Maharashtra State Board 11th Maths Solutions Chapter 3 Trigonometry – II Ex 3.1

Question 1.

Find the values of:

i. sin 150°

ü. cos 75°

iii. tan 105°

iv. cot 225°

Solution:

i. $\sin 15^\circ = \sin (45^\circ - 30^\circ)$

= sin 45° cos 30° – cos 45° sin 30°

$$(12\sqrt{3}\sqrt{2})-(12\sqrt{12})=3\sqrt{-122}\sqrt{2}$$

[Note: Answer given in the textbook is $3\sqrt{+122}\sqrt{}$ However, as per our calculation it is $3\sqrt{-122}\sqrt{}$

ii.
$$\cos 75^\circ = \cos (45^\circ + 30^\circ)$$

= $\cos 45^\circ \cos 30^\circ - \sin 45^\circ \sin 30^\circ$
= $\left(\frac{1}{\sqrt{2}}\right)\left(\frac{\sqrt{3}}{2}\right) - \left(\frac{1}{\sqrt{2}}\right)\left(\frac{1}{2}\right)$
= $\frac{\sqrt{3} - 1}{2\sqrt{2}}$

iii. tan 105° = tan (60° +45°)
=
$$\frac{\tan 60^{\circ} + \tan 45^{\circ}}{1 - \tan 60^{\circ} \tan 45^{\circ}}$$

= $\frac{\sqrt{3} + 1}{1 - (\sqrt{3})(1)}$
= $\frac{\sqrt{3} + 1}{1 - \sqrt{3}}$

iv. cot 225°
$$\cot 225^{\circ} = \frac{1}{\tan 225^{\circ}} = \frac{1}{\tan(180^{\circ} + 45^{\circ})}$$

$$= \frac{1}{\left(\frac{\tan 180^{\circ} + \tan 45^{\circ}}{1 - \tan 180^{\circ} \tan 45^{\circ}}\right)}$$

$$= \frac{1}{\left(\frac{0 + 1}{1 - 0(1)}\right)}$$

$$= \frac{1}{\left(\frac{1}{1}\right)}$$

$$= 1$$

Question 2.

Perove the following:

i. $\cos(\pi 2 - x)\cos(\pi 2 - y) - \sin(\pi 2 - x)\sin(\pi 2 - y) = -\cos(x + y)$

Solution:

L.H.S

- Arjun
- Digvijay

$$= \cos\left(\frac{\pi}{2} - x\right) \cos\left(\frac{\pi}{2} - y\right)$$
$$-\sin\left(\frac{\pi}{2} - x\right) \sin\left(\frac{\pi}{2} - y\right)$$

 $= \sin x \sin y - \cos x \cos y$

$$\cdots \left[\because \cos\left(\frac{\pi}{2} - \theta\right) = \sin\theta, \\ \sin\left(\frac{\pi}{2} - \theta\right) = \cos\theta \right]$$

- $= -(\cos x \cos y \sin x \sin y)$
- $= -\cos(x+y)$
- = R.H.S

ii. $tan(\pi 4 + \theta) = 1 + tan \theta 1 - tan \theta$

L.H.S =
$$tan(\pi 4 + \theta)$$

$$= \frac{\tan\frac{\pi}{4} + \tan\theta}{1 - \tan\frac{\pi}{4}\tan\theta}$$

$$= \frac{1 + \tan \theta}{1 - (1) \tan \theta}$$

$$= \frac{1 + \tan \theta}{1 - \tan \theta}$$

R.H.S.

[Note: The question has been modified.]

iii. $(1+tanx1-tanx)2=tan(\pi 4+x)tan(\pi 4-x)$ Solution:

$$R.H.S. = \frac{\tan\left(\frac{\pi}{4} + x\right)}{\tan\left(\frac{\pi}{4} - x\right)}$$

$$= \frac{\left(\frac{\tan\frac{\pi}{4} + \tan x}{1 - \tan\frac{\pi}{4} \tan x}\right)}{\left(\frac{\tan\frac{\pi}{4} - \tan x}{1 + \tan\frac{\pi}{4} \tan x}\right)} = \frac{\left(\frac{1 + \tan x}{1 - (1)\tan x}\right)}{\left(\frac{1 - \tan x}{1 + (1)\tan x}\right)}$$

$$= \left(\frac{1 + \tan x}{1 - \tan x}\right) \times \left(\frac{1 + \tan x}{1 - \tan x}\right)$$

$$= \left(\frac{1 + \tan x}{1 - \tan x}\right)^2 = L.H.S.$$

iv. $\sin [(n+1)A]$. $\sin [(n+2)A] + \cos [(n+1)A]$. $\cos [(n+2)A] = \cos A$ Solution:

L.H.S. = $\sin [(n + 1)A] \cdot \sin [(n + 2)A] + \cos [(n + 1)A] \cdot \cos [(n + 2)A]$ = $\cos [(n + 2)A] \cdot \cos [(n + 1)A] + \sin [(n + 2)A] \cdot \sin [(n + 1)A]$

Let(n+2)Aaand(n+l)Ab ...(i)

- \therefore L.H.S. = cos a. cos b + sin a. sin b
- $= \cos (a b)$
- $= \cos [(n + 2)A (n + 1)A]$
- ...[From (i)]
- $\cos[(n+2-n-1)A]$
- = cos A
- = R.H.S.

- Arjun
- Digvijay

v.
$$2-\sqrt{\cos(\pi 4-A)}=\cos A+\sin A$$

Solution:

L.H.S. =
$$\sqrt{2}\cos\left(\frac{\pi}{4} - A\right)$$

= $\sqrt{2}\left(\cos\frac{\pi}{4}\cos A + \sin\frac{\pi}{4}\sin A\right)$
= $\sqrt{2}\left(\frac{1}{\sqrt{2}}\cos A + \frac{1}{\sqrt{2}}\sin A\right)$
= $\frac{\sqrt{2}}{\sqrt{2}}(\cos A + \sin A)$
= $\cos A + \sin A$
= R.H.S.

 $vi.\ cos(x-y)cos(x+y) = cotxcoty + 1cotxcoty - 1$

Solution:

L.H.S. =
$$\frac{\cos(x-y)}{\cos(x+y)}$$
$$= \frac{\cos x \cos y + \sin x \sin y}{\cos x \cos y - \sin x \sin y}$$

Dividing numerator and denominator by $\sin x \sin y$, we get

L.H.S. =
$$\frac{\left(\frac{\cos x \cos y}{\sin x \sin y} + 1\right)}{\left(\frac{\cos x \cos y}{\sin x \sin y} - 1\right)}$$
$$= \frac{\cot x \cot y + 1}{\cot x \cot y - 1}$$
$$= R.H.S.$$

vii. cos(x + y). cos(x - y) = cos2y - sin2x

- L.H.S. = cos(x + y). cos(x y)
- = $(\cos x \cos y \sin x \sin y)$. $(\cos x \cos y + \sin x \sin y)$
- = cos2 x cos2y sin2x sin2y
- ...[: (a b) (a + b) = $a_2 b_2$]
- $= (1 \sin 2x) \cos 2y \sin 2x (1 \cos 2y)$
- ...[: $\sin_2 e + \cos_2 0 = 1$]
- $= \cos 2y \cos 2y \sin 2x \sin 2x + \sin 2x \cos 2y$
- = cos2y sin2x
- =R.H.S.

- Arjun
- Digvijay

VIII.tan5A-tan3Atan5A+tan3A=sin2Asin8A

Solution:

L.H.S. =
$$\frac{\sin 5A - \tan 3A}{\tan 5A + \tan 3A}$$

$$= \frac{\sin 5A}{\cos 5A} - \frac{\sin 3A}{\cos 3A}$$

$$= \frac{\sin 5A \cos 3A - \sin 3A \cos 5A}{\cos 5A \cos 3A}$$

$$= \frac{\sin 5A \cos 3A - \sin 3A \cos 5A}{\cos 5A \cos 3A}$$

$$= \frac{\sin 5A \cos 3A + \sin 3A \cos 5A}{\cos 5A \cos 3A}$$

$$= \frac{\sin 5A \cos 3A - \cos 5A \sin 3A}{\sin 5A \cos 3A + \cos 5A \sin 3A}$$

$$= \frac{\sin 5A \cos 3A - \cos 5A \sin 3A}{\sin 5A \cos 3A + \cos 5A \sin 3A}$$

$$= \frac{\sin (5A - 3A)}{\sin (5A + 3A)}$$

$$= \frac{\sin 2A}{\sin 2A}$$

ix. $\tan 8\theta - \tan 5\theta - \tan 3\theta = \tan 8\theta \tan 5\theta \tan 3\theta$

= R.H.S.

Solution:

Since, $8\theta = 5\theta + 3\theta$

- $\therefore \tan 8\theta = \tan (5\theta + 3\theta)$
- $\therefore \tan 8\theta = \tan 5\theta + \tan 3\theta 1 \tan 5\theta \tan 3\theta$
- \therefore tan 8 θ (1 tan 5 θ .tan 3 θ) = tan 5 θ + tan 3 θ
- ∴ $\tan 8\theta \tan 8\theta . \tan 5\theta . \tan 3\theta = \tan 5\theta + \tan 3\theta$
- ∴ $\tan 8\theta \tan 5\theta \tan 3\theta = \tan 8\theta \cdot \tan 5\theta \cdot \tan 3\theta$

x. $tan 50^{\circ} = tan 40^{\circ} + 2tan 10^{\circ}$

Solution:

Since, $50^{\circ} = 10^{\circ} + 40^{\circ}$

- $\therefore \tan 50^{\circ} = \tan (10^{\circ} + 40^{\circ})$
- :. tan10. +tan40. 1-tan10. tan40.
- ∴ $\tan 50^{\circ} (1 \tan 10^{\circ} \tan 40^{\circ}) = \tan 10^{\circ} + \tan 40^{\circ}$
- \therefore tan 50° tan 10° tan 40° tan 50° = tan 10° + tan 40°
- \therefore tan 50° tan 10° tan 40° tan (90° 40°) = tan 10° + tan 40°
- ∴ tan 50° tan 10° tan 40° cot 40°
- $= tan 10^{\circ} + tan 40^{\circ} ... [: tan (90^{\circ} θ) = cot θ]$
- \therefore tan 50° tan 10° tan 40°. 1tan 40° = tan 10° + tan 40°
- ∴ $\tan 50^{\circ} \tan 10^{\circ}$. 1 = $\tan 10^{\circ} + \tan 40^{\circ}$
- \therefore tan 50° = tan 40° + 2 tan 10°

xi. cos27 · +sin27 · cos27 · -sin27 · = tan 72°

Solution:

cos27 + sin27 cos27 - sin27

Dividing numerator and cos 27°, we get denominator by cos 27°, we get

L.H.S. =
$$\frac{1 + \frac{\sin 27^{\circ}}{\cos 27^{\circ}}}{1 - \frac{\sin 27^{\circ}}{\cos 27^{\circ}}}$$

$$= \frac{1 + \tan 27^{\circ}}{1 - \tan 27^{\circ}}$$

$$= \frac{\tan 45^{\circ} + \tan 27^{\circ}}{1 - \tan 45^{\circ} \tan 27^{\circ}} \dots [\because \tan 45^{\circ} = 1]$$

$$= \tan (45^{\circ} + 27^{\circ})$$

$$= \tan 72^{\circ} = \text{R.H.S.}$$

 $= \tan (45^{\circ} + 27^{\circ})$

 $= \tan 72^{\circ} = R.H.S$

- Arjun
- Digvijay

xii. cos27 + sin27 · cos27 - sin27 = tan72 ·

Solution:

Since $45^{\circ} = 10^{\circ} + 35^{\circ}$,

 $tan 45^{\circ} = tan (10^{\circ} + 35^{\circ})$

- : tan10 +tan35 1-tan10 tan35
- \therefore 1 tan 10° tan 350 = tan 10° + tan 35°
- \therefore tan 10° + tan 35° + tan 10° tan 35° = 1

xiii. $tan 10^{\circ} + tan 35^{\circ} + tan 10^{\circ}$. $tan 35^{\circ} = 1$ Solution:

L.H.S. =
$$\frac{\cot A \cot 4A + 1}{\cot A \cot 4A - 1}$$
$$= \frac{\frac{\cos A}{\sin A} \cdot \frac{\cos 4A}{\sin 4A} + 1}{\frac{\cos A}{\sin A} \cdot \frac{\cos 4A}{\sin 4A} - 1}$$

$$= \frac{\frac{\cos A \cos 4A + \sin A \sin 4A}{\sin A \sin 4A}}{\frac{\cos A \cos 4A - \sin A \sin 4A}{\sin A \sin 4A}}$$

$$= \frac{\cos 4A \cos A + \sin 4A \sin A}{\cos 4A \cos A - \sin 4A \sin A}$$

$$=\frac{\cos(4A-A)}{\cos(4A+A)}$$

$$=\frac{\cos 3A}{\cos 5A}=R.H.S.$$

xiv. cos15. -sin15. cos15. +sin15. =131

Solution:

Dividing numerator and cos 15°, we get

L.H.S. =
$$\frac{1 - \frac{\sin 15^{\circ}}{\cos 15^{\circ}}}{1 + \frac{\sin 15^{\circ}}{\cos 15^{\circ}}}$$

$$= \frac{1 - \tan 15^{\circ}}{1 + \tan 15^{\circ}}$$

$$= \frac{\tan 45^{\circ} - \tan 15^{\circ}}{1 + (\tan 45^{\circ})(\tan 15^{\circ})} \dots [\because \tan 45^{\circ} = 1]$$

$$= \tan (45^{\circ} - 15^{\circ})$$

$$= \tan 30^{\circ} = \frac{1}{\sqrt{3}} = \text{R.H.S.}$$

 $= tan (45^{\circ} + 15^{\circ})$

= $\tan 30^{\circ} = 13\sqrt{= R.H.S}$

Question 3.

If $\sin A = -513$, $\pi < A < 3\pi 2$ and $\cos B = 35$, $3\pi 2 < B < 2\pi$, find

i. sin (A+B)

ii. cos (A-B)

iii. tan (A + B)

Solution:

Given, $\sin A = -513$

We know that,

$$\cos 2 A = 1 - \sin 2 A = 1 - (-513)2 = 1 - 25169 = 144169$$

 $\therefore \cos A = \pm 1213$

Since, $\pi < A < 3\pi 2$

 \therefore 'A' lies in the 3rd quadrant.

- Arjun
- Digvijay
- ∴ cos A<0

 $\cos A = -1213$

Also, $\cos B = 35$

- $\therefore \sin 2B = 1 \cos 2B = 1 (35)2 = 1 925 = 1625$
- ∴ sin B = ±45

Since, $3\pi 2 < B < 2\pi$

- ∴ 'B' lies in the 4th quadrant.
- ∴ sin B<0

Sin B = -45

i.
$$\sin (A + B) = \sin A \cos B + \cos A \sin B$$

= $\left(-\frac{5}{13}\right)\left(\frac{3}{5}\right) + \left(-\frac{12}{13}\right)\left(-\frac{4}{5}\right)$
= $-\frac{15}{65} + \frac{48}{65} = \frac{33}{65}$

ii.
$$\cos (A - B) = \cos A \cos B + \sin A \sin B$$

= $\left(-\frac{12}{13}\right)\left(\frac{3}{5}\right) + \left(-\frac{5}{13}\right)\left(-\frac{4}{5}\right)$
= $-\frac{36}{65} + \frac{20}{65} = -\frac{16}{65}$

iii.

$$\tan A = \frac{\sin A}{\cos A} = \frac{\left(-\frac{5}{13}\right)}{\left(-\frac{12}{13}\right)} = \frac{5}{12}$$

$$\tan B = \frac{\sin B}{\cos B} = \frac{\left(-\frac{4}{5}\right)}{\left(\frac{3}{5}\right)} = -\frac{4}{3}$$

$$\tan (A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} = \frac{\frac{5}{12} - \frac{4}{3}}{1 - \left(\frac{5}{12}\right)\left(-\frac{4}{3}\right)}$$
$$= \frac{\left(-\frac{33}{36}\right)}{\left(\frac{56}{36}\right)} = -\frac{33}{56}$$

Question 4.

