1. Multi source aggregated TCP Algorithm

Let us consider a binary classification problem, and suppose we have a training dataset Z and external test data set X, or we randomly partition the given dataset into training (80%) and external test set (20%). The algorithm for aggregated TCP from multiple sources is as follows (see Figure 1).

- 1. The training data set is randomly split into K parts (disjointly) with varying sizes. For example, Let $Z = \{z_1, ..., z_n\}$ be the data set, then we divide the dataset into $S_1, ..., S_K$ such that $Z = \bigcup_{i=1}^K S_i, k_i = |S_i|$ and $n = k_1 + ... + k_K$.
- 2. We compute p-values using (X, S_i) for each S_i , say p_i for each class, then we finally aggregate the k, p-values (weighted average).
- 3. We repeat the step 1 and step 2 with different values of K and $k_i's$ say for q times.
- 4. Then we analyze the q results obtained (this part is not clear yet).

```
Algorithm 1: Multi source aggregated TCP
Input: (training dataset:Z, test dataset:X, label set:Y, a
 nonconformity measure:\mathcal{A})
Output: Aggregated p-values
Initialization;
Unequal size partition: Partition training.data randomly and
 unequally into K parts, S_1, ..., S_K;
Steps;
for each S_i, i \in \{1, ..., K\} do
    for each observation x_i \in X do
       Compute p-values by using TCP algorithm:
       PValues_i = \mathbf{TCP}(S_i, x_i, Y, A);
   end
end
Aggregate PValues_i from various sources into a set p-values
return p-values
```


Figure 1: Multi source aggregated TCP Algorithm