Задача 7 (10 т.). Регулярен ли е езикът

$$L = \{\omega \in \{0,1\}^* \mid \omega$$
 съдържа точно веднъж 010 като поддума $\}$?

Обосновете отговора си!

Решение.

І-ви начин: Затвореност на регулярните езици.

Регулярните езици са затворени относно операциите обединение, конкатенация и итерация, а от това като следствие чрез законите на де Морган следва, че са затворени и относно сечение и допълнение.

Да разгледаме два езика L_1 и L_2 . Може да дефинираме $L_1 \backslash L_2$ като $L_1 \cap \overline{L_2}$ (еквивалентни записи са). Следователно, ако L_1 и L_2 са регулярни, то $L_1 \backslash L_2$ също е регулярен. Нашият език L може да се представи като $L_1 \backslash L_2$, където:

- $L_1=\{\omega\in\{0,1\}^*\,|\,\omega$ съдържа 010 като поддума $\}$ $L_2=\{\omega\in\{0,1\}^*\,|\,\omega$ съдържа 010 поне два пъти $\}$

Остава да докажем, че L_1 и L_2 са регулярни езици.

 $L_1 : \Sigma^* 0 1 0 \Sigma^*$

 $L_2: \Sigma^* 010 \Sigma^* 010 \Sigma^* \cup \Sigma^* 01010 \Sigma^*$

Следователно L_1 и L_2 са регулярни езици $\Rightarrow L = L_1 \backslash L_2$ също е регулярен език.

ІІ-ри начин: Построяване на автомат.

От теоремата на Клини знаем, че множеството на регулярните езици и множеството на автоматните езици съвпадат. Следователно, ако успеем да построим краен автомат с език равен на даден език, то този език е регулярен.

Тъй като $L(\mathscr{A}) = L$, а \mathscr{A} очевидно е краен автомат, то L е регулярен език.