1 General

line search conditions (1st and 2nd order), how to choose step length and direction:

sufficient decrease, proportional to α_k step length and directional derivative $\nabla f_k^T p_k$:

$$f_{k+1}^T \le f_k + c_1 \alpha_k \nabla f_k^T p_k \tag{1}$$

$$\nabla f_k^T p_k \le 0 //by \ construction \tag{2}$$

curvature:

$$\nabla f_{k+1}^T p_k \ge c_2 \nabla f_k^T p_k$$

$$\frac{\partial \phi(\alpha_k)}{\partial \alpha_k} \ge \frac{\partial \phi(0)}{\partial \alpha_k}$$

$$c_1, \alpha_k \in (0, 1)$$

$$0 < c_1 < c_2 < 1$$

where
$$: f_k = f(x_k)$$

$$f_{k+1} = f(x_k + \alpha_k p_k)$$

$$\phi(\alpha_k) = f(x_k + \alpha_k p_k)$$

$$\frac{\partial \phi(\alpha_k)}{\partial \alpha_k} = \nabla f_{k+1}^T p_k$$

$$\frac{\partial \phi(0)}{\partial \alpha_k} = \nabla f_k^T p_k / \text{initial slope}$$

strong Wolfe curvature condition, to restrict large positive derivative:

$$|\nabla f_{k+1}^T p_k| \le c_2 |\nabla f_k^T p_k| \tag{7}$$

Form of search direction:

$$p_k = -B_k^{-1} \nabla f_k \tag{8}$$

 B_k symmetric, non-singular, postive definite $\implies p_k$ is a descent direction:

$$\nabla f_k^T (-B_k^{-1} \nabla f_k) < 0 \tag{9}$$

Goldstein condition (may miss minimizer of f):

$$f_k + (1 - c)\alpha_k \nabla f_k^T p_k \le f_{k+1} \le f_k + c\alpha \nabla f_k^T p_k$$
(10)

$$c \in (0, \frac{1}{2}) \tag{11}$$

Algorithm 1: Line Search

 $f, x, d, c_1, \alpha, \beta$: function, x, direction, gradient threshold, initial step length, contraction

 α : found step length

1 while
$$f(x + \alpha d) > f(x) + c_1 \alpha \nabla f(x)^T d$$
 do

$$\mathbf{2} \quad \alpha \leftarrow \alpha * \beta$$

 $\mathbf{3}$ return α

2 Quasi Newton

2.1 BFGS

(3)

(4)

(5)

(6)

properties: $O(n^2)$, self correcting, slightly more iterations than Newton Method, linear convergence order and superlinear rate of convergence

secant equation:

$$B_{k+1}(x_{k+1} - x_k) = \nabla f_{k+1} - \nabla f_k$$

$$B_{k+1}s_k = y_k$$

$$s_k = \alpha_k p_k$$

$$y_k = \nabla f_{k+1} - \nabla f_k$$

$$B_{k+1} := \text{approx. Hessian}$$

$$B_{k+1} \succ 0$$

$$s_k^T B_{k+1} s_k = s^T y_k > 0$$

Proof.

$$y_k^T s_k = (\nabla f_{k+1} - \nabla f_k)^T s_k$$
$$\nabla f_{k+1}^T s_k \ge c_2 \nabla f_k^T s_k$$
$$(\nabla f_{k+1} - \nabla f_k)^T s_k \ge c_2 \nabla f_k^T s_k - \nabla f_k^T s_k$$
$$y_k^T s_k \ge (c_2 - 1) \nabla f_k^T s_k$$

 $c_2 < 1, s_k$ is a descent dir $\implies s_k^T y_k > 0$

Curvature condition holds.

constrain B by solving:

$$\min_{B} ||B - B_k||$$

$$s.t. B = B^T, Bs_k = y_k$$

similarly, constrain B's inverse, H where it satisfy secant equation:

$$H_{k+1}y_k = s_k$$

$$\min_{H} ||H - H_k||$$

$$s.t. H = H^T, Hy_k = s_k$$

using weighted Frobenius norm:

$$||A||_W := ||W^{1/2}AW^{1/2}||_F$$

 $||X||_F := (\sum_i \sum_j (X_{ij})^2)^{1/2}$

solved weight matrix W satisfy $Ws_k = y_k$ solution given by:

$$H_{k+1} = (I - \rho_k s_k y_k^T) H_k (I - \rho_k y_k s_k^T)$$

$$+ \rho_k s_k^T s_k$$

$$\rho_k = \frac{1}{y_k^T s_k}$$

W is the average Hessian \bar{G} :

$$\bar{G} = \int_0^1 \nabla^2 f(x_k + \tau \alpha_k p_k) d\tau$$

initial H_0 can be chosen approximately (eg: finite differences, I)

