Základní pojmy počítačových sítí, norma ISO-OSI, TCP/IP a jejich vzájemná souvislost

Základní pojmy počítačových sítí

Počítačová síť

Počítačová síť má několik významů – dle úhlu pohledu. Sítí lze rozumět: několik vzájemně propojených aktivních prvků; několik vzájemně propojených sítí; distribuovaný výpočetní systém (prostředek pro spojení dvou nebo více koncových uzlů umožňující pracovat na vlastních i vzdálených počítačích); přenosové médium (vzájemná komunikace koncových uzlů).

Každou počítačovou síť tvoří hardware (uzly a hrany) a software (síťový software a organizační zabezpečení).

Uzel

Uzly jsou vždy *aktivní prvky sítě*¹. Navzájem jsou propojeny hranami. Jsou to zařízení, která pracují s daty (nebo je přímo zpracovávají) a probíhají na nich určité procesy. Uzel se vyznačuje tím, že má logickou adresu = v síti je viditelný.

Mezi uzly patří koncová stanice, server, router či gate. Uzly můžeme dělit na:

- a) **koncové uzly** (server poskytuje službu, klient požaduje službu, peer službu požaduje i poskytuje)
- b) **vnitřní uzly** (slouží k provozu sítě, zajišťují síťovou infrastrukturu jako takovou, poskytují data server, brána, síťová tiskárna)

Služba je činnost, kterou není schopen koncový uzel poskytnout sám a proto o tuto činnost žádá jiný koncový uzel.

Hrana

Hranami jsou zařízení, která nemění ani nezpracovávají data, některým částem dat však mohou rozumět. Nemají logickou adresu – v síti nejsou viditelné. Hrana může být *aktivním*¹ i *pasivním*² síťovým prvkem. Umožňují propojení sítě.

Jde zejména o kabeláž (kovové kabely, optické spoje), ale také o některá zařízení (huby, switche, splittery). Kromě těchto fyzických hran existují také virtuální (rádiové vlny – bezdrátový přenos).

Síťový software

Software umožňující požadavky uživatele přizpůsobit požadavkům sítě (např. NOS – síťový OS). Je třeba ho zabezpečit firewallem a poskytnout organizační zabezpečení (správce musí nastavit uživatelská práva).

1/4

¹ aktivní prvek sítě = zařízení, které aktivně působí na přenášené signály (regeneruje je, zesiluje, modifikuje, ...)

² pasivní prvek sítě = kabeláž a konektory; pasivní síťové prvky tvoří *hrany* sítě

Proudový a blokový přenos

Proudový přenos – streaming – data jsou předávána po jednotkách informace jako proud bitů, bytů nebo znaků.

Blokový přenos – při přenosu dat se tato data rozdělují na menší bloky – balíčky (pakety), rámce (framy), datagramy; každý blok se přenáší jako celek.

Server

Software mající určité vlastnosti, může být na samostatném hardwaru (dedikované servery) či společně s pracovní stanicí nebo dalšími servery (VPS, nededikovaný server).

Telekomunikační pohled na síť

Zásadou je "chytrá" síť a "hloupé" uzly – veškeré funkce jsou soustředěny do vnitřních uzlů sítě, koncová zařízení tak mohou být velice jednoduchá a "hloupá". Výhodou je snazší správa sítě a levná a jednoduchá koncová zařízení.

Datový (počítačový) pohled na síť

Zásadou je "hloupá" síť a "chytré" uzly – přenosová síť má hlavně přenášet data, co nejrychleji a nejefektivněji, nemá se zdržovat dalšími funkcemi. Veškeré funkce jsou tak soustředěny do koncových uzlů.

Terminál

Vstupní a výstupní zařízení, které dovede vstupní data odeslat ke zpracování, centrální počítač data zpracuje, pošle zpět a terminál zajistí grafické zobrazení přijatého signálu na monitoru.

Cluster

Paralelní zapojení počítačů, pokud některý selže, ostatní počítače si rozdělí zpracovávání příkazů mezi sebou.

Norma ISO-OSI

Jde o teoretický model vzniklý bez konkrétních protokolů označovaný jako model referenční (porovnávací). Je však příliš komplikovaný a prakticky nerealizovatelný. Každá vrstva modelu plní svoji práci a komunikuje, příp. poskytuje své služby vrstvě vyšší, nejvyšší vrstva pak přímo uživateli. Vrstvy jsou číslovány ze spodní strany, a to od 1 do 7.

Fyzická vrstva (1)

Technické normy zajišťující kompatibilitu sítí (napěťové úrovně, časování přenosu dat, pravidla pro vytvoření spojení, volba režimů přenosu), konektory a rozhraní, konverze bitů, kódování, modulace. Fyzicky přenáší data, jimiž jsou elektrické (příp. světelné) signály, které reprezentují jednotlivé bity a bitové sekvence.

Linková vrstva (2)

Shlukuje data do rámců, na začátek a konec zprávy přidává hlavičku (resp. patičku), volitelně prověřuje výskyt chyb v rámci. Řídí tok dat a přístup ke sdílenému médiu. Zprávu může doručit

pouze přímému sousedovi (= uzel, s nímž má přímo spojení a zná tak jeho MAC adresu) \rightarrow obstarává úseky cesty.

