MATHÉMATIQUES

Section: Mathématiques Session principale 2022

Exercice 1:

$$\overline{\theta \in \left]0, \pi\left[\text{ et } \left(E \right) : z^2 - 2e^{i\theta}z + \left(e^{2i\theta} - 4 \right) = 0. \right.}$$

1)
$$\Delta = 4e^{2i\theta} - 4(e^{2i\theta} - 4) = 16$$

 $z_1 = -2 + e^{i\theta} \text{ et } z_2 = 2 + e^{i\theta}$
 $S_C = \{z_1; z_2\}.$

- 2) a) On a : $\frac{z_1 + z_2}{2} = \frac{2e^{i\theta}}{2} = e^{i\theta} = z_1$. Donc I est le milieu de $[M_1M_2]$.
 - b) On a : aff $(\overrightarrow{IM_1}) = z_1 z_1 = -2$ et aff $(\overrightarrow{AB}) = z_B z_A = -2$. Donc $\overrightarrow{IM_1} = \overrightarrow{AB}$.
 - c) On a : $\overrightarrow{IM_1} = \overrightarrow{AB}$ donc $t_{\overrightarrow{AB}}(I) = M_1$ et $S_I(M_1) = M_2$.

3) a) On a:
$$\frac{z_2 - z_J}{z_A - z_J} = \frac{2 + e^{i\theta} + e^{i\theta}}{1 + e^{i\theta}} = 2 \in IR \text{ donc } J \in (AM_2).$$

On a:
$$\frac{z_1 - z_J}{z_B - z_J} = \frac{-2 + e^{i\theta} + e^{i\theta}}{-1 + e^{i\theta}} = 2 \in IR \text{ donc } J \in (BM_1).$$

On a : $\text{Im}(z_1) = \sin\theta \neq 0$ car $\theta \in \left]0, \pi\right[$, alors $M_1 \not\in (AB)$ et par suite (AM_2) et (BM_1) sont sécantes.

Conclusion : (AM_2) et (BM_1) se coupent au point J.

b)
$$\frac{z_{1} - z_{J}}{z_{2} - z_{J}} = \frac{-1 + e^{i\theta}}{1 + e^{i\theta}} = \frac{e^{i\frac{\theta}{2}} \left(e^{i\frac{\theta}{2}} - e^{-i\frac{\theta}{2}} \right)}{e^{i\frac{\theta}{2}} \left(e^{i\frac{\theta}{2}} + e^{-i\frac{\theta}{2}} \right)} = itg\left(\frac{\theta}{2}\right) \in iIR \ donc \ (JM_{1}) \perp (JM_{2})$$

Aire(JM₁M₂) =
$$\frac{JM_1 \times JM_2}{2}$$
 = $4\sin\theta$

Aire(JM1M2) est maximale si et seulement si $sin\theta$ est maximale avec $\theta \in \left]0,\,\pi\right[$.

Par suite
$$\theta = \frac{\pi}{2}$$
.

Exercice 2:

1) Soit
$$R = r_{(B, -\frac{\pi}{3})}$$

a) On a:
$$\left(\overrightarrow{BC}, \overrightarrow{BO}\right) \equiv \left(\overrightarrow{BC}, \overrightarrow{BA}\right) + \left(\overrightarrow{BA}, \overrightarrow{BO}\right) \equiv -\frac{\pi}{12} - \frac{\pi}{4} \left[2\pi\right] \equiv -\frac{\pi}{3} \left[2\pi\right]$$
.

b) On a:
$$(\overrightarrow{BC}, \overrightarrow{BD}) = -\frac{\pi}{3} [2\pi]$$
 et $(\overrightarrow{BO}, \overrightarrow{BC}) = \frac{\pi}{3} [2\pi]$
 $(\overrightarrow{BO}, \overrightarrow{BD}) = (\overrightarrow{BO}, \overrightarrow{BC}) + (\overrightarrow{BC}, \overrightarrow{BD}) = \frac{\pi}{3} - \frac{\pi}{3} [2\pi] = 0 [2\pi]$

Par suite les points O, D et B sont alignés.

c) On a le triangle BCD est isocèle et R(C) = D donc BCD est équilatéral, d'où CB = CD. D'autre part le triangle BCA est isocèle en C, d'où CB = CA et par suite CA = CD.

