灾情巡视路线最优解的证明

张建新口

(沙洲工学院, 张家港 215600)

编者按 本文对问题三的分析有独特之处,证明正确且较朴实,特予发表.

摘 要 本文对灾情巡视路线中的问题三, 从理论上证明了完成巡视至少要分 22 组, 并给出一个分 22 组总巡视时间为 130.578 小时的方案。

问题三 在 T=2 小时, t=1 小时, v=35 公里 / 小时的假定下,如果巡视人员足够多,完成巡视的最小时间是多少?并给出此时间限定下的最佳巡视路线.

分析 在 T t 和 v 的值固定不变,巡视人员足够多的条件下,我们先假设每个巡视组只负责一个乡 (镇) 或村. 此种情况下,完成巡视最短时间就等于按最短路线各乡 (镇) 、村完成巡视任务所用时间最多的一个,即为:

$$\max_{i} \left(\frac{2d_{iO}}{v} + T_{i} \right)$$

其中 d_{iO} 为 i 点到 O 点的最短距离 $(i=1,2\cdots35,A,B\cdots N,P,Q,R)$, T_i 为巡视 i 点时所停留的时间、即

$$T_i = \begin{cases} 1, & 1 \le i \le 35, \\ 2, & (i = A, B, \dots, N, P, Q, R) \end{cases}$$

显然这也是在组数少于 52 的情况下最短巡视时间的下界.

为了证明下面定理,首先用 Dijkstra 算法求出所有点与 O 点之间的最短距离,并计算出在最短路径上所花费的时间,见下表 1(也可用手工求解).

定理 1 如果巡视人员足够多、完成巡视的最短时间为 45/7 小时.

证 由表 1 知, 按最短路径,H 点是距县政府(O)所在地最远的乡 (镇)、村, 即 $\max[d_{iO}=d_{HO}=77.5$ 公里,又因为 $\sum_i (T_i)=2=T_H$ 、所以 $\max_i (\frac{2d_{iO}}{v}+T_i)=\frac{2d_{HO}}{v}+T_H=2\times77.5/35+2=45/7$ 小时.

定理 2 若要在 45/7 小时内完成巡视, 至少需 22 组.

为了证明此定理,首先引入下列结论.

结论 1 在乡(镇)、村总停留时间大于 2 小时的任一巡视回路中一定不能含有 H,G,I 三个乡(镇) 和 14, 15, 12, 10, 13, 16 六个村.

证 假设一巡视回路在乡(镇)、村总停留时间大于 2 小时,则在路上所花时间应小于 6.4286-3=3.4286 小时,县城至回路中任一乡(镇)、村的最短路所花时间应小于 3.4286/2=1.7143 小时,结合表上可知 H,G,I= 三个乡(镇)和 14,15,12,10,13,16 六个村不满足条件.

结论 2 在乡(镇)、村总停留时间大于 3 小时的任一巡视回路中一定不能含有 F, J, K 三个 乡(镇)和 11, 17, 18, 8, 9, 22, 19, 24 八个村.

证 假设一巡视回路在乡 (镇)、村总停留时间大于 3 小时,则县城至回路中任一乡 (镇)、村的最短路所花时间应小于 (6.4286-4)/2=1.2143 小时,结合表 1 可知 E.J.K 三个乡 (镇)和 11.17.18.8.9.22.19.24 八个村不满足条件。

¹ 作者现为东南大学国内访问学者、导师朱道元.

表 1

点	最短路径长 (公里)	花费时间 (小时)	点	最短路径长 (公里)	花费时间 (小时)
Н	77.5	2.2143	30	35.7	1.0200
14	72.7	2.0772	7	34.9	0.9972
15	69,9	1.9972	7	34.5	0.9858
12	67.3	1.9229	25	31.8	0.9086
10	65.9	1.8829	N	31.1	0.8886
13	64.1	1.8315	32	30.2	0.8629
G	62.7	1.7915	27	28.4	0.8115
I	61.1	1.7458	Q	28.0	0.8000
16	60.3	1.7229	34	27.8	0.7943
11	55.9	1.5972	6	27.2	0.7772
F	55.1	1.5743	33	23.7	0.6772
J	54.3	1.5513	D	22.2	0.6343
17	53.5	1.5286	28	22.2	0.6343
18	52.9	1.5115	31	22.1	0.6315
8	49.7	1.4200	29	20.8	0.5943
9	49.5	1.1143	26	20.6	0.5886
22	49.0	1.4000	M	19.8	0.5657
19	46.2	1.3200	5	17.5	0.5000
24	44.3	1.2658	A	16.3	0.4658
K	43.7	1.2486	3	14.0	0.4000
Е	41.7	1.1915	R	12.9	0.3686
21	39,6	1.1315	В	11.9	0.3400
L	39.0	1.11-13	۲,	11.5	0.3286
23	39.0	1.1143	P	10.1	0.2886
20	38.3	1.0943	2	9.2	0.2629
35	36.0	1.0286	1	6.0	0.1715

结论 3 在乡(镇)、村总停留时间大于 4 小时的任一巡视回路中一定不能含有 E, L, N, Q, M 五个乡(镇)和 21, 23, 20, 35, 30, 4, 7, 25, 32, 27, 34, 6, 33, 28, 31, 26 十六个村.

