

FIG. 3

FIG. 6

WO 2004/033651 PCT/US2003/031974

7/498

FIG. 13

FIG. 15

FIG. 16

FIG. 17

FIG. 20

BisP =Linker-HN-CH(PO₃)₂

FIG. 23C

Al-201 - AutoImmune 12AP1/E5 -- Viventia Biotech AI-301 - AutoImmune 1964 -- Aventis AIDS vaccine - ANRS, CIBG, Hesed 20K growth hormone -- AMUR Biomed, Hollis-Eden, Rome, United 28P6/E6 -- Viventia Biotech Biomedical, American Home Products, 3-Hydroxyphthaloyl-beta-lactoglobulin -Maxygen 4-IBB ligand gene therapy airway receptor ligand -- IC Innovations 64-Cu MAb conjugate TETA-1A3 --AJvW 2 -- Aiinomoto Mallinckrodt Institute of Radiology AK 30 NGF -- Alkermes 64-Cu MAb conjugate TETA-cT84.66 Albuferon -- Human Genome Sciences 64-Cu Trastuzumab TETA conjugate albumin - Biogen, DSM Anti-Infectives, Genentech Genzyme Transgenics, PPL Therapeutics, A 200 -- Amgen TranXenoGen, Welfide Corp. A10255 – Eli Liliy aldesleukin -- Chiron A1PDX - Hedral Therapeutics alefacept -- Biogen A6 -- Angstrom Alemtuzumab aaAT-III -- Genzyme Allergy therapy -- ALK-Abello/Maxygen, Abciximab -- Centocor ALK-Abello/RP Scherer ABI.001 - Atlantic BioPharmaceuticals allergy vaccines -- Allergy Therapeutics ABT-828 - Abbott Alnidofibatide -- Aventis Pasteur Accutin Alnorine -- SRC VB VECTOR Actinohivin ALP 242 -- Gruenenthal activin -- Biotech Australia, Human Alpha antitrypsin -- Arriva/Hyland Therapeutics, Curis Immuno/ProMetic/Protease Sciences AD 439 – Tanox Alpha-1 antitrypsin – Cutter, Bayer, PPL AD 519 – Tanox Adalimumab -- Cambridge Antibody Tech. Therapeutics, Profile, ZymoGenetics, Arriva Adenocarcinoma vaccine – Biomira -- NIS Alpha-1 protease inhibitor -- Genzyme Adenosine deanimase -- Enzond Transgenics, Welfide Corp. Adenosine A2B receptor antagonists --Alpha-galactose fusion protein – Adenosine Therapeutics **Immunomedics** ADP-001 – Axis Genetics Alpha-galactosidase A -- Research AF 13948 – Affymax Corporation Technologies, Genzyme Afelimomab – Knoll Alpha-glucosidase - Genzyme, Novazyme AFP-SCAN - Immunomedics Alpha-lactalbumin AG 2195 – Corixa Alpha-L-iduronidase -- Transkaryotic agalsidase alfa -- Transkaryotic Therapies Therapies, BioMarin agalsidase beta -- Genzyme alteplase -- Genentech AGENT- Antisoma alvircept sudotox - NIH AI 300 - Autolmmune ALX-0600, a GLP-2 agonist -- NPS Allelix Al-101 - Teva Corp. Al-102 – Teva

FIG. 28A

Anti-alphavβ3 integrin MAb – Applied ALX1-11 -sNPS Pharmaceuticals Alzheimer's disease gene therapy Molecular Evolution Anti-angiogenesis monoclonal antibodies --AM-133 -- AMRAD KS Biomedix/Schering AG Amb a 1 immunostim conj. -- Dynavax Anti-B4 MAb-DC1 conjugate -- ImmunoGen AMD 3100 - AnorMED -- NIS Anti-B7 antibody PRIMATIZED -- IDEC AMD 3465 - AnorMED -- NIS AMD 3465 - AnorMED -- NIS Anti-B7-1 MAb 16-10A1 Anti-B7-1 MAb 1G10 AMD Fab -- Genentech Anti-B7-2 MAb GL-1 Amediplase – Menarini, Novartis Anti-B7-2-gelonin immunotoxin – AM-F9 Amoebiasis vaccine Antibacterials/antifungals --Diversa/IntraBiotics Amphiregulin -- Octagene Anti-beta-amyloid monoclonal antibodies -anakinra -- Amgen Cambridge Antibody Tech., Wyeth-Ayerst analgesic -- Nobex Anti-BLyS antibodies -- Cambridge ancestim -- Amgen Antibody Tech. /Human Genome Sciences AnergiX.RA – Corixa, Organon Antibody-drug conjugates -- Seattle Angiocidin -- InKine Genetics/Eos angiogenesis inhibitors -- ILEX Anti-C5 MAb BB5-1 -- Alexion AngioMab – Antisoma Angiopoietins -- Regeneron/Procter & Anti-C5 MAb N19-8 -- Alexion Anti-C8 MAb Gamble anticancer cytokines -- BioPulse angiostatin -- EntreMed Angiostatin/endostatin gene therapy -anticancer matrix - Telios Integra Anticancer monoclonal antibodies - ARIUS, Genetix Pharmaceuticals angiotensin-II, topical -- Maret Immunex anticancer peptides - Maxygen, Micrologix Anthrax -- EluSys Therapeutics/US Army Anticancer prodrug Tech. -- Alexion Medical Research Institute **Antibody Technologies** Anthrax vaccine Anti platelet-derived growth factor D human anticancer Troy-Bodies -- Affite -- Affitech monoclonal antibodies -- CuraGen anticancer vaccine -- NIH anticancers -- Epimmune Anti-17-1A MAb 3622W94 --Anti-CCR5/CXCR4 sheep MAb -- KS GlaxoSmithKline Biomedix Holdings Anti-2C4 MAb -- Genentech anti-4-1BB monoclonal antibodies -- Bristol- Anti-CD11a MAb KBA --Anti-CD11a MAb M17 Myers Squibb Anti-CD11a MAb TA-3 -Anti-Adhesion Platform Tech. -- Cytovax Anti-adipocyte MAb -- Cambridge Antibody Anti-CD11a MAb WT.1 --Anti-CD11b MAb -- Pharmacia Tech./ObeSys antiallergics -- Maxygen Anti-CD11b MAb LM2 Anti-CD154 MAb -- Biogen antiallergy vaccine -- Acambis Anti-CD16-anti-CD30 MAb -- Biotest Anti-alpha-4-integrin MAb

WO 2004/033651 PCT/US2003/031974

33/498

Anti-CD4 MAb - Centocor, IDEC Anti-CD18 MAb -- Pharmacia Pharmaceuticals, Xenova Group Anti-CD19 MAb B43 -Anti-CD19 MAb -liposomal sodium butyrate Anti-CD4 MAb 16H5 Anti-CD4 MAb 4162W94 - GlaxoSmithKline conjugate -Anti-CD4 MAb B-F5 -- Diaclone Anti-CD147 Anti-CD4 MAb GK1-5 Anti-CD19 MAb-saporin conjugate -Anti-CD19-dsFv-PE38-immunotoxin -Anti-CD4 MAb KT6 Anti-CD4 MAb OX38 Anti-CD2 MAb 12-15 -Anti-CD4 MAb PAP conjugate -- Bristol-Anti-CD2 MAb B-E2 -- Diaclone Myers Squibb Anti-CD2 MAb OX34 -Anti-CD4 MAb RIB 5-2 Anti-CD2 MAb OX54 -Anti-CD4 MAb W3/25 Anti-CD2 MAb OX55 -Anti-CD4 MAb YTA 3.1.2 Anti-CD2 MAb RM2-1 Anti-CD4 MAb YTS 177-9 Anti-CD2 MAb RM2-2 Anti-CD40 ligand MAb 5c8 -- Biogen Anti-CD2 MAb RM2-4 Anti-CD40 MAb Anti-CD20 MAb BCA B20 Anti-CD20-anti-Fc alpha RI bispecific MAb -Anti-CD40 MAb 5D12 - Tanox Anti-CD44 MAb A3D8 Medarex, Tenovus Anti-CD44 MAb GKWA3 Anti-CD22 MAb-saporin-6 complex -Anti-CD44 MAb IM7 Anti-CD3 immunotoxin – Anti-CD44 MAb KM81 Anti-CD3 MAb 145-2C11 -- Pharming Anti-CD44 variant monoclonal antibodies --Anti-CD3 MAb CD4lgG conjugate --Corixa/Hebrew University Genentech Anti-CD3 MAb humanised - Protein Design, Anti-CD45 MAb BC8-I-131 Anti-CD45RB MAb RW Johnson Anti-CD48 MAb HuLy-m3 Anti-CD3 MAb WT32 Anti-CD48 MAb WM-63 Anti-CD3 MAb-ricin-chain-A conjugate – Anti-CD3 MAb-xanthine-oxidase conjugate Anti-CD5 MAb -- Becton Dickinson Anti-CD5 MAb OX19 Anti-CD30 MAb BerH2 -- Medac Anti-CD6 MAb Anti-CD7 MAb-PAP conjugate Anti-CD30 MAb-saporin conjugate Anti-CD7 MAb-ricin-chain-A conjugate Anti-CD30-scFv-ETA'-immunotoxin Anti-CD8 MAb – Amerimmune, Cytodyn, Anti-CD38 MAb AT13/5 Becton Dickinson Anti-CD38 MAb-saporin conjugate Anti-CD8 MAb 2-43 Anti-CD3-anti-CD19 bispecific MAb Anti-CD8 MAb OX8 Anti-CD3-anti-EGFR MAb Anti-CD80 MAb P16C10 -- IDEC Anti-CD3-anti-interleukin-2-receptor MAb Anti-CD3-anti-MOv18 MAb -- Centocor Anti-CD80 MAb P7C10 -- ID Vaccine Anti-CD8-idarubicin conjugate Anti-CD3-anti-SCLC bispecific MAb Anti-CEA MAb CE-25 Anti-CD4 idiotype vaccine Anti-CEA MAb MN 14 – Immunomedics

WO 2004/033651 PCT/US2003/031974

34/498

Anti-heparanase human monocional Anti-CEA MAb MN14-PE40 conjugate – antibodies -- Oxford **Immunomedics** Glycosciences/Medarex Anti-CEA MAb T84.66-interleukin-2 Anti-hepatitis C virus human monoclonal conjugate antibodies -- XTL Biopharmaceuticals Anti-CEA sheep MAb -- KS Biomedix Anti-HER-2 antibody gene therapy Holdings Anti-herpes antibody -- Epicyte Anti-cell surface monoclonal antibodies --Anti-HIV antibody -- Epicyte Cambridge Antibody Tech. /Pharmacia anti-HIV catalytic antibody -- Hesed Biomed Anti-c-erbB2-anti-CD3 bifunctional MAb -anti-HIV fusion protein -- Idun Otsuka anti-HIV proteins -- Cangene Anti-CMV MAb -- Scotgen Anti-HM1-24 MAb -- Chugai Anti-complement Anti-hR3 MAb Anti-CTLA-4 MAb Anti-Human-Carcinoma-Antigen MAb --Anti-EGFR catalytic antibody -- Hesed **Epicyte** Biomed Anti-ICAM-1 MAb -- Boehringer Ingelheim anti-EGFR immunotoxin -- IVAX Anti-ICAM-1 MAb 1A-29 -- Pharmacia Anti-EGFR MAb -- Abgenix Anti-ICAM-1 MAb HA58 Anti-EGFR MAb 528 Anti-ICAM-1 MAb YN1/1.7.4 Anti-EGFR MAb KSB 107 -- KS Biomedix Anti-ICAM-3 MAb ICM3 -- ICOS Anti-EGFR MAb-DM1 conjugate --Anti-idiotype breast cancer vaccine 11D10 ImmunoGen Anti-idiotype breast cancer vaccine Anti-EGFR MAb-LA1 -ACA14C5 -Anti-EGFR sheep MAb -- KS Biomedix Anti-idiotype cancer vaccine -- ImClone Anti-FAP MAb F19-I-131 Systems/Merck KGaA ImClone, Viventia Anti-Fas IgM MAb CH11 Biotech Anti-Fas MAb Jo2 Anti-idiotype cancer vaccine 1A7 -- Titan Anti-Fas MAb RK-8 Anti-Flt-1 monoclonal antibodies -- ImClone Anti-idiotype cancer vaccine 3H1 -- Titan Anti-idiotype cancer vaccine TriAb -- Titan Anti-fungal peptides -- State University of Anti-idiotype Chlamydia trachomatis New York antifungal tripeptides -- BTG vaccine Anti-ganglioside GD2 antibody-interleukin-2 Anti-idiotype colorectal cancer vaccine --Novartis fusion protein -- Lexigen Anti-idiotype colorectal cancer vaccine --Anti-GM2 MAb -- Kyowa Anti-GM-CSF receptor monoclonal Onyvax Anti-idiotype melanoma vaccine -- IDEC antibodies -- AMRAD **Pharmaceuticals** Anti-gp130 MAb -- Tosoh Anti-idiotype ovarian cancer vaccine ACA Anti-HCA monoclonal antibodies --125 AltaRex/Epigen Anti-idiotype ovarian cancer vaccine AR54 -Anti-hCG antibodies -- Abgenix/AVI - AltaRex BioPharma

Anti-L-selectin monoclonal antibodies --Anti-idiotype ovarian cancer vaccine CA-Protein Design Labs, Abgenix, Stanford 125 - AltaRex, Biomira Anti-IgE catalytic antibody -- Hesed Biomed University Anti-MBL monoclonal antibodies --Anti-IgE MAb E26 -- Genentech Alexion/Brigham and Women's Hospital Anti-IGF-1 MAb Anti-MHC monoclonal antibodies anti-inflammatory -- GeneMax Anti-MIF antibody humanised – IDEC, anti-inflammatory peptide -- BTG Cytokine PharmaSciences anti-integrin peptides -- Burnha Anti-interferon-alpha-receptor MAb 64G12 - Anti-MRSA/VRSA sheep MAb -- KS Biomedix Holdings Pharma Pacific Management Anti-mu MAb -- Novartis Anti-interferon-gamma MAb -- Protein Anti-MUC-1 MAb Design Labs Anti-interferon-gamma polyclonal antibody - Anti-MUC 18 Anti-Nogo-A MAb IN1 - Advanced Biotherapy Anti-nuclear autoantibodies -- Procyon Anti-interleukin-10 MAb -Anti-ovarian cancer monoclonal antibodies -Anti-interleukin-12 MAb -Anti-interleukin-1-beta polyclonal antibody -- - Dompe Anti-p185 monoclonal antibodies R&D Systems Anti-p43 MAb Anti-interleukin-2 receptor MAb 2A3 Antiparasitic vaccines Anti-interleukin-2 receptor MAb 33B3-1 --Anti-PDGF/bFGF sheep MAb -- KS Immunotech Biomedix Anti-interleukin-2 receptor MAb ART-18 Anti-properdin monoclonal antibodies --Anti-interleukin-2 receptor MAb LO-Tact-1 Abgenix/Gliatech Anti-interleukin-2 receptor MAb Mikbeta1 Anti-PSMA (prostrate specific membrane Anti-interleukin-2 receptor MAb NDS61 antigen) Anti-interleukin-4 MAb 11B11 Anti-PSMA MAb J591 -- BZL Biologics Anti-interleukin-5 MAb -- Wallace Anti-Rev MAb gene therapy -Laboratories Anti-RSV antibodies - Epicyte, Intracell Anti-interleukin-6 MAb – Centocor, Anti-RSV monoclonal antibodies --Diaclone, Pharmadigm Medarex/Medimmune, Applied Molecular Anti-interleukin-8 MAb -- Abgenix Evolution/Medimmune Anti-interleukin-8 MAb - Xenotech Anti-RSV MAb, inhalation --Anti-JL1 MAb Anti-Klebsiella sheep MAb -- KS Biomedix Alkermes/Medimmune Anti-RT gene therapy **Holdings** Antisense K-ras RNA gene therapy Anti-Laminin receptor MAb-liposomal Anti-SF-25 MAb doxorubicin conjugate Anti-sperm antibody -- Epicyte Anti-LCG MAb -- Cytoclonal Anti-Tac(Fv)-PE38 conjugate Anti-lipopolysaccharide MAb -- VitaResc Anti-TAPA/CD81 MAb AMP1 Anti-tat gene therapy

Anti-TCR-alphabeta MAb H57-597 Anti-TCR-alphabeta MAb R73 Anti-tenascin MAb BC-4-I-131 Anti-TGF-beta human monoclonal antibodies -- Cambridge Antibody Tech., Genzyme Anti-TGF-beta MAb 2G7 -- Genentech Antithrombin III -- Genzyme Transgenics, Aventis, Bayer, Behringwerke, CSL, Myriad Anti-Thy1 MAb Anti-Thy1.1 MAb Anti-tissue factor/factor VIIA sheep MAb --KS Biomedix Anti-TNF monoclonal antibodies -Centocor, Chiron, Peptech, Pharacia, Anti-TNF sheep MAb -- KS Biomedix Holdings Anti-TNFalpha MAb -- Genzyme Anti-TNFalpha MAb B-C7 -- Diaclone Anti-tooth decay MAb -- Planet BioTech. Anti-TRAIL receptor-1 MAb -- Takeda Antitumour RNases -- NIH Anti-VCAM MAb 2A2 -- Alexion Anti-VCAM MAb 3F4 -- Alexion Anti-VCAM-1 MAb Anti-VEC MAb -- ImClone Anti-VEGF MAb -- Genentech Anti-VEGF MAb 2C3 Anti-VEGF sheep MAb -- KS Biomedix Holdings Anti-VLA-4 MAb HP1/2 -- Biogen Anti-VLA-4 MAb PS/2 Anti-VLA-4 MAb R1-2 Anti-VLA-4 MAb TA-2 Anti-VAP-1 human MAb Anti-VRE sheep MAb -- KS Biomedix Holdings ANUP -- TranXenoGen ANUP-1 -- Pharis

AOP-RANTES -- Senetek Apan-CH -- Praecis Pharmaceuticals APC-8024 -- Demegen ApoA-1 -- Milano, Pharmacia Apogen -- Alexion apolipoprotein A1 -- Avanir Apolipoprotein E -- Bio-Tech. General Applaggin -- Biogen aprotinin -- ProdiGene APT-070C -- AdProTech AR 177 -- Aronex Pharmaceuticals AR 209 -- Aronex Pharmaceuticals, Antigenics AR545C ARGENT gene delivery systems -- ARIAD Arresten ART-123 -- Asahi Kasei arylsulfatase B -- BioMarin Arylsulfatase B, Recombinant human --BioMarin AS 1051 -- Ajinomoto ASI-BCL -- Intracell Asparaginase - Merck ATL-101 -- Alizyme Atrial natriuretic peptide -- Pharis Aurintricarboxylic acid-high molecular weight Autoimmune disorders -- GPC Biotech/MorphoSys Autoimmune disorders and transplant rejection -- Bristol-Myers Squibb/Genzyme Tra Autoimmune disorders/cancer --Abgenix/Chiron, CuraGen Autotaxin -Avicidin -- NeoRx axogenesis factor-1 -- Boston Life Sciences Axokine -- Regeneron B cell lymphoma vaccine -- Biomira B7-1 gene therapy -BABS proteins -- Chiron

FIG. 28F

BMP 2 -- Genetics Institute/Medtronic-BAM-002 -- Novelos Therapeutics Sofamor Danek, Genetics Institute/ Basiliximab (anti CD25 MAb) -- Novartis Collagenesis, Genetics Bay-16-9996 -- Bayer Institute/Yamanouch Bay-39-9437 -- Bayer BMP 2 gene therapy Bay-50-4798 -- Bayer BMP 52 -- Aventis Pasteur, Biopharm BB-10153 -- British Biotech BMP-2 -- Genetics Institute BBT-001 -- Bolder BioTech. BMS 182248 -- Bristol-Myers Squibb BBT-002 -- Bolder BioTech. BMS 202448 -- Bristol-Myers Squibb BBT-003 -- Bolder BioTech. bone growth factors -- IsoTis BBT-004 -- Bolder BioTech. BPC-15 -- Pfizer BBT-005 -- Bolder BioTech. brain natriuretic peptide -BBT-006 -- Bolder BioTech. Breast cancer -- Oxford BBT-007 -- Bolder BioTech. GlycoSciences/Medarex BCH-2763 -- Shire Breast cancer vaccine -- Therion Biologics, BCSF -- Millenium Biologix Oregon BDNF -- Regeneron - Amgen Becaplermin -- Johnson & Johnson, Chiron BSSL -- PPL Therapeutics BST-2001 – BioStratum Bectumomab - Immunomedics BST-3002 -- BioStratum Beriplast -- Aventis Beta-adrenergic receptor gene therapy --BTI 322 butyrylcholinesterase -- Shire University of Arkansas C 6822 -- COR Therapeutics bFGF -- Scios C1 esterase inhibitor -- Pharming BI 51013 -- Behringwerke AG C3d adjuvant -- AdProTech BIBH 1 -- Boehringer Ingelheim BIM-23190 -- Beaufour-Ipsen CAB-2.1 -- Millennium calcitonin - Inhale Therapeutics Systems, birch pollen immunotherapy -- Pharmacia Aventis, Genetronics, TranXenoGen, bispecific fusion proteins -- NIH Unigene, Rhone Poulenc Rohrer Bispecific MAb 2B1 -- Chiron calcitonin -- oral - Nobex, Emisphere, Bitistatin Pharmaceutical Discovery BIWA 4 -- Boehringer Ingelheim Calcitonin gene-related peptide -- Asahi blood substitute – Northfield, Baxter Intl. Kasei -- Unigene BLP-25 -- Biomira BLS-0597 -- Boston Life Sciences calcitonin, human -- Suntory calcitonin, nasal – Novartis, Unigene BLyS -- Human Genome Sciences calcitonin, Panoderm -- Elan BLyS radiolabelled -- Human Genome calcitonin, Peptitrol -- Shire Sciences calcitonin, salmon -- Therapicon BM 06021 -- Boehringer Mannheim calin -- Biopharm BM-202 -- BioMarin Calphobindin I BM-301 -- BioMarin calphobindin I -- Kowa BM-301 -- BioMarin calreticulin -- NYU BM-302 -- BioMarin

CD4 fusion toxin -- Senetek Campath-1G CD4 IgG -- Genentech Campath-1M CD4 receptor antagonists -cancer therapy -- Cangene Pharmacopeia/Progenics cancer vaccine - Aixlie, Aventis Pasteur, CD4 soluble -- Progenics Center of Molecular Immunology, YM CD4, soluble -- Genzyme Transgenics BioSciences, Cytos, Genzyme, CD40 ligand -- Immunex Transgenics, Globelmmune, Igeneon, CD4-ricin chain A -- Genentech ImClone, Virogenetics, InterCell, Iomai, CD59 gene therapy -- Alexion Jenner Biotherapies, Memorial Sloan-Kettering Cancer Center, Sydney Kimmel CD8 TIL cell therapy -- Aventis Pasteur CD8. soluble -- Avidex Cancer Center, Novavax, Protein CD95 ligand -- Roche Sciences, Argonex, SIGA CDP 571 -- Celltech Cancer vaccine ALVAC-CEA B7.1 --Aventis Pasteur/Therion Biologics CDP 850 -- Celltech CDP-860 (PEG-PDGF MAb) -- Celltech Cancer vaccine CEA-TRICOM -- Aventis CDP 870 -- Celltech Pasteur/Therion Biologics CDS-1 -- Ernest Orlando Cancer vaccine gene therapy -- Cantab Cedelizumab -- Ortho-McNeil **Pharmaceuticals** Cetermin -- Insmed Cancer vaccine HER-2/neu -- Corixa Cancer vaccine THERATOPE -- Biomira CETP vaccine -- Avant cancer vaccine, PolyMASC -- Valentis Cetrorelix Cetuximab Candida vaccine – Corixa, Inhibitex CGH 400 -- Novartis Canstatin -- ILEX CGP 42934 -- Novartis CAP-18 -- Panorama CGP 51901 – Tanox Cardiovascular gene therapy -- Collateral CGRP -- Unigene **Therapeutics CGS 27913 -- Novartis** carperitide -- Suntory CGS 32359 -- Novartis Casocidin-1 -- Pharis Chagas disease vaccine -- Corixa CAT 152 -- Cambridge Antibody Tech. CAT 192 -- Cambridge Antibody Tech. chemokines -- Immune Response CHH 380 -- Novartis CAT 213 -- Cambridge Antibody Tech. chitinase - Genzyme, ICOS Catalase-- Enzon Chlamydia pneumoniae vaccine -- Antex Cat-PAD -- Circassia **Biologics** CB 0006 -- Celltech Chlamydia trachomatis vaccine -- Antex CCK(27-32)-- Akzo Nobel **Biologics** CCR2-641 -- NIH Chlamydia vaccine -- GlaxoSmithKline CD. Procept -- Paligent Cholera vaccine CVD 103-HgR -- Swiss CD154 gene therapy Serum and Vaccine Institute Berne CD39 -- Immunex Cholera vaccine CVD 112 -- Swiss Serum CD39-L2 -- Hyseq and Vaccine Institute Berne CD39-L4 -- Hyseq

Cholera vaccine inactivated oral -- SBL CRL 1605 -- CytRx CS-560 -- Sankyo Vaccin CSF -- ZymoGenetics Chrysalin -- Chrysalis BioTech. CSF-G - Hangzhou, Dong-A, Hanmi CI-782 -- Hitachi Kase CSF-GM - Cangene, Hunan, LG Chem Ciliary neurotrophic factor – Fidia, Roche CSF-M -- Zarix CIM project -- Active Biotech CT 1579 - Merck Frosst CL 329753 -- Wyeth-Ayerst CT 1786 - Merck Frosst CL22, Cobra -- ML Laboratories CT-112[^] -- BTG Clenoliximab -- IDEC CTB-134L -- Xenova Clostridium difficile antibodies -- Epicyte CTC-111 -- Kaketsuken clotting factors -- Octagene CTGF -- FibroGen CMB 401 -- Celltech CTLA4-Ig -- Bristol-Myers Squibb CNTF -- Sigma-Tau CTLA4-Ig gene therapy – Cocaine abuse vaccine – Cantab, CTP-37 -- AVI BioPharma ImmuLogic, Scripps C-type natriuretic peptide -- Suntory coccidiomycosis vaccine -- Arizo CVS 995 - Corvas Intl. collagen -- Type I -- Pharming Collagen formation inhibitors -- FibroGen CX 397 – Nikko Kyodo Collagen/hydroxyapatite/bone growth factor CY 1747 -- Epimmune -- Aventis Pasteur, Biopharm, Orquest CY 1748 -- Epimmune Cyanovirin-N collagenase -- BioSpecifics Colorectal cancer vaccine -- Wistar Institute Cystic fibrosis therapy -- CBR/IVAX Component B, Recombinant -- Serono CYT 351 Connective tissue growth factor inhibitors -- cytokine Traps -- Regeneron cytokines - Enzon, Cytoclonal FibroGen/Taisho Cytomegalovirus glycoprotein vaccine -Contortrostatin Chiron, Aquila Biopharmaceuticals, contraceptive vaccine -- Zonagen Contraceptive vaccine hCG Aventis Pasteur, Virogenetics Cytomegalovirus vaccine live -- Aventis Contraceptive vaccine male reversible --Pasteur **IMMUCON** Cytosine deaminase gene therapy --Contraceptive vaccine zona pellucida --GlaxoSmithKline Zonagen Copper-64 labelled MAb TETA-1A3 -- NCI DA-3003 -- Dong-A DAB389interleukin-6 -- Senetek Coralyne DAB389interleukin-7 Corsevin M DAC:GLP-2 -- ConjuChem, Inc. C-peptide analogues -- Schwarz Daclizumab (anti-IL2R MAb) - Protein CPI-1500 -- Consensus Design Labs CRF -- Neurobiological Tech. DAMP[^] -- Incyte Genomics cRGDfV pentapeptide -Daniplestim -- Pharmacia CRL 1095 -- CytRx darbepoetin alfa -- Amgen CRL 1336 -- CytRx

40/498

dural graft matrix -- Integra DBI-3019 -- Diabetogen Duteplase – Baxter Intl. DCC -- Genzyme DWP-401 -- Daewoong DDF -- Hyseq DWP-404 -- Daewoong decorin - Integra, Telios DWP-408 -- Daewoong defensins -- Large Scale Biology Dx 88 (Epi-KAL2) -- Dyax **DEGR-VIIa** Dx 890 (elastin inhibitors) -- Dyax Delmmunised antibody 3B6/22 AGEN E coli O157 vaccine -- NIH Deimmunised anti-cancer antibodies --E21-R -- BresaGen Biovation/Viragen Eastern equine encephalitis virus vaccine – Dendroamide A Dengue vaccine -- Bavarian Nordic, Merck Echicetin --Echinhibin 1 – denileukin diftitox -- Ligand Echistatin -- Merck **DES-1101 -- Desmos** Echitamine desirudin -- Novartis Ecromeximab – Kyowa Hakko desmopressin -- Unigene Desmoteplase - Merck, Schering AG EC-SOD -- PPL Therapeutics Eculizumab (5G1.1) -- Alexion Destabilase Diabetes gene therapy - DeveloGen, Pfizer EDF -- Ajinomoto EDN derivative -- NIH Diabetes therapy -- Crucell Diabetes type 1 vaccine -- Diamyd EDNA -- NIH Edobacomab -- XOMA **Therapeutics** Edrecolomab -- Centocor DiaCIM -- YM BioSciences EF 5077 dialytic oligopeptides -- Research Corp Efalizumab -- Genentech Diamyd -- Diamyd Therapeutics EGF fusion toxin - Seragen, Ligand DiaPep227-- Pepgen EGF-P64k vaccine -- Center of Molecular DiavaX -- Corixa **Immunology** Digoxin MAb -- Glaxo Diphtheria tetanus pertussis-hepatitis B EL 246 -- LigoCyte elastase inhibitor -- Synergen vaccine -- GlaxoSmithKline elcatonin -- Therapicon DIR therapy -- Solis Therapeutics -EMD 72000 -- Merck KGaA DNase -- Genentech Emdogain -- BIORA Dornase alfa -- Genentech emfilermin -- AMRAD Dornase alfa, inhalation -- Genentech Emoctakin -- Novartis Doxorubicin-anti-CEA MAb conjugate enamel matrix protein -- BIORA **Immunomedics** Endo III -- NYU DP-107 -- Trimeris endostatin - EntreMed, Pharis drotrecogin alfa -- Eli Lilly Enhancins -- Micrologix DTctGMCSF Enlimomab -- Isis Pharm. DTP-polio vaccine -- Aventis Pasteur Enoxaparin sodium -- Pharmuka DU 257-KM231 antibody conjugate --

Kyowa

enzyme linked antibody nutrient depletion therapy -- KS Biomedix Holdings Eosinophil-derived neutralizing agent -EP-51216 -- Asta Medica EP-51389 -- Asta Medica EPH family ligands -- Regeneron Epidermal growth factor -- Hitachi Kasei, Johnson & Johnson Epidermal growth factor fusion toxin --Senetek Epidermal growth factor-genistein – EPI-HNE-4 -- Dyax EPI-KAL2 -- Dyax Epoetin-alfa – Amgen, Dragon Pharmaceuticals, Nanjing Huaxin Epratuzumab – Immunomedics Epstein-Barr virus vaccine --Aviron/SmithKline Beecham, Bioresearch Eptacog alfa -- Novo Nordisk Eptifibatide -- COR Therapeutics erb-38 -Erlizumab -- Genentech erythropoietin -- Alkermes, ProLease, Dong-Fas (delta) TM protein -- LXR BioTech. A, Elanex, Genetics Institute, LG Chem, Protein Sciences, Serono, Snow Brand, SRC VB VECTOR, Transkaryotic **Therapies** Erythropoietin Beta -- Hoffman La Roche Erythropoietin/Epoetin alfa -- Chugai Escherichia coli vaccine -- North American Vaccine, SBL Vaccin, Swiss Serum and Vaccine Institute Berne etanercept - Immunex examorelin – Mediolanum

Exendin 4 -- Amylin

exonuclease VII

F-992 -- Fornix

F 105 - Centocor

Factor IX -- Alpha Therapeutics, Welfide

Corp., CSL, enetics Institute/AHP,

Pharmacia, PPL Therapeutics

Factor IX gene therapy -- Cell Genesys Factor VII -- Novo Nordisk, Bayer, Baxter Intl. Factor VIIa -- PPL Therapeutics, ZymoGenetics Factor VIII - Bayer Genentech, Beaufour-Ipsen, CLB, Inex, Octagen, Pharmacia, **Pharming** Factor VIII -- PEGylated -- Bayer Factor VIII fragments -- Pharmacia Factor VIII gene therapy -- Targeted Genetics Factor VIII sucrose formulation – Bayer, Genentech Factor VIII-2 -- Bayer Factor VIII-3 -- Bayer Factor Xa inhibitors - Merck, Novo Nordisk, Mochida Factor XIII -- ZymoGenetics Factors VIII and IX gene therapy -- Genetics Institute/Targeted Genetics Famoxin -- Genset Fas TR -- Human Genome Sciences Felvizumab -- Scotgen FFR-VIIa -- Novo Nordisk FG-001 - F-Gene FG-002 - F-Gene FG-004 – F-Gene FG-005 - F-Gene FGF + fibrin -- Repair Fibrimage -- Bio-Tech. General fibrin-binding peptides - ISIS Innovation fibrinogen -- PPL Therapeutics, Pharming fibroblast growth factor - Chiron, NYU, Ramot, ZymoGenetics fibrolase conjugate -- Schering AG Filgrastim -- Amgen filgrastim -- PDA modified -- Xencor FLT-3 ligand -- Immunex FN18 CRM9 -

FIG. 28K

Glucocerebrosidase -- Genzyme follistatin -- Biotech Australia, Human glutamate decarboxylase -- Genzyme **Therapeutics** Transgenics follitropin alfa – Alkermes, ProLease, Glycoprotein S3 -- Kureha PowderJect, Serono, Akzo Nobel GM-CSF -- Immunex Follitropin Beta – Bayer, Organon GM-CSF tumour vaccine -- PowderJect FP 59 **GnRH** immunotherapeutic -- Protherics FSH -- Ferring Goserelin (LhRH antagonist) -- AstraZeneca FSH + LH -- Ferring gp75 antigen -- ImClone F-spondin -- CeNeS gp96 -- Antigenics fusion protein delivery system -- UAB GPI 0100 -- Galenica Research Foundation GR 4991W93 -- GlaxoSmithKline fusion toxins -- Boston Life Sciences Granulocyte colony-stimulating factor --G 5598 -- Genentech Dong-A GA-II -- Transkaryotic Therapies Gamma-interferon analogues -- SRC VB Granulocyte colony-stimulating factor conjugate VECTOR grass allergy therapy -- Dynavax Ganirelix -- Roche **GRF1-44 -- ICN** gastric lipase -- Meristem Growth Factor – Chiron, Atrigel, Atrix, Gavilimomab -Innogenetics, ZymoGenetics, Novo G-CSF - Amgen, SRC VB VECTOR growth factor peptides -- Biotherapeutics GDF-1 -- CeNeS growth hormone -- LG Chem GDF-5 -- Biopharm GDNF (glial derived neurotrophic factor) -growth hormone, Recombinant human --Serono Amgen GT 4086 -- Gliatech gelsolin -- Biogen GW 353430 -- GlaxoSmithKline Gemtuzumab ozogamicin -- Celltech GW-278884 -- GlaxoSmithKline Gene-activated epoetin-alfa -- Aventis H 11 -- Viventia Biotech Pharma -- Transkaryotic Therapies Glanzmann thrombasthenia gene therapy - H5N1 influenza A virus vaccine -- Protein Sciences Glatiramer acetate -- Yeda haemoglobin -- Biopure glial growth factor 2 -- CeNeS haemoglobin 3011, Recombinant -- Baxter GLP-1 – Amylin, Suntory, TheraTech, Healthcare Watson haemoglobin crosfumaril – Baxter Intl. GLP-1 peptide analogues – Zealand haemoglobin stabilized -- Ajinomoto **Pharaceuticals** haemoglobin, recombinant -- Apex GLP-2 - Novo Nordisk, Ontario, Inc., HAF -- Immune Response **Suntory Limited** Hantavirus vaccine glucagon -- Eli Lilly, ZymoGenetics Glucagon-like peptide-1 7-36 amide --**HB** 19 HBNF -- Regeneron Suntory HCC-1 -- Pharis Glucogen-like peptide -- Amylin

FIG. 28L

hCG -- Milkhaus hCG vaccine -- Zonagen HE-317 -- Hollis-Eden Pharmaceuticals Heat shock protein cancer and influenza vaccines -- StressGen Helicobacter pylori vaccine -- Acambis, AstraZeneca/CSL, Chiron, Provalis Helistat-G -- GalaGen Hemolink -- Hemosol hepapoietin -- Snow Brand heparanase -- InSight heparinase I -- Ibex heparinase III -- Ibex Hepatitis A vaccine -- American Biogenetic HIP-- Altachem Sciences Hepatitis A vaccine inactivated Hepatitis A vaccine Nothav -- Chiron Hepatitis A-hepatitis B vaccine --GlaxoSmithKline hepatitis B therapy -- Tripep Hepatitis B vaccine - Amgen, Chiron SpA, Meiji Milk, NIS, Prodeva, PowderJect, Rhein Biotech Hepatitis B vaccine recombinant -- Evans Vaccines, Epitec Combiotech, Genentech, Aventis Pasteur, Oncogen, Hyland MedImmune, Merck Sharp & Dohme, Rhein Biotech, Shantha Biotechnics, Vector, Yeda Hepatitis B vaccine recombinant TGP 943 -- HIV immune globulin - Abbott, Chiron Takeda Hepatitis C vaccine -- Bavarian Nordic, Chiron, Innogenetics Acambis, Hepatitis D vaccine -- Chiron Vaccines Hepatitis E vaccine recombinant --Genelabs/GlaxoSmithKline, Novavax hepatocyte growth factor - Panorama, Sosei hepatocyte growth factor kringle fragments -- EntreMed

Her-2/Neu peptides -- Corixa

Herpes simplex glycoprotein DNA vaccine – Merck, Wyeth-Lederle Vaccines-Malvern, Genentech, GlaxoSmithKline, Chiron, Takeda Herpes simplex vaccine -- Cantab Pharmaceuticals, CEL-SCI, Henderson Morley Herpes simplex vaccine live -- ImClone Systems/Wyeth-Lederle, Aventis Pasteur HGF derivatives -- Dompe hIAPP vaccine -- Crucell Hib-hepatitis B vaccine -- Aventis Pasteur HIC 1 Hirudins - Biopharma, Cangene, Dongkook, Japan Energy Corporation, Pharmacia Corporation, SIR International, Sanofi-Synthelabo, Sotragene, Rhein Biotech HIV edible vaccine -- ProdiGene HIV gp120 vaccine - Chiron, Ajinomoto, GlaxoSmithKline, ID Vaccine, Progenics, VaxGen HIV gp120 vaccine gene therapy -HIV gp160 DNA vaccine - PowderJect, Immuno, Protein Sciences HIV gp41 vaccine -- Panacos HIV HGP-30W vaccine -- CEL-SCI HIV peptides -- American Home Products HIV vaccine -- Applied bioTech., Axis Genetics, Biogen, Bristol-Myers Squibb, Genentech, Korea Green Cross, NIS, Oncogen, Protein Sciences Corporation, Terumo, Tonen Corporation, Wyeth-Ayerst, Wyeth-Lederle Vaccines-Malvern, Advanced BioScience Laboratories, Bavarian Nordic, Bavarian Nordic/Statens Serum Institute, GeneCure, Immune Response, Progenics, Therion Biologics,

United Biomedical, Chiron

Human monoclonal antibodies --HIV vaccine vCP1433 -- Aventis Pasteur HIV vaccine vCP1452 -- Aventis Pasteur Medarex/Northwest Biotherapeutics, Medarex/Seattle Genetics HIV vaccine vCP205 -- Aventis Pasteur human netrin-1 -- Exelixis HL-9 -- American BioScience human papillomavirus antibodies -- Epicyte HM-9239 -- Cytran Human papillomavirus vaccine -- Biotech HML-103 -- Hemosol Australia, IDEC, StressGen HML-104 -- Hemosol Human papillomavirus vaccine MEDI 501 --HML-105 -- Hemosol MedImmune/GlaxoSmithKline HML-109 -- Hemosol Human papillomavirus vaccine MEDI HML-110 - Hemosol 503/MEDI 504 --HML-121 -- Hemosol MedImmune/GlaxoSmithKline hNLP -- Pharis Human papillomavirus vaccine TA-CIN -Hookworm vaccine Cantab Pharmaceuticals host-vector vaccines -- Henogen Human papillomavirus vaccine TA-HPV --HPM 1 -- Chugai Cantab Pharmaceuticals HPV vaccine -- MediGene Human papillomavirus vaccine TH-GW --HSA -- Meristem Cantab/GlaxoSmithKline HSF -- StressGen human polyclonal antibodies -- Biosite/Eos HSP carriers -Weizmann, Yeda, Peptor BioTech./ Medarex HSPPC-70 -- Antigenics HSPPC-96, pathogen-derived -- Antigenics human type II anti factor VIII monoclonal antibodies -- ThromboGenics HSV 863 -- Novartis humanised anti glycoprotein lb murine HTLV-I DNA vaccine monoclonal antibodies -- ThromboGenics HTLV-I vaccine HumaRAD -- Intracell HTLV-II vaccine -- Access HuMax EGFR -- Genmab HU 901 -- Tanox HuMax-CD4 -- Medarex Hu23F2G -- ICOS HuMax-IL15 -- Genmab HuHMFG1 HYB 190 -- Hybridon HumaLYM -- Intracell Human krebs statika -- Yamanouchi HYB 676 -- Hybridon human monoclonal antibodies --I-125 MAb A33 -- Celltech Ibritumomab tiuxetan -- IDEC Abgenix/Biogen, Abgenix/ Corixa, IBT-9401 -- Ibex Abgenix/Immunex, Abgenix/Lexicon, IBT-9402 -- lbex Abgenix/ Pfizer, Athersys/Medarex. IC 14 -- ICOS Biogen/MorphoSys, CAT/Searle, Centocor/Medarex, Corixa/Kirin Brewery. Idarubicin anti-Ly-2.1 – **IDEC 114 -- IDEC** Corixa/Medarex, Eos BioTech./Medarex, Eos/Xenerex, Exelixis/Protein Design IDEC 131 -- IDEC **IDEC 152 -- IDEC** Labs, ImmunoGen/ Raven, Medarex/ **IDM 1 -- IDM** B.Twelve, MorphoSys/ImmunoGen, XTL

FIG. 28N

Biopharmaceuticals/Dyax,

IDPS -- Hollis-Eden Pharmaceuticals

iduronate-2-sulfatase -- Transkaryotic **Therapies** IGF/IBP-2-13 -- Pharis IGN-101 -- Igeneon IK HIR02 -- Iketon IL-11 -- Genetics Institute/AHP IL-13-PE38 -- NeoPharm IL-17 receptor -- Immunex IL-18BP -- Yeda IL-1Hy1 -- Hyseq IL-1ß -- Celltech IL-1ß adjuvant -- Celltech IL-2 -- Chiron IL-2 + IL-12 -- Hoffman La-Roche IL-6/sIL-6R fusion -- Hadasit IL-6R derivative -- Tosoh IL-7-Dap 389 fusion toxin - Ligand IL-21 - Novo Nordisk, ZymoGenetics IM-862 -- Cytran IMC-1C11 -- ImClone imiglucerase -- Genzyme Immune globulin intravenous (human) --Hoffman La Roche immune privilege factor -- Proneuron Immunocal -- Immunotec Immunogene therapy -- Briana Bio-Tech Immunoliposomal 5-fluorodeoxyuridinedipalmitate immunosuppressant vaccine -- Aixlie immunotoxin - Antisoma, NIH ImmuRAIT-Re-188 - Immunomedics imreg-1 -- Imreg infertility -- Johnson & Johnson, E-TRANS Infliximab -- Centocor Influenza virus vaccine -- Aventis Pasteur, **Protein Sciences** inhibin -- Biotech Australia, Human **Therapeutics** Inhibitory G protein gene therapy INKP-2001 -- InKine Inolimomab -- Diaclone

insulin -- AutoImmune, Altea, Biobras, BioSante, Bio-Tech, General, Chong Kun Dang, Emisphere, Flamel, Provalis, Rhein Biotech, TranXenoGen insulin (bovine) -- Novartis insulin analogue -- Eli Lilly Insulin Aspart -- Novo Nordisk insulin detemir -- Novo Nordisk insulin glargine -- Aventis insulin inhaled - Inhale Therapeutics Systems, Alkermes insulin oral -- Inovax insulin, AeroDose -- AeroGen insulin, AERx -- Aradigm insulin, BEODAS -- Elan insulin, Biphasix -- Helix insulin, buccal -- Generex insulin, I2R -- Flemington insulin, intranasal -- Bentley insulin, oral - Nobex, Unigene insulin, Orasome -- Endorex insulin, ProMaxx -- Epic insulin, Quadrant -- Elan insulin, recombinant -- Aventis insulin, Spiros -- Elan insulin, Transfersome -- IDEA insulin, Zymo, recombinant -- Novo Nordisk insulinotropin -- Scios Insulysin gene therapy integrin antagonists -- Merck interferon (Alpha2) -- SRC VB VECTOR, Viragen, Dong-A, Hoffman La-Roche, Genentech interferon - BioMedicines, Human Genome Sciences interferon (Alfa-n3)—Interferon Sciences intl. interferon (Alpha), Biphasix -- Helix

FIG. 280

interferon (Alpha)—Amgen, BioNative, Novartis, Genzyme Transgenics, Hayashibara, Inhale Therapeutics Systems, Medusa, Flamel, Dong-A, GeneTrol, Nastech, Shantha, Wassermann, LG Chem, Sumitomo, Aventis, Behring EGIS, Pepgen, Servier, Rhein Biotech, interferon (Alpha2A) interferon (Alpha2B) - Enzon, Schering-Plough, Biogen, IDEA interferon (Alpha-N1) -- GlaxoSmithKline interferon (beta) - Rentschler, GeneTrol, Meristem, Rhein Biotech, Toray, Yeda, Daiichi, Mochida interferon (Beta1A) - Serono, Biogen interferon (beta1A), inhale -- Biogen interferon (ß1b)-- Chiron interferon (tau) -- Pepgen Interferon alfacon-1 -- Amgen Interferon alpha-2a vaccine Interferon Beta 1b -- Schering/Chiron, InterMune Interferon Gamma -- Boehringer Ingelheim, interleukin-13 antagonists -- AMRAD Sheffield, Rentschler, Hayashibara interferon receptor, Type I -- Serono interferon(Gamma1B) -- Genentech Interferon-alpha-2b + ribavirin - Biogen, **ICN** Interferon-alpha-2b gene therapy --Schering-Plough Interferon-con1 gene therapy interleukin-1 antagonists -- Dompe Interleukin-1 receptor antagonist -- Abbott Bioresearch, Pharmacia Interleukin-1 receptor type I -- Immunex interleukin-1 receptor Type II -- Immunex Interleukin-1 trap -- Regeneron Interleukin-1-alpha -- Immunex/Roche interleukin-2 -- SRC VB VECTOR, Aiinomoto, Biomira, Chiron

IL-2/ diphtheria toxin -- Ligand Interleukin-3 -- Cangene Interleukin-4 -- Immunology Ventures, Sanofi Winthrop, Schering-Plough, Immunex/ Sanofi Winthrop, Bayer, Ono interleukin-4 + TNF-Alpha -- NIH interleukin-4 agonist -- Bayer interleukin-4 fusion toxin -- Ligand Interleukin-4 receptor - Immunex, Immun Interleukin-6 - Ajinomoto, Cangene, Yeda, Genetics Institute, Novartis interleukin-6 fusion protein interleukin-6 fusion toxin - Ligand, Serono interleukin-7 -- IC Innovations interleukin-7 receptor -- Immunex interleukin-8 antagonists -- Kyowa Hakko/Millennium/Pfizer interleukin-9 antagonists -- Genaera Interleukin-10 - DNAX, Schering-Plough Interleukin-10 gene therapy interleukin-12 -- Genetics Institute, Hoffman La-Roche interleukin-13 -- Sanofi Interleukin-13-PE38QQR interleukin-15 -- Immunex interleukin-16 -- Research Corp interleukin-18 -- GlaxoSmithKline Interleukin-18 binding protein -- Serono lor-P3 -- Center of Molecular Immunology IP-10 -- NIH IPF -- Metabolex IR-501 -- Immune Response ISIS 9125 - Isis Pharmaceuticals ISURF No. 1554 -- Millennium ISURF No. 1866 – Iowa State Univer. ITF-1697 -- Italfarmaco IxC 162 -- Ixion J 695 -- Cambridge Antibody Tech., Genetics Inst., Knoll

FIG. 28P

Jagged + FGF -- Repair

JKC-362 -- Phoenix Pharmaceuticals leptin, 2nd-generation -- Amgen leridistim -- Pharmacia JTP-2942 – Japan Tobacce leuprolide, ProMaxx -- Epic Juman monoclonal antibodies -leuprorelin, oral -- Unigene Medarex/Raven K02 -- Axys Pharmaceuticals LeuTech -- Papatin LEX 032 -- SuperGen Keliximab -- IDEC LiDEPT -- Novartis Keyhole limpet haemocyanin Lintuzumab (anti-CD33 MAb) -- Protein KGF -- Amgen Design Labs KM 871 -- Kyowa lipase -- Altus Biologics **KPI 135 -- Scios** lipid A vaccine -- EntreMed **KPI-022** -- Scios lipid-linked anchor Tech. - ICRT, ID Kringle 5 Biomedical KSB 304 liposome-CD4 Tech. -- Sheffield KSB-201 -- KS Biomedix Listeria monocytogenes vaccine L 696418 -- Merck LMB 1 L 703801 -- Merck LMB 7 L1 -- Acorda LMB 9 -- Battelle Memorial Institute, NIH L-761191 -- Merck LM-CD45 -- Cantab Pharmaceuticals lactoferrin – Meristem, Pharming, Agennix Iovastatin -- Merck lactoferrin cardio -- Pharming LSA-3 LAG-3 -- Serono LT-ß receptor -- Biogen LAIT -- GEMMA lung cancer vaccine -- Corixa LAK cell cytotoxin -- Arizona lamellarins -- PharmaMar/University of lusupultide -- Scios L-Vax -- AVAX Malaga LY 355455 -- Eli Lilly laminin A peptides -- NIH LY 366405 -- Eli Lilly lanoteplase -- Genetics Institute LY-355101 -- Eli Lilly laronidase -- BioMarin Lyme disease DNA vaccine -- Vical/Aventis Lassa fever vaccine Pasteur LCAT -- NIH Lyme disease vaccine -- Aquila LDP 01 -- Millennium Biopharmaceuticals, Aventis, Pasteur, LDP 02 -- Millennium Symbicom, GlaxoSmithKline, Hyland Lecithinized superoxide dismutase --Immuno, MedImmune Seikagaku Lymphocytic choriomeningitis virus vaccine LeIF adjuvant -- Corixa lymphoma vaccine - Biomira, Genitope leishmaniasis vaccine -- Corixa LYP18 lenercept -- Hoffman La-Roche lys plasminogen, recombinant Lenograstim – Aventis, Chugai Lysosomal storage disease gene therapy -lepirudin -- Aventis Avigen leptin - Amgen, IC Innovations lysostaphin -- Nutrition 21 Leptin gene therapy -- Chiron Corporation

FIG. 28Q

M 23 -- Gruenenthal M1 monoclonal antibodies -- Acorda Therapeutics MA 16N7C2 - Corvas Intl. malaria vaccine -- GlaxoSmithKline, AdProTech, Antigenics, Apovia, Aventis Pasteur, Axis Genetics, Behringwerke, CDCP, Chiron Vaccines, Genzyme Transgenics, Hawaii, MedImmune, NIH, NYU, Oxxon, Roche/Saramane, Biotech Australia, Rx Tech Malaria vaccine CDC/NIIMALVAC-1 malaria vaccine, multicomponent mammaglobin -- Corixa mammastatin -- Biotherapeutics mannan-binding lectin -- Natlmmu mannan-MUC1 -- Psiron **MAP 30** Marinovir -- Phytera MARstem -- Maret MB-015 -- Mochida MBP -- ImmuLogic MCI-028 -- Mitsubishi-Tokyo MCIF -- Human Genome Sciences MDC -- Advanced BioScience -- Akzo Nobel, ICOS MDX 11 -- Medarex MDX 210 -- Medarex MDX 22 -- Medarex MDX 22 MDX 240 -- Medarex **MDX 33** MDX 44 -- Medarex MDX 447 -- Medarex MDX H210 -- Medarex MDX RA -- Houston BioTech., Medarex ME-104 -- Pharmexa Measles vaccine Mecasermin -- Cephalon/Chiron, Chiron MEDI 488 -- MedImmune **MEDI 500**

MEDI 507 -- BioTransplant melanin concentrating hormone --**Neurocrine Biosciences** melanocortins -- OMRF Melanoma monoclonal antibodies -- Viragen melanoma vaccine -- GlaxoSmithKline, Akzo Nobel, Avant, Aventis Pasteur, Bavarian Nordic, Biovector, CancerVax, Genzyme Molecular Oncology, Humbolt, ImClone Systems, Memorial, NYU, Oxxon Melanoma vaccine Magevac -- Therion memory enhancers -- Scios meningococcal B vaccine -- Chiron meningococcal vaccine -- CAMR Meningococcal vaccine group B conjugate -- North American Vaccine Meningococcal vaccine group B recombinant -- BioChem Vaccines, Microscience Meningococcal vaccine group Y conjugate -- North American Vaccine Meningococcal vaccine groups A B and C conjugate -- North American Vaccine Mepolizumab -- GlaxoSmithKline Metastatin – EntreMed, Takeda Met-CkB7 -- Human Genome Sciences met-enkephalin -- TNI METH-1 -- Human Genome Sciences methioninase -- AntiCancer Methionine lyase gene therapy --AntiCancer Met-RANTES - Genexa Biomedical, Serono Metreleptin Microtubule inhibitor MAb Immunogen/Abgenix MGDF -- Kirin MGV -- Progenics micrin -- Endocrine microplasmin -- ThromboGenics MIF -- Genetics Institute

FIG. 28R

migration inhibitory factor NIH	MAb 45-2D9- – haematoporphyrin
Mim CD4.1 – Xycte Therapies	conjugate
mirostipen Human Genome Sciences	MAb 4B4
Mitumomab (BEC-2) – ImClone Systems,	MAb 4E3-CPA conjugate BCM Oncologia
Merck KGaA	MAb 4E3-daunorubicin conjugate
MK 852 Merck	MAb 50-6
MLN 1202 (Anti-CCR2 monoclonal	MAb 50-61A – Institut Pasteur
antibody) – Millenium Pharmaceuticals	MAb 5A8 Biogen
Mobenakin NIS	MAb 791T/36-methotrexate conjugate
molgramostim Genetics Institute, Novartis	s MAb 7c11.e8
monoclonal antibodies Abgenix/Celltech,	MAb 7E11 C5-selenocystamine conjugate
Immusol/ Medarex, Viragen/ Roslin	MAb 93KA9 Novartis
Institute, Cambridge Antibody Tech./Elan	MAb A5B7-cisplatin conjugate
MAb 108 –	Biodynamics Research, Pharmacia
MAb 10D5	MAb A5B7-I-131
MAb 14.18-interleukin-2 immunocytokine	MAb A7
Lexigen	MAb A717 Exocell
MAb 14G2a –	MAb A7-zinostatin conjugate
MAb 15A10 –	MAb ABX-RB2 Abgenix
MAb 170 Biomira	MAb ACA 11
MAb 177Lu CC49	MAb AFP-I-131 – Immunomedics
MAb 17F9	MAb AP1
MAb 1D7	MAb AZ1
MAb 1F7 – Immune Network	MAb B3-LysPE40 conjugate
MAb 1H10-doxorubicin conjugate	MAb B4 – United Biomedical
MAb 26-2F	MAb B43 Genistein-conjugate
MAb 2A11	MAb B43.13-Tc-99m Biomira
MAb 2E1 RW Johnson	MAb B43-PAP conjugate
MAb 2F5	MAb B4G7-gelonin conjugate
MAb 31.1 International Biolmmune	MAb BCM 43-daunorubicin conjugate
Systems	BCM Oncologia
MAb 32 Cambridge Antibody Tech.,	MAb BIS-1
Peptech	MAb BMS 181170 Bristol-Myers Squibb
MAb 323A3 Centocor	MAb BR55-2
MAb 3C5	MAb BW494
MAb 3F12	MAb C 242-DM1 conjugate ImmunoGen
MAb 3F8	MAb C242-PE conjugate
MAb 42/6	MAb c30-6
MAb 425 Merck KGaA	MAb CA208-cytorhodin-S conjugate
MAb 447-52D Merck Sharp & Dohme	Hoechst Japan
	MAb CC49 Enzon

MAb LL2-I-131 – Immunomedics MAb ch14.18 -MAb CH14.18-GM-CSF fusion protein --MAb LL2-Y-90 MAb LS2D617 -- Hybritech Lexiden MAb LYM-1-gelonin conjugate MAb chCE7 MAb LYM-1-I-131 MAb CI-137 -- AMRAD MAb LYM-1-Y-90 MAb cisplatin conjugate MAb LYM-2 -- Peregrine MAb CLB-CD19 MAb M195 MAb CLB-CD19v MAb M195-bismuth 213 conjugate --MAb CLL-1 -- Peregrine Protein Design Labs MAb CLL-1-GM-CSF conjugate MAb CLL-1-IL-2 conjugate -- Peregrine MAb M195-gelonin conjugate MAb CLN IgG -- doxorubicin conjugates MAb M195-I-131 MAb M195-Y-90 MAb conjugates – Tanox MAb MA 33H1 -- Sanofi MAb D612 MAb MAD11 MAb Dal B02 MAb MGb2 MAb DC101 -- ImClone MAb MINT5 MAb EA 1 – MAb MK2-23 MAb EC708 -- Biovation MAb MOC31 ETA(252-613) conjugate MAb EP-5C7 -- Protein Design Labs MAb MOC-31-In-111 MAb ERIC-1 -- ICRT MAb MOC-31-PE conjugate MAb F105 gene therapy MAb MR6 -MAb FC 2.15 MAb MRK-16 -- Aventis Pasteur MAb G250 -- Centocor MAb MS11G6 MAb GA6 MAb MX-DTPA BrE-3 MAb GA733 MAb MY9 MAb Gliomab-H -- Viventia Biotech MAb Nd2 -- Tosoh MAb HB2-saporin conjugate MAb NG-1 -- Hygeia MAb HD 37 – MAb NM01 - Nissin Food MAb HD37-ricin chain-A conjugate MAb OC 125 MAb HNK20 -- Acambis MAb OC 125-CMA conjugate MAb huN901-DM1 conjugate --MAb OKI-1 -- Ortho-McNeil **ImmunoGen** MAb OX52 -- Bioproducts for Science MAb I-131 CC49 -- Corixa MAb PMA5 MAb ICO25 MAb PR1 MAb ICR12-CPG2 conjugate MAb prost 30 MAb ICR-62 MAb R-24 MAb IRac-ricin A conjugate MAb R-24 α Human GD3 -- Celltech MAb K1 MAb RFB4-ricin chain A conjugate MAb KS1-4-methotrexate conjugate MAb RFT5-ricin chain A conjugate MAb L6 -- Bristol-Myers Squibb, Oncogen MAb SC 1 MAb LiCO 16-88

Muc-1 vaccine -- Corixa MAb SM-3 -- ICRT mucosal tolerance -- Aberdeen MAb SMART 1D10 -- Protein Design Labs mullerian inhibiting subst MAb SMART ABL 364 -- Novartis muplestim - Genetics Institute, Novartis, MAb SN6f DSM Anti-Infectives MAb SN6f-deglycosylated ricin A chain murine MAb -- KS Biomedix conjugate -Mutant somatropin -- JCR Pharmaceutical MAb SN6i MV 833 -- Toagosei MAb SN7-ricin chain A conjugate Mycoplasma pulmonis vaccine MAb T101-Y-90 conjugate -- Hybritech Mycoprex -- XOMA MAb T-88 -- Chiron myeloperoxidase -- Henogen MAb TB94 -- Cancer ImmunoBiology myostatin -- Genetics Institute MAb TEC 11 Nacolomab tafenatox -- Pharmacia MAb TES-23 -- Chugai Nagrecor -- Scios MAb TM31 -- Avant MAb TNT-1 -- Cambridge Antibody Tech., nagrestipen -- British Biotech NAP-5 - Corvas Intl. Peregrine NAPc2 - Corvas Intl. MAb TNT-3 nartograstim -- Kyowa MAb TNT-3 -- IL2 fusion protein -Natalizumab -- Protein Design Labs MAb TP3-At-211 Nateplase – NIH, Nihon Schering MAb TP3-PAP conjugate – nateplase -- Schering AG MAb UJ13A -- ICRT NBI-3001 -- Neurocrine Biosci. MAb UN3 NBI-5788 -- Neurocrine Biosci. MAb ZME-018-gelonin conjugate NBI-6024 -- Neurocrine Biosci. MAb-BC2 -- GlaxoSmithKline Nef inhibitors -- BRI MAb-DM1 conjugate -- ImmunoGen Neisseria gonorrhoea vaccine -- Antex MAb-ricin-chain-A conjugate -- XOMA Biologics MAb-temoporfin conjugates Neomycin B-arginine conjugate Monopharm C -- Viventia Biotech Nerelimomab -- Chiron monteplase -- Eisai Nerve growth factor - Amgen - Chiron, montirelin hydrate -- Gruenenthal Genentech moroctocog alfa - Genetics Institute Nerve growth factor gene therapy Moroctocog-alfa -- Pharmacia nesiritide citrate -- Scios MP 4 neuregulin-2 -- CeNeS MP-121 -- Biopharm neurocan -- NYU MP-52 -- Biopharm neuronal delivery system -- CAMR MRA -- Chugai Neurophil inhibitory Factor -- Corvas MS 28168 -- Mitsui Chemicals, Nihon Neuroprotective vaccine -- University of Schering Auckland MSH fusion toxin -- Ligand neurotrophic chimaeras -- Regeneron MSI-99 -- Genaera neurotrophic factor - NsGene, CereMedix MT 201 -- Micromet

Oncophage -- Antigenics

52/498

NeuroVax -- Immune Response neurturin -- Genentech neutral endopeptidase -- Genentech NGF enhancers -- NeuroSearch NHL vaccine -- Large Scale Biology NIP45 -- Boston Life Sciences NKI-B20 NM 01 – Nissin Food NMI-139 -- NitroMed NMMP -- Genetics Institute NN-2211 -- Novo Nordisk Noggin -- Regeneron Nonacog alfa Norelin -- Biostar Norwalk virus vaccine NRLU 10 -- NeoRx NRLU 10 PE -- NeoRx NT-3 -- Regeneron NT-4/5 -- Genentech NU 3056 NU 3076 NX 1838 -- Gilead Sciences NY ESO-1/CAG-3 antigen -- NIH NYVAC-7 -- Aventis Pasteur NZ-1002 -- Novazyme obesity therapy -- Nobex OC 10426 -- Ontogen OC 144093 -- Ontogen OCIF -- Sankyo Oct-43 -- Otsuka Odulimomab -- Immunotech OK PSA - liposomal OKT3-gamma-1-ala-ala OM 991 OM 992 Omalizumab -- Genentech oncoimmunin-L -- NIH Oncolysin B -- ImmunoGen Oncolysin CD6 -- ImmunoGen Oncolysin M -- ImmunoGen Oncolysin S -- ImmunoGen

Oncostatin M -- Bristol-Myers Squibb OncoVax-CL -- Jenner Biotherapies OncoVax-P -- Jenner Biotherapies onercept -- Yeda onychomycosis vaccine -- Boehringer Ingelheim opebecan -- XOMA opioids -- Arizona Oprelvekin -- Genetics Institute Oregovomab -- AltaRex Org-33408 b-- Akzo Nobel Orolip DP -- EpiCept oryzacystatin OSA peptides - GenSci Regeneration osteoblast-cadherin GF -- Pharis Osteocalcin-thymidine kinase gene therapy osteogenic protein -- Curis osteopontin -- OraPharma osteoporosis peptides - Integra, Telios osteoprotegerin - Amgen, SnowBrand otitis media vaccines -- Antex Biologics ovarian cancer -- University of Alabama OX40-IgG fusion protein -- Cantab, Xenova P 246 -- Diatide P 30 -- Alfacell p1025 -- Active Biotech P-113[^] -- Demegen P-16 peptide -- Transition Therapeutics p43 -- Ramot P-50 peptide -- Transition Therapeutics p53 + RAS vaccine -- NIH, NCI PACAP(1-27) analogue paediatric vaccines -- Chiron Pafase -- ICOS PAGE-4 plasmid DNA -- IDEC PAI-2 -- Biotech Australia, Human Therapeutics Palifermin (keratinocyte growth factor) --Amgen Palivizumab -- MedImmune

FIG. 28V

PAM 4 -- Merck pamiteplase -- Yamanouchi pancreatin, Minitabs -- Eurand Pangen -- Fournier Pantarin - Selective Genetics Parainfluenza virus vaccine - Pharmacia, Pierre Fabre paraoxanase -- Esperion parathyroid hormone - Abiogen, Korea **Green Cross** Parathyroid hormone (1-34) --Chugai/Suntory Parkinson's disease gene therapy -- Cell Genesys/ Ceregene Parvovirus vaccine -- MedImmune PCP-Scan - Immunomedics PDGF -- Chiron PDGF cocktail -- Theratechnologies peanut allergy therapy -- Dynavax PEG anti-ICAM MAb -- Boehringer Ingelheim PEG asparaginase -- Enzon PEG glucocerebrosidase PEG hirudin - Knoll PEG interferon-alpha-2a -- Roche PEG interferon-alpha-2b + ribavirin -Biogen, Enzon, ICN Pharmaceuticals, Schering-Plough PEG MAb A5B7 -Pegacaristim - Amgen -- Kirin Brewery --ZymoGenetics Pegaldesleukin -- Research Corp pegaspargase -- Enzon pegfilgrastim -- Amgen PEG-interferon Alpha -- Viragen PEG-interferon Alpha 2A -- Hoffman La-Roche PEG-interferon Alpha 2B -- Schering-Plough Tokyo PEG-r-hirudin -- Abbott PEG-rHuMGDF -- Amgen

PEG-uricase -- Mountain View Pegvisomant – Genentech PEGylated proteins, PolyMASC -- Valentis PEGylated recombinant native human leptin -- Roche Pemtumomab Penetratin -- Cyclacel Pepscan – Antisoma peptide G - Peptech, ICRT peptide vaccine -- NIH, NCI Pexelizumab pexiganan acetate -- Genaera Pharmaprojects No. 3179 -- NYU Pharmaprojects No. 3390 -- Ernest Orlando Pharmaprojects No. 3417 -- Sumitomo Pharmaprojects No. 3777 -- Acambis Pharmaprojects No. 4209 -- XOMA Pharmaprojects No. 4349 - Baxter Intl. Pharmaprojects No. 4651 Pharmaprojects No. 4915 -- Avanir Pharmaprojects No. 5156 -- Rhizogenics Pharmaprojects No. 5200 -- Pfizer Pharmaprojects No. 5215 -- Origene Pharmaprojects No. 5216 -- Origene Pharmaprojects No. 5218 -- Origene Pharmaprojects No. 5267 - ML Laboratories Pharmaprojects No. 5373 -- MorphoSys Pharmaprojects No. 5493 -- Metabolex Pharmaprojects No. 5707 -- Genentech Pharmaprojects No. 5728 -- Autogen Pharmaprojects No. 5733 -- BioMarin Pharmaprojects No. 5757 -- NIH Pharmaprojects No. 5765 -- Gryphon Pharmaprojects No. 5830 -- AntiCancer Pharmaprojects No. 5839 -- Dyax Pharmaprojects No. 5849 -- Johnson & Johnson Pharmaprojects No. 5860 -- Mitsubishi-

FIG. 28W

Plasminogen activators -- Abbott Pharmaprojects No. 5869 – Oxford Laboratories, American Home Products, **GlycoSciences** Boehringer Mannheim, Chiron Pharmaprojects No. 5883 -- Asahi Brewery Corporation, DuPont Pharmaceuticals, Eli Pharmaprojects No. 5947 -- StressGen Lilly, Shionogi, Genentech, Genetics Pharmaprojects No. 5961 --Institute, GlaxoSmithKline, Hemispherx Theratechnologies Biopharma, Merck & Co, Novartis, Pharmaprojects No. 5962 -- NIH Pharmacia Corporation, Wakamoto, Yeda Pharmaprojects No. 5966 -- NIH plasminogen-related peptides -- Bio-Tech. Pharmaprojects No. 5994 -- Pharming General/MGH Pharmaprojects No. 5995 -- Pharming platelet factor 4 -- RepliGen Pharmaprojects No. 6023 -- IMMUCON Platelet-derived growth factor - Amgen --Pharmaprojects No. 6063 -- Cytoclonal ZymoGenetics Pharmaprojects No. 6073 -- SIDDCO plusonermin-- Hayashibara Pharmaprojects No. 6115 -- Genzyme PMD-2850 -- Protherics Pharmaprojects No. 6227 -- NIH Pneumococcal vaccine -- Antex Biologics, Pharmaprojects No. 6230 -- NIH **Aventis Pasteur** Pharmaprojects No. 6236 -- NIH Pneumococcal vaccine intranasal --Pharmaprojects No. 6243 -- NIH BioChem Vaccines/Biovector Pharmaprojects No. 6244 -- NIH PR1A3 Pharmaprojects No. 6281 -- Senetek PR-39 Pharmaprojects No. 6365 -- NIH pralmorelin -- Kaken Pharmaprojects No. 6368 -- NIH Pretarget-Lymphoma -- NeoRx Pharmaprojects No. 6373 -- NIH Priliximab -- Centocor Pharmaprojects No. 6408 - Pan Pacific PRO 140 -- Progenics Pharmaprojects No. 6410 -- Athersys PRO 2000 -- Procept Pharmaprojects No. 6421 - Oxford PRO 367 -- Progenics **GlycoSciences** Pharmaprojects No. 6522 -- Maxygen PRO 542 -- Progenics pro-Apo A-I -- Esperion Pharmaprojects No. 6523 -- Pharis prolactin -- Genzyme Pharmaprojects No. 6538 -- Maxygen Prosaptide TX14(A) -- Bio-Tech. General Pharmaprojects No. 6554 -- APALEXO Pharmaprojects No. 6560 -- Ardana prostate cancer antbodies - Immunex, UroCor Pharmaprojects No. 6562 -- Bayer prostate cancer antibody therapy --Pharmaprojects No. 6569 -- Eos Genentech/UroGenesys, Phenoxazine Genotherapeutics Phenylase -- Ibex prostate cancer immunotherapeutics -- The Pigment epithelium derived factor plasminogen activator inhibitor-1, PSMA Development Company prostate cancer vaccine -- Aventis Pasteur, recombinant -- DuPont Pharmaceuticals Zonagen, Corixa, Dendreon, Jenner Biotherapies, Therion Biologics

55/498

RD 62198 prostate-specific antigen -- EntreMed rDnase -- Genentech protein A -- RepliGen RDP-58 -- SangStat protein adhesives -- Enzon protein C - Baxter Intl., PPL Therapeutics, RecepTox-Fce -- Keryx RecepTox-GnRH - Keryx, MTR ZymoGenetics protein C activator - Gilead Sciences **Technologies** RecepTox-MBP - Keryx, MTR protein kinase R antags -- NIH **Technologies** protirelin -- Takeda recFSH -- Akzo Nobel, Organon protocadherin 2 -- Caprion Pro-urokinase - Abbott, Bristol-Myers REGA 3G12 Squibb, Dainippon, Tosoh -- Welfide Regavirumab -- Teijin P-selectin glycoprotein ligand-1 -- Genetics relaxin -- Connetics Corp Renal cancer vaccine -- Macropharm Institute repifermin -- Human Genome Sciences pseudomonal infections -- InterMune Respiratory syncytial virus PFP-2 vaccine --Pseudomonas vaccine -- Cytovax Wyeth-Lederle PSGL-Ig -- American Home Products Respiratory syncytial virus vaccine -PSP-94 -- Procyon GlaxoSmithKline, Pharmacia, Pierre Fabre PTH 1-34 -- Nobex Respiratory syncytial virus vaccine Quilimmune-M -- Antigenics inactivated R 744 -- Roche Respiratory syncytial virus-parainfluenza R 101933 virus vaccine -- Aventis Pasteur, R 125224 -- Sankyo Pharmacia RA therapy -- Cardion Reteplase -- Boehringer Mannheim, Rabies vaccine recombinant -- Aventis Hoffman La-Roche Pasteur, BioChem Vaccines, Kaketsuken Retropep -- Retroscreen **Pharmaceuticals** RFB4 (dsFv) PE38 RadioTheraClM -- YM BioSciences RFI 641 -- American Home Products Ramot project No. 1315 -- Ramot RFTS -- UAB Research Foundation Ramot project No. K-734A -- Ramot RG 12986 -- Aventis Pasteur Ramot project No. K-734B -- Ramot RG 83852 -- Aventis Pasteur Ranibizumab (Anti-VEGF fragment) --RG-1059 -- RepliGen Genentech rGCR -- NIH RANK -- Immunex rGLP-1 -- Restoragen ranpirnase -- Alfacell ranpirnase-anti-CD22 MAb -- Alfacell rGRF -- Restoragen rh Insulin – Eli Lilly RANTES inhibitor -- Milan RHAMM targeting peptides -- Cangene RAPID drug delivery systems -- ARIAD rHb1.1 - Baxter Intl. rasburicase -- Sanofi rhCC10 -- Claragen rBPI-21, topical -- XOMA rhCG -- Serono RC 529 -- Corixa Rheumatoid arthritis gene therapy rCFTR -- Genzyme Transgenics

Rheumatoid arthritis vaccine -- Veterans Affairs Medical Center rhLH -- Serono Ribozyme gene therapy -- Genset Rickettsial vaccine recombinant

RIP-3 -- Rigel

Rituximab -- Genentech RK-0202 -- RxKinetix RLT peptide -- Esperion

RIGScan CR -- Neoprobe

rM/NEI -- IVAX rmCRP -- Immtech RN-1001 -- Renovo RN-3 -- Renovo

RNAse conjugate -- Immunomedics

RO 631908 -- Roche

Rotavirus vaccine -- Merck
RP 431 -- DuPont Pharmaceuticals

RP-128 -- Resolution RPE65 gene therapy -

RPR 110173 -- Aventis Pasteur
RPR 115135 -- Aventis Pasteur
RPR 116258A -- Aventis Pasteur
rPSGL-Ig -- American Home Products
r-SPC surfactant -- Byk Gulden
RSV antibody -- Medimmune

Ruplizumab -- Biogen

rV-HER-2/neu -- Therion Biologics

SA 1042 -- Sankyo

sacrosidase - Orphan Medical

Sant 7

Sargramostim -- Immunex saruplase -- Gruenenthal Satumomab -- Cytogen SB 1 -- COR Therapeutics SB 207448 -- GlaxoSmithKline SB 208651 -- GlaxoSmithKline

SB 240683 -- GlaxoSmithKline SB 249415 -- GlaxoSmithKline

SB 249417 -- GlaxoSmithKline

SB 6 -- COR Therapeutics

SB RA 31012 -

SC 56929 -- Pharmacia

SCA binding proteins – Curis, Enzon scFv(14E1)-ETA Berlex Laboratories,

Schering AG ScFv(FRP5)-ETA – ScFv6C6-PE40 – SCH 55700 -- Celltech

Schistosomiasis vaccine -- Glaxo

Wellcome/Medeva, Brazil

SCPF -- Advanced Tissue Sciences scuPA-suPAR complex -- Hadasit

SD-9427 -- Pharmacia

SDF-1 -- Ono

SDZ 215918 -- Novartis SDZ 280125 -- Novartis SDZ 89104 -- Novartis SDZ ABL 364 -- Novartis SDZ MMA 383 -- Novartis Secretin -- Ferring, Repligen

serine protease inhibs -- Pharis sermorelin acetate -- Serono

SERP-1 -- Viron

sertenef -- Dainippon

serum albumin, Recombinant human --

Aventis Behring

serum-derived factor -- Hadasit

Sevirumab -- Novartis SGN 14 -- Seatle Genetics SGN 15 -- Seatle Genetics SGN 17/19 -- Seatle Genetics SGN 30 -- Seatle Genetics

SGN 30 -- Seatle Genetics
SGN-10 -- Seatle Genetics

SGN-11 -- Seatle Genetics

SH 306 -- DuPont Pharmaceuticals

Shanvac-B -- Shantha

Shigella flexneri vaccine - Avant, Acambis,

Novavax

Shigella sonnei vaccine -

sICAM-1 -- Boehringer Ingelheim

Silteplase -- Genzyme

FIG. 28Z

SIV vaccine - Endocon, Institut Pasteur SK 896 -- Sanwa Kagaku Kenkyusho SK-827 -- Sanwa Kagaku Kenkyusho Skeletex -- CellFactors SKF 106160 -- GlaxoSmithKline S-nitroso-AR545C -SNTP -- Active Biotech somatomedin-1 - GroPep, Mitsubishi-Tokyo, NIH somatomedin-1 carrier protein -- Insmed somatostatin -- Ferring Somatotropin/ Human Growth Hormone -- Bio-Tech. General, Eli Lilly somatropin -- Bio-Tech. General, Alkermes, SUIS-LHRH -- United Biomedical ProLease, Aventis Behring, Biovector, Cangene, Dong-A, Eli Lilly, Emisphere, Enact, Genentech, Genzyme Transgenics, YM BioSciences Novartis, Novo Nordisk, Pharmacia Serono, TranXenoGen somatropin derivative -- Schering AG somatropin, AIR -- Eli Lilly Somatropin, inhaled -- Eli Lilly/Alkermes somatropin, Kabi -- Pharmacia somatropin, Orasome -- Novo Nordisk Sonermin -- Dainippon Pharmaceutical SP(V5.2)C -- Supertek SPf66 sphingomyelinase -- Genzyme SR 29001 -- Sanofi SR 41476 -- Sanofi SR-29001 -- Sanofi SS1(dsFV)-PE38 -- NeoPharm ß2 microglobulin -- Avidex ß2-microglobulin fusion proteins -- NIH ß-amyloid peptides -- CeNeS ß-defensin -- Pharis Staphylococcus aureus infections --Inhibitex/ZLB

Staphylococcus aureus vaccine conjugate --Nabi Staphylococcus therapy -- Tripep Staphylokinase - Biovation, Prothera, Thrombogenetics Streptococcal A vaccine -- M6 Pharmaceuticals, North American Vaccine Streptococcal B vaccine -- Microscience Streptococcal B vaccine recombinant --Biochem Vaccines Streptococcus pyogenes vaccine STRL-33 -- NIH Subalin -- SRC VB VECTOR SUIS -- United Biomedical SUN-E3001 -- Suntory super high affinity monoclonal antibodies --Grandis/InfiMed, CSL, InfiMed, MacroMed, Superoxide dismutase - Chiron, Enzon, Ube Industries, Bio-Tech, Yeda superoxide dismutase-2 -- OXIS suppressin -- UAB Research Foundation SY-161-P5 -- ThromboGenics SY-162 -- ThromboGenics Systemic lupus erythematosus vaccine --MedClone/VivoRx T cell receptor peptides -- Xoma T cell receptor peptide vaccine T4N5 liposomes -- AGI Dermatics TACI, soluble -- ZymoGenetics targeted apoptosis -- Antisoma tasonermin -- Boehringer Ingelheim **TASP** TASP-V Tat peptide analogues -- NIH TBP I -- Yeda TBP II TBV25H -- NIH Tc 99m ior cea1 -- Center of Molecular **Immunology** Tc 99m P 748 -- Diatide

FIG. 28AA

58/498

Tissue factor -- Genentech Tc 99m votumumab -- Intracell Tissue factor pathway inhibitor Tc-99m rh-Annexin V - Theseus Imaging TJN-135 -- Tsumura teceleukin -- Biogen TM 27 -- Avant tenecteplase -- Genentech TM 29 -- Avant Teriparatide -- Armour Pharmaceuticals, TMC-151 - Tanabe Seiyaku Asahi Kasei, Eli Lilly TNF tumour necrosis factor -- Asahi Kasei terlipressin -- Ferring TNF Alpha -- Cytimmune testisin -- AMRAD TNF antibody -- Johnson & Johnson Tetrafibricin -- Roche TNF binding protein -- Amgen TFPI -- EntreMed TNF degradation product -- Oncotech tgD-IL-2 -- Takeda TNF receptor -- Immunex TGF-Alpha -- ZymoGenetics TNF receptor 1, soluble -- Amgen TGF-ß -- Kolon TNF Tumour necrosis factor-alpha -- Asahi TGF-ß2 -- Insmed Kasei, Genetech, Mochida TGF-B3 -- OSI TNF-Alpha inhibitor -- Tripep Thalassaemia gene therapy -- Crucell TNFR:Fc gene therapy - Targeted Genetics TheraCIM-h-R3 -- Center of Molecular TNF-SAM2 Immunology, YM BioSciences ToleriMab -- Innogenetics Theradigm-HBV -- Epimmune Toxoplasma gondii vaccine --Theradigm-HPV -- Epimmune Theradigm-malaria -- Epimmune GlaxoSmithKline TP 9201 -- Telios Theradigm-melanoma -- Epimmune TP10 -- Avant TheraFab - Antisoma TP20 -- Avant ThGRF 1-29 -- Theratechnologies ThGRF 1-44 -- Theratechnologies tPA -- Centocor trafermin -- Scios Thrombin receptor activating peptide --TRAIL/Apo2L -- Immunex Abbott TRAIL-R1 MAb - Cambridge Antibody thrombomodulin - Iowa, Novocastra Thrombopoietin -- Dragon Pharmaceuticals, Technologies transferrin-binding proteins -- CAMR Genentech Transforming growth factor-beta-1 -thrombopoietin, Pliva -- Receptron Genentech Thrombospondin 2 transport protein -- Genesis thrombostatin -- Thromgen Trastuzumab -- Genetech thymalfasin -- SciClone TRH -- Ferring thymocartin - Gedeon Richter Triabin -- Schering AG thymosin Alpha1 -- NIH thyroid stimulating hormone -- Genzyme Triconal Triflavin tICAM-1 -- Bayer Tick anticoagulant peptide -- Merck troponin I -- Boston Life Sciences TRP-2[^] -- NIH

FIG. 28BB

trypsin inhibitor -- Mochida

TIF -- Xoma

Tifacogin - Chiron, NIS, Pharmacia

Vascular endothelial growth factors – R&D TSP-1 gene therapy -Systems TT-232 vascular targeting agents -- Peregrine TTS-CD2 -- Active Biotech vasopermeation enhancement agents --Tuberculosis vaccine -- Aventis Pasteur, Peregrine Genesis Tumor Targeted Superantigens -- Active vasostatin -- NIH VCL -- Bio-Tech. General Biotech -- Pharmacia VEGF - Genentech, Scios tumour vaccines -- PhotoCure tumour-activated prodrug antibody VEGF inhibitor -- Chugai VEGF-2 -- Human Genome Sciences conjugates -- Millennium/ImmunoGen VEGF-Trap -- Regeneron tumstatin -- ILEX viscumin, recombinant -- Madaus Tuvirumab -- Novartis Vitaxin TV-4710 – Teva Vitrase -- ISTA Pharmaceuticals TWEAK receptor -- Immunex West Nile virus vaccine -- Bavarian Nordic TXU-PAP WP 652 TY-10721 – TOA Eiyo WT1 vaccine -- Corixa Type I diabetes vaccine -- Research Corp WX-293 -- Wilex BioTech. Typhoid vaccine CVD 908 WX-360 -- Wilex BioTech. U 143677 -- Pharmacia WX-UK1 -- Wilex BioTech. U 81749 -- Pharmacia XMP-500 -- XOMA UA 1248 -- Arizona XomaZyme-791 -- XOMA UGIF -- Sheffield XTL 001 -- XTL Biopharmaceuticals UIC 2 XTL 002 -- XTL Biopharmaceuticals UK 101 veast delivery system -- Globelmmune UK-279276 - Corvas Intl. Yersinia pestis vaccine urodilatin -- Pharis YIGSR-Stealth -- Johnson & Johnson urofollitrophin -- Serono Yissum Project No. D-0460 -- Yissum Urokinase -- Abbott YM 207 -- Yamanouchi uteroferrin-- Pepgen YM 337 -- Protein Design Labs V 20 -- GLYCODesign Yttrium-90 labelled biotin V2 vasopressin receptor gene therapy Yttrium-90-labeled anti-CEA MAb T84.66 vaccines -- Active Biotech ZD 0490 – AstraZeneca Varicella zoster glycoprotein vaccine --Research Corporation Technologies ziconotide -- Elan Varicella zoster virus vaccine live -- Cantab ZK 157138 -- Berlex Laboratories Zolimomab aritox **Pharmaceuticals**

Vascular endothelial growth factor – Genentech, University of California

Zorcell -- Immune Response

ZRXL peptides -- Novartis

60/498

$$\mathbf{B} \leftarrow \begin{pmatrix} (\operatorname{Sia})_{b} \\ -\operatorname{GalNAc-(Gal)}_{a} - (\operatorname{Sia})_{c} - (R)_{d} \end{pmatrix}_{e}$$

a-c, e (independently selected) = 0 or 1;
d = 0;
R = modifying group, sialyl or oligosialyl

FIG. 29A

61/498

CHO, BHK, 293 cells, Vero expressed G-CSF a-c, e (independently selected) = 0 or 1; d = 0

- 1. Sialidase
- 2. CMP-SA-PEG, ST3Gal1

a-d, e (independently selected) = 0 or 1; R = PEG.

