CPSC 500 Fundamentals of Algorithm Design and Analysis

Lecturer: Prof. Will Evans Date: September 30, 2013 Scriber: YuanFang Chi

1. Overview

The previous lecture has introduced the coupon collector's problem. This lecture explains the expectation and variance of this problem. Furthermore, this lecture also discusses the Chebyshev's Inequality, K-select problem, and selection via random sampling algorithm.

2. Coupon Collector's Problem

Let Y = the number of trials to collect all n coupons and X_i = the number of trials performed when we have exactly i different coupon types. The previous lecture has shown that:

$$Y = X_0 + X_1 + \cdots + X_{n-1}$$

and

$$E[Y] = n \ln n + O(n)$$

But how close is Y to its expectations?

2.1. Variance

Definition The variance of random variable x is

$$Var[x] = E[(x - E[x])^2]$$

For independent x and y:

$$Var[x + y] = Var[x] + Var[y]$$

Applying on coupon collector's problem

In the coupon collector's problem, X_0 , X_0 ... X_{n-1} are mutually independent of each other. Therefore, the variance of Y can be given as:

$$Var[Y] = Var[X_0] + Var[X_1] + \cdots Var[X_{n-1}]$$

Then, let p = the probability of getting a different coupon type, $p = \frac{n-i}{n}$. For general function $Var[X_i]$,

$$Var\left[X_{i}\right] = \frac{1-p}{p^{2}}$$

$$Var\left[X_{i}\right] = \frac{ni}{(n-i)^{2}}$$

$$Var[Y] = \sum_{i=0}^{n-1} Var[X_i]$$

$$= \sum_{i=0}^{n-1} \frac{ni}{(n-i)^2}$$

$$= n \left(n \sum_{i=1}^{n} \frac{1}{i^2} - H_n \right)$$

$$\approx n \left(n \frac{\pi^2}{6} - H_n \right) \le 2n^2$$

So the variance is asymptotically n^2

3. Chebyshev's Inequality

Definition Chebyshev's inequality states that for the standard deviation k, less than $\frac{1}{k^2}$ of the distribution's values can be k away from the mean. Let σ^2 be the variance of X, Chebyshev's inequality is represented as

$$P[|X - E[X]| \ge k] \le \frac{\sigma^2}{k^2}$$

Proof Let $Z = (X - E[X])^2$

$$E[Z] = Var[X] = \sigma^2$$

By Markov's Inequality,

$$P[Z \ge k^2] \le \frac{1}{k^2} \ \sigma^2$$

$$P[Z \ge k^2] = P[|X - \mathrm{E}[X]| \ge k]$$

Applying on coupon collector's problem

For coupon collector's problem, $Var[Y] \approx n^2 \frac{\pi^2}{6}$ and $E[Y] = nH_n$ are derived earlier, by Chebyshev's inequality

$$P[Y \ge bnH_n] \le P[|Y - nH_n| \ge (b - 1)nH_n]$$

$$\le \frac{\frac{n^2\pi^2}{6}}{(b - 1)^2n^2H_n^2}$$

$$\approx \frac{\pi^2}{6(b - 1)^2(\ln n)^2}$$

As shown in the equation, the probability is dependent on n. Probability goes down when n gets larger. In 1961, Paul Erdos and Alfred Renyi proved that

$$\lim_{n\to\infty} P[Y \ge n \ln n + cn] = 1 - e^{-e^{-c}}$$

Example For c = 1, 2, 3, 4, the result of $1 - e^{-e^{-c}}$ is given below:

1	0.31
2	0.13
3	0.05
4	0.02

4. The K-Select Problem

Definition For input of n distinct real numbers S [1 ... n], the K-Select problem describes how to find the k^{th} smallest number in S. One obvious algorithm is to sort S in the increasing order and pick the k^{th} element in S. However, this algorithm may take $\frac{n}{2}$ selections to find the median. A better algorithm of selection is to pick a pivot and partition S by it. Then, the algorithm determines which subset the k^{th} element is in and then recurses on it. This algorithm is described in pseudo code below.

```
select(S, k) \{ \\ if |S| = 1 \text{ return } S[1]; \\ p = GoodPivot(S); \\ L = \{S[i] | S[i] < p\}; \\ R = \{S[i] | S[i] > p\}; \\ if |L| \ge k \text{ return } select(L, k); \\ else if |L| = k-1 \text{ return } p; \\ else \text{ return } select(R, k-|L|-1); \\ \}
```

If the good pivot is picked randomly from S, the running time of the algorithm is expected to be: <4n. Blum, Floyd, Pratt, Rivest and Tarjan introduced an algorithm to arrange S into groups of 5 and pick a median of each group. Then, select the median of those $\frac{n}{5}$ medians to be the good pivot. The running time of this algorithm is approximately $T(n) = T\left(\frac{n}{5}\right) + n + T\left(\frac{7n}{10}\right)$. We will show that there is a randomized algorithm that performs 1.5n + o(n) comparisons to find the median in expectation. There is a lower bound of 2n on all deterministic algorithms that find the median, which we won't show. Thus the randomized algorithm's expected performance is faster than any deterministic algorithm.

5. Selection via Random Sampling

An algorithm of selection via random sampling is introduced briefly.

Assume $k \in [n^{\frac{1}{4}}, n - n^{\frac{1}{4}}]$

- 1. Select $n^{\frac{3}{4}}$ numbers from S at random (with replacement), call the resulting sequence R.
- 2. Sort R O (n) time. (Reduce problem by factor $\frac{1}{n^{\frac{1}{4}}}$)
- 3. Let a be the $(\frac{k}{n^{\frac{1}{4}}} \sqrt{n})$ smallest in R; Let b be the $(\frac{k}{n^{\frac{1}{4}}} + \sqrt{n})$ smallest in R.
- 4. Partition S into $S_L = \{x \in S | x < a\}, S_O = \{x \in S | a \le x \le b\}, S_R = \{x \in S | x > b\}.$
- 5. If $|S_L| \ge k$, then FAIL.
- 6. If $|S_L| + |S_O| < k$, then FAIL.
- 7. If $|S_0| > 4n^{\frac{3}{4}}$, then FAIL.
- 8. Sort S_0 and return $(k |S_L|)$ smallest from S_0 .