Elastisitet FYS 2150 – Modul 3

Fysisk institutt, Universitetet i Oslo (Dated: 2005) (Redigert 21. februar 2017)

I denne øvelsen vil dere bestemme elastisitetsmodulen til messing på to forskjellige måter. Resultater fra statisk nedbøying av en sylindrisk messingstav skal sammenlignes med en dynamisk bestemmelse ved måling av lydhastigheten i staven.

I. INTRODUKSJON

Et kjennetegn av en god teori, eller modell for et fysisk system, er at flere fenomener kan beskrives med et mindre antall parametre. Dere skal undersøke her om både statisk nedbøying av en messingstav og hastigheten av lyd i samme stav kan beskrives med en felles elastisitetsmodul E.

Dere vil ha bruk for måleteknikk og dataanalyse som der har brukt tidligere i kurset.

II. EN BJELKES NEDBØYING

I følge wikipedia [1] er defleksjon h(m) midt i en bjelke støttet på to punkter med avstand l og last mg midt i bjelken gitt ved

$$h(m) = \frac{mgl^3}{48EI} \,, \tag{1}$$

der E er elastisitetsmodulen ("Young' Modulus") og I er andre arealmomentet ("second moment of area") på tvers av bjelken:

$$I = \int \int z^2 \, dy \, dz \,, \tag{2}$$

der lasten er i z-rettning og bjelken strekker seg i x-rettning. For en sylinder av diameter d=R/2 blir arealmomentet

$$I = \int_0^{2\pi} \int_0^R (r \sin \theta)^2 r \, dr \, d\theta = \frac{\pi d^4}{4 \cdot 2^4} \,. \tag{3}$$

Dere skal måle stigningsforholdet A mellom defleksjonen h(m) og en variert masse m:

$$h(m) = A m + B , (4)$$

der verdien av B skal være konsistent med 0, gitt usikkerheten i målingene. Løser vi likning 1 for E, setter inn I for sylinder-staven vi skal bruke, og erstatter h(m)/m med A, får vi et utrykk for elasitisitetsmodulen vi kan teste:

$$E = \frac{4l^3g}{3\pi|A|d^4} \ . \tag{5}$$

III. APPARATUR FOR MÅLING AV EN BJELKES NEDBØYING

Apparaturen er vist skjematisk i fig. 1. En bjelke A med u-profil er utstyrt med to kniver B og C og et stativ D med måleur. Knivene og stativet kan forskyves langs A. Prøven E (messingstaven) som skal undersøkes, hviler på knivene. På prøven er montert en holder F, se fig. 1.

Figur 1: Apparatur for måling av en bjelkes nedbøying.

Figur 2: Detalj fra fig. 1. Tverrsnitt gjennom prøven ved holderen.

Måleurets føler registrerer den vertikale posisjonen til holderens anleggsflate G, se fig. 2. En vekt, grove lodd, presisjonslodd, et målebånd og et mikrometer inngår i apparaturen.

Oppgave 1. Bøying av en messingstav med sirkulært tverrsnitt

- a) Legg staven slik at avstandene mellom holderen F og knivene B og C blir like store. Drei staven til anleggsflaten G blir horisontal.
- anleggsflatens vertikale posisjon b) Bestem h(m)somfunksion av belastningen m. for $\{0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5\}$ kg. mmåleresultatene grafisk. Lasten (de Fremstill grovde loddene) må kalibreres på vekten mot presisjonsloddene.

Sammenhengen mellom m og h er forventet å være lineær, som antydet i fig. 3. Vi ønsker å legge en rett linje h = A m + B på beste måte gjennom målepunktene, og bestemme linjens stigningsforhold A med usikkerhet s_A . Dette gjøres ved hjelp av minste kvadraters metode (se prelab-oppgavene 3 og 4).

Figur 3: Målte verdier av h ved ulik belastning m.

Oppgave 2. Utjevning etter minste kvadraters metode

Bestem stigningsforholdet A med usikkerhet s_A . Er avvikene mellom tilpasset linjen og datapunktene i overenstemmelse med måleusikkerheten?

Oppgave 3. Bestemmelse av elastisitetsmodulen

a) Mål stavens diameter d og avstanden l mellom knivene. Anslå usikkerhetene i d og l.

b) Beregn E og den totale usikkerheten s_E ved hjelp av hhv. likning 5 og uttryket

$$s_E = E\sqrt{\left(\frac{s_A}{A}\right)^2 + \left(\frac{4s_d}{d}\right)^2 + \left(\frac{3s_l}{l}\right)^2}.$$

IV. DYNAMISK BESTEMMELSE AV E VED MÅLING AV LYDHASTIGHET

Denne metoden for bestemmelse av E beror på at utbredelses-hastigheten v for longitudinalbølger i en stav er gitt ved

$$v = \sqrt{\frac{E}{\rho}},$$

der ρ er mediets tetthet. Utbredelseshastigheten v kan bestemmes ved å måle sammenhørende verdier av frekvens f og bølgelengde λ idet vi har sammenhengen

$$v = \lambda f$$
.

