

Universidade Estadual de Campinas - UNICAMP Instituto de Computação - IC MO824 - Tópicos em Otimização Combinatória

Problemas bem resolvidos

Cid Carvalho de Souza

Setembro de 2005

C. C. de Souza (IC-UNICAMP)

Problemas bem resolvidos

Setembro de 2005

1 / 25

Pergunta

- (IP) $z = \max\{cx : Ax \leq b, x \in \mathbb{Z}^n\}$, com A e b inteiros;
- (LP) $z^{LP} = \max\{cx : Ax \le b, x \in \mathbb{R}^n\}$: relaxação linear;
- (LP) resolve (IP) ?

Observação

Se a base ótima de (LP) dada por B é tal que $|\det(B)| = 1$, então (LP) resolve (IP). (Por quê ?)

Pergunta

Quando é que todas as bases ótimas satisfazem $|\det(B)| = 1$?

Definição 1

A é uma matriz **totalmente unimodular (TU)** se toda submatriz quadrada de A tiver determinante 0, +1 ou -1.

C. C. de Souza (IC-UNICAMP)

Problemas bem resolvidos

Setembro de 2005

Observação

É claro que se A é uma matriz TU de dimensão $m \times n$ então $a_{ij} \in \{-1,0,+1\}$ para $\underline{\mathsf{todo}}\ i=1,\ldots,m$ e para $\underline{\mathsf{todo}}\ j=1,\ldots,n$.

Exemplos

• Matrizes TU:

$$\left(\begin{array}{ccccc}
1 & -1 & -1 & 0 \\
-1 & 0 & 0 & 1 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 0
\end{array}\right)
\left(\begin{array}{cccccc}
0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 \\
1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0
\end{array}\right)$$

• Matrizes não TU: $\begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$ $\begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$

C. C. de Souza (IC-UNICAMP)

Problemas bem resolvidos

Setembro de 2005

2 / 25

Proposição 2:

As seguintes afirmações são equivalentes:

- A^T é TU:
- **③** (*A*, *I*) é TU;
- Toda matriz obtida de A multiplicando-se uma linha (coluna) por -1 é TU;
- Toda matriz obtida de A trocando-se duas linhas (colunas) entre si é TU;
- Toda matriz obtida de A duplicando-se linhas (colunas) é TU.

Proposição 3:

Se a matriz A é TU então

- 1 Toda matriz obtida de A pela remoção de uma linha (coluna) é TU;
- 2 Toda matriz obtida de A por uma operação de *pivoteamento* é TU. Prova ?

Corolário 4:

Seja A uma matriz TU de dimensão $m \times n$. Sejam $b \in \mathbb{Z}^m$ e $c \in \mathbb{Z}^n$ vetores quaisquer tais que $P(b) = \{x \in \mathbb{R}^n_+ : Ax \le b\}$ e $Q(c) = \{u \in \mathbb{R}^m_+ : uA \ge c\}$ são poliedros não-vazios. Então, P(b) e Q(c) são ambos **inteiros**.

Proposição 5

Se P(b) é inteiro para **todo** $b \in \mathbb{Z}^m$ para o qual ele não é vazio, então A é TU.

Nota: o resultado é **falso** se $P(b) = \{x \in \mathbb{R}^n : Ax = b\}$.

C. C. de Souza (IC-UNICAMP)

Problemas bem resolvidos

Setembro de 2005

5 / 25

Proposição 6

Assuma que A é uma matriz com todos elementos em $\{0,-1,+1\}$. Suponha que A contém no máximo dois elementos não-nulos por coluna e que existe uma partição (M_1,M_2) do conjunto M dos índices das linhas de A tal que, para toda coluna j contendo dois coeficientes não-nulos, tem-se que $\sum_{i\in M_1}a_{ij}-\sum_{i\in M_2}a_{ij}=0$. Então, A é TU .

Prova:

- Assuma que A não é TU (contradição);
- Seja B a menor submatriz quadrada de A tal que $\det(B) \not\in \{0, -1, +1\}$;
- Fato 1: toda coluna de B tem dois elementos não-nulos (minimalidade de B);
- Fato 2: somando-se as linhas de B em M_1 e substraindo-se aquelas em M_2 , obtém-se o vetor nulo;
- Conclusão: o determinante de B é nulo.

C. C. de Souza (IC-UNICAMP)

Problemas bem resolvidos

Setembro de 2005

Proposição 7 (mais geral)

A é uma matriz TU se e somente se para todo $M'\subseteq M$ existe uma partição (M'_1,M'_2) tal que $\left|\sum_{i\in M'_1}a_{ij}-\sum_{i\in M'_2}a_{ij}\right|\leq 1$, para todo $j=1,\ldots,n$.

