Лекция А7 МПавтоматы, П

Вадим Пузаренко

М П-автомат

ДМПавтоматы

Лекция А7 МП-автоматы, II

Вадим Пузаренко

24 октября 2023 г.

Лекция А7 МПавтоматы, П

Вадим Пузаренко

М П-автоматы ДМ П-

По данной грамматике & строится МП-автомат, имитирующий её левые порождения. Любую левовыводимую цепочку можно записать в виде $\alpha \hat{A}\beta$, где α — цепочка терминалов, а A нетерминал, β — цепочка нетерминалов и терминалов справа от A. Цепочка $A^{\hat{}}\beta$ называется остатком этой левовыводимой цепочки. У терминальной левовыводимой цепочки остатком является ε . Идея построения МП-автомата по грамматике состоит в том, чтобы МП-автомат имитировал последовательность левовыводимых цепочек, используемых в грамматике для порождения искомой терминальной цепочки $\tilde{\alpha}$. Остаток каждой цепочки $A\hat{}$ появляется в магазине с переменной A на вершине, а цепочка α является префиксом не считанных к данному моменту символов цепочки $ilde{lpha}$, причём сразу после появления соответствующей конфигурации цепочка α будет считана автоматом.

Лекция А7 МПавтоматы. П

Вадим Пузаренк

М П-автоматы

дмп-

Предположим, что МП-автомат находится в конфигурации $(q, \alpha', A^{\hat{}}\beta)$, представляющей цепочку $\alpha^{\hat{}}A^{\hat{}}\beta$. Он угадывает продукцию с посылкой A (скажем, $A \longrightarrow \beta'$). Переход автомата состоит в том, что A на вершине магазина заменяется на цепочку β' , и достигается конфигурация $(q, \alpha', \beta'\hat{\beta})$. Заметим, что у этого МП-автомата имеется только одно состояние, а именно, q. Все терминалы в начале цепочки $\beta' \hat{\beta}$ необходимо удалить до появления нетерминала на вершине магазина. Эти терминалы сравниваются с символами входной цепочки для того, чтобы убедиться в правильности предположения о левом порождении входной цепочки $\tilde{\alpha}$; в противном случае вычисление данной ветви МП-автомата обрывается.

Лекция А7 МПавтоматы, П

Вадим Пузаренко

М П-автоматы

дмп-

Если таким образом нам удаётся угадать левое порождение $\tilde{\alpha}$, то, в конечном итоге, мы дойдём до распознавания $\tilde{\alpha}$. В этот момент ко всем символам магазина применены продукции (в случае нетерминалов) или правило удаления в результате сравнения (в случае терминалов). Магазин пуст, и, тем самым, слово распознаётся по пустому магазину.

Лекция А7 МПавтоматы, П

Вадим Пузарени

М П-автоматы

дмп-

Если таким образом нам удаётся угадать левое порождение $\tilde{\alpha}$, то, в конечном итоге, мы дойдём до распознавания $\tilde{\alpha}$. В этот момент ко всем символам магазина применены продукции (в случае нетерминалов) или правило удаления в результате сравнения (в случае терминалов). Магазин пуст, и, тем самым, слово распознаётся по пустому магазину.

Конструкция.

Пусть $\mathfrak{G}=(V,\Sigma,P,S)$ — КС-грамматика. Построим МП-автомат $\mathcal{P}=(\{q\},\Sigma,V\cup\Sigma;\Delta,q,S,\varnothing)$, распознающий $L(\mathfrak{G})$ по пустому магазину. Отношение Δ переходов определяется следующим образом:

- $oldsymbol{0}$ $\Delta(q, \varepsilon, A) = \{(q, \beta) | P(A, \beta)\}$ для каждого $A \in V$.
- $oldsymbol{\Delta}(q,a,a)=\{(q,arepsilon)\}$ для любого $a\in\Sigma$.

Лекция А7 МПавтоматы, П Вадим

М П-автоматы

ДМПавтоматы

Теорема А7.1.

Если МП-автомат $\mathcal P$ строится по грамматике $\mathfrak G$ согласно конструкции, описанной выше, то $N(\mathcal P)=L(\mathfrak G)$.

Лекция А7 МПавтоматы, П

Вадим Пузаренк

М П-автоматы

ДМП-

Теорема А7.1.

Если МП-автомат $\mathcal P$ строится по грамматике $\mathfrak G$ согласно конструкции, описанной выше, то $N(\mathcal P)=L(\mathfrak G)$.

Доказательство.

