PASS – Année 2022/2023

UE1.1 CHIMIE

Fiche de cours : CHIMIE ORGANIQUE

LISTE DES SYMBOLES DES FICHES DE COURS						
•	 Notion tombée au concours PASS : Une étoile → 1 seule fois Deux étoiles → 2 fois Trois étoiles → 3 fois ou plus 					
*	 Notion tombée au concours PACES : ○ Une étoile ★ → 1 seule fois ○ Deux étoiles ★ ★ → 2 fois ○ Trois étoiles ★ ★ → 3 fois ou plus 					
NEW	■ Nouveauté au programme cette année					
	■ Partie de cours renvoyant à un outil de méthodologie					

PLAN DU COURS

Chimie Organique

Théorie des liaisons de valence

Concept d'hybridation des OA

Groupements, Fonctions et classification des fonctions

Groupements non-fonctionnels

Fonctions et Classification des fonctions

Nomenclature

Règles essentielles de nomenclature (IUPAC) Hydrocarbures aliphatiques saturés : Alcanes Hydrocarbures aliphatiques insaturés : Alcènes Hydrocarbures aliphatiques insaturés : Alcynes

Hétérocycles

Hydrocarbures aromatiques

Suffixes et préfixes des principaux groupements

Suffixes et préfixes des principales fonctions

Fonctions alcool et amine

Exemples de noms communs

Structuration dans l'espace des molécules du vivant

Isomérie

Définition de l'isomérie, d'isomères

Isomérie de structure ou de constitution

Isomérie de fonction

Isomérie de position

Isomérie de squelette

Tautomérie

Isomérie dans l'espace

Angle de valence et angle de torsion = angle dièdre

Isomérie conformationnelle

Conformations remarquables de l'éthane

Conformations remarquables du butane

Conformations remarquables du cyclohexane

Isomérie configurationnelle = Stéréoisomérie

Enantiomérie

Isomères optiques = énantiomères

Carbone asymétrique

Configuration absolue d'un carbone asymétrique

Cas particulier : composé de configuration méso

Enantiomérie sans carbone asymétrique

Diènes à 2 doubles liaisons consécutives

Chiralité liée à l'atome d'azote

Diastéréoisomérie σ

Cas particulier des anomères

Diastéréoisomérie cis/trans

Diastéréoisomérie cis/trans pour des cyclohexanes accolés

Diastéréoisomérie α/β pour les stéroïdes

Diastéréoisomérie π

Diastéréoisomérie Z/E

Rigidité dans l'espace liée à la mésomérie

Résonance = Mésomérie = Conjugaison

Aromaticité

ŀ	THÉORIE DES LIAISONS DE VALENCE HYBRIDATION DES ORBITALES ATOMIQUES (OA) DU CARBONE					
sp³ ✿✿	 Hybridation de 1 OA s + 3 OA p → 4 OA hybrides sp³ C tétraédrique angles de valence = 109°28 C entouré de 4 liaisons σ Dans les alcanes (hydrocarbures saturés) 	ини С				
sp² ✿	 Hybridation de 1 OA s + 2 OA p→ 3 OA hybrides sp² C trigonal plan ★★ ② ③ un C sp² est toujours dans le même plan que les 3 atomes auxquels il est lié ③ angles de valence = 120° C entouré de 3 liaisons σ + 1 liaison π ★★ Dans les alcènes (hydrocarbures insaturés) 					
sp	 Hybridation de 1 OA s + 1 OA p → 2 OA hybrides sp C linéaire angles de valence = 180° C entouré de 2 liaisons σ + 2 liaisons π Dans les alcynes (hydrocarbures insaturés) 	—c=				

THÉORIE DES LIAISONS DE VALENCE LIAISONS					
■ Recouvrement Axial d'OA ■ Autorise la libre rotation					
π	 π Recouvrement Latéral d'OA p pures N'autorise pas de libre rotation 				
C - C	■ 1 liaison σ ■ 0,154 nm				
C = C	 1 liaison σ + 1 liaison π 0,134 nm 	longueur de liaison ム			
C≡C	 1 liaison σ + 2 liaisons π 0,121 nm 	♥			

