Class 8: Mini Project

Kira

The goal of this mini-project is for us to explore a complete analysis using the unsupervised learning techniques covered in class.

Values in this data set describe characteristics of the cell nuclei present in digitized images of a fine needle aspiration (FNA) of a breast mass.

Data Import

```
wisc.df <- read.csv("WisconsinCancer.csv", row.names = 1)
head(wisc.df)</pre>
```

	diagnosis radiu	s_mean te	exture_mean	perimeter_mean	area_mear	1
842302	M	17.99	10.38	122.80	1001.0)
842517	M	20.57	17.77	132.90	1326.0)
84300903	M	19.69	21.25	130.00	1203.0)
84348301	M	11.42	20.38	77.58	386.1	_
84358402	M	20.29	14.34	135.10	1297.0)
843786	M	12.45	15.70	82.57	477.1	_
	smoothness_mean	compactr	ness_mean co	ncavity_mean c	oncave.poi	.nts_mean
842302	0.11840		0.27760	0.3001		0.14710
842517	0.08474		0.07864	0.0869		0.07017
84300903	0.10960		0.15990	0.1974		0.12790
84348301	0.14250		0.28390	0.2414		0.10520
84358402	0.10030		0.13280	0.1980		0.10430
843786	0.12780		0.17000	0.1578		0.08089
	symmetry_mean f	ractal_di	imension_mea	n radius_se te	xture_se p	erimeter_se
842302	0.2419		0.0787	1 1.0950	0.9053	8.589
842517	0.1812		0.0566	7 0.5435	0.7339	3.398
84300903	0.2069		0.0599	9 0.7456	0.7869	4.585
84348301	0.2597		0.0974	4 0.4956	1.1560	3.445
84358402	0.1809		0.0588	3 0.7572	0.7813	5.438

843786	0	.2087		0.07613	0.3345	0.89	902	2.217
	area_se	smoothness_	se compact	ness_se	concavity	_se conca	ave.poir	nts_se
842302	153.40	0.0063	399	0.04904	0.05	5373	0.	01587
842517	74.08	0.0052	25	0.01308	0.01	L860	0.	01340
84300903	94.03	0.0061	.50	0.04006	0.03	3832	0.	02058
84348301	27.23	0.0091	.10	0.07458	0.05	5661	0.	01867
84358402	94.44	0.0114	90	0.02461	0.05	5688	0.	01885
843786	27.19	0.0075	10	0.03345	0.03	3672	0.	01137
	symmetry	_se fractal	_dimension	_se radi	ius_worst	texture_w	vorst	
842302	0.03	8003	0.006	193	25.38	1	17.33	
842517	0.01	389	0.003	532	24.99	2	23.41	
84300903	0.02	250	0.004	571	23.57	2	25.53	
84348301	0.05	963	0.009	208	14.91	2	26.50	
84358402	0.01	756	0.005	115	22.54	1	16.67	
843786	0.02	165	0.005	082	15.47	2	23.75	
	perimete	r_worst are	a_worst sm	oothness	s_worst co	mpactness	s_worst	
842302		184.60	2019.0		0.1622		0.6656	
842517		158.80	1956.0		0.1238		0.1866	
84300903		152.50	1709.0		0.1444		0.4245	
84348301		98.87	567.7		0.2098		0.8663	
84358402		152.20	1575.0		0.1374		0.2050	
843786		103.40	741.6		0.1791		0.5249	
	concavit	y_worst cor	cave.point	s_worst	symmetry_	worst		
842302		0.7119		0.2654	(.4601		
842517		0.2416		0.1860	(2750		
84300903		0.4504		0.2430	(3613		
84348301		0.6869		0.2575	(.6638		
84358402		0.4000		0.1625	(.2364		
843786		0.5355		0.1741	(.3985		
	fractal_	dimension_v	orst					
842302		0.1	1890					
842517		0.0	8902					
84300903		0.0	8758					
84348301		0.1	.7300					
84358402		0.0	7678					
843786		0.1	.2440					

