UAV-Vehicle Interaction Simulation Platform and UAV Riding Strategy Verification

Yao He

Network Communications and Economics Lab (NCEL)

School of Science and Engineering
The Chinese University of Hong Kong, Shenzhen (CUHKSZ)

Yao He (CUHKSZ) May 2021 1/26

Motivation

- Build a UAV-Vehicle interaction simulation platform
- Verify the performance of UAV riding strategy
- Potential extension for UAV related researches

Yao He (CUHKSZ) May 2021 2 / 26

Outline

- UAV riding strategy
- Platform and my work
- Verification results

Yao He (CUHKSZ) May 2021 3 / 26

UAV-Vehicle cooperation map

- Simulation Stages:
 - ► Speed recognition: Car starts to drive from S1/S2, and stops at O. This stage, the UAV will collect the speed of the cars and choose one car to land on.

Yao He (CUHKSZ) May 2021 4 / 26

UAV-Vehicle cooperation map

- Simulation Stages:
 - ▶ Speed recognition: Car starts to drive from S1/S2, and stops at O.
 - Landing: When cars stops at O, the UAV flies and lands onto the chosen car.

Yao He (CUHKSZ) May 2021 5 / 26

- Simulation Stages: UAV-Vehicle cooperation map
 - ► Car carries UAV: After UAV lands onto the car, the car drives along OA, carrying the UAV. Time starts to count.
 - ► Take off: At some point P between OA, the UAV takes off and flies to T along PT. The energy consumption starts to count.

Yao He (CUHKSZ) May 2021 6 / 26

- Simulation Stages: UAV-Vehicle cooperation map
 - ► Take off: At some point P between OA, the UAV takes off and flies to T along PT. The energy consumption starts to count.
 - ▶ Termination: UAV reaches T. Data collection stops, and experiment completes.

Yao He (CUHKSZ) May 2021 7 / 26

Platform: Unreal Engine 4 + AirSim

- Unreal Engine 4 (UE4)
 - Main simulation engine
 - ▶ Place where the simulation is designed and tested
 - ▶ UE4 project:
 - * Static Meshes: Static elements that provide the scenescape.
 - Actors: Potentially contains a variety of Static Meshes, and perform specific tasks according to programs.

Unreal Engine 4 overview

UE4 Simulation Environment

UE4 simulation overview.

- Static Meshes
 - 2 roads.
 - ▶ Objects called path. They inform AI cars to travel on specific routes.
 - Objects called marks which help construct a coordinate system in the testing scripts.

Yao He (CUHKSZ) May 2021 9 / 26

UE4 Simulation Environment

UE4 simulation overview.

Actors

▶ Al cars that automatically drive along path.

Yao He (CUHKSZ) May 2021 10 / 26

AI Cars

Scripts for AI cars overview.

Al cars function

- ▶ A function called getPath(), that gives the path information to the cars.
- ▶ A control function that stabilize the velocity of the vehicles.
- ▶ Keyboard instructions that control the driving of cars if needed.

Yao He (CUHKSZ) May 2021 11/26

Platform: Unreal Engine 4 + AirSim

Unreal Engine 4 + AirSim

- AirSim
 - ► A plugin of UE4.
 - Provides UAV models.
 - Exposes APIs(Application Programming Interface) so we can interact with the AirSim vehicles and collect real-time data in the simulation programmatically.

UAV model from AirSim.

Yao He (CUHKSZ) May 2021 12 / 26

AirSim APIs

- World APIs: Environmental setting and collecting data
 - Enabling wind and fogs.
 - Listing objects.
 - Collecting GPS data.
 - ► Images.
 - **...**
- Drone APIs: Control the movement of UAVs.
 - Landing and taking off.
 - Flying to target position.
 - Rotation.
 - **>** ...
- Vehicle APIs: Control the movement of AirSim cars (not the AI cars).

Yao He (CUHKSZ) May 2021 13 / 26

Energy Consumption

The power of the UAV model used in AirSim is

$$P = Tv_h$$

where T is the thrust and v_h the air velocity. T and v_h can be obtained using AirSim APIs. Energy consumption is simply an integration of power over time

$$E(r) = \int P(t)dt$$

Yao He (CUHKSZ) May 2021 14/26

NCEL_lib.py

Integrate the AirSim APIs with extra functions to a library made for our lab.

