

Olga Saukh Institute of Technical Informatics, TU Graz Complexity Science Hub Vienna

saukh@tugraz.at

21.04.2021

Where We Are?

Option 1: Activity Monitoring

- Activity Monitoring + Transfer Learning
 - 1. Activity Monitoring: accelerometer + kNN (or other)
 - 2. Transfer Learning (WS4): domain adaptation
- Evaluation criteria:
 - Performance and creativity

Demos: 28.04.2021

Progress Review: 02.06.2021

Final demos: 23.06.2021

Option 2: Free Choice

- Your own project (requires approval)
 - 1. Pitch your idea
 - 2. Implementation

- Evaluation criteria:
 - Technical depth and creativity

Progress Review: 05.05.2021

Progress Review: 02.06.2021

Final demos: 23.06.2021

Option 1: "Evaluation" Criteria

How do I show my demo?

- Online
- "Remote" demos not easy, especially live!
 - Video recording
 - Mirror your smartphone's screen to your PC
 - Zoom or WebEx to record screen
 - Live presentation → mirror your smartphone's screen to your PC:
 - WebEx on a smartphone and then share screen (?)
 - Screen sharing software, e.g., Vysor (free)
- No worries if everything fails → we will surely find a solution!

Option 1: "Evaluation" Criteria

What we want to see:

- 1. Your app is working smoothly
 - No crashing
 - Nice visualization matters
- 2. App performs reasonably well
 - Predictions make sense, mispredictions are OK
- 3. Show a confusion matrix on your test set
 - Only true / false positives
 AND true / false negatives
 for next week
 - You can compute advanced metrics for your final report

Example confusion matrix:

		Predicted Class		
		Positive	Negative	
Actual Class	Positive	True Positive (TP)	False Negative (FN) Type II Error	Sensitivity $\frac{TP}{(TP+FN)}$
	Negative	False Positive (FP) Type I Error	True Negative (TN)	Specificity $\frac{TN}{(TN+FP)}$
		$\frac{TP}{(TP+FP)}$	Negative Predictive Value $\frac{TN}{(TN+FN)}$	Accuracy $\frac{TP + TN}{(TP + TN + FP + FN)}$

What is a confusion matrix and advanced classification metrics?

https://manisha-sirsat.blogspot.com/2019/04/confusion-matrix.html

Option 2: Upcoming Progress Review

What type of questions to expect?

- Give a quick summary what your app does, no slides are required
- **■** Be prepared to answer the following questions:
 - What is the <u>state-of-the-art</u> you are building upon?
 - Survey methods that provide solutions to the same or a similar problem.
 - What is your <u>approach</u> and why?
 - What are the <u>data sets</u> you rely on in your work? If none, how do you gather data?
 - Do you already have some <u>first results</u>? Gathered data / confusion matrix / etc.
 - What is the status of your app implementation?
 - If you work on your project in a team: How did you split the work?
- Hint: Start adding answers to these questions to your report

Questions?