If tan A = 56, tan B = 111 prove that $A + B = \pi 4$

Solution:

Given tan A = 56, tan B = 111

$$\tan (A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} = \frac{\frac{5}{6} + \frac{1}{11}}{1 - \left(\frac{5}{6}\right)\left(\frac{1}{11}\right)}$$
$$= \frac{\left(\frac{61}{66}\right)}{\left(\frac{61}{66}\right)} = 1$$

- ∴ $tan (A + B) = tan \pi 4$
- $\therefore A + B = \pi 4$

Maharashtra State Board 11th Maths Solutions Chapter 3 Trigonometry – II Ex 3.2

```
Question 1.
Find the values of:
i. sin 690°
ii. sin 495°
iii. cos 315°
iv. cos 600°
v. tan 225°
vi. tan (- 690°)
vii. sec 240°
viii. sec (- 855°)
ix. cosec 780°
x. cot (-1110°)
Solution:
i. \sin 690^\circ = \sin (720^\circ - 30^\circ)
Solution:
i. \sin 690^\circ = \sin (720^\circ -30^\circ)
= \sin (2 \times 360^{\circ} - 30^{\circ})
= - \sin 30^{\circ}
= -12
ii. \sin 495^\circ = \sin (360^\circ + 135^\circ)
= \sin (135^{\circ})
= \sin (90^{\circ} + 45^{\circ})
= \cos 45^{\circ}
= 12√
iii. \cos 315^\circ = \cos (270^\circ + 45^\circ)
sin 45° = 12√
iv. \cos 600^{\circ} = \cos (360^{\circ} + 240^{\circ})
= cos 240°
= \cos (180^{\circ} + 60^{\circ})
= -\cos 60^{\circ}
= -12
v. \tan 225^\circ = \tan (180^\circ + 45^\circ)
= tan 45°
= 1.
vi. tan (-690^\circ) = -tan 690^\circ
= - \tan (720^{\circ} - 30^{\circ})
= - \tan (2 \times 360^{\circ} - 30^{\circ})
= - (- \tan 30^{\circ})
= tan 30°
= 13√
vii. sec 240^{\circ} = \sec (180^{\circ} + 60^{\circ})
= - sec 60^{\circ}
= -2
viii. sec (-855°) = sec (855°)
= sec (720^{\circ} + 135^{\circ})
= \sec (2 \times 360^{\circ} + 135^{\circ}) = \sec 135^{\circ}
= sec (90^{\circ} + 45^{\circ})
= - cosec 45°
= -2 -√
ix. \csc 780^{\circ} = \csc (720^{\circ} + 60^{\circ})
= cosec (2 x 360° + 60°)
```

```
Allguidesite -
- Arjun
- Digvijay
= cosec 60°
= 23√
x. \cot (-1110^\circ) = -\cot (1110^\circ)
= -\cot (1080^{\circ} + 30^{\circ})
= - \cot (3 \times 360^{\circ} + 30^{\circ})
= - \cot 30^{\circ}
= - 3 -√
Question 2.
Prove the following:
i. cos(\pi+x)cos(-x)sin(\pi-x)cos(\pi 2+x) = cot 2x
ii. cos(3\pi 2+x)cos(2\pi+x)[cot(3\pi 2-x)+cot(2\pi+x)]
iii. sec 840^{\circ} cot (- 945^{\circ}) + sin 600^{\circ} tan (- 690^{\circ}) = 3/2
iv. cosec(90^{\circ} - x)sin(180^{\circ} - x)cot(360^{\circ} - x)sec(180^{\circ} + x)tan(90^{\circ} + x)sin(-x) = 1
V. \sin_3(\pi+x)\sec_2(\pi-x)\tan(2\pi-x)\cos_2(\pi^2+x)\sin(\pi-x)\csc_2(-x)=\tan 3x
vi. \cos \theta + \sin (270^{\circ} + \theta) - \sin (270^{\circ} - \theta) + \cos (180^{\circ} + \theta) = 0
Solution:
i.
L.H.S. = \frac{\cos(\pi + x)\cos(-x)}{\sin(\pi - x)\cos(\frac{\pi}{2} + x)}
            =\frac{(-\cos x)(\cos x)}{(\sin x)(-\sin x)}
            =\frac{\cos^2 x}{\sin^2 x}
             =\cot^2 x
             = R.H.S.
ii. L.H.S.
= \cos (3\pi 2 + x) \cos (2\pi + x) \cdot [\cot (-x) + (2\pi + x)]
= (\sin x)(\cos x) (\tan x + \cot x)
= sin x cos x ( (sinxcosx+cosxsinx))
= sin x cos x (sin2x+cos2xsinxcosx)
= \sin x \cos x (1 \sin x \cos x)
= 1 = R.H.S
iii. \sec 840^\circ = \sec (720^\circ + 120^\circ)
= sec (2 \times 360^{\circ} + 120^{\circ})
= sec (120^{\circ})
= sec (90^{\circ} + 30^{\circ})
= - cosec 30°
= -2
\cot(-945^{\circ}) = -\cot 945^{\circ}
= -\cot (720^{\circ} + 225^{\circ})
= -\cot (2 \times 360^{\circ} + 225^{\circ})
= -\cot (225^{\circ})
= -\cot (180^{\circ} + 459)
= -cot 45°
= -1
\sin 600^{\circ} = \sin (360^{\circ} + 240^{\circ})
= \sin (240^{\circ})
= \sin (180^{\circ} + 60^{\circ})
= - \sin 60^{\circ} = -3\sqrt{2}
tan (-690^\circ) = -tan 690^\circ
= - \tan (360^{\circ} + 330^{\circ})
= -tan (330^{\circ})
```

= tan (360° - 30°)

```
Allguidesite -
- Arjun
- Digvijay
=-(-tan 30°)
= tan 30°0 = 13√
L.H.S. = sec 840° cot (-945°) + sin 600° tan (-690°)
= (-2)(-1) + (-3\sqrt{2})(13\sqrt{2})
= 2 - 12=32
= R. H. S.
L.H.S. = \frac{\csc(90^{\circ} - x).\sin(180^{\circ} - x).\cot(360^{\circ} - x)}{\sec(180^{\circ} + x).\tan(90^{\circ} + x).\sin(-x)}
= 1
= R.H.S
٧.
L.H.S. = \frac{\sin^3(\pi+x)\sec^2(\pi-x)\tan(2\pi-x)}{\cos^2\left(\frac{\pi}{2}+x\right)\sin(\pi-x)\csc^2(-x)}
                  =\frac{\left[\sin\left(\pi+x\right)\right]^{3}\left[\sec\left(\pi-x\right)\right]^{2}\tan\left(2\pi-x\right)}{\left[\cos\left(\frac{\pi}{2}+x\right)\right]^{2}\sin\left(\pi-x\right).\left(-\csc x\right)^{2}}
                                   = \frac{\left(-\sin x\right)^3 \left(-\sec x\right)^2 \left(-\tan x\right)}{\left(-\sin x\right)^2 \cdot \sin x \cdot \csc^2 x}
                                  =\frac{\left(-\sin^3 x\right).\sec^2 x.\left(-\tan x\right)}{\sin^2 x.\sin x.\frac{1}{\sin^2 x}}
                                    = \frac{\sin^3 x \cdot \sec^2 x \cdot \tan x}{\sin x}
                                    = \sin^2 x \cdot \frac{1}{\cos^2 x} \cdot \tan x
                                    = \tan^2 x \cdot \tan x
                                     = \tan^3 x
                                      = R.H.S.
vi. L.H.S. = \cos \theta + \sin (270^{\circ} + \theta) - \sin (270^{\circ} - \theta) + \cos (180^{\circ} + \theta)
=\cos\theta + (-\cos\theta)-(-\cos\theta) - \cos\theta
=\cos\theta-\cos\theta+\cos\theta-\cos\theta
= 0
```

= R.H.S.

Maharashtra State Board 11th Maths Solutions Chapter 3 Trigonometry – II Ex 3.3

- Arjun
- Digvijay

Question 1.

Find the values of:

i. $\sin \pi 8$

ii. π8

Solution:

We know that $\sin_2 \theta = 1 - \cos_2 \theta 2 [/atex] Substituting \theta = [latex]_{\pi 8}$, we get

$$\sin^2\frac{\pi}{8} = \frac{1 - \cos\frac{\pi}{4}}{2} = \frac{1 - \frac{1}{\sqrt{2}}}{2} = \frac{\sqrt{2} - 1}{2\sqrt{2}}$$

$$\therefore \quad \sin \frac{\pi}{8} = \sqrt{\frac{\sqrt{2} - 1}{2\sqrt{2}}} \qquad \qquad \dots \left[\because \sin \frac{\pi}{8} \text{ is positive}\right]$$

$$...$$
 $\int : \sin \frac{\pi}{8}$ is positive

$$\therefore \sin \frac{\pi}{8} = \sqrt{\frac{\sqrt{2} - 1}{2\sqrt{2}}} \times \frac{\sqrt{2}}{\sqrt{2}}$$
$$= \sqrt{\frac{2 - \sqrt{2}}{4}}$$

$$\therefore \quad \sin \frac{\pi}{8} = \frac{\sqrt{2 - \sqrt{2}}}{2}$$

ii. We know that, $\cos 2\theta = 1 + \cos 2\theta 2$ Substituting $\theta = \pi 8$, we get

$$\cos^2 \frac{\pi}{8} = \frac{1 + \cos \frac{\pi}{4}}{2}$$
$$= \frac{1 + \frac{1}{\sqrt{2}}}{2} = \frac{\sqrt{2} + 1}{2\sqrt{2}}$$

$$\therefore \quad \cos \frac{\pi}{8} = \sqrt{\frac{\sqrt{2}+1}{2\sqrt{2}}} \qquad \dots \left[\because \cos \frac{\pi}{8} \text{ is positive}\right]$$

$$\therefore \cos \frac{\pi}{8} = \sqrt{\frac{\sqrt{2}+1}{2\sqrt{2}}} \times \frac{\sqrt{2}}{\sqrt{2}}$$
$$= \sqrt{\frac{2+\sqrt{2}}{4}}$$

$$\therefore \qquad \cos\frac{\pi}{8} = \frac{\sqrt{2+\sqrt{2}}}{2}$$

Question 2.

Find sin 2x, cos 2x, tan 2x if sec x = -135, π 2 < x < π

Solution:

sec x = -135, $\pi 2 < x < \pi$

We know that

Sect2 x = 1 + tan2x

tan2x = 16925 - 1 = 14425

 $tan x = \pm 125$

Since $\pi 2 < x < \pi$

x lies in the 2nd quadrant.

tan x < 0

$$\tan 2x = \frac{2\tan x}{1 - \tan^2 x}$$

$$= \frac{2\left(-\frac{12}{5}\right)}{1 - \left(-\frac{12}{5}\right)^2}$$

$$= \frac{-\frac{24}{5}}{1 - \frac{144}{25}}$$

$$= \frac{-\frac{24}{5}}{-\frac{119}{25}} = \frac{24}{5} \times \frac{25}{119}$$

$$= \frac{120}{112}$$

Question 3.

i. = $tan_2 \theta$

Solution:

L. H. S. = $1-\cos 2\theta 1 + \cos 2\theta$

= $2\sin_2\theta 2\cos_2\theta$

= 2tan2 θ

= R.H.S.

ii. $(\sin 3x + \sin x) \sin x + (\cos 3x - \cos x) \cos x = 0$ Solution:

L.H.S. = $(\sin 3x + \sin x) \sin x + (\cos 3x - \cos x)\cos x$

 $= \sin 3x \sin x + \sin 2x + \cos 3x \cos x - \cos 2x$

 $= (\cos 3x \cos x + \sin 3x \sin x)$

— (cos2x — sin2x)

 $= \cos (3x - x) - \cos 2x$

 $= \cos 2x - \cos 2x$

= 0

= R.H.S.

```
Allguidesite -
- Arjun
```

- Digvijay

Solution:

L.H.S. =
$$(\cos x + \cos y)^2 + (\sin x + \sin y)^2 = 4\cos x + \cos y + \sin x + \sin y)^2$$
= $\cos x + \cos x + \cos y + \cos x + \cos y + \sin x + \sin y + \cos x + \sin x + \sin y + \cos x + \sin x + \sin y + \cos x + \sin x + \sin x + \cos x + \sin x + \sin x + \cos x + \sin x + \sin x + \cos x + \sin x + \sin x + \cos x +$

vi. cosx+sinxcosx-sinx-cosx-sinxcosx+sinx = 2 tan 2x

L.H.S.
$$= \frac{\cos x + \sin x}{\cos x - \sin x} - \frac{\cos x - \sin x}{\cos x + \sin x}$$

$$= \frac{(\cos x + \sin x)^2 - (\cos x - \sin x)^2}{(\cos x - \sin x)(\cos x + \sin x)}$$

$$= \frac{(\cos^2 x + \sin^2 x + 2\sin x \cos x) - (\cos^2 x + \sin^2 x - 2\sin x \cos x)}{\cos^2 x - \sin^2 x}$$

$$= \frac{1 + 2\sin x \cos x - 1 + 2\sin x \cos x}{\cos^2 x - \sin^2 x}$$

$$= \frac{2(2\sin x \cos x)}{\cos^2 x - \sin^2 x}$$

$$= \frac{2(\sin x \cos x)}{\cos^2 x - \sin^2 x}$$

$$= \frac{2\sin 2x}{\cos 2x}$$

$$= 2\tan 2x$$

$$= R.H.S.$$

- Arjun
- Digvijay

Solution:

L.H.S. =
$$\sqrt{2+\sqrt{2+\sqrt{2+2\cos 8x}}}$$

= $\sqrt{2+\sqrt{2+\sqrt{2[1+\cos 2(4x)]}}}$
= $\sqrt{2+\sqrt{2+\sqrt{2\times2\cos^2 4x}}}$
...[:: $1+\cos 2\theta = 2\cos^2\theta$]
= $\sqrt{2+\sqrt{2+2\cos 4x}}$
= $\sqrt{2+\sqrt{2[1+\cos 2(2x)]}}$
= $\sqrt{2+\sqrt{2\times2\cos^2 2x}}$
= $\sqrt{2+2\cos 2x} = \sqrt{2(1+\cos 2x)}$
= $\sqrt{2\times2\cos^2 x}$

- $= 2 \cos x$
- = R.H.S.

