

Computabilità, Complessità e Logica

Prof. Adriano Peron

Computabilità: Decidibilità

Macchina di Turing

- Origine storica.
- Nel 1900 in un celebre intervento a un congresso il matematico David Hilbert elenca 23 problemi matematici che a suo parere costituiscono una sfida per la matematica del XX secolo.
- ► Il decimo problema riguarda la possibilità di trovare una procedura che risponda (test si/no) sull'esistenza di soluzioni intere per un generico polinomio a coefficienti interi.
- "a process according to which it can be determined by a finite number of operations"
- Dimostrare l'impossibilità di definire una tale procedura richiede la definizione precisa di un concetto di computazione e di computabilità o se preferiamo di ALGORITMO.

Macchina di Turing

- Origine storica.
- ▶ Nel 1936 vengono proposte due definizioni
 - ► Alonzo Church propone il λ-calculus
 - ► Turing propone la definizione di una Macchina
- E' stato dimostrato che entrambe le definizioni sono equivalenti
- La possibilità di collegare la nozione di qualitativa di algoritmo con le definizioni di Turing e Church è stabilita dalla Tesi di Church-Turing
- Una funzione sui numeri naturali può essere calcolata con un metodo effettivo se e solo è computabile da una macchina di Turing.

Decidibilità

- Nelle lezioni precedenti si è introdotta la classe degli linguaggi che possono essere decisi da una macchia di Turing:
 - Per ogni parola del linguaggio esiste una computazione accettante
 - Per ogni parola non appartenete al linguaggio esiste una computazione di rifiuto
 - (in entrambi i casi la macchina termina).
- Verranno presentati a seguire esempi di problemi decidibili.
- Un problema di decisione verrà formulato come linguaggio
- Esempio: Il problema dell'accettazione di una parola w per un automa deterministico A
- E' decidibile il linguaggio
- = $\{ \langle A, w \rangle : w \in \Sigma^*, A \text{ automa regolare deterministico accetta } w \}$?
- ightharpoonup < A, w >è una stringa di caratteri che codifica l'automa A e w

Decidibilità dell'accettazione per automi deterministici a stati finiti

L= $\{ \langle A, w \rangle : w \in \Sigma^*, A \text{ automa regolare deterministico accetta } w \}$ È decidibile.

- ▶ E' possibile scrivere una MdT che avendo < A, w > sul nastro di ingresso simula l'esecusione di A sulla parola b
- ▶ Se la simulazione termina in stato di accettazione la MdT accetta
- Se la la simulazione termina in stato di non accettazione la MdT rifiuta.

Decidibilità del vuoto per automi deterministici a stati finiti

L= $\{ \langle A \rangle : A \text{ automa regolare deterministico, L}(A) = \emptyset \}$ È decidibile.

- E' possibile scrivere una MdT che avendo < A > sul nastro di ingresso usa la funzione di transizione per marcare gli stati raggiungibili dallo stato iniziale
 - ▶ Si marca lo stato iniziale
 - ► Iterativamente se lo stato q è marcato e (q,a,q') è una transizione si marca anche q'
 - ▶ Si termina quando non è più possibile aggiungere nuovi stati marcati
- Se dopo la marcatura degli stati raggiungibili uno stato finale è stato marcato la MdT termina con accettazione
- ▶ Se nessun stato finale è stato marcato la MdT termina con rifiuto.

Decidibilità dell'accettazione per grammatiche contex free

 $L = \{ \langle G, w \rangle : w \in \Sigma^*, G \text{ grammatica context free, } G \text{ accetta } w \}$ È decidibile.

- Assumiamo per semplicità la forma normale di Chomsky
- $lackbox{ Ogni parola generabile è generabile in al più <math>2n-1$ riscritture con n la lunghezza di w
- ► E' possibile scrivere una MdT che usa tre nastri
 - ▶ Nel primo nastro ha la codifica < G, w >
 - ightharpoonup Nel secondo nastro una codifica della scelta di 2n-1 regole
 - Nel terzo nastro la derivazione correntemente in uso

Decidibilità dell'accettazione per grammatiche contex free

Ad ogni iterazione:

- ▶ A partire dal simbolo iniziale si riscrive nel terzo nastro la parola corrente usando le regole elencate nel secondo nastro
- Si confronta il risultato della riscrittura con w (nel primo nastro)
- Se la parola è uguale si accetta e si termina
- Se la parola è diversa si scrive nel secondo nastro la prossima (se esiste) sequenza di regola di lunghezza 2n-1 da provare (le sequenze possono essere ordinate lessicograficamente) e si inzia una nuova iterazione
- Se non esistono più sequenze di lunghezza 2n-1 da provare si termina con rifiuto

Decidibilità del vuoto per grammatiche context free

L= {< G >: G una grammatica contex free, L(G) = \emptyset } È decidibile.