Observações:

- É difícil obter um algoritmo eficiente para reconhecer se uma matriz é TU (Seymour, 1984).
- Se um problema Π tem uma formulação PLI cuja matriz de restrições é TU então a relaxação linear desta formulação corresponde à envoltória convexa das soluções inteiras de Π. Além disso, o problema Π' correspondente ao dual da relaxação linear desta formulação forma um par dual forte com Π.

C. C. de Souza (IC-UNICAMP)

Problemas bem resolvidos

Setembro de 2005

7 / 25

- A matriz de incidência vértice—aresta de um grafo bipartido é TU.
 Logo os problemas de emparelhamento máximo e cobertura mínima por vértices em grafos bipartidos formam um par dual forte.
- A matriz de restrições do problema de alocação (assignment) é TU.
- O Problema do Fluxo de Custo Mínimo (PFCM):
 - rede de entrada: D = (V, A) (grafo direcionado);
 - demandas: $b_i, \forall i \in V$, satisfazendo $\sum_{i \in V} b_i = 0$;
 - custos: c_{ij} por unidade de fluxo no arco (i,j), para todo arco em A;
 - capacidades; h_{ij} limite **máximo** de fluxo no arco (i,j), para todo arco em A;
 - Formulação:

min
$$z = \sum_{(i,j)\in A} c_{ij}x_{ij}$$

s.a. $\sum_{k\in V^+(i)} x_{ik} - \sum_{k\in V^-(i)} x_{ki} = b_i, \forall i \in V$ (I)
 $0 \le x_{ik} \le h_{ij}, \forall (i,j) \in A$ (II)

C. C. de Souza (IC-UNICAMP)

Problemas bem resolvidos

Setembro de 2005

Proposição 8

A matriz de restrições de um PFCM é TU.

Proposição 9

Se as demandas b_i e as capacidades h_{ij} são inteiras então (I) e (II) descrevem a **envoltória convexa** dos fluxos viáveis inteiros.

Caso especial do PFCM: caminhos mais curtos

Achar o caminho mais curto de s para t em D. Formulação:

$$\begin{aligned} & \min \quad z = \sum_{(i,j) \in A} c_{ij} x_{ij} \\ & s.a. \quad \sum_{k \in V^-(i)} x_{ki} - \sum_{k \in V^+(i)} x_{ik} = 0, \ \forall i \in V - \{s,t\} \\ & \quad \sum_{k \in V^-(s)} x_{ks} - \sum_{k \in V^+(s)} x_{sk} = -1, \\ & \quad \sum_{k \in V^-(t)} x_{kt} - \sum_{k \in V^+(t)} x_{tk} = +1, \\ & \quad x \in \mathbb{Z}_+^{|A|}. \end{aligned}$$

Nota: $x_{ij} = 1$ se e somente se (i, j) está no caminho mínimo de s para t.

C. C. de Souza (IC-UNICAMP)

Problemas bem resolvidos

Setembro de 2005

9 / 25

Teorema 10

z é o comprimento do caminho mais curto de s para t se e somente se existem valores π para todo i em V tais que: $\pi_s = 0$, $\pi_t = z$ e $\pi_i - \pi_i \le c_{ij}$ para todo (i,j) em A.

Prova:

- Dual: $\max w_{LP} = \pi_t \pi_s$ $s.a. \quad \pi_j - \pi_i \le c_{ij}, \ \forall (i,j) \in A.$
- Observação: se π é uma solução viável do dual, então $\pi + \alpha.\mathbf{1}$ também é. Portanto, posso fixar $\pi_s = 0 \Rightarrow \pi_t = w_{LP}$.
- A unimodularidade total implica que $\pi_t = z$.

Solução dual

Fazer π_i = comprimento do caminho mais curto de s para i.

C. C. de Souza (IC-UNICAMP)

Problemas bem resolvidos

Setembro de 2005

Caso especial do PFCM: fluxo máximo

Achar o fluxo máximo que pode ir de s para t em D. Formulação (adicionar o arco (t, s) à rede):

$$\begin{array}{ll} \max & z = x_{ts} \\ s.a. & \sum_{k \in V^+(i)} x_{ik} - \sum_{k \in V^-(i)} x_{ki} = 0, \ \forall i \in V \\ & 0 \leq x_{ik} \leq h_{ij}, \ \forall (i,j) \in A; \\ & x \in \mathbb{R}_+^{|A|}. \end{array}$$

Nota: x_{ij} fluxo no arco (i, j).

