EPFL

MAN

Mise à niveau

Physique Prepa-033

Student: Arnaud FAUCONNET

Professor: Sylvain BRÉCHET

Printemps - 2019

Chapter 4

Énergie

4.1 Conservation de l'énergie

L'énergie E est une grandeur physique scalaire et extensive qui est définie à une constante près.

1. Si l'objet est **isolé** l'énergie est conservée et ainsi la variation d'énergie ΔE ou cours du temps est nulle:

$$\Delta E = E(t_2) - E(t_1) = 0, \quad \forall t_2 > t_1$$
 (4.1)

2. Si l'objet n'est **pas isolé**, il peut y avoir un échange d'énergie entre l'objet et l'environnement. Ainsi, l'énergie n'est pas conservée:

$$\Delta E = E(t_2) - E(t_1) \neq 0 \tag{4.2}$$

• $\Delta E > 0$: l'objet gagne de l'énergie

• $\Delta E < 0$: l'objet perd de l'énergie

Formes d'énergie: cinétique, potentielle de gravitation, potentielle élastique, nucléaire, électromagnétique (lumineuse), thermique, chimique, ...

L'énergie d'un objet peut changer de forme de forme au cours d'une évolution.

4.1.1 Pendule simple

Pour un pendule simple, l'énergie potentielle de gravitation se transforme en énergie cinétique et vice-versa.

- Lorsque la masse se trouve à un extrémité, l'énergie potentielle est maximale et l'énergie cinétique est nulle
- Lorsque la masse passe par la verticale, l'énergie potentielle est minimale et l'énergie cinétique minimale.

4.1.2 Choc élastique et choc cinétique

• Une balle lâchée à vitesse nulle rebondit sur le sol

• Lors de la chute, l'énergie potentielle gravitationnelle est transformé en énergie cinétique.

Types de chocs

- 1. Le choc est **élastique** si l'énergie cinétique est conservée lors du choc.
- 2. Le choc est **inélastique** si une partie ou toute l'énergie cinétique est convertie est convertie en énergie thermique (chaleur) ou en énergie mécanique de déformation.

4.2 Énergie cinétique et travail

On considère un objet en mouvement. L'évolution du CM de cet objet est régie par la 2^e de Newton:

$$m \cdot \overrightarrow{a_{\text{CM}}} = \overrightarrow{F}^{\text{ext}}$$
 (4.3)

Le produit scalaire du (4.3) avec $\overrightarrow{V_{CM}}$ s'écrit:

$$m \cdot \overrightarrow{V_{CM}} \cdot \overrightarrow{a_{CM}} = \overrightarrow{F}^{\text{ext}} \cdot \overrightarrow{V_{CM}}$$
 (4.4)

où

$$\overrightarrow{V_{CM}} \cdot \overrightarrow{a_{cm}} = \overrightarrow{V_{CM}} \cdot \frac{d\overrightarrow{V_{CM}}}{dt} = \frac{1}{2} \frac{d}{dt} \cdot \left(\overrightarrow{V_{CM}} \cdot \overrightarrow{V_{CM}} \right) = \frac{1}{2} \frac{d}{dt} V_{CM}^2$$
 (4.5)

Ainsi, sila masse m est constante (i.e. $\frac{dm}{dt} = 0$):

$$\frac{d}{dt}\left(\frac{1}{2} \cdot m \cdot V_{CM}^2\right) = \overrightarrow{F}^{\text{ext}} \cdot \overrightarrow{V_{CM}}$$
(4.6)

La grandeur $\frac{1}{2}m\cdot V_{CM}^2$ est l'intégrale du mouvement appelée l'énergie cinétique et notée $E_{cin,CM}$ (définie à un constante près)

4.2.1 Énergie cinétique

L'énergie cinétique $E_{cin,CM}$ du centre de masse est définie comme,

$$E_{cin,CM} = \frac{1}{2} \cdot m \cdot V_{CM}^2 \tag{4.7}$$

C'est l'énergie liée au mouvement du CM.

