

BIWIN qNAND Specification

eMMC5.0

MLC NAND

VER.1.0

Jul. 2017

深圳佰维存储科技有限公司 BIWIN STORAGE TECHNOLOGY Co,Ltd

REFERENCE ONLY.TO ANY INTELLECTUAL PROPERTY RIGHTS IN BIWIN PRODUCT OR TECHNOLOGY.ALL INFORMATION IN THIS DOCUMENT IS PROVIDED.

Revision History

Version	Data	Description
1.0	Jul. 2017	First Release

Table of Contents

1. Introduction	5
1.1 Overview	5
1.2 Product Information	5
1.3 Features	5
1.4 Performance	7
1.5 Block Diagram	7
1.6 Function Description	8
1.7 Independent Technology	8
1.8 Error Detect and Management	8
2. Package Dimensions	9
2.1 Physical Specifications	9
2.1.1 9mmx11mmx1.0 mm Package Dimension	9
2.1.2 153 Ball Pin Configuration	
2.2 Pin Description	11
3. qNAND Registers	12
3.1 OCR Register	12
3.2 CID Register	12
3.3 CSD Register	
3.4 Extended CSD Register	
3.4.1 Capacity for User Data	21
3.5 RCA Register	21
3.6 DSR (Drivers Stage Register)	21
4. eMMC5.0 New Features Description	22
4.1 General Description	22
4.2 HS400 Bus Speed Mode	22
4.2.1 The HS400 mode features	22
4.2.2 HS400 Device Input Timing	23
4.2.3 HS400 Device Output Timing	24
4.2.4 H400 (cont'd)	25
4.3. Additional Timing changes in HS400 mode	26
4.3.1 Write Timing	26
4.3.2 Read Timing	26
4.4 Production State Awareness	26
4.5 Field Firmware Update (FFU)	27
4.6 Sleep Notification	28
4.7 Health (Smart) Report [301-270]	29
4.8 Secure Removal Type	29
4.9 Overshoot/Undershoot Specification	30
4.10 HS400 reference load	
4.11 RPMB Throughput Improvement (For future eMMC spec)	31
5. Electrical Characteristics	
5.1 DC Power Specification	
5.2 Typical Power Requirement	
3	

6.	aNAND Connection	Guide	34
٠.	qi ii ii ib comicciion	Outro-	<i>-</i> .

1. Introduction

1.1 Overview

BIWIN qNAND is an embedded flash storage designed in the form of LFBGA package, using MMC protocol V5.0 interface. It combines advanced NAND flash and intelligent flash controller in single package, offering excellent performance and high reliability storage solution to embedded applications.

With industry standard eMMC5.0 protocol, BIWIN qNAND is empowered with many new features such as Discard, Boot partitions, Secure Erase, and Trim, which are optimal for code reliability and data storage.

qNAND has an intelligent controller to manage interface protocols, data storage and retrieval, error detect and correction(ECC) algorithms, defect handling and diagnostics, and power management. The firmware inside has functions of Wear Leveling Management, Garbage Collection, and Bad Block Management.

qNAND also has features as small size, low power consumption, non-volatile, wild range of operation temperature, high reliability, which makes qNAND the ideal solution for smart phones, Tablet, digital cameras, PDAs, PMP, GPS, media player and etc.

1.2Product Information

qNAND Part ID	Capacity	Size	Package
BWCTASC11G08G	8GB	11.5X13X0.9mm	BGA153

1.3Features

- Complies with the eMMC Specification JESD84-B50
- 12 signal interface (including CMD, CLK, DS, DAT[7:0], and RST_n
- Programmable bus width: 1-bit, 4-bit, and 8-bit
- Supports a widerange of power supply voltages: 1.2V, 1.8Vand 3.3V
- Support normal speed SDR mode and high speed DDR mode

- HS400 and HS200 mode support
- Up to 200MHz clock speed
- MMC Mode Command Class
- Class 0 (basic), Class 2 (block read), Class 4 (block write), Class 5 (erase), Class 6 (write protection), Class 7 (lock/unlock)
- High-speed, Dual Data Rate Boot support
- Supports Boot and Alternative Boot Mode
- Replay Protected Memory Block (RPMB)
- Secure Erase, Secure Trim, and Trim
- Enhanced Partition Attributes
- High Priority Interrupt (HPI)
- Background Operations
- Enhanced Reliable Write
- 32-bit RISC based architecture with advanced mapping technology
- Optimized algorithmfor embedded system access
- Dynamic power management technology
- Quick standby, auto-suspend, and sleep operations
- Stand by current: <100μA@25°C
- Dimensions& Package:
 - 11.5X13X0.9mm (8GB) BGA153 ball
- Reserve

- Capacities: 8GB
- High data transfer speed
- Up to 104MB/s transfer rate(52MHz, DDR mode)
- Up to 400MB/s transfer rate(200MHz, HS400 mode)
- Operating temperature range -20°C----- 70°C
- Storage temperature range -50°C----- 95°C
- Soldering Temperature (10s) 260°C

