2016 级本科班《概率统计》期末试卷

- 一、**解答下列各题**(第 1, 2, 3 题每小题 10 分, 第 4 题 20 分, 共 50 分) 1. 某国海关要对一批 10 个一包的进口产品进行抽查,抽查方法如下: 从一包中随机抽查 3 个, 如果这 3 个符合标准, 才予以放行。假设这批 产品中含有 4 个次品(不符合标准的产品)的包数占总体的 30%, 而其余 各包中都均含有 1 个次品。求这批产品不准许放行的概率?
- 2. 某学生完成一道作业的时间 X 是一个随机变量, 密度函数为(单位 h):

$$f(x) = \begin{cases} cx^2 + x, 0 \le x \le 0.5, \\ 0, \quad & \sharp \stackrel{\sim}{\boxtimes} \end{cases}$$

- (1)请求常数 c 的值;
- (2)请求 X 的分布函数;
- (3)请求此学生完成一道作业所需要的平均时间?
- 3. 假设分子运动速度 V 服从 Maxwell 分布, 其密度函数为:

$$f(x) = \begin{cases} \frac{4x^2}{a^3 \sqrt{\pi}} \exp(-\frac{x^2}{a^2}), & x > 0, \\ 0, & \text{ #'E'} \end{cases}$$

其中 $a = \frac{m}{2KT}$,K 为玻耳兹曼(Boltzmann)常数,T 为绝对温度,m 是分子的质量。请求分子动能 $E = \frac{1}{2}mV^2$ 的密度函数?

- 4. 设二维随机变量(X,Y)在以(0,1), (1,0), (0,-1)为项点的三角形 I 上服从均匀分布。
- (1)请求出联合密度函数;
- (2)请求出两个边缘密度函数;
- (3)请判断 X与 Y是否独立,并说明理由;
- (4)请求出 Z=X+Y 的密度函数?

- 二、解答下列各题(含2个小题,每小题10分,共20分)
- 1. 根据以往数据分析可以假定黄家港的平均径流量 X 服从伽马分布, 其概率密度为

$$f(x,\alpha,\beta) = \begin{cases} \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha-1} \exp(-\frac{x}{\beta}), x > 0\\ 0, & x \le 0 \end{cases}$$

其中 $\Gamma(\alpha) = (\alpha - 1)!$ 为 α 的伽马函数,假设参数 $\alpha > 1$ 已知,参数 $\beta > 0$ 未知, x_1, x_2, \dots, x_{18} 是黄家港 2000-2017 年的平均径流量,请根据这些年的数据给出参数 β 的极大似然估计?

2. 某学校对某学院的概率论与数理统计进行教学改革,全校的这门课程期末考试平均成绩为 80 分,从此学院随机抽取 49 名学生的平均成绩为 85 分,已知此学院这次考试的成绩服从 $N(\mu,14^2)$ 。 问这次该学院考试平均成绩与全校平均成绩有无显著性差异? $(\alpha=0.05)$

附表:参考填空题后的正态分布函数表。

三、填空题(含10个小题,每小题3分,共30分)

1	2	3	4	5	6	7	8	9	10

- 1. 投掷一枚质量均匀的硬币 10000 次,X 表示出现正面的次数,利用中心极限定理计算 $P\{5060 < X < 9000\} \approx$ 【答案填入上表】.
- 2. 设随机变量 X 服从 $N(\mu \sigma^2)$,且 $P\{|X-\mu \triangleleft \sigma \} = 0.6$,则 $P\{X < \mu \sigma\} = \mathbb{I}$ 答案填入上表】.
- 3. 设 A 和 B 是对立事件,且事件 B 发生的概率为 0. 3,则 $P(\bar{A} | B) = \mathbb{Z}$ **案填入上表 .**

- 4. 已知 10 件产品中有 2 件是次品, 今不放回的从中连续抽取 3 件产品,则第三次抽取的产品是次品的概率是【答案填入上表】.
- 5. 设随机变量 X 的分布律 $P\{X = i\} = 1/3, i = 1, 2, 3,$ 随机变量 Y = X 独立同分布,随机变量 $Z = \max(X, Y) + \min(X, Y)$,则 $P\{Z < 3\} =$ 【答案填入上表】.
- 6. 设 X_1, X_2, \dots, X_{10} 是来自总体X的简单随机样本,请写出总体均值的矩估计量【答案填入上表】.
- 7. 设 $X_1, X_2, \cdots, X_9; Y_1, Y_2, \cdots, Y_9$ 是来自相互独立的标准正态总体X, Y的两组简单随机样本,则统计量 $\frac{X_1 + X_2 + \cdots + X_9}{\sqrt{Y_1^2 + Y_2^2 + \cdots Y_9^2}}$ 服从【答案填入上表】

分布.(要求给出自由度)

- 8. 随机变量 X 与 Y 满足 D(X+Y)=36, D(X-Y)=24, 则 X,Y 的协方差 【答案填入上表】.
- 9. 设 X_1, X_2, \dots, X_n 是来自总体 $X \sim N(\mu, \sigma^2)$ 的简单随机样本,总体方差已知,则期望的置信度为 $1-\alpha$ 的最短的置信区间长度是【答案填入上表】. 10. 取伪错误是假设检验中的第【答案填入上表】类错误.

附表: 正态分布函数表

z	0	1	2	3	4	5	6	7	8	9
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9762	0.9767