

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

FACULTAD DE MATEMÁTICAS DEPARTAMENTO DE ESTADÍSTICA Segundo semestre 2022

EYP2127 Inferencia Estadística Ayudantía 10: Construcción de Intervalos de Confianza

Profesora: Inés M. Varas

Ayudante: Borja Márquez de la Plata

Ejercicio 1

Sea $Y_1, ..., Y_n$ una m.a. de tamaño n desde una distribución f tal que

$$f(y|\theta) = \frac{1}{\theta}(y+1)^{-1-1/\theta}$$
 $0 < y; 0 < \theta < 0.5$

- a) Considerando la transformación $X = \ln(Y+1)$, demuestre que $X \sim \text{Exp}(\theta)$.
- b) Encuentre un intervalo de $100(1-\alpha)\%$ de confianza para θ con colas iguales.

Ejercicio 2

Un grupo de investigadores quiere estudiar como el ecosistema puede afectar en el crecimiento de un ser vivo. Para esto, plantaron n_1 pinos en el norte de Chile y n_2 en el sur. 5 años después, midieron las alturas de los árboles plantados. Si X representa la altura de un pino del norte e Y la de uno del sur, y se conoce que la altura de un pino distribuye normal con parámetros μ_1, σ_1^2 en el norte y μ_2, σ_2^2 en el sur:

- a) Construya un intervalo de $100(1-\alpha)\%$ de confianza para $\mu_1 \mu_2$, asumiendo que σ_1^2 y σ_2^2 son conocidos.
- b) Suponga que $\mu_1, \sigma_1^2, \mu_2, \sigma_2^2$ son desconocidos. Construya un intervalo de $100(1-\alpha)\%$ de confianza para $\frac{\sigma_1^2}{\sigma_2^2}$.

Hint: $V_i = \frac{(n_i - 1)S_i^2}{\sigma_i^2} \sim \chi_{n_i - 1}^2$, donde S_i^2 es la varianza muestral de la distribución i = 1, 2. Además, existe una relación entre la distribución chi cuadrado y la F, donde si $X_i \sim \chi_{n_i}^2$, entonces $\frac{X_1/n_1}{X_2/n_2} \sim F_{n_1,n_2}$

c) Si en el norte, de una muestra de 35 pinos, se encontró un promedio de 6 metros y la varianza de 0.5 metros². En cambio, en el sur de Chile, de una muestra de 31 árboles, se obtuvo un promedio de 6.6 metros y una varianza de 0.2 metros². Encuentre un intervalo de confianza del 95% para la diferencia de medias y para la razón de varianzas.