We want to remove the first column and keep it in a separate vector for later.

```
# Using -1 here to remove the first column
wisc.data <- wisc.df[,-1]
head(wisc.data)</pre>
```

	radius_mean text	ure mean perime	eter mean are	a mean smooth	ness mean
842302	17.99	10.38		1001.0	0.11840
842517	20.57	17.77	132.90	1326.0	0.08474
84300903	19.69	21.25	130.00	1203.0	0.10960
84348301	11.42	20.38	77.58	386.1	0.14250
84358402	20.29	14.34	135.10	1297.0	0.10030
843786	12.45	15.70	82.57	477.1	0.12780
	compactness_mean				
842302	0.27760	0.3001	_	0.14710	0.2419
842517	0.07864	0.0869)	0.07017	0.1812
84300903	0.15990	0.1974	1	0.12790	0.2069
84348301	0.28390	0.2414	1	0.10520	0.2597
84358402	0.13280	0.1980)	0.10430	0.1809
843786	0.17000	0.1578	3	0.08089	0.2087
	fractal_dimension	n_mean radius_s	se texture_se	perimeter_se	area_se
842302	0	.07871 1.095	0.9053	8.589	153.40
842517	0	.05667 0.543	35 0.7339	3.398	74.08
84300903	0	.05999 0.745	0.7869	4.585	94.03
84348301	0	.09744 0.495	56 1.1560	3.445	27.23
84358402	0	.05883 0.757	72 0.7813	5.438	94.44
843786	0	.07613 0.334	15 0.8902	2.217	27.19
	smoothness_se co	mpactness_se co	oncavity_se c	oncave.points	_se
842302	0.006399	0.04904	0.05373	0.01	587
842517	0.005225	0.01308	0.01860	0.013	340
84300903	0.006150	0.04006	0.03832	0.020	058
84348301	0.009110	0.07458	0.05661	0.018	367
84358402	0.011490	0.02461	0.05688	0.018	885
843786	0.007510	0.03345	0.03672	0.01	137
	symmetry_se frac	tal_dimension_s	se radius_wor	st texture_wo	rst
842302	0.03003	0.00619	93 25.	38 17	. 33
842517	0.01389	0.00353			.41
84300903	0.02250	0.00457			.53
84348301	0.05963	0.00920)8 14.	91 26	.50
84358402	0.01756	0.00511			. 67
843786	0.02165	0.00508			.75
	perimeter_worst	-	-	-	
842302	184.60	2019.0	0.1622		. 6656
842517	158.80	1956.0	0.1238		. 1866
84300903		1709.0	0.1444		. 4245
84348301	98.87	567.7	0.2098		.8663
84358402	152.20	1575.0	0.1374		. 2050
843786	103.40	741.6	0.1791		.5249
	concavity_worst	concave.points_	_worst symmet	ry_worst	

```
842302
                   0.7119
                                         0.2654
                                                         0.4601
842517
                   0.2416
                                         0.1860
                                                         0.2750
84300903
                                                         0.3613
                   0.4504
                                         0.2430
84348301
                   0.6869
                                         0.2575
                                                         0.6638
84358402
                                         0.1625
                                                         0.2364
                   0.4000
843786
                   0.5355
                                         0.1741
                                                         0.3985
         fractal_dimension_worst
842302
                           0.11890
842517
                          0.08902
84300903
                          0.08758
84348301
                          0.17300
84358402
                          0.07678
843786
                          0.12440
```

```
# Creating a diagnosis vector for later
diagnosis <- as.factor(wisc.df[,1])</pre>
```

Exploratory data analysis

[1] 569

The first step of any data analysis, unsupervised or supervised, is to familiarize yourself with the data.

Q1. How many observations are in this dataset?

```
nrow(wisc.df)
```

There are 569 observations (patients) in this data set.

