1

Assignment 13

AVVARU BHARAT - EE20MTECH11008

Download the latex-tikz codes from

https://github.com/Bharat437/Matrix Theory/tree/master/Assignment13

1 Problem

(UGC,Dec 2018,77):

Define a real values function \mathbf{B} on $\mathbb{R}^2 \times \mathbb{R}^2$ as follows. If $v = (x_1, x_2)$, $w = (y_1, y_2)$ belong to \mathbb{R}^2 define $\mathbf{B}(v, w) = x_1y_1 - x_1y_2 - x_2y_1 + 4x_2y_2$. Let $v_0 = (1, 0)$ and let $\mathbf{W} = \{v \in \mathbb{R}^2 : \mathbf{B}(v_0, v) = 0\}$. Then \mathbf{W}

- 1) is not a subspace of \mathbb{R}^2
- 2) equals $\{(0,0)\}$
- 3) is the y axis
- 4) is the line passing through (0,0) and (1,1)

2 Explanation

Subspace	A non-empty subset W of V is a subspace of V if and only if for each pair of vectors α ,
	β in W and each scalar c in F the vector $c\alpha + \beta$ is again in W.

TABLE 1: Definitions and theorem used

3 Solution

Statement	Observations		
	$\mathbf{W} = \left\{ \mathbf{v} \in \mathbb{R}^2 : \mathbf{B}(\mathbf{v_0}, \mathbf{v}) = 0 \right\} $ (3.0.1)	1)	
	$\mathbf{v} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \tag{3.0.2}$	2)	
Given	$\mathbf{w} = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \tag{3.0.3}$	3)	
	$\mathbf{v_0} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \tag{3.0.4}$	1)	
	$\mathbf{B}(\mathbf{v}, \mathbf{w}) = x_1 y_1 - x_1 y_2 - x_2 y_1 + 4 x_2 y_2 $ (3.0.5)	5)	
	we will express (3.0.5) in quadratic form.		
	$\mathbf{B}(\mathbf{v}, \mathbf{w}) = \mathbf{v}^T \begin{pmatrix} 1 & -1 \\ -1 & 4 \end{pmatrix} \mathbf{w} $ (3.0.6)	5)	
	From (3.0.2), (3.0.4), (3.0.6) we will calculate $\mathbf{B}(\mathbf{v_0}, \mathbf{v})$		

$$\Rightarrow \mathbf{B}(\mathbf{v_0}, \mathbf{v}) = \mathbf{v_0}^T \begin{pmatrix} 1 & -1 \\ -1 & 4 \end{pmatrix} \mathbf{v}$$

$$\Rightarrow \mathbf{B}(\mathbf{v_0}, \mathbf{v}) = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ -1 & 4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

$$\Rightarrow \mathbf{B}(\mathbf{v_0}, \mathbf{v}) = x_1 - x_2$$

$$\Rightarrow \mathbf{B}(\mathbf{v_0}, \mathbf{v}) = 0 \text{ if and only if } x_1 = x_2$$
Therefore, **W** consists points which have same x and y coordinates.

