## **TEST REPORT**



|                                                                                                                                                                                                                                            |                                                                                   | Testing Certification # 1367-01                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------|
| Laboratory ID PRODUCT SAFETY ENGINEERING, INC. 12955 Bellamy Brothers Boulevard Dade City, Florida 33525 USA PH (352) 588-2209 FX (352) 588-2544                                                                                           | Submitter ID Equitrac Corporation 1000 Sawgrass Corpo Suite 305 Sunrise, FL 33323 | rate Parkway                                        |
| Report Issue Date: 16 Jan 2015 Sample S/N: See Appeendix B Sample Receipt Date: 30 Apr 2014 Sample Test Date: see data sheets                                                                                                              | Test Report Number:<br>Model Designation:<br>Product Description:                 | PCT-IMUL                                            |
| Description of non-standard test method or test practice Estimated Measurement Uncertainty: See page 9. This at approximately 95% confidence level using a coverage of                                                                     | uncertainty represents o                                                          | and expanded uncertainty expressed                  |
| Special limitations of use: None                                                                                                                                                                                                           |                                                                                   |                                                     |
| Traceability: reference standards of measurement have traceable to the NIST.                                                                                                                                                               | e been calibrated by a co                                                         | mpetent body using standards                        |
| According to testing performed at Product Safety Engineering, Inc., the above requirements defined in regulations indicated on page (3) of the test report. manufacturer's responsibility to assure that additional production units are n | The test results contained herein i                                               | relate only to the item identified above. It is the |
| As the responsible EMC Project Engineer, I hereby declare that the equipme test report.  Signature Name                                                                                                                                    | nt tested as specified above confo<br>David Foerstner                             | orms to the requirements indicated on page (3) of   |
| Title Engineering Group Leader Date                                                                                                                                                                                                        | 16 Jan 2015                                                                       |                                                     |
| Reviewed by: Approved Signatory                                                                                                                                                                                                            | Date 16 Jan 2015                                                                  |                                                     |
| Steve Hoke (EMC Site Manager)                                                                                                                                                                                                              |                                                                                   |                                                     |

This report shall not be reproduced except in full, without written approval from Product Safety Engineering, Inc

Test Report Number 14F119B

### DIRECTORY - EMISSIONS

|    | _                                                                                                                                     |                                                                                                                         | Page(s)                                     |
|----|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| A) | Documentation                                                                                                                         |                                                                                                                         |                                             |
|    | Test report Directory Test Regulations General Remarks Test-setups (Photos)                                                           |                                                                                                                         | 1 - 10<br>2<br>3<br>10<br>11 - 12           |
| B) | Test data                                                                                                                             |                                                                                                                         |                                             |
|    | Conducted emissions Radiated emissions Radiated emissions Disturbance power Equivalent Radiated emissions Antenna Disturbance Voltage | 10/150 kHz - 30 MHz<br>10 kHz - 30 MHz<br>30 MHz - 1000 MHz<br>30 MHz - 300 MHz<br>1 GHz - 18 GHz<br>30 MHz - 1,000 MHz | 5, 9<br>5, 9<br>6, 9<br>6, 9<br>7, 9<br>7,9 |
| C) | Appendix A                                                                                                                            |                                                                                                                         |                                             |
|    | Test Data Sheets                                                                                                                      |                                                                                                                         | A2 - A21                                    |
| D) | Appendix B                                                                                                                            |                                                                                                                         |                                             |
|    | System Under Test Description                                                                                                         |                                                                                                                         | B2 - B3                                     |
| E) | Appendix C                                                                                                                            |                                                                                                                         |                                             |
|    | Environmental Testing                                                                                                                 |                                                                                                                         | C1 - C3                                     |

### **EMISSIONS TEST REGULATIONS:**

The emissions tests were performed according to following regulations:

| □ - EN 61000-6-3:2007                     |                                                                                                               |             |
|-------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------|
| □ - EN 61000-6-4:2007                     |                                                                                                               |             |
| □ - EN 55011 : 2009/A1:2010               | □ - Group 1                                                                                                   | □ - Group 2 |
|                                           | □ - Class A                                                                                                   | □ - Class B |
| ■ - EN 300-330 v1.5.1 & EN 300-330 V1.7.1 |                                                                                                               |             |
| □ - EN 55014 -1: 2006/A2:2011             | □ - Household appliances and sir                                                                              | milar       |
|                                           | □ - Portable tools                                                                                            |             |
|                                           | □ - Semiconductor devices                                                                                     |             |
| □ - EN 55022:2010/AC:2011                 | □ - Class A                                                                                                   | □ - Class B |
| □ - CISPR 22:2008                         | □ - Class A                                                                                                   | □ - Class B |
| □ -AS/NZS CISPR 22:2009                   | □ - Class A                                                                                                   | □ - Class B |
| □ - ICES-003                              | □ - Class A                                                                                                   | □ - Class B |
| □ - CNS 13438                             | □ - Class A                                                                                                   | □ - Class B |
| □ - VCCI V-3/2010.4                       | □ - Class A                                                                                                   | □ - Class B |
| ■ - FCC Part 15 (per ANSI C63.4)          | □ - Class A                                                                                                   | □ - Class B |
|                                           | <ul><li>■ - Certification per 15.225</li><li>□ - Verification</li><li>□ - Declaration of Conformity</li></ul> |             |

- - RSS-210 Issue 8
- - RSS-GEN Issue 4

|                       | LAB | OATS |  |
|-----------------------|-----|------|--|
| Temperature: *        |     | :    |  |
| Relative Humidity: ** |     | :    |  |

Power supply system : <u>120 / 230</u> Volts <u>60 / 50</u> Hz <u>SINGLE</u> phase

### Sign Explanations:

**Environmental conditions during testing:** 

□ - not applicable

■ - applicable

### **Models Defined:**

<sup>\*</sup> The ambient temperature during the testing was within the range of (50° - 104° F) unless indicted above.

<sup>\*\*</sup> The humidity levels during the testing was within the range of (10% - 90%) relative humidity unless indicated above.

