Recommender systems with TensorFlow

Martin Jakomin Jan Hartman

About us

Data scientists

Dr. Martin Jakomin

Jan Hartman

What do we do?

- We develop and maintain the "brains" behind the purchasing of online ad space
- Choosing the right ad <-> recommender system!
- We use TensorFlow for real-time ML predictions (1 billion predictions per second)
- Involved in many other interesting things (conversion, bid win prediction, bid price control...)

J. Hartman, D. Kopič - Scaling TensorFlow to 300 Million Predictions per Second, RecSys '21.

J. Hartman, D. Kopič - Exploration with Model Uncertainty at Extreme Scale in Real-Time Bidding, RecSys '22.

Agenda, part 1

- Recommender systems paradigms and algorithms
 - Content-based filtering:
 - Item feature extraction
 - Similarity measures and distances
 - Collaborative filtering:
 - Memory based CF (user-user, item-item, hybrid)
 - Basic memory based algorithms (nearest neighbours, ...)
 - Model based CF latent factors
 - Matrix Factorization
 - Factorization Machines
 - Deep learning for RS:
 - Deep Neural CF
 - Autoencoders & Deep autoencoders
 - DeepFM
- Recommender systems evaluation and metrics
- A short case study YouTube recommendations

Agenda, part 2

- **TensorFlow**: basic concepts, tensors, autodiff
- Keras high-level API: layers, models, fitting & evaluation
- Matrix factorization implementation
- Deep autoencoder implementation
- Bonus challenge

Repo link: github.com/janhartman/recsystf

Recommender Systems An Overview

Introduction

- We often make choices in life without sufficient personal experiences, thus we heavily rely on recommendations.
- Recommender systems (RS) are tools that assist and augment this natural decision making process.

Introduction

- RS are large-scale machine learning and knowledge discovery tools aimed at providing personalized recommendations.
- Examples: videos, movies and songs, web pages, articles, ads, books, social media posts, products, services ...
- In terms of **machine learning** problems:
 - estimation of user ratings (matrix completion or regression),
 - picking topN items (ranking),
 - picking new unfamiliar items (novelty, diversity).

Paradigms And Algorithms

Typically we split RS into three categories:

- Content-based filtering (where the user is recommended items similar to the ones he preferred in the past),
- **Collaborative filtering** (where the user is recommended items that people with similar tastes and preferences liked in the past),
- Hybrid approaches (that combine collaborative and content-based methods).

- Recommendations are based on user choices made in the past (e.g. previous purchases), combined with rated items descriptions.
- The main idea: if you like a particular item in the past you will also like a **similar** item in the future.

- Similarity between objects is therefore the basis for recommending new items.
- We can view this as a user-specific classification problem of user's likes and dislikes based on an item's features.
- CBF is best suited to situations where there is abundant data on items, but not for the users.

- ★ Easy to implement
- ★ Transparent, Explainable
- ★ User independent (no user data needed)
- ★ Scalable
- ★ No item cold-start

- Difficult information extraction
 - Limited content analysis
 - Overspecialization (only recommending similar things)
- User cold-start

- The recommendation process is usually performed in 3 steps:
 - Content Analysis (extracting features),
 - Profile learning (extracting user preferences),
 - Filtering (extract relevant items).

CBF - Item Similarity

- Item representation:
 - Structured,
 - Unstructured (vector space models, TF-IDF),
 - Mixed.

$$w_{i,j} = tf_{i,j} \times \log\left(\frac{N}{df_i}\right)$$

 tf_{ij} = number of occurrences of i in j df_i = number of documents containing iN = total number of documents

CBF - Recommending

- Recommend simply by returning similar items to those which the user has rated in the past.
- Weighting can be applied in case of real-number ratings.
- More sophisticated approaches can use Bayesian Classifiers, cluster analysis, decision trees, and neural networks in order to estimate the probability that the user is going to like the item.

