Security Protocols and Verification

Defense of Cryptographic Protocol

Garance Frolla Ely Marthouret Ewan Decima

Team: ASKO OM8464A2

September / November 2025

Contents

1	Defense against PROTOxyde d'alCOl														2							
	1.1	Notation																				2
	1.2	The attack																				2
	1.3	Refutation .																				3
2	Cor	clusion																				3

1 Defense against PROTOxyde d'alCOl

1.1 Notation

- Let \mathcal{K}_I denote the set of all facts known to the intruder I.
- Let $(K_I)_{I\in\mathcal{I}}$ the set of key use by I during the *bruteforce* step.
- ullet Let $\mathcal M$ denote the set of all messages sent during a communication between to agents.
- Let $M_{1,A} \in \mathcal{M}$ denote the first message sends by Alice, i.e., $M_{1,A} = \{|\langle A, N_A \rangle|\}_{K_{AB}}$
- Let $s(\cdot, \cdot)$ denote the sender function, i.e., s(m, x) means message M is sent by agent C.
- Let $[\cdot]_{(\cdot)}$ denote the extract function of a tuple message, i.e., for $M = \langle m_1, m_2, ..., m_n \rangle \in \mathcal{M}$, $[M]_i = m_i \quad \forall i \in [|1, n|]$.
- Let $\langle X', Y', Z', \Sigma' \rangle$ denote four random value.

1.2 The attack

- First this our understanding of your attack : the intruder I steal the first alice's message : $M_{1,A}$. At this step $K(N_A) \notin \mathcal{K}_I$ and $K(K_{AB}) \notin \mathcal{K}_I$.
- After that, I impersonates S by crafting the ticket $\{|\langle A, \tau, \lambda, K_{AB} \rangle|\}_{K_{BS}}$, replacing K_{BS} with keys K_I to form $T_I := \{|\langle X', Y', Z', \Sigma' \rangle|\}_{K_I}$ and sending $M_{1,A}$ and T_I to B.
- B gets $M_{1,A}$. At this point $K(S(M_{1,A}, A)) \notin \mathcal{K}_B$. But it's normal according to the ASKO OM8464A2 protocol. Then B gets the crafted ticket T_I . B will decipher it with K_{BS} and send back to $[dec(T_I, K_{BS})]_1$

$$\left\{ \left| dec(\{|N_A + 1|\}_{KAB}, [dec(T_I, K_{BS})]_4) \right| \right\}_{[dec(T_I, K_{BS})]_4}$$

For better understanding, let us denote $[dec(T_I, K_{BS})]_1$, $[dec(T_I, K_{BS})]_2$, $[dec(T_I, K_{BS})]_3$, $[dec(T_I, K_{BS})]_4$ as X, Y, Z, Σ respectively.

• The attack lies on the fact that identities are short bitstring, B will always decipher the ticket T_I with his symmetric key K_{BS} , and hoping that:

$$\exists J \in \mathcal{I} | J \neq BS \land dec(T_J, K_{BS}) = \langle A, Y, Z, \Sigma \rangle.$$

With such a key K_J , B will think that Σ is K_{AB} . At this point $K(\Sigma) \notin \mathcal{K}_I$ and $K(K_J) \notin \mathcal{K}_I$.

1.3 Refutation

2 Conclusion