Thursday, September 13, 2012

Cartesian Coordinates to Pixel (Screen) Coordinates Converting Cartesian Coordinates to Screen Coordinates

When working with computer or calculator graphics, sometimes we have to work with screen coordinates. The screen coordinate system has the following:

- 1. The upper corner pixel (point) is (0,0).
- 2. The lower corner pixel is (A, B).
- 3. The x axis increases in the right direction.
- 4. The y axis increases in the down direction, the opposite direction of the Cartesian plane.

epresenting the bottom edge of the screen you are working with.

In order to to convert a point (x, y) in the Cartesian coordinates to point (xp, yp) in Screen coordinates, first observe the following:

- 1. Picture the plane you are working with as a screen. If you are working with a calculator or computer, this is fairly easy.
- 2. Let Xmin be the least-valued x of the screen (left edge) and Xmax be the most-valued x (right edge). Similarly, let Ymin be the least-valued y of the screen (bottom) and Ymax be the most-valued y of the screen (top).

You can check with the window settings on a graphing calculator to verify Xmax, Xmin, Ymax, and Ymin.

For the Hewlett Packard 28 series, 48 series and 50g, the variables XRNG and YRNG list the screen's dimensions, {Xmin, Xmax} for XRNG and {Ymin, Ymax} for YRNG.

To transform Cartesian coordinates to screen coordinates, we can use transformation matrices for scaling and translation. The general form

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix} \begin{bmatrix} x + x_s \\ y + y_s \end{bmatrix}$$

show the transformation from coordinates (x, y) to (x', y') where:

 $s_x = s$ scale of the new x axis. If $s_x < 0$, the x point is reflected with respective to the x axis.

 $s_y = s_z = s_z$

 $x_s = 1$ s the translation (shift to the new center) in the x-direction. If $x_s > 0$, the new center is to the right of the original center. Similarly, if $x_s < 0$, the new center is to the left of the original center.

 $y_s = 1$ s the translation (shift to the new center) in the y-direction. If $y_s > 0$, the new center is to the above the original center. Similarly, if $y_s < 0$, the new center is to the below the original center.

For the transformation from Cartesian coordinates to screen coordinates:

$$s x = A / (Xmax - Xmin)$$

$$s_y = -B / (Ymax - Ymin)$$

Since the new center will be at (Xmin, Ymax):

$$x_s = -Xmin$$

$$y s = -Ymax$$

Therefore by matrix multiplication, with x' = xp and y' = yp:

$$xp = (x - Xmin) * A / (Xmax - Xmin)$$

$$yp = (y - Ymax) * -B / (Ymax - Ymin)$$

On the HP 48 series and 50g, the translation from Cartesian to screen coordinates can be accomplished with the $C\rightarrow PX$ function.

Example:

Using the following window with settings Xmin = -5, Xmax = 5, Ymin = -4, and Ymax = 4, transform the Cartesian coordinate (1, 0) to screen coordinates. The screen has pixel size 130×79 .

In this case, A = 130 and B = 79.

Then:

$$xp = 130 / (5 - (-5)) * (1 - (-5)) = 78$$

 $yp = -79 / (4 - (-4)) * (0 - 4) = 39.5$

The screen coordinate of (1, 0) is $\{78, 39.5\}$.