

DATA LAB

GUARDA AVANTI

Big Data, nuove competenze per nuove professioni.

"Anticipare la crescita con le nuove competenze sui Big Data" Operazione Rif. PA 2023-19167/RER approvata con DGR n° 843 del 29 maggio 2023 e co-finanziata dal Fondo Sociale Europeo Plus 2021-2027 Regione Emilia-Romagna

Informazioni, nuove conoscenze, decisioni

LA STATISTICA

- La Statistica ha come scopo la conoscenza quantitativa dei fenomeni collettivi. L'analisi statistica mira ad individuare modelli di interpretazione della realtà, attraverso canoni e tecniche che sono astrazioni, semplificazioni di una moltitudine di aspetti e di manifestazioni del reale.
- E' costituita da un insieme dei metodi che consentono di raccogliere, ordinare, riassumere, presentare ed analizzare dati e informazioni, trarne valide conclusioni e prendere decisioni sulla base di tali analisi e risultati.

Perché la Statistica è necessaria?

- per leggere, comprendere ed analizzare criticamente relazioni e risultati di analisi

Statistica

Funzione Descrittiva

Funzione Inferenziale

Offre il metodo per riassumere le informazioni in modo da renderle utilizzabili più facilmente. Riduce i dati in forma maneggevole, sostituendo a molti numeri poche misure.

Permette di generalizzare le informazioni, ricavando proprietà e leggi generali sulla base di dati rilevati solamente su una parte (campione) della popolazione.

UNITA' STATISTICA

DEFINIZIONE: Ogni elemento o caso appartenente alla popolazione oggetto diretto della osservazione da cui si raccolgono i dati.

Esempi: un singolo paziente o soggetto;

uno studente;

un occhio;

un campione di sangue;

etc

CAMPIONE E UNIVERSO

Un campione rappresentativo è un insieme di unità statistiche tratte da un universo (o popolazione). Un universo consiste della totalità delle unità statistiche che posseggono determinate caratteristiche. (Non necessariamente una popolazione deve essere composta da un numero elevato di elementi).

Esempi:

• **Universo**: tutti i pazienti adulti con una determinata malattia.

• Campione: 120 pazienti con quella malattia, inclusi in una

sperimentazione clinica.

• **Universo**: un lotto di 5000 impianti.

• Campione: 10 impianti di quel lotto sottoposti a controllo di qualità.

Il campione è soltanto una parte del tutto.

VARIABILE STATISTICA

DEFINIZIONE: Ciascuna informazione, caratteristica che verrà rilevata sulle unità statistiche sarà chiamata VARIABILE.

Le "categorie" della variabile statistica in osservazione costituiscono le MODALITA' della variabile.

I dati sperimentali (variabili) si presentano sotto differenti forme, essi possono essere sia di tipo quantitativo sia di tipo qualitativo, ed essere espressi o con scale continue o con scale discrete.

GLOSSARIO

- <u>POPOLAZIONE</u>: l'insieme di tutte le unità statistiche oggetto dell'osservazione (es.: medici, paramedici, studenti, diabetici, obesi, addetti all'agricoltura...).
- **CAMPIONE**: la parte delle unità statistiche sottoposte all'osservazione, all'esperimento, etc.
- UNITA' STATISTICA: per ogni elemento o caso appartenente alla popolazione oggetto diretto della osservazione da cui si raccolgono i dati.

GLOSSARIO

- CARATTERE (O VARIABILE): la caratteristica (attributo o misura) osservata sulla unità statistica.
- MODALITA: ogni diversa presentazione del carattere o variabile osservata su ciascuna unità statistica.
- FREQUENZA: numero di volte che si presenta una data modalità.

Esempi

Le variabili sesso, età, peso, pressione arteriosa, etc (di pazienti inclusi in uno studio) hanno come modalità:

- maschio o femmina per la variabile "sesso";
- anni, per la variabile "età";
- kg, per il "peso corporeo",
- mmHg, per la "pressione arteriosa"
- A, AB, B, 0 per il "gruppo sanguigno",
- elementare, media inferiore, media superiore, università, per la variabile "titolo di studio"

VARIABILI STATISTICHE

VARIABILI QUALITATIVE

VARIABILI QUANTITATIVE

NOMINALI

Date due qualsiasi modalità, è possibile solo affermare se esse sono uguali o diverse.

