Experimental Plan

Callum Malcolm

2023-12-07

Contents

Project 1: A20 Modelling the BL Tumour Microenviroment	2
Overview	2
Background	2
Experimental Plan	2
E1: NSG vs BALB/C A20 injection	2
E2: Trial BL Therapies	3
E3: Immune focused CRISPR Screen	:
Project 2: Spatial Transciptomics of BL	3

Project 1: A20 Modelling the BL Tumour Microenviroment

Overview

- Using A20 to model BL immune TME
 - Look specifically at T-cell infiltration
 - Immune evasion mechanisms deployed by BL
- Compare results to patient data
- Apply findings to humanised mouse models of BL PDX

Background

- The impact of immune TME in BL is unclear
- BL

Experimental Plan

E1: NSG vs BALB/C A20 injection

E1 Overview

- Compare between immunocompetent and immunocomprimised mice
- Basic actors to compare
 - Tumour growth rate
 - Tumour size

Injection Plan

Group	Strain	Location	Cell Injection
1	BALB/c	Sub-cut	A20
2	BALB/c	IP	A20
3	NSG	IP	A20
4	NSG	IP	A20

IHC Panel

- Compare markers between tumour types
- Burkitt IHC indentification:
 - CD10+ (B-Cell Germinal Centre)
 - Bcl-2-
 - Ki-67%hi (proliferation index)

Potential IHC Panel Markers

Cell Type	Marker
Proliferation marker	Ki67
B cell	CD20
T cells (all)	CD3
T Cells (cytotoxic)	CD8
T cells (helper)	CD 4
Dendritic Cells	CD11c
Macrophage	F4/80

Flow Panel

- Options are:
 - Standard T Cell
 - TRegs
 - B-cells
 - DC Mono CD11c
 - Th17
 - TfH

Standard T Cell

Cell Type	Marker
T Memory	CXCR3
Naive Immune Cells	CCR7
Naive T Cells	CD45RA
$\mathrm{Th}17$	CCR6
GC B-Cells	CD38
TRegs (Helper)	CD4
Macrophage	HLA-DR
T Cells (all)	CD3
T Cells (Cytoxic)	CD8

E2: Trial BL Therapies

- CAR drugs
- Bi-Specific antibodies (check that they can be applied to mice)
- Rituximab comparison
 - Clonal dynamics of Rituximab treatment
 - * WILDseq

E3: Immune focused CRISPR Screen

- Immune compromised vs Immune competent
 - Think very carefully about specific mouse models (some still have macrophages, NK cells, ect.)
 - JAX Lab Article

Project 2: Spatial Transciptomics of BL

11 Samples of BL acquired from VIVO BioBank

 $\begin{tabular}{l} Looking at characterizing the Human BL\ TME - Publically\ available\ BL\ Data - VISIUM\ internal\ samples - Mibiscope\ Internal\ Samples \end{tabular}$

Publically available datasets analysis - Talk to Jamie again

- 10x Visium transcriptomics
 - T Cell Dynamics
 - * Infiltration
 - * Exhaustion
 - NK cell dynamics
 - Places to get it done:
 - * CI (no)
 - * Source Bioscience
 - * Wellcome Sanger Institute

- \cdot Teichmann Lab used 10x Visium • MIBIScope Comparison
- - Does Protein expression map onto spatial gene expression?
 Collaborate with Nina in Germany