Tamara Ch. 1 - What's Vis, and Why Do It?

Wednesday, February 19, 2020 2:1

- 2:16 PM
- Data vis is the design and implementation of computer-based systems that provide visual represntations of datasets
- The goal of vis is to allow humans to carry out data anlysis taks more effectively
- Augmenting human abilities vs. strictly computational decision making models
- Limitations for data vis:
 - Computational complexity
 - Gradient on display (2D or 3D?)
 - The people (the human perceptual system)
- Humans vs. computers
 - Defining the problem first is important when deciding if you need a human or computer in the loop
 - o Do you want a completely automated system?
 - Computation HFT (human intervation would slow this down)
 - Transitional backtesting (maybe you want to refine a model that will eventually be totally automated)
 - Long-term TSA (the goal is not to ever get rid of humans in the loop)
- · Vis with computers versus by hand
 - o You can display better precision with computers
 - o Can have dynamic displays (interactive or animated)
- · External representation and visual engagement
 - We use exernal representation to engage our perceptual system
 - Allows us to more easily make powerful inferences and engage both short and long term memory
 - We process visual information sequentially and in parallel
 - Parallel processing means intepreting information across entire field of vision
 - We can extract some "statistics" visually without scanning sequentially
 - Taste, smell and touch are not as efficient as sight, but they may aid vision in a multimodal approach that can amplify memory formation and other cognitive function
- Summary statistics can hide the true nature of a dataset

Interaction

- A single static view can only show one aspect of the data but in reality datasets have multiple dimensions
- Interaction allows the designer to display more dimensions of the data without overwhelming the user
- Vis design space
 - Picking a specific vis idiom from a large space of options
 - 1. Encode info with spatial position
 - 2. Facet
 - 3. Reduce
- Tasks and effectiveness
 - Understand the type of data
 - What specific analysis tasks are normally run on the data?
 - o Better to find a satisfactory solution than the optimal one
 - o There will always be tradeoffs in the design choices
 - Possible space --> known space --> consideration space --> proposal space --> selected solution
- Validating this choice is difficult
- · Resource limitations
 - Computational capacity
 - Human perceptual and cognitive capacity (memory and attention, change blindness)
 - o Display capacity (screen resolution, information density)
- Analyzing for effective vis system design
 - What data does the user see?
 - Why does the user intend to use a vis tool?
 - How are the visual encodings and interaction idioms constructed?
- Discussion
 - O Do these principles work for 3D designs?
 - There is a chapter that talks about techniques, and they do talk about 3D
 - The consensus is that it is much less effective as an ecoding, even though it is attention-grabbing
 - Effectiveness in the context of assessing if it is a good "graph." Are there domainspecific tests for task effectiveness?
 - Tamara says that measuring effectiveness is a very subjective endeavor
 - In chapter 4, she talks about nested task hierarchy. Part of what she talks about is validity. What you evaluate is dependent on what is valid.
 - She provides a methodology for thinking about this process
- Chapter 4: The Nested Model
 - Interface design in general has a nested set of properties, and it makes sense to go from outside-in
 - 1. Domain situation (politics, genomics, network modeling?)
 - i. Who are the users/audience? What do they know? What language do they use? What is the setting? Is there lots of time to process information, or does it need to be rapid?
 - 2. Data/task abstraction (What's the goal? What data is needed?)
 - i. Don't solve a problem that people don't care about
 - ii. People don't want to "navigate the web," for example. Building a topological network isn't helpful because people really just want to find their exact
 - 3. Visual encoding/interaction idiom
 - i. Perceptual and design limitations come into play here
 - 4. Algorithm
 - i. This is the last step!
 - ii. Attention to computation and performance
 - At any stage of this process you can ask yourself, "is this something people want?"
 or "Is this an appropriate data abstraction?"
 - o Algorithm is arguably the "easiest" part, because the goal is clear: speed
 - Tamara breaks down these four nested categories into smaller, incremental steps,

- and their possible pitfalls
- Once you implement the system, you can validate, working your way out of the nested model
 - Is it efficient enough? (algorithm)
 - Test on any users (visual encoding/interaction idiom)
 - Test on target users (data/task abstraction)
 - Observe adoption rates (domain situation)
- It is easy to start at the visual encoding step because we are trained in the technical part, and that can be a major "trap," even for experienced researchers

COMS W6998

Comparison Discussion

-Presenter Celia Arsen

-Scribe Carmine Elvezio

Discussion Notes

- Note: Celia: Objects items that we might want to compare
- Q: Prof: They're not really evaluations as much as examples of how not to use the system. Did the authors talk about how to utilize the framework in creating the use cases
 - Celia: The authors talk about strategies and considerations for using the considerations (e.g., impact of visual design)
- Q: Is the theoretical framework important?
- Note: Yiru: Before or after you design your visualization, something to assess against to determine whether you're doing a good job.
- Note: It's hard to determine
 - Celia: They did a lot of important work that could be useful to a lot of people in a lot of different ways
 - The emphasis on identifying the challenges is a helpful way of thinking about it
 - Mirrors the out-to-in nested modality
- Q: Do they really learn from this and then design their system or was it visa versa?
 - Celia: I've done that myself
 - Prof: Related work: the one that motivates your problem
 - Prof: This paper won best paper. Took a while to appreciate. Talked about visual encodings and
 the value of having a language. What doesn't really exist is a language for describing the task you
 want to perform.
 - There are a bunch of papers trying to get towards describing the tasks and how you would want to do something.
 - Each of these papers says they're the best for their tasks. Are they all actually doing the same thing when you pull them altogether?
 - A: Naming them having the structure as is done in the paper helps to organize your thoughts better.
 - Celia: People who are working on the same thing can communicate about it in the same way.
 - Prof: Now we can have a language to talk about graphs in the comparison task they're trying to accomplish.
- Q: Talking about more interactive visualizations does this framework extend to that how might it be extended or applied to account for that?
 - A: Deka: The Tamara book chapter talks about this about. The bit on subset of data would discuss that here.
 - Prof: Scroll bar is scanning sequentially. That seems to fit into this framework.
 - That falls into the strategy of subsetting
- Q: Do people think this framework is comprehensive?

