Vitesse d'invasion pour un modèle de reproduction et dispersion

Augustin Lenormand Basile Bruneau 26 juin 2014

1 Grandes déviations d'une marche aléatoire

Question 1.1

• Soit $\alpha \in [0,1]$ et λ_1, λ_2 dans \mathbb{R} .

$$\mathbb{E}(e^{(\alpha\lambda_1 + (1-\alpha)\lambda_2)X}) = \mathbb{E}((e^{\lambda_1 X})^{\alpha}(e^{\lambda_2 X})^{1-\alpha})$$

$$\leq (\mathbb{E}(e^{\lambda_1 X}))^{\alpha}(\mathbb{E}(e^{\lambda_2 X}))^{1-\alpha}$$

Ici la dernière inégalité est l'inégalité de Hölder. En passant au logarithme il vient donc naturellement :

$$\Lambda((\alpha\lambda_1 + (1-\alpha)\lambda_2)X) \leqslant \alpha\Lambda(\lambda_1X) + (1-\alpha)\Lambda(\lambda_2X)$$

Donc Λ est convexe.

• De même les fonctions f_{λ} telles que $f_{\lambda}(x) = \lambda x - \Lambda(\lambda)$ sont toutes convexes. Donc par définition leurs épigraphes sont convexes.

Or l'épigraphe du supremum pour λ dans $\mathbb R$ de ces fonctions est l'intersection des épigraphes de toutes ces fonctions. Comme intersection d'ensemble convexes , il est donc convexe lui aussi. Donc l'épigraphe de Ψ est convexe.

Donc Ψ est convexe.

• $\Lambda(0) = 0 \text{ donc}$:

$$\forall x \in \mathbb{R}, \sup_{\lambda \in \mathbb{R}} (\lambda x - \Lambda(\lambda)) \geqslant 0 \cdot x - \Lambda(0) = 0$$

 $\frac{\text{Donc } \Psi \geqslant 0.}{\text{Soit } \lambda \text{ dans } \mathbb{R}.}$

$$e^{f_{\lambda}(m)} = \frac{e^{\lambda \mathbb{E}(X)}}{\mathbb{E}(e^{\lambda X})}$$

Or la fonction $x\mapsto \mathrm{e}^{\lambda x}$ est convexe, donc d'après l'inégalité de Jensen, $\mathrm{e}^{\lambda\mathbb{E}(X)}\leqslant$ $\mathbb{E}(e^{\lambda X})$. Ainsi $e^{f_{\lambda}(m)} \leq 1$ et $\lambda \mathbb{E}(X) - \Lambda(\lambda) \leq 0$.

Donc $\Psi(\mathbb{E}(X)) \leq 0$. Or $\Psi \geq 0$.

Donc Ψ admet un minimum en m et $\Psi(m) = 0$. Soit $x \ge m$ et $\lambda < 0$. Alors on peut écrire :

$$\lambda x - \Lambda(\lambda) \leq \lambda m - \Lambda(\lambda) = 0$$
$$\lambda x - \Lambda(\lambda) \leq 0 \leq \sup_{\lambda \in \mathbb{R}} \{\lambda x - \Lambda(\lambda)\}$$

Donc prendre le supremum des f_{λ} pour $\lambda \ge 0$ est suffisant pour définir Ψ

Question 1.2

$$\mathbb{P}(S_n \geqslant nx) = \mathbb{E}(\mathbb{1}_{S_n - nx \geqslant 0})$$

Comme $S_n - nx \ge 0$ alors pour tout λ positif, $e^{\lambda(S_n - nx)} \ge 1$ et

$$\mathbb{E}(\mathbb{1}_{S_n - nx \geqslant 0}) \leqslant \mathbb{E}(e^{\lambda(S_n - nx)} \mathbb{1}_{S_n - nx \geqslant 0}) \leqslant \mathbb{E}(e^{\lambda(S_n - x)})$$

On a donc:

$$\mathbb{P}(S_n \geqslant nx) \leqslant e^{-\lambda nx} \mathbb{E}(e^{\lambda S_n})$$

Comme les variables $(X_i)_{i \in [\![1,n]\!]}$ sont des v.a indépendantes de même loi on peut écrire que $\mathbb{E}(e^{\lambda S_n}) = (\mathbb{E}(e^{\lambda X}))^n = e^{n\Lambda(\lambda)}$.