TABLE 2: Observations

1. Now we will see whether W is a subspace or not. Let $\alpha = \binom{m}{m}$ and $\beta = \binom{n}{n}$ be two pair of vectors in W where $\alpha, \beta \in \mathbb{R}^2$ and c be a scalar value in \mathbb{R} . Now we will see whether the vector $c\alpha + \beta$ is in W or not. Here $c\alpha + \beta = \binom{cm+n}{cm+n} \qquad (3.0.10)$ Now we will calculate $\mathbf{B}(\mathbf{v_0}, c\alpha + \beta)$ using (3.0.6) $\Rightarrow \mathbf{B}(\mathbf{v_0}, c\alpha + \beta) = \binom{1}{0} \binom{1}{-1} \binom{1}{4} \binom{cm+n}{cm+n} \qquad (3.0.11)$ $= (cm+n) - (cm+n) \qquad (3.0.12)$ $\Rightarrow \mathbf{B}(\mathbf{v_0}, c\alpha + \beta) = 0 \qquad (3.0.13)$ From (3.0.13), we can say that vector $c\alpha + \beta \in \mathbf{W}$. Therefore, W is a subspace of \mathbb{R} 2. From Table 2, we got W consists points which have same x and y coordinates. For example vector $\mathbf{u} = \binom{1}{1} \in \mathbb{R}^2$, we will calculate $\mathbf{B}(\mathbf{v_0}, \mathbf{u})$ $\Rightarrow \mathbf{B}(\mathbf{v_0}, \mathbf{u}) = \binom{1}{0} \binom{1}{-1} \binom{1}{1} = 1 - 1 = 0 \qquad (3.0.14)$ False From (3.0.14), we can say that vector $\mathbf{u} \in \mathbf{W}$. Therefore, $\mathbf{W} \neq \{(0,0)\}$ 3. Let us consider a vector on y-axis, $\mathbf{p} = \binom{3}{0}$ we will calculate $\mathbf{B}(\mathbf{v_0}, \mathbf{p})$ $\Rightarrow \mathbf{B}(\mathbf{v_0}, \mathbf{p}) = \binom{1}{0} \binom{1}{-1} \binom{1}{4} \binom{3}{0} = 3 - 0 = 3 \qquad (3.0.15)$ False False	Option	Solution	True/False
and c be a scalar value in \mathbb{R} . Now we will see whether the vector $c\alpha + \beta$ is in \mathbf{W} or not. Here $c\alpha + \beta = \begin{pmatrix} cm + n \\ cm + n \end{pmatrix} \qquad (3.0.10)$ Now we will calculate $\mathbf{B}(\mathbf{v_0}, c\alpha + \beta)$ using (3.0.6) $\Rightarrow \mathbf{B}(\mathbf{v_0}, c\alpha + \beta) = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ -1 & 4 \end{pmatrix} \begin{pmatrix} cm + n \\ cm + n \end{pmatrix} \qquad (3.0.11)$ $= (cm + n) - (cm + n) \qquad (3.0.12)$ $\Rightarrow \mathbf{B}(\mathbf{v_0}, c\alpha + \beta) = 0 \qquad (3.0.13)$ From (3.0.13), we can say that vector $c\alpha + \beta \in \mathbf{W}$. Therefore, \mathbf{W} is a subspace of \mathbb{R} 2. From Table 2, we got \mathbf{W} consists points which have same \mathbf{x} and \mathbf{y} coordinates. For example vector $\mathbf{u} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \in \mathbb{R}^2$, we will calculate $\mathbf{B}(\mathbf{v_0}, \mathbf{u})$ $\Rightarrow \mathbf{B}(\mathbf{v_0}, \mathbf{u}) = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ -1 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = 1 - 1 = 0 \qquad (3.0.14)$ False From (3.0.14), we can say that vector $\mathbf{u} \in \mathbf{W}$. Therefore, $\mathbf{W} \neq \{(0,0)\}$ 3. Let us consider a vector on \mathbf{y} -axis, $\mathbf{p} = \begin{pmatrix} 3 \\ 0 \end{pmatrix}$ we will calculate $\mathbf{B}(\mathbf{v_0}, \mathbf{p})$ $\Rightarrow \mathbf{B}(\mathbf{v_0}, \mathbf{p}) = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ -1 & 4 \end{pmatrix} \begin{pmatrix} 3 \\ 0 \end{pmatrix} = 3 - 0 = 3 \qquad (3.0.15)$ False	1.		
