{f(x)} + C$

Example 4 Concept: For $n \in \mathbb{R}$, $n \neq -1$, $\int f'(x) [f(x)]^n dx = \frac{[f(x)]^{n+1}}{n+1} + C$

Example 5 Concept: $\int f'(x) \left[f(x) \right]^{-1} dx = \int \frac{f'(x)}{f(x)} dx = \ln \left| f(x) \right| + C$

Example 6 Concept: $\int f'(x) e^{f(x)} dx = e^{f(x)} + C$

§7 Integration of Algebraic Functions of the standard form (MF27)

$$\frac{1}{\sqrt{a^2 - x^2}} \qquad \qquad \sin^{-1}\left(\frac{x}{a}\right) \qquad \qquad \left(|x| < a\right)$$

$$\frac{1}{x^2 - a^2} \qquad \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right|$$

$$\frac{1}{a^2 - x^2} \qquad \frac{1}{2a} \ln \left| \frac{a + x}{a - x} \right|$$

**Taken from MF27 (Pg 4): *Integrals*

Note: **The restrictions on x in MF27 is to ensure that the function within the $\ln()$ is positive. However, if we convert the () to modulus | |, we will not have to worry about the range of values of x.

(a)	$\int \frac{1}{x^2 + 25} dx = \int \frac{1}{x^2 + 5^2} dx$ $= \frac{1}{5} \tan^{-1} \left(\frac{x}{5}\right) + C$	(b) $\int \frac{3}{5-x^2} dx = 3 \int \frac{1}{\left(\sqrt{5}\right)^2 - x^2} dx$ $= \frac{3}{2\left(\sqrt{5}\right)} \ln \left \frac{\sqrt{5} + x}{\sqrt{5} - x} \right + C$ Formula in MF27: But modulus for ln function	
(c)	$\int \frac{1}{\sqrt{9-4x^2}} dx = \int \frac{1}{\sqrt{3^2 - (2x)^2}} dx$ $= \frac{1}{2} \sin^{-1} \left(\frac{2x}{3}\right) + C$ Golden Rule: Replace x by $(2x)$, so we need to divide by coefficient of x which is 2.	Put modulus for In function	

<u>Integration of Algebraic Functions of the form</u> $\int \frac{f(x)}{g(x)} dx$ or $\int \frac{f(x)}{\sqrt{g(x)}} dx$ **§8**

Given
$$\int \frac{f(x)}{g(x)} dx$$
 or $\int \frac{f(x)}{\sqrt{g(x)}} dx$, where $f(x)$ and $g(x)$ are polynomials in x ,

1. Check whether $\frac{f(x)}{g(x)}$ is **proper** [i.e. degree of $f(x)$ is less than degree of $g(x)$]

- 2. If $\frac{f(x)}{g(x)}$ is improper, use long division or 'juggling' method to express $\frac{f(x)}{g(x)} = \text{quotient} + \frac{\text{remainder}}{g(x)}.$ 3. Consider to change $\int \frac{f(x)}{g(x)} dx$ or $\int \frac{f(x)}{\sqrt{g(x)}} dx$ using the following techniques (in the following order)

Section 8.1 Using
$$\int \frac{g'(x)}{g(x)} dx$$
 or $\int g'(x) [g(x)]^n dx$

- **Section 8.2** Using Completing the square for denominator and MF27 (4 formulas)
- Section 8.3 Using Partial Fractions if g(x) can be factorised completely
- **Section 8.4** Using splitting the numerator

Using $\int \frac{g'(x)}{g(x)} dx$ or $\int g'(x) [g(x)]^n dx$

If the algebraic function involves g(x) and g'(x), use

$$\int \frac{g'(x)}{g(x)} dx = \ln |g(x)| + C \text{ or } \int g'(x) \left[g(x)\right]^n dx = \frac{\left[g(x)\right]^{n+1}}{n+1} + C$$

Example 8

(a)
$$\int \frac{x}{2+x^2} dx = \frac{1}{2} \int \frac{2x}{2+x^2} dx$$
$$= \frac{1}{2} \ln|2+x^2| + C$$
$$= \frac{1}{2} \ln(2+x^2) + C \text{ since } 2+x^2 > 0 \text{ for all } x \in \mathbb{R}$$

(b)
$$\int \frac{x^4 + 8x^2 + x + 4}{x^3 + 2x + 1} dx$$

Observation: $6x^2 + 4$ can be expressed as a scalar multiple of derivative of $x^3 + 2x + 1$.

Note: $\frac{x^4 + 8x^2 + x + 4}{x^3 + 2x + 1}$ is **not proper fraction** \Rightarrow perform long division.

$$= \int x + \frac{6x^2 + 4}{x^3 + 2x + 1} dx$$
Compensate with **constant** 2
$$= \frac{x^2}{2} + 2 \int \frac{3x^2 + 2}{x^3 + 2x + 1} dx$$

$$= \frac{x^2}{2} + 2 \ln|x^3 + 2x + 1| + C$$
Thinking Process:
Let $g(x) = x^3 + 2x + 1$

$$g'(x) = 3x^2 + 2$$

Thinking Process:

Let
$$g(x) = x^3 + 2x + 1$$

 $g'(x) = 3x^2 + 2$

(c) Observation: $4x^2 + 1$ can be expressed as a scalar multiple of derivative of $4x^3 + 3x$.

$$\int \frac{4x^2 + 1}{\sqrt{4x^3 + 3x}} dx$$

$$= \frac{1}{3} \int (12x^2 + 3) (4x^3 + 3x)^{-\frac{1}{2}} dx$$

$$= \frac{1}{3} \frac{(4x^3 + 3x)^{\frac{1}{2}}}{\frac{1}{2}} + C$$

$$= \frac{2}{3} (4x^3 + 3x)^{\frac{1}{2}} + C$$

Compensate with constant $\frac{1}{3}$

Thinking Process: Let $g(x) = 4x^3 + 3x$ $g'(x) = 12x^2 + 3$ and $n = -\frac{1}{2}$

8.2 Using Completing the Square and MF27

For $\frac{f(x)}{g(x)}$ or $\int \frac{f(x)}{\sqrt{g(x)}} dx$ where f(x) is a constant and g(x) is a quadratic function, use

complete the square for g(x) and use MF27 formulas where appropriate.

