● 6步文主大学
数字信号处理I
Digital Signal Processing
第二章 —— 离散傅立叶变换

● お子文章	大學
序列可以分为有限长和无限长两种,而我们常见到的无限长序列 又往往是衰减性的,当无限长衰减序列随着n的增大衰减到一定小的 值后,我们在实用中又可以近似将其后的值"看作"为0,即	
$\dot{x}(n) = \begin{cases} x(n) & n < N \\ 0 & 其它 \end{cases}$ 当 $ x(m) < \varepsilon$ 时, $(m \ge N)$	
这样无限长序列在一定条件下,又可以用一个有限长序列近似,加 之我们在下一章将会看到:对于有限长序列有快速算法 (FFT),所以 有限长序列在数字信号处理中占有很重要的地位。	
本章主 要内容 2.1 离散傅立叶変数 (DFS) 2.2 离散傅立叶变换 (DFT) 2.3 頻域采样理论	
本章主要内容 9/13/2022	2

	€ 6步炎包	大学
	2.1 离散傅立叶级数 DFS $x(t) = \sum_{k=0}^{\infty} a_k e^{jk\Omega_k t}$	
	我们用 $\widehat{x}(n)$ 来表达一个周期为N的周期序列,即 $\widehat{a}_k = \frac{1}{T} \int_{T} x(t) e^{-\beta \Omega Q_t}$	dt
	正如连续时间周期信号可以用傅氏级数表达一样,离散时间周期序列	
	也可以用离散的傅氏级数来表达,也即用周期为N的复正弦序列来表达。	
	周期为N的复正弦序列其基频分量为:	
	$e_1(n) = e^{\sqrt{\frac{2\pi}{N}}/n}$ $ x[n] = \sum_{k=N-N} A_k e^{\frac{n^2 \pi}{N}n} $ $ A_k = \frac{1}{N} \sum_{m=N-N} x[n] e^{-\sqrt{\frac{2\pi}{N}}bn} $ $ A_k = \frac{1}{N} \sum_{m=N-N} x[n] e^{-\sqrt{\frac{2\pi}{N}}bn} $	
	其k次谐波序列为 $e_k(n) = e^{\int \left(\frac{2\pi}{N}\right)^{kn}} \qquad A_k = \frac{1}{N} \sum_{n=-N}^{\infty} x[n] e^{-\int \frac{2\pi}{N} dn}$	
l i	而离散傅氏级数与连续傅氏级数的差别在于: 离散级数所有谐波分量	
Ш	中只有N个是独立的、因为	
	$e^{j\left(rac{2\pi}{N} ight)\!(k+N)n}=e^{j\left(rac{2\pi}{N} ight)\!kn}$ If $v\lambda$ $e_{k+N}(n)=e_k(n)$	
	2.1 离散傅里叶级数 9/13/2022	3

	DFS的几个主要特性
	$DFS[a\widetilde{x}(n) + b\widetilde{y}(n)] = a\widetilde{X}(k) + b\widetilde{Y}(k) $ (2-9)
	其中a、b为任意常数。
va	序列移位 $DFS\left[\widetilde{x}(n+m)\right] = W_N^{-mk}\widetilde{X}(k)$ (2-10)
	$IDFS\left[\widetilde{X}(k+l)\right] = W_N^{nl}\widetilde{X}(n)$ (2-11)
4	周期卷积
	若 $\widetilde{F}(k) = \widetilde{X}(k)\widetilde{Y}(k)$
	$\mathfrak{M} \widetilde{f}(n) = IDFS\left[\widetilde{F}(k)\right] = \sum_{m=0}^{N-1} \widetilde{x}(m)\widetilde{y}(n-m) = \sum_{m=0}^{N-1} \widetilde{y}(m)\widetilde{x}(n-m) (2-12)$
	同理,对于周期序列的乘积,也有频域的周期卷积公式
	$ \stackrel{\text{\tiny def}}{=} \widetilde{f}(n) = \widetilde{x}(n)\widetilde{y}(n) $
	$\mathbb{M} \qquad \widetilde{F}(k) = DFS\left[\widetilde{f}(n)\right] = \frac{1}{N} \sum_{l=0}^{N-1} \widetilde{X}(l)\widetilde{Y}(k-l) = \frac{1}{N} \sum_{l=0}^{N-1} \widetilde{Y}(l)\widetilde{X}(k-l) \qquad (2-13)$
	2.1 离散傅里叶级数 9/13/2022 6

