FUNCTIONAL DEPENDENCIES

CS 564- Fall 2018

WHAT IS THIS LECTURE ABOUT?

Database Design Theory:

- Functional Dependencies
- Armstrong's rules
- The Closure Algorithm
- Keys and Superkeys

HOW TO BUILD A DB APPLICATION

- Pick an application
- Figure out what to model (ER model)
 - Output: ER diagram
- Transform the ER diagram to a relational schema
- Refine the relational schema (normalization)
- Now ready to implement the schema and load the data!

DB DESIGN THEORY

- Helps us identify the "bad" schemas and improve them
 - 1. express constraints on the data: functional dependencies (FDs)
 - 2. use the FDs to decompose the relations
- The process, called normalization, obtains a schema in a "normal form" that guarantees certain properties
 - examples of normal forms: **BCNF**, **3NF**, ...

MOTIVATING EXAMPLE

SSN	name	age	phoneNumber
934729837	Paris	24	608-374-8422
934729837	Paris	24	603-534-8399
123123645	John	30	608-321-1163
384475687	Arun	20	206-473-8221

- What is the primary key?
 - (SSN, PhoneNumber)
- What is the problem with this schema?

MOTIVATING EXAMPLE

SSN	name	age	phoneNumber
934729837	Paris	24	608-374-8422
934729837	Paris	24	603-534-8399
123123645	John	30	608-321-1163
384475687	Arun	20	206-473-8221

Problems:

- redundant storage
- update: change the age of Paris?
- insert: what if a person has no phone number?
- delete: what if Arun deletes his phone number?

SOLUTION: DECOMPOSITION

SSN	name	age	phoneNumber
934729837	Paris	24	608-374-8422
934729837	Paris	24	603-534-8399
123123645	John	30	608-321-1163
384475687	Arun	20	206-473-8221

SSN	name	age
934729837	Paris	24
123123645	John	30
384475687	Arun	20

SSN	phoneNumber
934729837	608-374-8422
934729837	603-534-8399
123123645	608-321-1163
384475687	206-473-8221

FUNCTIONAL DEPENDENCIES

FD: DEFINITION

- Functional dependencies (FDs) are a form of constraint
- they generalize the concept of keys

If two tuples agree on the attributes

$$A = A_1, A_2, \dots, A_n$$

then they must agree on the attributes

$$B = B_1, B_2, ..., B_m$$

Formally:

$$A_1, A_2, ..., A_n \rightarrow B_1, B_2, ..., B_m$$

We then say that A functionally determines B

FD: EXAMPLE 1

SSN	name	age	phoneNumber
934729837	Paris	24	608-374-8422
934729837	Paris	24	603-534-8399
123123645	John	30	608-321-1163
384475687	Arun	20	206-473-8221

- $SSN \rightarrow name, age$
- SSN, $age \rightarrow name$

FD: EXAMPLE 2

studentID	semester	courseNo	section	instructor
124434	4	CS 564	1	Paris
546364	4	CS 564	2	Arun
999492	6	CS 764	1	Anhai
183349	6	CS 784	1	Jeff

- $courseNo, section \rightarrow instructor$
- $studentID \rightarrow semester$

SPLITTING AN FD

- Consider the FD: $A, B \rightarrow C, D$
- The attributes on the right are independently determined by *A*, *B* so we can split the FD into:
 - $-A, B \longrightarrow C$ and $A, B \longrightarrow D$
- We can not do the same with attributes on the left!
 - writing $A \rightarrow C$, D and $B \rightarrow C$, D does not express the same constraint!

TRIVIAL FDS

- Not all FDs are informative:
 - $A \rightarrow A$ holds for any relation
 - $A, B, C \rightarrow C$ also holds for any relation
- An FD $X \rightarrow A$ is called **trivial** if the attribute A belongs in the attribute set X
 - a trivial FD always holds!

