

Mesh Simplification

Scientific Visualization Professor Eric Shaffer

Acknowledgements

Slides based on presentation by Professor Mark Pauly of ETH Zurich

http://www.pmp-book.org/

Surface Meshes often Overtesselated

Oversampled 3D scan data

Surface Meshes often Overtessellated

Overtessellation: E.g. iso-surface extraction

- Large polygon counts can make applications non-performant
- Problematic for interactive visualization

Multi-resolution Hierarchies

- Construct multiple versions of mesh
 - Varying polygon count
- Multi-resolution hierarchies enable
 - efficient geometry processing
 - level-of-detail (LOD) rendering

Applications

Adaptation to hardware capabilities

Size-Quality Tradeoff

Problem Statement

- Given: $\mathcal{M} = (\mathcal{V}, \mathcal{F})$
- Find: $\mathcal{M}' = (\mathcal{V}', \mathcal{F}')$ such that
 - 1. $|\mathcal{V}'| = n < |\mathcal{V}|$ and $||\mathcal{M} \mathcal{M}'||$ is minimal, or
 - 2. $\|\mathcal{M} \mathcal{M}'\| < \epsilon$ and $|\mathcal{V}'|$ is minimal

Problem Statement

- Given: $\mathcal{M} = (\mathcal{V}, \mathcal{F})$
- Find: $\mathcal{M}' = (\mathcal{V}', \mathcal{F}')$ such that
 - 1. $|\mathcal{V}'| = n < |\mathcal{V}|$ and $||\mathcal{M} \mathcal{M}'||$ is minimal, or
 - 2. $\|\mathcal{M} \mathcal{M}'\| < \epsilon$ and $|\mathcal{V}'|$ is minimal

→ look for sub-optimal solution

Mesh Simplification: Vertex Clustering

- Cluster Generation
- Computing a representative
- Mesh generation
- Topology changes

- Cluster Generation
 - Uniform 3D grid
 - Map vertices to cluster cells
- Computing a representative
- Mesh generation
- Topology changes

- Cluster Generation
 - Hierarchical approach
 - Top-down or bottom-up
- Computing a representative
- Mesh generation
- Topology changes

- Cluster Generation
- Computing a representative
 - Average/median vertex position
 - Error quadrics
- Mesh generation
- Topology changes

Computing a Representative

Average vertex position → Low-pass filter

Computing a Representative

Median vertex will be a vertex of the original mesh closest to the average position of the vertices in the cluster.

Median vertex position → Sub-sampling

Computing a Representative

Error quadrics

Error Quadrics

Squared distance to plane

$$p = (x, y, z, 1)^T, q = (a, b, c, d)^T$$

$$dist(q,p)^2 = (q^T p)^2 = p^T (qq^T) p =: p^T Q_q p$$

Using implicit form of a plane equation ax+by+cz+d=0

$$Q_q = \left[egin{array}{cccc} a^2 & ab & ac & ad \ ab & b^2 & bc & bd \ ac & bc & b^2 & cd \ ad & bd & cd & d^2 \ \end{array}
ight]$$

Error Quadrics

Sum distances to vertex' planes

$$\sum_{i} dist(q_i, p)^2 = \sum_{i} p^T Q_{q_i} p = p^T \left(\sum_{i} Q_{q_i}\right) p =: p^T Q_p p$$

Point that minimizes the error

$$\begin{bmatrix} q_{11} & q_{12} & q_{13} & q_{14} \\ q_{21} & q_{22} & q_{23} & q_{24} \\ q_{31} & q_{32} & q_{33} & q_{34} \\ 0 & 0 & 0 & 1 \end{bmatrix} p^* = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

You can compute the sum of squared distances from p to N planes using a single 4x4 matrix

You simply sum up the N matrices $\,Q_{q_i}\,$

component-wise and use it as shown here.

Comparison

- Cluster Generation
- Computing a representative
- Mesh generation
 - Clusters $p \Leftrightarrow \{p_0,...,p_n\}, q \Leftrightarrow \{q_0,...,q_m\}$
 - Connect (p,q) if there was an edge (p_i,q_j)
- Topology changes

- Cluster Generation
- Computing a representative
- Mesh generation
- Topology changes
 - If different sheets pass through one cell
 - Not manifold

Incremental Simplification: Edge Collapse

- Merge two adjacent triangles
- Define new vertex position

Error Metrics

- Error quadrics [Garland, Heckbert 97]
 - Squared distance to planes at vertex
 - Can iteratively pick edge collapse that induces least error
 - Update error quadrics at each iteration

Comparison

- Vertex clustering
 - fast, but difficult to control simplified mesh
 - topology changes, non-manifold meshes
 - global error bound, but often not close to optimum
- Iterative simplification with quadric error metrics
 - good trade-off between mesh quality and speed
 - explicit control over mesh topology
 - restricting normal deviation improves mesh quality

Out-of-core Decimation

- Handle very large data sets that do not fit into main memory
- Key: Avoid random access to mesh data structure during simplification
- Examples
 - Garland, Shaffer: A Multiphase Approach to Efficient Surface Simplification,
 IEEE Visualization 2002
 - Wu, Kobbelt: A Stream Algorithm for the Decimation of Massive Meshes,
 Graphics Interface 2003

Multiphase Simplification

- 1. Phase: Out-of-core clustering
 - compute accumulated error quadrics and vertex representative for each cell of uniform voxel grid
- 2. Phase: In-core iterative simplification
 - use accumulated quadrics from clustering phase
 - iteratively contract edge of smallest cost
 - → achieves a coupling between the two phases

Multiphase Simplification

Out-of-core Decimation

Streaming approach based on edge collapse operations using QEM

 Pre-sorted input stream allows fixed-sized active working set independent of input and output

model complexity

See also Martin Isenburg, Peter Lindstrom: Streaming Meshes. IEEE Visualization 2005