CBF - Similarity Measures

• Euclidean distance:

$$\sqrt{\sum_{i=1}^n (q_i-p_i)^2}.$$

Manhattan distance:

$$\sum_{i=1}^n |p_i - q_i|,$$

Minkowski distance

$$D\left(X,Y
ight) = \left(\sum_{i=1}^{n}\left|x_{i}-y_{i}
ight|^{p}
ight)^{rac{1}{p}}$$

Jaccard distance

$$J(A,B)=rac{|A\cap B|}{|A\cup B|}=rac{|A\cap B|}{|A|+|B|-|A\cap B|}.$$

Cosine distance

$$\cos(heta) = rac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|} = rac{\sum\limits_{i=1}^n A_i B_i}{\sqrt{\sum\limits_{i=1}^n A_i^2} \sqrt{\sum\limits_{i=1}^n B_i^2}},$$

- Recommendations are usually based on user's neighbours choices made in the past (of similar items).
- The main idea: people who agreed in the past will **agree** in the future and will like similar kinds of items.

- Oppose to CBF, in collaborative filtering (CF) we generally only use past rating information (though, other information/context can be incorporated into the models).
- No "feature extraction" needed, models can learn abstract (latent) features on the fly.
- This allows for serendipitous recommendations (items can be completely different from what was seen and liked in the past).

- ★ Superior modelling and accuracy
- **★** Serendipity
- ★ Efficient and scalable
- ★ Justifiable and transparent*
- ★ Robust and stable
- ★ Doesn't need item information

- Black box models*
- User and Item cold-start
- Can be biased

^{*} Depends on the model

CF methods are usually grouped in two general classes:

- Memory-based / Neighborhood-based / Heuristic-based
 - Where user/item ratings stored in the system are directly used for prediction
- Model-based / Latent factors
 - Where user/item ratings are used to learn a predictive model

Memory-based CF

- Most basic approach where ratings are calculated using simple statistics and aggregations upon stored data.
- Very simplistic, but can often capture local associations in the data.
- Generally split into:
 - user-based (where users are recommended items from their neighbouring users with similar rating patterns),
 - item-based (where users are recommended items based on their ratings of the set of similar items).

(Memory) User-based CF

- Predict a rating for a user u for an item i using the ratings for the item i by users most similar to u.
- Weighted kNN (regression or classification).

$$\hat{r}_{ui} = \frac{\sum\limits_{v \in \mathcal{N}_i(u)} w_{uv} r_{vi}}{\sum\limits_{v \in \mathcal{N}_i(u)} |w_{uv}|}$$

(Memory) Item-based CF

- Predict a rating for a user u for an item i using the ratings by the user u for items most similar to i.
- Weighted kNN (regression or classification).

Memory-based CF

- Memory-based CF methods are simplistic, transparent (explainable), efficient and allow for serendipitous predictions.
- We can further extend MCF with various normalization (centering and biases), choosing different similarity metrics (Euclidean, Cosine, ...) or by applying various pre-filtering and post-filtering stages (neighbourhood selection), speedups (locality-sensitive hashing), ...
- Finally, we can combine user-based and item-based approaches using Hybrid models.

Model-based CF

- Contrary, model-based approaches rather use ratings in order to learn a predictive model (which is then used to make new predictions).
- Goal of modelling user-item interactions with factors representing their latent characteristics.
- These factors are inferred solely from the ratings and might represent obvious dimensions (e.g. movie genres) or something completely uninterpretable to us.

- Essential tool in machine learning, broadly used for dimensionality reduction, compression, clustering, classification, ...
- Also, one of the most popular and most used CF model.
- Simple and efficient way to model explicit data and various other side information (implicit ratings, biases, temporal effects, etc.).

- User-Item ratings can be simply represented with a matrix.
- Recommendations now becomes a matrix completion problem.
- We can solve this by factorizing this matrix into a product of (two) smaller matrices.

