A Book of Abstract Algebra (2nd Edition)

Constructible point is the end point of given unit segment or it is intersection of two lines determined by constructional points.

Comment

Step 3 of 5

Consider $a \in D$ if and only if the point (a,0) is constructible from $\{O,I\}$

Similarly, $\sin \alpha \in D$, if and only if the point $(0, \sin \alpha)$ is constructible from $\{O, I\}$

And $\cos \alpha \in D$, if and only if the point $(\cos \alpha, 0)$ is constructible from $\{O, I\}$

Comment

Step 4 of 5

Consider the below figure:

Consider the point $(0, \sin \alpha)$ is constructible from $\{O, I\}$

 ΔOAI is a right angle triangle. Apply Pythagorean Theorem, then

$$OA^2 + AI^2 = 1$$

 $x^2 + \sin^2 \alpha = 1$
 $x^2 = 1 - \sin^2 \alpha$
 $x^2 = \cos^2 \alpha$
 $x = \cos \alpha$
So, the point $(\cos \alpha, 0)$ is constructible from $\{O, I\}$, which implies, $\cos \alpha \in D$.

Comment

Step 5 of 5

Consider the point $(\cos \alpha, 0)$ is constructible from $\{O, I\}$

 ΔOAI is a right angle triangle. Apply Pythagorean Theorem, then

$$OA^{2} + AI^{2} = 1$$

$$\cos^{2} \alpha + y^{2} = 1$$

$$y^{2} = 1 - \cos^{2} \alpha$$

$$y^{2} = \sin^{2} \alpha$$

So, the point $(0, \sin \alpha)$ is constructible from $\{O, I\}$, which implies, $\sin \alpha \in D$.

Hence,

 $y = \sin \alpha$

 $\cos \alpha \in D$, if and only if $\sin \alpha \in D$

.....

Comment

COMPANY

Site Map

About Chegg
Chegg For Good
College Marketing
Corporate Development
Investor Relations
Jobs
Join Our Affiliate Program
Media Center

LEGAL & POLICIES

Honor Shield

Advertising Choices
Cookie Notice
General Policies
Intellectual Property Rights
Terms of Use
Global Privacy Policy
Honor Code

CHEGG PRODUCTS AND SERVICES

Cheap Textbooks Mobile Apps Sell Textbooks Chegg Coupon Chegg Play Solutions Manual Chegg Study Help Study 101 College Textbooks Textbook Rental eTextbooks **Used Textbooks** Digital Access Codes Flashcards Chegg Money Learn Chegg Math Solver

CHEGG NETWORK

EasyBib Customer Service
Internships.com Give Us Feedback
Thinkful Help with eTextbooks
Help to use EasyBib Plus
Manage Chegg Study
Subscription
Return Your Books
Textbook Return Policy

CUSTOMER SERVICE