Università degli studi di Torino

SCUOLA DI SCIENZE DELLA NATURA

Corso di Laurea Magistrale in Fisica

Tesi di Laurea Magistrale

TESTING OF THE TD26 TYPE CAVITY UNDER BEAM LOADING FOR THE CLIC PROJECT

Relatore:

Prof. Martino Gagliardi

Co-relatore:

Dr. Frank Tecker (CERN)

Candidato: Eugenio Senes

Controrelatore:

Prof. Ferruccio Balestra

Anno Accademico 2015/2016

Considerate la vostra semenza: fatti non foste a viver come bruti, ma per seguir virtute e canoscenza

> Dante, La Divina Commedia Canto XXVI

Abstract

(Leave this for the moment)

A new generation of colliders capable of reaching TeV energies is under development nowadays, and to succede in this task is necessary to show that the technology for such machine is available. The CLIC project is one of the most advanced design among the possible lepton colliders, and is formed by two normal conducting LINACs. To reach such high energies are necessary accelerating structures carrying gradient beyond 100MV/m and one of the biggest limitations is developing accelerating structures that present a sufficient low occurrence of vacuum arcs. This is pursued both with the design and the conditioning, which is the process of increasing the resilience to vacuum arcs of a structure using repetitive RF pulsing sessions.

The focus of this work is on the breakdown rate testing of the TD26 type cavity with and without beam presence inside. At CERN this test has been carried out on the cavity installed in the *dogleg* line in the CLIC-test-facility 3 (CTF3), and connected on the RF side to the X-band test stand 1 (Xbox1).

Other peculiar properties of the operation have been studied also, such has beam-induced RF generation into the cavity after the breakdowns, breakdown migration,

Italian abstract

(Translate once you have the ok to the english one)

Contents

1	Intr	roduction 1
	1.1	Generalities on colliders
	1.2	The CLIC project and the CTF3 facility
		1.2.1 Physics and staging
		1.2.2 Main parameters and main issues
		1.2.3 CTF3
2	Acc	elerating structures
	2.1	Accelerating structures
		2.1.1 Elements of electromagnetism
		2.1.2 Periodic structures and synchronous acceleration 10
		2.1.3 Constant gradient vs constant impedance structures 10
		2.1.4 Beam effect on the accelerating structure
		2.1.5 TD26 structures for the Main Beam of CLIC 10
	2.2	High power limits and scaling laws
		2.2.1 Field emission law
		2.2.2 Kilpatrick's critereon
3	$Th\epsilon$	breakdown process 14
	3.1	phase1
	3.2	phase2
	3.3	phase3
4	Ext	perimental setup
	4.1	Main beam accelerating structure
	4.2	Linac and dogleg
	4.3	RF power generation
	4.4	DAQ system
		4.4.1 Hardware
		4.4.2 Online triggers
	4.5	Other systems
5	Dat	a analysis tools 17
•	5.1	Offline selection of the events
	5.2	Time and space positioning of the breakdowns
	٠.2	Migration of the breakdowns

CONTENTS

		Beam induced RF		
6	6.1	ults and future developments Results		
Li	st of	abbreviations	19	
Bi	Bibliography			

Introduction

Particle accelerators occupy a key role both in fundamental research and in all the applications and industrial processes that uses technology and processes developed initially for the elementary research.

A number of examples could be named among the spin-offs of accelerators' science, the most notable nowadays is the enormous progress of nanosciences in the last decade, that was made possible by the availability of high-brilliance light sources provided by synchrotrons, that was achievable thanks to the experience developed in the production of high quality electron beams. In the same way to inquire a much smaller scale are necessaries machines involving greater energies, and the development of the latter will lead the one of the former and so forth. Hence in this perspective keep developing the accelerators for the physical research is a fundamental requirement to assure that the cutting-edge technology of today turns into the "labware" of tomorrow for all the other sciences and the industry, in addition of the contribution that pursuing the fundamental research can give to our understanding of the world of the elementary particles.

