Simply Typed Lambda-calculus

Renato Neves

Table of Contents

The Calculus

Denotational Semantics

Equational System

Disjunctive Types

Deductive Reasoning

The essence

Knowledge obtained via assumptions and logical rules

Deductive Reasoning

The essence

Knowledge obtained via assumptions and logical rules

Studied since Aristotle . . .

... long before the age of artificial computers

What does it have to do with programming?

A Basic Deductive System

 $\mathbb{A}, \mathbb{B}\dots$ denote <u>propositions</u> and 1 a proposition that always holds

If $\mathbb A$ and $\mathbb B$ are propositions then

- $\mathbb{A} \times \mathbb{B}$ is a proposition conjunction of \mathbb{A} and \mathbb{B}
- $\mathbb{A} \to \mathbb{B}$ is a proposition implication of \mathbb{B} from \mathbb{A}

A Basic Deductive System

Γ denotes a list of propositions (often called context)

 $\Gamma \vdash \mathbb{A}$ reads "if the propositions in Γ hold then \mathbb{A} also holds"

$$\frac{\mathbb{A} \in \Gamma}{\Gamma \vdash \mathbb{A}} \text{ (ass)} \qquad \frac{\Gamma \vdash \mathbb{A} \times \mathbb{B}}{\Gamma \vdash \mathbb{A}} \text{ (π_1)} \qquad \frac{\Gamma \vdash \mathbb{A} \times \mathbb{B}}{\Gamma \vdash \mathbb{B}} \text{ (π_2)}$$

$$\frac{\Gamma \vdash \mathbb{A} \qquad \Gamma \vdash \mathbb{B}}{\Gamma \vdash \mathbb{A} \times \mathbb{B}} \text{ (prd)} \quad \frac{\Gamma, \mathbb{A} \vdash \mathbb{B}}{\Gamma \vdash \mathbb{A} \to \mathbb{B}} \text{ (cry)} \quad \frac{\Gamma \vdash \mathbb{A} \to \mathbb{B} \qquad \Gamma \vdash \mathbb{A}}{\Gamma \vdash \mathbb{B}} \text{ (app)}$$

Exercise

Show that $\mathbb{A} \times \mathbb{B} \vdash \mathbb{B} \times \mathbb{A}$

The Calculus 5 / 22 The rules below are derivable from the previous system

$$\frac{\Gamma, \mathbb{A}, \mathbb{B}, \Delta \vdash \mathbb{C}}{\Gamma, \mathbb{B}, \mathbb{A}, \Delta \vdash \mathbb{C}} \text{ (exchange)} \qquad \qquad \frac{\Gamma \vdash \mathbb{A}}{\Gamma, \mathbb{B} \vdash \mathbb{A}} \text{ (weakening)}$$

$$\frac{\Gamma,\,\mathbb{A}\vdash\mathbb{B}\quad\Gamma\vdash\mathbb{A}}{\Gamma\vdash\mathbb{B}}$$
 (cut elimination)

Proofs (again) by an appeal to your old friend . . . induction :-)

The Calculus 6 / 22

Exercises

Derive the following judgements

$$\bullet \quad \mathbb{A} \to \mathbb{B}, \mathbb{B} \to \mathbb{C} \vdash \mathbb{A} \to \mathbb{C}$$

$$\bullet \quad \mathbb{A} \to \mathbb{B}, \mathbb{A} \to \mathbb{C} \vdash \mathbb{A} \to \mathbb{B} \times \mathbb{C}$$

The Bare Essentials of Programming

We should think of what are the basic features of programming . . .

- variables
- function application and creation
- pairing . . .

and base our study on the $\underline{\text{simplest language}}$ with such features . . .

Simply-typed λ -calculus

The basis of Haskell, ML, Eff, F#, Agda, Elm and many other programming languages

Renato Neves The Calculus 9 / 22

Simply-typed λ -Calculus

Types are defined by $\mathbb{A} ::= 1 \mid \mathbb{A} \times \mathbb{A} \mid \mathbb{A} \to \mathbb{A}$

 Γ now a non-repetitive list of typed variables $(x_1 : \mathbb{A}_1 \dots x_n : \mathbb{A}_n)$

