CS 2300 : Discrete Computational Structures Fall Semester, 2024

HOMEWORK ASSIGNMENT #5 **Due Date:** Wednesday, Oct 16

Suggested Reading: Lecture Notes Functions 2, Relations 1-3; Rosen Sections 9.1 and 9.5; Lehman et al. Chapter 10.5, 10.6 and 10.10 For the problems below, explain your answers and show your reasoning.

- 1. [10 Pts] Let g be a total function from A to B and f be a total function from B to C.
 - (a) If $f \circ g$ is one-to-one, then is f one-to-one? Prove or give a counter-example.
 - (b) If $f \circ g$ is onto, then is f onto? Prove or give a counter-example.
- 2. [10 Pts] For each of these relations decide whether it is reflexive, anti-reflexive, symmetric, anti-symmetric and transitive. Justify your answers. R_1 and R_2 are over the set of real numbers.
 - (a) $(x,y) \in R_1$ if and only if xy = 2
 - (b) $(x,y) \in R_2$ if and only if y = 5x
- 3. [7 Pts] Consider relation R_3 defined below on the set of real numbers. Prove that R_3 is an equivalence relation. What is the equivalence class of 2? of π ? Describe all the equivalence classes using set-builder notation.
 - $(x,y) \in R_3$ if and only if x = y 4n for some integer n.
- 4. [5 Pts] Consider relation R_4 defined below on the set of positive real numbers. Prove that R_4 is a partial order, *i.e.*, it is reflexive, anti-symmetric and transitive.

$$(x,y) \in R_4$$
 if and only if $y/x \in \mathbb{Z}$

- 5. [8 Pts] Let R_5 be the relation on $\mathbb{Z}^+ \times \mathbb{Z}^+$ where $((a, b), (c, d)) \in R_5$ if and only if c/a = d/b.
 - (a) Prove that R_5 is an equivalence relation.

- (b) Define a function f such that f(a,b) = f(c,d) if and only if $((a,b),(c,d)) \in R_5$.
- (c) Define the equivalence class containing (1,1).
- (d) Describe the equivalence classes using set-builder notation.
- 6. [10 Pts] Prove that these relations on the set of all functions from mathbbZ to \mathbb{Z} are equivalence relations. Describe the equivalence classes.
 - (a) $R_6 = \{(f, g) \mid f(0) = g(0) \text{ and } f(1) = g(1)\}$
 - (b) $R_7 = \{(f, g) \mid \exists C \in \mathbb{Q}^+, \forall x \in \mathbb{Z}, f(x) = Cg(x)\}$

For more practice, work on the problems from Sections 9.1 and 9.5; Lehman et al. Chapter 10.5, 10.6 and 10.10

1a.) Using a contrapositive, we assume that f is not one-to-one so then $f \circ g$ is not one-to-one. This would mean there exist elements $b_1, b_2 \in B$ such that $f(b_1) = f(b_2)$ but $b_1 \neq b_2$

We can use g as a function from A to B using $a_1, a_2 \in A$ such that $g(a_1) = b_1$ and $g(a_2) = b_2$

After computing $f \circ g$ for a_1, a_2 :

$$(f \circ g)(a_1) = f(g(a_1)) = f(b_1)$$

$$(f \circ g)(a_2) = f(g(a_2)) = f(b_2)$$

But since $f(b_1) = f(b_2)$, we get that $(f \circ g)(a_1) = (f \circ g)(a_2)$

CONCLUSION:

 $a_1 \neq a_2$ because $g(a_1) = b_1$ and $g(a_2) = b_2$. This would show that $f \circ g$ is not one-to-one contradicting the assumption initially. So therefore f must be one-to-one for $f \circ g$ to be one-to-one.

1b.) Using a counter example, we can let: $A = \{1, 2\}, B = \{1, 2, 3\}$, and $C = \{1, 2\}$. Defining the following functions $g: A \to B$ and $f: B \to C$

g(1) = 1, g(2) = 2 which would show that g is onto

f(1) = 1, f(2) = 2, and f(3) = 2 shows that f is not onto

When we consider $f \circ g$: $f \circ g(1) = f(g(1)) = f(1) = 1$

 $f \circ g(2) = f(g(2)) = f(2) = 2$

CONCLUSION:

 $f \circ g$ maps to A onto C, which would mean that $f \circ g$ is onto, but f itself is not onto because $1 \in C$. Therefore $f \circ g$ being onto does not imply that f is onto

2a.) R_1 is reflexive if $(x, x) \in R_1$ for all $x \in R$, which would mean that x * x = 2 for all x.

But since for any real number x, x * x = 2 is not true, for example if $x = 1, 1 * 1 = 1 \neq 2$.

CONCLUSION: R_1 is not reflexive.

