

#### Silicon N-Channel Power MOSFET



# **CR13N50F A9K**

## **General Description:**

CR13N50F A9K, the silicon N-channel Enhanced VDMOSFETs, is obtained by the self-aligned planar Technology which reduce the conduction loss, improve switching performance and enhance the avalanche energy. The transistor can be used in various power switching circuit for system miniaturization and higher efficiency. The package form is TO-220F, which accords with the RoHS standard.

| $\mathbf{T}$ | _ | _ | 4. |   |   | _ | _ |   |
|--------------|---|---|----|---|---|---|---|---|
| н            | e | а | L  | П | ľ | e |   | : |

- Fast Switching
- Low ON Resistance
- Low Gate Charge
- Low Reverse transfer capacitances
- 100% Single Pulse avalanche energy Test

| $V_{\mathrm{DSS}}$     | 500  | V |
|------------------------|------|---|
| $I_D$                  | 13   | A |
| $P_D(T_C=25^{\circ}C)$ | 39   | W |
| $R_{DS(ON)Typ}$        | 0.38 | Ω |





## **Applications:**

Power switch circuit of adaptor and charger.

**Absolute** (Tc=  $25^{\circ}$ C unless otherwise specified):

| Symbol                            | Parameter                                             | Rating          | Units         |
|-----------------------------------|-------------------------------------------------------|-----------------|---------------|
| $V_{\mathrm{DSS}}$                | Drain-to-Source Voltage                               | 500             | V             |
| T                                 | Continuous Drain Current                              | 13              | A             |
| $I_D$                             | Continuous Drain Current $T_C = 100 ^{\circ}\text{C}$ | 8.2             | A             |
| $I_{\rm DM}^{}$                   | Pulsed Drain Current                                  | 52              | A             |
| $V_{GS}$                          | Gate-to-Source Voltage                                | ±30             | V             |
| $E_{AS}^{a2}$                     | Single Pulse Avalanche Energy                         | 480             | mJ            |
| dv/dt <sup>a3</sup>               | Peak Diode Recovery dv/dt                             | 5.0             | V/ns          |
| D                                 | Power Dissipation                                     | 39              | W             |
| $P_{D}$                           | Derating Factor above 25 ℃                            | 0.34            | <b>W</b> /℃   |
| T <sub>J</sub> , T <sub>stg</sub> | Operating Junction and Storage Temperature Range      | 150, -55 to 150 | ${\mathbb C}$ |





# **Electrical Characteristics** ( $T_J=25^{\circ}C$ unless otherwise specified):

| OFF Characteristics                                        |                                   |                                                                                  |      |        |          |      |  |  |  |
|------------------------------------------------------------|-----------------------------------|----------------------------------------------------------------------------------|------|--------|----------|------|--|--|--|
| 0 1 1                                                      | Parameter                         | Test Conditions                                                                  |      | Rating | <b>T</b> | Unit |  |  |  |
| Symbol                                                     | Parameter                         | Test Conditions                                                                  | Min. | Тур.   | Max.     | s    |  |  |  |
| $V_{DSS}$                                                  | Drain to Source Breakdown Voltage | V <sub>GS</sub> =0V, I <sub>D</sub> =250 μA                                      | 500  |        |          | V    |  |  |  |
| $\triangle$ BV <sub>DSS</sub> / $\triangle$ T <sub>J</sub> | Bvdss Temperature Coefficient     | ID=250uA,Reference25℃                                                            |      | 0.6    |          | V/℃  |  |  |  |
| $I_{DSS}$                                                  | Drain to Source Leakage Current   | $V_{DS} = 500 \text{ V}, V_{GS} = 0 \text{ V},$<br>$T_{J} = 25 ^{\circ}\text{C}$ |      |        | 1        | μΑ   |  |  |  |
|                                                            | Drain to Source Leakage Current   | $V_{DS} = 400 \text{ V}, V_{GS} = 0 \text{ V},$<br>$T_J = 125 ^{\circ}\text{C}$  |      |        | 100      | μΑ   |  |  |  |
| $I_{GSS(F)}$                                               | Gate to Source Forward Leakage    | $V_{GS} = +30V$                                                                  |      |        | 100      | nA   |  |  |  |
| $I_{GSS(R)}$                                               | Gate to Source Reverse Leakage    | $V_{GS} = -30V$                                                                  |      |        | -100     | nA   |  |  |  |