On obtient alors:

$$\mathbb{P}(S_n \ge nx) \le e^{-\lambda nx} e^{n\Lambda(\lambda)}$$

$$\log \mathbb{P}(S_n \ge nx) \le -\lambda nx + n\Lambda(\lambda)$$

$$-\frac{1}{n} \log \mathbb{P}(S_n \ge nx) \ge \lambda x - \Lambda(\lambda)$$
(1)

1 est vrai pour tout λ positif et pour tout n. Donc le passage au supremum pour λ positif et à la limite inférieure pour n est possible et ne modifie pas l'inégalité.

On obtient bien alors:

$$\liminf_{n \to \infty} -\frac{1}{n} \log \mathbb{P}(S_n \ge nx) \ge \sup_{\lambda \ge 0} \{\lambda x - \Lambda(\lambda)\}$$
 (2)

Question 1.3

• Montrons tout d'abord l'égalité proposée par l'énoncée. Soit Φ une fonction mesurable bornée. Alors, en prenant Π la loi de probabilité du vecteur (X_1, \dots, X_n) ,

$$\mathbb{E}(\Phi(X_1,\dots,X_n)) = \int_R \dots \int_R \Phi(x_1,\dots,x_n) \Pi(\mathrm{d}x_1,\dots,\mathrm{d}x_n)$$
 (3)

Or les v.a. $(X_i)_{i\in \llbracket 1,n\rrbracket}$ sont i.i.d. donc si on note \mathbb{P}_X leur loi de probabilité, on peut écrire $\Pi(\mathrm{d}x_1,\cdots,\mathrm{d}x_n)=\prod\limits_{i=0}^n\mathbb{P}_X(\mathrm{d}x_i)=\prod\limits_{i=0}^n\mathbb{P}(X\in\mathrm{d}x_i).$ On peut alors réécrire 3 et utiliser la relation fournie par l'énoncé ainsi :

$$\mathbb{E}(\Phi(X_1, \dots, X_n)) = \int_R \dots \int_R \Phi(x_1, \dots, x_n) \prod_{i=0}^n \mathbb{P}(X \in dx_i)$$

$$= \int_R \dots \int_R \Phi(x_1, \dots, x_n) \prod_{i=0}^n \left(\frac{\mathbb{E}(e^{\tau X})}{e^{\tau x_i}} \mathbb{P}(\tilde{X} \in dx_i) \right)$$

$$= \mathbb{E}(e^{\tau X})^n \int_R \dots \int_R \Phi(x_1, \dots, x_n) e^{-\tau \tilde{S}_n} \prod_{i=0}^n \mathbb{P}(\tilde{X} \in dx_i)$$

$$= \mathbb{E}(e^{\tau X})^n \int_R \dots \int_R \Phi(x_1, \dots, x_n) e^{-\tau \tilde{S}_n} \tilde{\Pi}(dx_1, \dots, dx_n)$$

Ici, $\tilde{S}_n = \sum_{i=0}^n \tilde{X}_i$ et \tilde{I} est la loi de probabilité du vecteur $(\tilde{X}_1, \dots, \tilde{X}_n)$ car les $(\tilde{X}_i)_{i \in \llbracket 1, n \rrbracket}$ sont aussi i.i.d. et donc $\prod_{i=0}^n \mathbb{P}(\tilde{X} \in \mathrm{d}x_i) = \tilde{\Pi}(\mathrm{d}x_1, \cdots, \mathrm{d}x_n)$ de la même manière que pour les X_i .