Going back to the particle scale, at the moment the most successful model to explain the behaviour of the elementary particles is the *Standard Model*, but it's not conclusive and not able to answer to all the questions still open in particle Physics. A milestone in favour of the Standard Model was the observation of the Higgs Boson in 2012 [1, 2], and was made possible by the construction of the *Large Hadron Collider* at CERN[3]. However the full understanding of the physics at the particle scale still needs to be achieved. Partially this will be realised with the increase of the collision energy of the LHC, but also the International Committee for Future Accelerators (ICFA) consider that the results of LHC needs to be complemented by the results of a lepton collider in the TeV-range[4].

The reason of this decision is that according to the standard model the hadrons are particles composed by quarks, that are continuously interacting exchanging gluons. This peculiarity cause the collision at high energy not to be between the hadrons themselves, but between partons composing them. In addition, there is no way to know in advance the energy of the partons

involved, so it's not possible to know in advance which will be the energy of the collision. For example it is improbable for a parton in the 14 TeV centre-of-mass energy LHC to have much more than 1-2 TeV of energy at the interaction point[5]. On the other hand, the leptons are punctual particles, so the interaction is directly involving the two bullets themselves at a given energy, and the number of possible processes that can take place is definitely smaller.

This key difference in the behaviour of leptons and hadrons makes hadron colliders *machines for discovery*, because involve all the possible processes that can take place in a wide range of energies, and the lepton machines *machines for precision*, because the reduced number of possible processes guarantees the observation of the events of interest much easier.

1.1 Generalities on colliders

According to the beam use two kinds of accelerators can be distinguished:

- 1. Fixed target: where a beam is shoot against a non-moving target. The energy in the centre-of-mass is $E_{CM} = \sqrt{E_{BEAM}}$
- 2. Colliders: where two beams are accelerated in opposite directions and then made collide on each other. In this case the energy of the centre-of-mass is $E_{CM} = E_{BEAM1} + E_{BEAM2}$

therefore is easy to see that to reach a high centre-of-mass energy the collider topology is preferable.

Once the collision have taken place and got revealed, the rate of observation of a particular interaction process A is given by

$$\frac{dN(A)}{dt} = \mathcal{L}\,\sigma(A)\tag{1.1}$$

where σ is the process cross-section, which depends by the physics of the process A itself, and \mathcal{L} is the luminosity, which depends entirely by the machine. Therefore the figure of merit when it comes to talk about accelerators is the luminosity, which is given by

$$\mathcal{L} = H_d \frac{N^2}{\sigma_r \sigma_u} n_b f_r \tag{1.2}$$

where N is the number of particles per bunch, σ_x and σ_y are the beam dimensions in the horizontal and vertical plane, n_b is the number of particle per bunch, f_r is the collision frequency of the bunches and H_d is a correction factor that takes in account the non ideality of the collision, such as crossing angle, collision offset, hour glass effect, non gaussian beam profile and so on.

Then becomes necessary try to reach the highest luminosity possible since the events that are going to be studied are rare. This is realised differently according to the design of the accelerating machine in use:

- linear accelerators (LINACs): present a low repetition frequency, typically lower than hundred of Hz and the beam is passing just once to be accelerated through the machine.
- circular accelerators (typically synchrotrons): have a higher repetition frequency, up to tenth of KHz, and are keeping the particle beam in orbit for many turns, so can accelerate it over a long period of time

After this distinction one could be led to think that the circular machine is the best choice in any case in order to reach high luminosity, but raising the energy of the beam a big issue comes out: the power loss in circular machines due to the emission of synchrotron radiation scales according to the following expression

$$P \propto \frac{1}{\rho^2} \frac{E^4}{m_0^4} \tag{1.3}$$

where ρ is the bending radius of the machine, E is the particle energy and m_0 is its rest mass. As can be noted in the table 1.1, the energy loss per turn is a relevant fraction of the beam energy, e.g. for the LEP machine over than 3 GeV were lost per turn, while the record energy per beam was 104.5 GeV. To raise the beam energy and reduce the energy loss, the radius of circular machines escalates quickly. Simply scaling LEP, it is possible to show that in order to reach the centre-of-mass energy of 3 TeV, the circumference should be increased to thousands of kilometers [6]. To solve the issue the development of new lepton colliders is so focusing on two different solutions:

- 1. Use muons instead of electrons: this innovative approach reduces the power lost because of the higher mass of the muon compared to the electron, but has to deal with the short life of muons, which is roughly $2 \mu s$ in the laboratory frame
- 2. Limit the losses caused by synchrotron radiation, or increasing the bending radius or abandon the circular topology for the linear one

Also has to be noted that the former technology is rather new and needs to still be fully developed, while the latter profits of the progresses achieved in the last half century mainly in SLAC and KEK on the LINAC technology.