- Celia: Could you use this framework to understand and approach any data vis task?
- Deka: Is all data vis is a comparison task?
- Celia: He didn't say it directly but he implies it.
- Prof: He said it to me directly.
- Prof: What about a simple task with one value?
- A: It might have a comparison implicitly?
- Q: Yiru: Visual Design is very simple there are more things to consider?
 - A: Deka: He calls out the other stuff and wants to focus on his own thing
 - Celia: He didn't connect the challenges to the solutions, but that wasn't his intent.
 - Does he leave open the possibility to scale down?
 - Prof: Might be scan sequentially and select subset.
 - Deka: Data transformation- is it covered here?
 - A: This is more of a philosophical paper
 - Celia: Here's the methodology but then you need to think about what the solution is
 - Prof: Can you write this down in some type of grammar?
 - Celia: This can be used as a pre-Draco thing as input considerations for Draco
 - Draco is the second most inner part of the iterative design model shown in the beginning of the class
 - Prof: They're different things and why we looked at stuff in the order in which we have in the class so far.
- Prof Discussion Slides:
 - Titanic Death chart
 - What are the targets
 - Passengers, gender, if survived
 - Actions
 - Celia: They're comparing between survived and not, and genders.
 - Comparing the ratio of male and female
 - NYT Changing Nature of Middle-Class Jobs
 - Let's list all of the comparisons
 - How would we articulate this as a set of comparison tasks
 - 1980 2012 (of some sort)
 - Jobs/thousand
 - Gender breakdown
 - Occupational categories
 - Job Types
 - Implicit: gender parity and expectation
 - "Is there a better re-design if that is what I'm trying to express"
 - One of the least clear things in this chart is the gender changes over time
 - A: I feel like it's hard to understand which jobs are which
 - A: It is doable with a mouse hover
- Prof: Why would you use interaction at all?
 - Interaction helps and goes towards the human constraint part of this.
 - John et al. graph you have to memorize as you try to analyze
 - Interaction would help as you can drag things around
 - It helps you to navigate to filter and re-specify the task
- Prof: Why is Scale the thing?
 - It is a little generic (by intent)
 - Celia: The author knows as you progress more data you use in more disciplines will not have been designed for analysis
 - We're scraping this from natural processes

- Are the three challenges what it will continue to be? If another axis emerges, he has established a way to think about it.
- All these people are designing tools for data exploration
- Prof: If you were designing a tool to identify interesting relationships
 - Some domains or statistics are actually the ones that matter
- Deka: It's hard to say If a particular target has a relationship or not
- Prof: The way I interpreted the entire paper is simple: I have two things I want to compare, and the action is the line between them.
 - Deka: Comparison is the whole thing
 - There are only so many things you can talk about when it comes to two nodes and an edge
- Celia: What do people think of the evaluation he provided?
 - The TopicModelling one was weird
 - Prof: I tried to reconstruct what the set of comparisons was and determine that from the chart as
 opposed to reading the evaluation itself
 - Subtle differences only a domain expert would care about
- Celia: I'm not really sold on the "few" case studies and then it's "proven." Giving the framework to other
 designers and seeing if they can use it to improve their design.
 - A: Prof: Good for future work.
 - Prof: Some subset of this could make sense as a tool for doing layout or something. Possibly adding something on top of Draco.
 - Celia: Not everything needs to be a tool. Helping to understand your process of research.
 - Deka: Understanding your task to make better visualizations
- Yiru: Section 4 says difficulty can come from complexity or size off items
 - Prof: Comparing two really large source files where it might not be natural to break up.
 - Yiru: How do you know which aspects to compare if it can't be broken up?
 - Prof: It's probably hierarchical
 - Nodes can be compared, but sets of nodes might also be comparable.
 - A source file is also potentially describable in the same diagram.
 - Many to many relationship of characters

Presentation Notes

- Considerations for visualizing comparison
- Michael Gleicher University of Wisconsin
- Lack of abstract scalable framework for design comparison tasks
- Context
 - Graph Napoleon's march through Russia
 - Drawing: comparison of items such that one can compare size
- Contribution: Framework that abstracts comparison challenges
- The **4 Considerations**
 - Elements, Challenges, Strategies, Designs
 - Elements
 - Target: Set of Items that are relation
 - Action that we want to perform
 - Other things that we can do besides just identifying a difference
 - Comparative Challenges
 - # of items being compared
 - The size or complexity of individual items

- The size or complexity of the relationships
- This is described as a set of three axes
- Identify Comparative Strategies
 - Sequential Scan
 - Select Subset
 - Summarize
- Identify Comparative Visual Design
 - Juxtaposition
 - Superposition
 - Explicit encoding
- Evaluation
 - Sequence Surveyor
 - Using the framework to improve over Mauve
 - Use all three strategies
 - LayerCake
 - Topic Model Comparison