DEVOIR À LA MAISON 5 Résolution d'une équation différentielle avec la méthode d'Euler explicite

Capacité exigible

Mettre en œuvre la méthode d'Euler, à l'aide d'un langage de programmation, pour simuler la réponse d'un système linéaire du premier ordre à une excitation de forme quelconque.

1 Méthode d'Euler explicite

La méthode d'Euler explicite est une **méthode itérative** qui permet de déterminer numériquement une solution approchée de l'équation différentielle :

$$y'(t) = F(y(t),t)$$

sur l'intervalle $[t_0, t_f]$, avec la **condition initiale** $y(t_0) = y_0$ (problème de Cauchy). La **procédure algorithmique** est la suivante :

• On commence par réaliser une subdivision régulière de l'intervalle $\left[t_0, t_f\right]$ en sous-intervalles de largeur δt (δt est le **pas de résolution**), ce qui revient à générer un ensemble de points d'abscisses t_k telles que :

$$t_k = t_0 + k \cdot \delta t$$

❖ On cherche ensuite une valeur numérique approchée de $y(t_k)$; cette valeur approchée est notée y_k . On connaît y_0 grâce à la condition initiale. On détermine les valeurs y_k en procédant de proche en proche grâce à la relation de récurrence (ou schéma numérique):

$$y_{k+1} = y_k + \delta t \cdot F(y_k, t_k)$$

2 Réponse indicielle du circuit RC

On considère le circuit RC série (schéma cicontre), dans lequel le condensateur est initialement déchargé. À t=0, on ferme l'interrupteur K. Pour $t \ge 0$, l'évolution de la tension u(t) aux bornes du condensateur est régie par l'équation différentielle

$$\frac{du(t)}{dt} + \frac{1}{\tau}u(t) = \frac{E}{\tau}$$
 avec $u(0) = 0$ comme condition initiale. C'est un problème de

Cauchy de la forme
$$\frac{du(t)}{dt} = F(u(t),t)$$
 avec $F(u(t),t) = \frac{E}{\tau} - \frac{1}{\tau}u(t)$.

La solution analytique est
$$u(t) = E\left(1 - e^{-\frac{t}{\tau}}\right)$$

L'objectif est d'obtenir **les solutions numériques** pour différents pas de résolution sur l'intervalle de temps $[0,5\tau]$ et de tracer sur un même graphe les solutions numériques et la solution analytique.

On prendra: E = 10 V, $R = 10 \text{ k}\Omega$, C = 100 nF.

Les deux fichiers «DM5_OS5_Euler_niveauX.py» sont disponibles dans l'application Moodle sur l'ENT (avec X égal à 1 ou 2).

Faîtes votre choix en fonction de votre niveau! Vous pouvez commencer par le niveau 1 et, si vous êtes à l'aise, passer ensuite au niveau 2. Si vous bloquez au niveau 2, n'hésitez pas à rétrograder...

Télécharger le fichier choisi sur votre ordinateur. Le **renommer** « NOM_Prénom_DM5_niveauX.py ». Lancer Pyzo puis ouvrir votre fichier.

<u>Nota Bene</u>: Veillez à bien lire les commentaires associés à chaque ligne de code (informations, consignes, zones à compléter...)

Cellule 1 : Importation des bibliothèques

1. Exécuter la « Cellule 1 » pour importer les bibliothèques (CTRL + Entrée).

<u>Cellule 2: Système physique étudié et valeurs numériques des paramètres physiques</u>

- 2. <u>Niveaux 1 et 2</u>: préciser les valeurs numériques ou expressions littérales des paramètres physiques du système étudié.
- 3. <u>Niveaux 1 et 2</u> : écrire la fonction derivee_u(u,t), qui prend comme arguments la tension u et le temps t, et qui renvoie l'expression de $\frac{du(t)}{dt}$. Exécuter la « Cellule 2 ».

Cellule 3 : Implémentation de la méthode d'Euler explicite

Le choix est fait ici de travailler avec des structures de données de type **tableau** (**array** nécessitant la bibliothèque **numpy**) de façon à faciliter le traitement ultérieur des variables de sortie.

La fonction euler (F, y0, t0, tf, dt) proposée prend comme arguments la fonction F associé au système différentiel étudié, la condition initiale y0, les bornes t0 et tf de l'intervalle de temps $[t_0, t_f]$, le pas dt de résolution, et renvoie deux tableaux : celui des instants t_k et celui des valeurs approchées y_k .

4. <u>Niveau 1</u>: compléter la fonction <u>euler(F, y0, t0, tf, dt)</u> proposée avec le tableau des instants t, la condition initiale et la relation de récurrence. Exécuter la « Cellule 3 ».

<u>Niveau 2</u>: compléter la fonction euler(F, y0, t0, tf, dt) proposée avec la création et l'initialisation de toutes les variables nécessaires, la boucle de récurrence et les variables de sortie. Exécuter la « Cellule 3 ».

Cellule 4: Résolution numérique

5. <u>Niveaux 1 et 2</u>: Effectuer la résolution numérique de $\frac{du(t)}{dt} = F(u(t),t)$ avec la méthode d'Euler en choisissant un pas de résolution $\delta t = \frac{\tau}{10}$: la solution est nommée u_Euler. Exécuter la « Cellule 4 ».

Cellule 5: Résolution analytique

6. <u>Niveaux 1 et 2</u>: Effectuer la résolution analytique pour 100 valeurs de temps régulièrement espacées sur l'intervalle de temps $\left[t_0,t_f\right]$: la solution est nommée u_exacte. Exécuter la « Cellule 5 ».

Cellule 6: Représentation graphique

7. <u>Niveaux 1 et 2</u>: Tracer sur un même graphe la solution exacte en traits rouges (en fonction de t_fixe), et la solution numérique en tirets bleus (en fonction de t). Le temps sera affiché en ms. Exécuter la « Cellule 6 ». Commenter l'allure des courbes.

<u>Influence du pas de discrétisation</u>

8. <u>Niveau 1</u>: Changer le pas de résolution numérique (discrétisation) puis exécuter le programme (CTRL+E) et commenter les graphes des solutions numériques obtenues dans les deux cas suivants : $\delta t = \tau$ et $\delta t = \frac{\tau}{100}$.

<u>Niveau 2:</u> Compléter la <u>Cellule 7: Représentation graphique pour plusieurs pas de résolution</u> de façon à superposer dans une nouvelle fenêtre les graphes de la solution analytique avec les trois graphes des solutions numériques obtenues pour les trois pas de résolution suivants : $\delta t = \tau$, $\delta t = \frac{\tau}{10}$

et $\delta t = \frac{\tau}{100}$ (à l'aide d'une boucle). Exécuter la « Cellule 7 ». Commenter l'influence du pas de discrétisation.

Sauvegarder votre fichier <u>correctement renommé</u>.