Tema III: Espacios Vectoriales Euclídeos

Geometría II, Grado en Matemáticas

1. Métricas euclídeas

El producto escalar estudiado en \mathbb{R}^2 y \mathbb{R}^3 durante los dos cursos de Bachillerato, ha sido la herramienta fundamental que permitió desarrollar la geometría en el plano y en el espacio. A lo largo de este tema extenderemos este concepto a cualquier espacio vectorial y estudiaremos las propiedades vectoriales de la geometría Euclidiana.

Definición 1 Sea $V^n(\mathbb{R})$ un espacio vectorial real y g una métrica en V, se dice que g es Euclídea si g es definida positiva. Un espacio vectorial métrico (V^n, g) se dice Euclídeo si g es una métrica euclídea en V.

Es claro que si (V^n, g) es euclídeo, entonces existe una base \mathbb{B} de V tal que $M(g, \mathbb{B}) = \mathbb{I}_n$ y por tanto, utilizando coordenadas en dicha base, si $x, y \in V$ son tales que $x_{\mathbb{B}} = (x_1, \dots, x_n)$, $y_{\mathbb{B}} = (y_1, \dots, y_n)$, entonces

$$g(x,y) = x_{\mathbb{B}} \mathbb{I}_n y_{\mathbb{B}}^t = x_1 y_1 + \dots + x_n y_n.$$

 \bigstar Puedes comprobar fácilmente que si $V=\mathbb{R}^2$, las siguientes métricas son euclídeas:

- g_1 , donde $M(g_1, \mathbb{B}_u) = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$
- g_2 , donde $M(g_2, \mathbb{B}_u) = \begin{pmatrix} 3 & 2 \\ 2 & 3 \end{pmatrix}$

1.1. Criterio de Sylvester

En primer lugar aprenderemos un criterio muy útil para determinar si una métrica es o no euclídea.

Sea A una matriz simétrica de orden n,

$$A = \left(\begin{array}{ccc} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{1n} & \cdots & a_{nn} \end{array}\right)$$

se definen las submatrices principales de A como aquellas situadas en su esquina superior izquierda. Esto es, para cada $k=1,\cdots,n$ se denotará por A_k la k-ésima submatriz principal A, esto es,

$$A_k = \left(\begin{array}{ccc} a_{11} & \cdots & a_{1k} \\ \vdots & \ddots & \vdots \\ a_{1k} & \cdots & a_{kk} \end{array}\right).$$

Teorema 1 (Criterio de Sylvester) Sea $g: V \times V \longrightarrow \mathbb{R}$ una métrica en V y A su matriz en una cierta base \mathbb{B} de V. Entonces g es definida positiva si y sólo si $|A_k| > 0$ para cada $k = 1, \dots, n$.

Demostración. Supongamos que $\mathbb{B} = \{u_1, \dots, u_n\}$ y denotemos por $U_k = \langle u_1, \dots, u_k \rangle$. Es claro que la restricción de g a U_k es también definida positiva y por tanto existe una matriz singular P_k tal que $A_k = P_k^t \mathbb{I}_k P_k$, esto es, $|A_k| = |P_k|^2 > 0$, para todo $k = 1, \dots, n$.

Probaremos el recíproco por inducción sobre n. Para n=1 el resultado es evidente, supongamos que el recíproco es cierto para toda métrica con matriz de orden n-1 y vamos a demostrarlo para g.

Por hipótesis de inducción sabemos que al ser $|A_k| > 0$, $k = 1, \dots, n-1$, la restricción de g a U_{n-1} , g_{n-1} , es definida positiva. Así existe una base $\mathbb{B}_1 = \{e_1, \dots, e_{n-1}\}$ en U_{n-1} tal que $M(g_{n-1}, \mathbb{B}_1) = \mathbb{I}_{n-1}$, esto es

$$M(g, \{e_1, \dots e_{n-1}, u_n\}) = \begin{pmatrix} 1 & 0 & \dots & 0 & a_1 \\ 0 & 1 & \dots & 0 & a_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & a_{n-1} \\ a_1 & a_2 & \dots & a_{n-1} & a_n \end{pmatrix}.$$

De donde deducimos fácilmente que A es congruente con la matriz

$$\tilde{A} = \begin{pmatrix} 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 0 \\ 0 & 0 & \cdots & 0 & a \end{pmatrix}.$$

Así, $\tilde{A}=P^tAP$ y $a=|\tilde{A}|=|P|^2|A|>0$, esto es, g es definida positiva lo que concluye la demostración.

 \bigstar Observa que que una forma cuadrática ω es definida negativa si y sólo si $-\omega$ es definida positiva. Por tanto, puedes usar el criterio anterior para demostrar que ω es definida negativa si y sólo si $(-1)^k |A_k| > 0$ para todo $k = 1, \dots, n$.

1.2. Norma de un vector

 \star Sea (V^n, g) un espacio vectorial euclídeo y $x \in V$, se define la norma de x, ||x||, como

$$||x|| = \sqrt{g(x,x)}.$$

Puedes ver fácilmente que se verifican las siguientes propiedades:

- ||x|| > 0, para todo $x \in V$.
- ||x|| = 0 si y sólo si x = 0.
- $\|ax\| = |a| \|x\|$, para todo $a \in \mathbb{R}$.
- $\blacksquare \left\| \frac{x}{\|x\|} \right\| = 1$, para todo $x \neq 0$

Teorema 2 (Desigualdad de Schwarz) Para cualesquiera vectores $x, y \in V$, se tiene

$$|g(x,y)| \le ||x|| \ ||y||.$$

Además, se da la igualdad si y sólo si x e y son linealmente dependientes.