Bølgelengde og frekvens kan bestemmes ved måling på en stående bølge i staven. Det kan vises (se Appendiks) at ved frie longitudinelle svingninger i en homogen stav med lengde L opphengt i midtpunktet og med frie ender, får vi stående bølger slik at

$$L = n \frac{\lambda}{2} \text{ der } n = 1, 3, 5, \dots$$

Ved å gi staven et slag i aksial retning, eksiteres flere av disse stående bølgene (egensvingninger), men den med lengst bølgelengde, $\lambda=2L$, blir den sterkeste og dempes minst. Etter en kort tid er derfor dette den dominerende bølgen i staven. Ved passende valg av L gir disse svingningene hørbar lyd i luften omkring staven.

Frekvensen f kan bestemmes ved å sammenlikne lyden fra staven med lyden fra en høyttaler som er koplet til en tonegenerator. Sammenlikningen foregår ved å observere svevninger mellom lyden fra staven og lyden fra høyttaleren. Målingen går ut på å innstille høyttaleren slik at svevefrekvensen blir så liten som mulig (i grensetilfellet 0), og så måle høyttalerfrekvensen som da er lik frekvensen f for bølgen i staven (grunntonen). Svevningene blir mest utpreget og lettest å høre når de to lydene er omtrent like sterke.

Frekvensen kan også måles ved opptakk av lydsignalen med en mikrofon koblet til PCen og en analyse av signalets frekvensspektrum. Koden dere brukte i øvelsen "Lengde, hastighet og aksellerasjon" kan gjenbrukes her med små modifikasjoner. Hva begrensner presisjonen for denne metoden?

For hastigheten v har vi da

$$v = 2Lf$$
.

Tettheten ρ til materialet i staven kan bestemmes ved å måle stavens lengde L, diameter d og masse M. Da er

$$\rho = \frac{4M}{\pi d^2 L}.$$

For E får vi uttrykket

$$E = \frac{16MLf^2}{\pi d^2},\tag{6}$$

slik at vi kan bestemme E ved å måle grunntonefrekvensen f og stavens lengde, diameter og masse.

Oppgave 4. Dynamisk bestemmelse av elastisitetsmodulen

- a) Mål stavens lengde L, diameter d og masse M. Anslå usikkerhetene i L, d og M.
- b) Bruk verdiene for L, d og M sammen med verdien for E funnet ved bøyingsforsøk til å beregne en tilnærmet verdi for grunnfrekensen f fra likning 6. Innstill denne frekvensen på tonegeneratoren.
- c) La staven henge horisontalt og gi den et aksialt slag med en plasthammer. Etter kort tid er det grunnfrekvensen man hører fra staven.

Reguler styrken på høyttaleren slik at man tydelig kan høre svevninger mellom lydene fra høyttaleren og staven. Reguler så høyttalerfrekvensen til svevningsfrekvensen er tilnærmet lik null. Den frekvensen man da måler tas som den beste verdi for grunnfrekvensen f. Anslå usikkerheten i f. Beregn verdien av E fra likning 6, og usikkerheten i E som er gitt ved

$$s_E = E \sqrt{\left(\frac{2s_d}{d}\right)^2 + \left(\frac{2s_f}{f}\right)^2 + \left(\frac{s_L}{L}\right)^2 + \left(\frac{s_M}{M}\right)^2}.$$

d) Mål frekvensen med lydopptak og FFT-analyse. Sammenlign resultatetene med sveve-metoden.

Vurdering av overensstemmelse

"Full overensstemmelse" mellom to måleresultater skulle tilsi at differansen D mellom dem er null. På grunn av måleusikkerhet aksepterer vi "overensstemmelse" selv om D er noe forskjellig fra null. Usikkerheten i $D=E_1-E_2$ er gitt ved

$$s_D = \sqrt{s_{E_1}^2 + s_{E_2}^2}.$$

Hvis $|D| < s_D$ er det derfor stor sannsynlighet for at forskjellen bare skyldes tilfeldige avvik på grunn av måleusikkerhet. I slike tilfeller må vi akseptere at det er "overensstemmelse innenfor måleusikkerheten". Er $|D| > 2s_D$, er det på den annen side liten sannsynlighet for at forskjellen beror på måleusikkerhet.

