Informe_TP6

1. La integración proporciona un medio para calcular cuanta masa entra o sale de un reactor durante un periodo específico de tiempo, así

$$M=\int_{t_1}^{t_2}Q(t)c(t)dt$$

Donde t_1 y t_2 son los tiempos inicial y final del periodo. Use integración numérica para estimar cuanta masa sale de un reactor con base en las siguientes mediciones:

 ${\mathscr O}$ Formula $\frac{3}{8}$ de Simpson

$$Approx rac{3h}{8}[y_0+3(y_1)+3(y_2)+y_3]$$

T, min	0	10	20	30	35	40	45	50
$Q rac{m3}{min}$	4	4.8	5.2	5.0	4.6	4.3	4.3	5.0
$Crac{mg}{m3}$	10	35	55	53	40	37	32	34
Q(t)C(t)	40	168	286	265	184	159.1	137.6	170

Simpson 3/8

T, min	0	10	20	30	35	40	45	50
$Q rac{m3}{min}$	4	4.8	5.2	5.0	4.6	4.3	4.3	5.0
$Crac{mg}{m3}$	10	35	55	53	40	37	32	34
Q(t)C(t)	40	168	286	265	184	159.1	137.6	170

$$A_1 = \int_0^{30} Q(t) c(t) = rac{30}{8} (40 + 3*168 + 3*286 + 265) = 6251.25$$

T, min	0	10	20	30	35	40	45	50
$Qrac{m3}{min}$	4	4.8	5.2	5.0	4.6	4.3	4.3	5.0
$Crac{mg}{m3}$	10	35	55	53	40	37	32	34
Q(t)C(t)	40	168	286	265	184	159.1	137.6	170

\mathscr{O} Formula $\frac{1}{3}$ Simpson

$$h= ext{distancia entre }x's \ E=y_0+y_n \ P=y_2+y_4+y_6+\ldots=\sum_{egin{subarray}{c}i=2\ i\neq n\ \mathrm{mod}\ 2=0\end{array}}^N y_n \ I=y_1+y_3+y_5+\ldots=\sum_{egin{subarray}{c}i=1\ i\neq n\ \mathrm{mod}\ 2=1\end{array}}^N y_n \ Approx rac{h}{3}(E+2P+4I)$$

$$egin{aligned} A_2 &= \int_{30}^{50} Q(t) c(t) pprox rac{h}{3} [E+2P+4I] \ &E = 265+170=435 \ &I = 184+137.6=321.6 \ &P = 159.1 \end{aligned}$$
 $A_2 pprox rac{5}{3} (435+2(159.1)+4(321.6)) \ &A_2 pprox rac{5}{3} * 2039.6 \ &A_2 pprox 3399.ar{3} \end{aligned}$

$$A=A_1+A_2=6251.25+3399.\overline{3}= \boxed{9650.58\overline{3}}$$

2. Un estudio de ingeniería del transporte de mercadería requiere que usted determine el número de vehículos que pasan por un punto de control en la hora pico. Usted se para al lado de la vía y cuenta el número de vehículos que pasan cada minuto a varias horas, como se muestra en la tabla a continuación

tiempo (h)	7.30	7.45	8	8.15	8.45	9.15
Taza (vehiculos por minuto)	4.5	6	6.5	5	4.5	2.25

Utilice el mejor método numérico para determinar el número total de vehículos que pasan entre las 7.30 y las 9.15. (Combinación de trapecio y Simpson) y estime el error.

Conversión de tiempo a formato decimal y multiplicamos la taza * 60 para que tenga la misma medida de horas

tiempo (h)	7.5	7.75	8	8.25	8.75	9.25
Taza (vehiculos por minuto)	4.5	6	6.5	5	4.5	2.25
Taza (vehiculos por hora)	270	360	390	300	270	135

