The Particle Filter

Ed Herbst

November 17, 2020

From Linear to Nonlinear DSGE Models

While DSGE models are inherently nonlinear, the nonlinearities are often small and decision rules are approximately linear.

- One can add certain features that generate more pronounced nonlinearities:
 - stochastic volatility;
 - markov switching coefficients;
 - asymmetric adjustment costs;
 - occasionally binding constraints.

From Linear to Nonlinear DSGE Models

Linear DSGE model leads to

$$y_t = \Psi_0(\theta) + \Psi_1(\theta)t + \Psi_2(\theta)s_t + u_t, \quad u_t \sim N(0, \Sigma_u),$$

$$s_t = \Phi_1(\theta)s_{t-1} + \Phi_{\epsilon}(\theta)\epsilon_t, \quad \epsilon_t \sim N(0, \Sigma_{\epsilon}).$$

Nonlinear DSGE model leads to

$$y_t = \Psi(s_t, t; \theta) + u_t, \quad u_t \sim F_u(\cdot; \theta)$$

$$s_t = \Phi(s_{t-1}, \epsilon_t; \theta), \quad \epsilon_t \sim F_\epsilon(\cdot; \theta).$$

Some Prominent Examples

Fernndez-Villaverde et al. (2011)

Fernndez-Villaverde et al. (2015)

Aruoba et al. (2018)

Gust et al. (2017)

Particle Filters

There are many particle filters...

- We will focus on four types:
 - Bootstrap PF
 - ► A generic PF
 - A conditionally-optimal PF
 - ▶ Tempered Particle Filter

Filtering - General Idea

State-space representation of nonlinear DSGE model

Measurement Eq. :
$$y_t = \Psi(s_t, t; \theta) + u_t$$
, $u_t \sim F_u(\cdot; \theta)$
State Transition : $s_t = \Phi(s_{t-1}, \epsilon_t; \theta)$, $\epsilon_t \sim F_{\epsilon}(\cdot; \theta)$.

Likelihood function:

$$p(Y_{1:T}|\theta) = \prod_{t=1}^{T} p(y_t|Y_{1:t-1},\theta)$$

A filter generates a sequence of conditional distributions $s_t | Y_{1:t}$.

Filtering - General Idea

- Iterations:
 - ▶ Initialization at time t-1: $p(s_{t-1}|Y_{1:t-1},\theta)$
 - ▶ Forecasting t given t 1:
 - 1. Transition equation: $p(s_t|Y_{1:t-1},\theta) = \int p(s_t|s_{t-1},Y_{1:t-1},\theta)p(s_{t-1}|Y_{1:t-1},\theta)ds_{t-1}$
 - 2. Measurement equation:

$$p(y_t|Y_{1:t-1},\theta) = \int p(y_t|s_t,Y_{1:t-1},\theta)p(s_t|Y_{1:t-1},\theta)ds_t$$

▶ Updating with Bayes theorem. Once y_t becomes available:

$$p(s_t|Y_{1:t},\theta) = p(s_t|y_t,Y_{1:t-1},\theta) = \frac{p(y_t|s_t,Y_{1:t-1},\theta)p(s_t|Y_{1:t-1},\theta)}{p(y_t|Y_{1:t-1},\theta)}$$

- Initialization. Draw the initial particles from the distribution $s_0^j \stackrel{iid}{\sim} p(s_0)$ and set $W_0^j = 1, j = 1, ..., M$.
- ▶ Recursion. For t = 1, ..., T:
 - 1. Forecasting s_t . Propagate the period t-1 particles $\{s_{t-1}^j, W_{t-1}^j\}$ by iterating the state-transition equation forward:

$$\tilde{\mathbf{s}}_{t}^{j} = \Phi(\mathbf{s}_{t-1}^{j}, \epsilon_{t}^{j}; \theta), \quad \epsilon_{t}^{j} \sim F_{\epsilon}(\cdot; \theta). \tag{1}$$

An approximation of $\mathbb{E}[h(s_t)|Y_{1:t-1},\theta]$ is given by

$$\hat{h}_{t,M} = \frac{1}{M} \sum_{i=1}^{M} h(\tilde{s}_t^i) W_{t-1}^j.$$
 (2)

- Initialization.
- ▶ Recursion. For t = 1, ..., T:
 - 1. Forecasting s_t .
 - 2. Forecasting y_t . Define the incremental weights

$$\tilde{\mathbf{w}}_t^j = p(\mathbf{y}_t | \tilde{\mathbf{s}}_t^j, \theta). \tag{3}$$

