Министерство образования и науки Российской Федерации

Калужский филиал

федерального государственного бюджетного образовательного учреждения высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (КФ МГТУ им. Н.Э. Баумана)

Ю.С. Белов, С.С. Гришунов

OCHOBЫ HADOOP. УСТАНОВКА HADOOP. ОСНОВНЫЕ КОМАНДЫ ФАЙЛОВОЙ СИСТЕМЫ HDFS

Методические указания по выполнению лабораторной работы по курсу «Технологии обработки больших данных»

УДК 004.62 ББК 32.972.5 Б435

Методические указания составлены в соответствии с учебным планом КФ МГТУ им. Н.Э. Баумана по направлению подготовки 09.03.04 «Программная инженерия» кафедры «Программного обеспечения ЭВМ, информационных технологий и прикладной математики».

Методические указания рассмотрены и одобрены:

тогода точкого указании рассмотрены и одоорены.	
- Кафедрой «Программного обеспечения ЭВМ, информац математики» (ФН1-КФ) протокол №_6_ от «_12 » января	ционных технологий и прикладной и2018 г.
Зав. кафедрой ФН1-КФ	_д.фм.н., профессор Б.М. Логинов
- Методической комиссией факультета ФНК протокол № $\underline{{}^{\prime\prime}}$	_ от « 30 » 2018 г.
Председатель методической комиссии факультета ФНК ———————————————————————————————————	к.х.н., доцент К.Л. Анфилов
- Методической комиссией КФ МГТУ им.Н.Э. Баумана протокол № $\underline{/}$ от « $\underline{/}$ »	<u>02</u> 2018 r.
Председатель методической комиссии КФ МГТУ им.Н.Э. Баумана	д.э.н., профессор О.Л. Перерва
Рецензент: к.т.н., зав. кафедрой ЭИУ2-КФ	И.В. Чухраев
Авторы	(

Аннотация

Ю.С. Белов

С.С. Гришунов

Методические указания по выполнению лабораторной работы по курсу «Технологии обработки больших данных» содержат краткое описание Hadoop Distributed File System, порядок установки и конфигурирования платформы Hadoop, а также примеры команд для работы с файловой системой HDFS.

Предназначены для студентов 4-го курса бакалавриата КФ МГТУ им. Н.Э. Баумана, обучающихся по направлению подготовки 09.03.04 «Программная инженерия».

- © Калужский филиал МГТУ им. Н.Э. Баумана, 2018 г.
- © Ю.С. Белов, С.С. Гришунов, 2018 г.

к.ф.-м.н., доцент кафедры ФН1-КФ

ассистент кафедры ФН1-КФ

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ	4
ЦЕЛЬ И ЗАДАЧИ РАБОТЫ, ТРЕБОВАНИЯ К РЕЗУЛЬТАТА ВЫПОЛНЕНИЯ	M EE
КРАТКАЯ ХАРАКТЕРИСТИКА ОБЪЕКТА ИЗУЧЕНИЯ, ИССЛЕДОВАНИЯ	6
УСТАНОВКА НАDOOP	10
PAБOTA C HDFS	17
ЗАДАНИЕ НА ЛАБОРАТОРНУЮ РАБОТУ	19
ТРЕБОВАНИЯ К РЕАЛИЗАЦИИ	19
ВАРИАНТЫ ЗАДАНИЙ	19
КОНТРОЛЬНЫЕ ВОПРОСЫ И ЗАДАНИЯ	21
ФОРМА ОТЧЕТА ПО ЛАБОРАТОРНОЙ РАБОТЕ	21
ОСНОВНАЯ ЛИТЕРАТУРА	22
ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА	22
r 1	

ВВЕДЕНИЕ

Настоящие методические указания составлены в соответствии с программой проведения лабораторных работ по курсу «Технологии обработки больших данных» на кафедре «Программное обеспечение ЭВМ, информационные технологии и прикладная математика» факультета фундаментальных наук Калужского филиала МГТУ им. Н.Э. Баумана.

