1-2-3 Domneva

Gašper Domen Romih

12. april 2020

1/27

- Osnovne definicije
- 2 1-2-3 Domneva
 - Zgodovinski okvir
 - ullet Izračun μ za poti
 - ullet Izračun μ za cikle

Graf

Graf G je urejen par (V,E), kjer je množica V množice vozlišč in $E\subset V^2$ množice povezav.

Barvanje grafa

Barvanje grafa G=(V,E) je preslikava $c:V\to S$. Množici S rečemo množica barv. Rečemo, da je barvanje **pravilno**, če za vsak $uv\in E$ velja $c(u)\neq c(v)$.

Utežitev grafa

Utežitev grafa je preslikava $\omega: E \to W$. V kolikor je množica uteži W oblike $\{1, 2, \ldots, k\}$ rečemo, da je preslikava ω k-utežitev grafa G.

Od utežitve do barvanja

Barvanje grafa z k-utežitvijo

Naj bo ω neka k-utežitev grafa G. Sedaj definiramo preslikavo $c_\omega:V\to S$ na naslednji način:

$$c_{\omega}(u) = \sum_{e=uv \in E} \omega(e).$$

Slika: Primer 3-utežitve, ki porodi pravilno 3-barvanje.

Označimo z $\mu(G)$ najmanjši tak k za katerega obstaja k-utežitev ω grafa G, ki inducira pravilno barvanje c_{ω} .

1-2-3 Domneva

Za vsak povezan graf G, ki ni K_2 je $\mu(G) \leq 3$.

- Leta 2004 zastavljena domneva.
- Leta 2007 dokazano $\mu(G) \leq 30$.
- Leta 2008 dokazano $\mu(G) \leq 16$.
- Leta 2008 dokazano $\mu(G) \leq 13$.
- Leta 2009 $\mu(G) \leq 6$.
- Leta 2010 $\mu(G) \le 5$. To je do sedaj tudi najboljši rezultat za splošne grafe.

Opomba

Kljub temu, da je trenutno najboljša zgornja $\mu(G) \leq 5$ je za veliko zananih družin grafov dokazano $\mu(G) \leq 3$.

Nekaj metod in pristopov k domnevi:

ullet Iskanje čim nižje meje za μ za splošne grafe.

- ullet Iskanje čim nižje meje za μ za splošne grafe.
- Pokažemo, da domneva velja ob dodatnih pogojih oziroma za posebne družine grafov (C_n , K_n , dvodelni grafi, 3-obarljivi, ...)

- ullet Iskanje čim nižje meje za μ za splošne grafe.
- Pokažemo, da domneva velja ob dodatnih pogojih oziroma za posebne družine grafov (C_n , K_n , dvodelni grafi, 3-obarljivi, ...)
- Regularni in iregularni grafi?

- ullet Iskanje čim nižje meje za μ za splošne grafe.
- Pokažemo, da domneva velja ob dodatnih pogojih oziroma za posebne družine grafov (C_n , K_n , dvodelni grafi, 3-obarljivi, ...)
- Regularni in iregularni grafi ?
- Verjetnostne metode

- ullet Iskanje čim nižje meje za μ za splošne grafe.
- Pokažemo, da domneva velja ob dodatnih pogojih oziroma za posebne družine grafov (C_n , K_n , dvodelni grafi, 3-obarljivi, ...)
- Regularni in iregularni grafi ?
- Verjetnostne metode
- Razne izpeljanke

$\mu(P_n)$ za n < 3

V primeru n=2 imamo graf K_n zato obravnavamo primere ko $n\geq 3$. Posebaj si oglejmo še primer ko n=3. V tem primeru utežimo povezavi z 1 in dobimo pravilno barvanje iz česar sledi $\mu(P_3) = 1$.

8 / 27

$$\mu(P_n)$$
 za $n > 3$

Najprej oštevilčimo povezave kot $e_1, e_2, \ldots, e_{n-1}$, kjer $e_i = v_i v_{i+1}$ za $1 \le i \le n$.

$\mu(P_n)$ za n > 3

Najprej oštevilčimo povezave kot $e_1, e_2, \ldots, e_{n-1}$, kjer $e_i = v_i v_{i+1}$ za 1 < i < n.

