

Next-Generation Sequencing (NGS)

Rob Colautti

Biological Sciences

Contact:

BioSci 4325a 613-533-2353 bit.ly/colautti robert.colautti@queensu.ca

University of Windsor & GLIER – Hs Bsc, MSc

Hugh MacIsaac

Dan Heath

Research Background

University Toronto – PhD

Spencer Barrett

Duke University – Postdoc

Durham, NC

Vancouver, BC

Tuebingen, DE

Oliver Bossdorf

Research

Background

Overview

- What is Next-Generation Sequencing (NGS)?
- How does NGS work?
- Why is NGS revolutionizing the biological sciences?

Introduction to NGS

Moore's Law

• "the number of transistors in a dense integrated circuit doubles approximately every two years"

-- Wikipedia (Feb 2, 2016)

Moore's Law vs
DNA
Sequencing technology

Sanger Sequencing

Dideoxy chain termination sequencing

Electrophorsesis (1 read/capillary)

Beckman Coulter CEQ 8000

Nextgeneration sequencing (NGS)

Sequencing by synthesis

Generation of polony array

What is base 1? What is base 2? What is base 3?

Illumina (Sequencing by synthesis)

- Shear DNA into short fragments (~100-500bp)
 & ligate sequencing primers (adapters)
- 2. Attach DNA to surface
- 3. Bridge amplification
- 4. Fragments become double stranded
- 5. Denature the double stranded molecules
- 6. Cluster amplification

Illumina.com

Illumina

- 7. Determine first base
- 8. Image first base
- 9. Determine second base
- 10. Image second base
- 11. Sequence reads over multiple cycles
- 12. Align data

HiSeq 3000/4000

up to 5 billion fragments/flow cell 2x 150bp fragment length

MiSeq

up to 25 million 2x300bp

Illumina.com

Illumina

- 7. Add fluorescent-labelled nucleotides
- 8. Image first base
- 9. Flush flow cell and repeat
- 10. Image second base
- 11. Sequence reads over multiple cycles
- 12. Align data

Illumina.com

DNA construct

Advantages of Illumina

- The industry standard
- Versatile (see applications later)
- Economic (price per Mb of data)
 - MiSeq up to 2 x 300bp x 15M reads = 9 Gb
 - * ~\$2,500 (\$0.27)
 - HiSeq up to 2 x 125bp x 200M reads = 50 Gb
 - * ~\$3,000 (\$0.06)

Compare Platforms:

http://www.molecularecologist.com/next-gen-fieldguide-2016/

Other NGS Platforms

- PacBio longest reads (>20kb)
 - genome assembly and full-length cDNA sequencing
 - DNA structural differences (e.g. inversions, transposon jumps)
 - BUT: see <u>10x genomics</u> for Illumina
- **Ion Torrent** Fewer reads (1 Gb)
 - Lower up-front investment (\$80k vs \$150k+ for Illumina)
 - pre-existing variant panels (model organisms)
 - Amplicon sequencing (e.g. microbiome)
 - User-friendly, fast turnaround
- Roche 454 Obsolete; Lowest throughput (1 Mb)
 - cheaper long reads (up to 1 kb)
 - Microbiome studies

Experimental: MinION (Oxford Nanopore)

Why is NGS revolutionizing Biology?

- NGS-tools translate across disciplines.
 For example:
- Metagenomics:
 - Soil, water, human gut microbiomes
- Variant detection & GWAS
 - QTL mapping for agriculture, adaptive traits, environmental stressors, human health

Applications

Applications

Genotype-bysequencing (GBS)

Target-capture sequencing

ChIP-seq (protein-targets)

RNA-Seq

Illumina Tru-Seq RNA-seq protocol

Library prep begins from 100ng-1ug of Total RNA which is poly-A selected (A) with magnetic beads. Double-stranded cDNA (B) is phosphorylated and A-tailed (C) ready for adapter ligation. The library is PCR amplified (D) ready for clustering and sequencing.

RNA-Seq expression profiles

Bisulfite sequencing

Metagenomics

OUT = Operational Taxonomic Unit

Whole-Genome Shotgun (WGS) sequencing

Extract

Fragment

Sequence

Align

Assembly with or without a reference

Alignment to reference

- sometimes called 'resequencing'
- common in 'model systems'
- e.g. human, mouse, *Drosophila*, *C. elegans*, *Arabidopsis*

de novo assembly

'non-model' organisms

Reference genome

Consensus sequence

Contiguous consensus sequences (contigs)

De novo assembly

IMPORTANT: Paired End vs Mate-Pair

Mate pair library

Coverage

- = average # reads at any given location (base pair)
- A 'random' sampling process
- (Higher is better)

de novo assembly programs*

- ABySS
- ALLPATHS-LG
- CORTEX
- CLC Genomics Workbench
- DISCOVAR de novo
- Geneious
- IDBA
- MaSuRCA
- MIRA
- PLATANUS
- RAY
- SOAP de novo

*Large genome assemblers (>0.5Gb)

Gold = commercial/restricted license

Challenges

https://trace.ncbi.nlm.nih.gov/Traces/sra/

The Sequence Read Archive (SRA) stores raw sequence data from "next-generation" sequencing technologies including Illumina, 454, IonTorrent, Complete Genomics, PacBio and OxfordNanopores. In addition to raw sequence data, SRA now stores alignment information in the form of read placements on a reference sequence.

