Satisfiability Checking The Simplex Algorithm

Prof. Dr. Erika Ábrahám

RWTH Aachen University Informatik 2 LuFG Theory of Hybrid Systems

WS 16/17

F-M elimination

$$2x + y \le 5$$
 $x + 2y \ge 10$
 $x \le -\frac{1}{2}y + \frac{5}{2}$
 $x \ge -\frac{1}{2}y + \frac{5}{2}$

Outline

- 1 Gaussian Elimination
- 2 Satisfiability with Simplex
- 3 General Simplex Form
- 4 Simplex Basics
- 5 The General Simplex Algorithm

Gaussian elimination

• Given a linear system Ax = b

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1k} \\ a_{21} & a_{22} & \dots & a_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k1} & a_{k2} & \dots & a_{kk} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_k \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_k \end{pmatrix}$$

lacktriangle Manipulate A|b to obtain an upper-triangular form

$$\begin{pmatrix} a'_{11} & a'_{12} & \dots & a'_{1k} & b'_{1} \\ 0 & a'_{22} & \dots & a'_{2k} & b'_{2} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & a'_{kk} & b'_{k} \end{pmatrix}$$

Gaussian elimination

Then, solve backwards from k's row according to:

$$x_i = \frac{1}{a'_{ii}}(b'_i - \sum_{j=i+1}^k a'_{ij}x_j)$$

$$\begin{pmatrix} 1 & 2 & 1 \\ -2 & 3 & 4 \\ 4 & -1 & -8 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 6 \\ 3 \\ 9 \end{pmatrix} \implies \begin{pmatrix} 1 & 2 & 1 & | & 6 \\ -2 & 3 & 4 & | & 3 \\ 4 & -1 & -8 & | & 9 \end{pmatrix}$$

$$R2 = \begin{pmatrix} -2, & 3, & 4 & | & 3 &) \\ 2R1 = \begin{pmatrix} 2, & 4, & 2 & | & 12 &) \\ R2 & += & 2R1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 1 & | & 6 \\ 0 & 7 & 6 & | & 15 \\ 0 & -9 & -12 & | & -15 \end{pmatrix}$$

$$\left(\begin{array}{ccc|ccc}
1 & 2 & 1 & 6 \\
0 & 7 & 6 & 15 \\
0 & -9 & -12 & -15
\end{array}\right)$$

$$\begin{pmatrix} 1 & 2 & 1 \\ -2 & 3 & 4 \\ 4 & -1 & -8 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 6 \\ 3 \\ 9 \end{pmatrix} \implies \begin{pmatrix} 1 & 2 & 1 & | & 6 \\ -2 & 3 & 4 & | & 3 \\ 4 & -1 & -8 & | & 9 \end{pmatrix}$$

$$R3 = \begin{pmatrix} 4, & -1, & -8 & | & 9 &) \\ -4R1 = \begin{pmatrix} -4, & -8, & -4 & | & -24 &) \\ R3 + = & -4R1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 1 & | & 6 \\ -2 & 3 & 4 & | & 3 \\ 0 & -9 & -12 & | & -15 \end{pmatrix}$$

Now: $x_3 = -1$, $x_2 = 3$, $x_1 = 1$. Problem solved!

Satisfiability with Simplex

■ Simplex was originally designed for solving the optimization problem:

$$\begin{aligned} \max \vec{c} \, \vec{x} \\ \text{s.t.} \\ A\vec{x} \leq \vec{b}, \quad \vec{x} \geq \vec{0} \end{aligned}$$

 We are only interested in the feasibility problem (= satisfiability problem).

General Simplex

- We will learn a variant called general simplex.
- Well-suited for solving the satisfiability problem fast.

General Simplex

- We will learn a variant called general simplex.
- Well-suited for solving the satisfiability problem fast.
- The input: $A\vec{x} \leq \vec{b}$
 - \blacksquare A is a $m \times n$ coefficient matrix
 - The problem variables are $\vec{x} = x_1, \dots, x_n$

$$\begin{pmatrix} 1 & 0 \\ -1 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 1$$

$$\begin{pmatrix} 1 & 0 \\ -1 & -1 \end{pmatrix} \begin{pmatrix} y \\ y \end{pmatrix} \neq \begin{pmatrix} -2 \\ -2 \end{pmatrix}$$

$$x \neq \sqrt{2}$$

$$-x - y \neq \sqrt{2}$$

$$x = \sqrt{2}$$

General form

Definition (General Form)

$$A(\vec{x}, \vec{s}) = 0$$
 and $\bigwedge_{i=1}^{m} l_i \leq s_i \leq u_i$

A combination of

- Linear equalities of the form $\sum_i a_i x_i = 0$
- Lower and upper bounds on variables

Transformation to general form

- Replace $\sum_i a_i x_i \bowtie b_j$ (where $\bowtie \in \{=, \leq, \geq\}$) with $\sum_i a_i x_i - s_j = 0$ and $s_j \bowtie b_j$.
- Note: no >, <!