- ▶ La MdT ha < G > sul nastro di ingresso.
- ▶ La MdT inizialmente marca tutti i simboli terminali.
- ► La MdT esegue iterativamente la seguente procedura:
 - ▶ Per ogni regola $V \rightarrow V_1 \dots V_k$ se tulle le variabili $V_1 \dots V_k$ sono marcate si marca anche la variabile V
 - Se qualche variabile è stata marcata si itera la procedura altrimenti si termina la marcatura
- Se dopo la marcatura delle variabili la variabile iniziale non è stata marcata si termina con accettazione
- ▶ Se la variabile iniziale è stata marcata si termina con rifiuto.

Verso l'indecidibilità: il problema della terminazione

Un esempio importante di linguaggio non decidibile è il problema dell'accettazione per una MdT.

L=
$$\{< M, w>: w \in \Sigma^*, M \text{ una } MdT, M \text{ accetta } w\}$$

È indecidibile

- Il linguaggio L può essere riconosciuto (non deciso) da una MdT.
- Per provare che può essere riconosciuto si usa una MdT Universale (UMdT), una MdT in grado di simulare ogni altra MdT.
- La UMdT
 - ► Ha la codifica di una MdT M sul nastro insieme a una parola w sul nastro all'inizio della computazione
 - La UMdT simula il comportamento di M su w
 - La Umdt accetta se M accetta su w
 - La UMdT rifiuta se M rifiuta su w
 - La UMdT non termina se M non termina

Linguaggio L_{AMdT} Problema dell'accettazione di una MdT

► TEOREMA. Il linguaggio

$$L_{AMdT} = \{ \langle M, w \rangle : w \in \Sigma^*, M \text{ una } MdT, M \text{ accetta } w \}$$

è indecidibile

- Prova.
- Per assurdo si assuma che esista una MdT H che:
 - ▶ Termina con accettazione se $\langle M, w \rangle$ appartiene a L
 - ▶ Termina con rifiuto se $\langle M, w \rangle$ non appartiene a L
- Si prenda ora la MdT D che usa H come una procedura e che la invoca su degli input speciali:
 - ▶ Termina con rifiuto su < M > se H termina con accettazione su < M >, < M >
 - ▶ D termina con rifiuto su < M > se la macchina M accetta la parola < M >
 - ▶ Termina con accettazione su $\langle M \rangle$ se H termina con rifiuto su $\langle M \rangle$, $\langle M \rangle$
 - ▶ D termina con accettazione su < M > se la macchina M la parola < M >
- Eseguiamo ora la macchina D sulla stringa < D >
 - ightharpoonup D termina con rifiuto su < D > se la macchina D accetta la parola <D>
 - lacksquare D termina con accettazione su < D > se la macchina D rifiuta la parola < D >
- Assurdo!

Problema dell'accettazione di una MdT

La prova utilizza una tecnica di diagonalizzazione

 $\langle M_1 \rangle$ $\langle M_2 \rangle$ $\langle M_3 \rangle$ accept M_1 accept M_2 acceptacceptaccept accept M_3 M_4 acceptacceptLe Mot H permette di completere Cotobello $\langle M_1 \rangle$ $\langle M_2 \rangle$ $\langle M_3 \rangle$ $\langle M_4 \rangle$ reject M_1 acceptrejectaccept M_2 acceptacceptacceptaccept M_3 rejectrejectrejectreject M_4 acceptrejectrejectaccept

Problema dell'accettazione di una MdT

▶ La prova utilizza una tecnica di diagonalizzazione

	$\langle M_1 angle$	$\langle M_2 angle$	$\langle M_3 angle$	$\langle M_4 angle$	
M_1	accept	reject	accept	reject	
M_2	accept	accept	accept	accept	
M_3	reject	reject	reject	reject	• • •
M_4	accept	accept	reject	reject	
:		;			
•	l	,	•		

	$\langle M_1 angle$	$\langle M_2 angle$	$\langle M_3 angle$	$\langle M_4 angle$		$\langle D angle$	
M_1	accept	reject	accept	reject		accept	
M_2	accept	accept	accept	accept		accept	
M_3	reject	reject	reject	reject	• • •	reject	
M_4	accept	accept	\overline{reject}	reject		accept	
:			\. \	/	٠.		
D	reject	reject	accept	accept		(;)	/
			F •	and pro-			
÷			:				٠.

