Orders of Magnitude: Stan Algorithms and Engineering

Bob Carpenter

Center for Computational Mathematics
Flatiron Institute

Flatiron Institute

The mission of the Flatiron Institute is to advance scientific research through computational methods, including data analysis, theory, modeling and simulation.

- Center for Computationa: Math (stats/ML), Biology, Neuroscience, Astrophysics, Quantum Physics
- part of Simons Foundation
 - US\$300M+ science and education grants per year
 - US\$5B endowment

Pop Quiz

· Who's the most famous Stan in St. Louis?

Stan the Man

(active 1941-1963)

- · Not Ulam. Not a stalker fan.
- · Stan "The Man" Musial. Outfielder, St. Louis Cardinals.

Wikipedia: One of the greatest and most consistent hitters in baseball

≡ Inside baseball (metaphor)

Article Talk

From Wikipedia, the free encyclopedia

In American slang, the term *inside baseball* refers to the minutiae and detailed inner workings of a system that are only interesting to, or appreciated by, experts, insiders, and aficionados.^{[1][2]} The phrase was

Swing for the fences

- · 2011: I move from industry to Columbia to work with Gelman.
- · I was getting scooped on crowdsourcing.
- · Michael Collins (CS) suggests I work on harder problems.
- · I listened and we started the Stan project.

Where are the fences?

- · Sometimes: an unknown unknown.
- · Usually: about an order of magnitude away
- · I'm a computer scientist, so that's only $\times 2$ (\approx Gelman & Hill)

Part I

MCMC for Bayes

- · unknown (parameters) $\theta \in \mathbb{R}^D$; observed (data) $y \in \mathbb{R}^N$
- Estimation:

$$\hat{\theta} = \mathbb{E}[\theta \mid y] = \int_{\mathbb{R}^D} \theta \cdot p(\theta \mid y) \, d\theta.$$

· Event probabilities

$$\Pr[A \mid y] = \mathbb{E}[I_A(\theta) \mid y] = \int_{\mathbb{R}^D} I_A(\theta) \cdot p(\theta \mid y) \, \mathrm{d}\theta.$$

· Posterior prediction

$$p(\tilde{y}\mid y) = \mathbb{E}[p(\tilde{y}\mid \theta)\mid y] = \int_{\mathbb{R}^D} p(\tilde{y}\mid \theta) \cdot p(\theta\mid y) \,\mathrm{d}\theta.$$

- · Go-to approach to high-dimensional integration
- · Randomized algorithm for deterministic integrals

$$\mathbb{E}[f(\theta)] \mid y] \approx \frac{1}{M} \sum_{m=1}^{M} f(\theta^{(m)})$$

for independent and identically distributed (i.i.d.) draws

$$\theta^{(m)} \sim p(\theta \mid y)$$

Proof: central limit theorem (CLT) + law of unconscious statistician.

(Ulam, late 1940s)

- When too hard to draw i.i.d. from posterior.
- · Draw $\theta^{(0)}, \dots, \theta^{(M)}$ from a homogeneous Markov chain

$$\theta^{(0)} \sim q_0(\theta) \tag{1}$$

$$\theta_{m+1} \sim q(\theta_{m+1} \mid \theta_m). \tag{2}$$

- · Ergodic theorem says we can use MCMC just like MC, when chain
 - is irreducible (doesn't get stuck),
 - is aperiodic (doesn't visit partition cyclically), and
 - has stationary distribution s.t. $\theta^{(m+1)} \sim p(\theta \mid y)$ if $\theta^{(m)} \sim p(\theta \mid y)$.
- · Proof: equilibrium convergence + law of unconscious statistician

```
• propose \theta^* \sim q(\theta \mid \theta_m),

- where q is symmetric, i.e., q(\theta' \mid \theta) = q(\theta \mid \theta')
```

- **accept** with probability $\min \left(1, \ \frac{p(\theta^* \mid y)}{p(\theta_m \mid y)} \right)$

```
theta[0] = q0_rng()
for m in range(M):
    theta_star = q_rng(theta[m])
    u = uniform_rng(0, 1)
    accept = log(u) < log p(theta_star) - log p(theta[m])
    theta[m + 1] = theta_star if accept else theta[m]</pre>
```

- · propose $\theta^* \sim q(\theta \mid \theta_m)$,
 - where q is **not necessarily symmetric**
- · accept with probability $\min \left(1, \frac{p(\theta^* \mid y)}{p(\theta_m \mid y)} \cdot \frac{q(\theta_m \mid \theta^*)}{q(\theta^* \mid \theta_m)} \right) t$
- \cdot If q is symmetric, second term drops out, reduces to Metropolis

