Introduction to Graph Theory

Bartosz Pankratz

Introduction

- Graphs are one of the most widely used mathematical structures.
- They allow us to efficiently represent relational data and as a result better understand plenty of different phenomena, ranging from social interactions to molecules.
- Let us briefly discuss some examples:

Social networks:

Source: N. Gaumont, M. Panachi and D. Chavalarias, Reconstruction of the socio-semantic dynamics of political activist Twitter networks—Method and application to the 2017 French presidential election, PLOS ONE 13(9) (2018).

Molecules:

Electrical grids:

Telecommunication networks:

Source:

https://www.researchgate.net/fig ure/Telecommunication-Network-Structure-4_fig1_220841033/

Road networks:

Source: http://www.marcinkossakowski.com/finding-shortest-path-using-dijkstras-algorithm/

Social networks again:

- Graph is a tuple (ordered pair) G = (V, E), where:
 - V is a set of vertices (nodes).
 - $E \subseteq \{\{x,y\} | x,y \in V \land x \neq y\}$ is a set of **edges** pairs of vertices.
 - We assume that graph is **simple**; there are no **loops** (edges from x to x) nor **parallel edges** (more than one edge from x to y)
- Two nodes v_i and v_i , connected by edge e_{ij} are adjacent (neighbors).

Undirected graph:

- Directed graph is a tuple (ordered pair) D = (V, E), where:
 - V is a set of vertices (nodes).
 - $E \subseteq \{(x,y) | (x,y) \in V^2 \land x \neq y\}$ is a set of **edges** pairs of vertices.
 - This time order of nodes in edge matters, $(x, y) \neq (y, x)$. Formally directed graph is an incidence function mapping every edge to an **ordered pair** of vertices.

Directed graph:

- Node v_1 is a **predecessor** of node v_2 .
- Node v_2 is a successor of node v_1 .
- The **source** of the edge e_{12} is node v_1 , and the **target** of the edge is node v_2 .

Degree – number of neighbors of a given node:

Degree of v_1 : $deg(v_1) = 3$

- Graphs might be represented as matrices (or arrays):
 - Adjacency matrices
 - Adjacency lists
 - Degree matrices
 - Laplacian matrices

- For a given graph G = (V, E) (directed or undirected), where |V| = n adjacency matrix $A = (a(x,y))_{x,v \in V}$ is a square matrix of size $n \times n$.
- a(x,y) = 1 when there is an edge from x to y, a(x,y) = 0 otherwise.
- Note that for undirected graph matrix A is symmetric.

Adjacency Matrix

Adjacency List

```
g.adjacency_list()
[[2], [1, 3, 4], [2],
[2]]
```

- In Unweighted Graphs edge between two nodes is indicated by 1: a(x,y) = 1.
- In Weighted Graphs edges can take any arbitrary value (however, we assume that a(x, y) = 0 indicates no edge between nodes).
- Road network is a perfect example of weighted graph.

Complete graph is a graph (or subgraph – then it is called a clique) where all nodes are connected to each other:

d-regular graph is a graph G = (V, E), where $|V| = n \ge d + 1$ and $\deg(v_i) = d \ \forall v_i \in V$.

Bipartite graph is a graph G = (V, E), where set of nodes V can be divided into two subsets X and Y (called **partite** sets) such that $X \cup Y = V$ and $X \cap Y = \emptyset$. Then, every edge $(x,y) \in E$ satisfies $x \in X$ and $y \in Y$

Tree is an acyclic connected graph.

• **Spanning tree** *T* of an undirected graph *G* is defined as a subgraph that is a **tree** which includes all of the vertices of *G*, with **minimum** possible number of edges.

- **Spanning tree** *T* of an undirected graph *G* is defined as a subgraph that is a **tree** which includes all of the vertices of *G*, with **minimum** possible number of edges.
- In weighted graphs we can also define the minimum spanning tree
 (MST), which is the spanning tree with the lowest possible sum of edge
 weights.

- A concept of the Minimum spanning tree (MST) have direct applications in the design of networks (e.g. electrical grids) and testing their robustness.
- Algorithms for finding the MST:
 - Borůvka algorithm.
 - Kruskal algorithm.
 - Prim algorithm.

Paths

Path – a path from v_1 to v_n is a list of nodes $P = (v_1, v_2, ..., v_n)$ such that $(v_{k-1}, v_k) \in E$ for all k = 2, ..., n.

The length of the path is just a sum of weights of edges: $\sum_{k=2}^{n} a((v_{k-1}, v_k))$.

Note that for unweighted graph it just simplifies to |P| (number of edges).

