Advanced Algorithms and Data Structures

Lecture# 02: Asymptotic Notations and Analysis

Asymptotic Notations Properties

- Categorize algorithms based on asymptotic growth rate
 - e.g. linear, quadratic, exponential
- Ignore small constant and small inputs
- Estimate upper bound and lower bound on growth rate of time complexity function
- Describe running time of algorithm as n grows to ∞ .

Limitations

- not always useful for analysis on fixed-size inputs.
- All results are for sufficiently large inputs.

Asymptotic Notations

Asymptotic Notations Θ , O, Ω , o, ω

- We use Θ to mean "order exactly", (Tight Bound)
- O to mean "order at most", (Tight Upper Bound)
- Ω to mean "order at least", (Tight Lower Bound)
- o to mean "upper bound",
- ω to mean "lower bound",

Define a **set** of functions which is in practice used to compare two function sizes.

Big-Oh Notation (O)

If f, g: $N \rightarrow R^+$, then we can define Big-Oh as

For a given function $g(n) \ge 0$, denoted by O(g(n)) the set of functions, $O(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_o \text{ such that } 0 \le f(n) \le cg(n), \text{ for all } n \ge n_o \}$ f(n) = O(g(n)) means function g(n) is an asymptotically upper bound for f(n).

We may write $f(n) = O(g(n)) OR f(n) \in O(g(n))$

Intuitively:

Set of all functions whose *rate of growth* is the same as or lower than that of g(n). f(n) is bounded above by g(n) for all sufficiently large n

Big-Oh Notation (O)

 $f(n) \in O(g(n))$

 $\exists c > 0, \exists n_0 > 0 \text{ and } \forall n \ge n_0, 0 \le f(n) \le c.g(n)$

g(n) is an asymptotic upper bound for f(n).

Big-Oh Notation (O)

The idea behind the big-O notation is to establish an **upper boundary** for the growth of a function f(n) for large n.

This boundary is specified by a function g(n) that is usually much simpler than f(n).

We accept the constant C in the requirement $f(n) \le C \cdot g(n)$ whenever $n > n_0$,

We are only interested in large n, so it is OK if $f(n) > C \cdot g(n)$ for $n \le n_0$.

The relationship between f and g can be expressed by stating either that g(n) is an upper bound on the value of f(n) or that in the long run, f grows at most as fast as g.

- As a simple illustrative example, we show that the function $2n^2 + 5n + 6$ is $O(n^2)$.
- For all $n \ge 1$, it is the case that

$$2n^2 + 5n + 6 \le 2n^2 + 5n^2 + 6n^2 = 13n^2$$

• Hence, we can take c = 13 and $n_o = 1$, and the definition is satisfied.

Prove that $2n^2 = O(n^3)$

Proof:

Assume that
$$f(n) = 2n^2$$
, and $g(n) = n^3$
 $f(n) = O(g(n))$?

Now we have to find the existence of c and n₀

$$f(n) \le c.g(n) \rightarrow 2n^2 \le c.n^3 \rightarrow 2 \le c.n$$

if we take,
$$c = 1$$
 and $n_0 = 2$ OR $c = 2$ and $n_0 = 1$ then

$$2n^2 \le c.n^3$$

Hence
$$f(n) = O(g(n))$$
, $c = 1$ and $n_0 = 2$

Prove that $n^2 = O(n^2)$

Proof:

Assume that $f(n) = n^2$, and $g(n) = n^2$ f(n) = O(g(n))?