SRA is NIH's primary archive of high-throughput sequencing data and is part of the international partnership of archives (INSDC) at the NCBI, the European Bioinformatics Institute and the DNA Database of Japan. Data submitted to any of the three organizations are shared among them.

Please check SRA Overview for more information.

Submitting to SRA

Making data available to the research community enhances reproducibility and allows for new discovery by comparing data sets.

- Submission Quick Start
- Frequently Asked Questions
- Submitter Login

Using SRA Data with SRA Toolkit

Use SRA data to validate experimental results, increase sample sizes, determine variance and open up new avenues of research.

- Documentation
- Usage Guide
- Download
- Get sources code on GitHub (for developers using SRA)

'Big Data' (~10 Petabytes)

Large genomes

Assembly challenges

- Large repeats creates gaps
- Errors cannot be assembled
- Low coverage creates gaps
- Unequal coverage confuses error correction

NGS and Ecological Genomics

in the Colautti Lab

Ecological Genomics

Figure 1. (Creer et al., 2016) Schematic of molecular ecology workflow.

Ecology and Evolution in the Anthropocene

Environment --> Natural Selection --> Genome Evolution

Ecological genomics of invasive species

Invasions: grand, unplanned ecological experiments

eDNA and DNA barcodes for environmental monitoring

Barcode of Life Project www.boldsystems.org

https://www.youtube.com/watch?v=ZImiXgU6bCk

Tick microbiome analysis

Lyme disease in Canada (cbc.ca)

Ixodes scapularis (black-legged tick)

NGS @Queen's

- Biology Department has the only Illumina sequencer on campus (MiSeq)
- Other machines (IonTorrent, microarrays) spread across campus
- Queen's has no university-wide genomics core facility – very unusual for a research-intensive university

NGS @ Queen's: Typical WGS sequencing workflow

Library Prep

- Extract & Purify DNA
- Fragment and size-select
- Ligate sequencing primers

Sequencing

Generate FASTQ file – includes sequence data (short-reads) and quality score

Assembly

• Assemble short-reads into contigs and scaffolds

Analysis

 e.g. genome annotation; comparative genomics; structural variant detection; taxonomy ID (metagenomics); align short reads for variant detection (e.g. for GWAS)

QC @ Queen's

MiSeq @ Queen's

Miseq Kits	Running time (est. in hours)	Max read length (bp)	Numb er of Reads (millio n)	Data generated (giga-bases)	Plan to Stock at the core?	Price \$CDN (USD x 1.33)
MiSeq Reagent ver.3 2 x 300	65	600	25	15	Yes	2438
MiSeq Reagent ver.2 2 x 250	39	500	15	7.5	No	1850
MiSeq Reagent ver.2 2 x 150	24	300	15	4.5	Yes	1676
MiSeq Reagent ver.3 2 x 75	24	150	25	3.75	Yes	1470
MiSeq Micro 2 x 150	24	300	4	1.2	No	1432
MiSeq Reagent ver.2 2 x 25	6	50	15	0.75	No	1347
MiSeq Nano 2 x 250	39	500	1	0.5	No	1180
MiSeq Nano 2 x 150	24	300	1	0.3	No	1004

de novo sequencing Application

Ecological genomics of Alliaria petiolata

Loren Rieseberg

Oliver Bossdorf

Ecological genomics of Alliaria petiolata

Why Alliaria petiolata?

- Problematic invasive species in North America
- Easy to identify
- Simple lifetime fitness estimate
- Brassicaceae, self-pollinated
- Ecologically important chemistry
 - (Enemy release; allelopathy/soil biota)

Alliaria

petiolata
ecology:
plant-microbe
interactions

Alliaria *petiolata* ecology: plant-microbe interactions

Mycorrhizal fungus

Root

Alliaria

petiolata
ecology:
plant-microbe
interactions

Global garlic mustard field survey

- International collaboration
 - 164 participants from 16 countries
- Field surveys
 - 45,000 field measurements
 - Plant performance traits
 - Herbivory & fungal damage
- Genetic resource
 - Seeds from >5,000 plants
 - 395 locations across Europe and North Am.

Population genomics: Some major questions

- How many introductions to North America, from which parts of Europe, and how has it been moved around?
- Which genes affect survival and reproduction in response to:
 - cold vs warm climates
 - wet vs dry conditions
 - native vs introduced range
 - herbivores and pathogens
 - competition with other plants
- Does selection act mainly on a few loci with large effects on phenotype, or many loci with smaller effects?
- How important is standing genetic variation vs new mutations?
- How important are SNPs vs genome rearrangements?

Alliaria petiolata draft chloroplast genome 153,190 bp

de novo assembly (Sanger)

Overlap/layout/consensus

Essentially,

- Calculate all overlaps
- Cluster based on overlap.
- Do a multiple sequence alignment

UMD assembly primer (cbcb.umd.edu)

de novo assembly (NGS)

de Bruijn graph method

based on k-mers

K-mers

Break reads (of any length) down into multiple overlapping words of fixed length k.

ATGGACCAGATGACAC (k=12) =>

ATGGACCAGATG TGGACCAGATGA GGACCAGATGAC GACCAGATGACA ACCAGATGACAC

de novo assembly (NGS)

de Bruijn graph 'bubbles' in the assembly

K-mer graph (k=14)

ATCCAGTAGGACCACTTGACAGGCGATTGACG

ATCCAGTAGGACCAGTTGACAGGCGATTGACG

De novo assembly

In practice

\$ tar -zxvf CAC_files.tar.gz /home/hpc####