```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
sal_data = pd.read_csv(r'/content/archive.zip')
sal_data.head()
₹
                     Experience
                                Location
                                           Job_Title
                                                      Age
                                                           Gender
                                                                           Salary
                                                                                    丽
      0 High School
                                                                     84620.053665
                              8
                                    Urban
                                             Manager
                                                        63
                                                              Male
                                                                                    d.
      1
               PhD
                             11
                                 Suburban
                                              Director
                                                        59
                                                              Male
                                                                    142591.255894
      2
            Bachelor
                             28
                                 Suburban
                                             Manager
                                                        61 Female
                                                                     97800.255404
      3
        High School
                             29
                                                                     96834.671282
                                     Rural
                                              Director
                                                        45
                                                              Male
               PhD
                             25
                                    Urban
                                              Analyst
                                                        26
                                                           Female
                                                                    132157.786175
 Next steps:
             Generate code with sal_data
                                          View recommended plots
                                                                        New interactive sheet
sal_data.shape
→ (1000, 7)
display(sal_data.columns)
Index(['Education', 'Experience', 'Location', 'Job_Title', 'Age', 'Gender',
             'Salary'],
           dtype='object')
sal_data.columns = ['Education', 'Experience', 'Location', 'Job_Title', 'Age', 'Gender', 'Salary']
sal_data1 = sal_data.copy() # Create a copy after renaming to avoid modifying the original DataFrame if needed later
sal_data.head()
₹
          Education Experience Location Job_Title Age
                                                                           Salary
                                                           Gender
      0 High School
                                                                     84620.053665
                              8
                                    Urban
                                             Manager
                                                        63
                                                              Male
               PhD
                                 Suburban
                                                        59
                                                                    142591.255894
      1
                             11
                                              Director
                                                              Male
      2
           Bachelor
                             28
                                 Suburban
                                             Manager
                                                        61 Female
                                                                     97800.255404
      3
        High School
                             29
                                     Rural
                                              Director
                                                        45
                                                              Male
                                                                     96834.671282
```

26 Female

132157.786175

sal_data.dtypes

 $\overline{2}$ 0 Education object **Experience** int64 Location object Job Title object Age int64 Gender object Salary float64

PhD

25

Urban

Analyst

dtype: object

```
sal_data.info()
</pre
    RangeIndex: 1000 entries, 0 to 999
    Data columns (total 7 columns):
     # Column
                    Non-Null Count Dtype
     0 Education 1000 non-null object
         Experience 1000 non-null
                                  int64
         Location
                    1000 non-null
                                  object
         Job_Title
                    1000 non-null
                                  object
                                  int64
                    1000 non-null
         Age
                    1000 non-null
        Gender
                                  object
     6 Salary
                    1000 non-null float64
    dtypes: float64(1), int64(2), object(4)
    memory usage: 54.8+ KB
sal_data[sal_data.duplicated()]
\overline{2}
       Education Experience Location Job_Title Age Gender Salary
sal_data[sal_data.duplicated()].shape
→ (0, 7)
sal_data1 = sal_data.drop_duplicates(keep = 'first')
sal_data1.shape
→ (1000, 7)
sal_data1.isnull().sum()
₹
                0
     Education
     Experience 0
      Location
      Job_Title
                0
        Age
       Gender
                0
       Salary
                0
    dtype: int64
sal data1.shape
→ (1000, 7)
sal_data1.head()
\exists
```

_								
_		Education	Experience	Location	Job_Title	Age	Gender	Salary
	0	High School	8	Urban	Manager	63	Male	84620.053665
	1	PhD	11	Suburban	Director	59	Male	142591.255894
	2	Bachelor	28	Suburban	Manager	61	Female	97800.255404
	3	High School	29	Rural	Director	45	Male	96834.671282
	4	PhD	25	Urban	Analyst	26	Female	132157.786175

sal data1.describe()

₹		Experience	Age	Salary
	count	1000.000000	1000.000000	1000.000000
	mean	14.771000	42.377000	105558.404239
	std	8.341111	13.609412	28256.972075
	min	1.000000	20.000000	33510.510669
	25%	7.000000	30.000000	85032.141517
	50%	15.000000	43.000000	104314.518315
	75%	22.000000	55.000000	126804.047524
	max	29.000000	64.000000	193016.602150

corr = sal_data1[['Age', 'Salary']].corr()
corr

import seaborn as sns
sns.heatmap(corr, annot = True)

sal_data1['Education'].value_counts()