Algorithm 2: BFGS Algorithm

```
H_0, x_0, \epsilon > 0: \text{ inverse Hessian approx., initial}
point, \text{ convergence tolerance}
x : \text{ solution}
1 \ k \leftarrow 0
2 \ p_k \leftarrow -B^{-1}\nabla f(x_k) = -H\nabla f(x_k)
3 \ \text{while} \ ||\nabla f_k|| > \epsilon \ \text{do}
4 \ || \alpha_k \leftarrow \text{LineSearch}(..)
5 \ || x_{k+1} \leftarrow x_k + \alpha_k p_k|
6 \ || s_k \leftarrow x_{k+1} - x_k|
7 \ || y_k \leftarrow \nabla f_{k+1} - \nabla f_k|
8 \ || \rho_k \leftarrow \frac{1}{y_k^T s_k}|
9 \ || H_{k+1} \leftarrow (I - \rho_k s_k y_k^T) H_k (I - \rho_k y_k s_k^T) + \rho_k s_k s_k^T
10 \ || k \leftarrow k + 1
11 \ \text{return } x
```

using Sherman-Morrison-Woodbury formula to obtain Hessian update equation:

$$B_{k+1} = B_k - \frac{B_k s_k s_k^T B_k}{s_k^T B_k s_k} + \frac{y_k y_k^T}{y_k^T s_k}$$

proper line search is required so that BFGS algo captures curvature information

inaccurate line search can be used to reduce computation cost

3 Trust Region Methods

idea:

- models local behaviour of the objective function (eg: 2nd order Taylor series)
- set local region to explore, then simultaneously find direction and step size to take
- region size adaptively set using results from previous iterations
- step may fail due to inadequately set region, which need to be adjusted
- superlinear convergence when approximate model Hessian is equal to true Hessian

using 2nd order Taylor series model with symmetric matrix approximating Hessian

$$\min_{p \in \mathbb{R}^n} m_k(p) = f_k + g_k^T p + \frac{1}{2} p^T B_k p, \text{ st. } ||p|| \le \Delta_k$$

$$\Delta_k := \text{trust region radiius}$$

$$g_k = \nabla f(x_k)$$

$$B_k \ge 0$$

full step is $(p_k = -B_k^{-1}g_k)$ taken when $B \succ 0$ and $||B_k^{-1}g_k|| \leq \Delta_k$

evaluate goodness of model with actual function by:

 $\rho_k = \frac{f(x_k) - f(x_k + p_k)}{m_k(0) - m_k(p_k)}$

$$\rho_k = \frac{s \cdot (w) \cdot s \cdot (w + 1w)}{m_k(0) - m_k(p_k)}$$

$$action \leftarrow \begin{cases} \text{expand trust region} &, \rho_k \approx 1 \ (agreement) \textbf{3.1} \quad \textbf{Dogleg method} \\ \text{shrink trust region} &, \rho_k < 0 + \text{thresh} \quad \text{if } B \succ 0: \\ \text{keep trust region} &, o/w \qquad p^B = -B^{-1}g \end{cases}$$

Algorithm 3: Trust Region Algorithm

```
1 k \leftarrow 0
 2 while ||\nabla f_k|| > \epsilon do
            argmin f_k + g_k^T p + \frac{1}{2} p^T B_k p, st. ||p|| \leq \Delta_k
          \rho_k = \frac{f(x_k) - f(x_k + p_k)}{m_k(0) - m_k(p_k)} / ratiotest
          //change trust region for next iterate
 5
          if \rho_k < \gamma(:\frac{1}{4}) then
 6
            \Delta_{k+1} \leftarrow \alpha(: \frac{1}{4})\Delta_k//shrink
          else if \rho_k > \beta(:\frac{3}{4}) and ||p_k|| = \Delta_k then
                \Delta_{k+1} \leftarrow min(2\Delta_k, \hat{\Delta})//expand
 9
10
            \Delta_{k+1} \leftarrow \Delta_k//keep
          //accept/reject for current iterate
12
          if \rho_k > \eta(:\in [0,\frac{1}{4})) then
13
            x_{k+1} \leftarrow x_k + p_k
14
15
          else
16
            x_{k+1} \leftarrow x_k
```

