Intro to Cryptography Lesson Introduction

- Basics of encryption and cryptanalysis
- Historical/simple schemes
- Types of cryptography and how they are used for security

Encryption/Decryption

- There is a one-to-one mapping
- Provides confidentiality protection

Encryption/Decryption

Other services:

- Integrity checking:
 no tampering
- Authenticity:verified authorship
- Authentication:
 not an imposter

Encryption Basics

Ancient crypto:

- ●Early signs of encryption in Egypt in ~2000 B.C.
- Letter-based scheme
 (e.g., Caesar's cipher) ever since

Encryption Basics

- Symmetric ciphers:
 - From ancient time to the presence

- Asymmetric ciphers
 - First by Diffie-Hellman-Merkle in 1976

Encryption Basics

•Hybrid schemes - most protocols now use both:

 Asymmetric ciphers for authentication, key exchange, and digital signatures

 Symmetric ciphers for encryption of data/traffic

Attacks on Encryption

- •Break a cipher:
 - Uncovering plaintext p from ciphertext c, or, alternatively, discovering the key

Attacks on Encryption

- Brute-force attack
 - E.g., try all possible keys
- Cryptanalysis
 - Analysis of the algorithm and data characteristics
- Implementation attacks
 - E.g., side channel analysis
- Social-engineering attacks

Encryption Attack Quiz

If the only form of attack that could be made on an encryption algorithm is **brute-force**, then the way to counter such attacks would be to...

Simple Ciphers Quiz

Use Caesar's cipher to decode the message:

LQIRUPDWLRQ VHFXULWB

Enter your answer in the text box:

Simple Ciphers

- Caesar's cipher (or, shift cipher):
 - •E.g., A → D, B → E
 - •That is, shift by an offset *n*:
 - $-(letter + n) \mod 26$
 - only 26 possible ways of secret coding
- Monoalphabetic cipher (or, substitution cipher):
 - •generalization, arbitrary mapping of one letter to another
 - \bullet 26!, ~4 × 10²⁶ or ~2⁸⁸
 - Attack with statistical analysis of letter frequencies

Letter Frequency of Ciphers

Letter Frequency of Ciphers

What is plaintext for:

WE WILL MEET IN THE MIDDLE OF THE LIBRARY AT NOON ALL ARRANGEMENTS ARE MADE

• In practice, also consider frequency of letter pairs, triples

Monoalphabetic Cipher Quiz

Try to decipher this method using the Monoalphabetic Cipher:

WAIT IT WAS SAD

Enter your answer in the text box:

Vigenere Cipher

· Plaintext:

ATTACKATDAWN

· Key:

LEMON

· Keystream:

LEMONLEMONLE

· Ciphertext:

LXFOPVEFRNHR

Vigenere Cipher Quiz

What weaknesses can be exploited in the Vigenere Cipher?

It uses a repeating key letters
It requires security for the key, not the message
The length of the key can be determined using
frequency

What should be Kept Secret?

Kerckhoff's principle:

 A cryptosystem should be secure even if the attacker knows all details about the system, with exception of the secret key

•In practice:

- Only use widely known ciphers that have been crypto analyzed for several years by good cryptographers
 - E.g., established standards

Types of Cryptography

Secret key cryptography:

 one key same key for encryption and decryption

Public key cryptography:

- two keys
 - Public for encryption, private for decryption
 - Private for signing and public for verification

Hash Functions

- Compute message digest of data of any size
- •Fixed length output: 128-512 bits
- ◆Easy to compute *H*(*m*)
- •Given H(m), no easy way to find m
 - One-way function
- •Given m_1 , it is computationally infeasible to find $m_2 \neq m_1$ s.t. $H(m_2) = H(m_1)$
 - Weak collision resistant
- •Computationally infeasible to find $m_1 \neq m_2$ s.t. $H(m_1) = H(m_2)$
 - Strong collision resistant

Hash Functions for Passwords

Hash Function Quiz

Which of the following characteristics would improve password security?

Use a one-way hash function
Should not use the avalanche effect
Should only check to see that the hash function output
is the same as stored output

Symmetric Encryption

Comparison of Encryption Algorithms

	DES	Triple DES	AES
Plaintext block size (bits)	64	64	128
Ciphertext block size (bits)	64	64	128
Key size (bits)	56	112 or 168	128, 192, or 256

DES = Data Encryption Standard

AES = Advanced Encryption Standard

Comparison of Encryption Algorithms

Key size (bits)	Cipher	Number of Alternative Keys	Time Required at 109 descryptions/s	Time Required at 10 descryptions/s
56	DES	$2^{56} \approx 7.2 \times 10^{16}$	2^{55} ns = 1.125 years	1 hour
128	AES		2^{127} ns = 5.3 x 10^{21} years	
168	Triple DES	2 ¹⁶⁸ ≈3.7 × 10 ⁵⁰	2^{167} ns = 5.3 x 10^{33} years	5.8 x 10 ²⁹ years
192	AES	2 ¹⁹² ≈6.3 × 10 ⁵⁷	$2^{191} \text{ ns} = 5.3 \times 10^{40} \text{ years}$	9.8 x 10 ³⁶ years
256	AES	2 ²⁵⁶ ≈ 1.2 × 10 ⁷⁷	2^{255} ns = 5.3 x 10 ⁶⁰ years	1.8 × 10 ⁵⁶ years

Symmetric Encryption Quiz Select the correct definition for each type of

attack:

- A. A method to determine the encryption function by analyzing known phrases and their encryption
- B. Analyzing the effect of changes in input on the encrypted output
- C. Compare the ciphertexts with its known plaintext
- D. A method where a specific known plaintext is compared to its ciphertext

ſ	known-Plaintext
L	attacks
ſ	chosen-Plaintext
L	attacks
ſ	differential
L	cryptanalysis
	linear cryptanalysis

Asymmetric Encryption

 Plaintext: Readable message or data that is fed into the algorithm

- Encryption algorithm: Performs transformations on the plaintext
- Public and private key: Pair of keys, one for encryption,
 one for decryption
- Ciphertext: Scrambled message produced as output
- Decryption key: Produces the original plaintext

Asymmetric Encryption

Asymmetric Encryption Quiz

Check all tasks for which asymmetric encryption is better:

	provide confidentiality of a message
	securely distribute a session key
	scalability

Digital Signatures

Digital Signatures

Digital Envelopes

- Protects a message without needing to first arrange for sender and receiver to have the same secret key
- Equates to the same thing as a sealed envelope containing an unsigned letter

Digital Envelopes

Digital Envelopes

Encryption Quiz

Mark each of the statements either T for True or F for False:

Symmetric encryption can only be used to provide confidentiality
Public-key encryption can be used to create digital signatures
Cryptanalytic attacks try every possible key on a piece of ciphertext until an intelligible translation into plaintext is obtained
The secret key is input to the encryption algorithm

Intro to Cryptography Lesson Summary

- Encryption schemes and attacks on encryption have been around for thousands of years.
- Hash: no key, no encryption
- Secret key cryptography: same key for encryption and decryption
- Public key cryptography: public key for encryption and signature verification and private key for decryption and signins