Demostración. Si y = 0, es claro el resultado.

Supongamos que $y \neq 0$, entonces para todo $\lambda \in \mathbb{R}$, tenemos

$$0 \le g(x - \lambda y, x - \lambda y) = ||x||^2 - 2\lambda g(x, y) + \lambda^2 ||y||^2,$$

que solo se puede cumplir si el discriminante de dicha ecuación es no positivo. Esto es, $||x||^2||y||^2 \ge g(x,y)^2$, o equivalentemente $|g(x,y)| \le ||x|| ||y||$.

Además, se da la igualdad si y sólo si $0 = g(x - \lambda y, x - \lambda y)$, esto es si y sólo si x e y son linealmente dependientes.

Teorema 3 (Desigualdad de triangular (o de Minkowski)) Para cualesquiera vectores $x, y \in V$, se tiene

$$||x + y|| \le ||x|| + ||y||.$$

Además, se da la igualdad si y sólo si x e y tienen la misma dirección y sentido.

Demostración. Usando la desigualdad de Schwarz tenemos,

$$||x + y||^2 = g(x + y, x + y) = ||x||^2 + ||y||^2 + 2g(x, y)$$

$$\leq ||x||^2 + ||y||^2 + 2||x|| ||y|| = (||x|| + ||y||)^2,$$

de donde se sigue la desigualdad. Además, la igualdad ocurre si y sólo si g(x,y) = ||x|| ||y||, esto es si y sólo si x e y son proporcionales pero con igual sentido.

 \bigstar Para el caso particular de (\mathbb{R}^n, g_u) con el producto escalar usual las dos desigualdades anteriores nos dicen que:

$$|x_1y_1 + \dots + x_ny_n| \le \sqrt{x_1^2 + \dots + x_n} \sqrt{y_1^2 + \dots + y_n},$$

$$\sqrt{\sum_{i=1}^n (x_i + y_i)^2} \le \sqrt{\sum_{i=1}^n x_i^2} + \sqrt{\sum_{i=1}^n y_i^2},$$

para cualesquiera $x_1, \dots, x_n, y_1, \dots, y_n \in \mathbb{R}$.

Definición 2 De la desigualdad de Schwarz deducimos que para cualesquiera $x,y \in V$ no nulos, existe un único $\theta \in [0,\pi]$ tal que

$$\cos(\theta) = \frac{g(x,y)}{\|x\| \|y\|}.$$

Dicho $\theta = \measuredangle(x,y)$ diremos que es el ángulo (no orientado) que forman los vectores $x \in y$.

 \star De lo anterior, x e y son ortogonales si y sólo si forman un ángulo de $\pi/2$. Como

$$||x + y||^2 = g(x + y, x + y) = ||x||^2 + ||y||^2 + 2g(x, y), \quad \forall x, y \in V$$

se tiene el bien conocido Teorema

Teorema 4 (Pitágoras) Sea (V, g) un espacio vectorial euclídeo $y \ x, y \in V \setminus \{0\}$. Entonces $x \ e \ y \ son \ ortogonales \ si \ y \ sólo \ si \ ||x + y||^2 = ||x||^2 + ||y||^2$.

Ejemplo 1 En (\mathbb{R}^2, g_u) con el producto escalar usual, los vectores x = (1, 1), y = (1, 0) forman un ángulo de $\pi/4$

Ejemplo 2 En (\mathbb{R}^2, g) , donde $M(g, \mathbb{B}_u) = \begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix}$, los vectores x = (1, 1), y = (1, 0) forman un ángulo de $\pi/3$.

Ejemplo 3 En $(\mathbb{R}^2, \tilde{g})$, donde $M(\tilde{g}, \mathbb{B}_u) = \begin{pmatrix} 3 & -1 \\ -1 & 1 \end{pmatrix}$, los vectores x = (1, 1), y = (1, 0) forman un ángulo de $\operatorname{ArcCos}(\sqrt{2/3})$.

2. Bases ortogonales y ortonormales

 \star La primera observación que podemos hacer relacionada con vectores ortogonales en un espacio vectorial euclídeo (V^n, g) es que cualquier conjunto de vectores ortogonales dos a dos tiene que ser linealmente independiente y por consiguiente n vectores ortogonales dos a dos han de formar siempre una base.

En efecto, si $\{u_1, \dots, u_k\}$ son ortogonales dos a dos y

$$\alpha_1 u_1 + \cdots + \alpha_n u_n = 0,$$

entonces, multiplicando con la métrica por u_j en la expresión anterior, tendremos $\alpha_j ||u_j||^2 = 0$, $\forall j = 1, \dots, k$, esto es $\alpha_j = 0, \ j = 1, \dots, k$ lo que prueba la observación.

 \bigstar Por la existencia de bases ortogonales vista en el Tema anterior, conocemos que en todo espacio vectorial euclídeo, (V,g) existirán bases ortogonales (donde la matriz de la métrica será diagonal) y bases ortonormales (donde la matriz de la métrica será la identidad). Además, si $\mathbb{B} = \{u_1, \dots, u_n\}$ es una base ortonormal de V, entonces para todo vector $x \in V$ se cumple

$$x = g(x, u_1)u_1 + \dots + g(x, u_n)u_n,$$

esto es, las coordenadas de x en la base \mathbb{B} son $x_{\mathbb{B}} = (g(x, u_1), \dots, g(x, u_n))$.

