Lab 6-Model Selection, Forecasting and Review

Pstat 174/274

Summary of R Commands

• To estimate parameters of an AR model:

```
ar(data, aic = TRUE, order.max = NULL, method = c("..."))
```

• To estimate parameters of an MA or ARMA model:

```
arima(data, order = c(p, 0, q), method = c("..."))
```

• To compare models using AICC:

```
AICc(fittedModel)
```

• To difference a time series at lag d:

```
diff(data,lag = d)
```

• To predict future observations given a fitted ARMA model:

```
predict(fittedModel, number of future observations to forecast)
```

Model Identification, Estimation and Diagnostics

Exploratory Data Analysis

1. Analyze the Dow Jones Index data by downloading dowj.txt from Gauchospace. Move the file into R?s working directory and load the data set into R using the command scan("dowj.txt").

```
# Load data
dowj_data <- scan("dowj.txt")</pre>
```

2. Plot the time series. What do you notice?

```
dowj <- ts(dowj_data)
# Plot data
ts.plot(dowj,main = "Dow Jones Index")</pre>
```

Dow Jones Index

3. Make the data stationary. What procedures were used?

```
op <- par(mfrow=c(1,2))
acf(dowj)
pacf(dowj)
par(op)</pre>
```



```
dowj.diff <- diff(dowj,1)
ts.plot(dowj.diff, main = "De-trended data")</pre>
```

De-trended data

Model Identification

4. Plot the ACF and PACF. What models do they suggest?

```
op <- par(mfrow=c(1,2))
acf(dowj.diff)
pacf(dowj.diff)
par(op)</pre>
```

Series dowj.diff

Series dowj.diff

Model Estimation

5. Fit the AR model suggested by the sample PACF and estimate the coefficients using Yule-Walker estimation.

```
(fit.ar <- ar(dowj.diff, method="yw"))
##
## Call:</pre>
```

```
## ar(x = dowj.diff, method = "yw")
##
## Coefficients:
## 1
## 0.4219
```

##
Order selected 1 sigma^2 estimated as 0.1518

6. Construct 95% confidence intervals for the estimated AR coefficients (Hint: obtain the asymptotic variance of the estimated coefficient from the fitted ar() object using fittedObject\$asy.var.coef).

```
# 95% CI for phi1
ar1.se <- sqrt(fit.ar$asy.var.coef)
c(fit.ar$ar - 1.96*ar1.se, fit.ar$ar + 1.96*1.96*ar1.se)</pre>
```

[1] 0.2166839 0.8240603

7. Fit different ARMA models using maximum likelihood estimation and compare the model fits using AICC (Hint: use arima() for estimation and AICc() in library(qpcR) for model comparison - you will need to install this package into R first). Which model is preferred?

library(qpcR)

```
## Warning: package 'qpcR' was built under R version 4.3.3
## Warning: package 'minpack.lm' was built under R version 4.3.3
## Warning: package 'rgl' was built under R version 4.3.3
```

```
## Warning: package 'robustbase' was built under R version 4.3.3
## Warning: package 'Matrix' was built under R version 4.3.2
# Calculate AICc for ARMA models with p and q running from 0 to 5
aiccs \leftarrow matrix(NA, nr = 6, nc = 6)
dimnames(aiccs) = list(p=0:5, q=0:5)
for(p in 0:5)
{
 for(q in 0:5)
   aiccs[p+1,q+1] = AICc(arima(dowj.diff, order = c(p,0,q), method="ML"))
}
## Warning in log(s2): NaNs produced
aiccs
##
## p
                               2
                       1
                                        3
    0 90.49584 81.14893 78.99601 81.17501 80.36057 82.70169
     1 76.45411 77.04523 78.34399 80.21849 81.48857 83.13492
##
    2 77.55328 79.49979 81.56072 81.16088 82.77818 85.09205
##
    3 79.69841 81.76437 80.79646 82.25071 84.61907 76.69106
     4 79.62134 81.83544 83.86231 84.60000 76.04349 86.21979
     5 81.95313 84.24831 86.18115 87.16679 89.81553 88.75433
(aiccs==min(aiccs))
##
## p
                            3
                                        5
          0
                1
                      2
##
    O FALSE FALSE FALSE FALSE FALSE
##
     1 FALSE FALSE FALSE FALSE FALSE
     2 FALSE FALSE FALSE FALSE FALSE
##
     3 FALSE FALSE FALSE FALSE FALSE
##
     4 FALSE FALSE FALSE TRUE FALSE
     5 FALSE FALSE FALSE FALSE FALSE
```

Model Diagnostics

8. Perform diagnostics on the chosen model fit. Do the residuals appear to be white noise? Are they normally distributed?

```
# Pick AR(1) and perform residual analysis:
fit = arima(dowj, order=c(1,1,0), method="ML")

# Test for independence of residuals
Box.test(residuals(fit), type="Ljung")

##
## Box-Ljung test
##
## data: residuals(fit)
## X-squared = 0.87778, df = 1, p-value = 0.3488

# Test for normality of residuals
shapiro.test(residuals(fit))
```

```
##
## Shapiro-Wilk normality test
##
## data: residuals(fit)
## W = 0.97422, p-value = 0.1144
ts.plot(residuals(fit),main = "Fitted Residuals")
```

Fitted Residuals


```
par(mfrow=c(1,2),oma=c(0,0,2,0))
# Plot diagnostics of residuals
op <- par(mfrow=c(2,2))
# acf
acf(residuals(fit),main = "Autocorrelation")
# pacf
pacf(residuals(fit),main = "Partial Autocorrelation")
# Histogram
hist(residuals(fit),main = "Histogram")
# q-q plot
qqnorm(residuals(fit))
qqline(residuals(fit),col ="blue")
# Add overall title
title("Fitted Residuals Diagnostics", outer=TRUE)
par(op)</pre>
```

Fitted Residuals Diagnostics

Data Forecasting

9. Forecast the next 10 observations using your model.

```
# Predict 10 future observations and plot
mypred <- predict(fit, n.ahead=10)
ts.plot(dowj, xlim=c(0,89))
points(79:88,mypred$pred)
lines(79:88,mypred$pred+1.96*mypred$se,lty=2)
lines(79:88,mypred$pred-1.96*mypred$se,lty=2)</pre>
```

