The Singular Value Decomposition

We are interested in more than just sym+def matrices. But the eigenvalue decompositions discussed in the last section of notes will play a major role in solving general systems of equations

$$y = Ax$$
, $y \in \mathbb{R}^M$, $A \text{ is } M \times N$, $x \in \mathbb{R}^N$.

We have seen that a symmetric positive definite matrix can be decomposed as $\mathbf{A} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{\mathrm{T}}$, where \mathbf{V} is an orthogonal matrix ($\mathbf{V}^{\mathrm{T}} \mathbf{V} = \mathbf{V} \mathbf{V}^{\mathrm{T}} = \mathbf{I}$) whose columns are the eigenvectors of \mathbf{A} , and $\mathbf{\Lambda}$ is a diagonal matrix containing the eigenvalues of \mathbf{A} . Because both orthogonal and diagonal matrices are trivial to invert, this eigenvalue decomposition makes it very easy to solve systems of equations $\mathbf{y} = \mathbf{A}\mathbf{x}$ and analyze the stability of these solutions.

The **singular value decomposition** (SVD) takes apart an arbitrary $M \times N$ matrix \boldsymbol{A} in a similar manner. The SVD of a real-valued $M \times N$ matrix \boldsymbol{A} with rank¹ R is

$$\boldsymbol{A} = \boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\mathrm{T}}$$

where

1. U is an $M \times R$ matrix

$$oldsymbol{U} = egin{bmatrix} oldsymbol{u}_1 & oldsymbol{u}_2 & oldsymbol{u}_2 & oldsymbol{u}_R \end{bmatrix},$$

whose columns $\boldsymbol{u}_m \in \mathbb{R}^M$ are orthonormal. Note that while $\boldsymbol{U}^T\boldsymbol{U} = \mathbf{I}$, in general $\boldsymbol{U}\boldsymbol{U}^T \neq \mathbf{I}$ when R < M. The columns of \boldsymbol{U} are an orthobasis for the range space of \boldsymbol{A} .

¹Recall that the rank of a matrix is the number of linearly independent columns of a matrix (which is always equal to the number of linearly independent rows).

2. V is an $N \times R$ matrix

$$oldsymbol{V} = egin{bmatrix} oldsymbol{v}_1 & oldsymbol{v}_2 & oldsymbol{v}_2 & oldsymbol{v}_R \end{bmatrix},$$

whose columns $\boldsymbol{v}_n \in \mathbb{R}^N$ are orthonormal. Again, while $\boldsymbol{V}^T \boldsymbol{V} = \boldsymbol{I}$, in general $\boldsymbol{V} \boldsymbol{V}^T \neq \boldsymbol{I}$ when R < N. The columns of \boldsymbol{V} are an orthobasis for the range space of \boldsymbol{A}^T (recall that Range(\boldsymbol{A}^T) consists of everything orthogonal to the nullspace of \boldsymbol{A}).

3. Σ is an $R \times R$ diagonal matrix with positive entries:

$$oldsymbol{\Sigma} = egin{bmatrix} \sigma_1 & 0 & 0 & \cdots \ 0 & \sigma_2 & 0 & \cdots \ dots & \ddots & \ 0 & \cdots & \cdots & \sigma_R \end{bmatrix}.$$

We call the σ_r the **singular values** of A. By convention, we will order them such that $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_R$.

4. The v_1, \ldots, v_R are eigenvectors of the positive semi-definite matrix $\boldsymbol{A}^{\mathrm{T}}\boldsymbol{A}$. Note that

$$A^{\mathrm{T}}A = V\Sigma U^{\mathrm{T}}U\Sigma V^{\mathrm{T}} = V\Sigma^{2}V^{\mathrm{T}},$$

and so the singular values $\sigma_1, \ldots, \sigma_R$ are the square roots of the non-zero eigenvalues of $\boldsymbol{A}^T \boldsymbol{A}$.

5. Similarly,

$$\boldsymbol{A}\boldsymbol{A}^{\mathrm{T}}=\boldsymbol{U}\boldsymbol{\Sigma}^{2}\boldsymbol{U}^{\mathrm{T}},$$

and so the u_1, \ldots, u_R are eigenvectors of the positive semidefinite matrix AA^{T} . Since the non-zero eigenvalues of $A^{T}A$ and AA^{T} are the same, the σ_r are also square roots of the eigenvalues of AA^{T} . The rank R is the dimension of the space spanned by the columns of A, this is the same as the dimension of the space spanned by the rows. Thus $R \leq \min(M, N)$. We say A is **full rank** if $R = \min(M, N)$.