2.1. Construcción de bases

 \bigstar Conocemos del Tema II, tres métodos diferentes (geométrico, Gauss y matrices elementales) que nos permiten encontrar bases ortogonales y ortonormales de V. Usando cualquiera de estos métodos podemos conseguir una base $\mathbb B$ donde la matriz de la métrica es diagonal y todos sus valores son positivos. Para ortonormalizar dicha base basta dividir todos los vectores de la misma por su correspondiente módulo.

Ejemplo 4 Calcula una base ortonormal del espacio vectorial euclídeo (\mathbb{R}^3, g) , donde g es la métrica euclídea que en la base usual está dada por la siguiente matriz:

$$M(g, \mathbb{B}_u) = \begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix}.$$

Usando por ejemplo el método geométrico, si cogemos $u_1 = (1,0,0)$ y calculamos su ortogonal tendremos $\langle u_1 \rangle^{\perp} \equiv x - y = 0$. Así podemos coger $u_2 = (1,1,0)$. Como $\langle u_2 \rangle^{\perp} \equiv x + y = 0$, un vector perpendicular a u_1 y u_2 será el vector $u_3 = (0,0,1)$.

Es claro que la base $\{u_1, u_2, u_3\}$ es ortogonal. Dividiendo por los módulos de dichos vectores obtendremos una base ortonormal. Ahora bien $g(u_1, u_1) = 1$, $g(u_2, u_2) = 1$ y $g(u_3, u_3) = 1$ y concluimos que $\{u_1, u_2, u_3\}$ es ya una base ortonormal de (\mathbb{R}^3, g) .

★ Método de Gram-Schmidt. Este método nos va a proporcionar una nueva forma de obtener una base ortonormal a partir de una base cualquiera de un espacio vectorial euclídeo.

Teorema 5 (Gram-Schmidt) Sea (V^n, g) un espacio vectorial euclídeo $y \mathbb{B} = \{v_1, v_2, \cdots, v_n\}$ una base cualquiera, entonces existe una base ortogonal (ortonormal) $\widetilde{\mathbb{B}} = \{u_1, u_2, \cdots, u_n\}$ de V^n tal que

$$\langle u_1, \cdots, u_k \rangle = \langle v_1, \cdots, v_k \rangle, \quad \forall k = 1, \cdots n.$$

Demostración. Tomamos $u_1 = v_1$ y buscamos $\lambda \in \mathbb{R}$ para que $u_2 = v_2 - \lambda u_1$ sea ortogonal a u_1 , esto es

$$0 = q(u_1, v_2) - \lambda ||u_1||^2.$$

Escogiendo $\lambda = g(u_1, v_2)/||u_1||^2$ conseguimos que u_1 y u_2 sean ortogonales y que

$$< u_1, u_2 > = < v_1, v_2 > .$$

Para aplicar inducción, suponemos que $\{u_1, \dots, u_k\}$ es un conjunto ortogonal con

$$\langle u_1, \cdots, u_k \rangle = \langle v_1, \cdots, v_k \rangle,$$

y tomamos $\lambda_1, \dots, \lambda_k$ para que

$$u_{k+1} = v_{k+1} - \lambda_1 u_1 - \dots - \lambda_k u_k$$

sea orthogonal a $\langle u_1, \cdots, u_k \rangle$. Esto es

$$0 = g(v_{k+1}, u_i) - \lambda_i ||u_i||^2, \qquad i = 1, \dots, k.$$

De esta forma si $\lambda_i = g(v_{k+1}, u_i)/\|u_i\|^2$, $i = 1, \dots, k$ conseguimos $u_{k+1} \in \langle u_1, \dots, u_k \rangle^{\perp}$ y $\langle u_1, \dots, u_{k+1} \rangle = \langle v_1, \dots, v_{k+1} \rangle$. Para ortonormalizar la base $\{u_1, u_2, \dots, u_n\}$ basta dividir los vectores por su respectiva norma.

Ejercicio 1 Puedes practicar aplicando el método anterior a ortonormalizar la base usual del Ejemplo 4.

2.2. Cambio de base

★ Si consideramos \mathbb{B} y $\widetilde{\mathbb{B}}$ dos bases ortonormales de un espacio vectorial euclídeo (V, g), tenemos que $M(g, \mathbb{B}) = \mathbb{I}_n$ y $M(g, \widetilde{\mathbb{B}}) = \mathbb{I}_n$, y cómo éstas han de ser congruentes,

$$\mathbb{I}_n = P^t \mathbb{I}_n P = P^t P$$
, donde $P = M(\widetilde{\mathbb{B}} \to \mathbb{B})$,

lo que indica que P ha de ser una matriz **ortogonal**.

3. Proyecciones y simetrías ortogonales

 \bigstar Sea Sea (V^n,g) un espacio vectorial euclídeo y U un subespacio de dimensión k de V^n . Es claro que (U,g) es también euclídeo y existe un único complemento ortogonal U^{\perp} ,

$$V = U \oplus U^{\perp}$$
.

Ejemplo 5 Es fácil ver que en el ejemplo 4, si U = <(1,1,0)>, entonces $U^{\perp} = \{(x,y,z) \mid x+z=0\}$.

