G. H. Raisoni College of Engineering and Management, Pune.

(An Autonomous Institution affiliated to Savitribai Phule Pune University, Pune)

F.Y B. Tech (All Branches) (Term II)

ESE Summer-2021(2020 Pattern)

Integral Calculus and Diff. equations (UBSL104)

[Time: 2 Hours] [Max. Marks-50]

COURSE OUTCOME:

- 1. Understand and use concept of definite integral & solve engineering problems.
- 2. Evaluate the multiple integrals using different techniques and apply it to solve engineering Problems.
- 3. Understand vector integration and its applications related to real life problems.
- 4. Solve first order, first degree & higher order differential equations.
- 5. Form differential equations for simple engineering systems and find its solution.

Instructions to the candidates:

- 1) All questions compulsory.
- Neat diagrams must be drawn wherever necessary.
- Figures to the right indicate full marks.
- Assume suitable data, if necessary.

CO	Sub		Marks	BL
CO1	Question a)	State DUIS rule 1 and 2	[2]	L1
CO3	b)	State Green's lemma and Gauss Divergence theorem.	[2]	L1
CO5	<i>c</i>)	Define Cauchy and Legendre's homogeneous differential equations.	[2]	L1
CO1	<i>a</i>)	Explain properties of Beta function	[2] [3]	L2
CO2	<i>b</i>)	Evaluate $\int_0^1 \int_0^x (x^2 + 3y) dx dy$	[3]	L2
CO4	<i>c</i>)	Solve $(e^x + 2xy^2 + y^3) dx + (a^y + 2yx^2 + 3x y^2) dy = 0$	[3]	L2
CO2	<i>a</i>)	Evaluate $\int_0^1 \int_{e^x}^{e} \frac{1}{\log y} dx dy$ by using change of order.	[5]	L3
CO3	b)	Evaluate the line integral $\oint (x^2 + xy)dx + (x^2 + y^2) dy$ where C is square formed by lines $x = \pm 1$, $y = \pm 1$	[5]	L3
CO4	<i>c</i>)	Solve $(D^2 + D) y = \frac{1}{e^{x} + 1}$	[5]	L3
OR				
CO4	d)	Solve $(D^2 - D - 2) y = 2 \log x + \frac{1}{x} + \frac{1}{x^2}$	[5]	L3

- Analyze the equation, $xy^2 = a^2$ (a-x) to trace the curve CO₁ [5] **L4** a) OR Explain relation between beta and gamma function and thus **CO1 b**) [5] **L4** evaluate $\int_0^\infty \frac{x^2}{(1+x^2)^{7/2}} dx$ Verify stokes theorem for $\bar{F} = (xy^2)\bar{i} + (y)\bar{j} + (z^2x)\bar{k}$ for surface **CO3** [8] **L4** c)of rectangle bounded by x = 0, y = 0, x = 1, y = 2, z = 0**CO5** *d*) An inductor of 0.5 H is connected in series with a resistor of 6 [7] **L4** ohms, a capacitor of 0.02 F, a generator having alternative
 - a) Set a differential equation for instantaneous charge on the condenser
 - b) Find the charge and current at time t if charge on capacitor is zero when switch K is closed at t =0.

voltage given by 24 sin (10t), t>0 and a switch k.
