Graph Algorithms I

```
Breadth-First Search (BFS) /
Depth-First Search (DFS)/
Topological Sort /
Strongly Connected Components (SCC)
```

Terminology

- Edge (u,v) incident to vertices u and v
- Vertex u adjacent to vertex v if there's an edge linking them
- Degree of vertex
- Path, Simple path, Cycle, Simple cycle

Adjacency matrix / Adjacency list

operation	adjacency	adjacency
	matrix	list
Space	V 2	2 E
adjacency check	1	max. degree
list of adjacent vertices	IVI	max. degree
add edge	2	2
delete edge	2	2 max. degree

Terminology (cont'd)

- A undirected graph is connected if there's a path from every vertex to every other vertex
- A component of a graph is a maximal connected subset of the vertices
- A directed graph is strongly connected if there's a path from every vertex to every other vertex
- A strongly connected component of a directed graph is a vertex u and the collection of all vertices v s.t. there's a path from u to v and a path from v to u

Breadth-First Search

- Input: G=(V,E) (e.g. Adjacency Matrix), Source vertex s in V
- Output: for all v in V,
 d[v]=shortest distance from s to v
 prev[v]=predecessor of v
 (-> Breadth-first tree)
- O(V+E):
 - O(V): every vertex v in V enqueued at most once
 - O(E): scan adjacency list of vertex v only when v is dequeued

Note that BFS may not visit all vertices of G

Breadth-First Search

```
BFS(G,s) {
 for each vertex u in
      V-\{s\}
   color[u] = WHITE;
   d[u] = \inf y;
   pred[u] = NIL;
 color[s] = GRAY;
 d[s] = 0;
 pred[s] = NIL;
 enqueue (Q, s);
```

```
while(Q not empty) {
u = dequeue(Q);
 for each v adjacent to u
     if(color[v] == WHITE) {
        color[v] = GRAY;
        d[v] = d[u] + 1;
        pred[v] = u;
        enqueue (Q, v);
 color[u] = BLACK;
```

Depth-First Search

- Input: G=(V,E) (e.g. Adjacency Matrix)
- Output: for all v in V,
 pred[v](->Depth-First Forest)
 & 2 timestamps
 d[v]=discovery time

f[v] = finishing time

- d[v], f[v]
 - Unique integers from 1 to 2 | V |
 - d[v] < f[v]

Depth-First Search

```
DFS (G) {
for each vertex u in V
  color[u] = WHITE;
 pred[u]=NIL;
time = 0;// global variable
for each vertex u in V
  if(color[u] == WHITE)
     DFS Visit(u)
```

```
DFS Visit(u) {
 color[u] = GRAY;
 time = time + 1;
 d[u] = time;
 for each v adjacent to u
   if (color[v] == WHITE) {
       pred[v] = u;
       DFS Visit(v);
 color[u] = BLACK;
 time = time + 1;
 f[u] = time;
```

Analysis

- Time: $\Theta(V+E)$
 - Exhaustive search of vertices and edges
 - Remember that BFS = O(V+E)
- Timestamps & colors
 - v is a descendant of u:
 - d[u] < d[v] < f[v] < f[u]
 - At time d[u], there is a path from u to v of only white vertices
 - Neither of u and v is a descendant of the other:
 - d[u] < f[u] < d[] < f[v] or d[v] < f[v] < d[u] < f[u]

Classify edges in directed graph

- Tree edges (u,v): v white and d[u]<d[v]<f[v]<f[u]
 - (prev[v],v) where DFS calls are made;
 - v is first discovered by exploring this edge
- Back edges: v gray
 - (u,v) where v is an ancestor of u in the search
- Forward edges (none in undirected graph)
 - nontree edge (u,v) connecting a vertex u to a descendant v
 - v black and d[u]<d[v]<f[v]<f[u]
- Cross edges (none in undirected graph)
 - All other edges: v black and f[v]<d[u]

Topological Sort

- Directed acyclic graph (or Dag): directed graph with no cycles
 - Good for modeling processes and structures that have a partial order
 - Partial order
 - if a>b and b>c, then a>c
 - May have a and b s.t. neither a>b nor a<b/li>
- Given a directed acyclic graph, is it possible to have a total order keeping this partial order?

Topological sort of a Dag G

- Problem: Find a linear ordering of vertices such that if (u,v) is an edge of G, then
 u must appear somewhere before v
- Topological-Sort(G,E)
 - Call DFS(V,E) to compute finishing time f[v] for all v in V
 - Output vertices in order of decreasing finishing time (method: as each vertex is finished, insert it onto the front of a linked list)

Finding Strongly Connected Components (SCC)

- Strongly-Connected-Components(G)
 - call DFS(G) to compute finishing times f[u] for each vertex
 - compute GT, inversing all edges in G
 - call DFS(GT), but in the main loop of DFS, consider the vertices in order of decreasing f[u] computed in step 1
 - output the vertices of each tree in the depth-first forest of step 3 as a separate strongly connected component

Correctness Proof

- Component Graph G^{scc}=(V^{scc},E^{scc})
 - Vscc contains exactly one vertex for each SCC
 - (u,v) in E^{scc} if G contains a directed edge (x,y) for some x, y in different SCCs
- Gscc is also DAG
- Let f[C]=max{f[v]: v in C}.
- For u in C and v in C',
 - If (u,v) in E, then (u,v) not in ET and f[C] > f[C'].