Definición 3 Sea (V^n, g) un espacio vectorial euclídeo y U un subespacio suyo de dimensión k. Es claro de la descomposición anterior que para cualesquiera $x \in V$ existen únicos vectores $x_U \in U$ y $x_{U^{\perp}} \in U^{\perp}$ tal que $x = x_U + x_{U^{\perp}}$ y en consecuencia se pueden definir las siguientes aplicaciones:

$$p_U: V \longrightarrow V, \qquad p_U(x) = x_U,$$

 $s_U: V \longrightarrow V, \qquad s_U(x) = x_U - x_{U^{\perp}}.$

 p_U y s_U se llaman, respectivamente, proyección y simetría ortogonal sobre U.

Puedes comprobar fácilmente que se verifican las siguientes propiedades:

- p_U y s_U son endomorfismos de V.
- Si $\mathbb{B} = \{e_1, \dots, e_k, e_{k+1}, \dots, e_n\}$ es una base de V tal que

$$U = \langle e_1, \cdots, e_k \rangle, \qquad U^{\perp} = \langle e_{k+1}, \cdots, e_n \rangle,$$

entonces

$$M(p_U, \mathbb{B}) = \begin{pmatrix} \mathbb{I}_k & 0 \\ 0 & 0 \end{pmatrix}, \qquad M(s_U, \mathbb{B}) = \begin{pmatrix} \mathbb{I}_k & 0 \\ 0 & -\mathbb{I}_{n-k} \end{pmatrix}.$$

- p_U es diagonalizable con valores propios $\lambda=1,\ \lambda=0$ y subespacios propios U y $U^\perp,$ respectivamente.
- s_U es diagonalizable con valores propios $\lambda = 1$, $\lambda = -1$ y subespacios propios U y U^{\perp} , respectivamente.
- Existen bases ortonormales de V que diagonalizan a p_U y a s_U .
- La matriz de p_U en cualquier base ortonormal de V es simétrica.
- \blacksquare La matriz de s_U en cualquier base ortonormal de V es simétrica.
- La matriz de s_U en cualquier base ortonormal de V es una matriz ortogonal.

Ejemplo 6 Sea (\mathbb{R}^3, g) el espacio vectorial euclídeo, donde g está dada en la base usual por la siguiente matriz:

$$M(g, \mathbb{B}_u) = \begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix}.$$

Calcula la matriz de la proyección ortogonal sobre el subespacio $U = \{(x, y, z) \mid x - y = 0\}$ en la base usual.

Para resolver el ejercicio cogemos bases de U y U^{\perp} , respectivamente. De la definición de U tenemos que U = <(1,1,0), (0,0,1) > y $U^{\perp} = <(1,0,0) >$, en consecuencia en la base

$$\mathbb{B} = \{(1, 1, 0), (0, 0, 1), (1, 0, 0)\}$$

la matriz de p_U está dada por $M(p_U, \mathbb{B}) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ y por tanto cambiando de base,

$$M(p_U, \mathbb{B}_u) = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}^{-1}.$$

Puedes seguir practicando con el siguiente ejercicio:

Ejercicio 2 Se considera (S_2, g) el espacio vectorial de las matrices simétricas de orden dos con la métrica euclídea g dada por g(A, B) = Traza(AB). Calcular la matriz de la simetría ortogonal respecto al subespacio $U = \{A \in S_2 \mid \text{Traza}(A) = 0\}$ en la base

$$\mathbb{B}_u = \{ \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right) \}.$$

Proposición 1 (Mínima distancia) Sea (V, g) un espacio vectorial euclídeo y U un subespacio vectorial de V. Consideremos $x_0 \in V$, entonces

$$p_U(x_0) = u_0 \iff ||x_0 - u_0|| < ||x_0 - u||, \quad \forall u \in U \setminus \{u_0\}.$$

Demostración. \implies Como $x_0 - u_0 \in U^{\perp}$, se verifica que $g(x_0 - u_0, u - u_0) = 0$ para todo vector $u \in U$. Así, por el Teorema de Pitágoras

$$||x_0 - u||^2 = ||x_0 - u_0 + u_0 - u||^2 = ||x_0 - u_0||^2 + ||u_0 - u||^2 \ge ||x_0 - u_0||^2$$

con igualdad si y sólo si $u = u_0$.

Example Recíprocamente, si $u_0 \in U$ minimiza la distancia de x_0 a U y suponemos que $p_U(x_0) = u_1$, entonces

$$||x_0 - u_1||^2 \ge ||x_0 - u_0||^2 = ||x_0 - u_1||^2 + ||u_0 - u_1||^2 \ge ||x_0 - u_1||^2$$

esto es, $u_1 = u_0$.

4. Endomorfismos autoadjuntos y diagonalización

Estamos ya en condiciones de aprender a diagonalizar matrices simétricas, simultáneamente, por semejanza y por congruencia.

Definición 4 Sea (V, g) un espacio vectorial euclídeo y $f: V \longrightarrow V$ un endomorfismo. Vamos a decir que f es autoadjunto respecto de g si

$$g(f(x), y) = g(x, f(y)), \quad \forall x, y \in V$$

De la definición anterior tenemos que si \mathbb{B} es una base de V tal que $G = M(g, \mathbb{B})$ y $A = M(f, \mathbb{B})$, entonces f es autoadjunto si y sólo si

$$x_{\mathbb{R}}^t A^t G y_{\mathbb{B}} = x_{\mathbb{R}}^t A^t G^t y_{\mathbb{B}} = x_{\mathbb{R}}^t G A y_{\mathbb{B}}$$

para cualesquiera vectores $x, y \in V$.