ORDINALI O PER RANGHI

Esiste un criterio predeterminato per ordinare le modalità

Sesso; professione; diagnosi medica; ...

ordine di nascita; giorni della settimana; indice di severità di una malattia;...

DISCRETO

L'insieme delle modalità assumibili può essere messo in "corrisp. biunivoca" con un sottoinsieme dei numeri naturali.

CONTINUO

(la variabile può assumere qualsiasi valore all' interno di intervalli di numeri reali.

Num. componenti
famiglia;
num. di figli;
num. di denti;
num. colonie batteriche in
una piastra;...

statura; peso; glicemia; PAS;...

LA SINTESI DEI DATI

Esempio 1. Su un campione di pazienti si rilevino le caratteristiche: sesso, età, altezza, peso, pressione arteriosa sistolica (PAS), tasso glicemico.

nome: Rossi Amerigo	nome: Bianchi Paolo
sesso: maschio	sesso: maschio
età: 32	età: 47
altezza: 172 cm.	altezza: 170 cm.
peso: 64 Kg.	peso: 80 Kg.
PAS: 140 mm Hg.	PAS: 148 mm Hg.
glicemia: 190 mg/dl	glicemia: 180 mg/dl

nome: Valenzi Alberica	nome: Alinori Alfonso
sesso: femmina	sesso: maschio
età: 45	età: 27
altezza: 168 cm.	altezza: 183 cm.
peso: 51 Kg.	peso: 85 Kg.
PAS: 125 mm Hg.	PAS: 138 mm Hg.
glicemia: 150 mg/dl	glicemia: 170 mg/dl

Le informazioni raccolte per essere "trattate" da un computer devono essere organizzate in strutture chiamate comunemente

Data Base o File Dati.

Le informazioni vengono, comunemente, organizzate per riga, cioè su ogni riga, consecutivamente, vengono elencati i dati relativi ad un soggetto.

Α	В	С	D	E	F	G	Н	I	J
ID	Sesso	Età (anni)	Numero figli	Fumatore (0=NO; 1=SI)	BMI (kg/m²)	Massa grassa (%)	Massa magra (%)	PAS (mm/Hg)	PAD (mm/Hg)
1	M	58	0	0	22	3.83	29.94	130	100
2	M	57	0	0	25	6.44	21.68	131	90
3	M	51	1	0	40	4	27.62	128	90
4	F	36	3	0	38	14.03	32.91	110	80
5	M	50	2	0	35	9.43	28.6	136	85
6	M	64	2	1	29	9.42	26.43	149	100
7	F	39	1	1	24	8.41	26.99	120	80
8	F	38	1	0	18	20.23	33.85	115	75
9	F	70	0	1	19	3.99	24.49	95	50
10	M	49	4	1	31	7.29	30.37	100	40
11	M	53	2	1	30	11.18	26.83	105	40
12	F	56	3	1	22	5.84	26.53	100	60
13	F	54	5	1	39	4.67	28.91	95	45
14	F	45	0	0	24	13.24	27.08	120	90
15	M	51	0	0	25	3.79	29.52	120	80
16	F	54	1	0	18	3.28	30.82	130	70
17	F	39	1	0	20	7.22	27.33	135	70
18	M	68	2	1	29	25.72	31.84	90	60
19	M	61	3	0	21	5.12	24.82	95	60
20	M	59	2	1	22	5.07	25.7	100	80
21	M	60	2	0	20	5.03	30.02	115	75

DISTRIBUZIONI SEMPLICI DI FREQUENZE

I dati (cioè le informazioni raccolte) spesso sono di non immediata lettura.

Per questo si procede ad una sistematizzazione e sintesi delle informazioni raccolte, cioè alla loro tabulazione. Per ogni variabile si calcolano le frequenze assolute (f.a.) che rappresentano il numero di u.s. che presentano una stessa modalità del carattere.