Докажем, что $\alpha \in \mathcal{N}(\mathcal{P}) \Leftrightarrow \alpha \in \mathcal{L}(\mathfrak{G})$.

(\Leftarrow) Пусть $\alpha \in L(\mathfrak{G})$; тогда α имеет левое порождение в \mathfrak{G} : $S = \delta_1 \Rightarrow \delta_2 \Rightarrow \ldots \Rightarrow \delta_n = \alpha$.

Покажем индукцией по $i\leqslant n$, что $(q,\alpha,S)\vdash_{\mathcal{P}}^* (q,\xi_i,\beta_i)$, где ξ_i и β_i представляют левовыводимую цепочку δ_i (более точно, если β_i — остаток δ_i , причём $\delta_i=\gamma_i\hat{\ }\beta_i$, то цепочка ξ_i такова, что $\alpha=\gamma_i\hat{\ }\xi_i$).

Базис. Имеем $\delta_1=S$ и, тем самым, $\gamma_1=\varepsilon$, $\xi_1=\alpha$. Так как $(q,\alpha,S)\vdash^* (q,\alpha,S)$, базис доказан.

Лекция А7 МПавтоматы, П

Вадим Пузарени

М П-автоматы

дмп-

Доказательство (продолжение).

Индукция. Предположим, что имеет место $(q,\alpha,S) \vdash^* (q,\xi_i,\beta_i)$, и докажем, что $(q,\alpha,S) \vdash^* (q,\xi_{i+1},\beta_{i+1})$. Так как слово β_i является остатком, оно начинается с некоторого нетерминала (скажем, A). Кроме того, шаг порождения $\delta_i \underset{\rightarrow}{\Rightarrow} \delta_{i+1}$ включает замену нетерминала A заключительным словом одной из продукций с посылкой A (скажем, β). Правило 1 построения $\mathcal P$ позволяет нам заменить A на вершине магазина словом β , а правило 2 — сравнить любые терминалы на вершине магазина со входными символами. В результате достигается конфигурация $(q,\xi_{i+1},\beta_{i+1})$, которая представляет следующую левовыводимую цепочку δ_{i+1} .

Для завершения доказательства заметим, что $\beta_n = \varepsilon$, поскольку остаток цепочки $\delta_n = \alpha$ пуст. Таким образом, $(q, \alpha, S) \vdash^* (q, \varepsilon, \varepsilon)$, и автомат $\mathcal P$ распознаёт α по пустому магазину.

Лекция А7 МПавтоматы, П

Вадим Пузаренко

М П-автоматы ДМ П-

ДМПавтоматы

Доказательство (продолжение).

 (\Rightarrow) Докажем более общее утверждение, а именно, если $(q,\alpha,A)\vdash_{\mathcal{P}}^*(q,\varepsilon,\varepsilon)$, то $A\Rightarrow_{\mathfrak{G}}^*\alpha$ (индукцией по числу переходов автомата \mathcal{P}).

Базис. Один переход. Единственным вариантом является то, что $A \longrightarrow \varepsilon$ — продукция $\mathfrak G$, использованная в правиле типа 1 МП-автоматом $\mathcal P$. В этом случае $\alpha = \varepsilon$ и $A \Rightarrow_{\mathfrak G} \varepsilon$. Индукция. Предположим, что $\mathcal P$ совершает n переходов, n>1. Первый переход должен быть типа 1, где нетерминал A на вершине магазина заменяется одним из тел продукции грамматики (поскольку правило типа 2 используется только в том случае, когда на вершине магазина находится терминал). Пусть использована продукция $A \longrightarrow Y_1 Y_2 \dots Y_k$, где $Y_i \in V \cup \Sigma$, $1 \leqslant i \leqslant k$.

Лекция А7 МПавтоматы, П

Вадим Пузаренко

М П-автоматы

дмп-

Доказательство (продолжение).

В процессе следующих n-1 переходов автомат $\mathcal P$ должен прочитать α на входе и вытолкнуть $Y_1,\ Y_2,\ \dots,\ Y_k$ из магазина по очереди. Цепочку α можно представить в виде $\alpha_1\hat{\ }\alpha_2\hat{\ }\dots\hat{\ }\alpha_k$ так, что после прочтения α_1 в магазине содержится $Y_2Y_3\dots Y_k$, затем после прочтения $\alpha_2-Y_3\dots Y_k,\ \dots$, после прочтения $\alpha_{k-1}-Y_k$, а в конечном итоге после прочтения α_k магазин окажется пустым.