Simsom 3/8

tiempo (h)	7.5	7.75	8	8.25	8.75	9.25
Taza (vehiculos por minuto)	4.5	6	6.5	5	4.5	2.25
Taza (vehiculos por hora)	270	360	390	300	270	135

$$egin{aligned} A_1 &= \int_{7.5}^{8.25} f(h') \stackrel{\simeq}{=} rac{3h}{8} [270 + 3(360) + 3(390) + 300] \ A_1 \stackrel{\simeq}{=} rac{0.75}{8} [270 + 1080 + 1170 + 300] \ A_1 \stackrel{\simeq}{=} 0.09375 * 2820 \ A_1 \stackrel{\simeq}{=} 264.375 \end{aligned}$$

Simsom 1/3

tiempo (h)	7.5	7.75	8	8.25	8.75	9.25
Taza (vehiculos por minuto)	4.5	6	6.5	5	4.5	2.25
Taza (vehiculos por hora)	270	360	390	300	270	135

$$egin{align} A_2 &= \int_{8.25}^{9.25} f(h') \stackrel{\simeq}{=} rac{h}{3} [(300+135)+2*(0)+4(270)] \ A_2 \stackrel{\simeq}{=} rac{0.5}{3} [435+1080] \ A_2 \stackrel{\simeq}{=} rac{1}{6} *1515 \ A_2 \stackrel{\simeq}{=} 252.5 \ A &= A_1 + A_2 = 264.375 + 252.5 = \boxed{516.875} \ \end{array}$$

3. Durante un levantamiento, se le pide que calcule el área del terreno que se muestra en la Figura 1. Emplee reglas de integración numérica para determinar el área.

х	у	Metodo	х	у	Metodo	х	у	Metodo
0	2400	$\frac{3}{8}$ Simpson	600	2600	$\frac{3}{8}$ Simpson	1200	3000	$\frac{3}{8}$ Simpson
200	2600		800	2600		1400	3000	
400	2400		1000	2800		1600	3200	
600	2600		1200	3000		1800	3200	

х	у	Metodo	х	у	Metodo	х	у	Metodo
1800	3200	$\frac{3}{8}$ Simpson	2400	2600	$\frac{3}{8}$ Simpson	3000	1800	$\frac{3}{8}$ Simpson
2000	3200		2600	2200		3200	1600	
2200	3000		2800	2000		3400	1200	
2400	2600		3000	1800		3600	1000	

x	у	Metodo
3600	1000	$\frac{3}{8}$ Simpson
3800	800	
4000	600	
4200	200	

$$A_1 = \int_0^{600} f(x) dx pprox rac{600}{8} [2400 + 3(2600) + 3(2400) + 2600] \ A_1 pprox 75(20000) \ A_1 pprox 1500000 \ A_2 = \int_{600}^{1200} f(x) dx pprox rac{600}{8} [2600 + 3(2600) + 3(2800) + 3000] \ A_2 pprox 75(21800) \ A_2 pprox 1635000 \ A_3 = \int_{1200}^{1800} f(x) dx pprox rac{600}{8} [3000 + 3(3000) + 3(3200) + 3200] \ A_3 pprox 75(24800) \ A_3 pprox 1860000 \ A_4 = \int_{1800}^{2400} f(x) dx pprox rac{600}{8} [3200 + 3(3200) + 3(3000) + 2600] \ A_4 pprox 75(24400) \ A_4 pprox 75(24400) \ A_4 pprox 1830000$$

$$A_5 = \int_{2400}^{3000} f(x) dx pprox rac{600}{8} [2600 + 3(2200) + 3(2000) + 1800] \ A_5 pprox 75(17000) A_5 pprox 1275000 \ A_6 = \int_{3000}^{3600} f(x) dx pprox rac{600}{8} [1800 + 3(1600) + 3(1200) + 1000] \ A_6 pprox 75(11200) \ A_6 pprox 840000 \ A_7 = \int_{3600}^{4200} f(x) dx pprox rac{600}{8} [1000 + 3(800) + 3(600) + 200] \ A_7 pprox 75(5400) \ A_7 pprox 405000 \ A = \sum_{i=1}^{7} A_i \ A = 1500000 + 1635000 + 1860000 + 1830000 + 1275000 + 840000 + 405000 \ A = 9345000$$

 $A = 9.345 * 10^6$

Respuesta:

El area aproxima de terreno es igual a 9.435.000 pies²