Supplementary Results of the Two Phase Cooperative Learning for Supervised Dimensionality Reduction

Ioannis A. Nellas^a, Sotiris K. Tasoulis^a, Spiros V. Georgakopoulos^b and Vassilis P. Plagianakos^a

^aDepartment of Computer Science and Biomedical Informatics, University of Thessaly, Greece ^bDepartment of Mathematics, University of Thessaly, Greece

A Model architecture per dataset

Let $C_{i,j,k,l}$ along with $CT_{i,j,k,l}$ denote a convolutional 2D and a transpose convolutional 2D layer respectively, utilizing i filters, a $j \times j$ kernel, $k \times k$ stride and l padding. Let Dr(p) denote a dropout layer with a probability of an element to be zeroed equal to p, and B representing a batch normalization layer. Assume, that ReLU and Sigmoid reflect the ReLU and Sigmoid activation functions, respectively. Suppose, that $CB_{r,i,j,k,l}$ corresponds to $C_{i,j,k,l} - B - ReLU$ repeated r times. Additionally, let D(i) denote a dense layer composed out of i neurons and a linear activation function. Assume, that F denotes a flattening layer and R reflecting a reshape layer to 3D. Finally, suppose, that K corresponds to the dimensionality of the latent representations. The model architecture of the Two Phase Supervised Encoder for each employed dataset is presented thoroughly in Table 1.

Table 1: The structure of the Two Phase Supervised Encoder for each dataset.

MNIST and Fashion MNIST

Encoder

$$C_{256,3,2,1} - B - Dr(0.3) - ReLU - C_{128,3,2,1} - B - Dr(0.3) - ReLU - F - D(K)$$

Decoder

$$D\left(6272\right)-ReLU-R-CT_{128,3,2,1}-B-ReLU-CT_{256,3,2,1}-B-ReLU-CT_{1,3,1,1}-Sigmoid$$

Separator

$$D(64) - Dr(0.5) - ReLU - D(10)$$

SVHN

Encoder

$$C_{256,3,2,1} - B - Dr\left(0.3\right) - ReLU - C_{128,3,2,1} - B - Dr\left(0.3\right) - ReLU - F - D\left(K\right)$$
 Decoder

$$D\left(8192\right)-ReLU-R-CT_{128,3,2,1}-B-ReLU-CT_{256,3,2,1}-B-ReLU-CT_{3,3,1,1}-Sigmoid$$

Separator

$$D(64) - Dr(0.5) - ReLU - D(10)$$

Brain Tumor Image dataset

Encoder

$$\begin{array}{l} CB_{2,64,3,1,1} - C_{64,3,2,1} - B - Dr\left(0.3\right) - ReLU - CB_{2,64,3,1,1} - C_{64,3,2,1} - B - Dr\left(0.3\right) - ReLU - CB_{2,128,3,1,1} - C_{128,3,2,1} - B - Dr\left(0.3\right) - ReLU - CB_{2,128,3,1,1} - C_{128,3,2,1} - B - Dr\left(0.3\right) - ReLU - F - D\left(K\right) \\ \textbf{\textit{Decoder}} \end{array}$$

$$\begin{array}{l} D\left(8192\right) - ReLU - R - CB_{2,128,3,1,1} - CT_{128,3,2,1} - B - ReLU - CB_{2,128,3,1,1} - CT_{128,3,2,1} - B - ReLU - CB_{2,64,3,1,1} - CT_{64,3,2,1} - B - ReLU - CB_{2,64,3,1,1} - CT_{64,3,2,1} - B - ReLU - CT_{1,3,1,1} - Sigmoid \end{array}$$

Separator

$$D(128) - Dr(0.5) - ReLU - D(3)$$

SARS-COV-2 CT-Scan dataset

Encoder

$$CB_{2,64,3,1,1} - C_{64,3,2,1} - B - Dr\left(0.3\right) - ReLU - CB_{2,64,3,1,1} - C_{64,3,2,1} - B - Dr\left(0.3\right) - ReLU - CB_{2,128,3,1,1} - C_{128,3,2,1} - B - Dr\left(0.3\right) - ReLU - CB_{2,128,3,1,1} - C_{128,3,2,1} - B - Dr\left(0.3\right) - ReLU - F - D\left(K\right)$$
 Decoder

$$\begin{array}{l} D\left(8192\right) - ReLU - R - CB_{2,128,3,1,1} - CT_{128,3,2,1} - B - ReLU - CB_{2,128,3,1,1} - CT_{128,3,2,1} - B - ReLU - CB_{2,64,3,1,1} - CT_{64,3,2,1} - B - ReLU - CB_{2,64,3,1,1} - CT_{64,3,2,1} - B - ReLU - CT_{1,3,1,1} - Sigmoid \end{array}$$

Separator

$$D(128) - Dr(0.5) - ReLU - D(2)$$

B Supplementary Results

Table 2: Comparison of the mean testing accuracy (%) between the proposed methodology with normal and reverse order of optimization phases for the employed datasets among 10 executions.

	MNIST	Fashion MNIST	SVHN
Proposed method			
$\overline{\text{TP-SE + Sep. } (K = 10)}$	99.01	92.36	88.30
TP-SE + Sep. $(K = 18)$	99.09	92.44	88.60
TP-SE + k-NN (K = 18)	99.18	92.50	88.27
TP-SE + SVM (K = 18)	99.15	92.41	88.70
TP-SE + GNB (K = 10)	98.71	91.64	85.60
Proposed method - Reverse Order			
$\overline{\text{TP-SE + Sep. } (K = 10)}$	99.01	92.31	88.22
TP-SE + Sep. $(K = 18)$	99.06	92.39	88.76
TP-SE + k-NN (K = 10)	99.05	92.34	87.70
TP-SE + k-NN (K = 18)	99.13	92.57	88.41
TP-SE + SVM (K = 10)	99.06	92.33	88.41
TP-SE + SVM (K = 18)	99.12	92.41	88.79
TP-SE + GNB (K = 10)	98.69	91.65	85.82
$\overline{\text{TP-SE} + \text{GNB} (K = 18)}$	98.72	91.69	85.56
	Brain Tumor	SARS-COV-2	
	dataset	CT-Scans dataset	
Proposed method			
TP-SE + Sep. $(K = 18)$	94.94	97.22	
TP-SE + k-NN (K = 18)	94.93	97.24	
TP-SE + SVM (K = 18)	94.93	96.70	
TP-SE + GNB (K = 10)	93.82	95.73	
TP-SE + GNB (K = 18)	94.06	95.59	
Proposed method - Reverse Order			
$\overline{\text{TP-SE + Sep. } (K = 10)}$	94.32	96.96	
TP-SE + Sep. (K = 18)	94.86	97.44	
TP-SE + k-NN (K = 18)	95.29	97.44	
TP-SE + SVM (K = 10)	94.44	96.68	
TP-SE + SVM (K = 18)	94.94	96.96	
TP-SE + GNB (K = 10)	93.74	96.26	
TP-SE + GNB (K = 18)	93.98	96.26	