

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:
C12Q 1/68

A1 (11) International Publication Number: WO 96/21741
(43) International Publication Date: 18 July 1996 (18.07.96)

(21) International Application Number: PCT/IB96/00026

(22) International Filing Date: 12 January 1996 (12.01.96)

(30) Priority Data:

. Q

STATE OF THE PARTY OF THE PARTY

3

 \bar{s}

08/373,127 13 January 1995 (13.01.95) US 08/435,684 5 May 1995 (05.05.95) US

(60) Parent Application or Grant

(63) Related by Continuation

US 08/435,684 (CON) Filed on 5 May 1995 (05.05.95)

(71) Applicant (for all designated States except US): CIBA CORN-ING DIAGNOSTICS CORP. [US/US]; 63 North Street, Mcfield, MA 02052 (US).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): SANDHU, Gurpreet, S. [IN/US]; 110 Seventh Avenue S.W., Rochester, MN 55902 (US). KLINE, Bruce, C. [US/US]; 2315 Kline Lane S.W., Rochester, MN 55902 (US).
- (74) Agent: MORGENSTERN, Arthur, S.; 63 North Street, Medfield, MA 02052 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AZ, BY, KZ, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments:

(54) Title: NUCLEIC ACID PROBES FOR THE DETECTION AND IDENTIFICATION OF FUNGI

SEQ ID: 3 to SEQ ID: 23

(57) Abstract

Nucleic acid probes and primers are described for detecting fungi that cause disease in humans and animals, as well as spoilage of food and beverages. These probes can detect rRNA, rDNA or polymerase chain reaction products from a majority of fungi in clinical, environmental or food samples. Nucleic acid hybridization assay probes specific for Acremonium sp., Aspergillus clavatus, Aspergillus flavus, Aspergillus fumigatus. Aspergillus glaucus, Aspergillus nidulans, Aspergillus niger, Aspergillus ochraceus, Aspergillus terreus, Aspergillus unguis, Aspergillus ustus, Beauveria sp., Bipolaris sp., Blastoschizomyces sp., Blastomyces dermatitidis, Candida albicans, Candida glabrata, Candida guilliermondii, Candida kefyr, Candida krusei, Candida lusitaniae, Candida parapsilosis, Candida tropicalis, Chrysosporium sp., Cladosporium sp., Coccidioides immitis, Cryptococcus neoformans var gattii serotype B, Cryptococcus neoformans serotype A, Cryptococcus laurentii, Cryptococcus ierreus, Curvularia sp., Fusarium sp., Filobasidium capsuligenum, Filobasidiella (Cryptococcus) neoformans var neoformans serotype D, Filobasidium uniguttulatum, Geotrichum sp., Histoplasma capsulatum, Malbranchea sp., Mucor sp., Paecilomyces sp., Penicillium species, Pseudallescheria boydii, Rhizopus sp., Sporothrix schenkii, Scopulariopsis brevicaulis, Scopulariopsis brumpti, Saccharomyces cerevisiae, and Trichosporon beigelii are also described.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malauri
AT	Austria	GE	Georgia	MX	Mexico
AU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	π	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KR	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SG	
CH	Switzerland	KZ.	Kazakhstan	SI	Singapore Slovenia
a	Côte d'Ivoire	ŭ	Liechtenstein	SK	
CM	Cameroon	LK	Sri Lanka	SN.	Slovakia
CN	China	LR	Liberia		Senegal
CS	Czechoslovskia	LT	Lithuania	SZ	Swaziland
ĉ	Czech Republic	LU		TD	Chad
DE	Germany	LV	Luxembourg Lavia	TG	Togo
DK	Denmark	MC		<u>TJ</u>	Tajikistan
EE	Estonia	MD	Monaco	TT	Trinidad and Tobago
ES	Spain	MD MG	Republic of Moldova	UA	Ukraine
PI	Finland		Madagascar	UG	Uganda
FR		ML	Mali	US	United States of America
GA	France	MN	Mongolia	UZ	Uzbekistan
UA	Gabon	MR	Mauritania	VN	Viet Nam

箰

*

5

3

The state of the s

7

NUCLEIC ACID PROBES FOR THE DETECTION AND IDENTIFICATION OF FUNGI

10

FIELD OF INVENTION

The inventions described and claimed herein relate to the design and composition of two nucleic acid probes capable of detecting many different fungal organisms in clinical, food, environmental and other samples. The inventions described and claimed herein also relate to the design and composition of probes capable of specifically detecting and identifying Acremonium sp., Aspergillus clavatus, Aspergillus flavus, Aspergillus fumigatus, Aspergillus glaucus, Aspergillus nidulans, Aspergillus niger, Aspergillus ochraceus, Aspergillus terreus, Aspergillus unguis, Aspergillus ustus, Beauveria sp., Bipolaris sp., Blastoschizomyces sp., Blastomyces dermatitidis, Candida albicans, Candida glabrata, Candida guilliermondii, Candida kefyr, Candida krusei, Candida lusitaniae, Candida parapsilosis, Candida tropicalis, Chrysosporium sp., Cladosporium sp., Coccidioides immitis, Cryptococcus neoformans var gattii serotype B, Cryptococcus neoformans serotype A, Cryptococcus laurentii,

- 25 Cryptococcus terreus, Curvularia sp., Fusarium sp., Filobasidium capsuligemum, Filobasidiella (Cryptococcus) neoformans var bacillispora serotype C, Filobasidiella (Cryptococcus) neoformans var neoformans serotype D, Filobasidium uniguttulatum, Geotrichum sp., Histoplasma capsulatum, Malbranchea sp., Mucor sp., Paecilomyces sp., Penicillium species,
- 30 Pseudallescheria boydii, Rhizopus sp., Sporothrix schenkii, Scopulariopsis

brevicaulis sp., Scopulariopsis brumpti, Saccharomyces cerevisiae, and Trichosporon beigelii in clinical, food, environmental and other samples.

Fungi are eukaryotic microorganisms that are universally distributed. While in nature fungi play a major role in the decomposition of plant materials, they are also responsible for spoilage of food, beverage and pharmaceutical preparations. Out of an estimated 100,000 species of fungi described by mycologists, approximately 150 species are pathogenic to man and animals. The increasing incidence of AIDS and the development of newer treatments for hematologic malignancies and organ transplants has lead to an increase in the number of immunocompromised patients. These patients have a high risk of developing fungal infections, which if not rapidly diagnosed and treated are capable of causing death in a matter of days. The number of antifungal drugs is limited and their toxic side effects on the patient are much higher than that of comparable antibacterial therapy. A rapid diagnosis of fungal infection and start of treatment is critical in these patients. Books by Kwon-Chung and Bennett, along with Sarosi and Davies, provide an overview into the medical importance of fungi.

Fungal organisms are identified by morphology and nutritional

characteristics. Fungi may take anywhere from two days to several weeks to grow
in culture and often the same organism can take radically different forms depending
on the growth conditions. This makes timely identification difficult even for the
classically trained expert and impedes the treatment of patients where rapid
identification of genus and species is of medical advantage.

25

5

18

Harmon .

Ą

124

13

The incidence and distribution of major pathogenic fungi varies by geographic location. Aspergillus fumigatus, Blastomyces dermatitidis, Candida albicans, Coccidiodes immitis, Cryptococcus neoformans, Histoplasma capsulatum.

Paracoccidioides brasiliensis, Pseudallescheria boydii and Sporothrix schenkii represent some of the leading causes of mycotic infections.

Aspergillus fumigatus is among the top three causes of systemic fungal infection treated in hospitals. It usually affects patients with organ transplants, acute 5 leukemias and burns and can be rapidly fatal if not diagnosed quickly. With over 150 species of Aspergillus present in the soil, air and water, accurate detection of Aspergillus fumigatus becomes extremely important. Aspergillus clavatus. Aspergillus flavus, Aspergillus fumigatus, Aspergillus glaucus, Aspergillus 10 nidulans, Aspergillus niger, Aspergillus ochraceus, Aspergillus terreus, Aspergillus unguis and Aspergillus ustus represent a majority of Aspergillus species seen in clinical specimens and their presence can cause diagnostic difficulties. Aspergillus flavus, Aspergillus fumigatus and Aspergillus niger have been linked with disease in humans, with Aspergillus fumigatus being the predominant pathogen in North 15 America. A few immunologic tests exist for Aspergillus fumigatus but these have limited sensitivity and specificity. There are also reports of development of polymerase chain reaction based tests for Aspergillus fumigatus based on the amplification of the Asp fl antigen gene and a ribosomal intergenic spacer (Spreadbury et. al.). The Spreadbury technique is based on the PCR amplification of 20 a 401 bp fragment spanning the large subunit rRNA/intergenic spacer region. This relies on a pair of primers to specifically amplify DNA from Aspergillus fumigatus only, and is of no utility in identifying other fungi.

Blastomyces dermatitidis is present in the soil, usually in bird droppings and animal feces. Infections often occur at construction sites and the ensuing lung infiltration and pneumonitis are usually fatal in immunocompromised patients. Diagnosis by culture may take weeks, and the organism is occasionally mistaken for other fungi. Existing immunological diagnostic tests are unreliable, and there is a need for rapid and reliable DNA based diagnostic tests. Similarly, Histoplasma

*

Service Services

3

1

capsulatum exists in the soil and is known to have infected at least 20% of the population of North America. Most infections start in the lung and resolve spontaneously, but may occasionally spread to other organs. AIDS patients represent a growing number of cases of Histoplasmosis. Diagnosis is difficult as immunological tests are often negative during the first 4-6 weeks of infection. Coccidioides immitis is found in abundance in the soil in Southwestern United States. Dust storms, farming, building construction, earthquakes and even hiking have been linked with outbreaks of disease. Lung infection followed by cavitation and disseminated miliary coccidioidomycosis are seen. Meningitis is usually lethal, and as with other fungi, mortality is highest in debilitated hosts. Four serotypes of Cryptococcus neoformans cause disease in humans. These are Cryptococcus neoformans serotype A, Cryptococcus neoformans var gatti serotype B. Filobasidiella (Cryptococcus) neoformans var bacillispora serotype C and Filobasidiella (Cryptococcus) neoformans var. neoformans serotype D. The incidence of this disease is growing rapidly, with up to 10% of HIV infected people developing cryptococcosis. DNA probes capable of detecting all 4 serotypes are required for the early diagnosis and treatment for life threatening infections like cryptococcal meningitis. A report by Stockman et. al. discusses commercial tests for Histoplasma, Blastomyces, Coccidioides, and Cryptococcus based on the 18S rRNA (Gen-Probe, Inc., San Diego, CA). The authors report sensitivities ranging from 87.8 to 100% and a specificity of 100%. One drawback of these probes is that these are used on rRNA extracted from fungal cultures. As some fungi may require up to 3 weeks to grow in culture, this technique cannot be used to expedite diagnosis until a culture becomes available.

25

5

10

15

20

4

44

÷ά

Candida albicans is one of the most common causes of fungal infection in humans. It is present in the respiratory, gastrointestinal and female genital tract of healthy individuals, and acts as an opportunistic pathogen in debilitated individuals on steroid or chemotherapy. Diabetes mellitus and indwelling catheters are other

predisposing causes. Immunocompromised hosts show rapid hematogenous spread of fungi. Morbidity and mortality in untreated cases is high. Candida glabrata, Candida guilliermondii, Candida kefyr, Candida krusei, Candida lusitaniae, Candida parapsilosis and Candida tropicalis are also known to cause disease in humans. DNA probes capable of identifying these individual species would eliminate the need for multiple blood cultures and lengthy biochemical speciation.

Recent advances in molecular techniques have led to the approach of microbe detection and identification based upon the DNA sequence of ribosomal genes. Commonly used detection techniques include either direct amplification of the ribosomal DNA (rDNA) genes by the polymerase chain reaction, or reverse transcription of the ribosomal RNA (rRNA) into complementary DNA (cDNA) followed by polymerase chain reaction amplification of the cDNA. Ribosomes are composites of unique rRNA and protein species that function in the translation of messenger RNA into protein. Evolutionary studies are consistent with the interpretation that all extant life has evolved from a single organism. Thus, all cellular organisms contain rRNA and these rRNAs are related by evolution. The evolutionary process is such that each species of organism appears to have unique regions of sequence in its ribosomal genes. The presence of these unique species 20 specific regions allows one to design DNA probes that under conditions of hybridization will specifically bind to, and identify the polymerase chain reaction amplified DNA from only one species of fungus. For the purposes of this application, the word "primer" is used to mean a nucleotide sequence which can be extended by template-directed polymerization, and "probe" is used to mean a nucleotide sequence capable of detecting its complementary sequence by 25 hybridization. Also, for the purpose of this application, the phrase "nucleotide sequence" is intended to include either DNA or RNA forms or modification thereof. Furthermore, those versed in the art will recognize that primer sequences can be used as probes and vice versa. The use of nucleic acid hybridization to detect

The state of

Š

á

.

specific nucleic acid sequences of interest is also described by Kohne (U.S. Patent 4,851,330, 7/1989).

In prokaryotes and eukaryotes, ribosomal RNA and the corresponding rDNA genes are identified by the size of the RNA. The sizes are related in terms of sedimentation velocity or S values. Thus, for prokaryotes the values are 5S, 16S, and 23S; and for eukaryotes the values are 5S, 5.8S, 18S and 28S. Because all ribosomes perform the same function which is essential for cell viability, ribosomal sequences are largely conserved, yet certain regions of each ribosomal species are subject to more variation without consequence to function. It is these hypervariable regions that allow one to identify different species amongst members of the same genus. As noted in the references, there are several reports where 5S, 18S and the intergenic spacer between 5.8S and 28S rDNA have been used for the detection and identification of fungi (Holmes et. al., Hopfer et. al., Lott et. al., Maiwald et. al., Makimura et. al., Mitchell et. al., Nakamura et. al.). Holmes et. al. describe a PCR test based on the co-amplification of the 5S rDNA and an adjacent nontranscribed spacer region. This identifies only Candida albicans and detects other Candida species without identifying individual organisms. Hopfer et. al. and Maiwald et. al. both use universal primers to amplify 18S rDNA from several fungi including Candida sp., Aspergillus fumigatus, Cryptococcus neoformans and Trichosporon sp. These amplicons are digested with restriction enzymes and the cut fragments are sized by gel electrophoresis. This restriction fragment length polymorphism pattern enables them to identify most but not all organisms. This technique can be used on amplified DNA from a pure fungal culture. As clinical samples such as sputum usually contain multiple fungal organisms, this technique has little utility in diagnosis as multiple overlapping fragments obtained from a mix of fungi would be nearly impossible to interpret. Lott et. al. use the 5.8S RNA and the internal transcribed spacer (ITS2) to identify and speciate Candida albicans and related Candida species. Makimura amplifies a 687 bp fragment from the 18S rDNA of 25

4

SCHOOL

2

ź

10

medically important fungi and uses these in the diagnosis of Candida albicans in clinical samples. Mitchell uses nested PCR to amplify 5.8S and internal transcribed spacer (ITS) to identify Cryptococcus neoformans. No subsequent testing is done to verify the identity of the amplified DNA. Nakamura et. al. use 18S primers to detect Aspergillus fumigatus infections of the lung. Most protocols given in these references can only be used to detect an extremely limited number of fungi from a clinical specimen. Hopfer et. al. and Maiwald et. al. can identify multiple organisms from pure cultures, but their utility for clinical specimens containing multiple fungal species is limited at best.

10

*

では大学

•

...

72

-

United States patents have been issued to Weisburg et. al. for probes developed for the detection of 18S small subunit ribosomal RNA sequences in fungi. These probes will detect fungi from many species, but cannot be used easily to identify any single species. United States patents have also been issued to Milliman for probes developed for the specific detection of the bacteria Staphylococcus aureus based on the 16S ribosomal sequences. Hogan et. al. (European Pat. App. 0,272,009) describe one fungal probe for 18S rRNA and three fungal probes for 28S rRNA sequences. Two of these 28S probes detect several different fungi while the third probe detects Candida krusei from a limited panel of 10 fungi. None of the 28S probes described by Hogan et. al. is related to any of the 20 probes described in our invention. All probes claimed in our invention can be mapped within the first 900 base pairs of a 28S gene. The probes described by Hogan et. al. are located further 3' on the 28S sequence, between base pairs 1000 and 2000 (these numbers are comparable to the primary sequence of Saccharomyces cerevisiae 28S rRNA gene. Genbank accession number: J01355). Leclerc et. al. 25 have published reports analyzing the phylogenetic relationship between fungi based on partial DNA sequences of several fungal 28S genes sequenced by them. Some of the organisms claimed to have been sequenced by Leclerc are the same as some organisms sequenced by us. These are Sporothrix schenckii, Pseudallescheria

boydii, Blastomyces dermatitidis, Histoplasma capsulatum and Chrysosporium sp.

Leclerc et. al. have not published any sequence data in their report, and to the best of our knowledge, they have not made these sequences publically available in the GenBank. The reverse-complement sequence of their sequencing primer 401

5 (TCCCTTTCAA CAATTTCACG) overlaps our SEQ ID NO: 1 (GTGAAATTGT TGAAAGGGAA) by 19 nucleotides and their sequencing primer 636

(GGTCCGTGTT TCAAGACGG) overlaps our SEQ ID NO: 2 (GACTCCTTGG TCCGTGTT) by 10 nucleotides. We are aware of no reports in the literature of variable regions from 28S rRNA genes of fungi being used as targets for the development of species specific diagnostic probes.

As discussed above, most present techniques for the molecular detection of fungi rely on the use of highly specific primers for the PCR amplification of only one fungal species. Those that employ "Universal" primers for a PCR amplification of DNA from multiple organisms, use post-PCR amplicon identification techniques that are useful only on pure cultures of fungi. These are not be able to identify fungi from a clinical specimen containing multiple fungal organisms. Our first aim was to develop "Universal" primers for the 28S gene. These primers would be capable of amplifying in a PCR, 28S rDNA from most fungi. Our subsequent aim was to develop species specific probes for fungi of interest, that would be used to analyze our "Universal" 28S amplicon. These species specific probes would be able to detect the presence of fungi of interest even in situations containing mixed fungal species.

One aspect of this invention is to provide nucleic acid primers capable of detecting 28S sequences from DNA or RNA of most fungi. These would be used as "Universal" primers in a polymerase chain reaction to amplify 28S sequences from any fungus present in clinical, food, environmental or other samples. These "Universal" primers would also be used to sequence the amplified DNA. The

20

N.

¥,

商品

sequence obtained would be used to identify the fungus by comparing with a database of known fungal sequences.

A second aspect of this invention is to provide nucleic acid probes capable

of detecting and identifying, by nucleic acid hybridization, the pathogens

Aspergillus fumigatus, Blastomyces dermatitidis, Candida albicans, Coccidioides

immitis, Cryptococcus neoformans, Histoplasma capsulatum, Aspergillus flavus,

Aspergillus glaucus, Aspergillus niger, Aspergillus terreus, Candida glabrata,

Candida guilliermondii, Candida kefyr, Candida krusei, Candida lusitaniae,

Candida parapsilosis, Candida tropicalis, Pseudallescheria boydii, Sporothrix

schenckii and other species by use of any of several different formats. Additionally,
nucleotide sequence information is provided to identify these pathogens and other

fungi by DNA sequence comparison (Figure 2) or by the construction of additional
probes.

15

A STATE OF THE PARTY OF THE PAR

•

Ĭ

SUMMARY OF THE INVENTION

Nucleic acid probes and primers are described for detecting fungi that cause disease in humans and animals, as well as spoilage of food and beverages. These probes can detect rRNA, rDNA or polymerase chain reaction products from a majority of fungi in clinical, environmental or food samples. Nucleic acid hybridization assay probes specific for Aspergillus fumigatus, Blastomyces dermatitidis, Candida albicans, Coccidioides immitis, Cryptococcus neoformans, Histoplasma capsulatum, Aspergillus flavus, Aspergillus glaucus, Aspergillus niger, Candida kerusei, Candida glabrata, Candida guilliermondii, Candida kefyr, Candida krusei, Candida lusitaniae, Candida parapsilosis, Candida tropicalis, Pseudallescheria boydii, Sporothrix schenckii and other species (Table 1 and Figure 2) are also described.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 represents the relative position of the sequences described on the 28S subunit of fungi.

Figures 2A, B, C and D together represent the multiple sequence alignment for (SEQ ID NO: 24) through (SEQ ID NO: 74).

