

GENOME WIDE ASSOCIATION STUDY

Using PLINK and GEMMA

Quantitative Biology Class
14th December 2023

Nhu L.T. Tran

Short theory: What is Genome Wide Association Study?

WHAT IS GENOME WIDE ASSOCIATION STUDY

GWAS identifies genomic variants that are statistically associated with a particular trait

WHAT IS GENOME WIDE ASSOCIATION STUDY

GWAS identifies genomic variants that are statistically associated with a particular trait.

WHICH DATA ARE NEEDED FOR GWAS?

SNP data

		SNP #I	SNP #2	SNP #3	•••	SNP# IM
	Plant I	Α	Т	G	• • •	Т
	Plant 2	Α	A	С	• • •	С
	Plant 3	Т		G	• • •	С
	• • •	• • •	A	• • •	• • •	С
	Plant 1000	Т	Т	С	• • •	С

Phenotypes of interest

	HEIGHT	ROSETTE SIZE	ETC.
Plant I	15	10	• • •
Plant 2	18	9	• • •
Plant 3	23	25	• • •
• • •	• • •	• • •	• • •
Plant 1000	12	20	• • •

HOW DOES GWAS RESULT LOOK?

SNP data +

Phenotype data

=> Association test

- All the SNPs are laid out on x axis
- p-value on the y axis

Variant at chromosome 5, position [...], is associated with [phenotype]

Practical: A general and simple workflow to run GWAS

TO BE INSTALLED

Gemma GWAS

johanzi/ gwas_gemma

Perform GWAS with gemma in a simple pipeline

https://github.com/genetics-statistics/GEMMA#installation

PLINK cog-genomics

I. BEFORE GWAS

A) Convert VCF to Plink binary files

Binary version of SNP info, not any readable format for human

This command creates three files: .bed, .bim, and .fam files to be used for GWAS

*.bim map file contained all variants (SNPs)

*.fam map file of all individuals

*.bim file example

Chr	SNP	Position	Allele I	Allele 2
I	_	286	С	Т
I	_	291	A	Т
I	-	303	Т	С

I. BEFORE GWAS

B) Perform PCA for population structure

plink --vcf input.vcf.gz --make-bed --pca --out output_pca_prefix

Your file name

To make bed file and perform PCA

Name of your output

This step and previous steps can be combined, because this outputs *.eigenval and *.eigenvec files to plot PCA in R; and *.bed, *.bim, *.fam files at the same time for GWAS

Example of PCA plots

I. BEFORE

C) Making kinship matrix

gemma --bfile prefix_of_plink_bfiles -p phenotype_file.txt -gk -o your_kinship_output_name

Prefix of your three plink files

Your phenotype file

Your kinship name

In same order as vcf sample order!

This command creates three files: *.cXX.txt file - this is your kinship

2. RUNNING GWAS

RUN GWAS USING LINEAR MIXED MODEL

gemma --bfile prefix_of_plink_bfiles -p phenotype_file.txt -n 1 -k your_kinship_output_name.cXX.txt -lmm 4 -o your_gwas_output_name

Prefix of your three plink files

Your phenotype file

In same order as vcf sample order!

Your kinship file

To read the first column of the .txt files in case there are multiple phenotypes. F.e., -n 2 if your phenotype is in column 2

To run LM model with kinship

GWAS VARIATION - GENE ENVIRONMENT ASSOCIATION (GEA)

GWAS VARIATION - GENE ENVIRONMENT ASSOCIATION (GEA)

Same principle as GWAS, instead of phenotype, we use the bioclimatic factor

SUMMARY