Oppgave 5. Sammenlikning av verdier for elastisitetsmodulen

Undersøk om dine to verdier for elastisitetsmodulen kan anses som like innenfor måleusikkerhetene.

V. PRELABOPPGAVER

Kort informasjon

Disse oppgavene må løses før dere skal på laben. Dere vil trenge noen datasett for å gjøre beregningene i oppgavene under. Disse finner dere på samme sted som dere fant denne oppgaveteksten.

Du trenger følgende filer til disse oppgavene:

- maalinger_h.dat
- messing_lyd.wav

Oppgavene

1. Hva beskriver Youngs modulus, og hvilken enhet (SI) har den?

1 poeng

- A. Forholdet mellom trykk og deformasjon. Enhet [Pa/m]
- B. Forholdet mellom deformasjon og trykk. Enhet $[Pa^{-1}]$
- C. Forholdet mellom trykk og deformasjon. Enhet [Pa]
- D. Forholdet mellom deformasjon og trykk. Enhet [m/Pa]
- Når kan vi observere svevninger mellom to signaler?
 1 poeng
 - A. Når frekvensen til de to signalene er svært like, men ikke identisk like
 - B. Når signalene er faseforskjøvet med faseforskyvning $\pi/2$
 - C. Når signalene er faseforskjøvet med faseforskyvning π
 - D. Når amplituden til de to signalene er like
- 3. Gitt utrykket for usikkerheten i stigningstallet ΔA (se f.eks. s. 39 i Squires [2]) som vi finner for en lineær tilpasning av h = A m + B til sammenhørende målinger av m og h, hvilke grep kan vi ta for å minske ΔA ?

3 poeng

- A. Mål flere punkter (m, h).
- B. Mål alle punkter med bedre presisjon.
- C. Mål med største mulig spreding av masseverdiene.

- D. Fjern alle datapunkter som ligger mer enn 1 std. avvik fra den beste linjen.
- 4. Filen "maalinger_h.dat" inneholder data fra et forsøk som ligner situasjonen dere møter i laben (oppgave 2). Første kolonne i filen er massen m [kg], andre kolonne er målinger lest av måleuret (h, [mm]). Beregn stigningstallet A, hvis vi antar en lineær sammenheng h = A m + B.

2 poeng

A.
$$A = -1.361 \cdot 10^{-3} \text{ [m/kg]}$$

B. $A = -1.429 \cdot 10^{-3} \text{ [m/kg]}$
C. $A = -1.353 \cdot 10^{-3} \text{ [m/kg]}$
D. $A = -1.493 \cdot 10^{-3} \text{ [m/kg]}$

5. Beregn også usikkerheten i lineærtilpasningen, ΔA : **2 poeng**

A.
$$\Delta A = 0.0148 \cdot 10^{-3} \, [\text{m/kg}]$$

B. $\Delta A = 0.0235 \cdot 10^{-3} \, [\text{m/kg}]$
C. $\Delta A = 0.0553 \cdot 10^{-3} \, [\text{m/kg}]$
D. $\Delta A = 0.0143 \cdot 10^{-3} \, [\text{m/kg}]$

6. Anta at du måler $A=-1.393\cdot 10^{-3}\,[\mathrm{m/kg}]$ og $\Delta A=0.0214\cdot 10^{-3}\,[\mathrm{m/kg}]$. Deretter måler du avstanden mellom knivene $l=1.213\pm 0.002\,[\mathrm{m}]$, og diameteren til messingstaven $d=(14.91\pm 0.03)\cdot 10^{-3}\,[\mathrm{m}]$. Hva blir da Youngs modulus E, og hvordan vil du rapportere målingen? (Bruk verdien $g=9.81\,\mathrm{m/s^2}$ til tyngdeakselerasjonen. Du kan anta neglisjerbar usikkerhet i g, men bør reflektere litt rundt dette hvis du skal skrive en rapport om øvelsen. Det samme gjelder for usikkerheten i massen til loddene.) **2 poeng**

A.
$$E = (108 \pm 2) \text{ GPa}$$

B. $E = (108 \pm 4) \text{ GPa}$
C. $E = (113 \pm 3) \text{ GPa}$
D. $E = (113 \pm 1) \text{ GPa}$

7. Anta at du måler lengden på messingstaven $L=1.530\,\mathrm{m}$, og massen $M=2.500\,\mathrm{kg}$. Anta videre at du har målt Youngs modulus $E=107.0\,\mathrm{GPa}$ på en annen måte, for eksempel som i oppgavene over (NB: **IKKE** bruk verdien du fant for E i oppgaven over). Diameteren $d=14.91\cdot 10^{-3}\mathrm{m}$ på prøven er fortsatt den samme. Bruk denne informasjonen til å regne ut et estimat \hat{f} på grunntonefrekvensen til messingstaven. Hva finner du?