1.4Performance

Capacity	Sequential Read (Max)	Sequential Write(Max)
8GB	107 MB/s	15MB/s

Test Program: Test by Crystal Disk Mark3.0.3

1.5Block Diagram

Figure.1qNAND Block Diagram

1.6Function Description

Biwin qNAND contains an intelligent eMMC Flash controller with JEDEC eMMC V5.0 interface, which achieves high data transfer rate and provides many new features. The feature was not founded in the other types of storage device:

- Support Multiple User Data Partition with Enhanced User Data Area options
- Signed access to a replay Protected Memory Block
- Support dual data rate transfer
- High speed boot
- Enhanced Write Protection with Permanent and Partial protection options
- Support hardware reset signal
- Optional high priority interrupt mechanism

1.7Independent Technology

The eMMC V5.0 interface defines the communication protocol between host and eMMC device. It can not only manage wear leveling, bad block management and ECC, but also isolate host from advancing Nand flash technology. Nand flash memory, as main part of eMMC devices, is always rapidly changed to keep close tabs on generation shift. Thanks to this eMMC interface, the host can be independent of Nand flash change, which greatly accelerates product development and reduces time-to-market.

1.8Error Detect and Management

Biwin qNAND incorporates advanced technology for error detect and management. If a defective block is identified, qNAND can completely replace the defective block with one of the spare blocks. This process is invisible to the host and generally does not affect data space allocated for the user.

2. Package Dimensions

2.1Physical Specifications

2.1.1 11.5mmx13mmx0.9 mm Package Dimension

Figure.2 11.5mmx13mmx0.9mm Package Dimension

2.1.2153 Ball Pin Configuration

TFBGA153 Ball Pin Out

Figure.3 BGA153 Ball Pin Out

2.2 Pin Description

Pin Number	Name						
А3	DAT0	C4	Vssq	G10	VSF	M5	CMD
A4	DAT1	C6	Vccq	Н5	DS	M6	CLK
A5	DAT2	E 6	Vcc	H10	Vss	N2	Vssq
A6	Vss	E 7	Vss	J5	VSS	N4	Vccq
B2	DAT3	E8	VSF	J10	Vcc	N5	Vssq
В3	DAT4	E9	VSF	К5	RSTN	Р3	Vccq
B4	DAT5	E10	VSF	К8	Vss	P4	Vssq
B5	DAT6	F5	Vcc	К9	Vcc	P5	Vccq
В6	DAT7	F10	VSF	K10	VSF	P6	Vssq
C2	VDDi	G5	Vss	M4	Vccq	P10	VSF

Note: referring to BGA153

Table.1Pin Description

3. qNAND Registers

Within the qNAND interface six registers are defined: OCR, CID, CSD, EXT_CSD, RCA and DSR.

These registers can only be accessed by corresponding commands. The OCR, CID and CSD registers carry the qNAND specific information, while the RCA and DSR registers are configuration registers storing actual configuration parameters. The EXT_CSD register carries both qNAND specific information and actual configuration parameters.

3.1 OCR Register

The 32-bit operation conditions register stores the VCCQ voltage profile of the qNAND. In addition, the registercontains a status information bit. This status bit is set if the qNAND power up procedure has been finished. The OCR register shall be implemented by qNAND.

OCR bit	Vccq Voltage window	q-NAND			
[6:0]	Reserved	000 0000b			
[7]	1.7-1.95	1b			
[14:8]	2.0-2.6	000 0000b			
[23:15]	2.7-3.6	1 1111 1111b			
[28:24]	Reserved	0 0000b			
120.201	A sees a Marda	00b (byte mode)			
[30:29]	Access Mode	10b (sector mode)			
[31]	q-NAND power up status bit(busy) ¹				

Table.2 OCR Register Value

This bit is set to low if the qNAND has not finished the power up routine.

3.2 CID Register

Name	Field	Width	CID-slice	CID Value	COMMENT
Manufacturar ID	MID	0	[127.120]	0VE4	BIWIN Manufacture
Manufacturer ID	MID	8	[127:120]	0XF4	ID

Reserved		6	[119:114]	-	
Device/BGA	CBX	2	[113:112]	0X01	
OEM/Application ID	OID	8	[111:104]	0X22	
Product name	PNM	48	[103:56]	426977696E20h	
Product revision	PRV	8	[55:48]	0X10	
Product serial number	PSN	32	[47:16]	random number	
Manufacturing date	MDT	8	[15:8]	Year Month	Biwin
CRC7 checksum	CRC	7	[7:1]	a	
not used,always '1'	-	1	[0:0]	1	

Table.3 CID Register Value

3.3 CSD Register

The Device-Specific Data register provides information on how to access time, data transfer speed, and whether the DSR register can be used, etc. The programmable part of the register can be changed by CMD27. The type of the entries in Table 6 below is coded as follows:

- R: Read only.
- W: One time programmable and not readable.
- R/W: One time programmable and readable.
- W/E: Multiple writable with value kept after power failure, H/W reset assertion and any CMD0 resetand not readable.
- R/W/E: Multiple writable with value kept after power failure, H/W reset assertion and any CMD0 resetand readable.
- R/W/C_P: Writable after value cleared by power failure and H/W reset assertion (the value not cleared byCMD0 reset) and readable.
- R/W/E_P: Multiple writable with value reset after power failure, H/W reset assertion and any CMD0 reset and readable.
- W/E_P: Multiple writable with value reset after power failure, H/W reset assertion and any CMD0 reset and not readable.