Now we have to find the existence of c and n₀

$$f(n) \le c.g(n) \rightarrow n^2 \le c.n^2 \rightarrow 1 \le c$$

if we take, c = 1, $n_0 = 1$

Then

$$n^2 \le c.n^2$$
 for $c = 1$ and $n \ge 1$

Hence, $n^2 = O(n^2)$, where c = 1 and $n_0 = 1$

Prove that $1000.n^2 + 1000.n = O(n^2)$

Proof:

```
Assume that f(n) = 1000.n^2 + 1000.n, and g(n) = n^2
We have to find existence of c and n_0 such that 0 \le f(n) \le c.g(n) for all n \ge n_0
```

```
1000.n^2 + 1000.n \le c.n^2 for c = 1001, 1000.n^2 + 1000.n \le 1001.n^2 1000.n \le n^2 \implies n^2 - 1000.n \ge 0 n (n-1000) \ge 0,
```

this true for $n \ge 1000$

Hence f(n) = O(g(n)) for c = 1001 and $n_0 = 1000$

Disprove that $n^3 \neq O(n^2)$

Proof:

On contrary we assume that there exist some positive constants c and n₀ such that

$$0 \le n^3 \le c.n^2$$
 for all $n \ge n_0$
 $n \le c$

Since c is any fixed number and n is any arbitrary constant, therefore $n \le c$ is not possible in general.

Hence our supposition is wrong and $n^3 \le c.n^2$, for $n \ge n_0$ is not true for any combination of c and n_0 . Hence, $n^3 \ne O(n^2)$

Prove that 2n + 10 = O(n)

Proof:

Assume that f(n) = 2n + 10, and g(n) = nf(n) = O(g(n))?

Now we have to find the existence of c and n₀

$$f(n) \le c.g(n) \rightarrow 2n + 10 \le c.n \rightarrow (c-2) n \ge 10 \rightarrow n \ge 10/(c-2)$$

c > 2 for n > 0, we pick, c = 3, then n_0 = 10

Then

$$2n + 10 \le c.n$$
 for $c = 3$ and $n \ge 10$

Hence, 2n + 10 = O(n), where c = 3 and $n_0 = 10$

Prove which of the following function is larger by order of growth? $(1/3)^n$ or 17?

Let's check if

```
(1/3)^n = O(17)
(1/3)^n \le c.17, which is true for c=1,n<sub>0</sub> = 1
```

Let's check if

```
17 = O((1/3)^n)

17 \le c. (1/3)^n, which is true for c > 17. 3^n
```

- And hence can't be bounded for large n.
- That's why $(1/3)^n$ is less in growth rate then 17.

Prove or disprove $2^{2n} = O(2^n)$?

- To prove above argument we have to show
 - $2^{2n} \le C \cdot 2^n$
 - $2^n 2^n \le C.2^n$
- This inequality holds only when
- $C \ge 2^n$
- which makes C to be non-constant.
- Hence we can't bound 2²ⁿ by O(2ⁿ)

Prove that : $8n^2 + 2n - 3 = O(n^2)$

Proof:

Need c > 0 and $n_0 \ge 1$ such that

$$8n^2 + 2n - 3 \le c.n^2$$
 for $n \ge n_0$

Consider the reasoning:

$$f(n) = 8n^2 + 2n - 3 \le 8n^2 + 2n \le 8n^2 + 2n^2 = 10n^2$$

Hence, $8n^2 + 2n - 3 = O(n^2)$, where c = 10 and $n_0 = 1$

Can you bound $3^n = O(2^n)$?

To prove above argument we have to show

```
3^{n} \le C. 2^{n}

3^{n} \le C. 2^{n}

3^{n} \le (3/2)^{n} 2^{n}
```

This inequality holds only when $C \ge (3/2)^n$, which makes C to be nonconstant.

Hence we can't bound 3ⁿ by O(2ⁿ)

Which of the following function is larger by order of growth? N log N or $N^{1.5}$?

Note that $g(N) = N^{1.5} = N \cdot N^{0.5}$ Hence, between f(N) and g(N), we only need to compare growth rate of log(N) and $N^{0.5}$

Equivalently, we can compare growth rate of log²N with N

Now, we can refer to the previously state result to figure out whether **f(N)** or **g(N)** grows faster!

Big-Omega Notation (Ω)

If f, g: $N \rightarrow R^+$, then we can define Big-Omega as

For a given function g(n) denote by $\Omega(g(n))$ the set of functions, $\Omega(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_o \text{ such that } 0 \le cg(n) \le f(n) \text{ for all } n \ge n_o \}$ $f(n) = \Omega(g(n))$, means that function g(n) is an asymptotically lower bound for f(n).

