- Рассмотрите прямоугольный треугольник с острым углом, равным x, и гипотенузой, рав-1 ной 1:
 - 1) Чему равны катеты такого треугольника?
 - 2) Чему будут равны катеты, если гипотенуза будет равна c?
 - 3) Запишите теорему Пифагора для данного треугольника с гипотенузой, равной 1 (Основное тригонометрическое тождество);
 - 4) Убедитесь, что если гипотенуза будет равна c, то ОТТ (основное тригонометрическое тождество) выполняется;
 - 5) Убедитесь, что при любом значении гипотенузы: $\operatorname{tg} x = \frac{\sin x}{\cos x}$ и $\operatorname{ctg} x = \frac{\cos x}{\sin x}$.
- $\mathbf{2}$ Рассмотрите прямоугольный треугольник с углом 30° и гипотенузой равной 1:
 - 1) Найдите катеты этого треугольника;
 - 2) Вычислите \sin , \cos , tg, ctg углов 30° и 60° ;
 - 3) Сделайте то же самое для треугольника с углом 30° и гипотенузой равной 3. Что можно сказать про \sin , \cos , tg, ctg углов 30° и 60° ?
- Проделать те же действия для прямоугольного треугольника с углом 45° и гипотенузой 3 равной 1.
- 4 Вычислить значения тангенса и котангенса с теми же самыми аргументами.
- 5 Записать все получившиеся значения для \sin , \cos , tg, ctg углов 30° , 45° и 60° в таблицу.
- 6 Расширенное понятие синуса и косинуса:

 $\cos x$ — абсцисса точки на единичной окружности, соответствующей углу x.

 $\sin x$ — ордината точки на единичной окружности, соответствующей углу x.

7 Вычислить:

 $\sin 90^{\circ}$; $\sin 270^{\circ}$; $\sin 180^{\circ}$; $\cos 0^{\circ}$; $\cos 360^{\circ}$; $\sin (-90^{\circ})$; $\sin 720^{\circ}$; $\sin 0^{\circ}$; $\cos 900^{\circ}$

- 8 Выяснить, почему при $n \in \mathbb{Z}$:
 - 1) $\sin(x + 360^{\circ} \cdot n) = \sin x$;

3) $tg(x + 360^{\circ} \cdot n) = tg x$;

2) $\cos(x + 360^{\circ} \cdot n) = \cos x$;

- 4) $ctg(x + 360^{\circ} \cdot n) = ctg x$.
- 9 Доказать геометрическим способом, что:
 - $1) \quad \sin(-x) = -\sin x;$
- 3) $\sin(180 x) = \sin x$; 5) $\sin(180 + x) = -\sin x$;
- $2) \cos(-x) = \cos x$.
- 4) $\cos(180 x) = -\cos x$; 6) $\cos(180 + x) = -\cos x$.

- 10 Вычислить:
 - 1) $\cos 120^{\circ}$
- 3) $\sin 225^{\circ}$
- $5) \cos 225^{\circ}$
- 7) $\cos 405^{\circ}$
- 9) $\cos(-510^{\circ})$

- 2) $\cos 150^{\circ}$
- 4) $\sin(-135^{\circ})$
- 6) $tg(-120^{\circ})$
- 8) $\sin 540^{\circ}$
- 10) $\sin(-450^{\circ})$

1 Формулы с прошлого урока:

- $1) \quad \sin(-x) = -\sin x;$
- 3) $\sin(180 x) = \sin x;$ 5) $\sin(180 + x) = -\sin x;$

- 2) $\cos(-x) = \cos x$; 4) $\cos(180 x) = -\cos x$; 6) $\cos(180 + x) = -\cos x$.

2 Вычислить:

- 1) $\cos 120^{\circ}$
- 3) $\sin 225^{\circ}$
- 5) $\cos 225^{\circ}$
- 7) $\cos 405^{\circ}$
- 9) $\cos(-510^{\circ})$

- 2) $\cos 150^{\circ}$

- 4) $\sin(-135^{\circ})$ 6) $\tan(-120^{\circ})$ 8) $\sin 540^{\circ}$ 10) $\sin(-450^{\circ})$

3 Формулы суммы/разности синуса или косинуса:

- 1) $\sin(x+y) = \sin x \cos y + \sin y \cos x$
- 3) $\cos(x+y) = \cos x \cos y \sin x \sin y$
- 2) $\sin(x y) = \sin x \cos y \sin y \cos x$
- 4) $\cos(x y) = \cos x \cos y + \sin x \sin y$

4 Упростить с помощью данных формул:

- 1) $\sin(90 + x)$
- 3) $\sin(180 + x)$
- 5) $\sin(270+x)$
- 7) $\sin(360 + x)$

- 2) $\sin(90-x)$ 4) $\sin(180-x)$
- 6) $\sin(270 x)$
- 8) $\sin(360-x)$

5 Упростить с помощью данных формул:

- 1) $\cos(90+x)$
- 3) $\cos(180+x)$ 5) $\cos(270+x)$
- 7) $\cos(360+x)$

- 2) $\cos(90-x)$ 4) $\cos(180-x)$
- 6) $\cos(270-x)$
- 8) $\cos(360-x)$

6 Вычислить:

- 1) $\sin 300^{\circ}$
- 3) $tg 330^{\circ}$
- 5) $\sin 390^{\circ}$
- 7) $\cos(-780^{\circ})$
- 9) $tg(-225^{\circ})$

- 2) $\cos 240^{\circ}$
- 4) $\cos 120^{\circ}$
- 6) $\cos 495^{\circ}$
- 8) $\sin(-300^{\circ})$ 10) $\sin(-1200^{\circ})$

7 Вычислить:

- 2) $7 \operatorname{tg} 9^{\circ} \operatorname{tg} 81^{\circ}$ 3) $-4\sqrt{3} \cos(-750^{\circ})$ 4) $\frac{14 \sin 409^{\circ}}{\sin 49^{\circ}}$

8 Вычислить:

1)
$$\frac{51\cos 4^{\circ}}{\sin 86^{\circ}} + \frac{\sqrt{3}}{2} \cdot \frac{\sin 60^{\circ}}{3}$$

2)
$$\frac{32\cos 116^{\circ}}{\sin 64^{\circ}} + \frac{25\cos 29^{\circ}}{\sin 61^{\circ}}$$

- 9 При температуре 0° рельс имеет длину $l_0 = 12,5$ м. При возрастании температуры происходит тепловое расширение рельса, и его длина, выраженная в метрах, меняется по закону $l(t^{\circ}) = l_0(1 + \alpha \cdot t^{\circ})$, где $\alpha = 1, 2 \cdot 10^{-5} ({}^{\circ}C)^{-1}$ – коэффициент теплового расширения, t° – температура (в градусах Цельсия). При какой температуре рельс удлинится на 6 мм? Ответ выразите в градусах Цельсия.
- 10 Из пункта A в пункт B одновременно выехали два автомобиля. Первый проехал с постоянной скоростью весь путь. Второй проехал первую половину пути со скоростью 24км/ч, а вторую половину пути – со скоростью, на 16 км/ч больше скорости первого, в результате чего прибыл в пункт B одновременно с первым автомобилем. Найдите скорость первого автомобиля. Ответ дайте в км/ч.

1 Вычислить:

 $1) \cos 90^{\circ}$

4) $\sin 225^{\circ}$

7) $\cos 540^{\circ}$

10) $tg(-960^{\circ})$

 $2) \sin 90^{\circ}$

5) $tg(-135^{\circ})$

8) $\sin 495^{\circ}$

11) $ctg(750^{\circ})$

3) $\cos(135^{\circ})$

6) $ctg(-120^{\circ})$

9) $\sin(-1125)^{\circ}$

12) $tg 1620^{\circ}$

2 Вычислить:

1)
$$\frac{3 \operatorname{tg} 163^{\circ}}{\operatorname{tg} 17^{\circ}}$$
.

3) $2\sqrt{3} \operatorname{tg}(-300^{\circ})$

 $5) \quad \frac{14\sin 19^{\circ}}{\sin 341^{\circ}}$

2)
$$5\sqrt{3} \operatorname{tg}(-300^{\circ})$$

4) $5 \lg 17^{\circ} \cdot \lg 107^{\circ}$

6) $\frac{12}{\sin^2 27^\circ + \cos^2 207^\circ}$

3 Вычислить:

1)
$$\frac{100, 5 \cdot \cos 10^{\circ}}{\sin 80^{\circ}} + \frac{\sin 45^{\circ}}{2} \cdot \sqrt{2}$$

2)
$$\frac{20\cos 140^{\circ}}{\sin 50^{\circ}} + \frac{10\cos 3^{\circ}}{\sin 87^{\circ}}$$

- По закону Ома для полной цепи сила тока, измеряемая в амперах, равна $I=\frac{\sigma}{R+r}$, где σ ЭДС источника (в вольтах), r=2 Ом его внутреннее сопротивление, R сопротивление цепи (в омах). При каком наименьшем сопротивлении цепи сила тока будет составлять не более 40% от силы тока короткого замыкания $I=\frac{\sigma}{r}$? (Ответ выразите в омах).
- Из пункта A в пункт B одновременно выехали два автомобиля. Первый проехал с постоянной скоростью весь путь. Второй проехал первую половину пути со скоростью 72км/ч, а вторую половину пути со скоростью, на 10 км/ч больше скорости первого, в результате чего прибыл в пункт B одновременно с первым автомобилем. Найдите скорость первого автомобиля. Ответ дайте в км/ч.