 R_1 is anti-reflexive if $(x, x) \notin R_1$ for all $x \in R$ since no real number satisfies x * x = 2, but x = 1, but that is specific value

CONCLUSION: Therefore R_1 is anti-reflexive

 R_1 is symmetric if $(x, y) \in R_1$ and $(y, x) \in R_1$ which means that x * y = 2, then y * x = 2

Since the use of multiplication is commutative if $(x,y) \in R_1$ then $(y,x) \in R_1$

CONCLUSION: There for R_1 is symmetric.

 R_1 is anti-symmetric if $(x,y) \in R_1$ and $(y,x) \in R_1$ imply that x=yWe can say that x=1 and y=2, then 1*2=2 so $(1,2) \in R_1$ and since 2*1=2, $(2,1) \in R_1$ But $1 \neq 2$

CONCLUSION: Therefore R_1 is not anti-symmetric

 R_1 is transitive if $(x, y) \in R_1$ and $(y, z) \in R_1$ imply $(x, z) \in R_1$. We can consider that $(x, y) \in R_1$, so x * y = 2 and $(y, z) \in R_1$, so y * z = 2. But if we let x = 1, y = 2, and z = 1/2. Then x * y = 2 and y = 2 but $x * z = 1 \neq 2$ **CONCLUSION: Therefore** R_1 is **not transitive**

2b.) R_2 is reflexive if $(x, x) \in R_2$ for all $x \in R$, which would mean that x = 5x for all x.

CONCLUSION: Easily conclude that it is only true when x = 0 so R_2 is not reflexive.

 R_2 is anti-reflexive if $(x, x) \notin R_1$ for all $x \in R$

Since $x, x \in R_2$ only when x = 0, **CONCLUSION:** R_2 is not anti-reflexive because $(0,0) \in R_2$

 R_2 is symmetric if $(x,y) \in R_2$ implies $(y,x) \in R_2$ which means that y=5x, then x=5y

We can consider y = 5x. Then for $(y, x) \in R_2$ to hold we would need x = 5y, which leads to x = 5(5x) = 25x. But this is only true when x = 0.

CONCLUSION: R_2 is not symmetric

 R_2 is anti-symmetric if $(x,y) \in R_2$ and $(y,x) \in R_2$ imply that x=y Suppose that $(x,y) \in R_2$ and $(y,x) \in R_2$, which would mean y=5x and x=5y, this would lead to x=0 and y=0

CONCLUSION: x = y which makes R_2 anti-symmetric

 R_2 is transitive if $(x, y) \in R_2$ and $(y, z) \in R_2$ imply $(x, z) \in R_2$ We can say $(x, y) \in R_2$ and $(y, z) \in R_2$, which would mean that y = 5x and z = 5y, and if we sub in y = 5x into z = 5y, we would get that z = 5(5x) = 25x which does not satisfy z = 5x unless x = 0

CONCLUSION: R_2 is not transitive

3.) To show equivalence relation we must prove for all of reflexivity, symmetry, and transitivity

 R_3 is reflexive if $(x, x) \in R_3$ for all $x \in R$, which would mean that x = x - 5n for some integer n.

We can set n = 0 for all $x \in R$;

x = x - 4 * 0 = x

CONCLUSION: R_3 is reflexive

 R_3 is symmetric if $(x,y) \in R_3$ implies $(y,x) \in R_3$ which means that x = y - 4n for some integer n, then y = x - 4m for some integer m

 R_3 is transitive if $(x,y) \in R_3$ and $(y,z) \in R_3$ imply $(x,z) \in R_3$, which means if x = y - 4n and y = z - 4m, then x = z - 4k for some integer k

We can suppose that $(x, y) \in R_3$ so x = y - 4n and $(y, z) \in R_3$ so that y = z - 4n for some integers n and m.

We can then sub the second equation into the first: so that x = (z - 4m) - 4n =

z - 4(m + n)

Making x = z - 4k where k = m + n is an integer **CONCLUSION:** R_3 is transitive

OVERALL CONCLUSION: WE CAN SAY THAT R_3 IS A EQUIVALENCE RELATION

For the equivalence class of 2, which is denoted [2], consists of all real numbers y such that $(2, y) \in R_3$ meaning that 2 = y - 4n for some integer n

When solving for y we get that y = 2 + 4n, where n is an integer.

CONCLUSION: The equivalence class of 2 is $[2] = \{y \in R | y = 2 + 4n, n \in Z\}$

For the equivalence class of π , denoted $[\pi]$, it consists of all real numbers y such that $(2, y) \in R_3$ meaning 2 = y - 4n for some integer n

Solving for y we get that $y = \pi + 4n$, where n is an integer

CONCLUSION: The The equivalence class of π is $[\pi] = \{y \in R | y = \pi + 4n, n \in Z\}$

Describing all equivalence classes under R_3 by using set-builder notation it can be described as:

$$[x] = \{ y \in R | y \equiv x \pmod{4} \}$$

4.) Partial order, is when R_4 is reflexive, anti-symmetric and transitive.

For R_4 to be reflexive, if $(x,x) \in R_4$ for all $x \in R^+$, which would mean that $x/x \in Z$

We can say for any positive number x we have x/x=1, and $1 \in Z$ CONCLUSION: R_4 is reflexive.