Observation: $\frac{4}{-x^2 + 2x + 3}$ is $\frac{\text{constant}}{\text{quadratic}} \Rightarrow \text{MF27}$

MF27 Pg 4 $\int \frac{1}{a^2 - x^2} dx = \frac{1}{2a} \ln \left| \frac{a + x}{a - x} \right|$

$$= \frac{4}{2(2)} \ln \left| \frac{2 + (x - 1)}{2 - (x - 1)} \right| + C$$

$$= \ln \left| \frac{1 + x}{3 - x} \right| + C$$

Complete the square.

$$-x^{2} + 2x + 3$$

$$= -\left[x^{2} - 2(x)(1) + 1^{2} - 1^{2}\right] + 3$$

$$= -\left[(x - 1)^{2} - 1\right] + 3$$

$$= 4 - (x - 1)^{2}$$

Formula in MF27:

Put modulus for ln function

Alternative Method (using Partial Fractions in Section 8.3)

$$\int \frac{4}{-x^2 + 2x + 3} dx$$

$$= \int \frac{4}{(1+x)(3-x)} dx$$

$$= \int \frac{1}{1+x} + \frac{1}{3-x} dx$$

$$= \ln|1+x| - \ln|3-x| + C$$

 $=\ln\left|\frac{1+x}{3-x}\right|+C$

Factorise $g(x) = -x^2 + 2x + 3$

Partial Fractions

8.3 Using Partial Fractions

Check $\frac{f(x)}{g(x)}$ is **proper**. If g(x) can be fully factorised, express $\frac{f(x)}{g(x)}$ in partial fractions then use MF27 formulas where appropriate.

Example 10

$$\frac{3x - x^{3}}{(x+1)^{2}(x^{2}+1)} = \frac{A}{x+1} + \frac{B}{(x+1)^{2}} + \frac{Cx+D}{x^{2}+1}$$
Solving, $A = -1$, $B = -1$, $C = 0$, $D = 2$

$$\int \frac{3x - x^{3}}{(x+1)^{2}(x^{2}+1)} dx \qquad \int \frac{1}{(x+1)^{2}} dx \text{ can be written as } \int (x+1)^{-2} dx$$

$$= \int -\frac{1}{x+1} - \frac{1}{(x+1)^{2}} + \frac{2}{x^{2}+1} dx$$

$$\int \frac{1}{x} dx = \ln|x| \qquad \int x^{n} dx = \frac{x^{n+1}}{n+1} \qquad \int \frac{1}{x^{2}+a^{2}} dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right)$$

$$= -\ln|x+1| - \frac{1}{(-1)(x+1)} + 2 \tan^{-1} x + C$$

$$= -\ln|x+1| + \frac{1}{x+1} + 2 \tan^{-1} x + C$$

From MF27:

Partial fractions decomposition

Non-repeated linear factors:

$$\frac{px+q}{(ax+b)(cx+d)} = \frac{A}{(ax+b)} + \frac{B}{(cx+d)}$$

Repeated linear factors:

$$\frac{px^2 + qx + r}{(ax+b)(cx+d)^2} = \frac{A}{(ax+b)} + \frac{B}{(cx+d)} + \frac{C}{(cx+d)^2}$$

Non-repeated quadratic factor:

$$\frac{px^2 + qx + r}{(ax+b)(x^2 + c^2)} = \frac{A}{(ax+b)} + \frac{Bx + C}{(x^2 + c^2)}$$

8.4 Using splitting the numerator

(1) For $\int \frac{px+q}{ax^2+bx+c} dx$, where $g(x) = ax^2+bx+c$ cannot be factorised into real linear factors:

Method: Express px + q in terms of g'(x). I.e Find constants A and B such that px + q = A(2ax + b) + B where g'(x) = 2ax + b and then use the "splitting the numerator method".

Example 11

By first expressing x+1 as A(2x+4)+B, find $\int \frac{x+1}{x^2+4x+6} dx$.

Note:
$$g(x) = x^2 + 4x + 6 \Rightarrow g'(x) = 2x + 4$$

$$= 2Ax + (4A + B)$$
Compare coefficient:
$$1 = 2A \Rightarrow A = \frac{1}{2}$$

$$1 = 4A + B \Rightarrow B = -1$$

$$x + 1 = \frac{1}{2}(2x + 4) - 1$$

$$\int \frac{x+1}{x^2 + 4x + 6} dx = \int \frac{\frac{1}{2}(2x + 4) - 1}{x^2 + 4x + 6} dx$$

$$= \frac{1}{2} \int \frac{2x + 4}{x^2 + 4x + 6} dx - \int \frac{1}{x^2 + 4x + 6} dx$$

$$= \frac{1}{2} \int \frac{2x + 4}{x^2 + 4x + 6} dx - \int \frac{1}{(x+2)^2 + (\sqrt{2})^2} dx$$
Complete the square.

