Краткий теоретический материал по математике

(11 & 12 класс)

М.В. Оборотов

ISBN УДК ББК

Рецензенты:

Аубакиров Тойбек Уатаевич — старший менеджер отдела предметов естественно-математического направления филиала АОО «Назарбаев Интеллектуальные школы» «Центр образовательных программ»;

Ахметов Баймурат Иманбаевич — старший менеджер отдела мониторинга и внешнего суммативного оценивания филиала АОО «Назарбаев Интеллектуальные школы» «Центр педагогических измерений»;

Сосин Виктор Николаевич — учитель математики, директор Назарбаев Интеллектуальной школы физико-математического направления г.Талдыкорган;

Полянских Сергей Сергеевич — учитель математики Назарбаев Интеллектуальной школы физико-математического направления г.Талдыкорган, учитель-мастер;

Шакен Марат Манатович — преподаватель образовательных программ по педагогической информатике Жетысуского университета им. И. Жансугурова, учитель математики Назарбаев Интеллектуальной школы физико-математического направления г.Талдыкорган;

Руководитель:

Ли Анжелла Вячеславовна — учитель математики Назарбаев Интеллектуальной школы физико-математического направления г.Талдыкорган, учитель-эксперт.

Автор-составитель:

Оборотов Матвей, ученик 12 класса НИШ ФМН г. Талдыкорган

Краткий теоретический материал по математике для учащихся 11-12 классов / Оборотов Матвей – Талдыкорган, 2022 г. – 81 стр.

Краткий теоретический материал по математике составлен на основе Учебного плана по предмету «Математика» для 11-12 классов (стандартный уровень обучения) в соответствии с требованиями NIS—programme. Каждый раздел учебно-методического пособия содержит краткую справочную информацию, по некоторым темам представлены примеры с решениями.

Учебно-методическое пособие предназначено для учащихся старших классов и полезно при подготовке к ВСО.

Содержание

Цели обучения	4
11 класс	6
11.1A Корень n-ой степени	6
11.1В Алгебраические выражения	8
11.2А Многогранники и тела вращения	12
11.2В Исчисление II	14
11.3А Показательные и логарифмические функции	17
11.3В Векторы и координаты	22
11.3С Элементы статистики	28
11.4А Исчисление III	31
11.4В Уравнения и неравенства	34
12 класс	46
12.1А Вероятностные модели	46
12.1В Комплексные числа I	51
12.2А Объемы геометрических фигур	53
12.2В Дифференциальные уравнения	56
12.3A Комплексные числа II	59
12.3В Численные методы	61
12.3С Основные задачи математической статистики	64
12.3D Решение прикладных задач с помощью интегрирования и дифференцирования	70
Дополнительные темы для подготовки к ВСО	78
Алгебра	78
Исследование функций	78
Интегрирование и дифференцирование	81
Вектор. Скалярное произведение	81
Бином Ньютона. Формулы разложения	82
Геометрия	83
Планиметрия	83
Литература	85

Цели обучения

11 класс: (2020-2021 учебный год)

12 класс: (2021-2022 учебный год)

От автора

Данное учебно-методическое пособие состоит из краткого теоретического материала и примеров решения задач в соответствии с Образовательной программой АОО «Назарбаев Интеллектуальные школы» NIS-Programme по предмету «Математика» для 11-12 классов (стандартный уровень). Книга создана с целью помочь учащимся повторить ранее изученный материал и подготовиться к классной работе, внутреннему и внешнему суммативному оцениванию. Помимо этого, она может быть использована учителями во время уроков в качестве справочника.

Обо всех ошибках, неточностях, замечаниях и предложениях прошу вас обращаться на почтовый адрес oborotovmatvey@gmail.com.

11 класс

11.1А Корень n-ой степени

1 Степенная ф	ункция с целым показателем	
	•	$x(x)=x^n$, где n – любое действительное
число, отличн	ое от нуля.	
Свойства ств	епенной функции	
Свойства стег	енной функции зависят от знака и че	тности/нечетности показателя. Свойства
всех комбина	ций представлены в таблице:	
Показатель	Положительный	Отрицательный
функции		
Четный	Область определения: $D(f(x)) = (-\infty; +\infty)$	Область определения: $D(f(x)) = (-\infty; 0) \cup (0; +\infty)$
	Область значений: $E(f(x)) = [0; +\infty)$ Функция четная $(f(-x) = f(x))$ Функция возрастает при $x \in [0; +\infty)$, убывает при $x \in (-\infty; 0]$ Асимптот нет	Область значений: $E(f(x)) = (0; +\infty)$ Функция четная $(f(-x) = f(x))$ Функция возрастает при $x \in (-\infty; 0)$,
		Горизонтальной асимптотой является прямая $y=0$
Нечетный Графики	$(-\infty; +\infty)$ Область значений: $E(f(x)) = (-\infty; +\infty)$	Область определения: $D\big(f(x)\big)=$ $(-\infty;0)\cup(0;+\infty)$ Область значений: $E\big(f(x)\big)=$ $(-\infty;0)\cup(0;+\infty)$ Функция нечетная $(f(-x)=-f(x))$
Показатель	Положительный	Отрицательный
функции		
Четный	7. y 6. 5. 4. 3. 2. 1. 2. 3. X	3 -2 -1 0 1 2 3 x

Корень n-ой степени и его свойства

Корнем n-ой степени из числа a является такое число b, для которого $b^n=a$, то есть:

$$\sqrt[n]{a}=b$$
, где $b^n=a$ (где a и b – действительные числа)

При n – четном: $a \ge 0$

Пример:

$$\sqrt[4]{192} = \sqrt[4]{2^6 \cdot 3} = \sqrt[4]{2^4 \cdot 2^2 \cdot 3} = \pm 2\sqrt[4]{12};$$
 $\sqrt[4]{192} = \pm 2\sqrt[4]{12}$

Свойства (арифметического) корня n-ой степени

Арифметический корень n-ой степени отличается от корня n-ой степени тем, что арифметический корень из неотрицательного числа – есть неотрицательное число.

1)
$$\sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{b}$$
, при $a \ge 0$ и $b \ge 0$

2)
$$\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$$
, при $a \geq 0$ и $b > 0$

3)
$$\sqrt[k]{\sqrt[n]{a}} = \sqrt[nk]{a}$$
, при $a \ge 0$

4)
$$\sqrt[nk]{a^{mk}} = \sqrt[n]{a^m}$$
, при $a \geq 0$

$$5)^{2n}\sqrt{a^{2n}} = |a|$$

Степень с рациональным показателем и ее свойства

Степенью числа a>0 с рациональным показателем $r=rac{m}{n}$, где m — целое число, а n натуральное (n > 1), называется число:

$$a^{\frac{k}{n}} = \sqrt[n]{a^k}$$

Свойства чисел с рациональным показателем

$$1) a^{\frac{k}{n}} = a^{\frac{kl}{nl}}$$

2)
$$a^{\frac{\kappa p}{p}} = a^k$$

2)
$$a^{\frac{kp}{p}} = a^k$$

3) $a^p \cdot a^q = a^{p+q}$

$$4) \frac{a^p}{a^q} = a^{p-q}$$

$$5) (a^p)^q = a^{pq}$$

Простейшие иррациональные уравнения вида $\sqrt[n]{f(x)} = c$

При решении иррационального уравнения важно учесть, что:

- 1) При четном значении n (n=2k), f(x) неотрицательное ($f(x)\geq 0$).
- 2) При нечетном значении n (n=2k+1), f(x) любое действительное число ($f(x) \in D$).
- 3) При возведении обоих частей уравнения в четную степень необходимо найти ОДЗ, либо провести проверку, т.к. могут возникать посторонние корни.

Алгоритм и Пример

$$\sqrt[6]{x^5} = 3$$

1) При n – четном (n=2k) определить область допустимых значений:

Так как n=6, ОДЗ: $x^5 \ge 0 \Leftrightarrow x \ge 0$

2) Возвести обе части уравнения в n-ю степень:

$$\left(\sqrt[6]{x^5}\right)^6 = 3^6$$

$$\sqrt[5]{x^5} = \sqrt[5]{3^6}$$

4) Отобрать корни, входящие в ОДЗ:

 $3\sqrt[5]{3} \ge 0$ — входит в область допустимых значаений

11.1В Алгебраические выражения

Канонический вид многочлена с одной переменной

Многочлен с одной переменной x – это выражение вида:

$$P(x) = a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_{n-1} x + a_n$$
, где

n – любое натуральное число,

А коэффициенты a_0 , a_1 , ..., a_n – произвольные действительные числа.

Основные понятия

Степень многочлена – это наибольший из показателей одночленов одного многочлена.

Старший член многочлена – это одночлен наивысшей степени.

Старший коэффициент многочлена – коэффициент при одночлене высшей степени.

Деление многочлена на многочлен "уголком"

Алгоритм и Пример $(10x^5 + 3x^4 - 12x^3 + 25x^2 - 2x + 6)/(5x^2 - x + 2)$

1) Делим первый член делимого на первый член делителя и получаем первый член частного:

$$\frac{10x^5}{5x^2} = 2x^3$$

2) Умножаем полученный член на делитель и почленно записываем под делимым:

$$2x^3 \cdot (5x^2 - x + 2) = 10x^5 - 2x^4 + 4x^3$$

3) Вычитаем его из делимого:

$$(10x^5 + 3x^4 - 12x^3 + 25x^2 - 2x + 6) - (10x^5 - 2x^4 + 4x^3) =$$

$$= 5x^4 - 16x^3 + 25x^2 - 2x + 6$$

4) Старший член полученного остатка делим на старший член делителя и получаем второй член частного:

$$\frac{5x^4}{5x^2} = x^2$$

5) Умножаем полученный член на делитель, почленно записываем под первым остатком и отнимаем его от первого остатка:

$$x^{2} \cdot (5x^{2} - x + 2) = 5x^{4} - x^{3} + 2x^{2}$$
$$(5x^{4} - 16x^{3} + 25x^{2} - 2x + 6) - (5x^{4} - x^{3} + 2x^{2}) = -15x^{3} + 23x^{2} - 2x + 6$$

6) Повторяем данные действия, пока степень остатка не станет меньше, чем степень делимого:

$$\begin{array}{r}
10x^5 + 3x^4 - 12x^3 + 25x^2 - 2x + 6 \\
10x^5 - 2x^4 + 4x^3 \\
\hline
5x^4 - 16x^3 + 25x^2 - 2x + 6 \\
\underline{5x^4 - x^3 + 2x^2} \\
-15x^3 + 23x^2 - 2x + 6 \\
\underline{-15x^3 + 3x^2 - 6x} \\
20x^2 + 4x + 6 \\
\underline{-20x^2 - 4x + 8} \\
8x - 2
\end{array}$$

7) Таким образом делимое = делитель · частное + остаток:

$$10x^5 + 3x^4 - 12x^3 + 25x^2 - 2x + 6 = (5x^2 - x + 2) \cdot (2x^3 + x^2 - 3x + 4) + (8x - 2)$$

3 Метод неопределенных коэффициентов для разложения многочлена на множители Алгоритм и Пример

Разложить на множители $2x^4 - 11x^2 - 2x + 1$

1) Предположение (вид сомножителей, на которые раскладывается многочлен определяется аналитически(угадывается)):

Так как дан многочлен 4 степени, он может быть разложен на 2 многочлена 2 степени:

$$2x^4 - 11x^2 - 2x + 1 = (ax^2 + bx + c)(kx^2 + lx + n)$$
, где a, b, c, k, l, n – целые числа

2) Перемножим полученные множители и приведем подобные члены:

$$2x^4 - 11x^2 - 2x + 1 = akx^4 + (al + bk)x^3 + (an + ck + bl)x^2 + (bn + lc)x + nc$$

3) Приравниваем полученные коэффициенты и составляем систему уравнений:

$$\begin{cases} ak = 2, \\ al + bk = 0, \\ an + ck + bl = -11, \\ bn + lc = -2, \\ nc = 1. \end{cases}$$

4) Перебираем возможные значения переменных:

Без ограничения общности пусть a>0, k>0. Так как ak=2, пусть a=1, k=2. nc=1, следовательно либо n=1, c=1, либо n=-1, c=-1.

Первый случай

$$a = 1, k = 2, n = 1, c = 1$$
. Тогда:

$$\begin{cases} l + 2b = 0, \\ 1 + 2 + bl = -11, \\ b + l = -2 \end{cases}$$

Из первого и третьего уравнения получаем l=-4 и b=2, что не удовлетворяет 2 уравнению $(-5\neq -11)$

Второй случай

$$a = 1, k = 2, n = -1, c = -1$$
. Тогда:

$$\begin{cases} l+2b=0, \\ -1-2+bl=-11, \\ -b-l=-2. \end{cases}$$

Из первого и третьего уравнения b=-2, l=4, что удовлетворяет третьему уравнению Значит $2x^4-11x^2-2x+1=(x^2-2x-1)(2x^2+4x-1)$

4 Теорема Безу

Формулировка:

Остаток от деления многочлена P(x) на двучлен (x - a) равен P(a).

Пример

При каком значении a многочлен $P(x) = x^{1000} + ax^2 + 11$ делится на двучлен (x+1)?

Решение

По теореме Безу остаток от деления $x^{1000} + ax^2 + 11$ на x+1 равен значению P(-1), так как x+1=x-(-1). Таким образом:

$$P(-1) = (-1)^{1000} + a \cdot (-1)^2 + 11 = 12 + a$$

Чтобы многочлен делился без остатка, значение остатка должно равняться нулю, значит:

$$12 + a = 0$$
$$a = -12$$

5 | Схема Горнера (деление многочлена на бином х – а)

Алгоритм и Пример

Разделить $5x^4 + 5x^3 + x^2 - 13$ на x - 1 используя схему Горнера

1) Составим таблицу из двух строк и n+2 столбцов, где n-1 степень делимого многочлена. В первую строку запишем коэффициенты многочлена (пропустив первую ячейку), а в первый столбец второй строки — свободный член бинома.

2) Заполним пустые ячейки во второй строке. Во вторую ячейку запишем первый коэффициент:

3) Значение в следующей ячейке определяется по принципу 1*5+5=10:

4) Подобным образом заполняем следующую ячейку 1*10+1=11:

5) Аналогично заполняем следующие ячейки (1 * 11 + 0 = 11 и 1 * 11 + (-13) = -2)

6) Записываем ответ используя схему Горнера:

6 Разложение на множители с помощью формул $x^n - a^n$, $x^{2n+1} + a^{2n+1}$

$$x^{n} - a^{n} = (x - a)(x^{n-1} + x^{n-2}a + x^{n-3}a^{2} + \dots + xa^{n-2} + a^{n-1})$$

 $x^{2n+1}+a^{2n+1}=(x+a)(x^{2n}-x^{2n-1}a+x^{2n-2}a^2-x^{2n-3}a^3+\cdots+x^2a^{2n-2}-xa^{2n-1}+a^{2n})$ Где n – положительное целое число, $a\in R$

7 Теорема о рациональном корне многочлена с целыми коэффициентами

Если многочлен с целыми коэффициентами имеет рациональный корень $r=\frac{m}{n}$, где $\frac{m}{n}$ — несократимая дробь, то числитель дроби (m) является делителем свободного члена, а знаменатель — делителем старшего коэффициента этого многочлена.

Пример использования теоремы:

Дан многочлен $F(x) = x^3 + 3x^2 + 4x + 2$. Найти целые корни.

Решение

У свободного члена есть 4 целых делителя 1, 2, -1, -2. Старший коэффициент многочлена равен 1. Соответственно корень многочлена — один из делителей свободного члена (так как $\frac{m}{1}=m$). Положительные корни проверять нет смысла, так как все коэффициенты многочлена положительны.

Таким образом:

$$F(-1) = -1 + 3 - 4 + 2 = 0$$

 $F(-2) = -8 + 12 - 8 + 2 = -2$

Ответ: -1;

Данные действия проводятся устно и позволяют быстрее найти корни многочлена. Помимо этого, с помощью этой теоремы можно быстро найти делитель многочлена (в нашем случае по теореме Безу это x+1) и разбить многочлен на множители поделив его на найденный двучлен.

11.2А Многогранники и тела вращения

Элементы призмы

ABCDE — нижнее основание KLMNP — верхнее основание KA, LB, MC, ND, PE — боковые ребра AE, ED, DC, BC, AB, KP, PN, MN, ML, KL — ребра основания KLBA, LMCB, MNDC, PNDE, KPEA — боковые грани

PB — диагональ KH — высота

Элементы пирамиды

 $AG \perp EC$, $AF \perp BC$ A — вершина пирамиды AB, AC AD, AE — ребра пирамиды ADE, ACD, ABE, ABC — боковые грани BCDE — основание пирамиды AG — высота

AF — апофема

Элементы цилиндра

 A_2A_3 — образующая O_1O_2 — ось цилиндра O_2A_2 — радиус основания

Элементы конуса

OP – ось конуса (и высота) *PD*, *PC* – образующие *OC* – радиус основания

2

Площадь поверхности тел вращения

Цилиндр

 $S=\pi r^2\cdot 2+h\cdot 2\pi r$, где $\pi r^2\cdot 2$ – площадь оснований, $h\cdot 2\pi r$ – площадь боковой поверхности

Конус

 $S=\pi Rl+\pi R^2$, где πRl — площадь боковой поверхности, πR^2 — площадь основания

Усеченный конус

 $S = \pi l(r + R) + \pi (r^2 + R^2)$, где

 $\pi l(r+R)$ – площадь боковой поверхности,

 $\pi(r^2+R^2)$ – площади оснований

11.2В Исчисление II

Основные формулы для нахождения производных 1

$$1.\ c'=0, c=const$$

2.
$$(x^n)' = nx^{n-1}$$

$$3. \left(\sqrt{x}\right)' = \frac{1}{2\sqrt{x}}$$

$$4. (\sin x)' = \cos x$$

$$5. (\cos x)' = -\sin x$$

$$6. (tg x)' = \frac{1}{\cos^2 x}$$

7.
$$(ctg \ x)' = -\frac{1}{sin^2 x}$$

8. $(arcsin \ x)' = \frac{1}{\sqrt{1-x^2}}$

8.
$$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$$

9.
$$(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}$$

10. $(\arctan x)' = \frac{1}{1+x^2}$

10.
$$(arctg \ x)' = \frac{1}{1+x^2}$$

11.
$$(arcctg \ x)' = -\frac{1}{1+x^2}$$

Производная произведения, частного, композиции функций 2

Производная произведения

$$(uv)' = u'v + uv'$$

Производная частного

$$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$$

Правило дифференцирования сложной функции:

Если функция u имеет производную в точке x_0 , а функция f(x) имеет производную в точке $u(x_0)$, то сложная функция y=fig(u(x)ig) также имеет производную в точке x_0 , причем $y'(x) = [f(u(x))]' = f'(u(x)) \cdot u'(x)$.

Таблица производных некоторых сложных функций

Элементарные функции	Сложные функции
$(x^r)' = r \cdot x^{r-1} (r \in R)$	$(u^r)' = r \cdot u^{r-1} \cdot u' \qquad (r \in R)$
$\left(\sqrt{x}\right)' = \frac{1}{2\sqrt{x}}$	$\left(\sqrt{u}\right)' = \frac{1}{2\sqrt{u}} \cdot u'$
$(\sin x)' = \cos x$	$(\sin u)' = \cos u \cdot u'$
$(\cos x)' = -\sin x$	$(\cos u)' = -\sin u \cdot u'$
$(\operatorname{tg} x)' = \frac{1}{\cos^2 x}$	$(\operatorname{tg} u)' = \frac{1}{\cos^2 u} \cdot u'$
$(\operatorname{ctg} x)' = -\frac{1}{\sin^2 x}$	$(\operatorname{ctg} u)' = -\frac{1}{\sin^2 u} \cdot u'$

3 Критические точки функции

Критические точки – точки (области определения функции), в которых производная функции равна нулю или не существует.

Алгоритм и Примеры нахождения критических точек

$$1) f(x) = \frac{1}{x}$$

1) Находим область определения функции:

$$D(f) = (-\infty; 0) U(0; +\infty)$$

2) Находим производную функции:

$$f'(x) = -\frac{1}{x^2}$$

3) Находим значения x, при которых производная функции равна нулю или не существует (они и являются критическими точками):

$$при - \frac{1}{x^2} = 0, x \in \emptyset$$

Ответ: x = 0 – критическая точка.

