Mathe Grundlagen

P. Häusermann, J. Hösli, N. Selvarajah, S. Walker 28. August 2020

Inhaltsverzeichnis

1	Trig	gonometrie und Hyperbelfunktionen
	1.1	Quadrantenbeziehungen
	1.2	Additionstheoreme
	1.3	Euler-Formeln
	1.4	Periodizität
	1.5	Doppel- und Halbwinkel
	1.6	Summe und Differenz
	1.7	Produkte
	1.8	Funktionswerte für Winkelargumente
2	Diff	Gerenzieren G
	2.1	Wozu brauche ich die Ableitung?
	2.2	Wichtige Ableitungen
	2.3	Wichtige Regeln
	2.4	Partielle Ableitung
	2.5	Taylor-Polynom
	2.6	Bernoulli-de l'Hospital
	2.7	Kurvenuntersuchungen
		2.7.1 Monotonie
		2.7.2 Extremstelle
		2.7.3 Konvexität - Krümmungsverhalten
		2.7.4 Wendepunkte (Terassenpunkt)
3	Inte	egrieren 9
	3.1	Wozu brauche ich die Integralrechnung?
	3.2	Stammfunktion
	3.3	Leibniz- oder Integralschreibweise
	3.4	Bestimmtes Integral
	3.5	Unbestimmtes Integral
	3.6	Wie löse ich ein Integral?
		3.6.1 Bestimmtes Integral
		3.6.2 Unbestimmtes Integral
	3.7	Wichtige Integrale
	3.8	Rechenregeln
	3.9	Partielle Integration
	3.10	Substitution
	3.11	Mittelwerte mittels Integral berechnen
		Einige unbestimmte Integrale
4	Pot	enzen und Logarithmen 12
	4.1	Potenzen
	4.2	Logarithmen
	4.3	dB-Rechnung

5	Kon	•	13
	5.1	Definition	13
	5.2	Konjugierte-komplexe Zahlen	14
	5.3	Addition, Subtraktion	14
	5.4	Multiplikation, Division	14
	5.5	Multiplikation in Polarform	14
	5.6	Division in Polarform	
	5.7	Planare Geometrie mit komplexen Zahlen	
	5.8	Potenzen und n-te (Einheits-)Wurzeln	
		5.8.1 Potenzen	
			15
			15
	5.9		16
	0.5	5.9.1 Polynome mit reellen Koeffizienten	
		5.9.2 Berechnung der Nullstellen	
	5.10	Komplexe Exponential- und Logarithmusfunktionen	
	5.10	5.10.1 e-Funktion	
		5.10.2 Logarithmusfunktionen Ln	
		5.10.2 Logarithmusiumktionen En	
	F 11		
		Komplexe Trigonometrische-Funktionen	
	5.12	Komplexe Sinus-Schwingung	
		5.12.1 Überlagerung von zwei Seiten	17
6	Kor	nplexe Funktion, Abbildungen	18
U	6.1	Definition	
	6.2	Winkeltreue	
	6.3	Parameter- und Koordinatengleichung	
	6.4	Lineare Funktion	
	0.4	Lineare Punktion	10
7	Pote	enzfunktion und Wurzelfunktion	18
	7.1	Quadratfunktion z^2 und Wurzelfunktion \sqrt{z}	
	7.2	Potenzfunktion z^n und Wurzelfunktion $\sqrt[n]{z}$	
		,	
8	\mathbf{Kre}		19
	8.1	Regeln bei der Kreisspiegelung	19
	8.2	Konstruktion von Bildpunkten	20
	8.3	Exponential funktion e^z	20
9			2 1
	9.1		21
	9.2		21
	9.3	1	21
	9.4	Vektorprodukt	21
	9.5	Gauss	21
	9.6	Determinante	22
		9.6.1 Eigenschaften	22
		9.6.2 Wichtige Determinanten	22
		9.6.3 Determinante mit Gauss-Verfahren	22
	0.7	Inverse	22
	9.7	inverse	
	9.7	9.7.1 Eigenschaften	$\frac{-}{22}$
	9.7		
	9.7	9.7.1 Eigenschaften 9.7.2 Formeln	22
		9.7.1 Eigenschaften9.7.2 FormelnEigenwerte und Eigenvektoren	22 22

10			24
		Zufallsexperiment	
	10.2	Verknüpfung von Ereignissen	24
	10.3	Wahrscheinlichkeit von Ereignissen	24
		10.3.1 Axiomen	24
		10.3.2 Laplace-Experiment	24
		10.3.3 Bedingte Wahrscheinlichkeit	25
		10.3.4 Satz von Bayes	25
		10.3.5 Unabhängige Ereignisse	25
		10.3.6 Satz von der totalen Wahrscheinlichkeit	25
	10.4	Zufallsvariable	25
		10.4.1 Zweidimensionale Zufallsvariable	
		10.4.2 Verteilungsfunktion	
		10.4.3 Wahrscheinlichkeitsdichtefunktion	
		10.4.4 Erwartungswert	
		10.4.5 Zweites und n-tes Moment	
		10.4.6 Varianz und Standartabweichung	
		10.4.7 Korrelation	
		10.4.8 Kovarianz	
	10.5	Wahrscheinlichkeitsverteilung	
	10.0	10.5.1 Gleichverteilung	
		10.5.2 Binomialverteilung	
		10.5.3 Poissonverteilung	
		10.5.4 Gaussverteilung	
		10.5.5 Verteilungsfunktion der Normalverteilung	
		10.0.0 Verteinungstuhktion der Pormatverteinung	20
11	Four	rierreihen periodischer Funktionen	29
		Bausteine	29
		Berechnung der Fourierkoeffizienten (in \mathbb{R})	
		Sätze zur Berechnung der Fourierkoeffizienten	
		11.3.1 Symmetrie	
		11.3.2 Linearität	
		11.3.3 Streckung / Stauchung	
		11.3.4 Verschiebung	30
	11 4	Konvergenz der Fourierreihen	
	11.1	11.4.1 Optimalität der Fourierreihe (Approximation)	
		11.4.2 Punktweise Kovergenz von Fourierreihen (Satz von Dirichlet)	
			32
	11.5	Komplexe Darstellung der Fourierreihen (in \mathbb{C})	
	11.0	11.5.1 Sätze zur Berechnung komplexer Fourierkoeffizienten	
		· -	$\frac{32}{32}$
		11.0.2 Optimization komplexet Fourierteine (approximation)	02
12	Inte	gral-Transformation 3	33
	12.1	Fouriertransformation	33
		Fouriertransformation	വ
			33
		12.1.1 Fouriertransformation und Rücktransformation	აა 33
		12.1.1 Fouriertransformation und Rücktransformation	
	12.2	12.1.1 Fouriertransformation und Rücktransformation	33
	12.2	12.1.1 Fouriertransformation und Rücktransformation 12.1.2 Wichtige Begriffe 12.1.3 Eigenschaften der Fouriertransformation δ -Funktion	33 33
	12.2	12.1.1 Fouriertransformation und Rücktransformation 12.1.2 Wichtige Begriffe 12.1.3 Eigenschaften der Fouriertransformation δ -Funktion 12.2.1 Definition	33 33 33
	12.2	12.1.1 Fouriertransformation und Rücktransformation : 12.1.2 Wichtige Begriffe : 12.1.3 Eigenschaften der Fouriertransformation : δ -Funktion : 12.2.1 Definition : 12.2.2 Verschiebung :	33 33 34 34
	12.2	12.1.1 Fouriertransformation und Rücktransformation : 12.1.2 Wichtige Begriffe : 12.1.3 Eigenschaften der Fouriertransformation : δ -Funktion : 12.2.1 Definition : 12.2.2 Verschiebung : 12.2.3 Multiplikation :	33 33 34 34 34
	12.2	12.1.1 Fouriertransformation und Rücktransformation : 12.1.2 Wichtige Begriffe : 12.1.3 Eigenschaften der Fouriertransformation : 12.1.3 Eigenschaften der Fouriertransformation : 12.1.3 Eigenschaften der Fouriertransformation : 12.2.1 Definition : 12.2.1 Definition : 12.2.2 Verschiebung : 12.2.3 Multiplikation : 12.2.4 Ableitung der Deltafunktion : 12.2.	33 33 34 34 34
		12.1.1 Fouriertransformation und Rücktransformation	33 33 34 34 34 34
		12.1.1 Fouriertransformation und Rücktransformation 12.1.2 Wichtige Begriffe 12.1.3 Eigenschaften der Fouriertransformation δ -Funktion 12.2.1 Definition 12.2.2 Verschiebung 12.2.3 Multiplikation 12.2.4 Ableitung der Deltafunktion 12.2.5 Ableitung des Einheitssprung Faltungsprodukt	33 33 34 34 34 34
		12.1.1 Fouriertransformation und Rücktransformation 12.1.2 Wichtige Begriffe 12.1.3 Eigenschaften der Fouriertransformation δ -Funktion 12.2.1 Definition 12.2.2 Verschiebung 12.2.3 Multiplikation 12.2.4 Ableitung der Deltafunktion 12.2.5 Ableitung des Einheitssprung Faltungsprodukt 12.3.1 Definition	33 33 34 34 34 34

	12.4 Laplacetransformation	
	12.4.1 Eigenschaften der Laplacetransformation	35
	12.4.2 Laplace-Tabelle	35
13	Spektren	36
	13.1 Spektraldarstellung	36
	13.2 (1) Kosinus- und Sinusamplitudendiagramm	36
	13.3 (2) Einseitiges Amplituden-/Phasendiagramm	36
	13.4 (3) Zweiseitiges Amplituden-/Phasendiagramm (komplexes Spektrum)	37
	13.5 Spezialfälle (zu den Phasendiagrammen: 1, 2, 3)	37
	13.6 Zeitbereich und Frequenzbereich	38
14	- Tabellen	39
	14.1 Griechisches Alphabet	39

1 Trigonometrie und Hyperbelfunktionen

Kosinussatz: $c^2 = a^2 + b^2 - 2ab\cos(\gamma)$ Sinussatz: $\frac{a}{\sin(\alpha)} = \frac{b}{\sin(\beta)} = \frac{c}{\sin(\gamma)}$

Rechtwinkliges Dreieck:

$$\sin(\beta) = \frac{b}{a} = \frac{Gegenkathete}{Hypotenuse} \qquad \tan(\beta) = \frac{b}{c} = \frac{Gegenkathete}{Ankathete}$$
$$\cos(\beta) = \frac{c}{a} = \frac{Ankathete}{Hypotenuse} \qquad \cot(\beta) = \frac{c}{b} = \frac{Ankathete}{Gegenkathete}$$

$$\sin^2(x) + \cos^2(x) = 1 \qquad \tan(x) = \frac{\sin(x)}{\cos(x)}$$

1.1 Quadrantenbeziehungen

$$\begin{array}{ll} \sin(-a) = -\sin(a) & \cos(-a) = \cos(a) \\ \sin(\pi - a) = \sin(a) & \cos(\pi - a) = -\cos(a) \\ \sin(\pi + a) = -\sin(a) & \cos(\pi + a) = -\cos(a) \\ \sin\left(\frac{\pi}{2} - a\right) = \sin\left(\frac{\pi}{2} + a\right) = \cos(a) & \cos\left(\frac{\pi}{2} - a\right) = -\cos\left(\frac{\pi}{2} + a\right) = \sin(a) \\ \sinh(a) = -\sinh(-a) & \cosh(-a) = \cosh(a) \end{array}$$

1.2 Additions theoreme

$$\begin{split} \sin(a \pm b) &= \sin(a) \cdot \cos(b) \pm \cos(a) \cdot \sin(b) \\ \cos(a \pm b) &= \cos(a) \cdot \cos(b) \mp \sin(a) \cdot \sin(b) \\ \tan(a \pm b) &= \frac{\tan(a) \pm \tan(b)}{1 \mp \tan(a) \cdot \tan(b)} \\ \sinh(a \pm b) &= \sinh(a) \cdot \cosh(b) \pm \cosh(a) \cdot \sinh(b) \\ \cosh(a \pm b) &= \cosh(a) \cdot \cosh(b) \mp \sinh(a) \cdot \sinh(b) \\ \tanh(a \pm b) &= \frac{\tanh(a) \pm \tanh(b)}{1 \pm \tanh(a) \cdot \tanh(b)} \end{split}$$

1.4 Periodizität

$$\cos(a + k \cdot 2\pi) = \cos(a) \qquad (k \in \mathbb{Z})$$

$$\sin(a + k \cdot 2\pi) = \sin(a) \qquad (k \in \mathbb{Z})$$

1.6 Summe und Differenz

$$\sin(a) + \sin(b) = 2 \cdot \sin\left(\frac{a+b}{2}\right) \cdot \cos\left(\frac{a-b}{2}\right)$$

$$\sin(a) - \sin(b) = 2 \cdot \sin\left(\frac{a-b}{2}\right) \cdot \cos\left(\frac{a+b}{2}\right)$$

$$\cos(a) + \cos(b) = 2 \cdot \cos\left(\frac{a+b}{2}\right) \cdot \cos\left(\frac{a-b}{2}\right)$$

$$\cos(a) - \cos(b) = -2 \cdot \sin\left(\frac{a+b}{2}\right) \cdot \sin\left(\frac{a-b}{2}\right)$$

$$\tan(a) \pm \tan(b) = \frac{\sin(a \pm b)}{\cos(a)\cos(b)}$$

1.3 Euler-Formeln

$$\begin{split} \sin(x) &= \frac{1}{2j} \left(e^{jx} - e^{-jx} \right) \\ \cos(x) &= \frac{1}{2} \left(e^{jx} + e^{-jx} \right) \\ \sinh(x) &= \frac{1}{2} \left(e^x - e^{-x} \right) \\ \cosh(x) &= \frac{1}{2} \left(e^x + e^{-x} \right) \\ e^{x+jy} &= e^x \cdot e^{jy} = e^x \cdot (\cos(y) + j\sin(y)) \\ e^{j\pi} &= e^{-j\pi} = -1 \end{split}$$

