g )

# PHTHALOCYANINE COMPOSITION, ITS PREPARATION, ELECTRONIC PHOTOGRAPH LIGHT-SENSITIVE DEVICE USING THE COMPOSITION

Publication number: JP2000336283
Publication date: 2000-12-05

Inventor: HORIUCH

HORIUCHI TAMOTSU; OKAJI MAKOTO

Applicant: MITSUBISHI PAPER MILLS LTD

Classification:

- international: *C09B67/22; C09B67/50;* C09B67/00; (IPC1-7):

C09B67/50; G03G5/06

- european: C09B67/00C2; C09B67/00M1B

Application number: JP19990152509 19990531 Priority number(s): JP19990152509 19990531

Report a data error here

## Abstract of JP2000336283

PROBLEM TO BE SOLVED: To obtain a composition for an electronic photograph light-sensitive device which has a high electrification potential and a high sensitivity and can exhibit a steady performance after repeated use by using a composition containing a phthalocyanine which composition has Bragg angle peaks at specific angles against an X ray of a specific wavelength. SOLUTION: By carrying out a crystal transition of a phthalocyanine containing an amorphous titanyloxyphthalocyanine and a nonmetallic phthalocyanine using water and an aromatic compound, a phthalocyanine composition which has Bragg angles (2&theta ± 0.2) at 7.6 deg., 9.2 deg., 14.2 deg., 24.1 deg. and 27.2 deg. against the X ray of CuK&alpha 1.541&angst is obtained. As the aromatic compound, benzene, toluene or the like can be used. Preferably, not less than 2 pts.wt. and not more than 100 pts.wt. of water against one pt.wt. of a phthalocyanine is used. Preferably, not less than 10 pts.wt. and not more than 5,000 pts.wt. of the aromatic compound against 100 pts.wt. of a phthalocyanine is used.

Data supplied from the esp@cenet database - Worldwide

This Page Blank (uspto)

# (19) 日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号 特開2000-336283

(P2000-336283A)

(43)公開日 平成12年12月5日(2000.12.5)

| (51) Int.Cl. <sup>7</sup> | 識別記号 | FI         | テーマコード(参考) |  |
|---------------------------|------|------------|------------|--|
| C 0 9 B 67/50             |      | C09B 67/50 | Z 2H068    |  |
| G03G 5/06                 | 371  | G03G 5/06  | 371        |  |

#### 審査請求 未請求 請求項の数6 OL (全 13 頁)

| (21)出願番号 | <b>特願平11-152509</b>   | (71) 出願人 000005980                      |  |  |  |
|----------|-----------------------|-----------------------------------------|--|--|--|
|          |                       | 三菱製紙株式会社                                |  |  |  |
| (22)出顧日  | 平成11年5月31日(1999.5.31) | 東京都千代田区丸の内3丁目4番2号                       |  |  |  |
|          |                       | (72)発明者 堀内 保                            |  |  |  |
|          |                       | 東京都千代田区丸の内3丁目4番2号三菱                     |  |  |  |
|          |                       | 製紙株式会社内                                 |  |  |  |
|          |                       | (72)発明者 岡地 誠                            |  |  |  |
|          |                       | 東京都千代田区丸の内3丁目4番2号三菱                     |  |  |  |
|          |                       | 製紙株式会社内                                 |  |  |  |
|          |                       | Fターム(参考) 2HO68 AA19 AA21 AA28 BA38 BA39 |  |  |  |
|          |                       | EA05                                    |  |  |  |
|          |                       |                                         |  |  |  |
|          |                       |                                         |  |  |  |
|          |                       |                                         |  |  |  |
|          |                       |                                         |  |  |  |

(54) 【発明の名称】 フタロシアニン組成物及びその製造方法、並びにそれを用いた電子写真感光体

#### (57)【要約】

【課題】電子写真特性として、帯電電位が高く高感度 で、かつ繰返し使用しても諸特性が変化せず安定した性 能を発揮できるフタロシアニン組成物の結晶形を提供す ること。

【解決手段】アモルファス性TiOPcと結晶性H,P cの混合物を、水と芳香族化合物を用いて結晶転移す る。

#### 【特許請求の範囲】

【請求項2】 チタニルオキシフタロシアニンと無金属フタロシアニンを含有するフタロシアニン組成物において、 $CuK\alphal.541$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$ 

【請求項5】 80℃以上で処理することを特徴とする 請求項4記載のフタロシアニン組成物の製造方法。

【請求項6】 導電性支持体上に、請求項1記載のフタロシアニン組成物を電荷発生物質として含有する感光層を設けてなることを特徴とする電子写真感光体。

#### 【発明の詳細な説明】

#### [0001]

【発明の属する技術分野】本発明は、 $CuK\alpha1.54$   $1*10^{\circ}$   $1*10^{\circ}$  1

# [0002]

【従来の技術】近年、電子写真方式の利用は複写機の分野に限らず、印刷版材、スライドフィルム、マイクロフィルム等の、従来では写真技術が使われていた分野へ広がり、またレーザーやLED、CRTを光源とする高速プリンターへの応用も検討されている。また最近では光 50

導電性材料の電子写真感光体以外の用途、例えば静電記録素子、センサー材料、E L素子等への応用も検討され始めた。従って光導電性材料及びそれを用いた電子写真感光体に対する要求も高度で幅広いものになりつつある。これまで電子写真方式の感光体としては無機系の光導電性物質、例えばセレン、硫化カドミウム、酸化亜鉛、シリコン等が知られており、広く研究され、かつ実用化されている。これらの無機物質は多くの長所を持っているのと同時に、種々の欠点をも有している。例えばセレンには製造条件が難しく、熱や機械的衝撃で結晶化しやすいという欠点があり、硫化カドミウムや酸化亜鉛は耐湿性、耐久性に難がある。シリコンについては帯電性の不足や製造上の困難さが指摘されている。更に、セレンや硫化カドミウムには毒性の問題もある。