GROUPEMENTS, FONCTIONS ET CLASSIFICATION DES FONCTIONS GROUPEMENTS NON-FONCTIONNELS				
Groupement Nitré	 Notation: -NO₂ Nomenclature: préfixe: nitro 			
Groupements Halogénés	 Notation: –X Nomenclature: préfixes: fluoro: –F: chloro: –Cl ★ bromo: –Br iodo: –I 			
Groupements Alkyles	 Notation: -R Nomenclature: préfixes: méthyl(e): -CH₃ ★ ★ ② éthyl(e): -CH₂-CH₃: -C₂H₅ propyl(e): -CH₂-CH₂-CH₃: -C₃H₇ butyl(e): -CH₂-CH₂-CH₂-CH₃: -C₄H₉ Groupements alkyles particuliers: isopropyl(e): ★ H₃C isobutyl(e): CH—CH₂—H₃C sec-butyl(e): H₃C—CH—CH₂—CH₃ tert-butyl(e): H₃C—CH—CH₂—CH₃ 			
Ordre de priorité décroissante en nomenclature	$-NO_2 > -X > -R$			

GROUPEMENTS, FONCTIONS ET CLASSIFICATION DES FONCTIONS CLASSIFICATION DES FONCTIONS								
	 Elles occupent une seule liaison du carbone fonctionnel Le carbone est lié à un hétéroatome par une seule liaison 							
FONCTIONS	ALCOOL ★★★	THIOL 🖸	ETHER	THIOETHER 🗘	AMINE ★★★			
MONOVALENTES	R – OH	R – SH	R - O - R' $R - S - R'$		R - N R ₂ Amine I°, II°, III°			
	 Elles occupent 2 liaisons du carbone fonctionnel Le carbone est lié à un ou deux hétéroatomes par 2 liaisons 							
FONCTIONS	ALDÉHYDE ★★	CÉTONE ★★★♥	IMINE	HEMIACÉTA	L ACÉTAL			
BIVALENTES	R-c H	R-c 0 R'	$R-C \begin{bmatrix} NR_1 \\ H \end{bmatrix} R-C \begin{bmatrix} NR_1 \\ R' \end{bmatrix} \begin{bmatrix} R \\ C \\ OR_1 \end{bmatrix}$		R C OR ₁			
	 Elles occupent 3 liaisons du carbone fonctionnel Le carbone est lié à un ou plusieurs hétéroatomes par 3 liaisons 							
FONCTIONS TRIVALENTES	ACIDE CARBOXYLIQUE ★★✿	ESTER ★�	THIOESTER	NITRILE ★				
TRIVALENTES	R-C OH	R-C O-R'	R-c s-	$R - C$ $N - R_1$ Amide I°, II°, III°	R—C≡N			

NOMENCLATURE RÈGLES ESSENTIELLES DE NOMENCLATURE (IUPAC)						
Les étapes pour définir la nomenclature ★★★	8C=Oct; 9C=Non o si c'est un cycle: Repérer une éventuelle -ène (C=C) ou -yne (C= o si pas d'insaturat Repérer les fonctions s préfixe dans l'ordre alp Choisir le sens de nui principale puis l'insatur. o La fonction princi	née principale = chan; 3C=Prop; 4C=Bu ; 10C=Dec ajouter le préfixe cyc insaturation ⇒ elle (C). ion ⇒ suffixe —ane. econdaires et les gra habétique. mérotation avec l'ir	ine la plus longue : t ; 5C=Pent ; 6C=H clo devant le nombre sera indiquée par le cupements ⇒ ils ser adice le plus bas pr uants ur l'insaturation	de C suffixe ont indiqués en		
Construction	Préfixe : Base : Insaturation : Suffixe :					
du nom de la molécule ★★★♀	 Fonction(s) secondaire(s) Groupement(s) ★★ Ordre alphabétique 	 Chaîne carbonée la + longue (nom de l'hydrocarbure) 	■ —ène ou —yne ○ sinon : —ane	Fonction principale ou prioritaire		

NOMENCLATURE HYDROCARBURES ALIPHATIQUES SATURÉS : ALCANES						
Définition	 Formule générale : R-H Formule brute des alcanes linéaires : C_nH_{2n+2} Formule brute des alcanes cycliques : C_nH_{2n} 					
Nomenclature	■ Terminaison : - ane ■ Préfixe cyclo pour les alcanes cycliques ★					
	Formule brute Formule semi-dével					Nomenclature
Alcanes linéaires	 CH₄ C₂H₆ C₃H₈ C₄H₁₀ 	 C₂H₆ CH₃-CH₃ CH₃-CH₂-CH₃ CH₃-CH₂-CH₃ 			EthaPro	thane ane pane ane
	Cyclopropane	Су	clobutane	Cyclopent	ane	Cyclohexane
Alcanes cycliques	\triangle			\bigcirc		\bigcirc

