Polynomial Uniqueness via Tournaments

Dave Fetterman

Obviously Unemployed

2/10/23

Abstract

In 2D space, two points $(x_1, y_1), (x_2, y_2), x_1 \neq x_2$ define a line, a polynomial of degree 1. Three distinct points $(x_1, y_1), (x_2, y_2), (x_3, y_3)x_1 \neq x_2 \neq x_3 \neq x_1$ define a parabola, a polynomial of degree 2. In general, for finite univariate polynomials of nonnegative, whole degree, n + 1 such points uniquely specify a polynomial of degree n. Why?

This is not a new result. This is a paper is simply a thoroughly awkward trip through a few mathematical domains to arrive at a well known destination. Helicopters and cars both have their uses. But you wouldn't build a car by turning a helicopter on its side and adding wheels.

Metaphorically, I do, so you don't have to.

1 Setup

If we have points $f(x_0) = y_0, f(x_1) = y_1, \dots f(x_n) = y_n$, how can we determine the coefficients a_i of the polynomial $f(x) = a_0 x^0 + a_1 x^1 + \dots + a_n x^n$?

This square matrix of width n+1, which I'll denote X_n , is known as a Vandermonde matrix[1], and models this set of n+1 equations as $X \cdot \vec{a} = \vec{y}$:

$$\begin{bmatrix} 1 & x_0 & x_0^2 & \dots & x_0^n \\ 1 & x_1 & x_1^2 & \dots & x_1^n \\ \vdots & & & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^n \end{bmatrix} \cdot \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \\ \vdots \\ y_n \end{bmatrix}$$

Therefore, we can find our unique coefficient vector A if and only if we can solve $X \cdot \vec{a} = \vec{y}$, or $\vec{a} = X^{-1}\vec{y}$. This has a unique solution if and only if $\det(X) \neq 0$. The rest of this paper tries to find this determinant through all the wrong ways.

2 Finding the Vandermonde determinant

It should be noted that there are other, clearer methods of finding this determinant[1] either starting with polynomial unqueness (basically, going the "other" direction), abstract algebra, direct linear algebra, vector maps, and likely others. These, however, were not the ones I stumbled on.

First, we know that if any $x_i = x_j$ for distinct i, j, we have no solution, and a zero determinant. If $f(x_i) = f(x_j)$, $x_i = x_j$, then we are simply underdetermined (not enough points for a unique polynomial). If $f(x_i) = f(x_j)$, $x_i \neq x_j$, then we have a impossible vertical section of our graph. Otherwise, we are in good shape.

This suggests that every pair (x_i, x_j) , i < j corresponds to a factor $(x_j - x_i)$ in the determinant, and that the determinant is then some multiple of $D = \prod_{0 \le i \le j \le n} (x_j - x_i)$.

Taking n=2 as a base case (n=1 produces a boring constant f(x)), we see that $\det \begin{bmatrix} 1 & x_0 \\ 1 & x_1 \end{bmatrix} = (x_1 - x_0)$, suggesting the determinant of a Vandermonde matrix is exactly D.

Theorem: The determinant of an X_n with generating coefficients $x_0, x_1...x_n$ is $\prod_{0 \le i < j \le n} (x_j - x_i)$.

With the base case n=2 in hand, the rest of the paper handles the inductive step of proving the main theorem.

Inductive Step of Proof of Theorem: $If det(X_n) = \prod_{0 \le i < j \le n} (x_j - x_i)$ for all X_n , then $det(X_{n+1}) = \prod_{0 \le n \le n} (x_n - x_n)$

I will do this in the most roundabout way possible.

2.1 Setup: Vandermonde inductive step and main theorem

2.1.1 Definitions

Let's create a few definitions:

- Denote by $M_{n,k}$ the Vandermonde matrix X_n with row k and last column excluded, often called a "matrix minor".
- Given an ordered set of indices I = [0, n], denote by P_I the product of all factors the form $(x_j x_i)$, given i < j and $i, j \in I$. So $P_{[0,2]} = (x_1 x_0)(x_2 x_0)(x_2 x_1)$.
- Given an ordered set of indices I = [0, n], denote by S_I the sum over all n+1-sized permutations σ on I, of all terms of form $sgn(\sigma)x_{\sigma(n)}^nx_{\sigma(n-1)}^{n-1}...x_{\sigma(0)}^0$. So $S_{[0,2]} = x_2^2x_1^1x_0^0 x_2^2x_0^1x_1^0 x_1^2x_2^1x_0^0 + x_1^2x_0^1x_2^0 + x_0^2x_2^1x_1^0 x_0^2x_1^1x_2^0$.

