同伦群

- 1. 保基连续映射: 设 Σ , X 是拓扑空间, 分别取定"基点" $\sigma_0 \in \Sigma$, $x_0 \in X$, 若 映射 $f: \Sigma \to X$ 是保持基点的, 即 f 满足 $f(\sigma_0) = x_0$, 则称其为保基连 续映射;
 - (a) 保基连续映射 $f: \Sigma \to X$ 全体记作 $X^{\Sigma} = \{f | f: \Sigma \to X, f(\sigma_0) = x_0\};$
- 2. 映射 q^f 的基本性质:
 - (a) 若 $f': \Sigma_3 \to \Sigma_2, g': X_2 \to X_3$ 是保基映射, 则 $g'^{f'} \circ g^f = (g' \circ g)^{f \circ f'}: X_1^{\Sigma_1} \to X_2^{\Sigma_3}$;
- 3. 如果 $\Sigma_1 \simeq \Sigma_2, X_1 \simeq X_2$, 那么 $X_1^{\Sigma_1} \simeq X_2^{\Sigma_2}$:

(a)
$$\Sigma_1 \simeq \Sigma_2 \Rightarrow \begin{cases} f: \Sigma_2 \to \Sigma_1 \\ f': \Sigma_1 \to \Sigma_2 \end{cases}$$
, $f \circ f' \simeq Id, f' \circ f \simeq Id;$

$$\text{(b)} \ \ X_1 \simeq X_2 \Rightarrow \begin{cases} g: X_2 \to X_1 \\ g': X_1 \to X_2 \end{cases} \ \ \text{, } g \circ g' \simeq Id, g' \circ g \simeq Id;$$

$$\text{(c)} \ \ g^f: X_1^{\Sigma_1} \to X_2^{\Sigma_2}, g'^{f'}: X_2^{\Sigma_2} \to X_1^{\Sigma_1};$$

- 4. 道路空间总是可缩的: $X^{[0,1]} \simeq X^{\{1\}} \simeq \{f_0\}$;
- 5. 加接: X 在 f(Z) 处与 Y 的加接定义为 $X \cup Y / \sim$, 记为 $X \cup_f Y$;
- 6. 楔积: 取基点 $x \in X, y \in Y$, 楔积 $X \vee Y = (X \cup Y)/(x \sim y)$;
 - (a) $X \vee Y$ 可看作乘积空间 $X \times Y$ 的子集 $(X \times \{y\}) \cup (\{x\} \times Y)$;
- 7. 给定拓扑空间 X_j, Y_j 及连续保基映射 $f_j: X_j \to Y_j (j \in J), \exists \vee_{j \in J} f_j: \vee_{j \in J} X_j \to \vee_{j \in J} Y_j$ 具有下面的性质:

- (a) 若 $g_j; Y_j \to Z_j (\forall j \in J)$ 是连续保基的,则 $(\vee_{j \in J} g_j) \circ (\vee_{j \in J} f_j) = \vee_{j \in J} (g_i \circ f_j)$;
- (b) 若 $f_i \simeq g_j : X_j \to Y_j$ 是同伦等价的映射 $(\forall j \in J)$, 那么 $\vee_{j \in J} f_j \simeq \vee_{j \in J} g_j : \vee_{j \in J} X_j \to \vee_{j \in J} Y_j$;
- 8. 若 $\forall j \in J, X_j \simeq Y_j$ 是同伦型, 则 $\vee_{j \in J} X_j \simeq \vee_{j \in J} Y_j$;
- 9. 在 $X \vee Y$ 与乘积空间 $X \times Y$ 的某子集之间存在同胚 $\phi: X \vee Y \rightarrow (X \times \{y\}) \cup (\{x\} \times Y);$
 - (a) 映射 ϕ 是满射且单射, 因此是一对一映射, 故存在逆映射 ϕ^{-1} : $(X \times \{y\}) \cup (\{x\} \times Y) \to X \vee Y;$
- 10. 归纳积 (旋积): 拓扑空间 X, Y 的旋积定义为 $X \wedge Y = (X \times Y)/(X \vee Y)$;
 - (a) $S^n \wedge S^1 \cong S^{n+1}$;
 - (b) $B^n \wedge S^1 \cong B^{n+1}$;
- 11. 给定拓扑空间 X_j, Y_j 及连续保基映射 $f_j: X_j \to Y_j (j = 1, 2), \exists f_1 \land f_2: X_1 \land X_2 \to Y_1 \land Y_2$ 具有以下性质:
 - (a) 若 $g_j: Y_j \to Z_j (j=1,2)$,则 $(f_1 \wedge f_2) \circ (g_1 \wedge g_2) = (f_1 \circ g_1) \wedge (f_2 \circ g_2)$;
 - (b) 如果 $f_j \simeq g_j : X_j \to Y_j$ 是同伦等价的映射 (j = 1, 2), 那么 $f_1 \wedge f_2 \simeq g_1 \wedge g_2 : X_1 \wedge X_2 \to Y_1 \wedge Y_2$;
 - (c) 推论: 若 $X_i \simeq Y_i (j = 1, 2)$ 同伦, 则 $X_1 \wedge X_2 \simeq Y_1 \wedge Y_2$;
 - (d) 推论: 任意的 X 与可缩空间 Y 的归纳积 $X \land Y$ 是可缩的;
- 12. 约化角锥: 任意拓扑空间 X 的约化角锥 $c(X) = X \land [0,1]$ 是可缩的;
- 13. 约化双角锥: 拓扑空间 X 的约化双角锥 $s(X) = X \wedge S^1$;
- 14. 分配律: 设 X,Y,Z 为拓扑空间,则有 $(X \vee Y) \wedge Z \cong (X \wedge Y) \vee (Y \wedge Z)$,推广后得到 $(\vee_{i \in J} X_i) \wedge Y \cong \vee_{i \in J} (X_i \wedge Y_i)$;
- 15. 结合律: 若 (a)-(c) 满足至少项,则 $(X \land Y) \lor Z \cong X \land (Y \lor Z)$;
 - (a) X,Y 紧致,且 X 为 Hausdorff 空间;
 - (b) 或者, Y, Z 紧致, 且 Z 为 Hausdorff 空间;

