Homework 9

Mos Kullathon

921425216

Determine if the following series is convergent or divergent. You can use any tests you have learnt so far.

(a)
$$\sum_{n=1}^{\infty} \sin(n \frac{\pi}{2})$$

 $\lim_{n \to \infty} \sin\left(n\frac{\pi}{2}\right)$ does not exist. By divergence test, the series diverges.

(b)
$$\sum_{n=2}^{\infty} rac{1}{n(\ln n)^2}$$

Let
$$f(x) = \frac{1}{x \ln^2 x}$$
.

Since $f(x)=\frac{1}{x\ln^2 x}>0$ and $x\ln^2 x$ is monotonically increasing for $x\geq 2$, so its reciprocal $f(x)=\frac{1}{x\ln^2 x}$ is decreasing for $x\geq 2$.

By integral test:

$$\int_2^\infty rac{1}{x(\ln x)^2} \, \mathrm{d}x = \lim_{n o \infty} \int_2^n rac{1}{x(\ln x)^2} \, \mathrm{d}x$$
 $u = \ln x \quad \Longrightarrow \quad \mathrm{d}u = rac{1}{x} \, \mathrm{d}x$
 $\iff \quad \mathrm{d}x = x \, \mathrm{d}u$
 $x = 2 \quad \Longrightarrow \quad u = \ln 2$
 $x = n \quad \Longrightarrow \quad u = \ln n$

$$\begin{split} \lim_{n\to\infty} \int_{\ln 2}^{\ln n} \frac{1}{x(\ln x)^2} \,\mathrm{d}x &= \lim_{n\to\infty} \int_{\ln 2}^{\ln n} \frac{x \,\mathrm{d}u}{xu^2} \\ &= \lim_{n\to\infty} \int_{\ln 2}^{\ln n} u^{-2} \,\mathrm{d}u \\ &= \lim_{n\to\infty} \left[-\frac{1}{u} \right]_{\ln 2}^{\ln n} \\ &= \lim_{n\to\infty} -\frac{1}{\ln n} + \frac{1}{\ln 2} \\ &= \frac{1}{\ln 2} \end{split}$$

Since $\int_2^\infty \frac{1}{x(\ln x)^2} \, \mathrm{d}x = \frac{1}{\ln 2} < \infty$, the series is convergent.

(c)
$$\sum_{n=1}^{\infty} \frac{1}{n^{3/2}+1}$$

Let
$$a_n=rac{1}{n^{3/2}+1}$$
 and $b_n=rac{1}{n^{3/2}}.$

Then,

$$rac{a_n}{b_n} = rac{n^{3/2}}{n^{3/2}+1}.$$

$$\lim_{n o\infty}rac{a_n}{b_n}=1$$

By limit comparison test, $\sum_{n=1}^\infty a_n$ and $\sum_{n=1}^\infty b_n$ will either converge or diverge together.

Let
$$f(x)=rac{1}{x^{3/2}}.$$

Since f(x)>0 and $f'(x)=-rac{3}{2x^{5/2}}<0$ for all $x\geq 1$, we apply the integral test.

$$\int_{1}^{\infty} \frac{1}{x^{3/2}} dx = \lim_{n \to \infty} \int_{1}^{n} x^{-3/2} dx$$

$$= \lim_{n \to \infty} \left[\frac{x^{-1/2}}{-1/2} \right]_{1}^{n}$$

$$= \lim_{n \to \infty} \left[-\frac{2}{\sqrt{x}} \right]_{1}^{n}$$

$$= \lim_{n \to \infty} -\frac{2}{\sqrt{n}} + 2$$

$$= 2$$

By integral test, $\sum_{n=1}^{\infty} \frac{1}{n^{3/2}}$ is convergent. Subsequently, by the limit comparison test, the series $\sum_{n=1}^{\infty} \frac{1}{n^{3/2}+1}$ must also be convergent.

(d)
$$\sum_{n=1}^{\infty} rac{\sqrt{n}}{(n+1)^2}$$

Let
$$a_n=rac{\sqrt{n}}{(n+1)^2}=rac{n^{1/2}}{n^2+2n+1}$$
 and $b_n=rac{1}{n^{3/2}}.$

Then,

$$egin{aligned} rac{a_n}{b_n} &= rac{n^2}{n^2 + 2n + 1}. \ dots &\lim_{n o \infty} rac{a_n}{b_n} &= 1 \end{aligned}$$

Since $b_n = \frac{1}{n^{3/2}}$ is nonnegative and decreasing, we apply the integral test.

From (c), we concluded that $\sum_{n=1}^{\infty} \frac{1}{n^{3/2}}$ is convergent by integral test. Subsequently, by the limit comparison test, the series $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{(n+1)^2}$ must also be convergent.

(e)
$$\sum_{n=2}^{\infty} \frac{(\ln n)^2}{n}$$

Since

$$\ln n = 1 \iff n = e,$$

and

$$rac{\mathrm{d}}{\mathrm{d}n}\ln n = rac{1}{n} > 0, orall n > 3$$

we have that

$$\ln n > 1, \forall n > 3.$$

As such, for all values n > 3:

$$\ln n > 1$$
 $\iff \ln^2 n > 1$
 $\iff \frac{\ln^2 n}{n} > \frac{1}{n}.$

Since $\sum_{n=2}^{\infty} \frac{1}{n}$ is divergent, by comparison test $\sum_{n=2}^{\infty} \frac{(\ln n)^2}{n}$ must also be divergent.

