Longest Common Subsequence

Spring 2022

# INTRODUCTION

- Biological applications often need to compare the DNA of two (or more) different organisms.
- A strand of DNA consists of a string of molecules called bases
- Where the possible bases are adenine, guanine, cytosine, and thymine.
- Representing each of these bases by its initial letter, we can express a strand of DNA as a string over the finite set {A; C; G; T}.
- For example, the DNA of one organism may be S1=ACCGGTCGAGTGCGCGGAAGCCGGCCGAA, and the DNA of another organism may be S2= GTCGTTCGGAATGCCGTTGCTCTGTAAA. 2

# INTRODUCTION

- One reason to compare two strands of DNA is to determine how "similar" the two strands are, as some measure of how closely related the two organisms are.
- We can, and do, define similarity in many different ways.
- For example, we can say that two DNA strands are similar if one is a substring of the other.

# Longest-Common-Subsequence Problem

- Another way to measure the similarity of strands S1 and S2 is by finding a third strand S3 in which the bases in S3 appear in each of S1 and S2;
- These bases must appear in the same order, but not necessarily consecutively.
- o The longer the strand S3 we can find, the more similar S1 and S2 are.
- In our example, the longest strand S3 is GTCGTCGGAAGCCGGCCGAA.
- Longest-Common-Subsequence Problem

Design technique, like divide-and-conquer.

# Example: Longest Common Subsequence (LCS)

• Given two sequences x[1 ...m] and y[1 ...n], find a longest subsequence common to them both.

November 7, 2005 L15.2

5

Design technique, like divide-and-conquer.

# Example: Longest Common Subsequence (LCS)

• Given two sequences x[1 ...m] and y[1 ...n], find a longest subsequence common to them both.

- "a" not "the"

6

Design technique, like divide-and-conquer.

# Example: Longest Common Subsequence (LCS)

• Given two sequences x[1 ...m] and y[1 ...n], find a longest subsequence common to them both.

"a" *not* "the"

x: A B C B D A B

y: B D C A B A

7

Design technique, like divide-and-conquer.

# Example: Longest Common Subsequence (LCS)

• Given two sequences x[1 ...m] and y[1 ...n], find a longest subsequence common to them both.

"a" not "the"



functional notation, but not a function

#### **EXAMPLE**

X: ABCDEFGHIJ

Y: CĎĠI

Z:CDGI

#### **EXAMPLE**

X: ABCDEFGHIJ Y: FCDHJ Z:FHJ

X: ABCDEFGHIJ

Y: FCDHJ

Z:CDHJ



#### **EXAMPLE**

X: ABDACE
Y: BABCE
Z:BACE

X: ABDACE Y: BABCE

Z:ABCE



#### BRUTE-FORCE LCS ALGORITHM

- In a brute-force approach to solving the LCS problem, we would enumerate all subsequences of X and check each subsequence to see whether it is also a subsequence of Y,
- Keeping track of the longest subsequence we find. Each subsequence of X corresponds to a subset of the indices  $\{1, 2, \ldots, m\}$  of X.
- Because X has 2<sup>m</sup> subsequences,
- This approach requires exponential time, making it impractical for long sequences.

# **Brute-force LCS algorithm**

Check every subsequence of x[1 ...m] to see if it is also a subsequence of y[1 ...n].



#### Brute-force LCS algorithm

Check every subsequence of x[1..m] to see if it is also a subsequence of y[1 ... n].

#### **Analysis**

- Checking = O(n) time per subsequence.
- $2^m$  subsequences of x (each bit-vector of length *m* determines a distinct subsequence of x).

Worst-case running time =  $O(n2^m)$ 

= exponential time. 14

#### TOWARDS A BETTER ALGORITHM

## **Simplification:**

- 1. Look at the *length* of a longest-common subsequence.
- 2. Extend the algorithm to find the LCS itself.

**15** 

#### TOWARDS A BETTER ALGORITHM

# **Simplification:**

- The LCS problem has an optimalsubstructure property.
- The natural classes of subproblems correspond to pairs of "prefixes" of the two input sequences
- Given a sequence  $X = \langle x_1, x_2, ..., x_m \rangle$ , we define the i<sup>th</sup> **prefix** of X,
- for i = 0, 1, ..., m as  $X_i = \langle x_1, x_2, ..., x_m \rangle$
- For example, if  $X = \langle A, B, C, B, D, A, B \rangle$ , then  $X_4 = \langle A, B, C, B \rangle$  and  $X_0$  is the empty sequence.

16

#### OPTIMAL SUBSTRUCTURE -LCS

Let  $X = \langle x_1, x_2, \dots, x_m \rangle$  and  $Y = \langle y_1, y_2, \dots, y_n \rangle$  be sequences, and let  $Z = \langle z_1, z_2, \dots, z_k \rangle$  be any LCS of X and Y.