NOMENCLATURE HYDROCARBURES ALIPHATIQUES INSATURÉS : ALCÈNES						
Définition	Formule brute : 0	C _n H _{2n}				
Nomenclature	Terminaison : - èPréfixe cyclo pou	ne r les alcènes cycliques				
	Ethène = Ethylène	Propène				
Succession	H ₂ C=CH ₂	H₂C=CH−CH₃	$H_3C - C = CH_2$ CH_3			
Exemples d'alcènes	But-1-ène = butène	But-2-ène	3-méthylhexa-1,5-diène			
	H ₂ C=CH–CH ₂ –CH ₃	(2Z)-but-2-ène (2E)-but-2-ène	5 1			
Radicaux	Vinyl(e) = Ethényl(e)	Allyl(e) = Prop-2-ényl(e)	Prop-1-ényl(e)			
	H₂C=CH−	H ₂ C=CH–CH ₂ –	−HC=CH−CH ₃			

NOMENCLATURE HYDROCARBURES ALIPHATIQUES INSATURÉS: ALCYNES								
Définition	■ Formule b	■ Formule brute : C _n H _{2n-2}						
Nomenclature	Terminaiso	■ Terminaison : - yne						
Evamples	Ethyne = Propyne But-1-yne = But-2-yne But-2-yne oct-2-yne					•		
Exemples d'alcynes	нс≡сн	HC≡C−CH ₃	HC≡C−CH ₂ −CH ₃	C-CH ₂ -CH ₃ H ₃ C-C≡C-CH ₃				
Radicaux	Ethyn	Fthynyl(e) Prop-1-ynyle			Prop-2-ynyle = Propargyl(e)			
						HC≡C−CH ₂ −		

NOMENCLATURE HÉTÉROCYCLES						
Définition	 Cycles présentant des atomes autres que C ○ hétérocycles azotés (N) ○ hétérocycles oxygénés (O) 					
	Pipéridine	Tétrahydropyrane	Tétrahydrofurane (THF)			
Hétérocycles à connaître	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\bigcirc				

NOMENCLATURE HYDROCARBURES AROMATIQUES							
	Benzène	Toluène	Phénol	Acide benzoïque	Benzaldéhyde	Aniline	
Aromatiques à connaitre		F. F.	OH	СООН) H	», H	
11545		Pyridine			Pyrimidine		
Hétérocycles aromatiques à connaitre							
		Phényl(e)		Benzyl(e)			
Radicaux aromatiques à connaitre					CH2-	-	
Cas particulier de nomenclature	■ Le cycle aromatique peut servir de base à la construction du nom du composé ■ Exemple : 5-éthyl-3-isopropyl-2,4-diméthylphénol : OH 1 2 3 4						

NOMENCLATURE SUFFIXES ET PRÉFIXES DES PRINCIPAUX GROUPEMENTS							
Dérivés	nitrés	halogénés	alkylés				
Formule	-NO ₂	–l ; –Br ; –Cl ; –F	-R				
Préfixe	Nitro-	iodo- ; bromo- ; chloro- ; fluoro-	Alkyl-				
Ordre de priorité décroissant							
Nomenclature	■ Les groupements sont toujours indiqués en préfixe						

NOMENCLATURE SUFFIXES ET PRÉFIXES DES PRINCIPALES FONCTIONS					
Fonctions		Formule	Préfixe	Suffixe	Ordre de priorité décroissant
	Acide	-соон	Carboxy-	Acideoïque	
TRIVA-	Ester	-COOR	Alkoxycarbonyl-	oate d'alkyle (R)	
LENTES	Amide	-C(=O)NH ₂	Carbamoyl-	amide	
	Nitrile	-C≡N	Cyano-	nitrile	
BIVA-	Aldéhyde	-СНО	Охо-	al ★	
LENTES	Cétone	-C=O	Охо-	one ★	
	Alcool	-ОН	Hydroxy-	ol ★�	
MONOVA- LENTES	Thiol	-SH	Mercapto-	thiol	
	Amine	-NH₂	Amino-	amine	
À part	Imine	=NH	Imino-	imine	1
Nomeno	Nomenclature La fonction principale est toujours indiquée en suffixe Les fonctions secondaires sont toujours indiquées en préfixe				

PRINCIPALES FONCTIONS FONCTIONS ALCOOL ET AMINE				
Fonction	Fonction Primaire Secondaire Tertiaire			
Alcool 🌣	R <mark>-CH₂OH</mark> ★©©	R CHOH	R'—C—N R'—C—N *	
Amine	R-NH₂	R R'>NH	й Д-Z-¤	