【0003】これに対し、有機系の光導電性物質は成膜性がよく、可撓性も優れていて、軽量であり、透明性もよく、適当な増感方法により広範囲の波長域に対する感光体の設計が容易である等の利点を有していることから、次第にその実用化が注目を浴びている。

[0004]ところで、電子写真技術に於て使用される感光体は、一般的に基本的な性質として次のような事が要求される。即ち、(1) 暗所におけるコロナ放電に対して帯電性が高いこと、(2) 得られた帯電電荷の暗所での漏洩(暗滅衰)が少ないこと、(3) 光の照射によって帯電電荷の散逸(光減衰)が速やかであること、(4) 光照射後の残留電荷が少ないこと等である。

【0005】しかしながら、今日まで有機系光導電性物質としてポリビニルカルバゾールを始めとする光導電性ポリマーに関して多くの研究がなされてきたが、これらは必ずしも皮膜性、可撓性、接着性が十分でなく、また上述の感光体としての基本的な性質を十分に具備しているとはいい難い。

【0006】一方、有機系の低分子光導電性化合物については、感光体形成に用いる結着剤等を選択するととにより、皮膜性や接着性、可撓性等機械的強度に優れた感光体を得ることができ得るものの、高感度の特性を保持し得るのに適した化合物を見出すことは困難である。

【0007】とのような点を改良するために電荷発生機能と電荷輸送機能とを異なる物質に分担させ、より高感度の特性を有する有機感光体が開発されている。機能分離型と称されているとのような感光体の特徴はそれぞれの機能に適した材料を広い範囲から選択できることであり、任意の性能を有する感光体を容易に作製し得ることから多くの研究が進められてきた。

【0008】とのうち、電荷発生機能を担当する物質としては、フタロシアニン顔料、スクエアリウム系染料、アゾ顔料、ベリレン系顔料等の多種の物質が検討され、中でもアゾ顔料は多様な分子構造が可能であり、また、高い電荷発生効率が期待できることから広く研究され、実用化も進んでいる。しかしながら、このアゾ顔料にお

7

いては、分子構造と電荷発生効率の関係はいまだに明らかになっていない。膨大な合成研究を積み重ねて、最適の構造を探索しているのが実情であるが、先に掲げた感光体として求められている基本的な性質や高い耐久性等の要求を十分に満足するものは、未だ得られていない。 [0009]また、近年従来の白色光のかわりにレーザー光を光源として、高速化、高画質化、ノンインバクト化を長所としたレーザービームブリンター等が、情報処理システムの進歩と相まって広く普及するに至り、その要求に耐えうる材料の開発が要望されている。特にレー ザー光の中でも近年コンパクトディスク、光ディスク等への応用が増大し技術進歩が著しい半導体レーザーは、コンパクトでかつ信頼性の高い光源材料としてプリンター分野でも積極的に応用されてきた。この場合の光源の波長は780~830 n m前後であることから、近赤外

【0010】フタロシアニン類は、中心金属の種類により吸収スペクトルや光導電性が異なるだけでなく、同じ中心金属を有するフタロシアニンでも、結晶形によってとれらの諸特性に差が生じ、特定の結晶形が電子写真感光体に選択されていることが報告されている。

領域に高感度な特性を有する感光体の開発が強く望まれ

ている。その中で、特に近赤外領域に光吸収を有するフ

タロシアニン類を使用した感光体の開発が盛んに行われ

【0011】 チタニルオキシフタロシアニン(以下、「TiOPc」と略記する)を例にとると、特開昭61-217050号公報では、X線回折スペクトルにおけるブラッグ角( $2\theta\pm0.2^{\circ}$ )が $7.6^{\circ}$ 、 $10.2^{\circ}$ 、 $22.3^{\circ}$ 、 $25.3^{\circ}$ 、 $28.6^{\circ}$  に主たる回折ピークを有する $\alpha$ 形TiOPc、特開昭62-67094号公報には $9.3^{\circ}$ 、 $10.6^{\circ}$ 、 $13.2^{\circ}$ 、 $15.1^{\circ}$ 、 $15.7^{\circ}$ 、 $16.1^{\circ}$ 、 $20.8^{\circ}$ 、 $23.3^{\circ}$ 、 $26.3^{\circ}$ 、 $27.1^{\circ}$  に主たる回折ピークを有する $\beta$ 形TiOPcが報告されているが、これらは要求される高い特性を十分満足していない。

【0012】 X線回折スペクトルのブラッグ角( $2\theta\pm0.2^{\circ}$ )が $27.2^{\circ}$  においてビークを有するものに限ってみても、特開昭62-67094号公報に報告されているII形 TiOPc は帯電性に劣っており、感度も低い。特開昭64-17066号公報には $9.5^{\circ}$ 、 $9.7^{\circ}$ 、 $11.7^{\circ}$ 、 $15.0^{\circ}$ 、 $23.5^{\circ}$ 、 $24.1^{\circ}$ 、 $27.3^{\circ}$  に主たる回折ピークを有する、比較的良好な感度を示す Y形 TiOPc が報告されているが、分散時に他の結晶形へ転移してしまうことや分散液の経時安定性等に問題がある。

【0013】また、2種以上のフタロシアニンからの混晶、あるいは単純に混合したものを電子写真感光体の電荷発生物質として用いることも報告されている。例として特開平1-142659号公報には $\alpha$ 形TiOPcと無金属フタロシアニン(以下、「 $H_2Pc$ 」と略記す