2)
$$g(x) = x^3 - 27x$$

1) Находим область определения функции:

$$D(g) = (-\infty; +\infty)$$

2) Находим производную функции:

$$g'(x) = 3x^2 - 27$$

3) Находим значения x, при которых производная функции равна нулю или не существует:

при
$$3x^2 - 27 = 0$$
, $x_1 = -3$; $x_2 = 3$ – критические точки

4 Точки экстремума функции

Критическая точка является точкой экстремума функции если:

- 1) Функция непрерывна в критической точке;
- 2) Производная функции меняет знак в окрестности критической точки;

Или

- 1) Функция непрерывна в критической точке;
- 2) Вторая производная в критической точке не равна нулю;

Определение точек максимума и минимума с помощью второй производной

Если вторая производная от функции в критической точке принимает значение больше нуля, то данная критическая точка является точкой минимума; если меньше нуля, то максимума.

Пример

Дана функция $f(x) = 2x^3 - 3x^2 + 2$. Найти точки экстремума функции.

Решение

1. Определить критические точки функции. Для этого приравняем первую производную к нулю:

$$f'(x) = 6x^2 - 6x = 0$$

 $x = 0; 1.$

2. Функция определена на всей числовой прямой, следовательно, первое условие присутствия точки экстремума выполняется. Для того чтобы выполнялось второе условие присутствия точки экстремума найдем вторую производную функции:

$$f''(x) = 12x - 6$$

$$f''(1) = 12 \cdot 1 - 6 = 6$$

$$f''(0) = 12 \cdot 0 - 6 = -6$$

Так как вторая производная в критических точках не равна нулю, данные точки являются точками экстремума.

3. Определить точки максимума/минимума. Для этого воспользуемся знаком второй производной.

$$f''(1) = 6 > 0 \Rightarrow x = 1$$
 — точка минимума $f''(0) = -6 < 0 \Rightarrow x = 0$ — точка максимума

5 Промежутки возрастания и убывания функции

Алгоритм и Пример $f(x) = \frac{x^3+3}{x^2}$

1) Найти область определения функции:

T.K.
$$x^2 \neq 0$$
, $D(y): x \in (-\infty; 0) \cup (0; +\infty)$.

2) Найти производную функции:

$$f'(x) = \left(\frac{x^3 + 3}{x^2}\right)' = \frac{(x^3 + 3)' \cdot x^2 - (x^3 + 3) \cdot (x^2)'}{(x^2)^2} = \frac{3x^2 \cdot x^2 - (x^3 + 3) \cdot 2x}{x^4} = \frac{x^3 - 6}{x^3}$$

3) Решить неравенства f'(x)>0 и f'(x)<0 на области определения:

$$\frac{x^3 - 6}{x^3} > 0 \implies (x^3 - 6)x^3 > 0$$

 $x=\sqrt[3]{6}$ - единственный действительный корень, при

котором
$$\frac{x^3-6}{x^3}$$
 обращается в 0;

при x = 0 – производная неопределенна.

$$x=0$$
; $\sqrt[3]{6}$ — критические точки.

Отметим данные точки на числовой прямой и определим знак производной на каждом интервале:

4) К полученным промежуткам добавить граничные точки, в которых функция определена и непрерывна

В точке $x = \sqrt[3]{6}$ функция определена и непрерывна, поэтому она входит в промежутки возрастания и убывания. В точке x = 0, функция не определена, поэтому эта точка не входит в искомые интервалы.

Ответ: функция возрастает при $x \in (-\infty; 0)$; $[\sqrt[3]{6}; +\infty)$, убывает при $x \in (0; \sqrt[3]{6}]$

6 Наибольшее и наименьшее значения функции на заданном промежутке

Алгоритм и Пример

Найти наибольшее и наименьшее значения функции $f(x) = 2x^3 + 3x^2 - 36x + 30$ на отрезке [-2;5].

1. Найдем критические точки функции. Для этого найдем производную функции и значения x, при которых f'(x) = 0:

$$f'(x) = 6x^{2} + 6x - 36$$

$$6x^{2} + 6x - 36 = 0$$

$$x^{2} + x - 6 = 0$$

$$D = b^{2} - 4ac = 1 - 4 \cdot 1 \cdot (-6) = 25$$

$$x = \frac{-b \pm \sqrt{D}}{2a} = \frac{-1 \pm 5}{2}$$

$$x = \begin{bmatrix} 2 \\ -3 \end{bmatrix}$$

2. Отбросим критические точки, не принадлежащие заданному отрезку:

Заметим, что критическая точка x=2 принадлежит отрезку [-2;5]. Значит функция монотонна на отрезках [-2;2] и [2;5]

3. Вычислим значения функции в найденной критической точке, принадлежащей заданному отрезку, и на концах данного отрезка:

$$f(2) = 2 \cdot 2^{3} + 3 \cdot 2^{2} - 36 \cdot 2 + 30 = -14$$

$$f(-2) = 2 \cdot (-2)^{3} + 3 \cdot (-2)^{2} - 36 \cdot (-2) + 30 = 98$$

$$f(5) = 2 \cdot 5^{3} + 3 \cdot 5^{2} - 36 \cdot 5 + 30 = 175$$

4. Выбрать из полученных чисел наибольшее и наименьшее значение функции.

$$f_{min}(x) = f(2) = -14;$$
 $f_{max}(x) = f(5) = 175.$

Неопределенный интеграл

Таблица основных интегралов

$$1. \int 0 \cdot dx = C$$

$$2. \int dx = \int 1 \cdot dx = x + C$$

2.
$$\int dx = \int 1 \cdot dx = x + C$$

3. $\int x^n \cdot dx = \frac{x^{n+1}}{n+1} + C, n \neq -1, x > 0$

4.
$$\int \sin x \, dx = -\cos x + C$$

5.
$$\int \cos x \, dx = \sin x + C$$

$$5. \int \cos x \, dx = \sin x + C$$

6.
$$\int \frac{dx}{\sin^2 x} = -ctg \ x + C$$
7.
$$\int \frac{dx}{\cos^2 x} = tg \ x + C$$

$$7. \int \frac{dx}{\cos^2 x} = tg \ x + C$$

Основные правила интегрирования (x - переменная, f(x), g(x) - некоторые функции, <math>dx - nepemental f(x)дифференциал)

- 1) $\int kf(x) dx = k \int f(x) dx$, где k постоянная;
- 2) $\int [f(x) \pm g(x)] dx = \int f(x) dx \pm \int g(x) dx$
- 3) Если $\int f(x) dx = F(x) + C$, то $\int f(kx+b)dx = \frac{1}{k}F(kx+b) + C$, где k и b постоянные $(k \neq 0)$,

Важно!

 $\int f(x) \cdot g(x) dx \neq \int f(x) dx \cdot \int g(x) dx$

11.3А Показательные и логарифмические функции

Показательная функция и ее свойства

Показательная функция имеет вид $f(x) = a^x$, где a > 0, $a \ne 1$.

Свойства показательной функции:

- 1) Область определения множество всех действительных чисел: D(y) = R.
- 2) Область значений множество всех положительных чисел: $E(y) = (0; +\infty)$.
- 3) При a>1, функция возрастает на всей области определения; при 0< a<1 убывает.
- 4) $a^{x_1} < a^{x_2}$ при $x_1 < x_2$ и a > 1;
- $a^{x_1} > a^{x_2}$ при $x_1 < x_2$ и 0 < a < 1;

График показательной функции:

3 Показательные уравнения

Метод уравнивания показателей

Метод уравнивания показателей заключается в приведении показательного уравнения к виду:

$$a^{f(x)} = a^{g(x)}$$
, где

f(x) и g(x) – некоторые многочлены.

Если в уравнении такого вида a>0 и $a\neq 1$, то показательное уравнение равносильно уравнению:

$$f(x) = g(x)$$

Пример

$$0.25^{\left(-\frac{1}{4}\right)\cdot x-9} = \sqrt[4]{64}$$

Решение

Используя свойства степени с рациональным показателем преобразуем уравнение:

$$\left(\frac{1}{4}\right)^{-\left(\frac{1}{4}x+9\right)} = \left(4^3\right)^{\frac{1}{4}}$$
$$4^{\frac{1}{4}x+9} = 4^{\frac{3}{4}}$$

Так как 4 > 0 и $4 \neq 1$ полученное уравнение равносильно уравнению:

$$\frac{1}{4}x + 9 = \frac{3}{4}$$

$$4x = \frac{3}{4} - 9 = -\frac{33}{4}$$

$$x = -\frac{33}{16}$$

Метод введения новой переменной (метод подстановки)

Метод введения новой переменной может быть полезен для того чтобы преобразовать исходное уравнение в более простое, после решения которого подставляется введенное значение переменной и находится значение исходного уравнения.

Пример

$$16^x + 4^{x+1} - 5 = 0$$

Решение

Заметим, что:

$$16^{x} = (4^{2})^{x} = 4^{2x} = (4^{x})^{2}$$

$$u$$

$$4^{x+1} - 4 \cdot 4^{x}$$

Тогда, проведя замену $4^x = t$, получим квадратное уравнение:

$$t^{2} + 4t - 5 = 0$$

$$D = b^{2} - 4ac = 4^{2} - 4 \cdot 1 \cdot (-5) = 36$$

$$t = \frac{-b \pm \sqrt{D}}{2a} = \frac{-4 \pm \sqrt{36}}{2 \cdot 1} = \begin{bmatrix} 1 \\ -5 \end{bmatrix}$$

Проведем обратную замену:

$$4^x = \begin{bmatrix} 1 \\ -5 \end{bmatrix}$$

 $4^x > 0$, следовательно -5 – не входит в область допустимых значений

$$4^x = 1$$
$$4^x = 4^0$$

Так как 4 > 0 и $4 \ne 1$ полученное уравнение равносильно уравнению:

$$x = 0$$

4 Показательные неравенства

Показательные неравенства – это неравенства вида $a^{f(x)} > a^{g(x)}$, где a > 0 и $a \neq 1$. Для решения показательных неравенств используются свойства:

1. Если a > 1, то неравенства вида $a^{f(x)} > a^{g(x)}$ и f(x) > g(x) равносильны.

2. Если 0 < a < 1, то неравенства вида $a^{f(x)} > a^{g(x)}$ и f(x) < g(x) равносильны. Пример

$$\left(\frac{1}{3}\right)^{3x+1} < \sqrt{3}$$

Решение

Применим метод уравнивания показателей, используя свойства степени с рациональным показателем:

$$3^{-(3x+1)} < 3^{\frac{1}{2}}$$

Так как 3 > 1, данное неравенство равносильно неравенству:

$$\frac{1}{2} > -(3x+1)$$
$$3x > -1\frac{1}{2}$$
$$x > -\frac{1}{2}$$

Ombem: $x \in \left(-\frac{1}{2}; +\infty\right)$.

5 Логарифмическая функция и ее свойства

Логарифмическая функция имеет вид $f(x) = \log_a x$, где a > 0, $a \ne 0$.

Свойства логарифмической функции

- 1) Область определения множество всех положительных чисел. $D(y) = (0; +\infty)$.
- 2) Область значений множество всех действительных чисел: E(y) = R.
- 3) При a>1 функция возрастает; при 0< a<1 убывает.
- 4) Функция непрерывна на всей области определения.

6 График логарифмической функции

Логарифмическая функция имеет вид $f(x) = \log_a x$, где $a \neq 0$, a > 0.

Логарифмическая функция обратна показательной, следовательно, их графики симметричны относительно функции f(x) = x

7 Свойства логарифмов

$$\begin{aligned}
1. \log_{a} 1 &= 0 \\
2. \log_{a} a &= 1 \\
3. \log_{a} bc &= \log_{a} b + \log_{a} c \\
4. \log_{a} \frac{b}{c} &= \log_{a} b - \log_{a} c \\
5. \log_{a} b^{n} &= n \cdot \log_{a} b \\
6. \log_{a^{k}} b &= \frac{1}{k} \cdot \log_{a} b
\end{aligned}$$

$$\begin{aligned}
7. \log_{a^{k}} b^{n} &= \frac{n}{k} \cdot \log_{a} b \\
8. \log_{a^{n}} b^{n} &= \log_{a} b \\
9. \log_{a} b &= \frac{\log_{c} b}{\log_{c} a} &= \frac{1}{\log_{b} a} \\
10. \log_{a} b \cdot \log_{b} a &= 1 \\
11. b^{\log_{a} c} &= c^{\log_{a} b}
\end{aligned}$$

8 Логарифмические уравнения

При решении логарифмических уравнений важно учитывать область допустимых значений основания и аргумента логарифма. В простейшем логарифмическом уравнении вида:

$$\log_a x = b$$

Область допустимых значений:

$$a > 0,$$

 $a \neq 1,$
 $x > 0.$

Метод уравнивания оснований

Метод уравнивания показателей заключается в приведении логарифмического уравнения к виду:

$$\log_a f(x) = \log_a g(x)$$

После чего решается уравнение f(x) = g(x) равносильное данному.

Пример

$$2\log_2 3x - 3\log_8 x = \log_2 3$$

Решение

Преобразуем уравнение используя свойства логарифмов:

$$2\log_2 3x = \log_2(3x)^2 = \log_2 9x^2$$
 (свойство номер 5) $3\log_8 x = 3\log_{2^3} x = \frac{1}{3} \cdot 3\log_2 x = \log_2 x$ (свойство номер 6)

Тогда:

$$\log_2 9x^2 - \log_2 x = \log_2 3$$
 $\log_2 \frac{9x^2}{x} = \log_2 3$
 $\log_2 9x = \log_2 3$ (свойство номер 4)

Так как основания логарифмов совпадают, полученное уравнение равносильно уравнению:

$$9x = 3$$

Следовательно:

$$x = 3$$

Метод введения новой переменной

Если логарифмическое уравнение представлено в виде $f(\log_a x) = 0$, то его решение сводится к проведению замены $\log_a x = t$, и решению уравнения в виде f(t) = 0. Далее проводится обратная подстановка $t = \log_a x \Leftrightarrow x = a^t$.

Пример

$$\log_{3}^{2}(x+1) - 3 = \log_{3}(x^{2} + 2x + 1)$$

Преобразуем логарифм по правую сторону от знака равно:

$$\log_3(x^2 + 2x + 1) = \log_3(x + 1)^2 = 2\log_3(x + 1)$$

Тогда, проведя замену $\log_3(x+1) = t$ получим квадратное уравнение:

$$t^{2} - 3 = 2t$$

$$t^{2} - 2t - 3 = 0$$

$$D = b^{2} - 4ac = (-2)^{2} - 4 \cdot 1 \cdot (-3) = 16$$

$$t = \frac{-b \pm \sqrt{D}}{2a} = \frac{-(-2) \pm \sqrt{16}}{2 \cdot 1} = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$$

Проведя обратную замену получим:

$$\log_{3}(x+1) = \begin{bmatrix} 3 & 0 \text{Д3: } x+1 > 0 \Leftrightarrow x > -1 \\ x+1 = \begin{bmatrix} 3^{3} \\ 3^{-1} \end{bmatrix}$$
$$x = \begin{bmatrix} 27-1 \\ \frac{1}{3}-1 \end{bmatrix} = \begin{bmatrix} 26 \\ -\frac{2}{3} \end{bmatrix}$$

Оба значения входят в область допустимых значений.

Omsem:
$$x = \begin{bmatrix} 26 \\ -\frac{2}{3} \end{bmatrix}$$

9 Логарифмические неравенства

Логарифмические неравенства – это неравенства вида $\log_a f(x) > \log_a g(x)$, где a > 0, $a \ne 1$, f(x) > 0, g(x) > 0.

Для решения логарифмических неравенств используются свойства:

- 1. Если a>1, то неравенства вида $\log_a f(x)>\log_a g(x)$ и f(x)>g(x) равносильны.
- 2. Если 0 < a < 1, то неравенства $\log_a f(x) > \log_a g(x)$ и f(x) < g(x) равносильны.

Пример

$$\log_{\frac{1}{7}}(5 - 9x) \ge \log_{\frac{1}{7}}(25 - 10x)$$

Найдем ОДЗ логарифмического неравенства:

$$\begin{cases} 5 - 9x > 0, \\ 25 - 10x > 0; \\ x < \frac{5}{9}, \\ x < 2\frac{1}{2}. \\ x < \frac{5}{9} \end{cases}$$

Так как значение основания логарифма $0 < \alpha < 1$, то данное неравенство равносильно неравенству:

$$5 - 9x \le 25 - 10x$$
$$x \le 20$$

Учитывая область допустимых значений:

$$\begin{cases} x < \frac{5}{9}, \\ x \le 20. \end{cases}$$
$$x \in \left(-\infty; \frac{5}{9}\right)$$

Ombem: $x \in \left(-\infty; \frac{5}{9}\right)$.

11.3В Векторы и координаты

Определитель второго и третьего порядка

Для матрицы второго порядка $A = \begin{pmatrix} a_1 & a_2 \\ a_3 & a_4 \end{pmatrix}$ определителем второго порядка называется число:

$$\begin{vmatrix} a_1 & a_2 \\ a_3 & a_4 \end{vmatrix} = a_1 a_4 - a_2 a_3$$

Пример

$$\begin{vmatrix} -2 & 1 \\ 4 & 2 \end{vmatrix} = (-2) \cdot 2 - 1 \cdot 4 = -4 - 4 = -8$$

Для матрицы третьего порядка $B=\begin{pmatrix} b_1 & b_2 & b_3 \\ b_4 & b_5 & b_6 \\ b_7 & b_9 & b_9 \end{pmatrix}$ определителем третьего порядка называется

число:

$$\begin{vmatrix} b_1 & b_2 & b_3 \\ b_4 & b_5 & b_6 \\ b_7 & b_8 & b_9 \end{vmatrix} = b_1 b_5 b_9 + b_2 b_6 b_7 + b_3 b_4 b_8 - b_3 b_5 b_7 - b_2 b_4 b_9 - b_1 b_6 b_8$$

Пример

$$\begin{vmatrix} 4 & 1 & -5 \\ -1 & 3 & 7 \\ 2 & -2 & 3 \end{vmatrix} =$$

$$= 4 \cdot 3 \cdot 3 + 1 \cdot 7 \cdot 2 + (-5) \cdot (-1) \cdot (-2) - (-5) \cdot 3 \cdot 2 - 1 \cdot (-1) \cdot 3 - 4 \cdot 7 \cdot (-2) =$$

$$36 + 14 - 10 + 30 + 3 + 56 = 129$$

2 Длина вектора

Длина произвольного вектора $\bar{a}(x,y,z)$ вычисляется по формуле:

$$d = \sqrt{x^2 + y^2 + z^2}$$

$d=\sqrt{x^2+y^2+z^2}$ Векторное произведение векторов Определение 3

Векторным произведением вектора $ar{a}$ на вектор $ar{b}$ называется такой третий вектор $ar{c}$, который:

- 1) Имеет модуль, равный площади параллелограмма, построенного на векторах $ar{a}$ и b;
- 2) Перпендикулярен плоскости параллелограмма;
- 3) Направлен в такую сторону, с которой кратчайшее вращение от $ar{a}$ к $ar{b}$ рассматривается совершающимся против часовой стрелки. Такое расположение векторов $ar{a}$, $ar{b}$ и $ar{c}$ называется правой связкой или правилом правой руки.