| ON Characteristics |                               |                                    |      |        |      |       |  |  |
|--------------------|-------------------------------|------------------------------------|------|--------|------|-------|--|--|
| Symbol             | Parameter                     | Test Conditions                    |      | Rating |      |       |  |  |
|                    | r ai ametei                   | Test Conditions                    | Min. | Тур.   | Max. | Units |  |  |
| $R_{DS(ON)}$       | Drain-to-Source On-Resistance | $V_{GS} = 10V, I_D = 6.5 A$        |      | 0.38   | 0.5  | Ω     |  |  |
| $V_{GS(TH)}$       | Gate Threshold Voltage        | $V_{DS} = V_{GS}, I_D = 250 \mu A$ | 2.0  |        | 4.0  | V     |  |  |
| Pulse width t      | p≤300 μs, δ ≤2%               |                                    |      |        |      |       |  |  |

| Dynamic Characteristics |                              |                                          |      |        |      |       |  |  |  |
|-------------------------|------------------------------|------------------------------------------|------|--------|------|-------|--|--|--|
| Symbol                  | Parameter                    | Test Conditions                          |      | Rating |      |       |  |  |  |
|                         | Farameter                    | Test Conditions                          | Min. | Тур.   | Max. | Units |  |  |  |
| gfs                     | Forward Transconductance     | $V_{DS} = 15V, I_D = 6.5A$               |      | 11     |      | S     |  |  |  |
| $C_{iss}$               | Input Capacitance            |                                          |      | 1920   |      |       |  |  |  |
| $C_{oss}$               | Output Capacitance           | $V_{GS} = 0V V_{DS} = 25V$<br>f = 1.0MHz |      | 167    |      | pF    |  |  |  |
| $C_{rss}$               | Reverse Transfer Capacitance |                                          |      | 9.4    |      |       |  |  |  |

| Resistive Switching Characteristics |                                |                                                       |      |        |      |       |  |  |
|-------------------------------------|--------------------------------|-------------------------------------------------------|------|--------|------|-------|--|--|
| Cyambol                             | Parameter                      | Test Conditions                                       |      | Rating |      |       |  |  |
| Symbol                              | 1 arameter                     | Test Conditions                                       | Min. | Тур.   | Max. | Units |  |  |
| $t_{d(ON)}$                         | Turn-on Delay Time             |                                                       |      | 24     |      |       |  |  |
| tr                                  | Rise Time                      | $I_{\rm D} = 13 \text{A}  V_{\rm DD} = 250 \text{ V}$ |      | 28     |      | ns    |  |  |
| $t_{d(OFF)}$                        | Turn-Off Delay Time            | $R_G = 10\Omega$                                      |      | 58     |      |       |  |  |
| $t_{\mathrm{f}}$                    | Fall Time                      |                                                       |      | 29     |      |       |  |  |
| $Q_g$                               | Total Gate Charge              |                                                       |      | 39     |      |       |  |  |
| $Q_{gs}$                            | Gate to Source Charge          | $I_D = 13A$ $V_{DD} = 400V$<br>$V_{GS} = 10V$         |      | 9.4    |      | nC    |  |  |
| $Q_{gd}$                            | Gate to Drain ("Miller")Charge |                                                       |      | 15     |      |       |  |  |





