Fundamentals of Machine Learning

Billy Braithwaite

IT Center for Science Ltd.

October 28, 2022

About the course

The core message of the course

Georges Matheron

"Illegitimate use of scientific concepts beyond the limits within which they have an operative meaning is nothing else but a surreptitious passage into metaphysics"

Course agenda

Unsupervised Learning

References

Recap of Day 1: Difficulties of interpretation

Recap of Day 1: Statistical inference as an optimization problem

$$\begin{bmatrix} x_{0,0} & x_{0,1} & x_{0,2} & \cdots & x_{0,n-1} \\ x_{0,0} & x_{0,1} & x_{0,2} & \cdots & x_{0,n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_{m-1,0} & x_{m-1,1} & x_{m-1,2} & \cdots & x_{m-1,n-1} \end{bmatrix} \begin{bmatrix} w_0 \\ w_1 \\ w_{n-1} \end{bmatrix}^T = \begin{bmatrix} y_0 \\ y_1 \\ y_{m-1} \end{bmatrix}$$

$$X^{m\times n} = \left\{ \begin{array}{ll} m > n & (overdetermined) \\ n \gg m & (underdetermined) \end{array} \right.$$

$$\hat{x} \leftarrow \mathop{\text{arg min}}_{\vec{x} \in X \subset \mathbb{F}^n} f(\vec{x}), \ s.t. \ A\vec{x} = \vec{b}, \ A \in \mathbb{F}^{n \times n}, \vec{b} \in \mathbb{F}^n$$

Recap of Day 1: Statistical inference from empirical data

Given a training set X_D , evaluate

$$\int \mathcal{L}(f(\vec{X}_D, \alpha^*), \omega) dF(\vec{X}_D), \alpha^* \in \Lambda$$

$$\frac{1}{\#\mathrm{training\ samples}} \sum_{i=0}^{\#\mathrm{training\ samples}-1} \mathcal{L}(f_i(\vec{X}_D, \alpha^*), \omega_i), \ \alpha^* \in \Lambda$$

Recap of Day 1: Artificial Neural Networks

Recap of Day 1: Max margins

Recap of Day 1: Bagging

Recap of Day 1: Cross-validation

Unsupervised Learning

Estimation:

$$\label{eq:def-norm} \mathsf{\Pi}_{i=0}^{n-1} f(x_i \mid \theta) \stackrel{\mathrm{def}}{=} L(\vec{x} \mid \! \theta), \ \vec{x} \in \mathbb{F}^n$$

Unsupervised Learning

Estimation:

$$\label{eq:continuous_equation} \Pi_{i=0}^{n-1} f(x_i \mid \theta) \stackrel{def}{=} L(\vec{x} \mid \! \theta), \ \vec{x} \in \mathbb{F}^n$$

Classification:

$$f_k(x_i \mid \theta_k), \ k = 0, \dots, C$$

Unsupervised Learning

Mixture of densities

Hard clustering

K-means steps

Cluster "quality" estimation

Expectation-maximization steps

K-Nearest Neighbors

Soft clustering

Eigenvalues and subspaces

Eigenvalues and subspaces

Eigenvalues and subspaces

Boltzmann Machines

Self-organizing Maps

Combining supervised & unsupervised learning

Further reading: Books

Vladimir Vapnik, Statistical learning theory, Adaptive and learning systems for signal processing communications and control, 1998.

Vic Barnett, Comparative statistical inference (1999) John Wiley & Sons

John Maynard Keynes, A treatise on probability (1962) Harper & Row Publishing

Bernardo, José M and Smith, Adrian FM, Bayesian theory (2009) John Wiley & Sons

Harald Cramér, Mathematical methods of statistics, Princeton Univ (1999) Press, Princeton, NJ

Simon Haykin, Neural networks and learning machines 3rd edition (2009) Pearson Education

Further reading: Peer-reviewed articles

Nagy, George, State of the art in pattern recognition, Proceedings of the IEEE, 1968, 56.5: 836-863.

David Hand, Deconstructing statistical questions, Journal of the Royal Statistical Society: Series A (Statistics in Society), 1994, 157.3: 317-338.

David Hand, Statistics and the theory of measurements, Journal of the Royal Statistical Society: Series A (Statistics in Society), 1996, 159.3: 445-473.