### **Emissions Test Conditions: CONDUCTED EMISSIONS (Interference Voltage)**

The Conducted Emissions (Interference Voltage) measurements between 0.15 to 30 MHz were performed at the following test location:

### □ - Test not applicable

- □ Darby Test Site (Open Area Test Site)
- - Darby Laboratory

#### Test equipment used:

|     | Model Number    | Manufacturer       | Description        | Serial Number  |
|-----|-----------------|--------------------|--------------------|----------------|
| □ - | 8028-50         | Solar              | 50 Ω LISN          | 829012, 829022 |
| □ - | 8012            | Solar              | 50 Ω LISN          | 924840         |
| ■ - | EMC-30          | Electro-Metrics    | EMI Receiver       | 191            |
| □ - | 8566B           | Hewlett-Packard    | Spectrum Analyzer  | 2421A00526     |
| □ - | 85650A          | Hewlett-Packard    | Quasi-Peak Adapter | 2043A00209     |
| □ - | 85662A          | Hewlett Packard    | Analyzer Display   | 2403A07352     |
| □ - | 8028-50         | Solar              | 50 Ω LISN          | 903725, 903726 |
| □ - | FCC-TLISN-T4-02 | Fisher Custom Com. | Telecom ISN        | 20454          |
| □ - | FCC-TLISN-T8-02 | Fisher Custom Com. | Telecom ISN        | 20452          |
| ■ - | LI-125          | Com-Power          | 50 Ω LISN          | 191080/191081  |

### **Emissions Test Conditions: RADIATED EMISSIONS (Magnetic Field)**

The RADIATED EMISSIONS (MAGNETIC FIELD) measurements between 0.010 to 30 MHz were performed at the following test location:

□ -

### at a test distance of:

- □ 3 meters
- - 10 meters

### - Test not applicable

#### Test equipment used:

|     | 1 1          |                  |                      |               |
|-----|--------------|------------------|----------------------|---------------|
|     | Model Number | Manufacturer     | Description          | Serial Number |
| □ - | 3148         | EMCO             | Log Periodic Antenna | 00044783      |
| □ - | BIA-25       | Electro-Metrics  | Biconical Antenna    | 4283          |
| ■ - | 8566B        | Hewlett-Packard  | Spectrum Analyzer    | 2532A02418    |
| ■ - | 85662A       | Hewlett-Packard  | Analyzer Display     | 2403A07352    |
| ■ - | 85650A       | Hewlett-Packard  | Quasi-Peak Adapter   | 2043A00209    |
| ■ - | ALR-30M      | Electro-Metrics  | Loop Antenna         | 824           |
| ■ - | 8447D        | Hewlett Packard  | Preamplifier         | 2944A06901    |
| □ - | EMC-30       | Electro-Metrics  | EMI Receiver         | 191           |
| □ - | ALA-130/A    | Antenna Research | Loop Antenna         | 106           |
|     |              |                  |                      |               |

Test Report Number 14F119B

### **Emissions Test Conditions: RADIATED EMISSIONS (Electric Field)**

The RADIATED EMISSIONS (ELECTRIC FIELD) measurements, in the frequency range of 30 MHz-1000 MHz, were tested in a horizontal and vertical polarization at the following test location:

### □ - Test not applicable

- - Darby Site (Open Area Test Site)
- □ Darby Lab

□ -

#### at a test distance of:

- $\Box$  3 meters
- - 10 meters
- $\Box$  30 meters

#### Test equipment used:

|     | Model Number | Manufacturer    | Description             | Serial Number |
|-----|--------------|-----------------|-------------------------|---------------|
| □ - | HLP 3003C    | EMC Automation  | Hybrid Periodic Antenna | 017501        |
| ■ - | 8447D        | Hewlett-Packard | Preamplifier (26dB)     | 2944A06901    |
| ■ - | 8566B        | Hewlett-Packard | Spectrum Analyzer       | 2532A02418    |
| ■ - | 85662A       | Hewlett-Packard | Analyzer Display        | 2403A07352    |
| ■ - | 85650A       | Hewlett-Packard | Quasi-Peak Adapter      | 2043A00209    |
| □ - | BIA 25       | Electro-Metrics | Biconical Antenna       | 4283          |
| □ - | EMC-30       | Electro-Metrics | EMI Receiver            | 191           |
| □ - | 8566B        | Hewlett Packard | Spectrum Analyzer       | 2532A02418    |
| □ - | 85650A       | Hewlett Packard | Quasi-Peak Adapter      | 2043A00358    |
| □ - | 85662A       | Hewlett Packard | Analyzer Display        | 2403A06604    |
| □ - | LPA30        | Electro-Metrics | Log Periodic            | 2280          |
| ■ - | 3104C        | Emco            | Biconical Antenna       | 00075927      |
| ■ - | 3148         | ETS Lindgren    | Log Periodic Antenna    | 75741         |
|     |              |                 |                         |               |

### **Emissions Test Conditions): DISTURBANCE POWER**

The *Disturbance Power* measurements were performed by using the absorbing clamp on the mains and interface cables in the frequency range 30 MHz - 300 MHz at the following test location :

### ■ - Test not applicable

□ - Darby Lab

П-

### Test equipment used:

|     | Model Number | Manufacturer    | Description        | Serial Number |
|-----|--------------|-----------------|--------------------|---------------|
| □ - | MDS-21       | Rhode&Schwarz   | Absorbing Clamp    | 8608447020    |
| □ - | 8566B        | Hewlett-Packard | Spectrum Analyzer  | 2532A02418    |
| □ - | 85662A       | Hewlett-Packard | Analyzer Display   | 2403A07352    |
| □ - | 85650A       | Hewlett-Packard | Quasi-Peak Adapter | 2043A00358    |
| □ - | 8447D        | Hewlett-Packard | Amplifier (26 dB)  | 2944A06901    |

