

Lista 7. Sistemas de Coordenadas, Retas e Planos no Espaço

MTM5512 - Geometria Analítica

Para os Exercícios de 1 a 13, $\Sigma = (O, \mathcal{E})$ é um sistema de coordenadas ortogonal no espaço, fixado.

Exercício 1....

Em cada um dos casos abaixo, verifique se os pontos $A,B \in C$ são colineares.

- (a) $A = (1, -1, 2)_{\Sigma}, B = (0, 1, 1)_{\Sigma}, C = (2, -3, 3)_{\Sigma}.$
- **(b)** $A = (1, 1, -2)_{\Sigma}, B = (-1, 0, -4)_{\Sigma}, C = (5, 3, 2)_{\Sigma}.$
- (c) $A = (3,0,1)_{\Sigma}, B = (2,1,0)_{\Sigma}, C = (4,5,2)_{\Sigma}.$

Exercício 2.....

Determine, se possível, valores reais para $m, n \in \mathbb{R}$ de modo que os pontos $A = (3, m, 5)_{\Sigma}$, $B = (n, 4, 4)_{\Sigma}$ e $C = (n, 0, n)_{\Sigma}$ sejam colineares.

Exercício 3.....

Verifique se os pontos $A=(2,6,-5)_{\Sigma}$, $B=(5,5,0)_{\Sigma}$, $C=(6,9,7)_{\Sigma}$ e $D=(3,10,2)_{\Sigma}$ são vértices de um paralelogramo.

Exercício 4....

Dados os pontos $A = (1, 2, 5)_{\Sigma}$ e $B = (0, 1, 0)_{\Sigma}$, determine as coordenadas do ponto P no sistema Σ , onde P pertence à reta que passa por A e B, de modo que $\|\vec{PB}\| = 3\|\vec{PA}\|$.

Exercício 5....

Escreva as equações paramétricas da reta que passa pelo ponto $A=(2,0,-3)_{\Sigma}$ e:

- (a) é paralela à reta que passa pelos pontos $B = (1,0,4)_{\Sigma}$ e $C = (2,1,3)_{\Sigma}$.
- **(b)** é paralela à reta $s: \frac{1-x}{5} = \frac{3y}{4} = \frac{z+3}{6}$.
- (c) é paralela à reta s: $\begin{cases} x = 1 2\lambda \\ y = 4 + \lambda \\ z = -1 \lambda \end{cases}$, para $\lambda \in \mathbb{R}$.

Exercício 6.....

Dados o ponto $A = (0, 2, 1)_{\Sigma}$ e a reta $r: (x, y, z)_{\Sigma} = (0, 2, -1)_{\Sigma} + \lambda(1, -1, 2)_{\mathcal{E}}$, para $\lambda \in \mathbb{R}$, encontre os pontos da reta r que distam $\sqrt{3}$ do ponto A. Responda também: a distância do ponto A à reta r é maior, menor ou igual a $\sqrt{3}$? Por quê?

Exercício 7.....

Faça um esboço dos planos cujas equações gerais são dadas por

(a)
$$x = 2$$
 (b) $y + 1 = 0$ (c) $z + 4 = 0$ (d) $x - z = 0$

Exercício 8....

Mostre que os pontos $P = (-1, 0, 0)_{\Sigma}$, $Q = (2, -1, -1)_{\Sigma}$, $R = (0, 3, 1)_{\Sigma}$ e $S = (4, 5, 1)_{\Sigma}$ são vértices de um quadrilátero (porquê?). Escreva as equações das retas que contêm cada um dos seus lados.

Exercício 9.....

Determine a equação geral do plano, determinado pelo ponto $P = (2, 1, -1)_{\Sigma}$ e pela reta r, de modo que qualquer ponto desta reta é da forma $(2t, 1+t, -1-t)_{\Sigma}$ para $t \in \mathbb{R}$.

Encontre a equação geral do plano que contém as retas dadas por

$$r: \frac{x-2}{3} = \frac{y-1}{2} = z$$
 e $s: \frac{x-2}{5} = y-1 = \frac{z}{3}$.

Prove que a reta $r: X = (-4, 2, 4)_{\Sigma} + \lambda(1, -3, 5)_{\mathcal{E}}$, para $\lambda \in \mathbb{R}$ está contida no plano $\pi: x +$ 2y + z = 4.

Exercício 12.....

Sendo $\vec{n} = (2, 1, -1)_{\mathcal{E}}$ um vetor normal ao plano π que passa pelo ponto $(1, 2, 2)_{\Sigma}$, encontre as equações paramétricas de π .

Exercício 13..... Encontre a equação geral do plano que contém a reta $r: X = (0,0,2)_{\Sigma} + \lambda(1,-1,1)_{\mathcal{E}}$, para $\lambda \in \mathbb{R}$, e é perpendicular ao plano $\alpha : x - 2y + z - 1 = 0$.

Exercício 14.....

Considere um paralelepípedo retângulo ABCDEFGH como na figura abaixo, com lados de comprimento AB = 4, BC = 3 e AE = 2. Determine um sistema de coordenadas $\Sigma_1 =$ (O_1, \mathcal{E}_1) conveniente e encontre:

- (a) Uma equação vetorial da reta que passa por $A \in F$.
- (b) Uma equação vetorial da reta que passa por $A \in C$.
- (c) Uma equação paramétrica da reta que passa por $A \in G$.
- (d) A equação geral do plano que contém a face ABCD.
- (e) A equação geral do plano que contém a face BCGF.

Exercício 15.....

Seja $\Gamma = (O, \mathcal{F})$ um sistema de coordenadas ortogonal no plano. Sendo $A = (2, -1)_{\Gamma}$, $B = (5,4)_{\Gamma}$ e $C = (-7,8)_{\Gamma}$, encontre a equação da reta que bissecta o ângulo BAC.

2