	EXAM 2

2.1		
Q2.1.1	Short Answer: Define a neuro	on.
Q2.1.2	Multiple Choice: Which cell	type forms the myelin sheath in the CNS?
	(A) Oligodendrocytes	(B) Schwann Cells
	(C) Astrocytes	(D) Satellite Cells
Q2.1.3	Fill in the Blank: The process	by which microglia remove debris is called
Q2.1.4	Short Answer: Name two fun	ctions of astrocytes.
Q2.1.5	Fill in the Blank:	are responsible for myelination in the PNS.
Q2.1.6	Multiple Choice: What is one	e function of myelin?
	(A) Insulate axons	(B) Synthesize proteins
	(C) Produce neurotransmitters	(D) Break down debris
Q2.1.7		compose about half of nervous tissue volume, but are times more numerous than neurons.
Q2.1.8	Short Answer: What are two	similarities between neurons and other animal cells?
Q2.1.9	Short Answer: In neurons, w	hat is the primary role of mitochondria?
$\mathrm{Q}2.1.10$	Fill in the Blank: The organ	elle responsible for protein synthesis in neurons is the
Q2.1.11	Fill in the Blank: The	packages neurotransmitters for transport.

Q2.1.12	Fill in the Blank: Organelles that break down waste products in neurons are called		
Q2.1.13	Short Answer: What distinguishes the morphology of neurons from typical animal cells?		
Q2.1.14	Fill in the Blank: Neurons communicat	e via an process.	
Q2.1.15	5 Multiple Choice: Which cell type is primarily responsible for debris removal in the CNS?		
	(A) Astrocytes	(B) Microglia	
	(C) Oligodendrocytes	(D) Satellite Cells	
Q2.1.16	Multiple Choice: Which cells line the v	rentricles and help form CSF?	
	(A) Astrocytes	(B) Ependymal Glia	
	(C) Schwann Cells	(D) Microglia	
Q2.1.17	Short Answer: What is the function of	satellite cells in the PNS?	
Q2.1.18	8 Multiple Choice: Which glial cell in the PNS is notably associated with neuronaregeneration?		
	(A) Oligodendrocytes	(B) Schwann Cells	
	(C) Microglia	(D) Satellite Cells	
Q2.1.19	9 Short Answer: What is the purpose of <i>phagocytosis</i> in the nervous system?		
Q2.1.20	1.20 Multiple Choice: What happens during maintenance of internal consistency?(A) Microglia remove cellular debris.		
	(B) Oligodendrocytes myelinate axons.		
	(C) Astrocytes absorb excess potassium ic	ons.	
	(D) Schwann cells provide nutrients to ne	irons.	
Q2.1.21	Long Answer: What evidence supports the notion that glial cells' malfunctioning may be contributing to Alzheimer's Disease? (Your answer needs to include beta amy-		

loid, Tau, and the possible cause of Alzheimer's Disease.)

2.2 Q2.2.1 Fill in the Blank: The three structural classifications of neurons are ______, , and . Q2.2.2 Fill in the Blank: Neurons are based on _____ and ____. Q2.2.3 Fill in the Blank: Sensory neurons carry information from the Q2.2.4 Short Answer: What is the primary function of motor neurons? Q2.2.5 Multiple Choice: What does "Efferent" mean? (B) Outgoing (C) Sensory (D) Motor (A) Incoming 2.3 **Q2.3.1 Short Answer:** What are the 2 systems of neuronal communication? Q2.3.2 Fill in the Blank: A stronger-than-normal stimulus is required to cause another action potential during the ______ because of hyperpolarization. Q2.3.3 Fill in the Blank: The phospholipid bilayer is made up of _____ and Q2.3.4 Fill in the Blank: The period during which no amount of stimulation can cause another action potential is called the **Q2.3.5 Short Answer:** What is *diffusion*? What else is it also known as? Q2.3.6 Short Answer: What is the threshold of excitation, and what happens when it is

reached?

Q2.3.7 Matching: Match the following terms with their definitions.