Формально можем заключить, что

 $(q,\alpha_i\hat{\alpha}_{i+1}\hat{\ldots}\hat{\alpha}_k,Y_i)\vdash_{\mathcal{P}}^*(q,\alpha_{i+1}\hat{\ldots}\hat{\alpha}_k,\varepsilon)$ для всех $i=1,2,\ldots,k$. По предложению A3.3, $(q,\alpha_i,Y_i)\vdash_{\mathcal{P}}^*(q,\varepsilon,\varepsilon)$ для всех i. Так как длины всех переходов не превосходят n-1, по индукционному предположению, заключаем, что $Y_i\Rightarrow_{\mathfrak{G}}^*\alpha_i$, если Y_i — нетерминал.

Лекция А7 МПавтоматы, П

Вадим Пузаренк

М П-автоматы

ДМПавтоматы

Доказательство (окончание).

 $\alpha \in L(\mathfrak{G})$.

Если же Y_i — терминал, то должен совершиться только один переход, в котором осуществляется проверка на равенство α_i и Y_i . Тем самым, $Y_i \Rightarrow_{\mathfrak{G}}^* \alpha_i$. Теперь имеется порождение $A \Rightarrow Y_1Y_2 \dots Y_k \Rightarrow^* \alpha_1 \hat{\ } Y_2 \dots Y_k \Rightarrow^* \alpha_1 \hat{\ } \alpha_2 \hat{\ } Y_3 \dots Y_k \Rightarrow^* \dots \Rightarrow^* \alpha_1 \hat{\ } \alpha_2 \hat{\ } \dots \hat{\ } \alpha_{k-1} \hat{\ } Y_k \Rightarrow^* \alpha$. Для завершения доказательства положим A = S. Так как $\alpha \in \mathcal{N}(\mathcal{P})$, имеем $(q,\alpha,S) \vdash^* (q,\varepsilon,\varepsilon)$. По доказанному, $S \Rightarrow^* \alpha$ и

Лекция А7 МПавтоматы, П Вадим

М П-автоматы

ДМПавтоматы

Пример А7.1.

Преобразуем грамматику выражений в МП-автомат.

Продукции: $I \longrightarrow a|b|Ia|Ib|I0|I1$, $E \longrightarrow I|E + E|E*E|(E)$.

Переходы автомата:

- **2** $\Delta(q, \varepsilon, E) = \{(q, I), (q, E + E), (q, E * E), (q, (E))\};$
- **②** $\Delta(q, a, a) = \Delta(q, b, b) = \Delta(q, (, () = \Delta(q,),)) = \Delta(q, +, +) = \Delta(q, *, *) = \Delta(q, 0, 0) = \Delta(q, 1, 1) = \{(q, \varepsilon)\}.$

Лекция А7 МПавтоматы, II Вадим

Теорема А7.2.

Пусть $\mathcal{P}=(Q,\Sigma,\Gamma;\Delta,q_0,Z_0)$ — МП-автомат. Тогда существует КС-грамматика \mathfrak{G} такая, что $L(\mathfrak{G})=N(\mathcal{P})$.

М П-автоматы

Лекция А7 МПавтоматы, П

Вадим Пузаренко

М П-автоматы

дмп-

Теорема А7.2.

Пусть $\mathcal{P}=(Q,\Sigma,\Gamma;\Delta,q_0,Z_0)$ — МП-автомат. Тогда существует КС-грамматика \mathfrak{G} такая, что $L(\mathfrak{G})=N(\mathcal{P})$.

Доказательство.

Определим грамматику $\mathfrak{G} = (V, \Sigma; R, S)$ следующим образом: Переменные (V):

- специальный стартовый символ 5;
- **3** все символы вида [pXq], где $p,q \in Q$, $X \in \Gamma$ ([pXq] это один символ, а не слово, состоящее из 5 символов!!!)

Лекция А7 МПавтоматы, П

Вадим Пузаренко

М П-автоматы

ДМПавтоматы

Доказательство (продолжение).

Продукции (R):

- $S \to [q_0 Z_0 p]$, для всех $p \in Q$. Интуитивно символ $[q_0 Z_0 p]$ предназначен для порождения цепочек α , которые приводят к выталкиванию Z_0 в процессе перехода из q_0 в p. Таким образом, $(q_0, \alpha, Z_0) \vdash^* (p, \varepsilon, \varepsilon)$. Эти продукции гласят, что S порождает все цепочки, приводящие к опустошению магазина после старта в начальной конфигурации;
- ② пусть $\Delta((q, a, X), (r, Y_1Y_2 \dots Y_k))$, где $a \in \Sigma \cup \{\varepsilon\}$, а $k \in \omega$; при k = 0 заключительная пара имеет вид (r, ε) . Тогда для всех списков состояний r_1, r_2, \dots, r_k в грамматике $\mathfrak G$ имеется продукция $[qXr_k] \longrightarrow a^{\hat{}}[rY_1r_1][r_1Y_2r_2]\dots [r_{k-1}Y_kr_k]$. Она гласит, что один из путей выталкивания X из магазина и

Она гласит, что один из путей выталкивания X из магазина и перехода из состояния q в r_k заключается в том, чтобы прочитать a, затем использовать некоторый вход для выталкивания Y_1 и перехода из r в r_1 , далее прочитать вход, вытолкнуть Y_2 и перейти из r_1 в r_2 , и т.д.

$M\Pi$ -автомат \mapsto KC-грамматики

Лекция А7 МПавтоматы. II

Вадим

М.П-автоматы

Доказательство (продолжение).

Докажем, что $[qXp] \Rightarrow^* \alpha \Leftrightarrow (q, \alpha, X) \vdash^* (p, \varepsilon, \varepsilon)$.

(⇐) Пусть $(q, \alpha, X) \vdash^* (p, \varepsilon, \varepsilon)$; докажем, что $[qXp] \Rightarrow^* \alpha$ (индукцией по числу переходов МП-автомата).

Базис. Один шаг. Тогда $(p, \varepsilon) \in \Delta(q, \alpha, X)$ и $\alpha \in \Sigma \cup \{\varepsilon\}$. Из построения \mathfrak{G} следует, что $R([qXp], \alpha)$, поэтому $[qXp] \Rightarrow \alpha$. Индукция. Предположим, что последовательность $(q, \alpha, X) \vdash^* (p, \varepsilon, \varepsilon)$

содержит n > 1 переходов. Первый переход должен иметь вид $(q,\alpha,X)\vdash (r_0,\beta,Y_1Y_2\ldots Y_k)$, где $\alpha=a\hat{\ }\beta$ для некоторого $a\in\Sigma\cup\{\varepsilon\};$ затем будет выполняться переход $(r_0, \beta, Y_1 Y_2 \dots Y_k) \vdash^* (p, \varepsilon, \varepsilon)$.

Отсюда следует, что $(r_0, Y_1 Y_2 \dots Y_k) \in \Delta(q, a, X)$. По построению \mathfrak{G} , найдётся продукция $[qXr_k] \longrightarrow a[r_0Y_1r_1][r_1Y_2r_2]\dots [r_{k-1}Y_kr_k]$, у которой

 $r_k = p$ и r_1, r_2, \dots, r_{k-1} — некоторые состояния из Q.

Символы Y_1, Y_2, \ldots, Y_k удаляются из магазина по очереди; для каждого $i = 1, 2, \dots, k-1$ можно выбрать состояние r_i , в котором на вершине магазина оказывается Y_{i+1} .

МП-автомат \mapsto КС-грамматики

Лекция А7 МПавтоматы, П

Вадим Пузаренко

М П-автоматы

ДМПавтоматы

Доказательство (продолжение).

Пусть $\beta=\beta_1\hat{\ \ } \beta_2\hat{\ \ } \dots \hat{\ \ } \beta_k$, где β_i — входная цепочка, которая прочитывается до удаления символа Y_i из магазина. Тогда $(r_{i-1},\beta_i,Y_i) \vdash^* (r_i,\varepsilon,\varepsilon)$. Поскольку ни одна из этих последовательностей не содержит более n-1 переходов, к ним применимо индукционное предположение. Приходим к выводу, что $[r_{i-1}Y_ir_i] \Rightarrow^* \beta_i$. Соберём все порождения вместе: $[qXr_k] \Rightarrow a[r_0Y_1r_1][r_1Y_2r_2]\dots[r_{k-1}Y_kr_k] \Rightarrow^* a\hat{\ \ } \beta_1[r_1Y_2r_2]\dots[r_{k-1}Y_kr_k] \Rightarrow^* a\hat{\ \ } \beta_1\hat{\ \ } \beta_2[r_2Y_3r_3]\dots[r_{k-1}Y_kr_k] \Rightarrow^* \dots \Rightarrow^* a\hat{\ \ } \beta_1\hat{\ \ } \beta_2\hat{\ \ } \dots \hat{\ \ } \beta_k = \alpha$. Здесь $r_k = p$.

Лекция А7 МПавтоматы, П

Вадим Пузаренко

М П-автоматы

дмп-

Доказательство (продолжение).

Пусть $\beta=\beta_1\hat{\ }\beta_2\hat{\ }\dots\hat{\ }\beta_k$, где β_i — входная цепочка, которая прочитывается до удаления символа Y_i из магазина. Тогда $(r_{i-1},\beta_i,Y_i)\vdash^*(r_i,\varepsilon,\varepsilon)$. Поскольку ни одна из этих последовательностей не содержит более n-1 переходов, к ним применимо индукционное предположение. Приходим к выводу, что $[r_{i-1}Y_ir_i]\Rightarrow^*\beta_i$. Соберём все порождения вместе: $[qXr_k]\Rightarrow a[r_0Y_1r_1][r_1Y_2r_2]\dots[r_{k-1}Y_kr_k]\Rightarrow^*a\hat{\ }\beta_1[r_1Y_2r_2]\dots[r_{k-1}Y_kr_k]\Rightarrow^*a\hat{\ }\beta_1\hat{\ }\beta_2[r_2Y_3r_3]\dots[r_{k-1}Y_kr_k]\Rightarrow^*\dots\Rightarrow^*a\hat{\ }\beta_1\hat{\ }\beta_2\hat{\ }\dots\hat{\ }\beta_k=\alpha$. Здесь $r_k=p$.

(⇒) Индукцией по числу шагов в порождении.

Базис. Один шаг. Тогда $R([qXp],\alpha)$. Единственная возможность существования такой продукции — $\alpha \in \Sigma \cup \{\varepsilon\}$, а $\mathcal P$ содержит переход, в котором X выталкивается из магазина, при этом состояние q меняется на p. Таким образом, $(p,\varepsilon) \in \Delta(q,\alpha,X)$ и $(q,\alpha,X) \vdash (p,\varepsilon,\varepsilon)$.

МП-автомат \mapsto КС-грамматики

Лекция А7 МПавтоматы, П

Вадим Пузарени

М П-автоматы

дмп-

Доказательство (продолжение).

Индукция. Предположим, что $[qXp] \Rightarrow^* \alpha$ содержит n>1 шагов. Рассмотрим первую выводимую цепочку в данной последовательности:

 $[qXr_k] \xrightarrow{\cdot} a[r_0Y_1r_1][r_1Y_2r_2]\dots [r_{k-1}Y_kr_k] \Rightarrow^* lpha$ (здесь $r_k=p$). Соответствующая выводимой цепочке продукция должна

присутствовать в грамматике, поскольку $(r_0, Y_1 Y_2 \dots Y_k) \in \Delta(q, a, X)$.

 $(r_0,Y_1Y_2\dots Y_k)\in\Delta(q,a,X).$ Цепочку lpha можно представи

Цепочку α можно представить в виде $\alpha = \hat{a} \hat{\alpha}_1 \hat{\alpha}_2 \hat{\ldots} \hat{\alpha}_k$ так, что $[r_{i-1} Y_i r_i] \Rightarrow^* \alpha_i$. По индукционному предположению, для всех i выполняется отношение $(r_{i-1}, \alpha_i, Y_i) \vdash^* (r_i, \varepsilon, \varepsilon)$. По предложению A3.2, $(r_{i-1}, \alpha_i \hat{\alpha}_{i+1} \hat{\ldots} \hat{\alpha}_k, Y_i Y_{i+1} \dots Y_k) \vdash^* (r_i, \alpha_{i+1} \hat{\ldots} \hat{\alpha}_k, Y_{i+1} \dots Y_k)$.

Лекция А7 МПавтоматы, П

Вадим Пузаренк

М П-автоматы

ДМПавтоматы

Доказательство (окончание).

Соберём все эти последовательности вместе и получим следующее порождение.

$$(q, a^{\hat{}}\alpha_1^{\hat{}}\alpha_2^{\hat{}}\dots^{\hat{}}\alpha_k, X) \vdash (r_0, \alpha_1^{\hat{}}\alpha_2^{\hat{}}\dots^{\hat{}}\alpha_k, Y_1Y_2\dots Y_k) \vdash^* (r_1, \alpha_2^{\hat{}}\dots^{\hat{}}\alpha_k, Y_2\dots Y_k) \vdash^* \dots \vdash^* (r_{k-1}, \alpha_k, Y_k) \vdash^* (r_k, \varepsilon, \varepsilon).$$
 Поскольку $r_k = p$, доказано, что $(q, \alpha, X) \vdash^* (p, \varepsilon, \varepsilon)$. Завершим доказательство. $S \Rightarrow^* \alpha \Leftrightarrow [q_0Z_0p] \Rightarrow^* \alpha$ для некоторого $p \in Q$. Выше уже доказано, что $[q_0Z_0p] \Rightarrow^* \alpha \Leftrightarrow (q_0, \alpha, Z_0) \vdash^* (p, \varepsilon, \varepsilon)$, т.е. $\mathcal P$ распознаёт α по пустому магазину. Таким образом, $L(\mathfrak G) = N(\mathcal P)$

Лекция А7 МПавтоматы, П

лмп-

Хотя МП-автоматы по определению не детерминированы, их детерминированный случай чрезвычайно важен. В частности, синтаксические анализаторы в целом ведут себя как детерминированные МП-автоматы, поэтому класс языков, допускаемых этими автоматами, углубляет понимание конструкций, пригодных для языков программирования. Интуитивно МП-автомат является детерминированным, если в любой ситуации у него нет возможности выборов перехода. Эти выборы имеют два вида. Если $\Delta(q,a,X)$ содержит более одной пары, то МП-автомат безусловно не является детерминированным, поскольку можно выбирать из этих двух пар. Однако если $\Delta(q, a, X)$ всегда одноэлементно, все равно остаётся возможность выбора между чтением входного символа и совершением ε -перехода.

Лекция А7 МПавтоматы, П

Вадим Пузаренко

Will-abiomaib

ДМПавтоматы

Определение А7.1.

МП-автомат $\mathcal{P}=(Q,\Sigma,\Gamma;\Delta,q_0,Z_0,F)$ называется **детерминированным (ДМП-автоматом)**, если выполняются следующие условия:

- $igoplus |\Delta(q,a,X)|\leqslant 1$ для каждых $q\in Q$, $a\in \Sigma\cup \{arepsilon\}$ и $X\in \Gamma$;
- $oldsymbol{0}$ если $\Delta(q,a,X)
 eq \varnothing$ для некоторого $a \in \Sigma$, то $\Delta(q,arepsilon,X)$ должно быть пустым.

Лекция А7 МПавтоматы, П

Вадим Пузаренко

Will-abiomaib

ДМПавтоматы

Определение А7.1.

МП-автомат $\mathcal{P}=(Q,\Sigma,\Gamma;\Delta,q_0,Z_0,F)$ называется детерминированным (ДМП-автоматом), если выполняются следующие условия:

- **○** $|\Delta(q,a,X)| \leqslant 1$ для каждых $q \in Q$, $a \in \Sigma \cup \{\varepsilon\}$ и $X \in \Gamma$;
- $oldsymbol{0}$ если $\Delta(q,a,X)
 eq \varnothing$ для некоторого $a \in \Sigma$, то $\Delta(q,arepsilon,X)$ должно быть пустым.

Примеры А7.2.

- $f \Omega$ КС-язык $\{lpha\hat{}^{lpha}lpha^R|lpha\in\{0;1\}^*\}$ не распознаётся никаким ДМП-автоматом.
- $m{Q}$ КС-язык $\{lpha\hat{c}^arpha^R|lpha\in\{0;1\}^*\}$ распознаётся некоторым ДМП-автоматом (здесь $c
 ot\in\{0;1\}$).

Лекция А7 МПавтоматы, П

Вадим Пузаренко

IVI I I - a B I O Ma I B

ДМПавтоматы

Определение А7.1.

МП-автомат $\mathcal{P}=(Q,\Sigma,\Gamma;\Delta,q_0,Z_0,F)$ называется **детерминированным (ДМП-автоматом)**, если выполняются следующие условия:

- $igoplus |\Delta(q,a,X)|\leqslant 1$ для каждых $q\in Q$, $a\in \Sigma\cup \{arepsilon\}$ и $X\in \Gamma$;
- $oldsymbol{0}$ если $\Delta(q,a,X)
 eq \varnothing$ для некоторого $a \in \Sigma$, то $\Delta(q,arepsilon,X)$ должно быть пустым.

Примеры А7.2.

- lacktriangle KC-язык $\{lpha\hat{}^{lpha}lpha^R|lpha\in\{0;1\}^*\}$ не распознаётся никаким ДМП-автоматом.
- $m{Q}$ КС-язык $\{lpha\hat{c}^arpha^R|lpha\in\{0;1\}^*\}$ распознаётся некоторым ДМП-автоматом (здесь $c
 ot\in\{0;1\}$).