A partir de aquí te propongo como ejercicio que pruebes las siguientes caracterizaciones de los endomorfismos autoadjuntos.

Teorema 6 Sea (V, g) un espacio vectorial euclídeo $y f : V \longrightarrow V$ un endomorfismo autoadjunto entonces son equivalentes:

- 1. f es autoadjunto.
- 2. Si \mathbb{B} es base de V, $G = M(g, \mathbb{B})$ y $A = M(f, \mathbb{B})$, entonces GA es simétrica.
- 3. Existe una base \mathbb{B} de V tal que si $G=M(g,\mathbb{B})$ y $A=M(f,\mathbb{B})$, entonces GA es una matriz simétrica
- 4. La matriz de f en cualquier base ortonormal de V es simétrica.
- 5. Existe una base ortonormal \mathbb{B} de V tal que $M(f, \mathbb{B})$ es simétrica.

Como primeras propiedades de los endomorfismos autoadjuntos tenemos:

Proposición 2 Sea (V,g) un espacio vectorial euclídeo $y \ f : V \longrightarrow V$ un endomorfismo autoadjunto,

- $si~U~es~un~subespacio~vectorial~de~V~tal~que~f(U)\subseteq U,~entonces~f(U^{\perp})\subseteq U^{\perp}.$
- los subespacios propios de f son ortogonales dos a dos.

Demostración. Sea $y \in U^{\perp}$. Entonces, por ser f autoadjunto y U invariante, se tiene que para todo $x \in U$, g(f(y), x) = g(y, f(x)) = 0, esto es, $f(U^{\perp}) \subseteq U^{\perp}$.

Por otro lado, si V_{λ} y V_{μ} son subespacios propios distintos de f asociados a los valores propios si λ y μ , entonces dados dos vectores cualesquiera $x \in V_{\lambda}$ e $y \in V_{\mu}$, se tiene

$$g(f(x), y) = \lambda g(x, y) = g(x, f(y)) = \mu g(x, y),$$

esto es $(\lambda - \mu)g(x, y) = 0$ y x e y han de ser ortogonales.

Lema 1 Sea A una matriz simétrica de orden n. Entonces A tiene al menos un valor propio real.

Demostración. Denotemos por g_u el producto escalar usual de \mathbb{R}^n y consideremos

$$\mathbb{S}^{n-1} = \{ x \in \mathbb{R}^n \mid g_u(x, x) = 1 \}$$

la esfera unidad en \mathbb{R}^n . Es claro que la función $\phi: \mathbb{S}^{n-1} \longrightarrow \mathbb{R}$ dada por

$$\phi(x) = g_u(Ax, x), \qquad x \in \mathbb{S}^{n-1}$$

es continua sobre un cerrado y acotado de \mathbb{R}^n . Por Bolzano, conocemos que ha de existir un punto $p \in \mathbb{S}^{n-1}$ de máximo, esto es, $\phi(p) \geq \phi(x)$ para todo $x \in \mathbb{S}^{n-1}$. Sea $v \in \langle p \rangle^{\perp}$ unitario y ortogonal a p. Consideremos $\alpha : \mathbb{R} \longrightarrow \mathbb{R}$ la función dada por

$$\alpha(t) = \phi(\cos(t)p + \sin(t)v).$$

Es claro que α es diferenciable y que $\alpha(0) = \phi(p)$ es un máximo de α . Así

$$0 = \left. \frac{d\alpha(t)}{dt} \right|_{t=0} = 2g_u(Ap, v)$$

y por tanto $Ap \in (^{\perp})^{\perp}$, esto es, existe $\lambda \in \mathbb{R}$ tal que $Ap = \lambda p$ lo que concluye a demostración.

Del Lema anterior y teniendo en cuenta que la matriz que representa a un endomorfismo autoadjunto en una base ortonormal es siempre simétrica, obtenemos:

Corolario 1 Todo endomorfismo autoadjunto f de un un espacio vectorial euclídeo (V^n, g) tiene siempre algún valor propio.

Teorema 7 Todo endomorfismo autoadjunto f de un un espacio vectorial euclídeo (V^n,g) es diagonalizable.

Demostración. Por el Corolario anterior se sabe que existen valores propios de f. Sean $\lambda_1, \dots, \lambda_r$ los valores propios de f, entonces o bien f es diagonalizable o bien

$$U = V_{\lambda_1} \oplus \cdots \oplus V_{\lambda_n} \neq V$$
.

En este último caso y como $f(U) \subseteq U$, se tendrá que $f: U^{\perp} \longrightarrow U^{\perp}$ es también autoadjunto y tendrá algún vector propio $x \in U^{\perp} \cap V_{\lambda_i} \subset U^{\perp} \cap U = \{0\}$, lo cual es una contradicción. \square

Corolario 2 Toda matriz simétrica es, simultáneamente, diagonalizable por semejanza y por congruencia.

Demostración. Sea A una matriz simétrica de orden n. Entonces A es la matriz en la base usual del endomorfismo $f_A: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ definido por $f_A(x) = Ax$, que trivialmente es autoadjunto en (\mathbb{R}^n, g_u) donde por g_u denotamos el producto escalar usual. Como f_A es diagonalizable y los subespacios propios de f_A son ortogonales dos a dos, deducimos que es posible encontrar una base \mathbb{B} ortonormal de vectores propios de f_A . Esto es, $P^{-1}AP$ es diagonal, donde P es la matriz de cambio de base entre bases ortonormales. Así P es ortogonal y A es diagonalizada, simultáneamente, por semejanza y congruencia.

