Part 2: Numbers at Different Bases

Dr. Andi Toce
Lecture Notes for MAC 101 (Introduction to Computer Science)

Last updated / viewed: September 7, 2014

Table of Contents

<u>1.</u>	COMPUTER LANGUAGE AND STORAGE	2
<u>2.</u>	CONVERTING BINARY, OCTAL AND HEXADECIMAL TO DECIMAL	2
<u>3.</u>	CONVERTING DECIMAL NUMBERS TO OTHER BASES	4
<u>4.</u>	CONVERSION BETWEEN BINARY, OCTAL AND HEXADECIMAL	5
<u>5.</u>	ADDITION AND SUBTRACTION OF BINARY NUMBERS	6
6	ADDITION AND SURTRACTION - OTHER RASES	7

1. Computer Language and Storage

The smallest unit of information storage in a computer is a **bit**. A bit can only take values of 0 (zero) or 1 (one). All information in a computer is stored as a sequence of bits.

Bit Multiples:

- 1 Byte = 8 bits
- 1 Kilobyte = a thousand bytes = 10^3 bytes
- 1 Megabyte = a million bytes = 10^6 bytes
- 1 Gigabyte = a billion bytes = 109 bytes
- 1 Terabyte = a trillion bytes = 10^{12} bytes

2. Converting Binary, Octal and Hexadecimal to Decimal

Numbers at different bases (decimal, binary, octal, hexadecimal)

The base of a number system corresponds to the digits used by the system.

Base	Digits used	Name	Example	Decimal Equivalent
2	0,1	Binary	1012	5
8	0,1,2,3,4,5,6,7	Octal	468	38
10	0,1,2,3,4,5,6,7,8,9	Decimal	10910	109
16	0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F	Hexadecimal	2A3 ₁₆	675

Understanding how numbers of different bases work. We commonly use base-10 or decimal numbers.

Consider the decimal number 2365

Thousands	Hundreds	Tens	Ones
103	10^{2}	10^{1}	10^{0}
2	3	6	5

Finding the value

2 * 103	2000
$3*10^{2}$	300
6 * 10 ¹	60
5 * 100	5
Total	2365

Consider the binary number 1001101₂. Find the equivalent decimal number.

	1	0	0	1	1	0	1		
	26	25	24	23	22	21	20		
Product	64	0	0	8	4	0	1	77	Sum

Consider the octal number 427₈. Find the equivalent decimal number.

	4	2	7		
	82	81	8_0		
Product	256	16	7	279	Sum

Try now: Convert 111001_2 to a decimal number.

Try now: Convert 3771_8 to a decimal number.

Try now: Convert 2B5₁₆ to a decimal number.

3. Converting Decimal Numbers to Other Bases

To convert a decimal to any other base we divide the number by the base repeatedly and keep record of the remainder. The remainder list is the new number. This process is better described via examples.

Convert 43₁₀ to binary

Division by the base=2	Quotient	Remainder
43 / 2	21	1
21 / 2	10	1
10 / 2	5	0
5/2	2	1
2/2	1	0
1/2	0	1

Take the binary digits in reverse order: $43_{10} = 101011_2$

Try Now: Convert 87₁₀ to binary.

Convert 342₁₀ to the octal equivalent.

Division by the base=8	Quotient	Remainder
342/8	42	6
42/8	5	2
5/8	0	5

 342_{10} is equivalent to 526_8

Try Now: Convert 189₁₀ to the octal equivalent.

Try Now: Convert 542₁₀ to the corresponding Hexadecimal number.

4. Conversion Between Binary, Octal and Hexadecimal

Conversion between binary, octal and hexadecimal is easier. Can you tell why?

Convert 1011010_2 to octal and hexadecimal

Octal

0000	octar					
1	011	010				
1	3	2				

Hexadecimal

101	1010
5	Α

 $1011010_2 = 132_8 = 5A_{16}$

Convert E4A₁₆ to binary

	- 10	
E	4	Α
1110	0100	1010

 $E4A_{16} = 111001001010_2$

Try Now: Convert 3617₈ to binary and hexadecimal

Try Now: Convert 1110001₂ to octal and hexadecimal

5. Addition and Subtraction of Binary Numbers

Binary Addition

Reflect on the addition of decimal numbers

Try Now: $3524_{10} + 692_{10}$

Now lets add $1011101_2 + 10110_2$

Carry		1	1	1			
First Number	1	0	1	1	1	0	1
Second Number			1	0	1	1	0
Answer	1	1	1	0	0	1	1

Try Now: Add 1100110₂ and 1111010₂

Binary Subtraction

First reflect on decimal subtraction. Do 1932_{10} - 281_{10}

Now we subtract 11001₂ from 1110011₂

Borrowed			2	2			
First Number	1	10	10	0	0	1	1
Second Number			1	1	0	0	1
Answer	1	0	1	1	0	1	0

Now Try: 1101001₂ - 101110₂

6. Addition and Subtraction – Other Bases

Try Now: 35A₁₆ + E7₁₆

Try Now: 35A₁₆ - E7₁₆

Try Now: 3527₈ + 726₈

Try Now: 3527₈ - 726₈