Московский государственный университет имени М. В. Ломоносова Факультет вычислительной математики и кибернетики

ОТЧЕТ ПО №6

«Сборка многомодульных программ. Вычисление корней уравнений и определенных интегралов.»

Вариант $9 \ / \ 2 \ / \ 3$

Выполнил: студент 106 группы Поцелуев А. А.

> Преподаватель: Манушин Д. В. Корухова Л. С.

Содержание

Постановка задачи	2
Математическое обоснование	3
Результаты экспериментов	5
Структура программы и спецификация функций	6
Сборка программы (Маке-файл)	9
Отладка программы, тестирование функций	10
Тестирование функции root	10
Тестирование функции integral	11
Программа на Си и на Ассемблере	12
Анализ допущенных ошибок	13
Список питируемой литературы	14

Постановка задачи

В данном задании требовалось реализовать многомодульную программу, вычисляющую площадь фигуры, ограниченной тремя кривыми, заданными заранее определенными функциями. Для вычисления площади следовало найти точки попарного пересечения кривых - это было реализовано с помощью метода хорд. Вычисление площади проводилось с помощью метода Симпсона. Отрезки для применения метода хорд, точность вычисления корней и интегральных сумм были подобраны аналитически. Вычисление значений исходных функций было реализовано на языке ассемблера, остальной код написан на языке С.

Математическое обоснование

Для сходимости метода хорд необходимо выполнение следующих условий:

- на концах отрезка функция имеет разные знаки
- на всём отрезке первая производная не меняет знак (и не обращается в ноль)
- на всём отрезке вторая производная не меняет знак (и не обращается в ноль)

Для сходимости метода Симпсона требуется непрерывность четвертой производной у функции. Погрешность метода $R=\frac{f^{(4)}(\xi)}{2880n^4}(b-a)^5, a<\xi< b.$, является $O(\frac{1}{n^4})$.

Пусть $f_1=\frac{3}{(x-1)^2+1}, \, f_2=\sqrt{x+0.5}, \, f_3=e^{-x}.$ Рассмотрим $F_{12}=f_1-f_2$ на отрезке $[1.6;4].\,F(1.6)\cdot F(4)=(\frac{3}{(1.6-1)^2+1}-\sqrt{1.6+0.5})\cdot (\frac{3}{(4-1)^2+1}-\sqrt{4+0.5})=-1.378<0=>$ значения на концах отрезков имеют разные знаки. Рассмотрим первую производную. $F'(\mathbf{x})=-\frac{6(x-1)}{((x-1)^2+1)^2}-\frac{1}{2\sqrt{x+0.5}}<0,$ $\forall x\in[1.6;4].$ Значит, первая производная не меняет знак. Рассмотрим вторую. $F''(x)=\frac{6\cdot(3x^2-6x+2)}{((x-1)^2+1)^3}+\frac{1}{4(\sqrt{(x+0.5)^3})}>0,\, \forall x\in[1.6;4]=>$ отрезок [1.6;4] удовлетворяет достаточному признаку для нахождения корня.

Рассмотрим $F_{23}=f_2-f_3$ на отрезке [0;1]. $F(0)\cdot F(1)=(\sqrt{0+0.5}-e^0)\cdot (\sqrt{1+0.5}-e^{-1})=-0.251<0=>$ значения на концах отрезков имеют разные знаки. Рассмотрим первую производную. $F'(\mathbf{x})=\frac{1}{2\sqrt{x+0.5}}+e^{-x}>0, \, \forall x\in[0;1]$. Значит, первая производная не меняет знак. Рассмотрим вторую. $F''(x)=-\frac{1}{4(\sqrt{(x+0.5)^3})}-e^{-x}<0,\, \forall x\in[0;1]=>$ отрезок [0;1] удовлетворяет достаточному признаку для нахождения корня.

