Syntax and Parsing

Slav Petrov – Google Research

Lisbon Machine Learning School

Dependency Parsing

(Non-)Projectivity

- Crossing Arcs needed to account for nonprojective constructions
- Fairly rare in English but can be common in other languages (e.g. Czech):

He is mostly not even interested in the new things and in most cases, he has no money for it either.

Formal Conditions

- For a dependency graph G = (V, A)
- ▶ With label set $L = \{l_1, \ldots, l_{|L|}\}$
- ► *G* is (weakly) connected:
 - ▶ If $i, j \in V$, $i \leftrightarrow^* j$.
- ▶ G is acyclic:
 - ▶ If $i \rightarrow j$, then not $j \rightarrow^* i$.
- ► *G* obeys the single-head constraint:
 - ▶ If $i \rightarrow j$, then not $i' \rightarrow j$, for any $i' \neq i$.
- G is projective:
 - ▶ If $i \rightarrow j$, then $i \rightarrow^* i'$, for any i' such that i < i' < j or j < i' < i.

Arc-Factored Models

Assumes that the score / probability / weight of a dependency graph factors by its arcs

$$w(G) = \prod_{(i,j,k)\in G} w_{ij}^k$$
 look familiar?

- w_{ij}^k is the weight of creating a dependency from word w_i to w_j with label I_k
- Thus there is an assumption that each dependency decision is independent
 - Strong assumption! Will address this later.

Arc-factored Projective Parsing

All projective graphs can be written as the combination of two smaller adjacent graphs

Arc-factored Projective Parsing

- Chart item filled in a bottom-up manner
 - ▶ First do all strings of length 1, then 2, etc. just like CKY

- ▶ Weight of new item: $\max_{l,j,k} w(A) \times w(B) \times w_{hh'}^k$
- ▶ Algorithm runs in $O(|L|n^5)$
- Use back-pointers to extract best parse (like CKY)

Eisner Algorithm

- $ightharpoonup O(|L|n^5)$ is not that good
- ▶ [Eisner 1996] showed how this can be reduced to $O(|L|n^3)$
 - Key: split items so that sub-roots are always on periphery

Eisner Algorithm PseudoCode

```
Initialization: C[s][s][d][c] = 0.0 \quad \forall s, d, c
for k:1..n
  for s:1..n
    t = s + k
    if t > n then break
     % First: create incomplete items
    C[s][t][\leftarrow][0] = \max_{s \le r < t} (C[s][r][\rightarrow][1] + C[r+1][t][\leftarrow][1] + s(t,s))
    C[s][t][\to][0] = \max_{s \le r \le t} (C[s][r][\to][1] + C[r+1][t][\leftarrow][1] + s(s,t))
     % Second: create complete items
    C[s][t][\leftarrow][1] = \max_{s \le r \le t} (C[s][r][\leftarrow][1] + C[r][t][\leftarrow][0])
    C[s][t][\to][1] = \max_{s < r < t} (C[s][r][\to][0] + C[r][t][\to][1])
  end for
end for
```

Maximum Spanning Trees (MSTs)

- A directed spanning tree of a (multi-)digraph G = (V, A), is a subgraph G' = (V', A') such that:
 - V' = V
 - $ightharpoonup A' \subseteq A$, and |A'| = |V'| 1
 - ► G' is a tree (acyclic)
- A spanning tree of the following (multi-)digraphs

Can use MST algorithms for nonprojective parsing!

Chu-Liu-Edmonds

 $\triangleright x = \text{root John saw Mary}$

Chu-Liu-Edmonds

Find highest scoring incoming arc for each vertex

▶ If this is a tree, then we have found MST!!

Find Cycle and Contract

- ▶ If not a tree, identify cycle and contract
- Recalculate arc weights into and out-of cycle

Recalculate Edge Weights

- Incoming arc weights
 - Equal to the weight of best spanning tree that includes head of incoming arc, and all nodes in cycle
 - root → saw → John is 40 (**)
 - root → John → saw is 29

Theorem

The weight of the MST of this contracted graph is equal to the weight of the MST for the original graph

Therefore, recursively call algorithm on new graph

Final MST

This is a tree and the MST for the contracted graph!!

