Практическая работа № 6 Задание 1

Каждый студент получает выборку из 20 чисел. Необходимо определить следующие статистические характеристики: вариационный ряд, экстремальные значения и размах, оценки математического ожидания и среднеквадратического отклонения, эмпирическую функцию распределения и её график, гистограмму и полигон приведенных частот группированной выборки. Для расчета характеристик и построения графиков нужно написать программу на одном из языков программирования. Листинг программы и результаты работы должны быть представлены в отчете по практической работе. Стандартные функции статистики использовать нельзя.

Bap.	16	17	18	19	20	21	22	23	24	25
1	- 0.45	0.52	-1.63	-0.42	-1.18	1.62	0.43	1.42	-0.55	-1.51
	1.42	0.66	-1.70	0.17	0.14	-1.71	-0.18	0.69	-0.70	-0.68
2	0.83	-0.48	-1.35	0.31	0.59	1.35	-0.30	-0.24	0.51	0.26
	0.73	0.00	1.59	0.17	-0.45	1.60	-0.18	-1.73	0.03	1.70
3	-0.03	-0.59	0.38	0.14	-1.59	-0.38	-0.15	0.06	0.61	-0.05
	0.73	-1.59	1.49	-0.62	1.45	-1.49	0.63	-1.59	0.62	1.56
4	0.34	-1.14	0.73	1.31	-1.55	-0.74	1.32	0.80	1.12	-0.81
	-1.38	0.80	0.38	0.52	-0.90	-0.39	-0.53	0.77	-0.77	0.81
5	-1.73	1.66	0.62	1.63	0.42	-0.63	-1.64	-1.38	-1.68	1.42
	-0.73	-0.80	1.52	1.04	-1.21	-1.53	-1.10	-0.66	0.82	0.72
6	0.90	0.24	0.55	-1.45	0.17	-0.56	1.45	0.86	-0.22	-0.91
	-1.00	0.62	-1.45	-0.52	-1.31	1.45	0.54	-1.73	-0.64	1.45
7	-0.76	-0.55	-0.62	0.21	-1.31	0.64	-0.21	-1.07	0.21	1.16
	-1.14	1.07	-0.14	-1.45	1.45	0.24	1.46	1.04	-0.31	-1.12
8	1.07	-1.49	0.11	0.35	1.07	-0.26	-0.35	1.01	0.28	-1.10
	1.59	-0.10	1.18	-0.73	0.31	-1.20	0.73	-0.12	-1.32	-0.26
9	-1.35	0.38	0.35	0.80	-1.49	-0.36	-0.80	0.55	-0.46	-0.60
	-0.42	1.21	1.56	0.14	0.35	-1.57	-0.15	0.20	-1.63	0.05
10	-0.34	0.69	1.11	0.93	1.00	-1.10	-0.93	-0.22	-1.06	-0.10
	-0.73	0.55	0.62	0.42	-0.48	-0.66	0.42	-0.11	-0.72	1.05
11	0.92	-1.05	1.04	1.55	0.92	-0.49	1.49	0.40	-0.61	0.13
	0.51	-1.41	-1.03	-0.17	0.17	-0.25	-1.48	0.64	0.43	0.91
12	0.41	-1.53	0.85	1.54	1,24	1.08	-0.92	1.15	0.26	1.57
	1.63	-0.20	0.09	0.25	-0.26	0.42	-0.91	-0.82	0.96	0.72
13	-0.26	1.49	-1.54	-1.33	-1.68	-1.55	0.34	-0.84	-1.72	0.34
	-0.58	-0.84	1.13	-0.78	-0.94	1.54	0.58	-1.58	-0.49	-0.14
14	-0.53	-0.93	0.48	-1.55	-1.34	-0.04	-0.84	0.57	0.76	0.30
	-0.87	-0.41	0.81	-1.42	-0.61	-0.33	-1.33	0.62	-0.48	-0.35
15	1.07	-1.18	1.69	0.48	0.92	1.42	-0.08	0.65	0.66	0.46
	-1.02	1.34	0.31	0.11	0.04	-1.59	-0.21	0.55	1.22	0.82

Варианты исходных данных

В таблице 15 строк и 10 столбцов. Адрес каждой ячейки задается парой чисел – номером строки и номером столбца. Вариант исходных данных определяем по номеру в журнале следующим образом:

№ студента в	Адреса 10 ячеек из таблиц исходных данных
списке группы	
1	(1,16) – (1,25)
2	(2,16) – (2,25)
15	(15,16) – (15,25)
16	(1,16) – (1,20), (2,16) – (2,20)
17	(2,16) – (2,20), (3,16) – (3,20)
18	(3,16) – (3,20), (4,16) – (4,20)
19	(4,16) – (4,20), (5,16) – (5,20)
20	(5,16) – (5,20), (6,16) – (6,20)
,	
25	(10,16) – (10,20), (11,16) – (11,20)

Внимание! Задания 2 и 3 выполняем письменно.

