Natural homology ICALP track B, Kyoto

Jérémy Dubut (LSV, ENS Cachan, France)

Eric GOUBAULT (LIX, Ecole Polytechnique, France)

Jean GOUBAULT-LARRECQ (LSV, ENS Cachan, France)

9th July, 2015

Homotopy, dihomotopy and directed homology

Algebraic topology

SEE WIKIPEDIA

Objective

Objective:

Compare spaces with a notion of order up to continuous deformation that preserves this order

Problem coming from:

- geometric semantics of truly concurrent systems
 - PV-programs [Dijkstra 68]
 - scan/update [Afek et al. 90]
 - higher dimensional automata [Pratt 91]
- theory of relativity [Dodson, Poston 97]

Non directed case: algebraic topology

Non directed case: algebraic topology

Compare spaces with a notion of order up to continuous deformation that preserves this order

Homology [Poincaré 1895] which is:

- sound (invariant of homotopy)
- partially complete [Hurewicz 52, Whitehead 49]
- computable [Poincaré 1900]
- ullet modular (homology can be expressed from homology of simpler spaces [Mayer, Vietoris 30])

Dihomotopies

Dipaths = **increasing** continuous functions from [0,1] to X

2 dipaths are **di**homotopic = you can deform continuously one into the other **while staying a dipath**

(di)homotopic

non (di)homotopic

Homotopy vs dihomotopy

Fahrenberg's matchbox [Fahrenberg 04]

Homotopy vs dihomotopy

homotopic...

Homotopy vs dihomotopy

... but not dihomotopic

Related work contribution

Candidates of directed homology:

- past and future homologies [Goubault 95]
- ordered homology groups [Grandis 04]
- directed homology via ω -categories [Fahrenberg 04]
- homology graph [Kahl 13]

Not fine enough: do not distinguish Fahrenberg's matchbox from a point

Our contribution (1/4):

A directed homology fine enough to detect failure of dihomotopy, **natural homology**

II. Natural Homology

Trace spaces

dipath = continuous increasing map from [0,1] to X

trace = dipath modulo reparametrization

Trace space from a to b [Raussen 09]

 $T(X)(a,b) = \{\text{traces from } a \text{ to } b\}$ with compact open topology

A first idea

Not_so_good directed homology:

$$Not_so_good(X) = classical homology of T(X)(a, b)$$

$$A = (U \parallel S) \bullet (U.S \parallel U.S)$$
 $B = U.U \parallel S.S$ $T(A)(a,b) \simeq 6 \ point \ space \simeq T(B)(a,b)$ Not so $good(A) \simeq \mathbb{Z}^6 \simeq Not \ so \ good(B)$

A first (not so) bad idea

make
$$a, b$$
 vary $T(A)(a,b')\simeq 4$ point space $Not_so_good(A)\simeq \mathbb{Z}^4$

no
$$a',\ b'$$
 such that $T(B)(a',b')\simeq 4$ point space $ext{Not_so_good}(B)\simeq \mathbb{Z}^4$

Natural homology

 $\mathcal{F}_X = \text{category whose}$:

- objects are traces
- morphisms are extensions

Natural homology:

functor
$$\overrightarrow{H}_n(X): \mathcal{F}_X \longrightarrow \mathbf{Ab}$$

$$(a \xrightarrow{\gamma} b) \longmapsto H_{n-1}(T(X)(a,b))$$

 $(H_{n-1} = \text{classical homology})$

- \mathcal{F}_X = category of factorizations [Mac Lane 71]
- $\overrightarrow{H}_n(X)$ = natural system [Leech 73, Baues, Wirsching 85]

Example : first natural homology of a + b

Natural homology on Fahrenberg's matchbox

- 2 dipaths non dihomotopic
 - \Rightarrow $T(X)(a,b) \simeq 2$ point space
 - $\Rightarrow H_0(T(X)(a,b)) \simeq \mathbb{Z}^2$
 - $\Rightarrow \overrightarrow{H}_1(X)$ not \mathbb{Z} everywhere
 - ⇒ natural homology detects failure of dihomotopy in Fahrenberg's matchbox

Ш.

