Bayesian Computation

Lin Zhang

Department of Biostatistics School of Public Health University of Minnesota

Introduction

Base of Bayesian inference – posterior distribution

$$p(\theta|\mathbf{x}) = \frac{f(\mathbf{x}|\theta)\pi(\theta)}{m(\mathbf{x})}$$

- However, $p(\theta|\mathbf{x})$ is often NOT analytically tractable.
 - $f(\mathbf{x}|\boldsymbol{\theta})\pi(\boldsymbol{\theta})$ is not proportional to a "family" density.
 - The normalizing constant

$$m(\mathbf{x}) = \int_{\mathbf{\Theta}} f(\mathbf{x}|\boldsymbol{\theta}) \pi(\boldsymbol{\theta}) d\boldsymbol{\theta}$$

does not have a closed form.

• Solution: approximate the posterior or generate samples from the posterior without knowing m(x).

Bayesian Computational Methods

- Asymptotic approximation methods
 - Normal approximation
 - Laplace approximation
 - Work for large n, low-dimensional θ
- Non-iterative Monte Carlo methods
 - Direct sampling ← we have seen examples in hierarchical models
 - Indirect sample: rejection sampling, importance sampling
 - low-dimensional θ , posterior curve vaguely known
- Markov chain Monte Carlo (MCMC) methods
 - Gibbs algorithm
 - Metropolis algorithm
 - Other advance MCMC algorithm
 - Work for complicated and/or high-dimensional posterior. Most popular!

Asymptotic Normal Approximation

- When *n* is large, $p(\theta|\mathbf{x})$ will be approximately normal.
- "Bayesian Central Limit Theorem": Suppose $X_1, \ldots, X_n \overset{\text{iid}}{\sim} f_i(x_i|\theta)$, and $\pi(\theta)$ is the prior for θ , which may be improper. Further suppose that the posterior distribution is proper and its mode exists. Then as $n \to \infty$,

$$p(\theta|\mathbf{x}) \stackrel{\cdot}{\sim} N\left(\widehat{\boldsymbol{\theta}}^{p}, [I^{p}(\mathbf{x})]^{-1}\right) ,$$

where $\widehat{\boldsymbol{\theta}}^{p}$ is the posterior mode of $\boldsymbol{\theta}$ obtained by solving

$$\frac{\partial}{\partial \theta_i} \log p^*(\boldsymbol{\theta}|\mathbf{x}) = 0,$$

where $p^*(\theta|\mathbf{x}) = f(\mathbf{x}|\theta)\pi(\theta)$ is the unnormalized posterior.

$$I_{ij}^{p}(\mathbf{x}) = -\left[\frac{\partial^{2}}{\partial \theta_{i} \partial \theta_{j}} \log \left(p^{*}(\boldsymbol{\theta}|\mathbf{x})\right)\right]_{\boldsymbol{\theta} = \widehat{\boldsymbol{\theta}}^{p}}$$

is minus the inverse Hessian of $\log p^*(\theta|\mathbf{x})$ evaluated at the mode (the "generalized" observed Fisher information matrix).

Example: Beta-Binomial model

Suppose $X|\theta \sim Bin(n,\theta)$ and $\theta \sim Beta(1,1)$.

• Let $p^*(\theta|x) = f(x|\theta)\pi(\theta)$, we have $\ell(\theta) = \log p^*(\theta|x) \propto x \log \theta + (n-x)\log(1-\theta)$.

Taking the derivative of $\ell(\theta)$ and equating to zero, we obtain $\hat{\theta}^p = \hat{\theta} = x/n$, the familiar binomial proportion.

The second derivative is

$$\frac{\partial^2 \ell(\theta)}{\partial \theta^2} = \frac{-x}{\theta^2} - \frac{n-x}{(1-\theta)^2} ,$$

such that,

$$\left. \frac{\partial^2 \ell(\theta)}{\partial \theta^2} \right|_{\theta = \hat{\theta}} = -\frac{x}{\hat{\theta}^2} - \frac{n - x}{(1 - \hat{\theta})^2} = -\frac{n}{\hat{\theta}} - \frac{n}{1 - \hat{\theta}} \ .$$

Example: Beta-Binomial model

Thus

$$[I^p(x)]^{-1} = \left(\frac{n}{\hat{\theta}} + \frac{n}{1-\hat{\theta}}\right)^{-1} = \left(\frac{n}{\hat{\theta}(1-\hat{\theta})}\right)^{-1} = \frac{\hat{\theta}(1-\hat{\theta})}{n},$$

which is the usual frequentist expression for $\widehat{Var}(\hat{\theta})$. Thus the Bayesian CLT gives

$$p(\theta|x) \stackrel{.}{\sim} N\left(\hat{\theta}, \frac{\hat{\theta}(1-\hat{\theta})}{n}\right)$$

 Notice that a frequentist might instead use MLE asymptotics to write

$$\hat{ heta} \mid heta \stackrel{.}{\sim} N\left(heta \,,\, rac{\hat{ heta}(1-\hat{ heta})}{n}
ight) \;,$$

leading to identical inferences for θ , but for different reasons and with different interpretations!

