CSDS 440: Machine Learning

Soumya Ray (he/him, sray@case.edu)
Olin 516
Office hours T, Th 11:15-11:45 or by appointment
Zoom Link

Announcements

- Quiz 3 Thursday
 - Topics up to and including Optimization

Recap

 Naïve Bayes factorizes the j_____ distribution as the product of . This assumes that . To infer the label of a new example, we We estimate parameters for probabilistic models using Bayes Rule for concept learning says that the p_____ is equal to the I ____ times the p____ divided by the e____ Maximizing the LHS gives us the hypothesis. If we assume that all hypotheses have e__ p___, we get the hypothesis. To apply MLE, we first write down the L_____ f___. We then optimize it with respect to the m p

Today

Probabilistic Machine Learning

Maximum Likelihood Estimation

• For naïve Bayes, a hypothesis is the vector of parameters, one for each of $p(X_i=x_i|Y=y)$ and P(Y=y)

- Assume X_i is 0/1 and Y is 0/1
 - Then $p(X_i=1|Y=1)$ is a parameter, call it θ_{i1}
 - There's another parameter for $p(X_i=1|Y=0)$, θ_{i0}
 - Finally there are two parameters for p(Y=y), θ_y (θ_0 and θ_1 —these sum to 1)

Maximum Likelihood Estimation

$$h_{ML} = \arg \max_{h \in H} p(D | h)$$

$$p(D | h) = p(\{\mathbf{x}_{d}, y_{d}\}_{d=1...m} | \{\theta_{i0}, \theta_{i1}\}_{i=1...n}, \theta_{y})$$

$$= \prod_{d=1}^{m} p(\mathbf{x}_{d}, y_{d} | \{\theta_{i0}, \theta_{i1}\}_{i=1...n}, \theta_{y})$$

$$= \prod_{d=1}^{m} \prod_{i=1}^{n} p(X_{di} = x_{di} | Y = y_{d}; \{\theta_{i0}, \theta_{i1}\}, \theta_{y}) p(Y = y_{d})$$

$$= \prod_{d=1}^{m} \prod_{i=1}^{n} p(X_{di} = x_{di} | Y = y_{d}; \{\theta_{i0}, \theta_{i1}\}, \theta_{y}) \theta_{y_{d}}$$

	Has-fur? (f1)	Long-Teeth? (f2)	Scary? (f3)	Lion? (Y)
Animal ₁	1	0	0	0
Animal ₂	0	1	1	0
Animal ₃	1	1	1	1

$$\begin{split} p(D \mid h) &= \left[\theta_{10} (1 - \theta_{20}) (1 - \theta_{30}) \theta_0 \right] \times \\ \left[(1 - \theta_{10}) \theta_{20} \theta_{30} \theta_0 \right] \times \left[\theta_{11} \theta_{21} \theta_{31} \theta_1 \right] \\ &= \theta_{10}^1 (1 - \theta_{10})^1 \theta_{20}^1 (1 - \theta_{20})^1 \theta_{30}^1 (1 - \theta_{30})^1 \theta_0^2 \times \\ \theta_{11}^1 (1 - \theta_{11})^0 \theta_{21}^1 (1 - \theta_{21})^0 \theta_{31}^1 (1 - \theta_{31})^0 \theta_1^1 \end{split}$$

Let N_I be the number of examples with Y=I and suppose p_i of those have $X_i=I$ Let N_0 be the number of examples with Y=0 and suppose d_i of those have $X_i=I$

$$p(D \mid h) = \prod_{d=1}^{m} \prod_{i=1}^{n} p(X_i = x_i \mid Y = y_d; \{\theta_{i0}, \theta_{i1}\}) \theta_{y_d}$$

Number of examples with Y=0

$$= \prod_{i=1}^{n} \theta_{i1}^{p_i} (1 - \theta_{i1})^{N_1 - p_i} \theta_{1}^{N_1} \prod_{i=1}^{n} \theta_{i0}^{d_i} (1 - \theta_{i0})^{N_0 - d_i} \theta_{1}^{N_0}$$

Number of Y=0 examples with $f_i=1$

$$\hat{\theta}_{k0} = \arg \max_{\theta_{k0}} \theta_{k0}^{d_k} (1 - \theta_{k0})^{N_0 - d_k} = L(\theta_{k0})$$

Likelihood function

$$LL(\theta_{k0}) = d_k \log \theta_{k0} + (N_0 - d_k) \log (1 - \theta_{k0}) \qquad \text{Log likelihood function}$$

$$\frac{\partial LL}{\partial \theta_{k0}} = \frac{d_k}{\theta_{k0}} - \frac{(N_0 - d_k)}{(1 - \theta_{k0})} = 0, \text{ so } \frac{d_k}{\theta_{k0}} = \frac{(N_0 - d_k)}{(1 - \theta_{k0})}$$

or
$$d_k - d_k \theta_{k0} = N_0 \cdot \theta_{k0} - d_k \theta_{k0}$$

or
$$d_k = N_0 \cdot \theta_{k0}$$

or
$$\hat{\theta}_{k0} = \frac{d_k}{N_0}$$

Fraction of observed Y=0examples where $X_{k}=1$!