D'elevente gli eleventi oliogoust

Dere complementare se stems.

Gerarchia delle classi di linguaggi?

Linguaggi non riconoscibili da MdT

L'esistenza di linguaggi non riconoscibile da MdT può essere provata considerando la cardinalità dell'insieme delle MdT che riconoscono linguaggi su Σ

Proprietà

- L'insieme delle parole su Σ (cioè Σ^*) è enumerabile.
- ightharpoonup Assumiamo un ordinamento totale dei simboli in Σ
- ightharpoonup Ordiniamo in modo lessicografico le parole di Σ^*
- ightharpoonup Se w_i è la i-esima parola dell'ordinamento, w_i è in corrispondenza con i

Elablag ab ba bb laca ---
1 2 3 4 5 6 7 8 9 10

Numerabilità dell'insieme dei linguaggi riconosciuti da MdT

Proprietà

- L'insieme delle MdT su è enumerabile.
- Una MdT è una struttura finita
- Una MdT può essere codificata mediante una stringa finita usando un opportuno alfabeto alfabeto Σ.
- Ogni MdT può essere codificata rispetto a un comune alfabeto Σ.
- Le codifiche di tutte le possibili MdT su Σ sono un sottoinsieme di Σ*
- Poiché Σ^* è numerabile le possibili MdT sono numerabili.

Conseguenza

L'insieme dei linguaggi riconosciuti da una MdT è numerabile!

L'insieme dei linguaggi su un alfabeto 2 non è numerabile

- Costruiamo una rappresentazione efficace di un linguaggio su Σ
- Ordiniamo lessicograficamente le parole di Σ^* (w_i è la i esima parola dell'ordinamento)
- Stringa caratteristica di un linguaggio.
- Una sequenza infinita α di valori binari (0,1)
- $\alpha(i) = 1$ se w_i appartiene al linguaggio
- $\alpha(i) = 0$ se $w_i non$ appartiene al linguaggio

$$L = \{E, O, OO, OOO, \dots \}$$
STOWER CAPATIENSTICA: 110100110...

L'insieme dei linguaggi su un alfabeto Σ non è numerabile

- Un linguaggio è associato in modo univoco alla sua stringa caratteristica.
- Le stringhe caratteristiche dei linguaggi sono numerabili?
- ► No!
- ► Lo si può provare con una costruzione diagonale.
- Si assuma per assurdo che le stringhe caratteristiche siano numerabili

Teorema. L'insieme dei linguaggi su un alfabeto **2** non è numerabile

- Costruiamo una stringa binaria α con le seguenti caratteristiche
- $m{lpha}(i)$ ha il complemento dell'i-esimo valore della i-esima stringa
- ▶ Conseguenza.
- ightharpoonup lpha differisce in almeno una posizione con ogni stringa (la iesima con la i-esima stringa)
- ightharpoonup non è compresa nell'enumerazione delle stringhe
- L'ipotesi dell'enumerabilità delle stringhe ha portato ad un assurdo.
- ▶ L'insieme delle stringhe caratteristiche non è enumerabile.
- ightharpoonup L'insieme dei linguaggi su un alfabeto Σ non è numerabile

Corollario. Esistono linguaggi non riconoscibili da MdT

- Come visto l'insieme dei linguaggi su ∑ fissato non è numerabile
- L'insieme delle macchine definibili usando l'alfabeto di simboli in ∑ è numerabile
- Sono numerabili i linguaggi riconosciuti da MdT su un Σ
- **E**sistono linguaggi su Σ non riconosciuti.

Proprietà dei Linguaggi decidibili

Teorema. Un linguaggio L è decidibile se e solo L e \bar{L} sono riconoscibili da MdT.

- Sia L decidibile.
- \triangleright Se L è decidibile è riconoscibile da MdT (deterministica).
- Se L è decidibile esiste una MdT M che termina con rifiuto per ogni parola $w \notin L$
- Sia M' una MdT costruita a partire da M che complementa gli stati di accept e reject.
- ightharpoonup M' riconosce \overline{L}

Applicazione della proprietà dei Linguaggi decidibili

Si ricorda che
$$L_{AMdT}=\{< M,w>:w\in \Sigma^*,M\ una\ Md\Gamma,\ M\ accetta\ w\}$$
 è indecidibile

Sappiamo che L_{AMdT} è riconosciuto da MdT (MdT Universale).