Методические указания, ориентированные на студентов 4-го курса направления подготовки 09.03.04 «Программная инженерия», содержат краткое описание Hadoop Distributed File System, порядок установки и конфигурирования платформы Hadoop, а также примеры команд для работы с файловой системой HDFS и задание на выполнение лабораторной работы.

Методические указания составлены для ознакомления студентов с платформой hadoop и овладения навыками работы с файловой системой HDFS. Для выполнения лабораторной работы студенту необходимы минимальные знания по программированию на высокоуровневом языке программирования (Java, Python или др.).

ЦЕЛЬ И ЗАДАЧИ РАБОТЫ, ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ЕЕ ВЫПОЛНЕНИЯ

Целью выполнения лабораторной работы является формирование практических навыков по установке и настройке кластера Hadoop и работе с файловой системой HDFS.

Основными задачами выполнения лабораторной работы являются:

- 1. Изучить основы Hadoop.
- 2. Научиться устанавливать и конфигурировать Наdoop
- 3. Изучить основные команды для работы с файловой системой HDFS.
- 4. Получить навыки написания программ для работы с HDFS

Результатами работы являются:

- Настроенный Наdоор-кластер
- Программа, использующая HDFS API, для решения задачи согласно варианту задания
- Подготовленный отчет

КРАТКАЯ ХАРАКТЕРИСТИКА ОБЪЕКТА ИЗУЧЕНИЯ, ИССЛЕДОВАНИЯ

Большие данные (big data) — серия подходов, инструментов и методов обработки структурированных и неструктурированных данных огромных объёмов и значительного многообразия для получения воспринимаемых человеком результатов, эффективных в условиях непрерывного прироста, распределения по многочисленным узлам вычислительной сети.

Одной из основных технологий распределенной обработки больших данных является Hadoop. Hadoop разработан на Java в рамках вычислительной парадигмы MapReduce, согласно которой приложение разделяется на большое количество одинаковых элементарных заданий, выполнимых на узлах кластера и естественным образом сводимых в конечный результат.

<u>Настроить работу Наdoop</u> можно как в режиме моносервера (подходит только для обучения, т.к. такой режим не позволяет ускорить обработку данных, распределяя задачи между серверами и по сути не отличается от работы обычного сервера), так и в режиме кластера, объединяющего группу серверов, что позволяет использовать множество узлов как единое хранилище данных, создавать реплики данных на случай отказа и распределять задачи по обработке данных между серверами.

Hadoop состоит из 4 основных модулей:

- 1. **Hadoop Common** связующее программное обеспечение, набор инфраструктурных программных библиотек и утилит, используемых для других модулей и родственных проектов.
- 2. **Hadoop Distributed File System** (<u>HDFS</u>) распределённая файловая система, позволяющая хранить информацию практически неограниченного объёма.
- 3. **Hadoop YARN** фреймворк для управления ресурсами кластера и менеджмента задач.
- 4. **Hadoop MapReduce** платформа программирования и выполнения распределённых MapReduce-вычислений.

Также существует большое количество проектов, непосредственно связанных с Hadoop, но не входящих в Hadoop core, например:

- 1. **Hive** инструмент для SQL-like запросов над большими данными (превращает SQL-запросы в серию MapReduce–задач);
- 2. **Pig** язык программирования для анализа данных на высоком уровне. Одна строчка кода на этом языке может превратиться в последовательность MapReduce-задач;
- 3. **Hbase** колоночная база данных, реализующая парадигму BigTable;
- 4. **Cassandra** высокопроизводительная распределенная key-value база данных;
- 5. **ZooKeeper** сервис для распределённого хранения конфигурации и синхронизации изменений этой конфигурации;
- 6. **Mahout** библиотека и движок машинного обучения на больших данных.