On a:
$$\left(\overrightarrow{CD}, \overrightarrow{CA}\right) = \left(\overrightarrow{CD}, \overrightarrow{CB}\right) + \left(\overrightarrow{CB}, \overrightarrow{CA}\right) = -\frac{\pi}{3} + \frac{5\pi}{6} \left[2\pi\right] = \frac{\pi}{2} \left[2\pi\right]$$

Conclusion : Le triangle ACD est isocèle et rectangle en C.

- 2) Soit f la similitude directe telle que f(B) = A et f(O) = C.
 - a) On a OAB est un triangle direct isocèle et rectangle en O et f est une similitude directe donc Cf(A)A est un triangle direct isocèle et rectangle en C et comme CDA est triangle direct isocèle et rectangle en C alors f(A) = D.
 - b) Soit θ une mesure de l'angle de f.

On
$$a : f(A) = D$$
 et $f(B) = A$ donc

$$\theta = \left(\overrightarrow{BO}, \overrightarrow{AC}\right) = \left(\overrightarrow{BO}, \overrightarrow{BA}\right) + \left(\overrightarrow{BA}, \overrightarrow{AC}\right) \left[2\pi\right] = \left(\overrightarrow{BO}, \overrightarrow{BA}\right) + \left(\overrightarrow{AB}, \overrightarrow{AC}\right) + \pi \left[2\pi\right].$$

Par suite
$$\theta = \frac{\pi}{4} - \frac{\pi}{12} + \pi [2\pi] = \frac{7\pi}{6} [2\pi] = -\frac{5\pi}{6} [2\pi].$$

- c) On a : f(D) = E et $D \in (BO)$ donc $f(D) \in f((BO))$ par suite $E \in (AC)$.
- d) On a : f(D) = E et f(A) = D donc $\left(\overrightarrow{DA}, \overrightarrow{ED}\right) = -\frac{5\pi}{6} [2\pi]$ par suite

$$\left(\overrightarrow{DA}, \overrightarrow{DE}\right) \equiv -\frac{5\pi}{6} + \pi \left[2\pi\right] \equiv \frac{\pi}{6} \left[2\pi\right]$$

- e) On a : fofof(B) = fof(A) = f(D) = E et fofof est la similitude directe de centre Ω et d'angle $3 \times (-\frac{5\pi}{6}) \equiv -\frac{\pi}{2} [2\pi]$ alors $(\overrightarrow{\Omega B}, \overrightarrow{\Omega E}) \equiv -\frac{\pi}{2} [2\pi]$
- 3) OA = OB et le plan est rapporté à un repère orthonormé direct $(O, \overrightarrow{OA}, \overrightarrow{OB})$.
 - a) On a : $arg(z_C) \equiv \left(\overrightarrow{OA}, \overrightarrow{OC}\right) [2\pi]$

On a : CA = CB et OA = OB donc (OC) = med([AB]) et comme OAB est un triangle isocèle et rectangle en O alors [OC) est la bissectrice de AOB et par suite on a :

$$(\overrightarrow{OA}, \overrightarrow{OC})[2\pi] = \frac{1}{2}(\overrightarrow{OA}, \overrightarrow{OB})[2\pi] = \frac{\pi}{4}[2\pi].$$
 d'où $\arg(z_C) = \frac{\pi}{4}[2\pi].$

- b) On a : f(B) = A alors $z_A = az_B + b$ avec $z_A = 1$ et $z_B = i$ d'où (ai + b) = 1. On a : f(O) = C alors $z_C = az_O + b$ avec $z_O = 0$ d'où $z_C = b$.
- c) * Comme $f(O) = C \neq O$ alors $\Omega \neq O$ par suite $z_{\Omega} \neq 0$.
 - * Ω est le centre de f donc $z_{\Omega} = \frac{b}{1-a}$ par suite $\frac{z_{\Omega} i}{z_{\Omega}} = \frac{\frac{b}{1-a} i}{\frac{b}{1-a}} = \frac{-i + (b+ia)}{b} = \frac{1-i}{b}$.