Naïve Bayes Parameter MLEs

$$\hat{p}(X_i = 1 \mid Y = 1) = \frac{\text{\# observed examples with } X_i = 1 \text{ and } Y = 1}{\text{\# observed examples with } Y = 1}$$

$$p(X_i = 1 \mid Y = 1) = \frac{p(X_i = 1, Y = 1)}{p(Y = 1)}$$

$$\hat{p}(Y=1) = \frac{\text{\# observed examples with } Y=1}{\text{\# observed examples}}$$

Smoothing probability estimates

- What happens if a certain value for a variable is not in our set of examples, for a certain class?
 - Suppose we're trying to classify lions and we've never seen a lion cub, so $\hat{p}(Scary = false \mid Lion) = 0$
 - When we see a cub, its probability of being a lion will be zero by our Naïve Bayes formula, even if it has long teeth and fur
 - It's a good idea to "smooth" our probability estimates to avoid this

m-Estimates

$$\hat{p}(X_i = x_i \mid Y = y) = \frac{(\text{\# examples with } X_i = x_i \text{ and } Y = y) + mp}{(\text{\# examples with } Y = y) + m}$$

- p is our prior estimate of the probability
- m is called "Equivalent Sample Size" which determines the importance of p relative to the observations
- If variable has v values, the specific case of m=v, p=1/v is called Laplace smoothing

Nominal Attributes

• Need to estimate parameters $p(X_i=v_k|Y=y)$

Can use maximum likelihood estimates:

$$p(X_i = v_k \mid Y = y) = \frac{p(X_i = v_k \land Y = y)}{p(Y = y)}$$

$$= \frac{\text{\# examples with } X_i = v_k \text{ and } Y = y}{\text{\# examples with } Y = y}$$

Continuous Attributes

• If X_i is a continuous attribute, can model $p(X_i|y)$ as a Gaussian distribution ("Gaussian naïve Bayes")

$$p(X_i \mid y) \sim N(\mu_{i|y}, \sigma_{i|y})$$

MLEs

$$\hat{\mu}_{i} = \frac{\sum_{k \in examples} x_{ik} I(y_{k} = y)}{\sum_{k \in examples} I(y_{k} = y)}$$

$$\hat{\sigma}_{i}^{2} = \frac{\sum_{k \in examples} (x_{ik} - \hat{\mu}_{i})^{2} I(y_{k} = y)}{\sum_{k \in examples} I(y_{k} = y)}$$

Naïve Bayes Geometry

- What does the decision surface of the naïve Bayes classifier look like?
- An example is classified positive iff

$$\frac{p(\mathbf{x}, y=1) > p(\mathbf{x}, y=0)}{\frac{p(\mathbf{x}, y=1)}{p(\mathbf{x}, y=0)} > 1}$$

$$\frac{\prod_{i} p(x_{i} | y=1)p(y=1)}{\prod_{i} p(x_{i} | y=0)p(y=0)} > 1$$

Naïve Bayes Geometry

Classify an example as positive if

$$\frac{\prod_{i} p(x_{i} \mid y = 1)p(y = 1)}{\prod_{i} p(x_{i} \mid y = 0)p(y = 0)} > 1$$

$$\prod_{i} p(x_i | y = 1)p(y = 1)
\ln \frac{1}{\prod_{i} p(x_i | y = 0)p(y = 0)} > 0$$

$$\ln \frac{p(y=1)}{p(y=0)} + \sum_{i} \ln \left(\frac{p(x_i \mid y=1)}{p(x_i \mid y=0)} \right) > 0$$

Naïve Bayes Geometry

$$\ln \frac{p(y=1)}{p(y=0)} + \sum_{i} \ln \left(\frac{p(x_i \mid y=1)}{p(x_i \mid y=0)} \right) > 0$$

$$\ln \frac{p(y=1)}{p(y=0)} + \sum_{i} \sum_{v} \ln \left(\frac{p(X_i = v \mid y=1)}{p(X_i = v \mid y=0)} \right) I(X_i = v) > 0$$

$$(b_1 - b_0) + \sum_{i,v} (w_{iv1} - w_{iv0}) I(X_i = v) > 0,$$

$$b_1 = \ln p(y = 1), w_{iv1} = \ln p(X_i = v \mid y = 1)$$

$$b_0 = \ln p(y = 0), w_{iv0} = \ln p(X_i = v \mid y = 0)$$

Indicator function

So Naïve Bayes implements a linear decision boundary, but with a logarithmic parameterization

Why does Naïve Bayes work well?