Cycle is a sequence $C=(v_1,v_2,\ldots,v_n)$ such that $(v_{k-1},v_k)\in E$ for all $k=2,\ldots,n$ and $(v_n,v_1)\in E$.

Connected component

in an undirected graph
 is the largest subgraph
 in which there exists a
 path between any two
 nodes.

If G has exactly one component, then G is connected, otherwise G is disconnected.

For a directed graph definition is less trivial, there are plenty of generalizations of the connectivity concept.

Distance

• **Distance** dist(x, y) is defined as a shortest path between x and y:

dist(x,y) =
$$\min_{(x=v_1,v_2,...,v_n=y)} \sum_{k=2}^{n} a((v_{k-1},v_k))$$

• **Diameter** diam(G) is the farthest distance between any two of its vertices:

$$diam(G) = \max_{x,y \in V} dist(x,y)$$

- One of the key concepts in graphs analysis is finding an optimal (minimal) path between two vertices in a graph.
- Finding directions between two locations on a map is a great example of a shortest path problem application:

- One of the key concepts in graphs analysis is finding an optimal (minimal) path between two vertices in a graph.
- Finding directions between two locations on a map is a great example of a shortest path problem application:

- Commonly used algorithms:
 - Dijkstra's algorithm
 - A* search algorithm
 - Bellman–Ford algorithm
 - Floyd–Warshall algorithm

Dijkstra Algorithm

Visited = [] Unvisited = [S, A, B, C, D, F]

Node	Shortest path from S	Previous node
S	0	-
А	8	
В	∞	
С	∞	
D	∞	
F	8	

Dijkstra Algorithm

Node	Shortest path from S	Previous node
S	0	-
А	8	
В	∞	
С	∞	
D	∞	
F	∞	

In each step:

• Select unvisted node with the shortest path from v_o .

Node	Shortest path from S	Previous node
S	0	-
А	8	
В	∞	
С	∞	
D	∞	
F	∞	

In each step:

- Select unvisted node with the shortest path from v_o .
- Mark it as visited.

Visited = [S]Unvisited = [A, B, C, D, F]

Node	Shortest path from S	Previous node
S	0	-
А	∞ 5	S
В	∞ 3	S
С	∞	
D	∞	
F	∞	

In each step:

- Select unvisted node with the shortest path from v_o .
- Mark it as visited.
- Calculate the distance to all its successors.

Visited = [S, B]Unvisited = [A, C, D, F]

Node	Shortest path from S	Previous node
S	0	-
А	5	S
В	3	S
С	∞	
D	∞ 9	В
F	∞	

In each step:

- Select unvisted node with the shortest path from v_o .
- Mark its as visited.
- Calculate the distance to all its successors.
- Select next node with shortest path from v_o and repeat the procedure.

Visited = [S, B, A]Unvisited = [C, D, F]

Node	Shortest path from S	Previous node
S	0	-
А	5	S
В	3	S
С	∞ 9	А
D	98	₽A
F	∞	

Visited = [S, B, A, D]Unvisited = [C, F]

Node	Shortest path from S	Previous node
S	0	-
А	5	S
В	3	S
С	9	А
D	8	А
F	⇔ 15	D

Visited = [S, B, A, D, C]Unvisited = [F]

Node	Shortest path from S	Previous node
S	0	-
А	5	S
В	3	S
С	9	А
D	8	А
F	15 11	Ð C

$$Visited = [S, B, A, D, C, F]$$

 $Unvisited = []$

Node	Shortest path from S	Previous node
S	0	-
А	5	S
В	3	S
С	9	А
D	8	А
F	11	С

In the final step, you need to find the optimal path based on the collected information.

Visited = [S, B, A, D, C, F]
Unvisited = []

Node	Shortest path from S	Previous node
S	0	-
А	5	S
В	3	S
С	9	А
D	8	А
F	11	С

- Time complexity: $O(|E| + |V| \log |V|)$.
- Can be used only for non-negative edge weights.
- However, the Dijkstra algorithm has one major drawback:

When the Dijkstra algorithm is searching for the shortest path it examines vertices in all possible directions, until it reaches the goal.

Source:

http://theory.stanford.edu/~amitp/ GameProgramming/AStarComp arison.html When the Dijkstra algorithm is searching for the shortest path it examines vertices in all possible directions, until it reaches the goal.

A* search algorithm is a significantly more effective approach. It utilizes a heuristic function to prioritize paths that seem to be leading closer to a goal.