	production of the state of the
	● お子文主大学 ************************************
	从上一节离散傅里叶级数的讨论中, 不难证明: 周期序列的离散傅
Ш	里叶级数也是一个周期序列,即
	$\widetilde{X}(k+mN) = \sum_{n=1}^{N-1} \widetilde{x}(n) e^{-i\left(\frac{2\pi}{N}\right)(k+mN)n} = \sum_{n=1}^{N-1} \widetilde{x}(n) e^{-i\left(\frac{2\pi}{N}\right)kn} = \widetilde{X}(k)$
	因而也给它定义一个主值区间 $0\le k\le N-1$,以及主值序列 $X(k)$ $\begin{cases} X(k)=\widetilde{X}(k)R_N(k)\\ \widetilde{X}(k)=X((k))_N \end{cases}$
	离散傅里叶级数的变换公式中的求和都只限于主值区间,因而完全
	适用于主值序列x(n)与X(k),由此我们得到了 <mark>有限长序列的DFT定义</mark> :
	$X(k) = DFT[x(n)] = \sum_{n=0}^{N-1} x(n)W_N^{kn}, \qquad 0 \le k \le N-1 \qquad (2-21)$
	$x(n) = IDFT[X(k)] = \frac{1}{N} \sum_{k=0}^{N-1} X(k) W_N^{-kn}, 0 \le n \le N - 1 $ (2-22)
	x/n)与X(k)是一个有限长序列离散傅里叶变换对,已知x/n)就能唯一的确定X(k)。 同样已知X(k)也就唯一的确定了x/n)。实际上x/n)与X(k)都是长度为N的序列(都 可以是复序列),都有N个独立(复)值,因而具有的信息当然是等量的。
	2.2 离散傅立叶变换 9/13/2022 9

		(金) 百步克通大
1	有限长序列的线性卷积和圆周卷积	
J -	如果: x(n)是点长度为N的有限长序列 y(n)是点长度为M的有限长序列	N=/0 M=8
	它们的线性卷积f(n)=x(n)*y(n) 也是有限是	长序列
	$f(n) = \sum_{m=-\infty}^{\infty} x(m)y(n-m)$ $x(m): 0 \le m \le N-1$ $y(n-m): 0 \le n-m \le M-1$ 两式相加: 0 \le n \le N + M - 2	N=10 M=8 M=8 N+M-1=17
	因此,我们清楚的看到f(n)是一个点长度	为N+M-1的有限长序列。
	下图中x(n)为N=4的矩形序列,y(n)。	是一个M=6的矩形序列,两
	者的线性卷积f(n)具有N+M-1=9个非零序	列值,如下图所示。而如
	果对两者进行不同长度的圆周卷积,其约	结果如下图所示。
	2.2 离散傅立叶变换	9/13/2022 12

