

Übung 11 zur Vorlesung Analysis für Informatiker, WS 2018/2019

Abgabe bis Mittwoch, 09.01.2018, 12 Uhr

Hausaufgabe 4

Bestimmen Sie die folgenden Integrale.

(a)
$$\int_{0}^{\frac{\pi}{4}} \tan(x) \ dx$$

(b)
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin(x) \cdot \exp(x) \ dx$$

(c)
$$\int_{-\frac{5}{2}}^{\frac{3}{2}} (2x+5)^{2018} dx$$

(d)
$$\int_{0}^{\pi} \sin(\cos(x)) \cdot \sin(x) dx$$

(e)
$$\int_{e}^{e^{2}} \ln(x) x \, dx$$

(f)
$$\int_{0}^{1} \frac{x^2}{\sqrt{x+1}} dx$$

$$(g) \int_{0}^{\sqrt{\pi/4}} x \tan(x^2) dx$$

((6+6+6+6+6+6) Punkte)

Lösung

In allen Teilen gilt:

Voraussetzung für die Existenz des Integrals (stetige Funktion auf abgeschlossenenm Intervall): **1 Punkt**

Voraussetzungen für Substitution oder partielle Integration prüfen: 2 Punkte. Rechnung korrekt durchgeführt: 2 Punkte.

Ergebnis richtg: 1 Punkt.

(a) Die Funktion $x \mapsto 1/x$ ist stetig auf $\mathbb{R}_{>0}$ und $x \mapsto \cos(x)$ ist stetig differenzierbar auf $[0, \pi/4]$ mit $\cos([0, \pi/4]) \subseteq \mathbb{R}_{>0}$. Mit $\cos'(x) = -\sin(x)$, $\tan(x) = \sin(x)/\cos(x)$ und der Substitutionsregel erhalten wir:

$$\int_{0}^{\frac{\pi}{4}} \tan(x) \, dx = \int_{\cos(0)}^{\cos(\frac{\pi}{4})} -\frac{1}{y} \, dy = -\int_{\cos(0)}^{\cos(\frac{\pi}{4})} \frac{1}{y} \, dy$$

$$= -\int_{1}^{1/\sqrt{2}} \frac{1}{y} \, dy = \int_{1/\sqrt{2}}^{1} \frac{1}{y} \, dy = \ln(|y|) \Big|_{1/\sqrt{2}}^{1} = \ln(y) \Big|_{1/\sqrt{2}}^{1} = 0 - \ln(1/\sqrt{2}) = 1/2 \cdot \ln(2).$$

(b) Die Funktionen $x \mapsto \sin(x)$, $x \mapsto \exp(x)$ sind stetig differenzierbar auf ganz \mathbb{R} und mit der partiellen Integration sehen wir:

$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin(x) \cdot \exp(x) \, dx = \sin(x) \exp(x) \Big|_{-\pi/2}^{\pi/2} - \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos(x) \cdot \exp(x) \, dx.$$

Auch die Funktion $x \mapsto \cos(x)$ ist auf \mathbb{R} stetig differenzierbar und durch eine erneute partielle Integration erhalten wir:

$$\sin(x) \exp(x) \Big|_{-\pi/2}^{\pi/2} - \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos(x) \cdot \exp(x) \, dx = \sin(x) \exp(x) \Big|_{-\pi/2}^{\pi/2} - \cos(x) \exp(x) \Big|_{-\pi/2}^{\pi/2}$$

$$+ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (-\sin(x)) \cdot \exp(x) \, dx$$

$$= \exp(x) \cdot (\sin(x) - \cos(x)) \Big|_{-\pi/2}^{\pi/2} - \int_{\pi}^{\frac{\pi}{2}} \sin(x) \cdot \exp(x) \, dx.$$

Zusammenfassen der Ergebniss liefert:

$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin(x) \cdot \exp(x) \, dx = \frac{1}{2} \cdot \exp(x) \cdot (\sin(x) - \cos(x)) \Big|_{-\pi/2}^{\pi/2} = \frac{1}{2} (\exp(\pi/2) + \exp(-\pi/2)).$$

(c) Die Funktion $x \mapsto x^{2018}$ ist auf $D := \mathbb{R}$ stetig und $\varphi : x \mapsto 2x + 5$ ist auf [-5/2, 3/2] stetig differenzierbar mit $\varphi([-5/2, 3/2]) \subseteq \mathbb{R}$. Dann gilt mit der Substitutionsregel:

$$\int_{-\frac{5}{2}}^{\frac{3}{2}} (2x+5)^{2018} dx = \frac{1}{2} \cdot \int_{\varphi(-\frac{5}{2})}^{\varphi(\frac{3}{2})} y^{2018} dy = \frac{1}{2} \cdot \frac{1}{2019} y^{2019} \Big|_{0}^{8} = \frac{1}{2} \cdot \frac{1}{2019} 8^{2019}.$$