Задание 2

- 1. После очень дождливой ночи на лужайке было обнаружено 12 дождевых червей. Их длины, см:
 - 9,5 9,5 11,2 10,6 9,9 11,1 10,9 9,8 10,1 10,2 10,9 11,0
 - 2. Дана выборка:
 - 3,6 3,9 4,5 3,8 4,4 4,9 4,2 3,8
- 3. Уровень грамотности населения в 15 выбранных развивающихся африканских странах, %:
- 63,4 64,5 57,1 51,7 40,1 37,7 45,8 54,9 35,9 31,0 35,5 19,2 13,6 31,4 40,1
 - 4. Масса 13 шайб, г:
 - 154 152 146 161 148 153 159 160 154 146 150 155 161
 - 5. Рост шести полицейских, см:
 - 180 176 179 181 183 179
 - 6. Дана выборка:
 - 0,30 0,28 0,27 0,33 0,35 0,33 0,27 0,31 0,37 0,29
- 7. Доля учащихся среди молодежи в 15 выбранных развитых странах мира к середине 90-х гг., %:
 - 79 86 87 90 82 88 73 91 94 92 100 83 96 89 78
- 8. Десять пачек определенных сортов печенья выбраны случайным образом и взвешены. Их массы, г:
- 396,8 400,0 397,6 392,1 401,0 392,9 400,8 400,6 399,6 397,3
- Пятнадцать студентов на физическом практикуме экспериментально измеряли величину ускорения свободного падения. Были получены следующие результаты:
- 9,806 9,807 9,810 9,802 9,805 9,806 9,804 9,811 9,801 9,804 9,805 9,809 9,807
- 10. Выборка из 12 кусков розового мыла была взвешена. Вес оказался следующим, г:
 - 174 164 182 169 171 187 176 177 168 171 180 175

Построить доверительный интервал для оценки генеральной средней при заданной доверительной вероятности γ .

Номер	Номер	ν	Номер	Номер	γ
варианта	задания	i	варианта	задания	,
1	1	0,9	11	1	0,95
2	2	0,95	12	2	0,99
3	3	0,9	13	3	0,95
4	4	0,99	14	4	0,9
5	5	0,95	15	5	0,9
6	6	0,9	16	6	0,99
7	7	0,99	17	7	0,95
8	8	0,95	18	8	0,9
9	9	0,9	19	9	0,95
10	10	0,99	20	10	0,9

Задание 3

Известна следующая информация о выборке:

1.
$$n = 100$$
, $\bar{X} = 76$, $\sigma = 12$.

2.
$$n = 150$$
, $\bar{X} = 748$, $\sigma = 3.6$.

3.
$$n = 100$$
, $\overline{X} = 82$, $\sum x_i^2 = 686800$.

4.
$$n = 150$$
, $\sum x_i = 1623$, $\sum x_i^2 = 17814,36$.

5.
$$n = 100$$
, $\sum x_i = 1119$, $\sum x_i^2 = 12585,61$.

6.
$$n = 64$$
, $\sum x_i = 5452, 8$, $\sum (x_i - \bar{X})^2 = 973, 44$.

7.
$$n = 80$$
, $\overline{X} = 69$, $\sigma = 4$.

8.
$$n = 250$$
, $\sum x_i = 43205$, $\sum x_i^2 = 7469107$.

9.
$$n = 72$$
, $\sum x_i = 1267, 2$, $\sum x_i^2 = 22536$.

10.
$$n = 64$$
, $\sum x_i = 1008$, $\sum (x_i - \bar{X})^2 = 172.8$.

Построить доверительный интервал для оценки генеральной средней при заданной доверительной вероятности γ.