る)からなる $\alpha$ 形TiOPc組成物が、特開平2-170166号公報には中心金属の異なる2種以上のフタロシアニンからなる混晶が、特開平2-272067号公報にはTiOPcとH<sub>2</sub>PcからなるX形H<sub>2</sub>Pc組成物が、特開平4-351673号公報にはTiOPcとヒドロキシメタルフタロシアニンの混晶結晶が、そして特開平8-67829号公報にはX線回折スペクトルにおけるブラッグ角( $2\theta\pm0.2^{\circ}$ )が6.8  $^{\circ}$ 、7.4  $^{\circ}$ 、15.0  $^{\circ}$ 、24.7  $^{\circ}$ 、26.2  $^{\circ}$  、27.2  $^{\circ}$  に主たる回折ピークを有するTiOPcとH<sub>2</sub>Pcの混晶体が報告されている。しかし、これらも要求される特

【0014】以上述べたように電子写真感光体の作製には種々の改良が成されてきたが、先に掲げた感光体として要求される基本的な性質や高い耐久性等の要求を十分に満足するものは未だ得られていないのが現状である。 【0015】

【発明が解決しようとする課題】本発明の目的は、帯電電位が高く高感度で、かつ繰返し使用しても諸特性が変化せず安定した性能を発揮できる電子写真感光体及びそれに用いるフタロシアニン組成物を提供することである。

#### [0016]

性を有していない。

【課題を解決するための手段】本発明者らは上記目的を達成すべく鋭意検討した結果、水と芳香族化合物を用いて結晶転移するととにより、新規な結晶形を有するフタロシアニン組成物を得ることが可能であり、かつ良好な電子写真特性を有するに至った。

# [0017]

【発明の実施の形態】本発明で用いられるフタロシアニ ン類は、公知の製造方法を使用することができる。製造 方法としては、F.H.Moser、A.L.Thomas著「Phthalocyanin e Compounds」(1963年)に製造方法が記載されており、と の方法に従えばフタロシアニン類は容易に得られる。T iOPcを例にとれば、フタロジニトリルと四塩化チタ ンとの縮合反応による製造方法、あるいはPB8517 2. FIAT. FINAL REPORT 1313. Feb. 1. 1948や特開平1-142658号公 報、特開平1-221461号公報に記載されている、 40 1, 3-ジイミノイソインドリンとテトラアルコキシチ タンとの反応により製造する方法等が挙げられる。ま た、反応に用いる有機溶媒としては、α-クロロナフタ メトキシナフタレン、ジフェニルナフタレン、エチレン グリコールジアルキルエーテル、キノリン、スルホラ ン、ジクロロベンゼン、N-メチル-2-ピロリドン、 ジクロロトルエン等の反応不活性な高沸点の溶媒が望ま しい。

【0018】上述の方法によって得たフタロシアニン類 50 を、酸、アルカリ、アセトン、メタノール、エタノー

4

ル、メチルエチルケトン、テトラヒドロフラン、ピリジ ン、キノリン、スルホラン、α-クロロナフタレン、ト ルエン、キシレン、ジオキサン、クロロホルム、ジクロ ロエタン、N, N-ジメチルホルムアミド、N-メチル -2-ピロリドン、あるいは水等により精製して電子写 真用途に用い得る高純度のフタロシアニン類が得られ る。精製法としては、洗浄法、再結晶法、ソックスレー 等の抽出法、及び熱懸濁法、昇華法等がある。また、精 製方法はこれらに限定されるものではなく、未反応物や 反応副生成物を取り除く作業であれば何れでもよい。 【0019】本発明のフタロシアニン組成物は、少なく ともTiOPcとH,Pcを含有するが、TiOPcと H, P c以外のフタロシアニン類を更に含有してもよ い。その含有してもよいフタロシアニン類としては、そ れ自体公知のフタロシアニン及びその誘導体の何れでも よい。誘導体とは、フタロシアニンのイソインドール環 に置換基を有するもの、あるいは中心金属に配位子を有 するものを挙げることができる。含有してもよいフタロ シアニン類の具体例としてはH、Pc類、TiOPc 類、バナジルフタロシアニン類、銅フタロシアニン類、 アルミニウムフタロシアニン類、ガリウムフタロシアニ ン類、インジウムフタロシアニン類、ゲルマニウムフタ ロシアニン類、リチウムフタロシアニン類、ナトリウム フタロシアニン類、カリウムフタロシアニン類、ジルコ ニウムフタロシアニン類、ハフニウムフタロシアニン、 マグネシウムフタロシアニン類、スズフタロシアニン 類、亜鉛フタロシアニン類、コバルトフタロシアニン 類、ニッケルフタロシアニン類、バリウムフタロシアニ ン類、ベリリウムフタロシアニン類、カドミウムフタロ シアニン類、コバルトフタロシアニン類、鉄フタロシア 30 ニン類、シリコンフタロシアニン類、鉛フタロシアニン 類、銀フタロシアニン類、金フタロシアニン類、白金フ タロシアニン類、ルテニウムフタロシアニン類、パラジ ウムフタロシアニン類、無金属ナフタロシアニン類、チ タニルナフタロシアニン類等が挙げられる。特にその中 でもバナジルオキシフタロシアニン、クロロアルミニウ ムフタロシアニン、クロロガリウムフタロシアニン、ク ロロインジウムフタロシアニン、ジクロロゲルマニウム フタロシアニン、ヒドロキシアルミニウムフタロシアニ ン、ヒドロキシガリウムフタロシアニン、ヒドロキシイ 40 ンジウムフタロシアニン、ジヒドロキシゲルマニウムフ タロシアニンが好ましい。

【0020】本発明のフタロシアニン組成物におけるTiOPcとTiOPc以外のフタロシアニン類の比率は、TiOPc100重量部に対して、TiOPc以外のフタロシアニン類は0.1重量部以上、50重量部以下が好ましく、1重量部以上、40重量部以下がより好ましい。TiOPc以外のフタロシアニン類は、 $H_{\nu}Pc$  単独、あるいは先に示したフタロシアニン類との混合でもよい。混合する場合の比率は、 $H_{\nu}Pc100$ 重量

