ti evaluation

Statement

Dynamic processes can be modelled and studied with TI methods

Experiment

- * Characterise and organise TI methodology @characterisation
- * Thoroughly set up experiment design to ensure correct scientific reasoning @experiment_design
- * Train TI methods on synthetic data @synthetic_testing
- * Evaluate them on biological data @biological_validation
- * Provide reader with a set of instructions on which TI method to use on which kinds of datasets @quidelines

Expected results

Some TI methods will perform well on some datasets. Performance will depend on parameters.

Motivation

An extensive TI evaluation will:

- * Stimulate the adoption of TI methods
- * Stimulate the development of more robust and accurate TI methods
- * Stimulate the evolution of the TI to tackle more complex tasks

characterise_platforms

Statement

We collected properties of possible datasets and determined which TI task could be used on the dataset

Experiment

TODO

Expected results

Motivation

characterise_methods

Statement

We characterised TI methods in terms of its inputs, outputs, methodology and type of TI task it tries to solve

Experiment

TODO

Expected results

Motivation

characterisation

Statement

We characterised and organised TI methodology in terms of which biological question is being asked, how a TI method tries to solve this question, and what characteristics it has

Experiment

We need to characterise

- * the tasks / biological questions @characterise_tasks
- * the platforms @characterise_platforms
- * the methods @characterise_methods

Expected results

Motivation

There is a lot of confusion about what TI is, what problems can be solved with it, and what sort of solution you might expect from a TI method. The characterisation will provide a structure to link everything together and clarify ambiguities

experiment_design

Statement

Our evaluation of TI methods is scientifically sound

Experiment

Construct and evaluate the:

- * synthetic gold standard
- * biological gold standard
- * benchmark pipeline

Expected results

Motivation

Good and scientifically sound TI evaluation methodology is required in order for the field to progress further

characterise_tasks

Statement

We characterised the different TI tasks

Experiment

TODO

Expected results

Motivation

construct_synthetic_gold

Statement

We generated realistic synthetic expression data of cells as part of a dynamic process

Experiment

Determine:

- * the gene regulation model @regulation_model
- * the transcription @transcription_model
- * the dynamic process model @dynamic_process_model
- * the sequencing model @platforms_model

Expected results

Motivation

regulation_model

Statement

We use GRNs as a model for gene regulation. These GRNs are derived from real regulatory networks

Experiment

TODO

Expected results

Motivation

transcription_model

Statement

We can generate expression given a GRN

Experiment

TODO

Expected results

Motivation

dynamic_process_model

Statement

We can translate a dynamic process into a GRN such that generated expression therefrom resembles observations of cells following this dynamic process

Experiment

TODO

Expected results

Motivation

platforms_model

Statement

We determined a model of the technical noise generated by observing the state of a cell through RNA sequencing

Experiment

Compare real data across platforms with the simulated data across platforms

- Drop-out rates
- Distributions
- Compare with "ideal" platform

Expected results

Motivation

Platforms could induce a bias in the performance of certain methods, so it is important that our platform data is comparable to real platform data

This will allow us to investigate the advantages and disadvantages of different platforms

generate_synthetic_data

Statement

We generated synthetic data in accordance to our models:

- * @regulation_model
- * @transcription_model
- * @dynamic_process_model
- * @platforms_model

Experiment

We simulate using SDEs (with enough noise) and Gillespie SSA (with noise and single-molecule) which takes into account

- * Technical bias introduced by platforms @simulating_platform_noise
- * Biological
- Modular
- Dim red and example of single-cell paths

Expected results

N/A

Motivation

We need to generate realistic (or at least useful) expression data from GRNs in order to be able to prioritise TI methods for real datasets

timings_synthetic_generator

Statement

Our SSA implementation is /blazing fast/.

Goal: simulate 100'000 cells with 20'000 genes in <24 hours.

10-fold sampling of single cells can be allowed.

Experiment

Perform timings experiments on our implementation of fastgssa versus that of GillespieSSA.

Expected results

fastgssa is very faster, but still outputs very similar data for the same given network

Motivation

If we want to generate realistic data, we need to be able to simulate as many cells and as many genes as would hopefully occur in near-future experiments

construct_biological_gold

Statement

We collected high-quality datasets containing cells along a dynamic process, of which we know the state of each of the cells

Experiment

- * Collect data
- * Perform some kind of tests to ensure there is enough signal-to-noise?

