Al in Mathematics Lecture 7 Deep Learning in Mathematics

Bar-Ilan University
Nebius Academy | Stevens Institute of
Technology
May 6, 2025

About This Course

1 week: Intro

2 weeks: Classic ML

2 weeks: Deep Learning in Mathematics

4 weeks: Math as an NLP problem (LLMs etc.)

3 weeks: Reinforcement Learning (RL) in Math

1 week: Advanced AI topics or Project

Presentations

Pictures here and further from NLP Course by Lena Voita

Teacher forcing during train:

We provide ground-truth tokens on a train.

Problem: this is a bottleneck!

Attention!!!!

Structure

Seq2Seq Seq2Seq **Transformer** +Attention RNN **RNN** Attention Encoder RNN RNN Attention Decoder N Vectors Interaction Vector Attention (Attention) Encoder ↔ Decoder

Transformer architecture

Encoder

N consequative blocks.

Multihead attention is concatination of attention outputs

Add & Norm is a summation of previous information

Feed forward is a fully connected neural network.

Let's take a closer look at multihead attention.

QKV—Attention.

This version of attention won the hearts of all ML people.

Each vector receives three representations ("roles")

"Hey there, do you have this information?"

$$\left[\begin{array}{c} W_{K} \end{array} \right] \times \left[\begin{array}{c} \circ \\ \circ \\ \circ \end{array} \right] = \left[\begin{array}{c} \circ \\ \circ \\ \circ \\ \circ \end{array} \right]$$
 Key: vector **at** which the query looks to compute weights

"Hi, I have this information – give me a large weight!"

"Here's the information I have!"

Attention

Attention weights

$$Attention(q, k, v) = softmax \left(\frac{qk^{T}}{\sqrt{d_k}}\right) v$$

 d_k is dimensionality of the key vectors

Attention

Add & Norm

Residial connection:

Addresses vanishing gradient.

Layer normalization:

Stabilize learning

Transformer

Feed Forward

Decoder

Masked Self-Attention

Masked attention

$$Attention(q, k, v) = softmax \left(\frac{qk^{T}}{\sqrt{d_{k}}} + M\right)v$$

$$M = \begin{pmatrix} 0 & -\infty & -\infty \\ 0 & 0 & -\infty \\ 0 & 0 & 0 \end{pmatrix}$$

Example for 3 tokens with Second and third masked.

 $M = \begin{pmatrix} 0 & -\infty & -\infty \\ 0 & 0 & -\infty \end{pmatrix}$ M is a masked matrix, with values $\{0, -\infty\}$ used to **prevent attention** to certain positions.

> Softmax turns -∞ into **zero** attention weight.

Masked Self-Attention

But why we need masked attention? How can we look in the future?

During training! Since we want to emitate a generation on a training set.

Don't we have a simmilar problem in Encoder because all the words are considered in the same time?

Decoder

Positional Encoding

Positional Encoding

Originally used:

$$ext{PE}_{pos,2i} = \sin(pos/10000^{2i/d_{model}}), \ ext{PE}_{pos,2i+1} = \cos(pos/10000^{2i/d_{model}}),$$

Currently in use are Rotary embeddings, and you can read about them in this brilliant longread.

Decoder

Attention

Each vector receives three representations ("roles")

"Hey there, do you have this information?"

$$\left[W_{K} \right] \times \left[\begin{array}{c} \bullet \\ \bullet \end{array} \right] = \left[\begin{array}{c} \bullet \\ \bullet \end{array} \right]$$

 $\left[\mathbf{W}_{\mathsf{K}} \right] \times \left[\begin{array}{c} \bullet \\ \bullet \\ \bullet \end{array} \right] = \left[\begin{array}{c} \bullet \\ \bullet \\ \bullet \\ \bullet \end{array} \right]$ Key: vector **at** which the query looks to compute weights

"Hi, I have this information – give me a large weight!"

$$\begin{bmatrix} W_V \end{bmatrix} \times \begin{bmatrix} \circ & \bullet \\ \circ & \bullet \end{bmatrix} = \begin{bmatrix} \bullet & \text{Value} \\ \bullet & \text{attention output} \end{bmatrix}$$

"Here's the information I have!"

