

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re the Application of

Naomasa SHIRAISHI

Application No.: 09/690,591

Filed: October 18, 2000

For:

EXPOSURE METHOD AND APPARATUS.

.: 107629

AND METHOD FABRICATING A DEVICE

CLAIM FOR PRIORITY

Director of the U.S. Patent and Trademark Office Washington, D.C. 20231

Sir:

The benefit of the filing date of the following prior foreign application filed in the following foreign country is hereby requested for the above-identified patent application and the priority provided in 35 U.S.C. §119 is hereby claimed:

Japanese Patent Application No. 11-299331 filed October 21, 1999 In support of this claim, a certified copy of said original foreign application: is filed herewith. was filed on _____ in Parent Application No. _____ filed ____. will be filed at a later date.

It is requested that the file of this application be marked to indicate that the requirements of 35 U.S.C. §119 have been fulfilled and that the Patent and Trademark Office kindly acknowledge receipt of this document.

Respectfully submitted,

James A. Oliff

Registration No. 27,075

Thomas J. Pardini Registration No. 30,411

JAO:TJP/cmm

Date: February 13, 2001

OLIFF & BERRIDGE, PLC P.O. Box 19928 Alexandria, Virginia 22320 Telephone: (703) 836-6400

DEPOSIT ACCOUNT USE AUTHORIZATION Please grant any extension necessary for entry; Charge any fee due to our Deposit Account No. 15-0461

日本国特許庁

PATENT OFFICE
JAPANESE GOVERNMENT

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日

Date of Application:

1999年10月21日

出願番号

Application Number:

平成11年特許願第299331号

株式会社ニコン

2000年10月20日

特許庁長官 Commissioner, Patent Office

特平11-299331

【書類名】 特許願

【整理番号】 99-00908

【提出日】 平成11年10月21日

【あて先】 特許庁長官殿

【国際特許分類】 H01L 21/027

【発明者】

【住所又は居所】 東京都千代田区丸の内3丁目2番3号 株式会社ニコン

内

【氏名】 白石 直正

【特許出願人】

【識別番号】 000004112

【氏名又は名称】 株式会社ニコン

【代表者】 吉田 庄一郎

【代理人】

【識別番号】 100098165

【弁理士】

【氏名又は名称】 大森 聡

【電話番号】 044-900-8346

【手数料の表示】

【予納台帳番号】 019840

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【包括委任状番号】 9115388

【プルーフの要否】 要

3

【書類名】 明細書

【発明の名称】 露光方法及び装置、並びにデバイス製造方法

【特許請求の範囲】

【請求項1】 第1物体のパターンを通過した露光ビームで投影系を介して 第2物体を露光する露光方法において、

前記投影系と前記第2物体との間の空間を前記投影系側の第1の空間と前記第 2物体側の第2の空間とに分けて、該第1及び第2の空間の境界部の少なくとも 前記露光ビームが通過する領域に開口部を設け、

前記第1の空間側に前記露光ビームを透過する第1気体を供給し、

前記第1の気体は、前記第2の空間側の第2の気体に比べて前記露光ビームを 吸収する不純物の混入率が低いことを特徴とする露光方法。

【請求項2】 前記第1の空間において、前記第1の気体を一方向から送風 することを特徴とする請求項1に記載の露光方法。

【請求項3】 前記露光ビームは波長180nm以下の真空紫外光であり、 前記露光ビームを透過する第1又は第2の気体は希ガス又は窒素ガスであること を特徴とする請求項1に記載の露光方法。

【請求項4】 第1物体のパターンを通過した露光ビームで投影系を介して 第2物体を露光する露光方法において、

前記第1物体又は前記第2物体を保持してベース部材上を移動するステージを 前記露光ビームを透過する第3の気体が供給される空間内に配置し、

前記ステージを前記ベース部材上に第4の気体の噴射と該第4の気体の吸引と によって差動排気型で浮上させると共に、

前記第4の気体の前記露光ビームに対する吸収率の許容度を前記第3の気体よりも高く設定することを特徴とする露光方法。

【請求項5】 前記第3の気体と前記第4の気体とは、互いに異なる気体であることを特徴とする請求項4に記載の露光方法。

【請求項6】 第1物体のパターンを通過した露光ビームで投影系を介して 第2物体を露光する露光方法において、

前記第1物体又は前記第2物体と共に移動するステージと所定の参照部材とに

それぞれ計測用ビーム及び参照ビームを照射して、前記参照部材に対する前記第 1物体又は前記第2物体の位置を計測し、

前記計測用ビーム及び前記参照ビームの光路を互いに前記露光ビームを吸収する不純物の混入率が同程度の気体の雰囲気にすることを特徴とする露光方法。

【請求項7】 第1物体のパターンを通過した露光ビームで投影系を介して 第2物体を露光する露光方法において、

前記投影系と前記第2物体との間の空間を前記投影系側の第1の空間と前記第2物体側の第2の空間とに分けて、該第1及び第2の空間の境界部のうち、少なくとも前記露光ビームが通過する領域に開口部を設け、

前記第1の空間に前記露光ビームを透過する気体を送風し、

前記露光ビームを照射することにより発生する前記第2物体からの物質を、前記第1の空間で送風される前記気体を介して、前記露光ビームの光路中から排出することを特徴とする露光方法。

【請求項8】 第1物体のパターンを通過した露光ビームで投影系を介して 第2物体を露光する露光方法において、

前記投影系と前記第2物体との間の空間を前記投影系側の第1の空間と前記第2物体側の第2の空間とに分けて、該第1及び第2の空間の境界部のうち、前記第1物体又は前記第2物体の位置を検出するための検出ビームが通過する領域に開口を設け、

前記第1の空間に前記露光ビームが透過する気体を供給することを特徴とする 露光方法。

【請求項9】 第1物体のパターンを通過した露光ビームで投影系を介して 第2物体を露光する露光方法において、

前記投影系と前記第2物体との間の空間を前記投影系側の第1の空間と前記第 2物体側の第2の空間とに分け、

前記第1の空間の不純物の混入率を、前記第2の空間の不純物の混入率より低くしたことを特徴とする露光方法。

【請求項10】 第1物体のパターンを通過した露光ビームで投影系を介して第2物体を露光する露光装置において、

前記投影系と前記第2物体との間に配置されて、前記露光ビームを通過させる ための開口が形成された開口板と、

該開口板と前記投影系との間の第1の空間に前記露光ビームを透過する第1の 気体を供給する第1の気体供給機構と、

前記開口板と前記第2物体との間の第2の空間に供給されて前記露光ビームを 透過すると共に、前記第1の気体に比べて前記露光ビームを吸収する不純物の混 入率が異なる第2の気体の環境を制御する環境制御機構と

【請求項11】 前記第2物体を囲む第2の空間を、前記開口板の開口を除いて実質的に密閉するチャンバを設け、

前記環境制御機構は、該チャンバ内に前記露光ビームを透過する第2の気体を 供給する第2の気体供給機構を有し、

前記第1の気体供給装置は前記第1の気体を前記第1の空間内で一方向に供給 し、

前記第1の気体は、前記第2の気体に比べて前記露光ビームを吸収する不純物 の混入率が低いことを特徴とする請求項10に記載の露光装置。

【請求項12】 第1物体のパターンを通過した露光ビームで投影系を介して第2物体を露光する露光装置において、

前記第1物体又は前記第2物体を保持してベース部材上を移動するステージと

該ステージを囲む空間を実質的に密閉するチャンバと、

を有することを特徴とする露光装置。

該チャンバ内に前記露光ビームを透過する第3の気体を供給する気体供給装置 と、

前記ステージを前記ベース部材上に第4の気体の噴射と該第4の気体の吸引と によって差動排気型で浮上させるエアーベアリング装置と

を有し、前記第4の気体の前記露光ビームに対する吸収率の許容度を前記第3の 気体よりも高く設定することを特徴とする露光装置。

【請求項13】 第1物体のパターンを通過した露光ビームで投影系を介して第2物体を露光する露光装置において、

前記第1物体又は前記第2物体と共に移動するステージと、

前記投影系に対して静止している参照部材と、

前記ステージ及び前記参照部材にそれぞれ計測用ビーム及び参照ビームを照射 して、前記参照部材に対する前記第1物体又は前記第2物体の位置を計測する干 渉計と、

前記計測用ビーム及び前記参照ビームの光路に互いに前記露光ビームを吸収する不純物の混入率が同程度の気体を供給する気体供給装置と を有することを特徴とする露光装置。

【請求項14】 第1物体のパターンを通過した露光ビームで投影系を介して第2物体を露光する露光装置において、

前記投影系と前記第2物体との間に配置されて、前記第1物体又は前記第2物体の位置を検出するための検出ビームを通過させるための開口が形成された開口板と、

前記開口板と前記投影系との間の第1の空間に前記露光ビームを透過する第1 の気体を供給する第1の気体供給機構と

を有することを特徴とする露光装置。

【請求項15】 請求項1~9の何れか一項に記載の露光方法を用いてデバイスパターンをワークピース上に転写する工程を含むデバイス製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、例えば半導体集積回路、撮像素子(CCD等)、液晶ディスプレイ、プラズマディスプレイ、又は薄膜磁気ヘッド等のデバイスを製造するためのリソグラフィ工程で使用される露光方法及び露光装置に関する。