NOMENCLATURE EXEMPLES DE NOMS COMMUNS						
Dérivés	- chlorate de metryle		Dichlorométhane			Chloroforme
halogénés	CH₃–Cl		CH ₂ Cl ₂		CHCl₃	
Amines	Méthanamine = Méthylamine		N,I	N,N-éthylméthylamine		
Ailliles	CH₃−N	H ₂			CH₃–NH-	-CH ₂ CH ₃
Aldéhydes	Méthanal = Formol = Formaldéhyde		Ethanal = Acétaldéhyde		Pro	panone = Acétone
et Cétones	н–сно		CH₃–CHO		CH₃–CO–CH₃	
Acides	Acide méthanoïque = Acide Formique		Acide éthanoïque = Acide Acétique		Acide cyclopentane carboxylique	
Carboxyliques	н–соон		CH₃–C	ООН		ОН
Esters,	Ethanoate d'éthyle= Acétate d'éthyle	•		Ethanam Acétam	-	Ethanenitrile = Acétonitrile
Amides, Nitriles	H ₃ C CH ₂ CH ₃	ŀ	H–CO–NH ₂ CH ₃ –CO–		-NH ₂	CH₃–CN
Ethers	Ethoxyéthane = Diéthyléther = Ether officinal		Méthoxyp Méthylpro	•		hoxy:-OCH ₃ oxy:-OC ₂ H ₅
	CH ₃ -CH ₂ -O-CH ₂ -CH	3	CH ₃ -O-CH ₂ -CH ₂ -CH ₃		,	

STRUCTURATION DANS L'ESPACE DES MOLÉCULES DU VIVANT ROTATION AUTOUR DES LIAISONS		
Libre rotation autour des liaisons σ ■ Libre rotation autour des C sp³		
Liaison π Empêchement de la libre rotation par les liaisons π Pas de libre rotation autour des C sp ²		

ISOMÉRIE			
Définition	 Étude des relations structurales entre deux ou plusieurs molécules qui possèdent la même formule brute mais qui ont des structures dans l'espace non superposables (relation d'isomérie) Ces molécules, appelées isomères, ont des propriétés physiques, chimiques et biologiques différentes 		
2 Types	Isomérie de structure ou Isomérie de constitutionIsomérie spatiale		

1	ISOMÉRIE ISOMÉRIE DE STRUCTURE OU DE CONSTITUTION			
Isomérie de Fonction	 même formule brute mais fonction chimique ≠ Exemple : C₅H₁₀O : pentanal – pentan-3-one – pent-2-ène-1-ol 			
Isomérie de Position	 même formule brute, même fonction chimique mais position ≠ sur la chaîne carbonée Exemple : C₅H₁₂O : pentan-1-ol – pentan-2-ol – pentan-3-ol 			
Isomérie de Squelette	 même formule brute, même fonction chimique mais squelette carboné ≠ Exemple : C₅H₁₂O : pentan-1-ol – 3-méthylbutan-1-ol 			
	 Migration simultanée d'une double liaison et d'un proton entre 2 formes en équilibre Quand la tautomérie correspond à la migration d'un proton, on parle de prototropie 			
Tautomérie	Céto-énolique	Amide	énamine-imine	
	H ₃ C CH ₃ H ₃ C C=CH ₂	-c-NHc=N- II O OH	-CH=CH-NH ₂ -CH ₂ -CH=NH	

ISOMÉRIE DANS L'ESPACE ANGLE DE VALENCE ET ANGLE DE TORSION = ANGLE DIÈDRE			
Exemple	1 2 3 4 CH ₃ -CH ₂ -CH ₂ -CH ₃		
Angle de valence	• Angle δ défini par 3 atomes consécutifs : c_1 c_2 c_3		
Angle de Torsion = Angle dièdre	 Angle défini par 4 atomes consécutifs L'angle dièdre Φ mesure l'angle entre les liaisons C₁-C₂ et C₃-C₄ Regard placé le long de la liaison C₂-C₃ : 		

	ISOMÉRIE DANS L'ESPACE ISOMÉRIE CONFORMATIONNELLE
Synonymes	■ Conformations = Conformères = Rotamères ★★
Définitions	 Arrangements des atomes qui ne se différencient que par des rotations autour de simples liaisons ★★ Pour deux conformères, aucun élément de stéréochimie n'est modifié (même configuration R ou S des C asymétriques, même configuration Z ou E d'une double liaison,) ★★

