Задача 10-2. «Газ под поршнем»

В горизонтальном цилиндрическом сосуде под легкоподвижным поршнем находится сухой воздух. Площадь поперченного сечения сосуда равна S, воздух между стенками сосуда и поршнем не проходит. Трением поршня о стенки следует пренебрегать.

Поршень соединен со стенкой упругой пружиной жесткости k. Когда поршень находится на расстоянии l_0 от стенки, пружина не деформирована, давление воздуха в сосуде равно атмосферному давлению P_0 , его температура равна T_0 .

Параметры устройства подобраны таким образом, что выполняется условие

$$P_0 S = k l_0. (1)$$

Для численных расчетов используйте следующие данные: атмосферное давление $P=100\,\kappa\Pi a$; начальная температура воздуха в сосуде $t_0=20^{\circ}C=293\,K$;

молярная теплоемкость воздуха при постоянном объеме равна $C_V = \frac{5}{2}R$;

удельная теплота испарения воды $L=2.3\cdot 10^6 \frac{\text{Дж}}{\kappa c}$.

молярная масса воды $M = 18 \cdot 10^{-3} \frac{\kappa 2}{MOЛb}$;

Часть 1. Воздух сухой.

Воздух в сосуде начинают медленно нагревать.

- 1.1 Найдите зависимость давления воздуха в сосуде от положения поршня P(l).
- 1.2 Найдите зависимость координаты равновесного положения поршня от температуры воздуха в сосуде l(T).
- 1.3 Рассчитайте, при какой температуре воздуха в сосуде t_1 его объем увеличится на $\eta = 20\%$.

Часть 2. Влажный воздух.

Случайно внутрь сосуда попала небольшая порция воды (ее объем значительно меньше объема сосуда).

2.1 Пренебрегая парциальным давлением водяных паров при температуре $t_0 = 20^{\circ}C$, рассчитайте, до какой температуры в этом случае следует нагреть влажный воздух в сосуде, чтобы его объем увеличился на $\eta = 20\%$.

Считайте, что не вся вода, попавшая в сосуд, испарилась. Ниже приведен график зависимости давления насыщенных паров воды от температуры. Используйте его для решения задачи. Можете проделать на нем дополнительные построения.

2.2 Оцените (с погрешностью не превышающей 30%) отношение теплот $\frac{Q_2}{Q_1}$, полученных влажным Q_2 (см. Часть 2) и сухим Q_1 (см. Часть 1) воздухом в описанном процессе.