2 poeng

A.
$$\hat{f} = 1.101 \,\text{kHz}$$

B. $\hat{f} = 1.105 \,\text{kHz}$
C. $\hat{f} = 1.102 \,\text{kHz}$

D.
$$\hat{f} = 1.104 \, \text{kHz}$$

8. Last inn filen "messing_lyd.wav" i Matlab (funksjonen [signal,sf]=audioread('messing_lyd.wav') gjør dette for deg). Lyden er tatt opp med en samplingsfrekvens på 44.1 kHz.

Bruk estimatet \hat{f} du fant i forrige oppgave til å lage et eget lydsignal med frekvensen \hat{f} . Dette signalet bør være en ren sinuskurve, med samme lengde som wav-filen du lastet inn. Bruk size() eller length() til dette. Amplituden på lyden du lager bestemmer du selv. Et hint er at matlab "klipper" all lyd med amplitude |a| > 1, slik at summen av signalene bør ikke overskride 1.

Legg sammen de to signalene, og lytt etter svevninger (funksjonene sound() og soundview() kan brukes til dette). Gjør små endringer i \hat{f} , til du mener du treffer grunnfrekvensen i lydsignalet "messing lyd". Hvilken frekvens finner du? (NB: du kan også Fouriertransformere lydsignalet for å finne grunnfrekvensen. Benytt gjerne begge metodene, og gjør deg opp en mening om hvilken du mener er best egnet.)

3 poeng

A. $f = 1.100 \,\text{kHz}$ B. $f = 1.095 \,\text{kHz}$ C. $f = 1.103 \,\text{kHz}$ D. $f = 1.106 \,\text{kHz}$

9. Hva påvirker frekvensoppløsningen i en (numerisk) Fourier-transformasjon?

2 poeng

- A. Samplingsfrekvensen
- B. Tiden vi måler over
- C. Amplituden til signalet vi måler
- 10. Anta at du har en lyd som består av en ren tone med frekvens $f=1000\,\mathrm{Hz}$. Du spiller av denne sammen med en lyd som har frekvens $\hat{f}=1005\,\mathrm{Hz}$. Hvilken frekvens Δf vil svevningene du hører ha? (HINT: Her er det kanskje lurt å tenke seg om to ganger.)

2 poeng

- Hva finner du? B. $\Delta f = 2.5\,\mathrm{Hz}$ c. Egentlig Δf 5 Hz
 - C. Egentlig $\Delta f = 2.5\,\mathrm{Hz},$ men det vil høres ut som $5\,\mathrm{Hz}$
 - D. $\Delta f = 5 \,\mathrm{Hz}$

A. $\Delta f = 10 \,\mathrm{Hz}$

- [1] Three point bending: https://en.wikipedia.org/wiki/EulerBernoulli_beam_theory#Three-point_bending.
- [2] Squires, G. L. 2001. Practical Physics, 4th ed., Cambridge

 ${\bf University\ Press.}$

Appendiks

Elastiske bølger i en stav

Fig. 4 viser et utsnitt av en rett, jevntykk og homogen stav. Staven befinner seg opprinnelig i en likevektstilstand. Et aksialt støt bringer staven ut av likevektstilstanden ved at hvert tverrsnitt forskyves en strekning ξ i stavens lengderetning. Forskyvningen er en funksjon av tverrsnittets likevektsposisjon x. Den nye tilstanden er vanligvis ikke en likevektstilstand. Staven vil derfor være i bevegelse. Bevegelsen vil være fullstendig beskrevet når vi kjenner ξ som funksjon av posisjonen x og tiden t, dvs. $\xi = \xi(x,t)$. For å bestemme denne funksjonen, tar vi for oss et utsnitt (skravert) av staven mellom tverrsnittene A og A', som i likevektstilstanden har posisjonene x og x + dx, se fig. 4. Ved tiden t er forskyvningene av de to tverrsnittene gitt ved $\xi = \xi(x)$ og $\xi' = \xi(x+dx) = \xi + d\xi$. Massen til det skraverte utsnittet er $dm = \rho_0 A dx$, der ρ_0 er stavens opprinnelige tetthet. Utsnittets akselerasjon i x-retningen er

$$a = \frac{\partial^2 \xi(x,t)}{\partial t^2} \ .$$

Figur 4: Parametre for beskrivelse av elastiske bølger i en stav.