Probability of female birth given placenta previa

Comparison of this normal approximation to the exact posterior, a Beta(438, 544) distribution (recall n = 980):

Overlap with each other!

Higher order approximations

The Bayesian CLT is a first order approximation, since

$$E(g(\theta)) = g(\hat{\theta}) \left[1 + O(1/n) \right] .$$

- Second order approximations (i.e., to order $O(1/n^2)$) again requiring only mode and Hessian calculations are available via Laplace's Method (BDA3, Chapter 13.3).
- Advantages of Asymptotic Methods:
 - deterministic, noniterative algorithm
 - substitutes differentiation for integration
 - computationally quick
- Disadvantages of Asymptotic Methods:
 - requires well-parametrized, unimodal posterior
 - \bullet θ must be of at most moderate dimension
 - n must be large, but is beyond our control

Non-interative Monte Carlo Methods: Direct Sampling

• Suppose $\theta \sim p(\theta|\mathbf{y})$, and we are interested in the posterior mean of $f(\theta)$, which is given by

$$\gamma \equiv E[f(\theta)|\mathbf{y}] = \int f(\theta)p(\theta|\mathbf{y})d\theta.$$

• Approximations to the integral above can be carried out by Monte Carlo integration: Sample $\theta_1, \ldots, \theta_N$ independently from $p(\theta|\mathbf{y})$, and we can estimate γ by

$$\hat{\gamma} = \frac{1}{N} \sum_{i=1}^{N} f(\theta_i)$$

which converges to $E[f(\theta)|\mathbf{y}]$ with probability 1 as $N \to \infty$ (strong law of large numbers).

• The use of Monte Carlo approximation requires that we are able to directly sample from the posterior distribution $p(\theta|\mathbf{y})$. The quality of the approximation increases as N increases, which we can control!

Example: Normal data with unknown mean and variance

- If $y_i \stackrel{\text{iid}}{\sim} N(\mu, \sigma^2)$, i = 1, ..., n, and $\pi(\mu, \sigma^2) = \frac{1}{\sigma^2}$, then the posterior is $\mu | \sigma^2, \mathbf{y} \sim N(\bar{\mathbf{y}}, \sigma^2/n)$. and $\sigma^2 | \mathbf{y} \sim \text{inv-Gamma} \left(\frac{n-1}{2}, \frac{(n-1)s^2}{2} \right)$,
 - where $s^2 = \sum_{i=1}^{n} (y_i \bar{y})^2 / (n-1)$.
- Draw posterior samples $\{(\mu_i, \sigma_i^2), j = 1, ..., N\}$ from $p(\mu, \sigma^2 | \mathbf{y})$ as:

sample
$$\sigma_j^2 \sim \text{inv-Gamma}\left(\frac{n-1}{2}, \frac{(n-1)s^2}{2}\right)$$
;
then $\mu_i \sim N(\bar{\gamma}, \sigma_i^2/n), j = 1, \dots, N$.

- To estimate the posterior mean: $\hat{E}(\mu|\mathbf{y}) = \frac{1}{N} \sum_{i=1}^{N} \mu_i$.
- Easy to estimate any function of $\theta = (\mu, \sigma^2)$: To estimate the coefficient of variation, $\gamma = \sigma/\mu$, define $\gamma_i = \sigma_i/\mu_i$, j = 1, ..., N; summarize with moments or histograms!

Direct Sampling

• Monte Carlo integration allows for evaluation of its accuracy for any fixed N: Since $\hat{\gamma}$ is itself a sample mean of independent observations $f(\theta_1), \ldots, f(\theta_N)$, we have

$$Var(\hat{\gamma}) = \frac{1}{N} Var[f(\theta)|\mathbf{y}]$$

Since $Var[f(\theta)|\mathbf{y}]$ can be estimated by the sample variance of the $f(\theta_j)$ values, a standard error estimate of $\hat{\gamma}$ is given by

$$\hat{\mathsf{se}}(\hat{\gamma}) = \sqrt{\frac{1}{\mathsf{N}(\mathsf{N}-1)} \sum_{j=1}^{\mathsf{N}} [f(\theta_j) - \hat{\gamma}]^2} \ .$$

• the CLT implies that $\hat{\gamma} \pm 2\,\hat{se}(\hat{\gamma})$ provides a 95% (frequentist!) CI for γ .

