- 1. Se dau vectorii $\vec{u} = (\lambda 1)\vec{i} 3\lambda\vec{i}$ şi $\vec{v} = 2\vec{i} + \vec{j}$. Să se determine $\lambda \in \mathbb{R}$, astfel încât \vec{u} şi \vec{v} să fie paraleli. (5 pct.)
 - a) 2; b) $\frac{1}{7}$; c) 3; d) $\frac{1}{2}$; e) $\frac{1}{4}$; f) 1.
- 2. Determinați $a \in \mathbb{R}$ astfel încât punctul A(0,2) să se găsească pe dreapta de ecuație x+ay+4=0. (5 pct.)
 - a) 0; b) 2; c) 5; d) -3; e) -1; f) -2.
- 3. Să se calculeze modulul numărului complex $z = 1 + i\sqrt{3}$. (5 pct.)
 - a) $\sqrt{3}$; b) -2; c) 0; d) 2; e) 4; f) -1.
- 4. Daca punctele $A(1,2), B(2,4), C(4,\lambda)$ sunt coliniare, atunci: (5 pct.)
 - a) $\lambda = 10$; b) $\lambda = 7$; c) $\lambda = 8$; d) $\lambda = 5$; e) $\lambda = 1$; f) $\lambda = 2$.
- 5. Să se calculeze produsul $P = \sin 45^{\circ} \cdot \cos 60^{\circ}$. (5 pct.)
 - a) $\frac{1}{4}\sqrt{\frac{2}{3}}$; b) $\frac{1}{3}\sqrt{\frac{2}{3}}$; c) $\frac{\sqrt{2}}{4}$; d) $\sqrt{\frac{2}{3}}$; e) 1; f) $\sqrt{6}$.
- 6. În reperul ortonormat xOy se consideră vectorii perpendiculari $\vec{u} = \vec{i} + \vec{j}$ și $\vec{v} = 2\vec{i} + m\vec{j}$. Atunci: (5 pct.)
 - a) m = 2; b) m = 3; c) m = 0; d) m = -1; e) m = -2; f) m = 1.
- 7. Știind că $\sin x = \frac{1}{2}$, să se calculeze $\cos^2 x$. (5 pct.)
 - a) $\frac{1}{2}$; b) $-\frac{1}{2}$ c) $\frac{3}{4}$; d) $-\frac{3}{4}$; e) 0; f) 2.
- 8. Dacă $z = \cos \frac{\pi}{3} + i \sin \frac{\pi}{3}$, atunci z^3 este egal cu: (5 pct.)
 - a) -1; b) $1 + i\frac{\sqrt{3}}{2}$; c) $\sqrt{\frac{2}{3}}$; d) i; e)-i; f) 1.
- 9. Dreapta care trece prin punctele A(1,2) și B(2,5) are ecuația: (5 pct.)
 - a) 2y x + 1 = 0; b) y 3x + 1; c) 2x y = 0; d) 3y + 2x 1 = 0; e) 2x y 1 = 0; f) x + 3y 1 = 0.
- 10. Fie vectorii \vec{u} , \vec{v} astfel încât $||\vec{u}|| = 2$, $||\vec{v}|| = 3$, şi $\vec{u} \cdot \vec{v} = 3\sqrt{3}$. Găsiţi măsura α a unghiului dintre vectorii \vec{u} şi \vec{v} . (5 pct.)
 - a) $\alpha = \frac{\pi}{2}$; b) $\alpha = \frac{\pi}{3}$; c) $\alpha = \frac{2\pi}{3}$; d) $\alpha = 0$; e) $\alpha = \frac{\pi}{6}$ f) $\alpha = \frac{\pi}{5}$.
- 11. Distanța de la punctul O(0,0) la dreapta 3x 4y 4 = 0 este: (5 pct.)
 - a) $d = \frac{8}{5}$; b) d = 2; c) $d = \frac{3}{4}$; d) d = 4; e) d = 3; f) $d = \frac{4}{5}$.
- 12. Să se calculeze aria unui triunghi echilateral cu latura de lungime 6. (5 pct.)
 - a) $9\sqrt{3}$; b) $7\sqrt{3}$; c) $6\sqrt{2}$; d) 36; e) 18; f) 9.
- 13. Fie A(1,0), B(0,1), C(-2,0) și S aria triunghiului ABC. Atunci: (5 pct.)
 - a) $S = \frac{1}{2}$; b) S = 2; c) $S = \frac{3}{2}$; d) S = 3; e) S = 1; f) $S = \frac{5}{2}$.
- 14. Fie $\hat{A}, \hat{B}, \hat{C}$ unghiurile unui triunghi ABC. Dacă $\sin \hat{A} = 1$, calculați $\hat{B} + \hat{C}$. (5 pct.)
 - a) $\frac{3\pi}{4}$; b) $\frac{\pi}{4}$; c) $\frac{4\pi}{5}$; d) $\frac{\pi}{2}$; e) $\frac{2\pi}{3}$; f) $\frac{\pi}{3}$.
- 15. Perimetrul triunghiului de vârfuri O(0,0), A(1,0), B(0,1) este: (5 pct.)
 - a) $2 + \sqrt{2}$; b) $2 + \sqrt{3}$ c) 1; d) 3; e) 4; f) $2 \sqrt{2}$.
- 16. Aria unui pătrat este 4. Calculati diagonala pătratului. (5 pct.)
 - a) $2\sqrt{3}$; b) $\sqrt{5}$; c) 2; d) 1; e) $\sqrt{2}$; f) $2\sqrt{2}$.

- 17. Se dă triunghiul dreptunghic de laturi 3, 4, 5. Să se calculeze înalţimea din vârful unghiului drept. (5 pct.)
 - a) 3; b) 2,4; c) 4; d) 4,1; e) 2; f) 2,5.
- 18. Laturile paralele ale unui trapez au lungimile 4 și 6. Să se determine lungimea liniei mijlocii a trapezului. (5 pct.)
 - a) 5; b) $\frac{7}{2}$; c) $\frac{9}{2}$; d) 1; e) 6; f) 4.