→		count
	Education	
	High School	255
	Bachelor	253
	PhD	251
	Master	241

dtype: int64

sal_data1['Education'].value_counts().plot(kind = 'bar')

sal_data1['Job_Title'].value_counts()

count

	count
Job_Title	
27	33
60	33
58	30
59	30
62	30
21	30
24	29
20	28
41	28
63	28
44	27
45	25
49	25
54	25
61	24
25	24
23	24
42	24
31	23
48	23
26	22
57	22
50	22
36	22
37	21
64	21
56	21
52	20
40	20
43	19
39	19
22	19
29	19
34	19
53	18
33	18
35	18
47	16
28	15
46	15
51	15
38	15

30 14 55 14 32 13

dtype: int64

sal_data1['Job_Title'].unique()

```
array([63, 59, 61, 45, 26, 27, 60, 49, 25, 58, 23, 43, 44, 37, 53, 34, 62, 36, 21, 20, 35, 28, 40, 22, 50, 33, 31, 47, 64, 24, 57, 32, 48, 46, 42, 51, 41, 56, 54, 30, 38, 29, 52, 39, 55])
```

sal_data1['Gender'].value_counts().plot(kind = 'bar')

sal_data1['Age'].plot(kind = 'hist')

20

sal_data1.Age.plot(kind = 'box')

```
Axes: >

60 -

50 -

40 -

30 -
```

Age

```
import pandas as pd

# Load the data
sal_data = pd.read_csv(r'/content/archive.zip')

# Create sal_data1 as a copy
sal_data1 = sal_data.copy()

# The original code to plot the box plot
sal_data1.Experience.plot(kind = 'box')
```


sal_data1.Salary.plot(kind = 'box')

sal_data1.Salary.plot(kind = 'hist')

sal_data1.head()

_	Education	Experience	Location	Job_Title	Age	Gender	Salary	
C	High School	8	Urban	Manager	63	Male	84620.053665	ıl.
1	PhD	11	Suburban	Director	59	Male	142591.255894	
2	Bachelor	28	Suburban	Manager	61	Female	97800.255404	
3	High School	29	Rural	Director	45	Male	96834.671282	
4	PhD	25	Urban	Analyst	26	Female	132157.786175	
Next s	teps: Generat	t e code with sa	l_data1	● View re	comm	ended plo	ots New intera	ctive shee

from sklearn.preprocessing import LabelEncoder LabelEncoder = LabelEncoder()

