waveley_attempt

Waveley Qiu (wq2162)

2022-04-30

Was there a difference in emotional well being between an athlete and non-athlete during the COVID-19 lockdown?

Latent Variable Construction

Latent Variable 1: Athletic Identity

First, let's select the variables we are interested in.

```
athletic_identity <- c("cnsdr_ath", "sprt_goals", "frnds_ath", "sprt_impt", "think_sprt", "bad_sprt", "athletic_identity_numeric <- dataset[,athletic_identity] %>% map_df(., as.numeric)
athletic_identity_matrix <- athletic_identity_numeric %>% as.matrix()
```

Polychoric Correlations

Now, let us determine the number of factors that might underlie these variables.

```
athlete_parallel <- fa.parallel(athletic_identity_matrix, cor = "poly", fa = "pc")
```

Parallel Analysis Scree Plots

Parallel analysis suggests that the number of factors = NA and the number of components = 1
athlete_parallel\$pc.values

[1] 4.3226192 0.8770825 0.6268442 0.4268273 0.3625864 0.2006307 0.1834097 PCA indicates that two factors underlie these variables.

EFA

We now want to examine which variables might load on which factors. To do so, we will perform EFA on a 2-factor model, and also on 1- and 3- factor models.

First, the 2-factor model:

```
athletic_efa2 <- fa(r = athletic_identity_matrix, nfactors = 2, cor = "poly")
fa.diagram(athletic_efa2, digits = 2, simple = TRUE)</pre>
```


Now, the 3-factor model:

```
athletic_efa3 <- fa(r = athletic_identity_matrix, nfactors = 3, cor = "poly")
fa.diagram(athletic_efa3, digits = 2, simple = TRUE)
```


Now, the 1-factor model:

```
athletic_efa1 <- fa(r = athletic_identity_matrix, nfactors = 1, cor = "poly")
fa.diagram(athletic_efa1, digits = 2, simple = TRUE)</pre>
```


The 3-factor model seems to fit the data the best, as it has the smallest BIC. We will proceed by using the 3-factor model for athletic_identity.