Programs built according to the following deduction rules

$$\frac{x:\mathbb{A}\in\Gamma}{\Gamma\vdash x:\mathbb{A}} \text{ (ass)} \qquad \qquad \frac{\Gamma\vdash t:\mathbb{A}\times\mathbb{B}}{\Gamma\vdash \pi_1\,t:\mathbb{A}} \text{ (π_1)}$$

$$\frac{\Gamma \vdash t : \mathbb{A} \qquad \Gamma \vdash s : \mathbb{B}}{\Gamma \vdash \langle t, s \rangle : \mathbb{A} \times \mathbb{B}} \text{ (prd)} \qquad \frac{\Gamma, x : \mathbb{A} \vdash t : \mathbb{B}}{\Gamma \vdash \lambda x : \mathbb{A} \cdot t : \mathbb{A} \to \mathbb{B}} \text{ (cry)}$$

$$\frac{\Gamma \vdash t : \mathbb{A} \to \mathbb{B} \quad \Gamma \vdash s : \mathbb{A}}{\Gamma \vdash t s : \mathbb{B}} \text{ (app)}$$

The Calculus 10 / 22

Examples of λ -terms

$$x : \mathbb{A} \vdash x : \mathbb{A}$$
 (identity)

$$x : \mathbb{A} \vdash \langle x, x \rangle : \mathbb{A} \times \mathbb{A}$$
 (duplication)

$$x : \mathbb{A} \times \mathbb{B} \vdash \langle \pi_2 \ x, \pi_1 \ x \rangle : \mathbb{B} \times \mathbb{A}$$
 (swap)

$$f: \mathbb{A} \to \mathbb{B}, g: \mathbb{B} \to \mathbb{C} \vdash \lambda x: \mathbb{A}. \ g(f \ x): \mathbb{A} \to \mathbb{C}$$
 (composition)

The Calculus 11 / 22

Exercises

Recall the derivations that lead to the judgement

$$\mathbb{A} \to \mathbb{B}, \mathbb{A} \to \mathbb{C} \vdash \mathbb{A} \to \mathbb{B} \times \mathbb{C}$$

Build the corresponding program

Derive as well the judgement

$$\mathbb{A} \to \mathbb{B} \vdash \mathbb{A} \times \mathbb{C} \to \mathbb{B} \times \mathbb{C}$$

and subsequently build the corresponding program

The Calculus 12 / 22

Table of Contents

The Calculus

Denotational Semantics

Equational System

Disjunctive Types

A Semantics for Simply Typed λ -calculus

We wish to assign a mathematical meaning to λ -terms

$$\llbracket - \rrbracket : \lambda$$
-terms $\longrightarrow \dots$

so that we can reason about them rigorously, and take advantage of known mathematical theories

Renato Neves Denotational Semantics 14 / 22

A Semantics for Simply Typed λ -calculus

We wish to assign a mathematical meaning to λ -terms

$$\llbracket - \rrbracket : \lambda$$
-terms $\longrightarrow \dots$

so that we can reason about them rigorously, and take advantage of known mathematical theories

This is the goal of the next slides. But first . . .

Functions: Basic Facts

For every set X there exists a 'trivial' function

$$!: X \longrightarrow \{\star\} = 1$$
 $!(x) = \star$

We can always pair two functions into $f: X \to A$, $g: X \to B$

$$\langle f, g \rangle : X \to A \times B$$
 $\langle f, g \rangle (x) = (f x, g x)$

There exist projection functions

$$\pi_1: X \times Y \to X$$
 $\pi_1(x, y) = x$
 $\pi_2: X \times Y \to Y$ $\pi_2(x, y) = y$

15 / 22

Functions: Basic Facts

We can always 'curry' a function $f: X \times Y \rightarrow Z$ into

$$\lambda f: X \to Z^Y$$
 $\lambda f(x) = (y \mapsto f(x, y))$

Consider sets X, Y, Z. There exists an application function

$$app: Z^Y \times Y \to Z$$
 $app(f, y) = f y$

Denotational Semantics

Types \mathbb{A} interpreted as <u>sets</u> $[\![\mathbb{A}]\!]$

$$\begin{bmatrix} 1 \end{bmatrix} = \{ \star \}$$

$$\begin{bmatrix} \mathbb{A} \times \mathbb{B} \end{bmatrix} = [\mathbb{A}] \times [\mathbb{B}]$$

$$\begin{bmatrix} \mathbb{A} \to \mathbb{B} \end{bmatrix} = [\mathbb{B}]^{[\mathbb{A}]}$$

Typing contexts Γ interpreted as Cartesian products

$$[\![\Gamma]\!] = [\![x_1 : \mathbb{A}_1, \dots, x_n : \mathbb{A}_n]\!] = [\![\mathbb{A}_1]\!] \times \dots \times [\![\mathbb{A}_n]\!]$$