In this perspective a number of project are under study at the moment, of wich the most ambitious are FCC-ee, Future Circular Collider, ILC, International Linear Collider, and CLIC, Compact Linear Collider. The first one consist in a circular collider which is supposed to be placed in a 80-100 km long tunnel before of the installation of the FCC-hh, the other are LINACs even if based on completely different technologies and solutions. A comparison of the features of these projects in the final stage is presented in the table 1.1, and also LEP is presented as example of circular lepton collider.

Furthermore a recent interest arose on more compact technologies, e.g. plasma acceleration techniques, but the reliability of such designs still need to be proven in the perspective of creating a fully functional machine that goes beyond the demonstration of the working physical principle.

Parameter	LEP2	FCC-ee	CLIC		ILC
$\sqrt{s} \left[GeV \right]$	209	350	500	3000	500
$\mathcal{L}_{peak} [10^{34} cm^{-2} s^{-1}]$	0.012	1.3	2.3	5.9	1.8
Total lenght $[km]$	26.7	100	13	48.4	31
Loaded acc. gradient $[MV/m]$			80	100	31.5
Bunch population [10 ⁹]	105	170	6.8	3.72	500
Bunch spacing $[ns]$		4000	0.5	0.5	554
Collision rate $[Hz]$			50	50	5
$\epsilon_x^* / \epsilon_y^* [\mu m] / [nm]$			2.4/25	0.66/20	10/35
$\sigma_x^* / \sigma_y^* [nm]$		3600/70	202/2.3	40/1	474/5.9
Energy loss per turn $[GeV]$	3.34	7.55	_	-	-
Power consumption $[MW]$	3.34	7.55			163

Table 1.1: Comparison of two circular machines, LEP[7] and FCC-ee[7, 8] and the two projects for linear machines, the fist and last stage of the CLIC implementation [9] and the final stage of ILC[10]

1.2 The CLIC project and the CTF3 facility

The Compact Linear Collider is the project for a linear electron-positron collider capable of reaching a centre-of-mass collision energy of 3 TeV and a luminosity of $2 \times 10^{34} \, cm^{-2} \, s^{-1}$ in the final stage.

The realisation of such machine implies many technological challenges in order to keep the power consumption and the dimension limited while matching the design goal parameters. These challenges have been faced developing the novel two-beam acceleration scheme, in which the idea is to use a high-current and low-energy beam, the Drive Beam, in order to generate the RF power to accelerate a low-current and high-energy beam used for the experiments, named Main Beam.

The Drive Beam is produced using a dedicated LINAC, and then the current is multiplied using a delay loop and two recombination rings, reaching a combination factor of 2x3x4 = 24. This topology generates the beam with a final frequency of the bunches of 12 GHz, and the reason for this kind of implementation is to reach the highest possible efficiency in the Drive Beam production, in order to shrink the power consumption to the smallest possible. To reach this goal the acceleration in the LINAC is performed using the accelerating cavities in fully-loaded mode.

While the biggest challenge for the main beam is reaching the necessary high current, for the Main Beam the hardest challenge is generating a beam with the smallest dimension possible, in order to increase the luminosity of the machine as much as possible.

The Main Beam is produced in a separate facility, where a DC-photo gun system provides the initial polarised electron beam, and afterwards part of the beam is sent to a target in order to generate the positron beam. Once both the beams have been produced, they are sent to the next accelerating stages, which are composed of LINACs to raise the beam's energy and of damping rings to reduce the emittances.

The detailed description of the Main Beam production and the Drive Beam recombination process can be found in [9] and about how the working principle have been demonstrated in the CTF3 in [11].