FIG. 29B

Insect cell expressed G-CSF a, e (independently selected) = 0 or 1; b, c, d = 0.

- ↓ 1. Galactosyltransferase, UDP-Gal2. CMP-SA-PEG, ST3Gal1
- a, c, d, e (independently selected) = 0 or 1; R = PEG.

FIG. 29C

62/498

E. coli expressed G-CSF a-e=0.

- 1. GalNAc Transferase, UDP-GalNAc▼ 2. CMP-SA-PEG, sialyltransferase
- c, d, e (independently selected) = 0 or 1; a, b = 0; R = PEG.

FIG. 29D

NSO expressed G-CSF a, e (independently selected) = 0 or 1; b, c, d = 0

1. CMP-SA-levulinate, ST3Gal1
 2. H₄N₂-PEG

a, c, d, e (independently selected) = 0 or 1; b = 0; R = PEG.

FIG. 29E

63/498

E. coli expressed G-CSF a-e = 0.

1. Endo-GalNAc-osaminidase (synthetic enzyme), PEG-Gal-GalNAc-F

a, d, e = 1; b, c = 0; R = PEG.

FIG. 29F

E. coli expressed G-CSF a-e = 0.

1. GalNAc Transferase, UDP-GalNAc-PEG

d, e = 0 or 1; a,-c = 0; R = PEG.

FIG. 29G

64/498

$$\mathbf{A} \leftarrow \begin{bmatrix} \left[\operatorname{GlcNAc-(Gal)}_{a} \right]_{e} - \left(\operatorname{Sia} \right)_{j} - \left(\operatorname{R} \right)_{v} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{b} \right]_{f} - \left(\operatorname{Sia} \right)_{k} - \left(\operatorname{R} \right)_{w} \right]_{s} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{b} \right]_{g} - \left(\operatorname{Sia} \right)_{l} - \left(\operatorname{R} \right)_{x} \right]_{t} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{d} \right]_{h} - \left(\operatorname{Sia} \right)_{m} - \left(\operatorname{R} \right)_{y} \right]_{u} = aa} \end{bmatrix}_{bb}$$

a-d, i, n-u (independently selected) = 0 or 1.

aa, bb, cc, dd, ee (independently selected) = 0 or 1.

e-h (independently selected) = 0 to 6.

j-m (independently selected) = 0 to 20.

v-z = 0; R = modifying group, mannose, oligo-mannose.

R' = H, glycosyl residue, modifying group,
glycoconjugate.

FIG. 30A

65/498

```
CHO, BHK, 293 cells, Vero expressed interferon alpha 14C.

a-d, aa, bb = 1; e-h = 1 to 4; cc, j-m, i, r-u (independently selected) = 0 or 1; q, n-p, v-z, cc, dd, ee = 0.
```

- 1. Sialidase
- 2. CMP-SA-PEG, ST3Gal3

```
a-d, aa, bb = 1; e-h = 1 to 4;
bb, cc, i, r-u (independently selected) = 0 or 1;
q, n-p, v-z, cc, dd, ee = 0;
v-y (independently selected) = 1,
when j-m (independently selected) = 1;
R = PEG.
```

FIG. 30B

```
Insect cell or fungi expressed interferon alpha-14C. a-d, f, h, j-q, s, u, v-z, cc, dd, ee = 0; e, g, i, r, t (independently selected) = 0 or 1; aa, bb = 1.
```

- 1. GNT's 1&2, UDP-GlcNAc
- 2. Galactosyltransferase, UDP-Gal-PEG

```
b, d, f, h, j-q, s, u, w, y, z, cc, dd, ee = 0;
a, c, e, g, i, r, t, v, x (independently selected) = 0 or 1;
v, x (independently selected) = 1,
when a, c, (independently selected) = 1;
aa, bb = 1; R = PEG.
```

FIG. 30C

66/498

```
Yeast expressed interferon alpha-14C.
a-q, cc, dd, ee, v-z = 0;
r-y (independently selected) = 0 to 1;
aa, bb = 1;
R (branched or linear) = Man, oligomannose or polysaccharide.
```

- 1. Endo-H
- 2. Galactosyltransferase, UDP-Gal
- 3.. CMP-SA-PEG, ST3Gal3

a-z, bb = 0; aa = 1; R' = -Gal-Sia-PEG.

FIG. 30D

67/498

a-d, i, r-u (independently selected) = 0 or 1. e-h (independently selected) = 0 to 4. j-m (independently selected) = 0 or 1. n, v-y = 0; z = 0 or 1. R = polymer; R' = sugar, glycoconjugate.

FIG. 30E

68/498

```
CHO, BHK, 293 cells, Vero expressed interferon alpha-14C.

h = 1 to 3;

a-g, j-m, i (independently selected) = 0 or 1;

r-u (independently selected) = 0 or 1;

n, v-y = 0; z = 1.
```

1. CMP-SA-PEG, ST3Gal3

```
h = 1 to 3;
a-g, i (independently selected) = 0 or 1;
r-u (independently selected) = 0 or 1;
j-m, v-y (independently selected) = 0 or 1;
z = 1; n = 0; R = PEG.
```

FIG. 30F

```
Insect cell or fungi expressed
interferon alpha-14C.
a-d, f, h, j-n, s, u, v-y = 0;
e, g, i, r, t (independently selected) = 0 or 1;
z = 1.
```

- 1. GNT's 1,2,4,5, UDP-GlcNAc
- 2. Galactosyltransferase, UDP-Gal
- 3. CMP-SA-PEG, ST3Gal3

a-m, r-y (independently selected) = 0 or 1; z = 1; n = 0; R = PEG.

FIG. 30G

69/498

Yeast expressed interferon alpha-14C. a-n = 0; r-y (independently selected) = 0 to 1; z = 1; R (branched or linear) = Man, oligomannose.

- 1. mannosidases
- 2. GNT's 1,2,4,5, UDP-GlcNAc
- 3. Galactosyltransferase, UDP-Gal
- 4.. CMP-SA-PEG, ST3Gal3

a-m, r-y (independently selected) = 0 or 1; z = 1; n = 0; R = PEG.

FIG. 30H

NSO expressed interferon alpha 14C. a-i, r-u (independently selected) = 0 or 1; j-m, n, v-y = 0; z = 1.

- 1. CMP-SA-levulinate, ST3Gal3, buffer, salt
- 2. H₄N₂-PEG

a-i, j-m, r-y (independently selected) = 0 or 1; n = 0; z = 1; R = PEG.

FIG. 301

70/498

CHO, BHK, 293 cells, Vero expressed interferon alpha-14C.

h = 1 to 3;

a-g, j-m, i (independently selected) = 0 or 1;

r-u (independently selected) = 0 or 1;

n, v-y = 0; z = 1.

1. CMP-SA-PEG, α 2,8-ST

h = 1 to 3; a-g, i, r-u (independently selected) = 0 or 1; j-m (independently selected) = 0 to 2; v-y (independently selected) = 1, when j-m (independently selected) is 2; z = 1; n = 0; R = PEG.

FIG. 30J

CHO, BHK, 293 cells, Vero expressed Interferon alpha-14C.
a-g, j-m, r-u (independently selected) = 0 or 1; h = 1 to 3; n, v-y = 0; z = 1.

- 1. Sialidase
- 2. Trans-sialidase, PEG-Sia-lactose

a-g, j-m, r-y (independently selected) = 0 or 1; h = 1 to 3; n = 0; z = 1; R = PEG.

FIG. 30K

71/498

```
CHO, BHK, 293 cells, Vero expressed interferon alpha-14C.

h = 1 to 3;

a-g, j-m, i (independently selected) = 0 or 1;

r-u (independently selected) = 0 or 1;

n, v-y = 0; z = 1.
```

1. CMP-SA, α 2,8-ST

```
h = 1 to 3;
a-g, i, r-u (independently selected) = 0 or 1;
j-m (independently selected) = 0 to 40;
z = 1; v-y, n = 0.
```

FIG. 30L

```
Insect cell or fungi expressed interferon alpha-14C. a-d, f, h, j-n, s, u, v-y = 0; e, g, i, r, t (independently selected) = 0 or 1; z = 1.
```

- 1. GNT's 1 & 2, UDP-GlcNAc
- 2. Galactosyltransferase, UDP-Gal-linker-SA-CMP
- 3. ST3Gal3, transferrin

a, c, e, g, i, r, t, v, x (independently selected) = 0 or 1; z = 1; b, d, f, h, j-n, s, u, w, y = 0; R = transferrin.

FIG. 30M

72/498

```
Insect cell or fungi expressed interferon alpha-14C.
a-d, f, h, j-n, s, u, v-y = 0;
e, g, i, r, t (independently selected) = 0 or 1; z = 1.
```

- 1. endoglycanase
- 2. Galactosyltransferase, UDP-Gal-linker-SA-CMP
- 3. ST3Gal3, transferrin

```
i (independently selected) = 0 or 1;
a-h, j-m, r-z = 0;
n = 1; R' = -Gal-linker-transferrin.
```

FIG. 30N

73/498

$$\mathbf{B} \leftarrow \begin{bmatrix} (\operatorname{GlcNAc-Gal})_{f_{\underline{-}}}(\operatorname{Sia})_{b} - (R)_{g} \\ -\operatorname{GalNAc-(Gal})_{a} - (\operatorname{Sia})_{c} - (R)_{d} \end{bmatrix}_{e}$$

a-c, e, f (independently selected) = 0 or 1; d, g = 0; R = polymer, glycoconjugate.

FIG. 300

74/498

CHO, BHK, 293 cells, Vero expressed IF-alpha (2a or 2b). a-c (independently selected) = 0 or 1; e = 1; d, f, g = 0

1. Sia

1. Sialidase

2. CMP-SA-PEG, ST3Gal1

a-d (independently selected) = 0 or 1; e = 1; b, f, g = 0; R = PEG.

FIG. 30P

Insect cell expressed interferon alpha (2a or 2b). a, e (independently selected) = 0 or 1; b, c, d, f, g = 0.

- 1. Galactosyltransferase, UDP-Gal
- 2. CMP-SA-PEG, ST3Gal1

a, c, d, e (independently selected) = 0 or 1; b, f, g = 0; R = PEG.

FIG. 30Q

75/498

E. coli expressed IF-alpha (2a or 2b). a-g=0.

 GalNAc Transferase, UDP-GalNAc-PEG

a-c, f, g = 0; d, e = 1; R = PEG.

FIG. 30R

NSO expressed IF-alpha (2a or 2b). a (independently selected) = 0 or 1; e = 1; b, c, d, f, g = 0

- 1. CMP-SA-levulinate, ST3Gal1
- $2. H_4N_2$ -PEG

a, c, d (independently selected) = 0 or 1; e = 1; b, f, g = 0; R = PEG.

FIG. 30S

76/498

E. coli expressed IF-alpha (2a or 2b). a-g=0.

 Endo-N-acetylgalatosamidase (synthetic enzyme), PEG-Gal-GalNAc-F

a, d, e = 1; b, c, f, g = 0; R = PEG.

FIG. 30T

E. coli expressed IF-alpha (2a or 2b). a-g=0.

- 1. GalNAc Transferase, UDP-GalNAc
- 2. sialyltransferase, CMP-SA-PEG

b, d = 0 or 1; e = 1; a, c, f, g = 0; R = PEG.

FIG. 30U

77/498

CHO, BHK, 293 cells, Vero expressed IF-alpha (2a or 2b).

a-c, f (independently selected) = 0 or 1;

e = 1; d, g = 0

Sialidase

2. CMP-SA-PEG, ST3Gal1 and ST3Gal3

a-d, f, g (independently selected) = 0 or 1; e = 1; R = PEG.

FIG. 30V

CHO, BHK, 293 cells, Vero expressed IF-alpha (2a or 2b). a-c, f (independently selected) = 0 or 1; e = 1; d, g = 0

- 1. Sialidase
- 2. CMP-SA-linker-SA-CMP, ,ST3Gal1
- 3. ST3Gal3, transferrin

a-d, f (independently selected) = 0 or 1; e = 1; R = transferrin; g = 0.

FIG. 30W

78/498

$$\mathbf{B} \leftarrow \begin{pmatrix} (\operatorname{Sia})_{b} \\ -\operatorname{GalNAc-(Gal)}_{a} - (\operatorname{Sia})_{c} - (\operatorname{R})_{d} \end{pmatrix}_{e}$$

a-c, e (independently selected) = 0 or 1; d = 0; R = polymer, glycoconjugate.

FIG. 30X

79/498

CHO, BHK, 293 cells, Vero expressed interferon alpha-mucin fusion protein. a-c, e (independently selected) = 0 or 1; d = 0

- 1. Sialidase
 - 2. CMP-SA-PEG, ST3Gal1

a-d, e (independently selected) = 0 or 1; R = PEG.

FIG. 30Y

Insect cell expressed interferon alpha-mucin fusion protein.

a, e (independently selected) = 0 or 1; b, c, d = 0.

1. Galactosyltransferase, UDP-Gal-PEG

a, d, e (independently selected) = 0 or 1; b, c = 0; R = PEG.

FIG. 30Z

80/498

E. coli expressed interferon alpha-mucin fusion protein.

a-e = 0.

- 1. GalNAc Transferase, UDP-GalNAc
- 2. CMP-SA-PEG, sialyltransferase

c, d, e (independently selected) = 0 or 1; a, b = 0; R = PEG.

FIG. 30AA

81/498

$$\mathbf{B} \leftarrow \begin{pmatrix} (\operatorname{Sia})_{b} \\ -\operatorname{GalNAc-(Gal)}_{a} - (\operatorname{Sia})_{c} - (R)_{d} \end{pmatrix}_{e}$$

$$\mathbf{C} \leftarrow (\mathbf{R'})_{\mathbf{n}}$$

a-c, e (independently selected) = 0 or 1; d = 0; R = polymer, linker.

FIG. 30BB

82/498

E. coli expressed interferon alpha-mucin fusion protein.

a-e, n = 0.

1. GalNAc Transferase, UDP-GalNAc-PEG

d, e (independently selected) = 0 or 1; a-c, n = 0; R = PEG.

FIG. 30CC

E. coli expressed interferon alpha-mucin fusion protein.

a-e, n = 0.

- GalNAc Transferase, UDP-GalNAc-linker-SA-CMP
- 2. ST3Gal3, asialo-transferrin
- 3. CMP-SA, ST3Gal3

d, e (independently selected) = 0 or 1; a-c, n = 0; R = linker-transferrin.

FIG. 30DD

83/498

E. coli expressed Interferon alpha (no fusion). a-e, n = 0.

- 1. NHS-CO-linker-SA-CMP
- 2. ST3Gal3, transferrin

a-e=0; n=1; R' = linker-transferrin.

FIG. 30EE

84/498

a-d, i, r-u (independently selected) = 0 or 1. e-h (independently selected) = 0 to 4. j-m (independently selected) = 0 or 1. n, v-y = 0; z = 0 or 1; R = polymer

FIG. 31A

85/498

CHO, BHK, 293 cells, Vero expressed IF-beta h = 1 to 3: a-g, j-m, i (independently selected) = 0 or 1: r-u (independently selected) = 0 or 1; n, v-y = 0; z = 1.

1. Sialidase

2. CMP-SA-PEG, ST3Gal3

```
h = 1 \text{ to } 3;
a-g, i (independently selected) = 0 or 1;
r-u (independently selected) = 0 or 1;
j-m, v-y (independently selected) = 0 or 1;
z = 1; n = 0; R = PEG.
```

FIG. 31B

```
Insect cell expressed IF-beta
a-d, f, h, j-n, s, u, v-y = 0;
e, g, i, r, t (independently selected) = 0 or 1;
z = 1.
```

- 1. GNT's 1&2, UDP-GlcNAc
- 2. Galactosyltransferase, UDP-Gal
- 2. CMP-SA-PEG, ST3Gal3, buffer, salt

b, d, f, h, k, m, n, s, u, w, y = 0; a, c, e, g, i, r, t (independently selected) = 0 or 1; j, l, v, x (independently selected) = 0 or 1: z = 1; R = PEG.

FIG. 31C

86/498

Yeast expressed IF-beta a-n = 0; z = 1; r-y (independently selected) = 0 to 1; R (branched or linear) = Man, oligomannose or polysaccharide.

- 1. Endo-H
- 2. Galactosyltransferase, UDP-Gal
- 3.. CMP-SA-PEG, ST3Gal3

```
a-m, r-z=0; n=1; R'=-Gal-Sia-PEG.
```

FIG. 31D

```
CHO, BHK, 293 cells, Vero expressed IF-beta h = 1 to 3; a-g, j-m, i (independently selected) = 0 or 1; r-u (independently selected) = 0 or 1; n, v-y = 0; z = 1.
```

1. CMP-SA-PEG, ST3Gal3

```
h = 1 to 3;
a-g, i (independently selected) = 0 or 1;
r-u (independently selected) = 0 or 1;
j-m, v-y (independently selected) = 0 or 1;
z = 1; n = 0; R = PEG.
```

FIG. 31E

87/498

Insect cell expressed IF-beta a-d, f, h, j-n, s, u, v-y = 0; e, g, i, r, t (independently selected) = 0 or 1; z = 1.

- 1. GNT's 1,2,4,5, UDP-GlcNAc
- 2. Galactosyltransferase, UDP-Gal
- 3. CMP-SA-PEG, ST3Gal3

a-m, r-y (independently selected) = 0 or 1; z = 1; n = 0; R = PEG.

FIG. 31F

Yeast expressed IF-beta a-n = 0; z = 1; r-y (independently selected) = 0 to 1; R (branched or linear) = Man, oligomannose.

- 1. mannosidases
- 2. GNT's 1,2,4,5, UDP-GlcNAc
- 3. Galactosyltransferase, UDP-Gal
- 4.. CMP-SA-PEG, ST3Gal3

a-m, r-y (independently selected) = 0 or 1; z = 1; n = 0; R = PEG.

88/498

NSO expressed IF-beta a-i, r-u (independently selected) = 0 or 1; j-m, n, v-y = 0; z = 1.

> CMP-SA-levulinate, ST3Gal3, buffer, salt
> H₄N₂-PEG

a-i, j-m, r-y (independently selected) = 0 or 1; n = 0; z = 1; R = PEG.

FIG. 31H

CHO, BHK, 293 cells, Vero expressed IF-beta h = 1 to 3; a-g, j-m, i (independently selected) = 0 or 1; r-u (independently selected) = 0 or 1; n, v-y = 0; z = 1.

1. CMP-SA-PEG, α 2,8-ST

h = 1 to 3;
a-g, i, r-u (independently selected) = 0 or 1;
j-m (independently selected) = 0 to 2;
v-y (independently selected) = 1,
when j-m (independently selected) is 2;
z = 1; n = 0; R = PEG.

FIG. 311

89/498

CHO, BHK, 293 cells, Vero expressed IF-beta a-g, j-m, r-u (independently selected) = 0 or 1; h = 1 to 3; n, v-y = 0; z = 1.

- 1. Sialidase
- 2. Trans-sialidase, PEG-Sia-lactose

a-g, j-m, r-y (independently selected) = 0 or 1; h = 1 to 3; n = 0; z = 1; R = PEG.

FIG. 31J

CHO, BHK, 293 cells, Vero expressed Ifn-beta. a-d, i-m, r-u, z (independently selected) = 0 or 1; e-h = 1; n, v-y = 0.

- 1. Sialidase
- 2. CMP-SA-PEG (1.2 mol eq), ST3Gal3
- 3. CMP-SA (16 mol eq), ST3Gal3

a-d, i-m, r-u, z (independently selected) = 0 or 1; e-h = 1; n=0; v-y (independently selected) = 0 or 1; R = PEG.

FIG. 31K

90/498

```
NSO expressed Ifn-beta.

a-d, i-m, r-u, z (independently selected) = 0 or 1;

e-h = 1; n, v-y = 0;

Sia (independently selected) = Sia or Gal.

1. Sialidase and α-galactosidase
2. α-Galactosyltransferase, UDP-Gal

3. CMP-SA-PEG, ST3Gal3

a-d, i-m, r-u, z (independently selected) = 0 or 1;

e-h = 1; R = PEG

n = 0; v-y (independently selected) = 1,

when j-m (independently selected) is 1;
```

FIG. 31L

```
CHO, BHK, 293 cells, Vero expressed Ifn-beta.
a-d, i-m, r-u, z (independently selected) = 0 or 1;
e-h = 1; n, v-y = 0.
```

- 1. Sialidase
- 2. CMP-SA-PEG (16 mol eq), ST3Gal3
- 3. CMP-SA, ST3Gal3

```
a-d, i-m, r-u, z (independently selected) = 0 or 1;
e-h = 1; n = 0;
v-y (independently selected) = 0 or 1; R = PEG.
```

FIG. 31M

91/498

CHO, BHK, 293 cells, Vero expressed Ifn-beta. a-d, i-m, r-u, z (independently selected) = 0 or 1; e-h=1; n, v-y=0.

- 1. CMP-SA-levulinate, ST3Gal3, buffer, salt
- 2. H_4N_2 -PEG

```
a-d, i-m, r-u, z (independently selected) = 0 or 1;
e-h = 1; n = 0;
v-y (independently selected) = 0 or 1; R = PEG.
```

FIG. 31N

```
CHO, BHK, 293 cells, Vero expressed Ifn-beta. a-d, i-m, r-u, z (independently selected) = 0 or 1; e-h=1; n, v-y=0.
```

1. CMP-SA, α2,8-ST

a-d, i, r-u, z (independently selected) = 0 or 1; e-h = 1; j-m (independently selected) = 0-20; n, v-y (independently selected) = 0.

FIG. 310

92/498

$$\mathbf{A} \leftarrow \begin{bmatrix} (\operatorname{Fuc})_{i} & & & & \\ (\operatorname{GlcNAc-(Gal)}_{a}]_{e} - (\operatorname{Sia})_{j} - (\operatorname{R})_{v} \\ (\operatorname{GlcNAc-Man} & & & & \\ (\operatorname{GlcNAc-(Gal)}_{b}]_{f} - (\operatorname{Sia})_{k} - (\operatorname{R})_{w} \end{bmatrix}_{s} \\ \operatorname{Man} = \begin{bmatrix} (\operatorname{GlcNAc-(Gal)}_{b}]_{f} - (\operatorname{Sia})_{l} - (\operatorname{R})_{v} \\ (\operatorname{R'})_{n} & & & & \\ (\operatorname{GlcNAc-(Gal)}_{d}]_{h} - (\operatorname{Sia})_{m} - (\operatorname{R})_{y} \end{bmatrix}_{u} \\ \operatorname{GlcNAc-(Gal)}_{d} = \begin{bmatrix} (\operatorname{GlcNAc-(Gal)}_{b})_{l} - (\operatorname{Sia})_{l} - (\operatorname{R})_{v} \\ (\operatorname{GlcNAc-(Gal)}_{d})_{l} - (\operatorname{Sia})_{m} - (\operatorname{R})_{y} \end{bmatrix}_{u} \\ \operatorname{GlcNAc-(Gal)}_{d} = \begin{bmatrix} (\operatorname{GlcNAc-(Gal)}_{b})_{l} - (\operatorname{Sia})_{l} - (\operatorname{R})_{v} \\ (\operatorname{GlcNAc-(Gal)}_{d})_{l} - (\operatorname{Sia})_{m} - (\operatorname{R})_{v} \end{bmatrix}_{u} \\ \operatorname{GlcNAc-(Gal)}_{d} = \begin{bmatrix} (\operatorname{GlcNAc-(Gal)}_{b})_{l} - (\operatorname{Sia})_{l} - (\operatorname{R})_{v} \\ (\operatorname{GlcNAc-(Gal)}_{d})_{l} - (\operatorname{Sia})_{m} - (\operatorname{R})_{v} \end{bmatrix}_{u}$$

a-d, i, p-u (independently selected) = 0 or 1. e-h (independently selected) = 0 to 6. j-m (independently selected) = 0 to 100. v-y = 0; R = modifying group; R' = H, glycosyl group, modifying group, glycoconjugate.

FIG. 31P

93/498

```
Insect cell expressed Ifn-beta.
a-d, f, h, j-m, s, u, v-y = 0;
e, g, i, q, r, t (independently selected) = 0 or 1.
```

- 1. GNT's 1,2,4,5, UDP-GlcNAc
- 2. Galactosyltransferase, UDP-Gal-PEG

```
a-i, q-u (independently selected) = 0 or 1;
j-m = 0; v-y (independently selected) = 1,
when e-h (independently selected) is 1;
R = PEG.
```

FIG. 31Q

```
Yeast expressed Ifn-beta.

a-m = 0; q-y (independently selected) = 0 to 1;

p = 1;

R (branched or linear) = Man, oligomannose.
```

- 1. Endoglycanase
- 2. Galactosyltransferase, UDP-Gal
- ▼ 3. CMP-SA-PEG, ST3Gal3

```
a-m, p-y = 0;
n (independently selected) = 0 or 1;
R' = -Gal-Sia-PEG.
```

FIG. 31R

94/498

CHO, BHK, 293 cells, Vero expressed Ifn-beta. a-d, i-m, q-u (independently selected) = 0 or 1; e-h=1; v-y=0.

- CMP-SA-linker-SA-CMP, ST3Gal3
 ST3Gal3, desialylated transferrin.
- 3. CMP-SA, ST3Gal3

```
a-m, q-u (independently selected) = 0 or 1;

p = 1; n = 0;

v-y (independently selected) = 0 or 1;

R = linker-transferrin.
```

FIG. 31S

95/498

$$\mathbf{A} \leftarrow \begin{bmatrix} \left[\operatorname{GlcNAc-(Gal)}_{a} \right]_{e} - \left(\operatorname{Sia} \right)_{j} - \left(\operatorname{R} \right)_{v} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{b} \right]_{f} - \left(\operatorname{Sia} \right)_{k} - \left(\operatorname{R} \right)_{w} \right]_{s} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{c} \right]_{g} - \left(\operatorname{Sia} \right)_{l} - \left(\operatorname{R} \right)_{x} \right]_{t} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{d} \right]_{h} - \left(\operatorname{Sia} \right)_{m} - \left(\operatorname{R} \right)_{y} \right]_{u} \right]_{q} \\$$

$$\mathbf{B} \blacktriangleleft \left(\mathsf{Glc}\text{-}(\mathsf{Xyl})_{\mathsf{n}} \right)_{\mathsf{o}}$$

a-d, i, q-u (independently selected) = 0 or 1. o, p (independently selected) = 0 or 1. e-h, n (independently selected) = 0 to 6. j-m (independently selected) = 0 to 20. v-y = 0; R = modifying group, mannose, oligo-

mannose, Sia-Lewis X, Sia-Lewis A..

FIG. 32A

96/498

BHK expressed Factor VII or VIIa a-d, e, i, g, q, j, l, o, p (independently selected) = 0 or 1; r, t = 1; f, h, k, m, s, u, v-y = 0; n = 0-4.

- 1. Sialidase
 - 2. CMP-SA-PEG (16 mole eq), ST3Gal3

```
a-d, e, g, i, q, j, l, o, p (independently selected) = 0 or 1;

r, t = 1; f, h, k, m, s, u, w, y = 0; n = 0-4;

v, x, (independently selected) = 1,

when j, l (respectively, independently selected) is 1;

R = PEG.
```

FIG. 32B

CHO, BHK, 293 cells, Vero expressed Factor VII or VIIa a-d, e, i, g, q, j, l, o, p (independently selected) = 0 or 1; r, t = 1; f, h, k, m, s, u, v-y=0; n=0-4.

- 1. Sialidase
- 2. CMP-SA-PEG (1.2 mole eq), ST3Gal3
- 3. CMP-SA (8 mol eq), ST3Gal3

```
a-d, e, g, i, q, j, l, o, p (independently selected) = 0 or 1;
r, t = 1; f, h, k, m, s, u, w, y = 0; n = 0-4;
v or x, (independently selected) = 1,
when j or l, (respectively, independently selected) is 1;
R = PEG.
```

FIG. 32C

97/498

```
NSO expressed Factor VII or VIIa
a--u (independently selected) = 0 or 1;
v-y = 0; n = 0-4;
Sia (independently selected) = Sia or Gal.
```

- 1. Sialidase and α -galactosidase
- 2. Galactosyltransferase, UDP-Gal
- 3. CMP-SA-PEG, ST3Gal3

```
a-m, o-u (independently selected) = 0 or 1;
n = 0-4; v-y (independently selected) = 1,
when j-m (independently selected) is 1;
Sia = Sia; R = PEG.
```

FIG. 32D

98/498

$$(Fuc)_{i} \qquad \qquad ([GlcNAc-(Gal)_{a}]_{e}-(Sia)_{j}-(R)_{v})_{r} \\ ([GlcNAc-(Gal)_{b}]_{f}-(Sia)_{k}-(R)_{w})_{s} \\ ([GlcNAc-(Gal)_{c}]_{g}-(Sia)_{l}-(R)_{x})_{t} \\ ([GlcNAc-(Gal)_{d}]_{h}-(Sia)_{m}-(R)_{y})_{u} \\ (GlcNAc-(Gal)_{d}]_{h}-(Sia)_{m}-(R)_{y})_{u} \\ (GlcNAc-(Gal)_{d})_{h}-(Sia)_{m}-(R)_{y})_{u} \\ (GlcNAc-(Gal)_{d})_{u}-(R)$$

$$\mathbf{B} \leftarrow \begin{bmatrix} (\operatorname{Sia})_{o} \\ -\operatorname{GalNAc-(Gal)}_{n} - (\operatorname{Sia})_{p} - (\operatorname{R})_{z} \end{bmatrix}_{q} \qquad \mathbf{C} \leftarrow \begin{bmatrix} -\operatorname{Glc-(Xyl)}_{aa} \end{bmatrix}_{bb}$$

$$\mathbf{D} \leftarrow \text{-Fuc}\left\{-(\text{GlcNAc})_{\text{cc}} - (\text{Gal})_{\text{dd}} - (\text{Sia})_{\text{ee}}\right\}_{\text{ff}} - (R)_{\text{gg}}$$

a-d, i, n-u (independently selected) = 0 or 1.
bb, cc, dd, ee, ff, gg (independently selected) = 0 or 1.
e-h, aa (independently selected) = 0 to 6.
j-m (independently selected) = 0 to 20.
v-z = 0; R = modifying group, mannose, oligo-mannose.

FIG. 33A

99/498

```
CHO, BHK, 293 cells, Vero expressed Factor IX a-d, q = 1; e-h = 1 to 4; aa, bb, cc, dd, ee, ff, j-m, i, n, o, p, r-u (independently selected) = 0 or 1; v-z, gg = 0.
```

- 1. Sialidase
- 2. CMP-SA-PEG, ST3Gal3

```
a-d, q = 1; e-h = 1 to 4;

aa, bb, cc, dd, ee, ff, i, n, r-u (independently selected)

= 0 or 1;

o, p, z = 0;

j-m, ee, v-y, gg (independently selected) = 0 or 1;

R = PEG.
```

FIG. 33B

```
CHO, BHK, 293 cells, Vero expressed Factor IX a-d, n, q = 1; e-h = 1 to 4; aa, bb, cc, dd, ee, ff, j-m, i, o, p, r-u (independently selected) = 0 or 1; v-z, gg = 0.
```

- 1. Sialidase
- 2. CMP-SA-PEG, ST3Gal3
- 3. ST3Gal1, CMP-SA

```
a-d, n, p, q = 1; e-h = 1 to 4;
aa, bb, cc, dd, ee, ff, i, r-u (independently selected) = 0 or 1;
j-m, ee, v-y, gg (independently selected) = 0 or 1;
o, z = 0; R = PEG.
```

FIG. 33C

100/498

CHO, BHK, 293 cells, Vero expressed Factor IX a-d, n, q, bb, cc, dd, ff = 1; e-h, aa = 1 to 4; ee, j-m, i, o, p, r-u (independently selected) = 0 or 1; v-z, gg = 0.

- 1. sialidase
- 2. Galactosyltransferase, UDP-Gal
- 3. CMP-SA, ST3Gal3
- 4. CMP-SA-PEG, ST3Gal1

```
a-d, n, q = 1; e-h = 1 to 4;
aa, bb, cc, dd, ee, ff, i, r-u (independently selected) = 0 or 1; R = PEG;
o, v-y, gg = 0;
j-m, p, ee (independently selected) = 0 or 1, but when p = 1, z = 1.
```

FIG. 33D

```
CHO, BHK, 293 cells, Vero expressed Factor IX a-d, q = 1; e-h = 1 to 4; aa, bb, cc, dd, ee, ff, j-m, i, n, o, p, r-u (independently selected) = 0 or 1; v-z, gg = 0.
```

CMP-SA-PEG, ST3Gal3

```
a-d, q = 1; e-h = 1 to 4;
aa, bb, cc, dd, ee, ff, i, n, r-u (independently selected)
= 0 or 1; R = PEG;
o, p, z = 0; j-m, ee, v-y, gg (independently selected) = 0 or 1.
```

FIG. 33E

101/498

```
CHO, BHK, 293 cells, Vero expressed Factor IX a-d, q = 1; e-h = 1 to 4; aa, bb, cc, dd, ee, ff, j-m, i, n, o, p, r-u (independently selected) = 0 or 1; v-z, gg = 0.
```

1. CMP-SA-levulinate, ST3Gal3, buffer, salt

2. H₄N₂-PEG

```
a-d, q = 1; e-h = 1 to 4;
aa, bb, cc, dd, ee, ff, i, n, r-u (independently selected)
= 0 or 1;
o, p, z = 0; R = PEG;
j-m, ee, v-y, gg (independently selected) = 0 or 1.
```

FIG. 33F

```
CHO, BHK, 293 cells, Vero expressed Factor IX a-d, n, q, bb, cc, dd, ff = 1; e-h, aa = 1 to 4; ee, j-m, i, o, p, r-u (independently selected) = 0 or 1; v-z, gg = 0.
```

1. CMP-SA-PEG, α2,8-ST

```
a-d, q = 1; e-h = 1 to 4;
aa, bb, cc, dd, ee, ff, i, n, r-u (independently selected)
= 0 or 1;
o, p, z = 0; R= PEG;
j-m, ee (independently selected) = 0 to 2;
v-y, gg (independently selected) = 1, when j-m (independently selected) is 2;
```

FIG. 33G

102/498

a-d, i, q-u (independently selected) = 0 or 1. e-h (independently selected) = 0 to 6. j-m (independently selected) = 0 to 100. v-y = 0; R = modifying group, mannose, oligo-mannose.

FIG. 34A

103/498

CHO, BHK, 293 cells, Vero expressed FSH. a-d, i-m, q-u (independently selected) = 0 or 1; e-h=1; v-y=0.

- 1. Sialidase
- 2. CMP-SA-PEG (16 mol eq), ST3Gal3

a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y (independently selected) = 1,
when j-m (independently selected) is 1;
R = PEG.

FIG. 34B

CHO, BHK, 293 cells, Vero expressed FSH. a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; v-y = 0.

- 1. Sialidase
- 2. CMP-SA-PEG (1.2 mol eq), ST3Gal3
- 3. CMP-SA (16 mol eq), ST3Gal3

a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; v-y (independently selected) = 0 or 1; R = PEG.

FIG. 34C

104/498

NSO expressed FSH.

a-d, i-m, q-u (independently selected) = 0 or 1;

e-h = 1; v-y = 0;

Sia (independently selected) = Sia or Gal.

- 1. Sialidase and α-galactosidase
- 2. Galactosyltransferase, UDP-Gal
- **★** 3. CMP-SA-PEG, ST3Gal3

a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y (independently selected) = 1,
when j-m (independently selected) is 1;
R = PEG.

FIG. 34D

CHO, BHK, 293 cells, Vero expressed FSH. a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; v-y = 0.

- 1. Sialidase
- 2. CMP-SA-PEG (16 mol eq), ST3Gal3
- 3. CMP-SA, ST3Gal3

a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; v-y (independently selected) = 0 or 1; R = PEG.

FIG. 34E

105/498

CHO, BHK, 293 cells, Vero expressed FSH. a-d, i-m, q-u (independently selected) = 0 or 1; e-h=1; v-y=0.

- 1. CMP-SA-levulinate, ST3Gal3, buffer, salt
 - 2. H₄N₂-PEG

a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; v-y (independently selected) = 0 or 1; R = PEG.

FIG. 34F

CHO, BHK, 293 cells, Vero expressed FSH. a-d, i-m, q-u (independently selected) = 0 or 1; e-h=1; v-y=0.

1. CMP-SA, α2,8-ST

a-d, i, q-u (independently selected) = 0 or 1; e-h = 1; j-m (independently selected) = 0-20; v-y (independently selected) = 0.

FIG. 34G

106/498

```
Insect cell expressed FSH.
a-d, f, h, j-m, s, u, v-y = 0;
e, g, i, q, r, t (independently selected) = 0 or 1.
```

- 1. GNT's 1,2,4,5, UDP-GlcNAc
- 2. Galactosyltransferase, UDP-Gal-PEG

```
a-i, q-u (independently selected) = 0 or 1;
j-m = 0; v-y (independently selected) = 1,
when e-h (independently selected) is 1;
R = PEG.
```

FIG. 34H

```
Yeast expressed FSH.

a-m=0; q-y (independently selected) = 0 to 1;

p=1;

R (branched or linear) = Man, oligomannose.
```

- 1. Endoglycanase
- 2. Galactosyltransferase, UDP-Gal
- ▼ 3. CMP-SA-PEG, ST3Gal3

```
a-m, p-y = 0;
n (independently selected) = 0 or 1;
R' = -Gal-Sia-PEG.
```

FIG. 341

107/498

CHO, BHK, 293 cells, Vero expressed FSH. a-d, i-m, q-u (independently selected) = 0 or 1; e-h=1; v-y=0.

- 1. CMP-SA-linker-SA-CMP, ST3Gal3
- 2. ST3Gal1, desialylated chorionic gonadrophin (CG) produced in CHO.
- 3. CMP-SA, ST3Gal3, ST3Gal1

```
a-m, q-u (independently selected) = 0 or 1;

p = 1; n = 0;

v-y (independently selected) = 0 or 1;

R = linker-CG.
```

FIG. 34J

108/498

(Fuc)_i

A -GlcNAc-GlcNAc-Man

$$\begin{bmatrix}
[GlcNAc-(Gal)_a]_e - (Sia)_j - (R)_v \\
[GlcNAc-(Gal)_b]_f - (Sia)_k - (R)_w \\
Man
\begin{bmatrix}
[GlcNAc-(Gal)_b]_f - (Sia)_k - (R)_w \\
Man
\end{bmatrix}_t \\
[[GlcNAc-(Gal)_c]_g - (Sia)_l - (R)_x \\
[[GlcNAc-(Gal)_d]_h - (Sia)_m - (R)_y \\
u
\end{bmatrix}_u$$

B -GalNAc-(Gal)_n-(Sia)_p- (R)_z
_q

a-d, i, n-u (independently selected) = 0 or 1.

e-h (independently selected) = 0 to 4.

j-m (independently selected) = 0 to 20.

v-z = 0;

R = polymer.

FIG. 35A

109/498

```
CHO, BHK, 293 cells, Vero expressed EPO a-g, n, q = 1; h = 1 to 3; j-m, i, o, p (independently selected) = 0 or 1; r-u (independently selected) = 0 to1; v-z = 0
```

- 1. Sialidase
- 2. CMP-SA-PEG, ST3Gal3

```
a-g, n, q = 1; h = 1 to 3;
i, o, p (independently selected) = 0 or 1;
r-u (independently selected) = 0 or 1;
j-m, v-y (independently selected) = 0 or 1;
R = PEG; z = 0.
```

FIG. 35B

```
Insect cell expressed EPO a-d, f, h, j-q, s, u, v-z = 0; e, g, i, r, t (independently selected) = 0 or 1.
```

- 1. GNT's 1&2, UDP-GlcNAc
- 2. Galactosyltransferase, UDP-Gal
- 2. CMP-SA-PEG, ST3Gal3

```
b, d, f, h, k, m-q, s, u, w, y, z = 0;
a, c, e, g, i, r, t (independently selected)= 0 or 1;
j, l, v, x (independently selected) = 0 or 1;
R = PEG.
```

FIG. 35C

110/498

```
CHO, BHK, 293 cells, Vero expressed EPO a-q, r-u (independently selected) = 0 or 1; v-z = 0.
```

- 1. sialidase
- 2. Galactosyltransferase, UDP-Gal
- 3. CMP-SA, ST3Gal3
- 4. CMP-SA-PEG, ST3Gal1

```
a-h, n, q = 1;
i-m, o, r-u (independently selected) = 0 or 1;
v-y = 0; p, z = 0 or 1; R = PEG.
```

FIG. 35D

```
CHO, BHK, 293 cells, Vero expressed EPO a-g, n, q = 1; h = 1 to 3; j-m, i, o, p (independently selected) = 0 or 1; r-u (independently selected) = 0 or 1; v-z = 0
```

1. CMP-SA-PEG, ST3Gal3

```
a-g, n, q = 1; h = 1 to 3;
i, o, p (independently selected) = 0 or 1;
r-u (independently selected) = 0 to 1;
j-m, v-y (independently selected) = 0 or 1;
R = PEG; z = 0.
```

FIG. 35E

111/498

Insect cell, yeast or fungi expressed EPO a-d, f, h, j-q, s, u, v-z = 0; e, g, i, r, t (independently selected) = 0 or 1.

- 1. GNT's 1, 2 & 5, UDP-GlcNAc
- 2. Galactosyltransferase, UDP-Gal-PEG

a-c, e-g, i, r-t, v-x (independently selected) = 0 or 1; d, h, j-q, u, y, z = 0; R = PEG.

FIG. 35F

Insect cell, yeast or fungi expressed EPO a-d, f, h, j-q, s, u, v-z = 0; e, g, i, r, t (independently selected) = 0 or 1.

- 1. GNT's 1, 2 & 5, UDP-GlcNAc
- 2. Galactosidase (synthetic enzyme), PEG-Gal-F.

a-c, e-g, n, q-t, v-x, z (independently selected) = 0 or 1; d, h, j-m, o, p, y, z = 0; R = PEG.

FIG. 35G

112/498

Insect cell, yeast or fungi expressed EPO a-d, f, h, j-m, n-q, s, u, v-z = 0; e, g, i, r, t (independently selected) = 0 or 1.

1. GNT-1, UDP-GlcNAc-PEG

e, i, r, v (independently selected) = 0 or 1; a-h, j-q, s-u, w-z = 0; R = PEG.

FIG. 35H

Insect cell, yeast or fungi expressed EPO a-d, f, h, j-m, n-q, s, u, v-z = 0; e, g, i, r, t (independently selected) = 0 or 1.

- 1. GNT-1, UDP-GlcNAc
- 2. Galactosyltransferase, UDP-Gal-PEG

a, e, i, r, v (independently selected) = 0 or 1; b-d, f-h, j-q, s-u, w-z = 0; R = PEG.

FIG. 351

113/498

Insect cell, yeast or fungi expressed EPO a-d, f, h, j-m, n-q, s, u, v-z = 0; e, g, i, r, t (independently selected) = 0 or 1.

- 1. GNT-1, UDP-GlcNAc
- 2. Galactosyltransferase, UDP-Gal
- 3. ST3Gal3, CMP-SA-PEG

a, e, i, j, r, v (independently selected) = 0 or 1; b-d, f-h, k-q, s-u, w-z = 0; R = PEG.

FIG. 35J

Insect cell, yeast or fungi expressed EPO a-d, f, h, j-m, n-q, s, u, v-z = 0; e, g, i, r, t (independently selected) = 0 or 1.

- 1. GNT's 1, 2 & 5, UDP-GlcNAc
- 2. Galactosyltransferase, UDP-Gal
- 3. ST3Gal3, CMP-SA-PEG

a-c, e-g, i-l, r-t, v-x (independently selected) = 0 or 1; d, h, m-q, u, y, z = 0; R = PEG.

FIG. 35K

114/498

```
Insect cell, yeast or fungi expressed EPO a-d, f, h, j-m, n-q, s, u, v-z = 0; e, g, i, r, t (independently selected) = 0 or 1.
```

- 1. GNT's 1, 2 & 5, UDP-GlcNAc
- 2. Galactosyltransferase, UDP-Gal
- ▼ 3. α2,6-sialyltransferase, CMP-SA-PEG

```
a-c, e-g, i-l, r-t, v-x (independently selected)
= 0 or 1;
d, h, m-q, u, y, z = 0; R = PEG.
```

FIG. 35L

```
CHO, BHK, 293 cells, Vero expressed EPO a-q, r-u (independently selected) = 0 or 1; v-z=0.
```

- 1. sialidase
- 2. CMP-SA, ST3Gal3
- 3. CMP-SA-PEG, ST3Gal1

```
a-h, q, i-o, r-u (independently selected)
= 0 or 1;
v-y = 0; p, z = 0 or 1; R = PEG.
```

FIG. 35M

115/498

CHO, BHK, 293 cells, Vero expressed EPO a-q, r-u (independently selected) = 0 or 1; v-z = 0.

1. CMP-SA-PEG, ST3Gal3

a-h, i-o, q-u (independently selected) = 0 or 1; v-y = 0; p, z = 0 or 1; R = PEG.

FIG. 35N

CHO, BHK, 293 cells, Vero expressed EPO a-q, r-u (independently selected) = 0 or 1; v-z = 0.

1. CMP-SA-PEG, α 2,8-sialyltransferase

a-h, i-o, q-u (independently selected) = 0 or 1; v-y=0; p, z=0 or 1; R=SA-PEG.

FIG. 350

116/498

CHO, BHK, 293 cells, Vero expressed EPO a-q, r-u (independently selected) = 0 or 1; v-z = 0.

1. CMP-SA-PEG, α 2,8-sialyltransferase

a-h, i-o, p-u, v-z (independently selected) = 0 or 1; R = SA-PEG.

FIG. 35P

yeast or fungi expressed EPO r, t, u, v, x, y (independently selected) = 0 or 1; a-m, n-q, s, w, z = 0; $R = (Man)_n$ where n = 1-5, linear or branched.

- 1. mannosidases
- 2. GNT-1, UDP-GlcNAc
- 3. galactosyltransferase, UDP-Gal
- 4. ST3Gal3, CMP-SA-PEG

a, e, j, r, v (independently selected) = 0 or 1; b-d, f-i, k-q, s-u, w-z = 0; R = PEG.

FIG. 35Q

117/498

```
yeast or fungi expressed EPO

r, t, u, v, x, y (independently selected) = 0 or 1;

a-m, n-q, s, w, z = 0; R = (Man)<sub>n</sub>

where n = 1-5, linear or branched.
```

- 1. mannosidases
- 2. GNT-1, UDP-GlcNAc-PEG

e, r, v (independently selected) = 0 or 1; a-h, i-q, s-u, w-z = 0; R = PEG.

FIG. 35R

```
yeast or fungi expressed EPO

r, t, u, v, x, y (independently selected) = 0 or 1;

a-m, n-q, s, w, z = 0; R = (Man)_n

where n = 1-5, linear or branched.
```

- 1. mannosidase-I
- 2. GNT-1, UDP-GlcNAc
- 3. galactosyltransferase, UDP-Gal
- 4. ST3Gal3, CMP-SA-PEG

```
a, e, j, r, t-u, v, x, y (independently selected)
= 0 or 1;
b-d, f-i, k-q, s, w, z = 0;
(R)<sub>v</sub> = PEG; (R)<sub>x</sub> and (R)<sub>y</sub> = Man.
```

FIG. 35S

118/498

a-d, i, n-u (independently selected) = 0 or 1. e-h (independently selected) = 0 to 4. j-m (independently selected) = 0 to 20. v-z = 0; aa, bb = 1; cc = 0; R = polymer; R" and R' = sugar-polymer or Fuc.

FIG. 35T

119/498

```
yeast or fungi expressed EPO
r, t, u, v, x, y (independently selected) = 0 or 1;
cc, a-m, n-q, s, w, z = 0;
aa, bb = 1;
R = (Man), where n = 1-100, linear or branched.
```

- 1. endo-H
- 2. galactosyltransferase, UDP-Gal-PEG

```
i (independently selected) = 0 or 1;
aa, bb, cc, a-h, j-z = 0; R" = Gal-PEG.
```

FIG. 35U

```
yeast or fungi expressed EPO

r, t, u, v, x, y (independently selected) = 0 or 1;

cc, a-m, n-q, s, w, z = 0; aa, bb = 1;

R = (Man)_n where n = 1-100, linear or branched.
```

- 1. endo-H
- 2. galactosyltransferase, UDP-Gal
- · ▼ 3. ST3Gal3, CMP-SA-PEG

i (independently selected) = 0 or 1; aa, bb, cc, a-h, j-z = 0; R" = Gal-SA-PEG.

FIG. 35V

120/498

```
Insect cell expressed EPO

a-d, f, h, j-m, n-q, s, u, v-z = 0;
e, g, i, r, t (independently selected) = 0 or 1;
aa = 1; R" = Fuc.
```

- 1. mannosidases
- 2. galactosyltransferase, UDP-Gal-PEG

```
cc, e, i, r, v (independently selected) = 0 or 1;
bb, a-h, j-q, s-u, w-z = 0; aa = 1; R' = Gal-PEG.
```

FIG. 35W

121/498

$$(Fuc)_{i}$$

$$A \leftarrow -GlcNAc-GlcNAc-Man$$

$$(GlcNAc-(Gal)_{a}]_{e} - (Sia)_{j} - (R)_{v}$$

$$[GlcNAc-(Gal)_{b}]_{f} - (Sia)_{k} - (R)_{w}$$

$$[GlcNAc-(Gal)_{b}]_{g} - (Sia)_{l} - (R)_{v}$$

$$[GlcNAc-(Gal)_{b}]_{g} - (Sia)_{l} - (R)_{v}$$

$$[GlcNAc-(Gal)_{d}]_{h} - (Sia)_{m} - (R)_{y}$$

$$[GlcNAc-(Gal)_{d}]_{h} - (Sia)_{m} - (R)_{y}$$

$$[GlcNAc-(Gal)_{d}]_{h} - (Sia)_{m} - (R)_{y}$$

$$[GlcNAc-(Gal)_{b}]_{g} - (Sia)_{l} - (R)_{v}$$

a-d, i, n-u (independently selected) = 0 or 1. e-h (independently selected) = 0 to 4. j-m (independently selected) = 0 to 20. v-z = 0; R = polymer.

FIG. 35X

122/498

```
NSO expressed NESP
q = 1; a-i, n, r-u (independently selected) = 0
or 1; j-m, o, p, v-z = 0

1. CMP-SA-levulinate, ST3Gal3,
buffer, salt
2. H<sub>4</sub>N<sub>2</sub>-PEG

q = 1; a-i, j-n, r-y (independently selected) =
0 or 1;
o, p, z = 0; R = PEG.
```

FIG. 35Y

```
CHO, BHK, 293 cells, Vero expressed NESP a-g, n, q = 1; h = 1 to 3; j-m, i, o, p (independently selected) = 0 or 1; r-u (independently selected) = 0 or 1; v-z = 0
```

1. CMP-SA-PEG, α 2,8-ST

```
a-g, n, q = 1; h = 1 to 3;

i, o, p (independently selected) = 0 or 1;

r-u (independently selected) = 0 to 1;

j-m (independently selected) = 0 to 2;

v-y (independently selected) = 1,

when j-m (independently selected) is 2;

R = PEG; z = 0.
```

FIG. 35Z

123/498

CHO, BHK, 293 cells, Vero expressed NESP a-g, n, q = 1; h = 1 to 3; j-m, i, o, p (independently selected) = 0 or 1; r-u (independently selected) = 0 to 1; v-z = 0

1 CMP-SA, poly- α 2,8-ST

a-g, n, q = 1; h = 1 to 3; i, j-m, o, p, r-u, (independently selected) = 0 or 1; v-z (independently selected) = 0-40; R = Sia.

FIG. 35AA

124/498

$$\mathbf{B} \leftarrow \begin{bmatrix} (\operatorname{Sia})_{o} \\ -\operatorname{GalNAc-(Gal)}_{n} - (\operatorname{Sia})_{p} - (R)_{z} \end{bmatrix}_{aa}$$

a-d, i, n-u, aa (independently selected) = 0 or 1. e-h (independently selected) = 0 to 6. j-m (independently selected) = 0 to 100. v-y = 0; R = polymer, glycoconjugate.

FIG. 36A

125/498

CHO, BHK, 293 cells, Vero expressed GM-CSF. a-d, i-m, o-u, aa (independently selected) = 0 or 1; n, e-h=1; v-z=0.

- 1. Sialidase
- 2. CMP-SA-PEG (16 mol eq), ST3Gal3

```
a-d, i-m, q-u, aa (independently selected) = 0 or 1;
o, p, z = 0; n, e-h = 1;
v-y (independently selected) = 1,
when j-m (independently selected) is 1;
R = PEG.
```

FIG. 36B

```
CHO, BHK, 293 cells, Vero expressed GM-CSF. a-d, i-m, o-u, aa (independently selected) = 0 or 1; n, e-h = 1; v-z = 0.
```

- 1. Sialidase
- 2. CMP-SA-PEG (1.2 mol eq), ST3Gal3
- 3. CMP-SA (16 mol eq), ST3Gal3 & ST3Gal1

a-d, i-m, p-u, aa (independently selected) = 0 or 1;
o, z = 0; n, e-h = 1;
v-y (independently selected) = 0 or 1; R = PEG.

FIG. 36C

126/498

NSO expressed GM-CSF. a-d, i-m, o-u, aa (independently selected) = 0 or 1; n, e-h = 1; v-z = 0; Sia (independently selected) = Sia or Gal.

- 1. Sialidase and α-galactosidase
- 2. CMP-SA, ST3Gal3
- 2. CMP-SA-PEG, ST3Gal1

a-d, i-m, p-u, z, aa (independently selected) = 0 or 1; n, e-h = 1; o, v-y = 0; z = 1, when p = 1; R = PEG.

FIG. 36D

CHO, BHK, 293 cells, Vero expressed GM-CSF. a-d, i-m, o-u, aa (independently selected) = 0 or 1; n, e-h = 1; v-z = 0.

- 1. Sialidase
- 2. CMP-SA-PEG (16 mol eq), ST3Gal3
- 3. CMP-SA, ST3Gal3

a-d, i-m, q-y, as (independently selected) = 0 or 1; o, p, z = 0; n, e-h = 1; R = PEG.

FIG. 36E

127/498

CHO, BHK, 293 cells, Vero expressed GM-CSF. a-d, i-m, o-u, aa (independently selected) = 0 or 1; n, e-h=1; v-z=0.

- 1. CMP-SA-levulinate, ST3Gal3, buffer, salt
- 2. H₄N₂-PEG

a-d, i-m, o-y, as (independently selected) = 0 or 1; z = 0; n, e-h = 1; R = PEG.

FIG. 36F

CHO, BHK, 293 cells, Vero expressed GMCSF. a-d, i-m, o-u, aa (independently selected) = 0 or 1; n, e-h = 1; v-z = 0.

1. CMP-SA, α2,8-ST

a-d, i, o-u, aa (independently selected) = 0 or 1; n, e-h = 1; j-m (independently selected) = 0-20; v-z (independently selected) = 0.

FIG. 36G

128/498

$$\mathbf{B} \leftarrow \begin{pmatrix} (\mathrm{Sia})_{o} \\ -\mathrm{GalNAc-(Gal)}_{n} - (\mathrm{Sia})_{p} - (\mathrm{R})_{z} \end{pmatrix}_{aa}$$

a-d, i, n-u, aa, bb, cc (independently selected) = 0 or 1. e-h (independently selected) = 0 to 6. j-m (independently selected) = 0 to 100. v-y = 0; R = modifying group, mannose, oligo-mannose. R'= H, glycosyl residue, modifying group. glycoconjugate.

FIG. 36H

129/498

```
Insect cell expressed GM-CSF.
a-d, f, h, j-m, o, p, s, u, v-z = 0;
e, g, i, n, q, r, t, aa (independently selected) = 0 or 1.
```

- 1. GNT's 1,2,4,5, UDP-GlcNAc
- 2. Galactosyltransferase, UDP-Gal-PEG

```
a-i, n, q-u (independently selected) = 0 or 1;

j-m = 0; v-y (independently selected) = 1,

when e-h (independently selected) is 1;

R = PEG.
```

FIG. 361

```
Yeast expressed GM-CSF.

a-p, z, cc = 0;

q-y, aa (independently selected) = 0 to 1;

bb = 1; R (branched or linear) = Man, oligomannose;

GalNAc = Man.
```

- 1. Endoglycanase
- 2. mannosidase (if aa = 1).
- 3. Galactosyltransferase, UDP-Gal-PEG

```
a-p, r-z, aa, bb = 0;
q, cc (independently selected) = 0 or 1;
R' = -Gal-PEG.
```

FIG. 36J

130/498

CHO, BHK, 293 cells, Vero expressed GM-CSF. a--m, o-u, aa, bb (independently selected) = 0 or 1; n, v-z, cc = 0.

- 1. sialidase
- 2. CMP-SA, ST3Gal3
- 2. CMP-SA-linker-SA-CMP, ST3Gal1
- 3. ST3Gal3, transferrin

a--m, p-u, z, as (independently selected) = 0 or 1; o, v-y, cc = 0; bb, n = 1; R = transferrin.

FIG. 36K

131/498

$$\mathbf{A} \leftarrow \begin{bmatrix} [\mathrm{GlcNAc\text{-}(Gal)}_a]_e - (\mathrm{Sia})_j - (\mathrm{R})_v \\ [\mathrm{GlcNAc\text{-}(Gal)}_b]_f - (\mathrm{Sia})_k - (\mathrm{R})_w \end{bmatrix}_s \\ [\mathrm{GlcNAc\text{-}(Gal)}_b]_g - (\mathrm{Sia})_l - (\mathrm{R})_x \end{bmatrix}_t \\ [\mathrm{GlcNAc\text{-}(Gal)}_d]_h - (\mathrm{Sia})_m - (\mathrm{R})_y \end{bmatrix}_u = \mathbf{A} \leftarrow \begin{bmatrix} [\mathrm{GlcNAc\text{-}(Gal)}_b]_f - (\mathrm{Sia})_l - (\mathrm{R})_x \\ [\mathrm{GlcNAc\text{-}(Gal)}_d]_h - (\mathrm{Sia})_m - (\mathrm{R})_y \end{bmatrix}_u = \mathbf{A}$$

a-d, i, q-u (independently selected) = 0 or 1. e-h (independently selected) = 0 to 6. j-m (independently selected) = 0 to 100. v-y = 0; R = polymer.

FIG. 37A

132/498

```
CHO, BHK, 293 cells, Vero expressed IF-gamma. a-d, i-m, q-u (independently selected) = 0 or 1; e-h=1; v-y=0.
```

1. Sialidase

2. CMP-SA-PEG (16 mol eq), ST3Gal3

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y (independently selected) = 1,
when j-m (independently selected) is 1;
R = PEG.
```

FIG. 37B

```
CHO, BHK, 293 cells, Vero expressed IF-gamma.
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y = 0.
```

- 1. Sialidase
- 2. CMP-SA-PEG (1.2 mol eq), ST3Gal3
- 3. CMP-SA (16 mol eq), ST3Gal3

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y (independently selected) = 0 or 1;
R = PEG.
```

FIG. 37C

133/498

```
NSO expressed Interferon gamma.

a-d, i-m, q-u (independently selected) = 0 or 1;

e-h = 1; v-y = 0;

Sia (independently selected) = Sia or Gal.
```

- 1. Sialidase and α-galactosidase
- 2. α-Galactosyltransferase, UDP-Gal
- 3. CMP-SA-PEG, ST3Gal3

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y (independently selected) = 1,
when j-m (independently selected) is 1;
R = PEG.
```

FIG. 37D

```
CHO, BHK, 293 cells, Vero expressed
Interferon gamma.
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y = 0.
```

- 1. Sialidase
- 2. CMP-SA-PEG (16 mol eq), ST3Gal3
- 3. CMP-SA, ST3Gal3

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y (independently selected) = 0 or 1;
R = PEG.
```

FIG. 37E

134/498

```
CHO, BHK, 293 cells, Vero expressed
Interferon gamma.

a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y = 0.

1. CMP-SA-levulinate, ST3Gal3,
2. H<sub>4</sub>N<sub>2</sub>-PEG

a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y (independently selected) = 0 or 1;
R = PEG.
```

FIG. 37F

```
CHO, BHK, 293 cells, Vero expressed
Interferon gamma.
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y = 0.

1. CMP-SA, α2,8-ST

a-d, i, q-u (independently selected) = 0 or 1;
e-h = 1; j-m (independently selected) = 0-20;
v-y (independently selected) = 0.
```

FIG. 37G

135/498

$$\mathbf{A} \leftarrow \begin{bmatrix} (\operatorname{Fuc})_{i} \\ \operatorname{GlcNAc-Man} \\ (R')_{n} \end{bmatrix} \begin{bmatrix} (\operatorname{GlcNAc-(Gal)}_{a}]_{e} - (\operatorname{Sia})_{j} - (R)_{v} \\ (\operatorname{GlcNAc-(Gal)}_{b}]_{f} - (\operatorname{Sia})_{k} - (R)_{w} \end{bmatrix}_{s} \\ (\operatorname{GlcNAc-(Gal)}_{c}]_{g} - (\operatorname{Sia})_{l} - (R)_{x} \end{bmatrix}_{t} \\ (\operatorname{GlcNAc-(Gal)}_{d}]_{h} - (\operatorname{Sia})_{m} - (R)_{y} \end{bmatrix}_{u} = 0$$

a-d, i, n, p-u (independently selected) = 0 or 1. e-h (independently selected) = 0 to 6. j-m (independently selected) = 0 to 100. v-y = 0; R = modifying group, mannose, oligo-mannose; R' = H, glycosyl residue, modifying group, glycoconjugate.

FIG. 37H

136/498

```
Insect or fungi cell expressed IF-gamma.
a-d, f, h, j-m, s, u, v-y = 0;
e, g, i, q, r, t (independently selected) = 0 or 1.
```

- 1. GNT's 1,2,4,5, UDP-GlcNAc
- 2. Galactosyltransferase, UDP-Gal-PEG

```
a-i, q-u (independently selected) = 0 or 1;

j-m = 0; v-y (independently selected) = 1,

when e-h (independently selected) is 1;

R = PEG.
```

FIG. 371

```
Yeast expressed IF-gamma.

a-m=0; q-y (independently selected) = 0 to 1; p = 1;

R (branched or linear) = Man, oligomannose.
```

- 1. Endoglycanase
- 2. Galactosyltransferase, UDP-Gal
- 3. CMP-SA-PEG, ST3Gal3

```
a-m, p-y = 0; n (independently selected) = 0 or 1; R' = -Gal-Sia-PEG.
```

FIG. 37J

137/498

CHO, BHK, 293 cells, Vero expressed IF-gamma. a-d, i-m, q-u (independently selected) = 0 or 1; e-h=1; v-y=0.

- 1. CMP-SA-linker-Gal-UDP, ST3Gal3
- 2. Galactosyltransferase, transferrin treated with endoglycanase.

```
a-m, q-u (independently selected) = 0 or 1;

p = 1; n = 0;

v-y (independently selected) = 0 or 1;

R = linker-transferrin.
```

FIG. 37K

```
CHO, BHK, 293 cells, Vero expressed
Interferon gamma.
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h, p = 1; n, v-y = 0.
```

1. CMP-SA-PEG, ST3Gal3

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h, p = 1;
n, v-y (independently selected) = 0 or 1;
R = PEG.
```

FIG. 37L

138/498

```
Insect or fungi cell expressed IF-gamma.

a-d, f, h, j-n, s, u, v-y = 0;
e, g, i, q, r, t (independently selected) = 0 or 1.

1. GNT's 1 & 2, UDP-GlcNAc-PEG

a-d, f, h, j-n, s, u, w, y = 0;
e, g, i, r, t, q (independently selected) = 0 or 1;
p = 1; v, x (independently selected) = 1,
when e, g (independently selected) is 1;
R = PEG.
```

FIG. 37M

```
CHO, BHK, 293 cells, Vero expressed
Interferon gamma.
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y = 0.

1. CMP-SA-PEG, α2,8-ST

a-d, i, q-u (independently selected) = 0 or 1;
```

```
a-d, i, q-u (independently selected) = 0 or 1;
e-h = 1; j-m (independently selected) = 0-2;
v-y (independently selected) = 1,
when j-m (independently selected) = 2;
R = PEG.
```

FIG. 37N

139/498

$$\mathbf{A} \leftarrow \begin{bmatrix} \left[\operatorname{GlcNAc-(Gal)}_{a} \right]_{e^{-}} \left(\operatorname{Sia} \right)_{j} - \left(\operatorname{R} \right)_{v} \right]_{r} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{b} \right]_{f^{-}} \left(\operatorname{Sia} \right)_{k} - \left(\operatorname{R} \right)_{w} \right]_{s} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{c} \right]_{g^{-}} \left(\operatorname{Sia} \right)_{l} - \left(\operatorname{R} \right)_{x} \right]_{t} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{d} \right]_{h^{-}} \left(\operatorname{Sia} \right)_{m^{-}} \left(\operatorname{R} \right)_{y} \right]_{u} \right]_{q} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{d} \right]_{h^{-}} \left(\operatorname{Sia} \right)_{m^{-}} \left(\operatorname{R} \right)_{y} \right]_{u} \right]_{q} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{d} \right]_{h^{-}} \left(\operatorname{Sia} \right)_{m^{-}} \left(\operatorname{R} \right)_{y} \right]_{u} \right]_{q} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{d} \right]_{h^{-}} \left(\operatorname{Sia} \right)_{m^{-}} \left(\operatorname{R} \right)_{y} \right]_{u} \right]_{q} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{d} \right]_{h^{-}} \left(\operatorname{Sia} \right)_{m^{-}} \left(\operatorname{R} \right)_{y} \right]_{u} \right]_{q} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{d} \right]_{h^{-}} \left(\operatorname{Sia} \right)_{m^{-}} \left(\operatorname{R} \right)_{y} \right]_{u} \right]_{q} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{d} \right]_{h^{-}} \left(\operatorname{Sia} \right)_{m^{-}} \left(\operatorname{R} \right)_{y} \right]_{u} \right]_{q} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{d} \right]_{h^{-}} \left(\operatorname{Sia} \right)_{m^{-}} \left(\operatorname{R} \right)_{y} \right]_{u} \right]_{q} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{d} \right]_{h^{-}} \left(\operatorname{Sia} \right)_{m^{-}} \left(\operatorname{R} \right)_{y} \right]_{u} \right]_{q} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{d} \right]_{h^{-}} \left(\operatorname{Sia} \right)_{m^{-}} \left(\operatorname{R} \right)_{y} \right]_{u} \right]_{q} \\ \left[\operatorname{GlcNAc-(Gal)}_{d} \right]_{h^{-}} \left(\operatorname{Sia} \right)_{m^{-}} \left(\operatorname{R} \right)_{y} \right]_{u} \\ \left[\operatorname{GlcNAc-(Gal)}_{d} \right]_{h^{-}} \left(\operatorname{Sia} \right)_{m^{-}} \left(\operatorname{R} \right)_{y} \right]_{u} \\ \left[\operatorname{GlcNAc-(Gal)}_{d} \right]_{h^{-}} \left(\operatorname{Sia} \right)_{u} \\ \left[\operatorname{GlcNAc-(Gal)}_{d} \right]_{h^{-}} \left(\operatorname{Sia} \right)_{u} \\ \left[\operatorname{GlcNAc-(Gal)}_{d} \right]_{h^{-}} \left(\operatorname{Sia} \right)_{u} \\ \left[\operatorname{GlcNAc-(Gal)}_{d} \right]_{u} \\ \left[\operatorname{GlcNAc-(Ga$$

a-d, i, q-u (independently selected) = 0 or 1. e-h (independently selected) = 0 to 6. j-m (independently selected) = 0 to 100. v-y = 0; R = polymer.

FIG. 38A

140/498

```
CHO, BHK, 293 cells, Vero or transgenic animal expressed α<sub>1</sub> antitrypsin.
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y = 0.
```

- 1. Sialidase
- 2. CMP-SA-PEG (16 mol eq), ST3Gal3

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y (independently selected) = 1,
when j-m (independently selected) is 1;
R = PEG.
```

FIG. 38B

```
CHO, BHK, 293 cells, Vero or transgenic animal expressed α<sub>1</sub> antitrypsin.
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y = 0.
```

- 1. Sialidase
- 2. CMP-SA-PEG (1.2 mol eq), ST3Gal3
- 3. CMP-SA (16 mol eq), ST3Gal3

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y (independently selected) = 0 or 1;
R = PEG.
```

FIG. 38C

141/498

```
CHO, BHK, 293 cells, Vero or transgenic animal expressed alpha-1 antitrypsin.

a-d, i-m, q-u (independently selected) = 0 or 1;

e-h = 1; v-y = 0.
```

- 1. Sialidase
- 2. CMP-SA-PEG (16 mol eq), ST3Gal3
- 3. CMP-SA, ST3Gal3

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y (independently selected) = 0 or 1;
R = PEG.
```

FIG. 38D

```
CHO, BHK, 293 cells, Vero or transgenic animal expressed α<sub>1</sub>-antitrypsin.
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y = 0.
```

1. CMP-SA-levulinate, ST3Gal3, buffer, salt

 $2. H_4 N_2$ -PEG

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y (independently selected) = 0 or 1;
R = PEG.
```

FIG. 38E

142/498

CHO, BHK, 293 cells, Vero expressed α_1 -antitrypsin. a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; v-y = 0.

1. CMP-SA, α2,8-ST

a-d, i, q-u (independently selected) = 0 or 1; e-h = 1; j-m (independently selected) = 0-20; v-y (independently selected) = 0.

FIG. 38F

143/498

$$\mathbf{A} \leftarrow \begin{bmatrix} \left[\operatorname{GlcNAc-(Gal)}_{a} \right]_{e} - \left(\operatorname{Sia} \right)_{j} - \left(\operatorname{R} \right)_{v} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{b} \right]_{f} - \left(\operatorname{Sia} \right)_{k} - \left(\operatorname{R} \right)_{w} \right]_{s} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{b} \right]_{g} - \left(\operatorname{Sia} \right)_{l} - \left(\operatorname{R} \right)_{x} \right]_{t} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{d} \right]_{h} - \left(\operatorname{Sia} \right)_{m} - \left(\operatorname{R} \right)_{y} \right]_{u} \\ q \\ p \\ \end{bmatrix}$$

a-d, i, n, p-u (independently selected) = 0 or 1.
e-h (independently selected) = 0 to 6.
j-m (independently selected) = 0 to 100.
v-y = 0;
R = modifying group, mannose, oligo-mannose;
R' = H, glycosyl residue, modifying group, glycoconjugate.

FIG. 38G

144/498

Insect or fungi cell expressed α_1 -antitrypsin. a-d, f, h, j-m, s, u, v-y = 0; e, g, i, q, r, t (independently selected) = 0 or 1.

- 1. GNT's 1,2,4,5, UDP-GlcNAc
- 2. Galactosyltransferase, UDP-Gal-PEG

a-i, q-u (independently selected) = 0 or 1; j-m = 0; v-y (independently selected) = 1, when e-h (independently selected) is 1; R = PEG.

FIG. 38H

Yeast expressed α_1 -antitrypsin. a-m=0; q-y (independently selected) = 0 to 1; p=1; R (branched or linear) = Man, oligomannose.

- 1. Endoglycanase
- 2. Galactosyltransferase, UDP-Gal
- 3. CMP-SA-PEG, ST3Gal3

a-m, p-y = 0; n (independently selected) = 0 or 1; R' = -Gal-Sia-PEG.

FIG. 381

145/498

CHO, BHK, 293 cells, Vero expressed α_1 -antitrypsin. a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; v-y = 0.

- 1. CMP-SA-linker-Gal-UDP, ST3Gal3
- 2. Galactosyltransferase, transferrin treated with endoglycanase

```
a-m, q-u (independently selected) = 0 or 1;
p = 1; n = 0;
v-y (independently selected) = 0 or 1;
R = linker-transferrin.
```

FIG. 38J

146/498

$$(Fuc)_{i}$$

$$A \leftarrow GlcNAc - GlcNAc - Man$$

$$(R')_{p}$$

$$(Fuc)_{i}$$

$$(GlcNAc - (Gal)_{a}]_{e} - (Sia)_{j} - (R)_{v}$$

$$[GlcNAc - (Gal)_{b}]_{f} - (Sia)_{k} - (R)_{w}$$

$$[GlcNAc - (Gal)_{c}]_{g} - (Sia)_{l} - (R)_{x}$$

$$[GlcNAc - (Gal)_{c}]_{g} - (Sia)_{l} - (R)_{x}$$

$$[GlcNAc - (Gal)_{d}]_{h} - (Sia)_{m} - (R)_{y}$$

a-d, i, n-u (independently selected) = 0 or 1. e-h (independently selected) = 0 to 4. j-m (independently selected) = 0 to 20. R = polymer; R', R" (independently selected) = sugar, glycoconjugate.

FIG. 38K

147/498

Yeast expressed alpha-1 antitrypsin.
a-h, i-m, p, q = 0;
R (independently selected) = mannose, oligomannose, polymannose;
r-u, v-y (independently selected) = 0 or 1; n, o = 1.

- 1. endoglycanase
- ↓ 2. Galactosyltransferase, UDP-Gal-PEG

```
a-h, i-o, q, r-u, v-y = 0; p = 1.
R" = Gal-PEG.
```

FIG. 38L

```
Plant expressed alpha-1 antitrypsin.
a-d, f, h, j-m, s, u, v-y = 0;
e, g, i, q, r, t (independently selected) = 0 or 1;
n=1; R' = xylose
```

- 1. hexosaminidase,
- 2. alpha mannosidase and xylosidase
- 3. GlcNAc transferase, UDP-GlcNAc-PEG

```
a-d, f, h, j-n, s, u, v-y = 0;
e, g, i, r, t (independently selected) = 0;
q = 1; R' = GlcNAc-PEG.
```

FIG. 38M

148/498

CHO, BHK, 293 cells, Vero, transgenic animal expressed α_1 antitrypsin. a-h, i-o, r-u (independently selected) = 0 or 1; p, q, v-y = 0.

1. CMP-SA-PEG, ST3Gal3

a-h, i-o, r-u (independently selected) = 0 or 1; p, q = 0; v-y (independently selected) = 0 or 1; R = PEG.

FIG. 38N

149/498

$$\mathbf{A} \leftarrow \begin{bmatrix} [\mathrm{GlcNAc\text{-}}(\mathrm{Gal})_{a}]_{e}^{-} & (\mathrm{Sia})_{j}^{-} & (\mathrm{R})_{v} \end{bmatrix}_{r}^{r} \\ [\mathrm{GlcNAc\text{-}}(\mathrm{Gal})_{b}]_{f}^{-} & (\mathrm{Sia})_{k}^{-} & (\mathrm{R})_{w} \end{bmatrix}_{s}^{r} \\ [\mathrm{GlcNAc\text{-}}(\mathrm{Gal})_{c}]_{g}^{-} & (\mathrm{Sia})_{l}^{-} & (\mathrm{R})_{x} \end{bmatrix}_{t}^{r} \\ [\mathrm{GlcNAc\text{-}}(\mathrm{Gal})_{d}]_{h}^{-} & (\mathrm{Sia})_{m}^{-} & (\mathrm{R})_{y} \end{bmatrix}_{u}^{q}$$

a-d, i, q-u (independently selected) = 0 or 1. e-h (independently selected) = 0 to 6. j-m (independently selected) = 0 to 100. v-y = 0; R = polymer.

FIG. 39A

150/498

CHO, BHK, 293 cells, Vero expressed Cerezyme a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; v-y=0.

- 1. Sialidase
- 2. CMP-SA-PEG (16 mol eq), ST3Gal3

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y (independently selected) = 1,
when j-m (independently selected) is 1;
R = PEG.
```

FIG. 39B

```
CHO, BHK, 293 cells, Vero expressed Cerezyme. a-d, i-m, q-u (independently selected) = 0 or 1; e-h=1; v-y=0.
```

- 1. Sialidase
- 2. CMP-SA-M-6-P (1.2 mol eq), ST3Gal3
- 3. CMP-SA (16 mol eq), ST3Gal3

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y (independently selected) = 0 or 1;
R = mannose-6-phosphate
```

FIG. 39C

151/498

```
CHO, BHK, 293 cells, Vero expressed Cerezyme. a-d, i-m, q-u (independently selected) = 0 or 1; e-h=1; v-y=0.
```

- 1. Sialidase
- 2. CMP-SA-PEG (16 mol eq), ST3Gal3
- 3. CMP-SA, ST3Gal3

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y (independently selected) = 0 or 1;
R = Mannose-6-phosphate
```

FIG. 39D

```
CHO, BHK, 293 cells, Vero expressed Cerezyme. a-d, i-m, q-u (independently selected) = 0 or 1; e-h=1; v-y=0.
```

- CMP-SA-levulinate, ST3Gal3, buffer, salt
 H N. spacer M & P. and J. A.
- ↓ 2. H₄N₂-spacer-M-6-P or clustered M-6-P