α 1	•
(;h	oices
\sim 11	OICCD

(a)	Ions move toward the opposing charge.
(b)	The charge the ion "prefers" to be at.
(c)	Cell is resistant to reexciation for some time after AP.
(d)	The cell membrane is more open to some ions than others.
(e)	-70 mV (relative to outside).
(f)	The overshoot of negative voltage after an AP.
(g)	Costs 1 ATP.
(h)	The phase where there is a jump in voltage after $+15~\mathrm{mV}$ is reached.
(i)	The minimum amount needed to generate an action potential. $(+15~\mathrm{mV})$
(i)	

(1)	Differential Permeability
(2)	Resting Membrane Potential
(3)	Threshold of Excitation
(4)	Depolarization
(5)	Repolarization
(6)	Hyperpolarization
(7)	Electrostatic Pressure
(8)	Equilibrium Potential
(9)	Sodium Potassium Pump
(10)	Refractory Period

Q2.3.8 Fill in the Blank: Fill out the following diagram of the resting membrane potential of a neuron. Draw the size of each and permeability ion to "scale", and draw the diffusion and electric arrows with the appropriate directions.

Permeability	$\underline{\mathbf{In}}$	Out	
		_	Key: Diffusion Electric
		_	
		_	

Q2.3.9 Short Answer: Why don't the Na⁺ channels reopen during repolarization?

- Q2.3.10 Multiple Choice: During which phase of the action potential is a neuron unable to fire another action potential, no matter how strong the stimulus?
 - (A) Depolarization

- (B) Repolarization
- (C) Absolute refractory period
- (D) Relative refractory period
- Q2.3.11 Multiple Choice: How can an all-or-none action potential signal convey information about stimulus intensity?
 - (A) By increasing the amplitude of the action potentials
 - (B) By decreasing the duration of action potentials
 - (C) By changing the direction of action potentials
 - (D) By increasing the frequency of action potentials
- **Q2.3.12 Fill in the Blank:** The ratio of Na⁺ to K⁺ for the sodium-potassium pump is ___ out for ___ in.
- Q2.3.13 Short Answer: What is the total voltage difference during an action potential and what does it mean?

- Q2.3.14 Short Answer: What happens in a failed attempt at an action potential?
- Q2.3.15 Short Answer: What role does electrostatic pressure play in neuronal membrane potential?
- **Q2.3.16 Short Answer:** State the equilibrium values for K⁺ and Na⁺.
- **Q2.3.17 Short Answer:** "Saltatory conduction" is the process of action potentials "jumping" from node to node. Why do people describe this process as "jumping"?
- **Q2.3.18 Short Answer:** What is the resting membrane potential (RMP) of a neuron and what does it represent?
- Q2.3.19 Short Answer: Name two key components of the cell membrane that help maintain the RMP.
- Q2.3.20 Short Answer: What is meant by semipermeability in the context of the cell membrane?
- Q2.3.21 Short Answer: List the four main functions of embedded proteins in the cell membrane.
- Q2.3.22 Multiple Choice: Differential permeability says that this ion is more permeable than others.
 - (A) Na⁺
- (B) K⁺
- (C) Cl⁻
- (D) Ca^{+2}
- **Q2.3.23 Short Answer:** How does diffusion contribute to the RMP?
- Q2.3.24 Multiple Choice: What is the rate law?
 - (A) The speed at which a neuron conducts an action potential along its axon.
 - (B) The time delay between the onset of a stimulus and the initiation of an action potential.
 - (C) The relationship between the amplitude of an action potential and the strength of the stimulus.
 - (D) Variations in the intensity of a stimulus are represented by the rate of action potentials.
 - (E) None of the above.

Q2.3.25 Matching: For the diagram below, identify the processes of an action potential at each labeled phase.

Choices

- (a) Potassium channels close.
- (b) Resting potential.
- (c) Potassium channels open.
- (d) Opens sodium channels.
- (e) Sodium channels close.
- (1) -70 mV
- (2) -55 mV
- (3) +35 mV
- (4) +40 mV
- (5) -80 mV

1876	
W	Exam 2

- Q2.3.26 Multiple Choice: What is the main advantage of saltatory conduction in myelinated axons?
 - (A) It eliminates the need for Na⁺ channels.
 - (B) It increases conduction speed and reduces energy expenditure.
 - (C) It allows action potentials to travel in both directions.
 - (D) It prevents action potentials from occurring at all.
- Q2.3.27 Fill in the Blank: The ______ is the site of action potential initiation in a neuron.
- **Q2.3.28** Short Answer: What is decremental conduction, and why does it occur?
- Q2.3.29 Short Answer: Why does the action potential require active regeneration in unmyelinated axons?
- Q2.3.30 Short Answer: Why can't myelin sheaths extend indefinitely without nodes?
- Q2.3.31 Short Answer: Explain multiple sclerosis in terms of saltatory conduction.