Once both beams have been produced, are sent to the common tunnel where the Two-beams modules are installed. The Two-beam module is composed by two principal sections, which are the PETS, *Power Extraction and Transfer Structures*, and the accelerating structures for the Main Beam, as exploited in figure 1.2. The Main Beam passes through the PETS and gets decelerated. As product of the deceleration a pulse of RF power is produced, which is transferred by a waveguide network and used to accelerate the Main Beam. In this way it is possible to reach an efficient acceleration of the Main Beam up to the desired energy for the experiments

1.2.1 Physics and staging

The machine is designed to be built in 3 stages, with a final energy of 3 TeV. Since the CDR[9] was released just before the discovery of the Higgs boson, the centre of mass energy stages have been reshaped in order to be able to access to interesting measurements, anyway for a given centre-of-mass energy, the energy can be modified by a third with limited loss of performance[12], allowing an eventual retuning of the energy of the stages following the results of the last LHC physics campaign.

The energy staging have been chosen as follows, further informations can be found in [13, 14], but the leading idea is to make accessible the Higgs and top physics from the first stage.

The first stage is proposed to be 380 GeV, and it gives access to the Standard model Higgs physics and top-quark physics. The measurements on the former can be conducted through Higgsstrahlung and WW-fusion processes, thereby providing accurate model-indipendent measurements of Higgs couplings to bosons and fermions[15]; the latter measurements will be focused on the $t\bar{t}$ pair production threshold in the vicinity of $\sqrt{s} = 350$ GeV.

The second stage is proposed at 1.5 TeV and allows to access new physics phenomena and additional properties of the Higgs boson and the top quark, such as Higgs self-coupling and rare Higgs branching ratios.

The third stage is proposed at 3 TeV and will give direct access to pairproduced particles with mass up to 1.5 TeV or single particles with mass up to 3 TeV. This stage is particularly interesting as test for the BSM theories, since such high energy in a lepton machine makes the observation of new particles much easier than in the LHC.

A further remodulation of these steps is possible after the publication of the results of the run 2 of the LHC, but anyway the advantage of a linear machine in this sense is that the final energy can be reshaped modifying the total length of the machine. In figure 1.3 is shown the track of a possible CLIC

Figure 1.1: Layout of the final stage of CLIC

Figure 1.2: Design of a Two-beam module.

build in the Geneva area, in order to give an idea about the order of magnitude of that kind of facility compared to LHC and SPS.

Figure 1.3: Map of the CLIC facility, if implemented in the Geneva area

1.2.2 Main parameters and main issues

There are many issues that can affect the performance of a machine like CLIC, and need to be analysed carefully since no similar machine have been built so far. The main issues are:

- 1. 100 MV/m accelerating gradient: this requirement comes from the final energy of 3 TeV and the requirement of a maximum length of 50 km
- 2. Breakdown rate $< 3x10^{-7}$ breakdowns per pulse per meter: this limitation comes from the limit on design luminosity loss in case of breakdown. Is the aim of this work and will be stressed in detail later
- 3. Transverse wakefields limitation: wakefields have to be considered because of the short bunch spacing in the bunch train. If not limited are a serious issue to the luminosity.
- 4. Powering the accelerating structures: no klystrons on the market are able to produce high power pulses 150-200 ns long. This requires the use of pulse compression systems or the two-beam acceleration scheme, that have never built and operated so far in a functional collider
- 5. Generate the drive beam with an efficiency of 97% in order to contain the power consumption. Also the efficiency of the power transfer between the beams is a key issue in order to reach the energy goal

6. Extremely small beam emittance and size: in order to match the luminosity goal with the typical low repetition rate of a LINAC is necessary to squeeze the beam as much as possible, reaching the goal of 40 and 1 nm at the interaction point in the horizontal and vertical plane. This parameter includes the realisation of a nanometric alignment and vibration containing system

Therefore the parameters in the table 1.2 have been selected in order to match the design parameters reported in the table 1.1 for the top design energy.

Description	CLIC 3 TeV
Peak luminosity $[cm^{-2}s^{-1}]$	$2.0 \text{x} 10^{34}$
Total site length $[km]$	48.4
Loaded accelerating gradient $[MV/m]$	100
Main LINAC RF frequency $[GHz]$	12
Charge per bunch $[nC]$	$3.7x10^9$
Bunch separation $[ns]$	0.5
Bunches per train	312
Beam pulse duration $[ns]$	156
$\epsilon_x^* / \epsilon_y^* [\mu m] / [nm]$	0.66/20
$\sigma_x^* / \sigma_y^* [nm]$	40/1