Resultantkraften dF på utsnittet i x-retningen skyldes normalspenningen R som virker over A og A'. Normalspenningen er en funksjon av tverrsnittets likevektsposisjon x og t, R = R(x,t). På tverrsnittene A og A' virker følgelig kreftene AR(x,t) og AR(x+dx,t), som gir

$$dF = AR(x + dx, t) - AR(x, t) = A\frac{\partial R(x, t)}{\partial x}dx.$$

Avstanden mellom A og A' er etter forskyvningen

$$(x' + \xi') - (x + \xi) = dx + d\xi.$$

Den skraverte delen av staven har derfor en relativ forlengelse

$$e = \frac{\mathrm{d}\xi}{\mathrm{d}x} = \frac{\partial \xi(x,t)}{\partial x}.$$

Ifølge definisjonslikningen for elastisitetsmodulen har vi

$$R = Ee = E\frac{\partial \xi}{\partial x},$$

slik at d $F=AE\frac{\partial^2 \xi}{\partial x^2}$ dx. Vi benytter til slutt Newtons 2. lov dF=adm og finner bølgelikningen

$$\frac{\partial^2 \xi}{\partial t^2} = v^2 \frac{\partial^2 \xi}{\partial x^2}$$
 der $v^2 = \frac{E}{\rho_0}$.

Bølgelikningen har løsninger av formen $\xi(x,t) = f(x \pm vt)$, det vil si longitudinelle bølger med forplantningshastighet v.

Stående bølger i en stav festet i midtpunktet.

Vi legger x-aksens origo i stavens midtpunkt som skal ligge fast, slik at $\xi(0,t)=0$. Kreftene som virker i stavens endepunkter $x=\pm\frac{L}{2}$ er lik null, hvilket medfører at

$$\left(\frac{\partial \xi(x,t)}{\partial x}\right)_{x=\pm\frac{L}{2}} = 0.$$

Funksjonen $\xi=\frac{\xi_0}{2}[\sin(kx+\omega t)+\sin(kx-\omega t)]=\xi_0\sin kx\cos\omega t$ tilfredsstiller bølgeliknigen og den første grensebetingelsen såfremt $\frac{\omega}{k}=v$. For å tilfredsstille de andre grensebetingelsene må vi kreve at

$$k\frac{L}{2} = (2n+1)\frac{\pi}{2}$$
 $n = 0, 1, 2, 3, \dots$

det vil si $k=(2n+1)\frac{\pi}{L}$. Bølgelengdene $\lambda=\frac{2\pi}{k}$ svarende til de forskjellige egensvingningene ("normal modes") blir

$$\lambda = 2L, \frac{2L}{3}, \frac{2L}{5}, \dots$$

Grunntonens frekvens er

$$f = \frac{d}{4}\sqrt{\frac{\pi E}{ML}}.$$

Svevninger

En harmonisk løsning av bølgelikningen har formen

$$\xi = \xi_0 \sin(kx - \omega t)$$

der $\frac{\omega}{k}=v,\ k=\frac{2\pi}{\lambda}$ og $\omega=2\pi f.$ For en bølge som er sammensatt av to harmoniske bølger, blir

$$\xi = \xi_0 [\sin(kx - \omega t) + \sin(k'x - \omega' t)] \tag{7}$$

$$=2\xi_0 \cos \frac{(k'-k)x - (\omega' - \omega)t}{2} \tag{8}$$

$$\times 2\sin\frac{(k'+k)x - (\omega'+\omega)t}{2} \tag{9}$$

Hvis $k' \approx k$ og $\omega' \approx \omega$, får vi tilnærmet

$$\xi \approx 2\xi_0 \cos \frac{(\Delta kx - \Delta \omega t)}{2} \sin(kx - \omega t),$$

der $\Delta k = k' - k$ og $\Delta \omega = \omega' - \omega$. Vi ser at bølgen kan oppfattes som et produkt av en raskt svingende del, $2\xi_0 \sin(kx - \omega t)$, og en langsomt svingende del,

$$\cos\frac{(\Delta kx - \Delta\omega t)}{2},$$

med forplantningshastighet $\frac{\Delta \omega}{\Delta k}.$ Variasjonene i amplity-

den til den raskt svingende delen kalles svevninger (eng. beats). Svevningenes frekvens $f_{\cal S}$ er

$$f_S = \frac{|\omega - \omega'|}{2} \frac{1}{2\pi}.$$