Домашнее задание на 10.04 (Алгебра)

Емельянов Владимир, ПМИ гр №247

№1 Для любых $m, n \in \mathbb{R} \setminus \{1\}$ проверим, что $m \circ n \neq 1$:

$$m \circ n = 3mn - 3m - 3n + 4 = 1 \implies 3mn - 3m - 3n + 3 = 0 \implies (m-1)(n-1) = 0$$

Но $m, n \neq 1$, следовательно, $m \circ n \neq 1$. Следовательно, это бинарная операция.

Докажем, что это группа:

1) Ассоциативность:

Проверим, что $(a \circ b) \circ c = a \circ (b \circ c)$:

$$(a \circ b) \circ c = (3ab - 3a - 3b + 4) \circ c = 3(3ab - 3a - 3b + 4)c - 3(3ab - 3a - 3b + 4) - 3c + 4$$

Раскрыв скобки и приведя подобные, получим симметричное выражение относительно a, b, c, что доказывает ассоциативность.

2) Нейтральный элемент:

Найдем e, такой что $m \circ e = m$:

$$3me - 3m - 3e + 4 = m \implies e(3m - 3) = 4m - 4 \implies e = \frac{4}{3}$$

Проверим, что $\frac{4}{3}$ — нейтральный элемент:

$$m \circ \frac{4}{3} = 3m \cdot \frac{4}{3} - 3m - 3 \cdot \frac{4}{3} + 4 = 4m - 3m - 4 + 4 = m$$

3) Обратный элемент:

Для m найдем m^{-1} , такой что $m \circ m^{-1} = \frac{4}{3}$:

$$3mm^{-1} - 3m - 3m^{-1} + 4 = \frac{4}{3} \implies m^{-1}(3m - 3) = \frac{4}{3} + 3m - 4$$
$$m^{-1} = \frac{9m - 8}{9(m - 1)}$$

Так как $m \neq 1$, обратный элемент существует.

- №2 Определим все значения $a \geqslant 1$, при которых $H_a = \{x \in \mathbb{R} \mid x > a\}$ является подгруппой в G.
 - 1. Нейтральный элемент:

$$\frac{4}{3} > a \implies a < \frac{4}{3}$$

Но по условию $a \geqslant 1$, поэтому $a \in \left[1, \frac{4}{3}\right)$.

2. Замкнутость: Для x, y > a проверим $x \circ y > a$:

$$x \circ y = 3xy - 3x - 3y + 4 > a$$

Это неравенство выполняется для $a\geqslant \frac{4}{3}$, так как при $x,y\to a^+$ минимальное значение $x\circ y$ стремится к $3a^2-6a+4\geqslant a$.

3. Обратный элемент: Для x > a проверим $x^{-1} > a$:

$$x^{-1} = \frac{9x - 8}{9(x - 1)} > a$$

Решая неравенство, получаем $x>\frac{9a-8}{9a-9}$. Для $a\geqslant\frac{4}{3}$ это выполняется.

Ответ: $a \in \left[\frac{4}{3}, +\infty\right)$.

№3 Для группы ($\mathbb{Z}_{17}^*, \times$) найдем порядки и обратные элементы:

Элемент х	Порядок $\operatorname{ord}(x)$	Обратный x^{-1}
1	1	1
2	8	9
3	16	6
4	4	13
5	16	7
6	16	3
7	16	5
8	8	15
9	8	2
10	16	12
11	16	14
12	16	10
13	4	4
14	16	11
15	8	8
16	2	16

№4 Докажем, что всякая подгруппа циклической группы является циклической.

Доказательство: Пусть $G=\langle g \rangle$ — циклическая группа, $H\subseteq G$.

- (a) Если $H=\{e\},$ то $H=\langle e \rangle$ циклическая.
- (b) Иначе, рассмотрим множество $S = \{k \in \mathbb{N} \mid g^k \in H\}$. Оно непусто, так как H содержит хотя бы один элемент $g^n \neq e$.
- (c) Пусть d наименьший натуральный элемент S. Покажем, что $H = \langle g^d \rangle :$
 - $\langle g^d \rangle \subseteq H$, так как $g^d \in H$.

• Для любого $h \in H$ существует k, такое что $h = g^k$. Разделим k на d с остатком: k = qd + r, $0 \leqslant r < d$. Тогда $g^r = g^{k-qd} = h(g^d)^{-q} \in H$. Из минимальности d следует r = 0, значит, $h = (g^d)^q \in \langle g^d \rangle$.

Таким образом, H — циклическая группа.