As before, we will often times find it useful to write the SVD as the sum of R rank-1 matrices:

$$oldsymbol{A} = oldsymbol{U} oldsymbol{\Sigma} oldsymbol{V}^{ ext{T}} = \sum_{r=1}^R \, \sigma_r \, oldsymbol{u}_r oldsymbol{v}_r^{ ext{T}}.$$

When \boldsymbol{A} is **overdetermined** (M > N), the decomposition looks like this

$$\left[egin{array}{c} oldsymbol{A} \end{array}
ight] = \left[egin{array}{c} oldsymbol{U} \end{array}
ight] \left[egin{array}{c} \sigma_1 & & & \ & \ddots & & \ & & \sigma_R \end{array}
ight] \left[egin{array}{c} oldsymbol{V}^{\mathrm{T}} \end{array}
ight].$$

When \boldsymbol{A} is underdetermined (M < N), the SVD looks like this

When \boldsymbol{A} is **square** and full rank (M = N = R), the SVD looks like

The Least-Squares Problem

We can use the SVD to "solve" the general system of linear equations

$$y = Ax$$

where $\boldsymbol{y} \in \mathbb{R}^M$, $\boldsymbol{x} \in \mathbb{R}^N$, and \boldsymbol{A} is an $M \times N$ matrix.

Given \boldsymbol{y} , we want to find \boldsymbol{x} in such a way that

- 1. when there is a unique solution, we return it;
- 2. when there is no solution, we return something reasonable;
- 3. when there are an infinite number of solutions, we choose one to return in a "smart" way.

The **least-squares** framework revolves around finding an \boldsymbol{x} that minimizes the length of the residual

$$r = y - Ax$$
.

That is, we want to solve the optimization problem

$$\underset{\boldsymbol{x} \in \mathbb{R}^N}{\text{minimize}} \|\boldsymbol{y} - \boldsymbol{A}\boldsymbol{x}\|_2^2, \tag{1}$$

where $\|\cdot\|_2$ is the standard Euclidean norm. We will see that the SVD of \boldsymbol{A} :

$$\boldsymbol{A} = \boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^{\mathrm{T}},\tag{2}$$

plays a pivotal role in solving this problem.

To start, note that we can write any $\boldsymbol{x} \in \mathbb{R}^N$ as

$$x = V\alpha + V_0\alpha_0. \tag{3}$$

Here, V is the $N \times R$ matrix appearing in the SVD decomposition (2), and V_0 is a $N \times (N-R)$ matrix whose columns are orthogonal to one another and to the columns in V. We have the relations

$$\boldsymbol{V}^{\mathrm{T}}\boldsymbol{V}=\mathbf{I}, \quad \boldsymbol{V}_{0}^{\mathrm{T}}\boldsymbol{V}_{0}=\mathbf{I}, \quad \boldsymbol{V}^{\mathrm{T}}\boldsymbol{V}_{0}=\mathbf{0}.$$

You can think of V_0 as an orthobasis for the null space of A. Of course, V_0 is not unique, as there are many orthobases for Null(A), but any such set of vectors will serve our purposes here. The decomposition (3) is possible since Range(A^T) and Null(A) partition \mathbb{R}^N for any $M \times N$ matrix A. Taking

$$oldsymbol{lpha} = oldsymbol{V}^{\mathrm{T}} oldsymbol{x}, \quad oldsymbol{lpha}_0 = oldsymbol{V}_0^{\mathrm{T}} oldsymbol{x},$$

we see that (3) holds since

$$\boldsymbol{x} = \boldsymbol{V} \boldsymbol{V}^{\mathrm{T}} \boldsymbol{x} + \boldsymbol{V}_{0} \boldsymbol{V}_{0}^{\mathrm{T}} \boldsymbol{x} = (\boldsymbol{V} \boldsymbol{V}^{\mathrm{T}} + \boldsymbol{V}_{0} \boldsymbol{V}_{0}^{\mathrm{T}}) \boldsymbol{x} = \boldsymbol{x},$$

where we have made use of the fact that $\boldsymbol{V}\boldsymbol{V}^{\mathrm{T}} + \boldsymbol{V}_{0}\boldsymbol{V}_{0}^{\mathrm{T}} = \mathbf{I}$, because $\boldsymbol{V}\boldsymbol{V}^{\mathrm{T}}$ and $\boldsymbol{V}_{0}\boldsymbol{V}_{0}^{\mathrm{T}}$ are ortho-projectors onto complementary subspaces² of \mathbb{R}^{N} . So we can solve for $\boldsymbol{x} \in \mathbb{R}^{N}$ by solving for the pair $\boldsymbol{\alpha} \in \mathbb{R}^{R}$, $\boldsymbol{\alpha}_{0} \in \mathbb{R}^{N-R}$.

