Appendix: Theorems on partial differentiation

Classical thermodynamics is concerned with the equilibrium states of systems, and such states are characterised by the values of a small number of macroscopic quantities, the thermodynamic coordinates. One of the principal aims of thermodynamics is to derive relationships between the values of these coordinates for different equilibrium states. For simple systems of the kinds discussed in this book, equilibrium states are characterised by the values of two independent coordinates, and each equilibrium state is represented by a point in a three-dimensional space, using the values of the two independent coordinates and one other. The totality of equilibrium states for such a system is represented by a continuous and single-valued surface in the appropriate three-dimensional space. For example, the equilibrium states achieved by a gaseous system are represented by a continuous surface in a space, using pressure p, volume V and temperature T as coordinates. Any change that is composed of a succession of equilibrium states is represented by a line on this surface and, for an infinitesimal part of any such change, changes in the values of the coordinates are obtained by the use of the partial differential calculus. Two widely used theorems in this calculus will now be considered briefly.

Consider first a continuous and single-valued function

$$y = f(x) \tag{A.1}$$

The differential coefficient at x = a of the function y = f(x) is written as f'(a) and defined by the equation

$$f'(a) = \lim_{x \to a} \left\lceil \frac{f(x) - f(a)}{x - a} \right\rceil \tag{A.2}$$

The function f'(x), whose value at x=a is f'(a), is called the derivative of the function f(x). Putting x-a=h, the differential coefficient at x=a becomes

$$f'(a) = \lim_{h \to 0} \left[\frac{f(a+h) - f(a)}{h} \right]$$
 (A.3)

The tangent to the curve at the point x = a, y = b is the limiting position of the chords through that point. Therefore, the tangent at the point (a,b) on the curve has a gradient f'(a).

If the points (a,b) and (a + h, b + k) are both on the curve y = f(x), then

$$\frac{k}{h} = \frac{f(a+h) - f(a)}{h} \tag{A.4}$$

When the two points are close together, h may be treated as a small increment in x and written δx ; k may be treated as a small increment in y and written δy . Then

$$f'(x) = \lim_{\delta x \to 0} \left(\frac{\delta y}{\delta x} \right)$$

which is, in the usual notation,

$$f'(x) = \lim_{\delta x \to 0} \left(\frac{\delta y}{\delta x} \right) = \frac{\mathrm{d}y}{\mathrm{d}x}$$
 (A.5)

For a continuous function, f(a + h) - f(a) may be written

$$f(a+h) - f(a) = hf'(a) + h\epsilon(h)$$
 (A.6)

where $\epsilon(h)$ has the property that $\epsilon(h) \to 0$ as $h \to 0$.

Now f(a + h) - f(a) is an increment in f which, when h is small, may be written δf . This increment in f approaches the value hf'(a) in the limit as h tends to zero. Then, if hf'(a) is written df, Equation (A.6) becomes

$$\delta f = \mathrm{d}f + h\epsilon(h) \tag{A.7}$$

df is known as the differential of f(x) at x = a and is a multiple of f'(a), the differential coefficient at x = a.

In particular, if f(x) is the function x, f'(a) is unity and h is dx, so that

$$df = f'(a) dx (A.8)$$

Equation (A.8) gives, approximately, the change in f(x) arising from a small change in x (see Figure A.1), the error being $h\epsilon(h)$.

If f is a real single-valued function of two independent variables x and y, the partial derivative of f(x,y) with respect to x, written $f_x(x,y)$ or $(\partial f/\partial x)_y$, is defined as

Figure A.1 Illustrating the differential df of the function y = f(x)

$$f_x(x,y) = \left(\frac{\partial f}{\partial x}\right)_y = \lim_{\delta x \to 0} \left[\frac{f(x + \delta x, y) - f(x, y)}{\delta x} \right]$$
 (A.9)

Similarly, the partial derivative with respect to y is

$$f_{y}(x,y) = \left(\frac{\partial f}{\partial y}\right)_{x} = \lim_{\delta y \to 0} \left[\frac{f(x,y+\delta y) - f(x,y)}{\delta y}\right]$$
(A.10)

Extending the analysis leading to Equation (A.8) to a function of two variables f(x, y) gives

$$f(a + h, b + k) - f(a,b) = hf_x(a,b) + kf_y(a,b) + \rho\epsilon$$
 (A.11)

where ϵ has the property that $\epsilon \rightarrow 0$ as $\rho \rightarrow 0$. Equation (A.11) may be written

$$\delta f = \mathrm{d}f + \rho \epsilon \tag{A.12}$$

where

$$\delta f = f(a+h, b+k) - f(a,b)$$

and

$$df = hf_x(a,b) + kf_v(a,b)$$

Now, if f(x,y) = x, then $f_x(a,b) = 1$ and $f_y(a,b) = 0$, while, if f(x,y) = y, $f_y(a,b) = 1$ and $f_x(a,b) = 0$ and, further, dx = h and dy = k. Therefore,

$$df = f_x(a,b) dx + f_v(a,b)dy$$

or, in the notation favoured in this book,

$$df = \left(\frac{\partial f}{\partial x}\right)_{y} dx + \left(\frac{\partial f}{\partial y}\right)_{x} dy \tag{A.13}$$

Equation (A.13) may be used to estimate the change in f arising from small changes in x and y, the accuracy increasing as the changes tend to zero.

For a particular thermodynamic system with two independent coordinates, let the coordinates chosen be x, y and z, related by the equation of state

$$F(x, y, z) = 0 \tag{A.14}$$

If F is a continuous and single-valued function, x may be expressed explicitly as a function of y and z — that is

$$x = x(y,z)$$

The differential of x may then be written

$$dx = \left(\frac{\partial x}{\partial y}\right)_z dy + \left(\frac{\partial x}{\partial z}\right)_y dz \tag{A.15}$$

A similar equation may be written for dz:

$$dz = \left(\frac{\partial z}{\partial y}\right)_{x} dy + \left(\frac{\partial z}{\partial x}\right)_{y} dx \tag{A.16}$$

Substituting for dz from Equation (A.16) into Equation (A.15) gives

$$dx = \left(\frac{\partial x}{\partial z}\right)_{y} \left(\frac{\partial z}{\partial x}\right)_{y} dx + \left[\left(\frac{\partial x}{\partial y}\right)_{z} + \left(\frac{\partial x}{\partial z}\right)_{y} \left(\frac{\partial z}{\partial y}\right)_{x}\right] dy \qquad (A.17)$$

Equation (A.17) must be valid whichever two of the variables x, y, z are taken to be independent. If x and y are chosen to be independent, dy can be made zero and dx non-zero. This gives

$$\left(\frac{\partial x}{\partial z}\right)_{y} \left(\frac{\partial z}{\partial x}\right)_{y} = 1$$

or

$$\left(\frac{\partial x}{\partial z}\right)_{y} = 1/\left(\frac{\partial z}{\partial x}\right)_{y} \tag{A.18}$$

Equation (A.18) is known as the reciprocal theorem.

If, instead, dx is made zero and dy non-zero, Equation (A.18) gives

$$\left(\frac{\partial x}{\partial y}\right)_z = -\left(\frac{\partial x}{\partial z}\right)_y \left(\frac{\partial z}{\partial y}\right)_x$$

or, using the reciprocal theorem,

$$\left(\frac{\partial x}{\partial y}\right)_z \left(\frac{\partial y}{\partial z}\right)_x \left(\frac{\partial z}{\partial x}\right)_y = -1 \tag{A.19}$$

This result is known as the reciprocity theorem, and such equations are known as reciprocity relations.

