Sexta ayudantía Lenguajes y gramáticas regulares

Teresa Becerril Torres terebece1508@ciencias.unam.mx

16 de febrero de 2023

Expresiones Regulares - Propiedades

1. Asociatividad:

1.1.
$$R + (S + T) = (R + S) + T$$

1.2.
$$R \cdot (S \cdot T) = (R \cdot S) \cdot T$$

2. Conmutatividad:

•
$$R + S = S + R$$

3. Distributividad:

3.1.
$$R \cdot (S+T) = R \cdot S + R \cdot T$$

3.2.
$$(S+T) \cdot R = S \cdot R + T \cdot R$$

4. Elemento identidad:

4.1
$$R + \emptyset = \emptyset + R = R$$

4.2
$$R \cdot \varepsilon = \varepsilon \cdot R = R$$

Propiedades

5. Elemento neutro:

•
$$R \cdot \emptyset = \emptyset \cdot R = \emptyset$$

6. Idempotencia:

6.1.
$$R + R = R$$

6.2.
$$(R^*)^* = R^*$$

7. Propiedades de la cerradura de Kleene:

7.1.
$$\varepsilon^* = \varepsilon$$

7.2.
$$\emptyset^* = \varepsilon$$

7.3.
$$R^+ = R \cdot R^* = R^* \cdot R$$

7.4.
$$R^* \cdot R^* = R^*$$

7.5.
$$R^* = \varepsilon + R^+ = R^+ + \varepsilon$$

Propiedades

- 7. Propiedades de la cerradura de Kleene (continuación):
 - 7.6. $R? = R + \varepsilon = \varepsilon + R$
 - 7.7. $(R+S)^* = (R^* \cdot S^*)^* = (R^* \cdot S)^* R^*$
 - 7.8. $(R \cdot S)^* = \varepsilon + R \cdot (S \cdot R)^* \cdot S$
 - 7.10. $R \cdot (S \cdot R)^* = (R \cdot S)^* \cdot R$
- 8. Propiedades condicionales:
 - 8.1. Si $L(R) \subseteq L(S)$, entonces R + S = S
 - 8.2. Si $L(R^*) \subseteq L(S^*)$, entonces $R^* \cdot S^* = S^*$
 - 8.3. Si $L(R^*) \subseteq L(S^*)$, entonces $(R+S)^* = S^*$

Demuestre que siguientes expresiones regulares son equivalentes:

$$R=bc+ac^*ac+ac^*c+a \; \mathsf{y} \; S=(b+ac^*a)c+ac^*.$$

$$R = bc + ac^*ac + ac^*c + a$$

Demuestre que siguientes expresiones regulares son equivalentes:

$$R = bc + ac^*ac + ac^*c + a$$
 y $S = (b + ac^*a)c + ac^*$.

$$R = bc + ac^*ac + ac^*c + a$$

$$= (b + ac^*a)c + a(c^*c + \varepsilon)$$
 propiedad 3

Demuestre que siguientes expresiones regulares son equivalentes:

$$R = bc + ac^*ac + ac^*c + a$$
 y $S = (b + ac^*a)c + ac^*$.

$$\begin{split} R &= bc + ac^*ac + ac^*c + a \\ &= (b + ac^*a)c + a(c^*c + \varepsilon) & \text{propiedad 3} \\ &= (b + ac^*a)c + a(c^+ + \varepsilon) & \text{propiedad 7.3} \end{split}$$

Demuestre que siguientes expresiones regulares son equivalentes:

$$R = bc + ac^*ac + ac^*c + a$$
 y $S = (b + ac^*a)c + ac^*$.

$$\begin{split} R &= bc + ac^*ac + ac^*c + a \\ &= (b + ac^*a)c + a(c^*c + \varepsilon) & \text{propiedad 3} \\ &= (b + ac^*a)c + a(c^+ + \varepsilon) & \text{propiedad 7.3} \\ &= (b + ac^*a)c + ac^* & \text{propiedad 7.5} \end{split}$$