We may write $f(n) = \Omega(g(n))$ OR $f(n) \in \Omega(g(n))$

Intuitively:

Set of all functions whose *rate of growth* is the same as or higher than that of g(n).

Big-Omega Notation (Ω)

 $f(n) \in \Omega(g(n))$

 $\exists c > 0, \exists n_0 > 0, \forall n \ge n_0, f(n) \ge c.g(n)$ g(n) is an asymptotically lower bound for f(n).

Note the <u>duality rule</u>: $t(n) \in \Omega(f(n)) \equiv f(n) \in O(t(n))$

Prove that $3n + 2 = \Omega(n)$

Proof:

Assume that
$$f(n) = 3n + 2$$
, and $g(n) = n$
 $f(n) = \Omega(g(n))$?

We have to find the existence of c and n₀ such that

c.g(n)
$$\leq$$
 f(n) for all n \geq n₀
c.n \leq 3n + 2

At R.H.S a positive term is being added to 3n, which will make L.H.S \leq R.H.S for all values of n, when c = 3.

Hence
$$f(n) = \Omega(g(n))$$
, for $c = 3$ and $n_0 = 1$

Prove that $5 \cdot n^2 = \Omega(n)$

Proof:

```
Assume that f(n) = 5 \cdot n^2, and g(n) = n
 f(n) = \Omega(g(n))?
```

We have to find the existence of c and n_0 such that $c.g(n) \le f(n)$ for all $n \ge n_0$ $c.n \le 5.n^2 \rightarrow c \le 5.n$

```
if we take, c = 5 and n_0 = 1 then c.n \le 5.n^2 for all n \ge n_0
```

Hence $f(n) = \Omega(g(n))$, for c = 5 and $n_0 = 1$

Prove that $5n^2 + 2n - 3 = \Omega(n^2)$

Proof:

Assume that $f(n) = 5n^2 + 2n - 3$, and $g(n) = n^2$ $f(n) = \Omega(g(n))$?

We have to find the existence of c and n_0 such that $c.g(n) \le f(n)$ for all $n \ge n_0$ $c.n^2 \le 5.n^2 + 2n - 3$

We can take c = 5, given that 2n-3 is always positive. 2n-3 is always positive for $n \ge 2$. Therefore $n_0 = 2$.

And hence $f(n) = \Omega(g(n))$, for c = 5 and $n_0 = 2$

Prove that $100.n + 5 = \Omega(n^2)$

Proof:

Let
$$f(n) = 100.n + 5$$
, and $g(n) = n^2$
Assume that $f(n) = \Omega(g(n))$?

Now if $f(n) = \Omega(g(n))$ then there exist c and n_0 such that $c.g(n) \le f(n)$ for all $n \ge n_0$ $c.n^2 \le 100.n + 5$

For the above inequality to hold $\lim_{n\to\infty}\frac{f(n)}{g(n)}=\infty$ meaning f(n) grows faster than g(n).

But $\lim_{n\to\infty} \frac{100n+5}{n^2} = 0 \neq \infty$ which means g(n) is growing faster than f(n)

And hence $f(n) \neq \Omega(g(n))$

Theta Notation (Θ)

If f, g: $N \rightarrow R^+$, then we can define Big-Theta as

For a given function g(n) denoted by $\Theta(g(n))$ the set of functions, $\Theta(g(n)) = \{f(n) : \text{ there exist positive constants } c_1, c_2 \text{ and } n_o \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_o \}$ $f(n) = \Theta(g(n))$ means function f(n) is equal to g(n) to within a constant factor, and g(n) is an asymptotically tight bound for f(n).

We may write $f(n) = \Theta(g(n))$ OR $f(n) \in \Theta(g(n))$

Intuitively: Set of all functions that have same *rate of growth* as g(n). When a problem is $\Theta(n)$, this represents both an upper and lower bound i.e. it is O(n) and O(n) (no algorithmic gap)

Theta Notation (Θ)

$$f(n) \in \Theta(g(n))$$

 $\exists c_1 > 0, c_2 > 0, \exists n_0 > 0, \forall n \ge n_0, c_2 = g(n) \le f(n) \le c_1 = g(n)$ We say that g(n) is an asymptotically tight bound for f(n).