[Note: The question has been modified.]

viii. $16 \sin \theta \cos \theta \cos 2\theta \cos 4\theta \cos 8\theta = \sin 16\theta$

Solution:

L.H.S. = $16 \sin \theta \cos \theta \cos 2\theta \cos 4\theta \cos 8\theta$

- = $8(2\sin\theta\cos\theta)\cos2\theta\cos4\theta\cos8\theta$
- = $8\sin 2\theta \cos 2\theta \cos 4\theta \cos 8\theta$
- = $4(2\sin 2\theta \cos 2\theta) \cos 4\theta \cos 8\theta$
- $= 4\sin 4\theta \cos 4\theta \cos 8\theta$
- $= 2(2\sin 4\theta \cos 4\theta) \cos 8\theta$
- $= 2\sin 8\theta \cos 8\theta$
- $= \sin 16\theta$
- = R.H.S.

ix. $(= 2 \cot 2x)$

Solution:

L.H.S.=
$$\frac{\sin 3x}{\cos x} + \frac{\cos 3x}{\sin x}$$

$$= \frac{\sin 3x \sin x + \cos 3x \cos x}{\sin x \cos x}$$

$$= \frac{\cos (3x - x)}{\sin x \cos x}$$

$$= \frac{2\cos 2x}{2\sin x \cos x}$$

$$= \frac{2\cos 2x}{\sin 2x}$$

$$= 2\cot 2x$$

$$= R.H.S.$$

 $x. [latex] \frac{x}{2} \frac{x}{2}$ Solution:

L.H.S. =
$$\frac{\cos x}{1+\sin x}$$

$$= \frac{\cos^2 \frac{x}{2} - \sin^2 \frac{x}{2}}{\left(\cos^2 \frac{x}{2} + \sin^2 \frac{x}{2}\right) + 2\sin \frac{x}{2}\cos \frac{x}{2}}$$

$$= \frac{\left(\cos \frac{x}{2} - \sin \frac{x}{2}\right)\left(\cos \frac{x}{2} + \sin \frac{x}{2}\right)}{\left(\cos \frac{x}{2} + \sin \frac{x}{2}\right)^2}$$

$$= \frac{\cos \frac{x}{2} - \sin \frac{x}{2}}{\cos \frac{x}{2} + \sin \frac{x}{2}}$$

Dividing numerator and denominator by $\sin \frac{x}{2}$,

we get

$$L.H.S. = \frac{\frac{\cos\frac{x}{2}}{\sin\frac{x}{2}} - 1}{\frac{\cos\frac{x}{2}}{\sin\frac{x}{2}} + 1}$$

$$= \frac{\cot\frac{x}{2} - 1}{\cot\frac{x}{2} + 1}$$

$$= R.H.S.$$

xi. $tan(\theta_2)+cot(\theta_2)cot(\theta_2)-tan(\theta_2)=Sec\theta$ Solution:

L.H.S. =
$$\frac{\tan\frac{\theta}{2} + \cot\frac{\theta}{2}}{\cot\frac{\theta}{2} - \tan\frac{\theta}{2}}$$
=
$$\frac{\sin\frac{\theta}{2} + \frac{\cos\frac{\theta}{2}}{\sin\frac{\theta}{2}}}{\frac{\cos\frac{\theta}{2}}{\sin\frac{\theta}{2}} - \frac{\sin\frac{\theta}{2}}{\cos\frac{\theta}{2}}}$$
=
$$\frac{\sin^2\frac{\theta}{2} + \cos^2\frac{\theta}{2}}{\cos^2\frac{\theta}{2} - \sin^2\frac{\theta}{2}}$$
=
$$\frac{1}{\cos\theta}$$
=
$$\sec\theta = \text{R.H.S.}$$

xii. 1tan3A-tanA-1cot3A-cotA = cot 2A Solution:

- Digvijay

L.H.S. =
$$\frac{1}{\tan 3A - \tan A} - \frac{1}{\cot 3A - \cot A}$$

= $\frac{1}{\tan 3A - \tan A} - \frac{1}{\frac{1}{\tan 3A} - \frac{1}{\tan A}}$

$$= \frac{1}{\tan 3A - \tan A} - \frac{\tan 3A \cdot \tan A}{\tan A - \tan 3A}$$

$$= \frac{1}{\tan 3A - \tan A} + \frac{\tan 3A \cdot \tan A}{\tan 3A - \tan A}$$

$$= \frac{1 + \tan 3A \cdot \tan A}{\tan 3A - \tan A}$$

$$= \frac{1}{\tan 3A - \tan A}$$

$$= \frac{1}{\tan 3A - \tan A}$$

$$= \frac{1}{\tan 3A \cdot \tan A}$$

xiii. cos 7° cos 14° cos 28° cos 56° sin68 · 16cos83

Solution:

L.H.S. = cos 7° cos 14° cos 28° cos 56°

= 12sin7 (2sin 7°cos 7°)cos 14°cos 28°cos 56°

= 12sin7. (sin 14° cos 14° cos 28° cos 56°)

...[: 2sinθ cosθ = sin 2θ]

 $= \cot 2A = R.H.S.$

= $[\frac{1}{2\left(2 \sin 7^{\circ}\right)}]$ (2sin 14° cos 14°) cos 28° cos 56°

= 14sin7. (sin 28° cos 28° cos 56°)

= 12(4sin7.)(2 sin 28° cos 28°) cos 56°

= 18sin7 (sin 56° cos 56°)

= 18sin7 (2 sin 56° cos 56°)

= 116sin7 (sin 112°)

 $= sin(180^{\circ} - 68^{\circ})16sin(90^{\circ} - 83^{\circ})$

= sin68. 16cos83.

= R.H.S.

xiv. = $sin_2(-160^\circ)sin_270^\circ + sin(180^\circ - \theta)sin\theta = sec2 20^\circ$

L.H.S.
$$= \frac{\sin^{2}(-160^{\circ})}{\sin^{2}70^{\circ}} + \frac{\sin(180^{\circ} - \theta)}{\sin \theta}$$

$$= \frac{\left(-\sin 160^{\circ}\right)^{2}}{\sin^{2}70^{\circ}} + \frac{\sin \theta}{\sin \theta}$$

$$= \frac{\sin^{2}160^{\circ}}{\sin^{2}70^{\circ}} + 1$$

$$= 1 + \frac{\left(\sin 160^{\circ}\right)^{2}}{\left(\sin 70^{\circ}\right)^{2}}$$

$$= 1 + \frac{\left[\sin\left(180^{\circ} - 20^{\circ}\right)\right]^{2}}{\left[\sin\left(90^{\circ} - 20^{\circ}\right)\right]^{2}}$$

$$= 1 + \frac{\sin^{2}20^{\circ}}{\cos^{2}20^{\circ}}$$

$$= 1 + \tan^{2}20^{\circ}$$

$$= \sec^{2}20^{\circ} = \text{R.H.S.}$$

- Arjun

- Digvijay

xv. 2cos4x+12cosx+1 = (2 cos x - 1)(2 cos 2x - 1)

Solution:

Solution:

$$L.H.S. = \frac{2\cos 4x + 1}{2\cos x + 1}$$

$$= \frac{2[2\cos^2(2x) - 1] + 1}{2\cos x + 1}$$

$$...[\because \cos 2\theta = 2\cos^2\theta - 1]$$

$$= \frac{4\cos^2 2x - 2 + 1}{2\cos x + 1}$$

$$= \frac{(2\cos 2x)^2 - (1)^2}{2\cos x + 1}$$

$$= \frac{(2\cos 2x + 1)(2\cos 2x - 1)}{2\cos x + 1}$$

$$= \frac{[2(2\cos^2 x - 1) + 1](2\cos 2x - 1)}{2\cos x + 1}$$

$$= \frac{(4\cos^2 x - 2 + 1)(2\cos 2x - 1)}{2\cos x + 1}$$

$$= \frac{[(2\cos x)^2 - (1)^2](2\cos 2x - 1)}{2\cos x + 1}$$

$$= \frac{(2\cos x + 1)(2\cos x - 1)(2\cos 2x - 1)}{2\cos x + 1}$$

$$= (2\cos x - 1)(2\cos 2x - 1)$$

$$= R.H.S.$$

$$xvi. = cos2 x + cos2 (x + 120^\circ) + cos2(x - 120^\circ) = 32$$

Solution:

L.H.S =
$$\cos 2 x + \cos 2 (x + 120^{\circ}) + \cos 2(x - 120^{\circ}) =$$

$$= \frac{1 + \cos 2x}{2} + \frac{1 + \cos 2(x + 120^{\circ})}{2} + \frac{1 + \cos 2(x - 120^{\circ})}{2} \cdot \dots \left[\because \cos^{2} \theta = \frac{1 + \cos 2\theta}{2} \right]$$

 $32+12 \left[\cos 2x + \cos(2x + 240^\circ) + \cos(2x 240^\circ)\right]$

- $= 32+12(\cos 2x + \cos 2x \cos 240^{\circ} \sin 2x \sin 240^{\circ} + \cos 2x \cos 240^{\circ} + \sin 2x \sin 240^{\circ})$
- $= 32+12(\cos 2x + 2\cos 2x\cos 240^{\circ})$
- $= 32+12 [\cos 2x + 2 \cos 2x \cos(180^{\circ} + 60^{\circ})]$
- $= 32+12 [\cos 2x + 2\cos 2x(-\cos 600)]$
- $= 32+12 [\cos 2x 2 \cos 2x(12)]$
- $= 32+12 (\cos 2x \cos 2x)$
- = 32+12 (0)
- = 32 = R.H.S.

- Arjun
- Digvijay

xvii. 2 cosec $2x + \csc x = \sec \cot x^2$

Solution:

L.H.S. =
$$2 \csc 2x + \csc x$$

= $\frac{2}{\sin 2x} + \frac{1}{\sin x}$
= $\frac{2}{2 \sin x \cos x} + \frac{1}{\sin x}$
= $\frac{1}{\sin x \cos x} + \frac{1}{\sin x}$
= $\frac{1 + \cos x}{\sin x \cos x}$
= $\frac{2 \cos^2 \frac{x}{2}}{\left(2 \sin \frac{x}{2} \cos \frac{x}{2}\right) \cos x}$
= $\frac{1}{\cos x} \cdot \frac{\cos\left(\frac{x}{2}\right)}{\sin\left(\frac{x}{2}\right)}$

xviii. $4 \cos x \cos (\pi 3 + x) \cos (\pi 3 - x) = \cos 3x$

= R.H.S.

 $= \sec x \cot \left(\frac{x}{2}\right)$

Solution:

L.H.S. =
$$4\cos x \cdot \cos\left(\frac{\pi}{3} + x\right) \cdot \cos\left(\frac{\pi}{3} - x\right)$$

= $4\cos x \left(\cos\frac{\pi}{3}\cos x - \sin\frac{\pi}{3}\sin x\right)$

$$\left(\cos\frac{\pi}{3}\cos x + \sin\frac{\pi}{3}\sin x\right)$$

= $4\cos x \left(\frac{1}{2}\cos x - \frac{\sqrt{3}}{2}\sin x\right)\left(\frac{1}{2}\cos x + \frac{\sqrt{3}}{2}\sin x\right)$
= $4\cos x \left(\left(\frac{1}{2}\cos x\right)^2 - \left(\frac{\sqrt{3}}{2}\sin x\right)^2\right)$
= $4\cos x \left(\frac{1}{4}\cos^2 x - \frac{3}{4}\sin^2 x\right)$

= cos3x — 3cos x.sin2x

 $= \cos_3 x - 3\cos x (1 - \cos_2 x)$

 $= \cos_3 x - 3\cos x + 3\cos_3 x$

=4 cos3x — 3cos x

 $= \cos 3x = R.H.S.$

INote: The question has been modijied.I

xix. $\sin x \tan x^2 + 2\cos x = 21 + tan_2(x^2)$

Solution:

L.H.S. = $\sin x \tan (x/2) + 2\cos x$

 $= (2\sin x 2\cos x 2)(\sin x 2\cos x 2) + 2\cos x$

 $= (2\sin x 2\cos x 2)(\sin x 2\cos x 2) + 2\cos x$

 $= 2\sin_2 x/2 + 2\cos x$

 $= 1 - \cos x + 2\cos x$

- $= 1 + \cos x$
- $=2\cos 2 x/2$

 $= 2sec_{2\times 2} = 21 + tan_{2\times 2} = R.H.S.$

Maharashtra State Board 11th Maths Solutions Chapter 3 Trigonometry – II Ex 3.4

Question 1.

Express the following as a sum or difference of two trigonometric functions.

i. 2sin 4x cos 2x

ii. 2sin 2π3 cos π2

iii. $2\cos 4\theta \cos 2\theta$

iv. 2cos 35° cos 75°

Solution:

i. $2\sin 4x \cos 2x = \sin(4x + 2x) + \sin(4x - 2x)$

 $= \sin 6x + \sin 2x$

$$2\sin\frac{2\pi}{3}\cos\frac{\pi}{2} = \sin\left(\frac{2\pi}{3} + \frac{\pi}{2}\right) + \sin\left(\frac{2\pi}{3} - \frac{\pi}{2}\right)$$
$$= \sin\frac{7\pi}{6} + \sin\frac{\pi}{6}$$

[Note: Answer given in the textbook is $\sin 7\pi 12 + \sin \pi 12$ However, as per our calculation it is $\sin 7\pi 6 + \sin \pi 6$

iii.
$$2\cos 4\theta \cos 2\theta = \cos(4\theta + 2\theta) + \cos(4\theta - 2\theta)$$

= $\cos 6\theta + \cos 2\theta$

$$= \cos(35^{\circ} + 75^{\circ}) + \cos(35^{\circ} - 75^{\circ})$$

$$= \cos 110^{\circ} + \cos (-40)^{\circ}$$

$$= cos 110^{\circ} + cos 40^{\circ} ... [: cos(-θ) = cos θ]$$

Question 2.

Prove the following:

i. sin2x+sin2ysin2x-sin2y=tan(x+y)tan(x-y)

Solution:

L.H.S.
$$= \frac{\sin 2x + \sin 2y}{\sin 2x - \sin 2y}$$

$$= \frac{2\sin\left(\frac{2x + 2y}{2}\right)\cos\left(\frac{2x - 2y}{2}\right)}{2\cos\left(\frac{2x + 2y}{2}\right)\sin\left(\frac{2x - 2y}{2}\right)}$$

$$= \frac{\sin(x + y)\cos(x - y)}{\cos(x + y)\sin(x - y)}$$

$$= \tan(x + y) \cdot \cot(x - y)$$

$$= \tan(x + y) \cdot \frac{1}{\tan(x - y)}$$

$$= \frac{\tan(x + y)}{\tan(x - y)}$$

$$= \frac{\tan(x + y)}{\tan(x - y)}$$

ii. $\sin 6x + \sin 4x - \sin 2x = 4 \cos x \sin 2x \cos 3x$

L.H.S. =
$$\sin 6x + \sin 4x - \sin 2x$$

$$= 2\sin(6x+4x^2)\cos(6x-4x^2) - 2\sin x\cos x$$

```
Allguidesite -
```

- Arjun
- Digvijay
- $= 2 \sin 5x \cos x 2 \sin x \cos x$
- $= 2 \cos x (\sin 5x \sin x)$
- $= 2 \cos \left[2\cos(5x+x2)\sin(5x-x2)\right]$
- $= 2 \cos x (2 \cos 3x \sin 2x)$
- $= 4 \cos x \sin 2x \cos 3x$
- = R.H.S.

[Note: The question has been modified.]

iii. sinx-sin3x+sin5x-sin7xcosx-cos3x-cos5x+cos7x = cot 2xSolution:

$$L.H.S. = \frac{\sin x - \sin 3x + \sin 5x - \sin 7x}{\cos x - \cos 3x - \cos 5x + \cos 7x}$$

$$= \frac{(\sin 5x + \sin x) - (\sin 7x + \sin 3x)}{(\cos x - \cos 5x) - (\cos 3x - \cos 7x)}$$

$$= \frac{2\sin\left(\frac{5x + x}{2}\right) \cdot \cos\left(\frac{5x - x}{2}\right) - 2\sin\left(\frac{7x + 3x}{2}\right) \cdot \cos\left(\frac{7x - 3x}{2}\right)}{2\sin\left(\frac{x + 5x}{2}\right) \cdot \sin\left(\frac{5x - x}{2}\right) - 2\sin\left(\frac{3x + 7x}{2}\right) \cdot \sin\left(\frac{7x - 3x}{2}\right)}$$

$$= \frac{2\sin 3x \cdot \cos 2x - 2\sin 5x \cdot \cos 2x}{2\sin 3x \cdot \sin 2x - 2\sin 5x \cdot \sin 2x}$$

$$= \frac{2\cos 2x}{2\sin 2x \cdot (\sin 3x - \sin 5x)}$$

$$= \frac{\cos 2x}{\sin 2x} = \cot 2x = \text{R.H.S.}$$

iv. sin 18° cos 39° + sin 6° cos 15° = sin 24° cos 33°

Solution:

L.H.S. = sin 18°.cos 39° + sin 6°.cos 15°

- $= 12 (2 \cos 39^{\circ} \sin 18^{\circ} + 2.\cos 15^{\circ}.\sin 6^{\circ})$
- = $12[\sin(39^{\circ} + 18^{\circ}) \sin(39^{\circ} 18^{\circ}) + \sin(15^{\circ} + 6^{\circ}) \sin(15^{\circ} 6^{\circ})]$
- $= 12(\sin 57^{\circ} \sin 21^{\circ} + \sin 21^{\circ} \sin 9^{\circ})$
- $= 12(\sin 57^{\circ} \sin 9^{\circ})$
- = 12 x 2. $\cos(57 + 9 \cdot 2)$ $\sin(57 9 \cdot 2)$
- = cos 33° .sin 24°
- = sin 24°. cos 33°
- = R.H.S.

v. $\cos 20^{\circ} \cos 40^{\circ} \cos 60^{\circ} \cos 80^{\circ} = 1/16$

Solution:

L.H.S. = cos 20°.cos 40°.cos 60°.cos 80°

- = cos 20°.cos 40°.12 .cos 80°
- = 12×2(2 cos 40°.cos 20°).cos 80°
- $= 14[\cos(40^{\circ} + 20^{\circ}) + \cos(40^{\circ} 20^{\circ})].\cos 80^{\circ}$
- $= 14(\cos 60^{\circ} + \cos 20^{\circ}) \cos 80^{\circ}$
- $=14\cos 60^{\circ}.\cos 80^{\circ} + 14\cos 20^{\circ}.\cos 80^{\circ}$
- $= 14(12)\cos 80^{\circ} + 12\times 4(2\cos 80^{\circ}\cos 20^{\circ})$
- = $18 \cos 80^{\circ} + 18[\cos (80^{\circ} + 20^{\circ}) + \cos (80^{\circ} 20^{\circ})]$
- $= 18\cos 80^{\circ} + 18(\cos 100^{\circ} + \cos 60^{\circ})$
- = 18 cos 80° + 18cos 100° + 18cos 60°
- $= 18 \cos 80^{\circ} = 18 \cos (180^{\circ} 80^{\circ}) + 18 \times 12$
- = 18 $\cos 80^{\circ} 18 \cos 80^{\circ} + 116 \dots [\because \cos (180 \theta) = -\cos \theta]$
- = 116 = R.H.S

Allguidesite -- Arjun - Digvijay vi. $\sin 20^{\circ} \sin 40^{\circ} \sin 60^{\circ} \sin 80^{\circ} = 3/16$ Solution: L.H.S. = sin 20°. sin 40°. sin 60°. sin 80° $= \sin 20^{\circ} \cdot \sin 40^{\circ} \cdot \left(\frac{\sqrt{3}}{2}\right) \cdot \sin 80^{\circ}$ $=\frac{\sqrt{3}}{2} \cdot \frac{1}{2} (2.\sin 40^{\circ}.\sin 20^{\circ}).\sin 80^{\circ}$ $= \frac{\sqrt{3}}{4} \left[\cos(40^{\circ} - 20^{\circ}) - \cos(40^{\circ} + 20^{\circ}) \right] . \sin 80^{\circ}$ $=\frac{\sqrt{3}}{4}(\cos 20^{\circ} - \cos 60^{\circ})\sin 80^{\circ}$ $=\frac{\sqrt{3}}{4} \cdot \cos 20^{\circ} \cdot \sin 80^{\circ} - \frac{\sqrt{3}}{4} \cos 60^{\circ} \cdot \sin 80^{\circ}$ $= \frac{\sqrt{3}}{2 \times 4} (2 \sin 80^{\circ}.\cos 20^{\circ}) - \frac{\sqrt{3}}{4} \left(\frac{1}{2}\right).\sin 80^{\circ}$ $=\frac{\sqrt{3}}{8} \cdot [\sin(80^\circ + 20^\circ) + \sin(80^\circ - 20^\circ)]$ $-\frac{\sqrt{3}}{8}.\sin 80^{\circ}$ $=\frac{\sqrt{3}}{9}.(\sin 100^\circ + \sin 60^\circ) - \frac{\sqrt{3}}{9}.\sin 80^\circ$ $=\frac{\sqrt{3}}{8}\sin 100^{\circ} + \frac{\sqrt{3}}{8}\sin 60^{\circ} - \frac{\sqrt{3}}{8}\sin 80^{\circ}$ $=\frac{\sqrt{3}}{8} \cdot \sin(180^\circ - 80^\circ) + \frac{\sqrt{3}}{8} \times \frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{8} \cdot \sin 80^\circ$ $=\frac{\sqrt{3}}{8}\sin 80^{\circ} + \frac{3}{16} - \frac{\sqrt{3}}{8}\sin 80^{\circ}$...[: $\sin(180^{\circ} - \theta) = \sin \theta$]

Maharashtra State Board 11th Maths Solutions Chapter 3 Trigonometry – II Ex 3.5

Question 1.

In \triangle ABC, A + B + C = π , show that $\cos 2A + \cos 2B + \cos 2C = -1 - 4 \cos A \cos B \cos C$ Solution:

L.H.S. = $\cos 2A + \cos 2B + \cos 2C$ = $2 \cdot \cos(2 A + 2 B^2) \cdot \cos(2 A - 2 B^2) + \cos 2C$ = $2 \cdot \cos(A + B) \cdot \cos(A - B) + 2 \cos 2C - 1$ In \triangle ABC, A + B + C = π \therefore A + B = π - C \therefore $\cos(A + B) = \cos(\pi - C)$ \therefore $\cos(A + B) = -\cos C$ (i)

 $=\frac{3}{16}$ = R.H.S.

- Arjun
- Digvijay

∴ L.H.S. =
$$-2.\cos C.\cos (A - B) + 2.\cos 2C - 1$$
 ...[From(i)]
= $-1 - 2.\cos C.[\cos(A - B) - \cos C]$

 $= -1 - 2.\cos C.[\cos(A - B) + \cos(A + B)]$

... [From (i)]

 $= -1 - 2.\cos C.(2.\cos A.\cos B)$

 $= -1 - 4.\cos A.\cos B.\cos C = R.H.S.$

Question 2.

 $\sin A + \sin B + \sin C = 4 \cos A/2 \cos B/2 \cos C/2$

Solution:

L.H.S. =
$$\sin A + \sin B + \sin C$$

= $2.\sin\left(\frac{A+B}{2}\right).\cos\left(\frac{A-B}{2}\right)$
+ $2.\sin\frac{C}{2}.\cos\frac{C}{2}$

In
$$\triangle$$
 ABC, $A + B + C = \pi$

$$\therefore A + B = \pi - C$$

$$\sin\left(\frac{A+B}{2}\right) = \sin\left(\frac{\pi-C}{2}\right) = \sin\left(\frac{\pi}{2} - \frac{C}{2}\right)$$

$$= \cos\frac{C}{2} \qquad ...(i)$$
and
$$\cos\left(\frac{A+B}{2}\right) = \cos\left(\frac{\pi-C}{2}\right) = \cos\left(\frac{\pi}{2} - \frac{C}{2}\right)$$

$$= \sin\frac{C}{2} \qquad ...(ii)$$

$$\therefore L.H.S. = 2.\cos\frac{C}{2}.\cos\left(\frac{A-B}{2}\right)$$

$$+2.\cos\left(\frac{A+B}{2}\right).\cos\frac{C}{2}$$
...[From (i) and (ii)]
$$=2.\cos\frac{C}{2}.\left[\cos\left(\frac{A-B}{2}\right)+\cos\left(\frac{A+B}{2}\right)\right]$$

$$=2.\cos\frac{C}{2}.2\cos\left[\frac{A+B+A-B}{2}\right]$$

$$.\cos\left[\frac{A+B-A-B}{2}\right]$$

$$= 2.\cos\frac{C}{2} \cdot \left(2.\cos\frac{A}{2}.\cos\frac{B}{2}\right)$$
$$= 4.\cos\frac{A}{2}.\cos\frac{B}{2}.\cos\frac{C}{2} = R.H.S.$$

Question 3.

 $\cos A + \cos B + \cos C = 4 \cos A/2 \cos B/2 \cos C/2$

 $= 2 \cdot \cos(A+B2) \cdot \cos(A-B2) - (1-2\sin 2C2)$

Solution:

L.H.S. = sin A + sin B + sin C

 $= 2 \cdot \cos(A+B2) \cdot \cos(A-B2) - (1-2\sin 2C2)$

In \triangle ABC, A + B + C = π ,

- Arjun

$$\therefore A + B = \pi - C$$

$$\therefore \cos\left(\frac{A + B}{2}\right) = \cos\left(\frac{\pi - C}{2}\right) = \cos\left(\frac{\pi}{2} - \frac{C}{2}\right)$$

$$= \sin\frac{C}{2} \qquad ...(i)$$

$$\therefore L.H.S. = 2.\sin\frac{C}{2}.\cos\left(\frac{A - B}{2}\right) - 1 + 2.\sin^2\frac{C}{2}$$

$$...[From (i)]$$

$$= 2.\sin\frac{C}{2}.\left[\cos\left(\frac{A - B}{2}\right) + \sin\frac{C}{2}\right] - 1$$

$$= 2.\sin\frac{C}{2}.\left[\cos\left(\frac{A - B}{2}\right) + \cos\left(\frac{A + B}{2}\right)\right] - 1$$

$$...[From (i)]$$

$$= 2\sin\frac{C}{2}.2\cos\left[\frac{A + B}{2} + \frac{A - B}{2}\right]$$

$$.\cos\left[\frac{A + B}{2} - \frac{A - B}{2}\right] - 1$$

$$= 2.\sin\frac{C}{2}.\left(2.\cos\frac{A}{2}.\cos\frac{B}{2}\right) - 1$$

 $=4.\cos\frac{A}{2}.\cos\frac{B}{2}.\sin\frac{C}{2}-1$

Question 4.

 $sin_2 A + sin_2 B - sin_2 C = 2 sin A sin B cos C$

= R.H.S.

Solution:

We know that, $\sin 2 = 1 - \cos 2\theta 2$

L.H.S.

$$= \sin^{2} + \sin^{2} B + \sin^{2} C$$

$$= \frac{1 - \cos 2A}{2} + \frac{1 - \cos 2B}{2} - \sin^{2} C$$

$$= \frac{1}{2} [2 - (\cos 2A + \cos 2B)] - \sin^{2} C$$

$$= \frac{1}{2} \left[2 - 2 \cdot \cos \left(\frac{2A + 2B}{2} \right) \cdot \cos \left(\frac{2A - 2B}{2} \right) \right]$$

$$- \sin^{2} C$$

$$= 1 - \cos(A + B) \cdot \cos(A - B) - \sin_2 C$$

$$= (1 - \sin_2 C) - \cos (A + B). \cos (A - B)$$

$$= \cos_2 C - \cos(A + B) \cdot \cos(A - B)$$

$$\therefore \cos(A + B) = \cos(it - C)$$

$$\therefore \cos(A + B) = -\cos C ...(i)$$

$$\therefore$$
 L.H.S. = cos₂C + cos C.cos(A - B)

... [From (i)]

$$= \cos C[\cos C + \cos(A - B)]$$

$$= \cos C[-\cos(A + B) + \cos(A - B)]$$

... [From (i)]

$$= \cos C[\cos (A-B) - \cos(A+B)]$$

= R.H.S.

[Note: The question has been modified.]

Question 5.

 $Sin_2A_2 + Sin_2B_2 - Sin_2C_2 = 1 - 2cosA_2cosB_2Sin_{C_2}$

- Digvijay

We know that,
$$\sin^2 \theta = \frac{1 - \cos 2\theta}{2}$$

L.H.S.

$$= \sin^2 \frac{A}{2} + \sin^2 \frac{B}{2} - \sin^2 \frac{C}{2}$$

$$= \frac{1 - \cos A}{2} + \frac{1 - \cos B}{2} - \sin^2 \frac{C}{2}$$

$$= \frac{1}{2} \left[2 - (\cos A + \cos B) \right] - \sin^2 \frac{C}{2}$$

$$= \frac{1}{2} \left[2 - 2 \cdot \cos \left(\frac{A + B}{2} \right) \cdot \cos \left(\frac{A - B}{2} \right) \right] - \sin^2 \frac{C}{2}$$

$$= 1 - \cos \left(\frac{A + B}{2} \right) \cdot \cos \left(\frac{A - B}{2} \right) - \sin^2 \frac{C}{2}$$
In Δ ABC, A + B + C = π
∴ A + B = π - C
∴ $\cos \left(\frac{A + B}{2} \right) = \cos \left(\frac{\pi - C}{2} \right) = \cos \left(\frac{\pi}{2} - \frac{C}{2} \right)$

$$= \sin \frac{C}{2} \qquad ...(i)$$
∴ L.H.S. = 1 - sin $\frac{C}{2} \cdot \cos \left(\frac{A - B}{2} \right) - \sin^2 \frac{C}{2}$
...[From (i)]
$$= 1 - \sin \frac{C}{2} \cdot \left[\cos \left(\frac{A - B}{2} \right) + \cos \left(\frac{A + B}{2} \right) \right]$$
...[From (i)]
$$= 1 - \sin \frac{C}{2} \cdot 2 \cos \left[\frac{A + B}{2} + \frac{A - B}{2} \right]$$

$$= 1 - \sin \frac{C}{2} \cdot 2 \cos \left[\frac{A + B}{2} + \frac{A - B}{2} \right]$$

$$= 1 - \sin \frac{C}{2} \cdot \left[2 \cdot \cos \frac{A - B}{2} \cdot \cos \frac{B}{2} \right]$$

Question 6.

 $\tan A2 \tan B2 \tan B2 \tan C2 \tan C2 \tan A2 = 1$

= R.H.S.

 $=1-2.\cos\frac{A}{2}.\cos\frac{B}{2}.\sin\frac{C}{2}$

Solution:

In Δ ABC,

 $A + B + C = \pi$

- Arjun
- Digvijay

$$\therefore A + B = \pi - C$$

$$\therefore \tan\left(\frac{A+B}{2}\right) = \tan\left(\frac{\pi-C}{2}\right)$$

$$\therefore \tan \left(\frac{A}{2} + \frac{B}{2}\right) = \tan \left(\frac{\pi}{2} - \frac{C}{2}\right)$$

$$\therefore \frac{\tan\frac{A}{2} + \tan\frac{B}{2}}{1 - \tan\frac{A}{2} \cdot \tan\frac{B}{2}} = \cot\frac{C}{2}$$

$$\therefore \frac{\tan\frac{A}{2} + \tan\frac{B}{2}}{1 - \tan\frac{A}{2} \cdot \tan\frac{B}{2}} = \frac{1}{\tan\frac{C}{2}}$$

$$\therefore \tan \frac{C}{2} \cdot \left(\tan \frac{A}{2} + \tan \frac{B}{2} \right) = 1 - \tan \frac{A}{2} \cdot \tan \frac{B}{2}$$

$$\therefore \tan \frac{A}{2} \cdot \tan \frac{B}{2} + \tan \frac{B}{2} \cdot \tan \frac{C}{2} + \tan \frac{C}{2} \cdot \tan \frac{A}{2} = 1$$

Question 7.

cota2+cotb2+cotc2=cota2cotb2cotc2

Solution:

In Δ ABC,

$$A + B + C = \pi$$

$$\therefore A + B = \pi - C$$

$$\therefore \tan\left(\frac{A+B}{2}\right) = \tan\left(\frac{\pi-C}{2}\right)$$

$$\therefore \tan\left(\frac{A}{2} + \frac{B}{2}\right) = \tan\left(\frac{\pi}{2} - \frac{C}{2}\right)$$

$$\therefore \frac{\tan\frac{A}{2} + \tan\frac{B}{2}}{1 - \tan\frac{A}{2} \cdot \tan\frac{B}{2}} = \cot\frac{C}{2}$$

$$\therefore \frac{\tan\frac{A}{2} + \tan\frac{B}{2}}{1 - \tan\frac{A}{2} \cdot \tan\frac{B}{2}} = \frac{1}{\tan\frac{C}{2}}$$

$$\therefore \tan \frac{C}{2} \cdot \left(\tan \frac{A}{2} + \tan \frac{B}{2} \right) = 1 - \tan \frac{A}{2} \cdot \tan \frac{B}{2}$$

$$\therefore \tan \frac{B}{2} \cdot \tan \frac{C}{2} + \tan \frac{A}{2} \cdot \tan \frac{C}{2} + \tan \frac{A}{2} \cdot \tan \frac{B}{2} = 1$$

Dividing throughout by $\tan \frac{A}{2} \cdot \tan \frac{B}{2} \cdot \tan \frac{C}{2}$,

we get

$$\frac{1}{\tan \frac{A}{2}} + \frac{1}{\tan \frac{B}{2}} + \frac{1}{\tan \frac{C}{2}} = \frac{1}{\tan \frac{A}{2} \cdot \tan \frac{B}{2} \cdot \tan \frac{C}{2}}$$

$$\therefore \cot \frac{A}{2} + \cot \frac{B}{2} + \cot \frac{C}{2} = \cot \frac{A}{2} \cdot \cot \frac{B}{2} \cdot \cot \frac{C}{2}$$

Question 8.

tan 2A + tan 2B + tan 2C = tan 2A tan 2B + tan 2C

Solution:

