Kolorowanie grafów

dr inż. Bartłomiej Pawlik

2 lipca 2024

Grafem planarnym nazywamy graf, który można narysować na płaszczyźnie bez przecięć.

Przykład

Czy graf K_4 jest grafem planarnym?

Tak (reprezentacja po prawej).

Przykład

Czy graf $K_{2,3}$ jest grafem planarnym?

Twierdzenie

Grafy $K_{3,3}$ i K_5 nie są grafami planarnymi.

Szkic dowodu.

Każda reprezentacja graficzna $K_{3,3}$ musi zawierać cykl długości 6, a każda reprezentacja graficzna K_5 musi zawierać cykl długości 5. Wystarczy narysować te cykle i rozpatrzyć wszystkie przypadki dorysowania pozostałych krawędzi.

W teorii grafów planarnych centralną rolę ogrywa *twierdzenie Kuratowskiego*. Nie wchodząc w szczegóły, orzeka ono że dany graf nie jest planarny, jeżeli w pewnym sensie *zawiera* podgraf podobny do $K_{3,3}$ lub do K_{5} .

Kolorowanie grafów prostych

Definicja

Niech G będzie grafem i niech dla pewnej liczby całkowitej k, zbiór C będzie zbiorem k-elementowym. Funkcję $c:V(G)\to C$ nazywamy k-kolorowaniem grafu G, zbiór C nazywamy zbiorem kolorów, a elementy zbioru C — kolorami.

Często przyjmuje się, że $C = \{1, 2, \dots, k\}$.

B. Pawlik

Przykład 1

Rozważmy graf G (na rysunku po lewej) i kolorowanie c ze zbiorem kolorów $C=\{1,\,2,\,3\}$ takie, że

$$c(v_1) = c(v_2) = c(v_4) = 1, \ c(v_3) = c(v_5) = 2, \ c(v_6) = 3.$$

Graf G z zadanym kolorowaniem c możemy przedstawić graficznie na kilka sposobów.

- Jeżeli w rozważanym kontekście opis wierzchołków jest nieistotny, to wierzchołki możemy indeksować kolorami (rysunek środkowy).
- Przymując, że kolor 1 to czerwony, kolor 2 to zielony, a kolor 3 to niebieski, wierzchołki możemy (nomen omen) pokolorować (rysunek po prawej). W tej konwencji można zachować opis wierzchołków.

2 lipca 2024

Niech G będzie grafem i c będzie k-kolorowaniem grafu G. Kolorowanie c nazywamy **właściwym** k-**kolorowaniem** grafu G, jeżeli dla każdej pary sąsiednich wierzchołków przyjmuje ono róźne wartości:

$$\forall_{u,v \in V(G)}: \{u,v\} \in E(G) \implies c(u) \neq c(v).$$

Definicia

Graf jest k-kolorowalny, gdy istnieje właściwe k-kolorowanie tego grafu.

Przykład 2

Zauważmy, że kolorowanie c w przykładzie 1 nie jest kolorowaniem właściwym, ponieważ występuje w nim dwie para sąsiednich wierzchołków (np. $\{v_1,v_2\}$) mających przypisany ten sam kolor.

Przykładowymi kolorowaniami właściwymi grafu G z przykładu 1 są:

Na rysunkach mamy przedstawione właściwe 6-kolorowanie (po lewej), właściwie 3-kolorowanie (w środku) i właściwe 2-kolorowanie (po prawej) grafu G.

Uwaga!

W dalszej części wykładu pisząc o **kolorowaniu** (k-kolorowaniu) będziemy mieli na myśli wyłącznie **kolorowanie właściwe** (k-kolorowanie właściwe).

Definicja

Kolorowanie, które każdemu wierzchołkowi przyporządkowuje unikalny kolor nazywamy kolorowaniem naiwnym.

Przykład

Rysunek po lewej stronie w przykładzie 2 przedstawia przykładowe kolorowanie naiwne rozpatrywanego grafu.

8/19

Liczbą chromatyczną $\chi(G)$ grafu prostego G nazywamy najmniejszą liczbę k taką, że istnieje kolorowanie $c:V(G)\to\{1,2,\ldots,k\}$.

Nietrudno zauważyć, że dla dowolnego grafu prostego G zachodzą nierówności

$$1 \leqslant \chi(G) \leqslant |V(n)|.$$

Przykład

Wyznaczyć liczby chromatyczne grafów P_n i C_n dla każdego n.

9/19

Stwierdzenie

- $\bullet \ \chi(G) = 1 \ \text{wtedy i tylko wtedy, gdy} \ G \ \text{jest grafem pustym}.$
- ullet $\chi(G)=|V(G)|$ wtedy i tylko wtedy, gdy G jest grafem pełnym.