DETAILS OF THE INVENTION

Our first objective was to develop nucleic acid primers for use in a polymerase chain reaction to amplify 28S genes from all fungi likely to be present in a clinical sample. This amplified DNA would then be amenable to probing with several different species specific probes. Each one of these species specific probes would, under conditions of hybridization, anneal to 28S ribosomal DNA from only one species of fungus, thereby detecting and identifying the species of fungus present in the clinical sample. The 28S gene was selected as a target because it had regions that were conserved among fungi and these would provide potential annealing sites for "universal" fungal probes. The ribosomal 28S genes were also expected to have hypervariable regions that would be unique enough to provide sites for species specific probes. The large rRNA gene is called the 23S rRNA gene in prokaryotes and 28S in eukaryotes. This designation is based on the length and therefore the sedimentation coefficient of these rRNA molecules. Fungal large subunit rRNAs vary in size among different organisms and are often referred to as being 25S, 26S or 28S. Since fungi are eukaryotes, and to maintain uniformity in this application, we shall refer to fungal large subunit rRNA as 28S rRNA.

Published sequences from Cryptococcus neoformans, two Candida albicans, Saccharomyces cerevisiae and two Schizosaccharomyces pombe 28S genes are approximately 3.5 kilobases in length (Genbank accession numbers:

Ċ

Ċ

10

15

20

L14068, L28817, X70659, J01355, Z19136 & Z19578). These four sequences were aligned, and a region of sequence variability was found clustered between coordinates 200 and 700 from the 5' end of these genes. As an initial starting point, two nucleic acid primers P1 (ATCAATAAGC GGAGGAAAAG) and P2 5 (CTCTGGCTTC ACCCTATTC) (see figure 1), capable of hybridizing to all 4 of the above mentioned organisms and not to human 28S sequences (GenBank accession number: M11167), were designed and used under low stringency hybridization conditions in a polymerase chain reaction to amplify approximately 800 base pairs of DNA spanning this hypervariable region from the following 34 10 fungi that were obtained from the Mayo Clinic fungal collection: Acremonium sp., Aspergillus clavatus, Aspergillus fumigatus, Aspergillus glaucus, Aspergillus nidulans, Aspergillus niger, Aspergillus ochraceus, Aspergillus terreus, Aspergillus unguis, Aspergillus ustus, Beauvaria sp., Bipolaris sp., Blastomyces dermatitidis, Candida albicans, Candida glabrata, Candida guilliermondii, Candida kefyr, Candida krusei, Candida lusitaniae, Candida parapsilosis, Candida tropicalis, Chrysosporium sp., Cladosporium sp., Coccidioides immitis, Cryptococcus neoformans serotype A, Curvularia sp., Geotrichum sp., Histoplasma capsulatum, Mucor sp., Penicillium sp., Pseudallescheria boydii, Saccharomyces cerevisiae, Sporothrix schenkii and Trichosporon beigelii.

20

1

4

1

ž,

A Karaka

125

DNA was extracted from the fungi listed above by the following method. A loopful of fungal culture was scraped off a culture plate using a sterile inoculation loop. The fungus was added one milliliter of sterile water in a 1.5 ml Sarsted (Newton, North Carolina) screw cap microcentrifuge tube. This tube was placed in a boiling water bath for 20 minutes in order to lyse the fungus and release DNA from the cells. Two microliters of this whole cell lysate was used in a PCR to amplify 28S rDNA. All PCR amplifications were carried out as hot-start reactions in a 50 ul reaction volume using Perkin-Elmer (Norwalk, CT) 0.5 ml thin-wall polypropylene tubes and a Perkin-Elmer thermal cycler. Reagents added to the tube

initially were 2.5 ul of 10X PCR buffer (100 mM tris pH 8.3, 500 mM KCl, 15 mM MgCl₂), 5.0 ul of 50% glycerol/1 mM cresol red, 8.0 ul of dNTP mix (1.25 mM each of dATP, dGTP, dTTP and dCTP), 12 picomoles of each nucleic acid primer and sterile water to make up a volume of 25 ul. A wax bead (Ampliwax Gem-100, Perkin-Elmer) was added and the tubes heated to 77°C for 1 minute and cooled to room temperature to form a wax barrier. 2.5 ul of 10X PCR buffer, 5.0 ul of 50% glycerol/1 mM cresol red, 0.2 ul Taq polymerase (AmpliTaq 5U/ul, Perkin-Elmer) and 15.3 ul of sterile water was added to the tube along with 2.0 ul of DNA from the fungal whole cell lysate described above. 50 cycles of thermal cycling was carried out at 94°C - 30 sec, 40°C - 1 min, 72°C - 2 min. The amplified DNA was electrophoresed and purified from a low melt agarose gel by tris buffered phenol pH 8.0, phenol/chloroform/isoamyl alcohol (25:24:1 by vol.) and 3 ether extractions, followed by isopropanol precipitation and 70% ethanol wash.

We completely sequenced both strands of DNA amplified from the organisms listed above. All sequencing was carried out on an Applied Biosystems 373A sequencer. Every nucleotide in the sequences generated was verified and confirmed by examining the complementary nucleotide from the second strand sequence. We had now created a novel database consisting of nucleic acid sequences spanning a variable region of the 28S rDNA from a diverse collection of medically important fungi.

While the complete sequences for Candida albicans, Cryptococcus neoformans and Saccharomyces cerevisiae 28S genes had previously been published and deposited in GenBank, it was not obvious, nor had it been defined, whether any regions of sequence identity among these three organisms would also be conserved among all fungi of interest. DNA sequences from all the fungi in our novel 28S database had to be analyzed in order to develop "Universal" 28S probes. All sequences were subjected to extensive manipulation to identify optimal relative

<u>ن</u> ر

では一個など

Ŋ

n.Ž

Š

1

.

10

allignments in order to identify regions of similarity for use as "Universal" probes. The selected probe sequences had to meet several important criteria besides the condition of being present in 28S genes from most fungal species. Each probe sequence required an appropriate thermal profile, secondary structure and utility in a DNA amplification reaction. These probes were optimized to work for PCR amplification in pure cultures of fungus, as well as in the presence of DNA from multiple sources as in the case of clinical specimens. The probes were also designed to facilitate direct sequencing of the amplified DNA. Our analysis led to the discovery of the oligonucleotide probes listed in (SEQ ID NO:1) and (SEQ ID NO:2). (For their location, see Figure 1.) The successful identification of these two probes ((SEQ ID NO:1) and (SEQ ID NO:2)) completed our first objective to develop nucleic acid probes that would hybridize to, and detect 28S rRNA and rDNA from a majority of fungi (Figure 1 and Table 1). As shown later in this application, the novel sequence information generated by the use of our "Universal" probes allowed us to develop species-specific probes ((SEQ ID NO:3) to (SEQ ID NO:23)) capable of identifying 19 different disease-causing fungi.

Table 1:

連打

3

Š

d.

20 Presence of hybridization sites for probes SEQ ID NO: 1 and SEQ ID NO: 2 in 28S nucleic acid sequences.

	SEQ ID NO: 1	SEQ ID NO: 2	
Acremonium sp.	+	+	
Aspergillus clavatus	+	+	
Aspergillus flavus	+	+	
Aspergillus fumigatus	+	+	
Aspergillus glaucus	+	+	
Aspergillus nidulans	+	+	
Aspergillus niger	+	+	
Aspergillus ochraceus	+	+	

7

The state of the s

1

Sint

Aspergillus terreus	+	+
	+	
Aspergillus unguis		+
Aspergillus ustus	+	+
Beauvaria sp.	+	+
Bipolaris sp.	+	+
Blastomyces dermatitidis	+	+
Blastoschizomyces sp.	+	+
Candida albicans	+	+
Candida glabrata	+	+
Candida guilliermondii	+	+
Candida kefyr	+	+
Candida krusei	+	+
Candida lusitaniae	+	+
Candida parapsilosis	+	+
Candida tropicalis	+	.+
Chrysosporium sp.	+	+
Cladosporium sp.	+	+
Coccidioides immitis	+	+
Cryptococcus laurentii	+	+
Cryptococcus neoformans serotype A	+	+
Cryptococcus neoformans var.	+	+
gattii serotype B		
Cryptococcus terreus	+	+
Curvularia sp.	+	+
Filobasidiella (Cryptococcus)	+	+
neoformans var bacillispora		
serotype C		
Filobasidiella (Cryptococcus)	+	+
neoformans var neoformans		
serotype D		
Filobasidium capsuligenum	+	+
Filobasidium uniguttulatum	+	+
Fusarium sp.	+	+
Geotrichum sp.	+	+
Histoplasma capsulatum	+	+
Malbranchea sp.	+	+
Mucor sp.		+
	+	•
Paecilomyces sp.	+	+
Paecilomyces sp. Penicillium sp.		
Paecilomyces sp. Penicillium sp. Pseudallescheria boydii	+	+

Saccharomyces cerevisiae	+	+
Scopulariopsis brevicaulis	+	+
Scopulariopsis brumptii	+	+
Sporothrix schenckii	+	+
Trichosporon beigelii	+	+
Human	•	+

Probes SEQ ID NO: 1 and SEQ ID NO: 2 were used to successfully amplify (Table 2) and sequence DNA (Figure 2) spanning this variable region from the

- following 49 organisms: Acremonium sp., Aspergillus clavatus, Aspergillus flavus, Aspergillus fumigatus, Aspergillus glaucus, Aspergillus nidulans, Aspergillus niger, Aspergillus ochraceus, Aspergillus terreus, Aspergillus unguis, Aspergillus ustus, Beauvaria sp., Bipolaris sp., Blastomyces dermatitidis, Blastoschizomyces sp., Candida albicans, Candida glabrata, Candida guilliermondii, Candida kefyr,
- Candida krusei, Candida lusitaniae, Candida parapsilosis, Candida tropicalis, Chrysosporium sp., Cladosporium sp., Coccidioides immitis, Cryptococcus neoformans serotype A, Cryptococcus neoformans var. gattii serotype B, Cryptococcus terreus, Cryptococcus laurentii, Curvularia sp., Filobasidiella (Cryptococcus) neoformans var bacillispora serotype C, Filobasidiella
- 15 (Cryptococcus) neoformans var neoformans serotype D, Filobasidium capsuligenum, Filobasidium uniguttulatum, Fusarium sp., Geotrichum sp., Histoplasma capsulatum, Malbranchea sp., Mucor sp., Paecilomyces sp., Penicillium sp., Pseudallescheria boydii, Rhizopus sp., Saccharomyces cerevisiae, Scopulariopsis brevicaulis, Scopulariopsis brumptii, Sporothrix schenkii and
- 20 Trichosporon beigelii. This list contains all 4 serotypes (A, B, C and D) of Cryptococcus neoformans. This sequence information generated by the use of probes SEQ ID NO: 1 and SEQ ID NO: 2 expanded the size of our database consisting of fungal 28S sequences. All amplified DNA was sequenced across both strands from a minimum of two different isolates of each organism to ensure
- 25 accuracy of the data generated.

7

Ź

....

1,3

PCT/IB96/00026

Table 2: Polymerase chain reaction amplification of 28S rDNA with probes SEQ ID NO: 1 and

5 SEQ ID NO: 2.

	PCR with SEQ ID
	NO: 1 & NO: 2
Acremonium sp.	+
Aspergillus clavatus	+
Aspergillus flavus	+
Aspergillus fumigatus	+
Aspergillus glaucus	+
Aspergillus nidulans	+
Aspergillus niger	+
Aspergillus ochraceus	+
Aspergillus terreus	+
Aspergillus unguis	+
Aspergillus ustus	+
Beauvaria sp.	+
Bipolaris sp.	+
Blastomyces dermatitidis	+
Blastoschizomyces sp.	+
Candida albicans	+
Candida glabrata	+
Candida guilliermondii	+
Candida kefyr	+
Candida krusei	+
Candida lusitaniae	+
Candida parapsilosis	+
Candida tropicalis	+
Chrysosporium sp.	+
Cladosporium sp.	+
Coccidioides immitis	+
Cryptococcus laurentii	+
Cryptococcus neoformans serotype A	+
Cryptococcus neoformans var. gattii serotype B	+
Cryptococcus terreus	+

\$

Commitania	
Curvularia sp.	+
Filobasidiella (Cryptococcus)	+
neoformans var bacillispora	
serotype C	
Filobasidiella (Cryptococcus)	+
neoformans var neoformans	
serotype D	
Filobasidium capsuligenum	+
Filobasidium uniguttulatum	+
Fusarium sp.	+
Geotrichum sp.	+
Histoplasma capsulatum	+
Malbranchea sp.	+
Mucor sp.	+
Paecilomyces sp.	+
Penicillium sp.	+
Pseudallescheria boydii	+
Rhizopus sp.	+
Saccharomyces cerevisiae	+
Scopulariopsis brevicaulis	+
Scopulariopsis brumptii	+
Sporothrix schenckii	+
Trichosporon beigelii	+
Human	

This list of fungi sequenced by us represents organisms responsible for most cases of subcutaneous and deep mycotic infections in humans and also includes saprophytes (non-pathogenic fungi) commonly encountered in clinical isolates. Since the two probes (SEQ ID NO: 1 and SEQ ID NO: 2) hybridize to 28S rDNA from all the fungi listed above, they are capable of diagnosing the presence of a majority of fungi that are likely to be present in a clinical specimen. They are believed to be primers for universally detecting fungi.

10

*

Probes listed in SEQ ID NO: 1 and SEQ ID NO: 2 were also checked for their potential ability to hybridize to, and amplify (in a polymerase chain reaction) 23S sequences from bacteria by searching for hybridization sites among the 539

bacterial 23S genes listed in GenBank. Bacterial 23S rDNAs do not have suitable hybridization sites for SEQ ID NO: 1 and SEQ ID NO: 2 and these two probes should not be able to amplify bacterial DNA under stringent conditions.

5 Our second objective was to develop species specific probes, which under hybridization conditions, would detect Aspergillus fumigatus, Blastomyces dermatitidis, Candida albicans, Coccidioides immitis, Cryptococcus neoformans, Histoplasma capsulatum, Aspergillus flavus, Aspergillus glaucus, Aspergillus niger, Aspergillus terreus, Candida glabrata, Candida guilliermondii, Candida kefyr, Candida krusei, Candida lusitaniae, Candida parapsilosis, Candida tropicalis, Pseudallescheria boydii, and Sporothrix schenckii. We used our database of fungal 28S nucleic acid sequences to create a multiple sequence alignment of all the organisms that we had sequenced. Every individual sequence was subjected to intensive comparison with all other sequences in our database in order to discover unique regions of sequence that would be present only in the fungus of interest, and 15 would be absent in all other fungi. When unique stretches of sequence were identified, these were further analyzed for thermal profile and secondary structure. Each probe constructed by us will, under conditions of hybridization, specifically hybridize to and detect, nucleic acid sequence from the unique region of only one 20 specific target fungus. Those versed in the art will recognize that specification of a single-stranded DNA sequence implies the utility of the complementary DNA sequence, as well as the two equivalent RNA sequences. Furthermore, sequences incorporating modification of any of the moieties comprising the nucleic acid (i.e., the base, the sugar or the backbone) are functional equivalents of the sequence. It should also be recognized that these additional sequences can potentially serve as 25 probes or primers. Finally, those versed in the art recognize that comparisons of extensive DNA sequences provides enough variability and uniqueness to speciate organisms (Figure 2).

¥

· 公益金融

.

-

The nucleic acid sequences for these species specific synthetic probes are listed in SEQ ID NO: 3 to SEQ ID NO: 23. There are two probes specific for Cryptococcus neoformans, two probes specific for Sporothrix schenckii, and one probe each for Aspergillus fumigatus, Blastomyces dermatitidis, Candida albicans, Coccidioides immitis, Histoplasma capsulatum, Aspergillus flavus, Aspergillus glaucus, Aspergillus niger, Aspergillus terreus, Candida glabrata, Candida guilliermondii, Candida kefyr, Candida krusei, Candida lusitaniae, Candida parapsilosis, Candida tropicalis and Pseudallescheria boydii 28S rRNA and rDNA. (See Tables 3 - 6 and further discussion below.)

10

15

20

25

Š.

:1

*

Ŋ

39E

All species specific probes developed by us are novel and to the best of our knowledge have not been reported in the literature. While all 28S genes sequenced by us had several regions that were different among the various species analyzed, the regions that would function best as species specific probes under conditions of hybridization were not obvious. Extensive analysis of each 28S sequence yielded several potential probe sites. These were studied in detail to enable the selection of optimal unique sites for each probe, based on the need to obtain optimal hybridization characteristics under the test conditions. The highly specific hybridization characteristics of all probe sequences developed by us were then validated by experimental results. The prior existence in GenBank of sequences for Candida albicans and only one serotype of Cryptococcus neoformans 28S genes was in itself not sufficient to enable even an individual versed in this field to develop specific probes for either of these two organisms. We had to obtain novel 28S sequence from Candida albicans, Candida glabrata, Candida guilliermondii, Candida kefyr, Candida krusei, Candida lusitaniae, Candida parapsilosis, Candida tropicalis, Cryptococcus neoformans serotype A, Cryptococcus neoformans var. gattii serotype B, Cryptococcus terreus, Cryptococcus laurentii, Filobasidiella (Cryptococcus) neoformans var bacillispora serotype C. Filobasidiella (Cryptococcus) neoformans var neoformans serotype D, Filobasidium

capsuligenum and Filobasidium uniguttulatum before we were able to identify potential regions for the development of species specific probes for these two fungal organisms that would not cross react with the others listed above.

Our modification of the Chomczynski technique (see Example 2, below) allows us to obtain DNA from any clinical specimen, irrespective of source (see Table 8 for a variety of clinical specimens tested), within a 3 hour period. The PCR amplification and subsequent probing can be accomplished with ease within a 24 hour period. The final identification is therefore possible in a day as opposed to several days or weeks required by traditional methods. This speed and sensitivity of diagnosis can make a difference between life and death in debilitated patients battling fungal diseases of undetermined cause. Rapid diagnosis will allow physicians to immediately direct their therapy towards curing the identified causative fungus, rather than wait for days or weeks while the patient succumbs to an unknown fungus.

Our probes have the ability to pick out the correct target organism even in a mixed fungal infection because of their high level of specificity. The methods of Hopfer et. al. and Maiwald et. al., do not allow identification of individual species in a mixed fungal infection because restriction fragment length polymorphism results are nearly impossible to interpret when multiple organisms contribute to the restriction fragments. Their method can therefore only be used on a pure culture, and this also does not save any diagnostic time, because the fungus first has to be grown in culture.

25

5

10

15

20

The probes developed by us allow rapid species identification of a large number of pathogenic fungi by using multiple probes against only one PCR amplified fragment of DNA. Coupled with our modified DNA extraction technique and our ability to accurately diagnose in the case of mixed organisms, this strategy

18

can provide the greatest amount of diagnostic information in the shortest amount of time. This diagnostic strategy is also amenable to automation, which can result in even greater savings in time, money and effort.

5 The sequences and the complement of the sequences claimed in this disclosure, along with any modifications to these sequences, may potentially be utilized in assays for the identification of fungi based on several existing methodologies, as well as future improvements and alterations of this technology. These techniques include, but are not limited to, assays based on hybridization, 10 ligation, polymerization, depolymerization, sequencing, chemical degradation, enzymatic digestion, electrophoresis, chromatography and amplification. Furthermore, all such variations ultimately are based in some selection or amplification process, some ligand or some nucleic acid moiety that recognizes or utilizes the sequences (SEQ ID NO: 1) to (SEQ ID NO:23) claimed in this 15 application. Such variations include but are not limited to use of a variety of linear or exponential target amplification schemes, such as, any of the myriad forms of PCR, the ligase chain reaction, Q-beta repliase, etc.; direct detection of speciesspecific nucleic acid purified or extracted from pure fungal culture using a probe selected from the group (SEQ ID NO: 3) to (SEQ ID NO: 23); use of the 20 complementary DNA forms of (SEQ ID NO:1) to (SEQ ID NO:23); use of the RNA forms of these sequences and their complements; and use of derivatives of these DNA or RNA sequences by the addition of one or more reporter moieties from a variety of labels including nucleic acid sequences, proteins, signal generating ligands such as acridinium esters, and/or paramagnetic particles. These techniques 25 may be utilized with DNA, RNA or modified derivatives used as either the target or the detection molecule.

