A Gentle Introduction To Machine Learning

Kyle Kastner
Southwest Research Institute (SwRI)
University of Texas - San Antonio (UTSA)

Outline

- Motivations
- Broad Categories
- Basic Techniques
- Regression
- Classification
- Resources
- Final Comments

Motivations

- Dense working vocabulary
 - Statistics
 - Mathematics
 - Computer Science
 - Domain expertise (biology, audio, etc.)
- "Black box" treatment
- Data, data, data!

Broad Categories

- Unsupervised (unlabeled training)
 - Data is abundant
 - Proper preprocessing is complicated
- Supervised (labeled training)
 - Hard to find domain data
 - Harder to gather validated data

Basic Techniques

- Regression
 - Find mathematical generating function
- Classification
 - Differentiate between categorical labels
- Clustering
 - Group similar data (usually unlabeled)
 - Not covered here

- Using linear regression
- Find the "best fit" line or polynomial
- Simple implementation
- Outliers will greatly affect results

Optimization

Gradient descent

- $\circ \quad \text{Cost function: } J(\theta) = \frac{1}{2} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) y^{(i)})^2$
- \circ Gradient: $rac{\partial}{\partial j}J(heta)=x_j(h_{ heta}(x)-y)$
- \circ Update: $heta_j := heta_j + lpha(y^{(i)} h_ heta(x^{(i)}))x_j$
- Theta is the parameter to optimize
- Learning rate (alpha) is called a hyperparameter
- scipy.opt, mystic or cvxopt

Gradient Descent

- Batch gradient descent
 - Runs over every sample, then updates
- Stochastic gradient descent
 - Sample by sample updates, slower to converge
- Mini-batch gradient descent
 - Adjustable update cost and speed

- Linear regression into different basis
- Basis functions
 - Polynomial
 - Fourier
 - Other
- Alternate optimization method
 - Normal equation
 - Moore-Penrose pseudoinverse

Classification

- Using logistic regression
- Optimize parameters for each class label
 - fmin_cg is conjugate gradient
 - One vs. all, choose most probable (index of max)
- Example with MNIST digits
- 1797 examples of 8x8 pixel digits

Classification

Resources

- Coursera courses
 - Andrew Ng's Machine Learning
 - Geoff Hinton's Neural Networks
- Scikit-learn Documentation and Examples
- Pattern Recognition and Machine Learning
 - Christopher M. Bishop

Final Comments

- Data preprocessing can be important
- Prefer simple models to complex
- Separate training and testing data
- DIY, abandon it on GitHub, then use scikit-learn

Questions?

Code on GitHub:

https://github.com/kastnerkyle/SciPy2013