(d) Die Funktion $x \mapsto \sin(x)$ ist stetig auf $D = \mathbb{R}$ und die Funktion $\varphi : x \mapsto \cos(x)$ ist stetig differenzierbar auf $[0, \pi]$ mit $\varphi([0, \pi]) \subseteq D$. Mit der Substitutionsregel folgt:

$$\int_{0}^{\pi} \sin(\cos(x)) \cdot \sin(x) \, dx = -\int_{\cos(0)}^{\cos(\pi)} \sin(y) \, dy = \cos(y) \Big|_{1}^{-1} = \cos(-1) - \cos(1) = 0.$$

(e) Die Funktionen $x \mapsto x$ und $x \mapsto \ln(x)$ sind auf $[e, e^2]$ stetig differenzierbar und mit einer partiellen Integration erhalten wir:

$$\int_{e}^{e^{2}} \ln(x)x \, dx = \frac{1}{2}x^{2} \cdot \ln(x) \Big|_{e}^{e^{2}} - \frac{1}{2} \cdot \int_{e}^{e^{2}} x^{2} \cdot \frac{1}{x} \, dx$$

$$= \frac{1}{2} \cdot e^{4} \cdot 2 - \frac{1}{2} \cdot e^{2} \cdot 1 - \frac{1}{2} \cdot \left(\frac{1}{2}x^{2}\right) \Big|_{e}^{e^{2}} = \frac{3}{4} \cdot e^{4} - \frac{1}{4} \cdot e^{2}.$$

(f) Das Integral existiert, da der Integrand als Kompostition und Quotient stetiger Funktionen auf [0, 1], mit nicht verschwindenem Nenner, wieder stetig ist. Es gilt weiter mit den GWS für Integrale:

$$\int_{0}^{1} \frac{x^{2}}{\sqrt{x+1}} dx = \int_{0}^{1} \frac{x^{2}-1}{\sqrt{x+1}} dx + \int_{0}^{1} \frac{1}{\sqrt{x+1}} dx$$
$$= \int_{0}^{1} \frac{x^{2}-1}{\sqrt{x+1}} dx + \int_{0}^{1} \frac{1}{\sqrt{x+1}} dx.$$

Allgemein gilt für $\alpha > -1$ mit der Vorlesung und der Substitutionsregel:

$$\int_{0}^{1} (1+x)^{\alpha} dx = \frac{1}{\alpha+1} \cdot (1+x)^{\alpha+1} \Big|_{0}^{1}.$$

Damit erhalten wir mit der dritten binomischen Formel und den GWS:

$$\int_{0}^{1} \frac{x^{2} - 1}{\sqrt{x + 1}} dx + \int_{0}^{1} \frac{1}{\sqrt{x + 1}} dx = \int_{0}^{1} (x - 1) \cdot (x + 1)^{1/2} dx + \int_{0}^{1} (x + 1)^{-1/2} dx$$

$$= \int_{0}^{1} x \cdot (x + 1)^{1/2} dx - \int_{0}^{1} (x + 1)^{1/2} dx + \int_{0}^{1} (x + 1)^{-1/2} dx$$

$$= \int_{0}^{1} x \cdot (x + 1)^{1/2} dx - 2/3 \cdot (2^{3/2} - 1) + 2 \cdot (2^{1/2} - 1).$$

Für das erste Integral gilt:

$$\int_{0}^{1} x \cdot (x+1)^{1/2} dx = \int_{0}^{1} (x+1) \cdot (x+1)^{1/2} dx - \int_{0}^{1} (x+1)^{1/2} dx$$
$$= 2/5 \cdot \left(2^{5/2} - 1\right) - 2/3 \cdot \left(2^{3/2} - 1\right).$$

Somit folgt insgesamt:

$$\int_{0}^{1} \frac{x^{2}}{\sqrt{x+1}} dx = 2/5 \cdot \left(2^{5/2} - 1\right) - 4/3 \cdot \left(2^{3/2} - 1\right) + 2 \cdot (2^{1/2} - 1) = 14/15 \cdot \sqrt{2} - 16/15.$$

(g) Hier verwenden wir eine Substitution. Die Funktion $x \mapsto \tan(x)$ ist auf $D := (-\pi/2, \pi/2)$ stetig und die Funktion $\varphi : x \mapsto x^2$ ist auf $[0, \sqrt{\pi/4}]$ stetig differenzierbar mit $\varphi([0, \sqrt{\pi/4}]) \subseteq D$ und $\varphi'(x) = 2x$. Mit der Substitutionsregel und Teil (a) folgt schließlich:

$$\int_{0}^{\sqrt{\pi/4}} x \tan(x^2) dx = 1/2 \cdot \int_{0}^{\pi/4} \tan(y) dy = -1/2 \cdot \ln(\cos(y)) \Big|_{0}^{\pi/4} = -\ln(1/\sqrt{2}) = 1/4 \cdot \ln(2).$$