Indirect Methods: Importance Sampling

• Suppose $\theta \sim p(\theta|\mathbf{y})$ which can NOT be directly sampled from, and we wish to approximate

$$\begin{split} E[f(\theta)|\mathbf{y}] &= \int f(\theta) p(\theta|\mathbf{y}) d\theta = \frac{\int f(\theta) p^*(\theta|\mathbf{y}) d\theta}{\int p^*(\theta|\mathbf{y}) d\theta} \;, \\ \text{where } p^*(\theta|\mathbf{y}) &= f(\mathbf{y}|\theta) \pi(\theta) \; \text{is the unnormalized posterior.} \end{split}$$

• Suppose we can roughly approximate $p(\theta|\mathbf{y})$ by some density $g(\theta)$ from which we can easily sample – say, a multivariate t. Then define the weight function

$$w(\theta) = p^*(\theta|\mathbf{y})/g(\theta)$$

• Draw $\theta_j \stackrel{\text{iid}}{\sim} g(\theta)$, and we have

$$E[f(\theta)|\mathbf{y}] = \frac{\int f(\theta)w(\theta)g(\theta)d\theta}{\int w(\theta)g(\theta)d\theta} \approx \frac{\frac{1}{N}\sum_{j=1}^{N}f(\theta_j)w(\theta_j)}{\frac{1}{N}\sum_{j=1}^{N}w(\theta_j)}.$$

 $g(\theta)$ is called the importance function.

• Remark: A good match of $g(\theta)$ to $p(\theta|\mathbf{y})$ will produce roughly equal weights, hence a good approximation.

Rejection sampling

• Here, instead of trying to approximate the posterior, we try to "blanket" it: suppose there exists a constant M>0 and a smooth density $g(\theta)$, called the envelope function, such that

$$p^*(\theta|\mathbf{y}) < Mg(\theta)$$

for all θ .

- The algorithm proceeds as follows:
 - (i) Generate $\theta_j \sim g(\theta)$.
 - (ii) Generate $U \sim \text{Uniform}(0, 1)$.
 - (iii) Accept θ_i if

$$U<rac{p^*(heta|\mathbf{y})}{Mg(heta_j)}.$$

reject θ_i otherwise.

(iv) Repeat (i)-(iii) until the desired sample $\{\theta_j, j=1,\ldots,N\}$ is obtained. The members of this sample will be random variables from the target posterior $p(\theta|\mathbf{y})$.

Rejection Sampling: informal "proof"

- Consider the θ_j samples in the histogram bar centered at a: the rejection step "slices off" the top portion of the bar. Repeat for all a: accepted θ_i mimic the lower curve!
- Remark: Need to choose *M* as small as possible (so as to maximize acceptance rate), and watch for "envelope violations"!

Markov chain Monte Carlo (MCMC) methods

- In many problems, it is difficult or impossible to find a feasible importance or envelope density, especially for high-dimensional θ .
- Luckily, iterative MC methods such as the Metropolis and Gibbs algorithms can be used to draw samples sequentially via Markov chain simulation that converge in distribution to the target posterior $p(\theta|\mathbf{y})$.
- Markov chain is a sequence of random variables $\theta^{(1)}, \theta^{(2)}, \ldots$, for which, for any $t \geq 1$, $\theta^{(t+1)}$ is sampled from a distribution $T(\theta|\theta^{(t)})$ which depends only on $\theta^{(t)}$. $T(\theta|\theta^{(t)})$ is called the transition kernel distribution.
- In MCMC algorithm, the transition kernel must be constructed so that the Markov chain converges to a unique stationary distribution, which is our target posterior $p(\theta|\mathbf{y})$, i.e.

$$\int T(\boldsymbol{\theta}|\boldsymbol{\theta}^c)p(\boldsymbol{\theta}^c|\mathbf{y})d\boldsymbol{\theta}^c = p(\boldsymbol{\theta}|\mathbf{y}).$$

Example: MCMC chains

Target distribution:
$$\theta \sim N_2 \left(0, \begin{bmatrix} 1 & 0.7 \\ 0.7 & 1 \end{bmatrix}\right)$$
.

Five independent MCMC chains with over-dispersed starting points. The all converge to the same target bivariate normal distribution!

Metropolis algorithm

- Used when the target posterior $p(\theta|\mathbf{y})$ is not available in closed form, and importance or envelop functions are hard to find.
 - Instead, we work with the unnormalized posterior $p^*(\theta|\mathbf{y})$, which is proportional to $p(\theta|\mathbf{y})$ with a (unknown) proportionality constant m(y).
 - Metropolis algorithm works by drawing a candidate value, θ^* , from some proposal distribution $q(\theta^*|\theta^{(t-1)})$ that easy to sample, and then using a acceptance/rejection rule to correct the draw so as to better approximate the target distribution.
 - Metropolis requires that the proposal density $q(\theta^*|\theta^{(t-1)})$ satisfies $q(\theta^*|\theta^{(t-1)}) = q(\theta^{(t-1)}|\theta^*)$,

i.e., q is symmetric in its arguments.