Pogoj za pravilno barvanje

Utežitev povezav ω inducira pravilno barvanje P_n natanko tedaj ko $\omega(e_i) \neq \omega(e_i)$ za vsak |j-i|=2.

$\mu(P_n)$ za n > 3

Najprej oštevilčimo povezave kot $e_1, e_2, \ldots, e_{n-1}$, kjer $e_i = v_i v_{i+1}$ za 1 < i < n.

Pogoj za pravilno barvanje

Utežitev povezav ω inducira pravilno barvanje P_n natanko tedaj ko $\omega(e_i) \neq \omega(e_i)$ za vsak |j-i|=2.

9/27

Ugotovitve za P_n

Utežitev ω za P_n

$$\omega(e_i) = \begin{cases} 1 & i \equiv 1, 2 \pmod{4} \\ 2 & i \equiv 3, 4 \pmod{4} \end{cases}$$

Ugotovitve za P_n

Utežitev ω za P_n

$$\omega(e_i) = \begin{cases} 1 & i \equiv 1, 2 \pmod{4} \\ 2 & i \equiv 3, 4 \pmod{4} \end{cases}$$

• Našli smo 2-utežitev, ki porodi pravilno barvanje $\implies \mu(P_n) = 2$.

Gašper Domen Romih

Ugotovitve za P_n

Utežitev ω za P_n

$$\omega(e_i) = \begin{cases} 1 & i \equiv 1, 2 \pmod{4} \\ 2 & i \equiv 3, 4 \pmod{4} \end{cases}$$

- Našli smo 2-utežitev, ki porodi pravilno barvanje $\implies \mu(P_n) = 2$.
- Zaporedje uteži na povezavah je 11221...22112, lahko pa bi definicijo utežitve popravili z naprimer levim zamikom zgornjega zaporedja. To so tudi vse možne pravilne 2-utežitve poti.

Osnovna ideja za izračun $\mu(C_n)$

Ideja

Cikel je pot, ki ji dodamo povezavo e_n med prvim in zadnjih vozliščem. Pogoj za pravilno barvanje poti velja tudi za cikle . Poizkusili bomo modificirati obstoječo utežitev za poti, tako da boveljavna tudi za cikle.

Slika: Na primeru C_3 vidimo, $\mu(C_3) = 3$, saj morajo zaradi pogoja uteži na povezavah biti paroma različne.

- 4 ロ ト 4 週 ト 4 夏 ト 4 夏 ト 9 Q Q

$\mu(C_n)$ za n=4k

Vzamemo kar enako utežitev kot za pot, z dodatkom $\omega(e_n)=2$.

Slika: Kot je razvidno iz slike zgornja utežitev porodi pravilno barvanje. Na povezavo e_n (označena rdeče) tako vplivata le povezavi e_2 in e_{n-2} (označena zeleno). Iz tega sledi $\mu(c_{4k}) = 2$.

Gašper Domen Romih

$$\mu(C_n)$$
 za $n=4k+1$

Ponovno vzamemo utežitev za pot ter dodamo $\mu(e_n) = 3$.

Slika: Kot je razvidno iz slike zgornja utežitev porodi pravilno barvanje. Nova povezava sedaj zaradi omejitev ne more imeti uteži 1 ali 2. Utež 3 na povezavi e_n tako porodi pravilno barvanje iz česar sledi $\mu(C_{4k+1}) \leq 3$.

$$\mu(C_n)$$
 za $n=4k+2$

Poleg povezave e_n moramo v tem primeru popravit tudi e_{n-1} .

Slika: Kot v prjšnjem primer moramo nastavit utež na povezavi e_n na 3. Ker ima povezava e_1 enako utež kot e_{n-1} popravimo še utež na tej povezavi na 3.

◆ロト ◆問ト ◆注ト ◆注ト 注 りくぐ

Gašper Domen Romih

$$\mu(C_n)$$
 za $n = 4k + 3$

V tem primeru moramo prav tako popravit uteži na dveh povezavah. Deluje kar isti popravek kot v prejšnjem primeru.

Slika: Na enak način kot v prejšnjem primeru dobimo pravilno barvanje.

