

ЛЕКЦИЯ 7. ПЕРЦЕПТИВНОЕ ХЭШИРОВАНИЕ. КАК ПОИСКОВИК ИЩЕТ ПОХОЖИЕ КАРТИНКИ

Обработка аудиовизуальной информации Бакалавры, 6 семестр. Магистры, 9 семестр

что значит "похожие"?

Схожесть цвета

Схожесть формы

Схожесть текстуры

Разложение по цветам

Цветовая модель RGB

- RGB red, green, blue цветовая модель, определяющая способ кодирования изображения с помощью трёх основных каналов.
- Цвета получаются путём добавления к чёрному.
- Смешение всех основных цветов даёт белый цвет.

Гистограмма яркости

- □ Всего 256 значений яркости пикселя
- Для каждого значения яркости рассчитывается количество пикселей данной яркости.
- Строится столбчатая диаграмма, где по оси X отложены градации яркости, а по оси Y количество пикселей с такой яркостью.

Цветовая гистограмма

□ Совокупность трёх гистограмм по каждому цветовому каналу

Сравнение гистограмм

□ Манхеттенское расстояние:

$$d(H_1, H_2) = \sum_{i} |H_1(i) - H_2(i)|$$

□ Корреляция:

$$d(H_1, H_2) = \frac{\sum_i (H_1(i) - \overline{H_1})(H_2(i) - \overline{H_2})}{\sqrt{\sum_i (H_1(i) - \overline{H_1})^2 * (H_2(i) - \overline{H_2})^2}}$$

Метрика Хи-квадрат:

$$d(H_1, H_2) = \sum_{i} \frac{(H_1(i) - H_2(i))^2}{H_1(i)}$$

11 Текстурные признаки

Статистические признаки

- Матрица Харалика:
 - □ Энергия
 - □ Момент инерции
 - Максимальная вероятность
 - □ Локальная однородность
 - Энтропия
 - □ След нормализованной матрицы пространственной смежности
 - □ Среднее значение яркости
 - □ Корреляция значений яркости изображения

Сравнение формы

Выделение контуров

Метод зон

Контурный оператор Прюитт

Маски оператора Прюитт:

-1	-1	-1		
0	0	0		
1	1	1		

-1	0	1
-1	0	1
-1	0	1

□ Частные производные в матричном виде:

$$G_{x} = \begin{bmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix} * A \qquad G_{y} = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix} * A$$

$$G_{\mathcal{Y}} = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix} * A$$

Частные производные в скалярном виде:

$$G_x = (z_7 + z_8 + z_9) - (z_1 + z_2 + z_3)$$

$$G_y = (z_3 + z_6 + z_9) - (z_1 + z_4 + z_7)$$

Метод зон для контурного изображения

- Вместо исходного изображения зонируется бинаризованная градиентная матрица
- □ Далее вычисляется несколько скалярных признаков для каждой зоны

16 Перцептивное хэширование

Структура хэша изображения (пример)

- Все изображения сжимаются до 256*256.
- У всех одна и та же площадь: 65536 пикселей.
- Хэш массив из 102 чисел, организованных в 3 группы:

Цветовые гистограммы

- □ Рассматриваются три слоя изображения:
 - □ Красный
 - □ Зеленый
 - □ Синий
- □ 256 оттенков каждого цветового слоя разбиваются на 4 группы по 64 оттенка: 0..63, 64..127, 128..195, 196..255.
 - Вместо 256*256*256 = 16.7 млн цветов получается 4*4*4=64 «грубых» цвета.
 - Рассчитывается число пикселей каждого «грубого» цвета.
 - □ Полученные значения нормируются: nhist = hist *256/S

Текстурные признаки

- Рассчитывается матрица Харалика и 10 признаков:
 - 1) Asm = Энергия * 65536
 - 2) Con = Контрастность
 - 3) Mpr = Максимальная вероятность * 65536
 - 4) Lun = Локальная однородность * 256
 - 5) Ent = Энтропия * 256
 - Tr = Cлед * 256
 - 7) Мі = Математическое ожидание по строкам
 - 8) Мј = Математическое ожидание по столбцам
 - 9) Stdev = Среднеквадратическое отклонение
 - 10) Corr = Корреляция значений яркости * 256

64	65	66	67	68	69	70	71	72	73
asm	con	mpr	lun	ent	tr	mi	mj	stdev	cor

Информация о форме и контурах

- Строится градиентная матрица с помощью оператора Прюитт.
 Приводится к чёрно-белой.
- □ Рассчитываются признаки:
 - □ Нормированный общий вес контуров
 - Координаты центра тяжести (Хс, Үс)
- Градиентная матрица разбивается на 5*5 зон.
 - □ Рассчитывается нормированный вес каждой зоны.
 - □ Всего 25 чисел.