Test Report Number 14F119B

□ - EMC-30 Electro-Metrics EMI Receiver 191

The EQUIVALENT RADIATED EMISSIONS measurements in the frequency range 1 GHz - 2 GHz were performed in a horizontal and vertical polarization at the following test location:

| п. | Darby | Test | Site | (Open  | Area | Test | Site) |
|----|-------|------|------|--------|------|------|-------|
| ш- | Daiby | 1001 | SILC | (ODCII | Aica | 1001 | SHE   |

□ -

\_ -\_ -

#### at a test distance of:

- □ 1 meters
- $\Box$  3 meters
- $\Box$  10 meters

### ■ - Test not applicable

#### Test equipment used:

|     | Model Number | Manufacturer      | Description             | Serial Number |
|-----|--------------|-------------------|-------------------------|---------------|
| □ - | 8566B        | Hewlett-Packard   | Spectrum Analyzer       | 2532A02418    |
| □ - | 85662A       | Hewlett-Packard   | Analyzer Display        | 2403A07352    |
| □ - | 85650A       | Hewlett-Packard   | Quasi-Peak Adapter      | 2043A00209    |
| □ - | 8449B        | Hewlett-Packard   | Preamplifier            | 3008A00320    |
| □ - | 3115         | Electro-Mechanics | Double Ridge Guide Horn | 3810          |

Emissions Test Conditions): CONDUCTED EMISSIONS - TELECOMMUNICATIONS PORT measurements were performed in the frequency range 0.15 MHz - 30 MHz at the following test location:

### ■ - Test not applicable

□ - Darby Lab

□ -

#### Test equipment used:

|     | Model Number    | Manufacturer       | Description  | Serial Number |  |
|-----|-----------------|--------------------|--------------|---------------|--|
| □ - | EMC-30          | Electro-Metrics    | EMI Receiver | 191           |  |
| □ - | FCC-TLISN-T8-02 | Fischer Custom Com | T-LISN       | 20452         |  |
| □ - | FCC-TLISN-T4-02 | Fischer Custom Com | T_LISN       | 20454         |  |
|     |                 |                    |              |               |  |

□ -□ -

| Equipment Under Test (EUT) Test Operation Mode - Emission tests :                           |
|---------------------------------------------------------------------------------------------|
| The device under test was operated under the following conditions during emissions testing: |
| □ - Standby                                                                                 |
| □ - Test program (H - Pattern)                                                              |
| □ - Test program (color bar)                                                                |
| □ - Test program (customer specific)                                                        |
| ■ - Practice operation                                                                      |
| □ - Normal Operating Mode                                                                   |
|                                                                                             |
| Configuration of the device under test:                                                     |
| ■ - See System Under Test Information in Appendix B                                         |
|                                                                                             |
| Rationale for EUT setup / configuration:                                                    |
| ANSI C63.4:2003                                                                             |
|                                                                                             |
|                                                                                             |
|                                                                                             |
|                                                                                             |

### **Emission Test Results:**

| <b>Conducted emissions 1</b>                                                             | 50 kHz - 30 N   | 1Hz           |           |       |       |         |                 |  |
|------------------------------------------------------------------------------------------|-----------------|---------------|-----------|-------|-------|---------|-----------------|--|
| The requirements are                                                                     | JUNIE JUN       | 1112          | ■ - ME    | T     |       | □ - NOT | MET             |  |
| Minimum limit margin<br>MU: 5.3 dB                                                       |                 |               | 2.0       | dB    | at    | 13.54   | MHz             |  |
| Radiated emissions (magnetic field) 10 kHz - 30 MHz                                      |                 |               |           |       |       |         |                 |  |
| The requirements are                                                                     |                 |               | ■ - ME    | T     |       | □ - NOT | MET             |  |
| Minimum limit margin<br>MU: NA                                                           |                 |               | 12.8      | dB    | at    | 13.6    | MHz             |  |
| Radiated emissions (ele                                                                  | ectric field) 3 | 0 MHz - 10    | 00 MHz    |       |       |         |                 |  |
| The requirements are                                                                     |                 |               | ■ - ME    | T     |       | □ - NOT | MET             |  |
| Minimum limit margin<br>MU: 5.2 dB                                                       |                 |               | 0.1       | dB    | at    | 40.68   | MHz             |  |
| <b>Interference Power at</b>                                                             | the mains and   | l interface o | cables 30 | MHz - | 300 M | Hz      |                 |  |
| The requirements are                                                                     | ,               |               | □ - MF    | T     |       | □ - NOT | MET             |  |
| Minimum limit margin<br>MU: NA                                                           |                 |               |           | dB    |       | at      | MHz             |  |
| Radiated emissions                                                                       | 1 GHz -         | 2 GHz         |           |       |       |         |                 |  |
| The requirements are                                                                     |                 |               | □ - MF    | T     |       | □ - NOT | MET             |  |
| Minimum limit margin<br>MU: 4.9 dB                                                       |                 |               |           | dB    | 6.1   | at      | GHz <b>1.13</b> |  |
| Emissions Test Conditions): CONDUCTED EMISSIONS - TELECOMMUNICATIONS PORT 0.15 to 30 MHz |                 |               |           |       |       |         |                 |  |
| The requirements are                                                                     |                 |               | □ - M     | ET    |       | □ - NOT | MET             |  |
| Minimum limit margin<br>MU: NA                                                           |                 |               |           | dB    | 4.0   | at      | MHz <b>23.1</b> |  |

**MU = Measurement Uncertainty** 

#### **GENERAL REMARKS:**

Conducted emissions - Exploratory measurements are used to identify the frequency of the emission that has the highest amplitude relative to the limit by operating the EUT in a range of typical modes of operation, cable positions, and with a typical system equipment configuration and arrangement. For each mode of operation and for each ac power current-carrying conductor, cable manipulation is performed within the range of likely configurations. For this measurement or series of measurements, the frequency spectrum of interest is monitored looking for the emission that has the highest amplitude relative to the limit. Once that emission is found for each current-carrying conductor of each power cord associated with the EUT (but not the cords associated with non-EUT equipment in the overall system), the one and arrangement and mode of operation that produces the emission closest to the limit across all the measured conductors is recorded. Software used is Electro metrics OS-30-CAT ver 1.10

Radiated emissions - The equipment under test is oriented at (0) degrees azimuth with respect to the measuring antenna. The antenna is placed in the vertical polarity and the software performs an automated set of measurements across the frequency range of interest. When complete, a database of all signals labeled "suspects" is displayed and the test engineer manually investigates any signal that is within (15) dB of the limit. Those determined to be from the EUT are placed on a separate database labeled "finals" and those not from the EUT are placed in the ambient database. The EUT is then rotated (90) degrees and the process is repeated. Upon completion of (4) scans, the antenna polarity is changed to horizontal, the EUT orientation is set to (45) degrees and the process is repeated (4) additional times. After every scan, the final list is completed re-measured and updated for amplitude and polarity if higher in amplitude.