Now we will see whether the vector $c\alpha + \beta$ is in \mathbf{W} or not. Here $c\alpha + \beta = \begin{pmatrix} cm + n \\ cm + n \end{pmatrix} \qquad (3.0.10)$ Now we will calculate $\mathbf{B}(\mathbf{v_0}, c\alpha + \beta)$ using $(3.0.6)$ $\Rightarrow \mathbf{B}(\mathbf{v_0}, c\alpha + \beta) = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ -1 & 4 \end{pmatrix} \begin{pmatrix} cm + n \\ cm + n \end{pmatrix} \qquad (3.0.11)$ $= (cm + n) - (cm + n) \qquad (3.0.12)$ $\Rightarrow \mathbf{B}(\mathbf{v_0}, c\alpha + \beta) = 0 \qquad (3.0.13)$ From $(3.0.13)$, we can say that vector $c\alpha + \beta \in \mathbf{W}$. Therefore, \mathbf{W} is a subspace of \mathbb{R} 2. From Table 2, we got \mathbf{W} consists points which have same \mathbf{x} and \mathbf{y} coordinates. For example vector $\mathbf{u} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \in \mathbb{R}^2$, we will calculate $\mathbf{B}(\mathbf{v_0}, \mathbf{u})$ $\Rightarrow \mathbf{B}(\mathbf{v_0}, \mathbf{u}) = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ -1 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = 1 - 1 = 0 \qquad (3.0.14)$ False From $(3.0.14)$, we can say that vector $\mathbf{u} \in \mathbf{W}$. Therefore, $\mathbf{W} \neq \{(0,0)\}$ 3. Let us consider a vector on \mathbf{y} -axis, $\mathbf{p} = \begin{pmatrix} 3 \\ 0 \end{pmatrix}$ we will calculate $\mathbf{B}(\mathbf{v_0}, \mathbf{p})$ $\Rightarrow \mathbf{B}(\mathbf{v_0}, \mathbf{p}) = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ -1 & 4 \end{pmatrix} \begin{pmatrix} 3 \\ 0 \end{pmatrix} = 3 - 0 = 3 \qquad (3.0.15)$ False		Let $\alpha = \binom{m}{m}$ and $\beta = \binom{n}{n}$ be two pair of vectors in W where $\alpha, \beta \in \mathbb{R}^2$	
Here $c\alpha + \beta = \begin{pmatrix} cm + n \\ cm + n \end{pmatrix} \qquad (3.0.10)$ Now we will calculate $\mathbf{B}(\mathbf{v_0}, c\alpha + \beta)$ using $(3.0.6)$ $\Rightarrow \mathbf{B}(\mathbf{v_0}, c\alpha + \beta) = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ -1 & 4 \end{pmatrix} \begin{pmatrix} cm + n \\ cm + n \end{pmatrix} \qquad (3.0.11)$ $= (cm + n) - (cm + n) \qquad (3.0.12)$ $\Rightarrow \mathbf{B}(\mathbf{v_0}, c\alpha + \beta) = 0 \qquad (3.0.13)$ From $(3.0.13)$, we can say that vector $c\alpha + \beta \in \mathbf{W}$. Therefore, \mathbf{W} is a subspace of \mathbb{R} 2. From Table 2, we got \mathbf{W} consists points which have same \mathbf{x} and \mathbf{y} coordinates. For example vector $\mathbf{u} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \in \mathbb{R}^2$, we will calculate $\mathbf{B}(\mathbf{v_0}, \mathbf{u})$ $\Rightarrow \mathbf{B}(\mathbf{v_0}, \mathbf{u}) = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ -1 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = 1 - 1 = 0 \qquad (3.0.14)$ False From $(3.0.14)$, we can say that vector $\mathbf{u} \in \mathbf{W}$. Therefore, $\mathbf{W} \neq \{(0,0)\}$ 3. Let us consider a vector on \mathbf{y} -axis, $\mathbf{p} = \begin{pmatrix} 3 \\ 0 \end{pmatrix}$ we will calculate $\mathbf{B}(\mathbf{v_0}, \mathbf{p})$ $\Rightarrow \mathbf{B}(\mathbf{v_0}, \mathbf{p}) = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ -1 & 4 \end{pmatrix} \begin{pmatrix} 3 \\ 0 \end{pmatrix} = 3 - 0 = 3 \qquad (3.0.15)$ False		and c be a scalar value in \mathbb{R} .	
