Problem Set 1

Panel Data and Program Evaluation

Due on 2020/12/02

I. Econometrics

Let's think about the problem of serial correlation using a simple example.
Consider the following sample-mean model for the panel data:

$$Y_{it} = \beta + u_{it}$$

where $t = 1, \dots, T$ for all i (the panel is balanced). The structure of u_{it} is $u_{it} = \theta_i + \epsilon_{it}$. θ_i is uncorrelated with ϵ_{it} ; $Var(\theta) = \sigma_{\theta}^2$; $Var(\epsilon_{it}) = \sigma_{\epsilon}^2$.

- (a) Assume that u_{it} is i.i.d, write down the OLS estimate for β (denote it as $\hat{\beta}$) and the OLS estimate of its variance, $\widehat{Var}(\hat{\beta})$.
- (b) Write down the actual variance of $Var(\hat{\beta})$ and compare it with $Var(\hat{\beta})$, which one is larger?

- (c) What is the estimate of the variance of $\hat{\beta}$ if we cluster the standard error by each individual i?
- 2. Suppose we use following model to evaluate a certain policy:

$$Y_{it} = \alpha_0 + \alpha \tau_{g(i)t} + \delta t + \theta_i + \varepsilon_{it}$$

where g(i)=1 is i is treated and zero otherwise, and $\tau_{g(i)t}=1$ if g(i)=1 and the policy is enacted before t.

- (a) What is the FE estimator for α ? You may work out the case of two periods and then consider the general case with multiple periods.
- (b) Compare the FE estimator with the FD (first-difference) estimator for α .

II. Software exercises