[0002]

【従来の技術】

半導体集積回路、又は液晶ディスプレイ等の電子デバイスの微細パターンを形成するためのリソグラフィ工程中で、マスクとしてのレチクルの原版パターンを 被露光基板としてのウエハ(又はガラスプレート等)上に転写する際に使用され

るステッパー等の投影露光装置においては、電子デバイスの一層の微細化に対応して解像度を高めるために、露光波長がより短波長側にシフトして来ている。現在、露光波長はKrFエキシマレーザの248nmが主流となっているが、より短波長の波長200nm程度以下の真空紫外域の光も使用されつつある。即ち、ArFエキシマレーザの193nmは実用化段階に入りつつあり、更に短波長の F_2 レーザ(波長157nm)や、 Ar_2 レーザ(波長126nm)等を露光光として使用する投影露光装置の開発も行われている。

[0003]

また、投影光学系の開口数 (NA) を大きくすることによっても解像度を向上できるため、投影光学系のより一層の大NA化も行われている。この場合、投影光学系の露光視野 (露光フィールド) が小さい方が大NA化に有利であるため、投影光学系自体の視野を小さくする一方で、露光中に、レチクルとウエハとを相対走査して実質的に大視野を確保するステップ・アンド・スキャン方式のような走査露光型の露光装置も実用化されている。特に、走査露光型の露光装置では、レチクル及びウエハを載置する各ステージを高精度に駆動する必要があるため、これらのステージの支持方式としては、エアーフローで浮上させて支持することにより、移動時の摩擦を低減したエアーベアリング方式が採用されている。

[0004]

【発明が解決しようとする課題】

上記の如く最近では露光光として真空紫外光が使用されようとしているが、真空紫外光に対して実用的な透過率を持ち、レンズやレチクルとして使用可能な光学材料は、合成石英、フッ素等をドープした石英、及び蛍石(CaF2)、フッ化マグネシウム(MgF2)、フッ化リチウム(LiF)等の結晶等に限定される。また、真空紫外光は光路上の酸素、水蒸気、及び炭化水素ガス等の気体(以下、「吸収性ガス」と称する。)による吸収も極めて大きいと共に、真空紫外光と反応して光学部材の表面に曇り物質を生ずる気化した有機物等も「吸収性ガス」とみなすことができる。従って、露光光の光路からそれらの吸収性ガスを排除するために、窒素や希ガス等の真空紫外光に対して吸収の少ない気体(以下、「透過性ガス」と称する。)でその光路上の気体を置換する必要がある。具体的に

、例えば酸素の濃度に関しては、光路中の平均濃度を、ppmオーダー程度に抑える必要がある。吸収性ガスの残留濃度の規格が、上記のような規格を満たさない場合には、ウエハ上での露光エネルギーが著しく低下して、露光時間を長くする必要があるため、スループットが低下することになる。

[0005]

ところで、露光装置はウエハを順次交換して、それらのウエハ上に微細パターンを転写していくため、露光光路が含まれる空間内と外部のウエハが搬送される空間との間で頻繁にウエハの出し入れ(交換)を行う必要がある。そして、そのウエハの交換に際しては、酸素、水蒸気等の吸収性ガスが搬入されるウエハと共に流入したり、気化し易い有機物等がウエハに吸着されて搬入されて来る。また、ウエハ上に塗布されたフォトレジスト自体も、炭化水素ガス等(脱ガス)を放出するので、ウエハ近傍の雰囲気については、光路中の吸収性ガスの濃度を所定の値以下に保つことは、容易なことではない。

[0006]

また、真空紫外光を露光光とする露光装置でも、ウエハステージ及びレチクルステージの支持方式として、従来のエアーベアリング方式を採用した場合、それらのステージを浮上させるためには、大量の気体が必要である。この結果として、それらのステージが設置されるウエハの近傍及びレチクルの近傍の雰囲気中に、浮上用の気体が流入する恐れがあり、その浮上用の気体が通常の空気のように吸収性ガスであると、その雰囲気の透過率が低下してしまう。そこで、浮上用の気体としても高純度の透過性ガスを使用することが望ましい。しかしながら、比較的大量に使用する浮上用の気体中の吸収性ガスを常時所定の濃度以下に抑制するには、ランニングコストが増大するという問題がある。

[0007]

更に、露光装置のウエハステージやレチクルステージは、通常レーザ干渉計によって高精度に位置計測が行われており、レーザ干渉計は移動鏡と固定鏡とにそれぞれレーザビームを照射して、その固定鏡を基準として移動鏡(可動ステージ)の位置を計測する。この場合にも、露光光の光路上に透過性ガスを供給する際に、そのレーザ干渉計の計測精度を向上するためには、その透過性ガスの供給に

伴うレーザビームの光路上の気体の揺らぎの影響をできるだけ小さくすることが 望ましい。

[0008]

本発明は斯かる点に鑑み、露光光として真空紫外光を使用する場合でも、光路上での透過率の低下を抑制して、高い露光強度の得られる露光方法及び装置を提供することを第1の目的とする。

更に本発明は、レチクルやウエハを移動するステージの支持方式としてエアーベアリング方式を採用した場合に、露光光として真空紫外光を使用しても、運転コストをあまり増大させることなく、光路上での透過率の低下を抑制できる露光方法及び装置を提供することを第2の目的とする。

[0009]

また、本発明は、レチクルやウエハを移動するステージの位置をレーザ干渉計によって計測する場合に、露光光として真空紫外光を使用しても、そのレーザ干渉計の計測精度を低下させることなく露光光に対する透過率の低下を抑制できる露光方法及び装置を提供することを第3の目的とする。

また、本発明は、露光光として真空紫外光を使用したような場合でも、レチクル又はウエハの位置を正確に検出できる露光方法及び装置を提供することを第4の目的とする。

[0010]

また、本発明はそのような露光方法を用いて高いスループットでデバイスを量 産できるデバイス製造方法を提供することをも目的とする。

[0011]

【課題を解決するための手段】

本発明による第1の露光方法は、第1物体(12)のパターンを通過した露光 ビームで投影系(PL)を介して第2物体(17a)を露光する露光方法におい て、その投影系とその第2物体との間の空間をその投影系側の第1の空間(S1))とその第2物体側の第2の空間(S2)とに分けて、この第1及び第2の空間 の境界部の少なくともその露光ビームが通過する領域に開口部(15a)を設け 、その第1の空間側にその露光ビームを透過する第1の気体を供給し、その第1

の気体は、その第2の空間側の第2の気体に比べてその露光ビームを吸収する不 純物の混入率が低いものである。

[0012]

斯かる本発明によれば、その不純物の種類は、その露光ビームの波長に応じて変化するものである。そして、その第2物体の近傍の空間は、その第2物体の交換時の不純物の混入や、その第2物体自体に付着している不純物等によって透過率が低下し易い傾向がある。これに対して本発明では、その第2物体の近傍の空間を第1の空間(S1)と第2の空間(S2)とに分けて、その第1の空間には高透過率の気体を供給しているため、その第2物体の近傍の空間で、露光ビームに対する透過率が低い空間の割合が少なくなり、全体としての透過率の低下を抑制できる。従って、その第2物体上での露光ビームの強度が高く維持されて、露光工程のスループットが向上する。

[0013]

この場合、その第1の空間において、その第1の気体を一方向に送風することが望ましい。この結果、その第1の空間での透過率の低下が抑制されると共に、その第2物体上の空間の気体の状態が安定し、屈折率分布が光軸に垂直な面内で一様になるため、結像特性も安定となる。更に、その第2物体から発生する脱ガス等の不純物も、その第1の気体によって効率的に排気される。

[0014]

次に、本発明の第2の露光方法は、第1物体のパターンを通過した露光ビームで投影系を介して第2物体を露光する露光方法において、その第1物体又はその第2物体を保持してベース部材(10)上を移動するステージ(11)をその露光ビームを透過する第3の気体が供給される空間内に配置し、そのステージをそのベース部材上に第4の気体の噴射とこの第4の気体の吸引とによって差動排気型で浮上させると共に、その第4の気体のその露光ビームに対する吸収率の許容度をその第3の気体よりも高く設定するものである。

[0015]

斯かる本発明によれば、そのステージは差動排気型で浮上しているため、その 浮上用の第4の気体の外部への漏れ量は少ない。従って、その第4の気体の露光

ビームに対する吸収率の許容度を高く設定して、運転コストを低くしても、その 周囲の露光ビームの光路での透過率の低下を抑制できる。

また、本発明による第3の露光方法は、第1物体のパターンを通過した露光ビームで投影系を介して第2物体を露光する露光方法において、その第1物体又はその第2物体と共に移動するステージ(18d,20)と所定の参照部材(14)とにそれぞれ計測用ビーム及び参照ビームを照射して、その参照部材に対するその第1物体又はその第2物体の位置を計測し、その計測用ビーム及びその参照ビームの光路を互いにその露光ビームを吸収する不純物の混入率が同程度の気体の雰囲気にするものである。

