Annexe D

Lemme d'Arden et retour sur le théorème de Kleene

Exemple (Lemme d'Arden):

Soient K et L deux langages. Résoudre $X=K\cdot X\cup L$ pour X un langage. (On trouve $X=K^\star\cdot L$.) On suppose que $\varepsilon\not\in K$. On procède par double-inclusion.

- "⊇" Soit X un langage tel que $X=K\cdot X\cup L$. Montrons par récurrence « si w est un mot de X de taille n, alors $w\in K^\star\cdot L$.
 - Si n=0, alors $w\in L$ car $\varepsilon\not\in K$. Ainsi, $w=\varepsilon\cdot w$ et $\varepsilon\in K^\star$. On en déduit que $w\in K^\star\cdot L$.
 - Si |w| = n, alors
 - $--\text{ si }w\in L\text{, alors }w=\varepsilon\cdot w\text{ et donc }w\in K^{\star}L\text{.}$
 - si $w=v\cdot w'$ où $v\in K$ et $w'\in X$, alors |w'|<|w|. Ainsi, par hypothèse de récurrence, $w'\in K^*\cdot L$. Ainsi, $v\cdot w'\in K^*\cdot L$.

Ainsi, $X \subseteq K^{\star} \cdot L$.

"⊆" Soit $w \in K^* \cdot L$. Il existe donc $n \in \mathbb{N}$, $(v_1, \dots, v_n) \in K^n$ et $w' \in L$ tels que $w = v_1 \cdot \dots \cdot v_n \cdot w'$. Alors, $w' \in X$ donc $v_n \cdot w' \in X$ donc \dots donc $v_1 v_2 \dots v_n w' \in X$. Ainsi, $w \in X$.

Exemple:

On considère l'automate ci-dessous.

Figure 1 – Automate exemple (A)

On pose $X_i=\mathcal{Z}\big((\Sigma,\mathbb{Q},\{i\},F,\delta)\big)$, où x_i est l'unique point de départ. Ainsi, $\mathcal{Z}(\mathcal{A})=\bigcup_{i\in I}X_i$. Déterminons les valeurs de X_1,X_2 et X_3 . On applique un algorithme similaire au « pivot de Gauß. »

$$X_{1} = \{a\} \cdot X_{2} \cup \{a\} X_{1}$$

$$X_{2} = \{b\} \cdot X_{1} \cup \{a\} \cdot X_{3} \cup \{\varepsilon\}$$

$$X_{3} = \{b\} X_{3} \cup \{\varepsilon\}$$

$$\Leftrightarrow \begin{cases} X_{1} = \{a\}^{*} \cdot \{a\} \cdot X_{2} \\ X_{2} = \mathcal{L}(ba^{*} \cdot a) X_{2} \cup \{a\} X_{3} \cup \{\varepsilon\} \\ X_{3} = \{b\} \cdot X_{3} \cup \{\varepsilon\} \end{cases}$$

$$\Leftrightarrow \begin{cases} X_{1} = \mathcal{L}(a^{*} \cdot a) X_{2} \\ X_{2} = \mathcal{L}((b \cdot a^{*} \cdot a)^{*}) \cdot (\{a\} X_{3} \cup \{\varepsilon\}) \\ X_{3} = \{b\} X_{3} \cup \{\varepsilon\} \end{cases}$$

$$\Leftrightarrow \begin{cases} X_{1} = \mathcal{L}(a^{*} \cdot a) X_{2} \\ X_{2} = \mathcal{L}((b \cdot a^{*} \cdot a)^{*}) \cdot (\{a\} X_{3} \cup \{\varepsilon\}) \\ X_{3} = \mathcal{L}(b^{*}) \end{cases}$$

$$\Leftrightarrow \begin{cases} X_{1} = \mathcal{L}(a^{*} \cdot a) X_{2} \\ X_{2} = \mathcal{L}((ba^{*} \cdot a)^{*} \cdot (ab^{*} \mid \varepsilon)) \\ X_{3} = \mathcal{L}(b^{*}) \end{cases}$$

$$\Leftrightarrow \begin{cases} X_{1} = \mathcal{L}(a^{*} \cdot a) X_{2} \\ X_{2} = \mathcal{L}((ba^{*} \cdot a)^{*} \cdot (ab^{*} \mid \varepsilon)) \\ X_{3} = \mathcal{L}(b^{*}) \end{cases}$$

$$\Leftrightarrow \begin{cases} X_{1} = \mathcal{L}(a^{*} \cdot a \cdot (ba^{*} \cdot a)^{*} \cdot (ab^{*} \mid \varepsilon)) \\ X_{2} = \mathcal{L}((ba^{*} \cdot a)^{*} \cdot (ab^{*} \mid \varepsilon)) \\ X_{3} = \mathcal{L}(b^{*}) \end{cases}$$

On peut généraliser la méthode employée dans l'exemple précédent pour montrer que tout langage reconnaissable est régulier.