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y (independently selected) = 0 or 1;
R = M-6-P or clustered M-6-P
```

FIG. 39E

152/498

CHO, BHK, 293 cells, Vero expressed Cerezyme. a-d, i-m, q-u (independently selected) = 0 or 1; e-h=1; v-y=0.

1. CMP-SA, α2,8-ST

a-d, i, q-u (independently selected) = 0 or 1; e-h = 1; j-m (independently selected) = 0-20; v-y (independently selected) = 0.

FIG. 39F

153/498

$$\mathbf{A} \leftarrow \begin{bmatrix} \left[\operatorname{GlcNAc-(Gal)}_{a} \right]_{e} - \left(\operatorname{Sia} \right)_{j} - \left(\operatorname{R} \right)_{v} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{b} \right]_{f} - \left(\operatorname{Sia} \right)_{k} - \left(\operatorname{R} \right)_{w} \right]_{s} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{b} \right]_{g} - \left(\operatorname{Sia} \right)_{l} - \left(\operatorname{R} \right)_{x} \right]_{t} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{d} \right]_{h} - \left(\operatorname{Sia} \right)_{m} - \left(\operatorname{R} \right)_{y} \right]_{u} \right]_{q} \\ p$$

a-d, i, n, p-u (independently selected) = 0 or 1. e-h (independently selected) = 0 to 6. j-m (independently selected) = 0 to 100. v-y = 0; R = modifying group, mannose, oligo-mannose; R' = H, glycosyl residue, modifying group, glycoconjugate.

FIG: 39G

154/498

```
Insect cell expressed Cerezyme.

a-d, f, h, j-m, s, u, v-y = 0;

e, g, i, q, r, t (independently selected) = 0 or 1.
```

- 1. GNT's 1,2,4,5, UDP-GlcNAc
- 2. Galactosyltransferase, UDP-Gal-PEG

```
a-i, q-u (independently selected) = 0 or 1;

j-m = 0;

v-y (independently selected) = 1,

when e-h (independently selected) is 1;

R = PEG.
```

FIG. 39H

```
Yeast expressed Cerezyme.

a-m = 0; q-y (independently selected) = 0 to 1;

p = 1; R (branched or linear) = Man, oligomannose.
```

- 1. Endoglycanase
- 2. Galactosyltransferase, UDP-Gal
- 3. CMP-SA-PEG, ST3Gal3

a-m, p-y=0; n (independently selected) = 0 or 1; R' = -Gal-Sia-PEG.

FIG. 391

155/498

```
CHO, BHK, 293 cells, Vero expressed Cerezyme. a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; v-y = 0.
```

- 1. CMP-SA-linker-SA-CMP, ST3Gal3
- 2. ST3Gal3, desialylated transferrin.
- 3. CMP-SA, ST3Gal3

```
a-m, q-u (independently selected) = 0 or 1;
p = 1; n = 0; v-y (independently selected) = 0 or 1;
R = linker-transferrin.
```

FIG. 39J

156/498

$$(Fuc)_{i}$$

$$\mathbf{B} \leftarrow GlcNAc - GlcNAc - Man$$

$$[[GlcNAc - (Gal)_{a}]_{e} - (Sia)_{j} - (R)_{v}]_{r}$$

$$[[GlcNAc - (Gal)_{b}]_{f} - (Sia)_{k} - (R)_{w}]_{s}$$

$$[[GlcNAc - (Gal)_{c}]_{g} - (Sia)_{l} - (R)_{x}]_{t}$$

$$[[GlcNAc - (Gal)_{d}]_{h} - (Sia)_{m} - (R)_{y}]_{u}$$

$$\mathbf{C} \leftarrow -(\operatorname{Fuc})_{0-1}$$
 $\mathbf{A} \leftarrow -\operatorname{GlcNAc-GlcNAc-Man}$
 $\operatorname{Man} - [\operatorname{Man}]_{0-12}$
 $\operatorname{Man} - [\operatorname{Man}]_{0-6}$
 $\operatorname{Man} - [\operatorname{Man}]_{0-6}$

a-d, i, n-u (independently selected) = 0 or 1. e-h (independently selected) = 0 to 4. j-m (independently selected) = 0 to 20. R = polymer; R' = sugar, glycoconjugate.

FIG. 40A

157/498

```
CHO, BHK, 293 cells, Vero expressed tPA a-g, n = 1; h = 1 to 3; j-m, i, (independently selected) = 0 or 1; r-u (independently selected) = 0 to 1; o, v-y = 0.
```

- 1. Mannosidase(s), sialidase
- 2. GNT1,2 (4 and/or 5) UDP-GlcNAc
- 3. Gal transferase, UDP-Gal
- 4. CMP-SA-PEG, ST3Gal3

```
A = B; a-g, n = 1; h = 1 to 3;
i, r-u (independently selected) = 0 or 1;
o = 0; j-m, v-y (independently selected) = 0 or 1;
R = PEG
```

FIG. 40B

```
Insect or fungi cell expressed tPA
A = B; a-d, f, h, j-o, s, u, v-y = 0;
e, g, i, n, r, t (independently selected) = 0 or 1.
```

- 1. GNT's 1&2, UDP-GlcNAc
- 2. Galactosyltransferase, UDP-Gal
- **★** 3. CMP-SA-PEG, ST3Gal3

```
A = B; b, d, f, h, k, m, o, s, u, w, y = 0;
a, c, e, g, i, r, t (independently selected) = 0 or 1;
n = 1; j, l, v, x (independently selected) = 0 or 1;
R = PEG.
```

FIG. 40C

158/498

Yeast expressed tPA B = A; i = 0.

- 1. endoglycanase
- 2. Galactosyltransferase, UDP-Gal-PEG

$$A = B$$
; a-n, r-y = 0; $o = 1$; R' = Gal-PEG.

FIG. 40D

Insect or fungi cell expressed tPA A = B; a-d, f, h, j-o, s, u, v-y = 0; e, g, i, n, r, t (independently selected) = 0 or 1.

- 1. alpha and beta mannosidases
- 2. Galactosyltransferase, UDP-Gal-PEG

A = B; a-n, r-y = 0; o = 1; R' = Gal-PEG.

FIG. 40E

159/498

Insect or fungi cell expressed tPA

A = B; a-d, f, h, j-o, s, u, v-y = 0;
e, g, i, n, r, t (independently selected) = 0 or 1.

- 1. GNT's 1&2, UDP-GlcNAc
- 2. Galactosyltransferase, UDP-Gal-PEG

A = B; b, d, f, h, j-o, s, u, w, y = 0; a, c, e, g, i, r, t, v, x (independently selected)= 0 or 1; n = 1; R = PEG.

FIG. 40F

Insect or fungi cell expressed tPA
A = B; a-d, f, h, j-o, s, u, v-y = 0;
e, g, i, n, r, t (independently selected) = 0 or 1.

- 1. GNT's 1 & 2, UDP-GlcNAc
- 2. Galactosidase (synthetic enzyme), PEG-Gal-F.

A = B; b, d, f, h, j-o, s, u, w, y = 0; a, c, e, g, i, r, t, v, x (independently selected)= 0 or 1; n = 1; R = PEG.

FIG. 40G

160/498

a-d, i, n-u (independently selected) = 0 or 1. e-h (independently selected) = 0 to 4. j-m (independently selected) = 0 to 20. R = polymer; R' = sugar, glycoconjugate.

FIG. 40H

161/498

```
NSO expressed tPA
A = B; a-m, r-u (independently selected) = 0 or 1;
n = 1; o, p, q, v-y = 0
```

```
    sialidase, alpha-galactosidase
    CMP-SA-levulinate, ST3Gal3,
    H<sub>4</sub>N<sub>2</sub>-PEG
```

```
A = B; a-m, r-y (independently selected) = 0 or 1;

n = 1; o, p, q = 0;

v-y (independently selected) = 1,

when j-m (independently selected) is 1;

R = PEG.
```

FIG. 401

```
CHO, BHK, 293 cells, Vero expressed tPA a-g, n, p = 1; h = 1 to 3; j-m, i, (independently selected) = 0 or 1; r-u (independently selected) = 0 to 1; q, o, v-y = 0.
```

- 1. alpha and beta Mannosidases
- 2. CMP-SA, ST3Gal3
- 3. Galactosyltransferase, UDP-Gal-PEG

```
a-g, n = 1; h = 1 to 3;
i, r-u (independently selected) = 0 or 1; o = 1;
q, p, v-y = 0; j-m (independently selected) = 0 or 1;
R' = Gal-PEG
```

FIG. 40J

162/498

```
Plant expressed tPA

A = B; a-d, f, h, j- m, s, u, v-y = 0;
e, g, i, q, r, t (independently selected) = 0 or 1;
n = 1; R' = xylose
```

- 1. hexosaminidase,
- 2. alpha mannosidase and xylosidase
- 3. GlcNAc transferase, UDP-GlcNAc-PEG

```
A = B; a-d, f, h, j-n, s, u, v-y = 0;
e, g, i, r, t (independently selected) = 0;
q = 1; R' = GlcNAc-PEG.
```

FIG. 40K

163/498

$$\mathbf{A} \leftarrow \begin{bmatrix} \left[\operatorname{GlcNAc-(Gal)}_{a} \right]_{e^{-}} \left(\operatorname{Sia} \right)_{j} - \left(\operatorname{R} \right)_{v} \right]_{r} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{b} \right]_{f^{-}} \left(\operatorname{Sia} \right)_{k} - \left(\operatorname{R} \right)_{w} \right]_{s} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{c} \right]_{g^{-}} \left(\operatorname{Sia} \right)_{l} - \left(\operatorname{R} \right)_{x} \right]_{t} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{d} \right]_{h^{-}} \left(\operatorname{Sia} \right)_{m^{-}} \left(\operatorname{R} \right)_{y} \right]_{u} \right]_{q} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{d} \right]_{h^{-}} \left(\operatorname{Sia} \right)_{m^{-}} \left(\operatorname{R} \right)_{y} \right]_{u} \right]_{q} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{d} \right]_{h^{-}} \left(\operatorname{Sia} \right)_{m^{-}} \left(\operatorname{R} \right)_{y} \right]_{u} \right]_{q} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{d} \right]_{h^{-}} \left(\operatorname{Sia} \right)_{m^{-}} \left(\operatorname{R} \right)_{y} \right]_{u} \right]_{q} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{d} \right]_{h^{-}} \left(\operatorname{Sia} \right)_{m^{-}} \left(\operatorname{R} \right)_{y} \right]_{u} \right]_{q} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{d} \right]_{h^{-}} \left(\operatorname{Sia} \right)_{m^{-}} \left(\operatorname{R} \right)_{y} \right]_{u} \right]_{q} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{d} \right]_{h^{-}} \left(\operatorname{Sia} \right)_{m^{-}} \left(\operatorname{R} \right)_{y} \right]_{u} \right]_{q} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{d} \right]_{h^{-}} \left(\operatorname{Sia} \right)_{m^{-}} \left(\operatorname{R} \right)_{y} \right]_{u} \right]_{q} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{d} \right]_{h^{-}} \left(\operatorname{Sia} \right)_{m^{-}} \left(\operatorname{R} \right)_{y} \right]_{u} \right]_{q} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{d} \right]_{h^{-}} \left(\operatorname{Sia} \right)_{m^{-}} \left(\operatorname{R} \right)_{y} \right]_{u} \right]_{q} \\ \left[\operatorname{GlcNAc-(Gal)}_{d} \right]_{h^{-}} \left[\operatorname{Gia}_{h^{-}} \left(\operatorname{Sia}_{h^{-}} \left(\operatorname{Sia}_$$

a-d, i, q-u (independently selected) = 0 or 1. e-h (independently selected) = 0 to 6. j-m (independently selected) = 0 to 100. v-y = 0; R = polymer.

FIG. 40L

164/498

CHO, BHK, 293 cells, Vero expressed TNK tPA a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; v-y = 0.

- 1. Sialidase
- 2. CMP-SA-PEG (16 mol eq), ST3Gal3

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y (independently selected) = 1,
when j-m (independently selected) is 1;
R = PEG.
```

FIG. 40M

```
CHO, BHK, 293 cells, Vero expressed TNK tPA a-d, i-m, q-u (independently selected) = 0 or 1; e-h=1; v-y=0.
```

- 1. Sialidase
- 2. CMP-SA-PEG (1.2 mol eq), ST3Gal3
- 3. CMP-SA (16 mol eq), ST3Gal3

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y (independently selected) = 0 or 1;
R = PEG.
```

FIG. 40N

165/498

```
NSO expressed TNK tPA

a-d, i-m, q-u (independently selected) = 0 or 1;

e-h = 1; v-y = 0;

Sia (independently selected) = Sia or Gal.
```

- 1. Sialidase and α-galactosidase
- 2. Galactosyltransferase, UDP-Gal
- **★** 3. CMP-SA-PEG, ST3Gal3

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y (independently selected) = 1,
when j-m (independently selected) is 1;
R = PEG.
```

FIG. 400

166/498

a-d, i, q-u (independently selected) = 0 or 1. e-h (independently selected) = 0 to 6. j-m (independently selected) = 0 to 100. v-y = 0; R = polymer.

167/498

CHO, BHK, 293 cells, Vero expressed TNK tPA a-d, i-m, q-u (independently selected) = 0 or 1; e-h=1; v-y=0.

- 1. Sialidase
- 2. CMP-SA-PEG (16 mol eq), ST3Gal3
- 3. CMP-SA, ST3Gal3

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y (independently selected) = 0 or 1;
R = PEG.
```

FIG. 40Q

```
CHO, BHK, 293 cells, Vero expressed TNK tPA a-d, i-m, q-u (independently selected) = 0 or 1; e-h=1; v-y=0.
```

```
    CMP-SA-levulinate, ST3Gal3,
buffer, salt
    H<sub>4</sub>N<sub>2</sub>-PEG
```

a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; v-y (independently selected) = 0 or 1; R = PEG.

FIG. 40R

168/498

CHO, BHK, 293 cells, Vero expressed TNK tPA a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; v-y = 0.

1. CMP-SA, α2,8-ST

a-d, i, q-u (independently selected) = 0 or 1; e-h = 1; j-m (independently selected) = 0-20; v-y (independently selected) = 0.

FIG. 40S

169/498

a-d, i, n-y (independently selected) = 0 or 1.

e-h (independently selected) = 0 to 6.

j-m (independently selected) = 0 to 100.

R = modifying group, mannose, oligo-mannose;

R' = H, glycosyl residue, modifying group, glycoconjugate.

R" = glycosyl residue.

FIG. 40T

170/498

```
Insect cell expressed TNK tPA
a-d, f, h, j-m, s, u, v-y = 0;
e, g, i, q, r, t (independently selected) = 0 or 1.
```

- 1. GNT's 1,2,4,5, UDP-GlcNAc
- 2. Galactosyltransferase, UDP-Gal-PEG

```
a-i, q-u (independently selected) = 0 or 1;

j-m = 0; v-y (independently selected) = 1,

when e-h (independently selected) is 1;

R = PEG.
```

FIG. 40U

```
Yeast expressed TNK tPA a-m=0; q-y (independently selected) = 0 to 1; p = 1; R (branched or linear) = Man, oligomannose.
```

- 1. Endoglycanase
- 2. Galactosyltransferase, UDP-Gal-PEG

```
a-m, p-y = 0; n (independently selected) = 0 or 1; R' = -Gal-PEG.
```

FIG. 40V

171/498

CHO, BHK, 293 cells, Vero expressed TNK tPA a-d, i-m, q-u (independently selected) = 0 or 1; e-h=1; v-y=0.

- 1. CMP-SA-linker-Gal-UDP, ST3Gal3
- 2. Galactosyltransferase, anti-TNF IG chimera produced in CHO.

a-m, r-u (independently selected) = 0 or 1; p, q = 1; n = 0; v-y (independently selected) = 0 or 1; R = linker-anti-TNF IG chimera protein.

FIG. 40W

172/498

$$\mathbf{B} \leftarrow \begin{bmatrix} (\mathrm{Sia})_{b} \\ -\mathrm{GalNAc} - (\mathrm{Gal})_{a} - (\mathrm{Sia})_{c} - (\mathrm{R})_{d} \end{bmatrix}_{e}$$

a-c, e (independently selected) = 0 or 1;
d = 0;
R = modifying group, mannose, oligomannose.

FIG. 41A

173/498

CHO, BHK, 293 cells, Vero expressed IL-2 a-c, e (independently selected) = 0 or 1; d = 0

- 1. Sialidase
- 2. CMP-SA-PEG, ST3Gal1

a-d, e (independently selected) = 0 or 1; R = PEG.

FIG. 41B

Insect cell expressed IL-2 a, e (independently selected) = 0 or 1; b, c, d = 0.

- 1. Galactosyltransferase, UDP-Gal
- 2. CMP-SA-PEG, ST3Gal1

a, c, d, e (independently selected) = 0 or 1; R = PEG.

FIG. 41C

174/498

E. coli expressed IL-2 a-e = 0.

- 1. GalNAc Transferase, UDP-GalNAc
- 2. CMP-SA-PEG, sialyltransferase

c, d, e (independently selected) = 0 or 1; a, b = 0; R = PEG.

FIG. 41D

NSO expressed IL-2

a, e (independently selected) = 0 or 1;

b, c, d = 0

- 1. CMP-SA-levulinate, ST3Gal1
- 2. H₄N₂-PEG

a, c, d, e (independently selected) = 0 or 1; b = 0; R = PEG.

FIG. 41E

175/498

FIG. 41F

FIG. 41G

176/498

2 peptides

A and A' - N-linked sites

B - O-linked sites

$$\mathbf{A} \leftarrow \begin{bmatrix} (\operatorname{Fuc})_{i} & \operatorname{Man} & ([\operatorname{GlcNAc-(Gal})_{a}]_{e^{-}} & (\operatorname{Sia})_{j^{-}} & (\operatorname{R})_{v} \\ \operatorname{GlcNAc-GlcNAc-Man} & ([\operatorname{GlcNAc-(Gal})_{b}]_{f^{-}} & (\operatorname{Sia})_{k^{-}} & (\operatorname{R})_{w} \\ \operatorname{Man} & ([\operatorname{GlcNAc-(Gal})_{c}]_{g^{-}} & (\operatorname{Sia})_{l^{-}} & (\operatorname{R})_{x} \\ & ([\operatorname{GlcNAc-(Gal})_{d}]_{h^{-}} & (\operatorname{Sia})_{m^{-}} & (\operatorname{R})_{y} \end{bmatrix}_{u} \end{bmatrix}_{aa}$$

$$\mathbf{B} \leftarrow \begin{pmatrix} (\operatorname{Sia})_{o} \\ -\operatorname{GalNAc-(Gal)}_{n} - (\operatorname{Sia})_{p} - (R)_{z} \end{pmatrix}$$

a-d, i, n-u (independently selected) = 0 or 1. aa, bb (independently selected) = 0 or 1. e-h (independently selected) = 0 to 6. j-m (independently selected) = 0 to 20. v-z = 0; R = polymer, glycoconjugate.

FIG. 42A

177/498

CHO, BHK, 293s cells, Vero, MDCK, HEKC expressed Factor VIII.

e-h = 1 to 4;

aa, bb, a-d, j-m, i, n-u (independently selected) = 0 or 1;

v-z = 0.

- 1. Sialidase
 - 2. CMP-SA-PEG, ST3Gal3

```
e-h = 1 to 4;
aa, bb, a-d, i, n, q-u (independently selected) = 0 or 1;
o, p, z = 0; j-m, v-y (independently selected) = 0 or 1;
R = PEG.
```

FIG. 42B

CHO, BHK, 293S cells, Vero, MDCK, 293S, HEKC expressed Factor VIII.

e-h = 1 to 4;

aa, bb, a-d, j-m, i, n-u (independently selected) = 0 or 1;

v-z = 0.

- 1. Sialidase
- 2. CMP-SA-PEG, ST3Gal3
- 3. ST3Gal1, CMP-SA

e-h = 1 to 4; aa, bb, a-d, i, n, p-u (independently selected) = 0 or 1; o, z = 0; j-m, v-y (independently selected) = 0 or 1; R = PEG.

FIG. 42C

178/498

CHO, BHK, 293s cells, Vero, MDCK, HEKC expressed Factor VIII.

e-h = 1 to 4;

aa, bb, a-d, j-m, i, n-u (independently selected)=0 or 1;

v-z = 0.

1. CMP-SA-PEG, ST3Gal3

e-h = 1 to 4; aa, bb, a-d, i, n-u (independently selected) = 0 or 1; z = 0; j-m, v-y (independently selected) = 0 or 1; R = PEG.

FIG. 42D

CHO, BHK, 293S cells, Vero, MDCK, HEKC expressed Factor VIII.
e-h = 1 to 4;
aa, bb, a-d, j-m, i, n-u (independently selected) 0 or 1;
v-z = 0.

1. CMP-SA-PEG, ST3Gal1

e-h = 1 to 4; aa, bb, a-d, i, n-u (independently selected) = 0 or 1; z = 0; j-m, v-y (independently selected) = 0 or 1; R = PEG.

FIG. 42E

179/498

```
CHO, BHK, 293S cells, Vero, MDCK, HEKC expressed Factor VIII.
e-h = 1 to 4;
aa, bb, a-d, j-m, i, n-u (independently selected)=0 or 1;
v-z = 0.
```

1. CMP-SA-PEG, α 2,8-ST

```
e-h = 1 to 4;
aa, bb, a-d, i, n-y (independently selected) = 0 or 1;
z = 0; j-m (independently selected) = 0 to 2;
v-y (independently selected) = 1,
when j-m (independently selected) is 2;
R = PEG.
```

FIG. 42F

180/498

2 peptides

A or A' - N-linked sites

B - O-linked sites

$$\mathbf{B} \quad \bullet \begin{pmatrix} (\operatorname{Sia})_{o} \\ -\operatorname{GalNAc-(Gal)}_{n} - (\operatorname{Sia})_{p} - (R)_{z} \end{pmatrix}_{q}$$

a-d, i, n-u, (independently selected) = 0 or 1. aa, bb, cc, dd (independently selected) = 0 or 1. e-h (independently selected) = 0 to 6. j-m (independently selected) = 0 to 20. v-z = 0; R = modifying group, mannose, oligo-mannose.

R' = H, glycosyl residue, modifying group, glycoconjugate.

FIG. 42G

181/498

```
CHO, BHK, 293S cells, Vero, MDCK, HEKC expressed Factor VIII.
e-h = 1 to 4;
aa, bb, cc, a-d, j-m, i, n-u (independently selected) = 0 or 1;
dd, v-z = 0.
```

1. CMP-SA-levulinate, ST3Gal3,2. H₄N₂-PEG

```
e-h = 1 to 4;
aa, bb, cc, a-d, i, n-u (independently selected) = 0 or 1;
dd, z = 0; j-m, v-y (independently selected) = 0 or 1;
R = PEG.
```

FIG. 42H

```
CHO, BHK, 293S cells, Vero, MDCK, HEKC expressed Factor VIII.

e-h = 1 to 4;

aa, bb, cc, a-d, j-m, i, n-u (independently selected) = 0 or 1;

dd, v-z = 0.
```

1. endo-H2. galactosyltransferase, UDP-Gal-PEG

```
e-h = 1 to 4;
aa, bb, dd, a-d, i, j-u (independently selected) = 0 or 1;
cc, v-z=0; R'=-Gal-PEG.
```

FIG. 421

182/498

```
CHO, BHK, 293S cells, Vero, MDCK, HEKC expressed Factor VIII.
e-h = 1 to 4;
aa, bb, cc, a-d, j-m, i, n-u (independently selected) = 0 or 1;
dd, v-z = 0.
```

- 1. ST3Gal3, CMP-SA
- 2. endo-H
- 3. galactosyltransferase, UDP-Gal-PEG

```
e-h = 1 to 4;
aa, bb, dd, a-d, i, j-u (independently selected) = 0 or 1;
cc, v-z = 0; R' = -Gal-PEG.
```

FIG. 42J

```
CHO, BHK, 293S cells, Vero, MDCK, HEKC expressed Factor VIII.

e-h = 1 to 4;

aa, bb, cc, a-d, j-m, i, n-u (independently selected) = 0 or 1;

dd, v-z = 0.
```

- 1. mannosidases
- 2. GNT 1 & 2, UDP-GlcNAc
- $3.\ galactosyltransferase,\ UDP\mbox{-}Gal\mbox{-}PEG$

```
e-h = 1 to 4;
aa, a-d, i, j-y (independently selected) = 0 or 1;
bb, cc, dd, z = 0; R = PEG.
```

FIG. 42K

183/498

```
CHO, BHK, 293S cells, Vero, MDCK, HEKC
expressed Factor VIII.
e-h = 1 to 4;
aa, bb, cc, a-d, j-m, i, n-u (independently selected) = 0 or 1;
dd, v-z = 0.

1. mannosidases
2. GNT-1,2, 4 & 5; UDP-GlcNAc
```

2. GN1-1,2, 4 & 5; UDP-GICNAC
3. galactosyltransferase, UDP-Gal
4. ST3Gal3, CMP-SA

e-h = 1 to 4; aa, bb, cc, a-d, i, j-q (independently selected) = 0 or 1;

FIG. 42L

dd, v-z = 0.

```
CHO, BHK, 293S cells, Vero, MDCK, HEKC expressed Factor VIII.

e-h = 1 to 4;

aa, bb, cc, a-d, j-m, i, n-u (independently selected) = 0 or 1;

dd, v-z = 0.
```

1. mannosidases2. GNT-1, UDP-GlcNAc-PEG

```
e-h = 0 to 4;
aa, a-d, i, j-y (independently selected) = 0 or 1;
bb, cc, dd, z = 0.
```

FIG. 42M

184/498

$$\mathbf{A} \leftarrow \begin{bmatrix} [\mathrm{GlcNAc\text{-}(Gal)}_{a}]_{e}^{-} & (\mathrm{Sia})_{j}^{-} & (\mathrm{R})_{v} \end{bmatrix}_{r}^{r} \\ [\mathrm{GlcNAc\text{-}Gal)}_{b}]_{f}^{-} & (\mathrm{Sia})_{j}^{-} & (\mathrm{R})_{v} \end{bmatrix}_{r}^{r} \\ [\mathrm{GlcNAc\text{-}(Gal)}_{b}]_{f}^{-} & (\mathrm{Sia})_{k}^{-} & (\mathrm{R})_{w} \end{bmatrix}_{s}^{r} \\ [\mathrm{GlcNAc\text{-}(Gal)}_{c}]_{g}^{-} & (\mathrm{Sia})_{l}^{-} & (\mathrm{R})_{x} \end{bmatrix}_{t}^{r} \\ [\mathrm{GlcNAc\text{-}(Gal)}_{d}]_{h}^{-} & (\mathrm{Sia})_{m}^{-} & (\mathrm{R})_{y} \end{bmatrix}_{u}^{r} \\ [\mathrm{GlcNAc\text{-}(Gal)}_{d}]_{h}^{-} & (\mathrm{Sia})_{m}^{-} & (\mathrm{R})_{w} \end{bmatrix}_{u}^{r} \\ [\mathrm{GlcNAc\text{-}(Gal)}_{d}]_{u}^{-} & (\mathrm{Sia})_{m}^{-} & (\mathrm{R})_{w} \end{bmatrix}_{u}^{r} \\ [\mathrm{GlcNAc\text{-}(Gal)}_{d}]_{u}^{-} & (\mathrm{R})_{w} \\ [\mathrm{GlcNAc\text{-}(Ga$$

a-d, i, q-u (independently selected) = 0 or 1. e-h (independently selected) = 0 to 6. j-m (independently selected) = 0 to 100. v-y = 0; R = polymer.

FIG. 43A

185/498

CHO, BHK, 293 cells, Vero expressed Urokinase. a-d, i-m, q-u (independently selected) = 0 or 1; e-h=1; v-y=0.

- 1. Sialidase
- 2. CMP-SA-PEG (16 mol eq), ST3Gal3

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y (independently selected) = 1,
when j-m (independently selected) is 1;
R = PEG.
```

FIG. 43B

CHO, BHK, 293 cells, Vero expressed Urokinase. a-d, i-m, q-u (independently selected) = 0 or 1; e-h=1; v-y=0.

- 1. Sialidase
- 2. CMP-SA-PEG (1.2 mol eq), ST3Gal3
- 3. CMP-SA (16 mol eq), ST3Gal3

a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; v-y (independently selected) = 0 or 1; R = PEG.

FIG. 43C

186/498

CHO, BHK, 293 cells, Vero expressed Urokinase. a-d, i-m, q-u (independently selected) = 0 or 1; e-h=1; v-y=0.

- 1. Sialidase
- 2. CMP-SA-PEG (16 mol eq), ST3Gal3
- 3. CMP-SA, ST3Gal3

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y (independently selected) = 0 or 1;
R = PEG.
```

FIG. 43D

```
CHO, BHK, 293 cells, Vero expressed Urokinase.
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y = 0.
```

- 1. CMP-SA-levulinate, ST3Gal3, buffer, salt
 - 2. H₄N₂-PEG

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y (independently selected) = 0 or 1;
R = PEG.
```

FIG. 43E

187/498

```
CHO, BHK, 293 cells, Vero expressed Urokinase. a-d, i-m, q-u (independently selected) = 0 or 1; e-h=1; v-y=0.
```

1. CMP-SA, α2,8-ST

```
a-d, i, q-u (independently selected) = 0 or 1;
e-h = 1;
j-m (independently selected) = 0-20;
v-y (independently selected) = 0.
```

FIG. 43F

188/498

$$\mathbf{A} \leftarrow \begin{bmatrix} \left[\operatorname{GlcNAc-(Gal)}_{a} \right]_{e} - \left(\operatorname{Sia} \right)_{j} - \left(\operatorname{R} \right)_{v} \\ \left[\operatorname{GlcNAc-(Gal)}_{b} \right]_{f} - \left(\operatorname{Sia} \right)_{k} - \left(\operatorname{R} \right)_{w} \end{bmatrix}_{s} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{b} \right]_{g} - \left(\operatorname{Sia} \right)_{l} - \left(\operatorname{R} \right)_{x} \right]_{t} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{d} \right]_{h} - \left(\operatorname{Sia} \right)_{m} - \left(\operatorname{R} \right)_{y} \right]_{u} \\ q \\ p \\ \end{bmatrix}$$

a-d, i, n, p-u (independently selected) = 0 or 1.
e-h (independently selected) = 0 to 6.
j-m (independently selected) = 0 to 100.
v-y = 0;
R = modifying group, mannose, oligo-mannose;
R' = H, glycosyl residue, modifying group,
glycoconjugate.

FIG. 43G

189/498

```
Insect cell expressed Urokinase.
a-d, f, h, j-n, s, u, v-y = 0;
e, g, i, q, r, t (independently selected) = 0 or 1.
```

- 1. GNT's 1,2,4,5, UDP-GlcNAc
- 2. Galactosyltransferase, UDP-Gal-PEG

```
a-i, q-u (independently selected) = 0 or 1;
j-n = 0; v-y (independently selected) = 1,
when e-h (independently selected) is 1;
R = PEG.
```

FIG. 43H

```
Yeast expressed Urokinase.

a-n = 0;

q-y (independently selected) = 0 to 1;

p = 1; R (branched or linear) = Man, oligomannose.
```

- 1. Endoglycanase
- 2. Galactosyltransferase, UDP-Gal
- 3. CMP-SA-PEG, ST3Gal3

```
a-m, p-y = 0; n (independently selected) = 0 or 1; R' = -Gal-Sia-PEG.
```

FIG. 431

190/498

```
CHO, BHK, 293 cells, Vero expressed Urokinase.
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; n, v-y = 0.
```

- 1. CMP-SA-linker-SA-CMP, ST3Gal3
- 2. ST3Gal1, desialylated Urokinase produced in CHO.
- 3. CMP-SA, ST3Gal3, ST3Gal1

```
a-m, q-u (independently selected) = 0 or 1;

p = 1; n = 0;

v-y (independently selected) = 0 or 1;

R = linker-Urokinase.
```

FIG. 43J

```
Isolated Urokinase.

a-d, i-m, q-u (independently selected) = 0 or 1;

e-h = 1; v-y = 0; n = 0;

Sia (independently selected) = Sia or SO<sub>4</sub>;

Gal (independently selected) = Gal or GalNAc;

GlcNAc (independently selected) = GlcNAc or GlcNAc-Fuc.
```

- 1. sulfohydrolase
- 2. CMP-SA-PEG, sialyltransferase

```
a-d, i-m, q-u (independently selected) = 0 or 1;
n = 0; e-h = 1; Sia = Sia;
Gal (independently selected) = Gal or GalNAc;
GlcNAc (independently selected) = GlcNAc or GlcNAc-Fuc.
v-y (independently selected) = 0 or 1;
R = PEG.
```

FIG. 43K

191/498

```
Isolated Urokinase.

a-d, i-m, q-u (independently selected) = 0 or 1;

e-h = 1; n = 0; v-y = 0;

Sia (independently selected) = Sia or SO<sub>4</sub>;

Gal (independently selected) = Gal or GalNAc;

GlcNAc (independently selected) = GlcNAc or GlcNAc-Fuc.
```

- 1. sulfohydrolase, hexosaminidase
- 2. UDP-Gal-PEG, galactosyltransferase

```
a-d, i, q-u (independently selected) = 0 or 1;
e-h = 1; j-n = 0; Gal (independently selected) = Gal;
GlcNAc (independently selected) = GlcNAc or GlcNAc-Fuc;
v-y (independently selected) = 0 or 1; R = PEG.
```

FIG. 43L

192/498

$$\mathbf{A} \leftarrow \begin{bmatrix} \left[\operatorname{GlcNAc-(Gal)}_{a} \right]_{e^{-}} \left(\operatorname{Sia} \right)_{j^{-}} \left(\operatorname{R} \right)_{v} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{b} \right]_{f^{-}} \left(\operatorname{Sia} \right)_{k^{-}} \left(\operatorname{R} \right)_{w} \right]_{s} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{c} \right]_{g^{-}} \left(\operatorname{Sia} \right)_{l^{-}} \left(\operatorname{R} \right)_{x} \right]_{t} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{d} \right]_{h^{-}} \left(\operatorname{Sia} \right)_{m^{-}} \left(\operatorname{R} \right)_{y} \right]_{u} \right]_{q} \\$$

a-d, i, q-u (independently selected) = 0 or 1. e-h (independently selected) = 0 to 6. j-m (independently selected) = 0 to 100. v-y=0; R = polymer, glycoconjugate.

FIG. 44A

193/498

```
CHO, BHK, 293 cells, Vero expressed DNase I. a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; v-y = 0.
```

- 1. Sialidase
- 2. CMP-SA-PEG (16 mol eq), ST3Gal3

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1;
v-y (independently selected) = 1,
when j-m (independently selected) is 1;
R = PEG.
```

FIG. 44B

```
CHO, BHK, 293 cells, Vero expressed DNase I. a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; v-y = 0.
```

- 1. Sialidase
- 2. CMP-SA-PEG (1.2 mol eq), ST3Gal3
- 3. CMP-SA (16 mol eq), ST3Gal3

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y (independently selected) = 0 or 1;
R = PEG.
```

FIG. 44C

194/498

```
CHO, BHK, 293 cells, Vero expressed DNase I. a-d, i-m, q-u (independently selected) = 0 or 1; e-h=1; v-y=0.
```

- 1. Sialidase
- 2. CMP-SA-PEG (16 mol eq), ST3Gal3
- 3. CMP-SA, ST3Gal3

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y (independently selected) = 0 or 1;
R = PEG.
```

FIG. 44D

```
CHO, BHK, 293 cells, Vero expressed DNase I. a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; v-y = 0.
```

```
    CMP-SA-levulinate, ST3Gal3,
buffer, salt
    2. H<sub>4</sub>N<sub>2</sub>-PEG
```

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y (independently selected) = 0 or 1;
R = PEG.
```

FIG. 44E

195/498

CHO, BHK, 293 cells, Vero expressed DNase I. a-d, i-m, q-u (independently selected) = 0 or 1; e-h=1; v-y=0.

1. CMP-SA, α2,8-ST

a-d, i, q-u (independently selected) = 0 or 1; e-h = 1; j-m (independently selected) = 0-20; v-y (independently selected) = 0.

FIG. 44F

196/498

$$\mathbf{A} \leftarrow \begin{bmatrix} (\operatorname{Fuc})_{i} \\ -\operatorname{GlcNAc-Man} \\ (\operatorname{R'})_{n} \end{bmatrix} \begin{bmatrix} (\operatorname{GlcNAc-(Gal)}_{a}]_{e} - (\operatorname{Sia})_{j} - (\operatorname{R})_{v} \\ (\operatorname{GlcNAc-(Gal)}_{b}]_{f} - (\operatorname{Sia})_{k} - (\operatorname{R})_{w} \end{bmatrix}_{s} \\ (\operatorname{GlcNAc-(Gal)}_{b}]_{g} - (\operatorname{Sia})_{l} - (\operatorname{R})_{x} \end{bmatrix}_{t} \\ (\operatorname{GlcNAc-(Gal)}_{d}]_{h} - (\operatorname{Sia})_{m} - (\operatorname{R})_{y} \end{bmatrix}_{u} = 0$$

a-d, i, n, p-u (independently selected) = 0 or 1. e-h (independently selected) = 0 to 6. j-m (independently selected) = 0 to 100. v-y = 0; R = modifying group, mannose, oligo-mannose; R' = H, glycosyl residue, modifying group, glycoconjugate.

FIG. 44G

197/498

```
Insect cell expressed DNase I.
a-d, f, h, j-n, s, u, v-y = 0;
e, g, i, q, r, t (independently selected) = 0 or 1.
```

- 1. GNT's 1,2,4,5, UDP-GlcNAc
- 2. Galactosyltransferase, UDP-Gal-PEG

```
a-i, q-u (independently selected) = 0 or 1; j-n = 0;
v-y (independently selected) = 1,
when e-h (independently selected) is 1;
R = PEG.
```

FIG. 44H

```
Yeast expressed DNase I.

a-n = 0;

q-y (independently selected) = 0 to 1;

p = 1; R (branched or linear) = Man, oligomannose.
```

- 1. Endoglycanase
- 2. Galactosyltransferase, UDP-Gal
- 3. CMP-SA-PEG, ST3Gal3

a-n, p-y = 0; n (independently selected) = 0 or 1; R' = -Gal-Sia-PEG.

FIG. 441

198/498

CHO, BHK, 293 cells, Vero expressed DNase I. a-d, i-m, q-u (independently selected) = 0 or 1; e-h=1; n, v-y=0.

- 1. CMP-SA-linker-SA-CMP, ST3Gal3
- 2. ST3Gal1, desialylated alpha-1-Proteinase inhibitor.
- 3. CMP-SA, ST3Gal3, ST3Gal1

```
a-m, q-u (independently selected) = 0 or 1;

p = 1; n = 0;

v-y (independently selected) = 0 or 1;

R = linker- alpha-1-Proteinase inhibitor.
```

FIG. 44J

199/498

$$(Fuc)_{i}$$

$$A \leftarrow GlcNAc-GlcNAc-GlcNAc-Man$$

$$(R')_{n}$$

$$(R')_{n}$$

$$(Fuc)_{i}$$

$$(GlcNAc-(Gal)_{a}]_{e} - (Sia)_{j} - (R)_{v}$$

$$[GlcNAc-(Gal)_{b}]_{f} - (Sia)_{k} - (R)_{w}]_{s}$$

$$[[GlcNAc-(Gal)_{c}]_{g} - (Sia)_{l} - (R)_{x}]_{t}$$

$$[[GlcNAc-(Gal)_{d}]_{h} - (Sia)_{m} - (R)_{y}]_{u}$$

$$[[GlcNAc-(Gal)_{d}]_{h} - (Sia)_{m} - (R)_{y}]_{u}$$

a-d, i, r-u (independently selected) = 0 or 1. e-h (independently selected) = 0 to 4. j-m (independently selected) = 0 or 1. n, v-y = 0; z = 0 or 1; R = modifying group, mannose, oligo-mannose; R' = H, glycosyl residue, modifying group, glycoconjugate.

FIG. 45A

200/498

```
CHO, BHK, 293 cells, Vero expressed Insulin. a-m, r-u (independently selected) = 0 or 1; n = 0; v-y = 0; z = 1.
```

- 1. Sialidase
- 2. CMP-SA-PEG, ST3Gal3

```
a-m, r-u (independently selected) = 0 or 1;
v-y (independently selected) = 1,
when j-m (independently selected) is 1;
n = 0; R = PEG; z = 1.
```

FIG. 45B

```
Insect cell expressed Insulin.
a-h, j-n, s-y = 0;
i, r (independently selected) = 0 or 1; z = 1.
```

1. GNT's 1&2, UDP-GlcNAc-PEG

```
a-d, f, h, j-n, s, u, w, y = 0;
e, g, i, r, t, v, x (independently selected) = 0 or 1;
v, x (independently selected) = 1,
when e, g (independently selected) is 1;
z = 1; R = PEG.
```

FIG. 45C

201/498

Yeast expressed Insulin.

a-n = 0; r-y (independently selected) = 0 to 1; z = 1;

R (branched or linear) = Man, oligomannose or polysaccharide.

- 1. Endo-H
- 2. Galactosyltransferase, UDP-Gal-PEG

a-m, r-z=0; n = 1; R' = -Gal-PEG.

FIG. 45D

202/498

$$\mathbf{B} \leftarrow \begin{pmatrix} (\operatorname{Sia})_{b} \\ -\operatorname{GalNAc-(Gal)}_{a} - (\operatorname{Sia})_{c} - (R)_{d} \end{pmatrix}_{c}$$

a-c, e (independently selected) = 0 or 1; d = 0; R = polymer

FIG. 45E

203/498

CHO, BHK, 293 cells, Vero expressed insulinmucin fusion protein.

a-c, e (independently selected) = 0 or 1; d = 0

- 1. Sialidase
- 2. CMP-SA-PEG, ST3Gal1

a-d, e (independently selected) = 0 or 1; R = PEG.

FIG. 45F

Insect cell expressed Insulin-mucin fusion protein. a, e (independently selected) = 0 or 1; b, c, d = 0.

1. Galactosyltransferase, UDP-Gal-PEG

a, d, e (independently selected) = 0 or 1; b, c = 0; R = PEG.

FIG. 45G

204/498

E. coli expressed Insulin-mucin fusion protein. a-e = 0.

- 1. GalNAc Transferase, UDP-GalNAc
- 2. CMP-SA-PEG, sialyltransferase

c, d, e (independently selected) = 0 or 1; a, b = 0; R = PEG.

FIG. 45H

205/498

$$\mathbf{B} \leftarrow \begin{pmatrix} (\operatorname{Sia})_{b} \\ -\operatorname{GalNAc-(Gal)}_{a} - (\operatorname{Sia})_{c} - (\operatorname{R})_{d} \end{pmatrix}_{e}$$

$$\mathbb{C} \leftarrow (\mathbb{R}')_n$$

a-c, e (independently selected) = 0 or 1; d = 0; R = modifying group, mannose, oligo-mannose.

FIG. 451

206/498

E. coli expressed Insulin-mucin fusion protein. a-e, n = 0.

 GalNAc Transferase, UDP-GalNAc-PEG

d, e (independently selected) = 0 or 1; a-c, n = 0; R = PEG.

FIG. 45J

E. coli expressed Insulin-mucin fusion protein. a-e, n = 0.

- GalNAc Transferase, UDP-GalNAc-linker-SA-CMP
- 2. ST3Gal3, asialo-transferrin
- 3. CMP-SA, ST3Gal3

d, e (independently selected) = 0 or 1; a-c, n = 0; R = linker-transferrin.

FIG. 45K

207/498

E. coli expressed Insulin (N)—no mucin peptide. a-e, n = 0.

- 1. NHS-CO-linker-SA-CMP
- 2. ST3Gal3, asialo-transferrin
- 3. CMP-SA, ST3Gal3

```
a-e = 0; n = 1;
R' = linker-transferrin.
```

FIG. 45L

208/498

a-d, i, n-u, aa (independently selected) = 0 or 1. e-h (independently selected) = 0 to 6. j-m (independently selected) = 0 to 100. v-y = 0; R = polymer, glycoconjugate.

FIG. 46A

209/498

CHO, BHK, 293 cells, Vero expressed M-antigen. a-d, i-m, o-u, aa (independently selected) = 0 or 1; n, e-h = 1; v-z = 0.

- 1. Sialidase
- 2. CMP-SA-linker-lipid-A, ST3Gal3

```
a-d, i-m, q-u, aa (independently selected) = 0 or 1;
o, p, z = 0; n, e-h = 1;
v-y (independently selected) = 1,
when j-m (independently selected) is 1;
R = linker-lipid-A.
```

FIG. 46B

CHO, BHK, 293 cells, Vero expressed M-antigen. a-d, i-m, o-u, aa (independently selected) = 0 or 1; n, e-h = 1; v-z = 0.

- 1. sialidase
- 2. CMP-SA-linker-tetanus toxin, ST3Gal1
- ▼ 3. CMP-SA, ST3Gal3

a-d, i-m, p-u, z, as (independently selected) = 0 or 1; o, v-y=0; n, e-h=1; R = tetanus toxin.

FIG. 46C

210/498

```
NSO expressed M-antigen.
a-d, i-n, o-u, aa (independently selected) = 0 or 1;
e-h = 1; v-z = 0;
Sia (independently selected) = Sia or Gal.
```

- 1. α-galactosidase
- 2. CMP-SA, ST3Gal3
- 2. CMP-SA-KLH, ST3Gal1

```
a-d, i-n, p-u, z, aa (independently selected) = 0 or 1;
e-h = 1; o, v-y = 0;
z = 1, when p = 1;
R = KLH.
```

FIG. 46D

```
Yeast expressed M-antigen.
a-p, z = 0; q-y, aa (independently selected) = 0 to 1;
R (branched or linear) = Man, oligomannose;
GalNAc = Man.
```

α1,2-mannosidase
 GNT 1,
 UDP-GlcNAc-linker-diphtheria toxin.

e, q, l, m, r, t, u, v, aa (independently selected) =0 or 1; a-d, f-h, j, k, n-p, s, w-z = 0; Sia = Man; R = linker-diphtheria toxin.

FIG. 46E

211/498

CHO, BHK, 293 cells, Vero expressed M-antigen. a-d, i-m, o-u, aa (independently selected) = 0 or 1; n, e-h = 1; v-z = 0.

- 1. CMP-SA-levulinate, ST3Gal3,
- 2. H₄N₂-linker-DNA

a-d, i-m, o-y, as (independently selected) = 0 or 1; z = 0; n, e-h = 1; R = linker-DNA.

FIG. 46F

CHO, BHK, 293 cells, Vero expressed M-antigen. a-d, i-n, o-u, aa (independently selected) = 0 or 1; e-h=1; v-z=0.

1. CMP-SA, poly- α 2,8-ST

a-d, i, n-u, aa (independently selected) = 0 or 1; e-h = 1; j-m (independently selected) = 0-100; v-z (independently selected) = 0.

FIG. 46G

212/498

$$\mathbf{A} \leftarrow (\operatorname{Fuc})_{i} \\ -\operatorname{GlcNAc-GlcNAc-Man} \\ | (\operatorname{R'})_{cc} \\ | (\operatorname{R'})_{cc} \\ | (\operatorname{GlcNAc-(Gal)}_{a}]_{e^{-}} (\operatorname{Sia})_{j^{-}} (\operatorname{R})_{v} \\ | (\operatorname{GlcNAc-(Gal)}_{b}]_{f^{-}} (\operatorname{Sia})_{k^{-}} (\operatorname{R})_{w} \\ | (\operatorname{GlcNAc-(Gal)}_{c}]_{g^{-}} (\operatorname{Sia})_{l^{-}} (\operatorname{R})_{x} \\ | (\operatorname{GlcNAc-(Gal)}_{d}]_{h^{-}} (\operatorname{Sia})_{m^{-}} (\operatorname{R})_{y} \\ | (\operatorname{GlcNAc-(Gal)}_{d})_{h^{-}} (\operatorname{Gal})_{m^{-}} (\operatorname{R})_{y} \\ | (\operatorname{GlcNAc-(Gal)}_{d})_{m^{-}} (\operatorname{Gal})_{m^{-}} (\operatorname$$

$$\mathbf{B} \leftarrow \begin{bmatrix} (\mathrm{Sia})_{o} \\ -\mathrm{GalNAc-(Gal)}_{n} - (\mathrm{Sia})_{p} - (\mathrm{R})_{z} \end{bmatrix}_{aa}$$

a-d, i, n, q-u, aa, bb, (independently selected) = 0 or 1. e-h (independently selected) = 0 to 6. j-p (independently selected) = 0 to 100. Cc, v-y = 0; R = modifying group, mannose, oligo-mannose. R'= H, glycosyl residue, modifying group, glycoconjugate.

FIG. 46H

213/498

```
Insect cell expressed M-antigen.
a-d, f, h, j-m, o, p, s, u, v-z, cc = 0;
bb = 1;
e, g, i, n, q, r, t, aa (independently selected) = 0 or 1.
```

1. GNT-2, UDP-GlcNAc-linker-Neisseria protein

```
a, c, e, g, i, n, q, r, t, v, x, aa (independently selected) = 0 or 1;
b, d, f, h, j-p, s, u, w, y, z, cc = 0;
bb = 1; R = -linker-Neisseria protein.
```

FIG. 461

```
Yeast expressed M-antigen.
a-p, z, cc = 0;
q-y, aa (independently selected) = 0 to 1;
bb = 1; R (branched or linear) = Man, oligomannose;
GalNAc = Man.
```

1. Endoglycanase

2. Galactosyltransferase, UDP-Gal-linker-Neisseria protein

```
a-p, r-z, bb = 0;
q, aa, cc (independently selected) = 0 or 1;
R' = -Gal-linker-Neisseria protein.
```

FIG. 46J

214/498

```
Yeast expressed M-antigen.
a-p, z, cc = 0;
q-y, as (independently selected) = 0 to 1; bb = 1;
R (branched or linear) = Man, oligomannose;
GalNAc = Man.
```

- 1. mannosidases
- 2. GNT 1 & 2, UDP-GlcNAc3. UDP-Gal, Galactosyltransferase,

```
a, c, e, g, j, l, q, r, t, aa (independently selected) = 0 or 1;
b, d, f, h, k, m-p, s, u-z, cc = 0; bb = 1.
```

FIG. 46K

215/498

$$(Fuc)_{i} \\ \mathbf{A} \leftarrow GlcNAc - GlcNAc - Man \\ \begin{bmatrix} [GlcNAc - (Gal)_{a}]_{e} - (Sia)_{j} - (R)_{v} \end{bmatrix}_{r} \\ \begin{bmatrix} [GlcNAc - (Gal)_{b}]_{f} - (Sia)_{k} - (R)_{w} \end{bmatrix}_{s} \\ (R')_{n} \\ \end{bmatrix} \\ Man \\ \begin{bmatrix} [GlcNAc - (Gal)_{c}]_{g} - (Sia)_{l} - (R)_{x} \end{bmatrix}_{t} \\ \begin{bmatrix} [GlcNAc - (Gal)_{d}]_{h} - (Sia)_{m} - (R)_{y} \end{bmatrix}_{u} \\ \end{bmatrix}_{z}$$

a-d, i, r-u (independently selected) = 0 or 1. e-h (independently selected) = 0 to 4. j-m (independently selected) = 0 or 1. n, v-y = 0; z = 0 or 1; R = modifying group, mannose, oligo-mannose; R' = H, glycosyl residue, modifying group, glycoconjugate.

FIG. 47A

216/498

CHO, BHK, 293 cells, Vero expressed Growth Hormone.

```
a-m, r-u (independently selected) = 0 or 1;

n = 0; v-y = 0; z = 1.
```

- 1. Sialidase
- 2. CMP-SA-PEG, ST3Gal3

```
a-m, r-u (independently selected) = 0 or 1;
v-y (independently selected) = 1,
when j-m (independently selected) is 1;
n = 0; R = PEG; z = 1.
```

FIG. 47B

```
Insect cell expressed growth hormone.

a-h, j-n, s-y = 0;

i, r (independently selected) = 0 or 1; z = 1.
```

1. GNT's 1&2, UDP-GlcNAc-PEG

```
a-d, f, h, j-n, s, u, w, y = 0;
e, g, i, r, t, v, x (independently selected)= 0 or 1;
v, x (independently selected) = 1,
when e, g (independently selected) is 1;
z = 1; R = PEG.
```

FIG. 47C

217/498

Yeast expressed growth hormone.

a-n=0; r-y (independently selected) = 0 to 1; z=1;

R (branched or linear) = Man, oligomannose or polysaccharide.

- 1. Endo-H
- 2. Galactosyltransferase, UDP-Gal-PEG

a-m, r-z=0; n = 1; R' = -Gal-PEG.

FIG. 47D

218/498

$$\mathbf{B} \leftarrow \begin{bmatrix} (\mathrm{Sia})_{b} \\ -\mathrm{GalNAc} - (\mathrm{Gal})_{a} - (\mathrm{Sia})_{c} - (\mathrm{R})_{d} \end{bmatrix}_{e}$$

a-c, e (independently selected) = 0 or 1;
d = 0;
R = modifying group, mannose, oligomannose.

FIG. 47E

219/498

CHO, BHK, 293 cells, Vero expressed growth hormone-mucin fusion protein.

a-c, e (independently selected) = 0 or 1; d = 0

- 1. Sialidase
- 2. CMP-SA-PEG, ST3Gal1

a-d, e (independently selected) = 0 or 1; R = PEG.

FIG. 47F

Insect cell expressed Growth Hormone-mucin fusion protein.

a, e (independently selected) = 0 or 1; b, c, d = 0.

1. Galactosyltransferase, UDP-Gal-PEG

a, d, e (independently selected) = 0 or 1; b, c = 0; R = PEG.

FIG. 47G

220/498

E. coli expressed growth hormone-mucin fusion protein.

$$a-e=0$$
.

- 1. GalNAc Transferase, UDP-GalNAc
- 2. CMP-SA-PEG, sialyltransferase

c, d, e (independently selected) = 0 or 1; a, b = 0; R = PEG.

FIG. 47H

E. coli expressed growth hormone-mucin fusion protein.

$$a-e, n = 0.$$

1. GalNAc Transferase, UDP-GalNAc-PEG

d, e (independently selected) = 0 or 1; a-c, n = 0; R = PEG.

FIG. 471

221/498

E. coli expressed growth hormone-mucin fusion protein.

```
a-e, n = 0.
```

- GalNAc Transferase, UDP-GalNAc-linker-SA-CMP
- 2. ST3Gal3, asialo-transferrin
- ▼ 3. CMP-SA, ST3Gal3

d, e (independently selected) = 0 or 1; a-c, n = 0; R = linker-transferrin.

FIG. 47J

E. coli expressed growth hormone(N)—no mucin peptide.a-e, n = 0.

- 1. NHS-CO-linker-SA-CMP
- 2. ST3Gal3, asialo-transferrin
- 3. CMP-SA, ST3Gal3

a-e=0; n=1; R' = linker-transferrin.

FIG. 47K

222/498

$$\mathbf{A} \leftarrow \begin{bmatrix} (\operatorname{Fuc})_{i} & & & \\ -\operatorname{GlcNAc-Man} & & & \\ (\operatorname{GlcNAc-Gal})_{a} \\ -\operatorname{GlcNAc-Man} & & & \\ (\operatorname{GlcNAc-Gal})_{b} \\ -\operatorname{GlcNAc-Gal})_{b} \\ -\operatorname{GlcNAc-Gal})_{c} \\ \mathbf{A} \leftarrow \begin{bmatrix} (\operatorname{GlcNAc-Gal})_{a} \\ -\operatorname{Gal} \\ -\operatorname{Gal} \\ -\operatorname{Gal} \\ -\operatorname{Gal} \\ -\operatorname{Gal})_{a} \\ -\operatorname{Gal} \\ -\operatorname{Gal})_{b} \\ -\operatorname{Gal} \\ -\operatorname{Gal})_{a} \\ -\operatorname{Gal} \\ -\operatorname{Gal})_{a} \\ -\operatorname{Gal} \\ -\operatorname{Gal})_{a} \\ -\operatorname{Gal} \\ -\operatorname{Gal})_{a} \\ -\operatorname{Gal})_{a} \\ -\operatorname{Gal} \\ -\operatorname{Gal})_{a} \\ -\operatorname{Gal})_$$

a-d, i-m, q-u, w, z, nn, ww, zz (independently selected) = 0 or 1. e-h (independently selected) = 0 to 4. n, v-y=0;

R = modifying group, mannose, oligo-mannose;

R' = H, glycosyl residue, modifying group, glycoconjugate.

FIG. 48A

223/498

CHO, BHK, 293 cells, Vero or transgenic animals expressed TNF Receptor IgG Fusion. a-m, o-u, aa (independently selected) = 0 or 1; n = 1; v-z = 0.

- 1. CMP-SA, ST3Gal1
- 2. galactosyltransferase, UPD-Gal
- 3. CMP-SA-PEG, ST3Gal3

a-m, o-u, v-y, as (independently selected) = 0 or 1; n = 1; z = 0; R = PEG.

FIG. 48B

CHO, BHK, 293 cells, Vero expressed TNF Receptor IgG Fusion. a-m, o-u, aa (independently selected) = 0 or 1; n = 1; v-z = 0.

- 1. sialidase
- 2. CMP-SA-PEG, ST3Gal1

a-i, p-u, z, aa (independently selected) = 0 or 1; n = 1; o, j-m, v-y = 0; R = PEG.

FIG. 48C

224/498

CHO, BHK, 293 cells, Vero expressed
TNF Receptor IgG Fusion.
a-m, o-u, aa (independently selected) = 0 or 1;
n = 1; v-z = 0.

1. galactosyltransferase, UPD-Gal-PEG

a-m, o-u, v-y, as (independently selected) = 0 or 1; n = 1; z = 0; R = PEG.

FIG. 48D

CHO, BHK, 293 cells, Vero or transgenic animals expressed TNF Receptor IgG Fusion.

a-m, o-u, aa (independently selected) = 0 or 1;

n = 1; v-z = 0.

1. CMP-SA, ST3Gal12. galactosyltransferase, UPD-Gal-PEG

a-m, o-u, v-y, as (independently selected) = 0 or 1; n = 1; z = 0; R = PEG.

FIG. 48E

225/498

CHO, BHK, 293 cells, Vero or transgenic animals expressed TNF Receptor IgG Fusion.
a-m, o-u, aa (independently selected) = 0 or 1;
n = 1; v-z = 0.

1. CMP-SA-levulinate, ST3Gal1 · · · 2. H₄N₂-PEG

a-m, o-u, v-y, as (independently selected) = 0 or 1; n = 1; z = 0; R = PEG.

FIG. 48F

CHO, BHK, 293 cells, Vero expressed
TNF Receptor IgG Fusion.
a-m, o-u, aa (independently selected) = 0 or 1;
n = 1; v-z = 0.

1. CMP-SA-PEG, α2,8-ST

a-i, o, q-u, v-z, aa (independently selected) = 0 or 1; n = 1; j-m, p (independently selected) = 0 to 2; v-z (independently selected) = 1, when j-m, p (independently selected) is 2; R = PEG.

FIG. 48G

226/498

Fuc)_i
GlcNAc-GlcNAc-Man
$$\begin{bmatrix}
[GlcNAc-(Gal)_a]_e - (Sia)_j - (R)_v \\
[GlcNAc-(Gal)_b]_f - (Sia)_k - (R)_w \\
Man
\begin{bmatrix}
[GlcNAc-(Gal)_c]_g - (Sia)_l - (R)_x \\
[GlcNAc-(Gal)_d]_h - (Sia)_m - (R)_y \\
\end{bmatrix}_{u} \\
z \\
q$$

a-d, i, l, q-u (independently selected) = 0 or 1.

e-h (independently selected) = 0 to 4.

j-k (independently selected) = 0 or 1.

M = 0 to 20.

n, v-y = 0; z = 0 or 1;

R = polymer, toxin, radioisotope-complex, drug, mannose, oligo-mannose.

R' = H, glycosyl residue, modifying group, glycoconjugate.

FIG. 49A

227/498

```
CHO, BHK, 293 cells, Vero expressed Herceptin.
a, c, i (independently selected) = 0 or 1;
e, g, r, t = 1; b, d, f, h, j-m, n, s, u-y = 0;
q, z = 1.
```

- 1. galactosyltransferase, UPD-Gal
- 2. CMP-SA-toxin, ST3Gal3

```
a, c, i, j, l (independently selected) = 0 or 1;
e, g, r, t = 1; R = toxin;
f, h, k, m, n, s, u-y = 0; q, z = 1;
v-y (independently selected) = 51,
when j, l (independently selected) is 1.
```

FIG. 49B

```
CHO, BHK, 293 cells, Vero or fungal expressed Herceptin.

a, c, i (independently selected) = 0 or 1;

e, g, r, t = 1; b, d, f, h, j-m, n, s, u-y = 0;

q, z = 1.
```

1. galactosyltransferase, UPD-Gal-Toxin

```
a, c, i (independently selected) = 0 or 1;
e, g, r, t = 1; f, h, j-m, n, s, u-y = 0;
q, z = 1; v-y (independently selected) = 1,
when a, c (independently selected) is 1;
R = toxin.
```

FIG. 49C

228/498

Fungi expressed Herceptin.

```
e, g, i, r, t (independently selected) = 0 or 1;
a-d, f, h, j-m, n, s, u-y=0; q, z=1.
```

- 1. Endo-H
- 2. Galactosyltransferase, UDP-Gal

a-m, r-z= 0; q, n = 1; R' = -Gal-Sia-radioisotope complex.

FIG. 49D

229/498

a-d, i, p-u, (independently selected) = 0 or 1.
e-h (independently selected) = 0 to 4.
j-m (independently selected) = 0 or 1.
n, v-y = 0; z = 0 or 1;
R = polymer, toxin, radioisotope-complex, drug, mannose, oligo-mannose.
R' = H, glycosyl residue, modifying group, glycoconjugate.

FIG. 50A

230/498

```
CHO, BHK, 293 cells, Vero expressed Synagis.
a, c, i (independently selected) = 0 or 1;
e, g, r, t = 1;
b, d, f, h, j-m, n, s, u-y = 0; q, z = 1.
```

1. galactosyltransferase, UPD-Gal

```
2. CMP-SA-PEG, ST3Gal3
```

```
a, c, i, j, w, (independently selected) = 0 or 1;
e, g, r, t = 1; f, h, k, m, n, s, u-y = 0;
q, z = 1; v-y (independently selected) = 1,
when j, 1 (independently selected) is 1;
R = PEG.
```

FIG. 50B

```
CHO, BHK, 293 cells, Vero or fungal expressed Synagis.

a, c, i (independently selected) = 0 or 1;

e, g, r, t = 1; b, d, f, h, j-m, n, s, u-y = 0;

q, z = 1.
```

1. galactosyltransferase, UPD-Gal-PEG

```
a, c, i, w (independently selected) = 0 or 1;
e, g, r, t = 1; f, h, j-m, n, s, u-y = 0;
q, z = 1; v-y (independently selected) = 1,
when a, c (independently selected) is 1;
R = PEG.
```

FIG. 50C

231/498

Fungi expressed Synagis. e, g, i, r, t (independently selected) = 0 or 1; a-d, f, h, j-m, n, s, u-y = 0; q, z = 1.

- 1. Endo-H
- 2. Galactosyltransferase, UDP-Gal
- 3.. CMP-SA-PEG, ST3Gal3

a-m, r-z=0; q, n=1; R'=-Gal-Sia-PEG.

FIG. 50D

232/498

$$\mathbf{A} \leftarrow \begin{bmatrix} (\operatorname{Fuc})_{i} \\ \operatorname{GlcNAc-\operatorname{Gal}}_{a} \end{bmatrix}_{e} - (\operatorname{Sia})_{j} - (\operatorname{R})_{v} \end{bmatrix}_{r} \\ \left[(\operatorname{GlcNAc-\operatorname{Gal}})_{b} \right]_{f} - (\operatorname{Sia})_{k} - (\operatorname{R})_{w} \end{bmatrix}_{s} \\ \operatorname{Man} \begin{bmatrix} (\operatorname{GlcNAc-\operatorname{Gal}})_{b} \right]_{f} - (\operatorname{Sia})_{l} - (\operatorname{R})_{w} \end{bmatrix}_{t} \\ \left[(\operatorname{R'})_{n} \right]_{t} \\ \left[(\operatorname{GlcNAc-\operatorname{Gal}})_{d} \right]_{h} - (\operatorname{Sia})_{m} - (\operatorname{R})_{y} \end{bmatrix}_{u} \\ \left[(\operatorname{GlcNAc-\operatorname{Gal}})_{d} \right]_{h} - (\operatorname{Sia})_{m} - (\operatorname{R})_{y} \end{bmatrix}_{u} \\ \left[(\operatorname{GlcNAc-\operatorname{Gal}})_{d} \right]_{h} - (\operatorname{Sia})_{m} - (\operatorname{R})_{y} \end{bmatrix}_{u} \\ \left[(\operatorname{GlcNAc-\operatorname{Gal}})_{d} \right]_{h} - (\operatorname{Sia})_{m} - (\operatorname{R})_{y} \end{bmatrix}_{u} \\ \left[(\operatorname{GlcNAc-\operatorname{Gal}})_{d} \right]_{h} - (\operatorname{Sia})_{m} - (\operatorname{R})_{y} \\ \left[(\operatorname{GlcNAc-\operatorname{Gal}})_{d} \right]_{h} - (\operatorname{Sia})_{m} - (\operatorname{R})_{w} \\ \left[(\operatorname{GlcNAc-\operatorname{Gal}})_{d} \right]_{h} - (\operatorname{Sia})_{m} - (\operatorname{R})_{w} \\ \left[(\operatorname{GlcNAc-\operatorname{Gal}})_{d} \right]_{h} - (\operatorname{Sia})_{m} - (\operatorname{R})_{w} \\ \left[(\operatorname{GlcNAc-\operatorname{Gal})_{d} \right]_{h} - (\operatorname{Gal})_{m} - (\operatorname{Gal})_{m} - (\operatorname{Cal})_{m} - (\operatorname{Cal})_{$$

a-d, i, q-u, w (independently selected) = 0 or 1.

e-h (independently selected) = 0 to 6.

j-m (independently selected) = 0 to 20.

n, v-y = 0; z = 0 or 1;

R = polymer, toxin, radioisotope-complex, drug, mannose, oligo-mannose.

R' = H, glycosyl residue, modifying group, glycoconjugate.

FIG. 51A

233/498

```
CHO, BHK, 293 cells, Vero expressed Remicade.

a, c, i (independently selected) = 0 or 1;

e, g, r, t = 1; b, d, f, h, j-m, n, s, u-y = 0;

q, z = 1.
```

galactosyltransferase, UPD-Gal
 CMP-SA-PEG, ST3Gal3

```
a, c, i, j, l (independently selected) = 0 or 1;
e, g, r, t = 1; f, h, k, m, n, s, u-y = 0;
q, z = 1; v-y (independently selected) = 1,
when j, l (independently selected) is 1;
R = PEG.
```

FIG. 51B

```
CHO, BHK, 293 cells, Vero or fungal expressed Remicade.

a, c, i (independently selected) = 0 or 1;

e, g, r, t = 1; b, d, f, h, j-m, n, s, u-y = 0;

q, z = 1.
```

1. galactosyltransferase, UPD-Gal-PEG

```
a, c, i (independently selected) = 0 or 1;
e, g, r, t = 1; f, h, j-m, n, s, u-y = 0;
q, z = 1; v-y (independently selected) = 1,
when a, c (independently selected) is 1;
R = PEG.
```

FIG. 51C

234/498

Fungi expressed Remicade. e, g, i, r, t (independently selected) = 0 or 1; a-d, f, h, j-m, n, s, u-y = 0; q, z = 1.

- 1. Endo-H
- 2. Galactosyltransferase, UDP-Gal
- 3.. CMP-SA-radioisotope complex, ST3Gal3

a-m, r-z= 0; q, n = 1; R' = -Gal-Sia-radioisotope complex.

FIG. 51D

235/498

$$\mathbf{A} \leftarrow \begin{array}{c} \text{(Fuc)}_{i} \\ \text{GlcNAc-GlcNAc-Man} \\ \text{([GlcNAc-(Gal)_{a}]_{e}-(Sia)_{j}-(R)_{v})_{r}} \\ \text{(R')}_{n} \\ \text{(R')}_{n} \\ \text{([GlcNAc-(Gal)_{c}]_{g}-(Sia)_{l}-(R)_{x})_{t}} \\ \text{([GlcNAc-(Gal)_{d}]_{h}-(Sia)_{m}-(R)_{y})_{u}} \\ \text{([GlcNAc-(Gal)_{d}]_{h}-(Sia)_{m}-(R)_{y}} \\ \text{([GlcNAc-(G$$

a-d, i, q-u (independently selected) = 0 or 1. e-h (independently selected) = 0 to 4. j-m (independently selected) = 0 or 1. n, v-y = 0; z = 0 or 1; R = modifying group, mannose, oligo-mannose; R' = H, glycosyl residue, modifying group, glycoconjugate.

FIG. 52A

236/498

```
CHO, BHK, 293 cells, Vero expressed Reopro. a-m, r-u (independently selected) = 0 or 1; n = 0; v-y = 0; z = 1.
```

- 1. Sialidase
- 2. CMP-SA-PEG, ST3Gal3

```
a-m, r-u (independently selected) = 0 or 1;
v-y (independently selected) = 1,
when j-m (independently selected) is 1;
n = 0; R = PEG; z = 1.
```

FIG. 52B

```
Insect cell expressed Reopro.
a-h, j-n, s-y = 0; i, r (independently selected) = 0 or 1;
z = 1.
```

1. GNT's 1&2, UDP-GlcNAc-PEG

```
a-d, f, h, j-n, s, u, w, y = 0;
e, g, i, r, t, v, x (independently selected) = 0 or 1;
v, x (independently selected) = 1,
when e, g (independently selected) is 1;
z = 1; R = PEG.
```

FIG. 52C

237/498

Yeast expressed Reopro. a-n = 0; r-y (independently selected) = 0 to 1; z = 1; R (branched or linear) = Man, oligomannose or

1. Endo-H

polysaccharide.

2. Galactosyltransferase, UDP-Gal-PEG

a-m, r-z= 0; n = 1; R' = -Gal-PEG.

FIG. 52D

238/498

$$\mathbf{B} \leftarrow \begin{bmatrix} (\mathrm{Sia})_{b} \\ -\mathrm{GalNAc-(Gal)}_{a} - (\mathrm{Sia})_{c} - (\mathrm{R})_{d} \end{bmatrix}_{e}$$

a-c, e (independently selected) = 0 or 1; d = 0; R = polymer

FIG. 52E

239/498

CHO, BHK, 293 cells, Vero expressed
Reopro-mucin fusion protein.
a-c, e (independently selected) = 0 or 1; d = 0

- 1. Sialidase
- 2. CMP-SA-PEG, ST3Gal1

a-d, e (independently selected) = 0 or 1; R = PEG.

FIG. 52F

Insect cell expressed Reopro-mucin fusion protein. a, e (independently selected) = 0 or 1; b, c, d = 0.

1. Galactosyltransferase, UDP-Gal-PEG

a, d, e (independently selected) = 0 or 1; b, c = 0; R = PEG.

FIG. 52G

240/498

E. coli expressed Reopro-mucin fusion protein. a-e=0.

- 1. GalNAc Transferase, UDP-GalNAc
- 2. CMP-SA-PEG, sialyltransferase

c, d, e (independently selected) = 0 or 1; a, b = 0; R = PEG.

FIG. 52H

241/498

$$\mathbf{B} \leftarrow \begin{bmatrix} (\operatorname{Sia})_{b} \\ -\operatorname{GalNAc-(Gal)}_{a} - (\operatorname{Sia})_{c} - (R)_{d} \end{bmatrix}_{e}$$

a-c, e (independently selected) = 0 or 1; d = 0; R = polymer, linker.

FIG. 521

242/498

E. coli expressed Reopro-mucin fusion protein. a-e, n = 0.

1. GalNAc Transferase, UDP-GalNAc-PEG

d, e (independently selected) = 0 or 1; a-c, n = 0; R = PEG.

FIG. 52J

E. coli expressed Reopro-mucin fusion protein. a-e, n = 0.

- GalNAc Transferase,
 UDP-GalNAc-linker-SA-CMP
- 2. ST3Gal3, asialo-transferrin
- 3. CMP-SA, ST3Gal3

d, e (independently selected) = 0 or 1; a-c, n = 0; R = linker-transferrin.

FIG. 52K

243/498

E. coli expressed Reopro(N)—no mucin peptide. a-e, n = 0.

- 1. NHS-CO-linker-SA-CMP
- 2. ST3Gal3, asialo-transferrin
- 3. CMP-SA, ST3Gal3

a-e=0; n=1; R'=linker-transferrin.

FIG. 52L

244/498

$$\mathbf{A} \leftarrow \begin{bmatrix} (\operatorname{Fuc})_{i} \\ \operatorname{GlcNAc} - (\operatorname{Gal})_{a} \end{bmatrix}_{e} - (\operatorname{Sia})_{j} - (\operatorname{R})_{v} \end{bmatrix}_{r} \\ \left[(\operatorname{GlcNAc} - (\operatorname{Gal})_{b})_{f} - (\operatorname{Sia})_{k} - (\operatorname{R})_{w} \end{bmatrix}_{s} \\ \left[(\operatorname{GlcNAc} - (\operatorname{Gal})_{b})_{g} - (\operatorname{Sia})_{l} - (\operatorname{R})_{x} \end{bmatrix}_{t} \\ \left[(\operatorname{GlcNAc} - (\operatorname{Gal})_{d})_{h} - (\operatorname{Sia})_{m} - (\operatorname{R})_{y} \end{bmatrix}_{u} \right]_{q}$$

a-d, i, q-u (independently selected) = 0 or 1.
e-h (independently selected) = 0 to 4.
j-m (independently selected) = 0 or 1.
n, v-y = 0; z = 0 or 1; R = polymer, toxin, radioisotopecomplex, drug, glycoconjugate.
R' = H, sugar, glycoconjugate.

FIG. 53A

245/498

```
CHO, BHK, 293 cells, Vero or transgenic animal expressed Rituxan.

a, c, i (independently selected) = 0 or 1;

e, g, r, t = 1; b, d, f, h, j-m, n, s, u-y = 0; q, z = 1.
```

- 1. galactosyltransferase, UPD-Gal
- 2. CMP-SA-toxin, ST3Gal3

```
a, c, i, j, l (independently selected) = 0 or 1;
e, g, r, t = 1;
f, h, k, m, n, s, u-y = 0; q, z = 1;
v-y (independently selected) = 1,
when j, l (independently selected) is 1;
R = toxin.
```

FIG. 53B

```
CHO, BHK, 293 cells, Vero or fungal expressed Rituxan.

a, c, e, g, i, r, t (independently selected) = 0 or 1;

b, d, f, h, j-m, n, s, u-y = 0; q, z = 1.
```

1. galactosyltransferase, UPD-Gal-drug

```
a, c, i (independently selected) = 0 or 1;
e, g, r, t = 1; f, h, j-m, n, s, u-y = 0; q, z = 1;
v-y (independently selected) = 1,
when a, c (independently selected) is 1;
R = toxin.
```

FIG. 53C

246/498

Fungi expressed Rituxan. e, g, i, r, t (independently selected) = 0 or 1; a-d, f, h, j-m, n, s, u-y = 0; q, z = 1.

- 1. Endo-H
- 2. Galactosyltransferase, UDP-Gal
- 3. CMP-SA-radioisotope complex, ST3Gal3

a-m, r-z= 0; q, n = 1; R' = -Gal-Sia-radioisotope complex.

FIG. 53D

247/498

$$A \leftarrow GlcNAc-Man \qquad Man \begin{bmatrix} [GlcNAc-(Gal)_a]_e - (Sia)_j - (R)_v \end{bmatrix}_r \\ [GlcNAc-(Gal)_b]_f - (Sia)_k - (R)_w \end{bmatrix}_s \\ Man \begin{bmatrix} [GlcNAc-(Gal)_b]_f - (Sia)_l - (R)_w \end{bmatrix}_t \\ [GlcNAc-(Gal)_c]_g - (Sia)_l - (R)_x \end{bmatrix}_t \\ [GlcNAc-(Gal)_d]_h - (Sia)_m - (R)_y \end{bmatrix}_u \\ = Q_t - Q_t$$

a-d, i, q-u (independently selected) = 0 or 1.
e-h (independently selected) = 0 to 4.
j-m (independently selected) = 0 or 1.
n, v-y = 0; z = 0 or 1;
R = polymer, toxin, radioisotope-complex, drug, glycoconjugate, mannose, oligo-mannose.
R' = H, glycosyl residue, modifying group, glycoconjugate.

FIG. 53E

248/498

```
CHO, BHK, 293 cells, Vero or transgenic animal
expressed Rituxan,
a, c, i (independently selected) = 0 or 1;
```

```
e, g, r, t = 1; b, d, f, h, j-m, n, s, u-y = 0;
```

q, z = 1.

- 1. galactosyltransferase, UPD-Gal
- 2. CMP-SA-PEG, ST3Gal3

```
a, c, i, j, l (independently selected) = 0 or 1;
e, g, r, t = 1; f, h, k, m, n, s, u-y = 0;
q, z = 1; v-y (independently selected) = 1,
  when j, 1 (independently selected) is 1;
R = PEG.
```

FIG. 53F

```
Fungi, yeast or CHO expressed Rituxan.
e, g, i, r, t, v, x (independently selected) = 0 or 1;
a-d, f, h, j-m, n, s, u, w, y = 0; q, z = 1;
R (independently selected) = mannose, oligomannose,
polymannose.
```

- 1. mannosidases (alpha and beta)
- 2. GNT-I,II, UDP-GlcNAc
- 3. Galactosyltransferase, UDP-Gal-radioisotope

```
a-m, r-z=0; q, n=1;
R' = -Gal-radioisotope complex.
```

FIG. 53G

249/498

a-d, i, q-u (independently selected) = 0 or 1. e-h (independently selected) = 0 to 6. j-m (independently selected) = 0 to 100. v-y = 0; R = mannose, polymer.

FIG. 54A

250/498

```
CHO, BHK, 293 cells, Vero or transgenic animal expressed AT III.

a-d, i-m, q-u (independently selected) = 0 or 1;

e-h = 1; v-y = 0.
```

- 1. Sialidase
- 2. CMP-SA-PEG (16 mol eq), ST3Gal3

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1;
v-y (independently selected) = 1,
when j-m (independently selected) is 1;
R = PEG.
```

FIG. 54B

```
CHO, BHK, 293 cells, Vero or transgenic animal expressed AT III.

a-d, i-m, q-u (independently selected) = 0 or 1;

e-h = 1; v-y = 0.
```

- 1. Sialidase
- 2. CMP-SA-PEG (1.2 mol eq), ST3Gal3
- 3. CMP-SA (16 mol eq), ST3Gal3

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1;
v-y (independently selected) = 0 or 1;
R = PEG.
```

FIG. 54C

251/498

```
NSO expressed AT III.

a-d, i-m, q-u (independently selected) = 0 or 1;

e-h = 1; v-y = 0;

Sia (independently selected) = Sia or Gal.
```

- 1. Sialidase and α -galactosidase
- 2. Galactosyltransferase, UDP-Gal
- ▼ 3. CMP-SA-PEG, ST3Gal3

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1;
v-y (independently selected) = 1,
when j-m (independently selected) is 1;
R = PEG.
```

FIG. 54D

```
CHO, BHK, 293 cells, Vero or transgenic animal expressed AT III.

a-d, i-m, q-u (independently selected) = 0 or 1;

e-h = 1; v-y = 0.
```

- 1. Sialidase
- 2. CMP-SA-PEG (16 mol eq), ST3Gal3
- 3. CMP-SA, ST3Gal3

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1;
v-y (independently selected) = 0 or 1;
R = PEG.
```

FIG. 54E

252/498

CHO, BHK, 293 cells, Vero or transgenic animal expressed AT III. a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; v-y = 0.

 CMP-SA-levulinate, ST3Gal3, buffer, salt

2. H₄N₂-PEG

a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; v-y (independently selected) = 0 or 1; R = PEG.

FIG. 54F

CHO, BHK, 293 cells, Vero expressed AT III. a-d, i-m, q-u (independently selected) = 0 or 1; e-h=1; v-y=0.

1. CMP-SA, poly- α 2,8-ST

a-d, i, q-u (independently selected) = 0 or 1; e-h = 1; j-m (independently selected) = 0-20; v-y (independently selected) = 0.

FIG. 54G

253/498

a-d, i, p-u (independently selected) = 0 or 1. e-h (independently selected) = 0 to 6. j-m (independently selected) = 0 to 100. v-y = 0 to 100. R = polymer, linker, mannose. R' = H, sugar, glycoconjugate.

FIG. 54H

254/498

```
Insect, yeast or fungi cell expressed AT III. a-d, f, h, j-n, s, u, v-y = 0; e, g, i, q, r, t (independently selected) = 0 or 1; p = 1.
```

1. GNT 1, UDP-GlcNAc-PEG

```
a, i, q, r, -u (independently selected) = 0 or 1;
b-g, j-n, s-u, w-y = 0; p = 1;
v (independently selected) = 1,
when a (independently selected) is 1;
R = PEG.
```

FIG. 541

```
Yeast expressed AT III.

a-n = 0; q-y (independently selected) = 0 to 1;

p = 1;

R (branched or linear) = Man, oligomannose.
```

- 1. Endoglycanase
- 2. Galactosyltransferase, UDP-Gal
- 3. CMP-SA-PEG, ST3Gal3

```
a-m, p-y = 0;
n (independently selected) = 0 or 1;
R' = -Gal-Sia-PEG.
```

FIG. 54J

255/498

CHO, BHK, 293 cells, Vero expressed AT III. a-d, i-m, q-u (independently selected) = 0 or 1; e-h=1; v-y=0.

