Práctica 6: FORMAS DE JORDAN

1. Sea $T:V\to V$ una transformación lineal. Mostrar que cada uno de los siguientes subespacios son invariantes por T:

 $i)\{0\}$ ii)V iii)nul(T) iv)Img(T).

- 2. Sean $\{W_i\}$ una colección de subespacios de un espacio vectorial V invariantes por T. Mostrar que $W = \bigcap_i W_i$ también es invariante por T.
- 3. Hallar todos los subespacios invariantes de $A = \begin{bmatrix} 2 & -5 \\ 1 & -2 \end{bmatrix}$ considerada como operador lineal sobre \mathbb{R}^2 .
- 4. Sea \hat{T} la restricción de un operador T a un subespacio invariante W, es decir $\hat{T}w = Tw$, $\forall w \in W$. Probar que para todo polinomio p(t), $f(\hat{T})w = f(T)w$.
- 5. Sea $T:V\to V, T\in\mathcal{L}(V)$. Supongamos que para todo $v\in V$ se tiene que $T^kv=0$ pero $T^{k-1}v\neq 0$. Probar que:
 - a) $S = \{T^{k-1}, \dots, Tv, v\}$ es linealmente independiente.
 - b) El subespacio $W = \langle X \rangle$ es invariante por T.
- 6. Sea $T \in \mathcal{L}(V)$, probar que
 - a) $\{0\} = nul(T^0) \subset nul(T^1) \subset \cdots \subset nul(T^k) \subset nul(T^{k+1}) \subset \cdots$
 - b) $nul(T^m) = nul(T^{m+1}) \Rightarrow nul(T^m) = nul(T^{m+1}) = nul(T^{m+2}) = \cdots$
 - c) Si dim V = n luego $nul(T^n) = nul(T^{n+1}) = \cdots$.
- 7. Sea $T \in \mathcal{L}(V)$, dim V = n, luego $V = nul(T^n) \oplus img(T^n)$.
- 8. Determinar todas las posibles formas canónicas de Jordan para una matriz de orden 5 cuyo polinomio minimal es $m(t) = (t-2)^2$.
- 9. Determinar todas las posibles formas canónicas de Jordan para una matriz con polinomio característico $p_A(t) = (t+2)^3(t-7)^2$. En cada caso determinar el polinomio minimal m(t).