

# ONetSwitch45 Hardware User Guide

#### 1 Overview

ONetSwitch45 is an All Programmable Open Network Innovation Platform.

ONetSwitch45 is based on the Xilinx XC7Z045 Zynq SoC, adopts the Gigabit ports and the 10G ports, and can extend wireless or storage. Both its software and hardware can realize custom programming. Its reference designs are abundant and flexible, can be used to various researches on the evolution of network prototypes, and the development of customized network products. Especially, the features of the miniaturization and low power are adapted to the multi-node network tests and deployments.

### 1.1 Key Features

Table 1 ONetSwitch45 Key Features

| General                       |                                                                           |
|-------------------------------|---------------------------------------------------------------------------|
| Core Silicon                  | XC7Z045-2FFG676                                                           |
| Power Supply                  | DC 12V                                                                    |
| Programming Source            | QSPI Flash / SD Card                                                      |
| Processing System             |                                                                           |
| Processor                     | Dual ARM Cortex-A9@800MHz                                                 |
| Cache                         | L1: 32KB Instruction + 32KB Data per processor; L2: 512KB; OCM: 256KB     |
| DRAM                          | DDR3 1GBytes                                                              |
| Flash                         | Quad SPI Flash 256Mb                                                      |
| DMA                           | 8 channel (4 for Programmable Logic)                                      |
| Ethernet Port                 | 1x 1000BASE-T                                                             |
| Peripheral                    | USB / USB-UART / USB JTAG / SD Card                                       |
| Programmable Logic            |                                                                           |
| Programmable Logic Equivalent | 350K Logic Cells, Logic Cells, Kintex-7 FPGA, Approximate ASIC Gates 5.2M |
| PS to PL Interconnect         | AMBA AXI4 interconnect, maximum 100Gbps                                   |
| SRAM                          | QDRII+ 72Mb, 57.6Gbps@400MHz                                              |
| Ethernet Port                 | 4x GE RJ45 10/100/1000M Ethernet , 4x 10GE SFP+                           |
| Wireless Access               | Mini PCle Slot                                                            |
| Peripheral                    | FMC HPC connector, include 3x 10Gbps GTX                                  |
| User I/O                      | User LEDs/Pushbuttons/DIP Switch                                          |



### 1.2 Board Block Diagram



Figure 1 ONetSwitch45 Board Block Diagram



Figure 2 Xilinx Zynq-7000 Block Diagram



# 1.3 Components Overview



Figure 3 ONetSwitch45 Board Compent Locations

Table 1 ONetSwitch45 Components Descriptions

| Callout | Component Description       | Reference  | Notes                  |  |
|---------|-----------------------------|------------|------------------------|--|
|         |                             | Designator |                        |  |
| 1       | Power On/Off Switch         | J18        | SIP_PWR_SW_3P          |  |
| 2       | 12V Power input connector   | J17        | 2.5mm 12V DC10B        |  |
| 3       | Power filter                | X6         | BNX016                 |  |
| 4       | Power Metal Strip Resistors | R154       | WSL36375L000FEB 0.005Ω |  |
| 5       | DC-DC Converter 3.3V        | UP5        | LMZ22005TZ             |  |
| 6       | DC-DC Converter 2.5V        | UP7        | LMZ22005TZ             |  |
| 7       | DC-DC Converter 1.5V        | UP8        | LMZ22005TZ             |  |
| 8       | DC-DC Converter 1.8V        | UP3        | LMZ12008TZ             |  |
| 9       | DC-DC Converter 1.0V        | UP1        | LMZ12008TZ             |  |
| 10      | DC-DC Converter 5V          | UP10       | LMZ12002TZ             |  |



| 11 | LDO 1.2V for GTX      | UP4          | TPS7A7001DDA                                  |
|----|-----------------------|--------------|-----------------------------------------------|
| 12 | LDO 1.8V for GTX      | UP6          | TPS7A8001DRBT                                 |
| 13 | LDO 1.0V for GTX      | UP3          | TPS7A7001DDA                                  |
| 14 | DDR Termination 0.75V | UP9          | TPS51200DRCT                                  |
| 15 | Oscillator 33MHz      | X1           | 33.33MHz PS work clock                        |
| 16 | Oscillator 25MHz      | X2           | 25MHz, AD9516-3 reference clock               |
| 17 | Oscillator 24MHz      | Х3           | 24MHz, USB 3320 reference clock               |
| 18 | Oscillator PL PHY     | XN1          | 25MHz, BCM5464SR PHY reference clock          |
| 19 | Oscillator PS PHY     | XN3          | 25MHz, 88E1116R PHY reference clock           |
| 20 | Oscillator SFP+       | U34(Bottom)  | 156.25MHz, SFP+ 10G reference clock           |
| 21 | Oscillator SMA        | U35(Bottom)  | 156.25MHz, SMA reserve clock                  |
| 22 | Clock Generator       | U15          | AD9156-3                                      |
| 23 | Reset Key             | SW3,4        | Push Button x2 (POR_B/SRST_B)                 |
| 24 | User Key              | SW1,2,5,6    | Push Button x4                                |
| 25 | DIP Switch            | SW9          | DIP4                                          |
| 26 | SMA Connector         | J1,2,5,6     | J1-J2 U35 output clock, J5-J6 U15 input clock |
| 27 | PMOD Connector        | 18           | 12 pin                                        |
| 28 | PJTAG Connector       | J4           | 20 pin                                        |
| 29 | FMC HPC               | J21          | ASP-134486-01                                 |
| 30 | JTAG-14pin            | J3           | 14 pin                                        |
| 31 | USB JTAG              | U2           | Digilent USB JTAG SMT2                        |
| 32 | SD Card Connector     | J15          | 2041021-3                                     |
| 33 | USB UART              | J14          | 47589-0001 USB Micro B port                   |
| 34 | USB-to-UART Bridge    | U30(Bottom)  | CP2103                                        |
| 35 | USB Connector         | J13          | 48204-0001 USB A port                         |
| 36 | USB Transceiver       | U28          | USB3320                                       |
| 37 | PS RJ45 1G*1          | J7           | 0826-1X1T-23-F MegJack 10/100/1000 LAN        |
| 38 | PS PHY                | U27(Bottom)  | 88E1116R PHY                                  |
| 39 | PL RJ45 1G*4          | JPH1         | 0826-1X4T-23-F MegJack 10/100/1000 LAN        |
| 40 | PL PHY                | U25          | BCM5464 PHY                                   |
| 41 | SFP+ 10G*4            | P1,2,4,5     | 74441-0010 10G SFP+                           |
| 42 | Mini PCIe Slot        | J12          | Atheros AR9380 AR5BXB112                      |
| 43 | SIM Slot              | CN183        | SIM card reserved for Mini PCIe Slot          |
| 44 | SPI Flash             | U23,24       | QSPI Flash N25Q128A11ESF40 x2                 |
| 45 | SRAM                  | U22          | QDRII+ CY7C25652KV18                          |
| 46 | DRAM                  | U18,19,20,21 | DDR3 MT41J256M8HX-15E x4                      |
| 47 | Zynq                  | U1           | XC7Z045-2FFG676                               |



### 1.4 Bank Description

Table 3 Zyng Bank Assignments

| Bank           | I/O Power supply | Feature                                                                      |
|----------------|------------------|------------------------------------------------------------------------------|
| 500(MIO 0)     | 1.8V             | QSPI, SD                                                                     |
| 501(MIO 1)     | 1.8V             | USB-UART, PS RJ45, USB, SD, GPIO(AD9516-3 programming)                       |
| 502(DDR)       | 1.5V             | DDR3                                                                         |
| 12(High Range) | 2.5V             | RGMII(RJ45 1G*4)                                                             |
| 13(High Range) | 3.3V             | PJTAG, I2C, LED, PMOD, FMC, SFP+ Control and Status, PCIe Control and Status |
| 33(High Perf.) | 1.5V             | QDR, FMC                                                                     |
| 34(High Perf.) | 1.5V             | QDR                                                                          |
| 35(High Perf.) | 1.5V             | QDR, Push button, DIP switch                                                 |
| 111(GTX)       |                  | SFP+                                                                         |
| 112(GTX)       |                  | PCIe, FMC                                                                    |



Figure 4 Xilinx Zynq SoC Package (XC7Z045-2FFG676)



### **Feature Descriptions**

#### 2.1 Xilinx Zynq SoC

The ONetSwitch45 is populated with the Xilinx ZynqTM-7000 XC7Z045-2FFG676 AP SoC.

The XC7Z045 AP SoC consists of an integrated processing system (PS) a programmable logic (PL), on a single die. Information for the Xilinx Zynq AP SoC specification can be found at the documents released by Xilinx.

#### 2.1.1 Device Configuration

The ONetSwitch45 supports two configuration options:

- ✓ QSPI flash memory, PS Configuration, Master Mode Boot;
- ✓ SD Card, PS Configuration, Master Mode Boot.

The JP1 and JP3 maintain '0'(connect pin2 and pin3) by default. The JP2 will be set depending on the desire boot mode, QSPI Flash or SD Card.

管脚 MIO[ MIO[7] MIO[6] MIO[5] MIO[4] MIO[3] MIO[2] 8] 模式 vmo vmode[0] boot\_mode[4] boot\_mode[0] boot\_mode[2] boot\_mode[1] boot\_mode[3] de[1 **QSPI** 0 (JP2 2-3) VDD **GND** 1 (JP2 1-2) Mode for all 3 PLLs **PLL** Enable 0 (JP3 2-3) **PLL Bypassed** 1 (JP3 1-2) **MIO Bank Voltage** VDD 1.8V **VDD JTAG Chain Routing** Cascade Mode 0 (JP1 2-3) Independent Mode 1 (JP1 1-2)

Table 2 Configuration Option Settings

# 2.1.2 Debugging

The ONetSwitch45 provides 3 options for debugging. The USB JTAG and the JTAG-14pin are selected by JP7 for PL debug. The PJTAG is used for ARM debug

- ✓ USB JTAG, PL JTAG;
- ✓ JTAG-14pin, PL JTAG;
- ✓ PJTAG-20pin, EMIO PJTAG.