	ISOMÉRIE CONFORMATIONNELLE CONFORMATIONS REMARQUABLES DE L'ETHANE				
	Conformation éclipsée	Conformation décalée			
Conformations remarquables de l'éthane					
Énergie potentielle de l'éthane en fonction de l'angle dièdre	ellieituratod elibarus TH H H H H H H H H H H H H	Conformation éclipsée (maximum d'énergie) Conformation décalée (minimum d'énergie) H H H H H H H H H H H H H H H H H H H			

ISOMÉRIE CONFORMATIONNELLE CONFORMATIONS REMARQUABLES DU n-BUTANE					
	Totalement éclipsée	Décalée Gauche	Partiellement éclipsée	Décalée Anti	
Conformations remarquables du n-butane: CH ₃ –CH ₂ –CH ₂ –CH ₃	H ₃ C _{CH₃} H H H	CH ₃ CH ₃ Ou CH ₃ H ₃ C H ₄ H H	OU HCH3 HH3C HH4	HHHHHHHHHH	
	Angle dièdre = 0 ou 360°	Angle dièdre = 60 ou 300°	Angle dièdre = 120 ou 240°	Angle dièdre = 180°	
Énergie potentielle du n-butane en fonction de l'angle dièdre	Rotation Conformation éclipsée Conformation éclipsée H CH ₃ Angle dièdre en degrés °				

ISOMÉRIE CONFORMATIONNELLE CONFORMATIONS REMARQUABLES DU CYCLOHEXANE				
	Chaise	Bateau		
Conformations remarquables du cyclohexane	H H H H	H H H H H		
Equilibre conformationnel				
	chaise à l'autre : o une liaison axiale devient éq o un groupement dirigé vers le	el, lorsqu'on passe d'une conformation uatoriale et inversement * haut reste dirigé vers le haut * bas reste dirigé vers le bas *		
Cyclohexane substitué	e R cor	a e H		
	 R en position équatoriale H en position axiale Conformère le plus stable car uplus stable en position équatorial 	R en position axiale H en position équatoriale an groupement volumineux est toujours e.		

ISOMÉRIE DANS L'ESPACE ISOMÉRIE CONFIGURATIONNELLE = STÉRÉOISOMÉRIE		
Définition	 Deux molécules de configurations différentes sont en relation de stéréoisomérie : ce sont des stéréoisomères 	
2 Types	 Enantiomérie (= isomérie optique) Diastéréoisomérie (= isomérie géométrique) 	

	ISOMÉRIE CONFIGURATIONNELLE = STÉRÉOISOMÉRIE ÉNANTIOMÉRIE
Molécule Chirale	 Une molécule chirale est une molécule qui n'est pas superposable à son image dans un miroir plan Elle ne possède ni plan, ni centre de symétrie Elle possède généralement un ou plusieurs carbones asymétriques Elle est active sur la lumière polarisée (L.P.)

ÉNANTIOMÉRIE ISOMÈRES OPTIQUES = ÉNANTIOMÈRES				
Définition	 Deux molécules de configurations images l'une de l'autre par rapport à un miroir et non superposables sont appelées énantiomères ★★ Pour deux énantiomères, la configuration absolue de tous les carbones asymétriques est inversée ★ 			
Propriétés des 2 énantiomères	 Actifs sur la lumière polarisée (L.P.) énantiomère dextrogyre (+) si la L.P. est déviée vers la droite énantiomère lévogyre (-) si la L.P. est déviée vers la gauche Pouvoirs rotatoires spécifiques égaux en valeur absolue mais de signe contraire Propriétés physiques et chimiques identiques vis-à-vis des réactifs et phénomènes physiques <u>achiraux</u> sauf celles liées à la chiralité 			
En thérapeutique	 L'énantiomère le plus actif est l'eutomère L'énantiomère le moins ou pas actif est le distomère 			
Racémique (±)	 C'est le mélange équimolaire de deux énantiomères ★★★ Il est inactif sur la lumière polarisée (compensation intermoléculaire) ★★ Ses propriétés physiques diffèrent généralement de celles des énantiomères : point de fusion, solubilité 			

ÉNANTIOMÉRIE CARBONE ASYMÉTRIQUE				
Carbone asymétrique	■ Un carbone asymétrique est un atome de carbone hybridé sp³ (tétraédrique ou tétracoordiné) lié à quatre atomes ou groupements d'atomes différents ★��			