Alcune distribuzioni semplici di frequenze

Sesso	f.a.
M	120
F	90
Tot	210

N figli	f.a.
0	60
1	40
2	60
>2	50
Tot	210

Età (anni)	f.a.
<40	40
41-45	10
46-50	20
51-55	60
56-60	50
>60	30
Tot	210

Variabile qualitativa nominale: SESSO

SESSO	Frequenza assoluta	Frequenza %
Maschio	12	57.1
Femmina	9	42.9
Totale	21	100

Variabile qualitativa nominale: COLORE DEI CAPELLI

COLORE CAPELLI	Frequenza assoluta	Frequenza %
Bruni	14	63.6
Biondi	7	31.8
Rossi	1	4.6
Totale	22	100

Variabile quantitativa ordinale: NUMERO DI OROLOGI

NUMERO DI OROLOGI	Frequenza assoluta	Frequenza %	Frequenza cumulata
0	21	42.0	21
1	15	30.0	36 (21+15)
2	6	12.0	42 (36+6)
3	3	6.0	45 ()
4	2	4.0	47
5	1	2.0	48
8	1	2.0	49
12	1	2.0	50
Totale	50	100	

BAR CHART

PESO CORPOREO

Variabile quantitativa: PESO CORPOREO

Peso	Freq.	Freq.	Freq.
corporeo	assoluta	relativa	cumulata
40-50	3	0.14	0.14
51-60	5	0.23	0.37
61-70	9	0.41	0.78
71-80	4	0.18	0.96
81-90	0	0	0.96
>90	1	0.04	1
Totale	22	1	

L'ISTOGRAMMA

In presenza di un carattere con molte modalità è possibile e conveniente formare delle classi di valori (BINS)

L'ISTOGRAMMA

Peso di 150.000 studenti

Distribuzione doppia di frequenze assolute

ВСО	Fumatori	Non fumatori	Totale
SI	160	100	260
NO	120	70	190
Totale	280	170	450

Ci accorgiamo che il confronto non può essere effettuato solo con le f.a. in quanto esse si riferiscono a collettivi di numerosità diversa.

Se vogliamo confrontare le frequenze le dobbiamo "depurare" dalla numerosità del collettivo; ciò lo si fa dividendo le f.a. per la numerosità (N) della popolazione e moltiplicando per 100

(cioè facendo riferimento ad una ipotetica popolazione di 100 unità).

Le frequenze così calcolate sono le frequenze percentuali (f.%)

Distribuzione doppia di frequenze percentuali

DCC	Fum	Fumatori		umatori
BCO	f.a.	f.a.%	f.a.	f.a.%
SI	160	57.1	100	58.8
NO	120	42.8	70	41.2
Totale	280	100	170	100

Distrib. di frequenze assolute, relative e cumulate

Età	f.a.	f%	f.a.cum	f% cum
17	30	13.6	30	13.6
18	60	27.3	90	40.9
19	120	54.6	210	95.5
20	10	4.5	220	100
Totale	220	100		

I GRAFICI STATISTICI

Scopo dei grafici è quello di rendere l'informazione contenuta in una serie di dati:

- √ di più facile comprensione;
- ✓ di più diretta lettura.

Pertanto un grafico deve fornire al lettore una informazione sintetica e facile da interpretarsi.

BAR CHART

Usati per variabili qualitative, l'altezza delle barre rappresenta freq. assoluta o percentuale

ISTOGRAMMI

Indicati per rappresentare distribuzioni in classi (variabili quantitative continue).

Costituiti da una serie di barre rettangolari contigue ognuna in rappresentanza di una classe e con area proporzionata alla rispettiva frequenza.

GRAFICI PER PUNTI (Scatter Plot)

Costituito dai punti corrispondenti alle diverse coppie di valori rilevati. Indicati per evidenziare le associazioni tra variabili quantitative.

GRAFICI PER SPEZZATE

Si ottengono dai grafici per punti congiungendo i vari punti. Indicati per evidenziare una continuità tra valori come ad es. nella rappresentazione delle serie temporali.

DIAGRAMMI A SETTORI CIRCOLARI (TORTA)

Indicati per variabili qualitative allo scopo di evidenziare le frequenze % delle singole modalità. L'area di un cerchio viene suddivisa in settori proporzionali alle frequenze %

