ALGEBRA 2 PROBLEM SET 16

DUE DATE: NOVEMBER 7, 2023

Recall that we use the symbol $i = \sqrt{-1}$ with the understanding that $i^2 = -1$.

Question 1. Simplify each of the following in to a + bi form.

(a)
$$(1+i)^2$$

(b)
$$(2i-2)-(-1+i)$$

(c)
$$(2+i)(3+i)$$

(d)
$$\frac{2+i}{3-i}$$

(a)
$$x + yi = 3i - 4$$

$$x=-4$$

(b)
$$x + yi = -7 + 2i$$

(c)
$$x + yi = 0$$

$$(x + yi)^{2} = 2i$$

Question 2. Assuming that
$$x$$
 and y are real numbers, solve for x and y in each equation:

(a) $x + yi = 3i - 4$

(b) $x + yi = -7 + 2i$

(c) $x + yi = 0$

(d) $x + yi = (1 - i)^2$

(1 - i) $(1 - i) = 1$

Question 3. Solve for all x that satisfy the equation (real or complex)

(f)
$$\frac{(x+yi)(2-i)}{(2-i)} = \frac{8+i}{2-i}$$

Question 3. Solve for all x that satisfy the equation (real or complex)

$$x+yi = \frac{8ti}{2-i} \left(\frac{2+i}{2+i}\right) = \frac{(8ti)\cdot(2+i)}{2^2-i-1}$$

$$= \frac{16-1}{5} + \frac{10}{5}i = 5$$

$$= \frac{3+2i}{5}$$

(a)
$$x^2 - 10x + 29 = 0$$

(b)
$$22x^2 + 5 = 6x$$

(c)
$$x^2 + 14x + 50 = 0$$

(d)
$$2x^2 + 9 = 0$$

(ath) $a^2 + 2ab + b^2$

Question 4. Let $f(x) = 3x^2 + 2ix + i$. Compute $f(2+i)$

 $3(2+i)^2 + 2i(2+i) + i$ $3(4+4i+i^2) + 4i+2i^2+i$ Question 5. Recall that $a^3 = aaa$. Using the fact that $i^2 = -1$, compute each of the following, and plot them on the complex plane (you should see a pattern!)

(a) 1
$$3(3+4i)+5i-2$$

(b) i
(c) $i^2 = -($ $9+12i+5i-2 = (7+17i)$

(e)
$$i^2$$
 i^5

(h)
$$i^7$$

(i) i^8

rotars