- 1. CMP-SA-linker-Gal-UDP, ST3Gal3
- 2. Galactosyltransferase, transferrin treated with endoglycanase

```
a-m, q-u (independently selected) = 0 or 1;

p = 1; n = 0;

v-y (independently selected) = 0 or 1;

R = linker-transferrin.
```

FIG. 54K

256/498

a-d, i, n-u (independently selected) = 0 or 1.

e-h (independently selected) = 0 to 4.

j-m (independently selected) = 0 to 20.

R = polymer.

R', R" (independently selected) = sugar, glycoconjugate.

FIG. 54L

257/498

```
Yeast expressed AT III.

a-h, i-m, p, q = 0;

R (independently selected) = mannose,
oligomannose, polymannose;
r-u, v-y (independently selected) = 0 or 1;
n, o = 1.
```

- 1. endoglycanase
- ▼ 2. Galactosyltransferase, UDP-Gal-PEG

```
a-h, i-o, q, r-u, v-y = 0; p = 1.
R" = Gal-PEG.
```

FIG. 54M

```
Plant expressed AT III.

a-d, f-h, j-m, p, s-u, v-y = 0;

e, i, q, r (independently selected) = 0 or 1;

n, o = 1;

R' = xylose.
```

- 1. xylosidase
- 3. Galactosyl transferase, UDP-Gal-PEG

```
b-d, f-h, j-m, p, q, s-u, w-y = 0;
a, e, i, r (independently selected) = 0 or 1;
n, o = 1; R = PEG.
```

FIG. 54N

258/498

CHO, BHK, 293 cells, Vero, transgenic animal expressed AT III.

a-h, i-o, r-u (independently selected) = 0 or 1; p, q, v-y=0.

> 1. CMP-SA-PEG, ST3Gal3

a-h, i-o, r-u (independently selected) = 0 or 1; p, q = 0; v-y (independently selected) = 0 or 1; R = PEG.

FIG. 540

259/498

hCG
$$\alpha$$

$$H_2N$$

$$52$$

$$78$$
A
A
A
COOH

$$\mathbf{B} \leftarrow \begin{bmatrix} (\mathrm{Sia})_{o} \\ & | \\ -\mathrm{GalNAc-(Gal)}_{n} - (\mathrm{Sia})_{p} - (\mathrm{R})_{z} \end{bmatrix}_{q}$$

a-d, i, n-u (independently selected) = 0 or 1. e-h (independently selected) = 0 to 4. j-m (independently selected) = 0 to 20. v-z = 0; R = polymer

FIG. 55A

260/498

CHO, BHK, 293 cells, insect cell, Vero expressed hCG a-g, n, q = 1; h = 1 to 3; j-m, i, o, p (independently selected) = 0 or 1; r-u (independently selected) = 0 to 1; v-z = 0

1. Sialidase

2. CMP-SA-PEG, ST3Gal3

a-g, n, q = 1; h = 1 to 3; i, o, p (independently selected) = 0 or 1; r-u (independently selected) = 0 or 1; j-m, v-y (independently selected) = 0 or 1; R = PEG; z = 0.

FIG. 55B

Insect cell, yeast, fungi expressed hCG a-d, f, h, j-m, o, p, s, u, v-z = 0; e, g, i, n, q, r, t (independently selected) = 0 or 1.

- 1. GNT's 1&2, UDP-GlcNAc
- 2. Galactosyltransferase, UDP-Gal
- ♦ 2. CMP-SA-PEG, ST3Gal3

b, d, f, h, k, m, o, p, s, u, w, y, z = 0;
a, c, e, g, i, n, q, r, t (independently selected) = 0 or 1;
j, l, v, x (independently selected) = 0 or 1;
R = PEG.

FIG. 55C

261/498

```
CHO, BHK, 293 cells, insect cell,
Vero expressed hCG
a-q, r-u (independently selected) = 0 or 1;
v-z = 0.
```

- 1. sialidase
- 2. CMP-SA, ST3Gal3
- 3. CMP-SA-PEG, ST3Gal1

```
a-h, i-o, q, r-u (independently selected) = 0 or 1;
v-y = 0; p, z = 0 or 1; R = PEG.
```

FIG. 55D

```
CHO, BHK, 293 cells, insect cell or

Vero expressed hCG

a-g, n, q = 1; h = 1 to 3;

j-m, i, o, p (independently selected) = 0 or 1;

r-u (independently selected) = 0 or 1; v-z = 0
```

1. CMP-SA-PEG, ST3Gal3

```
a-g, n, q = 1; h = 1 to 3;

i, o, p (independently selected) = 0 or 1;

r-u (independently selected) = 0 to 1;

j-m, v-y (independently selected) = 0 or 1;

R = PEG; z = 0.
```

FIG. 55E

262/498

Insect cell, yeast or fungi expressed hCG a-d, f, h, j-m, o, p, s, u, v-z = 0; e, g, i, n, q, r, t (independently selected) = 0 or 1.

1. GNT's 1 and 2, UDP-GlcNAc-PEG

e, g, i, n, q, r, t, v, x (independently selected) = 0 or 1; a-d, f, h, j-m, o, p, s, w, y, z = 0; R = PEG.

FIG. 55F

Insect cell, yeast or fungi expressed hCG a-d, f, h, j-m, o, p, s, u, v-z = 0; e, g, i, n, q, r, t (independently selected) = 0 or 1.

1. GNT-1, UDP-GlcNAc-PEG

e, i, n, q, r, v (independently selected) = 0 or 1; a-d, g, f, h, j-m, o, p, s, t, w-z = 0; R = PEG.

FIG. 55G

263/498

```
CHO, BHK, 293 cells, insect cell or

Vero expressed hCG

a-g, n, q = 1; h = 1 to 3;
j-m, i, o, p (independently selected) = 0 or 1;
r-u (independently selected) = 0 or 1; v-z = 0

1. CMP-SA-PEG, ST3Gal3

a-g, n, q = 1; h = 1 to 3;
i, o (independently selected) = 0 or 1;
r-u (independently selected) = 0 to 1;
j-m, p, z (independently selected) = 0 or 1;
R = PEG; v-y = 0.
```

FIG. 55H

```
a-g, n, q = 1; h = 1 to 3;

j-m, i, o, p (independently selected) = 0 or 1;

r-u (independently selected) = 0 or 1; v-z = 0

1. CMP-SA-PEG, α2,8-ST

a-g, n, q = 1; h = 1 to 3;

i, o, p (independently selected) = 0 or 1;

r-u (independently selected) = 0 to 1;

j-m (independently selected) = 0 to 2;
```

v-y (independently selected) = 1, when j-m (independently selected) is 2; R = PEG; z = 0.

CHO, BHK, 293 cells, Vero expressed hCG

FIG. 551

264/498

```
CHO, BHK, 293 cells, Vero expressed hCG a-g, n, q = 1; h = 1 to 3; j-m, i, o, p (independently selected) = 0 or 1; r-u (independently selected) = 0 to 1; v-z = 0
```

1. CMP-SA, poly- α 2,8-ST

a-i, j-q, r-u, (independently selected) = 0 or 1; v-z (independently selected) = 0-100; R = Sia.

FIG. 55J

265/498

a-d, i, n, q-u, z (independently selected) = 0 or 1. e-h (independently selected) = 0 to 6. j-m (independently selected) = 0 to 100. v-y = 0 to 100; R = mannose, mannose-6-phosphate and mannose, polymer.

FIG. 56A

266/498

CHO, BHK, 293 cells, insect cells, Vero expressed and secreted alpha-galactosidase a-h, i-m, q-u (independently selected) = 0 or 1; z = 1; n, v-y = 0; and when a-n = 0, then r-u (independently selected) = 0 or 1; v-y (independently selected) = 0-100; R = mannose or mannose with mannose-6-phosphate.

1. Endo-H

2. Galactosyltransferase, UDP-Gal-PEG-transferrin

```
a-h, i-m, q-u (independently selected) = 0 or 1;

n, v-y = 0; z = 1; and when z = 0 and q = 1,

then n (independently selected) = 0 or 1;

R' = Gal-PEG-transferrin.
```

FIG. 56B

CHO, BHK, 293 cells, Insect cells,

Vero expressed and secreted alpha-galactosidase
a-h, i-m, q-u (independently selected) = 0 or 1; z = 1; n, v-y
= 0; and when a-n = 0, then r-u (independently selected) = 0
or 1; v-y (independently selected) = 0-100;
R = mannose or mannose with mannose-6-phosphate.

Sialidase
 CMP-SA-linker-Mannose-6-phosphate

ST3Gal3

a-h, i-m, q-u, v-y (independently selected) = 0 or 1; n = 0; z = 1; R = mannose-6-phosphate; and when a-n = 0, then r-u (independently selected) = 0 or 1; v-y (independently selected) = 0-100; R = mannose or mannose with mannose-6-phosphate.

FIG. 56C

267/498

NSO expressed alpha-galactosidase. a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; v-y = 0; Sia (independently selected) = Sia or Gal.

- 1. Sialidase and α-galactosidase
- 2. Galactosyltransferase, UDP-Gal
- 3. CMP-SA-linker-mannose-6-phosphate sialyltransferase

a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; v-y (independently selected) = 1, when j-m (independently selected) is 1; R = mannose-6 phosphate

FIG. 56D

CHO, BHK, 293 cells, Insect cells, Vero expressed and secreted alpha-galactosidase
a-h, i-m, q-u (independently selected) = 0 or 1; z = 1;
n, v-y = 0; and when a-n = 0, then r-u (independently selected) = 0 or 1; v-y (independently selected) = 0-100;
R = mannose or mannose with mannose-6-phosphate.

- 1. Sialidase
- 2. CMP-SA-PEG, sialyltransferase

a-h, i-m, q-u, v-y (independently selected) = 0 or 1; n = 0; z = 1; R = PEG; and when a-n = 0, then r-u (independently selected) = 0 or 1; v-y = 0-100; R = mannose or mannose with mannose-6-phosphate.

FIG. 56E

268/498

```
CHO, BHK, 293 cells, Insect cells, Vero, yeast, fungi expressed alpha-galactosidase.

a-i, v-y = 0; q (independently selected) = 0 or 1; z = 1; r-u (independently selected) = 0 or 1; j-m (independently selected) = 0-100; Sia = mannose or mannose with mannose-6-phosphate.
```

1. mannosyltransferase, GDP-mannose-linker-ApoE

```
a-i = 0; q (independently selected) = 0 or 1; z = 1;
r-u (independently selected) = 0 or 1;
j-m (independently selected) = 0-100;
Sia = mannose or mannose with mannose-6-phosphate;
v-y (independently selected) = 0 or 1;
R = mannose-linker-ApoE.
```

FIG. 56F

```
CHO, BHK, 293 cells, Insect cells, Vero, yeast, fungi expressed alpha-galactosidase.

a-i, v-y = 0; q (independently selected) = 0 or 1; z = 1; r-u (independently selected) = 0 or 1; j-m (independently selected) = 0-100; Sia = mannose or mannose with mannose-6-phosphate.
```

1. endo-H

2. galactosyltransferase, UDP-Gal-linker-alpha2-macroglobulin

a-m, r-z=0; n, q (independently selected) = 0 or 1; R' = galacotose-linker-alpha2-macroglobulin.

FIG. 56G

269/498

```
Insect cell, yeast, fungi expressed alpha-galactosidase.

a-d, f, h, j-m, s, u, v-y = 0;
e, g, i, q, r, t (independently selected) = 0 or 1.

1. GNT-1,
UDP-GlcNAc-PEG-mannose-6-phosphate

e, i, q, r, v (independently selected) = 0 or 1;
a-d, f-h, j-n, s-u, w-y = 0; z = 1;
R = PEG-mannose-6-phosphate.
```

FIG. 56H

```
Insect cell, yeast, fungi expressed
alpha-galactosidase.
a-d, f, h, j-m, s, u, v-y = 0;
e, g, i, q, r, t (independently selected) = 0 or 1.

1. GNT-1, UDP-GlcNAc
```

2. galactosyltransferase, UDP-Gal-PEG-transferrin

a, e, i, q, r, v (independently selected) = 0 or 1; b-d, f-h, j-n, s-u, w-y = 0; z = 1; R = PEG-transferrin.

FIG. 561

270/498

```
Insect cell, yeast, fungi expressed
alpha-galactosidase.
a-d, f, h, j-m, s, u, v-y = 0;
e, g, i, q, r, t (independently selected) = 0 or 1.
```

- 1. GNT-1 and 2, UDP-GlcNAc
- 2. galactosyltransferase, UDP-Gal
- 3. sialyltransferase, CMP-SA-PEG-melanotransferrin

a, c, e, g, i, j, l, q, r, t, v, x (independently selected) = 0 or 1; b, d, f, h, k, m, n, s, u, w, y = 0; z = 1; R = PEG-melanotransferrin.

FIG. 56J

271/498

a-d, i, n, q-u, z (independently selected) = 0 or 1. e-h (independently selected) = 0 to 6. j-m (independently selected) = 0 to 100. v-y = 0 to 100; R = mannose, mannose-6-phosphate and mannose, polymer.

FIG. 57A

272/498

CHO, BHK, 293 cells, Insect cells, Vero expressed and secreted alpha-iduronidase a-h, i-m, q-u (independently selected) = 0 or 1; z = 1; n, v-y = 0; and when a-n = 0, then r-u (independently selected) = 0 or 1; v-y (independently selected) = 0-100; R = mannose or mannose with mannose-6-phosphate.

- 1. Endo-H
 - 2. Galactosyltransferase, UDP-Gal-PEG-transferrin

```
a-h, i-m, q-u (independently selected) = 0 or 1;
n, v-y = 0; z = 1; and when z = 0 and q = 1, then n
(independently selected) = 0 or 1; R' = Gal-PEG-transferrin.
```

FIG. 57B

CHO, BHK, 293 cells, Insect cells, Vero expressed and secreted alpha-iduronidase a-h, i-m, q-u (independently selected) = 0 or 1; z = 1; n, v-y = 0; and when a-n = 0, then r-u (independently selected) = 0 or 1; v-y (independently selected) = 0-100; R = mannose or mannose with mannose-6-phosphate.

- 1. Sialidase
- 2. CMP-SA-linker-Mannose-6-phosphate ST3Gal3

```
a-h, i-m, q-u, v-y (independently selected) = 0 or 1; n = 0; z = 1; R = mannose-6-phosphate; and when a-n = 0, then r-u (independently selected) = 0 or 1; v-y (independently selected) = 0-100; R = mannose or mannose with mannose-6-phosphate.
```

FIG. 57C

273/498

```
NSO expressed alpha-iduronidase.
a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1;
v-y = 0; Sia (independently selected) = Sia or Gal.
```

- 1. Sialidase and α-galactosidase
- 2. Galactosyltransferase, UDP-Gal
- 3. CMP-SA-linker-mannose-6-phosphate sialyltransferase

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y (independently selected) = 1,
when j-m (independently selected) is 1;
R = mannose-6 phosphate
```

FIG. 57D

```
CHO, BHK, 293 cells, Insect cells, Vero expressed and secreted alpha-iduronidase a-h, i-m, q-u (independently selected) = 0 or 1; z = 1; n, v-y = 0; and when a-n = 0, then r-u (independently selected) = 0 or 1; v-y (independently selected) = 0-100; R = mannose or mannose with mannose-6-phosphate.
```

- 1. Sialidase
- 2. CMP-SA-PEG, sialyltransferase

```
a-h, i-m, q-u, v-y (independently selected) = 0 or 1; n = 0; z = 1; R = PEG; and when a-n = 0, then r-u (independently selected) = 0 or 1; v-y = 0-100; R = mannose or mannose with mannose-6-phosphate.
```

FIG. 57E

274/498

CHO, BHK, 293 cells, Insect cells, Vero, yeast, fungi expressed alpha-iduronidase.

a-i, v-y = 0; q (independently selected) = 0 or 1; z = 1; r-u (independently selected) = 0 or 1; j-m (independently selected) = 0-100; Sia = mannose or mannose with mannose-6-phosphate.

mannosyltransferase,
 GDP-mannose-linker-ApoE

```
a-i = 0; q (independently selected) = 0 or 1; z = 1;
r-u (independently selected) = 0 or 1; j-m (independently
selected) = 0-100;
Sia = mannose or mannose with mannose-6-phosphate;
v-y (independently selected) = 0 or 1;
R = mannose-linker-ApoE.
```

FIG. 57F

CHO, BHK, 293 cells, Insect cells, Vero, yeast, fungi expressed alpha-iduronidase.

a-i, v-y = 0; q (independently selected) = 0 or 1;

z = 1; r-u (independently selected) = 0 or 1;

j-m (independently selected) = 0-100;

Sia = mannose or mannose with mannose-6-phosphate.

1. endo-H

2. galactosyltransferase, UDP-Gal-linker-alpha2-macroglobulin

a-m, r-z = 0; n, q (independently selected) = 0 or 1; R' = galacotose-linker-alpha2-macroglobulin.

FIG. 57G

275/498

```
Insect cell, yeast, fungi expressed alpha-iduronidase.

a-d, f, h, j-m, s, u, v-y = 0;
e, g, i, q, r, t (independently selected) = 0 or 1.

1. GNT-1,
UDP-GlcNAc-PEG-mannose-6-phosphate

e, i, q, r, v (independently selected) = 0 or 1;
a-d, f-h, j-n, s-u, w-y = 0; z = 1;
R = PEG-mannose-6-phosphate.
```

FIG. 57H

```
Insect cell, yeast, fungi expressed
alpha-iduronidase.
a-d, f, h, j-m, s, u, v-y = 0;
e, g, i, q, r, t (independently selected) = 0 or 1.

1. GNT-1, UDP-GlcNAc
2. galactosyltransferase,
UDP-Gal-PEG-transferrin

a, e, i, q, r, v (independently selected) = 0 or 1;
b-d, f-h, j-n, s-u, w-y = 0; z = 1;
R = PEG-transferrin.
```

FIG. 571

276/498

```
Insect cell, yeast, fungi expressed
alpha-iduronidase.
a-d, f, h, j-m, s, u, v-y = 0;
e, g, i, q, r, t (independently selected) = 0 or 1.
```

- 1. GNT-1 and 2, UDP-GlcNAc
- 2. galactosyltransferase, UDP-Gal
- 3. sialyltransferase, CMP-SA-PEG-melanotransferrin

