NASA TECH BRIEF

NASA Tech Briefs are issued to summarize specific innovations derived from the U.S. space program, to encourage their commercial application. Copies are available to the public at 15 cents each from the Clearinghouse for Federal Scientific and Technical Information, Springfield, Virginia 22151.

Fluidic Transducer Gives Pressure Output as Function of Temperature

This fluidic transducer gives a pressure output signal that is a direct function of the differential temperature sensed by the device. The transducer is arranged as a bridge with micrometer valves, R_1 and R_2 , in one pair of legs and capillary tubes, R_3 and R_4 , in the other pair.

When the capillaries, R_3 and R_4 , are exposed to different temperatures, an output pressure signal P_{AB}

is developed across junctions A and B. The magnitude of this signal is a function of the relative change in the fluid inpedances of the capillaries. Since the impedances increase as a function of temperature in a known manner, the transducer can be used as a differential temperature indicator; it can be used as a direct temperature indicator when one of the capillary legs is maintained at a known constant temperature. The

(continued overleaf)

output signal (P_{AB}) is quite sensitive to small thermal changes and has sufficient power to drive a fluidic amplifier such as described in Tech Brief 68-10538.

Notes:

- 1. This transducer should be useful as a temperaturedependent pressure regulator in various processcontrol systems.
- 2. Documentation is available from:

Clearinghouse for Federal Scientific and Technical Information Springfield, Virginia 22151 Price \$3.00

Reference: B68-10537

Patent status:

Inquiries about obtaining rights for the commercial use of this invention may be made to NASA, Code GP, Washington, D.C. 20546.

Source: D. B. Wall of Martin-Marietta Corporation under contract to Electronics Research Center (ERC-10093)

Brief 68-10537 Category 05