МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МОЭВМ

ОТЧЕТ

по лабораторной работе №3

по дисциплине «Организация ЭВМ и систем»

Тема: Представление и обработка целых чисел. Организация ветвящихся процессов.

Студент гр. 9383	 Лапина А.А.
Преподаватель	 Ефремов М.А

Санкт-Петербург 2020

Цель работы.

Изучить представление целых чисел, научиться их обрабатывать, познакомиться с организаций ветвящихся процессов.

Текст задания.

Разработать на языке Ассемблера программу, которая по заданным целочисленным значениям параметров a, b, i, k вычисляет: a) значения функций i1 = f1(a,b,i) и i2 = f2(a,b,i); b) значения результирующей функции res = f3(i1,i2,k), где вид функций f1 и f2 определяется из табл. 2, а функции f3 - из табл.3 по цифрам шифра индивидуального задания (n1,n2,n3), приведенным в табл.4. Значения a, b, i, k являются исходными данными, которые должны выбираться студентом самостоятельно и задаваться в процессе исполнения программы в режиме отладки. При этом следует рассмотреть всевозможные комбинации параметров a, b и k, позволяющие проверить различные маршруты выполнения программы, а также различные знаки параметров a и b.

Замечания:

- 1) при разработке программы нельзя использовать фрагменты, представленные на ЯВУ, в частности, для ввода-вывода данных. Исходные данные должны вводиться, а результаты контролироваться в режиме отладки;
- 2) при вычислении функций f1 и f2 вместо операции умножения следует использовать арифметический сдвиг и, возможно, сложение;
 - 3) при вычислении функций f1 и f2 нельзя использовать процедуры;
- 4) при разработке программы следует минимизировать длину кода, для чего, если надо, следует преобразовать исходные выражения для вычисления функций.

$$f1 = \{-(4*i+3), при a>b$$

 $\{6*i-10, при a<=b\}$
 $f2 = \{7-4*i, при a>b\}$
 $\{8-6*i, при a<=b\}$
 $f3 = \{|i1|-|i2|, при k<0\}$

 $\{\max(4,|i2|-3), при k>=0$

Ход работы.

В ходе работы была реализована программа на языке Ассемблер, которая по заданным целочисленным параметрам вычисляет значения функций. Исходные данные заносятся в программу до выполнения, а выходные данные отслеживаются через отладчик. Были реализованы следующие функции:

 $f1_1$, $f1_2$ — для нахождения значения f1 (если a<=b, то выполняется $f1_1$, иначе $f1_2$);

 $f2_1$, $f2_2$ — для нахождения значений f2 (если a<=b, то выполняется $f2_1$, иначе $f2_2$);

f3, f3_1, f_abs, f3_cmp_4, f3_res, f_abs_1, f_abs_2, f3_4 — для нахождения значений f3, так как используется несколько модульных значений, было необходимо предусмотреть все варианты и написать несколько функций.

Тестирование.

1)
$$a = 1$$
, $b = 2$, $i = 2$, $k = -3 \Rightarrow f1 = 2$, $f2 = -4$, $f3 = -2$

2)
$$a = 1$$
, $b = 2$, $i = 2$, $k = 3 \Rightarrow f1 = 2$, $f2 = -4$, $f3 = 4$

3)
$$a = 2$$
, $b = 1$, $i = 2$, $k = -2 \Rightarrow f1 = -11$, $f2 = -1$, $f3 = 10$

4)
$$a = 2$$
, $b = 1$, $i = 2$, $k = 1 \Rightarrow f1 = -11$, $f2 = -1$, $f3 = 4$

Выводы.

Изучено представление целых чисел, получены навыки работы с целыми числами и ветвящимися процессами.

Содержимое файла lb3.asm представлено в приложении A. Содержимое файла lb3.lst представлено в приложении Б.