Similarly, we can decompose \boldsymbol{y} as

$$y = U\beta + U_0\beta_0, \tag{4}$$

where U is the $M \times R$ matrix from the SVD decomposition, and U_0 is a $M \times (M - R)$ complementary orthogonal basis. Again,

$$\boldsymbol{U}^{\mathrm{T}}\boldsymbol{U}=\mathbf{I},\quad \boldsymbol{U}_{0}^{\mathrm{T}}\boldsymbol{U}_{0}=\mathbf{I},\quad \boldsymbol{U}^{\mathrm{T}}\boldsymbol{U}_{0}=\mathbf{0},$$

²Subspaces S_1 and S_2 are **complementary** in \mathbb{R}^N if $S_1 \perp S_2$ (everything in S_1 is orthogonal to everything in S_2) and $S_1 \oplus S_2 = \mathbb{R}^N$. You can think of S_1, S_2 as a partition of \mathbb{R}^N into two orthogonal subspaces.

and we can think of U_0 as an orthogonal basis for everything in \mathbb{R}^M that is not in the range of A. As before, we can calculate the decomposition above using

$$oldsymbol{eta} = oldsymbol{U}^{\mathrm{T}} oldsymbol{y}, \quad oldsymbol{eta}_0 = oldsymbol{U}_0^{\mathrm{T}} oldsymbol{y}.$$

Using the decompositions (2), (3), and (4) for \boldsymbol{A} , \boldsymbol{x} , and \boldsymbol{y} , we can write the residual $\boldsymbol{r} = \boldsymbol{y} - \boldsymbol{A}\boldsymbol{x}$ as

$$egin{aligned} oldsymbol{r} &= oldsymbol{U}oldsymbol{eta} + oldsymbol{U}_0oldsymbol{eta}_0 - oldsymbol{U}oldsymbol{\Sigma}oldsymbol{V}^{\mathrm{T}}(oldsymbol{V}oldsymbol{lpha} + oldsymbol{V}_0oldsymbol{lpha}_0) \\ &= oldsymbol{U}oldsymbol{eta}_0 + oldsymbol{U}oldsymbol{eta}_0 - oldsymbol{\Sigma}oldsymbol{lpha} & \quad ext{(since }oldsymbol{V}^{\mathrm{T}}oldsymbol{V} = oldsymbol{\mathrm{I}} \text{ and }oldsymbol{V}^{\mathrm{T}}oldsymbol{V}_0 = oldsymbol{0}) \\ &= oldsymbol{U}_0oldsymbol{eta}_0 + oldsymbol{U}(oldsymbol{eta} - oldsymbol{\Sigma}oldsymbol{lpha}). \end{aligned}$$

We want to choose α that minimizes the energy of r:

$$||\boldsymbol{r}||_{2}^{2} = \langle \boldsymbol{U}_{0}\boldsymbol{\beta}_{0} + \boldsymbol{U}(\boldsymbol{\beta} - \boldsymbol{\Sigma}\boldsymbol{\alpha}), \ \boldsymbol{U}_{0}\boldsymbol{\beta}_{0} + \boldsymbol{U}(\boldsymbol{\beta} - \boldsymbol{\Sigma}\boldsymbol{\alpha}) \rangle$$

$$= \langle \boldsymbol{U}_{0}\boldsymbol{\beta}_{0}, \boldsymbol{U}_{0}\boldsymbol{\beta}_{0} \rangle + 2\langle \boldsymbol{U}_{0}\boldsymbol{\beta}_{0}, \boldsymbol{U}(\boldsymbol{\beta} - \boldsymbol{\Sigma}\boldsymbol{\alpha}) \rangle$$

$$+ \langle \boldsymbol{U}(\boldsymbol{\beta} - \boldsymbol{\Sigma}\boldsymbol{\alpha}), \boldsymbol{U}(\boldsymbol{\beta} - \boldsymbol{\Sigma}\boldsymbol{\alpha}) \rangle$$

$$= ||\boldsymbol{\beta}_{0}||_{2}^{2} + ||\boldsymbol{\beta} - \boldsymbol{\Sigma}\boldsymbol{\alpha}||_{2}^{2}$$

