Feuille d'exercice n° 26 : Séries numériques

Exercice 1 On considère deux séries (u_n) et (v_n) à termes positifs.

- 1. Démontrer que si les deux séries $\sum u_n$ et $\sum v_n$ convergent, alors la série de terme général $\sqrt{u_n v_n}$ converge aussi.
- 2. On suppose maintenant que $v_n = \frac{1}{1 + n^2 u_n}$.
 - (a) Exprimer $\sqrt{u_n v_n}$ en fonction de v_n et de n.
 - (b) En déduire que $\sum v_n$ et $\sum u_n$ ne peuvent pas converger toutes les deux.

Exercice 2 (\circlearrowleft) Comment choisir deux réels a et b tels que $\sum u_n$ converge, avec $u_n = \ln n + a \ln(n + 1) + b \ln(n + 2)$? Dans le cas de convergence, donner la valeur de la somme.

Exercice 3 Soit $(u_n)_{n\geqslant 1}$ une suite réelle décroissante de limite nulle.

On suppose que la suite $(v_n)_{n\geqslant 1}$ définie par $v_n=\left(\sum_{k=1}^n u_k\right)-nu_n$ est bornée. On veut montrer que la série $\sum u_n$ converge.

- 1. Montrer que (v_n) est croissante, puis convergente. On note ℓ sa limite.
- 2. Exprimer $u_n u_{n+1}$ en fonction de v_n et v_{n+1} .
- 3. En sommant l'égalité précédente de $n \ a + \infty$, montrer que $u_n \leqslant \frac{1}{n}(\ell v_n)$.
- 4. En déduire que $nu_n \to 0$, et enfin que la série $\sum u_n$ converge.

Exercice 4 (\circlearrowleft) On étudie la suite (u_n) définie par $: u_0 \in]0, \pi/2[$ et $u_{n+1} = \sin(u_n)$.

- 1. Montrer que (u_n) est une suite à termes positifs, et qu'elle est convergente.
- 2. Déterminer la limite de (u_n) .
- 3. (a) Donner un DL à l'ordre 3 de u_{n+1} en fonction de u_n , quand n tend vers $+\infty$. En déduire un équivalent de u_n^3 en fonction de $(u_{n+1} u_n)$.
 - (b) Déterminer la nature de la série de terme général u_n^3 .
- 4. Déterminer la nature de la série de terme général $\ln\left(\frac{u_{n+1}}{u_n}\right)$.
- 5. (a) Donner un équivalent de $\ln\left(\frac{u_{n+1}}{u_n}\right)$ en fonction de u_n , quand n tend vers $+\infty$.
 - (b) En déduire la nature des séries de termes généraux u_n^2 et u_n .

Exercice 5 () Déterminer la nature des séries dont les termes généraux sont les suivants :

$$1. \ u_n = \frac{\operatorname{ch} n}{\operatorname{ch} 2n}$$

3.
$$u_n = e - \left(1 + \frac{1}{n}\right)^n$$

1

5.
$$u_n = \frac{1}{n \cos^2 n}$$

2.
$$u_n = \frac{1}{\sqrt{n^2 - 1}} - \frac{1}{\sqrt{n^2 + 1}}$$

$$4. \ u_n = \left(\frac{n}{n+1}\right)^{n^2}$$

$$6. \ u_n = \frac{1}{(\ln n)^{\ln n}}$$

Exercice 6 () Déterminer la nature des séries de terme général, avec $\alpha \in \mathbb{R}$:

$$1. \ \frac{2^n n}{n!}$$

$$2. \left(\frac{1}{\ln n}\right)^{\ln n}$$

$$3. \left(\frac{\sqrt{n}}{1+\sqrt{n}}\right)^r$$

3.
$$\left(\frac{\sqrt{n}}{1+\sqrt{n}}\right)^n$$
 4. $u_n = \frac{1}{n^{\alpha}} \sum_{k=1}^n \ln^2 k$

Indication pour 4 : grâce à un encadrement, trouver un équivalent de u_n .

Déterminer la nature de la série de terme général $u_n = \begin{cases} 1/n & \text{si } n \text{ est un carr\'e} \\ 1/n^2 & \text{sinon} \end{cases}$. Exercice 7

Exercice 8 Existence et calcul de

$$\sum_{n=1}^{+\infty} \frac{1}{n(n+1)(2n+1)}$$

Exercice 9 Existence et calcul de

$$\sum_{n=2}^{+\infty} \ln\left(1 - \frac{1}{n^2}\right)$$

Sachant $\sum_{n=0}^{+\infty} \frac{1}{n!} = e$, calculer Exercice 10

$$\sum_{n=0}^{+\infty} \frac{n+1}{n!} \text{ et } \sum_{n=0}^{+\infty} \frac{n^2 - 2}{n!}$$

Exercice 11 Convergence puis calcul de

$$\sum_{n=1}^{+\infty} \frac{1}{1^2 + 2^2 + \dots + n^2}$$

Exercice 12 (%) — Transformation d'Abel —

Soient (a_n) une suite positive décroissante de limite nulle et (S_n) une suite bornée.

- a) Montrer que la série $\sum (a_n a_{n+1})S_n$ est convergente.
- b) En déduire que la série $\sum a_n(S_n S_{n-1})$ est convergente.
- c) Etablir que pour tout $x \in \mathbb{R} \setminus 2\pi\mathbb{Z}$, la série $\sum \frac{\cos(nx)}{n}$ est convergente.

Déterminer la nature de la série de terme général Exercice 13

$$u_n = \frac{1}{(\ln 2)^2 + \dots + (\ln n)^2}$$

Exercice 14 () Pour $\alpha > 1$, on pose

$$S_N = \sum_{n=1}^{N} \frac{1}{n^{\alpha}} \text{ et } R_N = \sum_{n=N+1}^{+\infty} \frac{1}{n^{\alpha}}$$

Étudier, selon α , la nature de la série $\sum_{n \geq 1} \frac{R_n}{S_n}$.

Exercice 15 (N) Soit $f \in \mathcal{C}^1(\mathbb{R}, \mathbb{R})$, telle que f(0) = 0 et |f'(0)| < 1. On considère la suite $(u_n)_{n \in \mathbb{N}}$ définie par $u_0 \in \mathbb{R}$ et $\forall n, u_{n+1} = f(u_n)$. Démontrer qu'il existe $\alpha > 0$ tel que si $|u_0| < \alpha$, la série de terme général u_n converge absolument.