ПРИЛОЖЕНИЕ А ИСХОДНЫЙ КОД ПРОГРАММЫ

Название файла: lab3.asm

```
AStack SEGMENT STACK
     DW 32 DUP(?)
AStack ENDS
DATA SEGMENT
a
     DW
          1
b
     DW
          2
i
     DW
          2
k
     DW
        -3
i1
   DW
          ?
i2
     DW
          ?
res
     DW
          ?
DATA ENDS
CODE SEGMENT
     ASSUME CS:CODE, DS:DATA, SS:AStack
Main PROC FAR
     mov ax, DATA
     mov ds, ax
f1 1:
     mov ax, a
     cmp ax, b
     jg f1_2
                     ;if a>b
                ;a<=b
     mov ax, i
     shl ax, 1 ; ax = 2*i
     mov bx, ax ; bx = 2*i
     shl ax, 1 ; ax = 4*i
     add ax, bx; ax = 6*i
     sub ax, 10; ax = 6*i - 10
```

```
mov i1, ax
     jmp f2_1
f1_2:
     mov ax, i
     shl ax, 1
                   ;ax = 2*i
     shl ax, 1
                 ;ax = 4*i
     add ax, 3
                   ;ax = 4*i+3
     neg ax
                     ;ax = -ax
     mov i1, ax
f2_1:
     mov ax, a
     cmp ax, b
     jg f2_2 ;if a>b
            ; a<=b
     mov ax, i
     shl ax, 1 ; ax = 2*i
     mov bx, ax;bx = 2*i
     shl ax, 1 ; ax = 4*i
     add ax, bx; ax = 6*i
     neg ax ; ax = -ax
       add ax, 8 ;ax = -6*i+8
     mov i2, ax
     jmp f3
f2_2:
     mov ax, i
     shl ax, 1 ; ax = 2*i
     mov bx, ax;bx = 2*i
     shl ax, 1 ; ax = 4*i
            ;ax = -ax
     neg ax
     add ax, 7 ; ax = -4*i + 7
     mov i2, ax
f3:
     mov ax, k
```

```
cmp k, 0
     j1 f3_1 ; if k < 0
     mov ax, i2
     cmp ax, 0 ; if ax < 0
     jl f_abs ;then |ax|
     jmp f3_cmp_4
f3_1:
     mov ax, i1; ax = i1
     ; sub ax, i2 ; ax = i1 - i2
     cmp ax, 0; if ax < 0
       jl f_abs_1; then ax = |ax|
       mov res, ax
       mov ax, i2
          cmp ax, 0 ; if ax < 0
       jl f_abs_2; then ax = |ax|
       sub res, ax ; res = |i1| - |i2|
     jmp f3_res
f_abs:
     neg ax
           ;ax = -ax
                  ;ax = |i2|-3
       sub ax, 3
     jmp f3_cmp_4
f3_cmp_4:
     cmp ax, 4 ; if ax < 4
     jl f3_4 ;res = 4
     jmp f3_res
f3_res:
     mov res, ax; else res = ax
     jmp f_end
```

```
f_abs_1:
     neg ax ; ax = |ax|
       mov res, ax
       mov ax, i2
         cmp ax, 0 ; if ax < 0
       jl f_abs_2; then ax = |ax|
       sub res, ax ; res = |i1| - |i2|
     jmp f3_res
f_abs_2:
       neg ax
                ;ax = |ax|
       sub res, ax ;res = |i1|-|i2|
     jmp f3_res
f3_4:
     mov res, 4; res = 4
     jmp f_end
f_end:
     mov ah, 4ch
     int 21h
Main ENDP
CODE ENDS
     END Main
```