The rest of the proof of the inductive step above follows from showing:

TODO: Make sure I have the exponents right for the minor-based determinant formula.

- (1) $det(X_n) = \sum_{k=0}^{n} (-1)^k x_k^n \det(M_{n,k})$
- (2) For our base base, $det(X_2) = P_{[0,1]}$
- (3) By inductive hypothesis $det(X_n) = \sum_{k=0}^n (-1)^k x_k^n P_{[0,n]-\{k\}}$
- $(4) \sum_{k=0}^{n} (-1)^k x_k^n P_{[0,n]-\{k\}} = S_{[0,n]}$
- Lemma: For a set of indices I, $P_I = S_I$.
- Therefore, transitively, $det(X_n) = P_{[0,n]}$.

NOTE: TODO - There is an order problem here. (1) is shown readily.

The determinant of
$$X = \begin{bmatrix} 1 & x_0 & x_0^2 & \dots & x_0^n \\ 1 & x_1 & x_1^2 & \dots & x_1^n \\ \vdots & & & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^n \end{bmatrix}$$
 can be calculated down the rightmost

column as

$$\det(X) = x_0^n \det(M_{n,0}) - x_1^n \det(M_{n,1}) + \dots + (-1)^n x^n \det(M_{n,n}).$$

(2) is clear, with
$$\det\begin{pmatrix} 1 & x_0^1 \\ 1 & x_1^1 \end{pmatrix} = -1 \cdot (1 * M_{2,1} - 1 * M_{2,0}) = (x_1 - x_0) = P_{[0,1]}.$$

- (3) says inductively, we can presuppose that for any $M_{n,k}$, which is itself a Vandermonde matrix, $\det(M_{n,k})$ can be expressed as $P_{[0,n]-\{k\}}$
- (4) Assuming the theorem true, the above bullet sequence should be clear with some checking. On $\{c,b,a\}$, for example, the terms split out exactly into $c^2(b^1a^0-b^0a^1)-b^2(c^1a^0-a^1c^0)+a^2(c^1b^0-b^1c^0)=c^2b^1a^0-c^2a^0b^1-b^2c^1a^0+b^2a^1c^0+a^2c^1b^0-a^2b^1c^0$

2.2 Proof of the main theorem

Base Case: We've shown this is true for $n=2 \Rightarrow S_{[0,1]}=(x_1^1x_0^0-x_0^1x_1^0)$. So our inductive step supposes that all terms of (3) for ranges [0,n-1] are of the form $sgn(\sigma)x_{\sigma(n-1)}^{n-1}x_{\sigma(n-2)}^{n-2}...x_{\sigma(0)}^0$ for some permutation σ on the node set [0,n-1].

The proof that $S_{[0,n]} = \prod_{0 \le i < j \le n} (x_j - x_i)$ requires adding a new node x_{n+1} to the left side and a multiplying new set of factors $\prod_{0 \le i < \le n} (x_{n+1} - x_i)$ by the right side and showing they are equal.

- Lemma 1: Show an isomorphism between products of the form (3) and tournament graphs on n+1 nodes.
- Lemma 2: Show that terms of the form $sgn(\sigma)x_{\sigma(n)}^nx_{\sigma(n-1)}^{n-1}...x_{\sigma(0)}^0$ remain in (3) after expansion. These correspond to acyclic tournaments on n+1 nodes.
- Lemma 3: Show that all other terms in the expansion of (3), which correspond to tournaments with a cycle, can be paired 1:1 with a identical but inverted term, corresponding to an identical graph with *one 3-cycle reversed*.
- Thus, the sum of the terms addressed

3 Prove: VanDerMonde matrix determinant is prod $(x_i - x_j), 1 \le i < j \le n$

This is the determinant of the van der modne matrix

3.1 Base cane: n = 2

3.2 Inductive case

This equals x^n (product without x), $+y^n$ (product without y)...