```
a, c, e, g, i, j, l, q, r, t, v, x

(independently selected) = 0 or 1;
b, d, f, h, k, m, n, s, u, w, y = 0; z = 1;
R = PEG-melanotransferrin.
```

FIG. 57J

277/498

FIG. 58A

FIG. 58B

Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Cys Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro

278/498

FIG. 59A

GCGCCTCTTATGTACCCACAAAAATCTATTTTCAAAAAAGTTGCTCTA AGAATATAGTTATCAAGTTAAGTAAAATGTCAATAGCCTTTTAATTTA ATTTTTAATTGTTTTATCATTCTTTGCAATAAAAACATTAACTTTAT ACTTTTAATTTAATGTATAGAATAGAGATATACATAGGATATGTAAA TAGATACACAGTGTATATGTGATTAAAAATATAATGGGAGATTCAATC AATAATGAAAAAATGTGGTGAGAAAACAGCTGAAAACCCATGTA AAGAGTGTATAAAGAAAGCAAAAAGAGAAGTAGAAAGTAACACAGG GGCATTTGGAAAATGTAAACGAGTATGTTCCCTATTTAAGGCTAGGC ACAAAGCAAGGTCTTCAGAGAACCTGGAGCCTAAGGTTTAGGCTCAC CCATTTCAACCAGTCTAGCAGCATCTGCAACATCTACAATGGCCTTGA CCTTTGCTTTACTGGTGCCCTCCTGGTGCTCAGCTGCAAGTCAAGCT GCTCTGTGGCTGTGATCTGCCTCAAACCCACAGCCTGGGTAGCAGG AGGACCTTGATGCTCCTGGCACAGATGAGGAGAATCTCTCTTTTCTCC TGCTTGAAGGACAGACATGACTTTGGATTTCCCCAGGAGGAGTTTGG CAACCAGTTCCAAAAGGCTGAAACCATCCCTGTCCTCCATGAGATGA TCCAGCAGATCTTCAATCTCTTCAGCACAAAGGACTCATCTGCTGCTT GGGATGAGACCCTCCTAGACAAATTCTACACTGAACTCTACCAGCAG CTGAATGACCTGGAAGCCTGTGTGATACAGGGGGTGGGGGTGACAGA GACTCCCTGATGAAGGAGGACTCCATTCTGGCTGTGAGGAAATACT TCCAAAGAATCACTCTCTATCTGAAAGAAGAAATACAGCCCTTGT GCCTGGGAGGTTGTCAGAGCAGAAATCATGAGATCTTTTTCTTTGTCA ACAAACTTGCAAGAAAGTTAAGAAGTAAGGAATGAAAACTGGTTCA ACATGGAAATGATTTCATTGATTCGTATGCCAGCTCACCTTTTTATG ATCTGCCATTTCAAAGACTCATGTTTCTGCTATGACCATGACACGATT TAAATCTTTTCAAATGTTTTTAGGAGTATTAATCAACATTGTATTCAG ATCTATTTAAAATATTTTAAAAATATTATTTAACTATTTATAAAAAC AACTTATTTTTGTTCATATTATGTCATGTGCACCTTTGCACAGTGGTTA CATTGAACTTTTGCTATGGAACTTTTGTACTTGTTTATTCTTTAAAATG AAATTCCAAGCCTAATTGTGCAACCTGATTACAGAATAACTGGTACA CTTCATTTGTCCATCAATATTATATTCAAGATATAAGTAAAAATAAAC TTTCTGTAAACCAAGTTGTATGTTGTACTCAAGATAACAGGGTGAACC TAACAAATACAATTCTGCTCTCTTGTGTATTTGATTTTGTATGAAAA AAACTAAAAATGGTAATCATACTTAATTATCAGTTATGGTAAATGGT ATGAAGAGAAGAAGGAACG

279/498

FIG. 59B

Met Ala Leu Thr Phe Ala Leu Leu Val Ala Leu Leu Val Leu Ser Cys Lys Ser Ser Cys Ser Val Gly Cys Asp Leu Pro Gln Thr His Ser Leu Gly Ser Arg Arg Thr Leu Met Leu Leu Ala Gln Met Arg Arg Ile Ser Leu Phe Ser Cys Leu Lys Asp Arg His Asp Phe Gly Phe Pro Gln Glu Glu Phe Gly Asn Gln Phe Gln Lys Ala Glu Thr Ile Pro Val Leu His Glu Met Ile Gln Gln Ile Phe Asn Leu Phe Ser Thr Lys Asp Ser Ser Ala Ala Trp Asp Glu Thr Leu Leu Asp Lys Phe Tyr Thr Glu Leu Tyr Gln Gln Leu Asn Asp Leu Glu Ala Cys Val Ile Gln Gly Val Gly Val Thr Glu Thr Pro Leu Met Lys Glu Asp Ser Ile Leu Ala Val Arg Lys Tyr Phe Gln Arg Ile Thr Leu Tyr Leu Lys Glu Lys Lys Tyr Ser Pro Cys Ala Trp Glu Val Val Arg Ala Glu Ile Met Arg Ser Phe Ser Leu Ser Thr Asn Leu Gln Glu Ser Leu Arg Ser Lys Glu

FIG. 59C

FIG. 59D

Met Ala Leu Leu Phe Pro Leu Leu Ala Ala Leu Val Met Thr Ser Tyr Ser Pro Val Gly Ser Leu Gly Cys Asp Leu Pro Gln Asn His Gly Leu Leu Ser Arg Asn Thr Leu Val Leu Leu His Gln Met Arg Arg Ile Ser Pro Phe Leu Cys Leu Lys Asp Arg Arg Asp Phe Arg Phe Pro Gln Glu Met Val Lys Gly Ser Gln Leu Gln Lys Ala His Val Met Ser Val Leu His Glu Met Leu Gln Gln Ile Phe Ser Leu Phe His Thr Glu Arg Ser Ser Ala Ala Trp Asn Met Thr Leu Leu Asp Gln Leu His Thr Gly Leu His Gln Gln Leu Gln His Leu Glu Thr Cys Leu Leu Gln Val Val Gly Glu Gly Glu Ser Ala Gly Ala Ile Ser Ser Pro Ala Leu Thr Leu Arg Arg Tyr Phe Gln Gly Ile Arg Val Tyr Leu Lys Glu Lys Lys Tyr Ser Asp Cys Ala Trp Glu Val Val Arg Met Glu Ile Met Lys Ser Leu Phe Leu Ser Thr Asn Met Gln Glu Arg Leu Arg Ser Lys Asp Arg Asp Leu Gly Ser Ser

280/498

FIG. 60A

ATGACCAACAAGTGTCTCCTCCAAATTGCTCTCCTGTTGTGCTTCTCC ACTACAGCTCTTTCCATGAGCTACAACTTGCTTGGATTCCTACAAAGA AGCAGCAATTTTCAGTGTCAGAAGCTCCTGTGGCAATTGAATGGGAG GCTTGAATATTGCCTCAAGGACAGGATGAACTTTGACATCCCTGAGG AGATTAAGCAGCTGCAGCAGTTCCAGAAGGAGGACGCCGCATTGACC ATCTATGAGATGCTCCAGAACATCTTTGCTATTTTCAGACAAGATTCA TCTAGCACTGGCTGGAATGAGACTATTGTTGAGAACCTCCTGGCTAA TGTCTATCATCAGATAAACCATCTGAAGACAGTCCTGGAAGAAAAAC TGGAGAAAGAATTTTACCAGGGGAAAACTCATGAGCAGTCTGCAC CTGAAAAGATATTATGGGAGGATTCTGCATTACCTGAAGGCCAAGGA GTACAGTCACTGTGCCTGGACCATAGTCAGAGTGGAAATCCTAAGGA ACTTTTACTTCATTAACAGACTTACAGGTTACCTCCGAAACTGAAGAT ${\tt CTCCTAGCCTGTCCCTCTGGGACTGGACAATTGCTTCAAGCATTCTTC}$ AACCAGCAGATGCTGTTTAAGTGACTGATGGCTAATGTACTGCAAAT GAAAGGACACTAGAAGATTTTGAAATTTTATTAAATTATGAGTTATT TTTATTTAT TTAAATTTTTTGGAAAATAAATTATTTTTGGTGC

FIG. 60B

Met Thr Asn Lys Cys Leu Leu Gln Ile Ala Leu Leu Cys Phe Ser Thr Thr Ala Leu Ser Met Ser Tyr Asn Leu Leu Gly Phe Leu Gln Arg Ser Ser Asn Phe Gln Cys Gln Lys Leu Leu Trp Gln Leu Asn Gly ArgLeu Glu Tyr Cys Leu Lys Asp Arg Met Asn Phe Asp Ile Pro Glu Glu Ile Lys Gln Leu Gln Gln Phe Gln Lys Glu Asp Ala Ala Leu Thr Ile Tyr Glu Met Leu Gln Asn Ile Phe Ala Ile Phe Arg Gln Asp Ser Ser Ser Thr Gly Trp Asn Glu Thr Ile Val Glu Asn Leu Leu Ala Asn Val Tyr His Gln Ile Asn His Leu Lys Thr Val Leu Glu Glu Lys Leu Glu Lys Glu Asp Phe Thr Arg Gly Lys Leu Met Ser Ser Leu His Leu Lys Arg Tyr Tyr Gly Arg Ile Leu His Tyr Leu Lys Ala Lys Glu Tyr Ser His Cys Ala Trp Thr Ile Val Arg Val Glu Ile Leu Arg Asn Phe Tyr Phe Ile Asn Arg Leu Thr Gly Tyr Leu Arg Asn

281/498

FIG. 61A

ATGGTCTCCCAGGCCCTCAGGCTCCTCTGCCTTCTGCTTGGGCTTCAG GGCTGCCTGCAGTCTTCGTAACCCAGGAGGAAGCCCACGGCGT CCTGCACCGGCGCGCGCCCAACGCGTTCCTGGAGGAGCTGCGGC CGGGCTCCCTGGAGAGGAGTGCAAGGAGGAGCAGTGCTCCTTCGA GGAGGCCCGGGAGATCTTCAAGGACGCGGAGAGGACGAAGCTGTTC TGGATTTCTTACAGTGATGGGGACCAGTGTGCCTCAAGTCCATGCCA GAATGGGGCTCCTGCAAGGACCAGCTCCAGTCCTATATCTGCTTCT GCCTCCCTGCCTTCGAGGGCCGGAACTGTGAGACGCACAAGGATGAC CAGCTGATCTGTGAACGAGAACGGCGGCTGTGAGCAGTACTGCAG TGACCACACGGGCACCAAGCGCTCCTGTCGGTGCCACGAGGGGTACT CTCTGCTGCAGACGGGGTGTCCTGCACACCCACAGTTGAATATCCA TGTGGAAAAATACCTATTCTAGAAAAAAGAAATGCCAGCAAACCCCA AGGCCGAATTGTGGGGGGCAAGGTGTCCCAAAGGGGAGTGTCCA TGGCAGGTCCTGTTGTTGGTGAATGGAGCTCAGTTGTGTGGGGGGAC CCTGATCAACACCATCTGGGTGGTCTCCGCGGCCCACTGTTTCGACAA AATCAAGAACTGGAGGAACCTGATCGCGGTGCTGGGCGAGCACGAC CTCAGCGAGCACGGGGATGAGCAGAGCCGGCGGGTGGCGCAGG GCGCTGCTCCGCCTGCACCAGCCCGTGGTCCTCACTGACCATGTGGTG CCCCTCTGCCCGAACGGACGTTCTCTGAGAGGACGCTGGCCTTC GTGCGCTTCTCATTGGTCAGCGGCTGGGGCCAGCTGCTGGACCGTGG CGCCACGCCCTGGAGCTCATGGTGCTCAACGTGCCCCGGCTGATGA CCCAGGACTGCCTGCAGCAGTCACGGAAGGTGGGAGACTCCCCAAAT ATCACGGAGTACATGTTCTGTGCCGGCTACTCGGATGGCAGCAAGGA CTCCTGCAAGGGGACAGTGGAGGCCCACATGCCACCCACTACCGGG GCACGTGGTACCTGACGGCATCGTCAGCTGGGGCCAGGGCTGCGCA ACCGTGGCCACTTTGGGGTGTACACCAGGGTCTCCCAGTACATCGA GTGGCTGCAAAAGCTCATGCGCTCAGAGCCACGCCCAGGAGTCCTCC TGCGAGCCCCATTTCCC

282/498

FIG. 61B

Met Val Ser Gln Ala Leu Arg Leu Leu Cys Leu Leu Gly Leu Gln Gly Cys Leu Ala Ala Val Phe Val Thr Gln Glu Glu Ala His Gly Val Leu His Arg Arg Arg Arg Ala Asn Ala Phe Leu Glu Glu Leu Arg Pro Gly Ser Leu Glu Arg Glu Cys Lys Glu Glu Glu Cys Ser Phe Glu Glu Ala Arg Glu Ile Phe Lys Asp Ala Glu Arg Thr Lys Leu Phe Trp Ile Ser Tyr Ser Asp Gly Asp Gln Cys Ala Ser Ser Pro Cys Gln Asn Gly Gly Ser Cys Lys Asp Gln Leu Gln Ser Tyr Ile Cys Phe Cys Leu Pro Ala Phe Glu Gly Arg Asn Cys Glu Thr His Lys Asp Asp Gln Leu Ile Cys Val Asn Glu Asn Gly Gly Cys Glu Gln Tyr Cys Ser Asp His Thr Gly Thr Lys Arg Ser Cys Arg Cys His Glu Gly Tyr Ser Leu Leu Ala Asp Gly Val Ser Cys Thr Pro Thr Val Glu Tyr Pro Cys Gly Lys Ile Pro Ile Leu Glu Lys Arg Asn Ala Ser Lys Pro Gln Gly Arg Ile Val Gly Gly Lys Val Cys Pro Lys Gly Glu Cys Pro Trp Gln Val Leu Leu Val Asn Gly Ala Gln Leu Cys Gly Gly Thr Leu Ile Asn Thr Ile Trp Val Val Ser Ala Ala His Cys Phe Asp Lys Ile Lys Asn Trp Arg Asn Leu Ile Ala Val Leu Gly Glu His Asp Leu Ser Glu His Asp Gly Asp Glu Gln Ser Arg Arg Val Ala Gln Val Ile Ile Pro Ser Thr Tyr Val Pro Gly Thr Thr Asn His Asp Ile Ala Leu Leu Arg Leu His Gln Pro Val Val Leu Thr Asp His Val Val Pro Leu Cys Leu Pro Glu Arg Thr Phe Ser Glu Arg Thr Leu Ala Phe Val Arg Phe Ser Leu Val Ser Gly Trp Gly Gln Leu Leu Asp Arg Gly Ala Thr Ala Leu Glu Leu Met Val Leu Asn Val Pro Arg Leu Met Thr Gln Asp Cys Leu Gln Gln Ser Arg Lys Val Gly Asp Ser Pro Asn Ile Thr Glu Tyr Met Phe Cys Ala Gly Tyr Ser Asp Gly Ser Lys Asp Ser Cys Lys Gly Asp Ser Gly Gly Pro His Ala Thr His Tyr Arg Gly Thr Trp Tyr Leu Thr Gly Ile Val Ser Trp Gly Gln Gly Cys Ala Thr Val Gly His Phe Gly Val Tyr Thr Arg Val Ser Gln Tyr Ile Glu Trp Leu Gln Lys Leu Met Arg Ser Glu Pro Arg Pro Gly Val Leu Leu Arg Ala Pro Phe Pro

283/498

FIG. 62A

ATGCAGCGCGTGAACATGATCATGGCAGAATCACCAAGCCTCATCAC CATCTGCCTTTTAGGATATCTACTCAGTGCTGAATGTACAGTTTTTCTT GATCATGAAAACGCCAACAAAATTCTGAATCGGCCAAAGAGGTATAA GTATGGAAGAAAGTGTAGTTTTGAAGAACCACGAGAAGTTTTTGAA AACACTGAAAAGACAACTGAATTTTGGAAGCAGTATGTTGATGGAGA TCAGTGTGAGTCCAATCCATGTTTAAATGGCGGCAGTTGCAAGGATG ACATTAATTCCTATGAATGTTGGTGTCCCTTTGGATTTGAAGGAAAGA ACTGTGAATTAGATGTAACATGTAACATTAAGAATGGCAGATGCGAG CAGTTTTGTAAAAATAGTGCTGATAACAAGGTGGTTTGCTCCTGTACT GAGGGATATCGACTTGCAGAAAACCAGAAGTCCTGTGAACCAGCAGT GCCATTTCCATGTGGAAGAGTTTCTGTTTCACAAACTTCTAAGCTCAC CCGTGCTGAGGCTGTTTTTCCTGATGTGGACTATGTAAATCCTACTGA AGCTGAAACCATTTTGGATAACATCACTCAAGGCACCCAATCATTTA ATGACTTCACTCGGGTTGTTGGTGGAGAAGATGCCAAACCAGGTCAA TTCCCTTGGCAGGTTGTTTTGAATGGTAAAGTTGATGCATTCTGTGGA GGCTCTATCGTTAATGAAAAATGGATTGTAACTGCTGCCCACTGTGTT GAAACTGGTGTTAAAATTACAGTTGTCGCAGGTGAACATAATATTGA GGAGACAGAACATACAGAGCAAAAGCGAAATGTGATTCGAGCAATT ATTCCTCACCACAACTACAATGCAGCTATTAATAAGTACAACCATGA CATTGCCCTTCTGGAACTGGACGAACCCTTAGTGCTAAACAGCTACG TTACACCTATTTGCATTGCTGACAAGGAATACACGAACATCTTCCTCA AATTTGGATCTGGCTATGTAAGTGGCTGGGCAAGAGTCTTCCACAAA GGGAGATCAGCTTTAGTTCTTCAGTACCTTAGAGTTCCACTTGTTGAC CGAGCCACATGTCTTCGATCTACAAAGTTCACCATCTATAACAACAT GTTCTGTGCTGCCTTCCATGAAGGAGGTAGAGATTCATGTCAAGGAG ATAGTGGGGGACCCCATGTTACTGAAGTGGAAGGGACCAGTTTCTTA ACTGGAATTATTAGCTGGGGTGAAGAGTGTGCAATGAAAGGCAAATA TGGAATATACCAAGGTATCCCGGTATGTCAACTGGATTAAGGAAA AAACAAAGCTCACTTAATGAAAGATGGATTTCCAAGGTTAATTCATT GGAATTGAAAATTAACAG

284/498

FIG. 62B

Met Gln Arg Val Asn Met Ile Met Ala Glu Ser Pro Ser Leu Ile Thr Ile Cys Leu Leu Gly Tyr Leu Leu Ser Ala Glu Cys Thr Val Phe LeuAsp His Glu Asn Ala Asn Lys Ile Leu Asn Arg Pro Lys Arg Tyr Asn Ser Gly Lys Leu Glu Glu Phe Val Gln Gly Asn Leu Glu Arg Glu Cys Met Glu Glu Lys Cys Ser Phe Glu Glu Pro Arg Glu Val Phe Glu Asn Thr Glu Lys Thr Thr Glu Phe Trp Lys Gln Tyr Val Asp Gly Asp Gln Cys Glu Ser Asn Pro Cys Leu Asn Gly Gly Ser Cys Lys Asp Asp Ile Asn Ser Tyr Glu Cys Trp Cys Pro Phe Gly Phe Glu Gly Lys Asn Cys Glu Leu Asp Val Thr Cys Asn Ile Lys Asn Gly Arg Cys Glu Gln Phe Cys Lys Asn Ser Ala Asp Asn Lys Val Val Cys Ser Cys Thr Glu Gly Tyr Arg Leu Ala Glu Asn Gln Lys Ser Cys Glu Pro Ala Val Pro Phe Pro Cys Gly Arg Val Ser Val Ser Gln Thr Ser Lys Leu Thr Arg Ala Glu Ala Val Phe Pro Asp Val Asp Tyr Val Asn Pro Thr Glu Ala Glu Thr Ile Leu Asp Asn Ile Thr Gln Gly Thr Gln Ser Phe Asn Asp Phe Thr Arg Val Val Gly Glu Asp Ala Lys Pro Gly Gln Phe Pro Trp Gln Val Val Leu Asn Gly Lys Val Asp Ala Phe Cys Gly Gly Ser Ile Val Asn Glu Lys Trp Ile Val Thr Ala Ala His Cys Val Glu Thr Gly Val Lys Ile Thr Val Val Ala Gly Glu His Asn Ile Glu Glu Thr Glu His Thr Glu Gln Lys Arg Asn Val Ile Arg Ala Ile Ile Pro His His Asn Tyr Asn Ala Ala Ile Asn Lys Tyr Asn His Asp Ile Ala Leu Leu Glu Leu Asp Glu Pro Leu Val Leu Asp Ser Tyr Val Thr Pro Ile Cys Ile Ala Asp Lys Glu Tyr Thr Asn Ile Phe Leu Lys Phe Gly Ser Gly Tyr Val Ser Gly Trp Ala Arg Val Phe His Lys Gly Arg Ser Ala Leu Val Leu Gln Tyr Leu Arg Val Pro Leu Val Asp Arg Ala Thr Cys Leu Arg Ser Thr Lys Phe Thr Ile Tyr Asn Asn Met Phe Cys Ala Gly Phe His Glu Gly Gly Arg Asp Ser Cys Gln Gly Asp Ser Gly Gly Pro His Val Thr Glu Val Glu Gly Thr Ser Phe Leu Thr Gly Ile Ile Ser Trp Gly Glu Glu Cys Ala Met Lys Gly Lys Tyr Gly Ile Tyr Thr Lys Val Ser Arg Tyr Val Asn Trp Ile Lys Glu Lys Thr Lys Leu Thr

285/498

FIG. 63A

FIG. 63B

Met Asp Tyr Tyr Arg Lys Tyr Ala Ala Ile Phe Leu Val Thr Leu Ser Val Phe Leu His Val Leu His Ser Ala Pro Asp Val Gln Asp Cys Pro Glu Cys Thr Leu Gln Glu Asn Pro Phe Phe Ser Gln Pro Gly Ala Pro Ile Leu Gln Cys Met Gly Cys Cys Phe Ser Arg Ala Tyr Pro Thr Pro Leu Arg Ser Lys Lys Thr Met Leu Val Gln Lys Asn Val Thr Ser Glu Ser Thr Cys Cys Val Ala Lys Ser Tyr Asn Arg Val Thr Val Met Gly Gly Phe Lys Val Glu Asn His Thr Ala Cys His Cys Ser Thr Cys Tyr Tyr His Lys Ser

286/498

FIG. 63C

FIG. 63D

Met Lys Thr Leu Gln Phe Phe Leu Phe Cys Cys Trp Lys Ala Ile Cys Cys Asn Ser Cys Glu Leu Thr Asn Ile Thr Ile Ala Ile Glu Lys Glu Glu Cys Arg Phe Cys Ile Ser Ile Asn Thr Thr Trp Cys Ala Gly Tyr Cys Tyr Thr Arg Asp Leu Val Tyr Lys Asp Pro Ala Arg Pro Lys Ile Gln Lys Thr Cys Thr Phe Lys Glu Leu Val Tyr Glu Thr Val Arg Val Pro Gly Cys Ala His His Ala Asp Ser Leu Tyr Thr Tyr Pro Val Ala Thr Gln Cys His Cys Gly Lys Cys Asp Ser Asp Ser Thr Asp Cys Thr Val Arg Gly Leu Gly Pro Ser Tyr Cys Ser Phe Gly Glu Met Lys Glu

287/498

FIG. 64A

CCCGGAGCCGGGCCACCGCGCCCGCTCTGCTCCGACACCGC GCCCCTGGACAGCCGCCCTCTCCTCCAGGCCCGTGGGGCTGGCCCT GCACCGCGAGCTTCCCGGGATGAGGGCCCCCGGTGTGGTCACCCGG CGCGCCCAGGTCGCTGAGGGACCCCGGCCAGGCGCGGAGATGGGG GTGCACGAATGTCCTGCCTGGCTGTGGCTTCTCCTGTCCCTGCTGTCG CTCCCTCTGGGCCTCCAGTCCTGGGCGCCCCACCACGCCTCATCTGT GACAGCCGAGTCCTGGAGAGGTACCTCTTGGAGGCCAAGGAGGCCG AGAATATCACGACGGCTGTGCTGAACACTGCAGCTTGAATGAGAAT ATCACTGTCCCAGACACCAAAGTTAATTTCTATGCCTGGAAGAGGAT GGAGGTCGGGCAGGCCGTAGAAGTCTGGCAGGGCCTGGCCCTG CTGTCGGAAGCTGTCCTGCGGGGCCAGGCCCTGTTGGTCAACTCTTCC CAGCCGTGGGAGCCCCTGCAGCTGCATGTGGATAAAGCCGTCAGTGG CCTTCGCAGCCTCACCACTCTGCTTCGGGCTCTGCGAGCCCAGAAGG AAGCCATCTCCCCTCCAGATGCGGCCTCAGCTGCTCCACTCCGAACA ATCACTGCTGACACTTTCCGCAAACTCTTCCGAGTCTACTCCAATTTC CTCCGGGGAAAGCTGAAGCTGTACACAGGGGAGGCCTGCAGGACAG GGGACAGATGACCAGGTGTGTCCACCTGGGCATATCCACCACCTCCC TCACCAACATTGCTTGTGCCACACCCTCCCCGCCACTCCTGAACCCC GTCGAGGGCTCTCAGCTCAGCCCAGCCTGTCCCATGGACACTCCA GTGCCAGCAATGACATCTCAGGGGCCAGAGGAACTGTCCAGAGAGC AACTCTGAGATCTAAGGATGTCACAGGGCCAACTTGAGGGCCCAGAG CAGGAAGCATTCAGAGAGCAGCTTTAAACTCAGGGACAGAGCCATG CTGGGAAGACGCCTGAGCTCACTCGGCACCCTGCAAAATTTGATGCC AGGACACGCTTTGGAGGCGATTTACCTGTTTTCGCACCTACCATCAGG GACAGGATGACCTGGAGAACTTAGGTGGCAAGCTGTGACTTCTCCAG GTCTCACGGCATGGCACTCCCTTGGTGGCAAGAGCCCCCTTGACA CCGGGGTGGTGGGAACCATGAAGACAGGATGGGGGCTGGCCTCTGG CTCTCATGGGGTCCAAGTTTTGTGTATTCTTCAACCTCATTGACAAGA ACTGAAACCACCAAAAAAAAAAAAA

288/498

FIG. 64B

Met Gly Val His Glu Cys Pro Ala Trp Leu Trp Leu Leu Leu Ser Leu Leu Ser Leu Pro Leu Gly Leu Pro Val Leu Gly Ala Pro Pro Arg Leu Ile Cys Asp Ser Arg Val Leu Glu Arg Tyr Leu Leu Glu Ala Lys Glu Ala Glu Asn Ile Thr Thr Gly Cys Ala Glu His Cys Ser Leu Asn Glu Asn Ile Thr Val Pro Asp Thr Lys Val Asn Phe Tyr Ala Trp Lys Arg Met Glu Val Gly Gln Gln Ala Val Glu Val Trp Gln Gly Leu Ala Leu Leu Ser Glu Ala Val Leu Arg Gly Gln Ala Leu Leu Val Asn Ser Ser Gln Pro Trp Glu Pro Leu Gln Leu His Val Asp Lys Ala Val Ser Gly Leu Arg Ser Leu Thr Thr Leu Leu Arg Ala Leu Arg Ala Gln Lys Glu Ala Ile Ser Pro Pro Asp Ala Ala Ser Ala Ala Pro Leu Arg Thr Ile Thr Ala Asp Thr Phe Arg Lys Leu Phe Arg Val Tyr Ser Asn Phe Leu Arg Gly Lys Leu Lys Leu Tyr Thr Gly Glu Ala Cys Arg Thr Gly Asp Arg

FIG. 65

Ala Pro Pro Arg Leu Ile Cys Asp Ser Arg Val Leu Glu Arg Tyr Leu Leu Glu Ala Lys Glu Ala Glu Asn Ile Thr Thr Gly Cys Ala Glu His Cys Ser Leu Asn Glu Asn Ile Thr Val Pro Asp Thr Lys Val Asn Phe Tyr Ala Trp Lys Arg Met Glu Val Gly Gln Gln Ala Val Glu Val Trp Gln Gly Leu Ala Leu Leu Ser Glu Ala Val Leu Arg Gly Gln Ala Leu Leu Val Asn Ser Ser Gln Pro Trp Glu Pro Leu Gln Leu His Val Asp Lys Ala Val Ser Gly Leu Arg Ser Leu Thr Thr Leu Leu Arg Ala Leu Gly Ala Gln Lys Glu Ala Ile Ser Pro Pro Asp Ala Ala Ser Ala Ala Pro Leu Arg Thr Ile Thr Ala Asp Thr Phe Arg Lys Leu Phe Arg Val Tyr Ser Asn Phe Leu Arg Gly Lys Leu Lys Leu Tyr Thr Gly Glu Ala Cys Arg Thr Gly Asp

289/498

FIG. 66A

ATGTGGCTGCAGAGCCTGCTGCTCTTTGGGCACTGTGGCCTGCAGCAT CTCTGCACCCGCCCGCTCGCCCAGCCCCAGCACGCAGCCCTGGGAGC ATGTGAATGCCATCCAGGAGGCCCGGCGTCTCCTGAACCTGAGTAGA GACACTGCTGAGATGAATGAAACAGTAGAAGTCATCTCAGAAAT GTTTGACCTCCAGGAGCCGACCTGCCTACAGACCCGCCTGGAGCTGT ACAAGCAGGGCCTGCGGGGCAGCCTCACCAAGCTCAAGGGCCCCTTG ACCATGATGGCCAGCCACTACAAGCAGCACTGCCCTCCAACCCCGGA AACTTCCTGTGCAACCCAGATTATCACCTTTGAAAGTTTCAAAGAGA ACCTGAAGGACTTCTGCTTGTCATCCCCTTTGACTGCTGGGAGCCAG TCCAGGAGTGA

FIG. 66B

Met Trp Leu Gln Ser Leu Leu Leu Leu Gly Thr Val Ala Cys Ser Ile Ser Ala Pro Ala Arg Ser Pro Ser Pro Ser Thr Gln Pro Trp Glu His Val Asn Ala Ile Gln Glu Ala Arg Arg Leu Leu Asn Leu Ser Arg Asp Thr Ala Ala Glu Met Asn Glu Thr Val Glu Val Ile Ser Glu Met Phe Asp Leu Gln Glu Pro Thr Cys Leu Gln Thr Arg Leu Glu Leu Tyr Lys Gln Gly Leu Arg Gly Ser Leu Thr Lys Leu Lys Gly Pro Leu Thr Met Met Ala Ser His Tyr Lys Gln His Cys Pro Pro Thr Pro Glu Thr Ser Cys Ala Thr Gln Ile Ile Thr Phe Glu Ser Phe Lys Glu Asn Leu Lys Asp Phe Leu Leu Val Ile Pro Phe Asp Cys Trp Glu Pro Val Gln Glu

290/498

FIG. 67A

ATGAAATATACAAGTTATATCTTGGCTTTTCAGCTCTGCATCGTTTTG
GGTTCTCTTGGCTGTTACTGCCAGGACCCATATGTAAAAGAAGCAGA
AAACCTTAAGAAATATTTTAATGCAGGTCATTCAGATGTAGCGGATA
ATGGAACTCTTTTCTTAGGCATTTTGAAGAATTGGAAAGAGGAGAGT
GACAGAAAAATAATGCAGAGCCAAAATTGTCTCCTTTTACTTCAAACT
TTTTAAAAAACTTTAAAGATGACCAGAGCATCCAAAAGAGTGTGGAGA
CCATCAAGGAAGACATGAATGTCAAGTTTTTCAATAGCAACAAAAAG
AAACGAGATGACTTCGAAAAGCTGACTAATTATTCGGTAACTGACTT
GAATGTCCAACGCAAAGCAATACATGAACTCATCCAAGTGATGGCTG
AACTGTCGCCAGCAGCTAAAAACAGGGAAGCGAAAAAAGGAGTCAGAT
GCTGTTTCGAGGTCGAAGAGCATCCCAGTAA

FIG. 67B

Met Lys Tyr Thr Ser Tyr Ile Leu Ala Phe Gln Leu Cys Ile Val Leu Gly Ser Leu Gly Cys Tyr Cys Gln Asp Pro Tyr Val Lys Glu Ala Glu Asn Leu Lys Lys Tyr Phe Asn Ala Gly His Ser Asp Val Ala Asp Asn Gly Thr Leu Phe Leu Gly Ile Leu Lys Asn Trp Lys Glu Glu Ser Asp Arg Lys Ile Met Gln Ser Gln Ile Val Ser Phe Tyr Phe Lys Leu Phe Lys Asn Phe Lys Asp Asp Gln Ser Ile Gln Lys Ser Val Glu Thr Ile Lys Glu Asp Met Asn Val Lys Phe Phe Asn Ser Asn Lys Lys Lys Arg Asp Asp Phe Glu Lys Leu Thr Asn Tyr Ser Val Thr Asp Leu Asn Val Gln Arg Lys Ala Ile His Glu Leu Ile Gln Val Met Ala Glu Leu Ser Pro Ala Ala Lys Thr Gly Lys Arg Lys Arg Ser Gln Met Leu Phe Arg Gly Arg Arg Ala Ser Gln

291/498

FIG. 68A

CTGGGACAGTGAATCGACAATGCCGTCTTCTGTCTCGTGGGGCATCCT CCTGCTGGCAGGCCTGTGCTGCCTGGCTGAGGA TCCCCAGGGAGATGCTGCCCAGAAGACAGATACATCCCACCATGATC AGGATCACCCAACCTTCAACAAGATCACCCCCAACCTGGCTGAGTTC GCCTTCAGCCTATACCGCCAGCTGGCACACCAGTCCAACAGCACCAA TATCTTCTCCCCAGTGAGCATCGCTACAGCCTTTGCAATGCTCTC CCTGGGGACCAAGGCTGACACTCACGATGAAATCCTGGAGGGCCTGA ATTTCAACCTCACGGAGATTCCGGAGGCTCAGATCCATGAAGGCTTC GACCACCGGCAATGGCCTGTTCCTCAGCGAGGGCCTGAAGCTAGTGG ATAAGTTTTTGGAGGATGTTAAAAAGTTGTACCACTCAGAAGCCTTC ACTGTCAACTTCGGGGACACCGAAGAGGGCCAAGAAACAGATCAACG ATTACGTGGAGAAGGGTACTCAAGGGAAAATTGTGGATTTGGTCAAG GAGCTTGACAGAGACACAGTTTTTGCTCTGGTGAATTACATCTTCTTT AAAGGCAAATGGGAGAGACCCTTTGAAGTCAAGGACACCGAGGAAG AGGACTTCCACGTGGACCAGGTGACCACCGTGAAGGTGCCTATGATG AAGCGTTTAGGCATGTTTAACATCCAGCACTGTAAGAAGCTGTCCAG CTGGGTGCTGATGAAATACCTGGGCAATGCCACCGCCATCTTCT TCCTGCCTGATGAGGGGAAACTACAGCACCTGGAAAATGAACTCACC CACGATATCATCACCAAGTTCCTGGAAAATGAAGACAGAAGGTCTGC CAGCTTACATTTACCCAAACTGTCCATTACTGGAACCTATGATCTGAA GAGCGTCCTGGGTCAACTGGGCATCACTAAGGTCTTCAGCAATGGGG CTGACCTCTCCGGGGTCACAGAGGGAGGCACCCCTGAAGCTCTCCAAG GCCGTGCATAAGGCTGTGCTGACCATCGACGAGAAAGGGACTGAAGC TGCTGGGGCCATGTTTTTAGAGGCCATACCCATGTCTATCCCCCCGA GGTCAAGTTCAACAAACCCTTTGTCTTCTTAATGATTGAACAAAATAC AACTGCCTCTCGCTCCTCAACCCCTCCCTCCATCCCTGGCCCCCTCC CTGGATGACATTAAAGAAGGGTTGAGCTGG

292/498

FIG. 68B

Met Pro Ser Ser Val Ser Trp Gly Ile Leu Leu Leu Ala Gly Leu Cys Cys Leu Val Pro Val Ser Leu Ala Glu Asp Pro Gln Gly Asp Ala Ala Gln Lys Thr Asp Thr Ser His His Asp Gln Asp His Pro Thr Phe Asn Lys Ile Thr Pro Asn Leu Ala Glu Phe Ala Phe Ser Leu Tyr Arg Gln Leu Ala His Gln Ser Asn Ser Thr Asn Ile Phe Phe Ser Pro Val Ser Ile Ala Thr Ala Phe Ala Met Leu Ser Leu Gly Thr Lys Ala Asp Thr His Asp Glu Ile Leu Glu Gly Leu Asn Phe Asn Leu Thr Glu Ile Pro Glu Ala Gln Ile His Glu Gly Phe Gln Glu Leu Leu Arg Thr Leu Asn Gln Pro Asp Ser Gln Leu Gln Leu Thr Thr Gly Asn Gly Leu Phe Leu Ser Glu Gly Leu Lys Leu Val Asp Lys Phe Leu Glu Asp Val Lys Lys Leu Tyr His Ser Glu Ala Phe Thr Val Asn Phe Gly Asp Thr Glu Glu Ala Lys Lys Gln Ile Asn Asp Tyr Val Glu Lys Gly Thr Gln Gly Lys Ile Val Asp Leu Val Lys Glu Leu Asp Arg Asp Thr Val Phe Ala LeuVal Asn Tyr Ile Phe Phe Lys Gly Lys Trp Glu Arg Pro Phe Glu Val Lys Asp Thr Glu Glu Asp Phe His Val Asp Gln Val Thr Thr Val Lys Val Pro Met Met Lys Arg Leu Gly Met Phe Asn Ile Gln His Cys Lys Lys Leu Ser Ser Trp Val Leu Leu Met Lys Tyr Leu Gly Asn Ala Thr Ala Ile Phe Phe Leu Pro Asp Glu Gly Lys Leu Gln His Leu Glu Asn Glu Leu Thr His Asp Ile Ile Thr Lys Phe Leu Glu Asn Glu AspArg Arg Ser Ala Ser Leu His Leu Pro Lys Leu Ser Ile Thr Gly Thr Tyr Asp Leu Lys Ser Val Leu Gly Gln Leu Gly Ile Thr Lys Val Phe Ser Asn Gly Ala Asp Leu Ser Gly Val Thr Glu Glu Ala Pro Leu Lys Leu Ser Lys Ala Val His Lys Ala Val Leu Thr Ile Asp Glu Lys Gly Thr Glu Ala Ala Gly Ala Met Phe Leu Glu Ala Ile Pro Met Ser Ile Pro Pro Glu Val Lys Phe Asn Lys Pro Phe Val Phe Leu Met Ile Glu Gln Asn Thr Lys Ser Pro Leu Phe Met Gly Lys Val Val Asn Pro Thr Gln Lys

293/498

. FIG. 69A-1

GCTAACCTAGTGCCTATAGCTAAGGCAGGTACCTGCATCCTTGTTTTT GTTTAGTGGATCCTCTATCCTTCAGAGACTCTGGAACCCCTGTGGTCT TCTCTTCATCTAATGACCCTGAGGGGATGGAGTTTTCAAGTCCTTCCA AGCCTCACAGGTTTGCTTCTACTTCAGGCAGTGTCGTGGGCATCAGGT GCCCGCCCTGCATCCCTAAAAGCTTCGGCTACAGCTCGGTGGTGTGT GTCTGCAATGCCACATACTGTGACTCCTTTGACCCCCGACCTTTCCT GCCCTTGGTACCTTCAGCCGCTATGAGAGTACACGCAGTGGGCGACG GATGGAGCTGAGTATGGGGCCCATCCAGGCTAATCACACGGGCACAG GCCTGCTACTGACCCTGCAGCCAGAACAGAAGTTCCAGAAAGTGAAG GGATTTGGAGGGCCATGACAGATGCTGCTGCTCTCAACATCCTTGCC CTGTCACCCCCTGCCCAAAATTTGCTACTTAAATCGTACTTCTCTGAA GAAGGAATCGGATATAACATCATCCGGGTACCCATGGCCAGCTGTGA CTTCTCCATCCGCACCTACACCTATGCAGACACCCCTGATGATTTCCA GTTGCACAACTTCAGCCTCCCAGAGGAAGATACCAAGCTCAAGATAC CCCTGATTCACCGAGCCCTGCAGTTGGCCCAGCGTCCCGTTTCACTCC TTGCCAGCCCTGGACATCACCCACTTGGCTCAAGACCAATGGAGCG GTGAATGGGAAGGGTCACTCAAGGGACAGCCCGGAGACATCTACC ACCAGACCTGGGCCAGATACTTTGTGAAGTTCCTGGATGCCTATGCTG AGCACAAGTTACAGTTCTGGGCAGTGACAGCTGAAAATGAGCCTTCT GCTGGGCTGTTGAGTGGATACCCCTTCCAGTGCCTGGGCTTCACCCCT GAACATCAGCGAGACTTCATTGCCCGTGACCTAGGTCCTACCCTCGCC AACAGTACTCACCACAATGTCCGCCTACTCATGCTGGATGACCAACGC TTGCTGCCCCACTGGGCAAAGGTGGTACTGACAGACCCAGAAGC AGCTAAATATGTTCATGGCATTGCTGTACATTGGTACCTGGACTTTCT GGCTCCAGCCAAAGCCACCCTAGGGGAGACACACCGCCTGTTCCCCA ACACCATGCTCTTTGCCTCAGAGGCCTGTGTGGGCTCCAAGTTCTGGG AGCAGAGTGTGCGGCTAGGCTCCTGGGATCGAGGGATGCAGTACAGC CACAGCATCATCACGAACCTCCTGTACCATGTGGTCGGCTGGACCGAC TGGAACCTTGCCCTGAACCCCGAAGGAGGACCCAATTGGGTGCGTAA CTTTGTCGACAGTCCCATCATTGTAGACATCACCAAGGACACGTTTTA CAAACAGCCCATGTTCTACCACCTTGGCCACTTCAGCAAGTTCATTCC TGAGGGCTCCCAGAGAGTGGGGCTGGTTGCCAGTCAGAAGAACGACC TGGACGCAGTGGCACTGATGCATCCCGATGGCTCTGCTGTTGTGGTCG TGCTAAACCGCTCCTCTAAGGATGTGCCTCTTACCATCAAGGATCCTG CTGTGGGCTTCCTGGAGACAATCTCACCTGGCTACTCCATTCACACCT ACCTGTGGCATCGCCAGTGATGGAGCAGATACTCAAGGAGGCACTGG GCTCAGCCTGGGCATTAAAGGGACAGAGTCAGCTCACACGCTGTCTG TGACTAAAGAGGCCACGCCAGTGTGAGCTTACAGCGACGT

294/498

FIG. 69A-2

FIG. 69B

Met Glu Phe Ser Ser Pro Ser Arg Glu Glu Cys Pro Lys Pro Leu Ser Arg Val Ser Ile Met Ala Gly Ser Leu Thr Gly Leu Leu Leu Gln Ala Val Ser Trp Ala Ser Gly Ala Arg Pro Cys Ile Pro Lys Ser Phe Gly Tyr Ser Ser Val Val Cys Val Cys Asn Ala Thr Tyr Cys Asp Ser Phe Asp Pro Pro Thr Phe Pro Ala Leu Gly Thr Phe Ser Arg Tyr Glu Ser Thr Arg Ser Gly Arg Arg Met Glu Leu Ser Met Gly Pro Ile Gln Ala Asn His Thr Gly Thr Gly Leu Leu Leu Thr Leu Gln Pro Glu Gln Lys Phe Gln Lys Val Lys Gly Phe Gly Gly Ala Met Thr Asp Ala Ala Ala Leu Asn Ile Leu Ala Leu Ser Pro Pro Ala Gln Asn Leu Leu Leu Lys Ser Tyr Phe Ser Glu Glu Gly Ile Gly Tyr Asn Ile Ile Arg Val Pro Met Ala Ser Cys Asp Phe Ser Ile Arg Thr Tyr Thr Tyr Ala Asp Thr Pro Asp Asp Phe Gln Leu His Asn Phe Ser Leu Pro Glu Glu Asp Thr Lys Leu Lys Ile Pro Leu Ile His Arg Ala Leu Gln Leu Ala Gln Arg Pro Val Ser Leu Leu Ala Ser Pro Trp Thr Ser Pro Thr Trp Leu Lys Thr Asn Gly Ala Val Asn Gly Lys Gly Ser Leu Lys Gly Gln Pro Gly Asp Ile Tyr His Gln Thr Trp Ala Arg Tyr Phe Val Lys Phe Leu Asp Ala Tyr Ala Glu His Lys Leu Gln Phe Trp Ala Val Thr Ala Glu Asn Glu Pro Ser Ala Gly Leu Leu Ser Gly Tyr Pro Phe Gln Cys Leu Gly Phe Thr Pro Glu His Gln Arg Asp Phe Ile Ala Arg Asp Leu Gly Pro Thr Leu Ala Asn Ser Thr His His Asn Val Arg Leu Leu Met Leu Asp Asp Gln Arg Leu Leu Leu Pro His Trp Ala Lys Val Val Leu Thr Asp Pro Glu Ala Ala Lys Tyr Val His Gly Ile Ala Val His Trp Tyr Leu Asp Phe Leu Ala Pro Ala Lys Ala Thr Leu Gly Glu Thr His Arg Leu Phe Pro Asn Thr Met Leu Phe Ala Ser Glu Ala Cys Val Gly Ser Lys Phe Trp Glu Gln Ser Val Arg Leu Gly Ser Trp Asp Arg Gly Met Gln Tyr Ser His Ser Ile Ile Thr Asn Leu Leu Tyr His Val Val Gly Trp Thr Asp Trp Asn Leu Ala Leu Asn Pro Glu Gly Gly Pro Asn Trp Val Arg Asn Phe Val Asp Ser Pro Ile Ile Val Asp Ile Thr Lys Asp Thr Phe Tyr Lys Gln Pro Met Phe Tyr His Leu Gly His Phe Ser Lys Phe Ile Pro Glu Gly Ser Gln Arg Val Gly Leu Val Ala Ser Gln Lys Asn Asp Leu Asp Ala Val Ala Leu Met His Pro Asp Gly Ser Ala Val Val Val Val Leu Asn Arg Ser Ser Lys Asp Val Pro Leu Thr Ile Lys Asp Pro Ala Val Gly Phe Leu Glu Thr Ile Ser Pro Gly Tyr Ser Ile His Thr Tyr Leu Trp His Arg Gln

295/498

FIG. 70A

AGCAGTCTTCGTTTCGCCCAGCCAGGAAATCCATGCCCGATTCAGAA GAGGAGCCAGATCTTACCAAGTGATCTGCAGAGATGAAAAAACGCA GATGATATACCAGCAACATCAGTCATGGCTGCGCCCTGTGCTCAGAA GCAACCGGGTGGAATATTGCTGGTGCAACAGTGGCAGGGCACAGTGC CACTCAGTGCCTGTCAAAAGTTGCAGCGAGCCAAGGTGTTTCAACGG GGGCACCTGCCAGCAGCCCTGTACTTCTCAGATTTCGTGTGCCAGTG CCCCGAAGGATTTGCTGGGAAGTGCTGTGAAATAGATACCAGGGCCA CGTGCTACGAGGACCAGGGCATCAGCTACAGGGGCACGTGGAGCAC AGCGGAGAGTGCCCGAGTGCACCAACTGGAACAGCAGCGCGTTG GCCCAGAAGCCCTACAGCGGGGGGGGGGGCCAGACGCCATCAGGCTGG GCCTGGGGAACCACAACTACTGCAGAAACCCAGATCGAGACTCAAA GCCCTGGTGCTACGTCTTTAAGGCGGGGAAGTACAGCTCAGAGTTCT GCAGCACCCCTGCCTGCTGAGGGAAACAGTGACTGCTACTTTGGG AATGGGTCAGCCTACCGTGGCACGCACAGCCTCACCGAGTCGGGTGC CTCCTGCCTCCGTGGAATTCCATGATCCTGATAGGCAAGGTTTACAC AGCACAGAACCCCAGTGCCCAGGCACTGGGCCTGGGCAAACATAATT ACTGCCGGAATCCTGATGGGGATGCCAAGCCCTGGTGCCACGTGCTG AAGAACCGCAGGCTGACGTGGGAGTACTGTGATGTGCCCTCCTGCTC CACCTGCGGCCTGAGACAGTACAGCCAGCCTCAGTTTCGCATCAAAG GAGGGCTCTTCGCCGACATCGCCTCCCACCCTGGCAGGCTGCCATCT TTGCCAAGCACAGGAGGTCGCCGGGAGAGCGGTTCCTGTGCGGGGGC ATACTCATCAGCTCCTGCTGGATTCTCTCTGCCGCCCACTGCTTCCAG GAGAGGTTTCCGCCCCACCACCTGACGGTGATCTTGGGCAGAACATA CCGGGTGGTCCCTGGCGAGGAGGAGCAGAAATTTGAAGTCGAAAAA TACATTGTCCATAAGGAATTCGATGATGACACTTACGACAATGACAT TGCGCTGCAGCTGAAATCGGATTCGTCCCGCTGTGCCCAGGAGA GCAGCGTGGTCCGCACTGTGTGCCTTCCCCCGGCGGACCTGCAGCTG ${\tt CCGGACTGGACGGAGTGTGAGCTCTCCGGCTACGGCAAGCATGAGGC}$ CTTGTCTCCTTTCTATTCGGAGCGGCTGAAGGAGGCTCATGTCAGACT GTACCCATCCAGCCGCTGCACATCACAACATTTACTTAACAGAACAG TCACCGACAACATGCTGTGTGCTGGAGACACTCGGAGCGGCGGCCC CAGGCAAACTTGCACGACGCCTGCCAGGGCGATTCGGGAGGCCCCCT GGTGTGTCTGAACGATGGCCGCATGACTTTGGTGGCCATCATCAGCT GGGGCCTGGGCTGTGGACAGAAGGATGTCCCGGGTGTGTACACCAAG GTTACCAACTACCTAGACTGGATTCGTGACAACATGCGACCGTGACC AGGAACACCCGACTCCTCAAAAGCAAATGAGATCC

296/498

FIG. 70B

Met Asp Ala Met Lys Arg Gly Leu Cys Cys Val Leu Leu Leu Cys Gly Ala Val Phe Val Ser Pro Ser Gln Glu Ile His Ala Arg Phe Arg Arg Gly Ala Arg Ser Tyr Gln Val Ile Cys Arg Asp Glu Lys Thr Gln Met Ile Tyr Gln Gln His Gln Ser Trp Leu Arg Pro Val Leu Arg Ser Asn Arg Val Glu Tyr Cys Trp Cys Asn Ser Gly Arg Ala Gln Cys His Ser Val Pro Val Lys Ser Cys Ser Glu Pro Arg Cys Phe Asn Gly Gly Thr Cys Gln Gln Ala Leu Tyr Phe Ser Asp Phe Val Cys Gln Cys Pro Glu Gly Phe Ala Gly Lys Cys Cys Glu Ile Asp Thr Arg Ala Thr Cys Tyr Glu Asp Gln Gly Ile Ser Tyr Arg Gly Thr Trp Ser Thr Ala Glu Ser Gly Ala Glu Cys Thr Asn Trp Asn Ser Ser Ala Leu Ala Gln Lys Pro Tyr Ser Gly Arg Arg Pro Asp Ala Ile Arg Leu Gly Leu Gly Asn His Asn Tyr Cys Arg Asn Pro Asp Arg Asp Ser Lys Pro Trp Cys Tyr Val Phe Lys Ala Gly Lys Tyr Ser Ser Glu Phe Cys Ser Thr Pro Ala Cys Ser Glu Gly Asn Ser Asp Cys Tyr Phe Gly Asn Gly Ser Ala Tyr Arg Gly Thr His Ser Leu Thr Glu Ser Gly Ala Ser Cys Leu Pro Trp Asn Ser Met Ile Leu Ile Gly Lys Val Tyr Thr Ala Gln Asn Pro Ser Ala Gln Ala Leu Gly Leu Gly Lys His Asn Tyr Cys Arg Asn Pro Asp Gly Asp Ala Lys Pro Trp Cys His Val Leu Lys Asn Arg Arg Leu Thr Trp Glu Tyr Cys Asp Val Pro Ser Cys Ser Thr Cys Gly Leu Arg Gln Tyr Ser Gln Pro Gln Phe Arg Ile Lys Gly Gly Leu Phe Ala Asp Ile Ala Ser His Pro Trp Gln Ala Ala Ile Phe Ala Lys His Arg Arg Ser Pro Gly Glu Arg Phe Leu Cys Gly Gly Ile Leu Ile Ser Ser Cys Trp Ile Leu Ser Ala Ala His Cys Phe Gln Glu Arg Phe Pro Pro His His Leu Thr Val Ile Leu Gly Arg Thr Tyr Arg Val Val Pro Gly Glu Glu Glu Glu Lys Phe Glu Val Glu Lys Tyr Ile Val His Lys Glu Phe Asp Asp Asp Thr Tyr Asp Asn Asp Ile Ala Leu Leu Gln Leu Lys Ser Asp Ser Ser Arg Cys Ala Gln Glu Ser Ser Val Val Arg Thr Val Cys Leu Pro Pro Ala Asp Leu Gln Leu Pro Asp Trp Thr Glu Cys Glu Leu Ser Gly Tyr Gly Lys His Glu Ala Leu Ser Pro Phe Tyr Ser Glu Arg Leu Lys Glu Ala His Val Arg Leu Tyr Pro Ser Ser Arg Cys Thr Ser Gln His Leu Leu Asn Arg Thr Val Thr Asp Asn Met Leu Cys Ala Gly Asp Thr Arg Ser Gly Gly Pro Gln Ala Asn Leu His Asp Ala Cys Gln Gly Asp Ser Gly Gly Pro Leu Val Cys Leu Asn Asp Gly Arg Met Thr Leu Val Gly Ile Ile Ser Trp Gly Leu Gly Cys Gly Gln Lys Asp Val Pro Gly Val Tyr Thr Lys Val Thr Asn Tyr Leu Asp Trp Ile Arg Asp Asn Met Arg Pro

297/498

FIG. 71A

ATCACTCTCTTTAATCACTACTCACATTAACCTCAACTCCTGCCACAA TGTACAGGATGCAACTCCTGTCTTGCACTTGCACTAATTCTTGCACTTG TCACAAACAGTGCACCTACTTCAAGTTCGACAAAGAAAACAAAGAAA ACACAGCTACAACTGGAGCATTTACTGCTGGATTTACAGATGATTTTG AATGGAATTAATAATTACAAGAATCCCAAACTCACCAGGATGCTCAC ATTTAAGTTTTACATGCCCAAGAAGGCCACAGAACTGAAACAGCTTC AGTGTCTAGAAGAAGAACTCAAACCTCTGGAGGAAGTGCTGAATTTA GCTCAAAGCAAAACTTTCACTTAAGACCCAGGGACTTAATCAGCAA TATCAACGTAATAGTTCTGGAACTAAAGGGATCTGAAACAACATTCA TGTGTGAATATGCAGATGAGACAGCAACCATTGTAGAATTTCTGAAC AGATGGATTACCTTTTGTCAAAGCATCATCTCAACACTAACTTGATAA AATATTTAAATTTTATTTTTTTGTTGAATGTATGGTTGCTACCTATTG TAACTATTATTCTTAATCTTAAAACTATAAATATGGATCTTTTATGAT CAAAAATATTATTATTATGTTGAATGTTAAATATAGTATCTATGTAG AAACAAAAAAAAAA

FIG. 71B

Met Tyr Arg Met Gln Leu Leu Ser Cys Ile Ala Leu Ile Leu Ala Leu Val Thr Asn Ser Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Lys Lys Thr Gln Leu Gln Leu Glu His Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys Lys Ala Thr Glu Leu Lys Gln Leu Gln Cys Leu Glu Glu Glu Leu Lys Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Cys Gln Ser Ile Ile Ser Thr Leu Thr

298/498

FIG. 72A-1

ATGCAAATAGAGCTCTCCACCTGCTTCTTTCTGTGCCTTTTTGCGATTCT GCTTTAGTGCCACCAGAAGATACTACCTGGGTGCAGTGGAACTGTCA TGGGACTATATGCAAAGTGATCTCGGTGAGCTGCCTGTGGACGCAAG ATTTCCTCCTAGAGTGCCAAAATCTTTTCCATTCAACACCTCAGTCGT GTACAAAAGACTCTGTTTGTAGAATTCACGGATCACCTTTTCAACAT CGCTAAGCCAAGGCCACCCTGGATGGGTCTGCTAGGTCCTACCATCC AGGCTGAGGTTTATGATACAGTGGTCATTACACTTAAGAACATGGCT TCCCATCCTGTCAGTCTTCATGCTGTTGGTGTATCCTACTGGAAAGCT TCTGAGGGAGCTGAATATGATGATCAGACCAGTCAAAGGGAGAAAG AAGATGATAAAGTCTTCCCTGGTGGAAGCCATACATATGTCTGGCAG GTCCTGAAAGAGAATGGTCCAATGGCCTCTGACCCACTGTGCCTTAC CTACTCATATCTTCTCATGTGGACCTGGTAAAAGACTTGAATTCAGG CCTCATTGGAGCCCTACTAGTATGTAGAGAAGGGAGTCTGGCCAAGG AAAAGACACAGACCTTGCACAAATTTATACTACTTTTTTGCTGTATTTG ATGAAGGGAAAAGTTGGCACTCAGAAACAAAGAACTCCTTGATGCA GGATAGGGATGCTGCATCTGCTCGGGCCTAAAATGCACACAG TCAATGGTTATGTAAACAGGTCTCTGCCAGGTCTGATTGGATGCCACA GGAAATCAGTCTATTGGCATGTGATTGGAATGGGCACCACTCCTGAA GTGCACTCAATATTCCTCGAAGGTCACACATTTCTTGTGAGGAACCAT CGCCAGGCGTCCTTGGAAATCTCGCCAATAACTTTCCTTACTGCTCAA ACACTCTTGATGGACCTTGGACAGTTTCTACTGTTTTTGTCATATCTCTT CCCACCAACATGATGGCATGGAAGCTTATGTCAAAGTAGACAGCTGT CCAGAGGAACCCCAACTACGAATGAAAAATAATGAAGAAGCGGAAG ACTATGATGATCTTACTGATTCTGAAATGGATGTGGTCAGGTTTG ATGATGACAACTCTCCTTCCTTTATCCAAATTCGCTCAGTTGCCAAGA AGCATCCTAAAACTTGGGTACATTACATTGCTGCTGAAGAGGAGGAC TGGGACTATGCTCCCTTAGTCCTCGCCCCGATGACAGAAGTTATAAA AGTCAATATTTGAACAATGGCCCTCAGCGGATTGGTAGGAAGTACAA AAAAGTCCGATTTATGGCATACACAGATGAAACCTTTAAGACTCGTG AAGCTATTCAGCATGAATCAGGAATCTTGGGACCTTTACTTTATGGGG TCAAGGAGATTACCAAAAGGTGTAAAACATTTGAAGGATTTTCCAAT TCTGCCAGGAGAATATTCAAATATAAATGGACAGTGACTGTAGAAG ATGGGCCAACTAAATCAGATCCTCGGTGCCTGACCCGCTATTACTCTA GTTTCGTTAATATGGAGAGAGATCTAGCTTCAGGACTCATTGGCCCTC TCCTCATCTGCTACAAAGAATCTGTAGATCAAAGAGGAAACCAGATA ATGTCAGACAAGAGGAATGTCATCCTGTTTTCTGTATTTGATGAGAAC CGAAGCTGGTACCTCACAGAGAATATACAACGCTTTCTCCCCAATCCA GCTGGAGTGCAGCTTGAGGATCCAGAGTTCCAAGCCTCCAACATCAT GCACAGCATCAATGGCTATGTTTTTGATAGTTTGCAGTTTGTCAGTTTG TTTGCATGAGGTGGCATACTGGTACATTCTAAGCATTGGAGCACAGA CTGACTTCCTTCTCTCTCTGGATATACCTTCAAACACAAAAT

299/498

FIG. 72A-2

GGTCTATGAAGACACCCCTATTCCCATTCTCAGGAGAAACTGT CTTCATGTCGATGGAAAACCCAGGTCTATGGATTCTGGGGTGCCACA ACTCAGACTTTCGGAACAGAGGCATGACCGCCTTACTGAAGGTTTCT AGTTGTGACAAGAACACTGGTGATTATTACGAGGACAGTTATGAAGA TATTTCAGCATACTTGCTGAGTAAAAACAATGCCATTGAACCAAGAA GCTTCTCCCAGAATTCAAGACACCGTAGCACTAGGCAAAAGCAATTT AATGCCACCACAATTCCAGAAAATGACATAGAGAAGACTGACCCTTG GTTTGCACACAGAACACCTATGCCTAAAATACAAAATGTCTCCTCTA GTGATTTGTTGATGCTCTTGCGACAGAGTCCTACTCCACATGGGCTAT CCTTATCTGATCTCCAAGAAGCCAAATATGAGACTTTTTCTGATGATC CATCACCTGGAGCAATAGACAGTAATAACAGCCTGTCTGAAATGACA CACTTCAGGCCACAGCTCCATCACAGTGGGACATGGTATTTACCCC TGAGTCAGGCCTCCAATTAAGATTAAATGAGAAACTGGGGACAACTG CAGCAACAGATTGAAGAAACTTGATTTCAAAGTTTCTAGTACATCA AATAATCTGATTTCAACAATTCCATCAGACAATTTGGCAGCAGGTACT GATAATACAAGTTCCTTAGGACCCCCAAGTATGCCAGTTCATTATGAT AGTCAATTAGATACCACTCTATTTGGCAAAAAGTCATCTCCCCTTACT GAGTCTGGTGGACCTCTGAGCTTGAGTGAAGAAAATAATGATTCAAA GTTGTTAGAATCAGGTTTAATGAATAGCCAAGAAAGTTCATGGGGAA AAAATGTATCGTCAACAGAGAGTGGTAGGTTATTTAAAGGGAAAAGA GCTCATGGACCTGCTTTGTTGACTAAAGATAATGCCTTATTCAAAGTT AGCATCTCTTTGTTAAAGACAAACAAAACTTCCAATAATTCAGCAACT AATAGAAAGACTCACATTGATGGCCCATCATTATTAATTGAGAATAG TCCATCAGTCTGGCAAAATATATTAGAAAGTGACACTGAGTTTAAAA AAGTGACACCTTTGATTCATGACAGAATGCTTATGGACAAAAATGCT ACAGCTTTGAGGCTAAATCATATGTCAAATAAAACTACTTCATCAAA AAACATGGAAAATGGTCCAACAGAAAAAAGAGGGCCCCATTCCACCA GATGCACAAAATCCAGATATGTCGTTCTTTAAGATGCTATTCTTGCCA GAATCAGCAAGGTGGATACAAAGGACTCATGGAAAGAACTCTCTGAA CTCTGGGCAAGGCCCCAGTCCAAAGCAATTAGTATCCTTAGGACCAG GTAGTAGGAAAGGTGAATTTACAAAGGACGTAGGACTCAAAGAGA TGGTTTTCCAAGCAGCAGAAACCTATTTCTTACTAACTTGGATAATT TACATGAAAATAATACACACAATCAAGAAAAAAAAATTCAGGAAGA AATAGAAAAGAAGGAAACATTAATCCAAGAGAATGTAGTTTTGCCTC AGATACATGACTGACTGGCACTAAGAATTTCATGAAGAACCTTTTC TTACTGAGCACTAGGCAAAATGTAGAAGGTTCATATGACGGGGCATA TGCTCCAGTACTTCAAGATTTTAGGTCATTAAATGATTCAACAAATAG AACAAAGAAACACACACCTCATTTCTCAAAAAAAGGGGAGGAAGAA AACTTGGAAGGCTTGGGAAATCAAACCAGCAAATTGTAGAGAAATAT GCATGCACCACAAGGAATATCTCCTAATACAAGCCAGCAGAATTTTG TCACGCAACGTAGTAAGAGAGCTTTGAAACAATTCAGACTCCCACTA

FIG. 72A-3

300/498

GAAGAAACAGAACTTGAAAAAAGGATAATTGTGGATGACACCTCAAC CCAGTGGTCCAAAAACATGAAACATTTGACCCCGAGCACCCTCACAC AGATAGACTACAATGAGAAGGAGAAAGGGGCCATTACTCAGTCTCCC TTATCAGATTGCCTTACGAGGAGTCATAGCATCCCTCAAGCAAATAGA TCTCCATTACCCATTGCAAAGGTATCATCATTTTCCATCTATTAGACCTA TATATCTGACCAGGGTCCTATTCCAAGACAACTCTTCTCATCTTCCAG CAGCATCTTATAGAAAGAAAGATTCTGGGGTCCAAGAAAGCAGTCAT TTCTTACAAGGAGCCAAAAAAAAAAACCTTTCTTTAGCCATTCTAACC TTGGAGATGACTGGTGATCAAAGAGAGGTTGGCTCCCTGGGGACAAG TGCCACAAATTCAGTCACATACAAGAAAGTTGAGAACACTGTTCTCCC GAAACCAGACTTGCCCAAAACATCTGGCAAAGTTGAATTGCTTCCAA AAGTTCACATTTATCAGAAGGACCTATTCCCTACGGAAACTAGCAATG GGTCTCCTGGCCATCTGGATCTCGTGGAAGGGAGCCTTCTTCAGGGAA CAGAGGGAGCGATTAAGTGGAATGAAGCAAACAGACCTGGAAAAGT TCCCTTCTGAGAGTAGCAACAGAAGACTCTCCAA GCTATTGGATCCTCTTGCTTGGGATAACCACTATGGTACTCAGATACC AAAAGAAGAGTGGAAATCCCAAGAGAAGTCACCAGAAAAAAACAGCT TTTAAGAAAAGGATACCATTTTGTCCCTGAACGCTTGTGAAAGCAAT CATGCAATAGCAGCAATAAATGAGGGACAAAATAAGCCCGAAATAG AAGTCACCTGGGCAAAGCAAGGTAGGACTGAAAGGCTGTGCTCTCAA AACCCACCAGTCTTGAAACGCCATCAACGGGAAATAACTCGTACTAC TCTTCAGTCAGATCAAGAGGAAATTGACTATGATGATACCATATCAGT TGAAATGAAGAAGAATTTTGACATTTATGATGAGGATGAAAATC AGAGCCCCCGCAGCTTTCAAAAGAAAACACGACACTATTTTATTGCTG CAGTGGAGAGGCTCTGGGATTATGGGATGAGTAGCTCCCCACATGTT CTAAGAAACAGGGCTCAGAGTGGCAGTGTCCCTCAGTTCAAGAAAGT TGTTTTCCAGGAATTTACTGATGGCTCCTTTACTCAGCCCTTATACCGT GGAGAACTAAATGAACATTTGGGACTCCTGGGGCCATATATAAGAGC AGAAGTTGAAGATAATATCATGGTAACTTTCAGAAATCAGGCCTCTC GTCCCTATTCCTATTCTAGCCTTATTTCTTATGAGGAAGATCAGAG GCAAGGAGCAGAACCTAGAAAAAACTTTGTCAAGCCTAATGAAACCA AAACTTACTTTTGGAAAGTGCAACATCATATGGCACCCACTAAAGAT GAGTTTGACTGCAAAGCCTGGGCTTATTTCTCTGATGTTGACCTGGAA AAAGATGTGCACTCAGGCCTGATTGGACCCCTTCTGGTCTGCCACACT AACACACTGAACCCTGCTCATGGGAGACAAGTGACAGTACAGGAATT TGCTCTGTTTTCACCATCTTTGATGAGACCAAAAGCTGGTACTTCACT GAAAATATGGAAAGAAACTGCAGGGCTCCCTGCAATATCCAGATGGA CATAATGGATACACTACCTGGCTTAGTAATGGCTCAGGATCAAAGGA TTCGATGGTATCTGCTCAGCATGGGCAGCAATGAAAACATCCATTCT ATTCATTTCAGTGGACATGTTCACTGTACGAAAAAAAAGAGGGGTA TAAAATGGCACTGTACAATCTCTATCCAGGTGTTTTTTGAGACAGTGGA

301/498

FIG. 72A-4

AATGTTACCATCCAAAGCTGGAATTTGGCGGGTGGAATGCCTTATTGG CGAGCATCTACATGCTGGGATGAGCACACTTTTTCTGGTGTACAGCAA TAAGTGTCAGACTCCCCTGGGAATGGCTTCTGGACACATTAGAGATTT TCAGATTACAGCTTCAGGACAATATGGACAGTGGGCCCCAAAGCTGG CCAGACTTCATTATTCCGGATCAATCAATGCCTGGAGCACCAAGGAG CCCTTTTCTTGGATCAAGGTGGATCTGTTGGCACCAATGATTATTCAC GGCATCAAGACCCAGGGTGCCCGTCAGAAGTTCTCCAGCCTCTACAT CTCTCAGTTTATCATCATGTATAGTCTTGATGGGAAGAAGTGGCAGA CTTATCGAGGAAATTCCACTGGAACCTTAATGGTCTTCTTTGGCAATG TGGATTCATCTGGGATAAAACACAATATTTTTAACCCTCCAATTATTG CTCGATACATCCGTTTGCACCCAACTCATTATAGCATTCGCAGCACTC TTCGCATGGAGTTGATGGGCTGTGATTTAAATAGTTGCAGCATGCCAT TGGGAATGGAGAGTAAAGCAATATCAGATGCACAGATTACTGCTTCA TCCTACTTTACCAATATGTTTGCCACCTGGTCTCCTTCAAAAGCTCGA CTTCACCTCCAAGGGAGGAGTAATGCCTGGAGACCTCAGGTGAATAA TCCAAAAGAGTGGCTGCAAGTGGACTTCCAGAAGACAATGAAAGTCA CAGGAGTAACTACTCAGGGAGTAAAATCTCTGCTTACCAGCATGTAT GTGAAGGAGTTCCTCATCTCCAGCAGTCAAGATGGCCATCAGTGGAC TCTCTTTTTCAGAATGGCAAAGTAAAGGTTTTTCAGGGAAATCAAGA CTCCTTCACACCTGTGGTGAACTCTCTAGACCCACCGTTACTGACTCG CTACCTTCGAATTCACCCCCAGAGTTGGGTGCACCAGATTGCCCTGAG GATGGAGGTTCTGGGCTGCGAGGCACAGGACCTCTACTGAGGGTGGC CACTGCAGCACCTGCCGTCACCTCTCCTCAGCTCCAGG GCAGTGTCCCTCCCTGGCTTGCCTTCTACCTTTGTGCTAAATCCTAGC AGACACTGCCTTGAAGCCTCCTGAATTAACTATCATCAGTCCTGCATT TCTTTGGTGGGGGCCAGGAGGGTGCATCCAATTTAACTTAACTCTTA CCTATTTCTGCAGCTGCTCCCAGATTACTCCTTCCTTCCAATATAACT AGGCAAAAAGAAGTGAGGAGAAACCTGCATGAAAGCATTCTTCCCTG AAAAGTTAGGCCTCTCAGAGTCACCACTTCCTCTGTTGTAGAAAAACT ATGTGATGAAAACTTTGAAAAAGATATTTATGATGTTAACATTTCAGGT TAAGCCTCATACGTTTAAAAATAAAACTCTCAGTTGTTTATTATCCTGA TCAAGCATGGAACAAAGCATGTTTCAGGATCAGATCAATACAATCTT GGAGTCAAAAGGCAAATCATTTGGACAATCTGCAAAATGGAGAGAA TACAATAACTACTACAGTAAAGTCTGTTTCTGCTTCCTTACACATAGA TATAATTATGTTATTTAGTCATTATGAGGGGCACATTCTTATCTCCAA AACTAGCATTCTTAAACTGAGAATTATAGATGGGGTTCAAGAATCCC TAAGTCCCCTGAAATTATAAAGGCATTCTGTATAAATGCAAATGTGC ATTTTTCTGACGAGTGTCCATAGATATAAAGCCATTTGGTCTTAATTCT GACCAATAAAAAAAATAAGTCAGGAGGATGCAATTGTTGAAAGCTTTG AAATGATGA

FIG. 72B-1

302/498

Met Gln Ile Glu Leu Ser Thr Cys Phe Phe Leu Cys Leu Leu Arg Phe Cys Phe Ser Ala Thr Arg Arg Tyr Tyr Leu Gly Ala Val Glu Leu Ser Trp Asp Tyr Met Gln Ser Asp Leu Gly Glu Leu Pro Val Asp Ala Arg Phe Pro Pro Arg Val Pro Lys Ser Phe Pro Phe Asn Thr Ser Val Val Tyr Lys Lys Thr Leu Phe Val Glu Phe Thr Asp His Leu Phe Asn Ile Ala Lys Pro Arg Pro Pro Trp Met Gly Leu Leu Gly Pro Thr Ile Gln Ala Glu Val Tyr Asp Thr Val Val Ile Thr Leu Lys Asn Met Ala Ser His Pro Val Ser Leu His Ala Val Gly Val Ser Tyr Trp Lys Ala Ser Glu Gly Ala Glu Tyr Asp Asp Gln Thr Ser Gln Arg Glu Lys Glu Asp Asp Lys Val Phe Pro Gly Gly Ser His Thr Tyr Val Trp Gln Val Leu Lys Glu Asn Gly Pro Met Ala Ser Asp Pro Leu Cys Leu Thr Tyr Ser Tyr Leu Ser His Val Asp Leu Val Lys Asp Leu Asn Ser Gly Leu Ile Gly Ala Leu Leu Val Cys Arg Glu Gly Ser Leu Ala Lys Glu Lys Thr Gln Thr Leu His Lys Phe Ile Leu Leu Phe Ala Val Phe Asp Glu Gly Lys Ser Trp His Ser Glu Thr Lys Asn Ser Leu Met Gln Asp Arg Asp Ala Ala Ser Ala Arg Ala Trp Pro Lys Met His Thr Val Asn Gly Tyr Val Asn Arg Ser Leu Pro Gly Leu Ile Gly Cys His Arg Lys Ser Val Tyr Trp His Val Ile Gly Met Gly Thr Thr Pro Glu Val His Ser Ile Phe Leu Glu Gly His Thr Phe Leu Val Arg Asn His Arg Gln Ala Ser Leu Glu Ile Ser Pro Ile Thr Phe Leu Thr Ala Gln Thr Leu Leu Met Asp Leu Gly Gln Phe Leu Leu Phe Cys His Ile Ser Ser His Gln His Asp Gly Met Glu Ala Tyr Val Lys Val Asp Ser Cys Pro Glu Glu Pro Gln Leu Arg Met Lys Asn Asn Glu Glu Ala Glu Asp Tyr Asp Asp Asp Leu Thr Asp Ser Glu Met Asp Val Val Arg Phe Asp Asp Asp Asp Ser Pro Ser Phe Ile Gln Ile Arg Ser Val Ala Lys Lys His Pro Lys Thr Trp Val His Tyr Ile Ala Ala Glu Glu Glu Asp Trp Asp Tyr Ala Pro Leu Val Leu Ala Pro Asp Asp Arg Ser Tyr Lys Ser Gln Tyr Leu Asn Asn Gly Pro Gln Arg Ile Gly Arg Lys Tyr Lys Lys Val Arg Phe Met Ala Tyr Thr Asp Glu Thr Phe Lys Thr Arg Glu Ala Ile Gln His Glu Ser Gly Ile Leu Gly Pro Leu Leu Tyr Gly Glu Val Gly Asp Thr Leu Leu Ile Ile Phe Lys Asn Gln Ala Ser Arg Pro Tyr Asn Ile Tyr Pro His Gly Ile Thr Asp Val Arg Pro Leu Tyr Ser Arg Arg Leu Pro Lys Gly Val Lys His Leu Lys Asp Phe Pro Ile Leu Pro Gly Glu Ile Phe Lys Tyr Lys Trp Thr Val Thr Val Glu Asp Gly Pro Thr Lys Ser Asp Pro Arg Cys Leu Thr Arg Tyr Tyr Ser Ser Phe Val Asn Met Glu Arg Asp Leu Ala Ser Gly Leu Ile Gly Pro Leu Leu Ile Cys Tyr Lys Glu Ser Val Asp Gln Arg Gly Asn Gln Ile Met Ser Asp Lys Arg Asn Val Ile Leu Phe Ser Val Phe Asp Glu Asn Arg Ser Trp Tyr Leu Thr Glu Asn Ile Gln Arg Phe Leu Pro Asn Pro Ala Gly Val Gln Leu Glu Asp Pro Glu Phe Gln Ala Ser Asn Ile Met His Ser Ile Asn Gly Tyr Val Phe Asp Ser Leu Gln Leu Ser Val Cys Leu His Glu Val Ala Tyr Trp Tyr Ile Leu Ser Ile Gly Ala Gln Thr Asp Phe Leu Ser Val Phe Phe Ser Gly Tyr Thr Phe Lys His Lys Met Val Tyr Glu Asp Thr Leu Thr Leu Phe Pro Phe Ser Gly Glu Thr Val Phe Met Ser Met Glu Asn Pro Gly Leu Trp Ile Leu Gly Cys His Asn Ser Asp Phe FIG. 72B-2

303/498

Arg Asn Arg Gly Met Thr Ala Leu Leu Lys Val Ser Ser Cys Asp Lys Asn Thr Gly Asp Tyr Tyr Glu Asp Ser Tyr Glu Asp Ile Ser Ala Tyr Leu Leu Ser Lys Asn Asn Ala Ile Glu Pro Arg Ser Phe Ser Gln Asn Ser Arg His Arg Ser Thr Arg Gln Lys Gln Phe Asn Ala Thr Thr Ile Pro Glu Asn Asp Ile Glu Lys Thr Asp Pro Trp Phe Ala His Arg Thr Pro Met Pro Lys Ile Gln Asn Val Ser Ser Ser Asp Leu Leu Met Leu Arg Gln Ser Pro Thr Pro His Gly Leu Ser Leu Ser Asp Leu Gln Glu Ala Lys Tyr Glu Thr Phe Ser Asp Asp Pro Ser Pro Gly Ala Ile Asp Ser Asn Asn Ser Leu Ser Glu Met Thr His Phe Arg Pro Gln Leu His His Ser Gly Asp Met Val Phe Thr Pro Glu Ser Gly Leu Gln Leu Arg Leu Asn Glu Lys Leu Gly Thr Thr Ala Ala Thr Glu Leu Lys Lys Leu Asp Phe Lys Val Ser Ser Thr Ser Asn Asn Leu Ile Ser Thr Ile Pro Ser Asp Asn Leu Ala Ala Gly Thr Asp Asn Thr Ser Ser Leu Gly Pro Pro Ser Met Pro Val His Tyr Asp Ser Gln Leu Asp Thr Thr Leu Phe Gly Lys Lys Ser Ser Pro Leu Thr Glu Ser Gly Gly Pro Leu Ser Leu Ser Glu Glu Asn Asn Asp Ser Lys Leu Leu Glu Ser Gly Leu Met Asn Ser Gln Glu Ser Ser Trp Gly Lys Asn Val Ser Ser Thr Glu Ser Gly Arg Leu Phe Lys Gly Lys Arg Ala His Gly Pro Ala Leu Leu Thr Lys Asp Asn Ala Leu Phe Lys Val Ser Ile Ser Leu Leu Lys Thr Asn Lys Thr Ser Asn Asn Ser Ala Thr Asn Arg Lys Thr His Ile Asp Gly Pro Ser Leu Leu Ile Glu Asn Ser Pro Ser Val Trp Gln Asn Ile Leu Glu Ser Asp Thr Glu Phe Lys Lys Val Thr Pro Leu Ile His Asp Arg Met Leu Met Asp Lys Asn Ala Thr Ala Leu Arg Leu Asn His Met Ser Asn Lys Thr Thr Ser Ser Lys Asn Met Glu Met Val Gln Gln Lys Lys Glu Gly Pro Ile Pro Pro Asp Ala Gln Asn Pro Asp Met Ser Phe Phe Lys Met Leu Phe Leu Pro Glu Ser Ala Arg Trp Ile Gln Arg Thr His Gly Lys Asn Ser Leu Asn Ser Gly Gln Gly Pro Ser Pro Lys Gln Leu Val Ser Leu Gly Pro Glu Lys Ser Val Glu Gly Gln Asn Phe Leu Ser Glu Lys Asn Lys Val Val Val Gly Lys Gly Glu Phe Thr Lys Asp Val Gly Leu Lys Glu Met Val Phe Pro Ser Ser Arg Asn Leu Phe Leu Thr Asn Leu Asp Asn Leu His Glu Asn Asn Thr His Asn Gln Glu Lys Lys Ile Gln Glu Glu Ile Glu Lys Lys Glu Thr Leu Ile Gln Glu Asn Val Val Leu Pro Gln Ile His Thr Val Thr Gly Thr Lys Asn Phe Met Lys Asn Leu Phe Leu Leu Ser Thr Arg Gln Asn Val Glu Gly Ser Tyr Asp Gly Ala Tyr Ala Pro Val Leu Gln Asp Phe Arg Ser Leu Asn Asp Ser Thr Asn Arg Thr Lys Lys His Thr Ala His Phe Ser Lys Lys Gly Glu Glu Glu Asn Leu Glu Gly Leu Gly Asn Gln Thr Lys Gln Ile Val Glu Lys Tyr Ala Cys Thr Thr Arg Ile Ser Pro Asn Thr Ser Gln Gln Asn Phe Val Thr Gln Arg Ser Lys Arg Ala Leu Lys Gln Phe Arg Leu Pro Leu Glu Glu Thr Glu Leu Glu Lys Arg Ile Ile Val Asp Asp Thr Ser Thr Gln Trp Ser Lys Asn Met Lys His Leu Thr Pro Ser Thr Leu Thr Gln Ile Asp Tyr Asn Glu Lys Glu Lys Gly Ala Ile Thr Gln Ser Pro Leu Ser Asp Cys Leu Thr Arg Ser His Ser Ile Pro Gln Ala Asn Arg Ser Pro Leu Pro Ile Ala Lys Val Ser Ser Phe Pro Ser Ile Arg Pro Ile Tyr Leu Thr Arg Val Leu Phe Gln Asp Asn Ser Ser His Leu Pro

FIG. 72B-3 304/498

Ala Ala Ser Tyr Arg Lys Lys Asp Ser Gly Val Gln Glu Ser Ser His Phe Leu Gln Gly Ala Lys Lys Asn Asn Leu Ser Leu Ala Ile Leu Thr Leu Glu Met Thr Gly Asp Gln Arg Glu Val Gly Ser Leu Gly Thr Ser Ala Thr Asn Ser Val Thr Tyr Lys Lys Val Glu Asn Thr Val Leu Pro Lys Pro Asp Leu Pro Lys Thr Ser Gly Lys Val Glu Leu Leu Pro Lys Val His Ile Tyr Gln Lys Asp Leu Phe Pro Thr Glu Thr Ser Asn Gly Ser Pro Gly His Leu Asp Leu Val Glu Gly Ser Leu Leu Gln Gly Thr Glu Gly Ala Ile Lys Trp Asn Glu Ala Asn Arg Pro Gly Lys Val Pro Phe Leu Arg Val Ala Thr Glu Ser Ser Ala Lys Thr Pro Ser Lys Leu Leu Asp Pro Leu Ala Trp Asp Asn His Tyr Gly Thr Gln Ile Pro Lys Glu Glu Trp Lys Ser Gln Glu Lys Ser Pro Glu Lys Thr Ala Phe Lys Lys Asp Thr Ile Leu Ser Leu Asn Ala Cys Glu Ser Asn His Ala Ile Ala Ala Ile Asn Glu Gly Gln Asn Lys Pro Glu Ile Glu Val Thr Trp Ala Lys Gln Gly Arg Thr Glu Arg Leu Cys Ser Gln Asn Pro Pro Val Leu Lys Arg His Gln Arg Glu Ile Thr Arg Thr Thr Leu Gln Ser Asp Gln Glu Glu Ile Asp Tyr Asp Asp Thr Ile Ser Val Glu Met Lys Lys Glu Asp Phe Asp Ile Tyr Asp Glu As Ser Phe Gln Lys Lys Thr Arg His Tyr Phe Ile Ala Ala Val Glu Arg Leu Trp Asp Tyr Gly Met Ser Ser Pro His Val Leu Arg Asn Arg Ala Gln Ser Gly Ser Val Pro Gln Phe Lys Lys Val Val Phe Gln Glu Phe Thr Asp Gly Ser Phe Thr Gln Pro Leu Tyr Arg Gly Glu Leu Asn Glu His Leu Gly Leu Leu Gly Pro Tyr Ile Arg Ala Glu Val Glu Asp Asn Ile Met Val Thr Phe Arg Asn Gln Ala Ser Arg Pro Tyr Ser Phe Tyr Ser Ser Leu Ile Ser Tyr Glu Glu Asp Gln Arg Gln Gly Ala Glu Pro Arg Lys Asn Phe Val Lys Pro Asn Glu Thr Lys Thr Tyr Phe Trp Lys Val Gln His His Met Ala Pro Thr Lys Asp Glu Phe Asp Cys Lys Ala Trp Ala Tyr Phe Ser Asp Val Asp Leu Glu Lys Asp Val His Ser Gly Leu Ile Gly Pro Leu Leu Val Cys His Thr Asn Thr Leu Asn Pro Ala His Gly Arg Gln Val Thr Val Gln Glu Phe Ala Leu Phe Phe Thr Ile Phe Asp Glu Thr Lys Ser Trp Tyr Phe Thr Glu Asn Met Glu Arg Asn Cys Arg Ala Pro Cys Asn Ile Gln Met Glu Asp Pro Thr Phe Lys Glu Asn Tyr Arg Phe His Ala Ile Asn Gly Tyr Ile Met Asp Thr Leu Pro Gly Leu Val Met Ala Gln Asp Gln Arg Ile Arg Trp Tyr Leu Leu Ser Met Gly Ser Asn Glu Asn Ile His Ser Ile His Phe Ser Gly His Val Phe Thr Val Arg Lys Lys Glu Glu Tyr Lys Met Ala Leu Tyr Asn Leu Tyr Pro Gly Val Phe Glu Thr Val Glu Met Leu Pro Ser Lys Ala Gly Ile Trp Arg Val Glu Cys Leu Ile Gly Glu His Leu His Ala Gly Met Ser Thr Leu Phe Leu Val Tyr Ser Asn Lys Cys Gln Thr Pro Leu Gly Met Ala Ser Gly His Ile Arg Asp Phe Gln Ile Thr Ala Ser Gly Gln Tyr Gly Gln Trp Ala Pro Lys Leu Ala Arg Leu His Tyr Ser Gly Ser Ile Asn Ala Trp Ser Thr Lys Glu Pro Phe Ser Trp Ile Lys Val Asp Leu Leu Ala Pro Met Ile Ile His Gly Ile Lys Thr Gln Gly Ala Arg Gln Lys Phe Ser Ser Leu Tyr Ile Ser Gln Phe Ile Ile Met Tyr Ser Leu Asp Gly Lys Lys Trp Gln Thr Tyr Arg Gly Asn Ser Thr Gly Thr Leu Met Val Phe Phe Gly Asn Val Asp Ser Ser Gly Ile

305/498

FIG. 72B-4

Lys His Asn Ile Phe Asn Pro Pro Ile Ile Ala Arg Tyr Ile Arg Leu His Pro Thr His Tyr Ser Ile Arg Ser Thr Leu Arg Met Glu Leu Met Gly Cys Asp Leu Asn Ser Cys Ser Met Pro Leu Gly Met Glu Ser Lys Ala Ile Ser Asp Ala Gln Ile Thr Ala Ser Ser Tyr Phe Thr Asn Met Phe Ala Thr Trp Ser Pro Ser Lys Ala Arg Leu His Leu Gln Gly Arg Ser Asn Ala Trp Arg Pro Gln Val Asn Asn Pro Lys Glu Trp Leu Gln Val Asp Phe Gln Lys Thr Met Lys Val Thr Gly Val Thr Thr Gln Gly Val Lys Ser Leu Leu Thr Ser Met Tyr Val Lys Glu Phe Leu Ile Ser Ser Ser Gln Asp Gly His Gln Trp Thr Leu Phe Phe Gln Asn Gly Lys Val Lys Val Phe Gln Gly Asn Gln Asp Ser Phe Thr Pro Val Val Asn Ser Leu Asp Pro Pro Leu Leu Thr Arg Tyr Leu Arg Ile His Pro Gln Ser Trp Val His Gln Ile Ala Leu Arg Met Glu Val Leu Gly Cys Glu Ala Gln Asp Leu Tyr

306/498

FIG. 73A

TCCACCTGTCCCGCAGCGCCGGCTCGCGCCCTCCTGCCGCAGCCACC GAGCCGCCGTCTAGCGCCCCGACCTCGCCACCATGAGAGCCCTGCTG GCGCGCCTGCTTCTCTGCGTCCTGGTCGTGAGCGACTCCAAAGGCAGC AATGAACTTCATCAAGTTCCATCGAACTGTGACTGTCTAAATGGAGGA ACATGTGTGTCCAACAGTACTTCTCCAACATTCACTGGTGCAACTGC CCAAAGAAATTCGGAGGGCAGCACTGTGAAATAGATAAGTCAAAAAC CTGCTATGAGGGGAATGGTCACTTTTACCGAGGAAAGGCCAGCACTG ACACCATGGGCCGGCCCTGCCTGGAACTCTGCCACTGTCCTTC AGCAAACGTACCATGCCCACAGATCTGATGCTCTTCAGCTGGGCCTGG GGAAACATAATTACTGCAGGAACCCAGACAACCGGAGGCGACCCTGG TGCTATGTGCAGGTGGGCCTAAAGCCGCTTGTCCAAGAGTGCATGGT GCATGACTGCGCAGATGGAAAAAAGCCCTCCTCCTCCAGAAGAAT TAAAATTTCAGTGTGGCCAAAAGACTCTGAGGCCCCGCTTTAAGATTA TTGGGGGAGAATTCACCACCATCGAGAACCAGCCCTGGTTTGCGGCC ATCTACAGGAGGCACCGGGGGGGGCTCTGTCACCTACGTGTGTGGAGG CAGCCTCATCAGCCCTTGCTGGGTGATCAGCGCCACACACTGCTTCAT TGATTACCCAAAGAAGGAGGACTACATCGTCTACCTGGGTCGCTCAA GGCTTAACTCCAACACGCAAGGGGAGATGAAGTTTGAGGTGGAAAAC CTCATCCTACACAGGACTACAGCGCTGACACGCTTGCTCACCACAAC GACATTGCCTTGCTGAAGATCCGTTCCAAGGAGGGCAGGTGTGCGCA GCCATCCCGGACTATACAGACCATCTGCCTGCCCTCGATGTATAACGA TCCCCAGTTTGGCACAAGCTGTGAGATCACTGGCTTTGGAAAAGAGA ATTCTACCGACTATCTCTATCCGGAGCAGCTGAAGATGACTGTTGTGA AGCTGATTTCCCACCGGGAGTGTCAGCAGCCCCACTACTACGGCTCTG AAGTCACCACAAAATGCTGTGTGCTGCTGACCCACAGTGGAAAACA GATTCCTGCCAGGGAGACTCAGGGGGACCCCTCGTCTGTTCCCTCCAA GGCCGCATGACTTTGACTGGAATTGTGAGCTGGGGCCGTGGATGTGC CCTGAAGGACAAGCCAGGCGTCTACACGAGAGTCTCACACTTCTTAC CCTGGATCCGCAGTCACACCAAGGAAGAGAATGGCCTGGCCCTCTGA GGGTCCCCAGGGAAACGGGCACCACCCGCTTTCTTGCTGGTTGTC ATTTTTGCAGTAGAGTCATCTCCATCAGCTGTAAGAAGAGACTGGGA AGAT

307/498

FIG. 73B

Met Arg Ala Leu Leu Ala Arg Leu Leu Leu Cys Val Leu Val Val Ser Asp Ser Lys Gly Ser Asn Glu Leu His Gln Val Pro Ser Asn Cys Asp Cys Leu Asn Gly Gly Thr Cys Val Ser Asn Lys Tyr Phe Ser Asn Ile His Trp Cys Asn Cys Pro Lys Lys Phe Gly Gly Gln His Cys Glu Ile Asp Lys Ser Lys Thr Cys Tyr Glu Gly Asn Gly His Phe Tyr Arg Gly Lys Ala Ser Thr Asp Thr Met Gly Arg Pro Cys Leu Pro Trp Asn Ser Ala Thr Val Leu Gln Gln Thr Tyr His Ala His Arg Ser Asp Ala Leu Gln Leu Gly Leu Gly Lys His Asn Tyr Cys Arg Asn Pro Asp Asn Arg Arg Arg Pro Trp Cys Tyr Val Gln Val Gly Leu Lys Pro Leu Val Gln Glu Cys Met Val His Asp Cys Ala Asp Gly Lys Lys Pro Ser Ser Pro Pro Glu Glu Leu Lys Phe Gln Cys Gly Gln Lys Thr Leu Arg Pro Arg Phe Lys Ile Ile Gly Gly Glu Phe Thr Thr Ile Glu Asn Gln Pro Trp Phe Ala Ala Ile Tyr Arg Arg His Arg Gly Gly Ser Val Thr Tyr Val Cys Gly Gly Ser Leu Ile Ser Pro Cys Trp Val Ile Ser Ala Thr His Cys Phe Ile Asp Tyr Pro Lys Lys Glu Asp Tyr Ile Val Tyr Leu Gly Arg Ser Arg Leu Asn Ser Asn Thr Gln Gly Glu Met Lys Phe Glu Val Glu Asn Leu Ile Leu His Lys Asp Tyr Ser Ala Asp Thr Leu Ala His His Asn Asp Ile Ala Leu Leu Lys Ile Arg Ser Lys Glu Gly Arg Cys Ala Gln Pro Ser Arg Thr Ile Gln Thr Ile Cys Leu Pro Ser Met Tyr Asn Asp Pro Gln Phe Gly Thr Ser Cys Glu Ile Thr Gly Phe Gly Lys Glu Asn Ser Thr Asp Tyr Leu Tyr Pro Glu Gln Leu Lys Met Thr Val Val Lys Leu Ile Ser His Arg Glu Cys Gln Gln Pro His Tyr Tyr Gly Ser Glu Val Thr Thr Lys Met Leu Cys Ala Ala Asp Pro Gln Trp Lys Thr Asp Ser Cys Gln Gly Asp Ser Gly Gly Pro Leu Val Cys Ser Leu Gln Gly Arg Met Thr Leu Thr Gly Ile Val Ser Trp Gly Arg Gly Cys Ala Leu Lys Asp Lys Pro Gly Val Tyr Thr Arg Val Ser His Phe Leu Pro Trp Ile Arg Ser His Thr Lys Glu Glu Asn Gly Leu Ala Leu

308/498

FIG.74A

TCCTGCACAGGCAGTGCCTTGAAGTGCTTCTTCAGAGACCTTTCTTCA TAGACTACTTTTTTTTTTTAAGCAGCAAAAGGAGAAAATTGTCATCA AGGATATTCCAGATTCTTGACAGCATTCTCGTCATCTCTGAGGACATC ACCATCATCTCAGGATGAGGGCCATGAAGCTGCTGGGGGGCGCTGCTG GCACTGCCGCCCTACTGCAGGGGGCCGTGTCCCTGAAGATCGCAGC CTTCAACATCCAGACATTTGGGGAGACCAAGATGTCCAATGCCACCCT CGTCAGCTACATTGTGCAGATCCTGAGCCGCTATGACATCGCCCTGGT CCAGGAGGTCAGAGACAGCCACCTGACTGCCGTGGGGAAGCTGCTGG ACAACCTCAATCAGGATGCACCAGACACCTATCACTACGTGGTCAGT GAGCCACTGGGACGGAACAGCTATAAGGAGCGCTACCTGTTCGTGTA CAGGCCTGACCAGGTGTCTGCGGTGGACAGCTACTACTACGATGATG GTCAGGTTCTCCCGGTTCACAGAGGTCAGGGAGTTTGCCATTGTT CCCCTGCATGCGGCCCCGGGGGACGCAGTAGCCGAGATCGACGCTCT CTATGACGTCTACCTGGATGTCCAAGAGAAATGGGGGCTTGGAGGACG TCATGTTGATGGGCGACTTCAATGCGGGCTGCAGCTATGTGAGACCCT CCCAGTGGTCATCCATCCGCCTGTGGACAAGCCCCACCTTCCAGTGGC TGATCCCCGACAGCGCTGACACCACAGCTACACCCACGCACTGTGCCT ATGACAGGATCGTGGTTGCAGGGATGCTCCGAGGCGCCGTTGTTC CCGACTCGGCTCTTCCCTTTAACTTCCAGGCTGCCTATGGCCTGAGTG ACCAACTGGCCCAAGCCATCAGTGACCACTATCCAGTGGAGGTGATG CTGAAGTGAGCACCCCTCCCCACACCAGTTGAACTGCAG

309/498

FIG. 74B

Met Arg Gly Met Lys Leu Leu Gly Ala Leu Leu Ala Leu Ala Ala Leu Leu Gln Gly Ala Val Ser Leu Lys Ile Ala Ala Phe Asn Ile Gln Thr Phe Gly Glu Thr Lys Met Ser Asn Ala Thr Leu Val Ser Tyr Ile Val Gln Ile Leu Ser Arg Tyr Asp Ile Ala Leu Val Gln Glu Val Arg Asp Ser His Leu Thr Ala Val Gly Lys Leu Leu Asp Asn Leu Asn Gln Asp Ala Pro Asp Thr Tyr His Tyr Val Val Ser Glu Pro Leu Gly Arg Asn Ser Tyr Lys Glu Arg Tyr Leu Phe Val Tyr Arg Pro Asp Gln Val Ser Ala Val Asp Ser Tyr Tyr Tyr Asp Asp Gly Cys Glu Pro Cys Gly Asn Asp Thr Phe Asn Arg Glu Pro Ala Ile Val Arg Phe Phe Ser Arg Phe Thr Glu Val Arg Glu Phe Ala Ile Val Pro Leu His Ala Ala Pro Gly Asp Ala Val Ala Glu Ile Asp Ala Leu Tyr Asp Val Tyr Leu Asp Val Gln Glu Lys Trp Gly Leu Glu Asp Val Met Leu Met Gly Asp Phe Asn Ala Gly Cys Ser Tyr Val Arg Pro Ser Gln Trp Ser Ser Ile Arg Leu Trp Thr Ser Pro Thr Phe Gln Trp Leu Ile Pro Asp Ser Ala Asp Thr Thr Ala Thr Pro Thr His Cys Ala Tyr Asp Arg Ile Val Ala Gly Met Leu Arg Gly Ala Val Val Pro Asp Ser Ala Leu Pro Phe Asn Phe Gln Ala Ala Tyr Gly Leu Ser Asp Gln Leu Ala Gln Ala Ile Ser Asp His Tyr Pro Val Glu Val Met Leu Lys

310/498

FIG. 75A

FIG. 75B

Met Ala Leu Trp Met Arg Leu Leu Pro Leu Leu Ala Leu Leu Ala Leu Trp Gly Pro Asp Pro Ala Ala Ala Phe Val Asn Gln His Leu Cys Gly Ser His Leu Val Glu Ala Leu Tyr Leu Val Cys Gly Glu Arg Gly Phe Phe Tyr Thr Pro Lys Thr Arg Arg Glu Ala Glu Asp Leu Gln Val Gly Gln Val Glu Leu Gly Gly Gly Pro Gly Ala Gly Ser Leu Gln Pro Leu Ala Leu Glu Gly Ser Leu Gln Lys Arg Gly Ile Val Glu Gln Cys Cys Thr Ser Ile Cys Ser Leu Tyr Gln Leu Glu Asn Tyr Cys Asn

311/498

FIG. 76A

ATGGGAGGTTGGTCTTCCAAACCTCGACAAGGCATGGGGACGAATCT TTCTGTTCCCAATCCTCTGGGATTCTTTCCCGATCACCAGTTGGACCCT GCGTTCGGAGCCAACTCAAACAATCCAGATTGGGACTTCAACCCCAA CAAGGATCACTGGCCAGAGGCAATCAAGGTAGGAGCGGGAGACTTC GGGCCAGGGTTCACCCCACCACGGCGGTCTTTTGGGGTGGAGCCC TCAGGCTCAGGGCATATTGACAACAGTGCCAGCAGCGCCTCCTCCTG TTTCCACCAATCGGCAGTCAGGAAGACAGCCTACTCCCATCTCTCCAC CTCTAAGAGACAGTCATCCTCAGGCCATGCAGTGGAACTCCACAACA TTCCACCAAGCTCTGCTAGATCCCAGAGTGAGGGGCCTATATTTTCCT GCTGGTGGCTCCAGTTCCGGAACAGTAAACCCTGTTCCGACTACTGTC TCACCCATATCGTCAATCTTCTCGAGGACTGGGGACCCTGCACCGAAC ATGGAGAGCACAACATCAGGATTCCTAGGACCCCTGCTCGTGTTACA GGCGGGTTTTTCTTGTTGACAAGAATCCTCACAATACCACAGAGTCT AGACTCGTGGTGGACTTCTCTCAATTTTCTAGGGGGAGCACCCACGTG TTGTCCTCCAATTTGTCCTGGTTATCGCTGGATGTCTCTGCGGCGTTTT ATCATATTCCTCTTCATCCTGCTGCTATGCCTCATCTTCTTGTTGGTTC TTCTGGACTACCAAGGTATGTTGCCCGTTTGTCCTCTACTTCCAGGAA CATCAACTACCAGCACGGGACCATGCAAGACCTGCACGATTCCTGCT CAAGGAACCTCTATGTTTCCCTCTTGTTGCTGTACAAAACCTTCGGAC GGAAACTGCACTTGTATTCCCATCCCATCATCCTGGGCTTTCGCAAGA TTCCTATGGGAGTGGGCCTCAGTCCGTTTCTCCTGGCTCAGTTTACTA GTGCCATTTGTTCAGTGGTTCGCAGGGCTTTCCCCCACTGTTTGGCTTT CAGTTATATGGATGATGTGGTATTGGGGGCCAAGTCTGTACAACATCT TGAGTCCCTTTTTACCTCTATTACCAATTTTCTTTTGTCTTTTGGGTATAC ATTTGA

312/498

FIG. 76B

Met Gly Gly Trp Ser Ser Lys Pro Arg Gln Gly Met Gly Thr Asn Leu Ser Val Pro Asn Pro Leu Gly Phe Phe Pro Asp His Gln Leu Asp Pro Ala Phe Gly Ala Asn Ser Asn Asn Pro Asp Trp Asp Phe Asn Pro Asn Lys Asp His Trp Pro Glu Ala Ile Lys Val Gly Ala Gly Asp Phe Gly Pro Gly Phe Thr Pro Pro His Gly Gly Leu Leu Gly Trp Ser Pro Gln Ala Gln Gly Ile Leu Thr Thr Val Pro Ala Ala Pro Pro Pro Val Ser Thr Asn Arg Gln Ser Gly Arg Gln Pro Thr Pro Ile Ser Pro Pro Leu Arg Asp Ser His Pro Gln Ala Met Gln Trp Asn Ser Thr Thr Phe His Gln Ala Leu Leu Asp Pro Arg Val Arg Gly Leu Tyr Phe Pro Ala Gly Gly Ser Ser Gly Thr Val Asn Pro Val Pro Thr Thr Val Ser Pro Ile Ser Ser Ile Phe Ser Arg Thr Gly Asp Pro Ala Pro Asn Met Glu Ser Thr Thr Ser Gly Phe Leu Gly Pro Leu Leu Val Leu Gln Ala Gly Phe Phe Leu Leu Thr Arg Ile Leu Thr Ile Pro Gln Ser Leu Asp Ser Trp Trp Thr Ser Leu Asn Phe Leu Gly Gly Ala Pro Thr Cys Pro Gly Gln Asn Ser Gln Ser Pro Thr Ser Asn His Ser Pro Thr Ser Cys Pro Pro Ile Cys Pro Gly Tyr Arg Trp Met Cys Leu Arg Arg Phe Ile Ile Phe Leu Phe Ile Leu Leu Cys Leu Ile Phe Leu Leu Val Leu Leu Asp Tyr Gln Gly Met Leu Pro Val Cys Pro Leu Leu Pro Gly Thr Ser Thr Thr Ser Thr Gly Pro Cys Lys Thr Cys Thr Ile Pro Ala Gln Gly Thr Ser Met Phe Pro Ser Cys Cys Cys Thr Lys Pro Ser Asp Gly Asn Cys Thr Cys Ile Pro Ile Pro Ser Ser Trp Ala Phe Ala Arg Phe Leu Trp Glu Trp Ala Ser Val Arg Phe Ser Trp Leu Ser Leu Leu Val Pro Phe Val Gln Trp Phe Ala Gly Leu Ser Pro Thr Val Trp Leu Ser Val Ile Trp Met Met Trp Tyr Trp Gly Pro Ser Leu Tyr Asn Ile Leu Ser Pro Phe Leu Pro Leu Leu Pro Ile Phe Phe Cys Leu Trp Val Tyr Ile

313/498

FIG. 77A

CGAACCACTCAGGGTCCTGTGGACAGCTCACCTAGCTGCAATGGCTA CCTGGCTTCAAGAGGGCAGTGCCTTCCCAACCATTCCCTTATCCAGGC CTTTTGACAACGCTATGCTCCGCGCCCATCGTCTGCACCAGCTGGCCT TTGACACCTACCAGGAGTTTGAAGAAGCCTATATCCCAAAGGAACAG AAGTATTCATTCCTGCAGAACCCCCAGACCTCCCTCTGTTTCTCAGAG TCTATTCCGACACCCTCCAACAGGGAGGAAACACAACAGAAATCCAA CCTAGAGCTGCTCCGCATCTCCCTGCTGCTCATCCAGTCGTGGCTGGA GCCCGTGCAGTTCCTCAGGAGTGTCTTCGCCAACAGCCTGGTGTACGG CGCCTCTGACAGCAACGTCTATGACCTCCTAAAGGACCTAGAGGAAG GCATCCAAACGCTGATGGGGAGGCTGGAAGATGGCAGCCCCCGGACT GGGCAGATCTTCAAGCAGACCTACAGCAAGTTCGACACAAACTCACA CAACGATGACGCACTACTCAAGAACTACGGGCTGCTCTACTGCTTCAG GAAGGACATGGCAAGGTCGAGACATTCCTGCGCATCGTGCAGTGCCG CTCTGTGGAGGCAGCTGTGGCTTCTAGCTGCCCGGGTGGCATCCCTG TGACCCCTCCCAGTGCCTCTCCTGGCCCTGGAAGTTGCCACTCCAGT GCCCACCAGCCTTGTCCTAATAAAATTAAGTTGCATC

FIG. 77B

Met Ala Thr Gly Ser Arg Thr Ser Leu Leu Leu Ala Phe Gly Leu Leu Cys Leu Pro Trp Leu Gln Glu Gly Ser Ala Phe Pro Thr Ile Pro Leu Ser Arg Pro Phe Asp Asn Ala Met Leu Arg Ala His Arg Leu His Gln Leu Ala Phe Asp Thr Tyr Gln Glu Phe Glu Glu Ala Tyr Ile Pro Lys Glu Gln Lys Tyr Ser Phe Leu Gln Asn Pro Gln Thr Ser Leu Cys Phe Ser Glu Ser Ile Pro Thr Pro Ser Asn Arg Glu Glu Thr Gln Gln Lys Ser Asn Leu Glu Leu Leu Arg Ile Ser Leu Leu Leu Ile Gln Ser Trp Leu Glu Pro Val Gln Phe Leu Arg Ser Val Phe Ala Asn Ser Leu Val Tyr Gly Ala Ser Asp Ser Asn Val Tyr Asp Leu Leu Lys Asp Leu Glu Glu Gly Ile Gln Thr Leu Met Gly Arg Leu Glu Asp Gly Ser Pro Arg Thr Gly Gln Ile Phe Lys Gln Thr Tyr Ser Lys Phe Asp Thr Asn Ser His Asn Asp Asp Ala Leu Leu Lys Asn Tyr Gly Leu Leu Tyr Cys Phe Arg Lys Asp Met Asp Lys Val Glu Thr Phe Leu Arg Ile Val Gln CysArg Ser Val Glu Gly Ser Cys Gly Phe