Номер варианта	Номер задания	γ	Номер варианта	Номер задания	γ
1	1	0,99	11	1	0,9
2	2	0,9	12	2	0,95
3	3	0,98	13	3	0,99
4	4	0,96	14	4	0,99
5	5	0,9	15	5	0,96
6	6	0,97	16	6	0,9
7	7	0,95	17	7	0,99
8	8	0,99	18	8	0,9
9	9	0,9	19	9	0,95
10	10	0,95	20	10	0,9

ПРИЛОЖЕНИЕ 1

ФУНКЦИЯ РАСПРЕДЕЛЕНИЯ НОРМАЛЬНОГО ЗАКОНА

x	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,5000	0,5040	0,5080	0,5120	0,5160	0,5199	0,5239	0,5279	0,5319	0,5359
0,1	0,5398	0,5438	0,5478	0,5517	0,5557	0,5596	0,5636	0,5675	0,5717	0,5753
0,2	0,5793	0,5832	0,5871	0,5910	0,5948	0,5987	0,6026	0,6064	0,6103	0,6141
0,3	0,6179	0,6217	0,6255	0,6293	0,6331	0,6368	0,6406	0,6443	0,6480	0,6517
0,4	0,6554	0,6591	0,6628	0,6664	0,6700	0,6736	0,6772	0,6808	0,6844	0,6879
0,5	0,6915	0,6950	0,6985	0,7019	0,7054	0,7088	0,7123	0,7157	0,7190	0,7224
0,6	0,7257	0,7291	0,7324	0,7357	0,7389	0,7422	0,7454	0,7486	0,7517	0,7549
0,7	0,7580	0,7611	0,7642	0,7673	0,7704	0,7734	0,7764	0,7794	0,7823	0,7852
0,8	0,7881	0,7910	0,7939	0,7967	0,7995	0,8023	0,8051	0,8078	0,8106	0,8133
0,9	0,8159	0,8186	0,8212	0,8238	0,8264	0,8289	0,8315	0,8340	0,8365	0,8389
1,0	0,8413	0,8438	0,8461	0,8485	0,8508	0,8531	0,8554	0,8577	0,8599	0,8621
1,1	0,8643	0,8665	0,8686	0,8708	0,8729	0,8749	0,8770	0,8790	0,8810	0,8830
1,2	0,8849	0,8869	0,8888	0,8907	0,8925	0,8944	0,8962	0,8980	0,8997	0,9015
1,3	0,9032	0,9049	0,9066	0,9082	0,9099	0,9115	0,9131	0,9147	0,9162	0,9177
1,4	0,9192	0,9207	0,9222	0,9236	0,9251	0,9265	0,9279	0,9292	0,9306	0,9319
1,5	0,9332	0,9345	0,9357	0,9370	0,9382	0,9394	0,9406	0,9418	0,9429	0,9441
1,6	0,9452	0,9463	0,9474	0,9484	0,9495	0,9505	0,9515	0,9525	0,9535	0,9545
1,7	0,9554	0,9564	0,9573	0,9582	0,9591	0,9599	0,9608	0,9616	0,9625	0,9633
1,8	0,9641	0,9649	0,9656	0,9664	0,9671	0,9678	0,9686	0,9693	0,9699	0,9706

Окончание таблицы

x	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
1,9	0,9713	0,9719	0,9726	0,9732	0,9738	0,9744	0,9750	0,9756	0,9761	0,9767
2,0	0,9772	0,9778	0,9783	0,9788	0,9793	0,9798	0,9803	0,9808	0,9812	0,9817
2,1	0,9821	0,9826	0,9830	0,9834	0,9838	0,9842	0,9846	0,9850	0,9854	0,9857
2,2	0,9861	0,9864	0,9868	0,9871	0,9875	0,9878	0,9881	0,9883	0,9887	0,9890
2,3	0,9893	0,9896	0,9898	0,9901	0,9904	0,9906	0,9909	0,9911	0,9913	0,9916
2,4	0,9918	0,9920	0,9922	0,9925	0,9927	0,9929	0,9931	0,9932	0,9934	0,9936
2,5	0,9938	0,9940	0,9941	0,9943	0,9945	0,9946	0,9948	0,9949	0,9951	0,9952
2,6	0,9953	0,9955	0,9956	0,9957	0,9959	0,9960	0,9961	0,9962	0,9963	0,9964
2,7	0,9965	0,9966	0,9967	0,9968	0,9969	0,9970	0,9971	0,9972	0,9973	0,9974
2,8	0,9974	0,9975	0,9976	0,9977	0,9977	0,9978	0,9979	0,9979	0,9980	0,9981
2,9	0,9981	0,9982	0,9982	0,9983	0,9984	0,9984	0,9985	0,9985	0,9986	0,9986
3,0	0,9987	0,9987	0,9987	0,9988	0,9988	0,9989	0,9989	0,9989	0,9990	0,9990
3,1	0,9990	0,9991	0,9991	0,9991	0,9992	0,9992	0,9992	0,9992	0,9993	0,9993
3,2	0,9993	0,9993	0,9994	0,9994	0,9994	0,9994	0,9994	0,9995	0,9995	0,9995
3,3	0,9995	0,9995	0,9995	0,9996	0,9996	0,9996	0,9996	0,9996	0,9996	0,9997
3,4	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9998