п	ŧ	£2-1 DFT特性表 (序列点长皆为	(N) 多步克主大等
		序列	DFT
	1、	ax(n)+by(n)	aX(k) + bY(k)
	2、	$x((n+m))_N R_N(n)$	$W_N^{-mk}X(k)$
	3,	$W_N^{nl}x(n)$	$X((k+l))_{N}R_{N}(k)$
	4٠	$x(n) \otimes y(n) = \sum_{m=0}^{N-1} x(m) y((n-m))_N R_N(n)$	X(k)Y(k)
	5、	x(n)y(n)	$\frac{1}{N}\sum_{l=0}^{N-1} X(l)Y((k-l))_{N} R_{N}(k)$
	6、	x*(n)	$X^*(N-k)$
	7、	Re[x(n)]	$X_{\varepsilon}(k) = \frac{1}{2} \left[X(k) + X^{*}(N-k) \right]$
١.	8、	$f \operatorname{Im}[x(n)]$	$X_o(k) = \frac{1}{2} [X(k) - X^*(N-k)]$
	9、	$x_{c}(n) = \frac{1}{2} \left[x(n) + x^{*}(N-n) \right]$	Re[X(k)]
	10、	$x_o(n) = \frac{1}{2} [x(n) - x^*(N-n)]$	$J\operatorname{Im}[X(k)]$
	11、	$\sum_{n=0}^{N-1} x(n) y^*(n) =$	$\frac{1}{N}\sum_{k=0}^{N-1}X\left(k\right)Y^{*}\left(k\right)$
	12、	$\sum_{n=0}^{N-1} x(n) ^2 =$	$= \frac{1}{N} \sum_{k=0}^{N-1} X(k) ^2$
		2.2 离散傅立叶变换	9/13/2022 17

 ■ DFT与z变换	● 6步克:	1大字
* ****		
有限长序 $X(z) = Z[x(n)] = \sum_{n=0}^{N-1} x(n)z^{-n}$	$\diamondsuit z = W_N^{-k} \boxed{\mathbb{N}}$	
列可以进 $X(z)\Big _{z=W_N^{-k}} = \sum_{n=1}^{N-1} x(n)W_N^{nk} = DFT$	[x(n)]	
11 2 × 1× n=0		
$X(k) = X(z)\Big _{z=W_N^{-k}}$	(2 – 47)	
$z = W_N^{-k} = e^{\sqrt{\left(\frac{2\pi}{N}\right)^k}}$ 表明 W_N^{-k} 是 z 平面单位圆上幅	角为 $ω = \frac{2\pi}{N}k$ 的点, 也即将 z	
平面单位圆 N 等分后的第 k 点, 所以 X(k) 也就是		
也可以说 $X(k)$ 是序列傅氏变换 $X(e^{j\omega})$ 的采样,其 5		
$X(k) = X(e^{jk\omega_N}) \qquad \omega_N = 2\pi/2$	N 類域采样	
$j\operatorname{Im}[z]$ $X(0)$		
W. W. D. L.	(2) $X(k)$	
$\frac{W_N^0 \operatorname{Re}[z]}{W_{w_{-}}^{(N-1)}}$	X(ein)	
$W_N^{(\tilde{N}-2)}$	$\pi \longrightarrow 2\pi \longrightarrow \omega$	
2.2 离散傅立叶变换	9/13/2022	18

	€ 64% €	大学
	2.3 频域采样理论	VERNITY
	在上一节中,我们看到采用DFT/启实现了频域的采样。这样很自然就会使我们想到,是否对于任意一个频率特性(例如滤波器中最常遇到的理想低通特性)都能用频率采样的办法去 通近呢 ? 这确实是一个很吸引人的问题,因为这样可以使通近问题大大简化。但是要想利用这种技术,首先应该弄清它的限制。	
	考虑一个任意的绝对可积的序列 $\mathbf{x}(\mathbf{n})$,它的 \mathbf{z} 变换为 $X(z) = \sum_{n=0}^{\infty} x(n)z^{-n}$	
ŀ	在单位圆上进行等距采样 $X(k)=X(z)_{z=w_N^{-k}}=\sum_{n=-\infty}^{\infty}x(n)W_N^{nk}$	
	现在要问,这样采样以后,信息有没有损失? 即频率采样后所获得的	
Ш	有限长序列x _N (n)能不能代表原序列x(n)。	
	$x_{N}(n) = IDFT[X(k)]$	
	2.3 频域采样理论 9/13/2022	21

