

Two Coupled Rejection Metrics Can Tell Adversarial Examples Apart

Tianyu Pang¹, Huishuai Zhang², Di He², Yinpeng Dong¹, Hang Su¹, Wei Chen², Jun Zhu¹, Tie-Yan Liu²

¹ Tsinghua University ² Microsoft Research Asia

1. Confidence and true confidence (T-Con)

In training phase:

$$\mathcal{L}_{CE} = -\log f_{\theta}(x)[\mathbf{y}],$$

where y is the true label, and we name $f_{\theta}(x)[y]$ as true confidence (T-Con). Lower cross-entropy (CE) values or higher T-Con values indicate higher prediction certainty on x.

In inference/test phase:

y is unknown, so we cannot compute T-Con. We usually approximate T-Con by confidence $f_{\theta}(x)[y^m]$, where $y^m =$ $\operatorname{argmax} f_{\theta}(x)[l]$ is the predicted label.

 $f_{\theta}(x)[y^m]$ will overestimate $f_{\theta}(x)[y]$ when $y^m \neq y$, i.e., confidence is over-confident on misclassified inputs

1.1 Confidence and T-Con are coupled

Lemma 1. (Separability) Given the classifier f_{θ} , $\forall x_1, x_2$ with confidences larger than $\frac{1}{2}$, i.e.,

$$f_{\theta}(x_1)[y_1^m] > \frac{1}{2}$$
, and $f_{\theta}(x_2)[y_2^m] > \frac{1}{2}$. (2)

If x_1 is correctly classified as $y_1^m = y_1$, while x_2 is wrongly classified as $y_2^m \neq y_2$, then $T\text{-}Con(x_1) > \frac{1}{2} > T\text{-}Con(x_2)$.

2. Learn T-Con by rectifying confidence

We train a rectified confidence (R-Con) to align with T-Con

$$\mathbf{R}\text{-}\mathbf{Con}(x) = f_{\theta}(x)[\mathbf{y}^{m}] \cdot A_{\phi}(x)$$

$$T-Con(x) = f_{\theta}(x)[y]$$

where $A_{\phi}(x)$ is an auxiliary function.

2.1 How well is R-Con learned?

Definition 1. (Point-wisely ξ -error) If at least one of the bounds holds at a point x:

Bound (i):
$$\left| \log \left(\frac{A_{\phi}(x)}{A_{\phi}^{*}(x)} \right) \right| \leq \log \left(\frac{2}{2-\xi} \right);$$
 (6)

Bound (ii): $|A_{\phi}(x) - A_{\phi}^{*}(x)| \leq \frac{\xi}{2}$.

where $\xi \in [0, 1)$, then $A_{\phi}(x)$ is called ξ -error at input x.

3. Confidence and R-Con are coupled

 $\frac{1}{2-\xi}$ confidence rejector and ξ -error R-Con rejector can be coupled to *perfectly* distinguish correctly and wrongly classified samples.

Theorem 1. (Separability) Given the classifier f_{θ} , for any input pair of x_1 , x_2 with confidences larger than $\frac{1}{2-\xi}$, i.e.,

$$f_{\theta}(x_1)[y_1^m] > \frac{1}{2-\xi}, \text{ and } f_{\theta}(x_2)[y_2^m] > \frac{1}{2-\xi},$$
 (7)

where $\xi \in [0,1)$. If x_1 is correctly classified as $y_1^m = y_1$, while x_2 is wrongly classified as $y_2^m \neq y_2$, and A_{ϕ} is ξ -error at x_1 , x_2 , then there must be $R\text{-}Con(x_1) > \frac{1}{2} > R\text{-}Con(x_2)$.