314/498

FIG. 78A

TTATCTTTTGTCCTTGCTGCTCATTGGCTTCTGGGACTGCGTGACCTGT CACGGGAGCCTGTGGACATCTGCACAGCCAAGCCGCGGGACATTCC CATGAATCCCATGTGCATTTACCGCTCCCGGAGAAGAAGAAGCAACTG AGGATGAGGCTCAGAACAGAAGATCCCGGAGGCCACCAACCGGCG TGTCTGGGAACTGTCCAAGGCCAATTCCCGCTTTGCTACCACTTTCTA TCAGCACCTGGCAGATTCCAAGAATGACAATGATAACATTTTCCTGTC ACCCCTGAGTATCTCCACGGCTTTTGCTATGACCAAGCTGGGTGCCTG TAATGACACCTCCAGCAACTGATGGAGGTATTTAAGTTTGACACCAT ATCTGAGAAAACATCTGATCAGATCCACTTCTTTTTTTTCCAAACTGAA CTGCCGACTCTATCGAAAAGCCAACAAATCCTCCAAGTTAGTATCAGC CAATCGCCTTTTTGGAGACAAATCCCTTACCTTCAATGAGACCTACCA GGACATCAGTGAGTTATATGGAGCCAAGCTCCAGCCCCTGGACT TCAAGGAAAATGCAGAGCAATCCAGAGCGGCCATCAACAAATGGGTG TCCAATAAGACCGAAGCCGAATCACCGATGTCATTCCCTCGGAAGC CATCAATGAGCTCACTGTTCTGGTGCTGGTTAACACCATTTACTTCAA TGTTCTACAAGGCTGATGGAGAGTCGTGTTCAGCATCTATGATGTACC AGGAAGGCAAGTTCCGTTATCGGCGCGTGGCTGAAGGCACCCAGGTG CTTGAGTTGCCCTTCAAAGGTGATGACATCACCATGGTCCTCATCTTG CCCAAGCCTGAGAAGAGCCTGGCCAAGGTGGAGAAGGAACTCACCCC AGAGGTGCTGCAGGAGTGGCTGGATGAATTGGAGGAGATGATGCTGG TGGTCCACATGCCCCGCTTCCGCATTGAGGACGGCTTCAGTTTGAAGG AGCAGCTGCAAGACATGGGCCTTGTCGATCTGTTCAGCCCTGAAAAG TCCAAACTCCCAGGTATTGTTGCAGAAGGCCGAGATGACCTCTATGTC TCAGATGCATTCCATAAGGCATTTCTTGAGGTAAATGAAGAAGGCAG TGAAGCAGCTGCAAGTACCGCTGTTGTGATTGCTGGCCGTTCGCTAAA ${\tt CCCCAACAGGGTGACTTTCAAGGCCAACAGGCCTTTCCTGGTTTTTAT}$ AAGAGAAGTTCCTCTGAACACTATTATCTTCATGGGCAGAGTAGCCA ACCCTTGTGTTAAGTAA

315/498

FIG. 78B

Met Tyr Ser Asn Val Ile Gly Thr Val Thr Ser Gly Lys Arg Lys Val Tyr Leu Leu Ser Leu Leu Ile Gly Phe Trp Asp Cys Val Thr Cys His Gly Ser Pro Val Asp Ile Cys Thr Ala Lys Pro Arg Asp Ile Pro Met Asn Pro Met Cys Ile Tyr Arg Ser Pro Glu Lys Lys Ala Thr Glu Asp Glu Gly Ser Glu Gln Lys Ile Pro Glu Ala Thr Asn Arg Arg Val Trp Glu Leu Ser Lys Ala Asn Ser Arg Phe Ala Thr Thr Phe Tyr Gln His Leu Ala Asp Ser Lys Asn Asp Asn Asp Asn Ile Phe Leu Ser Pro Leu Ser Ile Ser Thr Ala Phe Ala Met Thr Lys Leu Gly Ala Cys Asn Asp Thr Leu Gln Gln Leu Met Glu Val Phe Lys Phe Asp Thr Ile Ser Glu Lys Thr Ser Asp Gln Ile His Phe Phe Ala Lys Leu Asn Cys Arg Leu Tyr Arg Lys Ala Asn Lys Ser Ser Lys Leu Val Ser Ala Asn Arg Leu Phe Gly Asp Lys Ser Leu Thr Phe Asn Glu Thr Tyr Gln Asp Ile Ser Glu Leu Val Tyr Gly Ala Lys Leu Gln Pro Leu Asp Phe Lys Glu Asn Ala Glu Gln Ser Arg Ala Ala Ile Asn Lys Trp Val Ser Asn Lys Thr Glu Gly Arg Ile Thr Asp Val Ile Pro Ser Glu Ala Ile Asn Glu Leu Thr Val Leu Val Leu Val Asn Thr Ile Tyr Phe Lys Gly Leu Trp Lys Ser Lys Phe Ser Pro Glu Asn Thr Arg Lys Glu Leu Phe Tyr Lys Ala Asp Gly Glu Ser Cys Ser Ala Ser Met Met Tyr Gln Glu Gly Lys Phe Arg Tyr Arg Arg Val Ala Glu Gly Thr Gln Val Leu Glu Leu Pro Phe Lys Gly Asp Asp Ile Thr Met Val Leu Ile Leu Pro Lys Pro Glu Lys Ser Leu Ala Lys Val Glu Lys Glu Leu Thr Pro Glu Val Leu Gln Glu Trp Leu Asp Glu Leu Glu Glu Met Met Leu Val Val His Met Pro Arg Phe Arg Ile Glu Asp Gly Phe Ser Leu Lys Glu Gln Leu Gln Asp Met Gly Leu Val Asp Leu Phe Ser Pro Glu Lys Ser Lys Leu Pro Gly Ile Val Ala Glu Gly Arg Asp Asp Leu Tyr Val Ser Asp Ala Phe His Lys Ala Phe Leu Glu Val Asn Glu Glu Gly Ser Glu Ala Ala Ser Thr Ala Val Val Ile Ala Gly Arg Ser Leu Asn Pro Asn Arg Val Thr Phe Lys Ala Asn Arg Pro Phe Leu Val Phe Ile Arg Glu Val Pro Leu Asn Thr Ile Ile Phe Met Gly Arg Val Ala Asn Pro Cys Val Lys

316/498

FIG. 79A

ATGGATTACTACAGAAAATATGCAGCTATCTTTCTGGTCACATTGTCG
GTGTTTCTGCATGTTCTCCATTCCGCTCCTGATGTGCAGGATTGCCCAG
AATGCACGCTACAGGAAAACCCATTCTTCTCCCAGCCGGGTGCCCCA
ATACTTCAGTGCATGGGCTGCTGCTTCTCTAGAGCATATCCCACTCCA
CTAAGGTCCAAGAAGACGATGTTGGTCCAAAAGAACGTCACCTCAGA
GTCCACTTGCTGTAGCTAAATCATATAACAGGGTCACAGTAATGGG
GGGTTTCAAAGTGGAGAACCACACGGCGTGCCACTGCAGTACTTGTT
ATTATCACAAATCTTAA

FIG. 79B

Met Asp Tyr Tyr Arg Lys Tyr Ala Ala Ile Phe Leu Val Thr Leu Ser Val Phe Leu His Val Leu His Ser Ala Pro Asp Val Gln Asp Cys Pro Glu Cys Thr Leu Gln Glu Asn Pro Phe Phe Ser Gln Pro Gly Ala Pro Ile Leu Gln Cys Met Gly Cys Cys Phe Ser Arg Ala Tyr Pro Thr Pro Leu Arg Ser Lys Lys Thr Met Leu Val Gln Lys Asn Val Thr Ser Glu Ser Thr Cys Cys Val Ala Lys Ser Tyr Asn Arg Val Thr Val Met Gly Gly Phe Lys Val Glu Asn His Thr Ala Cys His Cys Ser Thr Cys Tyr Tyr His Lys Ser

317/498

FIG. 79C

FIG. 79D

Met Glu Met Phe Gln Gly Leu Leu Leu Leu Leu Leu Leu Ser Met Gly Gly Thr Trp Ala Ser Lys Glu Pro Leu Arg Pro Arg Cys Arg Pro Ile Asn Ala Thr Leu Ala Val Glu Lys Glu Gly Cys Pro Val Cys Ile Thr Val Asn Thr Thr Ile Cys Ala Gly Tyr Cys Pro Thr Met Thr Arg Val Leu Gln Gly Val Leu Pro Ala Leu Pro Gln Val Val Cys Asn Tyr Arg Asp Val Arg Phe Glu Ser Ile Arg Leu Pro Gly Cys Pro Arg Gly Val Asn Pro Val Val Ser Tyr Ala Val Ala Leu Ser Cys Gln Cys Ala Leu Cys Arg Arg Ser Thr Thr Asp Cys Gly Gly Pro Lys Asp His Pro Leu Thr Cys Asp Asp Pro Arg Phe Gln Asp Ser Ser Ser Ser Lys Ala Pro Pro Pro Ser Leu Pro Ser Pro Ser Arg Leu Pro Gly Pro Ser Asp Thr Pro Ile Leu Pro Gln

318/498

FIG. 80A

ATGCGTCCCCTGCGCCCCGCGCGCGCTGCTGGCCTCCTGGCCTCG CTCCTGGCCGCCCCCGGTGGCCCCGGCCGAGGCCCCGCACCTGGT GCAGGTGGACGCGCGCGCGCGCTGTGGCCCCTGCGGCGCTTCTGGA GGAGCACAGGCTTCTGCCCCCCCCCCCACACAGCCAGGCTGACCAG TACGTCCTCAGCTGGGACCAGCAGCTCAACCTCGCCTATGTGGGCGCC GTCCCTCACCGCGCATCAAGCAGGTCCGGACCCACTGGCTGCA GCTTGTCACCACCAGGGGGTCCACTGGACGGGGCCTGAGCTACAACT TCACCCACCTGGACGGTACTTGGACCTTCTCAGGGAGAACCAGCTCC TCCCAGGGTTTGAGCTGATGGGCAGCGCCTCGGGCCACTTCACTGACT TTGAGGACAAGCAGCAGGTGTTTGAGTGGAAGGACTTGGTCTCCAGC CTGGCCAGGAGATACATCGGTAGGTACGGACTGGCGCATGTTTCCAA GTGGAACTTCGAGACGTGGAATGAGCCAGACCACCACGACTTTGACA ACGTCTCCATGACCATGCAAGGCTTCCTGAACTACTACGATGCCTGCT GGCGACTCCTTCCACACCCCACCGCGATCCCCGCTGAGCTGGGGCCTC CTGCGCCACTGCCACGACGTACCAACTTCTTCACTGGGGAGGCGGG CGTGCGGCTGGACTACATCTCCCTCCACAGGAAGGGTGCGCGCAGCT CCATCTCCATCCTGGAGCAGGAGAAGGTCGTCGCGCAGCAGATCCGG CAGCTCTTCCCCAAGTTCGCGGACACCCCCATTTACAACGACGAGGCG GACCCGCTGGTGGGCTGGTCCCTGCCACAGCCGTGGAGGGCGGACGT GACCTACGCGCCATGGTGGTGAAGGTCATCGCGCAGCATCAGAACC TGCTACTGGCCAACACCACCTCCGCCTTCCCCTACGCGCTCCTGAGCA ACGACAATGCCTTCCTGAGCTACCACCCGCACCCCTTCGCGCAGCGCA CGCTCACCGCGCGCTTCCAGGTCAACACACCCGCCGCCGCACGTG CAGCTGTTGCGCAAGCCGGTGCTCACGGCCATGGGGCTGCTGGCGCT GCTGGATGAGGAGCAGCTCTGGGCCGAAGTGTCGCAGGCCGGGACCG TCCTGGACAGCAACCACGGTGGGCGTCCTGGCCAGCGCCCACCGC CCCCAGGCCCGACGCCTGGCGCGCGCGGTGCTGATCTACGC TGCGGCTGCGCGGGTGCCCCCGGCCCGGGCCTGGTCTACGTCACG CGCTACCTGGACAACGGGCTCTGCAGCCCCGACGGCGAGTGGCGGCG CCTGGGCCGGCCGTCTTCCCCACGGCAGAGCAGTTCCGGCGCATGC GCGCGCTGAGGACCCGGTGGCCGCGCGCCCCCTTACCCGCC GGCGGCCTGACCCTGCGCCCCGCGCTGCGGCTGCCGTCTTTTG CTGGTGCACGTGTGCGCCCCGAGAAGCCGCCCGGGCAGGTCAC GCGGCTCCGCCCCTGACCCAAGGGCAGCTGGTTCTGGTCTG GTCGGATGAACACGTGGGCTCCAAGTGCCTGTGGACATACGAGATCC AGTTCTCTCAGGACGGTAAGGCGTACACCCCGGTCAGCAGGAAGCCA TCGACCTTCAACCTCTTTGTGTTCAGCCCAGACACAGGTGCTGTCTCT GGCTCCTACCGAGTTCGAGCCCTGGACTACTGGGCCCGACCAGGCCC CTTCTCGGACCCTGTGCCGTACCTGGAGGTCCCTGTGCCAAGAGGGCC CCCATCCCGGGCAATCCAT GA

319/498

FIG. 80B

Met Arg Pro Leu Arg Pro Arg Ala Ala Leu Leu Ala Leu Leu Ala Ser Leu Leu Ala Ala Pro Pro Val Ala Pro Ala Glu Ala Pro His Leu Val Gln Val Asp Ala Ala Arg Ala Leu Trp Pro Leu Arg Arg Phe Trp Arg Ser Thr Gly Phe Cys Pro Pro Leu Pro His Ser Gln Ala Asp Gln Tyr Val Leu Ser Trp Asp Gln Gln Leu Asn Leu Ala Tyr Val Gly Ala Val Pro His Arg Gly Ile Lys Gln Val Arg Thr His Trp Leu Leu Glu Leu Val Thr Thr Arg Gly Ser Thr Gly Arg Gly Leu Ser Tyr Asn Phe Thr His Leu Asp Gly Tyr Leu Asp Leu Leu Arg Glu Asn Gln Leu Leu Pro Gly Phe Glu Leu Met Gly Ser Ala Ser Gly His Phe Thr Asp Phe Glu Asp Lys Gln Gln Val Phe Glu Trp Lys Asp Leu Val Ser Ser Leu Ala Arg Arg Tyr Ile Gly Arg Tyr Gly Leu Ala His Val Ser Lys Trp Asn Phe Glu Thr Trp Asn Glu Pro Asp His His Asp Phe Asp Asn Val Ser Met Thr Met Gln Gly Phe Leu Asn Tyr Tyr Asp Ala Cys Ser Glu Gly Leu Arg Ala Ala Ser Pro Ala Leu Arg Leu Gly Gly Pro Gly Asp Ser Phe His Thr Pro Pro Arg Ser Pro Leu Ser Trp Gly Leu Leu Arg His Cys His Asp Gly Thr Asn Phe Phe Thr Gly Glu Ala Gly Val Arg Leu Asp Tyr Ile Ser Leu His Arg Lys Gly Ala Arg Ser Ser Ile Ser Ile Leu Glu Gln Glu Lys Val Val Ala Gln Gln Ile Arg Gln Leu Phe Pro Lys Phe Ala Asp Thr Pro Ile Tyr Asn Asp Glu Ala Asp Pro Leu Val Gly Trp Ser Leu Pro Gln Pro Trp Arg Ala Asp Val Thr Tyr Ala Ala Met Val Val Lys Val Ile Ala Gln His Gln Asn Leu Leu Leu Ala Asn Thr Thr Ser Ala Phe Pro Tyr Ala Leu Leu Ser Asn Asp Asn Ala Phe Leu Ser Tyr His Pro His Pro Phe Ala Gln Arg Thr Leu Thr Ala Arg Phe Gln Val Asn Asn Thr Arg Pro Pro His Val Gln Leu Leu Arg Lys Pro Val Leu Thr Ala Met Gly Leu Leu Ala Leu Leu Asp Glu Glu Glu Leu Trp Ala Glu Val Ser Gln Ala Gly Thr Val Leu Asp Ser Asn His Thr Val Gly Val Leu Ala Ser Ala His Arg Pro Gln Gly Pro Ala Asp Ala Trp Arg Ala Ala Val Leu Ile Tyr Ala Ser Asp Asp Thr Arg Ala His Pro Asn Arg Ser Val Ala Val Thr Leu Arg Leu Arg Gly Val Pro Pro Gly Pro Gly Leu Val Tyr Val Thr Arg Tyr Leu Asp Asn Gly Leu Cys Ser Pro Asp Gly Glu Trp Arg Arg Leu Gly Arg Pro Val Phe Pro Thr Ala Glu Gln Phe Arg Arg Met Arg Ala Ala Glu Asp Pro Val Ala Ala Ala Pro Arg Pro Leu Pro Ala Gly Gly Arg Leu Thr Leu Arg Pro Ala Leu Arg Leu Pro Ser Leu Leu Leu Val His Val Cys Ala Arg Pro Glu Lys Pro Pro Gly Gln Val Thr Arg Leu Arg Ala Leu Pro Leu Thr Gln Gly Gln Leu Val Leu Val Trp Ser Asp Glu His Val Gly Ser Lys Cys Leu Trp Thr Tyr Glu Ile Gln Phe Ser Gln Asp Gly Lys Ala Tyr Thr Pro Val Ser Arg Lys Pro Ser Thr Phe Asn Leu Phe Val Phe Ser Pro Asp Thr Gly Ala Val Ser Gly Ser Tyr Arg Val Arg Ala Leu Asp Tyr Trp Ala Arg Pro Gly Pro Phe Ser Asp Pro Val Pro Tyr Leu Glu Val Pro Val Pro Arg Gly Pro Pro Ser Pro Gly Asn Pro

320/498

FIG. 81A

ATGCAGCTGAGGAACCCAGAACTACATCTGGGCTGCGCGCTTGCGCT TCGCTTCCTGGCCCTCGTTTCCTGGGACATCCCTGGGGCTAGAGCACT GGACAATGGATTGGCAAGGACGCCTACCATGGGCTGCACTGGG AGCGCTTCATGTGCAACCTTGACTGCCAGGAAGAGCCAGATTCCTGC ATCAGTGAGAAGCTCTTCATGGAGATGGCAGAGCTCATGGTCTCAGA AGGCTGGAAGGATGCAGGTTATGAGTACCTCTGCATTGATGACTGTTG GATGGCTCCCCAAAGAGATTCAGAAGGCAGACTTCAGGCAGACCCTC AGCGCTTTCCTCATGGGATTCGCCAGCTAGCTAATTATGTTCACAGCA AAGGACTGAAGCTAGGGATTTATGCAGATGTTGGAAATAAAACCTGC GCAGGCTTCCCTGGGAGTTTTGGATACTACGACATTGATGCCCAGACC TTTGCTGACTGGGGAGTAGATCTGCTAAAATTTGATGGTTGTTACTGT GACAGTTTGGAAAATTTGGCAGATGGTTATAAGCACATGTCCTTGGCC CTGAATAGGACTGGCAGAAGCATTGTGTACTCCTGTGAGTGGCCTCTT TATATGTGGCCCTTTCAAAAGCCCAATTATACAGAAATCCGACAGTAC TGCAATCACTGGCGAAATTTTGCTGACATTGATGATTCCTGGAAAAGT ATAAAGAGTATCTTGGACTGGACATCTTTTAACCAGGAGAGAATTGTT GATGTTGCTGGACCAGGGGGTTGGAATGACCCAGATATGTTAGTGAT TGGCAACTTTGGCCTCAGCTGGAATCAGCAAGTAACTCAGATGGCCCT CTGGGCTATCATGGCTCCTTTATTCATGTCTAATGACCTCCGACA CATCAGCCCTCAAGCCAAAGCTCTCCTTCAGGATAAGGACGTAATTGC CATCAATCAGGACCCCTTGGGCAAGCAAGGGTACCAGCTTAGACAGG GAGACAACTTTGAAGTGTGGGAACGACCTCTCTCAGGCTTAGCCTGG GCTGTAGCTATGATAAACCGGCAGGAGATTGGTGGACCTCGCTCTTAT ACCATCGCAGTTGCTTCCCTGGGTAAAGGAGTGGCCTGTAATCCTGCC TGCTTCATCACACAGCTCCTCCCTGTGAAAAGGAAGCTAGGGTTCTAT GAATGGACTTCAAGGTTAAGAAGTCACATAAATCCCACAGGCACTGT TTTGCTTCAGCTAGAAAATACAATGCAGATGTCATTAAAAGACTTACT TTAA

321/498

FIG. 81B

Met Gln Leu Arg Asn Pro Glu Leu His Leu Gly Cys Ala Leu Ala Leu Arg Phe Leu Ala Leu Val Ser Trp Asp Ile Pro Gly Ala Arg Ala Leu Asp Asn Gly Leu Ala Arg Thr Pro Thr Met Gly Trp Leu His Trp Glu Arg Phe Met Cys Asn Leu Asp Cys Gln Glu Glu Pro Asp Ser Cys Ile Ser Glu Lys Leu Phe Met Glu Met Ala Glu Leu Met Val Ser Glu Gly Trp Lys Asp Ala Gly Tyr Glu Tyr Leu Cys Ile Asp Asp Cys Trp Met Ala Pro Gln Arg Asp Ser Glu Gly Arg Leu Gln Ala Asp Pro Gln Arg Phe Pro His Gly Ile Arg Gln Leu Ala Asn Tyr Val His Ser Lys Gly Leu Lys Leu Gly Ile Tyr Ala Asp Val Gly Asn Lys Thr Cys Ala Gly Phe Pro Gly Ser Phe Gly Tyr Tyr Asp Ile Asp Ala Gln Thr Phe Ala Asp Trp Gly Val Asp Leu Leu Lys Phe Asp Gly Cys Tyr Cys Asp Ser Leu Glu Asn Leu Ala Asp Gly Tyr Lys His Met Ser Leu Ala Leu Asn Arg Thr Gly Arg Ser Ile Val Tyr Ser Cys Glu Trp Pro Leu Tyr Met Trp Pro Phe Gln Lys Pro Asn Tyr Thr Glu Ile Arg Gln Tyr Cys Asn His Trp Arg Asn Phe Ala Asp Ile Asp Asp Ser Trp Lys Ser Ile Lys Ser Ile Leu Asp Trp Thr Ser Phe Asn Gln Glu Arg Ile Val Asp Val Ala Gly Pro Gly Gly Trp Asn Asp Pro Asp Met Leu Val Ile Gly Asn Phe Gly Leu Ser Trp Asn Gln Gln Val Thr Gln Met Ala Leu Trp Ala Ile Met Ala Ala Pro Leu Phe Met Ser Asn Asp Leu Arg His Ile Ser Pro Gln Ala Lys Ala Leu Leu Gln Asp Lys Asp Val Ile Ala Ile Asn Gln Asp Pro Leu Gly Lys Gln Gly Tyr Gln Leu Arg Gln Gly Asp Asn Phe Glu Val Trp Glu Arg Pro Leu Ser Gly Leu Ala Trp Ala Val Ala Met Ile Asn Arg Gln Glu Ile Gly Gly Pro Arg Ser Tyr Thr Ile Ala Val Ala Ser Leu Gly Lys Gly Val Ala Cys Asn Pro Ala Cys Phe Ile Thr Gln Leu Leu Pro Val Lys Arg Lys Leu Gly Phe Tyr Glu Trp Thr Ser Arg Leu Arg Ser His Ile Asn Pro Thr Gly Thr Val Leu Leu Gln Leu Glu Asn Thr Met Gln Met Ser Leu Lys Asp Leu Leu

322/498

FIG. 82A

ATGGCGCCGTCGCCGTCTGGGCCGCCGTCGGACTGGAGCT CTGGGCTGCGCCACGCCTTGCCCGCCCAGGTGGCATTTACACCCTA CGCCCGGAGCCCGGGAGCACATGCCGGCTCAGAGAATACTATGACC AGACAGCTCAGATGTGCTGCAGCAAATGCTCGCCGGGCCAACATGCA AAAGTCTTCTGTACCAAGACCTCGGACACCGTGTGTGACTCCTGTGAG GACAGCACATACACCCAGCTCTGGAACTGGGTTCCCGAGTGCTTGAG TCGGGAACAGAACCGCATCTGCACCTGCAGGCCCGGCTGGTACTGCG CGCTGAGCAAGCAGGAGGGGTGCCGGCTGTGCGCAAG TGCCGCCCGGGCTTCGGCGTGGCCAGACCAGGAACTGAAACATCAGA CGTGGTGTCAAGCCCTGTGCCCCGGGGACGTTCTCCAACACGACTTC ATCCACGGATATTTGCAGGCCCCACCAGATCTGTAACGTGGTGGCCAT CCCTGGGAATGCAAGCATGGATGCAGTCTGCACGTCCCCCA ACACGATCCCAACACGCAGCCAACTCCAGAACCCAGCACTGCTCC AAGCACCTCCTTCCTGCTCCCAATGGGCCCCAGCCCCCAGCTGAAGG GAGCACTGGCGACTTCCAGTTGGACTGATTGTGGGTGTGAC AGCCTTGGGTCTACTAATAATAGGAGTGGTGAACTGTGTCATCATGAC CCAGGTGAAAAAGAAGCCCTTGTGCCTGCAGAGAGAAGCCAAGGTGC CAGCACCTGCTGATCACAGCGCCGAGCTCCAGCAGCAGCTCCCTGGA GAGCTCGGCCAGTGCGTTGGACAGAAGGGCGCCCACTCGGAACCAGC CACAGGCACCAGGCGTGGAGGCCAGTGGGGCCGGGGAGGCCCGGGC CAGCACCGGGAGCTCAGATTCTTCCCCTGGTGGCCATGGGACCCAGG TCAATGTCACCTGCATCGTGAACGTCTGTAGCAGCTCTGACCACAGCT CACAGTGCTCCCAAGCCAGCTCCACAATGGGAGACACAGATTCC AGCCCCTCGGAGTCCCCGAAGGACGAGCAGGTCCCCTTCTCCAAGGA GGAATGTGCCTTTCGGTCACAGCTGGAGACGCCAGAGACCCTGCTGG GGAGCACCGAAGAGAGCCCCTGCCCCTTGGAGTGCCTGATGCTGGG ATGAAGCCCAGTTAACCAGGCCGGTGTGGGCTGTGTCGTAGCCAAGG TGGGCTGAGCCCTGGCAGGATGACCCTGCGAAGGGGCCCTGGTCCTTCCAGGC

323/498

FIG. 82B

Met Ala Pro Val Ala Val Trp Ala Ala Leu Ala Val Gly Leu Glu Leu Trp Ala Ala Ala His Ala Leu Pro Ala Gln Val Ala Phe Thr Pro Tyr Ala Pro Glu Pro Gly Ser Thr Cys Arg Leu Arg Glu Tyr Tyr Asp Gln Thr Ala Gln Met Cys Cys Ser Lys Cys Ser Pro Gly Gln His Ala Lys Val Phe Cys Thr Lys Thr Ser Asp Thr Val Cys Asp Ser Cys Glu Asp Ser Thr Tyr Thr Gln Leu Trp Asn Trp Val Pro Glu Cys Leu Ser Cys Gly Ser Arg Cys Ser Ser Asp Gln Val Glu Thr Gln Ala Cys Thr Arg Glu Gln Asn Arg Ile Cys Thr Cys Arg Pro Gly Trp Tyr Cys Ala Leu Ser Lys Gln Glu Gly Cys Arg Leu Cys Ala Pro Leu Arg Lys Cys Arg Pro Gly Phe Gly Val Ala Arg Pro Gly Thr Glu Thr Ser Asp Val Val Cys Lys Pro Cys Ala Pro Gly Thr Phe Ser Asn Thr Thr Ser Ser Thr Asp Ile Cys Arg Pro His Gln Ile Cys Asn Val Val Ala Ile Pro Gly Asn Ala Ser Met Asp Ala Val Cys Thr Ser Thr Ser Pro Thr Arg Ser Met Ala Pro Gly Ala Val His Leu Pro Gln Pro Val Ser Thr Arg Ser Gln His Thr Gln Pro Thr Pro Glu Pro Ser Thr Ala Pro Ser Thr Ser Phe Leu Leu Pro Met Gly Pro Ser Pro Pro Ala Glu Gly Ser Thr Gly Asp Phe Ala Leu Pro Val Gly Leu Ile Val Gly Val Thr Ala Leu Gly Leu Leu Ile Ile Gly Val Val Asn Cys Val Ile Met Thr Gln Val Lys Lys Pro Leu Cys Leu Gln Arg Glu Ala Lys Val Pro His Leu Pro Ala Asp Lys Ala Arg Gly Thr Gln Gly Pro Glu Gln Gln His Leu Leu Ile Thr Ala Pro Ser Ser Ser Ser Ser Ser Leu Glu Ser Ser Ala Ser Ala Leu Asp Arg Arg Ala Pro Thr Arg Asn Gln Pro Gln Ala Pro Gly Val Glu Ala Ser Gly Ala Gly Glu Ala Arg Ala Ser Thr Gly Ser Ser Asp Ser Ser Pro Gly Gly His Gly Thr Gln Val Asn Val Thr Cys Ile Val Asn Val Cys Ser Ser Ser Asp His Ser Ser Gln Cys Ser Ser Gln Ala Ser Ser Thr Met Gly Asp Thr Asp Ser Ser Pro Ser Glu Ser Pro Lys Asp Glu Gln Val Pro Phe Ser Lys Glu Glu Cys Ala Phe Arg Ser Gln Leu Glu Thr Pro Glu Thr Leu Leu Gly Ser Thr Glu Glu Lys Pro Leu Pro Leu Gly Val Pro Asp Ala Gly Met Lys Pro Ser

324/498

FIG. 83A

Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Asp Val Asn Thr Ala Val Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile Tyr Ser Ala Ser Phe Leu Tyr Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Arg Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln His Tyr Thr Thr Pro Pro Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys

FIG. 83B

Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Asn Ile Lys Asp Thr Tyr Ile His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val Ala Arg Ile Tyr Pro Thr Asn Gly Tyr Thr Arg Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Ala Asp Thr Ser Lys Asn Thr Ala Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ser Arg Trp Gly Gly Asp Gly Phe Tyr Ala Met Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser

325/498

FIG. 84A

Gln Val Thr Leu Arg Glu Ser Gly Pro Ala Leu Val Lys Pro Thr Gln Thr Leu Thr Leu Thr Cys Thr Phe Ser Gly Phe Ser Leu Ser Thr Ser Gly Met Ser Val Gly Trp Ile Arg Gln Pro Ser Gly Lys Ala Leu Glu Trp Leu Ala Asp Ile Trp Trp Asp Asp Lys Lys Asp Tyr Asn Pro Ser Leu Lys Ser Arg Leu Thr Ile Ser Lys Asp Thr Ser Lys Asn Gln Val Val Leu Lys Val Thr Asn Met Asp Pro Ala Asp Thr Ala Thr Tyr Tyr Cys Ala Arg Ser Met Ile Thr Asn Trp Tyr Phe Asp Val Trp Gly Ala Gly Thr Thr Val Thr Val Ser Ser

FIG. 84B

Asp Ile Gln Met Thr Gln Ser Pro Ser Thr Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Lys Cys Gln Leu Ser Val Gly Tyr Met His Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Trp Ile Tyr Asp Thr Ser Lys Leu Ala Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Asp Asp Phe Ala Thr Tyr Tyr Cys Phe Gln Gly Ser Gly Tyr Pro Phe Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys

326/498

FIG. 85A

GACATCTTGCTGACTCAGTCTCCAGCCATCCTGTCTGAGTCCAGGA
GAAAGAGTCAGTTTCTCCTGCAGGGCCAGTCAGTTCGTTGGCTCAAGC
ATCCACTGGTATCAGCAAAGAACAAATGGTTCTCCAAGGCTTCTCATA
AAGTATGCTTCTGAGTCTATGTCTGGGATCCCTTCCAGGTTTAGTGGC
AGTGGATCAGGGACAGATTTTACTCTTAGCATCAACACTGTGGAGTCT
GAAGATATTGCAGATTATTACTGTCAACAAAGTCATAGCTGGCCATTC
ACGTTCGGCTCGGGGACAAATTTGGAAGTAAAAGAAGTGAAGCTTGA
GGAGTCTGGAGGAGCCTTGGTGCAACCTGGAGGATCCATGAAACTCT
CCTGTGTTGCCTCTGGATTCATTTTCAGTAACCACTGGATGAACTGGG
TCCGCCAGTCTCCAGAGAAGGGGCTTGAGTGGGTTGCTGAAATTAGA
TCAAAATCTATTAATTCTGCAACACATTATGCGGAGTCTGTGAAAGGG
AGGTTCACCATCTCAAGAGATGATTCCAAAAGTGCTGTCTACCTGCAA
ATGACCGACTTAAGAACTGAAGACACTGGCGTTTATTACTGTTCCAGG
AATTACTACGGTAGTACCTACGACTACTGGGGCCAAGGCACCACTCTC
ACAGTCTCC

FIG. 85B

Asp Ile Leu Leu Thr Gln Ser Pro Ala Ile Leu Ser Val Ser Pro Gly Glu Arg Val Ser Phe Ser Cys Arg Ala Ser Gln Phe Val Gly Ser Ser Ile His Trp Tyr Gln Gln Arg Thr Asn Gly Ser Pro Arg Leu Leu Ile Lys Tyr Ala Ser Glu Ser Met Ser Gly Ile Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Ser Ile Asn Thr Val Glu Ser Glu Asp Ile Ala Asp Tyr Tyr Cys Gln Gln Ser His Ser Trp Pro Phe Thr Phe Gly Ser Gly Thr Asn Leu Glu Val Lys Glu Val Lys Leu Glu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly Ser Met Lys Leu Ser Cys Val Ala Ser Gly Phe Ile Phe Ser Asn His Trp Met Asn Trp Val Arg Gln Ser Pro Glu Lys Gly Leu Glu Trp Val Ala Glu Ile Arg Ser Lys Ser Ile Asn Ser Ala Thr His Tyr Ala Glu Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asp Ser Lys Ser Ala Val Tyr LeuGln Met Thr Asp Leu Arg Thr Glu Asp Thr Gly Val Tyr Tyr Cys Ser Arg Asn Tyr Tyr Gly Ser Thr Tyr Asp Tyr Trp Gly Gln Gly Thr Thr Leu Thr Val Ser

327/498

FIG. 86A

ATGGAGACACACTCCTGTTATGGGTGCTGCTGCTCTGGGTTCCA GGTTCCACTGGTGACGTCAGGCGAGGCCCCGGAGCCTGCGGGGCAG GGACGCCCACGCCCTGCGTCCCGGCCGAGTGCTTCGACC TGCTGGTCCGCCACTGCGTGGCCTGCGGGCTCCTGCGCACGCCGCGC CGAAACCGGCCGGGCCAGCAGCCCTGCGCCCAGGACGCGCTGCAG AAACTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGA CCGTCAGTCTTCCCCCCAAAACCCAAGGACACCCTCATGATC TCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGA AGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGCGTGGAGGTGC ATAATGCCAAGACAAGCCGCGGGAGGAGCAGTACAACAGCACGTA CCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGG CAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCA TCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAG GTGTACACCCTGCCCCATCCCGGGATGAGCTGACCAAGAACCAGGT CAGCCTGACCTGCTCAAAGGCTTCTATCCCAGCGACATCGCCGT GGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACG ${\tt CCTCCCGTGTTGGACTCCGACGGCTCCTTCTTCTTCTACAGCAAGCTC}$ ACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTC CGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCT CCCTGTCTCCCGGGAAATGA

328/498

FIG. 86B

Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro Gly Ser Thr Gly Asp Val Arg Gly Pro Arg Ser Leu Arg Gly Arg Asp Ala Pro Ala Pro Thr Pro Cys Val Pro Ala Glu Cys Phe Asp Leu Leu Val Arg His Cys Val Ala Cys Gly Leu Leu Arg Thr Pro Arg Pro Lys Pro Ala Gly Ala Ser Ser Pro Ala Pro Arg Thr Ala Leu Gln Pro Gln Glu Ser Val Gly Ala Gly Ala Gly Glu Ala Ala Val Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys

329/498

FIG. 87

Asp Ile Gln Met Thr Gln Thr Thr Ser Ser Leu Ser Ala Ser Leu Gly Asp Arg Val Thr Ile Ser Cys Arg Ala Ser Gln Asp Ile Asn Asn Tyr Leu Asn Trp Tyr Gln Gln Lys Pro Asp Gly Ile Val Lys Leu Leu Ile Tyr Tyr Thr Ser Thr Leu His Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Tyr Ser Leu Thr Ile Ser Asn Leu Glu Gln Glu Asp Ile Ala Thr Tyr Phe Cys Gln Gln Gly Asn Thr Leu Pro Trp Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys

FIG. 88

Gln Val Gln Leu Gln Gln Ser Gly Ala Glu Leu Val Gly Pro Gly Thr Ser Val Arg Val Ser Cys Lys Ala Ser Gly Tyr Ala Phe Thr Asn Tyr Leu Ile Glu Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile Gly Val Ile Tyr Pro Gly Ser Gly Gly Thr Asn Tyr Asn Glu Lys Phe Lys Gly Lys Ala Thr Leu Thr Val Asp Lys Ser Ser Thr Thr Ala Tyr Met Gln Leu Ser Ser Leu Thr Ser Asp Asp Ser Ala Val Tyr Phe Cys Ala Arg Arg Asp Gly Asn Tyr Gly Trp Phe Ala Tyr Trp Gly Arg Gly Thr Leu Val Thr Val Ser Ala

FIG. 89

Asp Ile Gln Met Thr Gln Thr Pro Ser Thr Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Ser Cys Arg Ala Ser Gln Asp Ile Asn Asn Tyr Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile Tyr Tyr Thr Ser Thr Leu His Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Tyr Thr Leu Thr Ile Ser Ser Leu Gln Pro Asp Asp Phe Ala Thr Tyr Phe Cys Gln Gln Gly Asn Thr Leu Pro Trp Thr Phe Gly Gln Gly Thr Lys Val Glu Val Lys

FIG. 90

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Ala Phe Thr Asn Tyr Leu Ile Glu Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Ile Gly Val Ile Tyr Pro Gly Ser Gly Gly Thr Asn Tyr Asn Glu Lys Phe Lys Gly Arg Val Thr Leu Thr Val Asp Glu Ser Thr Asn Thr Ala Tyr Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Phe Cys Ala Arg Arg Asp Gly Asn Tyr Gly Trp Phe Ala Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser

330/498

FIG. 91

Asp Ile Gln Met Thr Gln Thr Pro Ser Thr Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Ser Cys Arg Ala Ser Gln Asp Ile Asn Asn Tyr Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile Tyr Tyr Thr Ser Thr Leu His Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Tyr Thr Leu Thr Ile Ser Ser Leu Gln Pro Asp Asp Phe Ala Thr Tyr Phe Cys Gln Gln Gly Asn Thr Leu Pro Trp Thr Phe Gly Gln Gly Thr Lys Val Glu Val Lys Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys

FIG. 92

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Ala Phe Thr Asn Tyr Leu Ile Glu Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Ile Gly Val Ile Tyr Pro Gly Ser Gly Gly Thr Asn Tyr Asn Glu Lys Phe Lys Gly Arg Val Thr Leu Thr Val Asp Glu Ser Thr Asn Thr Ala Tyr Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Phe Cys Ala Arg Arg Asp Gly Asn Tyr Gly Trp Phe Ala Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr Tyr IIe Cys Asn Val Asn His Lys Pro Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Glv

331/498

FIG. 93A

ATGGATTTCAGGTGCAGATTATCAGCTTCCTGCTAATCAGTGCTTCA GTCATAATGTCCAGAGGGCAAATTGTTCTCTCCCAGTCTCCAGCAATC CTGTCTGCATCTCCAGGGGAGAAGGTCACAATGACTTGCAGGGCCAG CTCAAGTGTAAGTTACATCCACTGGTTCCAGCAGAAGCCAGGATCCTC CCCCAAACCCTGGATTTATGCCACATCCAACCTGGCTTCTGGAGTCCC TGTTCGCTTCAGTGGCAGTGGGTCTGGGACTTCTTACTCTCTCACAAT CAGCAGAGTGGAGGCTGAAGATGCTGCCACTTATTACTGCCAGCAGT GGACTAGTAACCCACCCACGTTCGGAGGGGGGACCAAGCTGGAAATC

FIG. 93B

Met Asp Phe Gln Val Gln Ile Ile Ser Phe Leu Leu Ile Ser Ala Ser Val Ile Met Ser Arg Gly Gln Ile Val Leu Ser Gln Ser Pro Ala Ile Leu Ser Ala Ser Pro Gly Glu Lys Val Thr Met Thr Cys Arg Ala Ser Ser Ser Val Ser Tyr Ile His Trp Phe Gln Gln Lys Pro Gly Ser Ser Pro Lys Pro Trp Ile Tyr Ala Thr Ser Asn Leu Ala Ser Gly Val Pro Val Arg Phe Ser Gly Ser Gly Ser Gly Thr Ser Tyr Ser Leu Thr Ile Ser Arg Val Glu Ala Glu Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Trp Thr Ser Asn Pro Pro Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys

332/498

FIG. 94A

FIG. 94B

Met Gly Trp Ser Leu Ile Leu Leu Phe Leu Val Ala Val Ala Thr Arg Val Leu Ser Gln Val Gln Leu Gln Gln Pro Gly Ala Glu Leu Val Lys Pro Gly Ala Ser Val Lys Met Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Ser Tyr Asn Met His Trp Val Lys Gln Thr Pro Gly Arg Gly Leu Glu Trp Ile Gly Ala Ile Tyr Pro Gly Asn Gly Asp Thr Ser Tyr Asn Gln Lys Phe Lys Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser Thr Ala Tyr Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys Ala Arg Ser Thr Tyr Tyr Gly Gly Asp Trp Tyr Phe Asn Val Trp Gly Ala Gly Thr Thr Val Thr Val Ser Ala

333/498 FIG. 95A

GACGTCGCGGCCTCTAGGCCTCCAAAAAAGCCTCCTCACTACTTCT AAAATTAGTCAGCCATGCATGGGGGGGAGAATGGGCGGAACTGGGCG GAGTTAGGGGCGGATTGGCTGCT GACTAATTGAGATGCATGCTTTGCATACTTCTGCCTGCTGGGGAGCCT ATACTTCTGCCTGGGGAGCCTGGGGACTTTCCACACCCTAACTGA CACACATTCCACAGAATTAATTCCCCTAGTTATTAATAGTAATCAATT ACGGGGTCATTAGTTCATAGCCCATATATGGAGTTCCGCGTTACATAA CTTACGGTAAATGGCCCGCCTGGCTGACCGCCCAACGACCCCCGCCC ATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGA CTTTCCATTGACGTCAATGGGTGGACTATTTACGGTAAACTGCCCACT TGGCAGTACATCAAGTGTATCATATGCCAAGTACGCCCCCTATTGACG TCAATGACGGTAAATGGCCCGCCTGGCATTATGCCCAGTACATGACCT TATGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCATCGCTA TTACCATGGTGATGCGGTTTTTGGCAGTACATCAATGGGCGTGGATAGC GGTTTGACTCACGGGGATTTCCAAGTCTCCACCCCATTGACGTCAATG GGAGTTTGTTTTGGCACCAAAATCAACGGGACTTTCCAAAATGTCGTA ACAACTCCGCCCATTGACGCAAATGGGCGGTAGGCGTGTACGGTGG GAGGTCTATATAAGCAGAGCTGGGTACGTGAACCGTCAGATCGCCTG GAGACGCCATCACAGATCTCTCACCATGAGGGTCCCCGCTCAGCTCCT GGGGCTCCTGCTCTGGCTCCCAGGTGCACGATGTGATGGTACCAA GGTGGAAATCAAACGTACGGTGGCTGCACCATCTGTCTTCATCTTCCC GCCATCTGATGAGCAGTTGAAATCTGGAACTGCCTCTGTTGTGTGCCT GCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGG ATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAG GACAGCAAGGACACCTACAGCCTCAGCAGCACCCTGACGCTGAG CAAAGCAGACTACGAGAAACACAAAGTCTACGCCTGCGAAGTCACCC ATCAGGGCCTGAGCTCGCCCGTCACAAGAGCTTCAACAGGGGAGAG TGTTGAATTCAGATCCGTTAACGGTTACCAACTACCTAGACTGGATTC GTGACAACATGCGGCCGTGATATCTACGTATGATCAGCCTCGACTGTG CCTTCTAGTTGCCAGCCATCTGTTGTTTGCCCCTCCCCGTGCCTTCCT TGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAATAAAATGAGG AAATTGCATCGCATTGTCTGAGTAGGTGTCATTCTATTCTGGGGGGGTG GGGTGGGCAGGACAGCAAGGGGGGGGGGAGGATTGGGAAGACAATAGCAG GCATGCTGGGGATGCGGTGGGCTCTATGGAACCAGCTGGGGCTCGAC AGCTATGCCAAGTACGCCCCCTATTGACGTCAATGACGGTAAATGGC ${\tt CCGCCTGGCATTATGCCCAGTACATGACCTTATGGGACTTTCCTACTT}$ GGCAGTACATCTACGTATTAGTCATCGCTATTACCATGGTGATGCGGT TTTGGCAGTACATCAATGGGCGTGGATAGCGGTTTGACTCACGGGGA

334/498 FIG. 95B

CAAAATCAACGGGACTTTCCAAAATGTCGTAACAACTCCGCCCCATTG ACGCAAATGGGCGTAGGCGTGTACGGTGGGAGGTCTATATAAGCAG AGCTGGGTACGTCCTCACATTCAGTGATCAGCACTGAACACAGACCC GTCGACATGGGTTGGAGCCTCATCTTGCTCTTCCTTGTCGCTGTTGCTA CGCGTGTCGCTAGCACCAAGGGCCCATCGGTCTTCCCCCTGGCACCCT CCTCCAAGAGCACCTCTGGGGGCACAGCGGCCCTGGGCTGCCTGGTC AAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGC CCTGACCAGCGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGG ACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGG CACCCAGACCTACATCTGCAACGTGAATCACAAGCCCAGCAACACCA AGGTGGACAAGAAGCAGAGCCCAAATCTTGTGACAAAACTCACACA TGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTC CTCTTCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCT GAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGT CAAGTTCAACTGGTACGTGGACGCGTGGAGGTGCATAATGCCAAGA CAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGC GTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGACTACAA GTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCA TCTCCAAAGCCAAAGGCAGCCCCGAGAACCACAGGTGTACACCCTG CCCCCATCCCGGGATGAGCTGACCAGGAACCAGGTCAGCCTGACCTG CCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGA GCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTG GACTCCGACGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAG AGCAGGTGGCAGCAGGGAACGTCTTCTCATGCTCCGTGATGCATGA GGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGG TAAATGAGGATCCGTTAACGGTTACCAACTACCTAGACTGGATTCGTG ACAACATGCGGCCGTGATATCTACGTATGATCAGCCTCGACTGTGCCT CCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAATAAAATGAGGAAA TTGCATCGCATTGTCTGAGTAGGTGTCATTCTATTCTGGGGGGTGGGG TGGGCAGGACAGCAAGGGGGAGGATTGGGAAGACAATAGCAGGCA TGCTGGGGATGCGGTGGGCTCTATGGAACCAGCTGGGGCTCGACAGC GCTGGATCTCCCAGCTTTGCTTCTCAATTTCTTATTTGCATA ATGAGAAAAAAGGAAAATTAATTTTAACACCAATTCAGTAGTTGAT TGAGCAAATGCGTTGCCAAAAAGGATGCTTTAGAGACAGTGTTCTCT GCACAGATAAGGACAAACATTATTCAGAGGGAGTACCCAGAGCTGAG ACTCCTAAGCCAGTGAGTGGCACAGCATTCTAGGGAGAAATATGCTT GTCATCACCGAAGCCTGATTCCGTAGAGCCACACCTTGGTAAGGGCC ATAAGGTGAGGTAGGATCAGTTGCTCCTCACATTTGCTTCTGACATAG TTGTGTTGGGAGCTTGGATAGCTTGGACAGCTCAGG

335/498

FIG. 95C

GCTGCGATTTCGCGCCAAACTTGACGGCAATCCTAGCGTGAAGGCTG GTAGGATTTTATCCCCGCTGCCATCATGGTTCGACCATTGAACTGCAT CGTCGCCGTGTCCCAAAATATGGGGATTGGCAAGAACGGAGACCTAC CCTGGCCTCCGCTCAGGAACGAGTTCAAGTACTTCCAAAGAATGACC ACAACCTCTTCAGTGGAAGGTAAACAGAATCTGGTGATTATGGGTAG GAAAACCTGGTTCTCCATTCCTGAGAACAATCGACCTTTAAAGGACA GAATTAATATAGTTCTCAGTAGAGAACTCAAAGAACCACCACGAGGA GCTCATTTCTTGCCAAAAGTTTGGATGATGCCTTAAGACTTATTGAA CAACCGGAATTGGCAAGTAAAGTAGACATGGTTTGGATAGTCGGAGG CAGTTCTGTTTACCAGGAAGCCATGAATCAACCAGGCCACCTTAGACT CTTTGTGACAAGGATCATGCAGGAATTTGAAAGTGACACGTTTTTCCC AGAAATTGATTTGGGGAAATATAAACTTCTCCCAGAATACCCAGGCG TCCTCTCTGAGGTCCAGGAGGAAAAAGGCATCAAGTATAAGTTTGAA GTCTACGAGAAGAAGACTAACAGGAAGATGCTTTCAAGTTCTCTGC TCCCCTCCTAAAGTCATGCATTTTTATAAGACCATGGGACTTTTGCTG TTGCCCCTCCCCGTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCAC TGTCCTTTCCTAATAAAATGAGGAAATTGCATCGCATTGTCTGAGTAG AGGATTGGGAAGACAATAGCAGGCATGCTGGGGATGCGGTGGGCTCT ATGGAACCAGCTGGGGCTCGAGCTACTAGCTTTGCTTCTCAATTTCTT ATTTGCATAATGAGAAAAAAGGAAAATTAATTTTAACACCAATTCA GTAGTTGATTGAGCAAATGCGTTGCCAAAAAGGATGCTTTAGAGACA GTGTTCTCTGCACAGATAAGGACAAACATTATTCAGAGGGAGTACCC AGAGCTGAGACTCCTAAGCCAGTGAGTGGCACAGCATTCTAGGGAGA AATATGCTTGTCATCACCGAAGCCTGATTCCGTAGAGCCACACCTTGG TAAGGCCAATCTGCTCACACAGGATAGAGAGGGCAGGAGCCAGGG CAGAGCATATAAGGTGAGGTAGGATCAGTTGCTCCTCACATTTGCTTC TGACATAGTTGTGTGGGAGCTTGGATCGATCCTCTATGGTTGAACAA GATGGATTGCACGCAGGTTCTCCGGCCGCTTGGGTGGAGAGGCTATTC GGCTATGACTGGGCACAACAGACAATCGGCTGCTCTGATGCCGCCGT GTTCCGGCTGTCAGCGCAGGGGCGCCCGGTTCTTTTTGTCAAGACCGA CCTGTCCGGTGCCCTGAATGAACTGCAGGACGAGGCAGCGCGGCTAT CGTGGCTGGCCACGACGGCGTTCCTTGCGCAGCTGTGCTCGACGTTG TCACTGAAGCGGAAGGGACTGGCTGCTATTGGGCGAAGTGCCGGGG CAGGATCTCCTCACCTTGCTCCTGCCGAGAAAGTATCCATC ATGGCTGATGCAATGCGGCGGCTGCATACGCTTGATCCGGCTACCTGC CCATTCGACCACCAAGCGAAACATCGCATCGAGCGAGCACGTACTCG GATGGAAGCCGGTCTTGTCGATCAGGATGATCTGGACGAAGAGCATC AGGGGCTCGCCCAGCCGAACTGTTCGCCAGGCTCAAGGCGCGCATG CCCGACGCGAGGATCTCGTCGTGACCCATGGCGATGCCTGCTTGCCG

336/498 FIG. 95D

AATATCATGGTGGAAAATGGCCGCTTTTCTGGATTCATCGACTGTGGC CGGCTGGGTGTGGCGACCGCTATCAGGACATAGCGTTGGCTACCCG TGATATTGCTGAAGAGCTTGGCGGCGAATGGGCTGACCGCTTCCTCGT GCTTTACGGTATCGCCGCTTCCCGATTCGCAGCGCATCGCCTTCTATC GCCTTCTTGACGAGTTCTTCTGAGCGGGACTCTGGGGTTCGAAATGAC CGACCAAGCGACGCCCAACCTGCCATCACGAGATTTCGATTCCACCG CCGCCTTCTATGAAAGGTTGGGCTTCGGAATCGTTTTCCGGGACGCCG GCTGGATGATCCTCCAGCGCGGGGATCTCATGCTGGAGTTCTTCGCCC ACCCCAACTTGTTTATTGCAGCTTATAATGGTTACAAATAAAGCAATA GCATCACAAATTCACAAATAAAGCATTTTTTTCACTGCATTCTAGTT GTGGTTTGTCCAAACTCATCATCTATCTTATCATGTCTGGATCGCGG CCGCGATCCCGTCGAGAGCTTGGCGTAATCATGGTCATAGCTGTTTCC TGTGTGAAATTGTTATCCGCTCACAATTCCACACAACATACGAGCCGG AGCATAAAGTGTAAAGCCTGGGGTGCCTAATGAGTGAGCTAACTCAC ATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTC GTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTT TGCGTATTGGGCGCTCTCCGCTTCCTCGCTCACTGACTCGCTGCGCTC GGTCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAA TACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGA GCAAAAGGCCAGCAAAAGGCCGCGTTGC TGGCGTTTTTCCATAGGCTCCGCCCCCTGACGAGCATCACAAAATC GACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATAC CAGGCGTTTCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACC CTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTG GCGCTTTCTCAATGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTC GTTCGCTCCAAGCTGGGCTGTTGTGCACGAACCCCCGGTTCAGCCCGAC CGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGA CACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAG AGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTA ACTACGCCTACACTAGAAGGACAGTATTTGGTATCTGCGCTCTGCTGA AGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAA ${\tt CAAACCACCGCTGGTAGCGGTGGTTTTTTTTTTTTTTTGCAAGCAGCAGATT}$ ACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTCTAC GGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGG TCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAA AATGAAGTTTTAAATCAATCTAAAGTATATGAGTAAACTTGGTCTG ACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTC TATTTCGTTCATCCATAGTTGCCTGACTCCCCGTCGTGTAGATAACTAC GATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCGC GAGACCCACGCTCACCGGCTCCAGATTTATCAGCAATAAACCAGCCA GCCGGAAGGCCCAGAAGTGGTCCTGCAACTTTATCCGCCTC

337/498

FIG. 95E

CAGTTAATAGTTTGCGCAACGTTGTTGCCATTGCTACAGGCATCGTGG
TGTCACGCTCGTCGTTTGGTATGGCTTCATTCAGCTCCGGTTCCCAAC
GATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAAAAGCGGTT
AGCTCCTTCGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTG
TTATCACTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGTCATGC
CATCCGTAAGATGCTTTTCTGTGACTGGTGAGTACTCAACCAAGTCAT
TCTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTGCCCGGCGTCAA
TACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATC
ATTGGAAAACGTTCTTCGGGGCGAAAACTCTCAAGGATCTTACCGCTG
TTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATCTTCA
GCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGG
CAAAATGCCGCAAAAAAAGGGAATAATTATTGAAGCATTTATCAGGGTTA
TACTCATACTCTTCCTTTTTCAATATTTTGAAGCATTTATCAGGGTTA
TTGTCTCATGAGCGGATACATATTTGAATGTATTTTAGAAAAAATAAACA
AATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCT

338/498 FIG. 96A

GACGTCGCGCCCTCTAGGCCTCCAAAAAAGCCTCCTCACTACTTCT AAAATTAGTCAGCCATGCATGGGGCGGAGAATGGGCGGAACTGGGCG GAGTTAGGGGCGGATTGGCTAGGGCGGGACTATGGTTGCT GACTAATTGAGATGCATGCTTTGCATACTTCTGCCTGCGGGAGCCT ATACTTCTGCCTGGGGAGCCTGGGGACTTTCCACACCCTAACTGA CACACATTCCACAGAATTAATTCCCCTAGTTATTAATAGTAATCAATT ACGGGGTCATTAGTTCATAGCCCATATATGGAGTTCCGCGTTACATAA ATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGA CTTTCCATTGACGTCAATGGGTGGACTATTTACGGTAAACTGCCCACT TGGCAGTACATCAAGTGTATCATATGCCAAGTACGCCCCCTATTGACG TCAATGACGGTAAATGGCCCGCCTGGCATTATGCCCAGTACATGACCT TATGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCATCGCTA TTACCATGGTGATGCGGTTTTTGGCAGTACATCAATGGGCGTGGATACC GGTTTGACTCACGCGGATTTCCAAGTCTCCACCCCATTGACGTCAATG GGAGTTTGTTTTGGCACCAAAATCAACGGGACTTTCCAAAATGTCGTA ACAACTCCGCCCCATTGACGCAAATGGGCGTAGGCGTGTACGGTGG GAGGTCTATATAAGCAGAGCTGGGTACGTGAACCGTCAGATCGCCTG GAGACGCCATCACAGATCTCTCACTATGGATTTTCAGGTGCAGATTAT CAGCTTCCTGCTAATCAGTGCTTCAGTCATAATGTCCAGAGGACAAAT TGTTCTCCCAGTCTCCAGCAATCCTGTCTGCATCTCCAGGGGAGAA GGTCACAATGACTTGCAGGGCCAGCTCAAGTGTAAGTTACATCCACT GGTTCCAGCAGAAGCCAGGATCCTCCCCCAAACCCTGGATTTATGCCA CATCCAACCTGGCTTCTGGAGTCCCTGTTCGCTTCAGTGGCAGTGGGT CTGGGACTTCTTACTCTCACAATCAGCAGAGTGGAGGCTGAAGATG GAGGGGGACCAAGCTGGAAATCAAACGTACGGTGGCTGCACCATCT GTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGCC TCTGTTGTGCCTGAATAACTTCTATCCCAGAGAGGCCAAAGTA CAGTGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAG TGTCACAGAGCAGGACAGCAAGGACAGCACCTACAGCCTCAGCAGCA CCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTACGCC TGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTT CAACAGGGGAGAGTGTTGAATTCAGATCCGTTAACGGTTACCAACTA CCTAGACTGGATTCGTGACAACATGCGGCCGTGATATCTACGTATGAT CAGCCTCGACTGTGCCTTCTAGTTGCCAGCCATCTGTTGTTTGCCCCTC CCCCGTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCC

339/498 FIG. 96B

TAATAAAATGAGGAAATTGCATCGCATTGTCTGAGTAGGTGTCATTCT AAGACAATAGCAGGCATGCTGGGGATGCGGTGGGCTCTATGGAACCA GCTGGGGCTCGACAGCTATGCCAAGTACGCCCCCTATTGACGTCAATG ACGGTAAATGGCCCGCCTGGCATTATGCCCAGTACATGACCTTATGGG ACTTTCCTACTTGGCAGTACATCTACGTATTAGTCATCGCTATTACCAT GGTGATGCGGTTTTGGCAGTACATCAATGGGCGTGGATAGCGGTTTG ACTCACGGGGATTTCCAAGTCTCCACCCCATTGACGTCAATGGGAGTT TGTTTTGGCACCAAAATCAACGGGACTTTCCAAAATGTCGTAACAACT CCGCCCATTGACGCAAATGGGCGTAGGCGTGTACGGTGGGAGGTC TATATAAGCAGAGCTGGGTACGTCCTCACATTCAGTGATCAGCACTGA ACACAGACCCGTCGACATGGGTTGGAGCCTCATCTTGCTCTTGT CGCTGTTGCTACGCGTGTCCCAGGTACAACTGCAGCAGCCTGG GGCTGAGCTGAAGCCTGGGGCCTCAGTGAAGATGTCCTGCAAGG CTTCTGGCTACACATTTACCAGTTACAATATGCACTGGGTAAAACAGA CACCTGGTCGGGGCCTGGAATGGATTGGAGCTATTTATCCCGGAAAT GGTGATACTTCCTACAATCAGAAGTTCAAAGGCAAGGCCACATTGAC TGCAGACAAATCCTCCAGCACAGCCTACATGCAGCTCAGCAGCCTGA CATCTGAGGACTCTGCGGTCTATTACTGTGCAAGATCGACTTACTACG GCGGTGACTGCTACTTCAATGTCTGGGGCGCAGGGACCACGGTCACC GTCTCTGCAGCTAGCACCAAGGGCCCATCGGTCTTCCCCCTGGCACCC TCCTCCAAGAGCACCTCTGGGGGCACAGCGGCCCTGGGCTGCCTGGT CAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCG CCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAG GACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGG GCACCCAGACCTACATCTGCAACGTGAATCACAAGCCCAGCAACACC AAGGTGGACAAGAAGCAGAGCCCAAATCTTGTGACAAAACTCACAC ATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTT CCTCTTCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCC TGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGG TCAAGTTCAACTGGTACGTGGACGCGTGGAGGTGCATAATGCCAAG ACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAG CGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACA AGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACC ATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCT GCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCTGACCT GCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAG AGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCT GGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAA GAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATG AGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGG GTAAATGAGGATCCGTTAACGGTTACCAACTACCTAGACTGGATTCGT

340/498

FIG. 96C

GACAACATGCGGCCGTGATATCTACGTATGATCAGCCTCGACTGTGCC ACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAATAAAATGAGGAA ATTGCATCGCATTGTCTGAGTAGGTGTCATTCTATTCTGGGGGGTGGG GTGGGCAGGACAGCAAGGGGGAGGATTGGGAAGACAATAGCAGGC ATGCTGGGGATGCGGTGGGCTCTATGGAACCAGCTGGGGCTCGACAG CGCTGGATCTCCCAGCTTTGCTTCTCAATTTCTTATTTGCAT AATGAGAAAAAAGGAAAATTAATTTTAACACCAATTCAGTAGTTGA TTGAGCAAATGCGTTGCCAAAAAGGATGCTTTAGAGACAGTGTTCTCT GCACAGATAAGGACAAACATTATTCAGAGGGAGTACCCAGAGCTGAG ACTCCTAAGCCAGTGAGTGGCACAGCATTCTAGGGAGAAATATGCTT GTCATCACCGAAGCCTGATTCCGTAGAGCCACACCTTGGTAAGGGCC ATAAGGTGAGGTAGGATCAGTTGCTCCTCACATTTGCTTCTGACATAG TTGTGTTGGGAGCTTGGATAGCTTGGACAGCTCAGGGCTGCGATTTCG CGCCAAACTTGACGCCAATCCTAGCGTGAAGGCTGGTAGGATTTTATC CCCGCTGCCATCATGGTTCGACCATTGAACTGCATCGTCGCCGTGTCC CAAAATATGGGGATTGGCAAGAACGGAGACCTACCCTGGCCTCCGCT CAGGAACGAGTTCAAGTACTTCCAAAGAATGACCACAACCTCTTCAG TGGAAGGTAAACAGAATCTGGTGATTATGGGTAGGAAAACCTGGTTC TCCATTCCTGAGAAGAATCGACCTTTAAAGGACAGAATTAATATAGTT CTCAGTAGAGAACTCAAAGAACCACCACGAGGAGCTCATTTTCTTGC ${\tt CAAAAGTTTGGATGATGCCTTAAGACTTATTGAACAACCGGAATTGG}$ CAAGTAAAGTAGACATGGTTTGGATAGTCGGAGGCAGTTCTGTTTACC AGGAAGCCATGAATCAACCAGGCCACCTTAGACTCTTTGTGACAAGG ATCATGCAGGAATTTGAAAGTGACACGTTTTTCCCAGAAATTGATTTG GGGAAATATAAACTTCTCCCAGAATACCCAGGCGTCCTCTGA GGTCCAGGAGAAAAAGGCATCAAGTATAAGTTTGAAGTCTACGAGA AGAAAGACTAACAGGAAGATGCTTTCAAGTTCTCTGCTCCCCTCCTAA AGCTATGCATTTTATAAGACCATGGGACTTTTGCTGGCTTTAGATCA GCCTCGACTGTGCCTTCTAGTTGCCAGCCATCTGTTGTTTGCCCCTCCC CCGTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTA ATAAAATGAGGAAATTGCATCGCATTGTCTGAGTAGGTGTCATTCTAT TCTGGGGGGGGGGGGGGGGGGGGGGGGAGGATTGGGAA GACAATAGCAGGCATGCTGGGGATGCGGTGGGCTCTATGGAACCAGC TGGGGCTCGAGCTACTAGCTTTGCTTCTCAATTTCTTATTTGCATAATG GCAAATGCGTTGCCAAAAAGGATGCTTTAGAGACAGTGTTCTCTGCA CAGATAAGGACAAACATTATTCAGAGGGAGTACCCAGAGCTGAGACT CCTAAGCCAGTGAGTGGCACAGCATTCTAGGGAGAAATATGCTTGTC ATCACCGAAGCCTGATTCCGTAGAGCCACACCTTGGTAAGGGCCAAT CTGCTCACACAGGATAGAGAGGGCAGGGCAGGGCAGAGCATATA AGGTGAGGTAGGATCAGTTGCTCCTCACATTTGCTTCTGACATAGTTG

341/498 FIG. 96D

TGTTGGGAGCTTGGATCGATCCTCTATGGTTGAACAAGATGGATTGCA CGCAGGTTCTCCGGCCGCTTGGGTGGAGAGGCTATTCGGCTATGACTG GGCACAACAGACAATCGGCTGCTCTGATGCCGCCGTGTTCCGGCTGTC AGCGCAGGGCCCCGGTTCTTTTTGTCAAGACCGACCTGTCCGGTGC CCTGAATGAACTGCAGGACGAGGCAGCGCGGCTATCGTGGCCA CGACGGCGTTCCTTGCGCAGCTGTGCTCGACGTTGTCACTGAAGCGGGAAGGGACTGCTATTGGGCGAAGTGCCGGGGCAGGATCTCCTG TCATCTCACCTTGCTGCCGAGAAAGTATCCATCATGGCTGATGCA ATGCGGCGGCTGCATACGCTTGATCCGGCTACCTGCCCATTCGACCAC CAAGCGAAACATCGCATCGAGCGAGCACGTACTCGGATGGAAGCCGG TCTTGTCGATCAGGATGATCTGGACGAAGAGCATCAGGGGCTCGCGC CAGCCGAACTGTTCGCCAGGCTCAAGGCGCGCATGCCCGACGCGAG GATCTCGTCGTGACCCATGGCGATGCCTGCTTGCCGAATATCATGGTG GAAAATGGCCGCTTTTCTGGATTCATCGACTGTGGCCGGCTGGGTGTG GCGGACCGCTATCAGGACATAGCGTTGGCTACCCGTGATATTGCTGA AGAGCTTGGCGGCGAATGGGCTGACCGCTTCCTCGTGCTTTACGGTAT CGCCGCTCCCGATTCGCAGCGCATCGCCTTCTATCGCCTTCTTGACGA GCCCAACCTGCCATCACGAGATTTCGATTCCACCGCCGCCTTCTATGA AAGGTTGGGCTTCGGAATCGTTTTCCGGGACGCCGGCTGGATGATCCT CCAGCGCGGGATCTCATGCTGGAGTTCTTCGCCCACCCCAACTTGTT TATTGCAGCTTATAATGGTTACAAATAAAGCAATAGCATCACAAATTT CACAAATAAAGCATTTTTTCACTGCATTCTAGTTGTGGTTTGTCCAA ACTCATCAATCTATCATGTCTGGATCGCGGCCGCGATCCCGTC GAGAGCTTGGCGTAATCATGGTCATAGCTGTTTCCTGTGTGAAATTGT TATCCGCTCACAATTCCACACAACATACGAGCCGGAAGCATAAAGTG TAAAGCCTGGGGTGCCTAATGAGTGAGCTAACTCACATTAATTGCGTT GCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCA TTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGC GCTCTTCCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCT GCGGCGAGCGGTATCAGCTCACAAAGGCGGTAATACGGTTATCCA CAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCA GCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCC ATAGGCTCCGCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGT CAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCC CCCTGGAAGCTCCCTGTGCGCTCTCCTGTTCCGACCCTGCCGCTTAC CGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCA ATGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAA GCTGGGCTGTGCACGAACCCCCGTTCAGCCCGACCGCTGCGCCTT ATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATC

FIG. 96E

GCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATG TAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTAC ACTAGAAGGACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACC TGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAA AAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGC TCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATC AAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAA ATCAATCTAAAGTATATGAGTAAACTTGGTCTGACAGTTACCAATG CTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCC ATAGTTGCCTGACTCCCCGTCGTGTAGATAACTACGATACGGGAGGG CTTACCATCTGGCCCCAGTGCTGCAATGATACCGCGAGACCCACGCTC ACCGGCTCCAGATTATCAGCAATAAACCAGCCAGCCGGAAGGGCCG ATTGTTGCCGGGAAGCTAGAGTAAGTAGTTCGCCAGTTAATAGTTTGC GCAACGTTGTTGCCATTGCTACAGGCATCGTGGTGTCACGCTCGTCGT TTGGTATGGCTTCATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTA CATGATCCCCCATGTTGTGCAAAAAAGCGGTTAGCTCCTTCGGTCCTC CGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTA TGGCAGCACTGCATAATTCTCTTACTGTCATGCCATCCGTAAGATGCT TTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTA TGCGGCGACCGAGTTGCTCTTGCCCGGCGTCAATACGGGATAATACC GCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGTTCT TCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCG ATGTAACCCACTCGTGCACCCAACTGATCTTCAGCATCTTTTACTTTCA CCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAA AAGGGAATAAGGCCGACACGGAAATGTTGAATACTCATACTCTTCCT TTTTCAATATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGG ATACATATTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTCCGC GCACATTTCCCCGAAAAGTGCCACCT

FIG. 97C

FIG. 98A

347/498

FIG. 98C

351/498

352/498

FIG. 100A

-IG. 101A

FIG. 101B

359/498

FIG. 102A

FIG. 102B

FIG. 102C

FIG. 104B

FIG. 105A

FIG. 105B

FIG. 105C

FIG. 111A

FIG. 112A

395/498

FIG. 115A

WO 2004/033651 PCT/US2003/031974

FIG. 116A

410/498

WO 2004/033651 PCT/US2003/031974

кDа	188	96	62	49 38	24 44 87 49
₹		整流	**		
DEVE					**
Aqs					
о <u>-</u>					
3A3	D			- 77	
0) H	ut-		一般ない	
Aq	IS				

FIG. 118B

FIG. 118A

ЪС

AGS

DEAE

G2

414/498

FIG. 118D

FIG. 118C

FIG. 118E

WO 2004/033651 PCT/US2003/031974

416/498

Pre Post

FIG. 119

WO 2004/033651 PCT/US2003/031974

WO 2004/033651 PCT/US2003/031974

425/498

-1G. 128

FIG. 129

FIG. 130

429/498

430/498

434/498

FIG. 137

FIG. 138

FIG. 141

FIG. 143A

FIG. 1431

FIG. 146

448/498

FIG. 152

FIG. 154

FIG. 155

FIG. 156

FIG. 157

460/498

FIG. 161

FIG. 162

FIG. 163

FIG. 164

FIG. 165

FIG. 166

FIG. 167

FIG. 168

FIG. 170

478/498

FIG. 176

480/498

482/498

FIG. 181

FIG. 182A

FIG. 187A

FIG. 187B

FIG. 189

FIG. 190

FIG. 191

SEQUENCE LISTING

<110>	DeFi Zopi Baye Hake Cher	se Technolog rees, Shawn I, David er, Robert es, David n, Xi e, Caryne	gies,	Inc.									
<120>	ERYTHROPOIETIN: REMODELING AND GLYCOCONJUGATION OF ERYTHROPOIETIN												
<130>	040853-01-5083WO												
<150> <151>	PCT/US02/32263 2002-10-09												
<150> <151>	US 10/287,994 2002-11-5												
<150> <151>		.0/360,770 3-01-06											
<150> <151>	US 10/369,779 2003-03-17												
<150> <151>	US 10/410,945 2003-04-09												
<160>	75												
<170>	Pate	entIn versio	on 3.2	2									
<210><211><211><212><213>	1 525 DNA Homo	o sapiens											
<400>	1 ctgg	gccctgccag	ctcc	etgece	cagagettee	tgctcaagtg	cttagagcaa	60					
gtgagga	aaga	tccagggcga	tggc	gcagcg	ctccaggaga	agctgtgtgc	cacctacaag	120					
ctgtgc	cacc	ccgaggagct	ggtg	ctgctc	ggacactctc	tgggcatccc	ctgggctccc	180					
ctgagea	agct	gccccagcca	ggcc	ctgcag	ctggcaggct	gcttgagcca	actccatage	240					
ggccttt	tcc	tctaccaggg	gctc	ctgcag	gccctggaag	ggatctcccc	cgagttgggt	300					
cccacct	tgg	acacactgca	gctg	gacgtc	gccgactttg	ccaccaccat	ctggcagcag	360					
atggaag	gaac	tgggaatggc	ccct	gecetg	cagcccaccc	agggtgccat	gccggccttc	420					
gcctcto	gctt	tccagcgccg	ggca	ggaggg	gtcctggttg	cctcccatct	gcagagcttc	480					
ctggagg	gtgt	cgtaccgcgt	tcta	cgccac	cttgcccage	cctga		525					
<210> <211> <212>	2 174 PRT												

<213> Homo sapiens

<400> 2

Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys 1 5 10 15

Cys Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln . 20 25 30

Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val 35 40 45

Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys 50 55 60

Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser 65 70 75 80

Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser 85 90 95

Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp 100 105 110

Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro 115 120 125

Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe 130 135 140

Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe 145 150 155 160

Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro 165 170

<210> 3

<211> 1733

<212> DNA

<213> Homo sapiens

<400> 3

60 gegeetetta tgtacccaca aaaatetatt tteaaaaaag ttgetetaag aatatagtta 120 tqcaataata aaacattaac tttatacttt ttaatttaat gtatagaata gagatataca 180 taggatatgt aaatagatac acagtgtata tgtgattaaa atataatggg agattcaatc 240 agaaaaaagt ttctaaaaag gctctggggt aaaagaggaa ggaaacaata atgaaaaaaa 300 tgtggtgaga aaaacagctg aaaacccatg taaagagtgt ataaagaaag caaaaagaga 360 420 aqtaqaaaqt aacacagggg catttggaaa atgtaaacga gtatgttccc tatttaaggc taggcacaaa gcaaggtctt cagagaacct ggagcctaag gtttaggctc acccatttca 540 accagtctag cagcatctgc aacatctaca atggccttga cctttgcttt actggtggcc ctcctggtgc tcagctgcaa gtcaagctgc tctgtgggct gtgatctgcc tcaaacccac 600

agcctgggta g	gcaggaggac	cttgatgctc	ctggcacaga	tgaggagaat	ctctctttc	660
tcctgcttga a	aggacagaca	tgactttgga	tttccccagg	aggagtttgg	caaccagttc	720
caaaaggctg a	aaccatccc	tgtcctccat	gagatgatco	agcagatctt	caatctcttc	780
agcacaaagg a	actcatctgc	tgcttgggat	gagaccctcc	tagacaaatt	ctacactgaa	840
ctctaccagc a	agctgaatga	cctggaagcc	tgtgtgatac	agggggtggg	ggtgacagag	900
actcccctga t	cgaaggagga	ctccattctg	gctgtgagga	aatacttcca	aagaatcact	960
ctctatctga a	aagagaagaa	atacagccct	tgtgcctggg	aggttgtcag	agcagaaatc	1020
atgagatett t	tttctttgtc	aacaaacttg	caagaaagtt	: taagaagtaa	ggaatgaaaa	1080
ctggttcaac a	atggaaatga	ttttcattga	ttcgtatgc	agctcacctt	tttatgatct	1140
gccatttcaa a	agactcatgt	ttctgctatg	accatgacad	gatttaaatc	ttttcaaatg	1200
tttttaggag †	tattaatcaa	cattgtattc	agctcttaaq	g gcactagtcc	cttacagagg	1260
accatgctga (ctgatccatt	atctatttaa	atattttaa	a aatattattt	atttaactat	1320
ttataaaaca a	acttattttt	gttcatatta	tgtcatgtg	acctttgcac	agtggttaat	1380
gtaataaaat	gtgttctttg	tatttggtaa	atttatttt	g tgttgttcat	tgaacttttg	1440
ctatggaact ·	tttgtacttg	tttattcttt	aaaatgaaa	tccaagccta	attgtgcaac	1500
ctgattacag	aataactggt	acacttcatt	tgtccatca	a tattatattc	aagatataag	1560
taaaaataaa	ctttctgtaa	accaagttgt	atgttgtac	caagataaca	gggtgaacct	1620
aacaaataca	attctgctct	cttgtgtatt	tgatttttg	t atgaaaaaaa	ctaaaaatgg	1680
taatcatact	taattatcag	ttatggtaaa	tggtatgaa	g agaagaagga	acg	1733
<210> 4 <211> 188 <212> PRT <213> Homo	sapiens					
<400> 4 Met Ala Leu 1	Thr Phe A	la Leu Leu	Val Ala Le 10	u Leu Val Lei	ı Ser Cys 15	
Lys Ser Ser	Cys Ser V 20	al Gly Cys	Asp Leu Pr 25	o Gln Thr Hi:	s Ser Leu	
Gly Ser Arg 35	Arg Thr L	eu Met Leu 40	Leu Ala Gl	n Met Arg Aro 45	g Ile Ser	
Leu Phe Ser 50	Cys Leu L	ys Asp Arg 55	His Asp Ph	e Gly Phe Pro	o Gln Glu	
Glu Phe Gly 65		he Gln Lys O	Ala Glu Th 75	r Ile Pro Va	l Leu His 80	

3

Glu Met Ile Gln Gln Ile Phe Asn Leu Phe Ser Thr Lys Asp Ser Ser

V	/ O 2 0	04/03	3651											P	CT/US2	003/0319
				85					90					95		
Ala	Ala	Trp	Asp 100	Glu	Thr	Leu	Leu	Asp 105	Lys	Phe	Tyr	Thr	Glu 110	Leu	Tyr	
Gln	Gln	Leu 115	Asn	Asp	Leu	Glu	Ala 120	Cys	Val	Ile	Gln	Gly 125	Val	Gly	Val	
Thr	Glu 130	Thr	Pro	Leu	Met	Lys 135	Glu	Asp	Ser	Ile	Leu 140	Ala	Val	Arg	Lys	
Tyr 145	Phe	Gln	Arg	Ile	Thr 150	Leu	Tyr	Leu	Lys	Glu 155	Lys	Lys	Tyr	Ser	Pro 160	
Cys	Ala	Trp	Glu	Val 165	Val	Arg	Ala	Glu	Ile 170	Met	Arg	Ser	Phe	Ser 175	Leu	
Ser	Thr	Asn	Leu 180	Gln	Glu	Ser	Leu	Arg 185	Ser	Lys	Glu					
<210 <210 <210 <210	1> 2>	5 757 DNA Homo	sap.	iens												
<40		5 aca	agtg	tctc	ct c	caaa	ttgc	t ct	cctg	ttgt	gct.	tctc	cac	taca	gctctt	60
tcc	atga	gct	acaa	cttg	ct t	ggat	tcct	a ca	aaga	agca	gca	attt	tca	gtgt	cagaag	120
ctc	ctgt	ggc	aatt	gaat	aa a	aggc	ttga	a ta	ttgc	ctca	agg	acag	gat	gaac	tttgac	180
atc	cctg	agg	agat	taag	ca g	ctgc	agca	g tt	ccag	aagg	agg	acgc	cgc	attg	accatc	240
tat	gaga	tgc	tcca	gaac	at c	tttg	ctat	t tt	caga	caag	att	catc	tag	cact	ggctgg	300
aat	gaga	cta	ttgt	tgag	aa c	ctcc	tggc	t aa	tgtc	tatc	atc	agat	aaa	ccat	ctgaag	360
aca	gtcc	tgg	aaga	aaaa	ct g	gaga	aaga	a ga	tttt	acca	aaa	gaaa	act	catg	agcagt	420
ctg	cacc	tga	aaag	atat	ta t	ggga	ggat	t ct	gcat	tacc	tga	aggc	caa	ggag	tacagt	480
cac	tgtg	cct	ggac	cata	gt c	agag	tgga	a at	ccta	agga	act	ttta	ctt	catt	aacaga	540
ctt	acag	gtt	acct	ccga	aa c	tgaa	gatc	t cc	tagc	ctgt	ccc	tctg	gga	ctgg	acaatt	600
gct	tcaa	gca	ttct	tcaa	.cc a	gcag	atgc	t gt	ttaa	gtga	ctg	atgg	cta	atgt	actgca	660

<210> 6 <211> 187 <212> PRT <213> Homo sapiens

<400> 6

ttaaatttta ttttggaaaa taaattattt ttggtgc

Met Thr Asn Lys Cys Leu Leu Gln Ile Ala Leu Leu Cys Phe Ser 5 10

720

Thr Thr Ala Leu Ser Met Ser Tyr Asn Leu Leu Gly Phe Leu Gln Arg Ser Ser Asn Phe Gln Cys Gln Lys Leu Leu Trp Gln Leu Asn Gly Arg 35 40 Leu Glu Tyr Cys Leu Lys Asp Arg Met Asn Phe Asp Ile Pro Glu Glu Ile Lys Gln Leu Gln Gln Phe Gln Lys Glu Asp Ala Ala Leu Thr Ile Tyr Glu Met Leu Gln Asn Ile Phe Ala Ile Phe Arg Gln Asp Ser Ser 85 Ser Thr Gly Trp Asn Glu Thr Ile Val Glu Asn Leu Leu Ala Asn Val 100 Tyr His Gln Ile Asn His Leu Lys Thr Val Leu Glu Glu Lys Leu Glu 120 Lys Glu Asp Phe Thr Arg Gly Lys Leu Met Ser Ser Leu His Leu Lys 135 130 Arg Tyr Tyr Gly Arg Ile Leu His Tyr Leu Lys Ala Lys Glu Tyr Ser 1.50 His Cys Ala Trp Thr Ile Val Arg Val Glu Ile Leu Arg Asn Phe Tyr 170 165 Phe Ile Asn Arg Leu Thr Gly Tyr Leu Arg Asn <210> 7 1332 <211> <212> DNA <213> Homo sapiens <400> 7 atggtctccc aggccctcag gctcctctgc cttctgcttg ggcttcaggg ctgcctggct 60 gcagtetteg taacceagga ggaagcecae ggegteetge aceggegeeg gegegeeaac 120 gcgttcctgg aggagctgcg gccgggctcc ctggagaggg agtgcaagga ggagcagtgc 180 tccttcgagg aggcccggga gatcttcaag gacgcggaga ggacgaagct gttctggatt 240 tettacagtg atggggacca gtgtgcctca agtccatgcc agaatggggg ctcctgcaag 300 gaccagetee agtectatat etgettetge etceetgeet tegagggeeg gaactgtgag 360 acgcacaagg atgaccagct gatctgtgtg aacgagaacg gcggctgtga gcagtactgc 420 agtgaccaca cgggcaccaa gcgctcctgt cggtgccacg aggggtactc tctgctggca 480 gacggggtgt cctgcacacc cacagttgaa tatccatgtg gaaaaatacc tattctagaa 540 aaaagaaatg ccagcaaacc ccaaggccga attgtggggg gcaaggtgtg ccccaaaggg 600

gagtgtccat ggcaggtcct gttgttggtg aatggagctc agttgtgtgg ggggaccctg

5

72Ö

780

840

900

960

1020

1080

1140

1200

1260

1320

1332

atcaacacca totgggtggt otocgoggeo cactgtttog acaaaatcaa gaactggagg aacctgatcg cggtgctggg cgagcacgac ctcagcgagc acgacgggga tgagcagagc cggcgggtgg cgcaggtcat catccccagc acgtacgtcc cgggcaccac caaccacgac ategegetge tecqcetgea ceaqeeegtg gteeteactg accatgtggt gecectetge ctgcccgaac ggacgttctc tgagaggacg ctggccttcg tgcgcttctc attggtcagc ggctggggcc agctgctgga ccgtggcgcc acggccctgg agctcatggt gctcaacgtg ccccqqctqa tqacccagga ctgcctgcag cagtcacgga aggtgggaga ctccccaaat atcacggagt acatgttctg tgccggctac tcggatggca gcaaggactc ctgcaagggg qacaqtqqaq qcccacatgc cacccactac cggggcacgt ggtacctgac gggcatcgtc agetggggee agggetgege aacegtggge caetttgggg tgtacaccag ggtctcccag tacatcgagt ggctgcaaaa gctcatgcgc tcagagccac gcccaggagt cctcctgcga gccccatttc cc <210> 8 <211> 444 <212> PRT <213> Homo sapiens <400> 8 Met Val Ser Gln Ala Leu Arg Leu Leu Cys Leu Leu Leu Gly Leu Gln 10 Gly Cys Leu Ala Ala Val Phe Val Thr Gln Glu Glu Ala His Gly Val 20 Leu His Arg Arg Arg Arg Ala Asn Ala Phe Leu Glu Glu Leu Arg Pro 40 45 Gly Ser Leu Glu Arg Glu Cys Lys Glu Glu Gln Cys Ser Phe Glu Glu Ala Arg Glu Ile Phe Lys Asp Ala Glu Arg Thr Lys Leu Phe Trp Ile 75 70 Ser Tyr Ser Asp Gly Asp Gln Cys Ala Ser Ser Pro Cys Gln Asn Gly Gly Ser Cys Lys Asp Gln Leu Gln Ser Tyr Ile Cys Phe Cys Leu Pro Ala Phe Glu Gly Arg Asn Cys Glu Thr His Lys Asp Asp Gln Leu Ile Cys Val Asn Glu Asn Gly Gly Cys Glu Gln Tyr Cys Ser Asp His Thr

6

170

Gly Thr Lys Arg Ser Cys Arg Cys His Glu Gly Tyr Ser Leu Leu Ala

Asp Gly Val Ser Cys Thr Pro Thr Val Glu Tyr Pro Cys Gly Lys Ile

Pro	Iļe	Leu	Glu 180	Lys	Arg	Asn	Ala	Ser 185	Lys	Pro	Gln	Gly	Arg 190	Ile	Val	
Gly	Gly	Lys 195	Val	Суѕ	Pro	Lys	Gly 200	Glu	Cys	Pro	Trp	Gln 205	Val	Leu	Leu	
Leu	Val 210	Asn	Gly	Ala	Gln	Leu 215	Суѕ	Gly	Gly	Thr	Leu 220	Ile	Asn	Thr	Ile	
Trp 225	Val	Val	Ser	Ala	Ala 230	His	Cys	Phe	Asp	Lys 235	Ile	Lys	Asn	Trp	Arg 240	
Asn	Leu	Ile	Ala	Val 245	Leu	Gly	Glu	His	Asp 250	Leu	Ser	Glu	His	Asp 255	Gly	
Asp	Glu	Gln	Ser 260	Arg	Arg	Val	Ala	Gln 265	Val	Ile	Ile	Pro	Ser 270	Thr	Tyr	
Val	Pro	Gly 275	Thr	Thr	Asn	His	Asp 280	Ile	Ala	Leu	Leu	Arg 285	Leu	His	Gln	
Pro	Val 290	Val	Leu	Thr	Asp	His 295	Val	Val	Pro	Leu	Cys 300	Leu	Pro	Glu	Arg	
Thr 305	Phe	Ser	Glu	Arg	Thr 310	Leu	Ala	Phe	Val	Arg 315	Phe	Ser	Leu	Val	Ser 320	
Gly	Trp	Gly	Gln	Leu 325	Leu	Asp	Arg	Gly	Ala 330	Thr	Ala	Leu	Glu	Leu 335	Met	
Val	Leu	Asn	Val 340	Pro	Arg	Leu	Met	Thr 345	Gln	Asp	Cys	Leu	Gln 350	Gln	Ser	
Arg	Lys	Val 355	Gly	Asp	Ser	Pro	Asn 360	Ile	Thr	Glu	Tyr	Met 365	Phe	Cys	Ala	
Gly	Tyr 370	Ser	Asp	Gly	Ser	Lys 375	Asp	Ser	Cys	Lys	Gly 380	Asp	Ser	Gly	Gly	
Pro 385	His	Ala	Thr	His	Tyr 390	Arg	Gly	Thr	Trp	Tyr 395	Leu	Thr	Gly	Ile	Val 400	
Ser	Trp	Gly	Gln	Gly 405	Cys	Ala	Thr	Val	Gly 410	His	Phe	Gly	Val	Tyr 415	Thr	
Arg	Val	Ser	Gln 420	Tyr	Ile	Glu	Trp	Leu 425	Gln	Lys	Leu	Met	Arg 430	Ser	Glu	
Pro	Arg	Pro 435	Gly	Val	Leu	Leu	Arg 440	Ala	Pro	Phe	Pro					
<210 <211 <212 <213	.> 1 !> [) .437)NA Iomo	sani	ans												
			Sapı	. 0113												
	ageç	jcg t													tttta	60
ggat	atct	ac t	cagt	gato	ra at	gtac	agtt	ttt	cttg	atc	atga	aaac	gc c	aaca	aaatt	120

ctgaatcggc	caaagaggta	taattcaggt	aaattggaag	agtttgttca	agggaacctt	180
gagagagaat	gtatggaaga	aaagtgtagt	tttgaagaac	cacgagaagt	ttttgaaaac	240
actgaaaaga	caactgaatt	ttggaagcag	tatgttgatg	gagatcagtg	tgagtccaat	300
ccatgtttaa	atggcggcag	ttgcaaggat	gacattaatt	cctatgaatg	ttggtgtccc	360
tttggatttg	aaggaaagaa	ctgtgaatta	gatgtaacat	gtaacattaa	gaatggcaga	420
tgcgagcagt	tttgtaaaaa	tagtgctgat	aacaaggtgg	tttgctcctg	tactgaggga	480
tatcgacttg	cagaaaacca	gaagtcctgt	gaaccagcag	tgccatttcc	atgtggaaga	540
gtttctgttt	cacaaacttc	taagctcacc	cgtgctgagg	ctgtttttcc	tgatgtggac	600
tatgtaaatc	ctactgaagc	tgaaaccatt	ttggataaca	tcactcaagg	cacccaatca	660
tttaatgact	tcactcgggt	tgttggtgga	gaagatgcca	aaccaggtca	attcccttgg	720
caggttgttt	tgaatggtaa	agttgatgca	ttctgtggag	gctctatcgt	taatgaaaaa	780
tggattgťaa	ctgctgccca	ctgtgttgaa	actggtgtta	aaattacagt	tgtcgcaggt	840
gaacataata	ttgaggagac	agaacataca	gagcaaaagc	gaaatgtgat	tcgagcaatt	900
attcctcacc	acaactacaa	tgcagctatt	aataagtaca	accatgacat	tgcccttctg	960
gaactggacg	aacccttagt	gctaaacagc	tacgttacac	ctatttgcat	tgctgacaag	1020
gaatacacga	acatcttcct	caaatttgga	tctggctatg	taagtggctg	ggcaagagtc	1080
ttccacaaag	ggagatcagc	tttagttctt	cagtacctta	gagttccact	tgttgaccga	1140
gccacatgtc	ttcgatctac	aaagttcacc	atctataaca	acatgttctg	tgctggcttc	1200
catgaaggag	gtagagattc	atgtcaagga	gatagtgggg	gaccccatgt	tactgaagtg	1260
gaagggacca	gtttcttaac	tggaattatt	agctggggtg	aagagtgtgc	aatgaaaggc	1320
aaatatggaa	tatataccaa	ggtatcccgg	tatgtcaact	ggattaagga	aaaaacaaag	1380
ctcacttaat	gaaagatgga	tttccaaggt	taattcattg	gaattgaaaa	ttaacag	1437
<400> 10 Met Gln Ar 1	g Val Asn M 5	et Ile Met .	Ala Glu Ser 10	Pro Ser Le	u Ile Thr 15	

Ile Cys Leu Leu Gly Tyr Leu Leu Ser Ala Glu Cys Thr Val Phe Leu

Asp His Glu Asn Ala Asn Lys Ile Leu Asn Arg Pro Lys Arg Tyr Asn 35 40 45

Ser Gly Lys Leu Glu Glu Phe Val Gln Gly Asn Leu Glu Arg Glu Cys

Met Glu Glu Lys Cys Ser Phe Glu Glu Pro Arg Glu Val Phe Glu Asn 75

Thr Glu Lys Thr Thr Glu Phe Trp Lys Gln Tyr Val Asp Gly Asp Gln

Cys Glu Ser Asn Pro Cys Leu Asn Gly Gly Ser Cys Lys Asp Asp Ile 105

Asn Ser Tyr Glu Cys Trp Cys Pro Phe Gly Phe Glu Gly Lys Asn Cys