5. Isometrías lineales

Recordamos del tema anterior que una aplicación lineal f entre dos espacios vectoriales métricos (V_1, g_1) y (V_2, g_2) es una isometría si f es biyectiva y conserva las métricas, esto es,

$$g_1(x,y) = g_2(f(x), f(y)), \quad \forall x, y \in V_1.$$

5.1. Algunas propiedades de las isometrías euclídeas

Para el case particular de un espacio vectorial euclídeo (V, g) se tiene:

■ Todo endomorfismo f de V que conserva la métrica es una isometría En efecto, si f(x) = 0, entonces $||x||^2 = g(x,x) = g(f(x),f(x)) = 0$ y por tanto x = 0. Así $N(f) = \{0\}$ y f es biyectiva. ■ Todo endomorfismo f de V que conserva la norma es una isometría En efecto, si ||x|| = ||f(x)|| para todo $x \in V$, entonces para cualesquiera $x, y \in V$ se verifica

$$g(x,y) = \frac{1}{2} \{ \|x + y\|^2 - \|x\|^2 - \|y\|^2 \}$$

= $\frac{1}{2} \{ \|f(x + y)\|^2 - \|f(x)\|^2 - \|f(y)\|^2 \} = g(f(x), f(y))$

■ Toda isometría f entre euclídeos conserva ángulos. En efecto, para cualesquiera $x, y \in V \setminus \{0\}$,

$$\cos(\angle(x,y)) = \frac{g(x,y)}{\|x\| \|y\|} = \frac{g(f(x),f(y))}{\|f(x)\| \|f(y)\|} = \cos(\angle(f(x),f(y))).$$

• Un isomorfismo entre espacios vectoriales euclídeos que conserva ángulos no es necesariamente una isometría.

Por ejemplo, basta observar que las homotecias de razón k, $h_k = kI_V$, conservan ángulos pero dilatan la norma. En efecto,

$$\frac{g(h_k(x), h_k(y))}{\|h_k(x)\| \|h_k(y)\|} = \frac{k^2 g(x, y)}{k^2 \|x\| \|y\|} = \frac{g(x, y)}{\|x\| \|y\|}$$
$$\|h(x)\| = |k| \|x\|.$$

para cualesquiera $x, y \in V$, y por tanto no son isometrías si $k \neq 1$.

Proposición 3 Un endomorfismo f de un espacio vectorial euclídeo es una isometría si y sólo si su matriz respecto de una base ortonormal es una matriz ortogonal.

Demostración. Sea \mathbb{B} una base ortonormal de V y $A = M(f, \mathbb{B})$, entonces al coger coordenadas en \mathbb{B} se tiene que g(x, y) = g(f(x), f(y)) si y sólo si,

$$x_{\mathbb{B}}^{t} \mathbb{I}_{n} y_{\mathbb{B}} = x_{\mathbb{B}}^{t} A^{t} \mathbb{I}_{n} A y_{\mathbb{B}} = x_{\mathbb{B}}^{t} A^{t} A y_{\mathbb{B}}$$

y por tanto f es una isometría si y sólo si A es una matriz ortogonal.

Observación 1 Si en una base \mathbb{B} cualquiera de V la matriz de un endomorfismo f es A, entonces f es una isometría si y sólo si,

$$M(g, \mathbb{B}) = A^t M(g, \mathbb{B}) A.$$

Como consecuencia $det(A) = \pm 1$.

Ejemplo 7 Las siguientes matrices ortogonales $A_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $A_2 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ proporcionan ejemplos de isometrías entre un plano vectorial euclídeo, respecto de una base ortonormal.

5.2. Más propiedades

Sea (V,g) un espacio vectorial euclídeo y $f:V\longrightarrow V$ una isometría entonces

- \star Si λ es un valor propio de f, $\lambda \in \{1, -1\}$. En efecto, si $f(x) = \lambda x$, como f es isometría se tendrá que $||x|| = ||f(x)|| = |\lambda|||x||$ y por tanto $\lambda = \pm 1$.
- ★ Los subespacios propios de f son ortogonales. En efecto, si V_1 y V_{-1} son subespacios propios de f y $x \in V_1$, $y \in V_{-1}$, entonces

$$g(x,y) = g(f(x), f(y)) = -g(x,y)$$

y por tanto g(x,y) = 0.

5.3. Isometrías del plano euclídeo

Consideremos (V^2, g) un plano euclídeo y $\mathbb{B} = \{e_1, e_2\}$ una base ortonormal de V^2 . Si $f: V^2 \longrightarrow V^2$ es una isometría, entonces $f(\mathbb{B}) = \{f(e_1), f(e_2)\}$ es otra base ortonormal de V^2 . Por ser $f(e_1)$ y $f(e_2)$ unitarios, existen únicos $\theta_1, \theta_2 \in [0, 2\pi[$ tal que

$$f(e_1) = \cos(\theta_1)e_1 + \sin(\theta_1)e_2, \qquad f(e_2) = \cos(\theta_2)e_1 + \sin(\theta_2)e_2.$$

Además, la ortogonalidad de $f(e_1)$ y $f(e_2)$ nos dice que

$$\cos(\theta_1)\cos(\theta_2) + \sin(\theta_1)\sin(\theta_2) = \cos(\theta_1 - \theta_2) = 0$$

y por tanto solo hay dos posibilidades,

★ o bien $f(e_2) = f(e_2) = -\sin(\theta_1)e_1 + \cos(\theta_1)e_2$ esto es f es Rotación de ángulo θ_1 , cuya matriz en la base \mathbb{B} está dada por

$$M(f, \mathbb{B}) = \begin{pmatrix} \cos(\theta_1) & -\sin(\theta_1) \\ \sin(\theta_1) & \cos(\theta_1) \end{pmatrix}.$$

En este caso $\text{Traza}(f) = 2\cos(\theta_1)$ y $\det(f) = 1$ y no hay vectores propios salvo que $\theta_1 = 0$ o $\theta_1 = \pi$, esto es, $f = I_V$ o $f = -I_V$.

