1 Задание 5

1.1 Задача 1

Задачу можно свести к тому, где находится чило 24, с вероятностью $\frac{1}{2}$ она находится в первой перестановке, и с вероятностью $\frac{1}{2}$ во второй перестановке.

<u>Ответ:</u> $\mathbb{P} = \frac{1}{2}$

1.2 Задача 2

$$\mathbb{P}(x$$
 делится на $2|x$ делится на $3) = \frac{\mathbb{P}(x$ делится на $6)}{\mathbb{P}(x$ делится на $3)}$ $\mathbb{P}(x$ делится на $6)$ $16/100$ 16

$$\frac{\mathbb{P}(x \text{ делится на 6})}{\mathbb{P}(x \text{ делится на 3})} = \frac{16/100}{33/100} = \frac{16}{33}$$

Ответ: $\mathbb{P}(x$ делится на $2|\mathbf{x}$ делится на $3) = \frac{16}{33}$

1.3 Задача 3

 $\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B)$ – одно из определений независимости событий A – среди выбранных чисел есть 2, B – среди выбранных чисел есть 3.

$$\mathbb{P}(A) = \frac{C_{35}^4}{C_{36}^5}; \mathbb{P}(B) = \frac{C_{35}^4}{C_{36}^5}$$

$$\mathbb{P}(A \cap B) = \frac{C_{34}^3}{C_{36}^5}$$

$$\mathbb{P}(B) \cdot \mathbb{P}(A) = \frac{(C_{35}^4)^2}{(C_{36}^5)^2} \neq \mathbb{P}(A \cap B) = \frac{C_{34}^3}{C_{36}^5}$$

Ответ: Нет.

1.4 Задача 4

A – «f инъективна», B – «f(1) = 1».

$$\mathbb{P}(A) = \frac{n!}{n^n}; \mathbb{P}(B) = \frac{1/n \cdot (n-1)^{n-1}}{n^n}$$
$$\mathbb{P}(A \cup B) = \frac{(n-1)!}{n^n}$$

$$\mathbb{P}(A) \cdot \mathbb{P}(B) = \frac{(n-1)! \cdot (n-1)^{n-1}}{n^{2n}} \neq \mathbb{P}(A \cup B) = \frac{(n-1)!}{n^n}$$

Т.к. $(n-1)^{n-1} \neq n^n$

Ответ: Нет.

1.5 Задача 5

$$\mathbb{P} = p * p * 1 + p * (1 - p) * 1/2 + (1 - p) * p * 1/2 = p^{2} - p^{2} + p = p$$

$$\mathbb{P} = p$$
 или $\mathbb{P} = 1/2$

Ответ: $\mathbb{P} = p$, зависит от того больше ли p > 1/2 или меньше.

1.6 Задача 6

Пусть X шариков в первой коробке и x из них белые, Y - во второй корбке и y из них белые. $x+y=10, X+Y=20, X\neq 0, Y\neq 0, x\leq X, y\leq Y$ Получаем, что $x\leq X$ and $10-x\leq 20-X; 0\leq X-x\leq 10$

$$\mathbb{P} = \frac{1}{2} \cdot \left(\frac{x}{X} + \frac{10 - x}{20 - X}\right) = \frac{1}{2} \cdot \frac{(20x - Xx + 10X - xX)}{X(20 - X)}$$
$$\mathbb{P} = \frac{1}{2} \cdot \frac{(20x - Xx + 10X - xX)}{X(20 - X)}$$

Посмотрели на вторые производные и увидели, что экстремума нет, поэтому смотрим на граничные условия. Из них понимаем, что максимум будет при X=1, x=1.

Otbet:
$$P = \frac{14}{19}$$

1.7 Задача 7

Составим табличку:

10	1	1	1	
9	7/8	3/4	1/2	0
8	11/16	1/2	1/4	0
	7	8	9	10

В ячейке указана вероятность выиграть первому. Таблица формируется следующим образом: берется вероятность «выиграть» из правой клетки и умножается на вероятность перейти в эту клетку и к ней суммируется произведение вероятности выиграть из верхней клетки и вероятности попасть в неё. Заполнять таблицу начинаем из правого верхнего угла. Вероятность выиграть, когда первый игрок уже выиграл 10 партий равна 1. Вероятность, когда второй игрок выиграл 10 партий равна нулю.

Otbet: $\mathbb{P} = \frac{11}{16}$

1.8 Задача 8

У нас n+2 яйца, они все различаются по прочности. Очевидно, чтобы он выиграл нужно, чтобы у первого игрока было самое крепкое яйцо, т.е. стояло бы на первом месте, а все остальные неважно как стоят, т.е. (n+1)! вариант. Всего же вариантов: n! + (n+1)!, т.к. яйцо у первого игрока может стоять либо на втором месте, либо на первом. Если оно стоит на втором месте, то вариантов n!, если на первом, то (n+1)!.

$$\frac{\frac{(n+1)!}{n!+(n+1)!} = \frac{n+1}{n+2}}{\underbrace{\mathbf{Otbet:}}_{n+2}} \frac{n+1}{n+2}.$$

1.9 Задача 9

Посмотрим на позиции с 1 по 10 (х – количество единиц в этой части), и с 11 по 20 (у – количество единиц в этой части). Вероятность того, что x < y такая же, как и y < x, $p_1 = p_2$ В первом случае, что у нас будет стоять на 21-м месте не имеет значение уже единиц больше. Во втором случае тоже не будет разницы, т.к. в лучшем случае их количество будет равно. Осталось рассмотреть случай, когда x = y, у этого какая-то вероятность p. Тогда с вероятностью $1/2 \cdot p$ их будет больше, и с вероятностью $1/2 \cdot p$ их будет меньше

Т.е. получаем вероятность $\mathbb{P} = p_1 + \frac{1}{2}p_3$, но $p_1 + p_2 + p_3 = 1$ and $p_1 = p_2$, т.е. $\mathbb{P} = \frac{1}{2}$

Otbet: $\mathbb{P} = \frac{1}{2}$