Mathematical & Computational Finance II Lecture Notes

Welcome to Measure Theory

September 22 2015 Last update: December 4, 2017

1 Continue the Crash Course on Probability Measures

Definition 1. For $X \in L^p(\Omega \mathcal{F}, \mathbb{P})$, for $1 \leq p < \infty$, define a <u>norm</u> (generalized Euclidean norm on \mathbb{R}^n) as

$$||X||_p = (\mathbb{E}|X|^p])^{1/p}$$

Let $1 \le p < \infty$, define $q = \frac{p}{1-p}$. Then $q \in (1, \infty)$ and $\frac{1}{p} + \frac{1}{q} = 1$. If p and q are conjugates then, for a, b > 0,

$$a^{1/p} + b^{1/q} \le \frac{1}{p}a + \frac{1}{q}b$$

Proposition 1. If p and q are conjugates and $X \in L^p, Y \in L^q$ then,

$$XY \in L^1$$
 and
$$\mathbb{E}[|XY|] \le ||X||_p + ||Y||_p$$

Proposition 2. (Minkowski's Inequality)² For $1 \le p < \infty$, if $X, Y \in L^p$ then

$$X + Y \in L^p \quad \text{and}$$
$$\|X + Y\|_p \le \|X\|_p + \|Y\|_p$$

Remarks:

1.
$$\|\lambda X\|_{p} = \lambda \|X\|_{p}$$
, for $\lambda \in \mathbb{R}$

2.
$$||X + Y||_p \le ||X||_p + ||Y||_p$$

3. If
$$||X||_p = 0$$
 then $|X|_p = 0$ a.s. $\implies X = 0$ a.s.³

These remarks give us that $\|\cdot\|_p$ is a <u>norm</u> on L^p . So, we say that L^p is a <u>normed linear space</u>.

¹That is, q is the conjugate to p.

²This is a generalization to the Triangle Inequality.

³i.e. X = 0 up to an equivalence class a.s.

1.1 L^2 and Conditional Expectation

A linear functional on L^2 is a map $\phi: L^2(\Omega, \mathcal{F}, \mathbb{P}) \to \mathbb{R}$, or equivalently $\phi: X \to \mathbb{R}$, such ϕ is linear:

$$\phi(\alpha X + \beta Y) = \alpha \phi(X) + \beta \phi(Y) \quad \forall X, Y \in L^2, \forall \alpha, \beta \in \mathbb{R}$$

A map $\phi: L^2 \to \mathbb{R}$ is bounded if $\exists k > 0$ such that

$$|\phi(X)| \le k \left\| X \right\|_2 \quad \forall \, X \in L^2$$

A sequence of random variables $\{X_n\} \in L^p$ converges to $X \in L^p$ if

$$X \in L^p$$
 and $\|X_n - X\|_p \longrightarrow 0$ as $n \longrightarrow \infty$

Suppose $\{X_n\} \in L^2$ converges to $X \in L^2$ and ϕ is a bounded linear functional on L^2 then,

$$|\phi(X_n) - \phi(X)| = |\phi(X - X_n)|$$
 (by linearity)
 $|\phi(X_n - X)| \le k ||X_n - X||_2 \longrightarrow 0$ (as $n \longrightarrow \infty$)

Now we may define

Definition 2. Suppose ϕ is a bounded linear functional on L^2 , define

$$\|\phi\| = \inf_{\{X \in L^2 : \|X\|_2 \neq 0\}} \frac{|\phi|}{\|X\|_2}$$

Aside: $L^2(\Omega, \mathcal{F}, \mathbb{P})$ is what we call a Hilbert $Space^4$ with inner product

$$\langle X, Y \rangle = \int XY \, d\mathbb{P} = \mathbb{E}[XY]$$

Definition 3. A sequence $\{Y_n\}$ in a normed vector space is a Cauchy sequence if

$$\sup_{m \in N} \|y_{n+m} - y_n\| \longrightarrow 0 \quad \text{as } n \longrightarrow \infty$$

That is, we take elements of the sequence arbitrarily far apart and see their norm $\longrightarrow 0$ as $n \longrightarrow 0$.

We say a space is complete if every Cauchy sequence is a convergent sequence.

Theorem: $L^p(\Omega, \mathcal{F}, \mathbb{P})$ is a complete normed vector space.

Why is this important? Whenever you have a Hilbert space this gives you the following theorem...

⁴A Hilbert Space is a *complete* inner product space (Banach Space)⁵.

⁵Left undefined for this course.