Glu Leu Asp Val Thr Cys Asn Ile Lys Asn Gly Arg Cys Glu Gln Phe 135

Cys Lys Asn Ser Ala Asp Asn Lys Val Val Cys Ser Cys Thr Glu Gly

Tyr Arg Leu Ala Glu Asn Gln Lys Ser Cys Glu Pro Ala Val Pro Phe

Pro Cys Gly Arg Val Ser Val Ser Gln Thr Ser Lys Leu Thr Arg Ala 180

Glu Ala Val Phe Pro Asp Val Asp Tyr Val Asn Pro Thr Glu Ala Glu

Thr Ile Leu Asp Asn Ile Thr Gln Gly Thr Gln Ser Phe Asn Asp Phe 210

Thr Arg Val Val Gly Gly Glu Asp Ala Lys Pro Gly Gln Phe Pro Trp

Gln Val Val Leu Asn Gly Lys Val Asp Ala Phe Cys Gly Gly Ser Ile 245

Val Asn Glu Lys Trp Ile Val Thr Ala Ala His Cys Val Glu Thr Gly 265

Val Lys Ile Thr Val Val Ala Gly Glu His Asn Ile Glu Glu Thr Glu 280 275

His Thr Glu Gln Lys Arg Asn Val Ile Arg Ala Ile Ile Pro His His 295

Asn Tyr Asn Ala Ala Ile Asn Lys Tyr Asn His Asp Ile Ala Leu Leu 310 315

Glu Leu Asp Glu Pro Leu Val Leu Asn Ser Tyr Val Thr Pro Ile Cys 330

Ile Ala Asp Lys Glu Tyr Thr Asn Ile Phe Leu Lys Phe Gly Ser Gly

Tyr Val Ser Gly Trp Ala Arg Val Phe His Lys Gly Arg Ser Ala Leu

Val Leu Gln Tyr Leu Arg Val Pro Leu Val Asp Arg Ala Thr Cys Leu 375 380

Arg Ser Thr Lys Phe Thr Ile Tyr Asn Asn Met Phe Cys Ala Gly Phe His Glu Gly Gly Arg Asp Ser Cys Gln Gly Asp Ser Gly Gly Pro His 405 410 Val Thr Glu Val Glu Gly Thr Ser Phe Leu Thr Gly Ile Ile Ser Trp Gly Glu Glu Cys Ala Met Lys Gly Lys Tyr Gly Ile Tyr Thr Lys Val 440 Ser Arg Tyr Val Asn Trp Ile Lys Glu Lys Thr Lys Leu Thr 450 455 <210> 11 <211> 603 <212> DNA <213> Homo sapiens <400> 11 atggattact acagaaaata tgcagctatc tttctggtca cattgtcggt gtttctgcat 60 gttctccatt ccgctcctga tgtgcaggat tgcccagaat gcacgctaca ggaaaaccca 120 ttottotoco agoogggtgo cocaatactt cagtgoatgg gotgotgott ototagagoa 180 tateceaete eactaaqqte caaqaaqaeq atgttggtee aaaagaaegt caeeteagag 240 tccacttgct gtgtagctaa atcatataac agggtcacag taatgggggg tttcaaagtg 300 qaqaaccaca cggcgtgcca ctgcagtact tgttattatc acaaatctta aatgttttac 360 caaqtqctqt cttqatqact qctqattttc tggaatggaa aattaagttg tttagtgttt 420 atggetttgt gagataaaac teteetttte ettaceatae eaetttgaca egetteaagg 480 atatactqca qctttactqc cttcctcctt atcctacagt acaatcagca gtctagttct 540 600 tttcatttgg aatgaataca gcattaagct tgttccactg caaataaagc cttttaaatc 603 atc <210> 12 <211> 116 <212> PRT Homo sapiens <213> <400> 12 Met Asp Tyr Tyr Arq Lys Tyr Ala Ala Ile Phe Leu Val Thr Leu Ser Val Phe Leu His Val Leu His Ser Ala Pro Asp Val Gln Asp Cys Pro 20 25 30 Glu Cys Thr Leu Gln Glu Asn Pro Phe Phe Ser Gln Pro Gly Ala Pro Ile Leu Gln Cys Met Gly Cys Cys Phe Ser Arg Ala Tyr Pro Thr Pro 55

Leu Arg Ser Lys Lys Thr Met Leu Val Gln Lys Asn Val Thr Ser Glu 70 Ser Thr Cys Cys Val Ala Lys Ser Tyr Asn Arg Val Thr Val Met Gly Gly Phe Lys Val Glu Asn His Thr Ala Cys His Cys Ser Thr Cys Tyr Tyr His Lys Ser 115 <210> 13 <211> 390 <212> DNA <213> Homo sapiens <400> 13 60 atqaaqacac tccaqttttt cttccttttc tgttgctgga aagcaatctg ctgcaatagc tgtgagctga ccaacatcac cattgcaata gagaaagaag aatgtcgttt ctgcataagc 120 180 atcaacacca cttggtgtgc tggctactgc tacaccaggg atctggtgta taaggaccca 240 qccaqqccca aaatccaqaa aacatgtacc ttcaaggaac tggtatatga aacagtgaga 300 gtgcccggct gtgctcacca tgcagattcc ttgtatacat acccagtggc cacccagtgt cactgtggca agtgtgacag cgacagcact gattgtactg tgcgaggcct ggggcccagc 360 390 tactgctcct ttggtgaaat gaaagaataa <210> 14 <211> 129 <212> PRT <213> Homo sapiens <400> 14 Met Lys Thr Leu Gln Phe Phe Phe Leu Phe Cys Cys Trp Lys Ala Ile 5 10 Cys Cys Asn Ser Cys Glu Leu Thr Asn Ile Thr Ile Ala Ile Glu Lys Glu Glu Cys Arg Phe Cys Ile Ser Ile Asn Thr Thr Trp Cys Ala Gly 45 Tyr Cys Tyr Thr Arg Asp Leu Val Tyr Lys Asp Pro Ala Arg Pro Lys Ile Gln Lys Thr Cys Thr Phe Lys Glu Leu Val Tyr Glu Thr Val Arg Val Pro Gly Cys Ala His His Ala Asp Ser Leu Tyr Thr Tyr Pro Val Ala Thr Gln Cys His Cys Gly Lys Cys Asp Ser Asp Ser Thr Asp Cys 105 110 Thr Val Arg Gly Leu Gly Pro Ser Tyr Cys Ser Phe Gly Glu Met Lys

120 125 115

Glu

<210> 15 <211> 1342 <212> DNA <213> Homo sapiens

<400> 15

cccggagccg gaccggggcc accgcgcccg ctctgctccg acaccgcgcc ccctggacag 60 cegecetete etecaggece gtggggetgg ceetgeaceg cegagettee egggatgagg 120 gcccccggtg tggtcacccg gcgcgcccca ggtcgctgag ggaccccggc caggcgcgga 180 gatggggtg cacgaatgtc ctgcctggct gtggcttctc ctgtccctgc tgtcgctccc 240 300 tetgggeete ceagteetgg gegeeceaee aegeeteate tgtgaeagee gagteetgga 360 gaggtacctc ttggaggcca aggaggccga qaatatcacg acgggctgtg ctgaacactg 420 cagettgaat gagaatatea etgteecaga caccaaagtt aatttetatg eetggaagag gatggaggtc gggcagcagg ccgtagaagt ctggcagggc ctggccctgc tgtcggaagc 480 tgtcctgcgg ggccaggccc tgttggtcaa ctcttcccag ccgtgggagc ccctgcagct 540 gcatgtggat aaagccgtca gtggccttcg cagcctcacc actctgcttc gggctctgcg 600 ageccagaag gaagecatet eccetecaga tgeggeetea getgeteeae teegaacaat 660 cactgctgac actttccgca aactcttccg agtctactcc aatttcctcc ggggaaagct 720 gaagetgtac acaggggagg cetgeaggae aggggaeaga tgaceaggtg tgtecacetg 780 840 qqcatatcca ccacctccct caccaacatt gcttgtgcca caccctcccc cgccactcct 900 quaccccqtc quqqqctct caqctcagcg ccagcctgtc ccatggacac tccagtgcca 960 qcaatgacat ctcaggggcc agaggaactg tccagagagc aactctgaga tctaaggatg tcacagggcc aacttgaggg cccagagcag gaagcattca gagagcagct ttaaactcag 1020 ggacagagec atgetgggaa gaegeetgag eteaetegge accetgeaaa atttgatgee 1080 aggacacget ttggaggega tttacctgtt ttcgcaccta ccatcaggga caggatgacc 1140 tggagaactt aggtggcaag ctgtgacttc tccaggtctc acgggcatgg gcactccctt 1200 1260 agtagcaaga gccccttqa caccagagta qtagaaacca tgaagacaga atgggggctg 1320 qcctctggct ctcatggggt ccaagttttg tgtattcttc aacctcattg acaagaactg 1342 aaaccaccaa aaaaaaaaaa aa

<210> 16 <211> 193 PRT <212>

<213> Homo sapiens

<400		. 6	1	~ 3	~		70 T	m			T	T	T 011	C 0 X	Ton	
Met 1	GТУ	Val	His	GLu 5	Cys	Pro	Ala	Trp	Leu 10	Trp	ьeu	Leu	Leu	15	Leu	
Leu	Ser	Leu	Pro 20	Leu	Gly	Leu	Pro	Val 25	Leu	Gly	Ala	Pro	Pro 30	Arg	Leu	
Ile	Суз	Asp 35	Ser	Arg	Val	Leu	Glu 40	Arg	Tyr	Leu	Leu	Glu 45	Ala	Lys	Glu	
Ala	Glu 50	Asn	Ile	Thr	Thr	Gly 55	Cys	Ala	Glu	His	Cys 60	Ser	Leu	Asn	Glu	
Asn 65	Ile	Thr	Val	Pro	Asp 70	Thr	Lys	Val	Asn	Phe 75	Tyr	Ala	Trp	Lys	Arg 80	
Met	Glu	Val	Gly	Gln 85	Gln	Ala	Val	Glu	Val 90	Trp	Gln	Gly	Leu	Ala 95	Leu	
Leu	Ser	Glu	Ala 100	Val	Leu	Arg	Gly	Gln 105	Ala	Leu	Leu	Val	Asn 110	Ser	Ser	
Gln	Pro	Trp 115	Glu	Pro	Leu	Gln	Leu 120	His	Val	Asp	Lys	Ala 125	Val	Ser	Gly	
Leu	Arg 130	Ser	Leu	Thr	Thr	Leu 135	Leu	Arg	Ala	Leu	Arg 140	Ala	Gln	Lys	Glu	
Ala 145	Ile	Ser	Pro	Pro	Asp 150	Ala	Ala	Ser	Ala	Ala 155	Pro	Leu	Arg	Thr	Ile 160	
Thr	Ala	Asp	Thr	Phe 165	Arg	Lys	Leu	Phe	Arg 170	Val	Tyr	Ser	Asn	Phe 175	Leu	
Arg	Gly	Lys	Leu 180		Leu	Tyr	Thr	Gly 185	Glu	Ala	Суз	Arg	Thr 190	Gly	Asp	
Arg																
<21 <21 <21 <21	1> 2>	17 435 DNA Homo	sap	iens												
<40 atg		17 tgc	agag	cctg	ct g	ctct	tggg	c ac	tgtg	gcct	gca	gcat	ctc	tgca	acagaa	60
cgc	tcgc	cca	gccc	cago	ac g	cagc	cctg	g ga	gcat	gtga	atg	ccat	cca	ggag	gcccgg	120
cgt	ctcc	tga	acct	gagt	ag a	gaca	ctgc	t gc	tgag	atga	atg	aaac	agt	agaa	gtcatc	180
tca	gaaa	tgt	ttga	cctc	ca g	gago	cgac	c tg	ccta	caga	ccc	gcct	gga	gctg	tacaag	240
cag	ggcc	tgc	agaa	cago	ct c	acca	agct	c aa	gggc	ccct	tga	.ccat	gat	ggcc	agccac	300
tac	aagc	agc	actg	rccct	.cc a	acco	cgga	a ac	ttcc	tgtg	caa	ccca	.gat	tato	accttt	360
~==	actt	tca	aaga	เสลลด	at o	raago	actt	t ct	actt	at.ca	tcc	cctt	tga	ctac	tgggag	420

ccagtccagg agtga 435

<211> 144

<212> PRT

<213> Homo sapiens

<400> 18

Met Trp Leu Gln Ser Leu Leu Leu Leu Gly Thr Val Ala Cys Ser Ile 1 $$ 5 $$ 10 $$ 15

Ser Ala Pro Ala Arg Ser Pro Ser Pro Ser Thr Gln Pro Trp Glu His

Val Asn Ala Ile Gln Glu Ala Arg Arg Leu Leu Asn Leu Ser Arg Asp 35 40 45

Thr Ala Ala Glu Met Asn Glu Thr Val Glu Val Ile Ser Glu Met Phe
50 55 60

Asp Leu Gln Glu Pro Thr Cys Leu Gln Thr Arg Leu Glu Leu Tyr Lys 65 70 75 80

Gln Gly Leu Arg Gly Ser Leu Thr Lys Leu Lys Gly Pro Leu Thr Met 85 90 95

Met Ala Ser His Tyr Lys Gln His Cys Pro Pro Thr Pro Glu Thr Ser

Cys Ala Thr Gln Ile Ile Thr Phe Glu Ser Phe Lys Glu Asn Leu Lys 115 120 125

Asp Phe Leu Leu Val Ile Pro Phe Asp Cys Trp Glu Pro Val Gln Glu 130 135 140

<210> 19

<211> 501

<212> DNA

<213> Homo sapiens

<400> 19

atgaaatata caagttatat cttggctttt cagctctgca tcgttttggg ttctcttggc 60 tgttactgcc aggacccata tgtaaaagaa gcagaaaacc ttaagaaata ttttaatgca 120 ggtcattcag atgtagcgga taatggaact cttttcttag gcattttgaa gaattggaaa 180 gaggagagtg acagaaaaat aatgcagagc caaattgtct ccttttactt caaacttttt 240 300 aaaaacttta aagatgacca gagcatccaa aagagtgtgg agaccatcaa ggaagacatg 360 aatgtcaagt ttttcaatag caacaaaaag aaacgagatg acttcgaaaa gctgactaat 420 tattcggtaa ctgacttgaa tgtccaacgc aaagcaatac atgaactcat ccaagtgatg gctgaactgt cgccagcagc taaaacaggg aagcgaaaaa ggagtcagat gctgtttcga 480 501 ggtcgaagag catcccagta a

<210> 20 <211> 166

<212> PRT

<213> Homo sapiens

<400> 20

Met Lys Tyr Thr Ser Tyr Ile Leu Ala Phe Gln Leu Cys Ile Val Leu 1 5 10 15

Gly Ser Leu Gly Cys Tyr Cys Gln Asp Pro Tyr Val Lys Glu Ala Glu 20 25 30

Asn Leu Lys Lys Tyr Phe Asn Ala Gly His Ser Asp Val Ala Asp Asn 35 40 45

Gly Thr Leu Phe Leu Gly Ile Leu Lys Asn Trp Lys Glu Glu Ser Asp 50 55 60

Arg Lys Ile Met Gln Ser Gln Ile Val Ser Phe Tyr Phe Lys Leu Phe 65 70 75 80

Lys Asn Phe Lys Asp Asp Gln Ser Ile Gln Lys Ser Val Glu Thr Ile 85 90 95

Lys Glu Asp Met Asn Val Lys Phe Phe Asn Ser Asn Lys Lys Arg 100 105 110

Asp Asp Phe Glu Lys Leu Thr Asn Tyr Ser Val Thr Asp Leu Asn Val 115 120 125

Gln Arg Lys Ala Ile His Glu Leu Ile Gln Val Met Ala Glu Leu Ser 130 135 140

Pro Ala Ala Lys Thr Gly Lys Arg Lys Arg Ser Gln Met Leu Phe Arg 145 150 155

Gly Arg Arg Ala Ser Gln 165

<210> 21

<211> 1352

<212> DNA

<213> Homo sapiens

<400> 21

ctqqqacagt gaatcgacaa tgccgtcttc tgtctcgtgg ggcatcctcc tgctggcagg 60 120 cctqtqctqc ctggtccctg tctccctggc tgaggatccc cagggagatg ctgcccagaa 180 gacagataca toccaccatg atcaggatca cocaaccttc aacaagatca cocccaacct qqctqaqttc gccttcagcc tataccgcca gctggcacac cagtccaaca gcaccaatat 240 cttcttctcc ccagtgagca tcgctacagc ctttgcaatg ctctccctgg ggaccaaggc 300 360 tgacactcac gatgaaatcc tggagggcct gaatttcaac ctcacggaga ttccggaggc tcagatccat gaaggettee aggaacteet eegtaceete aaccageeag acageeaget 420 ccaqctgacc accggcaatg gcctgttcct cagcgagggc ctgaagctag tggataagtt 480 tttggaggat gttaaaaagt tgtaccactc agaagccttc actgtcaact tcggggacac 540

cgaagaggcc aagaaacaga	tcaacgatta	cgtggagaag	ggtactcaag	ggaaaattgt	600
ggatttggtc aaggagcttg	acagagacac	agtttttgct	ctggtgaatt	acatcttctt	660
taaaggcaaa tgggagagac	cctttgaagt	caaggacacc	gaggaagagg	acttccacgt	720
ggaccaggtg accaccgtga	aggtgcctat	gatgaagcgt	ttaggcatgt	ttaacatcca	780
gcactgtaag aagctgtcca	gctgggtgct	gctgatgaaa	tacctgggca	atgccaccgc	840
catcttcttc ctgcctgatg	aggggaaact	acagcacctg	gaaaatgaac	tcacccacga	900
tatcatcacc aagttcctgg	aaaatgaaga	cagaaggtct	gccagcttac	atttacccaa	960
actgtccatt actggaacct	atgatctgaa	gagcgtcctg	ggtcaactgg	gcatcactaa	1020
ggtcttcagc aatggggctg	acctctccgg	ggtcacagag	gaggcacccc	tgaagctctc	1080
caaggeegtg cataaggetg	tgctgaccat	cgacgagaaa	gggactgaag	ctgctggggc	1140
catgttttta gaggccatac	ccatgtctat	ccccccgag	gtcaagttca	acaaaccctt	1200
tgtcttctta atgattgaac	aaaataccaa	gtctcccctc	ttcatgggaa	aagtggtgaa	1260
tcccacccaa aaataactgc	ctctcgctcc	tcaacccctc	ccctccatcc	ctggccccct	1320
ccctggatga cattaaagaa	gggttgagct	gg			1352

<210> 22

<211> 418

<212> PRT

<213> Homo sapiens

<400> 22

Met Pro Ser Ser Val Ser Trp Gly Ile Leu Leu Leu Ala Gly Leu Cys 1 5 10 15

Cys Leu Val Pro Val Ser Leu Ala Glu Asp Pro Gln Gly Asp Ala Ala 20 25 30

Gln Lys Thr Asp Thr Ser His His Asp Gln Asp His Pro Thr Phe Asn 35 40 45

Lys Ile Thr Pro Asn Leu Ala Glu Phe Ala Phe Ser Leu Tyr Arg Gln 50 55 60

Leu Ala His Gln Ser Asn Ser Thr Asn Ile Phe Phe Ser Pro Val Ser 65 70 75 80

Ile Ala Thr Ala Phe Ala Met Leu Ser Leu Gly Thr Lys Ala Asp Thr $85 \\ 90 \\ 95$

His Asp Glu Ile Leu Glu Gly Leu Asn Phe Asn Leu Thr Glu Ile Pro 100 105 110

Glu Ala Gln Ile His Glu Gly Phe Gln Glu Leu Arg Thr Leu Asn 115 120 125

Gln Pro Asp Ser Gln Leu Gln Leu Thr Thr Gly Asn Gly Leu Phe Leu 130 135 140

Ser Glu Gly Leu Lys Leu Val Asp Lys Phe Leu Glu Asp Val Lys Leu Tyr His Ser Glu Ala Phe Thr Val Asn Phe Gly Asp Thr Glu Glu Ala Lys Lys Gln Ile Asn Asp Tyr Val Glu Lys Gly Thr Gln Gly Lys 185 Ile Val Asp Leu Val Lys Glu Leu Asp Arg Asp Thr Val Phe Ala Leu 200 Val Asn Tyr Ile Phe Phe Lys Gly Lys Trp Glu Arg Pro Phe Glu Val 215 Lys Asp Thr Glu Glu Glu Asp Phe His Val Asp Gln Val Thr Thr Val Lys Val Pro Met Met Lys Arg Leu Gly Met Phe Asn Ile Gln His Cys 250 Lys Lys Leu Ser Ser Trp Val Leu Leu Met Lys Tyr Leu Gly Asn Ala 260 Thr Ala Ile Phe Phe Leu Pro Asp Glu Gly Lys Leu Gln His Leu Glu 280 Asn Glu Leu Thr His Asp Ile Ile Thr Lys Phe Leu Glu Asn Glu Asp Arg Arg Ser Ala Ser Leu His Leu Pro Lys Leu Ser Ile Thr Gly Thr 310 Tyr Asp Leu Lys Ser Val Leu Gly Gln Leu Gly Ile Thr Lys Val Phe 325 Ser Asn Gly Ala Asp Leu Ser Gly Val Thr Glu Glu Ala Pro Leu Lys 345 Leu Ser Lys Ala Val His Lys Ala Val Leu Thr Ile Asp Glu Lys Gly 360 355 Thr Glu Ala Ala Gly Ala Met Phe Leu Glu Ala Ile Pro Met Ser Ile 375 Pro Pro Glu Val Lys Phe Asn Lys Pro Phe Val Phe Leu Met Ile Glu 390 395 Gln Asn Thr Lys Ser Pro Leu Phe Met Gly Lys Val Val Asn Pro Thr 405 410 Gln Lys <210> 23 <211> 2004 <212> DNA <213> Homo sapiens <400> 23 qctaacctag tgcctatagc taaggcaggt acctgcatcc ttgtttttgt ttagtggatc 60

ctctatcctt	cagagactct	ggaacccctg	tggtcttctc	ttcatctaat	gaccctgagg	120
ggatggagtt	ttcaagtcct	tccagagagg	aatgtcccaa	gcctttgagt	agggtaagca	180
tcatggctgg	cagcctcaca	ggtttgcttc	tacttcaggc	agtgtcgtgg	gcatcaggtg	240
cccgcccctg	catccctaaa	agcttcggct	acagctcggt	ggtgtgtgtc	tgcaatgcca	300
catactgtga	ctcctttgac	cccccgacct	ttcctgccct	tggtaccttc	agccgctatg	360
agagtacacg	cagtgggcga	cggatggagc	tgagtatggg	gcccatccag	gctaatcaca	420
cgggcacagg	cctgctactg	accctgcagc	cagaacagaa	gttccagaaa	gtgaagggat	480
ttggaggggc	catgacagat	gctgctgctc	tcaacatcct	tgccctgtca	cccctgccc	540
aaaatttgct	acttaaatcg	tacttctctg	aagaaggaat	cggatataac	atcatccggg	600
tacccatggc	cagctgtgac	ttctccatcc	gcacctacac	ctatgcagac	acccctgatg	660
atttccagtt	gcacaacttc	agcctcccag	aggaagatac	caagctcaag	atacccctga	720
ttcaccgagc	cctgcagttg	gcccagcgtc	ccgtttcact	ccttgccagc	ccctggacat	780
cacccacttg	gctcaagacc	aatggagcgg	tgaatgggaa	ggggtcactc	aagggacagc	840
ccggagacat	ctaccaccag	acctgggcca	gatactttgt	gaagttcctg	gatgcctatg	900
ctgagcacaa	gttacagttc	tgggcagtga	cagctgaaaa	tgagccttct	gctgggctgt	960
tgagtggata	ccccttccag	tgcctgggct	tcacccctga	acatcagcga	gacttcattg	1020
cccgtgacct	aggtcctacc	ctcgccaaca	gtactcacca	caatgtccgc	ctactcatge	1080
tggatgacca	acgcttgctg	ctgccccact	gggcaaaggt	ggtactgaca	gacccagaag	1140
cagctaaata	tgttcatggc	attgctgtac	attggtacct	ggactttctg	gctccagcca	1200
aagccaccct	aggggagaca	caccgcctgt	tecceaacae	catgctcttt	gcctcagagg	1260
cctgtgtggg	ctccaagttc	tgggagcaga	gtgtgcggct	aggctcctgg	gatcgaggga	1320
tgcagtacag	ccacagcatc	atcacgaacc	tcctgtacca	tgtggtcggc	tggaccgact	1380
ggaaccttgc	cctgaacccc	gaaggaggac	ccaattgggt	gcgtaacttt	gtcgacagtc	1440
ccatcattgt	agacatcacc	aaggacacgt	tttacaaaca	gcccatgttc	taccaccttg	1500
gccacttcag	caagttcatt	cctgagggct	cccagagagt	ggggctggtt	gccagtcaga	1560
agaacgacct	ggacgcagtg	gcactgatgc	atcccgatgg	ctctgctgtt	gtggtcgtgc	1620
taaaccgctc	ctctaaggat	gtgcctctta	ccatcaagga	tcctgctgtg	ggcttcctgg	1680
agacaatctc	acctggctac	tccattcaca	cctacctgtg	gcatcgccag	tgatggagca	1740
gatactcaag	gaggcactgg	gctcagcctg	ggcattaaag	ggacagagtc	agctcacacg	1800
ctgtctgtga	ctaaagaggg	cacagcaggg	ccagtgtgag	cttacagcga	cgtaagccca	1860
ggggcaatgg	tttgggtgac	tcactttccc	ctctaggtgg	tgcccagggc	tggaggcccc	1920

1.8

tagaaaaaga teagtaagee eeagtgteee eecageeeee atgettatgt gaacatgege 1980 tgtgtgetge ttgetttgga aact 2004

<210> 24 <211> 536 <212> PRT <213> Homo sapiens

Ala Val Ser Trp Ala Ser Gly Ala Arg Pro Cys Ile Pro Lys Ser Phe $35 \hspace{1cm} 40 \hspace{1cm} 45$

Gly Tyr Ser Ser Val Val Cys Val Cys Asn Ala Thr Tyr Cys Asp Ser 50 55 60

Phe Asp Pro Pro Thr Phe Pro Ala Leu Gly Thr Phe Ser Arg Tyr Glu 65 70 75 80

Ser Thr Arg Ser Gly Arg Arg Met Glu Leu Ser Met Gly Pro Ile Gln 85 90 95

Ala Asn His Thr Gly Thr Gly Leu Leu Leu Thr Leu Gln Pro Glu Gln
100 105 110

Lys Phe Gln Lys Val Lys Gly Phe Gly Gly Ala Met Thr Asp Ala Ala 115 120 125

Ala Leu Asn Ile Leu Ala Leu Ser Pro Pro Ala Gln Asn Leu Leu 130 135 140

Lys Ser Tyr Phe Ser Glu Glu Gly Ile Gly Tyr Asn Ile Ile Arg Val 145 150 155 160

Pro Met Ala Ser Cys Asp Phe Ser Ile Arg Thr Tyr Thr Tyr Ala Asp 165 170 175

Thr Pro Asp Asp Phe Gln Leu His Asn Phe Ser Leu Pro Glu Glu Asp 180 185 190

Thr Lys Leu Lys Ile Pro Leu Ile His Arg Ala Leu Gln Leu Ala Gln 195 200 205

Arg Pro Val Ser Leu Leu Ala Ser Pro Trp Thr Ser Pro Thr Trp Leu 210 215 220

Lys Thr Asn Gly Ala Val Asn Gly Lys Gly Ser Leu Lys Gly Gln Pro 225 230 235 240

Gly Asp Ile Tyr His Gln Thr Trp Ala Arg Tyr Phe Val Lys Phe Leu 245 250 255

Asp Ala Tyr Ala Glu His Lys Leu Gln Phe Trp Ala Val Thr Ala Glu 260 265 270

Asn Glu Pro Ser Ala Gly Leu Leu Ser Gly Tyr Pro Phe Gln Cys Leu Gly Phe Thr Pro Glu His Gln Arg Asp Phe Ile Ala Arg Asp Leu Gly 295 Pro Thr Leu Ala Asn Ser Thr His His Asn Val Arg Leu Leu Met Leu Asp Asp Gln Arg Leu Leu Pro His Trp Ala Lys Val Val Leu Thr 325 330 Asp Pro Glu Ala Ala Lys Tyr Val His Gly Ile Ala Val His Trp Tyr Leu Asp Phe Leu Ala Pro Ala Lys Ala Thr Leu Gly Glu Thr His Arg 360 Leu Phe Pro Asn Thr Met Leu Phe Ala Ser Glu Ala Cys Val Gly Ser Lys Phe Trp Glu Gln Ser Val Arg Leu Gly Ser Trp Asp Arg Gly Met Gln Tyr Ser His Ser Ile Ile Thr Asn Leu Leu Tyr His Val Val Gly Trp Thr Asp Trp Asn Leu Ala Leu Asn Pro Glu Gly Gly Pro Asn Trp 425 Val Arg Asn Phe Val Asp Ser Pro Ile Ile Val Asp Ile Thr Lys Asp 435 Thr Phe Tyr Lys Gln Pro Met Phe Tyr His Leu Gly His Phe Ser Lys 455 Phe Ile Pro Glu Gly Ser Gln Arg Val Gly Leu Val Ala Ser Gln Lys 465 470 Asn Asp Leu Asp Ala Val Ala Leu Met His Pro Asp Gly Ser Ala Val 490 485 Val Val Val Leu Asn Arg Ser Ser Lys Asp Val Pro Leu Thr Ile Lys 500 505 Asp Pro Ala Val Gly Phe Leu Glu Thr .Ile Ser Pro Gly Tyr Ser Ile 525 520 His Thr Tyr Leu Trp His Arg Gln 530 535 <210> 25 <211> 1726 <212> DNA <213> Homo sapiens atggatgcaa tgaaqaqagg gctctgctgt gtgctgctgc tgtgtggagc agtcttcgtt tegeccagee aggaaateea tgeecgatte agaagaggag ccagatetta ecaagtgate

tgcagagatg	aaaaaacgca	gatgatatac	cagcaacatc	agtcatggct	gcgccctgtg	180
ctcagaagca	accgggtgga	atattgctgg	tgcaacagtg	gcagggcaca	gtgccactca	240
gtgcctgtca	aaagttgcag	cgagccaagg	tgtttcaacg	ggggcacctg	ccagcaggcc	300
ctgtacttct	cagatttcgt	gtgccagtgc	cccgaaggat	ttgctgggaa	gtgctgtgaa	360
atagatacca	gggccacgtg	ctacgaggac	cagggcatca	gctacagggg	cacgtggagc	420
acagcggaga	gtggcgccga	gtgcaccaac	tggaacagca	gcgcgttggc	ccagaagccc	480
tacagcgggc	ggaggccaga	cgccatcagg	ctgggcctgg	ggaaccacaa	ctactgcaga	540
aacccagatc	gagactcaaa	gccctggtgc	tacgtcttta	aggcggggaa	gtacagctca	600
gagttctgca	gcacccctgc	ctgctctgag	ggaaacagtg	actgctactt	tgggaatggg	660
tcagcctacc	gtggcacgca	cagcctcacc	gagtcgggtg	cctcctgcct	cccgtggaat	720
tccatgatcc	tgataggcaa	ggtttacaca	gcacagaacc	ccagtgccca	ggcactgggc	780
ctgggcaaac	ataattactg	ccggaatcct	gatggggatg	ccaagccctg	gtgccacgtg	840
ctgaagaacc	gcaggctgac	gtgggagtac	tgtgatgtgc	cctcctgctc	cacctgcggc	900
ctgagacagt	acagecagec	tcagtttcgc	atcaaaggag	ggetettege	cgacatcgcc	960
tcccacccct	ggcaggctgc	catctttgcc	aagcacagga	ggtcgccggg	agageggtte	1020
ctgtgcgggg	gcatactcat	cagctcctgc	tggattctct	ctgccgccca	ctgcttccag	1080
gagaggtttc	cgccccacca	cctgacggtg	atcttgggca	gaacataccg	ggtggtccct	1140
ggcgaggagg	agcagaaatt	tgaagtcgaa	aaatacattg	tccataagga	attcgatgat	1200
gacacttacg	acaatgacat	tgcgctgctg	cagctgaaat	cggattcgtc	ccgctgtgcc	1260
caggagagca	gcgtggtccg	cactgtgtgc	cttcccccgg	cggacctgca	gctgccggac	1320
tggacggagt	gtgagctctc	cggctacggc	aagcatgagg	ccttgtctcc	tttctattcg	1380
gagcggctga	aggaggctca	tgtcagactg	tacccatcca	gccgctgcac	atcacaacat	1440
ttacttaaca	gaacagtcac	cgacaacatg	ctgtgtgctg	gagacactcg	gagcggcggg	1500
ccccaggcaa	acttgcacga	cgcctgccag	ggcgattcgg	gaggccccct	ggtgtgtctg	1560
aacgatggcc	gcatgacttt	ggtgggcatc	atcagctggg	geetgggetg	tggacagaag	1620
gatgtcccgg	gtgtgtacac	caaggttacc	aactacctag	actggattcg	tgacaacatg	1680
cgaccgtgac	caggaacacc	cgactcctca	aaagcaaatg	agatcc		1726

<210> 26 <211> 562 <212> PRT <213> Homo sapiens

<400> 26

Met Asp Ala Met Lys Arg Gly Leu Cys Cys Val Leu Leu Cys Gly Ala Val Phe Val Ser Pro Ser Gln Glu Ile His Ala Arg Phe Arg Arg Gly Ala Arg Ser Tyr Gln Val Ile Cys Arg Asp Glu Lys Thr Gln Met Ile Tyr Gln Gln His Gln Ser Trp Leu Arg Pro Val Leu Arg Ser Asn Arg Val Glu Tyr Cys Trp Cys Asn Ser Gly Arg Ala Gln Cys His Ser Val Pro Val Lys Ser Cys Ser Glu Pro Arg Cys Phe Asn Gly Gly Thr Cys Gln Gln Ala Leu Tyr Phe Ser Asp Phe Val Cys Gln Cys Pro Glu 105 Gly Phe Ala Gly Lys Cys Cys Glu Ile Asp Thr Arg Ala Thr Cys Tyr Glu Asp Gln Gly Ile Ser Tyr Arg Gly Thr Trp Ser Thr Ala Glu Ser Gly Ala Glu Cys Thr Asn Trp Asn Ser Ser Ala Leu Ala Gln Lys Pro Tyr Ser Gly Arg Arg Pro Asp Ala Ile Arg Leu Gly Leu Gly Asn His Asn Tyr Cys Arg Asn Pro Asp Arg Asp Ser Lys Pro Trp Cys Tyr Val Phe Lys Ala Gly Lys Tyr Ser Ser Glu Phe Cys Ser Thr Pro Ala Cys Ser Glu Gly Asn Ser Asp Cys Tyr Phe Gly Asn Gly Ser Ala Tyr Arg 215 210 Gly Thr His Ser Leu Thr Glu Ser Gly Ala Ser Cys Leu Pro Trp Asn 230 Ser Met Ile Leu Ile Gly Lys Val Tyr Thr Ala Gln Asn Pro Ser Ala 245 Gln Ala Leu Gly Leu Gly Lys His Asn Tyr Cys Arg Asn Pro Asp Gly Asp Ala Lys Pro Trp Cys His Val Leu Lys Asn Arg Arg Leu Thr Trp 285 Glu Tyr Cys Asp Val Pro Ser Cys Ser Thr Cys Gly Leu Arg Gln Tyr 295 300 Ser Gln Pro Gln Phe Arg Ile Lys Gly Gly Leu Phe Ala Asp Ile Ala 310 315 Ser His Pro Trp Gln Ala Ala Ile Phe Ala Lys His Arg Arg Ser Pro

				325				:	330					335		
Gly	Glu	Arg	Phe 340	Leu	Cys	Gly	Gly	Ile 345	Leu	Ile	Ser	Ser	Cys 350	Trp	Ile	
Leu	Ser	Ala 355	Ala	His	Cys	Phe	Gln 360	Glu	Arg	Phe	Pro	Pro 365	His	His	Leu	
Thr	Val 370	Ile	Leu	Gly	Arg	Thr 375	Tyr	Arg	Val	Val	Pro 380	Gly	Glu	Glu	Glu	
Gln 385	Lys	Phe	Glu	Val	Glu 390	Lys	Tyr	Ile	Val	His 395	Lys	Glu	Phe	Asp	Asp 400	
Asp	Thr	Tyr	Asp	Asn 405	Asp	Ile	Ala	Leu	Leu 410	Gln	Leu	Lys	Ser	Asp 415	Ser	
Ser	Arg	Cys	Ala 420	Gln	Glu	Ser	Ser	Val 425	Val	Arg	Thr	Val	Cys 430	Leu	Pro	
Pro	Ala	Asp 435	Leu	Gln	Leu	Pro	Asp 440	Trp	Thr	Glu	Cys	Glu 445	Leu	Ser	Gly	
Tyr	Gly 450	Lys	His	Glu	Ala	Leu 455	Ser	Pro	Phe	Tyr	Ser 460	Glu	Arg	Leu	Lys	
Glu 465	Ala	His	Val	Arg	Leu 470	Tyr	Pro	Ser	Ser	Arg 475	Cys	Thr	Ser	Gln	His 480	
Leu	Leu	Asn	Arg	Thr 485	Val	Thr	Asp	Asn	Met 490	Leu	Cys	Ala	Gly	Asp 495	Thr	
Arg	Ser	Gly	Gly 500	Pro	Gln	Ala	Asn	Leu 505	His	Asp	Ala	Cys	Gln 510	Gly	Asp	
Ser	Gly	Gly 515	Pro	Leu	Val	Cys	Leu 520	Asn	Asp	Gly	Arg	Met 525	Thr	Leu	Val	
Gly	Ile 530	Ile	Ser	Trp	Gly	Leu 535	Gly	Cys	Gly	Gln	Lys 540	Asp	Val	Pro	Gly	
Val 545	Tyr	Thr	Lys	Val	Thr 550	Asn	Tyr	Leu	Asp	Trp 555	Ile	Arg	Asp	Asn	Met 560	
Arg	Pro															
	1> 2>	27 825 DNA Homo	sap:	iens												
<40		27					, ,		1	,			_ 1	1		
															ggatgc	60
			-												cttcaa	120
_			-												atttac	180
aga	tgat	ttt	gaat	ggaa	tt a	ataa	ttac	a ag	aatc	ccaa	act	cacc	agg	atgc	tcacat	240

300

ttaagtttta catgcccaag aaggccacag aactgaaaca gcttcagtgt ctagaagaag

aactcaaacc tetggaggaa gtgetgaatt tagetcaaag caaaaacttt caettaagac	360
ccagggactt aatcagcaat atcaacgtaa tagttctgga actaaaggga tctgaaacaa	420
cattcatgtg tgaatatgca gatgagacag caaccattgt agaatttctg aacagatgga	480
ttaccttttg tcaaagcatc atctcaacac taacttgata attaagtgct tcccacttaa	540
aacatatcag gccttctatt tatttattta aatatttaaa ttttatattt attgttgaat	600
gtatggttgc tacctattgt aactattatt cttaatctta aaactataaa tatggatctt	660
ttatgattet ttttgtaage eetagggget etaaaatggt ttacettatt tateccaaaa	720
atatttatta ttatgttgaa tgttaaatat agtatctatg tagattggtt agtaaaacta	780
tttaataaat ttgataaata taaaaaaaaa aaacaaaaaa aaaaa	825
<210> 28 <211> 156 <212> PRT <213> Homo sapiens	
<pre><400> 28 Met Tyr Arg Met Gln Leu Leu Ser Cys Ile Ala Leu Ile Leu Ala Leu 1</pre>	
Val Thr Asn Ser Ala Pro Thr Ser Ser Ser Thr Lys Lys 20 25 30	
Thr Gln Leu Gln Leu Glu His Leu Leu Leu Asp Leu Gln Met Ile Leu 35 40 45	
Asn Gly Ile Asn Asn Tyr Lys Asn Pro Lys Leu Thr Arg Met Leu Thr 50 55 60	
Phe Lys Phe Tyr Met Pro Lys Lys Ala Thr Glu Leu Lys Gln Leu Gln 65 70 75 80	
Cys Leu Glu Glu Glu Leu Lys Pro Leu Glu Glu Val Leu Asn Leu Ala 85 90 95	
Gln Ser Lys Asn Phe His Leu Arg Pro Arg Asp Leu Ile Ser Asn Ile 100 105 110	
Asn Val Ile Val Leu Glu Leu Lys Gly Ser Glu Thr Thr Phe Met Cys 115 120 125	
Glu Tyr Ala Asp Glu Thr Ala Thr Ile Val Glu Phe Leu Asn Arg Trp 130 135 140	
Ile Thr Phe Cys Gln Ser Ile Ile Ser Thr Leu Thr 145 150 155	
<210> 29 <211> 7931 <212> DNA <213> Homo sapiens	
<400> 29	

atgcaaatag	agctctccac	ctgcttcttt	ctgtgccttt	tgcgattctg	ctttagtgcc	60
accagaagat	actacctggg	tgcagtggaa	ctgtcatggg	actatatgca	aagtgatctc	120
ggtgagctgc	ctgtggacgc	aagatttcct	cctagagtgc	caaaatcttt	tccattcaac	180
acctcagtcg	tgtacaaaaa	gactctgttt	gtagaattca	cggatcacct	tttcaacatc	240
gctaagccaa	ggccaccctg	gatgggtctg	ctaggtccta	ccatccaggc	tgaggtttat	300
gatacagtgg	tcattacact	taagaacatg	gcttcccatc	ctgtcagtct	tcatgctgtt	360
ggtgtatcct	actggaaagc	ttctgaggga	gctgaatatg	atgatcagac	cagtcaaagg	420
gagaaagaag	atgataaagt	cttccctggt	ggaagccata	catatgtctg	gcaggtcctg	480
aaagagaatg	gtccaatggc	ctctgaccca	ctgtgcctta	cctactcata	tctttctcat	540
gtggacctgg	taaaagactt	gaattcaggc	ctcattggag	ccctactagt	atgtagagaa	600
gggagtctgg	ccaaggaaaa	gacacagacc	ttgcacaaat	ttatactact	ttttgctgta	660
tttgatgaag	ggaaaagttg	gcactcagaa	acaaagaact	ccttgatgca	ggatagggat	720
gctgcatctg	ctcgggcctg	gcctaaaatg	cacacagtca	atggttatgt	aaacaggtct	780
ctgccaggtc	tgattggatg	ccacaggaaa	tcagtctatt	ggcatgtgat	tggaatgggc	840
accactcctg	aagtgcactc	aatattcctc	gaaggtcaca	catttcttgt	gaggaaccat	900
cgccaggcgt	ccttggaaat	ctcgccaata	actttcctta	ctgctcaaac	actcttgatg	960
gaccttggac	agtttctact	gttttgtcat	atctcttccc	accaacatga	tggcatggaa	1020
gcttatgtca	aagtagacag	ctgtccagag	gaaccccaac	tacgaatgaa	aaataatgaa	1080
gaagcggaag	actatgatga	tgatcttact	gattctgaaa	tggatgtggt	caggtttgat	1140
gatgacaact	ctccttcctt	tatccaaatt	cgctcagttg	ccaagaagca	tcctaaaact	1200
tgggtacatt	acattgctgc	tgaagaggag	gactgggact	atgctccctt	agtcctcgcc	1260
cccgatgaca	gaagttataa	aagtcaatat	ttgaacaatg	gccctcagcg	gattggtagg	1320
aagtacaaaa	aagtccgatt	tatggcatac	acagatgaaa	cctttaagac	tegtgaaget	1380
attcagcatg	aatcaggaat	cttgggacct	ttactttatg	gggaagttgg	agacacactg	1440
ttgattatat	ttaagaatca	agcaagcaga	ccatataaca	tctaccctca	cggaatcact	1500
gatgtccgtc	ctttgtattc	aaggagatta	ccaaaaggtg	taaaacattt	gaaggatttt	1560
ccaattctgc	caggagaaat	attcaaatat	aaatggacag	tgactgtaga	agatgggcca	1620
actaaatcag	atcctcggtg	cctgacccgc	tattactcta	gtttcgttaa	tatggagaga	1680
gatctagctt	caggactcat	tggccctctc	ctcatctgct	acaaagaatc	tgtagatcaa	1740
agaggaaacc	agataatgtc	agacaagagg	aatgtcatcc	tgttttctgt	atttgatgag	1800
aaccgaagct	ggtacctcac	agagaatata	caacgctttc	tccccaatcc	agctggagtg	1860

cagettgagg atccagagtt	ccaagcctcc	aacatcatgc	acagcatcaa	tggctatgtt	1920
tttgatagtt tgcagttgtc	agtttgtttg	catgaggtgg	catactggta	cattctaagc	1980
attggagcac agactgactt	cctttctgtc	ttcttctctg	gatatacctt	caaacacaaa	2040
atggtctatg aagacacact	caccctattc	ccattctcag	gagaaactgt	cttcatgtcg	2100
atggaaaacc caggtctatg	gattctgggg	tgccacaact	cagactttcg	gaacagaggc	2160
atgaccgcct tactgaaggt	ttctagttgt	gacaagaaca	ctggtgatta	ttacgaggac	2220
agttatgaag atatttcagc	atacttgctg	agtaaaaaca	atgccattga	accaagaagc	2280
tteteccaga atteaagaca	ccgtagcact	aggcaaaagc	aatttaatgc	caccacaatt	2340
ccagaaaatg acatagagaa	gactgaccct	tggtttgcac	acagaacacc	tatgcctaaa	2400
atacaaaatg tctcctctag	tgatttgttg	atgctcttgc	gacagagtcc	tactccacat	2460
gggctatcet tatctgatet	ccaagaagcc	aaatatgaga	ctttttctga	tgatccatca	2520
cctggagcaa tagacagtaa	taacagcctg	tctgaaatga	cacacttcag	gecacagete	2580
catcacagtg gggacatggt	atttacccct	gagtcaggcc	tccaattaag	attaaatgag	2640
aaactgggga caactgcagc	aacagagttg	aagaaacttg	atttcaaagt	ttctagtaca	2700
tcaaataatc tgatttcaac	aattccatca	gacaatttgg	cagcaggtac	tgataataca	2760
agttccttag gacccccaag	tatgccagtt	cattatgata	gtcaattaga	taccactcta	2820
tttggcaaaa agtcatctcc	ccttactgag	tctggtggac	ctctgagctt	gagtgaagaa	2880
aataatgatt caaagttgtt	agaatcaggt	ttaatgaata	gccaagaaag	ttcatgggga	2940
aaaaatgtat cgtcaacaga	gagtggtagg	ttatttaaag	ggaaaagagc	tcatggacct	3000
gctttgttga ctaaagataa	tgccttattc	aaagttagca	tctctttgtt	aaagacaaac	3060
aaaacttcca ataattcagc	aactaataga	aagactcaca	ttgatggccc	atcattatta	3120
attgagaata gtccatcagt	ctggcaaaat	atattagaaa	gtgacactga	gtttaaaaaa	3180
gtgacacctt tgattcatga	cagaatgctt	atggacaaaa	atgctacagc	tttgaggcta	3240
aatcatatgt caaataaaac	tacttcatca	aaaaacatgg	aaatggtcca	acagaaaaaa	3300
gagggcccca ttccaccaga	tgcacaaaat	ccagatatgt	cgttctttaa	gatgctattc	3360
ttgccagaat cagcaaggtg	gatacaaagg	actcatggaa	agaactctct	gaactctggg	3420
caaggcccca gtccaaagca	attagtatcc	ttaggaccag	aaaaatctgt	ggaaggtcag	3480
aatttcttgt ctgagaaaaa	caaagtggta	gtaggaaagg	gtgaatttac	aaaggacgta	3540
ggactcaaag agatggtttt	tccaagcagc	agaaacctat	ttcttactaa	cttggataat	3600
ttacatgaaa ataatacaca	caatcaagaa	aaaaaaattc	aggaagaaat	agaaaagaag	3660

gaaacattaa	tccaagagaa	tgtagttttg	cctcagatac	atacagtgac	tggcactaag	3720
aatttcatga	agaacctttt	cttactgagc	actaggcaaa	atgtagaagg	ttcatatgac	3780
ggggcatatg	ctccagtact	tcaagatttt	aggtcattaa	atgattcaac	aaatagaaca	3840
aagaaacaca	cagctcattt	ctcaaaaaaa	ggggaggaag	aaaacttgga	aggcttggga	3900
aatcaaacca	agcaaattgt	agagaaatat	gcatgcacca	caaggatatc	tcctaataca	3960
agccagcaga	attttgtcac	gcaacgtagt	aagagagctt	tgaaacaatt	cagactccca	4020
ctagaagaaa	cagaacttga	aaaaaggata	attgtggatg	acacctcaac	ccagtggtcc	4080
aaaaacatga	aacatttgac	cccgagcacc	ctcacacaga	tagactacaa	tgagaaggag	4140
aaaggggcca	ttactcagtc	tcccttatca	gattgcctta	cgaggagtca	tagcatccct	4200
caagcaaata	gatctccatt	acccattgca	aaggtatcat	catttccatc	tattagacct	4260
atatatctga	ccagggtcct	attccaagac	aactcttctc	atcttccagc	agcatcttat	4320
agaaagaaag	attctggggt	ccaagaaagc	agtcatttct	tacaaggagc	caaaaaaaat	4380
aacctttctt	tagccattct	aaccttggag	atgactggtg	atcaaagaga	ggttggctcc	4440
ctggggacaa	gtgccacaaa	ttcagtcaca	tacaagaaag	ttgagaacac	tgttctcccg	4500
aaaccagact	tgcccaaaac	atctggcaaa	gttgaattgc	ttccaaaagt	tcacatttat	4560
cagaaggacc	tattccctac	ggaaactagc	aatgggtctc	ctggccatct	ggatctcgtg	4620
gaagggagcc	ttcttcaggg	aacagaggga	gcgattaagt	ggaatgaagc	aaacagacct	4680
ggaaaagttc	cctttctgag	agtagcaaca	gaaagctctg	caaagactcc	ctccaagcta	4740
ttggatcctc	ttgcttggga	taaccactat	ggtactcaga	taccaaaaga	agagtggaaa	4800
tcccaagaga	agtcaccaga	aaaaacagct	tttaagaaaa	aggataccat	tttgtccctg	4860
aacgcttgtg	aaagcaatca	tgcaatagca	gcaataaatg	agggacaaaa	taagcccgaa	4920
atagaagtca	cctgggcaaa	gcaaggtagg	actgaaaggc	tgtgctctca	aaacccacca	4980
gtcttgaaac	gccatcaacg	ggaaataact	cgtactactc	ttcagtcaga	tcaagaggaa	5040
attgactatg	atgataccat	atcagttgaa	atgaagaagg	aagattttga	catttatgat	5100
gaggatgaaa	atcagagccc	ccgcagcttt	caaaagaaaa	cacgacacta	ttttattgct	5160
gcagtggaga	ggctctggga	ttatgggatg	agtagctccc	cacatgttct	aagaaacagg	5220
gctcagagtg	gcagtgtccc	tcagttcaag	aaagttgttt	tccaggaatt	tactgatggc	5280
tcctttactc	agcccttata	ccgtggagaa	ctaaatgaac	atttgggact	cctggggcca	5340
tatataagag	cagaagttga	agataatatc	atggtaactt	tcagaaatca	ggcctctcgt	5400
ccctattcct	tctattctag	ccttatttct	tatgaggaag	atcagaggca	aggagcagaa	5460
cctagaaaaa	actttgtcaa	gcctaatgaa	accaaaactt	acttttggaa	agtgcaacat	5520

catatggcac	ccactaaaga	tgagtttgac	tgcaaagcct	gggcttattt	ctctgatgtt	5580
gacctggaaa	aagatgtgca	ctcaggcctg	attggacccc	ttctggtctg	ccacactaac	5640
acactgaacc	ctgctcatgg	gagacaagtg	acagtacagg	aatttgctct	gtttttcacc	5700
atctttgatg	agaccaaaag	ctggtacttc	actgaaaata	tggaaagaaa	ctgcagggct	5760
ccctgcaata	tccagatgga	agatcccact	tttaaagaga	attatcgctt	ccatgcaatc	5820
aatggctaca	taatggatac	actacctggc	ttagtaatgg	ctcaggatca	aaggattcga	5880
tggtatctgc	tcagcatggg	cagcaatgaa	aacatccatt	ctattcattt	cagtggacat	5940
gtgttcactg	tacgaaaaaa	agaggagtat	aaaatggcac	tgtacaatct	ctatccaggt	6000
gtttttgaga	cagtggaaat	gttaccatcc	aaagctggaa	tttggcgggt	ggaatgcctt	6060
attggcgagc	atctacatgc	tgggatgagc	acacttttc	tggtgtacag	caataagtgt	6120
cagactecce	tgggaatggc	ttctggacac	attagagatt	ttcagattac	agcttcagga	6180
caatatggac	agtgggcccc	aaagctggcc	agacttcatt	attccggatc	aatcaatgcc	6240
tggagcacca	aggagccctt	ttcttggatc	aaggtggatc	tgttggcacc	aatgattatt	6300
cacggcatca	agacccaggg	tgcccgtcag	aagttctcca	gcctctacat	ctctcagttt	6360
atcatcatgt	atagtcttga	tgggaagaag	tggcagactt	atcgaggaaa	ttccactgga	6420
accttaatgg	tcttctttgg	caatgtggat	tcatctggga	taaaacacaa	tatttttaac	6480
cctccaatta	ttgctcgata	catccgtttg	cacccaactc	attatagcat	tcgcagcact	6540
cttcgcatgg	agttgatggg	ctgtgattta	aatagttgca	gcatgccatt	gggaatggag	6600
agtaaagcaa	tatcagatgc	acagattact	gcttcatcct	actttaccaa	tatgtttgcc	6660
acctggtctc	cttcaaaagc	tcgacttcac	ctccaaggga	ggagtaatgc	ctggagacct	6720
caggtgaata	atccaaaaga	gtggctgcaa	gtggacttcc	agaagacaat	gaaagtcaca	6780
ggagtaacta	ctcagggagt	aaaatctctg	cttaccagca	tgtatgtgaa	ggagttcctc	6840
atctccagca	gtcaagatgg	ccatcagtgg	actctcttt	ttcagaatgg	caaagtaaag	6900
gtttttcagg	gaaatcaaga	ctccttcaca	cctgtggtga	actctctaga	cccaccgtta	6960
ctgactcgct	accttcgaat	tcacccccag	agttgggtgc	accagattgc	cctgaggatg	7020
gaggttctgg	gctgcgaggc	acaggacctc	tactgagggt	ggccactgca	gcacctgcca	7080
ctgccgtcac	ctctccctcc	tcagctccag	ggcagtgtcc	ctccctggct	tgccttctac	7140
ctttgtgcta	aatcctagca	gacactgcct	tgaagcctcc	tgaattaact	atcatcagtc	7200
ctgcatttct	ttggtggggg	gccaggaggg	tgcatccaat	ttaacttaac	tcttacctat	7260
tttctgcagc	tgctcccaga	ttactccttc	cttccaatat	aactaggcaa	aaagaagtga	7320

qqaqaaacct qcatqaaaqc attetteeet qaaaaqttaq qcctctcaqa qtcaccactt 7380 cctctqttqt aqaaaaacta tgtgatgaaa ctttgaaaaa gatatttatg atgttaacat 7500 ttcaggttaa gcctcatacg tttaaaataa aactctcagt tgtttattat cctgatcaag catggaacaa agcatgtttc aggatcagat caatacaatc ttggagtcaa aaggcaaatc 7560 atttggacaa tctgcaaaat ggagagaata caataactac tacagtaaag tctgtttctg 7620 cttccttaca catagatata attatgttat ttagtcatta tgaggggcac attcttatct 7680 ccaaaactag cattettaaa etgagaatta tagatggggt teaagaatee etaagteece 7740 tqaaattata taaggcattc tgtataaatg caaatgtgca tttttctgac gagtgtccat 7800 agatataaag ccatttggtc ttaattctga ccaataaaaa aataagtcag gaggatgcaa 7860 ttgttgaaag ctttgaaata aaataacaat gtcttcttga aatttgtgat ggccaagaaa 7920 7931 gaaaatgatg a

<210> 30

<211> 2351

<212> PRT

<213> Homo sapiens

<400> 30

Met Gln Ile Glu Leu Ser Thr Cys Phe Phe Leu Cys Leu Leu Arg Phe $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Cys Phe Ser Ala Thr Arg Arg Tyr Tyr Leu Gly Ala Val Glu Leu Ser 20 25 30

Trp Asp Tyr Met Gln Ser Asp Leu Gly Glu Leu Pro Val Asp Ala Arg 35 40 45

Phe Pro Pro Arg Val Pro Lys Ser Phe Pro Phe Asn Thr Ser Val Val 50 55 60

Tyr Lys Lys Thr Leu Phe Val Glu Phe Thr Asp His Leu Phe Asn Ile 65 70 75 80

Ala Lys Pro Arg Pro Pro Trp Met Gly Leu Leu Gly Pro Thr Ile Gln
85 90 95

Ala Glu Val Tyr Asp Thr Val Val Ile Thr Leu Lys Asn Met Ala Ser 100 105 110

His Pro Val Ser Leu His Ala Val Gly Val Ser Tyr Trp Lys Ala Ser 115 120 125

Glu Gly Ala Glu Tyr Asp Asp Gln Thr Ser Gln Arg Glu Lys Glu Asp 130 135 140

Asp Lys Val Phe Pro Gly Gly Ser His Thr Tyr Val Trp Gln Val Leu 145 150 155 160

Lys Glu Asn Gly Pro Met Ala Ser Asp Pro Leu Cys Leu Thr Tyr Ser 165 170 175

Tyr	Leu	Ser	His 180	Val	Asp	Leu	Val	Lys 185	Asp	Leu	Asn	Ser	G1y 190	Leu	Ile
Gly	Ala	Leu 195	Leu	Val	Cys	Arg	Glu 200	Gly	Ser	Leu	Ala	Lys 205	Glu	Lys	Thr
Gln	Thr 210	Leu	His	Lys	Phe	Ile 215	Leu	Leu	Phe	Ala	Val 220	Phe	Asp	Glu	Gly
Lys 225	Ser	Trp	His	Ser	Glu 230	Thr	Lys	Asn	Ser	Leu 235	Met	Gln	Asp	Arg	Asp 240
Ala	Ala	Ser	Ala	Arg 245	Ala	Trp	Pro	Lys	Met 250	His	Thr	Val	Asn	Gly 255	Tyr
Val	Asn	Arg	Ser 260	Leu	Pro	Gly	Leu	Ile 265	Gly	Cys	His	Arg	Lys 270	Ser	Val
Tyr	Trp	His 275	Val	Ile	Gly	Met	Gly 280	Thr	Thr	Pro	Glu	Val 285	His	Ser	Ile
Phe	Leu 290	Glu	Gly	His	Thr	Phe 295	Leu	Val	Arg	Asn	His 300	Arg	Gln	Ala	Ser
Leu 305	Glu	Ile	Ser	Pro	Ile 310	Thr	Phe	Leu	Thr	Ala 315	Gln	Thr	Leu	Leu	Met 320
Asp	Leu	Gly	Gln	Phe 325	Leu	Leu	Phe	Суз	His 330	Ile	Ser	Ser	His	Gln 335	His
Asp	Gly	Met	Glu 340	Ala	Tyr	Val	Lys	Val 345	Asp	Ser	Cys	Pro	Glu 350	Glu	Pro
Gln	Leu	Arg 355	Met	Lys	Asn	Asn	Glu 360	Glu	Ala	Glu	Asp	Tyr 365	Asp	Asp	Asp
Leu	Thr 370	Asp	Ser	Glu	Met	Asp 375	Val	Val	Arg	Phe	Asp 380	Asp	Asp	Asn	Ser
Pro 385	Ser	Phe	Ile	Gln	Ile 390	Arg	Ser	Val	Ala	Lys 395	Lys	His	Pro	Lys	Thr 400
Trp	Val	His	Tyr	Ile 405	Ala	Ala	Glu	Glu	Glu 410	Asp	Trp	Asp	Tyr	Ala 415	Pro
Leu	Val	Leu	Ala 420		Asp	Asp	Arg	Ser 425	Tyr	Lys	Ser	Gln	Tyr 430	Leu	Asn
Asn	Gly	Pro 435	Gln	Arg	Ile	Gly	Arg 440	Lys	Tyr	Lys	Lys	Val 445	Arg	Phe	Met
Ala	Tyr 450	Thr	Asp	Glu	Thr	Phe 455	Lys	Thr	Arg	Glu	Ala 460	Ile	Gln	His	Glu
Ser 465	Gly	Ile	Leu	Gly	Pro 470	Leu	Leu	Tyr	Gly	Glu 475	Val	Gly	Asp	Thr	Leu 480
Leu	Ile	Ile	Phe	Lys 485	Asn	Gln	Ala	Ser	Arg 490	Pro	Tyr	Asn	Ile	Tyr 495	Pro
His	Gly	Ile	Thr	Asp	Val	Arg	Pro	Leu	Tyr	Ser	Arg	Arg	Leu	Pro	Lys

500 505 510

Gly Val Lys His Leu Lys Asp Phe Pro Ile Leu Pro Gly Glu Ile Phe 520 Lys Tyr Lys Trp Thr Val Thr Val Glu Asp Gly Pro Thr Lys Ser Asp Pro Arg Cys Leu Thr Arg Tyr Tyr Ser Ser Phe Val Asn Met Glu Arg 550 Asp Leu Ala Ser Gly Leu Ile Gly Pro Leu Leu Ile Cys Tyr Lys Glu Ser Val Asp Gln Arg Gly Asn Gln Ile Met Ser Asp Lys Arg Asn Val 585 Ile Leu Phe Ser Val Phe Asp Glu Asn Arg Ser Trp Tyr Leu Thr Glu 600 Asn Ile Gln Arg Phe Leu Pro Asn Pro Ala Gly Val Gln Leu Glu Asp 615 Pro Glu Phe Gln Ala Ser Asn Ile Met His Ser Ile Asn Gly Tyr Val Phe Asp Ser Leu Gln Leu Ser Val Cys Leu His Glu Val Ala Tyr Trp 650 Tyr Ile Leu Ser Ile Gly Ala Gln Thr Asp Phe Leu Ser Val Phe Phe Ser Gly Tyr Thr Phe Lys His Lys Met Val Tyr Glu Asp Thr Leu Thr Leu Phe Pro Phe Ser Gly Glu Thr Val Phe Met Ser Met Glu Asn Pro Gly Leu Trp Ile Leu Gly Cys His Asn Ser Asp Phe Arg Asn Arg Gly Met Thr Ala Leu Leu Lys Val Ser Ser Cys Asp Lys Asn Thr Gly Asp Tyr Tyr Glu Asp Ser Tyr Glu Asp Ile Ser Ala Tyr Leu Leu Ser Lys Asn Asn Ala Ile Glu Pro Arg Ser Phe Ser Gln Asn Ser Arg His Arg 760 Ser Thr Arg Gln Lys Gln Phe Asn Ala Thr Thr Ile Pro Glu Asn Asp 775 Ile Glu Lys Thr Asp Pro Trp Phe Ala His Arg Thr Pro Met Pro Lys 790 795

Ile Gln Asn Val Ser Ser Ser Asp Leu Leu Met Leu Leu Arg Gln Ser 805 810 815

Pro Thr Pro His Gly Leu Ser Leu Ser Asp Leu Gln Glu Ala Lys Tyr

Glu Thr Phe Ser Asp Asp Pro Ser Pro Gly Ala Ile Asp Ser Asn Asn Ser Leu Ser Glu Met Thr His Phe Arg Pro Gln Leu His His Ser Gly Asp Met Val Phe Thr Pro Glu Ser Gly Leu Gln Leu Arg Leu Asn Glu Lys Leu Gly Thr Thr Ala Ala Thr Glu Leu Lys Lys Leu Asp Phe Lys 885 890 Val Ser Ser Thr Ser Asn Asn Leu Ile Ser Thr Ile Pro Ser Asp Asn 905 Leu Ala Ala Gly Thr Asp Asn Thr Ser Ser Leu Gly Pro Pro Ser Met 920 Pro Val His Tyr Asp Ser Gln Leu Asp Thr Thr Leu Phe Gly Lys Lys 935 Ser Ser Pro Leu Thr Glu Ser Gly Gly Pro Leu Ser Leu Ser Glu Glu Asn Asn Asp Ser Lys Leu Leu Glu Ser Gly Leu Met Asn Ser Gln Glu 965 970 Ser Ser Trp Gly Lys Asn Val Ser Ser Thr Glu Ser Gly Arg Leu Phe Lys Gly Lys Arg Ala His Gly Pro Ala Leu Leu Thr Lys Asp Asn Ala Leu Phe Lys Val Ser Ile Ser Leu Leu Lys Thr Asn Lys Thr Ser 1015 Asn Asn Ser Ala Thr Asn Arg Lys Thr His Ile Asp Gly Pro Ser 1025 1030 Leu Leu Ile Glu Asn Ser Pro Ser Val Trp Gln Asn Ile Leu Glu 1045 Ser Asp Thr Glu Phe Lys Lys Val Thr Pro Leu Ile His Asp Arg 1055 1060 1065 Met Leu Met Asp Lys Asn Ala Thr Ala Leu Arg Leu Asn His Met 1075 Ser Asn Lys Thr Thr Ser Ser Lys Asn Met Glu Met Val Gln Gln 1085 1090 1.095 Lys Lys Glu Gly Pro Ile Pro Pro Asp Ala Gln Asn Pro Asp Met 1100 1105 1110 Ser Phe Phe Lys Met Leu Phe Leu Pro Glu Ser Ala Arg Trp Ile 1115 1120 1125 Gln Arg Thr His Gly Lys Asn Ser Leu Asn Ser Gly Gln Gly Pro 1130 1135 1140

Ser	Pro 1145	Lys	Gln	Leu	Val	Ser 1150	Leu	Gly	Pro	Glu	Lys 1155	Ser	Val	Glu
Gly	Gln 1160	Asn	Phe	Leu	Ser	Glu 1165	Lys	Asn	Lys	Val	Val 1170	Val	Gly	Lys
Gly	Glu 1175	Phe	Thr	Lys	Asp	Val 1180	Gly	Leu	Lys	Glu	Met 1185	Val	Phe	Pro
Ser	Ser 1190	Arg	Asn	Leu	Phe	Leu 1195	Thr	Asn	Leu	Asp	Asn 1200	Leu	His	Glu
Asn	Asn 1205	Thr	His	Asn	Gln	Glu 1210	Lys	Lys	Ile	Gln	Glu 1215	Glu	Ile	Glu
Lys	Lys 1220	Glu	Thr	Leu	Ile	Gln 1225	Glu	Asn	Val	Val	Leu 1230	Pro	Gln	Ile
His	Thr 1235	Val	Thr	Gly	Thr	Lys 1240		Phe	Met	Lys	Asn 1245	Leu	Phe	Leu
Leu	Ser 1250	Thr	Arg	Gln	Asn	Val 1255	Glu	Gly	Ser	Tyr	Asp 1260	Gly	Ala	Tyr
Ala	Pro 1265	Val	Leu	Gln	Asp	Phe 1270	Arg	Ser	Leu	Asn	Asp 1275	Ser	Thr	Asn
Arg	Thr 1280		Lys	His	Thr	Ala 1285	His	Phe	Ser	Lys	Lys 1290	Gly	Glu	Glu
Glu	Asn 1295	Leu	Glu	Gly	Leu	Gly 1300	Asn	Gln	Thr	Lys	Gln 1305	Ile	Val	Glu
Lys	Tyr 1310		Cys	Thr	Thr	Arg 1315	Ile	Ser	Pro	Asn	Thr 1320	Ser	Gln	Gln
Asn	Phe 1325		Thr	Gln	Arg	Ser 1330		Arg	Ala	Leu	Lys 1335	Gln	Phe	Arg
Leu	Pro 1340	Leu	Glu	Glu	Thr	Glu 1345		Glu	Lys	Arg	Ile 1350	Ile	Val	Asp
Asp	Thr 1355		Thr	Gln	Trp	Ser 1360	Lys	Asn	Met	Lys	His 1365	Leu	Thr	Pro
Ser	Thr 1370		Thr	Gln	Ile	Asp 1375		Asn	Glu	Lys	Glu 1380		Gly	Ala
Ile	Thr 1385		Ser	Pro	Leu	Ser 1390		Суѕ	Leu	Thr	Arg 1395	Ser	His	Ser
Ile	Pro 1400		Ala	Asn	Arg	Ser 1405		Leu	Pro	Ile	Ala 1410	Lys	Val	Ser
Ser	Phe 1415		Ser	Ile	Arg	Pro 1420		Tyr	Leu	Thr	Arg 1425	Val	Leu	Phe
Gln	Asp 1430		Ser	Ser	His	Leu 1435		Ala	Ala	Ser	Tyr 1440		Lys	Lys
Asp	Ser	Gly	Val	Gln	Glu	Ser	Ser	His	Phe	Leu	Gln	Gly	Ala	Lys

,	VO 200	14/033	651											PC17U
	1445					1450					1455			
Lys	Asn 1460	Asn	Leu	Ser	Leu	Ala 1465	Ile	Leu	Thr	Leu	Glu 1470	Met	Thr	Gly
Asp	Gln 1475	Arg	Glu	Val	Gly	Ser 1480	Leu	Gly	Thr	Ser	Ala 1485	Thr	Asn	Ser
Val	Thr 1490	Tyr	Lys	Lys	Val	Glu 1495	Asn	Thr	Val	Leu	Pro 1500		Pro	Asp
Leu	Pro 1505	Lys	Thr	Ser	Gly	Lys 1510	Val	Glu	Leu	Leu	Pro 1515	Lys	Val	His
Ile	Tyr 1520		Lys	Asp		Phe 1525	Pro	Thr	Glu	Thr	Ser 1530	Asn	Gly	Ser
Pro	Gly 1535	His	Leu	Asp	Leu	Val 1540		Gly	Ser	Leu	Leu 1545	Gln	Gly	Thr
Glu	Gly 1550	Ala	Ile	Lys	Trp	Asn 1555	Glu	Ala	Asn	Arg	Pro 1560	Gly	Lys	Val
Pro	Phe 1565	Leu	Arg	Val		Thr 1570	Glu	Ser	Ser	Ala	Lys 1575	Thr	Pro	Ser
Lys	Leu 1580	Leu	Asp	Pro	Leu	Ala 1585		Asp	Asn	His	Tyr 1590	Gly	Thr	Gln
Ile	Pro 1595	Lys	Glu	Glu	Trp	Lys 1600	Ser	Gln	Glu	Lys	Ser 1605	Pro	Glu	Lys
Thr	Ala 1610	Phe	Lys	Lys	Lys	Asp 1615	Thr	Ile	Leu		Leu 1620	Asn	Ala	Cys
Glu	Ser 1625		His	Ala	Ile	Ala 1630		Ile	Asn	Glu	Gly 1635		Asn	Lys
Pro	Glu 1640	Ile	Glu	Val	Thr	Trp 1645	Ala	Lys	Gln	Gly	Arg 1650	Thr	Glu	Arg
Leu	Cys 1655		Gln	Asn	Pro	Pro 1660	Val	Leu	Lys	Arg	His 1665	Gln	Arg	Glu
Ile	Thr 1670	_	Thr	Thr	Leu	Gln 1675	Ser	Asp	Gln	Glu	Glu 1680		Asp	Tyr
Asp	Asp 1685		Ile	Ser	Val	Glu 1690		Lys	Lys	Glu	Asp 1695		Asp	Ile
Tyr	Asp 1700		Asp	Glu	Asn	Gln 1705	Ser	Pro	Arg	Ser	Phe 1710		Lys	Lys
Thr	Arg 1715		Tyr	Phe	Ile	Ala 1720		Val	Glu	Arg	Leu 1725		Asp	Tyr
Gly	Met 1730		Ser	Ser	Pro	His 1735		Leu	Arg	Asn	Arg 1740		Gln	Ser
Gly	Ser 1745		Pro	Gln	Phe	Lys 1750		Val	Val	Phe	Gln 1755		Phe	Thr

Asp	Gly 1760	Ser	Phe	Thr	Gln	Pro 1765	Leu	Tyr	Arg	Gly	Glu 1770	Leu	Asn	Glu
His	Leu 1775	Gly	Leu	Leu	Gly	Pro 1780	Tyr	Ile	Arg	Ala	Glu 1785	Val	Glu	Asp
Asn	Ile 1790	Met	Val	Thr	Phe	Arg 1795	Asn	Gln	Ala	Ser	Arg 1800	Pro	Tyr	Ser
Phe	Tyr 1805	Ser	Ser	Leu	Ile	Ser 1810	Tyr	Glu	Glu	Asp	Gln 1815	Arg	Gln	Gly
Ala	Glu 1820	Pro	Arg	Lys	Asn	Phe 1825	Val	Lys	Pro	Asn	Glu 1830	Thr	Lys	Thr
Tyr	Phe 1835	Trp	Lys	Val	Gln	His 1840	His	Met	Ala	Pro	Thr 1845	Lys	Asp	Glu
Phe	Asp 1850	Cys	Lys	Ala	Trp	Ala 1855	Tyr	Phe	Ser	Asp	Val 1860	Asp	Leu	Glu
Lys	Asp 1865		His	Ser	Gly	Leu 1870		Gly	Pro	Leu	Leu 1875	Val	Cys	His
Thr	Asn 1880	Thr	Leu	Asn	Pro	Ala 1885		Gly	Arg	Gln	Val 1890	Thr	Val	Gln
	Phe 1895		Leu	Phe	Phe	Thr 1900		Phe	Asp	Glu	Thr 1905	Lys	Ser	Trp
Tyr	Phe 1910		Glu	Asn	Met	Glu 1915		Asn	Cys	Arg	Ala 1920	Pro	Cys	Asn
Ile	Gln 1925		Glu	Asp	Pro	Thr 1930		Lys	Glu	Asn	Tyr 1935		Phe	His
Ala	Ile 1940		Gly	Tyr	Ile	Met 1945		Thr	Leu	Pro	Gly 1950		Val	Met
Ala	Gln 1955		Gln	Arg	Ile	Arg 1960		Tyr	Leu	Leu	Ser 1965		Gly	Ser
Asn	Glu 1970		Ile	His	Ser	Ile 1975		Phe	rSer	Gly	His 1980		Phe	Thr
Val	Arg 1985	_	Lys	Glu	Glu	Tyr 1990		Met	Ala	Leu	Tyr 1995		Leu	Tyr
Pro	Gly 2000		Phe	Glu	Thr	Val 2005		Met	Leu	Pro	Ser 2010		Ala	Gly
Ile	Trp 2015		Val	Glu	Cys	Leu 2020		Gly	Glu	His	Leu 2025		Ala	Gly
Met	Ser 2030		Leu	Phe	Leu	Val 2035		Ser	Asn	Lys	Cys 2040		Thr	Pro
Leu	Gly 2045		Ala	Ser	Gly	His 2050		Arg	Asp	Phe	Gln 2055		Thr	Ala

Ser	Gly 2060	Gln	Tyr	Gly	Gln	Trp 2065	Ala	Pro	Lys	Leu	Ala 2070	Arg	Leu	His
Tyr	Ser 2075	Gly	Ser	Ile	Asn	Ala 2080	Trp	Ser	Thr	Lys	Glu 2085	Pro	Phe	Ser
Trp	Ile 2090	Lys	Val	Asp	Leu	Leu 2095	Ala	Pro	Met	Ile	Ile 2100	His	Gly	Ile
Lys	Thr 2105	Gln	Gly	Ala	Arg	Gln 2110	_	Phe	Ser	Ser	Leu 2115	Tyr	Ile	Ser
Gln	Phe 2120	Ile	Ile	Met	Tyr	Ser 2125	Leu	Asp	Gly	Lys	Lys 2130	Trp	Gln	Thr
Tyr	Arg 2135		Asn	Ser	Thr	Gly 2140	Thr	Leu	Met	Val	Phe 2145	Phe	Gly	Asn
Val	Asp 2150		Ser	Gly	Ile	Lys 2155	His	Asn	Ile	Phe	Asn 2160	Pro	Pro	Ile
Ile	Ala 2165	-	Tyr	Ile	Arg	Leu 2170	His	Pro	Thr	His	Tyr 2175	Ser	Ile	Arg
Ser	Thr 2180	Leu	Arg	Met	Glu	Leu 2185	Met	Gly	Cys	Asp	Leu 2190	Asn	Ser	Cys
Ser	Met 2195		Leu			Glu 2200		Lys	Ala	Ile	Ser 2205	Asp	Ala	Gln
Ile	Thr 2210	Ala	Ser	Ser	Tyr	Phe 2215		Asn	Met	Phe	Ala 2220	Thr	Trp	Ser
Pro	Ser 2225		Ala	Arg	Leu	His 2230	Leu	Gln	Gly	Arg	Ser 2235	Asn	Ala	Trp
Arg	Pro 2240		Val	Asn	Asn	Pro 2245		Glu	Trp	Leu	Gln 2250	Val	Asp	Phe
Gln	Lys 2255		Met	Lys	Val	Thr 2260		Val	Thr	Thr	Gln 2265		Val	Lys
Ser	Leu 2270		Thr	Ser	Met	Tyr 2275		Lys	Glu	Phe	Leu 2280		Ser	Ser
Ser	Gln 2285		Gly	His	Gln	Trp 2290		Leu	Phe	Phe	Gln 2295	Asn	Gly	Lys
Val	Lys 2300		Phe	Gln	Gly	Asn 2305		Asp	Ser	Phe	Thr 2310		Val	Val
Asn	Ser 2315		Asp	Pro	Pro	Leu 2320		Thr	Arg	Tyr	Leu 2325		Ile	His
Pro	Gln 2330		Trp	Val	His	Gln 2335		Ala	Leu	Arg	Met 2340		Val	Leu
Gly	Cys 2345		Ala	Gln	Asp	Leu 2350	_							
<21	0> 3	1												

<211> 1471 <212> DNA <213> Homo sapiens

<400> 31 atggcgcccg tegecgtetg ggccgcgctg gccgteggac tggagctetg ggctgcggcg 60 120 cacqccttqc ccqcccaqqt qqcatttaca ccctacqccc cggagcccgg gagcacatgc 180 cggctcagag aatactatga ccagacagct cagatgtgct gcagcaaatg ctcgccgggc 240 caacatqcaa aaqtettetg taccaagace teggacaceg tgtgtgacte etgtgaggae 300 agcacataca cccagctctg gaactgggtt cccgagtgct tgagctgtgg ctcccgctgt agetetgace aggtggaaac teaageetge actegggaac agaacegeat etgeacetge 360 420 aggcccqqct qqtactgcgc gctgagcaag caggaggggt gccggctgtg cgcgccgctg 480 cqcaaqtqcc qcccqqqctt cqqcqtqqcc aqaccaqqaa ctgaaacatc agacqtggtg 540 tgcaagcct gtgcccggg gacgttctcc aacacgactt catccacgga tatttgcagg 600 ccccaccaga totgtaacgt ggtggccatc cctgggaatg caagcatgga tgcagtctgc acqtccacqt ccccacccq gagtatggcc ccaggggcag tacacttacc ccagccagtg 660 tocacacqat cocaacaca quaqccaact coagaaccca gcactgetec aagcacetee 720 780 ttectgetee caatgggeee cageeececa getgaaggga geactggega ettegetett ccaqttqqac tqattqtqqq tqtqacaqcc ttqgqtctac taataataqq agtqgtqaac 840 900 tgtgtcatca tgacccaggt gaaaaagaag cccttgtgcc tgcagagaga agccaaggtg 960 cctcacttgc ctgccqataa qqcccqqqqt acacaqggcc ccgagcagca gcacctgctg atcacagege egagetecag cageagetec etggagaget eggecagtge gttggacaga 1020 1080 agggcgccca ctcggaacca gccacaggca ccaggcgtgg aggccagtgg ggccggggag gcccgggcca gcaccgggag ctcagattct tcccctggtg gccatgggac ccaggtcaat 1140 gtcacctgca tcgtgaacgt ctgtagcagc tctgaccaca gctcacagtg ctcctcccaa 1200 gecageteca caatgggaga cacagattee ageceetegg agteeeegaa ggaegageag 1260 gtccccttct ccaaggagga atgtgccttt cggtcacagc tggagacgcc agagaccctg 1320 ctggggagca ccgaagagaa gcccctgccc cttggagtgc ctgatgctgg gatgaagccc 1380 agttaaccag geeggtgtgg getgtgtegt ageeaaggtg ggetgageee tggeaggatg 1440 1471 accetgegaa ggggccetgg teetteeagg e

37

<210> 32 <211> 461 <212> PRT <213> Homo sapiens

<400> 32

Met Ala Pro Val Ala Val Trp Ala Ala Leu Ala Val Gly Leu Glu Leu Trp Ala Ala Ala His Ala Leu Pro Ala Gln Val Ala Phe Thr Pro Tyr Ala Pro Glu Pro Gly Ser Thr Cys Arg Leu Arg Glu Tyr Tyr Asp Gln Thr Ala Gln Met Cys Cys Ser Lys Cys Ser Pro Gly Gln His Ala Lys Val Phe Cys Thr Lys Thr Ser Asp Thr Val Cys Asp Ser Cys Glu Asp Ser Thr Tyr Thr Gln Leu Trp Asn Trp Val Pro Glu Cys Leu Ser Cys Gly Ser Arg Cys Ser Ser Asp Gln Val Glu Thr Gln Ala Cys Thr Arg Glu Gln Asn Arg Ile Cys Thr Cys Arg Pro Gly Trp Tyr Cys Ala Leu Ser Lys Gln Glu Gly Cys Arg Leu Cys Ala Pro Leu Arg Lys Cys Arg Pro Gly Phe Gly Val Ala Arg Pro Gly Thr Glu Thr Ser Asp Val Val Cys Lys Pro Cys Ala Pro Gly Thr Phe Ser Asn Thr Thr Ser Ser Thr 170 Asp Ile Cys Arg Pro His Gln Ile Cys Asn Val Val Ala Ile Pro Gly 185 180 Asn Ala Ser Met Asp Ala Val Cys Thr Ser Thr Ser Pro Thr Arg Ser 200 Met Ala Pro Gly Ala Val His Leu Pro Gln Pro Val Ser Thr Arg Ser 215 Gln His Thr Gln Pro Thr Pro Glu Pro Ser Thr Ala Pro Ser Thr Ser 235 230 Phe Leu Leu Pro Met Gly Pro Ser Pro Pro Ala Glu Gly Ser Thr Gly 245 250 Asp Phe Ala Leu Pro Val Gly Leu Ile Val Gly Val Thr Ala Leu Gly 265 Leu Leu Ile Ile Gly Val Val Asn Cys Val Ile Met Thr Gln Val Lys 280 285 Lys Lys Pro Leu Cys Leu Gln Arg Glu Ala Lys Val Pro His Leu Pro Ala Asp Lys Ala Arg Gly Thr Gln Gly Pro Glu Gln Gln His Leu Leu 315 Ile Thr Ala Pro Ser Ser Ser Ser Ser Leu Glu Ser Ser Ala Ser

325 330 335

Ala Leu Asp Arg Arg Ala Pro Thr Arg Asn Gln Pro Gln Ala Pro Gly 340 345

Val Glu Ala Ser Gly Ala Gly Glu Ala Arg Ala Ser Thr Gly Ser Ser 355 360 365

Asp Ser Ser Pro Gly Gly His Gly Thr Gln Val Asn Val Thr Cys Ile 370 375 380

Val Asn Val Cys Ser Ser Ser Asp His Ser Ser Gln Cys Ser Ser Gln 385 390 395 400

Ala Ser Ser Thr Met Gly Asp Thr Asp Ser Ser Pro Ser Glu Ser Pro 405 410 415

Lys Asp Glu Gln Val Pro Phe Ser Lys Glu Glu Cys Ala Phe Arg Ser 420 425 430

Gln Leu Glu Thr Pro Glu Thr Leu Leu Gly Ser Thr Glu Glu Lys Pro $435 \hspace{1.5cm} 440 \hspace{1.5cm} 445 \hspace{1.5cm}$

Leu Pro Leu Gly Val Pro Asp Ala Gly Met Lys Pro Ser 450 455 460

<210> 33

<211> 1475

<212> DNA

<213> Homo sapiens

<400> 33

tecacetgte eeegeagege eggetegege eeteetgeeg cageeacega geegeegtet 60 agegececga cetegecace atgagagece tgetggegeg cetgettete tgegteetgg 120 tcgtgagcga ctccaaaggc agcaatgaac ttcatcaagt tccatcgaac tgtgactgtc 180 240 taaatqqaqq aacatqtqtq tccaacaagt acttctccaa cattcactgg tgcaactgcc 300 caaagaaatt cggagggcag cactgtgaaa tagataagtc aaaaacctgc tatgagggga atggtcactt ttaccgagga aaggccagca ctgacaccat gggccggccc tgcctgccct 360 ggaactctgc cactgtcctt cagcaaacgt accatgccca cagatctgat gctcttcagc 420 tgggcctggg gaaacataat tactgcagga acccagacaa ccggaggcga ccctggtgct 480 atgtgcaggt gggcctaaag ccgcttgtcc aagagtgcat ggtgcatgac tgcgcagatg 540 600 gaaaaaaagcc ctcctctcct ccagaagaat taaaatttca gtgtggccaa aagactctga 660 ggcccqctt taaqattatt gggggagaat tcaccaccat cgagaaccag ccctggtttg cggccatcta caggaggcac cgggggggct ctgtcaccta cgtgtgtgga ggcagcctca 720 780 tragecettg etgggtgate agegecacae actgetteat tgattaceca aagaaggagg actacatcgt ctacctgggt cgctcaaggc ttaactccaa cacgcaaggg gagatgaagt 840 ttgaggtgga aaacctcatc ctacacaagg actacagcgc tgacacgctt gctcaccaca 900

acgacattgc cttgctgaag atccgttcca aggagggcag gtgtgcgcag ccatcccgga 960 1020 ctatacagac catctgcctg ccctcgatgt ataacgatcc ccagtttggc acaagctgtg 1080 agatcactgg ctttggaaaa gagaattcta ccgactatct ctatccggag cagctgaaga tqactqttqt qaaqctqatt tcccaccqqq aqtqtcaqca gccccactac tacggctctq 1140 1200 aaqtcaccac caaaatgctg tgtgctgctg acccacagtg gaaaacagat tcctgccagg gagactcagg gggacccctc gtctgttccc tccaaggccg catgactttg actggaattg 1260 tgagctgggg ccgtggatgt gccctgaagg acaagccagg cgtctacacg agagtctcac 1320 1380 acttettace etggateege agteacacea aggaagagaa tggeetggee etetgagggt ccccaqqqaq qaaacqqqca ccacccqctt tcttqctqqt tqtcattttt qcaqtaqaqt 1440 1475 catctccatc agctgtaaga agagactggg aagat <210> 34 <211> 431

<212> PRT

<213> Homo sapiens

<400> 34

Met Arg Ala Leu Leu Ala Arg Leu Leu Leu Cys Val Leu Val Val Ser 1 5 10 15

Asp Ser Lys Gly Ser Asn Glu Leu His Gln Val Pro Ser Asn Cys Asp 20 25 30

Cys Leu Asn Gly Gly Thr Cys Val Ser Asn Lys Tyr Phe Ser Asn Ile $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45$

His Trp Cys Asn Cys Pro Lys Lys Phe Gly Gly Gln His Cys Glu Ile 50 60

Asp Lys Ser Lys Thr Cys Tyr Glu Gly Asn Gly His Phe Tyr Arg Gly 65 70 75 80

Lys Ala Ser Thr Asp Thr Met Gly Arg Pro Cys Leu Pro Trp Asn Ser 85 90 95

Ala Thr Val Leu Gln Gln Thr Tyr His Ala His Arg Ser Asp Ala Leu 100 105 110

Gln Leu Gly Leu Gly Lys His Asn Tyr Cys Arg Asn Pro Asp Asn Arg 115 120 125

Arg Pro Trp Cys Tyr Val Gln Val Gly Leu Lys Pro Leu Val Gln
130 135 140

Glu Cys Met Val His Asp Cys Ala Asp Gly Lys Lys Pro Ser Ser Pro 145 150 155 160

Pro Glu Glu Leu Lys Phe Gln Cys Gly Gln Lys Thr Leu Arg Pro Arg 165 170 175

Phe Lys Ile Ile Gly Gly Glu Phe Thr Thr Ile Glu Asn Gln Pro Trp

180 185 190

Phe Ala Ala Ile Tyr Arg Arg His Arg Gly Gly Ser Val Thr Tyr Val 195 200 205

Cys Gly Gly Ser Leu Ile Ser Pro Cys Trp Val Ile Ser Ala Thr His 210 215 220

Cys Phe Ile Asp Tyr Pro Lys Lys Glu Asp Tyr Ile Val Tyr Leu Gly 225 230 235 240

Arg Ser Arg Leu Asn Ser Asn Thr Gln Gly Glu Met Lys Phe Glu Val . 245 250 255

Glu Asn Leu Ile Leu His Lys Asp Tyr Ser Ala Asp Thr Leu Ala His 260 265 270

His Asn Asp Ile Ala Leu Leu Lys Ile Arg Ser Lys Glu Gly Arg Cys 275 280 285

Ala Gln Pro Ser Arg Thr Ile Gln Thr Ile Cys Leu Pro Ser Met Tyr 290 295 300

Asn Asp Pro Gln Phe Gly Thr Ser Cys Glu Ile Thr Gly Phe Gly Lys 305 310 315 320

Glu Asn Ser Thr Asp Tyr Leu Tyr Pro Glu Gln Leu Lys Met Thr Val 325 330 335

Val Lys Leu Ile Ser His Arg Glu Cys Gln Gln Pro His Tyr Tyr Gly 340 345 350

Ser Glu Val Thr Thr Lys Met Leu Cys Ala Ala Asp Pro Gln Trp Lys 355 360 365

Thr Asp Ser Cys Gln Gly Asp Ser Gly Gly Pro Leu Val Cys Ser Leu 370 380

Gln Gly Arg Met Thr Leu Thr Gly Ile Val Ser Trp Gly Arg Gly Cys 385 390 395 400

Ala Leu Lys Asp Lys Pro Gly Val Tyr Thr Arg Val Ser His Phe Leu 405 410 415

Pro Trp Ile Arg Ser His Thr Lys Glu Glu Asn Gly Leu Ala Leu 420 425 430

<210> 35

<211> 107

<212> PRT

<213> Mus musculus

<400> 35

Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly
1 5 10 15

Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Asp Val Asn Thr Ala 20 25 30

Val Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Ile $35 \hspace{1cm} 40 \hspace{1cm} 45$

Tyr Ser Ala Ser Phe Leu Tyr Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55 60

Ser Arg Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro 65 70 75 80

Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln His Tyr Thr Thr Pro Pro 85 90 95

Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys
100 105

<210> 36

<211> 120

<212> PRT

<213> Mus musculus

<400> 36

Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 $$ 5 $$ 10 $$ 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Asn Ile Lys Asp Thr 20 25 30

Tyr Ile His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45

Ala Arg Ile Tyr Pro Thr Asn Gly Tyr Thr Arg Tyr Ala Asp Ser Val 50 55 60

Lys Gly Arg Phe Thr Ile Ser Ala Asp Thr Ser Lys Asn Thr Ala Tyr 65 70 75 80

Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Gly Thr Leu Val Thr Val Ser Ser 115 120

<210> 37

<211> 120

<212> PRT

<213> Mus musculus

<400> 37

Gln Val Thr Leu Arg Glu Ser Gly Pro Ala Leu Val Lys Pro Thr Gln 1 5 10 15

Thr Leu Thr Leu Thr Cys Thr Phe Ser Gly Phe Ser Leu Ser Thr Ser 20 25 30

Gly Met Ser Val Gly Trp Ile Arg Gln Pro Ser Gly Lys Ala Leu Glu 35 40

Trp Leu Ala Asp Ile Trp Trp Asp Asp Lys Lys Asp Tyr Asn Pro Ser 50 55 60

Leu Lys Ser Arg Leu Thr Ile Ser Lys Asp Thr Ser Lys Asn Gln Val Val Leu Lys Val Thr Asn Met Asp Pro Ala Asp Thr Ala Thr Tyr Tyr Cys Ala Arg Ser Met Ile Thr Asn Trp Tyr Phe Asp Val Trp Gly Ala 100 105 Gly Thr Thr Val Thr Val Ser Ser 115 <210> 38 ' <211> 106 <212> PRT <213> Mus musculus <400> 38 Asp Ile Gln Met Thr Gln Ser Pro Ser Thr Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Lys Cys Gln Leu Ser Val Gly Tyr Met His Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Trp Ile Tyr Asp Thr Ser Lys Leu Ala Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Asp Asp Phe Ala Thr Tyr Tyr Cys Phe Gln Gly Ser Gly Tyr Pro Phe Thr 8.5 Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys 100 <210> 39 <211> 1039 <212> DNA <213> Homo sapiens <400> 39 60 tectgeaeag geagtgeett gaagtgette tteagagaee tttetteata gaetaetttt ttttctttaa gcagcaaaag gagaaaattg tcatcaaagg atattccaga ttcttgacag 120 cattetegte atetetgagg acateaceat cateteagga tgaggggcat gaagetgetg 180 240 qqqqcqctgc tggcactggc ggccctactg cagggggccg tgtccctgaa gatcgcagcc 300 ttcaacatcc agacatttgg ggagaccaag atgtccaatg ccaccctcgt cagctacatt gtgcagatcc tgagccgcta tgacatcgcc ctggtccagg aggtcagaga cagccacctg 360 420 actgoogtgg ggaagctgct ggacaacctc aatcaggatg caccagacac ctatcactac

gtggtcagtg agccactggg acggaacagc tataaggagc gctacctgtt cgtgtacagg

43

cctqaccaqq tqtctqcqqt qqacaqctac tactacqatq atgqctqcqa qccctqcqqq 540 aacqacacct tcaaccqaqa qccaqccatt qtcaqqttct tctcccggtt cacagaggtc, 600 agggagttig ccattgtice cetgeatgeg geeeggggg acgeagtage egagategae 660 gctctctatg acgtctacct ggatgtccaa gagaaatggg gcttggagga cgtcatgttg 720 780 atgggcgact tcaatgcggg ctgcagctat gtgagaccct cccagtggtc atccatccgc ctgtggacaa gccccacctt ccagtggctg atccccgaca gcgctgacac cacagctaca 840 cccacgcact gtgcctatga caggatcgtg gttgcaggga tgctgctccg aggcgccgtt 900 960 qttcccqact cqqctcttcc ctttaacttc caqqctqcct atgqcctgag tgaccaactg geccaageca teagtgacea etatecagtg gaggtgatge tgaagtgage ageceeteee 1020 1039 cacaccagtt gaactgcag

<210> 40

<211> 282

<212> PRT

<213> Homo sapiens

<400> 40

Met Arg Gly Met Lys Leu Leu Gly Ala Leu Leu Ala Leu Ala Leu 1 10 15

Leu Gln Gly Ala Val Ser Leu Lys Ile Ala Ala Phe Asn Ile Gln Thr 20 25 30

Phe Gly Glu Thr Lys Met Ser Asn Ala Thr Leu Val Ser Tyr Ile Val 35 40 45

Gln Ile Leu Ser Arg Tyr Asp Ile Ala Leu Val Gln Glu Val Arg Asp 50 55 60

Ser His Leu Thr Ala Val Gly Lys Leu Leu Asp Asn Leu Asn Gln Asp 65 70 75 80

Ala Pro Asp Thr Tyr His Tyr Val Val Ser Glu Pro Leu Gly Arg Asn 85 90 95

Ser Tyr Lys Glu Arg Tyr Leu Phe Val Tyr Arg Pro Asp Gln Val Ser 100 105 110

Ala Val Asp Ser Tyr Tyr Tyr Asp Asp Gly Cys Glu Pro Cys Gly Asn 115 120 125

Asp Thr Phe Asn Arg Glu Pro Ala Ile Val Arg Phe Phe Ser Arg Phe 130 135 140

Thr Glu Val Arg Glu Phe Ala Ile Val Pro Leu His Ala Ala Pro Gly 145 150 155 160

Asp Ala Val Ala Glu Ile Asp Ala Leu Tyr Asp Val Tyr Leu Asp Val 165 170 175

Gln Glu Lys Trp Gly Leu Glu Asp Val Met Leu Met Gly Asp Phe Asn 180 185