Detailed Balance

- · Let $p(\theta_{m+1} \mid \theta_m)$ be the Markov chain transition kernel
 - reject probability makes it mixed discrete/continuous
- Metropolis-Hastings accept step ensures MCMC kernel satisfies detailed balance,

$$p(\theta \mid y) \cdot p(\theta' \mid \theta) = p(\theta' \mid y) \cdot p(\theta \mid \theta').$$

- ensures chain has stationary distribution $p(\theta \mid y)$
- given irreducibility and aperiodicity

HMC (Duane et al. 1987)

- · couples momentum $ho \in \mathbb{R}^D$ to sample over phase space $\mathbb{R}^D imes \mathbb{R}^D$
- Hamiltonian $H(\theta, \rho) = -\log p(\theta, \rho) = -\log p(\theta) \log p(\rho)$,
 - Kinetic energy: $-\log p(\rho) = -\log \text{normal}(0, I_D) = \frac{1}{2} \cdot \theta^{\top} \cdot \theta$.
 - Potential energy: $-\log p(\theta) = -\log p(\theta \mid y)$
- Hamiltonian Monte Carlo (HMC) couples two stationary-preserving transition kernels:
 - **Exact momentum** refresh: $\rho_{m+1} \sim \text{normal}(0, 1)$.
 - Metropolis proposal: $(\theta^*, -\rho^*)$, where (θ^*, ρ^*) solves Hamiltonian dynamics from initial (θ_m, ρ_{m+1}) to proposal (θ^*, ρ^*) at time t.
 - Metropolis corrects numerical integration error solving ODE
 - Momentum flip for reversibility (required, but erased)

Why is HMC so good?

- · Long distance proposals with high acceptance rates
- Effective sample size (and hence mixing) is proportional to expected squared jump distance
- · An exact solution preserves initial Hamiltonian, so 100% accept
- · The leapfrog integrator used to solve dynamics is symplectic
 - steps preserve volume (hence no Hastings correction for Jacobian)
 - symplectic integrators very good at preserving Hamiltonian
 - not so great at solving dynamics, but doesn't matter—we only need long jumps with high acceptance

HMC is hard to tune

• y-axis: ESS; x-axis: step size; facets: steps

• blue: Y; red: Y^2

· dashed lines: NUTS

HMC + Euclidean metric

 \cdot add symmetric, positive-definite **metric** M to define distance

$$||\theta|| = \theta^{\top} \cdot M \cdot \theta \tag{3}$$

$$d(\theta, \theta') = ||\theta - \theta'|| \tag{4}$$

 \cdot Stan estimates M as inverse posterior covariance,

$$\widehat{M} \approx \text{cov}[\theta \mid y].$$

- · kinetic energy now $-\log p(\rho) = \frac{1}{2} \cdot \rho^{\top} \cdot M \cdot \rho$,
- · so momentum refresh $\rho \sim \text{normal}(0, M^{-1})$.

No-U-turn sampler (NUTS) (Hoffman and Gelman 2013)

- · Tuning HMC dynamics (step size, number of steps) is very hard
- No-U-turn sampler (NUTS) automatically tunes
 - **stepsize** during warmup iterations
 - metric during warmup iterations
 - number of steps dynamically
- Betancourt (2017) added several improvements to NUTS for Stan

NUTS (cont.)

- · Sampling algorithm
 - randomly simulate forward vs. backward time, doubling steps
 - until U-turn (momentum brings ends closer)
 - select a step along path, biased toward last doubling
 - slice sampling, revised to more efficient multinomial

- · Uses partial momentum refresh
 - preserves momentum for directed movement across posterior
- Fix $\lambda \in (0,1)$ (lower preserves more momentum)
- G-HMC refresh:

$$\rho_{m+1} = \sqrt{\lambda} \cdot z_m + \sqrt{1-\lambda} \cdot \rho_m,$$

where $z_m \sim \text{normal}(0, M^{-1})$.

- This is also an exact update
 - i.e., if $\rho_m \sim \text{normal}(0, M^{-1})$, then $\rho_{m+1} \sim \text{normal}(0, M^{-1})$.

Uh oh! What about the Flip?

- Why not use G-HMC with a single step and tune λ ?
- Remember that momentum flip?
 - it's required for reversibility of Metropolis
 - thrown away in basic HMC by composing momentum update
 - but preserved in G-HMC
- · Without high acceptance, momentum flip produces random walk.
- High acceptance means **small step size** in Hamiltonian dynamics.