КВАНТИЛИ РАСПРЕДЕЛЕНИЯ СТЬЮДЕНТА

$$s_n(x) = \frac{1}{\sqrt{\pi n}} \cdot \frac{\Gamma\left(\frac{n+1}{n}\right)}{\Gamma\left(\frac{n}{2}\right)} \cdot \left(1 + \frac{x^2}{2}\right)^{-\frac{n+1}{2}}, \quad S_n(x) = \frac{1}{\sqrt{\pi n}} \cdot \frac{\Gamma\left(\frac{n+1}{n}\right)}{\Gamma\left(\frac{n}{2}\right)} \cdot \int_{-\infty}^{x} \left(1 + \frac{u^2}{n}\right)^{-\frac{n+1}{2}} du.$$

p	0,750	0,900	0,950	0,975	0,990	0,995	0,999
1	1,000	3,078	6,314	12,706	31,821	63,657	318
2	0,816	1,886	2,920	4,303	6,965	9,925	22,3
3	0,765	1,638	2,353	3,182	4,541	5,841	10,2
4	0,741	1,533	2,132	2,776	3,747	4,604	7,173
5	0,727	1,476	2,015	2,571	3,365	4,032	5,893
6	0,718	1,440	1,943	2,447	3,143	3,707	5,208
7	0,711	1,415	1,895	2,365	2,998	3,499	4,785
8	0,706	1,397	1,860	2,306	2,896	3,355	4,501
9	0,703	1,383	1,833	2,262	2,821	3,250	4,297
10	0,700	1,372	1,812	2,228	2,764	3,169	4,144
11	0,697	1,363	1,796	2,201	2,718	3,106	4,025
12	0,695	1,356	1,782	2,179	2,681	3,055	3,930
13	0,694	1,350	1,771	2,160	2,650	3,012	3,852
14	0,692	1,345	1,761	2,145	2,624	2,977	3,787
15	0,691	1,341	1,753	2,131	2,602	2,947	3,733
16	0,690	1,337	1,746	2,120	2,583	2,921	3,686
17	0,689	1,333	1,740	2,110	2,567	2,898	3,646
18	0,688	1,330	1,734	2,101	2,552	2,878	3,610
19	0,688	1,328	1,729	2,093	2,539	2,861	3,579
20	0,687	1,325	1,725	2,086	2,528	2,845	3,552
21	0,686	1,323	1,721	2,080	2,518	2,831	3,527
22	0,686	1,321	1,717	2,074	2,508	2,819	3,505

Окончание таблицы

n p	0,750	0,900	0,950	0,975	0,990	0,995	0,999
23	0,685	1,319	1,714	2,069	2,500	2,807	3,485
24	0,685	1,318	1,711	2,064	2,492	2,797	3,467
25	0,684	1,316	1,708	2,060	2,485	2,787	3,450
26	0,684	1,315	1,706	2,056	2,479	2,779	3,435
27	0,684	1,314	1,703	2,052	2,473	2,771	3,421
28	0,683	1,313	1,701	2,048	2,467	2,763	3,408
29	0,683	1,311	1,699	2,045	2,462	2,756	3,396
30	0,683	1,310	1,697	2,042	2,457	2,750	3,385
40	0,681	1,303	1,684	2,021	2,423	2,704	3,307
60	0,679	1,296	1,671	2,000	2,390	2,660	3,232
120	0,677	1,289	1,658	1,980	2,358	2,617	3,160
∞	0,674	1,282	1,645	1,960	2,326	2,576	3,090