Repetytorium z JFiZO

Jakub Michaliszyn

Zadania 19 i 5.

Treść

Nie każdy język regularny można zdefiniować deterministycznym online wyrażeniem.

Rozgrzewka

Zadanie 5. Dla dowolnego $L \subseteq \{0\}^*$ istnieją j,k takie, że L^* jest postaci $L_s \cup \{0^{j+kn} \mid n \in \mathbb{N}\}$, gdzie L_s jest skończony.

Innymi słowy: dla dowolnego $X\subseteq \mathbb{N}$ istnieją j,k takie, że addytywne domknięcie X, ad(X), jest postaci $S\cup\{j+kn\mid n\in\mathbb{N}\}$, gdzie S jest skończony.

Twierdzenie. Dla dowolnego $X \subseteq \mathbb{N}$ istnieją j,k oraz skończony język S takie, że $ad(X) = S \cup \{j + kn \mid n \in \mathbb{N}\}.$

Dowód dla $X \neq \emptyset$. Niech k = NWD(X), $\{y_1, \ldots, y_m\} \subseteq X$ będzie takie, że $NWD(\{y_1, \ldots, y_m\}) = k$ czemu istnieje? oraz $y = y_1 \cdot \ldots \cdot y_m$.

Z algorytmu Euklidesa istnieją nieujemne b_1, \ldots, b_m takie, że $b_1y_1 + \cdots + b_my_m \mod y = k$. Niech $j = y(b_1y_1 + \ldots b_my_m)$ oraz $S = \{t \in ad(X) \mid t < j\}$.

Wtedy $ad(X) \subseteq S \cup \{j + kn \mid n \in \mathbb{N}\}$ (fatwe).

Oraz $ad(X) \supseteq S \cup \{j + kn \mid n \in \mathbb{N}\}$. Jeśli $x \in ad(X)$ i x > j, to $x \mod y$ jest postaci cx_c dla pewnych c, x_c . Zauważmy, że w takim razie $x = c(b_1y_1 + \dots b_my_m) + dy$ dla pewnego $d \ge 0$.

Plan dowodu

Ustalamy $\Sigma = \{0\}$.

Wyrażenia deterministyczne online (DO) zawierające \emptyset są nudne. Zakładamy $RE := \epsilon \mid 0 \mid RE + RE \mid RE \cdot RE \mid RE^*$.

Twierdzenie 1

Jeśli ϕ jest DO, to istnieją $j, k \in \mathbb{N}$ takie, że $L_{\phi} = L_s \cup \{0^{j+nk} \mid n \in \mathbb{N}\}$, gdzie L_s jest skończony.

Wniosek: ani $(00)^* + (000)^*$, ani $(000)^*(0+00)$ nie definiują języków definiowalnych wyrażaniami DO.

Ważna własność

Lemat 1

Jeśli ϕ jest DO, to wszystkie podwyrażenia ϕ są DO.

Dowód (indukcja strukturalna): załóżmy, że ϕ jest DO i dla wszystkich jego podformuł lemat zachodzi.

Jeśli $\phi=\epsilon$ lub $\phi=0$, teza zachodzi bo nie ma podwyrażeń.

Jeśli $\phi = \phi_1 + \phi_2$, to załóżmy nie wprost, że ϕ_1 lub ϕ_2 nie jest DO. W oczywisty sposób ϕ również nie jest (...).

Jeśli $\phi = \phi_1 \cdot \phi_2$, to załóżmy nie wprost, że ϕ_1 lub ϕ_2 nie jest DO. W obu przypadkach ϕ nie jest DO (...).

Jeśli $\phi = (\phi_1)^*$, to załóżmy nie wprost, że ϕ_1 nie jest DO. Wtedy też ϕ nie jest DO (...).

Dowód

Twierdzenie 1

Jeśli ϕ jest DO, to istnieją $j, k \in \mathbb{N}$ takie, że $L_{\phi} = L_s \cup \{0^{j+nk} \mid n \in \mathbb{N}\}$, gdzie L_s jest skończony.

Można udowodnić indukcyjnie dzięki lematowi.

Dowód

Twierdzenie 1

Jeśli ϕ jest DO, to istnieją $j, k \in \mathbb{N}$ takie, że $L_{\phi} = L_{s} \cup \{0^{j+nk} \mid n \in \mathbb{N}\}$, gdzie L_{s} jest skończony.

Można udowodnić indukcyjnie dzięki lematowi.

- ϵ , 0 oczywiste.
- $\phi_1 + \phi_2$ jedno z nich musi być ϵ .
- $\phi_1 \cdot \phi_2 L_{\phi_1}$ może zawierać tylko jedno słowo lub $\phi_2 = \epsilon$.
- ϕ_1^* addytywne domknięcie z zadania 5.