★ o bien $f(e_2) = f(e_2) = \operatorname{sen}(\theta_1)e_1 - \cos(\theta_1)e_2$, Simetría respecto de una recta cuya matriz en la base \mathbb{B} está dada por

$$M(f, \mathbb{B}) = \begin{pmatrix} \cos(\theta_1) & \sin(\theta_1) \\ \sin(\theta_1) & -\cos(\theta_1) \end{pmatrix}.$$

En este caso Traza(f) = 0 y $\det(f) = -1$, hay dos valores propios $\lambda_1 = 1$ y $\lambda_2 = -1$ y por tanto f es diagonalizable y si $V_1 = \langle u_1 \rangle$ y $V_{-1} = \langle u_2 \rangle$, u_1 y u_2 son ortogonales y la matriz de f en la base $\{u_1, u_2\}$ está dada por

$$M(f, \{u_1, u_2\}) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Esto es, f es la simetría ortogonal respecto de la recta V_1 .

 \bigstar Obsérvese que la composición de isometrías es siempre una isometría. Esta será un giro si su determinante es 1 o una simetría si su determinante es -1.

Ejemplo 8 Sea (V, g) un plano vectorial euclídeo y $\mathbb{B} = \{e_1, e_2\}$ una base de V tal que

$$M(g, \mathbb{B}) = G = \begin{pmatrix} 5 & -8 \\ -8 & 13 \end{pmatrix}.$$

 $Y \ sean \ f_1 \ y \ f_2 \ endomorfismos \ de \ V \ tales \ que$

$$M(f_1, \mathbb{B}) = A_1 = \begin{pmatrix} 7 & -12 \\ 4 & 7 \end{pmatrix}, \qquad M(f_2, \mathbb{B}) = A_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} -7 & 13 \\ -5 & 9 \end{pmatrix}.$$

Probar que f_1 y f_2 son isometrías de (V,g) y clasificarlas.

Es fácil comprobar que $A_i^tGA_i=G,\,i=1,2$ y por tanto f_1 y f_2 son isometrías. Por otro lado $\det(f_1)=-1$ y por tanto f_1 es una simetría ortogonal respecto del subespacio propio

$$V_1 = \{ v = x_1 e_1 + x_2 e_2 \mid x_1 = 2x_2 \}.$$

En cuanto a f_2 , $\det(f_2) = 1$ y f_2 es un giro de ángulo θ con $2\cos(\theta) = \text{Traza}(f_2) = \sqrt{2}$, esto es, $\theta = \pi/4$.

5.4. Isometrías en el espacio euclídeo

Consideremos (V^3, g) un espacio vectorial euclídeo de dimensión tres y $f: V^3 \longrightarrow V^3$ una isometría. Como el polinomio característico de f, $p_f(\lambda)$, es de grado tres, tenemos que existe al menos un valor propio de f, esto es, existe $u \in V \setminus \{0\}$ tal que $f(u) = \pm u$.

Como la recta U=< u> es invariante por f, se tendrá que $f:U^{\perp}\longrightarrow U^{\perp}$ es una isometría del plano euclídeo (U^{\perp},g) y por tanto un giro o una simetría. Por tanto existe una base ortonormal $\mathbb B$ de $V^3=U\oplus U^{\perp}$ y tenemos las siguientes posibilidades:

- $M(f, \mathbb{B}) = \pm \mathbb{I}_3 \text{ y } f = \pm I_V.$
- $M(f, \mathbb{B}) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta_1) & -\sin(\theta_1) \\ 0 & \sin(\theta_1) & \cos(\theta_1) \end{pmatrix}$ y f es un giro de ángulo θ_1 con eje la recta vectorial dada por el subespacio propio V_1 . En este caso, $\operatorname{Traza}(f) = 1 + 2\cos(\theta_1)$ y $\det(f) = 1$.
- $M(f, \mathbb{B}) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$ y fes la simetría ortogonal respecto al plano V_1 . En este caso, Traza(f) = 1 y det(f) = -1.
- $M(f, \mathbb{B}) = \begin{pmatrix} -1 & 0 & 0 \\ 0 & \cos(\theta_1) & -\sin(\theta_1) \\ 0 & \sin(\theta_1) & \cos(\theta_1) \end{pmatrix}$ y f es composición de un giro entorno a la recta V_{-1} y de una simetría ortogonal respecto al plano V_{-1}^{\perp} . En este caso, $\operatorname{Traza}(f) = -1 + 2\cos(\theta_1)$ y $\det(f) = -1$.
- $M(f, \mathbb{B}) = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$ y fes la simetría ortogonal respecto a la recta V_1 . En este caso, Traza(f) = -1 y $\det(f) = 1$.

