

ИСКУССТВЕННЫЕ НЕЙРОННЫЕ СЕТИ

И компьютерное зрение

НЕМНОГО ИСТОРИИ

Первые идеи – 1950-1960 годы

Период разочарования – до 1990-х

С 2000-х началось активное развитие

В 2012 появились глубокие нейросети

В 2015 на датасете **ImageNet** был превзойден человеческий уровень распознавания

ПЕРСЕПТРОН (НЕЙРОН)

$$y_{out} = F_{act}(b + \sum_{i=1}^{n} (w_i * x_i))$$

НЕЙРОСЕТЬ

ГЛУБОКАЯ НЕЙРОСЕТЬ

Input Hidden Hidden Output

ВИДЫ НЕЙРОСЕТЕЙ

- 1) Сверточные
- 2) Сеть Кохонена, Хопфилда
- 3) Рекуррентные
- 4) Спайковые

И т.д.

ПОЧЕМУ НЕЙРОСЕТИ СЕЙЧАС ВЕЗДЕ?

- 1) Железо
- 2) Данные
- 3) Модно

МАШИННОЕ ОБУЧЕНИЕ

Методы и алгоритмы, позволяющие выполнять задачу без четкого описания решения.

- 1) Обучение на прецедентах
- 2) Минимизация ошибки
- 3) Метрика качества

ОБУЧЕНИЕ НА ПРИМЕРАХ

Признаки (X)					Целевая переменная (Y)	
Рост	IQ	Пиво в день	Пол	Ср. бал в школе	Ср. бал в универ.	Курит?
170	128	0	М	4.7	4.4	Нет
195	90	40	М	3.3	3.1	Да
160	111	2	Ж	4.0	3.9	Нет
183	143	0	М	4.8	4.7	Да

ЗАДАЧИ МАШИННОГО ОБУЧЕНИЯ

- 1) Классификация
- 2) Регрессия
- 3) Кластеризация
- 4) Ранжирование
- 5) Предсказание

КЛАССИФИКАЦИЯ И РЕГРЕССИЯ

МИНИМИЗАЦИЯ ОШИБКИ

Подбор таких параметров модели, при которых ошибка (loss) будет минимальной.

Функции потерь для задач классификации:

•
$$\mathscr{L}(a,x) = [a(x) \neq y(x)]$$
 — индикатор ошибки;

Функции потерь для задач регрессии:

$$\mathscr{L}(a,x) = (a(x) - y(x))^2 -$$
квадратичная ошибка.

МЕТРИКА КАЧЕСТВА

Accuracy – доля верных ответов во всех ответах. Понятно, но иногда бесполезно

How many selected items are relevant?

How many relevant items are selected?

- [

ОБУЧЕНИЕ МОДЕЛИ

Обучение = уменьшение ошибки

Нейронная сеть — модель с безумным числом параметров — от нескольких сотен до десятков миллионов

Градиентный спуск – наше всё

как найти минимум?

ВАРИАЦИИ ГРАДИЕНТНОГО СПУСКА

- 1) С моментом Нестерова запоминаем свое прошлое направление движение, «инерция»
- 2) AdaGrad учитываем скорость изменения каждого параметра
- 3) AdaDelta то же, что AdaGrad, но с нормализацией, что уменьшает эффект паралича сети
- 4) Adam практически смесь всех предыдущих

КАК НАЙТИ ГРАДИЕНТ?

Фреймворки решают эту задачу за нас. Но выбор и количество данных при подсчете – наша задача.

- 1) Стандартный (пакетный) режим по всем имеющимся данным
- 2) Стохастический по 1 примеру за раз
- 3) Мини-пакетный, mini-batch по небольшой части тренировочных данных, обычно число кратное 2

ГРАДИЕНТ НАШЛИ, ЧТО ДАЛЬШЕ?

Его нужно применить с определенным коэффициентом – learning rate, скорость обучения, величина шага.