$$*\left(\overrightarrow{\Omega O}, \overrightarrow{\Omega B}\right) = \arg\left(\frac{z_{\Omega} - i}{z_{\Omega}}\right) \left[2\pi\right] = \arg\left(\frac{1 - i}{b}\right) \left[2\pi\right] = \arg\left(1 - i\right) - \arg\left(b\right) \left[2\pi\right].$$

$$Comme \ arg \left(1-i\right) \equiv -\frac{\pi}{4} \left[2\pi\right] \ et \ arg \left(b\right) \equiv arg \left(z_{C}\right) \equiv \frac{\pi}{4} \left[2\pi\right] \ alors \left(\overrightarrow{\Omega O}, \overrightarrow{\Omega B}\right) \equiv -\frac{\pi}{2} \left[2\pi\right].$$

4) On a : $\left(\overrightarrow{\Omega B}, \overrightarrow{\Omega E}\right) = -\frac{\pi}{2} \left[2\pi\right]$ et $\left(\overrightarrow{\Omega O}, \overrightarrow{\Omega B}\right) = -\frac{\pi}{2} \left[2\pi\right]$ donc $\Omega \in (OE)$ et $(\Omega B) \perp (\Omega E)$ par suite le point Ω est le projeté orthogonale de B sur la droite (OE).

Exercice 3:

Partie A

(E): 19u + 11v = 1

- 1) a) On a: $19 \times (-4) + 11 \times 7 = -76 + 77 = 1$ donc (-4, 7) est une solution de l'équation (E).
 - b) On a: $19u + 11v = 19 \times (-4) + 11 \times 7$ sig $19 \times (u + 4) = 11 \times (-v + 7)$

On a: 11 divise $19 \times (u + 4)$ et $19 \wedge 11 = 1$ donc 11 divise (u + 4)

Alors il existe $k \in \mathbb{Z}$ tel que u + 4 = 11k sig u = -4 + 11k

On a: $19 \times (u + 4) = 11 \times (-v + 7)$ sig $19 \times 11k = 11 \times (-v + 7)$ sig v = 7 - 19k

Vérification : $19 \times (-4 + 11k) + 11 \times (7 - 19k) = -76 + 77 = 1$.

Conclusion : $S_{ZxZ} = \{(-4 + 11k, 7 - 19k), k \in Z\}.$

- 2) a) On a : $19 \land 11 = 1$ donc l'équation $19u \equiv 1 \pmod{11}$ admet une unique solution $u \in \{1, 2,, 10\}$. Comme on a : $19 \times 7 = 133 = 11 \times 12 + 1$ alors u = 7 est cette unique solution.
 - b) On a : $19 \land 11 = 1$ donc l'équation $11v \equiv 1 \pmod{19}$ admet une unique solution $v \in \{1, 2,, 18\}$. Comme on a : $11 \times 7 = 77 = 19 \times 4 + 1$ alors v = 7 est cette unique solution.

Soit l'équation (E_{209}) : $x^2 \equiv x \pmod{209}$.

Partia R

- 1) On a : $0^2 \equiv 0 \pmod{209}$ et $1^2 \equiv 1 \pmod{209}$ donc 0 et 1 sont solutions de l'équation (E₂₀₉).
- **2**) $209 = 11 \times 19$.

- 3) $133^2 = 84 \times 209 + 133$ donc $133^2 \equiv 133 \pmod{209}$ par suite 133 est solution de l'équation (E₂₀₉). $77^2 = 28 \times 209 + 77$ donc $77^2 \equiv 77 \pmod{209}$ par suite 77 est solution de l'équation (E₂₀₉).
- 4) a) $x^2 \equiv x \pmod{209}$ sig $x(x-1) \equiv 0 \pmod{209}$ sig 209 divise x(x-1)On a: 19 divise 209 et 209 divise x(x-1) donc 19 divise x(x-1)On a: 11 divise 209 et 209 divise x(x-1) donc 11 divise x(x-1)
 - b) On suppose que $x \wedge (x-1) = d$ On a : d divise x et d divise (x-1) donc d divise x - (x-1) = 1, par suite d = 1.
- 5) Soit $x \in \{2, 3, \dots, 208\}$ une solution de (E_{209}) .
 - a) On suppose que 19 ne divise pas x et 11 ne divise pas x alors 19 divise (x 1) et 11 divise (x 1) donc $19 \times 11 = 209$ divise (x 1) ce qui est absurde car (x 1) < 209.

