Aufgaben zu "Ableitungen"

1. Bestimmen Sie die erste Ableitung folgender Funktionen:

a)
$$f(x) = 2x^4 + 3x + 6$$
, b) $g(x) = 12x^6 - \frac{3}{4}x^4 + \frac{5}{6}x^3 - 2$,

c)
$$h(x) = x\sqrt{x} - 3\sqrt{x}$$
, d) $i(x) = \sqrt[3]{\sqrt{x}}$

2. Differenzieren Sie

a)
$$y(x) = \ln(1-x)$$
, b) $y(x) = e^{x} \cos x$.

3. Berechnen Sie die Ableitungen von

a)
$$f(x) = (1 + x^2) \arctan x$$
, b) $f(x) = (1 + x^{1/2})^{1/2}$,

c)
$$f(x) = (\ln x) / x$$
 , d) $f(x) = \arctan(2x)$,

e)
$$f(x) = x^{100} - x^{99} - x^{1}$$
, f) $f(x) = e^{\sin x}$, g) $f(x) = \sin(e^{x}/x)$.

4. Gegeben sei die Funktion f(x) = Arsinh x.

- a) Berechnen Sie die Ableitung von f(x), wobei die Ableitung der Umkehrfunktion als bekannt vorausgesetzt sei.
- b) Drücken Sie f(x) durch Wurzel- und Logarithmus-Funktion aus. Tip: Lösen Sie die Gleichung $x = \frac{1}{2} \left(e^y e^{-y} \right)$ auf und nutzen Sie dabei $e^{-y} = \frac{1}{e^y}$ aus.
- c) Berechnen Sie noch einmal die Ableitung anhand der Formel aus b).
- 5. Bestimmen Sie D(f) und berechnen Sie die erste Ableitung überall dort, wo f differenzierbar ist :

a)
$$f(x) = \arcsin(\sqrt{2x})$$
 , b) $f(x) = \frac{1}{\sqrt{|x| - x}}$.

6. Bestimmen Sie D (f) und berechnen Sie die erste Ableitung überall dort , wo f differenzierbar ist :

a)
$$f(x) = \ln (\ln (\cos \sqrt{x}))$$
, b) $f(x) = e^{\sqrt{x} - \sqrt{x-1}} \sin(3x^2)$

7. Sei $f(x) = \ln(1+x)$. Bestimmen Sie die n - te Ableitung $f^{(n)}(x)$ für alle natürlichen n und alle x > -1. Tip: berechnen Sie die Ableitung für n = 1, 2, 3, vielleicht noch n = 4, erraten Sie daraus eine allgemeine Formel und beweisen Sie diese durch vollständige Induktion.

Kontrollfragen zum Verständnis:

Formulieren Sie (mindestens) drei wichtige Regeln, die Ihnen beim Differenzieren helfen können. Wie hängen die Ableitungen einer Funktion und ihrer Umkehrfunktion zusammen?