2.4

- Q2.4.1 Multiple Choice: An angstrom (Å) is a unit of measurement equivalent to
 - (A) 10^{-6} mm
- (B) 10^{-5} mm
- (C) 10^{-7} mm
- (D) 10^{-9} mm
- Q2.4.2 Fill in the Blank: The synaptic cleft is about _____ angstroms wide.
- Q2.4.3 Multiple Choice: What happens FIRST when an action potential reaches the presynaptic terminal?
 - (A) Voltage-gated Ca⁺² channels open.
 - (B) The Na⁺/K⁺ pump is activated.
 - (C) The postsynaptic neuron immediately fires an action potential.
 - (D) The synaptic vesicles dissolve.

Q2.4.4	Fill in the Blank: Neurotransmitters are released into the when
·	synaptic vesicles fuse with the presynaptic membrane.
Q2.4.5	Short Answer: What is the function of docking proteins at the presynaptic membrane?
2.5	
Q2.5.1	Multiple Choice: Which of the following is an excitatory postsynaptic potential (EPSP)?
	(A) Opening of K ⁺ channels
	(B) Binding of neurotransmitters to autoreceptors
	(C) Metabolism of neurotransmitters
	(D) Opening of Na ⁺ channels
Q2.5.2	Fill in the Blank: The three possible fates of neurotransmitters after release are,, and
Q2.5.3	Fill in the Blank: When a neurotransmitter causes the opening of Na ⁺ channels, this creates a(n) post-synaptic potential.
Q2.5.4	Multiple Choice: What occurs during an inhibitory post-synaptic potential (IPSP)?
	(A) Opening of K ⁺ channels, allowing potassium to enter the cell
	(B) Opening of Na ⁺ channels, bringing the cell closer to threshold
	(C) Opening of K ⁺ channels, allowing potassium to leave the cell
	(D) Closing of all ion channels
Q2.5.5	Short Answer: Where does the summation of EPSPs and IPSPs occur in a neuron?
Q2.5.6	Multiple Choice: What is the primary difference between ionotropic and metabotropic synapses?
	(A) Ionotropic causes direct ion exchange, metabotropic uses secondary messengers
	(B) Ionotropic uses ATP, metabotropic doesn't
	(C) Ionotropic is slower, metabotropic is faster

(D) Ionotropic uses multiple neurotransmitters, metabotropic uses only one

Q2.5.7	Short Answer: How does binding to autoreceptors affect neurotransmitter release?
Q2.5.8	Fill in the Blank: The enzyme that breaks down neurotransmitters as part of their post-release fate is involved in
Q2.5.9	Short Answer: How do ionotropic and metabotropic synapses differ in terms of speed and duration?
Q2.5.10	Multiple Choice: What role does cAMP play in metabotropic synapses?
	(A) It binds directly to ion channels to open them.
	(B) It activates Protein Kinase A, which leads to phosphorylation.
	(C) It metabolizes excess neurotransmitters.
	(D) It breaks down ATP into ADP.
Q2.5.11	Fill in the Blank: The enzyme converts ATP into cAMP in metabotropic signaling.
Q2.5.12	Short Answer: What enzyme converts ATP to cAMP in the metabotropic signaling pathway?
Q2.5.13	Fill in the Blank: The enzyme that metabolizes residual cAMP is called
Q2.5.14	Fill in the Blank: removes the phosphate and resets the channel in the metabotropic pathway.
Q2.5.15	Short Answer: Give an example of a neurotransmitter that works through an ionotropic synapse.
Q2.5.16	Short Answer: Give an example of a neuromodulator that works through a metabotropic synapse.
Q2.5.17	Fill in the Blank: The fine tuning of electrical signals is accomplished through presynaptic and
Q2.5.18	Short Answer: What happens during presynaptic inhibition?

Q2.5.19 Matching: Match each characteristic with either ionotropic or metabotropic synapses.

Ch	oices
$\mathbf{O}\mathbf{\Pi}$	orces

- (a) No change in metabolism
- (b) Variable duration (can be very long)
- (c) At least 2 neuromodulator molecules bind to receptor
- (d) Fixed duration (rapid and short)
- (e) Direct change of ions
- (f) Indirect exchange of ions
- (g) 1 neurotransmitter binds to 1 receptor
- (h) Actual change in cellular metabolism