Ala Gly Cys Ser Tyr Val Arg Pro Ser Gln Trp Ser Ser Ile Arg Leu 195 Trp Thr Ser Pro Thr Phe Gln Trp Leu Ile Pro Asp Ser Ala Asp Thr 215 Thr Ala Thr Pro Thr His Cys Ala Tyr Asp Arg Ile Val Val Ala Gly Met Leu Leu Arg Gly Ala Val Val Pro Asp Ser Ala Leu Pro Phe Asn 250 245 Phe Gln Ala Ala Tyr Gly Leu Ser Asp Gln Leu Ala Gln Ala Ile Ser 265 Asp His Tyr Pro Val Glu Val Met Leu Lys 280 <210> 41 <211> 678 <212> DNA <213> Mus musculus <400> 41 gacatettge tgacteagte tecagecate etgtetgtga gtecaggaga aagagteagt 60 tteteetgea gggeeagtea gttegttgge teaageatee actggtatea geaaagaaca 120 aatggttctc caaaggcttct cataaagtat gcttctgagt ctatgtctgg gatcccttcc 180 240 aggtttagtg gcagtggatc agggacagat tttactctta gcatcaacac tgtggagtct 300 qaaqatattq cagattatta ctgtcaacaa agtcatagct ggccattcac gttcggctcg 360 qqqacaaatt tqqaaqtaaa agaaqtgaag cttgaggagt ctggaggagg cttggtgcaa cctqqaqqat ccatqaaact ctcctqtqtt gcctctggat tcattttcag taaccactgg 420 480 atqaactqqq toogocagto tocagagaag gggcttgagt gggttgctga aattagatca 540 aaatctatta attctgcaac acattatgcg gagtctgtga aagggaggtt caccatctca agagatgatt ccaaaagtgc tgtctacctg caaatgaccg acttaagaac tgaagacact 600 660 qqcqtttatt actgttccag gaattactac ggtagtacct acgactactg gggccaaggc 678 accactetca cagtetee <210> 42 <211> 226 <212> PRT <213> Mus musculus <400> 42 Asp Ile Leu Leu Thr Gln Ser Pro Ala Ile Leu Ser Val Ser Pro Gly Glu Arg Val Ser Phe Ser Cys Arg Ala Ser Gln Phe Val Gly Ser Ser 20 25 30

Ile His Trp Tyr Gln Gln Arg Thr Asn Gly Ser Pro Arg Leu Leu Ile Lys Tyr Ala Ser Glu Ser Met Ser Gly Ile Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Ser Ile Asn Thr Val Glu Ser 75 70 Glu Asp Ile Ala Asp Tyr Tyr Cys Gln Gln Ser His Ser Trp Pro Phe Thr Phe Gly Ser Gly Thr Asn Leu Glu Val Lys Glu Val Lys Leu Glu 105 Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly Ser Met Lys Leu Ser Cys Val Ala Ser Gly Phe Ile Phe Ser Asn His Trp Met Asn Trp Val 135 Arg Gln Ser Pro Glu Lys Gly Leu Glu Trp Val Ala Glu Ile Arg Ser 145 150 Lys Ser Ile Asn Ser Ala Thr His Tyr Ala Glu Ser Val Lys Gly Arg 165 Phe Thr Ile Ser Arg Asp Asp Ser Lys Ser Ala Val Tyr Leu Gln Met 180 Thr Asp Leu Arg Thr Glu Asp Thr Gly Val Tyr Tyr Cys Ser Arg Asn 200 Tyr Tyr Gly Ser Thr Tyr Asp Tyr Trp Gly Gln Gly Thr Thr Leu Thr 210 215 Val Ser 225 <210> 43 <211> 450 <212> DNA <213> Homo sapiens <400> 43 getgeateag aagaggeeat caageacate actgteette tgeeatggee etgtggatge 60 120 gcctcctgcc cctgctggcg ctgctggccc tctggggacc tgacccagcc gcagcctttg tgaaccaaca cctgtgcggc tcacacctgg tggaagctct ctacctagtg tgcggggaac 180 qaqqcttctt ctacacaccc aagacccgcc gggaggcaga ggacctgcag gtggggcagg 240 tggagctggg cgggggccct ggtgcaggca gcctgcagcc cttggccctg gaggggtccc 300 tgcagaagcg tggcattgtg gaacaatgct gtaccagcat ctgctccctc taccagctgg 360 agaactactg caactagacg cagecegeag geageeeece accegeegee teetgeaceg 420 450 agagagatgg aataaagccc ttgaaccagc

<210> 44 <211> 110 <212> PRT <213> Homo sapiens <400> 44 Met Ala Leu Trp Met Arg Leu Leu Pro Leu Leu Ala Leu Leu Ala Leu Trp Gly Pro Asp Pro Ala Ala Ala Phe Val Asn Gln His Leu Cys Gly 20 Ser His Leu Val Glu Ala Leu Tyr Leu Val Cys Gly Glu Arg Gly Phe 40 Phe Tyr Thr Pro Lys Thr Arg Arg Glu Ala Glu Asp Leu Gln Val Gly Gln Val Glu Leu Gly Gly Gly Pro Gly Ala Gly Ser Leu Gln Pro Leu Ala Leu Glu Gly Ser Leu Gln Lys Arg Gly Ile Val Glu Gln Cys Cys Thr Ser Ile Cys Ser Leu Tyr Gln Leu Glu Asn Tyr Cys Asn <210> 45 <211> 1203 <212> DNA <213> Hepatitis B virus <400> 45 atgggaggtt ggtcttccaa acctcgacaa ggcatgggga cgaatctttc tgttcccaat 60 cctctgggat tctttcccga tcaccagttg gaccctgcgt tcggagccaa ctcaaacaat 120 ccaqattqqq acttcaaccc caacaaggat cactggccag aggcaatcaa ggtaggagcg 180 240 ggagacttcg ggccagggtt caccccacca cacggcggtc ttttggggtg gagccctcag gctcagggca tattgacaac agtgccagca gcgcctcctc ctgtttccac caatcggcag 300 teaggaagae agectactee cateteteca cetetaagag acagteatee teaggecatg 360 cagtggaact ccacaacatt ccaccaaget ctgctagatc ccagagtgag gggcctatat 420 tttcctgctg gtggctccag ttccggaaca gtaaaccctg ttccgactac tgtctcaccc 480 540 atateqteaa tetteteqaq gactqqqqac cetqeaceqa acatgqaqaq cacaacatea ggattcctag gacccctgct cgtgttacag gcggggtttt tcttgttgac aagaatcctc 600 660 acaataccac agagtctaga ctcgtggtgg acttctctca attttctagg gggagcaccc

47

720

780

840

acgtgtcctg gccaaaattc gcagtcccca acctccaatc actcaccaac ctcttgtcct

ccaatttgtc ctggttatcg ctggatgtgt ctgcggcgtt ttatcatatt cctcttcatc

ctgctgctat gcctcatctt cttgttggtt cttctggact accaaggtat gttgcccgtt

tgtectetac ttecaggaac atcaactace agcaeggac catgeaagac etgeaegatt 900 cetgeteaag gaacetetat gtttecetet tgttgetgta caaaacette ggaeggaaac 960 tgeaettgta tteceatece atcateetgg getttegeaa gatteetatg ggagtgggec 1020 teagteegtt teteetgget eagtttacta gtgeeatttg tteagtggtt egeagggett 1080 teececaetg tttggette agttatatgg atgatgtggt attgggggec aagtetgtac 1140 aacatettga gteeetttt acetetatta eeaattteet tttgtetttg ggtatacatt 1200 tga

<210> 46

<211> 400

<212> PRT

<213> Hepatitis B virus

<400> 46

Met Gly Gly Trp Ser Ser Lys Pro Arg Gln Gly Met Gly Thr Asn Leu $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Ser Val Pro Asn Pro Leu Gly Phe Phe Pro Asp His Gln Leu Asp Pro 20 25 30

Ala Phe Gly Ala Asn Ser Asn Asn Pro Asp Trp Asp Phe Asn Pro Asn 35 40 45

Lys Asp His Trp Pro Glu Ala Ile Lys Val Gly Ala Gly Asp Phe Gly 50 55 60

Pro Gly Phe Thr Pro Pro His Gly Gly Leu Leu Gly Trp Ser Pro Gln 65 70 75 80

Ala Gln Gly Ile Leu Thr Thr Val Pro Ala Ala Pro Pro Pro Val Ser 85 90 95

Thr Asn Arg Gln Ser Gly Arg Gln Pro Thr Pro Ile Ser Pro Pro Leu 100 105 110

Arg Asp Ser His Pro Gln Ala Met Gln Trp Asn Ser Thr Thr Phe His 115 120 125 .

Gln Ala Leu Leu Asp Pro Arg Val Arg Gly Leu Tyr Phe Pro Ala Gly 130 135 140

Gly Ser Ser Ser Gly Thr Val Asn Pro Val Pro Thr Thr Val Ser Pro 145 150 155 160

Ile Ser Ser Ile Phe Ser Arg Thr Gly Asp Pro Ala Pro Asn Met Glu 165 170 175

Ser Thr Thr Ser Gly Phe Leu Gly Pro Leu Leu Val Leu Gln Ala Gly 180 185 190

Phe Phe Leu Leu Thr Arg Ile Leu Thr Ile Pro Gln Ser Leu Asp Ser 195 200 205

Trp Trp Thr Ser Leu Asn Phe Leu Gly Gly Ala Pro Thr Cys Pro Gly 210 215 220

Gln 225	Asn	Ser	Gln	Ser	Pro 230	Thr	Ser	Asn	His	Ser 235	Pro	Thr	Ser	Cys	Pro 240	
Pro	Ile	Cys	Pro	Gly 245	Tyr	Arg	Trp	Met	Cys 250	Leu	Arg	Arg	Phe	Ile 255	Ile	
Phe	Leu	Phe	Ile 260	Leu	Leu	Leu	Суз	Leu 265	Ile	Phe	Leu	Leu	Val 270	Leu	Leu	
Asp	Tyr	Gln 275	Gly	Met	Leu	Pro	Val 280	Cys	Pro	Leu	Leu	Pro 285	Gly	Thr	Ser	
Thr	Thr 290	Ser	Thr	Gly	Pro	Cys 295	Lys	Thr	Суз	Thr	Ile 300	Pro	Ala	Gln	Gly	
Thr 305	Ser	Met	Phe	Pro	Ser 310	Cys	Cys	Суз	Thr	Lys 315	Pro	Ser	Asp	Gly	Asn 320	,
Суз	Thr	Суз	Ile	Pro 325	Ile	Pro	Ser	Ser	Trp 330	Ala	Phe	Ala	Arg	Phe 335	Leu	
Trp	Glu	Trp	Ala 340	Ser	Val	Arg	Phe	Ser 345	Trp	Leu	Ser	Leu	Leu 350	Val	Pro	
Phe	Val	Gln 355	Trp	Phe	Ala	Gly	Leu 360	Ser	Pro	Thr	Val	Trp 365	Leu	Ser	Val	
Ile	Trp 370	Met	Met	Trp	Tyr	Trp 375	Gʻly	Pro	Ser	Leu	Tyr 380	Asn	Ile	Leu	Ser	
Pro 385	Phe	Leu	Pro	Leu	Leu 390	Pro	Ile	Phe	Phe	Суs 395	Leu	Trp	Val	Tyr	Ile 400	
<210 <211 <212 <213	l> '	47 799 DNA Homo	sapi	iens												
<400 cgaa		47 ctc a	agggt	teet	gt gg	gacaç	gata	a cct	caget	tgca	atg	gctad	cag	gctco	ccggac	60
gtco	cctg	ctc ·	ctgg	cttt	tg go	cctgo	ctctç	g act	gcc	ctgg	ctto	caaga	agg (gcagt	gcctt	120
ccca	acca	att (ccctt	tatc	ca go	gaatt	tttga	a caa	acgct	tatg	ctc	cgcgo	ccc .	atcgt	ctgca	180
ccaç	gatg	gee :	tttga	acac	ct ac	ccag	gagtt	tga	aagaa	agcc	tata	atcc	caa .	aggaa	acagaa	240
gtat	tcat	ttc ·	ctgca	agaa	cc c	ccaga	accto	c cct	ctgt	tttc	tcaç	gagto	cta	ttcc	gacacc	300
ctc	caaca	agg (gagga	aaac	ac aa	acaga	aaato	c caa	accta	agag	ctg	ctcc	gca	tctc	cctgct	360
gcto	catco	cag	tcgt	ggct	gg aq	gaaaq	gtgca	a gti	ccct	cagg	agto	gtcti	tcg	ccaa	cagcct	420
ggt	gtac	ggc (gccto	ctga	ca go	caac	gtcta	a tga	accto	ccta	aagg	gacct	tag .	aggaa	aggcat	480
ccaa	aacgo	ctg .	atgg	ggag	ga to	ggaaq	gatgo	g caq	gece	ccgg	acto	gggca	aga	tctt	caagca	540
gaco	ctaca	agc .	aagti	tcga	ca ca	aaact	tcaca	a caa	acgat	tgac	gcad	ctact	tca	agaad	ctacgg	600
gct	gata	tac '	tgcti	tcag	ga aq	ggac	atgga	a caa	aggto	cgag	acat	tcct	tgc	gcato	cgtgca	660

780

799

gtgccgctct gtggagggca gctgtggctt ctagctgccc gggtggcatc cctgtgaccc ctccccagtg cctctcctgg ccctggaagt tgccactcca gtgcccacca gccttgtcct aataaaatta agttgcatc <210> 48 <211> 217 <212> PRT <213> Homo sapiens <400> 48 Met Ala Thr Gly Ser Arg Thr Ser Leu Leu Leu Ala Phe Gly Leu Leu Cys Leu Pro Trp Leu Gln Glu Gly Ser Ala Phe Pro Thr Ile Pro Leu 25 Ser Arg Pro Phe Asp Asn Ala Met Leu Arg Ala His Arg Leu His Gln Leu Ala Phe Asp Thr Tyr Gln Glu Phe Glu Glu Ala Tyr Ile Pro Lys Glu Gln Lys Tyr Ser Phe Leu Gln Asn Pro Gln Thr Ser Leu Cys Phe Ser Glu Ser Ile Pro Thr Pro Ser Asn Arg Glu Glu Thr Gln Gln Lys Ser Asn Leu Glu Leu Leu Arg Ile Ser Leu Leu Ile Gln Ser Trp 100 Leu Glu Pro Val Gln Phe Leu Arg Ser Val Phe Ala Asn Ser Leu Val 120 Tyr Gly Ala Ser Asp Ser Asn Val Tyr Asp Leu Leu Lys Asp Leu Glu 135 130 Glu Gly Ile Gln Thr Leu Met Gly Arg Leu Glu Asp Gly Ser Pro Arg 150 Thr Gly Gln Ile Phe Lys Gln Thr Tyr Ser Lys Phe Asp Thr Asn Ser 170 165 His Asn Asp Asp Ala Leu Leu Lys Asn Tyr Gly Leu Leu Tyr Cys Phe 185 Arg Lys Asp Met Asp Lys Val Glu Thr Phe Leu Arg Ile Val Gln Cys 200 205 Arg Ser Val Glu Gly Ser Cys Gly Phe 215 210 <210> 49 <211> 963 <212> DNA

<400> 49

<213> Homo sapiens

PCT/US2003/031974 WO 2004/033651

atggagacag	acacactcct	gttatgggtg	ctgctgctct	gggttccagg	ttccactggt	60
gacgtcaggc	gagggccccg	gagcctgcgg	ggcagggacg	cgccagcccc	cacgccctgc	120
gtcccggccg	agtgcttcga	cctgctggtc	cgccactgcg	tggcctgcgg	gctcctgcgc	180
acgccgcggc	cgaaaccggc	cggggccagc	agccctgcgc	ccaggacggc	gctgcagccg	240
caggagtcgg	tgggcgcggg	ggccggcgag	gcggcggtcg	acaaaactca	cacatgccca	300
ccgtgcccag	cacctgaact	cctgggggga	ccgtcagtct	tectettece	cccaaaaccc	360
aaggacaccc	tcatgatctc	ccggacccct	gaggtcacat	gcgtggtggt	ggacg‡gagc	420
cacgaagacc	ctgaggtcaa	gttcaactgg	tacgtggacg	gcgtggaggt	gcataatgcc	480
aagacaaagc	cgcgggagga	gcagtacaac	agcacgtacc	gtgtggtcag	cgtcctcacc	540
gtcctgcacc	aggactggct	gaatggcaag	gagtacaagt	gcaaggtctc	caacaaagcc	600
ctcccagccc	ccatcgagaa	aaccatctcc	aaagccaaag	ggcagccccg	agaaccacag	660
gtgtacaccc	tgcccccatc	ccgggatgag	ctgaccaaga	accaggtcag	cctgacctgc	720
ctggtcaaag	gcttctatcc	cagcgacatc	gccgtggagt	gggagagcaa	tgggcagccg	780
gagaacaact	acaagaccac	gcctcccgtg	ttggactccg	acggeteett	cttcctctac	840
agcaagctca	ccgtggacaa	gagcaggtgg	cagcagggga	acgtcttctc	atgctccgtg	900
atgcatgagg	ctctgcacaa	ccactacacg	cagaagagcc	tctccctgtc	tcccgggaaa	960
tga						963
<210> 50						

<211> 320

<212> PRT <213> Homo sapiens

<400> 50

Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro

Gly Ser Thr Gly Asp Val Arg Arg Gly Pro Arg Ser Leu Arg Gly Arg 20 25

Asp Ala Pro Ala Pro Thr Pro Cys Val Pro Ala Glu Cys Phe Asp Leu

Leu Val Arg His Cys Val Ala Cys Gly Leu Leu Arg Thr Pro Arg Pro

Lys Pro Ala Gly Ala Ser Ser Pro Ala Pro Arg Thr Ala Leu Gln Pro

Gln Glu Ser Val Gly Ala Gly Ala Gly Glu Ala Ala Val Asp Lys Thr 90

His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser 100 105 110

Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg 120 Thr Pro Glu Val Thr Cys Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala 155 Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr 185 Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr 195 200 Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu 215 Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys 230 Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 310 315 <210> 51 <211> 107 <212> PRT <213> Homo sapiens <400> 51 Asp Ile Gln Met Thr Gln Thr Pro Ser Thr Leu Ser Ala Ser Val Gly 10 Asp Arg Val Thr Ile Ser Cys Arg Ala Ser Gln Asp Ile Asn Asn Tyr Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 40 · 45 Tyr Tyr Thr Ser Thr Leu His Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Tyr Thr Leu Thr Ile Ser Ser Leu Gln Pro 70 75

Asp Asp Phe Ala Thr Tyr Phe Cys Gln Gly Asn Thr Leu Pro Trp

90 95

Thr Phe Gly Gln Gly Thr Lys Val Glu Val Lys 100

<210> 52 <211> 107 <212> PRT

<213> Mus musculus

<400> 52

Asp Ile Gln Met Thr Gln Thr Thr Ser Ser Leu Ser Ala Ser Leu Gly

Asp Arg Val Thr Ile Ser Cys Arg Ala Ser Gln Asp Ile Asn Asn Tyr

Leu Asn Trp Tyr Gln Gln Lys Pro Asp Gly Ile Val Lys Leu Leu Ile

Tyr Tyr Thr Ser Thr Leu His Ser Gly Val Pro Ser Arg Phe Ser Gly

Ser Gly Ser Gly Thr Asp Tyr Ser Leu Thr Ile Ser Asn Leu Glu Gln 70

Glu Asp Ile Ala Thr Tyr Phe Cys Gln Gln Gly Asn Thr Leu Pro Trp

Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys

<210> 53

<211> 119

<212> PRT

<213> Homo sapiens

<400> 53

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Ala Phe Thr Asn Tyr

Leu Ile Glu Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Ile

Gly Val Ile Tyr Pro Gly Ser Gly Gly Thr Asn Tyr Asn Glu Lys Phe 55

Lys Gly Arg Val Thr Leu Thr Val Asp Glu Ser Thr Asn Thr Ala Tyr 70

Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Phe Cys 85

Ala Arg Arg Asp Gly Asn Tyr Gly Trp Phe Ala Tyr Trp Gly Gln Gly 105

Thr Leu Val Thr Val Ser Ser 115

<210> 54

<211> 119 <212> PRT

<213> Mus musculus

<400> 54

Gln Val Gln Leu Gln Gln Ser Gly Ala Glu Leu Val Gly Pro Gly Thr

Ser Val Arg Val Ser Cys Lys Ala Ser Gly Tyr Ala Phe Thr Asn Tyr

Leu Ile Glu Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile

Gly Val Ile Tyr Pro Gly Ser Gly Gly Thr Asn Tyr Asn Glu Lys Phe

Lys Gly Lys Ala Thr Leu Thr Val Asp Lys Ser Ser Thr Thr Ala Tyr

Met Gln Leu Ser Ser Leu Thr Ser Asp Asp Ser Ala Val Tyr Phe Cys

Ala Arg Arg Asp Gly Asn Tyr Gly Trp Phe Ala Tyr Trp Gly Arg Gly

Thr Leu Val Thr Val Ser Ala 115

<210> 55

<211> 214

<212> PRT

<213> Homo sapiens

<400> 55

Asp Ile Gln Met Thr Gln Thr Pro Ser Thr Leu Ser Ala Ser Val Gly

Asp Arg Val Thr Ile Ser Cys Arg Ala Ser Gln Asp Ile Asn Asn Tyr

Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 40 45

Tyr Tyr Thr Ser Thr Leu His Ser Gly Val Pro Ser Arg Phe Ser Gly 55

Ser Gly Ser Gly Thr Asp Tyr Thr Leu Thr Ile Ser Ser Leu Gln Pro 70

Asp Asp Phe Ala Thr Tyr Phe Cys Gln Gln Gly Asn Thr Leu Pro Trp

Thr Phe Gly Gln Gly Thr Lys Val Glu Val Lys Arg Thr Val Ala Ala 105

Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly 120 125

Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala 130 135 140

Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln 145 150 155 160

Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser 165 170 175

Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr 180 185 190

Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys Ser 195 200 205

Phe Asn Arg Gly Glu Cys 210

<210> 56

<211> 448

<212> PRT

<213> Homo sapiens

<400> 56

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser 1 5 10 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Ala Phe Thr Asn Tyr 20 25 30

Leu Ile Glu Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Ile 35 40 45

Gly Val Ile Tyr Pro Gly Ser Gly Gly Thr Asn Tyr Asn Glu Lys Phe 50 55 60

Lys Gly Arg Val Thr Leu Thr Val Asp Glu Ser Thr Asn Thr Ala Tyr 65 70 75 80

Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Phe Cys
85 90 95

Ala Arg Arg Asp Gly Asn Tyr Gly Trp Phe Ala Tyr Trp Gly Gln Gly 100 105 110

Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe 115 120 125

Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu 130 135 140

Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp 145 150 155 160

Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu 165 170 175

Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser 180 185 190

Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys Pro

205 195 200 Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Cys Asp Lys 215 Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser 250 Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val 290 Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu 310 Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys 330 325 Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr 345 Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr 360 355 Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu 375 Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu 395 385 390 Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys 410 405 Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu 425 430 Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly 440 <210> 57 <211> 8540 <212> DNA <213> Homo sapiens <400> 57 gacgtcgcgg ccgctctagg cctccaaaaa agcctcctca ctacttctgg aatagctcag

60 aggecgagge ggeeteggee tetgeataaa taaaaaaaat tagteageea tgeatgggge qqaqaatggg cggaactggg cggagttagg ggcgggatgg gcggagttag gggcgggact 180 atggttgctg actaattgag atgcatgctt tgcatacttc tgcctgctgg ggagcctggg 240

gactttccac acctggttgc	tgactaattg	agatgcatgc	tttgcatact	tetgeetget	300
ggggagcctg gggactttcc	acaccctaac	tgacacacat	tccacagaat	taattcccct	360
agttattaat agtaatcaat	tacggggtca	ttagttcata	gcccatatat	ggagttccgc	420
gttacataac ttacggtaaa	tggcccgcct	ggctgaccgc	ccaacgaccc	ccgcccattg	480
acgtcaataa tgacgtatgt	tcccatagta	acgccaatag	ggactttcca	ttgacgtcaa	540
tgggtggact atttacggta	aactgcccac	ttggcagtac	atcaagtgta	tcatatgcca	600
agtacgcccc ctattgacgt	caatgacggt	aaatggcccg	cctggcatta	tgcccagtac	660
atgaccttat gggactttcc	tacttggcag	tacatctacg	tattagtcat	cgctattacc	720
atggtgatgc ggttttggca	gtacatcaat	gggcgtggat	agcggtttga	ctcacgggga	780
tttccaagtc tccaccccat	tgacgtcaat	gggagtttgt	tttggcacca	aaatcaacgg	840
gactttccaa aatgtcgtaa	caactccgcc	ccattgacgc	aaatgggcgg	taggcgtgta	900
cggtgggagg tctatataag	cagagctggg	tacgtgaacc	gtcagatcgc	ctggagacgc	960
catcacagat ctctcaccat	gagggtcccc	gctcagctcc	tggggctcct	gctgctctgg	1020
ctcccaggtg cacgatgtga	tggtaccaag	gtggaaatca	aacgtacggt	ggctgcacca	1080
tetgtettea tettecegee	atctgatgag	cagttgaaat	ctggaactgc	ctctgttgtg	1140
tgcctgctga ataacttcta	teccagagag	gccaaagtac	agtggaaggt	ggataacgcc	1200
ctccaatcgg gtaactccca	ggagagtgtc	acagagcagg	acagcaagga	cagcacctac	1260
agceteagea geaccetgae	gctgagcaaa	gcagactacg	agaaacacaa	agtctacgcc	1320
tgcgaagtca cccatcaggg	cctgagctcg	cccgtcacaa	agagcttcaa	caggggagag	1380
tgttgaattc agatccgtta	acggttacca	actacctaga	ctggattcgt	gacaacatgc	1440
ggccgtgata tctacgtatg	atcagcctcg	actgtgcctt	ctagttgcca	gccatctgtt	1500
gtttgcccct ccccgtgcc	ttccttgacc	ctggaaggtg	ccactcccac	tgtcctttcc	1560
taataaaatg aggaaattgc	atcgcattgt	ctgagtaggt	gtcattctat	tctggggggt	1620
ggggtggggc aggacagcaa	gggggaggat	tgggaagaca	atagcaggca	tgctggggat	1680
gcggtgggct ctatggaacc	agctggggct	cgacagctat	gccaagtacg	cccctattg	1740
acgtcaatga cggtaaatgg	cccgcctggc	attatgccca	gtacatgacc	ttatgggact	1800
ftcctacttg gcagtacatc	tacgtattag	tcatcgctat	taccatggtg	atgcggtttt	1860
ggcagtacat caatgggcgt	ggatagcggt	ttgactcacg	gggatttcca	agtctccacc	1920
ccattgacgt caatgggagt	ttgttttggc	accaaaatca	acgggacttt	ccaaaatgtc	1980
gtaacaactc cgccccattg	acgcaaatgg	gcggtaggcg	tgtacggtgg	gaggtctata	2040
taagcagagc tgggtacgtc	ctcacattca	gtgatcagca	ctgaacacag	acccgtcgac	2100

atgggttgga	gcctcatctt	gctcttcctt	gtcgctgttg	ctacgcgtgt	cgctagcacc	2160
aagggcccat	cggtcttccc	cctggcaccc	tcctccaaga	gcacctctgg	gggcacagcg	2220
gccctgggct	gcctggtcaa	ggactacttc	cccgaaccgg	tgacggtgtc	gtggaactca	2280
ggcgccctga	ccagcggcgt	gcacaccttc	ccggctgtcc	tacagtcctc	aggactctac	2340
tccctcagca	gcgtggtgac	cgtgccctcc	agcagcttgg	gcacccagac	ctacatctgc	2400
aacgtgaatc	acaagcccag	caacaccaag	gtggacaaga	aagcagagcc	caaatcttgt	2460
gacaaaactc	acacatgccc	accgtgccca	gcacctgaac	tcctgggggg	accgtcagtc	2520
tteetettee	ccccaaaacc	caaggacacc	ctcatgatct	cccggacccc	tgaggtcaca	2580
tgcgtggtgg	tggacgtgag	ccacgaagac	cctgaggtca	agttcaactg	gtacgtggac	2640
ggcgtggagg	tgcataatgc	caagacaaag	ccgcgggagg	agcagtacaa	cagcacgtac	2700
cgtgtggtca	gcgtcctcac	cgtcctgcac	caggactggc	tgaatggcaa	ggactacaag	2760
tgcaaggtct	ccaacaaagc	cctcccagcc	cccatcgaga	aaaccatctc	caaagccaaa	2820
gggcagcccc	gagaaccaca	ggtgtacacc	ctgcccccat	cccgggatga	gctgaccagg	2880
aaccaggtca	gcctgacctg	cctggtcaaa	ggcttctatc	ccagcgacat	cgccgtggag	2940
tgggagagca	atgggcagcc	ggagaacaac	tacaagacca	cgcctcccgt	gctggactcc	3000
gacggctcct	tcttcctcta	cagcaagctc	accgtggaca	agagcaggtg	gcagcagggg	3060
aacgtcttct	catgctccgt	gatgcatgag	gctctgcaca	accactacac	gcagaagagc	3120
ctctccctgt	ctccgggtaa	atgaggatcc	gttaacggtt	accaactacc	tagactggat	3180
tegtgacaac	atgcggccgt	gatatctacg	tatgatcagc	ctcgactgtg	ccttctagtt	3240
gccagccatc	tgttgtttgc	ccctcccccg	tgccttcctt	gaccctggaa	ggtgccactc	3300
ccactgtcct	ttcctaataa	aatgaggaaa	ttgcatcgca	ttgtctgagt	aggtgtcatt	3360
ctattctggg	gggtggggtg	gggcaggaca	gcaaggggga	ggattgggaa	gacaatagca	3420
ggcatgctgg	ggatgeggtg	ggctctatgg	aaccagctgg	ggctcgacag	cgctggatct	3480
cccgatcccc	agetttgett	. ctcaatttct	tatttgcata	atgagaaaaa	aaggaaaatt	3540
aattttaaca	ccaattcagt	. agttgattga	gcaaatgcgt	tgccaaaaag	gatgctttag	3600
agacagtgtt	ctctgcacag	r ataaggacaa	acattattca	gagggagtac	ccagagctga	3660
gactcctaag	g ccagtgagtg	g gcacagcatt	ctagggagaa	atatgcttgt	catcaccgaa	3720
gcctgattcc	gtagagccac	accttggtaa	gggccaatct	gctcacacag	gatagagagg	3780
gcaggagcca	a gggcagagca	ı tataaggtga	ggtaggatca	gttgctcctc	acatttgctt	3840
ctgacatagt	: tgtgttggga	a gcttggatag	cttggacago	tcagggctgc	gatttcgcgc	3900

caaacttgac	ggcaatccta	gcgtgaaggc	tggtaggatt	ttatccccgc	tgccatcatg	3960
gttcgaccat	tgaactgcat	cgtcgccgtg	tcccaaaata	tggggattgg	caagaacgga	4020
gacctaccct	ggcctccgct	caggaacgag	ttcaagtact	tccaaagaat	gaccacaacc	4080
tcttcagtgg	aaggtaaaca	gaatctggtg	attatgggta	ggaaaacctg	gttctccatt	4140
cctgagaaca	atcgaccttt	aaaggacaga	attaatatag	ttctcagtag	agaactcaaa	4200
gaaccaccac	gaggagctca	ttttcttgcc	aaaagtttgg	atgatgcctt	aagacttatt	4260
gaacaaccgg	aattggcaag	taaagtagac	atggtttgga	tagtcggagg	cagttctgtt	4320
taccaggaag	ccatgaatca	accaggccac	cttagactct	ttgtgacaag	gatcatgcag	4380
gaatttgaaa	gtgacacgtt	tttcccagaa	attgatttgg	ggaaatataa	acttctccca	4440
gaatacccag	gegteetete	tgaggtccag	gaggaaaaag	gcatcaagta	taagtttgaa	4500
gtctacgaga	agaaagacta	acaggaagat	gctttcaagt	tctctgctcc	cctcctaaag	4560
tcatgcattt	ttataagacc	atgggacttt	tgctggcttt	agatcagcct	cgactgtgcc	4620
ttctagttgc	cagccatctg	ttgtttgccc	ctcccccgtg	ccttccttga	ccctggaagg	4680
tgccactccc	actgtccttt	cctaataaaa	tgaggaaatt	gcatcgcatt	gtctgagtag	4740
gtgtcattct	attctggggg	gtggggtggg	gcaggacagc	aagggggagg	attgggaaga	4800
caatagcagg	catgctgggg	atgcggtggg	ctctatggaa	ccagctgggg	ctcgagctac	4860
tagctttgct	tctcaatttc	ttatttgcat	aatgagaaaa	aaaggaaaat	taattttaac	4920
accaattcag	tagttgattg	agcaaatgcg	ttgccaaaaa	ggatgcttta	gagacagtgt	4980
tetetgcaca	gataaggaca	aacattattc	agagggagta	cccagagctg	agactcctaa	5040
gccagtgagt	ggcacagcat	tctagggaga	aatatgcttg	tcatcaccga	agcctgattc	5100
cgtagagcca	caccttggta	agggccaatc	tgctcacaca	ggatagagag	ggcaggagcc	5160
agggcagagc	atataaggtg	aggtaggatc	agttgctcct	cacatttgct	tctgacatag	5220
ttgtgttggg	agcttggatc	gatcctctat	ggttgaacaa	gatggattgc	acgcaggttc	5280
tccggccgct	tgggtggaga	ggctattcgg	ctatgactgg	gcacaacaga	caatcggctg	5340
ctctgatgcc	gccgtgttcc	ggctgtcagc	gcaggggggc	ccggttcttt	ttgtcaagac	5400
cgacctgtcc	ggtgccctga	atgaactgca	ggacgaggca	gcgcggctat	cgtggctggc	5460
cacgacgggc	gttccttgcg	cagctgtgct	cgacgttgtc	actgaagcgg	gaagggactg	5520
gctgctattg	ggcgaagtgc	cggggcagga	tctcctgtca	tctcaccttg	ctcctgccga	5580
gaaagtatcc	atcatggctg	atgcaatgcg	gcggctgcat	acgcttgatc	cggctacctg	5640
cccattcgac	caccaagcga	aacatcgcat	cgagcgagca	cgtactcgga	tggaagccgg	5700
tcttgtcgat	caggatgatc	tggacgaaga	gcatcagggg	ctcgcgccag	ccgaactgtt	5760

cgccaggctc aaggcgcgca	tgcccgacgg	cgaggatctc	gtcgtgaccc	atggcgatgc	5820
ctgcttgccg aatatcatgg	tggaaaatgg	ccgcttttct	ggattcatcg	actgtggccg	5880
gctgggtgtg gcggaccgct	atcaggacat	agcgttggct	acccgtgata	ttgctgaaga	5940
gcttggcggc gaatgggctg	accgcttcct	cgtgctttac	ggtatcgccg	cttcccgatt	6000
cgcagcgcat cgccttctat	cgccttcttg	acgagttctt	ctgagcggga	ctctggggtt	6060
cgaaatgacc gaccaagcga	cgcccaacct	gccatcacga	gatttcgatt	ccaccgccgc	6120
cttctatgaa aggttgggct	tcggaatcgt	tttccgggac	gccggctgga	tgatcctcca	6180
gcgcggggat ctcatgctgg	agttcttcgc	ccaccccaac	ttgtttattg	cagcttataa	6240
tggttacaaa taaagcaata	gcatcacaaa	tttcacaaat	aaagcatttt	tttcactgca	6300
ttctagttgt ggtttgtcca	aactcatcaa	tctatcttat	catgtctgga	tcgcggccgc	6360
gatecegteg agagettgge	gtaatcatgg	tcatagctgt	ttcctgtgtg	aaattgttat	6420
ccgctcacaa ttccacacaa	catacgagcc	ggagcataaa	gtgtaaagcc	tggggtgcct	6480
aatgagtgag ctaactcaca	ttaattgcgt	tgcgctcact	gcccgctttc	cagtcgggaa	6540
acctgtcgtg ccagctgcat	taatgaatcg	gccaacgcgc	ggggagaggc	ggtttgcgta	6600
ttgggcgctc ttccgcttcc	tegeteactg	actegetgeg	ctcggtcgtt	cggctgcggc	6660
gagcggtatc agctcactca	aaggcggtaa	tacggttatc	cacagaatca	ggggataacg	6720
caggaaagaa catgtgagca	aaaggccagc	aaaaggccag	gaaccgtaaa	aaggccgcgt	6780
tgctggcgtt tttccatagg	ctccgccccc	ctgacgagca	tcacaaaaat	cgacgctcaa	6840
gtcagaggtg gcgaaacccg	acaggactat	aaagatacca	ggcgtttccc	cctggaagct	6900
ccctcgtgcg ctctcctgtt	ccgaccctgc	cgcttaccgg	atacctgtcc	gcctttctcc	6960
cttcgggaag cgtggcgctt	tctcaatgct	cacgctgtag	gtatctcagt	tcggtgtagg	7020
tegttegete caagetggge	tgtgtgcacg	aaccccccgt	tcagcccgac	cgctgcgcct	7080
tatccggtaa ctatcgtctt	gagtccaacc	cggtaagaca	cgacttatcg	ccactggcag	7140
cagccactgg taacaggatt	agcagagcga	ggtatgtagg	cggtgctaca	gagttcttga	7200
agtggtggcc taactacggc	tacactagaa	ggacagtatt	tggtatctgc	gctctgctga	7260
agccagttac cttcggaaaa	agagttggta	gctcttgatc	cggcaaacaa	accaccgctg	7320
gtageggtgg tttttttgtt	tgcaagcagc	agattacgcg	cagaaaaaaa	ggatctcaag	7380
aagatccttt gatcttttct	acggggtctg	acgctcagtg	gaacgaaaac	tcacgttaag	7440
ggattttggt catgagatta	tcaaaaagga	tettcaceta	gatcctttta	aattaaaaat	7500
gaagttttaa atcaatctaa	agtatatatg	agtaaacttg	gtctgacagt	taccaatgct	7560

taatcagtga	ggcacctatc	tcagcgatct	gtctatttcg	ttcatccata	gttgcctgac	7620
teccegtegt	gtagataact	acgatacggg	agggcttacc	atctggcccc	agtgctgcaa	7680
tgataccgcg	agacccacgc	tcaccggctc	cagatttatc	agcaataaac	cagccagccg	7740
gaagggccga	gcgcagaagt	ggtcctgcaa	ctttatccgc	ctccatccag	tctattaatt	7800
gttgccggga	agctagagta	agtagttcgc	cagttaatag	tttgcgcaac	gttgttgcca	7860
ttgctacagg	catcgtggtg	tcacgctcgt	cgtttggtat	ggcttcattc	agctccggtt	7920
cccaacgatc	aaggcgagtt	acatgatccc	ccatgttgtg	caaaaaagcg	gttagctcct	7980
teggteetee	gatcgttgtc	agaagtaagt	tggccgcagt	gttatcactc	atggttatgg	8040
cagcactgca	taattctctt	actgtcatgc	catccgtaag	atgcttttct	gtgactggtg	8100
agtactcaac	caagtcattc	tgagaatagt	gtatgcggcg	accgagttgc	tcttgcccgg	8160
cgtcaatacg	ggataatacc	gcgccacata	gcagaacttt	aaaagtgctc	atcattggaa	8220
aacgttcttc	ggggcgaaaa	ctctcaagga	tcttaccgct	gttgagatcc	agttcgatgt	8280
aacccactcg	tgcacccaac	tgatcttcag	catcttttac	tttcaccagc	gtttctgggt	8340
gagcaaaaac	aggaaggcaa	aatgccgcaa	aaaagggaat	aagggcgaca	cggaaatgtt	8400
gaatactcat	actcttcctt	tttcaatatt	attgaagcat	ttatcagggt	tattgtctca	8460
tgagcggata	catatttgaa	tgtatttaga	aaaataaaca	aataggggtt	ccgcgcacat	8520
ttccccgaaa	agtgccacct					8540
<210> 58 <211> 9209	a					
<212> DNA	musculus					
<400> 58	Musculus					
	ccgctctagg	cctccaaaaa	agcctcctca	ctacttctgg	aatagctcag	60
aggeegagge	ggcctcggcc	tctgcataaa	taaaaaaaat	tagtcagcca	tgcatggggc	120
ggagaatggg	cggaactggg	cggagttagg	ggcgggatgg	gcggagttag	gggcgggact	180
atggttgctg	actaattgag	atgcatgctt	tgcatacttc	tgcctgctgg	ggagcctggg	240
gactttccac	acctggttgc	tgactaattg	agatgcatgc	tttgcatact	tctgcctgct	300
ggggagcctg	gggactttcc	acaccctaac	tgacacacat	tccacagaat	taattcccct	360
agttattaat	agtaatcaat	tacggggtca	ttagttcata	gcccatatat	ggagttccgc	420
gttacataac	ttacggtaaa	tggcccgcct	ggctgaccgc	ccaacgaccc	ccgcccattg	480
acgtcaataa	tgacgtatgt	tcccatagta	acgccaatag	ggactttcca	ttgacgtcaa	540
tgggtggact	atttacggta	aactgcccac	ttggcagtac	atcaagtgta	tcatatgcca	600
agtacgcccc	ctattgacgt	caatgacggt	aaatggcccg	cctggcatta	tgcccagtac	660

atgaccttat	gggactttcc	tacttggcag	tacatctacg	tattagtcat	cgctattacc	720
atggtgatgc	ggttttggca	gtacatcaat	gggcgtggat	accggtttga	ctcacgcgga	780
tttccaagtc	tccaccccat	tgacgtcaat	gggagtttgt	tttggcacca	aaatcaacgg	840
gactttccaa	aatgtcgtaa	caactccgcc	ccattgacgc	aaatgggcgg	taggcgtgta	900
cggtgggagg	tctatataag	cagagctggg	tacgtgaacc	gtcagatcgc	ctggagacgc	960
catcacagat	ctctcactat	ggattttcag	gtgcagatta	tcagcttcct	gctaatcagt	1020
gcttcagtca	taatgtccag	aggacaaatt	gttctctccc	agtctccagc	aatcctgtct	1080
gcatctccag	gggagaaggt	cacaatgact	tgcagggcca	gctcaagtgt	aagttacatc	1140
cactggttcc	agcagaagcc	aggateetee	cccaaaccct	ggatttatgc	cacatccaac	1200
ctggcttctg	gagtccctgt	tcgcttcagt	ggcagtgggt	ctgggacttc	ttactctctc	1260
acaatcagca	gagtggaggc	tgaagatgct	gccacttatt	actgccagca	gtggactagt	1320
aacccaccca	cgttcggagg	ggggaccaag	ctggaaatca	aacgtacggt	ggctgcacca	1380
tctgtcttca	tcttcccgcc	atctgatgag	cagttgaaat	ctggaactgc	ctctgttgtg	1440
tgcctgctga	ataacttcta	tcccagagag	gccaaagtac	agtggaaggt	ggataacgcc	1500
ctccaatcgg	gtaactccca	ggagagtgtc	acagagcagg	acagcaagga	cagcacctac	1560
agcctcagca	gcaccctgac	gctgagcaaa	gcagactacg	agaaacacaa	agtctacgcc	1620
tgcgaagtca	cccatcaggg	cctgagctcg	cccgtcacaa	agagcttcaa	caggggagag	1680
tgttgaattc	agatccgtta	acggttacca	actacctaga	ctggattcgt	gacaacatgc	1740
ggccgtgata	tctacgtatg	atcagcctcg	actgtgcctt	ctagttgcca	gccatctgtt	1800
gtttgcccct	ccccgtgcc	ttccttgacc	ctggaaggtg	ccactcccac	tgtcctttcc	1860
taataaaatg	aggaaattgc	atcgcattgt	ctgagtaggt	gtcattctat	tctggggggt	1920
ggggtggggc	aggacagcaa	gggggaggat	tgggaagaca	atagcaggca	tgctggggat	1980
gcggtgggct	ctatggaacc	agctggggct	cgacagctat	gccaagtacg	cccctattg	2040
acgtcaatga	cggtaaatgg	cccgcctggc	attatgccca	gtacatgacc	ttatgggact	2100
ttcctacttg	gcagtacatc	tacgtattag	tcatcgctat	taccatggtg	atgcggtttt	2160
ggcagtacat	caatgggcgt	ggatagcggt	ttgactcacg	gggatttcca	agtctccacc	2220
ccattgacgt	caatgggagt	ttgttttggc	accaaaatca	acgggacttt	ccaaaatgtc	2280
gtaacaactc	cgccccattg	acgcaaatgg	gcggtaggcg	tgtacggtgg	gaggtctata	2340
taagcagagc	tgggtacgtc	ctcacattca	gtgatcagca	ctgaacacag	acccgtcgac	2400
atgggttgga	gcctcatctt	gctcttcctt	gtcgctgttg	ctacgcgtgt	cctgtcccag	2460

gtacaactgc	agcagcctgg	ggctgagctg	gtgaagcctg	gggcctcagt	gaagaťġťcc	<i>2</i> 520
tgcaaggctt	ctggctacac	atttaccagt	tacaatatgc	actgggtaaa	acagacacct	2580
ggteggggee	tggaatggat	tggagctatt	tatcccggaa	atggtgatac	ttcctacaat	2640
cagaagttca	aaggcaaggc	cacattgact	gcagacaaat	cctccagcac	agcctacatg	2700
cagctcagca	gcctgacatc	tgaggactct	gcggtctatt	actgtgcaag	atcgacttac	2760
tacggcggtg	actggtactt	caatgtctgg	ggcgcaggga	ccacggtcac	cgtctctgca	2820
gctagcacca	agggcccatc	ggtcttcccc	ctggcaccct	cctccaagag	cacctctggg	2880
ggcacagcgg	ccctgggctg	cctggtcaag	gactacttcc	ccgaaccggt	gacggtgtcg	2940
tggaactcag	gcgccctgac	cagcggcgtg	cacaccttcc	cggctgtcct	acagtcctca	3000
ggactctact	ccctcagcag	cgtggtgacc	gtgccctcca	gcagcttggg	cacccagacc	3060
tacatctgca	acgtgaatca	caagcccagc	aacaccaagg	tggacaagaa	agcagagccc	3120
aaatcttgtg	acaaaactca	cacatgccca	ccgtgcccag	cacctgaact	cctgggggga	3180
ccgtcagtct	tectettece	cccaaaaccc	aaggacaccc	tcatgatctc	ccggacccct	3240
gaggtcacat	gcgtggtggt	ggacgtgagc	cacgaagacc	ctgaggtcaa	gttcaactgg	3300
tacgtggacg	gcgtggaggt	gcataatgcc	aagacaaagc	cgcgggagga	gcagtacaac	3360
agcacgtacc	gtgtggtcag	cgtcctcacc	gtcctgcacc	aggactggct	gaatggcaag	3420
gagtacaagt	gcaaggtctc	caacaaagcc	ctcccagccc	ccatcgagaa	aaccatctcc	3480
aaagccaaag	ggcagccccg	agaaccacag	gtgtacaccc	tgcccccatc	ccgggatgag	3540
ctgaccaaga	accaggtcag	cctgacctgc	ctggtcaaag	gcttctatcc	cagegacate	3600
gccgtggagt	gggagagcaa	tgggcagccg	gagaacaact	acaagaccac	gcctcccgtg	3660
ctggactccg	acggctcctt	cttcctctac	agcaagctca	ccgtggacaa	gagcaggtgg	3720
cagcagggga	acgtcttctc	atgctccgtg	atgcatgagg	ctctgcacaa	ccactacacg	3780
cagaagagcc	tctccctgtc	tccgggtaaa	tgaggatccg	ttaacggtta	ccaactacct	3840
agactggatt	cgtgacaaca	tgcggccgtg	atatctacgt	atgatcagcc	tcgactgtgc	3900
cttctagttg	ccagccatct	gttgtttgcc	cctcccccgt	gccttccttg	accctggaag	3960
gtgccactcc	cactgtcctt	tcctaataaa	. atgaggaaat	tgcatcgcat	tgtctgagta	4020
ggtgtcattc	tattctgggg	ggtggggtgg	ggcaggacag	caagggggag	gattgggaag	4080
acaatagcag	gcatgctggg	gatgcggtgg	gctctatgga	accagctggg	gctcgacagc	4140
gctggatctc	ccgatcccca	gctttgcttc	: tcaatttctt	atttgcataa	. tgagaaaaaa	4200
aggaaaatta	attttaacac	caattcagta	gttgattgag	caaatgcgtt	gccaaaaagg	4260
atgctttaga	gacagtgttc	tetgeacaga	ı taaggacaaa	cattattcag	agggagtacc	4320

cagagctgag	actcctaagc	cagtgagtgg	cacagcattc	tagggagaaa	tatgcttgtc	4380
atcaccgaag	cctgattccg	tagagccaca	ccttggtaag	ggccaatctg	ctcacacagg	4440
atagagaggg	caggagccag	ggcagagcat	ataaggtgag	gtaggatcag	ttgctcctca	4500
catttgcttc	tgacatagtt	gtgttgggag	cttggatagc	ttggacagct	cagggctgcg	4560
atttcgcgcc	aaacttgacg	gcaatcctag	cgtgaaggct	ggtaggattt	tateceeget	4620
gccatcatgg	ttcgaccatt	gaactgcatc	gtcgccgtgt	cccaaaatat	ggggattggc	4680
aagaacggag	acctaccctg	gcctccgctc	aggaacgagt	tcaagtactt	ccaaagaatg	4740
accacaacct	cttcagtgga	aggtaaacag	aatctggtga	ttatgggtag	gaaaacctgg	4800
ttctccattc	ctgagaagaa	tcgaccttta	aaggacagaa	ttaatatagt	tctcagtaga	4860
gaactcaaag	aaccaccacg	aggagctcat	tttcttgcca	aaagtttgga	tgatgcctta	4920
agacttattg	aacaaccgga	attggcaagt	aaagtagaca	tggtttggat	agtcggaggc	4980
agttctgttt	accaggaagc	catgaatcaa	ccaggccacc	ttagactctt	tgtgacaagg	5040
atcatgcagg	aatttgaaag	tgacacgttt	ttcccagaaa	ttgatttggg	gaaatataaa	5100
cttctcccag	aatacccagg	cgtcctctct	gaggtccagg	aggaaaaagg	catcaagtat	5160
aagtttgaag	tctacgagaa	gaaagactaa	caggaagatg	ctttcaagtt	ctctgctccc	5220
ctcctaaagc	tatgcatttt	tataagacca	tgggactttt	gctggcttta	gatcagcctc	5280
gactgtgcct	tctagttgcc	agccatctgt	tgtttgcccc	tececegtge	cttccttgac	5340
cctggaaggt	gccactccca	ctgtcctttc	ctaataaaat	gaggaaattg	catcgcattg	5400
tctgagtagg	tgtcattcta	ttctgggggg	tggggtgggg	caggacagca	agggggagga	5460
ttgggaagac	aatagcaggc	atgctgggga	tgcggtgggc	tctatggaac	cagctggggc	5520
tcgagctact	agctttgctt	ctcaatttct	tatttgcata	atgagaaaaa	aaggaaaatt	5580
aattttaaca	ccaattcagt	agttgattga	gcaaatgcgt	tgccaaaaag	gatgctttag	5640
agacagtgtt	ctctgcacag	ataaggacaa	acattattca	gagggagtac	ccagagctga	5700
gactcctaag	ccagtgagtg	gcacagcatt	ctagggagaa	atatgcttgt	catcaccgaa	5760
gcctgattcc	gtagagccac	accttggtaa	gggccaatct	gctcacacag	gatagagagg	5820
gcaggagcca	gggcagagca	tataaggtga	ggtaggatca	gttgctcctc	acatttgctt	5880
ctgacatagt	tgtgttggga	gcttggatcg	atcctctatg	gttgaacaag	atggattgca	5940
cgcaggttct	ceggeegett	gggtggagag	gctattcggc	tatgactggg	cacaacagac	6000
aatcggctgc	tctgatgccg	ccgtgttccg	gctgtcagcg	caggggcgcc	cggttctttt	6060
tgtcaagacc	gacctgtccg	gtgccctgaa	tgaactgcag	gacgaggcag	cgcggctatc	6120

gtggctggcc	acgacgggcg	ttccttgcgc	agctgtgctc	gacgttgtca	ctgaagcggg	ð18Ö
aagggactgg	ctgctattgg	gcgaagtgcc	ggggcaggat	ctcctgtcat	ctcaccttgc	6240
tcctgccgag	aaagtatcca	tcatggctga	tgcaatgcgg	cggctgcata	cgcttgatcc	6300
ggctacctgc	ccattcgacc	accaagcgaa	acatcgcatc	gagcgagcac	gtactcggat	6360
ggaagccggt	cttgtcgatc	aggatgatct	ggacgaagag	catcaggggc	tegegeeage	6420
cgaactgttc	gccaggctca	aggcgcgcat	gcccgacggc	gaggatctcg	tcgtgaccca	6480
tggcgatgcc	tgcttgccga	atatcatggt	ggaaaatggc	cgcttttctg	gattcatcga	6540
ctgtggccgg	ctgggtgtgg	cggaccgcta	tcaggacata	gcgttggcta	cccgtgatat	6600
tgctgaagag	cttggcggcg	aatgggctga	cagattaata	gtgctttacg	gtatcgccgc	6660
tcccgattcg	cagcgcatcg	ccttctatcg	ccttcttgac	gagttcttct	gagegggaet	6720
ctggggttcg	aaatgaccga	ccaagcgacg	cccaacctgc	catcacgaga	tttcgattcc	6780
accgccgcct	tctatgaaag	gttgggcttc	ggaatcgttt	teegggaege	cggctggatg	6840
atcctccagc	gcggggatct	catgctggag	ttcttcgccc	accccaactt	gtttattgca	6900
gcttataatg	gttacaaata	aagcaatagc	atcacaaatt	tcacaaataa	agcattttt	6960
tcactgcatt	ctagttgtgg	tttgtccaaa	ctcatcaatc	tatcttatca	tgtctggatc	7020
gcggccgcga	tcccgtcgag	agcttggcgt	aatcatggtc	atagctgttt	cctgtgtgaa	7080
attgttatcc	gctcacaatt	ccacacaaca	tacgagccgg	aagcataaag	tgtaaagcct	7140
ggggtgccta	atgagtgagc	taactcacat	taattgcgtt	gcgctcactg	cccgctttcc	7200
agtcgggaaa	cctgtcgtgc	cagctgcatt	aatgaatcgg	ccaacgcgcg	gggagaggcg	7260
gtttgcgtat	tgggcgctct	teegetteet	cgctcactga	ctcgctgcgc	teggtegtte	7320
ggctgcggcg	agcggtatca	gctcactcaa	aggcggtaat	acggttatcc	acagaatcag	7380
gggataacgc	aggaaagaac	atgtgagcaa	aaggccagca	aaaggccagg	aaccgtaaaa	7440
aggccgcgtt	gctggcgttt	ttccataggc	teegeeeeee	tgacgagcat	cacaaaaatc	7500
gacgctcaag	tcagaggtgg	cgaaacccga	caggactata	aagataccag	gcgtttcccc	7560
ctggaagctc	cctcgtgcgc	tctcctgttc	cgaccctgcc	gcttaccgga	tacctgtccg	7620
cctttctccc	ttcgggaagc	gtggcgcttt	ctcaatgctc	acgctgtagg	tatctcagtt	7680
cggtgtaggt	cgttcgctcc	aagctgggct	gtgtgcacga	accccccgtt	cageeegace	7740
gctgcgcctt	atccggtaac	tatcgtcttg	agtecaacec	ggtaagacac	gacttatcgc	7800
cactggcagc	agccactggt	aacaggatta	gcagagcgag	gtatgtaggc	ggtgctacag	7860
agttcttgaa	gtggtggcct	aactacggct	acactagaag	gacagtattt	ggtatctgcg	7920
ctctgctgaa	gccagttacc	ttcggaaaaa	gagttggtag	ctcttgatcc	ggcaaacaaa	7980

ccaccgctgg	tagcggtggt	ttttttgttt	gcaagcagca	gattacgcgc	agaaaaaaag	8040
gatctcaaga	agateetttg	atcttttcta	cggggtctga	cgctcagtgg	aacgaaaact	8100
cacgttaagg	gattttggtc	atgagattat	caaaaaggat	cttcacctag	atccttttaa	8160
attaaaaatg	aagttttaaa	tcaatctaaa	gtatatatga	gtaaacttgg	tctgacagtt	8220
accaatgctt	aatcagtgag	gcacctatct	cagcgatctg	tctatttcgt	tcatccatag	8280
ttgcctgact	ccccgtcgtg	tagataacta	cgatacggga	gggcttacca	tctggcccca	8340
gtgctgcaat	gataccgcga	gacccacgct	caccggctcc	agatttatca	gcaataaacc	8400
agccagccgg	aagggccgag	cgcagaagtg	gtcctgcaac	tttatccgcc	tccatccagt	8460
ctattaattg	ttgccgggaa	gctagagtaa	gtagttcgcc	agttaatagt	ttgcgcaacg	8520
ttgttgccat	tgctacaggc	atcgtggtgt	cacgctcgtc	gtttggtatg	gcttcattca	8580
gctccggttc	ccaacgatca	aggcgagtta	catgatcccc	catgttgtgc	aaaaaagcgg	8640
ttagctcctt	cggtcctccg	atcgttgtca	gaagtaagtt	ggccgcagtg	ttatcactca	8700
tggttatggc	agcactgcat	aattctctta	ctgtcatgcc	atccgtaaga	tgcttttctg	8760
tgactggtga	gtactcaacc	aagtcattct	gagaatagtg	tatgcggcga	ccgagttgct	8820
cttgcccggc	gtcaatacgg	gataataccg	cgccacatag	cagaacttta	aaagtgctca	8880
tcattggaaa	acgttcttcg	gggcgaaaac	tctcaaggat	cttaccgctg	ttgagatcca	8940
gttcgatgta	acccactcgt	gcacccaact	gatcttcagc	atcttttact	ttcaccagcg	9000
tttctgggtg	agcaaaaaca	ggaaggcaaa	atgccgcaaa	aaagggaata	agggcgacac	9060
ggaaatgttg	aatactcata	ctcttccttt	ttcaatatta	ttgaagcatt	tatcagggtt	9120
attgtctcat	gagcggatac	atatttgaat	gtatttagaa	aaataaacaa	ataggggttc	9180
cgcgcacatt	tccccgaaaa	gtgccacct				9209
<210> 59 <211> 384 <212> DNA <213> Mus	muaaulua					
<213> Mus <400> 59	musculus					
	aggtgcagat	tatcagcttc	ctgctaatca	gtgcttcagt	cataatgtcc	60
agagggcaaa	ttgttctctc	ccagtctcca	gcaatcctgt	ctgcatctcc	aggggagaag	120
gtcacaatga	cttgcagggc	cagctcaagt	gtaagttaca	tccactggtt	ccagcagaag	180
ccaggatcct	ccccaaacc	ctggatttat	gccacatcca	acctggcttc	tggagtccct	240
gttcgcttca	gtggcagtgg	gtctgggact	tcttactctc	tcacaatcag	cagagtggag	300
gctgaagatg	ctgccactta	ttactgccag	cagtggacta	gtaacccacc	cacgttcgga	360

384 ggggggacca agctggaaat caaa

<210 <211 <212 <213	> :>	60 128 PRT Mus	muscu	ılus												
<400 Met 1		60 Phe	Gln	Val 5	Gln	Ile	Ile	Ser	Phe 10	Leu	Leu	Ile	Ser	Ala 15	Ser	
Val	Ile	Met	Ser 20	Arg	Gly	Gln	Ile	Val 25	Leu	Ser	Gln	Ser	Pro 30	Ala	Ile	
Leu	Ser	Ala 35	Ser	Pro	Gly	Glu	Lys 40	Val	Thr	Met	Thr	Cys 45	Arg	Ala	Ser	
Ser	Ser 50	Val	Ser	Tyr	Ile	His 55	Trp	Phe	Gln	Gln	Lуз 60	Pro	Gly	Ser	Ser	
Pro 65	Lys	Pro	Trp	Ile	Tyr 70	Ala	Thr	Ser	Asn	Leu 75	Ala	Ser	Gly	Val	Pro 80	
Val	Arg	Phe	Ser	Gly 85	Ser	Gly	Ser	Gly	Thr 90	Ser	Tyr	Ser	Leu	Thr 95	Ile	
Ser	Arg	Val	Glu 100	Ala	Glu	Asp	Ala	Ala 105	Thr	Tyr	Tyr	Cys	Gln 110	Gln	Trp	
Thr	Ser	Asn 115	Pro	Pro	Thr	Phe	Gly 120	Gly	Gly	Thr	Lys	Leu 125	Glu	Ile	Lys	
<210 <211 <212 <213	L> 2>	61 420 DNA Mus	muscı	ulus												
<400 atgg		61 gga	gcct	catc	tt go	ctcti	ccti	t gto	eget	gttg	ctad	cgcgt	tgt (cctgi	cccag	60
gtad	caac	tgc	agcad	geet	aa a	getga	agcto	g gto	gaag	cctg	ggg	cctca	agt (gaaga	atgtcc	120
tgca	aagg	ctt	ctgg	ctac	ac at	tttad	ccag	t ta	caat	atgc	acto	gggta	aaa .	acaga	acacct	180
															acaat	
caga	aagt	tca	aagg	caag	ga a	acati	tgac	t gca	agac	aaat	cct	ccago	cac .	agcct	tacatg	300
cago	ctca	.gca	gcct	gaca	tc to	gagga	actc	t gc	ggtc	tatt	act	gtgca	aag	atcga	acttac	360
tac	ggcg	gtg	actg	gtac	tt c	aatgi	tctg	g gg(cgca	ggga	cca	cggt	cac	cgtc	tctgca	420
<210 <210 <210 <210	1> 2>	62 140 PRT Mus	musc	ulus												
<400 Met 1		62 Trp	Ser	Leu 5	Ile	Leu	Leu	Phe	Leu 10	Val	Ala	Val	Ala	Thr 15	Arg	

Val Leu Ser Gl
n Val Gl
n Leu Gl
n Gl
n Pro Gly Ala Glu Leu Val Lys $20 \\ 25 \\ 30$

Pro Gly Ala Ser Val Lys Met Ser Cys Lys Ala Ser Gly Tyr Thr Phe $35 \hspace{1cm} 40 \hspace{1cm} 45$

Thr Ser Tyr Asn Met His Trp Val Lys Gln Thr Pro Gly Arg Gly Leu 50 60

Glu Trp Ile Gly Ala Ile Tyr Pro Gly Asn Gly Asp Thr Ser Tyr Asn 65 70 75 80

Gln Lys Phe Lys Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser Ser 90 95

Thr Ala Tyr Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val 100 105 110

Tyr Tyr Cys Ala Arg Ser Thr Tyr Tyr Gly Gly Asp Trp Tyr Phe Asn 115 120 125

Val Trp Gly Ala Gly Thr Thr Val Thr Val Ser Ala 130 135 140

<210> 63

<211> 1395

<212> DNA

<213> Homo sapiens

<400> 63

atgtattcca atgtgatagg aactgtaacc tctggaaaaa ggaaggttta tcttttgtcc 60 120 ttgctgctca ttggcttctg ggactgcgtg acctgtcacg ggagccctgt ggacatctgc acagecaage egegggaeat teccatgaat eccatgtgea tttacegete eeeggagaag 180 240 aaqqcaactq aqqatqaqqq ctcaqaacaq aagatcccgg aggccaccaa ccggcgtgtc tgggaactgt ccaaggccaa ttcccgcttt gctaccactt tctatcagca cctggcagat 300 360 tocaagaatg acaatgataa cattttoctg toaccootga gtatotocac ggottttgot atgaccaage tgggtgcctg taatgacaee etceageaae tgatggaggt atttaagttt 420 480 gacaccatat ctgagaaaac atctgatcag atccacttct tctttgccaa actgaactgc 540 cqactctatc qaaaaqccaa caaatcctcc aagttagtat cagccaatcg cctttttgga 600 qacaaatccc ttaccttcaa tqagacctac caqqacatca qtgagttggt atatggagcc aagctccagc ccctggactt caaggaaaat gcagagcaat ccagagcggc catcaacaaa 660 720 tgggtgtcca ataagaccga aggccgaatc accgatgtca ttccctcgga agccatcaat 780 qagctcactq ttctggtgct ggttaacacc atttacttca agggcctgtg gaagtcaaag ttcaqccctq agaacacaag gaaggaactg ttctacaagg ctgatggaga gtcgtgttca 840 gcatctatga tgtaccagga aggcaagttc cgttatcggc gcgtggctga aggcacccag 900

gagaagagac tggccaaggt ggagaaggaa ctcacccag aggtgctga ggagtggctg 1020 gatgaattgg aggagatgat gctggtggtc cacatgccc gcttccgcat tgaggacggc 1080 ttcagtttga aggagcagct gcaagacatg ggccttgtcg atctgttcag ccctgaaaag 1140 tccaaactcc caggtattgt tgcagaaggc cgagatgacc tctatgtctc agatgcattc 1200 cataaggcat ttcttgaggt aaatgaagaa ggcagtgaag cagctgcaag taccgctgtt 1260 gtgattgctg gccgttcgct aaaccccaac agggtgactt tcaaggccaa caggcctttc 1320 ctggtttta taagagaagt tcctctgaac actattatct tcatgggcag agtagccaac 1380 ccttgtgtta agtaa 1395

<210> 64

<211> 464

<212> PRT

<213> Homo sapiens

<400> 64

Met Tyr Ser Asn Val Ile Gly Thr Val Thr Ser Gly Lys Arg Lys Val 1 5 10 15

Tyr Leu Leu Ser Leu Leu Leu Ile Gly Phe Trp Asp Cys Val Thr Cys 20 25 30

His Gly Ser Pro Val Asp Ile Cys Thr Ala Lys Pro Arg Asp Ile Pro 35 40 45

Met Asn Pro Met Cys Ile Tyr Arg Ser Pro Glu Lys Lys Ala Thr Glu 50 55 60

Asp Glu Gly Ser Glu Gln Lys Ile Pro Glu Ala Thr Asn Arg Arg Val 65 70 75 80

Trp Glu Leu Ser Lys Ala Asn Ser Arg Phe Ala Thr Thr Phe Tyr Gln 85 90 95

His Leu Ala Asp Ser Lys Asn Asp Asn Asp Asn Ile Phe Leu Ser Pro 100 105 110

Leu Ser Ile Ser Thr Ala Phe Ala Met Thr Lys Leu Gly Ala Cys Asn 115 120 125

Asp Thr Leu Gln Gln Leu Met Glu Val Phe Lys Phe Asp Thr Ile Ser 130 135 140

Glu Lys Thr Ser Asp Gln Ile His Phe Phe Phe Ala Lys Leu Asn Cys 145 150 155

Arg Leu Tyr Arg Lys Ala Asn Lys Ser Ser Lys Leu Val Ser Ala Asn 165 170 175

Arg Leu Phe Gly Asp Lys Ser Leu Thr Phe Asn Glu Thr Tyr Gln Asp 180 185

Ile Ser Glu Leu Val Tyr Gly Ala Lys Leu Gln Pro Leu Asp Phe Lys

200 205 195 Glu Asn Ala Glu Gln Ser Arg Ala Ala Ile Asn Lys Trp Val Ser Asn 215 Lys Thr Glu Gly Arg Ile Thr Asp Val Ile Pro Ser Glu Ala Ile Asn Glu Leu Thr Val Leu Val Leu Val Asn Thr Ile Tyr Phe Lys Gly Leu 250 245 Trp Lys Ser Lys Phe Ser Pro Glu Asn Thr Arg Lys Glu Leu Phe Tyr Lys Ala Asp Gly Glu Ser Cys Ser Ala Ser Met Met Tyr Gln Glu Gly 280 Lys Phe Arg Tyr Arg Arg Val Ala Glu Gly Thr Gln Val Leu Glu Leu 295 Pro Phe Lys Gly Asp Asp Ile Thr Met Val Leu Ile Leu Pro Lys Pro 315 Glu Lys Ser Leu Ala Lys Val Glu Lys Glu Leu Thr Pro Glu Val Leu 330 Gln Glu Trp Leu Asp Glu Leu Glu Glu Met Met Leu Val Val His Met 345 Pro Arg Phe Arg Ile Glu Asp Gly Phe Ser Leu Lys Glu Gln Leu Gln 360 Asp Met Gly Leu Val Asp Leu Phe Ser Pro Glu Lys Ser Lys Leu Pro 375 Gly Ile Val Ala Glu Gly Arg Asp Asp Leu Tyr Val Ser Asp Ala Phe 395 390 385 His Lys Ala Phe Leu Glu Val Asn Glu Glu Gly Ser Glu Ala Ala Ala 410 405 Ser Thr Ala Val Val Ile Ala Gly Arg Ser Leu Asn Pro Asn Arg Val 425 Thr Phe Lys Ala Asn Arg Pro Phe Leu Val Phe Ile Arg Glu Val Pro 440 Leu Asn Thr Ile Ile Phe Met Gly Arg Val Ala Asn Pro Cys Val Lys 455 <210> 65 <211> 1962 <212> DNA <213> Homo sapiens <400> 65 atgegteece tgegeeceeg egeegegetg etggegetee tggeeteget eetggeegeg

70

18

cccccggtgg ccccggccga ggccccgcac ctggtgcagg tggacgcggc ccgcgcgctg

tggccctgc ggcgcttctg gaggagcaca ggcttctgcc ccccgctgcc acacagccag

gctgaccagt acgtcctcag	ctgggaccag	cagctcaacc	tcgcctatgt	gggcgccgtc	240
cctcaccgcg gcatcaagca	ggtccggacc	cactggctgc	tggagcttgt	caccaccagg	300
gggtccactg gacggggcct	gagctacaac	ttcacccacc	tggacgggta	cttggacctt	360
ctcagggaga accagctcct	cccagggttt	gagctgatgg	gcagcgcctc	gggccacttc	420
actgactttg aggacaagca	gcaggtgttt	gagtggaagg	acttggtctc	cagcctggcc	480
aggagataca tcggtaggta	cggactggcg	catgtttcca	agtggaactt	cgagacgtgg	540
aatgagccag accaccacga	ctttgacaac	gtctccatga	ccatgcaagg	cttcctgaac	600
tactacgatg cctgctcgga	gggtctgcgc	geegeeagee	ccgccctgcg	gctgggaggc	660
cccggcgact ccttccacac	cccaccgcga	tccccgctga	gctggggcct	cctgcgccac	720
tgccacgacg gtaccaactt	cttcactggg	gaggcgggcg	tgcggctgga	ctacatctcc	780
ctccacagga agggtgcgcg	cagctccatc	tccatcctgg	agcaggagaa	ggtcgtcgcg	840
cagcagatcc ggcagctctt	ccccaagttc	gcggacaccc	ccatttacaa	cgacgaggcg	900
gacccgctgg tgggctggtc	cctgccacag	ccgtggaggg	cggacgtgac	ctacgcggcc	960
atggtggtga aggtcatcgc	gcagcatcag	aacctgctac	tggccaacac	cacctccgcc	1020
ttcccctacg cgctcctgag	caacgacaat	gccttcctga	gctaccaccc	gcaccccttc	1080
gcgcagcgca cgctcaccgc	gcgcttccag	gtcaacaaca	cccgcccgcc	gcacgtgcag	1140
ctgttgcgca agccggtgct	cacggccatg	gggctgctgg	cgctgctgga	tgaggagcag	1200
ctctgggccg aagtgtcgca	ggccgggacc	gtcctggaca	gcaaccacac	ggtgggcgtc	1260
ctggccagcg cccaccgccc	ccagggcccg	gccgacgcct	ggcgcgccgc	ggtgctgatc	1320
tacgcgagcg acgacacccg	cgcccacccc	aaccgcagcg	tcgcggtgac	cctgcggctg	1380
cgcggggtgc ccccggccc	gggcctggtc	tacgtcacgc	gctacctgga	caacgggctc	1440
tgcagccccg acggcgagtg	geggegeetg	ggccggcccg	tcttccccac	ggcagagcag	1500
tteeggegea tgegegegge	tgaggacccg	gtggccgcgg	cgccccgccc	cttacccgcc	1560
ggeggeegee tgaeeetgeg	ccccgcgctg	cggctgccgt	cgcttttgct	ggtgcacgtg	1620
tgtgcgcgcc ccgagaagcc	gcccgggcag	gtcacgcggc	teegegeeet	gcccctgacc	1680
caagggcagc tggttctggt	ctggtcggat	gaacacgtgg	gctccaagtg	cctgtggaca	1740
tacgagatcc agttctctca	. ggacggtaag	gcgtacaccc	cggtcagcag	gaagccatcg	1800
accttcaacc tctttgtgtt	cageceagae	acaggtgctg	tetetggete	ctaccgagtt	1860
cgagccctgg actactgggc	cegaceagge	cccttctcgg	accctgtgcc	gtacctggag	1920
gtccctgtgc caagagggcc	cccatccccg	ggcaatccat	ga		1962

- <210> 66
- <211> 653
- <212> PRT
- <213> Homo sapiens

<400> 66

- Met Arg Pro Leu Arg Pro Arg Ala Ala Leu Leu Ala Leu Leu Ala Ser 1 5 10 15
- Leu Leu Ala Ala Pro Pro Val Ala Pro Ala Glu Ala Pro His Leu Val 20 25 30
- Gln Val Asp Ala Ala Arg Ala Leu Trp Pro Leu Arg Arg Phe Trp Arg 35 40 45
- Ser Thr Gly Phe Cys Pro Pro Leu Pro His Ser Gln Ala Asp Gln Tyr 50 60
- Val Leu Ser Trp Asp Gln Gln Leu Asn Leu Ala Tyr Val Gly Ala Val 65 70 75 80
- Pro His Arg Gly Ile Lys Gln Val Arg Thr His Trp Leu Leu Glu Leu 85 90 95
- Val Thr Thr Arg Gly Ser Thr Gly Arg Gly Leu Ser Tyr Asn Phe Thr 100 105 110
- His Leu Asp Gly Tyr Leu Asp Leu Leu Arg Glu Asn Gln Leu Leu Pro 115 120 125
- Gly Phe Glu Leu Met Gly Ser Ala Ser Gly His Phe Thr Asp Phe Glu 130 135 140
- Asp Lys Gln Gln Val Phe Glu Trp Lys Asp Leu Val Ser Ser Leu Ala 145 150 155 160
- Arg Arg Tyr Ile Gly Arg Tyr Gly Leu Ala His Val Ser Lys Trp Asn 165 170 175
- Phe Glu Thr Trp Asn Glu Pro Asp His His Asp Phe Asp Asn Val Ser
- Met Thr Met Gln Gly Phe Leu Asn Tyr Tyr Asp Ala Cys Ser Glu Gly 195 200 205
- Leu Arg Ala Ala Ser Pro Ala Leu Arg Leu Gly Gly Pro Gly Asp Ser 210 215 220
- Phe His Thr Pro Pro Arg Ser Pro Leu Ser Trp Gly Leu Leu Arg His 225 230 235 240
- Cys His Asp Gly Thr Asn Phe Phe Thr Gly Glu Ala Gly Val Arg Leu 245 250 255
- Asp Tyr Ile Ser Leu His Arg Lys Gly Ala Arg Ser Ser Ile Ser Ile 260 265 270
- Leu Glu Gln Glu Lys Val Val Ala Gln Gln Ile Arg Gln Leu Phe Pro 275 280 285
- Lys Phe Ala Asp Thr Pro Ile Tyr Asn Asp Glu Ala Asp Pro Leu Val

290 295 300

Gly Trp Ser Leu Pro Gln Pro Trp Arg Ala Asp Val Thr Tyr Ala Ala 305 $310 \hspace{1.5cm} 315 \hspace{1.5cm} 320$

Met Val Val Lys Val Ile Ala Gln His Gln Asn Leu Leu Ala Asn 325 330 335

Thr Thr Ser Ala Phe Pro Tyr Ala Leu Leu Ser Asn Asp Asn Ala Phe 340 345 350

Leu Ser Tyr His Pro His Pro Phe Ala Gln Arg Thr Leu Thr Ala Arg 355 360 365

Phe Gln Val Asn Asn Thr Arg Pro Pro His Val Gln Leu Leu Arg Lys 370 375 380

Pro Val Leu Thr Ala Met Gly Leu Leu Ala Leu Leu Asp Glu Glu Gln 385 390 395 400

Leu Trp Ala Glu Val Ser Gln Ala Gly Thr Val Leu Asp Ser Asn His 405 410 415

Thr Val Gly Val Leu Ala Ser Ala His Arg Pro Gln Gly Pro Ala Asp
420 425 430

His Pro Asn Arg Ser Val Ala Val Thr Leu Arg Leu Arg Gly Val Pro 450 455 460

Pro Gly Pro Gly Leu Val Tyr Val Thr Arg Tyr Leu Asp Asn Gly Leu 465 470 475 480

Cys Ser Pro Asp Gly Glu Trp Arg Arg Leu Gly Arg Pro Val Phe Pro 485 490 495

Thr Ala Glu Gln Phe Arg Arg Met Arg Ala Ala Glu Asp Pro Val Ala 500 505 510

Ala Ala Pro Arg Pro Leu Pro Ala Gly Gly Arg Leu Thr Leu Arg Pro 515 520 525

Ala Leu Arg Leu Pro Ser Leu Leu Leu Val His Val Cys Ala Arg Pro 530 535 540

Glu Lys Pro Pro Gly Gln Val Thr Arg Leu Arg Ala Leu Pro Leu Thr 545 550 555 560

Gln Gly Gln Leu Val Leu Val Trp Ser Asp Glu His Val Gly Ser Lys
565 570 575

Cys Leu Trp Thr Tyr Glu Ile Gln Phe Ser Gln Asp Gly Lys Ala Tyr 580 585 590

Thr Pro Val Ser Arg Lys Pro Ser Thr Phe Asn Leu Phe Val Phe Ser 595 600 605

Pro Asp Thr Gly Ala Val Ser Gly Ser Tyr Arg Val Arg Ala Leu Asp 610 620

Tyr Trp Ala Arg Pro Gly Pro Phe Ser Asp Pro Val Pro Tyr Leu Glu 625 630 635 640

Val Pro Val Pro Arg Gly Pro Pro Ser Pro Gly Asn Pro 645 650

<210> 67

<211> 1290

<212> DNA

<213> Homo sapiens

<400> 67

atgcagetga ggaacccaga actacatetg ggetgegege ttgegetteg etteetggee 60 ctcgtttcct gggacatccc tggggctaga gcactggaca atggattggc aaggacgcct 120 180 accatgggct ggctgcactg ggagcgcttc atgtgcaacc ttgactgcca ggaagagcca gatteetgea teagtgagaa getetteatg gagatggeag ageteatggt eteagaagge 240 300 tggaaggatg caggttatga gtacctctgc attgatgact gttggatggc tccccaaaga 360 gattcagaag gcagacttca ggcagaccct cagcgctttc ctcatgggat tcgccagcta qctaattatq ttcacaqcaa aqqactqaaq ctaqqqattt atqcaqatqt tqqaaataaa 420 acctgcgcag gcttccctgg gagttttgga tactacgaca ttgatgccca gacctttgct 480 qactqqqqaq taqatctqct aaaatttqat gqttqttact qtqacaqttt qqaaaatttq 540 qcaqatqqtt ataaqcacat qtccttqqcc ctqaataqqa ctqqcaqaaq cattqtqtac 600 tectgtgagt ggeetettta tatgtggeee ttteaaaage ceaattatae agaaateega 660 cagtactgca atcactggcg aaattttgct gacattgatg attcctggaa aagtataaag 720 agtatettgg actggacate ttttaaccag gagagaattg ttgatgttge tggaccaggg 780 840 qqttqqaatq acccaqatat qttaqtqatt qqcaactttq qcctcaqctq qaatcaqcaa gtaactcaga tggccctctg ggctatcatg gctgctcctt tattcatgtc taatgacctc 900 cqacacatca gccctcaagc caaagctctc cttcaggata aggacgtaat tgccatcaat 960 caggacccct tgggcaagca agggtaccag cttagacagg gagacaactt tgaagtgtgg 1020 quacquett teteaggett ageetggget gtagetatqu taaaccggca ggagattggt 1080 ggacctcgct cttataccat cgcagttgct tccctgggta aaggagtggc ctgtaatcct 1140 qcctgcttca tcacacaqct cctccctgtg aaaaggaagc tagggttcta tgaatggact 1200 tcaaggttaa gaagtcacat aaatcccaca ggcactgttt tgcttcagct agaaaataca 1260 1290 atgcagatgt cattaaaaqa cttactttaa

<210> 68

<211> 429

<212> PRT

<213> Homo sapiens

<400> 68

Met Gln Leu Arg Asn Pro Glu Leu His Leu Gly Cys Ala Leu Ala Leu 1 5 10 15

Arg Phe Leu Ala Leu Val Ser Trp Asp Ile Pro Gly Ala Arg Ala Leu 20 25 30

Asp Asn Gly Leu Ala Arg Thr Pro Thr Met Gly Trp Leu His Trp Glu 35 40 45

Arg Phe Met Cys Asn Leu Asp Cys Gln Glu Glu Pro Asp Ser Cys Ile 50 55 60

Ser Glu Lys Leu Phe Met Glu Met Ala Glu Leu Met Val Ser Glu Gly 65 70 75 80

Trp Lys Asp Ala Gly Tyr Glu Tyr Leu Cys Ile Asp Asp Cys Trp Met 85 90 95

Ala Pro Gln Arg Asp Ser Glu Gly Arg Leu Gln Ala Asp Pro Gln Arg
100 105 110

Phe Pro His Gly Ile Arg Gln Leu Ala Asn Tyr Val His Ser Lys Gly 115 120 125

Leu Lys Leu Gly Ile Tyr Ala Asp Val Gly Asn Lys Thr Cys Ala Gly 130 135 140

Phe Pro Gly Ser Phe Gly Tyr Tyr Asp Ile Asp Ala Gln Thr Phe Ala 145 150 155 160

Asp Trp Gly Val Asp Leu Leu Lys Phe Asp Gly Cys Tyr Cys Asp Ser 165 170 175

Leu Glu Asn Leu Ala Asp Gly Tyr Lys His Met Ser Leu Ala Leu Asn 180 185 190

Arg Thr Gly Arg Ser Ile Val Tyr Ser Cys Glu Trp Pro Leu Tyr Met 195 200 205

Trp Pro Phe Gln Lys Pro Asn Tyr Thr Glu Ile Arg Gln Tyr Cys Asn 210 215 220

His Trp Arg Asn Phe Ala Asp Ile Asp Asp Ser Trp Lys Ser Ile Lys 225 230 235 240

Ser Ile Leu Asp Trp Thr Ser Phe Asn Gln Glu Arg Ile Val Asp Val 245 250 255

Ala Gly Pro Gly Gly Trp Asn Asp Pro Asp Met Leu Val Ile Gly Asn 260 265 270

Phe Gly Leu Ser Trp Asn Gln Gln Val Thr Gln Met Ala Leu Trp Ala 275 280 285

Ile Met Ala Ala Pro Leu Phe Met Ser Asn Asp Leu Arg His Ile Ser 290 295 300

Pro Gln Ala Lys Ala Leu Leu Gln Asp Lys Asp Val Ile Ala Ile Asn 305 310 315 320

Gln Asp Pro Leu Gly Lys Gln Gly Tyr Gln Leu Arg Gln Gly Asp Asn 330 Phe Glu Val Trp Glu Arg Pro Leu Ser Gly Leu Ala Trp Ala Val Ala 345 Met Ile Asn Arg Gln Glu Ile Gly Gly Pro Arg Ser Tyr Thr Ile Ala Val Ala Ser Leu Gly Lys Gly Val Ala Cys Asn Pro Ala Cys Phe Ile 375 Thr Gln Leu Leu Pro Val Lys Arg Lys Leu Gly Phe Tyr Glu Trp Thr Ser Arg Leu Arg Ser His Ile Asn Pro Thr Gly Thr Val Leu Leu Gln 410 Leu Glu Asn Thr Met Gln Met Ser Leu Lys Asp Leu Leu <210> 69 <211> 351 <212> DNA <213> Homo sapiens <400> 69 atggattact acagaaaata tgcagctatc tttctggtca cattgtcggt gtttctgcat 60 gttctccatt ccgctcctga tgtgcaggat tgcccagaat gcacgctaca ggaaaaccca 120 ttettetece ageegggtge eccaataett eagtgeatgg getgetgett etetagagea 180 tateceacte cactaaggte caagaagaeg atgttggtee aaaagaaegt caceteagag 240 tocacttgct gtgtagctaa atcatataac agggtcacag taatgggggg tttcaaagtg 300 qagaaccaca cggcgtgcca ctgcagtact tgttattatc acaaatctta a 351 <210> 70 <211> 116 <212> PRT <213> Homo sapiens <400> 70 Met Asp Tyr Tyr Arg Lys Tyr Ala Ala Ile Phe Leu Val Thr Leu Ser Val Phe Leu His Val Leu His Ser Ala Pro Asp Val Gln Asp Cys Pro Glu Cys Thr Leu Gln Glu Asn Pro Phe Phe Ser Gln Pro Gly Ala Pro Ile Leu Gln Cys Met Gly Cys Cys Phe Ser Arg Ala Tyr Pro Thr Pro Leu Arg Ser Lys Lys Thr Met Leu Val Gln Lys Asn Val Thr Ser Glu

Ser Thr Cys Cys Val Ala Lys Ser Tyr Asn Arg Val Thr Val Met Gly Gly Phe Lys Val Glu Asn His Thr Ala Cys His Cys Ser Thr Cys Tyr 105 Tyr His Lys Ser 115 <210> 71 <211> 498 <212> DNA <213> Homo sapiens <400> 71 60 atqqaqatqt tocaqqqqot qotqotqttg otgotgotga gcatgggogg gacatgggca 120 tecaaqqaqe eqetteqqee aeqqtqeeqe eccateaatq ccaecetqqe tqtqqaqaaq 180 gagggctgcc ccgtgtgcat caccgtcaac accaccatct gtgccggcta ctgccccacc atgaccegeg tgctgcaggg ggtcctgccg gccctgcctc aggtggtgtg caactaccgc 240 300 gatgtgcgct tcgagtccat ccggctccct ggctgcccgc gcggcgtgaa ccccgtggtc tectaegeeg tggeteteag etgteaatgt geactetgee geegeageae caetgaetge 360 420 gggggtccca aggaccacco cttgacctgt gatgaccccc gcttccagga ctcctcttcc tcaaaggccc ctcccccag ccttccaagc ccatcccgac tcccggggcc ctcggacacc 480 ccgatcctcc cacaataa 498 <210> 72 <211> 165 <212> PRT <213> Homo sapiens <400> 72 Met Glu Met Phe Gln Gly Leu Leu Leu Leu Leu Leu Ser Met Gly 5 10 Gly Thr Trp Ala Ser Lys Glu Pro Leu Arg Pro Arg Cys Arg Pro Ile Asn Ala Thr Leu Ala Val Glu Lys Glu Gly Cys Pro Val Cys Ile Thr 35 40 45 Val Asn Thr Thr Ile Cys Ala Gly Tyr Cys Pro Thr Met Thr Arg Val Leu Gln Gly Val Leu Pro Ala Leu Pro Gln Val Val Cys Asn Tyr Arg 70 75 Asp Val Arg Phe Glu Ser Ile Arg Leu Pro Gly Cys Pro Arg Gly Val Asn Pro Val Val Ser Tyr Ala Val Ala Leu Ser Cys Gln Cys Ala Leu 105 110

Cys Arg Arg Ser Thr Thr Asp Cys Gly Gly Pro Lys Asp His Pro Leu

115 120 125

Thr Cys Asp Asp Pro Arg Phe Gln Asp Ser Ser Ser Ser Lys Ala Pro 130 135 140

Pro Pro Ser Leu Pro Ser Pro Ser Arg Leu Pro Gly Pro Ser Asp Thr 145 150 155 160

Pro Ile Leu Pro Gln 165

<210> 73

<211> 165

<212> PRT

<213> Homo sapiens

<400> 73

Ala Pro Pro Arg Leu Ile Cys Asp Ser Arg Val Leu Glu Arg Tyr Leu 1 5 10 15

Leu Glu Ala Lys Glu Ala Glu Asn Ile Thr Thr Gly Cys Ala Glu His 20 25 30

Cys Ser Leu Asn Glu Asn Ile Thr Val Pro Asp Thr Lys Val Asn Phe 35 40 45

Tyr Ala Trp Lys Arg Met Glu Val Gly Gln Gln Ala Val Glu Val Trp 50 55 60

Gln Gly Leu Ala Leu Leu Ser Glu Ala Val Leu Arg Gly Gln Ala Leu 65 70 75 80

Leu Val Asn Ser Ser Gln Pro Trp Glu Pro Leu Gln Leu His Val Asp 85 90 95

Lys Ala Val Ser Gly Leu Arg Ser Leu Thr Thr Leu Leu Arg Ala Leu 100 105 110

Gly Ala Gln Lys Glu Ala Ile Ser Pro Pro Asp Ala Ala Ser Ala Ala 115 120 125

Pro Leu Arg Thr Ile Thr Ala Asp Thr Phe Arg Lys Leu Phe Arg Val 130 135 140

Tyr Ser Asn Phe Leu Arg Gly Lys Leu Lys Leu Tyr Thr Gly Glu Ala 145 150 155 160

Cys Arg Thr Gly Asp 165

<210> 74

<211> 588

<212> DNA

<213> Homo sapiens

<400> 74

atggccctcc tgttccctct actggcagcc ctagtgatga ccagctatag ccctgttgga 60

tototogggot gtgatotgoo toagaaccat ggootactta gcaggaacac ottggtgott

ctgcaccaaa tgaggagaat ctcccctttc ttgtgtctca aggacagaag agacttcagg 180

PCT/US2003/031974 WO 2004/033651

ttcccccagg agatggtaaa agggagccag ttgcagaagg cccatgtca	t gtctgtcctc 240
catgagatgc tgcagcagat cttcagcctc ttccacacag agcgctcct	c tgctgcctgg 300
aacatgaccc tectagacca actecacact ggaetteate ageaactge	a acacctggag 360
acctgcttgc tgcaggtagt gggagaagga gaatctgctg gggcaatta	g cagecetgea 420
ctgaccttga ggaggtactt ccagggaatc cgtgtctacc tgaaagaga	a gaaatacagc 480
gactgtgcct gggaagttgt cagaatggaa atcatgaaat ccttgttct	t atcaacaaac 540
atgcaagaaa gactgagaag taaagataga gacctgggct catcttga	588
<210> 75 <211> 195 <212> PRT / <213> Homo sapiens	
<pre><400> 75 Met Ala Leu Leu Phe Pro Leu Leu Ala Ala Leu Val Met T 1 5 10</pre>	Chr Ser Tyr 15
Ser Pro Val Gly Ser Leu Gly Cys Asp Leu Pro Gln Asn F	His Gly Leu 80
Leu Ser Arg Asn Thr Leu Val Leu Leu His Gln Met Arg F 35 40 45	Arg Ile Ser
Pro Phe Leu Cys Leu Lys Asp Arg Arg Asp Phe Arg Phe E 50 55 60	Pro Gln Glu
Met Val Lys Gly Ser Gln Leu Gln Lys Ala His Val Met 8 65 70 75	Ser Val Leu 80
His Glu Met Leu Gln Gln Ile Phe Ser Leu Phe His Thr C 85 90	Glu Arg Ser 95
Ser Ala Ala Trp Asn Met Thr Leu Leu Asp Gln Leu His T	Thr Gly Leu 110
His Gln Gln Leu Gln His Leu Glu Thr Cys Leu Leu Gln V 115 120 125	Val Gly
Glu Gly Glu Ser Ala Gly Ala Ile Ser Ser Pro Ala Leu 130 135 140	Thr Leu Arg
Arg Tyr Phe Gln Gly Ile Arg Val Tyr Leu Lys Glu Lys 1 145 150 155	Lys Tyr Ser 160
Asp Cys Ala Trp Glu Val Val Arg Met Glu Ile Met Lys : 165 170	Ser Leu Phe 175
Leu Ser Thr Asn Met Gln Glu Arg Leu Arg Ser Lys Asp 180	Arg Asp Leu 190
Gly Ser Ser 195	