Matrix Factorization - Intuition

• A trivial factorization: X = X * I

	Machine Learning Paradigms		park	decision of the second								
4	3			5			4	3			5	12
5		4		4		8	5		4		4	
4		5	3	4		_ 8	4		5	3	4	
	3				5	=		3				5
	4				4	P		4				4
		2	4		5	The second			2	4		5

	Machine Learning Faradigms		Dark		-
1					
	1				
		1			
			1		
				1	
					1

• Low-Rank factorization: X = U * V

		.9	-1	1	1	9	
		2	8	-1	.9	1	
1	.1	.88	-1.08	0.9	1.09	-0.8	
-1	0	-0.9	1.0	-1.0	-1.0	0.9	
.2	-1	0.38	0.6	1.2	-0.7	-1.18	
.1	1	-0.11	-0.9	-0.9	1.0	0.91	

- **Solve** matrix factorization problem: $X \approx \hat{X} = UV^T$
- Predict with dot product (linear combinations) between latent user matrix and latent item matrix.
- There are (infinitely) many possible factorizations how to find the best one?
- Define the matrix completion as an optimization problem.

- Define the objective (loss) function, based on your needs.
- One of the most common is the squared loss (Frobenius norm): $||X \hat{X}||_F^2 = ||X UV^T||_F^2 = \sum_{i=1}^n \sum_{j=1}^m (x_{ij} u_i v_j^T)^2$

- Problem of huge sparsity (typically over 99%).
- We can use weighted (masked) matrix factorization:

$$W \circ X \approx W \circ \hat{X} = W \circ (UV^T)$$

- This kind of optimization problems are usually solved using various gradient descent methods: GD, SGD, MUR, PGD, CD ...
- Alternatively, we can use ALS (convex optimization).
- With SGD we can omit the weighted part and optimize only on the known (non-zero) ratings and thus tackle the sparsity problem very efficiently.

Matrix Factorization - SGD

$$L = \sum_{u,i} (r_{ui} - (\mu + b_u + b_i + \mathbf{x}_u^\intercal \cdot \mathbf{y}_i))^2 + \lambda_{xb} \sum_{u} \|b_u\|^2 + \lambda_{yb} \sum_{i} \|b_i\|^2 + \lambda_{xf} \sum_{u} \|\mathbf{x}_u\|^2 + \lambda_{yf} \sum_{u} \|\mathbf{y}_i\|^2$$

$$egin{aligned} rac{\partial L}{\partial b_u} &= 2(r_{ui} - (\mu + b_u + b_i + \mathbf{x}_u^\intercal \cdot \mathbf{y}_i))(-1) + 2\lambda_{xb}b_u \ & b_u \leftarrow b_u + \eta \left(e_{ui} - \lambda_{xb}b_u
ight) \ & b_i \leftarrow b_i + \eta \left(e_{ui} - \lambda_{yb}b_i
ight) \ & \mathbf{x}_u \leftarrow \mathbf{x}_u + \eta \left(e_{ui}\mathbf{y}_i - \lambda_{xf}\mathbf{x}_u
ight) \ & \mathbf{y}_i \leftarrow \mathbf{y}_i + \eta \left(e_{ui}\mathbf{x}_u - \lambda_{yf}\mathbf{y}_i
ight) \end{aligned}$$

Matrix Factorization

- MF allows for a simple inclusion of various side information (like implicit ratings, tags), constraints (penalties and rewards), regularization, biases and temporal dynamics.
- Contextual information about the rating process (circumstances) can also be incorporated - CARS:
 - Contextual pre-filtering, post-filtering and modelling
 - \circ R: User \times Item \times Context \rightarrow Rating
 - Tensor factorization

Matrix Factorization

- Constrained Matrix Factorization:
 - NMF (only additive linear combinations induce parts-based representation)
 - Sparse MF (constrained number of combinations)
 - Orthogonal MF (uniqueness, clustering)
- Data Fusion

Factorization Machines

- Factorization machines can be looked as a generalization of linear regression.
- Moreover, they are a generalization of support vector machines (SVM) with a polynomial kernel.
- Except, with FM we do **not** need to calculate every feature interaction (especially if they are sparse): **k<< n**.