✓ Table 3 Debugging options and settings

| Debugging Option | Jumper  | Description           |
|------------------|---------|-----------------------|
| USB JTAG         | JP4 1-2 | Micro USB port        |
| JTAG-14pin       | JP4 2-3 | Xilinx Platform Cable |
| PJTAG-20pin      | -       | ARM Debug             |



# 2.2 Clock Source

The ONetSwitch45 has eight Clock sources.

Table 4 Clock Sources

| # | Device    | Reference   | Description                          |  |  |
|---|-----------|-------------|--------------------------------------|--|--|
| 1 | 时钟 33MHz  | X1          | 33.33MHz PS work clock               |  |  |
| 2 | 时钟 25MHz  | X2          | 25MHz, AD9516-3 reference clock      |  |  |
| 3 | 时钟 24MHz  | Х3          | 24MHz, USB 3320 reference clock      |  |  |
| 4 | 时钟 PL PHY | XN1         | 25MHz, BCM5464SR PHY reference clock |  |  |
| 5 | 时钟 PS PHY | XN3         | 25MHz, 88E1116R PHY reference clock  |  |  |
| 6 | 时钟 SFP+   | U34(Bottom) | 156.25MHz, SFP+ 10G reference clock  |  |  |
| 7 | 时钟 SMA    | U35(Bottom) | 156.25MHz, SMA reserve clock         |  |  |
| 8 | 多路时钟      | U15         | AD9156-3                             |  |  |

Table 5 Clock connections

| #   | Clock Generator:Pin   | Net Name               | Destiny Device:Pin | Description                            |  |  |
|-----|-----------------------|------------------------|--------------------|----------------------------------------|--|--|
| 1   | X1.3                  | PS_CLK_33M             | U1I.B24            | 33.33MHz PS work clock                 |  |  |
| 2   | X2.3                  | AD9516_25MCLK          | U15.REFIN          | 25MHz AD9516-3 reference clock         |  |  |
| 3   | X3.1                  | REFCLK_26              | U28.26             | 24MHz, USB 3320 reference clock        |  |  |
| 3   | X3.2                  | XO_25                  | U28.25             | 24MHz, USB 3320 reference clock        |  |  |
| 4   | XN1.1                 | XTALI                  | U25C.H3            | 25MHz, BCM5464SR PHY reference         |  |  |
| 4   | XN1.3                 | XTALO                  | U25C.H4            | clock                                  |  |  |
| 5   | XN3.1                 | PS_XTAL_IN             | U27.38             | 25MHz 005111CD DHV reference de de     |  |  |
| 5   | XN3.3                 | PS_XTAL_OUT            | U27.39             | 25MHz, 88E1116R PHY reference clock    |  |  |
|     | U34.4                 | CLK_156M_SI57x_P       | U1G.AA6            | 456 2504U- 650- 400                    |  |  |
| 6   | U34.5                 | CLK_156M_SI57x_N       | U1G.AA5            | 156.25MHz, SFP+ 10G reference clock    |  |  |
| _   | U35.4                 | GTX_SMA_CLK_125M_N     | U1G.W5/J2          | 456 25MHz 6MA manager alsole           |  |  |
| 7   | U35.5                 | GTX_SMA_CLK_125M_P     | U1G.W6/J1          | 156.25MHz, SMA reserve clock           |  |  |
|     | U15.56                | PL_SGMII_REFCLK_125M_P | U1C.AD20           | OUTO: Zynq AP SoC SGMII Reference      |  |  |
|     | U15.55                | PL_SGMII_REFCLK_125M_N | U1C.AD21           | Clock                                  |  |  |
|     | U15.43                | QDR2P_SYS_CLK_200M_P   | U1D.M6             | OUT2: Zynq AP SoC QDR Reference        |  |  |
|     | U15.42                | QDR2P_SYS_CLK_200M_N   | U1D.M5             | Clock                                  |  |  |
|     | U15.25                | 9516_SMA_CLK_125M_P    | J5                 | OLITA: SNAA maaamaa alaali             |  |  |
|     | U15.26                | 9516_SMA_CLK_125M_N    | J6                 | OUT4: SMA reserve clock                |  |  |
|     | U15.28                | 9516_FMC_CLK_125M_P    | J21G.G30           | OUTS SNAC managed along                |  |  |
| 8   | U15.29                | 9516_FMC_CLK_125M_N    | J21G.G31           | OUT5: FMC reserve clock                |  |  |
|     | U15.48                | PCIE_REFCLK_100M_P     | J12.13             | OUT6: Mini PCIe Slot Reference Clock   |  |  |
|     | U15.47                | PCIE_REFCLK_100M_N     | J12.11             | OOT6: Willii PCIe Slot Reference Clock |  |  |
|     | U15.46                | GTX_PCIE_CLK_100M_P    | U1H.R6             | OLITZ, DCIa CTV Deference Clash        |  |  |
|     | U15.45                | GTX_PCIE_CLK_100M_N    | U1H.R5             | OUT7: PCIe GTX Reference Clock         |  |  |
|     | U15.35                | GTX_SATA_CLK_150M_P    | TP27               | OUTO: Tost Clock                       |  |  |
|     | U15.36                | GTX_SATA_CLK_150M_N    | TP28               | OUT9: Test Clock                       |  |  |
| 1 / | http://www.meshsr.com |                        |                    |                                        |  |  |



### 2.2.1 PS work clock

The Processing System (PS) clock source is a 1.8V LVCMOS single-ended fixed 33.333MHz oscillator at X1.

✓ Part number: SIT8103AC-23-18E-33.33

✓ Frequency: 33.33MHz✓ Stability: 50ppm✓ Output Standard: 1.8V LVCMOS



Figure 5 X1 Oscillator circuit

## 2.2.2 AD9516-3 reference clock

The X2 oscillator is used as reference clock of AD9516-3 U15.

✓ Part number: ASFL1-25.000MHZ-EK-T

✓ Frequency: 25MHz✓ Stability: 30ppm

✓ Output Standard: 3.3V LVCMOS



Figure 5 X2 Oscillator circuit



#### 2.2.3 USB 3320 Reference Clock

The X3 oscillator is the reference clock of USB 3320.

✓ Part number: HCM49-24.000MABJ-UT

✓ Frequency: 24MHz ✓ Stability: 50ppm

Output Standard: Depend on host chip



Figure 6 X3 Crystal circuit

#### 2.2.4 PL PHY Reference Clock

The XN1 oscillator is the reference clock of BCM5464SR.

✓ Part number: ABM8-25.000MHZ-B2-T

✓ Frequency: 25MHz✓ Stability: 50ppm

Output Standard: Depend on host chip

# 2.2.5 PS PHY Reference Clock

The XN3 oscillator is the reference clock of 88E1116R PHY.

✓ Part number: ABM8-25.000MHZ-B2-T

✓ Frequency: 25MHz ✓ Stability: 50ppm

✓ Output Standard: Depend on host chip

### 2.2.6 SFP+ Reference Clock

The U34 oscillator is the reference clock of 10G BASE LAN, connected to GTX transceiver.

✓ Part number: KC7050P156.250L30E00

✓ Frequency: 156.25MHz✓ Stability: 50ppm✓ Output Standard: LVDS



#### 2.2.7 SMA Reserve Clock

The U35 oscillator is the reserve clock of GTX. This clock could be supplied by SMA connector either.

✓ Part number: BF-156.250MBE-T

✓ Frequency: 156.25MHz✓ Stability: 50ppm✓ Output Standard: LVDS

### 2.2.8 AD9516-3 multi-output clock Generator

The most important clock generator of ONetSwitch45 is AD9516-3 (U15). Its reference clock is 25MHz single-end clock from oscillator X2. The AD9516-3 generates several low jitter differential clock to clocking XC7Z045 AP SoC, such as SGMII 125MHz, QDRII+ 200MHz, PCIe 100MHz, etc. It also provides the reference clock for mini PCIe Slot (100MHz), SMA clock and FMC clock.

The AD9516-3 should be programmed through serial control port which interfaces to the Processing System. For more detailed information, please refer to AD9516-3 DATASHEET.

| Bank | Net Name           | Zynq Pin | Direction | Description |
|------|--------------------|----------|-----------|-------------|
| 501  | MIO_46_AD9516_SDI  | E17      | INOUT     | GPIO        |
| 501  | MIO_47_AD9516_SDO  | B19      | INOUT     | GPIO        |
| 501  | MIO_48_AD9516_SCLK | B21      | INOUT     | GPIO        |
| 501  | MIO 49 AD9516 CS N | A18      | INOUT     | GPIO        |

Table 6 AD9516-3 Serial Control Port Connections, to XC7Z045 AP SoC



Figure 8 AD9156-3 circuit



## 2.3 QSPI Flash

The Quad-SPI flash memory located at U23 and U24 provides 2 x 128 Mb of nonvolatile storage that can be used for configuration and data storage.