部に対して100重量部以下が好ましく、50重量部以下がより好ましい。

【0021】本発明で使用されるアモルファス性TiO Pcのアモルファス化方法は、機械的摩砕法、あるいは アシッドペースティング法等、アモルファス化できるも のであれば何れであってもよい。機械的摩砕処理として は、ボールミル、自動乳鉢、ペイントコンディショナー 等における乾式ミリング方法が挙げられる。摩砕助剤と してはガラスビーズ、ジルコニアビーズ、あるいは食塩 10 等が挙げられるが、とれらに限定されるものではない。 アシッドペースティング法としては、TiOPcを硫酸 等の強酸に溶解し、その溶液を水等の貧溶媒に注ぎ込ん で粒子化する方法である。また、アモルファス化する前 のTiOPcの結晶形は、何を使用しても構わない。 【0022】本発明のフタロシアニン組成物で用いる結 晶性H,Pcは、いかなる結晶形を使用してもよい。具 体的には、特公昭49-4338号公報に記載のX形H , P c、特開昭58-182639号公報に記載ので 形、並びにπ形Η, Рс、特開昭60-19154号公 20 報に記載ので、形、並びにカ、形H、Pc、特開昭62 -47054号公報、特開昭62-143058号公 報、特開昭62-217252号公報、特開昭63-2 86857号公報、特開平1-138563号公報、特 開平1-230581号公報、特開平2-233769 号公報に記載のH、Pc、及びX線回折スペクトルにお けるブラッグ角( $2\theta \pm 0.2^{\circ}$ )が6.8°、7.4 、9.1° に主たるピークを有するH<sub>2</sub>Pcを挙げる てとができる。この中でも、特にX形H, Pc、τ-H, Pc、特開平2-233769号公報に記載のH<sub>2</sub>P c、及び6.8°、7.4°、9.1°に主たるピーク を有するH、Pcが好ましい。

【0023】本発明のフタロシアニン組成物へ結晶転移させる際に必要な芳香族化合物の具体例としては、ベンゼン、トルエン、ナフタレン、m-ターフェニル、あるいはクメン等の芳香族炭化水素系化合物、クロロベンゼン、ブロモベンゼン、あるいはoージクロロベンゼン、のハロゲン化芳香族炭化水素系化合物、ベンゾチオフェン、ベンゾフラン、あるいはN-エチルカルバゾール等の芳香族へテロ環化合物を挙げることができる。これらの芳香族化合物は、常温で液体状態、あるいは固体状態の何れを形成していてもよいが、固体状態である場合、融点は100℃以下であることが好ましい。これらは単独、あるいは2種以上の混合として使用することができる。

【0024】また、芳香族化合物は種々の有機溶媒と組み合わせることが可能である。組み合わせることができる有機溶媒として具体的には、メタノール、エタノール、あるいはイソプロピルアルコール等のアルコール系溶媒、アセトン、メチルエチルケトン、あるいはメチル イソブチルケトン等のケトン系溶媒、ギ酸エチル、酢酸

エチル、あるいは酢酸n-ブチル等のエステル系溶媒、 ジエチルエーテル、ジメトキシエタン、テトラヒドロフ ラン、ジオキソラン、あるいはジオキサン等のエーテル 系溶媒、N, Nージメチルホルムアミド、N, Nージメ チルアセトアミド、あるいはN-メチルー2ーピロリド ン等のアミド系溶媒、ジクロロメタン、クロロホルム、 ブロモホルム、ヨウ化メチル、ジクロロエタン、トリク ロロエタン、あるいはトリクロロエチレン等のハロゲン 化炭化水素系溶媒、n-ペンタン、n-ヘキサン、n-オクタン、1,5-ヘキサジエン、シクロヘキサン、メ チルシクロヘキサン、シクロヘキサジエン、あるいはテ ルピノレン等の炭化水素系溶媒を挙げることができる。 これらは単独、あるいは2種以上の混合溶媒として使用 するととができる。

[0025]本発明のフタロシアニン組成物へ結晶転移 させる際の、フタロシアニン類と水の比は、フタロシア ニン類1重量部に対して、2重量部以上、100重量部 以下が好ましいが、フタロシアニン類を分散できる範囲 であればこの範囲に限定されるものではない。同様に、 フタロシアニン類と芳香族化合物の比は、フタロシアニ ン類100重量部に対して、芳香族化合物10重量部以 上、5000重量部以下が好ましく、50重量部以上、 500重量部以下がより好ましい。また、芳香族化合物 と有機溶媒を併用して結晶転移する場合、芳香族化合物 と有機溶媒の比は、芳香族化合物100重量部に対し て、1000重量部以下が好ましく、200重量部以下 がより好ましい。

[0026] 転移する温度としては、80℃以上が好ま しく、更にとの結晶転移においては撹拌しながら行うと とがより好ましい。撹拌する方法としては、スターラ ー、ボールミル、ペイントコンディショナー、サンドミ ル、アトライター、ディスパーザー、あるいは超音波分 散等が挙げられるが、撹拌処理を行えれば何でもよく、 これらに限定されるものではない。転移に要する時間 は、5秒以上、120時間以下が好ましく、10秒以 上、50時間以下がより好ましく、1分以上、50時間 が更に好ましい。

【0027】また、場合によっては界面活性剤を添加し てもよい。界面活性剤としては、カチオン系、ノニオン 系、あるいはアニオン系の何れでもよい。添加量として は、フタロシアニン組成物100重量部に対して0.0 01重量部以上、50重量部以下が好ましく、0.5重 量部以上、5重量部以下がより好ましい。