Now we will calculate $\mathbf{B}(\mathbf{v_0}, c\alpha + \beta)$ using (3.0.6) $\Rightarrow \mathbf{B}(\mathbf{v_0}, c\alpha + \beta) = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ -1 & 4 \end{pmatrix} \begin{pmatrix} cm + n \\ cm + n \end{pmatrix} \qquad (3.0.11)$ $= (cm + n) - (cm + n) \qquad (3.0.12)$ $\Rightarrow \mathbf{B}(\mathbf{v_0}, c\alpha + \beta) = 0 \qquad (3.0.13)$ From (3.0.13), we can say that vector $c\alpha + \beta \in \mathbf{W}$. Therefore, \mathbf{W} is a subspace of \mathbb{R} 2. From Table 2, we got \mathbf{W} consists points which have same \mathbf{x} and \mathbf{y} coordinates. For example vector $\mathbf{u} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \in \mathbb{R}^2$, we will calculate $\mathbf{B}(\mathbf{v_0}, \mathbf{u})$ $\Rightarrow \mathbf{B}(\mathbf{v_0}, \mathbf{u}) = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ -1 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = 1 - 1 = 0 \qquad (3.0.14)$ False From (3.0.14), we can say that vector $\mathbf{u} \in \mathbf{W}$. Therefore, $\mathbf{W} \neq \{(0,0)\}$ 3. Let us consider a vector on y-axis, $\mathbf{p} = \begin{pmatrix} 3 \\ 0 \end{pmatrix}$ we will calculate $\mathbf{B}(\mathbf{v_0}, \mathbf{p})$ $\Rightarrow \mathbf{B}(\mathbf{v_0}, \mathbf{p}) = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ -1 & 4 \end{pmatrix} \begin{pmatrix} 3 \\ 0 \end{pmatrix} = 3 - 0 = 3 \qquad (3.0.15)$ False			
$\Rightarrow \mathbf{B}(\mathbf{v_0}, c\alpha + \beta) = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ -1 & 4 \end{pmatrix} \begin{pmatrix} cm+n \\ cm+n \end{pmatrix} \qquad (3.0.11)$ $= (cm+n) - (cm+n) \qquad (3.0.12)$ $\Rightarrow \mathbf{B}(\mathbf{v_0}, c\alpha + \beta) = 0 \qquad (3.0.13)$ From (3.0.13), we can say that vector $c\alpha + \beta \in \mathbf{W}$. Therefore, \mathbf{W} is a subspace of \mathbb{R} 2. From Table 2, we got \mathbf{W} consists points which have same \mathbf{x} and \mathbf{y} coordinates. For example vector $\mathbf{u} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \in \mathbb{R}^2$, we will calculate $\mathbf{B}(\mathbf{v_0}, \mathbf{u})$ $\Rightarrow \mathbf{B}(\mathbf{v_0}, \mathbf{u}) = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ -1 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = 1 - 1 = 0 \qquad (3.0.14)$ False From (3.0.14), we can say that vector $\mathbf{u} \in \mathbf{W}$. Therefore, $\mathbf{W} \neq \{(0,0)\}$ 3. Let us consider a vector on \mathbf{y} -axis, $\mathbf{p} = \begin{pmatrix} 3 \\ 0 \end{pmatrix}$ we will calculate $\mathbf{B}(\mathbf{v_0}, \mathbf{p})$ $\Rightarrow \mathbf{B}(\mathbf{v_0}, \mathbf{p}) = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ -1 & 4 \end{pmatrix} \begin{pmatrix} 3 \\ 0 \end{pmatrix} = 3 - 0 = 3 \qquad (3.0.15)$ False		$c\alpha + \beta = \begin{pmatrix} cm + n \\ cm + n \end{pmatrix} \tag{3.0.10}$	
$= (cm + n) - (cm + n) \qquad (3.0.12)$ $\Rightarrow \mathbf{B}(\mathbf{v_0}, c\alpha + \beta) = 0 \qquad (3.0.13)$ From (3.0.13), we can say that vector $c\alpha + \beta \in \mathbf{W}$. Therefore, \mathbf{W} is a subspace of \mathbb{R} 2. From Table 2, we got \mathbf{W} consists points which have same \mathbf{x} and \mathbf{y} coordinates. For example vector $\mathbf{u} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \in \mathbb{R}^2$, we will calculate $\mathbf{B}(\mathbf{v_0}, \mathbf{u})$ $\Rightarrow \mathbf{B}(\mathbf{v_0}, \mathbf{u}) = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ -1 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = 1 - 1 = 0 \qquad (3.0.14)$ False From (3.0.14), we can say that vector $\mathbf{u} \in \mathbf{W}$. Therefore, $\mathbf{W} \neq \{(0,0)\}$ 3. Let us consider a vector on y-axis, $\mathbf{p} = \begin{pmatrix} 3 \\ 0 \end{pmatrix}$ we will calculate $\mathbf{B}(\mathbf{v_0}, \mathbf{p})$ $\Rightarrow \mathbf{B}(\mathbf{v_0}, \mathbf{p}) = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ -1 & 4 \end{pmatrix} \begin{pmatrix} 3 \\ 0 \end{pmatrix} = 3 - 0 = 3 \qquad (3.0.15)$ False		Now we will calculate $\mathbf{B}(\mathbf{v_0}, c\alpha + \beta)$ using (3.0.6)	False