For a fuller discussion of partial differentiation reference may be made to the following books:

Hilton, P. J. (1958). *Differential Calculus* (London: Routledge and Kegan Paul)

Hilton, P. J. (1960). *Partial Derivatives* (London: Routledge and Kegan Paul)

Sources for numerical values

- American Institute of Physics (1963). Handbook, 2nd edn (New York: McGraw-Hill)
- Hsieh, J. S. (1975). *Principles of Thermodynamics* (Tokyo: McGraw-Hill Kogakusha)
- Kaye, G. W. C. and Laby, T. H. (1973). *Tables of Physical and Chemical Constants*, 14th edn (London: Longman)
- Nordling, C. and Osterman, J. (1980). *Physics Handbook* (Bromley: Chartwell-Bratt)
- Roberts, J. K. and Miller, A. R. (1951). *Heat and Thermodynamics*, 4th edn (London and Glasgow: Blackie)

Answers and hints to exercises

Chapter 2

- 1 (a) Isolated.
 - (b) Closed.
 - (c) Open.

[See Section 2.3.]

- 2 (a) Non-equilibrium.
 - (b) Non-equilibrium.
 - (c) Equilibrium.
 - (d) Non-equilibrium.

[See Section 2.4.]

- 3 (a) Quasistatic.
 - (b) Non-quasistatic.
 - (c) Quasistatic.
 - (d) Non-quasistatic.

[See Section 2.2.]

- 4 (a) False.
 - (b) False.
 - (c) False.
 - (d) False.
 - (e) False.

Chapter 3

- 1 The isotherms do not intersect.
 - [Hint: Apply the zeroth law to the hypothetical situation where the isotherms do intersect.]
- 2 Temperature is a property of a large assembly of atoms; the temperature of a single atom of such an assembly has no meaning.

- 3 Intensive coordinates: pressure, temperature, load. Extensive coordinates: volume, length.
 [See Section 2.1.]
- 4 (a) False.
 - (b) False.
- 5 $\theta_R = 300.4 \text{ units}; \ \theta_r = 680.7 \text{ units}.$ [Hint: θ_R is defined by the equation

$$\theta_R = aR + b$$

where a and b are constants whose values are determined by the values assigned to the ice point and steam point. θ_r is similarly defined.

Chapter 4

- 1 (a) The viscosity of the liquid.
 - (b) The diffusion of ions through the porous membrane.

$$U_{f} - U_{i} = W + Q$$

$$U_{f} - U_{i} = W + Q + |\Delta m| c^{2}$$

where $|\Delta m|$ is the magnitude of the change in mass resulting from fission and c is the speed of light in a vacuum.

- 3 (a) Reversible.
 - (b) Quasistatic.
 - (c) Non-equilibrium.
 - (d) Non-equilibrium.
 - (e) Quasistatic.

[See Sections 2.2 and 4.6.]

- 4 The heat absorbed by the system during process B is $Q_{\rm B}=-70~{\rm J}$. The minus sign indicates that the heat transfer is from the system. [Hint: Because the complete process is cyclic, the total change in internal energy of the system ΔU is zero. Using an obvious notation, $\Delta U=0=Q_{\rm A}+W_{\rm A}+Q_{\rm B}+W_{\rm B}$ and $Q_{\rm A}=+100~{\rm J}$, $W_{\rm A}=-50~{\rm J}$ and $W_{\rm B}=+20~{\rm J}$.]
- 5 Since the interacting systems are otherwise isolated, $\Delta U_A + \Delta U_B = 0$. Therefore, $Q_A + Q_B + W_A + W_B = 0$. But $W_A = W_B = 0$ and, therefore, $Q_A = -Q_B$.
- 6 Q = 0, W = 0 and, therefore, $\Delta U = 0$.

7

$$W = \int_{L_{i}}^{L_{f}} F dL = \int_{L_{i}}^{L_{f}} \frac{C}{L_{0}} (L - L_{0}) dL$$
$$= \frac{C(L_{f} - L_{i})}{2L_{0}} (L_{f} + L_{i} - 2L_{0})$$

Chapter 5

1

$$W = -\int_{V_i}^{V_f} p \mathrm{d}V$$

(a)
$$pV = 100$$

Therefore,

$$W = -\int_{1}^{25} \frac{100}{V} \, \mathrm{d}V = -322 \, \mathrm{J}$$

The minus sign indicates that the work is done by the system.

(b)
$$p = 104 - 4V$$

Therefore,

$$W = -\int_{1}^{25} (104 - 4V) dV = -1248 J$$

Again the minus sign indicates that the work is done by the system.

2

$$W = -\int_{V_1}^{V_f} p \mathrm{d}V$$

p is constant and equal to p_0 ;

$$V_1 = V_0$$
 and $V_f = nV$

3 Hint: Imagine that the initially evacuated cylinder A is connected to another cylinder, B, shown dotted in Figure H.1, fitted with a frictionless, non-leaking piston. Let this cylinder B be of such a size that it contains just the amount of air that will enter cylinder A when the valve is opened. When the first small quantity of air enters cylinder A, the pressure in B falls below atmospheric pressure by a very small amount and the piston of cylinder B is pushed in under a constant pressure p₀.

Figure H.1 Notional model for the flow of air into an evacuated cylinder

4 From Equation (5.6), if p is held constant,

$$\mathrm{d}V = \left(\frac{\partial V}{\partial \theta}\right)_p \mathrm{d}\theta$$

Now the cubic expansivity β is given by

$$\beta = \frac{1}{V} \left(\frac{\partial V}{\partial \theta} \right)_p$$

Therefore, at constant pressure,

$$\frac{\mathrm{d}V}{V} = \beta \mathrm{d}\theta$$

and, if B is constant,

$$V_{\rm f} = V_{\rm i} \exp (\beta(\theta_{\rm f} - \theta_{\rm i}))$$

When β is small, exp $(\beta(\theta_f - \theta_i)) \approx 1 + \beta(\theta_f - \theta_i)$ and

$$V_{\rm f} \approx V_{\rm i} + V_{\rm i} \beta (\theta_{\rm f} - \theta_{\rm i})$$

5

Linear expansivity =
$$\frac{1}{L} \left(\frac{\partial L}{\partial \theta} \right)_F = -\frac{(L - L_0)}{2L\theta}$$

Young's modulus
$$=\frac{L}{A} \left(\frac{\partial F}{\partial L} \right)_{A} = \frac{2LF}{A(L-L_0)}$$

6 Use the reciprocity relation

$$\left(\frac{\partial F}{\partial \theta}\right)_{L} = -\left(\frac{\partial L}{\partial \theta}\right)_{F} \left(\frac{\partial F}{\partial L}\right)_{\theta}$$

7 The work done on the surface is given by

$$W = \sigma(A_{\rm f} - A_{\rm i})$$

where A_f and A_i are the final and initial surface areas, respectively. Since the bubble has an 'inside' and an 'outside' surface,

$$W = 2 \times 0.07 \times 4\pi (0.1^2 - 0.06^2)$$

= 1.13 × 10⁻² J

8 The work of magnetisation in an infinitesimal reversible process is given by

$$dW = V\mu_0 H_a dM$$
 (obtained from Equation 5.33)

Using

$$\chi_{\rm m} = \frac{M}{H_{\rm r}} = \frac{C}{\theta}$$

and substituting for H_a gives the result.