ÉNANTIOMÉRIE CONFIGURATION ABSOLUE (R/S) D'UN CARBONE ASYMÉTRIQUE

CONFIGURATION ABSOLUE (R/S) D'UN CARBONE ASYMÉTRIQUE				
Règles de Cahn, Ingold, et Prelog (CIP)	atomique Z ○ 1H < 1D Si Z est ider ○ Exemp Si les atomes ○ Exemp Les liaisons trois liaison	Si Z est identique, on regarde le nombre de masse A. ○ Exemple : D (deutérium) > H Si les atomes à comparer sont identiques à la première ligne, on examine les atomes de la ligne suivante, en s'arrêtant à la première différence. ○ Exemple : -CH ₃ < -CH ₂ -CH ₃ < -CH(CH ₃) ₂ Les liaisons double et triple comptent respectivement comme deux et trois liaisons simples.		
Sens de Rotation en représentation de CRAM ★★★☆☆☆	Si le substituant n°4 est vers l'arrière *** Si le substituant n°4 est vers l'avant ***	 On regarde le sens de rotation des substituants 1, 2, 3 Si on tourne dans le sens des aiguilles d'une montre, le carbone est de configuration absolue R Si on tourne dans le sens inverse, le carbone est de configuration absolue S La configuration absolue est inversée Sens R: la configuration absolue est S Sens S: la configuration absolue est R 		
Sens de Rotation en Projection de FISCHER	Si le substituant n°4 est sur l'axe vertical	 On regarde le sens de rotation des substituants 1, 2, 3 Si on tourne dans le sens des aiguilles d'une montre, le carbone est de configuration absolue R Si on tourne dans le sens inverse, le carbone est de configuration absolue S Exemple : 		
ue Hischer	Si le substituant n°4 est sur l'axe horizontal	 La configuration absolue est inversée Sens R: la configuration absolue est S Sens S: la configuration absolue est R Exemple: 3 		

ÉNANTIOMÉRIE EXEMPLES				
Série D des oses	 Les oses naturels sont de la série D Les oses sont représentés en Fischer avec la chaîne carbonée sur l'axe vertical et la fonction la plus oxydée en haut Si l'avant-dernier OH est à droite ⇒ ose de la série D Si l'avant-dernier OH est à gauche ⇒ ose de la série L 	CHO —OH HO— CH ₂ OH D-Glucose Un ose D et énantiomè	CHO HO—OH HO—CH ₂ OH L-Glucose	
Série L des acides aminés	 Les acides aminés naturels sont de la série L Les acides aminés sont représentés en Fischer avec la chaîne carbonée sur l'axe vertical et la fonction acide en haut Si la fonction NH₂ est à droite ⇒ aa de la série D Si la fonction NH₂ est à gauche ⇒ aa de la série L 	COOH H NH ₂ CH ₃ D-Alanine Un aa D et u énantiomè		

CAS PARTICULIER : COMPOSÉ DE CONFIGURATION MÉSO				
Définition	 Un composé de configuration <i>méso</i> présente un nombre équivalent de groupes énantiomériques liés de façon identique, en l'absence de tout autre groupe chiral Un méso à 2 C asymétriques consécutifs est toujours RS ou SR Un méso n'est pas chiral (plan de symétrie) Un méso est toujours inactif sur la L.P. 			
	Acide <i>méso-</i> tartrique	COOH H—OH Plan de symétrie COOH	HOOC S R COOH HOOC S R COOH	
Exemples	Acide mucique	CO₂H H———————————————————————————————————		

ÉNANTIOMÉRIE SANS CARBONE ASYMÉTRIQUE DIÈNES À 2 DOUBLES LIAISONS CONSÉCUTIVES				
Structure	sp ² sp ² Les deux liaisons π sont dans 2 plans perpendiculaires Le diène est chiral (existence d'un axe chiral) si les deux carbones sp ² terminaux portent 2 groupements différents			
Configurations aR et aS	Les 2 énantiomères sont notés aR et aS			
Détermination	 Se placer d'un côté de la molécule Classer les deux premiers groupements vus par ordre de priorité (1 et 2) En restant du même côté de la molécule, classer les deux groupements les plus éloignés par ordre de priorité (3 et 4) On regarde le sens de rotation des substituants 1, 2, 3 et 4 Si on tourne dans le sens des aiguilles d'une montre, le diène est de configuration aR Si on tourne dans le sens inverse, le diène est de configuration aS Exemple : Me Bu Bu Bu Le résultat est identique que l'on se place d'un côté ou de l'autre de la molécule 			