[0028] 本発明の感光層を形成するために用いるバ インダーであるフィルム形成性結着剤樹脂としては、利 用分野に応じて種々のものが挙げられる。例えば複写用 感光体の用途では、ポリスチレン樹脂、ポリビニルアセ タール樹脂、ポリスルホン樹脂、ポリカーボネート樹 脂、酢ビ・クロトン酸共重合体樹脂、ポリエステル樹 脂、ポリフェニレンオキサイド樹脂、ポリアリレート樹 50 持体としては、金属製ドラム、金属板、導電性加工を施

脂、アルキッド樹脂、アクリル樹脂、メタクリル樹脂、 フェノキシ樹脂あるいはポリ塩化ビニル樹脂等が挙げら れる。とれらの中でも、ポリスチレン樹脂、ポリビニル アセタール樹脂、ポリカーボネート樹脂、ポリエステル 樹脂、ポリアリレート樹脂等は感光体としての電位特性 に優れている。また、これらの樹脂は、単独あるいは共 重合体の何れでもよく、これらは単独、あるいは2種以 上の混合物として用いることができる。

8

【0029】感光層に含まれるこれらの樹脂は、フタロ シアニン組成物に対して10~500重量%が好まし く、50~150重量%がより好ましい。樹脂の比率が 高くなりすぎると電荷発生効率が低下し、また樹脂の比 率が低くなりすぎると成膜性に問題が生じる。

【0030】とれらのバインダーの中には、引っ張り、 曲げ、圧縮等の機械的強度に弱いものがある。この性質 を改良するために、可塑性を与える物質を加えることが できる。具体的には、フタル酸エステル(例えばDO P、DBP等)、リン酸エステル (例えばTCP、TO P等)、セバシン酸エステル、アジピン酸エステル、ニ トリルゴム、塩素化炭化水素等が挙げられる。これらの 物質は、必要以上に添加すると電子写真特性の悪影響を 及ぼすので、その割合はバインダー100重量部に対し 20重量部以下が好ましい。

【0031】その他、感光体中への添加物として酸化防 止剤やカール防止剤等、塗工性の改良のためレベリング 剤等を必要に応じて添加することができる。

【0032】本発明のフタロシアニン組成物は、他の電 荷発生物質と組み合わせて使用してもよい。使用しても 良い電荷発生物質としては、トリフェニルメタン系染 30 料、ザンセン系染料、アクリジン系染料、チアジン系染 料、ピリリウム系染料、アズレニウム系染料、チイリウ ム系染料、シアニン系染料、スクエアリウム系染料、ピ ロロピロール系染料、多環キノン系顔料、ペリレン系顔 料、ペリノン系顔料、アントラキノン系顔料、ジオキサ ジン系顔料、アゾ顔料、あるいはフタロシアニン類等が 挙げられる。これらは、単独、あるいは2種以上の混合 物として用いることができる。

[0033] 本発明の電子写真感光体の形態は、その何 れを用いることもできる。例えば、導電性支持体上に電 荷発生物質、電荷輸送物質、及びフィルム形成性結着剤 樹脂からなる感光層を設けたものがある。また、導電性 支持体上に、電荷発生物質と結着剤樹脂からなる電荷発 生層と、電荷輸送物質と結着剤樹脂からなる電荷輸送層 を設けた積層型の感光体も知られている。電荷発生層と 電荷輸送層はどちらが上層となっても構わない。また、 必要に応じて導電性支持体と感光層の間に下引き層を、 感光体表面にオーバーコート層を、積層型感光体の場合 は電荷発生層と電荷輸送層との間に中間層を設けること もできる。本発明の化合物を用いて感光体を作製する支

した紙やプラスチックフィルムのシート状、ドラム状あ るいはベルト状の支持体等が使用される。

【0034】本発明の電子写真感光体における電荷発生 物質としては、CuKa1.541オングストロームのX線に 対するブラッグ角(2θ±0.2°)が7.6°、9. 2°、14.2°、24.1°、27.2°にピークを 有するフタロシアニン組成物を用いる。

【0035】本発明の感光体に使用される電荷輸送物質 には正孔輸送物質と電子輸送物質がある。前者の例とし ては、例えば特公昭34-5466号公報等に示されて いるオキサジアゾール類、特公昭45-555号公報等 に示されているトリフェニルメタン類、特公昭52-4 188号公報等に示されているピラゾリン類、特公昭5 5-42380号公報等に示されているヒドラゾン類、 特開昭56-123544号公報等に示されているオキ サジアゾール類、特開昭54-58445号公報に示さ れているテトラアリールベンジジン類、特開昭58-6 5440号公報、あるいは特開昭60-98437号公 報に示されているスチルベン類等を挙げることができ る。その中でも、本発明に使用される電荷輸送物質とし 20 ては、特開昭60-24553号公報、特開平2-96 767号公報、特開平2-183260号公報、並びに 特開平2-226160号公報に示されているヒドラゾ ン類、特開平2-51162号公報、並びに特開平3-75660号公報に示されているスチルベン類が特に好 ましい。また、これらは単独、あるいは2種以上の混合 物として用いることができる。

【0036】一方、電子輸送物質としては、例えばクロ **ラニル、テトラシアノエチレン、テトラシアノキノジメ** タン、2, 4, 7-トリニトロー9-フルオレノン、 2, 4, 5, 7ーテトラニトロー9ーフルオレノン、 2. 4, 5, 7 - テトラニトロキサントン、2, 4, 8 ートリニトロチオキサントン、1、3、7ートリニトロ ジベンゾチオフェン、あるいは1,3,7-トリニトロ ジベンゾチオフェンー5、5ージオキシド等がある。と れらの電荷輸送物質は単独、あるいは2種以上の混合物 として用いることができる。