The predictive density $p(y_t|Y_{1:t-1},\theta)$ can be approximated by

$$\hat{\rho}(y_t|Y_{1:t-1},\theta) = \frac{1}{M} \sum_{i=1}^{M} \tilde{w}_t^j W_{t-1}^j.$$
 (4)

If the measurement errors are $N(0, \Sigma_u)$ then the incremental weights take the form

$$\tilde{\mathbf{w}}_t^j = (2\pi)^{-n/2} |\Sigma_u|^{-1/2} \exp\left\{-\frac{1}{2} \left(y_t - \Psi(\tilde{\mathbf{s}}_t^j, t; \theta)\right)' \Sigma_u^{-1} \left(y_t - \Psi(\tilde{\mathbf{s}}_t^j, t; \theta)\right)\right\}$$
(5)

where *n* here denotes the dimension of y_t .

- Initialization.
- ▶ Recursion. For t = 1, ..., T:
 - 1. Forecasting s_t .
 - 2. Forecasting y_t . Define the incremental weights

$$\tilde{\mathbf{w}}_t^j = p(\mathbf{y}_t | \tilde{\mathbf{s}}_t^j, \theta). \tag{6}$$

3. Updating. Define the normalized weights

$$\tilde{W}_{t}^{j} = \frac{\tilde{w}_{t}^{j} W_{t-1}^{j}}{\frac{1}{M} \sum_{j=1}^{M} \tilde{w}_{t}^{j} W_{t-1}^{j}}.$$
 (7)

An approximation of $\mathbb{E}[h(s_t)|Y_{1:t},\theta]$ is given by

$$\tilde{h}_{t,M} = \frac{1}{M} \sum_{i=1}^{M} h(\tilde{s}_t^i) \tilde{W}_t^j. \tag{8}$$

- Initialization.
- ▶ Recursion. For t = 1, ..., T:
 - 1. Forecasting s_t .
 - 2. Forecasting y_t .
 - 3. Updating.
 - 4. Selection (Optional). Resample the particles via multinomial resampling. Let $\{s_t^j\}_{j=1}^M$ denote M iid draws from a multinomial distribution characterized by support points and weights $\{\tilde{s}_t^j, \tilde{W}_t^j\}$ and set $W_t^j = 1$ for $j = 1, \ldots, M$. An approximation of $\mathbb{E}[h(s_t)|Y_{1:t}, \theta]$ is given by

$$\bar{h}_{t,M} = \frac{1}{M} \sum_{i=1}^{M} h(s_t^i) W_t^i.$$
 (9)

Likelihood Approximation

► The approximation of the log likelihood function is given by

$$\ln \hat{p}(Y_{1:T}|\theta) = \sum_{t=1}^{T} \ln \left(\frac{1}{M} \sum_{j=1}^{M} \tilde{w}_{t}^{j} W_{t-1}^{j} \right).$$
 (10)

 One can show that the approximation of the likelihood function is unbiased.

This implies that the approximation of the log likelihood function is downward biased.

The Role of Measurement Errors

Measurement errors may not be intrinsic to DSGE model.

▶ Bootstrap filter needs non-degenerate $p(y_t|s_t, \theta)$ for incremental weights to be well defined.

Decreasing the measurement error variance Σ_u, holding everything else fixed, increases the variance of the particle weights, and reduces the accuracy of Monte Carlo approximation.

Generic Particle Filter - Recursion

▶ Forecasting s_t . Draw \tilde{s}_t^j from density $g_t(\tilde{s}_t|s_{t-1}^j,\theta)$ and define

$$\omega_t^j = \frac{p(\tilde{\mathbf{s}}_t^j | \mathbf{s}_{t-1}^j, \theta)}{g_t(\tilde{\mathbf{s}}_t^j | \mathbf{s}_{t-1}^j, \theta)}.$$
 (11)

▶ An approximation of $\mathbb{E}[h(s_t)|Y_{1:t-1},\theta]$ is given by

$$\hat{h}_{t,M} = \frac{1}{M} \sum_{i=1}^{M} h(\tilde{s}_t^j) \omega_t^j W_{t-1}^j.$$
 (12)

Forecasting y_t . Define the incremental weights

$$\tilde{\mathbf{w}}_t^j = p(\mathbf{y}_t | \tilde{\mathbf{s}}_t^j, \theta) \omega_t^j. \tag{13}$$

The predictive density $p(y_t|Y_{1:t-1},\theta)$ can be approximated by

$$\hat{p}(y_t|Y_{1:t-1},\theta) = \frac{1}{M} \sum_{i=1}^{M} \tilde{w}_t^j W_{t-1}^j.$$
 (14)