Metropolis algorithm (cont'd)

Given a starting value $\theta^{(0)}$ at iteration t=0, the algorithm proceeds as follows:

- Metropolis Algorithm: For (t = 1, ..., T), repeat:
 - 1. Draw θ^* from $q(\cdot|\theta^{(t-1)})$
 - 2. Compute the ratio

$$\alpha = \frac{p(\boldsymbol{\theta}^*|\mathbf{y})}{p(\boldsymbol{\theta}^{(t-1)}|\mathbf{y})} = \frac{p^*(\boldsymbol{\theta}^*|\mathbf{y})}{p^*(\boldsymbol{\theta}^{(t-1)}|\mathbf{y})}.$$

- 3. Accept θ^* and set $\theta^{(t)} = \theta^*$ with probability min $(\alpha, 1)$; Reject θ^* and set $\theta^{(t)} = \theta^{(t-1)}$ otherwise.
- Then a draw $\theta^{(t)}$ converges in distribution to a draw from the true posterior density $p(\theta|\mathbf{y})$.
- Note: The transition kernel density is

$$T(\theta^*|\theta^c) = q(\theta^*|\theta^c)\alpha(\theta^*,\theta^c),$$

which satisfies the stationarity condition. (check!)

Metropolis algorithm (cont'd)

How to choose the proposal density? The usual approach is to set

$$q(oldsymbol{ heta}^*|oldsymbol{ heta}^{(t-1)}) = \mathcal{N}(oldsymbol{ heta}^*|oldsymbol{ heta}^{(t-1)},\widetilde{\Sigma}) \ .$$

- It's crucial to choose an appropriate $\widetilde{\Sigma}$ (moving stepsize):
 - Too large stepsize leads to extremely low acceptance ratio (chain not moving).
 - Too small stepsize results in slow movements (slow convergence).
 - In one dimension, MCMC "folklore" suggests choosing $\widetilde{\Sigma}$ to provide an observed acceptance ratio near 50%.
- Hastings (1970) showed we can drop the requirement that q be symmetric, provided we use

$$\alpha = \frac{p(\boldsymbol{\theta}^*)q(\boldsymbol{\theta}^{(t-1)} \mid \boldsymbol{\theta}^*)}{p(\boldsymbol{\theta}^{(t-1)})q(\boldsymbol{\theta}^* \mid \boldsymbol{\theta}^{(t-1)})}$$

- useful for asymmetric target densities!
- this form called the Metropolis-Hastings algorithm

Example: beetles under CS₂ exposure

 The data (Bliss, 1935) record the number of adult flour beetles killed after 5 hours of exposure to various levels of CS₂.

Dosage	# killed	# exposed
w_i	Уi	ni
1.6907	6	59
1.7242	13	60
		• •
1.8639	60	60

Consider the model

$$P(\mathsf{death}|w_i) \equiv g(w_i) = \left[\frac{\exp(x_i)}{1 + \exp(x_i)}\right]^{m_1}, \qquad x_i = \frac{w_i - \mu}{\sigma}.$$

Priors:

$$m_1 \sim gamma(a_0, b_0)$$

 $\mu \sim N(c_0, d_0)$
 $\sigma^2 \sim IG(e_0, f_0)$

Example: beetles under CS₂ exposure

Posterior:

$$\begin{split} \rho(\mu,\sigma^2,m_1|\mathbf{y}) & \propto & f(\mathbf{y}|\mu,\sigma^2,m_1)\pi(\mu,\sigma^2,m_1) \\ & \propto & \left\{ \prod_{i=1}^k [g(w_i)]^{y_i} [1-g(w_i)]^{n_i-y_i} \right\} \\ & \times \frac{m_1^{a_0-1}}{(\sigma^2)^{e_0+1}} \exp\left\{ -\frac{1}{2} \left(\frac{\mu-c_0}{d_0}\right)^2 - \frac{m_1}{b_0} - \frac{1}{f_0\sigma^2} \right\}. \end{split}$$

• Transformation: $\theta = (\theta_1, \theta_2, \theta_3) = (\mu, \frac{1}{2} \log(\sigma^2), \log(m_1))$. This will be nice for us to work with Gaussian proposal densities.

$$\rho(\theta|\mathbf{y}) \propto \left\{ \prod_{i=1}^{k} [g(w_i)]^{y_i} [1 - g(w_i)]^{n_i - y_i} \right\} \times \exp(a_0 \theta_3 - 2e_0 \theta_2) \\
\times \exp\left\{ -\frac{1}{2} \left(\frac{\theta_1 - c_0}{d_0} \right)^2 - \frac{\exp(\theta_3)}{b_0} - \frac{\exp(-2\theta_2)}{f_0} \right\}.$$

• Gaussian Proposal density:

$$q(\boldsymbol{\theta}^*|\boldsymbol{\theta}^{(t-1)}) = N(\boldsymbol{\theta}^{(t-1)}, \tilde{\Sigma}), \quad \tilde{\Sigma} = \text{diag}(.00012, .033, .10).$$

Metropolis algorithm

- Now we have all the components
 - 1. Proposal density:

$$q(\boldsymbol{\theta}^*|\boldsymbol{\theta}^{(t-1)}) = \textit{N}(\boldsymbol{\theta}^{(t-1)}, \tilde{\Sigma}), \quad \tilde{\Sigma} = \text{diag}(.00012, .033, .10).$$