Thinking Process:
Let $g(x) = x^2 + 4x + 6$

$$g'(x) = 2x + 4$$

$$\int \frac{g'(x)}{g(x)} dx = \ln|g(x)|$$

$$= \frac{1}{2} \ln|x^2 + 4x + 6| - \frac{1}{\sqrt{2}} \tan^{-1} \frac{x+2}{\sqrt{2}} + C$$

(2) For
$$\int \frac{px+q}{\sqrt{ax^2+bx+c}} dx$$
 where $g(x) = ax^2+bx+c$:

Method: Express px + q in terms of g'(x). I.e Find constants A and B such that px + q = A(2ax + b) + B where g'(x) = 2ax + b and then use the "splitting the numerator method".

Example 12

Find
$$\int \frac{3+x}{\sqrt{2-2x-x^2}} \, \mathrm{d}x.$$

Let
$$g(x) = 2 - 2x - x^2 \implies g'(x) = -2 - 2x$$

Therefore,
$$3 + x = A(-2 - 2x) + B$$

Comparing coefficient of
$$x: 1 = -2A \Rightarrow A = -\frac{1}{2}$$

Comparing constant:
$$3 = -2A + B \Rightarrow B = 3 + 2\left(-\frac{1}{2}\right) = 2$$

$$\therefore 3 + x = -\frac{1}{2}(-2 - 2x) + 2$$

$$\int \frac{3+x}{\sqrt{2-2x-x^2}} \, dx = \int \frac{-\frac{1}{2}(-2-2x)+2}{\sqrt{2-2x-x^2}} \, dx$$
$$= -\frac{1}{2} \int \frac{-2-2x}{\sqrt{2-2x-x^2}} \, dx + \int \frac{2}{\sqrt{2-2x-x^2}} \, dx$$

$= -\frac{1}{2} \int (-2-2x) (2-2x-x^2)^{-\frac{1}{2}} dx + 2 \int \frac{1}{\sqrt{(\sqrt{3})^2 - (x+1)^2}} dx$

Thinking Process:

Let
$$g(x) = 2 - 2x - x$$

$$g'(x) = -2 - 2x$$
 and $n = -\frac{1}{2}$

$$\int g'(x) \left[g(x)\right]^n dx = \frac{\left[g(x)\right]^{n+1}}{n+1}$$

MF27 Pg 4
$$\int \frac{1}{\sqrt{2-x^2}} dx = \sin^{-1} \left(\frac{x}{a}\right)$$

Thinking Process:
Let
$$g(x) = 2 - 2x - x^2$$

 $g'(x) = -2 - 2x$ and $n = -\frac{1}{2}$
 $\int g'(x) \left[g(x)\right]^n dx = \frac{\left[g(x)\right]^{n+1}}{n+1}$

MF27 Pg 4
$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1}\left(\frac{x}{a}\right)$$

$$= 2 - \left[(x+1)^2 - 1\right]$$

$$= 3 - (x+1)^2$$

$$= -\frac{1}{2} \frac{\left(2 - 2x - x^2\right)^{\frac{1}{2}}}{\frac{1}{2}} + 2\sin^{-1}\left(\frac{x+1}{\sqrt{3}}\right) + C$$
$$= -\left(2 - 2x - x^2\right)^{\frac{1}{2}} + 2\sin^{-1}\left(\frac{x+1}{\sqrt{3}}\right) + C$$

§9 Integration of Trigonometric Functions

Note: **The restrictions on x in MF27 is to ensure that the function within the $\ln()$ is positive. However, if we convert the () to modulus | |, we will not have to worry about the range of values of x.

9.2 Powers of Basic Trigonometric Functions

Golden Rule:

When x is replaced by a linear form (px+q), we divide the answer by coefficient of x.

i) $\int \sec^2 x \, dx = \tan x + C \qquad \because \qquad \frac{d}{dx} \tan x = \sec^2 x$ Integration is the reverse process of Differentiation.

iii) $\int \csc^2 x \, dx = -\cot x + C \qquad \because \qquad \frac{d}{dx} \cot x = -\csc^2 x$ Differentiation.

iii) $\int \cot^2 x \, dx$ Integration is the reverse process of Differentiation.

iii) $\int \cot^2 x \, dx$ $1 + \cot^2 A = \csc^2 A$ $1 + \tan^2 A = \sec^2 A$ v) $\int \sin^2 x \, dx$ $\cos^2 x \, dx$ Make use of double angle formula (in MF27) $\cos^2 x \, dx$ $\cos^2 A = 2\cos^2 A - 1$ $= 1 - 2\sin^2 A$

(a)
$$\int \sec^{2}(3x-5) dx$$

$$= \frac{1}{3} \tan(3x-5) + C$$
Golden Rule:
Replace x by $(3x-5)$, so we need to divide by coefficient of x which is 3 .

(b)
$$\int \cot^{2}3x \, dx = \int (\cos e^{2}3x-1) dx$$

$$= -\frac{1}{3} \cot 3x - x + C$$
Apply Golden Rule

(c)
$$\int \cos^{2}\theta \, d\theta = \frac{1}{2} \int 1 + \cos 2\theta \, d\theta$$

$$= \frac{1}{2} \left(\theta + \frac{1}{2} \sin 2\theta\right) + C$$

$$= \frac{1}{2} \theta + \frac{1}{4} \sin 2\theta + C$$
Apply Golden Rule

Apply Golden Rule

9.3 Integration of Functions of the form $\sec x \tan x$ and $\csc x \cot x$

Golden Rule:

When x is replaced by a linear form (px+q), we divide the answer by coefficient of x.

§10 Integration by Substitution

When the integration of f(x) cannot be obtained directly, we can apply the method of integration by substitution. A suitable substitution is introduced so that the f(x) can be reduced into one which is **similar to one of the standard forms**.

Let
$$I = \int f(x) dx$$

Differentiate w.r.t. x:

Since differentiation is a reverse process of integration.

$$\frac{\mathrm{d}I}{\mathrm{d}x} = \mathrm{f}(x)$$
.

