Media

Se toman las edades de 5 personas al azar cuyos resultados fueron (22, 33, 35, 38 y 41). Para facilitar su interpretación se han generado tres rangos de edad los cuales se han establecido de 21 a 30 años, de 31 a 40 años y de 41 a 50 años. Si nos fijamos en estos rangos notamos que los puntos medios son 25, 35 y 45 respectivamente. Los resultados de la organización de estos datos se representan en la tabla.

RANGO	Yi	Ni	Yi + Ni
21-30	25	1	25
31-40	35	3	105
41-50	45	1	45

Se aplica la fórmula:

$$\overline{\mathbf{X}} = \frac{\sum_{i=1}^{n} \mathbf{Y}_{i} \, \mathbf{n}_{i}}{\mathbf{n}} = \frac{25 + 105 + 35}{5} = \frac{175}{5} = 35$$

Lo que nos indicaría que el promedio de edad de los encuestados es de 35 años. Si ha estos mismos resultados le aplicamos la ecuación para datos desagrupados (Ecuación 5-3), tomando como referencia cada uno de los valores individuales, obtendremos que la media es igual a

$$\overline{\mathbf{X}} = \frac{\sum_{i=1}^{n} X_i}{\mathbf{n}} = \frac{22 + 33 + 35 + 38 + 41}{5} = \frac{169}{5} = 33.8 \approx 34$$

Lo que nos indicaría que el promedio de edad para los datos desagrupados es de 34 años aproximadamente.

Mediana

Tenemos la serie ordenada de valores (2, 5, 8, 10 y 13), la posición de la mediana sería:

Posición de la mediana =
$$\frac{n+1}{2} = \frac{5+1}{2} = 3$$

Lo que nos indica que el valor de la mediana corresponde a la tercera posición de la serie, que equivale al número (8)

Moda

si tenemos la serie ordenada (2, 2, 5 y 7), el valor que más veces se repite es el número 2 quien sería la moda de los datos.

Desviación estándar

El gerente de una empresa de alimentos desea saber qué tanto varían los pesos de los empaques (en gramos), de uno de sus productos; por lo que optó por seleccionar al azar cinco unidades de ellos para pesarlos. Los productos tienen los siguientes pesos (490, 500, 510, 515 y 520) gramos respectivamente.

Por lo que su media es:

$$\overline{X} = \frac{490 + 500 + 510 + 515 + 520}{5} = \frac{2535}{5} = 507$$

La varianza sería:

$$\mathcal{S}^2 = \frac{(490 - 507)^2 + (500 - 507)^2 + (510 - 507)^2 + (515 - 507)^2 + (520 - 507)^2}{(5 - 1)}$$

$$S^{2} = \frac{(-17)^{2} + (-7)^{2} + (3)^{2} + (8)^{2} + (13)^{2}}{4} = \frac{289 + 49 + 9 + 64 + 169}{4} = \frac{580}{4} = 145$$

Por lo tanto la desviación estándar sería:

$$S = \sqrt{145} = 12.04 \cong 12$$

Análisis de correlación

Las notas de 12 alumnos de una clase en Matemáticas y Física son las siguientes:

Matemáticas	2	3	4	4	5	6	6	7	7	8	10	10
Física	1	3	2	4	4	4	6	4	6	7	9	10

Hallar el coeficiente de correlación de la distribución e interpretarlo.

xi	Yi	Xi . Yi	Xi2	Yi2
2	1	2	4	1
3	3	9	9	9
4	2	8	16	4
4	4	16	16	16
5	4	20	25	16
6	4	24	36	16
7	4	28	49	16
7	6	42	49	36
8	7	56	64	49
10	9	90	10 0	81
10	10	100	10 0	10 0
72	60	431	50 4	38 0

Hallamos las medias aritméticas.

$$\overline{x} = \frac{72}{12} = 6$$
 $\overline{y} = \frac{60}{12} = 5$

Calculamos la covarianza.

$$\sigma_{xy} = \frac{431}{12} - 6.5 = 5.92$$

Calculamos las desviaciones típicas.

$$\sigma_{x} = \sqrt{\frac{504}{12} - 6^{2}} = 2.45$$
 $\sigma_{y} = \sqrt{\frac{380}{12} - 25} = 2.58$

Aplicamos la fórmula del coeficiente de correlación lineal.

$$r = \frac{5.92}{2.45 \cdot 2.58} = 0.94$$

Al ser el **coeficiente de correlación** positivo, la correlación es directa. Como **coeficiente de correlación** está muy próximo a 1 la correlación es muy fuerte.

Diagrama de dispersión

X	У		
10	8.04		
8	6.95		
13	7.58		
9	8.81		
11	8.33		
14	9.963		
6	7.24		
4	4.26		
12	10.84		
7	4.82		
5	5.68		

- a.- Construir el diagrama de dispersión de Y en función de X. En base al diagrama construido,
 - a.1. ¿Cómo están relacionada X e Y?
 - a.2. ¿Qué signo tienen la covarianza y la correlación?.

Solución:

- a.1. De la forma de la nube de puntos podemos decir que la relación es lineal directa o positiva.
- a.2. Tanto la covarianza como la correlación tienen que ser positivas.