Source:

http://theory.stanford.edu/~amitp/ GameProgramming/AStarComp arison.html

Degree distribution

Degree – number of neighbors of a given node:

Degree of v_1 : $deg(v_1) = 3$

In an undirected graph G neighborhood of node v_i is defined as:

 $Ne(v_i) = \{v_i \in V: \{v_i, v_i\} \in E\}$

Definition of **neighborhood** can be generalized to include nodes at distance at most ℓ :

$$\operatorname{Ne}_{\ell}(v_{i}) \\
= \{v_{j} \in V: \operatorname{dist}(v_{i}, v_{j}) \leq \ell\}$$

Example of $Ne_2(v_1)$:

Ego Network – subgraph where only its adjacent neighbors and their mutual links are included:

Ego Network – subgraph where only its adjacent neighbors and their mutual links are included:

Neighborhoods

In a directed graph D **neighborhood** of node v_i generalize into two measures :

$$Ne^{in}(v_i) = \{v_j \in V: \{v_j, v_i\} \in E\}$$

 $Ne^{out}(v_i) = \{v_j \in V: \{v_i, v_j\} \in E\}$

- The **degree sequence** is non-decreasing sequence $\mathbf{d} = (\deg(v_1), \deg(v_2), ..., \deg(v_n))$
- The degree distribution d_ℓ is the fraction of nodes with degree ℓ , namely, $d_\ell = \frac{n_\ell}{n}$.
- The average degree *G* in the unweighted graph is equal to:

• The average degree *G* in the unweighted graph is equal to:

$$\langle k \rangle = \frac{1}{n} \sum_{v \in V} \deg(v) = \sum_{\ell \in \mathbb{N}} \ell \, d_{\ell} = \frac{2m}{n}$$

• In general, for $s \in \mathbb{N}$, sth moment of the degree sequence of G is defined as:

$$\langle k^{S} \rangle = \frac{1}{n} \sum_{v \in V} \deg(v)^{S} = \sum_{\ell \in \mathbb{N}} \ell^{S} d_{\ell}$$

• For a given set of nodes $S \subseteq V$, the **volume** of set S is defined as

$$vol(S) = \sum_{v \in S} \deg(v)$$

• In particular, the volume of an undirected graph G with m=|E| edges is equal to

$$vol(V) = \sum_{v \in V} \deg(v) = 2m$$

The minimum degree:

$$\delta(G) = \min_{v \in V} \deg(v)$$

The maximum degree:

$$\Delta(G) = \max_{v \in V} \deg(v)$$

- Note that, not all sequences of non-negative integers $\mathbf{d} = (d_1, d_2, \dots, d_n)$ can be a degree sequence of some simple graph.
- A sequence of numbers is said to be a graphic sequence if one can construct a graph having the sequence as its degree sequence.

- In the majority of real-world networks nodes tend to cluster together (we call this property a **homophily**).
- Clustering coefficient is a graph parameter that tries to measure how heavily nodes cluster together.
- Clustering coefficient can be defined **globally** (for entire network) or **locally** (for each node).

- Let G = (V, E) be an unweighted graph.
- For every node $v_i \in V$ with $\deg(v_i) \ge 2$ local clustering coefficient is defined as:

$$c(v_i) = \frac{\left| \left\{ v_j, v_k \right\} \in E : v_j, v_k \in Ne(v_i) \right|}{\binom{\deg(v_i)}{2}}$$

- Local clustering coefficient is a ratio of number of triangles containing v_i and all the triplets centered around v_i
- Clearly $0 \le c(v_i) \le 1$. When $c(v_i)$ tends to 1, then G is getting closer to a clique.

- Local clustering coefficient is a noisy measure (there are always outliers in graphs!), thus usually global measures are preferred.
- The local clustering coefficient averaged over the nodes of degree *d* is an example of such a measure:

$$C(d) = \frac{\sum_{v \in V: \deg(v) = d} c(v)}{|\{v \in V: \deg(v) = d\}|}$$

assuming that $\{v \in V : \deg(v) = d\} \neq \emptyset$

- Local clustering coefficient is a noisy measure (there are always outliers in graphs!), thus usually global measures are preferred.
- Alternatively, one might use the average local clustering coefficient:

$$C_{\text{loc}}(G) = \frac{1}{n} \sum_{v \in V} c(v)$$

where c(v) = 0 when deg(v) = 0 or deg(v) = 1 (alternatively, $C_{loc}(G)$ can be defined only for nodes with degree larger than 2).

Finally, the global clustering coefficient is defined as

$$C_{\text{glob}}(G) = \frac{3 \times \# \ of \ triangles \ in \ G}{\# \ of \ triplets \ in \ G}$$

- The interpretation of $C_{glob}(G)$ is straightforward; $C_{glob}(G)$ is a probability that a random triplet of nodes forms a triangle.
- In some cases, $C_{glob}(G)$ and $C_{loc}(G)$ are equal (or very close). However, they can differ substantially.