✓ Part number: N25Q128A11ESF40

✓ Operating voltage: 3.3V✓ Datapath with: 4bits

✓ Data rate: Various depending on x1,x2,and x4 mode

Table 7 QSPI Flash Pin Assignment

| Bank | Net Name          | Zynq Pin | Direction | Description |
|------|-------------------|----------|-----------|-------------|
| 500  | MIO_0_QSPI_1_CS_B | E26      | OUT       |             |
| 500  | MIO_1_QSPI_0_CS_B | D26      | OUT       |             |
| 500  | MIO_2_QSPI_0_IO0  | E25      | INOUT     |             |
| 500  | MIO_3_QSPI_0_IO1  | D25      | INOUT     |             |
| 500  | MIO_4_QSPI_0_IO2  | F24      | INOUT     |             |
| 500  | MIO_5_QSPI_0_IO3  | C26      | INOUT     |             |
| 500  | MIO_6_QSPI_0_CLK  | F23      | OUT       |             |
| 500  | MIO_8_QSPI_FB_CLK | A24      | OUT       |             |
| 500  | MIO_9_QSPI_1_CLK  | D24      | OUT       |             |
| 500  | MIO_10_QSPI_1_IO0 | A25      | INOUT     |             |
| 500  | MIO_11_QSPI_1_IO1 | B26      | INOUT     |             |
| 500  | MIO_12_QSPI_1_IO2 | A23      | INOUT     |             |
| 500  | MIO_13_QSPI_1_IO3 | B25      | INOUT     |             |



Figure 9 QSPI circuit



#### 2.4 DDR3

The 1 GB,32-bit wide DDR3 component memory system is comprised of four 512Mb x8 DDR3 SDRAMs (MT41J256M8HX-15E). This memory system is connected to the XC7Z045 AP SoC Processing System (PS) memory interface bank 502. The connections between the DDR3 component memory and XC7Z045 AP SoC bank 502 are listed in Table 10.

Table 8 DDR3 Memory Connections

| Bank | Net Name   | Zynq Pin | Direction | Description |
|------|------------|----------|-----------|-------------|
| 502  | DDR3_DQ_0  | H23      | INOUT     | I/O Data    |
| 502  | DDR3_DQ_1  | J26      | INOUT     | I/O Data    |
| 502  | DDR3_DQ_2  | J23      | INOUT     | I/O Data    |
| 502  | DDR3_DQ_3  | F25      | INOUT     | I/O Data    |
| 502  | DDR3_DQ_4  | J24      | INOUT     | I/O Data    |
| 502  | DDR3_DQ_5  | H26      | INOUT     | I/O Data    |
| 502  | DDR3_DQ_6  | G26      | INOUT     | I/O Data    |
| 502  | DDR3_DQ_7  | J25      | INOUT     | I/O Data    |
| 502  | DDR3_DQ_8  | L23      | INOUT     | I/O Data    |
| 502  | DDR3_DQ_9  | K23      | INOUT     | I/O Data    |
| 502  | DDR3_DQ_10 | K26      | INOUT     | I/O Data    |
| 502  | DDR3_DQ_11 | M25      | INOUT     | I/O Data    |
| 502  | DDR3_DQ_12 | N24      | INOUT     | I/O Data    |
| 502  | DDR3_DQ_13 | M26      | INOUT     | I/O Data    |
| 502  | DDR3_DQ_14 | N23      | INOUT     | I/O Data    |
| 502  | DDR3_DQ_15 | M24      | INOUT     | I/O Data    |
| 502  | DDR3_DQ_16 | R26      | INOUT     | I/O Data    |
| 502  | DDR3_DQ_17 | P24      | INOUT     | I/O Data    |
| 502  | DDR3_DQ_18 | N26      | INOUT     | I/O Data    |
| 502  | DDR3_DQ_19 | P23      | INOUT     | I/O Data    |
| 502  | DDR3_DQ_20 | T24      | INOUT     | I/O Data    |
| 502  | DDR3_DQ_21 | T25      | INOUT     | I/O Data    |
| 502  | DDR3_DQ_22 | T23      | INOUT     | I/O Data    |
| 502  | DDR3_DQ_23 | R23      | INOUT     | I/O Data    |
| 502  | DDR3_DQ_24 | U26      | INOUT     | I/O Data    |
| 502  | DDR3_DQ_25 | U24      | INOUT     | I/O Data    |
| 502  | DDR3_DQ_26 | U25      | INOUT     | I/O Data    |
| 502  | DDR3_DQ_27 | V24      | INOUT     | I/O Data    |
| 502  | DDR3_DQ_28 | W26      | INOUT     | I/O Data    |
| 502  | DDR3_DQ_29 | Y25      | INOUT     | I/O Data    |
| 502  | DDR3_DQ_30 | Y26      | INOUT     | I/O Data    |
| 502  | DDR3_DQ_31 | W23      | INOUT     | I/O Data    |
| 502  | DDR3_A_0   | K22      | OUT       | Address     |
| 502  | DDR3_A_1   | K20      | OUT       | Address     |
| 502  | DDR3_A_2   | N21      | OUT       | Address     |
| 502  | DDR3_A_3   | L22      | OUT       | Address     |



| 502 | DDR3_A_4     | M20 | оит   | Address                                 |
|-----|--------------|-----|-------|-----------------------------------------|
| 502 | DDR3_A_5     | N22 | OUT   | Address                                 |
| 502 | DDR3_A_6     | L20 | OUT   | Address                                 |
| 502 | DDR3_A_7     | J21 | OUT   | Address                                 |
| 502 | DDR3_A_8     | T20 | OUT   | Address                                 |
| 502 | DDR3_A_9     | U20 | OUT   | Address                                 |
| 502 | DDR3_A_10    | M22 | OUT   | Address                                 |
| 502 | DDR3_A_11    | H21 | OUT   | Address                                 |
| 502 | DDR3_A_12    | P20 | OUT   | Address                                 |
| 502 | DDR3_A_13    | J20 | OUT   | Address                                 |
| 502 | DDR3_A_14    | R20 | OUT   | Address                                 |
| 502 | DDR3_BA_0    | U22 | OUT   | Bank Address                            |
| 502 | DDR3_BA_1    | T22 | OUT   | Bank Address                            |
| 502 | DDR3_BA_2    | R22 | OUT   | Bank Address                            |
| 502 | DDR3_DQS_0_P | H24 | INOUT | I/O Differential data strobe            |
| 502 | DDR3_DQS_0_N | G25 | INOUT | I/O Differential data strobe            |
| 502 | DDR3_DQS_1_P | L24 | INOUT | I/O Differential data strobe            |
| 502 | DDR3_DQS_1_N | L25 | INOUT | I/O Differential data strobe            |
| 502 | DDR3_DQS_2_P | P25 | INOUT | I/O Differential data strobe            |
| 502 | DDR3_DQS_2_N | R25 | INOUT | I/O Differential data strobe            |
| 502 | DDR3_DQS_3_P | W24 | INOUT | I/O Differential data strobe            |
| 502 | DDR3_DQS_3_N | W25 | INOUT | I/O Differential data strobe            |
| 502 | DDR3_DM_0    | G24 | OUT   | Data mask                               |
| 502 | DDR3_DM_1    | K25 | OUT   | Data mask                               |
| 502 | DDR3_DM_2    | P26 | OUT   | Data mask                               |
| 502 | DDR3_DM_3    | V26 | OUT   | Data mask                               |
| 502 | DDR3_RESET_B | H22 | OUT   | Reset                                   |
| 502 | DDR3_CLK_P   | R21 | OUT   | Differential clock output               |
| 502 | DDR3_CLK_N   | P21 | OUT   | Differential clock output               |
| 502 | DDR3_CKE     | U21 | OUT   | Clock enable                            |
| 502 | DDR3_CS_B    | Y21 | OUT   | Chip select                             |
| 502 | DDR3_WE_B    | V22 | OUT   | Write enable                            |
| 502 | DDR3_CAS_B   | Y23 | OUT   | RAS column address select               |
| 502 | DDR3_RAS_B   | V23 | OUT   | RAS row address select                  |
| 502 | DDR3_ODT     | Y22 | OUT   | Output dynamic termination              |
| 502 | DDR3_VRP     | W21 | OUT   | I/O Used to calibrate input termination |
| 502 | DDR3_VRN     | V21 | OUT   | I/O Used to calibrate input termination |
| 502 | DDR3_VREF0   | K21 |       | I/O Reference voltage                   |
| 502 | DDR3_VREF1   | M21 |       | I/O Reference voltage                   |

http://www.meshsr.com 13 / 32



#### 2.5 PS Ethernet

The ONetSwitch45 uses the Marvell Alaska PHY device 88E1116R for Ethernet communications at 10/100/1000 Mb/s. The PHY connects to MIO Bank 501 and interfaces to the Processing System (PS) via RGMII. The connections from the XC7Z045 AP SoC to 88E1116R are listed in Table 11.

**Bank Net Name Zynq Pin** Direction Description 500 OUT MIO\_7\_PHY\_RST E23 Reset OUT 501 MIO 16 PHY RGMII TX CLK G21 501 MIO\_17\_PHY\_RGMII\_TXD\_0 G17 OUT 501 MIO 18 PHY RGMII TXD 1 G20 OUT TX 501 MIO\_19\_PHY\_RGMII\_TXD\_2 G19 OUT 501 MIO 20 PHY RGMII TXD 3 H19 OUT 501 MIO\_21\_PHY\_RGMII\_TX\_CTRL F22 OUT 501 MIO 22 PHY RGMII RX CLK IN G22 501 MIO\_23\_PHY\_RGMII\_RXD\_0 F20 IN 501 MIO 24 PHY RGMII RXD 1 J19 IN RX501 MIO\_25\_PHY\_RGMII\_RXD\_2 F19 IN 501 MIO 26 PHY RGMII RXD 3 H17 IN 501 MIO\_27\_PHY\_RGMII\_RX\_CTRL F18 IN 501 MIO 52 PHY MDC A20 OUT **MDIO** 

A19

Table 9 PS Ethernet Connections, XC7Z045 AP SoC to PHY

### 2.6 SD Card

MIO\_53\_PHY\_MDIO

501

The ONetSwitch45 includes a secure digital input/output (SDIO) interface to provide user-logic access to general purpose nonvolatile SDIO memory cards. The SDIO signals are connected to XC7Z045 AP SoC PS bank 501 which has its VCCMIO set to 1.8V. A MAX13035E high-speed logic-level translator is used between XC7Z045 AP SoC 1.8V PS bank 501 and the 3.3V SD card connector.