Dual

$$\begin{array}{ll} \min & \omega = \sum_{(i,j) \in A} h_{ij} w_{ij} \\ s.a. & u_i - u_j + w_{ij} \geq 0, \ \forall (i,j) \in A; \\ & u_t - u_s \geq 1, \\ & w \in \mathbb{R}_+^{|A|}. \end{array}$$

C. C. de Souza (IC-UNICAMP)

Problemas bem resolvidos

Setembro de 2005

11 / 25

Observações

- 1 Unimodularidade Total: solução do dual é inteira;
- **2** Existe solução com $u_s = 0$ pois, se u é solução viável do dual, então $u + \alpha.\mathbf{1}$ também é.
- **3** Definir: $X = \{j \in V : u_j \le 0\}$ e $\tilde{X} = \{j \in V : u_j \ge 1\}$;
- \bullet $s \in X$ e $t \in \tilde{X}$;
- $\begin{array}{lll} \bullet & = & \sum_{(i,j) \in A} h_{ij} w_{ij} & (h_{ij}, w_{ij} \geq 0) \\ \omega & \geq & \sum_{(i,j) \in \delta(X,\tilde{X})} h_{ij} w_{ij} & (w_{ij} \geq u_j u_i \geq 1, i \in X, j \in \tilde{X}) \\ \omega & \geq & \sum_{(i,j) \in \delta(X,\tilde{X})} h_{ij} = \underline{\omega} & (\text{lim. inferior de } \omega) \end{array}$
- **1** Construindo uma solução dual de custo $\underline{\omega}$:

$$u_j = 0, \ \forall j \in X$$

 $u_j = 1, \ \forall j \in \tilde{X}$ \Longrightarrow $w_{ij} = \left\{ \begin{array}{l} 1, \ \forall i \in X, j \in \tilde{X} \\ 0, \ \text{c.c.} \end{array} \right.$

Conclusão: o dual tem uma solução ótima binária!

C. C. de Souza (IC-UNICAMP)

Problemas bem resolvidos

Setembro de 2005

Observação

A solução binária ótima do dual é o vetor característico das arestas do corte $\delta(X, \tilde{X})$.

Teorema 11 (Fluxo Máximo-Corte Mínimo)

Dada uma rede e dois vértices s e t da mesma, os problemas do fluxo máximo entre s e t e do corte mínimo que separa s de t formam um par dual forte.

C. C. de Souza (IC-UNICAMP)

Problemas bem resolvidos

Setembro de 2005

13 / 25

Florestas e Árvores Ótimas

O problema

Dado um grafo G = (V, E) com pesos c_e associados às arestas de E, encontre um subgrafo acíclico de G cujo peso seja máximo.

Algoritmo de Kruskal (Guloso)

- Ordenar as arestas em ordem decrescente de peso. Assumir que: $c_1 \geq c_2 \geq \ldots \geq c_m$.
- Fazer: $T \leftarrow \{\}$; e $i \leftarrow 1$;
- Enquanto |T| < |V| 1 e $c_i \ge 0$ faça Se $T \cup \{i\}$ é acíclico então $T \leftarrow T \cup \{i\}$; $i \leftarrow i + 1$;

fim-enquanto

Retornar T.

C. C. de Souza (IC-UNICAMP)

Problemas bem resolvidos

Setembro de 2005

Teorema 12

O algoritmo guloso é polinomial e termina com uma floresta de peso máximo (ótima).

Formulação PLI

$$\begin{array}{ll} \max & z = \sum_{e \in E} c_e x_e \\ s.a. & \sum_{e \in E(S)} x_e \le |S| - 1, \quad \forall S \subseteq V, \\ & 2 \le |S| \le |V| \\ & x_e \ge 0, \ \forall e \in E, x \in \mathbb{Z}^{|E|}. \end{array}$$

Teorema 13

A envoltória convexa dos vetores de incidência das florestas de um grafo é dada pelas desigualdades (1) e (2).

Existência de algoritmo eficiente \times Envoltória Convexa Conhecida \times Par dual forte disponível

C. C. de Souza (IC-UNICAMP)

Problemas bem resolvidos

Setembro de 2005

15 / 25

Submodularidade e Matróides

Seja N um conjunto e a função $f:2^{|N|} \to \mathbb{R}$:

- f é submodular se $f(A) + f(B) \ge f(A \cap B) + f(A \cup B)$ para todo $A, B \subseteq N$.
- ② f é não decrescente se $f(A) \leq f(B)$ para todo $A \subseteq B \subseteq N$.

