Студент Желєзнова Валерія	групи	дА-81	Варіант №	10
(прізвище та ініціали)		(шифр групи)		
Задача 1.				
Дата вимірювання	01 січня			
Характеристика робочого місця	постійне			
Енерговитрати організму	160			
Категорія та підкатегорія робіт (визначити)	II a			
Пора року (визначити)	Холодний			

Параметр мікроклімату		Задовольняє/не			
	Найменування	Значення	задовольняє (потрібне внести)*	Висновки**	
t , °C	фактична	20	Задовольняє	Збільшити значення на	-
			задовольняе	Зменшити значення на	-
	Оптимальна (визначити)	19-21		1	
	Допустима (визначити)	17-23			
W , %	фактична	62	Задовольняє	Збільшити значення на	-
		62		Зменшити значення на	-
	Оптимальна (визначити)	60-40			
	Допустима (визначити)	75			

	фактична	0.1	22 5000 51 1190	Збільшити значення на	-
V/o		0,1	Задовольняє	Зменшити значення на	-
V , м/с	Оптимальна (визначити)	0,2			
	Допустима (визначити)	0,1-0,4			

Загальний висновок

Параметри мікроклімату в даному приміщенні задовольняють вимогам ДСН 3.3.6.042-99. Санітарні норми мікроклімату виробничих приміщень.

^{*3} урахуванням характеристики робочого місця **Вказати різницю фактичного з нормованого значення

Варіант №

Задача 2.

1 Визначити заловольняє чи не задовольняє фактична концентрація кожної речовини нормам:

Назва речовини		-		Особливості дії	Задовольняє/не	
		концент., мг/м ³	$ m M\Gamma/M^3$ (визначити)		задовольняє фактична концентрація нормам (потрібне вписати)	
1	Ацетон	150	200	Наркотична дія, ураження центральної нервової системи	Задовольняє	
2	Бензин	65	100	Наркотична дія, ураження центральної нервової системи	Задовольняє	
3	Пил азбестовий	3	2	Фіброгенна та алергійна дія	Не задовольняє	
4	Пил цементу	6	6	Фіброгенна дія	Задовольняє	

2. Визначити наявність речовин односпрямованої дії:

(прізвище та ініціали)

Перелік речовин односпрямованої дії	Перевірка для речовин однос (підставити значення в форму $C2 / \Gamma \Pi K2 + + Ci / \Gamma \Pi Ki \le$	улу C1 / ГДК1 + концентрація нормам (потрібне вписати)
Ацетон, бензин	1,37	Не задовольняє
Пил азбестовий, пил цементу	2,5	He задовольня ϵ

Загальний висновок:

- 1. В даному випадку найбільшу небезпеку становить азбестовий пил, концентрація якого в повітрі робочої зони перевищує ГДК в 1,5 рази. Потрібні заходи, спрямовані на зменшення вмісту пилу азбестового в повітрі робочої зони. До того часу, доки ця концентрація не буде зменшена до рівня ГДК, працівники повинні застосовувати засоби індивідуального захисту і отримувати встановлені законодавством пільги та компенсації за роботу в шкідливих умовах.
- 2. В повітрі робочої зони є речовини односпрямованої дії це ацетон та бензин, пил азбестовий, пил цементу. Сума відношень концентрації кожної з цих речовин до її ГДК в даному разі більше 1, тому обидві ці суміші становлять небезпеку для здоров'я працівників. Потрібні заходи для зменшення вмісту ацетону, бензину, пилу азбестового та пилу цементу в повітрі робочої зони.

 Студент
 Желєзнова Валерія
 групи
 ДА-81
 Варіант №
 10

Таблиця результатів

Задача 3.1.

$Q_3 = q_0 *V =$	40*18*7*2,9=	14616	(3.1.1)
$Q_0 = 0.3P + n_k Q_{ok} =$	0,3*1100+2*300=	930	(3.1.2)
$Q_p = n_p Q_{op} =$	5*198*1,167=	1155,33	(3.1.3)
$Q_x = Q_3 + Q_0 + Q_p =$	14616+930+990=	16701,33	(3.1.4)

Задача 3.2

				-
Q_{κ}	$=k \cdot F_{\kappa}(t_{\mathit{вн}} - t_{\mathit{30\mathit{вн}}}) =$	0,92*18*2,9*(20-(-16))=	1728,864	(3.2.1)
	$F_{K}=\mathbf{a}\times\mathbf{h}=$	18*2,9=	52,2	(3.2.1.1)
q =	$=\frac{7.98(\Delta t - 10)}{\Delta T_{\Pi P M J} \cdot L} =$	7,98*(96-10)/(40*17,4)=	0,975	(3.2.2)
	$\Delta t = \frac{t_{no4} + t_{\kappa ih}}{2} - t_{eh} =$	(100+60)/2-(-16)=	96	(3.2.2.1)
	$\Delta T_{\Pi P U \Pi} = t_{nou} - t_{\kappa i \mu} =$	100-60=	40	(3.2.2.2)
$q_{e.}$	$_{\kappa.M} = 7.98(\Delta t - 10) \cdot \alpha_{=}$	7,98*(96-10)*0,99=	679,4172	(3.2.3)
F_{n_i}	$_{p}=rac{Q_{k}}{q_{_{\mathit{ekm}}}}=% rac{Q_{k}}{q_{_{\mathit{ekm}}}} =% rac{Q_{k}}{q_{_{ekm}}} =% rac{Q_{k}}{q_{_{ekm}} =% rac{Q_{k}}{q_{_{ekm}}} =$	1728,864/679,4172=	2,5446	(3.2.4)
n_{np}	$f_{p} = \frac{F_{np}}{f_{e_{KM}}} =$	2,5446/0,31=	8	(3.2.5)