where the last equality comes from the facts that $\boldsymbol{U}_0^{\mathrm{T}}\boldsymbol{U}_0 = \mathbf{I}, \boldsymbol{U}^{\mathrm{T}}\boldsymbol{U} = \mathbf{I}$, and $\boldsymbol{U}^{\mathrm{T}}\boldsymbol{U}_0 = \mathbf{0}$. We have no control over $\|\boldsymbol{\beta}_0\|_2^2$, since it is determined entirely by our observations \boldsymbol{y} . Therefore, our problem has been reduced to finding $\boldsymbol{\alpha}$ that minimizes the second term $\|\boldsymbol{\beta} - \boldsymbol{\Sigma}\boldsymbol{\alpha}\|_2^2$ above, which is non-negative. We can make it zero (i.e. as small as possible) by taking

$$\hat{oldsymbol{lpha}} = oldsymbol{\Sigma}^{-1} oldsymbol{eta}.$$

Finally, the \boldsymbol{x} which minimizes the residual (solves (1)) is

$$\hat{\boldsymbol{x}} = \boldsymbol{V}\hat{\boldsymbol{\alpha}} = \boldsymbol{V}\boldsymbol{\Sigma}^{-1}\boldsymbol{\beta} = \boldsymbol{V}\boldsymbol{\Sigma}^{-1}\boldsymbol{U}^{\mathrm{T}}\boldsymbol{y}.$$
 (5)

Thus we can calculate the solution to (1) simply by applying the linear operator $\boldsymbol{V}\boldsymbol{\Sigma}^{-1}\boldsymbol{U}^{\mathrm{T}}$ to the input data \boldsymbol{y} . There are two interesting facts about the solution $\hat{\boldsymbol{x}}$ in (5):

- 1. When $\mathbf{y} \in \text{span}(\{\mathbf{u}_1, \dots, \mathbf{u}_M\})$, we have $\boldsymbol{\beta}_0 = \boldsymbol{U}_0^{\mathrm{T}} \mathbf{y} = \mathbf{0}$, and so the residual $\mathbf{r} = \mathbf{0}$. In this case, there is at least one exact solution, and the one we choose satisfies $\mathbf{A}\hat{\mathbf{x}} = \mathbf{y}$.
- 2. Note that if R < N, then the solution is not unique. In this case, \mathbf{V}_0 has at least one column, and any part of a vector \mathbf{x} in the range of \mathbf{V}_0 is not seen by \mathbf{A} , since

$$AV_0\alpha_0 = U\Sigma V^{\mathrm{T}}V_0\alpha_0 = 0$$
 (since $V^{\mathrm{T}}V_0 = 0$).

As such,

$$\boldsymbol{x}' = \hat{\boldsymbol{x}} + \boldsymbol{V}_0 \boldsymbol{\alpha}_0$$

for $any \ \alpha_0 \in \mathbb{R}^{N-R}$ will have exactly the same residual, since $\mathbf{A}\mathbf{x}' = \mathbf{A}\hat{\mathbf{x}}$. In this case, our solution $\hat{\mathbf{x}}$ is the solution with smallest norm, since

$$\|\boldsymbol{x}'\|_{2}^{2} = \langle \hat{\boldsymbol{x}} + \boldsymbol{V}_{0}\boldsymbol{\alpha}_{0}, \ \hat{\boldsymbol{x}} + \boldsymbol{V}_{0}\boldsymbol{\alpha}_{0} \rangle$$

$$= \langle \hat{\boldsymbol{x}}, \hat{\boldsymbol{x}} \rangle + 2\langle \hat{\boldsymbol{x}}, \boldsymbol{V}_{0}\boldsymbol{\alpha}_{0} \rangle + \langle \boldsymbol{V}_{0}\boldsymbol{\alpha}, \boldsymbol{V}_{0}\boldsymbol{\alpha} \rangle$$

$$= \|\hat{\boldsymbol{x}}\|_{2}^{2} + 2\langle \boldsymbol{V}\boldsymbol{\Sigma}^{-1}\boldsymbol{U}^{T}\boldsymbol{y}, \boldsymbol{V}_{0}\boldsymbol{\alpha}_{0} \rangle + \|\boldsymbol{\alpha}_{0}\|_{2}^{2} \quad (\text{since } \boldsymbol{V}_{0}^{T}\boldsymbol{V}_{0} = \mathbf{I})$$

$$= \|\hat{\boldsymbol{x}}\|_{2}^{2} + \|\boldsymbol{\alpha}_{0}\|_{2}^{2} \quad (\text{since } \boldsymbol{V}^{T}\boldsymbol{V}_{0} = \mathbf{0})$$

which is minimized by taking $\alpha_0 = 0$.

