Série 12

Problème 1 Attitude envers la ville

Un chargé d'études veut expliquer l'attitude d'individus envers leur ville de résidence à partir du critère de durée de résidence dans cette ville. L'attitude est mesurée sur une échelle de onze points (avec 1 = n'aime pas la ville, 11 = adore la ville), et la durée de résidence est mesurée par le nombre d'années que l'individu a passé dans la ville. Lors d'un pré-test sur douze individus, les données suivantes ont été recueillies :

individu	1	2	3	4	5	6	7	8	9	10	11	12
attitude	6	9	8	3	10	4	5	2	11	9	10	2
$\operatorname{dur\acute{e}e}$	10	12	12	4	12	6	8	2	18	9	17	2

- a) Définir la variable dépendante y et la variable indépendante x.
- b) Dessiner le diagramme de dispersion.
- c) Calculer r_{xy} , le coefficient de corrélation. Commenter.
- d) Calculer R^2 , le coefficient de détermination. Commenter.
- e) Calculer les coefficients de la droite de régression.
- f) Calculez la statistique de test sur le coefficient de corrélation, en supposant qu'il existe une corrélation linéaire positive entre l'attitude et la durée.
- g) On donne la p-valeur = $3.773 \cdot 10^{-6}$. Quel sera la conclusion du test?

Problème 2 Attitude envers la ville, le retour

Supposons que dans notre échantillon on ajoute l'opinion d'un treizième individu, qui a passé 3 ans dans la ville et a eu le coup de foudre pour celle-ci : il lui attribue la note 10.

individu													
attitude													
${ m dur\'ee}$	10	12	12	4	12	6	8	2	18	9	17	2	3

- a) Rajoutez le point dans votre graphique précédent. Quel va être l'impact de cette nouvelle valeur sur la pente de la droite de régression?
- b) On donne r = 0.7528. Commenter.