Video 1: Introduction to Linear Regression

Key Concepts

- Advantages of regression models
- Linear regression
- Log odds scale
- Logistic regression

Advantages of Regression Models

- Generally more efficient than stratification-based methods when data are sparse
- Modelling of a continuous outcomes
- Specify continuous and categorical exposures, confounders and modifiers
- Specify interactions to model effect modification
- Model nonlinear relationships between exposure and outcome and other covariates

Regression Models

y =	$\beta_0 + \beta_1 x_1 + \beta_i x_i + \varepsilon$
Dependent	Independent
Predicted	Predictor variables
Response variable	Explanatory variables
Outcome variable	Covariables

Simple Linear Regression

 $\mathsf{dependent}$ variable (Y)

- Predict a continuous dependent (outcome) variable y from a continuous independent (exposure) variable x
- Simple linear regression fits a straight line to the data using the least squares method.
- Regression line: $E[Y|X] = \beta_0 + \beta_1 x_1$
 - \Box Often presented as y = mx + b where
 - b=y-intercept
 - m=slope= $\Delta y/\Delta x$ (rise/run)

 ΔX

- Individual predicted value: $Y_i = \beta_0 + \beta_1 x_{1i} + \epsilon_i$
 - \Box β_0 =y-intercept (where the line crosses the Y-axis)
 - \Box β_1 =slope= $\Delta y/\Delta x$ =average change in y when x changes by one unit
 - \Box X₁ is a known constant
 - $^{\sqcup}$ ϵ , the error, is an observation's deviation from the conditional mean, N(0, 62)

 $E[Y|X] = \beta_0 + \beta_1 x_1$

 $\beta_1 = \text{Slope} =$

Video 2: Linear Regression Example

Linear Regression

Age versus Height

Linear Regression Example

- Download the HeightWeight dataset from the Regression I module on Canvas
 - ☐ The dataset is available in multiple formats
 - CSV
 - Excel
 - R
 - SAS
 - Stata

Video 3: Linear Regression Adjusted for Covariates

Video 4: Linear Regression with Interaction Terms to Account for Effect Measure Modification

Linear Regression

Age versus Height

Multiple Linear Regression

 Multiple linear regression models predict a continuous dependent (outcome) variable y from continuous and categorical independent variables x_i:

$$E[Y|X] = \beta_0 + \beta_1 x_1 ... \beta_i x_i$$

- The regression line is the best-fit line through the points in the data
 - \Box β_0 , β_1 , ..., β_k are parameters
 - $\square X_1, X_2, ..., X_k$ are known constants
 - $β_k$ = change in average outcome (difference in mean outcome) per unit change in Xi holding all other X's constant