Updating / Selection. Same as BS PF

Asymptotics

► The convergence results can be established recursively, starting from the assumption

$$ar{h}_{t-1,M} \stackrel{a.s.}{\longrightarrow} \mathbb{E}[h(s_{t-1})|Y_{1:t-1}],$$

$$\sqrt{M}(ar{h}_{t-1,M} - \mathbb{E}[h(s_{t-1})|Y_{1:t-1}]) \implies N(0,\Omega_{t-1}(h)).$$

- ► Forward iteration: draw s_t from $g_t(s_t|s_{t-1}^j) = p(s_t|s_{t-1}^j)$.
- Decompose

$$\hat{h}_{t,M} - \mathbb{E}[h(s_t)|Y_{1:t-1}] \qquad (15)$$

$$= \frac{1}{M} \sum_{j=1}^{M} \left(h(\tilde{s}_t^j) - \mathbb{E}_{p(\cdot|s_{t-1}^j)}[h] \right) W_{t-1}^j$$

$$+ \frac{1}{M} \sum_{j=1}^{M} \left(\mathbb{E}_{p(\cdot|s_{t-1}^j)}[h] W_{t-1}^j - \mathbb{E}[h(s_t)|Y_{1:t-1}] \right)$$

$$= I + II.$$

Both I and II converge to zero (and potentially satisfy CLT).

Asymptotics

Updating step approximates

$$\mathbb{E}[h(s_t)|Y_{1:t}] = \frac{\int h(s_t)p(y_t|s_t)p(s_t|Y_{1:t-1})ds_t}{\int p(y_t|s_t)p(s_t|Y_{1:t-1})ds_t} \approx \frac{\frac{1}{M}\sum_{j=1}^{M}h(\tilde{s}_t^j)\tilde{w}_t^jW_{t-1}^j}{\frac{1}{M}\sum_{j=1}^{M}\tilde{w}_t^jW_{t-1}^j}$$
(16)

Define the normalized incremental weights as

$$v_t(s_t) = \frac{p(y_t|s_t)}{\int p(y_t|s_t)p(s_t|Y_{1:t-1})ds_t}.$$
 (17)

 Under suitable regularity conditions, the Monte Carlo approximation satisfies a CLT of the form

$$\sqrt{M}(\tilde{h}_{t,M} - \mathbb{E}[h(s_t)|Y_{1:t}]) \qquad (18)$$

$$\implies N(0,\tilde{\Omega}_t(h)), \quad \tilde{\Omega}_t(h) = \hat{\Omega}_t(v_t(s_t)(h(s_t) - \mathbb{E}[h(s_t)|Y_{1:t}])).$$

▶ Distribution of particle weights matters for accuracy! ⇒ Resampling!

Adapting the Generic PF

Conditionally-optimal importance distribution:

$$g_t(\tilde{s}_t|s_{t-1}^j) = p(\tilde{s}_t|y_t,s_{t-1}^j).$$

This is the posterior of s_t given s_{t-1}^j . Typically infeasible, but a good benchmark.

- Approximately conditionally-optimal distributions: from linearize version of DSGE model or approximate nonlinear filters.
- Conditionally-linear models: do Kalman filter updating on a subvector of s_t. Example:

$$y_t = \Psi_0(m_t) + \Psi_1(m_t)t + \Psi_2(m_t)s_t + u_t, \quad u_t \sim N(0, \Sigma_u),$$

$$s_t = \Phi_0(m_t) + \Phi_1(m_t)s_{t-1} + \Phi_{\epsilon}(m_t)\epsilon_t, \quad \epsilon_t \sim N(0, \Sigma_{\epsilon}),$$

where m_t follows a discrete Markov-switching process.

More on Conditionally-Linear Models

- \triangleright State-space representation is linear conditional on m_t .
- Write

$$p(m_t, s_t | Y_{1:t}) = p(m_t | Y_{1:t}) p(s_t | m_t, Y_{1:t}),$$
(19)

where

$$s_t|(m_t, Y_{1:t}) \sim N(\bar{s}_{t|t}(m_t), P_{t|t}(m_t)).$$
 (20)

