# Penerapan Metode *Fuzzy* Sugeno Dalam Pendaftaran Siswa Baru di SDN Sonopatik 1 Nganjuk

# Fajar Rohman Hariri

Jurusan Teknik Informatika, Fakultas Teknik, Universitas Nusantara PGRI Kediri Jalan K.H.Ahmad Dahlan No. 76 Kediri

dosendeso@gmail.com

Abstrak — Teknologi pendaftaran khususnya dalam memilah data murid memerlukan adanya sebuah sistem pendukung keputusan (SPK) yang bisa memilah data secara otomatis ketika ada data yang di masukkan. Sistem pendukung keputusan selalu membutuhkan metode yang tepat. Fuzzy banyak digunakan dalam pendukung pengambilan keputusan. Untuk program pendaftaran yang akan di buat akan menggunakan metode fuzzy sugeno. Dimana metode fuzzy sugeno ini mampu mengelompokkan data berdasarkan input yang telah dipilih dan menerapkan aturan yang telah ditetapkan sehingga bisa menghasilkan output pembagian siswa kelas khusus dan kelas biasa. Dari 49 pendaftar berhasil didapatkan 16 siswa masuk kelas khusus dan sisanya masuk kelas biasa.

Kata Kunci — Fuzzy, Fuzzy Sugeno, Pendaftaran.

# I. PENDAHULUAN

SDN Sonopatik 1 Nganjuk adalah sebuah instansi pendidikan yang sudah berdiri sejak tahun 1972, sekarang memiliki dua kelas yaitu kelas biasa dan kelas khusus, kelas biasa dimaksudkan untuk anak yang memenuhi syarat akademis dan kelas khusus yang dimaksudkan untuk anak yang tidak memenuhi persyaratan akademis. Sejak dari awal berdirinya sekolah ini hingga sekarang cara pendaftaran di instansi pendidikan ini masih menggunakan cara yang konvensional.

Seiring perkembangan zaman, pendaftaran sekolah tidak lagi seperti pendaftaran pada zaman dahulu, semakin selektif dan dibuat semakin efisien. Untuk alasan efisiensi waktu sekarang ini pendaftaran siswa baru sudah banyak yang menggunakan media internet, diharapkan

dengan menggunakan fasilitas ini dapat meningkatkan jumlah pendaftar karena dengan media internet daerah pendaftar semakin luas. Dengan pendaftaran sekolah menggunakan media internet atau lebih dikenal dengan istilah *online* tidak hanya bisa melakukkan penerimaan siswa, tetapi juga bisa memilih dan memilah siswa berdasarkan tingkat akademisnya.

Teknologi pendaftaran khususnya dalam memilah data murid memerlukan adanya sebuah sistem pendukung keputusan (SPK) yang bisa memilah data secara otomatis ketika ada data yang di masukkan. Sistem pendukung keputusan selalu membutuhkan metode yang tepat. Fuzzy banyak digunakan dalam pendukung pengambilan keputusan seperti pada beberapa penelitian yang telah dilakukan yang diantaranya Muntaha, M. S. (2010) membahas tentang Penerapan Sistem Pendukung Keputusan Untuk Menyeleksi Calon Siswa SMK Berdasarkan Hasil Test Menggunakan Metode Fuzzy di SMK Teratai Putih Global 1 Bekasi[1]. Saleh, dkk (2011) membahas tentang fuzzy sistem pendukung keputusan untuk pengelolaan payudara[2]. Hapsari (2013) menyajikan aplikasi fuzzy inference system metode mamdani untuk pemilihan jurusan di perguruan tinggi[3]. Mustafidah & Aryanto (2012) menyajikan sistem inferensi fuzzy memprediksi prestasi belajar mahasiswa berdasarkan nilai ujian nasional, tes potensi akademik, dan motivasi belajar[4]. Mustafidah & Suwarsito (2012) menjelaskan prediksi prestasi belajar mahasiswa berdasarkan moivasi, minat dan kedisiplinan menggunakan sistem inferensi fuzzy[5].

