MAT4006: Introduction to Coding Theory

Lecture 03: Error Correction, Groups, Rings, Fields

Instructor: Zitan Chen Scribe: Siqi Yao

Spring 2025

1 Error Correction

Definition 1.1 (Error Correction)

Let ν be a positive integer. We say a code $C \subseteq A^n$ can correct ν errors if there exists a decoder $\mathcal{D}: A^n \to C$ such that for any $x \in C$ and $y \in A^n$ with $d(x, y) \leq \nu$, one has $\mathcal{D}(y) = x$.

Theorem 1.1

A code $C \subseteq A^n$ can correct ν errors if $d(C) \ge 2\nu + 1$.

Proof. Let $x \in C$ and $y \in A^n$ be such that $d(x, y) \le \nu$. Let $x' \in C$, with $x' \ne x$. Then

$$d(x, x') > d(C) > 2\nu + 1.$$

By the triangle inequality,

$$d(x, x') \le d(x, y) + d(y, x') \le \nu + d(x', y),$$

SO

$$2\nu + 1 \le d(x, x') \le \nu + d(x', y) \Rightarrow \nu + 1 \le d(x', y).$$

Hence,

$$d(x,y) < d(x',y)$$
 for all $x' \in C$, $x' \neq x$.

Using the minimum distance decoder, we will decode y to x, thus correcting the errors. \Box

Theorem 1.2

If a code $C \subseteq A^n$ can correct ν errors, then $d(C) \ge 2\nu + 1$.

Proof. Let $x \in C$ be the transmitted codeword.

There exists $x' \in C$ such that d(x, x') = d(C).

Suppose $d(C) \leq 2\nu$, we will construct $y \in A^n$ such that $d(x',y) \leq d(x,y)$, meaning we cannot decode y uniquely to x.

Let $I \subseteq \{1, \ldots, n\}$ be the set of positions where x and x' differ:

$$I = \{i \mid x_i \neq x_i'\}, \text{ so that } |I| = d(x, x').$$

Let $J \subset I$ with $|J| = \left\lfloor \frac{d(x,x')}{2} \right\rfloor$. Define the received word $y = (y_1, \dots, y_n)$ as:

$$y_i = \begin{cases} x_i, & i \in J, \\ x_i', & i \in \{1, \dots, n\} \setminus J. \end{cases}$$

A concrete example:

$$x = (x_1, \dots, x_n) = 0000 \underline{11} 111$$

 $x' = (x'_1, \dots, x'_n) = 000000 \underline{000}$
 $y = (y_1, \dots, y_n) = 0000 \underline{11000}$

The blue part corresponds to set J while the green part corresponds to set I.

Then,

$$d(y,x) = |I \setminus J| = \left\lceil \frac{d(x,x')}{2} \right\rceil, \quad d(y,x') = |J| = \left\lfloor \frac{d(x,x')}{2} \right\rfloor.$$

Hence, $d(y, x) \ge d(y, x')$ and

$$d(x,y) = \left\lceil \frac{d(x,x')}{2} \right\rceil \le \nu.$$

So y is within ν of x but closer to another codeword x', making correct decoding to x impossible.

2 Groups

Definition 2.1 (Group)

A group is a nonempty set G with a binary operation " \cdot " satisfying the following axioms:

- 1. Closure: For every $a, b \in G$, we have $a \cdot b \in G$.
- 2. Associativity: For every $a, b, c \in G$, we have

$$(a \cdot b) \cdot c = a \cdot (b \cdot c).$$

3. **Identity element:** There exists an element $1 \in G$ such that

$$1 \cdot a = a \cdot 1 = a$$
 for every $a \in G$.

4. **Inverse element:** For each $a \in G$, there exists an element $a^{-1} \in G$ such that

$$a^{-1} \cdot a = a \cdot a^{-1} = 1.$$

If these properties are satisfied, we say that (G, \cdot) is a group, or simply that G is a group. Note:

- 1. If the binary operation is multiplication, then the group doesn't contain 0.
- 2. If only axiom 1, 2 is satisfied, then the set is called a **semigroup**.
- 3. If only axiom 1, 2, 3 is satisfied, then the set is called a **monoid**.