1.5 Doppel- und Halbwinkel

$$\begin{aligned} &\sin(2a) = 2\sin(a)\cos(a) \\ &\cos(2a) = \cos^2(a) - \sin^2(a) = 2\cos^2(a) - 1 = 1 - 2\sin^2(a) \\ &\cos^2\left(\frac{a}{2}\right) = \frac{1 + \cos(a)}{2} &\sin^2\left(\frac{a}{2}\right) = \frac{1 - \cos(a)}{2} \end{aligned}$$

1.7 Produkte

$$\sin(a)\sin(b) = \frac{1}{2}(\cos(a-b) - \cos(a+b))$$

$$\cos(a)\cos(b) = \frac{1}{2}(\cos(a-b) + \cos(a+b))$$

$$\sin(a)\cos(b) = \frac{1}{2}(\sin(a-b) + \sin(a+b))$$

1.8 Funktionswerte für Winkelargumente

deg	rad	sin	cos	tan	deg	rad	sin	cos	deg	rad	sin	cos	deg	rad	sin	cos
0 °	0	0	1	0	90°	$\frac{\pi}{2}$	1	0	180 °	π	0	-1	270°	$\frac{3\pi}{2}$	-1	0
30 °	$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	120°	$\frac{2\pi}{3}$	$\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	210°	$\frac{7\pi}{6}$	$-\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	300 °	$\frac{5\pi}{3}$	$-\frac{\sqrt{3}}{2}$	$\frac{1}{2}$
45 °	$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	135 °	$\frac{3\pi}{4}$	$\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$	225 °	$\frac{5\pi}{4}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$	315 °	$\frac{7\pi}{4}$	$-\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$
60 °	$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$	150 °	$\frac{5\pi}{6}$	$\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	240 °	$\frac{4\pi}{3}$	$-\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	330 °	$\frac{11\pi}{6}$	$-\frac{1}{2}$	$\frac{\sqrt{3}}{2}$

$$\sinh(0) = \tanh(0) = 0 \qquad \cosh(0) = 1$$

28. August 2020 Seite 5 von 39

Mathe Grundlagen v1.0 2 DIFFERENZIEREN

2 Differenzieren

2.1 Wozu brauche ich die Ableitung?

Die Differenzialrechnung (Ableitung) ist ein wesentlicher Bestandteil der Analysis. Sie ist eng mit der Integralrechnung verwandt, mit der sie gemeinsam unter der Bezeichnung "Infinitesimalrechnung" zusammengefasst
wird. Zentrales Thema der Differenzialrechnung ist die Berechnung lokaler Veränderungen von Funktionen.
(Tangentensteigung)

2.2 Wichtige Ableitungen

f(x)	f'(x)
c = const	0
x	1
x^n	$n \cdot x^{n-1}$

f(x)	f'(x)
ln(x)	$\frac{1}{x}$
e^x	e^x
\sqrt{x}	$\frac{1}{2\sqrt{x}}$

f(x)	f'(x)
sin(x)	cos(x)
cos(x)	-sin(x)
tan(x)	$\frac{1}{(\cos(x))^2}$

2.3 Wichtige Regeln

Regel	Funktion	Ableitung
Ableitung eine Summe	f(x) + g(x)	f'(x) + g'(x)
Produktregel	f(x)g(x)	f'(x)g(x) + f(x)g'(x)
Quotientenregel	$\frac{f(x)}{g(x)}$	$\frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2}$
Kettenregel	f(g(x))	f'(g(x))g'(x)

2.4 Partielle Ableitung

In der Differentialrechnung ist eine partielle Ableitung die Ableitung einer Funktion mit mehreren Argumenten nach einem dieser Argumente. Die Werte der übrigen Argumente werden als konstant gehalten.

$$\begin{aligned} \mathbf{Bsp.:} & \ f(x,y,z) = \cos(x) \cdot y + \sin(z) \cdot x \\ & \frac{\partial f}{\partial x} = -\sin(x) \cdot y + \sin(z) & \to \text{ partiell nach x abgeleitet} \\ & \frac{\partial f}{\partial y} = \cos(x) & \to \text{ partiell nach y abgeleitet} \\ & \frac{\partial f}{\partial z} = x \cdot \cos(z) & \to \text{ partiell nach z abgeleitet} \end{aligned}$$

2.5 Taylor-Polynom

Dieses Polynom kann verwendet werden, um Funktionen in der Umgebung eines Punktes anzunähern. Es ist aufgrund seiner einfachen Anwendbarkeit und Nützlichkeit ein Hilfsmittel in vielen Ingenieur-, Sozial- und Naturwissenschaften geworden.

$$(x_0 = \text{Entwicklungspunkt})$$
 $f(x_0 + h) = \sum_{k=0}^{n} \frac{f^{(n)}}{n!} h^n = f(x_0) + f'(x_0)h + \frac{f''(x_0)}{2!} h^2 + \frac{f'''(x_0)}{3!} h^3 + \dots + \frac{f^{(n)}(x_0)}{n!} h^n$
 $h = x - x_0$

28. August 2020 Seite 6 von 39

Bernoulli-de l'Hospital 2.6

Die Regel von "de L'Hopital" erlaubt es in vielen Fällen, den Grenzwert von Funktionen selbst dann noch zu bestimmen, wenn deren Funktionsterm beim Erreichen der betreffenden Grenze einen unbestimmten Ausdruck (bspw. $\frac{0}{0}, \frac{\infty}{\infty}$) liefert. $\lim_{x \downarrow x_0} \frac{f_1'(x)}{f_2'(x)}$ dies gilt für: $\frac{0}{0}$ 1. Regel, oder $\frac{\pm \infty}{\pm \infty}$ 2. Regel; Zähler und Nenner separat ableiten!

Kurvenuntersuchungen

2.7.1Monotonie

f'(x)	f''(x)	f'''(x)	$f^{(n-1)}(x)$	$f^{(n)}$	Funktion f
≥ 0					monoton wachsend
≤ 0					monoton fallend
= 0	= 0	= 0	$\cdots = 0$	> 0	streng monoton wachsend (falls n ungerade)
= 0	= 0	= 0	$\cdots = 0$	< 0	streng monoton falls (falls n ungerade)

2.7.2 Extremstelle

f'(x)	f''(x)	f'''(x)	$f^{(n-1)}(x)$	$f^{(n)}$	Funktion f
= 0	> 0				relatives Minimum, Randstellen beachten
= 0	< 0				relatives Maximum, Randstellen beachten
= 0	= 0	= 0	$\cdots = 0$	> 0	relatives Minimum (falls n gerade), Randstellen beachten
= 0	= 0	= 0	$\cdots = 0$	< 0	relatives Maximum (falls n gerade), Randstellen beachten

Zweite Variante Falls bei f'(x) an der Stelle x_0 ein Vorzeichenwechsel besteht, existiert dort eine Extremstelle

2.7.3 Konvexität - Krümmungsverhalten

f'(x)	f''(x)	f'''(x)	$f^{(n-1)}(x)$	$f^{(n)}$	Funktion f
	≥ 0				konvex (linksgekrümmt)
	> 0				streng konvex (linksgekrümmt)
	≤ 0				konkav (rechtsgekrümmt)
	< 0				streng konkav (rechtsgekrümmt)

Seite 7 von 39 28. August 2020

Mathe Grundlagen $v_{I,0}$

2.7.4 Wendepunkte (Terassenpunkt)

f'(x)	f''(x)	f'''(x)	$f^{(n-1)}(x)$	$f^{(n)}$	Funktion f
	= 0	$\neq 0$			Wendepunkt
= 0	= 0	≠ 0			Terassen- oder Sattelpunkt

 $2\quad {\rm DIFFERENZIEREN}$

Zweite Variante Falls bei f''(x) an der Stelle x_0 ein Vorzeichenwechsel besteht, existiert dort ein Wendepunkt

28. August 2020 Seite 8 von 39

Mathe Grundlagen v1.0 3 INTEGRIEREN

3 Integrieren

3.1 Wozu brauche ich die Integralrechnung?

Die Integralrechnung ist neben der Differentialgleichung der wichtigste Zweig der mathematischen Disziplin Analysis. Sie ist aus dem Problem der Flächen- und Volumenberechnung entstanden. (Quelle Wikipedia)

3.2 Stammfunktion

Jede auf [a, b] differenzierbare Funktion F nennt man Stammfunktion, wenn F' = f. Umgangssprachlich nennt man dies "aufleiten" (Gegenteil von ableiten)

3.3 Leibniz- oder Integralschreibweise

$$I = \int_{a}^{b} f(x)dx = [F(x)]_{a}^{b} = F(b) - F(a)$$

3.4 Bestimmtes Integral

Ein bestimmtes Integral besitzt obere und untere Grenzen. Die Integrationskonstante C verschwindet. (siehe auch 3.3, Leibniz- oder Integralschreibweise (S. 9))

3.5 Unbestimmtes Integral

Im Unterschied zu einem bestimmten Integral besitzt ein unbestimmtes Integral keine Grenzen.

$$I = \int f(x)dx = F(x) + C$$

3.6 Wie löse ich ein Integral?

Sobald das Integral in der Leibnizform steht, gehe ich wie folgt vor:

3.6.1 Bestimmtes Integral

- 1. Stammfunktion der Funktion f(x) bilden
- 2. Nacheinander die beiden Grenzen b und a in die Stammfunktion einsetzen
- 3. Lösung des Integrals: Die beiden eingesetzten Grenzen voneinander subtrahieren. I = F(b) F(a)

3.6.2 Unbestimmtes Integral

- 1. Stammfunktion der Funktion f(x) bilden
- 2. Lösung des Integrals: Stammfunktion + Integrationskonstante C

3.7 Wichtige Integrale

f(x)	F(x)
$\int 0 dx$	C
$\int 1dx$	x + C
$\int e^x dx$	$e^x + C$

f(x)	F(x)		
$\int x^n dx$	$\frac{x^{n+1}}{n+1} + C \qquad (n \neq -1)$		
$\int \frac{1}{x} dx$	ln x + C		
$\int ln(x)dx$	$-x + x \cdot ln(x) + C$		

f(x)	F(x)
$\int \sin(x)dx$	-cos(x) + C
$\int \cos(x)dx$	sin(x) + C
$\int tan(x)dx$	-ln(cos(x)) + C

3.8 Rechenregeln

$$\int\limits_a^b f(x)dx = F(b) - F(a) \qquad \qquad |\int\limits_a^b f(x)dx| \leq \int\limits_a^b |f(x)|dx = \int\limits_a^b f(x)dx - \int\limits_a^a f(x)dx = \int\limits_a^b f(x)dx - (-1) \cdot \int\limits_a^0 f(x)dx$$

28. August 2020 Seite 9 von 39

3 INTEGRIEREN Mathe Grundlagen v1.0

3.9 Partielle Integration

Sobald ich ein Produkt zweier Funktionen habe und davon das Integral berechnen möchte, bietet sich die "Partielle Integration" an.

Wie gehe ich vor:

- 1. Von der einen Funktion die Stammfunktion bilden
- 2. Multiplikation mit der anderen Funktion
- 3. Das Produkt wird subtrahiert mit dem Integral von der Stammfunktion mal die Ableitung der anderen Funktion

$$\mathbf{Bsp.:} \quad \int x \cdot \sin(x) dx = \int f(x) \cdot g'(x) dx = f(x) \cdot g(x) - \int f'(x) \cdot g(x) dx = -x \cdot \cos(x) - \int 1 \cdot (-\cos(x)) dx = \frac{-x \cdot \cos(x) + \sin(x) + C}{-x \cdot \cos(x) + \sin(x) + C}$$

3.10 Substitution

Hierzu ein erklärendes Beispiel:

Bsp.:
$$f(x) = 2x \cdot ln(x^2) \Rightarrow F(x) = \int_1^2 2x \cdot ln(x^2) dx$$

Lösung des Integrals durch Substitution:

1. Substitution
$$u(x) = x^2$$

1. Substitution
$$u(x) = x^2$$

2. dx ersetzen $u'(x) = \frac{du}{dx} = 2x \Rightarrow dx = \frac{1}{2x}du$
3. Substitution der Grenzen:

- untere Grenze:
$$u(1) = 1$$

- obere Grenze:
$$u(2) = 4$$

$$\int_{1}^{4} 2x \cdot \ln(u) \cdot \frac{1}{2x} du = \int_{1}^{4} \ln(u) du = \left[u \cdot \ln(u) - u \right]_{1}^{4} = \left[4 \cdot \ln(4) - 4 \right] - \left[1 \cdot \ln(1) - 1 \right] \approx \underline{2.545}$$

Mittelwerte mittels Integral berechnen

Linearer Mittelwert Quadratischer Mittelwert

$$\bar{f} = \frac{1}{b-a} \int_a^b f(x) dx$$
 $\bar{f} = \sqrt{\frac{1}{b-a} \int_a^b f(x)^2 dx}$