In addition to the 23 sequences SEQ ID NO: 1 to SEQ ID NO: 23, we also describe an additional 51 sequences SEQ ID NO: 24 to SEQ ID NO: 74. These 51

Š

のないので

Ì

Ç

ġ

が変え

sequences are inclusive of SEQ ID NO: 3 to SEQ ID NO: 23 and are shown as a multiple sequence alignment (Figure 2) with coordinate 1 corresponding to base # 431 of a reference *S. cerevisiae* 28S rRNA gene. (The numbers are comparable to the primary sequence of *S. cerevisiae* 28S rRNA gene. Genbank accession number: J01355). These sequences were obtained by amplifying and sequencing 28S rDNA from various fungi with primers SEQ ID NO: 1 and SEQ ID NO: 2. (SEQ ID NO: 1 corresponds to coordinates 403-422 and the SEQ ID NO: 2 corresponds to coordinates 645-662 of the reference *S. cerevisiae* gene).

An analysis of these aligned sequences enabled us to develop the species specific probes SEQ ID NO: 3 to SEQ ID NO: 23, and sites for these probes are shown underlined. These 51 aligned sequences contain sufficient variability, to enable a person versed in this art, to develop additional species specific hybridization probes in the 10-50 nucleotide length. Similarly, longer species specific hybridization probes encompassing the entire 200+ nucleotide length can also be envisioned. Species identification may also be accomplished by direct DNA sequence determination of any DNA amplified with primers SEQ ID NO: 1 and SEQ ID NO: 2. If the derived sequence matches approximately 98% or more of any sequence in SEQ ID NO: 24 to SEQ ID NO: 74, then the identity of the organism can be ascertained. Additionally, we recognize that parts of SEQ ID NO: 24 to SEQ ID NO: 74 may be specific for groups of fungi arranged phylogenetically at the level of genus or higher. SEQ ID NO: 24 to SEQ ID NO: 74, their complements, along with any modification to these sequences may also potentially be utilized in assays for the identification of fungi based on existing methodologies and future technologies as noted above for SEQ ID NO: 1 to SEQ ID NO: 23.

3

ij

Ý

3

1

11

10

Legend to figure 2:

The multiple sequence alignment shows the sequence of 28S ribosomal RNA genes amplified with primers SEQ ID NO: 1 and SEQ ID NO: 2. 21 species specific probes (SEQ ID NO: 3 to SEQ ID NO: 23) are shown underlined. Minor sequence variation among two isolate of the same organism are represented by the appropriate code (see key below). Major differences among *Rhizopus* species are depicted by including 3 separate *Rhizopus* sequences in the alignment. (The organisms in this figure are listed according to their sequence relatedness.)

10

Ť

3

4

1

Key to symbols:

- (.) gap in sequence to facilitate alignment
- (R) A or G
- 15 (W) A or T
 - (Y) T or C
 - (M) A or C
 - (K) T or G
 - (S) G or C
- 20 (B) T,G or C

	Acremo	Acremonium species
	A_clav	Aspergillus clavatus
	A_flav	Aspergillus flavus
25	A_fumi	Aspergillus fumigatus
	A_glau	Aspergillus glaucus
	A_nidu	Aspergillus nidulans
	A_nige	Aspergillus niger
	A_ochr	Aspergillus ochraceus

	A_terr	Aspergillus terreus
	A_ungu	Aspergillus unguis
	A_ustu	Aspergillus ustus
	Beauve	Beauveria species
5	Bipola	Bipolaris species
	Blasch	Blastoschizomyces species
	B_derm	Blastomyces dermatitidis
	Chryso	Chrysosporium species
	Clados	Cladosporium species
10	Curvul	Curvularia species
	C_albi	Candida albicans
	C_glab	Candida glabrata
	C_guil	Candida guilliermondii
	C_immi	Coccidioides immitis
15	C_kefy	Candida kefyr
	C_krus	Candida krusei
	C_laur	Cryptococcus laurentii
	C_lusi	Candida lusitaniae
	C_neob	Cryptococcus neoformans var gattii serotype B
20	C_neof	Cryptococcus neoformans serotype A
	C_para	Candida parapsilosis
	C_terr	Cryptococcus terreus
	C_trop	Candida tropicalis
	Fusari	Fusarium species
25	F_caps	Filobasidium capsuligenum
	F_neoc	Filobasidiella (Cryptococcus) neoformans var bacillispora
		serotype C
	F_neod	Filobasidiella (Cryptococcus) neoformans var neoformans
		serotype D

	F_unig	Filobasidium uniguttulatum
	Geotri	Geotrichum species
	H_caps	Histoplasma capsulatum
	Malbra	Malbranchea species
5	Mucor_	Mucor species
	Paecil	Paecilomyces species
	Penici	Penicillium species
	P_boyd	Pseudallescheria boydii
	Rhizo1	Rhizopus species isolate #1
10	Rhizo2	Rhizopus species isolate #2
	Rhizo3	Rhizopus species isolate #3
	Sporot	Sporothrix schenkii
	S_brev	Scopulariopsis brevicaulis
	S_brum	Scopulariopsis brumpti
15	S_cere	Saccharomyces cerevisiae
	T_beig	Trichosporon beigelii

Further variations of the invention that utilize any of the named sequences

will be apparent to those with ordinary skill in the art. The following examples
illustrate various aspects of the invention but are not intended to limit its usefulness.

EXAMPLE 1. Testing probes SEQ ID NO: 3 to SEQ ID NO: 23 for hybridization specificity.

25

海部公司

.

Probes listed in SEQ ID NO: 3 to SEQ ID NO: 23 were tested for specificity against their target organisms. Probe SEQ ID NO: 5 for Candida albicans was the first one tested against a panel of fungi taken from the Mayo Clinic collection. 28S rDNA from Acremonium sp., Aspergillus clavatus, Aspergillus flavus, Aspergillus

fumigatus, Aspergillus glaucus, Aspergillus nidulans, Aspergillus niger, Aspergillus ochraceus, Aspergillus terreus, Aspergillus unguis, Aspergillus ustus, Aspergillus sp., Beauvaria sp., Bipolaris sp., Blastomyces dermatitidis, Candida albicans. Candida glabrata, Candida guilliermondii, Candida kefyr, Candida krusei, 5 Candida lusitaniae, Candida parapsilosis, Candida tropicalis, Chrysosporium sp., Cladosporium sp., Coccidioides immitis, Cryptococcus neoformans serotype A, Curvularia sp., Fusarium sp., Geotrichum sp., Histoplasma capsulatum, Mucor sp., Penicillium sp., Pseudallescheria boydii, Rhizopus sp., Saccharomyces cerevisiae, Scopulariopsis brevicaulis, Sporothrix schenkii and Trichosporon beigelii was amplified in a polymerase chain reaction using oligonucleotide probes SEQ ID NO: 1 and SEQ ID NO: 2. All PCR amplifications were carried out as hot-start reactions in a 50 ul reaction volume using Perkin-Elmer (Norwalk, CT) 0.5 ml thinwall polypropylene tubes and a Perkin-Elmer thermal cycler. Reagents added to the tube initially were 2.5 ul of 10X PCR buffer (100 mM tris pH 8.3, 500 mM KCl, 15 mM MgCl₂), 5.0 ul of 50% glycerol/1 mM cresol red, 8.0 ul of dNTP mix (1.25 mM each of dATP, dGTP, dTTP and dCTP), 11 picomoles of each nucleic acid primer and sterile water to make up a volume of 25 ul. A wax bead (Ampliwax Gem=100, Perkin-Elmer) was added and the tubes heated to 77°C for 30 seconds and cooled to room temperature to form a wax barrier. 2.5 ul of 10X PCR buffer, 20 5.0 ul of 50% glycerol/1 mM cresol red, 0.2 ul Taq polymerase (AmpliTaq 5U/ul, Perkin-Elmer) and 15.3 ul of sterile water was added to the tube along with 2.0 ul of DNA from the fungal whole cell boiled lysate described above. 50 cycles of thermal cycling was carried out at 94°C - 30 sec, 50°C - 1 min, 72°C - 2 min. Five microliters of polymerase chain reaction mix from each sample was run on a 5% polyacrylamide gel to visually confirm the successful amplification of 28S rDNA from each fungus listed above. 40 ul of the remaining amplified 28S rDNA was denatured in 1 N NaOH, and half of this denatured rDNA was slot blotted on to a positively charged polysulphone based membrane equilibrated in 0.5 N NaOH. The membrane was air dried for 15 minutes and baked in a vacuum oven at 80°C for 30

W

文艺艺艺

4

ņ

minutes. Amplified rDNA from each species was now bound and immobilized at a separate spot on the membrane. The free binding sites on the membrane were blocked by incubating the membrane for 3 hours at 40°C in hybridization buffer (100 ml of hybridization buffer was made using 1g non-fat milk powder, 6g 5 NaH2PO4, 7g SDS, 200 ul 0.5M EDTA and adjusted to pH 7.2 with NaOH). The specific probe for Candida albicans (SEQ ID NO: 5) was end-labeled with radioactive phosphorus using 32P ATP and T4 polynucleotide kinase. 50 picomoles of this probe was added to 70 milliliters of hybridization buffer and the membrane was probed at 40°C overnight. The membrane was washed in hybridization buffer at 40°C for 15 minutes followed by a wash in 2X SSC at 40°C for 15 minutes. The membrane was then exposed on x-ray film for at least 1 hour. The oligonucleotide probe SEQ ID NO: 5 only hybridized to amplified 28S rDNA from Candida albicans (see Table 3) Under these hybridization conditions, probe SEQ ID NO: 5 is extremely specific for Candida albicans. The sequence of oligonucleotide probe SEQ ID NO: 5 differs from the sequences of other species of Candida by as few as 1 or 2 bases, but these mismatches are sufficient to prevent stable hybrids from forming with the other Candida species.

Probes SEQ ID NO: 3 to SEQ ID NO: 23 were tested for specificity, as

described above for the Candida albicans probe SEQ ID NO: 5, against the same
panel of fungi listed in the preceding paragraph. The positively charged
polysulphone based membrane probed with Candida albicans probe SEQ ID NO: 5
was washed in 0.5 N NaOH at 40°C for 10 minutes to remove all bound Candida
albicans probe. The membrane was sequentially probed with all probes listed in

SEQ ID NO: 3 to SEQ ID NO: 23. For each subsequently tested probe, the
membrane was blocked for at least 30 minutes, probe hybridization was carried out
at 40-42°C for at least 3 hours, and post-hybridization washes were done in 2X SSC
for 20 minutes. The membrane was stripped between probings by washing in 0.5 to
1.0 N NaOH at 40-42°C. Results are listed in Tables 3 to 6.

辟

Œ,

- A.Selan

As shown in Tables 3 to 6, each probe listed in SEQ ID NO: 3 to SEQ ID NO: 23 specifically hybridizes to only one target fungal 28S nucleic acid sequence. This specificity is essential for identifying a given species of fungus in clinical specimens containing mixed fungal organisms with a high level of reliability. The 39 organisms listed in these Tables represent a majority of organisms that are commonly isolated from clinical samples. While we have developed 21 species specific probes (SEQ ID NO: 3 to SEQ ID NO: 23) that identify a total of 19 individual organisms, the additional organisms listed in the test panel were used to ensure that our probes did not have any cross-reactivity with other fungi likely to be present in a clinical specimen. The ability to accurately and reliably diagnose, and identify to a species level, this large a number of pathogens is unmatched by any other report. The fact that we can achieve this by probing DNA amplified by a single pair of "Universal" probes (SEQ ID NO: 1 and SEQ ID NO: 2) is highly advantageous as it saves time, money and effort by providing the ability to test a single amplified target with 21 different probes (SEQ ID NO: 3 to SEQ ID NO: 23).

A GenBank search was carried out with all probes listed in SEQ ID NO: 3 to SEQ ID NO: 23 in order to determine whether similar gene sequences were present in the database. 28S sequences for Candida albicans and one serotype of Cryptococcus neoformans are already present in GenBank, and as expected, the probes for Candida albicans and Cryptococcus neoformans correctly identified the 28S sequences from these two organsims. Ten other probes also matched DNA sequences from a variety of genes not related to the 28S gene (Table 7). This was expected because short stretches of sequence identity can often be found for any query sequence in unrelated genes from the same or a different organism. This observation is known to those versed in this art. In all cases, sequences that matched a probe sequence were not located within the 28S rRNA genes. Our probes are used to analyze 28S DNA that has been previously amplified in a polymerase chain reaction with our probes SEQ ID NO: 1 and SEQ ID NO: 2. Under stringent

*

Ŷ,

ò

2

なると

14

10

15

conditions, these two probes only amplify DNA from fungal 28S rRNA genes.

Therefore no amplified DNA from the non-28S genes listed in Table 7 will be available for the hybridization of probes SEQ ID NO: 3 to SEQ ID NO: 23. The presence of related sequences in non-28S, unamplified genes will not be detected and will, thus, not have any effect on the sensitivity or the specificity of our detection and identification strategy.

70

*

Table 3:
Detection of species specific 28S sequence with probes SEQ ID NO: 3 to SEQ ID NO: 8

FUNGUS	SEQ ID: 3	SEQ ID: 4	SEQ ID: 5	SEQ ID: 6	SEQ ID: 7	SEQ ID: 8
Acremonium sp.		-	-		-	
Aspergillus clavatus	•	-	-	_	-	
Aspergillus flavus	•	-	-			
Aspergillus fumigatus	+		-			
Aspergillus glaucus		-				
Aspergillus nidulans		-	-		_	
Aspergillus niger	•	-	-	-		
Aspergillus ochraceus	•			-		
Aspergillus terreus	-	-	-	-		
Aspergillus unguis	•		-		-	-
Aspergillus ustus		-	•		-	<u> </u>
Aspergillus sp.		-				
Beauvaria sp.				-		-
Bipolaris sp.					-	•
Blastomyces dermatitidis		+				•
Candida albicans			+	-		•
Candida glabrata	· · · · · · · · ·					-
Candida guilliermondii		-				
Candida kefyr	-				•	
Candida krusei					-	
Candida lusitaniae						•
Candida parapsilosis	 					
Candida tropicalis						-
Chrysosporium sp.				-		*
Cladosporium sp.			 -			-
Coccidioides immitis				-		-
Cryptococcus neoformans					<u> </u>	
Curvularia sp.						+
Fusarium sp.						
Geotrichum sp.	- 			•		<u> </u>
Histoplasma capsulatum						
Mucor sp.	 				-	-
Penicillium sp.	- 	-			-	•
Pseudallescheria boydii						-
Rhizopus sp.				<u> </u>	-	•
Saccharomyces cerevisiae						•
Scopulariopsis brevicaulis	- -					-
Sporothrix schenckii						•
Trichosporon beigelii	- 					<u> </u>

5

+	Positive
-	Negative after 20 minute wash in 2X SSC

Table 4:
Detection of species specific 28S sequence with probes SEQ ID NO: 9 to SEQ ID NO: 14

FUNGUS	SEQ ID: 9	SEQ ID: 10	SEQ ID: 11	SEQ ID: 12	SEQ ID: 13	SEQ ID: 14
Acremonium sp.			-	-	-	52012.14
Aspergillus clavatus	•		•			
Aspergillus flavus	•		-	-	 	
Aspergillus fumigatus	-	-	•	-		
Aspergillus glaucus		+	-	-	-	-
Aspergillus nidulans	•	-	•		-	
Aspergillus niger	-	-	+	•		
Aspergillus ochraceus	•	-	-			-
Aspergillus terreus	-	-	-	+	-	-
Aspergilius unguis	-	•		-		
Aspergillus ustus	•	•				
Aspergillus sp.	•	-	•	-	•	
Beauvaria sp.	•	-	•	-		
Bipolaris sp.	•	-	-	-	_	
Blastomyces dermatitidis		-	-	-		
Candida albicans	-		-	-		•
Candida glabrata	-	•		-	+	
Candida guilliermondii	-	•	•	-		+
Candida kefyr	-	•	-	-		<u> </u>
Candida krusei	-	-	•			
Candida lusitaniae		-	•		_	-
Candida parapsilosis	-	-	•			
Candida tropicalis				-		
Chrysosporium sp.	•					
Cladosporium sp.	-	-				
Coccidioides immitis	•	-	-			
Cryptococcus neoformans	-	_	_			
Curvularia sp.	-	-	_	-		
Fusarium sp.	•			-		
Geotrichum sp.		-				
Histoplasma capsulatum	+	-	-			
Mucor sp.	•	-				
Penicillium sp.		-	-			
Pseudallescheria boydii		-				
Rhizopus sp.	-	-	_			
Saccharomyces cerevisiae	-	-				-
Scopulariopsis brevicaulis	-					
Sporothrix schenckii	-					
Trichosporon beigelii	-					

+	Positive	
<u>-</u>	Negative after 20 minute wash in 2X SSC	

5 Table 5:

Detection of species specific 28S sequence with probes SEQ ID NO: 15 to SEQ ID NO: 20

FUNGUS	SEQ ID: 15	SEQ ID: 16	SEQ ID: 17	SEQ ID: 18	SEQ ID: 19	SEQ ID: 20
Acremonium sp.	-	-	-	-	52Q 1D. 17	3LQ 1D. 20
Aspergillus clavatus	•	-	_			
Aspergillus flavus	•	-				
Aspergillus fumigatus	-					
Aspergillus glaucus	-	-	-			<u> </u>
Aspergillus nidulans	•		-			
Aspergillus niger	-	-	-			
Aspergillus ochraceus						
Aspergillus terreus	-		-			-
Aspergillus unguis	•	•		•		-
Aspergillus ustus		-	-	-	-	
Aspergillus sp.				-		
Beauvaria sp.	-	•	-	-	-	
Bipolaris sp.	-			-		
Blastomyces dermatitidis	-	-	-			•
Candida albicans	-					
Candida glabrata	-					
Candida guilliermondii		-				
Candida kefyr	+		-			
Candida krusei	•	+				 -
Candida lusitaniae	-	-	+			<u> </u>
Candida parapsilosis	-	-		+		-
Candida tropicalis	-	-			+	-
Chrysosporium sp.		-		-		
Cladosporium sp.						
Coccidioides immitis	-					•
Cryptococcus neoformans						
Curvularia sp.	-					•
Fusarium sp.		-				•
Geotrichum sp.	-				-	
Histoplasma capsulatum	-					•
Mucor sp.		+				
Penicillium sp.	-					
Pseudallescheria boydii	-				•	•
Rhizopus sp.						+
Saccharomyces cerevisiae						-

Scopulariopsis brevicaulis	•	•	•			
Sporothrix schenckii	•	-	-	-	-	
Trichosporon beigelii	•	-	-		-	-

+	Positive
•	Negative after 20 minute wash in 2X SSC

5 Table 6:

Detection of species specific 28S sequence with probes SEQ ID NO: 21 to SEQ ID NO: 23

FUNGUS	SEQ ID: 21	SEO ID: 22	SEQ ID: 23
Acremonium sp.	-		
Aspergillus clavatus		-	-
Aspergillus flavus	+	-	•
Aspergillus fumigatus	-		_
Aspergillus glaucus	_	•	•
Aspergillus nidulans	-	-	•
Aspergillus niger	•	-	-
Aspergillus ochraceus	-	•	•
Aspergillus terreus	-		•
Aspergillus unguis	-	-	•
Aspergillus ustus	-	-	•
Aspergillus sp.	-	-	•
Beauvaria sp.	•	•	-
Bipolaris sp.		-	•
Blastomyces dermatitidis		-	-
Candida albicans	•	-	•
Candida glabrata	•	•	
Candida guilliermondii	•	-	•
Candida kefyr	-		-
Candida krusei	•	-	•
Candida lusitaniae	•	•	-
Candida parapsilosis	-	•	-
Candida tropicalis	-	-	•
Chrysosporium sp.	-	-	-
Cladosporium sp.	-	-	-
Coccidioides immitis	•	-	-
Cryptococcus neoformans	-	-	-
Curvularia sp.	-	-	•
Fusarium sp.	-	-	-
Geotrichum sp.	-	-	-
Histoplasma capsulatum	-		-
Mucor sp.	-	-	-
Penicillium sp.	-	-	-

