Question 1 (ca. 12 marks)

Decide whether the following statements are true or false, and justify your answers.

- a) There exists a solution y(t) of $y' = 2y y^2$ satisfying y(0) = y(1) = 1.
- b) The maximal solution of the initial value problem $y' = y^2 t$, $y(0) = \frac{1}{2}$ exists at time t = 2021.
- c) Every solution $y:(0,\infty)\to\mathbb{R}$ of $t^2y''+3t\,y'+2y=0$ has infinitely many zeros.
- d) The initial value problem $(x^2 + 4)y'' + (x + 4)y' 4y = 0$, y(1) = y'(1) = 1 has a power series solution $y(x) = \sum_{n=0}^{\infty} a_n(x-1)^n$ which is defined at x = 3.
- e) Suppose $\mathbf{A} \in \mathbb{R}^{2\times 2}$ satisfies $\mathbf{A}^3 = \mathbf{I}$ (the 2×2 identity matrix), but $\mathbf{A} \neq \mathbf{I}$. Then every solution $\mathbf{y}(t)$ of the linear system $\mathbf{y}' = \mathbf{A}\mathbf{y}$ must satisfy $\lim_{t\to\infty}\mathbf{y}(t)=(0,0)^\mathsf{T}$.
- f) Suppose $f, g: (-1,1) \to \mathbb{R}$ are C¹-functions. Then the IVP y' = f(t)g(y), y(0) = 0 has a solution y(t) that is defined for all $t \in (-1,1)$.

Question 2 (ca. 10 marks)

Consider the differential equation

$$2x^{2}y'' + x(1-x)y' - 6y = 0.$$
 (DE)

- a) Verify that $x_0 = 0$ is a regular singular point of (DE).
- b) Determine the general solution of (DE) on $(0, \infty)$.
- c) Using the result of b), state the general solution of (DE) on $(-\infty,0)$ and on \mathbb{R} .

Question 3 (ca. 7 marks)

Consider the ODE

$$y' = y^2 + \frac{5}{t}y + \frac{5}{t^2}, \qquad t > 0.$$
 (R)

- a) Show that there exists a solution $y_1(t)$ of the form $y_1(t) = c t^r$ with constants c, r.
- b) Show that the substitution $y = y_1 + 1/z$ transforms (R) into a first-order linear ODE.
- c) Using b), determine all maximal solutions of (R) and their domain.

May 28, 2021 9:00–12:00

Question 4 (ca. 6 marks)

For the matrix $\mathbf{A} = \begin{pmatrix} -8 & 0 & 5 & -2 \\ 5 & -1 & -4 & 1 \\ -10 & 0 & 7 & -2 \\ 0 & 0 & 3 & 2 \end{pmatrix}$ determine the general solution of

the linear system $\mathbf{y}' = \mathbf{A}\mathbf{y}$.

Question 5 (ca. 7 marks)

Consider the differential equation

$$x(3y^2 - 1) dx + y dy = 0.$$
 (DF)

- a) Determine the general solution of (DF) in implicit form.
- b) Determine the maximal solution y(x) satisfying $y(1)=\frac{1}{3}$ and its domain. Hint: $\ln\left(\frac{3}{2}\right)\approx 0.4$
- c) Is every point of \mathbb{R}^2 on a unique integral curve of (DF)?

Question 6 (ca. 8 marks)

a) Determine a real fundamental system of solutions of

$$y^{(5)} + 4y^{(4)} + 24y''' + 40y'' + 100y' = 0.$$

Hint: The characteristic polynomial is divisible by the square of a quadratic polynomial.

b) Determine the general real solution of

$$y^{(5)} + 4y^{(4)} + 24y''' + 40y'' + 100y' = 200t - e^{-t}.$$

c) Find the Laplace transform Y(s) of the solution of the ODE in b) with initial values $y(0) = y'(0) = y''(0) = y'''(0) = y^{(4)}(0) = 0$.

 $\begin{array}{c} {\rm May\ 28,\ 2021} \\ {\rm 9:00\text{--}12:00} \end{array}$

 $\begin{array}{c} {\rm May\ 28,\ 2021} \\ {\rm 9:00\text{--}12:00} \end{array}$

 $\begin{array}{c} {\rm May\ 28,\ 2021} \\ {\rm 9:00\text{--}12:00} \end{array}$