Tutorial #13

December 9, 2021 12:58 PM

Deep Q-learning

· Recall the Bellman equations for

(i) Value function: $V(s) = \max_{a \in \mathcal{A}} \mathbb{E} \left[\mathcal{J}(a,s,s') + \mathcal{X} V(s') \right]$

(ii) Q function:

 $Q(s,a) = \mathbb{E} \left[\mathcal{L}(a,s,s') + \mathcal{L}(s') \right]$

 $= \mathbb{E} \left[\int_{a,s,s'} \left(a,s,s' \right) + X \right] = \mathbb{E} \left[\int_{a' \in \mathcal{L}} \left(a,s,s' \right) \right]$

· We want to use the Q-function (as a neural network) to find the best policy

• Q function (main and target networks):

ANN with state dimension as inpute and number of actions as outputs, to give Q(s,a''), Q(s,a''), ..., Q(s,a'').

•	Memory: a replay buffer with a faixed size to store & sample transitions (St, at, Tt, Str)
	(St, at, Mt, Str)
•	Simulate transitions:
	E-greedy policy, where me select the best action (with respect to the Q function) with probability I-E, and a random action with probability E. It allows exploration & exploitation.
•	Predicted Q value = Q(St, at)
•	Target Q value: Mt + X max Q(Stri, a')
•	Update loss: Mean squared error between the predicted and target values.
4	Other implementation details:
	(i) frequence of the copy of Q as the target network.
	(ii) decay the E in the E-greedy.
	(iv) select only bralid actions.