Unité physique de l'énergie (SI): Joule $[J] = \left[\frac{kg \cdot m^2}{s^2}\right] = [N \cdot m]$

Ainsi, la relation (4.6) devient:

$$\frac{dE_{cin,CM}}{dt} = \overrightarrow{F}^{\text{ext}} \cdot \frac{d\overrightarrow{V_{CM}}}{dt}$$
 (4.8)

où

$$\overrightarrow{V_{CM}} = \frac{d\overrightarrow{r_{CM}}}{dt}$$

On multiplie la relation (4.8) pas l'intervalle de temps infinitésimal dt:

$$dE_{cin,CM} = \overrightarrow{F}^{\text{ext}} \cdot d\overrightarrow{r_{CM}} \tag{4.9}$$

La variation de l'énergie cinétique est due aux forces extérieures.

4.2.2 Travail

Le **travail infinitésimal** des forces extérieures sur le CM pour un déplacement infinitésimal $\overrightarrow{dV_{CM}}$ est défini comme:

$$\delta\omega^{\text{ext}} = \overrightarrow{F}^{\text{ext}} \cdot d\overrightarrow{r_{CM}} = \|\overrightarrow{F}^{\text{ext}}\| \cdot \|d\overrightarrow{r_{CM}}\| \cdot \cos(\theta) \quad (4.10)$$

Le **travail** des forces extérieures sur le CM pour le déplacement d'une position initiale $\overrightarrow{r_1} = \overrightarrow{r'}(t_1)$ à une position finale $\overrightarrow{r_2} = \overrightarrow{r'}(t_2)$ est la somme des travaux infinitésimaux:

$$\omega_{1\to 2}^{\text{ext}} = \int_{1}^{2} \overrightarrow{F}^{\text{ext}} \cdot d\overrightarrow{r_{CM}} \tag{4.11}$$

Remarque: Une somme continue est une intégrale. Cette intégrale est calculée par rapport à la position qui est fonction du temps

4.2.3 Théorème de l'énergie cinétique

Le travail effectué par les forces extérieures entre t_1 et t_2 s'écrit

$$\omega_{1\to 2}^{\text{ext}} \stackrel{\text{(4.11)}}{=} \int_{1}^{2} \overrightarrow{F}^{\text{ext}} \cdot d\overrightarrow{r_{CM}}$$

$$\stackrel{\text{(4.9)}}{=} \int_{1}^{2} dE_{cin,CM}$$

$$= E_{cin,CM}(2) - E_{cin,CM}(1)$$

Le théorème de l'énergie cinétique affirme que la variation d'énergie cinétique du CM est due au travail des forces extérieures:

$$E_{cin,CM}(2) - E_{cin,CM}(1) = \omega_{1\to 2}^{\text{ext}}$$
 (4.12)

4.2.4 Application du théorème de l'énergie cinétique

Un objet de masse m glisse le long d'un plan horizontal. Il est soumis à une force de frottement \overrightarrow{f} constante opposée à la vitesse. Sa vitesse initiale $\overrightarrow{v_1} = \overrightarrow{v}(t_1)$ et on cherche sa vitesse finale $\overrightarrow{v_2} = \overrightarrow{v}(t_2)$ après avoir parcouru une distance $l = x_2 - x_1$

Objet masse m

Forces poids $m \cdot \overrightarrow{g}$, soutient \overrightarrow{S} , frottement \overrightarrow{f}

Newton
$$m \cdot \overrightarrow{g} + \overrightarrow{S} + \overrightarrow{f} = m \cdot \overrightarrow{a}$$

- 1. **Netwon** selon $\overrightarrow{e_x}$: $-f = -m \cdot a$
 - $a = \frac{f}{m} = a_0 = \text{cste}$
 - $v(t) = -a_0(t t_1) + v_1$

•
$$x(t) = -\frac{1}{2}a_0(t-t_1)^2 + v_1(t-t_1) + x_1$$

Ainsi ,

$$l = x_2 - x_1 = -\frac{1}{2}a_0 \cdot (t_2 - t_1)^2 + v_1 \cdot (t_2 - t_1)$$

et

$$v_2 = -a_0 \cdot (t_2 - t_1) + v_1$$

Donc,

$$l = -\frac{(v_2 - v_1)^2}{2a_0} - \frac{v_1 \cdot (v_2 - v_1)}{a_0}$$

et

$$v_2^2 - v_1^2 = -2a_0 l = -2\frac{f}{m} \cdot l \tag{4.13}$$

- 2. $\Delta E_{cin,CM} = E_{cin,CM}(2) E_{cin,CM}(1) = \frac{1}{2}m \cdot v_2^2 \frac{1}{2}m \cdot v_1^2$
 - Travaux:
 - (a) $m \cdot \overrightarrow{g} \perp d\overrightarrow{r_{CM}}$:

$$\delta\omega(m\overrightarrow{g}) = m\overrightarrow{g}\cdot d\overrightarrow{r_{CM}} = 0 \implies \omega_{1\to 2}(m\overrightarrow{g}) = 0$$