- 1. If  $x_m = y_n$ , then  $z_k = x_m = y_n$  and  $Z_{k-1}$  is an LCS of  $X_{m-1}$  and  $Y_{n-1}$ .
- 2. If  $x_m \neq y_n$ , then  $z_k \neq x_m$  implies that Z is an LCS of  $X_{m-1}$  and Y.
- 3. If  $x_m \neq y_n$ , then  $z_k \neq y_n$  implies that Z is an LCS of X and  $Y_{n-1}$ .

# Recursive Solution

• We should examine either one or two subproblems when finding an LCS of  $X = < x_1, x_2, ..., x_m >$ , and  $Y = < y_1, y_2, ..., y_n >$ ,.

If  $x_m = y_n$ , we must find an LCS of  $X_{m-1}$  and  $Y_{n-1}$ 

If  $x_m \neq y_n$ , then we must solve two subproblems:

Finding an LCS of  $X_{m-1}$  and Y and finding an LCS of X and  $Y_{n-1}$ 

Whichever of these two LCSs is longer is an LCS of X and Y.

- these cases exhaust all possibilities,
- we know that one of the optimal subproblem solutions must appear within an LCS of X and Y.

Look at example

CCGCTT

ACGGAT

Look at example

Last letter of both strings identical What to do??

Look at example

C C G C T T A C G G A T

Last letter of both strings identical: Recurse on LCS(5,5)

Solution here?

Look at example

#### Last letter of both strings identical:

Recurse on LCS(5,5)

```
Solution here?

LCS(6,6) = LCS(5,5) + 1 = ... 3

CCGCT T

ACGGA T
```

Look at example



Last letter of both strings different: What to do??

Look at example



Last letter of both strings different:

```
LCS[6,6] = max(LCS[5,6], LCS(6,5]) = ... 3

CCGCT CCGCTC

ACGGAT ACGGA
```

Look at example



Last letter of both strings different:

```
LCS[6,6] = max(LCS[5,6], LCS(6,5]) = ... 3

CCGCT CCGCTC

ACGGAT ACGGA

= 3 CGT = 2 CG
```

#### OVERLAPPING-SUBPROBLEM - LCS

- We can readily see the overlapping-subproblems property in the LCS problem.
- $\bullet$  To find an LCS of X and Y , we may need to find the LCSs of X and  $Y_{n\text{--}1}$  and of  $X_{m\text{--}1}$  and Y .
- $\circ$  But each of these subproblems has the subsubproblem of finding an LCS of  $X_{m\text{-}1}$  and  $Y_{n\text{-}1}$
- Many other subproblems share subsubproblems.

#### TOWARDS A BETTER ALGORITHM

## **Simplification:**

- 1. Look at the *length* of a longest-common subsequence.
- 2. Extend the algorithm to find the LCS itself.

**Notation:** Denote the length of a sequence s by |s|.

27

#### TOWARDS A BETTER ALGORITHM

## **Simplification:**

- 1. Look at the *length* of a longest-common subsequence.
- 2. Extend the algorithm to find the LCS itself.

**Notation:** Denote the length of a sequence s by |s|. the length of an LCS of the sequences  $X_i$  and  $Y_j$ .

**Strategy:** Consider *prefixes* of x and y.

- Define c[i, j] = |LCS(x[1 ... i], y[1 ... j])|.
- Then, c[m, n] = |LCS(x, y)|.

28

# RECURSIVE FORMULATION

#### Theorem.

$$c[i,j] = \begin{cases} 0 & \text{if } i=0 \text{ or } j=0 \\ c[i-1,j-1]+1 & \text{if } x[i]=y[j], \\ \max\{c[i-1,j],c[i,j-1]\} & \text{otherwise.} \end{cases}$$

The optimal substructure of the LCS problem gives the recursive formula

29

# RECURSIVE FORMULATION

#### Theorem.

$$c[i,j] = \begin{cases} 0 & \text{if } i=0 \text{ or } j=0 \\ c[i-1,j-1]+1 & \text{if } x[i]=y[j], \\ \max\{c[i-1,j],c[i,j-1]\} & \text{otherwise.} \end{cases}$$

When  $x_i = y_j$ , we can and should consider the subproblem of finding an LCS of  $X_{i-1}$  and  $Y_{j-1}$ .

Otherwise, we instead consider the two subproblems of finding an LCS of  $X_i$  and  $Y_{j-1}$  and of  $X_{i-1}$  and  $Y_i$ .

# DYNAMIC-PROGRAMMING HALLMARK #1

## Optimal substructure

An optimal solution to a problem (instance) contains optimal solutions to subproblems.

31

# DYNAMIC-PROGRAMMING HALLMARK #1

# Optimal substructure

An optimal solution to a problem (instance) contains optimal solutions to subproblems.

If z = LCS(x, y), then any prefix of z is an LCS of a prefix of x and a prefix of y.