Name	Field	Width	Туре	CSD-Slice	CSDValue	Note
CSD structure	CSD_STRUCTURE	2	R	[127:126]	3h	
System specification version	SPEC_VERS	4	R	[125:122]	4h	
Reserved	-	2	R	[121-120]	0h	
Data read access-time-1	TAAC	8	R	[119:112]	27h	
Data read access-time-2 in CLK cycles (NSAC*100)	NSAC	8	R	[111:104]	1h	
Max. bus clock frequency	TRAN_SPEED	8	R	[103:96]	32h	
Command classes	ссс	12	R	[95:84]	F5h	
Max. read data block length	READ_BL_LEN	4	R	[83:80]	9h	
Partial blocks for read allowed	READ_BL_PARTIAL	1	R	[79:79]	0h	
Write block misalignment	WRITE_BLK_MISALIGN	1	R	[78:78]	0h	
Read block misalignment	READ_BLK_MISALIGN	1	R	[77:77]		
DSR implemented	DSR_IMP	1	R	[76:76]	0h	
Reserved	-	2	R	[75:74]	0h	
Device size	C_SIZE	12	R	[73:62]	FFFH	
Max.read current @Vccq min	Vccq_R_CURR_MIN	3	R	[61:59]	7h	
Max.read current @Vccq max	Vccq_R_CURR_MAX	3	R	[58:56]	7h	
Max.write current @Vccq min	Vccq_W_CURR_MIN	3	R	[55:53]		
Max.write current @Vccq max	Vccq_W_CURR_MAX	3	R	[52:50]	7h	
Device size multiplier	C_SIZE_MULT	3	R	[49:47]	7h	
Erase group size	ERASE_GRP_EN	5	R	[46:42]	7h	
Erase group size multiplier	ERASE _GRP_MULT	5	R	[41:37]	1Fh	
Write protect group size	WP_GRP_SIZE	5	R	[36:32	Fh	
Write protect group enable	WP_GRP_ENABLE	1	R	[31:31]	1h	
Manufacturer default ECC	DEFAULT_ECC	2	R	[30:29]	0h	
Write speed factor	R2W_FACTOR	3	R	[28:26]	2h	
Max. write data block length	WRITE_BL_LEN	4	R	[25:22]	9h	
Partial blocks for write	WRITE_BL_PARTIAL	1	R	[21:21]	0h	
allowed						
Reserved	-	4	R	[20:17]	0h	
Content protection application	CONTENT_PROT_APP	1	R	[16:16]	0h	

File format group	FILE_FORMAT_GRP	1	R/W	[15:15]	0h	
Copy flag(OTP)	COPY	1	R/W	[14:14]	0h	
Permanent write protection	PERM_WRITE_PROTECT	1	R/W	[13:13]	0h	
Temporary write protection	TMP_WRITE_PROTECT	1	R/W/E	[12:12]	0h	
File format	FILE_FORMAT	2	R	[11:10]	0h	
ECC code	ECC	2	R/W/E	[9:8]	0h	
CRC	CRC	7	R/W/E	[7:1]	TBD	
Not used, always' 1'	-	1	R	[0:0]	1	

Table.4 CSD Register Value

3.4 Extended CSDRegister

The Extended CSD register defines the qNAND properties and selected modes. It is 512 bytes long.

The most significant 320 bytes are the Properties segment, which defines the qNAND capabilities and cannot be modified by the host. The lower 192 bytes are the modes segment, which defines the configuration the qNAND is working in. These modes can be changed by the host by means of the SWITCH command.

- R: Read only.
- W: One time programmable and not readable.
- R/W: One time programmable and readable.
- W/E: Multiple writable with value kept after power failure, H/W reset assertion and any CMD0 resetand not readable.
- R/W/E: Multiple writable with value kept after power failure, H/Wreset assertion and any CMD0 resetand readable.
- R/W/C_P: Writable after value cleared by power failure and H/W rest assertion (the value not cleared by CMD0 reset) and readable.
- R/W/E_P: Multiple writable with value reset after power failure, H/W reset assertion and any CMD0reset and readable.
- W/E_P: Multiple writable with value reset after power failure, H/W reset assertion and any CMD0reset and not readable.