Once all (8) scans are complete, the highest (6) signals are re-measured by maximizing the amplitude with cable manipulation, antenna height and EUT azimuth. The final (6) six signals are included in the test report. Software used is HP 85870A Opt655/Rev A.02.01.

| SUMMARY:                                            |                              |
|-----------------------------------------------------|------------------------------|
| The requirements according to the techni-           | cal regulations are          |
| ■ - met                                             |                              |
| □ - <b>not</b> met.                                 |                              |
| The device under test does                          |                              |
| ■ - fulfill the general approval requireme          | ents mentioned on page 3.    |
| □ - <b>not</b> fulfill the general approval require | rements mentioned on page 3. |
| Testing Start Date                                  | 29 Sep 2014                  |
| Testing End Date:                                   | 13 Oct 2014                  |
| - PRODUCT SAFETY ENGINEERING INC                    | C-                           |





Test Report Number 14F119B





Test Report Number 14F119B

## **APPENDIX**

A

# **Test Equipment Calibration Information**

&

**Test Data Sheets** 

|                     | TEST EQUIPM                | LENT CALIBRATION INFORM       | <br>ATION           |              |
|---------------------|----------------------------|-------------------------------|---------------------|--------------|
|                     | 1231 24011 111             |                               |                     |              |
| Manufactirer        | Model                      | Description                   | Serial Number       | Cal Due *    |
| Hewlett Packard     | 8566B                      | Spectrum Analyzer             | 2421A00526          |              |
| Hewlett Packard     | 85662A                     | Display                       | 2151A03667          |              |
| Hewlett Packard     | 85650A                     | Quasi-peak Adapter            | 2043A00209          |              |
| Hewlett Packard     | 8566B                      | Spectrum Analyzer             | 2532A02418          | 11/5/2015    |
| Hewlett Packard     | 85662A                     | Display                       | 2403A07352          | 11/5/2015    |
| Hewlett Packard     | 85650A                     | Quasi-peak Adapter            | 2043A00358          | 11/5/2015    |
| Hewlett Packard     | 8447D                      | Preamp 0.1 - 1,000 MHz        | 2944A06832          | , , , , ,    |
| Hewlett Packard     | 8447D                      | Preamp 0.1 - 1,000 MHz        | 2944A06901          | 12/10/2014   |
| Hewlett Packard     | 8449B                      | Preamp 1 - 26.5 GHz           | 3008A00320          | , ,          |
| Hewlett Packard     | E7402A                     | Portable Spectrum Analyzer    | US40240204          |              |
| ETS Lindgren        | 3148                       | Log Periodic Antenna          | 75741               | ** 2/7/2016  |
| Electro-Metrics     | BIA-30                     | Biconical Antenna             | 3852                |              |
| EMCO                | 3104C                      | Biconical Antenna             | 75927               | ** 5/14/2016 |
| Electro-Metrics     | ALR30M                     | Magnetic Loop Antenna         | 824                 | ** 7/15/2015 |
| Electro-Metrics     | EMC-30                     | EMI Receiver                  | 191                 | 7/11/2015    |
| Electro-Metrics     | 3115                       | Double Ridge Guide Antenna    | 3810                |              |
| Solar               | 8028                       | LISN                          | 829012/809022       |              |
| Com-Power           | LI-125                     | LISN                          | 191080/191081       | 9/22/2015    |
| Schwartzbeck        | MDS-21                     | Absorbing Clamp               | 2581                |              |
| Fisher Custom       | FCC-TLISN-T4-02            | T LISN                        | 20454               |              |
| Fisher Custom       | FCC-TLISN-T8-02            | Fisher Custom                 | 20452               |              |
| ATM                 | 42-441-6                   | Stanard Gain Horn Antenna     | E531612-01          |              |
| Electro-Metrics     | 3117                       | Double Ridge Guide Antenna    | 109296              |              |
| Solar               | 7334-1                     | Loop Sensor                   | 32317               |              |
| Sun Systems         | EC127                      | Enviromental Chamber          | EC0154              |              |
| Fluke               | 52                         | Digital Thermometer           | 447553              |              |
|                     |                            | * Cal Due Date Format = MM/DD |                     |              |
| All equipment was o | I<br>:alibrated one year p | <u> </u>                      | otherwise indicated |              |
|                     | e on a (2) year calibra    |                               |                     |              |