Hadoop Distributed File System

HDFS — распределенная файловая система, используемая в проекте Hadoop. HDFS-кластер в первую очередь состоит из NameNode-сервера и DataNode-серверов, которые хранят непосредственно данные. NameNode-сервер управляет пространством имен файловой системы и доступом клиентов к данным. Чтобы разгрузить NameNode-сервер, передача данных осуществляется только между клиентом и DataNode-сервером.

Secondary NameNode

Основной NameNode-сервер фиксирует все транзакции, связанные с изменением метаданных файловой системы, в log-файле, называемом EditLog. При запуске основного NameNode-сервера, он считывает образ HDFS (расположенный в файле FsImage) и применяет к нему все изменения, накопленные в EditLog. Затем записывается новый образ уже с примененными изменениями, и система начинает работу уже с чистым log-файлом. Следует заметить, что данную работу NameNode-сервер выполняет единожды при его первом запуске. В последующем, подобные операции возлагаются вторичный на

NameNode-сервер. FsImage и EditLog в конечном итоге хранятся на основном сервере.

Механизм репликации

При обнаружении NameNode-сервером отказа одного из DataNode-серверов (отсутствие heartbeat-сообщений от оного), запускается механизм репликации данных:

- выбор новых DataNode-серверов для новых реплик
- балансировка размещения данных по DataNode-серверам

Аналогичные действия производятся в случае повреждении реплик или в случае увеличения количества реплик присущих каждому блоку.

Стратегия размещение реплик

Данные хранятся в виде последовательности блоков фиксированного размера. Копии блоков (реплики) хранятся на нескольких серверах, по умолчанию — трех. Их размещение происходит следующим образом:

- первая реплика размещается на локальном узле
- вторая реплика на другом узле в этой же стойке
- третья реплика на произвольно узле другой стойки
- остальные реплики размещаются произвольным способом

При чтении данных клиент выбирает ближайшую к нему DataNode-сервер с репликой.

Целостность данных

Ослабленная модель целостности данных, реализованная в файловой системе, не гарантирует идентичность реплик. Поэтому HDFS перекладывает проверку целостности данных на клиентов. При создании файла клиент рассчитывает контрольные суммы каждые 512 байт, которые в последующем сохраняются на DataNode-сервере. При считывании файла, клиент обращается к данным и контрольным суммам. И, в случае их несоответствия происходит обращение к другой реплике.

Запись данных

При записи данных в <u>HDFS</u> используется подход, позволяющий достигнуть высокой пропускной способности. Приложение ведет запись в потоковом режиме, при этом HDFS-клиент кэширует записываемые данные во временном локальном файле. Когда в файле накапливаются данные на один HDFS-блок, клиент обращается к NameNode-серверу, который регистрирует новый файл, выделяет блок и возвращает клиенту список datanode-серверов для хранения реплик блока. Клиент начинает передачу данных блока из временного файла первому DataNode-серверу из списка. DataNode-сервер сохраняет данные на диске и пересылает следующему DataNode-серверу в списке. Таким образом, данные передаются в конвейерном режиме и реплицируются на требуемом количестве серверов. По окончании записи, клиент уведомляет NameNode-сервер, который фиксирует транзакцию создания файла, после чего он становится доступным в системе.

Удаление данных

В силу обеспечения сохранности данных (на случай отката операции), удаление в файловой системе происходит по определенной методике. Вначале файл перемещается в специально отведенную для этого /trash директорию, а уже после истечения определенного времени, происходит его физическое удаление:

- удаление файла из пространства имен HDFS
- освобождение связанных с данными блоков

УСТАНОВКА НАДООР

Необходимое ПО

Для установки Наdoop необходима операционная система Linux. Далее будет рассмотрена установка и настройка Hadoop для Ubuntu (возможно использование виртуальной машины).

Для работы Hadoop требуется следующее программное обеспечение: Java, ssh, rsync.