1) Model Equation: The model equation for a factorization machine of degree d=2 is defined as:

$$\hat{y}(\mathbf{x}) := w_0 + \sum_{i=1}^n w_i \, x_i + \sum_{i=1}^n \sum_{j=i+1}^n \langle \mathbf{v}_i, \mathbf{v}_j \rangle \, x_i \, x_j \quad (1)$$

where the model parameters that have to be estimated are:

$$w_0 \in \mathbb{R}, \quad \mathbf{w} \in \mathbb{R}^n, \quad \mathbf{V} \in \mathbb{R}^{n \times k}$$
 (2)

And $\langle \cdot, \cdot \rangle$ is the dot product of two vectors of size k:

$$\langle \mathbf{v}_i, \mathbf{v}_j \rangle := \sum_{f=1}^k v_{i,f} \cdot v_{j,f}$$
 (3)

Factorization Machines

- Allows for quadratic (second-order)
 feature interactions or even higher (d
 hyperparameter) with variable number of
 latent dimensions (k hyperparameter).
- Designed to capture interactions between features within high dimensional sparse datasets.
- Still very fast can be trained in a linear time.

Deep Learning For RS

Deep Learning for RS

- Nowadays, deep learning is everywhere RS are not an exception.
- Data is becoming more abundant and available.
- Main Idea the user/item interaction may be non-linear.
- Deep models and Hybrids are SOTA.

Deep RS

- **★** Non-linear transformations
- ★ Representation learning and better generalization
- ★ Sequence modelling (RNN)
- **★** Flexibility
- ★ Superior accuracy
- ★ Unified representation and data fusion

- Black box models bad interpretability
- Data requirement and sparseness
- Extensive Hyperparameter tuning

- User and Item embeddings (with one-hot input)
- Dense layers and single output

This is a generalization of the matrix factorization

We can add multiple dense layers

• Or combine both models - **Deep & Wide** architecture

Deep Factorization Machines

 Main idea: Learn both, low-order (FM) and high-order (DNN) feature interactions.

		U	ser			It	em		1	Cat	tegories Histor			stor	ry	
ı	1	0	0		1	0	0		1	0	1		1	0	1	
5	1	0	0		0	1	0		0	2	1		0	0	1	
3	0	1	0		1	0	0		3	0	14		1	0	0	
	:	:	:	:	:	:	:	1	:	:	:	1	:	:	:	:
ı	0	0	0		0	0	1		0	1	5		0	0	1	

Quantity]
2	1
4	1
5	1
÷	
1	1

Autoencoders

- Generalization of the PCA
- Aims to reconstruct the input on the output level

Deep Autoencoders

- Item-based
- User-based: denoising autoencoder

Evaluating RS

Evaluating Recommender Systems

- Inherently difficult, usually the same dataset in used for learning and evaluation, highy sparsity, bias and outliers.
- How to measure success? User **satisfaction** is hard to define!
- How to optimize for novelty and serendipity?
- In general, we try to optimize the pre-defined loss function (which does not guarantee best predictions or best user satisfactions).

Evaluating Recommender Systems

- We commonly use a holdout set (sub-matrix, random sample) on which we apply predictive accuracy metrics, such as RMSE, MAE, ...
- For topN recommendations we typically use coverage measures, such as precision and recall (and F1).

YouTube - Case Study

YouTube - A short case study

- Largest platform for creating, sharing and discovering video content.
- And also one of the largest recommender system in industry!
- Main Goal: Maximize the time users spend on the platform (and thus maximize the number of served ads).
- Vast majority of views come from recommendations (more than 70 %).
- However, YouTube is not fully transparent how their algorithms work.

History

- In the past YouTube recommended videos according to click-rate, but this incentivized users to create click-baity videos.
- YouTube then changed their strategy to recommend videos based on overall watch time.
- Emphasis on user satisfaction and quality watch time (hard to measure).
- Search results are also personalized.
- Offline metrics, such as precision, recall, ranking loss are widely used, however the most important metric is the live A/B testing.

Deep Neural Networks for Youtube Recommendations

- Used matrix factorization in the past.
- One of first to use deep neural network for recommendations.
- Built upon TensorFlow.
- Two-stage design (with two deep neural networks), one for candidate generation and one for ranking.
- This two stage approach allows for recommendation from millions of different videos.

The two-stage design

- The candidate generation uses collaborative filtering in order to provide broad personalization (using various features) with a high precision.
- Ranking network scores each video
 according to the desired objective function
 and thus provides fine-level representation
 among candidates with a high recall.