sal_data1['Gender_Encode'] = LabelEncoder.fit_transform(sal_data1['Gender'])

```
sal_data1['Education_Encode'] = LabelEncoder.fit_transform(sal_data1['Education'])
sal_data1['Job_Title_Encode'] = LabelEncoder.fit_transform(sal_data1['Job_Title'])
sal data1.head()
\rightarrow
         Education Experience Location Job Title Age
                                                                             Salary Gender Encode Education Encode Job Tit
                                                             Gender
               High
      0
                               8
                                     Urban
                                                                Male
                                                                       84620.053665
                                                                                                   1
                                              Manager
                                                         63
                                                                                                                      1
             School
      1
               PhD
                                  Suburban
                                               Director
                                                         59
                                                                Male
                                                                      142591.255894
                                                                                                   1
                                                                                                                      3
                              11
      2
           Bachelor
                              28
                                  Suburban
                                                             Female
                                                                       97800.255404
                                                                                                   0
                                                                                                                      0
                                               Manager
                                                         61
               High
      3
                              29
                                      Rural
                                               Director
                                                         45
                                                                Male
                                                                       96834.671282
                                                                                                   1
                                                                                                                      1
             School
               PhD
                              25
                                     Urban
                                                Analyst
                                                         26
                                                             Female
                                                                     132157.786175
                                                                                                   0
                                                                                                                      3
                                              View recommended plots
 Next steps:
              Generate code with sal_data1
                                                                            New interactive sheet
from sklearn.preprocessing import StandardScaler
std_scaler = StandardScaler()
sal_data1['Age_scaled'] = std_scaler.fit_transform(sal_data1[['Age']])
sal_data1['Experience_scaled'] = std_scaler.fit_transform(sal_data1[['Experience']])
sal_data1.head()
\overline{\mathbf{T}}
         Education Experience Location Job_Title Age
                                                                             Salary Gender_Encode Education_Encode Job_Tit
                                                             Gender
               High
      0
                               8
                                     Urban
                                              Manager
                                                                Male
                                                                       84620.053665
             School
               PhD
                              11
                                  Suburban
                                               Director
                                                         59
                                                                Male
                                                                      142591.255894
                                                                                                   1
                                                                                                                      3
      2
           Bachelor
                                  Suburban
                                              Manager
                                                                       97800.255404
                                                                                                   0
                              28
                                                         61
                                                             Female
                                                                                                                      0
               High
      3
                              29
                                      Rural
                                               Director
                                                         45
                                                                Male
                                                                       96834 671282
                                                                                                   1
                                                                                                                      1
             School
      4
               PhD
                              25
                                     Urban
                                                Analyst
                                                         26
                                                             Female
                                                                      132157.786175
                                                                                                   0
                                                                                                                      3
 Next steps:
              Generate code with sal_data1
                                              View recommended plots
                                                                            New interactive sheet
x = sal_data1[['Age_scaled','Gender_Encode','Education_Encode','Job_Title_Encode','Experience_scaled']]
 = sal_data1['Salary']
x.head()
\overline{2}
                      Gender_Encode
                                      Education_Encode Job_Title_Encode Experience_scaled
                                                                                                   Age_scaled
      0
            1.516107
                                   1
                                                       1
                                                                          3
                                                                                       -0.812169
                                                                                                   П.
            1.222045
                                   1
                                                       3
                                                                                       -0.452324
      2
            1.369076
                                   0
                                                      0
                                                                          3
                                                                                       1.586793
      3
            0 192831
                                                                          1
                                                                                       1 706741
                                   1
                                                       1
           -1.203961
                                   0
                                                       3
                                                                                       1.226949
 Next steps:
              Generate code with x
                                     View recommended plots
                                                                    New interactive sheet
```

```
7/22/25. 10:21 AM
                                                                    Employee salary prediction - Colab
    from sklearn.model_selection import train_test_split
    x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.2, random_state=42)
    x train.head()
     \overline{\Rightarrow}
                 Age scaled Gender Encode
                                              Education Encode Job Title Encode Experience scaled
                                                                                                                H
            29
                                            O
                                                                                     0
                   1.369076
                                                                 1
                                                                                                   -0.092480
                                                                                                                īī.
                   -1.571537
           535
                                            1
                                                                 1
                                                                                                   -0.932117
           695
                   -1.498022
                                            n
                                                                 2
                                                                                                   -0.452324
           557
                   1.295561
                                            0
                                                                 3
                                                                                     0
                                                                                                   -1.291961
           836
                   1.516107
                                            0
                                                                 0
                                                                                                    0.267364
                   Generate code with x_train
      Next steps:

    View recommended plots

                                                                                   New interactive sheet
    x_train.shape, y_train.shape # 80%
     → ((800, 5), (800,))
    x_test.shape, y_test.shape # 20%
     \rightarrow \overline{} ((200, 5), (200,))
    from sklearn.linear_model import LinearRegression
    Linear_regeression_model = LinearRegression()
    x_train = x_train.fillna(x_train.mean())
    # Remove rows where y_train is NaN
    nan_mask = y_train.isna()
    x_train = x_train[~nan_mask]
    y_train = y_train[~nan_mask]
    Linear_regeression_model.fit(x_train, y_train)
     \overline{2}
           ▼ LinearRegression ① ??
           LinearRegression()
    y_pred_lr = Linear_regeression_model.predict(x_test)
    y_pred_lr
     array([ 78736.67935912, 84243.12350731, 110383.66811572, 69940.84563019,
                  94586.35054785, 67240.90939562, 63279.38907311, 120665.77884558, 122720.94914157, 108756.54613555, 142945.11287477, 136508.06311966,
                  123755.6426505 , 68130.13737156, 83608.78132127, 69695.60695722,
                  133593.30548726, 83010.3104424 , 97363.55135463, 81802.43877348,
                  119808.37436459, 81587.60174159, 86788.5149634, 144285.33731007,
                  141065.04875129, 81586.77902726, 117495.61497352, 83000.72503826,
                  142654.37141176, 129065.10651271, 108758.45851401, 83047.02009796,
                  116566.68606339,\ 123015.2336011\ ,\ 117620.85130221,\ 128624.20161613,
                   87487.83301233, 92561.32705004, 79505.30719417, 135987.69516139,
                  138531.42555476, 108526.09692596, 98529.52359987, 106225.67366587,
                   83530.67840067, 90904.59569845, 89726.85519365, 119127.43485428,
                  117201.33051399, 123958.96626572, 86292.25139569, 73970.89910321,
                   71267.11895051, 95108.91699561, 103973.47700517, 75989.05747908,
                  107111.29693251, 92732.3223546, 96887.29560064, 83580.81737851, 114652.39606139, 129654.78425711, 138165.0649482, 88973.28729893, 131504.44673951, 113874.97509186, 104417.14826266, 127026.08582118,
                   81047.76205341, 90611.65574596, 134726.91815371, 119578.74786933,
                  127943.24647175, 146763.04959809, 99207.44190637, 81435.7772453,
                  119700.96299421, 87178.71301071, 109579.42381639, 78450.30360695, 81555.79388069, 110158.42296536, 107042.82549477, 97706.63028496,
                   70317.09256251, 88056.67888573, 92576.11651341, 103162.93545532,
```