Stwierdzenie

 $\chi(G)=2$ wtedy i tylko wtedy, gdy G jest niepustym grafem dwudzielnym.

Wniosek

 $\chi(G)\geqslant 3$ wtedy i tylko wtedy, gdy G zawiera cykl długości nieparzystej.

10/19

Twierdzenie

Jeżeli G jest grafem prostym, to

$$\chi(G) \leqslant \Delta(G) + 1.$$

Dowód.

Przeprowadźmy dowód indukcyjny względem liczby wierzchołków. Niech G będzie grafem prostym mającym n wierzchołków i niech $\Delta = \Delta(G)$.

Z grafu G usuwamy wierzchołek v wraz z przylegającymi do niego krawędziami.

Graf $G\setminus\{v\}$ ma (n-1) wierzchołków i $\Delta(G\setminus\{v\})\leqslant \Delta$. Z założenia indukcyjnego wynika, że $\chi(G\setminus\{v\})\leqslant \Delta+1$.

Wykonujemy $(\Delta+1)$ -kolorowanie grafu $G\setminus\{v\}$. Dodajemy do grafu wierzchołek v (z przyległymi krawędziami) i nadajemy mu inny kolor niż mają jego sąsiedzi — możemy to zrobić, bo liczba sąsiadów wierzchołka v nie przekracza Δ . W ten sposób uzyskaliśmy $(\Delta+1)$ kolorowanie grafu G.

Przykład

Określić dla których cykli i dla których grafów pełnych zachodzi $\chi(G) = \Delta(G) + 1$.

B. Pawlik Kolorowanie grafów 2 lipca 2024 12 / 19

Twierdzenie (Brooks, 1941)

Jeżeli G jest spójnym grafem prostym, nie będącym cyklem nieparzystej długości ani grafem pełnym, to

$$\chi(G) \leqslant \Delta(G)$$
.

B. Pawlik Kolorowanie grafów 2 lipca 2024 13/19

$$\chi(G) \leqslant 4$$
.

Niech G będzie grafem i niech dla pewnej liczby całkowitej k, zbiór C będzie zbiorem k-elementowym. Funkcję $c':E(G)\to C$ nazywamy k-kolorowaniem krawędziowym grafu G, zbiór C nazywamy zbiorem kolorów, a elementy zbioru C — kolorami.

Definicja

Niech G będzie grafem prostym i c' będzie k-kolorowaniem krawędziowym grafu G. Kolorowanie c nazywamy **właściwym** k-kolorowaniem krawędziowym grafu G, jeżeli dla każdej pary sąsiednich krawędzi przyjmuje ono róźne wartości:

$$\forall_{\{u,v_1\},\{u,v_2\}\in E(G)}:\ v_1\neq v_2\ \Rightarrow\ c'(\{u,v_1\})\neq c'(\{u,v_2\}).$$

Uwaga!

W dalszej części wykładu pisząc o kolorowaniu krawędziowym (k-kolorowaniu krawędziowym) będziemy mieli na myśli wyłącznie właściwe kolorowanie krawędziowe (właściwe k-kolorowanie krawędziowe).

Indeksem chromatycznym $\chi'(G)$ grafu prostego G nazywamy najmniejszą liczbę k taką, że istnieje kolorowanie krawędziowe $c': E(G) \to \{1,2,\ldots,k\}$.

Przykład

Wyznaczyć indeks chromatyczny grafu $K_{1,n}$ dla każdej liczby całkowitej dodatniej n.

Graf $K_{1,n}$ nazywany bywa gwiazdą S_{n-1} .

Stwierdzenie

Dla każdego grafu prostego G zachodzi

$$\chi'(G) \geqslant \Delta(G)$$
.

B. Pawlik

Twierdzenie Vizinga (1964)

Jeżeli G jest grafem prostym, to

$$\Delta(G) \leqslant \chi'(G) \leqslant \Delta(G) + 1.$$

B. Pawlik Kolorowanie grafów 2 lipca 2024 17/19

- Jeżeli $\chi'(G) = \Delta(G)$, to G nazywamy grafem klasy I.
- ullet Jeżeli $\chi'(G)=\Delta(G)+1$, to G nazywamy grafem klasy II.

Poniższy wynik również jest autorstwa Vadima G. Vizinga.

Twierdzenie

Jeżeli graf G jest grafem klasy II, to co najmniej trzy wierzchołki tego grafu mają maksymalny stopień.

18/19

Twierdzenie Erdősa-Wilsona (1975)

Niech Gr(n) oznacza zbiór wszystkich grafów prostych mających n wierzchołków i niech $Cl_I(n)$ oznacza zbiór wszystkich grafów prostych klasy I mających n wierzchołków. Wtedy

$$\lim_{n \to \infty} \frac{|Cl_I(n)|}{|Gr(n)|} = 1.$$

19/19