ANALISIS ALGORITMA

Disusun oleh:

Meira Dwiana Anjani

140810180015

PROGRAM STUDI S1 TEKNIK INFORMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS PADJADJARAN

2020

Latihan Analisa

Minggu ini kegiatan praktikum difokuskan pada latihan menganalisa, sebagian besar tidak perlu menggunakan komputer dan mengkoding program, gunakan pensil dan kertas untuk menjawab persoalan berikut!

1. Untuk $T(n)=2+4+8+16+\cdots+n^2$, tentukan nilai C, $f(n),n_0$, dan notasi Big-O sedemikian sehingga T(n)=O(f(n)) jika $T(n)\leq C$ untuk semua $n\geq n_0$

1)
$$T(n) = 2+4+8+16+...+2^{n}$$

$$= \frac{2(2^{n}-1)}{2-1} = 2(2^{n}-1)=2^{n+1}-2$$

$$T(n) = 2^{n+1}-2 = O(2^{n})$$

$$T(n) \le Cf(n)$$

$$2^{n+1}-2 \le C \cdot 2^{n}$$

$$2\cdot 2^{n}-2 \le C \cdot 2^{n}$$

$$2-\frac{2}{2^{n}} \le C$$

$$2 \ge 1$$

2. Buktikan bahwa untuk konstanta-konstanta positif p, q, dan r:

$$T(n) = pn^2 + qn + r$$
 adalah $O(n^2), \Omega(n^2), \Theta(n^2)$

2)
$$T(n) = pn^2 + qn + r$$

 $\Rightarrow O(n^2) \rightarrow BigO$
 $T(n) \leq C.f(n)$
 $pn^2 + qn + r \leq C.n^2$
 $p + \frac{g}{n} + \frac{r}{n^2} \leq C.$
 $\Rightarrow \Omega(n^2) \rightarrow Big\Omega$
 $T(n) \Rightarrow C.f(n)$
 $pn^2 + qn + r \Rightarrow C.n^2$
 $pn^2 + qn + r \Rightarrow C.n^2$
 $pn \neq q + f \Rightarrow C.$
 $pn \neq q + f \Rightarrow C.$

3. Tentukan waktu kompleksitas asimptotik (Big-O, Big- Ω , dan Big- Θ) dari kode program berikut:

```
for k ← 1 to n do
    for i ← 1 to n do
        for j ← to n do
           w_{ij} \leftarrow w_{ij} \text{ or } w_{ik} \text{ and } w_{kj}
        endfor
    endfor
endfor
3) for K + i to n do
      for it iton do
        for j + to n do
          Wif - wij or Wik or Wkj =n.n.n
                                        T(n)=n3
         endfor
     endfor
   endfor
    * Big D
                         * Big D
     n3 ≤ c. n3
                           Big O = Big 12
       1 &C
                            maka Big & pun
                            Sama O(n3)
        C7/1
    * Big -2
     n37, C.n3
       CSI
```

4. Tulislah algoritma untuk menjumlahkan dua buah matriks yang masing-masing berukuran n x n. Berapa kompleksitas waktunya T(n)? dan berapa kompleksitas waktu asimptotiknya yang dinyatakan dalam Big-O, Big-Ω, dan Big-Θ?

```
4) Algoritma penjumlahan matriks n×m
     foritito n do
        for j + i to n do
              mij + aij + bis => n.n
                                       T(n)=n^2
    endfor
    * B19 0
      n^2 \le C.n^2
1 \le C

* Big 0 = Big \Omega

maka Big \Theta ni

sama seperti B
                           maka Big O nilainya
                           sama seperti Big 0 =
         C7/1
                           Big - 2 yay (n2)
    * Big -2
      n2 > C.n2
        17/6
         C SI
```

5. Tulislah algoritma untuk menyalin (copy) isi sebuah larik ke larik lain. Ukuran elemen larik adalah n elemen. Berapa kompleksitas waktunya T(n)? dan berapa kompleksitas waktu asimptotiknya yang dinyatakan dalam Big-O, Big-Ω, dan Big-O?

```
5) Algoritma menyalin larik

for i ← i ton do

ai ← bi ⇒ n = T(n)

endfor

* BigO * Big Ω

n ≤ cn n 7, cn

1 ≤ c 1 7, C

C 7,1 C ≤ 1

* Jika BigO=BigΩ maka Bigθnya

Sama yaitu θ(n)
```

6. Diberikan algoritma Bubble Sort sebagai berikut:

```
procedure BubbleSort(input/output a<sub>1</sub>, a<sub>2</sub>, ..., a<sub>n.1</sub> integer)

{ Mengurut tabel integer TabInt[1..n] dengan metode pengurutan bubble-
sort

Masukan: a<sub>1</sub>, a<sub>2</sub>, ..., a<sub>n</sub>

Keluaran: a<sub>1</sub>, a<sub>2</sub>, ..., a<sub>n</sub>

(terurut menaik)

}

Deklarasi

k: integer { indeks untuk traversal tabel }

pass: integer { tahapan pengurutan }

temp: integer { peubah bantu untuk pertukaran elemen tabel }

Algoritma

for pass ← 1 to n - 1 do

for k ← n downto pass + 1 do

if a<sub>k</sub> < a<sub>k-1</sub> then

( pertukarkan a<sub>k</sub> dengan a<sub>k-1</sub> )

temp ← a<sub>k</sub>

a<sub>k-1</sub>←temp

endif

endfor
endfor
endfor
```

- a. Hitung berapa jumlah operasi perbandingan elemen-elemen tabel!
- b. Berapa kali maksimum pertukaran elemen-elemen tabel dilakukan?
- c. Hitung kompleksitas waktu asimptotik (Big-O, Big- Ω , dan Big- Θ) dari algoritma Bubble Sort tersebut!

- 7. Untuk menyelesaikan problem X dengan ukuran N tersedia 3 macam algoritma:
 - a. Algoritma A mempunyai kompleksitas waktu O(log N)
 - b. Algoritma B mempunyai kompleksitas waktu O(N log N)
 - c. Algoritma C mempunyai kompleksitas waktu O(N)

Untuk problem X dengan ukuran N=8, algoritma manakah yang paling cepat? Secara asimptotik, algoritma manakah yang paling cepat?

8. Algoritma mengevaluasi polinom yang lebih baik dapat dibuat dengan metode Horner berikut:

```
p(x) = a_0 + x(a_1 + x(a_2 + x(a_3 + \dots + x(a_{n-1} + a_n x)))\dots)
\underline{\text{function p2(input } x : \underline{\text{real}}) \rightarrow \underline{\text{real}}}_{\text{{\it (Mengembalikan nilai } p(x)}} \rightarrow \underline{\text{real}}_{\text{{\it dengan metode Horner}}}
\underline{\text{Deklarasi}}_{\text{{\it k} : integer}}_{\text{{\it b}_1, {\it b}_2, {\it ..., {\it b}_n} : \underline{\text{real}}}}
\underline{\text{Algoritma}}_{\text{{\it b}_n \leftarrow a_n}}
\underline{\text{for } k \leftarrow n - 1 \underline{\text{downto}}}_{\text{{\it b}_k \leftarrow a_k + b_k \cdot 1}} \circ \underline{\text{do}}_{\text{{\it odo}}}
\underline{\text{endfor}}_{\text{{\it return}}} b_0
```

Hitunglah berapa operasi perkalian dan penjumlahan yang dilakukan oleh algoritma diatas, Jumlahkan kedua hitungan tersebut, lalu tentukan kompleksitas waktu asimptotik (Big-O)nya. Manakah yang terbaik, algoritma p atau p2?