Axiom 1.1. If m, n, and p are integers, then

(i) m + n = n + m. (commutativity of addition)

(ii) (m+n)+p=m+(n+p). (associativity of addition)

(iii) $m \cdot (n+p) = m \cdot n + m \cdot p$. (distributivity)

(iv) $m \cdot n = n \cdot m$. (commutativity of multiplication)

 $(v) (m \cdot n) \cdot p = m \cdot (n \cdot p). \qquad (associativity of multiplication)$

Axiom 1.2. There exists an integer 0 such that whenever $m \in \mathbb{Z}, m+0=m$. (identity element for addition)

Axiom 1.3. There exists an integer 1 such that $1 \neq 0$ and whenever $m \in \mathbb{Z}, 1 \cdot m = m$. (identity element for multiplication)

Axiom 1.4. For each $m \in \mathbb{Z}$, there exists an integer, denoted by -m, such that m + (-m) = 0. (additive inverse)

Axiom 1.5. Let m, n, and p be integers. If $m \cdot n = m \cdot p$ and $m \neq 0$, then n = p.

Axiom 2.1. There exists a subset $\mathbb{N} \subseteq \mathbb{Z}$ with the following properties:

- (i) If $m, n \in \mathbb{N}$ then $m + n \in \mathbb{N}$.
- (ii) If $m, n \in \mathbb{N}$ then $m \cdot n \in \mathbb{N}$.
- (iii) $0 \notin \mathbb{N}$.
- (iv) For every $m \in \mathbb{Z}$, we have $m \in \mathbb{N}$ or m = 0 or $-m \in \mathbb{N}$.

Axiom 2.15 (Induction Axiom). If a subset $A \subseteq \mathbb{Z}$ satisfies

- (i) $1 \in A$ and
- (ii) if $n \in A$ then $n + 1 \in A$,

then $\mathbb{N} \subseteq A$.

Proposition 1.18. Let $x \in \mathbb{Z}$. If x has the property that for all $m \in \mathbb{Z}$, mx = m, then x = 1.

Proposition 1.19. Let $x \in \mathbb{Z}$. If x has the property that for some nonzero $m \in \mathbb{Z}$, mx = m, then x = 1.

Proposition 1.20. For all $m, n \in \mathbb{Z}$, (-m)(-n) = mn.

Proposition 1.21. (-1)(-1) = 1.

Proposition 1.22.

- (i) For all $m \in \mathbb{Z}$, -(-m) = m.
- (ii) -0 = 0.

Proposition 1.23. Given $m, n \in \mathbb{Z}$ there exists one and only one $x \in \mathbb{Z}$ such that m + x = n.

Proposition 1.24. Let $x \in \mathbb{Z}$. If $x \cdot x = x$ then x = 0 or 1.

Proposition 1.25. For all $m, n \in \mathbb{Z}$:

- (i) -(m+n) = (-m) + (-n).
- (ii) -m = (-1)m.
- (iii) (-m)n = m(-n) = -(mn).

Proposition 1.26. Let $m, n \in \mathbb{Z}$. If mn = 0, then m = 0 or n = 0.

Proposition 1.27. For all $m, n, p, q \in \mathbb{Z}$:

- (i) (m-n) + (p-q) = (m+p) (n+q).
- (ii) (m-n) (p-q) = (m+q) (n+p).
- (iii) (m-n)(p-q) = (mp+nq) (mq+np).
- (iv) m = n = p = q if and only if m + q = n + p.
- (v) (m-n)p = mp np.

Proposition 2.2.

For $m \in \mathbb{Z}$, one and only one of the following is true: $m \in \mathbb{N}$, $-m \in \mathbb{N}$, m = 0.

Proposition 2.3. $1 \in \mathbb{N}$.

Proposition 2.4. Let $m, n, p \in \mathbb{Z}$. If m < n and n < p then m < p.

Proposition 2.5. For each $n \in \mathbb{N}$ there exists $m \in \mathbb{N}$ such that m > n.

Proposition 2.6. Let $m, n \in \mathbb{Z}$. If $m \le n$ and $n \le m$ then m = n.

Proposition 2.7. Let $m, n, p, q \in \mathbb{Z}$.

- (i) If m < n then m + p < n + p.
- (ii) If m < n and p < q then m + p < n + q.
- (iii) If 0 < m and 0 < p then mp < mq.
- (iv) If m < n and p < 0 then np < mp.

Proposition 2.8. Let $m, n \in \mathbb{Z}$. Exactly one of the following is true: m < n, m = n, m > n.

Proposition 2.9. Let $m \in \mathbb{Z}$. If $m \neq 0$ then $m^2 \in \mathbb{N}$.

Proposition 2.10. The equation $x^2 = -1$ has no solution in \mathbb{Z} .

Proposition 2.11. Let $m \in \mathbb{N}$ and $n \in \mathbb{Z}$. If $mn \in \mathbb{N}$, then $n \in \mathbb{N}$.

Proposition 2.12. For all $m, n, p \in \mathbb{Z}$:

- (i) -m < -n if and only if m > n.
- (ii) If p > 0 and mp < np then m < n.
- (iii) If p < 0 and mp < np then m > n.
- (iv) If $m \le n$ and 0 < p then $mp \le np$.

Proposition 2.13. $\mathbb{N} = \{n \in \mathbb{Z} : n > 0\}.$

Proposition 2.14.

- (i) $1 \in \mathbb{N}$.
- (ii) If $n \in \mathbb{N}$ then $n+1 \in \mathbb{N}$.

Proposition 2.16. Let $B \subseteq \mathbb{N}$ be such that:

- (i) $1 \in B$
- (ii) If $n \in B$ then $n + 1 \in B$. Then $B = \mathbb{N}$.

Proposition 2.18.

(i) For all $k \in \mathbb{N}$, $k^3 + 2k$ is divisible by 3.

- (ii) For all $k \in \mathbb{N}$, $k^4 6k^3 + 11k^2 6k$ is divisible by 4.
- (iii) m For all $k \in \mathbb{N}$, $k^3 + 5k$ is divisible by 6.

Proposition 2.20. For all $k \in \mathbb{N}$, $k \geq 1$.

Proposition 2.21. There exists no integer x such that 0 < x < 1.

Proposition 2.24. For all $k \in \mathbb{N}$, $k^2 + 1 > k$.

Proposition 2.27. For all integers k > 2, $2^k < k^3$.

Proposition 2.28. Determine for which natural numbers $k^2 - 3k \ge 4$ and prove your answer.