M33 : Régimes transitoires

Louis Heitz et Vincent Brémaud

Sommaire

Ra	apport du jury	3
Bi	bliographie	3
In	Introduction	
Ι	RLC sur condensateur	4
II	Diapason	4
II	Diffusion de charge	4
Co	onclusion	4
\mathbf{A}	Correction	4
В	Commentaires	4
\mathbf{C}	Matériels	4
D	Expériences faites les années précédentes	4
\mathbf{E}	Questions du jury	5
\mathbf{F}	Tableau présenté	5

Le code couleur utilisé dans ce document est le suivant :

- \bullet \to Pour des élements de correction / des questions posées par le correcteur
- Pour les renvois vers la bibliographie
- Pour des remarques diverses des auteurs
- \triangle Pour des points particulièrement délicats, des erreurs à ne pas commettre
- Pour des liens cliquables

Rapports du jury

Bibliographie

Introduction

Transitoire = avant d'atteindre le régime permanent. Transitoire = solution homogène, permanent = particulier. 2 comportement distincts, on va voir. Temps long = permanent, temps court = transitoire. Différents transitoires possible, lien avec résonance.

I RLC sur condensateur

△ Prendre la plaquette de JBD avec les bonnes bobines et les bons condensateurs.

On a pris L = 60mH, $r = 5.2\Omega$ de résistance interne, $C \sim 500 nF$ et $R \in [0, 10^3]\Omega$.

On trace le temps de relaxation en fonction de $Q = 1/R\sqrt{L/C}$, on obtient deux droites pour R très petit et R très grand. Pour la théorie, voir doc de Tom.

II Diapason

Besoin d'un code?

III Diffusion de charge

△ Attention à bien ouvrir le circuit !! BUP de la diffusion de charge

Conclusion

Transitoire renseigne sur dynamique/composants du système. Si transitoire long : système très résonant. Si bcp amortissement, transitoire court. Problématique ingénierie pour atteindre consigne. Problématique physique : on veut pas de frottement.

- A Correction
- **B** Commentaires
- C Matériels
- D Expériences faites les années précédentes
 - Ceci
 - Cela

- E Questions du jury
- F Tableau présenté