Seite 10 von 39 28. August 2020

Mathe Grundlagen v1.0 3 INTEGRIEREN

3.12 Einige unbestimmte Integrale

$\int dx = x + C$	$\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + C, \ x \in \mathbb{R}^+, \ \alpha \in \mathbb{R} \setminus \{-1\}$
$\int \frac{1}{x} dx = \ln x + C, \ x \neq 0$	$\int e^x dx = e^x + C$
$\int a^x dx = \frac{a^x}{\ln a} + C, \ a \epsilon \mathbb{R}^+ \setminus \{1\}$	$\int \sin x dx = -\cos x + C$
$\int \cos x dx = \sin x + C$	$\int \frac{dx}{\sin^2 x} = -\cot x + C, \ x \neq k\pi \text{ mit } k\epsilon \mathbb{Z}$
$\int \frac{dx}{\cos^2 x} = \tan x + C, \ x \neq \frac{\pi}{2} + k\pi \text{ mit} k \epsilon \mathbb{Z}$	$\int \sinh x dx = \cosh x + C$
$\int \cosh x dx = \sinh x + C$	$\int \frac{dx}{\sinh^2 x} = -\coth x + C, \ x \neq 0$
$\int \frac{dx}{\cosh^2 x} = \tanh x + C$	$\int \frac{dx}{ax+b} = \frac{1}{a} \ln ax+b + C, \ a \neq 0, x \neq -\frac{b}{a}$
$\int \frac{dx}{a^2x^2+b^2} = \frac{1}{ab} \arctan \frac{a}{b}x + C, \ a \neq 0, \ b \neq 0$	$\int \frac{dx}{a^2 x^2 - b^2} = \frac{1}{2ab} \ln \left \frac{ax - b}{ax + b} \right + C, \ a \neq 0, \ b \neq 0, \ x \neq \frac{b}{a}, \ x \neq -\frac{b}{a}$
$\int \sqrt{a^2 x^2 + b^2} dx = \frac{x}{2} \sqrt{a^2 x^2 + b^2} + \frac{b^2}{2a} \ln\left(ax + \sqrt{a^2 x^2 + b^2}\right) + C, \ a \neq 0, \ b \neq 0$	$\int \sqrt{a^2 x^2 - b^2} dx = \frac{x}{2} \sqrt{a^2 x^2 - b^2} - \frac{b^2}{2a} \ln ax + \sqrt{a^2 x^2 - b^2} + C, \ a \neq 0, \ b \neq 0, \ a^2 x^2 \ge b^2$
$\int \sqrt{b^2 - a^2 x^2} dx = \frac{x}{2} \sqrt{b^2 - a^2 x^2} + \frac{b^2}{2a} \arcsin \frac{a}{b} x + C, \ a \neq 0, \ b \neq 0, \ a^2 x^2 \le b^2$	$\int \frac{dx}{\sqrt{a^2 x^2 - b^2}} = \frac{1}{a} \ln(ax + \sqrt{a^2 x^2 + b^2}) + C, \ a \neq 0, \ b \neq 0$
$\int \frac{dx}{\sqrt{a^2x^2-b^2}} = \frac{1}{a} \ln ax + \sqrt{a^2x^2 - b^2} + C, \ a \neq 0, \ b \neq 0, \ a^2x^2 > b^2$	$\int \frac{dx}{\sqrt{b^2 - a^2 x^2}} = \frac{1}{a} \arcsin \frac{a}{b} x + C, \ a \neq 0, \ b \neq 0, \ a^2 x^2 < b^2$
Die Integrale $\int \frac{dx}{X}, \int \sqrt{X} dx, \int \frac{dx}{\sqrt{X}}$ mit $X = ax^2 + 2bx + c$, $a \neq 0$ werden durch die Umformung $X = a(x + \frac{b}{a})^2 + (c - \frac{b^2}{a})$ und die Substitution $t = x + \frac{b}{a}$ in die oberen 4 Zeilen transformiert.	$\int \frac{xdx}{X} = \frac{1}{2a} \ln X - \frac{b}{a} \int \frac{dx}{X}, \ a \neq 0, \ X = ax^2 + 2bx + c$
$\int \sin^2 ax dx = \frac{x}{2} - \frac{1}{4a} \cdot \sin 2ax + C, \ a \neq 0$	$\int \cos^2 ax dx = \frac{x}{2} + \frac{1}{4a} \cdot \sin 2ax + C, \ a \neq 0$
$\int \sin^n ax dx = -\frac{\sin^{n-1} ax \cdot \cos ax}{na} + \frac{n-1}{n} \int \sin^{n-2} ax dx, \ n \in \mathbb{N}, \ a \neq 0$	$\int \cos^n ax dx = \frac{\cos^{n-1} ax \cdot \sin ax}{na} + \frac{n-1}{n} \int \cos^{n-2} ax dx, \ n \in \mathbb{N}, \ a \neq 0$
$\int \frac{dx}{\sin ax} = \frac{1}{a} \ln \left \tan \frac{ax}{2} \right + C, \ a \neq 0, \ x \neq k \frac{\pi}{a} \text{ mit } k \epsilon \mathbb{Z}$	$\int \frac{dx}{\cos ax} = \frac{1}{a} \ln \left \tan(\frac{ax}{2} + \frac{\pi}{4}) \right + C, \ a \neq 0, \ x \neq \frac{\pi}{2a} + k^{\frac{\pi}{a}} \text{ mit } k \in \mathbb{Z}$
$\int \tan ax dx = -\frac{1}{a} \ln \cos ax + C, \ a \neq 0, \ x \neq \frac{\pi}{2a} + k^{\frac{\pi}{a}} \text{mit } k \in \mathbb{Z}$	$\int \cot ax dx = \frac{1}{a} \ln \sin ax + C, \ a \neq 0, \ x \neq k^{\frac{\pi}{a}} \text{mit} k \epsilon \mathbb{Z}$
$\int x^n \sin ax dx = -\frac{x^n}{a} \cos ax + \frac{n}{a} \int x^{n-1} \cos ax dx, \ n \in \mathbb{N}, \ a \neq 0$	$\int x^n \cos ax dx = \frac{x^n}{a} \sin ax - \frac{n}{a} \int x^{n-1} \sin ax dx, \ n \in \mathbb{N}, \ a \neq 0$
$\int x^n e^{ax} dx = \frac{1}{a} x^n e^{ax} - \frac{n}{a} \int x^{n-1} e^{ax} dx, n \in \mathbb{N}, a \neq 0$	$\int e^{ax} \sin bx dx = \frac{e^{ax}}{a^2 + b^2} (a \sin bx - b \cos bx) + C, \ a \neq 0, \ b \neq 0$
$\int e^{ax} \cos bx dx = \frac{e^{ax}}{a^2 + b^2} (a \cos bx + b \sin bx) + C, \ a \neq 0, \ b \neq 0$	$\int \ln x dx = x(\ln x - 1) + C, \ x \in \mathbb{R}^+$
$\int x^{\alpha} \cdot \ln x dx = \frac{x^{\alpha+1}}{(\alpha+1)^2} [(\alpha+1) \ln x - 1] + C, \ x \in \mathbb{R}^+, \ \alpha \in \mathbb{R} \setminus \{-1\}$	

28. August 2020 Seite 11 von 39

4 Potenzen und Logarithmen Bronstein s.8

4.1 Potenzen

$$\begin{array}{ll} a^0=1 & a^{-n}=\frac{1}{a^n} \\ a^{\frac{m}{n}}=\sqrt[n]{a^m} & (a^r)^s=a^{r\cdot s} \\ a^{r+s}=a^r\cdot a^s & a^{r-s}=\frac{a^r}{a^s} \\ (a\cdot b)^r=a^r\cdot b^r & \left(\frac{a}{b}\right)^r=\frac{a^r}{b^r} \end{array}$$

4.2 Logarithmen

$$a^x = b \to x = \log_a(b)$$

$$\begin{array}{ll} \log_b(x \cdot y) = \log_b(x) + \log_b(y) & \quad \log_b(\frac{x}{y}) = \log_b(x) - \log_b(y) \\ \log_b(\frac{1}{x}) = -\log_b(x) & \quad \log_b(\frac{x}{y}) = -\log_b(\frac{y}{x}) \\ \log_b(x^r) = r \log_b(x) & \quad \log_b(\sqrt[r]{x}) = \frac{1}{n} \log_b(x) \\ \log_b(x) = \frac{\log_a(x)}{\log_a(b)} & \quad \log_e(x) = \ln(x) \end{array}$$

4.3 dB-Rechnung

Linear nach Dezibel(dB):

١	Emedi nach Beziser(ub).				
	Leistung	Amplituden			
	$P_{dB} = 10 \cdot log\left(\frac{P_2}{P_1}\right) .$	$A_{dB} = 20 \cdot log\left(\frac{A_2}{A_1}\right)$			
	Dezibel(dB) nach Linear:				

LeistungAmplituden $\frac{P_2}{P_1} = 10^{\frac{P_{dB}}{10}}$ $\frac{A_2}{A_1} = 10^{\frac{A_{dB}}{20}}$

dB	P_2/P_1	A_2/A_1
100	10^{10}	10^{5}
20	100.0	10.00
10	10.00	3.162
6.0	3.981	1.995
3.0	1.995	1.413
0.0	1.000	1.000
-3.0	0.501	0.708
-6.0	0.251	0.501
-10	0.100	0.316
-20	0.010	0.100
-100	10^{-10}	10^{-5}

28. August 2020 Seite 12 von 39

5 Komplexe Zahlen

5.1 Definition

Die Menge der reellen Zahlen wird auf die Menge der komplexen Zahlen erweitert. $\Rightarrow \mathbb{R} \subset \mathbb{C}$

Komplexe Zahl in Normalform:

Komplexe Zahl in Polarform:

$$\boxed{z = \underbrace{z_1}_{\text{Realteil}} + \underbrace{z_2}_{\text{Imagin \"{a}rteil}} \cdot j}$$

$$z = \underbrace{|z|}_{Betrag} \cdot \underbrace{[cos(\varphi) + j \cdot sin(\varphi)]}_{Winkel} = r \cdot cjs(\varphi)$$

j = imagin"are Einheit

 $\varphi = \text{Argument } arg(z)$ r = |z| = Betrag

Umrechnung Normal \rightarrow Polar: $(Z_1 \in \mathbb{R}, Z_2 \in \mathbb{I})$

$$|z| = r = \sqrt{z_1^2 + z_2^2}$$

$$|z| = r = \sqrt{z \cdot \overline{z}}$$

Sonstige Formeln:

Moivre'sche Formel $cjs^n(\varphi) = (cos(\varphi) + j \cdot sin(\varphi))^n = cos(n\varphi) + j \cdot sin(n\varphi) \quad (n \in \mathbb{R})$

	$e^{j\pi} = e^{-j\pi} = -1$	$e^{j2\pi} = e^{-j2\pi} = 1$ $e^{j3\pi} = e^{-j3\pi} = -1$	$\frac{\pi}{j}$	$\mathbf{j}^{\mathbf{j}} = \mathbf{e}^{-\frac{\pi}{2}} + 2\pi k$	
Euler Formel	$e^{jn\pi} = e^{-jn\pi} = (-1)^n$	$e^{j3\pi} = e^{-j3\pi} = -1$	$e^{j}2 = j$	$\int_{0}^{2} \int_{0}^{2} \int_{0$	
D .	$j = \sqrt{-1}$	$(-j)^2 = j^2 = -1$	$j^3 = -j$	$(-j)^4 = j^4 = 1$	$j^5 = j^1$
Potenzen von j	$j^{-1} = -j$	$j^{-2} = -1$	$j^{-3} = j$	$j^{-4} = 1$	$j^{-5} = j^{-1}$

28. August 2020 Seite 13 von 39

5.2 Konjugierte-komplexe Zahlen

$\gamma = \gamma_1 \perp i \cdot \gamma_2$	konjugieren	$\bar{z} = z_1 - i$. ~~
$z=z_1+j\cdot z_2$	<i>→</i> ∠	$z=z_1-j$	~ 22

$\overline{\overline{a}}$	=	a	$\overline{-a}$	=	$-\overline{a}$
$\overline{a+b}$	=	$\overline{a} + \overline{b}$	$\overline{a-b}$	=	$\overline{a} - \overline{b}$
$\overline{a \cdot b}$		$\overline{a} \cdot \overline{b}$	$\overline{a:b}$	=	$\overline{a}:\overline{b}$
$\frac{a + \overline{a}}{2}$	=	Re(a)	$\frac{a-\overline{a}}{2j}$	=	Im(a)
$z \cdot \overline{z}$	=	$ z ^2$	$(x + jy) \cdot (x - jy)$	=	$x^2 + y^2$

5.5 Multiplikation in Polarform

$$c = a \cdot b = |c| \cdot cjs(\varphi_c)$$

5.3 Addition, Subtraktion

Normalform:

$$a + b = (a_1 + b_1) + j \cdot (a_2 + b_2)$$
$$a - b = (a_1 - b_1) + j \cdot (a_2 - b_2)$$

5.4 Multiplikation, Division

Normalform:

$$a \cdot b = (a_1 \cdot b_1 - a_2 \cdot b_2) + j \cdot (a_1 \cdot b_2 + a_2 \cdot b_1)$$

5.6 Division in Polarform

$$c = \frac{a}{b} = |c| \cdot cjs(\varphi_c)$$

$$c|c| = \frac{|a|}{|b|} = \left|\frac{a}{b}\right|$$

$$\varphi_c = \varphi_a - \varphi_b$$

$$arg(c) = arg\left(\frac{a}{b}\right) = arg(a) - arg(b)$$

5.7 Planare Geometrie mit komplexen Zahlen

Kreis:

5.8 Potenzen und n-te (Einheits-)Wurzeln

5.8.1 Potenzen

$$z^{n} = \underbrace{z \cdot z \cdot \dots \cdot z}_{\text{n-Faktoren}}, \quad z^{0} = 1, \quad z^{-n} = \frac{1}{z^{n}}$$

$$z^{n} = |z|^{n} \cdot [\cos(\varphi) + j \cdot \sin(\varphi)]^{n}$$
$$= r^{n} \cdot [\cos(n\varphi) + j \cdot \sin(n\varphi)]$$

5.8.2 n-te Wurzeln

Di herkömmlichen Wurzelgesetze wie z.B. $\sqrt{a} \cdot \sqrt{b} = \sqrt{a \cdot b}$ gelten nicht mehr!

$$z = \sqrt[n]{a} = |z| \cdot cjs(\varphi)$$
$$|z| = \sqrt[n]{|a|}$$
$$|\varphi_z = \frac{\varphi_a}{n}$$

 \Rightarrow n-Lösungen!

$$arg(z) = \frac{arg(a)}{n}$$

$$\begin{cases} z_1 = \sqrt[n]{r} \cdot \operatorname{cjs}\left(\frac{\varphi_a}{n}\right) \\ z_2 = \sqrt[n]{r} \cdot \operatorname{cjs}\left(\frac{\varphi_a}{n} + \frac{2\pi}{n}\right) \\ z_3 = \sqrt[n]{r} \cdot \operatorname{cjs}\left(\frac{\varphi_a}{n} + 2\frac{2\pi}{n}\right) \\ \dots \\ z_n = \sqrt[n]{r} \cdot \operatorname{cjs}\left(\frac{\varphi_a}{n} + (n-1)\frac{2\pi}{n}\right) \end{cases}$$