(b) $\overrightarrow{S} \perp d\overrightarrow{r_{CM}}$:

$$\delta\omega(\overrightarrow{S}) = \overrightarrow{S} \cdot d\overrightarrow{r_{CM}} = 0 \implies \omega_{1\to 2}(\overrightarrow{S}) = 0$$

(c) $\overrightarrow{f} \parallel d\overrightarrow{r_{CM}}$

$$\delta\omega(\overrightarrow{f}) = \overrightarrow{f} \cdot d\overrightarrow{r_{CM}} = (-f\overrightarrow{e_x}) \cdot (dx\overrightarrow{e_x}) = -fdx$$

$$\implies \omega_{1\to 2}(\overrightarrow{f}) = -\int_1^2 f dx = -f\int_1^2 dx = -f(x_2 - x_1) = -fl(\operatorname{car} f = \operatorname{cste})$$

Ainsi,

$$\Delta E_{cin,CM} = \omega_{1\rightarrow 2}^{\text{ext}} = \omega_{1\rightarrow 2}(\overrightarrow{f}) \implies v_2^2 - v_1^2 = -\frac{2fl}{m} \implies v_2 < v_1 \text{(4.13)}$$

Remarque: La deuxième méthode est plus efficace.

On cherche la distance de freinage d_f . A l'arrêt, $v_2 = 0$

$$\underbrace{v_2^2}_{=0} - v_1^2 = -2\frac{f}{m}d_f = \frac{mv_1^2}{2f} > 0 \tag{4.14}$$

Remarques:

- 1. Le travail d'une force est sa contribution à la variation d'énergie cinétique du CM. L'énergie cinétique augmente si la force est (partiellement) dans le sens du mouvement et elle diminue si la force est (partiellement) opposée.
- 2. Une force normal au déplacement ne travaille pas.
- 3. En général, le travail d'une force dépend du chemin suivi par l'objet de la position initiale $\overrightarrow{r_1}$ à la position finale $\overrightarrow{r_2}$

4.2.5 Forces conservatives

Une force est dite **conservative** si son travail sur l'objet considéré ne dépend que des extrémités du chemin que l'objet parcourt, et non du chemin lui-même

4.2.6 Énergie potentielle de gravitation

En tout point, le poids de l'objet est identique (champ gravitationnel uniforme). A la montée, le travail du poids est négatif et à la descente, il est positif.

Entre les points $\overrightarrow{r_1} = \overrightarrow{r}(t_1)$ et $\overrightarrow{r_2} = \overrightarrow{r}(t_2)$, le travail du poids est

$$\omega_{1\rightarrow 2}(m\,\overrightarrow{g}\,) = \int_1^2 m\,\overrightarrow{g}\,\cdot d\overrightarrow{r_{CM}}\,^{m\,\overrightarrow{g}} = \overrightarrow{\text{cste}}\,m\,\overrightarrow{g}\,\cdot \int_1^2 d\overrightarrow{r_{CM}}$$

$$= m\overrightarrow{g} \cdot (\overrightarrow{r_2} - \overrightarrow{r_1}) = (-m\overrightarrow{g} \cdot \overrightarrow{r_1}) - (-m\overrightarrow{g} \cdot \overrightarrow{r_2}) \quad (4.15)$$

Le travail du poids $m \overrightarrow{g}$ s'exprime comme une différence de termes au extrémités du chemin.

L'énergie potentielle de gravitation est définie comme,

$$E_{pot}(\overrightarrow{r}) = -m\overrightarrow{g} \cdot \overrightarrow{r} + \text{cste}$$
 (4.16)

à une constante près (choix de référence).

