Ahmed Omran Blatt 2

Ferienkurs Theoretische Mechanik – Frühjahr 2009 Lagrange–Mechanik

Aufgaben für Dienstag

1 Abrutschendes Seil (*)

Ein Seil der Länge l und der konstanten Längenmassendichte λ rutscht nach dem Loslassen ohne Reibung über eine Tischkante herunter. Stellen Sie die Bewegungsgleichung auf und lösen Sie sie mit den Anfangsbedingungen:

$$x(0) = x_0$$
 $0 < x_0 < l$
 $\dot{x}(0) = 0$

2 Magnetisches Feld (**)

Ein Teilchen mit Masse m und Ladung q bewegt sich in einem Magnetfeld $\vec{B} = B \cdot \vec{e}_z$. Die Lagrange-Funktion ist gegeben durch

$$\mathcal{L} = \frac{m}{2}\dot{r}^2 - \frac{q}{2}\dot{\vec{r}}\cdot(\vec{r}\times\vec{B})$$

- a) Bestimmen Sie die Bewegungsgleichungen der kartesischen Koordinaten aus der Lagrange-Funktion.
- b) Lösen Sie die Bewegungsgleichungen anhand von kartesischen Koordinaten für die Anfangsbedingungen $\dot{\vec{r}}(0) = v_0 \vec{e}_x$ und $\vec{r}(0) = \frac{mv_0}{aB} \vec{e}_y$

3 Symmetrien und Erhaltungssätze (**)

Welche Komponenten des Impulses \vec{p} und des Drehimpulses \vec{M} bleiben bei der Bewegung in den Gravitationsfeldern der folgenden Körpern erhalten?

- a) Unendliche homogene Ebene
- b) Unendliches homogenes Zylinder
- c) Unendliches homogenes Prisma
- d) Zwei Punkte
- e) Unendliche homogene Halbebene
- f) Homogener Kegel
- g) Homogener Kreisring
- h) Unendliche homogene Schraubenlinie (Rechnung erforderlich)

4 Masse auf schiefer Ebene 1 (Klausuraufgabe) (**)

Ein Massenpunkt (Masse m) gleite reibungsfrei unter dem Einfluss der konstanten Schwerkraft g auf einer schiefen Ebene (Masse M, Neigungswinkel α), die selbst entlang der Horizontalen reibungsfrei gleiten kann.

Stellen Sie die Zwangsbedingungen auf, sowie die Lagrange-Funktion in unabhängigen generalisierten Koordinaten, und bestimmen Sie die Beschleunigung der schiefen Ebene in x-Richtung.

5 Masse auf schiefer Ebene 2 (**)

Eine Masse m ist an einem Keil mit Masse M durch eine Feder (Federkonstante k) verbunden. Der Keil hat einen Neigungswinkel von α und kann sich reibungsfrei entlang der horizontalen Ebene bewegen.

- a) Für die Ruhelänge der Feder von d (ohne Masse), berechnen Sie die Länge der Feder s_0 falls die Masse und der Keil beide in Ruhe sind.
- b) Stellen Sie die Lagrange-Funktion des Systems in Abhängigkeit der x-Koordinaten des Keils und der Federlänge s auf und ermitteln Sie die Bewegungsgleichungen.
- c) Ermittlen Sie eine zyklische Koordinate und die dazugehörige Erhaltungsgröße.

6 Zykloidenpendel (**)

Ein Teilchen der Masse m
 bewege sich im Schwerefeld auf einer Zykloide. Diese wird durch Abrollen eines Rades (Radius R) auf einer ebenen Fläche realisiert. Sie besitzt die folgende Parameterdarstellung:

$$\begin{split} x &= R(\varphi + \sin \varphi) \\ y &= R(1 + \cos \varphi) \quad \text{mit} \quad 0 \leq \varphi \leq 2\pi \end{split}$$

- a) Stellen Sie die Lagrange-Funktion auf.
- b) Berechnen Sie $\frac{d^2u}{dt^2}$ für $u=\sin\frac{\varphi(t)}{2}$
- c) Bestimmen Sie die Bewegungsgleichung in φ für die Masse.