Prove that $\frac{1}{2} \cdot n^2 - \frac{1}{2} \cdot n = \Theta(n^2)$

Proof:

Assume that $f(n)=\frac{1}{2}.n^2-\frac{1}{2}.n$, and $g(n)=n^2$ $f(n)=\Theta(g(n))$? We have to find the existence of c_1 , c_2 and n_0 such that $c_1.g(n)\leq f(n)\leq c_2.g(n)$ for all $n\geq n_0$

Since, $\frac{1}{2}$ $n^2 - \frac{1}{2}$ $n \le \frac{1}{2}$ n^2 then $c_2 = \frac{1}{2}$, $\forall n \ge 0$ and Since $\frac{1}{2}$ n is subtracted from $\frac{1}{2}$ n^2 , c_1 must be less than $\frac{1}{2}$, Assuming $c_1 = \frac{1}{4}$ \rightarrow $\frac{1}{4}$ $n^2 \le \frac{1}{2}$ $n^2 - \frac{1}{2}$ n \rightarrow $\forall n \ge 2$

$$c_1.g(n) \le f(n) \le c_2.g(n)$$
 $\forall n \ge 2, c_1 = \frac{1}{4}, c_2 = \frac{1}{2}$
Hence $f(n) = \Theta(g(n)) \Rightarrow \frac{1}{2}.n^2 - \frac{1}{2}.n = \Theta(n^2)$

Prove that $2 \cdot n^2 + 3 \cdot n + 6 \neq \Theta(n^3)$

Proof: Let $f(n) = 2 \cdot n^2 + 3 \cdot n + 6$, and $g(n) = n^3$

we have to show that $f(n) \neq \Theta(g(n))$

On contrary assume that $f(n) \in \Theta(g(n))$ i.e. there exist some positive constants c_1 , c_2 and n_0 such that:

$$c_1.g(n) \le f(n) \le c_2.g(n)$$

Solve for c_2 :

$$f(n) \le c_2.g(n) \rightarrow 2n^2 + 3n + 6 \le 2n^2 + 3n^2 + 6n^2 \le c_2n^3 \rightarrow c = 11 \text{ and } n_0 = 1$$

Solve for C_1 :

$$c_1.g(n) \le f(n) \implies c_1 n^3 \le 2n^2 + 3n + 6 \implies c_1 n^3 \le 2n^2 \le 2n^2 + 3n + 6$$

 $c_1.n \le 2$, for large n this is not possible

Hence $f(n) \neq \Theta(g(n)) \Rightarrow 2.n^2 + 3.n + 6 \neq \Theta(n^3)$

Prove that $\frac{1}{2} \cdot n^2 - 3 \cdot n = \Theta(n^2)$

Proof

Let $f(n) = \frac{1}{2} \cdot n^2 - 3 \cdot n$, and $g(n) = n^2$ $f(n) = \Theta(g(n))$? We have to find the existence of c_1 , c_2 and n_0 such that $c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n)$ $\forall n \ge n_0$ $c_1 \cdot n^2 \le \frac{1}{2} \cdot n^2 - 3 \cdot n \le c_2 \cdot n^2$

Since,
$$\frac{1}{2}$$
 n^2 - 3 $n \le \frac{1}{2}$ n^2 $\forall n \ge 1$ if $c_2 = \frac{1}{2}$ and $\frac{1}{2}$ n^2 - 3 $n \ge 1/4$ n^2 ($\forall n \ge 7$), $c_1 = 1/14$

$$c_1.g(n) \le f(n) \le c_2.g(n)$$
 $\forall n \ge 6, c_1 = 1/14, c_2 = \frac{1}{2}$
Hence $f(n) = \Theta(g(n)) \Rightarrow \frac{1}{2}.n^2 - 3.n = \Theta(n^2)$

Little-Oh Notation

o-notation is used to denote a upper bound that is not asymptotically tight.