Pseudallescheria boydii	•	-	-
Rhizopus sp.	•	-	•
Saccharomyces cerevisiae	-	-	-
Scopulariopsis brevicaulis	•	-	-
Sporothrix schenckii	•	+	+
Trichosporon beigelii	1 .		-

+	Positive	
	Negative after 20 minute wash in 2X SSC	

5 Table 7:

GenBank search results listing genes from other organisms having 100% identity to probes SEQ ID NO: 3 to SEQ ID NO: 23

	PROBE	ORGANISM	GENE	ACCESSION
	SEQ ID	MATCHED	MATCHED*	NUMBER
	NO:		(see note below)	
Aspergillus fumigatus	3	-	•	
Blastomyces dermatitidis	4	Streptomyces verticillus	bleomycin acetyl transferase	L26955
	4	Giardia muris	upstream of rRNA genes	X65063, S53320
	4	Aspergillus nidulans	uric acid-xanthine permease	X71807
	4	Homo sapiens	T-cell surface glycoprotein	X16996
	4	Homo sapiens	MIC2	M16279, M22557, J03841, M22556
Candida albicans	5	Candida albicans	28S rRNA	L28817
Coccidioides immitis	6	-	•	
Cryptococcus neoformans	7	Cryptococcus neoformans	28S rRNA	L14067, L14068,
Cryptococcus neoformans	8	Cryptococcus neoformans	28S rRNA	L14067, L14068, L20964
	8	Escherichia coli	0111 cld	Z17241
Histoplasma capsulatum	9	-		217241
Aspergillus glaucus	10	Pseudomonas denitrificans	cob genes	M62866
Aspergillus niger	11		•	
Aspergillus terreus	12	Human cytomegalovirus	genome	X17403
	12	Homo sapiens	GABA receptor	L08485
Candida glabrata	13	Homo sapiens	Class 1 MHC	X03664, X03665
Candida guilliermondii	14		-	7133007, 703003
Candida kefyr	15	-	-	

Candida krusei	16	Pseudomonas syringae	penicillin binding protein	L28837
Candida lusitaniae	17	Chicken	AK1	D00251
	17	Mouse	IL10	M84340
Candida parapsilosis	18	Polytomella agilis	beta-2 tubulin	M33373
	18	Tobacco chloroplast	genome	Z00044, S54304
	18	Aedes aegypti	amylase	L03640
	18	Homo sapiens	chromosome 13q14	L14473
Candida tropicalis	19	•	•	•
Pseudallescheria boydii	20	Drosophila melanogaster	AcTr66B	X71789
		Cow	actin 2	D12816
Aspergillus flavus	21	•	•	
Sporothrix schenckii	22	•	•	•
Sporothrix schenckii	23	Sulfate reducing bacteria	FMN binding protein	D21804
	23	Equine herpesvirus 1	genome	M86664

* Note: As discussed earlier in this document, the presence of sequences similar to probes SEQ ID NO:3 to SEQ ID NO: 23 in genes not related to 28S does not have any effect on the specificity or sensitivity of our diagnostic strategy. Our species specific probes are used to analyze 28S DNA that has been previously amplified in a polymerase chain reaction with our probes SEQ ID NO: 1 and SEQ ID NO:2. These two probes will not amplify DNA from any gene other than 28S in column #4 (GENE MATCHED), and therefore no amplified DNA from these non-28S genes will be available for the hybridization of probes SEQ ID NO: 3 to SEQ ID NO: 23.

10 EXAMPLE 2. Use of method in example 1 to test clinical specimens for specific fungal organisms.

Clinical samples taken from the respiratory and gastrointestinal tract of healthy individuals almost always contain some fungal flora. Most of these fungi are non-pathogenic, but may give false positives on traditional immunochemical diagnostic tests for pathogenic fungi.

We obtained 44 clinical specimens from diverse sources ranging from sputum and incision drainage tubes, to intervertebral disc and lung biopsies. Traditional smear and culture results showed that all 44 specimens contained at least 1 type of fungus. In order to test the efficacy of

ď,

No. Market

*

35

¥

Called.

٠,

our probes, we extracted DNA from all 44 clinical samples and used probes SEQ ID NO: 1 & 2 in a polymerase chain reaction to amplify fungal 28S sequences present in these samples.

DNA was extracted from all clinical samples by our modification of the technique of 5 Chomczynski and Sacchi which originally described the use of acid guanidinium thiocyanatephenol-chloroform to preferentially extract RNA from cells and tissues. We replaced room temperature cell lysis by boiling lysis, and acid guanidinium thiocyanate-phenol-chloroform extraction by alkaline phenol-guanidine thiocyanate to preferentially extract DNA from cells. 1.5 ml Sarsted (Newton, North Carolina) polypropylene screw cap tubes with o-ring seals were used for the extractions. 200 ul of specimen was added to 500 ul of GPT reagent (6 M guanidine thiocyanate dissolved in 50 mM tris pH 8.3 mixed with an equal volume of phenol buffered in tris pH 8.0). This was mixed by vortexing and immediately placed in a boiling water bath for 15 minutes. The tubes were spun in a microcentrifuge for 5 seconds and 250 ul of chloroform/isoamyl alcohol (24:1 by volume) was added and mixed by vortexing. The liquid phases were separated by centrifugation for 10 minutes and 450 ul of aqueous (upper) phase was transferred to a fresh tube. The aqueous phase was mixed with 500 ul of 100% isopropanol and placed at -20°C for at least 1 hour. At the end of this period the tubes were centrifuged for 15 minutes and the supernatant removed without disturbing the nucleic acid pellet. The pellet was washed with 500 ul of ice-cold 70% ethanol to remove traces of GPT reagent by gently inverting 2 times and then centrifuged for 5 minutes. The ethanol was removed and the pellet dried in a speed vac for 10 minutes. The pellet was resuspended in 25 ul of sterile deionized water and 5 ul was used in a 50 ul PCR amplification. The PCR was carried out as a hot-start reaction using the thermal cycling conditions for probes SEQ ID NO: 1 and SEQ ID NO: 2 described in example 1. Gel electrophoresis showed that probes SEQ ID NO: 1 and SEQ ID NO: 2 successfully amplified DNA from all 44 specimens.

The amplified DNA from each specimen was transferred to a positively charged polysulphone based membrane. We radioactively labeled our species specific probes SEQ ID

20

25

ų,

2

فيخ

18,000

NO: 3, SEQ ID NO: 5, SEQ ID NO: 6 and SEQ ID NO: 7, and sequentially probed the membrane to test for the presence of 28S rDNA from Aspergillus fumigatus, Candida albicans, Coccidioides immitis and Cryptococcus neoformans respectively. Membrane blocking, probe hybridization and washes were done exactly as described in example 1. The results are shown in Table 8.

5

-3

Ä

No false positives were observed, indicating a specificity of 100% for these 4 probes in the clinical specimens tested. 10 out of 12 culture positive samples for Aspergillus fumigatus, and 11 out of 13 samples of Candida albicans were identified, indicating a detection sensitivity of about 85% for these two probes. Additionally, two out of two Coccidioides immitis and two out of two Cryptococcus neoformans were correctly identified (detection sensitivity of 100%). As seen by these results, the probes described in this invention can be used on a diverse variety of clinical specimens with excellent efficacy.

Table 8.

15

Detection of Aspergillus fumigatus, Candida albicans, Coccidioides immitis and Cryptococcus neoformans in clinical specimens using species specific probes.

Specimen type	Smear and culture	PCR with	SEQ ID: 3	SEQ ID: 5	SEQ ID: 6	SEQ ID: 7
	results	SEQ ID: 1, 2		1 4 5 5	02012.0	JEQ ID. 7
U035 sputum	A. flavus	+		-		
U069 pleura	A. fumigatus	+	+			
U070 bronchial wash	A. flavus	+		-		
M019 bronchial wash	A. fumigatus	+	+			
M020 sputum	mixed fungal flora	+	-	+		-
X35254 sputum	C. albicans	+	-	+		
M20910 sputum	A. fumigatus	+	+	_		
M055 sputum	C. albicans	+	-	+		
M056 abdominal	mixed fungal flora	+	-			
M057 drainage tube	C. albicans	+	•	(-)		
M059 ind. sputum	C. albicans	+		 		
M060 ind. sputum	mixed fungal flora	+	-	·		
M083 bronchial wash	C. albicans	+	-	+		•
M084 sputum	A. fumigatus	+	(-)			•

M085 throat	C. albicans	+		(-)		
A001 sputum	A. fumigatus	+	(-)			
A002 leg	Blastomyces	+	 ' -	-	 	
A003 leg	Biastomyces	+	-	-	-	
A005 disc	A. fumigatus	+	+		-	
A037 disc	A. fumigatus	+	+	-		-
A039 trachea	C. albicans	+	-	+		-
A040 trachea	C. albicans	+	-	+	•	-
A 102 empyema	A. fumigatus	+	+	† -		-
Y004 sputum	C. albicans	+	-	+		-
Y016 induced sputum	Coccidioides	+	•	-	+	
Y028 sputum	Coccidioides	+	-	-	+	-
J003 chest	Aspergillus sp.	+	-		-	
J045 bronchial wash	C. albicans	+		+	-	<u> </u>
J046 ethmoid	yeast	+	•	-	-	-
J047 chest	A. fumigatus	+	+	-	-	-
J048 sputum	C. albicans	+	•	+	•	-
J073 lung	Aspergillus sp.	+	-	-	-	-
J074 lung	A. fumigatus	+	+	-	-	-
U017 lip	A. fumigatus	+	+	-	-	-
U033 sputum	mixed fungal flora	+	-	-		-
U071 sputum	C. albicans	+	•	+	•	-
U072 BA lavage	Sporothrix	+	-	-	•	•
U073 knee	Histoplasma	+	-	-	-	-
U074 mandible	Cryptococcus	+	-	-	•	+
U075 CSF	Cryptococcus	+	-	•	•	+
U076 knee	Histoplasma	+		•	•	-
U077 soft tissue	Histoplasma	+	-	•	•	-
U051 buccal	A. fumigatus	+	+	-	-	-
Y055 sputum	mixed fungal flora	+	-	-	-	-
+ Positive - Nega	tive (-) Missed					

**

EXAMPLE 3. DNA sequence based identification of unknown fungal organisms.

Another utility of our probes is in the rapid DNA sequence based identification of a pure culture of fungus. Probes SEQ ID NO: 1 and SEQ ID NO: 2 are used in a 5 polymerase chain reaction to amplify 28S rDNA from an unknown fungus. Probes SEQ ID NO: 1 or SEQ ID NO: 2 are then used as sequencing primers to obtain DNA sequence from this amplified 28S DNA belonging to the unknown fungus. This DNA sequence is compared to the fungal 28S DNA sequences in our database, and a sequence match at, or overlapping any one of the probe sequences in SEQ ID NO: 3 to SEQ ID NO: 74 will confirm the identity of the fungus. This technique cannot be used directly on clinical samples, as these usually contain DNA from more than one fungus, and the DNA sequence generated will consist of overlapping sequences of several organisms. This technique has utility in rapidly and reliably identifying colonies of a single fungus on culture plates, clinical specimens, food, pharmaceutical, environmental or other samples containing only one species of fungus.

EXAMPLE 4. Capture and identification of target DNA or RNA

All primers and probes described in this invention disclosure may be labeled with any detectable reporter or signal moiety including, but not limited to radioisotopes, enzymes, antigens, antibodies, chemiluminescent reagents and fluorescent chemicals. Additionally, these probes may be modified without changing the substance of their purpose by terminal addition of nucleotides designed to incorporate restriction sites or other useful sequences. These probes may also be modified by the addition of a capture moiety (including, but not limited to para-magnetic particles, biotin, fluorescein, dioxigenin, antigens, antibodies) or attached to the walls of microtiter trays to assist in the solid phase capture and purification of these probes and any DNA or RNA hybridized to these probes. Fluorescein may be used as a signal moiety as well as a capture moiety, the latter by interacting with an anti-fluorescein antibody.

30

15

20

25

Ž.

完%!

A typical utility of these modifications would be as follows. Primers SEQ ID NO: 1 and SEQ ID NO: 2 would be utilized to amplify 28S rDNA from a sample, if present, as described previously. Primers would be modified so as to contain a biotin moiety at their 5' ends. A streptavidin solid phase, such as a paramagnetic particle, would be used to separate PCR products, if present, from the reaction mixture. The amplified target may be subsequently hybridized to a third probe ((SEQ ID NO: 3) to (SEQ ID NO: 74) or their complements) attached to a detectable moiety to determine which species of fungus is present in the given sample. Multiple probes, each labeled with a different detectable moiety may be used at one time to analyze the amplified target.

10

Alternatively, Primers SEQ ID NO: 1 and SEQ ID NO: 2 would be utilized to amplify 28S rDNA from a sample, if present, as above. In a separate reaction, individually, either SEQ ID NO: 1 or SEQ ID NO: 2 would be modified by attachment to a solid phase capture moiety, such as a paramagnetic particle, and SEQ ID NO: 3 to SEO ID NO: 74 (or their complements) would be modified by addition of a detectable moiety. Alternately, in the amplicon, any sequences delimited by SEQ ID NO: 1 and SEQ ID NO: 2, including but not limited to SEQ ID NO: 3 to SEQ ID NO: 74, may be used in the design of a capture probe. One of the probes attached to a solid phase (SEQ ID NO: 1 and SEQ ID NO: 2) or any other appropriately designed sequences and one of the probes modified by attachment to a detectable moiety (SEQ ID NO: 3 to SEQ ID NO: 74 or their complements) would be hybridized together, in solution, to products of the PCR, if they had been generated. The hybrids, if present, would be captured from the solution, and analyzed by a method appropriate to the detection moiety. Detection of the hybridized probe would indicate which species of fungus was present in the given sample. Multiple probes, each labeled with a different detectable moiety may be used at one time to analyze the amplified target.

30

35.5

EXAMPLE 5. Species-specific amplification of fungal DNA

Another utility of the probes described in this invention is their usage as primers in the direct detection of a specific fungal species by virtue of a nucleic acid amplification reaction. In this embodiment, one primer is a universal one, such as (SEQ ID NO:1) or (SEQ ID NO:2), and the other is a species-specific primer selected from the group consisting of (SEQ ID NO:3) to (SEQ ID NO: 23) or the complements thereof. One variation of this approach is the substitution of (SEQ ID NO:1) or (SEQ ID NO:2) with any functional sequence located in proximity to the species-specific primer. Another variation of this approach is the selection of any appropriate species specific primer pair from SEQ ID NO: 24 to SEQ ID NO: 74.

1.00

A. 2. 18

SEQUENCE LISTING

(1) GENERAL INFORMATION:

5 (i) APPLICANT:

1

- (A) Sandhu, Gurpreet S.
- (B) Kline, Bruce C.
- (ii) TITLE OF INVENTION:
- 10 Nucleic Acid Probes for the Detection and Identification of Fungi
 - (iii) NUMBER OF SEQUENCES: 23
 - (iv) CORRESPONDENCE ADDRESS:
- 15 (A) ADDRESSEE: Ciba Corning Diagnostics Corp.
 - (B) STREET: 63 North Street
 - (C) CITY: Medfield
 - (D) STATE: Massachusetts
 - (E) COUNTRY: USA
- 20 (F) ZIP: 02052
 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Diskette 3.5 inch, 1.44 Mb storage
 - (B) COMPUTER: IBM PS/2
- 25 (C) OPERATING SYSTEM: MS-DOS 6.2
 - (D) SOFTWARE: Word 6.0
 - (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
- 30 (B) FILING DATE:

\$

(C) CLASSIFICATION:

(vii) PRIOR APPLICATION DATA:

- 5 (viii) ATTORNEY INFORMATION:
 - (A) NAME: Morgenstern, Arthur S.
 - (B) REGISTRATION NUMBER: 28,244
 - (C) DOCKET NUMBER: CCD-180
- 10 (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: 508 359-3836
 - (B) TELEFAX: 508 359-3885
 - (2) INFORMATION FOR SEQ ID NO 1:

15

À

ã

1

4

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
- 20
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Nucleic acid probe for fungal organisms
- (iii) HYPOTHETICAL: No

25

- (iv) ANTISENSE: No
- (v) SEQUENCE DESCRIPTION: SEQ ID NO: 1:
- 30 GTGAAATTGT TGAAAGGGAA

(3) INFORMATION FOR SEQ ID NO 2:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 18

5

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Nucleic acid probe for fungal organisms

10

(iii) HYPOTHETICAL: No

(iv) ANTISENSE: No

15 (v) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

GACTCCTTGG TCCGTGTT

18

(4) INFORMATION FOR SEQ ID NO 3:

20

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 14

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

25

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Nucleic acid probe for Aspergillus fumigatus

(iii) HYPOTHETICAL: No

- (iv) ANTISENSE: No
- (v) SEQUENCE DESCRIPTION: SEQ ID NO: 3:
- 5 CTCGGAATGT ATCA

14

- (5) INFORMATION FOR SEQ ID NO 4:
 - (i) SEQUENCE CHARACTERISTICS:

10

Ž.

有

*

- (A) LENGTH: 13
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- 15 (ii) MOLECULE TYPE: Nucleic acid probe for Blastomyces dermatitidis
 - (iii) HYPOTHETICAL: No
 - (iv) ANTISENSE: No

20

(v) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

ACTCCCCAC GGG

- 25 (6) INFORMATION FOR SEQ ID NO 5:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 14
 - (B) TYPE: nucleic acid
- 30 (C) STRANDEDNESS: single

(D) TOPOLOGY: linear (ii) MOLECULE TYPE: Nucleic acid probe for Candida albicans 5 (iii) HYPOTHETICAL: No (iv) ANTISENSE: No (v) SEQUENCE DESCRIPTION: SEQ ID NO: 5: 10 **CCTCTGACGA TGCT** 14 (7) INFORMATION FOR SEQ ID NO 6: 15 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 14 (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 20 (ii) MOLECULE TYPE: Nucleic acid probe for Coccidioides immitis (iii) HYPOTHETICAL: No 25 (iv) ANTISENSE: No (v) SEQUENCE DESCRIPTION: SEQ ID NO: 6: TCTGGCGGTT GGTT 14

(8) INFORMATION FOR SEQ ID NO 7:

Á

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 14 (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 5 (ii) MOLECULE TYPE: Nucleic acid probe for Cryptococcus neoformans (iii) HYPOTHETICAL: No 10 (iv) ANTISENSE: No (v) SEQUENCE DESCRIPTION: SEQ ID NO: 7: CTCCTGTCGC ATAC 14 (9) INFORMATION FOR SEQ ID NO 8: (i) SEQUENCE CHARACTERISTICS: 20 (A) LENGTH: 14 (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 25 (ii) MOLECULE TYPE: Nucleic acid probe for Cryptococcus neoformans

30 (v) SEQUENCE DESCRIPTION: SEQ ID NO: 8:

(iii) HYPOTHETICAL: No

(iv) ANTISENSE: No

AGTTCTGATC GGTG

14

(10) INFORMATION FOR SEQ ID NO 9:

5

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 14
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
- 10
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Nucleic acid probe for Histoplasma capsulatum
- (iii) HYPOTHETICAL: No

15

- (iv) ANTISENSE: No
- (v) SEQUENCE DESCRIPTION: SEQ ID NO: 9:
- 20 CAATCCCCCG CGCC

14

- (11) INFORMATION FOR SEQ ID NO 10:
 - (i) SEQUENCE CHARACTERISTICS:

25

- (A) LENGTH: 14
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- 30 (ii) MOLECULE TYPE: Nucleic acid probe for Aspergillus glaucus

y,

Ý

(iii) HYPOTHETICAL: No

(iv) ANTISENSE: No

5

(v) SEQUENCE DESCRIPTION: SEQ ID NO: 10:

GTGTCATGCG GCCA

14

- 10 (12) INFORMATION FOR SEQ ID NO 11:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 14
 - (B) TYPE: nucleic acid
- 15
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Nucleic acid probe for Aspergillus niger
- 20 (iii) HYPOTHETICAL: No
 - (iv) ANTISENSE: No
 - (v) SEQUENCE DESCRIPTION: SEQ ID NO: 11:

25

<u>)</u>

377

CCCTGGAATG TAGT

14

- (13) INFORMATION FOR SEQ ID NO 12:
 - (i) SEQUENCE CHARACTERISTICS:

30

(A) LENGTH: 14

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

- 5 (ii) MOLECULE TYPE: Nucleic acid probe for Aspergillus terreus
 - (iii) HYPOTHETICAL: No
 - (iv) ANTISENSE: No

10

¥

, H

(v) SEQUENCE DESCRIPTION: SEQ ID NO: 12:

GCTTCGGCCC GGTG

14

- 15 (14) INFORMATION FOR SEQ ID NO 13:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 14
 - (B) TYPE: nucleic acid
- 20
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Nucleic acid probe for Candida glabrata
- 25 (iii) HYPOTHETICAL: No
 - (iv) ANTISENSE: No
 - (v) SEQUENCE DESCRIPTION: SEQ ID NO: 13:
- 30 CTTGGGACTC TCGC

(15) INFORMATION FOR SEQ ID NO 14:

(i) SEQUENCE CHARACTERISTICS:

5

(A) LENGTH: 14

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

10

(ii) MOLECULE TYPE: Nucleic acid probe for Candida guilliermondii

(iii) HYPOTHETICAL: No

(iv) ANTISENSE: No

15

(v) SEQUENCE DESCRIPTION: SEQ ID NO: 14:

ATATTTTGTG AGCC

14

20 (16) INFORMATION FOR SEQ ID NO 15:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 14

(B) TYPE: nucleic acid

25

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Nucleic acid probe for Candida kefyr

30

(iii) HYPOTHETICAL: No

(iv) ANTISENSE: No (v) SEQUENCE DESCRIPTION: SEQ ID NO: 15: 5 TTCGGCTTTC GCTG 14 (17) INFORMATION FOR SEQ ID NO 16: 10 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 14 (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 15 (ii) MOLECULE TYPE: Nucleic acid probe for Candida krusei (iii) HYPOTHETICAL: No 20 (iv) ANTISENSE: No (v) SEQUENCE DESCRIPTION: SEQ ID NO: 16: **GGGATTGCGC ACCG** 14 25 (18) INFORMATION FOR SEQ ID NO 17: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 14 (B) TYPE: nucleic acid

(C) STRANDEDNESS: single

	(D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: Nucleic acid probe for Candida lusitaniae
5	(iii) HYPOTHETICAL: No
	(iv) ANTISENSE: No
10	(v) SEQUENCE DESCRIPTION: SEQ ID NO: 17:
10	GCCTCCATCC CTTT 14
	(19) INFORMATION FOR SEQ ID NO 18:
15	(i) SEQUENCE CHARACTERISTICS:
	(A) LENGTH: 14
	(B) TYPE: nucleic acid
	(C) STRANDEDNESS: single
	(D) TOPOLOGY: linear
20	(ii) MOLECULE TYPE: Nucleic acid probe for Candida parapsilosis
	(iii) HYPOTHETICAL: No
	(iv) ANTISENSE: No
25	(v) SEQUENCE DESCRIPTION: SEQ ID NO: 18:
	ATAAGTGCAA AGAA 14

30 (20) INFORMATION FOR SEQ ID NO 19:

Sec.