Demuestre que siguientes expresiones regulares son equivalentes:

$$R = bc + ac^*ac + ac^*c + a$$
 y $S = (b + ac^*a)c + ac^*$.

$$\begin{split} R &= bc + ac^*ac + ac^*c + a \\ &= (b + ac^*a)c + a(c^*c + \varepsilon) & \text{propiedad 3} \\ &= (b + ac^*a)c + a(c^+ + \varepsilon) & \text{propiedad 7.3} \\ &= (b + ac^*a)c + ac^* & \text{propiedad 7.5} \\ &= S \end{split}$$

Demuestre que las siguientes expresiones regulares son equivalentes $R=(a^*(b+c)^*+b^*)^*$ y $S=(a+b+c)^*$

$$S = (a+b+c)^*$$

Demuestre que las siguientes expresiones regulares son equivalentes $R = (a^*(b+c)^* + b^*)^*$ y $S = (a+b+c)^*$

$$S = (a+b+c)^*$$

$$= (a^*(b+c)^*)^* \qquad \text{propiedad 7.6 con } R = a \text{ y } S = b+c$$

Demuestre que las siguientes expresiones regulares son equivalentes

$$R = (a^*(b+c)^* + b^*)^*$$
y $S = (a+b+c)^*$

$$\begin{split} S &= (a+b+c)^* \\ &= (a^*(b+c)^*)^* & \text{propiedad 7.7 con } R = a \text{ y } S = b+c \\ &= (b^*+a^*(b+c)^*)^* & \text{propiedad 8.3 con } R = b^* \text{ y } S = a^*(b+c)^* \end{split}$$

Demuestre que las siguientes expresiones regulares son equivalentes $R = (a^*(b+c)^* + b^*)^*$ y $S = (a+b+c)^*$

$$S = (a + b + c)^*$$

$$= (a^*(b + c)^*)^* \quad \text{propiedad 7.7 con } R = a \text{ y } S = b + c$$

$$= (b^* + a^*(b + c)^*)^* \quad \text{propiedad 8.3 con } R = b^* \text{ y } S = a^*(b + c)^*$$

$$= (a^*(b + c)^* + b^*)^* \quad \text{propiedad 2}$$

$$= R.$$

Demuestre que siguientes expresiones regulares son equivalentes:

$$R = a + a(b + aa)(b^*aa)^*b^* + a(aa + b)^*$$
 y $S = a(aa + b)^*$.

$$R = a + a(b + aa)(b^*aa)^*b^* + a(aa + b)^*$$

Demuestre que siguientes expresiones regulares son equivalentes:

$$R = a + a(b + aa)(b^*aa)^*b^* + a(aa + b)^*$$
 y $S = a(aa + b)^*$.

$$R = a + a(b + aa)(b^*aa)^*b^* + a(aa + b)^*$$

= $a + a(b + aa)(b + aa)^* + a(aa + b)^*$ propiedad 7.7

Demuestre que siguientes expresiones regulares son equivalentes:

$$R = a + a(b + aa)(b^*aa)^*b^* + a(aa + b)^*$$
y $S = a(aa + b)^*.$

$$\begin{split} R &= a + a(b + aa)(b^*aa)^*b^* + a(aa + b)^* \\ &= a + a(b + aa)(b + aa)^* + a(aa + b)^* & \text{propiedad 7.7} \\ &= a(\varepsilon + (b + aa)(b + aa)^*) + a(aa + b)^* & \text{propiedad 3.1} \end{split}$$

Demuestre que siguientes expresiones regulares son equivalentes:

$$R = a + a(b + aa)(b^*aa)^*b^* + a(aa + b)^*$$
 y $S = a(aa + b)^*$.

$$\begin{split} R &= a + a(b + aa)(b^*aa)^*b^* + a(aa + b)^* \\ &= a + a(b + aa)(b + aa)^* + a(aa + b)^* & \text{propiedad 7.7} \\ &= a(\varepsilon + (b + aa)(b + aa)^*) + a(aa + b)^* & \text{propiedad 3.1} \\ &= a(\varepsilon + (b + aa)^+) + a(aa + b)^* & \text{propiedad 7.3} \end{split}$$

