WNV NS3

Model	Log L	# p	dN/dS	LRT	p-value
Null	-7745.48	49	1		
Alternative	-6413.5	50	0.009 [0.007-0.011]	2512.6	~0

HIV-1 env

Model	Log L	# p	dN/dS	LRT	p-value
Null	-2078.3	40	1		
Λ I± ο μιο ο ±'; , ι ο	0070.0	14	1.122	$\sim \sim$	

[0.94-1.33]

41

Not significantly different from neutral

0.33

SARS-CoV-2 spike

Model	Log L	# p	dN/dS	LRT	p-value
Null	-9311.0	176	1		
Alternative	-9292.0	177	0.54 [0.48-0.61]	37.94	~0

Very strongly conserved

Very strongly conserved

~0.6

-2078.2

Alternative

Mean gene-wide dN/dS estimates

 Are not the way to go, <u>except</u> when you have very small (2-3 sequence) datasets

For example:

- The humoral arm of the immune system mounts a potent defense against viral infections
- Existing successful vaccines are based on raising a neutralizing antibody (nAb) response to the pathogen
- No simple host genetic basis (epitopes) of the specificity of neutralizing antibody responses is known
- Need to measure these responses