Chapter 6

- 1 Atmospheric pressure = 76.3 cm of mercury. Assume that air obeys Boyle's law.
- 2 Apply Boyle's law. If p_0 is the initial pressure in the vessel of volume V, and v is the volume of the pump barrel, after the first stroke the pressure p_1 is given by

$$p_0 V = p_1 (V + v),$$

and after n strokes the pressure p_n is given by

$$p_n = \frac{p_0 V^n}{\left(V + v\right)^n}$$

Therefore, after two strokes the pressure is 0.925 atm, a reduction of 0.075 atm, and 100 strokes are needed to reduce the pressure to 0.02 atm.

3 When $pV_m = f(\theta)$, the isothermal compressibility is equal to 1/p:

$$\kappa_{\theta} = -\frac{1}{V_{\text{m}}} \left(\frac{\partial V}{\partial p} \right)_{\theta} \text{ and } \left(\frac{\partial V}{\partial p} \right)_{\theta} = -\frac{f(\theta)}{p^2}$$

When $pV_{\rm m} = A + Bp$, the isothermal compressibility is given by

$$\kappa_{\theta} = \frac{1}{p} - \frac{B}{A + Bp}$$

4 230.3 J.

The work done on the gas is given by

$$W = -\int p \mathrm{d}V$$

In an isothermal reversible process pV = constant, so that pdV = -Vdp and

$$W = \int V \mathrm{d}p$$

5 Let the volume of gas trapped at the pressure p_u be V. If the gas pressure is measured in mm Hg and h is measured in mm, when the reservoir is raised to give the mercury levels shown in Figure 6.6, the pressure of the trapped gas is $(p_u + h)$ mm Hg and, applying Boyle's law gives

$$P_{\mathbf{u}} V = (p_{u} + h) Ah$$

where A is the area of cross-section of the tube. Then

$$p_{\rm u} = \frac{Ah^2}{V - Ah}$$

If $Ah \ll V$

$$p_{\mathbf{u}} = \frac{Ah^2}{V}$$

Chapter 7

1 Use the defining equations

$$\frac{Q_1}{Q_2} = -\frac{e^{\tau_1}}{e^{\tau_2}}; \frac{Q_3}{Q_4} = -\frac{e^{\tau_3}}{e^{\tau_4}}$$

$$\eta_1 = 1 + Q_2/Q_1$$
; $\eta_2 = 1 + Q_4/Q_3$

2 The defining equation for τ is

$$\frac{Q_1}{Q_2} = -\frac{\mathrm{e}^{\tau_1}}{\mathrm{e}^{\tau_2}}$$

When T = 100 K,

$$\frac{Q_1}{Q_2} = -\frac{100}{273.16}$$

and, when T = 273.16 K, $\tau = 0$.

The temperature in thomsons corresponding to a temperature of 100 K is given by

$$-\frac{e^{\tau}}{e^0} = \frac{100}{273.16}$$

i.e. $\tau = -1.00$ Th.

3 Use the equations

$$-W = Q_1 + Q_2 \text{ and}$$

$$\frac{Q_1}{Q_2} = -\frac{T_1}{T_2}$$

- 5 (b)
- 6 No. The engine is more efficient than a Carnot engine operating between the same reservoirs.
- 7 (c)
- 8 (d) The device is merely dissipating mechanical energy.

9

C.o.P. (heat pump) =
$$-\frac{Q_1}{W} = \frac{T_1}{T_1 - T_2}$$

C.o.P. (refrigerator) =
$$\frac{Q_2}{W} = \frac{T_2}{T_1 - T_2}$$

For the dependence of C.o.P on T_2/T_1 see Figure H.2.

10 See Figure H.3.

Chapter 8

1 Assume that the process is reversible.

$$\Delta S = \frac{Q}{T} = \frac{0.64 \text{ kWh}}{373 \text{K}} = \frac{0.64 \times 10^3 \times 60 \times 60}{373} = 6180 \text{ J K}^{-1}$$

2 With an obvious notation

$$W + Q_1 + Q_2 + Q_3 = 0$$
 (first law)

Figure H.2 The dependence of C.o.P. on T_2/T_1 . Curve h is for a heat pump and curve r for a refrigerator

Figure H.3 The Carnot cycle for a system consisting of a sample of rubber that obeys Hooke's law

$$\frac{Q_1}{T_1} + \frac{Q_2}{T_2} + \frac{Q_3}{T_3} = 0$$
 (second law)

Remembering that the sign convention applies to the working substance,

$$W = -200 \text{ J}, T_1 = 400 \text{ K}, T_2 = 300 \text{ K}, T_3 = 200 \text{ K}, Q_1 = + 1200 \text{ J}$$

Therefore,

$$Q_2 = -1200 \text{ J} \text{ and } Q_3 = +200 \text{ J}$$

3 See Figure H.4.

Figure H.4 A Carnot cycle plotted on a graph of temperature T against entropy S is a rectangle for all systems

The area enclosed by the curve is -W, where W is the work done on the working substance in one cycle.

4 The resistor does not undergo a change of state and, therefore, its entropy does not change. The entropy change of the water ΔS is given by

$$\Delta S = \frac{I^2 Rt}{T}$$
= $\frac{1 \times 25 \times 10}{280} = 0.9 \text{ JK}^{-1}$

5 From the first law,

$$dU = -pdV + TdS$$

Therefore

$$\left(\frac{\partial U}{\partial V}\right)_S = -p \text{ and } \left(\frac{\partial U}{\partial S}\right)_V = T$$

- 6 The complete system is isolated from its surroundings and has a fixed volume
 - (a) Using an obvious notation,

$$dU_1 + dU_2 = 0$$

 $dV_1 + dV_2 = 0$
 $dS_1 + dS_2 = 0$

Therefore,

$$dU_1 = - dU_2$$
; $dS_1 = - dS_2$

Using dU = TdS - pdV,

$$0 = T_1 dS_1 - p_1 dV_1 + T_2 dS_2 - p_2 dV_2$$

or, substituting for dV_2 and dS_2 ,

$$0 = dS_1(T_1 - T_2) - dV_1(p_1 - p_2)$$

Since, in an infinitesimal reversible process, neither dS_1 nor dV_1 is zero, for this identity to be satisfied,

$$T_1 = T_2 \text{ and } p_1 = p_2$$

That is, both mechanical and thermal equilibrium must obtain.

(b) In this situation

$$dS_1 = dS_2 = 0$$

Therefore, T_1 and T_2 can assume any values consistent with the condition for mechanical equilibrium: $p_1 = p_2$.

Chapter 9

1 Equation (7.18) leads to a defining equation for entropy of

$$dS = \frac{q}{e^{\tau}}$$

and an equation of state for 1 mol of molecules of ideal gas of

$$pV_{\rm m} = Re^{\tau}$$

Let the number of moles of molecules initially in the vessels of volumes V_0 and V be n_1 and n_2 , respectively. Then

$$p_0V_0 = n_1RT_0 \text{ and } p_0V = n_2RT_0$$

When the temperature of the vessel of volume V is changed to T, the numbers of moles of molecules change to, respectively, n_3 and n_4 . Then

$$pV_0 = n_3RT_0$$
 and $pV = n_4RT$

Since $n_1 + n_2 = n_3 + n_4$, the result follows.

3 The cubic expansivity β is given by

$$\beta = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_{p}$$

and for n moles of ideal gas $(\partial V/\partial T)_p = nR/p$.

4 For an ideal gas there is no change in internal energy when it undergoes a reversible isothermal change in volume. For such a process the first law becomes

$$TdS = q = -pdV = w$$

Since pV = nRT,

$$W = -\int_{V_i}^{V_f} p dV = nRT \ln \left(\frac{V_i}{V_f} \right)$$

and

$$Q = nRT \ln \left(\frac{V_{\rm f}}{V_{\rm i}}\right) = nRT \ln \left(\frac{p_{\rm i}}{p_{\rm f}}\right)$$

- 5 No. See Dalton's and Leduc's laws.
- 6 p' = 1.003 p. Use the approach of Exercise 2.