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 14

(B) TYPE: nucleic acid

5 (C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Nucleic acid probe for Candida tropicalis

10 (iii) HYPOTHETICAL: No

(iv) ANTISENSE: No

(v) SEQUENCE DESCRIPTION: SEQ ID NO: 19:

15

TANK .

1

AGAATTGCGT TGGA

14

(21) INFORMATION FOR SEQ ID NO 20:

20 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 14

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

25 (ii) MOLECULE TYPE: Nucleic acid probe for Pseudallescheria boydii

(iii) HYPOTHETICAL: No

(iv) ANTISENSE: No

(v) SEQUENCE DESCRIPTION: SEQ ID NO: 20:

GCGATGGGAA TGTG

14

- 5 (22) INFORMATION FOR SEQ ID NO 21:
 - (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 14

(B) TYPE: nucleic acid

10

Ħ

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Nucleic acid probe for Aspergillus flavus
- 15 (iii) HYPOTHETICAL: No
 - (iv) ANTISENSE: No
 - (v) SEQUENCE DESCRIPTION: SEQ ID NO: 21:

20

AGACTCGCCT CCAG

14

- (23) INFORMATION FOR SEQ ID NO 22:
 - (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 14
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- 30 (ii) MOLECULE TYPE: Nucleic acid probe for Sporothrix schenckii

	(iii) HYPOTHETICAL: No				
5	(iv) ANTISENSE: No				
J	(v) SEQUENCE DESCRIPTION: SEQ ID	NO: 22:			
	CGGACCACCC GGCG	14			
10	(24) INFORMATION FOR SEQ ID NO 23:				
	(i) SEQUENCE CHARACTERISTICS:				
	(A) LENGTH: 14				
15	(B) TYPE: nucleic acid				
	(C) STRANDEDNESS: single				
	(D) TOPOLOGY: linear				
	(ii) MOLECULE TYPE: Nucleic acid probe	e for Sporothrix schenckii			
20	(iii) HYPOTHETICAL: No				
	(iv) ANTISENSE: No				
	(v) SEQUENCE DESCRIPTION: SEQ ID 1	NO: 23:			
25	CGGCGGCATG CCCC	14			
	(25) INFORMATION FOR SEQ ID NO 24:				
	(i) SEQUENCE CHARACTERISTICS:				
	(A) LENGTH: 208				
30	(B) TYPE: nucleic acid				

S.

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Acremonium species specific region of 28S gene.

5

H

- (iii) HYPOTHETICAL: No
- (iv) ANTISENSE: No
- 10 (v) SEQUENCE DESCRIPTION: SEQ ID NO: 24:

GACCAGACTT GGGCTCGGTG AATCATCCGG CGTTCTCGCC GGTGCACTTT
GCCGTCCCAG GCCAGCATCA GTTCGCGCCG GGGGATAAAG GTTTCGGGAA

15 TGTAGCTCCT TCGGGAGTGT TATAGCCCGT TGCGTAATAC CCTGGCGTGG
ACTGAGGTCC GCGCTCTGCA AGGATGCTGG CGTAATGGTC ATCAGTGACC
CGTCTTGA

- 20 (26) INFORMATION FOR SEQ ID NO 25:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 212
 - (B) TYPE: nucleic acid
- 25
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Aspergillus clavatus specific region of 28S gene.
- 30 (iii) HYPOTHETICAL: No

(iv) ANTISENSE: No

(v) SEQUENCE DESCRIPTION: SEQ ID NO: 25:

5

GACCAGACTC GCTCGCGGGG TTCAGCCGGC ATTCGTGCCG GTGTACTTCC
CCGTGGGCGG GCCAGCGTCG GTTTGGGCGG CCGGTCAAAG GCCTCCGGAA
TGTATCACCT CTCGGGGTGT CTTATAGCCG GGGGTGCAAT GCGGCCTGCC
TGGACCGAGG AACGCGCTTC GGCTCGGACG CTGGCGTAAT GGTCGTAAAT
GACCCGTCTT GA

10 GACCCGTCTT GA

(27) INFORMATION FOR SEQ ID NO 26:

- 15 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 212
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- 20 (ii) MOLECULE TYPE: Aspergillus flavus specific region of 28S gene.
 - (iii) HYPOTHETICAL: No
 - (iv) ANTISENSE: No

25

(v) SEQUENCE DESCRIPTION: SEQ ID NO: 26:

GACCAGACTC GCCTCCAGGG TTCAGCCGGC ATTCGTGCCG GTGTACTTCC
CTGGGGGCGG GCCAGCGTCG GTTTGGGCGG CCGGTCAAAG GCTCCCGGAA

30 TGTAGTGCCC TYCGGGGCAC CTTATAGCCG GGAGTGCAAT GCGGCCAGCC
TGGACCGAGG AACGCGCTTC GGCACGGACG CTGGCATAAT GGTCGYAAAC
GACCCGTCTT GA

v.

(28) INFORMATION FOR SEQ ID NO 27:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 212

5 (B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Aspergillus fumigatus specific region of 28S gene.

10

3

쒄

- (iii) HYPOTHETICAL: No
- (iv) ANTISENSE: No
- 15 (v) SEQUENCE DESCRIPTION: SEQ ID NO: 27:

GACCAGACTC GCCCGCGGG TTCAGCCGGC ATTCGTGCCG GTGTACTTCC
CCGTGGGCGG GCCAGCGTCG GTTTGGGCGG CCGGTCAAAG GCCCTCGGAA

20 TGTATCACCT CTCGGGGTGT CTTATAGCCG AGGGTGCAAT GCGGCCTGCC
TGGACCGAGG AACGCGCTTC GGCTCGGACG CTGGCGTAAT GGTCGTAAAT
GACCCGTCTT GA

- 25 (29) INFORMATION FOR SEQ ID NO 28:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 212
 - (B) TYPE: nucleic acid
- 30 (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

5

10

15

20

25

30

- (ii) MOLECULE TYPE: Aspergillus glaucus specific region of 28S gene. (iii) HYPOTHETICAL: No (iv) ANTISENSE: No (v) SEQUENCE DESCRIPTION: SEQ ID NO: 28: GACCAGACTC GCTTCCGGGG TTCAGCCGGC TTTCGGGCCG GTGTACTTCC CCGGGGGCGG GCCAGCGTCG GTTTGGGCGG CCGGTCAAAG GCCCCTGGAA TGTAACGCCT CTCGGGGGGC CTTATAGCCA GGGGTGTCAT GCGGCCAGCC TGGACCGAGG AACGCGCTTC GGCACGGACG CTGGCATAAT GGTCGTAAAC GACCCGTCTT GA (30) INFORMATION FOR SEQ ID NO 29: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 213 (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Aspergillus nidulans specific region of 28S gene. (iii) HYPOTHETICAL: No
 - (v) SEQUENCE DESCRIPTION: SEQ ID NO: 29:

(iv) ANTISENSE: No

GACCAGACTC GGCCCGGGG TTCARCCAGC ACTCGTGCTG GTGTACTTCC
CCGGGGCGG GCCAGCGTCG GTTTGGGCGG CCGGTCAAAG GCCCCAGGAA

5 TGTATCGCCC TCCGGGGTTG TCTTATAGCC TGGGGTGCAA TGCGGCCAGC
CCGGACCGAG GAACGCGCTT CGGCACGGAC GCTGGCGTAA TGGTCGCAAA
CGACCCGTCT TGA

10 (31) INFORMATION FOR SEQ ID NO 30:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 212
 - (B) TYPE: nucleic acid
- 15 (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: Aspergillus niger specific region of 28S gene.
- 20 (iii) HYPOTHETICAL: No
 - (iv) ANTISENSE: No
 - (v) SEQUENCE DESCRIPTION: SEQ ID NO: 30:

GACCAGACTC GCCCGCGGG TTCAGCCGGC ATTCGTGCCG GTGTACTTCC
CCGTGGGCGG GCCAGCGTCG GTTTGGGCGG CCGGTCAAAG GCCCCTGGAA
TGTAGTRCCC TCCGGGGYAC CTTATAGCCA GGGGTGCAAT GCGGCCAGCC
TGGACCGAGG AACGCGCTTC GGCACGGACG CTGGCATAAT GGTCGTAAAC
GACCCGTCTT GA

25

30

36

•

(32) INFORMATION FOR SEQ ID NO 31:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 212
- 5 (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: Aspergillus ochraceus specific region of 28S gene.

(iii) HYPOTHETICAL: No

- (iv) ANTISENSE: No
- (v) SEQUENCE DESCRIPTION: SEQ ID NO: 31:

15

20

10

GACCAGACTC GCCCGCGGG TTCAGCCGGC ATTCGTGCCG GTGTACTTCC
CCGCGGGCGG GCCAGCGTCG GTTTGGGCGG CCGGTCAAAG GCCCCCGGAA
TGTAGCACCC TTCGGGGTGC CTTATAGCCG GGGGTGCAAT GCGGCCAGCC
TGGACCGAGG AACGCGCTTC GGCACGGACG CTGGCATAAT GGTCGTAAAC
GACCCGTCTT GA

(33) INFORMATION FOR SEQ ID NO 32:

25

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH:
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
- 30 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Aspergillus terreus specific region of 28S gene.

- (iii) HYPOTHETICAL: No
- 5 (iv) ANTISENSE: No
 - (v) SEQUENCE DESCRIPTION: SEQ ID NO: 32:
- AACCAGACTC GCTCGCGGGG TTCAGCCGGG CTTCGGCCCG GTGTACTTCC

 10 CCGCGGGCGG GCCAGCGTCG GTTTGGGCGG CCGGTCAAAG GCCTCCGGAA

 TGTAGCGCCC TTCGGGGCGC CTTATAGCCG GGGGTGCAAT GCGGCCAGCC

 TGGACCGAGG AACGCGCTTC GGCACGGACG CTGGCATAAT GGTTGTAAAC

 GACCCGTCTT GA

15

ૌ

100 m

- (34) INFORMATION FOR SEQ ID NO 33:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 213
- 20
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Aspergillus unguis specific region of 28S gene.

- (iii) HYPOTHETICAL: No
- (iv) ANTISENSE: No
- 30 (v) SEQUENCE DESCRIPTION: SEQ ID NO: 33:

GACCAGACTC GGCCTCGGGG TTCAGCCAGC ACTCGTGCTG GTGTACTTCC
CCGGGGGCGG GCCAGCGTCG GTTTGGGCGG CCGGTCAAAG GCCCCAGGAA
TGTATCACCC TCCGGGGTTG TCTTATAGCC TGGGGTGCAA TGCGGCCAGC
CTGGACCGAG GAACGCGCTT CGGCACGGAC GCTGGCATAA TGGTTGCAAA
CGACCCGTCT TGA

(35) INFORMATION FOR SEQ ID NO 34:

10

30

5

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 212
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
- 15 (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: Aspergillus ustus specific region of 28S gene.
 - (iii) HYPOTHETICAL: No
- 20 (iv) ANTISENSE: No
 - (v) SEQUENCE DESCRIPTION: SEQ ID NO: 34:
- 25 GACCAGACTC GGCCCCGGGG TTCAGCCAGC ACTCGTGCTG GTGTACTTCC
 CCGGGGGCGG GCCAGCGTCG GTTTGGGCGG CCGGTCAAAG GCCCCAGGAA
 TGTGTCGCCC TCCGGGGCGT CTTATAGCCT GGGGTGCAAT GCGGCCAGCC
 CGGACCGAGG AACGCGCTTC GGCACGGACG CTGGCGTAAT GGTCGCAAAC
 GACCCGTCTT GA

(36) INFORMATION FOR SEQ ID NO 35:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 208
- 5 (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: Beauveria species specific region of 28S gene.
- 10
- (iii) HYPOTHETICAL: No
 - (iv) ANTISENSE: No
- 15 (v) SEQUENCE DESCRIPTION: SEQ ID NO: 35:
- GACCAGACTT GGGCTTGGTT GATCATCCGG GGTTCTCCCC GGTGCACTCT
 TCCGGCCCAG GCCAGCATCA GTTCGCCCTG GGGGACAAAG GCTTCGGGAA

 CGTGGCTCTC TCCGGGGAGT GTTATAGCCC GTTGCGTAAT ACCCTGTGGC
 GGACTGAGGT TCGCGCATTC GCAAGGATGC TGGCGTAATG GTCATCAGTG
 ACCCGTCT
- 25 (37) INFORMATION FOR SEQ ID NO 36:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 213
 - (B) TYPE: nucleic acid
- 30 (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Bipolaris species specific region of 28S gene.

(iii) HYPOTHETICAL: No

5

淨

Ä

- (iv) ANTISENSE: No
- (v) SEQUENCE DESCRIPTION: SEQ ID NO: 36:

10

AGCCAGACTT GCTTGCAGTT GCTCATCCGG GCTTTTGCCC
GGTGCACTCT TCTGCAGGCA GGCCAGCATC AGTTTGGGCG
GTGGGATAAA GGTCTCTGTC ACGTACCTTC CTTCGGGTTG
GCCATATAGG GGAGACGTCA TACCACCAGC CTGGACTGAG
15 GTCCGCGCAT CTGCTAGGAT GCTGGCGTAA TGGCTGTAAG
CGGCCCGTCT TGA

(38) INFORMATION FOR SEQ ID NO 37:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 105
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
- 25
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Blastoschizomyces species specific region of 28S gene.
- 30 (iii) HYPOTHETICAL: No
 - (iv) ANTISENSE: No

5 TGAAATTGTT GAAAGGGAAG GCGATGGTAG GAATAAGAGG CTGCGGTTTG
AAATAATTGT TTTTCGGGCC ACGGTCTCCT GAGCCTGCTT TCGCACCCGT
CTTGA

10 (39) INFORMATION FOR SEQ ID NO 38:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 214
 - (B) TYPE: nucleic acid
- 15 (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: Blastomyces dermatitidis specific region of 28S gene.

- (iii) HYPOTHETICAL: No
- (iv) ANTISENSE: No
- 25 (v) SEQUENCE DESCRIPTION: SEQ ID NO: 38:
- GACCAGAGTC GGCCGTGGGG GTTCAGCGGG CATTCGTTGC CCGTGCACTC
 CCCCACGGGC GGGCCAGCGT CGGTTTCGAC GGCCGGTCAA AGGCCCCCGG

 AATGTGTCGC CTCTCGGGGC GTCTTATAGC CGGGGGTGCA ATGCGGCCAG
 TCGGGACCGA GGAACGCGCT TCGGCACGGA CGCTGGCTTA ATGGTCGTAA
 GCGACCCGTC TTGA

(40) INFORMATION FOR SEQ ID NO 39:

(i) SEQUENCE CHARACTERISTICS:

5

1

(A) LENGTH: 213

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

10

(ii) MOLECULE TYPE: Chrysosporium species specific region of 28S gene.

(iii) HYPOTHETICAL: No

(iv) ANTISENSE: No

15

(v) SEQUENCE DESCRIPTION: SEQ ID NO: 39:

20

AACCAGACTT GCGCGGGCC GATCATCCGG TGTTCTCACC GGTGCACTCG
GCCGTGCTCA GGCCAGCATC GGTTTTGGCG GCTGGATAAA GGCCCTAGGA
ATGTGGCTCC TCTCGGGGAG TGTTATAGCC TAGGGTGCAA TGCAGCCTGC
TGGGACCGAG GACCGCGCTT CGGCTAGGAT GCTGGCGTAA TGGTTGTAAG
CGGCCCGTCT TGA

25

(41) INFORMATION FOR SEQ ID NO 40:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 207

30

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

2.0

(D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: Cladosporium species specific region of 28S gene.
- 5 (iii) HYPOTHETICAL: No
 - (iv) ANTISENSE: No
 - (v) SEQUENCE DESCRIPTION: SEQ ID NO: 40:

10

-14

淵

AACCAGACTT GCTCGCGGTG TTCCGCCGGT CTTCTGACCG GTCTACTCGC
CGCGTTGCAG GCCAGCATCG TCTGGTGCCG CTGGATAAGA CTTGAGGAAT
GTAGCTCCCT CGGGAGTGTT ATAGCCTCTT GTGATGCAGC GAGCGCCGGG

CGAGGTCCGC GCTTCGGCTA GGATGCTGGC GTAATGGTCG TAATCCGCCC
GTCTTGA

(42) INFORMATION FOR SEQ ID NO 41:

20

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 213
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
- 25
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Curvularia species specific region of 28S gene.
- (iii) HYPOTHETICAL: No

30

(iv) ANTISENSE: No

(v) SEQUENCE DESCRIPTION: SEQ ID NO: 41:

AGCCAGACTT GCTTGCAGTT GCTCATCCGG GCTTTTGCCC GGTGCACTCT
TCTGCAGGCA GGCCAGCATC AGTTTGGGCG GTGGGATAAA GGTCTCTGAC
ACGTTCCTTC CTTCGGGTTG GCCATATAGG GGAGACGTCA TACCACCAGC
CTGGACTGAG GTCCGCGCAT CTGCTAGGAT GCTGGCGTAA TGGCTGTAAG
CGGCCCGTCT TGA

10

1

(43) INFORMATION FOR SEQ ID NO 42:

- (i) SEQUENCE CHARACTERISTICS:
- 15 (A) LENGTH: 213
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- 20 (ii) MOLECULE TYPE: Candida albicans specific region of 28S gene.
 - (iii) HYPOTHETICAL: No
 - (iv) ANTISENSE: No

- (v) SEQUENCE DESCRIPTION: SEQ ID NO: 42:
- GATCAGACTT GGTATTTTGC ATGCTGCTCT CTCGGGGGCG GCCGCTGCGG

 TTTACCGGGC CAGCATCGGT TTGGAGCGGC AGGATAATGG CGGAGGAATG

 TGGCACGGCT TCTGCTGTGT GTTATAGCCT CTGACGATGC TGCCAGCCTA

 GACCGAGGAC TGCGGTTTTT AACCTAGGAT GTTGGCATAA TGATCTTAAG

TCGCCCGTCT TGA

(44) INFORMATION FOR SEQ ID NO 43:

(i) SEQUENCE CHARACTERISTICS:

5

3

ij

4

(A) LENGTH: 223

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

10

(ii) MOLECULE TYPE: Candida glabrata specific region of 28S gene.

