Measures, Reliability, & Validity

Psych 251 10/11/17

Outline

Reliability & Validity

- Concepts
- Examples

Measures

- Types of measures
- Statistics and measure choice
- Variables in R

Ground rules of experimental psych

- Interested in psychological behavior, phenomenon, or construct
 - Sources of the construct
 - Effects of other factors
 - Individual variability
- Create an instrument that operationalizes the construct
 - Usually easy to measure quantitatively
 - Takes behavior out of the real world, brings into the lab where it can be manipulated
- Make argument about how to connect this instrument to the construct of interest

Concepts

- Reliability: how well did we measure (w/ the instrument)?
 - What is the error in the measurement?
 - What part of it is due to observers, items individuals, noise?
- Validity: how well does this measurement represent the construct?
 - Face validity: does it look like the construct?
 - Internal validity: are you actually measuring something related to the construct?
 - External validity: does your measure relate to other measures of the construct?

Reliability

Test-retest reliability

- Do the same thing again later
- Perhaps with a marginally different set of "items" operationalizing the same concept?
- Pearson correlation

Inter-observer reliability

- Does a different person looking at the same behavior code the same thing?
- Cohen's kappa

Intra-item reliability

- Do two different questions group together across participants?
- Cronbach's alpha

Internal validity

Internal validity

- How well a study was run
- how confidently you can conclude effects were produced solely by IV
- "Was it really the treatment that caused the difference between the subjects in the control and experimental groups?"
- Experimenter expectancy effects

Experimenter expectancy effects

TABLE 7.8
Expectancy effects in eight areas

Research area	Proportion of results that reached $p < .05$ in the predicted direction	Mean effect size in Cohen's d	Mean effect size in Pearson r
Lab interviews	.38	0.14	.07
Reaction time	.22	0.17	.08
Learning and ability	.29	0.54	.26
Person perception	.27	0.55	.27
Inkblot tests	.44	0.84	.39
Everyday situations	.40	0.88	.40
Psychophysical judgments	.43	1.05	.46
Animal learning	.73	1.73	.65
Median	.39	0.70	.33

How many of the predicted results were significant (meta analysis from 1970s)? How much of this is a correct theory vs. experiment expectancy?

Rosenthal & Rosnow (1978)

Issues in internal validity

Stimulus specificity

– Is effect general across items?

Order effects

 Subjects become tired and bored, more or less motivated

Testing effects

A pretest can affect subjects' performance on a post-test

Selection

 Subjects in comparison (e.g., the control and experimental) groups should be functionally equivalent at the beginning of a study.

Experimental Mortality/Attrition

 If one group has higher dropout than others, may bias selection

External validity: some issues

- Is there a relationship between your measure and real-life behaviors that should be controlled/affected by your construct?
 - Concurrent validity: measure correlates with some other important measure
 - Predictive validity: measure predicts to an outcome

Construct Validity

- 1. A construct is defined implicitly by a network of associations or propositions in which it occurs.
- 2. Construct validation is possible only when some of the statements in the network lead to predicted relations among observables.
- 3. The network defining the construct, and the derivation leading to the predicted observation, must be reasonably explicit.
- 4. Many types of evidence are relevant to construct validity, including content validity, interitem correlations, intertest correlations, test-"criterion" correlations, studies of stability over time, and stability under experimental intervention.
- 5. When a predicted relation fails to occur, the fault may lie in the proposed interpretation of the test or in the network.
- 6. Construct validity cannot generally be expressed in the form of a single simple coefficient.
- 7. Constructs can vary in nature from those very close to "pure description" to highly theoretical constructs involving hypothesized entities and processes, or making identifications with constructs of other sciences.
- 8. The investigation of a test's construct validity is not essentially different from the general scientific procedures for developing and confirming theories.

MacArthur-Bates CDI Words and Sentences

Copyright © 2007 The CDI Advisory Board.
All rights reserved.
Distributed by Paul H. Brookes Publishing Co.
1-800-638-3775; 410-337-9580
www.brookespublishing.com

FIRST SIGNS OF UNDERSTANDING

Case study 1: Parent report of child vocab

Yes

No

PART I EARLY WORDS

Before children begin to speak, they show signs of understanding language by responding to familiar

words and phrases. Below are some common examples. Does your child do any of these?