Proposição 14

• f é submodular se e somente se, para todo j e k em N e $A \subseteq N \setminus \{j, k\}$, tem-se que

$$f(A \cup \{j\}) - f(A) \ge f(A \cup \{j, k\}) - f(A \cup \{k\}).$$

 f é submodular e não decrescente se e somente se, para todo A e B ⊆ N, tem-se que:

$$f(A) \leq f(B) + \sum_{j \in A \setminus B} [f(B \cup \{j\}) - f(B)].$$

C. C. de Souza (IC-UNICAMP)

Problemas bem resolvidos

Setembro de 2005

Definições

Seja f uma função submodular, não-decrescente com $f(\emptyset) = 0$.

O poliedro submodular é definido por

$$P_f = \{x \in \mathbb{R}^n_+ : \sum_{j \in S} x_j \le f(S), \forall S \subseteq N\}.$$

• O problema de otimização submodular (POS) é dado por $z = \max\{cx : x \in P_f\}$.

Algoritmo guloso para o POS

Ordenar as variáveis de modo que

$$c_1 \geq c_2 \geq \ldots \geq c_r > 0 \geq c_{r+1} \geq \ldots \geq c_n$$
.

Paça $x_i \leftarrow f(S^i) - f(S^{i-1}), \quad 1 \le i \le r$ $x_i \leftarrow 0, \qquad r+1 \le i \le n$ onde $S^0 \leftarrow \emptyset$ e $S^i = \{1, 2, ..., i\}$ para $1 \le i \le r$.

C. C. de Souza (IC-UNICAMP)

Problemas bem resolvidos

Setembro de 2005

17 / 25

Teorema 15

O algoritmo guloso resolve o POS.

Prova: Parte I – Viabilidade de x

- $x_i = f(S^i) f(S^{i-1}) \ge 0$, para $1 \le i \le r$ pois f é não-decrescente;
- Dado $T \subseteq N$, tem-se que:

$$\sum_{j \in T} x_{j} = \sum_{j \in T \cap S^{r}} [f(S^{j}) - f(S^{j-1})] \qquad \text{(submodularidade)}$$

$$\leq \sum_{j \in T \cap S^{r}} [f(S^{j} \cap T) - f(S^{j-1} \cap T)] \qquad (f \text{ n\tilde{a}o-decrescente})$$

$$\leq \sum_{j \in S^{r}} [f(S^{j} \cap T) - f(S^{j-1} \cap T)]$$

$$= f(S^{r} \cap T) - \underbrace{f(S^{0} \cap T)}_{=f(\emptyset)=0} \leq f(T).$$

• Custo da solução gulosa: $z^G = \sum_{i=1}^r c_i [f(S^i) - f(S^{i-1})].$

C. C. de Souza (IC-UNICAMP)

Problemas bem resolvidos

Setembro de 2005

Prova: Parte II – Otimalidade de x

- Formulação do dual: $\begin{cases} & \text{min} \quad w = \sum_{S \subseteq N} f(S) y_S \\ s.a. & \sum_{S:j \in S} y_S \ge c_j, \ \forall j \in N, \\ & y_S \ge 0, \ \forall S \subseteq N \end{cases}$
- Solução dual viável: $\begin{cases} y_{S^i} = c_i c_{i+1}, & 1 \leq i \leq r-1, \\ y_{S^r} = c_r, \\ y_S = 0, & \text{c.c.} \end{cases}$
- $y_S \ge 0$ para todo S pois os custos estão ordenados.
- se $j \leq r$, $\sum_{S:j \in S} y_S \geq \sum_{i=j}^r y_{S^i} = c_j$.
- se j > r, $\sum_{S: j \in S} y_S = 0 \ge c_j$.
- Custo da solução dual:

$$\begin{array}{l} w(y) = \sum_{i=1}^{r} f(S^{i}) y_{S^{i}} = \sum_{i=1}^{r-1} [c_{i} - c_{i+1}] f(S^{i}) + f(S^{r}) c_{r}, \Rightarrow \\ w(y) = \sum_{i=1}^{r} c_{i} [f(S^{i}) - f(S^{i-1})] = z^{G}. \end{array}$$

Logo a solução gulosa é ótima. □

C. C. de Souza (IC-UNICAMP)

Problemas bem resolvidos

Setembro de 2005

19 / 25

Observações

- Se $f: 2^N \to \mathbb{Z}$, o algoritmo guloso fornece uma solução inteira para o Problema de Otimização Submodular !
- Se $f: 2^N \to \mathbb{Z}$ e $f(S \cup \{j\}) f(S) \in \{0,1\}$ para todo $S \subseteq N$ e $j \in N \setminus S$, então f é dita ser uma função posto submodular (rank submodular function) e a solução ótima é binária!