Minimizer of the 2nd order Taylor series satisfy the following as a global solution for trust region iff:

$$(B+\lambda I)p^* = -g$$
 complementary slackness:
$$\lambda(\Delta-||p^*||) = 0$$

$$(B+\lambda I) \succeq 0$$

$$\lambda > 0$$

 $\lambda > 0 \implies p$ parallel to negative gradient of model

Solving 2nd order Taylor series using approx methods:

- dogleg
- 2-D subspace minimization
- \bullet conjugate gradient based, effective when Blarge, sparse

These reduce at least as much as Cauchy Point.

Cauchy Point (sufficient reduction in model value): Use 1st order approx. of model and gradient descent to get get next iterate, bounded within trust region.

$$p^* = p^B \text{ if } \Delta \ge ||p^B||$$

 $p^{U} = \frac{-g^{T}g}{g^{T}Bg}g$ (intermediate point along direction of steepest descent)

Resulting algo, interpolate between p^U and p^B :

$$\tilde{p}(\tau) = \begin{cases} \tau p^U &, \tau_{\in}[0, 1] \\ p^U + (\tau - 1)(p^B - p^U) &, \tau \in [1, 2] \end{cases}$$

$$\begin{split} B \succ 0 &\implies \|\tilde{p}(\tau)\| \text{increases wrt. } \tau \land \\ &\quad m(\tilde{p}(\tau)) \text{decreases wrt. } \tau \end{split}$$

if $||p^B|| \leq \Delta$: p chosen at p^B

else p chosen at intersection of $\tilde{p}(\tau)$ and trust region boudnary by solving:

$$||p^U + (\tau - 1)(p^B - p^U)||^2 = ||\Delta^2||$$

$$p_k^S = \operatorname{argmin} f_k + g_k^T p, ||p|| \le \Delta_k$$

$$p_k^S = \underset{p}{\operatorname{argmin}} f_k + g_k^T p, ||p|| \le \Delta_k$$

$$\tau_k = \underset{\tau \ge 0}{\operatorname{argmin}} m_k(\tau p_k^S), ||\tau p_k^S|| \le \Delta_k$$

$$p_k^S = \frac{-\Delta_k g_k}{||g_k||}$$

$$p_k^C = \tau_k p_k^S$$

$$p_k^C = -\tau_k \frac{\Delta_k g_k}{||g_k||}$$

$$p_k^S = \frac{-\Delta_k g_k}{\|g_k\|}$$

$$p_k^C = \tau_k p_k^S$$

$$p_k^C = -\tau_k \frac{\Delta_k g_k}{\|g_k\|}$$

$$\tau_{k} = \begin{cases} 1 & , g_{k}^{T} B_{k} g_{k} \leq 0 \\ min(\frac{\|g_{k}\|^{3}}{\Delta_{k} g_{k}^{T} B_{k} g_{k}}, 1) & , o/w \end{cases}$$

3.2 **Iterative Solution**

Idea: solve subproblem $\min_{\|p\| \leq \Delta} m(p)$ by applying Newton's method to find λ that matches trust region radius. This is slightly more accurate per step compared to Dogleg. Use $(B + \lambda I)p^* = -g$ to solve $\min_{\|p\| \leq \Delta} m(p)$ for λ .

If $\lambda = 0$ and $(B + \lambda I)p^* = -g, ||p^*|| \le \Delta$ and $(B + \lambda I) \succ 0$: return λ

Else: find λ s.t. $(B + \lambda I) \succeq 0$ and $||p(\lambda)|| = \Delta, p(\lambda) =$ $-(B+\lambda I)^{-1}g$. Solve and return λ .