[0016]

斯かる本発明によれば、そのステージの近傍のその露光ビームの光路上にその露光ビームを透過する気体を供給するに際して、計測用ビーム及び参照ビームの光路に供給される気体の屈折率の揺らぎが同程度になるため、計測精度が高く維持される。

また、本発明による第4の露光方法は、第1物体(12)のパターンを通過した露光ビームで投影系(PL)を介して第2物体(17a)を露光する露光方法において、その投影系とその第2物体との間の空間をその投影系側の第1の空間(S1)とその第2物体側の第2の空間(S2)とに分けて、該第1及び第2の空間の境界部のうち、少なくともその露光ビームが通過する領域に開口部(15a)を設け、その第1の空間にその露光ビームを透過する気体を送風し、その露光ビームを照射することにより発生するその第2物体からの物質を、その第1の空間で送風されるその気体を介して、その露光ビームの光路中から排出するものである。

[0017]

斯かる本発明によれば、露光時にその第2物体から発生する脱ガス等の不純物がその第1の気体によって効率的に排出されるため、露光ビームの透過率が高く維持される。しかも、その脱ガス物資の化学反応によって生じる曇り物質の、その投影系の先玉(最も第2物体に近いレンズ)への付着も防止されるため、露光ビームの透過率は常時高く維持される。

[0018]

また、本発明による第5の露光方法は、第1物体(12)のパターンを通過した露光ビームで投影系(PL)を介して第2物体(17a)を露光する露光方法において、その投影系とその第2物体との間の空間をその投影系側の第1の空間とその第2物体側の第2の空間とに分けて、この第1及び第2の空間の境界部のうち、その第1物体又はその第2物体の位置を検出するための検出ビーム(32、33)が通過する領域に開口(15d)を設け、その第1の空間にその露光ビームが透過する気体を供給するものである。

[0019]

斯かる本発明によれば、その投影系側の第1の空間にその露光ビームを透過する気体を効率的に供給できると共に、その開口を通してその検出ビームをその第2物体に照射できる。従って、その第2物体の位置を正確に検出できる。

また、本発明による第6の露光方法は、第1物体(12)のパターンを通過した露光ビームで投影系(PL)を介して第2物体(17a)を露光する露光方法において、その投影系とその第2物体との間の空間をその投影系側の第1の空間(S1)とその第2物体側の第2の空間(S2)とに分け、その第1の空間の不純物の混入率を、その第2の空間の不純物の混入率より低くしたものである。斯かる本発明によれば、第1の露光方法と同様に運転コストを低く抑えて、露光ビームの透過率を高く維持できる。

[0020]

次に、本発明による第1の露光装置は、第1物体(12)のパターンを通過した露光ビームで投影系(PL)を介して第2物体(17a)を露光する露光装置において、その投影系とその第2物体との間に配置されて、その露光ビームを通過させるための開口(15a)が形成された開口板(15)と、この開口板とその投影系との間の第1の空間にその露光ビームを透過する第1の気体を供給する第1の気体供給機構(45-1,108-1,109-1)と、その開口板とその第2物体との間の第2の空間に供給されてその露光ビームを透過すると共に、その第1の気体に比べてその露光ビームを吸収する不純物の混入率が異なる第2の気体の環境を制御する環境制御機構(45-2,108-2,109-2)と

を有するものである。

[0021]

また、本発明による第2の露光装置は、第1物体のパターンを通過した露光ビームで投影系を介して第2物体を露光する露光装置において、その第1物体又はその第2物体を保持してベース部材(10)上を移動するステージ(11)と、このステージを囲む空間を実質的に密閉するチャンバ(6)と、このチャンバ内にその露光ビームを透過する第3の気体を供給する気体供給装置(45-5,108-5,109-5)と、そのステージをそのベース部材上に第4の気体の噴射とこの第4の気体の吸引とによって差動排気型で浮上させるエアーベアリング装置(80~82,85,86)とを有し、その第4の気体のその露光ビームに対する吸収率の許容度をその第3の気体よりも高く設定するものである。

[0022]

また、本発明による第3の露光装置は、第1物体のパターンを通過した露光ビームで投影系(PL)を介して第2物体を露光する露光装置において、その第1物体又はその第2物体と共に移動するステージ(18d,20)と、その投影系に対して静止している参照部材(29)と、そのステージ及びその参照部材にそれぞれ計測用ビーム及び参照ビームを照射して、その参照部材に対するその第1物体又はその第2物体の位置を計測する干渉計(22)と、その計測用ビーム及びその参照ピームの光路に互いにその露光ビームを吸収する不純物の混入率が同程度の気体を供給する気体供給装置(108-6,109-6)とを有するものである。

[0023]

また、本発明による第4の露光装置は、第1物体のパターンを通過した露光ビームで投影系(PL)を介して第2物体を露光する露光装置において、その投影系とその第2物体との間に配置されて、その第1物体又はその第2物体の位置を検出するための検出ビームを通過させるための開口(15d)が形成された開口板(15b, 15c)と、その開口板とその投影系との間の第1の空間にその露光ビームを透過する第1の気体を供給する第1の気体供給機構とを有するものである。

[0024]

斯かる各露光装置によって本発明の各露光方法が実施できる。

なお、本発明における第1、第2、第3の気体としては、窒素ガス若しくは希ガス(ヘリウム、ネオン、アルゴン、クリプトン、キセノン、若しくはラドン)、又は窒素ガス若しくは希ガスの混合ガスが使用できる。更に第1、第2、第3の気体としては、互いに同じ気体を使用してもよく、又は互いに異なる気体を使用してもよい。一方、本発明の第4の気体は、ステージをベース部材上に浮上させるための浮上用の気体であるため、その第1、第2、第3の気体とは異なり、乾燥空気のような露光ビームに対する透過率は低いが低コストの気体を使用できる。

[0025]

また、本発明における開口板は、開口として貫通孔を形成した構成、又はその 貫通孔に露光ビームが透過するガラス基板を設けた構成等の何れでもよい。更に 、その開口板を、複数枚の板を組み合わせて構成してもよい。この場合は、複数 枚の板の間の部分が開口に相当する。

次に、本発明によるデバイス製造方法は、本発明の露光方法を用いてデバイス パターンをワークピース上に転写する工程を含むものである。

[0026]

【発明の実施の形態】

以下、本発明の第1の実施の形態につき図1~図3を参照して説明する。

図1は本例の投影露光装置を示し、この図1において、露光光源1として発振 波長157nmのフッ素レーザ(F_2 レーザ)が使用されている。但し、露光光 源1としては、波長146nmのクリプトンダイマーレーザ(Kr_2 レーザ)又 は波長126nmのアルゴンダイマレーザ(Ar_2 レーザ)等の他の真空紫外域 の光を発生する光源を使用できる。露光光源1から発せられた波長157nmの レーザ光よりなる露光光 I L は、ビームマッチングユニット(BMU)2及び照 明光学系101を介してマスクとしてのレチクル12を照明し、レチクル12上 の照明領域内のパターンの像が、投影系としての投影光学系P L によって倍率 β (β は例えば1/4、1/5、1/6等)で露光対象の基板としてのウエハ(wa

fer) 1 7 a 上に投影される。半導体デバイス用のウエハ1 7 a 上には感光材料としてのフォトレジストが塗布されており、レチクル1 2 及びウエハ1 7 a が本発明の第1物体及び第2物体に対応している。

[0027]

本例のレチクル12からウエハ17aまでの光路を含む露光本体部は、例えば 半導体製造工場の床104上に載置され、露光光源1は実際には例えばその床1 04の階下の機械室に設置されている。以下、投影光学系PLの光軸AXに平行 に乙軸を取り、乙軸に垂直な平面(ほぼ水平面に合致している)内で図1の紙面 に平行にX軸を取り、図1の紙面に垂直にY軸を取って説明する。

[0028]

本例の照明光学系101は、BMU2からの露光ビームとしての露光光ILより多数の光源像を形成する不図示のオプティカル・インテグレータ(ホモジナイザー)と、不図示のリレーレンズ系と、不図示の開口絞り及び視野絞りと、光路折り曲げ用のミラー4と、コンデンサレンズ5等とを備え、照明光学系101は、気密性の高い箱状の照明系チャンバ3で覆われ、照明系チャンバ3の内部には、露光ビームを透過する気体に対応する上記真空紫外域の光束に対して吸収性の低い気体、即ち窒素ガス又は希ガス(ヘリウム、ネオン、アルゴン、クリプトン、キセノン、若しくはラドン)が満たされている。また、照明系チャンバ3内の気体は、コンデンサレンズ5によって、後述のレチクル12を収納するレチクル室6内の気体と隔離されている。