приложение б

ЛИСТИНГ И ИСПРАВЛЕННЫЙ КОД ПРОГРАММЫ

Название файла: lab2.lst

#Microsoft (R) Macro Assembler Version 5.10

10/28/20

12:18:1

PAGE

1-1

0000		ASTACK SEGMENT STACK											
0000	0020[????	DW 32 DUP(?)											
]												
0040		ASTACK ENDS											
0000		DATA SEGMENT											
0000	0001	A DW 1											
0002	0002	в DW 2											
0004	0002	I DW 2											
0006	FFFD	к DW -3											
8000	0000	I1 DW ?											
000A	0000	12 DW ?											
000C	0000	RES DW ?											
000E		DATA ENDS											
0000		CODE SEGMENT											
		ASSUME CS:CODE, DS:DATA, SS:ASTACK											
0000		MAIN PROC FAR											
	B8 R	MOV AX, DATA											
0003	8E D8	MOV DS, AX											
0005		F1_1:											
0005	A1 0000 R	MOV AX, A											
0008	3B 06 0002 R	CMP AX, B											

```
000C 7F 14
                            JG F1_2 ; IF A>B
                             ;A<=B
000E A1 0004 R
                            MOV AX, I
0011 D1 E0
                            SHL AX, 1 ;AX = 2*I
0013 8B D8
                            MOV BX, AX ;BX = 2*I
0015 D1 E0
                            SHL AX, 1 ; AX = 4*I
0017 03 C3
                            ADD AX, BX ;AX = 6*I
0019 2D 000A
                            SUB AX, 10; AX = 6*I - 10
001C A3 0008 R
                            MOV I1, AX
001F
     EB 10 90
                            JMP F2_1
                  F1 2:
0022
0022 A1 0004 R
                            MOV AX, I
                            SHL AX, 1 ;AX = 2*I
0025 D1 E0
0027 D1 E0
                            SHL AX, 1
                                          ; AX = 4*I
0029 05 0003
                            ADD AX, 3
                                          ; AX = 4*I+3
002C F7 D8
                            NEG AX
                                        ; AX = -AX
002E A3 0008 R
                            MOV I1, AX
0031
                 F2_1:
                            MOV AX, A
0031 A1 0000 R
0034 3B 06 0002 R
                            CMP AX, B
     7F 16
0038
                            JG F2_2 ; IF A>B
                             ;A<=B
003A A1 0004 R
                            MOV AX, I
003D D1 E0
                            SHL AX, 1 ;AX = 2*I
003F 8B D8
                            MOV BX, AX ;BX = 2*I
```

PAGE

1-2

0041	D1 E0	SHL AX, 1 ;AX = $4*I$
0043	03 C3	ADD AX, BX ; $AX = 6*I$
0045	F7 D8	NEG AX ; $AX = -AX$
0047	05 0008	ADD AX, 8 ; $AX = -6*I+8$
004A	A3 000A R	MOV I2, AX
004D	EB 12 90	JMP F3
0050	F2_2:	
0050	A1 0004 R	MOV AX, I
0053	D1 E0	SHL AX, 1 ;AX = $2*I$
0055	8B D8	MOV BX, AX ;BX = $2*I$
0057	D1 E0	SHL AX, 1 ;AX = $4*I$
0059	F7 D8	NEG AX ;AX = -AX
005B	05 0007	ADD AX, 7 ; $AX = -4*I + 7$
005E	A3 000A R	MOV I2, AX
0061	F3:	
0061	A1 0006 R	MOV AX, K
	83 3E 0006 R 00	СМР К, 0
0069	7C 0B	JL F3_1 ; IF K < 0
006B	A1 000A R	MOV AX, I2
	3D 0000	CMP AX, Θ ; IF AX < Θ
0071	7C 1D	JL F_ABS ; THEN AX
0073	EB 23 90	JMP F3_CMP_4
0070	-0.4.	
0076	F3_1:	uov vy =4 + 1 vy = -4
0076	A1 0008 R	MOV AX, $I1$; $AX = I1$

```
; SUB AX, 12; AX = 11 - 12
0079 3D 0000
                              CMP AX, \theta ; IF AX < \theta
007C 7C 28
                                 JL F_{ABS_1}; THEN AX = |AX|
007E A3 000C R
                                 MOV RES, AX
0081 A1 000A R
                                 MOV AX, I2
0084
     3D 0000
                                  CMP AX, 0; IF AX < 0
     7C 30
0087
                                 JL F_{ABS_2}; THEN AX = |AX|
0089
     29 06 000C R
                                SUB RES, AX ; RES = |11| - |12|
     EB 11 90
008D
                              JMP F3_RES
0090
                   F_ABS:
                              NEG AX ; AX = -AX
     F7 D8
0090
                              SUB AX, 3 ;AX = |12|-3
0092
     2D 0003
     EB 01 90
0095
                              JMP F3_CMP_4
0098
                   F3_CMP_4:
0098
     3D 0004
                              CMP AX, 4; IF AX < 4
     7C 24
009B
                              JL F3_4
                                       ; RES = 4
```

