CS 361– Homework 7 Total possible points: 75

1. (20 points) Create a **state-diagram** representation of a **Turing Machine** M_1 that accepts the language $A = \{w \text{ over } \{0, 1, \#\}^* \mid w \text{ contains an equal number of 0's and 1's}\}$. $10\# \in A$, $01\#10 \in A$, and $\#001 \notin A$. Solution is for the single-taped bi-infinite TM variation as in jflap

- 2. Consider the **TM M**₂ defined by the set of transitions shown below. Here we use B to indicate the tape's "blank symbol."
 - a. (10 points) Give the **state diagram** of M₂ (assuming q₂ is a final state)
 - b. (4 points) **Describe** the result of a computation in M_2 (i.e., explain in your own words what M_2 does given a string). Do *not trace the computation*, instead provide a high level overview of the language associated with M_2
 - c. (3 points) **Trace** the computation of "BaabcaB"
 - d. (3 points) **Trace** the computation of "BbcbB"

δ	В	а	b	С
q 0	q ₁ ,B,R			
q ₁	q ₂ ,B,L	q ₁ ,a,R	q ₁ ,c,R	q ₁ ,c,R
q ₂		q ₂ ,a,L		q ₂ ,c,L

a) Solution for jflap's variation of the TM, i.e., bi-infinite tape.

- b) M₂ reads strings over alphabet symbols a,b, and c and transforms b's into c's. Thereafter, it traverses the strings backwards, till it reaches the beginning of the string.
- c) q₀BaabcaB; Bq₁aabcaB; Ba q₁abcaB; Baacq₁caB; Baaccq₁aB; Baaccaq₁B; Baaccq₂aB; Baacq₂caB; Baaq₂accaB; Bq₂aaccaB; q₂BaaccaB
- d) q₀BbcbB; Bq₁bcbB; Bcq₁cbB; Bccq₁bB; Bcccq₁B; Bccq₂cB; Bcq₂ccB; Bq₂cccB; q₂BcccB

3. (20 points) Construct a **state-diagram** representation of a Turing Machine M₃ with input alphabet {a, b} that accepts strings of the form ww^r (where w is a string over {a, b}). The **final configuration** should be q_f ww^r B.

Solution for jflap's variation of the TM, i.e., bi-infinite tape.

- 4. (15 points) Give a **description** of a TM M₄ that decides language B = {w over {0, 1}* | w contains twice as many 1's as 0's}. For example: 101 ∈ B, 011 ∈ B, and 001 ∉ B
 Description for the bi-infinite tape TM variant.
 - a. Find the first 0, mark it with X, then skip all the symbols until find first 1 and mark it with x then find second10 and mark it with X. If cannot find 0, i.e., reached a blank symbol got to step c.
 - b. Go back to the beginning of the tape and repeat a.
 - c. Go back to the beginning of the tape and ensure that the tape only has X. If it does not then reject, otherwise accept (when the machine reaches a blank symbol)