- ▶ Vector of means $\bar{s}_{t|t}(m_t)$ and the covariance matrix $P_{t|t}(m)_t$ are sufficient statistics for the conditional distribution of s_t .
- ▶ Approximate $(m_t, s_t)|Y_{1:t}$ by $\{m_t^j, \bar{s}_{t|t}^j, P_{t|t}^j, W_t^j\}_{i=1}^N$.
- ► The swarm of particles approximates

$$\int h(m_t, s_t) p(m_t, s_t, Y_{1:t}) d(m_t, s_t) \qquad (21)$$

$$= \int \left[\int h(m_t, s_t) p(s_t | m_t, Y_{1:t}) ds_t \right] p(m_t | Y_{1:t}) dm_t$$

$$\approx \frac{1}{M} \sum_{i=1}^{M} \left[\int h(m_t^j, s_t^j) p_N(s_t | \bar{s}_{t|t}^j, P_{t|t}^j) ds_t \right] W_t^j.$$

More on Conditionally-Linear Models

▶ We used Rao-Blackwellization to reduce variance:

$$V[h(s_t, m_t)] = \mathbb{E}[V[h(s_t, m_t)|m_t]] + V[\mathbb{E}[h(s_t, m_t)|m_t]]$$

$$\geq V[\mathbb{E}[h(s_t, m_t)|m_t]]$$

► To forecast the states in period generate \tilde{m}_t^j from $g_t(\tilde{m}_t|m_{t-1}^j)$ and define:

$$\omega_t^j = \frac{p(\tilde{m}_t^j | m_{t-1}^j)}{g_t(\tilde{m}_t^j | m_{t-1}^j)}.$$
 (22)

▶ The Kalman filter forecasting step can be used to compute:

$$\tilde{S}_{t|t-1}^{j} = \Phi_{0}(\tilde{m}_{t}^{j}) + \Phi_{1}(\tilde{m}_{t}^{j}) S_{t-1}^{j}
P_{t|t-1}^{j} = \Phi_{\epsilon}(\tilde{m}_{t}^{j}) \Sigma_{\epsilon}(\tilde{m}_{t}^{j}) \Phi_{\epsilon}(\tilde{m}_{t}^{j})'
\tilde{y}_{t|t-1}^{j} = \Psi_{0}(\tilde{m}_{t}^{j}) + \Psi_{1}(\tilde{m}_{t}^{j}) t + \Psi_{2}(\tilde{m}_{t}^{j}) \tilde{S}_{t|t-1}^{j}
P_{t|t-1}^{j} = \Psi_{2}(\tilde{m}_{t}^{j}) P_{t|t-1}^{j} \Psi_{2}(\tilde{m}_{t}^{j})' + \Sigma_{u}.$$
(23)

More on Conditionally-Linear Models

► Then,

$$\int h(m_{t}, s_{t}) p(m_{t}, s_{t}|Y_{1:t-1}) d(m_{t}, s_{t})$$

$$= \int \left[\int h(m_{t}, s_{t}) p(s_{t}|m_{t}, Y_{1:t-1}) ds_{t} \right] p(m_{t}|Y_{1:t-1}) dm_{t}$$

$$\approx \frac{1}{M} \sum_{i=1}^{M} \left[\int h(m_{t}^{j}, s_{t}^{j}) p_{N}(s_{t}|\tilde{s}_{t|t-1}^{j}, P_{t|t-1}^{j}) ds_{t} \right] \omega_{t}^{j} W_{t-1}^{j}$$

► The likelihood approximation is based on the incremental weights

$$\tilde{w}_{t}^{j} = p_{N}(y_{t}|\tilde{y}_{t|t-1}^{j}, F_{t|t-1}^{j})\omega_{t}^{j}. \tag{25}$$

Conditional on \tilde{m}_t^j we can use the Kalman filter once more to update the information about s_t in view of the current observation y_t :

$$\begin{array}{lll} \tilde{\mathbf{s}}_{t|t}^{j} & = & \tilde{\mathbf{s}}_{t|t-1}^{j} + P_{t|t-1}^{j} \Psi_{2}(\tilde{m}_{t}^{j})'(F_{t|t-1}^{j})^{-1}(\mathbf{y}_{t} - \bar{\mathbf{y}}_{t|t-1}^{j}) \\ \tilde{P}_{t|t}^{j} & = & P_{t|t-1}^{j} - P_{t|t-1}^{j} \Psi_{2}(\tilde{m}_{t}^{j})'(F_{t|t-1}^{j})^{-1} \Psi_{2}(\tilde{m}_{t}^{j}) P_{t|t-1}^{j}. \end{array}$$