Demuestre que siguientes expresiones regulares son equivalentes:

$$R = a + a(b + aa)(b^*aa)^*b^* + a(aa + b)^*$$
 y $S = a(aa + b)^*$.

$$R = a + a(b + aa)(b^*aa)^*b^* + a(aa + b)^*$$

$$= a + a(b + aa)(b + aa)^* + a(aa + b)^* \qquad \text{propiedad 7.7}$$

$$= a(\varepsilon + (b + aa)(b + aa)^*) + a(aa + b)^* \qquad \text{propiedad 3.1}$$

$$= a(\varepsilon + (b + aa)^+) + a(aa + b)^* \qquad \text{propiedad 7.3}$$

$$= a(b + aa)^* + a(aa + b)^* \qquad \text{propiedad 7.5}$$

Demuestre que siguientes expresiones regulares son equivalentes:

$$R = a + a(b + aa)(b^*aa)^*b^* + a(aa + b)^*$$
y $S = a(aa + b)^*.$

$$R = a + a(b + aa)(b^*aa)^*b^* + a(aa + b)^*$$

$$= a + a(b + aa)(b + aa)^* + a(aa + b)^* \qquad \text{propiedad 7.7}$$

$$= a(\varepsilon + (b + aa)(b + aa)^*) + a(aa + b)^* \qquad \text{propiedad 3.1}$$

$$= a(\varepsilon + (b + aa)^+) + a(aa + b)^* \qquad \text{propiedad 7.3}$$

$$= a(b + aa)^* + a(aa + b)^* \qquad \text{propiedad 7.5}$$

$$= a(aa + b)^* + a(aa + b)^* \qquad \text{propiedad 2}$$

Demuestre que siguientes expresiones regulares son equivalentes:

$$R = a + a(b + aa)(b^*aa)^*b^* + a(aa + b)^* \text{ y } S = a(aa + b)^*.$$

$$R = a + a(b + aa)(b^*aa)^*b^* + a(aa + b)^*$$

 $= a + a(b + aa)(b + aa)^* + a(aa + b)^*$ propiedad 7.7
 $= a(\varepsilon + (b + aa)(b + aa)^*) + a(aa + b)^*$ propiedad 3.1
 $= a(\varepsilon + (b + aa)^+) + a(aa + b)^*$ propiedad 7.3
 $= a(b + aa)^* + a(aa + b)^*$ propiedad 7.5
 $= a(aa + b)^* + a(aa + b)^*$ propiedad 2
 $= a(aa + b)^*$

Lenguajes Regulares

Un lenguaje regular L es la denotación de una expresión regular R. Esto es L=[[R]]. Cuando conocemos la expresión regular lo denotamos como L(R).

- i. $[[\emptyset]]$ es un lenguaje regular.
- ii. $[[\varepsilon]]$ es un lenguaje regular.
- iii. [[a]] es un lenguaje regular, $\forall a \in \Sigma$.
- iv. Sean R_1 y R_2 regex de los lenguajes L_1 y L_2 respectivamente, entonces:
 - a) $L_1 \cup L_2 = [[R_1]] \cup [[R_2]] = [[R_1 + R_2]]$ es un lenguaje regular.
 - b) $L_1 \cdot L_2 = [[R_1]] \cdot [[R_2]] = [[R_1 \cdot R_2]]$ es un lenguaje regular.
 - c) $L_1^* = [[R_1^*]] = [[R_1]]^*$ es un lenguaje regular.

GramáticasRegulares

Una gramática $G=(\Sigma,\,\Delta,\,S,\,R)$ es **regular** si cada regla de producción es de la forma $X\to aY$ ó $X\to \varepsilon$, donde $X,Y\in \Delta$ y $a\in \Sigma.$

- Σ es un alfabeto de símbolos terminales.
- Δ es un alfabeto de símbolos no terminales.
- S es el símbolo inicial, $S \in \Delta$.
- R son las reglas de producción.