I. Introduction to \mathbb{R}^n : Its algebra, geometry

1. Consider the weather at any place on the earth at one instance. Weather at a place (approximately) constitutes of three components: the temperature, pressure and the humidity at that place. Also, when we say "a place", it can be precisely described by a latitude and a longitude. In this form, the weather is a "function" having three component functions namely, the temperature, pressure and the humidity, each of which in turn is a real valued function of two independent variables, the latitude and the longitude.

```
weather(latitude, longitude) = (temperature(lat., long.), pressure(lat., long.), humidity(lat., long.))
```

- 2. The input space to the weather function was two independent real numbers, the latitude and the longitude, although restricted to a range.
- 3. More generally, the input space can be (a restricted range or the entire set of) n independent real variables. In order to model this space, we define the following.
- 4. \mathbb{R}^n is the set of all ordered *n*-tuples (x_1, x_2, \dots, x_n) , where $x_i \in \mathbb{R}$. A point in \mathbb{R}^n is denoted by bold letters \mathbf{x}, \mathbf{y} etc..
- 5. The real numbers $x_1, x_2, \ldots x_n$ are called the components or coordinates of the point $(x_1, x_2, \ldots, x_n) \in \mathbb{R}^n$. In particular x_i is the i^{th} component or coordinate of this point.
 - (a) \mathbb{R}^2 is a model to give (names) co-ordinates to the plane using rectangular co-ordinates x and y. Picture of the xy- plane and the geometric significance of the numbers x and y for a given point.
 - (b) \mathbb{R}^3 is a model to give co-ordinates to the 3-D space using the rectangular co-ordinates x, y and z. Picture of the xyz- space and the geometric significance of the numbers x, y and z for a given point.
 - (c) Analogously, \mathbb{R}^n is a model to give co-ordinates to the *n*-dimensional space.
- 6. A vector is a quantity having a magnitude and direction.
- 7. \mathbb{R}^n is also used to model the set of all vectors at a given point in the point space \mathbb{R}^n .
- 8. For each $\mathbf{x} \in \mathbb{R}^n$ there is a set $\mathbb{R}^n_{\mathbf{x}}$ of all possible vectors based at \mathbf{x} . We call the elements of $\mathbb{R}^n_{\mathbf{x}}$ as vectors based at \mathbf{x} .
- 9. Axiom: For \mathbf{x}, \mathbf{y} in the point space \mathbb{R}^n , we will make no distinction between $(x_1, x_2, \dots, x_n) \in \mathbb{R}^n_{\mathbf{x}}$ and $(x_1, x_2, \dots, x_n) \in \mathbb{R}^n_{\mathbf{y}}$. Henceforth, we will equate this vector $(x_1, x_2, \dots, x_n) \in \mathbb{R}^n_{\mathbf{x}}$ with the vector $(x_1, x_2, \dots, x_n) \in \mathbb{R}^n_{\mathbf{y}}$ and denote either of the spaces by just \mathbb{R}^n .
- 10. We will treat the points in the point space \mathbb{R}^n also as "position vectors". Denote this by an arrow starting from origin (the point $(0,0,\ldots,0) \in \mathbb{R}^n$), and ending at the given point.
- 11. Operations of addition and scaling in \mathbb{R}^n .
 - (a) Addition: $(x_1, x_2, \dots, x_n) + (y_1, y_2, \dots, y_n) = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)$
 - (b) Scaling: $\alpha(x_1, x_2, \dots, x_n) = (\alpha x_1, \alpha x_2, \dots, \alpha x_n)$
- 12. Geometric significance of addition and scaling of vectors in \mathbb{R}^2 and \mathbb{R}^3 .
- 13. The dot product of vectors in \mathbb{R}^n : $(x_1, x_2, ..., x_n) \cdot (y_1, y_2, ..., y_n) = x_1y_1 + x_2y_2 + ... + x_ny_n$
- 14. Geometric significance of dot product of vectors in \mathbb{R}^2 and \mathbb{R}^3 .
- 15. The length of a vector or Euclidean norm of a vector \mathbf{x} in \mathbb{R}^n : $\sqrt{\mathbf{x} \cdot \mathbf{x}}$. This is denoted by $\|\mathbf{x}\|$.
- 16. The Cauchy Schwarz inequality: For vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, $|\mathbf{x} \cdot \mathbf{y}| \le ||\mathbf{x}|| ||\mathbf{y}||$. Proof: For every real t, $||\mathbf{x} t\mathbf{y}||^2 \ge 0$. So $(\mathbf{x} t\mathbf{y}) \cdot (\mathbf{x} t\mathbf{y}) \ge 0$ i.e. $t^2(\mathbf{y} \cdot \mathbf{y}) 2t\mathbf{x} \cdot \mathbf{y} + \mathbf{y} \cdot \mathbf{y} \ge 0$. This implies that the discriminant of the expression of the L.H.S. of the inequality is ≤ 0 . This gives $4(\mathbf{x} \cdot \mathbf{y})^2 \le 4||\mathbf{x}||^2||\mathbf{y}||^2$, which implies $|\mathbf{x} \cdot \mathbf{y}| \le ||\mathbf{x}|||\mathbf{y}||$.