5.8.3 n-te Einheitswurzel

$$z = \sqrt[n]{1} = |z| \cdot \operatorname{cjs}(\varphi_z) = |z| \cdot \operatorname{cjs}\left(\frac{\varphi_z + k2\pi}{n}\right) = |\sqrt[n]{|a|} \cdot \operatorname{cjs}\left(\frac{\varphi_z + k2\pi}{n}\right)$$

⇒ n-Lösungen!

$$z_n = e_k^{(n)} = 1 \cdot \operatorname{cjs}\left((k-1) \cdot \frac{2\pi}{n} \right)$$

 $\overline{\text{mit } k = 1, 2, \cdots, n}$

5.9 Nullstellen von Polynomen

Ein komplexes Polynom p(z) vom Grad n hat in $\mathbb C$ genau n Nullstellen, wenn diese in ihrem Vielfachen gezählt werden.

$$\Rightarrow p_n(z) = a_n z^n + a_{n-1} z^{n-1} + \ldots + a_0 = a_n \cdot (z - z_1) \cdot (z - z_2) \cdot (z - z_3) \cdot \ldots \cdot (z - z_n)$$

mit: $z_1, z_2, z_3, \ldots, z_n \in \mathbb{C}$

5.9.1 Polynome mit reellen Koeffizienten

- komplexe Nullstellen treten immer als konjugiert-komplexe Paare $(z_0; \overline{z_0})$ mit gleichem Vielfache k auf.
- Für die zwei Faktoren gilt $\Rightarrow (z-z_0)(z-\overline{z_0})=z^2-2\operatorname{Re}(z_0)\cdot z+|z_0|^2$
- Im reellen zerfällt p(z) in reelle Linear- und Quadratfunktionen.
- Ist das Polynom von ungeradem Grad \Rightarrow hat es mindestens eine reelle Nullstelle.

Berechnung der Nullstellen

Alle Nullstellen des Polynoms $p_n(z) = a_n z^n + a_{n-1} z^{n-1} + \ldots + a_0$ liegen in der Gauss'schen Zahlenebene in einer Kreisscheibe um den Ursprung mit Radius:

$$r = \sum_{k=0}^{n} \left| \frac{a_k}{a_n} \right| = \left| \frac{a_0}{a_n} \right| + \left| \frac{a_1}{a_n} \right| + \ldots + \left| \frac{a_n}{a_n} \right|$$

Quadratische Polynome:

$$p(z) = az^2 + bz + c = 0$$

$$z_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Polynome mit $a_n = 1, a_{n-1} = ... = a_1 = 0, a_0 = a$:

$$n(z) = z^n + a = 0$$

$$z_k = \sqrt[n]{|a|} \cdot \operatorname{cjs}\left(\frac{\varphi_a + \pi}{n} + (k-1) \cdot \frac{2\pi}{n}\right)$$

$$\operatorname{mit} k = 1, 2, \dots, n$$

pq-Formel:

$$x^2 + px + q = 0$$

$$x_{1,2} = -\frac{p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^2 - q}$$

5.10 Komplexe Exponential- und Logarithmusfunktionen

5.10.1 e-Funktion

$$\begin{bmatrix}
e^{j\varphi} = \cos(\varphi) + j\sin(\varphi) = e^{j\varphi}
\end{bmatrix} \Rightarrow \begin{bmatrix}
e^{z} = e^{z_{1} + jz_{2}} \\
= e^{z_{1}} \cdot e^{jz_{2}} \\
= e^{z_{1}} \cdot e^{jz_{2}}
\end{bmatrix} \Rightarrow \begin{bmatrix}
e^{z} = e^{z_{1} + jz_{2}} \\
Argument : & arg(e^{z}) = z_{2}
\end{bmatrix}$$

⇒ Potenzgesetze gelten weiterhin!

$$e^{a} \cdot e^{b} = e^{a+b} \quad | \quad e^{a} : e^{b} = e^{a-b} \quad | \quad (e^{a})^{k} = e^{a \cdot k}$$

5.10.2 Logarithmusfunktionen Ln

$$z = \operatorname{Ln}(a) = z_1 + \mathbf{j}z_2$$

$$z_1 = \operatorname{ln}(|a|) z_2 = \varphi_a = \operatorname{arg}(a)$$

$$\Rightarrow \operatorname{Ln}(a) = \ln(|a|) + j \operatorname{arg}(a)$$

$$\Rightarrow$$
 $\operatorname{Ln}(a) = \operatorname{ln}(|a|) + j \operatorname{arg}(a)$

Lösungen von Ln sind ∞ -wertig:

⇒ Logarithmusgesetze sind problematisch, da es 1-viele Lösungen gibt!

Es können nur noch Kongruenzen aufgestellt werden (stimmen bis auf ganzzahlige Vielfache von $2\pi \mathrm{j}$

$$\operatorname{Ln}(a \cdot b) \stackrel{\operatorname{mod}}{=}^{2\pi \mathrm{j}} \operatorname{Ln}(a) + \operatorname{Ln}(b) \quad | \quad \operatorname{Ln}(a : b) \stackrel{\operatorname{mod}}{=}^{2\pi \mathrm{j}} \operatorname{Ln}(a) - \operatorname{Ln}(b) \quad | \quad \operatorname{Ln}\left(a^k\right) \stackrel{\operatorname{mod}}{=}^{2\pi \mathrm{j}} k \cdot \operatorname{Ln}(a)$$

5.10.3 Allgemeine Potenzen

$$\boxed{a^b = \mathrm{e}^{b \cdot \ln(a)}} \quad \Rightarrow \quad \text{ebenfalls} \ \infty\text{-wertige L\"osungen!} \quad D = b^2 - 4ac \quad \Rightarrow \quad \left\{ \begin{array}{l} D > 0: \quad \text{2 L\"osungen} \\ D = 0: \quad \text{1 L\"osung} \\ D < 0: \quad \text{keine L\"osung} \end{array} \right.$$

$$z = e^{\operatorname{Ln}(z)} = e^{\ln(z) + j \cdot \operatorname{arg}(z)} = \underbrace{e^{\ln(z)}}_{|z|} \cdot \underbrace{e^{j \cdot \operatorname{arg}(z)}}_{z} = |z| \cdot \frac{z}{|z|}$$

5.11 Komplexe Trigonometrische-Funktionen

Trigo:
$$\sin(\alpha) = \frac{e^{j\alpha} - e^{-j\alpha}}{2j}$$

$$\cos(\alpha) = \frac{e^{j\alpha} + e^{-j\alpha}}{2}$$

$$\tan\alpha = \frac{\sin\alpha}{\cos\alpha} = -j\frac{e^{j\alpha} - e^{-j\alpha}}{e^{j\alpha} + e^{-j\alpha}}$$

$$\sin(\mathrm{j}\alpha) = \mathrm{j}\sinh(\alpha)$$

$$\cos(\mathrm{j}\alpha) = \cosh(\alpha)$$

$$\sinh(\alpha) = \frac{e^{\alpha} - e^{-\alpha}}{2}$$

$$\cosh(\alpha) = \frac{e^{\alpha} + e^{-\alpha}}{2}$$

$$\tanh(\alpha) = \frac{\sinh(\alpha)}{\cosh(\alpha)} = \frac{e^{\alpha} - e^{-\alpha}}{e^{\alpha} + e^{-\alpha}}$$

5.12 Komplexe Sinus-Schwingung

Reelle Schwingung:

$$z(t) = A \cdot \sin(\omega t + \varphi)$$

Amplitude:

Nullphasenwinkel: 4

Kreisfrequenz: $\omega = 2\pi f$

Periodendauer: $T = \frac{2\pi}{\omega}$

Komplexe Schwingung

$$z(t) = \operatorname{Im} \left[A \cdot e^{j(\omega t + \varphi)} \right] = \operatorname{Im} \left[A \cdot e^{j\varphi} \cdot e^{j\omega t} \right]$$

Komplexe Amplitude (zeitunabhängig):

 $\left| e^{j\omega t} \right| = 1$

Zeitfunktion (zeitabhängig):

5.12.1 Überlagerung von zwei Seiten

$$z(t) = z_1(t) + z_2(t)$$

$$= A_1 \cdot \sin(\omega t + \varphi_1) + A_2 \cdot \sin(\omega t + \varphi_2)$$

$$= \operatorname{Im} \left[A_1 \cdot e^{j(\omega t + \varphi_1)} \right] + \operatorname{Im} \left[A_2 \cdot e^{j(\omega t + \varphi_2)} \right]$$

$$= \operatorname{Im} \left[A_1 \cdot e^{j\varphi_1} \cdot e^{j\omega t} + A_2 \cdot e^{j\varphi_2} \cdot e^{j\omega t} \right]$$

$$= \operatorname{Im} \left[\left(A_1 \cdot e^{j\varphi_1} + A_2 \cdot e^{j\varphi_2} \right) \cdot e^{j\omega t} \right]$$

reelle Amplitude $A = |A_1 \cdot e^{j\varphi_1} + A_2 \cdot e^{j\varphi_2}|$ Nullphasenwinkel $\varphi = \arg (A_1 \cdot e^{j\varphi_1} + A_2 \cdot e^{j\varphi_2})$

6 Komplexe Funktion, Abbildungen

6.1 Definition

6.2 Winkeltreue

Komplexe Funktion $f\left(z\right)$ ist in allen Punkten winkeltreu, wo gibt: $\boxed{f'\left(z\right)\neq0}$

Sie bewirkt lokal eine Drehstreckung:

Streckungsfaktor: |f'(z)|Drehwinkel: $\arg(z)$ Verschieben: f'(z)

6.3 Parameter- und Koordinatengleichung

waagrechte Gitternetzlinien durch Punkt $(0; c_2)$:

$$z = z(r) = r + jc_2 \qquad \xrightarrow{f(z)} \qquad w = w(r) = f(z(r)) = 0$$

$$\xrightarrow{y} \quad \boxed{w = w(r) = f(z(r)) = f(r + jc_2)} \quad \text{mit } r \subset \mathbb{R}$$

senkrechte Gitternetzlinien durch Punkt $(c_1; 0)$:

$$z = z(r) = c_1 + jr$$
 $\xrightarrow{f(z)}$

$$w = w(r) = f(z(r)) = f(c_1 + jr)$$
 mit $r \in \mathbb{R}$

Parameter r eliminieren,

Koordinatengleichung:

um Koordinatengleichung zu erhalten.

6.4 Lineare Funktion

Die lineare Funktion w = f(z) = az + b bewirkt:

Drehstreckung mit:	${\bf Streckungs faktor}$	a
	Drehwinkel	arg(a)
	Zentrum	$\frac{b}{1-a}$
Drehstreckung mit:	Streckungsfaktor	a
	Drehwinkel	arg(a)
und Translation um:	Ortsvektor	b

Parametergleichung:

Waagrechte
$$\xrightarrow{f(z)}$$
 $w = w(r) = \underbrace{(jac_2 + b)}_{Startvektor} + \underbrace{r \cdot a}_{Richtungsvektor}$

Senkrechte $\xrightarrow{f(z)}$ $w = w(r) = \underbrace{(ac_1 + b)}_{Startvektor} + \underbrace{r \cdot ja}_{Richtungsvektor}$

Parametergleichung:

$$f'(z) = a$$

 \Rightarrow für $a \neq 0$ ist $f(z) = az + b$
überall winkeltreu!

7 Potenzfunktion und Wurzelfunktion

7.1 Quadratfunktion z^2 und Wurzelfunktion \sqrt{z}

Beim Quadrieren wird das **Argument verdoppelt** \Rightarrow halbe z-Ebene füllt bereits die ganze w-Ebene aus.

28. August 2020 Seite 18 von 39

Die Quadratfunktion $w=f\left(z\right)=z^{2}$ bildet die z-Ebene bijektiv auf eine zweiblättrige Riemann'sche Fläche ab.

Abbildung 1: Quelle: Skript KomFour

$\mathbf{Winkeltreu} \, \rightarrow \, \mathbf{Vorgehen:}$

Winkeltreue:

$$f'(z) = 2z$$
 \Rightarrow winkeltreu ausser bei $z = 0$
 $f^{-1}(w) = \sqrt{w}$ \Rightarrow winkeltreu ausser bei $w = 0$

- 1. $\frac{d}{dz}(f(z))$
- 2. f'(z) = 0
- 3. umformen \Rightarrow Lösung: <u>nicht</u> winkeltren

7.2 Potenzfunktion z^n und Wurzelfunktion $\sqrt[n]{z}$

Die Potenzfunktion $w=f\left(z\right)=z^{n}$ bildet die z-Ebene bijektiv auf eine n-blättrige Riemann'sche Fläche ab.

Abbildung 2: Quelle: Skript KomFour

8 Kreisspiegelung

$$w = \overline{f}(z) = \frac{1}{\overline{z}}$$
 mit: $|w| = \frac{1}{|z|}$; $-\arg(w) = \arg(z)$

Kreisspiegelung bedeutet: symmetrisch bezüglich des Einheitskreises (Reziprokwert)

Das Innere des Einheitskreises wird auf das Äussere abgebildet und umgekehrt.

8.1 Regeln bei der Kreisspiegelung

Winkeltreue: Die Kreisspiegelung ist überall winkeltreu!

Kreistreue: Die Kreisspiegelung ist kreistreu (Geraden sind Kreise mit $r = \infty$)

28. August 2020 Seite 19 von 39

Mathe Grundlagen v1.0

8.2 Konstruktion von Bildpunkten

z innerhalb des Einheitskreises:

z ausserhalb des Einheitskreises:

8.3 Exponential funktion e^z

28. August 2020 Seite 20 von 39

Lineare Algebra 9

Wichtige Matrizen 9.1

Einheitsmatrix

$$\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)$$

9.2Matrizenprodukt

Die Bedingung für eine Matrixmultiplikation ist, dass die Spaltenzahl der ersten Matrix mit der Zeilenzahl der zweiten Matrix übereinstimmen muss.