Формулы

1) Модуль векторного произведения через модули векторов и синус угла между ними:

$$|\bar{a} \times \bar{b}| = |\bar{a}| \cdot |\bar{b}| \cdot \sin \angle (\bar{a}; \bar{b})$$

2) Векторное произведение через координаты:

$$\bar{a} \times \bar{b} = \begin{vmatrix} \bar{\iota} & \bar{J} & \bar{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} \bar{\iota} - \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} \bar{\jmath} + \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} \bar{k}$$

Пример 1

Найти синус угла между векторами $\bar{a}(3,-1,2)$ и $\bar{b}(-2,4,1)$

1) Вычислим векторное произведение векторов через координаты:

$$\bar{a} \times \bar{b} = \begin{vmatrix} \bar{\iota} & \bar{J} & \bar{k} \\ 3 & -1 & 2 \\ -2 & 4 & 1 \end{vmatrix} = \begin{vmatrix} -1 & 2 \\ 4 & 1 \end{vmatrix} \bar{\iota} - \begin{vmatrix} 3 & 2 \\ -2 & 1 \end{vmatrix} \bar{\jmath} + \begin{vmatrix} 3 & -1 \\ -2 & 4 \end{vmatrix} \bar{k} = -9\bar{\iota} - 7\bar{\jmath} + 10\bar{k}$$

2) Найдем длины векторов \bar{a} , \bar{b} и $\bar{a} \times \bar{b}$:

$$|\bar{a}| = \sqrt{3^2 + (-1)^2 + 2^2} = \sqrt{14}$$
$$|\bar{b}| = \sqrt{(-2)^2 + 4^2 + 1^2} = \sqrt{21}$$
$$|\bar{a} \times \bar{b}| = \sqrt{(-9)^2 + (-7)^2 + 10^2} = \sqrt{230}$$

3) Найдем синус угла между векторами используя формулу векторного произведения через модули векторов и синус угла между ними:

$$\begin{aligned} \left| \overline{a} \times \overline{b} \right| &= \left| \overline{a} \right| \cdot \left| \overline{b} \right| \cdot \sin \angle \left(\overline{a}; \ \overline{b} \right) \\ \sin \left(\overline{a}; \overline{b} \right) &= \frac{\left| \overline{a} \times \overline{b} \right|}{\left| \overline{a} \right| \cdot \left| \overline{b} \right|} = \frac{\sqrt{230}}{\sqrt{14} \cdot \sqrt{21}} = \sqrt{\frac{230}{294}} \approx 0.884 \end{aligned}$$

Пример 2

Найти площадь треугольника, построенного на векторах $\bar{a}(1,-3,2)$ и $\bar{b}(-4,0,1)$

По определению векторным произведением неколлинеарных векторов $\bar{a} \times \bar{b}$ называется вектор \bar{c} , длина которого равна площади параллелограмма, построенного на данных векторах.

Соответственно:

$$\left|\bar{a} \times \bar{b}\right| = S_1 + S_2$$

Так как площади треугольников равны:

$$S_1 = \frac{\left| \overline{a} \times \overline{b} \right|}{2}$$

1. Найдем векторное произведение векторов \bar{a} и \bar{b} используя формулу векторного произведения через координаты:

$$\bar{a} \times \bar{b} = \begin{vmatrix} \bar{\iota} & \bar{j} & \bar{k} \\ 1 & -3 & 2 \\ -4 & 0 & 1 \end{vmatrix} = \begin{vmatrix} -3 & 2 \\ 0 & 1 \end{vmatrix} \bar{\iota} - \begin{vmatrix} 1 & 2 \\ -4 & 1 \end{vmatrix} \bar{\jmath} + \begin{vmatrix} 1 & -3 \\ -4 & 0 \end{vmatrix} \bar{k} = -3\bar{\iota} - 9\bar{\jmath} - 12\bar{k}$$

2. Найдем площадь искомого треугольника используя формулу длины вектора:

$$S_1 = \frac{\left| \bar{a} \times \bar{b} \right|}{2} = \frac{\sqrt{(-3)^2 + (-9)^2 + (-12)^2}}{2} = \frac{\sqrt{234}}{2} \approx 7.65$$

- 4 Свойства векторного произведения векторов
 - 1) $\bar{a} \times \bar{b} = -(\bar{b} \times \bar{a})$
 - 2) $(\bar{a} + \bar{b}) \times \bar{c} = (\bar{a} \times \bar{c}) + (\bar{b} \times \bar{c})$
 - 3) $\lambda \bar{a} \times \bar{b} = \lambda (\bar{a} \times \bar{b})$ (где λ произвольное действительное число)
- 5 Уравнение плоскости

Если (x_0, y_0, z_0) — координаты точки, лежащей на плоскости и $\bar{b}(b_1, b_2, b_3)$ и $\bar{a}(a_1, a_2, a_3)$ — векторы, лежащие на плоскости, то:

1) Параметрические уравнения плоскости:

$$\begin{cases} x = x_0 + a_1 u + b_1 v, \\ y = y_0 + a_2 u + b_2 v, \\ z = z_0 + a_3 u + b_3 v. \end{cases}$$

2) Векторное уравнение плоскости:

$$\bar{r} = \bar{r_0} + u\bar{a} + v\bar{b}$$

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix} + u \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} + v \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

3) Каноническое уравнение плоскости

$$\begin{vmatrix} x - x_0 & y - y_0 & z - z_0 \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = 0$$

4) Общее уравнение плоскости: Ax + By + Cz + D = 0

Примечание: При этом вектор с координатами (A, B, C) является вектором нормали для этой плоскости.

6 Уравнение плоскости по точке и вектору нормали

Рассмотрим точку $A(x_0, y_0, z_0)$ и вектор нормали $\bar{n}(n_1, n_2, n_3)$. Тогда уравнение плоскости выражается формулой:

$$n_1 \cdot (x - x_0) + n_2 \cdot (y - y_0) + n_3 \cdot (z - z_0) = 0$$

7 Уравнение плоскости, проходящей через точку и два неколлинеарных вектора

Рассмотрим точку $A(a_1,a_2,a_3)$ и вектора $b(b_1,b_2,b_3)$ и $ar{c}(c_1,c_2,c_3)$. Тогда уравнение плоскости выражается формулой:

$$\begin{vmatrix} x - a_1 & y - a_2 & z - a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = 0$$

Пример

Составить уравнение плоскости по точке
$$A(-1; 2; -3)$$
 и векторам $\bar{b}(4,3,3)$ и $\bar{c}(-5,7,1)$:
$$\begin{vmatrix} x-(-1) & y-2 & z-(-3) \\ 4 & 3 & 3 \\ -5 & 7 & 1 \end{vmatrix} = 0$$

1)
$$\begin{vmatrix} 3 & 3 \\ 7 & 1 \end{vmatrix} (x+1) - \begin{vmatrix} 4 & 3 \\ -5 & 1 \end{vmatrix} (y-2) + \begin{vmatrix} 4 & 3 \\ -5 & 7 \end{vmatrix} (z+3) = 0$$

2)
$$(3-21)(x+1) - (4-(-15))(y-2) + (28-(-15))(z+3) = 0$$

3) $-18x - 19y + 43z + 149 = 0$

Уравнение плоскости, проходящей через три точки, не лежащие на одной прямой

Уравнение плоскости, проходящей через три различные точки $M_0(x_0; y_0; z_0), M_1(x_1; y_1; z_1),$ $M_2(x_2, y_2, z_2)$, не лежащие на одной прямой, можно составить по формуле:

$$\begin{vmatrix} x - x_0 & x_1 - x_0 & x_2 - x_0 \\ y - y_0 & y_1 - y_0 & y_2 - y_0 \\ z - z_0 & z_1 - z_0 & z_1 - z_0 \end{vmatrix} = 0$$

Уравнение прямой

Каноническое уравнение прямой

Если задана точка на прямой $M(x_0; y_0; z_0)$ и направляющий вектор $\bar{p}(p_1; p_2; p_3)$, то каноническое уравнение этой прямой имеет вид:

$$\frac{x - x_0}{p_1} = \frac{y - y_0}{p_2} = \frac{z - z_0}{p_3}$$

Параметрические уравнения прямой

Если задана точка на прямой $M(x_0; y_0; z_0)$ и направляющий вектор $\bar{p}(p_1; p_2; p_3)$, то параметрические уравнения этой прямой выражаются системой уравнений:

$$\begin{cases} x = p_1 t + x_0, \\ y = p_2 t + y_0, \\ z = p_3 t + z_0. \end{cases}$$

Пример

Найдите координаты точки пересечения прямой заданной параметрическими уравнениями:

$$\begin{cases} x = 2\lambda + 4, \\ y = -\lambda - 2, \\ z = 3\lambda + 2. \end{cases}$$

 $\begin{cases} x = 2\lambda + 4, \\ y = -\lambda - 2, \\ z = 3\lambda + 2. \end{cases}$ И плоскости заданной уравнением 2x + 3y - z = 4.

Точка пересечения прямой и плоскости должна подчиняться, как и параметрическим уравнениям прямой, так и общему уравнению плоскости. Для того чтобы найти эту точку подставим значения x, y и z из параметрических уравнений прямой в уравнение плоскости и найдем значение λ :

$$2x + 3y - z = 4$$

$$2(2\lambda + 4) + 3(-\lambda - 2) - (3\lambda + 2) = 4$$

$$-2\lambda = 4$$

$$\lambda = -2$$

Теперь поочередно найдем координаты точки пересечения подставив значение λ в параметрические уравнения прямой:

$$\begin{cases} x = 2 \cdot (-2) + 4, \\ y = -(-2) - 2, \\ z = 3 \cdot (-2) + 2. \\ \begin{cases} x = 0, \\ y = 0, \\ z = -4. \end{cases} \end{cases}$$

Ответ: (0,0,-4)

10 | Уравнение прямой проходящей через две точки

Если даны две точки в пространстве $M_1(x_1; y_1; z_1), M_2(x_2; y_2; z_2)$, то уравнение прямой, проходящей через данные точки имеет вид:

$$\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1} = \frac{z - z_1}{z_2 - z_1}$$

11 Прямая, заданная пересечением двух плоскостей

Если плоскости $A_1x + B_1y + C_1z + D_1 = 0$ и $A_2x + B_2y + C_2z + D_2 = 0$ пересекаются, то прямая их пересечения задается системой линейных уравнений:

$$\begin{cases} A_2x + B_2y + C_2z + D_2 = 0, \\ A_1x + B_1y + C_1z + D_1 = 0. \end{cases}$$

12 Уравнение сферы

Сфера радиуса R и координатами центра (a, b, c) задается формулой:

$$(x-a)^2 + (y-b)^2 + (z-c)^2 = R^2$$

Пример

Составить уравнение сферы с координатами центра (2, -1, 3) и радиусом 4.

Используя формулу сферы получим уравнение:

$$(x-2)^2 + (y-(-1))^2 + (z-3)^2 = 4^2$$

Тогда уравнение заданной сферы:

$$(x-2)^2 + (y+1)^2 + (z-3)^2 = 16$$

13 Угол между прямыми

Угол между двумя прямыми равен углу между направляющими векторами или векторами нормали этих прямых. Тогда исходя из формул скалярного произведения следует, что:

$$\bar{a} \cdot \bar{b} = |\bar{a}| \cdot |\bar{b}| \cdot \cos\left(\angle(\bar{a}; \bar{b})\right) = x_1 \cdot x_2 + y_1 \cdot y_2 + z_1 \cdot z_2$$

Значит,

$$\cos\left(\angle(\bar{a};\bar{b})\right) = \frac{x_1 \cdot x_2 + y_1 \cdot y_2 + z_1 \cdot z_2}{\sqrt{{x_1}^2 + {y_1}^2 + {z_1}^2} \cdot \sqrt{{x_2}^2 + {y_2}^2 + {z_2}^2}}$$

14 Угол между прямой и плоскостью

Угол между прямой и плоскостью — это угол между прямой и ее проекцией на данную плоскость.

Формула вычисления угла между прямой (направляющий вектор которой $\bar{a}(a_1,a_2,a_3)$) и плоскостью Ax + By + Cz + D = 0:

$$\sin\alpha = \frac{|Aa_1 + Ba_2 + Ca_3|}{\sqrt{A^2 + B^2 + C^2} \cdot \sqrt{a_1^2 + a_2^2 + a_3^2}}, \quad \alpha - \text{острый угол.}$$

15 Угол между плоскостями

Угол между плоскостями — это угол между перпендикулярами, проведенными в этих плоскостях, к прямой их пересечения.

Формула вычисления двугранного угла между двумя плоскостями $A_1x + B_1y + C_1z + D_1 = 0$ и $A_2x + B_2y + C_2z + D_2 = 0$:

$$\cos \varphi = \frac{|A_1 A_2 + B_1 B_2 + C_1 C_2|}{\sqrt{{A_1}^2 + {B_1}^2 + {C_1}^2} \sqrt{{A_2}^2 + {B_2}^2 + {C_2}^2}} , \qquad \varphi - \text{острый угол.}$$

16 Расстояние от точки до плоскости

Расстояние от точки до плоскости равно длине перпендикуляра, опущенного из точки на плоскость.

Расстояние от точки $A(a_1,a_2,a_3)$ до плоскости Ax + By + Cz + D = 0 вычисляется по формуле:

$$d = \frac{|Aa_1 + Ba_2 + Ca_3 + D|}{\sqrt{A^2 + B^2 + C^2}}$$

17 Деление отрезка в заданном отношении

1) На плоскости:

Если даны две точки $A(x_1,y_1)$ и $B(x_2,y_2)$, то координаты точки $M(m_1,m_2)$, которая делит отрезок AB в отношении $\lambda = \frac{AM}{MB}$ выражаются формулами:

$$m_1 = \frac{x_1 + \lambda \cdot x_2}{1 + \lambda}$$
$$m_2 = \frac{y_1 + \lambda \cdot y_2}{1 + \lambda}$$

2) В пространстве:

Если даны две точки $A(x_1,y_1,z_1)$ и $B(x_2,y_2,z_2)$, то координаты точки $M(m_1,m_2,m_3)$, которая делит отрезок AB в отношении $\lambda = \frac{AM}{MB}$ выражаются формулами:

$$m_1 = \frac{x_1 + \lambda \cdot x_2}{1 + \lambda}$$

$$m_2 = \frac{y_1 + \lambda \cdot y_2}{1 + \lambda}$$

$$m_3 = \frac{z_1 + \lambda \cdot z_2}{1 + \lambda}$$

Расстояние между двумя точками 18

Расстояние
$$d$$
 между двумя точками $A(x_1,y_1,z_1)$ и $B(x_2,y_2,z_2)$ равно:
$$d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2}$$

Автор: Матвей О.

11.3С Элементы статистики

1 | Генеральная совокупность

Генеральная совокупность – совокупность всех объектов относительно которых проводятся статистические исследования.

Выборка (из генеральной совокупности) – совокупность случайно отобранных объектов из генеральной совокупности.

2 Типы данных (случайных величин)

- 1) Количественные величины, выраженные числовым значением.
- 2) Качественные величины, которые не характеризуются числовым значением.
- 3) Дискретные случайные величины, изменяющиеся прерывно и принимающие, как правило целые значения (Например, количество детей у родителя).
- 4) Непрерывные случайные величины, которые могут принимать любые значения из некоторого числового интервала (Например рост человека).

3 Дискретные и интервальные вариационные ряды

Дискретный вариационный ряд — это ряд распределения, в котором данные меняются прерывно и принимают конечное множество значений.

Интервальный вариационный ряд — это упорядоченная последовательность, в которой данные представлены в виде интервалов.

4 Графики для изображения вариационных рядов

Диаграмма "стебель-листья"

Пример 1

Рассмотрим данные роста 30 учащихся в см:

151	183	185	174	177	163	169	156	178	190
160	172	176	173	184	154	192	168	195	173
175	178	183	181	180	157	164	168	186	172

Эти данные можно представить в виде диаграммы "стебель-листья", где стебли обозначают десятки сантиметров от 15 до 19:

15	11467	(5)
16	034889	(6)
17	11467 034889 223345788 0133456	(9)
18	0133456	(7)
19	025	(3)

В такой диаграмме запись 1712 означает 172 см.

Гистограмма

Гистограмма используется для интервальных вариационных рядов. На оси OY обозначается плотность частоты, а на оси OX – рассматриваемая характеристика выборки.

Пример 2

У 50 учащихся дорога от дома в школу занимает от 10 до 60 минут. Известно, что:

- 1. У 8 из них дорога занимает от 10 до 25 минут.
- 2. У 27 из них дорога занимает от 25 до 35 минут.
- 3. У 9 из них дорога занимает от 35 до 40 минут.
- 4. У 6 из них дорога занимает от 40 до 60 минут.

Основываясь на условиях задачи построить гистограмму.

Решение

Плотность частоты = частота / длина интервала. Для интервала от:

	10 до 25 минут	Плотность	8/(25-10)=0.53
Для интервала от:	25 до 35 минут		27/(35-25)=2.7
	35 до 40 минут	частоты	9/(40 - 35) = 1.8
	40 до 60 минут	равна	6/(60-40)=0.3

Гистограмма:

Кумулята

Кумулята служит для графического изображения кумулятивного(накопленного) вариационного ряда.

Из данных примера 1 составим таблицу накопленных частот:

	17	
Рост (см)	Частота	Накопленная частота
h < 150	0	0
150 ≤ h < 160	5	5
160 ≤ h < 170	6	11
170 ≤ h < 180	9	20
180 ≤ h < 190	7	27
190 ≤ h < 200	3	30

Из данных таблицы построим ломаную по верхним границам интервалов:

Полигон частот

Полигон частот чаще используется для дискретных вариационных рядов.

Пример

Результаты теста учащихся в 11 классе представлены в таблице:

Количество баллов	1	2	3	4	5	6	7	8	9	10
Число	1	1	2	2	5	7	10	4	2	1
учащихся										

Эти данные можно представить в виде полигона частот, где на оси OY — количество учащихся, а на оси OX — полученные ими баллы:

5 Показатели вариации

Размах — разность между максимальным и минимальным значениями результатов наблюдений.

Медиана делит ряд упорядоченных значений пополам с равным числом значений как выше, так и ниже ее.

Межквартильный размах — разница между первым и третьим квартилями, т.е. между 25-м и 75-м процентилями (В вариационном ряду, величина А, до которой расположен 1% наблюдений называется первым процентилем. Соответственно, величина до которой расположены 25% наблюдений называется 25-м процентилем, либо первым квартилем. Например, медиану вариационного ряда можно назвать вторым квартилем либо 50-ым процентилем).

Дисперсия и среднеквадратическое отклонение

Формула дисперсии:

$$D = \frac{\sum_{i=1}^{k} (x_i - \bar{x})^2}{n}$$

Среднеквадратическое (стандартное) отклонение

$$\sigma = \sqrt{D} = \sqrt{\frac{\sum_{i=1}^n (x_i - \bar{x})^2}{n}}$$
 Диаграмма размаха или "ящик с усами"

7

Ящик с усами - это способ визуализации числовых данных через квартили.

Пример и алгоритм построения диаграммы размаха

Даны результаты теста учеников 10 класса:

12 12

15

16

17

18

1) Найдем медиану вариационного ряда (она же второй квартиль):

$$M = \frac{x_8 + x_9}{2} = \frac{12 + 12}{2} = 12$$

2) Найдем нижний (25) и верхний (75) квартили

$$Q_1 = \frac{x_4 + x_5}{2} = \frac{8 + 10}{2} = 9$$

$$Q_3 = \frac{x_{12} + x_{13}}{2} = \frac{15 + 15}{2} = 15$$

3) Над числовой прямой отметим максимальное и минимальное значения, медиану, и верхний и нижний квартили:

Нижний и верхний квартили обозначаются "усами". Прямоугольник показывает второй и третий квартили. Линия внутри прямоугольника соответствует медиане.

11.4A Исчисление III

Дифференцирование логарифмических и показательных функций

Производная логарифмической функции:

$$(\log_a x)' = \frac{1}{x \ln a}$$
$$(\ln x)' = \frac{1}{x}$$

Производная показательной функции:

$$(a^{x})' = a^{x} \cdot \ln a$$
$$(e^{x})' = e^{x}$$
$$(e^{kx})' = k \cdot e^{kx}$$

Производная композиции:

$$\underline{f(g(x))' = f'(g(x)) \cdot g'(x)}$$

2 Таблица основных интегралов

$$1. \int 0 \cdot dx = C$$

$$2. \int dx = \int 1 \cdot dx = x + C$$

3.
$$\int x^n \cdot dx = \frac{x^{n+1}}{n+1} + C, n \neq -1, x > 0$$

$$4. \int \frac{dx}{x} = \ln|x| + C$$

$$5. \int a^x \cdot dx = \frac{a^x}{\ln a} + C$$

6.
$$\int e^x dx = e^x + C$$

$$7. \int \sin x \, dx = -\cos x + C$$

8.
$$\int \cos x \, dx = \sin x + C$$

9.
$$\int \ln x \, dx = x \cdot \ln x - x + C$$

Основные правила интегрирования (x — переменная, f(x), g(x) — некоторые функции, dx — дифференциал)

1)
$$\int kf(x) dx = k \int f(x) dx$$
, где k – постоянная;

2)
$$\int [f(x) \pm g(x)] dx = \int f(x) dx \pm \int g(x) dx$$

3) Если
$$\int f(x) dx = F(x) + C$$
, то $\int f(kx+b)dx = \frac{1}{k}F(kx+b) + C$, где

k и b – постоянные ($k \neq 0$),

Важно!

$$\int f(x) \cdot g(x) dx \neq \int f(x) dx \cdot \int g(x) dx$$

3 Методы интегрирования

Интегрирование методом замены

Алгоритм и пример:

Найти $\int \sin(3x+2)dx$

1) Заменим выражение в скобках на новую переменную:

$$t = 3x + 2$$
;

2) Выразим дифференциал dx через dt:

$$dt = d(3x + 2) = (3x + 2)'dx = 3dx$$
, значит $dx = \frac{dt}{3}$

3) Найдем полученный интеграл:

$$\int \sin(3x+2) \, dx = \frac{1}{3} \int \sin t \, dt = -\frac{1}{3} \cos t + C$$

4) Выполним обратную замену:

$$-\frac{1}{3}\cos t + C = -\frac{1}{3}\cos(3x+2) + C$$
, где C — константа.