Name	Field	Byte	Туре	Slice	Value	Note
Reserved	-	7	-	[511:506]	-	
Extended Security Commands Error	EXT_SECURITY_ ERR	1	R	[505]	0h	
Supported command sets	S_CMD_SET	1	R	[504]	1h	Standard MMC
HPI features	HPI_FEATURES	1	R	[503]	1h	HPI supported with CMD12
Background operations support	BKOPS_SUPPORT	1	R	[502]	1h	Background operations supported
Max packed read commands	MAX_PACKED_READS	1	R	[501]	8h	Max. 8 commands in a packed command
Max packed write commands	MAX_PACKED_WRITE S	1	R	[500]	8h	Max. 8 commands in a packed command
Data Tag Support	DATA_TAG_SUPPORT	1	R	[499]	1h	Data tag supported
Tag Unit Size	TAG_UNIT_SIZE	1	R	[498]	0h	1*sector size = 2KB or 16KB
Tag Resources Size	TAG_RES_SIZE	1	R	[497]	06h	Cap Size/1024
Context management capabilities	CONTEXT_CAPABILITI ES	1	R	[496]	78h	Max Tag Size = 8*2 = 16MB; Max_Context ID = 8
Large Unit size	LARGE_UNIT_SIZE_M1	1	R	[495]	1h	1MB*2=2MB
Extended partitions attribute support	EXT_SUPPORT	1	R	[494]	3h	Support "System code"; Support "Non-persistent"
Reserved	-	241	-	[493:253]	-	
Cache size	CACHE_SIZE	4	R	[252:249]	200h	64KB (depending on 16KB*CE)
Generic CMD6 timeout	GENERIC_CMD6_TIME	1	R	[248]	64h	100x10ms= 1000ms (To Sync. With EXT_CSD[247])
Power off notification (long) timeout	POWER_OFF_LONG_TI ME	1	R	[247]	64h	100x10ms = 1000ms
Background	BKOPS_STATUS	1	R	[246]	0h	Run Time update

operations						
status						
Number of	CORRECTLY_PRG_	4	R	[245:242]	0h	Run Time update
correctly	SECTORS_NUM	T	, V	[2 13.2 12]	OII	itan inne apaate
First						
initialization	INI_TIMEOUT_AP	1	R	[241]	0Ah	10x100ms = 1s
time after	1111_111112001_711	-	, K	[2 12]	07111	1001001113 13
partitioning						
Reserved	-	1	-	[240]	-	
Power class for						RMS 100mA /
52MHz,	PWR_CL_DDR_52_360	1	R	[239]	0h	PEAK
DDR at 3.6V						200mA
Power class for						DN4C**** A /DEAL/
52MHz,	PWR_CL_DDR_52_195	1	R	[238]	0h	RMS*mA/PEAK
DDR at 1.95V						*mA
Power class for						
200MHz	PWR_CL_200_195	1	R	[237]	0h	
at 1.95V						
Power class for						
200MHz,	PWR_CL_200_130	1	R	[236]	0h	
1.3V						
Minimum write						
performance for						
8 bit at	MIN_PERF_DDR_W_8_	1	R	[235]	0h	No rating
52MHz in DDR	52			[233]	OII	l its raimg
mode						
Minimum read						
performance for						
8 bit at	MIN_PERF_DDR_R_8_	1	R	[234]	0h	No rating
52MHz in DDR	52		K	[,		
mode						
Reserved	-	1	-	[233]	_	
TRIM multiplier	TRIM_MULT	1	R	[232]	01h	1x300ms = 300ms
Train maraphet	Ham_moer	_	10	[202]	0.2.11	1. Sanitize
						support
						2. Secure/
Secure feature						insecure trim
	SEC_FEATURE_SUPPO	1	R	[221]	55h	
support	RT	1	ĸ	[231]	3311	support.
						3. Secure purge
						support
						4. Secure purge
Con						on
Secure erase	SEC_ERASE_MULT	1	R	[230]	0A	10x1x300ms = 3s
multiple						