Solve $||p(\lambda)|| - \Delta = 0, \lambda > \lambda_1$ via Newton's method (root finding). Approx. this to nearly a linear problem for easy solving:

Algorithm 4: Subproblem Algo

- 1 for l = 0, 1, ... do
- solve $B + \lambda^l I = R^T R$
- $R^T R p_l = -g$ 3
- 4
- $R^{T} q_{l} = p_{l}$ $\lambda^{l+1} \leftarrow \lambda^{l} + \left(\frac{\|p_{l}\|}{\|q_{l}\|}\right)^{2} \left(\frac{\|p_{l}\| \Delta}{\Delta}\right) \text{ check } \lambda \geq \lambda_{1}$

Conjugate Gradient 4

4.1 linear method

Assuming unconstrained problem with strict convex quadratic objective function:

$$\frac{1}{2}x^TAx - b^Tx, A \succ 0, A^T = A$$

 $\nabla(\frac{1}{2}x^TAx - b^Tx) = Ax - b$, thus $\min_x x^TAx - b^Tx$ transformed to Ax - b = 0.

 $x_{k+1} = x_k + \alpha_k p_k$, solve for α :

$$\frac{\partial}{\partial \alpha} (\frac{1}{2} (x_k + \alpha_k p_k)^T A (x_k + \alpha_k p_k) - b^T (x_k + \alpha_k p_k)) = 0$$

$$r_k = Ax - b$$

$$\alpha_k = \frac{-p_k^T r_k}{p_k^T A p_k}$$

$$\frac{\partial h(\sigma^*)}{\partial \sigma_i} = 0, i = [0, k - 1]$$

$$\frac{\partial h(\sigma^*)}{\partial \sigma_i} = 0, i = [0, k - 1]$$

4.2 Conjugate Direction

Search directions linearly independent wrt. A.

$$(\forall i \neq j) p_i^T A p_j = 0$$

Properties:

- Residual elimnated one direction at a time, resulting in max of n iterations.
- Optimal if Hessian is diagonal, if not can try preconditioning.
- Current residual is orthogonal to all previous search directions.
- Any set of conjugate directions can be used (eg: eigenvectors, Gram-Schmidt)

Expanding subspace minimizer:

Using conjugate directions to generate sequence $\{x\}$,

 $r_k^T p_i = 0, \forall i < k, x_k$ is minimizer of $\frac{1}{2} x^T A x - b^T x$ over $\{x|x = x_0 + span\{p_0, ...p_{k-1}\}\$

Proof.

$$\tilde{x} = x_0 + \sum_{i} \sigma_i p_i$$

 \tilde{x} minimizes over $\{x_0 + span\{p_0, ..., p_{k-1}\}\} \iff r(\tilde{x})^T p_i = 0$ $h(\sigma) = \phi(\tilde{x})$

$$\phi(x) = \frac{1}{2}x^T A x - b^T x$$

with unique σ^* satisfying:

 $r(\tilde{x})^T p_i = 0, i = [0, k-1]$

$$\begin{split} \frac{\partial h(\sigma^*)}{\partial \sigma_i} &= 0, i = [0, k-1] \\ \frac{\partial h(\sigma^*)}{\partial \sigma_i} &= \nabla \phi(\tilde{x})^T p_i = 0, i = [0, k-1] \\ \nabla \phi(x) &= Ax - b = r \end{split}$$

 $p_i^T r_k = 0, i = [0, k-1]$ via induction:

Proof.

base case: $x_1 = x_0 + \alpha_0 p_0$ minimizes ϕ along p_0

$$\implies r_1^T p_0 = 0$$

case: $r_{k-1}^T p_i = 0, i = [0, k-2]$:

$$r_k = r_{k-1} + \alpha_{k-1} A p_{k-1}$$

 $p_{k-1}^T r_k = p_{k-1}^T r_{k-1} + \alpha_{k-1} p_{k-1}^T A p_{k-1} = 0$ (by construction)

A-conjugate
$$\implies p_{k-1}^T A p_{k-1}$$

case:
$$\forall i = [0, k-2] : p_i^T r_k = 0$$

$$p_i^T r_k = p_i^T r_{k-1} + \alpha_{k-1} p_i^T A p_{k-1}$$

 $p_i^T r_{k-1} = 0$ (byinductionhypothesis

$$\alpha_{k-1} p_i^T A p_{k-1} = 0(conjugacy)$$

$$p_i^T r_k = 0, i = [0, k - 1]$$

4.3 Conjugate Gradient Method

Idea:

- uses only previous search direction to compute current search direction
- p_k set to linear combination of $-r_k$ and p_{k-1}
- impose $p_k^T A p_{k-1} = 0$

$$p_{k} = -r_{k} + \beta_{k} p_{k-1}$$

$$p_{k-1}^{T} A p_{k} = -p_{k-1}^{T} A r_{k} + \beta p_{k-1}^{T} A p_{k-1}$$

$$0 = -p_{k-1}^{T} A r_{k} + \beta p_{k-1}^{T} A p_{k-1}$$

$$\beta = \frac{p_{k-1}^{T} A r_{k}}{p_{k-1}^{T} A p_{k-1}}$$

$$p_{0} = -(Ax_{0} - b) = -r_{0}$$

Algorithm 5: Basic Conjugate Gradient Algorithm

$$\begin{array}{lll} \mathbf{1} & r_0 \leftarrow Ax_0 - b \\ \mathbf{2} & p_0 = -r_0 \\ \mathbf{3} & \mathbf{for} & k = [0, ..n - 1] & \mathbf{do} \\ \mathbf{4} & \mathbf{if} & r_k == 0 & \mathbf{then} \\ \mathbf{5} & | & \mathrm{return} & x_k \\ \mathbf{6} & \mathbf{else} \\ \mathbf{7} & | & \alpha_k \leftarrow \frac{-r_k^T p_k}{p_k^T A p_k} = \frac{r_k^T r_k}{p_k^T A p_k} \\ \mathbf{8} & | & x_{k+1} \leftarrow x_k + \alpha_k p_k \\ \mathbf{9} & | & r_{k+1} \leftarrow Ax_{k+1} - b \\ \mathbf{10} & | & \beta_{k+1} \leftarrow \frac{p_k^T A r_{k+1}}{p_k^T A p_k} = \frac{r_{k+1}^T r_{k+1}}{r_k^T r_k} \\ \mathbf{11} & | & p_{k+1} \leftarrow -r_{k+1} + \beta_{k+1} p_k \end{array}$$

 $\begin{array}{l} p_k \text{ and } r_k \text{ is within krylov subspace:} \\ K(r_0;k) = span\{r_0,Ar_0,..A^kr_0\} \\ \text{if } r_k \neq 0: \\ r_k^T r_i = 0, i = [0,k-1] \\ span\{r_0,..,r_k\} = span\{r_0,Ar_0,..,A^kr_0\} \\ span\{p_0,..,p+k\} = span\{r_0,Ar_0,..,A^kr_0\} \\ p_k^T A p_i = 0, i = [0,k-1] \\ \text{then, } \{x_k\} \rightarrow x^* \text{ in at most n steps.} \end{array}$

Simplification:

 $p_{k+1} \leftarrow -r_{k+1} + \beta_{k+1} p_k$

$$\alpha_{k} \leftarrow \frac{-r_{k}^{T} p_{k}}{p_{k}^{T} A p_{k}}$$

$$\alpha_{k} \leftarrow \frac{-r_{k}^{T} (-r_{k} + \beta_{k} p_{k-1})}{p_{k}^{T} A p_{k}}$$

$$(\forall i = [0, k-1]) r_{k}^{T} p_{i} = 0 \implies \beta_{k} r_{k}^{T} p_{k-1} = 0$$

$$\alpha_{k} \leftarrow \frac{r_{k}^{T} r_{k}}{p_{k}^{T} A p_{k}} \text{ (simplified)}$$

$$r_{k+1} = r_{k} + \alpha_{k} A p_{k}$$

$$Ap_{k} = \frac{r_{k+1} - r_{k}}{\alpha_{k}}$$

$$\beta = \frac{p_{k}^{T} A r_{k+1}}{p_{k}^{T} A p_{k}}$$

$$p_{k}^{T} A p_{k} = p_{k}^{T} \frac{r_{k+1} - r_{k}}{\alpha_{k}} = \frac{-p_{k}^{T} r_{k}}{\alpha} \text{ (conjugacy)}$$

$$p_{k}^{T} A p_{k} = -\frac{(-r_{k} + \beta_{k} p_{k-1})^{T} r_{k}}{\alpha} = \frac{r_{k}^{T} r_{k}}{\alpha} \text{ (conjugacy)}$$