Conclusion : 19 divise x ou 11 divise x.

- b) On suppose que x = 19k cela signifie que 19 divise x donc 11 divise (x 1) (car si non 11 divise x ce qui est absurde).
 - On a: $x \in \{2, 3, \dots, 208\}$ et x = 19k donc $k \in \{1, 2, \dots, 10\}$
 - On a: $(x-1) \equiv 0 \pmod{11}$ sig $19k \equiv 1 \pmod{11}$ d'après Partie A 2) b) k = 7 donc $x = 19 \times 7 = 133$
- c) On suppose que x = 11p cela signifie que 11 divise x donc 19 divise (x 1) (car sinon 19 divise x ce qui est absurde).
 - On a: $x \in \{2, 3, \dots, 208\}$ et x = 11p donc $p \in \{1, 2, \dots, 18\}$
 - On a: $(x-1) \equiv 0 \pmod{19}$ sig $11p \equiv 1 \pmod{19}$ d'après Partie A 2) b) p = 7 donc $x = 11 \times 7 = 77$
- 6) Si x est solution de (E_{209}) et $x \in \{2, 3, \dots, 208\}$ alors x = 77 ou x = 133 et on a : 0, 1, 77 et 133 sont des solutions de (E_{209}) .

Partie C

- 1) On a: $y \equiv x \pmod{209}$ donc $y^2 \equiv x^2 \pmod{209}$ par suite $y^2 y \equiv x^2 x \pmod{209}$ x solution de (E_{209}) ssi $x^2 - x \equiv 0 \pmod{209}$ ssi $y^2 - y \equiv 0 \pmod{209}$ ssi y solution de (E_{209}) .
- 2) Soit $y \in Z$ une solution de (E_{209}) et soit x tel que $y \equiv x \pmod{209}$

Alors y = x + 209k avec $x \in \{0, 1, 77, 133\}$

Par suite $S_Z = \{209k, 1 + 209k, 77 + 209k, 133 + 209k \text{ avec } k \in Z\}.$

Exercice 4:

Partie A

1)
$$f(x) = \frac{1}{\ln x}$$
; $x \in]1, +\infty[$

 $\lim_{x\to +\infty} f(x) = \lim_{x\to +\infty} \frac{1}{\ln x} = 0, \text{ donc la droite } y = 0 \text{ est une asymptote à la courbe } (\zeta) \text{ au voisinage de } +\infty.$

 $\lim_{x\to 1^+} f(x) = \lim_{x\to 1^+} \frac{1}{\ln x} = +\infty \text{, donc la droite } x = 0 \text{ est une asymptote à la courbe } (\zeta).$

b) On a:
$$f'(x) = -\frac{1}{x \ln^2 x} < 0$$
 pour tout $x \in]1, +\infty[$.

c) Courbe

3) Soit g la fonction définie sur]1,
$$+\infty$$
[par $g(x) = f(x) - x$.

La fonction g est dérivable sur]1, $+\infty$ [et on a : $g^{'}(x) = f^{'}(x) - 1 < 0$

La fonction g est continue et strictement décroissante sur]1, $+\infty$ [donc elle réalise une bijection de]1, $+\infty$ [sur g(]1, $+\infty$ [) =]- ∞ , $+\infty$ [= IR.

Comme $0 \in IR$ alors il existe un unique $\alpha \in [1, +\infty)$ tel que $g(\alpha) = 0$.

On a : $g(e) = 1 - e < 0 = g(\alpha)$ et g est strictement décroissante alors $\alpha < e$.

Conclusion : L'équation f(x) = x admet dans $]1, +\infty[$ une unique solution α et $\alpha < e$.

Partie B

1) a) On a : *
$$x \rightarrow \ln x$$
 est dérivable sur]1, $+\infty$ [

$$*t \rightarrow \frac{e^t}{t^n}$$
 est continue sur $]0, +\infty[$

Donc la fonction H est dérivable sur]1, $+\infty$ [et pour tout x > 1 on a

$$H'(x) = \frac{1}{x} \times \frac{e^{\ln x}}{\ln^n x} = \frac{1}{x} \times \frac{x}{\ln^n x} = \frac{1}{\ln^n x}.$$

b) La fonction
$$t \to (f(t))^n$$
 est dérivable sur]1, $+\infty$ [et $\alpha \in$]1, $+\infty$ [donc la fonction F est dérivable sur]1, $+\infty$ [et pour tout $x > 1$ on $\alpha : F'(x) = (f(t))^n = \frac{1}{\ln^n x} = H'(x)$.