Assume x is a function of u (a new variable) i.e. x = g(u). By applying chain rule, we have

$$\frac{\mathrm{d}I}{\mathrm{d}u} = \frac{\mathrm{d}I}{\mathrm{d}x} \cdot \frac{\mathrm{d}x}{\mathrm{d}u} = \mathrm{f}(x) \frac{\mathrm{d}x}{\mathrm{d}u}.$$

Integrate w.r.t. u:

$$I = \int f(x) \frac{dx}{du} du$$

Since integration is a reverse process of differentiation.

and we obtain

$$\int f(x) dx = \int f(g(u)) \frac{dx}{du} du$$

Using the substitution $u = x^3$, evaluate $\int_0^3 \frac{x^2}{1+x^6} dx$.

Solution:

$$\int_{0}^{3} \frac{x^{2}}{1+x^{6}} dx$$

$$= \int_{0}^{27} \frac{1}{1+u^{2}} \left(\frac{1}{3}\right) du$$

$$= \frac{1}{3} \int_{0}^{27} \frac{1}{1+u^{2}} du$$

$$= \frac{1}{3} \left[\tan^{-1} u \right]_{0}^{27}$$

$$= \frac{1}{3} \tan^{-1} (27)$$
MF27
Pg 4

Steps:

- (1) Using $u = x^3$ $\frac{du}{dx} = 3x^2$ $dx = \frac{1}{3x^2} du$
- (2) Replace expression using $u = x^3$ $\frac{1}{1+x^6} = \frac{1}{1+u^2}$
- (3) Replace limit using $u = x^3$ When x = 3, $u = 3^3 = 27$ When x = 0, $u = 0^3 = 0$
- Using the substitution $x = \sin \theta$, find $\int \sqrt{1 x^2} dx$ for $0 \le \theta \le \frac{\pi}{2}$.

Solution:

$$\int \sqrt{1-x^2} \, dx$$

$$= \int \sqrt{1-\sin^2\theta} \, (\cos\theta) \, d\theta$$

$$= \int (\cos\theta)(\cos\theta) \, d\theta \qquad \because 0 \le \theta \le \frac{\pi}{2}$$

$$= \int \cos^2\theta \, d\theta \qquad \qquad Double-angle formula (MF27 Pg 3)$$

$$= \frac{1}{2} \int (\cos 2\theta + 1) \, d\theta \qquad (MF27 Pg 3)$$

$$= \frac{1}{4} \sin 2\theta + \frac{1}{2}\theta + C$$

$$= \frac{1}{2} \sin \theta \cos \theta + \frac{1}{2}\theta + C$$

$$= \frac{1}{2} x \sqrt{1-x^2} + \frac{1}{2} \sin^{-1} x + C$$

- (1) Using $x = \sin \theta$ $\Rightarrow \frac{dx}{d\theta} = \cos \theta$ $dx = \cos \theta d\theta$
- (2): Replace expression using $x = \sin \theta$ $\sqrt{1 - x^2} = \sqrt{1 - \sin^2 \theta}$

(3) Replace the variable back to *x*. From the triangle,

$$\cos \theta = \frac{adjacent}{hypotenuse} = \frac{\sqrt{1 - x^2}}{1}$$

Useful strategy: Use right angle triangle to obtain exact trigo ratio.

§11 Integration by Parts

This method is usually used to integrate (i) a single function or (ii) product of 2 functions which cannot be integrated using any of the standard forms or using substitution.

For functions of the form f(x) = u.v where u and v are non-zero functions of x, we use integration by parts:

$$\int uv \, dx = u \left(\int v \, dx \right) - \int \frac{du}{dx} \left(\int v \, dx \right) dx \quad (\text{Keep Integrate} - \int \text{Differentiate Integrate})$$

Note:

1. When integrating a product of 2 functions, the function that cannot be directly integrated, is chosen as 'u' and the other which can be integrated as 'v'.

e.g.
$$\int x \tan^{-1} x \, dx$$
; $\int \sqrt{x} \ln 2x \, dx$

2. This method is useful in finding integrals of single functions which are differentiable but cannot be directly integrated. The integrand is chosen as 'u' and unity as 'v'.

e.g.
$$\int \ln x \, dx$$
; $\int \tan^{-1} x \, dx$; $\int \sin^{-1} x \, dx$

As a general rule, choose u (the one to keep) in the following order:

L - logarithmic functions	e.g.: $\ln x$, $\ln(2x-3)$
$oldsymbol{I}$ - inverse trigonometric functions	e.g.: $\sin^{-1}(x+1)$, $\tan^{-1} x$
$m{A}$ - algebraic functions	e.g.: 3, $4x^2 + 1$
T - trigonometric functions	e.g.: $\sin x$, $\cos 2x$
$m{E}$ - exponential functions	e.g.: e^{x} , e^{-2x}
Notes there are times when this rule can be	releved a combaninte antino a ^x sin u

Note: there are times when this rule can be relaxed e.g. when integrating $e^x \sin x$.

