學號: R06921082 系級: 電機碩一 姓名: 陳與賢

1. (1%) 請說明你實作的 CNN model, 其模型架構、訓練過程和準確率為何? 答:

Layer (type) 😗 I accord 😐 tout	Output	Shap	je .	CE CEEA SO Inc	Paran #
conv2d_1 (Conv20)	(None,	44,	44,	64)	1664
zero_padding2d_1 (ZeroPaddin	(None,	48,	48,	64)	•
max_pooling2d_1 (MaxPooling2	(None,	22,	22,	64)	•
zero_padding2d_2 (ZeroPaddin	(None,	24,	24,	64)	•
conv2d_2 (Conv20)	(None,	22,	22,	64)	36928
zero_padding2d_3 (ZeroPaddin	(None,	24,	24,	64)	•
conv2d_3 (Conv20)	(None,	22,	22,	64)	36928
overage_pooling2d_1 (Average	(None,	10,	10,	64)	•
rero_padding2d_4 (ZeroPaddin	(None,	12,	12,	64)	•
conv2d_4 (Conv20)	(None,	10,	10,	128)	73856
zero_padding2d_5 (ZeroPaddin	(None,	12,	12,	128)	

conv2d_5 (Conv2D)	(None,	10, 10,	128)	147584
zero_padding2d_6 (ZeroPaddin	(None,	12, 12,	128)	0
average_pooling2d_2 (Average	(None,	5, 5, 1	28)	0
flatten_1 (Flatten)	(None,	3200)	Value of Wild : 1	0
dense_1 (Dense)	(None,	1024)	MACRES -	3277824
dropout_1 (Dropout)	(None,	1024)	DEBARAGE	0
dense_2 (Dense)	(None,	1024)	CRECEBER	1049600
dropout_2 (Dropout)	(None,	1024)		0
dense_3 (Dense)	(None,	7)		7175
Total params: 4,631,559 Trainable params: 4,631,559 Von-trainable params: 0		ATTE	TOTAL PROPERTY.	8.2 Well - VISV

上圖為模型的架構(因為太長分成兩張),使用的model是助教提供的sample code的model,左圖是我的訓練過程,可以發現雖然在training data上最後的acc可以達到9成,但validation的acc並不高,所以在train到約第20個epoch的時候就已經overfitting了,後來我上傳到kaggle上的model有再額外使用keras的imagegenerator來對input做preprocessing,就可以讓acc更高。

2. (1%) 承上題,請用與上述 CNN 接近的參數量,實做簡單的 DNN model。其模型架構、訓練過程和準確率為何?試與上題結果做比較,並說明你觀察到了什麼? 答:

Layer (type)	Output Shape	Paran #
input_1 (InputLayer)	(None, 48, 48, 1)	
flatten_1 (Flatten)	(None, 2304)	0
dense_1 (Dense)	(None, 512)	1180160
dense_2 (Dense)	(None, 512)	262656
dense_3 (Dense)	(None, 512)	262656
dense_4 (Dense)	(None, 512)	262656

dense_5 (Dense)	(None,	1024)	525312
dense_6 (Dense)	(None,	1024)	1849688
dense_7 (Dense)	(None,	1024)	1849688
dense_8 (Dense)	(None,	7)	7175
activation_1 (Activation)	(None,		0
Total params: 4,599,815 Trainable params: 4,599,815 Non-trainable params: 0			

上圖是我的DNN model,湊出與CNN相同的參數量,訓練過程如左圖,可以發現acc比CNN還低而且震盪很明顯,由此可知對於影像的部分,CNN是可以獲得一些好處的,另外可以發現的是DNN與CNN都是在epoch約20的時候acc就開始收斂了。

3. (1%) 觀察答錯的圖片中,哪些 class 彼此間容易用混?[繪出 confusion matrix 分析]答:

由左圖的confusion matrix可以發現,
Angry有超過10%的機率被認成Sad及
Neutral、Disgust有15%的機率被認成
Angry、Fear有將近20%被認成Sad、Sad
也有將近20%被認成Neutral、Neutral則
有約13%被認成Sad,而Happy跟
Surprise則有蠻高的命中率。

這其實可以推理出來,有些人生氣時是面無表情的、厭惡到極致時也會感到憤怒、十分恐懼時的表情與傷心的表情很相近... 等等。

4. (1%) 從(1)(2)可以發現,使用 CNN 的確有些好處,試繪出其 saliency maps,觀察模型在做 classification 時,是 focus 在圖片的哪些部份? 答:

左圖為輸入,中間為saliency map,右圖為mask後的結果,由此可知主要是focus在人的嘴巴以及眉毛,我想應該是因為人的各種表情在嘴巴與眉毛的弧度會有明顯的變化,才可以易於判定是什麼表情(此種方法也與人類在判斷別人的情緒相同)。

5. (1%) 承(1)(2),利用上課所提到的 gradient ascent 方法,觀察特定層的filter最容易被哪種圖片 activate。

答:

輸入同第4題

layer1:

	Output of layer's closer image/dis		-2
	-		
75			
			* *
32 2		139	
	10	8	4
12		12	
3	24	B 3)	1
	3	-31	1
			53
3	3	(B)	123
(F)	3	25	
72			3
2	딍		17
32)	23	3	-3
9	10		

layer2: filter:

可以發現在愈後面的layer五官會愈來愈明顯,而且偵測表情也應當是用五官來判定,所以五官明顯 及表情誇張的人愈容易被active。