ELETTRONICA DIGITALE

Corso di Laurea in Ingegneria Informatica

Prova scritta del 31 gennaio 2019

Esercizio A

 Q_1 e Q_2 sono transistori MOS a canale n resistivi con $V_T = 1$ V e la corrente di drain in saturazione data da $I_D = k(V_{GS} - V_T)^2$ con k = 0.5 mA/V².

Con riferimento al circuito in figura:

- 1) Calcolare il valore della resistenza R_7 in modo che, in condizioni di riposo, la tensione sul drain di Q_2 sia 13.1 V. Determinare, inoltre, il punto di riposo dei due transistori e verificarne la saturazione. (R: $R_7 = 636.4 \Omega$)
- 2) Determinare l'espressione e il valore di V_U/V_i alle frequenze per le quali C_1 , C_2 e C_3 possono essere considerati dei corto circuiti. (R: $V_U/V_i = -2$)

Esercizio B

Progettare una porta logica in tecnologia CMOS, utilizzando la tecnica della pull-up network e della pull-down network, che implementi la funzione logica:

$$Y = \left(\overline{A + \overline{D}}\right) \left(\overline{A} \, \overline{C} + \overline{B}\right) + \overline{A} \left(\overline{C} \, \overline{D} + \overline{E}\right) + \left(\overline{\overline{A} + B}\right) \left(D + E\right)$$

Determinare il numero dei transistori necessari e disegnarne lo schema completo. Dimensionare inoltre il rapporto (W/L) di tutti i transistori, assumendo, per l'inverter di base, W/L pari a 2 per il MOS a canale n e pari a 5 per quello a canale p. Si specifichino i dettagli della procedura di dimensionamento dei transistori. (R: N = 20)

Esercizio C

Il circuito IC_1 è un NE555 alimentato a $V_{CC}=6$ V; Q_1 e Q_2 hanno una $R_{on}=0$ e $V_T=1$ V; l'inverter è ideale. Determinare la frequenza del segnale di uscita del multivibratore in figura. (R: f=2443 Hz)