- (c) 或者, X, Z 是局部紧致的 Haussdorff 空间;
- 16. 结合律推论: $S^n \wedge S^m \cong S^{n+m}$;
- 17. 给定拓扑空间 X, Y, Z:
 - (a) 若 X, Y 为 Hausdorff 空间, 则 $Z^{X \vee Y} \cong Z^X \times Z^Y$;
 - (b) 若 X 为 Hausdorff 空间, 则 $(Y \times Z)^X \cong Y^X \times Z^X$;
 - (c) 若 X, Y 是紧致的 Hausdroff 空间, 则 $Z^{X \wedge Y} \cong (Z^Y)^X$;
- 18. 圈空间: X 的圈空间定义为 $\Omega(X) = X^{S^1}$;
 - (a) $\Omega(\Omega(...\Omega(X)...)) \cong X^{S^1 \wedge S^1 ... \wedge S^1} \cong X^{S^n};$
 - (b) $\Omega(X)^Y = (X^{S^1})^Y \cong X^{Y \wedge S^1} = X^{s(Y)};$
- 19. 同伦等价类: 保基映射 $f,g: \Sigma \to X$ 间的同伦 $f \simeq g$ 在 X^{Σ} 中确定了一个等价关系, 其同伦等价类 [f] 形成的空间为 $[\Sigma,X] = \{[f]|f \in X^{\Sigma}\} = X^{\Sigma}/\simeq$, 称为同伦类空间;
 - (a) n- 阶同伦群: $\pi_n(X) = [S^n, X]$
- 20. 设 $f: Y_0 \to Y_1$ 是保基连续映射, 则 f 又到了 $f_{\bullet}: [X, Y_0] \to [X, Y_1]$, 具有如下性质:

 - (b) 恒等映射 $1: Y \to Y$ 诱导的 $1_{\bullet}: [X,Y] \to [X,Y]$ 是恒等映射;

 - (d) 推论: 如果 $f: Y_0 \to Y_1$ 是一个同伦等价性映射 (即存在 $g: Y_1 \to Y_0$ 使 $f \circ g \simeq 1, g \circ f \simeq 1$), 那么 f 所诱导的映射 $f_{\bullet}: [X, Y_0] \to [X, Y_1]$ 是 1:1 的;
- 21. 若对于一切拓扑空间 X, $f_{\bullet}: [X, Y_0] \to [X, Y_1]$ 都是 1:1 的, 那么 $f: Y_0 \to Y_1$ 是同伦等价性映射, $Y_0 \simeq Y_1$;
 - (a) Whitehead 定理: $\pi_n(Y_0) \cong \pi_n(Y_1), \forall n > 0 \Rightarrow Y_0 \simeq Y_1$;
- 22. 映射 $f: X_0 \to X_1$ 诱导的 $f^{\bullet}: [X_1, Y] \to [X_0, Y]$ 具有下列性质:

- (b) 恒等 $1: X \to X$ 诱导的 $1^{\bullet}: [X, Y] \to [X, Y]$ 是恒等的;
- 23. 若 $f: X_0 \to X_1$ 对一切拓扑空间 Y 给出 1:1 对应的 $f^{\bullet}: [X_1, Y] \to [X_0, Y], 则 <math>f$ 是同伦等价性映射 $X_0 \simeq X_1$;
- 24. 当 $n \ge 1$ 时, S^n 是 AH'I 一空间 $\Rightarrow \pi_n(X) = [S^n, X]$ 具有群结构 (这个 群结构在 n > 1 时是交换群);
- 25. 若 Y 是局部紧致的 Hausdorff 空间, 则存在 1:1 映射 $[X \land Y, Z] \leftrightarrow [X, Z^Y]$; 在有群结构的情形下, 该映射为群同构 $[X \land Y, Z] \cong [X, Z^Y]$;
 - (a) $[s(X), Y] \cong [X, \Omega(Y)];$
 - (b) $[S^n \wedge Y, Z] \cong [S^n, Z^Y] = \pi_n(Z^Y), \pi_0(Z^Y) = [Y, Z];$
- 26. 一些记号: 设 $y \in Y$ 为基点, $f: Y \to Z, g: Y' \to Z'$:
 - (a) 恒等映射: $1 = 1_Y : Y \to Y$;
 - (b) 含入映射: $i_1, i_2: Y \to Y \times Y$;
 - (c) 常值映射: $e_Y: Y \to Y$;
 - (d) 对角映射: $\Delta_Y: Y \to Y \times ... \times Y$;
 - (e) 直积映射: $f \times g : Y \times Y' \to Z \times Z'$;