Theorem: Riesz Representation Theorem. Let \mathcal{H} be a Hilbert space and L be a linear continuous functional on \mathcal{H} . Then there exists a unique $y \in \mathcal{H}$ such that

$$L(x) = \langle x, y \rangle \quad \forall x, y \in \mathcal{H} \quad \text{with } ||L|| = ||y||$$

Definition 4. Let $X \in L^2(\Omega, \mathcal{F}, \mathbb{P})$ and $\mathcal{G} \subseteq \mathcal{F}$ (i.e. \mathcal{G} is a sub- σ -algebra of \mathcal{F}). Then the conditional expectation of X with respect to \mathcal{G} denoted $\mathbb{E}[X|\mathcal{G}]$ is a random variable $Z \in L^2$ satisfying

- 1. Z is \mathcal{G} -measurable.
- 2. $\mathbb{E}[ZY] = \mathbb{E}[XY] \quad \forall \text{ bounded } \mathcal{G}\text{-measurable random variables } Y.$

Note that Z is a random variable depending on $\omega \in \Omega$ meaning $Z = Z(\omega) = \mathbb{E}[X|\mathcal{G}](\omega)$.

1.1.1 Existence

For fixed $X \in L^2(\Omega, \mathcal{F}, \mathbb{P})$ the map

$$\phi_X : L^2(\Omega, \mathcal{F}, \mathbb{P}) \to \mathbb{R}$$
 or equivalently $\phi_X : Y \to \mathbb{E}[XY]$

is a bounded continuous linear functional on $L^2(\Omega, \mathcal{G}, \mathbb{P})$. So,

 $\exists Z \in L^2(\Omega, \mathcal{G}, \mathbb{P})$ (by the Riesz Representation Theorem)

Such that

$$\phi_X(Y) = \int XY d\mathbb{P} = \langle Z, Y \rangle = \int ZY d\mathbb{P}$$

For all $Y \in L^2(\Omega, \mathcal{G}, \mathbb{P})$.

 \therefore Z satisfies Definition ?? Conditions ?? and ??.

1.1.2 Uniqueness

This is trickier to do and is omitted in this course.

1.1.3 Interpretation

 $\mathbb{E}[X_2|X_1]$ really means $\mathbb{E}[X_2|\sigma(X_1)]$ where the conditional $\sigma(X_1)$ means the information generated by the smallest σ -algebra generated by X_1 .

1.1.4 Properties

- 1. Linear: $\mathbb{E}[\alpha X_1 + \beta X_2 | \mathcal{G}] = \alpha \mathbb{E}[X_1 | \mathcal{G}] + \beta \mathbb{E}[X_2 | \mathcal{G}]$
- 2. Integrable: $\mathbb{E}[|\mathbb{E}[X|\mathcal{G}]|] < \infty$
- 3. If $X \geq 0$ then $\mathbb{E}[X|\mathcal{G}] \geq 0$ (in probability a.s.)

- 4. $\mathbb{E}[a|\mathcal{G}] = a, \quad \forall a \in \mathbb{R}$
- 5. "Taking out what is known": If W is \mathcal{G} -measurable (i.e. $W \in \mathcal{G}$) and $\mathbb{E}[|XW|] < \infty$ (i.e. XW is integrable) $\Longrightarrow \mathbb{E}[XW|\mathcal{G}] = W\mathbb{E}[X|\mathcal{G}]$

Corollary 1. If X is \mathcal{G} -measurable then $\mathbb{E}[X|\mathcal{G}] = X$

Corollary 2. If X is independent⁶ of \mathcal{G} then $\mathbb{E}[X|\mathcal{G}] = \mathbb{E}[X]$ (i.e. \mathcal{G} gives us no information about X).

Remember: If \mathcal{C} generates \mathcal{F} then $\{X^{-1}(c): c \in \mathcal{C}\}$ generates $\sigma(X)$.

6. The "Tower' Property": If $\mathcal{H} \subseteq \mathcal{G}$ are sub- σ -algebras of \mathcal{F} then

$$\mathbb{E}[\mathbb{E}[X|\mathcal{G}]|\mathcal{H}] = \mathbb{E}[X|\mathcal{H}]$$
$$= \mathbb{E}[\mathbb{E}[X|\mathcal{H}]|\mathcal{G}]$$

7. "Jensen's Inequality": If $X \in L^2$ we can show

$$(\mathbb{E}[X|\mathcal{G}])^2 \le \mathbb{E}[X^2|\mathcal{G}]$$

Here's a nice result as to why conditional expectation is useful

Proposition 3. Let $X \in L^2$, $g(Y) \in L^2$ (i.e. g is a square integrable function) then

$$\mathbb{E}[(X - g(Y))^{2}] = \int (X - g(Y))^{2} d\mathbb{P}$$

$$= \int (X - \mathbb{E}[X|\sigma(Y)] + \mathbb{E}[X|\sigma(Y)] - g(Y))^{2} d\mathbb{P} \quad (\text{add \& subtract the same value})$$

$$= \int (X - \mathbb{E}[X|\sigma(Y)])^{2} d\mathbb{P} + 2 \int (X - \mathbb{E}[X|\sigma(Y)]) (\mathbb{E}[X|\sigma(Y)] - g(Y)) d\mathbb{P}$$

$$+ \int (\mathbb{E}[X|\sigma(Y)] - g(Y))^{2} d\mathbb{P}$$

$$= \mathbb{E}[(X - \mathbb{E}[X|\sigma(Y)])^{2}] + 2\mathbb{E}[(X - \mathbb{E}[X|\sigma(Y)]) (\mathbb{E}[X|\sigma(Y)] - g(Y))]$$