证 假设一巡视回路在乡 (镇)、村总停留时间大于 4 小时,则县城至回路中任一乡 (镇)、村的最短路所花时间应小于 (6.4286-5)/2=0.7143 小时,结合表 1 可知 E,L,N,Q 四个乡 (镇) 和 21.23,20.35,30,4,7,25,32,27,34,6 十二个村不满足条件,考虑乡 (镇) M 和村 33,28,31,26,虽然县城到乡 (镇) M 和村 33,28,31,26 中任一点的最短路所花时间都小于 0.7143 小时,但由于在这些点的最短路上在乡 (镇)、村总停留时间最多为 4 小时,因此必须经过不在各自最短路上的乡 (镇)、村。

- (1) 分别与这 5 点直接相邻的乡 (镇)、村,因为除与乡 M 相邻的村 5 与村 31 相邻的村 33 、与村 33 相邻的村 31 外的乡 (镇)、村都是本结论中所列出的乡 (镇)、村,由上面证明可知无法形成在乡 (镇)、村总停留时间为 5 小时并且总巡视时间不超过 45/7 小时的巡视回路,而经过县城 O、乡 M 与村 5 的最短回路在乡 (镇)、村总停留时间仅为 4 小时,再加进新的乡 (镇)、村总巡视时间又超过 45/7 小时,经过县城 O 与村 31 33 的最短回路总路程超过 50 公里。

(O,31,R,A,O),(O,A,33,B,O),(O,33,1,C,O) 巡视回路的总路程均超过 50 公里.

(3) 与县城 O 直接相邻的乡 (镇)、村,因为县城到乡 (镇)M 和村 33, 28, 31, 26 中任一点最短距离与县城到最近的乡 (镇)P 和最近的村 1 中任一点最短距离之和的两倍均超过 50 公里,所以不存在包括乡 (镇)M 和村 33、28, 31、26 中任一点在内并且在乡 (镇)、村总停留时间为 5 小时,总巡视时间不超过 45/7 小时的巡视回路。

结论 4 不存在在乡(镇)、村总停留时间为 6 小时,总巡视时间不超过 45/7 小时的巡视回路.

证 假设一巡视回路在乡 (镇)、村总停留时间为 6 小时,则县城至回路中任一乡 (镇)、村的最短路所花时间应小于 (6.4286 - 6)/2 = 0.2143 小时,结合表 1 可知只有村 1 满足条件,而一个村无需停留 6 小时,因此,这样的巡视回路不存在。

结论 5 假设一巡视回路只巡视 a,b 两村,则 O 与 a,a 与 b,b 与 O 之间最短距离之和不大于 155 公里.

证 假设 O 与 a,a 与 b,b 与 O 之间最短距离之和大于 155 公里,则只巡视 a,b 两村所需总时间大于 2+155/35=45/7 小时、所以 a,b 两村不能在同一巡视回路中。

类似可证假设一巡视回路只巡视 a, b 一乡一村 (二乡), 则 O 与 a, a 与 b, b 与 O 之间最短距离之和不大于 120(85) 公里.

结论 6 假设一巡视回路只巡视 a,b,c 三村,则 O,a,b,c 四点构成的最优推销员回路总路程不大于 120 公里.

证 假设 O(a,b,c) 四点构成的最优推销员回路总路程大于 120 公里,则只巡视 a,b,c 三村 所需总时间大于 3+120/35=45/7 小时,所以 a,b,c 三村不能在同一巡视回路中.

类似可证 假设一巡视回路只巡视 a,b,c 一乡二村 (二乡一村),则 O,a,b,c 四点构成的最优推销员回路总路程不大于 85(50) 公里.