Replace variable back to x

Annex:

Proving of importance result in page 6:

In general, if
$$\int f(x) dx = F(x) + C$$
, then we have
$$\int f(px+q) dx = \frac{1}{p} F(px+q) + C.$$

$$\int f(px+q) dx = \frac{1}{p} F(px+q) + C.$$

$$\int f(px+q) dx$$

$$= \int f(u) \frac{1}{p} du$$

$$= \frac{1}{p} F(u) + C$$

$$= \frac{1}{p} F(px+q) + C$$

$$= \frac{1}{p} F(px+q) + C$$

$$Since \int f(x) dx = F(x) + C$$

$$(3) \text{ Replace}$$

Derivation of results in MF 27

Derivation of results marked with * is required in the A Level syllabus. (a denotes a positive constant.)

$$*\int \frac{1}{x^2 + a^2} dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right) + C$$

Let
$$y = \tan^{-1}\left(\frac{x}{a}\right)$$

$$\therefore \frac{x}{a} = \tan y$$

$$\frac{1}{a} = \sec^2 y \frac{dy}{dx}$$

$$\frac{dy}{dx} = \frac{1}{a \sec^2 y}$$

$$= \frac{1}{a\left(\left(\frac{x}{a}\right)^2 + 1\right)} \text{ since } \tan^2 y + 1 = \sec^2 y \text{ and } \frac{x}{a} = \tan y$$

$$= \frac{1}{a\left(\frac{x^2 + a^2}{a^2}\right)} = \frac{a}{x^2 + a^2}$$

Hence
$$\int \frac{a}{x^2 + a^2} dx = \tan^{-1} \left(\frac{x}{a}\right) + C$$

$$\Rightarrow \int \frac{1}{x^2 + a^2} dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right) + C$$
In particular, when $a = 1$, we have
$$\int \frac{1}{1 + x^2} dx = \tan^{-1} x + C$$
.

$$*\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \left(\frac{x}{a} \right) + C, |x| < a$$

Proof:

Let
$$y = \sin^{-1}\left(\frac{x}{a}\right)$$

$$\therefore \frac{x}{a} = \sin y$$

$$\frac{1}{a} = \cos y \frac{\mathrm{d}y}{\mathrm{d}x}$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{a\cos y}$$

$$= \frac{1}{a\sqrt{1-\left(\frac{x}{a}\right)^2}} \text{ since } \sin^2 y + \cos^2 y = 1 \text{ and } \frac{x}{a} = \sin y$$

$$=\frac{1}{a\sqrt{\frac{a^2-x^2}{a^2}}}$$

$$=\frac{1}{\sqrt{a^2-x^2}}$$

Hence
$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \left(\frac{x}{a}\right) + C.$$

In particular, when a = 1, we have $\int \frac{1}{\sqrt{1-x^2}} dx = \sin^{-1} x + C$.

For the rest of the formulae: Use the result $\int \frac{f'(x)}{f(x)} dx = \ln |f(x)| + C$.

$$| * \int \frac{1}{x^2 - a^2} \, dx = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + C, \ x > a$$

Proof:

$$\int \frac{1}{x^2 - a^2} dx = \int \frac{1}{(x+a)(x-a)} dx$$

$$= \frac{1}{2a} \int \left[\frac{1}{(x-a)} - \frac{1}{(x+a)} \right] dx$$

$$= \frac{1}{2a} \left[\ln|x-a| - \ln|x+a| \right] + C$$

$$= \frac{1}{2a} \ln\left| \frac{x-a}{x+a} \right| + C$$

$$|*\int \frac{1}{a^2 - x^2} dx = \frac{1}{2a} \ln \left| \frac{a + x}{a - x} \right| + C, |x| < a$$

Proof:

$$\int \frac{1}{a^2 - x^2} dx = \int \frac{1}{(a+x)(a-x)} dx$$

$$= \frac{1}{2a} \int \left[\frac{1}{(a+x)} + \frac{1}{(a-x)} \right] dx$$

$$= \frac{1}{2a} \left[\ln|a+x| - \ln|a-x| \right] + C = \frac{1}{2a} \ln\left| \frac{a+x}{a-x} \right| + C$$

$$\int \tan x \, \mathrm{d}x = \ln\left|\sec x\right| + C, \ \left|x\right| < \frac{1}{2}\pi$$

Proof:

$$\int \tan x \, dx = \int \frac{\sin x}{\cos x} \, dx$$

$$= -\int \frac{-\sin x}{\cos x} \, dx$$

$$= -\ln|\cos x| + C$$

$$= \ln|\cos x|^{-1} + C = \ln|\sec x| + C$$

$$\int \cot x \, dx = \ln \left| \sin x \right| + C, \ 0 < x < \pi$$

Proof:

$$\int \cot x \, dx = \int \frac{\cos x}{\sin x} dx = \ln |\sin x| + C$$

$$\int \csc x \, dx = -\ln \left| \cos \sec x + \cot x \right| + C, \ 0 < x < \pi$$

Proof:

$$\int \csc x \, dx = -\int -\cos \cot x \frac{\cos \cot x + \cot x}{\cos \cot x + \cot x} dx$$
$$= -\int \frac{-\cos \cot x - \csc^2 x}{\cos \cot x - \csc^2 x} dx$$
$$= -\ln |\cos \cot x| + C$$

$$\int \sec x \, dx = \ln \left| \sec x + \tan x \right| + C, \ \left| x \right| < \frac{1}{2} \pi$$

Proof:

$$\int \sec x \, dx = \int \sec x \frac{\sec x + \tan x}{\sec x + \tan x} dx$$
$$= \int \frac{\sec x \tan x + \sec^2 x}{\sec x + \tan x} dx = \ln |\sec x + \tan x| + C$$

H2 Mathematics (9758) Chapter 10 Integration Techniques Discussion Questions

Level 1

Integration – Reverse of Differentiation

1 Find $\frac{d}{d\theta}(\theta\cos\theta)$. Hence, find $\int \theta\sin\theta \,d\theta$.

Integration of Standard Functions

2 Find the following integrals:

$$\mathbf{(a)} \qquad \int \left(2\sqrt{\mathrm{e}^x} + 3\mathrm{e}^{5-3x}\right) \mathrm{d}x$$

(c)
$$\int \frac{(2x-5)(x+2)}{\sqrt{x}} dx$$

Integration involving the function and its derivative

Formula to memorise (not in MF27) and apply

(1) For
$$n \in \mathbb{R}$$
, $n \neq -1$, $\int f'(x) [f(x)]^n dx = \frac{[f(x)]^{n+1}}{n+1} + C$