To summarize, $\hat{\boldsymbol{x}} = \boldsymbol{V} \boldsymbol{\Sigma}^{-1} \boldsymbol{U}^{\mathrm{T}} \boldsymbol{y}$ has the desired properties stated at the beginning of this module, since

- 1. when $\mathbf{y} = \mathbf{A}\mathbf{x}$ has a unique exact solution, it must be $\hat{\mathbf{x}}$,
- 2. when an exact solution is not available, \hat{x} is the solution to (1),

3. when there are an infinite number of minimizers to (1), $\hat{\boldsymbol{x}}$ is the one with smallest norm.

Because the matrix $\boldsymbol{V}\boldsymbol{\Sigma}^{-1}\boldsymbol{U}^{\mathrm{T}}$ gives us such an elegant solution to this problem, we give it a special name: the **pseudo-inverse**.

The Pseudo-Inverse

The **pseudo-inverse** of a matrix A with singular value decomposition (SVD) $A = U\Sigma V^{\mathrm{T}}$ is

$$\boldsymbol{A}^{\dagger} = \boldsymbol{V} \boldsymbol{\Sigma}^{-1} \boldsymbol{U}^{\mathrm{T}}. \tag{6}$$

Other names for A^{\dagger} include **natural inverse**, **Lanczos inverse**, and **Moore-Penrose inverse**.

Given an observation \boldsymbol{y} , taking $\hat{\boldsymbol{x}} = \boldsymbol{A}^{\dagger} \boldsymbol{y}$ gives us the **least squares** solution to $\boldsymbol{y} = \boldsymbol{A}\boldsymbol{x}$. The pseudo-inverse \boldsymbol{A}^{\dagger} always exists, since every matrix (with rank R) has an SVD decomposition $\boldsymbol{A} = \boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^{\mathrm{T}}$ with $\boldsymbol{\Sigma}$ as an $R \times R$ diagonal matrix with $\Sigma[r,r] > 0$.

When \mathbf{A} is full rank $(R = \min(M, N))$, then we can calculate the pseudo-inverse without using the SVD. There are three cases:

• When \mathbf{A} is square and invertible (R = M = N), then

$$\boldsymbol{A}^{\dagger} = \boldsymbol{A}^{-1}.$$

This is easy to check, as here

$$\boldsymbol{A} = \boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^{\mathrm{T}}$$
 where both $\boldsymbol{U}, \boldsymbol{V}$ are $N \times N$,

and since in this case $VV^{T} = V^{T}V = I$ and $UU^{T} = U^{T}U = I$,

$$egin{aligned} oldsymbol{A}^\dagger oldsymbol{A} &= oldsymbol{V} oldsymbol{\Sigma}^{-1} oldsymbol{U}^\mathrm{T} oldsymbol{U} oldsymbol{\Sigma} oldsymbol{V}^\mathrm{T} \ &= oldsymbol{V} oldsymbol{V}^\mathrm{T} \ &= oldsymbol{I}. \end{aligned}$$

Similarly, $\mathbf{A}\mathbf{A}^{\dagger} = \mathbf{I}$, and so \mathbf{A}^{\dagger} is both a left and right inverse of \mathbf{A} , and thus $\mathbf{A}^{\dagger} = \mathbf{A}^{-1}$.

• When \boldsymbol{A} more rows than columns and has full column rank $(R = N \leq M)$, then $\boldsymbol{A}^{T}\boldsymbol{A}$ is invertible, and

$$\boldsymbol{A}^{\dagger} = (\boldsymbol{A}^{\mathrm{T}}\boldsymbol{A})^{-1}\boldsymbol{A}^{\mathrm{T}}.\tag{7}$$

This type of \boldsymbol{A} is "tall and skinny"

$$\left[\begin{array}{c} \boldsymbol{A} \end{array}\right],$$

and its columns are linearly independent. To verify equation (7), recall that

$$A^{\mathrm{T}}A = V\Sigma U^{\mathrm{T}}U\Sigma V^{\mathrm{T}} = V\Sigma^{2}V^{\mathrm{T}},$$

and so

$$(\boldsymbol{A}^{\mathrm{T}}\boldsymbol{A})^{-1}\boldsymbol{A}^{\mathrm{T}} = \boldsymbol{V}\boldsymbol{\Sigma}^{-2}\boldsymbol{V}^{\mathrm{T}}\boldsymbol{V}\boldsymbol{\Sigma}\boldsymbol{U}^{\mathrm{T}} = \boldsymbol{V}\boldsymbol{\Sigma}^{-1}\boldsymbol{U}^{\mathrm{T}},$$

which is exactly the content of (6).