- Very simplistic independence assumptions
 - Everyone knows that these assumptions are nearly always wrong
 - But, paradoxically, often works well in practice

Why?

- Works well for classification, but not so great at density estimation
- Most probabilities end up near 0/1 (ask for paper)

Logistic Regression

- Simplest Discriminative model
- Models log odds as a linear function

$$\log \frac{p(Y=1|\mathbf{x})}{p(Y=-1|\mathbf{x})} = \mathbf{w} \cdot \mathbf{x} + b$$

$$p(Y=1|\mathbf{x}) = \left[1 - p(Y=1|\mathbf{x})\right] e^{(\mathbf{w} \cdot \mathbf{x} + b)}$$

$$p(Y=1|\mathbf{x})(1 + e^{(\mathbf{w} \cdot \mathbf{x} + b)}) = e^{(\mathbf{w} \cdot \mathbf{x} + b)}$$

$$p(Y=1|\mathbf{x}) = \frac{e^{(\mathbf{w} \cdot \mathbf{x} + b)}}{1 + e^{(\mathbf{w} \cdot \mathbf{x} + b)}} = \frac{1}{1 + e^{-(\mathbf{w} \cdot \mathbf{x} + b)}}$$

Classification with LR

• LR directly specifies $p(Y=1|\mathbf{x})$, compute and check if greater than 1/2

Estimating parameters

 Use MLE, optimize conditional log likelihood of the data

$$\mathbf{w}, b = \arg\max \prod_{i} p(Y_i = y_i \mid \mathbf{x}_i)$$

$$= \arg\max \sum_{i \in pos} \log p(Y_i = 1 \mid \mathbf{x}_i) + \sum_{i \in neg} \log p(Y_i = -1 \mid \mathbf{x}_i)$$

$$= \arg\max \sum_{i \in pos} \log \left(\frac{1}{1 + e^{-\mathbf{w} \cdot \mathbf{x} + b}}\right) + \sum_{i \in neg} \log \left(1 - \frac{1}{1 + e^{-\mathbf{w} \cdot \mathbf{x} + b}}\right)$$

Overfitting control

Can include a term for overfitting control:

$$\mathbf{w}, b = \arg\max \sum_{i \in pos} \log \left(\frac{1}{1 + e^{-\mathbf{w} \cdot \mathbf{x} + b}} \right) + \sum_{i \in neg} \log \left(1 - \frac{1}{1 + e^{-\mathbf{w} \cdot \mathbf{x} + b}} \right)$$

$$\mathbf{w}, b = \arg\min \frac{1}{2} \|\mathbf{w}\|^2 + C \begin{bmatrix} \sum_{i \in pos} -\log\left(\frac{1}{1 + e^{-\mathbf{w} \cdot \mathbf{x} + b}}\right) \\ +\sum_{i \in neg} -\log\left(1 - \frac{1}{1 + e^{-\mathbf{w} \cdot \mathbf{x} + b}}\right) \end{bmatrix}$$

Negative Conditional Log Likelihood

Estimating parameters

Can use gradient descent, Newton methods etc

 Very robust method, works extremely well in many practical situations, very easy to code

Logistic Regression Geometry

Classify as positive iff:

$$\frac{p(Y=1|\mathbf{x})}{p(Y=-1|\mathbf{x})} > 1$$
or if $\log \frac{p(Y=1|\mathbf{x})}{p(Y=-1|\mathbf{x})} > 0$
But $\log \frac{p(Y=1|\mathbf{x})}{p(Y=-1|\mathbf{x})} = \mathbf{w} \cdot \mathbf{x} + b$
So classify as positive iff $\mathbf{w} \cdot \mathbf{x} + b > 0$

Relationship to Naïve Bayes

- LR does not make the independence assumptions of NB
 - Can be more robust than NB, especially in the presence of irrelevant attributes
 - Also handles continuous attributes nicely
 - But (as with all discriminative models) no easy way to handle data issues such as missing data

Generative and Discriminative Pairs