Reliability

```
LV 1: External Identity
```

```
external_identity <- c("cnsdr_ath", "sprt_goals", "frnds_ath")</pre>
external_identity_numeric <- dataset[,external_identity] %>% map_df(., as.numeric)
external_identity_matrix <- external_identity_numeric %>% as.matrix()
psych::alpha(external_identity_matrix)
##
## Reliability analysis
## Call: psych::alpha(x = external_identity_matrix)
##
     raw_alpha std.alpha G6(smc) average_r S/N
                                                    ase mean sd median_r
##
                             0.8
                                      0.65 5.5 0.0098 5.1 1.5
##
##
    lower alpha upper
                           95% confidence boundaries
  0.82 0.84 0.86
##
##
##
    Reliability if an item is dropped:
##
              \verb"raw_alpha" std.alpha" G6(smc) average_r S/N alpha se var.r med.r
## cnsdr_ath
                   0.71
                             0.72
                                      0.56
                                                0.56 2.5
                                                             0.021
                                                                      NA 0.56
```

```
NA 0.63
## sprt_goals
                  0.78
                            0.78
                                     0.63
                                               0.63 3.5
                                                           0.016
## frnds ath
                   0.85
                             0.86
                                     0.75
                                               0.75 5.9
                                                           0.011
                                                                    NA 0.75
##
##
  Item statistics
##
               n raw.r std.r r.cor r.drop mean sd
## cnsdr ath 518 0.91 0.91 0.86
                                    0.78 5.1 1.8
## sprt_goals 518 0.87 0.88 0.80
                                     0.73 5.5 1.5
## frnds_ath 518 0.84 0.84 0.69
                                    0.64 4.6 1.7
##
## Non missing response frequency for each item
                 1
                     2
                           3
                               4
                                     5
                                         6
                                               7 miss
## cnsdr_ath 0.09 0.04 0.03 0.08 0.25 0.27 0.24 0.31
## sprt_goals 0.04 0.03 0.03 0.05 0.26 0.30 0.29 0.31
## frnds_ath 0.07 0.09 0.08 0.14 0.28 0.23 0.12 0.31
LV 2: Internal Value
internal_value <- c("sprt_impt", "think_sprt")</pre>
internal_value_numeric <- athletes[,internal_value] %>% map_df(., as.numeric)
internal_value_matrix <- internal_value_numeric %>% as.matrix()
psych::alpha(internal_value_matrix)
##
## Reliability analysis
## Call: psych::alpha(x = internal_value_matrix)
##
    raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
##
##
        0.81
                  0.81
                          0.67
                                     0.67 4.1 0.02
                                                      5 1.4
##
##
  lower alpha upper
                         95% confidence boundaries
## 0.77 0.81 0.85
##
## Reliability if an item is dropped:
##
             raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## sprt_impt
                   0.67
                             0.67
                                     0.45
                                               0.67 2.1
                                                              NA
                                                                     0 0.67
## think_sprt
                   0.68
                             0.67
                                     0.45
                                               0.67 2.1
                                                              NA
                                                                     0 0.67
##
##
  Item statistics
##
               n raw.r std.r r.cor r.drop mean sd
## sprt_impt 356 0.91 0.91 0.75
                                     0.67 5.1 1.5
## think_sprt 356 0.92 0.91 0.75
                                    0.67 4.9 1.5
##
## Non missing response frequency for each item
                 1
                     2
                           3
                               4
                                     5
                                         6
                                               7 miss
## sprt_impt 0.03 0.04 0.10 0.10 0.28 0.27 0.18 0.02
## think_sprt 0.02 0.05 0.14 0.12 0.29 0.22 0.16 0.02
LV 3: Negative Events
negative_events <- c("dprs_sprt", "bad_sprt")</pre>
negative_events_numeric <- athletes[,negative_events] %>% map_df(., as.numeric)
negative_events_matrix <- negative_events_numeric %>% as.matrix()
```

```
psych::alpha(negative_events_matrix)
## Reliability analysis
## Call: psych::alpha(x = negative_events_matrix)
##
##
    raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
         0.63
##
                   0.63
                           0.46
                                     0.46 1.7 0.039 5.6 1.2
##
##
  lower alpha upper
                          95% confidence boundaries
## 0.55 0.63 0.7
##
##
  Reliability if an item is dropped:
##
             raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
                  0.40
                            0.46
                                    0.21
                                              0.46 0.85
                                                                      0 0.46
                                                               NA
## dprs_sprt
## bad_sprt
                  0.53
                            0.46
                                    0.21
                                               0.46 0.85
                                                               NA
                                                                      0 0.46
##
   Item statistics
##
##
               n raw.r std.r r.cor r.drop mean sd
## dprs_sprt 356 0.83 0.85 0.58
                                     0.46 5.7 1.3
## bad_sprt 356 0.88 0.85 0.58
                                     0.46 5.5 1.4
## Non missing response frequency for each item
                     2
                          3
                               4
                                    5
                                         6
                                              7 miss
                1
## dprs_sprt 0.01 0.02 0.02 0.06 0.30 0.29 0.29 0.02
## bad sprt 0.02 0.04 0.04 0.08 0.24 0.29 0.28 0.02
Our final model for athlete_identity is as follows:
external_identity = sprt_goals + cnsdr_ath + frnds_ath internal_value = sprt_impt + think_sprt
negative\_events = dprs\_sprt + bad\_sprt
CFA
athlete model <-
'external_identity =~ sprt_goals + cnsdr_ath + frnds_ath
internal_value =~ sprt_impt + think_sprt
negative_events =~ dprs_sprt + bad_sprt'
athlete_CFA = cfa(athlete_model, data = athletic_identity_matrix,