Untuk program pendaftaran yang akan di buat akan menggunakan metode *fuzzy* sugeno. Dimana metode *fuzzy* sugeno ini mampu mengelompokkan data berdasarkan *input* yang telah dipilih dan menerapkan aturan yang telah ditetapkan sehingga bisa menghasilkan *output* pengelompokan data seperti yang diharapkan.

### II. LANDASAN TEORI

# A. Logika Fuzzy

Logika fuzzy pertama kali diperkenalkan oleh Prof. Lofti A. Zadeh pada tahun 1965. Dasar logika fuzzy adalah teori himpunan fuzzy. Fuzzy secara bahasa diartikan kabur atau samar-samar. Logika fuzzy merupakan pengembangan dari logika tegas atau logika klasik. Perbedaan mendasar pada logika fuzzy terdapat pada rentang kebenarannya. Pada logika tegas nilai kebenaran hanya terdapat dua kemungkinan yaitu merupakan suatu anggota himpunan atau tidak, benar atau salah, 0 atau 1. Sedangkan pada logika fuzzy, nilai kebenaran tergantung pada nilai keanggotaan yang dimilikinya. Nilai keanggotaaan dalam fuzzy memiliki rentang nilai antara 0 sampai 1.

Logika *fuzzy* adalah suatu cara yang menghubungkan antara ruang input menuju ruang output. Dalam teori *fuzzy* menyediakan mekanisme untuk mewakili suatu besaran menggunakan bahasa (linguistik) seperti "banyak", "rendah", "menengah", "sering", "sedikit". Sehingga dalam sistem keputusan, kesimpulan yang dihasilkan berbasis pada penalaran manusia[6].

# B. Sistem Inferensi Fuzzy

Sistem Inferensi Fuzzy atau Inference System (FIS) dikenal sebagai sistem fuzzy berdasarkan aturan, model fuzzy, sistem pakar fuzzy, fuzzy associative memory. Sistem inferensi fuzzy merupakan inti utama dari sistem logika fuzzy. Sistem inferensi fuzzy merumuskan aturan yang sesuai yang berdasarkan keputusan yang dibuat. Hal ini didasarkan pada konsep teori himpunan fuzzy, aturan IF-THEN fuzzy, dan penalaran fuzzy. Sistem inferensi fuzzy menggunakan aturan "IF...THEN...", dan penghubung dalam pernyataan aturan menggunakan "OR" atau "AND" untuk membuat aturan yang diperlukan.

Menurut Sivanandam, dkk, Sistem inferensi *fuzzy* terdiri dari antarmuka fuzzifikasi, aturan dasar, basis data, unit pengambilan keputusan, dan antarmuka[7]. Fungsi masing-masing blok tersebut yaitu sebagai berikut.

1. Antarmuka *fuzzifikasi*, mengubah nilai tegas menjadi nilai *fuzzy* atau derajat perbandingan dengan nilai linguistik.

- 2. Aturan dasar, berisi sejumlah aturan *fuzzy IF-THEN*.
- 3. Basis data, mendefinisikan fungsi keanggotaan himpunan *fuzzy* yang digunakan dalam aturan *fuzzy*.
- 4. Unit pengambilan keputusan, melakukan operasi inferensi pada aturan.
- Antarmuka defuzzifikasi, mengubah hasil inferensi fuzzy menjadi nilai tegas kembali.

Berikut gambar 1 yang menjelaskan hubungan antar komponen sistem inferensi *fuzzy*.



Gambar 1. Sistem Inferensi Fuzzy

# C. Fuzzy Sugeno

Menurut Sri Kusumadewi (2010), logika fuzzy sugeno secara umum di maknai sebagai berikut:

Secara umum logika *fuzzy* sugeno adalah suatu logika yang digunakan untuk menghasilkan keputusan tunggal / crisp saat de*fuzzy*fikasi, penggunaannya tergantung dari domain masalah yang terjadi. Dimana urutan prosesnya dimulai dari *fuzzy*fikasi, penerapan rule, de*fuzzy*fikasi dan output.

