Figure 1

HIF-1 Regulation by Hypoxia

Figure 2

Figure 3

A. Abbreviated diagram of oxygen-independent glucose metabolism and relevant inhibitors.

B. Structural comparisons of key glucose metabolites.

2-OG	Succ	OAA	Pyr			
1 COOH 2 C=O 3 CHz 4 CH2 5 COOH	СООН СН2 СН2 СООН	çоон ç=0 ¢н₂ соон	снз с=о снз			

Figure 4

Figure 5

Figure 6

Figure 7

2-Oxoglutarate	Pyruvate 9	Oxaloacetate P	α-Ketolsovalerate
0 5 4 3 7 1 0			
N-Oxalyigiycine	Lactate	Malate	α-Ketoisocaproate
ماسا			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Dimethyloxalylglycine	Alanine	Keto-malonate	α- Keto-β-methylvalerate
in the			
Succinate	Oxalate	Acetoacetate	o-Ketobutyrate
The	T,	<u>ļ</u> ,	
Ascorbate	Pyruvaldehyde	3-Hydroxybutyrate	α-Ketoadipate
		بُلْ	off

Figure 8

B. Digitonin permeabilized cells

Figure 9

Figure 10

Figure 11

Figure 12

A.	2-OG (μM) 0 0.2 1 5 25 125	D. control Pyr OAA
В.	Fe ²⁺ (μM)	HPH-1
_	1.2 3.6 11 33 100 300	HPH-2
U.	Asc (μM) 0 0.2 2 20 200 2000	HPH-3

Figure 13

Figure 14

HPH-1		+ 1 n			1 ml	I OAA		+1 mM PYR				
Ascorbate 4	, Tex	20	100	500	4	20	100	500	4	20	100	500
НРН-2					+ 1 mM OAA			+1 mM, PYR				
Ascorbate	4	20	100	500	4	20	100	500	4	20	100	500
нрн-з	•				+ 1 mM OAA		+ 1 mM PYR					
Ascorbate	8	40	200	1000	8	40	200	1000	8	40	200	1000

Figure 15

Figure 16

Figure 17

Figure 18

D. RT-PCR (Hep3B)

B. HIF-1 Gelshift (U87)

E. HRE-GFP Expression

C. RT-PCR (U87)

F. HRE-Luciferase expression

Figure 19

Ascorbate inhibits HIF-1 mediated gene expression induced by Pyruvate and Oxaloacetate

Figure 20

Figure 21