(Neal 2020)

- · Instead of uniform u, use sawtooth pattern, jittered for ergodicity
 - not reversible, but preserves stationary
- Iteration vs. accept probability u (red reject) groups acceptance:

- · K-step delayed rejection involves K distinct proposals
 - Step 1. Propose and accept/reject as usual with Metropolis.
 - Step 2. If rejected, propose again with a new proposal and accept/reject with Metropolis-Hastings

:

- Step K. If rejected, propose one last time.
- · Need Hastings correction to ensure detailed balance.
- · Proposals may depend on previous proposal(s).
- Innovation: Only retry if acceptance probability was low

Delayed Rejection HMC

(Modi et al. 2022)

- · Multiple scales (varying curvature) along an entire path
- Each retry cuts step size by constant c and multiplies steps by c (e.g., c = 2 or c = 5)
 - earlier attempts kept step size and extended path
 - ours better if gradient-based Hamiltonian diverged

(funnel draws/accept)

MEADS

(Hoffman and Sountsov 2022)

- Massively parallel version of Neal's non-reversible accept G-HMC
- · Uses complementary chains for adaptation
 - novel, efficient principal eigenvalue estimation of step size
 - covariance in complementary chains used to estimate metric
 - accelerates adaptation, robust to single chains getting stuck (Bales 2019)
 - much easier to parallelize
 - little waste and easy restart
- · conveniently a Markov chain w.o. warmup phase
 - still need burn-in

DR-G-HMC

(Modi, Roualdes, ... in progress)

- Apply delayed rejection to generalized HMC
- · Retries use one step instead of constant time
- · Multiple scales adapted within a trajectory
- solves non-centered funnel (like DR-HMC)
- Use MEADS-like parallel tuning

Convergence: nested \hat{R}

(Margossian et al. 2022)

- · GPUs run 1000+ parallel chains
- · One draw/chain minizes wall time
- Nest blocks with same init; monitor transient bias + variance

Part II

Stan Language

(next release)

- · Required design doc choices
 - mainly on syntax and including named structs
- Massive refactoring required in transpiler & I/O (thanks Brian and Steve)
 - my bad in original code assuming dense rectangular

```
tuple(int, real) x = (42, 3.14); // type & construct int a = x.1; real b = x.2; // rvalue (access) x.1 += 1; x.2 = sqrt(x.2); // lvalue (assign)
```

Closures and lambdas (

(design accepted)

- · Closures bind non-local variables in function bodies
- · Lambdas for anonymous inline function definitions (C++-like syntax)
- · Full type support in the object language
 - variables with function types and assignment
 - function arguments with function types (i.e., higher-order functions)
- Support comprehensions with partial evaluation
 - e.g., scalable GP kernels

Ragged arrays

(design pending)

- · Not much more to say about this
- · Challenging to statically size
- · Need to generalize math library

- Bigger challenge: sparse matrices
 - Eigen C++ support is poor
 - Have to roll our own algorithms (e.g., log determinant)

More types and constraints

- · Orthonormal matrices (generalizes unit vector)
 - e.g., hyperspherical statistics and rotations
 - tricky SO(N) geometry (rotation vs. reflection)
- Composable transforms
 - e.g., affine compositions for hierarchical rates or probabilities
- Pluggable transforms
 - e.g., specialized simplex transforms for scale

Part III

Automatic

Differentiation

Mat-var to Var-mat

(underway)

- Reverse-mode autodiff uses autodiff variables
 - one per value evaluated in the constraints and log density
 - C++ class instance store a value and adjoint
 - virtual function to apply chain rule
- · Stan matrices currently store a matrix of variables
- Moving to more efficient variable of matrixes
 - more memory locality
 - less copying
- huge refactor of math lib and transpiler

Expression templates

(well underway)

- · original Stan evaluated expression templates
- · goal: lazy evaluation plus static compilation
- · improved Stan tries to propagate expression templates
 - reduces copying
 - accelerate composed code compilationavoids eager, unnecessary copies
 - Fortrain-like speed; how C++ is faster than C
- very tricky C++

GPU kernel (starting)

- · Very expensive to move data between GPU and CPU
- · now use where order of computation /gg order of data
 - e.g., matrix-matrix multiply, Cholesky factorization, not matrix-vector multiply, dot prducts, etc.
- · Write GPU code for entire math library
- Order of magnitude (or two!) speedup (cf. JAX)
- · Enormous undertaking

Part IV Approximate Inference

(cf. MCMC, which is asymptotically exact)

Laplace Approximation

(released)

· Given a posterior mode

$$\theta^* = \arg \max_{\theta} p(\theta \mid y)$$

· Second-order Taylor expansion is called Laplace approximation

$$\theta \sim \text{multi_normal}(\theta^*, (-H)^{-1}(\theta^*)),$$

where $(-H)^{-1}$ is the inverse negative Hessian

- · pairs with our built-in gradient-based quasi-Newton optimization
 - uses L-BFGS for local curvature adjustment (i.e., precondition)

Autodiff Variational Inference (ADVI)

