Reduce Subset-Sum to Scheduling.

We denote input of Subset-Sum as $\varphi = (A, t)$ (where $a_3, a_2, ..., a_n \in A$, and t is the target)

We denote input of Scheduling as (T, D, P, t)where t, and t T represents processing time d, and t D represents deadline p, and t P represents profit t is integer (originally denoted P) target

We give an algorithm $R(y) \ni (T_{\varphi}, D_{\varphi}, P_{\varphi}, t_{\varphi})$ s.t. $\varphi \in Subset-Sum \Leftarrow (T_{\varphi}, D_{\varphi}, P_{\varphi}, t_{\varphi}) \in Schully$ (proof part 1) and R runs in polynomial time (part 2)

R(A,t):

for a_i in A: $t_i \leftarrow a_i$ $d_i \leftarrow t$ $p_i \leftarrow a_i$ $T \leftarrow (t_1 \sim t_n)$ $D \leftarrow (d_1 \sim d_n)$ $P \leftarrow (p_1 \sim p_n)$ $+ \leftarrow +$

return (T, D, P, t)

Proof part 1: prove that Scheduling (R(y)) = Super Sun(y)which is to prove Scheduling (Ty, Dy, Py, ty) = Subset-Sum(A,t)

	Suppose Scheduling (R(4)) E SCHEDULING
	there exists A'CA satisties following:
-	
	$\sum \varphi \leq t\varphi \text{ AND } \pi(\sigma) = \sum P_{\varphi} \geq t_{\varphi}$
	$\Sigma T\varphi \leq t\varphi$ AND $\pi(\sigma) = \Sigma P\varphi \geq t\varphi$. (by definition of π)
	LIGSTO
	because $T\varphi \Leftrightarrow A \Leftrightarrow P\varphi$
	$\sum A' \leq t AND \sum A' \geq t$
	$\sum A' = t$
	Suppose Scheduling (R(4)) & SCHEDULING
	U U
	there does not exist such ACA
	s.t. $\Sigma A' = t$
	Drove by definition.
	wo part 2
	there does not exist such A'CA s.t. \(\Sigma A' = t \) [\int prove by clafinition \) [\int prove that R run in poly: time)
	runtine $(R) = O(n) \square$

P2 Reduce 35AT -> SYSTEM

We denote input for 35AT as $\varphi = (3CNF)$ where clauses $C_1, C_2 \cdots C_n \in 3CNF$ where $\{X_{i2}, X_{i2}, X_{i3}\} = C_i$

We denote input for SYSTEM as E where linear inequalities es, ez, ez ... en E E

We give an algorithm $R(\varphi) \to E_{\varphi}$ s.t. $\varphi \in 3SAT \Leftarrow E_{\varphi} \in SYSTEM$ (1) and R runs in poly. time. (2)

R(3CNF):

for (Xiz, Xiz, Xiz) ∈ 3CNF: e; ← L(Xiz)+L(Xiz)+L(Xiz)≥1" return (ez, ez, ..., en y+V

where $L(x_{ij}) = (1-x_{ij})$ if negated(x_{ij}) else x_{ij} where V is set of inequalities that

for x in all variables, 0 < x < 1(which means x can be 0 or 1)

Proof (1)

for all ei, if ei is satisfied, at least one out of three $\angle(x_{ij})$ has to be 1 because $0 \le x_{ij} \le 1 \Rightarrow 0 \le \angle(x_{ij}) \le 1$) which means c_i is true if all ei is satisfied, all c_i is true reverse also holds. IT

Proof (2): runtine(R) = O(n+1XI) => REP

P3 Reduce 3-Color -> 4-Color. We denote input for 3 Color as $\varphi = (V, E)$ We denote input for 4 Color as G = (Vy, Ex) We give an algorithm $R(y) \rightarrow G$ s.t. $4 \operatorname{color}(R(y)) \Rightarrow 3 \operatorname{co(or}(y)$ (1) and $R \operatorname{runs} \operatorname{in} \operatorname{poly} \operatorname{time}$ (2) n < new Node () $V\varphi \leftarrow V + n$ $E\varphi \leftarrow E + ((v, n) \text{ for } v \in V)$ return (Vy, Ey) Suppose G & 4 color, because n is connected to all V, all V do not have same color as n \Rightarrow V is colored with 3 colors without Suppose G & 4 (olor; Which means if we color a frist and then if we try to 3-color V, we will fail. > V cannot be 3 colored without violation Proof (2): $runtime(R) = O(V) \Rightarrow R \in P. \square$