(iii) HYPOTHETICAL: No

(iv) ANTISENSE: No

15

(v) SEQUENCE DESCRIPTION: SEQ ID NO: 43:

20

GATCAGACAT GGTGTTTTGC GCCCCTTGCC TCTCGTGGGC TTGGGACTCT
CGCAGCTCAC TGGGCCAGCA TCGGTTTTGG CGGCCGGAAA AAACCTAGGG
AATGTGGCTC TGCGCCTCGG TGTAGAGTGT TATAGCCCTG GGGAATACGG
CCAGCCGGGA CCGAGGACTG CGATACTTGT TATCTAGGAT GCTGGCATAA

TGGTTATATG CCGCCCGTCT TGA

25

(45) INFORMATION FOR SEQ ID NO 44:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 212

30

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: Candida guilliermondii specific region of 28S gene.
- 5 (iii) HYPOTHETICAL: No
 - (iv) ANTISENSE: No
 - (v) SEQUENCE DESCRIPTION: SEQ ID NO: 44:

10

15

GATCAGACTC GATATTTTGT GAGCCTTGCC TTCGTGGCGG GGTGACCCGC
AGCTTATCGG GCCAGCATCG GTTTGGGCGG TAGGATAATG GCGTAGGAAT
GTGACTTTRC TTCGGTGAAG TGTTATAGCC TGCGTTGATG CTGCCTGCCT
AGACCGAGGA CTGCGATTTT ATCAAGGATG CTGGCATAAT GATCCCAAAC
CGCCCGTCTT GA

(46) INFORMATION FOR SEQ ID NO 45:

20

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 214
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
- 25
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Coccidioides immitis specific region of 28S gene.
- (iii) HYPOTHETICAL: No

30

(iv) ANTISENSE: No

(v) SEQUENCE DESCRIPTION: SEQ ID NO: 45:

AACCAGACTC GGTCGTGGGG GCTCAGCGGG CATGAGTGCC CGTGTACTCC
CCCATGCTCC GGGCCAGCAT CAGTTCTGGC GGTTGGTTAA AGGCCTCTGG
AATGTATCGT CCTCCGGGAC GTCTTATAGC CAGGGGCGCA ATGCGGCCAG
CCGGGACTGA GGAACGCGCT TCGGCACGGA TGCTGGCATA ATGGTTGTAA
GCGGCCCGTC TTGA

10

7

4

(47) INFORMATION FOR SEQ ID NO 46:

- (i) SEQUENCE CHARACTERISTICS:
- 15 (A) LENGTH: 187
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- 20 (ii) MOLECULE TYPE: Candida kefyr specific region of 28S gene.
 - (iii) HYPOTHETICAL: No
 - (iv) ANTISENSE: No

- (v) SEQUENCE DESCRIPTION: SEQ ID NO: 46:
- GATCAGACAT GGCGTTTGCT TCGGCTTTCG CTGGGCCAGC ATCAGTTTTA

 30 GCGGTTGGAT AAATCCTCGG GAATGTGGCT CTGCTTCGGT AGAGTGTTAT

 AGCCCGTGGG AATACAGCCA GCTGGGACTG AGGATTGCGA CTTTTGTCAA

 GGATGCTGGC GTAATGGTTA AATGCCGCCC GTCTTGA

(48) INFORMATION FOR SEQ ID NO 47:

5 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 213

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

10

ž

(ii) MOLECULE TYPE: Candida krusei specific region of 28S gene.

(iii) HYPOTHETICAL: No

15 (iv) ANTISENSE: No

(v) SEQUENCE DESCRIPTION: SEQ ID NO: 47:

20 CGCCCGACAT CGGGATTGCG CACCGCTGCC TCTCGTGGGC GGCGCTCTGG
GCTTTCCCTG GGCCAGCATC GGTTCTTGCT GCAGGAGAAG GGGTTCTGGA
ACGTGGCTCT TCGGAGTGTT ATAGCCAGGG CCAGATGCTG CGTGCGGGGA
CCGAGGACTG CGGCCGTGTA GGTCACGGAT GCTGGCAGAA CGGCGCAACA
CCGCCCGTCT TGA

25

(49) INFORMATION FOR SEQ ID NO 48:

(i) SEQUENCE CHARACTERISTICS:

30 (A) LENGTH: 236

(B) TYPE: nucleic acid

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Cryptococcus laurentii specific region of 28S gene.

5

- (iii) HYPOTHETICAL: No
- (iv) ANTISENSE: No
- 10 (v) SEQUENCE DESCRIPTION: SEQ ID NO: 48:

AGTCAGTCGT GTCTGGGAGG CTCAGCCGGT TCTGCCGGTG TATTCCTCTC
AGACGGGTCA ACATCAGTTT TGTCCGACGG ATAATGGCGG CGGGAAAGTA

GCACCTCCGG GTGTGTTATA GCCCGCTGTC GCATACGCCG GATGAGACTG
AGGCATGCAG CTCGCCTTTA TGGCAGGGGT TCGCCCACTT TCGAGCTTAG
GATGTTGACG TAATGGCTTT AAACGACCCG TCTTGA

- 20 (50) INFORMATION FOR SEQ ID NO 49:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 173
 - (B) TYPE: nucleic acid

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Candida lusitaniae specific region of 28S gene.
- 30 (iii) HYPOTHETICAL: No

(iv) ANTISENSE: No

(v) SEQUENCE DESCRIPTION: SEQ ID NO: 49:

5

.

AAGCAGACAC GGTTTTACCG GGCCAGCGTC GAAAAGGGGG GAGGAACAAG
AACTCGAGAA TGTGGCGCGC ACCTTCGGGY GCGCGTGTTA TAGCTCGTGT
TGACGCCTCC ATCCCTTTTC GAGGCCTGCG ATTCTAGGAC GCTGGCGTAA
TGGTTGCAAG CCGCCCGTCT TGA

10

(51) INFORMATION FOR SEQ ID NO 50:

- (i) SEQUENCE CHARACTERISTICS:
- 15
- (A) LENGTH: 238
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- 20 (ii) MOLECULE TYPE: Cryptococcus neoformans var gattii (serotype B) specific region of 28S gene.
 - (iii) HYPOTHETICAL: No
- 25 (iv) ANTISENSE: No
 - (v) SEQUENCE DESCRIPTION: SEQ ID NO: 50:
- AGTCAGTCGT GTCTATTGGG TTCAGCCAGC TCTGCTGGTG TATTCCCTTT

 30 AGACGGGTCA ACATCAGTTC TGATCGGTGG ATAAGGGCTG GAGGAATGTG
 GCACTCTTCG GGGTGTGTTA TAGCCTCCTG TCGCATACAC TGGTTGGGAC
 TGAGGAATGC AGCTCGCCTT TATGGCCGGG GTTCGCCCAC GTTCGAGCTT

AGGATGTTGA CAAAATGGCT TTAAACGACC CGTCTTGA

(52) INFORMATION FOR SEQ ID NO 51:

5 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 238

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

10

Ó

- (ii) MOLECULE TYPE: Cryptococcus neoformans (serotype A) specific region of 28S gene.
- (iii) HYPOTHETICAL: No

15

- (iv) ANTISENSE: No
- (v) SEQUENCE DESCRIPTION: SEQ ID NO: 51:

20

25

AGTCAGTCGT GTCTATTGGG TTCAGCCAGT TCTGCTGGTG TATTCCCTTT

AGACGGGTCA ACATCAGTTC TGATCGGTGG ATAAGGGCTG GGGGAATGTA

GCACTCTTCG GAGTGTGTTA TAGCCTCCTG TCGCATACAC TGGTTGGGAC

TGAGGAATGC AGCTCGCCTT TATGGCCGGG GTTCGCCCAC GTTCGAGCTT

AGGATGTTGA CAAAATGGCT TTAAACGACC CGTCTTGA

(53) INFORMATION FOR SEQ ID NO 52:

30 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 211

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

- 5 (ii) MOLECULE TYPE: Candida parapsilosis specific region of 28S gene.
 - (iii) HYPOTHETICAL: No
 - (iv) ANTISENSE: No

10

æ

- (v) SEQUENCE DESCRIPTION: SEQ ID NO: 52:
- GATCAGACTT GGTATTTGT ATGTTACTCT CTCGGGGGTG GCCTCTACAG

 TTTACCGGGC CAGCATCAGT TTGAGCGGTA GGATAAGTGC AAAGAAATGT
 GGCACTGCTT CGGTAGTGTG TTATAGTCTT TGTCGATACT GCCAGCTTAG
 ACTGAGGACT GCGGCTTCGG CCTAGGATGT TGGCATAATG ATCTTAAGTC
 GCCCGTCTTG A
- 20 (54) INFORMATION FOR SEQ ID NO 53:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 238
 - (B) TYPE: nucleic acid
- 25
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Cryptococcus terreus specific region of 28S gene.
- 30 (iii) HYPOTHETICAL: No

- (iv) ANTISENSE: No
- (v) SEQUENCE DESCRIPTION: SEQ ID NO: 53:
- AGTCAGTCAT GTCTATTGGA CTCAGCCGGT TCTGCCGGTG TACTTCCTTT
 AGATGGGGTC AACATCAGTT TTGATCGCTG GAAAAGGGCA GGAGGAATGT
 AGCACTCTCG GGTGAACTTA TAGCCTTCTG TCGTATACAG TGGTTGGGAC
 TGAGGAACGC AGCATGCCTT TATGGCCGGG GTTCGCCCAC GTACATGCTT
 AGGATGTTGA CATAATGGCT TTAAACGACC CGTCTTGA

10

- (55) INFORMATION FOR SEQ ID NO 54:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 211
- 15
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Candida tropicalis specific region of 28S gene.

- (iii) HYPOTHETICAL: No
- (iv) ANTISENSE: No
- 25 (v) SEQUENCE DESCRIPTION: SEQ ID NO: 54:
- GATCAGACTT GGTATTTGT ATGTTACTTC TTCGGGGGTG GCCTCTACAG
 TTTATCGGGC CAGCATCAGT TTGGGCGGTA GGAGAATTGC GTTGGAATGT
 GGCACGGCTT CGGTTGTGTG TTATAGCCTT CGTCGATACT GCCAGCCTAG

 ACTGAGGACT GCGGTTTATA CCTAGGATGT TGGCATAATG ATCTTAAGTC
 GCCCGTCTTG A

(56) INFORMATION FOR SEQ ID NO 55:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 211
- 5
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Fusarium species specific region of 28S gene.
- 10
- (iii) HYPOTHETICAL: No
- (iv) ANTISENSE: No
- 15 (v) SEQUENCE DESCRIPTION: SEQ ID NO: 55:
- GACCAGACTT GGGCTTGGTT AATCATCTGG GGTTCTCYCC AGTGCACTTT
 TCCAGTCCAG GCCAGCATCA GTTTTCSCCG GGGGATAAAG RCTTCGGGAA

 20 TGTGGCTCYC YYCGGGGAGT GTTATAGCCC GTTGYGTAAT ACCCTGGBGG
 GGACTGAGGT TCGCGCWTCT GCAAGGATGC TGGCGTAATG GTCATCAACG
 ACCCGTCTTG A
- 25 (57) INFORMATION FOR SEQ ID NO 56:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 238
 - (B) TYPE: nucleic acid
- 30 (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

ů,

(ii) MOLECULE TYPE: Filobasidium capsuligenum specific region of 28S gene.

- 5 (iii) HYPOTHETICAL: No
 - (iv) ANTISENSE: No
 - (v) SEQUENCE DESCRIPTION: SEQ ID NO: 56:

10

15

1

AGTCAGTCAT GTCTATTGGA CTCAGCCGGT TCTGCCGGTG TATTTCCTTT
AGATGGGGTC AACATCAGTT TTGACCGTTG GATAAAGGCA GGAAGAATGT
AGCACTCTCG GGTGAACTTA TAGCTTCTTG TCACATACAA TGGTTGGGAC
TGAGGAACGC AGCATGCCTT TATGGCCGGG ATTCGTCCAC GTACATGCTT
AGGATGTTGA CATAATGGCT TTAAACGACC CGTCTTGA

(58) INFORMATION FOR SEQ ID NO 57:

20

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 238
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Filobasidiella neoformans var bacillispora (serotype
- C) specific region of 28S gene.
- 30 (iii) HYPOTHETICAL: No

(iv) ANTISENSE: No

(v) SEQUENCE DESCRIPTION: SEQ ID NO: 57:

5

10

3

AGTCAGTCGT GTCTATTGGG TTCAGCCAGC TCTGCTGGTG TATTCCCTTT
AGACGGGTCA ACATCAGTTC TGATCGGTGG ATAAGGGCTG GAGGAATGTG
GCACTCTTCG GGGTGTGTA TAGCCTCCTG TCGCATACAC TGGTTGGGAC
TGAGGAATGC AGCTCGCCTT TATGGCCGGG GTTCGCCCAC GTTCGAGCTT
AGGATGTTGA CAAAATGGCT TTAAACGACC CGTCTTGA

(59) INFORMATION FOR SEQ ID NO 58:

- 15 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 238
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

20

- (ii) MOLECULE TYPE: Filobasidiella neoformans var neoformans (serotype D) specific region of 28S gene.
- (iii) HYPOTHETICAL: No

25

- (iv) ANTISENSE: No
- (v) SEQUENCE DESCRIPTION: SEQ ID NO: 58:

30

AGTCAGTCGT GTCTATTGGG TTCAGCCAGT TCTGCTGGTG TATTCCCTTT

•

AGACGGTCA ACATCAGTTC TGATCGGTGG ATAAGGGCTG GAGGAATGTG
GCACTCTTCG GGGTGTGTTA TAGCCTCCTG TCGCATACAC TGGTTGGGAC
TGAGGAATGC AGCTCGCCTT TATGGCCGGG GTTCGCCCAC GTTCGAGCTT
AGGATGTTGA CAAAATGGCT TTAAACGACC CGTCTTGA

5

(60) INFORMATION FOR SEQ ID NO 59:

(i) SEQUENCE CHARACTERISTICS:

10

(A) LENGTH: 236

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

15 (ii) MOLECULE TYPE: Filobasidium uniguttulatum specific region of 28S gene.

(iii) HYPOTHETICAL: No

20 (iv) ANTISENSE: No

(v) SEQUENCE DESCRIPTION: SEQ ID NO: 59:

25 AGTCAGTCGT GCTCAATGGA CTCAGCCGTT CTGCGGTGTA TTTCCATTGG
GTGGGGTCAA CATCAGTTTT GATCGCTGGA TAAAGGCAGG AGGAATGTAG
CACCCCCGGG TGAACTTATA GCCTCTTGTC ACATACAGTG GTTGGGACTG
AGGAACGCAG CATGCCTTTA TGGCCGGGAT TCGTCCACGT ACATGCTTAG
GATGTTGACA TAATGGCTTT AAACGACCCG TCTTGA

30

4

(61) INFORMATION FOR SEQ ID NO 60:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 204

(B) TYPE: nucleic acid

5 (C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Geotrichum species specific region of 28S gene.

10 (iii) HYPOTHETICAL: No

(iv) ANTISENSE: No

(v) SEQUENCE DESCRIPTION: SEQ ID NO: 60:

15

AATCAGACTT GGTGCTGTTG TTCAACTRTG TTTCGGCATA GTGTACTCAG
CAGTACTAGG CCAAGGTGGG GTGTTTGGGA GTGAAAAAGA AGTAGGAACG

TAACTCTTCG GAGTGTTATA GCCTACTTTC ATAGCTCCTC AGGCGCCTCA
GGACTGCGCT TCGGCAAGGA CCTTGGCATA ATGATTCTAT ACCGCCCGTC
TTGA

- 25 (62) INFORMATION FOR SEQ ID NO 61:
 - (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 214

(B) TYPE: nucleic acid

30 (C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Histoplasma capsulatum specific region of 28S gene.

(iii) HYPOTHETICAL: No

5

Ħ

Ş

- (iv) ANTISENSE: No
- (v) SEQUENCE DESCRIPTION: SEQ ID NO: 61:

10

15

GAYCAGAGTC GGCCGYGGGG GTTCAGCGGG CATTCGTTGC CCGTGCAATC
CCCCGCGGCC GGGCCAGCGT CGGTTTCGAC GGCCGGTCAA AGGCCCCCGG
AATGTGTCGC CTCTCGGGGC GTCTTATAGC CGGGGGTGCA ATGCGGCCAG
TCGGGACCGA GGAACGCGCT CCGGCACGGA CGCTGGCTTA ATGGTCGTCA
GCGACCCGTC TTGA

(63) INFORMATION FOR SEQ ID NO 62:

- 20 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 215
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: Malbranchea species specific region of 28S gene.
- (iii) HYPOTHETICAL: No
- 30 (iv) ANTISENSE: No

(v) SEQUENCE DESCRIPTION: SEQ ID NO: 62:

AGACAGACTC GAGCGCGGG GCTCAGCGGG TATTGTTATG CCCGTGCACT

CCCCCGCGCC CGGGCCAGCA TCAGTTTTGG CGGCCGGTCA AAGGCCCTTG

GAATGTATCG TCCTCCGGGA CGTCTTATAG CCAAGGGTGC AATGCGGCCA

GCCGGGACTG AGGAACGCGC TTCGGCACGG ATGCTGGCGT AATGGCTGTA

AGCGGCCCGT CTTGA

10

.

(64) INFORMATION FOR SEQ ID NO 63:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 237
- 15 (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: Mucor species specific region of 28S gene.

20

- (iii) HYPOTHETICAL: No
- (iv) ANTISENSE: No
- 25 (v) SEQUENCE DESCRIPTION: SEQ ID NO: 63:

AGCCAGACTG GTTTGACTGT AATCAACCTA GAATTCGTTC TGGGTGCACT
TGCAGTCTAT ACCTGCCAAC AACAGTTTGA TTTGGAGGAA AAAATTAGTA
GGAATGTAGC CTCTCGAGGT GTTATAGCCT ACTATCATAC TCTGGATTGG

ACTGAGGAAC GCAGCGAATG CCWTTAGGCR AGATTGCTGG GTGCTTTCGC
TAATAAATGT TAGAATTTCT GCTTCGGGTG GTGCTAA

(65) INFORMATION FOR SEQ ID NO 64:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 209
- 5 (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: Paecilomyces species specific region of 28S gene.

10

- (iii) HYPOTHETICAL: No
- (iv) ANTISENSE: No
- 15 (v) SEQUENCE DESCRIPTION: SEQ ID NO: 64:
- GACCAGACTT GGGCCCGGTG GATCATCCAG CGTTCTCGCT GGTGCACTCC

 GCCGGGTTCA GGCCAGCATC AGTTCGCCGC GGGGGAAAAA GGCTTCGGGA

 ACGTGGCTCC TACGGGAGTG TTATAGCCCG TTGCATAATA CCCTGGGGCG
 GACTGAGGTT CGCGCTCCGC AAGGATGCTG GCGTAATGGT CATCAGCGAC
 CCGTCTTGA
- 25 (66) INFORMATION FOR SEQ ID NO 65:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 199
 - (B) TYPE: nucleic acid
- 30 (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Penicillium species specific region of 28S gene.