2. Unnormalized posterior for the transformed paramters $\theta = (\theta_1, \theta_2, \theta_3) = (\mu, \frac{1}{2} \log(\sigma^2), \log(m_1))$:

$$\begin{split} p^*(\boldsymbol{\theta}|\mathbf{y}) & \propto & \left\{ \prod_{i=1}^k [g(w_i)]^{y_i} [1-g(w_i)]^{n_i-y_i} \right\} \times \exp(a_0\theta_3 - 2e_0\theta_2) \\ & \times \exp\left\{ -\frac{1}{2} \left(\frac{\theta_1 - c_0}{d_0} \right)^2 - \frac{\exp(\theta_3)}{b_0} - \frac{\exp(-2\theta_2)}{f_0} \right\}. \end{split}$$

- Then run the Metropolis allgorithm: For (t = 1, ..., T), repeat:
 - (i) Draw θ^* from $q(\cdot|\theta^{(t-1)})$
 - (ii) Compute the ratio

$$\alpha = \frac{p(\boldsymbol{\theta}^*|\mathbf{y})}{p(\boldsymbol{\theta}^{(t-1)}|\mathbf{y})} = \frac{p^*(\boldsymbol{\theta}^*|\mathbf{y})}{p^*(\boldsymbol{\theta}^{(t-1)}|\mathbf{y})}.$$

(iii) Accept θ^* and set $\theta^{(t)} = \theta^*$ with probability min $(\alpha, 1)$; Reject θ^* and set $\theta^{(t)} = \theta^{(t-1)}$ otherwise.

Example: beetles under CS₂ exposure

Slow convergence due to low acceptance rate (13.5%).

Reason: high correlations $\widehat{corr}(\theta_1, \theta_2) = -.78$, $\widehat{corr}(\theta_1, \theta_3) = -.94$, $\widehat{corr}(\theta_2, \theta_3) = .89$.

Solution: try proposal $N(0,2\hat{\Sigma})$, where $\hat{\Sigma} = \sum_{t=1}^{T} (\boldsymbol{\theta}^{(t)} - \hat{\boldsymbol{\theta}}) (\boldsymbol{\theta}^{(t)} - \hat{\boldsymbol{\theta}})' / T$. Adaptive MCMC: refine/improve sampling based on early MCMC outputs.

Posterior Inference based on MCMC samples

- For t sufficiently large (say, bigger than t_0), $\{\theta^{(t)}\}_{t=t_0+1}^T$ is a (correlated) sample from the true posterior.
- We might therefore use a sample mean to estimate the posterior mean of one parameter θ_i , i.e.,

$$\widehat{E}(\theta_i|\mathbf{y}) = \frac{1}{T-t_0} \sum_{t=t_0+1}^T \theta_i^{(t)}$$
.

• The time from t=0 to $t=t_0$ is commonly known as the *burn-in* period; one can safely adapt (change) an MCMC algorithm during this pre-convergence period, since these samples will be discarded anyway

Posterior Inference based on MCMC samples (cont'd)

• In practice, we may actually run m parallel MCMC sampling chains, instead of only 1, for some modest m (say, m=5). Discarding the burn-in period, we obtain

$$\widehat{E}(heta_i|\mathbf{y}) = rac{1}{m(T-t_0)} \sum_{j=1}^m \sum_{t=t_0+1}^T heta_{i,j}^{(t)},$$

where now the *j* subscript indicates chain number.

• A posterior density estimate $\hat{p}(\theta_i|\mathbf{y})$ may be obtained by smoothing the histogram of the $\{\theta_{i,i}^{(t)}\}$, or as

$$\hat{p}(\theta_i|\mathbf{y}) = \frac{1}{m(T-t_0)} \sum_{j=1}^m \sum_{t=t_0+1}^T p(\theta_i|\theta_{k\neq i,j}^{(t)}, \mathbf{y})$$
 $\approx \int p(\theta_i|\theta_{k\neq i}, \mathbf{y}) p(\theta_{k\neq i}|\mathbf{y}) d\theta_{k\neq i}$

Example: beetles under CS₂ exposure

ullet Posterior mean of μ obtained from 3 parallel chains after discarding the first 1000 as burnin

$$\hat{E}(\mu = \theta_1 | \mathbf{y}) = \frac{1}{3 \times 9000} \sum_{i=1}^{3} \sum_{t=1001}^{10000} \theta_{1,3}^{(t)} = 1.81.$$

• Posterior mean of m_1 :

$$\hat{E}(\textit{m}_{1} = \exp(\theta_{3})|\mathbf{y}) = \frac{1}{3 \times 9000} \sum_{j=1}^{3} \sum_{t=1001}^{10000} \exp(\theta_{3,j}^{(t)}) = 0.37.$$

Gibbs Sampling

- General MCMC procedure for high-dimensional θ .
 - Suppose we have a collection of K random variables (or parameters) $\theta = (\theta_1, \dots, \theta_K)$, and the full conditional distributions

$$\{p_i(\theta_i|\boldsymbol{\theta}_{(-i)}),\ i=1,\ldots,K\}$$

are available for sampling ("available" means that samples may be directly generated from the distribution). $\theta_{(-i)}$ denotes the components of θ other than θ_i .