Particle Filter For Conditionally Linear Models

- 1. Initialization.
- **2. Recursion.** For t = 1, ..., T:
 - 2.1 **Forecasting** s_t . Draw \tilde{m}_t^j from density $g_t(\tilde{m}_t|m_{t-1}^j,\theta)$, calculate the importance weights ω_t^j in (22), and compute $\tilde{s}_{t|t-1}^j$ and $P_{t|t-1}^j$ according to (23). An approximation of $\mathbb{E}[h(s_t,m_t)|Y_{1:t-1},\theta]$ is given by (25).
 - 2.2 **Forecasting** y_t . Compute the incremental weights \tilde{w}_t^j according to (25). Approximate the predictive density $p(y_t|Y_{1:t-1},\theta)$ by

$$\hat{p}(y_t|Y_{1:t-1},\theta) = \frac{1}{M} \sum_{i=1}^{M} \tilde{w}_t^j W_{t-1}^j.$$
 (27)

2.3 Updating. Define the normalized weights

$$\tilde{W}_{t}^{j} = \frac{\tilde{w}_{t}^{j} W_{t-1}^{j}}{\frac{1}{M} \sum_{i=1}^{M} \tilde{w}_{t}^{j} W_{t-1}^{j}}$$
(28)

and compute $\tilde{s}_{t|t}^{j}$ and $\tilde{P}_{t|t}^{j}$ according to (26). An approximation of $\mathbb{E}[h(m_t, s_t)|Y_{1:t}, \theta]$ can be obtained from

Nonlinear and Partially Deterministic State Transitions

Example:

$$s_{1,t} = \Phi_1(s_{t-1}, \epsilon_t), \quad s_{2,t} = \Phi_2(s_{t-1}), \quad \epsilon_t \sim N(0, 1).$$

▶ Generic filter requires evaluation of $p(s_t|s_{t-1})$. Define $\varsigma_t = [s_t', \epsilon_t']'$ and add identity $\epsilon_t = \epsilon_t$ to state transition. Factorize the density $p(\varsigma_t|\varsigma_{t-1})$ as

$$p(\varsigma_t|\varsigma_{t-1}) = p^{\epsilon}(\epsilon_t)p(s_{1,t}|s_{t-1},\epsilon_t)p(s_{2,t}|s_{t-1}).$$

where $p(s_{1,t}|s_{t-1}, \epsilon_t)$ and $p(s_{2,t}|s_{t-1})$ are pointmasses.

- ▶ Sample innovation ϵ_t from $g_t^{\epsilon}(\epsilon_t|s_{t-1})$.
- ► Then

$$\omega_t^j = \frac{p(\tilde{\varsigma}_t^j | \varsigma_{t-1}^j)}{g_t(\tilde{\varsigma}_t^j | \varsigma_{t-1}^j)} = \frac{p^\epsilon(\tilde{\epsilon}_t^j) p(\tilde{s}_{1,t}^j | s_{t-1}^j, \tilde{\epsilon}_t^j) p(\tilde{s}_{2,t}^j | s_{t-1}^j)}{g_t^\epsilon(\tilde{\epsilon}_t^j | s_{t-1}^j) p(\tilde{s}_{1,t}^j | s_{t-1}^j, \tilde{\epsilon}_t^j) p(\tilde{s}_{2,t}^j | s_{t-1}^j)} = \frac{p^\epsilon(\tilde{\epsilon}_t^j | s_{t-1}^j) p(\tilde{s}_{1,t}^j | s_{t-1}^j, \tilde{\epsilon}_t^j) p(\tilde{s}_{2,t}^j | s_{t-1}^j)}{g_t^\epsilon(\tilde{\epsilon}_t^j | s_{t-1}^j) p(\tilde{s}_{2,t}^j | s_{t-1}^j)} = \frac{p^\epsilon(\tilde{\epsilon}_t^j | s_{t-1}^j) p(\tilde{s}_{2,t}^j | s_{t-1}^j) p(\tilde{s}_{2,t}^j | s_{t-1}^j)}{g_t^\epsilon(\tilde{\epsilon}_t^j | s_{t-1}^j) p(\tilde{s}_{2,t}^j | s_{t-1}^j)} = \frac{p^\epsilon(\tilde{\epsilon}_t^j | s_{t-1}^j) p(\tilde{s}_{2,t}^j | s_{t-1}^j) p(\tilde{s}_{2,t}^j | s_{t-1}^j) p(\tilde{s}_{2,t}^j | s_{t-1}^j) p(\tilde{s}_{2,t}^j | s_{t-1}^j)}{g_t^\epsilon(\tilde{\epsilon}_t^j | s_{t-1}^j) p(\tilde{s}_{2,t}^j |$$

Degenerate Measurement Error Distributions

Our discussion of the conditionally-optimal importance distribution suggests that in the absence of measurement errors, one has to solve the system of equations

$$y_t = \Psi(\Phi(s_{t-1}^j, \tilde{\epsilon}_t^j)),$$

to determine $\tilde{\epsilon}_t^j$ as a function of s_{t-1}^j and the current observation y_t . Then define

$$\omega_t^j = p^{\epsilon}(\tilde{\epsilon}_t^j)$$
 and $\tilde{s}_t^j = \Phi(s_{t-1}^j, \tilde{\epsilon}_t^j)$.