(iii) HYPOTHETICAL: No 5 (iv) ANTISENSE: No (v) SEQUENCE DESCRIPTION: SEQ ID NO: 65: 10 GACCAGACTC GCCCACGGGG TTCAGCCGGC ATTCGTGCCG GTGTACTTCC CCGCGGGCGG GCCAGCGTCG GTTTGGKCGG CCGGTCAAAG GCCCTCGGAA TRTAACGCCC CCCGGGGCGT CTTATAGCCG AGGGTGCCAT GCGGCCAGCM CAGACCGAGG AACGCGCTTC GGCTCGGACG CTGGCATAAT GGTCGTAAA 15 (67) INFORMATION FOR SEQ ID NO 66: (i) SEQUENCE CHARACTERISTICS: 20 (A) LENGTH: 210 (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 25 (ii) MOLECULE TYPE: Pseudallescheria boydii region of 28S gene. (iii) HYPOTHETICAL: No (iv) ANTISENSE: No 30 (v) SEQUENCE DESCRIPTION: SEQ ID NO: 66:

GACCAGACTT GTGCCCGTCG AATCAGCCGC CGCTCGTCGG CGGCGCACTT
CGGCGGGCTC AGGCCAGCAT CAGTTCGCTG CAGGGGGAGA AAGGCGATGG

5 GAATGTGGCT CTTCGGAGTG TTATAGCCCG CCGCGCAATA CCCCTCGGCG
GACTGAGGAC CGCGCATCTG CAAGGATGCT GGCGTAATGG TCGTCAGCGA
CCCGTCTTGA

10 (68) INFORMATION FOR SEQ ID NO 67:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 244
 - (B) TYPE: nucleic acid
- 15 (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: Rhizopus species (NO: 1) specific region of 28S gene.

20

No.

- (iii) HYPOTHETICAL: No
- (iv) ANTISENSE: No
- 25 (v) SEQUENCE DESCRIPTION: SEQ ID NO: 67:
- AGCCAGACTG GCTTGTCTGT AATCAATCTA GGTTTCGTGC CTGGATGCAC
 TTGCAGACTA TTTGCCTGCC AACGACAATT TTTTTTTGAGT GTAAAAACTA
 TTGGAAATGT GGCCAATATT TATTTATTGG TGTTATAGTC CTTTAGAAAA

 30 TACCTTGAAT TGGATTGAGG AACGCAGCGA ATGCTTCTCT TTnGAGGCAA
 AGTCTTTTAT TGGGATTTAC GGATCAGACT GTGGCATTGT CACA

(69) INFORMATION FOR SEQ ID NO 68:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 215

5

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Rhizopus species (NO: 2) specific region of 28S

10 gene.

(iii) HYPOTHETICAL: No

(iv) ANTISENSE: No

15

(v) SEQUENCE DESCRIPTION: SEQ ID NO: 68:

AGCCAGACTG GCTTGTCTGT AATCAATCTA GGCTTCGGCC TGGATGCACT
TGCAGGCTAT GCCTGCCAAC GACAATTTGA CTTGAGGGAA AAAACTAGGG
GAAATGTGGC CCACTTGTGG GTGTTATAGT CCCTTAGAAA ATACCTTGGG

TTGGATTGAG GAACGCAGCG AATGCTTATT GGCGAGTTTT CCAGGAAGGT

TTTCTGAGGT ACTAC

(70) INFORMATION FOR SEQ ID NO 69:

25

20

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 215

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

30 (D) TOPOLOGY: linear

 $\{ b_i \}$

(ii) MOLECULE TYPE: Rhizopus species (NO: 3) specific region of 28S gene.

(iii) HYPOTHETICAL: No

5

1.7

- (iv) ANTISENSE: No
- (v) SEQUENCE DESCRIPTION: SEQ ID NO: 69:

10

15

AGCCAGACTG GCTTGTCTGT AATCAGTCTA AGCTTCGGCT TGGATGCACT
TGCAGGCTAT GCCTGCCAAC GACAATTTGG CTTGAGGGAA AAAACTAAGG
GAAATGTGGC CCATCCGTGG GTGTTATAGT CCCTTAGAAA ATACCTTGGG
CTGGATTGAG GTACGCAGCG AATGCTATTT GGCGAGTTGG CTGGGAATAT
TTTCTGAGGT GCTTT

(71) INFORMATION FOR SEQ ID NO 70:

- 20 (i) SEC
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 210
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: Sporothrix species specific region of 28S gene.
- (iii) HYPOTHETICAL: No
- 30 (iv) ANTISENSE: No

(v) SEQUENCE DESCRIPTION: SEQ ID NO: 70:

GACCAGACTT GCGCCYCGCG GACCACCCGG CGTTCTCGCC GGTGCACTCT

GCGKKGCGCA GGCCAGCATC GGTTCTCCCA GGGGGACAAA GGCCGCGGGA
ACGTAGCTCC TTCGGGAGTG TTATAGCCCG CGGCGGCATG CCCCTGGGGG
GACCGAGGAC CGCGCTTCGG CAAGGATGCT GGCGTAATGG TCACCAGCGA
ACCGTCTTGA

10

(72) INFORMATION FOR SEQ ID NO 71:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 208
- 15 (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Scopulariopsis brevicaulis specific region of 28S
 gene.
 - (iii) HYPOTHETICAL: No
 - (iv) ANTISENSE: No
- 25 (v) SEQUENCE DESCRIPTION: SEQ ID NO: 71:

GACCAGACTT GCGCCCGTCG GATCAACCGT CGCTTGCGGC GGCGCACTCC
GGCGGGCTCA GGCCAGCATC AGTTCGTCCG GGGGGAGAAA GGCGGCGGGA
ATGTGGCTCT TCGGAGTGTT ATAGCCCGCC GTGTAATACC CTCGGGTGGA
CTGAGGACCG CGCGTATGCA AGGATGCTGG CGTAATGGTC GTCAGCGACC
CGTCTTGA

(73) INFORMATION FOR SEQ ID NO 72:

(i) SEQUENCE CHARACTERISTICS:

5

Ŧ,

3

52)

(A) LENGTH: 210

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

10

(ii) MOLECULE TYPE: Scopulariopsis brumptii specific region of 28S gene.

(iii) HYPOTHETICAL: No

(iv) ANTISENSE: No

15

(v) SEQUENCE DESCRIPTION: SEQ ID NO: 72:

20

GACCAGACTC GCGCCCGTCG GATCAGCCGT CGCTCGTCGG CGGCGCACTC CGGCGGGCTC GGGCCAGCAT CAGTTCGCCT CGGGGGGAGA AAGGCGGCGG GAATGTGGCT CTACGGAGTG TTATAGCCCG CCGCGTAATA CCCCCGGGCG GACTGAGGAC CGCGCGTATG CAAGGATGCT GGCGTAATGG TCGTCAGCGA **CCCGTCTTGA**

25

(74) INFORMATION FOR SEQ ID NO 73:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 214

30

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Saccharomyces cerevisiae specific region of 28S gene.

5

7

- (iii) HYPOTHETICAL: No
- (iv) ANTISENSE: No
- 10 (v) SEQUENCE DESCRIPTION: SEQ ID NO: 73:

GATCAGACAT GGTGTTTGT GCCCTCTGCT CCTTGTGGGT AGGGGAATCT
CGCATTTCAC TGGGCCAGCA TCAGTTTTGG TGGCAGGATA AATCCATAGG

15 AATGTAGCTT GCCTCGGTAA GTATTATAGC CTGTGGGAAT ACTGCCAGCT
GGGACTGAGG ACTGCGACGT AAGTCAAGGA TGCTGGCATA ATGGTTATAT
GCCGCCCGTC TTGA

- 20 (75) INFORMATION FOR SEQ ID NO 74:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 236
 - (B) TYPE: nucleic acid
- 25 (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: Trichosporon beigelii specific region of 28S gene.
- 30 (iii) HYPOTHETICAL: No

- (iv) ANTISENSE: No
- (v) SEQUENCE DESCRIPTION: SEQ ID NO: 74:

3	
	AGTCAGTCGT GTTCTTTGGA TTCAGCCAGT TCTGCTGGTC TACTTCCTTG
	GAACGGGTCA ACATCAGTTT TGTCCGGTGG ATAAAGGTAG TAGGAATGTG
	ACTICICCGG AAGTGITATA GCCTATTATC ACATACACTG GGTGAGACTG
	AGGACTGCAG CTCGCCTTTA TGGCCGGCCT TCGGGCACGT TCGAGCTTAG
10	GATGTTGACA TAATGGCTTT AAACGACCCG TCTTGA

9

2.4

13

,,,,

We claim:

" 一场 强强的

*

18 A

7

1

- 1. An oligonucleotide probe for the 28S subunit of fungi which is able to identify one species selected from the group consisting of *Acremonium* sp., *Aspergillus clavatus*,
- 5 Aspergillus flavus, Aspergillus fumigatus, Aspergillus glaucus, Aspergillus nidulans, Aspergillus niger, Aspergillus ochraceus, Aspergillus terreus, Aspergillus unguis, Aspergillus ustus, Beauveria sp., Bipolaris sp., Blastoschizomyces sp., Blastomyces dermatitidis, Candida albicans, Candida glabrata, Candida guilliermondii, Candida kefyr, Candida krusei, Candida lusitaniae, Candida parapsilosis, Candida tropicalis,
- 10 Chrysosporium sp., Cladosporium sp., Coccidioides immitis, Cryptococcus neoformans var gattii serotype B, Cryptococcus neoformans serotype A, Cryptococcus laurentii, Cryptococcus terreus, Curvularia sp., Fusarium sp., Filobasidium capsuligenum, Filobasidiella (Cryptococcus) neoformans var bacillispora serotype C, Filobasidiella (Cryptococcus) neoformans serotype D, Filobasidium uniguttulatum,
- 15 Geotrichum sp., Histoplasma capsulatum, Malbranchea sp., Mucor sp., Paecilomyces sp., Penicillium species, Pseudallescheria boydii, Rhizopus sp., Sporothrix schenkii, Scopulariopsis brevicaulis, Scopulariopsis brumpti, Saccharomyces cerevisiae, and Trichosporon beigelii.
- 20 2. An oligonucleotide probe of claim 1 comprising all or part of any one of the sequences (SEQ ID NO: 3) through (SEQ ID NO: 74), or any functional equivalent thereof, which is able to identify the corresponding species of fungus.
- 3. An oligonucleotide probe of claim 1 comprising all or part of any one of the sequences
 (SEQ ID NO: 3) through (SEQ ID NO: 74), or any functional equivalent thereof, which is able to identify any one or more of said species of fungus.
 - 4. A method of determining whether one or more fungal species selected from a group of fungi is present in a sample comprising the following steps:
- 30 a. extracting the nucleic acid material from the fungi contained in said sample,

b. adding two known primers, (SEQ ID NO 1) and (SEQ ID NO 2), or the functional equivalent thereof, bracketing the areas of interest on the 28S rDNA or rRNA present in said group of interest,

- c. amplifying the sequence between said primers, and
- d. using one or more third labeled probes to determine which of said fungi is present, wherein said third probes are selected from the group consisting of (SEQ ID NO 3) through (SEQ ID NO 74), any portion thereof and functional equivalents thereof.
- 10 5. A method of claim 4 in which said amplifying procedure is the polymerase chain reaction.
 - 6. A method of claim 4 which, following said amplification, comprises the following step:
- d. using two or more third probes to determine which of said fungi is present, one of said third probes being attached to a moiety which allows separation of said probe and one or more third probes connected to labeled moieties, wherein said third probes are selected from the group consisting of (SEQ ID NO 3) through (SEQ ID NO 74), any portion thereof and functional equivalents thereof.
- A method of claim 4 which excludes said amplification step.
- A method of claim 4 wherein said fungal species is selected from the group consisting of Acremonium sp., Aspergillus clavatus, Aspergillus flavus, Aspergillus fumigatus, Aspergillus glaucus, Aspergillus nidulans, Aspergillus niger, Aspergillus ochraceus, Aspergillus terreus, Aspergillus unguis, Aspergillus ustus, Beauveria sp., Bipolaris sp., Blastoschizomyces sp., Blastomyces dermatitidis, Candida albicans, Candida glabrata, Candida guilliermondii, Candida kefyr, Candida krusei, Candida lusitaniae, Candida parapsilosis, Candida tropicalis, Chrysosporium sp., Cladosporium sp., Coccidioides immitis, Cryptococcus neoformans var gattii serotype B, Cryptococcus neoformans serotype A, Cryptococcus laurentii, Cryptococcus terreus, Curvularia sp.,

.....

1

Ħ

*

Fusarium sp., Filobasidium capsuligenum, Filobasidiella (Cryptococcus) neoformans var bacillispora serotype C, Filobasidiella (Cryptococcus) neoformans var neoformans serotype D, Filobasidium uniguttulatum, Geotrichum sp., Histoplasma capsulatum, Malbranchea sp., Mucor sp., Paecilomyces sp., Penicillium species, Pseudallescheria boydii, Rhizopus sp., Sporothrix schenkii, Scopulariopsis brevicaulis, Scopulariopsis brumpti, Saccharomyces cerevisiae, and Trichosporon beigelii.

A method of claim 4 wherein more than one third probe is used, each said third probe connected to a different signal moiety or moiety which allows separation of said
 third probe.

ě

P1 SEQ ID: 1

SEQ ID: 2

P2

SEQ ID: 3 to SEQ ID: 23

FIGURE 1

着

Figure 2A

	1						70	
(Rhizo2)						TTGCAGGCTA		
(Rhizo3)						TIGCAGGCTA		
(Rhizol)	AGOCAGACTG	CCLICICICI	ANICANICIA	GCTTTCCTGC	CICCAIGCAC	TIGCAGACIA	TITECCICCC	
(Hucor_)	AGOCAGACTG	CITICACICI	ANTCHACCIA	GAATTCGTTC	.TGGGTGCAC	TIGCAGICIA	TACCTGCC	
(C_Terr)	AGTCAGTCAT	GTCTATTGCA	CTCAGOOGGT	TCIG	COGGTGTACT	TOCTTINGAT	GGGGTCAAC.	
(F_Caps)	AGTCAGTCAT	GICIATIGGA	CICAGOOGGI	TCTG	COGGIGIATI	TOCTITAGAT	GGGGTCAAC.	
(F_Unig)	AGTCAGTCGT	GCTCRATGGA	CTCACCCG	TTCT	COCCICIATI	TOCATIGGGT	GGGGTCAAC.	
(C Neob)	AGTCAGTOGT	GICIATIGGG	TTCAGOCAGC	TCTG	CIGGIGIAII	COCTITAGA.	OGGGTCAAC.	
(F Neoc)	AGTCAGTOGT	CICINITICSC	TICAGOCAGO	ictG	CIGGICIAII	COCTEDOR.	COGGICARC.	
(F Neod)	AGTCAGTOGT	GTCTATTGGG	TTCAGCCAGT	TCTG	CIGGIGIAIT	COCTITACA.	OGGGTCAAC.	
{C Neof}	METCHGTOGT	CICINIICCC	TTCAGOCAGT	TCTG	CIGGIGIAII	COCTETAGA.	OGGGTCAAC.	
(T Beig)	AGTCAGTCGT	GITCITTGCA	TICMCCCMGT	TCTG	CTGGTCTACT	TOCTIGGAA.	COGGTCNAC.	
(C Laux)	AGTCAGTCGT	CTCTCCCACC	CICAGOOGGI	TCTG	COGGIGIATI	CCTCTCMGA.	OGGGTCAAC.	
(Beauve)	CACCAGACTT	CCCCTTCCTT	CATCATOOG	GETTC.TCC.	COCCTCCACT	CITCC.CCC	CAGGOCAGC.	
(Fusari)	GROCAGACTT	GGGCIIGGII	ARTCATCIGG	GGITC.TCY.	CONGTCCACT	TTTCC_AGIC	CAGGCCAGC.	
(Acreso)	GACCAGACIT	GCCICCCIC	AATCATCCG	CETTC_TCG.	COCCTCCACT	TTCCC.GTCC	CAGGOCAGC.	
(Paecil)	GACCAGACTT	GGGGGGGTG	CATCATOCAG	CETTC.TOG.	CIGGIGCACI	COCCCCCCTT	CAGGOCAGC.	
(P Boyd)						TOGGOGGGCT		
(S Brown)	CACCACACTC	COCCOCCETOG	GATCAGCCGT	COCTOGICG.	CCCCCCACT	COGGGGGCT	CGGGCCAGC.	
(S Brev)						CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC		
(Sporot)	GACCAGACIT	GOGOCT/CGCG	GACCACCOGG	CGITC. TOG.	COGGTGCACT	CIGOGRAGOG	CAGGOCAGC.	
(B Derm)	GACCAGAGTC	GCCCTGCGG	GIT/CAGCGGG	CATTOGT.TG	CCCGTGCACT	CCCCACGGG	COCCOCACC.	
(H Caps)	CAYCACACTC	GCCCCYGGGG	GITCAGOGGG	CATTOGT.TG	CCCCTGCAAT	CCCCCCCCCCCCC	CCCCCCACC.	
(A Nich)						TOOOGGGG		
(A Ungu)						TOOOGGGGG		
(A Ustu)						TOCCOGGGGG		•
(A Clay)						TOCCOCETGGG		
(A Fumi)						TOCCOCTOCG	•	
{A Flav}						TOOCTGGGGG		
(A Ochr)						TOCCOCCOCC		
(A Nige)						TOOOGTGGG		
(A Terr)	AACCAGACTC	ectosc.ess	GTTCAGCCGG	GCTTCGGC	COGGTGTACT	TOCCOGGGG	OGGGCCAGC.	
(A Glan)	GACCAGACTC	ectroc.eee	GTTCAGCCGG	CITTOSGG	COGGTGTACT	TOCCOGGGGG	CGGGCCAGC.	•
(Penici)	GACCAGACTC	GCCCNC.GGG	GTTCM6003G	CATTOGTG	COGGIGIACI	100000000	COGCOCACC.	
(C Issi)	MOCAGACIC	CETOGTCCCC	.ecatavecee	CATGAGI.GC	COSTGEMENT	COCCATGCIC	CCCCCCACC.	
(Bipola)	AGCCAGACIT	CONCRET	ectratores	CIII.I.C	COSCIPCIACE	CITCICCRCS	CAGGOCAGC.	
(Curval)	AGCCAGACTT	CCHICCAGIT	GCTCATCCGG	CIII.I.C	COGGREGACT	CETCIGCNGS	CAGGOCAGC.	
{Chryso}	MCCAGACTT.	G0G0G0G0C	CHICHTOOGG	TGITC.I.CA	COGGREGACT	COCCOGNICA	CIRCOCCIOC"	
(Clados)	MOCAGACIT	ecrosser.	CITCOCCCCC	TCTTC.T.G	COGGETCERCE	COCCOCCETTIC	CHICACOCHICC.	
(Mallbra)	ACACHERCIC	GLGCGCGGGG	GCTC1GCGGG	TATIGUAN	COORTICAL	CCCCCCCCC	cossecution.	
(C Para)						TACAGETTAC		
(C Troo)	CATCACACTE	COMMITTEE	ATG. ATTACE	TCITCOGG.	GDGGCCDC	TACAGITAT	COCCOCIACC.	
(C Albij						TROOGETTAC		
(C Gail)	GATCAGACTC	CATABITATION	. CAGOCTAGO	TROCKGOG.		TATETOALSON :	coccaci.	
(C Clab)	GITCHGICHT	GAIGHTIGE	COOCTION	TCTCGTGGG	TRESCRICT	COCRECTOR	Teccoorec.	
(S Came)	CATCHCHAT	COLOTHIC	COCCICIO	COLUMN	. Yeegenya.ca	COCKTETCAC	TOGGCCAGC.	
(C Kefv)	GITCIGICIT	GGCGTTTGCT				COGCITTOGC	Teccocacc.	
(Geotzi)	ARTCAGACIT	GETGET	TGITCARC	RIGITICGG	: ATRICICIACI	. CACCIGIACI	AGGCCAAGG.	
							COCCOCACC.	
(C Koos)	CCCCCACET	GGGG3777GCG	CHOOGGIGG	TCTCGTGGG	@	c ecectification	TOGGOODAGC.	
	-							

