Matrices

On désignera par \mathbb{K} l'ensemble \mathbb{R} ou \mathbb{C} .

Trace

QCOP MAT.1

Soit $n \in \mathbb{N}^*$. Soient $A, B, C \in M_n(\mathbb{K})$.

- \blacksquare Définir Tr(A).
- ightharpoonup Montrer que Tr(AB) = Tr(BA).
- (a) Montrer que

$$Tr(ABC) = Tr(BCA) = Tr(CAB).$$

- **(b)** A-t-on Tr(ABC) = Tr(CBA)?
- (c) Soit $P \in GL_n(\mathbb{K})$ telle que

$$B = P^{-1}AP.$$

Déterminer Tr(B).

QCOP MAT.2

Soit $n \in \mathbb{N}$. Soit $M \in M_n(\mathbb{R})$.

- **?** (a) Soit $(i,j) \in [1,n]$.

 Donner l'expression du coefficient d'indice (i,j) de $M^{\top}M$.
 - (b) Montrer que

$$\operatorname{Tr}(M^{\top}M) = 0 \iff M = 0_n.$$

- **\(\infty\)** Le résultat est-il vrai si $M \in M_n(\mathbb{C})$?
- **22** Quel résultat pourrait-on énoncer et démontrer si $M \in M_n(\mathbb{C})$?

Matrices symétriques et antisymétriques

QCOP MAT.3

Soit $n \in \mathbb{N}^*$.

- \blacksquare Définir les espaces $S_n(\mathbb{K})$ et $A_n(\mathbb{K})$.
- **%** Soit $M \in M_n(\mathbb{K})$. Calculer

$$(M + M^{\top})^{\top}$$
 et $(M - M^{\top})^{\top}$.

- (a) Montrer que toute matrice est somme d'une matrice symétrique et d'une matrice antisymétrique.
 - **(b)** Montrer que

$$\mathsf{S}_n(\mathbb{K})\cap\mathsf{A}_n(\mathbb{K})=\{\mathsf{0}_n\}\,.$$

QCOP MAT.4

Soit $n \in \mathbb{N}^*$. Soient $A, B \in M_n(\mathbb{K})$.

- Soit $(i,j) \in [1, n]^2$. Donner l'expression du coefficient d'indice (i,j) de la matrice AB.
- Montrer que

$$(AB)^{\top} = B^{\top}A^{\top}.$$

- $\mbox{\em \footnotemark}$ On suppose que $A,B\in S_n(\mathbb{K})$.
 - (a) A-t-on $AB \in S_n(\mathbb{K})$?
 - (b) Déterminer une condition nécessaire et suffisante pour que $AB \in S_n(\mathbb{K})$.

Inversibilité, opérations élémentaires

QCOP MAT.5

Soit $n \in \mathbb{N}^*$. Soit $A \in GL_n(\mathbb{K})$.

 \blacksquare Définir « $A \in GL_n(\mathbb{K})$ ».

Montrer que

$$A^{ op} \in \mathsf{GL}_n(\mathbb{K}) \ \ \mathsf{et} \ \ \left(A^{ op}\right)^{-1} = \left(A^{-1}\right)^{ op}.$$

% Montrer que

$$A \in S_n(\mathbb{K}) \iff A^{-1} \in S_n(\mathbb{K}).$$

QCOP MAT.6

Soit $n \in \mathbb{N}^*$. Soit $A \in M_n(\mathbb{K})$.

 \blacksquare Soit $X \in M_{n,1}(\mathbb{K})$. Calculer AX.

Montrer que

$$A \in \mathsf{GL}_n(\mathbb{K}) \implies \mathsf{Ker}(A) = \{0_{n,1}\}.$$

On admettra la réciproque.

% On suppose que *A* est diagonale.

- (a) Montrer que $A \in GL_n(\mathbb{K})$ si, et seulement si, tous ses coefficients sont non nuls.
- **(b)** Donner, dans ce cas, A^{-1} .

QCOP MAT.7

Soit $n \in \mathbb{N}^*$. Soit $A \in M_n(\mathbb{K})$.

- Donner la définition de « A est inversible dans $M_n(\mathbb{K})$ ».
- Soit $p \in \mathbb{N}$. Soient $a_0, \dots, a_p \in \mathbb{K}$. On pose

$$P := \sum_{k=0}^{p} a_k X^k$$
 et $P(A) := \sum_{k=0}^{p} a_k A^k$.

On suppose que 0 n'est pas racine de P.

- (a) Que dire du coefficient a_0 ?
- **(b)** On suppose que $P(A) = 0_n$. Montrer que $A \in GL_n(\mathbb{K})$ et déterminer A^{-1} .

QCOP MAT.8

- Définir les matrices d'opérations élémentaires : matrice de transvection, de dilatation et d'échange.
- (a) Compléter :

multiplier à par une matrice d'opération élémentaire	opération sur les
droite	
gauche	

- **(b)** Décrire les opérations réalisables sur une matrice par produit de la matrice par une matrice d'opération élémentaire.
- 2 Quels liens peut-on faire entre opérations élémentaires et inversibilité d'une matrice?