BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE SECOND SEMESTER Course Handout Part II

Date: 10/01/2023

In addition to part I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the courses.

Course No : DE G514

Course Title : FRACTURE MECHANICS

Instructor-in-charge : AMOL VUPPULURI Lab Instructor : ARJOO JAIMIN

Course Description: Introduction, energy release rate, stress intensity factor and complex cases, anelastic deformation at the crack tip, elastic plastic analysis through J-integral, crack tip opening displacement, test methods, fatigue failure, numerical analysis, mixed mode crack initiation and growth.

Scope and objective of the course: Recently, the study of fracture, crack propagation in metals plays a significant role. It is crucial for design engineers to understand the various critical parameters of fracture, their evaluation method and way to restrict the crack propagation. The scope of the course is to understand various experimental and analytical method of fracture parameter determination. The basic objective of the course to strength the knowledge base and analytical abilities of students related to various concepts of fracture mechanics in order to improve the structural integrity and come up with a fail-safe design.

Text Book:

1. Prashant Kumar, Elements of Fracture Mechanics, Tata McGraw-Hill Publishing Company Ltd., New Delhi, 2009.

Reference Book:

- 1. T.L. Anderson, Fracture Mechanics Fundamental and Applications, CRC Press, IInd Edition.
- **2.** C.T. Sun and Z.C. Jin, Fracture Mechanics, Academic Press, Elsevier Publication, Ist Edition, 2012.

Course Plan:

Lect. No.	Learning Objectives	Topics to be covered	Ref. Chap./Sec.	
1-2	Background	Kinds of failure and history	TB-Ch.1	
3-5	Energy release rate	Dilemma of Griffith, Surface energy, Griffith's realization Griffith's analysis, Mathematical formulation, Thin plate vs thick plate Critical energy release rate.	TB- Ch.2	
6-9	Stress intensity factor (SIF)	Linear elastic fracture mechanics (LEFM) Stress and displacement fields in isotropic elastic materials, Elementary properties of complex variables	TB- Ch.3	
10-13	SIF of more complex cases	Application of the principle of superposition, Crack in a plate of finite dimensions, Edge cracks, Embedded cracks, Relation between G _I	TB- Ch.4	

		and $K_{\rm I}$	
14-16	Anelastic deformation at the crack Tip	Approximate shape and size of the plastic zone, Effective crack length, Effect of plate thickness.	TB- Ch.5
17 - 20	J-Integral	Relevance and scope, Definition of J-Integral, Path independence Stress-strain relation, Further discussion on J-Integral, Engineering approach-A short cut.	TB- Ch.6
21 - 24	Crack tip opening displacement (CTOD)	Relationship between CTOD, K _I and G _I for small scale yielding Equivalence between CTOD and J.	TB- Ch.7
25 - 28	Test methods	K_{IC} test techniques, Test methods to determine J_{IC} , Test methods to determine G_{IC} and G_{IIC} , Determination of critical CTOD.	TB- Ch.8
29 - 33	Fatigue failure and Environment-assisted fracture	Terminology, S-N curve, Crack initiation, Crack propagation, Effect of an overload, Crack closure, Variable amplitude fatigue load.	TB- Ch.9
34 - 36	Finite Element Analysis of cracks in solids	Direct and Indirect method to determine fracture parameters,	TB- Ch.10
37 – 39	Mixed mode crack initiation and growth	Fracture surface, Mixed mode crack propagation criteria, Crack growth.	TB- Ch.11
40 - 42	Crack detection through NDT	Visual, LPI, Magnetic Methods, Radiography, Ultrasonics	TB- Ch.12

Practic al No.	Experiment Title			
1	Introduction of ABAQUS software and relevant necessary skill adaptation			
2	Study of energy release rate during the crack propagation in when subjected to the Mode-I loading (Experiment)			
3	Computation of the stress field ahead of the crack tip (Abaqus simulation)			
4	Stress and strain field computation in cracked bodies using photoelasticity			
5	Plane strain fracture analysis using long pipe.			
6	Effect non-linear analysis on crack propagation and outcome using simple tensile test			

7	Analysis of three point bend specimens and influence of crack length and orientation on different fracture parameters (Experiment and simulation)			
8	Crack Growth in a Three-point Bend Specimen using Cohesive Connections			
9	Crack Growth in a Three-point Bend Specimen using XFEM			
10	Modeling Crack Propagation in a Pressure Vessel (3D analysis) with Abaqus using XFEM.			
11	The determination of J-Integral for different conditions.			
12	Effect of fatigue loading and environmental assisted failures on facture parameters			

Note: All simulations will be performed through ABAQUS finite element software.

Evaluation Scheme:

EC No.	Evaluation Component	Duration (min)	Weightage (%)	Date, Time & Venue	Nature of Component
1.	Mid-semester Examination	90	25	15/03 11.30 - 1.00PM	Closed Book
	Project and Case studies	-	20	To be announced by IC	Continuous Assessment (Open Book)
2	Lab Components and class assessment	-	20	To be announced by IC	Continuous Assessment (Open Book)
3	Comprehensive Examination	180	35	12/05 AN	Close Book

- Chamber Consultation Hours: To be announced in the class.
- Notices: Notices will be displayed on CMS.
- **Make-up Policy:** Make-up will be granted only to genuine cases with prior permission from the IC. For cases related to illness, proper documentary evidence is essential. No makeup is allowed for class assessment (surprise quizzes).
- Academic Honesty and Integrity Policy: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

Instructor-in-charge (DE G514)