In Δ ABC,

$$A + B + C = \pi$$

$$\therefore 2A + 2B + 2C = 2\pi$$

$$\therefore 2A + 2B = 2\pi - 2C$$

$$tan(2A + 2B) = tan(2n - 2C)$$

 $tan2 A + tan2 B1 - tan2 A \cdot tan2 B = -tan 2C$

∴ tan2A+tan2B=—tan2C.(1-tan2A.tan2B)

```
Allguidesite -
- Arjun
- Digvijay
\therefore tan 2A + tan 2B = - tan2C+ tan2A.tan2B.tan2C
\therefore tan 2A + tan 2B + tan 2C = tan2A.tan2B.tan2C
Question 9.
\cos_2 A + \cos_2 B - \cos_2 C = 1 - 2 \sin A \sin B \sin C
Solution:
we know that \cos 2\theta = 1 + \cos 2\theta 2
L.H.S.
= \cos_2 A + \cos_2 B + \cos_2 C
= \frac{1 + \cos 2A}{2} + \frac{1 + \cos 2B}{2} - \cos^2 C
=\frac{1}{2}[2 + (\cos 2A + \cos 2B)] - \cos^2 C
= \frac{1}{2} \left[ 2 + 2 \cdot \cos \left( \frac{2A + 2B}{2} \right) \cdot \cos \left( \frac{2A - 2B}{2} \right) \right]
= 1 + \cos (A + B).\cos(A - B) - \cos 2 C
In ΔABC,
A + B + C = \pi
A + B = \pi - C
cos(A + B) = cos(\pi - C)
cos(A + B) = -cosC .....(i)
L.H.S. = 1 - \cos C.\cos(A - B) - \cos 2 C
...[From(i)]
= 1 - \cos C.[\cos(A - B) + \cos C]
= 1 - \cos C.[\cos(A - B) - \cos(A + B)]
...[From (i)]
= 1 — cos C.(2.sin A.sin B)
= 1 — 2.sinA.sin B.cos C
= R.H.S.
```

Maharashtra State Board 11th Maths Solutions Chapter 3 Trigonometry – II Miscellaneous Exercise 3

I. Select the correct option from the given alternatives.

```
The value of sin(n + 1) A sin(n + 2) A + cos(n + 1) A cos(n + 2) A is equal to
(a) sin A
(b) cos A
(c) -cos A
(d) sin 2A
Answer:
(b) cos A
Hint:
L.H.S. = \sin [(n + 1)A] \cdot \sin [(n + 2)A] + \cos [(n + 1)A] \cdot \cos [(n + 2)A]
= \cos [(n + 2)A] \cdot \cos [(n + 1)A] + \sin [(n + 2)A] \cdot \sin [(n + 1)A]
Let (n + 2)A = a and (n + 1)A = b ... (i)
\therefore L.H.S. = cos a . cos b + sin a . sin b
= \cos (a - b)
= \cos [(n + 2)A - (n + 1)A] \dots [From (i)]
= \cos [(n + 2 - n - 1)A]
= \cos A
= R.H.S.
```

- Arjun
- Digvijay

Question 2.

If tan A - tan B = x and cot B - cot A = y, then $cot (A - B) = ______$

- (a) 1y-1x
- (b) 1x-1y
- (c) 1x+1y
- (d) xyx-y

Answer:

(c) 1x+1y

Hint:

$$x = \frac{\sin A}{\cos A} - \frac{\sin B}{\cos B}$$

$$= \frac{\sin A \cos B - \cos A \sin B}{\cos A \cos B} = \frac{\sin (A - B)}{\cos A \cos B}$$

$$y = \frac{\cos B}{\sin A} - \frac{\cos A}{\sin A}$$

$$y = \frac{\sin B}{\sin B} - \frac{\cos A}{\sin A}$$

$$= \frac{\sin A \cos B - \cos A \sin B}{\sin A \sin B}$$

$$= \frac{\sin (A - B)}{\sin A \sin B}$$

$$\frac{y}{x} = \frac{\cos A \cos B}{\sin A \sin B} = \cot A \cot B$$

$$\cot (A - B) = \frac{\cot A \cot B + 1}{\cot B - \cot A}$$
$$= \frac{\frac{y}{x} + 1}{y} = \frac{x + y}{xy}$$
$$= \frac{1}{x} + \frac{1}{y}$$

Question 3.

If $\sin \theta = n \sin(\theta + 2\alpha)$, then $\tan(\theta + \alpha)$ is equal to

- (a) 1+n2-n tan α
- (b) $1-n1+n \tan \alpha$
- (c) tan α
- (d) 1+n1-n tan α

Answer:

(d) 1+n1-n tan α

Hint:

$$\sin \theta = n \sin (\theta + 2\alpha)$$

$$\frac{n}{1} = \frac{\sin \theta}{\sin(\theta + 2\alpha)}$$

By componendo-dividendo, we get

$$\frac{n+1}{n-1} = \frac{\sin\theta + \sin(\theta + 2\alpha)}{\sin\theta - \sin(\theta + 2\alpha)}$$
$$= \frac{2\sin(\theta + \alpha)\cos\alpha}{-2\cos(\theta + \alpha)\sin\alpha}$$

$$\tan (\theta + \alpha) = -\left(\frac{n+1}{n-1}\right)\tan \alpha = \frac{1+n}{1-n}\tan \alpha$$

Question 4.

The value of $cos\theta1+sin\theta$ is equal to _____

- (a) $tan(\theta 2-\pi 4)$
- (b) $tan(-\pi 4 \theta 2)$
- (c) $tan(\pi 4-\theta 2)$
- (d) $tan(\pi 4 + \theta 2)$

Answer:

(c) $tan(\pi 4-\theta 2)$

Hint:

- Arjun
- Digvijay

$$\frac{\cos\theta}{1+\sin\theta} = \frac{\cos^2\frac{\theta}{2} - \sin^2\frac{\theta}{2}}{\cos^2\frac{\theta}{2} + \sin^2\frac{\theta}{2} + 2\sin\frac{\theta}{2}\cos\frac{\theta}{2}}$$

$$= \frac{\left(\cos\frac{\theta}{2} - \sin\frac{\theta}{2}\right)\left(\cos\frac{\theta}{2} + \sin\frac{\theta}{2}\right)}{\left(\cos\frac{\theta}{2} + \sin\frac{\theta}{2}\right)^2}$$

$$= \frac{\cos\frac{\theta}{2} - \sin\frac{\theta}{2}}{\cos\frac{\theta}{2} + \sin\frac{\theta}{2}}$$

Dividing numerator and denominator by $\cos \frac{\theta}{2}$, we get

$$\frac{\cos\theta}{1+\sin\theta} = \frac{1-\tan\frac{\theta}{2}}{1+\tan\frac{\theta}{2}} = \tan\left(\frac{\pi}{4} - \frac{\theta}{2}\right)$$

Question 5.

The value of cos A cos $(60^{\circ} - A)$ cos $(60^{\circ} + A)$ is equal to _____

- (a) 12 cos 3A
- (b) cos 3A
- (c) 14 cos 3A
- (d) 4cos 3A

Answer:

(c) 14 cos 3A

Hint:

$$\cos A \cos (60^{\circ} - A) \cos (60^{\circ} + A)$$

$$= (\cos A) (\cos 60^{\circ} \cos A + \sin 60^{\circ} \sin A)$$

$$\cdot (\cos 60^{\circ} \cos A - \sin 60^{\circ} \sin A)$$

$$= (\cos A) \left(\frac{1}{2} \cos A + \frac{\sqrt{3}}{2} \sin A\right)$$

$$\left(\frac{1}{2} \cos A - \frac{\sqrt{3}}{2} \sin A\right)$$

$$= \frac{1}{4} \cos A (\cos^2 A - 3 \sin^2 A)$$

$$= \frac{1}{4} [\cos^3 A - 3 \cos A (1 - \cos^2 A)]$$

$$= \frac{1}{4} (4\cos^3 A - 3 \cos A) = \frac{1}{4} \cos 3A$$

Question 6.

The value of $Sin\pi 14Sin3\pi 14Sin5\pi 14Sin7\pi 14Sin9\pi 14Sin11\pi 14Sin13\pi 14$ is ______

- (a) 116
- (b) 164
- (c) 1128
- (d) 1256

Answer:

(b) 164

Hint:

- Arjun

$$\begin{split} \sin\frac{\pi}{14} & \sin\frac{3\pi}{14} \sin\frac{5\pi}{14} \sin\frac{5\pi}{14} \sin\frac{7\pi}{14} \sin\frac{9\pi}{14} \sin\frac{11\pi}{14} \sin\frac{13\pi}{14} \\ & = \sin\frac{\pi}{14} \sin\frac{3\pi}{14} \sin\frac{5\pi}{14} \times 1 \\ & \times \sin\left(\pi - \frac{5\pi}{14}\right) \sin\left(\pi - \frac{3\pi}{14}\right) \sin\left(\pi - \frac{\pi}{14}\right) \\ & \dots \left[\because \sin\frac{7\pi}{14} = \sin\frac{\pi}{2} = 1\right] \\ & = \left(\sin\frac{\pi}{14} \sin\frac{3\pi}{14} \sin\frac{5\pi}{14}\right)^2 \dots \left[\because \sin\left(\pi - \theta\right) = \sin\theta\right] \\ & \sin\frac{\pi}{14} \sin\frac{3\pi}{14} \sin\frac{5\pi}{14} \\ & = \sin\left(\frac{\pi}{2} - \frac{3\pi}{7}\right) \sin\left(\frac{\pi}{2} - \frac{2\pi}{7}\right) \sin\left(\frac{\pi}{2} - \frac{\pi}{7}\right) \\ & = \cos\frac{3\pi}{7} \cos\frac{2\pi}{7} \cos\frac{\pi}{7} \\ & = \frac{1}{2\sin\left(\frac{\pi}{7}\right)} \left[\sin\left(\frac{2\pi}{7}\right) \cos\left(\frac{2\pi}{7}\right)\right] \cos\frac{3\pi}{7} \\ & = \frac{1}{4\sin\left(\frac{\pi}{7}\right)} \left(\sin\frac{4\pi}{7} \cos\left(\pi - \frac{4\pi}{7}\right)\right) \\ & = -\frac{1}{4\sin\left(\frac{\pi}{7}\right)} \sin\left(\frac{8\pi}{7}\right) \\ & = -\frac{1}{8\sin\left(\frac{\pi}{7}\right)} \left(-\sin\left(\frac{\pi}{7}\right)\right) \\ & \dots \left[\sin\left(\frac{8\pi}{7}\right) = \sin\left(\pi + \frac{\pi}{7}\right) = -\sin\left(\frac{\pi}{7}\right)\right] \end{split}$$

$$\therefore \quad \text{Required expression} = \left(\frac{1}{8}\right)^2 = \frac{1}{64}$$

If $\alpha + \beta + \gamma = \pi$, then the value of sin2 $\alpha + \sin 2\beta - \sin 2\gamma$ is equal to ____

- (a) $2 \sin \alpha$
- (b) $2 \sin \alpha \cos \beta \sin \gamma$
- (c) $2 \sin \alpha \sin \beta \cos \gamma$
- (d) $2 \sin \alpha \sin \beta \sin \gamma$

Answer:

(c) $2 \sin \alpha \sin \beta \cos \gamma$

 $\sin 2 \alpha + \sin 2 \beta - \sin 2 \gamma$

- = $1-\cos 2\alpha 2+1-\cos 2\beta 2-\sin 2\gamma$
- $= 1 12 (\cos 2\alpha + \cos 2\beta) 1 + \cos 2\gamma$
- = $-12 \times 2 \cos(\alpha + \beta) \cos(\alpha \beta) + \cos^2 \gamma$
- = $\cos \gamma \cos (\alpha \beta) + \cos 2 \gamma \dots [\because \alpha + \beta + \gamma = \pi]$
- = $\cos \gamma [\cos (\alpha \beta) + \cos \gamma]$
- = $\cos \gamma [\cos (\alpha \beta) \cos (\alpha + \beta)]$
- = $2 \sin \alpha \sin \beta \cos \gamma$

Question 8.

Let 0 < A, $B < \pi 2$ satisfying the equation $3\sin 2A + 2\sin 2B = 1$ and $3\sin 2A - 2\sin 2B = 0$, then A + 2B is equal to _____

- (a) π
- (b) $\pi 2$

```
Allguidesite -
- Arjun
- Digvijay
(c) \pi 4
(d) 2\pi
Answer:
(b) \pi 2
Hint:
3 \sin 2A - 2\sin 2B = 0
\sin 2B = 32 \sin 2A \dots (i)
3 \sin_2 A + 2 \sin_2 B = 1
3 \sin_2 A = 1 - 2 \sin_2 B
3 \sin_2 A = \cos 2B \dots (ii)
cos(A + 2B) = cos A cos 2B - sin A sin 2B
= cos A (3 sin<sub>2</sub> A) – sin A (32 sin<sub>2</sub> 2A) .....[From (i) and (ii)]
= 3 \cos A \sin_2 A - 32 (\sin A) (2 \sin A \cos A)
= 3 \cos A \sin_2 A - 3 \sin_2 A \cos A
= 0
= \cos \pi 2
∴ A + 2B = \pi2 ......["." 0 < A + 2B < 3\pi2]
Question 9.
In \triangleABC if cot A cot B cot C > 0, then the triangle is _____
(a) acute-angled
(b) right-angled
(c) obtuse-angled
(d) isosceles right-angled
Answer:
(a) acute angled
Hint:
\cot A \cot B \cot C > 0
Case I:
\cot A, \cot B, \cot C > 0
\therefore cot A > 0, cot B > 0, cot C > 0
∴ 0 < A < \pi 2, 0 < B < \pi 2, 0 < C < \pi 2
∴ ∆ABC is an acute angled triangle.
Case II:
Two of cot A, cot B, cot C < 0
0 < A, B, C < \pi and two of cot A, cot B, cot C < 0
: Two angles A, B, C are in the 2nd quadrant which is not possible.
Question 10.
The numerical value of tan 20° tan 80° cot 50° is equal to _____
(a) √3
(b) 13√
(c) 2√3
(d) 123√
Answer:
(a) √3
Hint:
L.H.S. = tan 20° tan 80° cot 50°
= \tan 20^{\circ} \tan 80^{\circ} \cot (90^{\circ} - 40^{\circ})
```

= tan 20° tan 80° tan 40°

 $= \tan 20^{\circ} \tan (60^{\circ} + 20^{\circ}) \tan (60^{\circ} - 20^{\circ})$

Allguidesite -- Arjun

- Digvijay

$$= \tan 20^{\circ} \left(\frac{\tan 60^{\circ} + \tan 20^{\circ}}{1 - \tan 60^{\circ} \tan 20^{\circ}} \right) \left(\frac{\tan 60^{\circ} - \tan 20^{\circ}}{1 + \tan 60^{\circ} \tan 20^{\circ}} \right)$$

$$= \tan 20^{\circ} \left(\frac{\sqrt{3} + \tan 20^{\circ}}{1 - \sqrt{3} \tan 20^{\circ}} \right) \left(\frac{\sqrt{3} - \tan 20^{\circ}}{1 + \sqrt{3} \tan 20^{\circ}} \right)$$

$$= \tan 20^{\circ} \left[\frac{\left(\sqrt{3}\right)^{2} - \tan^{2} 20^{\circ}}{1^{2} - \left(\sqrt{3} \tan 20^{\circ}\right)^{2}} \right]$$

$$= \tan 20^{\circ} \left(\frac{3 - \tan^{2} 20^{\circ}}{1 - 3 \tan^{2} 20^{\circ}} \right)$$

$$= \frac{3 \tan 20^{\circ} - \tan^{3} 20^{\circ}}{1 - 3 \tan^{2} 20^{\circ}}$$

 $= tan 3(20^{\circ})$

= tan 60°

= √3

= R.H.S.

