Meta Learning with Implicit Gradients

TAT PAUL G. ALLEN SCHOOL OF COMPUTER SCIENCE & ENGINEERING

Aravind Rajeswaran*1, Chelsea Finn*2, Sham Kakade1, Sergey Levine3

Introduction

The standard machine learning paradigm

Successful if easy, cheap, and safe to collect large amount of data.

For many applications like robotics, user personalization, or low resource translation, big-data is non-existent, costly, or sensitive. Meta Learning: Learning algorithmic procedures which enable efficient learning of new tasks by encoding adaptable representations

Problem Setting

task index (# tasks = N)

model (weights)

 θ meta parameters (init, Ir, #steps) \mathscr{L} loss function

learning algorithm (e.g. SGD)

task (training) dataset

$$\min_{\theta} \left\{ F(\theta) := \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}_i \left(\phi_i = \mathcal{A}(\mathcal{D}_i, \theta) \right) \right\}$$

Learn a set of meta parameters θ^* that make \mathcal{A} behave efficiently

$$\nabla_{\theta} \mathcal{L}_{i}(\theta) = \frac{d\phi_{i}}{d\theta} \nabla_{\phi} \mathcal{L}_{i}(\phi_{i})$$

For new task (τ) : $\phi_{\tau} = \mathcal{A}(\mathcal{D}_{\tau}, \theta^*)$ hard to compute, easy to compute

Idea: Optimize $F(\theta)$ through gradient based iterative algorithms.

Requirement: Efficient computation of task meta-gradients $\nabla_{\theta} \mathcal{L}_i(\theta)$

MAML [1]: Backpropagate through the iterative steps of \mathcal{A}

- Restricts algorithms: each atomic operation needs to be first order and differentiable (no line-search, trust-region, randomization)
- Memory complexity is linear in the length of \mathcal{A} (can't optimize well)
- Vanishing gradients when backpropagating through long paths

The Implicit MAML Algorithm

Interpret as bi-level optimization and use implicit function theorem

Short hands : $\mathscr{L}_i(\phi) \equiv \mathscr{L}_i(\phi, \mathscr{D}_i^{test})$ and $\hat{\mathscr{L}}_i(\phi) \equiv \mathscr{L}_i(\phi, \mathscr{D}_i^{tr})$

$$\min_{\theta} F(\theta) := \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}_i \left(\mathcal{A}_i^*(\theta) \right) \text{ where }$$

$$\mathcal{A}_i^*(\theta) := \arg\min_{\phi} G_i(\phi, \theta) = \hat{\mathcal{L}}_i(\phi) + \frac{\lambda}{2} \|\phi - \theta\|_2^2$$

Regularization leads to non-vanishing gradient and analytical expression

Lemma (Implicit gradient): Let $\phi_i^* := \mathscr{A}_i^*(\theta)$. Then, we have

$$\nabla_{\theta} \mathcal{L}_{i}(\theta) = \left(I + \frac{1}{\lambda} \nabla_{\phi}^{2} \hat{\mathcal{L}}_{i}(\phi_{i}^{*})\right)^{-1} \nabla_{\phi} \mathcal{L}_{i}(\phi_{i}^{*})$$

Note: The gradient depends only on the result of ${\mathscr A}$ and not the path!

Practical Algorithm (Implicit MAML or iMAML)

- 1. Solve inner optimization approximately to find $\|\phi_i \phi_i^*\| \leq \delta$
- 2. Approximately find meta-gradient using conjugate gradient algorithm that requires only Hessian-vector products to get

$$\|g_i - \left(I + (1/\lambda) \nabla_{\phi}^2 \hat{\mathcal{L}}_i(\phi_i)\right)^{-1} \nabla_{\phi} \mathcal{L}_i(\phi_i)\| \le \delta$$

Theorem (error is controllable) If $G_i(\phi, \theta)$ is strongly convex in ϕ , for above algorithm, we have bounded error $||g_i - \nabla_{\theta} \mathcal{L}_i(\theta)|| \leq O(\delta)$

Table: Compute and memory complexity. D = diameter, κ = condition number of inner level. \dagger compares with \mathscr{A} , while * compares with \mathscr{A}^*

	•		
Algorithm	Compute	Memory	Error
MAML (GD + full back-prop)	$\kappa \log \left(rac{D}{\delta} ight)$	$Mem(abla \hat{\mathcal{L}}_i) \cdot \kappa \ \log\left(rac{D}{\delta} ight)$	O^{\dagger}
MAML (Nesterov's AGD + full back-prop)	$\sqrt{\kappa}\log\left(rac{D}{\delta} ight)$	$Mem(abla \hat{\mathcal{L}}_i) \cdot \sqrt{\kappa} \ \log\left(rac{D}{\delta} ight)$	0^{\dagger}
Truncated back-prop (GD) [2]	$\kappa \log \left(rac{D}{\delta} ight)$	$Mem(abla \hat{\mathcal{L}}_i) \cdot \kappa \ \log\left(rac{1}{\epsilon} ight)$	ϵ^{\dagger}
Implicit MAML (this work)	$\sqrt{\kappa}\log\left(\frac{D}{\delta}\right)$	$Mem(abla \hat{\mathcal{L}}_i)$	δ^*

Experiments

Figure: (left) MAML and iMAML computation vs exact meta-gradient on a synthetic example. (right) Compute and memory on 20-way-5-shot Omniglot

Table: Comparison of algorithms on Omniglot. Gradient descent (GD) and Hessian-Free (w/ line-search) algorithms considered for \mathcal{A} . $\lambda=2.0$ and CG=5

Algorithm	5-way 1-shot	5-way 5-shot	20-way 1-shot	20-way 5-shot
MAML [15]	$98.7 \pm 0.4\%$	$\textbf{99.9} \pm \textbf{0.1\%}$	$95.8 \pm 0.3\%$	$98.9 \pm 0.2\%$
first-order MAML [15]	$98.3 \pm 0.5\%$	$99.2 \pm 0.2\%$	$89.4 \pm 0.5\%$	$97.9 \pm 0.1\%$
Reptile [43]	$97.68 \pm 0.04\%$	$99.48 \pm 0.06\%$	$89.43 \pm 0.14\%$	$97.12 \pm 0.32\%$
iMAML, GD (ours)	$99.16 \pm 0.35\%$	$99.67 \pm 0.12\%$	$94.46 \pm 0.42\%$	$98.69 \pm 0.1\%$
iMAML, Hessian-Free (ours)	$99.50 \pm 0.26\%$	$99.74 \pm 0.11\%$	$96.18 \pm 0.36\%$	$99.14 \pm 0.1\%$

Summary

- No vanishing meta-gradients due to use of regularization
- Meta-gradient depends only on final result of algorithm, not path
- Wider class of algorithms are supported by implicit MAML
- Implicit MAML is provably efficient in computation and memory, provably convergent, and leads to empirical gains on benchmarks
- FOMAML and Reptile are CG=0 approximations of iMAML

* equal contributions, ¹University of Washington, ²Stanford, ³UC Berkeley) [1] Finn, Abbeel, Levine. ICML 2017. [2] Shaban et al. AISTATS 2019.