Síťová vrstva (3)

Formuje datové bloky do datových paketů, zajišťuje doručení paketu adresátovi, směrování, řeší problematiku zahlcení sítě, do další hlavičky přidává logickou adresu. Rozhoduje o tom, jakou cestou (přes které uzly) budou postupně přenášena data, která se mají dostat ke konkrétnímu adresátovi. Může nastavovat TTL³.

Transportní vrstva (4)

Jejím účelem je primárně přizpůsobení nabízených možností požadavkům, řeší rozpoznávání chyb a zotavení po chybě, multiplexuje několik datových toků do jednoho spoje, řídí rychlost vysílání zpráv, volitelně nabízí spolehlivost a spojovaný přenos. Je implementována až v koncových uzlech. Odesílá ACK/NACK signál pro informování, zda aktuálně odeslaný paket adresát přijímá nebo odmítá (zda je či není v pořádku). Vyrovnává rozdíly mezi schopnostmi tří spodních vrstev a požadavky tří vyšších, aplikačně orientovaných, vrstev.

Relační vrstva (5)

Zabývá se řízením relací v síti, řídí zahájení, udržení a ukončení relace (spojení), zodpovídá za zotavení systému po výpadku sítě a vyhledává cílové stanice.

Prezentační vrstva (6)

Úlohou prezentační vrstvy je zajistit správnou interpretaci přenášených dat na obou stranách. Zodpovídá za konverze různých kódování a formátů, určuje tvar dat dostupných uživateli, provádí šifrování a kompresi dat. Dále zajišťuje přenos složených datových struktur – jejich správné "zabalení" (serializaci) a na druhé straně následně "rozbalení" (deserializaci).

Aplikační vrstva (7)

Programy pro komunikaci v síti (např. elektronická pošta, řízení databází, software pro souborové servery apod.). Funguje jako rozhraní, přes které aplikace (resp. uživatel) přistupují k jednotlivým síťovým službám.

Model TCP/IP

TCP/IP **vychází z ISO-OSI**, na rozdíl od něj však jde o soustavu protokolů a ucelenou představu o tom, jak by se měly sítě budovat a jak by měly fungovat.

Určité vrstvy jsou spojeny dohromady a konají úkony všech spojených vrstev z modelu ISO-OSI.

TCP/IP	ISO/OSI
Aplikační vrstva	Aplikační vrstva
	Prezentační vrstva
	Relační vrstva
Transportní vrstva	Transportní vrstva
Síťová (IP) vrstva	Síťová vrstva
Vrstva síťového rozhraní	Linková vrstva
	Fyzická vrstva

³ TTL = time to live; číslo, které omezuje dobu platnosti dat – při odeslání paketu je nastaveno určité číslo (64, 127, nebo 255), které se při každým průchodu *uzlem* o 1 sníží – v případě, že se paket v síti zacyklí, v momentě, kdy TTL dosáhne hodnoty 0, je paket zahozen a přestává tak síť zatěžovat

Rozdíly mezi ISO-OSI a TCP/IP

U ISO-OSI byl kladen důraz na vlastnosti sítě (především spojovaný⁴ a spolehlivý⁵ charakter služeb) s tím, že hostitelské počítače budou mít jednoduchou úlohu, později se však ukázalo, že vyšší vrstvy spolehlivou komunikační síť nepovažují za spolehlivou pro své potřeby a snaží se tak zajistit si požadovanou míru spolehlivosti samy. Zajišťováním spolehlivosti se pak zabývala prakticky každá vrstva modelu.

Tvůrci TCP/IP naopak vycházeli z předpokladu, že zajištění spolehlivosti je problémem koncových účastníků komunikace a že by mělo tedy být řešeno až na úrovní *transportní vrstvy*. Komunikační síť tak neztrácí část své přenosové kapacity na zajišťování spolehlivosti a plně ji využívá pro vlastní datový přenos. Pakety by neměly být bezdůvodně zahazovány, měly by být doručovány s co největší snahou (*best effort*). Zahazovány by měly být pouze tehdy, kdy skutečně není možné je doručit (např. při nedostatku vyrovnávací paměti pro dočasné uložení, při výpadku nebo při poškození paketu).

-

Jan Švábík, V4D

⁴ spojovaný charakter – nejprve je vytvořena přenosová cesta a navázáno spojení a teprve poté jsou přenášena data (po již vytvořené cestě a spojení), spojení a cesta zaniká na konci celého přenosu; u nespojovaného charakteru je naproti tomu vytvořeno spojení u každé části přenášených dat (paketu) a po doručení takového paketu je spojení ukončeno

⁵ **spolehlivý charakter** – nikdy neztrácí žádná data (toho se dociluje různými mechanizmy potvrzování doručení nebo nedoručení zprávy); **nespolehlivý charakter** – má vysokou míru spolehlivosti, nezaručuje však stoprocentní záruku úspěšnosti přenosu, je rychlejší než spolehlivý charakter