### PRODUCT EMISSIONS

HP 85870A Rev. A.02.00 Data File: PCT W/RADIO CISA@10M 29SEPT2014

|    | EMISSION                                 | SPEC  | MEA  | SUREME | <br>NTS        |     | SITI | <br>E | CORR   |          |
|----|------------------------------------------|-------|------|--------|----------------|-----|------|-------|--------|----------|
| No | FREQUENCY                                | LIMIT | ABS  | dLIM   | MODE           | POL | HGT  | AZM   | FACTOR | COMMENTS |
|    | MHz                                      | dBu   | ıV/m | dВ     |                |     | cm   | deg   | dB     |          |
|    |                                          |       |      |        |                |     |      |       |        |          |
| 1  | 30.627<br>32.598<br>34.667               | 40.0  | 33.4 | -6.6   | PK             | v   | 125  | 225   | -18.6  |          |
| 2  | 32.598                                   | 40.0  | 32.7 | -7.3   | PK             | V   | 100  | 270   | -18.3  |          |
| 3  | 34.667                                   |       |      | -6.1   | PK             | V   | 100  | 270   | -17.9  |          |
| 4  | 39.992                                   |       | 33.2 |        |                |     |      |       | -17.   |          |
| 5  | 40.687                                   |       |      |        |                |     |      |       |        |          |
| 6  | 54.226                                   | 40.0  |      | -2.4   |                |     |      |       |        |          |
| 7  | 58.715                                   | 40.0  | 34.7 | -5.3   | PK             | v   | 100  | 180   | -18.7  |          |
| 8  | 69.001<br>71.974                         | 40.0  | 33.1 | -6.9   | PK<br>PK       | v   | 100  | 135   | -21.3  |          |
| 9  | 71.974                                   | 40.0  | 35.3 | -4.7   | PK             | v   | 125  | 225   |        |          |
| 10 | 74.008                                   |       | 33.5 | -6.5   | PK             |     |      |       | -21.7  |          |
| 11 | 77.552                                   |       | 36.8 | -3.2   | QP             |     |      |       |        |          |
| 12 | 83.100                                   | 40.0  | 37.5 | -2.5   | QP             |     |      |       |        |          |
| 13 | 86.059<br>87.180<br>99.999               | 40.0  | 34.0 | -6.0   | PK             | V   | 150  | 135   | -19.9  |          |
| 14 | 87.180                                   | 40.0  | 32.1 | -7.9   | PK<br>PK       | V   | 150  | 135   | -19.5  |          |
| 15 | 99.999                                   |       | 34.6 | -5.4   | PK             | V   | 100  | 90    | -16.6  |          |
| 16 |                                          |       | 36.8 |        | QP             |     |      |       |        |          |
| 17 | 110.817                                  |       | 39.2 |        | QP             |     |      |       |        |          |
| 18 | 116.300                                  |       |      |        | QP             |     |      |       |        |          |
| 19 | 121.792                                  | 40.0  | 37.0 | -3.0   | PK             | V   | 100  | 225   | -15.6  |          |
| 20 | 127.410<br>132.891                       | 40.0  | 35.2 | -4.9   | PK<br>PK       | H   | 300  | 135   | -15.9  |          |
| 21 | 132.891                                  | 40.0  | 36.0 | -4.0   | PK             | v   | 100  | 225   | -16.2  |          |
| 22 | 155.004                                  |       | 35.8 | -4.2   | PK             |     |      | 270   | -13.7  |          |
| 23 | 160.599                                  |       | 36.9 | -3.1   | QP             | V   | 100  | 180   | -12.5  |          |
| 24 | 166.133                                  | 40.0  | 36.5 | -3.5   | PK             |     |      |       |        |          |
| 25 | 188.159<br>199.352<br>199.967<br>202.634 | 40.0  | 36.9 | -3.1   | PK             | V   | 100  | 180   | -10.   |          |
| 26 | 199.352                                  | 40.0  | 33.3 | -6.7   | PK<br>PK<br>PK | v   | 100  | 135   | -11.1  |          |
| 27 | 199.967                                  | 40.0  | 35.4 | -4.6   | PK             | V   | 100  | 180   | -11.2  |          |
| 28 | 202.634                                  | 40.0  | 29.0 | -11.0  | PK             | H   | 250  | 315   | -16.   |          |
| 29 | 221.494                                  | 40.0  | 31.6 | -8.4   | PK             | v   | 150  | 135   | -15.5  |          |
| 30 | 232.567                                  | 47.0  | 39.3 | -7.7   | PK             | v   | 100  | 315   | -15.3  |          |
| 31 | 249.973                                  | 47.0  | 36.8 | -10.2  | PK             | H   | 300  | 135   | -14.9  |          |
| 32 | 354.362                                  | 47.0  | 30.8 | -16.2  | PK             | H   | 250  | 180   | -12.3  |          |
| 33 | 354.362<br>365.486<br>431.934            | 47.0  | 34.6 | -12.4  | PK             | H   | 200  | 180   | -12.3  |          |
| 34 | 431.934                                  | 47.0  | 32.2 | -14.8  | PK             | H   | 100  | 135   | -11.4  |          |
| 35 | 464.081                                  | 47.0  | 36.5 | -10.5  | PK             | V   | 100  | 270   | -10.5  |          |
|    |                                          |       |      |        |                |     |      |       |        |          |

### RADIATED DATA SHEET Equitrac PCT

| FCC Rule Part | Frequency Range<br>MHz | Limit<br>dBuV/M | Limit Dist meters | Measured Freq. (MHz) | Level<br>dBuV/M | Margin<br>dB |
|---------------|------------------------|-----------------|-------------------|----------------------|-----------------|--------------|
| 15.225 (a)    | 13.553 - 13.567        | 84              | 30                | 13.56                | 38.1            | 45.9         |
| 15.225 (b)    | 13.410 - 13.553        | 50.5            | 30                | 13.51                | 35.4            | 15.1         |
| 15.225 (b)    | 13.567 - 13.710        | 50.5            | 30                | 13.60                | 37.7            | 12.8         |
| 15.225 (c)    | 13.110 - 13.410        | 40.5            | 30                | 13.39                | 21.8            | 18.7         |
| 15.225 (c)    | 13.710 - 14.010        | 40.5            | 30                | 13.75                | 24.2            | 16.3         |
| 15.225 (d)    | 1.705 - 13.110         | 29.5            | 30                | 3.15                 | 7.6             | 21.9         |
| 15.225 (d)    | 14.010 - 30.0          | 29.5            | 30                | 27.12                | 13.9            | 15.6         |
| 15.225 (d)    | >30                    | 40.0            | 3                 | 40.68                | 39.9            | 0.1          |
| 15.225 (d)    | >30                    | 40.0            | 3                 | 54.23                | 34.0            | 6.0          |
| 15.225 (d)    | >30                    | 40.0            | 3                 | 67.80                | 32.0            | 8.0          |
| 15.225 (d)    | >30                    | 40.0            | 3                 | 81.36                | 32.8            | 7.2          |
| 15.225 (d)    | >30                    | 43.5            | 3                 | 94.92                | 35.1            | 8.4          |
| 15.225 (d)    | >30                    | 43.5            | 3                 | 108.49               | 33.4            | 10.1         |
| 15.225 (d)    | >30                    | 43.5            | 3                 | 122.04               | 30.0            | 13.5         |
| 15.225 (d)    | >30                    | 43.5            | 3                 | 135.6                | 26.6            | 16.9         |

Note: The same limits are stated in the RSS-210 (A2.6) for Canada.