Chapter 10

1 By definition

$$F = U - TS$$

For a closed hydrostatic system

$$dU = TdS - pdV$$

so that

$$dF = -pdV - SdT$$

At constant volume

$$\left(\frac{\partial F}{\partial T}\right)_V = -S$$

and, therefore,

$$U = F - T \left(\frac{\partial F}{\partial T} \right)_V$$

A similar proof follows for

$$G = F - V \left(\frac{\partial F}{\partial V} \right)_T$$

2

$$J = S - \frac{U}{T}$$

Therefore

$$dJ = dS - \frac{dU}{T} + \frac{U}{T^2} dT$$

Now, from the entropy form of the first law,

$$\frac{\mathrm{d}U}{T} = \mathrm{d}S - \frac{p\mathrm{d}V}{T}$$

and the result follows.

3 Use the appropriate analogue of the Gibbs-Helmholtz equations, i.e.

$$U = F + T \left(\frac{\partial F}{\partial T}\right)_L$$
 and $G = F - L \left(\frac{\partial F}{\partial L}\right)_T$

together with the result that, in a reversible isothermal process, the work done on a system is equal to the increase in F. Then

$$\Delta U = \frac{L_0^2}{2} (2aT - 3bT^2)$$

$$\Delta G = \frac{5L_0^2}{2} \left(aT - bT^2 \right)$$

Chapter 11

1 Writing V = V(T, p), the change in volume in an infinitesimal process may be written

$$dV = \left(\frac{\partial V}{\partial T}\right)_{p} dT + \left(\frac{\partial V}{\partial p}\right)_{T} dp = V\beta dT - \kappa_{T} V dp$$

where β is the cubic expansivity and κ_T is the isothermal compressibility. At constant volume dV is zero and, assuming that κ_T and β are constant,

$$\beta \Delta T = \kappa_T \Delta p$$

When $\Delta T = 1$ K.

$$\Delta p = \frac{50 \times 10^{-6}}{14 \times 10^{-12}} = 3.6 \times 10^{6} \text{Pa}$$

2 (a) Apply conservation of internal energy. The final equilibrium temperature T_f is given by

$$T_{\rm f} = \frac{c_1 T_1 + c_2 T_2}{c_1 + c_2}$$

(b) Apply conservation of entropy. Then

$$T_{\rm f} = T_1^{(c_1/c_1+c_2)}T_2^{(c_2/c_1+c_2)}$$

3

$$C_{n,m} = aT^3 + bT$$

$$dQ_R = C_p dT$$
; $dS = \frac{dQ_R}{T} = \frac{C_p dT}{T}$

Therefore,

$$\Delta S_{\rm m} = \int_{1}^{9} \left(\frac{aT^3}{T} + \frac{bT}{T} \right) dT$$

$$= 8.5 \times 10^{-3} \text{ J K}^{-1} \text{ mol}^{-1}$$

4 Write Newton's law of cooling in the form

$$\frac{dQ}{dt} = C_p \frac{dT}{dt} = - \text{ constant } (T - T_s)$$

Integration gives

$$C_{\rm p} \ln(T - T_{\rm s}) = -K't + K''$$

where K' and K'' are constants.

The time for the temperature to fall from 333 K to 293 K is $8.2\ min.$

- 5 Use the method of cooling (Section 11.5.2). At 460 K the value of W is 25W and dT/dt is -0.154 K s⁻¹, giving a specific heat capacity of 1080 J kg⁻¹ K⁻¹.
- 6 Writing U_m as a function of T and p show that, at constant T,

$$\left(\frac{\partial U}{\partial p}\right)_T = -T\left(\frac{\partial V}{\partial T}\right)_p - p\left(\frac{\partial V}{\partial p}\right)_T$$

which, for the gas in question, is equal to

$$T\frac{\mathrm{d}B}{\mathrm{d}T}$$

7 Imagine that the air that enters the cylinder is contained in an imaginary piston, as in Figure H.1.

The work done by the atmosphere on the gas that enters the cylinder is $W = p_0 V_0$, while the heat transfer is zero. The change in internal energy of the gas in an infinitesimal part of the process is given by

$$dU = C_V dT = - p dV$$

Therefore, in the complete process,

$$\Delta U = nC_{V,m}(T - T_0) = p_0 V_0$$

But, $p_0V_0 = nRT_0$ (ideal gas equation) and $C_{p,m} - C_{V,m} = R$ (Equation 11.22). Therefore,

$$nC_{V,m}(T-T_0) = nRT_0 = n(C_{p,m}-C_{V,m})T_0$$

and

$$\frac{T}{T_0} - 1 = \frac{C_{p,m}}{C_{V,m}} - 1$$

or
$$T = \gamma T_0$$
.

8 Write H = H(T,p) to give

$$dH = \left(\frac{\partial H}{\partial T}\right)_{p} dT + \left(\frac{\partial H}{\partial p}\right)_{T} dp$$

and use

$$dH = TdS + Vdp$$

to obtain expressions for the partial derivatives, modified, if necessary, with a Maxwell relation.

- 9 The approach outlined in Exercise 8 will enable all the equations to be derived.
- 10 Start with Equation (10.4):

$$dU - T_0 dS < w$$

In this situation w may be written $w = -p_0 dV$. Then

$$dU - T_0 dS + p_0 dV < 0$$

When the process is adiabatic, dS is zero and the equation becomes $d(U + p_0 V) < 0$ or dH < 0. The process will occur when dH < 0.

Chapter 12

1 The result is Figure H.5. In a reversible isothermal process T is a constant and so is U for an ideal gas. When an ideal gas changes its temperature reversibly, as in an isentropic process,

$$dU = C_{V}dT$$

Figure H.5 A Carnot cycle plotted on a graph of internal energy U against temperature T when the working substance is an ideal gas with constant specific heat capacities

- 2 The fraction of the work recovered is 0.61.
- 3 The gravitational potential energy decrease as the ball-bearing falls a distance L is of magnitude MgL. The work done on the gas is

$$-\int_0^L (p-p_0) \mathrm{d}V$$

where p is the pressure in the gas. Use $pV^{\gamma} = \text{constant to obtain}$

$$p\gamma \frac{\mathrm{d}V}{V} + \mathrm{d}p = 0$$

Assume that the variations in p and V are very small. Then

$$dV = -Ady$$

where y is measured from the initial position of the bearing, and

$$\mathrm{d}p = -\frac{p_0 \gamma}{V} \, \mathrm{d}V = \frac{p_0 \gamma A}{V} \, \mathrm{d}y$$

so that, using the condition that $p = p_0$ when y = 0,

$$p - p_0 = \frac{p_0 \gamma A y}{V}$$

Substituting for dV and $(p - p_0)$ gives the result.