Q2. How many of the observations have a malignant diagnosis?

```
table(diagnosis)

diagnosis
B M
357 212
```

There are 212 malignant diagnoses in this data set.

Q3. How many variables/features in the data are suffixed with _mean?

First find the column names.

```
colnames(wisc.data)
```

```
[1] "radius_mean"
                                "texture_mean"
 [3] "perimeter_mean"
                                "area_mean"
 [5] "smoothness mean"
                                "compactness mean"
 [7] "concavity_mean"
                                "concave.points_mean"
 [9] "symmetry_mean"
                                "fractal_dimension_mean"
[11] "radius_se"
                                "texture_se"
[13] "perimeter_se"
                                "area se"
[15] "smoothness_se"
                                "compactness_se"
[17] "concavity_se"
                                "concave.points_se"
[19] "symmetry_se"
                                "fractal_dimension_se"
                                "texture_worst"
[21] "radius_worst"
[23] "perimeter_worst"
                                "area_worst"
[25] "smoothness_worst"
                                "compactness_worst"
[27] "concavity_worst"
                                "concave.points_worst"
                                "fractal_dimension_worst"
[29] "symmetry_worst"
```

Next I need to search somehow within the column name for "_mean" pattern. The grep() function might be able to help.

```
inds <- grep("_mean",colnames(wisc.data))
length(inds)</pre>
```

[1] 10

There are 10 variables in the data set that have the "mean" suffix.

Q. How many dimensions are in this dataset?

```
ncol(wisc.data)
```

[1] 30

There are 30 dimensions (columns) in this data set.

Performing Principal Component Analysis (PCA)

It is important to check if the data need to be scaled before performing PCA.

Checking column means and standard deviations to look for variance
colMeans(wisc.data)

radius_mean	texture_mean	perimeter_mean
1.412729e+01	1.928965e+01	9.196903e+01
area_mean	${\tt smoothness_mean}$	compactness_mean
6.548891e+02	9.636028e-02	1.043410e-01
${\tt concavity_mean}$	concave.points_mean	symmetry_mean
8.879932e-02	4.891915e-02	1.811619e-01
fractal_dimension_mean	radius_se	texture_se
6.279761e-02	4.051721e-01	1.216853e+00
perimeter_se	area_se	smoothness_se
2.866059e+00	4.033708e+01	7.040979e-03
compactness_se	concavity_se	concave.points_se
2.547814e-02	3.189372e-02	1.179614e-02
symmetry_se	fractal_dimension_se	radius_worst
2.054230e-02	3.794904e-03	1.626919e+01
texture_worst	perimeter_worst	area_worst
2.567722e+01	1.072612e+02	8.805831e+02
smoothness_worst	compactness_worst	concavity_worst
1.323686e-01	2.542650e-01	2.721885e-01
concave.points_worst	symmetry_worst	${\tt fractal_dimension_worst}$
1.146062e-01	2.900756e-01	8.394582e-02

apply(wisc.data,2,sd)

perimeter_mean	texture_mean	radius_mean
2.429898e+01	4.301036e+00	3.524049e+00
compactness_mean	${\tt smoothness_mean}$	area_mean
5.281276e-02	1.406413e-02	3.519141e+02
symmetry_mean	concave.points_mean	concavity_mean
2.741428e-02	3.880284e-02	7.971981e-02
texture_se	radius_se	fractal_dimension_mean
5.516484e-01	2.773127e-01	7.060363e-03
smoothness_se	area_se	perimeter_se
3.002518e-03	4.549101e+01	2.021855e+00
concave.points_se	concavity_se	compactness_se

```
1.790818e-02
                                3.018606e-02
                                                         6.170285e-03
         symmetry_se
                        fractal_dimension_se
                                                         radius_worst
        8.266372e-03
                                2.646071e-03
                                                         4.833242e+00
       texture_worst
                             perimeter_worst
                                                           area_worst
        6.146258e+00
                                3.360254e+01
                                                         5.693570e+02
                           compactness_worst
    smoothness_worst
                                                      concavity_worst
        2.283243e-02
                                1.573365e-01
                                                         2.086243e-01
concave.points_worst
                              symmetry_worst fractal_dimension_worst
        6.573234e-02
                                6.186747e-02
                                                         1.806127e-02
```