II. Prove the following.

Question 1.

tan 20° tan 80° cot 50° = $\sqrt{3}$

Solution:

L.H.S. = tan 20° tan 80° cot 50°

 $= \tan 20^{\circ} \tan 80^{\circ} \cot (90^{\circ} - 40^{\circ})$

$$= \tan 20^{\circ} \tan 80^{\circ} \tan 40^{\circ}$$

$$= \tan 20^{\circ} \tan (60^{\circ} + 20^{\circ}) \tan (60^{\circ} - 20^{\circ})$$

$$= \tan 20^{\circ} \left(\frac{\tan 60^{\circ} + \tan 20^{\circ}}{1 - \tan 60^{\circ} \tan 20^{\circ}} \right) \left(\frac{\tan 60^{\circ} - \tan 20^{\circ}}{1 + \tan 60^{\circ} \tan 20^{\circ}} \right)$$

$$= \tan 20^{\circ} \left(\frac{\sqrt{3} + \tan 20^{\circ}}{1 - \sqrt{3} \tan 20^{\circ}} \right) \left(\frac{\sqrt{3} - \tan 20^{\circ}}{1 + \sqrt{3} \tan 20^{\circ}} \right)$$

$$= \tan 20^{\circ} \left[\frac{\left(\sqrt{3}\right)^{2} - \tan^{2} 20^{\circ}}{1^{2} - \left(\sqrt{3} \tan 20^{\circ}\right)^{2}} \right]$$

$$= \tan 20^{\circ} \left(\frac{3 - \tan^{2} 20^{\circ}}{1 - 3 \tan^{2} 20^{\circ}} \right)$$

$$= \frac{3\tan 20^{\circ} - \tan^{3} 20^{\circ}}{1 - 3\tan^{2} 20^{\circ}}$$
$$= \tan 3(20^{\circ})$$

= tan 60°

= √3

= R.H.S.

Question 2.

If $\sin \alpha \sin \beta - \cos \alpha \cos \beta + 1 = 0$, then prove that $\cot \alpha \tan \beta = -1$.

Solution:

 $\sin \alpha \sin \beta - \cos \alpha \cos \beta + 1 = 0$

 $\therefore \cos \alpha \cos \beta - \sin \alpha \sin \beta = 1$

 $\therefore \cos (\alpha + \beta) = 1$

 $\therefore \alpha + \beta = 0 \dots [\because \cos 0 = 1]$

 $\beta = -\alpha$

L.H.S. = $\cot \alpha \tan \beta$

= $\cot \alpha \tan(-\alpha)$

= $-\cot \alpha \tan \alpha$

= -1

= R.H.S.

Question 3.

COS2π15COS4π15COS8π15COS16π15=116

- Arjun

- Digvijay

Solution:

L.H.S. =
$$\cos \frac{2\pi}{15} \cos \frac{4\pi}{15} \cos \frac{8\pi}{15} \cos \frac{16\pi}{15}$$

= $\frac{1}{2\sin \frac{2\pi}{15}} \left(2\sin \frac{2\pi}{15} \cos \frac{2\pi}{15} \right)$
 $\cdot \cos \frac{4\pi}{15} \cos \frac{8\pi}{15} \cos \frac{16\pi}{15}$
= $\frac{1}{2\sin \frac{2\pi}{1}} \left(\sin \frac{4\pi}{15} \cos \frac{4\pi}{15} \cos \frac{8\pi}{15} \cos \frac{16\pi}{15} \right)$

$$= \frac{1}{2\sin\frac{2\pi}{1}} \left(\sin\frac{1}{15}\cos\frac{1}{15}\cos\frac{1}{15}\cos\frac{1}{15}\cos\frac{1}{15} \right)$$

$$\dots \left[\because 2\sin\theta\cos\theta = \sin 2\theta \right]$$

$$= \frac{1}{2 \times 2\sin\frac{2\pi}{15}} \left(2\sin\frac{4\pi}{15}\cos\frac{4\pi}{15} \right) \cos\frac{8\pi}{15}\cos\frac{16\pi}{15}$$

$$= \frac{1}{4\sin\frac{2\pi}{15}} \left(\sin\frac{8\pi}{15}\cos\frac{8\pi}{15}\cos\frac{16\pi}{15} \right)$$

$$= \frac{1}{2 \times 4\sin\frac{2\pi}{15}} \left(2\sin\frac{8\pi}{15}\cos\frac{8\pi}{15} \right) \cos\frac{16\pi}{15}$$

$$= \frac{1}{8\sin\frac{2\pi}{15}} \left(\sin\frac{16\pi}{15}\cos\frac{16\pi}{15} \right)$$

$$= \frac{1}{2 \times 8\sin\frac{2\pi}{15}} \left(2\sin\frac{16\pi}{15}\cos\frac{16\pi}{15} \right)$$

$$= \frac{1}{16\sin\frac{2\pi}{15}} \sin\left(\frac{32\pi}{15}\right)$$

$$= \frac{1}{16\sin\frac{2\pi}{15}} \sin\left(2\pi + \frac{2\pi}{15}\right)$$

$$= \frac{1}{16\sin\frac{2\pi}{15}} \left(\sin\frac{2\pi}{15} \right) \dots \left[\because \sin(2\pi + \theta) = \sin\theta \right]$$

= R. H. S.

 $(1+\cos_{\pi 8})(1+\cos_{3\pi 8})(1+\cos_{5\pi 8})(1+\cos_{7\pi 8})=18$ Solution: Allguidesite -- Arjun

L.H.S.
=
$$\left(1 + \cos\frac{\pi}{8}\right) \left(1 + \cos\frac{3\pi}{8}\right) \left(1 + \cos\frac{5\pi}{8}\right) \left(1 + \cos\frac{7\pi}{8}\right)$$

Since,
$$\cos(\pi - \theta) = -\cos\theta$$

$$\therefore \quad \cos \frac{7\pi}{8} = \cos \left(\pi - \frac{\pi}{8}\right) = -\cos \frac{\pi}{8} \qquad \dots (i)$$

and
$$\cos \frac{5\pi}{8} = \cos \left(\pi - \frac{3\pi}{8}\right) = -\cos \frac{3\pi}{8}$$
 ...(ii)

$$\therefore L.H.S. = \left(1 + \cos\frac{\pi}{8}\right) \left(1 + \cos\frac{3\pi}{8}\right)$$

$$\left(1-\cos\frac{3\pi}{8}\right)\left(1-\cos\frac{\pi}{8}\right)$$

...[From (i) and (ii)]

$$= \left(1 - \cos^2 \frac{\pi}{8}\right) \left(1 - \cos^2 \frac{3\pi}{8}\right)$$

$$= \sin^2 \frac{\pi}{8} \sin^2 \frac{3\pi}{8}$$

$$= \frac{1}{4} \left(2\sin \frac{\pi}{8} \sin \frac{3\pi}{8}\right)^2$$

$$= \frac{1}{4} \left[\cos \left(\frac{\pi}{8} - \frac{3\pi}{8}\right) - \cos \left(\frac{\pi}{8} + \frac{3\pi}{8}\right)\right]^2$$

$$= \frac{1}{4} \left[\cos \left(-\frac{\pi}{4}\right) - \cos \left(\frac{\pi}{2}\right)\right]^2$$

$$=\frac{1}{4}\left(\cos\left(\frac{\pi}{4}\right)-0\right)^2=\frac{1}{4}\left(\frac{1}{\sqrt{2}}\right)^2$$

$$=\frac{1}{4}\left(\frac{1}{2}\right)$$

$$=\frac{1}{8}$$

$$= R. H. S.$$

Question 5.

$$\cos 12^{\circ} + \cos 84^{\circ} + \cos 156^{\circ} + \cos 132^{\circ} = -12$$

$$= \cos 12^{\circ} + \cos 84^{\circ} + \cos 156^{\circ} + \cos 132^{\circ}$$

$$= (\cos 132^{\circ} + \cos 12^{\circ}) + (\cos 156^{\circ} + \cos 84^{\circ})$$

$$= 2 \cos \left(\frac{132^{\circ} + 12^{\circ}}{2}\right) \cos \left(\frac{132^{\circ} - 12^{\circ}}{2}\right)$$
$$+ 2 \cos \left(\frac{156^{\circ} + 84^{\circ}}{2}\right) \cos \left(\frac{156^{\circ} - 84^{\circ}}{2}\right)$$

$$= 2 \cos 72^{\circ} \cos 60^{\circ} + 2 \cos 120^{\circ} \cos 36^{\circ}$$

$$= 2\cos 72^{\circ} \cos 60^{\circ} + 2 \cos(180^{\circ} - 60^{\circ}) \cos 36^{\circ}$$

$$= 2 \cos 72^{\circ} \cos 60^{\circ} + 2 (-\cos 60^{\circ}) \cos 36^{\circ}$$

$$= 2\cos 72^{\circ} \left(\frac{1}{2}\right) - 2\left(\frac{1}{2}\right) \cos 36^{\circ}$$

$$= \cos 72^{\circ} - \cos 36^{\circ}$$

$$= 2 \sin \left(\frac{72^{\circ} + 36^{\circ}}{2} \right) \sin \left(\frac{36^{\circ} - 72^{\circ}}{2} \right)$$

$$= 2 \sin 54^{\circ} \sin (-18^{\circ})$$

$$= -2 \sin 54^{\circ}$$
. $\sin 18^{\circ}$

$$=-2\left(\frac{\sqrt{5}+1}{4}\right)\left(\frac{\sqrt{5}-1}{4}\right)$$

$$=-\frac{1}{8}(5-1)$$

$$=-\frac{1}{2}$$
 = R.H.S.

- Arjun

- Digvijay

Question 6.

$$\cos(\pi 4+x)+\cos(\pi 4-x)=2-\sqrt{\cos x}$$

Solution:

$$= \cos\left(\frac{\pi}{4} + x\right) + \cos\left(\frac{\pi}{4} - x\right)$$

$$= 2\cos\left(\frac{\pi}{4} + x + \frac{\pi}{4} - x\right) \cos\left(\frac{\pi}{4} + x - \left(\frac{\pi}{4} - x\right)\right)$$

$$= 2\cos\frac{\pi}{4}\cos x$$

$$=2\left(\frac{1}{\sqrt{2}}\right)\cos x$$

$$=\sqrt{2}\cos x$$

= R.H.S.

Alternate Method:

L.H.S. =
$$\cos\left(\frac{\pi}{4} + x\right) + \cos\left(\frac{\pi}{4} - x\right)$$

= $\cos\frac{\pi}{4}\cos x - \sin\frac{\pi}{4}\sin x + \cos\frac{\pi}{4}\cos x$
+ $\sin\frac{\pi}{4}\sin x$
= $2\cos\frac{\pi}{4}\cos x$

$$= 2 \cos \frac{\pi}{4} \cos x$$
$$= 2 \left(\frac{1}{\sqrt{2}}\right) \cos x$$
$$= \sqrt{2} \cos x = \text{R.H.S.}$$

Question 7.

sin5x-2sin3x+sinxcos5x-cosx=tanx

Solution:

L.H.S.
$$= \frac{\sin 5x - 2 \sin 3x + \sin x}{\cos 5x - \cos x}$$

$$= \frac{(\sin 5x + \sin x) - 2 \sin 3x}{\cos 5x - \cos x}$$

$$= \frac{2 \sin \left(\frac{5x + x}{2}\right) \cos \left(\frac{5x - x}{2}\right) - 2 \sin 3x}{-2 \sin \left(\frac{5x + x}{2}\right) \sin \left(\frac{5x - x}{2}\right)}$$

$$= \frac{2 \sin 3x \cos 2x - 2 \sin 3x}{-2 \sin 3x \sin 2x}$$

$$= \frac{2 \sin 3x (\cos 2x - 1)}{-2 \sin 3x \sin 2x}$$

$$= \frac{-(1 - \cos 2x)}{-\sin 2x}$$

$$= \frac{1 - \cos 2x}{\sin 2x}$$

$$= \frac{2 \sin^2 x}{2 \sin x \cos x}$$

$$= \frac{\sin x}{\cos x}$$

$$= \tan x = \text{R.H.S.}$$

Question 8.

 $\sin 2 6x - \sin 2 4x = \sin 2x \sin 10x$

- Arjun

- Digvijay

Solution:

L.H.S. =
$$\sin^2 6x - \sin^2 4x$$

= $(\sin 6x)^2 - (\sin 4x)^2$
= $(\sin 6x + \sin 4x) (\sin 6x - \sin 4x)$
= $\left[2 \sin\left(\frac{6x + 4x}{2}\right) \cos\left(\frac{6x - 4x}{2}\right)\right]$

$$\left[2 \cos\left(\frac{6x + 4x}{2}\right) \sin\left(\frac{6x - 4x}{2}\right)\right]$$

 $= (2 \sin 5x \cos x) (2 \cos 5x \sin x)$

 $= (2 \sin x \cos x) (2 \sin 5x \cos 5x)$

 $= \sin 2x \sin 10x$

= R.H.S.

Question 9.

 $\cos 2 2x - \cos 2 6x = \sin 4x \sin 8x$

Solution:

L.H.S. =
$$\cos^2 2x - \cos^2 6x$$

= $(\cos 2x)^2 - (\cos 6x)^2$
= $(\cos 2x + \cos 6x) (\cos 2x - \cos 6x)$
= $\left[2\cos\left(\frac{2x + 6x}{2}\right)\cos\left(\frac{2x - 6x}{2}\right)\right]$
. $\left[2\sin\left(\frac{2x + 6x}{2}\right)\sin\left(\frac{6x - 2x}{2}\right)\right]$
= $[2\cos 4x\cos(-2x)][2\sin 4x\sin 2x]$
= $(2\cos 4x\cos 2x)(2\sin 4x\sin 2x)$
= $(2\sin 2x\cos 2x)(2\sin 4x\cos 4x)$
= $\sin 4x\sin 8x$

Question 10.

= R.H.S.

 $\cot 4x (\sin 5x + \sin 3x) = \cot x (\sin 5x - \sin 3x)$

Solution:

L.H.S. =
$$\cot 4x \left(\sin 5x + \sin 3x\right)$$

= $\cot 4x \left[2 \sin \left(\frac{5x + 3x}{2}\right) \cos \left(\frac{5x - 3x}{2}\right)\right]$
= $\frac{\cos 4x}{\sin 4x} \left(2 \sin 4x \cos x\right)$
= $2 \cos 4x \cos x$...(i)
R.H.S. = $\cot x \left(\sin 5x - \sin 3x\right)$
= $\cot x \left[2 \cos \left(\frac{5x + 3x}{2}\right) \sin \left(\frac{5x - 3x}{2}\right)\right]$
= $\frac{\cos x}{\sin x} \left(2 \cos 4x \sin x\right)$
= $2 \cos 4x \cos x$...(ii)
From (i) and (ii), we get
L.H.S. = R.H.S.

Question 11.

cos9x-cos5xsin17x-sin3x=-sin2xcos10x

L.H.S.
$$= \frac{\cos 9x - \cos 5x}{\sin 17x - \sin 3x}$$

$$= \frac{2 \sin\left(\frac{9x + 5x}{2}\right) \sin\left(\frac{5x - 9x}{2}\right)}{2 \cos\left(\frac{17x + 3x}{2}\right) \sin\left(\frac{17x - 3x}{2}\right)}$$

$$= \frac{2 \sin 7x \sin\left(-2x\right)}{2 \cos 10x \sin 7x}$$

$$= \frac{-\sin 2x}{\cos 10x}$$

$$= R.H.S.$$

Question 12.

If $\sin 2A = \lambda \sin 2B$, then prove that $\tan(A+B)\tan(A-B)=\lambda+1\lambda-1$ Solution:

$$\sin 2A = \lambda \sin 2B$$

$$\therefore \frac{\sin 2A}{\sin 2B} = \frac{\lambda}{1}$$

By componendo-dividendo, we get

$$\frac{\sin 2A + \sin 2B}{\sin 2A - \sin 2B} = \frac{\lambda + 1}{\lambda - 1}$$

$$\therefore \frac{2\sin\left(\frac{2A+2B}{2}\right)\cos\left(\frac{2A-2B}{2}\right)}{2\cos\left(\frac{2A+2B}{2}\right)\sin\left(\frac{2A-2B}{2}\right)} = \frac{\lambda+1}{\lambda-1}$$

$$\therefore \frac{2\sin(A+B)\cos(A-B)}{2\cos(A+B)\sin(A-B)} = \frac{\lambda+1}{\lambda-1}$$

$$\therefore \quad \tan (A + B) \cdot \cot (A - B) = \frac{\lambda + 1}{\lambda - 1}$$

$$\therefore \frac{\tan(A+B)}{\tan(A-B)} = \frac{\lambda+1}{\lambda-1}$$

Question 13.