• When \boldsymbol{A} has more columns than rows and has full row rank $(R = M \leq N)$, then $\boldsymbol{A}\boldsymbol{A}^{\mathrm{T}}$ is invertible, and

$$\boldsymbol{A}^{\dagger} = \boldsymbol{A}^{\mathrm{T}} (\boldsymbol{A} \boldsymbol{A}^{\mathrm{T}})^{-1}. \tag{8}$$

This occurs when \boldsymbol{A} is "short and fat"

and its rows are linearly independent. To verify equation (8), recall that

$$\boldsymbol{A}\boldsymbol{A}^{\mathrm{T}} = \boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^{\mathrm{T}}\boldsymbol{V}\boldsymbol{\Sigma}\boldsymbol{U}^{\mathrm{T}} = \boldsymbol{U}\boldsymbol{\Sigma}^{2}\boldsymbol{U}^{\mathrm{T}},$$

and so

$$\boldsymbol{A}^{\mathrm{T}}(\boldsymbol{A}\boldsymbol{A}^{\mathrm{T}})^{-1} = \boldsymbol{V}\boldsymbol{\Sigma}\boldsymbol{U}^{\mathrm{T}}\boldsymbol{U}\boldsymbol{\Sigma}^{-2}\boldsymbol{U}^{\mathrm{T}} = \boldsymbol{V}\boldsymbol{\Sigma}^{-1}\boldsymbol{U}^{\mathrm{T}}.$$

which again is exactly (6).

A^{\dagger} is as close to an inverse of A as possible

As discussed in above, when \boldsymbol{A} is square and invertible, \boldsymbol{A}^{\dagger} is exactly the inverse of \boldsymbol{A} . When \boldsymbol{A} is not square, we can ask if there is a better right or left inverse. We will argue that there is not.

Left inverse Given y = Ax, we would like $A^{\dagger}y = A^{\dagger}Ax = x$ for any x. That is, we would like A^{\dagger} to be a *left inverse* of $A: A^{\dagger}A = I$. Of course, this is not always possible, especially when A has more columns than rows, M < N. But we can ask if any other matrix H comes closer to being a left inverse

than \mathbf{A}^{\dagger} . To find the "best" left-inverse, we look for the matrix which minimizes

$$\min_{\mathbf{H} \in \mathbb{R}^{N \times M}} \|\mathbf{H}\mathbf{A} - \mathbf{I}\|_F^2. \tag{9}$$

Here, $\|\cdot\|_F$ is the *Frobenius norm*, defined for an $N \times M$ matrix \mathbf{Q} as the sum of the squares of the entries:³

$$\|\boldsymbol{Q}\|_F^2 = \sum_{n=1}^M \sum_{n=1}^N |Q[m,n]|^2$$

With (9), we are finding \mathbf{H} such that $\mathbf{H}\mathbf{A}$ is as close to the identity as possible in the least-squares sense.

The pseudo-inverse \mathbf{A}^{\dagger} minimizes (9). To see this, recognize (see the exercise below) that the solution $\hat{\mathbf{H}}$ to (9) must obey

$$\boldsymbol{A}\boldsymbol{A}^{\mathrm{T}}\hat{\boldsymbol{H}}^{\mathrm{T}} = \boldsymbol{A}.\tag{10}$$

We can see that this is indeed true for $\hat{\boldsymbol{H}} = \boldsymbol{A}^{\dagger}$:

$$\boldsymbol{A}\boldsymbol{A}^{\mathrm{T}}\boldsymbol{A}^{\mathrm{\dagger T}} = \boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^{\mathrm{T}}\boldsymbol{V}\boldsymbol{\Sigma}\boldsymbol{U}^{\mathrm{T}}\boldsymbol{U}\boldsymbol{\Sigma}^{-1}\boldsymbol{V}^{\mathrm{T}} = \boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^{\mathrm{T}} = \boldsymbol{A}.$$

So there is no $N \times M$ matrix that is closer to being a left inverse than \mathbf{A}^{\dagger} .

³It is also true that $\|\boldsymbol{Q}\|_F^2$ is the sum of the squares of the singular values of \boldsymbol{Q} : $\|\boldsymbol{Q}\|_F^2 = \lambda_1^2 + \dots + \lambda_p^2$. This is something that you will prove on the next homework.