Сначала необходимо установить ssh и rsync, для этого нужно выполнить в терминале следующие команды:

sudo apt-get install ssh sudo apt-get install rsync

Для работы Hadoop можно использовать Java версии 6 и выше. Установить можно как версию от Oracle, так и OpenJDK, для этого нужно выполнить следующую команду

sudo apt-get install default-jdk

Создание учетной записи для Hadoop

Для запуска Hadoop будет использоваться отдельная учетная запись Linux. Этот шаг не является обязательным, но рекомендуется. Команды для создания группы hadoop и добавления в нее пользователя hduser, также предоставления новому пользователю права sudo:

sudo addgroup hadoop sudo adduser --ingroup hadoop hduser sudo usermod -aG sudo hduser

Предполагается, что все дальнейшие действия будут выполняться от созданного таким образом пользователя.

Настройка SSH

Hadoop требует доступ SSH для управления узлами. Необходимо настроить SSH доступ к каждому из узлов кластера для пользователя hduser, команды для генерации нового ssh ключа и добавления созданного ключа в список авторизованных:

```
ssh-keygen -t rsa -P ""
cat $HOME/.ssh/id_rsa.pub >> $HOME/.ssh/authorized_keys
```

Для проверки подключения к localhost нужно выполнить команду:

hduser@ubuntu:~\$ ssh localhost

The authenticity of host 'localhost (::1)' can't be established. RSA key fingerprint is d7:87:25:47:ae:02:00:eb:1d:75:4f:bb:44:f9:36:26. Are you sure you want to continue connecting (yes/no)? yes Warning: Permanently added 'localhost' (RSA) to the list of known hosts

Распаковка Hadoop

Скачать файлы Hadoop можно с сайта www.apache.org/dyn/closer.cgi/hadoop/common. также можно выполнить команду:

sudo wget http://apache-mirror.rbc.ru/pub/apache/hadoop/common/hadoop-2.8.1/hadoop-2.8.1.tar.gz

После скачивания архива, его необходимо распаковать и переместить фалы в каталог /usr/local/Hadoop, для этого нужно выполнить команды:

sudo mv hadoop-2.8.1.tar.gz /usr/local/cd /usr/local/sudo tar xzf hadoop-2.8.1.tar.gz sudo mv hadoop-2.8.1 hadoop

Также необходимо дать пользователю hduser права создателя на директорию:

chown -R hduser:hadoop Hadoop

Если узел будет являться DataNode или NameNode, то необходимо создать каталог, в котором будут храниться файлы HDFS, выполнив команды:

sudo mkdir -p var/app/hadoop/tmp sudo chown hduser:hadoop var/app/hadoop/tmp sudo chmod 750 /app/hadoop/tmp

Настройка переменных окружения

В файл \$HOME/.bashrc добавим следующие переменные окружения:

#Hadoop variables
export JAVA_HOME= /usr/lib/jvm/java-8-openjdk-amd64/jre/
export HADOOP_INSTALL=/usr/local/hadoop
export PATH=\$PATH:\$HADOOP_INSTALL/bin
export PATH=\$PATH:\$HADOOP_INSTALL/sbin
export HADOOP_MAPRED_HOME=\$HADOOP_INSTALL
export HADOOP_COMMON_HOME=\$HADOOP_INSTALL
export HADOOP_HDFS_HOME=\$HADOOP_INSTALL
export YARN_HOME=\$HADOOP_INSTALL

Настройка Hadoop

Финальным шагом является конфигурирования работы кластера, для этого необходимо задать в файлах конфигурации значения соответствующих параметров.

В файле \$HADOOP_INSTALL/etc/hadoop/hadoop-env.sh необходимо задать переменную JAVA_HOME:

export JAVA_HOME=/usr/lib/jvm/java-7-openjdk-amd64

Основные настройки Hadoop выполняются в файле \$HADOOP_INSTALL/etc/hadoop/cor-site.xml, в котором указывается имя файловой системы (в одном кластере может физически быть несколько файловых систем, однако настроить взаимодействие между ними стандартными средствами не представляется возможным), а также порт, по которому можно к ней обратиться:

Hастройки HDFS для каждого узла хранятся в файле \$HADOOP_INSTALL/etc/hadoop/hdfs-site.xml:

Параметр dfs.replication задает количество <u>реплик</u>, которые будут хранится на файловой системе. Также в этом файле прописываются все узлы файловый системы, присутствующие на данной машине (все <u>dataNode и nameNode</u>).