Il existe une constante c tel que pour tout
$$x > 1$$
 on a : $H(x) = F(x) + c$.

On a :
$$H(\alpha) = F(\alpha) = 0$$
 donc $c = 0$ et par suite $H(x) = F(x)$ pour tout $x > 1$

2)
$$U_n = \int_a^e (f(t))^n dt$$
, $n \in IN^*$

$$a) \quad \text{Pour tout } n \geq 1, \ U_n = F(e) = H(e) = \int_{ln\alpha}^{lne} \ \frac{e^t}{t^n} \ dt = \int_{ln\alpha}^1 \ \frac{e^t}{t^n} \ dt.$$

b) Soit
$$n \ge 2$$
, On a: $1 < \alpha < e$ donc $\ln \alpha < 1$

$$\ln\alpha \le t \le 1 \text{ alors } \alpha \le e^t \le e \text{ alors } \frac{\alpha}{t^n} \le \frac{e^t}{t^n} \le \frac{e}{t^n} \text{ car } t^n > 0.$$

Les fonctions
$$t \to \frac{\alpha}{t^n}$$
, $t \to \frac{e^t}{t^n}$ et $t \to \frac{e}{t^n}$ sont continues sur [ln\alpha, 1] donc on a :

$$\alpha \int_{ln\alpha}^1 \ \frac{1}{t^n} \ dt \leq \int_{ln\alpha}^1 \ \frac{e^t}{t^n} \ dt \leq e \int_{ln\alpha}^1 \ \frac{1}{t^n} \ dt \ donc \ \alpha \left[\frac{-1}{n-1} \times \frac{1}{t^{n-1}} \right]_{ln\alpha}^1 \leq U_n \leq e \left[\frac{-1}{n-1} \times \frac{1}{t^{n-1}} \right]_{ln\alpha}^1 \leq U_n \leq e \left[\frac{-1}{n-1} \times \frac{1}{t^{n-1}} \right]_{ln\alpha}^1 \leq U_n \leq e \left[\frac{-1}{n-1} \times \frac{1}{t^{n-1}} \right]_{ln\alpha}^1 \leq U_n \leq e \left[\frac{-1}{n-1} \times \frac{1}{t^{n-1}} \right]_{ln\alpha}^1 \leq U_n \leq e \left[\frac{-1}{n-1} \times \frac{1}{t^{n-1}} \right]_{ln\alpha}^1 \leq U_n \leq e \left[\frac{-1}{n-1} \times \frac{1}{t^{n-1}} \right]_{ln\alpha}^1 \leq U_n \leq e \left[\frac{-1}{n-1} \times \frac{1}{t^{n-1}} \right]_{ln\alpha}^1 \leq U_n \leq e \left[\frac{-1}{n-1} \times \frac{1}{t^{n-1}} \right]_{ln\alpha}^1 \leq U_n \leq e \left[\frac{-1}{n-1} \times \frac{1}{t^{n-1}} \right]_{ln\alpha}^1 \leq U_n \leq e \left[\frac{-1}{n-1} \times \frac{1}{t^{n-1}} \right]_{ln\alpha}^1 \leq U_n \leq e \left[\frac{-1}{n-1} \times \frac{1}{t^{n-1}} \right]_{ln\alpha}^1 \leq U_n \leq e \left[\frac{-1}{n-1} \times \frac{1}{t^{n-1}} \right]_{ln\alpha}^1 \leq U_n \leq e \left[\frac{-1}{n-1} \times \frac{1}{t^{n-1}} \right]_{ln\alpha}^1 \leq U_n \leq e \left[\frac{-1}{n-1} \times \frac{1}{t^{n-1}} \right]_{ln\alpha}^1 \leq U_n \leq e \left[\frac{-1}{n-1} \times \frac{1}{t^{n-1}} \right]_{ln\alpha}^1 \leq U_n \leq e \left[\frac{-1}{n-1} \times \frac{1}{t^{n-1}} \right]_{ln\alpha}^1 \leq U_n \leq e \left[\frac{-1}{n-1} \times \frac{1}{t^{n-1}} \right]_{ln\alpha}^1 \leq U_n \leq e \left[\frac{-1}{n-1} \times \frac{1}{t^{n-1}} \right]_{ln\alpha}^1 \leq U_n \leq e \left[\frac{-1}{n-1} \times \frac{1}{t^{n-1}} \right]_{ln\alpha}^1 \leq U_n \leq e \left[\frac{-1}{n-1} \times \frac{1}{t^{n-1}} \right]_{ln\alpha}^1 \leq U_n \leq e \left[\frac{-1}{n-1} \times \frac{1}{t^{n-1}} \right]_{ln\alpha}^1 \leq U_n \leq e \left[\frac{-1}{n-1} \times \frac{1}{t^{n-1}} \right]_{ln\alpha}^1 \leq U_n \leq e \left[\frac{-1}{n-1} \times \frac{1}{t^{n-1}} \right]_{ln\alpha}^1 \leq U_n \leq e \left[\frac{-1}{n-1} \times \frac{1}{t^{n-1}} \right]_{ln\alpha}^1 \leq U_n \leq e \left[\frac{-1}{n-1} \times \frac{1}{t^{n-1}} \right]_{ln\alpha}^1 \leq U_n \leq e \left[\frac{-1}{n-1} \times \frac{1}{t^{n-1}} \right]_{ln\alpha}^1 \leq U_n \leq e \left[\frac{-1}{n-1} \times \frac{1}{t^{n-1}} \right]_{ln\alpha}^1 \leq U_n \leq e \left[\frac{-1}{n-1} \times \frac{1}{t^{n-1}} \right]_{ln\alpha}^1 \leq U_n \leq e \left[\frac{-1}{n-1} \times \frac{1}{t^{n-1}} \right]_{ln\alpha}^1 \leq U_n \leq e \left[\frac{-1}{n-1} \times \frac{1}{t^{n-1}} \right]_{ln\alpha}^1 \leq U_n \leq e \left[\frac{-1}{n-1} \times \frac{1}{t^{n-1}} \right]_{ln\alpha}^1 \leq U_n \leq e \left[\frac{-1}{n-1} \times \frac{1}{t^{n-1}} \right]_{ln\alpha}^1 \leq U_n \leq e \left[\frac{-1}{n-1} \times \frac{1}{t^{n-1}} \right]_{ln\alpha}^1 \leq U_n \leq e \left[\frac{-1}{n-1} \times \frac{1}{t^{n-1}} \right]_{ln\alpha}^1 \leq U_n \leq e \left[\frac{-1}{n-1} \times \frac{1}{t^{n-1}} \right]_{ln\alpha}^1 \leq U_n \leq e \left[\frac{-1}{n-1} \times \frac{1}{t^{n-1}} \right]_{ln\alpha}^1 \leq U_n \leq e \left[\frac{-1}{n-1} \times \frac{1}{t^{n-1}} \right]_{ln\alpha}^1 \leq U_n \leq e \left[\frac$$

Par suite
$$\frac{\alpha}{n-1}(\alpha^{n-1}-1) \le U_n \le \frac{e}{n-1}(\alpha^{n-1}-1)$$
.

c) Pour tout
$$n \in IN^*$$
, on $a : \frac{\alpha^n}{n} = \frac{e^{nln\alpha}}{nln\alpha}ln\alpha$

Comme
$$\ln \alpha > 0$$
 et $\lim_{x \to +\infty} \frac{e^x}{x} = +\infty$ alors $\lim_{n \to +\infty} \frac{\alpha^n}{n} = +\infty$

Pour tout
$$n \ge 2$$
, $U_n \ge \frac{\alpha}{n-1}(\alpha^{n-1}-1)$ et $\lim_{n \to +\infty} \frac{\alpha}{n-1}(\alpha^{n-1}-1) = \lim_{n \to +\infty} \frac{\alpha^n - \alpha}{n-1} = \lim_{n \to +\infty} \frac{\alpha^n}{n} \times \frac{1 - \frac{1}{\alpha^{n-1}}}{1 - \frac{1}{n}} = +\infty$

Par suite
$$\lim_{n\to+\infty} U_n = +\infty$$
.