$$p_{k}^{T} A r_{k+1} = r_{k+1}^{T} A p_{k}$$

$$p_{k}^{T} A r_{k+1} = r_{k+1}^{T} \frac{r_{k+1} - r_{k}}{\alpha_{k}}$$

$$r_{k} \in span\{p_{k}, p_{k-1}\} \text{ and } r_{k+1}^{T} p_{i} = 0, i = [0, k] \implies$$

$$p_{k}^{T} A r_{k+1} = \frac{r_{k+1}^{T} r_{k+1}}{\alpha_{k}}$$

$$\beta_{k+1} \leftarrow \frac{r_{k+1}^{T} r_{k+1}}{r_{k}^{T} r_{k}} \text{ (simplified)}$$

4.4 Nonlinear Method

Minimize general convex function or nonlinear function. Variants: FR, PR. $\,$

4.4.1 FR (Fletcher Reaves)

Modify linear CG by:

- replace residual by gradient of nonlinear objective, $r_k \to \nabla f_k$
- replace α_k computation by a linear search to find approx. minimum along search direction of f

Equivalent to linear CG if objective is strongly convex quadratic.

Linear search for α_k with strong Wolfe condition to ensure p_k 's are descent directions wrt. objective function.

4.4.2 PR

Replace β_{k+1} computation in FR with:

$$\beta_{k+1}^{PR} \leftarrow \frac{\nabla f_{k+1}^T (\nabla f_{k+1} - \nabla f_k)}{\nabla f_k^T \nabla f_k}$$
$$\beta_{k+1}^+ \leftarrow \max(\beta_{k+1}^{PR}, 0)$$

5 Proximal Algorithm

Idea:

- reliance on easy to evaluate proximal operators
- separability allows parallel evaluation
- generalization of projection based algorithms

$$prox_{\lambda f}(v) = \underset{x}{\operatorname{argmin}} f(x) + \frac{1}{2\lambda} ||x - v||_2^2$$

Resolvent of subdifferential operator:

$$z = prox_{\lambda f}(x) \implies z \in (I + \lambda \partial f)^{-1}(x)$$

 $(I + \lambda \partial f)^{-1} := \text{resolvent of operator } \partial f$

5.1 Proximal Gradient Method

Solve $\min_x g(x) + f(x)$, where f, g are closed, convex functions and f differentiable

$$x^* = prox_{\lambda^k g}(x^k - \lambda^k \nabla f(x^k))$$

$$= \operatorname*{argmin}_x g(x) + \frac{1}{2\lambda^k} ||x - (x^k - \lambda^k \nabla f(x^k))||_2^2$$

tradeoff between g and and gradient step

$$g = I_C(x) \implies \text{projected gradient step}$$

$$g = 0 \implies$$
 gradient descent

$$f = 0 \implies \text{proximal minimization}$$

Relation to Pixed Point:

$$x^*$$
 is a fixed point solution of $\min_x g(x) + f(x)$ iff $0 \in \nabla f(x^*) + \partial g(x^*)$ iff $x^* = (I + \lambda \partial g)^{-1}(I - \lambda \nabla f)(x^*)$

Forward Euler, Backward Euler stepping is same as the proximal gradient iteration, $prox_{\lambda^k g}(x^k - \lambda^k \nabla f(x^k))$

5.2 Accelerated Proximal Gradient Method

Introduce extrapolation:

$$y^{k+1} = x^k + w^k(x^k - x^{k-1})$$

$$x^{k+1} = prox_{\lambda^k g}(y^{k+1} - \lambda^k \nabla f(y^{k+1}))$$

$$w^k \in [0, 1)$$

Example: $w^k = \frac{k}{k+3}, w^0 = 0, \lambda^k \in (0, 1/L], L :=$ Lipschitz constant of ∇f , or λ^k found via line search. Line search for λ^k (Beck and Teboulle):

