TREE-BASED MODELS

Lecture 3

MALI, 2024

DECISION TREES

HOW DECISION TREES WORK

Step I

Find the feature that is the best predictor of your data

• Step 2

Partition instances of your training set according to that feature

data points

Step 3

Repeat I-2 recursively

Stop when

All instances in a given node belong to the same class or

There are no more ways to split

A FICTITIOUS EXAMPLE

id	salary	savings debt		class
I	Low	High	True	Approved
2	Low	Low	False	Declined
3	High	Low	False	Approved
4	Low	Low	True	Declined
5	High	Low	True	Approved
6	High	High	False	Approved
7	High	Low	False	Approved
8	Low	Low	True	Declined
9	High	High	True	Approved
10	Low	Low	Low False	
П	Low	High False		Approved
12	Low	Low	True	Declined

How do we decide which feature to branch off on?

many possibilities most common is the Gim impurity index

"How much information is guined by selecting a certain feature"

A FICTITIOUS EXAMPLE

id	salary	savings	debt	class
ı	Low \	High	True	Approved
2	Low 1	Low	False	Declined
3	High	Low	False	Approved
4	Low 5	Low	True	Declined
5	High	Low	True	Approved
6	High	High	False	Approved
7	High	Low	False	Approved
8	Low 4	Low	True	Declined
9	High	High	True	Approved
10	Low 5	Low	False	Declined
11	Low 6	High	False	Approved
12	Low 7	Low	True	Declined

The Gini impurity index

$$G(D) = 1 - \sum_{j} p_{j}^{2} = 1 - \left(\frac{7}{12}\right)^{2} - \left(\frac{5}{12}\right)^{2} = 0.49$$
That set is some over classes if
$$G_{k}(D) = \sum_{i} \frac{n_{i}}{n} G(D_{i})$$
Feature

$$G_k(D) = \sum_{i} \frac{n_i}{n} G(D_i)$$
 fecture

$$G_{\text{salary}}(D) = \frac{7}{12} \left(1 - \left(\frac{2}{7} \right)^2 - \left(\frac{5}{7} \right)^2 \right) + \frac{5}{12} \left(1 - \left(\frac{5}{5} \right)^2 - \left(\frac{5}{5} \right)^2 \right)$$
Now Solvy
Wigh solvy

=0.24

A FICTITIOUS EXAMPLE

id	salary	savings debt		class
ı	Low	High	True	Approved
2	Low	Low	False	Declined
3	High	Low	False	Approved
4	Low	Low	True	Declined
5	High	Low	True	Approved
6	High	High	False	Approved
7	High	Low	False	Approved
8	Low	Low	True	Declined
9	High	High	True	Approved
10	Low	Low	Low False	
П	Low	High False		Approved
12	Low	Low	True	Declined

The Gini impurity index

$$G_{\text{salary}}(D) = 0.24$$

 $G_{\text{savings}}(D) = 0.31$
 $G_{\text{debt}}(D) = 0.47$

The best predictor always has the lowest Gini index

A FICTITIOUS EXAMPLE

id	salary	savings	debt	class
- 1	Low	High	True	Approved
2	Low	Low	False	Declined
3	Hligh	Low	False	Approved
4	Low	Low	True	Declined
5	High	Low	True	Approved
6	High	High /	False	Approved)
7	High	Low	False	Approved
8	Low	Low	True	Declined
9	High	High	True	Approved
10	Low	Low	False	Declined
П	Low	High	False	Approved
12	Low	Low	True	Declined

Beginning to draw the tree

A FICTITIOUS EXAMPLE

id	salary	savings	debt	class
ı	Low	High	True	Approved
2	Low	Low	False	Declined
3	High	Low	False	Approved
4	Low	Low	True	Declined
5	High	Low	True	Approved
6	High	High	False	Approved
7	High	Low	False	Approved
8	Low	Low	True	Declined
9	High	High	True	Approved
10	Low	Low	False	Declined
П	Low	High	False	Approved
12	Low	Low	True	Declined

salary high? Approved Savings high? Approved Approved Approved Approved

LEARNING DECISION TREES

- means learning the sequence of Heke questions that gets us to the best answer most quickly
- the questions may be yes/no but usually of the form "is fective is value a?"
- the algorithm searches over all possible tests and finds the most information one

VISUALIZATION

Jupyter Notebook Decision Trees I:Visualization and hyperparameters

VISUALIZATION

PECISION BOUNDARY

Easily interpreted Only for 27 data

OVERFITTING AND HYPERPARAMETERS

Accuracy on training data: 1.0 Accuracy on testing data: 0.92

max_depth

max_leaf_notes max # of leaves

min_samples_split
unin # of data points a nocle
should have to allow splitting

(criterion)

how ne split (Gini)

PRE-PRUNING

Jupyter Notebook Decision Trees I:Visualization and hyperparameters

PROS AND CONS OF DECISION TREES

Pros

Easily visualited and explained to a non-expert

Fast

Completely invariant to data scaling

Cons

Tends to overfit, even with pre-proming

ENSEMBLES OF DECISION TREES

methods that combine several trees to make more poweful models

- · Random forests (bagging)
 a collection of slightly different trees
 that overfit differently
- Gradient boosted decision trees (boosting)
 a seguence of trees where each
 tree tries to correct the mistakes
 of the previous one