◆□▶ ◆□▶ ◆■▶ ◆■▶ ● 夕久○

15 / 27

Gašper Domen Romih 1-2-3 Domneva 12. april 2020

Ugotovitve za C_n

Ugotovili smo, da $\mu(\mathcal{C}_n) \leq 3$ za vsak n. Pokazali bomo še, da je ta meja tudi stroga za $n \neq 4k$. Recimo nasprotno torej, da imamo 2-utežitev cikla, ki porodi pravilno barvanje. Veljati mora torej $\omega(e_i) \neq \omega(e_{i+2})$ iz česar sledi $\omega(e_i) = \omega(e_{i+4})$. To pa je protislovje ko $n \neq 4k$.

Ugotovitve za C_n

Ugotovili smo, da $\mu(C_n) \leq 3$ za vsak n. Pokazali bomo še, da je ta meja tudi stroga za $n \neq 4k$. Recimo nasprotno torej, da imamo 2-utežitev cikla, ki porodi pravilno barvanje. Veljati mora torej $\omega(e_i) \neq \omega(e_{i+2})$ iz česar sledi $\omega(e_i) = \omega(e_{i+4})$. To pa je protislovje ko $n \neq 4k$.

Rezultat

Za C_n velja:

$$\mu(C_n) = \begin{cases} 2; & n \equiv 0 \pmod{4} \\ 3; & \text{sicer} \end{cases}$$

Obravnavanje k-obarljivih grafov

Ideja

Za k-obarljive grafe, lahko uteži gledamo modulo k in še vedno dobimo veljavne rezultate. V ta namen bomo za množico uteži vzeli neko Abelovo grupo Γ , ter inducirano barvanje gledali v tej množici.

Obravnavanje k-obarljivih grafov

Ideja

Za k-obarljive grafe, lahko uteži gledamo modulo k in še vedno dobimo veljavne rezultate. V ta namen bomo za množico uteži vzeli neko Abelovo grupo Γ , ter inducirano barvanje gledali v tej množici.

Trditev

Naj bo Γ Abelova grupa z $|\Gamma|=n$ in naj 0 označuje enoto. Tedaj za vsak $g\in\Gamma$ velja ng=0.

Trditev

Naj bo Γ Abelova grupa lihe moči in $|\Gamma|=n$. Tedaj za vsak element $g\in \Gamma$ obstaja $h\in \Gamma$, tako da g=2h.

Trditev

Naj bo Γ Abelova grupa lihe moči in $|\Gamma|=n$. Tedaj za vsak element $g\in \Gamma$ obstaja $h\in \Gamma$, tako da g=2h.

Dokaz

Ker je Γ Abelova grupa po prejšnji trditvi vemo, da 0=ng. Prištejemo g na obeh straneh in dobimo g=(n+1)g. Sedaj označimo $h=\frac{n+1}{2}g$ in očitno velja g=2h.

Izrek za k-obarljive grafe

Izrek

Naj bo Γ Abelova grupa lihe moči in G ne-trivialen $|\Gamma|$ -barljiv graf. Potem obstaja utežitev ω z elementi iz Γ , tako da je inducirano barvanje c_{ω} pravilno.

Izrek za k-obarljive grafe

Izrek

Naj bo Γ Abelova grupa lihe moči in G ne-trivialen $|\Gamma|$ -barljiv graf. Potem obstaja utežitev ω z elementi iz Γ , tako da je inducirano barvanje c_{ω} pravilno.

Nekaj opomb:

• Zgornji izrek dokaže domnevo v primeru dvodelnih in splošneje 3-obarljivih grafov. Vsak tak graf, torej lahko utežimo z naprimer $\mathcal{Z}_3 = \{0,1,2\}.$

Izrek za k-obarljive grafe

Izrek

Naj bo Γ Abelova grupa lihe moči in G ne-trivialen $|\Gamma|$ -barljiv graf. Potem obstaja utežitev ω z elementi iz Γ , tako da je inducirano barvanje c_ω pravilno.

Nekaj opomb:

- Zgornji izrek dokaže domnevo v primeru dvodelnih in splošneje 3-obarljivih grafov. Vsak tak graf, torej lahko utežimo z naprimer $\mathcal{Z}_3 = \{0, 1, 2\}.$
- Definicija induciranega barvanje c_{ω} preko uteženih povezav je potekala na enostaven način. Kaj pa v drugo smer? Recimo, da imamo neko barvanje grafa z k barvami. Zgornji izrek, oziroma njegov dokaz konstruirata utežitev z k utežmi, ki inducira to barvanje (za lihe k).