Метод интегрирования по частям

Суть метода интегрирования по частям заключается в разделении подынтегрального выражения на две части: u и dv, и применении формулы интегрирования по частям:

$$\int u \, dv = uv - \int v \, du$$

С ее помощью интеграл $\int u dv$ можно свести к нахождению более простого интеграла $\int v du$.

Пример 1:

Найти $\int \frac{\ln x dx}{\sqrt{x}}$.

1) Пусть $u=\ln x$, а $dv=rac{dx}{\sqrt{x'}}$ тогда $v=2\sqrt{x}, du=rac{dx}{x}$.

2) Подставим полученные значения в формулу и получим ответ:

$$\int \frac{\ln x dx}{\sqrt{x}} = 2\sqrt{x} \ln x - \int \frac{2\sqrt{x}}{x} dx = 2\sqrt{x} \ln x - 2\int \frac{dx}{\sqrt{x}} = 2\sqrt{x} \ln x - 4\sqrt{x} + C = 2\sqrt{x} (\ln x - 2) + C$$

Пример 2:

Найти $\int arctg x dx$

1) Пусть $u = arctg\ x$, а dv = dx. Тогда v = x, а $du = \frac{1}{1+x^2}dx$

2) Подставим полученные значения в формулу и получим:

$$\int arctg \ x \ dx = arctg \ x \cdot x - \int \frac{x}{1 + x^2} dx$$

Второй интеграл найдем методом замены

Пусть $t = x^2 + 1$, тогда:

$$x = \sqrt{t-1}$$

$$dx = (\sqrt{t-1})'dt = \frac{1}{2\sqrt{t-1}}dt$$

Получим:

$$\int \frac{x}{1+x^2} dx = \int \frac{\sqrt{t-1}}{t} \cdot \frac{1}{2\sqrt{t-1}} dt = \frac{1}{2} \ln|t| + C$$

Следовательно:

$$arctg \ x \cdot x - \int \frac{x}{1+x^2} dx = x \ arctg \ x - \frac{1}{2} ln|t| + C$$

4 | Определенный интеграл. Площадь криволинейной трапеции

Формула Ньютона-Лейбница для вычисления определенного интеграла

$$\int_{a}^{b} f(x)dx = F(b) - F(a),$$

Где F(x) – первообразная функции f(x)

Площадь криволинейной трапеции

Если функция f(x) **неотрицательна** на отрезке [a, b], то площадь криволинейной трапеции, ограниченной кривой y = f(x) и прямыми x = a, x = b, y = 0, численно равна определенному интегралу от f(x) на данном отрезке:

$$S = \int_{a}^{b} f(x)dx = F(x)|_{a}^{b} = F(b) - F(a)$$

(a - координата точки A, a b - координата точки B)

Объем тела вращения

1) Объем тела вращения вокруг оси абсцисс 0X:

$$V = \pi \int_{a}^{b} f^{2}(x) dx$$

2) Объем тела вращения вокруг оси ординат ОҮ:

$$V = \pi \int_{a}^{b} y^{2} dy$$

Если дана функция y = f(x), выразив переменную x через переменную y, получим x = g(y), тогда

$$V_{Oy} = \pi \int_{p}^{q} g^{2}(y) dy$$

Интеграл не может быть вычислен, если не выразить переменную x через переменную y, то есть интегрируем обратную функцию.

11.4В Уравнения и неравенства

Уравнения содержащие переменную под знаком модуля

$$1) |x| = \begin{cases} x & \text{при } x \ge 0, \\ -x & \text{при } x < 0. \end{cases}$$

6)
$$|f(x)| = |g(x)| \Leftrightarrow f(x) = \begin{bmatrix} f(x) = g(x), \\ f(x) = -g(x). \end{bmatrix}$$

1)
$$|x| = \begin{cases} x & \text{при } x \ge 0, \\ -x & \text{при } x < 0. \end{cases}$$

2) $|f(x)| = \begin{cases} f(x) & \text{при } f(x) \ge 0, \\ -f(x) & \text{при } f(x) < 0. \end{cases}$

3)
$$|f(x)| = 0 \Leftrightarrow f(x) = 0$$
.

4)
$$\forall b < 0 |f(x)| = b \Leftrightarrow \emptyset$$

5)
$$\forall b > 0 |f(x)| = b \Leftrightarrow \begin{bmatrix} f(x) = b, \\ f(x) = -b. \end{bmatrix}$$

$$3) |f(x)| = 0 \Leftrightarrow f(x) = 0.$$
 $4) \forall b < 0 |f(x)| = b \Leftrightarrow \emptyset.$ $7) |f(x)| = g(x) \Leftrightarrow \begin{cases} f(x) \ge 0, \\ f(x) = g(x), \\ f(x) \le 0, \end{cases}$ $f(x) = g(x) \Leftrightarrow \begin{cases} f(x) = b, \\ f(x) = -b. \end{cases}$ Неравенства, содержащие переменную под знаком модуля $f(x) = g(x) \Leftrightarrow \begin{cases} f(x) \le g(x), \\ f(x) = -g(x). \end{cases}$ $f(x) \le g(x), \end{cases}$ $f(x) \ge g(x), \end{cases}$

1)
$$|f(x)| \le g(x) \Leftrightarrow \begin{cases} f(x) \le g(x), \\ f(x) > -g(x), \end{cases}$$

3)
$$|f(x)| \ge g(x) \Leftrightarrow \begin{bmatrix} f(x) \ge g(x), \\ f(x) \le -g(x). \end{bmatrix}$$

2)
$$|f(x)| < g(x) \Leftrightarrow$$

$$\begin{cases} f(x) < g(x), \\ f(x) > -g(x) \end{cases}$$

4)
$$|f(x)| > g(x) \Leftrightarrow \begin{bmatrix} f(x) > g(x), \\ f(x) < -g(x) \end{bmatrix}$$

3 Иррациональные уравнен

1)
$$\sqrt{(f(x))^2} = |f(x)|$$
.
2) $\sqrt[3]{(f(x))^3} = f(x)$.
3) $\sqrt{f(x)} = g(x) \Leftrightarrow \begin{cases} f(x) = (g(x))^2, & g(x) \ge 0. \end{cases}$

$$1) \sqrt{\left(f(x)\right)^2} = |f(x)|.$$

$$2) \sqrt[3]{(f(x))^3} = f(x).$$

$$3) \sqrt{f(x)} = g(x) \Leftrightarrow \begin{cases} f(x) = g(x), \\ g(x) \ge 0. \end{cases}$$

$$f(x) = \left(g(x)\right)^2,$$

$$g(x) \ge 0,$$

$$g(x) \ge 0,$$

$$g(x) \ge 0,$$

$$f(x) \text{ имеет смысл.}$$

4 Иррациональные неравенства

$$1.\sqrt{f(x)} < g(x) \Leftrightarrow \begin{cases} g(x) > 0, \\ f(x) \geq 0, \\ f(x) < (g(x))^2. \end{cases}$$

$$2.\sqrt{f(x)} \leq g(x) \Leftrightarrow \begin{cases} g(x) \geq 0, \\ f(x) \geq 0, \\ f(x) \geq 0, \end{cases}$$

$$f(x) \leq (g(x))^2.$$

$$3.\sqrt{f(x)} > g(x) \Leftrightarrow \begin{cases} g(x) \geq 0, \\ f(x) \geq 0, \\ f(x) \leq 0, \end{cases}$$

$$f(x) \leq (g(x))^2.$$

$$f(x) \geq 0.$$

$$f(x) \geq (g(x))^2.$$

$$f(x) \geq 0.$$

$$4.\sqrt{f(x)} \ge g(x) \Leftrightarrow \begin{cases} g(x) \ge 0, \\ f(x) \ge (g(x))^2, \\ g(x) < 0, \\ f(x) \ge 0. \end{cases}$$

$$5.\sqrt{f(x)} > \sqrt{g(x)} \Leftrightarrow \begin{cases} f(x) > g(x), \\ g(x) \ge 0. \end{cases}$$

$$6.\sqrt{f(x)} \ge \sqrt{g(x)} \Leftrightarrow \begin{cases} f(x) \ge g(x), \\ g(x) \ge 0. \end{cases}$$

$$7.f(x)\sqrt{g(x)} \ge 0 \Leftrightarrow \begin{cases} f(x) \ge 0, \\ g(x) \ge 0, \\ g(x) = 0, \\ f(x) \text{ существует} \end{cases}$$

5 Простейшие тригонометрические уравнения

- 1) $\sin x = a$, $|a| \le 1$, $x = (-1)^k \cdot \arcsin a + \pi k$, $k \pi$ юбое целое число
- 2) $\cos x = a$, $|a| \le 1$, $x = \pm \arccos a + 2\pi k$, k любое целое число
- 3) $tg \ x = a$, $x = arctg \ a + \pi k$, k любое целое число
- 4) $ctg \ x = a$, $x = arcctg \ a + \pi k$, k любое целое число

Формулы приведения

7 Основные тригонометрические формулы

Формулы суммы и разности:

1)
$$\sin(a \pm b) = \sin a \cdot \cos b \pm \sin b \cdot \cos a$$

2)
$$\cos(a \pm b) = \cos a \cdot \cos b \mp \sin a \cdot \sin b$$

Формулы двойных углов:

1)
$$\sin 2a = 2 \sin a \cos a$$

2.1) $\cos 2a = \cos^2 a - \sin^2 a$
2.2) $\cos 2a = 2\cos^2 a - 1$
2.3) $\cos 2a = 1 - 2\sin^2 a$

3)
$$tg(a \pm b) = \frac{tg \ a \pm tg \ b}{1 \mp tg \ a \cdot tg \ b}$$

4) $ctg(a \pm b) = \frac{ctg \ a \cdot ctg \ b \mp 1}{ctg \ a \pm ctg \ b}$

3)
$$tg \ 2a = \frac{2tg \ a}{1 - tg^2 a}$$
4) $ctg \ 2a = \frac{ctg^2 a - 1}{2ctg \ a}$

Основное тригонометрическое тождество и его следствия:

1)
$$sin^{2}a + cos^{2}a = 1$$

2) $tg^{2}a + 1 = \frac{1}{cos^{2}a}$
3) $1 + ctg^{2}a = \frac{1}{sin^{2}a}$

Формулы преобразования произведения в сумму/разность:

1)
$$2\cos\alpha\cos\beta = \cos(\alpha - \beta) + \cos(\alpha + \beta)$$

2) $2\sin\alpha\sin\beta = \cos(\alpha - \beta) - \cos(\alpha + \beta)$
3) $2\sin\alpha\cos\beta = \sin(\alpha + \beta) + \sin(\alpha - \beta)$

Формулы преобразования суммы/разности в произведение:

$$\sin \alpha + \sin \beta = 2 \sin \frac{\alpha + \beta}{2} \cdot \cos \frac{\alpha - \beta}{2}$$

$$\sin \alpha - \sin \beta = 2 \sin \frac{\alpha - \beta}{2} \cdot \cos \frac{\alpha + \beta}{2}$$

$$\cos \alpha + \cos \beta = 2 \cos \frac{\alpha + \beta}{2} \cdot \cos \frac{\alpha - \beta}{2}$$

$$\cos \alpha - \cos \beta = -2 \sin \frac{\alpha + \beta}{2} \cdot \sin \frac{\alpha - \beta}{2}$$

$$\cot \alpha - \cot \beta = \frac{\sin(\alpha + \beta)}{\cos \alpha \cdot \cos \beta}$$

$$\cot \alpha + \cot \beta = \frac{\sin(\alpha + \beta)}{\cos \alpha \cdot \cos \beta}$$

$$\cot \alpha + \cot \beta = \frac{\sin(\alpha + \beta)}{\sin \alpha \cdot \sin \beta}$$

$$\cot \alpha - \cot \beta = \frac{\sin(\beta - \alpha)}{\sin \alpha \cdot \sin \beta}$$

Формулы понижения степени:

1)
$$\sin^2 a = \frac{1 - \cos 2a}{2}$$

2) $\cos^2 a = \frac{1 + \cos 2a}{2}$
3) $tg^2 a = \frac{1 - \cos 2a}{1 + \cos 2a}$
4) $ctg^2 a = \frac{1 - \cos 2a}{1 - \cos 2a}$

Формулы половинного угла:

$$1)\sin\frac{\alpha}{2} = \pm\sqrt{\frac{1-\cos\alpha}{2}}$$

$$2)\cos\frac{\alpha}{2} = \pm \sqrt{\frac{1+\cos\alpha}{2}}$$

3)
$$tg \frac{\alpha}{2} = \pm \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}} = \frac{\sin \alpha}{1 + \cos \alpha} = \frac{1 - \cos \alpha}{\sin \alpha}$$

4)
$$ctg \frac{\alpha}{2} = \pm \sqrt{\frac{1 + \cos \alpha}{1 - \cos \alpha}} = \frac{\sin \alpha}{1 - \cos \alpha} = \frac{1 + \cos \alpha}{\sin \alpha}$$

8 Тригонометрические уравнения

Уравнения, содержащие неизвестное (переменную) только под знаком тригонометрической функции, называются *тригонометрическими*.

Простейшие тригонометрические уравнения

1.
$$\sin x = a$$
, $|a| \le 1$

$$x = (-1)^k \arcsin a + \pi k, \qquad k \in \mathbb{Z}$$

Частные случаи:

$$a = -1$$

 $\sin x = -1$

 $x = -\frac{\pi}{2} + 2\pi k, k \in \mathbb{Z}$

a = 0 $\sin x = 0$ $x = \pi k, k \in Z$

a = 1 $\sin x = 1$ $x = \frac{\pi}{2} + 2\pi k, k \in Z$

2. $\cos x = a$, $|a| \le 1$

 $x = \pm \arccos a + 2\pi k$, $k \in \mathbb{Z}$

Частные случаи:

$$a = -1$$

 $\cos x = -1$

 $x=\pi+2\pi k, k\in Z$

a = 0 $\cos x = 0$ $x = \frac{\pi}{2} + \pi k, k \in Z$

a = 1 $\cos x = 1$ $x = 2\pi k, k \in Z$

Примечание. Уравнения вида $\sin x = a$, $\cos x = a$ при |a| > 1 не имеют решений.

Уравнения вида tg x = a, и ctg x = a имеют решение при любом значении a.

- 1. $\operatorname{tg} x = a$, $x = \operatorname{arctg} a + \pi k$, $k \in \mathbb{Z}$
- 2. $\operatorname{ctg} x = a$, $x = \operatorname{arcctg} a + \pi k$, $k \in \mathbb{Z}$

Решение тригонометрического уравнения состоит из двух этапов:

- 1. Преобразование уравнения для получения его простейшего вида (см. выше)
- 2. Решение полученного простейшего тригонометрического уравнения.

9 Решение тригонометрических уравнений методом вспомогательного аргумента

Рассмотрим выражение $a\sin x + b\cos x$, где a и b – произвольные, отличные от нуля числа.

1) Преобразуем его:

$$a\sin x + b\cos x = \sqrt{a^2 + b^2} \left(\sin x \cdot \frac{a}{\sqrt{a^2 + b^2}} + \cos x \cdot \frac{b}{\sqrt{a^2 + b^2}} \right).$$

Теперь коэффициенты уравнения $\frac{a}{\sqrt{a^2+b^2}}$ и $\frac{b}{\sqrt{a^2+b^2}}$ обладают свойствами синуса и косинуса, а именно: модуль (абсолютное значение) каждого из них не больше 1, а сумма их квадратов равна 1. Тогда можно обозначить их соответственно как $\cos \varphi$ и $\sin \varphi$ (здесь φ — так называемый *вспомогательный угол*), и наше уравнение примет вид:

$$\sqrt{a^{2} + b^{2}} \left(\sin x \cdot \frac{a}{\sqrt{a^{2} + b^{2}}} + \cos x \cdot \frac{b}{\sqrt{a^{2} + b^{2}}} \right) = \sqrt{a^{2} + b^{2}} (\sin x \cos \varphi + \cos x \sin \varphi) =$$

$$= \sqrt{a^{2} + b^{2}} \sin(x + \varphi), \text{ где } \varphi = \arccos \frac{a}{\sqrt{a^{2} + b^{2}}} = \arcsin \frac{b}{\sqrt{a^{2} + b^{2}}}$$

Заметим, что введённые обозначения $\cos \varphi$ и $\sin \varphi$ взаимно заменяемы.

Получилась формула вспомогательного аргумента:

$$a\sin x + b\cos x = \sqrt{a^2 + b^2}\sin(x + \varphi)$$

Пример

$$\frac{4\sin x - 7\cos x}{\sqrt{a^2 + b^2}} = \sqrt{4^2 + (-7)^2} = \sqrt{16 + 49} = \sqrt{65} \approx 8.06$$

$$\sin \varphi = \frac{b}{\sqrt{a^2 + b^2}} = \frac{-7}{8.06} \qquad \varphi \approx -60.3^0$$

$$\cos \varphi = \frac{a}{\sqrt{a^2 + b^2}} = \frac{4}{8.06} \qquad \varphi \approx 60.3^0$$

Так как значение синуса отрицательное, а косинуса — положительное, φ — угол четвертой четверти и $\varphi = -60.3^{\circ}$. Финальное равенство:

$$5\sin x - 7\cos x = 8.06\sin(x - 60.3)$$

10	Обратные т	оигонометри	ические фун	кции			
			Определения				Эквивалентные равенства
		$f(x) = \arcsin x$	HAZEIRAIOT	$\left[-\frac{\pi}{2};\frac{\pi}{2}\right]$	синус		$y = \arcsin x u$ $\sin y = x$
	Обратной тригономе	$f(x) = \arccos x$	называют угол, взятый	[0; π]	косинус	которой равен <i>х</i>	$y = \arccos x \ u$ $\cos y = x$
	трической функцией	f(x) = arctg x	на отрезке	$\left(-\frac{\pi}{2};\frac{\pi}{2}\right)$	тангенс		$y = \operatorname{arctg} x u$ $\operatorname{tg} y = x$
		$f(x) = \operatorname{arcctg} x$		$(0;\pi)$	котангенс		$y = \operatorname{arcctg} x u$ $\operatorname{ctg} y = x$
Графики обратных тригонометрических функций							
	$y = \arcsin x$ $E(y) = \left[-\frac{\pi}{2}; \frac{\pi}{2} \right]$ $D(y) = [-1; 1]$			-1	$\frac{y}{\frac{\pi}{2}}$	1	х
	y = ar $E(y) =$ $D(y) =$	$= [0; \pi]$		-1	$\frac{\pi}{2}$	1	x

Основные тождества

$$\arcsin x + \arccos x = \frac{\pi}{2}$$

 $\arcsin(-x) = -\arcsin(x)$
 $\arctan(-x) = -\arctan(x)$

$$arctg x + arcctg x = \frac{\pi}{2}$$

$$arccos(-x) = \pi - arccos(x)$$

$$arcctg(-x) = \pi - arcctg(x)$$

Простейшие тригонометрические уравнения

1)
$$\sin x = a$$

$$\sqcap pu |a| > 1, x \in \emptyset$$

При
$$|a| \le 1$$
, $x = (-1)^k \arcsin a + \pi k$, где $k \in Z$

2)
$$\cos x = a$$

При
$$|a| > 1$$
, $x \in \emptyset$

При
$$|a| \le 1$$
, $x = \pm \arccos a + 2\pi k$, где $k \in Z$

3)
$$tg x = a$$

$$x = \operatorname{arctg} a + \pi k$$
, где $k \in Z$

4)
$$\operatorname{ctg} x = a$$

 $x = \operatorname{arcctg} a + \pi k$, где $k \in \mathbb{Z}$

Вычисления с использованием прямоугольного треугольника:

Пример

Вычислить $\cos(\arcsin\frac{1}{5})$:

Построим угол, синус которого равен $\frac{1}{\epsilon}$:

Косинус такого угла будет равен частному между прилежащим катетом и гипотенузой. Для того чтобы его найти, выразим значение a через x, используя теорему Пифагора:

$$a = \sqrt{x^2 - \left(\frac{x}{5}\right)^2} = \sqrt{\frac{4x^2}{5}} = \frac{2}{\sqrt{5}}x = \frac{2\sqrt{5}}{5}x$$

Тогда, косинус заданного угла равен:

$$\frac{a}{x} = \frac{2\sqrt{5}}{\frac{5}{x}}x = \frac{2\sqrt{5}}{\frac{5}{5}}$$

11 Решение тригонометрических неравенств методом интервалов

Алгоритм и Пример

$$\frac{1}{2} \bigg(\cos \left(3x - \frac{3}{4}\pi \right) + \cos \left(-x - \frac{3}{4}\pi \right) \bigg) \cdot \sin 4x \ \geq 0 \ \text{при } 0 \leq x \leq 2\pi$$

1) Разложить тригонометрическое неравенство на множители

Применим формулу суммы косинусов для того чтобы представить выражение $\cos\left(3x-\frac{3}{4}\pi\right)+\cos\left(-x-\frac{3}{4}\pi\right)$ в виде произведения:

$$\cos\left(3x - \frac{3}{4}\pi\right) + \cos\left(-x - \frac{3}{4}\pi\right) =$$

$$= 2 \cdot \cos\frac{3x - \frac{3}{4}\pi + \left(-x - \frac{3}{4}\pi\right)}{2} \cdot \cos\frac{3x - \frac{3}{4}\pi - \left(-x - \frac{3}{4}\pi\right)}{2} =$$

$$= 2 \cdot \cos\left(x - \frac{3}{4}\pi\right) \cdot \cos 2x$$

Тогла

$$\frac{1}{2}\left(\cos\left(3x - \frac{3}{4}\pi\right) + \cos\left(-x - \frac{3}{4}\pi\right)\right) \cdot \sin 4x = \frac{1}{2} \cdot 2 \cdot \cos\left(x - \frac{3}{4}\pi\right) \cdot \cos 2x \cdot \sin 4x =$$

$$= \cos\left(x - \frac{3}{4}\pi\right) \cdot \cos 2x \cdot \sin 4x$$

2) Найти нули функции

Поочередно приравняем каждый множитель к нулю, и найдем все возможные значения x:

$$\cos\left(x - \frac{3}{4}\pi\right) = 0; \quad x = \frac{5\pi}{4}; \frac{\pi}{4}$$

$$\cos 2x = 0; \quad x = \frac{\pi}{4}; \frac{3\pi}{4}; \frac{5\pi}{4}; \frac{7\pi}{4}$$

$$\sin 4x = 0; \quad x = 0; \frac{\pi}{4}; \frac{\pi}{2}; \frac{3\pi}{4}; \pi; \frac{5\pi}{4}; \frac{3\pi}{2}; \frac{7\pi}{4}$$

3) Отметить знаки интервалов на единичной окружности

Для того чтобы отметить знаки функции на единичной окружности нужно выбрать любую точку, не являющуюся нулем функции и менять знак (поочередно переходя на другие интервалы) согласно правилу изменения знаков функции:

Общее правило изменения знаков функции

Введем понятия нулей четной и нечетной кратности. Для функции, состоящей из произведения некоторого количества тригонометрических функций ноль является нулем четной кратности, если он является нулем четного количества тригонометрических функций, из которых состоит вся функция (аналогично с нулем нечетной кратности).

<u>Формулировка самого правила:</u> При прохождении аргумента х функции f(x) через ноль нечетной кратности функция меняет знак, а четной – нет.

Разобьем найденные раннее нули на четные и нечетные:

Ноль $\frac{5\pi}{4}$ является нулем всех 3ex тригонометрических функций - $\cos\left(x-\frac{3}{4}\pi\right)$, $\cos 2x$ и $\sin 4x$, значит он является нулем нечетной кратности.

Ноль $\frac{3\pi}{4}$ же - не является нулем функции $\cos(x-\frac{3\pi}{4})$, но является нулем для остальных двух - $\cos 2x$ и $\sin 4x$, значит он является нулем четной кратности.

По аналогии разобьем остальные нули на 2 группы:

Нули четной кратности	Нули нечетной кратности
$\frac{3\pi}{4}$, $\frac{7\pi}{4}$	$0, \frac{\pi}{4}, \frac{\pi}{2}, \pi, \frac{5\pi}{4}, \frac{3\pi}{2}$

Перейдем к единичной окружности. Исследуем знак функции при значении угла $\frac{\pi}{8}$.

$$\cos\left(\frac{\pi}{8} - \frac{3\pi}{4}\right) \cdot \cos\left(2 \cdot \frac{\pi}{8}\right) \cdot \sin\left(4 \cdot \frac{\pi}{8}\right) \approx -0.27$$

Следовательно, интервал между нулями 0 и $\frac{\pi}{4}$ — отрицательный. Обозначим его дугой, лежащей внутри окружности.

Далее, двигаясь по окружности (против часовой стрелки), и проходя через нули функция (как было описано в правиле изменения знаков функции) меняет знаки на нечетных нулях и не меняет его на четных. Например — ноль, через который мы проходим первым $\left(\frac{\pi}{4}\right)$ нечетной кратности, значит знак функции меняется. Далее $\left(\frac{\pi}{2}\right)$ ноль нечетной кратности — знак меняется. Далее $\left(\frac{3\pi}{4}\right)$ ноль четной степени — знак не меняется и так далее.

4) Записываем ответ в виде объединения искомых интервалов

$$\cos\left(x - \frac{3}{4}\pi\right) \cdot \cos 2x \cdot \sin 4x \ge 0$$

Ombem: $x \in \left[\frac{\pi}{4}; \frac{\pi}{2}\right] \cup \left[\frac{3\pi}{4}\right] \cup \left[\pi; \frac{5\pi}{4}\right] \cup \left[\frac{3\pi}{2}; 2\pi\right].$

(Примечание: в условии дано, что $0 \le x \le 2\pi$, поэтому в ответ дан без периодов функции. В случае отсутствия данного условия ответ выглядел бы так:

$$x \in \left[\frac{\pi}{4} + 2\pi n; \frac{\pi}{2} + 2\pi n\right] \cup \left[\frac{3\pi}{4} + 2\pi n\right] \cup \left[\pi + 2\pi n; \frac{5\pi}{4} + 2\pi n\right] \cup \left[\frac{3\pi}{2} + 2\pi n; 2\pi + 2\pi n\right])$$

Автор: Матвей О.

12 класс

12.1А Вероятностные модели

1 Перестановки

Перестановками называются такие выборки элементов, которые отличаются только порядком расположения элементов.

Формулы перестановок:

1) Без повторений (выборка состоит только из универсальных элементов):

 $P_n = n!$, где n – количество элементов.

Пример

Сколько слов можно составить из слова "мечта"?

Решение: слово состоит из пяти уникальных букв, следовательно, по формуле:

$$P_5 = 5!$$

2) С повторениями (некоторые элементы выборки встречаются по несколько раз):

Пусть в выборке из n элементов первый элемент встречается n_1 раз, второй - n_2 раз и так далее до элемента m. Тогда формула перестановок с повторениями:

$$P = \frac{n!}{n_1! \, n_2! \, n_3! \, \dots \, n_m!}$$

Пример

Сколько слов можно составить из слова "математика"?

Решение: слово состоит из повторяющихся букв — "м" встречается 2 раза, "а" — 3 раза, "т" — 2 раза. Соответственно по формуле число перемещений с повторениями:

$$P = \frac{10!}{2! \, 3! \, 2!}$$

2 Сочетания

Неупорядоченные выборки из n элементов по k называются сочетаниями, и обозначаются:

 C_n^k — сочетания без повторений $ar{C}_n^k$ — сочетания с повторениями

Формулы сочетаний:

1) Число сочетаний без повторений (каждый элемент может встречаться в выборке только 1 раз) определяется по формуле:

$$C_n^k = \frac{n!}{k! (n-k)!}$$

Пример

Сколькими способами можно купить 10 книг, из 15 имеющихся в книжном магазине? Решение

В задачах на сочетания важно определить какое число подставлять в формулу как n, а какое как k. n – число элементов ИЗ которых определяется выборка, а число k – сколько элементов нужно выбрать. В данной задаче нужно выбрать 10 книг из 15, следовательно, $n=15;\ k=10$. Получается число сочетаний:

$$C_{15}^{10} = \frac{15!}{10!(15-10)!} = \frac{11 \cdot 12 \cdot 13 \cdot 14 \cdot 15}{5!} = 3003$$

2) Число сочетаний с повторениями (элементы могут встречаться в выборке несколько раз) определяется по формуле:

$$\bar{C}_n^k = C_{n+k-1}^k = \frac{(n+k-1)!}{k! \cdot (n-1)!}$$

Пример

В магазине продается 3 вида десертов – печенье, торты и пирожные. Сколькими способами можно купить 5 кондитерских изделий?

В данной задаче виды кондитерских изделий могут повторяться – среди выборки может быть 5 пирожных (как и 5 любых других изделий), поэтому используется формула сочетаний с повторениями.

$$\bar{C}_3^5 = C_7^5 = \frac{7!}{5! \, 2!} = \frac{6 \cdot 7}{2} = 21$$

3 Размещения

Размещения – упорядоченные наборы по k различных элементов из некоторого множества различных n элементов.

Формулы размещений:

1) Число размещений без повторений:

$$A_n^k = \frac{n!}{(n-k)!}$$

Пример

Сколькими способами можно расставить на полке 10 книг, выбирая из 15 имеющихся? (все книги уникальны)

Решение

В данной задаче мы выбираем 10 книг из 15 возможных, следовательно, n=15, k=10.

$$A_{15}^{10} = \frac{15!}{5!}$$

2) Число размещений с повторениями:

$$\bar{A}_n^k = n^k$$

Пример

Сколько существует вариантов составления пятибуквенных английских слов?

В данном случае мы из возможных 26 английских букв выбираем 5, следовательно, n=26, k = 5

$$\bar{A}_{26}^5 = 26^5$$

$ar{A_{26}^5} = 26^5$ Биномиальное распределение, формула Бернулли

Проводятся n одинаковых независимых испытаний с <u>двумя</u> исходами A и $ar{A}$ (не A). Обозначим вероятности этих исходов как p = P(A) и $q = 1 - p = P(\bar{A})$ (p и q постоянны, и не равны ни нулю, ни единице). Условно назовем событие A – успех, а событие $ar{A}$ – неудача. Распределения такого вида называются биномиальными распределениями. В таких случаях, вероятность того, что произойдет ровно k успешных исходов равна:

$$P(k) = C_n^k \cdot p^k \cdot q^{n-k}$$

Данная формула называется формулой Бернулли.

Случайную величину Х, распределенную по биномиальному распределению обозначают как

$$X \sim B(n; p)$$

Числа n и p называются *параметрами биномиального распределения*.

Какова вероятность того, что из 15 бросков монетки 11 раз выпадет орел?

Решение

Вероятность выпадения "орла" = 0.5 (p)

Вероятность выпадения "решки" = 0.5(q)

$$X \sim B(15, 0.5)$$

$$X \sim B(15, 0.5)$$

 $P(11) = C_{15}^{11} \cdot 0.5^{11} \cdot 0.5^4 \approx 0.04165649$

5 Типы данных (случайных величин)

- 1) Количественные величины, выраженные числовым значением.
- 2) Качественные величины, которые не характеризуются числовым значением.
- 3) Дискретные случайные величины, изменяющиеся прерывно и принимающие, как правило целые значения.
- 4) Непрерывные случайные величины, которые могут принимать любые значения из некоторого числового интервала.

6 Дискретные и интервальные вариационные ряды

Дискретный вариационный ряд — это ряд распределения, в котором данные меняются прерывно и принимают конечное множество значений.

Интервальный вариационный ряд — это упорядоченная последовательность, в которой данные представлены в виде интервалов.

7 Математическое ожидание

Математическое ожидание вариационного ряда вычисляется по формуле:

$$M_x = \sum_{i=1}^k p_i x_i$$

Где M_x – математическое ожидание вариационного ряда X

k – количество элементов в вариационном ряду

 x_i – значения, которые может принимать X (возможный результат)

 p_i – вероятность, с которой произойдет событие x_i

Пример

Лучник любитель стреляет в мишень с возможностью набрать от 0 до 5 очков. Дан закон распределения вероятностей попадания:

seperities en tienaparium						
X_i (Возможные	0	1	2	3	4	5
события)						
P_i (Вероятность	0.1	0.15	0.15	0.15	0.2	0.25
набора X_i очков)						

Вычислите математическое ожидание.

Решение

Перемножим все возможные события с вероятностью того что они произойдут и сложим полученные результаты:

$$M_x = \sum_{i=1}^{6} p_i x_i = 0.1 \cdot 0 + 0.15 \cdot 1 + 0.15 \cdot 2 + 0.15 \cdot 3 + 0.2 \cdot 4 + 0.25 \cdot 5 = 2.95$$

8 Дисперсия и среднеквадратическое отклонение

Формула дисперсии:

$$D(X) = M(X - M(X))^{2}$$

Используя свойства математического ожидания получим формулу:

$$D(X) = M(X^2) - M^2(X)$$

Среднеквадратическое отклонение:

$$\sigma = \sqrt{D(X)}$$

9 Распределение Пуассона

Формула Пуассона гораздо легче в вычислении, по сравнению с формулой Бернулли. Поэтому в <u>определенных обстоятельствах</u> вместо формулы Бернулли можно использовать распределение Пуассона.

Если количество испытаний n достаточно велико (n>50), а вероятность появления события X в отдельно взятом испытании весьма мала (p<0.1) (таким образом np<5), то вероятность того, что это событие случится m раз вычисляется по формуле распределения Пуассона:

$$P(m) = \frac{\lambda^m}{m!} \cdot e^{-\lambda}$$
, где $\lambda = np$

Пример

Завод производит 10000 товаров одной модели в неделю. Вероятность произвести брак — 0.04%. Какова вероятность того что в конце недели ровно 1 товар окажется бракованным? *Решение*

В данной задаче общее количество испытаний = 10000, а вероятность события = 0.0004. Таким образом $\lambda = np = 10000*0.0004 = 4$. Так как np < 5, используем формулу Пуассона.

$$P(1) = \frac{4^1}{1!} \cdot e^{-4} \approx 0.0733$$

10 Распределение Гаусса (нормальное распределение)

Нормальное распределение используется для определения вероятности в *непрерывных* вариационных рядах.

Непрерывная случайная величина X, распределенная по нормальному закону, имеет функцию плотности:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
, где $\mu \in D$, $\sigma > 0$

В данной формуле $\mu = M(X)$ (математическое ожидание нормально распределенной случайной величины), σ – среднеквадратическое отклонение.

$$\mu = M(X) = np$$

$$\sigma = \sqrt{D(X)} = \sqrt{npq}$$

Нормальное распределение – распределено при следующих условиях:

- 1) n число испытаний неограниченно большое, то есть $n \to \infty$.
- 2) Ни p, ни q не очень маленькие.

Стандартное отклонение σ и среднее значение μ называются *параметрами* нормального распределения. Нормальное распределение обозначается $X \sim N(\mu, \sigma^2)$

Функция вероятностей того, что случайная величина Z, имеющая стандартное нормальное распределение принимает значение меньше, чем заданное число z обозначается как $\Phi(z)$, то есть:

Формула стандартизации переменной в нормальном распределении:

$$Z = \frac{X - \mu}{\sigma}$$

Пример

Предпологается, что рост учащихся в Назарбаев Интеллектуальной Школе распределен нормально с математическим ожиданием 171.8 см и среднеквадратическим отклонением 10 см. Определить какое количество учащихся (в процентах) имеет рост меньше 177 см. По условию задачи:

 $\mu = 171.8$

 σ = 10

Значит $X \sim N(171.8, 10^2)$

Используем формулу стандартизации переменной в нормальном распределении:
$$Z = \frac{X - \mu}{\sigma} = \frac{177 - 171.8}{10} = \frac{5.2}{10} = 0.52$$

Исходя из этого, находим в таблице значение вероятности функции $\Phi(0.52) = P(Z \le 0.52)$

Z	0.00	0.01	0.02	0.03
0.0	0.5000	0.5040	0.5080	0.5120
0.1	0.5398	0.5438	0.5478	0.5517
0.2	0.5793	0.5832	0.5871	0.5910
0.3	0.6179	0.6217	0.6255	0.6293
0.4	0.6554	0.6591	0.6628	0.6664
0.5	0.6915	0.6950	0.6985	0.7019
0.6	0.7257	0.7391	0.7324	0.7357

 $\Phi(0.52) = 0.6985$

Ответ: 69.85%

12.1B Комплексные числа I

1 Основные понятия

В алгебраической форме комплексное число принимает вид:

$$z = a + bi$$

1) Мнимая единица

i (мнимая единица) — число, квадрат которого равен -1.

2) Действительная, мнимая часть

Для комплексного числа, представленного в алгебраической форме (z=a+bi)

a – действительная часть

b — мнимая часть

3) Модуль

Модуль комплексного числа — длина вектора, изображающего комплексное число на координатной плоскости (диаграмме Аргана).

Формула модуля комплексного числа:

$$r = |z| = \sqrt{a^2 + b^2}$$

4) Аргумент

Угол φ , образованный положительным направлением оси OX и радиус-вектором \overline{OM} (который соответствует заданному комплексному числу z=a+bi) называется аргументом комплексного числа z.

5) Сопряженные комплексные числа

Число $\bar{z}=a_1+b_1i$ называется сопряженным комплексному числу $z=a_2+b_2i$, при $a_1=a_2$ и $b_1=-b_2$. То есть в общем виде числа z=a+bi и $\bar{z}=a-bi$ – сопряженные.

Примеры сопряженных комплексных чисел:

$$z = 10 + 6i \ u \ \bar{z} = 10 - 6i$$

$$z = -3 - i \ u \ \bar{z} = -3 + i$$

2 Действия над комплексными числами, представленными в канонической форме

1) Сложение

$$(a_1 + b_1 i) + (a_2 + b_2 i) = (a_1 + a_2) + (b_1 + b_2)i$$

2) Умножение

$$(a_1 + b_1 i)(a_2 + b_2 i) = a_1 a_2 - b_1 b_2 + (a_1 b_2 + a_2 b_1)i$$

3) Деление

$$\frac{a_1+b_1i}{a_2+b_2i} = \Big| {\substack{\mathsf{УM}\mathsf{HO}\mathsf{ЖИМ}}\ \mathsf{ЧИСЛИТЕЛЬ}\ \mathsf{U}}\ \mathsf{ЗНАМЕНАТЕЛЬ}\ \Big| = \frac{(a_1+b_1i)(a_2-b_2i)}{(a_2+b_2i)(a_2-b_2i)} = \\ = \frac{a_1a_2+b_1b_2+(a_2b_1-a_1b_2)i}{a_2^2+b_2^2} = \frac{a_1a_2+b_1b_2}{a_2^2+b_2^2} + \frac{a_2b_1-a_1b_2}{a_2^2+b_2^2}i$$

3 Свойства сопряженных комплексных чисел

$$z = a + bi \ \text{u} \ \bar{z} = a - bi$$

1) Сумма сопряженных комплексных чисел

$$z + \bar{z} = 2a$$

2) Произведение сопряженных чисел

$$z \cdot \bar{z} = a^2 + b^2$$

4 Квадратный корень комплексного числа

$$\sqrt{a \pm bi} = \pm \left(\sqrt{\frac{\sqrt{a^2 + b^2} + a}{2} + sgn \ b \cdot i \cdot \sqrt{\frac{\sqrt{a^2 + b^2} - a}{2}}} \right)$$

Запись $sgn\ b$ обозначает знак мнимой части комплексного числа b. То есть:

При $b \ge 0$, sgn b = 1;

При b < 0, sgn b = -1;

12.2А Объемы геометрических фигур

Пирамида $V = \frac{1}{3}S \cdot h$, где

S — Площадь основания

h - высота

Объем многогранников

$$V = \frac{1}{3}h(S_1 + \sqrt{S_1S_2} + S_2)$$
, где

 $V=rac{1}{3}hig(S_1+\sqrt{S_1S_2}+S_2ig)$, где S_1 и S_2- площади верхнего и нижнего оснований

 $\it h$ - высота

Призма

 $V = S \cdot h$, где

S — это площадь основания $(S_{ABCDE}$ или $S_{KLMNP})$

h – высота призмы (h=KH)

12.2В Дифференциальные уравнения

1 Частное решение дифференциального уравнения

Алгоритм и Пример

Найти частное решение дифференциального уравнения $e^{y-x^2}dy - 2xdx = 0$, удовлетворяющее начальному условию $y(0) = \ln 2$.