                   ordered = names(athletic_identity_matrix),
                   std.lv = TRUE)
summary(athlete_CFA, fit.measures = TRUE)
## lavaan 0.6-10 ended normally after 23 iterations
##
##
    Estimator
                                                        MT.
##
     Optimization method
                                                    NLMINB
     Number of model parameters
##
                                                        17
##
##
                                                      Used
                                                                 Total
##
    Number of observations
                                                       518
                                                                   753
## Model Test User Model:
##
```

```
42.386
##
     Test statistic
##
     Degrees of freedom
                                                         11
     P-value (Chi-square)
##
                                                     0.000
##
## Model Test Baseline Model:
##
##
     Test statistic
                                                  2011.633
##
     Degrees of freedom
                                                         21
##
     P-value
                                                     0.000
##
## User Model versus Baseline Model:
##
     Comparative Fit Index (CFI)
                                                     0.984
##
     Tucker-Lewis Index (TLI)
                                                     0.970
##
##
## Loglikelihood and Information Criteria:
##
                                                 -6060.200
##
     Loglikelihood user model (HO)
##
     Loglikelihood unrestricted model (H1)
                                                 -6039.008
##
##
     Akaike (AIC)
                                                 12154.401
##
     Bayesian (BIC)
                                                 12226.650
##
     Sample-size adjusted Bayesian (BIC)
                                                 12172.689
##
## Root Mean Square Error of Approximation:
##
##
     RMSEA
                                                     0.074
##
     90 Percent confidence interval - lower
                                                     0.051
     90 Percent confidence interval - upper
                                                     0.098
##
     P-value RMSEA <= 0.05
##
                                                     0.041
##
## Standardized Root Mean Square Residual:
##
##
     SRMR
                                                     0.025
##
## Parameter Estimates:
##
##
    Standard errors
                                                  Standard
##
     Information
                                                  Expected
                                                Structured
##
     Information saturated (h1) model
##
## Latent Variables:
##
                          Estimate Std.Err z-value P(>|z|)
##
     external_identity =~
##
                             1.295
                                       0.055
                                               23.488
                                                          0.000
       sprt_goals
##
                             1.557
                                       0.066
                                               23.609
                                                         0.000
       cnsdr_ath
##
                             1.168
                                       0.068
                                               17.084
                                                         0.000
       frnds_ath
##
     internal_value =~
                                                         0.000
##
       sprt_impt
                              1.433
                                       0.065
                                               22.061
##
                              1.581
                                       0.066
                                               24.079
                                                         0.000
       think_sprt
##
     negative_events =~
##
                             1.315
                                       0.069
                                               19.168
                                                         0.000
       dprs_sprt
##
       bad_sprt
                              1.378
                                       0.073
                                               18.999
                                                         0.000
##
```

```
## Covariances:
                          Estimate Std.Err z-value P(>|z|)
##
##
     external identity ~~
##
       internal_value
                             0.751
                                      0.027
                                               28.071
                                                         0.000
                                      0.032
                                                         0.000
##
       negative_evnts
                             0.729
                                               22.965
##
     internal_value ~~
##
       negative_evnts
                             0.696
                                      0.034
                                               20.512
                                                         0.000
##
## Variances:
##
                      Estimate Std.Err z-value P(>|z|)
##
      .sprt_goals
                         0.569
                                  0.058
                                           9.742
                                                     0.000
##
                         0.800
                                  0.083
                                           9.584
                                                     0.000
      .cnsdr_ath
##
                         1.512
                                  0.106
                                          14.278
                                                     0.000
      .frnds_ath
                                  0.088
##
      .sprt_impt
                         0.837
                                           9.482
                                                     0.000
##
      .think_sprt
                         0.592
                                  0.094
                                           6.277
                                                     0.000
##
      .dprs_sprt
                         0.989
                                  0.108
                                           9.187
                                                     0.000
##
      .bad_sprt
                         1.134
                                  0.120
                                           9.454
                                                     0.000
##
       external_dntty
                         1.000
##
       internal_value
                         1.000
##
       negative_evnts
                         1.000
```

