

大学物理•早期量子论

主讲教师: 郭袁俊

第16章 早期量子论

16.1 早期量子物理的建立: 黑体辐射

16.2 量子概念的推广:爱因斯坦的光子理论

16.3 能量子观念的验证: 康普顿散射

16.4 玻尔氢原子理论

16.5 激光与激光器

★ 16.4 玻尔氢原子理论

本节的研究内容

- 氢原子光谱的实验规律
- 卢瑟福原子核型结构及困难
- 玻尔的氢原子理论
- 玻尔氢原子理论的成就与缺陷

16.4.1 氢原子光谱的实验规律

不同原子的辐射光谱完全不同,研究原子光谱是探索原子内部结构的重要方法。

> 分立的线光谱: 氢原子光谱是由一些分立的细亮线组成。

> 谱线的波数 (波长)

$$\overline{v} = \frac{1}{\lambda} = R\left(\frac{1}{k^2} - \frac{1}{n^2}\right)$$

里德伯恒量: $R = 1.097 \times 10^7 \text{ m}^{-1}$

k	n	线系	波段
1	2,3,	赖曼系	紫外区
2	3, 4,	巴耳末系	可见光区
3	4, 5,	帕邢系	红外区

 \triangleright 里兹并合原理:任何原子谱线的波数均由下式确定,其中T(k)、T(n)称为光谱项

$$\overline{v} = T(k) - T(n)$$

16.4.2 卢瑟福原子核型结构及困难

· 原子结构模型

> 汤姆孙模型: 经卢瑟福散射实验证明不合理

> 卢瑟福模型:原子是由带正电的核和在核外作轨道运动的电子组成

卢瑟福原子核型结构有合理之处

16.4.2 卢瑟福原子核型结构及困难和玻尔量子化假设

(1) 卢瑟福原子核型结构的困难

- > 不能解释原子的稳定性问题
- > 不能解释原子为什么会发出分立线状光谱

(2) 玻尔量子化假设

- ightharpoonup 定态假设:原子系统只能处于一系列不连续的能量状态(定态),能级 $E_1, E_2, ...$,不辐射能量
- > 轨道角动量量子化假设: 电子绕核作圆周运动, 其轨道角动量为

$$L = mvr = n\hbar, \qquad n = 1, 2, ..., \hbar = \frac{h}{2\pi}$$

ightharpoonup 量子跃迁假设:原子从定态 E_n 跃迁到定态 E_k 发出(或吸收)光的频率

$$\nu = \frac{|E_n - E_k|}{h}$$

16.4.3 玻尔的氢原子理论

(1) 处理方法:三条基本量子化假设+经典理论

电子运动的牛顿第二定律方程:

$$\frac{e^2}{4\pi\varepsilon_0 r^2} = m\frac{v^2}{r}$$

再根据轨道角动量量子化条件:

$$L = mvr = n\hbar, \qquad n = 1, 2, 3, ...$$

可以得到轨道半径:

$$r_n = n^2 a_0$$

其中 a_0 是玻尔半径

$$a_0 = \frac{\varepsilon_0 h^2}{\pi m e^2} = 5.29 \times 10^{-11} \text{m}$$

氢原子系统的动能:

$$E_k = \frac{1}{2}mv^2 = \frac{e^2}{8\pi\varepsilon_0 r_n}$$

氢原子系统的势能:

$$E_p = -\frac{e^2}{4\pi\varepsilon_0 r_n}$$

氢原子系统能量:

$$E=E_k+E_p=-rac{e^2}{8\piarepsilon_0r_n}=-rac{1}{n^2}igg(rac{me^4}{4arepsilon_0^2h^2}igg)$$

16.4.3 玻尔的氢原子理论

(2) 玻尔氢原子理论重要结论

> 氢原子系统能量量子化

$$E_n = -\frac{13.6 \text{ eV}}{n^2}, \qquad n = 1, 2, 3, ...$$

能量是量子化的负值,表示电子处于束缚态。

n	量子态名称	E_n /eV	r_n/a_0
1	基态	-13.6	1
2	第1激发态	-3.40	4
3	第2激发态	-1.51	9
4	第3激发态	-0.85	16

- ightarrow 电离能:使基态氢原子中的电子远离核所需作的功, $E_{
 m th, ar{B}}=-13.6~{
 m eV}$
- \triangleright 当原子从能态 E_n 跃迁到 E_k 时,发射光子的频率为

$$\nu = \frac{E_n - E_k}{h} = \frac{me^2}{8\varepsilon_0^2 h^3} \left(\frac{1}{k^2} - \frac{1}{n^2}\right) = Rc\left(\frac{1}{k^2} - \frac{1}{n^2}\right), \qquad \overline{\nu} = \frac{1}{\lambda} = R\left(\frac{1}{k^2} - \frac{1}{n^2}\right), E_n = -\frac{1}{n^2} \left(\frac{me^4}{4\varepsilon_0^2 h^2}\right)$$

里德伯恒量理论值: $R = \frac{me^2}{8\varepsilon_0^2h^3c} = 1.0973731568508(65) \times 10^7 \text{ m}^{-1}$,

里德伯恒量实验值(Briaben, 1989): $R = 1.09737315709(18) \times 10^7 \text{ m}^{-1}$

16.4.3 玻尔的氢原子理论

(2) 玻尔氢原子理论重要结论

- > 氢原子的能级图
- > 计算跃迁频率或波长的两种方法

$$v = \frac{c}{\lambda} = \frac{E_n - E_k}{h}$$

$$\overline{\nu} = \frac{1}{\lambda} = R\left(\frac{1}{k^2} - \frac{1}{n^2}\right)$$

▲ 16.4.4 玻尔氢原子理论的成就与缺陷

(1) 玻尔氢原子理论的成就

- > 玻尔理论成功地解释了氢原子和类氢离子的光谱规律
- > 定态、能级、电子跃迁等概念是普遍成立的

(2)玻尔氢原子理论的缺陷

- 无法解释氢原子光谱的精细结构(如强度、能带、选择定则)
- 更无法解释其它原子的光谱规律
- > 玻尔理论实际上是经典理论与量子理论的大杂烩

(3)玻尔氢原子理论的启示

只有用完整的量子理论才能正确地描述原子世界的规律

本节测试题

・由氢原子理论知,当大量氢原子处于n=3的激发态时,原子跃迁将发出: ()

(A) 一种波长的光

(B) 两种波长的光

(C) 三种波长的光

(D) 连续光谱

参考答案: C

解答分析:需要对氢原子的光谱结构很清楚。这三条谱线中有两条赖曼系的谱线和一条巴尔末系的谱线。

放置位置: PPT9之后

