Samlefil for alle data til prøveeksamen

$Filen~1A/Oppgave1AFigur_A.png$

Figure 1: Figur fra filen 1A/Oppgave1AFigur_A.png

$Filen~1A/Oppgave1AFigur_B.png$

Figure 2: Figur fra filen 1A/Oppgave1AFigur_B.png

$Filen~1A/Oppgave1AFigur_C.png$

Figure 3: Figur fra filen 1A/Oppgave1AFigur_C.png

$Filen~1A/Oppgave1AFigur_D.png$

Figure 4: Figur fra filen 1A/Oppgave1AFigur_D.png

$Filen~1A/Oppgave1AFigur_E.png$

Figur E -2220.000 -2240.000 -2260.000 Radiell fart m/s -2280.000 -2300.000 -2320.000 -2340.000 ó 1500 250 500 750 1000 1250 1750 Tidspunkt for observasjon (timer)

Figure 5: Figur fra filen 1A/Oppgave1AFigur_E.png

Filen 1B.txt

Luminositeten øker med en faktor 8.80e+09.

Filen 1C.png

Figure 6: Figur fra filen 1C.png

Filen 1E.png

Figure 7: Figur fra filen 1E.png

Filen 1G.txt

STJERNE A) radiusen er en hundredel av solens radius og gassen i stjerna er elektrondegenerert

STJERNE B) stjerna fusjonerer hydrogen til helium i et skall rundt kjernen

STJERNE C) stjernas luminositet er 1/10 av solas luminositet og det finnes

noe helium i kjernen men ingen tyngre grunnstoffer

STJERNE D) massen til stjerna er 5 solmasser og den fusjonerer hydrogen i kjernen

STJERNE E) Stjerna har en overflatetemperatur på 10000K. Radiusen er betydelig mindre enn solas radius

Filen 1H.png

Figure 8: Figur fra filen 1H.png

Filen 1J.txt

Kjernen i stjerne A har massetet
thet 7.735e+06 kg/m $\hat{3}$ og temperatur 37 millioner K.

Kjernen i stjerne B har massetet
thet 7.881e+06 kg/m3̂ og temperatur 18 millioner K.

Kjernen i stjerne C har massetetthet 8.495e+06 kg/m3 og temperatur 37

millioner K.

Kjernen i stjerne D har massetet
thet 2.443e+06 kg/m3̂ og temperatur 17 millioner K.

Kjernen i stjerne E har massetet
thet 7.143e+06 kg/m3̂ og temperatur 39 millioner K.

Filen 1K/1K.txt

Påstand 1: den tilsynelatende størrelseklassen (magnitude) med UV filter er betydelig større enn den tilsynelatende størrelseklassen i blått filter

Påstand 2: den tilsynelatende størrelseklassen (magnitude) med blått filter er betydelig mindre enn den tilsynelatende størrelseklassen i rødt filter

Påstand 3: denne stjerna er lengst vekk

Påstand 4: denne stjerna er nærmest oss

$Filen~1K/1K_Figur_A_.png$

Figure 9: Figur fra filen $1\mathrm{K}/1\mathrm{K}$ _Figur_A_.png

$Filen \ 1K/1K_Figur_B_.png$

Figure 10: Figur fra filen $1K/1K_Figur_B_pg$

$Filen~1K/1K_Figur_C_.png$

Figure 11: Figur fra filen $1K/1K_Figur_C_png$

$Filen~1K/1K_Figur_D_.png$

Figure 12: Figur fra filen 1K/1K-Figur-D_.png

$Filen \ 1L/1L_Figure_A.png$

Figure 13: Figur fra filen 1L/1L-Figure_A.png

$Filen \ 1L/1L_Figure_B.png$

Figure 14: Figur fra filen 1L/1L-Figure_B.png

$Filen \ 1L/1L_Figure_C.png$

Figure 15: Figur fra filen 1L/1L-Figure_C.png

$Filen \ 1L/1L_Figure_D.png$

Figure 16: Figur fra filen 1L/1L-Figure_D.png

Filen 1L/1L_Figure_E.png

Figure 17: Figur fra filen 1L/1L-Figure-E.png

Filen 1N.txt

Kjernen i stjerne A har massetet
thet 6.440e+04 kg/m3̂ og temperatur 31.94 millioner K.

Kjernen i stjerne B har massetet
thet 1.272e+05 kg/m3̂ og temperatur 29.21 millioner K.

Kjernen i stjerne C har massetet
thet $4.936\mathrm{e}{+05~\mathrm{kg/m}}\hat{3}$ og temperatur 17.05

millioner K.

Kjernen i stjerne D har massetet
thet $4.696\mathrm{e}+05~\mathrm{kg/m}\hat{3}$ og temperatur 25.07 millioner K.

Kjernen i stjerne E har massetet
thet 3.540e+05 kg/m3̂ og temperatur 19.78 millioner K.

Filen~1O/1O.png

Figure 18: Figur fra filen 10/10.png

$Filen~1O/1O_Figur_0_.png$

Figure 19: Figur fra filen $1O/1O_Figur_O_.png$

$Filen\ 1O/1O_Figur_1_.png$

Figure 20: Figur fra filen $1O/1O_Figur_1..png$

$Filen~1O/1O_Figur_2_.png$

Figure 21: Figur fra filen $1O/1O_Figur_2_png$

$Filen~1O/1O_Figur_3_.png$

Figure 22: Figur fra filen $1O/1O_F$ igur_3_.png

$Filen~1O/1O_Figur_4_.png$

Figure 23: Figur fra filen $1O/1O_F$ igur_4_.png

Filen 2A.png

Figure 24: Figur fra filen 2A.png

$Filen~2B/2B_Figur_1.png$

Figure 25: Figur fra filen $2B/2B_Figur_1.png$

$Filen~2B/2B_Figur_2.png$

Figure 26: Figur fra filen 2B/2B-Figur-2.png

$Filen~2C/2C_Figur_1.png$

5.27

Figure 27: Figur fra filen $2C/2C_Figur_1.png$

Vinkelforflytning 3.70 buesekunder i løpet av et millisekund. 47.39 42.12 y-posisjon (10⁻⁶ buesekunder) 36.86 31.59 26.33 21.06 15.80 10.53 5.27 0.00

10.53 15.80 21.06 26.33 31.59 36.86

x-posisjon (10⁻⁶ buesekunder)

42.12 47.39

Filen 2C/2C_Figur_2.png

Figure 28: Figur fra filen 2C/2C_Figur_2.png

Filen 3A.txt

Din destinasjon er Lillehammer som ligger i en avstand av 350 km fra Kristiansand. Du og toget som går i motsatt retning kjører begge med farta 97.36670 km/t.

Filen 3E.txt

Tog1 veier 37100.00000 kg og tog2 veier 106800.00000 kg.

Filen 4A.png

Figure 29: Figur fra filen 4A.png

Filen 4C.txt

Hastigheten til Helium-partikkelen i x-retning er $480~\mathrm{km/s}.$

Filen 4E.txt

Massen til gassklumpene er 7700000.00 kg.

Hastigheten til G1 i x-retning er 56400.00 km/s.

Hastigheten til G2 i x-retning er 64500.00 km/s.

Filen 4G.txt

Massen til stjerna er 58.10 solmasser og radien er 2.03 solradier.