МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа физики и исследований им. Ландау

Лабораторная работа

Петня гистерезиса (динамический метод)

Выполнила: Карасёва Таисия Б02-001 **Цель работы**: Исследование предельных петель гистерезиса и начальных кривых намагничивания для нескольких ферромагнитных образцов; определение магнитных характеристик материалов, чувствительность каналов X и Y осциллографа и постоянную времени τ интегрирующей цепочки.

В работе используются: автотрансформатор, понижающий трансформатор, амперметр и вольтметр, резистор, делитель напряжения, интегрирующая цепочка, электронный осциллограф, тороидальные образцы с двумя обмотками.

Рис. 1: Экспериментальная установка.

Схема установки приведена на рис. 1. Напряжение сети (220В, 50Γ ц) через разделительный понижающий трансформатор Тр подаётся на реостат R_1 , ВКлючённый как потенциометр. Регулируемое напряжение $\sim 6,3$ В подведено к средним точкам переключателя K_0 : в положении "П"(петля) напряжение подводится к клеммам "6,3"на панели установки, В положении "Д"(делитель) - к клеммам делителя напряжения.

С клемм "6,3"
регулируемое напряжение подаётся на намагничивающую обмотку N_0 исследуемого образца.

Ток в обмотке N_0 измеряется мультиметром А. Напряжение с сопротивления R_0 , включенного последовательно с обмоткой N_0 , подаётся на вход X электронного осциллографа (ЭО). Это напряжение пропорционально току в обмотке N_0 , а следовательно и напряжённости H магнитного поля в образце.

Для измерения магнитной индукции B с измерительной обмотки $N_{\rm H}$ на вход интегрирующей RC -цепочки подаётся напряжение $U_{\rm BX}$, пропорциональное производной \dot{B} , а с выхода снимается напряжение $U_{\rm BX}=U_C$, пропорциональное величине B, и подаётся на вход Y.

Замкнутая кривая, возникающая на экране, воспроизводит в некотором масштабе (различном для осей X и Y) петлю гистерезиса. Чтобы придать этой кривой количественный смысл, необходимо установить масштабы изображения, т.е. провести калибровку каналов X и Y ЭО. Для этого, во-первых, надо узнать, каким напряжениям (или токам) соответствуют амплитуды сигналов, видимых на экране, и во-вторых, - каким значениям B и H соответствуют эти напряжения (или току).

Измерение напряжения с помошью осциллографа. Исследуемый сигнал подаётся на вход X Θ 0; длина 2x горизонтальной черты, наблюдаемой на экране, характеризует удвоенную амплитуду сигнала.

Если известна чувствительность усилителя K_X в вольтах на деление нгкалы экрана (B/cM),

то удвоенная амплитуда напряжения определяется произведени- еМ

$$2U_{X,0} = 2x \cdot K_X$$

Напряжение, подаваемое на ось Y, измеряется аналогично. Калибровку осей осциллографа (K_X и K_Y) можно использовать для построения кривой гистерезиса в координатах B и H:

Зная величину сопротивления R_0 , с которого снимается сигнал, можно рассчитать чувствительность канала по току $K_{XI} = K_X/R_0[{\rm A/~den}~]$, затем определить цену деления шкалы ЭО в A/M Проверка калибровки горизонтальной оси ЭО с помошью амперметра проводится при закороченной обмотке N_0 . Эта обмотка с помещённым В неё ферромагнитным образцом является нелинейным элементом, так что ток в ней не имеет синусоидальной формы, и это не позволяет связать амплитуду тока с показаниями амперметра.

При закороченной обмотке N_0 амперметр A измеряет эффективное значение синусоидального тока Iэф , текущего через известное сопротивление R_0 . Сигнал с этого сопротивления подаётся на вход X ЭО. Измерив 2x длину горизонтальной прямой на экране, можно рассчитать m_X - чувствительность канала X :

$$m_X = 2R_0\sqrt{2}I_{\ni\Phi}/(2x)$$
 [В/ Дел] (1)

Проверка калибровки вертикальной оси Θ О с помощью вольтметра. Сигнал с потенциометра R_1 подаётся на вход делителя напряжения (K_0 в положении "Д". Часть этого напряжения снимается с делителя с коэффициентом деления $K_{\mathbb{Q}}$ (1/10 или 1/100) и подаётся на вход Y Θ О (вместо напряжения U_C). Цифровой вольтметр V измеряет напряжение U_{Θ} на этих же клеммах делителя. Измерив 2y - длину вертикальной прямой на экране, можно рассчитать чувствительность канала Y:

$$m_Y = 2\sqrt{2}U_{\ni\Phi}/(2y)$$
 [В/ дел] (2)

При калибровке тороид должен быть отключён, так как несинусои Дальный ток нагрузки в первичной обмотке тороида приводит к искажению формы кривой напряжения и на обмотке трансформатора, питающей делитель.