(f)
$$\sum_{n=1}^{\infty} \frac{n^2}{(n^2+10)^2}$$

Let
$$a_n=rac{n^2}{(n^2+10)^2}=rac{n^2}{n^4+20n^2+100}$$
 and $b_n=rac{1}{n^2}.$

Then,

$$egin{aligned} rac{a_n}{b_n} &= rac{n^4}{n^4 + 20n^2 + 100} \ \therefore \lim_{n o \infty} rac{a_n}{b_n} &= 1 \end{aligned}$$

Since $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges, then by limit comparison $\sum_{n=1}^{\infty} \frac{n^2}{(n^2+10)^2}$ also converges.

(g)
$$\sum_{n=1}^{\infty} \frac{n \ln n}{n^3+2}$$

For sufficiently large n,

$$rac{n \ln n}{n^3 + 2} pprox rac{n}{n^3 + 2}$$

Let
$$a_n=rac{n}{n^3+2}$$
 and $b_n=rac{n^\epsilon}{n^2}=rac{1}{n^{2-\epsilon}}$ for some small $\epsilon>0.$

Then,

$$rac{a_n}{b_n} = rac{n^{3-\epsilon}}{n^3+2} \ \therefore \lim_{n o\infty} rac{a_n}{b_n} = 0$$

For small values of $\epsilon>0$, the series $\sum_{n=1}^\infty \frac{1}{n^{2-\epsilon}}$ converges. As such, by limit comparison test

$$\sum_{n=1}^{\infty} \frac{n \ln n}{n^3 + 2} \text{ converges.}$$

(h)
$$\sum_{n=2}^{\infty} \frac{1}{n^2 (\ln n)^2}$$

$$\ln e = 1 \implies \ln n > 1, \forall n > 3$$

So for n>3:

$$\ln n > 1$$
 $\iff \ln^2 n > 1$
 $\iff n^2 \ln^2 n > n^2$
 $\iff \frac{1}{n^2 \ln^2 n} < \frac{1}{n^2}$

Since $\sum_{n=2}^{\infty} \frac{1}{n^2}$ converges, by comparison test $\sum_{n=2}^{\infty} \frac{1}{n^2 (\ln n)^2}$ also converges.

Section 5.5

State whether each of the following series converges absolutely, conditionally, or not at all.

$$(251) \sum_{n=1}^{\infty} (-1)^{n+1} \frac{\sqrt{n}+1}{\sqrt{n}+3}$$

Let
$$a_n = rac{\sqrt{n}+1}{\sqrt{n}+3}.$$

$$\lim_{n o\infty}a_n=rac{\sqrt{n}+1}{\sqrt{n}+3}=1
eq 0$$

By divergence test, the series diverges.

$$(252)\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{\sqrt{n+3}}$$

Let
$$a_n = \frac{1}{\sqrt{n+3}}$$
.

Since $\sqrt{n+3}$ is monotonically increasing, its reciprocal $a_n=\frac{1}{\sqrt{n+3}}$ must subsequently be decreasing.

And

$$\lim_{n o\infty}a_n=\lim_{n o\infty}rac{1}{\sqrt{n+3}}=0.$$

By alternating series test, $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{\sqrt{n+3}}$ is convergent.

Testing for absolute convergence

$$\sum_{n=1}^{\infty} \left| (-1)^{n+1} \frac{1}{\sqrt{n+3}} \right| = \sum_{n=1}^{\infty} \frac{1}{\sqrt{n+3}}$$

Let
$$f(x) = \frac{1}{\sqrt{x+3}}$$
.

We note that f(x)>0 and f'(x)<0 for $x\in [1,\infty).$

$$\int_1^\infty rac{1}{\sqrt{x+3}} \,\mathrm{d}x = \lim_{n o\infty} \int_1^n (x+3)^{-1/2} \,\mathrm{d}x$$

$$= \lim_{n o\infty} \left[2\sqrt{x+3}\right]_1^n$$

$$= \lim_{n o\infty} 2\sqrt{n+3} - 4$$

$$= \infty$$

By integral test, we find that the sum of the absolute values of the terms do not converge.

As such, we conclude that $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{\sqrt{n+3}}$ exhibits conditional convergence.

(260)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \sin^2(1/n)$$

Since $\sin x \leq x$ for x>0. Then, where $a_n=\sin^2(1/n)$, we have that $0\leq a_{n+1}\leq a_n$ for $n\geq 1$.

$$\lim_{n o\infty}\sin^2(1/n)=\sin^2\left(\lim_{n o\infty}rac{1}{n}
ight)=\sin^20=0$$

By alternating series test, the series is convergent.

Testing for absolute convergence

$$\sum_{n=1}^{\infty} \left| (-1)^{n+1} \sin^2(1/n) \right| = \sum_{n=1}^{\infty} \sin^2(1/n)$$

For n > 0:

$$\sin n \le n$$
 $\iff \sin \frac{1}{n} \le \frac{1}{n}$
 $\iff \sin^2 \frac{1}{n} \le \frac{1}{n^2}$

Since $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges, by comparison test $\sum_{n=1}^{\infty} \sin^2 \frac{1}{n}$ also converges. As such, we conclude that $\sum_{n=1}^{\infty} (-1)^{n+1} \sin^2 (1/n)$ exhibits absolute convergence.

(261)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \cos^2(1/n)$$

$$\lim_{n o\infty}\cos^2(1/n)=\cos^2\left(\lim_{n o\infty}rac{1}{n}
ight)=\cos^20=1
eq 0$$

By divergence test, the series is divergent.