Home Exam (example)

Remarks: All the graphs here are without self loops and parallel or anti-parallel edges. In all the algorithms, always explain their correctness and analyze their complexity. The complexity should be as small as possible. A correct algorithm with large complexity, may not get full credit. The number of vertices is denoted by n, and the number of edges by m.

Choose 5 out of the next 6 questions.

Question 1: Give an algorithm that gets as input a *sorted* array A of positive integers. Assume that the integers are pairwise distinct (no value appears more than once). Give an algorithm that checks if there is an index i so that A[i] = i. You may assume for simplicity that n is a power of 2.

Answer: Say that A[n/2] > n/2. In this case, as the elements are distinct and the array is sorted, $A[n/2+1] > A[n/2] \ge n/2+1$. Namely, A[n/2+1] > n/2+1. In the same way, you now show that A[n/2+2] > n/2+2 and so on.

Thus, if A[n/2] > n/2, we can look for an i such that A[i] = i, in indices n/2 - 1 or lower. In the same way, if A[n/2] < n/2, we can look for the required i in n/2 + 1 and higher. And if A[n/2] = n/2, we found the required i = n/2.

Thus, we can perform a procedure like binary search to find the i. The running time is $O(\log n)$.

Question 2: Give an algorithm that gets as input a directed graph. The algorithm should output the number of pairs (u, v) in the graph, so that there is a path from u to v. Note that (u, v) is not the same as (v, u).

Answer: Use n times the BFS procedure. When doing BFS from v, let P_v be the number of vertices that are reachable from v (there is a path from v to them). This is exactly the number of vertices that are given a label in the BFS run (so their label is not infinite). This gives all the pairs of the form (v,). The required answer is $\sum_{v} P_v$. The time complexity is O(mn).

Question 3: Run the Kruskal algorithm on the following graph:

Figure 1: Te run of the Kruskal algorithm

All you need to do is copy the vertices and the tree edges only. On the edges you write a number between 1 and 7, representing the order by which the edge is added into the solution.

- **Question 4:** A tournament graph is a *directed* graph with all the $\binom{n}{2}$ edges present, each with a single direction (out of the two possible ones). An Hamiltonian path is a simple path of length n-1, that contains all the vertices.
 - 1. Prove that every tournament graph has an Hamiltonian path. Answer: We prove by induction with the basis of induction n=2 clear. Say this is true for n and consider a graph with n+1 vertices. Remove a vertex x from the tournament. We are left with a tournament G_n of n vertices. By the induction hypothesis, there is an Hamiltonian path $v_1 \to v_2 \to \dots, v_n$ in G_n . Let v_i be the rightmost vertex in the Hamilton path such that the edge is $v_i \to x$ and not $x \to v_i$. So, for v_{i+1} , the edge must be $x \to v_{i+1}$. So we can insert x between
 - 2. Give an algorithm that finds an Hamiltonian path in a tournament. **Answer:** Choose an arbitrary x and remove it. Recursively find an Hamiltonian path in $G \setminus \{x\}$. Find v_i as explained above and insert x after v_i . The complexity: per each vertex we have O(V) search, so $O(V^2)$.
- **Question 5:** Give an algorithm that checks if there is a, (not necessarily simple) paths from v to u of length exactly k.

 v_i and v_{i+1} and get an Hamiltonian path in G.

Answer: If there is a path between v and u of length k, then u is a neighbor of a vertex w for whom there is a path from v of length k-1. So the algorithm is as follows:

- 1. $S_0 = \{v\}$
- 2. For i=1 to k do

Let S_i be the set of vertices w with a vertex $z \in S_{i-1}$, and $z \to w \in E$.

3. Check if $u \in S_k$

This takes O(E) for every i (go over all the edges maybe) so $O(E \cdot k)$.

- Question 6: A DFS procedure was runed on a graph G and we got that $\sum_{v \in V} Low(v) = |V|$. We also know that the number of leaves in the DFS tree is l.
 - 1. Prove that there are no more than l bio-connected components in G.
 - 2. Show an example for the above, with G having exactly l bio-connected components.

Answer: Will be given in class.