Типичные значения для него – от 0.0001 до 0.1, в зависимости от сети.

КАК ОШИБКА ВЛИЯЕТ НА ПАРАМЕТРЫ МОДЕЛИ?

^{* -} обратное распространение ошибки

РАЗДЕЛЕНИЕ ДАННЫХ

- 1) Обучающая выборка на ней обучаемся
- 2) Валидационная выборка на ней проверяем качество сети
- 3) Тестовая выборка не трогаем ни разу, до тех пор, пока все не закончим. Это данные из «реального мира»

Эпоха – проход по всем данным.

УЧИТЬСЯ, УЧИТЬСЯ И ПЕРЕОБУЧИТЬСЯ

КАК ЭТО ВЫГЛЯДИТ

КАК С ЭТИМ БОРОТЬСЯ

Наивный подход – ограничить нейросеть в умственных способностях (неверно и негуманно).

Правильный подход – использовать L1 и L2 регуляризацию, а так же dropout или batch normalization.

НЕЙРОСЕТЬ

- 1) Сверточные слои
- 2) Слои подвыборки (пулинга)
- 3) Полносвязные слои

СВЕРТОЧНОЙ СЛОЙ

- 1) Размер ядра (3, 5)
- 2) Сохранение размера
- 3) Шаг

ПРИМЕР ВЫУЧЕННЫХ ПРИЗНАКОВ

СЛОЙ ПУЛИНГА

- 1) Pasmep(2-4)
- 2) Шаг (кратен размеру)
- 3) Тип (по максимальному)

Уменьшение расчетов за счет потери информации!

полносвязный слой

- 1) Ставятся в конце
- 2) Количество нейронов в последнем слое равно количеству классов (кроме бинарного случая)

ПРАКТИЧЕСКАЯ ЧАСТЬ

- 1) Python
- 2) TensorFlow, Keras
- 3) Google Colab

PYTHON

Python – интерпретируемый язык с динамической типизацией.

Jupyter Notebook – «IDE» в браузере, которая позволяет поэтапно выполнять код.

Удобство и скорость прототипирования привело к тому, что все популярные фреймворки имеют питоновский интерфейс, а иногда и только его.

TENSORFLOW

TF – фреймворк для разработки нейросетей от гугла. В нем есть все современные слои, есть интерфейсы как на питоне, так и на C++.

Keras – надстройка над TF, еще сильнее упрощает и ускоряет разработку нейросетей.

Есть и аналоги – PyTorch, Caffe, MXNet, DL4J, ...

GOOGLE COLAB

Бесплатный облачный jupyter notebook с GPU!

Можно сохранять свои тетрадки в гугл диске.

Есть ограничения на время работы, а так же могут быть проблемы с загрузкой датасетов.

ПРАКТИЧЕСКАЯ ПРАКТИКА

Задача — создать свою нейросеть и обучить на датасете MNIST – «hello, world!» в мире нейросетей.

ПОДКЛЮЧЕНИЕ БИБЛИОТЕК

```
[3] from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Conv2D, MaxPooling2D, Flatten, Dropout
from keras.optimizers import Adam
from keras.utils import to_categorical
import keras
import keras.backend as K

import matplotlib.pyplot as plt
import numpy as np
```

Using TensorFlow backend.

ОБЩИЕ ПЕРЕМЕННЫЕ

```
[4] batch_size = 256
num_classes = 10
epochs = 10
```

ЗАГРУЗКА ДАТАСЕТА

```
data train shape: (60000, 28, 28, 1), label train shape: (60000,)
data test shape: (10000, 28, 28, 1), label test shape: (10000,)
```

ЧТО ЗА ДАННЫЕ?