| Source-Drain Diode Characteristics |                                        |                                |      |        |      |       |  |  |
|------------------------------------|----------------------------------------|--------------------------------|------|--------|------|-------|--|--|
| Symbol                             | Parameter                              | Test Conditions                |      | Rating | ,    | TT    |  |  |
|                                    | Farameter                              | Test Conditions                | Min. | Тур.   | Max. | Units |  |  |
| $I_S$                              | Continuous Source Current (Body Diode) |                                |      |        | 13   | A     |  |  |
| $I_{SM}$                           | M aximum Pulsed Current (Body Diode)   |                                |      |        | 52   | A     |  |  |
| $V_{SD}$                           | Diode Forward Voltage                  | $I_S = 13A, V_{GS} = 0V$       |      |        | 1.5  | V     |  |  |
| trr                                | Reverse Recovery Time                  | $I_{S}=13A, T_{i}=25^{\circ}C$ | -    | 970    | 1    | ns    |  |  |
| Qrr                                | Reverse Recovery Charge                | $dI_F/dt = 100 A/u s$ ,        | -    | 9.4    | 1    | μС    |  |  |
| $I_{RRM}$                          | Reverse Recovery Current               | $V_{GS}=0V$                    |      | 19.3   | 1    | A     |  |  |
| Pulse width                        | tp≤300 μs, δ ≤2%                       |                                |      |        |      |       |  |  |

| Symbol | Parameter           | Max. | Units |
|--------|---------------------|------|-------|
| R o JC | Junction-to-Case    | 3.18 | °C/W  |
| R в ЈА | Junction-to-Ambient | 62.5 | °C/W  |

<sup>&</sup>lt;sup>a1</sup>: Repetitive rating; pulse width limited by maximum junction temperature

<sup>&</sup>lt;sup>a2</sup>: L=10mH,  $I_D$ =10A, Start  $T_J$ =25°C <sup>a3</sup>:  $I_{SD}$ =13A,di/dt  $\leq$  100A/us, $V_{DD}$  $\leq$  B $V_{DS}$ , Start  $T_J$ =25°C





#### **Characteristics Curve:**





Figure.1 Maximum Forward Bias Safe Operating Area Figure.2 Maximum Power Dissipation vs Case Temperature





Figure.3 Maximum Continuous Drain Current vs Case Temperature Figure.4 Typical Output Characteristics



Figure.5 Maximum Effective Thermal Impedance, Junction to Case





Figure.6 Typical Transfer Characteristics

Figure.7 Typical Body Diode Transfer Characteristics





Figure.8 Typical Drain to Source ON Resistance vs Drain Current

Figure.9 Typical Drian to Source on Resistance vs Junction Temperature









Figure.10 Typical The shold Voltage vs Junction Temperatu

Figure 11 Typical Breakdown Voltage vs Junction Temperature





Figure.12 Typical Capacitance vs Drain to Source Voltage

Figure.13 Typical Gate Charge vs Gate to Source Voltage



## **Test Circuit and Waveform**



Figure 14. Gate Charge Test Circuit

Figure 15. Gate Charge Waveforms



 $Figure\ 16.\ Resistive\ Switching\ Test\ Circuit$ 

Figure 17. Resistive Switching Waveforms



Figure 18. Diode Reverse Recovery Test Circuit

Figure 19. Diode Reverse Recovery Waveform



Figure 20. Unclamped Inductive Switching Test Circuit

 $Figure 21. Unclamped\ Inductive\ Switching\ Waveform$ 





# Package Information



| Items | Values(mm) |      |  |  |  |  |
|-------|------------|------|--|--|--|--|
| items | MIN        | MAX  |  |  |  |  |
| A     | 9.60       | 10.4 |  |  |  |  |
| В     | 15.4       | 16.2 |  |  |  |  |
| B1    | 8.90       | 9.50 |  |  |  |  |
| С     | 4.30       | 4.90 |  |  |  |  |
| C1    | 2.10       | 3.00 |  |  |  |  |
| D     | 2.40       | 3.00 |  |  |  |  |
| Е     | 0.60       | 1.00 |  |  |  |  |
| F     | 0.30       | 0.60 |  |  |  |  |
| G     | 1.12       | 1.42 |  |  |  |  |
| Н     | 3.40       | 3.80 |  |  |  |  |
| L*    | 12.0       | 14.0 |  |  |  |  |
| N     | 2.34       | 2.74 |  |  |  |  |
| Q     | 3.15       | 3.55 |  |  |  |  |
| φР    | 2.90       | 3.30 |  |  |  |  |