32

#### RECURSIVE ALGORITHM FOR LCS

```
LCS(x, y, i, j) // ignoring base cases

if x[i] = y[j]

then c[i, j] \leftarrow LCS(x, y, i-1, j-1) + 1

else c[i, j] \leftarrow max\{LCS(x, y, i-1, j),

LCS(x, y, i, j-1)\}

return c[i, j]
```

33

#### RECURSIVE ALGORITHM FOR LCS

```
LCS(x, y, i, j) // ignoring base cases

if x[i] = y[j]

then c[i, j] \leftarrow LCS(x, y, i-1, j-1) + 1

else c[i, j] \leftarrow \max\{LCS(x, y, i-1, j), LCS(x, y, i, j-1)\}

return c[i, j]
```

Worse case:  $x[i] \neq y[j]$ , in which case the algorithm evaluates two subproblems, each with only one parameter decremented.

34

#### RECURSION TREE



35

#### RECURSION TREE



Height =  $m + n \Rightarrow$  work potentially exponential.

November 7, 2005 L15.21

36

#### RECURSION TREE



Height =  $m + n \Rightarrow$  work potentially exponential but we're solving subproblems already solved.

### DYNAMIC-PROGRAMMING HALLMARK #2

### Overlapping subproblems

A recursive solution contains a "small" number of distinct subproblems repeated many times.

38

#### DYNAMIC-PROGRAMMING HALLMARK #2

#### Overlapping subproblems

A recursive solution contains a "small" number of distinct subproblems repeated many times.

The number of distinct LCS subproblems for two strings of lengths m and n is only mn.

**39** 

### Memoization algorithm

Memoization: After computing a solution to a subproblem, store it in a table. Subsequent calls check the table to avoid redoing work.



#### MEMOIZATION ALGORITHM

*Memoization:* After computing a solution to a subproblem, store it in a table. Subsequent calls check the table to avoid redoing work.

```
 \begin{aligned} \operatorname{LCS}(x,y,i,j) \\ & \text{if } c[i,j] = \operatorname{NIL} \\ & \text{then if } x[i] = y[j] \\ & \text{then } c[i,j] \leftarrow \operatorname{LCS}(x,y,i-1,j-1) + 1 \\ & \text{else } c[i,j] \leftarrow \max \left\{ \operatorname{LCS}(x,y,i-1,j), \\ & \operatorname{LCS}(x,y,i,j-1) \right\} \end{aligned}
```

41

#### MEMOIZATION ALGORITHM

*Memoization:* After computing a solution to a subproblem, store it in a table. Subsequent calls check the table to avoid redoing work.

```
 \begin{aligned} & \operatorname{LCS}(x,y,i,j) \\ & \operatorname{if} c[i,j] = \operatorname{NIL} \\ & \operatorname{then} \operatorname{if} x[i] = y[j] \\ & \operatorname{then} c[i,j] \leftarrow \operatorname{LCS}(x,y,i-1,j-1) + 1 \\ & \operatorname{else} c[i,j] \leftarrow \max \left\{ \operatorname{LCS}(x,y,i-1,j), \\ & \operatorname{LCS}(x,y,i,j-1) \right\} \end{aligned}
```

Time =  $\Theta(mn)$  = constant work per table entry. Space =  $\Theta(mn)$ .

November 7, 2005 L15.27

**4**2

#### RECURSIVE FORMULATION

#### Theorem.

$$c[i,j] = \begin{cases} 0 & \text{if } i=0 \text{ or } j=0 \\ c[i-1,j-1]+1 & \text{if } x[i]=y[j], \\ \max\{c[i-1,j],c[i,j-1]\} & \text{otherwise.} \end{cases}$$

When  $x_i = y_j$ , we can and should consider the subproblem of finding an LCS of  $X_{i-1}$  and  $Y_{j-1}$ .

Otherwise, we instead consider the two subproblems of finding an LCS of  $X_i$  and  $Y_{j-1}$  and of  $X_{i-1}$  and  $Y_i$ .



 $c[i,j] \leftarrow LCS(x,y,i-1,j-1) + 1$ 

#### **IDEA:**

Compute the table bottom-up.

|   |   | A | D |   | D | D | A | D  |  |
|---|---|---|---|---|---|---|---|----|--|
|   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  |  |
| В | 0 | 0 | 1 |   |   |   |   |    |  |
| D | 0 |   |   |   |   |   |   |    |  |
| C | 0 |   |   |   |   |   |   |    |  |
| A | 0 |   |   |   |   |   |   |    |  |
| В | 0 |   |   |   |   |   |   |    |  |
| A | 0 |   |   |   |   |   |   | 45 |  |











#### **IDEA:**

Compute the table bottom-up.

|   |   | A | В | C | В | D | A | В  |
|---|---|---|---|---|---|---|---|----|
|   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  |
| В | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1  |
| D | 0 |   |   |   |   |   |   |    |
| C | 0 |   |   |   |   |   |   |    |
| A | 0 |   |   |   |   |   |   |    |
| В | 0 |   |   |   |   |   |   |    |
| A | 0 |   |   |   |   |   |   | 51 |

