Bareos in Radio Astronomy – Scaling up using Virtual Full Backups

Jan Behrend

Max Planck Institute for Radio Astronomy

Open Source Backup Conference September 23rd 2014

Overview

- About the Institute
- Backup Goals and Limitations
- The Challenge
- Implementation
- Configuration Strategy
- Virtual Full Backups
- Integration with DRBD
- Integration with REAR
- Wishlist

Max Planck Institute for Radio Astronomy

Lofar Antenna Field

- "Software" Telescope
- 44 Stations

Scientific Raw Data

Project Output per Observation Run	
K-Band receiver:	2 TiB
H1-Survey:	3 TiB
Pulsar search:	4 TiB
• Leap:	7 TiB
Lofar:	50 TiB
Glow:	120 TiB
•	J

• ∑ 186 TiB

Scientific Raw Data

Project Output per Observation Run	
K-Band receiver:	2 TiB
H1-Survey:	3 TiB
Pulsar search:	4 TiB
Leap:	7 TiB
Lofar:	50 TiB
Glow:	120 TiB
•	

Forget it!

• \(\sum_{\text{\tinit}\\ \text{\ti}}}\\ \text{\text{\text{\text{\texi}}\text{\text{\text{\text{\text{\texi}\text{\text{\text{\texi}\text{\text{\texi}}\tint{\text{\tiin}\tint{\text{\texit{\text{\texi{\text{\texi}\text{\texi}\text{\texit{\ti

186 TiB

Goals

Fast recovery of:

- specific files / directories
- (many) complete systems

Goals

Fast recovery of:

- specific files / directories
- (many) complete systems

Limitations

- Time
 - Backup window (scientists are night birds)
 - Network bandwidth (usually 1GBit/s)
 - Resources on backup clients (I/O, RAM, CPU)
- Storage space (disk and tape)

Goals

Fast recovery of:

- specific files / directories
- (many) complete systems

Limitations

- Time
 - Backup window (scientists are night birds)
 - Network bandwidth (usually 1GBit/s)
 - Resources on backup clients (I/O, RAM, CPU)
- Storage space (disk and tape)

What can we do?

- parallel jobs, Virtual Full Backups
- volume retention

Full Backup Volume:
 55 TiB (1.5M files / TiB)

Differential Backup Volume:
 566 GiB (4K files / GiB)

Incremental Backup Volume:

Two backup copies

A -

102 GiB

Full Backup Volume:
 55 TiB (1.5M files / TiB)

Differential Backup Volume: 566 GiB (4K files / GiB)

Incremental Backup Volume: 102 GiB

Two backup copies

Time for a complete Full Backup and its 2nd copy

 $\frac{55 \text{ TiB}}{130 \frac{\text{MiB}}{\text{s}}}$

• Full Backup Volume: 55 TiB (1.5M files / TiB)

Differential Backup Volume:
 566 GiB (4K files / GiB)

Incremental Backup Volume: 102 GiB

Two backup copies

Time for a complete Full Backup and its 2nd copy

Full Backup Volume: 55 TiB (1.5M files / TiB)

Differential Backup Volume:
 566 GiB (4K files / GiB)

Incremental Backup Volume: 102 GiB

Two backup copies

Time for a complete Full Backup and its 2nd copy

$$\frac{55 \text{ TiB}}{130 \frac{\text{MiB}}{\text{s}}} \cdot 2 \cdot 2$$

Full Backup Volume:

55 TiB (1.5M files / TiB)

Differential Backup Volume:

566 GiB (4K files / GiB)

• Incremental Backup Volume:

102 GiB

Two backup copies

Time for a complete Full Backup and its 2nd copy

$$\frac{55 \text{ TiB}}{130 \frac{\text{MiB}}{s}} \cdot 2 \cdot 2 \cdot \frac{1 \text{ d}}{60 \cdot 60 \cdot 24 \text{ s}} = 20.54 \text{ days}$$

Full Backup Volume:
 55 TiB (1.5M files / TiB)

Differential Backup Volume:
 566 GiB (4K files / GiB)

Incremental Backup Volume: 102 GiB

Two backup copies

Time for a complete Full Backup and its 2nd copy

$$\frac{55 \text{ TiB}}{130 \, \frac{\text{MiB}}{\text{s}}} \cdot 2 \cdot 2 \cdot \frac{1 \, \text{d}}{60 \cdot 60 \cdot 24 \, \text{s}} = 20.54 \, \text{days}$$

High Volume "Longterm" Clients

- Virtual Fulls every half year, Incrementals every Saturday
- Longterm Full Backup Volume:

 50 TiB (1M files / TiB)

 Full Volume every 8 weeks: 5 TiB (6M files / TiB)

rence

Backup Hardware

- 2 Tape Libraries: Spectra Logic T950
 - 2 x LTO5 drives
 - 80 Slots à 1,5 TiB = 160 TiB (too small by now)
 - Dedicated cleaning partition
- 2 physical servers (Fujitsu RX300S6)
- 2x 30 TiB RAID storage (Nexan Satabeast2)
- (Mostly) dedicated 1GbE/10GbE backup network

Hardware Infrastructure

Configuration Strategy

- Incrementals to disk for better restore performance
- Fulls and Differentials to cheaper tape storage
- Per client config (DIR and SD) for easier config management:
 - compression, quota, reservation, encryption ...
 - easy templating for new backup clients
- Focus on schedules / retention
- Daily backup summary (3rd party tools)
- Dedicated DB partition
- ...

Virtual Full Backups

Reorganizes existing backups to create a new Full

Virtual Full Backups

- +++ No backup client interaction!
 - (basically) no backup time limit
 - Needs designated pool to avoid lockups
 - No "MaxFullInterval" config option

What is DRBD?

Integrating Bareos with HA / DRBD

DRBD volume backed up by HA controlled BAREOS instance

REAR: Relax and Recover

- Linux bare metal disaster recovery solution
- Creates bootable media
- Recovery takes care of all disk configuration
- Can use Bareos to restore content

Bareos Client config

/etc/rear/local.conf

GRUB_RESCUE=

OUTPUT=ISO

BACKUP=BAREOS

BACKUP_URL="rsync://backupsrv/srv/rear/"

Bareos Client config

/etc/rear/local.conf

```
GRUB_RESCUE=
OUTPUT=ISO
BACKUP=BAREOS
BACKUP_URL="rsync://backupsrv/srv/rear/"
```

/etc/bareos/bconsole.conf

```
Console {
   Name = client-restore
   Password = "password"
}
```


Bareos Server config

/etc/bareos/conf.d/client.dir.conf

http://relax-and-recover.org

Wishlist

- Integration of virtualization solutions on hypervisor level
- Write to more than one destination at once
- Rolling Spool/Despool
- Automatic spooling when writing to tape
- No copy of jobs using a base job?
- "MaxFullInterval" for Virtual Full Backups

Want configs? Send me a mail to jb@mpifr.de

Want configs? Send me a mail to jb@mpifr.de

Any questions?

Notable reference: http://myunix.dk/category/bacula

