ORIGINAL PAGE IS OF POOR QUALITY

N89 - 13658

181 334 8 P.

ADVANCED THERMAL BARRIER COATING SYSTEMS

M.R. Dorfman and J.D. Reardon
Materials Engineering and RaD Development
METCO Inc.
Westbury, New York 11590

Current state-of-the-art thermal barrier coating (TBC) systems consist of partially stabilized zirconia coatings plasma sprayed over a MCrAlY bond coat. Although these systems have excellent thermal shock properties, they have shown themselves to be deficient for a number of several diesel and aircraft applications.

Two new ternary ceramic plasma coatings are discussed with respect to their possible use in TBC systems. Zirconia-ceria-yttria (ZCY) coatings have been developed with low thermal conductivities, good thermal shock resistance and improved resistance to vanadium containing environments, when compared to the baseline yttria stabilized zirconia (YSZ) coatings. In addition, dense zirconia-titania-yttira (ZTY) coatings have been developed with particle erosion resistance exceeding conventional stabilized zirconia coatings.

Both coatings have been evaluated in conjunction with a NiCr-Al-Co- Y_2O_3 bond coat. Also, multilayer or hybrid coatings consisting of the bond coat with subsequent coatings of zirconia-ceria-yttria and zirconia-titania-yttria have been evaluated. These coatings combine the enhanced performance characteristics of ZCY with the improved erosion resistance of ZTY coatings.

Improvement in the erosion resistance of the TBC system should result in a more consistent ΔT gradient during service. Economically, this may also translate into increased component life simply because the coating lasts longer.

TABLE I. - HOT PARTICLE EROSION

VOLUME OF COATING LOSS (CM X 104) PER GRAM OF ABRASIVE

IMPINGEMENT ANGLE	YTTRIA STABILIZED ZIRCONIA *1	YTTRIA STABILIZED ZIRCONIA *2	CERIA STABILIZED ZIRCONIA *3	CERIA STABILIZED ZIRCONIA *4	ZIRCONIA TITANIA YTTRIA #5
30 ⁰	1.45	1 35	1.43	2.06	0.29
60 ⁰	1.55	2.12	2.05	4.64	0.83

TYPICAL PRE-STABILIZED SPHERICAL POWDER

TYPICAL SPRAY DRIED COMPOSITE POWDER

Figure 1. - SEM photomicrographs (x700).

ORIGINAL PAGE IS OF POOR QUALITY

TABLE II. - SPRAY PARAMETERS

	YTTRIA Stabilized <u>Zirconia</u>		CERIA Stabilized Zirconia		ZIRCONIA TITANIA YTTRIA COMPOSITE
PLASMA GUN	9MB		9MB		9MB
NOZZLE	732		732	730	731
POWDER PORT	#2		#2	#2	#2
GAS TYPE	ARGON/HYDROGEN		RR/H ₂	N2/H ₂	ARGON/HYDROGEN
SPRRY DISTRNCE (MM)	65	100	100	100	76
SPRAY RATE (6MS/MIN)	45.4	45.4	45.4	45.4	37.8
PRESSURE:					
PRIMARY Secondary	100 50	75 50	75 50	50 50	100 50
FLOW:					
PRIMARY SECONDARY	80 15	80 15	80 15	75 15	75 15
CURRENT	600	600	600	500	600
NOTABE	70	70	70	80	70
CORTING	1	2	3	4	5

COATING #2

CORTING #1

Figure 2. - Yttria stabilized zirconia coating microstructures (x100).

Figure 3. - Ceria stabilized zirconia coating microstructures (x100).

ORIGINAL PAGE IS OF POOR QUALITY

COATING #5

Figure 4. - Zirconia, titania, yttria coating microstructure (x100).

*HIGH TEMPERATURE PARTICLE EROSION

*COHESIVE STRENGTH

***CYCLIC THERMAL SHOCK**

Figure 5. - Experimental test procedure.

TABLE III. - POWDER CHARACTERISTICS

	YTTRIA	CERIA	ZIRCONIA-
	STABILIZED	STABILIZED ZIRCONIA	TITANIA-YTTRIA
	ZIRCONIA	WITH YTTRIA	COMP. POWDER
NOMINAL			
CHEMISTRY (WT%)	ZIRCONIA BASE	ZIRCONIA BASE	ZIRCONIA BASE
	YTTRIA - 8%	CERIA - 26%	TITANIA - 18%
		YTTRIA - 2.5%	YTTRIA - 10%
POWDER SIZE	-120 MESH	-170 MESH	-200 ME5H
	+ 10 MICRONS	+10 MICRONS	•10 MICRONS
POWDER			
MORPHOLOGY	PRE-STABILIZE	D PRE-STABILIZED	SPHERICAL
	SPHERICAL	SPHERICAL	SPRAY DRIED
	POWDER	POWDER	COMPOSITE