4 Use Equation (12.29), which integrates to give

$$\Delta T = -\frac{T}{C_L} A E \lambda \Delta L$$

provided that ΔT is small. If c_L is the specific heat capacity under constant load, $C_L = AL\rho c_L$, where ρ is the density of the material. Further, if the applied mass is M,

$$\frac{Mg}{A} = E \frac{\Delta L}{L}$$

Therefore,

$$\Delta T = -\frac{T\lambda Mg}{A\rho c_L} = -0.014 \text{ K}$$

5 Write L = L(T, F) and apply the conditions that dF must be the same in both rods and that

$$dL_1 + dL_2 = 0$$

6 Use Equation (12.43), which, for an isentropic change, may be written

$$dT = \frac{T}{C_A} \frac{d\sigma}{dT} dA$$

When the change in temperature is small, this equation may be written

$$\Delta T = \frac{T}{C_A} \frac{\mathrm{d}\sigma}{\mathrm{d}T} \Delta A$$

The value of d σ /dT is -0.24 mJ m $^{-2}$ K $^{-1}$, the value of ΔA is -125.5×10^{-6} m 2 and the value of C_A is 17.5×10^{-6} J K $^{-1}$. Substitution gives

$$\Delta T = 0.56 \text{ K}$$

7 In the notation of Section 12.4

$$dS_T = \frac{dQ_T}{T} = V \left(\frac{\partial M}{\partial T}\right)_{B_L} dB_a$$

$$\chi_{\rm m} = \frac{a}{T - T_{\rm c}} (\text{Curie-Weiss law})$$
$$= \frac{\mu_0 M}{B_{\rm c}} (\text{definition})$$

Therefore,

$$\left(\frac{\partial M}{\partial T}\right)_{B_a} = -\frac{B_a a}{\mu_0 T^2}$$

and

$$\Delta S_T = -\frac{Va}{2\mu_0 T^2} (B_{\rm af}^2 - B_{\rm ai}^2)$$

8 Use Equation (12.74):

$$\frac{dE}{dT} = 0.00034 \text{ V K}^{-1}$$

and

$$E_{350} = 0.063 \text{ V}$$

This gives a value for ΔH_T of 5.4 kJ mol⁻¹.

9 (a)

$$\eta(\text{theoretical}) = \frac{T_1 - T_2}{T_1} = \frac{825 - 275}{825}$$
$$= 0.67$$

(b)

$$\eta = -\frac{W}{Q_1} = -\frac{\mathrm{d}W/\mathrm{d}t}{\mathrm{d}Q_1/\mathrm{d}t}$$

Therefore,

$$0.3 = -\frac{(-1.2 \times 10^6)}{dQ_1/dt}$$

so that

$$\frac{\mathrm{d}Q_1}{\mathrm{d}t} = 4.0 \times 10^6 \,\mathrm{W}$$
$$= 4.0 \,\mathrm{MW}$$

(c)

$$\frac{\mathrm{d}Q_1}{\mathrm{d}t} + \frac{\mathrm{d}Q_2}{\mathrm{d}t} + \frac{\mathrm{d}W}{\mathrm{d}t} = 0$$

Therefore,

$$4 \times 10^6 + \frac{dQ_2}{dt} + (-1.2 \times 10^6) = 0$$

and

$$\frac{\mathrm{d}Q_2}{\mathrm{d}t} = -2.8 \; \mathrm{MW}$$

(d)

$$\frac{\mathrm{d}m}{\mathrm{d}t} c_p \Delta T = 2.8 \text{ MW}$$

$$\frac{dm}{dt} = \frac{2.8 \times 10^6}{4.2 \times 10^3 \times 5}$$
$$= 0.13 \times 10^3 \text{ kg s}^{-1}$$

Chapter 13

1 (a) Valid; (b) valid; (c) invalid. Apply Equation (13.13)

2

$$V_{\rm c} = 3b$$

$$p_{\rm c} = \frac{RT_{\rm c}}{2b} - \frac{a'}{9T_{\rm c}b^2}$$

$$T_{\rm c}^2 = \frac{8a'}{27Rh}$$

Use Equations (13.4).

If \hat{T} is the reduced temperature and \hat{V}_{m} is the reduced molar volume,

$$\left(p + \frac{3p_{\rm c}}{\hat{T}\hat{V}_{\rm m}^2}\right) \left(V - \frac{V_{\rm c}}{3}\right) = RT$$

3 Use successive approximations for p, say, starting with $p = RT/V_{\rm m}$

4

$$C_{p,m} - C_{V,m} = \frac{R}{1 - 2a(V_m - b)^2 / RTV_m^3}$$

Use Equation (11.24).

5

$$\frac{T_{\rm B}}{T_{\rm c}} = \sqrt{6} = 2.45$$

Use the reduced equation of state and write as a series in \hat{p} . The Boyle temperature is that which makes the coefficient of the term in \hat{p} equal to zero.

6

$$a'' = \frac{0.42748 R^2 T_c^{2.5}}{p_c}; b'' = \frac{0.08664 R T_c}{p_c}$$

7 Start with the equation

$$C_{\text{sat}} = T \left(\frac{\partial S}{\partial T} \right)_{\text{sat}}$$

and combine with a suitable differentiation of

$$dU = TdS - pdV$$

8 Consider the isotherm ABKD of Figure 13.2. Let the volume of the system be V when it is in the state represented by the point K, let $V_{\rm B}$ be the volume corresponding to the state B, when all the substance is vapour, and $V_{\rm D}$ that corresponding to the state D, when all the substance is liquid.

Further, let c and (1 - c) be the proportions by mass of the liquid phase and the vapour phase, respectively, in the state represented by the point K. Then,

$$V = c V_{\rm D} + (1 - c) V_{\rm B}$$
$$V_{\rm D} - V$$

so that

$$c = \frac{V_{\rm B} - V}{V_{\rm B} - V_{\rm D}}$$

Now, $V_B - V$ is proportional to KB on Figure 13.2 and $V_B - V_D$ is proportional to DB. Therefore,

$$c = \frac{KB}{DB}$$
 and $(1 - c) = \frac{KD}{DB}$

so that

$$\frac{c}{1-c} = \frac{m_l}{m_o} = \frac{KB}{KD}$$

Chapter 14

1 Use

$$W = -\int p \mathrm{d}V$$

to show that the work done is about 7% of the enthalpy of vaporisation.

- 2 The triple temperature is determined from the intersection of the sublimation and vaporisation curves. $T_t = 195$ K. Equation (14.14) may be used to determine the enthalpy of vaporisation at the triple point. $H_{\text{m.v}} = 25.5 \text{ kJ mol}^{-1}$.
- 3 Use Equation (14.19). c (saturated steam) = $-6.1 \text{ kJ kg}^{-1} \text{ K}^{-1}$.
- 4 29.2 kJ. Operate a Carnot refrigerator between the mass of water and a heat reservoir at a temperature of 20 °C.
- 5 Use Equation (14.12):

$$\frac{\mathrm{d}p}{\mathrm{d}T} = -13.6 \text{ MPa K}^{-1}$$

6

$$\frac{dp}{dT} = 3.6 \times 10^3 \text{ Pa K}^{-1}$$

= 3.55 × 10⁻² atm K⁻¹

Therefore, $\Delta T = -18.3$ K, assuming that dp/dT is a constant and the boiling point of water is 354.9 K or 82 °C.

- 5 Start with the first law of thermodynamics and remember that both T and p are constant in a first-order phase change. Combine with $\Delta S = H_{12}/T$ and Equation (14.12).
- 8 Start with Equation (14.11) and use reciprocity and reciprocal relations.

Chapter 15

- 1 (a) Use Equation (12.44).
 - (b) Use Equation (12.68).
- 2 The best refutation is probably that due to Einstein, who pointed out that thought experiments must at least be possible in principle. No real process

can be completely reversible nor can heat transfer be avoided altogether. In Nernst's cycle the slightest heat influx or irreversibility throws the system away from absolute zero.

3 Use Equation (M3) (page 113). Neither van der Waals' equation nor the ideal gas equation is in agreement with the result derived.