1. Нахождение общего решения.

Разделяем переменные х и у по разные стороны от знака "=":

$$e^{y} \cdot e^{-x^{2}} dy = 2x dx$$

$$e^{y} dy = \frac{2x dx}{e^{-x^{2}}}$$

$$e^{y} dy = 2x e^{x^{2}} dx$$

Интегрируем полученное уравнение:

$$\int e^y dy = 2 \int x e^{x^2} dx$$

$$\int e^{y}dy = e^{y} + C$$

$$2\int xe^{x^{2}}dx = \begin{vmatrix} t = x^{2} \\ t' = \frac{dt}{dx} = 2x \Leftrightarrow dx = \frac{dt}{2x} \end{vmatrix} =$$

$$= 2\int xe^{x^{2}}dx = 2\int xe^{t} \cdot \frac{dt}{2x} =$$

$$= \int e^{t}dt = e^{t} + C = e^{x^{2}} + C$$
3Hayum $e^{y} = e^{x^{2}} + C$

Логарифмируем обе части уравнения:

$$\ln e^{y} = \ln(e^{x^{2}} + C)$$
$$y = \ln(e^{x^{2}} + C)$$

2. Нахождение частного решения

Так как $y(0) = \ln 2$, подставляем в полученное уравнение x = 0, и $y = \ln 2$:

$$\ln 2 = \ln(e^{0^2} + C)$$

$$\ln 2 = \ln(1 + C)$$

$$C = 1$$

Подставляем значение C в общее решение:

$$y = \ln(e^{x^2} + 1)$$

2 Дифференциальные уравнения с разделяющимися переменными

Увидев любое дифференциальное уравнение в первую очередь нужно попробовать разделить переменные (х и у) по разные стороны от знака "=". Если это получается сделать, то перед нами дифференциальное уравнение с разделяющимися переменными. Для того чтобы решить уравнение такого вида достаточно интегрировать обе части уравнения после разделения переменных (х и у).

Пример

$$y' + (2y + 1)ctgx = 0$$

1) Разделяем переменные х и у по разные стороны от знака "=":

$$\frac{dy}{dx} = -(2y+1)ctgx$$
$$\frac{dy}{2y+1} = -dx \cdot ctgx$$

2) Интегрируем обе части уравнения

$$\int \frac{dy}{2y+1} = -\int ctgx \cdot dx$$
1) $\int \frac{dy}{2y+1} = \begin{vmatrix} t = 2y+1 \\ t' = \frac{dt}{dy} = 2 \end{vmatrix} = \int \frac{1}{t} \cdot \frac{dt}{2} = \frac{1}{2} \cdot \ln|t| + C = \frac{1}{2} \ln|2y+1| + C$
2) $-\int ctg \, x \cdot dx = -\int \frac{cosx}{sinx} \cdot dx = \begin{vmatrix} t = sinx \\ t' = \frac{dt}{dx} = cosx \end{vmatrix} = -\int \frac{dt}{t} \cdot dx = -\int \frac{dt}{t} = -\ln|t| + C$

$$= -\ln|\sin x| + C$$

$$\frac{1}{2}\ln|2y + 1| = -\ln|\sin x| + \ln C$$

$$\ln|2y + 1|^{\frac{1}{2}} = \ln|\sin x|^{-1} + \ln C$$

$$\ln\sqrt{|2y + 1|} = \ln\left|\frac{C}{\sin x}\right|$$

$$\sqrt{|2y + 1|} \cdot \sin x = C$$

3 Однородные дифференциальные уравнения

Если переменные не получается разделить (как в дифференциальных уравнениях с разделяющимися переменными), то в первую очередь нужно определить какое уравнение перед вами — **однородное** либо **линейное** (первого порядка).

Проверка уравнения на однородность:

Пример

$$xy' = y - xe^{\frac{y}{x}}$$

Для проверки дифференциального уравнения на однородность подставим вместо $x - \lambda x$, а вместо $y - \lambda y$ (λ – условный параметр(любое число)). Если при этом уравнение можно привести к исходному виду (без λ), то данное уравнение – однородное.

$$\lambda x \cdot y' = \lambda y - \lambda x e^{\frac{\lambda y}{\lambda x}}$$
$$\lambda x \cdot y' = \lambda \left(y - x e^{\frac{\lambda y}{\lambda x}} \right)$$
$$x y' = y - x e^{\frac{y}{x}}$$

Данные действия обычно проводятся в уме, и записывать их в решении не нужно.

Алгоритм решения однородных дифференциальных уравнений

1) Заменяем переменную y на ux и y' = u'x + u:

$$x \cdot (u'x + u) = ux - xe^{\frac{ux}{x}}$$

2) Теперь однородное уравнение несложно разделить и решить так же, как и дифференциальное уравнение с разделяющимися переменными:

$$x \cdot (u'x + u) = ux - xe^{\frac{ux}{x}}$$

$$u'x + u = u - e^{u}$$

$$u'x = -e^{u}$$

$$\frac{du}{dx} \cdot x = -e^{u}$$

$$\int \frac{dx}{x} = -\int \frac{du}{e^{u}}$$

$$ln|x| = -\int e^{-u}du$$

$$ln|x| + ln|C| = e^{-u}$$

3) Заменяем u на $\frac{y}{x}$:

$$ln|xC| = e^{-\frac{y}{x}}$$

4 Линейные уравнения первого порядка

Итак, если переменные не получилось разделить, и способ проверки уравнения на однородность провалился, то перед вами линейное дифференциальное уравнение вида:

$$y' + p(x) \cdot y = q(x)$$

Пример $y' - y = e^x$

1) Проводим замену y = uv. Тогда y' = u'v + uv':

$$u'v + uv' - uv = e^x$$

2) Выносим одну из неизвестных функций и приравниваем полученную скобку к нулю:

$$\begin{cases} u'v + u(v' - v) = e^x, \\ v' - v = 0. \\ u'v + u \cdot 0 = e^x \\ u'v = e^x \end{cases}$$

3) В полученной системе уравнений $\begin{cases} v'-v=0 \\ u'v=e^x \end{cases}$ поочередно решаем уравнения:

$$\frac{dv}{dx} = v$$

$$\int \frac{dv}{v} = \int dx$$

$$\ln|v| = x$$

$$v = e^{x}$$

На данном этапе константа $\mathcal C$ не учитывается.

2)
$$u'v = e^x$$

 $\frac{du}{dx} \cdot e^x = e^x$

$$\int du = \int dx$$

 $u = x + C$

4) Подставляем полученные значения функций v и u в изначальную формулу y=uv:

$$y = uv = e^x(x + C)$$

5 Линейные дифференциальные уравнения второго порядка с коэффициентами

Однородное ДУ второго порядка с постоянными переменными имеет вид:

$$y'' + py' + qy = 0$$
, где p и q — некоторые числа

1) Для того чтобы решить уравнение такого вида заменим y'' на λ^2 и y' на λ . Полученное уравнение называется характеристическим, и решается аналогично другим квадратным уравнениям.

$$y'' + py' + qy = 0$$
 $\lambda^2 + p\lambda + q = 0$ (Вместо y ничего не записываем)

2) В зависимости от полученных значений λ , ответ будет выглядеть по-разному.

Если в полученном уравнении D>0, то $y=\mathcal{C}_1e^{\lambda_1x}+\mathcal{C}_2e^{\lambda_2x}$

Если в полученном уравнении D=0, то $y=C_1e^{\lambda x}+C_2xe^{\lambda x}=e^{\lambda x}(C_1+C_2x)$ Если в полученном уравнении D<0 и $\lambda_1=\alpha-\beta i, \lambda_2=\alpha+\beta i$, то $y=e^{\alpha x}\cdot(C_1\cos\beta x+C_2x)$ $C_2 \sin \beta x$

В данных условиях D — это дискриминант квадратного уравнения

12.3A Комплексные числа II

1 Аргумент комплексного числа

Аргумент комплексного числа связан с его координатами следующими формулами:

$$tg(\varphi) = \frac{b}{a}$$
$$\cos(\varphi) = \frac{1}{\sqrt{a^2 + b^2}}$$
$$\sin(\varphi) = \frac{b}{\sqrt{a^2 + b^2}}$$

В данных формулах a — действительная часть, b — мнимая часть комплексного числа.

Однако ни одна из этих формул по отдельности не позволяет вычислить аргумент. Для того чтобы найти его нужно либо использовать их в системе уравнений (Обычно

$$\begin{cases} \cos(\varphi) = rac{a}{\sqrt{a^2 + b^2}}, \ \sin(\varphi) = rac{b}{\sqrt{a^2 + b^2}}, \$$
либо учитывать номер четверти на координатной плоскости, в которой

находится комплексное число.

$$rg z = \left\{egin{array}{l} arctgrac{b}{a} \ \mathrm{B} \ \mathrm{первой} \ \mathrm{четверти}, \ & \pi - arctg \left|rac{b}{a}
ight| \ \mathrm{Bo} \ \mathrm{второй} \ \mathrm{четвертu}, \ & \pi + arctg \left|rac{b}{a}
ight| \ \mathrm{B} \ \mathrm{третьей} \ \mathrm{четвертu}, \ & 2\pi - arctg \left|rac{b}{a}
ight| \ \mathrm{B} \ \mathrm{четвертой} \ \mathrm{четвертu}. \end{array}
ight.$$

2 Комплексное число в тригонометрической форме

Комплексное число записывается в тригонометрической форме, как:

$$z = |z|(\cos \varphi + i \cdot \sin \varphi)$$

Где $-\pi < \varphi < \pi$

 $oldsymbol{arphi}$ – аргумент комплексного числа

|z| — модуль комплексного числа

3 Действия над комплексными числами, представленными в тригонометрической форме

Умножение:

$$z_1 \cdot z_2 = r_1 \cdot r_2 \cdot (\cos(\varphi_1 + \varphi_2) + i \cdot \sin(\varphi_1 + \varphi_2))$$

Деление:

$$\frac{z_1}{z_2} = \frac{r_1}{r_2} \cdot (\cos(\varphi_1 - \varphi_2) + i \cdot \sin(\varphi_1 - \varphi_2))$$

Возведение в степень (по формуле Муавра):

$$z^n = r^n \cdot (\cos n\varphi + i \cdot \sin n\varphi)$$

Корень комплексного числа:

$$\sqrt[n]{z} = \sqrt[n]{r} \cdot \left(\cos\left(\frac{\varphi + 2\pi k}{n}\right) + i \cdot \sin\left(\frac{\varphi + 2\pi k}{n}\right)\right),$$

Где k = 0,1,2...,(n-1)

4 Множества точек на комплексной плоскости, задаваемых равенствами и неравенствами

1. Re z > a u Im z > a

Запись вида $Re\ z>a$ на диаграмме Аргана соответствует неравенству x>a на координатной плоскости, в то время как $Im\ z>a$ — соответствует y>a.

Пример

Изобразить неравенство $Re\ z>2$ на комплексной плоскости

Данное неравенство равносильно неравенству x>2, соответственно на координатной плоскости геометрическое место таких точек будет выглядеть так:

2. $|z - z_0| < a$

Неравенство вида $|z-z_0| < a$ задает круг радиуса a с центром в точке z_0 . При этом неравенство $|z-z_0| \le a$ определяет замкнутую область — то есть граница круга будет входить в геометрическое место точек.

Пример

Изобразить неравенство |z - (2 - 3i)| < 3 на комплексной плоскости

12.3В Численные методы

1 Итерационный метод половинного деления

В математике, некоторые задачи невозможно решить с помощью точных методов. Для решения таких задач используются *итерационные методы решения*.

Задача нахождения корня уравнения **методом половинного деления** состоит из двух этапов:

- 1. Локализация нахождение приближенного значения корня или содержащего его отрезка.
- 2. Уточнение приближенных значений доведение их до заданной степени точности.

При решении таких задач в первую очередь нужно определить:

- 1) Количество корней уравнения
- 2) Промежутки на которых находятся эти корни

Пример

$$\sin 2x - \ln x = 0$$

В первую очередь преобразуем уравнение

$$\sin 2x = \ln x$$

И построим графики функций $\sin 2x$ и $\ln x$

1. Из рисунка видно, что у графиков только одна точка пересечения, соответственно у уравнения только одно решение, которое находится на промежутке $x \in (1; 1.5)$. Для проверки вычислим значения функции $f(x) = \sin 2x - \ln x$ на концах отрезка (1; 1.5):

$$f(1) = 0.909298$$

 $f(1.5) = -0.264344$

Так как значения имеют разные знаки, на данном промежутке действительно находится

2. Теперь, чтобы уточнить корень воспользуемся методом половинного деления: Алгоритм (с продолжением решения уравнения $\sin 2x = \ln x$ с точностью до $\varepsilon = 10^{-2} =$

 $m=rac{x_1+x_2}{2}$ $m=rac{x_1+x_2}{2}=1.25$

$$m = \frac{1+1.5}{2} = 1.25$$

2) Найдем значение $d=f(m)\cdot f(a)$. Если d>0, то b=m, иначе a=m

Принцип очень прост. Используя метод половинного деления, мы хотим сузить найденный ранее промежуток в два раза. В то же время корень уравнения находится на промежутке только тогда, когда значение функции на одном конце отрезка положительное, а на другом отрицательное. Так же мы знаем, что произведение двух чисел может быть отрицательным только если одно из них положительное, а другое — отрицательное. Значит если f(m) · f(a) < 0, то корень находится на промежутке (a; m), а если $f(m) \cdot f(a) > 0$, то на промежутке (m, b).

$$f(1) \cdot f(1.25) = 0.341285$$

 $f(1) \cdot f(1.25) > 0 = >$ корень находится на промежутке (1.25; 1.5)

3) Повторяем первый и второй пункт, пока разница между координатами в промежутке не станет меньше чем $\varepsilon = 10^{-2}$:

$$m = \frac{1.25 + 1.5}{2} = 1.375$$

$$f(1.25) \cdot f(1.375) = 0.023724$$

$$f(1.25) \cdot f(1.375) > 0 => \text{корень находится на промежутке } (1.375; 1.5)$$

$$\varepsilon = \frac{1.5 - 1.375}{2} = 0.0625 > 10^{-2} - \text{точность не достигнута}$$

Точность не достигнута, так что продолжаем делить промежуток:
$$m = \frac{1.375 + 1.5}{2} = 1.4375$$

$$f(1.375) \cdot f(1.4375) = -0.006287$$

$$f(1.375) \cdot f(1.4375) < 0 => \text{ корень находится на промежутке } (1.375; 1.4375)$$

$$\varepsilon = \frac{1.4375 - 1.375}{2} = 0.03125 > 10^{-2} - \text{точность не достигнута}$$

4) Продолжаем делить отрезок пополам пока не будет достигнута нужная точность решения. В результате найдем промежуток (1.390625; 1.40625)

$$\varepsilon = \frac{1.40625 - 1.390625}{2} = 0.0078125 < 10^{-2} - \text{точность достигнута}$$

$$x = \frac{1.390625 + 1.40625}{2} \approx 1.398$$

2 Метод простой итерации

Метод простой итерации реализует постепенное уточнение корня уравнения путем подставления некоторого значения x_0 в это уравнение. (Обычно данное значение x_0 всегда дано в задании и находить его не нужно)

Помимо этого, до того как использовать метод простой итерации необходимо привести изначальное уравнение к форме x = f(x), где f(x) – некоторый многочлен

Пример

Для уравнения $7 + 4x - 2x^3 = 0$, найдите первые три значения корней (x_1, x_2, x_3) методом простой итерации, при $x_0=2$. Все значения округлять до тысячных.

Решение

1. Приведем данное уравнение к виду x = f(x). Сделать это можно двумя способами:

1)
$$7 + 4x - 2x^{3} = 0$$

 $4x = 2x^{3} - 7$
 $x = \frac{2x^{3} - 7}{4}$
2) $7 + 4x - 2x^{3} = 0$
 $x^{3} = \frac{4x + 7}{2}$
 $x = \sqrt[3]{2x + 3.5}$

2. В полученные многочлены f(x), подставляем поочередно полученные значения x_n

1)
$$x_1 = \frac{2x_0^3 - 7}{4} = \frac{2 \cdot (2)^3 - 7}{4} \approx 2.25$$

 $x_2 = \frac{2x_1^3 - 7}{4} \approx 3.945$
 $x_3 = \frac{2x_2^3 - 7}{4} \approx 28.955$
2) $x_1 = \sqrt[3]{2x_0 + 3.5} \approx 1.957$
 $x_2 = \sqrt[3]{2x_1 + 3.5} \approx 1.950$
 $x_3 = \sqrt[3]{2x_2 + 3.5} \approx 1.949$

Как мы видим, в первом случае значение x увеличивается и стремится к бесконечности. Полученная последовательность не имеет предела и найти приближенное значение корня не получится.

Во втором же случае x стремится к 1.949. То есть:

$$\sqrt[3]{2 \cdot 1.949 + 3.5} \approx 1.949 \Rightarrow 7 + 4 \cdot 1.949 - 2 \cdot 1.949^3 \approx 0$$

Значит значение 1.949 является приближенным решением уравнения $7 + 4x - 2x^3 = 0$

3 Биномиальное разложение с рациональным показателем степени

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!}x^2 + \frac{\alpha(\alpha-1)(\alpha-2)}{3!}x^3 + \cdots$$

Пример

Расписать первые четыре члена $(9 - 6x)^{\frac{1}{2}}$

1) Вынесем число 9 за скобки:

$$(9-6x)^{\frac{1}{2}} = 9^{\frac{1}{2}} \cdot \left(1 - \frac{6x}{9}\right)^{\frac{1}{2}} = 3\left(1 - \frac{2}{3}x\right)^{\frac{1}{2}}$$

2) Используем формулу биномиального разложения с рациональным показателем степени:

$$3\left(1 - \frac{2}{3}x\right)^{\frac{1}{2}} = 3\left(1 + \frac{1}{2}\cdot\left(-\frac{2}{3}x\right) + \frac{\frac{1}{2}\cdot\left(\frac{1}{2}-1\right)}{2!}\cdot\left(-\frac{2}{3}x\right)^{2} + \frac{\frac{1}{2}\cdot\left(\frac{1}{2}-1\right)\cdot\left(\frac{1}{2}-2\right)}{3!}\cdot\left(-\frac{2}{3}x\right)^{3} + \cdots\right)$$

$$= 3\left(1 - \frac{x}{3} - \frac{x^{2}}{12} - \frac{x^{3}}{24} + \cdots\right) = 3 - x - \frac{x^{2}}{4} - \frac{x^{3}}{8} + \cdots$$

12.3С Основные задачи математической статистики

1 Несмещенная точечная оценка параметра распределения. Основные понятия

Точечная оценка — точечная оценка обозначает точное значение параметра, оцененного для генеральной совокупности.

Оценка некоторого параметра — некоторая числовая характеристика, рассчитанная по некоторой выборке. Например, в качестве оценки математического ожидания генеральной совокупности можно использовать медиану, полусумму квартилей или выборочное среднее.

Смещенность/Несмещенность:

Статистическую оценку некоторого параметра генеральной совокупности называют несмещенной, если ее математическое ожидание этой оценки равно самому оцениваемому параметру вне зависимости от объема выборки. В противном случае оценку называют смещенной.

2 Несмещенная оценка среднего. Смещенная оценка дисперсии

Если некоторая выборка состоит из n наблюдений над случайной величиной X, и выборочное среднее этой выборки — случайная величина X, то:

1)
$$M(\bar{X}) = \mu$$
, где $\mu = M(X)$

2)
$$D(\bar{X}) = \frac{\sigma^2}{n}$$
, где $\sigma^2 = D(X)$

Пример

Неправильная монета, с вероятностью выпадения "орла" при подбрасывании равной $\frac{3}{4}$, подброшена 25 раз. Обозначим среднее число выпавших "орлов" как \bar{X} . Найдите $M(\bar{X})$ и $D(\bar{X})$.