Since there is a lot of variation among column means and standard deviation, I set scale
wisc.pr <- prcomp(wisc.data, scale = TRUE)
summary(wisc.pr)</pre>

Importance of components:

```
PC1
                                 PC2
                                         PC3
                                                 PC4
                                                         PC5
                                                                  PC6
                                                                          PC7
Standard deviation
                       3.6444 2.3857 1.67867 1.40735 1.28403 1.09880 0.82172
Proportion of Variance 0.4427 0.1897 0.09393 0.06602 0.05496 0.04025 0.02251
                       0.4427 0.6324 0.72636 0.79239 0.84734 0.88759 0.91010
Cumulative Proportion
                           PC8
                                  PC9
                                         PC10
                                                PC11
                                                        PC12
                                                                 PC13
                                                                         PC14
Standard deviation
                       0.69037 0.6457 0.59219 0.5421 0.51104 0.49128 0.39624
Proportion of Variance 0.01589 0.0139 0.01169 0.0098 0.00871 0.00805 0.00523
Cumulative Proportion 0.92598 0.9399 0.95157 0.9614 0.97007 0.97812 0.98335
                          PC15
                                  PC16
                                          PC17
                                                  PC18
                                                          PC19
                                                                   PC20
                                                                          PC21
                       0.30681 0.28260 0.24372 0.22939 0.22244 0.17652 0.1731
Standard deviation
Proportion of Variance 0.00314 0.00266 0.00198 0.00175 0.00165 0.00104 0.0010
Cumulative Proportion 0.98649 0.98915 0.99113 0.99288 0.99453 0.99557 0.9966
                                         PC24
                                                 PC25
                                                         PC26
                                                                  PC27
                          PC22
                                  PC23
Standard deviation
                       0.16565 0.15602 0.1344 0.12442 0.09043 0.08307 0.03987
Proportion of Variance 0.00091 0.00081 0.0006 0.00052 0.00027 0.00023 0.00005
Cumulative Proportion 0.99749 0.99830 0.9989 0.99942 0.99969 0.99992 0.99997
                          PC29
                                  PC30
Standard deviation
                       0.02736 0.01153
Proportion of Variance 0.00002 0.00000
Cumulative Proportion 1.00000 1.00000
```

- Q4. From your results, what proportion of the original variance is captured by the first principal components (PC1)?
- 44.27% of the original variance is captured by PC1.
 - Q5. How many principal components (PCs) are required to describe at least 70% of the original variance in the data?

PC1, PC2, and PC3 are need to capture at least 70% of the original variance. 3 PCs will capture 72%.

Q6. How many principal components (PCs) are required to describe at least 90% of the original variance in the data?

7 PCs are needed to capture at least 90% of the original variance in the data. 7 PCs will capture 91%.

Interpreting PCA results

biplot(wisc.pr)

Q7. What stands out to you about this plot? Is it easy or difficult to understand? Why?

The plot is very difficult to understand and there is no way to tell which data points correspond to which patients or what proportion of patients have a malignant vs. benign diagnosis.

Let's make a better plot of PC1 and PC2.


```
library(ggplot2)
pc <- as.data.frame(wisc.pr$x)
pc$diagnosis <- diagnosis
ggplot(pc) + aes(PC1, PC2, col=diagnosis) + geom_point()</pre>
```


Now, we can make a plot of PC1 and PC3.

Q8. Generate a similar plot for principal components 1 and 3. What do you notice about these plots?

The plot of PC1 vs. PC2 has a clearer designation between the two groups since PC2 is capturing more variance than PC3.