4 Pieceyard

By inductive hypothesis, each of the terms $x_k^n \det(M_{n,k})$ becomes:

$$x_k^n \prod_{0 \le i < j \le n; i \ne k, j \ne k} (x_j - x_i)$$
 or $x_k^n \prod_{0 \le i < j \le n; i, j \in I_{n-k}} (x_j - x_i)$

Therefore, we need to prove that $0 \neq \det(X)$

$$= \sum_{k=0}^{n} (-1)^k x_k^n \det(M_{n,k})$$
 (1)

$$= \sum_{k=0}^{n} (-1)^{k} x_{k}^{n} \left[\prod_{0 \le i < j \le n; i, j \in [0, n] - \{k\}} (x_{j} - x_{i}) \right]$$
 (2)

$$= \prod_{0 \le i < j \le n; i, j \in [0, n]} (x_j - x_i)$$
 (3)

(1) is a determinant expansion. The det term equals the bracketed term of (2) by inductive hypothesis.

(a) An arbitrary tournament on 4 nodes

(b) An (acyclic) tournament $d^3c^2b^1a^0$

Figure 1: Tournaments

We seek to prove this main theorem:

Theorem: The expansion of (3) is exactly the sum of all possible terms of the form $sgn(\sigma)x_{\sigma(n-1)}^{n-1}x_{\sigma(n-2)}^{n-2}...x_{\sigma(0)}^{0}$ for some permutation σ on the node set [0,n-1]. Call this $S_{[0,n]}$. So, for example $S_{\{d,c,b,a\}}$, would be exactly all terms like $d^3c^2b^1a^0$, $-c^3d^2b^1a^0$ or $-c^3a^2d^1b^0$.

If we have this theorem proven, then:

- For n=2, the determinant of X_2 is $1 \cdot x_1 1 \cdot x_0 = (x_1^1 x_0^0 x_0^1 x_1^0) = S_{[0,1]}$
- By inductive hypothesis, the expansion of the bracketed term of (2), $S_{[0,n]-\{k\}}$ yields the same set of sums except each sum excludes all use of x_k .
- The sum of all terms $(-1)^k x_k^n S_{[0,n]-k}$ is exactly $S_{[0,n]}$, meaning (3).
- Therefore, (2) = (3) and we have our Vandermonde determinant (and thus our proof of polynomial uniquenss).

The sorted tournament $d^3c^2b^1a^0$

Figure 2: Terms in expanded $\prod (x_j - x_i)$ are inverses with inverted 3-cycles

The sorted tournament $x^4d^3c^2b^1a^0$

Factors of (x-a)(x-b)(x-c)(x-d) multiplied by $\sigma = d^3c^2b^1a^0$

Factor	Product	Matching Factor	Matching σ	Critical pair
x^4	$x^4d^3c^2b^1a^0$	none	none	none
$-x^3a$	$-x^3d^3c^2b^1a^1$	$-x^3b$	$-d^3c^2a^1b^0$	ba
$-x^3b$	$-x^3d^3c^2b^2a^0$	$-x^3c$	$-d^3b^2c^1a^0$	cb
$-x^3c$	$-x^3d^3c^3b^1a^0$	$-x^3d$	$-c^3d^2b^1a^0$	dc
$-x^3d$	$-x^3d^4c^2b^1a^0$	none	none	none
x^2ba	$x^2d^3c^2b^2a^1$	x^2ca	$-d^3b^2c^1a^0$	cb
x^2ca	$x^2d^3c^3b^1a^1$	x^2da	$-c^3d^2b^1a^0$	dc
x^2da	$x^2d^4c^2b^1a^1$	x^2db	$-d^3c^2a^1b^0$	ba
x^2cb	$x^2d^3c^3b^2a^0$	x^2db	$-c^3d^2b^1a^0$	dc
x^2db	$x^2d^4c^2b^2a^0$	x^2dc	$-d^3b^2c^1a^0$	dc
x^2dc	$x^2d^4c^3b^1a^0$	none	none	none
-xcba	$-xd^3c^3b^2a^1$	-xdba	$-c^3d^2b^1a^0$	dc
-xdba	$-xd^4c^2b^2a^1$	-xcba	$-d^3b^2c^1a^0$	cb
-xdca	$-xd^4c^3b^1a^1$	-xdcb	$-d^3c^2a^1b^0$	ba
-xdcb	$-xd^4c^3b^2a^0$	none	none	none
dcba	$d^4c^3b^2a^1$	none	none	none

5 TODO

5.1 TODO

References

 $[1] \ \ Wikipedia: \ {\tt https://en.wikipedia.org/wiki/Vandermonde_matrix}$