[0029]

なお、本例のように露光光源1としてフッ素レーザを使用する場合、フッ素レーザの157.52nmと157.63nmとの2本の発振波長のうち、露光光路に混入しやすい不純物ガス(例えば酸素、水蒸気等)による吸収の小さい方の波長を、露光波長として選択すると、不純物ガスの吸収による照度低下を防止する点から有利である。また、窒素ガスは露光光ILの波長が150nm程度以下になると吸収が発生するため、露光波長が150nm程度以下のときには、露光光に対して吸収性の低い気体(露光ビームを透過する気体)としては希ガスを使用することが望ましい。更に、希ガスの内でも、ヘリウムガスは熱伝導率が高く

(ネオンの3倍程度、かつ窒素ガスの6倍程度)温度安定性に優れ、気圧の変化に対する屈折率の変動量が小さく(ネオンの1/2程度、かつ窒素ガスの1/8程度)、結像特性が安定であるという利点がある。そこで、例えば運転コストよりも結像特性の安定性が重視されるような用途ではヘリウムガスを使用することが望ましい。

[0030]

次に、レチクル12は不図示のレチクルホルダ上に真空吸着等によって保持され、そのレチクルホルダはレチクルステージ11上に固定され、レチクルステージ11はレチクルベース10上に、X方向に所定速度で走査可能に、かつX方向、Y方向、回転方向に同期誤差を補正するように微動可能に載置されている。不図示のレチクルホルダ、レチクルステージ11、及びレチクルベース10等よりレチクルステージ系102が構成され、レチクル12及びレチクルステージ系102を囲む空間S5は、気密性の高い箱状のレチクル室6で覆われている。より具体的に、照明光学系101のコンデンサレンズ5と投影光学系PLの最もレチクル側のレンズ系L1との間の露光光ILの光路がレチクル室6によって囲まれている。

[0031]

レチクル室6内の空間S5も、上記の真空紫外域の光束に対して吸収性の低い ヘリウム等の気体で満たされている。即ち、レチクル室6内の気体はほぼ連続的 に、排気口G5e及び排気管109-5を介してガス純化装置45-5 (詳細後述)に回収され、ガス純化装置45-5から露光ビームを透過する高純度の気体がほぼ連続的に、給気管108-5及び給気口G5iを介してレチクル室6内に 供給される。給気口G5iと排気口G5eとはレチクルステージ系102を挟んで対向するように、かつ給気口G5iよりも排気口G5eの位置が低くなるように配置されている。

[0032]

また、レチクルステージ11の端部に固定された移動鏡13に、レチクル室6の窓部7を介してレチクル干渉計の計測部8より計測用のレーザビーム9が照射され、計測部8は、投影光学系PLに対して固定された不図示の固定鏡(参照鏡

)を基準として移動鏡13(レチクルステージ11)のX座標、Y座標、回転角(ヨーイング量)、ピッチング量、及びローリング量を計測し、計測値をステージ制御系106、及び装置全体の動作を統轄制御する主制御系105に供給している。ステージ制御系106は、その計測値及び主制御系105からの制御情報に基づいて不図示のリニアモータ等の駆動部を介してレチクルステージ11の動作を制御する。

[0033]

レチクル12を透過した光束は投影光学系PLによって集光され、ウエハ17 a上にレチクルパターンの像を形成する。本例の投影光学系PLは、鏡筒14内にレチクル側から順にレンズL1, L2, L3…LFを配置して構成されており、レンズL1とレンズLFとの間の露光光ILの光路は鏡筒14によって実質的に密閉され、その鏡筒14内の各レンズ間の空間もヘリウム等の露光光ILを透過する気体が満たされている。この気体は、常時フローしていることが望ましい。また、レンズL1~LFの光学材料としては、蛍石(CaF₂)、フッ化マグネシウム(MgF₂)、フッ化リチウム(LiF)、又はフッ素や水素等の物質をドープした石英ガラス等の真空紫外光を透過する材料が使用されている。

[0034]

なお、所定の物質をドープした石英ガラスは、波長が150nm程度より短くなると透過率が低下するため、波長が150nm程度以下の真空紫外光を露光ビームとして使用する場合には、屈折部材の光学材料としては蛍石、フッ化マグネシウム、又はフッ化リチウム等が使用される。このように、真空紫外域では高透過率の光学材料の種類が限定されるため、投影光学系PLとして例えば特願平10-370143号、又は特願平11-66769号等に開示されているような反射屈折系を使用してもよい。

[0035]

次に、ウエハ17aは、不図示のウエハホルダ上に真空吸着等によって保持され、そのウエハホルダはウエハステージ18a上に固定され、ウエハステージ18aは定盤よりなるウエハベース20上に、X方向に所定速度で走査可能に、かつX方向及びY方向にステップ移動可能に載置されている。ウエハステージ18

aは、不図示のオートフォーカスセンサの計測値に基づいて、オートフォーカス方式でウエハ17aの表面を投影光学系PLの像面に合焦させる機能も備えている。不図示のウエハホルダ、ウエハステージ18a及びウエハベース20等からウエハステージ系103が構成され、ウエハ17a及びウエハステージ系103は、気密性の高いウエハ室24で覆われ、ウエハ224内の空間も、上記の真空紫外域の光束に対して吸収性の低いヘリウム等の気体で満たされている。即ち、ウエハ室24内の気体はほぼ連続的に、排気口G2e及び排気管109-2を介してガス純化装置45-2から露光ピームを透過する高純度の気体がほぼ連続的に、給気管108-2及び給気口G2iを介してウエハ室24内に供給される。給気口G2iと排気口G2eとはウエハステージ系103を挟んで対向するように、かつ給気口G2iはウエハ室24の側面に、排気口G2eはウエハ室24の上面に配置されている。この給気口G2i及び排気口G2eはウエハ室24の上面に配置されている。この給気口G2i及び排気口G2eとはウエハ室24の側面に、排気口G2eが影響である。

[0036]

また、ウエハステージ18aの端部に固定された移動鏡19aに、ウエハ室24の窓部21を介してウエハ干渉計の計測部22より計測用のレーザビーム23が照射され、計測部22は、投影光学系PLに対して固定された不図示の固定鏡を基準として移動鏡19a(ウエハステージ18a)のX座標、Y座標、回転角(ヨーイング量)、ピッチング量、及びローリング量を計測し、計測値をステージ制御系106、及び主制御系105に供給している。ステージ制御系106は、その計測値及び主制御系105からの制御情報に基づいて不図示のリニアモータ等の駆動部を介してウエハステージ18aの動作を制御する。この際に、レチクル側及びウエハ側の干渉計の計測部8,22は、真空紫外域の光束を吸収する気体を放出する部材(電気回路用基板、電気配線等)を含むので、レチクル室6及びウエハ室24内に配置することは好ましくない。そこで、計測部8,22は、それぞれ計測用のレーザビーム9,23を透過するガラス基板よりなる窓部7,21を介してレチクル室6及びウエハ室24の外側に配置している。

[0037]

また、ウエハ室24の側面に開閉自在に開閉窓25が設けられ、開閉窓25の 近傍にウエハ交換用のウエハローダ26が配置されている。

走査露光時には、ウエハステージ18aをステップ移動してウエハ17a上の露光対象のショット領域を走査開始位置に移動した後、レチクルステージ11及びウエハステージ18aを介してレチクル12及びウエハ17aを投影光学系PLの倍率βを速度比としてX方向に走査するという動作がステップ・アンド・スキャン方式で繰り返されて、ウエハ17a上の各ショット領域にレチクル12のパターン像が逐次転写される。

[0038]

このような露光に際しては、レチクル12とウエハ17aとの位置合わせを高精度に行う必要があるため、本例の投影露光装置にも不図示であるが、レチクル12上のアライメントマークの位置を計測するレチクルアライメント顕微鏡(RA顕微鏡)、及びウエハ17a上のアライメントマークの位置を計測するアライメントセンサが備えられている。これらのRA顕微鏡及びアライメントセンサによるアライメントマークの位置計測に際して、上記の計測部8を備えるレチクル干渉計及び計測部22を備えるウエハ干渉計の計測値が用いられる。

[0039]

なお、レチクル上に形成されたアライメントマークと、ウエハステージ上に設けられた基準マークとの位置合わせを投影光学系を介して行う場合には、後述する送風板15の開口を介して行われる。

さて、露光対象のウエハ17aの表面には、感光材料としてのフォトレジストが塗布されている。そして、上記の走査露光を行うと、露光光ILの光エネルギーにより、フォトレジストを構成する分子(主に有機分子)の結合が壊れ、その一部がいわゆる「脱ガス」としてウエハ17aの上部の空間に放出される。この脱ガスを放置すると、投影光学系PL中のレンズのうち、ウエハ17aに最も近いレンズLFの表面にその脱ガスが紫外光と反応して生成された曇り物質が堆積し、それに伴って、投影光学系PLの透過率が低下し、ウエハ17a上での露光光ILの照度(露光強度)が低下する。その結果、そのフォトレジストに対して