 $2\cos 2A + 12\cos 2A - 1 = \tan (60^{\circ} + A) \tan (60^{\circ} - A)$

Solution:

Folition:
R.H.S. =
$$\tan (60^{\circ} + A) \tan (60^{\circ} - A)$$

= $\frac{\sin (60^{\circ} + A) \sin (60^{\circ} - A)}{\cos (60^{\circ} + A) \cos (60^{\circ} - A)}$
= $\frac{2\sin (60^{\circ} + A) \sin (60^{\circ} - A)}{2\cos (60^{\circ} + A) \cos (60^{\circ} - A)}$
= $\frac{\cos [60^{\circ} + A - (60^{\circ} - A)] - \cos (60^{\circ} + A + 60^{\circ} - A)}{\cos (60^{\circ} + A + 60^{\circ} - A) + \cos [60^{\circ} + A - (60^{\circ} - A)]}$
= $\frac{\cos 2A - \cos 120^{\circ}}{\cos 120^{\circ} - \cos 2A}$
= $\frac{\cos 2A - \cos (180^{\circ} - 60^{\circ})}{\cos (180^{\circ} - 60^{\circ}) + \cos 2A}$
= $\frac{\cos 2A - (-\cos 60^{\circ})}{-\cos 60^{\circ} + \cos 2A}$
= $\frac{\cos 2A + \frac{1}{2}}{-\frac{1}{2} + \cos 2A}$

Question 14.

= L.H.S.

 $\tan A + \tan (60^{\circ} + A) + \tan (120^{\circ} + A) = 3 \tan 3A$

$$= \tan A + \tan (60^{\circ} + A) + \tan (120^{\circ} + A)$$

$$= \tan A + \frac{\tan 60^{\circ} + \tan A}{1 - \tan 60^{\circ} \tan A} + \frac{\tan 120^{\circ} + \tan A}{1 - \tan 120^{\circ} \tan A}$$

$$= \tan A + \frac{\sqrt{3} + \tan A}{1 - \sqrt{3} \tan A} + \frac{-\tan 60^{\circ} + \tan A}{1 - (-\tan 60^{\circ}) \tan A}$$

$$\dots \left[\because \tan 120^{\circ} = \tan (180^{\circ} - 60^{\circ}) \right]$$

$$= -\tan 60^{\circ}$$

$$= \tan A + \frac{\sqrt{3} + \tan A}{1 - \sqrt{3} \tan A} - \frac{\sqrt{3} - \tan A}{1 + \sqrt{3} \tan A}$$

=
$$\tan A$$

+ $\frac{\sqrt{3} + 3 \tan A + \tan A + \sqrt{3} \tan^2 A - \sqrt{3} + \tan A + 3 \tan A - \sqrt{3} \tan^2 A}{(1 - \sqrt{3} \tan A)(1 + \sqrt{3} \tan A)}$

$$= \tan A + \frac{8 \tan A}{1 - 3 \tan^2 A}$$

$$= \frac{\tan A - 3 \tan^3 A + 8 \tan A}{1 - 3 \tan^2 A}$$

$$= \frac{9 \tan A - 3 \tan^3 A}{1 - 3 \tan^2 A}$$

$$= 3 \left(\frac{3 \tan A - \tan^3 A}{1 - 3 \tan^2 A} \right)$$

$$= 3 \tan 3A$$

$$= R.H.S.$$

Question 15.

 $3 \tan 6 10^{\circ} - 27 \tan 4 10^{\circ} + 33 \tan 2 10^{\circ} = 1$ Solution:

Since,
$$\tan 30^\circ = \frac{1}{\sqrt{3}}$$

$$\therefore \quad \tan 3(10^\circ) = \frac{1}{\sqrt{3}}$$

$$\therefore \frac{3 \tan 10^{\circ} - \tan^{3} 10^{\circ}}{1 - 3\tan^{2} 10^{\circ}} = \frac{1}{\sqrt{3}}$$

Squaring both the sides, we get

$$\frac{\left(3 \tan 10^{\circ} - \tan^{3} 10^{\circ}\right)^{2}}{\left(1 - 3 \tan^{2} 10^{\circ}\right)^{2}} = \frac{1}{3}$$

$$\therefore \frac{9 \tan^2 10^\circ - 6 \tan^4 10^\circ + \tan^6 10^\circ}{1 - 6 \tan^2 10^\circ + 9 \tan^4 10^\circ} = \frac{1}{3}$$

$$3(9 \tan^2 10^\circ - 6 \tan^4 10^\circ + \tan^6 10^\circ)$$

$$= 1 - 6 \tan^2 10^\circ + 9 \tan^4 10^\circ$$

$$\therefore 27 \tan^2 10^\circ - 18 \tan^4 10^\circ + 3 \tan^6 10^\circ$$

$$= 1 - 6 \tan^2 10^\circ + 9 \tan^4 10^\circ$$

$$\therefore 3 \tan^6 10^\circ - 27 \tan^4 10^\circ + 33 \tan^2 10^\circ = 1$$

Question 16.

 $cosec 48^{\circ} + cosec 96^{\circ} + cosec 192^{\circ} + cosec 384^{\circ} = 0$

Solution:

L.H.S. = cosec 48° + cosec 96° + cosec 192° + cosec 384°

= cosec 48° + cosec (180° - 84°) + cosec (180° + 12°) + cosec (360° + 24°)

= cosec 48° + cosec 84° + cosec (-12°) + cosec 24°

- Arjun

$$= \frac{1}{\sin 48^{\circ}} + \frac{1}{\sin 84^{\circ}} + \frac{1}{-\sin 12^{\circ}} + \frac{1}{\sin 24^{\circ}}$$

$$= \left(\frac{1}{\sin 48^{\circ}} - \frac{1}{\sin 12^{\circ}}\right) + \left(\frac{1}{\sin 84^{\circ}} + \frac{1}{\sin 24^{\circ}}\right)$$

$$= -\frac{\left(\sin 48^{\circ} - \sin 12^{\circ}\right)}{\sin 48^{\circ} \sin 12^{\circ}} + \frac{\left(\sin 84^{\circ} + \sin 24^{\circ}\right)}{\sin 84^{\circ} \sin 24^{\circ}}$$

$$= -\frac{2\cos\left(\frac{48^{\circ} + 12^{\circ}}{2}\right)\sin\left(\frac{48^{\circ} - 12^{\circ}}{2}\right)}{\frac{1}{2}\left[\cos\left(48^{\circ} - 12^{\circ}\right) - \cos\left(48^{\circ} + 12^{\circ}\right)\right]}$$

$$+\frac{2\sin\left(\frac{84^{\circ} + 24^{\circ}}{2}\right)\cos\left(\frac{84^{\circ} - 24^{\circ}}{2}\right)}{\frac{1}{2}\left[\cos\left(84^{\circ} - 24^{\circ}\right) - \cos\left(84^{\circ} + 24^{\circ}\right)\right]}$$

$$= -\frac{2\cos 30^{\circ} \sin 18^{\circ}}{\frac{1}{2}(\cos 36^{\circ} - \cos 60^{\circ})}$$

$$+\frac{2\sin 54^{\circ} \cos 30^{\circ}}{\frac{1}{2}(\cos 60^{\circ} - \cos 108^{\circ})}$$

$$= \frac{4\cos 30^{\circ} \sin 18^{\circ}}{\cos 60^{\circ} - \cos 36^{\circ}} + \frac{\sin 54^{\circ} \cos 30^{\circ}}{\cos 60^{\circ} + \sin 18^{\circ}}$$

$$= 4\cos 30^{\circ} \left[\frac{\sin 18^{\circ}}{\cos 60^{\circ} - \cos 36^{\circ}} + \frac{\sin 54^{\circ}}{\cos 60^{\circ} + \sin 18^{\circ}}\right]$$

$$= 4\cos 30^{\circ} \left[\frac{\sin 18^{\circ}}{\cos 60^{\circ} - \cos 36^{\circ}} + \frac{\cos 36^{\circ}}{\cos 60^{\circ} + \sin 18^{\circ}}\right]$$

$$= -\frac{\sin 54^{\circ}}{\cos 60^{\circ} - \cos 36^{\circ}} + \frac{\cos 36^{\circ}}{\cos 60^{\circ} + \sin 18^{\circ}}\right]$$

$$= -\frac{1}{2}\cos 30^{\circ} \left[\frac{5-1}{4} + \frac{\sqrt{5}-1}{4} + \frac{4}{12} + \frac{\sqrt{5}-1}{4} + \frac{1}{2} + \frac{\sqrt{5}-1}}{4} + \frac{1}{2} + \frac{\sqrt{5}-1}}{4} + \frac{1}{2} + \frac{\sqrt{5}-1}}{4} + \frac{1}{2} + \frac{1}{2} + \frac{\sqrt{5}-1}}{4} + \frac{1}{2} + \frac{1$$

Question 17.

 $3(\sin x - \cos x)^4 + 6(\sin x + \cos x)^2 + 4(\sin x + \cos x) = 13$

Solution:

 $(\sin x - \cos x)4$

 $= [(\sin x - \cos x)^2]^2$

 $= (\sin_2 x + \cos_2 x - 2 \sin x \cos x)_2$

 $= (1 - 2 \sin x \cos x)^2$

 $= 1 - 4 \sin x \cos x + 4 \sin 2 x \cos 2 x$

 $(\sin x + \cos x)^2 = \sin^2 x + \cos^2 x + 2 \sin x \cos x = 1 + 2 \sin x \cos x$

sin6 x + cos6 x

 $= (\sin_2 x)_3 + (\cos_2 x)_3$

= $(\sin 2 x + \cos 2 x)^3 - 3 \sin 2 x \cos 2 x (\sin 2 x + \cos 2 x) \dots [a a b b a = (a b b) - 3ab(a b)]$

 $= 13 - 3 \sin_2 x \cos_2 x (1)$

 $= 1 - 3 \sin_2 x \cos_2 x$

L.H.S. = $3(\sin x - \cos x)^4 + 6(\sin x + \cos x)^2 + 4(\sin x + \cos x)$

 $= 3(1 - 4 \sin x \cos x + 4 \sin 2 x \cos 2 x) + 6(1 + 2 \sin x \cos x) + 4(1 - 3 \sin 2 x \cos 2 x)$

 $= 3 - 12 \sin x \cos x + 12 \sin 2 x \cos 2 x + 6 + 12 \sin x \cos x + 4 - 12 \sin 2 x \cos 2 x$

= 13

= R.H.S.

Ouestion 18.

tan A + 2 tan 2A + 4 tan 4A + 8 cot 8A = cot A

Solution:

We have to prove that,

tan A + 2 tan 2A + 4 tan 4A + 8 cot 8A = cot A

i.e., to prove,

 $\cot A - \tan A - 2 \tan 2A - 4 \tan 4A - 8 \cot 8A = 0$

- Arjun
- Digvijay

$$\cot \theta - \tan \theta = \frac{\cos \theta}{\sin \theta} - \frac{\sin \theta}{\cos \theta}$$

$$= \frac{\cos^2 \theta - \sin^2 \theta}{\cos \theta \sin \theta}$$

$$= \frac{2 \cos 2\theta}{2 \sin \theta \cos \theta}$$

$$= \frac{2 \cos 2\theta}{\sin 2\theta}$$

 \therefore cot θ – tan θ = 2 cot 2θ (i)

L.H.S. = $\cot A - \tan A - 2 \tan 2A - 4 \tan 4A - 8 \cot 8A$

- $= 2 \cot 2A 2 \tan 2A 4 \tan 4A 8 \cot 8A \dots [From (i)]$
- $= 2(\cot 2A \tan 2A) 4 \tan 4A 8 \cot 8A$
- $= 2 \times 2 \cot 2(2A) 4 \tan 4A 8 \cot 8A \dots [From (i)]$
- $= 4(\cot 4A \tan 4A) 8 \cot 8A$
- $= 4 \times 2 \cot 2(4A) 8 \cot 8A \dots [From (i)]$
- $= 8 \cot 8A 8 \cot 8A = 0$
- = R.H.S.

Alternate Method:

L.H.S. =
$$\tan A + 2\tan 2A + 4\tan 4A + 8\cot 8A$$

= $\tan A + 2\tan 2A + 4\left(\frac{\sin 4A}{\cos 4A} + \frac{2\cos 8A}{\sin 8A}\right)$
= $\tan A + 2\tan 2A$
+ $4\left(\frac{\sin 4A\sin 8A + 2\cos 8A\cos 4A}{\sin 8A\cos 4A}\right)$
= $\tan A + 2\tan 2A$
+ $4\left(\frac{(\cos 8A\cos 4A + \sin 8A\sin 4A) + \cos 8A\cos 4A}{\sin 8A\cos 4A}\right)$

- Arjun

$$= \tan A + 2\tan 2A$$

$$+ 4 \left[\frac{\cos(8A - 4A) + \cos 8A \cos 4A}{\sin 8A \cos 4A} \right]$$

$$= \tan A + 2 \tan 2A$$

$$+4\left(\frac{\cos 4A + \cos 8A \cos 4A}{\sin 8A \cos 4A}\right)$$

$$= \tan A + 2 \tan 2A + 4 \left[\frac{\cos 4A(1 + \cos 8A)}{\sin 8A \cos 4A} \right]$$

$$= \tan A + 2 \tan 2A + 4 \left[\frac{1 + \cos 2(4A)}{\sin 2(4A)} \right]$$

$$= \tan A + 2 \tan 2A + 4 \left(\frac{2\cos^2 4A}{2\sin 4A\cos 4A} \right)$$

$$= \tan A + 2 \frac{\sin 2A}{\cos 2A} + 4 \frac{\cos 4A}{\sin 4A}$$

$$= \tan A + 2 \left(\frac{\sin 2A}{\cos 2A} + \frac{2\cos 4A}{\sin 4A} \right)$$

$$= \tan A + 2 \left(\frac{\sin 4A \sin 2A + 2\cos 4A \cos 2A}{\sin 4A \cos 2A} \right)$$

$$+2\left[\frac{\left(\cos 4A\cos 2A+\sin 4A\sin 2A\right)+\cos 4A\cos 2A}{\sin 4A\cos 2A}\right]$$

$$= \tan A + 2 \left[\frac{\cos(4A - 2A) + \cos 4A \cos 2A}{\sin 4A \cos 2A} \right]$$

$$= \tan A + 2 \left(\frac{\cos 2A + \cos 4A \cos 2A}{\sin 4A \cos 2A} \right)$$

$$= \tan A + 2 \left[\frac{\cos 2A(1 + \cos 4A)}{\sin 4A \cos 2A} \right]$$

$$= \tan A + 2 \left(\frac{2 \cos^2 2A}{2 \sin 2A \cos 2A} \right)$$

$$= \frac{\sin A}{\cos A} + \frac{2\cos 2A}{\sin 2A}$$

$$= \frac{\sin 2A \sin A + 2 \cos 2A \cos A}{\sin 2A \cos A}$$

$$= \frac{\cos 2A \cos A + \sin 2A \sin A + \cos 2A \cos A}{\cos A + \sin 2A \sin A + \cos 2A \cos A}$$

$$= \frac{\cos(2A - A) + \cos 2A \cos A}{\sin 2A \cos A}$$

$$=\frac{\cos A(1+\cos 2A)}{\sin 2A\cos A}$$

$$= \frac{2\cos^2 A}{2\sin A\cos A}$$

$$= \cot A$$

$$= R.H.S.$$

Question 19.

If A + B + C = $3\pi 2$, then cos 2A + cos 2B + cos 2C = 1 – 4 sin A sin B sin C

- Arjun

- Digvijay

Solution:

$$A + B + C = \frac{3\pi}{2}$$

$$\therefore A + B = \frac{3\pi}{2} - C$$

∴
$$A + B = \frac{1}{2} - C$$

∴ $\cos(A + B) = \cos\left(\frac{3\pi}{2} - C\right)$
 $= -\sin C$...(i)
L.H.S. $= \cos 2A + \cos 2B + \cos 2C$
 $= 2\cos\left(\frac{2A + 2B}{2}\right)\cos\left(\frac{2A - 2B}{2}\right) + \cos 2C$
 $= 2\cos(A + B)\cos(A - B) + \cos 2C$
 $= 2(-\sin C)\cos(A - B) + 1 - 2\sin^2 C$
...[From (i)]
 $= 1 - 2\sin C \left[\cos(A - B) + \sin C\right]$
 $= 1 - 2\sin C \left[\cos(A - B) - \cos(A + B)\right]$
...[From (i)]
 $= 1 - 2\sin C$
 $\times 2\sin\left(\frac{A - B + A + B}{2}\right)\sin\left(\frac{A + B - A + B}{2}\right)$
 $= 1 - 4\sin A \sin B \sin C$

Question 20.