Comparison of natural systems

How to compare natural systems?

$$\overrightarrow{H}_n(A) = \overrightarrow{H}_n(B) \Rightarrow A = B$$
, modulo isomorphism

Our contribution (2/4):

We define a notion of bisimilarity for natural systems

Similar idea in [Fiore 00] for functorial models of concurrent computation

Bisimulation of functors

Bisimulation between $F: C \longrightarrow \mathbf{Ab}$ and $G: D \longrightarrow \mathbf{Ab}$ = set R of pairs (c, d) such that :

- c is an object of C
- d is an object of D

satisfying:

• for every object c of C, there exists d such that $(c, d) \in R$

•

$$(c,d) \in R$$

$$c \qquad d$$

$$i \downarrow \qquad \qquad \downarrow j$$

$$c' \qquad d'$$

$$(c',d') \in R$$

Bisimulation of functors

Bisimulation between $F: C \longrightarrow \mathbf{Ab}$ and $G: D \longrightarrow \mathbf{Ab}$ = set R of triples (c, η, d) such that :

- c is an object of C
- d is an object of D
- $\eta: F(c) \longrightarrow G(d)$ is an isomorphism of groups

satisfying:

• for every object c of C, there exists d and η such that $(c, \eta, d) \in R$

•

$$(c, \eta, d) \in R$$

$$c \quad Fc \xrightarrow{\eta} Gd \quad d$$

$$i \downarrow Fi \downarrow \qquad \qquad Gj \quad j$$

$$c' \quad Fc' \xrightarrow{\eta'} Gd' \quad d'$$

$$(c', \eta', d') \in R$$

Example

IV.

Computability, invariance by subdivision

Bisimilarity type of natural homology

Natural homology = uncountable, not computable

Our contribution (3/4):

When X is finitely presented, we can compute a finite natural system bisimilar to $\overrightarrow{H}_n(X)$.

Discrete natural homology

X presented by a finite cubical complex \simeq glueing of cubes of unit length in \mathbb{R}^n

discrete trace = trace which is a glueing of segments joining center of cubes

 f_X = category of discrete traces and extensions by discrete traces

Discrete natural homology $\overrightarrow{h}_n(X)$:

functor
$$\overrightarrow{h}_n(X): (f_X) \longrightarrow \mathbf{Ab}$$

$$(a \xrightarrow{\gamma} b) \longmapsto H_{n-1}(T(X)(a,b))$$

Computability

Theorem:

Given a finite cubical complex X, $\overrightarrow{h}_n(X)$ is :

- computable
- bisimilar to $\overrightarrow{H}_n(X)$

Proof:

• Carrier [Fajstrup05] $(a \xrightarrow{\gamma} b) \mapsto$ trace drawn by joining centers of cubes traversed by γ

Carrier

- We exhibit a **bisimulation** between γ and $Carrier(\gamma)$
- ... compatible with morphisms η , F(i), F(j) in **Ab** (not shown here)

Proof

Proof

Invariance by subdivision

Our contribution (4/4) — Corollary :

 \overrightarrow{H} and \overrightarrow{h} are invariant by subdivision.

 \simeq invariance by action refinement [Goltz, van Glabbeek 89]

Conclusion

Our contributions:

- definition of the first satisfactory directed homology, natural homology
- comparison of natural systems by bisimilarity
- definition of a computable natural system bisimilar to natural homology,
 discrete natural homology
- invariance by subdivision

Conclusion

Our contributions:

- definition of the first satisfactory directed homology, natural homology
- comparison of natural systems by bisimilarity
- definition of a computable natural system bisimilar to natural homology,
 discrete natural homology
- invariance by subdivision

ご静聴ありがとうございました