▶ Difficulty: one has to find all solutions to a nonlinear system of equations. While resampling duplicates particles, the duplicated particles do not mutate, which can lead to a degeneracy.

Next Steps

- We will now apply PFs to linearized DSGE models.
- ► This allows us to compare the Monte Carlo approximation to the "truth."
- Small-scale New Keynesian DSGE model
- Smets-Wouters model

Illustration 1: Small-Scale DSGE Model

Parameter Values For Likelihood Evaluation

Parameter	θ^{m}	θ'	Parameter	θ^{m}	θ^I
$\overline{\tau}$	2.09	3.26	κ	0.98	0.89
ψ_{1}	2.25	1.88	ψ_{2}	0.65	0.53
$ ho_{ extsf{r}}$	0.81	0.76	$ ho_{oldsymbol{\mathcal{G}}}$	0.98	0.98
$ ho_{Z}$	0.93	0.89	$r^{(A)}$	0.34	0.19
$\pi^{(A)}$	3.16	3.29	$\gamma^{(Q)}$	0.51	0.73
$\sigma_{\it r}$	0.19	0.20	$\sigma_{m{g}}$	0.65	0.58
σ_{Z}	0.24	0.29	$\ln p(Y \theta)$	-306.5	-313.4

Likelihood Approximation

Notes: The results depicted in the figure are based on a single run of the bootstrap PF (dashed, M = 40,000), the conditionally-optimal PF (dotted, M = 400), and the Kalman filter (solid).

Filtered State

Notes: The results depicted in the figure are based on a single run of the bootstrap PF (dashed, M = 40,000), the conditionally-optimal PF (dotted, M = 400), and the Kalman filter (solid).

Distribution of Log-Likelihood Approximation Errors

Notes: Density estimate of $\hat{\Delta}_1 = \ln \hat{p}(Y_{1:T}|\theta) - \ln p(Y_{1:T}|\theta)$ based on $N_{run} = 100$ runs of the PF. Solid line is $\theta = \theta^m$; dashed line is $\theta = \theta^I$ (M = 40,000).

Distribution of Log-Likelihood Approximation Errors

Notes: Density estimate of $\hat{\Delta}_1 = \ln \hat{p}(Y_{1:T}|\theta) - \ln p(Y_{1:T}|\theta)$ based on $N_{run} = 100$ runs of the PF. Solid line is bootstrap particle filter (M = 40,000); dotted line is conditionally optimal particle filter (M = 400).

Summary Statistics for Particle Filters

	Bootstrap	Cond. Opt.	Auxiliary				
Number of Particles M	40,000	400	40,000				
Number of Repetitions	100	100	100				
High Posterior Density: $\theta = \theta^m$							
Bias $\hat{\Delta}_1$	-1.39	-0.10	-2.83				
StdD $\hat{\Delta}_1$	2.03	0.37	1.87				
Bias $\hat{\Delta}_2$	0.32	-0.03	-0.74				
Low Posterior Density: $\theta = \theta^I$							
Bias $\hat{\Delta}_1$	-7.01	-0.11	-6.44				
StdD $\hat{\Delta}_1$	4.68	0.44	4.19				
Bias $\hat{\Delta}_2$	-0.70	-0.02	-0.50				

Notes: $\hat{\Delta}_1 = \ln \hat{p}(Y_{1:T}|\theta) - \ln p(Y_{1:T}|\theta)$ and $\hat{\Delta}_2 = \exp[\ln \hat{p}(Y_{1:T}|\theta) - \ln p(Y_{1:T}|\theta)] - 1$. Results are based on $N_{run} = 100$ runs of the particle filters.

Great Recession and Beyond

Notes: Solid lines represent results from Kalman filter. Dashed lines correspond to bootstrap particle filter (M = 40,000) and dotted lines correspond to conditionally-optimal particle filter (M = 400). Results are based on $N_{run} = 100$ runs of the filters.

Great Recession and Beyond

Mean of Log-likelihood Increments In $\hat{p}(y_t|Y_{1:t-1},\theta^m)$

Notes: Solid lines represent results from Kalman filter. Dashed lines correspond to bootstrap particle filter (M = 40,000) and dotted lines correspond to conditionally-optimal particle filter (M = 400). Results are based on $N_{run} = 100$ runs of the filters.