Latent Variable 2: Healthy Lifestyle

```
healthy_lifestyle <- c("hr_sleep", "smoking", "fruit_veg")
healthy_life_numeric <- dataset[,healthy_lifestyle] %>% map_df(., as.numeric)
healthy_life_matrix <- healthy_life_numeric %>% as.matrix()
```

Polychoric Correlations

Now, let us determine the number of factors that might underlie these variables.

```
health_parallel <- fa.parallel(healthy_life_matrix, fa = "pc")</pre>
```

Parallel Analysis Scree Plots

Parallel analysis suggests that the number of factors = NA and the number of components = 1 health_parallel\$pc.values

[1] 1.1445939 0.9770581 0.8783480

1 latent factor appears to underlie these variables. *** need to check if this is the correct way to assess formative LV's ***

Latent Variable 3: Resilience

Finally, we will look at resilience.

```
resilience <- c("bounce", "strs_evnt", "strs_rcvr", "snap_back", "difficult", "setbacks")
resilience_numeric <- dataset[,resilience] %>% map_df(., as.numeric)
resilience_matrix <- resilience_numeric %>% as.matrix()
```

Polychoric Correlations

```
resilience_parallel <- fa.parallel(resilience_matrix, fa = "pc")
```

Parallel Analysis Scree Plots

Parallel analysis suggests that the number of factors = NA and the number of components = 1
resilience_parallel\$pc.values

[1] 3.9328582 0.5404267 0.4728952 0.4114713 0.3457324 0.2966162

It appears that a 1-factor model will sufficiently explain the variability across these variables.

EFA

First, we can do a 1-factor EFA model:

```
resilience_efa1 <- fa(r = resilience_matrix, nfactors = 1, cor = "poly")
fa.diagram(resilience_efa1, digits = 2, simple = TRUE)
```



```
summary(resilience_efa1)
```

```
##
## Factor analysis with Call: fa(r = resilience_matrix, nfactors = 1, cor = "poly")
##
## Test of the hypothesis that 1 factor is sufficient.
## The degrees of freedom for the model is 9 and the objective function was 0.08
## The number of observations was 753 with Chi Square = 59.72 with prob < 1.5e-09
##
## The root mean square of the residuals (RMSA) is 0.03
## The df corrected root mean square of the residuals is 0.03
##
## Tucker Lewis Index of factoring reliability = 0.972
## RMSEA index = 0.087 and the 10 % confidence intervals are 0.066 0.108
## BIC = 0.1
Now, we can try a 2-factor EFA model:
resilience_efa2 <- fa(r = resilience_matrix, nfactors = 2, cor = "poly")
fa.diagram(resilience_efa2, digits = 2, simple = TRUE)</pre>
```


summary(resilience_efa2)

```
##
## Factor analysis with Call: fa(r = resilience_matrix, nfactors = 2, cor = "poly")
## Test of the hypothesis that 2 factors are sufficient.
## The degrees of freedom for the model is 4 and the objective function was 0.01
## The number of observations was 753 with Chi Square = 9.94 with prob < 0.041
## The root mean square of the residuals (RMSA) is 0.01
## The df corrected root mean square of the residuals is 0.02
## Tucker Lewis Index of factoring reliability = 0.993
## RMSEA index = 0.044 and the 10 % confidence intervals are 0.008 0.08
## BIC = -16.56
##
   With factor correlations of
##
       MR1 MR2
## MR1 1.00 0.85
## MR2 0.85 1.00
```

Since a 1-factor model is sufficient, we will just proceed with the 1-factor model.