<sup>\*</sup>adjustable

 $TO\text{-}220F\,\text{Package}$ 





The name and content of poisonous and harmful material in products

| Part's Name   |                                                                                                                                                                                                                                                           | Hazardous Substance |        |        |        |        |         |                 |               |                |  |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------|--------|--------|--------|---------|-----------------|---------------|----------------|--|
| Turt 3 Traine | Pb                                                                                                                                                                                                                                                        | Hg                  | Cd     | Cr(VI) | PBB    | PBDE   | DIBP    | DEHP            | DBP           | BBP            |  |
| Limit         | $\leq$                                                                                                                                                                                                                                                    | $\leq$              | €      | ≤0.1%  | ≤0.1%  | ≤0.1%  | ≤0.1%   | <b>≤</b> 0. 1%  | ≤0.1%         | <b>≤</b> 0. 1% |  |
|               | 0.1%                                                                                                                                                                                                                                                      | 0.1%                | 0. 01% | <0.170 | V0.170 | <0.170 | //0.170 | <b>//0.</b> 170 | <b>0.</b> 170 | <0.1/0         |  |
| Lead Frame    | 0                                                                                                                                                                                                                                                         | 0                   | 0      | 0      | 0      | 0      | 0       | 0               | 0             | 0              |  |
| Molding       | 0                                                                                                                                                                                                                                                         | 0                   | 0      | 0      | 0      | 0      | 0       | 0               | 0             | 0              |  |
| Chip          | 0                                                                                                                                                                                                                                                         | 0                   | 0      | 0      | 0      | 0      | 0       | 0               | 0             | 0              |  |
| Wire Bonding  | 0                                                                                                                                                                                                                                                         | 0                   | 0      | 0      | 0      | 0      | 0       | 0               | 0             | 0              |  |
| Solder        | ×                                                                                                                                                                                                                                                         | 0                   | 0      | 0      | 0      | 0      | 0       | 0               | 0             | 0              |  |
| Note          | o: Means the hazardous material is under the criterion of 2011/65/EU.  ×: Means the hazardous material exceeds the criterion of 2011/65/EU.  The plumbum element of solder exist in products presently, but within the allowed range of Eurogroup's RoHS. |                     |        |        |        |        |         |                 |               |                |  |

#### Warnings

- 1. Exceeding the maximum ratings of the device in performance may cause damage to the device, even the permanent failure, which may affect the dependability of the machine. It is suggested to be used under 80 percent of the maximum ratings of the device.
- **2.** When installing the heatsink, please pay attention to the torsional moment and the smoothness of the heatsink.
- **3.** VDMOSFETs is the device which is sensitive to the static electricity, it is necessary to protect the device from being damaged by the static electricity when using it.
- **4.** This publication is made by Huajing Microelectronics and subject to regular change without notice.

#### WUXI CHINA RESOURCES HUAJING MICROELECTRONICS CO., LTD.

Marketing Part:

Add: No.14 Liangxi RD. Wuxi, Jiangsu, China Mail:214061 https://www.crmicro.com Tel: +86 0510-85807228 Fax: +86- 0510-85800864

Post: 214061 Tel: +86 0510-81805277/81805336

Fax: +86 0510-85800360/85803016

Application and Service: Post: 214061 Tel/Fax: +86-0510-81805243/8180511