#### **IDEA:**

Compute the table bottom-up.

|   |   | A | В | C | В | D | A | В  |
|---|---|---|---|---|---|---|---|----|
|   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  |
| В | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1  |
| D | 0 | 0 |   |   |   |   |   |    |
| C | 0 |   |   |   |   |   |   |    |
| A | 0 |   |   |   |   |   |   |    |
| В | 0 |   |   |   |   |   |   |    |
| A | 0 |   |   |   |   |   |   | 52 |

#### **IDEA:**

Compute the table bottom-up.

|   |   | A | В | C | В | D | A | В  |
|---|---|---|---|---|---|---|---|----|
|   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  |
| В | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1  |
| D | 0 | 0 | 1 |   |   |   |   |    |
| C | 0 |   |   |   |   |   |   |    |
| A | 0 |   |   |   |   |   |   |    |
| В | 0 |   |   |   |   |   |   |    |
| A | 0 |   |   |   |   |   |   | 53 |

#### **IDEA:**

Compute the table bottom-up.

|   |   | A | В | C | В | D | A | В  |
|---|---|---|---|---|---|---|---|----|
|   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  |
| B | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1  |
| D | 0 | 0 | 1 | 1 |   |   |   |    |
| C | 0 |   |   |   |   |   |   |    |
| A | 0 |   |   |   |   |   |   |    |
| B | 0 |   |   |   |   |   |   |    |
| A | 0 |   |   |   |   |   |   | 54 |

#### **IDEA:**

Compute the table bottom-up.

|   |   | A | В | C | В | D | A | В  |
|---|---|---|---|---|---|---|---|----|
|   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  |
| В | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1  |
| D | 0 | 0 | 1 | 1 | 1 |   |   |    |
| C | 0 |   |   |   |   |   |   |    |
| A | 0 |   |   |   |   |   |   |    |
| В | 0 |   |   |   |   |   |   |    |
| A | 0 |   |   |   |   |   |   | 55 |

#### **IDEA:**

Compute the table bottom-up.

|   |   | A | В | C | В | D | A | В  |
|---|---|---|---|---|---|---|---|----|
|   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  |
| В | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1  |
| D | 0 | 0 | 1 | 1 | 1 | 2 |   |    |
| C | 0 |   |   |   |   |   |   |    |
| A | 0 |   |   |   |   |   |   |    |
| В | 0 |   |   |   |   |   |   |    |
| A | 0 |   |   |   |   |   |   | 56 |

#### **IDEA:**

Compute the table bottom-up.

|   |   | A | В | C | В | D | A | В  |
|---|---|---|---|---|---|---|---|----|
|   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  |
| B | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1  |
| D | 0 | 0 | 1 | 1 | 1 | 2 | 2 |    |
| C | 0 |   |   |   |   |   |   |    |
| A | 0 |   |   |   |   |   |   |    |
| B | 0 |   |   |   |   |   |   |    |
| A | 0 |   |   |   |   |   |   | 57 |

#### **IDEA:**

Compute the table bottom-up.

|   |   | A | В | C | В | D | A | В  |
|---|---|---|---|---|---|---|---|----|
|   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  |
| В | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1  |
| D | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2  |
| C | 0 |   |   |   |   |   |   |    |
| A | 0 |   |   |   |   |   |   |    |
| В | 0 |   |   |   |   |   |   |    |
| A | 0 |   |   |   |   |   |   | 58 |

#### **IDEA:**

Compute the table bottom-up.

|   |   | A | В | C | В | D | A | В  |
|---|---|---|---|---|---|---|---|----|
|   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  |
| B | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1  |
| D | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2  |
| C | 0 |   |   |   |   |   |   |    |
| A | 0 |   |   |   |   |   |   |    |
| B | 0 |   |   |   |   |   |   |    |
| A | 0 |   |   |   |   |   |   | 59 |

#### **IDEA:**

Compute the table bottom-up.

|   |   | A | В | C | В | D | A | В  |
|---|---|---|---|---|---|---|---|----|
|   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  |
| B | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1  |
| D | 0 | O | 1 | 1 | 1 | 2 | 2 | 2  |
| C | 0 | O |   |   |   |   |   |    |
| A | 0 |   |   |   |   |   |   |    |
| В | 0 |   |   |   |   |   |   |    |
| A | 0 |   |   |   |   |   |   | 60 |

#### **IDEA:**

Compute the table bottom-up.

| Ī |   | A | В | C | В | D | A | В  |
|---|---|---|---|---|---|---|---|----|
|   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  |
| В | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1  |
| D | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2  |
| C | 0 | 0 | 1 |   |   |   |   |    |
| A | 0 |   |   |   |   |   |   |    |
| В | 0 |   |   |   |   |   |   |    |
| A | 0 |   |   |   |   |   |   | 61 |

#### **IDEA:**

Compute the table bottom-up.