Reliability

```
psych::alpha(resilience_matrix)
```

##

```
## Reliability analysis
## Call: psych::alpha(x = resilience_matrix)
##
##
     raw_alpha std.alpha G6(smc) average_r S/N
                                                ase mean
                                                            sd median_r
##
        0.89
                   0.89
                           0.88
                                     0.59 8.5 0.006 3.5 0.82
##
   lower alpha upper
                          95% confidence boundaries
## 0.88 0.89 0.91
##
##
  Reliability if an item is dropped:
             raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
                  0.88
                            0.88
                                    0.85
                                              0.59 7.1
                                                         0.0072 0.0033 0.57
## bounce
## strs_evnt
                  0.88
                            0.88
                                    0.86
                                              0.59 7.2
                                                         0.0070 0.0023 0.57
## strs_rcvr
                            0.88
                                    0.86
                                              0.60 7.5
                  0.88
                                                         0.0068 0.0032 0.60
                  0.87
                            0.87
                                    0.84
                                              0.57 6.6
                                                         0.0076 0.0017 0.56
## snap_back
## difficult
                  0.88
                            0.88
                                    0.86
                                              0.60 7.6
                                                         0.0068 0.0031 0.60
## setbacks
                  0.87
                            0.87
                                    0.84
                                              0.57 6.6
                                                         0.0076 0.0019 0.56
##
##
   Item statistics
##
              n raw.r std.r r.cor r.drop mean
## bounce
             661 0.80 0.81 0.76
                                     0.72 3.9 0.94
                 0.80 0.80 0.75
                                     0.70
                                           3.3 1.06
## strs evnt 661
                             0.71
                                           3.5 1.03
## strs_rcvr 661
                  0.78
                       0.78
                                     0.67
                             0.81
                                           3.4 1.03
## snap back 661
                  0.85
                        0.84
                                     0.77
## difficult 661
                 0.77
                       0.77
                             0.71
                                     0.67 3.3 0.99
## setbacks 661 0.85 0.85 0.82
                                     0.77 3.5 1.01
##
## Non missing response frequency for each item
##
                1
                     2
                          3
                               4
                                    5 miss
## bounce
             0.02 0.09 0.16 0.48 0.25 0.12
## strs_evnt 0.05 0.20 0.27 0.37 0.11 0.12
## strs_rcvr 0.03 0.18 0.23 0.43 0.14 0.12
## snap_back 0.03 0.20 0.20 0.45 0.12 0.12
## difficult 0.02 0.21 0.28 0.39 0.10 0.12
## setbacks 0.03 0.15 0.22 0.46 0.13 0.12
```

Chronbach's alpha is 0.89 (0.88, 0.91). No items can be dropped to improve this measure, so we will keep all of them in this latent variable.

Final CFA

```
final_model <-
'external_identity =~ sprt_goals + cnsdr_ath + frnds_ath
internal_value =~ sprt_impt + think_sprt
negative_events =~ dprs_sprt + bad_sprt

athlete_identity =~ external_identity + internal_value + negative_events
healthy_lifestyle =~ hr_sleep + smoking + fruit_veg

resilience =~ bounce + strs_evnt + strs_rcvr + snap_back + difficult + setbacks
'fin_df <- dataset %>% map_df(., as.numeric)
```

```
final_cfa = cfa(final_model,
                data = fin_df,
                std.lv = TRUE)
summary(final_cfa, fit.measures = TRUE)
## lavaan 0.6-10 ended normally after 50 iterations
##
##
     Estimator
                                                         ML
##
     Optimization method
                                                     NLMINB
##
     Number of model parameters
                                                         38
##
##
                                                       Used
                                                                  Total
##
     Number of observations
                                                        460
                                                                    753
##
## Model Test User Model:
##
##
     Test statistic
                                                    200.588
##
     Degrees of freedom
                                                         98
     P-value (Chi-square)
                                                      0.000
##
##
## Model Test Baseline Model:
##
     Test statistic
                                                   3434.549
##
     Degrees of freedom
##
                                                        120
                                                      0.000
##
     P-value
##
## User Model versus Baseline Model:
##
##
     Comparative Fit Index (CFI)
                                                      0.969
##
     Tucker-Lewis Index (TLI)
                                                      0.962
##
## Loglikelihood and Information Criteria:
##
##
     Loglikelihood user model (HO)
                                                -10292.110
##
     Loglikelihood unrestricted model (H1)
                                                -10191.815
##
##
     Akaike (AIC)
                                                  20660.219
##
     Bayesian (BIC)
                                                 20817.206
##
     Sample-size adjusted Bayesian (BIC)
                                                 20696.604
##
## Root Mean Square Error of Approximation:
##
##
                                                      0.048
     90 Percent confidence interval - lower
                                                      0.038
##
##
     90 Percent confidence interval - upper
                                                      0.057
##
     P-value RMSEA <= 0.05
                                                      0.643
##
## Standardized Root Mean Square Residual:
##
                                                      0.051
##
     SRMR
##
## Parameter Estimates:
##
```