On reconnaît alors donc bien l'expression souhaitée :

$$\mathbb{E}(\Phi(X_1,\dots,X_n)) = \mathbb{E}(e^{\tau X})^n \mathbb{E}\left(\Phi(\tilde{X}_1,\dots,\tilde{X}_n)e^{-\tau \tilde{S}_n}\right)$$
(4)

• On calcule l'espérance de \tilde{X} ce qui sera utile plus bas.

$$\mathbb{E}(\tilde{X}) = \int_{\mathbb{R}} u \, \mathbb{P}(\tilde{X} \in du)$$

$$= \int_{\mathbb{R}} \frac{u e^{\tau u}}{\mathbb{E}(e^{\tau X})} \mathbb{P}(X \in du)$$

$$= \frac{\mathbb{E}(X e^{\tau X})}{\mathbb{E}(e^{\tau X})}$$

$$\mathbb{E}(\tilde{X}) = x$$
(5)

• Grâce à 4 et 5 on peut alors écrire :

$$\mathbb{P}(nx \leq S_n \leq ny) = \mathbb{E}(\mathbb{1}_{S_n \in [nx,ny]})$$

$$= \mathbb{E}(e^{\tau X})^n \mathbb{E}\left(e^{-\tau \tilde{S_n}} \mathbb{1}_{\tilde{S_n} \in [nx,ny]}\right)$$

$$\geq \mathbb{E}(e^{\tau X})^n e^{-\tau ny} \mathbb{E}(\mathbb{1}_{\tilde{S_n} \in [nx,ny]})$$

On pose $Var(\tilde{X}) = \tilde{\sigma}$. On peut alors écrire que :

$$\mathbb{E}\left(\mathbb{1}_{\tilde{S_n}\in[nx,ny]}\right) = \mathbb{E}\left(\mathbb{1}_{\theta_n\in\left[0,\frac{\sqrt{n}}{\tilde{\sigma}}(y-x)\right]}\right), \theta_n = \frac{\sqrt{n}}{\tilde{\sigma}}\left(\frac{\tilde{S_n}}{n} - x\right)$$

Or $\mathbb{E}(\tilde{X}) = x$, donc pour n grand $\theta_n \sim \mathcal{N}(0,1)$ et $\frac{\sqrt{n}}{\tilde{\sigma}}(y-x) \to \infty$. En limite, on peut donc écrire :

$$\mathbb{E}\left(\mathbb{1}_{\tilde{S_n}\in[nx,ny]}\right) \underset{n\to\infty}{\longrightarrow} \int_{0}^{\infty} \frac{1}{\sqrt{2\pi}} e^{\frac{-x^2}{2}} dx = 1/2.$$

Donc pour n suffisamment grand il existe $1/2 > \varepsilon > 0$ tel que :

$$\log \mathbb{P}(nx \leq S_n \leq ny) \geq n(\Lambda(\tau) - \tau y) + \log(1/2 - \varepsilon)$$
$$-\frac{1}{n} \log \mathbb{P}(nx \leq S_n \leq ny) \leq \tau y - \Lambda(\tau) - \underbrace{\frac{\log(1/2 - \varepsilon)}{n}}_{\substack{n \to 0 \\ n \to \infty}}$$

Un passage à la limite suffit alors à montrer que :

$$\limsup_{n \to \infty} -\frac{1}{n} \log \mathbb{P}(nx \le S_n \le ny) \le \tau y - \Lambda(\tau)$$
(6)

Question 1.4

$$\mathbb{P}(S_n \geqslant nx) \geqslant \mathbb{P}(nx \leqslant S_n \leqslant ny)$$

$$\log \mathbb{P}(S_n \geqslant nx) \geqslant \log \mathbb{P}(nx \leqslant S_n \leqslant ny)$$

$$-\frac{1}{n} \log \mathbb{P}(S_n \geqslant nx) \leqslant -\frac{1}{n} \log \mathbb{P}(nx \leqslant S_n \leqslant ny)$$

$$\limsup_{n \to \infty} -\frac{1}{n} \log \mathbb{P}(S_n \geqslant nx) \leqslant \limsup_{n \to \infty} -\frac{1}{n} \log \mathbb{P}(nx \leqslant S_n \leqslant ny)$$
(7)

En combinant les inégalités 2, 6 et 7 on obtient que pour tout $m \le x < y$:

$$\Psi(x) \leqslant \liminf_{n \to \infty} -\frac{1}{n} \log \mathbb{P}(S_n \geqslant nx) \leqslant \limsup_{n \to \infty} -\frac{1}{n} \log \mathbb{P}(S_n \geqslant nx) \leqslant \tau y - \Lambda(\tau)$$

