Name: Akshar Patel

Due date: Soft copy: 4/12/2020 Hard copy: 4/12/2020

Submission date: Soft copy: 4/12/2020 Hard copy: 4/12/2020

Part 1: Algorithm

```
*******
I. main (...)
******
step 0: inFile ← open input file from args
       outFile1, outFile2 ← open from args
       numRows, numCols, minVal, maxVal ←- read from inFile
       HoughAngle ← 180
       HoughDist \leftarrow2 * (the diagonal of the input image)
       imgAry ← dynamically allocate
       HoughAry ← dynamically allocate HoughAry, size of
                 HoughDist by HoughAngle and initialize to zero
step 1: loadImage(imgAry, inFile)
Step 2: buildHoughSpace (...)
Step 3: prettyPrint(HoughAry, outFile1)
Step 4: determineMinMax (HoughAry)
Step 5: write HoughDist, HoughAngle, HoughMinVal, HoughMaxVal to outFile2
           // as the header of Hough image
step 6: ary2File (HoughAry, outFile2) // output HoughAry to outFile2
Step 7: close all files
Part 2: Source code
```

```
import java.io.*;
import java.util.*;
class Main {
      public static int numRows, numCols, minVal, maxVal;
   public static int[][] imgAry;
   static void loadImage(int[][] Ary, Scanner file) {
        for (int i = 0; i < numRows; i++) {
            for(int j = 0; j < numCols; j++){
                Ary[i][j] = file.nextInt();
            }
    }
   public static void main(String[] args) throws IOException{
        HoughTransform HT = new HoughTransform();
        Scanner inFile = new Scanner(new FileInputStream(args[0]));
        PrintWriter outFile1 = new PrintWriter(new FileOutputStream(args[1]));
             PrintWriter outFile2 = new PrintWriter(new FileOutputStream(args[2]));
          numRows = inFile.nextInt();
        numCols = inFile.nextInt();
        minVal = inFile.nextInt();
        maxVal = inFile.nextInt();
        int diagonal = (int) Math.sqrt((numRows * numRows) + (numCols * numCols));
        HT.HoughAngle = 180;
        HT.HoughDist = 2 * diagonal;
        imgAry = new int[numRows][numCols];
        HT.HoughAry = new int[HT.HoughDist][HT.HoughAngle];
        for (int i = 0; i < HT.HoughDist; i++) {
```

```
for (int j = 0; j < HT.HoughAngle; j++) {
                HT.HoughAry[i][j] = 0;
        loadImage(imgAry, inFile);
        HT.buildHoughSpace(imgAry, numRows, numCols);
        HT.prettyPrint(HT.HoughAry, outFile1);
        HT.determineMinMax(HT.HoughAry);
        outFile2.println(HT.HoughDist + " " + HT.HoughAngle + " " + HT.HoughMinVal + " " + HT.HoughMaxVal);
        HT.ary2File(HT.HoughAry, outFile2);
        inFile.close();
        outFile1.close();
        outFile2.close();
class HoughTransform{
    private static class xyCoord{
        int x;
        int y;
        xyCoord(){
            this.x = x;
            this.y = y;
    }
    public static int angleInDegree;
      public static double angleInRadians;
      public static int HoughDist;
    public static int HoughAngle;
    public static int HoughMinVal = 99999;
    public static int HoughMaxVal = 0;
    public static int[][] HoughAry;
    static void buildHoughSpace(int[][] Ary, int row, int col){
        xyCoord point = new xyCoord();
        for (int r = 0; r < row; r++) {
            for (int c = 0; c < col; c++) {
                if(Ary[r][c] > 0){
                    point.x = c;
                    point.y = r;
                    angleInDegree = 0;
                    while(angleInDegree <= 179) {</pre>
                        angleInRadians = angleInDegree / 180.00 * Math.PI;
                        double dist = computeDistance(point, angleInRadians);
                        int distInt = (int) dist;
                        HoughAry[distInt][angleInDegree]++;
                        angleInDegree++;
                }
            }
        }
    }
    static double computeDistance(xyCoord point,double angleRadians) {
        double dis = 0.00, offset = HoughDist/2;
        double x = point.x;
        double y = point.y;
        double t = angleRadians - Math.atan(y/x) - (Math.PI/2);
        dis = Math.sqrt((x * x) + (y * y)) * Math.cos(t) + offset;
        return dis;
    public static void determineMinMax(int[][] Ary) {
        for (int i = 0; i < HoughDist; i++) {
            for (int j = 0; j < HoughAngle; j++) {
                if(Ary[i][j] > HoughMaxVal){
                    HoughMaxVal = Ary[i][j];
                if (Ary[i][j] < HoughMinVal) {</pre>
                    HoughMinVal = Ary[i][j];
            }
```

```
}
   public static void prettyPrint(int[][] Ary, PrintWriter file){
      for(int i = 0; i < HoughDist; i++){
          for (int j = 0; j < HoughAngle; j++) {
             if(Ary[i][j] == 0){
                           file.print(" ");
                     else{
                           file.print(Ary[i][j] + " ");
                      }
         file.println();
      }
   public static void ary2File(int[][] Ary, PrintWriter file){
      for (int i = 0; i < HoughDist; i++) {
          for(int j = 0; j < HoughAngle; j++){
                     if(Ary[i][j] >=1){
                           file.print(Ary[i][j] + " ");
                      }
                     else{
                           file.print(0 + " ");
                      }
          file.println();
   }
Part 3: Output
  HoughTransform 2lines
  outFile1
     90 180 0 14
  0 13015
  1 2343
  2 690
```