##	Standard errors	errors			Standard	
##	Information	ormation			Expected	
##	Information saturated (h1) model				Structured	
##						
##	Latent Variables:					
##		Estima	te Std.	Err z-va	alue P(> z)	
##	external_identity	=~				
##	sprt_goals	0.48	31 0.	086 5	.598 0.000	
##	cnsdr_ath	0.58	30 0.	104 5	.596 0.000	
##	frnds_ath	0.43	34 0.	079 5	.473 0.000	
##	internal_value =~					
##	sprt_impt	0.78	84 0.	066 11.	0.000	
##	think_sprt	0.8	54 0.	074 11.	.557 0.000	
##	negative_events =	·~				
##	dprs_sprt	0.8	16 0.	070 11.	.601 0.000	
##	bad_sprt	0.8	29 0.	071 11.	.676 0.000	
##	athlete_identity	=~				
##	external_dntty	2.48	31 0.	509 4.	.872 0.000	
##	internal_value	1.5	10 0.	173 8.	741 0.000	
##	negative_evnts	1.28	39 0.	145 8.	.917 0.000	
##	healthy_lifestyle	=~				
##	hr_sleep	0.4	47 0.	094 4.	.777 0.000	
##	smoking	-0.3	74 0.	091 -4.	.116 0.000	
##	fruit_veg	-0.09	92 0.	036 -2.	.539 0.011	
##	resilience =~					
##	bounce	0.7	19 0.	037 19.	.237 0.000	
##	strs_evnt	0.8	16 0.	043 18	.798 0.000	
##	strs_rcvr	0.75	26 0.	043 16	.890 0.000	
##	snap_back	0.86	61 0.	040 21.	.518 0.000	
##	difficult	0.69	92 0.	042 16	.545 0.000	
##	setbacks	0.8	34 0.	039 21.	.366 0.000	
##						
##	Covariances:					
##		Estima	te Std.	Err z-va	alue P(> z)	
##	athlete_identity	~~				
##	healthy_lfstyl	0.4	40 0.	103 4.	.263 0.000	
##	resilience	0.0	60 0.	053 1.	.123 0.262	
##	healthy_lifestyle	. ~~				
##	resilience	0.3	53 0.	098 3.	.611 0.000	
##						
##	Variances:					
##		Estimate S	Std.Err	z-value	P(> z)	
##	.sprt_goals	0.582	0.062	9.459	0.000	
##	.cnsdr_ath	0.825	0.089	9.316	0.000	
##	.frnds_ath	1.496	0.111	13.457	0.000	
##	.sprt_impt	0.882	0.097	9.084	0.000	
##	.think_sprt	0.645	0.102	6.338	0.000	
##	.dprs_sprt	0.993	0.121	8.238	0.000	
##	.bad_sprt	1.160	0.130	8.959	0.000	
##	.hr_sleep	0.864	0.092	9.343	0.000	
##	.smoking	1.271	0.100	12.705	0.000	
##	.fruit_veg	0.239	0.017	14.415	0.000	
##	.bounce	0.337	0.027	12.695	0.000	
##	.strs_evnt	0.470	0.036	12.886	0.000	

```
0.522
                              0.039
                                      13.547
                                                0.000
##
     .strs_rcvr
                      0.313 0.028 11.328
                                                0.000
##
     .snap_back
                      0.503 0.037 13.644
                                                0.000
##
     .difficult
##
     .setbacks
                       0.303 0.026 11.444
                                                0.000
##
     .external_dntty
                      1.000
##
     .internal value
                      1.000
##
     .negative evnts
                      1.000
      athlete_idntty
##
                      1.000
##
      healthy_lfstyl
                      1.000
##
      resilience
                      1.000
```