·····	Respond when name is called Respond to "no no" (by stop	ping what he	e/she is doing, at least for			000
	3. React to "there's mommy/da	day by look	ing around for them.			
В.	PHRASES (28)					
	In the list below, please mark th	e phrases th	at your child seems to ur	nderstand,		
	understands			understands	u	nderstands
	Are you hungry?		Don't touch.	0	Open your mouth.	0
	Are you tired/sleepy?	Ö	Get up.		Sit down.	Ó
	Be careful.		Give it to mommy.		Spit it out.	0
	Be quiet.		Give me a hug.		Stop it.	0
	Clap your hands.		Give me a kiss.		Time to go night night.	0
	Change diaper.		Go get	0	Throw the ball.	0
	Come here/come on.		Good girl/boy.		This little piggy.	Ó
	Daddy's/mommy's home.	Ø	Hold still.		Want to go for a ride?	Ŏ
	Do you want more?	Ø	Let's go bye bye.			
	Don't do that.	Ø	Look/look here,	0		

Case study 2: IQ

"There is nothing as important about an individual as his IQ."

Louis Terman

Is Raven's reliable?

- 576 veterans took Raven's
- Split half correlation between scores
 - = .93
 - So double length would be .96
 - Via Spearman-Brown formula

TABLE 1
RAVEN PROGRESSIVE MATRICES (9): RELIABILITIES AND MEASURES
OF CENTRAL TENDENCY FOR AGE RANGES

Ages	N	M	Mdn^a	r_1I	$r_{21}I$
16-25 103 46 44		44	.83		
26-35	107	41	42	.93	.96
36-45	217	37 38		.94	.96
46-55	69	37	33	.94	.96
56-65	8	37	27	.95	.97
Total	567	40		.93	.96

a Median scores for ages 20, 30, 40, 50, 60, given by Raven (9, p. 15) in his table of norms.

Is Raven's internally valid?

- Confounds in administration or in design?
 - Unwanted factors affecting results
 - (E.g. item and order effects in other types of experiment)?

Demand characteristics?

- Unusual for difficult performance-based measures
- But potentially common for measures of opinion, reaction, etc.

Are IQ measures externally valid?

- Do they measure something outside of themselves?
 - Correlate with other IQ tests
 - Predict life outcomes

Sites for IQ critique

- External validity
 - valid across cultures?
- Internal validity
 - compromised by bias against particular populations
 - stereotype threat?
 - may tap multiple constructs at once?
- Etc.

Outline

Reliability & Validity

- Concepts
- Examples

Measures

- Types of measures
- Statistics and measure choice
- Variables in R

SCIENCE

Vol. 103, No. 2684

Friday, June 7, 1946

On the Theory of Scales of Measurement

S. S. Stevens

Director, Psycho-Acoustic Laboratory, Harvard University

- Nominal: distinct types
- Ordinal: ordered types
- Interval: quantitative
- Ratio: quantitative with a zero point

Why be careful about scales?

- Only some analyses are applicable to some scales
- You wouldn't want to take the mean of an ordinal variable
- Ex: 1: Elementary school education
 - 2: High school graduate
 - 3: Some college
 - 4: College graduate
 - 5: Graduate degree
- Doesn't make sense to take the mean
 - Midpoints are not interpretable
- Instead you can take the median

Nominal variables

Sets of things

- Football player numbers
- Subject numbers
- Flavors of ice cream
- Therapy, Drugs,
 Drugs+Therapy, Control
- Friends, Romans, Countrymen

Nominal variables: Statistics

- How do you find the central tendency?
 - Mode
- How do you test for differences in distribution?
 - Chi-square tests are convenient

Ordinal variables

Arbitrary orderings

- Rankings (SES, competition results)
- Likert scales (e.g. from 1-7)
 - We'll come back to this

Ordinal (continued)

Likert scales

About Grade: 4 5 6 (close one) Sex: Male Female (crose one) A PRE-TYPE III ASSESSMENT SURVEY

This is a checklist to find out more about you. Some of the sentences describe you better than others. Read each sentence and indicate how much it is like you by putting an **X** in the box that best describes you. In the example below, the person indicated the sentence was **Seldom** like him or her. There are no right or wrong answers. Your answers will be kept secret. Remember to mark one box for each sentence.