必要な露光量を得るためには、長い露光時間が必要となってスループットが低下 する恐れがある。

[0040]

そこで本例では、投影光学系PLとウエハ17aとの間に薄い平板状のステンレス等の金属製の開口板としての送風板15を設け、投影光学系PLとウエハ17aとの間の空間を送風板15によって投影光学系PL側の第1の空間S1と、ウエハ側の第2の空間S2とに大まかに分離している。但し、送風板15は、結像光束を遮らないように、露光光ILの光路の部分が開口部15aとなっていることは言うまでもない。また、送風板15と投影光学系PLとの間の側面部、及びその側面部と投影光学系PLの鏡筒14との間を覆うようにそれぞれ隔壁部16a及び16bが設けられ、送風板15及び隔壁部16a,16bよりなる送風室16で囲まれた第1の空間S1は、開口部15aを除いて密閉されている。また、第2の空間S2は、開口部15aを除いて送風室16の外面、鏡筒14の外面及びウエハ室24によって密閉されている。

[0041]

更に、投影光学系PLによる露光領域(本例では光軸AXを中心としてY方向に細長い領域)を挟むように、即ちX方向に対向するように送風室16に排気口G1e及び給気口G1iが設けられている。そして、送風室16内の気体は連続的に、排気口G1e及び排気管109-1を介してガス純化装置45-1(詳細後述)に回収され、ガス純化装置45-1から露光ビームを透過する高純度の気体が連続的に給気管108-1及び給気口G1iを介して送風室16内に供給される。この際に、一例としてガス純化装置45-1による空間S1に対する気体(第1の気体)の単位断面積当たりの流量に対して、ガス純化装置45-2による空間S2に対する気体(第2の気体)の単位断面積当たりの流量は小さく設定されている。

[0042]

このように、送風板15と投影光学系PL及び鏡筒14との間の空間S1に、 投影光学系PLによる露光領域の上方を横切るようにX方向に送風を行うことで 、ウエハ17aのフォトレジストから発生した脱ガスは効率よく風下側に運び去

さられて、排気口G1eからガス純化装置45-1に吸引される。従って、投影 光学系PLのウエハ側のレンズLFの表面に曇り物質が付着することがなくなり 、投影光学系PLの露光光ILに対する透過率は高く維持される。また、吸引さ れた脱ガスを含む気体を補うように、ガス純化装置45-1から給気口G1iを 介して空間S1内に、真空紫外光に対する吸収の少ない、高純度の窒素ガスやヘ リウム等の希ガスが供給されているため、投影光学系PLとウエハ17aとの間 の露光光ILの光路上での透過率も高く維持されて、ウエハ17a上で露光光I Lの高い照度が得られる。

[0043]

なお、露光領域よりも風下側には、送風板15は必ずしも設けなくとも良いが、脱ガス物質が、ウエハ17a上の他の部分に落下して、その部分に悪影響を与える恐れもあるので、送風板15は風下側にも設けておくことが好ましい。ウエハ17a上に発生する脱ガス物質を効率よく排出するために、ウエハ17aの表面と、送風板15との間隔は、5mm程度以下に設定することが望ましい。

[0044]

但し、脱ガス物質のうちの或る程度は、ウエハ17aと送風板15との間の空間等を通ってウエハ室24内に漏れ出してしまう。従って、ウエハ室24内の気体についても、或る程度循環及び純化を行い、その不純物の混入率を所定の許容レベル(空間S1内の許容レベルよりも高く設定されている)以下に維持する必要がある。そのため、上記のようにウエハ室24にもガス純化装置45-2から露光光ⅠLを透過する高純度の気体(第2の気体)を供給している。

[0045]

また、ウエハ17aのフォトレジストから発生した脱ガスの一部が空間S1を 介して排出されずに、送風板15のウエハ側の面に不純物質が付着する可能性が ある。そこで、送風板15は、交換可能に構成されることが望ましい。

更に、第1の空間S1に供給する気体としては、窒素等の気体に比べて分子量が小さくて軽いヘリウムを使用し、第2の空間S2に供給する気体としては窒素を使用することが望ましい。これは、ヘリウムを空間S1に供給した場合、送風板15の開口を介して空間S2に漏れる量が少ないため、ウエハ17aのレジス

トから発生した脱ガスを効率良く回収することができるためである。

[0046]

本例のガス純化装置45-1,45-2,45-5、並びに照明光学系用及び 投影光学系用の不図示のガス純化装置より給排気装置107が構成され、給排気 装置107は一例として床104の階下の機械室(露光装置本体が設置される空間とは異なる空間)内に収納されている。ガス純化装置45-1,45-2,4 5-5の構成は互いに同様であるため、それらを代表するガス純化装置45を用いてその構成を説明する。

[0047]

図2は、ガス純化装置45及び対応するチャンバ110(図1のレチクル室6、送風室16、又はウエハ室24)で囲まれた空間Sを示し、この図2において、ガス純化装置45は、吸引送風用のポンプ46、HEPAフィルタ(high efficiency particulate air-filter)又はULPAフィルタ(ultra low penetration air-filter)等の集塵フィルタ47、供給される気体中の酸素、水蒸気、二酸化炭素及び有機ガス(フォトレジストからの脱ガス等)を除去するための不純物除去フィルタ48、並びに恒温装置49より構成されている。また、恒温装置49内には、純化された気体の不純物(酸素、水蒸気等)の濃度を計測するセンサ、及び露光光を透過する高純度の気体(窒素、ヘリウム等)が圧搾されて、又は液化されて蓄積された蓄積部も含まれている。

[0048]

そして、チャンバ110内の空間S中の不純物を含む気体は、排気口Ge及び排気管109を介してポンプ46に吸引され、吸引された気体は集塵フィルタ47及び不純物除去フィルタ48を経て不純物が除去されて恒温装置49に至る。恒温装置49においては、不純物除去フィルタ48から送られて来る気体の流量、及び不純物の濃度を計測し、流量が許容範囲内で不純物の濃度が許容レベル以下である場合には、その気体を所定の温度範囲内に温度制御して、給気管108及び給気口Giを介して空間S内に送風する。一方、不純物除去フィルタ48から送られて来る気体の流量が許容範囲より少ない場合、又は不純物の濃度が許容レベルよりも高い場合には、その気体に上記の蓄積部から取り出した高純度の気

vittir

体を補充し、補充後の気体を温度制御して、給気管108及び給気口Giを介して空間S内に送風する。

[0049]

この結果、空間S中の気体からは酸素、水蒸気、及び有機ガス(フォトレジストからの脱ガス等)の不純物が除去されると共に、空間S中には露光光を透過する気体が必要な流量だけ供給される。この際に、露光光を透過する気体はできるだけ再利用されるため、その気体としてヘリウムのように比較的高価な気体を使用する場合でも、運転コストは低く抑えられる。

[0050]

更に、図1に示すように、本例では送風板15を用いて空間S1に局所的に露 光光を透過する気体(第1の気体)を送風し、送風されて脱ガスを含む気体をガ ス純化装置45-1を用いて重点的に純化(不純物の除去)しているため、投影 光学系PLとウエハ17aとの間の露光光を透過する気体の純度は高く維持され る。従って、ウエハ室24内の空間S2に送風される気体(第2の気体)の純化 (不純物の除去)は、その空間S1中に送風される第1の気体と比べて低いレベ ルで行うこともできる。この場合、ウエハ室24内の空間S2に送風を行うガス 純化装置45-2の不純物を除去する除去能力を、空間S1に送風を行うガス ・ 位装置45-1の不純物を除去する除去能力より低くすることができる。従って 、ウエハ室24内の全体に一律に高純度の気体を送風する方式に比べて、露光光 ILを透過する高純度の気体の使用量は少なくて済み、運転コストが低く抑えら れる。

[0051]

更に、空間S1中ではX方向にほぼ一定速度で送風を行っているため、結像光 束の光路上での屈折率分布がほぼ一様となり、結像特性も安定に維持される。

また、レチクル室6内に送風を行うガス純化装置45-5と、ウエハ室24内の空間S2に送風を行うガス純化装置45-2とを共通化することも可能であり、これによって給排気装置107の構成を簡素化できる。

[0052]

なお、上記のように送風板15とウエハ17aとの間隔は、5mm程度以下が

望ましいが、ウエハステージ18a(ウエハホルダ)上のウエハ17aの交換に際しては、ウエハ17aが上下動できるためのクリアランスが必要である。そこで、ウエハ交換を行うために、図1に破線で示すように、ウエハステージ18a及びウエハ17aを投影光学系PLの底部から離れた位置18b及び17bに移動した状態では、送風板15は、位置17bのウエハより十分に離れた位置となっていることが望ましい。その状態で開閉窓25を開き、位置17bのウエハを上昇させてウエハローダ26の一つのアーム上の位置17cに受け渡した後、別のアーム(不図示)を介して未露光のウエハを位置18bのウエハステージ上に載置することによって、ウエハ交換が行われる。