Expected results

Motivation

benchmarking_pipeline

Statement

We use a benchmarking pipeline to train the parameters of the methods and ensure that the datasets the methods are evaluated on are unrelated to avoid overfitting

Experiment

For each of the TI tasks, we train the parameters of the methods on synthetic datasets and evaluate them on biological datasets

Expected results

Motivation

parameter_crossvalidation

Statement

For each of the tasks, we executed the different methods and trained their parameters using the metrics specified by @metrics

Experiment

Train parameters for each of the TI tasks either by generating a grid of parameters or by using a smarter parameter optimisation algorithm

Expected results

Motivation

metrics

Statement

We have several good metrics to evaluate different aspects of predicting a good trajectory:

- * the main structure of the predicted trajectory should be good
- * the ordering of the cells should be good
- * metric with distance from origin

Experiment

Unit test metrics with toy examples

Expected results

Each metric makes sense theoretically and fulfill the requirements of the toy example, although they can focus different aspects (or levels) of the TI model

Motivation

Good metrics are the foundation of a good evaluation

benchmarking

Statement

We benchmarked TI methods using the real and simulated data and constructed a set of guidelines for the user to follow

Experiment

We need to:

- * generate synthetic data @generate_synthetic_data
- * perform parameter cross-validation @parameter_crossvalidation
- * find methods (& parameters) which work well for certain datasets/task characteristics @characteristics_vs_performance
- * construct a set of guidelines for the reader with which to decide which method to use @construct_quidelines

Expected results

Motivation

method_fairness

Statement

We treat each TI method fairly

Experiment

- * No TI method is left out
- st Used implementation from original authors if available
- * Made own implementation if necessary; contacted original authors to verify implementation
- * Described all sorts of parameters, which will be optimised later

Expected results

Motivation

characteristics_vs_performance

Statement

We could link performance to dataset and method metadata

Experiment

Use dataset and method metadata to determine which methods and parameters work well for certain TI tasks

Expected results

We hope to see links between the performance and the metadata

Motivation

We need to do this in order to start constructing quidelines

construct_quidelines

Statement

We constructed a set of usage quidelines

Experiment

Attempt to construct TI usage guidelines depending on the TI task.

Expected results

This will likely not be feasible, but would be extremely useful.

Motivation

Guide the biologists in their selection of methods Guide the bio-informatician in the choice of future methods

simulate_inferred_networks

Statement

We can generate expression data on inferred networks of developing cells

Experiment

- 0. Collect expression of cells in a dynamic process
- 1. Perform NI
- 2. Generate expression of GRN
- 3. Apply TI on real expression data
- 4. Apply TI on synthetic expression data
- 5. TI results on real expression data should be comparable to synthetic expression data

Expected results

Data looks similar, as long as we can trust the NI

Motivation

It is a validation of the whole synthetic data generation workflow

biological_validation

Statement

Results from real and simulated data are similar, validating the simulated data, especially on more complex tasks for which no decent real datasets are available. The selected datasets cover the range of TI tasks as well as possible.

Experiment

Apply guidelines on real data and show that the selected methods work well in comparison to when the guidelines are not followed. A TI method that obtains a good relative performance on synthetic data should also obtain a good performance on the biological data

Expected results

Motivation

tradeoff_cost_performance

Statement

We compared current platforms, estimated the cost to improve certain parameters, and predicted which parameters to improve to obtain the best performance increase versus cost increase

Experiment

We should attempt to quantify the cost associated with improving each of the sources of technical noise, and make a trade-off between TI performance and total cost

Expected results

Motivation

scRNA-seq platforms will improve. We can find out what the most cost-effective way of choosing/improving a platform is in order to study dynamic processes.

future

Statement

We also look to the future of single-cell technologies and TI

Experiment

We simulate data which will be available soon We also generate data which can't be modelled yet by current methods

Expected results

N/A

Motivation

We have only seen the tip of the iceberg of which can be modeled using current TI methods, and we thus stimulate the development of future methods and the generation of data from more complex biological settings

mrna_vs_protein

Statement

Observing protein levels might improve TI

Experiment

Add flowcyto and proseq platforms. Evaluate

Expected results

As cells differentiate, mRNA levels increase first, protein levels increase later.

Observing protein expression levels might thus improve TI.

Motivation

Integrative TI with index sorting

multiple_processes

Statement

Most existing methods will have problems detecting multiple processes. These might be synchronised or not.

Experiment

Generate networks and expression data containing multiple dynamic processes

Expected results

Watch TI methods fail horribly

Motivation

Promoting the development of better methods

intercellular_communication

Statement

We generated data in which multiple cells interact with eachother, influencing eachothers expression. And develop methods to synchronize multiple cells

Experiment

Add networks between cells

Slightly different metric to comparison

Expected results

Motivation

scRNA-seq will in the future allow the inference of networks between cells

modular ti

Statement

Each TI approach can be disassembled into smaller components, new TI approaches can be constructed from a combination from components

Experiment

TODO

Expected results

Motivation

communication

Statement

We communicated our results to a broad audience in an interesting manner

Experiment

TODO

Expected results

Motivation

manuscript

Statement

We communicated to the 100 most interested people

Experiment

Write a clear and consise manuscript

Expected results

Motivation

large_communication

Statement

We communicated to the 1000 most interested people

Experiment

We make our evaluation code available as a package. We post the results on the github page. When then evaluation pipeline is modified (i.e. new methods or datasets have been added), the results are also updated

Expected results

Motivation

mass_communication

Statement

We communicated to 10000+ people

Experiment

Go to conferences and/or contact the press?

Expected results

Fame and glory

Motivation