Structural Equation Modeling

```
athlete sem <- '
  # measurement model
    external_identity =~ sprt_goals + cnsdr_ath + frnds_ath
   internal_value =~ sprt_impt + think_sprt
   negative_events =~ dprs_sprt + bad_sprt
   athlete_identity =~ external_identity + internal_value + negative_events
   healthy_lifestyle =~ hr_sleep + smoking + fruit_veg
   resilience =~ bounce + strs_evnt + strs_rcvr + snap_back + difficult + setbacks
  # structural model - direct effects
   mhc_sf ~ a*athlete_identity + b*healthy_lifestyle + c*resilience
   resilience ~ d*athlete_identity
  # indirect
    indirect_athlete_identity := d*c
  # total
   total_athlete_identity:= d*c + a
athlete_sem_fit <- sem(athlete_sem,
                       data = dataset,
                       sample.cov = TRUE,
                       missing = "ML")
summary(athlete_sem_fit)
## lavaan 0.6-10 ended normally after 130 iterations
##
    Estimator
                                                       MT.
```

```
## lavaan 0.6-10 ended normally after 130 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of model parameters 58
##
## Number of observations 753
## Number of missing patterns 6
##
## Model Test User Model:
##
```

```
273.299
##
     Test statistic
##
     Degrees of freedom
                                                        112
##
     P-value (Chi-square)
                                                      0.000
##
## Parameter Estimates:
##
##
     Standard errors
                                                   Standard
     Information
                                                   Observed
##
     Observed information based on
##
                                                    Hessian
##
## Latent Variables:
##
                                     Std.Err z-value P(>|z|)
                           Estimate
##
     external_identity =~
##
       sprt_goals
                              1.000
##
                              1.203
                                        0.052
                                                23.046
                                                           0.000
       cnsdr_ath
##
       frnds_ath
                              0.902
                                        0.054
                                                16.807
                                                           0.000
##
     internal_value =~
##
       sprt impt
                              1.000
##
                              1.099
                                        0.053
                                                20.861
                                                           0.000
       think_sprt
##
     negative_events =~
##
       dprs_sprt
                              1.000
##
       bad_sprt
                              1.045
                                        0.069
                                                15.198
                                                           0.000
##
     athlete_identity =~
##
       external_dntty
                              1.000
##
                              1.005
                                       0.077
                                                           0.000
       internal_value
                                                13.015
##
       negative_evnts
                              0.894
                                        0.072
                                                12.379
                                                           0.000
##
     healthy_lifestyle =~
##
                              1.000
       hr_sleep
                                                           0.001
##
                             -0.473
                                        0.146
                                                -3.243
       smoking
                                        0.064
##
       fruit_veg
                             -0.168
                                                -2.639
                                                           0.008
##
     resilience =~
##
       bounce
                              1.000
                                        0.056
                                                19.717
                                                           0.000
##
       strs_evnt
                              1.112
                              1.010
##
                                        0.054
                                                18.603
                                                           0.000
       strs_rcvr
##
       snap_back
                              1.177
                                        0.054
                                                21.788
                                                           0.000
##
       difficult
                              0.965
                                        0.053
                                                18.261
                                                          0.000
##
       setbacks
                              1.167
                                        0.053
                                                22.074
                                                          0.000
##
## Regressions:
##
                      Estimate Std.Err z-value P(>|z|)
##
     mhc sf ~
##
       athlt_dntt (a)
                         -3.163
                                   1.625
                                           -1.947
                                                      0.052
       hlthy lfst (b)
                          9.299
                                   4.982
                                             1.866
                                                      0.062
##
##
       resilience (c)
                          8.776
                                   0.762
                                            11.522
                                                      0.000
##
     resilience ~
##
       athlt_dntt (d)
                          0.050
                                   0.033
                                                      0.126
                                             1.529
##
## Covariances:
                                    Std.Err z-value P(>|z|)
##
                          Estimate
##
     athlete_identity ~~
##
       healthy_lfstyl
                             0.431
                                      0.120
                                                3.577
                                                         0.000
##
## Intercepts:
##
                       Estimate Std.Err z-value P(>|z|)
```

```
0.000
##
      .sprt_goals
                          5.502
                                    0.066
                                             83.661
##
                          5.092
                                    0.079
                                             64.625
                                                        0.000
      .cnsdr_ath
##
      .frnds ath
                          4.613
                                    0.074
                                             61.937
                                                        0.000
##
      .sprt_impt
                          4.693
                                    0.075
                                             62.892
                                                        0.000
##
      .think_sprt
                          4.405
                                    0.077
                                             57.085
                                                        0.000
##
      .dprs sprt
                          5.225
                                    0.072
                                             72.173
                                                        0.000
##
                          5.040
                                    0.076
                                             65.923
                                                        0.000
