State Farm Classification Coding Exercise

Part 4 - Build a Logistic Regression Model

A. Construct Logistic Regression Model Upon Training Data

Import numpy and pandas.

```
In [1]: import numpy as np
import pandas as pd
```

Import data visualization libraries and set %matplotlib inline.

```
In [2]: import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
```

Import training model data into a Pandas dataframe called train_model1.

```
In [3]: train_model1 = pd.read_pickle('../State_Farm/Data/train_model.pickle')
```

Check number of rows and columns in train_model1 dataframe.

```
In [4]: train_model1.shape
Out[4]: (40000, 15)
```

View structure of train_model1 dataframe.

```
In [5]: train_model1.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 40000 entries, 0 to 39999
Data columns (total 15 columns):
           40000 non-null int64
У
x75
           40000 non-null float64
x37
           40000 non-null float64
x58
           40000 non-null float64
x97
           40000 non-null float64
x41_flt
           40000 non-null float64
x99
           40000 non-null float64
           40000 non-null float64
x1
x40
           40000 non-null float64
x70
           40000 non-null float64
x44
           40000 non-null float64
x63
           40000 non-null float64
x56
           40000 non-null float64
x83
           40000 non-null float64
x96
           40000 non-null float64
dtypes: float64(14), int64(1)
```

memory usage: 4.6 MB

View first five rows of train_model1 dataframe.

In [6]: train_model1.head()

Out[6]:

	у	x75	x37	x58	x97	x41_flt	x99	x 1	x40	
0	0	40.617107	-10.839200	2.078396	-2.125570	449.48	1.237667	74.425320	4.550518	41
1	1	-49.303165	57.917006	-2.696257	-36.030599	-525.06	1.952183	24.320711	-9.476135	36
2	1	-19.706659	-12.991058	-2.417447	26.212736	-599.50	0.558988	-66.160459	6.876065	49
3	0	-7.301283	37.658926	4.443710	19.221130	-220.71	0.214462	33.210943	-16.933984	82
4	0	-2.751656	-59.497091	-2.421952	-5.703269	-1405.59	-1.191319	-26.717872	-9.551514	-19
4										•

Gather summary statistics of train_model1 dataframe.

```
In [7]: train_model1.describe()
```

Out[7]:

	у	x75	x37	x58	x97	x41_flt	
count	40000.00000	40000.000000	40000.000000	40000.000000	40000.000000	40000.000000	40000.C
mean	0.20360	5.417519	4.814694	-0.892583	-2.514305	0.315315	0.0
std	0.40268	35.653631	31.561154	6.319470	18.551630	1001.659950	1.1
min	0.00000	-146.967384	-127.651997	-31.395877	-73.908741	-4496.460000	-4.3
25%	0.00000	-17.971049	-16.589036	-5.175537	-15.023076	-669.295000	-0.7
50%	0.00000	5.592658	4.493183	-0.891371	-2.514305	6.040000	0.0
75%	0.00000	28.988799	25.968530	3.413382	9.882079	678.325000	0.7
max	1.00000	144.548014	126.924294	22.420511	76.120119	4062.630000	4.4
4							•

Define X and y.

Fit a logistic regression model on training model data.

solver='liblinear', tol=0.0001, verbose=0, warm_start=False)

Print logistic regression model intercept and coefficients.

```
In [12]: | print(logreg.intercept )
          dict(zip(feature cols, logreg.coef [0]))
         [-1.3847385]
Out[12]: {'x1': 0.007047416085280777,
           'x37': -0.016105211331098775,
           'x40': 0.00578891080883736,
           'x41 flt': -0.0003401854661650888,
           'x44': 0.006037683479860255,
           'x56': -0.009542535312387216,
           'x58': 0.11121565823866641,
           'x63': 0.029668912026681572,
           'x70': -0.005447882703786845,
           'x75': -0.023153039385620668,
           'x83': 0.08761590096736244,
           'x96': -0.010344079456438539,
           'x97': 0.03871572430063214,
           'x99': 0.4788438298145828}
```

Express logistic regression model coefficients as odds.

Make predictions on training model data and calculate accuracy for training model data.

```
In [14]: y_pred_class = logreg.predict(X)
print(metrics.accuracy_score(y, y_pred_class).round(3))

0.843
```

Compute training model data null accuracy manually.

```
In [15]: print(1 - y.mean())
      0.7964
```

Calculate area under the ROC curve (AUC) value for training data logistic regression model.

```
In [16]: y_pred_prob = logreg.predict_proba(X)[:, 1]
print(metrics.roc_auc_score(y, y_pred_prob).round(3))

0.854
```

Plot logistic regression model ROC curve for training data.

```
In [17]: thresholds = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]
    fpr, tpr, thresholds = metrics.roc_curve(y, y_pred_prob)
    plt.plot(fpr, tpr)
    plt.xlim([0.0, 1.0])
    plt.ylim([0.0, 1.0])
    plt.xlabel('False Positive Rate (1 - Specificity)')
    plt.ylabel('True Positive Rate (Sensitivity)')
```

Out[17]: Text(0,0.5,'True Positive Rate (Sensitivity)')

Print confusion matrix to calculate training model data accuracy and error rates plus precision and recall.

```
In [18]: print(metrics.confusion_matrix(y, y_pred_class))
        [[30265   1591]
        [ 4706   3438]]
```

