Rank-76291 over GF(8)

January 15, 2021

The equation

The equation of the surface is:

$$X_1^2 X_3 + X_1 X_2^2 + X_0 X_3^2 + X_0 X_1 X_2 = 0$$

(0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0) The point rank of the equation over ${\rm GF}(8)$ is 1361351245

General information

Number of lines	8
Number of points	89
Number of singular points	2
Number of Eckardt points	3
Number of double points	7
Number of single points	49
Number of points off lines	30
Number of Hesse planes	0
Number of axes	0
Type of points on lines	98
Type of lines on points	$3^3, 2^7, 1^{49}, 0^{30}$

Singular Points

The surface has 2 singular points:

$$0: P_0 = \mathbf{P}(1,0,0,0) = \mathbf{P}(1,0,0,0) 1: P_{12} = \mathbf{P}(1,0,1,0) = \mathbf{P}(1,0,1,0)$$

The 8 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}_0 = \mathbf{Pl}(1, 0, 0, 0, 0, 0)_0$$

$$\ell_{1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{64} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{64} = \mathbf{Pl}(0,0,1,0,0,0)_{2}$$

$$\ell_{2} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}_{73} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}_{73} = \mathbf{Pl}(1,0,0,0,0,1)_{650}$$

$$\ell_{3} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{9} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{9} = \mathbf{Pl}(1,0,1,0,1,0)_{97}$$

$$\ell_{4} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{4744} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{4744} = \mathbf{Pl}(0,1,0,0,0,0)_{1}$$

$$\ell_{5} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{138} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{138} = \mathbf{Pl}(0,0,1,1,1,1)_{1322}$$

$$\ell_{6} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{82} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{82} = \mathbf{Pl}(1,1,1,0,1,1)_{1224}$$

$$\ell_{7} = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{722} = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{722} = \mathbf{Pl}(0,1,1,1,1,1)_{1330}$$

Rank of lines: (0, 64, 73, 9, 4744, 138, 82, 722)

Rank of points on Klein quadric: (0, 2, 650, 97, 1, 1322, 1224, 1330)

Eckardt Points

The surface has 3 Eckardt points:

 $0: P_0 = \mathbf{P}(1, 0, 0, 0) = \mathbf{P}(1, 0, 0, 0),$

1: $P_{12} = \mathbf{P}(1,0,1,0) = \mathbf{P}(1,0,1,0),$

 $2: P_{138} = \mathbf{P}(0,0,1,1) = \mathbf{P}(0,0,1,1).$

Double Points

The surface has 7 Double points: The double points on the surface are:

$$P_1 = (0, 1, 0, 0) = \ell_0 \cap \ell_2$$

$$P_5 = (1, 1, 0, 0) = \ell_0 \cap \ell_5$$

$$P_2 = (0, 0, 1, 0) = \ell_1 \cap \ell_4$$

$$P_{20} = (1, 1, 1, 0) = \ell_2 \cap \ell_7$$

$$P_4 = (1, 1, 1, 1) = \ell_3 \cap \ell_5$$

$$P_{146} = (0, 1, 1, 1) = \ell_3 \cap \ell_6$$

$$P_{83} = (1, 1, 0, 1) = \ell_6 \cap \ell_7$$

Single Points

The surface has 49 single points: The single points on the surface are:

 $0: P_3 = (0,0,0,1)$ lies on line ℓ_4 8: $P_{14} = (3, 0, 1, 0)$ lies on line ℓ_1 1: $P_6 = (2, 1, 0, 0)$ lies on line ℓ_0 9: $P_{15} = (4,0,1,0)$ lies on line ℓ_1 2: $P_7 = (3, 1, 0, 0)$ lies on line ℓ_0 10: $P_{16} = (5, 0, 1, 0)$ lies on line ℓ_1 $3: P_8 = (4,1,0,0)$ lies on line ℓ_0 11: $P_{17} = (6,0,1,0)$ lies on line ℓ_1 4: $P_9 = (5, 1, 0, 0)$ lies on line ℓ_0 12: $P_{18} = (7, 0, 1, 0)$ lies on line ℓ_1 5: $P_{10} = (6, 1, 0, 0)$ lies on line ℓ_0 13: $P_{28} = (1, 2, 1, 0)$ lies on line ℓ_2 6: $P_{11} = (7, 1, 0, 0)$ lies on line ℓ_0 14: $P_{36} = (1, 3, 1, 0)$ lies on line ℓ_2 7: $P_{13} = (2, 0, 1, 0)$ lies on line ℓ_1 15: $P_{44} = (1, 4, 1, 0)$ lies on line ℓ_2

```
16: P_{52} = (1, 5, 1, 0) lies on line \ell_2
                                                                      33: P_{228} = (3, 3, 2, 1) lies on line \ell_7
17: P_{60} = (1, 6, 1, 0) lies on line \ell_2
                                                                      34: P_{265} = (0,0,3,1) lies on line \ell_4
18: P_{68} = (1, 7, 1, 0) lies on line \ell_2
                                                                      35: P_{275} = (2, 1, 3, 1) lies on line \ell_6
19: P_{147} = (2, 1, 1, 1) lies on line \ell_3
                                                                      36: P_{283} = (2, 2, 3, 1) lies on line \ell_7
20: P_{148} = (3, 1, 1, 1) lies on line \ell_3
                                                                      37: P_{329} = (0,0,4,1) lies on line \ell_4
21: P_{149} = (4, 1, 1, 1) lies on line \ell_3
                                                                      38: P_{342} = (5, 1, 4, 1) lies on line \ell_6
22: P_{150} = (5, 1, 1, 1) lies on line \ell_3
                                                                      39: P_{374} = (5, 5, 4, 1) lies on line \ell_7
23: P_{151} = (6, 1, 1, 1) lies on line \ell_3
                                                                      40: P_{393} = (0,0,5,1) lies on line \ell_4
24: P_{152} = (7, 1, 1, 1) lies on line \ell_3
                                                                      41: P_{405} = (4, 1, 5, 1) lies on line \ell_6
25: P_{155} = (2, 2, 1, 1) lies on line \ell_5
                                                                      42: P_{429} = (4, 4, 5, 1) lies on line \ell_7
26: P_{164} = (3, 3, 1, 1) lies on line \ell_5
                                                                      43: P_{457} = (0,0,6,1) lies on line \ell_4
27: P_{173} = (4, 4, 1, 1) lies on line \ell_5
                                                                      44 : P_{472} = (7, 1, 6, 1) lies on line \ell_6
28: P_{182} = (5, 5, 1, 1) lies on line \ell_5
                                                                      45: P_{520} = (7,7,6,1) lies on line \ell_7
29: P_{191} = (6, 6, 1, 1) lies on line \ell_5
                                                                      46: P_{521} = (0,0,7,1) lies on line \ell_4
30: P_{200} = (7, 7, 1, 1) lies on line \ell_5
                                                                      47: P_{535} = (6, 1, 7, 1) lies on line \ell_6
31: P_{201} = (0,0,2,1) lies on line \ell_4
                                                                      48: P_{575} = (6, 6, 7, 1) lies on line \ell_7
32: P_{212} = (3, 1, 2, 1) lies on line \ell_6
```

The single points on the surface are:

Points on surface but on no line

The surface has 30 points not on any line: The points on the surface but not on lines are:

$0: P_{94} = (4, 2, 0, 1)$	$16: P_{379} = (2, 6, 4, 1)$
$1: P_{103} = (5, 3, 0, 1)$	$17: P_{385} = (0,7,4,1)$
$2: P_{113} = (7, 4, 0, 1)$	18: $P_{416} = (7, 2, 5, 1)$
$3: P_{120} = (6, 5, 0, 1)$	19: $P_{422} = (5, 3, 5, 1)$
$4: P_{125} = (3, 6, 0, 1)$	$20: P_{440} = (7, 5, 5, 1)$
$5: P_{132} = (2,7,0,1)$	$21: P_{441} = (0,6,5,1)$
$6: P_{224} = (7, 2, 2, 1)$	$22: P_{481} = (0, 3, 6, 1)$
$7: P_{233} = (0,4,2,1)$	$23: P_{491} = (2,4,6,1)$
$8: P_{248} = (7, 5, 2, 1)$	$24: P_{503} = (6, 5, 6, 1)$
$9: P_{259} = (2,7,2,1)$	$25: P_{507} = (2, 6, 6, 1)$
$10: P_{293} = (4, 3, 3, 1)$	$26: P_{537} = (0, 2, 7, 1)$
$11: P_{305} = (0, 5, 3, 1)$	$27: P_{549} = (4, 3, 7, 1)$
$12: P_{316} = (3,6,3,1)$	$28: P_{560} = (7, 4, 7, 1)$
$13: P_{325} = (4,7,3,1)$	$29: P_{581} = (4,7,7,1)$
$14: P_{349} = (4, 2, 4, 1)$	
15: $P_{363} = (2, 4, 4, 1)$	

Line Intersection Graph

	0	1	2	3	4	5	6	7
0	0	1	1	1	0	1	0	(
1	1	0	1	1	1	0	1	C
2	1	1	0	0	0	0	1	1
3	1	1	0	0	0	1	1	C
4	0	1	0	0	0	1	0	1
5	1	0	0	1	1	0	0	1
6	0	1	1	1	0	0	0	1
$ \begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \end{array} $	0	0	1	0	1	1	1	C

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2	ℓ_3	ℓ_5
in point	P_0	P_1	P_0	P_5

 ${\bf Line~1~intersects}$

Line	ℓ_0	ℓ_2	ℓ_3	ℓ_4	ℓ_6
in point	P_0	P_{12}	P_0	P_2	P_{12}

Line 2 intersects

Line	ℓ_0	ℓ_1	ℓ_6	ℓ_7
in point	P_1	P_{12}	P_{12}	P_{20}

Line 3 intersects

Line	ℓ_0	ℓ_1	ℓ_5	ℓ_6
in point	P_0	P_0	P_4	P_{146}

Line 4 intersects

Line	ℓ_1	ℓ_5	ℓ_7
in point	P_2	P_{138}	P_{138}

 ${\bf Line~5~intersects}$

Line	ℓ_0	ℓ_3	ℓ_4	ℓ_7
in point	P_5	P_4	P_{138}	P_{138}

Line 6 intersects

Line	ℓ_1	ℓ_2	ℓ_3	ℓ_7
in point	P_{12}	P_{12}	P_{146}	P_{83}

 ${\bf Line}~7~{\bf intersects}$

Line	ℓ_2	ℓ_4	ℓ_5	ℓ_6
in point	P_{20}	P_{138}	P_{138}	P_{83}

The surface has 89 points: The points on the surface are:

$0: P_0 = (1,0,0,0)$	$22: P_{44} = (1, 4, 1, 0)$	$44: P_{182} = (5, 5, 1, 1)$
$1: P_1 = (0, 1, 0, 0)$	$23: P_{52} = (1, 5, 1, 0)$	$45: P_{191} = (6, 6, 1, 1)$
$2: P_2 = (0,0,1,0)$	$24: P_{60} = (1, 6, 1, 0)$	46: $P_{200} = (7,7,1,1)$
$3: P_3 = (0,0,0,1)$	$25: P_{68} = (1,7,1,0)$	$47: P_{201} = (0, 0, 2, 1)$
$4: P_4 = (1, 1, 1, 1)$	$26: P_{83} = (1, 1, 0, 1)$	$48: P_{212} = (3, 1, 2, 1)$
$5: P_5 = (1, 1, 0, 0)$	$27: P_{94} = (4, 2, 0, 1)$	$49: P_{224} = (7, 2, 2, 1)$
$6: P_6 = (2, 1, 0, 0)$	$28: P_{103} = (5, 3, 0, 1)$	$50: P_{228} = (3, 3, 2, 1)$
$7: P_7 = (3, 1, 0, 0)$	$29: P_{113} = (7, 4, 0, 1)$	$51: P_{233} = (0,4,2,1)$
$8: P_8 = (4, 1, 0, 0)$	$30: P_{120} = (6, 5, 0, 1)$	$52: P_{248} = (7, 5, 2, 1)$
$9: P_9 = (5, 1, 0, 0)$	$31: P_{125} = (3, 6, 0, 1)$	$53: P_{259} = (2,7,2,1)$
$10: P_{10} = (6, 1, 0, 0)$	$32: P_{132} = (2,7,0,1)$	$54: P_{265} = (0, 0, 3, 1)$
11: $P_{11} = (7, 1, 0, 0)$	$33: P_{138} = (0,0,1,1)$	$55: P_{275} = (2, 1, 3, 1)$
$12: P_{12} = (1, 0, 1, 0)$	$34: P_{146} = (0, 1, 1, 1)$	$56: P_{283} = (2, 2, 3, 1)$
13: $P_{13} = (2, 0, 1, 0)$	$35: P_{147} = (2, 1, 1, 1)$	$57: P_{293} = (4, 3, 3, 1)$
$14: P_{14} = (3, 0, 1, 0)$	$36: P_{148} = (3, 1, 1, 1)$	$58: P_{305} = (0, 5, 3, 1)$
$15: P_{15} = (4, 0, 1, 0)$	$37: P_{149} = (4, 1, 1, 1)$	$59: P_{316} = (3, 6, 3, 1)$
$16: P_{16} = (5, 0, 1, 0)$	$38: P_{150} = (5, 1, 1, 1)$	$60: P_{325} = (4,7,3,1)$
$17: P_{17} = (6, 0, 1, 0)$	$39: P_{151} = (6, 1, 1, 1)$	$61: P_{329} = (0, 0, 4, 1)$
$18: P_{18} = (7, 0, 1, 0)$	$40: P_{152} = (7, 1, 1, 1)$	$62: P_{342} = (5, 1, 4, 1)$
$19: P_{20} = (1, 1, 1, 0)$	$41: P_{155} = (2, 2, 1, 1)$	$63: P_{349} = (4, 2, 4, 1)$
$20: P_{28} = (1, 2, 1, 0)$	$42: P_{164} = (3, 3, 1, 1)$	$64: P_{363} = (2, 4, 4, 1)$
$21: P_{36} = (1, 3, 1, 0)$	$43: P_{173} = (4, 4, 1, 1)$	$65: P_{374} = (5, 5, 4, 1)$

$66: P_{379} = (2, 6, 4, 1)$	$74: P_{441} = (0, 6, 5, 1)$	$82: P_{521} = (0,0,7,1)$
$67: P_{385} = (0, 7, 4, 1)$	75: $P_{457} = (0, 0, 6, 1)$	$83: P_{535} = (6, 1, 7, 1)$
$68: P_{393} = (0, 0, 5, 1)$	76: $P_{472} = (7, 1, 6, 1)$	$84: P_{537} = (0, 2, 7, 1)$
$69: P_{405} = (4, 1, 5, 1)$	77: $P_{481} = (0, 3, 6, 1)$	$85: P_{549} = (4, 3, 7, 1)$
$70: P_{416} = (7, 2, 5, 1)$	$78: P_{491} = (2, 4, 6, 1)$	$86: P_{560} = (7, 4, 7, 1)$
$71: P_{422} = (5, 3, 5, 1)$	79: $P_{503} = (6, 5, 6, 1)$	$87: P_{575} = (6, 6, 7, 1)$
$72: P_{429} = (4, 4, 5, 1)$	$80: P_{507} = (2, 6, 6, 1)$	$88: P_{581} = (4,7,7,1)$
$73: P_{440} = (7, 5, 5, 1)$	$81: P_{520} = (7, 7, 6, 1)$	