【0037】また、更に増感効果を増大させる増感剤と して、ある種の電子吸引性化合物を添加することもでき クロロー1, 4ーナフトキノン、1ーニトロアントラキ ノン、1-クロロ-5-ニトロアントラキノン、2-ク ロロアントラキノン、フェナントレンキノン等のキノン 類、4-ニトロベンズアルデヒド等のアルデヒド類、9 ーベンゾイルアントラセン、インダンジオン、3,5-ジニトロベンゾフェノン、あるいは3,3',5,5' - テトラニトロベンゾフェノン等のケトン類、無水フタ ル酸、4 - クロロナフタル酸無水物等の酸無水物、テレ フタラルマロノニトリル、9-アントリルメチリデンマ

るいは4-(p-ニトロベンゾイルオキシ) ベンザルマ ロノニトリル等のシアノ化合物、3-ベンザルフタリ ド、3-(α-シアノ-ρ-ニトロベンザル) フタリ ド、あるいは3  $-(\alpha - \nu r) - \rho - \mu - \mu \nu \nu \nu$ -4, 5, 6, 7-テトラクロロフタリド等のフタリド 類等を挙げることができる。

【0038】電荷輸送層に含有されるとれらのバインダ ーは、電荷輸送物質1重量部に対して0.001重量部 以上、20重量部以下が好ましく、0.01重量部以 10 上、5重量部以下がより好ましい。バインダーの比率が 高すぎると感度が低下し、また、バインダーの比率が低 くなりすぎると繰り返し特性の悪化や塗膜の欠損を招く おそれがある。

【0039】本発明の電子写真感光体は、形態に応じて 上記の種々の添加物質を溶媒中に溶解または分散し、そ の塗布液を先に述べた導電性支持体上に塗布し、乾燥し て感光体を製造するととができる。分散液を作製する際 に好ましい溶媒としては、水、メタノール、エタノー ル、あるいはイソプロピルアルコール等のアルコール系 溶媒、アセトン、メチルエチルケトン、あるいはメチル イソブチルケトン等のケトン系溶媒、ギ酸エチル、酢酸 エチル、あるいは酢酸n-ブチル等のエステル系溶媒、 ジエチルエーテル、ジメトキシエタン、テトラヒドロフ ラン、ジオキソラン、あるいはジオキサン等のエーテル 系溶媒、N、Nージメチルホルムアミド、N、Nージメ チルアセトアミド、あるいはN-メチル-2-ピロリド ン等のアミド系溶媒、ジクロロメタン、クロロホルム、 ブロモホルム、ヨウ化メチル、ジクロロエタン、トリク ロロエタン、トリクロロエチレン、クロロベンゼン、o 30 -ジクロロベンゼン、フルオロベンゼン、ブロモベンゼ ン、ヨードベンゼン、あるいはα-クロロナフタレン等 のハロゲン化炭化水素系溶媒、n-ペンタン、n-ヘキ サン、n-オクタン、1,5-ヘキサジエン、シクロヘ キサン、メチルシクロヘキサン、シクロヘキサジェン、 ベンゼン、トルエン、oーキシレン、mーキシレン、p ーキシレン、エチルベンゼン、あるいはクメン等の炭化 水素系溶媒を挙げることができる。特にその中でも、ケ トン系溶媒、エステル系溶媒、エーテル系溶媒、あるい はハロゲン化炭化水素系溶媒が好ましく、これらは単 る。との電子吸引性化合物としては例えば、2,3-ジ 40 独、あるいは2種以上の混合溶媒として用いることがで

#### [0040]

【実施例】次に本発明を実施例により更に詳細に説明す るが、本発明はこれらに何ら限定されるものではない。 【0041】合成例1

フタロジニトリル20.0gをα-クロロナフタレン2 00m1に溶かし、窒素雰囲気下、四塩化チタン9.0 gを滴下した。滴下終了後、240℃で加熱撹拌した。 3 時間後反応を停止し、析出した結晶を濾取し、α-ク ロノニトリル、4-ニトロベンザルマロノニトリル、あ 50 ロロナフタレン、メタノールでよく洗浄してジクロロチ

\*はCuKα線を用いたX線回折スペクトル(理学電機製

り結晶形を確認した。測定結果を図1に示す。

X線回折装置RAD-Cシステム)を測定することによ

タニルフタロシアニンを得た。とのジクロロチタニルフ タロシアニンを、濃アンモニア水150m1と共に、撹 拌下、加熱環流した。1時間後に反応を停止し、結晶を **遠取してTiOPcを17.4g得た。得られた結晶形米** 

11

X線管球

40.0KV 電圧 電流

スタート角度 40. Odeg. ストップ角度

測定条件

ステップ角度 :

### [0043]合成例2

合成例1で得られたTiOPcl0.0gを、約2℃に 冷却した濃硫酸100mlにゆっくりと加えて溶解させ た。との溶液を冷却した氷水1000m1にゆっくりと 注ぎ込んで結晶を析出させた。結晶を濾取し、中性にな るまで水で洗浄して9.3gの結晶を得た。この結晶の X線回折スペクトルを図2に示す。図2より、この結晶 は結晶配列の乱れたアモルファス状態であることがわか る。

#### [0044] 合成例3

合成例2で得たアモルファス性TiOPc0.7g、図 3に示す結晶性H,Pc(大日精化製、MCP-80) 0.3g、水28.0gを100m1フラスコに入れ、 85℃で加熱撹拌した。10分後、ナフタレン2.0g を添加し、引き続き同温で加熱撹拌した。 1 時間後反応 を停止し、室温まで放冷した。結晶を濾取し、メタノー ルで洗浄した。その結果、0.9gの結晶が得られた。 得られた結晶のX線回折スペクトルを図4に、赤外吸収 スペクトル (パーキン・エルマー製FT-IR、176 0X)を図5に示す。図3に示した結晶性H,Pcは、 ブラッグ角( $2\theta \pm 0$ . 2°) において、6. 8°、 7.5°、9.1°に強いピークを有している。これに 対して、図4より、本発明のフタロシアニン組成物の結 晶形はブラッグ角( $2\theta \pm 0$ .  $2^{\circ}$ )が7.  $6^{\circ}$ 、9. 2 、14.2 、24.1 、27.2 にピークを 有しており、結晶転移前のH,Pcの6.8°のピーク が消失し、新たな結晶を形成していることがわかる。ま た、図5より、赤外吸収スペクトルにおける吸収ピーク  $(\pm 2 \text{ cm}^{-1}) \text{ it}, 1332. 5 \text{ cm}^{-1}, 1119.0 \text{ cm}^{-1},$ 1073.5cm<sup>-1</sup>, 963.5cm<sup>-1</sup>, 894.0c 40 m<sup>-1</sup>、753.0cm<sup>-1</sup>、733.5cm<sup>-1</sup>に強いピー クを示すことがわかる。