HOW TO IDENTIFY FDS

- An FD is domain knowledge:
 - an inherent property of the application & data
 - not something we can infer from a set of tuples
- Given a table with a set of tuples
 - we can confirm that a FD seems to be valid
 - to infer that a FD is definitely invalid
 - we can **never** prove that a FD is valid

EXAMPLE 3

name	category	color	department	price
Gizmo	Gadget	Green	Toys	49
Tweaker	Gadget	Black	Toys	99
Gizmo	Stationary	Green	Office-supplies	59

Q1: Is name \rightarrow department an FD?

– not possible!

Q2: Is name, category \rightarrow department an FD?

– we don't know!

WHY FDS?

- 1. keys are special cases of FDs
- 2. more integrity constraints for the application
- 3. having FDs will help us detect that a schema has redundancies and tell us how to normalize it

MORE ON FDS

- If the following FDs hold:
 - $-A \rightarrow B$
 - $-B \longrightarrow C$

then the following FD is also true:

$$-A \longrightarrow C$$

 We can find more FDs like that using what we call <u>Armstrong's Axioms</u>

ARMSTRONG'S AXIOMS: 1

Reflexivity

For any subset
$$X \subseteq \{A_1, ..., A_n\}$$
:
 $A_1, A_2, ..., A_n \longrightarrow X$

Examples

$$-A, B \longrightarrow B$$

$$-A,B,C \longrightarrow A,B$$

$$-A,B,C \longrightarrow A,B,C$$

ARMSTRONG'S AXIOMS: 2

Augmentation

For any attribute sets *X*, *Y*, *Z*:

if $X \longrightarrow Y$ then $X, Z \longrightarrow Y, Z$

Examples

- $-A \longrightarrow B$ implies $A, C \longrightarrow B, C$
- $-A, B \rightarrow C$ implies $A, B, C \rightarrow C$

ARMSTRONG'S AXIOMS: 3

Transitivity

For any attribute sets X, Y, Z: if $X \longrightarrow Y$ and $Y \longrightarrow Z$ then $X \longrightarrow Z$

Examples

- $-A \longrightarrow B$ and $B \longrightarrow C$ imply $A \longrightarrow C$
- $-A \longrightarrow C, D$ and $C, D \longrightarrow E$ imply $A \longrightarrow E$

APPLYING ARMSTRONG'S AXIOMS

Product(name, category, color, department, price)

- 1. $name \rightarrow color$
- 2. category \rightarrow department
- 3. $color, category \rightarrow price$
- Infer: name, $category \rightarrow price$
 - 1. We apply the augmentation axiom to (1) to obtain (4) name, category \rightarrow color, category
 - 2. We apply the transitivity axiom to (4), (3) to obtain name, category \rightarrow price

APPLYING ARMSTRONG'S AXIOMS

Product(name, category, color, department, price)

- 1. $name \rightarrow color$
- 2. category \rightarrow department
- 3. $color, category \rightarrow price$
- Infer: name, $category \rightarrow color$
 - 1. We apply the reflexivity axiom to obtain (5) name, $category \rightarrow name$
 - 2. We apply the transitivity axiom to (5), (1) to obtain $name, category \rightarrow color$

FD CLOSURE

FD Closure

If F is a set of FDs, the closure F^+ is the set of all FDs logically implied by F

Armstrong's axioms are:

- sound: any FD generated by an axiom belongs in F^+
- <u>complete</u>: repeated application of the axioms will generate all FDs in F^+

CLOSURE OF ATTRIBUTE SETS

Attribute Closure

If *X* is an attribute set, the closure *X*⁺ is the set of all attributes *B* such that:

$$X \longrightarrow B$$

In other words, X^+ includes all attributes that are functionally determined from X

EXAMPLE

Product(name, category, color, department, price)

- $name \rightarrow color$
- $category \rightarrow department$
- $color, category \rightarrow price$

Attribute Closure:

- $\{name\}^+ = \{name, color\}$
- {name, category}⁺ =
 {name, color, category, department, price}

THE CLOSURE ALGORITHM

- Let $X = \{A_1, A_2, ..., A_n\}$
- **UNTIL** *X* doesn't change **REPEAT**:

IF $B_1, B_2, ..., B_m \rightarrow C$ is an FD **AND** $B_1, B_2, ..., B_m$ are all in X

THEN add C to X

EXAMPLE

- $A, B \rightarrow C$
- $A, D \longrightarrow E$
- $B \longrightarrow D$
- $A, F \longrightarrow B$

Compute the attribute closures:

- $\{A, B\}^+ = \{A, B, C, D, E\}$
- $\{A, F\}^+ = \{A, F, B, D, E, C\}$

WHY IS CLOSURE NEEDED?

