Vega-Lite

TAs Lucas and Jong

Agenda

- Concepts Recap
 - Data, Mark, Transform, Encoding
- Live Demo
 - Distribution of different kinds of weather in Seattle
- Exercises
 - Exercise 1: Aggregate mean

- Data inline
 - JSON Array
 - Each row is an object in the array.

```
"data": {
  "values": [
    { "a": "C", "b": 2},
    { "a": "C", "b": 7},
    {"a": "C", "b": 4},
    {"a": "D", "b": 1},
    {"a": "D", "b": 2},
    {"a": "D", "b": 6},
    {"a": "E", "b": 8},
    {"a": "E", "b": 4},
    {"a": "E", "b": 7}
```

- Data from source
 - Can be imported through URL
 - Runtime datasource API (not addressed here)

```
{
  "data": {"url": "https://vega.github.io/editor/data/seattle-weather.csv" },
}
```

- Marks
 - Shapes to visually encode data

```
{ ...
  "mark": {
    "type": ..., // mark Object
    ...
  },
  ...
}
```

```
{ ...
  "mark": "..." ,// mark type
  ...
}
```

Marks

- Shapes to visually encode data
- Primitive types: area, bar, circle, line, point, rect, rule, square, text, tick, and geoshape

Open in Vega Editor

- Transform
 - Describe transformations on the data
 - view-level or field transforms inside
 "encoding" (more on that later)
 - View-level are executed in order
 - Inline transforms' execution order:
 - bin, timeUnit, aggregate, sort, stack
- Some examples
 - Filter, Aggregate, Bin

```
"transform": [
  { ... : { ... }},
  { ... : { ... }}
```

- Transform example view level
 - data/cars.json
 - Aggregate mean of acceleration, group by number of cylinders


```
"chevrolet chevelle
Name:
Miles per Gallon:
Cylinders:
Displacement:
                    307
Horsepower:
                    130
Weight in lbs:
                    3504
Acceleration:
                    12
                    "1970-01-01"
Year:
Origin:
                    "USA"
```

```
"data": { "url": "data/cars.json" },
    "aggregate": [{
     "field": "Acceleration", // Data
 "x": { "field": "Cylinders", "type":
```

- Encoding
 - Maps encoding channels to data fields or constant values
- Encoding channels
 - Position channels
 - x, y, x2, y2
 - Mark property channels
 - color, opacity, shape, size
 - Tooltip, Hyperlink channels
 - Text, tooltip, href (explained later)

```
"field": ...,
},
```

- Channel definition
 - Either a field definition or a value definition
- Field definition
 - Encodes a particular field in the dataset with an encoding channel
 - "field": String defining the name of the field from which to pull data from
 - "type": Type of measurement
 - quantitative, ordinal, nominal, temporal

```
"field": ..., // Required
},
. . .
```

```
{ // Specification of a Single View
...,
"encoding": {
   "x": { // Constant value definition
       "value": ...
},
...
},
```

- Encoding types
 - Quantitative: for data that expresses
 some kind of quantity (e.g.,
 population number)
 - Temporal: for dates and times
 - Ordinal: for discrete ranked data that can be sorted
 - Nominal: for categorical data, doesn't determine magnitude or ordering

"x" is typed as quantitative in the class population demo

- Marks as clickable data poi
 - Add properties:
 - Transform
 - Tooltip
 - href

```
"transform": [{
    "calculate": "'https://www.google.com/search?q=' +
datum.Name", "as": "url"
  } ],
  "encoding": {
    "tooltip": {"field": "Name", "type": "nominal"},
    "href": {"field": "url", "type": "nominal"}
```

Vega-Lite Live Demo

Vega-Lite Exercise 1

- Vega-Lite Docs: https://vega.github.io/vega-lite/docs/

https://vega.github.io/editor/data/cars.json,

 Produce a bar chart that aggregates mean of Acceleration grouped by the number of cylinders using encoding field

definition
(No transform)

Name:	"buick skylark 320"
Miles_per_Gallon:	15
Cylinders:	8
Displacement:	350
Horsepower:	165
Weight_in_lbs:	3693
Acceleration:	11.5
Year:	"1970-01-01"
Origin:	"USA"

Vega-Lite Exercise 1 Solution

```
"data": {"url": "https://vega.github.io/editor/data/cars.json"},
   "mark": "bar",
   "encoding": {
        "x": {"field": "Cylinders", "type": "ordinal"},
        "y": {"aggregate": "mean", "field": "Acceleration", "type": "quantitative"}
}
```

Vega-Lite Exercise 1-1

- From the previous exercise 1,
 - o Data: https://vega.github.io/editor/data/cars.json
- Produce a bar chart that aggregates mean of Acceleration grouped by the number of cylinders using encoding field definition only for cars produced in the USA

```
"buick skylark 320"
Name:
Miles per Gallon:
                    15
Cylinders:
Displacement:
                     350
Horsepower:
                    165
Weight in lbs:
                     3693
Acceleration:
                    11.5
                     "1970-01-01"
Year:
Origin:
                     "USA"
```


Vega-Lite Exercise 1-2

- From the previous exercise 1,
- Produce a bar chart that aggregates mean of Acceleration grouped by the number of cylinders using encoding field definition only for cars produced at or after 1979

Vega-Lite Exercise Solutions 1-1, 1-2

```
"data": {"url": "https://vega.github.io/editor/data/cars.json"},
"mark": "bar",
"transform": [
    {"filter": {"timeUnit": "year", "field": "Year", "gte": "1979"}}
],
"encoding": {
 "x": {"field": "Cylinders", "type": "ordinal"},
  "y": { "aggregate": "mean", "field": "Acceleration", "type": "quantitative" }
```