outFile2

pretty print of threshold outFile2

threshold value is 1

• HoughTransform 3lines

o outFile1

o outFile2

o Histogram of outFile2

0.0	100 0 01	14 0
90	180 0 21	14 0
0	11072	15 0
1	2417	16 2
2	1528	17 2
3	684	18 3
4	299	19 0
5	101	20 1
6	42	21 2
7	16	
8	7	
9	10	
10	6	
11	6	
12	3	
13	0	

o pretty print of threshold outFile2

threshold value is 1

threshold value is 2

threshold value is 3

- HoughTransform 2Pts
- o <u>outFile1</u>

1111	······································	
	111111111111111111111111111111111111111	111111 111111 111111111111111111111111

o <u>outFile2</u>

90 180 0 2
000000000000000000000000000000000000000
000000000000000000000000000000000000000
$ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
$ \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $
000000000000000000000000000000000000000
$ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
$ \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $
$ \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $
0
000000000000000000000000000000000000000
$ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
$ \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $
$ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
$ \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $
111100000000000000000000000000000000000
0.001111000000000000000000000000000000
000000111100000000000000000000000000000
0.000000000001110000000000000000000000
0.00000000000000000000000000000000000
0.00000000000000000000000000000000000
1111100000000001011100000000000000000
0.0001110000000000000000000000000000000
0.0000011110000000000011100000000111000000
111100000001111000000000000000000000000
0.001110000000111100000000000000000000
$0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$
$0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$
$0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$
0.0000000000000111000000001111000000000
$0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$
000000000000000000000000000000000000000
8080808080808080808081110000000001111000000
0.00000000000000000000000000000000000
0.0000000000000000000000000000000000000
0.0000000000000000000000000000000000000
000000000000000000000000000000000000000
000000000000000000000000000000000000000
000000000000000000000000000000000000000
0.00000000000000000000000000000000000
0.00000000000000000000000000000000000
$0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$
$0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$
0.00000000000000000000000000000000000
000000000000000000000000000000000000000
000000000000000000000000000000000000000
800000000000000000000000000000000000000
0.00000000000000000000000000000000000
0.00000000000000000000000000000000000
0.00000000000000000000000000000000000
000000000000000000000000000000000000000
000000000000000000000000000000000000000
000000000000000000000000000000000000000
000000000000000000000000000000000000000
0.0000000000000000000000000000000000000
000000000000000000000000000000000000000
000000000000000000000000000000000000000

o <u>Histogram of outFile2</u>

90 180 0 2

0 15687

1 488 2 26

o pretty print of threshold outFile2

• threshold value is 1

• HoughTransform 3Pts

o outFile1

95 140 0.2

o Histogram of outFile2

90 180 0 2

outFile2

0 15675

1 512

2 14

o pretty print of threshold outFile2

• threshold value is 1

