Neural Networks: Representation

1. Non-linear hypotheses

What is this?

You see this:

Computer Vision: Car detection

Testing:

What is this?

2. Neurons and the brain

Neural Networks

- → Origins: Algorithms that try to mimic the brain.
- → Was very widely used in 80s and early 90s; popularity diminished in late 90s.
- Recent resurgence: State-of-the-art technique for many applications

The "one learning algorithm" hypothesis

The "one learning algorithm" hypothesis

3. Model representation I

Neuron in the brain

Neurons in the brain

Sigmoid (logistic) activation function.

4. Model representation II

Neural Network learning its own features

Other network architectures

5. Examples and intuition I

Non-linear classification example: XOR/XNOR

 \rightarrow x_1 , x_2 are binary (0 or 1).

Example: OR function

6. Examples and intuition II

Neural Network intuition

Handwritten digit classification

7. Multi-class classification

Multiple output units: One-vs-all.

Multiple output units: One-vs-all.