- Under mild conditions, the one-dimensional conditional distributions uniquely determine the full joint distribution of θ .
- Gibbs sampler simulates a Markov chain $\theta^{(1)}, \theta^{(2)}, \dots, \theta^{(T)}$ by sampling each element θ_i one at a time from its full conditional distribution $p_i(\theta_i|\theta_{(-i)})$ (while treating other elements as fixed).

Gibbs sampling (cont'd)

Given an arbitrary set of starting values $\{\theta_1^{(0)}, \dots, \theta_K^{(0)}\}$ at iteration t = 0, Gibbs sampling proceeds as follows:

- Gibbs Sampling: For (t = 1, ..., T), repeat:
 - 1. Draw $\theta_1^{(t)} \sim p_1(\theta_1|\theta_2^{(t-1)},\ldots,\theta_K^{(t-1)}),$
 - 2. Draw $\theta_2^{(t)} \sim p_2(\theta_2|\theta_1^{(t)}, \theta_3^{(t-1)}, \dots, \theta_K^{(t-1)}),$
 - K. Draw $\theta_{\kappa}^{(t)} \sim p_{K}(\theta_{K}|\theta_{1}^{(t)},\ldots,\theta_{\kappa-1}^{(t)}).$
- Under mild conditions.

$$(heta_1^{(t)},\dots, heta_K^{(t)})\stackrel{ ext{d}}{ o} (heta_1,\cdots, heta_K)\sim ext{p as $t o\infty$ }.$$

Note: The transition kernel density is

$$T(\boldsymbol{\theta}^*|\boldsymbol{\theta}^c) = p_1(\theta_1^*|\theta_2^c,\ldots,\theta_K^c) \times p_2(\theta_2^*|\theta_1^*,\theta_3^c,\ldots,\theta_K^c) \times \cdots \times p_K(\theta_K^*|\theta_1^*,\ldots,\theta_{K-1}^*),$$

which can be shown to satisfy the stationarity condition.

Pump Example

• Data: Consider a pump dataset about k=10 different systems of a certain nuclear power plant. For each system $i=1,\ldots,k$, the number of pump failures, Y_i , is observed in s_i thousands of hours.

i	Y_i	Si	r _i
1	5	94.320	.053
2	1	15.720	.064
÷	:	÷	:
10	22	10.480	2.099

Consider the modified Poisson/gamma model

$$Y_i|\theta_i \stackrel{ind}{\sim} Poisson(\theta_i s_i), \ \theta_i|\alpha, \beta \stackrel{ind}{\sim} Gamma(\alpha, \beta).$$

Add hyperprior

$$\beta \sim IG(c,d), i = 1,\ldots,k,$$

where α , c, d, and the s_i are known.

• Thus we have the hierarchical model

$$f(y_i|\theta_i) = \frac{e^{-(\theta_i s_i)}(\theta_i s_i)^{y_i}}{y_i!}, y_i \ge 0, \theta_i > 0,$$

$$g(\theta_i|\beta) = \frac{\theta_i^{\alpha-1}e^{-\theta_i/\beta}}{\Gamma(\alpha)\beta^{\alpha}}, \alpha > 0, \beta > 0,$$

$$h(\beta) = \frac{e^{-1/(\beta d)}}{\Gamma(c)d^c\beta^{c+1}}, c > 0, d > 0.$$

Note g is conjugate for f, and h is conjugate for g!

• The joint posterior distribution

$$p(oldsymbol{ heta},eta|\mathbf{y}) \propto \left[\prod_{i=1}^k f(y_i| heta_i)g(heta_i|eta)
ight] h(eta) = p^*(oldsymbol{ heta},eta|\mathbf{y}).$$

- To implement the Gibbs sampler, we require the full conditional distributions of β and each θ_i .
- By Bayes' Rule,

$$p(\theta_i|\theta_{j\neq i},\beta,\mathbf{y}) = \frac{p(\theta,\beta|\mathbf{y})}{\int p(\theta,\beta|\mathbf{y})d\theta_i}$$
$$p(\beta|\theta,\mathbf{y}) = \frac{p(\theta,\beta|\mathbf{y})}{\int p(\theta,\beta|\mathbf{y})d\beta},$$

each is proportional to $p(\theta, \beta|\mathbf{y})$, and thus is also proportional to $p^*(\theta, \beta|\mathbf{y})$.