[0053]

なお、ウエハ17aの交換に際しては、ウエハローダ26や開閉窓25の動作、及び位置17bにおけるウエハの上下動等は発塵の恐れが高いので、ウエハ交換位置は、図1の例のように送風室16内での局所的な送風、及びウエハ室24内の送風の風下側に設定することが望ましい。即ち、送風板15を用いた空間S1に対する第1の気体の送風、及び空間S2に対する第2の気体の送風は、何れもウエハロード位置(ウエハローダ26)が風下側となるように、その反対側から行うことが望ましい。

[0054]

また、ウエハ17aと送風板15との間隔を上記の通り5mm程度以下に設定するには、ウエハ17aを保持するウエハホルダ上に例えば数mm程度以上の段差構造がある、即ちウエハ17aの表面より高い部分があることは好ましくない。従って、本例の投影露光装置では、そのウエハホルダの上面は可能な限り平坦として、ウエハ17aの表面より盛り上がった部分は設けないことが望ましい。

[0055]

更に、ウエハ干渉計の移動鏡19aの上端の高さもウエハ17aの表面より低くすることが望ましい。しかしながら、移動鏡19aの上端をウエハ17aの表面より低くすると、計測用のレーザビームの照射位置がウエハ17aの表面からずれてしまい、ウエハステージ18aにピッチングやローリングが発生すると、計測誤差(いわゆるアッベ誤差)が生じる。その計測誤差を補正するために、本

例の移動鏡19aに照射される各レーザビームは、実際にはそれぞれ乙方向に離れた2本のレーザビームよりなり、2本のレーザビーム毎のX座標又はY座標の計測値の差分を求めることで、ピッチングやローリングに伴う計測誤差を補正できるように構成されている。このような構成とすることにより、送風板15とウエハ17aとの間隔を上記の5mm程度よりも更に短くすることが可能となり、露光光路からの不純物除去の効果が更に高くなる。

[0056]

ところで、投影露光装置においては、ウエハの表面を、投影光学系の焦点面に 正確に合わせるために、斜入射方式で光学式の焦点検出装置が備えられている場 合が多い。本例の投影露光装置においても、不図示であるがその焦点検出装置と してのオートフォーカスセンサ(以下、「AFセンサ」と言う)が設けられてい る。この場合、AFセンサによる焦点検出用の例えば可視域から近赤外域程度の 光束(検出ビーム)の光路を送風板15で遮光しないようにする必要がある。そ のためには一例として送風板15の一部にその光束を通過させる開口、又はその 光束を透過するガラス基板よりなる窓を設けてもよく、別の方法として送風板1 5とウエハ17aとの間にその光束を通すようにしてもよい。

[0057]

また、更に別の方法として、図3に示すように、送風板15を所定の間隔を隔てて配置された2枚の送風板として、その間隔の部分に焦点検出用の光束を通してもよい。この2枚の送風板の組み合わせも本発明の開口板に対応している。

即ち、図3(A)は、図1の投影露光装置のAFセンサの一例を示す図、図3(B)は、図3(A)の投影光学系PLの底面側の部材を示す平面図であり、図3(A)において、AFセンサは送光系30及び受光系31より構成されている。そして、送光系30において、ハロゲンランプ(又は発光ダイオード等)からなる光源36からの光束で送光側スリット37が照明され、送光側スリット37を通過した光束32がミラー38及び不図示の結像レンズを介して、ウエハ17a上に投影光学系PLの光軸AXに対して斜めにスリット像を形成する。

[0058]

ウエハ上17 aからの反射光33は、受光系31内で不図示の結像レンズ及び

ミラー39を経て受光側スリット40上に再度スリット像を結像し、受光側スリット40を通過した反射光が光電検出器41で受光され、光電検出器41からの検出信号FSが図1の主制御系105に供給される。この場合、ウエハ17aの上下動によりそのスリット像と受光側スリット40との位置関係が変わるので、例えば受光側スリット40を振動させて、検出信号FSを同期整流することによって、ウエハ17aの光軸AX方向の位置(フォーカス位置)に応じて信号レベルが変化するフォーカス信号が得られる。露光時にはそのフォーカス信号よりウエハ17aのフォーカス位置が検出できる。

[0059]

この場合、焦点検出用の光束のウエハ17aへの入射角の平均値は80°以上であり、投影光学系PLの開口数NAを最大値に近い0.80程度であるとすると、投影光学系PLからウエハ17aに入射する結像光束の入射角の最大値は55°程度である。従って、焦点検出用の光束の入射角は結像光束の入射角よりもかなり大きくなるため、送風板15が単に中央に開口部15aを持つ金属製の平板であると、その光束は送風板15によって遮光されてしまう。

[0060]

そこで、本例では送風板15を図3(B)に示すように、2枚の送風板15b,15cに分割し、その間隙15dに沿って送光系30及び受光系31を配置し、焦点検出用の光束32、被検面からの反射光33、及び投影光学系PLからの結像光束がその隙間15dを通過するようにしている。この場合、ウエハ17a上の露光領域35は、長手方向が隙間15dに沿った方向に設定されている。そして、送風板15b,15cと投影光学系PL(鏡筒14)との間に送風される露光光を透過する気体は、送風板15b側を風上とし、矢印D1で示すように送風板15c側に送風する。これによって、露光光を透過する気体(上記の第1の気体)の内で送風板15b,15cの隙間15dから漏れ出る量が少なくなり、AFセンサの配置が容易になると共に、運転コストが低減される。

[0061]

なお、複数の焦点検出用の光束を使用して、露光領域35の複数箇所のフォーカス位置を計測し、ウエハ面と投影光学系の像面との傾きを計測することも可能

である。また、図3 (B)の風下側の送風板15 cは、前述の通り脱ガス物質のウエハ17 a 上の他の場所への落下の防止にも有効であるが、前述の如く恒温化された第1の気体の送風は、投影光学系の温度調整のためにも有効であり、露光領域35よりも風下側の投影光学系の鏡筒14にも、風上側と同様に恒温化された気体が流れていることが望ましい。従って、投影光学系の恒温化の観点からも、風下側の送風板15 c は重要である。

[0062]

次に、投影露光装置では、転写対象のレチクル及びウエハの位置決め精度を高めるために、レチクル及びウエハの表面に沿った方向(位置決め方向)の位置の計測精度を高める必要がある。前述の通り、図1において、レチクル12及びウエハ17aの位置決め方向の位置計測は、レーザ干渉計によって行われているが、真空紫外域の露光光を使用する投影露光装置において、レチクル12及びウエハ17aの配置される空間(レチクル室6内、ウエハ室24内)を希ガスで満たした場合、その希ガス、特にヘリウムは、その屈折率の変動量が少ないため、気圧変化及び温度変化に対する波長の変動量が少なく、干渉計による測長値に誤差が生じにくいと言う利点がある。

[0063]

しかしながらその反面で、希ガス、特にヘリウムは、空気に含まれる他の気体 (窒素、酸素)との屈折率差が大きいという問題がある。即ち、例えば概ねヘリウムで満たされた干渉計の光路に、窒素ガスが不純物として混入すると、干渉計の光路上の気体の屈折率が変動し、干渉計の測長値に誤差が生じてしまうことになる。

[0064]

これを防止する1つの方法は、図1中のウエハ室24及びレチクル室6内に送風する気体中の、窒素(又は窒素、酸素、二酸化炭素の全部)の濃度を、変動量も含めて20ppm以下に抑えることである。これを実現するには、図2のガス純化器45に窒素ガス濃度計と、窒素ガス除去フィルタ等とを設け、空間S内に送風される気体中の窒素ガスの濃度を所定レベル以下に制御する方式とすればよい。なお、酸素や二酸化炭素は、真空紫外光に対する吸収の強い気体であるため

、その残留濃度は、露光光吸収の観点からも20ppm以下に抑えるべきであり、ガス純化器45中の不純物除去フィルタ48が酸素や二酸化炭素の吸収機構としても作用している。

[0065]

また、別の方法として、図1のレチクル室6及びウエハ室24内に希ガス中の ヘリウムを供給するものとして、干渉計の計測部8,22からの計測用レーザビ ームの光路上の窒素ガス濃度を計測し、ヘリウムガスと窒素ガスとの混合比から 干渉計光路上の屈折率を推定し、その値に基づいて、干渉計の計測値を補正する ようにしてもよい。この方法によっても窒素混入の悪影響を防ぐことができる。

[0066]

次に、図4を参照して本発明の第2の実施の形態につき説明する。本例は図1の実施の形態に対して、干渉計の光路に対する窒素ガス等の屈折率が異なる気体の混入の影響を低減するための機構を備えたものであり、図4において図1に対応する部分には同一符号を付してその詳細説明を省略する。

