Engenharia de Reatores Químicos – IQD0048 Semestre 2024/1 – Turma T01 – Prof. Alexandre Umpierre

Estudo Dirigido 1

Alguns Mecanismos Reacionais em Reator Batelada a Volume Constante &

Determinação da Expressão da Taxa de Reação em Retores Batelada

1) Para cada um dos mecanismos reacionais a seguir, determine os perfis de concentração para todas as espécies envolvidas em um reator batelada. Todas as etapas elementares são de primeira ordem. Para fins de cálculo, assuma $k_1 = 1 \text{ min}^{-1}$, $k_2 = 1,5 \text{ min}^{-1}$, $k_{-1} = 1,3 \text{ min}^{-1}$ e $k_{-2} = 1,2 \text{ min}^{-1}$.

a)
$$A \xrightarrow{k_1} bB$$

 $A \xrightarrow{k_2} pP$
 $bB \xrightarrow{k_{-1}} A$
 $pP \xrightarrow{k_2} A$

b)
$$A \xrightarrow{k_1} bB$$

$$B \xrightarrow{k_2} pP$$
f) $A \xrightarrow{k_1} bB$

$$bB \xrightarrow{k_{-1}} A$$

c)
$$A \xrightarrow{k_1} bB$$
 $A \xrightarrow{k_2} pP$ $bB \xrightarrow{k_{-1}} A$ $pP \xrightarrow{k_{-2}} A$

d)
$$A \xrightarrow{k_1} bB$$

$$bB \xrightarrow{k_{-1}} A$$

$$A \xrightarrow{k_2} pP$$

2) A Tabela 1 apresentam a concentração c do reatante na reação $A \rightarrow B$, realizada em reator batelada com volume constante entre 27 K e 450 K. A taxa de reação é dada por kc^n em que k é a constante cinética e n é a ordem de reação de A. Inicialmente, se assume que a constante cinética obedece ao modelo de Arrhenius. Calcule a energia de ativação e o fator pré-exponencial da equação de Arrhenius, e avalie a validade do modelo.

Tabela 1. Tempo de reação t e concentração c de A a 27 °C, 57 °C, 97 °C, 147 °C e 197 °C.

t (h)	c (mol/L)					
	@ 27 °C	@ 57 °C	@ 97 °C	@ 147 °C	@ 147 °C	@ 197 °C
0	889,9	889,6	889,5	890,2	890,1	889,6
5	625,9	589,0	544,9	484,2	435,4	350,9
10	471,6	426,8	378,7	316,8	271,5	200,8
15	373,3	328,6	283,4	227,8	190,0	133,8
20	304,8	264,1	222,5	174,4	143,4	98,0
25	255,5	218,1	180,7	139,7	112,7	76,3
30	217,8	184,1	150,6	115,1	91,6	61,4
35	189,0	158,3	129,0	96,6	76,6	50,7
40	166,3	138,5	112,0	83,1	65,9	42,4
45	148,0	121,9	97,9	72,0	57,0	37,5
50	132,5	108,9	86,5	64,3	49,9	32,3
55	120,2	97,9	77,7	56,8	44,5	28,6
60	109,0	88,5	69,9	51,2	40,4	25,2