Постоянную времени RC-цепочки можно определить экспериментально. С клемм "6,3"на вход интегрирующей цепочки подаётся синусоидальное напряжение $U_{\rm Bx}$. На вход Y осциллографа поочерёдно подаются сигналы со входа $(U_{\rm Bx})$ и выхода $(U_{\rm Bbx}=U_C)\,RC$ -цепочки. Измерив амплитуды этих сигналов с помощью осциллографа, можно рассчитать постоянную времени $\tau=RC$.

$$RC = \frac{U_{\text{BX}}}{\Omega U_{\text{BMX}}} \tag{3}$$

Данные установки: $R_0 = 0.22$ Ом, $R_{\text{\tiny M}} = 20$ кОм, $C_{\text{\tiny M}} = 20$ мкФ.

Таблица 1: Параметры исследуемых образцов.

	N_0	$N_{\rm u}$	S, cm^2	$2\pi R$ cm
Феррит	45	400	3.0	25
Пермаллой	15	300	0.66	14.1
Кремнистое железо	25	250	2.0	11

Теория

Измерение напряжения с помощью осциллографа

Исследуемый сигнал подается на вход X; длина 2x горизонтальной черты, наблюдаемой на экране, характеризует удвоенную амплитуду сигнала.

Если известна чувствительность усилителя K_x в вольтах на деление шкалы экрана, то удвоенная амплитуда напряжения определяется произведением

$$2U_{X,0} = 2x \cdot K_x$$

Напряжение, подаваемое на вход Y определяется аналогично.

Калибровку осей осциллографа можно использовать для построения кривой гистерезиса в координатах B и H:

Зная величину сопротивления R_0 , с которого снимается сигнал, можно определить чувствительность канала по току $I=\frac{K_x}{R_0}$ [А/дел]; затем, используя формулу

$$H = \frac{IN_0}{2\pi R} \tag{4}$$

определить цену деления шкалы в А/м.

Используя формулу

$$B = \frac{R_{\rm H}C_{\rm H}U_{\rm Bbix}}{SN_{\rm H}} \tag{5}$$

можно рассчитать цену деления вертикальной шкалы в теслах.

Ход работы

1. Измерим полную ширину и высоту предельной петли $(2X_s$ и $2Y_s)$, соотвествующие удвоенной амплитуде колебания напряжённости H_s и индукции B_s поля в образце в состоянии насыщения. Измерим двойные аплитуды для коэрцетивного поля $(2X_c)$ и остаточной индукции $(2Y_r)$ как расстояния между точками пересечения петли с соотвествующими осями.

Погрешность измерений = 0.1 дел.

Таблица 2: Аплитуды в делениях

	K_x , м $\mathrm{B}/\mathrm{дел}$	K_y , м $\mathrm{B}/\mathrm{дел}$	$2X_s$, дел	$2Y_s$, дел	$2X_c$, дел	$2Y_s$, дел
Феррит	10	20	10	4.4	1.8	2.2
Пермаллой	20	50	9.6	3.6	4.8	3.6
Кремнистое железо	10	5	9.6	8.0	4.8	3.6

2. Рассчитаем цену деления для петли по формулам (4) и (5)

Таблица 3: Цена деления

	<i>I</i> , мА	U, mB	H, A/M	B, м T л
Феррит	45.5	20.0	8.2	66.7
Пермаллой	90.9	50.0	9.7	1010.1
Кремнистое железо	45.5	5.0	10.3	40.0

3. Рассчитаем аплитуду H_{max} , индукцию насыщения B_s , коэрцетивное поле H_c и остаточную индукцию B_r

