Class 7: Machine Learning

Derek Chang (PID: A16942232)

Today we are going to learn how to apply different machine learning methods, beginning with clustering:

The goal here is to find groups/clusters in input data.

First I will make up some data with clear groups. For this I will use the rnorm function.

```
rnorm(10)
```

```
[1] -0.55986848 1.20716420 -0.79549189 -0.09963398 0.81469181 0.12504503
[7] -1.64237939 1.05329969 0.54041293 -1.90624872
```

```
hist(rnorm(10000, mean = 3))
```

Histogram of rnorm(10000, mean = 3)


```
n <- 10000
x <- c(rnorm(n, mean = 3), rnorm(n, mean = -3))
hist(x)</pre>
```

Histogram of x


```
n <- 30
x <- c(rnorm(n, mean = -3), rnorm(n, mean = +3))
hist(x)</pre>
```

Histogram of x

y <- rev(x) hist(y)

Histogram of y

z <- cbind(x,y) head (z)</pre>

x y [1,] -4.856451 3.261633 [2,] -2.517931 2.781736 [3,] -2.477641 3.541901 [4,] -2.715697 4.530752 [5,] -5.139668 2.093315 [6,] -2.518960 2.981526

plot(z)

Use the kmeans() function setting K to 2 and nstart = 20Inspect/print the reuslts

- Q. How many points are in each cluster?: 30 in each cluster
- Q. What 'component' of your result object details cluster size? cluster assignment/membership? Cluster center? Q. plot x colored by the kmeans cluster assignment and add cluster centers as blue points

```
km <- kmeans(z, 2)
km</pre>
```

K-means clustering with 2 clusters of sizes 30, 30

Cluster means:

x y 1 -3.103776 2.930182 2 2.930182 -3.103776

Clustering vector:

Within cluster sum of squares by cluster:

[1] 58.67352 58.67352 (between_SS / total_SS = 90.3 %)

Available components:

[1] "cluster" "centers" "totss" "withinss" "tot.withinss"

[6] "betweenss" "size" "iter" "ifault"

Results in kmeans object km

attributes(km\$centers)

\$dim

[1] 2 2

\$dimnames

\$dimnames[[1]]

[1] "1" "2"

\$dimnames[[2]]

[1] "x" "y"

Cluster size?

km\$size

[1] 30 30

km\$centers

```
x y
1 -3.103776 2.930182
2 2.930182 -3.103776
```

km\$cluster

Cluster membership?

km\$cluster

Cluster center?

km\$centers

```
x y
1 -3.103776 2.930182
2 2.930182 -3.103776
```

R will re-cycle the shorter color vector to be the same length as the longer (number of data points) in z

```
plot(z, col = c("red", "blue"))
```


plot(z, col = 2)

We can use the points() function to add new points to an existing plot, like the cluster centers.

```
plot(z, col = km$cluster)
points(km$centers, col = "blue", pch = 15, cex = 3)
```


 ${\bf Q}.$ Can you run kmeans and ask for 4 clutsers and plot the results.

```
km4 <- kmeans(z, centers = 4)
plot(z, col = km4$cluster)
points(km4$centers, col = "blue", pch = 15)</pre>
```


Hierarchical Clustering

Let's take our same made-up data ${\bf z}$ and see how helust works.

First we need a distance matrix of our data to be clustered.

```
d <- dist(z)
hc <- hclust(d)
hc</pre>
```

```
Call:
hclust(d = d)
```

Cluster method : complete
Distance : euclidean

Number of objects: 60

```
plot(hc)
abline(h=8, col = "red")
```

Cluster Dendrogram

d hclust (*, "complete")

I can get my cluster membership by cutting the tree with the cutree() function like so:

```
grps <- cutree(hc, h = 8)
grps</pre>
```

can you plot ${\bf z}$ colored by our hclust results:

plot(z, col = grps)

PCA of UK Food Data

Read data from the UK on food consumption in different parts of the UK.

```
url <- "https://tinyurl.com/UK-foods"
x <- read.csv(url, row.names = 1)
head(x)</pre>
```

	England	Wales	Scotland	N.Ireland
Cheese	105	103	103	66
Carcass_meat	245	227	242	267
Other_meat	685	803	750	586
Fish	147	160	122	93
Fats_and_oils	193	235	184	209
Sugars	156	175	147	139

```
barplot(as.matrix(x), beside=T, col=rainbow(nrow(x)))
```


barplot(as.matrix(x), beside=F, col=rainbow(nrow(x)))

A so-called "Pairs" plot can be useful for small datasets like this

It is hard to see structure and trends even in this small data-set. How will we ever do this when we have big datasets with 1000s or 10s of thousands of measured things

PCA to the rescue

Let's see how PCA deals with this dataset. So main function in base R to do PCA is called prcomp()

```
pca <- prcomp(t(x))
summary(pca)</pre>
```

Importance of components:

	PC1	PC2	PC3	PC4
Standard deviation	324.1502	212.7478	73.87622	2.921e-14
Proportion of Variance	0.6744	0.2905	0.03503	0.000e+00
Cumulative Proportion	0.6744	0.9650	1.00000	1.000e+00

Let's See what is inside this pca object that we created from running prcomp(t(x))

attributes(pca)

pca\$x

```
PC1 PC2 PC3 PC4
England -144.99315 -2.532999 105.768945 -9.152022e-15
Wales -240.52915 -224.646925 -56.475555 5.560040e-13
Scotland -91.86934 286.081786 -44.415495 -6.638419e-13
N.Ireland 477.39164 -58.901862 -4.877895 1.329771e-13
```

```
plot(pca$x[,1], pca$x[,2], col = c("black", "red", "blue", "green"), pch = 16, xlab = "PX(67.4%)
```


Loadings plot

```
par(mar=c(10, 3, 0.35, 0))
barplot( pca$rotation[,1], las=2 )
```