Fuzzy sugeno pertama kali diperkenalkan oleh Takagi-Sugeno Kang pada tahun 1985. Sehingga metode ini sering dinamakan dengan metode TSK (Takagi-Sugeno Kang). Dimana logika fuzzy sugeno memeliki persamaan bentuk dengan metode fuzzy mamdani hanya berbeda pada output. Menurut Cox (1994) Dalam Buku Aplikasi Logika Fuzzy Untuk Pendukung Keputusan Edisi Dua Karya Sri Kusumadewi Halaman 46, metode TSK ini terdiri dari 2 jenis yaitu:

# a) Model Fuzzy Sugeno Orde-Nol

Secara umum bentuk model *fuzzy* ini adalah:

IF(x1 is A1)&(x2 is A2) &(x3 is A3) &...&(xn is An) THEN z=k.

Dengan A1 sebagai himpunan *fuzzy* ke-1 sebagai enteseden, dan k adalah suatu konstanta (tegas) sebagai konsekuen.

# b) Model Fuzzy Sugeno Orde-satu

Secara umum bentuk model *fuzzy* sugeno orde-satu adalah :

Dengan A1 adalah himpunan *fuzzy* ke-i sebagai enteseden, dan pi adalah suatu konstan (tegas) ke-i dan q adalah konstanta dalam konsekuen.

Apabila komposisi aturan menggunakan metode Sugeno maka defuzzifikasi di lakukkan dengan cara mencari nilai rataratanya.

Untuk penggunaan *fuzzy* sugeno pada penelitian ini menggunakan model *fuzzy* orde-nol pada bagian pengelompokan kelas untuk siswa baru dengan acuan umur siswa, nilai sekolah dan nilai baca.[9]

# III. PERANCANGAN SISTEM

Pada bagian ini menjelaskan tentang perancangan dari sistem *fuzzy* yang akan digunakan untuk proses penerimaan siswa baru. Secara garis besar, proses penerimaan siswa baru pada sistem yang akan dibangun diawali dengan pengisian data siswa dan data nilai dan hasil tes dari siswa yang kemudian akan di proses oleh *fuzzy* sugeno untuk menghasilkan nilai *output* yang menjadi nilai akhir siswa masuk kelas mana. Berikut ini gambar 2 yang menjelaskan proses seleksi siswa baru pada sistem yang akan dibangun



Gambar 2. Proses Penerimaan Siswa

Berikut langkah-langkah penyelesaian dari solusi di atas untuk menghitung nilai akhir seleksi siswa.

# 1. Menentukan kondisi derajat keanggotaan a. Menentukan variable *fuzzy*

**Tabel 1.** Variable *Fuzz*y

| No. | Nama Variabel | Nilai Variabel |
|-----|---------------|----------------|
| 1   | Umur          | 4 - 10 Tahun   |
| 2   | Nilai         | 0 - 100        |
| 3   | Baca          | 0 - 100        |

# b. Menentukan nilai linguistik

Tabel 2. Nilai Linguistik Umur

| 1 WO CT 2V I (III EII EII EUI) |        |  |
|--------------------------------|--------|--|
| Umur                           |        |  |
| Kurang                         | 2;4;6  |  |
| Cukup                          | 4;6;8  |  |
| Lebih                          | 6;8;10 |  |

Tabel 3. Nilai Linguistik Baca

| Baca          |     |  |
|---------------|-----|--|
| Sangat Lancar | 100 |  |
| Lancar        | 80  |  |
| Kurang Lancar | 60  |  |
| Tidak Bisa    | 40  |  |

Tabel 4. Nilai Linguistik Nilai

|              | 0     |  |
|--------------|-------|--|
|              | Nilai |  |
| Sangat bagus | 100   |  |
| Bagus        | 80    |  |
| Cukup        | 60    |  |
| Kurang       | 40    |  |
|              |       |  |

# c. Membuat grafik dari setiap variabel *fuzzy*

Grafik yang dibuat berdasarkan nilai linguistik dan ranah setiap linguistik pada setiap variabel *fuzzy*.