### **EN 300 330 Per Table G.2**

|                        |                 | E11 300 330          | T CI Table 0.2          |                 |              |
|------------------------|-----------------|----------------------|-------------------------|-----------------|--------------|
| Frequency Range<br>MHz | Limit<br>dBuV/M | Limit Dist<br>meters | Measured Freq.<br>(MHz) | Level<br>dBuV/M | Margin<br>dB |
| 13.553 - 13.567        | 92.4            | 30                   | 13.56                   | 38.1            | 54.3         |
| 13.410 - 13.553        | 41.4            | 30                   | 13.51                   | 35.4            | 6.0          |
| 13.567 - 13.710        | 41.4            | 30                   | 13.60                   | 37.7            | 3.7          |
| 13.110 - 13.410        | 28.9            | 30                   | 13.39                   | 21.8            | 7.1          |
| 13.710 - 14.010        | 28.9            | 30                   | 13.75                   | 24.2            | 4.7          |
| 12.66 - 13.110         | 22.4            | 30                   | -                       | -               | 22.4         |
| 14.010 - 14.46         | 22.4            | 30                   | -                       | -               | 22.4         |
| 1.705 - 12.66          | 16.4            | 30                   | 3.15                    | 7.6             | 8.8          |
| 14.46 - 30.0           | 16.4            | 30                   | 27.12                   | 13.9            | 2.5          |

### EN 300 330-2 V1.5.1 Section 4 TECHNICAL REQUIREMENT SPECIFICATIONS

### 4.2.1.1 Permitted range of operating frequencies

The permitted range of operating frequencies shall not exceed the limits specified in clause 7.3.3 of EN 300 330-1 v1.7.1.

#### **7.3.3 Limits**

The permitted range of the modulation bandwidth shall be within the limits of the assigned frequency band.

<u>Compliance data - All measured emissions related to the (13.56) MHz radiator were within the 0.09 to 30 MHz band.</u>

### 4.2.1.2 Limits for transmitters in the range from 9 kHz to 30 MHz

The maximum radiated field strength and RF carrier current shall not exceed the limits specified in clause 7.2.1.3 of EN 300 330-1 v1.7.1.

#### 7.2.1.3 Limits

The limits presented in the present document are the required field strengths to allow satisfactory operation of inductive systems. The limit for a low level generic H-field strength is given in annexes G & H.

Compliance data - Not applicable

The maximum H-field strengths for certain frequency bands are given in table 5.

Compliance data - see table 5

The maximum RF carrier current shall not exceed the limits specified in clause 7.2.2.3 of EN 300 330-1 v1.7.1.

Compliance data - Not applicable

### 7.2.2.3 Limits

The limit for the <u>RF carrier current multiplied with the antenna area for</u> Product Class 3 Large size loop transmitters is given in table 5.

Compliance data - Not applicable

### 4.2.1.3 Limits for the permitted range of modulation bandwidth

The maximum range of modulation bandwidth shall not exceed the limits as specified in clause 7.4.3 of EN 300 330-1v1.7.1.

#### **7.4.3 Limits**

The permitted range of the modulation bandwidth shall be within the assigned frequency band see table 1 or  $\pm 7.5$  % of the carrier frequency whichever is the smallest. For RFID and EAS Systems, the permitted modulation bandwidth shall be within the transmitter emission boundary of figure G.1, respectively the spectrum mask of figure G.2.

Compliance data - see table G.2,

### 4.2.1.4 Transmitter spurious and out-of-band emissions

The transmitter unwanted emissions, i.e. spurious and out-of-band emissions, shall not exceed the limits specified in clauses 7.5.2.2, 7.5.2.4 or 7.5.3.2 and 7.5.4.2 of EN 300 330-1v1.7.1.

### 7.5.2 Conducted spurious emissions (Product class 3 only)

### 7.5.3 Radiated field strength - Magnetic Emissions

#### 7.5.3.2 Limits

The radiated field strength of the spurious domain emissions below 30 MHz shall not exceed the generated H-field dBµA/m at 10 m given in table below.

| State     | Frequency 9 kHz ≤ f < 10 MHz            | Frequency 10 MHz ≤ f < 30 MHz |
|-----------|-----------------------------------------|-------------------------------|
| Operating | 27 dBìA/m at 9 kHz descending 3 dB/oct  | -3,5 dBìA/m                   |
| Standby   | 5,5 dBìA/m at 9 kHz descending 3 dB/oct | -25 dBìA/m                    |

<u>Compliance data</u> - We measured one signal that was under (30) MHz at (27.12) MHz. The level measured at (10) meters was  $32.8 \ dBuV/m \ or (-18.7) \ dBuA/m$ . Margin = (15.2) dB.