Настройки MapReduce прописываются в файле \$HADOOP_INSTALL/etc/hadoop/mapred-site.xml:

Настройка фреймворка управления ресурсами кластера YARN производится в файле \$HADOOP_INSTALL/etc/hadoop/yarn-site.xml:

```
<configuration>
     cproperty>
       <name>yarn.nodemanager.aux-services</name>
       <value>mapreduce shuffle</value>
     </property>
     cproperty>
<name>yarn.nodemanager.aux-services.mapreduce shuffle.class</name>
       <value>org.apache.hadoop.mapred.ShuffleHandler</value>
     </property>
     cproperty>
       <name>yarn.resourcemanager.resource-tracker.address</name>
       <value>localhost:8025</value>
     </property>
     cproperty>
       <name>yarn.resourcemanager.scheduler.address</name>
       <value>localhost:8030</value>
     </property>
```

Отключение IPv6

Для стабильной работы Hadoop, необходимо отключить IPv6 в файле \$HADOOP INSTALL/etc/hadoop/hadoop-env.sh:

export HADOOP_OPTS=-Djava.net.preferIPv4Stack=true

На каждом узле также хранится файл slaves, в котором перечислены все дочерние узлы данного master-узла. Т.е. для NameNode-узла необходимо перечислить в этом файле сетевые имена всех узлов кластера, а на остальных серверах этот файл должен оставаться пустым.

Форматирование HDFS

После завершения конфигурирования, необходимо отформатировать файловую систему HDFS. Для этого на NameNode необходимо выполнить команду:

\$HADOOP_INSTALL/bin/hadoop namenode -format

Для запуска Hadoop необходимо запустить следующие службы на master-узле (на всех дочерних узлах необходимые демоны запустятся автоматически, используя сконфигурированные подключения по ssh):

\$HADOOP_INSTALL/sbin/start-dfs.sh \$HADOOP_INSTALL/sbin/start-yarn.sh

Если Hadoop был запущен правильно будут запущены следующие java процессы:

\$HADOOP_INSTALL/jps

4868 SecondaryNameNode

5243 NodeManager

5035 ResourceManager

4409 NameNode

4622 DataNode

5517 Jps

Web-интерфейс

Hadoop также имеет несколько web-интерфейсов для получения информации о работе системы. По умолчанию:

- 1. http://localhost:50070/ NameNode
- 2. http://localhost:50030/ JobTracker
- $3. \quad http://localhost: 50060/-Task Tracker$

РАБОТА С HDFS

Для работы с hdfs в терминале существует набор команд, схожих с командами работы с файловой системой в unix-системах (просмотр файлов, создание, удаление, просмотр и т.д.), для их вызова необходимо указать исполняемый файл hadoop и в виде ключа передать команду, например, для создания каталога необходимо выполнить команду:

hadoop fs -mkdir /usr/hduser

Полный перечень доступных команд можно просмотреть в прилагаемой к дистрибутиву hadoop документации.

Следует выделить следующие команды, не имеющие аналогов среди стандартных команд работы с файловой системой:

-copyFromLocal <localsrc> ... <dst>] – позволяет скопировать файл из локальной файловой системы в hdfs

-copyToLocal [<src> ... <localdst>] – обратная команда, позволяющая скопировать файл из hdfs в локальную файловую систему.

Также, как упоминалось выше, возможно управление файлами через <u>web-интерфейс</u>.

