港 文 大 The Chinese University of Hong Kong

版權所有 不得翻印 Copyright Reserved

	Course Examination First Term, 2012 - 2013
	Course Code & Title: CSCI 3130 Formal Languages and Automata Theory
	Time allowed : hours minutes
	Student I.D. No. : Seat No. :
۱.	Give examples of languages L_1 and L_2 over $\Sigma = \{0, 1\}$ that satisfy the following descriptions. Explain your answers briefly. (15%) (a) L_1 is regular, L_2 is non-regular, and $L_1 \cup L_2$ is regular. (b) L_1 is regular, L_2 is non-regular, and $L_1 \cup L_2$ is non-regular. (c) L_1 is non-regular, L_2 is non-regular and $L_1 \cup L_2$ is regular
2.	Decide whether the following languages are context free. Prove your answers. (20%) (a) $\{a^ib^ja^i\mid i,j\geq 0\}$ (b) $\{a^ib^{2i}a^i\mid i\geq 0\}$
3.	Consider the following grammar G for language L over an alphabet $\Sigma = \{a, b, +, (,)\}$ with an end-of-line marker $\#$: (15%) $S \to A \#$ $A \to A + T \mid T$ $T \to a \mid b \mid (A)$ (a) Give all the LR(0) items of G . (b) Show the parsing of the string " $(a + b) \#$ ".
4.	Consider the following language L : (15%) $\{(k, q) \mid \text{Turing machine } T_k \text{ with input string "101" will enter state } q \text{ in } T_k \}$ (a) Is L recursively enumerable? Why? (b) Is L recursive? Why?
5.	For the following Post Correspondence Problem, find a solution or show that there is no

- solution. (15%)
 - (a) A = (a, bb, a); B = (aa, b, bb)
 - (b) A = (b, aa, bab, ab); B = (ba, b, aa, ba)
- 6. Consider the following Turing machine *T*: (20%)

(a) Trace the operation of T on the tape content "...#111#11#..." where the tape head points to the leftmost "1" at the beginning. Show the tape content, position of the tape head and the P.T.O. state at each step.

- (b) What does T do on two input numbers in unary representation separated by a blank?
- (c) Construct a Modified Post Correspondence Problem (MPCP) instance I = (A, B) such that I has a solution if and only if T accepts the input string "111".
- (d) Does I have a solution? If yes, give the sequence of indices used in the construction of the MPCP solution. Otherwise, explain why a solution does not exist.

End of Paper