1 Формулы суммы/разности синуса или косинуса:

- 1) $\sin(x+y) = \sin x \cos y + \sin y \cos x$
- 3) $\cos(x+y) = \cos x \cos y \sin x \sin y$
- 2) $\sin(x y) = \sin x \cos y \sin y \cos x$
- 4) $\cos(x y) = \cos x \cos y + \sin x \sin y$

2 Вычислить через формулы суммы/разности:

 $\sin 150^{\circ}$; $\cos 135^{\circ}$; $\sin 225^{\circ}$; $\cos (-120^{\circ})$; $\cos 330^{\circ}$; $\operatorname{tg}(-150^{\circ})$; $\sin (-225^{\circ})$; $\cos 300^{\circ}$; $\sin (-315^{\circ})$

3 Метод приведения аргумента тригонометрических функций:

- 0) Выносим минус за знак аргумента;
- 1) "Убираем" полные круги из аргумента (в будущем не обязательно);
- 2) Представляем аргумент в виде суммы/разности так, чтобы одно слагаемое было кратно 90, а другое было табличным значением (30° ; 45° ; 60°);
- 3) Определяем четверть аргумента *(меньшее слагаемое всегда принимаем за острый угол)*;
- 4) Определяем знак функции в этой четверти;
- 5) Меняем или оставляем название тригонометрической функции (0°; 180° не меняем название функции; 90° ; 270° меняем название функции на противоположное).

4 Вычислить с помощью метода приведения:

$$\sin 135^{\circ}$$
; $\cos 240^{\circ}$; $\sin 390^{\circ}$; $\tan 150^{\circ}$; $\cot 220^{\circ}$; $\sin (-220^{\circ})$; $\tan 840^{\circ}$; $\cos (-240^{\circ})$; $\sin 315^{\circ}$

Определение 1 Радиан — центральный угол, который опирается на дугу, равную радиусу данной окружности.

Определение 2 Число π — отношение длины окружности κ ее диаметру. Или иначе отношение половины длины окружности κ ее радиусу.

Таким образом можно сделать вывод, что в половине окружности радиус умещается π раз, а значит развернутый угол равен π радиан (т.е. π радиан = 180°).

- 1) 1 градус = $\frac{\pi}{180}$ радиан;
- 2) 1 радиан = $\frac{180}{\pi}$ градусов (по факту всегда вместо π подставляем 180°).

5 Перевести градусы в радианы:

- 1) 90°
- $4) 45^{\circ}$
- $7) 270^{\circ}$
- 10) 330°
- 13) 810°

- 2) 120°
- $5) 30^{\circ}$
- 8) 360°
- 11) 390°
- 14) 210°

- 3) 60°
- 6) 210°
- 9) 225°
- 12) 150°
- 15) 300°

Перевести радианы в градусы:

$$1) \quad \frac{\pi}{2}$$

$$4) \quad \frac{7\pi}{6}$$

7)
$$\frac{11\pi}{3}$$

10)
$$\frac{45\pi}{6}$$

13)
$$\frac{55\pi}{4}$$

2)
$$\frac{3\pi}{2}$$

5)
$$\frac{14\pi}{2}$$

8)
$$\frac{5\pi}{3}$$

11)
$$\frac{7\pi}{4}$$

4)
$$\frac{7\pi}{6}$$
 7) $\frac{11\pi}{3}$ 10) $\frac{45\pi}{6}$ 13) $\frac{55\pi}{4}$ 5) $\frac{14\pi}{2}$ 8) $\frac{5\pi}{3}$ 11) $\frac{7\pi}{4}$ 14) $\frac{15\pi}{5}$

3)
$$\frac{5\pi}{4}$$

6)
$$\frac{36\pi}{9}$$

9)
$$\frac{9\pi}{3}$$

12)
$$\frac{13\pi}{6}$$
 15) $\frac{21\pi}{4}$

15)
$$\frac{21\pi}{4}$$

7 Вычислить с помощью метода приведения:

$$\cos\frac{5\pi}{4}$$
; $\sin\frac{7\pi}{3}$; $\sin\frac{3\pi}{2}$; $\sin\left(-\frac{5\pi}{3}\right)$; $\cos\frac{7\pi}{6}$; $\sin\frac{13\pi}{4}$; $\sin\left(-\frac{7\pi}{6}\right)$; $\cos\frac{21\pi}{4}$; $\tan\frac{16\pi}{6}$; $\cot\frac{11\pi}{4}$