Per la propreità dei linguaggi decidibili il linguaggio complemento di L_{AMdT} non può essere riconosciuto da MdT.

In generale.

Il linguaggio complemento di un linguaggio riconoscibile da MdT ma non decidibile non è riconosciuto da MdT.

Proprietà dei Linguaggi decidibili

Teorema. Un linguaggio L è decidibile se e solo L e \overline{L} sono riconoscibili da MdT.

- Siano L e \overline{L} riconoscibili da MdT.
- lacksquare Sia M la MdT che riconosce L e M' la MdT che riconosce $ar{L}$
- E' possibile costruire una MdT M'' che simula una computazione in parallelo di M e M'
- ▶ ad esempio.
 - si prenda una MdT a tre nastri, il primo per l'input, il secondo per la computazione di M e il terzo per la computazione di M'.
 - Si simuli l'avanzamento parallelo di M e di M' alternando un passo di M con un passo di M'
 - Se per prima arriva in accettazione M, M" termina con accept
 - ▶ Se per prima arriva in accettazione M', M'' termina con reject

Risolvere problemi di decidibilità/indecidibilità

- Una tecnica diffusa per risolvere la decidibilità/indecidibilità di un problema P è la tecnica di riduzione a un problema P' già noto.
- Il problema P viene trasformato mediante una funzione computabile nel problema P' applicando poi quanto noto sul problema P'
- Funzione computabile: Una funzione $f: \Sigma^* \to \Sigma^*$ è computabile se esiste una MdT che per ogni input $w \in \Sigma^*$ termina riportando sul nastro f(w).

Risolvere problemi di decidibilità

Riduzione di un problema P a un problema decidibile P': permette di stabilire la decidibilità di P.

- Per la decidibilità uso in cascata la MdT per la funzione computabile
- Applico poi la MdT che permette di decidere L' su f(w)

Risolvere problemi di indecidibilità

Riduzione di un problema indecidibile P a un problema P': permette di stabilire la indecidibilità di P'.

- La riduzione di un problema indecidibile a un problema non noto permette di dimostrare la indecidibilità del problema non noto
- Per assurdo la decidibilità di P' implicherebbe la decidibilità di P per quanto già visto.

Esempi di riduzione: il problema della terminazione di una MdT

- ▶ Problema della terminazione: data una MdT M e una parola w è decidibile se M termina (in accettazione o rifiuto)?
- ▶ $L_{HALT} = \{ \langle M \rangle w : w \in \Sigma^*, M \text{ termina su input } w \}$

TEOREMA: L_{HALT} è indecidibile.

Prova per riduzione del problema dell'accettazione delle MdT (linguaggio L_{AMdT}) al problema della terminazione.

Riduzione f: si trasforma la MdT M rimuovendo lo stato di reject e sostituendolo con un ciclo non terminante.

La MdT M' risultante termina su w se e solo se M accetta w. (< $M > w \in L_{AMdT}$ iff (f(< M >) $w \in L_{HALT}$)

Esempi di riduzione: il problema del vuoto delle MdT

▶ Problema del vuoto: data una MdT M, L(M)= ϕ ?

$$L_{EMdT} = \{ \langle M \rangle : L(M) = \phi \}$$

TEOREMA: L_{EMdT} è indecidibile.

Prova per riduzione del problema dell'accettazione delle MdT (linguaggio L_{AMdT}) al problema del vuoto.

Riduzione f: dato l'input <M>w si trasforma la MdT M in una macchina M' (f(<M>,w)=M') in modo che rifiuti tutte le parole diverse dà w e si comporti come M su w.

M accetta w se e solo se $L(f(<M>,w)) \neq \emptyset$.

Se il problema del vuoto fosse decidibile L_{AMdT} sarebbe decidibile.

Esempi di riduzione: il problema dell'equivalenza delle MdT

▶ Problema dell'equivalenza : date due MdT M e M', L(M)=L(M')? $L_{EOUIV} = \{ < M > < M' > : L(M)=L(M') \}$

TEOREMA: L_{EOUIV} è indecidibile.

Prova per riduzione del problema del vuoto delle MdT (linguaggio $L_{\it EMdT}$) al problema dell'equivalenza.

Riduzione f: dato l'input <M> si crea una MdT < M_E > che non accetta nessun input ($L(M_E) = \emptyset$).

$$f()=$$

$$L(M)=\emptyset \text{ se e solo se } f()\in L_{EQUIV}$$

Se il problema dell'equivalenza fosse decidibile L_{EMdT} sarebbe decidibile.