PROFESSIONAL CERTIFICATE IN MACHINE LEARNING AND ARTIFICIAL INTELLIGENCE

Office Hour with Mani K

email: mani.k@berkeley.edu

Oct 29, 2024 at 4pm PST

GUIDELINES ON ZOOM

Audio & Video

- Keep your microphone muted while presenters are speaking.
- Keep your camera on, preferably.

Chat or use Q&A

Agenda

• Linear Regression

```
https://drive.google.com/file/d/11f_K7I-Jg4f5mF_kfmPQtSvhJpefAzHo/view?usp=sharing
https://drive.google.com/file/d/1wcs_EBCcGBCVjh1XaZAeOCS345aat83O/view?usp=sharing
```

Transformation

```
https://drive.google.com/file/d/1Dk8yYKpKc2heDHy8p6XKnCzkVRT4hi-B/view?usp=sharing
https://drive.google.com/file/d/1CL1bwlAgS_g1xB3uroiTxfABLV1ztq4-/view?usp=sharing
```

• Multiple Regression - Covariance

```
https://drive.google.com/file/d/1N-r0TJ_QuqgzLT6A7Wt-Ztl_PyZU-z8z/view?usp=sharing
https://drive.google.com/file/d/1UiUS85AVb4TyGz-7InzwWoi5I9s8FcJ3/view?usp=sharing
https://drive.google.com/file/d/1i-r5-9X3ltVpwoZWjzmIpsJ-07W5dNJ6/view?usp=sharing
```

- It's about fitting a simple line with 2 variables
 - Independent/Explanatory variable x axis
 - Dependent/Predicted/Response/Actuals variable y axis
- If the association is somewhat linear then a line can be fit.
 - $\hat{\mathbf{y}} = \mathbf{b0} + \mathbf{b1}^* \dot{\mathbf{x}}$ b0:Intercept

- b1: Slope $\hat{\mathbf{y}}$: predicted response
- Residuals = $y \hat{y}$ (this can also be negative, difference between actual & predicted)
- The best fit line is when squared of the residuals is kept to a minimum Least Squared Regression
- If the residuals are higher and a lot of variance the response may also depend on another variable we are not accounting for - lurking variable
- Perform multiple linear regression by adding more explanatory variables

- Residuals capture variations
- Best way to identify good fit is using residual scatter plots - plot between residuals and the independent variable (x - axis)
- Divide the data into different scatter plots and check if the scatter plots looks similar
- Mean of residuals will usually be zero

- Check if residuals are normally distributed using a histogram of the residuals
- Check if the residuals are homoscedastic (like flat pipe) and not heteroscedastic using a residual plot
- Check the quantile-quantile (QQ) plot if the residuals follows along the normal distribution line

- Normal Quantile Plot
 - x axis (normal gaussian distribution)
 - \circ y axis (if the distribution is also normal with a mean μ and SD σ)
- Get a straight line by plotting these points

Regression

 For a skewed distribution the quantile plot will look like this

- Residuals are part of a sample set (not a population distribution)
- The histogram of the residuals is used to plot the quantile plot
- Showed in relation to the normal quantile plot

Regression - Transformation

- Picking a transformation is a iterative process
- TUKEY AND MOSTELLER'S BULGING RULE can be a good starting point

• The shape of the bulge (scatterplot) indicates the transformation of Y and/or X to straighten the relationship between them.

- For example if we have a scatter plot like this,
 - -we are in the log y, 1/y quadrant
 - taking log y or 1/y is a good starting point

Multiple Regression - Covariance

- Collinearity
 - If 2 or more explanatory variable are linearly correlated
 - Problems with p-values and statistical significance of the independent variables (this is our assumption that they are indeed independent!)
 - Small variations can cause huge changes to the output

- VIF Variance Inflation Factor
 - Amount of unique variation in each explanatory variable and measures the effect of collinearity
 - \circ VIF = 1/(1-r2)
 - If 2 explanatory variables are totally uncorrelated then the r2 = 0 and so VIF = 1
 - Higher VIF denotes collinearity (general rule of thumb something > 5)

Multiple Regression - Covariance

- ullet For example Estimated Sony Change = -0.4 + 0.9 Market % Change + 0.7 Small-Big = 0.1 High-Low
- To check collinearity we need to regress each explanatory variable to rest of the explanatory variables -
 - O Step 1:
 - regress Market % Change over Dow, Small-Big & High-Low
 - regress Dow over Market % change, Small-Big & High-Low
 - regress Small-big over Market % change, Dow & High-Low
 - regress High-Low over Market % change, Dow & Small-Big
 - Step 2: Calculate VIF from the R2 from each of the regression
 - Step 3: Check for High Values of VIF
 - O Step 4:
 - How to avoid collinearity?
 - Remove one variable at a time and check
 - Combine several variables into one (average or difference)
 - This is where having domain expertise also helps!!

Multiple Regression - Covariance

Summary of VIF for Sony stock prediction

Table 24.4 Summary of multiple regression showing variance inflation factors.

Term	Estimate	Std Error	t-Statistic	p-Value	VIF
Intercept	- 0.4340	0.5822	- 0.75	0.4567	-
Market % Change	0.9040	0.3994	2.26	0.0245	9.83
Dow % Change	0.3191	0.4057	0.79	0.4322	9.02
Small-Big	0.6983	0.2065	3.38	0.0008	1.56
High-Low	- 0.1450	0.1982	- 0.73	0.4653	1.25