Ejemplo 9 En (\mathbb{R}^3 , g_u) calcula el giro f de ángulo $\pi/4$ alrededor del eje $E = \{(x, y, z) \mid x = y, z = 0\}$

Sabemos que si cogemos \mathbb{B} base ortonormal de $E \oplus E^{\perp}$,

$$\mathbb{B} = \left\{ \frac{1}{\sqrt{2}} (1, 1, 0), \frac{1}{\sqrt{2}} (1, -1, 0), (0, 0, 1) \right\},\,$$

entonces

$$M(f, \mathbb{B}) = \begin{pmatrix} 1 & 0 & 0\\ 0 & \cos(\theta_1) & -\sin(\theta_1)\\ 0 & \sin(\theta_1) & \cos(\theta_1) \end{pmatrix}, \quad \text{con } \theta_1 = \pi/4$$

y por tanto $M(f, \mathbb{B}_u) = PM(f, \mathbb{B})P^{-1}$ donde $P = M(\mathbb{B} \to \mathbb{B}_u)$.

Ejercicio 3 $En \mathbb{R}^3$ se considera la métrica euclídea g_ω asociada a la forma cuadrática ω dada por

$$\omega(x, y, z) = 5x^2 - 16xy - 4xy - 4xz + 13y^2 + 6yz + 2z^2.$$

Se consideran $f_1, f_2 : \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ los endomorfismos dados por las siguientes matrices:

$$M(f_1, \mathbb{B}_u) = \begin{pmatrix} 1 & 0 & -4 \\ 0 & 1 & -2 \\ 2 & -3 & -1 \end{pmatrix}, \qquad M(f_2, \mathbb{B}_u) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & -3 & -1 \end{pmatrix}.$$

Comprobar que son isometrías y clasificarlas

Ejercicio 4 En (\mathbb{R}^2, g_u) se consideran f_1 el giro de ángulo $\pi/4$ y f_2 la simetría ortogonal respecto a la recta $r \equiv x - y = 0$. Clasificar $f_1 \circ f_2$ y $f_2 \circ f_1$.

Ejercicio 5 En \mathbb{R}^3 se consideran la métrica euclídea g_ω asociada a la forma cuadrática

$$\omega(x, y, z) = x^2 - 2xz + y^2 + 2yz + 3z^2.$$

 $y f_1$ el endomorfismo cuya matriz en la base usual está dada por

$$M(f_1, \mathbb{B}_u) = \frac{1}{2} \begin{pmatrix} -\sqrt{3} & 1 & -1 - \sqrt{3} \\ 1 & \sqrt{3} & -1 + \sqrt{3} \\ 0 & 0 & 2 \end{pmatrix}$$

Clasifica f_1 .

5.5. El caso general

Para el caso general de un espacio vectorial euclídeo (V^n,g) se puede demostrar el siguiente resultado de clasificación:

Teorema 8 Sea $f: V \longrightarrow V$ una isometría de (V,g). Entonces existen $p,q,s \in \mathbb{N}$ con p+q+2s=n y una base ortonormal \mathbb{B} de V tal que

$$M(f,\mathbb{B}) = \left(egin{array}{ccccc} \mathbb{I}_p & 0 & 0 & 0 & 0 \ 0 & -\mathbb{I}_q & 0 & 0 & 0 \ 0 & 0 & R(heta_1) & 0 & 0 \ 0 & 0 & 0 & \ddots & 0 \ 0 & 0 & 0 & 0 & R(heta_s) \end{array}
ight),$$

donde
$$R(\theta_j) = \begin{pmatrix} \cos(\theta_j) & -\sin(\theta_j) \\ \sin(\theta_j) & \cos(\theta_j) \end{pmatrix}$$
, con $0 < \theta_j < 2\pi$, $\theta_j \neq \pi$ para todo j .

Demostración. Consideremos V_1 y V_{-1} los subespacios propios de f. Es claro que $V_1 \perp V_{-1}$ y que si denotamos por $W_1 = V_1 \oplus V_{-1}$, $f: W_1^{\perp} \longrightarrow W_1^{\perp}$ es una isometría sin vectores propios. Si $W_1 \neq V$, como

$$h = f + f^{-1}: W_1^{\perp} \longrightarrow W_1^{\perp}$$

es autoadjunto y todo endomorfismo autoadjunto se puede diagonaizar, existe $p_1 \in W_1^{\perp}$ tal que $h(p_1) = \lambda p_1$ o equivalentemente, $f(p_1) = \lambda p_1 + f(p_1)$. Por tanto,

$$f: U_1 = < p_1, f(p_1 > \longrightarrow U_1 = < p_1, f(p_1 >)$$

es una isometría sin vectores propios, con lo que f será, en el plano U_1 , un giro de ángulo θ_1 cuya matriz en una base ortonormal de U_1 estará dada por $R(\theta_1)$.

Si ahora cogemos $W_2 = W_1 \oplus U_1$, entonces $W_2 = V$ o si no, $h: W_2^{\perp} \longrightarrow W_2^{\perp}$ es también autoadjunto y, como antes, existe p_2 vector propio de h en W_2^{\perp} . Así,

$$f: U_2 = < p_2, f(p_2 > \longrightarrow U_2 = < p_2, f(p_2 >)$$

es un giro de ángulo θ_2 cuya matriz en una base ortonormal de U_2 será $R(\theta_2)$.

Reiterando el proceso, podemos descomponer $V = V_1 \oplus V_{-1} \oplus U_1 \oplus \cdots \oplus U_s$ y encontrar una base ortonormal de V donde la matriz de f es como en el enunciado del Teorema.