KotsubinskyaYV 29112024-141536

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

На рисунке 1 изображён двойной балансный смеситель. Диоды в этом смесителе представляют собой разрыв при подаче отрицательного напряжения и сопротивление r_i - при положительном смещении. Известно, что $r_1=r_4$ и что сопротивления двух других диодов также равны. Колебание гетеродина переключает диоды из открытого в закрытое состояние и обратно меновенно.

Рисунок 1 – Двойной балансный смеситель

Частота гетеродина 372 МГц, частота ПЧ 47 МГц.

Колебание какой частоты отсутствует на выходе РЧ?

Варианты ОТВЕТА:

- 1) 1488 MΓ_{II}
- 325 MΓц
- 3) 1069 МГц
- 4) 466 MΓ_{II}.

При преобразовании частоты вверх с использованием двойного балансного смесителя, получен спектр на выходе РЧ, изображённый на рисунке 2. Как известно, в общем случае он содержит комбинационные составляющие вида $|nf_{\rm r}+mf_{\Pi \rm q}|$ Какой комбинацией $\{n;m\}$ можно было бы объяснить наличие в спектре составляющей, отмеченной маркером 3?

(Значения частот, считываемые с экрана анализатора, округлять до единиц МГц.)

Рисунок 2 – Экран анализатора спектра

Варианты ОТВЕТА:

1)
$$\{11; 37\}$$
 2) $\{16; -53\}$ 3) $\{16; -143\}$ 4) $\{16; -71\}$ 5) $\{6; 55\}$ 6) $\{16; -143\}$ 7) $\{6; 37\}$ 8) $\{16; -107\}$ 9) $\{26; -143\}$

Ко входу гетеродина двойного балансного смесителя подключён генератор синусоидального колебания частотой $1628~\mathrm{M}\Gamma$ ц с внутренним сопротивлением $50~\mathrm{Om}$ и доступной мощностью плюс $9~\mathrm{д}\mathrm{Sm}$.

Колебание ПЧ формируется с помощью генератора меандра частотой 295 МГц с внутренним сопротивлением 50 Ом и доступной мощностью первой гармоники минус 3 дБм. Между выходом генератора и входом ПЧ включён фильтр нижних частот, имеющий прямоугольную частотную характеристику с частотой среза 3560 МГц. РЧ выход смесителя подключён в анализатору спектра с входным сопротивлением 50 Ом. Диапазон частот анализа от 1334 МГц до 1376 МГц.

Какова будет мощность наибольшей побочной составляющей, наблюдаемой на экране анализатора спектра?

Варианты ОТВЕТА:

1) -88 дБм 2) -91 дБм 3) -94 дБм 4) -97 дБм 5) -100 дБм 6) -103 дБм 7) -106 дБм 8) -109 дБм 9) -112 дБм

Для выделения только **верхней** боковой составляющей при преобразовании вверх используются квадратурный смеситель и согласованный по всем плечам делитель мощности. Плечи 2 и 3 делителя развязаны. Известно, что: $s_{21} = s_{31}$.

Плечо 2 подключено непосредственно к синфазному входу ПЧ. Между плечом 3 и квадратурным входом ПЧ включён фазовращатель. В качестве фазовращателя используется симметричный реактивный П-образный четырёхполюсник, выполненный с помощью сосредоточенных компонентов. Известно, что между синфазным и квадратурным колебаниями гетеродина внутри смесителя существует ошибка квадратуры равная плюс 26 градусов.

Чему равна индуктивность компонента фазовращателя, если частота ПЧ равна 181 МГц?

Варианты ОТВЕТА:

1) $70.4 \text{ н}\Gamma\text{н}$ 2) $27.5 \text{ н}\Gamma\text{н}$ 3) $48.9 \text{ н}\Gamma\text{h}$ 4) $39.5 \text{ н}\Gamma\text{h}$

Ко входам ПЧ квадратурного смесителя подключён согласованный по всем плечам делитель мощности. Развязанные плечи 2 и 3 делителя подключены соответственно к синфазному и квадратурному входам ПЧ. Известно, что:

 $s_{21} = 0.093566 + 0.31899i, s_{31} = -0.32623 + 0.095689i.$

Внутри смесителя квадратура выдержана идеально точно.

Какой относительный уровень мощности будет иметь верхняя боковая составляющая при преобразовании частоты вверх?

Варианты ОТВЕТА:

1) -31 дБн 2) -33 дБн 3) -35 дБн 4) -37 дБн 5) -39 дБн 6) -41 дБн 7) -43 дБн 8) -45 дБн 9) 0 дБн

Ко входу РЧ двойного балансного смесителя подключён генератор с внутренним сопротивлением 50 Ом и доступной мощностью минус 0.4 дБм.

В смесителе использованы диоды с сопротивлением в открытом состоянии 10 Ом. На выходе смесителя путём преобразования на первой гармонике гетеродина получено колебание промежуточной частоты. Мощность колебания промежуточной частоты измерена с помощью анализатора спектра с входным сопротивлением 50 Ом, и получено значение минус 14.2 дБм.

Какова величина потерь в трансформаторе? (Это потери при передаче мощности от генератора с внутренним сопротивлением 50 Ом, подключённого в первичной обмотке, в нагрузку 50 Ом, подключённую к одной из половин вторичной обмотке при условии, что цепь второй половины вторичной обмотки разомкнута. Схема дана на рисунке 3.)

Рисунок 3 – Схема измерения потерь в трансформаторе

Варианты ОТВЕТА: 1) 5 дБ 2) 5.6 дБ 3) 6.2 дБ 4) 6.8 дБ 5) 7.4 дБ 6) 8 дБ 7) 8.6 дБ 8) 9.2 дБ 9) 9.8 дБ