(2) For
$$n \in \mathbb{R}$$
, $n = -1$, $\int f'(x) [f(x)]^{-1} dx = \int \frac{f'(x)}{f(x)} dx = \ln |f(x)| + C$

$$(3) \int f'(x) e^{f(x)} dx = e^{f(x)} + C$$

$$\mathbf{(a)} \quad \int x\sqrt{3-7x^2} \, \, \mathrm{d}x$$

$$(b) \qquad \int \frac{x}{2x^2 - 6} \, \mathrm{d}x$$

$$(\mathbf{c}) \qquad \int x^2 \mathrm{e}^{x^3 + 1} \mathrm{d}x$$

Integration of Rational Algebraic Functions (including MF27)

4 Find the following integrals:

$$(a) \int \frac{1}{3-4t^2} dt$$

(b)
$$\int \frac{1}{(x+3)(x+4)} dx$$

$$\mathbf{(c)} \qquad \int \frac{10}{x^2 - 2x + 11} \, \mathrm{d}x$$

Integration of Trigonometric Functions

$$5 \qquad (a) \int \sin^3 x \cos x \, dx$$

(b)
$$\int \sin^2 x \, \mathrm{d}x$$

Integration by substitution

6 Using the substitution
$$u = \sqrt{x}$$
 to find $\int \frac{1}{(1-x)\sqrt{x}} dx$.

Integration by Parts

(a)
$$\int (x+1)e^{-x}dx$$

(b)
$$\int x \sin 2x \, \mathrm{d}x$$

(c)
$$\int_{1}^{e} x \ln x \, dx$$

Level 2

Integration – Reverse of Differentiation

8 Find
$$\frac{d}{dx}(x^2e^{x+1})$$
. Hence, find $\int xe^x(x+2)dx$.

Integration involving the function and its derivative

Formula to memorise (not in MF27) and apply

(1) For
$$n \in \mathbb{R}$$
, $n \neq -1$, $\int f'(x) [f(x)]^n dx = \frac{[f(x)]^{n+1}}{n+1} + C$

(1) For
$$n \in \mathbb{R}$$
, $n \neq -1$, $\int f'(x) [f(x)]^n dx = \frac{[f(x)]^{n+1}}{n+1} + C$
(2) For $n \in \mathbb{R}$, $n = -1$, $\int f'(x) [f(x)]^{-1} dx = \int \frac{f'(x)}{f(x)} dx = \ln |f(x)| + C$
(3) $\int f'(x) e^{f(x)} dx = e^{f(x)} + C$

$$(3) \int f'(x) e^{f(x)} dx = e^{f(x)} + C$$

9 Find the following integrals:

(a)
$$\int \sin 2\theta \cos 2\theta \, d\theta$$

(b)
$$\int e^{\cos\frac{x}{6}} \sin\frac{x}{6} dx$$

$$(\mathbf{c}) \qquad \int \frac{\sin^{-1} x}{\sqrt{1 - x^2}} \, \mathrm{d}x$$

$$(\mathbf{d}) \quad \int \frac{1}{x(1+\ln 3x)} \, \mathrm{d}x$$

(e)
$$\int \frac{e^{-3x}}{(2 - e^{-3x})^3} dx$$

$$\mathbf{(f)} \qquad \int \frac{7x+3}{7x^2+6x} \, \mathrm{d}x$$

Golden Rule:

When x is replaced by a linear form (px+q), we divide by coefficient of x.

Integration of Rational Algebraic Functions (including MF27)

10 N2009/I/2

Find the exact value of p such that $\int_0^1 \frac{1}{4 - x^2} dx = \int_0^{\frac{1}{2p}} \frac{1}{\sqrt{1 - p^2 r^2}} dx.$ [5]

$$(a) \qquad \int \frac{6x^3}{3x^2 + 1} \, \mathrm{d}x$$

(b)
$$\int \frac{3x^2 + 2}{\sqrt{(x^3 + 2x - 8)}} \, \mathrm{d}x$$

$$(c) \qquad \int \frac{x+35}{x^2-25} \, \mathrm{d}x$$

$$(\mathbf{d}) \quad \int \frac{x-4}{x^2+6x+11} \, \mathrm{d}x$$

12 N2014/II/2

Using partial fractions, find

$$\int_0^2 \frac{9x^2 + x - 13}{(2x - 5)(x^2 + 9)} dx$$

Give your answer in the form $a \ln b + c \tan^{-1} d$, where a, b, c and d are rational numbers to be determined. [9]

Integration of Trigonometric Functions

13 Find the following integrals:

(a)
$$\int \sec^2 x + 2 \csc^2 \left(4x - \frac{\pi}{3} \right) dx$$
 (b) $\int \cos^2 2x + \tan^2 2x \ dx$

(c)
$$\int -\frac{1}{2} \sec\left(\frac{\pi}{6} - x\right) \tan\left(x - \frac{\pi}{6}\right) dx$$
 (d) $\int \frac{1}{1 + \cos 4x} dx$

(d)
$$\int \frac{1}{1+\cos 4x} \, \mathrm{d}x$$

Integration by substitution

14 Using the suggested substitution, find:

(a)
$$\int \tan^3 x \, dx$$
, let $u = \tan x$

(b)
$$\int \frac{1}{x^2 \sqrt{25 - x^2}} dx$$
, let $x = 5 \cos \theta$

(c)
$$\int \frac{1}{e^x + 2e^{-x}} dx$$
, let $u = e^x$

(d)
$$\int_{\pi/2}^{\pi} \frac{\sin \theta}{1 + \cos^2 \theta} d\theta, \text{ let } x = \cos \theta$$

Integration by parts

(a)
$$\int x^2 \cos x \, dx$$

$$(b) \qquad \int_{0}^{\frac{1}{\sqrt{2}}} x \sin^{-1}\left(x^2\right) \mathrm{d}x$$

(c)
$$\int e^{2x} \sin x \, dx$$

Level 3

2009/MJC/II/1 **16**

- Differentiate $e^{\cos x}$ with respect to x. **(i)** [1]
- Find $\int e^{\cos x} \sin 2x \, dx$. (ii) [3]

17 N2019/II/1

You are given that $I = \int x (1-x)^{\frac{1}{2}} dx$.