#### 【0045】合成例4

ナフタレン2. 0gを、o-ジクロロベンゼン2. 0g に変更した以外は合成例3と同様にして結晶転移を行っ た。その結果、0、9gの結晶が得られた。得られた結 晶のX線回折スペクトルは図4と同一であり、赤外吸収 スペクトルは図5と同一であった。

# 【0046】合成例5

Cu

100.0mA 3. Odeg.

[0042]

0. 02deg.

クロヘキサン1.0gの混合物に変更した以外は合成例 3と同様にして結晶転移を行った。その結果、0.9g の結晶が得られた。得られた結晶のX線回折スペクトル は図4と同一であり、赤外吸収スペクトルは図5と同一 であった。

#### 【0047】合成例6

ナフタレン2. 0gを、ナフタレン1. 0gとn-オク タン1.0gの混合物に変更した以外は合成例3と同様 にして結晶転移を行った。その結果、0.9gの結晶が 20 得られた。得られた結晶のX線回折スペクトルは図4と 同一であり、赤外吸収スペクトルは図5と同一であっ た。

#### 【0048】合成例7

ナフタレン2.0gを、ナフタレン1.0gとトルエン 1.0gの混合物に変更した以外は合成例3と同様にし て結晶転移を行った。その結果、0.9gの結晶が得ら れた。得られた結晶のX線回折スペクトルは図4と同一 であり、赤外吸収スペクトルは図5と同一であった。 【0049】合成例8

30 ナフタレン2.0gを、ナフタレン1.0gとシクロへ キサノン1.0gの混合物に変更した以外は合成例3と 同様にして結晶転移を行った。その結果、0.9gの結 晶が得られた。得られた結晶のX線回折スペクトルは図 4と同一であり、赤外吸収スペクトルは図5と同一であ った。

#### 【0050】比較合成例1

ナフタレン2.0gを、n-オクタン2.0gに変更し た以外は合成例3と同様にして結晶転移を行った。その 結果、0.9gの結晶が得られた。との結晶形のX線回 折スペクトルを図6に示す。図6より、この結晶形はブ ラッグ角(2θ±0.2°)が7.5°、9.1°、2 2, 2°, 24, 1°, 25, 4°, 27, 2°, 2 8.5° にピークを有し、14.2° にピークを有して おらず、本発明の結晶形とは異なっていることがわか

## 【0051】比較合成例2

結晶性H, Pc0.3gを、β形銅フタロシアニン(東 京化成製P-1006)0.3gに変更した以外は合成 例3と同様にして結晶転移を行った。その結果、0.9 ナフタレン2.0gを、ナフタレン1.0gとエチルシ 50 gの結晶が得られた。この結晶のX線回折スペクトルは

図7に、赤外吸収スペクトルは図8に示す。図7より、 この結晶形はブラッグ角( $2\theta \pm 0.2^{\circ}$ )が7.0 , 9. 1°, 14. 2°, 18. 0°, 23. 7°, 27.2° にピークを有し、7.6° にピークを有して おらず、本発明のフタロシアニン組成物とは異なってい ることがわかる。また、図8より、赤外吸収スペクトル における吸収ピーク (±2 c m-1) は、1332.0 c m<sup>-1</sup>, 1119. 0 c m<sup>-1</sup>, 1072. 5 c m<sup>-1</sup>, 96 3.  $0 \text{ cm}^{-1}$ , 894.  $0 \text{ cm}^{-1}$ , 752.  $5 \text{ cm}^{-1}$ , 731.0cm<sup>-1</sup>にピークを有し、734cm<sup>-1</sup>にピー 10 プリケーターで塗布して膜厚20μmの電荷輸送層を形 クを有していない。

# 【0052】比較合成例3

合成例2で得たアモルファス性TiOPc0.7g、結 晶性H, Pc (大日精化製、MCP-80) 0. 3g を、合成例2で得たアモルファス製TiOPcl. Og のみに変更した以外は合成例4と同様にして結晶転移を 行った。その結果、0.9gの結晶が得られた。得られ た結晶のX線回折スペクトルを図9に、赤外吸収スペク トルを図10に示す。図9より、この結晶形はブラッグ 角( $2\theta\pm0$ .  $2^{\circ}$ )が9.  $5^{\circ}$  、9.  $7^{\circ}$  、11. 7 20 '、15.0°、23.5°、24.1°、27.3° にピークを有し、9.2° にピークを有していない。ま た、図10より、赤外吸収スペクトルにおける吸収ピー ク(±2cm<sup>-1</sup>)は、1332.0cm<sup>-1</sup>、1119.  $0\,c\,m^{-1}$ ,  $1\,0\,7\,2$ .  $5\,c\,m^{-1}$ ,  $9\,6\,2$ .  $5\,c\,m^{-1}$ ,  $8\,$  $94\,c\,m^{-1}$ , 782.  $5\,c\,m^{-1}$ , 752.  $5\,c\,m^{-1}$ , 731.0cm<sup>-1</sup>に強いピークを示し、734cm<sup>-1</sup>にピ ークを有していないことがわかる。

[0053]