下面证明定理 2

证 由结论 1 知 H, G, 1 必须单独巡视,由于 14, 15, 12, 10 中任何两村不能在同一巡视回 路中 (由表 1, 最短路径图和结论 5 可得), 所以结论 1 中所列出的 3 个乡 (镇) 和 6 个村至少需要 7组才可完成巡视. 这7组巡视回路中最多还可以再巡视其它的二个村, 不妨设再巡视结论2中 所列出的 2 个村 (因为换成其它村不影响下面证明的最终结果),则结论 2 中所列出的乡 (镇), 村还剩下 3 个 9 (镇) 和 6 个村,由结论 2 知 F, J, K 三个 9 (镇) 中任何两 9 (镇) 不能在同一巡 视回路中,又由于 11. 17. 18. 8. 9. 22. 19. 21 中任何三村不能在同一巡视回路中 (由表 1, 最短 路径图和结论 6 可得), 所以即使前 7 组巡视回路访问了结论 2 中所列出的 2 个村, 经过 F,J,K的巡视回路组又访问了结论 2 中所列出的三个村、剩下的三个村至少仍需 2 组巡视, 因此, 结论 2 中剩下的 3 个乡 (镇) 和 6 个村至少需 5 组才可完成巡视. 这 5 组巡视回路中最多还可以再巡 视其它的三个村(或一乡和一村),不妨设再巡视结论3中所列出的三个村(或一乡和一村),则结 论 3 中所列出的乡 (镇)、村还剩下 5 个乡 (镇) 和 13 个村 (或 4 个乡和 15 个村), 因为结论 3 中所列出的乡(镇)、村所在的每条巡视回路在乡(镇)、村总停留时间至多4小时,而结论3中 剩下的 5 个乡 (镇) 和 13 个村 (或 4 个乡和 15 个村) 总停留时间为 23 小时,所以结论 3 中剩 下的 5 个乡 (镇) 和 13 个村 (或 4 个乡和 15 个村) 至少需 6 组才可完成巡视. 这 6 组巡视回路 中最多还可以再巡视其它的一个村,至此,上面7+5+6=18个组的巡视回路中最多共能巡视11 个乡 (镇) 和 31 个村. 考虑剩下的 6 个乡 (镇)(O 除外) 和 4 个村, 由结论 4 知, 这 6 个乡 (镇) 和 4 个村所在的每条巡视回路在乡 (镇)、村总停留时间至多 5 小时,而这 6 个乡 (镇)和 4 个 村总停留时间为 16 小时,所以这 6 个乡 (镇) 和 4 个村至少需 4 组才可完成巡视,即整个巡视 至少需要 18+:1=22 组才可完成.

按照上面证明思想,我们得到一个22组的巡视方案,见表2.

-	

巡視路线	巡视时间 (小时)	巡视路程 (公里)	巡视路线	巡视时间 (小时)	巡视路程) (公里)
0-H-O	6.429	155	O - L - 20 - 25 - O	6,366	82.8
0-G-O	5,583	125.4	O - N - 26 - 27 - O	6.223	77.8
0-1-0	5,492	122.2	O - 30 - Q - 28 - O	6.112	73.9
O - F - 9 - O	6.149	110.2	O-4-D-3-O	5,995	69.8
O-J-19-O	6.103	108.6	O - P - 29 - R - O	6.318	46.1
O = 18 = K = O	6.023	105.8	0=A-B-1-0	6.155	40.4
0-14-13-0	6.155	145.4	O - 2 - 5 - M - O	5.392	48.7
O-15-16-O	6,309	150.8	O-31-32-35+34-O	6.318	81.1
0-12-11-0	5.938	137.8	O - C - 33 - O	4.832	64.1
O-10-8-O	6.223	147.8	O + 23 - 24 + O	4.635	92.2
O - E - 7 - 6 - O	6.383	83.4	O = 21 - 17 + 22 + O	6.12	109.2

且总巡视时间为 131.253 小时.

按照尽量沿最短路走和尽量访问邻近乡、村的原则,逐步修改,最后得到一个比上面更优的 22 组的巡视方案,见表 3.

表 3

巡视路线	巡视时间 巡视路 (小时) (公里)		巡视路线	巡视时间 (小时)	巡视路程)
O-H-O	6.429	155	O - L - 20 - 25 - O	6.366	82.8
O+G+O	5,583	125.4	O - N - 27 - 28 + O	6.272	79.5
0-1-0	5.492	122.2	O - Q - 30 - 29 - O	6.04	71.4
O-F-9-O	6.149	110.2	O-4-D-3-O	5,995	69,8
O - J - 19 - O	6.103	108.6	O - P - R - O	5.315	-46
O-18-K-O	6.023	105.8	0-0-8-1-0	5,983	34.4
O-14-13-O	6.155	145.4	O - 2 - 5 - M - O	5.392	48.7
O-15-16-O	6,309	150.8	O+31+32+35+34+O	6.318	81.1
O-12-11-O	5.938	137.8	O = 33 = A = O	4,355	47.4
0-10-8-0	6.223	147.8	O = 23 = 24 = 26 = O	5.635	92.2
O + E + 7 - 6 - O	6.383	83.4	$O = 21 - 17 - 22 - I^5$	6.12	109.2

且总巡视时间为 130.578 小时.

参考文献

- [1] 肖位枢主编,图论及其算法。
- [2] 陈惠开著[美], 吴哲辉, 刘昌孝译, 网论-网络流.

Proof on Optimality of Casualty Inspecting Routes

ZHANG JIAN-XIN

(Shazhou Institute of Technology, Zhangjiagang 215600)