d) Pour tout
$$n \ge 2$$
, $\frac{1 - \frac{1}{\alpha^{n-1}}}{n-1} \le \frac{U_n}{\alpha^n} \le \frac{e}{n-1} (\frac{1}{\alpha} - \frac{1}{\alpha^n})$

Comme
$$\lim_{n \to +\infty} \frac{1 - \frac{1}{\alpha^{n-1}}}{n-1} = 0$$
 et $\lim_{n \to +\infty} \frac{e}{n-1} (\frac{1}{\alpha} - \frac{1}{\alpha^n}) = 0$ alors $\lim_{n \to +\infty} \frac{U_n}{\alpha^n} = 0$.

3) Soit
$$S_n = \sum_{k=1}^{n} (k-2)U_k, n \ge 1.$$

a) Soit
$$n \in IN^*$$
, $U_n = \int_{ln\alpha}^1 \frac{e^t}{t^n} dt$.

On pose :
$$\begin{cases} u(t) = \frac{1}{t^n} \\ v'(t) = e^t \end{cases} \text{ alors } \begin{cases} u'(t) = -\frac{n}{t^{n+1}} \\ v(t) = e^t \end{cases}$$

Par suite
$$U_n = \left\lceil \frac{e^t}{t^n} \right\rceil_{l_{n\alpha}}^l + n \int_{l_{n\alpha}}^1 \frac{e^t}{t^{n+1}} dt = e^{-\frac{\alpha}{\ln^n \alpha}} + n U_{n+1} = e^{-\alpha^{n+1}} + n U_{n+1}$$
 car $\alpha = \frac{1}{\ln \alpha}$

b) * Pour n = 1 on a :
$$S_1 = \sum_{k=1}^{1} (k-2)U_k = (1-2)U_1 = -U_1$$
 et $\frac{\alpha^2 - \alpha^2}{\alpha - 1} + (1-1)e - U_1 = -U_1$

Donc la propriété est vraie pour n = 1.

* Soit $n \in IN^*$.

On suppose que
$$S_n = \frac{\alpha^{n+1} - \alpha^2}{\alpha - 1} + (1 - n)e - U_n$$
 et montrons que $S_{n+1} = \frac{\alpha^{n+2} - \alpha^2}{\alpha - 1} - ne - U_{n+1}$.

On a:
$$S_{n+1} = \sum_{k=1}^{n+1} (k-2)U_k = \sum_{k=1}^{n} (k-2)U_k + (n-1)U_{n+1} = S_n + (n-1)U_{n+1}$$

$$S_{n+1} = \frac{\alpha^{n+1} - \alpha^2}{\alpha - 1} + (1 - n)e - U_n + (n - 1)U_{n+1} = \frac{\alpha^{n+1} - \alpha^2}{\alpha - 1} + (1 - n)e - e + \alpha^{n+1} - nU_{n+1} + (n - 1)U_{n+1}$$

$$S_{n+1} = \frac{\alpha^{n+1} - \alpha^2}{\alpha - 1} - ne + \frac{\alpha^{n+1}(\alpha - 1)}{\alpha - 1} - U_{n+1} = \frac{\alpha^{n+2} - \alpha^2}{\alpha - 1} - ne - U_{n+1}$$

Conclusion: Pour tout
$$n \in IN^*$$
, $S_n = \frac{\alpha^{n+1} - \alpha^2}{\alpha - 1} + (1 - n)e - U_n$

c) Pour tout
$$n \in IN^*$$
 on $a : \frac{S_n}{\alpha^n} = \frac{\alpha - \frac{1}{\alpha^{n-2}}}{\alpha - 1} + \frac{n}{\alpha^n} (\frac{1}{\alpha} - 1)e - \frac{U_n}{\alpha^n}$

On
$$a: \alpha \ge 1$$
 donc $\lim_{n \to +\infty} \frac{1}{\alpha^{n-2}} = 0$, $\lim_{n \to +\infty} \frac{n}{\alpha^n} = 0$ et $\lim_{n \to +\infty} \frac{U_n}{\alpha^n} = 0$

Par suite
$$\lim_{n\to+\infty} \frac{S_n}{\alpha^n} = \frac{\alpha}{\alpha-1}$$
.