Table 1.2: CLIC main parameters in the final stage

1.2.3 The CLIC Test Facility 3

To be able to assert that the CLIC scheme is a feasible and reliable technology to build a functional collider, a number of tests have to be conduced since no accelerators using the Two-beam acceleration concept have been reached the production phase yet. To satisfy this requirement at CERN have been realised the CLIC Test Facility, that is in charge of demonstrate experimentally:

- The feasibility of the Drive Beam generation with a frequency of 12 GHz, performing the beam recobination using a delay loop and a combiner ring for a total multiplication factor of $2 \times 4 = 8$
- The RF power production using the PETS and investigate the possible issues of the Two-beam scheme

In addition a branch of the LINAC was used to perform high-gradient tests with the beam presence inside the accelerating cavity, which is the topic of the following work.

Accelerating structures

2.1 Accelerating structures

2.1.1 Elements of electromagnetism

Maxwell's equations in a medium

It's well known since the basic courses of physics that the electromagnetic waves follow the Maxwell's equations, that in a medium are

$$\nabla . \vec{D} = \rho_{free} \qquad \qquad \nabla . \vec{B} = 0
\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \qquad \qquad \nabla \times \vec{H} = \vec{J}_{cond} + \frac{\partial \vec{D}}{\partial t}$$
(2.1)

where $\vec{D} = \epsilon \vec{E}$, $\vec{B} = \mu \vec{H}$ and $\vec{E} = \sigma \vec{J}$ (the full derivation and further details on the notation are available in any book on classical electromagnetism, such as [16, 17]). The propagation in vacuum is described by the same equations and can be easily derived from the (2.1) with the choice of the appropriate constants.

Confined propagation of EM waves

In some particular cases the confined propagation of electromagnetic waves is possible, and realised using a metal waveguide to lead all the energy in a single direction. In this section some useful results on the propagation in a waveguide will be stressed.

Using the set of equation (2.1) and asking that the electric field is normal to the surface to avoid power dissipation due to the Joule effect (so $\vec{E} \times \vec{n} = 0$), it can be derived the set of admitted solutions for the propagation of the EM waves. Among the solutions, the most important are the *Transverse Magnetic* solutions (T.M.), where the axial component of the magnetic field is null, and the *Transverse Electric* solutions (T.E.), which is the same for the electric field.

Particle acceleration

2.1.2 Periodic structures and synchronous acceleration

In order to deliver a constant energy gain to a charged particle two conditions have to be met:

- 1. The electromagnetic wave has to have a non-zero component in the direction of the motion of the particle
- 2. The phase velocity of a wave have to be the same of the particle velocity, in order to keep the relative phase constant, and so the acceleration

using some results of the theory of EM waves it is possible to derive that the former cannot be accomplished in the free space, but can be easily met in a cavity (e.g. a waveguide), and to satisfy the latter is not sufficient simply using a waveguide, but is necessary a particular geometry, typically periodic geometries are used for this purpose.

[16]

2.1.3 Constant gradient vs constant impedance structures

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Sed dui sem, aliquam id ultricies sit amet, fermentum at magna. Aenean vitae rhoncus leo. Fusce gravida consequat lacus, a porta risus bibendum semper. Morbi eget auctor velit. Pellentesque eu lacinia nisi. Maecenas sed orci eu erat porta imperdiet ac non dui. Pellentesque a odio ac quam euismod tempor. Nulla in dapibus mauris, a sodales ex. In imperdiet enim sed ornare sollicitudin. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Donec vehicula metus eu nisi ornare euismod. Proin at ex non ex iaculis porta.

2.1.4 Beam effect on the accelerating structure

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Sed dui sem, aliquam id ultricies sit amet, fermentum at magna. Aenean vitae rhoncus leo. Fusce gravida consequat lacus, a porta risus bibendum semper. Morbi eget auctor velit. Pellentesque eu lacinia nisi. Maecenas sed orci eu erat porta imperdiet ac non dui. Pellentesque a odio ac quam euismod tempor. Nulla in dapibus mauris, a sodales ex. In imperdiet enim sed ornare sollicitudin. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Donec vehicula metus eu nisi ornare euismod. Proin at ex non ex iaculis porta.

