Lecture 2.1: Linear transformations

Optimization and Computational Linear Algebra for Data Science

Léo Miolane

Contents

1. Definition of a linear transformation

2. Properties of linear transformations

Definition

Definition

Examples

You already know some linear transformations from high-school!

Symmetry	Rotation
----------	----------

Definition 2/8

Definition

Symmetries (about a line passing through the origin) and rotations (about the origin) are mappings

$$L: \mathbb{R}^2 \to \mathbb{R}^2$$

$$v \mapsto L(v),$$

that are "linear":

Definition

A function $L: \mathbb{R}^m \to \mathbb{R}^n$ is linear if

- 1. for all $v \in \mathbb{R}^m$ and all $\alpha \in \mathbb{R}$ we have $L(\alpha v) = \alpha L(v)$ and
- 2. for all $v, w \in \mathbb{R}^m$ we have L(v+w) = L(v) + L(w).

Definition 3

Examples of linear maps

$$\begin{array}{cccccc} & L: & \mathbb{R}^2 & \rightarrow & \mathbb{R}^2 \\ & (x_1,x_2) & \mapsto & (2x_1,x_2) \end{array} \quad \text{is linear}$$

$$\begin{array}{ccccccc} & M: & \mathbb{R}^3 & \to & \mathbb{R}^2 \\ & (x_1,x_2,x_3) & \mapsto & (x_1+x_3,2x_2) \end{array} \text{ is linear }$$

Definition 4

An example of a non-linear map

The function

 $F: \mathbb{R} \to \mathbb{R}$

is **not** linear.

Definition 5/

Properties

Composition of linear maps

Proposition

If $L:\mathbb{R}^m\to\mathbb{R}^n$ and $M:\mathbb{R}^n\to\mathbb{R}^k$ are both linear, then the composite function

$$M \circ L : \mathbb{R}^m \to \mathbb{R}^k$$
 $v \mapsto M(L(v))$

is also linear.

Proof.

Properties

Basic properties

Proposition

If $L: \mathbb{R}^m \to \mathbb{R}^n$ is linear, then

- L(0) = 0.
- $\qquad \qquad L\Big(\sum_{i=1}^k \alpha_i v_i\Big) = \sum_{i=1}^k \alpha_i L(v_i) \text{, for all } \alpha_i \in \mathbb{R}, v_i \in \mathbb{R}^m.$

Proof.

Properties 8/