INOUT

Table 12 lists the SD card interface connections to the XC7Z045AP SoC.

Table 10 SDIO Connections to the XC7Z03 AP SoC

| Bank | Net Name           | Zynq Pin | Direction | Description |
|------|--------------------|----------|-----------|-------------|
| 500  | MIO_14_SD_DETECT   | D23      | IN        | DETECT      |
| 500  | MIO_15_SD_PROTECT  | C24      | IN        | PROTECT     |
| 501  | MIO_40_SD_CLK      | C22      | OUT       | CLK         |
| 501  | MIO_41_SD_CMD      | C19      | INOUT     | CMD         |
| 501  | MIO_42_SD_DAT_0    | F17      | INOUT     | DAT0        |
| 501  | MIO_43_SD_DAT_1    | D18      | INOUT     | DAT1        |
| 501  | MIO_44_SD_DAT_2    | E18      | INOUT     | DAT2        |
| 501  | MIO_45_SD_CD_DAT_3 | C18      | INOUT     | CD_DAT3     |



#### 2.7 USB

The ONetSwitch45 uses a Standard Microsystems Corporation USB3320 USB 2.0 ULPI Transceiver to support a USB connection to the host computer. The USB peripheral is used on the PS, connected in MIO Bank 501.

The connections between the USB Transceiver and the XC7Z045 AP SoC are listed in Table 13.

Table 11 USB Transceiver Connections to the XC7Z045 AP SoC

| Bank | Net Name          | Zynq Pin | Direction | Description     |  |  |
|------|-------------------|----------|-----------|-----------------|--|--|
| 501  | MIO_32_USB_DATA_0 | K17      | INOUT     |                 |  |  |
| 501  | MIO_33_USB_DATA_1 | E22      | INOUT     |                 |  |  |
| 501  | MIO_34_USB_DATA_2 | J16      | INOUT     |                 |  |  |
| 501  | MIO_35_USB_DATA_3 | D19      | INOUT     | USB Data lines  |  |  |
| 501  | MIO_28_USB_DATA_4 | J18      | INOUT     | OSB Data lines  |  |  |
| 501  | MIO_37_USB_DATA_5 | D20      | INOUT     |                 |  |  |
| 501  | MIO_38_USB_DATA_6 | D21      | INOUT     |                 |  |  |
| 501  | MIO_39_USB_DATA_7 | C21      | INOUT     |                 |  |  |
| 501  | MIO_29_USB_DIR    | E20      | IN        | ULPI DIR signal |  |  |
| 501  | MIO_30_USB_STP    | K19      | OUT       | ULPI STR signal |  |  |
| 501  | MIO_31_USB_NXT    | E21      | IN        | ULPI NXT signal |  |  |
| 501  | MIO_36_USB_CLKOUT | K16      | IN        | USB Clock       |  |  |

#### 2.8 USB-UART

The ONetSwitch45 contains a Silicon Labs CP2103GM USB-to-UART bridge device which allows a connection to a host computer with a USB port. The CP2103GM TX and RX pins are wired to the UART\_1 IP block within the XC70Z45 AP SoC PS I/O Peripherals set.

Table 14 lists the USB connections between the XC7Z045 AP SoC PS Bank 501 and the CP2103 UART bridge.

Table 12 XC7Z045 AP SoC to CP2103 Connections

| Bank | Net Name           | Zynq Pin | Direction | Description |
|------|--------------------|----------|-----------|-------------|
| 501  | MIO_50_USB_UART_RX | B22      | IN        | Data in     |
| 501  | MIO_51_USB_UART_TX | B20      | OUT       | Data out    |



### 2.9 JTAG

The PL JTAG chain can be programmed by two different methods, controlled by jumper JP4. When an FPGA mezzanine card (FMC) is attached to HPC it is automatically added to the JTAG chain.



Figure 70 JTAG Chain Block Diagram

PJTAG is used for ARM debug, located at PL-Side.

Table 13 EMIO PJTAG

| Bank | Net Name  | Zynq Pin | Direction | Description |
|------|-----------|----------|-----------|-------------|
| 13   | PJTAG_TCK | AA25     | IN        |             |
| 13   | PJTAG_TMS | AB25     | IN        |             |
| 13   | PJTAG_TDO | V19      | OUT       |             |
| 13   | PJTAG_TDI | AB26     | IN        |             |





Figure 81 JTAG Debug Trace Port

Key features of the JTAG debug interface are:

- ✓ JTAG 1149.1 boundary scan support
- ✓ Two 1149.1 compliance TAP controllers:One JTAG TAP controller and one ARM DAP
- ✓ Single unique IDCODE from the xilinx TAP for each of the Zynq 7000 family of devices
- ✓ IEEE 1532 programming in-system configurable (ISC) devices support
- ✓ QSPI flash programming
- ✓ Xilinx ISE Chipscope and Vivado Hardware Manager debug support
- ✓ ARM CoreSight debug center control using ARM DAP
- ✓ Indirect PS address space access through DAP-AP port



## 2.10 QDRII+

The ONetSwitch45 contains a 400 MHz QDRII+ SRAM interface using a CY7C25652KV18-400BZC components (x36) with baud rate up to 57.6Gbps, in response to the demand for higher bandwidth memories at networking and telecommunications applications. The QDRII+ interface is implemented across the PL-side I/O bank 33, bank 34 and bank 35.



Figure 9 QDRII+ Demonstration

Table 106 QDRII+ Connections to the Bank 33

| Bank | Net Name           | Zynq Pin | Direction | Description |
|------|--------------------|----------|-----------|-------------|
| 33   | QDR_SA_0           | H3       | OUT       | HSTL_I      |
| 33   | QDR_SA_1           | K1       | OUT       | HSTL_I      |
| 33   | QDR_SA_2           | H4       | OUT       | HSTL_I      |
| 33   | QDR_SA_3           | E2       | OUT       | HSTL_I      |
| 33   | QDR_SA_4           | G4       | OUT       | HSTL_I      |
| 33   | QDR_SA_5           | D4       | OUT       | HSTL_I      |
| 33   | QDR_SA_6           | F3       | OUT       | HSTL_I      |
| 33   | QDR_SA_7           | F2       | OUT       | HSTL_I      |
| 33   | QDR_SA_8           | H1       | OUT       | HSTL_I      |
| 33   | QDR_SA_9           | E1       | OUT       | HSTL_I      |
| 33   | QDR_SA_10          | G1       | OUT       | HSTL_I      |
| 33   | QDR_SA_11          | J1       | OUT       | HSTL_I      |
| 33   | QDR_SA_12          | H2       | OUT       | HSTL_I      |
| 33   | QDR_SA_13          | C1       | OUT       | HSTL_I      |
| 33   | QDR_SA_14          | D1       | OUT       | HSTL_I      |
| 33   | QDR_SA_15          | G2       | OUT       | HSTL_I      |
| 33   | QDR_SA_16          | K2       | OUT       | HSTL_I      |
| 33   | QDR_SA_17          | D3       | OUT       | HSTL_I      |
| 33   | QDR_SA_18          | L3       | OUT       | HSTL_I      |
| 33   | QDR_SA_19          | F4       | OUT       | HSTL_I      |
| 33   | QDR_WPSN           | К3       | OUT       | HSTL_I      |
| 33   | QDR_RPSN           | J3       | OUT       | HSTL_I      |
| 33   | QDR_SYS_CLK_200M_P | M6       | IN        | DIFF_HSTL_I |
| 33   | QDR_SYS_CLK_200M_N | M5       | IN        | DIFF_HSTL_I |



Table 117 QDRII+ Connections to the Bank 34

| Bank | Net Name    | Zynq Pin | Direction | Description |
|------|-------------|----------|-----------|-------------|
| 34   | QDR_D_0     | J11      | IN        | HSTL_I      |
| 34   | QDR_D_1     | H11      | IN        | HSTL_I      |
| 34   | QDR_D_2     | J8       | IN        | HSTL_I      |
| 34   | QDR_D_3     | J10      | IN        | HSTL_I      |
| 34   | QDR_D_4     | J9       | IN        | HSTL_I      |
| 34   | QDR_D_5     | H7       | IN        | HSTL_I      |
| 34   | QDR_D_6     | G5       | IN        | HSTL_I      |
| 34   | QDR_D_7     | H6       | IN        | HSTL_I      |
| 34   | QDR_D_8     | G6       | IN        | HSTL_I      |
| 34   | QDR_D_9     | F9       | IN        | HSTL_I      |
| 34   | QDR_D_10    | F8       | IN        | HSTL_I      |
| 34   | QDR_D_11    | E8       | IN        | HSTL_I      |
| 34   | QDR_D_12    | D9       | IN        | HSTL_I      |
| 34   | QDR_D_13    | D8       | IN        | HSTL_I      |
| 34   | QDR_D_14    | E7       | IN        | HSTL_I      |
| 34   | QDR_D_15    | E6       | IN        | HSTL_I      |
| 34   | QDR_D_16    | D5       | IN        | HSTL_I      |
| 34   | QDR_D_17    | G7       | IN        | HSTL_I      |
| 34   | QDR_D_18    | В6       | IN        | HSTL_I      |
| 34   | QDR_D_19    | A5       | IN        | HSTL_I      |
| 34   | QDR_D_20    | B5       | IN        | HSTL_I      |
| 34   | QDR_D_21    | A4       | IN        | HSTL_I      |
| 34   | QDR_D_22    | B4       | IN        | HSTL_I      |
| 34   | QDR_D_23    | A3       | IN        | HSTL_I      |
| 34   | QDR_D_24    | C3       | IN        | HSTL_I      |
| 34   | QDR_D_25    | C2       | IN        | HSTL_I      |
| 34   | QDR_D_26    | B1       | IN        | HSTL_I      |
| 34   | QDR_D_27    | A7       | IN        | HSTL_I      |
| 34   | QDR_D_28    | A8       | IN        | HSTL_I      |
| 34   | QDR_D_29    | B7       | IN        | HSTL_I      |
| 34   | QDR_D_30    | A9       | IN        | HSTL_I      |
| 34   | QDR_D_31    | A10      | IN        | HSTL_I      |
| 34   | QDR_D_32    | B9       | IN        | HSTL_I      |
| 34   | QDR_D_33    | B10      | IN        | HSTL_I      |
| 34   | QDR_D_34    | D6       | IN        | HSTL_I      |
| 34   | QDR_D_35    | C6       | IN        | HSTL_I      |
| 34   | QDR_CLK_K_P | H9       | OUT       | DIFF_HSTL_I |
| 34   | QDR_CLK_K_N | G9       | OUT       | DIFF_HSTL_I |
| 34   | QDR_BWSN_0  | F5       | OUT       | HSTL_I      |
| 34   | QDR_BWSN_1  | E5       | OUT       | HSTL_I      |
| 34   | QDR_BWSN_2  | C4       | OUT       | HSTL_I      |
| 34   | QDR_BWSN_3  | C9       | OUT       | HSTL_I      |
| 34   | QDR_QVLD    | B2       | IN        | HSTL_I      |



