The main function of the receiver is to regenerate the original signal from the received signal.

0.9. Explain - Ratio detectors do not need Amplitude limitors.

According to our syllabus, we have to study two receiver circuits:

- (i) TRF Receiver
- Ans. Write about 'Action of C3 to Limit Amplitude' from ection 6. Previous AHZ (ii)

7.1 Tuned Radio Frequency (TRF) Receiver

Q. Sketch the block diagram of a TRF radio receiver and briefly describe its working. Explain its predominant disadvantages.

Fig. 7.1

Working

Figure 7.1 shows the block diagram of TRF receiver. The functions of different blocks are

(lif) Poor Selectivity

Working.

(i) RF Amplifier

- Two or three RF amplifiers are used to select the desired frequency signal and reject all other frequencies.
- Also after selecting the signal, the signal is amplified.

SHR overcomes this describe to be converting every received sign rotated (ii)

- · It consists of the detector circuit.
- · Original signal is detected here.

(iii) Audio and Power Amplifier

Used to amplify the detected signal.

Advantages

· Simple in design.

Disadvantages

(i) Instability

- · The overall gain of RF amplifiers is extremely high.
- So, a small feedback from the output can make the RF amplifier work as an oscillator.

(ii) Variation in Bandwidth

 For better selectivity, the bandwidth of the receiver should always remain constant. But, in TRF bandwidth changes with the incoming frequency.

Note: Selectivity is a characteristic of a receiver covered in the later part of this chapter.

• Normally, bandwidth, B.W. = $\frac{f_r}{Q}$

 f_r = Frequency of received signal

Our main aim is to keep the ofthis B.W. = W.B.

Q = Quality factor of the circuit

Now, Q is constant.

Thus, when the frequency of received signal changes, the bandwidth also changes. This drawback is overcome in SHR with the concept of intermediate frequency.

(iii) Poor Selectivity

 As bandwidth varies with the variation in incoming frequency the selectivity degrades.

7.2 Concept of Intermediate Frequency in SHR Receiver

- The main drawback of TRF receiver is its variation in BW due to variation in · Also after selecting the clonel, the stonel is easy frequency.
- SHR overcomes this drawback by converting every received signal frequency to a constant intermediate frequency called the IF frequency or (f_i) .
- This is done with the help of a local oscillator and a mixer. [accept lampin() *
- Local oscillator is a circuit which is used to generate signals of a particular frequency. . Used to amplify the detected signal
- Mixer

Mixer just gives the difference of the two input frequencies.

7.2.1 How Does Local Oscillator and Mixer Work

instability

oscillator

 f_s = Incoming frequency

 f_o = Oscillator frequency

 f_i = Intermediate frequency

Our main aim is to keep the output i.e. f_i at a constant value.

Working

- As f_s changes, if f_o is also changed then, the difference will be constant.
- Hence, f_o is always changed with f_s using ganged tuning.

Note: The mixer circuit in practice gives many frequencies at its output but only the difference frequency is selected for the next stages.

" It consists of the delector car and