Right inverse If we re-apply \boldsymbol{A} to our solution $\hat{\boldsymbol{x}} = \boldsymbol{A}^{\dagger}\boldsymbol{y}$, we would like it to be as close as possible to our observations \boldsymbol{y} . That is, we would like $\boldsymbol{A}\boldsymbol{A}^{\dagger}$ to be as close to the identity as possible. Again, achieving this goal exactly is not always possible, especially if \boldsymbol{A} has more rows that columns. But we can attempt to find the "best" right inverse, in the least-squares sense, by solving

$$\underset{\boldsymbol{H} \in \mathbb{R}^{N \times M}}{\text{minimize}} \|\boldsymbol{A}\boldsymbol{H} - \mathbf{I}\|_F^2. \tag{11}$$

The solution $\hat{\boldsymbol{H}}$ to (11) (see the exercise below) must obey

$$\mathbf{A}^{\mathrm{T}}\mathbf{A}\hat{\mathbf{H}} = \mathbf{A}^{\mathrm{T}}.\tag{12}$$

Again, we show that A^{\dagger} satisfies (12), and hence is a minimizer to (11):

$$\boldsymbol{A}^{\mathrm{T}}\boldsymbol{A}\boldsymbol{A}^{\dagger} = \boldsymbol{V}\boldsymbol{\Sigma}^{2}\boldsymbol{V}^{\mathrm{T}}\boldsymbol{V}\boldsymbol{\Sigma}^{-1}\boldsymbol{U}^{\mathrm{T}} = \boldsymbol{V}\boldsymbol{\Sigma}\boldsymbol{U}^{\mathrm{T}} = \boldsymbol{A}^{\mathrm{T}}.$$

Moral:

 $m{A}^\dagger = m{V} m{\Sigma}^{-1} m{U}^{ ext{T}}$ is as close (in the least-squares sense) to an inverse of $m{A}$ as you could possibly have.

Exercise:

Show that the minimizer $\hat{\boldsymbol{H}}$ to (9) must obey (10). Do this by using the fact that the derivative of the functional $\|\boldsymbol{H}\boldsymbol{A}-\mathbf{I}\|_F^2$ with respect to an entry $H[k,\ell]$ in \boldsymbol{H} must obey

$$\frac{\partial \|\mathbf{H}\mathbf{A} - \mathbf{I}\|_F^2}{\partial H[k, \ell]} = 0, \quad \text{for all } 1 \le k \le N, \ 1 \le \ell \le M,$$

to be a solution to (9). Do the same for (11) and (12).

Technical Details: Existence of the SVD

In this section we will prove that any $M \times N$ matrix \mathbf{A} with rank(\mathbf{A}) = R can be written as

$$oldsymbol{A} = oldsymbol{U} oldsymbol{\Sigma} oldsymbol{V}^{ ext{T}}$$

where U, Σ, V have the five properties listed at the beginning of the last section.

Since $\mathbf{A}^{\mathrm{T}}\mathbf{A}$ is symmetric positive semi-definite, we can write:

$$oldsymbol{A}^{ ext{T}}oldsymbol{A} = \sum_{n=1}^{N} \lambda_n oldsymbol{v}_n oldsymbol{v}_n^{ ext{T}},$$

where the \boldsymbol{v}_n are orthonormal and the λ_n are real and non-negative. Since rank(\boldsymbol{A}) = R, we also have rank($\boldsymbol{A}^T\boldsymbol{A}$) = R, and so $\lambda_1, \ldots, \lambda_R$ are all strictly positive above, and $\lambda_{R+1} = \cdots = \lambda_N = 0$.

Set

$$\boldsymbol{u}_m = \frac{1}{\sqrt{\lambda_m}} \boldsymbol{A} \boldsymbol{v}_m, \quad \text{for } m = 1, \dots, R, \qquad \boldsymbol{U} = \begin{bmatrix} \boldsymbol{u}_1 & \cdots & \boldsymbol{u}_R \end{bmatrix}.$$

Notice that these u_m are orthonormal, as

$$\langle \boldsymbol{u}_m, \boldsymbol{u}_\ell \rangle = \frac{1}{\sqrt{\lambda_m \lambda_\ell}} \boldsymbol{v}_\ell^{\mathrm{T}} \boldsymbol{A}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{v}_m = \sqrt{\frac{\lambda_m}{\lambda_\ell}} \boldsymbol{v}_\ell^{\mathrm{T}} \boldsymbol{v}_m = \begin{cases} 1, & m = \ell, \\ 0, & m \neq \ell. \end{cases}$$

