Answer: Assuming that we have a perfect prediction function $h(x^{(i)} = p(y^{(i)} = 1 | x^{(i)})$, (logistic regression on our partial labels $y^{(i)}$ is not perfect but is aiming towards this), If we crucially assume that $p(t^{(i)} = 1 | x^{(i)}) \in \{0,1\}$, i.e. given observed data, there is no uncertainty in the true label $t^{(i)}$. Then

$$\begin{split} E[h(x^{(i)}))|y^{(i)} = 1] &= E[p(y=1|x) \; |y=1] = E[p(y=1|x) \; |y=1,t=1] \quad \text{,since } y=1 \implies t=1 \\ &= E[p(t=1|x)\alpha \; |y=1,t=1] \end{split}$$