

Home Set / Manage Tests Chemistry Phase 1 Revision Preview Foundations

Foundations

Show instructions

- 1. Calculate to 2 significant figures the amount, in moles, of oxygen necessary to fully combust $10\,\mathrm{g}$ of $\mathrm{C_4H_{10}}$.
- 2. A student is establishing the concentration of a solution of sulfuric acid by using titration. The titration is carried out against a standard $0.210\,\mathrm{mol\,dm^{-3}}$ solution of sodium hydroxide which a burette is filled with. $25.0\,\mathrm{cm^3}$ of the acid are then transferred into a conical flask each time and an indicator is added.

The student observes titres of $31.00\,\mathrm{cm^3}$, $30.65\,\mathrm{cm^3}$, $30.55\,\mathrm{cm^3}$ and $30.60\,\mathrm{cm^3}$.

Calculate the concentration of the sulfuric acid.

- 3. How many electrons in total (not just valence electrons) are there in a nitrate ion?
- 4. What is the single-word term used to refer to different versions of an atom of an element, differing in the number of neutrons?
- 5. What is the empirical formula of glucose, $C_6H_{12}O_6$?

The following symbols may be useful: с, н, о

Created for isaacphysics.org by Andrea Chlebikova

Back

All materials on this site are licensed under the **Creative Commons license**, unless stated otherwise.

<u>Home</u> <u>Set / Manage Tests</u> <u>Chemistry Phase 1 Revision Preview</u> Inorganic Chemistry

Inorganic Chemistry

Help

	Show instructions
6. What is the shape of $\mathrm{SiCl_4}$?	
7. Which of the following statements is/are correct? The melting point of elements generally decreases going down a group.	
The ionisation energy of elements generally increases going from left to right across a period.	
The ionisation energy of elements generally increases going down a group.	
The size of atoms generally increases going from left to right across a period.	
8. What is the oxidation state of phosphorus in phosphoric acid, ${ m H_3PO_4?}$	
Created for isaacphysics.org by Andrea Chlebikova	
Back	

All materials on this site are licensed under the **Creative Commons license**, unless stated otherwise.

Home Set / Manage Tests

<u>Chemistry Phase 1 Revision Preview</u>

Physical Chemistry

Physical Chemistry

Help

Show instructions

- 9. What is the single-word term used to describe a reaction with a positive enthalpy change?
- 10. For which of the following reactions, carried out at RTP, can we not estimate the enthalpy change using bond enthalpies only?
 - $\mathrm{H}_2 + \mathrm{O}_2$
 - $\mathrm{H_2} + \mathrm{N_2}$
 - $\mathrm{Mg} + \mathrm{H_2O}$
 - $\mathrm{Na}+\mathrm{Cl}_2$
- 11. Express the enthalpy change of formation of ethene in terms of the relevant enthalpy changes of combustion in terms of $x = \Delta H_{\rm c}({\rm C})$, $y = \Delta H_{\rm c}({\rm H_2})$ and $z = \Delta H_{\rm c}({\rm C_2H_4})$.

The following symbols may be useful: x, y, z

Created for isaacphysics.org by Andrea Chlebikova

Back