• Thus we can find the full conditional distribution for each parameter by dropping irrelevant terms from $p^*(\theta, \beta|\mathbf{y})$, and normalizing!

$$p(\theta_{i}|\theta_{j\neq i},\beta,\mathbf{y}) \propto p^{*}(\boldsymbol{\theta},\beta|\mathbf{y}) = \left[\prod_{l=1}^{k} f(y_{l}|\theta_{l})g(\theta_{l}|\beta)\right] h(\beta)$$

$$\propto f(y_{i}|\theta_{i})g(\theta_{i}|\beta)$$

$$\propto \theta_{i}^{y_{i}+\alpha-1}e^{-\theta_{i}(s_{i}+1/\beta)}$$

$$\propto G\left(\theta_{i}|y_{i}+\alpha,(s_{i}+1/\beta)^{-1}\right), \text{ and}$$

$$p(\beta|\boldsymbol{\theta},\mathbf{y}) \propto p^{*}(\boldsymbol{\theta},\beta|\mathbf{y}) = \left[\prod_{i=1}^{k} f(y_{i}|\theta_{i})g(\theta_{i}|\beta)\right] h(\beta)$$

$$\propto \left[\prod_{i=1}^{k} g(\theta_{i}|\beta)\right] h(\beta) \propto \left[\prod_{i=1}^{k} \frac{e^{-\theta_{i}/\beta}}{\beta^{\alpha}}\right] \frac{e^{-1/(\beta d)}}{\beta^{c+1}}$$

$$\propto \frac{e^{-\frac{1}{\beta}\left(\sum_{i=1}^{k} \theta_{i} + \frac{1}{d}\right)}}{\beta^{k\alpha+c+1}}$$

$$\propto IG\left(\beta|k\alpha+c,\left(\sum_{i=1}^{k} \theta_{i} + 1/d\right)^{-1}\right).$$

Thus the $\{\theta_i^{(t)}\}$ and $\beta^{(t)}$ may be sampled directly!

- Set c = 0.1 and d = 1.0 for a vague hyperprior for β .
- We can run the Gibbs Sampling as follows: at each iteration t

1. Draw
$$\theta_i^{(t)} \sim \textit{Gamma}\left(y_i + \alpha, \textit{rate} = (s_i + 1/\beta^{(t-1)})^{-1}\right)$$
 for all i's

2. Draw
$$\beta^{(t)} \sim IG\left(k\alpha + c, scale = \sum_{i=1}^k \theta_i^{(t)} + 1/d\right)$$

• If α were also unknown, we use, say, a prior $h(\alpha) = Exp(\mu)$. Then, the full conditional for α

$$p(\alpha|\beta, \{\theta_i\}, \mathbf{y}) \propto \left[\prod_{i=1}^k Gamma(\theta_i|\alpha, \beta)\right] \pi_2(\alpha)$$

$$\propto \left[\prod_{i=1}^k \frac{\theta_i^{\alpha-1}}{\Gamma(\alpha)\beta^{\alpha}}\right] e^{-\alpha/\mu}$$

is not proportional to any standard family. We can NOT directly sample α from its full conditional distribution.

- When the full conditional of certain parameter can NOT be directly sample from, we resort to:
 - adaptive rejection sampling (ARS): provided $p(\alpha|\{\theta_i\}, \beta, \mathbf{y})$ is log-concave, or
 - Metropolis-Hastings sampling

Note: This is the order the WinBUGS software uses when deriving full conditionals!

* This is the standard "hybrid approach": Use Gibbs overall, with "substeps" for awkward full conditionals

Pump Example: MH-within-Gibbs Hybrid sampling

• To conduce an MH sampling algorithm, we will use a normal proposal density. However, α is defined on the positive real line, we make a *transformation* on α : $a = \log(\alpha)$. The full conditional for a is then

$$p(a|eta,oldsymbol{ heta},\mathbf{y}) \propto \left[\prod_{i=1}^k rac{ heta_i^{e^a-1}}{\Gamma(e^a)eta^{e^a}}
ight] e^{-e^a/\mu+a} = p^*(a|eta,oldsymbol{ heta},\mathbf{y})$$

- Now at each iteration t, sample a by:
 - (i) Draw a^* from $q(\cdot|a^{(t-1)}) = N(a^{(t-1)}, 0.5^2)$
 - (ii) Compute the ratio

$$lpha_{\mathsf{accept}} = rac{p^*(\mathsf{a}|eta,oldsymbol{ heta},\mathbf{y})}{p^*(\mathsf{a}^{(t-1)}|eta,oldsymbol{ heta},\mathbf{y})}.$$

Accept the a^* , and take $a^{(t)}=a^*$ with probability $\min(\alpha_{\text{accept}},1)$; otherwise, take $a^{(t)}=a^{(t-1)}$.

Convergence Monitoring

When it is safe to stop and summarize MCMC output?

- An MCMC algorithm is said to have converged at time T if its output can be "safely" thought of as coming from the true stationary distribution $p(\theta|\mathbf{y})$ for all t > T.
- However, we do not know $p(\theta|\mathbf{y})$; all we can hope to see is $\int |\hat{p}_t(\theta) \hat{p}_{t+k}(\theta)| d\theta < \epsilon!$
- Common cause of convergence failure: Nonidentifiability (due to over overparameterization!) Example:

$$y_i|\theta_1,\theta_2 \stackrel{iid}{\sim} N(\theta_1+\theta_2,1).$$

- Overparameterization also typically lead to high posterior correlations amongst parameters, resulting in slow convergence.
- One remedy is to reparameterize, but hard to do in general!

