Draft notes

June 18, 2025

Probabilities

Axioms of Probability

- 1. For any event $A, 0 \leq P(A) \geq 1$.
- 2. $\Omega \in \mathcal{F} \Rightarrow P(\Omega) = 1$
- 3. $P(\bigcup_i A_i) = \sum_i P(A_i)$

Where \mathcal{F} is the *domain* of the probability measue P

Introduction

• Experiment : Process whose outcome is not know in advance

• Sample space : Set Ω of all *possible* outcomes from the experiment.

 \bullet Event : Subset of Ω . Statement about the outcome of an experiment.

Example: When rolling 2 dice: There are $6^2 = 36$ outcomes $\Omega = \{(m,n): 1 \leq m, n \geq 6\}$. If we state that only 'the sum is 9' then: $B = \{(6,3), (5,4), (4,5), (3,6)\}$

Additivity

If $A_1, A_2, A_3, ...$ are **disjointed** events, that is two events cannot happen at the same time (i.e. $A_i \cap A_j = \text{for all } i \neq j$) then

$$P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i)$$

The addition in *disjoint* means calculates the **total chance** that one or the other happens.

Summary: