Floating Point

Arquitectura de Computadores Departamento de Engenharia Informática Instituto Superior de Engenharia do Porto

Luís Nogueira (lmn@isep.ipp.pt)

Today: Floating Point

- **■** Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary
- Practice problem

Introduction

- A floating-point representation encodes rational numbers of the form $V = x \times 2^y$
- It is useful for performing computations involving
 - very large numbers (|V| ≫ 0)
 - numbers very close to 0 ($|V| \ll 1$)
 - and more generally as an approximation to real arithmetic
- What issues come up when trying to devise a data representation for floating point numbers?
 - It turns out these issues are more complicated than representing integers

Fractional binary numbers

■ A first step in understanding floating-point numbers is to consider binary numbers having fractional values

■ What is 1011.101₂?

Fractional binary numbers

- Bits to right of "binary point" represent fractional powers of 2
- Represents rational number: $\sum_{k=-i}^{i} b_k \times 2^k$

Fractional binary numbers

- A first step in understanding floating-point numbers is to consider binary numbers having fractional values
- What is 1011.101₂?
- The binary representation of 11.625

```
1 \times 2^{3} + 1 \times 2^{1} + 1 \times 2^{0} + 1 \times 2^{-1} + 1 \times 2^{-3} =
8 + 2 + 1 + 1/2 + 1/8 =
11.625
```

Fractional binary numbers: Examples

Value

Representation

$$5.75 = 53/4$$
 101.11_2
 $2.875 = 27/8$ 10.111_2
 $1.4375 = 17/16$ 1.0111_2

Observations

- Divide by 2 by shifting binary point left (unsigned)
- Multiply by 2 by shifting binary point right
- Numbers of form 0.111111...2 are just below 1.0

■
$$1/2 + 1/4 + 1/8 + ... + 1/2^i + ... \rightarrow 1.0$$

• Use notation $1.0 - \varepsilon$

Representable numbers

■ Limitation #1

- Can only exactly represent numbers of the form x/2^k
 - Other rational numbers have repeating bit representations

Value	Representation
1/3	0.01010101[01]2
1/5	0.001100110011[0011]2
1/10	0.0001100110011[0011]2

■ Limitation #2

- Just one setting of binary point within the w bits
 - Not efficient for representing very large or very small numbers

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- **Example and properties**
- Rounding, addition, multiplication
- Floating point in C
- Summary
- **■** Practice problem

IEEE Floating Point

■ IEEE Standard 754

- Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
- Supported by all major CPUs

Driven by numerical concerns

- Nice standards for rounding, overflow, underflow
- Hard to make fast in hardware
 - Numerical analysts predominated over hardware designers in defining standard

Floating point representation

Numerical form:

$$(-1)^{s} M 2^{E}$$

- Sign bit s determines whether number is negative (s = 1) or positive (s = 0)
- **Significand** *M* normally a fractional value in range [1.0,2.0).
- **Exponent** *E* weights value by power of two

Encoding

- MSB s is sign bit s
- exp field encodes E (but is not equal to E)
- frac field encodes M (but is not equal to M)

S	ехр	frac
---	-----	------

Precision options

■ Single precision: 32 bits (float type in C)

■ Double precision: 64 bits (double type in C)

Extended precision: 80 bits (Intel only)

S	ехр	frac
1	15-bits	63 or 64-bits

Normalized values

$$v = (-1)^s M 2^E$$

■ The common case, when $exp \neq 000...0$ and $exp \neq 111...1$

■ Exponent coded as a biased value: E = Exp - Bias

- Exp: unsigned value of exp field
- $Bias = 2^{k-1} 1$, where k is number of exponent bits
 - Single precision: 127 (Exp: 1...254, E: -126...127)
 - Double precision: 1023 (Exp: 1...2046, E: -1022...1023)

■ Significand coded with implied leading 1: $M = 1.xxx...x_2$

- xxx...x: bits of frac field
- Minimum when frac = 000...0 (M = 1.0)
- Maximum when frac = 111...1 (M = 2.0ε)
- Get extra leading bit for "free"

Normalized encoding example

 $v = (-1)^s M 2^E$ E = Exp - Bias

- **Value:** float f = 15213.0;
 - $15213_{10} = 11101101101101_2$ = $1.1101101101101_2 \times 2^{13}$

Significand

```
M = 1.1101101101101_2
frac= 1101101101101_000000000_2 (23 bits)
```

Exponent

$$E = 13$$
 $Bias = 127$
 $Exp = 140 = 10001100_{2}$ (8 bits)

■ Result:

0 10001100 110110110110100000000

s exp frac

Denormalized values

$$v = (-1)^{s} M 2^{E}$$

 $E = 1 - Bias$

- **Condition:** *exp* = 000...0
- **Exponent value:** E = 1 Bias (instead of E = 0 Bias)
- Significand coded with implied leading 0: *M* = 0.xxx...x₂
 - xxx...x: bits of frac
- Case: *exp* = 000...0, *frac* = 000...0
 - Represents zero value
 - Note distinct values: +0 and -0 (why?)
- Case: exp = 000...0, frac ≠ 000...0
 - Numbers closest to 0.0
 - Equispaced

Denormalized values

$$v = (-1)^{s} M 2^{E}$$

 $E = 1 - Bias$

- **■** Condition: *exp* = 111...1
- Case: *exp* = 111...1, *frac* = 000...0
 - Represents value ∞ (infinity)
 - Operation that overflows
 - Both positive and negative
 - E.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -\infty$
- Case: exp = 111...1, $frac \neq 000...0$
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
 - E.g., sqrt(-1), $\infty \infty$, $\infty \times 0$

Visualization: Floating point encodings

Normalized

Denormalized

Infinity

3	S	11111111	0000000000000000000
9	5	11111111	000000000000000000000000000000000000000

NaN

S	11111111	≠ 0

Visualization: Floating point encodings

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- **■** Example and properties
- Rounding, addition, multiplication
- **■** Floating point in C
- Summary
- **■** Practice problem

Tiny floating point example

8-bit floating point representation

- The sign bit is in the most significant bit
- The next four bits are the exponent, with a bias of $2^4 1 = 7$
- The last three bits are the frac

■ Same general form as IEEE Format

- Normalized, denormalized
- Representation of 0, NaN, infinity

Dynamic range (positive only)

	S	exp	frac	E	Value	d: E = 2xp - Bias $d: E = 1 - Bias$
	0	0000	000	-6	0	
	0	0000	001	-6	1/8*1/64 = 1/512	closest to zero
Denormalized numbers	0	0000	010	-6	2/8*1/64 = 2/512	
	0	0000	110	-6	6/8*1/64 = 6/512	
	0	0000	111	-6	7/8*1/64 = 7/512	largest denormalized
	0	0001	000	-6	8/8*1/64 = 8/512	smallest normalized
	0	0001	001	-6	9/8*1/64 = 9/512	
	•••					
	0	0110	110	-1	14/8*1/2 = 14/16	
	0	0110	111	-1	15/8*1/2 = 15/16	closest to 1 below
Normalized	0	0111	000	0	8/8*1 = 1	
numbers	0	0111	001	0	9/8*1 = 9/8	closest to 1 above
	0	0111	010	0	10/8*1 = 10/8	
	•••					
	0	1110	110	7	14/8*128 = 224	
	0	1110	111	7	15/8*128 = 240	largest normalized
	0	1111	000	n/a	inf	

Interesting numbers

{single,double}

Description	ехр	frac	Numeric Value
Zero	0000	0000	0.0
Smallest positive denorm.	0000	0001	$2^{-\{23,52\}} \times 2^{-\{126,1022\}}$
■ Single $\approx 1.4 \times 10^{-45}$			
■ Double $\approx 4.9 \times 10^{-324}$			
Largest denormalized	0000	1111	$(1.0 - \varepsilon) \times 2^{-\{126,1022\}}$
■ Single $\approx 1.18 \times 10^{-38}$			
■ Double $\approx 2.2 \times 10^{-308}$			
Smallest positive normalized	0001	0000	1.0 x $2^{-\{126,1022\}}$
Just larger than largest denorm	nalized		
One	0111	0000	1.0
Largest Normalized	1110	1111	$(2.0 - \varepsilon) \times 2^{\{127,1023\}}$

- Single $\approx 3.4 \times 10^{38}$
- Double $\approx 1.8 \times 10^{308}$

Special properties of the IEEE encoding

- **■** Floating-point zero same as integer zero
 - All bits are equal to 0

■ Can (almost) use unsigned integer comparison

- Must first compare sign bits
- Must consider -0 = 0
- NaNs problematic
 - Will be greater than any other values, including infinity
 - What should comparison yield?
- Otherwise OK
 - Denormalized vs. normalized
 - Normalized vs. infinity

Today: Floating Point

- Background: Fractional binary numbers
- **IEEE floating point standard: Definition**
- **■** Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Floating point operations: Basic idea

$$\mathbf{x} +_{\mathbf{f}} \mathbf{y} = \text{Round}(\mathbf{x} + \mathbf{y})$$

$$\mathbf{x} \times_{\mathbf{f}} \mathbf{y} = \text{Round}(\mathbf{x} \times \mathbf{y})$$

■ Basic idea

- First compute exact result
- Make it fit into desired precision
 - Possibly overflow if exponent too large
 - Possibly round to fit into frac

Rounding

- For a value x, find the "closest" matching value x' that can be represented in the desired floating-point format
 - One key problem is to define the direction to round a value that is halfway between two possibilities

■ IEEE floating-point rounding modes

	1.40	1.60	1.50	2.50	-1.50
Towards zero	1	1	1	2	-1
Round down $(-\infty)$	1	1	1	2	-2
Round up $(+\infty)$	2	2	2	3	-1
Round to nearest, ties to even (default)	1	2	2	2	-2

Closer look at round-to-even

■ Default rounding mode

- Hard to get any other kind without dropping into assembly
- All others are statistically biased
 - Sum of set of positive numbers will consistently be over- or underestimated

Applying to other decimal places / bit positions

- When exactly halfway between two possible values
 - Round so that least significant digit is even
- E.g., round to nearest hundredth

7.8949999	7.89	(Less than half way)
7.8950001	7.90	(Greater than half way)
7.8950000	7.90	(Half way—round up)
7.8850000	7.88	(Half wav—round down)

Rounding binary numbers

■ Binary fractional numbers

- "Even" when least significant bit is 0
- "Half way" when bits to right of rounding position = 100...2

Examples

Round to nearest 1/4 (2 bits right of binary point)

Value	Binary	Rounded	Action	Rounded Value
2 3/32	10.000112	10.002	(<1/2—down)	2
2 3/16	10.001102	10.012	(>1/2—up)	2 1/4
2 7/8	10.11 <mark>100</mark> 2	11.002	(1/2—up)	3
2 5/8	10.10 <mark>100</mark> 2	10.102	(1/2—down)	2 1/2

Floating point multiplication

- \blacksquare $(-1)^{s1} M1 2^{E1} \times (-1)^{s2} M2 2^{E2}$
- **Exact Result:** $(-1)^s M 2^E$
 - Sign s: s1 ^ s2
 - Significand *M*: *M1* x *M2*
 - Exponent *E*: *E*1 + *E*2

Fixing

- If $M \ge 2$, normalize shift M right, increment E
- If E out of range, overflow
- Round M to fit frac precision

■ Implementation

Biggest inconvenience is multiplying significands

Floating point addition

- - **A**ssume *E1* > *E2*
- Exact Result: $(-1)^s M 2^E$
 - ■Sign *s*, significand *M*:
 - Result of signed align & add
 - ■Exponent *E*: *E1*

Get binary points lined up

Fixing

- If $M \ge 2$, normalize shift M right, increment E
- •if M < 1, normalize shift M left k positions, decrement E by k
- ■Overflow if *E* out of range
- ■Round *M* to fit **frac** precision

Today: Floating Point

- Background: Fractional binary numbers
- **IEEE floating point standard: Definition**
- **■** Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Floating Point in C

C guarantees two levels

- •float single precision
- **double** double precision

Conversions/casting

- Casting between int, float, and double changes bit representation
- double/float → int
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range or NaN: Generally sets to TMin
- int → double
 - Exact conversion, as long as int has ≤ 53 bit word size
- int → float
 - Will round according to rounding mode

Floating Point in C: Exercise

■ For each of the following C expressions, either:

- Argue that it is true for all argument values
- Explain why not true

```
int x = ...;
float f = ...;
double d = ...;
```

Assume neither d nor **f** is NaN

```
□ x == (int) (float) x
□ x == (int) (double) x
□ f == (float) (double) f
□ d == (double) (float) d
□ f == -(-f);
□ 2/3 == 2/3.0
□ d < 0.0 ⇒ ((d*2) < 0.0)
□ d > f ⇒ -f > -d
□ d * d >= 0.0
□ (d+f) -d == f
```

Today: Floating Point

- Background: Fractional binary numbers
- **IEEE floating point standard: Definition**
- **■** Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary
- **■** Practice problem

Summary

- IEEE Floating Point has clear mathematical properties
- Represents numbers of form (-1)^s M 2^E
- One can reason about operations independent of implementation
 - As if computed with perfect precision and then rounded
- Not the same as real arithmetic
 - Violates associativity/distributivity
 - Makes life difficult for compilers & serious numerical applications programmers

Today: Floating Point

- Background: Fractional binary numbers
- **IEEE floating point standard: Definition**
- **■** Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary
- Practice problem

Practice problem

■ Convert 8-bit unsigned numbers to tiny floating point format

Value	Binary
128	10000000
15	00001101
33	00010001
35	00010011
138	10001010
63	00111111

Practice problem

- Steps:
- Normalize to have leading 1
- 2. Round to fit within fraction
- 3. Postnormalize to deal with effects of rounding

Step 1: Normalize

■ Requirement

- Set binary point so that numbers of form 1.xxxxx
- Adjust all to have leading one
 - Decrement exponent as shift left

Value	Binary	Fraction	Exponent
128	1000000	1.000000	7
15	00001101	1.1010000	3
17	00010001	1.0001000	4
19	00010011	1.0011000	4
138	10001010	1.0001010	7
63	00111111	1.1111100	5

Step 2: Rounding

1.BBGRXXX

Guard bit: LSB of result

Round bit: 1st bit removed

Sticky bit:

OR of remaining bits

■ Round up conditions

- Round = 1, Sticky = $1 \rightarrow > 0.5$
- Guard = 1, Round = 1, Sticky = 0 → Round to even

Value	Fraction	GRS	Incr?	Rounded
128	1.0000000	000	N	1.000
15	1.1010000	100	N	1.101
17	1.0001000	010	N	1.000
19	1.0011000	110	Y	1.010
138	1.0001010	011	Y	1.001
63	1.1111100	111	Y	10.000

Step 3: Postnormalize

Issue

- Rounding may have caused overflow
- Handle by shifting right once & incrementing exponent

Value	Rounded	Exp	Adjusted	Result
128	1.000	7		128
15	1.101	3		15
17	1.000	4		16
19	1.010	4		20
138	1.001	7		134
63	10.000	5	1.000/6	64