 \bullet s_1, \ldots, s_m are called the additional variables

Convert $x + y \ge 2!$

Convert
$$x + y \ge 2!$$

Result:

$$\begin{aligned}
x + y - s_1 &= 0 \\
s_1 &\ge 2
\end{aligned}$$

It is common to keep the conjunctions implicit

Convert

$$\begin{array}{ccc}
x & +y & \geq 2 \\
2x & -y & \geq 0 \\
-x & +2y & \geq 1
\end{array}$$

Convert

$$\begin{array}{ccc}
x & +y & \geq 2 \\
2x & -y & \geq 0 \\
-x & +2y & \geq 1
\end{array}$$

Result:

$$\begin{array}{ccccc}
x & +y & -s_1 & = 0 \\
2x & -y & -s_2 & = 0 \\
-x & +2y & -s_3 & = 0 \\
s_1 & \ge 2 \\
s_2 & \ge 0 \\
s_3 & \ge 1
\end{array}$$

Geometrical interpretation

Linear inequality constraints, geometrically, define a convex polyhedron.

Geometrical interpretation

Our example from before:

$$\begin{array}{ccc} x & +y & \geq 2 \\ 2x & -y & \geq 0 \\ -x & +2y & \geq 0 \end{array}$$

Matrix form

- Recall the general form: $A(\vec{x}, \vec{s}) = 0$ and $\bigwedge_{i=1}^{m} l_i \leq s_i \leq u_i$
- A is now an $m \times (n + m)$ matrix due to the additional variables.

The tableau

■ The diagonal part is inherent to the general form:

$$\begin{pmatrix} x & y & \overbrace{s_1 & s_2 & s_3} \\ 1 & 1 & 1 & 0 & 0 \\ 2 & -1 & 0 & 0 & 0 \\ -1 & 2 & 0 & 0 & -1 \end{pmatrix} \qquad \begin{pmatrix} A & -\overline{J} \\ \widehat{s} \end{pmatrix} \cdot \begin{pmatrix} \overrightarrow{s} \\ \widehat{s} \end{pmatrix} = 0$$

Instead, we can write:

The tableau

- The tableaux changes throughout the algorithm, but maintains its $m \times n$ structure
- Distinguish basic (also called dependent) and non-basic variables

Notation:

 ${\cal B}$ the set of basic variables ${\cal N}$ the set of non-basic variables

- Initially, basic variables = the additional variables
- The tableaux is simply a different notation for the system

$$\bigwedge_{s_i \in \mathcal{B}} \left(s_i = \sum_{x_j \in \mathcal{N}} a_{ij} x_j \right)$$

■ The basic variables are also called the dependent variables.

Data structures

- Simplex maintains:
 - The tableau.
 - lacksquare an assignment lpha to all (problem and additional) variables.
- Initially, $\alpha(x_i) = 0$ for $i \in \{1, ..., n + m\}$

Data structures

- Simplex maintains:
 - The tableau.
 - \blacksquare an assignment α to all (problem and additional) variables.
- Initially, $\alpha(x_i) = 0$ for $i \in \{1, ..., n + m\}$
- Two invariants are maintained throughout:

- 2 All non-basic variables satisfy their bounds
- The basic variables do not need to satisfy their bounds.

Data structures

- Simplex maintains:
 - The tableau,
 - lacksquare an assignment lpha to all (problem and additional) variables.
- Initially, $\alpha(x_i) = 0$ for $i \in \{1, ..., n + m\}$
- Two invariants are maintained throughout:

 - 2 All non-basic variables satisfy their bounds
- The basic variables do not need to satisfy their bounds.
- Can you see why these invariants are maintained initially?

Invariants

lacksquare The initial assignment satisfies $A \vec{x} = 0$

• If the bounds of all basic variables are satisfied by α , return "satisfiable".

Otherwise... pivot.

= 0.

Pivoting

- I Find a basic variable x_i that violates its bounds. Suppose that $\alpha(x_i) < l_i$.
- **2** Find a non-basic variable x_j such that
 - \blacksquare $a_{ij} > 0$ and $\alpha(x_j) < u_j$, or
 - \bullet $a_{ij} < 0$ and $\alpha(x_j) > l_j$.