Zeile mal Spalte

Rechenregeln:

- \bullet Die Faktoren dürfen nicht vertauscht werden, den
n $A\cdot B\neq B\cdot A$
- $\bullet \ (A+B) \cdot C = A \cdot C + B \cdot C$
- $A \cdot (B \cdot C) = (A \cdot B) \cdot C$ $(A \cdot B)^T = B^T \cdot A^T$
- (Transponieren)
- $\bullet (A \cdot B)^H = B^H \cdot A^H$
- $\det(A \cdot B) = \det(A) \cdot \det(B) = \det(B) \cdot \det(A) = \det(B \cdot A)$

9.3 Skalarprodukt

$$\overrightarrow{v_1} \cdot \overrightarrow{v_2} = \left(\begin{array}{c} x_1 \\ y_1 \\ z_1 \end{array} \right) \cdot \left(\begin{array}{c} x_2 \\ y_2 \\ z_2 \end{array} \right) = x_1 \cdot x_2 + y_1 \cdot y_2 + z_1 \cdot z_2$$

Der Winkel zwischen den Vektoren lässt sich mit folgender Formel bestimmen:

$$\vec{a} \cdot \vec{v} = |\vec{a}| \cdot |\vec{v}| \cdot \cos(\alpha)$$

Sind die Vektoren Orthogonal zueinander, dann ist das Skalarprodukt gleich 0.

Vektorprodukt

$$\vec{c} = \vec{a} \times \vec{b} = \left(\begin{array}{c} a_1 \\ a_2 \\ a_3 \end{array} \right) \times \left(\begin{array}{c} b_1 \\ b_2 \\ b_3 \end{array} \right) = \left(\begin{array}{c} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{array} \right)$$

 $\sin(\alpha) = \frac{|\vec{a} \times \vec{b}|}{|\vec{a}||\vec{b}|}$ ${\bf Zwischenwinkel:}$

9.5 Gauss

- 1. Variable Isolieren (*) (Zeile dividieren dass eine 1 heraus kommt)
- 2. Variable Eliminieren (*) (ein Vielfaches der Zeile von den Anderen abziehen damit eine 0 heraus kommt.)
- 3. weitermachen bis Einheitsmatrix heraus kommt.

Beispiel

Die Lösung ist somit x = 3, y = 2 und z = 1.

28. August 2020 Seite 21 von 39

9.6 Determinante

9.6.1 Eigenschaften

- Hat die Matrix A eine Nullzeile/Nullspalte, dann ist die det(A) = 0
- Hat A zwei gleiche Zeilen/Spalten, dann ist det(A) = 0
- Ist A regulär, $det(A) \neq 0$ Ist A singulär, det(A) = 0
- Vertauscht man zwei Zeilen/Spalten, dann ändert sich das Vorzeichen der Determinante.
- Beschreibt eine Fläche eines Parallelogrammes (2D) bzw. ein Volumen eines Parallelepipeds (3D).
- Kann nur ermittelt werden, wenn die Matrix exkl. Lösungen quadratisch ist.

9.6.2 Wichtige Determinanten

$$\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc \qquad \det \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} = \underbrace{aei + bfg + cdh - ceg - afh - bdi}_{\text{Sarrus'sche Formel}}$$

9.6.3 Determinante mit Gauss-Verfahren

Die Determinante wird berechnet indem einfach die Pivot-Elemente multipliziert werden:

$$\begin{vmatrix} 2 & 2 & 4 \\ 4 & 5 & 6 \\ 7 & 8 & 5 \end{vmatrix} \rightarrow 2* \begin{vmatrix} 1 & 1 & 2 \\ 4 & 5 & 6 \\ 7 & 8 & 5 \end{vmatrix} \rightarrow 2* \begin{vmatrix} 1 & 1 & 2 \\ 4 & 5 & 6 \\ 7 & 8 & 5 \end{vmatrix} \rightarrow 2* \begin{vmatrix} 1 & 1 & 2 \\ 0 & 1 & -2 \\ 0 & 1 & -9 \end{vmatrix} \rightarrow 2*1* \begin{vmatrix} 1 & 1 & 2 \\ 0 & 1 & -2 \\ 0 & 0 & -7 \end{vmatrix} \rightarrow 2*1*(-7)*1*1 = -14$$

Als erstes muss die erste Zeile durch die eingekreiste Zahl dividiert werden. Danach werden die 1. Zeile soviel mal von den Anderen abgezogen, dass überall eine 0 steht.

9.7 Inverse

Eine Matrix kann nur Invertiert werden wenn $det(A) \neq 0$.

9.7.1 Eigenschaften

- $A \cdot A^{-1} = E$ E ist dabei die Einheitsmatrix
- $(A \cdot B)^{-1} = B^{-1} \cdot A^{-1}$
- $(A^k)^{-1} = (A^{-1})^k$
- $(cA)^{-1} = c^{-1}A^{-1}$ $c \in \mathbb{R}$
- $\det(A^{-1}) = (\det A)^{-1}$

9.7.2 Formeln

$$\mathbf{2x2\ Matrix} \qquad A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \rightarrow A^{-1} = \frac{1}{\det(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

$$\mathbf{3x3\ Matrix} \qquad \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}^{-1} = \frac{1}{\det A} \cdot \begin{pmatrix} ei - fh & ch - bi & bf - ce \\ fg - di & ai - cg & cd - af \\ dh - eg & bg - ah & ae - bd \end{pmatrix}$$

$$\mathbf{Dreiecksmatrix} \qquad \begin{pmatrix} d_{11} & 0 & \cdots & 0 \\ 0 & d_{22} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & d_{2n} \end{pmatrix}^{-1} = \begin{pmatrix} d_{11}^{-1} & 0 & \cdots & 0 \\ 0 & d_{22^{-1}} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & d^{-1} \end{pmatrix}$$

9.8 Eigenwerte und Eigenvektoren

Wenn eine Abbildung auf denselben Punkt fällt ($\vec{v} = \vec{v}'$), nennt man dies Eigenfixpunkt. Der Eigenvektor \vec{v} zeigt nun in diese Richtung (als Gerade) und der Eigenwert λ gibt den Faktor an, mit der in diese Richtung gezeigt wird.

28. August 2020 Seite 22 von 39

9.8.1 Eigenwerte berechnen

Um die Eigenwerte zu berechnen muss die folgende Gleichung gelöst werden: $det(A - \lambda E) = 0$. Die Lösung der Gleichung (λ) sind die Eigenwerte.

Beispiel:

$$A = \begin{pmatrix} 3 & 2 \\ 1 & 2 \end{pmatrix} \qquad det(A - \lambda E) = \begin{vmatrix} 3 - \lambda & 2 \\ 1 & 2 - \lambda \end{vmatrix} = (3 - \lambda)(2 - \lambda) - 1 \cdot 2 = 0$$
$$= \lambda^2 - 5\lambda + 4 = 0 \to (\lambda - 1)(\lambda - 4) = 0 \to \lambda_1 = 1 \to \lambda_2 = 4$$

9.8.2 Eigenvektoren berechnen

Für jeden Eigenwert λ_i Gleichungssystem aufstellen $((A - \lambda_i E)\vec{v_i} = 0)$ und mit Gauss auflösen \Rightarrow eine Zeile verschwindet $\Rightarrow \infty$ Lösungen \Rightarrow Wert von verschwundener Zeile frei wählbar.

Beispiel:

$$A = \begin{pmatrix} 3 & 2 \\ 1 & 2 \end{pmatrix} \qquad \lambda_1 = 1 \quad \lambda_2 = 4$$

$$\begin{pmatrix} 3 - 1 & 2 \\ 1 & 2 - 1 \end{pmatrix} \vec{v_1} = \vec{0} \quad \rightarrow \quad \begin{vmatrix} 2 \cdot x_1 & + & 2 \cdot y_1 & = & 0 \\ 1 \cdot x_1 & + & 1 \cdot y_1 & = & 0 \end{vmatrix} \quad \rightarrow \quad \vec{v_1} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} 3 - 4 & 2 \\ 1 & 2 - 4 \end{pmatrix} \vec{v_2} = \vec{0} \quad \rightarrow \quad \begin{vmatrix} -1 \cdot x_2 & + & 2 \cdot y_2 & = & 0 \\ 1 \cdot x_2 & + & -2 \cdot y_2 & = & 0 \end{vmatrix} \quad \rightarrow \quad \vec{v_2} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

28. August 2020 Seite 23 von 39

10 Wahrscheinlichkeit und Statistik

10.1 Zufallsexperiment

Experiment	Beobachtungsprozess, Ergebnis anschliessend ausgewertet. Ergebnis zuvor unbestimmt
Elementarereignis (λ)	Einzelne Resultate des Experiments
Ereignis	Einzelne Versuchsausgänge zusammengefasst (Beispiel Gerade Zahlen)
Ergebnisraum (S)	Alle möglichen Versuchsausgänge
Disjunkt	Ereignisse sind disjunkt, wenn sie keine gemeinsame Elemente beinhalten.

10.2 Verknüpfung von Ereignissen

Begriff	Beschreibung	Bild	Modell
Sicheres Ereignis	tritt immer ein	S	S
Unmögliches Ereignis	kann nicht eintreten	S	$\emptyset = \{\}$
Disjunkte Ereignisse	Keine gemeinsame Elemente	S B	$A\cap B=\emptyset$
A und B	Schnittmenge	SAB	$A\cap B$
$A ext{ oder } B$	Vereinigung	SAB	$A \cup B$
A hat B zur folge	A ist in B enthalten	S BA	$A \subset B$
nicht A	Komplementär Ereignis	S A	$\bar{A} = S \setminus A$

$$\begin{split} \bar{S} &= \emptyset \\ \bar{\emptyset} &= S \\ S \cup A &= S \\ S \cap A &= A \\ A \cup \bar{A} &= S \\ \bar{A} \cap \bar{A} &= S \\ \bar{\bar{A}} &= A \end{split}$$

10.3 Wahrscheinlichkeit von Ereignissen

Bei der Wahrscheinlichkeit von Ereignissen handelt sich um eine Funktion P(A) welche jedem Ereignis $A\subset S$ eine reelle Zahl zuweist.

$$P(A) = \lim_{n \to \infty} \frac{n_A}{n}$$

10.3.1 Axiomen

$$\begin{array}{ll} P(A) \geq 0 & P(\bar{A}) = 1 - P(A) & P(A) \leq 1 \\ P(S) = 1 & P(\emptyset) = 0 & \text{falls A und B nicht disjunkt} \\ \text{falls A und B disjunkt} & B \subset A \rightarrow P(B) \leq P(A) & P(A \cup B) = P(A) + P(B) - P(A \cap B) \end{array}$$

10.3.2 Laplace-Experiment

Ein Laplace-Experiment ist ein Zufallsexperiment bei welchem die endliche Anzahl von mögliche Ausgänge alle gleich häufig vorkommen.

$$P(\lambda_i) = \frac{1}{n} \quad \text{ für alle } 1 \le i \le n$$

28. August 2020 Seite 24 von 39

10.3.3 Bedingte Wahrscheinlichkeit

$$P(B|A) = \frac{P(B \cap A)}{P(A)} = \underbrace{\frac{P(A) \cdot P(B)}{P(B)}}_{\text{nur wenn unabhängig}} = P(A)$$

P(B|A) ist die Wahrscheinlichkeit das ein das Ereignis B eintritt unter der Voraussetzung das A bereits eingetroffen

10.3.4 Satz von Bayes

Tauscht die Ereignisse der Bedingten Wahrscheinlichkeit.

$$P(B \mid A) = P(A \mid B) \cdot \frac{P(B)}{P(A)}$$

10.3.5 Unabhängige Ereignisse

Für sie gilt:
$$P(A \cap B) = P(A)P(B)$$

Die Tatsache, dass A eingetreten ist, hat keinen Einfluss auf die Wahrscheinlichkeit von B. Wenn Ereignisse nicht gleichzeitig eintreten können, so sind sie abhängig.

10.3.6 Satz von der totalen Wahrscheinlichkeit

$$P(A) = \sum_{i=1}^{n} P(A|B_i) \cdot P(B_i)$$

Die Ereignisse B_i müssen disjunkt sein.

Zufallsvariable 10.4

Eine Zufallsvariable $X(\lambda)$ ist eine Funktion die jedem Ergebnis λ_i eine reelle Zahl zuweist.

10.4.1 Zweidimensionale Zufallsvariable

Die zwei Zufallsvariablen $X(\lambda)$ und $Y(\lambda)$ weisen jedem Ergebnis λ_i des Ergebnisraums S zwei reelle Zahlen zu. Diese zwei Zufallsvariablen können voneinander abhängig oder unabhängig sein. Bsp: Prüfungsnote und Erfolgserlebnis der Studenten.

