EE412 Foundation of Big Data Analytics, Fall 2019 HW3

Name: 오승준

Student ID: 20160381

Discussion Group (People with whom you discussed ideas used in your answers):

손채연 (Remove distinct input in problem 1-b, optimize problem 2-b, initialize parameter in problem 3-b)

On-line or hardcopy documents used as part of your answers:

Answer to Problem 1

- (a) Solve the following problems.
 - Exercise 5.1.2

[[0.25925926]

[0.30864198]

[0.43209877]]

Used Python3 code for Ex-5.1.2

```
import numpy as np

M = np.array([1/3, 1/2, 0, 1/3, 0, 1/2, 1/3, 1/2, 1/2]).reshape((3,3))

M = np.identity(3) - 0.8*M
e = 0.2*np.array([1/3, 1/3, 1/3]).reshape((3,1))  # Ex 5.1.2
print(np.dot(np.linalg.inv(M), e))
```

- Exercise 5.3.1
 - a. A only

[[0.42857143]

[0.19047619]

[0.19047619]

[0.19047619]]

b. A and C

[[0.38571429]

[0.17142857]

[0.27142857]

[0.17142857]]

Used Python3 code for Ex-5.3.1

```
import numpy as np

M = np.array([0, 1/2, 1, 0, 1/3, 0, 0, 1/2, 1/3, 0, 0, 1/2, 1/3, 1/2, 0, 0]).reshape((4,4))

M = np.identity(4) - 0.8*M
e = 0.2*np.array([1, 0, 0, 0]).reshape((4,1))  # For a: A only
#e = 0.2*np.array([1/2, 0, 1/2, 0]).reshape((4,1))  # For b: A and C
print(np.dot(np.linalg.inv(M), e))
```

(b) Implement the PageRank algorithm using Spark.

Output

```
263
     0.00216
537
     0.00212
965
     0.00206
243
     0.00197
255
     0.00194
285
     0.00193
16
     0.00191
126
     0.00190
747
     0.00190
736
     0.00189
```

Answer to Problem 2

- (a) Solve the following problems.
 - Exercise 10.3.2

a.
$$n = 20$$
 and $d = 5$

$$20 \times {5 \choose t} / {20 \choose t} \ge s$$

If t = 1, then s = 5.

Maximal pairs: (1, 5)

b.
$$n = 200$$
 and $d = 150$

$$200 \times {150 \choose t} / {200 \choose \mathsf{t}} \geq s$$

If t = 1, then s = 150. If t = 2, then s = 113. And so on.

Maximal pairs: (1, 150), (2, 113), (3, 84), (4, 63), (5,47), (6,35), (7, 26), (8, 20), (9, 15), (10, 11)

• Exercise 10.5.2

a.
$$C = \{w, x\}; D = \{y, z\}$$

$$P_{wy} = P_{wz} = P_{xy} = P_{xz} = \varepsilon$$

$$P_{wx} = 1 - (1 - P_C) = P_C, P_{yz} = 1 - (1 - P_D) = P_D$$

Therefore, $f = P_{wx} \cdot P_{wy} \cdot P_{xy} \cdot P_{yz} \cdot (1 - P_{wz}) \cdot (1 - P_{xz}) = \varepsilon^2 (1 - \varepsilon)^2 P_C P_D \cong 0$ MLE = 0

b.
$$C = \{w, x, y, x\}; D = \{x, y, z\}$$

$$P_{wx} = P_{wy} = P_{wz} = P_C$$

$$P_{xy} = P_{xz} = P_{yz} = 1 - (1 - P_C)(1 - P_D) = P_C + P_D - P_C P_D$$

Therefore,
$$f = P_{wx} \cdot P_{wy} \cdot P_{xy} \cdot P_{yz} \cdot (1 - P_{wz}) \cdot (1 - P_{xz})$$

(b) Implement the Girvan-Newman algorithm using Spark.

Output

764	1472	479194.22092
1020	1472	415086.77907
1020	2416	392622.59987
121	191	342187.71871
1282	1472	302374.57956
121	330	301472.86530
178	2816	301040.63715
41	764	300260.08217
330	1285	273018.58705
330	1020	271259.87615

Answer to Problem 3

- (a) Exercise 12.5.3
 - a. GINI impurity

GINI impurity,
$$f(x) = 1 - x^2 - (1 - x)^2 = -2x^2 + 2x$$

$$\frac{y-z}{y-x}f(x) + \frac{z-x}{y-x}f(y) = \frac{1}{y-x}((y-z)(-2x^2+2x) + (z-x)(-2y^2+2y))$$
$$= 2xy + 2z - 2(x+y)z$$

So,
$$f(z) - \frac{y-z}{y-x} f(x) + \frac{z-x}{y-x} f(y) = -2z^2 + 2z - (2xy + 2z - 2(x+y)z)$$

= $-2(z-x)(z-y) > 0$ (: $x < z < y$)

Therefore, GINI impurity is concave.

- b. Entropy measure of impurity
- (b) Implement the gradient descent SVM algorithm using Python.

Output:

0.835833333333

0.5

0.001