JMP F3_RES

009D EB 01 90

PAGE

1-3

00A0	f3_RES:	
00A0	A3 000C R	MOV RES, AX ; ELSE RES = AX
00A3	EB 25 90	JMP F_END
00A6	F_ABS_1:	
	F7 D8	NEG AX ; AX = AX
	A3 000C R	MOV RES, AX
	A1 000A R	MOV AX, I2
00AE	3D 0000	CMP AX, 0 ; IF AX < 0
00B1	7C 06	JL f_{ABS_2} ; THEN $AX = AX $
00B3	29 06 000C R	SUB RES, AX ; RES = $ 11 - 12 $
00B7	EB E7	JMP F3_RES
00B9	F_ABS_2:	
00B9	F7 D8	NEG AX ; AX = AX
00BB	29 06 000C R	SUB RES, AX ; RES = $ 11 - 12 $
00BF	EB DF	JMP F3_RES
00C1	F3_4:	
00C1	C7 06 000C R 0004	MOV RES, 4 ; RES = 4
00C7	EB 01 90	JMP F_END
00CA	F_END:	
00CA	B4 4C	MOV AH, 4CH
00CC	CD 21	INT 21H
00CE	MAIN ENDP	
00CE	CODE ENDS	
	END	MAIN

SYMB

0LS-1

SEGMENTS AND GROUPS:

N A M E	LENGTH ALIGN	COMBINE CLASS
CODE	0040 PARA STAC 00CE PARA NONE 000E PARA NONE	K
SYMBOLS:		
N A M E	TYPE VALUE	ATTR
Α	L WORD 0000	DATA
В	L WORD 0002	DATA
F1_1	L NEAR 0005	CODE
F1_2	L NEAR 0022	CODE
F2_1	L NEAR 0031	CODE
F2_2	L NEAR 0050	CODE
F3	L NEAR 0061	CODE
F3_1	L NEAR 0076	CODE
F3_4	L NEAR 00C1	CODE
F3_CMP_4	L NEAR 0098	CODE
F3_RES	L NEAR 00A0	CODE
F_ABS	L NEAR 0090	CODE
F_ABS_1	L NEAR 00A6	CODE
F_ABS_2	L NEAR 00B9	CODE
F_END	L NEAR 00CA	CODE
I	L WORD 0004	DATA
I1	L WORD 0008	DATA
10		

	I2 .										L WOR	D	000A	DATA		
00CE	Κ.										L WOR	D	0006	DATA		
	MAIN								•		F PRO	С	0000	CODE	LENGTH	=
	RES									•	L WOR	D	000C	DATA		
	@CPU										TEXT	0101	Lн			
	@FIL	ENA	٩ME	Ξ							TEXT	LB3				
	@VER	SI	NC								TEXT	510				

12:18:1

SYMB

0LS-2

136 Source Lines

136 TOTAL LINES

29 SYMBOLS

48012 + 457198 Bytes symbol space free

- **O** WARNING ERRORS
- 0 SEVERE ERRORS