10.4.2 Verteilungsfunktion

Die Verteilungsfunktion $F_X(x)$ gibt an, welcher statistische Anteil von Ergebnissen der Zufallsvariable $X(\lambda)$ einen kleineren Wert als x aufweist.

$$F_X(x) = P(X \le x)$$
 für $-\infty < x < \infty$

Eigenschaften:

$$0 \le F_X(x) \le 1$$

$$F_X(x_1) \le F_X(x_2) \text{ für } x_1 < x_2$$

$$F_X(-\infty) = 0$$

$$F_X(+\infty) = 1$$

10.4.3 Wahrscheinlichkeitsdichtefunktion

Stetige Zufallsvariable:

Die Dichtefunktion für eine Stetige Zufallsvariable ist die Ableitung der Verteilungsfunktion $F_X(x)$.

$$f_X(x) = \frac{dF_X(x)}{dx}$$

Eigenschaften:

$$f_X(x)$$
 ist stückweise Stetig $f_X(x) \ge 0$

$$\int_{0}^{\infty} f_X(x)dx = 1$$

$$\int_{-\infty}^{\infty} f_X(x)dx = 1$$

$$P(a < X \le b) = \int_{a^+}^{b} f_X(x)dx$$

Diskrete Zufallsvariable:

Die Verteilungsfunktion $F_X(x)$ von diskreten Zufallsvariablen weist Sprungstellen auf für diese Stellen existiert dann keine Ableitung. Dieses Problem wird mit Dirac-Implusen welche gerade mit der Sprunghöhe von $F_X(x)$ gewichtet wird.

$$f_X(x) = \sum_{1}^{n} (F_X(x_{i+1}) - F_X(x_i)) \cdot \delta(x - x_i)$$

10.4.4 Erwartungswert

Der Erwartungswert μ_X gibt den Mittelwert der Zufallsvariable $X(\lambda)$ wieder wobei die Werte $X(\lambda) = x$ mit den Auftretungswahrscheinlichkeit $p_X(x) = P(X = x)$ gewichtet werden.

$$\mu_X = E[X] = \sum_i x_i \cdot p_X(x_i)$$

$$\mu_X = E[X] = \int_{-\infty}^{\infty} x \cdot f_X(x) \, dx$$

10.4.5 Zweites und n-tes Moment

$$E[X^2] = \sum_{i} x_i^2 \cdot p_X(x_i)$$

$$E[X^n] = \sum_{i} x_i^n \cdot p_X(x_i)$$

$$E[X^2] = \int_{-\infty}^{\infty} x^2 \cdot f_X(x) \, dx$$

$$E[X^n] = \int_{-\infty}^{\infty} x^n \cdot f_X(x) \, dx$$

10.4.6 Varianz und Standartabweichung

Bei der Varianz handelt es sich um ein statistisches Leistungsmass, welche die mittlere Abweichung vom Erwartungswert

$$\sigma^2 = Var[X] = E[(X - \mu_X)^2]$$

$$Var[X] = \sum_{i} (x_i - \mu_X)^2 \cdot p_X(x_i)$$

$$Var[X] = \int_{-\infty}^{\infty} (x - \mu_X)^2 \cdot f_X(x) \, dx$$

Standartabweichung:

$$\sigma = \sqrt{Var[X]}$$

10.4.7 Korrelation

Korrelation ist ein statistische Kennwert zweier Zufallsvariablen X und Y, welcher einen allfälligen linearen Zusammenhang ausdrückt. Die Korrelation ist eine statistische Kreuzleistung.

$$m_{11} = E[X \cdot Y] = \sum_{i} \sum_{k} x_i \cdot y_k \cdot p_{XY}(x_i, y_k)$$

$$m_{11} = E[X \cdot Y] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x \cdot y \cdot f_X Y(x, y) \, dx \, dy$$

Eigenschaften:

Zwei Zufallsvariablen X und Y sind zueinander orthogonal falls $m_{11} = 0$ ist

Wenn X und Y beide Mehrheitlich das gleiche Vorzeichen haben, dann ist m_{11} positiv. Ist das Vorzeichen mehrheitlich verschieden, dann ist m_{11} negativ.

10.4.8 Kovarianz

Die Kovarianz ist grundsätzlich das selbe wie bei der Korrelation. Nur werden die Zufallszahlen durch ihren Erwartungswert bereinigt

$$\sigma_{XY} = E[(X - \mu_X) \cdot (Y - \mu_Y)]$$

$$\sigma_{XY} = \sum_{k} \sum_{i} (x_i - \mu_X) \cdot (y_K - \mu_Y) \cdot p_{XY}(x_i, y_k)$$

Stetig
$$\sigma_{XY} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x - \mu_X) \cdot (y - \mu_Y) \cdot f_{XY}(x, y) \, dx \, dy$$

Wahrscheinlichkeitsverteilung

10.5.1 Gleichverteilung

$$p_X(x_i) = \frac{1}{n}$$

$$f_X(x) = \frac{1}{b-a}$$

28. August 2020

10.5.2Binomialverteilung

Wird angewendet bei einem Experiment mit nur zwei Ausgängen (Ereignis mit Wahrscheinlichkeit p tritt ein, Ereignis tritt nicht ein) zu beschreiben. Die Binomialverteilung gibt an wie Wahrscheindlich es ist, mit n Versuche k-mal erfolg-

$$p_X(k) = P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}$$

$$\mu_X = n \cdot p$$

$$\sigma^2 = \text{var}(X) = n \cdot p(1-p)$$

$$n: \text{Versue}$$

n: Versuche k: k-mal erfolgreich p: Wahrscheinlichkeit

Achtung!: Für seltene Ereignisse Poissonverteilung verwenden!

10.5.3 Poissonverteilung

Die Poissonverteilung entspricht der Binomialverteilung für seltene Ereignisse (n sehr gross und die Wahrscheinlichkeit p sehr klein).

$$p_X(k) = P(X = k) = e^{-n \cdot p} \cdot \frac{(n \cdot p)^k}{k!} \qquad E(X) = \mu_X = n \cdot p \qquad var(X) = \sigma^2 = n \cdot p$$

$$S(X) = \mu_X = n \cdot p$$
 $var(X) = \sigma^2 = n \cdot p$

10.5.4 Gaussverteilung

Gaussverteilung oder Normalverteilung

$$f_X(x) = \frac{1}{\sqrt{2\pi \cdot \sigma}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

Die Verteilungsfunktion $F(x) = \frac{1}{\sqrt{2\pi}\sigma} \cdot \int_{-\infty}^{x} e^{-\frac{(\tilde{x}-\mu)^2}{2\sigma^2}} d\tilde{x}$ lässt sich nicht analytisch berechnen. Deshalb muss dies numerisch über Tabellen ausgelesen werden.

In Nat2 wird dies über die Fehlerfunktion oder über die Q-Funktion gelöst (siehe Skript Nat1&2 s137-140) Ansonsten muss die Verteilung standardisiert werden $\sigma^2 = 1$ & $\mu = 0$. Dies geschieht mit folgender Formel: $\frac{x-\mu}{\sigma}$ Danach kann man den Wert aus der Tabelle auslesen

Seite 27 von 3928. August 2020

10.5.5 Verteilungsfunktion der Normalverteilung

x	+0.00	+0.01	+0.02	+0.03	+0.04	+0.05	+0.06	+0.07	+0.08	+0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990

28. August 2020 Seite 28 von 39

11 Fourierreihen periodischer Funktionen

11.1 Bausteine

Idee:

T-Periodische, mit Limes stückweise stetigen Funktionen, durch Aufsummieren ebenfalls periodischer Basisfunktionen (sin, cos) zu approximieren.

Basisfunktionen:

Frequenz: $f = \frac{1}{T}$

Kreisfrequenz: $\omega_f = 2\pi f$

Periodendauer: $T = \frac{2\pi}{\omega_f} = \frac{1}{f}$

Nullphasenwinkel: φ

11.2 Berechnung der Fourierkoeffizienten (in \mathbb{R})

Die Funktion f(t) soll durch folgende Linearkombination dargestellt werden:

$$FR[f(t)] = \frac{a_0}{2} + \sum_{n=1}^{\infty} [a_n \cdot \cos(n\omega_f t) + b_n \sin(n\omega_f t)]$$

Berechnung von a_0 , a_n und b_n (Fourierkoeffizienten):

`		,	
a_0	=	$rac{2}{T} \cdot \int\limits_0^T f(t) dt$	n = 0
b_0	=	0	n = 0
a_n	=	$\frac{2}{T} \cdot \int_{0}^{T} f(t) \cdot \cos(n\omega_{f}t) dt$	$n=0,1,2,\cdots$
b_n	=	$\frac{2}{T} \cdot \int_{0}^{T} f(t) \cdot \cos(n\omega_{f}t) dt$	$n=1,2,3,\cdots$

 ${\bf Orthogonalit\"{a}ts} {\bf beziehungen:}$

$$\int_{0}^{T} \cos(m\omega_{f}t) \cdot \cos(n\omega_{f}t)dt = \begin{cases} T & \text{für: } m = n = 0\\ \frac{T}{2} & \text{für: } m = n > 0\\ 0 & \text{für: } m \neq n \end{cases}$$

$$\int_{0}^{T} \sin(m\omega_{f}t) \cdot \sin(n\omega_{f}t)dt = \begin{cases} \frac{T}{2} & \text{für: } m = n > 0\\ 0 & \text{für: } m \neq n \end{cases}$$

$$\int_{0}^{T} \sin(m\omega_{f}t) \cdot \sin(n\omega_{f}t)dt = 0$$

28. August 2020 Seite 29 von 39

11.3 Sätze zur Berechnung der Fourierkoeffizienten

11.3.1 Symmetrie

Rechnen mit geraden und ungeraden Funktionen:

ĺ	gerade	gerade	=	gerade
	ungerade	ungerade	=	gerade
	gerade	ungerade	=	ungerade

Fourierkoeffizienten a_n, b_n :

f(t)	a_n, b_n	
gerade	$b_n = 0 \; ;$	$a_n = \frac{4}{T} \int_0^{T/2} f(t) \cdot \cos(n\omega_f t) dt$
ungerade	$a_n = 0 \; ;$	$b_n = \frac{4}{T} \int_{0}^{T/2} f(t) \cdot \sin(n\omega_f t) dt$

11.3.2 Linearität

f(t), g(t) und h(t) sind T-periodische Funktionen.

Wenn gilt:
$$\boxed{ h(t) = r \cdot f(t) + s \cdot g(t) } \quad \Rightarrow \quad \boxed{ \begin{vmatrix} a_n^{(h)} = r \cdot a_n^{(f)} + s \cdot a_n^{(g)} \\ b_n^{(h)} = r \cdot b_n^{(f)} + s \cdot b_n^{(g)} \end{vmatrix} } \quad r, s \in \mathbb{R}$$

11.3.3 Streckung / Stauchung

f(t) ist eine T-periodische Funktion und g(t) eine $\frac{T}{r}$ -periodische Funktion.

$$\Rightarrow \quad \boxed{g(t) = f(r \cdot t)} \quad \Rightarrow \quad \boxed{a_n^{(g)} = a_n^{(f)}} \\ \boxed{b_n^{(g)} = b_n^{(f)}} \qquad 0 < r \in \mathbb{R} \quad \Rightarrow \left\{ \begin{array}{l} r < 1 \to \text{Streckung} \\ r > 1 \to \text{Streckung} \end{array} \right. \quad \text{und} \quad \boxed{\omega_g = \frac{2\pi r}{T} = \omega_f \cdot r}$$

11.3.4 Verschiebung

$$g(t) \text{ ist eine von } f(t) \text{ um } t_0 \text{ verschobene T-periodische Funktion} \Rightarrow \begin{cases} f(t+t_0) \to \text{Verschiebung nach links} \\ f(t-t_0) \to \text{Verschiebung nach rechts} \end{cases}$$

$$\Rightarrow g(t) = f(t+t_0) \Rightarrow \begin{cases} a_n^{(g)} = \cos(n\omega_f t_0) \cdot a_n^{(f)} + \sin(n\omega_f t_0) \cdot b_n^{(f)} \\ b_n^{(g)} = -\sin(n\omega_f t_0) \cdot a_n^{(f)} + \cos(n\omega_f t_0) \cdot b_n^{(f)} \end{cases} ; \quad b_0 = 0$$

11.4 Konvergenz der Fourierreihen

11.4.1 Optimalität der Fourierreihe (Approximation)

Abstand zwischen zwei Funktionen f und g:

$$||f - g|| = \sqrt{\frac{2}{T} \int_{0}^{T} [f(t) - g(t)]^{2} dt}$$

Abstand ||f-g|| zweier Funktionen kann klein sein, obschon sich die Funktionswerte stellenweise stark unterscheiden!

Qualität der Approximation mit endlicher Fourierreihe:

Die abbrechende Fourierreihe $s_m(t)$ approximiert f hinsichtlich des Abstandes am besten!

$$\Rightarrow ||s_m(t) - f(t)|| = \left\| \frac{a_0}{2} + \sum_{n=1}^m [a_n \cdot \cos(n\omega_f t) + b_n \cdot \sin(n\omega_f t)] - f(t) \right\| \rightarrow \text{wird minimal!}$$

Es gilt sogar:

$$\lim_{n \to \infty} \left\| \frac{a_0}{2} + \sum_{n=1}^{m} [a_n \cdot \cos(n\omega_f t) + b_n \cdot \sin(n\omega_f t)] - f(t) \right\| = 0$$

Parseval'sche Gleichung:

$$\boxed{\frac{a_0^2}{2} + \sum_{n=1}^{m} (a_n^2 + b_n^2) = \frac{2}{T} \cdot \int_{0}^{T} [f(t)]^2 dt = ||f||^2}$$

Gliedweises Differenzieren und Integrieren:

Funktion f ist 2-mal stetig differenzierbar

- \Rightarrow man darf Fourierreihe von f:
 - gliedweises integrieren
 - -(k-2)-mal gliedweise differenzieren

Nullfolgen a_n und b_n :

Die Fourierkoeffizienten a_n und b_n bilden eine Nullfolge:

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{2}{T} \cdot \int_0^T f(t) \cdot \cos(n\omega_f t) dt = 0$$

$$\lim_{n \to \infty} b_n = \lim_{n \to \infty} \frac{2}{T} \cdot \int_0^T f(t) \cdot \sin(n\omega_f t) dt = 0$$

 \Rightarrow Je häufiger fstetig differenzierbar ist, desto schneller gehen a_n bzw. b_n gegen 0!

$$|a_n| \le \frac{c}{n^{k+1}} |b_n| \le \frac{c}{n^{k+1}} |c \in \mathbb{R}|$$

(k-1)-mal stetig differenzierbar k-te Ableitung stückweise mit Limes stetig, monoton

11.4.2 Punktweise Kovergenz von Fourierreihen (Satz von Dirichlet)

- Funktion f(t) ist T-periodisch und stückweise stetig mit Limes.
- Rechts- und linksseitige Ableitungen $\lim_{t\downarrow t_0}f'(t), \lim_{t\uparrow t_0}f'(t)$ existierten.

$$\Rightarrow FR[f(t_0)] \xrightarrow{n \to \infty} \frac{\lim_{t \to t_0} f(t) + \lim_{t \uparrow t_0} f(t)}{2}$$

11.4.3 Gibbs-Phänomen

Gibbs'sches Phänomen:

"Über- und Unterschiessen" vor und nach einer Sprungstelle.