HDFS API

Помимо управления файлами через консольный режим доступен Java hdfs api, содержащий набор функций для управления файлами в java программе. Все необходимые библиотеки входят в дитрибутив hadoop, но также могут быть скачены, используя сборщик проектов maven, путем указания следующих зависимостей в pom-файле:

После подключения всех необходимых библиотек необходимо сконфигурировать файловую систему:

```
Configuration conf = new Configuration(); conf.set("fs.default.name", hdfsPath);
```

После этого с hdfs можно работать как и с обычной файловой системой, например, для создания каталога необходимо использовать команду:

```
client.mkdir(name, conf);
```

Помимо java hdfs api, распространяемого вместе с дистрибутивом hadoop, существует множество библиотек для работы с hdfs, используя различные языки программирования, такие как python, scala и др.

ЗАДАНИЕ НА ЛАБОРАТОРНУЮ РАБОТУ

Для всех вариантов настроить кластер Hadoop, состоящий из двух серверов, изучить команды HDFS для работы с файлами и выполнить следующие задания:

- 1. Проверить существует ли директория /user/hduser в HDFS, если нет, то создать. Создать директорию /user/hduser/Hadoop
- 2. Создать файл в директории /user/hduser/hadoop, название файла ваше имя и группа. После создания файла, все, что вы вводите в консоль должно сохраниться в файле. Ввести несколько строк и сохранить.
 - 3. Убедиться в существовании файла через web-интерфейс.
 - 4. Перенести файл в локальную файловую систему.
- 5. Создать новый текстовый файл в локальной файловой системе. Перенести файл в HDFS. Убедиться в существовании файла через web-интерфейс.
- 6. Просмотреть права доступа на файл. Изменить права доступа к файлу, чтобы только владелец и члены группы имели полный контроль над файлом.
- 7. Написать программу на каком-либо языке высокого уровня для решения задачи, указанной в варианте.

ТРЕБОВАНИЯ К РЕАЛИЗАЦИИ

Программа может быть реализована на любом языке высокого уровня, для которого существует поддержка работы с HDFS (Java, Python, Scala или др.). Имена файлов должны передаваться приложению в качестве ключей при вызове в терминале.

ВАРИАНТЫ ЗАДАНИЙ

- 1. Напишите программу, которая будет выводить на экран список подкаталогов и файлов для заданного каталога в HDFS.
- 2. Напишите программу, которая будет выводить на экран содержимое файла в HDFS.

- 3. Напишите программу, которая будет копировать файл из локальной файловой системы в систему HDFS.
- 4. Напишите программу, которая будет рекурсивно выводить на экран список подкаталогов и файлов для заданного каталога в HDFS.
- 5. Напишите программу, которая будет выводить на экран список всех подкаталогов и файлов в заданной директории HDFS, которые были изменены в промежуток между start_ts и end_ts (передаются через параметры командной строки).
- 6. Напишите программу, которая будет копировать все содержимое каталога из файловой системы HDFS в локальную.
- 7. Напишите программу, которая будет принимать 2 входных аргумента путь в локальной файловой системе и путь в HDFS. Программа должна проверить существование файлов в обоих файловых системах. Если в одной из них файл не существует, то программа должна скопировать его из второй файловой системы. Если файлы существуют в обоих файловых системах, то сохранить в обоих системах только файл, который был изменен позже.
- 8. Напишите программу, которая будет для заданного каталога в HDFS добавлять в содержимое всех файлов из этого каталога текущую дату.
- 9. Напишите программу, которая будет сравнивать содержимое двух текстовых файлов в HDFS.
- 10. Напишите программу, которая рекурсивно удаляет все файлы из заданного каталога HDFS.

КОНТРОЛЬНЫЕ ВОПРОСЫ И ЗАДАНИЯ

- 1. Раскройте область применения платформы Hadoop.
- 2. Опишите назначение основных модулей Hadoop.
- 3. Опишите назначение механизма репликации.
- 4. Раскройте значение терминов NameNode и DataNode.
- 5. Изложите роль SecondaryNameNode.
- 6. Опишите процесс записи файла в HDFS.
- 7. Перечислите основные этапы установки Наdoop-кластера.
- 8. Перечислите ПО, необходимое для установки Наdoop.
- 9. Опишите назначение основных файлов конфигурации Hadoop.
- 10. Дайте определения master-узла и slave-узла.
- 11. Приведите команду для копирования файла из локальной файловой системы в HDFS.
- 12. Изложите основные методы управления файловой системой HDFS.