2.1.5 TD26 structures for the Main Beam of CLIC

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Sed dui sem, aliquam id ultricies sit amet, fermentum at magna. Aenean vitae rhoncus leo. Fusce gravida consequat lacus, a porta risus bibendum semper. Morbi eget auctor velit. Pellentesque eu lacinia nisi. Maecenas sed orci eu erat porta imperdiet

ac non dui. Pellentesque a odio ac quam euismod tempor. Nulla in dapibus mauris, a sodales ex. In imperdiet enim sed ornare sollicitudin. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Donec vehicula metus eu nisi ornare euismod. Proin at ex non ex iaculis porta.

2.2 High power limits and scaling laws

The limiting factors for room-temperature high-gradient accelerators have been identified as *field emission* and *RF breakdown*. The former is the emission of electrons in the form of the so called "Dark current", that subtracts RF power, causes radiation and can produce wakefields; the latter is a limiting factor to the operation of accelerators and can damage the structures.[18]

The understanding of these phenomena is particularly challenging and requires a mixture of notions of disciplines such as surface physics, metallurgy, fabrication processes, microwaves, beam dynamic and plasma physics. At the moment a satisfactory unified theory of the processes that take place during the breakdowns have not been found yet, then the improvement of the structures is achieved using some scaling laws for the high power limitations, that have been deducted from the experience and the experiments on the structures tested so far.

2.2.1 Field emission law

Emission from flat clean surface

The field emission law was theorised by Fowler and Nordheim in 1928 and rule the current emission from a metal with applied an intense electric field. The derivation was carried on calculating the tunnel probability of electrons of the conduction band through the perfectly flat and clean surface of a metal. The applied electric field modify the potential barrier, and the current density of emitted electrons can be derived as the following, giving the *Fowler-*

$$J_F = \frac{1.54 \times 10^{-6} \times 10^{4.52\phi^{-0.5}} E^2}{\phi} \exp\left(-\frac{6.53 \times 10^9 \phi^{1.5}}{E}\right) \quad [A.m^{-2}] \quad (2.1)$$

where ϕ is the work function of the material and E is the applied electric field.

Enhanced field emission

Nordheim equation [19]

It's well known that almost any surface is never perfectly clean and flat, and also the fact that the asperities of the surface provoke an enhancement of the local electric field. This behaviour lead to the phenomenon known as *Enhanced Field Emission* (EFE), which major contributors are:

• Surface imperfection due to imperfect machining

- Metallic dust
- Molten craters after breakdowns
- Absorbed gas

and some others. These effects can create particular sites known as "emitters". It's a common praxis define the field enhancement factor β to relate the electric field to the microscopic one

$$E_m = \beta E \tag{2.2}$$

and the β factors can be calculated according to the emitter's geometry [20] as exploited in figure 2.1. Once the local field is known, using the formula 2.1 calculate the current emitted from EFE by an emitter site of area A gives

$$I_F = \frac{1.54 \times 10^{-6} \times 10^{4.52\phi^{-0.5}} A\beta^2 E^2}{\phi} \exp\left(-\frac{6.53 \times 10^9 \phi^{1.5}}{\beta E}\right) \quad [A] \quad (2.3)$$

where βE is the local field, ϕ is the work function of the material and A the area of the considered emitter.

In the RF case the average current emitted is given by similar calculations, averaging the electric field on an RF period. The full calculation is stressed in [18].

Experimental evidence of the dark current emission have been detected by setups equipped with Faraday Cups, as in [21].

The emission of dark current seems to be a precursor of the breakdown process, even if the relationship between the two processes has not been clarified so far.

2.2.2 Kilpatrick's critereon

The Kilpatrick's Critereon was the first attempt to create a high power limit valid both in DC and RF applications [22]. The model was based on the acknowledgement of the Field Emission, and suggesting that the vacuum arc was created by the cascade of secondary electrons ejected from the surface by ion bombardment.

Using data collected in the 1950's, the following empirical law was formulated

$$WE^2 \exp(-1.7 \times 10^5 E^{-1}) = 1.8 \times 10^{14}$$
 (2.4)

where W is the maximum possible ion energy in eV, and E is the field in V/m.