(1)	Ionotropic	
(2)	Matabatnani	

- Q2.5.20 Fill in the Blank: In the metabotropic signaling pathway, the _____ sub-unit of the G-protein binds to adenylate cyclase.
- **Q2.5.21 Multiple Choice:** What is the function of Protein Kinase A in metabotropic signaling?
 - (A) It causes subunits to dissociate and converts ATP to ADP
 - (B) It converts ATP to cAMP
 - (C) It opens ion channels directly
 - (D) It breaks down excess neurotransmitters
- Q2.5.22 Short Answer: How does presynaptic facilitation affect neurotransmitter release?
- **Q2.5.23** Multiple Choice: In gap junctions (electrical synapses), what crosses between neurons?
 - (A) Neurotransmitters
 - (B) Channels that allow direct electrical transmission
 - (C) Neuromodulators
 - (D) G-proteins

Q2.5.24	Multiple Choice: Which of the following is NOT a characteristic of electrical synapses?
	(A) They are very fast
	(B) They lack neurotransmitters
	(C) They cannot be facilitated or inhibited
	(D) They are common in the mammalian brain
$\mathrm{Q}2.5.25$	Short Answer: Give an example of where electrical synapses are more common than in mammals.
2.6	······································
Q2.6.1	Matching: Match each characteristic with either the somatic or autonomic nervous system.
	Choices
	(a) Voluntary control
	(b) Purely motor
	(c) Innervates striated muscles
	(d) Functions as a whole
	(e) More differentiated
	(f) Relatively involuntary
	(g) Contains both sensory and motor neurons
	(h) Innervates smooth muscle, cardiac muscle, glands
	(1) Somatic
	(2) Autonomic
Q2.6.2	Short Answer: What types of tissues does the autonomic nervous system innervate?
Q2.6.3	Fill in the Blank: Unlike the autonomic nervous system, the somatic nervous system

116110	IIIX College		Exam 2				
Q2.6.4	Multiple Choice: Which system has	s more voluntary control?					
	(A) Somatic nervous system	(B) Autonomic nervous system					
	(C) Both have equal voluntary control	(D) Neither has voluntary control	1				
2.7		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~				
	Matching: Match each sensory syste	m with its receptor or mechanism.					
	Choices						
	(a) Light waves hit photoreceptors						
	(b) Chemicals bind to receptors (in the nose)						
	(c) Sound waves vibrate hair cell	\mathbf{S}					
	(d) Sense of body position						
	(e) Chemicals bind to receptors	(in the mouth)					
	(f) Sense of movement						
	(g) Balance						
	(h) Touch, temperature, pain						
	(1) Vision	·····					
	(2) Vestibular Sensation						
	(3) Audition	······					
	(4) Kinesthesis	<u> </u>					
	(5) Olfaction	·····					
	(6) Gustation	······					

(7) Proprioception

(8) Cutaneous Senses

Q2.7.2	Short Answer: Where are photorece	eptors located in the	visual system?	
Q2.7.3	Short Answer: Where are hair cells	found in the auditor	y system?	
Q2.7.4	Fill in the Blank: that rely on chemicals binding to rece		_ are both chemical senses	
Q2.7.5	2.7.5 Multiple Choice: Which of the following is NOT a component of the somato system?			
	(A) Proprioception	(B) Cutaneous s	enses	
	(C) Gustation	(D) Vestibular se	ensation	
Q2.7.6	Short Answer: Why are psychologists interested in sensory systems?			
Q2.7.7	Fill in the Blank: The difference between a physicist and psychologist studying sensory systems is that the physicist measures while the psychologist measures			
$\mathbf{Q2.7.8}$	Short Answer: According to the notes, why is it important to understand that perceptions don't exactly match stimuli?			
2.8				
Q2.8.1	Multiple Choice: What process minhibition?	ght affect calcium cl	nannels during presynaptic	
	(A) Some Ca ⁺² channels that would n	ormally open remain	closed	
	(B) More Ca ⁺² channels open than us	ual		
	(C) Ca^{+2} is pumped out of the cell mo	ore quickly		
	(D) Ca^{+2} channels are replaced with N	Va ⁺ channels		
Q2.8.2	Short Answer: Compare and contrametabotropic synapses.	ast the duration of	effects in ionotropic versus	
Q2.8.3	Fill in the Blank: In an analogy each APs, the effect would seem like	explaining presynapti APs.	ic facilitation, instead of 3	

- **Q2.8.4 Multiple Choice:** Which of these statements best explains why sensory systems are important in psychology?
 - (A) Perceptions from sensory systems form the basis for behavior
 - (B) Sensory systems are the only way to measure brain activity
 - (C) All psychological disorders involve sensory system dysfunction
 - (D) Sensory systems are the most complex part of the nervous system
- **Q2.8.5** Long Answer: Describe the complete sequence of events in a metabotropic synapse, from neuromodulator binding to the resetting of the channel.