Security

Security Requirements

- Confidentiality
 - Protection from disclosure to unauthorised persons
- Integrity
 - Maintaining data consistency
- Authentication
 - Assurance of identity of person or originator of data
- Non-repudiation
 - Originator of communications can't deny it later
- Availability
 - Legitimate users have access when they need it
- Access control
 - Unauthorised users are kept out

Security Requirements

- These are often combined
 - User authentication used for access control purposes
 - Non-repudiation combined with authentication

Security Threats

- Information disclosure/information leakage
- Integrity violation
- Masquerading
- Denial of service
- Illegitimate use
- Generic threat: Backdoors, trojan horses, insider attacks
- Most Internet security problems are access control or authentication ones
 - Denial of service is also popular, but mostly an annoyance

Attack Types

- Passive attack can only observe communications or data
- Active attack can actively modify communications or data
 - Often difficult to perform, but very powerful
 - Mail forgery/modification
 - TCP/IP spoofing/session hijacking

Security Services

- From the OSI definition:
 - Access control: Protects against unauthorised use
 - Authentication: Provides assurance of someone's identity
 - Confidentiality: Protects against disclosure to unauthorised identities
 - Integrity: Protects from unauthorised data alteration
 - Non-repudiation: Protects against originator of communications later denying it

Security Mechanisms

- Three basic building blocks are used:
 - Encryption is used to provide confidentiality, can provide authentication and integrity protection
 - Digital signatures are used to provide authentication, integrity protection, and non-repudiation
 - Checksums/hash algorithms are used to provide integrity protection, can provide authentication
- One or more security mechanisms are combined to provide a security service

Services, Mechanisms, Algorithms

- A typical security protocol provides one or more services
 - Services are built from mechanisms
 - Mechanisms are implemented using algorithms

Conventional Encryption

- Uses a shared key
- Problem of communicating a large message in secret reduced to communicating a small key in secret

Public-key Encryption

- Uses matched public/private key pairs
- Anyone can encrypt with the public key, only one person can decrypt with the private key

Key Agreement

- Allows two parties to agree on a shared key
- Provides part of the required secure channel for exchanging a conventional encryption key

Hash Functions

- Creates a unique "fingerprint" for a message
- Anyone can alter the data and calculate a new hash value
 - Hash has to be protected in some way

MAC's

- Message Authentication Code, adds a password/key to a hash
- Only the password holder(s) can generate the MAC

Digital Signatures

• Combines a hash with a digital signature algorithm

Digital Signatures

• Signature checking:

Message Encryption

Combines conventional and public-key encryption

Message Encryption

 Public-key encryption provides a secure channel to exchange conventional encryption keys

Security Protocol Layers

- The further down you go, the more transparent it is
- The further up you go, the easier it is to deploy

18