Gambar 3. Grafik Nilai Umur



Gambar 4. Grafik Nilai Baca



Gambar 5. Grafik Nilai

Nilai yang di dapat tadi akan di proses dengan *fuzzy*fikasi

# a. Variabel umur

$$\mu kurang[x] = \begin{cases} 1; & x \le 2; \\ \frac{4-x}{10} & 2 \le x \le 4; \\ 0; & x \ge 6; \end{cases}$$

$$\mu cukup[x] = \begin{cases} 0; & x \le 4; \\ \frac{6-x}{10} & 4 \le x \le 6; \\ 0; & x \ge 8; \end{cases}$$

$$\mu lebih[x] = \begin{cases} 0; & x \le 6; \\ \frac{8-x}{10} & 6 \le x \le 8; \\ 1; & x \ge 10; \end{cases}$$

# b. Variabel Baca

$$\mu tidakbisa[x] = \begin{cases} 1; & x \le 20; \\ \frac{40 - x}{10} & 20 \le x \le 40; \\ 0; & x \ge 60; \end{cases}$$

$$\mu krglancar[x] = \begin{cases} 0; & x \le 40; \\ \frac{40 - x}{10} & 40 \le x \le 60; \\ 0; & x \ge 80; \end{cases}$$

$$\mu lancar[x] = \begin{cases} 0; & x \le 60; \\ \frac{80 - x}{10} & 60 \le x \le 80; \\ 0; & x \ge 100; \end{cases}$$

$$\mu sngtlancar[x] = \begin{cases} 0; & x \le 80; \\ \frac{80 - x}{10} & 80 \le x \le 100; \\ 1; & x \ge 110; \end{cases}$$

$$c. \quad Variabel Nilai$$

$$\mu kurang[x] = \begin{cases} 1; & x \le 20; \\ \frac{40 - x}{10} & 20 \le x \le 40; \\ 0; & x \ge 60; \\ 40 - x; & x \le 40; \end{cases}$$

# c. Variabel Nilal $\mu kurang[x] = \begin{cases} 1; & x \le 20; \\ \frac{40 - x}{10} & 20 \le x \le 40; \\ 0; & x \ge 60; \\ x \le 40; \end{cases}$ $\mu cukup[x] = \begin{cases} 0; & x \le 40; \\ \frac{40 - x}{10} & 40 \le x \le 60; \\ 0; & x \ge 80; \\ x \le 60; \end{cases}$ $\mu bagus[x] = \begin{cases} 0; & x \ge 80; \\ \frac{80 - x}{10} & 60 \le x \le 80; \\ 0; & x \ge 100; \\ x \le 80; \end{cases}$ $\mu sngtbagus[x] = \begin{cases} 0; & x \le 80; \\ \frac{80 - x}{10} & 80 \le x \le 100; \\ 1; & x \ge 110; \end{cases}$

# d. Membuat Aturan Fuzzy

|    |    | Tabel 5. Aturan | Fuzzy |        |
|----|----|-----------------|-------|--------|
| R1 | IF | Umur Kurang     | THEN  | Kelas  |
|    |    | AND Baca        |       | Biasa  |
|    |    | Sangat Lancar   |       |        |
| R2 | IF | Umur Kurang     | THEN  | Kelas  |
|    |    | AND Baca        |       | Biasa  |
|    |    | Lancar          |       |        |
| R3 | IF | Umur Kurang     | THEN  | Kelas  |
|    |    | AND Baca        |       | Khusus |
|    |    | Kurang Lancar   |       |        |
| R4 | IF | Umur Kurang     | THEN  | Kelas  |
|    |    | AND Baca Tidak  |       | Khusus |
|    |    | Bisa            |       |        |
| R5 | IF | Umur Cukup      | THEN  | Kelas  |
|    |    | AND Baca        |       | Biasa  |
|    |    | Sangat Lancar   |       |        |
| R6 | IF | Umur Cukup      | THEN  | Kelas  |
|    |    | AND Baca        |       | Biasa  |
|    |    | Lancar          |       |        |
| R7 | IF | Umur Cukup      | THEN  | Kelas  |
|    |    | AND Baca        |       | Khusus |
|    |    | Kurang Lancar   |       |        |
| R8 | IF | Umur Cukup      | THEN  | Kelas  |
|    |    | AND Baca Tidak  |       | Khusus |
|    |    | Bisa            |       |        |