(f) 投影:
$$p_1, p_2: X \vee X \to X$$
,
$$\begin{cases} p_1(x_1, x_2) = x_1 \\ p_2(x_1, x_2) = x_2 \end{cases}$$
;

- (g) 折迭: $\nabla_X : X \vee X \to X, \nabla_X(x, x_0) = \nabla_X(x_0, x) = x$
- 27. H— 空间 (Hopf 空间): 对拓扑空间 Y, 若存在一个映射 $m: Y \times Y \to Y$ 满足条件 $m \circ i_1 \simeq m \circ i_2 \simeq 1_Y$, 则 Y 被称为 H— 空间;
 - (a) 用 m 定义 Y 中两点的乘法,要求乘法单位元为基点 $\forall y, y' \in Y, y \cdot y' = m(y, y') \in Y$;
- 28. 结合的 H 空间 (AH 空间): 若 m 满足 $m \circ (m \times 1_Y) \simeq m \circ (1_Y \times m)$: $Y \times Y \times Y \to Y$;
- 29. 有逆元的 H 空间 (HI 空间): 若存在逆运算 $u: Y \to Y$ 满足 $m \circ (u \times 1_Y) \circ \Delta_Y \simeq m \circ (1_Y \times u) \circ \Delta_Y \simeq e_Y$;

- 30. 若 Y 是任意拓扑空间, Y 为 AHI 空间, 则 [X,Y] 可以赋予一个群结构;
- 31. 设 Y 为 AHI 空间, 有任一连续映射 $g: X_0 \to X_1$ 诱导的 $g^{\bullet}: [X_1, Y] \to [X_0, Y]$ 是群同态;
 - (a) 特别的: 当 $g: X_0 \simeq X_1$ 是同伦等价性映射时, g^{\bullet} 是群同构;
- 32. 对偶 Hopf 空间: 若拓扑空间 X 存在映射 $\mu: X \to X \lor X$ 满足条件 $p_1 \circ \mu \simeq p_2 \circ \mu \simeq 1_X$, 则称其为对偶 Hopf 空间, 记为 H' 一空间;
- 33. 结合的 H' 空间 (AH' 空间): $(\mu \vee 1_X) \circ \mu \simeq (1_X \vee \mu) \circ \mu : X \to X \vee X \vee X$;
- 34. 存在逆元的 H' 空间 (H'I 空间): 如果存在逆运算 $v: X \to X$ 满足 $\nabla_X \circ (v \vee 1_X) \circ \mu \simeq \nabla_X \circ (1_X \vee v) \circ \mu \simeq e_X$, 则称其为存在逆元的 H' 空间;
- 35. 若 X 为 AH'I 空间, Y 是任一拓扑空间, 则 [X,Y] 可赋予群结构. 由任何连续映射 $g: Y_0 \to Y_1$ 诱导的 $g_{\bullet}: [X,Y_0] \to [X,Y_1]$ 是群同态. 特别的, 当 $g: Y_0 \simeq Y_1$ 是同伦等价性映射是, g_{\bullet} 为群同构;
 - (a) S^1 是 AH'I 一空间;
 - (b) $\pi_1(Y) = [S^1, Y]$ 具有群结构;
- 36. 设 *X*, *Y* 是拓扑空间:
 - (a) 若 X, Y 之一为 AH'I 一空间,则 $X \wedge Y$ 是 AH'I 一空间;
 - (b) 如果 X 是 Hausdorff 空间, 那么 Y^X 是 AHI— 空间, 当且仅当 X 为 AH'I— 空间或 Y 为 AHI— 空间;
- 37. 设 X_1, X_2 都是 AH'I 一空间,则 $[X_1 \land X_2, Y]$ 是交换群;
 - (a) 当 $n \geq 2$ 时, $\pi_n(Y)$ 是交换群;
- 38. 映射锥: 设 X,Y 是拓扑空间, 将其中的 X 看作约化角锥 c(X) 的子空间, $X = \{x \land 0 | x \in X\}$;
 - (a) 其中记号 $x \wedge y$ 表示等价类 $[(x,y)] \in (X \times Y)/(X \vee Y) = X \wedge Y$;
- 39. 正合序列: 设含入映射 $i: Y \to E$, 令 $f' = \pi_f \circ i: Y \to C_f$, 对于任何拓扑空间 Z, 序列 $[C_f, Z] \xrightarrow{(f')^{\bullet}} [Y, Z] \xrightarrow{f^{\bullet}} [X, Z]$ 是正合的;