Recall:

If $A = [v_1 \dots v_n]$ is an $m \times n$ matrix then:

- 1) $Col(A) = Span(v_1, \ldots, v_n)$
- 2) $Nul(A) = \{ v \in \mathbb{R}^m \mid Av = 0 \}$

2.8:
$$A = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix}$$
 $M = 2 \, Col(A) = Span(\begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 3 \\ 4 \end{bmatrix}, \begin{bmatrix} 5 \\ 6 \end{bmatrix}) \leq \mathbb{R}^2$

Nul(A) is a subspace of R"

Nul
$$\left(\begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix}\right) = \left\{\begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} \mid \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix}, \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} : \begin{bmatrix} 0 \\ 0 \end{bmatrix}\right\} \subseteq \mathbb{R}^3$$

Construction of a basis of Col(A)

Lemma

Let V be a vector space, and let $\mathbf{v}_1, \dots, \mathbf{v}_p \in V$. If a vector \mathbf{v}_i is a linear combination of the other vectors then

$$Span(v_1, \ldots, v_p) = Span(v_1, \ldots, v_{i-1}, v_{i+1}, \ldots, v_p)$$

Upshot. One can construct a basis of a vector space V as follows:

- Start with a set of vectors $\{v_1, \ldots, v_p\}$ such that $Span(v_1, \ldots, v_p) = V$.
- Keep removing vectors without changing the span, until you get a linearly independent set.

Example. Find a basis of Col(A) where A is the following matrix:

$$A = \begin{bmatrix} 1 & 0 & 2 & 0 & 1 & 0 \\ 0 & 1 & 3 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

matrix in the reduced echelon form

Solutions

Col (A) = Span (V, , V2, Y3, V4, Y5, V6) & TR5

Note:
$$V_3 = 2V_1 + 3V_2$$

$$V_5 = V_1 - V_2 + 3V_4$$

Note: The set {v,, v2, v4, v6} is linearly independet so we obtain that it is a basis of Col(A).

In general: If A is a metrix in the reduced echelon form then the set of all columns of A which contain leading ones is a basis of Col (A).

Example. Find a basis of Col(A) where A is the following matrix:

$$A = \begin{bmatrix} -3 & 6 & -1 & 1 & -7 \\ 1 & -2 & 2 & 3 & -1 \\ 2 & -4 & 5 & 8 & -4 \end{bmatrix}$$

Solutioni

Col (A) = Span (V1) V2, V3, V4, V5) & R3
basis of Col (A)?

$$\begin{bmatrix} -3 & 6 & -1 & 1 & -7 \\ 1 & -2 & 2 & 3 & -1 \\ 2 & -4 & 5 & 8 & -4 \end{bmatrix} \xrightarrow{\text{row red.}} \begin{bmatrix} 1 & -2 & 0 & -1 & 3 \\ 0 & 0 & 1 & 2 & -2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

This gives: Col(A) = Span (V1, V3)

Check: the set {V1, V3} is linearly independent so it is a basis of Col(A).

In general: If A is a matrix then the set of all pivot columns of A is a basis of Col (A).

Construction of a basis of Nul(A)

Example. Find a basis of Nul(A) where A is the following matrix:

$$A = \begin{bmatrix} -3 & 6 & -1 & 1 & -7 \\ 1 & -2 & 2 & 3 & -1 \\ 2 & -4 & 5 & 8 & -4 \end{bmatrix}$$

Solution:

We know how to find a spanning set of Nul(A):

$$V = \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5} \end{bmatrix} = \begin{bmatrix} 2 \times_{z} + \times_{4} - 3 \times_{5} \\ \times_{z} \\ -2 \times_{4} + 2 \times_{5} \\ \times_{4} \\ \times_{5} \end{bmatrix} = \times_{z} \begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \end{bmatrix} + \times_{4} \begin{bmatrix} 1 \\ 0 \\ -2 \\ 1 \\ 0 \end{bmatrix} + \times_{5} \begin{bmatrix} -3 \\ 0 \\ 2 \\ 0 \\ 1 \end{bmatrix}$$

$$= \times_{2} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + \times_{4} \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} + \times_{5} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

This gives!

so the set B= {W1, W2, W3} is a spanning set of Nul(A).

Note: The set B obtained in this way is always linearly independent, so it is a basis of Nul(A).

Upshot. If *A* is matrix then:

 $\dim \operatorname{Col}(A) = \operatorname{the\ number\ of\ pivot\ columns\ of\ } A$ $\dim \operatorname{Nul}(A) = \operatorname{the\ number\ of\ non-pivot\ columns\ of\ } A$

Definition

If A is a matrix then:

- the dimension of Col(A) is called the rank of A and it is denoted rank(A)
- the dimension of Nul(A) is called the *nullity* of A.

E.g.: If A is the matrix from the last example then
$$\dim Col(A) = 2$$
 so rank $A = 2$ dim $Nul(A) = 3$ so nullity of $A = 3$

The Rank Theorem

If A is an $m \times n$ matrix then

$$rank(A) + dim Nul(A) = n$$

Example. Let A be a 100×101 matrix such that dim Nul(A) = 1. Show that the equation $A\mathbf{x} = \mathbf{b}$ has a solution for each $\mathbf{b} \in \mathbb{R}^{100}$.

Solution

Recall: $A \times = b$ has a solution if $b \in Col(A)$ so: $A \times = b$ has a solution for each $b \in \mathbb{R}^{100}$ if $Col(A) = \mathbb{R}^{100}$

Thus we need to show that GoI (A) = TR100.

We have

50: dim Col(A) = 100 = dim TR 100

We obtain:

- 1) Col(A) is a subspace of TR100
- 2) dim Col (A) = dim TR 100

Example. Let A be a 5×9 . Can the null space of A have dimension 3?

of columns of A

Col(A) is a subspace of \mathbb{R}^5 , so dim Col(A) \leq dim \mathbb{R}^5 =5

dim Nul(A) > 4

In particular there is 5×9 matrix A with dim Nul(A) = 3.