Secure trim multiple	SEC_ERASE_MULT	1	R	[229]	0A	10x1x300ms = 3s
Boot information	BOOT_INFO	1	R	[228]	7h	(Other) high speed/alternative /DDR boot up supported
Reserved	-	1	-	[227]	-	
Boot partition size	BOOT_SIZE_MULTI	1	R	[226]	20h	128KB*32 = 4MB 128KB* 16 = 2MB
Access size	ACC_SIZE	1	R	[225]	6h	Super page size = 64 x 512B = 32KB
High-capacity erase unit size	HC_ERASE_GRP_SIZE	1	R	[224]	1h	High capacity erase group size 1 x 512KB
High-capacity erase	ERASE_TIMEOUT_MU LT	1	R	[223]	2h	1x300ms = 300ms
Reliable write sector count	REL_WR_SEC_C	1	R	[222]	1h	No meaning if ExtCSD [166].0 = 1
High-capacity write	HC_WP_GRP_SIZE	1	R	[221]	10h	10h: 16 x 512KB = 8MB
Sleep current (VCC)	s_c_vcc	1	R	[220]	7h	VCC < 128µA for sleep
Sleep current (VCCQ)	s_c_vccq	1	R	[219]	7h	VCCQ < 128μA for sleep
Reserved	-	1	-	[218]	-	
Sleep/awake timeout	S_A_TIMEOUT	1	R	[217]	13h	(2^19)*100ns = 52.4288ms
Reserved	-	1	-	[216]	-	
Sector count	SEC_COUNT	4	R	[215:211]	ТВ	Depending on capacity
Reserved	-	1	-	[211]	-	
Minimum write	MIN_PERF_W_8_52	1	R	[210]	8h	
Minimum read	MIN_PERF_R_8_52	1	R	[209]	8h	
Minimum write	MIN_PERF_W_8_26_4_ 52	1	R	[208]	8h	
Minimum read	MIN_PERF_R_8_26_4_ 52	1	R	[207]	8h	
Minimum write	MIN_PERF_W_4_26	1	R	[206]	8h	
Minimum read	MIN_PERF_R_4_26	1	R	[205]	8h	
Reserved	-	1	-	[204]	-	
Power class for 26MHz	PWR_CL_26_360	1	R	[203]	0h	RMS*mA/PEAK *mA

at 3.6V						
Power class for 52MHz at 3.6V	PWR_CL_52_360	1	R	[202]	0h	RMS*mA/PEAK *mA
Power class for 26MHz at 1.95V	PWR_CL_26_195	1	R	[201]	0h	RMS*mA/PEAK *mA
Power class for 52MHz at 1.95V	PWR_CL_52_195	1	R	[200]	0h	RMS*mA/PEAK *mA
Partition switching	PARTITION_SWITCH_ TI	1	R	[199]	3h	3x10ms = 30ms
Out-of-interrupt busy	OUT_OF_INTERRUPT_	1	R	[198]	2h	2x10ms = 20ms
I/O Driver Strength	DRIVER_STRENGTH	1	-	[197]	07h	
Card type	CARD_TYPE	1	R	[196]	17h	(Chip = 3Fh) HS200 Single Data Rate e•MMC @ 200MHz -
Reserved	-	1	-	[195]	-	
CSD structure version	CSD_STRUCTURE	1	R	[194]	2h	CSD 1.2
Reserved	-	1	-	[193]	-	
Extended CSD revision	EXT_CSD_REV	1	R	[192]	6h	EXT_CSD 1.6 (MMC 4.51)
Command set	CMD_SET	1	R	[191]	0h	
Reserved	-	1	-	[190]	-	
Command set revision	CMD_SET_REV	1	R	[189]	0h	
Partitions attribute	PARTITIONS_ATTRIBU TE	1	R	[156]	0h	
Partitioning setting	PARTITION_SETTING_	1	R	[155]	0h	
General purpose partition	GP_SIZE_MULT	1	R	[154:143]	0h	
Enhanced user data area	ENH_SIZE_MULT	3	R	[142:140]	0h	
Enhanced user data start	ENH_START_ADDR	4	R	[139:136]	0h	
Reserved	-	1	-	[135]	-	
Secure bad block	SEC_BAD_BLK_MGMN T	1	R	[134]	0h	

Reserved	-	1	-	[133]	-	
Package Case	TCASE_SUPPORT	1	R	[132]	0h	
Periodic Wake-up	PERIODIC_WAKEUP	1	R	[131]	0h	
Program CID/CSD in	PROGRAM_CID_CSD_ DD	1	R	[130]	1h	
Reserved	-	2	-	[129:128]	1	
Vendor Specific Fields	VENDOR_SPECIFIC_FI EL	6	<	[127:64]	ТВ	
Native sector size	NATIVE_SECTOR_SIZE	1	R	[63]	1h	
Sector size emulation	USE_NATIVE_SECTOR	1	R	[62]	0h	
Sector size	DATA_SECTOR_SIZE	1	R	[61]	0h	
1st initialization after	INI_TIMEOUT_EMU	1	R	[60]	0A	
Class 6 commands	CLASS_6_CTRL	1	R	[59]	0h	
Number of addressed	DYNCAP_NEEDED	1	R	[58]	0h	
Exception events control	EXCEPTION_EVENTS_ CTRL	2	R/W/E_P	[57:56]	00h	1. URGENT_ BKOPS status bit is supported. 2. DYNCAP_ NEEDED status bit is supported. 3. SYSPOOL_ EXHAUSTED status bit is supported. 4. PACKED_ FAILURE
Exception events status	EXCEPTION_EVENTS_ ST	2	R	[55:54]	0h	Device Run Time
Extended Partitions	EXT_PARTITIONS_ATT RI	2	R	[53:52]	0h	
Context configuration	CONTEXT_CONF	1	R	[51:37]	0h	
Packed command status	PACKED_COMMAND_ ST	1	R	[36]	0h	Device Run Time update
Packed command failure	PACKED_FAILURE_IN DE	1	R	[35]	0h	Device Run Time update

Power Off Notification	POWER_OFF_NOTIFIC AT	1	R	[34]	0h	
Control to turn the Cache		1	R	[33]	0h	
Flushing of the cache	FLUSH_CACHE	1	R	[32]	0h	
Reserved	-	3	=	[31:0]	=	

NOTE: Reversed bits should read as '0'.