Candidate generation

- Neural networks as a generalization of matrix factorization (for embedding user's behaviours).
- Recommendation is viewed as an extreme multiclass (1M) classification.
- Explicit data is very sparse, but implicit (such as video views)
 is more abundant.
- User watch history is represented by a sequence of sparse video IDs (which is then embedded).
- Arbitrary continuous and categorical features can be easily added to the model.

Candidate generation

- Age of the video is very important feature in order to recommend "fresh" examples.
- Candidates are found by nearest neighbour search from the last layer of the network.
- Limited number of training example per user (to avoid heavy raters).
- Adding features and layers significantly improves the accuracy.

Ranking

- A similar deep neural network is used as for candidate selection.
- More video features (such as thumbnails, etc.) are used.
- Feature engineering is very important (although deep learning alleviates this problem).
- Shared embedding for similar features and normalization of continuous features.
- Adding features and layers significantly improves the accuracy.

Add-ons

- Such design is still not optimal (often only relevant/similar items are recommended and users can get bored).
- Google then introduced REINFORCE algorithm (reinforcement learning) with goal to maximize users' engagement over time by predicting which recommendations would expand their tastes.
- YouTube is constantly updating their machine learning algorithms and has multiple A/B tests in production.

Conclusion

Conclusion - Key Takeaways

- Offline metrics are a good indicator, but they do not always map perfectly to the online setting.
- A/B testing in production is a must.
- Continuous improvements and optimizations.
- Although deep networks help, manual feature engineering can still vastly improve the performance.
- Adding features and layers usually improve the accuracy (but has higher infrastructure costs and/or diminishing returns).
- Optimize for user satisfaction.

TensorFlow

What is TensorFlow?

- "An end-to-end open source machine learning platform"
- At its core: general purpose ML framework, focused on DL
- Core implemented in C / C++ / Python, wrappers for Java / Go / Swift
- Peripherals: TF Serving (microservice for serving models),
 TensorBoard (model visualization / profiling), etc.

Pros & cons of TF

- + A lot of implemented operations and models
- + Optimized for speed, CPU, GPU support
- + Ecosystem (users, libraries, end-to-end platform) most widely used DL framework
- Complexity
- Poor documentation + awkward API in some places

Code time

- Repository: <u>github.com/janhartman/recsystf</u>
- Option 1: run the notebooks on Google Colab
 - Colab: https://colab.research.google.com/
 - Click GitHub and enter janhartman/recsystf
 - All dependencies are preinstalled
 - The colab notebooks are stored on your GDrive
- Option 2: run the notebooks locally
 - Clone the repo and open it
 - Create virtualenv and install dependencies
 - Run jupyter-lab

Stuff we left out

- Saving and loading models
- TF Serving, production usage
- TF in other programming languages
- Custom op creation
- Estimators and tf.data pipelines

Sources (TF part)

- <u>TensorFlow guide</u>
- Deep Learning With Keras: Recommender Systems
- Collaborative Filtering for Movie Recommendations
- NVIDIA/DeepRecommender: Deep learning for recommender systems
- An implementation of DeepRecommender in Tensorflow
 & Keras

Challenge

Data

- Data: <u>Goodreads book ratings</u>, filtered
- 84k train, 21k test examples
- train.csv & test.csv: user ID, book name & rating
- Bonus: additional book data in books.csv (match by book name) - try to find a way to add it to the model
- books.csv: authors, publish date, publisher, rating, number of reviews, number of pages

Challenge

- Goal: implement a recommender system in TF to accurately predict a user's rating of a book
- Use mean squared error as your loss function & a validation dataset
- Play around with different algorithms, add extra book data into the model...
- Try to achieve the lowest MSE on the test set (mine: 0.84)
- Make sure to use additional data from books.csv

Conclusion

We are hiring!

- Always looking for interesting candidates
- Various positions are open
- Hard and interesting problems
- Big data
- outbrain.com/careers

Thank you for your attention!

Martin Jakomin

mjakomin@outbrain.com

linkedin.com/in/martin-jakomin

Jan Hartman

jhartman@outbrain.com

<u>linkedin.com/in/jan-hartman</u>