CS 476 A (Q) (4)

=
$$p \cdot max(15-0,0) + ((-p) \cdot max(0.5-0,0)$$

$$= 8p + (1-p) \cdot 0.5 = 0.5 + 0.5p$$

$$= p \cdot \max(\eta - (5,0) + (1-p) \cdot \max(\eta - 0.5,0) = 0$$

Prove that there are arbitrage appurturities when
$$\mathbb{O}_{p < g \neq \frac{1}{3}}$$
 and $\mathbb{O}_{p > g \neq \frac{1}{3}}$ ($g \neq \frac{1}{3}$ is from (a))

if
$$p < gt = \frac{1}{3}$$
, set-up a portfolio using put-call parity.

At T, we have that
$$TT_T: CT - PT - ST + K = 0$$
 by pul-call parity

$$= 0.5 + 7.5p - 0 - 10 + 7$$

$$=7.5p-2.5$$
 < 0 (:: $p)$

so he have an arbitrage when p<8+ as To <0 but TT=0

Alq1 (5)

c) if $p > g t = \frac{1}{3}$, set up a portfoilo using put-call parity. At T, we have that $T_T: P_T - C_T + S_T - |C| = 0$, by put-call parity.

Then at 0, we have the same portfolio such that $T_0: P_0 - C_0 + S_0 - K$

$$= 0 - 0.5 - 0.5p + 10 - 7$$

$$= -0.5p + 2.5 < 0 \quad (::p) 8^{4} = \frac{1}{3}$$

So we have an arbitrage when $TT_T = 0$ but $T_0 < 0$ for $p > g^* = \frac{1}{3}$.

At there exist arbitrage appurtunities for both $p < g \neq = \frac{1}{3}$ and $p > g \neq = \frac{1}{3}$, we can construct an arbitrage based on the value of $p \neq g \neq = \frac{1}{3}$.