- · Given posterior $p(\theta \mid y)$ on the unconstrained scale
 - i.e., $p(\theta \mid v) > 0$ for all $\theta \in \mathbb{R}^D$
- Variational approximation is $\mathrm{multi_normal}ig(\theta\mid \hat{\mu}, \hat{\Sigma}ig)$, where

$$\hat{\mu}, \hat{\Sigma} = \operatorname{argmin}_{\mu, \Sigma} \operatorname{KL}[\operatorname{multi_normal}(\theta \mid \mu, \Sigma) \mid \mid p(\theta \mid y)]$$

- · Sample $\theta^{(1)}, \dots \theta^{(M)} \sim \text{multi_normal} (\theta \mid \hat{\mu}, \hat{\Sigma})$,
- Inverse transform draws back to constrained scale
- Impovements by (1) Welandawe, Andersen, Vehtari, and Huggins (2022); (2) Domke and Agrawal (2022).

ADVI objective evaluation

· KL-divergence is integral, w. $q(\theta) = \text{multi_normal}(\mu, \Sigma)$.

$$KL[q \mid \mid p] = \underbrace{\int_{\mathbb{R}^{D}} q(\theta) \cdot \log q(\theta) \, d\theta}_{\text{entropy of } q} - \underbrace{\int_{\mathbb{R}^{D}} q(\theta) \cdot \log p(\theta \mid y)}_{\text{cross entropy } q \text{ to } p} \, d\theta \quad (5)$$

$$\approx -\text{H[multi_normal}(\mu, \Sigma)] + \frac{1}{M} \sum_{m=1}^{M} \log p(\theta^{(m)} \mid y), \quad (6)$$

where $\theta^{(m)} \sim \text{multi_normal}(\mu, \Sigma)$.

ADVI SGD

· Need gradient $\nabla_{\theta} \text{KL}[q \mid\mid p]$ to minimize

$$\arg \min_{\mu,\Sigma} KL[\operatorname{multi_normal}(\theta \mid \mu,\Sigma) \mid \mid p(\theta \mid y)]$$

- Entropy term can be handled analytically or by Monte Carlo
- Cross-entropy requires stochastic gradient,

$$\nabla_{\theta} \sum_{m=1}^{M} \log p(\theta^{(m)} \mid y) = \sum_{m=1}^{M} \nabla_{\theta} \log p(\theta^{(m)} \mid y),$$

with nested derivative by automatic differentiation

ADVI improvements

(in progress)

- Need to select a step size
 - current algorithm too weak; parallel grid search way better
- Need to select an SGD algorithm
 - ADVI is vanilla SGD; ADAM's persistent momentum better
- Need to select gradient estimator
 - Stan uses vanilla reparameterization; stick the landing is better
- · Stan uses standard normal initialization
 - Multiple inits better (Laplace, prior, standard normal, etc.)
- · Stan just returns constrained draws
 - importance resampling is better

Pathfinder

(next release!)

- Quasi-Newton variational inference with L-BFGS
- · At each point on optimization trajectory:
 - lay down a multivariate normal approximation
 - covariance is approximate negative inverse Hessian
 - estimated with finite differences of autodiff gradient
 - low-rank (number of gradients $J \approx 5$) plus diagonal: $\mathcal{O}(D \cdot J^2)$
- · Choose approximation with lowest KL-divergence (Monte Carlo)
- Importance resample
- · More robust: multiple paths, combined importance resampling

Pathfinder illustrated

Ellipses = Taylor approximation; lower left is best (but overconcentrated)

The future: normalizing flows (Domke and Agrawal)

- · Like ADVI with normalizing flows as approximating family
 - Generate inital $X \sim q_X(x)$ (cf. Domke and Agrawal)
 - Transform with deep neural net f_{β} . $\mathbb{R}^D \to \mathbb{R}^D$, $\Theta = f_{\beta}(X)$,

$$q_{\Theta}(\theta \mid \beta) = q_X(f_{\beta}^{-1}(\theta)) \cdot \mid J_{f_{\beta}^{-1}}(\theta) \mid$$

- Optimize as in ADVI: $\beta^* = \arg \min_{\beta} \text{KL}[q_{\Theta}(\theta \mid \beta) \mid | p(\theta \mid y)]$
- · For VI, neural net must have efficient Jacobian and sampling
- Real non-volume preserving (RealNVP) flows work with JAX
 - complementary affine layers, tanh() non-linearity (≈ 10 deep, 12 wide)
 - fits centered hieararchical IRT-2PL (additive + multiplicative + funnel)

More work in progress

- · score-function based control variates
- · amortized variational inference (BRMS)
- black-box nested Laplace approximation
- · low-dimensional (1-2), massively scalable Gaussian processes