図4 (A) は、本例のウエハ干渉計の光路を示し、この図4 (A) において、ウエハ室24内にウエハベース20、ウエハホルダ (不図示)を含むウエハステージ18d、ウエハ17d及び投影光学系PLの鏡筒14の下端が収納されている。本例でも走査露光時のウエハ17dの走査方向はX方向である。また、ウエハステージ18dの端部、及び鏡筒14の下端にそれぞれ移動鏡19d及び固定鏡29が固定され、投影光学系PLとウエハ17dとの間、ひいては固定鏡29と移動鏡19dとの間に結像光束の光路が開口部15aとされた送風板15eが設置され、送風板15eと鏡筒14との間のほぼ右半面 (+X方向)側の空間を覆うように側面の隔壁16c及び上部の隔壁16dが設置されている。また、移動鏡19d及び固定鏡29の前方 (-X方向)、及び送風板15eの左側の端部を覆うように上部の隔壁16e、側面の隔壁16f、及び底部の隔壁16gが設置されている。

[0067]

そして、ウエハ室24の外部のウエハ干渉計の計測部22から射出された2種類の偏光成分よりなる計測用のレーザビーム23が、隔壁16fの窓部27aを

通って偏光ビームスプリッタ28aに入射し、P偏光の計測ビーム23aは偏光ビームスプリッタ28aを透過してX軸に沿って移動鏡19dに入射し、S偏光の参照ビーム23bは偏光ビームスプリッタ28aで反射された後、送風板15eに設けられた窓部27bを通り、ミラー28bで反射されてX軸に沿って固定鏡29に入射する。また、移動鏡19dで反射された計測ビーム23a及び固定鏡29で反射された参照ビーム23bはそれぞれ入射時の光路を逆に戻って同軸に合成されて計測部22に戻る。計測部22では、戻された計測ビーム23a及び参照ビーム23bを検出して例えばヘテロダイン干渉方式で、固定鏡29を基準として移動鏡19d(即ち、ウエハステージ20及びウエハ17d)のX方向(走査方向)の位置を計測する。

[0068]

本例では送風板15eとウエハ17dとの間隔を狭くできるように、ウエハステージ18d上の不図示のウエハホルダの表面、及び移動鏡19dの上面はウエハ17dの表面よりも低いほぼ同一平面上に配置されている。そのため、計測ビーム23aの高さはウエハ17dの表面よりも低くなり、ウエハステージ18dのピッチングによる計測誤差を補正するために、計測ビーム23aを乙方向に離れた2本のビームとして、これらの2本のビーム毎にX座標を求め、例えばこれらのX座標の平均値をこれらのX座標の差分より求めたピッチング量で補正することが望ましい。

[0069]

このように計測部22はX軸の計測部であるが、同様にY軸の計測部(不図示)も設けられている。以上のように、本例でも投影光学系PLとウエハ17dとの間の空間は、送風板15eによって投影光学系PL側の第1の空間S6と、ウエハ側の第2の空間とに大まかに分離されている。また、計測ビーム23a及び参照ビーム23bの光路は、隔壁16e,16f,16g及び送風板15eによってほぼ囲まれている。

[0070]

更に、第1の空間S6の+X方向側の上端に排気口G6eが設けられ、-X方向側の上端に給気口G6iが設けられ、排気口G6e及び給気口G6iはそれぞ

れ排気管109-6及び給気管108-6を介して、図1のガス純化装置45-1に接続されており、空間S6内の気体はガス純化装置45-1に吸引されて不純物が除去された後、必要に応じて露光光を透過する高純度の気体(窒素、又はヘリウム等の希ガス)が加えられて空間S6に送風される。本例の送風方向は計測ビーム23a及び参照ビーム23bの光路に沿ったX方向、即ち走査露光時のウエハの走査方向に平行である。

[0071]

本例において、給気口G6iを介して供給された気体の一部の気体G61は、空間S6中の参照ビーム23bの光路に沿って流れ、更に気体G61の一部の気体G63は送風板15eと投影光学系PLとの間の空間を排気口G6e側に流れる。これによって、ウエハ17dからの脱ガス物質が効率的に排気されることは図1の実施の形態と同様である。また、その供給された気体中の残りの気体G62は、送風板15eと隔壁16fとの間を流れた後、計測ビーム23aの光路の上下の気体G64,G65としてその光路に沿ってウエハステージ18d側に流れる。

[0072]

この際に、送風される気体G61, G63, G64, G65の源は、共に給気部G6iより送風される気体(第1の気体)であり、計測ビーム23a及び参照ビーム23bの光路に送風される気体は、共に同じ濃度(混入率)の不純物(窒素ガス等)を含んでおり、屈折率も等しい。従って、ウエハ17d(移動鏡19d)の位置を、本例のように両光路の差として計測している限り、干渉計の光路上の窒素ガス濃度等の変動が位置計測値に悪影響を与えることは殆どない。更に、偏光ビームスプリッタ28aから移動鏡19dまでの光路長と、偏光ビームスプリッタ28aから移動鏡19dまでの光路長と、偏光ビームスプリッタ28aからミラー28bを経て固定鏡29までの光路長とが等しくなり、いわゆるデッドパスが0になると、干渉計の光路上の窒素ガス濃度等の変動の悪影響は全くなくなる。

[0073]

但し、上記のデッドパスが0となる条件は、ウエハステージ18d(移動鏡19d)の移動により成立しなくなるので、図4(A)の実施の形態でも、給気口

G6iから供給される気体中の不純物の濃度は所定の許容値以下にすることが好ましい。例えばその不純物としての窒素ガスの濃度の変動量は、100ppm程度以下に抑えることが好ましい。あるいは、この場合にも前述のように、窒素ガスの濃度を測定して、干渉計の光路上の屈折率変化分を計算により補正することも可能である。

[0074]

同様に、図4(B)は、本例のレチクル干渉計の光路を示し、この図4(B)において、レチクル室6内にレチクルベース10、レチクルステージ11、レチクル12及び投影光学系PLの鏡筒14の上端が収納されている。また、レチクルステージ11の端部、及び鏡筒14の上端にそれぞれ移動鏡13及び固定鏡51が固定され、移動鏡13及び固定鏡51の前方(+X方向)をU字型に覆うように上部の隔壁52、外側の隔壁53、及び内側の隔壁54が設置されている。

[0075]

そして、レチクル室6の外部のレチクル干渉計のX軸用の計測部8から射出された計測用のレーザビーム9が、隔壁53の窓部55を通って偏光ビームスプリッタ50aに入射し、P偏光の計測ビーム9aはそのまま透過してX軸に沿って移動鏡13に入射し、S偏光の参照ビーム9bは偏光ビームスプリッタ50aで反射された後、プリズム型のミラー50bで反射されてX軸に沿って固定鏡51に入射する。移動鏡13で反射された計測ビーム9a及び固定鏡51で反射された参照ビーム9bはそれぞれ入射時の光路を逆に戻って同軸に合成されて計測部8に戻る。計測部8では、ウエハ干渉計と同様に、固定鏡51を基準として移動鏡13(即ち、レチクルテージ11及びレチクル12)のX方向(走査方向)の位置を計測する。このように計測ビーム9a及び参照ビーム9bの光路は、隔壁52,53,54によってほぼ囲まれている。

[0076]

更に、隔壁52,53の境界部に給気口G7iが設けられ、不図示であるが、 レチクルベース10の-X方向側に排気口が設けられ、これらの排気口及び給気 口G7iはそれぞれ排気管及び給気管108-7を介して、図1のガス純化装置 45-5に接続されており、レチクル室6内の気体はガス純化装置45-5に吸 引されて不純物が除去された後、必要に応じて露光光を透過する高純度の気体(窒素、又はヘリウム等の希ガス)が加えられて給気口G7iから再供給される。 本例の送風方向は計測ビーム9a及び参照ビーム9bの光路に沿ったX方向、即 ち走査露光時のレチクルの走査方向に平行である。なお、不図示であるが、Y軸 のレチクル干渉計も同様に配置されている。

[0077]

本例において、給気口G7iを介して供給された気体の一部の気体56は、計測ビーム9aの光路に沿って流れ、残りの気体57は、隔壁53,54の間を下方に流れた後、参照ビーム9bの光路に沿った気体58として投影光学系PL側に流れる。この際に、送風される気体56,58は、共に同じ濃度(混入率)の不純物(窒素ガス等)を含んでおり、屈折率も等しい。従って、レチクル12の位置を、本例のように両光路の差として計測している限り、干渉計の光路上の窒素ガス濃度等の変動が位置計測値に悪影響を与えることは殆どない。

[0078]