Convergence Diagnostics Statistics

Gelman and Rubin (1992, Statistical Science)

- 1. Run a small number (m) of parallel chains with overdispersed starting points
- 2. Run the *m* chains for 2*N* iterations each, and we then compare the **variation within chains** to the **total variation across chains** during the latter *N* iterations.
- Specifically, we monitor convergence by the estimated scale reduction factor

$$\sqrt{\hat{R}} = \sqrt{\left(\frac{N-1}{N} + \frac{m+1}{mN}\frac{B}{W}\right)\frac{df}{df-2}},$$

where B/N is the variance between the means from the m parallel chains, W is the average of the m within-chain variances, and df is the degrees of freedom of an approximating t density to the posterior.

 $\sqrt{\hat{R}} \to 1$ as $N \to \infty$. Thus $\sqrt{\hat{R}}$ close to 1 suggests good convergence.

Convergence diagnosis strategy

- Run a few (3 to 5) parallel chains, with starting points believed to be overdispersed
 - ullet say, covering ± 3 prior standard deviations from the prior mean
- Overlay the resulting sample traces for a representative subset of the parameters
 - say, most of the fixed effects, some of the variance components, and a few well-chosen random effects)
- Annotate each plot with Gelman and Rubin diagnostics and lag 1 sample autocorrelations
 - ullet autocorrelation close to 0 o near-independence o fast convergence
 - ullet autocorrelation close to 1
 ightarrow "stuck" chain
- Investigate bivariate plots and cross-correlations among parameters suspected of being nonidentifiable.

Other sampling algorithm

- Blocked Gibbs sampler: sample a set of parameters from their joint conditional posterior
- Slice Sampler: alternative to Metropolis steps and have excellent convergence properties
- Hamilton Monte Carlo algorithm: used when there are a large number of parameters that do not have closed-form full conditional posteriors

Variance estimation

How good is our MCMC estimate once we get it?

• Suppose a single long chain of (post-convergence) MCMC samples $\{\lambda^{(t)}\}_{t=1}^N$. A simple estimator of $E(\lambda|\mathbf{y})$ is

$$\hat{\mathcal{E}}(\lambda|\mathbf{y}) = \hat{\lambda}_N = \frac{1}{N} \sum_{t=1}^N \lambda^{(t)}$$
.

• Analogously, we could attempt to estimate $Var(\hat{\lambda_N})$ as

$$\widehat{Var}_{iid}(\hat{\lambda}_N) = s_{\lambda}^2/N = \frac{1}{N(N-1)} \sum_{t=1}^N (\lambda^{(t)} - \hat{\lambda}_N)^2$$
.

But this is likely an underestimate due to positive autocorrelation in the MCMC samples.

Variance estimation (cont'd)

 To avoid wasteful parallel sampling or "thinning," compute the effective sample size,

$$ESS = N/\kappa(\lambda) ,$$

where $\kappa(\lambda)$ is the *autocorrelation time*,

$$\kappa(\lambda) = 1 + 2\sum_{k=1}^{\infty} \rho_k(\lambda),$$

where $\rho_k(\lambda)$ is lag k autocorrelation for λ . We may estimate $\kappa(\lambda)$ using MCMC samples, and cut off the sum when $\rho_k(\lambda) < \epsilon$.

Then

$$\widehat{Var}_{ESS}(\hat{\lambda}_N) = s_{\lambda}^2 / ESS(\lambda) = \frac{\kappa(\lambda)}{N(N-1)} \sum_{t=1}^{N} (\lambda^{(t)} - \hat{\lambda}_N)^2$$
.

Note: $\kappa(\lambda) \geq 1$, so $ESS(\lambda) \leq N$, and so we have that $\widehat{Var}_{ESS}(\hat{\lambda}_N) \geq \widehat{Var}_{iid}(\hat{\lambda}_N)$, in concert with intuition.

Variance estimation (cont'd)

• Another alternative is Batching: Divide the run into m successive batches of length k with batch means b_1,\ldots,b_m . Obviously $\hat{\lambda}_N=\bar{b}=\frac{1}{m}\sum_{i=1}^m b_i$, and

$$\widehat{Var}_{batch}(\hat{\lambda}_N) = \frac{1}{m(m-1)} \sum_{i=1}^m (b_i - \hat{\lambda}_N)^2$$

provided that k is large enough so that the batch means are nearly independent and m is large enough to reliably estimate $Var(b_i)$.

- Check lag 1 autocorrelation of b_i to verify independence of batch means.
- For any \widehat{V} used to approximate $Var(\widehat{\lambda}_N)$, a 95% CI for $E(\lambda|\mathbf{y})$ is then given by

$$\hat{\lambda}_N \pm z_{.025} \sqrt{\widehat{V}}$$
 .