		Never like me	Seldom like me	About half of the time like me	Usually like me	Always like me
Ex	Example: I have taught myself a lot of different things.		Х			
1.	I know when someone is happy.					
2.	When I believe I am right, I am not afraid to let people know what I think.	0			60	

Common Likert Scales

Strongly Agree

Agree

Undecided

Disagree

Strongly Disagree

Very Frequently

Frequently

Occasionally

Rarely

Very Rarely

Never

Extremely Poor

Below Average

Average

Above Average

Excellent

Almost Always True

Usually True

Often True

Occasionally True

Sometimes But Infrequently True

Usually Not True

Almost Never True

Ordinal variables

- How do you find the central tendency?
 - Median
- How do you measure relationships between ordinal variables?
 - Spearman correlation
- How do you test for differences in distribution?
 - Well... It depends.
 - Definitely non-parametrics, but also (maybe) standard stats for Likert scales?

Correlation on ordinal scales

Spearman correlation measures correlation in ranks

Non-parametric statistics

- General family of statistical tests appropriate for ordinal data
- Assume ordering but not interval
- Also useful for cases in which data violate linearity
 - Make fewer distributional assumptions
 - Less power
- Examples (all named after dudes)
 - Mann-Whitney/Wilcoxson (t-test)
 - Kruskal-Wallis (ANOVA)

The case of Likert scales

- Common to assign numeric levels:
 - E.g. strongly agree = 1, strongly disagree= 5
- Can you average these levels?
 - This is a question about whether 1 is as far from 2 as 2 is from 3
 - Not clear, though common practice is to do so
- One rule of thumb is that stuff is more interval around the middle but gets weird around the edges

Problems with averaging Likerts

Interval variables

Equal increments but no true zero

- Celsius temperature
- Measuring people
 - Intelligence
 - Fitness
 - BMI
- In the social sciences, we often don't care about zero

Ratio variables

Intervals with a true zero

- Temperature in Kelvin
- Reaction time (sometimes)
- Numbers of things

• ...

Interval and ratio variables: Stats

- How do you find the central tendency?
 - Mean
- How do you measure relationships between ordinal variables?
 - Pearson correlation
- How do you test for differences in distribution?
 - Regression, ANOVA, etc.
- Bonus: What else do you get for ratio variables?
 - Answer: logarithms!

Stevens (1946) classification

Scale Type	Permissible Statistics	Admissible Scale Mathematic Transformation structure		
nominal / categorical	mode, Chi-squared	substitution	unordered	
ordinal	median, percentile	monotonic increasing	totally ordered set	
interval	mean, standard deviation, correlation, regression, analysis of variance	positive linear	affine line	
ratio	above plus geometric mean, harmonic mean, coefficient of variation, logarithms	Positive similarities (multiplication)	one-dimensional vector space	

Measure choice considerations

- Spectrum: number of alternatives
 - 2AFC Many AFC Free response
- Information content
 - More alternatives = more information
- Task demands
 - Fewer alternatives = faster, easier for kids/impaired populations, automatic responses
 - Fewer alternatives better for RT
- Ease of analysis
 - E.g. free response hard to analyze!
- Diagnosticity
 - More alternatives is more difficult
 - Too easy or difficult and you can't see differences between participants (floor/ceiling effects)

Information content

TABLE 5.3

Minimum number of items required to establish individual judge's accuracy at various levels of statistical significance

			Signific	cance levels (one-tailed)	
Number of alternatives	Chance level	.10	.05	.01	.005	.001
2	.50	4	5	7	9	10
3	.33	3	3	5 .	5	7
4	.25	2	3	4	4	5
5	.20	2	2	3	4	5
6	.17	2	2	3	3	4
7	.14	2	2	3	3	4
8	.12	. 2	2	3	3	4
9	.11	2	.2	3	3	4
10	.10	1	2	2	3	3
11	.09	1	2	2	3	3
12	.08	1	2	2	3	3

Variables in R

 Numbers Generalize to arrays -x < -1 or x < -c(1,2,3,4)-x[1] or x[1:10] Characters -x <- "hello" or x <- c("hi", "hey", "hello") Factors: nominal or ordinal variable type - abc <- factor(c("x","y","x","z"))</pre> $-[1] \times y \times z$ - Levels: x y z - ordered(ses, levels = c("low", "middle", "high")) - Levels: low < middle < high</pre>

In R (continued)

- Nominal and ordinal variables are both factors
 - The levels have an ordering, but this ordering can be arbitrary or fixed
 - Up to you to make sure it's reasonable
 - levels(x) <c("agree","disagree","neutral")</pre>
 - levels(x) < c("disagree","neutral","agree")</pre>
 - Make sure you're not renaming variables though!
- Interval and ratio variables are both numbers
 - It's up to you to decide whether zero is meaningful
- But bad things can happen...
 - E.g. mean of a factor?