

Universidade do Minho

Escola de Engenharia

MESTRADO INTEGRADO EM ENGENHARIA DE TELECOMUNICAÇÕES E INFORMÁTICA

SISTEMAS DIGITAIS

Grupo 02 - Elementos:

Nome:Beatriz Ressurreição Alves

E-mail: a96003@alunos.uminho.pt

Nome:João Gomes

E-mail: a96826@alunos.uminho.pt

PROPOSTA DE RESOLUÇÃO

1.

Implemente a função lógica P = ABC usando somente portas NAND de 2 entradas.

a) Identifique os sinais de entrada e saída do problema.

Sinais de entrada-A,B,C.

Sinais de saída-P.

b) Apresente a tabela de verdade correspondente a esta função.

Tabela 1: Tabela de verdade

A	В	С	$\overline{A.B}$	A.B	$\overline{A.B.C}$	P=A.B.C
0	0	0	1	0	1	0
0	0	1	1	0	1	0
0	1	0	1	0	1	0
0	1	1	1	0	1	0
1	0	0	1	0	1	0
1	0	1	1	0	1	0
1	1	0	0	1	1	0
1	1	1	0	1	0	1

c) Desenhe o diagrama esquemático do circuito conforme as recomendações. Monte e teste o circuito (para todas as combinações da tabela de verdade).

d)Simule o circuito através do CircuitVerse para todas as combinações da tabela da verdade. Coloque no relatório o circuito desenvolvido bem como o link do projeto do circuito.

https://circuitverse.org/users/68862/projects/tp2-ex-1

2.

Um tribunal é constituído por 4 juízes (A, B, C e D). Para a decisão sobre um réu ser culpado ou inocente, cada juiz pode votar sim ou não. O réu só é considerado culpado se o juiz D votar sim ou se a maioria dos juízes votar sim.

a) Construa uma tabela de verdade em que cada juiz corresponde a uma entrada, e a saída indica a decisão: culpado ou inocente.

legenda da tabela nas entradas(A,B,C) 0=não e 1=sim e na saida (F) 0=Inocente 1=Culpado

Tabela 2: Tabela de verdade

A	В	С	D	F
0	0	0	0	0
0	0	0	1	1
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	1
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

b) Obtenha a expressão lógica minimizada para a saída, em função das quatro entradas, representando-a na forma de soma de produtos.

 $\mathbf{F} = \overline{A}.\overline{B}.\overline{C}.D + \overline{A}.\overline{B}.C.D + \overline{A}.B.\overline{C}.D + \overline{A}.B.C.D + A.\overline{B}.\overline{C}.D + A.\overline{B}.C.D + A.B.\overline{C}.D + A.B.C.\overline{D} + A.B.C.D = A.B.C + D$

c) Utilizando o teorema de De Morgan, converta algebricamente esta função para uma forma que possa ser implementada diretamente com base unicamente em portas NAND de 2 entradas. Quantas portas e quantos circuitos integrados são necessários?

$$ABC+D = \overline{\overline{ABC} + D} = \overline{\overline{\overline{ABC} * D}} = \overline{\overline{\overline{\overline{ABC}} * D}} = \overline{\overline{\overline{\overline{AB}} * C} * \overline{D}}$$

São necessários 5 portas NAND e 2 CI'S 7400.

- d) Desenhe o diagrama esquemático do circuito.
- e) Simule o novo circuito através do CircuitVerse. Coloque no relatório o circuito desenvolvido bem como o link do projeto do circuito. .

https://circuitverse.org/users/68862/projects/tp2-ex-2