ФОРМА ОТЧЕТА ПО ЛАБОРАТОРНОЙ РАБОТЕ

На выполнение лабораторной работы отводится 3 занятия (6 академических часов: 5 часов на выполнение и сдачу лабораторной работы и 1 час на подготовку отчета).

Номер варианта студенту выдается преподавателем.

Отчет на защиту предоставляется в печатном виде.

Структура отчета (на отдельном листе(-ax)): титульный лист, формулировка задания (вариант), этапы выполнения работы (со скриншотами), результаты выполнения работы. выводы.

ОСНОВНАЯ ЛИТЕРАТУРА

- 1. Федин Ф.О. Анализ данных. Часть 1. Подготовка данных к анализу [Электронный ресурс]: учебное пособие / Ф.О. Федин, Ф.Ф. Федин. Электрон. текстовые данные. М.: Московский городской педагогический университет, 2012. 204 с. 2227-8397. Режим доступа: http://www.iprbookshop.ru/26444.html
- 2. Федин Ф.О. Анализ данных. Часть 2. Инструменты Data Mining [Электронный ресурс]: учебное пособие / Ф.О. Федин, Ф.Ф. Федин. Электрон. текстовые данные. М.: Московский городской педагогический университет, 2012. 308 с. 2227-8397. Режим доступа: http://www.iprbookshop.ru/26445.html
- 3. Чубукова, И.А. Data Mining [Электронный ресурс] : учеб. пособие Электрон. дан. Москва : , 2016. 470 с. Режим доступа: https://e.lanbook.com/book/100582. Загл. с экрана.
- 4. Воронова Л.И. Від Data. Методы и средства анализа [Электронный ресурс] : учебное пособие / Л.И. Воронова, В.И. Воронов. Электрон. текстовые данные. М. : Московский технический университет связи и информатики, 2016. 33 с. 2227-8397. Режим доступа: http://www.iprbookshop.ru/61463.html
- 5. Юре, Л. Анализ больших наборов данных [Электронный ресурс] / Л. Юре, Р. Ананд, Д.У. Джеффри. Электрон. дан. Москва : ДМК Пресс, 2016. 498 с. Режим доступа: https://e.lanbook.com/book/93571. Загл. с экрана.

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА

- 6. Волкова Т.В. Разработка систем распределенной обработки данных [Электронный ресурс] : учебно-методическое пособие / Т.В. Волкова, Л.Ф. Насейкина. Электрон. текстовые данные. Оренбург: Оренбургский государственный университет, ЭБС АСВ, 2012. 330 с. 2227-8397. Режим доступа: http://www.iprbookshop.ru/30127.html
- 7. Кухаренко Б.Г. Интеллектуальные системы и технологии [Электронный ресурс] : учебное пособие / Б.Г. Кухаренко. —

- Электрон. текстовые данные. М. : Московская государственная академия водного транспорта, 2015. 116 с. 2227-8397. Режим доступа: http://www.iprbookshop.ru/47933.html
- 8. Воронова Л.И. Интеллектуальные базы данных [Электронный ресурс]: учебное пособие / Л.И. Воронова. Электрон. текстовые данные. М.: Московский технический университет связи и информатики, 2013. 35 с. 2227-8397. Режим доступа: http://www.iprbookshop.ru/63324.html
- 9. Николаев Е.И. Базы данных в высокопроизводительных информационных системах [Электронный ресурс] : учебное пособие / Е.И. Николаев. Электрон. текстовые данные. Ставрополь: Северо-Кавказский федеральный университет, 2016. 163 с. 2227-8397. Режим доступа: http://www.iprbookshop.ru/69375.html

Электронные ресурсы:

10. http://hadoop.apache.org/ (англ.)