Chapter 16

- 1 Use Equation (16.2). Joule coefficient = $-a/C_{V,m}V_m^2$
- 2 Examine the properties of Equation (16.19).
- 3 The result follows directly from Equation (16.11) and the definition of enthalpy. The first term in the square brackets indicates the departure from Joule's law and the second that from Boyle's law.
- 4 T_c is obtained using Equation (13.4). T_B is obtained by expressing van der Waals' equation in the form

$$pV_{\rm m} = RT + \frac{RTb - a}{V_{\rm m}} - \frac{RTb^2}{V_{\rm m}^2} + \cdots$$

 $T = T_{\rm B}$ when RTb - a = 0. Then show that the equation of the inversion curve is

$$T_{\rm i} = \frac{2a}{Rb} \left(1 - \frac{b}{V_{\rm m}} \right)^2$$

The maximum value of the inversion temperature is then $T_{\text{imax}} = 2 T_{\text{B}}$.

5 Use Equation (16.19).

$$\Delta T = +5.8 \text{ K}$$

6 The equation of the inversion curve is

$$\left(\frac{\partial \hat{V}_{\mathsf{m}}}{\partial \hat{T}}\right)_{\hat{p}} = \frac{\hat{V}}{\hat{T}}$$

Determine $(\partial \hat{V}_{\rm m}/\partial \hat{T})_p$ and substitute for this and for \hat{T} in the above equation.

Chapter 17

1 Let 1 m^3 of ideal gas contain *n* moles of molecules. Then

$$pV = nRT$$

If N is the number of molecules, $N = nN_A$ and R/N_A is Boltzmann's constant k. Therefore,

$$N = \frac{pV}{kT}$$
$$= 2.68 \times 10^{25} \text{ m}^{-3}$$

2

Mean free path =
$$\frac{1}{N\pi\sigma^2}$$

where N is the mean number of molecules in 1 m³. From Exercise 1, N is 2.68×10^{25} m⁻³. Therefore, for nitrogen at s.t.p. the mean path is 3.96×10^{-7} m.

3

$$p = \frac{1}{3} \, \rho \bar{c}^2$$

The mass of 1 mol of nitrogen molecules is 28 g, which is 28×10^{-3} kg. Therefore,

$$\rho = \frac{28 \times 10^{-3}}{22.4 \times 10^{-3}} = 1.25 \text{ kg m}^{-3}$$

and \overline{c}^2 is 24.24 \times 10⁴ m²s⁻², so that the root mean square speed is 492 ms⁻¹.

The mean free path (fast molecule approximation) is equal to $1/n\pi\sigma^2$, where n is the number of molecules in unit volume and σ is the (hard sphere) molecular diameter. The average separation of the molecules is $1/n^{1/3}$ and so the result follows.

Chapter 18

- 1 308.4 K.
- For a layer of insulation having internal and external radii R and R_0 , respectively, the total heat transfer coefficient \overline{U} is given by

$$\frac{1}{\overline{U}} = \frac{1}{2\pi R_0 h} + \frac{\ln (R_0/R)}{2\pi k}$$

This has a minimum value obtained by putting

$$\frac{\mathrm{d}\overline{U}}{\mathrm{d}R_0} = 0$$

giving $R_0 = k/h$.

3

$$r_0 = \sqrt{r_1 r_2}.$$

- 4 The dispersion produced by a prism is non-uniform, so that the thermometer bulb intercepts a greater range of wavelengths at the red end of the spectrum, and in the near infra-red, than it does elsewhere.
- 5 Use dU = TdS pdV to show that

$$S = \frac{16\sigma T^3 V}{3c} + \text{constant}$$

Then

$$\left(\frac{\partial S}{\partial T}\right)_V = \frac{16\sigma T^2 V}{c}$$

and

$$C_V = \frac{16\sigma T^3 V}{C}$$

6

$$T^4 - T_W^4 = (T^2 - T_W^2)(T^2 + T_W^2)$$

 $T^2 - T_W^2 = (T - T_W)(T + T_W)$
when $T \approx T_W$, $T + T_W \approx 2T_W$

Then Equation (18.36) becomes

$$\frac{\mathrm{d}q}{\mathrm{d}t} = 4A\alpha(T)\sigma T_{\mathrm{W}}^{3}(T - T_{\mathrm{W}})$$

7 When $c_2/\lambda T \gtrsim 5$, $e^{c_2/\lambda T} \gg 1$.

Using this result and taking natural logarithms of both sides of the modified Equation (18.53) gives the result.

Bibliography and references

Bibliography

Adkins, C. J. (1983). *Equilibrium Thermodynamics*, third edition (Cambridge: Cambridge University Press)

Finn, C. B. P. (1986). Thermal Physics (London: Routledge and Kegan Paul)

Pippard, A. B. (1957). *The Elements of Classical Thermodynamics*, (Cambridge: Cambridge University Press)

Riedi, P. C. (1988). *Thermal Physics*, second edition (Oxford: Oxford University Press)

Zemansky, M. W. (1968). *Heat and Thermodynamics*, fifth edition (Tokyo: McGraw-Hill Kogakusha)

References

Amagat, E. H. (1870). Comptes Rendus, 71, 67 [1]

Andrews, T. (1869). Phil. Trans. Roy. Soc., 159, 575

Andrews, T. (1876). Phil. Trans. Roy. Soc., 167, 421

Avogadro, A. (1811). J. de Physique, 73, 58 [2]

Bernoulli, D. (1738). Hydrodynamica (Strasbourg: Dulsecker)

Boyle, R. (1662). New Physico-Mechanical Experiments (London) [3]

Dalton, J. (1802). Memoirs of the Literary and Philosophical Society of Manchester, 5, 595 [4]

Dalton, J. (1808). A New System of Chemical Philosophy, Volume 1, Part 1 (London: Bickerstaff) [5]

Daniell, J. F. (1836), Phil. Trans. Roy. Soc., 126, 107

Désormes, C. B. and Clément, N. (1819). J. de Physique, 89, 321, 428 [6]

Gay-Lussac, J. L. (1802). Annales de Chimie, 43, 137

Gay-Lussac, J. L. (1809). Memoires de Physique et de Chimie de la Societe d'Arcueil, 2, 207 [7]

Holborn, L. and Otto, J. (1926). Z. Phys., 38, 359 (and earlier papers)

Holborn, L. and Schultze, H. (1915). Ann. Phys. Lpz., 47, 1089

Hoxton, L. G. (1919). Phys. Rev., 13, 438

Joule, J. P. (1845). Phil. Mag., Series 3, 26, 369

Kamerlingh Onnes, H. (1901). Leiden Comm., No. 71

Knudsen, M. H. C. (1915). Ann. Phys. Lpz., 48, 111 [8]

Ko, C. C. (1934). J. Franklin Inst., 217, 173

Langmuir, I. (1913). Phys. Rev., 11, 329

Lees, C. H. (1898). Phil. Trans. Roy. Soc., 191, 399

Marcus, P. M. and McFee, J. H. (1959). In *Recent Research in Molecular Beams*, edited by I. Esterman (New York: Academic Press)

Pitzer, K. S. (1941). J. Amer. Chem. Soc., 63, 2413

Rossini, F. D. and Fransden, M. (1932). J. Res. Nat. Bur. Stand., 9, 733

Scheel, H. and Heuse, W. (1912). Ann. Phys. Lpz., 37, 79

Simon, F. E. (1956). Year Book of the Physical Society, Vol. 1 (London: The Physical Society)

