Lecture 22, Oct. 21

Order Properties in \mathbb{Z} , \mathbb{Q} and \mathbb{R}

22.1 Theorem. The Completeness Property in \mathbb{R} *Every non-empty set* $S \subseteq \mathbb{R}$ *which is bounded above has a* **supremum** *(or least upper bound) in* \mathbb{R} . *Every non-empty set* $S \subseteq \mathbb{R}$ *which is bounded below has a* **infimum** *(or greatest lower bound) in* \mathbb{R}

In $S \subseteq R$, we say S is bounded above in $\mathbb R$ when there exists $b \in \mathbb R$ such that $b \ge x$ for every $x \in S$. Such a number b is called an **upper bound** for S in $\mathbb R$. A **Supremum** for S is a number $b \in \mathbb R$ such that $b \ge x$ for every $x \in S$ and for all $c \in \mathbb R$, if $c \ge x$ for every $x \in S$, then $b \le c$.

22.2 Theorem. Density of $\mathbb Q$ **in** $\mathbb R$ *For all* $a,b\in\mathbb R$, *if* a< b *then there exists* $c\in\mathbb Q$ *such that* a< c< B.

22.3 Theorem. Order Properties in $\ensuremath{\mathbb{Z}}$

- 1. Natural numbers are non-negative. $\mathbb{N} = \{x \in \mathbb{Z} \mid x > 0\}$
- 2. Discreteness for all $k, n \in \mathbb{Z}$, $k < n \leftrightarrow k < n + 1$
- 3. Well Ordering Property of \mathbb{Z} in \mathbb{R} . Every nonempty set $S \subseteq \mathbb{Z}$ which is bounded above in \mathbb{R} has a maximum element in S. Every nonempty set $S \subseteq \mathbb{Z}$ which is bounded below in \mathbb{R} has a minimum element in S. In particular, every nonempty set $S \subseteq \mathbb{N}$ has a minimum number.
- 4. For every $x \in \mathbb{R}$, there exists $a \in \mathbb{Z}$ such that $a \le x$. For every $x \in \mathbb{R}$, there exists $b \in \mathbb{Z}$ such that $x \le b$.
- 5. Floor and Ceiling Property For every $x \in \mathbb{R}$ there exists a unique $n \in \mathbb{Z}$ which we denoted by $n = \lfloor x \rfloor$, such that $n \leq x$ and n + 1 > x. For every $x \in \mathbb{R}$ there exists a unique $m \in \mathbb{Z}$ which we denoted by $n = \lceil x \rceil$, such that $x \leq m$ and x > m 1
- 6. Monotone Sequence Property of \mathbb{Z} Let $m \in \mathbb{Z}$ and let $(x_n)_{n \geq m}$ be a sequence of integers (so each $x_n \in \mathbb{Z}$). If $x_{n+1} > x_n$ for all $n \geq m$, then for all $b \in \mathbb{R}$, there exists $n \geq m$ such that $x_n > b$. If $x_{n+1} < x_n$ for all $n \geq m$, then for all $b \in \mathbb{R}$, there exists $n \geq m$ such that $x_n < b$.

Remark. If N has a total ordering \leq and N has the property that every nonempty set $S \subseteq N$ has a minimum element, then we say that N is a well ordering set.

- **22.4 Exercise.** 1. Show that for all $a \in \mathbb{Z}$, if $a \neq 0$ then $|a| \geq 1$
 - 2. Show that the only units in \mathbb{Z} are ± 1 . Indeed show that for all $a,b\in\mathbb{Z}$, if ab=1 then (a=b=1) or a=b=-1

Here ends Chapter 2: Rings Fields, Orders and Induction

Chapter 3: Factorization in $\ensuremath{\mathbb{Z}}$

22.5 Definition. For $a, b \in \mathbb{Z}$, we say a **divides** b, or a is a **factor** of b, or b is a **multiple** of a, and we write $a \mid b$, when

b = ak for some $k \in F$

22.6 Theorem.

1. $1 \mid a \text{ for all } a \in \mathbb{Z}$

2. $a \mid 1 \leftrightarrow a = \pm 1$

3. $0 \mid a \leftrightarrow a = 0$

4. $a \mid 0$ for all $a \in \mathbb{Z}$

5. $a \mid b \leftrightarrow |a| \mid |b|$

6. if $b \neq 0$ and $a \mid b$ then $|a| \leq |b|$

7. a | a

8. if $a \mid b$ and $b \mid a$ then a = b

9. if $a \mid b$ and $b \mid c$ then $a \mid c$

10. if a | b and a | c then

 $\forall x, y \in \mathbb{Z} \ a \mid (bx + cy)$

Proof.

6. Suppose $b \neq 0$ and $a \mid b$. Choose $k \in \mathbb{Z}$ so that b = ak. If k = 0, then b = ak = a0 = 0. But $b \neq 0$, so $k \neq 0$. Since $k \neq 0$ we have $|k| \geq 1$. Since b = ak, we have $|b| = |ak| = |a| |k| \geq |a| |1 = |a|$