- Use integration by parts to find an expression for *I*. **(i)** [2]
- Use the substitution $u^2 = 1 x$ to find another expression for *I*. (ii) [2]
- (iii) Show algebraically that your answers to parts (i) and (ii) differ by a constant. [2]

Answ	nswer Key	
1	$\sin \theta - \theta \cos \theta + C'$ OR $\sin \theta - \theta \cos \theta - C$	
2	(a) $4e^{\frac{x}{2}} - e^{5-3x} + C$	
	(b) $\frac{4}{k} - k - 4 \ln k - 3$ $(k > 0)$	
	(c) $\frac{4}{5}x^{\frac{5}{2}} - \frac{2}{3}x^{\frac{3}{2}} - 20\sqrt{x} + C$	
3	(a) $-\frac{1}{21}(3-7x^2)^{\frac{3}{2}}+C$	
	(b) $\frac{1}{4} \ln 2x^2 - 6 + C$	
	(c) $\frac{1}{3}e^{x^3+1}+C$	
4	(a) $\frac{\sqrt{3}}{12} \ln \left \frac{\sqrt{3} + 2t}{\sqrt{3} - 2t} \right + C$	
	$\mathbf{(b)} \ln \left \frac{x+3}{x+4} \right + C$	
	$(\mathbf{c}) \sqrt{10} \tan^{-1} \left(\frac{x-1}{\sqrt{10}} \right) + C$	
5	$\mathbf{(a)} \ \frac{\sin^4 x}{4} + C$	
	$\mathbf{(b)} \ \frac{1}{2} \left(x - \frac{\sin 2x}{2} \right) + C$	
6	$\ln\left \frac{1+\sqrt{x}}{1-\sqrt{x}}\right +C$	

- (a) $-\frac{x+2}{a^x} + C$
 - **(b)** $\frac{1}{4}\sin 2x \frac{1}{2}x\cos 2x + C$
 - (c) $\frac{1}{4}$ (e² +1)
- $\frac{d}{dx}(x^2e^{x+1}) = xe^{x+1}(2+x); \frac{1}{e}(x^2e^{x+1}) + \frac{C}{e} \text{ OR } x^2e^x + B \text{ where } B = \frac{C}{e}$
- (a) $\frac{1}{4}\sin^2 2\theta + C$ OR $-\frac{1}{9}\cos 4\theta + C$
 - **(b)** $-6e^{\cos\frac{x}{6}} + C$
 - (c) $\frac{\left(\sin^{-1} x\right)^2}{2} + C$
 - (d) $\ln |1 + \ln 3x| + C$
 - (e) $-\frac{1}{6}(2-e^{-3x})^{-2}+C$

- 11 (a) $x^2 \frac{1}{3} \ln (3x^2 + 1) + C$
 - **(b)** $2(x^3+2x-8)^{\frac{1}{2}}+C$
 - (c) $4\ln|x-5|-3\ln|x+5|+C$ OR $\frac{1}{2}\ln|(x-5)(x+5)|+\frac{7}{2}\ln\left|\frac{x-5}{x+5}\right|+C$
 - (d) $\frac{1}{2} \ln \left(x^2 + 6x + 11 \right) \frac{7}{\sqrt{2}} \tan^{-1} \left(\frac{x+3}{\sqrt{2}} \right) + C$
- $\frac{3}{2}\ln\left(\frac{13}{45}\right) + \frac{8}{3}\tan^{-1}\left(\frac{2}{3}\right)$
 - $\therefore a = \frac{3}{2}, b = \frac{13}{45}, c = \frac{8}{3}, d = \frac{2}{3}$
- (a) $\tan x \frac{1}{2}\cot\left(4x \frac{\pi}{3}\right) + C$
 - **(b)** $\frac{1}{8}\sin 4x + \frac{1}{2}\tan 2x \frac{x}{2} + C$
 - $(\mathbf{c}) \frac{1}{2}\sec\left(\frac{\pi}{6} x\right) + C$
 - (d) $\frac{1}{4} \tan 2x + C$

- (a) $\frac{\tan^2 x}{2} + \ln \left|\cos x\right| + C$
 - **(b)** $-\frac{\sqrt{25-x^2}}{25x} + C$
 - $\mathbf{(c)} \ \frac{\sqrt{2}}{2} \tan^{-1} \left(\frac{\mathrm{e}^x}{\sqrt{2}} \right) + C$
- - **(b)** $\frac{\pi}{24} + \frac{\sqrt{3}}{4} \frac{1}{2}$
 - (c) $\frac{2}{5}e^{2x}\left(\sin x \frac{1}{2}\cos x\right) + C$
- **16** (i) $-e^{\cos x} \sin x$
- (ii) $-2e^{\cos x}\cos x + 2e^{\cos x} + C$ (i) $\frac{-2x}{3}(1-x)^{\frac{3}{2}} \frac{4(1-x)^{\frac{5}{2}}}{15} + C$ 17
 - (ii) $2\left[\frac{(1-x)^{\frac{5}{2}}}{5} \frac{(1-x)^{\frac{3}{2}}}{3}\right] + D$

