Projeto: Previsão de Mercado de Ações com Análise de Sentimento e Modelagem Temporal

1. Requisitos

Tabela de Requisitos

ID Req.	ID Rel.	Sub-Requisito	Descrição	Requisitos Não Funcionais
1	_	Recolha e Integração de Dados	O sistema deve recolher dados de ações (séries temporais) e notícias (texto), processando ambos para utilização no modelo de previsão.	Desempenho, disponibilidade
2	1.1	Pré-processamento e Engenharia de Atributos	Todas as séries temporais e scores de sentimento devem ser normalizados e transformados para treino, teste e validação do modelo.	Precisão, robustez
3	1.2	Alinhamento Temporal de Sentimento	Utilizar FinBERT para extrair scores de sentimento e alinhálos temporalmente com os dados financeiros.	Interpretabilidad e, desempenho
4	1.2.1	Modelação com Temporal Fusion Transformer (TFT)	Implementar o modelo TFT para combinar múltiplas variáveis e prever preços futuros de ações.	Escalabilidade, rastreabilidade
5	1.2.2	Treino com GPU e Validação Robusta	Utilizar aceleração por GPU e aplicar técnicas robustas de validação cruzada para garantir estabilidade dos resultados.	Eficiência, reprodutibilidad e
6	1.3	Geração de Previsões Futuras e Exportação	Gerar previsões para janelas temporais	Latência, usabilidade

			definidas e exportar os resultados para formatos utilizáveis.	
7	1.4	Visualização de Resultados	Apresentar previsões de forma gráfica (plots) e permitir exportação em ficheiros CSV.	Usabilidade, acessibilidade
8	1.5	Avaliação e Métricas de Desempenho	Avaliar o modelo com métricas como MSE e matriz de confusão, comparando com benchmarks.	Interpretabilidad e, comparabilidade
9	1.6	Interface Web Interativa (WebUI)	Desenvolver um frontend leve que permita ao utilizador explorar previsões, gráficos e métricas através de uma interface web.	Interatividade, acessibilidade
10	1.7	Documentação e Versionamento	Garantir documentação clara do pipeline de dados e versionamento dos modelos e dados para rastreabilidade e reprodutibilidade.	Transparência, governança de dados

2. Caso de Negócio

2.1 Objetivo e Alinhamento Estratégico: O projeto visa fornecer uma ferramenta preditiva que melhore decisões de investimento, alinhando-se à estratégia de digitalização e inteligência de mercado da organização.

2.2 Benefícios, Custos e Return on Investment (ROI):

- Benefícios qualitativos: maior confiança nas previsões, suporte à decisão baseado em IA.
- Quantitativos: redução de perdas, aumento no retorno de investimentos.
- Custos estimados envolvem treinamento computacional e aquisição de fontes de dados.
 ROI previsto é positivo com base na acurácia esperada das previsões.

2.3 Riscos e Mitigações:

Risco de baixa generalização do modelo → Mitigado com validação robusta e tuning.

3. Arquitetura da Solução

- 3.1 Componentes, Tecnologias e Frameworks:
- Modelo de Sentimento: FinBERT (Transformers da HuggingFace).
- Modelo de Previsão: Temporal Fusion Transformer (Transformers da HuggingFace).
- Manipulação de dados: pandas, numpy, scikit-learn.
- Framework: Pytorch
- Graficos: Seaborn, Plotty
- Hyperparameter Optimization: OPTUNA
- 3.2 Fluxo de Dados e Estratégia de Treino:
 - Coleta e merge de dados de ações e sentimento.
 - Normalização dos dados numéricos.
 - Criação de janelas temporais.
 - Treino do modelo TFT com validação cruzada.
 - Avaliação com métricas (Matriz de confusão, MSE).
 - Visualização e interpretação das previsões.

4. Plano do Projeto

4.1 Fases, Marcos e Cronograma:

Fases principais:

- 1. Coleta e limpeza dos dados.
- 2. Treinamento inicial do modelo.
 - a. FinBERT
 - b. TFT
- 3. Avaliação e tuning.
- 4. UI

5. Bases de dados

- 5.1- Apple and Microsoft Impact of News on the Share closing value
- 5.2 Tesla Stock Tweets for Sentiment Analysis and Prediction

5.3 - News - Apple Stock (AAPL): Historical Financial News Data

5.4 - Stocks: <u>yfinance · PyPI</u>

6. Repositório

GitHub: Eid1999/SAstocksPredictions