| R9   | IF | Umur Lebih                   | THEN   | Kelas           |
|------|----|------------------------------|--------|-----------------|
|      |    | AND Baca<br>Sangat Lancar    |        | Biasa           |
| R10  | IF | Umur Lebih                   | THEN   | Kelas           |
|      |    | AND Baca                     |        | Biasa           |
| D11  |    | Lancar                       | THE N  | T7 1            |
| R11  | IF | Umur Lebih<br>AND Baca       | THEN   | Kelas<br>Biasa  |
|      |    | Kurang Lancar                |        | Diasa           |
| R12  | IF | Umur Lebih                   | THEN   | Kelas           |
|      |    | AND Baca Tidak               |        | Khusus          |
| R13  | IF | Bisa<br>Umur Kurang          | THEN   | Kelas           |
|      |    | AND Nilai                    |        | Biasa           |
| D14  |    | Sangat Bagus                 | THEN   | IZ -1           |
| R14  | IF | Umur Kurang<br>AND Nilai     | THEN   | Kelas<br>Biasa  |
|      |    | Bagus                        |        | Diasa           |
| R15  | IF | Umur Kurang                  | THEN   | Kelas           |
|      |    | AND Nilai<br>Cukup           |        | Biasa           |
| R16  | IF | Umur Kurang                  | THEN   | Kelas           |
|      |    | AND Nilai                    |        | Khusus          |
| R17  | IF | Kurang<br>Umur Cukup         | THEN   | Kelas           |
| K17  | 11 | AND Nilai                    | TILLIV | Biasa           |
|      |    | Sangat Bagus                 |        |                 |
| R18  | IF | Umur Cukup<br>AND Nilai      | THEN   | Kelas<br>Biasa  |
|      |    | Bagus                        |        | Diasa           |
| R19  | IF | Umur Cukup                   | THEN   | Kelas           |
|      |    | AND Nilai                    |        | Biasa           |
| R20  | IF | Cukup<br>Umur Cukup          | THEN   | Kelas           |
|      |    | AND Nilai                    |        | Khusus          |
| R21  | IF | Kurang<br>Umur Lebih         | THEN   | Kelas           |
| 1121 | 11 | AND Nilai                    | TILLIV | Biasa           |
|      |    | Sangat bagus                 |        |                 |
| R22  | IF | Umur Lebih<br>AND Nilai      | THEN   | Kelas<br>Biasa  |
|      |    | Bagus                        |        | Diasa           |
| R23  | IF | Umur Lebih                   | THEN   | Kelas           |
|      |    | AND Nilai<br>Cukup           |        | Biasa           |
| R24  | IF | Umur Lebih                   | THEN   | Kelas           |
|      |    | AND Nilai                    |        | Khusus          |
| R25  | IF | Kurang<br>Nilai Sangat       | THEN   | Kelas           |
| K23  | II | Bagus AND                    | THEN   | Biasa           |
|      |    | Baca Sangat                  |        |                 |
| R26  | IF | Lancar<br>Nilai Sangat       | THEN   | Kelas           |
| K20  | II | Bagus AND                    | THEN   | Biasa           |
|      |    | Baca Lancar                  |        |                 |
| R27  | IF | Nilai Sangat<br>Bagus AND    | THEN   | Kelas<br>Khusus |
|      |    | Baca Kurang                  |        | Kiiusus         |
|      |    | Lancar                       |        |                 |
| R28  | IF | Nilai Sangat                 | THEN   | Kelas<br>Khusus |
|      |    | Bagus AND<br>Baca Tidak Bisa |        | musus           |
| R29  | IF | Nilai Bagus                  | THEN   | Kelas           |
|      |    | AND Baca                     |        | Biasa           |
| R30  | IF | Sangat Lancar<br>Nilai Bagus | THEN   | Kelas           |
| - *  |    | AND Baca                     |        | Biasa           |
| D21  | TE | Lancar                       | THEM   | Valas           |
| R31  | IF | Nilai Bagus                  | THEN   | Kelas           |

| AND Baca      | Biasa |
|---------------|-------|
| Kurang Lancar |       |

Setelah proses *fuzzyfikasi* nilai yang ada dimasukkan ke dalam aturan *fuzzy* yang sesuai dengan derajat keanggotaan yang didapatkan.