$\Rightarrow \mathbf{B}(\mathbf{v_0}, c\alpha + \beta) = 0 \tag{3.0.13}$ From (3.0.13), we can say that vector $c\alpha + \beta \in \mathbf{W}$. Therefore, \mathbf{W} is a subspace of \mathbb{R} 2. From Table 2, we got \mathbf{W} consists points which have same \mathbf{x} and \mathbf{y} coordinates. For example vector $\mathbf{u} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \in \mathbb{R}^2$, we will calculate $\mathbf{B}(\mathbf{v_0}, \mathbf{u})$ $\Rightarrow \mathbf{B}(\mathbf{v_0}, \mathbf{u}) = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ -1 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = 1 - 1 = 0 \tag{3.0.14}$ False From (3.0.14), we can say that vector $\mathbf{u} \in \mathbf{W}$. Therefore, $\mathbf{W} \neq \{(0,0)\}$ 3. Let us consider a vector on y-axis, $\mathbf{p} = \begin{pmatrix} 3 \\ 0 \end{pmatrix}$ we will calculate $\mathbf{B}(\mathbf{v_0}, \mathbf{p})$ $\Rightarrow \mathbf{B}(\mathbf{v_0}, \mathbf{p}) = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ -1 & 4 \end{pmatrix} \begin{pmatrix} 3 \\ 0 \end{pmatrix} = 3 - 0 = 3 \tag{3.0.15}$ False		$\Longrightarrow \mathbf{B}(\mathbf{v_0}, c\alpha + \beta) = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ -1 & 4 \end{pmatrix} \begin{pmatrix} cm + n \\ cm + n \end{pmatrix} $ (3.0.11)	
From (3.0.13), we can say that vector $c\alpha + \beta \in \mathbf{W}$. Therefore, \mathbf{W} is a subspace of \mathbb{R} 2. From Table 2, we got \mathbf{W} consists points which have same \mathbf{x} and \mathbf{y} coordinates. For example vector $\mathbf{u} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \in \mathbb{R}^2$, we will calculate $\mathbf{B}(\mathbf{v_0}, \mathbf{u})$ $\Rightarrow \mathbf{B}(\mathbf{v_0}, \mathbf{u}) = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ -1 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = 1 - 1 = 0 \qquad (3.0.14)$ False From (3.0.14), we can say that vector $\mathbf{u} \in \mathbf{W}$. Therefore, $\mathbf{W} \neq \{(0,0)\}$ 3. Let us consider a vector on y-axis, $\mathbf{p} = \begin{pmatrix} 3 \\ 0 \end{pmatrix}$ we will calculate $\mathbf{B}(\mathbf{v_0}, \mathbf{p})$ $\Rightarrow \mathbf{B}(\mathbf{v_0}, \mathbf{p}) = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ -1 & 4 \end{pmatrix} \begin{pmatrix} 3 \\ 0 \end{pmatrix} = 3 - 0 = 3 \qquad (3.0.15)$ False		= (cm + n) - (cm + n) (3.0.12)	
Therefore, W is a subspace of \mathbb{R} 2. From Table 2, we got W consists points which have same x and y coordinates. For example vector $\mathbf{u} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \in \mathbb{R}^2$, we will calculate $\mathbf{B}(\mathbf{v_0}, \mathbf{u})$ $\Rightarrow \mathbf{B}(\mathbf{v_0}, \mathbf{u}) = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ -1 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = 1 - 1 = 0 \qquad (3.0.14) \text{False}$ From (3.0.14), we can say that vector $\mathbf{u} \in \mathbf{W}$. Therefore, $\mathbf{W} \neq \{(0,0)\}$ 3. Let us consider a vector on y-axis, $\mathbf{p} = \begin{pmatrix} 3 \\ 0 \end{pmatrix}$ we will calculate $\mathbf{B}(\mathbf{v_0}, \mathbf{p})$ $\Rightarrow \mathbf{B}(\mathbf{v_0}, \mathbf{p}) = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ -1 & 4 \end{pmatrix} \begin{pmatrix} 3 \\ 0 \end{pmatrix} = 3 - 0 = 3 \qquad (3.0.15)$ False		$\implies \mathbf{B}(\mathbf{v_0}, c\alpha + \beta) = 0 \tag{3.0.13}$	