- 1. Does $X \rightarrow Y$ hold?
 - we can check if $Y \subseteq X^+$
- 2. To compute the closure F^+ of FDs
 - for each subset of attributes X, compute X^+
 - for each subset of attributes $Y \subseteq X^+$, output the FD $X \longrightarrow Y$

KEYS & SUPERKEYS

<u>superkey</u>: a set of attributes $A_1, A_2, ..., A_n$ such that for any other attribute B in the relation:

$$A_1, A_2, \dots, A_n \longrightarrow B$$

key (or candidate key): a minimal superkey

 none of its subsets functionally determines all attributes of the relation

If a relation has multiple keys, we specify one to be the **primary key**

COMPUTING KEYS & SUPERKEYS

- Compute X⁺ for all sets of attributes X
- If $X^+ = all \ attributes$, then X is a superkey
- If no subset of X is a superkey, then X is also a key

EXAMPLE

Product(name, category, price, color)

- $name \rightarrow color$
- $color, category \rightarrow price$

Superkeys:

{name, category}, {name, category, price}{name, category, color}, {name, category, price, color}

Keys:

• {name, category}

HOW MANY KEYS?

Q: Is it possible to have many keys in a relation **R**?

YES!! Take relation $\mathbf{R}(A, B, C)$ with FDs

- $A, B \rightarrow C$
- $A, C \rightarrow B$

MINIMAL BASIS FOR FDS

- Given a set F of FDs, we know how to compute the closure F⁺
- A minimal basis of F is the opposite of closure
- *S* is a **minimal basis** for a set *F* if FDs if:
 - $-S^+ = F^+$
 - every FD in S has one attribute on the right side
 - if we remove any FD from S, the closure is not F^+
 - if for any FD in S we remove one or more attributes from the left side, the closure is not F^+

EXAMPLE: MINIMAL BASIS

Example:

- $\bullet A \longrightarrow B$
- $A, B, C, D \rightarrow E$
- $E, F \rightarrow G, H$
- $A, C, D, F \rightarrow E, G$

STEP 1: SPLIT THE RIGHT HAND SIDE

- \bullet $A \longrightarrow B$
- $A, B, C, D \rightarrow E$
- $E, F \rightarrow G$
- $E, F \rightarrow H$
- $A, C, D, F \rightarrow E$
- $A, C, D, F \rightarrow G$

STEP 2: REMOVE REDUNDANT FDS

•
$$A \rightarrow B$$

• $A, B, C, D \rightarrow E$
• $E, F \rightarrow G$
• $E, F \rightarrow H$
• $A, C, D, F \rightarrow E$
• $A, C, D, F \rightarrow G$
can be removed, since these FDs are logically implied by the remaining FDs

STEP 3: CLEAN UP THE LEFT HAND SIDE

•
$$A \rightarrow B$$

• $A, B, C, D \rightarrow E$
• $E, F \rightarrow G$
• $E, F \rightarrow H$

B can be safely removed because of the first FD

EXAMPLE: FINAL RESULT

- $\bullet A \longrightarrow B$
- $A, C, D \rightarrow E$
- $E, F \rightarrow G$
- $E, F \rightarrow H$

RECAP

- FDs and (super)keys
- Reasoning with FDs:
 - given a set of FDs, infer all implied FDs
 - given a set of attributes *X*, infer all attributes
 that are functionally determined by *X*
- Next we will look at how to use them to detect that a table is "bad"