Höhe der grössten überschwingenden Welle:

Etwa 9% (8.94%) der gesamten Sprunghöhe.

Anzahl Summanden $m \to \infty$:

Grösste überschwingende Welle $\approx 9\%$, klingt aber schneller aus.

11.5 Komplexe Darstellung der Fourierreihen (in C)

Komplexe Fourierreihe:

$$\sum_{k=-\infty}^{\infty} c_k \cdot e^{jk\omega_f t}$$

Umrechungsformeln $(a_n, b_n \rightarrow c_n)$:

$$c_n = \frac{a_n - jb_n}{2}$$
 für $n = 0, 1, 2, 3, \dots (b_0 = 0)$

$$c_{-n} = \overline{c_n} = \frac{a_n + jb_n}{2}$$
 für $n = 1, 2, 3, \dots (b_0 = 0)$

Komplexe Fourierkoeffizienten:

$$c_n = \overline{c_{-n}} = \frac{1}{T} \cdot \int_0^T f(t) \cdot e^{(jn\omega_f t)} dt \quad \text{für } n = 0, 1, 2, 3, \dots$$

Umrechnungsformeln $(c_n \rightarrow a_n, b_n)$:

$$a_n = 2 \operatorname{Re}(c_n) = c_n + c_{-n}$$
 für $n = 0, 1, 2, 3, \cdots$

$$b_n = -2\operatorname{Im}(c_n) = \mathrm{j}(c_n + c_{-n})$$
 für $n = 1, 2, 3, \cdots$

11.5.1 Sätze zur Berechnung komplexer Fourierkoeffizienten

Symmetrie:

f(t)	c_k	$arg(c_k)$
gerade	$\operatorname{Im}[c_k] = 0;$	$arg(c_k) = 0 \text{ oder } \pi$
ungerade	$\operatorname{Re}[c_k] = 0;$	$arg(c_k) = \pm \frac{\pi}{2}$

Linearität:

Wenn gilt:
$$h(t) = r \cdot f(t) + s \cdot g(t)$$

$$\Rightarrow c_k^{(k)} = r \cdot c_k^{(f)} + s \cdot c_k^{(g)} r, s \in \mathbb{R}$$

Streckung / Stauchung:

Wenn gilt:
$$g(t) = f(r \cdot t) \quad 0 < r \in \mathbb{R}$$

$$\Rightarrow c_k^{(g)} = c_k^{(f)} \quad \text{und} \quad \omega_g = \frac{2\pi r}{T} = \omega_f \cdot r$$

Verschiebung:

Wenn gilt:
$$g(t) = f(t + t_0)$$

$$\Rightarrow c_k^{(g)} = e^{jk\omega_f t_0} \cdot c_k^{(f)} k \in \mathbb{Z}$$

11.5.2 Optimalität komplexer Fourierreihe (Approximation)

Parseval'sche Gleichung:

$$\sum_{k=-\infty}^{\infty} |c_k|^2 = \frac{1}{T} \cdot \int_{0}^{T} [f(t)]^2 dt$$

Qualität der Approximation:

$$\lim_{m \to \infty} \left\| \sum_{k=-m}^{m} c_k \cdot e^{jk\omega_f t} - f(t) \right\| = 0$$

Nullfolge c_k , bzw. c_n :

$$\lim_{n \to \infty} c_n = \lim_{n \to \infty} \overline{c_{-n}} = \lim_{n \to \infty} \frac{1}{t} \cdot \int_0^T f(t) \cdot e^{(-jn\omega_f t)} dt = 0$$

 \Rightarrow Je häufiger fstetig differenzierbar ist, desto schneller gehen c_k bzw. c_n gegen 0!

12 Integral-Transformation

12.1 Fouriertransformation Bronstein s.798

Die Fouriertransformation kann als Verallgemeinerung der Fourierreihe angesehen werden. Sie soll möglichst beliebige Funktionen in den Frequenzbereich übersetzen können um diese so zu analysieren.

12.1.1 Fouriertransformation und Rücktransformation

$$F(\omega) = \int_{-\infty}^{\infty} f(t) \cdot e^{-j\omega t} dt$$

$$f(t) = \frac{1}{2\pi} \cdot \int_{-\infty}^{\infty} F(\omega) \cdot e^{j\omega t} d\omega$$

12.1.2 Wichtige Begriffe

Spektraldichte /-darstellung	$F(\omega)$	KEINE absoluten Werte für Amplitude & Phase
Amplitudendichte	$ F(\omega) $	f reell $\rightarrow F(\omega) $ symetrisch zur Y-Achse
Phasendichte	$arg(F(\omega))$	f reell $\to \arg(F(\omega))$ punktsymetrisch zum Ursprung
Kosinusamplitudendichte	$R(\omega)$	f reell $\to R(\omega)$ gerade
Sinusamplitudendichte	$X(\omega)$	f reell $\to X(\omega)$ ungerade
Amplitudengang	$A(\omega) = H(\omega) $	$= \sqrt{H(\omega) \cdot \overline{H(\omega)}} \left\{ \begin{array}{l} < 1 \text{ Dämpfung} \\ > 1 \text{ Verstärkung} \end{array} \right.$
		$\overline{H(\omega)}$ bilden durch $+/$ - Tausch vor j-Term
Dämpfung	$\frac{1}{A(\omega)} = \left \frac{1}{H(\omega)} \right $	
Phasenverschiebung	$\Phi(\omega) = \arg(H(\omega))$	$=\arctan\left(\frac{\operatorname{Im}(H(\omega))}{\operatorname{Re}(H(\omega))}\right)$
Systemantwort	$H(\omega) = A(\omega) \cdot e^{j\Phi(\omega)}$	

12.1.3 Eigenschaften der Fouriertransformation

Linearität	$\alpha \cdot f(t) + \beta \cdot g(t) \circ - \bullet \alpha \cdot F(\omega) + \beta \cdot G(\omega)$
Zeitumkehrung (Spiegelung an der Y-Achse)	$f(-t) \circ - F(-\omega) = F^*(w)$
Ähnlichkeit / Zeitskalierung	$f(\alpha t) \circ - \bullet \frac{1}{ \alpha } F\left(\frac{\omega}{\alpha}\right) (\alpha \in \mathbb{R} \setminus \{0\})$
	$F(\alpha\omega) \bullet - \circ \frac{1}{ \alpha } f\left(\frac{t}{\alpha}\right)$
Verschiebung im Zeitbereich	$f(t \pm t_0) \circ - F(\omega) e^{\pm j\omega t_0}$
Verschiebung im Frequenzbereich (Modulationstheorem)	$f(t)e^{\pm j\omega_0 t} \circ - \bullet F(\omega \mp \omega_0)$
Ableitung im Zeitbereich	$\frac{\partial^n f(t)}{\partial t^n} \circ - \bullet (j\omega)^n F(\omega) (n \in \mathbb{N}_0)$
Integration im Zeitbereich	$\int_{-\infty}^{t} f(\tau)d\tau \circ - \frac{F(\omega)}{j\omega} + F(0)\pi\delta(\omega)$
Ableitung im Frequenzbereich	$t^n f(t) \circ - j^n \frac{\partial F(\omega)}{\partial \omega^n}$
Faltung im Zeitbereich	$f(t) * g(t) \circ - \bullet F(\omega) \cdot G(\omega)$
Faltung im Frequenzbereich	$f(t) \cdot g(t) \circ - \bullet \frac{1}{2\pi} F(\omega) * G(\omega)$
Vertauschungssatz (Dualität)	$f(t) \circ - \bullet F(\omega)$
	$F(t) \circ - 2\pi \cdot f(-\omega)$
Modulation	$\cos(\alpha t) \cdot f(t) \circ - \frac{1}{2} \cdot [F(\omega - \alpha) + F(\omega + \alpha)]$
	$\left \sin(\alpha t) \cdot f(t) \circ \underbrace{\frac{1}{2j}} \cdot \left[F(\omega - \alpha) - F(\omega + \alpha) \right] \right $

12.2 δ -Funktion Bronstein s.788

Die δ -Funktion ist auch als Impulsfunktion oder DIRAC bekannt.

28. August 2020 Seite 33 von 39

12.2.1 Definition

$$\delta(t) = 0 \text{ für alle } t \neq 0$$

$$\int_{-\infty}^{\infty} \delta(t)dt = 1$$

$$\int_{-\infty}^{\infty} \delta(t) \cdot \varphi(t)dt = \varphi(0)$$

12.2.2 Verschiebung

$$\int_{-\infty}^{\infty} \delta(t - t_0) \varphi(t) dt = \varphi(t_0)$$

12.2.4 Ableitung der Deltafunktion

$$\int_{-\infty}^{\infty} \delta^{(k)} (t - t_0) f(t) dt = (-1)^k f^{(k)} (t_0)$$

12.2.3 Multiplikation

$$s(t)\delta\left(t-t_{0}\right)=s\left(t_{0}\right)\delta\left(t-t_{0}\right)$$

12.2.5 Ableitung des Einheitssprung

$$\dot{\sigma}(t) = \delta(t)$$

12.3 Faltungsprodukt Bronstein s.803

12.3.1 Definition

$$(f * g)(t) := \int_{-\infty}^{\infty} f(u) \cdot g(t - u) du$$

Abbildung 3: Quelle: Skript SigSys

12.3.2 Rechenregeln

Kommutativität
$$f * (g * h) = (f * g) * h$$

Assoziativität
$$f * (g * h) = (f * g) * h$$

Distributivität
$$f*(g+h) = (f*g) + (f*h)$$

12.3.3 Faltung mit der δ -Funktion

$$f(t) * \delta(t - t_0) = f(t - t_0)$$

12.4 Laplacetransformation Bronstein s.784

Gegenüber j ω bei der Fourier-Transformation ist bei der Laplace-Transformation s verallgemeinert zu $s=\sigma+j\omega$. Das bedeutet, dass die Fourier-Transformierte $F(j\omega)$ durch die Laplace-Transformation F(s) ausgedrückt werden kann.

28. August 2020 Seite 34 von 39

$$f(t) \circ - \bullet F(s) = \int_0^\infty f(t) e^{-st} dt \qquad \begin{bmatrix} s = \sigma + j\omega \end{bmatrix} \qquad \begin{cases} \sigma = 0 \to \text{Amplitude bleibt gleich} \\ \sigma > 0 \to \text{Amplitude explodiert für } 0 < t \to \infty \\ \sigma < 0 \to \text{Amplitude klingt für } 0 < t \to \infty \text{ auf } 0 \text{ ab } \end{cases}$$

- $\bullet\,$ Definitionsbereich nur für kausale Systeme $t\geq 0$
- Wachstum kleiner als der von einer Exponentialfunktion

12.4.1 Eigenschaften der Laplacetransformation

Linearität	$\alpha \cdot f(t) + \beta \cdot g(t) \circ - \bullet \alpha \cdot F(s) + \beta \cdot G(s)$
Ähnlichkeit / Streckung im Zeitbereich	$f(\alpha t) \circ - \bullet \frac{1}{\alpha} F(\frac{s}{\alpha}) (\alpha \in \mathbb{R})$
Faltung im Zeitbereich	$f(t) * g(t) \circ - \bullet G(s) \cdot F(s)$
1te Ableitung im Zeitbereich	$\frac{\partial}{\partial t}f(t) \circ - \bullet sF(s) - f(0^+)$
2te Ableitung im Zeitbereich	$\frac{\partial^2}{\partial t^2} f(t) \circ - \bullet s^2 F(s) - s f(0^+) - f'(0^+)$
nte Ableitung im Zeitbereich	$\frac{\partial^n f(t)}{\partial t^n} \circ - \bullet s^n F(s) - s^{n-1} f(0^+) - s^{n-1} \frac{\partial f(0^+)}{\partial t} - \dots - s^0 \frac{\partial^{n-1} f(0^+)}{\partial t^{n-1}}$
Multiplikation mit t	$t \cdot f(t) \circ - \bullet \frac{-\partial F(s)}{\partial s}$
Ableitung im Frequenzbereich	$(-t)^n f(t) \circ - \bullet \frac{\partial^n F(s)}{(\partial s)^n}$
Verschiebung im Zeitbereich nach rechts	$\sigma(t-a)f(t-a) \circ - \bullet F(s) * e^{-as}$
Verschiebung im Zeitbereich nach links	$\sigma(t-a)f(t+a) \circ - \bullet e^{as} \cdot [F(s) - \int_{0}^{a} f(t) \cdot e^{-st} dt]$
Verschiebung im Frequenzbereich (Dämpfungssatz)	$f(t)e^{\pm\alpha t} \circ - \bullet F(s \mp \alpha)$
Integration im Originalbereich (Sprungantwort)	$\int_{0}^{t} f(u)du \circ - \frac{1}{s} \cdot F(s)$
Anfangswert	$\lim_{t\to 0^+} f(t) = \lim_{s\to\infty} sF(s)$, wenn $\lim_{t\to 0} f(t)$ existiert.
Endwert	$\lim_{t\to\infty} f(t) = \lim_{s\to 0} sF(s)$, wenn $\lim_{t\to\infty} f(t)$ existiert.