Great Recession and Beyond

Log Standard Dev of Log-Likelihood Increments

Notes: Solid lines represent results from Kalman filter. Dashed lines correspond to bootstrap particle filter (M = 40,000) and dotted lines correspond to conditionally-optimal particle filter (M = 400). Results are based on $N_{run} = 100$ runs of the filters.

SW Model: Distr. of Log-Likelihood Approximation Errors

Notes: Density estimates of $\hat{\Delta}_1 = \ln \hat{p}(Y|\theta) - \ln p(Y|\theta)$ based on $N_{run} = 100$. Solid densities summarize results for the bootstrap (BS) particle filter; dashed densities summarize results for the conditionally-optimal (CO) particle filter.

SW Model: Distr. of Log-Likelihood Approximation Errors

Notes: Density estimates of $\hat{\Delta}_1 = \ln \hat{p}(Y|\theta) - \ln p(Y|\theta)$ based on $N_{run} = 100$. Solid densities summarize results for the bootstrap (BS) particle filter; dashed densities summarize results for the conditionally-optimal (CO) particle filter.

SW Model: Summary Statistics for Particle Filters

	Boot	strap	Cond. Opt.				
Number of Particles M	40,000	400,000	4,000	40,000			
Number of Repetitions	100	100	100	100			
High Posterior Density: $\theta = \theta^m$							
Bias $\hat{\Delta}_1$	-238.49	-118.20	-8.55	-2.88			
StdD $\hat{\Delta}_1$	68.28	35.69	4.43	2.49			
Bias $\hat{\Delta}_2$	-1.00	-1.00	-0.87	-0.41			
Low Posterior Density: $\theta = \theta^I$							
Bias $\hat{\Delta}_1$	-253.89	-128.13	-11.48	-4.91			
StdD $\hat{\Delta}_1$	65.57	41.25	4.98	2.75			
Bias $\hat{\Delta}_2$	-1.00	-1.00	-0.97	-0.64			

Notes: $\hat{\Delta}_1 = \ln \hat{p}(Y_{1:T}|\theta) - \ln p(Y_{1:T}|\theta)$ and $\hat{\Delta}_2 = \exp[\ln \hat{p}(Y_{1:T}|\theta) - \ln p(Y_{1:T}|\theta)] - 1$. Results are based on $N_{run} = 100$.

Tempered Particle Filter

Use sequence of distributions between the forecast and updated state distributions.

► Candidates? Well, the PF will work arbitrarily well when $\Sigma_u \to \infty$.

▶ Reduce measurement error variance from an inflated initial level $\Sigma_u(\theta)/\phi_1$ to the nominal level $\Sigma_u(\theta)$.

The Key Idea

Define

$$p_n(y_t|s_t,\theta) \propto \phi_n^{d/2} |\Sigma_u(\theta)|^{-1/2} \exp\left\{-\frac{1}{2}(y_t - \Psi(s_t,t;\theta))'\right.$$
$$\times \phi_n \Sigma_u^{-1}(\theta)(y_t - \Psi(s_t,t;\theta))\right\},$$

where:

$$\phi_1 < \phi_2 < \ldots < \phi_{N_\phi} = 1.$$

Bridge posteriors given s_{t-1} :

$$p_n(s_t|y_t,s_{t-1},\theta) \propto p_n(y_t|s_t,\theta)p(s_t|s_{t-1},\theta).$$

Bridge posteriors given $Y_{1:t-1}$:

$$p_n(s_t|Y_{1:t}) = \int p_n(s_t|y_t, s_{t-1}, \theta) p(s_{t-1}|Y_{1:t-1}) ds_{t-1}.$$

Algorithm Overview

► For each *t* we start with the BS-PF iteration by simulating the state-transition equation forward.

► Incremental weights are obtained based on inflated measurement error variance Σ_u/ϕ_1 .

Then we start the tempering iterations...

After the tempering iterations are completed we proceed to t + 1...

Overview

▶ If $N_{\phi} = 1$, this collapses to the Bootstrap particle filter.

- For each time period t, we embed a "static" SMC sampler used for parameter estimation [See Earlier Lectures]: Iterate over $n = 1, ..., N_{\phi}$:
 - Correction step: change particle weights (importance sampling)
 - Selection step: equalize particle weights (resampling of particles)
 - Mutation step: change particle values (based on Markov transition kernel generated with Metropolis-Hastings algorithm
 - ► Each step approximates the same $\int h(s_t)p_n(s_t|Y_{1:t},\theta)ds_t$.

