### **Examen final**

Département de génie électrique et de génie informatique GEL-3000 – Électronique des composants intégrés

#### Le 27 avril 2016

Documentation permise : 2 feuilles de notes recto verso et 1 calculatrice.

Durée de l'examen : 1 heure 50 (9h30 – 11h20).

- 1. (30 points) Questions à courts développements
- a) Soit le circuit de la Figure 1. Calculez les courants  $I_2$  et  $I_5$  sachant que R = 1 k $\Omega$ ,  $|V_{tp}| = V_{th} = 0.5$ V,  $V_{OV} = 0.2$ V et L = 1 µm pour tout les transistors. **De plus, W**<sub>2</sub> = 2**W**<sub>1</sub>, **W**<sub>3</sub> = 3**W**<sub>1</sub>, **W**<sub>4</sub> = **W**<sub>1</sub>, **W**<sub>5</sub> = 4**W**<sub>1</sub>.
- b) Pour le même circuit, donnez l'impédance d'entrée vue dans le drain de Q1.
- c) On utilise le circuit de la Figure 1 pour polariser un amplificateur drain commun réalisé à l'aide d'un MOSFET de type n. Dessinez le schéma de cet amplificateur avec son circuit de polarisation.
- d) Expliquez brièvement le fonctionnement du convertisseur A/N illustré à la Figure 2 et dites dans quelles circonstances il est approprié de l'utiliser.
- e) Soit le schéma de circuit montré à la Figure 3. Donnez le nom et la fonction de ce circuit et expliquez brièvement sont fonctionnement. Enfin, tracez  $v_{-}$  et  $v_{0}$  en fonction du temps.
- f) Soit le circuit de la <u>Figure 5</u>. Que manque-t-il à cet amplificateur pour qu'on puisse l'utiliser en configuration inverseuse avec un réseau de rétroaction négative constitué de deux résistances?



Figure 1.



Figure 2.



Figure 3.

# 2. (30 points) Analyse de circuits

## Soit le circuit suivant :



Figure 4.

Répondez aux questions suivantes en expliquant bien votre raisonnement.

- (a) Expliquez le rôle de chaque transistors.
- (b) Dessinez le modèle petit signal de ce circuit.
- (c) Donnez les impédances  $R_{o1}$ ,  $R_{o2}$ ,  $R_{o3}$ ,  $R_{o4}$  et  $R_{o5}$ .
- (d) Donnez l'impédance d'entrée et l'impédance de sortie R<sub>o</sub> du circuit.
- (e) Donnez l'expression du gain  $v_o/v_i$  en fonction des paramètres petit signal du circuit.
- (f) Déterminez la plage de tensions d'entrée  $v_{i\_min} < v_i < v_{i\_max}$ .
- (g) Déterminez la plage de tensions de sortie  $v_{o\_min} < v_o < v_{o\_max}$ .
- (h) Que ce passerait-il si on connectait une charge résistive  $R_L$  à  $v_o$ ? Que faudrait-il ajouter à ce circuit pour conduire cette charge adéquatement?

3. (40 points) *Conception d'un amplificateur opérationnel CMOS* Soit le circuit suivant :



Figure 5.

L'ampli-op montré ci-dessus possède les caractéristiques suivantes :  $V_{DD} = V_{SS} = 1.8 \text{ V}$ ,  $V_{tn} = |V_{tp}| = 0.5 \text{ V}$ ,  $\mu_n C_{ox} = 400 \text{ }\mu\text{A/V}^2$  et  $\mu_p C_{ox} = 100 \text{ }\mu\text{A/V}^2$  et  $V_A$ ' = 20 V/ $\mu$ m. Utilisez  $L = 2 \text{ }\mu\text{m}$  et  $V_{OV} = 0.2 \text{ V}$  pour tous les MOSFET. Notez que  $W_5 = 200 \text{ }\mu\text{m}$ ,  $W_7 = 100 \text{ }\mu\text{m}$  et que  $I_{REF} = 50 \text{ }\mu\text{A}$ .

- (a) Calculez les courants I<sub>D</sub> et les W/L de tous les transistors.
- (b) Calculez les  $g_m$  et les  $r_o$  de tous les transistors?
- (c) Calculez le gain en boucle ouverte total (A<sub>v</sub>) et la résistance de sortie R<sub>o</sub> de cet ampli-op.
- (d) Déterminez sa plage de tension d'entrée en mode commun  $v_{icm}$   $v_{icm}$   $v_{icm}$   $v_{icm}$   $v_{icm}$   $v_{icm}$   $v_{icm}$
- (e) Déterminez sa plage de tension de sortie  $v_{o\_min} < v_o < v_{o\_max}$ .
- (f) Calculez le taux de rejet du mode commun du premier étage.
- (g) Proposez une façon <u>d'augmenter significativement</u> le gain du deuxième étage sans changer le point de polarisation, ni rajouter de 3<sup>ième</sup> étage.
- (h) Expliquez le rôle de C<sub>C</sub> en quelques mots.

Bonne chance!

Benoit Gosselin

# Aide mémoire

# Courant de drain et paramètres petit signal du MOSFET

$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_t)^2$$

$$r_o = \frac{1}{\lambda I_D} = \frac{V_A}{I_D}$$

$$g_{m} = \frac{2I_{D}}{V_{OV}},$$
  $g_{m} = \frac{1}{2}\mu_{n}C_{ox}\frac{W}{L}(V_{GS} - V_{t}),$   $g_{m} = \sqrt{2\mu_{n}C_{ox}(W/L)I_{D}}$ 

$$g_m = \sqrt{2\mu_n C_{ox}(W/L)I_D}$$

$$V_{GS} = V_{tn} + \sqrt{\frac{2I_D}{\mu_n C_{ox}(W/L)}}$$

## Paire différentielle

$$A_{cm} = \frac{v_o}{v_{icm}} = \frac{r_{o4}}{2R_{ss}} \frac{1}{1 + g_{m3}r_{o3}}$$



## Modèle petit signal de l'ampli-op à 2 étages