Calculate training model data accuracy rate.

```
In [19]: float(30265 + 3438) / float(30265 + 1591 + 4706 + 3438)
Out[19]: 0.842575
```

Calculate training model data misclassification / error rate.

```
In [20]: float(4706 + 1591) / float(30265 + 1591 + 4706 + 3438)
```

Out[20]: 0.157425

Calculate precision to measure how confident the logistic regression model is for capturing the positives in training model data.

```
In [21]: float(3438) / float(3438 + 1591)
```

Out[21]: 0.6836349174786239

Calculate recall / sensitivity to measure how well the logistic regression model is capturing the positives in training model data.

```
In [22]: float(3438) / float(4706 + 3438)
```

Out[22]: 0.42215127701375244

Calculate specificity to measure how well the logistic regression model is capturing the negatives in training model data.

```
In [23]: float(30265) / float(30265 + 1591)
```

Out[23]: 0.9500565042692114

Print out training model data classification report for logistic regression model.

```
In [24]: from sklearn.metrics import classification_report
```

```
In [25]: print(classification_report(y, y_pred_class))
```

support	†1-score	recall	precision	
31856	0.91	0.95	0.87	0
8144	0.52	0.42	0.68	1
40000	0.83	0.84	0.83	avg / total

List out training model data logistic regression model accuracy scores and their average using 10-fold cross-validation.

0.843

```
In [26]: from sklearn.cross_validation import cross_val_score
```

C:\Users\kyrma\AppData\Local\Continuum\anaconda3\lib\site-packages\sklearn\cros s_validation.py:41: DeprecationWarning: This module was deprecated in version 0.18 in favor of the model_selection module into which all the refactored class es and functions are moved. Also note that the interface of the new CV iterator s are different from that of this module. This module will be removed in 0.20. "This module will be removed in 0.20.", DeprecationWarning)

```
In [27]: acc_scores = cross_val_score(logreg, X, y, cv=10, scoring='accuracy').round(3)
    print(acc_scores)
    print(acc_scores.mean().round(3))

[0.837 0.839 0.843 0.84 0.842 0.847 0.84 0.846 0.849 0.844]
```

List out training model data logistic regression model AUC values and their average using 10-fold cross-validation.

```
In [28]: auc_scores = cross_val_score(logreg, X, y, cv=10, scoring='roc_auc').round(3)
print(auc_scores)
print(auc_scores.mean().round(3))

[0.849 0.845 0.849 0.854 0.85 0.86 0.853 0.854 0.87 0.858]
0.854
```

B. Generate Predictions in Cleaned Test Data

Import cleaned test data pickle file into a Pandas dataframe called test_model1.

```
In [29]: test_model1 = pd.read_pickle('../State_Farm/Data/test_model.pickle')
```

Check number of rows and columns in test_model1 dataframe.

```
In [30]: test_model1.shape
Out[30]: (10000, 14)
```

View structure of test_model1 dataframe.

```
In [31]: | test_model1.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 10000 entries, 0 to 9999
         Data columns (total 14 columns):
         x75
                     10000 non-null float64
         x37
                     10000 non-null float64
         x58
                     10000 non-null float64
         x97
                     10000 non-null float64
         x41 flt
                    10000 non-null float64
         x99
                     10000 non-null float64
         x1
                     10000 non-null float64
                     10000 non-null float64
         x40
         x70
                     10000 non-null float64
         x44
                     10000 non-null float64
         x63
                     10000 non-null float64
         x56
                     10000 non-null float64
         x83
                     10000 non-null float64
         x96
                     10000 non-null float64
         dtypes: float64(14)
         memory usage: 1.1 MB
```

View first five rows of test_model1 dataframe.

```
In [32]: test_model1.head()
```

Out[32]:

	x75	x37	x58	x97	x41_flt	x99	x1	x40	
0	80.851384	-32.086998	5.093232	13.739194	2475.46	1.141799	54.479467	-8.776231	44.269
1	-21.295879	29.391786	-5.989844	-13.018951	-1109.10	0.568757	-20.244923	23.337240	5.663
2	27.719905	-30.329997	6.115105	0.791425	-187.70	-0.816682	-61.467354	-8.845933	-47.647
3	-4.053955	11.088216	-2.750484	-16.716012	525.65	0.603007	-18.454831	-57.516611	-14.010
4	21.743536	-21.955105	-4.286183	23.003355	-1113.53	1.929231	15.810515	-13.207037	13.267
4									•

Define X_test.

(10000, 14)

```
In [33]: X_test = test_model1[feature_cols]
print(X_test.shape)
```

Make predictions on cleaned test data by calculating probabilities for belonging to positive class (labeled '1').

```
In [34]: y_test_pred_prob = logreg.predict_proba(X_test)[:, 1]
```

Construct results1_logreg Pandas dataframe out of test data y predicted class probabilities.

```
In [35]: results1_logreg = pd.DataFrame({'y_test_pred_prob': y_test_pred_prob[:]})
    results1_logreg.head()
```

Out[35]:

	y_test_pred_prob
0	0.146379
1	0.178329
2	0.211236
3	0.034441
4	0.413519

Check number of rows and columns in results1 dataframe.

```
In [36]: results1_logreg.shape
Out[36]: (10000, 1)
```

Export results1 Pandas dataframe containing test data y predicted class probabilities to CSV file.

```
In [37]: results1_logreg.to_csv('../State_Farm/Data/results1_logreg.csv', sep=',', index=F
```