Решение

Составим закон распределения случайной величины X:

x	0	1
P(X=x)	1	3
	$\frac{\overline{4}}{4}$	$\frac{\overline{4}}{4}$

3десь x=1 – это выпадение "орла", x=0 – это выпадение "решки"

Найдем математическое ожидание и дисперсию:

$$\mu = M(X) = 0 \cdot \frac{1}{4} + 1 \cdot \frac{3}{4} = \frac{3}{4}$$

$$\sigma^2 = D(X) = 0^2 \cdot \frac{1}{4} + 1^2 \cdot \frac{3}{4} - \left(\frac{3}{4}\right)^2 = \frac{3}{16}$$

Используя формулы математического ожидания и дисперсии выборочного среднего, получим:

$$M(\bar{X}(25)) = \mu = \frac{3}{4}$$
$$D(\bar{X}(25)) = \frac{\sigma^2}{25} = \frac{1}{25} \cdot \frac{3}{16} = \frac{3}{400}$$

3 Центральная предельная теорема

Для любой выборки независимо распределенных случайных величин с математическим ожиданием μ и дисперсией $\sigma^2 \neq 0$, при условии что n (количество элементов в выборке) достаточно велико, \bar{X} ($\bar{X} = \frac{X_1 + X_2 + \dots + X_n}{n}$) приблизительно распределяется нормально со средним μ и дисперсией $\frac{\sigma^2}{n}$. То есть $\bar{X} \sim N(\mu; \frac{\sigma^2}{n})$.

Примечание

Если независимые и одинаково распределенные случайные величины $X_1, X_2, X_3, \dots X_n$ распределены по нормальному закону распределения с параметрами $N(\mu; \sigma^2)$, то распределение выборочного среднего \overline{X} точно будет нормальным с параметрами $N(\mu; \frac{\sigma^2}{n})$, вне зависимости от объема выборки n

Пример

Непрерывная случайная величина X имеет функцию плотности вероятности f(x), определяемую как:

$$f(x) = \begin{cases} 2x, \text{для } 0 \le x \le 1\\ 0, \text{в противном случае} \end{cases}$$

- а) Найдите математическое ожидание M(x)
- b) Дисперсию $\sigma^2 = D(X)$
- с) Была построена случайная выборка из 150 наблюдений над этой случайной величиной. Рассчитать вероятность $P(\bar{X} < 0.68)$

Решение

a)
$$\mu = M(X) = \int_{-\infty}^{+\infty} x \cdot f(x) \, dx = \int_{-\infty}^{0} x \cdot 0 \, dx + \int_{0}^{1} x \cdot 2x \, dx + \int_{1}^{+\infty} x \cdot 0 \, dx = \int_{0}^{1} 2x^{2} \, dx = \frac{2}{3}x^{3} \Big|_{0}^{1} = \frac{2}{3}$$

b) $\sigma^{2} = M(X^{2}) - (M(X))^{2} = \int_{-\infty}^{+\infty} x^{2} \cdot f(x) \, dx - (M(X))^{2} = \int_{-\infty}^{0} x^{2} \cdot 0 \, dx + \int_{0}^{1} x^{2} \cdot 2x \, dx + \int_{0}^{+\infty} x^{2} \cdot 0 \, dx - \left(\frac{2}{3}\right)^{2} = \int_{0}^{1} 2x^{3} \, dx - \frac{4}{9} = \frac{2x^{4}}{4} \Big|_{0}^{1} - \frac{4}{9} = \frac{1}{2} - \frac{4}{9} = \frac{1}{18}$

с) По центральной предельной теореме:

$$\bar{X} \sim N\left(\frac{2}{3}; \frac{1}{18 \cdot 150}\right)$$
$$\bar{X} \sim N\left(\frac{2}{3}; \frac{1}{2700}\right)$$

Тогда, используя формулу нормализации переменной для нормального распределения:

$$P(\bar{X} < 0.68) \approx P\left(Z < \frac{0.68 - \frac{2}{3}}{\sqrt{\frac{1}{2700}}}\right) = P(Z < 0.6928...) = 0.7559$$

Несмещенная оценка дисперсии

.Если V - выборочная дисперсия выборки размера n, взятой из генеральной совокупности с дисперсией σ^2 , тогда:

$$M(V) = \frac{n-1}{n} \cdot \sigma^2$$

Получается, что:

$$M(V) \cdot \frac{n}{n-1} = \sigma^2$$
$$\sigma^2 = M\left(\frac{nV}{n-1}\right)$$

Это значит, что:

$$V = \frac{X_1^2 + X_2^2 + X_3^2 + \dots + X_n^2}{n} - \bar{X}^2 - \text{это смещенная оценка } \sigma^2$$

$$\frac{n}{n-1} \cdot V = \frac{n}{n-1} \left(\left(\frac{X_1^2 + X_2^2 + X_3^2 + \dots + X_n^2}{n} \right) - \bar{X}^2 \right) - \text{это несмещенная оценка } \sigma^2$$

Выражение
$$\frac{n}{n-1} \left(\left(\frac{X_1^2 + X_2^2 + X_3^2 + \dots + X_n^2}{n} \right) - \bar{X}^2 \right)$$
 обозначается как S^2

Пример:

Натуралист хочет вычислить дисперсию количества яиц, отложенных жаворонками. По результатам исследования 50 гнезд известно, чт

$$\sum m^2 = 162, \qquad \sum m = 66$$

 $\sum m^2 = 162, \qquad \sum m = 66$ Используя данные найдите несмещенную оценку дисперсии популяции жаворонков. Решение:

$$S^{2} = \frac{n}{n-1} \cdot V = \frac{n}{n-1} \left(\frac{\sum m^{2}}{n} - \left(\frac{\sum m}{n} \right)^{2} \right)$$
$$\frac{n}{n-1} \left(\frac{\sum m^{2}}{n} - \left(\frac{\sum m}{n} \right)^{2} \right) = \frac{50}{50-1} \left(\frac{162}{50} - \left(\frac{66}{50} \right)^{2} \right) \approx 1,528$$

Интервальная оценка параметра распределения

Интервальное оценивание — это вид статистического оценивания, предполагающий построение доверительного интервала, в котором с определенной вероятностью находится истинное значение некоторого оцениваемого параметра (например среднего значения μ). Несмещенная оценка среднего генеральной совокупности по своей сути является случайной величиной, поэтому в разных выборках она может принимать разные значения. Поэтому, чтобы оценить насколько точно найденное значение, находится доверительный интервал.

Доверительный интервал — это промежуток значений, который с определенной вероятностью гарантирует попадание в него оцениваемого параметра генеральной совокупности. Обычно, интервал является симметричным относительно некоторого параметра. Например, доверительный интервал для среднего значения записывается так:

$$[ar{X}-c;ar{X}+c]$$
, где c — это число которое нужно найти $c=ar{X}-\mu$,

Где $ar{X}$ – это среднее выборки, а μ – это среднее генеральной совокупности

Вычисление доверительного интервала

Пример

Для измерения скорости звука в воздухе результаты повторных экспериментов распределяются по нормальному закону распределения со стандартным отклонением 6 м/с. С помощью этого метода проводится 50 измерений. Рассчитайте симметричный 95% доверительный интервал для скорости звука в воздухе.

Решение

1) Результаты данных экспериментов (X) распределены по нормальному закону с неизвестным средним (μ) и известным стандартным отклонением ($\sigma=6$). Тогда, по центральной предельной теореме для выборки размером 50, среднее генеральной совокупности будет распределено по закону:

$$\bar{X} \sim N\left(\mu, \frac{6^2}{50}\right)$$
$$\bar{X} \sim N(\mu, 0.72)$$

2) Вероятность попадания значения $ar{X}$ в доверительный интервал $[ar{X}-c;ar{X}+c]$ по условию задачи должна составлять 95%. То есть

Так как $c = \bar{X} - \mu$, искомое значение c можно найти по формуле стандартизации переменной:

$$Z = \frac{\bar{X} - \mu}{\sqrt{\frac{\sigma^2}{n}}}$$

Для этого найдем значение z. Учитывая, что:

$$P(ar{X} \leq \mu - c) + P(ar{X} \geq \mu + c) = 0.05$$
 и $P(ar{X} \leq \mu - c) = P(ar{X} \geq \mu + c)$ $P(ar{X} \leq \mu + c) = P(|ar{X} - \mu| \leq c) + P(ar{X} \leq \mu - c) = 0.95 + 0.025 = 0.975$ Поэтому $\Phi(z) = 0.975$

По таблице z=1.96. Теперь подставим полученное значение в формулу стандартизации переменной:

$$1.96 = \frac{\bar{X} - \mu}{\sqrt{\frac{6^2}{50}}}$$

$$c = \bar{X} - \mu = 1.96 \cdot \sqrt{\frac{6^2}{50}} \approx 1.6631$$

Таким образом доверительный интервал с 95% вероятностью попадания в него среднего значения будет соответствовать интервалу:

$$[\bar{X} - 1.6631; \bar{X} + 1.6631]$$

6 Проверка статистических гипотез

Нулевая гипотеза — это основная гипотеза, которая предполагает отсутствие изменения рассматриваемой выборочной характеристики. Нулевая гипотеза обозначается как H_0 .

Альтернативная гипотеза — это конкурирующая гипотеза, которая является логическим отрицанием нулевой гипотезы. Альтернативная гипотеза обозначается как H_1 .

Ошибка первого рода — отвержение верной нулевой гипотезы H_0 .

Ошибка второго рода – принятие неверной нулевой гипотезы H_0 .

Уровень значимости — при проверке статистической гипотезы уровень значимости определяется как вероятность допустить ошибку первого рода. Уровень значимости обозначается α .

Область принятия гипотезы — подмножество значений статистики, при которых нулевая гипотеза H_0 принимается.

Область отклонения гипотезы (критическая область) – подмножество значений статистики при которых нулевая гипотеза H_0 отвергается.

Статистические методы проверки гипотезы разделяются на 4 этапа:

- 1. Определение нулевой и альтернативной гипотезы.
- 2. Определение уровня значимости и критической области.
- 3. Вычисление критического значения и области отклонения статистической характеристики
- 4. Формулировка выводов.

Пример

Завод производил канаты, которые имеют разрывную нагрузку, которая распределена по нормальному закону распределения со средним значением 1500 Н и стандартным отклонением 30 Н. Был введен новый метод изготовления. Чтобы проверить, изменилась ли средняя разрывная нагрузка, отобрали выборку из 100 кусков веревки, измерили разрывную

нагрузку для каждого куска и получили среднее значение разрывной нагрузки 1507 Н. При уровне значимости равном 5% сделайте вывод от том, дает ли использование нового метода изготовления каната иные результаты разрывной нагрузки по сравнению со старым?

Решим задачу поэтапно, используя методы проверки статистической гипотезы:

1. Определение нулевой и альтернативной гипотезы

Нулевая гипотеза предполагает отсутствие изменения рассматриваемой выборочной характеристики. Значит за нулевую гипотезу примем:

$$H_0$$
: $\mu = 1500$

Владелец завода хочет исследовать, будет ли применение нового метода изготовления способствовать изменению разрывной нагрузки. Значит за альтернативную гипотезу примем:

$$H_1: \mu \neq 1500$$

2. Определение уровня значимости и критической области

Так как разрывная нагрузка распределена по нормальному закону, то по центральной предельной теореме, выборочное среднее так же распределено нормально:

Если уровень значимости по условию задачи равен 5% ($\alpha=5$ %), то и общая критическая область составляет 5%. Области отклонения будут находиться по разные стороны от области принятия (так как по альтернативной гипотезе, нам интересно любое изменение среднего генеральной совокупности H_1 : $\mu \neq 1500$) и по отдельности будут составлять 2.5%.

3. Вычисление критического значения и области отклонения статистической характеристики Чтобы найти верхнее критическое значение c_2 используем формулу стандартизации переменной в нормальном распределении:

$$z = \frac{\bar{X} - \mu}{\sqrt{\frac{\sigma^2}{n}}}$$

$$\Phi(z) = 0.975 \rightarrow z = 1.96$$

$$1.96 = \frac{c_2 - 1500}{\sqrt{\frac{30^2}{100}}}$$

$$c_2 = 1.96 \cdot \sqrt{\frac{30^2}{100} + 1500} = 1505.88$$

Соответственно:

 $c_1 = 1494.12$ Таким образом область отклонения: $egin{array}{l} ar{X} \leq 1494.12 \ ar{X} > 1505.88 \end{array}$

4. Формулировка выводов

Наблюдаемое среднее значение выборки $\bar{x}=1507$ находится в области отклонения. Значит, нулевая гипотеза отвергается, и принимается альтернативная гипотеза – изменение метода производства повлияло на изменение средней разрывной нагрузки канатов.

$$\mu \neq 1500$$

12.3D Решение прикладных задач с помощью интегрирования и дифференцирования

Алгоритм решения задач с помощью интегрирования и дифференцирования

Дифференциальные уравнения нередко используются в разных науках как математические модели реальных процессов. Так как производная характеризует скорость изменения функции, по отношению к увеличению/уменьшению независимой переменной, с помощью нее возможно установить связь между такими функциями и их производными. Например – скорость химической реакции в химии или скорость размножения микроорганизмов в биологии можно описать с помощью производной.

Общий алгоритм решения задач с помощью дифференциальных уравнений в большинстве случаев сводится к следующему:

- 1. Определение независимой переменной и зависимого от нее параметра и составление дифференциального уравнения данной зависимости.
- 2. Составление общего решения уравнения используя методы интегрирования.
- 3. Определение частного решения путем использования данных задачи.
- 4. Использование полученного частного решения для определения искомых величин.

Говоря простым языком, каждая группа задач подчиняется определенной формуле (формула теплообмена, экспоненциального роста, радиоактивного распада, теплообмена и другие), в которую достаточно подставить данные из задания чтобы определить ее параметры. Все что остается – использовать полученную формулу и определить ответ в зависимости от поставленной задачи.

Задачи на экспоненциальный рост и радиоактивный распад

Экспоненциальный рост и радиоактивный распад описывается дифференциальным уравнением:

$$\frac{dx}{dt} = kx$$

В нем x – это количество объектов которые подвергаются экспоненциальному росту (или распаду), t – время которое прошло с начала роста (или распада), а k – некоторый коэффициент роста (или распада). Общее решение этого дифференциального уравнения – экспонента вида:

$$x = Ce^{kt}$$

Пример

Предположим, что скорость роста населения Земли пропорциональна численности населения. Тогда, используя тот факт, что население планеты в 1970 году составляло 3682 млн. человек, а в 1980 году 4433 млн. человек:

- а) Составьте математическую модель роста населения мира.
- b) Используйте полученную модель для того чтобы:
 - а. Оценить численность населения мира в 2000 году.
 - b. Прогнозировать численность населения в 2030 году.

Решение

1. Определение независимой переменной и зависимого от нее параметра и составление дифференциального уравнения данной зависимости.

По условию задачи скорость роста пропорциональна численности населения. Тогда, зная формулу экспоненциального роста, имеем:

$$\frac{dx}{dt} = kx$$

В данной формуле x — население (зависимая переменная), а t — время (независимая переменная).

2. Составление общего решения уравнения используя методы интегрирования. Разделим переменные по разные стороны от знака "=" и интегрируем полученное уравнение:

$$\frac{dx}{x} = kdt$$

$$\int \frac{dx}{x} = \int kdt$$

$$ln x = tk + C$$

$$x = e^{tk+C}$$

$$x(t) = Ce^{tk}$$

3. Определение частного решения путем использования данных задачи.

Представим данные 1970 года как изначальное количество людей, то есть количество людей при t=0. Тогда 1980 год соответствует t=10, 2000 - t=30 и 2030 - t=60. Для того чтобы найти коэффициент C используем данные 1970 года:

$$3682 = C \cdot e^{0 \cdot k}$$
$$C = 3682$$

Далее, для того чтобы найти коэффициент k используем данные 1980 года:

$$4433 = 3682e^{10 \cdot k}$$

$$e^{10k} = \frac{4433}{3682}$$

$$ln e^{10k} = ln \frac{4433}{3682}$$

$$10k = ln \frac{4433}{3682}$$

$$k = \frac{\ln \frac{4433}{3682}}{10} \approx 0.01856204729 \approx 0.01856$$

Получается, частное решение дифференциального уравнения по условию задачи принимает вид:

$$x(t) = 3682e^{\frac{ln\frac{4433}{3682}}{10} \cdot t}$$

4. Использование полученного частного решения для определения искомых величин.

Для того чтобы оценить численность населения в 2000 году подставим в полученную формулу значение t=30:

$$x(30) = 3682e^{\frac{\ln\frac{4433}{3682}}{10} \cdot 30} \approx 6426$$
 млн.

Для того чтобы предсказать численность населения в 2030 году подставим в формулу значение t=60:

$$x(60) = 3682e^{\frac{ln\frac{4433}{3682}}{10} \cdot 60} \approx 11214$$
 млн.

3 Задачи на теплообмен

Теплообмен описывается дифференциальным уравнением:

$$\frac{dT}{d\tau} = k(T - t)$$

В нем au – это время охлаждения объекта, t – это температура рассматриваемого объекта, t – температура окружающего воздуха, а k – коэффициент пропорциональности. Общее решение этого дифференциального уравнения – экспонента вида:

$$T - t = Ce^{k\tau}$$

Пример

За какое время тело, нагретое до 200 градусов, в комнате с температурой 20 градусов охладится до 80 градусов, если до 100 градусов оно охладилось за 30 минут?

Решение

1. Определение независимой переменной и зависимого от нее параметра и составление дифференциального уравнения данной зависимости

Теплообмен описывается дифференциальным уравнением:

$$\frac{dT}{d\tau} = k(T - t)$$

В данной формуле τ (время) — это независимая переменная, а T (температура тела) — это зависимый от нее параметр. По условию задачи t (температура окружающей среды) равна 20 градусам. Тогда дифференциальное уравнение принимает вид:

$$\frac{dT}{d\tau} = k(T - 20)$$

2. Составление общего решения уравнения используя методы интегрирования.

Разделим переменные по разные стороны от знака "=" и интегрируем полученное уравнение:

$$\frac{dT}{T - 20} = kd\tau$$

$$\int \frac{dT}{T - 20} = \int kd\tau$$

$$\ln|T - 20| = k\tau + C$$

$$e^{\ln|T - 20|} = e^{k\tau + C}$$

$$T - 20 = Ce^{k\tau}$$

3. Определение частного решения путем использования данных задачи

Для того чтобы найти коэффициент C используем начальное условие — при au=0 и T=200:

$$200 - 20 = Ce^{k \cdot 0}$$

$$C = 180$$

Далее, для того чтобы найти коэффициент k используем дополнительное условие – при au=30 и T=100:

$$100 - 20 = 180e^{30k}$$
$$e^{30k} = \frac{80}{180} = \frac{4}{9}$$
$$30k = ln\frac{4}{9}$$

$$k = \frac{\ln\frac{4}{9}}{30} \approx -0.0270310072 \approx -0.02703$$

Получается, частное решение дифференциального уравнения по условию задачи принимает вид:

$$T - 20 = 180e^{\frac{\ln\frac{4}{9}}{30} \cdot \tau}$$

4. Использование полученного частного решения для определения искомых величин Для того чтобы оценить время за которое тело охладится до 80 градусов подставим в полученную формулу значение T=80:

$$80 - 20 = 180e^{\frac{\ln\frac{4}{9}}{30} \cdot \tau}$$

$$e^{\frac{\ln\frac{4}{9}}{30} \cdot \tau} = \frac{60}{180} = \frac{1}{3}$$

$$\frac{\ln\frac{4}{9}}{30} \cdot \tau = \ln\frac{1}{3}$$

$$\tau = \frac{\ln\frac{1}{3}}{\frac{\ln\frac{4}{9}}{30}} \approx 40.6$$

4 | Задачи на истечение жидкости

Скорость истечения воды из сосуда определяется формулой:

$$v = 0.6\sqrt{2gh}$$

В нем v — это скорость, h — это высота столба жидкости, а g — это ускорение свободного падения ($\approx 9.81~{\rm m}/c^2$).

Дифференциальные уравнения истечения жидкости составляются по формуле:

$$V_{ ext{вытекшей жидкости}} = V_{ ext{освободившейся части}} \ V_{ ext{освоб}} = -\pi R^2 dh \ V_{ ext{выт. жидк.}} = v \cdot \pi r^2 dt = 0.6\pi r^2 \sqrt{2gh} \ dt \ rac{dh}{dt} = -rac{0.6r^2 \sqrt{2gh}}{R^2}$$

 $\frac{dh}{dt} = -\frac{0.6r^2\sqrt{2gh}}{R^2}$ В данных формулах r – это радиус отверстия, а R – это диаметр основания сосуда (то есть πr^2 – это площадь отверстия, а πR^2 – это площадь основания сосуда)

Общее решение полученного дифференциального уравнения:

$$\int \frac{R^2 dh}{\sqrt{2gh}} = -0.6 \int r^2 dt$$

$$2R^2 \sqrt{\frac{h}{2g}} = -0.6r^2t + C$$

Пример

За какое время вытечет вода из цилиндрического сосуда с диаметром основания 2 метра и высотой 3 метра через отверстие в дне сосуда диаметром 5 см? (Ускорение свободного падения принять равным 10)

Решение

1. Определение независимой переменной и зависимого от нее параметра и составление дифференциального уравнения данной зависимости.

