The Dynamical Graph Grammar Formalism

What are DGGs anyway?

- The DGG formalism is a declarative modeling language L:
 - 1. A compositional map $\Psi:L\longrightarrow S$ that maps all syntactically valid models $M\in L$ into some space S of dynamical systems.
 - 2. Conditionally valid or conditionally approximate valid families of Abstract Syntax Tree Transformations.

- Rules map to operators where $\Psi(M) = W(M)$
- The master equation, $\frac{d}{dt}P(t)=W\cdot P(t)$, represents the time evolution of a continuoustime Markov process with formal solution is $P(t)=e^{tW}\cdot P(0)$.
- Hard to solve analytically! So, we need help!

Grammar Rules

How do we write and interpret them?

• Simplified DGG graph notation², where λ is a label vector:

$$G\langle\langle\lambda\rangle\rangle\longrightarrow G'\langle\langle\lambda'\rangle\rangle$$
 with ρ_r or solving $\dot{x}=v$

• ρ_r is a propensity function i.e. probability per unit time and can be rewritten in the form of a rate of input labels and sampling function of output labels given input labels.