Definition 2.2 (Abelian Group)

A group is called **commutative** or **abelian** if

$$a \cdot b = b \cdot a$$
 for every $a, b \in G$.

Power

For an element $a \in G$ and a positive integer n, the notation

 a^n

stands for

$$\underbrace{a \cdot a \cdot \cdots \cdot a}_{n \text{ times}}$$

Also define

$$a^{-n}$$
 as the power $(a^{-1})^n$, and $a^0 = 1 \in G$.

Two main notational conventions for groups:

Group Type	Operation	Identity	Power	Inverse	Remark
Multiplicative Group	•	1	a^n	a^{-1}	$ab = a \cdot b$
Additive Group	+	0	na	-a	a - b = a + (-b)

Examples

$$(\mathbb{Z},+)$$
 is a group.

Let

$$n\mathbb{Z} = \{ni \mid i \in \mathbb{Z}\} \triangleq (n).$$

Then

$$(n\mathbb{Z},+)$$
 is a group.

3 Rings

Definition 3.1 (Ring)

A ring is a nonempty set R with two binary operations \cdot and + satisfying:

- 1. (R, +) is an abelian group.
- 2. Associativity of :: For every $a, b, c \in R$,

$$(a \cdot b) \cdot c = a \cdot (b \cdot c).$$

3. **Distributivity:** For every $a, b, c \in R$,

$$(a+b) \cdot c = a \cdot c + b \cdot c$$
 and $a \cdot (b+c) = a \cdot b + a \cdot c$.

I.e., multiplication is distributive with respect to addition.

4. Closure under multiplication: For every $a, b \in R$, $a \cdot b \in R$.

Conventions

When writing expressions, the multiplication \cdot takes precedence over the addition +.

$$(a+b) \cdot c = a \cdot c + b \cdot c$$

and

$$a \cdot (b+c) = a \cdot b + a \cdot c.$$

The identity element with respect to + is called the **zero element**.

Definition 3.2 (Ring with Identity)

A ring with identity is a ring R in which the multiplication operation \cdot has an identity element, i.e., there exists $1 \in R$ such that

$$1 \cdot a = a \cdot 1 = a$$
 for every $a \in R$.

Definition 3.3 (Commutative Ring)

A commutative ring is a ring in which the multiplication operation \cdot is commutative, i.e.,

$$a \cdot b = b \cdot a$$
 for every $a, b \in R$.

4 Fields

Definition 4.1 (Field)

A field is a commutative ring in which the nonzero elements $F^* := F \setminus \{0\}$ form a group with respect to multiplication.

Note: This implies F^* has the multiplicative inverse

Lemma 4.1

Let F be a field and $a, b \in F$. Then:

- (i) $0 \cdot a = 0$
- (ii) ab = 0 implies a = 0 or b = 0
- (iii) $(-1) \cdot a = -a$

Proof. (i) $0 \cdot a = (0+0) \cdot a = 0 \cdot a + 0 \cdot a$

$$\Rightarrow 0 = 0 \cdot a$$
.

(ii) Given ab = 0, if $a \neq 0$, then

$$a^{-1} \cdot ab = a^{-1} \cdot 0 = 0 \cdot a^{-1} = 0,$$

 $\Rightarrow 1 \cdot b = 0, b = 0$

Similarly, if $b \neq 0$, we have a = 0.

(iii)
$$(-1) \cdot a + a = (-1) \cdot a + 1 \cdot a = (-1+1) \cdot a = 0 \cdot a = 0$$

 $\Rightarrow (-1) \cdot a = -a.$

Examples

- $(\mathbb{Z}, +, \cdot)$ is a ring, called the ring of integers, **not a field**.
- (\mathbb{Z}^*, \cdot) is not a group.
- $\mathbb{R}, \mathbb{C}, \mathbb{Q}$ are fields.

Remark

A field containing finite elements is called a **finite field**.