12. april 2020

Dokaz izreka

Izrek bomo dokazali, tako da bomo konstruirali ustrezno utežitev z elementi iz $\Gamma = \{g_1, g_2, \dots, g_k\}$. Naj bo c neko barvanje grafa G z največ k barvami in označimo z $n_i \geq 0$ število vozlišč barve i. Konstrukcija bo potekala v nekaj korakih:

- Določitev začetnih uteži.
- Iterativno popravljamo uteži nepravilno pobarvanih vozlišč.
- Nakoncu moramo mord popravit utež nekega posebnega vozlišča.

Primer, ko G ni dvodelen

Po trditvi obstaja $h \in \Gamma$, tako da $n_1g_1 + n_2g_2 + \ldots + n_kg_k = 2h$. Sedaj na poljubno povzavo v grafu dodamo utež h na vse ostale pa 0 (enoto). Tako je vsota vseh uteži na vozliščih enaka 2h.

Primer, ko G ni dvodelen

Sedaj bomo uteži popravljali, tako da ohranjamo skupno vsoto uteži 2h dokler nima vsako vozlišče barve i uteži g_i . Recimo torej, da ima vozlišče u barve i utež $g \neq g_i$. Zaradi simetričnosti obstaja vozlišče $v \neq u$, ki ima tudi napačno utež x. Sedaj najdemo sprehod sode dolžine med u in v kar vedno lahko nardimo v grafu, ki ni dvodelen. Povezavam na tem sprehodu izmenično prištevamo uteži: $+(g_i-g), -(g_i-g), \ldots, -(g_i-g)$.

Primer, ko G ni dvodelen

Nekaj opomb na zgornji postopek:

- Na vsakem koraku se ohranja skupna vsota uteži 2h.
- Na vsakem koraku, imamo vsaj eno vozlišče več, ki ima pravilno utež.

Sklepamo torej, da nas tak postopek pripelje do pravilne utežitve grafa G. Oglejmo si sedaj še primer, ko je G dvodelen.

Ker je graf dvodelen ima dva barvna razreda, vendar v tem primeru ne moremo vedno zagotoviti, da bodo uteži na vozliščih konstantne znotraj teh dveh razredov. Zato izberimo barvo 1, tako da obstaja vozlišče x barve 1 in je stopnje vsaj 2. Izberemo še $2h=g_1\neq 0=g_2$ in nastavimo začetne uteži na 0.

Uteži popravljamo podobno kot prej. Za vsak $u \neq x$ iz barvnega razreda 1, ki ima utež 0 najdemo pot sode dolžine od u do x in popravljamo uteži z $g1, -g1, \ldots, -g_1$.

Po končanem postopku imajo vsa vozlišča v razredu 2 utež 0. Vozlišča v razredu 1 imajo utež g_1 razen vozlišča x, ki ima utež $-(n_1-1)g_1$. V kolikor $-(n_1-1)g_1 \neq 0$ smo končali.

Po končanem postopku imajo vsa vozlišča v razredu 2 utež 0. Vozlišča v razredu 1 imajo utež g_1 razen vozlišča x, ki ima utež $-(n_1-1)g_1$. V kolikor $-(n_1-1)g_1 \neq 0$ smo končali.

V nasprotnem primeru na poljubni 2 povezavi, ki gresta iz x dodamo utež h, ki je definirana kot $g_1=2h$.

Po končanem postopku imajo vsa vozlišča v razredu 2 utež 0. Vozlišča v razredu 1 imajo utež g_1 razen vozlišča x, ki ima utež $-(n_1-1)g_1$. V kolikor $-(n_1-1)g_1 \neq 0$ smo končali.

V nasprotnem primeru na poljubni 2 povezavi, ki gresta iz x dodamo utež h, ki je definirana kot $g_1=2h$.

Tako imamo v razredu 1 vsa vozlišča z utežjo g_1 medtem ko imamo v razredu 2 vozlišča z utežmi $g_2 = 0$ in $h \neq g_1$. S tem je izrek dokazan.

Literatura