 R_4 is anti-symmetric if $(x,y) \in R_4$ and $(y,x) \in R_4$, which implies that x = y meaning $x/y \in Z$ and $x/y \in Z$ then x = y.

This would imply that y is a multiple of x and x is a multiple of y Multiplying (y/x)*(x/y)=k*(1/k)=1

CONCLUSION: R_4 is anti-symmetric

A relation is transitive if $(x, y) \in R_4$ and $(y, z) \in R_4$ imply that $(x, z) \in R_4$, meaning if $y/x \in Z$ and $z/y \in Z$, then $x/x \in Z$

We can suppose that $(x, y) \in R_4$, so that y/x = k for some integer k and $(y, z) \in R_4$, so that z/y = m for some integer m

We can show that $x/z \in Z$ by (z/x) = (z/y) * (y/x) = m * k

CONCLUSION: Since both m and k are integers z/x = mk is also an integer so R_4 is transitive.

OVERALL CONCLUSION: R_4 is partial order

5a.) To show that R_5 is a equivalence relation, we need to prove reflexivity, symmetry, and transitivity.

 R_5 is reflexive if $((a,b),(a,b) \in R_5$ for all (a,b) meaning that a/b = a/b

We can see that any pair for (a, b) we have that a/b = a/b

CONCLUSION: R_5 is reflexive

 R_5 is symmetric if $((a,b),(c,d)) \in R_5$ implies $((c,d),(a,b)) \in R_5$, which means that a/b = c/d, then c/d = a/b.

CONCLUSION: Since the ratios are symmetric, it would mean that R_5 is symmetric

 R_5 is transitive if $((a,b),(c,d)) \in R_5$ and $((c,d),(e,f)) \in R_5$ which implies that $((a,b),(e,f)) \in R_5$, so that a/b = c/d and c/d = e/f, then a/b = e/g

If we see that a/b = c/d and c/d = e/f then by transitive equality we have that a/b = e/f

CONCLUSION: R_5 is transitive

IT WOULD CONCLUDE THAT R_5 is an equivalence relation

5b.) We can choose that f(a, b) = a/b

We can show this if a/b = d/c then f(a,b) = f(c,d) and if f(a,b) = f(c,d) then a/b = d/c which means that $((a,b),(c,d)) \in R_5$ So f(a,b) = a/b satisfies the condition given.

5c.) We can simply the equation to get 1/1 = d/c we would get that d = c

CONCLUSION: There for the class containing (1,1) is $[(1,1)] = \{(c,c)|c \in R+\}$ which means the two elements are equal

- 5d.) By using set builder notation we describe the equivalence classes as: $[(a,b)] = \{(c,d) \in R + xR + |c/d = a/b\}$
- 6a.) R_6 is reflexive because we can see that f(0) = f(0) and f(1) = f(1) is true for any function.

 R_6 is symmetric because if f(0) = g(0) and f(1) = g(1), then g(0) = f(0) and g(1) = f(1).

 R_6 is transitive because f(0) = g(0), f(1) = g(1), g(0) = h(0) and g(1) = h(1), then f(0) = h(0) and f(1) = h(1). When we combine then we get that R_6 is transitive

CONCLUDES that R_6 is an equivalence relation.

Describing the equivalence class we get that f consists of all functions that agree with f at 0 and 1 but can be different somewhere else, if we wanted to we can rewrite it as:

```
[f] = \{g|g(0) = f(0) \text{ and } g(1) = f(1)\}
```

6b.) For reflexivity if $(f, f) \in R_7$ for all functions f meaning there exists a constant $C \in Q+$ such that f(x) = Cf(x) for all $x \in Z$. R_7 is reflexive by taking in that $C = 1 \in Q+$ such that f(x) = 1 * f(x) so that $(f, f) \in R_7$ Therefore R_7 is reflexive.

For symmetry if $(f,g) \in R_7$ implies $(g,f) \in R_7$ meaning there exists $C \in Q+$ such that f(x) = Cg(x) then there must exist $D \in Q+$ such that g(x) = Df(x). R_7 is symmetric if f(x) = Cg(x), then g(x) = 1/Cf(x) and since $C \in Q+$, $1/C \in Q+$ Therefore $(g,f) \in R_7$ is symmetric

For transitivity if $(f,g) \in R_7$ and $(g,h) \in R_7$ imply $(f,h) \in R_7$, if there exists $C, D \in Q+$ such that f(x) = Ch(x) and g(x) = Dh(x) there must exist $E \in Q+$ such that f(x) = Eh(x). R_7 is transitive when we have that f(x) = Cg(x) = C*Dh(x), so f(x) = (C*D)h(x). Since $C, D \in Q+$, which means that $(f,h) \in R_7$, Therefore R_7 is transitive.

CONCLUSION: After proving each it makes that R_7 is an equivalence relation

We can rewrite and describe the equivalence classes by saying $[f] = \{g | \exists C \in Q+, \forall x \in Z, f(x) = Cg(x)\}$