Melakukan prosesde *fuzzyfikasi* menggunakan teknik *center of gravity* untuk mendapatkan nilai yang digunakan untuk menentukan siswa itu masuk kelas biasa atau khusus.

# IV. HASIL DAN PEMBAHASAN

Berikut hasil tampilan dari sistem penerimaan siswa baru menggunakan metode fuzzy sugeno yang telah dibuat



Gambar 6. Input Fuzzy



Gambar 7. Hasil Input Pendaftar



Gambar 8. Hasil Kelas Biasa



Gambar 9. Hasil Kelas Khusus

Dari 49 pendaftar berhasil didapatkan 16 siswa masuk kelas khusus dan sisanya masuk kelas biasa.

### V. SIMPULAN

Perancangan dan implementasi sistem pendukung keputusan ini menghasilkan beberapa kesimpulan sebagai berikut:

- Dengan adanya sebuah program pendaftaran yang bisa mengelompokkan data pendaftar secara langsung terbukti memudahkan admin pendaftaran dan dapat mempercepat proses pendaftaran.
- Dengan adanya media informasi dapat mengingkatkan pengetahuan masyarakat tentang SDN Sonopatik 1 Nganjuk. Sehingga baik siswa dan calon siswa bisa mendapatkan informasi tanpa harus datang ke gedung sekolah.

## **DAFTAR PUSTAKA**

- [1] Muntaha, M. S. (2010). Penerapan Sistem Pendukung Keputusan Untuk Menyeleksi Calon Siswa SMK Berdasarkan Hasil Test Menggunakan Metode Fuzzy di SMK Teratai Putih Global 1 Bekasi. Jurusan Teknik Informatika, Fakultas Teknik dan Ilmu Komputer, Universitas Komputer Indonrsia, Bandung.
- [2] Saleh, A. A., Barakat, S. E., & Awad, A. A. (2011). A Fuzzy Decision Support System for Management of Breast Cancer. (IJACSA) International Journal of Advanced Computer Science and Applications, Vol. 2, No.3, March 2011, p34-40.
- [3] Hapsari, H. (2013). Aplikasi Fuzzy Inference System Metode Mamdani Untuk Pemilihan Jurusan di Perguruan Tinggi. Program Studi Teknik Informatika, Fakultas Sains dan Teknologi, UIN Sunan Kalijaga, Yograkarta.
- [4] Mustafidah, H., & Aryanto, D. (2012). Sistem Inferensi Fuzzy untuk Memprediksi Prestasi Belajar Mahasiswa Berdasarkan Nilai Ujian Nasional, Tes Potensi Akademik, dan Motivasi Belajar. JUITA ISSN: 2086-9398 Vol. II Nomor 1, Mei 2012, p1-7.
- [5] Mustafidah, H., & Suwarsito. (2012). Student Learning Achievement Prediction Based on Motivation, Interest, and Discipline Using Fuzzy

- Inference System. Proceeding International Conference on Green World and Business Technology 2012 (IC-GWBT2012) Technopreunership Based on Green Business and Technology, Ahmad Dahlan University Yogyakarta, ISBN: 978-979-3812-25-0, 23 24 March 2012., p147-159
- [6] Kusumadewi, S., & Purnomo, H. (2010). Aplikasi Logika Fuzzy untuk Pendukung Keputusan Edisi 2. Yogyakarta: Graha Ilmu.
- [7] Sivanandam, S. N., Sumathi, S., & Deepa, S. N. (2007). Introduction to Fuzzy Logic using MATLAB. New York: Springer-Verlag Berlin Heidelberg.