- 17. The (Euclidean) distance d between two points \mathbf{x} and \mathbf{y} in the point space \mathbb{R}^n is now the length of the vector $\mathbf{x} \mathbf{y}$ i.e. $d(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} \mathbf{y}\| = \sqrt{(\mathbf{x} \mathbf{y}) \cdot (\mathbf{x} \mathbf{y})}$. This gives the familiar formula for the distance between two points $\mathbf{x} = (x_1, x_2, \dots, x_n)$ and $\mathbf{y} = (y_1, y_2, \dots, y_n)$ as $\sqrt{(x_1 y_1)^2 + (x_2 y_2)^2 + \dots + (x_n y_n)^2}$
- 18. The triangle inequality: For vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$.
- 19. In \mathbb{R}^2 , a circle with center \mathbf{x} and radius r is the set $\{\mathbf{y} \in \mathbb{R}^2 : ||\mathbf{y} \mathbf{x}|| = r\}$.
- 20. In \mathbb{R}^3 , a sphere with center **x** and radius r is the set $\{\mathbf{y} \in \mathbb{R}^3 : ||\mathbf{y} \mathbf{x}|| = r\}$.
- 21. The length of a straight line segment from one point \mathbf{x} to another point \mathbf{y} can be computed by using the length of the change vector $\mathbf{x} \mathbf{y}$. What about the length of a curve? We will see how to do this later.
- 22. Angle θ between two vectors \mathbf{x} and \mathbf{y} at a given point is given by $\cos \theta = \frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|}$
- 23. With distance and angle at hand, areas of triangles, polygons in \mathbb{R}^2 and \mathbb{R}^3 , and volumes of polyhedrons in \mathbb{R}^3 , can be computed. What about the area of a sphere? or a more irregular surface in \mathbb{R}^3 ? We will see how to do this later.

II. Subsets of \mathbb{R}^n

- 1. Definition: A sequence in \mathbb{R}^n is a function $f: \mathbb{N} \to \mathbb{R}^n$.
- 2. For each $k \in \mathbb{N}$, $f(k) \in \mathbb{R}^n$ is written as $\mathbf{x}(k)$ and the sequence itself is denoted by $(\mathbf{x}(k))$. Note that $\mathbf{x}(k) = (x_1(k), x_2(k), \dots, x_n(k))$. So $x_i(k)$ is a sequence of real numbers, called the i^{th} component sequence of the sequence $(\mathbf{x}(k))$.
- 3. An example of a sequence in \mathbb{R}^2 is $(\frac{1}{k}, 3 + \frac{k}{k^2+1})$. Here $(\frac{1}{k})$ is the first component sequence and $(3 + \frac{k}{k^2+1})$ is the second component sequence. We note that both of these sequences are convergent sequences in \mathbb{R} .
- 4. Definition: A sequence $(\mathbf{x}(k))$ in \mathbb{R}^n is said to converge to \mathbf{x} in \mathbb{R}^n , if for every given $\epsilon > 0$ there is a corresponding natural number N such that $\|\mathbf{x}(k) \mathbf{x}\| < \epsilon$ for all $k \geq N$.
- 5. Proposition: A sequence $(\mathbf{x}(k))$ in \mathbb{R}^n converges to \mathbf{x} in \mathbb{R}^n if and only if the i^{th} component sequence $(x_i(k))$ of the sequence $(\mathbf{x}(k))$ converges to the i^{th} component x_i of \mathbf{x} for every i such that $1 \leq i \leq n$.

Proof: Given $|x_i(k) - x_i|^2 \le \sum_{j=1}^n |x_j(k) - x_j|^2$ gives the proof in one direction. In the other direction, given $\epsilon > 0$, there is an N_i for the i^{th} component sequence, such that the WC holds. Use the max of N_i , so that the WC holds uniformly for all i. Now prove convergence.

- 6. Let ϵ be a positive real number. An ϵ -ball centered at $\mathbf{x} \in \mathbb{R}^n$ is the set $\{\mathbf{y} \in \mathbb{R}^n : \|\mathbf{y} \mathbf{x}\| < \epsilon\}$. This will be denoted by $B_{\epsilon}(\mathbf{x})$. This is also referred to as the ϵ -neighborhood of \mathbf{x} .
- 7. A subet S of \mathbb{R}^n is said to be bounded if there is a real number M such that $\|\mathbf{x}\| \leq M$ for every $\mathbf{x} \in S$. If there is no such number M for a set S, then we say that the set is unbounded. In other words, a set is unbounded if for every real number r, there is a $\mathbf{x} \in S$ such that $\|\mathbf{x}\| > r$.
- 8. Examples of bounded sets: unit disk.
- 9. Examples of unbounded sets: \mathbb{R}^n itself is unbounded, horizontal strips, vertical strips, (range of) elements of a sequence, at-least one of whose components diverges to ∞ .
- 10. Closed sets: If every convergent sequence in the set, converges to a point in the set, then we say the set is closed. Eg: Closed unit disk, rectangular strips, infinite and finite lines etc. in \mathbb{R}^2 , closed boxes etc. in \mathbb{R}^3 .
- 11. Compact sets: A subset of \mathbb{R}^n is compact if it is both closed and bounded.
- 12. Bolzano-Weierstrass theorem: Suppose that A is a closed and bounded set in \mathbb{R}^n . Every sequence in A has a subsequence that converges to a point in A. Idea of proof.