These \boldsymbol{u}_m also happen to be eigenvectors of $\boldsymbol{A}\boldsymbol{A}^{\mathrm{T}}$, as

$$oldsymbol{A}oldsymbol{A}^{\mathrm{T}}oldsymbol{u}_{m}=rac{1}{\sqrt{\lambda_{m}}}oldsymbol{A}oldsymbol{A}^{\mathrm{T}}oldsymbol{A}oldsymbol{v}_{m}=\sqrt{\lambda_{m}}oldsymbol{A}oldsymbol{v}_{m}=\lambda_{m}oldsymbol{u}_{m}.$$

Now let $\boldsymbol{u}_{R+1}, \ldots, \boldsymbol{u}_{M}$ be an orthobasis for the null space of $\boldsymbol{U}^{\mathrm{T}}$ — concatenating these two sets into $\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{M}$ forms an orthobasis for all of \mathbb{R}^{M} .

Let $V = [\boldsymbol{v}_1 \ \boldsymbol{v}_2 \ \cdots \ \boldsymbol{v}_R]$. In addition, let

$$oldsymbol{V}_0 = egin{bmatrix} oldsymbol{v}_{R+1} & oldsymbol{v}_{R+2} & \cdots & oldsymbol{v}_N \end{bmatrix}, \quad oldsymbol{V}_{ ext{full}} = egin{bmatrix} oldsymbol{V} & oldsymbol{V}_0 \end{bmatrix}$$

and

$$oldsymbol{U}_0 = egin{bmatrix} oldsymbol{u}_{R+1} & oldsymbol{u}_{R+2} & \cdots & oldsymbol{u}_M \end{bmatrix}, \quad oldsymbol{U}_{ ext{full}} = egin{bmatrix} oldsymbol{U} & oldsymbol{U}_0 \end{bmatrix}.$$

It should be clear that $\boldsymbol{V}_{\text{full}}$ is an $N \times N$ orthonormal matrix and $\boldsymbol{U}_{\text{full}}$ is a $M \times M$ orthonormal matrix. Consider the $M \times N$ matrix $\boldsymbol{U}_{\text{full}}^{\text{T}} \boldsymbol{A} \boldsymbol{V}_{\text{full}}$ — the entry in the m^{th} rows and n^{th} column of this matrix is

$$(\boldsymbol{U}_{\text{full}}^{\text{T}} \boldsymbol{A} \boldsymbol{V}_{\text{full}})[m, n] = \boldsymbol{u}_{m}^{\text{T}} \boldsymbol{A} \boldsymbol{v}_{n} = \begin{cases} \sqrt{\lambda_{n}} \, \boldsymbol{u}_{m}^{\text{T}} \boldsymbol{u}_{n} & n = 1, \dots, R \\ 0, & n = R + 1, \dots, N. \end{cases}$$

$$= \begin{cases} \sqrt{\lambda_{n}}, & m = n = 1, \dots, R \\ 0, & \text{otherwise.} \end{cases}$$

Thus

$$oldsymbol{U}_{ ext{full}}^{ ext{T}}oldsymbol{A}oldsymbol{V}_{ ext{full}} = oldsymbol{\Sigma}_{ ext{full}}$$

where

$$\Sigma_{\text{full}}[m, n] = \begin{cases} \sqrt{\lambda_n}, & m = n = 1, \dots, R \\ 0, & \text{otherwise.} \end{cases}$$

Since $\boldsymbol{U}_{\text{full}}\boldsymbol{U}_{\text{full}}^{\text{T}}=\mathbf{I}$ and $\boldsymbol{V}_{\text{full}}\boldsymbol{V}_{\text{full}}^{\text{T}}=\mathbf{I}$, we have

$$oldsymbol{A} = oldsymbol{U}_{ ext{full}} oldsymbol{\Sigma}_{ ext{full}} oldsymbol{V}_{ ext{full}}^{ ext{T}}.$$

Since Σ_{full} is non-zero only in the first R locations along its main diagonal, the above reduces to

$$m{A} = m{U}m{\Sigma}m{V}^{ ext{T}}, \quad m{\Sigma} = egin{bmatrix} \sqrt{\lambda_1} & & & & \ & \sqrt{\lambda_2} & & & \ & & \ddots & & \ & & \sqrt{\lambda_R} \end{bmatrix}.$$