      .bad_sprt
##
                                    0.080
                                            165.988
      .hr_sleep
                          13.207
                                                        0.000
##
      .smoking
                           1.659
                                    0.043
                                             39.007
                                                        0.000
##
                                    0.018
      .fruit_veg
                           1.456
                                             80.199
                                                        0.000
##
      .bounce
                          3.856
                                    0.037
                                            105.602
                                                        0.000
##
                          3.304
                                    0.041
                                             80.509
                                                        0.000
      .strs_evnt
##
      .strs_rcvr
                          3.479
                                    0.040
                                             87.369
                                                        0.000
##
                                    0.040
                                             86.028
                                                        0.000
      .snap_back
                          3.426
##
      .difficult
                          3.324
                                    0.038
                                             86.493
                                                        0.000
##
      .setbacks
                          3.499
                                    0.039
                                             89.051
                                                        0.000
##
                                    0.520
                                                        0.000
      .mhc_sf
                          36.091
                                             69.412
##
      .external_dntty
                          0.000
##
                          0.000
      .internal_value
##
      .negative evnts
                          0.000
##
       athlete_idntty
                          0.000
##
       healthy_lfstyl
                          0.000
##
      .resilience
                          0.000
##
## Variances:
##
                       Estimate
                                  Std.Err
                                           z-value
                                                    P(>|z|)
                                              9.750
##
      .sprt_goals
                          0.570
                                    0.058
                                                        0.000
##
                          0.799
                                    0.085
                                              9.448
                                                        0.000
      .cnsdr_ath
##
                           1.512
                                    0.107
                                             14.166
                                                        0.000
      .frnds_ath
##
      .sprt_impt
                          0.830
                                    0.089
                                              9.318
                                                        0.000
##
      .think_sprt
                          0.601
                                    0.095
                                              6.304
                                                        0.000
##
      .dprs_sprt
                          0.984
                                    0.109
                                              8.997
                                                        0.000
##
      .bad_sprt
                           1.139
                                    0.122
                                              9.363
                                                        0.000
##
                          4.321
                                    0.288
                                                        0.000
      .hr_sleep
                                             15.004
##
      .smoking
                           1.262
                                    0.079
                                             15.971
                                                        0.000
##
                          0.235
                                    0.014
                                             17.266
                                                        0.000
      .fruit_veg
##
      .bounce
                          0.366
                                    0.024
                                             15.331
                                                        0.000
##
                          0.476
                                    0.031
                                             15.495
                                                        0.000
      .strs_evnt
##
                          0.523
                                    0.032
                                             16.128
                                                        0.000
      .strs_rcvr
##
                                    0.024
                                                        0.000
      .snap_back
                          0.335
                                             13.887
##
      .difficult
                          0.496
                                    0.031
                                             16.234
                                                        0.000
##
      .setbacks
                          0.320
                                    0.023
                                             13.799
                                                        0.000
##
                                              6.459
      .mhc sf
                        119.391
                                   18.484
                                                        0.000
##
                                    0.085
      .external_dntty
                          0.274
                                              3.238
                                                        0.001
##
                          0.644
                                    0.104
                                              6.223
      .internal_value
                                                        0.000
##
                          0.614
                                    0.106
                                              5.806
                                                        0.000
      .negative_evnts
##
       athlete_idntty
                           1.403
                                    0.156
                                              9.021
                                                        0.000
##
       healthy_lfstyl
                          0.446
                                    0.210
                                              2.124
                                                        0.034
##
      .resilience
                          0.516
                                    0.046
                                             11.211
                                                        0.000
##
##
  Defined Parameters:
##
                       Estimate Std.Err z-value P(>|z|)
##
       indrct_thlt_dn
                          0.437
                                    0.289
                                              1.513
                                                        0.130
##
       ttl_thlt_dntty
                         -2.726
                                    1.632
                                             -1.670
                                                        0.095
```