On peut alors faire tendre y vers x et utiliser la majoration $\tau x - \Lambda(\tau) \leq \Psi(x)$ pour obtenir :

$$\Psi(x) \leqslant \liminf_{n \to \infty} -\frac{1}{n} \log \mathbb{P}(S_n \geqslant nx) \leqslant \limsup_{n \to \infty} -\frac{1}{n} \log \mathbb{P}(S_n \geqslant nx) \leqslant \Psi(x)$$

Ce qui démontre bien l'identité voulue :

$$\lim_{n \to \infty} -\frac{1}{n} \log \mathbb{P}(S_n \ge nx) = \Psi(x)$$
(8)

Question 1.5

2 Densité locale pour le modèle d'invasion

Question 2.1

Démontrons que $\mathbb{E}(Z_n) = \mathbb{E}(N)^n$

- La génération 0 ne comporte qu'un individu, donc à la génération 1, $Z_1 \sim N$. Donc $\mathbb{E}(Z_1) = \mathbb{E}(N)^1$
- Soit $n \ge 0$. On suppose que $\mathbb{E}(Z_n) = \mathbb{E}(N)^n$. Or $Z_{n+1} \sim N \cdot Z_n$. Donc $\mathbb{E}(Z_{n+1}) = \mathbb{E}(N \cdot Z_n)$. Comme les variables Z_n et N sont indépendantes, on peut écrire que : $\mathbb{E}(Z_{n+1}) = \mathbb{E}(N)\mathbb{E}(Z_n) = \mathbb{E}(N)^{n+1}$.
- Par récurrence, pour tout $n \ge 0$, $\mathbb{E}(Z_n) = \mathbb{E}(N)^n$

Considérons un individu à la génération n. Sa position est distribuée comme la variable $X_0 + X_0 + \cdots + X_n = S_n$. Ainsi la probabilité que cette individu se trouve dans un intervalle I est donc $\mathbb{P}(S_n \in I)$.

La loi de probabilité du nombre d'individus présents dans l'intervalle I à la génération n est donc égale à $\#\{i: X_n^i \in I\} \sim Z_n \mathbb{P}(S_n \in I)$.

Donc $u_n(I) = \mathbb{E}(\#\{i : X_n^i \in I\}) = \mathbb{E}(Z_n \mathbb{P}(S_n \in I))$. Or $\mathbb{P}(S_n \in I) \in \mathbb{R}$ et $\mathbb{E}(Z_n) = \mathbb{E}(N)^n$.

On a donc bien:

$$u_n(I) = \mathbb{E}(N)^n \mathbb{P}(S_n \in I)$$
(9)

Question 2.2

Soit $\varepsilon > 0$.

• D'après 9 on peut écrire :

$$\frac{u_n([(\mathbb{E}(X) - \varepsilon)n, (\mathbb{E}(X) + \varepsilon)n])}{\mathbb{E}(X)^n} = \mathbb{P}\left(\left|\frac{S_n}{n} - \mathbb{E}(X)\right| \leqslant \varepsilon\right)$$

Or la loi des grands nombres nous affirme que, pour un ε positif donné, il existe n_0 tel que pour tout $n \ge n_0$, $\left| \frac{S_n}{n} - \mathbb{E}(X) \right| \le \varepsilon$. Ainsi:

$$\lim_{n \to \infty} \mathbb{P}\left(\left|\frac{S_n}{n} - \mathbb{E}(X)\right| \le \varepsilon\right) = 1$$
et
$$\frac{u_n([(\mathbb{E}(X) - \varepsilon)n, (\mathbb{E}(X) + \varepsilon)n])}{\mathbb{E}(N)^n} \underset{n \to \infty}{\longrightarrow} 1$$
(10)

• On pose $I_{\varepsilon}(n) = [(\mathbb{E}(X) - \varepsilon)n, (\mathbb{E}(X) + \varepsilon)n]$

$$1 = \mathbb{E}\left(\frac{\#\{i: X_n^i \in I_{\varepsilon}(n)\} + \#\{i: X_n^i \notin I_{\varepsilon}(n)\}}{\mathbb{E}(N)^n}\right)$$
$$= \mathbb{E}\left(\frac{\#\{i: X_n^i \in I_{\varepsilon}(n)\}}{\mathbb{E}(N)^n}\right) + \mathbb{E}\left(\frac{\#\{i: X_n^i \notin I_{\varepsilon}(n)\}}{\mathbb{E}(N)^n}\right)$$

