SC 617

Quiz-Week3

Gyandev Satyaram Gupta, 190100051

1. Discuss stability of Vander Pol Oscillator equation

Here the case which we have taken is for $\mu=1$, we know that origin is the equilibrium point. but if look the direction of fields, all trajectories are moving outside even if we distort a little from equilibrium position which is the origin here. So it's unstable

- 2. i. Prove ES \implies UAS
 - ii. Prove GES \implies GUAS ¹
 - i. Assume $x_e = 0$

ES if there exists an $\alpha > 0$, and for every $\epsilon > 0$ there exists a $\delta(\epsilon) > 0$ such that

$$||x(t)|| \le \epsilon e^{-\alpha(t-t_0)}, \forall t \ge t_0$$

whenever $||x_0|| < \delta(\epsilon)$.

UAS = US + UA

So, for UA, we already have δ to be independent of t_0

$$\lim_{t\to\infty} ||x(t)|| \le \epsilon * \lim_{t\to\infty} e^{-\alpha(t-t_0)} = 0$$

For US, we already have δ to be independent of t_0

$$||x(t)|| \le \epsilon e^{-\alpha(t-t_0)} \le \epsilon$$

¹Ref. P. Ioannou and J. Sun, Robust Adaptive Control, Upper Saddle River, NJ: Prentice Hall 1996

ii. GES if there exists an $\alpha>0$, and for any $\beta>0$ there exists a $k(\beta)>0$ such that

$$||x(t)|| \le k(\beta)e^{-\alpha(t-t_0)}, \forall t \ge t_0$$

whenever $||x_0|| < \beta$. $\forall x_0 \in \mathbb{R}^n$

GUAS = US + GUA

For GUA, since we have $\forall t_0, x_0$ above definition

$$\lim_{t\to\infty} ||x(t)|| < k(\beta) \lim_{t\to\infty} e^{-\alpha(t-t_0)} = 0$$

For US, we already have k to be independent of t_0 , choose $k(\beta) = \beta$

$$||x(t)|| \le k(\beta)e^{-\alpha(t-t_0)} = \beta e^{-\alpha(t-t_0)} \le \beta$$

whenever $||x_0|| \le k(\beta)$

3. Prove the GAS for $\dot{x} = -\sigma x^3$ system ²

Assuming $\sigma > 0$, GAS i.e Stability + Globally Attractive On solving the equation with $x = x_0, at, t = t_0$ we get

$$x(t) = \frac{\pm 1}{\sqrt{2\sigma(t - t_0) + \frac{1}{x_0^2}}}$$

Here the $x_e = 0$, we need to prove stability, for arbitrary t_0 and $\epsilon > 0$ there exists a $\delta(\epsilon, t_0)$ such that $|x_0 - x_e| = |x_0| < \delta \implies |x(t) - x_e| = |x(t)| < \epsilon, \forall t \geq t_0$ Choose $\delta = \epsilon$

$$|x(t)| = \left| \frac{\pm 1}{\sqrt{2\sigma(t - t_0) + \frac{1}{x_0^2}}} \right| \le \left| \frac{1}{\sqrt{\frac{1}{x_0^2}}} \right| = |x_0| < \epsilon$$

To prove it as global attractive, we need to show as $t \to \infty, x(t) \to x_e = 0, \forall x_0 \in \mathbb{R}^n$

$$\lim_{t \to \infty} x(t) = \lim_{t \to \infty} \frac{\pm 1}{\sqrt{2\sigma(t - t_0) + \frac{1}{x_0^2}}} = 0$$

²Ref. P. Ioannou and J. Sun, Robust Adaptive Control, Upper Saddle River, NJ: Prentice Hall 1996