ところで、走査露光型の露光装置では、図1においてレチクル12とウエハ17aとの結像関係を保ったまま、双方をスキャンして露光を行う必要がある。そして、高精度な走査を実現するために、ウエハステージ18a及びレチクルステージ11にはエアーベアリングが採用されている。エアーベアリングは、ベースとの接触面に噴気孔の設けられたエアーパッドに所定圧力の気体を供給し、前記噴気孔からベースにその気体を噴射させることでエアーパッドを浮上させ、エアーパッドとベースとの間の摩擦を低減させる機構である。この際に、エアーパッドは、ステージ可動部(レチクルステージ11、ウエハステージ18a)の底面に固定される。なお、エアーベアリング自体には、加速機能はないので、加減速動作は、例えばリニアモータにより行う。

[0079]

露光装置のウエハステージ18a及びレチクルステージ11は、かなりの重量 になるので、これを浮上させるには、そのエアーパッドに、かなりの流量の気体 を送り込まなければならない。そして、通常のエアーベアリングを用いた場合に は、その浮上用の気体は、そのエアーパッドから放出されてウエハ室24及びレ

チクル室6内に拡散していくことになる。従って、エアーパッドに供給する気体は、露光光(本例では真空紫外光)の吸収が少ない気体でなければならないが、酸素や水蒸気等を十分に除去した気体を、ウエハステージ18a及びレチクルステージ11を浮上させるほどに大量に供給するものとすると、給排気装置107の構成が大型化し複雑化して製造コストが上昇すると共に、運転コストもかなり高くなる。

[0800]

そこで、上記の図1の実施の形態では、差動排気型のエアーパッドを用いたエ アーベアリング方式を採用している。

図5は、図1中のレチクルステージ11用の差動排気型のエアーパッド80の部分(エアーベリング装置)を示す拡大断面図であり、この図5において、気体源81から給気管82を介して供給される浮上用の気体(本発明の第4の気体に対応する)は、エアーパッド80内の噴気孔83よりレチクルベース10上に噴射される。その一方で、エアーパッド80の噴気孔83を囲む吸気溝84を排気管85を介して吸引ポンプ86に接続することによって、排気管85内を減圧し、噴気孔83より噴射された気体を、その周囲の吸気溝84より吸引して排気管82を介して排気する。

[0081]

これによって、エアーパッド80をレチクルベース10に対して間隔 d, eが数μm程度になる状態に浮上させ、かつ、その浮上用の気体をエアーパッド80の外部に殆ど漏らさないことが可能になる。

以上により、本例のエアーベアリングで使用する気体が、露光光路に漏れることは殆ど無くなるので、本例においては、エアーベアリングで使用する浮上用の気体(例えば比較的純度の低い窒素ガス等)に対する不純物の濃度(混入率)の許容値を、大幅に上昇させることができコスト的に有利となる。あるいは、その浮上用の気体としては、例えば乾燥空気を使用することも可能であり、これによって一層のコストダウンが図れる。

[0082]

なお、エアーベアリングからの気体の漏れを一層少なくするには、レチクルベ

ース10の表面を、コーティング処理又は鏡面処理することが有効である。また、本例ではその差動排気型のエアーベアリングが、ウエハステージ18a側にも 採用されている。

なお、上記の実施の形態は本発明を走査露光型の投影露光装置に適用したものであるが、本発明は一括露光型(ステッパー等)の投影露光装置等にも適用することができる。また、本発明の第2の実施の形態は、例えばプロキシミティ方式の露光装置等にも適用することができる。

[0083]

また、本発明の露光光は、エキシマレーザ等からのレーザビームであるが、その露光光としては、DFB (Distributed feedback:分布帰還型)半導体レーザ又はファイバーレーザから発振される赤外域、又は可視域の単一波長レーザを、例えばエルビウム(Er) (又はエルビウムとイッテルビウム(Yb)との両方)がドープされたファイバーアンプで増幅し、非線形光学結晶を用いて紫外光に波長変換した高調波を用いてもよい。

[0084]

例えば、単一波長レーザの発振波長を1.544~1.553 μ mの範囲内とすると、193~194nmの範囲内の8倍高調波、即ちArFエキシマレーザとほぼ同一波長となる紫外光が得られ、発振波長を1.57~1.58 μ mの範囲内とすると、157~158nmの範囲内の10倍高調波、即ちF $_2$ レーザとほぼ同一波長となる紫外光が得られる。

[0085]

更に、発振波長を1.03~1.12 μ mの範囲内とすると、発生波長が147~160nmの範囲内である7倍高調波が出力され、特に発振波長を1.09~1.106 μ mの範囲内とすると、発生波長が157~158nmの範囲内である7倍高調波、即ち F_2 レーザとほぼ同一波長となる紫外光が得られる。この場合の単一波長発振レーザとしては、例えばイッテルビウム・ドープ・ファイバーレーザを用いることができる。

[0086]

なお、本発明は上述の実施の形態に限定されず、本発明の要旨を逸脱しない範

囲で種々の構成を取り得ることは勿論である。

[0087]

【発明の効果】

本発明の第1、第4及び第6の露光方法によれば、例えば投影系側の第1の空間に局所的に露光ビームを透過する気体を供給することによって、例えば第2物体から発生する不純物を含む脱ガスを露光ビームの光路から効率よく除去することができる。従って、その露光ビームに対する透過率を高くして、露光強度を高くできると共に、その気体の使用量は少なくて済み運転コストが低くできる。更に、投影系の長寿命化にも有効である。

[0088]

また、第1及び第2の空間の境界部の開口の形状を例えば細長いスリット状に することで、斜入射方式の焦点検出装置との両立が容易になり、高精度な焦点合 わせとの両立も容易になる。

また、本発明の第2の露光方法によれば、例えば走査露光型の露光装置で使用するエアーベアリング機構を、差動排気型とすることで、エアーパッドに供給すべき浮上用の気体中の不純物ガス(露光ビームを吸収する気体)の規格を大幅に緩めても、露光ビームの透過率が高く維持できる。更に、ガス純化に要する運転コストの引き下げが可能となる。

[0089]

また、本発明の第3の露光方法によれば、位置計測のための干渉計の計測側光路と参照側光路との双方に、不純物を実質的に同量含む気体を送風することで、 干渉計の光路上の不純物による計測誤差を低減することができる。

また、本発明の第5の露光方法によれば、露光強度を高く維持できると共に、 開口板の開口を通して検出ビームを照射できるため、第2物体の位置を正確に検 出でき、第1物体のパターンの像を高解像度で第2物体上に転写できる。

[0090]

また、本発明の各露光装置によって本発明の露光方法が使用できると共に、本 発明のデバイスの製造方法によれば、露光ビームの強度を高く維持できるため、 各種デバイスの製造工程でのスループットを高くできる。

【図面の簡単な説明】

- 【図1】 本発明の第1の実施の形態の投影露光装置を示す一部を切り欠い た構成図である。
- 【図2】 図1中のガス純化装置45-1,45-2,45-5を代表するガス純化装置45、及び対応する空間Sを示す一部を切り欠いた構成図である。
- 【図3】 (A) はその第1の実施の形態におけるオートフォーカスセンサの配置の別の例を示す要部の図、(B) は図3(A) の投影光学系PLの底面側の送風板15b, 15cを示す平面図である。
- 【図4】 (A) は本発明の第2の実施の形態のウエハ干渉計の構成を示す 一部を切り欠いた図、(B) はその第2の実施の形態のレチクル干渉計の構成を 示す一部を切り欠いた図である。
- 【図 5 】 図 1 の実施の形態のレチクルステージの差動排気型のエアーベリング機構の要部を示す一部を切り欠いた拡大図である。

【符号の説明】

1…露光光源、6…レチクル室、8…レチクル干渉計の計測部、11…レチクルステージ、12…レチクル、13,19d…移動鏡、PL…投影光学系、14…鏡筒、15…送風板、17a…ウエハ、18a…ウエハステージ、22…ウエハ干渉計の計測部、24…ウエハ室、29,51…固定鏡、G1i,G2i,G5i…給気口、G1e,G2e,G5e…排気口、45…ガス純化装置、80…エアーパッド、108…給気管、109…排気管

【書類名】 図面【図1】

【図2】

【図3】

(B)

【図4】

【図5】

特平11-299331

【書類名】 要約書

【要約】

【課題】 露光光として真空紫外光を使用する場合でも、光路上での透過率の低下を抑制して、高い露光強度が得られるようにする。

【解決手段】 真空紫外域の露光光ILのもとで、レチクル12のパターンの像が投影光学系PLを介して、ウエハ室24内のウエハステージ18a上のウエハ17aに投影される。投影光学系PLとウエハ17aとの間に、露光光の光路が開口部15aとされた送風板15を設置し、送風板15より上の第1の空間S1中の気体を排気口G1eから排気して純化した後、給気口G1iから再び空間S1中に送風することによって、ウエハ17aからの脱ガスを効率的に排気する。送風板15より下の第2の空間S2内には、第1の空間S1内の気体に比べて不純物の濃度の許容度が緩く管理された気体を供給する。

【選択図】 図1

出願人履歴情報

識別番号

[000004112]

1. 変更年月日 1990年 8月29日

[変更理由] 新規登録

住 所 東京都千代田区丸の内3丁目2番3号

氏 名 株式会社ニコン