Π_{fruit} : FruitChain protocol **Initialize:** $chain := qenesis, F = \emptyset$

Upon receiving a valid fruit,

- \bullet let $F := F \cup \{fruit\}$
- Upon receiving a valid chain', if |chain'| > |chain|:
- let chain := chain'
- Every time step, upon receiving input m from the environment:

 - let F' be all fruits $f \in F$ that are recent w.r.t. chain;
- let h' be the reference of chain[pos] where $pos = max(1, |chain| \kappa)$; • let h_{-1} be the reference of chain[-1];
- - Pick random $\eta \in \{0,1\}^{\kappa}$ and let $h := \mathsf{H}(h_{-1};h';\eta;\mathsf{d}(F');\mathsf{m})$
- If $[h]_{-\kappa} < D_{p_f}$ (i.e., we "mined a fuit")
- let $fruit := (h_{-1}; h'; \eta; \mathsf{d}(F'); \mathsf{m}, h), F := F \cup \{fruit\}, \text{ and broadcast } fruit$
 - If $[h]_{:\kappa} < D_p$ (i.e., we "mined a block")
 - let $chain := chain ||((h_{-1}; h'; \eta, d(F'); \mathbf{m}, h), F)|$, and broadcast chain