Languages that are and are not context free

CENG 280

Course outline

- Preliminaries: Alphabets and languages
- → Regular languages PL
 - Context-free languages
 - Context-free grammars
 - Parse trees
 - Push-down automaton
 - Push-down automaton context-free languages
 - Languages that are and that are not context-free, Pumping lemma
 - Turing-machines

Given a context free grammar $G = (V, \Sigma, R, S)$.

- The **fanout** of \underline{G} , denoted by $\underline{\phi}(\underline{G})$ is the largest number of symbols on the right hand side of any rule in R.
- → A path in a parse tree is a sequence of distinct nodes connected with line segments, where the first one is the root and the last one is a leaf.
 - The length of a path is the number of line segments in it.
 - The **height** of a parse tree is the length of the longest path in it.

Example

Consider
$$G = (V, \Sigma, R, S)$$
 with $|V-\Sigma| = 2$ $\phi(G) = 3$

$$R: S \to \underline{\underline{aSa}}, S \to \underline{\underline{bTb}}, T \to \underline{\underline{bTb}}, T \to \underline{\underline{e}}.$$
 S_{i} T

UV2Xy22

Lemma

The yield of a parse tree of G of height h has length at most $\phi(G)^h$.

Induction Base case h = 1

Ø(G)1

It! Suppose that the result is true for parse treas of length up to h > 1.

IS show that is the for ponse trees with length htl.

$$n \leq \mathcal{O}(G_1)$$

Corollary

The parse tree of any $\underline{w} \in L(G)$ with $|\underline{w}| > \phi(G)^h$ must have a path longer than h.

Theorem

Let $G = (V, \Sigma, R, S)$ be a context-free grammar. Then any string $w \in L(G)$ of length greater than $\phi(G)^{|V\setminus\Sigma|}$ can be written as w = uvxyz in such a way that

- \rightarrow v or y is non empty (i.e. |vy| > 0) and
 - $uv^n xy^n z \in L(G)$ for every $n \ge 0$.

Proof of pumping theorem for CFL

Pumping theorem for CFL - Examples

Example

Show that $L = \{a^n b^n c^n \mid n \ge 0\}$ is not context-free.

Show that
$$L = \{a^n b^n c^n \mid n \ge 0\}$$
 is not context-free. $\emptyset(G)^{|V-\Sigma|}$
Assume that L is CF , then there exists G , $L(G)=L$
Let $L = \emptyset(G)^{|V-\Sigma|}$ (pumping length)

 $Q = ab - b = C$
 W , $|W| \ge |W| \ge |W| \le |W|$

By Pumping theoren L is not CF.

W= akbkck lwl= 3K > K

Then by Pumping theorem there exists a split w= uvxy2,

s.6. uvxynz El for ony n>0. lvyl>0.

s.6.
$$uv^n \times y^n \neq E \perp for ory n > 0$$
.
 $v \times y = a^i$ [1] $uv^n \times y^2 = a^{K-k}b^Kc^K \neq L$

71. VXy = a". lvy1=k >0 +k VXy = b

3.
$$\forall xy = C$$

Wyl=k>0 ogreater than the # cd (5 similar)

(6) uv²xy²2 \$L | v or y contains 2 symbols, aib dibilit

Pumping theorem for CFL - Examples

Example

Show that $L = \{ \underline{w} \in \{\underline{a,b,c}\}^* \mid \underline{w} \text{ has equal number of } a's,b's \text{ and } c's \}$ is not context-free.

Theorem

→ The context-free languages are not closed under intersection or complementation.

Proof?
$$L_1, L_2$$
 context free

 $L_1 \cap L_2 = L_1 \cup L_2$
 $L_1 \cap L_2 =$

Theorem (Strong version)

Let $G = (V, \Sigma, R, S)$ be a context-free grammar. Then there exists k, K such that any string $w \in L(G)$ with |w| > K can be written as w = uvxyz in such a way that |vy| > 0, $|vxy| \le k$ and $|uv^n xy^n z| \in L(G)$ for every $n \ge 0$.

$$K = k = \emptyset(G)^{(V-2)}$$
 $|w| > k$
 $|u \times y| > k = \emptyset(G)^{(V-2)}$
 $|u \times y| > k = \emptyset(G)^{(V-2)}$
 $|u \times y| < k$

Example

Show that $L = \{\underline{a^{n^2}} \mid n \ge 0\}$ is not context free.

Assume that
$$L$$
 is context-free: Then by strong PT there exists K , L such that $|w| > K$, there exist a split $w = uvxy2 = |vxy| \le k$

$$uv^n x y^n z \in L$$

$$w = a^{K^2} |w| = K^2 > K$$

$$w = uvxy2 = uv^2 xy^2 z = a^{K^2+m} + L$$

$$|vxy| < K$$

$$|vxy| < K$$

$$|vy| = m < K$$
So by PT. L is not context free