|   |   | A | B | C | В | D | A | В  |
|---|---|---|---|---|---|---|---|----|
|   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  |
| В | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1  |
| D | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2  |
| C | 0 | 0 | 1 | 2 |   |   |   |    |
| A | 0 |   |   |   |   |   |   |    |
| В | 0 |   |   |   |   |   |   |    |
| A | 0 |   |   |   |   |   |   | 62 |

#### **IDEA:**

Compute the table bottom-up.

|   |   | A | B | C | B | D | A | В  |
|---|---|---|---|---|---|---|---|----|
|   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  |
| В | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1  |
| D | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2  |
| C | 0 | 0 | 1 | 2 | 2 |   |   |    |
| A | 0 |   |   |   |   |   |   |    |
| В | 0 |   |   |   |   |   |   |    |
| A | 0 |   |   |   |   |   |   | 63 |

#### **IDEA:**

Compute the table bottom-up.

| · |   | A | В | C | В | D | A | В  |
|---|---|---|---|---|---|---|---|----|
|   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  |
| B | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1  |
| D | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2  |
| C | 0 | 0 | 1 | 2 | 2 | 2 |   |    |
| A | 0 |   |   |   |   |   |   |    |
| В | 0 |   |   |   |   |   |   |    |
| A | 0 |   |   |   |   |   |   | 64 |

#### **IDEA:**

Compute the table bottom-up.

| ı |   | A | В | C | В | D | A | В  |
|---|---|---|---|---|---|---|---|----|
|   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  |
| B | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1  |
| D | 0 | O | 1 | 1 | 1 | 2 | 2 | 2  |
| C | 0 | 0 | 1 | 2 | 2 | 2 | 2 |    |
| A | 0 |   |   |   |   |   |   |    |
| В | 0 |   |   |   |   |   |   |    |
| A | 0 |   |   |   |   |   |   | 65 |

#### **IDEA:**

Compute the table bottom-up.

| · |   | A | В | C | В | D | A | В  |
|---|---|---|---|---|---|---|---|----|
|   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  |
| B | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1  |
| D | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2  |
| C | 0 | 0 | 1 | 2 | 2 | 2 | 2 | 2  |
| A | 0 |   |   |   |   |   |   |    |
| B | 0 |   |   |   |   |   |   |    |
| A | 0 |   |   |   |   |   |   | 66 |

#### **IDEA:**

Compute the table bottom-up.

| ı |   | A | В | C | В | D | A | В  |
|---|---|---|---|---|---|---|---|----|
|   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  |
| B | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1  |
| D | 0 | O | 1 | 1 | 1 | 2 | 2 | 2  |
| C | 0 | 0 | 1 | 2 | 2 | 2 | 2 | 2  |
| A | 0 |   |   |   |   |   |   |    |
| В | 0 |   |   |   |   |   |   |    |
| A | 0 |   |   |   |   |   |   | 67 |

#### **IDEA:**

Compute the table bottom-up.

| ı |   | A | В | C | В | D | A | В  |
|---|---|---|---|---|---|---|---|----|
|   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  |
| B | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1  |
| D | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2  |
| C | 0 | 0 | 1 | 2 | 2 | 2 | 2 | 2  |
| A | 0 | 1 |   |   |   |   |   |    |
| B | 0 |   |   |   |   |   |   |    |
| A | 0 |   |   |   |   |   |   | 68 |

#### **IDEA:**

Compute the table bottom-up.

|   |   | A | В | C | В | D | A | В  |
|---|---|---|---|---|---|---|---|----|
|   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  |
| В | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1  |
| D | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2  |
| C | 0 | 0 | 1 | 2 | 2 | 2 | 2 | 2  |
| A | 0 | 1 | 1 |   |   |   |   |    |
| В | 0 |   |   |   |   |   |   |    |
| A | 0 |   |   |   |   |   |   | 69 |

#### **IDEA:**

Compute the table bottom-up.

|   |   | A | В | C | В | D | A | В  |
|---|---|---|---|---|---|---|---|----|
|   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  |
| В | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1  |
| D | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2  |
| C | 0 | 0 | 1 | 2 | 2 | 2 | 2 | 2  |
| A | 0 | 1 | 1 | 2 |   |   |   |    |
| В | 0 |   |   |   |   |   |   |    |
| A | 0 |   |   |   |   |   |   | 70 |

#### **IDEA:**

Compute the table bottom-up.

|   |   | A | В | C | В | D | A | В  |
|---|---|---|---|---|---|---|---|----|
|   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  |
| В | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1  |
| D | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2  |
| C | 0 | 0 | 1 | 2 | 2 | 2 | 2 | 2  |
| A | 0 | 1 | 1 | 2 | 2 |   |   |    |
| В | 0 |   |   |   |   |   |   |    |
| A | 0 |   |   |   |   |   |   | 71 |

#### **IDEA:**

Compute the table bottom-up.