Swann, W. F. G. (1909). Proc. Roy. Soc., A82, 147

Thomson, W. and Joule, J. P. (1853). Phil. Trans. Roy. Soc., 143, 357

Thomson, W. and Joule, J. P. (1854). Phil. Trans. Roy. Soc., 144, 321

Thomson, W. and Joule, J. P. (1860). Phil. Trans. Roy. Soc., 150, 325

Thomson, W. and Joule, J. P. (1862). Phil. Trans. Roy. Soc., 152, 579

Zartman, I. F. (1931). Phys. Rev., 37, 383

Notes

- [1] Translations of some of Amagat's papers on the compressibility of gases are in *The Laws of Gases*, edited by C. Barus (New York: American Book Company, 1899)
- [2] Translated in Alembic Club Reprint No. 4 (Edinburgh: Livingstone, 1961) and also in *The Origins and Growth of Physical Science*, Volume 2, edited by D. L. Hurd and J. J. Kipling (Penguin Books, 1964)
- [3] Part II, Chapter V, 'A defence of the doctrine touching the spring and weight of the air' is in *The Laws of Gases*, edited by C. Barus (New York: American Book Company, 1899)
- [4] Reproduced in *The Expansion of Gases by Heat*, edited by W. W. Randall (New York: American Book Company, 1902)
- [5] Representative arguments from this book are in *The Origins and Growth of Physical Science*, Volume 2, edited by D. L. Hurd and J. J. Kipling (Penguin Books, 1964)
- [6] N. Clément married the daughter of C. B. Désormes and, subsequently, often styled himself Clément-Désormes. This has sometimes led to confusion.
- [7] A translation is given in *The Origins and Growth of Physical Science*, Volume 2, edited by D. L. Hurd and J. J. Kipling (Penguin Books, 1964)
- [8] A summary of Knudsen's experimental work is given in his book *The Kinetic Theory of Gases: Some Modern Aspects* (London: Methuen, 1934)

Absolute zero 88 unattainability of 252–254	Cascade process, for gas liquefaction 270–271
Absorptance (absorption factor) 322	Cavity radiation 323
Absorptance, spectral 322, 324	Cell, voltaic 56–57, 138–140, 197–199
Adiabatic demagnetisation 196	Celsius temperature scale 89
Adiabatic equations 175–178	Chemical equilibrium 12
for ideal gas 177–178	Chemical interaction 10
Adiabatic jacket calorimetry 157,	Change of phase 228–246
159–164	Characteristic temperature (Debye
Adiabatic processes 11	temperature) 166
uniqueness of reversible 79, 95–96,	Clapeyron-Clausius
105	equation 230–234
Adiabatic wall 11	integration of 232–234
Adiabatic work 29	and the third law 250
and ideal gas 178	Claude–Heylandt process 274–275
Air-standard cycles 181–182	Clausius's equation 98–100
Availability 138	Clausius's inequality 234–236
and useful work 138-140	Clausius's statement of second law 74
	Clausius's theorem 100
Beattie-Bridgeman equation of	Closed hydrostatic systems 47–49,
state 221	175–182
Berthelot's equation of state 225	Closed systems 10
Black body 322, 325	Coefficient of performance 76
Black-body radiation 322–331	Component 228
Bolometer 331	Compressibility
Boundary 4	isentropic 152
Boyle point 64	isothermal 49
Boyle temperature 65	Compressibility factor 215
of a van der Waals gas 220, 222	Compression ratio 182
Boyle's law 62–66	Conduction 302–315
Bulk modulus 254	Continuous-flow calorimetry 161–164
0.1.1	Convection 170–171, 302, 316–320
Calorimetry 156–164	forced 171, 316
Carbon resistance thermometers 276	natural 171, 316
Carnot Cycle 78–80	Convection current 171, 316
Carnot's Theorem 80–82	Cooling curve method, for measuring
corollary to 82–83	heat canacity 150–161

Coordinates, thermodynamic 6	and heat capacity 149
extensive 8	of a phase change 231
independent 8	as a potential function 170, 174
intensive 8	and throttling processes 263
Corresponding isotherms 18	Entropy 97–116
	determination of change of 106,
	155–156
	form of first law 106–107
Critical parameters, table of 220	
Critical parameters, table of 220	as a function of state 100–103
Critical point 213	and heat capacity 148
Critical speed 317	and heat conduction 314–315
Critical state 236–237	of ideal gas 155–156
Critical temperature 66, 211	in irreversible processes 108–112
of van der Waals gas 219	law of increase of 110
Cubic (isobaric) expansivity 49, 187	Entropy current 315
table of values of 189	Equation of the vaporisation
and the third law 251	curve 232–234
Curie temperature 194	Equations of state 20–22, 210–227
Curie's law 194	Beattie-Bridgeman 221
failure of, near absolute zero 251	Berthelot 225
Curie–Weiss law 194	Dieterici 225
Cyclic processes 75, 95	ideal gas 117–121
	real gases 214–217
Dalton's law of partial pressures 122	Redlich-Kwong 225
Daniell cell 56, 199	reduced 221–223
Debye temperature (characteristic	van der Waals 217-221
temperature) 166	Equilibrium 7
Degrees of freedom 8	chemical 12
Detection, of thermal	mechanical 11
radiation 331–332	thermal 11
Diathermal walls 11	thermodynamic 7, 12
Dieterici's equation of state 225	two-phase 228-230
Disappearing filament	Equilibrium state 7
pyrometer 332–333	Equilibrium vapour pressure 213
Dulong and Petit law	Exchanges, Prévost's theory of 321
of cooling 171	Expansivity
of heat capacity 166	cubic (isobaric) 49, 187
1 3	linear 50, 183, 186-7
Efficiency	table of values of 189
of Carnot engines 83, 93-94	Extensive coordinates 8
of heat engines 75	
Efficiency universal temperature	Figure of merit
function 85–86	of heat pumps 76
Ehrenfest classification, of phase	of refrigerators 76
changes 232	First law of thermodynamics 24-46
Elastic rod 22, 34, 49–51, 182–188	
	entropy form 106–107
e.m.f., of voltaic cell 56	infinitesimal form 33–38
Emissive power, spectral 321	First order phase change 232
Emissivity, of a surface 312, 324	Fixed point 20
Energy density, of cavity	Flow work 262
radiation 328	Fourier equation of heat
Energy equation 118, 154, 328	conduction 312
Enthalpy 148	Free expansion 66

of ideal gas 70	Ideal gas 70
of real gases 66–69	adiabatic equations of 177-178
theory of 256–259	entropy of 155–156
of van der Waals gas 278	equation of state 117–121
Free path, of a gas molecule 296–299	heat capacity of
Functions of state 6, 32	monatomic 290–291
Fundamental interval 20	heat capacity relations 151
Tandamental Interval 20	internal energy of 154–155
Gas constant 119	mixtures of 121–122
Gas liquefaction 270–275	Ideally rigid wall 11
Gas phase 211	Increase of entropy, law of 110
Gas thermometer 122–125, 275	Indicator diagram 9
correction 125–126, 268–269	Intensive coordinates 8
Gibbs function 137	Interactions
natural coordinates 141	chemical 10
in a phase change 228–230	thermal 10
as a potential function 137	work 10, 25
Gibbs-Helmholtz equations 144	Internal energy 27–30
Grashof Number 320	determination of 153–155
Gruneisen's law 188–189	of an ideal gas 154–155
	as a state function 29
Heat 30–32	International Temperature
dependence on process 32	Scale 126–127
latent 231	Inversion curve 264
sign convention for 31	Inversion temperature 264
Heat capacity 145-174	Irradiance, within a cavity 322
of a closed hydrostatic	Irreversible processes 39, 256–279
system 147–149	Isenthalp 264
general relationships for	Isenthalpic processes 265
principal 149–153	Isentropic processes 105
measurement of 156-164	Isolated systems 10
molar 146	Isothermal compressibility 49
principal 146	Isothermal jacket
specific 146	calorimetry 159–164
Heat conduction 303-315	Isotherms 18
and entropy 314-315	corresponding 18
Heat convection 170-171, 302,	
316–320	Joule coefficient 257
Heat engines 74–76	for an ideal gas 257
Heat exchangers 273-274	for a real gas 258-259
Heat flow, through a bar 310-314	theory 257
Heat pipes 315–316	Joule effect 256–259
Heat pumps 76	Joule's law 66–69
Heat of reaction 199	Joule-Thomson coefficient
Heat reservoirs 38–39, 44	(isenthalpic) 215, 265
Heat transfer 302–335	for an ideal gas 266
Heat transfer coefficient 171, 312,	for a real gas 267
317–320	theory 265–266
Helmholtz function 134–136	Joule-Thomson coefficient
natural coordinates 140–141	(isothermal) 268
	Ioule Thomson (throttling)
as a potential function 135	Joule-Thomson (throttling)
Hotness 15–17	effect 259–269
and temperature 17	and gas liquefaction 272–275