$$+ \mathbb{E}[(\mathbb{E}[X|\sigma(Y)] - g(Y))^{2}]$$

Note that in the middle term $\mathbb{E}[(X - \mathbb{E}[X|\sigma(Y)])(\mathbb{E}[X|\sigma(Y)] - g(Y))]$ we have $(\mathbb{E}[X|\sigma(Y)] - g(Y)) \in \sigma(Y)$, so

$$\mathbb{E}[(X - \mathbb{E}[X|\sigma(Y)])(\mathbb{E}[X|\sigma(Y)] - g(Y))] = \mathbb{E}[\{(X - \mathbb{E}[X|\sigma(Y)])(\mathbb{E}[X|\sigma(Y)] - g(Y))\}|\sigma(Y)]$$
$$= \mathbb{E}[(\mathbb{E}[X|\sigma(Y)] - g(Y))\mathbb{E}[X - \mathbb{E}[X|\sigma(Y)|\sigma(Y)]]]$$

 $^{{}^{6}}X$ is independent of \mathcal{G} if $\forall A \in \sigma(X)$ and $\forall B \in \mathcal{G} \implies \mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$. This is something to absorb & dwell on for a moment... but the basic intuition is the same.

But in this expectation we have

$$\begin{split} \mathbb{E}[X - \mathbb{E}[X|\sigma(Y)]|\sigma(Y)] &= \mathbb{E}[X|\sigma(Y)] - \mathbb{E}[\mathbb{E}[X|\sigma(Y)]|\sigma(Y)] \quad \text{(by linearity)} \\ &= \mathbb{E}[X|\sigma(Y)] - \mathbb{E}[X|\sigma(Y)] \quad \text{(this is obvious, do we have to elaborate?)} \\ &= 0 \end{split}$$

So our middle term vanishes leaving our original expectation as

$$\mathbb{E}[(X - \mathbb{E}[X|\sigma(Y)]^2] + \mathbb{E}[(\mathbb{E}[X|\sigma(Y)] - g(Y))^2] \ge \mathbb{E}[X - \mathbb{E}[X|\sigma(Y)]^2]$$

 $\therefore \mathbb{E}[X|\sigma(Y)]$ is the best estimator (in L^2) of X that is a function of Y.

2 Stochastic Processes

"A stochastic process is a family of random variables indexed by some set, usually time."

Definition 5. A stochastic process is a map $X: \Omega \times [0, \infty) \to \mathbb{R}^d$

If we fix a $\omega \in \Omega$ and consider the map $t \to X_t(\omega)$ then we are looking at some sample path

Figure 1: Some realisation of a stochastic process $X_t(\omega)$.

or "realisation" of the process. So, fix t and consider a map $\omega \to X(\omega, t)$. For each fixed t, $X(\omega, t)$ would have some distribution (i.e. the distribution of the "cross section" of $X(\omega, t)$ for fixed t).

Let $B \in \mathcal{B}(\mathbb{R}^d)$ and consider

$$X_s^{-1}(B) = \{ \omega \in \Omega : X_s(\omega) \in B \}$$

Define

$$\mathcal{X}_s = \{X_s^{-1}(B) : B \in \mathcal{B}(\mathbb{R}^d)\}$$
 (not necessarily a σ -algebra)

Then, let

$$\mathcal{F}_t^X = \sigma(\mathcal{X}_s : 0 \le s \le t)$$
 (i.e. our σ -algebra generated by \mathcal{X}_s)

Note that \mathcal{F}_t^X contains \mathcal{F}_s^X (i.e. $\mathcal{F}_s^X \subseteq \mathcal{F}_t^X$). We say that $(\mathcal{F}_t^X)_{t\geq 0}$ is a <u>filtration</u>, that is more information is releaved in our σ -algebra as we progress in t.

2.1 Brownian Motion

Definition 6. A d-dimensional <u>Brownian Motion</u> (BM) is a random walk/stochastic process B_t with properties

- $1. B_0 = \hat{0} \in \mathbb{R}^d$
- 2. B_t has independent increments, that is, for $0 = t_0 \le t_1 \le \cdots \le t_n$,

$$B_{t_1} - B_{t_0}, B_{t_2} - B_{t_1}, \cdots, B_{t_n} - B_{t_{n-1}}$$

are independent random variables.

- 3. For $0 \le s \le t, B_t B_s \sim N(0, (t-s)\mathbb{I}^d)$, where \mathbb{I}^d is the d-dimensional identity matrix.
- 4. The most important property is that it is (almost surely) continuous⁷.

Figure 2: Intervals in one dimensional Brownian Motion are normally distributed with $\mu = 0$ and $\sigma^2 = (t - s)$.

 $^{7\}mathbb{P}(\{\omega: B_0(\omega) = 0 \text{ and } t \mapsto B_t(\omega) \text{ is continuous}\}) = 1$