|   |   | A | B | C | В | D | A | B  |
|---|---|---|---|---|---|---|---|----|
|   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  |
| В | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1  |
| D | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2  |
| C | 0 | 0 | 1 | 2 | 2 | 2 | 2 | 2  |
| A | 0 | 1 | 1 | 2 | 2 | 2 |   |    |
| В | 0 |   |   |   |   |   |   |    |
| A | 0 |   |   |   |   |   |   | 72 |

### **IDEA:**

Compute the table bottom-up.

|   |   | A | В | C | В | D | A | В  |
|---|---|---|---|---|---|---|---|----|
|   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  |
| В | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1  |
| D | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2  |
| C | 0 | 0 | 1 | 2 | 2 | 2 | 2 | 2  |
| A | 0 | 1 | 1 | 2 | 2 | 2 | 3 |    |
| В | 0 |   |   |   |   |   |   |    |
| A | 0 |   |   |   |   |   |   | 73 |

### **IDEA:**

Compute the table bottom-up.

|   |   | A | В | C | В | D | A | В  |
|---|---|---|---|---|---|---|---|----|
|   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  |
| В | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1  |
| D | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2  |
| C | 0 | 0 | 1 | 2 | 2 | 2 | 2 | 2  |
| A | 0 | 1 | 1 | 2 | 2 | 2 | 3 | 3  |
| В | 0 |   |   |   |   |   |   |    |
| A | 0 |   |   |   |   |   |   | 74 |

### **IDEA:**

Compute the table bottom-up.

| Ī |   | A | В | C | В | D | A | В  |
|---|---|---|---|---|---|---|---|----|
|   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  |
| В | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1  |
| D | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2  |
| C | 0 | 0 | 1 | 2 | 2 | 2 | 2 | 2  |
| A | 0 | 1 | 1 | 2 | 2 | 2 | 3 | 3  |
| В | 0 |   |   |   |   |   |   |    |
| A | 0 |   |   |   |   |   |   | 75 |

#### **IDEA:**

Compute the table bottom-up.

|   |   | A | В | C | В | D | A | В  |
|---|---|---|---|---|---|---|---|----|
|   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  |
| В | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1  |
| D | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2  |
| C | 0 | 0 | 1 | 2 | 2 | 2 | 2 | 2  |
| A | 0 | 1 | 1 | 2 | 2 | 2 | 3 | 3  |
| В | 0 | 1 |   |   |   |   |   |    |
| A | 0 |   |   |   |   |   |   | 76 |

### **IDEA:**

Compute the table bottom-up.

|   |   | A | В | C | В | D | A | В  |
|---|---|---|---|---|---|---|---|----|
|   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  |
| В | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1  |
| D | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2  |
| C | 0 | 0 | 1 | 2 | 2 | 2 | 2 | 2  |
| A | 0 | 1 | 1 | 2 | 2 | 2 | 3 | 3  |
| В | 0 | 1 | 2 |   |   |   |   |    |
| A | 0 |   |   |   |   |   |   | 77 |

### **IDEA:**

Compute the table bottom-up.

|   |   | A | В | C | В | D | A | В  |
|---|---|---|---|---|---|---|---|----|
|   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  |
| В | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1  |
| D | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2  |
| C | 0 | 0 | 1 | 2 | 2 | 2 | 2 | 2  |
| A | 0 | 1 | 1 | 2 | 2 | 2 | 3 | 3  |
| В | 0 | 1 | 2 | 2 |   |   |   |    |
| A | 0 |   |   |   |   |   |   | 78 |

### **IDEA:**

Compute the table bottom-up.

|   |   | A | В | C | В | D | A | В  |
|---|---|---|---|---|---|---|---|----|
|   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  |
| В | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1  |
| D | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2  |
| C | 0 | 0 | 1 | 2 | 2 | 2 | 2 | 2  |
| A | 0 | 1 | 1 | 2 | 2 | 2 | 3 | 3  |
| В | 0 | 1 | 2 | 2 | 3 |   |   |    |
| A | 0 |   |   |   |   |   |   | 79 |

### **IDEA:**

Compute the table bottom-up.

|   |   | A | В | C | В | D | A | В  |
|---|---|---|---|---|---|---|---|----|
|   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  |
| В | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1  |
| D | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2  |
| C | 0 | 0 | 1 | 2 | 2 | 2 | 2 | 2  |
| A | 0 | 1 | 1 | 2 | 2 | 2 | 3 | 3  |
| В | 0 | 1 | 2 | 2 | 3 | 3 |   |    |
| A | 0 |   |   |   |   |   |   | 80 |

### **IDEA:**

Compute the table bottom-up.

|   |   | A | В | C | В | D | A | В  |
|---|---|---|---|---|---|---|---|----|
|   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  |
| В | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1  |
| D | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2  |
| C | 0 | 0 | 1 | 2 | 2 | 2 | 2 | 2  |
| A | 0 | 1 | 1 | 2 | 2 | 2 | 3 | 3  |
| В | 0 | 1 | 2 | 2 | 3 | 3 | 3 |    |
| A | 0 |   |   |   |   |   |   | 81 |