Proposição 16

Seja r um função posto submodular (FPS) com $r(\emptyset) = 0$. Então

- (i) $r(A) \leq |A|$, para todo $A \subseteq N$;
- (ii) Se r(A) = |A| então r(B) = |B|, para todo $B \subset A \subseteq N$;
- (iii) Seja x^A o vetor de incidência de $A \subseteq N$. Então, $x^A \in P_r$ se e somente se r(A) = |A|.

Prova

(i):
$$r(A) \le r(\emptyset) + \sum_{j \in A \setminus \emptyset} [r(\emptyset \cup \{j\}) - r(\emptyset)]$$
 (Proposição 14)
 $r(A) = 0 + \sum_{j \in A} r(\{j\}) \le |A|$. (r é FPS)

(ii):
$$r(A) = |A| \le r(B) + \sum_{j \in A \setminus B} [r(B \cup \{j\}) - r(B)]$$
 (Proposição 14)
 $\le |B| + |A \setminus B| = |A|$. (r FPS, $B \subseteq A$)
Logo, $r(B) = |B|$.

C. C. de Souza (IC-UNICAMP)

Problemas bem resolvidos

Setembro de 2005

21 / 25

Prova Proposição 16 (iii)

(iii): Se
$$r(A) < |A|$$
, então $\sum_{j \in A} x_j^A = |A| > r(A)$.
Portanto, $x^A \notin P_r$.

Se
$$r(A) = |A|$$
, então, dado $S \subseteq N$ qualquer, tem-se:
$$\sum_{j \in S} x_j^A = \sum_{j \in S \cap A} x_j^A = |A \cap S| = r(A \cap S).$$

Como r é submodular, conclui-se que $\sum_{j \in S} x_j^A \le r(S)$. Logo, $x^A \in P_r$. \square .

Sistemas de Independência e Matróides

Definição

Seja $N = \{1, 2, ..., n\}$ e \mathcal{F} uma família de subconjuntos de N. $\mathcal{I} = (N, \mathcal{F})$ é um **sistema de independência** se, para todo $F_1 \in \mathcal{F}$ e todo $F_2 \subseteq F_1$ tem-se que $F_2 \in \mathcal{F}$.

Neste caso, os elementos de \mathcal{F} são chamados de **conjuntos independentes**.

Definição

 $\mathcal{I}=(N,\mathcal{F})$ é uma **matróide** se \mathcal{I} é um sistema de independência e, para todo $T\subseteq N$, todo subconjunto independente **maximal** em T tem o mesmo tamanho.

C. C. de Souza (IC-UNICAMP)

Problemas bem resolvidos

Setembro de 2005

23 / 25

Proposição 17

Seja r uma FPS em N. Seja \mathcal{F} dado por $\mathcal{F} = \{ T \subseteq N : r(T) = |T| \}$. Então, $\mathcal{I} = (N, \mathcal{F})$ é uma matróide.

Prova

Parte I: \mathcal{I} é um sistema de independência (pela Proposição 16 (ii)).

Parte II : \mathcal{I} é uma matróide (por contradição).

Sejam A e B dois conjuntos independentes $\underline{maximais}$ em $T \subseteq N$, com r(A) = |A| > r(B) = |B|.

Pela Proposição 14, $r(A) \leq r(B) + \sum_{j \in A \setminus B} [r(B \cup \{j\}) - r(B)]^{\dagger}$. Como A e B são subconjuntos de T, se $j \in A \setminus B$, então $B \subset B \cup \{j\} \subseteq T$. Além disso, como B é independente $\underline{\mathsf{maximal}}$, $r(B \cup \{j\}) < |B| + 1$, ou ainda, $r(B \cup \{j\}) \leq r(B)$.

Logo, de (†), chega-se a $r(A) = |A| \le r(B) = |B|$, contrariando a hipótese.

C. C. de Souza (IC-UNICAMP)

Problemas bem resolvidos

Setembro de 2005

Teorema 18

O algoritmo guloso resolve o problema de encontrar o conjunto independente de peso máximo em uma matróide.

Observações

- **1** o conjunto de arestas de florestas de um grafo G = (V, E) forma uma matróide;
- ② A função $r: 2^E \to \mathbb{Z}$ onde r(E') é o tamanho da maior floresta em G = (V, E') é FPS;
- § Se $S \subseteq V$ e o subgrafo induzido por S em G é conexo, então r(E(S)) = |S| 1. Logo, o poliedro das florestas é um caso particular do poliedro submodular.

C. C. de Souza (IC-UNICAMP)

Problemas bem resolvidos

Setembro de 2005