AM 205: lecture 23

- Last time: power method, Rayleigh quotient
- ► Today: QR algorithm, iterative methods for linear systems

QR Algorithm

The QR algorithm for computing eigenvalues is one of the best known algorithms in Numerical Analysis¹

It was developed independently in the late 1950s by John G.F. Francis (England) and Vera N. Kublanovskaya (USSR)

The QR algorithm efficiently provides approximations for all eigenvalues/eigenvectors of a matrix

We will consider what happens when we apply the power method to a set of vectors — this will then motivate the QR algorithm

¹Recall that here we focus on the case in which $A \in \mathbb{R}^{n \times n}$ is symmetric

Let $x_1^{(0)}, \ldots, x_p^{(0)}$ denote p linearly independent starting vectors, and suppose we store these vectors in the columns of X_0

We can apply the power method to these vectors to obtain the following algorithm:

- 1: choose an $n \times p$ matrix X_0 arbitrarily
- 2: **for** $k = 1, 2, \dots$ **do**
- 3: $X_k = AX_{k-1}$
- 4: end for

From our analysis of the power method, we see that for each $i=1,2,\ldots,p$:

$$x_{i}^{(k)} = \left(\lambda_{n}^{k} \alpha_{i,n} v_{n} + \lambda_{n-1}^{k} \alpha_{i,n-1} v_{n-1} + \dots + \lambda_{1}^{k} \alpha_{i,1} v_{1}\right)$$

$$= \lambda_{n-p}^{k} \left(\sum_{j=n-p+1}^{n} \left(\frac{\lambda_{j}}{\lambda_{n-p}}\right)^{k} \alpha_{i,j} v_{j} + \sum_{j=1}^{n-p} \left(\frac{\lambda_{j}}{\lambda_{n-p}}\right)^{k} \alpha_{i,j} v_{j}\right)$$

Then, if $|\lambda_{n-p+1}| > |\lambda_{n-p}|$, the sum in green will decay compared to the sum in blue as $k \to \infty$

Hence the columns of X_k will converge to a basis for $span\{v_{n-p+1}, \ldots, v_n\}$

However, this method doesn't provide a good basis: each column of X_k will be very close to v_n

Therefore the columns of X_k become very close to being linearly dependent

We can resolve this issue by enforcing linear independence at each step

We orthonormalize the vectors after each iteration via a (reduced) QR factorization, to obtain the simultaneous iteration:

- 1: choose $n \times p$ matrix Q_0 with orthonormal columns
- 2: **for** k = 1, 2, ... **do**
- 3: $X_k = A\hat{Q}_{k-1}$
- 4: $\hat{Q}_k \hat{R}_k = X_k$
- 5: end for

The column spaces of \hat{Q}_k and X_k in line 4 are the same

Hence columns of \hat{Q}_k converge to orthonormal basis for $\operatorname{span}\{v_{n-p+1},\ldots,v_n\}$

In fact, we don't just get a basis for span $\{v_{n-p+1}, \ldots, v_n\}$, we get the eigenvectors themselves!

Theorem: The columns of \hat{Q}_k converge to the p dominant eigenvectors of A

We will not discuss the full proof, but we note that this result is not surprising since:

- ▶ the eigenvectors of a symmetric matrix are orthogonal
- ▶ columns of \hat{Q}_k converge to an orthogonal basis for span $\{v_{n-p+1}, \ldots, v_n\}$

Simultaneous iteration approximates eigenvectors, we obtain eigenvalues from the Rayleigh quotient $\hat{Q}^T A \hat{Q} \approx \text{diag}(\lambda_1, \dots, \lambda_n)$

With p = n, the simultaneous iteration will approximate all eigenpairs of A

We now show a more convenient reorganization of the simultaneous iteration algorithm

We shall require some extra notation: the Q and R matrices arising in the simultaneous iteration will be underlined \underline{Q}_k , \underline{R}_k

(As we will see shortly, this is to distinguish between the matrices arising in the two different formulations...)

Define² the k^{th} Rayleigh quotient matrix: $A_k \equiv \underline{Q}_k^T A \underline{Q}_k$, and the QR factors Q_k , R_k as: $Q_k R_k = A_{k-1}$

Our goal is to show that $A_k = R_k Q_k$, k = 1, 2, ...

Initialize $\underline{Q}_0=\mathrm{I}\in\mathbb{R}^{n\times n}$, then in the first simultaneous iteration we obtain $X_1=A$ and $\underline{Q}_1\underline{R}_1=A$

It follows that
$$A_1 = \underline{Q}_1^T A \underline{Q}_1 = \underline{Q}_1^T (\underline{Q}_1 \underline{R}_1) \underline{Q}_1 = \underline{R}_1 \underline{Q}_1$$

Also
$$Q_1R_1=A_0=\underline{Q}_0^TA\underline{Q}_0=A$$
, so that $Q_1=\underline{Q}_1$, $R_1=\underline{R}_1$, and $A_1=R_1Q_1$

 $^{^2\}mbox{We}$ now we use the full, rather than the reduced, QR factorization hence we omit $\hat{\ }$ notation

In the second simultaneous iteration, we have $X_2=A\underline{Q}_1$, and we compute the QR factorization $\underline{Q}_2\underline{R}_2=X_2$

Also, using our QR factorization of A_1 gives

$$X_2 = A\underline{Q}_1 = (\underline{Q}_1\underline{Q}_1^T)A\underline{Q}_1 = \underline{Q}_1A_1 = \underline{Q}_1(Q_2R_2),$$

which implies that $\underline{Q}_2 = \underline{Q}_1 Q_2 = Q_1 Q_2$ and $\underline{R}_2 = R_2$

Hence

$$A_2 = \underline{Q}_2^T A \underline{Q}_2 = Q_2^T \underline{Q}_1^T A \underline{Q}_1 Q_2 = Q_2^T A_1 Q_2 = Q_2^T Q_2 R_2 Q_2 = R_2 Q_2$$

The same pattern continues for k = 3, 4, ...: we QR factorize A_k to get Q_k and R_k , then we compute $A_{k+1} = R_k Q_k$

The columns of the matrix $\underline{Q}_k = Q_1 Q_2 \cdots Q_k$ approximates the eigenvectors of A

The diagonal entries of the Rayleigh quotient matrix $A_k = \underline{Q}_k^T A \underline{Q}_k$ approximate the eigenvalues of A

(Also, due to eigenvector orthogonality for symmetric A, A_k converges to a diagonal matrix as $k \to \infty$)

This discussion motivates the famous QR algorithm:

```
1: A_0 = A
```

2: **for** k = 1, 2, ... **do**

3:
$$Q_k R_k = A_{k-1}$$

4: $A_k = R_k Q_k$

5: end for