Table.5 Extended CSD Register Table

3.4.1 Capacity for UserData

Capacity	LBA[Hex]	LBA[Dec]	Capacity[Bytes]	
8GB	0xE68000	15,106,048	7,734,296,576	

Table.6 Capacity for User Data

3.5 RCARegister

The writable 16-bit relative device address register carries the device address assigned by the host during the device identification. This address is used for the addressing host device communication after the device identification procedure. The default value of the RCA register is 0x0001. The value 0x000 is reserved to set all devices into the stand-by status with CMD7.

3.6DSR (Drivers Stage Register)

The 16-bit driver stage register (DSR) is described in detail in 0.It can be optionally used toimprove the bus performance for extended operating conditions (depending on parameters like bus length, transfer rate or number of device). The CSD register carries the information about the DSR register usage. The default value of the DSR register is 0x404.

4. eMMC5.0 New Features Description

4.1General Description

All communication between host and device is controlled by the host (master). The host sendscommands, which results in a device response.

From eMMC4.51 to eMMC5.0, some new powerful functions are introduced, such as:

- HS400 ultra speed mode (Data Strobe Line)
- Production State Awareness function
- FFU function (Field Firmware Update)
- Sleep Notification in Power Off Notification
- Device Health Report
- Secure Removal Type
- Overshoot and undershoot
- Reference load for HS400
- RPMB address failure on Read operation

4.2 HS400 Bus Speed Mode

4.2.1 The HS400 mode features

Driver Type	Support	Nominal Impedance	Approximated driving	Remark
Values			capability compared to	
			Type_0	
0	Mandatory	50Ω	×1	Default Driver Type.
				Supports up to 200MHz
				operation.
1	Optional	33Ω	×1.5	Support up to 200MHz
				operation.
2		66Ω	×0.75	The weakest drive that
				supports up to 200MHz
				Operation.
3		100Ω	×0.5	
4		40Ω	×1.2	

Table.7 I/0 Driver Strength Types

Note: Selecting HS_Timing is depends on Host I/F speed, default is 0, but it can be '1'by host.

4.2.2HS400 Device Input Timing

The CMD input timing for HS400 mode is the same as CMD input timing for HS200 mode.

The device input timing is shown in figure below.

Figure.4HS400 qNAND input timing

Parameter	Symbol	Min	Max	Unit	Remark				
Input CLK									
Cycle time data transfer mode	tPERIOD	5			200MHz(Max), between rising edges With respect to VT.				
Slew rate	SR	1.125		V/ns	With respect to VIH/VIL.				
Duty cycle distortion	tCKDCD	0.0	0.3	ns	Allowable deviation from an ideal 50% duty cycle. With respect to VT. includes jitter, phase noise				
Minimum pulse width	tCKMPW	2.2		ns	With respect to VT.				
		Input DAT (refe	erenced to CLK)						
Input set-up	tISUddr	0.4		ns	CDevice ≤ 6pF				

time				With respect to
				VIH/VIL.
				CDevice ≤ 6pF
Input hold time	tIHddr	0.4	ns	With respect to
				VIH/VIL.
				With respect to
Slew rate	SR	1.125	V/ns	VIH/VIL.

Table.8 HS400 qNAND input timing

4.2.3 HS400 Device Output Timing

Figure.6HS400 qNAND mode output timing

Parameter	Symbol	Min	Max	Unit	Remark						
	Data Strobe										
Cycle time	tPERIOD	5			200MHz(Max), between rising edges						
data					With respect to VT						
transfermode					·						
Slew rate	SR	1.125		V/ns	With respect to VOH/VOL and HS400						
					reference load						
Duty cycle	tDSDCD	0.0	0.2	ns	Allowable deviation from the input CLK						
					duty cycle distortion (tCKDCD)						
distortion					With respect to VT						

					Includes jitter, phase noise
Minimum	tDSMPW	2.0		ns	With respect to VT
pulse width					
Read	tRPRE	0.4	-	tPERIOD	Max value is specified by manufacturer.
pre-amble					Value up to infinite is valid
Read	tRPST	0.4	-	tPERIOD	Max value is specified by manufacturer.
post-amble					Value up to infinite is valid
		Οι	ıtput DAT (refer	enced to Dat	a Strobe)
Output skew	tRQ		0.4	ns	With respect to VOH/VOL and
,					HS400reference load
Output hold	tRQH		0.4	ns	With respect to VOH/VOL and
skew					HS400reference load.
Slew rate	SR	1.125		V/ns	With respect to VOH/VOL and
					HS400reference load

Table.9 HS400 qNAND output timing

4.2.4H400 (cont'd)