Transformer

Interpretation of heads

Encoder-only vs Decoder-only Models

Encoder only

Decoder only

Example:

BERT(Bidirectional Encoder Representations from **Transformers**)

- Sentiment analysis
- Named entity recognition
- Question answering (extractive)
- Sentence similarity

Example:

GPT (Generative

Pre-trained

Transformer)

- Text generation
- Code completion
- Chatbots
- Story writing

BERT

Figure 1: Overall pre-training and fine-tuning procedures for BERT. Apart from output layers, the same architectures are used in both pre-training and fine-tuning. The same pre-trained model parameters are used to initialize models for different down-stream tasks. During fine-tuning, all parameters are fine-tuned. [CLS] is a special symbol added in front of every input example, and [SEP] is a special separator token (e.g. separating questions/answers).

Lyapunov Functions

A Lyapunov function is a function associated with an ordinary differential equation (ODE):

$$\dot{x} = g(x), \quad x \in \mathbb{R}^n.$$

Definition: A function $V : \mathbb{R}^n \to \mathbb{R}$ is called a **Lyapunov function** for the system if:

- V(x) > 0 for all $x \neq 0$,
- V(0) = 0,
- $\dot{V}(x) = \langle \nabla V(x), \dot{x} \rangle \leq 0.$

Why are they important?
Lyapunov function ⇔ Stable system

Lyapunov Functions

The problem of predicting Lyapunov function naturally states the question: How to represent functions as features or provide them as an answer?

$$\begin{cases} \dot{x}_0 = \cos(2.1x_0)(x_1+2) \\ \dot{x}_1 = \sin(3x_1+2) \end{cases}$$
 is represented as

Dataset Generation

Generation of a dataset is important task:

For example for predicting the roots of polynomial, we can create a dataset of polynomials in different forms:

$$P(x) = 2x^5 - 30x^4 + 144x^3 - 240x^2 - 142x - 210$$
$$P(x) = 2(x^2 + 1)(x - 3)(x - 5)(x - 7)$$

What will be the difference in terms of teaching transformers?

Dataset Generation

Forward generation:

Backward generation:

Generate systems and find Lyapunov function for them.

Start with generating a Laypunov function, generate a system with such Lyapunov function.

Hard to do.

May reduce the problem.

Dataset Generation

For Lyapunov Functions we can use a backward approach:

1.Generate function V(x) in a generic way.

2.Create a system $\dot{x} = -\nabla V(x)$.

What are potential problems of such backward generation?

Dataset Creation

We will probably learn a different task: integration.

Authors address this problem by adding additional step.

- 1.Generate function V(x) in a generic way.
- 2.Create a system $\dot{x} = -\nabla V(x)$.
- 3. Add noise to the system in such a way that the solution stays the same.

Still we can not be sure that we won't solve subtask of our problem!

Results

Comparison with state-of-art:

	SOSTOOL	Existing AI methods			Models			
Test sets	findlyap	Fossil 2	ANLC	LyzNet	PolyMixture	FBarr	FLyap	BPoly
FSOSTOOLS	-	32	30	46	84	80	53	54
FBarr	1-	12	18	28	89	-	28	35
FLyap	-	42	32	66	83	93	-	73
BPoly	15	10	6	24	99	15	10	-

Table 5: Performance comparison on different test sets. Beam size 50. PolyMixture is BPoly + 300 FBarr.

Lyapunov functions

We train transformers with 8 layers, 10 attention heads and an embedding dimension of 640 (ablation studies on different model sizes can be found in Appendix C), on batches of 16 examples, using the Adam optimizer [Kingma and Ba, 2014] with a learning rate of 10–4, an initial linear warm-up phase of 10,000 optimization steps, and inverse square root scheduling.

Math Application

Can we train transformers to predict results of mathematical operations?

- matrix transposition: find M^T , a $n \times m$ matrix,
- matrix addition: find M + N, a $m \times n$ matrix,
- matrix-vector multiplication: find M^TV , in \mathbb{R}^n ,
- matrix multiplication: find M^TN , a $n \times n$ matrix,
- eigenvalues: M symmetric, find its n (real) eigenvalues, sorted in descending order,
- eigenvectors: M symmetric, find D diagonal and Q orthogonal such that $QMQ^T = D$, set as a $(n+1) \times n$ matrix, with (sorted) eigenvalues in its first row,
- singular values: find the n eigenvalues of M^TM , sorted in descending order,
- singular value decomposition: find orthogonal U, V and diagonal S such that S = UMV, set as a $(m+n+1) \times min(m,n)$ matrix,
- inversion: M square and invertible, find its inverse P, such that MP = PM = Id.

It may look like an overkill, but this process can create a usefull intuition regarding subtasks: embedding, preprocessing. We will see an example on the seminar.