Selon l'axe verticale, avec $\overrightarrow{g} \cdot \overrightarrow{r} = (-g\overrightarrow{e_y}) \cdot (h\overrightarrow{e_y}) = -gh$

$$E_{pot}(h) = mgh + cste$$
 (4.17)

Remarque: en prenant la référence de potentiel au niveau du sol (passant par *O*), la constante s'annule.

Le travail effectué par le poids par le poids $\omega_{1\rightarrow 2}(m\overrightarrow{g})$ devient:

$$\omega_{1\to 2}(m\overrightarrow{g}) \stackrel{(4.15)}{=} (-m\overrightarrow{g}\cdot\overrightarrow{r_1}) - (-m\overrightarrow{g}\cdot\overrightarrow{r_2}) = mgh_1 - mgh_2 = E_{pot}(1) - E_{pot}(2) \quad (4.18)$$

Remarque: Le travail $\omega_{1\to 2}(m\overrightarrow{g})$ est indépendant du choix de la constante.

Dans le cas général, pour la force de gravitation $\overrightarrow{F}=-\frac{GMm}{r^2}\overrightarrow{e_r}$ l'énergie potentielle correspondante est:

$$E_{pot}(r) = -\frac{GMm}{r} + cste (4.19)$$

4.2.7 Énergie potentielle élastique

L'énergie potentielle élastique associée à la force élastique $\overrightarrow{F}=-k\overrightarrow{d}$ est :

$$E_{pot}(d) = \frac{1}{2}kd^2 + \text{cste}$$
(4.20)

4.2.8 Énergie potentielle électrique

L'énergie potentielle électrique associée à la force électrique $\overrightarrow{F} = \frac{1}{4\pi\epsilon_0} \frac{Qq}{r^2} \overrightarrow{e_r}$ est:

$$E_{pot}(r) = \frac{1}{4\pi\epsilon_0} \frac{Qq}{r} + \text{cste}$$
 (4.21)

Le travail d'une force conservative $\overrightarrow{F_{cons}}$ (poids, force de gravitation, forces élastique, force élastique), s'écrit comme une différence d'énergie potentielle:

$$\omega_{1\to 2}(\overrightarrow{F_{cons}}) = E_{pot}(1) - E_{pot}(2) \tag{4.22}$$

Si toutes les forces sont conservatives, le théorème de l'énergie cinétique devient:

$$E_{cin}(2) - E_{cin}(1) = \omega_{1\to 2} = E_{pot}(1) - E_{pot}(2)$$

ou encore

$$E_{cin}(1) + E_{pot}(1) = E_{cin}(2) + E_{pot}(2)$$
(4.23)

Remarque: Si les forces sont conservative, la somme de l'énergie cinétique et de l'énergie potentielle est une constante.

4.2.9 Énergie mécanique

L'énergie mécanique est la somme de l'énergie cinétique et de l'énergie potentielle.

$$E_{mec} = E_{cin} + E_{pot} (4.24)$$

Un force est **conservative** si elle conserve l'énergie mécanique, et elle est **dissipative** dans le cas contraire.

Si toutes les forces sont conservatives, l'énergie mécanique est conservé:

$$E_{mec} =$$
cste

Équivalence

- 1. \overrightarrow{F} est conservative
- 2. $\omega_{1\to 2}(\overrightarrow{F})$ ne dépend que des positions initiale $\overrightarrow{r_1}$ et finale $\overrightarrow{r_2}$
- 3. $\omega_{1\to 2}(\overrightarrow{F}) = E_{pot}(\overrightarrow{r_1}) E_{pot}(\overrightarrow{r_2})$
- 4. Le travail de \overrightarrow{F} sur un chemin fermé (i.e. $\overrightarrow{r_1} = \overrightarrow{r_2}$) est nul.

4.2.10 Vitesse de libération

La vitesse de libération est la vitesse minimale qu'il faut donner à un objet pour qu'il s'échappe définitivement du champs d'attraction de la terre et qu'il s'en éloigne indéfiniment.