### 7.5.4 Effective radiated power - Substitution Method

### 7.5.4.2 Limits

The power of any radiated emission shall not exceed the values given in table below

| State     | 47 MHz to 74 MHz 87,5 MHz to 118 MHz<br>174 MHz to 230 MHz 470 MHz to 862 MHz | Other frequencies between 30 MHz to 1 000 MHz |
|-----------|-------------------------------------------------------------------------------|-----------------------------------------------|
| Operating | 4 nW                                                                          | 250 nW                                        |
| Standby   | 2 nW                                                                          | 2 nW                                          |

<u>Compliance data</u> - See table below. There is no standby mode.

| Freq (MHz) | Limit (pw) | Measured (pw) |
|------------|------------|---------------|
| 40.68      | 250        | 2.9           |
| 54.24      | 4          | 0.75          |
| 67.8       | 4          | 0.48          |
| 81.36      | 250        | 0.57          |
| 94.9       | 4          | 0.97          |
| 108.5      | 4          | 0.66          |
| 122.0      | 250        | 0.3           |
| 135.6      | 250        | 0.14          |

| TABLE 5                                                              |                                                        |  |  |  |  |  |
|----------------------------------------------------------------------|--------------------------------------------------------|--|--|--|--|--|
| Frequency range (MHz)                                                | H-field strength limit (Hf) dBµA/m at 10 m             |  |  |  |  |  |
|                                                                      | 72 descending 3 dB/oct above 0,03 MHz or according to  |  |  |  |  |  |
| $0.009 \le f < 0.090$                                                | note 1 (see note 5)                                    |  |  |  |  |  |
| 0,09 ≤ f < 0,119                                                     | 42                                                     |  |  |  |  |  |
|                                                                      | 66 descending 3 dB/oct above 0,119 MHz or according to |  |  |  |  |  |
| $0,119 \le f < 0,135$                                                | note 1 (see notes 3 and 5)                             |  |  |  |  |  |
| $0,135 \le f < 0,140$                                                | 42                                                     |  |  |  |  |  |
| $0,140 \le f < 0,1485$                                               | 37,7                                                   |  |  |  |  |  |
| $0,1485 \le f < 30$                                                  | -5 (see note 4)                                        |  |  |  |  |  |
| 0,315 ≤ f < 0,600                                                    | -5                                                     |  |  |  |  |  |
| 3,155≤ f < 3,400                                                     | 13,5                                                   |  |  |  |  |  |
| 4,234                                                                | 9                                                      |  |  |  |  |  |
| 4,516                                                                | 7                                                      |  |  |  |  |  |
| $7,400 \le f < 8,800$                                                | 9                                                      |  |  |  |  |  |
| 10,2 ≤ f < 11,00                                                     | 9                                                      |  |  |  |  |  |
| 12,5 ≤ f ≤ □ 20                                                      | -7                                                     |  |  |  |  |  |
| $6,765 \le f \le 6,795 \ 13,553 \le f \le 13,567 \ 26,957 \le f \le$ | 42 (see note 3)                                        |  |  |  |  |  |
| 27,283                                                               |                                                        |  |  |  |  |  |
| 13,553 ≤ f ≤ 13,567                                                  | 60 (see notes 2 and 3)                                 |  |  |  |  |  |
| 27,095                                                               | 42                                                     |  |  |  |  |  |
|                                                                      |                                                        |  |  |  |  |  |
| NOTE 1: For the frequency ranges 9 kHz to 135 kHz, the               |                                                        |  |  |  |  |  |
| following additional restrictions apply to limits above 42           |                                                        |  |  |  |  |  |
| dBµA/m: -for loop coil antennas with an area ≥ 0,16 m2               |                                                        |  |  |  |  |  |
| table 5 applies directly; -for loop coil antennas with an            |                                                        |  |  |  |  |  |
| area between 0,05 m2 and 0,16 m2 table 5 applies with a              |                                                        |  |  |  |  |  |
| correction factor. The limit is: table value + 10 × log              |                                                        |  |  |  |  |  |
| (area/0,16 m2); -for loop coil antennas with an area <               |                                                        |  |  |  |  |  |
| 0,05 m2 the limit is 10 dB below table 5.                            |                                                        |  |  |  |  |  |
| NOTE 2: For RFID and EAS applications only.                          |                                                        |  |  |  |  |  |
| NOTE 3: Spectrum mask limit, see annex G.                            |                                                        |  |  |  |  |  |
| NOTE 4: For further information see annex H.                         |                                                        |  |  |  |  |  |
| NOTE 5: Limit is 42 dBµA/m for the following spot                    |                                                        |  |  |  |  |  |
| frequencies: 60 kHz ± 250 Hz, 66,6 kHz ± 750 Hz, 75                  |                                                        |  |  |  |  |  |
| kHz ± 250 Hz, 77,5 kHz ± 250 Hz, and 129,1 kHz ± 500                 |                                                        |  |  |  |  |  |
| Hz.                                                                  |                                                        |  |  |  |  |  |
| · ·=·                                                                |                                                        |  |  |  |  |  |



Figure G.2: Spectrum mask limit for RFIDs and EAS in the 6,78 MHz and 13,56 MHz range



TEST TITLE: EQUITRAC | PAGE 1
DATA FILE: 14129\_1.D30 | Freq. (MHz)
Amplitude Units: dBuV Threshold -8 dB | 0.1500

| <br> | Freq(MHz) |  | A mp |  | C22AQP. S30<br>Spec(dB) | C22AAVG. S30 <br>vs Spec(dB) |
|------|-----------|--|------|--|-------------------------|------------------------------|
|      | 13.5356   |  | 56.0 |  | <br>                    | -4.000 *                     |



TEST TITLE: EQUITRAC | PAGE 1 | Freq. (MHz) | Amplitude Units: dBuV | Threshold -8 dB | 0.1500

|  | Freq(MHz) |  | A mp  |  | C22AQP. S30<br>Spec(dB) | 22AAVG. S30 <br>Spec(dB) |
|--|-----------|--|-------|--|-------------------------|--------------------------|
|  | 13.5356   |  | 56. 0 |  | <br>                    | <br>-4.000 *             |