	あず交え大きな。 The purpose to the contract of the cont	包于
	也即 $\widetilde{x}_{N}(n)$ 是原序列 $x(n)$ 的周期延招序列。如果序列 $x(n)$ 是有限长的,其长度为 M. 那么当我们在赖城的采样间隔不够密,即 N <m时,<math>x(n) 的周期重复就会出现</m时,<math>	
	M_0 那么当我们在频取时来样间隔不够密,即 N_0 时, N_0 时, N_0 时,对时间期重复就会出现某些序列值交叠在一起,产生混淆现象。这样从 $\widetilde{x}_N(n)$ 中就不可能不失真的恢复	
	出原序列来。因此对于有限长序列x(n)	
	$x(n) = \begin{cases} x(n), & 0 \le n \le M - 1 \\ 0, & \sharp : \Re n \end{cases}$	
	頻率采样不失真的条件是N≥M,即	
	$x_N(n) = \tilde{x}(n)R_N(n) = \sum_{r=-\infty}^{\infty} x(n+rN)R_N(n) = x(n)$ $N \ge M$	
ŀ	X(z)的内插表达式	
	讨论如何用 N 个采样值 $X(k)$ 完全地表达 $X(z)$ 函数及其頻响 $X(e^{i\alpha})$.	
	$X(k) = \sum_{n=0}^{N-1} x(n) W_N^{nk} $ $x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) W_N^{-nk}$	
	2.3 編博采样理 心 9/12/2022 2:	9

● おきえる大き
$ \ \qquad \qquad \mathbf{Z} \bar{\mathbf{y}} \mathcal{X}(z) = \sum_{n=0}^{N-1} x(n) z^{-n} = \sum_{n=0}^{N-1} \left[\frac{1}{N} \sum_{k=0}^{N-1} X(k) W_N^{-nk} \right] z^{-n} = \frac{1}{N} \sum_{k=0}^{N-1} X(k) \left[\sum_{n=0}^{N-1} W_N^{-nk} z^{-n} \right] $
$X(z) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) \frac{1 - W_N^{-Nk} z^{-N}}{1 - W_N^{-k} z^{-1}} = \frac{1 - z^{-N}}{N} \sum_{k=0}^{N-1} \frac{X(k)}{1 - W_N^{-k} z^{-1}}$
$X(z) = \frac{1-z^{-N}}{N} \sum_{k=0}^{N-1} \frac{X(k)}{1-W_N^{-k}z^{-1}}$
$X(z) = \sum_{k=0}^{N-1} X(k) \Phi_k(z)$
这个内插函数在单位圆的N等分点上有N-1个零点,只有其本身采样点 $W_N^{*}=e^{J(2\pi/N)k}$ 上的零点与分母上的极点抵消,同时在原点处有N-1阶极点,如图所示。
2.3 続域采料理论 9/3/2022 2.

	● 百步文主大學
	即对于时域序列, X(z)是按z的负幂级数 (即罗朗级数) 展开, x(n)正是其罗
	朗级数的系数; 而对于频域序列, $X(z)$ 是按函数集 $\Phi_k(z)$ 展开, $X(k)$ 正是其展开的系数。
	对于频响而言:有限长序列的X(ei [®])的时城序列x(n)表达和频城序列X(k)表
	选 炊 右 式: $X\left(e^{j\omega}\right) = \sum_{n=0}^{N-1} x(n)e^{-j\omega n} = \sum_{k=0}^{N-1} X(k)\phi\left(\omega - \frac{2\pi}{N}k\right)$
	n=0 k=0 (V) 对于时域序列, 频响X(e ^{ja}) 是展成复正弦级数 (也即傅里叶级数) , X(e ^{ja})
	正是其复正弦级数的谐波系数;而对于频域序列,频响X(ein)则是展成内插函数
	φ的级数, X(k)正是其展开系数。这些也反映了用不同正交完备集展开时的不同
	含义和表达方式。
П	在以后的章节中,我们将看到,频域采样理论为FIR滤波器的结构设计,
	以及FIR滤波器传递函数的逼近提供了又一个有力的工具。
	9.3 新禄平祥和公 0/12/2022 28