Escuela Politécnica Superior

María García Díaz Máster de Computación Cuántica Fundamentos Físico-Matemáticos

Computación Cuántica

Fundamentos Físico Matemáticos – Mecánica Cuántica Cuaderno de Ejercicios

Máster de Computación Cuántica

María García Díaz

Mecánica clásica	3
Ejercicio 1	3
Ejercicio 2	3
Ejercicio 3	3
Mecánica cuántica	
Ejercicio 4	2
Ejercicio 6	4
Ejercicio 7	2
Ejercicio 8	4
Ejercicio 9	4
Ejercicio 10	4

Mecánica clásica

Ejercicio 1

Escribir las ecuaciones de Euler-Lagrange para una partícula que se mueve en el espacio bidimensional sometida a un campo de fuerzas **F**. Demostrar que dichas ecuaciones son equivalentes a la segunda ley de Newton.

Ejercicio 2

Demostrar que H=T+V (considerar las coordenadas espaciales de un sistema que se mueve en una dimensión).

Ejercicio 3

Escribir las ecuaciones de Hamilton para una partícula que se mueve en el espacio bidimensional sometida a un campo de fuerzas **F**. Demostrar que dichas ecuaciones son equivalentes a la segunda ley de Newton.

Mecánica cuántica

Ejercicio 4

Comprobar que el operador traslación espacial es unitario.

Ejercicio 6

Demostrar que cuando dos operadores conmutan tienen una base propia común.

Ejercicio 7

Hallar los autovalores y autovectores del operador de espín Sx.

Ejercicio 8

Comprobar que los estados de Bell son máximamente entrelazados.

Ejercicio 9

Comprobar que
$$\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)=\frac{1}{\sqrt{2}}(|++\rangle+|--\rangle).$$

Ejercicio 10

Dar la expresión del estado de Bell $\frac{1}{\sqrt{2}}(|00\rangle-|11\rangle)$ después de que A y B hayan rotado sus respectivos qubits un ángulo genérico q.