Kelvin, unit of temperature 87 Kelvin's statement of the second	One-component systems 228 Open systems 10 Optical purposetry 222 222
law 76	Optical pyrometry 332–333
Kinetic theory of gases 280–301	Optical-fibre pyrometer 333 Otto cycle 181
Kirchhoff's law for absorbers 324	Otto cycle 181
Latent heat 231	Paramagnetic salt
Law of corresponding states 222	thermometer 275–276
Law of uniformity of gaseous	Paramagnetic solids 53–56, 192–196
expansion 121	Partial differentiation 337–341
	Path 9
Laws of thermodynamics first 24–46	Perfectly elastic solids 22, 34, 49–51,
	183–188
second 15–17, 74–96	Phase 14
third 217, 247–255	
zeroth 15–17	Phase changes 228–246 Ehranfort elegification 232
Leduc's law of partial volumes 122	Ehrenfest classification 232
Linde-Hampson gas liquefaction	Phase equilibrium 228–230, 236
process 272–274	Photodetectors 331
Linear expansivity 50, 183, 186–187	Planck's radiation law 327
table of values of 189	Porous plug experiment 259–268
Liquefaction of gases 270–275	Potentials
Liquid-vapour interfaces 51-53,	electrode 56
188–191	thermodynamic 132–144
	Prandtl Number 320
McLeod gauge 72–3	Primitive coordinates 6
Magnetic cooling 197	Principles of calorimetry 156–164
Magnetic susceptibility 53, 193–194	Processes 8
table of values of 193	irreversible 39
and the third law 251	quasistatic 8
Magnetocaloric effect 193	reversible 33–39
Maxwell relations 112–114	Pressure exerted by a gas, kinetic
Maxwell-Boltzmann distribution law	theory 282–290
of speeds 293–296	Prévost's theory of exchanges 321
Maxwell-Boltzmann distribution law	p-V-T relations 214–225
of velocities 292–293	surface 210–211
Mean free path 296–300	Pyrometry 332–333
fast molecule	,
approximation 298–299	Quasistatic processes 8
slow molecule	1
approximation 299–300	Radiant emittance 321
Mean molecular speed 290	Radiant flux 321
Mean square speed 286	Radiation 321–333
Mechanical equilibrium 11	black-body 322–323
	laws of 323–327
Mercury-in-glass thermometers 129	pressure of 328
Mixtures, of ideal gases 121–122	thermal 321–333
Molar gas constant 119	
N	Real processes 39
Natural coordinates 140–141	Reciprocal theorem 341
Nernst-Lindemann equation 165	Reciprocity theorem 341
Nernst's heat theorem (third law of	Redlich-Kwong equation of state 225
thermodynamics) 247–255	Reduced coordinates 221
Newton's law of cooling 171, 318	Reduced equations of state 221–223
Nusselt Number 320	Reflectance (reflection factor) 322

Refrigerators 76 Reservoirs, heat 38–39, 44 Residence time, of a gas	Debye (characteristic) 166 empirical 19 and ideal gas 117–131
molecule 284	International Scale of 126–127
Resistance thermometers 128	inversion 264
Reversible adiabatics, uniqueness of 79, 95–96, 105	and kinetic theory of gases 288 magnetic 276
Reversible heat transfer 38–39	maximum inversion 264
Reversible processes 33–39	table of values of 265
Reynolds Number 320	scales of 19
Root mean square speed 287	thermodynamic 87-89
• •	universal functions of 85
Saturated liquid line 213	Thermal conductivity 303–304,
Saturated vapour line 213	306–310, 314
Saturation vapour pressure 213	Thermal contact 11
Scales of temperature 19	Thermal diffusivity 312
Second law of thermodyamics	Thermal efficiency 75
Clausius statement 74	Thermal equilibrium 11, 17-18
Frank statement 17	Thermal interaction 10, 15
Kelvin statement 76	Thermal radiation 321–333
Secondary thermometers 276	Thermocouples 128–129
Seebeck effect 128	table of e.m.f.s of 129
Sign conventions 32–33	Thermodynamic coordinates 6
for heat 31	Thermodynamic equilibrium 7, 12
for work 29	Thermodynamic potential
Simple fluid 20, 35–37	functions 132–144
Specific heat capacity 146	Thermodynamic properties 6
of a saturated liquid 235	Thermodynamic temperature 87–89
of a saturated vapour 235	Thermodynamic variables 6
Specific surface free energy (surface	Thermodynamic walls 10
tension) 51–53, 188–191	Thermodynamics of
table of values of 191	radiation 327–331
Specific total surface energy 191	Thermometers 19
Spectral absorptance 322	gas 122–126, 275
Spectral emissive power 321	mercury-in-glass 129
State 6	paramagnetic salt 275–276
State functions 6 State variables 6	resistance 128, 276
State variables of Stefan–Boltzmann constant 325, 327,	thermoelectric 128
330 327,	vapour pressure 276 Thermal detectors 331
Stefan-Boltzmann radiation law 325.	Thermometric substances 19
329	Thermopiles 331
Sublimation 214	Third law of thermodynamics 217,
Surface emissivity 312, 324	247–255
Surface film 52–53, 188–191	Throttling process 259–268
Surface tension 52	Total heat transfer coefficient 319
Surroundings 4	Total radiation pyrometer 332
Systems 4	Transmittance (transmission
-,	factor) 322
Temperature 15–23	Triple line 214
Boyle 65	Triple point 87, 236
Celsius 89	cell 87–88
critical 211	table of values of 265

Trouton's rule 242 Wien displacement law 326 Turbulent flow 171, 316 Wien distribution law 326 Work 10, 25 Unattainability of absolute done in charging a reversible voltaic cell 56-57 zero 252-254 Universal temperature done on a closed hydrostatic system 35–37, 48 functions 83–85 Useful work 40-41, 137-144 done in extending an elastic rod 34–35, 49–50 Useless work 40-41, 137-138 done in increasing the area of a surface film 52 Vacuum calorimeter 158–159 van der Waals equation of done in magnetising a paramagnetic state 217-221 solid 54-56 Boyle temperature 220 useful 40-41, 137-144 critical parameters 218–220 useless 40-41, 137, 138 reduced form of 221-223 Working substance 75 Vapour pressure thermometer 276 Voltaic cell 56–57, 196–199 Young's modulus 51, 183-186 table of values of 186 Walls, thermodynamic 10 Zeroth law of thermodynamics 17 Wiedemann-Franz-Lorentz law 305