 λ -terms $\Gamma \vdash t : \mathbb{A}$ interpreted as functions

$$\llbracket \Gamma \vdash t : \mathbb{A} \rrbracket : \llbracket \Gamma \rrbracket \longrightarrow \llbracket \mathbb{A} \rrbracket$$

Denotational Semantics

 λ -term $\Gamma \vdash t : \mathbb{A}$ interpreted as a function

$$\llbracket \Gamma \vdash t : \mathbb{A} \rrbracket : \llbracket \Gamma \rrbracket \longrightarrow \llbracket \mathbb{A} \rrbracket$$

$$\frac{ \llbracket \Gamma \vdash t : \mathbb{A} \rrbracket = f \quad \llbracket \Gamma \vdash s : \mathbb{B} \rrbracket = g }{ \llbracket \Gamma \vdash \langle t, s \rangle : \mathbb{A} \times \mathbb{B} \rrbracket = \langle f, g \rangle } \quad \frac{ \llbracket \Gamma, x : \mathbb{A} \vdash t : \mathbb{B} \rrbracket = f }{ \llbracket \Gamma \vdash \lambda x : \mathbb{A} . t : \mathbb{A} \to \mathbb{B} \rrbracket = \lambda f }$$

$$\frac{\llbracket \Gamma \vdash t : \mathbb{A} \to \mathbb{B} \rrbracket = f \quad \llbracket \Gamma \vdash s : \mathbb{A} \rrbracket = g}{\llbracket \Gamma \vdash t s : \mathbb{B} \rrbracket = \operatorname{app} \cdot \langle f, g \rangle}$$

The Unravelling

$$\begin{bmatrix} x \vdash \langle \pi_2 x, \pi_1 x \rangle \end{bmatrix} &= \dots \\ \begin{bmatrix} -\vdash \lambda x. \langle \pi_2 x, \pi_1 x \rangle \end{bmatrix} &= \dots \\ \begin{bmatrix} f, g, x \vdash g f x \end{bmatrix} &= \dots \\ \begin{bmatrix} f, g \vdash \lambda x. g f x \end{bmatrix} &= \dots \\ \begin{bmatrix} f, x \vdash \langle f \pi_1 x, \pi_2 x \rangle \end{bmatrix} &= \dots \\ \begin{bmatrix} f \vdash \lambda x. \langle f \pi_1 x, \pi_2 x \rangle \end{bmatrix} &= \dots \\ \end{bmatrix} &= \dots \\ \end{bmatrix}$$

(N.B. all types omitted for simplicity)

Renato Neves Denotational Semantics 19 / 22

Denotational Semantics and Program Equivalence Revisited

Show that the following equations hold

$$\begin{bmatrix} x, y \vdash \pi_1 \langle x, y \rangle \end{bmatrix} = \begin{bmatrix} x, y \vdash x \end{bmatrix} \\
 \begin{bmatrix} \Gamma \vdash t \end{bmatrix} = \begin{bmatrix} \Gamma \vdash \langle \pi_1 \ t, \pi_2 \ t \rangle \end{bmatrix} \\
 \begin{bmatrix} x \vdash (\lambda y. \langle x, y \rangle) \ x \end{bmatrix} = \begin{bmatrix} x \vdash \langle x, x \rangle \end{bmatrix}$$

Renato Neves Denotational Semantics 20 / 22

Denotational Semantics and Program Equivalence Revisited

Show that the following equations hold

$$[\![x,y \vdash \pi_1\langle x,y\rangle]\!] = [\![x,y \vdash x]\!]$$
$$[\![\Gamma \vdash t]\!] = [\![\Gamma \vdash \langle \pi_1 \ t, \pi_2 \ t\rangle]\!]$$
$$[\![x \vdash (\lambda y.\langle x,y\rangle) \ x]\!] = [\![x \vdash \langle x,x\rangle]\!]$$

Show that the (complicated) λ -term below is really just the identity

$$z \vdash \lambda x. \langle \pi_2 x, \pi_1 x \rangle \left(\lambda y. \langle \pi_2 y, \pi_1 y \rangle z \right)$$

Renato Neves Denotational Semantics 20 / 22

Denotational Semantics and Program Equivalence Revisited

Show that the following equations hold

Show that the (complicated) λ -term below is really just the identity

$$z \vdash \lambda x. \langle \pi_2 x, \pi_1 x \rangle \left(\lambda y. \langle \pi_2 y, \pi_1 y \rangle z \right)$$

Hard?

Renato Neves Denotational Semantics 20 / 22

Table of Contents

The Calculus

Denotational Semantics

Equational System

Disjunctive Types

Table of Contents

The Calculus

Denotational Semantics

Equational System

Disjunctive Types