For a given function $g(n) \ge 0$, denoted by o(g(n)) the set of functions, $o(g(n)) = \begin{cases} f(n) \text{: for any positive constants } c, \text{ there exists a constant } n_o \\ \text{such that } 0 \le f(n) < cg(n) \text{ for all } n \ge n_o \end{cases}$

f(n) becomes insignificant relative to g(n) as n approaches infinity. g(n) is an upper bound for f(n), not asymptotically tight

e.g.,
$$2n = o(n^2)$$
 but $2n^2 \neq o(n^2)$. $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$

Prove that $2n^2 = o(n^3)$

Proof:

Assume that
$$f(n) = 2n^2$$
, and $g(n) = n^3$
 $f(n) = o(g(n))$?

Now we have to find the existence n_0 for any c f(n) < c.g(n) this is true $2n^2 < c.n^3 \rightarrow 2 < c.n$

This is true for any c, because for any arbitrary c we can choose n_0 such that the above inequality holds.

Hence f(n) = o(g(n))

Prove that $n^2 \neq o(n^2)$

Proof:

Assume that $f(n) = n^2$, and $g(n) = n^2$ Now we have to show that $f(n) \neq o(g(n))$

Since

$$f(n) < c.g(n) \rightarrow n^2 < c.n^2 \rightarrow 1 \le c$$

In our definition of small o, it was required to prove for any c but here there is a constraint over c.

Hence, $n^2 \neq o(n^2)$, where c = 1 and $n_0 = 1$

Little-Omega Notation

Little- ω notation is used to denote a lower bound that is not asymptotically tight.

For a given function g(n), denote by $\omega(g(n))$ the set of all functions. $\omega(g(n)) = \{f(n): \text{ for any positive constants } c$, there exists a constant n_o such that $0 \le cg(n) < f(n)$ for all $n \ge n_o$

f(n) becomes arbitrarily large relative to g(n) as n approaches infinity

e.g.,
$$\frac{n^2}{2} = \omega(n)$$
 but $\frac{n^2}{2} \neq \omega(n^2)$. $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$

Prove that $5 \cdot n^2 = \omega(n)$

Proof:

Assume that
$$f(n) = 5 \cdot n^2$$
, and $g(n) = n$
 $f(n) = \Omega(g(n))$?

We have to prove that for any c there exists n_0 such that c.g(n) < f(n) for all $n \ge n_0$

$$c.n < 5.n^2 \rightarrow c < 5.n$$

This is true for any c, because for any arbitrary c e.g. c = 1000000, we can choose $n_0 = 1000000/5 = 200000$ and the above inequality does hold.

And hence $f(n) = \omega(g(n))$

Prove that $5.n + 10 \neq \omega(n)$

Proof:

```
Assume that f(n) = 5.n + 10, and g(n) = n f(n) \neq \Omega(g(n))?
```

We have to find the existence n_0 for any c, such that c.g(n) < f(n) for all $n \ge n_0$

c.n < 5.n + 10, if we take c = 16 then $16.n < 5.n + 10 \Rightarrow 11.n < 10$ is not true for any positive integer.

Hence $f(n) \neq \omega(g(n))$

Prove that $100.n \neq \omega(n^2)$

Proof:

```
Let f(n) = 100.n, and g(n) = n^2
Assume that f(n) = \omega(g(n))
Now if f(n) = \omega(g(n)) then there n_0 for any c such that c.g(n) < f(n) for all n \ge n_0
```

```
c.n^2 < 100.n \rightarrow c.n < 100
If we take c = 100, n < 1, not possible
```

Hence $f(n) \neq \omega(g(n))$ i.e. $100.n \neq \omega(n^2)$

Asymptotic Functions Summary

If $f(n) = \Theta(g(n))$ we say that f(n) and g(n) grow at the same rate, asymptotically

If f(n) = O(g(n)) and $f(n) \neq \Omega(g(n))$, then we say that f(n) is asymptotically slower growing than g(n).