Algorithm 6: Proximal Gradient Algorithm

$$\begin{array}{ll} \mathbf{1} & \hat{f}(x,y) := f(y) + \nabla f(y)^T (x-y) + \frac{1}{2\lambda} \|x-y\|_2^2 \\ \mathbf{2} & \mathbf{while} & True & \mathbf{do} \\ \mathbf{3} & | & z = prox_{\lambda g} (y^k - \lambda \nabla f(y^k)) \\ \mathbf{4} & | & \mathbf{if} & f(x) \leq \hat{f}(z,y^k) & \mathbf{then} \end{array}$$

$$\mathbf{6} \quad \lambda = \beta \lambda$$

7 return $\lambda^k := \lambda, x^{k+1} := z$

5.3 Types of Proximal Operators

• quadratic functions

$$\begin{split} f &= \frac{1}{2} \|.\|_x^2 \Longrightarrow \ prox_{\lambda f}(v) = (\frac{1}{1+\lambda})v \\ f &= \frac{1}{2} x^T A x + b^T x + c, A \in S^n_+ \Longrightarrow \\ prox_{\lambda f}(v) &= (I+\lambda)^{-1} (v-\lambda b) \end{split}$$

- unconstrained problem: use gradient methods such as Newton, Quasi-Newton
- constrained: use projected subgradient for nonsmooth, projected gradient or interior method for smooth
- separable function: if scalar, may be solved analytically, eg: L1 norm separable to:

$$f(x) = |x| \Longrightarrow prox_{\lambda f}(v) = \begin{cases} v - \lambda, & v \ge \lambda \\ 0, & |v| \le \lambda \\ v + \lambda, & v \le -\lambda \end{cases}$$

$$f(x) = -log(x) \implies prox_{\lambda f}(v) = \frac{v + \sqrt{v^2 + 4\lambda}}{2}$$

- general scalar function
 - localization: using a subgradient oracle and bisection algorithm
 - twice continuously differentiable: guarded Newton method
- polyhedra constraint, quadratic objective: solve as QP problem
 - duality to reduce number of variables to solve if possible
 - gram matrix caching

- affine constraint(Ax = b): use pseudo-inverse, A^+ :

$$\Pi_C(v) = v - A^+(Av - b)$$

$$A \in R^{m \times n}, m < n \implies A^+ = A^T(AA^T)^{-1}$$

$$A \in R^{m \times n}, m > n \implies A^+ = (A^TA)^{-1}A^T$$

- hyperplane constaint($a^T x = b$):

$$\Pi_C(v) = v + (\frac{b - a^T b}{\|a\|_2^2})a$$

- halfspace

$$\Pi_C(v) = v - \frac{\max(a^T v - b, 0)}{\|a\|_2^2} a$$

 $- box(l \le x \le u)$ $\Pi_C(v)_k = min(max(v_k, l_k), u_k)$

- probability simplex $(1^T x = 1, x \ge 0)$ bisection also on ν :

$$\Pi_C(v) = (v - \nu 1)_+$$
intial $[l_k, u_k] = [\max_i v_i - 1, \max_i v_i]$

analytically solve when bounded in between 2 adjacent v'i's

• cones (κ : proper cone) problem of the form:

$$min_x ||x - v||_2^2$$

$$s.t. : x \in \kappa$$

$$x \in \kappa$$

$$v = x - \lambda$$

$$\lambda \in \kappa^*$$

$$\lambda^T x = 0$$

- cone $C = \mathbb{R}^n_{\perp}$

$$\Pi_C(v) = v_+$$

– 2nd order cone $C = \{(x,t) \in \mathbb{R}^{n+1} : \|x\|_2 \le t\}$

$$\Pi_C(v,s) = \begin{cases} 0, & \|v\|_2 \le -s \\ (v,s), & \|v\|_2 \le s \\ \frac{1}{2}(1 + \frac{s}{\|v\|_2})(v,\|v\|_2), & \|v\|_2 \ge |s| \end{cases}$$

- PSD cone S^n_{\perp}

$$\Pi_C(V) = \sum_{i} (\lambda_i)_+ u_i u_i^T$$

$$V = \sum_{i} \lambda_i u_i u_i^T \ (eigendecomp)$$

- exponential coneTodo
- ullet pointwise supremum
 - max function
 - support function
- \bullet norms
 - -L2
 - L1
 - L-inf
 - elastic net
 - sum of norms
 - matrix norm
- sublevel set
- epigraph
- $\bullet\,$ matrix functions Todo

6 Subgradient Method

todo