2023 JC1 H1 Math MYA Solutions

Qn	Solutions
1	$3\log_x 5 - \frac{2}{\log_x 5} = 5$
	Let $u = \log_x 5$
	$3u - \frac{2}{u} = 5$
	$3u^2 - 2 = 5u$
	$3u^2 - 5u - 2 = 0$
	(3u+1)(u-2)=0
	$u = -\frac{1}{3}$ or $u = 2$
	$\log_x 5 = -\frac{1}{3} \text{or} \log_x 5 = 2$
	$x^{-\frac{1}{3}} = 5$ or $x^2 = 5$ $x = 5^{-3}$ or $x = \pm \sqrt{5}$ (reject $-\sqrt{5}$)
	$x = 5^{-3}$ or $x = \pm \sqrt{5}$ (reject $-\sqrt{5}$)
	$x = \frac{1}{125}$ or $x = \sqrt{5}$
2	2x + y = -1 (1)
	$y = x^2 - mx + 8 \qquad (2)$
	From (1): $y = -1 - 2x$ (3)
	Sub (3) into (2), $-1-2x = x^2 - mx + 8$
	$x^2 + 2x - mx + 9 = 0$
	$x^{2} + (2-m)x + 9 = 0$
	Since the line and the curve intersect at two distinct points,
	Discriminant > 0
	$(2-m)^2 - 4(1)(9) > 0$
	$\left(2-m\right)^2-36>0$
	(2-m-6)(2-m+6) > 0
	(2-m-6)(2-m+6) > 0 (-4-m)(8-m) > 0
	m < -4 or $m > 8$
	Since the line is tangent to the curve, $m = -4$ or $m = 8$

Qn	Solutions	
3(i)	Area of garden = 14π	
	$\left \frac{1}{2} \pi \left(\frac{1}{2} y \right)^2 - \frac{1}{2} \pi \left(\frac{1}{2} y - x \right)^2 = 14 \pi$	
	$\left(\frac{1}{2}y\right)^2 - \left(\frac{1}{2}y - x\right)^2 = 28$	
	$\left \frac{1}{4} y^2 - \left(\frac{1}{4} y^2 - xy + x^2 \right) \right = 28$	
	$xy - x^2 = 28$ (1)	
3(ii)	$2x + \pi \left(\frac{1}{2}y\right) + \pi \left(\frac{1}{2}y - x\right) = 10\pi$	
	$2x - \pi x + \pi y = 10\pi$	
	$y = 10 + x - \frac{2}{\pi}x$ (2)	
3(iii)	Sub (2) into (1):	
	$x \left(10 + x - \frac{2}{\pi} x \right) - x^2 = 28$	
	$10x - \frac{2}{\pi}x^2 - 28 = 0$	
	Using GC, $x = 3.6465 = 3.65$ or $x = 12.061 = 12.1$	
	y = 11.325 = 11.3 or $y = 14.383 = 14.4$	
	From the diagram, $\frac{1}{2}y - x > 0$,	
	$\therefore x = 3.65, y = 11.3$	

Qn	Solutions	
4(i)	$\left[\frac{d}{dx} \left[\left(\frac{2x - e}{\sqrt{x}} \right)^2 \right] = \frac{d}{dx} \left[\frac{4x^2 - 4ex + e^2}{x} \right]$	
	$= \frac{\mathrm{d}}{\mathrm{d}x} \left[4x - 4\mathrm{e} + \frac{\mathrm{e}^2}{x} \right]$	
	$=4-\frac{e^2}{x^2}$	
4(ii)	$\left[\frac{d}{dx} \left[e^{2-5x} + \sqrt{4-3x} \right] = \frac{d}{dx} \left[e^{2-5x} + (4-3x)^{\frac{1}{2}} \right] \right]$	
	$= -5e^{2-5x} + \frac{1}{2}(4-3x)^{-\frac{1}{2}}(-3)$	
	$= -5e^{2-5x} - \frac{3}{2\sqrt{4-3x}}$	

	Using $y - y_1 = m(x - x_1)$ or $y = mx + c$,
	Equation of tangent: $y - \left(-3 - \sqrt{6}\right) = 1\left(x - 2 - \sqrt{6}\right)$
	$y + 3 + \sqrt{6} = x - 2 - \sqrt{6}$
	$y = x - 5 - 2\sqrt{6}$
	$\therefore m = 1 \text{and} c = -5 - 2\sqrt{6} \ .$
5(iii)	Since curve C has a vertical asymptote at $x = 2$, and curve D has a
	vertical asymptote at $x = -\frac{b}{a}$, $\therefore -\frac{b}{a} = 2$
	a a $b = -2a$
	For curve <i>D</i> , when $y = 0$, $x = \frac{9}{4}$. $\therefore 0 = \ln\left(a\left(\frac{9}{4}\right) + b\right)$
	$\left(a\left(\frac{9}{4}\right) + b\right) = 1$
	$\left(a\left(\frac{9}{4}\right) - 2a\right) = 1$
	$\Rightarrow a = 4, b = -8$