Истечение жидкости описывается дифференциальным уравнением:

$$\frac{dh}{dt} = -\frac{0.6r^2\sqrt{2gh}}{R^2}$$

В данной формуле t (время) — это независимая переменная, а h (высота столба жидкости) — это зависимый от нее параметр. По условию задачи R=2, r=0.05 (т.к. 5 см = 0.05 м). Тогда дифференциальное уравнение принимает вид:

$$\frac{dh}{dt} = -\frac{0.6 \cdot 0.05^2 \sqrt{2gh}}{2^2}$$

$$\frac{dh}{dt} = -0.000375 \sqrt{2gh}$$

2. Составление общего решения уравнения используя методы интегрирования. Разделим переменные по разные стороны от знака "=" и интегрируем полученное уравнение:

$$\frac{dh}{\sqrt{2gh}} = -0.000375dt$$

$$\int \frac{dh}{\sqrt{2gh}} = \int -0.000375dt$$

$$2\sqrt{\frac{h}{2g}} = -0.000375t + C$$

3. Определение частного решения путем использования данных задачи. Для того чтобы найти коэффициент C используем начальное условие – при t=0 и

h = 3:

$$C = 2\sqrt{\frac{h}{2g}} = 2\sqrt{\frac{3}{20}}$$
$$C \approx 0.775$$

Получается, частное решение дифференциального уравнения по условию задачи принимает вид:

$$2\sqrt{\frac{h}{2g}} = -0.000375t + 0.775$$

4. Использование полученного частного решения для определения искомых величин.

Для того чтобы оценить время за которое вся жидкость вытечет из сосуда подставим в полученную формулу значение h=0:

$$2\sqrt{\frac{0}{2g}} = -0.000375t + 0.775$$
 $0.000375t = 0.775$ $t = \frac{0.775}{0.000375}$ $t \approx 2067$ (сек.) ≈ 34.4 (мин.)

Задачи на движение

Движение объекта определяется формулой:

$$m\frac{dv}{dt} = -F_{\text{сопротивления}}$$

 $mrac{dv}{dt}=-F_{
m coпротивления}$ В ней m — это масса движущегося объекта, $rac{dv}{dt}$ — его ускорение, а F — сила сопротивления. Универсальной формулы силы сопротивления нет, и она всегда зависит от условия задачи. Например, формулировка: "сопротивление движению после начала торможения равно 0,2 его веса" означает, что:

$$F_{
m conpot.} = 0.2 P = 0.2 mg$$
, где g — ускорение свободного падения

Формулировка "Сопротивление воды прямо пропорционально скорости движения лодки" означает что:

$$F_{
m conpot.} = k v$$
, где $k-$ коэффициент пропорциональности

Это означает, что для составления общей формулы движения нужно ориентироваться на условие, поставленное в данной задаче.

Пример

Моторная лодка движется в спокойной воде со скоростью v_0 = 25 км/ч. На полном ходу ее мотор выключается, и через 60 секунд после этого скорость лодки уменьшается до $v_{\scriptscriptstyle 1}$ = 10 км/ч. Сопротивление воды прямо пропорционально скорости движения лодки. Определить скорость лодки через 3 минуты после остановки мотора.

Решение

1. Определение независимой переменной и зависимого от нее параметра и составление дифференциального уравнения данной зависимости.

Движение объекта определяется формулой:

$$m\frac{dv}{dt} = -F_{\text{сопрот.}}$$

По условию задачи сопротивление воды прямо пропорционально скорости движения лодки, значит:

$$F_{\text{сопрот.}} = kv$$
$$m\frac{dv}{dt} = -kv$$

2. Составление общего решения уравнения используя методы интегрирования. Разделим переменные по разные стороны от знака "=" и интегрируем полученное уравнение:

$$m\frac{dv}{dt} = -kv$$

$$\int \frac{dv}{v} = -\int \frac{k}{m} dt$$

$$\ln v = -\frac{k}{m}t + C$$

$$v = e^{-\frac{k}{m}t + C}$$

$$v = Ce^{-\frac{k}{m}t}$$

3. Определение частного решения путем использования данных задачи.

Для того чтобы найти коэффициент C используем начальное условие — при t=0 и v=25:

$$25 = Ce^{-\frac{k}{m} \cdot 0}$$
$$C = 25$$

Далее, для того чтобы найти отношение $\frac{k}{m}$ используем дополнительное условие — при t=60 и v=10:

$$10 = 25e^{-\frac{k}{m} \cdot 60}$$

$$e^{-\frac{k}{m} \cdot 60} = \frac{2}{5}$$

$$-\frac{k}{m} \cdot 60 = \ln \frac{2}{5}$$

$$\frac{k}{m} = -\frac{\ln\frac{2}{5}}{60} \approx 0.01527151219 \approx 0.01527$$

Получается, частное решение дифференциального уравнения по условию задачи принимает вид:

$$v = 25e^{-\left(-\frac{\ln^2_{\overline{5}}}{60}\right)t} = 25e^{\frac{\ln^2_{\overline{5}}}{60}t}$$

4. Использование полученного частного решения для определения искомых величин.

Для того чтобы оценить скорость лодки через 3 минуты после остановки мотора подставим в полученную формулу значение $t=180\ (\text{т.к.}\ 3\ \text{минуты}\ \text{это}\ 180\ \text{секунд})$:

$$v = 25e^{\frac{ln_{\overline{5}}^2}{60} \cdot 180} = 1.6 \text{ км/ч}$$

6 | Дифференциальные уравнения гармонических колебаний

Гармоническим колебанием называется синусоидальное либо косинусоидальное периодическое изменение физической величины в зависимости от времени.

Гармонические колебания описываются дифференциальным уравнением:

$$x'' + \omega_0^2 x = 0$$

В нем ω_0 — это угловая чистота, а x — смещение колеблющейся точки от положения равновесия. Общим решением дифференциального уравнения гармонических колебаний является уравнение вида:

$$x=C_1\cos\omega t+C_2\sin\omega t\,,$$
где C_1 и C_2 — константы
$$x=\sqrt{C_1^2+C_2^2\cos(\omega_0 t+\varphi)}=A\cos(\omega_0 t+\varphi)\,x=A\sin(\omega_0 t+\varphi)$$

В нем t – время, A – амплитуда (x_{max}) и $oldsymbol{arphi}$ – начальная фаза колебания.

Пример

Частица совершает простое гармоническое движение. Отклонение от центра колебания частицы равно x метрам в момент времени t.

а) Покажите, что функция $x = A\cos 5t + B\sin 5t$ является общим решением дифференциального уравнения:

$$\frac{d^2x}{dt^2} + 25x = 0$$

b) Найдите значение A и значение B и определите это частное решение дифференциального уравнения при $t=\frac{\pi}{5}$ такое, что x=-2 и $\frac{dx}{dt}=10$.

Решение

а) Используя формулу $x=A\cos 5t+B\sin 5t$ найдем $\frac{d^2x}{dt^2}$ посредством дифференцирования:

$$\frac{dx}{dt} = -5A\sin 5t + 5B\cos 5t$$
$$\frac{d^2x}{dt^2} = -25A\cos 5t - 25B\sin 5t$$

Теперь подставим полученное значение в уравнение $\frac{d^2x}{dt^2} + 25x = 0$.

$$-25(A\cos 5t + B\sin 5t) + 25x = 0$$
$$-25x + 25x = 0$$

Так как в результате получилось тождество, значит функция $x=A\cos 5t+B\sin 5t$ является решением уравнения $\frac{d^2x}{dt^2}+25x=0$.

b) Для того чтобы найти значения A и B используем данные из пункта b и формулы:

Тогда частное решение:

$$x = 2\cos 5t - 2\sin 5t$$

Дополнительные темы для подготовки к ВСО

Алгебра

Исследование функций

Уравнение касательной к графику функции в точке

Уравнение касательной для заданной функции f(x) в точке x_0 задается формулой:

$$y = f'(x_0) \cdot (x - x_0) + f(x_0)$$

Если в точке x_0 , $f'(x_0) = \pm \infty$, то касательная будет параллельна оси OY и ее уравнение принимает вид:

$$x - x_0 = 0$$

Уравнения нормали к графику функции в точке 2

Если в некоторой точке x_0 существует отличная от нуля производная $f'(x_0)$, то уравнение нормали к графику функции f(x) в точке $(x_0; f(x_0))$ задается формулой:

$$y = -\frac{1}{f'(x_0)} \cdot (x - x_0) + f(x_0)$$

3 Асимптоты графиков функций

1) Вертикальные асимптоты

Вертикальные асимптоты задаются формулой x=a, где a – действительное число.

Например, x=0 – вертикальная асимптота, для гиперболы $f(x)=rac{1}{x}$

Для того чтобы показать существование вертикальной асимптоты x=a, достаточно показать, что хотя бы один из односторонних пределов $\lim_{x \to a-0} f(x)$ или $\lim_{x \to a+0} f(x)$ равен $\pm \infty$. Обычно это те значения x, при которых знаменатель функции f(x) равен нулю.

Пример

Найти вертикальные асимптоты функции $f(x)=rac{2x^2+4x-5}{x(x-4)}$. Найдем предел функции в критических точках x=0 и x=4:

$$\lim_{x \to 0+0} \frac{2x^2 + 4x - 5}{x(x-4)} = \lim_{x \to 0+0} \frac{-5}{0 \cdot (-4)} = +\infty$$

$$\lim_{x \to 4+0} \frac{2x^2 + 4x - 5}{x(x-4)} = \lim_{x \to 4+0} \frac{43}{4 \cdot (0)} = +\infty$$

Так как пределы равны ∞ в обоих точках, функции x=0 и x=4 являются вертикальными асимптотами.

2) Наклонная асимптота

Наклонная асимптота задается уравнением прямой y = kx + b, где k - это угловой коэффициент, а b - свободный член.

Для того чтобы функция f(x) имела наклонную асимптоту y = kx + b необходимо и достаточно, чтобы существовали конечные пределы k и b рассматриваемой функции при стремлении переменной x к плюс бесконечности и минус бесконечности:

$$k = \lim_{x \to +\infty} \frac{f(x)}{x}; b = \lim_{x \to +\infty} (f(x) - kx)$$

$$k = \lim_{x \to -\infty} \frac{f(x)}{x}; b = \lim_{x \to -\infty} (f(x) - kx)$$

Пример

Найти наклонные асимптоты функции $y = \frac{2x-3x^2}{x+1}$.

Используем данные формулы:

$$k = \lim_{x \to \infty} \frac{\frac{2x - 3x^2}{x + 1}}{x} = \lim_{x \to \infty} \frac{x(2 - 3x)}{x(x + 1)} = \lim_{x \to \infty} \frac{2 - 3x}{x + 1} = \lim_{x \to \infty} \frac{\frac{2}{x} - 3}{1 + \frac{1}{x}} = -\frac{3}{1} = -3$$

$$b = \lim_{x \to \infty} \left(\frac{2x - 3x^2}{x + 1} - (-3x)\right) = \lim_{x \to \infty} \frac{2x - 3x^2 + 3x(x + 1)}{x + 1} = \lim_{x \to \infty} \frac{5x}{x + 1} = \lim_{x \to \infty} \frac{5}{1 + \frac{1}{x}} = 5$$

Таким образом наклонная асимптота:

$$y = -3x + 5$$

3) Горизонтальные асимптоты

Если у наклонной асимптоты угловой коэффициент $k = \lim_{x \to +\infty} \frac{f(x)}{x} = 0$, то мы получаем горизонтальную асимптоту.

Горизонтальные асимптоты задаются формулой y=b, где b — действительное число. Если $\lim_{x\to +\infty} f(x)=b$, то y=b — это горизонтальная асимптота функции f(x).

Пример: для показательной функции вида $y=a^x$ горизонтальной асимптотой будет являться прямая y=0 (ось OX).

В данном случае:

$$\lim_{x \to -\infty} 2^x = 0$$

Для того чтобы показать существование горизонтальной асимптоты y=b, достаточно показать, что хотя бы один из односторонних пределов $\lim_{x\to +\infty} f(x)$, $\lim_{x\to -\infty} f(x)$ равен некоторому числу b.

Пример

Найти горизонтальные асимптоты функции $f(x) = \frac{2x^2 + 4x - 5}{x(x - 4)}$.

Рассмотрим предел:

$$\lim_{x \to +\infty} \frac{2x^2 + 4x - 5}{x(x - 4)} = \lim_{x \to +\infty} \frac{2 + \frac{4}{x} - \frac{5}{x^2}}{1 - \frac{4}{x}} = \frac{2}{1} = 2$$

Значит функция y = 2 – горизонтальная асимптота функции.

Интегрирование и дифференцирование

Таблица производных 1

1.
$$c' = 0$$
, $c - const$

2.
$$(x^n)' = nx^{n-1}$$

3.
$$(a^x)' = a^x \cdot \ln a$$

4.
$$(e^x)' = e^x$$

5.
$$(\log_a x)' = \frac{1}{x \ln a}$$

6. $(\ln x)' = \frac{1}{x}$

6.
$$(\ln x)' = \frac{1}{x}$$

7.
$$(\sin x)' = \cos x$$

$$8. (\cos x)' = -\sin x$$

9.
$$\left(\sqrt{x}\right)' = \frac{1}{2\sqrt{x}}$$

10.
$$(tg \ x)' = \frac{1}{\cos^2 x}$$

11.
$$(ctg \ x)' = -\frac{1}{sin^2 x}$$

12.
$$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$$

10.
$$(tg \ x)' = \frac{1}{\cos^2 x}$$

11. $(ctg \ x)' = -\frac{1}{\sin^2 x}$
12. $(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$
13. $(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}$
14. $(\operatorname{arctg} x)' = \frac{1}{1+x^2}$
15. $(\operatorname{arcctg} x)' = -\frac{1}{1+x^2}$

14.
$$(arctg\ x)' = \frac{1}{1+x^2}$$

15.
$$(arcctg \ x)' = -\frac{1}{1+x^2}$$

Таблица неопределенных интегралов

1.
$$\int 0 \cdot dx = C$$

2.
$$\int dx = \int 1 \cdot dx = x + C$$

2.
$$\int dx = \int 1 \cdot dx = x + C$$

3. $\int x^n \cdot dx = \frac{x^{n+1}}{n+1} + C, n \neq -1, x > 0$

$$4. \int \frac{dx}{x} = \ln|x| + C$$

$$5. \int a^x dx = \frac{a^x}{\ln a} + C$$

$$6. \int e^x dx = e^x + C$$

$$7. \int \sin x \, dx = -\cos x + C$$

$$8. \int \cos x \, dx = \sin x + C$$

8.
$$\int \cos x \, dx = \sin x + C$$
9.
$$\int \frac{dx}{\sin^2 x} = -ctg \, x + C$$

$$10. \int \frac{dx}{\cos^2 x} = tg \ x + C$$

$$11. \int \ln x dx = x \ln x - x + C$$

Вектор. Скалярное произведение

1 Скалярное произведение векторов

Скалярным произведением двух векторов называется число, равное произведению длин этих векторов на косинус угла между ними:

$$\bar{a} \cdot \bar{b} = |\bar{a}| \cdot |\bar{b}| \cdot \cos(\angle(\bar{a}; \bar{b}))$$

Если векторы заданы координатами $\bar{a}(x_1,y_1,z_1)$ $\bar{b}(x_2,y_2,z_2)$, то скалярное произведение вычисляется по формуле:

$$\bar{a} \cdot \bar{b} = x_1 \cdot x_2 + y_1 \cdot y_2 + z_1 \cdot z_2$$

Свойства скалярного произведения

- 1. Если угол между векторами острый, то скалярное произведение положительно.
- 2. Если угол между векторами тупой, то скалярное произведение отрицательно.
- 3. $\bar{a}^2 \ge 0$, при этом $\bar{a}^2 > 0$, если $\bar{a} \ne \bar{0}$.

- 4. Переместительный или коммутативный закон скалярного произведения: $ar{a}\cdot ar{b} = ar{b}\cdot ar{a}$
- 5. Распределительный, или дистрибутивный, закон скалярного произведения:

$$(\bar{a} + \bar{b})\bar{c} = \bar{a} \cdot \bar{c} + \bar{b} \cdot \bar{c}$$

6. Сочетательный, или ассоциативный, закон скалярного произведения:

$$k \cdot (\bar{a} \cdot \bar{b}) = (k \cdot \bar{a}) \cdot \bar{b}$$

3 Длина вектора

Исходя из теоремы Пифагора длина вектора $\bar{a}(x_1,y_1,z_1)$ вычисляется по формуле:

$$|\bar{a}| = \sqrt{x_1^2 + y_1^2 + z_1^2}$$

Бином Ньютона. Формулы разложения

1 Бином Ньютона

Бином Ньютона это формула разложения натуральной степени двучлена $(a+b)^n$ в виде многочлена:

$$(a+b)^n = C_n^0 a^n + C_n^1 a^{n-1} b^1 + C_n^2 a^{n-2} b^2 + \dots + C_n^{n-2} a^2 b^{n-2} + C_n^{n-1} a b^{n-1} + C_n^n b^n$$

2 Формула aⁿ – bⁿ для разложения многочленов на множители

$$a^{n} - b^{n} = (a - b)(a^{n-1} + a^{n-2}b + a^{n-3}b^{2} + \dots + a^{2}b^{n-3} + ab^{n-2} + b^{n-1})$$

Геометрия

Планиметрия

1 Основные формулы площади треугольника

1) Площадь треугольника через высоту и сторону, к которой она проведена

 $S_{ABC}=rac{AC\cdot BH}{2}$, $S=rac{ah}{2}$, где h — высота, а a — сторона, к которой она проведена.

2) Площадь треугольника по двум сторонам, и углу между ними

 $S_{ABC}=rac{AB\cdot BC\cdot \sin\left(\angle ABC
ight)}{2}$, $S=rac{a\cdot c\cdot sina}{2}$, где a и c — стороны, а \sinlpha — синус угла между ними.

3) Формула Герона

При $p=rac{a+b+c}{2}$ (полупериметр), $S=\sqrt{p(p-a)(p-b)(p-c)}$.

4) Площадь треугольника через радиус вписанной окружности

 $S=rac{rp}{2}$, где $p=rac{a+b+c}{2}$ (полупериметр), а r — радиус вписанной окружности.

5) Площадь треугольника через радиус описанной окружности

 $S=rac{abc}{4R}$, где R — радиус вписанной окружности, а a, b и c — стороны треугольника.

2 Теорема синусов

 $rac{\sinlpha}{a}=rac{\sineta}{b}=rac{\sin\gamma}{c}=2R$, где

R — радиус описанной окружности.

3 Теорема косинусов

Литература

- 1. Образовательная программа АОО "Назарбаев Интеллектуальные школы" NIS-Programme, 11 класс (7 час) 2020-2021 учебный год
- 2. Образовательная программа АОО "Назарбаев Интеллектуальные школы" NIS-Programme, 12 класс (7 час) 2021-2022 учебный год
- 3. Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и др. Геометрия 10-11 класс (учебник базовый и проф. уровни), 22-е издание, Москва: Просвещение, 2013
- 4. Бродский Я.С. Статистика. Вероятность. Комбинаторика. 2008
- 5. Виленкин Н.Я., Ивашев-Мусатов О.С., Шварцбурд С.И. Алгебра и начала математического анализа (углубленный уровень) 11 класс, 18-е издание, Москва 2014
- 6. Галицкий М.Л., Мошкович М.М., Шварцбурд С.И. Углубленное изучение алгебры и математического анализа, Пособие для учителя (методические рекомендации и дидактические материалы) 3-е издание, Москва: Просвещение, 1997
- 7. Калкулов С.Б., Балгужинова А.И. Статистика и теория вероятностей. 2019
- 8. Лунгу К.Н. Сборник задач по высшей математике 1 курс, 7-е издание, Москва АЙРИС ПРЕСС, 2008
- 9. Сагитов Р.В., Шершнев В.Г. Сборник задач по математике. 2007
- 10. Прокофьев А.А. Пособие по геометрии для подготовительных курсов (стереометрия), Москва 2004
- 11. http://mathprofi.ru/
- 12. https://www.yaklass.ru/