Table 18 QDRII+ Connections to the Bank 35

| Bank | Net Name     | Zynq Pin | Direction | Description |
|------|--------------|----------|-----------|-------------|
| 35   | QDR_Q_0      | E12      | IN        | HSTL_I_DCI  |
| 35   | QDR_Q_1      | E10      | IN        | HSTL_I_DCI  |
| 35   | QDR_Q_2      | G10      | IN        | HSTL_I_DCI  |
| 35   | QDR_Q_3      | F10      | IN        | HSTL_I_DCI  |
| 35   | QDR_Q_4      | E11      | IN        | HSTL_I_DCI  |
| 35   | QDR_Q_5      | D10      | IN        | HSTL_I_DCI  |
| 35   | QDR_Q_6      | D11      | IN        | HSTL_I_DCI  |
| 35   | QDR_Q_7      | F12      | IN        | HSTL_I_DCI  |
| 35   | QDR_Q_8      | G12      | IN        | HSTL_I_DCI  |
| 35   | QDR_Q_9      | G16      | IN        | HSTL_I_DCI  |
| 35   | QDR_Q_10     | G15      | IN        | HSTL_I_DCI  |
| 35   | QDR_Q_11     | K15      | IN        | HSTL_I_DCI  |
| 35   | QDR_Q_12     | J15      | IN        | HSTL_I_DCI  |
| 35   | QDR_Q_13     | K13      | IN        | HSTL_I_DCI  |
| 35   | QDR_Q_14     | J13      | IN        | HSTL_I_DCI  |
| 35   | QDR_Q_15     | H12      | IN        | HSTL_I_DCI  |
| 35   | QDR_Q_16     | H14      | IN        | HSTL_I_DCI  |
| 35   | QDR_Q_17     | H13      | IN        | HSTL_I_DCI  |
| 35   | QDR_Q_18     | D14      | IN        | HSTL_I_DCI  |
| 35   | QDR_Q_19     | B15      | IN        | HSTL_I_DCI  |
| 35   | QDR_Q_20     | B16      | IN        | HSTL_I_DCI  |
| 35   | QDR_Q_21     | A17      | IN        | HSTL_I_DCI  |
| 35   | QDR_Q_22     | B17      | IN        | HSTL_I_DCI  |
| 35   | QDR_Q_23     | C17      | IN        | HSTL_I_DCI  |
| 35   | QDR_Q_24     | C16      | IN        | HSTL_I_DCI  |
| 35   | QDR_Q_25     | D16      | IN        | HSTL_I_DCI  |
| 35   | QDR_Q_26     | E16      | IN        | HSTL_I_DCI  |
| 35   | QDR_Q_27     | A14      | IN        | HSTL_I_DCI  |
| 35   | QDR_Q_28     | B14      | IN        | HSTL_I_DCI  |
| 35   | QDR_Q_29     | D13      | IN        | HSTL_I_DCI  |
| 35   | QDR_Q_30     | B12      | IN        | HSTL_I_DCI  |
| 35   | QDR_Q_31     | C12      | IN        | HSTL_I_DCI  |
| 35   | QDR_Q_32     | B11      | IN        | HSTL_I_DCI  |
| 35   | QDR_Q_33     | C14      | IN        | HSTL_I_DCI  |
| 35   | QDR_Q_34     | C11      | IN        | HSTL_I_DCI  |
| 35   | QDR_Q_35     | A15      | IN        | HSTL_I_DCI  |
| 35   | QDR_DOFFN    | G11      | OUT       | HSTL_I      |
| 35   | QDR_CLK_CQ_P | J14      | IN        | HSTL_I_DCI  |
| 35   | QDR_CLK_CQ_N | D15      | IN        | HSTL_I_DCI  |
| 35   | QDR_VRP      | K12      |           |             |
| 35   | QDR_VRN      | H16      |           |             |
| 35   | QDR_VREF_0   | E13      |           |             |
| 35   | QDR_VREF_1   | C13      |           |             |

http://www.meshsr.com 20 / 32



#### 2.11 PL Ethernet 1G

One Broadcom BCM5464SR Ethernet transceiver (PHY) are provided to interface to network connections via a Belfuse 0826-1X4T-23-F RJ-45 connector with built-in magnetics.

The BCM5464SR transceiver consists of four triple-speed 10/100/1000BASE-T Ethernet transceivers with RGMII interfaces. The PHY could be programmed via a MDIO bus to work appropriate. For more detailed information, please refer to BCM5464SR datasheet.

- ✓ Mode setting: INTF\_SEL[3:0]='0001', RGMII to Copper, 2.5V OVDD
- ✓ PHY address setting: PHYA REV=0,PHYA[4:0]='00000', start address is '00', increase
- ✓ MDIO setting: MDIO\_SEL[1:0]='00', MDIO/MDC[1] access all 4
- ✓ Speed Select: ANEN=1, F1000=1, SPD0=0, Auto-negotiate advertise: 10/100/1000BASE-T

For more detailed information about PL HDL coding, please refer to Xilinx LogiCORE IP AXI Ethernet related documents on the Xilinx website.



Figure 13 PL Ethernet 1G Block Diagram

The Ethernet connections from the XC7Z045 AP SoC PL to the BCM5464SR PHY device are listed in Table 19.

Table 149 PL Ethernet 1G Connections, XC7Z045 AP SoC to BCM5464SR PHY

| Bank | Net Name     | Zynq Pin | Direction | Description |
|------|--------------|----------|-----------|-------------|
| 12   | PHY_O_RXC    | AB15     | IN        | LVCMOS25    |
| 12   | PHY_0_GTXCLK | Y13      | OUT       | LVCMOS25    |
| 12   | PHY_O_TX_EN  | W13      | OUT       | LVCMOS25    |
| 12   | PHY_0_TXD_0  | W15      | OUT       | LVCMOS25    |
| 12   | PHY_0_TXD_1  | Y15      | OUT       | LVCMOS25    |
| 12   | PHY_0_TXD_2  | Y17      | OUT       | LVCMOS25    |
| 12   | PHY_0_TXD_3  | AA17     | OUT       | LVCMOS25    |
| 12   | PHY_0_RX_DV  | AB16     | IN        | LVCMOS25    |
| 12   | PHY_O_RXD_0  | AB17     | IN        | LVCMOS25    |
| 12   | PHY_0_RXD_1  | AA15     | IN        | LVCMOS25    |
| 12   | PHY_0_RXD_2  | Y16      | IN        | LVCMOS25    |
| 12   | PHY_0_RXD_3  | W16      | IN        | LVCMOS25    |
| 12   | PHY_1_RXC    | AC14     | IN        | LVCMOS25    |
| 12   | PHY_1_GTXCLK | AA14     | OUT       | LVCMOS25    |
| 12   | PHY_1_TX_EN  | AC16     | OUT       | LVCMOS25    |



| 12 | PHY_1_TXD_0  | AA13 | оит   | LVCMOS25 |
|----|--------------|------|-------|----------|
| 12 | PHY_1_TXD_1  | AA12 | OUT   | LVCMOS25 |
| 12 | PHY_1_TXD_2  | Y12  | OUT   | LVCMOS25 |
| 12 | PHY_1_TXD_3  | AC17 | OUT   | LVCMOS25 |
| 12 | PHY_1_RX_DV  | AF17 | IN    | LVCMOS25 |
| 12 | PHY_1_RXD_0  | AD16 | IN    | LVCMOS25 |
| 12 | PHY_1_RXD_1  | AE17 | IN    | LVCMOS25 |
| 12 | PHY_1_RXD_2  | AD15 | IN    | LVCMOS25 |
| 12 | PHY_1_RXD_3  | AE16 | IN    | LVCMOS25 |
| 12 | PHY_2_RXC    | AC13 | IN    | LVCMOS25 |
| 12 | PHY_2_GTXCLK | AB11 | OUT   | LVCMOS25 |
| 12 | PHY_2_TX_EN  | AF14 | OUT   | LVCMOS25 |
| 12 | PHY_2_TXD_0  | AF15 | OUT   | LVCMOS25 |
| 12 | PHY_2_TXD_1  | AE13 | OUT   | LVCMOS25 |
| 12 | PHY_2_TXD_2  | AD13 | OUT   | LVCMOS25 |
| 12 | PHY_2_TXD_3  | Y11  | OUT   | LVCMOS25 |
| 12 | PHY_2_RX_DV  | AD14 | IN    | LVCMOS25 |
| 12 | PHY_2_RXD_0  | AE15 | IN    | LVCMOS25 |
| 12 | PHY_2_RXD_1  | AB14 | IN    | LVCMOS25 |
| 12 | PHY_2_RXD_2  | AF13 | IN    | LVCMOS25 |
| 12 | PHY_2_RXD_3  | AB12 | IN    | LVCMOS25 |
| 12 | PHY_3_RXC    | AC12 | IN    | LVCMOS25 |
| 12 | PHY_3_GTXCLK | AC11 | OUT   | LVCMOS25 |
| 12 | PHY_3_TX_EN  | AE12 | OUT   | LVCMOS25 |
| 12 | PHY_3_TXD_0  | AB10 | OUT   | LVCMOS25 |
| 12 | PHY_3_TXD_1  | AE10 | OUT   | LVCMOS25 |
| 12 | PHY_3_TXD_2  | Y10  | OUT   | LVCMOS25 |
| 12 | PHY_3_TXD_3  | AA10 | OUT   | LVCMOS25 |
| 12 | PHY_3_RX_DV  | AF12 | IN    | LVCMOS25 |
| 12 | PHY_3_RXD_0  | AD10 | IN    | LVCMOS25 |
| 12 | PHY_3_RXD_1  | AF10 | IN    | LVCMOS25 |
| 12 | PHY_3_RXD_2  | AD11 | IN    | LVCMOS25 |
| 12 | PHY_3_RXD_3  | AE11 | IN    | LVCMOS25 |
| 12 | PHY_MDC0     | W14  | IN    | LVCMOS25 |
| 12 | PHY_MDIO0    | W17  | INOUT | LVCMOS25 |