[6] fig = plt.figure(figsize=(8, 6))

```
for i in range(15):
    ax = fig.add_subplot(3, 5, i + 1, xticks=[], yticks=[])
    ax.set_xlabel(y_train[i])
    ax.imshow(x_train[i,:,:,0], cmap='gray')

C

2
1
3
1
4
1
4
```

ПРЕДОБРАБОТКА ДАННЫХ

```
[7] x_train = x_train.astype('float32')
    x_test = x_test.astype('float32')
    x_train /= 255.0
    x_test /= 255.0
    print(x_train.min(), x_train.max())
    print(x_test.min(), x_test.max())

[3] y_train = to_categorical(y_train, num_classes)
    y_test = to_categorical(y_test, num_classes)
    print(y_train[0])

[5] [0. 0. 0. 0. 0. 1. 0. 0. 0. 0.]
```

АРХИТЕКТУРА СЕТИ

информация о сети

[32]	model.summary()
[24]	moder. Summar y ()

Layer (type)	Output	Shape	Param #
conv2d_9 (Conv2D)	(None,	26, 26, 32)	320
max_pooling2d_9 (MaxPooling2	(None,	13, 13, 32)	0
conv2d_10 (Conv2D)	(None,	11, 11, 64)	18496
max_pooling2d_10 (MaxPooling	(None,	5, 5, 64)	0
flatten_7 (Flatten)	(None,	1600)	0
dense_17 (Dense)	(None,	64)	102464
dropout_3 (Dropout)	(None,	64)	0
dense 18 (Dense)	(None,	10)	650

Total params: 121,930 Trainable params: 121,930 Non-trainable params: 0

МЕТОД ОБУЧЕНИЯ И МЕТРИКИ

ЗАПУСК ОБУЧЕНИЯ

ПРОЦЕСС ОБУЧЕНИЯ

```
Train on 42000 samples, validate on 18000 samples
Epoch 1/10
Epoch 2/10
Epoch 3/10
Epoch 4/10
Epoch 5/10
Epoch 6/10
Epoch 7/10
Epoch 8/10
Epoch 9/10
Epoch 10/10
```

Test loss: 0.030736874192990035

Test accuracy: 0.9892

ПЕЧАТЬ ГРАФИКА ОБУЧЕНИЯ

```
[22] def plot_history(history):
    plt.plot(history.history['acc'])
    plt.plot(history.history['val_acc'])
    plt.title('model accuracy')
    plt.ylabel('accuracy')
    plt.xlabel('epoch')
    plt.legend(['train', 'val'], loc='upper left')
    plt.show()
```

ГРАФИК ОБУЧЕНИЯ

КАК ИСПОЛЬЗОВАТЬ

```
plt.imshow(x_test[0,:,:,0])
pred_class = model.predict_classes(x_test[0].reshape(-1, 28, 28, 1))
print(pred_class)
```


КАК СОХРАНИТЬ

```
model.save('my_model.h5')
saved_model = keras.models.load_model('my_model.h5')
pred_class = saved_model.predict_classes(x_test[0].reshape(-1, 28, 28, 1))
print(pred_class)
```

[7]

А ЧТО КРОМЕ ЦИФР?

Что угодно – современные датасеты содержат до 1000 самых разных классов, которые нейросети умеют различать.

ДЕТЕКТОРЫ

СЕГМЕНТАЦИЯ

ГЕНЕРАЦИЯ

GAN - Generative adversarial network

GAN'S BY NVIDIA

DEEPFAKE

КРОМЕ ЭТОГО

Детектирование объектов на фото/видео

Генерация текстов

Машинный перевод

Написание и поиск музыки

Диагностика болезней

Предсказание погоды

Персональные рекомендации

• • •

ДОМАШНЕЕ ЗАДАНИЕ

- 1) Поиграться со шрифтами слоями, их параметрами
- 2) Обучить свою нейросеть на датасете fashion mnist (from keras.datasets import fashion_mnist)
- 3) Если это окажется просто, то попробуйте cifar10, cifar100

Учтите, что в cifar – RGB изображения, поэтому в местах, где идет речь о размерности данных, нужно будет поменять с 1 на 3