ÉNANTIOMÉRIE SANS CARBONE ASYMÉTRIQUE CHIRALITÉ LIÉE A L'ATOME D'AZOTE				
Structure ②	 Un atome d'azote lié à 3 groupements différents est chiral et peut s'écrire sous forme de 2 énantiomères Il est impossible de séparer les 2 formes chirales car il y a un équilibre permanent : mélange racémique indédoublable CH₃ CH₃ CH₃ CH₃ Inversion de l'azote due à la présence du doublet non liant sur N ⇒ Inactivité sur la L.P. 			
Chiralité des Ammoniums IV et N-oxydes	Absence de possibilité d'inversion de l'azote : Configurations dédoublables Absence d'équilibre entre elles Les 2 énantiomères sont séparables : R''' R'' R'' R'' R'' R'' R'' R'' R''			
Strychnine et Brucine	■ Le phénomène d'inversion de l'azote peut être empêché si l'azote est bloqué dans un cycle : CH3O CH3O CH3O Strychnine Brucine			

ISOMÉRIE CONFIGURATIONNELLE = STÉRÉOISOMÉRIE DIASTÉRÉOISOMÉRIE σ			
Définitions	 Elle est due à la présence de carbones asymétriques Des stéréoisomères qui ne sont pas des énantiomères, sont en relation de diastéréoisomérie Les diastéréoisomères sont également appelés des isomères géométriques 		
Relation d'isomérie entre les stéréoisomères	 Les diastéréoisomères sont également appelés des isomères géométriques Pour une molécule avec n carbones asymétriques, il existe au maximum 2ⁿ⁻¹ couples d'énantiomères ♀ Pour une molécule avec n carbones asymétriques, il existe au maximum 2ⁿ stéréoisomères formant des couples d'énantiomères et des couples de diastéréoisomères Exemple : Une molécule avec deux carbones asymétriques a quatre stéréoisomères : RR, SS, RS, et SR dont deux couples d'énantiomères. E = relation d'énantiomérie D = relation de diastéréoisomérie Configuration relative : Le couple d'énantiomères RR et SS peut être noté (R*, R*) Le couple d'énantiomères RS et SR peut être noté (R*, S*) 		
 Les couples (R*, R*) et (R*, S*) sont en relation de diastéréoisome La notation R*S* n'est pas utilisable pour un composé méso 			
Épimères	■ Deux oses qui ne se différencient que par la configuration absolue d'un seul carbone asymétrique sont deux diastéréoisomères ★ et plus particulièrement deux épimères ★		

DIASTÉRÉOISOMÉRIE σ CAS PARTICULIER DES ANOMÈRES				
Anomères	 Deux formes cycliques en équilibre résultant de la réaction de cyclisation (=hémiacétalisation) des oses : * * * CHO OH OCH2OH Deux anomères : α et β * * 			
α et β	 Anomère α : OH sur le C1 Anomère β : OH sur le C1 	trique supplémentaire (C1 pour les aldoses) : en <i>trans</i> par rapport au CH ₂ OH sur le C5 ** en <i>cis</i> par rapport au CH ₂ OH sur le C5 ** eréoisomères : ils ne diffèrent que par la métrique C1 ** β-D-glucopyanose (Haworth)		
	H OH H OH α-D-glucopyanose (chaise)	H OH OH H β-D-glucopyanose (chaise)		
Mutarotation		aqueuse d'un ose traduit l'équilibre chimique et ux anomères α et β de cet ose		
Stabilité relative	 L'anomère β est plus stable que l'anomère α du D-glucose Dans l'eau : rapport β / α = 64 / 36 			
Cas des diosides	 Dans l'eau : rapport β / α = 64 / 36 Exemple : le saccharose : Le glucose (en haut) n'a pas de fonction hémiacétal libre, mais une fonction acétal Pas d'équilibre possible avec la forme aldéhyde Pas de propriété réductrice Pas de mutarotation possible 			

DIASTÉRÉOISOMÉRIE σ DIASTÉRÉOISOMÉRIE CIS/TRANS				
Définition	 Détermination sur des cycles deux groupements du même côté du plan moyen du cycle ⇒ configuration cis ★★★♥ deux groupements de part et d'autre du plan moyen du cycle ⇒ configuration trans ♥ Relation de diastéréoisomérie entre cis et trans ♥ 			
Exemple :	CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ 1,2-diméthylcyclohexane <i>cis</i>			
1,2-diméthyl cyclohexane	CH ₃ CH ₃ CH ₃ CH ₃ CH ₃			
	1,2-diméthylcyclohexane trans			