RANDOM FORESTS

RANDOMIZATION I: BOOTSTRAPPING

	fı	f ₂	f_3	f ₄	f ₅	f ₆
X I	45	5	21	45	15	I
X ₂	87	2	12	44	64	2
x ₃	24	8	15	43	36	3
X ₄	67	7	17	44	87	2
X ₅	13	5	12	44	65	3
x ₆	87	4	16	42	34	I
X ₇	89	7	13	42	2	2
x ₈	68	3	14	43	54	3
X ₉	35	6	П	41	63	2

A bootstrap dataset

	f_1	f_2	f ₃	f ₄	f ₅	f ₆
X ₇	89	7	13	42	2	2
X ₉	35	6	П	41	63	2
X ₄	67	7	17	44	87	2
x ₈	68	3	14	43	54	3
X ₇	89	7	13	42	2	2
x ₂	87	2	12	44	64	2
X ₃	24	8	15	43	36	3
X ₃	24	8	15	43	36	3
x ₈	68	3	14	43	54	3

RANDOMIZATION I: BOOTSTRAPPING

Dataset for tree I

Dataset for tree 2

Dataset for tree 3

	fı	f ₂	f ₃	f ₄	f ₅	f ₆
X ₇	89	7	13	42	2	2
X ₉	35	6	П	41	63	2
X ₄	67	7	17	44	87	2
X ₈	68	3	14	43	54	3
X ₇	89	7	13	42	2	2
X ₂	87	2	12	44	64	2
X ₃	24	8	15	43	36	3
X ₃	24	8	15	43	36	3
x ₈	68	3	14	43	54	3

	fı	f ₂	f ₃	f ₄	f ₅	f ₆
x ₆	87	4	16	42	34	I
x ₈	68	3	14	43	54	3
X ₂	87	2	12	44	64	2
X ₂	87	2	12	44	64	2
X ₃	24	8	15	43	36	3
X ₇	89	7	13	42	2	2
X ₄	67	7	17	44	87	2
X ₂	87	2	12	44	64	2
x ₈	68	3	14	43	54	3

	f ı	f_2	f ₃	f ₄	f ₅	f ₆
X ₃	24	8	15	43	36	3
X ₃	24	8	15	43	36	3
x ₈	68	3	14	43	54	3
X ₇	89	7	13	42	2	2
X _I	45	5	21	45	15	I
X _I	45	5	21	45	15	I
x ₆	87	4	16	42	34	ı
x ₅	13	5	12	44	65	3
X ₇	89	7	13	42	2	2

RANDOMIZATION II: FEATURE SELECTION

Dataset for tree I

	fı	f ₂	f ₃	f ₄	f ₅	f ₆
X ₇	89	7	13	42	2	2
X ₉	35	6	П	41	63	2
X ₄	67	7	17	44	87	2
x ₈	68	3	14	43	54	3
X ₇	89	7	13	42	2	2
x ₂	87	2	12	44	64	2
X ₃	24	8	15	43	36	3
X ₃	24	8	15	43	36	3
x ₈	68	3	14	43	54	3

For each node, randomly select a solve of features and ask the best question involving these features

RANDOMIZATION II: FEATURE SELECTION

Dataset for tree I

	fı	f ₂	f ₃	f ₄	f ₅	f ₆
X ₇	89	7	13	42	2	2
X ₉	35	6	П	41	63	2
X ₄	67	7	17	44	87	2
X ₈	68	3	14	43	54	3
X ₇	89	7	13	42	2	2
x ₂	87	2	12	44	64	2
X ₃	24	8	15	43	36	3
X ₃	24	8	15	43	36	3
X ₈	68	3	14	43	54	3

RANDOMIZATION II: FEATURE SELECTION

Dataset for tree I

	fı	f ₂	f ₃	f ₄	f ₅	f ₆
X ₇	89	7	13	42	2	2
X ₉	35	6	П	41	63	2
X ₄	67	7	17	44	87	2
X ₈	68	3	14	43	54	3
X ₇	89	7	13	42	2	2
x ₂	87	2	12	44	64	2
X ₃	24	8	15	43	36	3
X ₃	24	8	15	43	36	3
x ₈	68	3	14	43	54	3

A low value of max_features yields very different but deep them

A high value of max_features yields very mular
but shallow trees

A rule of thumb

PREDICTIONS USING RANDOM FORESTS

PROS AND CONS OF RANDOM FORESTS

Pros

Very powerful Regires Little parameter tuning

Share many benefits of trees - make up for name deficiencies Cons

Slow

Different random states >> different results

Déficult to visualize and interpret

TREES VS. FORESTS

Jupyter Notebook Decision Trees 2: Feature importance and ensembles of trees

GRADIENT BOOSTED DECISION TREES

OR GRADIENT BOOSTED REGRESSION TREES OR GRADIENT BOOSTING MACHINES

· Build a sequence of trees where each tree tries to correct the mistales of the previous one . Use shallow trees ("weak learners")

HYPERPARAMETERS

n_estimators
how many trees to train

max_depth of each tree

how strongly each tree depends on previous one

CODING BOOSTED TREES

Jupyter Notebook Decision Trees 2: Feature importance and ensembles of trees

PROS AND CONS OF GRADIENT BOOSTED DECISION TREES

Pros

One of the most powerful ML models Cons

Requires careful parameter truing

WHEN TO USE WHAT

Tree Forest Boosted tree

When

VISUALIZATION

ROBUSTNESS

ACCURACY

(fast)

(slowest)

is important (slower)