The critereon was reviewed many times up to now, because the experiments conducted nowadays show a limit up to 10 times lower than Kilpatrick's prediction, and this can be addressed to different reasons: first of all the quality of the machining of the structures have increased considerably since the 1950's; in second instance the formula for W was deducted for parallel plates, but the condition inside the RF cavities are different during operations; and finally the key assumption was that the breakdown was triggered by the secondary emission provoked by the ion bombardment.

FREQUENCY DEPENDENCE ???

Figure 2.1: Field enhancement factors for simple geometries of metallic protrusions, plotted as function of geometrical features. From [20]

Figure 2.2: Kilpatrick's original plot, from [22] $MC = MHz \; (Mega \; Cycles)$

The breakdown process

- 3.1 phase1
- 3.2 phase2
- 3.3 phase3

Enumeration example

Experimental setup

4.1 The TD26 accelerating structure

4.2 The LINAC and the Dogleg

Bullet list example

- first point
- second point
- third point

4.3 RF power generation

Enumeration example

- 1. first point
- 2. second point
- 3. third point

Description example

first descr first point

second descr second point

third descr third point

4.4 DAQ system

4.4.1 Hardware

4.4.2 Online triggers

describe the online, but then the offline is in the next chapter ... but you can also build nested lists

- first point
 - first point
 - second point
- second point
- third point

4.5 Other systems

mention here thermal systems for the structure and something else???

Data analysis tools

5.1 Offline selection of the events

A tabular example

Tit1	Tit2
el1	el2
el1	el2
el1	el2

but tabulars cannot be captioned! (are in text elements)

Using the table environment, the caption works! BUT BECOMES FLOAT-ING OBJECTS (in fact is on the bottom of the page due to no more text inserted afterwards).

Same thing for the figure environment

- 5.2 Time and space positioning of the breakdowns
- 5.3 Migration of the breakdowns
- 5.4 Beam induced RF
- 5.5 Neural network based events selection

1	2	3
4	5	6
7	8	9

Table 5.1: A simple table

Results and future developments

6.1 Results

A figure example, with text in line (NO CAPTION)

A figure example, with floating object and caption

6.2 Further developments

Figure 6.1: the logo of UniTo

List of abbreviations

BSM Beyond Standard Model CDR Conceptual Design Report

CERN Conseil européen pour la Recherche nucléaire, Geneva, Switzerland

CLIC Compact Linear Collider CTF3 CLIC test facility 3 EFE Enhanced Field Emission

EM Electromagnetism -or- electromagnetic FCC-ee Future Circular Collider, lepton version FCC-hh Future Circular Collider, hadron version

ICFA International Committee for Future Accelerators

ILC International Linear Collider

cKEK High Energy Accelerator Research Organization, Tsukuba, Japan

LEP Large Electron Positron Collider

LHC Large Hadron Collider LINAC Linear Accelerator

PETS Power Extraction and Transfer Structure

RF Radio frequency

SLAC Stanford Linear Accelerator, Menlo Park, California

SM Standard Model

SPS Super Proton Synchrotron

TBM Two-Beams module

TDR Technical Design Report

XBOX X-band high power RF test stand

List of Figures

1.1	Layout of the final stage of CLIC	6
1.2	Design of a Two-beam module	6
1.3	Map of the CLIC facility, if implemented in the Geneva area $$	7
2.1	Field enhancement factors for simple geometries of metallic protrusions, plotted as function of geometrical features. From [20] .	13
2.2	Kilpatrick's original plot, from [22]	
6.1	the logo of UniTo	18

List of Tables

1.1	Comparison of two circular machines, LEP[7] and FCC-ee[7, 8]
	and the two projects for linear machines, the fist and last stage
	of the CLIC implementation [9] and the final stage of ILC[10] .
1.2	CLIC main parameters in the final stage
5.1	A simple table