Упражнение А7.1.

Обосновать примеры А7.2.

Регулярные языки и ДМП-автоматы

Лекция А7 МПавтоматы, П

Пузаренко

М П-автомат

ДМПавтоматы

Теорема А7.3.

Если L — регулярный язык, то $L = L(\mathcal{P})$ для некоторого ДМП-автомата \mathcal{P} .

Регулярные языки и ДМП-автоматы

Лекция А7 МПавтоматы, П

Вадим Пузаренко

М П-автоматы

ДМПавтоматы

Теорема А7.3.

Если L — регулярный язык, то $L = L(\mathcal{P})$ для некоторого ДМП-автомата \mathcal{P} .

Доказательство.

Пусть $\mathcal{A} = (Q, \Sigma; \delta, q_0, F) - \mathsf{Д} \mathsf{K} \mathsf{A}$ такой, что $L = L(\mathcal{A})$. Положим $\mathsf{Д} \mathsf{M} \mathsf{\Pi}$ -автомат $\mathcal{P} = (Q, \Sigma, \{Z_0\}; \Delta, q_0, Z_0, F)$, определив $\Delta(q, a, Z_0) = \{(\delta(q, a), Z_0)\}$ для всех $q \in Q$ и $a \in \Sigma$. Утверждается, что $(q, \alpha, Z_0) \vdash_{\mathcal{P}}^* (p, \varepsilon, Z_0) \Leftrightarrow \delta^*(q, \alpha) = p$. Доказывается в обе стороны индукцией по $\mathrm{lh}(\alpha)$. Таким образом, $\alpha \in L(\mathcal{A}) \Leftrightarrow \delta^*(q_0, \alpha) \in F \Leftrightarrow (q_0, \alpha, Z_0) \vdash_{\mathcal{P}}^* (p, \varepsilon, Z_0)$ для некоторого $p \in F \Leftrightarrow \alpha \in L(\mathcal{P})$.

Лекция А7 МПавтоматы, II

Пузаренко

......

.....

ДМПавтоматы

Определение А7.2.

Говорят, что язык L имеет префиксное свойство, если в L нет двух различных цепочек α и β , где $\alpha \sqsubset_{\mathit{beg}} \beta$.

Лекция А7 МПавтоматы, П

Вадим Пузаренк

IП-автоматі

дмп-

Определение А7.2.

Говорят, что язык L имеет префиксное свойство, если в L нет двух различных цепочек α и β , где $\alpha \sqsubseteq_{\mathit{beg}} \beta$.

Примеры А7.3.

- 1) $\{\alpha\hat{\ }c\hat{\ }\alpha^R|\alpha\in\{0;1\}^*\}$ имеет префиксное свойство.
- **2)** $\{0\}^*$ не имеет префиксного свойства, однако является регулярным языком.

Лекция А7 МПавтоматы, II

Вадим Пузаренко

/IП-автомат:

ДМПавтоматы

Определение А7.2.

Говорят, что язык L имеет префиксное свойство, если в L нет двух различных цепочек α и β , где $\alpha \sqsubseteq_{\mathit{beg}} \beta$.

Примеры А7.3.

- 1) $\{\alpha\hat{\ }c\hat{\ }\alpha^R|\alpha\in\{0;1\}^*\}$ имеет префиксное свойство.
- **2)** $\{0\}^*$ не имеет префиксного свойства, однако является регулярным языком.

Теорема А7.4.

 $L=N(\mathcal{P})$ для некоторого ДМП-автомата \mathcal{P} , если и только если L имеет префиксное свойство и $L=L(\mathcal{P}')$ для некоторого ДМП-автомата \mathcal{P}' .

Лекция А7 МПавтоматы, II Вадим

дмп-

Определение А7.2.

Говорят, что язык L имеет префиксное свойство, если в L нет двух различных цепочек α и β , где $\alpha \sqsubseteq_{\textit{beg}} \beta$.

Примеры А7.3.

- 1) $\{\alpha\hat{\ }c\hat{\ }\alpha^R|\alpha\in\{0;1\}^*\}$ имеет префиксное свойство.
- **2)** $\{0\}^*$ не имеет префиксного свойства, однако является регулярным языком.

Теорема А7.4.

 $L=N(\mathcal{P})$ для некоторого ДМП-автомата \mathcal{P} , если и только если L имеет префиксное свойство и $L=L(\mathcal{P}')$ для некоторого ДМП-автомата \mathcal{P}' .

Упражнение А7.2.

Доказать теорему А7.4 и обосновать примеры А7.3.