If $f(n) = \Omega(g(n))$ and $f(n) \neq O(g(n))$, then we say that f(n) is asymptotically faster growing than g(n).

Usefulness of Notations

It is not always possible to determine behaviour of an algorithm using $\boldsymbol{\Theta}$ -notation.

For example, given a problem with n inputs, we may have an algorithm to solve it in a.n² time when n is even and c.n time when n is odd. OR

We may prove that an algorithm never uses more than e.n² time and never less than f.n time.

In either case we can neither claim $\Theta(n)$ nor $\Theta(n^2)$ to be the order of the time usage of the algorithm.

Big O and Ω notation will allow us to give at least partial information

Usefulness of Notations

To express the efficiency of our algorithms which of the three notations should we use?

As computer scientist we generally like to express our algorithms as big O since we would like to know the upper bounds of our algorithms.

Why?

If we know the worse case then we can aim to improve it and/or avoid it.

Usefulness of Notations

Even though it is correct to say "7n - 3 is $O(n^3)$ ", a better statement is "7n - 3 is O(n)", that is, one should make the approximation as tight as possible

Simple Rule:

Drop lower order terms and constant factors

```
7n-3 is O(n)

8n^2\log n + 5n^2 + n is O(n^2\log n)
```

Strictly speaking this use of the equals sign is incorrect

- the relationship is a set inclusion, not an equality
- $f(n) \in O(g(n))$ is better

Big Oh Does Not Tell the Whole Story

Question?

- If two algorithms A and B have the same asymptotic complexity, say $O(n^2)$, will the execution time of the two algorithms always be same?
- How to select between the two algorithms having the same asymptotic performance?

Answer:

- They may not be the same. There is this small matter of the constant of proportionality.
- Suppose that A does ten operations for each data item, but algorithm B only does three.
- It is reasonable to expect B to be faster than A even though both have the same asymptotic performance. The reason is that asymptotic analysis ignores constants of proportionality.

Big Oh Does Not Tell the Whole Story

```
Algorithm A {
    set up the algorithm; /*taking 50 time units*/
    read in n elements into array A; /* 3 units per element */
    for (i = 0; i < n; i++)
        do operation1 on A[i]; /* takes 10 units */
        do operation2 on A[i]; /* takes 5 units */
        do operation3 on A[i]; /* takes 15 units */
                                                      TA(n) = 50 + 3n + (10 + 5 + 15)*n
                                                            = 50 + 33*n
Algorithm B {
    set up the algorithm; /*taking 200 time units*/
    read in n elements into array A; /* 3 units per element */
    for (i = 0; i < n; i++) {
        do operation1 on A[i]; /* takes 10 units */
        do operation2 on A[i]; /* takes 5 units */
                                                      TB(n) = 200 + 3n + (10 + 5)*n
                                                             = 200 + 18*n
```

41

Big Oh Does Not Tell the Whole Story

Both algorithms have time complexity O(n).

Algorithm A sets up faster than B, but does more operations on the data

Algorithm A is the better choice for small values of n.

For values of n > 10, algorithm B is the better choice

A Misconception

A common misconception is that worst case running time is somehow defined by big-Oh, and that best case is defined by big-Omega.

There is no formal relationship like this.

However, worst case and big-Oh are commonly used together, because they are both techniques for finding an upper bound on running time.

Summary

- f(n) = O(g(n)) if there exists positive constants n_0 and c such that $f(n) \le c g(n)$ for all $n \ge n_0$.
- $f(n) = \Omega(g(n))$ if there exists positive constants n_0 and c such that $f(n) \ge c g(n)$ for all $n \ge n_0$.
- $f(n) = \Theta$ (g(n)) if there exists positive constants n_0 , c_1 and c_2 such that c_1 g(n) \leq f(n) \leq c₂ g(n) for all $n \geq n_0$.
- f(n) = o(g(n)) if for any positive constant c there exists n_0 such that f(n) > c g(n) for all $n \ge n_0$.
- $f(n) = \omega$ (g(n)) if for any positive constant c there exists n_0 such that f(n) < c g(n) for all $n \ge n_0$.