In any triangle ABC, $\sin A - \cos B = \cos C$. Show that $\angle B = \pi 2$. Solution:

 $\sin A - \cos B = \cos C$

 \therefore sin A = cos B + cos C

= R.H.S.

$$\therefore \quad 2 \sin \frac{A}{2} \cos \frac{A}{2} = 2 \cos \left(\frac{B+C}{2} \right) \cos \left(\frac{B-C}{2} \right)$$

$$\therefore \quad 2\sin\frac{A}{2}\cos\frac{A}{2} = 2\cos\left(\frac{\pi}{2} - \frac{A}{2}\right)\cos\left(\frac{B - C}{2}\right)$$

$$\therefore 2 \sin \frac{A}{2} \cos \frac{A}{2} = 2 \sin \frac{A}{2} \cos \left(\frac{B-C}{2} \right)$$

$$\therefore \quad \cos \frac{A}{2} = \cos \left(\frac{B - C}{2} \right) \qquad \dots \left[\because \sin \frac{A}{2} \neq 0 \right]$$

$$\therefore \frac{A}{2} = \frac{B-C}{2}$$

$$A = B - C(i)$$

In ΔABC,

$$A + B + C = \pi$$

$$\therefore \ B-C+B+C=\pi$$

$$\therefore$$
 2B = π

∴
$$B = \pi 2$$

Question 21.

 $tan_3x_1+tan_2x+cot_3x_1+cot_2x = sec x cosec x - 2 sin x cos x$

- Digvijay

L.H.S. =
$$\frac{\tan^3 x}{1 + \tan^2 x} + \frac{\cot^3 x}{1 + \cot^2 x}$$

= $\frac{\left(\frac{\sin^3 x}{\cos^3 x}\right)}{\sec^2 x} + \frac{\frac{\cos^3 x}{\sin^3 x}}{\csc^2 x}$
= $\frac{\sin^3 x}{\cos^3 x} \times \cos^2 x + \frac{\cos^3 x}{\sin^3 x} \times \sin^2 x$
= $\frac{\sin^3 x}{\cos x} + \frac{\cos^3 x}{\sin x}$
= $\frac{\sin^4 x + \cos^4 x}{\cos x \sin x}$
= $\frac{\left(\sin^2 x\right)^2 + \left(\cos^2 x\right)^2}{\cos x \sin x}$
= $\frac{\left(\sin^2 x\right)^2 + \left(\cos^2 x\right)^2 - 2\sin^2 x \cos^2 x}{\cos x \sin x}$
= $\frac{1^2 - 2\sin^2 x \cos^2 x}{\cos x \sin x}$
= $\frac{1^2 - 2\sin^2 x \cos^2 x}{\cos x \sin x}$
= $\frac{1}{\cos x \sin x} - \frac{2\sin^2 x \cos^2 x}{\cos x \sin x}$
= $\sec x \cos x - 2\sin x \cos x$
= R.H.S.

Question 22.

sin 20° sin 40° sin 80° = 3√8

Solution:

L.H.S. = sin 20°. sin 40°. sin 80°

$$=$$
 12 [cos(40° - 20°) - cos (40° + 20°)] . sin 80°

$$=$$
 12 (cos 20° – cos 60°) sin 80°

$$= 12 \cdot \cos 20^{\circ} \cdot \sin 80^{\circ} - 12 \cdot \cos 60^{\circ} \cdot \sin 80^{\circ}$$

=
$$12\times2$$
 (2 sin 80° . cos 20°) – 12×2 . sin 80°

$$= 14 \left[\sin(80^\circ + 20^\circ) + \sin(80^\circ - 20^\circ) \right] - 12 \cdot \sin 80^\circ$$

$$= \frac{1}{4}.(\sin 100^{\circ} + \sin 60^{\circ}) - \frac{1}{4}.\sin 80^{\circ}$$

$$= \frac{1}{4}\sin 100^\circ + \frac{1}{4}\sin 60^\circ - \frac{1}{4}\sin 80^\circ$$

$$= \frac{1}{4} \cdot \sin(180^{\circ} - 80^{\circ}) + \frac{1}{4} \times \frac{\sqrt{3}}{2} - \frac{1}{4} \cdot \sin 80^{\circ}$$

$$= \frac{1}{4} \sin 80^\circ + \frac{\sqrt{3}}{8} - \frac{1}{4} \sin 80^\circ$$

...[:
$$\sin(180^\circ - \theta) = \sin \theta$$
]

$$=\frac{\sqrt{3}}{8}=\text{R.H.S.}$$

Question 23.

$$\sin 18^{\circ} = 5\sqrt{-14}$$

Let
$$\theta = 18^{\circ}$$

$$\therefore 5\theta = 90^{\circ}$$

$$\therefore 2\theta + 3\theta = 90^{\circ}$$

$$\therefore 2\theta = 90^{\circ} - 3\theta$$

$$\therefore \sin 2\theta = \sin (90^\circ - 3\theta)$$

$$\therefore \sin 2\theta = \cos 3\theta$$

$$\therefore$$
 2 sin θ cos θ = 4 cos θ - 3 cos θ

$$\therefore 2 \sin \theta = 4 \cos_2 \theta - 3 \dots [\because \cos \theta \neq 0]$$

$$\therefore 2 \sin \theta = 4 (1 - \sin_2 \theta) - 3$$

$$\therefore 2 \sin \theta = 1 - 4 \sin 2\theta$$

```
Allguidesite -
- Arjun
- Digvijay
```

$$\therefore 4 \sin_2 \theta + 2 \sin \theta - 1 = 0$$

$$\therefore \sin \theta = -2\pm 4+16\sqrt{8}$$

= -2±2*5*√8

= -1±5√4

Since, $\sin 18^{\circ} > 0$

∴ sin 18°= *5*√-14

Question 24.

 $\cos 36^{\circ} = 5\sqrt{+14}$

Solution:

We know that,

 $\cos 2\theta = 1 - 2 \sin 2\theta$

 $\cos 36^{\circ} = \cos 2(18^{\circ})$

 $= 1 - 2 \sin_2 18^\circ$

$$=1-2\left(\frac{\sqrt{5}-1}{4}\right)^2$$

$$= \frac{8 - \left(5 + 1 - 2\sqrt{5}\right)}{8}$$

$$= \frac{8 - \left(6 - 2\sqrt{5}\right)}{8}$$
$$= \frac{2 + 2\sqrt{5}}{8}$$

$$\therefore \cos 36^\circ = 5\sqrt{+14}$$

Question 25.

 $\sin 36^\circ = 10 - 25\sqrt{4}$

Solution:

We know that, $\sin_2 \theta = 1 - \cos_2 \theta$

 $\sin 236^{\circ} = 1 - \cos 236^{\circ}$

$$= 1 - (5\sqrt{+14})2$$

 $\therefore \sin 36^\circ = 10 - 25\sqrt{4} \dots [\because \sin 36^\circ \text{ is positive}]$

Question 26.

 $\sin \pi_c 8 = 122 - 2 - \sqrt{----} \sqrt{}$

- Arjun

We know that $\cos \frac{\pi}{4} = \cos 45^{\circ} = \frac{1}{\sqrt{2}}$

Also $\frac{\pi}{8}$ lies in the first quadrant, hence $\sin \frac{\pi}{8}$ is positive.

Now, $\cos 2\theta = 1 - 2\sin^2\theta$

By putting
$$\theta = \frac{\pi}{8}$$
, we get,

$$\cos \frac{\pi}{4} = 1 - 2\sin^2 \frac{\pi}{8}$$

$$\therefore 2\sin^2\frac{\pi}{8} = 1 - \cos\frac{\pi}{4}$$

$$=1-\frac{1}{\sqrt{2}}$$

$$=\frac{\sqrt{2}-1}{\sqrt{2}}$$

$$\sin^2 \frac{\pi}{8} = \frac{\sqrt{2}-1}{2\sqrt{2}}$$

$$=\frac{\sqrt{2}\left(\sqrt{2}-1\right)}{4}$$

$$=\frac{2-\sqrt{2}}{4}$$

$$\therefore \sin \frac{\pi}{8} = \frac{1}{\sqrt{2 - \sqrt{2}}} \dots \left[\because \sin \frac{\pi}{8} \text{ is positive}\right]$$

Question 27.

 $\tan \pi 8 = \sqrt{2} - 1$

Solution:

We know that,

$$\tan 2\theta = \frac{2 \tan \theta}{1 - \tan^2 \theta}$$

$$\tan \frac{\pi}{4} = \frac{2 \tan \frac{\pi}{8}}{1 - \tan^2 \frac{\pi}{8}}$$

Let $\tan \frac{\pi}{2} = t$

$$\therefore \frac{2t}{1-t^2} = 1$$

$$\therefore 2t = 1 - t^2$$

$$t^2 + 2t - 1 = 0$$

$$\therefore \quad t = \frac{-2 \pm \sqrt{4+4}}{2}$$
$$= \frac{-2 \pm 2\sqrt{2}}{2}$$

$$=-1\pm\sqrt{2}$$

$$= -1 \pm \sqrt{2}$$
$$t = \tan \frac{\pi}{8} > 0$$

$$\therefore \tan \frac{\pi}{8} = \sqrt{2} - 1$$

Question 28.

 $\tan 6^{\circ} \tan 42^{\circ} \tan 66^{\circ} \tan 78^{\circ} = 1$

- Arjun
- Digvijay

$$=\frac{\sin 6^{\circ}}{\cos 6^{\circ}}.\frac{\sin 42^{\circ}}{\cos 42^{\circ}}.\frac{\sin 66^{\circ}}{\cos 66^{\circ}}.\frac{\sin 78^{\circ}}{\cos 78^{\circ}}$$

$$= \frac{(2\sin 66^{\circ}\sin 6^{\circ})(2\sin 78^{\circ}\sin 42^{\circ})}{(2\cos 66^{\circ}\cos 6^{\circ})(2\cos 78^{\circ}\cos 42^{\circ})}$$

$$= \frac{\cos(66^{\circ} - 6^{\circ}) - \cos(66^{\circ} + 6^{\circ})}{\cos(66^{\circ} + 6^{\circ}) + \cos(66^{\circ} - 6^{\circ})}$$

$$\cdot \frac{\cos(78^{\circ} - 42^{\circ}) - \cos(78^{\circ} + 42^{\circ})}{\cos(78^{\circ} + 42^{\circ}) + \cos(78^{\circ} - 42^{\circ})}$$

$$=\frac{(\cos 60^{\circ} - \cos 72^{\circ})(\cos 36^{\circ} - \cos 120^{\circ})}{(\cos 60^{\circ} + \cos 72^{\circ})(\cos 36^{\circ} + \cos 120^{\circ})}$$

$$=\frac{(\cos 60^{\circ} - \sin 18^{\circ})(\cos 36^{\circ} + \sin 30^{\circ})}{(\cos 60^{\circ} + \sin 18^{\circ})(\cos 36^{\circ} - \sin 30^{\circ})}$$

...[:
$$cos(90^{\circ} + \theta) = -sin \theta$$
]

$$=\frac{\left(\frac{1}{2} - \frac{\sqrt{5} - 1}{4}\right)\left(\frac{\sqrt{5} + 1}{4} + \frac{1}{2}\right)}{\left(\frac{1}{2} + \frac{\sqrt{5} - 1}{4}\right)\left(\frac{\sqrt{5} + 1}{4} - \frac{1}{2}\right)}$$

$$=\frac{9-5}{5-1}$$

- = 1
- = R.H.S.

Question 29.

$$\sin 47^{\circ} + \sin 61^{\circ} - \sin 11^{\circ} - \sin 25^{\circ} = \cos 7^{\circ}$$

L.H.S. =
$$\sin 47^{\circ} + \sin 61^{\circ} - \sin 11^{\circ} - \sin 25^{\circ}$$

$$= (\sin 47^{\circ} - \sin 25^{\circ}) + (\sin 61^{\circ} - \sin 11^{\circ})$$

$$= 2 \cos\left(\frac{47^{\circ} + 25^{\circ}}{2}\right) \sin\left(\frac{47^{\circ} - 25^{\circ}}{2}\right) + 2 \cos\left(\frac{61^{\circ} + 11^{\circ}}{2}\right) \sin\left(\frac{61^{\circ} - 11^{\circ}}{2}\right)$$

$$= 2 \cos 36^{\circ} (\sin 11^{\circ} + \sin 25^{\circ})$$

$$= 2\cos 36^{\circ} \left[2\sin\left(\frac{25^{\circ} + 11^{\circ}}{2}\right) \cos\left(\frac{25^{\circ} - 11^{\circ}}{2}\right) \right]$$

$$= 2 \cos 36^{\circ} (2 \sin 18^{\circ} \cos 7^{\circ})$$

$$=4\left(\frac{\sqrt{5}+1}{4}\right)\left(\frac{\sqrt{5}-1}{4}\right)\cos 7^{\circ}$$

$$= \frac{4(5-1)}{16} \cos 7^{\circ}$$

- $= \cos 7^{\circ}$
- = R.H.S.

Question 30.

 $\sqrt{3}$ cosec 20° – sec 20° = 4

L. H. S. =
$$\sqrt{3}$$
 cosec 20° - sec 20°
= $\frac{\sqrt{3}}{\sin 20^{\circ}} - \frac{1}{\cos 20^{\circ}}$
= $2\left(\frac{\sqrt{3}}{\sin 20^{\circ}} - \frac{1}{\cos 20^{\circ}}\right)$

$$= 2 \left(\frac{\sin 60^{\circ}}{\sin 20^{\circ}} - \frac{\cos 60^{\circ}}{\cos 20^{\circ}} \right)$$

$$= 2 \left(\frac{\sin 60^{\circ} \cos 20^{\circ} - \cos 60^{\circ} \sin 20^{\circ}}{\sin 20^{\circ} \cos 20^{\circ}} \right)$$

$$= \frac{2 \sin \left(60^{\circ} - 20^{\circ} \right)}{\frac{1}{2} \left(2 \sin 20^{\circ} \cos 20^{\circ} \right)}$$

$$= \frac{4 \sin 40^{\circ}}{\sin 40^{\circ}}$$

$$= 4$$

$$= R.H.S.$$

Question 31.

= R.H.S.

In $\triangle ABC$, $\angle C = 2\pi 3$, then prove that $\cos 2 A + \cos 2 B - \cos A \cos B = 34$.

Solution:

$$\angle C = \frac{2\pi}{3}$$
In $\triangle ABC$,
 $A + B + C = \pi$

$$\therefore A + B + \frac{2\pi}{3} = \pi$$

$$A + B = \frac{\pi}{3}$$

$$Cos (A + B) = cos \frac{\pi}{3} = \frac{1}{2} \qquad ...(i)$$

$$L.H.S. = cos^{2} A + cos^{2} B - cos A cos B$$

$$= \frac{1}{2} (2 cos^{2} A + 2 cos^{2} B) - \frac{1}{2} (2 cos A cos B)$$

$$= \frac{1}{2} (1 + cos 2A + 1 + cos 2B)$$

$$- \frac{1}{2} (2 cos A cos B)$$

$$= \frac{1}{2} \left[2 + 2 cos \left(\frac{2A + 2B}{2} \right) cos \left(\frac{2A - 2B}{2} \right) \right]$$

$$-\frac{1}{2} \left[\cos (A + B) + \cos (A - B) \right]$$

$$= \frac{1}{2} \left[2 + 2 \cos (A + B) \cos (A - B) \right]$$

$$-\frac{1}{2} \left[\cos (A + B) + \cos (A - B) \right]$$

$$= \frac{1}{2} \left[2 + 2 \left(\frac{1}{2} \right) \cos (A - B) \right]$$

$$-\frac{1}{2} \left[\frac{1}{2} + \cos (A - B) \right]$$
...[From (i)]
$$= \frac{1}{2} \left[2 + \cos(A - B) - \frac{1}{2} - \cos(A - B) \right]$$

$$= \frac{1}{2} \left[\frac{3}{2} \right] = \frac{3}{4}$$