【化1】

【0054】実施例1

\* 合成例3で得たフタロシアニン組成物1重量部、ポリエ ステル樹脂(東洋紡製バイロン220)1重量部、メチ ルエチルケトン100重量部をガラスビーズと共に1時 間分散した。得られた分散液を、アプリケーターにてア ルミ蒸着ポリエステル上に塗布して乾燥し、膜厚約0. 2μmの電荷発生層を形成した。次に例示化合物 (1) をポリアリレート樹脂 (ユニチカ製Uーポリマー) と 1:1の重量比で混合し、ジクロロエタンを溶媒として 10重量%の溶液を作製し、上記の電荷発生層の上にア 成した。

【0055】との様にして作製した積層型感光体につい て、静電記録試験装置(川口電機製EPA-8200) を用いて電子写真特性の評価を行なった。

測定条件:印加電圧-4.7kV、スタティックNo.3 (ターンテーブルの回転スピードモード:10m/mi n )。その結果、帯電電位 (V0) が-775V、半減 露光量(E1/2)が0.55ルックス・秒と非常に高感 度の値を示した。

【0056】更に同装置を用いて、帯電-除電(除電 光:白色光で400ルックス×1秒照射)を1サイクル とする繰返し使用に対する特性評価を行った。1000 回での繰返しによる帯電電位の変化を求めたところ、1 回目の帯電電位(V0)-725 Vに対し、1000回 目の帯電電位(V0)は-705 Vであり、繰返しによ る電位の低下がほとんどなく安定した特性を示した。ま た、1回目の半減露光量(E1/2)0.52ルックス・ 秒に対して1000回目の半減露光量(E1/2)は0. 52ルックス・秒と変化がなく優れた特性を示した。

30 【0057】実施例2~6、比較例1~3 合成例3で得たフタロシアニン組成物を、表1に示す合 成例で得たフタロシアニン組成物、比較合成例で得たフ タロシアニン組成物、あるいはTiOPcに変更した以 外は、実施例1と同様にして感光体を作製した。電子写 真特性を表1に示す。

[0058] 【表1】

| 実施例                                            | 合成例                                       | 1回目                                                          |                                                | 1000回目                                                |                                             |  |  |
|------------------------------------------------|-------------------------------------------|--------------------------------------------------------------|------------------------------------------------|-------------------------------------------------------|---------------------------------------------|--|--|
|                                                |                                           | V0 (V)                                                       | E1/2*                                          | 0 (V)                                                 | E1/2*                                       |  |  |
| 2<br>3<br>4<br>5<br>6<br>乾<br>柳<br>1<br>2<br>3 | 合成例 4<br>1 5<br>1 7<br>8<br>比較合成 1<br>2 3 | -745<br>-750<br>-745<br>-760<br>-735<br>-605<br>-605<br>-680 | 0. 533<br>5555555<br>0. 5555<br>1. 36<br>1. 36 | -725<br>-77325<br>-772405<br>-77155<br>-71058<br>-565 | 0. 53<br>0. 553<br>0. 552<br>1. 44<br>1. 91 |  |  |

\*: N/X·秒

【0059】表1より、芳香族化合物を用いずに結晶転

るフタロシアニン組成物 (比較例1) は、比較的良好な 移した本発明のブラッグ角とは異なるブラッグ角を有す 50 帯電電位 (V0)を与えるが、感度が低く、かつ繰り返

しによる劣化が大きかった。H<sub>2</sub>Pcの代わりに銅フタロシアニンを用いたフタロシアニン組成物(比較例2)は、帯電電位(V0)も感度も低かった。また、比較例3より、芳香族化合物であるo-ジクロロベンゼンを用いた結晶転移でも、TiOPc単独では繰り返し特性で劣化する結果が得られた。

15

#### 【0060】実施例9

合成例3によって得たフタロシアニン組成物5重量部、 テトラヒドロフラン100重量部をジルコニアビーズと 共にボールミルで分散した。48時間後、こうして得た 10 分散液に、(1)で示される化合物50重量部、ポリカ ーボネート樹脂 (三菱ガス化学製PCZ-200)10 0重量部、テトラヒドロフラン700重量部を加え、更 にボールミルで30分間分散処理を行った後、アプリケ ーターにてアルミ蒸着ポリエステル上に塗布し、膜厚約 15μmの感光層を形成した。この様にして作製した単 層型感光体の電子写真特性を、実施例1と同様にして評 価した。ただし、印加電圧のみ+5kVに変更した。そ の結果、1回目の帯電電位(V0)+445V、半減露 光量 (E1/2) 0. 72ルックス・秒、1000回繰り 返し後の帯電電位 (Vo) +420V、半減露光量 (E1 (2) 0. 72ルックス・秒と優れた特性を示した。 [0061]

\* 【発明の効果】以上明らかなように、本発明のフタロシ アニン組成物を用いれば優れた特性を有する電子写真感 光体を提供することができる。

#### 【図面の簡単な説明】

【図1】合成例1で得たTiOPcのX線回折スペクトル。

【図2】合成例2で得たTiOPcのX線回折スペクトル。

【図3】結晶性H,PcのX線回折スペクトル。

【図4】合成例3で得たフタロシアニン組成物のX線回 折スペクトル。

【図5】合成例4で得たフタロシアニン組成物の赤外吸収スペクトル。

【図6】比較合成例1で得たフタロシアニン組成物のX線回折スペクトル。

【図7】比較合成例2で得たフタロシアニン組成物のX線回折スペクトル。

【図8】比較合成例2で得たフタロシアニン組成物の赤 外吸収スペクトル。

20 【図9】比較合成例3で得たTiOPcのX線回折スペクトル。

【図10】比較合成例3で得たTiOPcの赤外吸収スペクトル。

【図1】



ブラッグ角 (28)

【図2】



【図3】



【図4】







# [図6]







# 【図8】









This Page Blank (uspto)