Why?

Pivoting

- I Find a basic variable x_i that violates its bounds. Suppose that $\alpha(x_i) < l_i$.
- - lacksquare $a_{ij} > 0$ and $lpha(x_j) < u_j$, or
 - \bullet $a_{ij} < 0$ and $\alpha(x_j) > l_j$.

Why? Such a variable is called suitable.

Pivoting

- I Find a basic variable x_i that violates its bounds. Suppose that $\alpha(x_i) < l_i$.
- - $lacksquare a_{ij} > 0$ and $lpha(x_j) < u_j$, or
 - \bullet $a_{ij} < 0$ and $\alpha(x_j) > l_j$.

Why? Such a variable is called suitable.

If there is no suitable variable, return "unsatisfiable".

Why?

Pivoting x_i and x_j (1)

I Solve equation i for x_j :

Pivoting x_i and x_j (1)

1 Solve equation i for x_j :

From:
$$x_i = a_{ij}x_j + \sum_{k \neq j} a_{ik}x_k$$

To:
$$x_j = \frac{x_i}{a_{ij}} - \sum_{k \neq j} \frac{a_{ik}}{a_{ij}} x_k$$

2 Swap x_i and x_i , and update the *i*-th row accordingly

From:
$$a_{i1}$$
 ... a_{ij} ... a_{in}

To: $\left| \frac{-a_{i1}}{a_{ij}} \right| \dots \left| \frac{1}{a_{ij}} \right| \dots \left| \frac{-a_{in}}{a_{ij}} \right|$

Pivoting x_i and x_i (2)

3 Update all other rows: Replace x_i with its equivalent obtained from row i:

$$x_j = \frac{x_i}{a_{ij}} - \sum_{k \neq i} \frac{a_{ik}}{a_{ij}} x_k$$

Pivoting x_i and x_i (2)

3 Update all other rows:

Replace x_i with its equivalent obtained from row i:

Update α as follows:

■ Increase
$$\alpha(x_j)$$
 by $\theta = \frac{I_i - \alpha(x_i)}{a_{ii}}$

Now x_i is a basic variable: it may violate its bounds.

Update $\alpha(x_i)$ accordingly.

Q: What is $\alpha(x_i)$ now?

• Update α for all other basic (dependent) variables.

Recall the tableau and constraints in our example:

	x	у	0		
s_1	1	1	2	_	S]
<i>s</i> ₂	2	-1	1	<u> </u>	S 2
<i>s</i> ₃	-1	2	. 1	\geq	53

■ Initially,

■ Recall the tableau and constraints in our example:

- lacksquare Initially, lpha assigns 0 to all variables
 - ⇒ Violated are the bounds of

Recall the tableau and constraints in our example:

	X	<u> </u>
<i>s</i> ₁	1	1
<i>s</i> ₂	2	$\overline{-1}$
53	-1	2

$$\begin{array}{cccc}
2 & \leq & s_1 \\
0 & \leq & s_2 \\
1 & \leq & s_3
\end{array}$$

$$1 \leq s_3$$

- Initially, α assigns 0 to all variables
 - \implies Violated are the bounds of s_1 and s_3

■ Recall the tableau and constraints in our example:

- lacktriangle Initially, lpha assigns 0 to all variables
 - \implies Violated are the bounds of s_1 and s_3
- We will fix s_1 .
- x is a suitable non-basic variable for pivoting. It has no upper bound!
- \blacksquare So now we pivot s_1 with x

$$\begin{array}{c|ccccc}
\hline
 & x & y \\
\hline
 & s_1 & 1 & 1 \\
\hline
 & s_2 & 2 & -1 \\
\hline
 & s_3 & -1 & 2 \\
\hline
\end{array}$$

$$S_1 = X + Y$$

=) $X = -S_1 + Y \subseteq$

$$S_{2} = 2 \times -3$$

$$X = -5, +5$$

$$= -25, +23 - 3$$

$$= -25, +23 - 3$$

$$= -25, +23 - 3$$

■ Solve 1^{st} row for x:

$$s_1 = x + y \quad \leftrightarrow \quad x = s_1 - y$$

■ Solve 1^{st} row for x:

$$s_1 = x + y \quad \leftrightarrow \quad x = s_1 - y$$

 \blacksquare Replace x in other rows:

$$s_2 = 2(s_1 - y) - y \quad \leftrightarrow \quad s_2 = 2s_1 - 3y$$

 $s_3 = -(s_1 - y) + 2y \quad \leftrightarrow \quad s_3 = -s_1 + 3y$

$$x = s_1 - y$$

$$s_2 = 2s_1 - 3y$$

$$s_3 = -s_1 + 3y$$

This results in the following new tableau:

$$x = s_1 - y$$

$$s_2 = 2s_1 - 3y$$

$$s_3 = -s_1 + 3y$$

This results in the following new tableau:

$$\begin{array}{rcl}
x & = & s_1 - y \\
s_2 & = & 2s_1 - 3y \\
s_3 & = & -s_1 + 3y
\end{array}$$

$$\begin{array}{cccc}
2 & \leq & s_1 \\
0 & \leq & s_2 \\
1 & \leq & s_3
\end{array}$$

What about the assignment?

This results in the following new tableau:

$$\begin{array}{rcl}
x & = & s_1 - y \\
s_2 & = & 2s_1 - 3y \\
s_3 & = & -s_1 + 3y
\end{array}$$

$$\begin{array}{cccc}
2 & \leq & s_1 \\
0 & \leq & s_2 \\
1 & \leq & s_3
\end{array}$$

What about the assignment?

- We should increase x by $\theta = \frac{2-0}{1} = 2$
- Hence, $\alpha(x) = 0 + 2 = 2$
- Now s_1 is equal to its lower bound: $\alpha(s_1) = 2$
- Update all the others

$$\alpha(x) = 2
\alpha(y) = 0
\alpha(s_1) = 2
\alpha(s_2) = 4
\alpha(s_3) = -2$$
 $2 \le s_1
0 \le s_2
1 \le s_3$

- Now s_3 violates its lower bound
- Which non-basic variable is suitable for pivoting?

- Now s_3 violates its lower bound
- Which non-basic variable is suitable for pivoting? That's right...y

$$\begin{array}{rclcrcl}
\alpha(x) & = & 2 & & & & & & & & & \\
\alpha(y) & = & 0 & & 2 & \leq & s_1 & & & & & & \\
\alpha(s_1) & = & 2 & & 0 & \leq & s_2 & s_2 & 1 & -1 \\
\alpha(s_2) & = & 4 & & 1 & \leq & s_3 & & & & & \\
\alpha(s_3) & = & -2 & & & & & & & & \\
\end{array}$$

- Now s_3 violates its lower bound
- Which non-basic variable is suitable for pivoting? $x = S^{1} - \left(\frac{3}{4}S^{1} + \frac{3}{4}S^{2}\right)$ That's right...y
- We should increase y by $\theta = \frac{1-(-2)}{3} = 1$

The final state:

All constraints are satisfied.

Observations I

The additional variables:

- Only additional variables have bounds.
- These bounds are permanent.
- Additional variables enter the base only on extreme points (their lower or upper bounds).
- When entering the base, they shift towards the other bound and possibly cross it (violate it).

Observations II

Q: Can it be that we pivot x_i, x_j and then pivot x_j, x_i and thus enter a (local) cycle?

Observations II

Q: Can it be that we pivot x_i, x_j and then pivot x_j, x_i and thus enter a (local) cycle?

A: No.

- For example, suppose that $a_{ii} > 0$.
- We increased $\alpha(x_i)$ so now $\alpha(x_i) = l_i$.
- After pivoting, possibly $\alpha(x_j) > u_j$, but $a'_{ij} = 1/a_{ij} > 0$, hence the coefficient of x_i is not suitable

Termination

Is termination guaranteed?

Termination

Is termination guaranteed?

■ Not obvious. Perhaps there are bigger cycles.

- In order to avoid circles, we use Bland's rule:
 - Determine a total order on the variables
 - Choose the first basic variable that violates its bounds, and the first non-basic suitable variable for pivoting.
 - 3 It can be shown that this guarantees that no base is repeated, which implies termination.

General simplex with Bland's rule

Transform the system into the general form

- $A(\vec{x}, \vec{s}) = 0$ and $\bigwedge_{i=1}^{m} I_i \leq s_i \leq u_i$.
- 2 Set \mathcal{B} to be the set of additional variables s_1, \ldots, s_m .
- Construct the tableau for A.
- Determine a fixed order on the variables.
- 5 If there is no basic variable that violates its bounds, return "satisfiable". Otherwise, let x_i be the first basic variable in the order that violates its bounds.
- **6** Search for the first suitable non-basic variable x_i in the order for pivoting with x_i . If there is no such variable, return "unsatisfiable".
- 7 Perform the pivot operation on x_i and x_i .
- Go to step 5.