	71						340
(Shizo2)	AACCACAATT	TGACTIGAGS	CANANAVCIA	GGGGNAATGT	GCCC	CACTTACTAGG	140
(Rhizo3)	AACGACAATT	TGGCTTGAGG	GANANAACTA	AGGGAAATGT	GCCC	CATCOCTGGG	TOTTETACE
{Rhizol}	AACGACAATT	TTTTTTGAGT	GTAAAAACTA	TIGGAAATGT	GGCCAATATT	TATTTATTICG	TOTTATACTO
(Mucor_)	AACAACAGTT	TCATTTCCAG	GAAAAAATTA	GTAGGAATGT	AGCC	ATCTYCGA	GENETINGIC
(C Terr)	.ATCAGITIT	.CATCCCTCC	AAAAGGGCAG	GAGGAATGTA	GCACTC. TOG	GGTGAACTTA	TACCUTTURE
(F_Caps)	.ATCAGITIT	.GACCETTGG	ATANAGGCAG	GAAGAATGTA	GCACTC_TOG	GGTGAACTTA	TACCTIVE
(F_Unig)	.ATCAGITII	-CATCGCTGG	ATANAGGCAG	CAGCAATGTA	GCYCCC CCC	GETGARCTTA	TROCTICITE
(C Neob)	.ATCAGITCT	.GATCGGTGG	ATANGGGCTG	CACCARTETC	GCACTCTTCG	GGGTGTGTTA	TROCCICIIG
(F Neoc)	ATCAGITCI	.GATCGGTGG	ATAMOGGCTG	CACCARTER	GCACTETTOG	GCCTCTCTTA	TROCTOTO
(F Neod)	_ATCAGTICT	.GATCGGTGG	ATARGEGETE	CACCANTOTO	CACTETTOS	GGGTGTGTTA	TROCTOTO
(C Neof)	ATCECTACT	_GATCOGTIGG	YLYYCCCIC	GCCCARTCIA	CCACTCTTCG	CACTGRETTA	TAGOCTOCTG
(T Beig)	ATCACITIT	GICCGGICG	ATRANGEING	TAGGRATGIG	ACTICIOC	GGAAGTGTTA	TAGOCTATTA
(C Laur)	ATCAGITIT	-GTOOGROOG	ATAATGCCCG	CCCCANAGEA	CCAC	GGGTGTGTTA	TAGOOGCTG
(Besuve)	ATCACTTCG		ACARAGECTT	COCCURC	GCTCTCTCC.		
(Fosari)	.XICAGIIII	CSCCCCCC	ATRANGROTT	COCCARTOTO	CCTCTCTCC_	@GGGA	
(Acreso)	.ATCAGTTCG	೦೦೦೦.೦೦೦೦೦	ATAMOGITT	CGGGAATGIA	GCTCCTTC.	ASSO	
(Paecil)	.ATCAGTTOG	೦೦೦೦.೦೦೦೦೦	AAAAAGGCIT	CCCCAACCIG	GCTCCTAC.	ASSO	
(P_Boyd)	.ATCAGITCG	CIGCAGGGG	AGANAGGOGA	TGGGAATGTG	GCTC. TTC.		
(S Brum)	.ATCAGTTCG	OCTOGGGGG	AGAAAGGCCG	COCCALITATE	GCTCTAC.		-
(S Brev)	_ATCAGTTCG	.TCCCGCGGG	AGAAAGGCGG	COCCUATORS	GCTCTTC.		
(Sporot)	ATCCCTTCT	C-CCMGGGGG	ACARAGOOG	COCCAACCETA	GCTCCTTCG.	@GA	
(B Derm)	.GTCCCTTTC	-G1000000G	TCANAGGCCC	COCCUATOR	TOGOCTOTO		
(H Caps)	.GTCGGTTTC	.GRC00000G	TCAARGCCC	COGERATOR	TOGOCICIC	Ͼ-c	
(A Nidu)	.GICCGIIIG	.000000000	TCAAAGGCCC	CAGGARTGEA	TOGOCCTOC.	····GGGTT	
(A Ungu)	.GICCGITIG	.000000000	TCRARGCCCC	CAGGRATGIA	TCACCCTCC.	GCCCTT	
(A Usta)	.GICCGITITG	-000000000	TCAAAGCCCC	CAGGAATGIG	TOGOCCTOC.	GGGG_C	
(y Clus)	-CICCETIIG	-0000000000	TCARROCCT	COGGRATGIA	TCACCICIC.	GGGG_T	
(A Ford)	.CICCOITIC	-eccessos	TCHARGOOD	TOGGARTGTA	TOXOCTOTO.	GGGG_T	
(A Elav)	.GICGGITTG	.660060006	TCARROGCTC	COOCHAIGIA	GIGCCCTIC.	GGG.C	
(y Ochr)	.GICCGIIIG	-000000000	TCARAGGCCC	COGGRATGIA	GCMCCCTTC.	GGG.T	
(A_Nige)	-CICCCIIIC	-6600000000	TCAMAGGGCC	CTGGAATGTA	GTROCCTOC.	GGGG.Y	
(A_Texx)	.GIOGGITIC	.000000000	TCARAGGCCT	COCCRATGEA	GOGCOCTIC.	GGG.C	
(A_Clan)	-CICCOIIIC	.000000000	TCNANGGCCC	CIGGRAIGIA	ACCOCTATE.	œœ.c	
(Penici.)	.GICGGIITG	- excessors	TCAMAGGCCC	TOGGRADRIA	MOSCOCCC.	GGGG.C	
(C_limit)	MICHGUICT	*GGOGGITIGG	TTAMAGGOCT	CIGGARIGIA	TOSTOCTOC.	GGGAC	
(Bipola)	TICKELLIC	-cccccrccc	ATRANGETCE	CIGICACCIA	CCITOCITC.	GCCITG	
(Correct)	TICKETTIC	-eccentere	ATAMAGGICT	CICACACCIT	CCHICCHIC.	GGIIG	
(Chrisso)	ATOGGITH	-coccoccie	ATAMAGECCC	TROCKETOR	ecrocrere.		
(Clados)	-MICCICIOS	-Teccettee	at animett	CACCRATICITA	CCTCCCTCC.	GERGIG	
(Respect)	MOGHT	-000000000	ECYPYCECOC	THOSIMICIA	TOSTOCTOC.		
(C Perra)	TICKETT.	*COCCETTO	CHARGICA	ARGRANCIS	CCICTOCETIC	GINGT	
(C mob)	NICKELLI.	: COSCOSTING	CECHATTICOS.	Liberizens	CHOCCET C	····GITGI	•
(CYIM)	-MICCOLLING	-GEOCOGCING	CHIMITOCOG	GROSSES	COLOGGETTC	Decrea	
(टब्या)	-MICCOLLE.	-eeccessie	CHIMINGS	ENGRANGING	ACHIBERT	GENGAN	
,,		44444	- CHILDREN TO CA				
(S Cerre)	MORETTE	·e'eneecre	GRITARATOCA	Meinder	CHICAGO CITC.	·GCTAL	
(C Kety)	-MCGITT	Teccente	GRIBBRICCI	COOCHETICAL	GCTCTGCTTC	GGTAGA	
(Geotzil)	-IGGGGIGIT	_IGGGIGI	CHIMICAN	TAGGRACGIA	ACTOTIC	GZ	
(C Inai)	-CIC.GREAN	Coccession	AACAAGAACT	,OCHERNICO	coscicatoria	1000 CIGOCO	
(C Krus)	-WICCOLLICI	-10CIDOCIGG	MCFFFGGGTT	CLOCATION	COURTE		
(Blasch)	*******			••••			

3/5

designation

S. Balling

	141						210
(Rhizo2)	OCTTAGAANA	TACCITGGGT	TGGATTGAGG	ANCGCNGCGA	ATG		CITATTG
(Rhizo3)	CCTTAGAAAA	TACCTTGGGC	TGGATTGAGG	TACGCAGOGA	ATG		CIATITG
(Rhizol)	CITINGANAA	TACCITGAAT	TGGATTGAGG	ANCGCAGOGA	ATGCTTCTCT	TINGAGGCAA	AGICITITAT
(Mucor)	CCTACTATCA	TACTCIGGAT	TGGACTGAGG	ANCGCAGOGA	ATGCCWTTAG	GCRAGATIGC '	IGGGIGCIII
(C Terr)	TOGIATACAG	TGGTTGGGAC	TGAGGAACGC	AGCATGOCTT	TATGGCCGGG	GITOCOCCAC	GTACATGCTT
(F Caps)		TGGTTGGGAC					
(F Unig)		TEGTTEGGAC					
(C Neob)		TEGTTEGEAC					
(F Neoc)		TEGTTEGGAC					•
(F Neod)		TGGTTGGGAC				•	
(C Neof)		TOGTTOGGAC					
(T Beig)		TOGGTGAGAC					
(C Laur)		CCCATCACAC					
(Beauve)		TGTTATAGCC					
(Fosari)		TGTTATACCC					
{Acreso}		TGITATAGCC		_			
(Paocil)	_	TGITATAGCC					
(P Boyd)		TGTTATAGCC					
(E_Boyo) (S Brown)		TGTTATAGCC					
(S Brev)		TGITATAGCC					
(Sporot)		TGTTATAGCC					
(Sporoc)		TCTTATAGCC					
(E Caps)		TCITATAGCC					
· — ·		TCTTATAGCC					
(A_Nido) (A Vogu)		TCTTATAGCC					
(A Ustu)		TCTTATAGCC					
(A Clay)		TCTTATAGCC					
· - ·		TCTTATAGCC					
(A Form)	•	CCTTATAGCC					-
(Y LIVA)		CCTEATAGCC					
(y Ochr)		CCTTATAGCC					
(A_Rige)							
(A_Terr)		CCITATAGCC					
(A Glan)		CCTTATAGCC					•
(Penici)		TCTTATAGOC					
(CImmi)		TCITATAGCC					.
(Bipola)		CATATAG.G					
(Correct)		CATATAG.G		•			
{Chryso}		chimec'c					
{Clados}		TINTA.G					
(Halbra)		TOTALLOC					
(C Parra)		TOTAL					
(C mob).		DELEMBECC					
(C)		DELTATECE					
(टब्सा)	••••••	TOTALIGO	T.COIT.G	. Decisioned	COMMON	GLTCCA	THE. ATCA
(C @P)		TOTAL MARKET	C.TOSS.M	22/000000E	COOCHOOCH	CCLCCCCCLT	CHCHAICI
{S_Cerre}	•••••••	S SINTENESS	T.GTGGG.M	EXICUSORIO	TOGENETICA	el CIRCUSTOS	TAIGICA
(C Kety)		TCITATEGO:	CCCCCCT	TREMEDIA	: Tegencien	CITICIAC	IIIGIC
{Geotzi]		TOTTATAGO	T.Marif.C	TRECTOCIC	F GCCCCCCCCC	eacress	CIICCCI
(C_Insi)		F TOTAL CO	c.aan.e	occupati	CHITTOCA	CONTROLL	
(C Krus)		S TGTTATAGO	: a.goodig	Techecele	c eggencoen	: Cacacacacac	CICIACCIC
(Blasch)	TGAA	TIGITGAAN	GGRAGGOGRI	GENERAL	A ANGREGOZIGO	CITICANATA	ATTGETTER

	211 .	250
(Rhizo2)	GCGAGTTTTC CAGGAAGGT	TTTCT GAGGIACTAC
(Rhizo3)	GCGAGTTGGC TGGGAATAT	TITCT GAGGIGCITT
(Rhizol)	TGGGATTTAC GGATCAGAC	TGTGG CATTGTCACA
(Mucor_)	CCCTANTAAA TCTTAGAAT	T TCTGCTTCGG GTGGTGCTAA
(C_Terr)	AGGATGTT GACATAATG	G CTTTARACGA COCGTCTTGA
(F_Caps)	AGGATGIT GACATAATG	G CTITARAGGA COOGTCTTGA
(F Unig)	AGGATGIT GACATAATG	G CTTTAAACGA COOGTCTTGA
(C Neob)	AGGATGTT GACAAAATG	G CTTTAAACGA COOGTCTTGA
(F Neoc)	AGGATGIT GACAAAATG	G CITINANCEA COOGICITEN
(F Neod)	AGGATGIT GACAAAATG	G CITTARACGA COOGTCITGA
(C Neof)	AGGATGIT CACAAAATG	G CITTARACGA COOGTCITGA
{T Beig}	AGG ATGIT GACATAATG	G CITINANOGA COCCICITGA
(C Laur)	AGGATCIT GACGERATG	G CITTANACGA COOGTCITGA
(Beauve)	AGG ATGCT GGCGTAATG	G TCATCAGTGA COOGTCT
(Fosazi)	AGG. ATGCT GGCGTAATG	G TCATCARCER COCGRETTICA
(Acreso)	AGG_ATGCT GGCGTAATG	G TCATCAGTGA CCCGTCTTGA
(Paccil)	AGG. ATGCT GGCGTAATG	G TCATCAGOGA COCGICTICA
(P Boyd)	AGG. ATGCT GGCGTAATG	G TOGICAGOGA COOGICITICA
(S Brum)	AGG. ATOCT GGCGTAATG	G TOSTCACOGA COOSTCITICA
(S Brev)	AGG. ATGCT GGCGEAATG	G TOGTCAGOGA COOGTCITGA
(Sporot)	AGG. ATGCT GGCGTAATG	G TCACCAGOGA ACOGTCTTGA
(B Derm)	CGG ACGCT GGCTTAATG	G TOGERAGOGA COOGTOTTGA
(H Caps)	CGGACCCT GGCTTAATG	G TOGTCAGOGA COOGTCTTGA
(A Hida)	CGGACGCT GGCGTAATG	G TOGCARAGEA COCCTCITGA
(A Unou)	OGG. MOGCT GGCRINATG	G TIGCARACEA COCCICITOR
(A Ustu)	OGG. ACCCT GGOGTAATG	G TOGGRAMOGA COOGTCITICA
(A Clay)	OGG ACCCT GGOGENATO	G TOGIANATION COORTCITION
(A Fumi.)	CGG. ACGCT GGCGTAATG	G TOGRANATION COORTCINEN
(A Flav)	CGG. ACCCT GGCATAATG	G TOGYANAGEA COOGTOTTGA
(A Ochr)	CGGACGCT GGCRTRATG	SE TOSENANCEA COOSTOTICA
(A Nige)	CGGACGCT GGCATAATG	SE TOSTANACEN COCETCINES
(A Text)	CGG. ACCCT GGCATAATG	G TIGIAMOCA COCCICIICA
(A Glau)	CGG ACGCT GGCATAATG	G TOGIANNOEN COORICITIEN
(Penici)	CGG. LACGCT GGCATARTO	G TOGTANA
(C Immi)	CGGATGCT GGCATAATG	G TIGIANGOGG COCCICIIGA
(Bipola)	AGG. LATGOT GGOGENATO	CICIALCOGE COOSICITEA
(Curval)	AGGATGCT GGCGTAATC	CIGIRACOS COCICITEA
(Chryso)	AGGATGCT GGCGTAATC	SE TICIALGOS COOSICIICA
(Clados)	AGG. ATGCT GGCGTAATC	SE TOSTALTOS COOSTCTICA
(Malbra)	CGCATECT GCCCTAATO	SE CHEMAGOSE COCETCINEA
(C Para)	AGG. ATGIT GGCATAATG	EN TOTTANGIOS COCETOTICA
(C Troop)	AGG. ATGIT GGCRTAAT	er actuarence cocenciaes
(C Albi)	AGG. ATGIT GCCATAAD	ST ACTUATION COORDINA
(ट ब्या)	MGCMIGGT GGCMIAND	EN ACCOMPANCOS COCENCIACA
(C Clab)		SC THANKLOOCE COCCLUME!
(S Cerre)	Mee. Auget Goodfaat	OC TRANSCOC COORTCINGS.
(C Kery)	MGG. ATOCT GOOTIAN	ee alfanalecce cocelcines
(Geotzi)		CA TICINIANOS COCICIICA
(C Insi)	AGG AGGCT GGCGTAAT	SE TRICKRICOS COORTCERSA
(C Krus)	CCG. ATCCT GCCAGAAC	GE CECNYCHOOL COORTICHEN
(Blasch)	ಆಯಾಯವ ದುರವಡಾ	OC TECHTOCK COORDINA

THE PERSON NAMED IN

INTERNATIONAL SEARCH REPORT

Inter nal Application No PCT/IB 96/00026

		PC	T/IB 96/00026
A. CLASS IPC 6	SEFICATION OF SUBJECT MATTER C12Q1/68	· · · · · · · · · · · · · · · · · · ·	
According	to International Patent Classification (IPC) or to both national ci	assification and IPC	
B. FIELD	S SEARCHED		
Minimum IPC 6	documentation searched (classification system followed by class: $C120 - C07 \text{K}$	fication symbols)	
	•		
Documents	mon searched other than manimum documentation to the extent t	hat such documents are included i	n the fields searched
Clarence			
Electrotic	data base consulted during the international search (name of data	base and, where practical, search	terms used)
	MENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the	e relevant passages	Relevant to claim No.
Х	JOURNAL OF MEDICAL AND VETERINA	DV	1
	MYCOLOGY, 32 (5). 1994. 331-341	•••	1
	XP002002929 LECLERC M C ET AL: "Phylogeny	a.f	
	dermatophytes and dimorphic fun	gi based on	
	large subunit ribosomal RNA seq	uence	
	comparisons" cited in the application		
A	see the whole document		2-9
x	CURRENT GENETICS, 27 (1). 1994.	20_45	
^	XP002002930	-	1
	NEUVEGLISE C ET AL: "Identific group-I introns in the 28s rDNA	ation of	
	entomopathogenic fungus Beauver	or the ia	
	brongniartii"		
^	see the whole document		2-9
		-/	
		·····	
X Furth	ner documents are listed in the continuation of box C.	X Patent family member	s are listed in annex.
* Special can	regones of cited documents :	"T" later document published a	after the international filing date
"A" docume	ent defining the general state of the art which is not cred to be of particular relevance	or priority date and not in cited to understand the pri	conflict with the application but maple or theory underlying the
	focument but published on or after the international	invention "X" document of particular rel	evance; the claimed invention
Autron :	nt which may throw doubts on priority claim(s) or is cited to establish the publication date of another	involve an inventive step t	d or cannot be considered to when the document is taken alone
citation O' docume	or other special reason (as specified) and referring to an oral disclosure, use, exhibition or	"Y" document of particular rel cannot be considered to in document is combined wit	evance; the claimed invention wolve an inventive step when the h one or more other such docu-
otner it P* docume	neans at published prior to the internstional filing date but	ments, such combination in the art.	ocing obvious to a person skilled
HARF OF	an the priority date claimed school completion of the international search	'&' document member of the s Date of mailing of the inter	
			·
21	May 1996	04.06.199	O
Name and m	assiing address of the ISA European Patent Office, P.B. SSIS Patentiaan 2	Authorized officer	
	NL - 2280 HV Riprojk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni,	Constitute of	
	Fax: (+31-70) 340-3016	Gurdjian, D	

3

....

Form PCT/ISA/218 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

Inter vial Application No PC1/IB 96/00026

		PC1/18 96/00026
	IRION) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claum No.
X	PHYTOPATHOLOGY, 84 (3). 1994. 256-259., XP002002931 MOUKHAMEDOV R ET AL: "Use of polymerase chain reaction-amplified ribosomal intergenic sequences for the diagnosis of	1
A	Verticillium tricorpus" see the whole document	2-9
X	CURR GENET, 12 (3). 1987. 209-214., XP002002932 CARR L G ET AL: "ORGANIZATION OF THE 5.8S 16-18S AND 23-28S RIBOSOMAL RNA GENES OF CEPHALOSPORIUM-ACREMONIUM"	1
A	see the whole document	2-9
X	JOURNAL OF BACTERIOLOGY, vol. 172, no. 8, 1990, pages 4238-4246, XP002002933 VILGALYS R. ET AL.: "Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from	1
A	several Cryptococcus species* see the whole document	2-9
A	US,A,5 352 579 (MILLIMAN CURT L) 4 October 1994 see the whole document	2-9
A	EP,A,0 422 872 (GENE TRAK SYSTEMS) 17 April 1991 see the whole document	2-9
P,X	JOURNAL OF CLINICAL MICROBIOLOGY, 33 (11). 1995. 2913-2919., XP002002934 SANDHU G S ET AL: "Molecular probes for diagnosis of fungal infections" see the whole document	1-3
:		

3

5

W

Form PCT/ISA/218 (continuation of second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

Inter vial Application No PCT/IB 96/00026

Patent document cited in search report	Publication date	Patent family member(s)		Publication date	
US-A-5352579	04-10-94	NONE			
EP-A-0422872	17-04-91	AU-B- CA-A- JP-A- US-A-	6390490 2025181 3168085 5324632	18-04-91 13-04-91 19-07-91 28-06-94	

Form PCT/ISA/210 (potent family annex) (July 1992)