81733.08290863, 140041.28515354, 64400.41076568, 133020.03219023, $84704.03756056, \quad 79088.5053452 \ , \ 111233.14959822, \ 125914.95045438,$ 128303.31335495, 117313.96023473, 112784.93854586, 82483.37828379, 79047.41434473, 102329.90449891, 72162.89549271, 86205.40141934,

```
117978.44921896, 115821.07295475, 95162.59896997, 91147.36540498,
             114502.75442052, 88815.73695071, 94275.61556224, 141002.57364245,
             126510.40012944, 119423.38037652, 122940.9902327 , 103313.09888889,
            84041.4609548 , 91960.9437927 , 118897.80835901, 123362.17208363, 123456.97684607, 108380.29920323, 81495.50162728, 134350.68685545, 133543.42135231, 83373.11241838, 75769.01638796, 128969.46340188,
             136357.89968609, 88001.59069155, 81067.23378331, 92338.53523206,
             118063.93905421, 83956.22596244, 82338.41890945, 114944.49766549,
             123304.06268564,\ 105997.4073117\ ,\ 119947.29133131,\ 143310.11334023,
             127036.49393965, 111227.94553899, 116940.73450622, 65894.65818675,
             105530.19953508, 145482.27906781, 119425.56323194, 104696.91373577,
              67253.51600357, 102122.19953877, 116814.67546321, 99132.36018959,
              82188.25547588, 83878.96139023, 134578.11486123, 143985.84879131,
              84622.39164345, 92636.67924378, 98632.55362535, 88689.66227363,
              86295.2725995 , 138016.26165572, 141525.12445615, 134941.75518561,
              82184.41155774, 120975.16932416, 140407.94668172, 130248.05107674,
             120833.75294634, 82927.82617689, 94047.61968503, 142944.27452638,
              85913.29981523, 90681.53340352, 97716.78356054, 94290.40502561,
              86744.40275912, 79714.10181844, 84804.88473062, 129505.18869496,
             116964.83889678, 94347.10820378, 122327.72989046, 97186.26232669,
             116337.89791651, 108020.2479541 , 90409.99319345, 97765.53195262,
             125932.4906446, 93975.55917205, 108676.26035953, 65233.69656498, 88679.25415516, 99640.9598883, 138074.37105371, 73680.15764021])
df = pd.DataFrame({'y_Actual': y_test, 'y_Predicted': y_pred_lr})
df['Error'] = df['y_Actual'] - df['y_Predicted']
df['abs_error'] = abs(df['Error'])
df
→*
                             v Predicted
                v Actual
                                                             abs error
                                                   Error
      521
            86677.840109
                            78736.679359
                                             7941.160750
                                                           7941.160750
      737
            56036.163010
                            84243.123507 -28206.960498
                                                         28206.960498
            92226.871819 110383.668116 -18156.796296 18156.796296
      740
      660
           100710.088052
                            69940.845630
                                           30769.242422 30769.242422
      411
            91775.012832
                            94586.350548
                                            -2811.337716
                                                           2811.337716
       ...
      408
            62915.445683
                            65233.696565
                                            -2318.250882
                                                           2318.250882
      332
            92041.749991
                            88679.254155
                                            3362.495836
                                                           3362.495836
      208
            85534.397486
                            99640.959888 -14106.562402 14106.562402
      613 164373.967469 138074.371054 26299.596415 26299.596415
      78
            93375 479141
                            73680 157640 19695 321501 19695 321501
     200 rows × 4 columns
 Next steps: (
              Generate code with df

    View recommended plots

                                                                     New interactive sheet
Mean_absolute_error = df['abs_error'].mean()
Mean absolute error
¬¬ np.float64(15507.313542911043)
from sklearn.metrics import accuracy_score, r2_score
from sklearn.metrics import mean_squared_error, mean_absolute_error
r2_score(y_test, y_pred_lr)
→ 0.5538121948118675
print(f'Accuracy of the model = {round(r2_score(y_test, y_pred_lr),4)*100} %')
→ Accuracy of the model = 55.3799999999999 %
```

```
7/22/25, 10:21 AM
                                                            Employee salary prediction - Colab
    round(mean_squared_error(y_test, y_pred_lr),2)
    → 364324191.67
    print(f"Mean Absolute Error = {round(mean_squared_error(y_test, y_pred_lr),2)}")
    → Mean Absolute Error = 364324191.67
    mse = round(mean_squared_error(y_test, y_pred_lr),2)
    mse
        364324191.67
    \rightarrow
    print(f"Mean Sqaured Error = {round(mean_squared_error(y_test, y_pred_lr),2)}")
    → Mean Sqaured Error = 364324191.67
    print('Root Mean Squared Error (RMSE) =', mse**(0.5))
    → Root Mean Squared Error (RMSE) = 19087.27826773634
    Linear_regeression_model.coef_
    ⇒ array([-1021.30695884,
                                   886.19113807, 16717.49942225, 1869.65600501,
                 8719.93822176])
    Linear_regeression_model.intercept_
    np.float64(77061.4558527059)
    sal_data1.head()
    ₹
             Education Experience Location Job_Title Age
                                                                             Salary Gender Encode Education Encode Job Tit
                                                              Gender
                  High
                                                                        84620.053665
          0
                                 8
                                       Urban
                                                           63
                                                                                                  1
                                                Manager
                                                                 Male
                                                                                                                     1
                School
                                                                       142591.255894
          1
                  PhD
                                11
                                    Suburban
                                                 Director
                                                           59
                                                                 Male
                                                                                                  1
                                                                                                                     3
          2
               Bachelor
                                28
                                    Suburban
                                                              Female
                                                                        97800.255404
                                                                                                  0
                                                                                                                     0
                                                Manager
                  High
          3
                                29
                                        Rural
                                                 Director
                                                           45
                                                                 Male
                                                                        96834.671282
                                                                                                  1
                                                                                                                     1
                School
                  PhD
          4
                                25
                                       Urban
                                                 Analyst
                                                          26 Female 132157.786175
                                                                                                  Λ
                                                                                                                     3
                 Generate code with sal_data1
                                               View recommended plots
                                                                             New interactive sheet
     Next steps:
    # Re-fit the scaler
    std_scaler = StandardScaler()
    sal_data1['Age_scaled'] = std_scaler.fit_transform(sal_data1[['Age']])
    sal_data1['Experience_scaled'] = std_scaler.fit_transform(sal_data1[['Experience']])
```

```
Age1 = std_scaler.transform([[49]])
Gender = 0
Degree = 2
Job_Title = 22
Experience_years1 = std_scaler.transform([[15]])
🚁 /usr/local/lib/python3.11/dist-packages/sklearn/utils/validation.py:2739: UserWarning: X does not have valid featu
       warnings.warn(
     /usr/local/lib/python3.11/dist-packages/sklearn/utils/validation.py:2739: UserWarning: X does not have valid featu
       warnings.warn(
```