Exercise 1.1 The following statement is in While: y:=1; while \neg (x=1) do (y:=y*x; x:=x-1)

Exercise 1.2 Assume that the initial value of the variable x is n and that the initial value of y is m. Write a statement in While that assigns z the value of n to the power of m, that is

n*…*n

m times

Give a linear as well as a graphical representation of the abstract syntax.

z:=1; while $^{\sim}(y=0)$ do (z:=z*x; y:=y-1)

Exercise 1.8 Assume that s x = 3 and determine $B[\neg(x = 1)]s$.

$$\rightarrow$$
 B [[\sim (x=1)]] s

$$\rightarrow$$
B [[\sim (A[[a1]] s = A[[a2]] s)]] s

$$\rightarrow$$
B [[\sim (A[[x]] s = A [[n]] s)]] s

$$→$$
B [[~ ((s x) = N [[1]])]] s

 \rightarrow tt

Exercise 2.3 Consider the statement z:=0; while $y\le x$ do (z:=z+1; x:=x-y)

Construct a derivation tree for this statement when executed in a state where x has the value 17 and y has the value 5.

$$< z$$
: =0, $s > \rightarrow s \ 0 \ 17 \ 5$

T2 T3

< while y≤x do (z: = z+1; x: = x-y), s 0 17 5>→ s 3 2 5

T2 is a derivation tree with root

$$\langle z: = z+1; x: = x-y, s \ 0 \ 17 \ 5 \rangle \rightarrow s \ 1 \ 12 \ 5$$

and T3 is a derivation tree with root

< while y≤x do (z: = z+1; x: = x-y), s 1 12 5>
$$\rightarrow$$
 s 2 7 5

$$\langle z: = z+1, s \ 2 \ 7 \ 5 \rangle \rightarrow s \ 3 \ 7 \ 5 \langle x: = x-y \rangle \rightarrow s \ 3 \ 2 \ 5$$

$$\langle z: = z+1; x: = x-y, s 2 7 5 \rangle \Rightarrow s 3 2 5$$

< while y \leq x do (z: = z+1; x: = x-y), s 2 7 5 > \rightarrow s 3 2 5

Where s 3 7 5 = $s[z\rightarrow3][x\rightarrow7][y\rightarrow5]$, s 3 2 5 = $s[z\rightarrow3][x\rightarrow2][y\rightarrow5]$ and T4 is a derivation tree with root with

while $y \le x$ do (z: = z+1; x: = x-y), s 3 2 5 > \rightarrow s 3 2 5

Exercise 2.4 Consider the following statements

• while $\neg(x=1)$ do (y:=y*x; x:=x-1)

It terminates when only $x \ge 1$. If x is less than one it will loop forever.

• while $1 \le x$ do $(y:=y \times x; x:=x-1)$

It always terminates. While x is greater or equal than one it will eventually terminates.

• while true do skip

It always loops, because while true it will skip and never terminates.

Exercise 2.6 Prove that the two statements S_1 ; $(S_2; S_3)$ and $(S_1; S_2)$; S_3 are semantically equivalent. Construct a statement showing that S_1 ; S_2 is not, in general, semantically equivalent to S_2 ; S_1 .

S1; S2

$$\langle s1, s \rangle \rightarrow s', \langle s2, s' \rangle \rightarrow s''$$

<s1; s2>→s"

For example: x:=x-y; y:=x*y

$$S1 \rightarrow x$$
: = x-y

$$S2 \rightarrow y$$
: = $x \star y$

$$x s = 3$$

$$y s = 1$$

$$\langle x: =x-y, s31 \rangle \rightarrow s21, \langle y: =x*y, s21 \rangle \rightarrow s22$$

$$<$$
x: = x-y; y: = x*y, s31> \rightarrow s22

S2; S1

$$\langle x: =x-y, s31 \rangle \rightarrow s33, \langle y: =x*y, s21 \rangle \rightarrow s03$$

$$<$$
x: = x-y; y: = x*y, s31> \rightarrow s03

Exercise 2.11 The semantics of arithmetic expressions is given by the function A. We can also use an operational approach and define a natural semantics for the arithmetic expressions. It will have two kinds of configurations:

(a, s) denoting that a has to be evaluated in state s, and z denoting the final value (an element of Z).

The transition relation \rightarrow_{Aexp} has the form $\langle a, s \rangle \rightarrow_{Aexp} z$

where the idea is that a evaluates to z in state s. Some example axioms and rules are

$$\langle n, s \rangle \rightarrow_{Aexp} N[n] \langle x, s \rangle \rightarrow_{Aexp} s x$$

$$\langle a_1, s \rangle \rightarrow_{Aexp} z_1, \langle a_2, s \rangle \rightarrow_{Aexp} z_2$$

$$\langle a_1 + a_2, s \rangle \rightarrow_{Aexp} z$$
 where $z = z_1 + z_2$

Complete the specification of the transition system.

$$\langle a_1, s \rangle \rightarrow_{Aexp} z_1, \langle a_2, s \rangle \rightarrow_{Aexp} z_2$$

$$\langle a_1 \star a_2, s \rangle \rightarrow_{Aexp} z$$

$$\langle a_1, s \rangle \rightarrow_{Aexp} z_1, \langle a_2, s \rangle \rightarrow_{Aexp} z_2$$

$$\langle a_1 - a_2, s \rangle \rightarrow_{Aexp} z$$

Exercise 2.17 Extend While with the construct repeat S until b and spec- ify the structural operational semantics for it. (The semantics for the repeat- construct is not allowed to rely on the existence of a while-construct.)

 $[repeat_{sos}] < repeat s until b > \Rightarrow$

< S; if b then skip else (repeat S until b), s >