http://www.meshsr.com 22 / 32



#### 2.12 PL Ethernet 10G

The ONetSwitch45 supports one x4 form-factor pluggable (SFP+) connector and cage that accept SFP or SFP+ modules. The part number of SFP+ connector is Molex 74441-001.

Four of the GTX transceivers (Bank 111) are wired to the SFP+ connector to interface to 10G BASE LAN. The SFP+ module control and status singles are connected to the PL Bank 13.

For more detailed information about PL HDL coding, please refer to Xilinx LogiCORE IP 10-Gigabit Ethernet PCS/PMA and LogiCORE IP 10-Gigabit Ethernet MAC related documents on the Xilinx website.



Figure 124 PL Ethernet 10G Block Diagram



Table 20 PL Ethernet 10G Connections, XC7Z045 AP SoC to x4 SFP+

| Bank | Net Name         | Zynq Pin | Direction | Description    |
|------|------------------|----------|-----------|----------------|
| 13   | SFP_0_LOS        | AE21     | IN        |                |
| 13   | SFP_0_TX_FAULT   | AE20     | IN        |                |
| 13   | SFT_0_MOD_DETECT | AC22     | IN        | MOD_ABS        |
| 13   | SFP_1_LOS        | AB22     | IN        |                |
| 13   | SFP_1_TX_FAULT   | AE18     | IN        |                |
| 13   | SFT_1_MOD_DETECT | AC21     | IN        | MOD_ABS        |
| 13   | SFP_2_LOS        | AD19     | IN        |                |
| 13   | SFP_2_TX_FAULT   | AB21     | IN        |                |
| 13   | SFT_2_MOD_DETECT | AD18     | IN        | MOD_ABS        |
| 13   | SFP_3_LOS        | AB20     | IN        |                |
| 13   | SFP_3_TX_FAULT   | W20      | IN        |                |
| 13   | SFT_3_MOD_DETECT | AA20     | IN        | MOD_ABS        |
| 111  | SFP_0_TX_P       | AF8      | OUT       | MGTX-TXP#0     |
| 111  | SFP_0_TX_N       | AF7      | OUT       | MGTX-TXN#0     |
| 111  | SFP_0_RX_P       | AD8      | IN        | MGTX-RXP#0     |
| 111  | SFP_0_RX_N       | AD7      | IN        | MGTX-RXN#0     |
| 111  | SFP_1_TX_P       | AF4      | OUT       | MGTX-TXP#1     |
| 111  | SFP_1_TX_N       | AF3      | OUT       | MGTX-TXN#1     |
| 111  | SFP_1_RX_P       | AE6      | IN        | MGTX-RXP#1     |
| 111  | SFP_1_RX_N       | AE5      | IN        | MGTX-RXN#1     |
| 111  | SFP_2_TX_P       | AE2      | OUT       | MGTX-TXP#2     |
| 111  | SFP_2_TX_N       | AE1      | OUT       | MGTX-TXN#2     |
| 111  | SFP_2_RX_P       | AC6      | IN        | MGTX-RXP#2     |
| 111  | SFP_2_RX_N       | AC5      | IN        | MGTX-RXN#2     |
| 111  | SFP_3_TX_P       | AC2      | OUT       | MGTX-TXP#3     |
| 111  | SFP_3_TX_N       | AC1      | OUT       | MGTX-TXN#3     |
| 111  | SFP_3_RX_P       | AD4      | IN        | MGTX-RXP#3     |
| 111  | SFP_3_RX_N       | AD3      | IN        | MGTX-RXN#3     |
| 111  | CLK_156M_SI57X_P | AA6      | IN        | MGTX-REFCLK#1P |
| 111  | CLK_156M_SI57X_N | AA5      | IN        | MGTX-REFCLK#1N |



#### 2.13 Mini PCle

The ONetSwitch45 has a Mini PCIe Slot interface to XC7Z045 AP SoC PL-side GTX transceiver for wireless access (such as Atheros AR9380 3x3 MIMO 802.11 b/g/n WIFI module) or storage install (SSD). The XC7Z045 AP SoC integrated PCIe IP which could be set to PCIe Root Complex mode to communicate with external PCIe Endpoints.

The Mini PCIe WLAN mounted on ONetSwitch45 is shown in Figure 15. The GTX transceiver is configured to be PCIe x1 Gen2.0.

For more detailed information about PL HDL coding, please refer to Xilinx 7 Series FPGAs Integrated Block for PCI Express and LogiCORE IP AXI Bridge for PCI Express related documents on the Xilinx website.



Figure 135 Mini PCIe WLAN Connections

Table 20 Mini PCIe Connections

| Bank | Net Name            | Zynq Pin | Direction | Description                    |
|------|---------------------|----------|-----------|--------------------------------|
| 13   | PCIE_WAKE_B         | AF19     | IN        | Req. to wake, open-drain       |
| 13   | PCIE_PERST_B        | AF22     | OUT       | Power-on Reset                 |
| 13   | PCIE_CLKREQ_B       | AF20     | IN        | Req. for ref clock, open-drain |
| 13   | PCIE_W_DISABLE_B    | AF18     | OUT       |                                |
| 13   | SFP_1_TX_FAULT      | AE18     | IN        |                                |
| 13   | SFT_1_MOD_DETECT    | AC21     | IN        | MOD_ABS                        |
| 13   | SFP_2_LOS           | AD19     | IN        |                                |
| 13   | SFP_2_TX_FAULT      | AB21     | IN        |                                |
| 13   | SFT_2_MOD_DETECT    | AD18     | IN        | MOD_ABS                        |
| 13   | SFP_3_LOS           | AB20     | IN        |                                |
| 13   | SFP_3_TX_FAULT      | W20      | IN        |                                |
| 13   | SFT_3_MOD_DETECT    | AA20     | IN        | MOD_ABS                        |
| 112  | GTX_PCIE_TX0_P      | R2       | OUT       | MGTX-TXP#3                     |
| 112  | GTX_PCIE_TX0_N      | R1       | OUT       | MGTX-TXN#3                     |
| 112  | GTX_PCIE_RXO_P      | T4       | IN        | MGTX-RXP#3                     |
| 112  | GTX_PCIE_RXO_N      | Т3       | IN        | MGTX-RXN#3                     |
| 112  | GTX_PCIE_CLK_100M_P | R6       | IN        | MGTX-REFCLK#0P                 |
| 112  | GTX_PCIE_CLK_100M_N | R5       | IN        | MGTX-REFCLK#0N                 |



## **2.14 FMC HPC**

Figure 16 shows the pinout of the FPGA mezzanine card (FMC) high pin count (HPC) connector defined by the VITA 57.1 FMC specification. The part number of FMC connector is ASP-134486-01.