### 30.000 **ANTENNA FACTORS** 1) Default Spec (same as V885) 2) Default Spec (same as V885) 3) FILES T4-8.F30 E-M 0THER SPECS 4 Detector QuasiPeak EMC-30 SETTINGS Dump/DwellN/A RF Atten. 10 dB IF Atten. 10 dB Bandwidth CISPR N Σ Frequency 14:58:48.26 Sensor Loc. : ETHERNET Test Equip. :EMC-30 Ext. Atten. :0 dB Test Number :1 Sensor Pol. : Product Safety Engineering Test Method : EN55022 CLASS A 230 VAC / 50 HZ Technician : CHIP FOERSTNER 09/30/14 Mode of Op. : NORMAL 100 0.150 Serial No. : Equipment : 9 8 7 0 **S** 4 80 () (0) 4 Ø Comment : EQUITRAC Date : <del>s</del>butilqmA 4B0V

TEST TITLE: EQUITRAC | PAGE 1
DATA FILE : 14129\_E. D30 | Freq. (MHz)
Amplitude Units : dBuV Threshold 7 dB | 0.1500

| <br> | Freq(MHz) | A mp | ETHAQP. S30<br>vs Spec(dB) | ETHAAVG. S30 <br>vs Spec(dB) |
|------|-----------|------|----------------------------|------------------------------|
|      | 13.5390   | 85.0 | I I                        | 11.000 *                     |

### 14.000 **ANTENNA FACTORS** FILES 1) Default Spec (same as V885) 2) Default Spec (same as V885) 3) TH-8.F30 E-M 0THER SPECS Detector Average EMC-30 SETTINGS Dump/DwellN/A RF Atten. 10 dB IF Atten, 10 dB Bandwidth CISPR Frequency MHX 15:29:42.71 Sensor Loc. : ETHERNET Test Equip. : EMC-30 Ext. Atten. :0 dB Test Number :1 Sensor Pol. : Product Safety Engineering Test Method : EN55022 CLASS A 230 VAC / 50 HZ Technician : CHIP FOERSTNER 09/30/14 Mode of Op. : NORMAL 100 13.000 Equipment : Serial No. : 9 4 Q 8 7 0 80 () (0) 4 N Q Ø Comment : EQUITRAC Date : <del>s</del>butilqmA 4B0V

TEST TITLE: EQUITRAC | PAGE 1
DATA FILE : 14129\_EA. D30 | Freq. (MHz)
Amplitude Units : dBuV Threshold -8 dB | 13.0000

| <br>  Freq(MHz) | Amp  | ETHAQP. S30 vs Spec(dB) | ETHAAVG. S30 <br>vs Spec(dB) |
|-----------------|------|-------------------------|------------------------------|
| 13.5396         | 70.0 |                         | -4.000 *                     |
| 13.5429         | 69.0 |                         | -5.000 *                     |
| 13.5463         | 66.0 |                         | -8.000 *                     |



TEST TITLE: EQUITRAC | PAGE 1 | Freq. (MHz) | Amplitude Units: dBuV | Threshold -8 dB | 0.1500

|  | Freq(MHz) | A mp  |  | C22AQP. S30<br>Spec(dB) | C22AAVG. S30 <br>vs Spec(dB) |
|--|-----------|-------|--|-------------------------|------------------------------|
|  | 13.5356   | 58. 0 |  | <u> </u>                | -2.000 *                     |



TEST TITLE: EQUITRAC | PAGE 1 | Freq. (MHz) | Amplitude Units: dBuV | Threshold -8 dB | 0.1500

|  | Freq(MHz) | A mp  |  | C22AQP. S30<br>Spec(dB) | C22AAVG. S30 <br>vs Spec(dB) |
|--|-----------|-------|--|-------------------------|------------------------------|
|  | 13.5356   | 58. 0 |  | <u> </u>                | -2.000 *                     |

## **APPENDIX**

B

# **System Under Test Description**

### **SYSTEM COMPONENTS**

\*\*\*\*\*\*\*\*

| DEVICE TYPE: EUT, PCT with CUI Power Supply P/N: 593-0005                                                               |
|-------------------------------------------------------------------------------------------------------------------------|
| **************************************                                                                                  |
| **************************************                                                                                  |
| **************************************                                                                                  |
| ***************************************                                                                                 |
| INTERFACE CABLES ************************************                                                                   |
| DEVICE TYPE: EUT SHIELD: Yes LENGTH: 4 meters CONNECTOR TYPE: Dsub 26 pin to unterminated molex type PORT: Copy Control |
| DEVICE TYPE: KB (2X) SHIELD: Yes LENGTH: 1 meter CONNECTOR TYPE: USB ferrites PORT: USB on back                         |
| DEVICE TYPE: Mouse SHIELD: Yes LENGTH: 2 meters CONNECTOR TYPE: USB PORT: USB on side                                   |
| DEVICE TYPE: EUT (2X) SHIELD: No LENGTH: 10 feet CONNECTOR TYPE: RJ 45 PORT: Laptop and router                          |
| $\rho \sigma$                                                                                                           |

Page B2 of 3

### **AC LINE CORDS**

\*\*\*\*\*\*

DEVICE TYPE: Power supply plug in type (DC side)

SHIELD: No

LENGTH: 8 feet ferrite

CONNECTOR TYPE: miniplug

## **APPENDIX**

**C** 

# **Environmental Testing**

### **FCC DATA SHEET**

#### Frequency tolerance §15.225

(e) The frequency tolerance of the carrier signal shall be maintained within +/-0.01% of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.

| Temperature | Frequency (Hz) | Tolerance                     |
|-------------|----------------|-------------------------------|
| -20 C       | 13,557,433     | 13,557,740 -13,557,600 = 307  |
| + 50 C      | 13,558,024     | 13,557,740 -13,558,120 = -284 |
| + 20 C      | 13,557,740     | 0.0001 X 13,557,740 = 1,356   |

The supply voltage to the host computer was varied from (102) to (138) VAC while we monitored the frequency. The frequency did not change during this voltage variation.

#### **PASS**

(f) In the case of radio frequency powered tags designed to operate with a device authorized under this section, the tag may be approved with the device or be considered as a separate device subject to its own authorization. Powered tags approved with a device under a single application shall be labeled with the same identification number as the device.

#### **NOT APPLICABLE**