Рассмотрим $F_{13}=f_1-f_3$ на отрезке [-1;1]. $F(-1)\cdot F(1)=(\frac{3}{(-1-1)^2+1}-e^1)\cdot (\frac{3}{(1-1)^2+1}-e^{-1})=-5.576<0$ => значения на концах отрезков имеют разные знаки. Рассмотрим первую производную. $F'(\mathbf{x})=-\frac{6(x-1)}{((x-1)^2+1)^2}+e^{-x}>0$, $\forall x\in [-1;1]$. Значит, первая производная не меняет знак. Рассмотрим вторую. $F''(x)=\frac{6\cdot(3x^2-6x+2)}{((x-1)^2+1)^3}-e^{-x}>0$, $\forall x\in [-1;1]=>$ отрезок [-1;1] удовлетворяет достаточному признаку для нахождения корня.

При вычислении интеграла и нахождении корня использовались $\varepsilon_1=\varepsilon_2=10^{-5}$. При вычислении корней итоговая погрешность оказывается не более $\varepsilon_1 \cdot F_{absmax}$, где Fabsmax=max(|F(a)|,|F(b)|), где a,b- границы отрезка, на котором ищется корень, F(x) - функция, у который ищется корень. Учитывая погрешность ε_1 вычисления корней, выразим погрешность вычисления интеграла ε_2 : $\varepsilon_2=\frac{f^{(4)}(\xi)}{2880n^4}(b-a+2\varepsilon_1)^5$

Откуда общая погрешность вычислений: $|(\frac{f^{(4)}(\xi)}{2880n^4}(b-a+2\varepsilon_1)^5)\cdot(\frac{f^{(4)}(\xi)}{2880n^4}(b-a)^5)|<\varepsilon,\ \mathrm{гдe}\ \varepsilon=0.001\ \mathrm{пo}\ \mathrm{условию}.$

Подставив ε_2 и упростив подставим значения $\varepsilon_1 = \varepsilon_2 = 0.00001$, которые удовлетворяют этому неравенству. Необходимая точность достигнута.

Рис. 1: Плоская фигура, ограниченная графиками заданных уравнений

Результаты экспериментов

Кривые	x	y
1 и 2	1.956153	1.567210
2 и 3	0.187412	0.829102
1 и 3	-0.203335	1.225480

Таблица 1: Координаты точек пересечения

Рис. 2: Плоская фигура, ограниченная графиками заданных уравнений

Структура программы и спецификация функций

Программа состоит из 8 модулей, написанных на 2-ух языках: язык ассембера и язык Си.

Язык Си:

- root.c
- integral.c
- main.c
- test.c

Язык ассемблера:

- fl.asm
- f2.asm
- f3.asm

Библиотека:

• flist.h

root.c

В данном модуле реализуется следующая функция:

• $double\ root(double(*f)(double),\ double(*g)(double),\ double\ a,\ double\ b,\ double\ eps)$

Эта функция находит абциссу точки пересечения двух заданных функций на заданном промежутке с заданной точностью с помощью метода хорд.

integral.c

Данный модуль выполняет вычисление определенного интеграла заданной функции. Содержит в себе следующую функцию:

• double integral(double(*f)(double), double a, double b, double eps)Эта функция осуществляет метод Симпсона для вычисления определенного интеграла заданной функции на заданном промежутке с заданной точностью.

test.c

В данном модуле заданы функции для тестирования программы.

f1.asm, f2.asm, f3.asm

Данные модули обеспечивает вычисление заданных по условию проекта функций Все функции написаны с использованием соглашения cdecl.

flist.h

Данный модуль представляет собой библиотеку, содержащую в себе описание

всех внешних функций.

main.c

Главный модуль проекта. Содержит следующие функции:

- void help(void)
 Эта функция печатает все возможные опции командной строки.
- $main\ (int\ argc, char^{**}\ argv)$ Дальнейшее поведение программы зависит от полученных аргументов командной строки.
 - -help Выводит список доступных команд.
 - -roots Выводит абциссы точек пересечения исходных кривых.
 - iters Выводит количество итераций, произведенных для нахождения абсцисс точек пересечения исходных кривых.
 - -test Позволяет протестировать функции root и integral. Пользователь может выбрать тип проверки, а затем функцию (или пару функций для тестировния root) и ввести отрезок, на котором ищется площадь (или корень для функции root соответстенно).
 - v Выводит условие задания (исходные функции и названия методов, использованных в программе).
 - -at Запускает автоматическую проверку функций root и integral. Для этого были выбраны некоторые функции и для них были вычислены верные значения корней и площади. При запуске тестирования полученные в результе работы программы значения сравниваются с предпосчитанными верными, и в случае их совпадения провека является пройденной.

Сборка программы (Маке-файл)

```
GCC = gcc - m32
NASM = nasm - f elf32
.PHONY: all clean
all: prjct
prjct: main.o f1.o f2.o f3.o root.o integral.o test.o
$(GCC) $^ -o prjct -lm
main.o: main.c
$(GCC) $^ -c
root.o: root.c
$(GCC) $^ -c
integral.o: integral.c
$(GCC) $^ -c
test.o: test.c
$(GCC) $^ -c
f1.o: f1.asm
$(NASM) $^
f2.o: f2.asm
$(NASM) $^
f3.o: f3.asm
$(NASM) $^
clean:
rm -rf *.o
```

такеfile собирает все модули в один файл - prjct. Делается это с помощью ключа "all". Удаление всех объектных файлов, образовавшихся в процессе сборки, происходит с помощью ключа "clean". Метка ".PHONY"позволяет избежать конфликтов, в случае если в проекте будет существовать файлы all и/или clean. Из .asm и .c файлов формируются объектные файлы, от которых зависит итоговый файл prjct. Сами объектные файлы зависят от использованных в них внешних библиотек.

Отладка программы, тестирование функций

Тестирование численных методов проводилось с помощью нескольких вспомогательных функций.

Тестирование функции root

В программе присутсвует возможность выбора функции для тестирования, точности поиска и отрезка, в котором ищется корень. Ниже приведен результат работы функции на модельных примерах.

$N_{\bar{0}}$	Фукнция	Отрезок	Корень	Точность
1	$x^2 + 3x + 1 - \frac{1}{x}$	[-1.2; -0.5]	-1.000	0.001
2	$cos(x) - \frac{1}{x}$	[4.0; 6.0]	4.917	0.001
3	$x^2 + 3x + 1 - \cos(x)$	[-3.0; -1.5]	-2.276	0.001

Рис. 3: Графики тестовых функций

Тестирование функции integral

В программе присутсвует возможность выбора функции для тестирования, точности поиска и отрезка для нахождения определенного интеграла. Ниже приведен результат работы функции на модельных примерах.

No	Фукнция	Отрезок	Значение интеграла	Точность
1	$x^2 + 3x + 1$	[0;1]	2.833	0.001
2	$\frac{1}{x}$	[1; 4]	1.386	0.001
3	cos(x)	[1; 3]	-0.701	0.001

Рис. 4: Графики тестовых функций

Программа на Си и на Ассемблере

Исходный текст программы содержится в архиве и приложен к данному отчету.

Анализ допущенных ошибок

В процессе написания программы были допущены следующие ошибки:

- В функции integral в модуле integral.c при подсчете интегральных сумм I_h и I_{2h} оба значения вычислялись дважды. Позже это было исправлено на каждом шаге используется результат предыдущего вычисления.
- При реализации вычислений на языке ассемблера периодически возникали некоторые ошибки.

Список литературы

- [1] Ильин В. А., Садовничий В. А., Сендов Бл. X. Математический анализ. Ч. 1 Москва: Издательство Проспект, 2004.
- [2] Бахвалов, Жидков, Кобельков. Численные методы. Наука.