DIASTÉRÉOISOMÉRIE σ DIASTÉRÉOISOMÉRIE CIS/TRANS POUR DES CYCLOHEXANES ACCOLÉS				
	 Décaline = 10 carbones Cis : les 2 groupements au niveau de la jonction de cycle sont du même côté 			
Décaline <i>cis</i>	Jonction <i>cis</i> ★	I T	T T	
	 Décaline = 10 carbones Trans : les 2 groupements au niveau de la jonction de cycle sont opposés 			
Décaline <i>trans</i>	Jonction trans	± ₩ i ±	T T	

DIASTÉRÉOISOMÉRIE σ DIASTÉRÉOISOMÉRIE α/β POUR LES STÉROÏDES 5α = groupement en 5 en *trans* par rapport au CH₃ en position 19. 5α-cholestane A 5 • 5β = groupement en 5 en *cis* par rapport au CH₃ en position 19. D 5β -cholestane

DIASTÉRÉOISOMÉRIE π DIASTÉRÉOISOMÉRIE Z/E				
Alcènes	 L'alcène doit porter 2 groupements différents sur chaque C sp² de la double liaison alcène Z : les 2 groupements prioritaires sur chaque C sp² sont du même côté de la double liaison alcène E : les 2 groupements prioritaires sur chaque C sp² sont de part et d'autre de la double liaison Les configurations Z et E forment un couple de diastéréoisomères ❖ 			
	H ₃ C CI CI Z ***	H ₃ C CH ₂ CH ₃ E ****		
Oximes	H ₃ C OH C T	H ₃ C H OH E		
Azoïques	N=N Z	E E		

RIGIDITÉ DANS L'ESPACE LIÉE À LA MÉSOMÉRIE **RÉSONANCE = MÉSOMÉRIE = CONJUGAISON** Système conjugué π-σ-π: ★★★♥ $H_2C \stackrel{\pi}{=} CH \stackrel{\sigma}{-} CH \stackrel{\pi}{=} CH_2$ Structures limites de résonance : Structure réelle = Hybride de résonance : Résonance π-σ-π o Tous les atomes sont coplanaires autour du système conjugué o Les liaisons n'ont pas toutes la même longueur et n'ont pas les longueurs identiques à de simples ou doubles liaisons Carbone-Carbone isolées : Les doubles liaisons ont un caractère partiel de simple liaison : leur longueur est plus grande qu'une double liaison isolée La simple liaison a un caractère partiel de double liaison : sa longueur est plus faible qu'une simple liaison isolée Stabilise la molécule Système conjugué π - σ - \mathbf{n} : $H_2C \stackrel{\pi}{=} CH^{-1}$ Formes limites de résonance : Résonance π - σ -n(ou π - σ -p) Structure réelle = Hybride de résonance : Stabilise la molécule

RIGIDITÉ DANS L'ESPACE LIÉE À LA MÉSOMÉRIE � EXEMPLES				
Rigidité dans la liaison peptidique	 Système conjugué π-σ-n dans la liaison peptidique Caractère partiel de double liaison de la liaison C-N Pas de libre rotation autour de la liaison C-N prise dans le système conjugué ⇒ rigidité 			
Rigidité dans la cellulose	Nombreuses liaisons hydrogène intra- et inter-chaines Rigidité de la cellulose HO HO HO HO HO HO HO HO HO H			
Rigidité dans les acides nucléiques	Liaisons hydrogène entre bases pyrimidiques et bases puriques H thymine Cytosine N H N-H Cytosine Guanine N H N-H Cytosine Adénine CH3			
Rigidité liée à des cyclisations	 Cyclisation des terpènes en stéroïdes Le cholestérol est impliqué dans la rigidité des membranes cellulaires et des vaisseaux sanguins 			

AROMATICITÉ				
Définition	 Règle d'aromaticité de Hückel Une molécule est dite aromatique si c'est une molécule : cyclique plane présentant (4n + 2) e- délocalisés où n = nombre entier ≥ 1 = nb de cycles constituant le système 			
Propriétés des molécules aromatiques	 Elles présentent une stabilité importante ainsi que des propriétés particulières en termes de réactivité chimique Elles présentent une mésomérie π-σ-π et/ou π-σ-n 			
Exemples	Benzène	Naphtalène	Chrysène	
	Pyridine	N H Pyrrole	Tryptophane (noyau indole aromatique)	
	Pyrimidine	N N N N N N N N N N N N N N N N N N N	F NH NH O S-fluorouracile	
	NH ₂	HN OH		
	4-aminopyridine Hydroxychloroquine (Partie aromatique plane) CH ₃ CH ₃ N N N N N N N N N N N N N			
	Imatinib (présente des parties aromatiques)			