12.4.2 Laplace-Tabelle

$$\sigma(t) \qquad \circ \longrightarrow \frac{1}{s} \qquad \delta(t) \qquad \circ \longrightarrow 1(s)$$

$$\sigma(t) \cdot t \qquad \circ \longrightarrow \frac{1}{s^2} \qquad \delta(t - \alpha) \qquad \circ \longrightarrow e^{-\alpha s}$$

$$\sigma(t) \cdot t^2 \qquad \circ \longrightarrow \frac{2}{s^3} \qquad \sigma(t - \alpha) \qquad \circ \longrightarrow \frac{1}{s} \cdot e^{-\alpha s}$$

$$\sigma(t) \cdot t^n \qquad \circ \longrightarrow \frac{n!}{s^{n+1}} \qquad \sigma(t) \cdot \sin(\omega t) \qquad \circ \longrightarrow \frac{\omega}{s^2 + \omega^2}$$

$$\sigma(t) \cdot e^{\alpha t} \qquad \circ \longrightarrow \frac{1}{s - \alpha} \qquad \sigma(t) \cdot \cos(\omega t) \qquad \circ \longrightarrow \frac{s}{s^2 + \omega^2}$$

$$\sigma(t) \cdot t \cdot e^{\alpha t} \qquad \circ \longrightarrow \frac{1}{(s - \alpha)^2} \qquad \sigma(t) \cdot e^{\alpha t} \cdot \sin(\omega t) \qquad \circ \longrightarrow \frac{\omega}{(s - a)^2 + \omega^2}$$

$$\sigma(t) \cdot t^2 \cdot e^{\alpha t} \qquad \circ \longrightarrow \frac{2}{(s - \alpha)^3} \qquad \sigma(t) \cdot e^{\alpha t} \cdot \cos(\omega t) \qquad \circ \longrightarrow \frac{s - a}{(s - a)^2 + \omega^2}$$

$$\sigma(t) \cdot t^n \cdot e^{\alpha t} \qquad \circ \longrightarrow \frac{n!}{(s - \alpha)^{n+1}} \qquad \sigma(t) \cdot t \cdot \frac{\sin(\alpha t)}{2\alpha} \qquad \circ \longrightarrow \frac{s}{(s^2 + \alpha^2)^2}$$

$$\sigma(t) \cdot \frac{1 - e^{-\alpha t}}{\alpha} \qquad \circ \longrightarrow \frac{1}{s(s + \alpha)} \qquad \sigma(t) \cdot \frac{e^{-\alpha t} - e^{-\beta t}}{\beta - \alpha} \qquad \circ \longrightarrow \frac{1}{(s + \alpha)(s + \beta)}$$

$$\sigma(t) \cdot \frac{e^{-\alpha t} + \alpha t - 1}{\alpha^2} \qquad \circ \longrightarrow \frac{1}{s^2(s + \alpha)} \qquad \sigma(t) \cdot \frac{e^{-\beta t}(\alpha \cos(\alpha t) - \beta \sin(\alpha t))}{\alpha} \qquad \circ \longrightarrow \frac{s}{(s + \beta)^2 + \alpha^2}$$

28. August 2020 Seite 35 von 39

Mathe Grundlagen v1.0 13 SPEKTREN

13 Spektren

13.1 Spektraldarstellung

Spektrum: Fourierkoeffizienten einer Funktion.

Fourierreihe des abgebildeten Beispiels:

$$f(t) = \sum_{k=1}^{\infty} \frac{1}{2k-1} \cdot \sin((2k-1) \cdot t)$$

13.2 (1) Kosinus- und Sinusamplitudendiagramm

Werte der reelen Fourierkoeffizienten a_n und b_n werden als "Säulen" dargestellt.

Reelle Fourierkoeffizienten (a_n, b_n) können direkt abgelesen werden

$$a_n = A_n \cdot \cos(\varphi_n) = 2 \cdot \operatorname{Re}(c_n)$$

$$b_n = -A_n \cdot \sin(\varphi_n) = A_n \sin(-\varphi_n) = -2 \cdot \text{Re}(c_n)$$

Nachteil: Diagramme sind vom Ort des Nullpunktes auf der Zeitachse abhängig.

13.3 (2) Einseitiges Amplituden-/Phasendiagramm

Gleichfrequente Schwingungen werden zu phasenverschobenen Kosinusschwingungen zusammengefasst: $a_n \cdot \cos(n\omega_f t) + b_n \cdot \sin(n\omega_f t) = A_n \cdot \cos(n\omega_f t + \varphi_n)$

$$\varphi_n = \arg(a_n - \mathrm{j}b_n) = \arctan\left(-\frac{b_n}{a_n}\right) \text{ oder } \varphi_n = \arg(c_n)$$

$$A_n = |a_n - jb_n| = \sqrt{a_n^2 + b_n^2} \text{ oder } A_n = 2 \cdot |c_n|$$

Spezialfall: n=0

$$\boxed{A_0 = \left| \frac{a_0}{2} \right|} \quad \varphi_0 = \begin{cases} 0, & a_0 \ge 0 \\ \pi, & a_0 < 0 \end{cases}$$

28. August 2020 Seite 36 von 39

Mathe Grundlagen v1.0 13 SPEKTREN

13.4 (3) Zweiseitiges Amplituden-/Phasendiagramm (komplexes Spektrum)

Polarkoordinaten der komplexen Fourierkoeffizienten c_k werden in zwei Diagrammen dargestellt:

Amplitude =
$$|c_k|$$
 Phase = $\arg(c_k)$

- (I) Amplituden \rightarrow Achensymmetrisch $|c_n| = |c_{-n}|$
- (II) Phasen \rightarrow Punktsymmetrisch $arg(c_n) = arg(c_{-n})$

Verknüpfung zum Einseitigen Amplituden-/Phasendiagramm: für $n \ge 0$ gilt:

$$\varphi_n$$
 gleich wie (2) $\varphi_n = \arg(c_n)$

$$\boxed{ |c_n| = \frac{1}{2} \cdot A_n } \boxed{ A_0 = \left| \frac{a_0}{2} \right| = |c_0|}$$

Umrechnung von Sinus- und Kosinusdiagramm (1):

$$c_n = \frac{a_n - jb_n}{2} \left[\varphi_n = \arg(a_n - jb_n) \right]$$

13.5 Spezialfälle (zu den Phasendiagrammen: 1, 2, 3)

Funktion f gerade	(1) Sinusphasendiagramm überall 0	
	(2, 3) Phasendiagramm enthält nur die Werte 0 und π	
Funktion f ungerade	(1) Kosinusphasendiagramm überall 0	
	$(2, 3)$ Phasendiagramm enthält nur die Werte $\pm \frac{\pi}{2}$	
	(oder 0 falls Amplitudenwert = 0)	
Ähnlichkeit $g(t) = f(r \cdot t)$	(1, 2, 3) Das Spektrum von g ist das horizontal mit dem Faktor r	
	gestrecktes Spektrum vom f	
Zeitverschiebung $g(t) = f(t + t_0)$	(1) (siehe auch 3.4.4, Zeitverschiebung (S. 4))	
	(2, 3) Amplitudendiagramme sind identisch.	
	(2, 3) Phasendiagramme: Die Säule der Frequenz $k\omega_0$ wächst um $k\omega_0 t_0$	
Weisses Rauschen	Überlagerung von Schwingungen aller möglichen Frequenzen	
	mit gleichen Amplituden und zufälligen Phasen.	

28. August 2020 Seite 37 von 39

Mathe Grundlagen v1.0 13 SPEKTREN

13.6 Zeitbereich und Frequenzbereich

Abbildung 4: Quelle: Skript KomFour

Aussage im Zeitbereich	Aussage im Frequenzbereich
Funktion f gerade	①: Sinusphasendiagramm überall 0.
[f(-t) = f(t)]	(2) , (3) : In den Phasendiagrammen kommen nur die Werte 0 oder π vor.
Funktion f ungerade	①: Kosinusphasendiagramm überall 0.
[f(-t) = -f(t)]	$(\mathfrak{D},\mathfrak{J})$: In den Phasendiagrammen kommen nur die Werte $\pm \frac{\pi}{2}$ vor (oder 0, falls der zugehörige Amplitudenwert = 0 ist).
Überlagerung $h(t) = r \cdot f(t) + s \cdot g(t)$	①: Für die entsprechenden Säulenhöhen gilt die analoge Gleichung.
	②, ③: Keine Aussage möglich [wohl aber für den Koeffizient $c_k^{(h)}$ selbst: $c_k^{(f)} = r \cdot c_k^{(f)} + s \cdot c_k^{(g)}$].
Ähnlichkeit $g(t) = f(r \cdot t)$ [der Graph von g ist der mit Faktor r gestauchte Graph von f]	$\widehat{\ \ }$ $\widehat{\ \ }$ $\widehat{\ \ }$ Das Spektrum von g ist das horizontal mit dem Faktor r gestreckte Spektrum von f .
f(t)	$ \frac{ \int_{S_{0}, A_{0}, S_{0}, -2a_{0}, -1a_{0}}^{C_{k}(f)} \int_{S_{0}, 1a_{0}, 2a_{0}, -2a_{0}, -1a_{0}}^{C_{k}(f)} \int_{S_{0}, 1a_{0}, 2a_{0}, 2a_{0}, 4a_{0}, 5a_{0}}^{C_{k}(f)} \int_{S_{0}, -2a_{0}, -1a_{0}, -1a_{0}}^{C_{k}(f)} \int_{S_{0}, -2a_{0}, -1a_{0}, -$
$g = g(t) = f(2t) \qquad (r=2)$ $T^{(g)} \qquad z = t$	$\begin{vmatrix}c(g)\\k\end{vmatrix} = \begin{vmatrix}c(g)\\k\end{vmatrix} \begin{vmatrix}c(g)\\k\end{vmatrix} = \begin{vmatrix}c(g)\\k\end{vmatrix} \begin{vmatrix}c(g)\\k\end{vmatrix} \begin{vmatrix}c(g)\\k\end{vmatrix} = \begin{vmatrix}c(g)\\k\end{vmatrix} \begin{vmatrix}c(g)\\k\end{vmatrix} \begin{vmatrix}c(g)\\k\end{vmatrix} = \begin{vmatrix}c(g)\\k\end{vmatrix} \begin{vmatrix}c(g)\\k\end{vmatrix} \begin{vmatrix}c(g)\\k\end{vmatrix} = \begin{vmatrix}c(g)\\k\end{vmatrix} = \begin{vmatrix}c(g)\\k\end{vmatrix} \begin{vmatrix}c(g)\\k\end{vmatrix} = \begin{vmatrix}c(g)\\k\end{vmatrix} = \begin{vmatrix}c(g)\\k\end{vmatrix} \begin{vmatrix}c(g)\\k\end{vmatrix} = \begin{vmatrix}c(g)\\$
Zeitverschiebung $g(t) = f(t+t_0)$	$ \begin{array}{cccc} \text{(1): Für } n=0,1,2, \text{ bzw. } n=1,2, \\ a_n^{(g)} &= \cos(na_0t_0) \cdot a_n^{(f)} + \sin(na_0t_0) \cdot b_n^{(f)}, \\ b_n^{(g)} &= -\sin(na_0t_0) \cdot a_n^{(f)} + \cos(na_0t_0) \cdot b_n^{(f)}. \end{array} $
	$(\mathfrak{D},\mathfrak{J})$: Das Amplitudendiagramm ist für f und g identisch. Die zur Frequenz $k\omega_f$ gehörige Säule des Phasendiagramms von g wächst um $k\omega_f t_0 \pmod{2\pi}$.

Abbildung 5: Quelle: Skript KomFour

Abbildung 6: Quelle: Skript KomFour

28. August 2020 Seite 38 von 39

Mathe Grundlagen v1.0 14 TABELLEN

14 Tabellen

14.1 Griechisches Alphabet

Majuskel	Minuskel	Aussprache	Häufigste Verwendung in Technik
A	α	Alpha	$\alpha =$ Winkel, Winkelbeschleunigung, allgemeiner Faktor
B	β	(Alt: Beta), (Neu: Feta)	$\beta = $ Winkel, Bandbreite
Г	γ	Gamma	$\Gamma = \text{Reflexionsfaktor}, \ \gamma = \text{Winkel}$
Δ	δ	Delta	$\Delta = \text{Differenz}, \ \delta = \text{Dirac-Funktion}$
E	ϵ, ε	Epsilon	$\varepsilon = \text{Permittivit}$ ät
Z	ζ	Zeta	$\zeta = D$ ämpfungsgrad
H	η	Eta	$\eta = \text{Wirkungsgrad}, \text{Rauschleistung}$
Θ	θ, ϑ	Theta	$\Theta = \text{Magnetische Durchflutung}, \ \theta = \text{Winkel},$ Wärmewiderstand, $\vartheta = (\text{Celsius-})\text{Temperatur}$
I	ι	Iota	
K	κ, \varkappa	Kappa	$\kappa = \text{Gaskonstante}$
Λ	λ	Lambda	$\Lambda = \text{Logarithmisches Dekrement}, \lambda = \text{Wellenlänge}, \text{Eigenwerte}$
M	μ	Mu	$\mu = \text{Permeabilit}$ ät
M	ν	Nu	$\nu = \text{Frequenz}, \text{Poisson-Zahl}$
Ξ	ξ	Xi	$\xi =$ Störglied in der Analysis, Zufallsvariable
0	o	Omikron	
П	π, ϖ	Pi, Bi	$\Pi = \text{Produktzeichen}, \pi = \text{Kreiszahl}$
P	ρ, ϱ	Rho	$\rho =$ Spezifischer Widerstand, (Ladungs-)Dichte
Σ	σ, ς	Sigma	$\Sigma =$ Summenzeichen, $\sigma =$ Elektrische Leitfähigkeit, Standardabweichung
T	au	Tau	$\tau =$ Zeitkonstante der passiven Reaktanz-Elemente
Υ	v	Ypsilon	
Φ	$\phi,arphi$	Phi	$\Phi = \text{Magnetischer Fluss}, \ \phi = \text{Winkel}, \ \varphi = (\text{Polarkoordinaten})$ Winkel, Phasenverschiebung, elektrisches Potential
X	χ	Chi	
Ψ	ψ	Psi	$\Psi =$ Elektrischer Fluss
Ω	ω	Omega	$\Omega =$ Widerstand-, Impedanz-Einheit, $\omega =$ Kreisfrequenz

28. August 2020 Seite 39 von 39