

Réponse: En traçant la droite y=3 on s'aperçoit que la courbe est au-dessus de la droite sur les intervalles $]-\infty;-3$ [et $]2;+\infty$ [. D'où $S=]-\infty;-3$ [\cup] $2;+\infty$ [.

Fonctions polynômes de degré 2

DÉFINITION

On appelle fonction polynôme de degré 2, toute fonction de la forme :

$$f(x) = ax^2 + bx + c$$

où a, b et c sont des nombres réels, et a doit être non nul.

Forme développée et forme factorisée

Une fonction polynôme de degré 2 peut s'écrire sous la forme :

$$f(x) = ax^2 + bx + c$$

ou éventuellement sous la forme

$$f(x) = a(x - x_1)(x - x_2)$$

avec a, x_1 et x_2 des nombres réels et a est non nul. Dans le premier cas on parlera de forme développée, et dans le second de forme factorisée.

Remarque

Pour vérifier qu'une forme factorisée et qu'une forme développée d'un polynôme du second degré sont identiques, il suffit d'appliquer la règle de la double distributivité.

EXEMPLE

« Montrer que l'on peut réécrire la fonction $f(x)=3x^2-15x+18$ sous la forme f(x)=3 (x-3) (x-2). »

Réponse:

$$3(x-3)(x-2) = 3(x^2 - 2x - 3x + 6)$$
$$= 3(x^2 - 5x + 6)$$
$$= 3x^2 - 15x + 18$$

Racines d'un polynôme du 2nd degré

On appelle racine d'un polynôme du second degré les solutions de l'équation :

$$ax^2 + bx + c = 0$$

Dans le cas où le polynôme est donnée sous forme factorisée

$$a\left(x-x_1\right)\left(x-x_2\right)$$

les racines seront x_1 et x_2 .

EXEMPLE

« Quelles sont les racines du polynôme -4(x-5)(x+1). »

Réponse : Les racines sont -1 et 5.

Vocabulaire

L'expression $ax^2 + bx + c$ est appelée **trinôme du second degré**.

Remarque

Tous les **trinômes du second degré** ne sont pas forcément factorisables. Il se peut aussi que la forme factorisée soit $a(x-x_1)^2$. Dans ce cas la seule racine est x_1 .

EXEMPLE

« Quelle est la racine de $-4(x-1)^2$? »

Réponse : La racine est 1.

Remarque

Pour vérifier qu'un nombre est racine d'un polynôme, il suffit de substituer celui-ci dans l'expression polynomiale et vérifier que le résultat obtenu est zéro.