Таблица 4: Апмлитуды

	$H_{max}, A/M$	B_s , мТл	H_c , A/M	B_r , м T л
Феррит	18.0 ± 0.4	334 ± 3	9.0 ± 0.4	61 ± 3
Пермаллой	17.5 ± 0.5	4850 ± 50	17.5 ± 0.5	2420 ± 50
Кремнистое железо	41.2 ± 0.5	192 ± 2	18.5 ± 0.5	96 ± 2

Таблица 5: Апмлитуды, сравнение с табличными

	H_{max} , A/M	H_{max} , (табл) $\mathrm{A/M}$	B_s , м T л	B_s , (табл) м T л
Феррит	18.0 ± 0.4	20	334 ± 3	0 - 150
Пермаллой	17.5 ± 0.5	18 - 20	4850 ± 50	0 - 1080
Кремнистое железо	41.2 ± 0.5	44	192 ± 2	0 - 2800

4. Снимем начальную кривую намагничивания: плавно уменьшая ток намагничивания от насыщения до нуля, отметим вершины наблюдаемых частных петель.

Рис. 2: Петля гистерезиса и кривая намагничивания для феррита.

Рис. 3: Петля гистерезиса и кривая намагничивания для пермаллоя.

Рис. 4: Петля гистерезиса и кривая намагничивания для кремнистого железа.

5. По начальным кривым намагнии
чивания оценим начальные и максимальные значения дифференциальной магнитной проницаемости
 $\mu_{\text{диф}} = \frac{dB}{dH}$

Таблица 6: Магнитная проницаемость

	$\mu_{\text{нач}}, 10^3$	$\mu_{\text{нач}}, \ 10^3 \ (\text{табл})$	$\mu_{max}, 10^3$	$\mu_{max}, 10^3 ($ табл $)$
Феррит	6.5 ± 0.2	≤ 3	17.9 ± 0.4	7
Пермаллой	141.7 ± 0.1	≤ 35	952.1 ± 0.6	100
Кремнистое железо	8.5 ± 0.1	≤ 7		15

$$\sigma_{dB/dH} = \frac{dB}{dH} \sqrt{\epsilon_B^2 + \epsilon_H^2}$$

6. Проверим калибровки по осям X и Y с помощью формул (1) и (2)

Таблица 7: Калибровка ЭО

	K_x , м $\mathrm{B}/\mathrm{дел}$	K_y , м $\mathrm{B}/\mathrm{дел}$	$I_{\Theta\Phi}$, MA	$U_{\Theta\Phi}$	m_X , м $\mathrm{B}/\mathrm{дел}$	m_Y , м $\mathrm{B}/\mathrm{дел}$
Феррит	10	20	127	0.01	10.0	18.9
Пермаллой	20	50	249	0.04	19.8	48.6
Кремнистое железо	10	5	140	0.11	0.01	4.7

7. Рассчитаем постоянную времени по формуле (3)

$$U_{\rm bx} = 300 \pm 20 {\rm mB}; \ \Omega = 100 \pi; \ U_{\rm bix} = 3 \pm 0.05 {\rm mB} \Rightarrow \tau = 0.32 \ s$$

$$\sigma_{\tau} = \tau \sqrt{\epsilon_{U_{\text{BM}}}^2 + \epsilon_{U_{\text{BMM}}}^2} = 0.02$$

Теоретическое значение RC=0.4~s

Вывод

В данной работе

- 1. были определены параметры петли гистерезиса для пермаллоя, феррита и кремнистого железа. Значения амплитуд напряжённости для феррита и кремнистого железа не совпадают с теоретическими в пределах погрешности. Значение для феррита отличется от теоретического на 10%, для кремнистого железа на 7%. Значение амплитуды напряжённости для пермаллоя совпадает с теоретическим в пределах погрешности
- 2. были получены кривые намагничивания для этих 3х материалов, из них были определены значения начальной и максимальной магнитной проницаемости. Для всех материалов полученные значения сильно превышают теоретически предсказанные
- 3. была проведена проверка каллибровки обеих осей, полученные значения чувствительности отличаются от коэффициентов усиления не более чем на 3%
- 4. Было получено значение постоянной времени из значений снимаемого с цепочки напряжения и напряжения, подающегося на её вход. Оно не совпадает с теоретичсеким в пределах погрешности, отличается от него на 20%