coordinates. For example vector $\mathbf{u} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \in \mathbb{R}^2$, we will calculate $\mathbf{B}(\mathbf{v_0}, \mathbf{u})$ $\implies \mathbf{B}(\mathbf{v_0}, \mathbf{u}) = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ -1 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = 1 - 1 = 0 \qquad (3.0.14) \text{False}$ From (3.0.14), we can say that vector $\mathbf{u} \in \mathbf{W}$. Therefore, $\mathbf{W} \neq \{(0,0)\}$ 3. Let us consider a vector on y-axis, $\mathbf{p} = \begin{pmatrix} 3 \\ 0 \end{pmatrix}$ we will calculate $\mathbf{B}(\mathbf{v_0}, \mathbf{p})$ $\implies \mathbf{B}(\mathbf{v_0}, \mathbf{p}) = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ -1 & 4 \end{pmatrix} \begin{pmatrix} 3 \\ 0 \end{pmatrix} = 3 - 0 = 3 \qquad (3.0.15)$ False		Therefore, W is a subspace of \mathbb{R}	
$\Rightarrow \mathbf{B}(\mathbf{v_0}, \mathbf{u}) = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ -1 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = 1 - 1 = 0 \qquad (3.0.14) $ False From (3.0.14), we can say that vector $\mathbf{u} \in \mathbf{W}$. Therefore, $\mathbf{W} \neq \{(0,0)\}$ 3. Let us consider a vector on y-axis, $\mathbf{p} = \begin{pmatrix} 3 \\ 0 \end{pmatrix}$ we will calculate $\mathbf{B}(\mathbf{v_0}, \mathbf{p})$ $\Rightarrow \mathbf{B}(\mathbf{v_0}, \mathbf{p}) = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ -1 & 4 \end{pmatrix} \begin{pmatrix} 3 \\ 0 \end{pmatrix} = 3 - 0 = 3 \qquad (3.0.15)$ False	2.		
From (3.0.14), we can say that vector $\mathbf{u} \in \mathbf{W}$. Therefore, $\mathbf{W} \neq \{(0,0)\}$ 3. Let us consider a vector on y-axis, $\mathbf{p} = \begin{pmatrix} 3 \\ 0 \end{pmatrix}$ we will calculate $\mathbf{B}(\mathbf{v_0}, \mathbf{p})$ $\implies \mathbf{B}(\mathbf{v_0}, \mathbf{p}) = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ -1 & 4 \end{pmatrix} \begin{pmatrix} 3 \\ 0 \end{pmatrix} = 3 - 0 = 3 \qquad (3.0.15)$ False		For example vector $\mathbf{u} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \in \mathbb{R}^2$, we will calculate $\mathbf{B}(\mathbf{v_0}, \mathbf{u})$	
Therefore, $\mathbf{W} \neq \{(0,0)\}$ 3. Let us consider a vector on y-axis, $\mathbf{p} = \begin{pmatrix} 3 \\ 0 \end{pmatrix}$ we will calculate $\mathbf{B}(\mathbf{v_0}, \mathbf{p})$ $\implies \mathbf{B}(\mathbf{v_0}, \mathbf{p}) = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ -1 & 4 \end{pmatrix} \begin{pmatrix} 3 \\ 0 \end{pmatrix} = 3 - 0 = 3 \qquad (3.0.15)$ False		$\Longrightarrow \mathbf{B}(\mathbf{v_0}, \mathbf{u}) = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ -1 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = 1 - 1 = 0 \tag{3.0.14}$	False
$\implies \mathbf{B}(\mathbf{v_0}, \mathbf{p}) = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ -1 & 4 \end{pmatrix} \begin{pmatrix} 3 \\ 0 \end{pmatrix} = 3 - 0 = 3 $ (3.0.15) False			
	3.	Let us consider a vector on y-axis, $\mathbf{p} = \begin{pmatrix} 3 \\ 0 \end{pmatrix}$ we will calculate $\mathbf{B}(\mathbf{v_0}, \mathbf{p})$	
$\implies \mathbf{B}(\mathbf{v_0}, \mathbf{p}) \neq 0 \tag{3.0.16}$		$\implies \mathbf{B}(\mathbf{v_0}, \mathbf{p}) = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ -1 & 4 \end{pmatrix} \begin{pmatrix} 3 \\ 0 \end{pmatrix} = 3 - 0 = 3 $ (3.0.15)	False
		$\implies \mathbf{B}(\mathbf{v_0}, \mathbf{p}) \neq 0 \tag{3.0.16}$	
From (3.0.16), we can say that vector $\mathbf{p} \notin \mathbf{W}$.		From (3.0.16), we can say that vector $\mathbf{p} \notin \mathbf{W}$.	