Bibliography

- [1] S. Chatrchyan *et al.*, "Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC," *Phys. Lett.*, vol. B716, pp. 30–61, 2012.
- [2] G. Aad *et al.*, "Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC," *Phys. Lett.*, vol. B716, pp. 1–29, 2012.
- [3] O. S. Bruening, P. Collier, P. Lebrun, S. Myers, R. Ostojic, J. Poole, and P. Proudlock, *LHC Design Report*. Geneva: CERN, 2004.
- [4] "Icfa statement on linear colliders." http://icfa.fnal.gov/statements/icfa_lcstatement/.
- [5] A. D. Martin, W. J. Stirling, R. S. Thorne, and G. Watt, "Parton distributions for the lhc," *The European Physical Journal C*, vol. 63, no. 2, pp. 189–285, 2009.
- [6] J. R. Ellis and I. H. Wilson, "New physics with the compact linear collider," *Nature*, vol. 409, pp. 431–435, 2001.
- [7] J. W. et al., "Future Circular Collider Study Lepton Collider Parameters," Tech. Rep. FCC-1401201640-DSC, CERN, Geneva, Jun 2016.
- [8] F. Zimmermann, M. Benedikt, K. Oide, A. Bogomyagkov, E. Levichev, M. Migliorati, and U. Wienands, "Status and Challenges for FCC-ee," Tech. Rep. CERN-ACC-2015-0111, CERN, Geneva, Aug 2015.
- [9] M. Aicheler, P. Burrows, M. Draper, T. Garvey, P. Lebrun, K. Peach, N. Phinney, H. Schmickler, D. Schulte, and N. Toge, "A Multi-TeV Linear Collider Based on CLIC Technology: CLIC Conceptual Design Report," Tech. Rep. CERN-2012-007. SLAC-R-985. KEK-Report-2012-1. PSI-12-01. JAI-2012-001, Geneva, 2012.
- [10] T. Behnke, J. E. Brau, B. Foster, J. Fuster, M. Harrison, J. M. Paterson, M. Peskin, M. Stanitzki, N. Walker, and H. Yamamoto, "The International Linear Collider Volume 1: Executive Summary," Tech. Rep. CERN-ATS-2013-037. ILC-REPORT-2013-040. KEK-Report-2013-1., Geneva, Jun 2013.

- [11] R. Corsini, "Experimental verification of the CLIC two-beam scheme, status and outlook," *Conf. Proc.*, vol. C1205201, p. TUOBC01. 3 p, May 2012.
- [12] P. Lebrun, L. Linssen, A. Lucaci-Timoce, D. Schulte, F. Simon, S. Stapnes, N. Toge, H. Weerts, and J. Wells, "The CLIC Programme: Towards a Staged $e^+e^?$ Linear Collider Exploring the Terascale: CLIC Conceptual Design Report," Tech. Rep. CERN-2012-005, Geneva, 2012.
- [13] M. J. Boland, U. Felzmann, P. J. Giansiracusa, T. G. Lucas, R. P. Rassool, C. Balazs, T. K. Charles, K. Afanaciev, I. Emeliantchik, and Ignatenko, "Updated baseline for a staged Compact Linear Collider," Tech. Rep. arXiv:1608.07537. CERN-2016-004, Geneva, Aug 2016.
- [14] I. Bozovic-Jelisavcic, "CLIC Physics Overview," Tech. Rep. CLICdp-Conf-2016-006, CERN, Geneva, Jun 2016.
- [15] P. G. Roloff, "Higgs Physics at the CLIC Electron-Positron Linear Collider," Tech. Rep. CLICdp-Pub-2016-001, CERN, Geneva, Aug 2016.
- [16] E. Botta and T. Bressani, *Elementi di elettromagnetismo avanzato*. Aracne editrice, 1 ed., Jan 2009.
- [17] J. D. Jackson, Classical electrodynamics; 2nd ed. New York, NY: Wiley, 1975.
- [18] J. W. Wang and G. A. Loew, "Field emission and RF breakdown in high gradient room temperature linac structures," in Frontiers of accelerator technology. Proceedings, Joint US-CERN-Japan International School, Hayama and Tsukuba, Japan, September 9-18, 1996, pp. 768-794, 1997.
- [19] R. H. Fowler and L. Nordheim, "Electron emission in intense electric fields," Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 119, no. 781, pp. 173–181, 1928.
- [20] F. Rohrbach, CERN 71-28. Geneva, 1971.
- [21] W. Wuensch, "Advances in the Understanding of the Physical Processes of Vacuum Breakdown," Tech. Rep. CERN-OPEN-2014-028. CLIC-Note-1025, CERN, Geneva, May 2013.
- [22] W. D. Kilpatrick, "Criterion for vacuum sparking designed to include both rf and dc," *Review of Scientific Instruments*, vol. 28, no. 10, pp. 824–826, 1957.