Parameter	Symbol	Min	Туре	Max	Unit	Remark
Pull-up resistance for CMD	RCMD	4.7		100(1)	Kohm	
Pull-up resistance for	RDAT	10		100(1)	Kohm	
DAT0-7						
Pull-down resistance for	RDS	10		100(1)	Kohm	
Data						
Strobe						
Internal pull up resistance	Rint	10		150	Kohm	
DAT1-DAT7						
Bus signal line capacitance	CL			13	pF	
Single Device capacitance	CDevice			6	pF	

Table.10 HS400 Capacitance

4.3. Additional Timing changes in HS400 mode

4.3.1 Write Timing

In HS400 mode, default Start Bit position is valid at rising edge. In addition, the host should not stop CLK during transfer of data within a data block. The Data Strobe is used only in read operation. The Data Strobe is always "High-Z or Low" in write operation.

Figure.5 HS400 Write Timing

4.3.2Read Timing

The Data Strobe is toggled only during data valid period (Start bit, Data, CRC16, End bit, CRC status token). In HS400 mode, Start Bit position is valid at both rising and falling edge. In addition, the hostmay stop CLK between data blocks rather than within a data block.

Data Strobe shall be driven tRPRE prior to the first Data Strobe rising edge and tRPST after the last falling edge.

Figure.6 HS400 Read Timing

4.4Production State Awareness

qNAND device can utilize the information of whether it is in production environment and operate differently than it operates in the field.

For example, content that was loaded into the storage device prior to soldering might get corruptedat higher probability during device soldering. The qNAND device could

use "special" internal operations for loading content prior to device soldering which can reduce production failures and use "regular" operations post-soldering.

PRODUCTION_STATE_AWARENESS [133] field in extended CSD is used as a mechanism through which the host should report to the device whether it is pre or post soldering state.

This standard defines two methods, Manual Mode and Auto Mode, to manage the device production state.

The trigger for starting orre-starting the process is setting correctly PRE_LOADING_DATA_SIZE field. Before setting this field the host is expected to make sure that the device is clean and any data which was written before to the device is expected to be erased using CMD35, CMD36 and CMD38.

In case the host erased data, override existing data or preformed re-partition during production state awareness, the production state awareness should be restarted by re-setting PRE_LOADING_DATA_SIZE.

4.5 Field Firmware Update (FFU)

Field Firmware Updates (FFU) enables features enhancement in the field. Using this mechanism the host downloads a new version of the firmware to the qNAND device and, following a successful download, instructs the e•MMC device to install the new downloaded firmware into the device.

In order to start the FFU process the host first checks if the qNAND device supports FFU capabilities by reading SUPPPORTED_MODES and FW_CONFIG fields in the EXT_CSD. If the qNAND device supports the FFU feature the host may start the FFU process. The FFU process starts by switching to FFU Mode in MODE_CONFIG field in the EXT_CSD. In FFU Mode host should use closed-ended or open ended commands for downloading the new firmware and reading vendor proprietary data. In this mode, the host should set the argument of these commands to be as defined in FFU_ARG field. In case these commands have a different argument the device behavior is not defined and the FFU process may fail. The host should set Block Length to be DATA_SECTOR_SIZE. Downloaded firmware bundle must be DATA_SECTOR_SIZE size aligned (internal padding of the bundle might be required).

Once in FFU Mode the host may send the new firmware bundle to the device using one or more write commands.

The host could regain regular functionally of write and read commands by setting

MODE_CONFIG field in the EXT_CSD back to Normal state. Switching out of FFU mode may abort the firmware download operation. When switched back-in to FFU Mode, the host should check the FFU Status to get indication about the number of sectors which were downloaded successfully by reading the NUMBER OF FW SECTORS CORRECTLY PROGRAMMED in the extended CSD. In case the number of sectors which were downloaded successfully is zero the host should re-start downloading the new firmware bundle from its first sector. In case the number of sectors which were downloaded successfully is positive the host should continue the download from the next sector, which would resume the firmware download operation.

4.6 Sleep Notification

Host may use to a power off notification when it intends to turn-off VCC after moving the device to sleep state. Some features are added to clarify the spec for entering sleep mode when power off notification enabled.

■ Add the SLEEP_NOTIFICATION on the interruptible Command List

CMD	Description	interruptible
CMD6	SWITCH, Byte POWER_OFF_NOTIFICATION,	Voc
	Value POWER_OFF_LONG or SLEEP_NOTIFICATION	Yes

■ SLEEP_NOTIFICATION_TIME[216](Read Only)

Maximum timeout for the SWITCH command when notifying the device that it is aboutto move to sleep state by writing SLEEP_NOTIFICATION to POWER_OFF_NOTIFICATION [34] byte. (Unit: 10us)

Value	Description	Timeout value	
0x01 ~ 0x17	Sleep Notification Timeout = 10us x 2 SLEEP_NOTIFICATION_TIME	0xC (40.96ms)	
0x18 ~ 0xFF	Reserved		

■ Power_Off_NOTIFICATION[34] (R/W/E_P)

Add 0x04h for the SLEEP_NOTIFICATION as a valid value

Value	Field	Description
0x03	POWER_OFF_LONG	Host is going to power off the device,
		the device shall respond within
		POWER_OFF_LONG_TIME
0x04	SLEEP_NOTIFICATION	Host is going to put device in sleep mode,
		the device shall respond within
		SLEEP_NOTIFICATION_TIME

4.7 Health(Smart) Report [301-270]

This field is undefined for now.