- Objective:
 - Bug free.
 - Stabilize experiments.
 - Easy to understand and use.
 - ▶ Integrate AirSim with our new functions.
 - Flexible to extend.
- Features:
 - ▶ Improvements on the AirSim APIs.
 - ► A coordinate system and transformation system.
 - A simple algorithm that controls the landing of UAVs.
 - A function that computes the energy of UAVs.
 - ▶ A new API that computes vehicles' speeds.

Yao He (CUHKSZ) May 2021 15 / 26

Analysis of the scenario

UAV-Vehicle cooperation map

- Time Consumption $T(r) = \frac{r}{V_{car}} + \frac{I}{V_{UAV}}$, where V_{car} and V_{UAV} denote the speed of car and the UAV, respectively.
- Energy consumption $E(r) = \int_{\frac{r}{V_{car}}}^{T(r)} P(t) dt$, where P(t) is the power of UAV.

Yao He (CUHKSZ) May 2021 16 / 26

Analysis of the scenario

UAV-Vehicle cooperation map

- Cost $C(r) = \omega \times E_n(r) + (1 \omega) \times T(r)$, where ω is the trade off parameter and $0 \le \omega \le 1$. $E_n(r)$ is the normalized energy consumption.
- $E_n(r) = \frac{E(r)}{\alpha}$, where α indicates the unit energy consumption in each second, which we should determine in the experiment.

Yao He (CUHKSZ) May 2021 17 / 26

Analysis of the scenario

UAV-Vehicle cooperation map

- $E_n(r) = \frac{E(r)}{\alpha}$, where α indicates the unit energy consumption in each second, which we should determine in the experiment.
- If the α is constant, then $E_n(r) = \frac{1}{V_{UAV}}$

Yao He (CUHKSZ) May 2021 18 / 26

Problem

minimize
$$\omega \times E_n(r) + (1 - \omega) \times T(r)$$

subject to (i) $T(r) = \frac{r}{V_{Car}} + \frac{l}{V_{UAV}}$
(ii) $E_n(r) = \frac{E(r)}{\alpha} = \frac{l}{V_{UAV}}$ for constant α
(iii) $l = \sqrt{d^2 - 2dr\cos\theta + r^2}$
variables r

Yao He (CUHKSZ) May 2021 19 / 26

minimize
$$\omega \times E_n(r) + (1 - \omega) \times T(r)$$

subject to (i)
$$T(r) = \frac{r}{V_{car}} + \frac{l}{V_{UAV}}$$

(ii)
$$E_n(r) = \frac{E(r)}{\alpha} = \frac{I}{V_{UAV}}$$

for constant α

(ii)
$$I = \sqrt{d^2 - 2dr \cos \theta + r^2}$$

variables

The optimal solution is given by

$$r^* = d\cos\theta - d\sin\theta imes rac{(1-\omega)V_{UAV}}{\sqrt{V_{car}^2 - (1-\omega^2)V_{UAV}^2}}$$

Yao He (CUHKSZ) May 2021 20 / 26

Parameter Setting

- $\theta = 30^{\circ}$
- d = 960m
- Measured $V_{UAV} = 12.2 m/s$
- Measured $V_{car} = 5m/s$
- Measured unit energy consumption $\alpha = 63$
- Trade off parameter $\omega = 0.8$

Measured data in the simulator.

Yao He (CUHKSZ) May 2021 22 / 26

Cost

- For each r, the experiments are repeated three times. The standard deviations of recorded time, normalized energy and cost are 0.635, 0.583, and 0.588, respectively.
- The theoretical optimal value of take off position r^* is around 563m.
- The experimental optimal value of take off position r^* is around 563m.

Yao He (CUHKSZ) May 2021 23 / 26

Conclusion

- Build a UAV-Vehicle interaction simulation platform
- Verify the performance of UAV riding strategy
- Potential extension for UAV related researches

Yao He (CUHKSZ) May 2021 24 / 26

References

- AirSim documentations: https://www.zhihu.com/column/multiUAV
- AirSim repository: https://microsoft.github.io/AirSim/
- Shital, S., Debadeepta, D., Chris, L., and Ashish, K., AirSim: High-Fidelity Visual and Physical Simulation for Autonomous Vehicles, 2017, Field and Service Robotics, arXiv:1705.05065, https://arxiv.org/abs/1705.05065
- Unreal Engine 4 documentations: https://docs.unrealengine.com/en-US/index.html
- Nicola, Z., Multirotor Aircraft Dynamics, Simulation and Control, 2016, IEEE Computer Society, https://www.researchgate.net/publication/307513305

Yao He (CUHKSZ) May 2021 26 / 26