Donc, d'après 10 on peut écrire

$$\mathbb{E}\left(\frac{\#\{i:X_n^i\notin I_\varepsilon(n)\}}{\mathbb{E}(N)^n}\right)\underset{n\to\infty}{\longrightarrow}0$$
 Or
$$\mathbb{E}\left(\frac{\#\{i:X_n^i\geqslant (\mathbb{E}(X)-\varepsilon)n\}}{\mathbb{E}(N)^n}\right)\leqslant \mathbb{E}\left(\frac{\#\{i:X_n^i\notin I_\varepsilon(n)\}}{\mathbb{E}(N)^n}\right)$$
 Donc
$$\mathbb{E}\left(\frac{\#\{i:X_n^i\geqslant (\mathbb{E}(X)-\varepsilon)n\}}{\mathbb{E}(N)^n}\right)\underset{n\to\infty}{\longrightarrow}0$$

On a donc bien montré que en moyenne, et donc en probabilité,

$$\left[\frac{\#\{i: X_n^i \geqslant (\mathbb{E}(X) - \varepsilon)n\}}{\mathbb{E}(N)^n} \underset{n \to \infty}{\longrightarrow} 0\right]$$
(11)

Question 2.3

Question 2.4

$$u_n([\mathbb{E}(X)n + \sigma a\sqrt{n}, \mathbb{E}(X)n + \sigma b\sqrt{n}]) = \mathbb{E}(N)^n \mathbb{P}(S_n \in [\mathbb{E}(X)n + \sigma a\sqrt{n}, \mathbb{E}(X)n + \sigma b\sqrt{n}])$$
$$= \mathbb{E}(N)^n \mathbb{P}(\mu_n \in [a, b])$$

Avec $\mu_n = \frac{\sqrt{n}}{\sigma} \left(\frac{S_n}{n} - \mathbb{E}(X) \right)$. Or $\mu_n \sim \mathcal{N}(0,1)$ pour n grand. Donc $\mathbb{P}(\mu_n \in [a,b]) \underset{n \to \infty}{\sim} \Pi(b) - \Pi(a)$. On obtient alors comme équivalent :

$$u_n([\mathbb{E}(X)n + \sigma a\sqrt{n}, \mathbb{E}(X)n + \sigma b\sqrt{n}]) \underset{n \to \infty}{\sim} \mathbb{E}(N)^n(\Pi(b) - \Pi(a))$$
(12)

Question 2.5

3 Vitesse d'invasion

Question 3.1

$$u_n[an, \infty) = \mathbb{E}(N)^n \mathbb{P}\left(\frac{S_n}{n} \ge a\right)$$
$$\frac{1}{n} \log(u_n[an, \infty)) = \log(\mathbb{E}(N)) + \frac{1}{n} \log\left(\mathbb{P}\left(\frac{S_n}{n} \ge a\right)\right)$$

D'après 8 on peut donc écrire :

$$\lim_{n \to \infty} \frac{1}{n} \log(u_n[an, \infty)) = \log(\mathbb{E}(N)) - \Psi(a)$$
(13)

Question 3.2

En prenant $a = v_n = R_n/n$, la quantité $u_n[R_n, \infty)$ est, par définition de R_n , finie et réduite à quelque éléments. En effet si le déplacement moyen est nul, et qu'on suppose que la variable X n'est pas nulle (car cette hypothèse ne présenterai aucun intérêt d'étude), alors l'élément le plus à droite est relativement isolé. C'est ce qu'affirme la relation 11, à savoir que le nombre d'éléments qui s'écartent du paquet centré en $n*\mathbb{E}(X)$ est négligeable.

Donc si quelque soit n, $u_n[n \cdot v_n, \infty) = O(1)$, alors $1/n \log u_n[n \cdot v_n, \infty) = O(1/n)$. A la limite on a donc $v_n \to v$ et la limite 13 nous indique donc que v va être solution $\Psi(x) - \log(\mathbb{E}(N)) = 0$.

Question 3.3