H2 Mathematics (9758) Chapter 10 Integration Techniques Extra Practice Questions

1 2018/ACJC Prelim/1/6

Find

(a)
$$\int \left(\sin^{-1} 2x\right) \frac{x}{\sqrt{1-4x^2}} \, dx$$
. [4]

(b)
$$\int \frac{x-1}{x^2 + 2x + 6} \, \mathrm{d}x \,.$$
 [4]

2 2011/CJC Prelim/2/2 (modified)

Use partial fractions to evaluate $\int_0^1 \frac{2+10x}{(1+3x)(1+3x^2)} dx$, giving your answer in an exact form. [5]

3 2011/DHS Prelim/1/8 (modified)

(a) Express
$$\frac{x}{1-2x+x^2}$$
 in partial fractions. Hence, find $\int \frac{x}{1-2x+x^2} dx$. [3]

(b) Find

$$\mathbf{(i)} \quad \int \sin^{-1} x \, \mathrm{d}x, \tag{3}$$

(ii)
$$\int \frac{x^2}{x^2 - 2x + 3} dx$$
. [4]

4 2011/IJC Prelim/1/3

Using the substitution
$$x = \frac{1}{2}e^{u}$$
, find $\int \frac{\left[\ln(2x)\right]^{2}}{x\left\{25 - 2\left[\ln(2x)\right]^{2}\right\}} dx$. [5]

5 2015/MI Prelim/1/2

Find

$$(i) \qquad \int \frac{\sin x}{1 + 2\cos x} \, \mathrm{d}x,, \tag{2}$$

(ii)
$$\int_0^{\frac{\pi}{2}} e^x \cos 2x \, dx$$
. [4]

6 2015/ACJC Prelim/1/1

Use the substitution $u = 3 - x^2$ to find $\int x^3 \sqrt{3 - x^2} dx$. [3]

7 2015/NJC Prelim/2/1

- (a) Use the substitution $x = 3\tan\theta$ to find the exact value of $\int_{\sqrt{3}}^{3} \frac{1}{x^2 \sqrt{x^2 + 9}} dx$ [4]
- (b) Using integration by parts, find $\int \ln(x^2 + 4) dx$. [4]

8 2015/PJC Prelim/1/9

- (a) (i) By considering the derivative of e^{x^2} , find $\int xe^{x^2} dx$. [2]
 - (ii) Hence, find $\int x^3 e^{x^2} dx$. [3]
- **(b)** Use the substitution $u = \sin^2 x$ to find $\int \sqrt{\frac{1-u}{u}} \, du$. [5]

9 2017/JJC Prelim/1/2 modified

- (a) Find $\int \sin(3\theta)\cos(3\theta) d\theta$. [2]
- **(b)** Use the substitution $\theta = \sqrt{x}$ to find the exact value of $\int_{\sqrt{\pi/2}}^{\sqrt{\pi}} \theta^3 \cos(\theta^2) d\theta$. [5]

10 2017/NYJC Prelim/1/4

- (i) By using the substitution $x-1=3\tan\theta$, find $\int \frac{1}{\sqrt{x^2-2x+10}} dx$. [5]
- (ii) By expressing x + 3 = A(2x 2) + B, find $\int \frac{x+3}{\sqrt{x^2 2x + 10}} dx$. [3]

Answer Key

$$\frac{1}{(a)} \left[-\frac{1}{4} \left(\sin^{-1} 2x \right) \sqrt{1 - 4x^2} \right] + \frac{1}{2} x + C \quad (b) \quad \frac{1}{2} \ln \left| x^2 + 2x + 6 \right| - \frac{2}{\sqrt{5}} \tan^{-1} \left(\frac{x + 1}{\sqrt{5}} \right) + C$$

$$\frac{2}{(a)-\frac{1}{6}\ln 4 + \frac{\pi}{3}}$$

3 (a)
$$\ln |1-x| + \frac{1}{(1-x)} + C$$

(b)(i)
$$x\sin^{-1}x + \sqrt{1-x^2} + C$$

(b)(ii)
$$x + \ln |x^2 - 2x + 3| - \frac{1}{\sqrt{2}} \tan^{-1} \frac{x - 1}{\sqrt{2}} + C$$

$$\begin{vmatrix}
4 & -\frac{1}{2} \ln(2x) - \frac{5}{2\sqrt{2}} \ln \left| \frac{5 + \sqrt{2} \ln(2x)}{5 - \sqrt{2} \ln(2x)} \right| + c
\end{vmatrix}$$

5
$$\left(i\right)\frac{1}{3}\left(1+x^2\right)^{\frac{3}{2}}+c \left(ii\right)-\frac{1}{5}\left(e^{\frac{\pi}{2}}+1\right)$$

$$\frac{1}{5}(3-x^2)^{\frac{5}{2}}-(3-x^2)^{\frac{3}{2}}+c$$

7 (a)
$$\frac{2-\sqrt{2}}{9}$$
 (b) $x \ln(x^2+4) - 2x + 4 \tan^{-1}(\frac{x}{2}) + c$

8 (a)(i)
$$\frac{1}{2}e^{x^2} + C$$
 (a)(ii) $\frac{1}{2}x^2e^{x^2} - \frac{1}{2}e^{x^2} + C$ (b) $\sqrt{u - u^2} + \sin^{-1}\sqrt{u} + C$

9 (a)
$$-\frac{1}{12}\cos 6\theta + C$$
 (b) $-\frac{1}{2} - \frac{\pi}{4}$

10 (i)
$$\ln \left| \frac{\sqrt{x^2 - 2x + 10}}{3} + \frac{x - 1}{3} \right| + C$$

(ii)
$$\sqrt{x^2 - 2x + 10} + 4 \ln \left| \frac{\sqrt{x^2 - 2x + 10}}{3} + \frac{x - 1}{3} \right| + C$$