▶ Go back up recursive call and reconstruct final graph

Chu-Liu-Edmonds PseudoCode

Chu-Liu-Edmonds(G_x, w)

- 1. Let $M = \{(i^*, j) : j \in V_x, i^* = \arg\max_{i'} w_{ij}\}$
- 2. Let $G_M = (V_x, M)$
- 3. If G_M has no cycles, then it is an MST: return G_M
- Otherwise, find a cycle C in G_M
- 5. Let $\langle G_C, c, ma \rangle = \text{contract}(G, C, w)$
- 6. Let $G = \text{Chu-Liu-Edmonds}(G_C, w)$
- 7. Find vertex $i \in C$ such that $(i', c) \in G$ and ma(i', c) = i
- 8. Find arc $(i'', i) \in C$
- 9. Find all arc $(c, i''') \in G$
- 10. $G = G \cup \{(ma(c, i'''), i''')\}_{\forall (c, i''') \in G} \cup C \cup \{(i', i)\} \{(i'', i)\}$
- 11. Remove all vertices and arcs in G containing c
- return G
 - ▶ Reminder: $w_{ij} = \arg \max_k w_{ij}^k$

Chu-Liu-Edmonds PseudoCode

```
contract(G = (V, A), C, w)
     Let G_C be the subgraph of G excluding nodes in C
   Add a node c to G_C representing cycle C
3.
     For i \in V - C: \exists_{i' \in C}(i', i) \in A
        Add arc (c, i) to G_C with
           ma(c, i) = \arg \max_{i' \in C} score(i', i)
           i' = ma(c, i)
           score(c, i) = score(i', i)
    For i \in V - C: \exists_{i' \in C}(i, i') \in A
        Add edge (i, c) to G_C with
           ma(i, c) = \arg \max_{i' \in C} [score(i, i') - score(a(i'), i')]
           i' = ma(i, c)
           score(i, c) = [score(i, i') - score(a(i'), i') + score(C)]
              where a(v) is the predecessor of v in C
              and score(C) = \sum_{v \in C} score(a(v), v)
5.
      return \langle G_C, c, ma \rangle
```

Arc Weights

$$w_{ij}^k = e^{\mathbf{W} \cdot \mathbf{f}(i,j,k)}$$

- Arc weights are a linear combination of features of the arc, f, and a corresponding weight vector w
- Raised to an exponent (simplifies some math ...)
- What arc features?
- ► [McDonald et al. 2005] discuss a number of binary features

Arc Feature Ideas for f(i,j,k)

- Identities of the words wi and wj and the label lk
- Part-of-speech tags of the words wi and wj and the label lk
- Part-of-speech of words surrounding and between wi and wj
- Number of words between wi and wj, and their orientation
- Combinations of the above

(Structured) Perceptron

```
Training data: T = \{(x_t, G_t)\}_{t=1}^{|T|}
1. \mathbf{w}^{(0)} = 0; i = 0
2. for n : 1..N
3. for t:1...T
           Let G' = \arg \max_{G'} \mathbf{w}^{(i)} \cdot \mathbf{f}(G')
5.
           if G' \neq G_t
              \mathbf{w}^{(i+1)} = \mathbf{w}^{(i)} + \mathbf{f}(G_t) - \mathbf{f}(G')
6.
       i = i + 1
7.
     return wi
8.
```

Partition Function

Partition Function:
$$Z_x = \sum_{G \in T(G_x)} w(G)$$

▶ Lapacian Matrix Q for graph $G_x = (V_x, A_x)$

$$Q_{jj} = \sum_{i \neq j, (i,j,k) \in A_x} w_{ij}^k$$
 and $Q_{ij} = \sum_{i \neq j, (i,j,k) \in A_x} -w_{ij}^k$

Cofactor Qⁱ is the matrix Q with the ith row and column removed

> The Matrix Tree Theorem [Tutte 1984] The determinant of the cofactor Q^0 is equal to Z_x

- ▶ Thus $Z_x = |Q^0|$ determinants can be calculated in $O(n^3)$
- ▶ Constructing Q takes $O(|L|n^2)$
- ▶ Therefore the whole process takes $O(n^3 + |L|n^2)$

Arc Expectations

$$\langle i,j,k\rangle_{\times} = \sum_{G\in\mathcal{T}(G_{\times})} w(G) \times \mathbb{1}[(i,j,k)\in A]$$

Can easily be calculated, first reset some weights

$$w_{i'j}^{k'} = 0 \ \forall i' \neq i \ \text{and} \ k' \neq k$$

- Now, $\langle i, j, k \rangle_x = Z_x$
- Why? All competing arc weights to zero, therefore every non-zero weighted graph must contain (i, j, k)
- ▶ Naively takes $O(n^5 + |L|n^2)$ to compute all expectations
- ▶ But can be calculated in $O(n^3 + |L|n^2)$ (see [McDonald and Satta 2007, Smith and Smith 2007, Koo et al. 2007])

Summary

- Constituency Parsing
 - CKY Algorithm
 - Lexicalized Grammars
 - Latent Variable Grammars

- Dependency Parsing
 - Eisner Algorithm
 - Maximum Spanning Tree Algorithm

There is lots more and these models are being actively used in practice!