	Therefore, all vectors in W are not on y-axis.	
4.	The direction vector m and normal vector n of the line through $\mathbf{M} = (0,0)$	
	and $\mathbf{N} = (1, 1)$ is	
	$\mathbf{m} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \tag{3.0.17}$	
	$\mathbf{n} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \mathbf{m} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} $ (3.0.18)	
	$\implies \mathbf{n} = \begin{pmatrix} -1\\1 \end{pmatrix} \tag{3.0.19}$	
	The equation of line can be obtained as	True
	$\mathbf{n}^{T}(\mathbf{x} - \mathbf{M}) = 0 \tag{3.0.20}$	
	$\implies \left(-1 1\right) \left(\mathbf{x} - \begin{pmatrix} 0 \\ 0 \end{pmatrix}\right) = 0 \tag{3.0.21}$	
	$\implies \begin{pmatrix} -1 & 1 \end{pmatrix} \mathbf{x} = 0 \tag{3.0.22}$	
	$\implies \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ -1 & 4 \end{pmatrix} \mathbf{x} = 0 \tag{3.0.23}$	
	$\implies \mathbf{v_0}^T \begin{pmatrix} 1 & -1 \\ -1 & 4 \end{pmatrix} \mathbf{x} = 0 \tag{3.0.24}$	
	$\implies \mathbf{B}(\mathbf{v_0}, \mathbf{x}) = 0 \tag{3.0.25}$	
	(3.0.22) is the equation of line and From (3.0.25) we can say that $\mathbf{x} \in \mathbf{W}$. Therefore, the vectors in \mathbf{W} are on the line passing through (0,0) and (1,1).	

TABLE 3: Solution