Разработка алгоритма управления системой светофоров

Презентация выполнена Пилецкой А.А. Ученицей 11 класса лицея 1580

Научный руководитель: Урусов Андрей Витальевич

Цели работы.

- 1) Изучить движение транспортных средств на перекрёстке
- 2) Создать модель перекрёстка, отражающую работу реального перекрёстка
- 3) Описать две системы управления: адаптивную и с фиксированным временем переключения сигнала светофора
- 4) Сравнить эффективность двух систем управления
- 5) Сделать вывод об эффективности использования системы управления на существующем перекрёстке.

Объект моделирования

Модель

1 часть

генерирует поток машин, появляющихся на перекрёстке

2 часть

отвечает за моделирование системы управления светофорами

3 часть

моделирует отъезд транспортных средств с перекрёстка

Статистические данные

Сбор статистических данных

Длина пробки максимальна в 18 : 00

Сбор статистических данных

День недели Интервал между приездом ТС	Понедельник	Вторник	Среда	
	2,31	3,08	1,32	
	4,68	2,76	1,08	
	1,12	1,38	2,51	
	1,76	1,97	0,76	

Экспоненциальный закон распределения

Эксперименты

- Первая модель
- Оптимальная длительность сигналов светофоров

главная дорога:

зелёный – 40 секунд, красный – 15 секунд

второстепенная дорога:

зелёный – 15 секунд, красный – 40 секунд

Средняя длина пробки, м	Время в пробке, с	Пропускная способность перекрёстка, маш/мин
31,58	31,98	85

• Вторая модель

Средняя длина пробки, м	Время в пробке, с	Пропускная способность перекрёстка, маш/мин
24,11	16,33	97

Результаты и выводы.

- 1) созданы две модели перекрёстка, в которых отражена работа двух систем управления
- 2) проведены эксперименты с моделями
- 3) выявлено, что адаптивная система управления эффективнее системы управления с фиксированным временем переключения
- 4) вывод об эффективности использования адаптивной системы управления на реальном перекрёстке

СПАСИБО ЗА ВНИМАНИЕ