L'énergie mécanique de l'objet est constante car la force de la gravitation est conservative:

$$E_{mec} = E_{cin} + E_{pot} = \frac{1}{2}mv^2 - \frac{GMm}{r} = \text{cste}$$
 (4.25)

A l'infini, i.e. $r \to \infty$ et $v \to 0$. Ainsi,

$$\frac{1}{2}mv^2 - \frac{GMm}{r} = 0 \implies V = \sqrt{\frac{2GM}{r}}$$
 (4.26)

Terre:

$$r = 6371km; M = 5,97 \cdot 10^{20}kg; G = 6.67 \cdot 10^{-11} \frac{m^2}{kg \cdot s^2}$$

$$v = 1,12 \cdot 10^4 \frac{m}{s} = 11.2 \frac{km}{s} = 40,32 \cdot 10^3 \frac{km}{h}$$

4.2.11 Tir d'une balle de fusil

Une balle de fusil de masse m est tirée horizontalement dans un bloc de bois de masse M suspendu à un fil de longueur L. La balle se loge dans le bloc et le fil s'incline d'un angle α . On cherche à déterminer la vitesse initiale v de la balle.

Il y a conservation de la quantité de mouvement de l'objet (balle + bloc) lors du choc:

selon
$$\overrightarrow{e_x}$$
: $mv = (M+m) \cdot V$ (4.27)

Comme la tension dans le fil ne \overrightarrow{T} ne travaille pas. Ainsi, il y a conservation de l'énergie mécanique après le choc.

$$\frac{1}{2}(M+m)V^2 = (M+m) \cdot gL(1-\cos(\alpha)) \tag{4.28}$$

Ainsi (4.27) et (4.28) \Longrightarrow

$$v = \frac{M+m}{m}V = \frac{M+m}{m}\sqrt{2gL(1-\cos(\alpha))}$$
(4.29)

4.2.12 Décrochement d'un rail circulaire vertical

Objet masse m

Forces poids $m \cdot \overrightarrow{g}$, soutien \overrightarrow{S}

Newton

$$m\overrightarrow{g} + \overrightarrow{S} = m\overrightarrow{a}$$
 (4.30)

selon
$$\overrightarrow{e_x}$$
: $-mg\cos(\varphi) + S = ma_n = m\frac{v^2}{R}$
selon $\overrightarrow{e_y}$: $-mg\sin(\varphi) = ma_t = m\dot{v}$

Théorème de l'énergie cinétique

$$\frac{1}{2}mv_2^2 - \frac{1}{2}mv_1^2 = -mg(h_2 - h_1) = -mgR(\underbrace{1 - \cos(\varphi)}_{=\cos(\alpha)})$$
(4.31)

Au point de décrochement D (où $\frac{\pi}{2} \leq \varphi_D \leq \pi$):

$$S = 0 \tag{4.32}$$

$$(4.30) : mv_D^2 = -mgR\cos(\varphi_D)$$

$$(4.31) : mv_D^2 - mv_1^2 = -2mgR(1 - \cos(\varphi_D))$$

$$\implies \mathscr{M}v_1^2 = -3\mathscr{M}gR\cos(\varphi_D) + 2\mathscr{M}gR \implies \cos(\varphi_D) = \frac{2gR - v_1^2}{3gR}$$

$$(4.33)$$

Condition (vitesse initiale v_1): $\frac{\pi}{2} \le \varphi_D \le \pi \implies -1 \le \cos(\varphi_D) \le 0 \implies -3gR \le 2gR - v_1^2 \le 0$

$$\implies 2gR \le v_1^2 \le 5gR \tag{4.34}$$

4.2.13 Théorème de l'énergie mécanique

Soit une force extérieure résultante: $\overrightarrow{F}^{\text{ext}} = \overrightarrow{F}^{\text{cons}} + \overrightarrow{F}^{\text{dis}}$ où $\overrightarrow{F}^{\text{cons}}$ est une force conservative et $\overrightarrow{F}^{\text{dis}}$ une force dissipative.

$$\Delta E_{cin} = E_{cin}(2) - E_{cin}(1) = \int_{1}^{2} \delta \omega^{\text{ext}} = \int_{1}^{2} \overrightarrow{F}^{\text{ext}} \cdot d\overrightarrow{r_{CM}}$$

$$= \int_{1}^{2} \overrightarrow{F}^{\text{cons}} \cdot \overrightarrow{r_{CM}} + \int_{1}^{2} \overrightarrow{F}^{\text{dis}} \cdot d\overrightarrow{r_{CM}}$$

$$= \omega_{1 \to 2}(\overrightarrow{F}^{\text{cons}}) + \omega_{1 \to 2}(\overrightarrow{F}^{\text{dis}})$$

