# ECE 372A Spring 2015 - Lecture 5

Garrett Vanhoy

September 8, 2015





### Outline

- Introduction to Timers
  - Applications
  - Oscillators
- 2 Timer Implementations
  - Timers on the PIC32MX
  - Example Calculations for PR
  - Demonstration





### **Timers**

#### Reference Material

Section 14 in the PIC24F Family Reference Manual Section 13 and 14 in the PIC32 Data Sheet





Applications

# Timer Applications

### Relevant Applications

Delays (Waveform generation, Pulse-Width Modulation)





# Timer Applications

### Relevant Applications

- Delays (Waveform generation, Pulse-Width Modulation)
- Measuring elapsed time (Real-Time Clock and Calendar, Watchdog Timer)





#### Foundation of Timers

• Time is kept by whichever oscillator is powering the timer.

Time is in terms of clock cycles.





#### Foundation of Timers

- Time is kept by whichever oscillator is powering the timer.

  Time is in terms of clock cycles.
- PIC32MX has many oscillator configurations for the sake of power and speed trade-offs.





#### Oscillators in the PIC32F

- Four possible clock sources. Many possible modes.
- We will not dive too deeply into this.





#### Oscillators in the PIC32F

- Four possible clock sources. Many possible modes.
- We will not dive too deeply into this.
- Section 6 of the Family Reference Manual for details.

















#### Lab 0 Code

• In the config.h file there are a few defines that set the clock





### Outline

- Introduction to Timers
  - Applications
  - Oscillators
- 2 Timer Implementations
  - Timers on the PIC32MX
  - Example Calculations for PR
  - Demonstration





### Timers on the PIC32MX

#### Timer Details

• Five total timers. Each are used for different purposes, but have a basic common structure





### Timers on the PIC32MX

#### Timer Details

- Five total timers. Each are used for different purposes, but have a basic common structure
- Oscillator determines the time resolution, maximum timing interval, and if the timer will work in sleep, idle, or deep sleep modes. (Modes may be covered later.)





### Timers on the PIC32MX

#### Timer Details

- Five total timers. Each are used for different purposes, but have a basic common structure
- Oscillator determines the time resolution, maximum timing interval, and if the timer will work in sleep, idle, or deep sleep modes. (Modes may be covered later.)
- Timers are operated by PBCLK (Different from the system clock)













### Timer SFRs

### Important Registers

TxCON (contains TCS, TON, TGATE, TSYNC, TCKPS)





### Timer SFRs

### Important Registers

- 1 TxCON (contains TCS, TON, TGATE, TSYNC, TCKPS)
- PRx (Period register. Determines when the timer gets reset and the interrupt flag is raised.)





### Timer SFRs

### Important Registers

- TxCON (contains TCS, TON, TGATE, TSYNC, TCKPS)
- PRx (Period register. Determines when the timer gets reset and the interrupt flag is raised.)
- TMRx (Do not use for interrupts. You may use this for measuring delays.)





- Using the oscillator on the development board, what value must PR be to get a 1  $\mu$ s (10<sup>-6</sup>s) timer? Assume an  $F_{cy}$  of 10 MHz
- PR =  $\frac{(1\mu s)(10MHz)}{(Prescalar)} 1$





- Using the oscillator on the development board, what value must PR be to get a 1  $\mu$ s (10<sup>-6</sup>s) timer? Assume an  $F_{cy}$  of 10 MHz
- PR =  $\frac{(1\mu s)(10MHz)}{(Prescalar)} 1$
- "-1" accounts for the extra clock cycle



#### Formula

In general 
$$PR = \frac{(\textit{timedelay})(\textit{F}_\textit{cy})}{\textit{prescalar}} - 1$$





### Previous Example 1

- If prescalar = 1
- PR =  $(1\mu s)(10MHz) 1 = 9$





### Previous Example 1

- If prescalar = 1
- $PR = (1\mu s)(10MHz) 1 = 9$
- ${f 9}$  PR should be at least 9 to be at least  $1\mu s$ .





### Example 2

• Using a prescalar of 256 and  $F_{cy}$  of 5 MHz, what PR is necessary to get a 5 msec timer?





- Using a prescalar of 256 and  $F_{cy}$  of 5 MHz, what PR is necessary to get a 5 msec timer?
- $PR = \frac{(5*10^{-3})(5*10^{6})}{256} 1 = 96.656$





- Using a prescalar of 256
- 8 MHz oscillator
- FPLLIDIV is 2, PLLMULT is 20, PLLDIV is 16 and PBDIV is 8





- Using a prescalar of 256
- 8 MHz oscillator
- FPLLIDIV is 2, PLLMULT is 20, PLLDIV is 16 and PBDIV is 8
- What PR is necessary to get a 5 msec timer?





- Using a prescalar of 256
- 8 MHz oscillator
- FPLLIDIV is 2, PLLMULT is 20, PLLDIV is 16 and PBDIV is 8
- What PR is necessary to get a 5 msec timer?
- $PR \approx 5$
- PR should be at least 6.





### Demonstration

### Using 16-bit timers

- Creating a delay
- Measuring a time
- Using a timer interrupt
- 4 16-bit timer limitations