Мера близости хэшей

- □ Каждой группе признаков назначается весовой коэффициент.
 - □ Чем больше коэффициент, тем важнее считается группа признаков. Например:
 - Для гистограммы: 0.3
 - Для текстурных признаков: 0.4
 - Для формы и контуров: 0.3
- Для каждой группы вычисляется манхеттенское растояние. Получается три числа.
- □ Умножаем на весовые коэффициенты и складываем:
 - dist = k1 * histogram_dist + k2 * texture_dist + k3 * morph_dist
- Это и есть мера близости двух изображений

Примеры поиска

Алгоритм поиска

Пример 1

□ Искать похожее на

Пример 2

□ Искать похожее на

□ Выдача

26 Семантическая индексация

Обучающая выборка

- Ключевые слова: вода, море, лес, зима, снег, осень, космос, небо, город, огонь
- □ Соответствующие им эталоны:

Индексируемое множество

Хотим автоматически разметить на основе эталонов и перцептивных хэшей

Схема индексации изображений

Результаты автоматической разметки

05.jpg

06.jpg

04.jpg

- □ космос: 0.45,
- зима: 0.43,
- 💶 лес: 0.4.
- □ снег: 0.22,
- □ осень: 0.12

05.jpg

- □ город: 0.8,
- небо: 0.33,
- □ огонь: 0.03,
- 💶 вода: 0.02,
- осень: 0.02

□ 06.jpg,

- □ город: 0.66,
- □ небо: 0.25,
- □ космос: 0.15,
- □ море: 0.02,
- 💶 лес: 0.02

Результаты запроса Море+вода

море: 95%, вода: 84%, море: 91%, вода: 83%, море: 86%, вода: 75%, космос: 2%

небо: 59%, город: 12%, небо: 56%, город: 13%, небо: 49%, осень: 14%,

огонь: 3% лес: 10%

вода: 76%, море: 55%, вода: 76%, море: 53%,

небо: 49%, город: 23%, небо: 47%, город: 21%,

зима: 4% зима: 2%

Алгоритм поиска по ключевым словам

Результаты запроса Город+небо

лес: 2%

город: 85%, небо: 47%, город: 80%, небо: 33%, город: 66%, небо: 25%,

море: 17%, вода: 9%, огонь: 3%, вода: 2%,

осень: 2%

космос: 15%, море:

2%, лес: 2%

море: 63%, небо: 57%, вода: 76%, море: 55%,

вода: 39%, город: 27%, небо: 49%, город: 23%,

зима: 2%

зима: 4%

Кластеризация

Задача автоматически подобрать наборы схожих изображений для облегчения разметки эталонов

Кластеризация

- Кластеризация (Clustering) является логическим продолжением идеи классификации, но сложнее.
- Особенность кластеризации заключается в том, что классы объектов изначально не предопределены.
- Результатом кластеризации является разбиение объектов на группы.

Алгоритм обучения

- □ Множество изображений разбивается на кластеры
 - Например, методом k-средних.
- Кластеры с семантически схожими изображениями именуются человеком вручную и становятся классами.
- □ После разметки обучается классификатор на основе признаков.
 - Например, алгоритмом С5.0
- □ Далее по именам классов можно искать схожие изображения.

Примеры кластеров

□ Еда:

□ Вода

Примеры кластеров

□ Белый

□ Люди

Пример работы классификатора

пример дерева решений классификатора

С5.0 на основе перцептивного хэша:

 Правее результаты классификации 15 изображений

Что почитать

- Шитова О.В., Пухляк А.Н., Дроб Е.Н. Анализ методов сегментации текстурных областей изображений в системах обработки изображений // Научные ведомости, 2014 № 8 (179). Выпуск 30/1, с. 182–188
- Фраленко В. П. Методы текстурного анализа изображений, обработка данных дистанционного зондирования // Программные системы: теория и приложения № 4(22), 2014, с. 19–39
- □ Перевалов Д. Анализ текстур https://ru.scribd.com/doc/115002510/opencv-%D0%90-%D0%BD-%D0%BB-%D0%B8-%D0%B7-%D1%82-%D0%B5-%D0%BA-%D1%81-%D1%82-%D1%83-%D1%80
- https://cyberleninka.ru/article/n/raspoznavanie-izobrazheniy-na-osnove-teksturnyh-priznakov-haralika-i-iskusstvennyh-neyronnyh-setey
- □ https://www.nature.com/articles/s41598-017-08764-7/tables/5
- Метод k-средних https://ru.wikipedia.org/wiki/%D0%9C%D0%B5%D1%82%D0%BE%D0%B4_k-%D1%81%D1%80%D0%B5%D0%B4%D0%BD%D0%B8%D1%85