$$= E_{pot}(1) - E_{pot}(2) + \omega_{1 \to 2}(\overrightarrow{F}^{\text{dis}})$$

$$= -\Delta E_{pot} + \omega_{1 \to 2}(\overrightarrow{F}^{\text{dis}})$$

Ainsi,

$$\Delta E_{mec} = \Delta E_{cin} + \Delta E_{pot} = \omega_{1 \to 2} (\overrightarrow{F}^{dis})$$

$$\Delta E_{mec} = \omega_{1\to 2}(\overrightarrow{F}^{\text{dist}})$$

4.3 Puissance

Pour un objet donné, l'énergie sans une forme donnée E (mécanique, électrique, thermique, ...) peut changer au cours du temps. La puissance P mesure l'énergie échangée avec l'extérieure par unité de temps

$$P = \lim_{\Delta t \to 0} \frac{\Delta E}{\Delta t} = \frac{dE}{dt} = \dot{E}$$
 (4.35)

- Unité physique (SI): Watt $[w] = \frac{kg \cdot m^2}{c^2}$
- La puissance due au travail infinitésimal δw d'une force extérieure s'écrit,

$$P = \frac{dE}{dt} = \frac{\delta w}{dt} = \overrightarrow{F}^{\text{ext}} \cdot \frac{d\overrightarrow{r_{CM}}}{dt} = \overrightarrow{F}^{\text{ext}} \cdot \overrightarrow{v}$$
 (4.36)

1.

$$\overrightarrow{F}^{\mathrm{ext}} \cdot \overrightarrow{v_{CM}} > 0 \implies P > 0$$
 (accélération)

2.

$$\overrightarrow{F}^{\mathrm{ext}} \cdot \overrightarrow{v_{CM}} < 0 \implies P < 0 \text{ (freinage)}$$

4.3.1 Puissance d'un moteur électrique

On considère un moteur électrique qui soulève une masse m à vitesse $\overrightarrow{v_0} = \overrightarrow{\text{cste}}$. L'énergie potentielle gravitationnelle de la masse m augment dû au travail effectué par le moteur pour s'opposer au poids:

$$\overrightarrow{T} = -m\overrightarrow{g} \quad (\text{si } \overrightarrow{v_0} = \overrightarrow{\text{cste}})$$

$$P = \frac{dE}{dt} = \frac{\delta w(\overrightarrow{T})}{dt} = \frac{\delta w(-m\overrightarrow{g})}{dt} = (-m\overrightarrow{g}) \cdot \frac{d\overrightarrow{r_{CM}}}{dt}$$

$$= -mg \cdot \overrightarrow{v_0} = mgv_0 > 0 \qquad (4.37)$$

Remarque: Comme le moteur fournit de l'énergie potentielle gravitationnelle à la masse, sa puissance est positive.

4.3.2 Puissance d'une force de frottement

On considère l'action d'une force de frottement visqueux

$$\overrightarrow{f} = -\lambda \overrightarrow{v_{CM}}$$

où $\lambda>0$ sur un projectile dont le mouvement est rectiligne. On néglige son poids. La puissance due à l'action de la force de frottement est

$$P = \frac{dE}{dt} = \frac{\delta w(\overrightarrow{f})}{dt} = \overrightarrow{f} \cdot \frac{\overrightarrow{dr_{CM}}}{dt} = -\lambda \overrightarrow{v_{CM}} \cdot \overrightarrow{v_{CM}} = -\lambda v_{CM}^2 < 0$$

Remarque: Comme la force de frottement dissipe l'énergie cinétique du projectile, sa puissant est négative.

4.3.3 Rendement

Le rendement η est une grandeur sans unité physique définie comme le rapport entre la puissance utile (puissance que la machine délivre) et la puissance fournie (puissance que la machine reçoit initialement).

$$\eta = \frac{P_{\rm utile}}{P_{\rm fournie}}$$

Exemple: Moteur électrique

Le moteur reçoit une puissance électrique $P_{\rm el}$ de la prise murale et il convertit cette puissance en puissance mécanique (mouvement de rotation de l'axe).

$$\eta = \frac{P_{\text{m\'ec}}}{P_{\text{el}}}$$

Le second principe de la thermodynamique requiert que

$$0 \le \eta < 1$$