66.70 Estructura del Computador

### Circuitos con capacidad de memoria

#### Circuitos de la electrónica digital

#### **Combinacionales**

Salida = Función de las Entradas exclusivamente

#### **Secuenciales**

Salida también función de la historia del sistema

"Memoria"

¿Cómo puedo crear circuitos que tengan capacidad de memorizar?

### Modelo de circuito secuencial



### Circuito secuencial simple



- Analizar evolución temporal
- · Respuesta a todas las condiciones de entrada
- · Entrada R=S=1

#### Flip-Flop RS asincrónico

#### Símbolo



#### Circuito



#### Tabla de estados

| Q, | S, | R, | $Q_{i+1}$   |
|----|----|----|-------------|
| 0  | 0  | 0  | 0           |
| 0  | 0  | ì  | 0           |
| 0  | ı  | 0  | 1           |
| 0  | 1  | 1  | (Prohibido) |
| 1  | 0  | 0  | 1           |
| 1  | 0  | I  | 0           |
| 1  | ı  | 0  | 1           |
| 1  | 1  | !  | (Prohibido) |

| S | R | $Q^{n+1}$      |
|---|---|----------------|
| 0 | 0 | Q <sup>n</sup> |
| 0 | 1 | 0              |
| 1 | 0 | 1              |
| 1 | 1 |                |

Prohibido

#### Ecuación característica:

$$Q^{n+1} = S + R'.Q^n$$

# Expresiones formales de la lógica de un biestable

- Tabla de estados
- Tabla de estados reducida
- Ecuación característica
- Diagrama de estados

#### Biestables

- "latch"
- "cerrojo"
- "flip-flop"
- "báscula"
- "flip-flop asincrónico"
- "flip-flop sincrónico"
- ...

Varias nomenclaturas, sólo dos dispositivos básicos

#### Flip-Flop D asincrónico

Posibles aplicaciones prácticas?





Tabla de estados reducida

✓ Una implementación de la lógica del FF-D





#### Flip-Flop J-K asincrónico



✓ Define un comportamiento para el estado que está prohibido para el FF-RS (R=S=1)

Ec.característica

$$Q^{n+l} = J\overline{Q} + \overline{K}Q$$

#### Flip-Flop J-K asincrónico



- Analizar en un diagrama de tiempos

Dinámica de la salida cuando J=K=1

VS. LÓGICA BOOLEANA

#### Flip-Flop T asincrónico





Tabla de estados reducida

- ✓ Comportamiento con T=1 idéntico a FF-JK con J=K=1
- ? Dinámica de la salida cuando T=1

### Circuitos sincrónicos

- Qué es un circuito digital sincrónico?
- Qué es un pulso de reloj?
- Velocidad del reloj vs. retardo de respuesta del circuito
- Porqué me interesaría tener circuitos sincrónicos?
- Qué gano y qué pierdo con un circuito sincrónico?

### FF sincrónicos vs FF asincrónicos

↓ Referencia de tiempo en el FF-D

↓ Oscilaciones del FF-JK (con J=K=1) y del FF-T (con T=1)

> ¿Qué quisiéramos obtener de los FF sincrónicos si esperamos que solucionen estos problemas?

# Flip-Flop D sincrónico activado por nivel



# Flip-Flop JK sincrónico activado por nivel



- Analizar en un diagrama de tiempos

# Flip-Flop JK sincrónico activado por nivel



| С   | J | K | Q      | Q      |
|-----|---|---|--------|--------|
| . 1 | 0 | 0 | latch  | latch  |
| . 1 | 0 | 1 | 0      | 1      |
| . 1 | 1 | 0 | 1      | 0      |
| , 1 | 1 | 1 | toggle | toggle |
| 0   | 0 | 0 | latch  | latch  |
| 0   | 0 | 1 | latch  | latch  |
| 0   | 1 | 0 | latch  | latch  |
| 0   | 1 | 1 | latch  | latch  |

"Latch" = mantiene el bit memorizado

"Toggle" = complementa el bit almacenado

# Flip-Flop JK sincrónico del tipo maestro-esclavo



- Analizar en un diagrama de tiempos

# Flip-Flop JK sincrónico del tipo maestro-esclavo

- Se lee la entrada en un flanco del reloj
- Se actualiza la salida en el flanco del siguiente reloj



- Analizar en un diagrama de tiempos
- Modificar para que sea activo por flanco positivo/negativo

# Flip-Flop JK sincrónico del tipo maestro-esclavo

- Se lee la entrada en un flanco del reloj
- Se actualiza la salida en el flanco del siguiente reloj



- Analizar en un diagrama de tiempos
- Modificar para que sea activo por flanco positivo/negativo

| С | J | K | Q      | Q      |
|---|---|---|--------|--------|
| ٦ | 0 | 0 | latch  | latch  |
| ٦ | 0 | 1 | 0      | 1      |
| Т | 1 | 0 | 1      | 0      |
| 乙 | 1 | 1 | toggle | toggle |
| х | 0 | 0 | latch  | latch  |
| х | 0 | 1 | latch  | latch  |
| х | 1 | 0 | latch  | latch  |
| х | 1 | 1 | latch  | latch  |
|   |   |   |        |        |

# Estructuras que responden a la de un FF maestro-esclavo



### Entradas asincrónicas

- "Preset"
- ➤ "Clear"



Activo a nivel alto



### Habilitación de un chip

- Entrada "Chip-Select"
- Salida "Tri-state"
- Estado de "alta impedancia"
- Como se vincula con la lógica del FF?

### Circuitos integrados comerciales



| Preset | Clear | CLK          | J | K | Q <sub>t</sub>   |
|--------|-------|--------------|---|---|------------------|
| 1      | 1     |              | 0 | 0 | Q <sub>t-1</sub> |
| 1      | 1     |              | 0 | 1 | 0                |
| 1      | 1     |              | 1 | 0 | 1                |
| 1      | 1     | [ <b>+</b> ] | 1 | 1 | Q <sub>t-1</sub> |
| 1      | 0     | Χ            | Χ | Χ | 0                |
| 0      | 1     | X            | Χ | Χ | 1                |