An Illustration: $p_n(s_t|Y_{1:t})$, $n = 1, ..., N_{\phi}$.

Choice of ϕ_n

Based on Geweke and Frischknecht (2014). Express post-correction inefficiency ratio as

InEff(
$$\phi_n$$
) =
$$\frac{\frac{1}{M} \sum_{j=1}^{M} \exp[-2(\phi_n - \phi_{n-1})e_{j,t}]}{\left(\frac{1}{M} \sum_{j=1}^{M} \exp[-(\phi_n - \phi_{n-1})e_{j,t}]\right)^2}$$

where

$$e_{j,t} = \frac{1}{2}(y_t - \Psi(s_t^{j,n-1}, t; \theta))' \Sigma_u^{-1}(y_t - \Psi(s_t^{j,n-1}, t; \theta)).$$

Pick target ratio r^* and solve equation $InEff(\phi_n^*) = r^*$ for ϕ_n^* .

Small-Scale Model: PF Summary Statistics

	BSPF		TPF			
Number of Particles M	40k	4k	4k	40k	40k	
Target Ineff. Ratio r^*		2	3	2	3	
High Posterior Density: $\theta = \theta^m$						
Bias	-1.4	-0.9	-1.5	-0.3	05	
StdD	1.9	1.4	1.7	0.4	0.6	
$T^{-1}\sum_{t=1}^T N_{\phi,t}$	1.0	4.3	3.2	4.3	3.2	
Average Run Time (s)	0.8	0.4	0.3	4.0	3.3	
Low Posterior Density: $\theta = \theta^I$						
Bias	-6.5	-2.1	-3.1	-0.3	-0.6	
StdD	5.3	2.1	2.6	8.0	1.0	
$T^{-1}\sum_{t=1}^T N_{\phi,t}$	1.0	4.4	3.3	4.4	3.3	
Average Run Time (s)	1.6	0.4	0.3	3.7	2.9	

Parallel Particle Filtering

We want (need) to use a lot of particles.

 Use distributed memory parallelism to allocate the operations among many processing elements (processors), each processor has its own local memory.

Forecasting and updating steps can operate independently for each particle. Great news!

Bad news: resampling phase cannot be executed locally.

Parallel Resampling

M total particles, K processors.

- Let $M_{local} = M/K$ (assume it's an integer)
- $(s_t^{i,k}, W_t^{i,k})$ denote the \$i\$th particle on the \$k\$th processor.

 Use a stratified resampling scheme across processors, new particles will have weight

$$\tilde{W}_t^k = M_{local}^{-1} \sum_{i=1}^{M_{local}} \tilde{W}_t^{j,k}.$$

(*Distributed resampling with proportial allocation*, Bolic et al. [2005])

Weight Balancing

Let α_k be the share of the weighted particles associated with processor k.

$$\alpha_{k} = \frac{\sum_{i=1}^{M_{local}} W_{t}^{i,k}}{\sum_{j=1}^{K} \sum_{i=1}^{M_{local}} W_{t}^{i,j}},$$
(29)

effective number of processors as

$$EP_t = \frac{1}{\sum_{k=1}^K \alpha_k^2}.$$
 (30)

- ▶ If $EP_t < K/2$ shuffle the particles in the following way.
 - ▶ Rank processors according to α_k
 - ▶ Match largest α_k with smallest, and so on.
 - ► Exchange $M_{exchange}$ (< M_{local}) particles between these processors
- ▶ Is it worth it? YES

Speed Gains from Parallelization, 100 lik. eval.

References

- ARUOBA, B., P. CUBA-BORDA, AND F. SCHORFHEIDE (2018): "Macroeconomic Dynamics Near the ZLB: A Tale of Two Countries," *The Review of Economic Studies*, 85, 87 118.
- FERNNDEZ-VILLAVERDE, J., G. GORDON,
 P. GUERRN-QUINTANA, AND J. F. RUBIO-RAMREZ (2015):
 "Nonlinear adventures at the zero lower bound," *Journal of Economic Dynamics and Control*, 57, 182204.
- FERNNDEZ-VILLAVERDE, J., P. GUERRN-QUINTANA, K. KUESTER, AND J. RUBIO-RAMREZ (2011): "Fiscal Volatility Shocks and Economic Activity,".
- GUST, C., E. HERBST, D. LPEZ-SALIDO, AND M. E. SMITH (2017): "The Empirical Implications of the Interest-Rate Lower Bound," *American Economic Review*, 107, 1971 2006.