|    | K          | J          | Н             | G             | F         | E         | D             | С             | В             | Α         |
|----|------------|------------|---------------|---------------|-----------|-----------|---------------|---------------|---------------|-----------|
| 1  | VREF B M2C | GND        | VREF A M2C    | GND           | PG M2C    | GND       | PG C2M        | GND           | RES1          | GND       |
| 2  | GND        | CLK1 C2M P | PRSNT M2C L   | CLK0 C2M P    | GND       | HA01 P CC | GND           | DP0 C2M P     | GND           | DP1 M2C P |
| 3  | GND        | CLK1 C2M N | GND           | CLK0 C2M N    | GND       | HA01 N CC | GND           | DP0 C2M N     | GND           | DP1 M2C N |
| 4  | CLK1 M2C P | GND        | CLK0 M2C P    | GND           | HA00 P CC | GND       | GBTCLK0 M2C P | GND           | DP9 M2C P     | GND       |
| 5  | CLK1 M2C N | GND        | CLK0 M2C N    | GND           | HA00 N CC | GND       | GBTCLK0_M2C_N | GND           | DP9 M2C N     | GND       |
| 6  | GND        | HA03 P     | GND           | LA00 P CC     | GND       | HA05 P    | GND           | DP0 M2C P     | GND           | DP2 M2C P |
| 7  | HA02 P     | HA03 N     | LA02 P        | LA00 N CC     | HA04 P    | HA05 N    | GND           | DP0 M2C N     | GND           | DP2 M2C N |
| 8  | HA02 N     | GND        | LA02 N        | GND           | HA04 N    | GND       | LA01 P CC     | GND           | DP8 M2C P     | GND       |
| 9  | GND        | HA07 P     | GND           | LA03 P        | GND       | HA09 P    | LA01 N CC     | GND           | DP8 M2C N     | GND       |
| 10 | HA06 P     | HA07 N     | LA04 P        | LA03 N        | HA08 P    | HA09 N    | GND           | LA06 P        | GND           | DP3 M2C P |
| 11 | HA06_N     | GND        | LA04_N        | GND           | HA08_N    | GND       | LA05_P        | LA06_N        | GND           | DP3_M2C_N |
| 12 | GND        | HA11_P     | GND           | LA08_P        | GND       | HA13_P    | LA05_N        | GND           | DP7_M2C_P     | GND       |
| 13 | HA10 P     | HA11 N     | LA07 P        | LA08 N        | HA12 P    | HA13 N    | GND           | GND           | DP7 M2C N     | GND       |
| 14 | HA10_N     | GND        | LA07_N        | GND           | HA12_N    | GND       | LA09_P        | LA10_P        | GND           | DP4_M2C_P |
| 15 | GND        | HA14_P     | GND           | LA12_P        | GND       | HA16_P    | LA09_N        | LA10_N        | GND           | DP4_M2C_N |
| 16 | HA17_P_CC  | HA14 N     | LA11_P        | LA12 N        | HA15_P    | HA16 N    | GND           | GND           | DP6_M2C_P     | GND       |
| 17 | HA17_N_CC  | GND        | LA11_N        | GND           | HA15_N    | GND       | LA13_P        | GND           | DP6_M2C_N     | GND       |
| 18 | GND        | HA18_P     | GND           | LA16_P        | GND       | HA20_P    | LA13_N        | LA14_P        | GND           | DP5_M2C_P |
| 19 | HA21_P     | HA18_N     | LA15_P        | LA16_N        | HA19_P    | HA20_N    | GND           | LA14_N        | GND           | DP5_M2C_N |
| 20 | HA21_N     | GND        | LA15_N        | GND           | HA19_N    | GND       | LA17_P_CC     | GND           | GBTCLK1_M2C_P | GND       |
| 21 | GND        | HA22_P     | GND           | LA20_P        | GND       | HB03_P    | LA17_N_CC     | GND           | GBTCLK1_M2C_N | GND       |
| 22 | HA23_P     | HA22_N     | LA19_P        | LA20_N        | HB02_P    | HB03_N    | GND           | LA18_P_CC     | GND           | DP1_C2M_P |
| 23 | HA23_N     | GND        | LA19_N        | GND           | HB02_N    | GND       | LA23_P        | LA18_N_CC     | GND           | DP1_C2M_N |
| 24 | GND        | HB01_P     | GND           | LA22_P        | GND       | HB05_P    | LA23_N        | GND           | DP9_C2M_P     | GND       |
| 25 | HB00_P_CC  | HB01_N     | LA21_P        | LA22_N        | HB04_P    | HB05_N    | GND           | GND           | DP9_C2M_N     | GND       |
| 26 | HB00_N_CC  | GND        | LA21_N        | GND           | HB04_N    | GND       | LA26_P        | LA27_P        | GND           | DP2_C2M_P |
| 27 | GND        | HB07_P     | GND           | LA25_P        | GND       | HB09_P    | LA26_N        | LA27_N        | GND           | DP2_C2M_N |
| 28 |            | HB07_N     | LA24_P        | LA25_N        | HB08_P    | HB09_N    | GND           | GND           | DP8_C2M_P     | GND       |
| 29 | HB06_N_CC  | GND        | LA24_N        | GND           | HB08_N    | GND       | TCK           | GND           | DP8_C2M_N     | GND       |
| 30 | GND        | HB11_P     | GND           | LA29_P        | GND       | HB13_P    | TDI           | SCL           | GND           | DP3_C2M_P |
| 31 | HB10_P     | HB11_N     | LA28_P        | LA29_N        | HB12_P    | HB13_N    | TDO           | SDA           | GND           | DP3_C2M_N |
| 32 | HB10_N     | GND        | LA28_N        | GND           | HB12_N    | GND       | 3P3VAUX       | GND           | DP7_C2M_P     | GND       |
| 33 | GND        | HB15_P     | GND           | LA31_P        | GND       | HB19_P    | TMS           | GND           | DP7_C2M_N     | GND       |
| 34 | HB14_P     | HB15_N     | LA30_P        | LA31_N        | HB16_P    | HB19_N    | TRST_L        | GA0           | GND           | DP4_C2M_P |
| 35 | HB14_N     | GND        | LA30_N        | GND           | HB16_N    | GND       | GA1           | 12P0V         | GND           | DP4_C2M_N |
| 36 | GND        | HB18_P     | GND           | LA33_P        | GND       | HB21_P    | 3P3V          | GND           | DP6_C2M_P     | GND       |
| 37 | HB17_P_CC  | HB18_N     | LA32_P        | LA33_N        | HB20_P    | HB21_N    | GND           | 12P0V         | DP6_C2M_N     | GND       |
| 38 |            | GND        | LA32_N        | GND           | HB20_N    | GND       | 3P3V          | GND           | GND           | DP5_C2M_P |
| 39 | GND        | VIO_B_M2C  | GND           | VADJ          | GND       | VADJ      | GND           | 3P3V          | GND           | DP5_C2M_N |
| 40 | VIO_B_M2C  | GND        | VADJ          | GND           | VADJ      | GND       | 3P3V          | GND           | RES0          | GND       |
|    |            |            | LPC Connector | LPC Connector |           |           | LPC Connector | LPC Connector |               |           |

Figure 16 FMC LPC Connector Pinout

Table 15 FMC HPC connections

| Bank | Net Name    | Zynq Pin | Direction | Description |
|------|-------------|----------|-----------|-------------|
| 13   | FMC_HA_00_A | AC18     | INOUT     | HA00_P_CC   |
| 13   | FMC_HA_00_B | AC19     | INOUT     | HA00_N_CC   |
| 13   | FMC_HA_01_A | AA19     | INOUT     | HA01_P_CC   |
| 13   | FMC_HA_01_B | AB19     | INOUT     | HA01_N_CC   |
| 13   | FMC_HA_02_A | W18      | INOUT     | HA02_P      |
| 13   | FMC_HA_02_B | W19      | INOUT     | HA02_N      |
| 13   | FMC_HA_03_A | Y18      | INOUT     | HA03_P      |
| 13   | FMC_HA_03_B | AA18     | INOUT     | HA03_N      |
| 33   | FMC_LA_0_A  | L5       | INOUT     | LA00_P_CC   |
| 33   | FMC_LA_0_B  | L4       | INOUT     | LA00_N_CC   |
| 33   | FMC_LA_1_A  | N3       | INOUT     | LA01_P_CC   |
| 33   | FMC_LA_1_B  | N2       | INOUT     | LA01_N_CC   |
| 33   | FMC_LA_2_A  | M2       | INOUT     | LA02_P      |
| 33   | FMC_LA_2_B  | L2       | INOUT     | LA02_N      |



| 33  | FMC_LA_3_A         | N4  | INOUT | LA03_P                       |
|-----|--------------------|-----|-------|------------------------------|
| 33  | FMC_LA_3_B         | M4  | INOUT | LA03_N                       |
| 33  | FMC_LA_4_A         | N1  | INOUT | LA04_P                       |
| 33  | FMC_LA_4_B         | M1  | INOUT | LA04_N                       |
| 33  | FMC_LA_5_A         | M7  | INOUT | LA05_P                       |
| 33  | FMC_LA_5_B         | L7  | INOUT | LA05_N                       |
| 33  | FMC_LA_6_A         | K5  | INOUT | LA06_P                       |
| 33  | FMC_LA_6_B         | J5  | INOUT | LA06_N                       |
| 33  | FMC_LA_7_A         | M8  | INOUT | LA07_P                       |
| 33  | FMC_LA_7_B         | L8  | INOUT | LA07_N                       |
| 33  | FMC_LA_8_A         | K6  | INOUT | LA08_P                       |
| 33  | FMC_LA_8_B         | J6  | INOUT | LA08_N                       |
| 33  | FMC_LA_9_A         | N7  | INOUT | LA09_P                       |
| 33  | FMC_LA_9_B         | N6  | INOUT | LA09_N                       |
| 33  | FMC_LA_10_A        | K8  | INOUT | LA10_P                       |
| 33  | FMC_LA_10_B        | K7  | INOUT | LA10_N                       |
| 112 | GTX_FMC_TX_2_P     | AA2 | OUT   | MGTX-TXP#0 DP2_C2M_P         |
| 112 | GTX_FMC_TX_2_N     | AA1 | OUT   | MGTX-TXN#0 DP2_C2M_N         |
| 112 | GTX_FMC_RX_2_P     | AB4 | IN    | MGTX-RXP#0 DP2_M2C_P         |
| 112 | GTX_FMC_RX_2_N     | AB3 | IN    | MGTX-RXN#0 DP2_M2C_N         |
| 112 | GTX_FMC_TX_1_P     | W2  | OUT   | MGTX-TXP#1 DP1_C2M_P         |
| 112 | GTX_FMC_TX_1_N     | W1  | OUT   | MGTX-TXN#1 DP1_C2M_N         |
| 112 | GTX_FMC_RX_1_P     | Y4  | IN    | MGTX-RXP#1 DP1_M2C_P         |
| 112 | GTX_FMC_RX_1_N     | Y3  | IN    | MGTX-RXN#1 DP1_M2C_N         |
| 112 | GTX_FMC_TX_0_P     | U2  | OUT   | MGTX-TXP#2 DP0_C2M_P         |
| 112 | GTX_FMC_TX_0_N     | U1  | OUT   | MGTX-TXN#2 DP0_C2M_N         |
| 112 | GTX_FMC_RX_0_P     | V4  | IN    | MGTX-RXP#2 DP0_M2C_P         |
| 112 | GTX_FMC_RX_0_N     | V3  | IN    | MGTX-RXN#2 DP0_M2C_N         |
| 112 | GTX_FMC_CLK_156M_P | U6  | IN    | MGTX-REFCLK#1N GBTCLK0_M2C_P |
| 112 | GTX_FMC_CLK_156M_N | U5  | IN    | MGTX-REFCLK#1P GBTCLK0_M2C_N |
|     |                    |     |       |                              |