### **IDEA:**

Compute the table bottom-up.

|   |   | A | В | C | В | D | A | В  |
|---|---|---|---|---|---|---|---|----|
|   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  |
| В | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1  |
| D | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2  |
| C | 0 | 0 | 1 | 2 | 2 | 2 | 2 | 2  |
| A | 0 | 1 | 1 | 2 | 2 | 2 | 3 | 3  |
| B | 0 | 1 | 2 | 2 | 3 | 3 | 3 | 4  |
| A | 0 |   |   |   |   |   |   | 82 |

### **IDEA:**

Compute the table bottom-up.

|   |   | A | В | C | В | D | A | В  |
|---|---|---|---|---|---|---|---|----|
|   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  |
| В | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1  |
| D | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2  |
| C | 0 | 0 | 1 | 2 | 2 | 2 | 2 | 2  |
| A | 0 | 1 | 1 | 2 | 2 | 2 | 3 | 3  |
| B | 0 | 1 | 2 | 2 | 3 | 3 | 3 | 4  |
| A | 0 |   |   |   |   |   |   | 83 |

### **IDEA:**

Compute the table bottom-up.

|   |   | A | В | C | В | D | A | В  |
|---|---|---|---|---|---|---|---|----|
|   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  |
| В | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1  |
| D | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2  |
| C | 0 | 0 | 1 | 2 | 2 | 2 | 2 | 2  |
| A | 0 | 1 | 1 | 2 | 2 | 2 | 3 | 3  |
| В | 0 | 1 | 2 | 2 | 3 | 3 | 3 | 4  |
| A | 0 | 1 |   |   |   |   |   | 84 |

### **IDEA:**

Compute the table bottom-up.

|   |   | A | В | C | В | D | A | В  |
|---|---|---|---|---|---|---|---|----|
|   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  |
| В | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1  |
| D | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2  |
| C | 0 | 0 | 1 | 2 | 2 | 2 | 2 | 2  |
| A | 0 | 1 | 1 | 2 | 2 | 2 | 3 | 3  |
| В | 0 | 1 | 2 | 2 | 3 | 3 | 3 | 4  |
| A | 0 | 1 | 2 |   |   |   |   | 85 |

### **IDEA:**

Compute the table bottom-up.

|   |   | A | В | C | В | D | A | В  |
|---|---|---|---|---|---|---|---|----|
|   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  |
| В | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1  |
| D | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2  |
| C | 0 | 0 | 1 | 2 | 2 | 2 | 2 | 2  |
| A | 0 | 1 | 1 | 2 | 2 | 2 | 3 | 3  |
| В | 0 | 1 | 2 | 2 | 3 | 3 | 3 | 4  |
| A | 0 | 1 | 2 | 2 |   |   |   | 86 |

#### **IDEA:**

Compute the table bottom-up.

|   |   | A | B | C | В | D | A | В  |
|---|---|---|---|---|---|---|---|----|
|   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  |
| В | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1  |
| D | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2  |
| C | 0 | 0 | 1 | 2 | 2 | 2 | 2 | 2  |
| A | 0 | 1 | 1 | 2 | 2 | 2 | 3 | 3  |
| В | 0 | 1 | 2 | 2 | 3 | 3 | 3 | 4  |
| A | 0 | 1 | 2 | 2 | 3 |   |   | 87 |

### **IDEA:**

Compute the table bottom-up.

|   |   | A | В | C | В | D | A | В  |
|---|---|---|---|---|---|---|---|----|
|   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  |
| В | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1  |
| D | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2  |
| C | 0 | 0 | 1 | 2 | 2 | 2 | 2 | 2  |
| A | 0 | 1 | 1 | 2 | 2 | 2 | 3 | 3  |
| В | 0 | 1 | 2 | 2 | 3 | 3 | 3 | 4  |
| A | 0 | 1 | 2 | 2 | 3 | 3 |   | 88 |

### **IDEA:**

Compute the table bottom-up.

|   |   | A | В | C | В | D | A | В  |
|---|---|---|---|---|---|---|---|----|
|   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  |
| В | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1  |
| D | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2  |
| C | 0 | 0 | 1 | 2 | 2 | 2 | 2 | 2  |
| A | 0 | 1 | 1 | 2 | 2 | 2 | 3 | 3  |
| В | 0 | 1 | 2 | 2 | 3 | 3 | 3 | 4  |
| A | 0 | 1 | 2 | 2 | 3 | 3 | 4 | 89 |

#### **IDEA:**

Compute the table bottom-up.