Variance explained

In this part of the exercise, I will produce scree plots showing the proportion of variance explained as the number of principal components increases.

We can start by calculating the variance of each principal component by squaring the sdev component of wisc.pr (i.e. wisc.pr\$sdev^2).

```
# Calculate variance of each component
pr.var <- wisc.pr$sdev^2
head(pr.var)</pre>
```

[1] 13.281608 5.691355 2.817949 1.980640 1.648731 1.207357

Communicating PCA results

How much do the original variables contribute to the new PCs that we have calculated? To get at this data, we can look at the **\$rotation** component of the returned PCA object.

Q9. For the first principal component, what is the component of the loading vector (i.e. wisc.pr\$rotation[,1]) for the feature concave.points_mean?

```
wisc.pr$rotation["concave.points_mean",1]
```

[1] -0.2608538

There is a complicated mix of variables that go together to make up PC1 - i.e. there are many of the original variables that together contribute highly to PC1.

```
loadings <- as.data.frame(wisc.pr$rotation)
ggplot(loadings) + aes(PC1, rownames(loadings)) + geom_col()</pre>
```


Q10. What is the minimum number of principal components required to explain 80% of the variance of the data?

The minimum number of PCs required to explain 80% of the variance of the data is 5 (84.7%).

Hierarchical clustering

The goal of this section is to do hierarchical clustering of the original data.

```
# First, I will scale the wisc.data data using the "scale()" function
data.scaled <- scale(wisc.data)

data.dist <- dist(data.scaled, method="euclidean")

wisc.hclust <- hclust(data.dist, method="complete")
plot(wisc.hclust)
abline(h=19, col="red", lty=2)</pre>
```

Cluster Dendrogram

data.dist hclust (*, "complete")

Q11. Using the plot() and abline() functions, what is the height at which the clustering model has 4 clusters?

The height at which the model has 4 clusters is approximately 19, but it's not clear where to cut the tree based on this model.

Selecting number of clusters

```
wisc.hclust.clusters <- cutree(wisc.hclust,k=4)
table(wisc.hclust.clusters, diagnosis)</pre>
```

$\begin{array}{cccc} & \text{diagnosis} \\ \text{wisc.hclust.clusters} & \text{B} & \text{M} \\ & 1 & 12 & 165 \\ & 2 & 2 & 5 \\ & 3 & 343 & 40 \\ & 4 & 0 & 2 \\ \end{array}$

Q12. Can you find a better cluster vs diagnoses match by cutting into a different number of clusters between 2 and 10?

No. Changing the value of k doesn't result in a better cluster vs diagnoses match.

Using different methods

Q13. Which method gives your favorite results for the same data.dist dataset? Explain your reasoning.

The "ward.D2" method is the best because it gives the clearest visualization of the data.

Combining methods, Clustering on PCA results

My PCA results were interesting as they showed a separation of M and B samples along PC1. Let's see if PCA improves or degrades the performance of hierarchical clustering. I will use wisc.pr\$x as input to hclust().

I will try clustering three PCs first (PC1, PC2, and PC3).

```
d <- dist(wisc.pr$x[,1:3])
wisc.pr.hclust <- hclust(d,method="ward.D2")
plot(wisc.pr.hclust)</pre>
```

Cluster Dendrogram

d hclust (*, "ward.D2") Let's cut this tree into two groups/clusters.

```
grps <- cutree(wisc.pr.hclust,k=2)
table(grps)

grps
1    2
203 366

plot(wisc.pr$x[,1], wisc.pr$x[,2],col=grps)</pre>
```


How well do the two clusters separate the M and B diagnoses?

```
table(grps, diagnosis)
```

diagnosis grps B M 1 24 179 2 333 33 (179 + 333)/569

[1] 0.8998243

Q15. How well does the newly created model with four clusters separate out the two diagnoses?

This clustering result (with four clusters) has 90% accuracy of finding the right diagnosis.