http://www.meshsr.com 27 / 32



# Table 162 FMC HPC pinout

| FMC | Net Name            | FPGA    | BANK | FMC | Net Name              | FPGA | BANK |
|-----|---------------------|---------|------|-----|-----------------------|------|------|
| C2  | GTX_FMC_TX_0_P      | U2      |      | D1  | PS_POR_B              | C23  | 500  |
| C3  | GTX_FMC_TX_0_N      | U1      | 442  | D4  | GTX_FMC_CLK_156M_P    | U6   | 112  |
| C6  | GTX_FMC_RX_0_P      | V4      | 112  | D5  | GTX_FMC_CLK_156M_N    | U5   | 112  |
| C7  | GTX_FMC_RX_0_N      | V3      |      | D8  | PL_FMC_LA_1_A         | N3   |      |
| C10 | PL_FMC_LA_6_A       | K5      |      | D9  | PL_FMC_LA_1_B         | N2   |      |
| C11 | PL_FMC_LA_6_B       | J5      | 33   | D11 | PL_FMC_LA_5_A         | M7   | ]    |
| C14 | PL_FMC_LA_10_A      | К8      | 33   | D12 | PL_FMC_LA_5_B         | L7   | 33   |
| C15 | PL_FMC_LA_10_B      | K7      |      | D14 | PL_FMC_LA_9_A         | N7   |      |
| C30 | PL_I2C_SCL_MAIN     | A22     | 12   | D15 | PL_FMC_LA_9_B         | N6   |      |
| C31 | PL_I2C_SDA_MAIN     | A23     | 13   | D29 | JTAG_FMC_TCK          | 14   |      |
| C34 | GND                 | GND     |      | D30 | JTAG_FMC_TDI          | 18   | U5   |
| C35 | VDD_12V             | VDD_12V |      | D31 | JTAG_FMC_TDO_FPGA_TDI | 2    | U26  |
| C37 | VDD_12V             | VDD_12V |      | D32 | VDD_3V3               |      |      |
| C39 | VDD_3V3             | VDD_3V3 |      | D33 | JTAG_FMC_TMS          | 16   | U5   |
|     |                     |         |      | D34 | PS_SRST_B             | 10   | U10  |
| G6  | PL_FMC_LA_0_A       | L5      |      | D35 | GND                   |      |      |
| G7  | PL_FMC_LA_0_B       | L4      |      | D36 | VDD_3V3               |      |      |
| G9  | PL_FMC_LA_3_A       | N4      | 22   | D38 | VDD_3V3               |      |      |
| G10 | PL_FMC_LA_3_B       | M4      | 33   | D40 | VDD_3V3               |      |      |
| G12 | PL_FMC_LA_8_A       | К6      |      |     |                       |      |      |
| G13 | PL_FMC_LA_8_B       | J6      |      | H2  | FMC_PRSNT_M2C_B       | 4    | U26  |
| G30 | 9516_FMC_CLK_125M_P | 28      | 1115 | H7  | PL_FMC_LA_2_A         | M2   |      |
| G31 | 9516_FMC_CLK_125M_N | 29      | U15  | Н8  | PL_FMC_LA_2_B         | L2   |      |
|     |                     |         |      | H10 | PL_FMC_LA_4_A         | N1   | 33   |
| K7  | PL_FMC_HA_02_A      | W18     | 13   | H11 | PL_FMC_LA_4_B         | M1   | 55   |
| K8  | PL_FMC_HA_02_B      | W19     | 15   | H13 | PL_FMC_LA_7_A         | M8   |      |
|     |                     |         |      | H14 | PL_FMC_LA_7_B         | L8   |      |
| F4  | PL_FMC_HA_00_A      | AC18    | 13   |     |                       |      |      |
| F5  | PL_FMC_HA_00_B      | AC19    | 15   | A2  | GTX_FMC_RX_1_P        | Y4   |      |
|     |                     |         |      | А3  | GTX_FMC_RX_1_N        | Y3   |      |
| E2  | PL_FMC_HA_01_A      | AA19    | 13   | A6  | GTX_FMC_RX_2_P        | AB4  |      |
| E3  | PL_FMC_HA_01_B      | AB19    | 15   | A7  | GTX_FMC_RX_2_N        | AB3  | 112  |
|     |                     |         |      | A22 | GTX_FMC_TX_1_P        | W2   | 112  |
| J6  | PL_FMC_HA_03_A      | Y18     | 13   | A23 | GTX_FMC_TX_1_N        | W1   |      |
| J7  | PL_FMC_HA_03_B      | AA18    | 13   | A26 | GTX_FMC_TX_2_P        | AA2  |      |
|     |                     |         |      | A27 | GTX_FMC_TX_2_N        | AA1  |      |

http://www.meshsr.com 28 / 32



# 2.15 Power Management



Figure 17 Onboard Power Regulators



# 2.16 Pushbutton, DIP Switch and LED

### Table 23 User Pushbutton Connections to XC7Z045 AP SoC

| # | Pushbutton Reference | Туре   | Zynq Pin | Description                                 |
|---|----------------------|--------|----------|---------------------------------------------|
| 1 | SW1                  | System | V9       | PROG_B: AP SoC program                      |
| 2 | SW2                  | System | E23      | MIO_7_PHY_RST for PS Ethernet reset.        |
| 3 | SW3                  | System | C23      | POR_B: board reset                          |
| 4 | SW4                  | System | A22      | SRST_B: PS reset                            |
| 5 | SW5                  | User   | A13      | Pull high, output '0' when press the button |
| 6 | SW6                  | User   | A12      | Pull high, output '0' when press the button |

# Table 24 DIP Switch Connections to XC7Z045 AP SoC

| # | Switch Reference: Pin | Туре | Zynq Pin | Description |
|---|-----------------------|------|----------|-------------|
| 1 | SW9:1                 | User | F13      | Custom      |
| 2 | SW9:2                 | User | G14      | Custom      |
| 3 | SW9:3                 | User | F15      | Custom      |
| 4 | SW9:4                 | User | E15      | Custom      |

### Table 25 LED Connections

| #  | LED Reference | Туре   | Zynq Pin | Description             |
|----|---------------|--------|----------|-------------------------|
| 1  | DS1           | System | R8       | INIT_B: AP SoC initiate |
| 2  | DS2           | System | W9       | DONE: FPGA program done |
| 3  | DS3           | System |          | PS MIO8                 |
| 4  | DS4           | System |          | Resetting               |
| 5  | DS5           | User   | AB24     | Indicate HIGH output    |
| 6  | DS6           | User   | AA24     | Indicate HIGH output    |
| 7  | DS7           | User   | AF20     | Indicate HIGH output    |
| 8  | DS8           | User   | AE20     | Indicate HIGH output    |
| 9  | DS9           | System | System   | System                  |
| 10 | DS10          | System | System   | System                  |
| 11 | DS11          | System | System   | System                  |
| 12 | DS12          | System | System   | System                  |

http://www.meshsr.com 30 / 32



# 3 Board Setting

# 3.1 Jumper Settings



Figure 18 Default Jumper Settings (Boot Mode: SD Card)

Table 26 Jumper Setting

| # | Jumper Reference | Connection | Location | Description              |
|---|------------------|------------|----------|--------------------------|
| 1 | JP1              | 2-3        | Right    | JTAG Mode                |
| 2 | JP2              | 1-2        | Left     | Toggle SD Card           |
| 3 | JP3              | 2-3        | Right    | PLL Mode                 |
| 4 | JP4              | 1-2        | Upper    | Toggle USB JTAG          |
| 5 | JP5              | х          |          | XADC Setting, No Connect |



#### 4 Additional Resources

✓ MeshSr ONetSwitch45 <a href="http://www.meshsr.com/product/onetswitch45">http://www.meshsr.com/product/onetswitch45</a>

✓ Xilinx Zynq AP SoC <a href="http://www.xilinx.com/products/silicon-devices/soc/zynq-7000/index.htm">http://www.xilinx.com/products/silicon-devices/soc/zynq-7000/index.htm</a>

Xilinx FMC Std. <a href="http://www.xilinx.com/products/boards-kits/fmc.htm">http://www.xilinx.com/products/boards-kits/fmc.htm</a>

✓ Xilinx LogiCORE IP Using Xilinx DocNav for Vivado 2013.4

■ PG138 LogiCORE IP AXI Ethernet v6.0

■ PG051 LogiCORE IP Tri-Mode Ethernet MAC v8.1

■ PG059 LogiCORE IP AXI Interconnect v2.1

■ PG164 LogiCORE IP Processor System Reset Module v5.0

■ PG082 LogiCORE IP Processing System 7 v5.3

■ PG068 LogiCORE IP 10-Gigabit Ethernet PCS/PMA v4.1
■ PG072 LogiCORE IP 10-Gigabit Ethernet MAC v13.0

■ PG054 7 Series FPGAs Integrated Block for PCI Express v3.0

■ PG021 LogiCORE IP AXI Bridge for PCI Express v2.3

■ PG132 LogiCORE IP Integrated Bit Error Ratio Tester (IBERT) for 7 Series GTX Transceivers v3.0

■ UG586 Zynq-7000 SoC and 7 Series Devices Memory Interface Solutions v2.0

✓ ARM AMBA

■ AXI4-Lite IHI0022E AMBA® AXI™ and ACE™ Protocol Specification

■ AXI4-Stream IHI0051A AMBA® 4 AXI4-Stream Protocol

### 5 Revision History

| Date       | Version | Description            |  |  |
|------------|---------|------------------------|--|--|
| 2014-04-28 | 1.00    | Initial MeshSr release |  |  |
| 2014-11-20 | 1.10    | Modified               |  |  |
|            |         |                        |  |  |
|            |         |                        |  |  |