Лекция А7 МПавтоматы, П

Вадим Пузаренко

дмп-

VI П-автоматы

Замечание А7.1.

Языки, распознаваемые ДМП-автоматами, имеют однозначную КС-грамматику. Однако класс языков, распознаваемых ДМП-автоматами, не совпадает с классом КС-языков, не являющихся существенно неоднозначными. Например, язык $\{\alpha\hat{\;}\alpha^R|\alpha\in\{0;1\}^*\}$ имеет однозначную КС-грамматику $S\longrightarrow \varepsilon|0S0|1S1$, хотя и не распознаётся никаким ДМП-автоматом.

Лекция А7 МПавтоматы, П

Вадим Пузаренко

дмп-

Замечание А7.1.

Языки, распознаваемые ДМП-автоматами, имеют однозначную КС-грамматику. Однако класс языков, распознаваемых ДМП-автоматами, не совпадает с классом КС-языков, не являющихся существенно неоднозначными. Например, язык $\{\alpha^{\hat{}}\alpha^R|\alpha\in\{0;1\}^*\}$ имеет однозначную КС-грамматику $S\longrightarrow \varepsilon|0S0|1S1$, хотя и не распознаётся никаким ДМП-автоматом.

Теорема А7.5.

Если $L=N(\mathcal{P})$ для некоторого ДМП-автомата \mathcal{P} , то L имеет однозначную КС-грамматику.

Лекция А7 МПавтоматы, П

Вадим Пузаренко

дмп-

<u>Док</u>азательство.

Докажем, что конструкция теоремы А7.2 по ДМП-автомату задаёт однозначную КС-грамматику. По теореме А5.1, достаточно доказать, что каждое $\alpha \in L$ имеет уникальное левое порождение. Предположим, что ${\mathcal P}$ распознаёт α по пустому магазину. Тогда он это делает с помощью единственной последовательности переходов, поскольку он детерминирован и прекращает работу, когда опустошается магазин. Правило автомата \mathcal{P} , на основании которого применяется продукция, всегда одно. Но правило, скажем, $\Delta(q, a, X) = \{(r, Y_1 Y_2 \dots Y_k)\},$ может порождать много продукций грамматики \mathfrak{G} , с различными состояниями в позициях, отражающих состояния ${\mathcal P}$ после удаления каждого из Y_1, Y_2, \ldots, Y_k . Однако, в силу детерминированности \mathcal{P} , осуществляется только одна из этих последовательностей переходов, поэтому только одна из этих продукций в действительности ведет к порождению α .

Лекция А7 МПавтоматы, П

Пузаренко

IVI I I - автомат

ДМПавтоматы

Теорема А7.6.

Если $L=L(\mathcal{P})$ для некоторого ДМП-автомата \mathcal{P} , то L имеет однозначную КС-грамматику.

Лекция А7 МПавтоматы, П

Вадим Пузаренко

автоматы

Теорема А7.6.

Если $L = L(\mathcal{P})$ для некоторого ДМП-автомата \mathcal{P} , то L имеет однозначную КС-грамматику.

Доказательство.

Пусть \$- "концевой маркер", отсутствующий в цепочках языка L и пусть $L'=L^{\$}$. Тогда L' имеет префиксное свойство, а по теореме A4.2, $L' = N(\mathcal{P}')$ для некоторого ДМП-автомата \mathcal{P}' . По теореме A4.3, L' имеет однозначную КС-грамматику (скажем, $\mathfrak{G}' = (V, \Sigma, P, S)$). Теперь по грамматике \mathfrak{G}' построим грамматику $\mathfrak{G} = (V \cup \{\$\}, \Sigma \setminus \{\$\}, P', S)$, для которой $L = L(\mathfrak{G})$. Для этого определим $P' = P \cup \{\$ \longrightarrow \varepsilon\}$. Так как $L(\mathfrak{G}') = L'$, имеем $L(\mathfrak{G}) = L$. Докажем, что $\mathfrak G$ однозначна. В самом деле, левые порождения в $\mathfrak G$ совпадают с левыми порождениями в грамматике \mathfrak{G}' , за исключением последнего шага в \mathfrak{G} — замены \$ на ε . Таким образом, если бы слово α имело бы два различных левых порождения в \mathfrak{G} , то α $^{\$}$ имело бы два различных левых порождения в \mathfrak{G}' , противоречие.

Лекция А7 МПавтоматы, П Вадим

VI П-автоматы

ДМПавтоматы

Спасибо за внимание.