|   |   | A | В | C | В | D | A | В |
|---|---|---|---|---|---|---|---|---|
|   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| В | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
| D | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2 |
| C | 0 | 0 | 1 | 2 | 2 | 2 | 2 | 2 |
| A | 0 | 1 | 1 | 2 | 2 | 2 | 3 | 3 |
| B | 0 | 1 | 2 | 2 | 3 | 3 | 3 | 4 |
| A | 0 | 1 | 2 | 2 | 3 | 3 | 4 | 4 |

#### **IDEA:**

Compute the table bottom-up.

|   |   | A | В | C | В | D | A | В    |
|---|---|---|---|---|---|---|---|------|
|   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0    |
| В | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1    |
| D | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2    |
| C | 0 | 0 | 1 | 2 | 2 | 2 | 2 | 2    |
| A | 0 | 1 | 1 | 2 | 2 | 2 | 3 | 3    |
| B | 0 | 1 | 2 | 2 | 3 | 3 | 3 | 4    |
| A | 0 | 1 | 2 | 2 | 3 | 3 | 4 | 4 91 |

B

### **IDEA:**

Compute the table bottom-up.

Time =  $\Theta(mn)$ .

|   | A | B | C | B | D | A | В   |
|---|---|---|---|---|---|---|-----|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0   |
| 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1   |
| 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2   |
| 0 | 0 | 1 | 2 | 2 | 2 | 2 | 2   |
| 0 | 1 | 1 | 2 | 2 | 2 | 3 | 3   |
| 0 | 1 | 2 | 2 | 3 | 3 | 3 | 4   |
| 0 | 1 | 2 | 2 | 3 | 3 | 4 | 492 |

```
LCS-LENGTH(X, Y)
 1 m = X.length
 2 n = Y.length
 3 let b[1..m, 1..n] and c[0..m, 0..n] be new tables
 4 for i = 1 to m
         c[i,0] = 0
 6 for j = 0 to n
        c[0, j] = 0
    for i = 1 to m
         for j = 1 to n
10
             if x_i == y_i
                  c[i, j] = c[i-1, j-1] + 1
11
                  b[i, j] = "\\\"
12
             elseif c[i - 1, j] \ge c[i, j - 1]
13
                  c[i, j] = c[i - 1, j]
14
                  b[i,j] = "\uparrow"
15
             else c[i, j] = c[i, j - 1]
16
                  b[i, j] = "\leftarrow"
17
18
    return c and b
```

The procedure takes time O(m +n), since it decrements at least one of i and j in each recursive call.

```
PRINT-LCS(b, X, i, j)
   if i == 0 or j == 0
        return
   if b[i, j] == "\\\"
        PRINT-LCS(b, X, i-1, j-1)
        print x_i
   elseif b[i, j] == "\uparrow"
        PRINT-LCS(b, X, i - 1, j)
   else PRINT-LCS (b, X, i, j - 1)
```

#### **IDEA:**

Compute the table bottom-up.

Time =  $\Theta(mn)$ .

Reconstruct LCS by tracing backwards.

|   |   | A | В | C | В | D | A | В  |
|---|---|---|---|---|---|---|---|----|
|   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  |
| В | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1  |
| D | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2  |
| C | 0 | 0 | 1 | 2 | 2 | 2 | 2 | 2  |
| A | 0 | 1 | 1 | 2 | 2 | 2 | 3 | 3  |
| В | 0 | 1 | 2 | 2 | 3 | 3 | 3 | 4  |
| A | 0 | 1 | 2 | 2 | 3 | 3 | 4 | 45 |

#### **IDEA:**

Compute the table bottom-up.

Time =  $\Theta(mn)$ .

Reconstruct LCS by tracing backwards.

|   |   | A | В | C | В | D | A | В  |
|---|---|---|---|---|---|---|---|----|
|   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  |
| В | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1  |
| D | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2  |
| C | 0 | 0 | 1 | 2 | 2 | 2 | 2 | 2  |
| A | 0 | 1 | 1 | 2 | 2 | 2 | 3 | 3  |
| В | 0 | 1 | 2 | 2 | 3 | 3 | 3 | 4  |
| A | 0 | 1 | 2 | 2 | 3 | 3 | 4 | 46 |

В

B

#### **IDEA:**

Compute the table bottom-up.

Time =  $\Theta(mn)$ .

Reconstruct LCS by tracing backwards.

Space =  $\Theta(mn)$ .

### **Exercise:**

 $O(\min\{m,n\}).$ 

|   | A | B | C | B | D | A | B  |
|---|---|---|---|---|---|---|----|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  |
| 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1  |
| 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2  |
| 0 | 0 | 1 | 2 | 2 | 2 | 2 | 2  |
| 0 | 1 | 1 | 2 | 2 | 2 | 3 | 3  |
| 0 | 1 | 2 | 2 | 3 | 3 | 3 | 4  |
| 0 | 1 | 2 | 2 | 3 | 3 | 4 | 4, |

November 7, 2005

### REFERENCE

### Introduction to Algorithms

- Thomas H. Cormen
- Chapter # 15

• http://lcs-demo.sourceforge.net/