4.8 Secure Removal Type

This field indicates that how information is removed from the physical memory during a Purge operation.

The first 4bits (Bit0~Bit3) indicate the capability of the qNAND device. The next two bit indicates configurable option. It can be set once during system integration by host.

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Reserved		Configure		Supported Secure Removal Type		е	
		R/W		R			

Table.11 Secure Removal Type

Supported Secure Removal Type

Bit [7:6]: Reserved

Bit [5:4]: Configure Secure Removal Type

0x0: information removed by an erase of the physical memory

0x1: information removed by an overwriting the addressed locations with acharacter followed by an erase

0x2: information removed by an overwriting the addressed locations with a character, its complement, then a random character

0x3: information removed using a vendor defined

Bit [3:0]: Supported Secure Removal Type

Bit 0: information removed by an erase of the physical memory

Bit 1: information removed by an overwriting the addressed locations with a character followed by an erase

Bit 2: information removed by an overwriting the addressed locations with a character, its complement, then a random character

Bit 3: Information removed using a vendor defined.

4.9 Overshoot/Undershoot Specification

		VCCQ	Unit
		1.70V - 1.95V	
Maximum peak amplitude allowed	Max	0.9	V
for overshootarea. (See Figure 74)			
Maximum peak amplitude allowed Max		0.9	V
for undershootarea. (See Figure 74)			
Maximum area above VCCQ (See	Max	1.5	V-ns
Figure 11)			
Maximum area below VSSQ (See	Max	1.5	V-ns
Figure 11)			

Figure.7 Overshoot/undershoot definition

4.10 HS400 reference load

The circuit in Figure 12 shows the reference load used to define the HS400 Device Output Timings and overshoot / undershoot parameters.

The reference load is made up by the transmission line and the CREFERENCE capacitance.

The reference load is not intended to be a precise representation of the typical system environment nor a depiction of the actual load presented by a production tester.

System designers should use IBIS or other simulation tools to correlate the reference load to system environment. Manufacturers should correlate to their production test conditions.

Delay time (td) of the transmission line has been introduced to make the reference load independent from the PCB technology and trace length.

Figure.8 HS400 reference load

4.11 RPMB Throughput Improvement (For future eMMC spec)

This feature is proposed for RPMB write data size to improve the RPMB throughput at eMMC5.x spec. The supported maximum data size of RPMB write access is 8KB (32ea).

At this moment for qNAND device, supported Max.data size is up 64ea (32KB). More information is shown in the following tables.

■ RPMB Throughput

qNAND provides up to 64ea for RPMB write data size.

	Max. data size	Using for improve RPMB Throughput	
eMMC5.x Spec.	32ea (<=8KB)	Setting the EN_RPMB_REL_WR	
		(Bit[4] of EXT_CSD)[166]) Value	
Present status for	64ea (<=16KB)	Set the value for 'Number of block[15:0]' argument of	
qNAND		CMD23 and Bit[31] 'reliableWrite Request' is set to '1'	

5. Electrical Characteristics

5.1 DC Power Specification

Parameter	Min	Тур	Max	Unit	Remark
Supply voltage	2.7(1.7)	3.3(1.8)	3.6(1.95)	V	VCCQ
(Controller					
and I/O)					
Supply voltage	2.7	3.3	3.6	V	VCC
(NAND Flash					
and NAND Flash					
interface)					
Supply voltage	-0.5	0	0.5	V	VSS
for core					
I/O input	-100		100	uA	
leakage current					
I/O output	-100		100	uA	
leakage current					
Programmable	50	75	100	Kohm	VCCQ = 3.3V
pull-up resistor					
Programmable	50	75	100	Kohm	VCCQ = 3.3V
pull-down					
resistor					
Pre-initial				uA	
standby current					
Sleep current				uA	
Operating	-25	+25	+85	°C	
temperature					

Table.12 General DC Characteristics for qNAND

5.2 Typical Power Requirement

Density	Power Co.	Unit	
	Typical Value Max Value		
8GB	60	100	mW

Table.13 Typical Power Requirement

6. qNAND Connection Guide

This appendix is just guideline for qNAND connection. The values in the below Schematic can be changed depending on the system environment.

Coupling capacitor should be connected with VDD and VSS as closely as possible. VDDI capacitor is min 1uF.

If host does not use H/W reset, it is not needed to put 10K pull-up resistance on H/W rest line. It is recommended to separate VCCQ and VCC power.

The below connection guide is an example for customers to adopt qNAND more easily.

