

เรื่อง การศึกษาแบบจำลองทางคณิตศาสตร์และเกมกลยุทธ์ ของมาตรการที่รัฐบาลใช้ในการควบคุมการแพร่ระบาด ของเชื้อไวรัสโคโรนา 2019 ในประเทศไทย

โดย

- 1. นายบริวุฒิ จิรมงคลรัช
- 2. นายจิรัชพัท นันตา
- 3. นายกิตติภัฎ กนกทิพยกุล

โรงเรียนยุพราชวิทยาลัย

รายงานนี้เป็นส่วนประกอบของโครงงานคณิตศาสตร์ ระดับมัธยมศึกษาตอนปลาย ในงานเวทีวิชาการนวัตกรรมสะเต็มศึกษาขั้นพื้นฐานห่งชาติ ครั้งที่ 1 (ออนไลน์)

> Th e1st National Basic STEM Innovation E-Forum 2021 วันที่ 18 - 19 กันยายน พ.ศ. 2564

เรื่อง การศึกษาแบบจำลองทางคณิตศาสตร์และเกมกลยุทธ์ ของมาตรการที่รัฐบาลใช้ในการควบคุมการแพร่ระบาด ของเชื้อไวรัสโคโรนา 2019 ในประเทศไทย

โดย

- 1. นายบริวุฒิ จิรมงคลรัช
- 2. นายจิรัชพัท นันตา
- 3. นายกิตติภัฎ กนกทิพยกุล

ครูที่ปรึกษา

- 1. นายศรายุทธ วิริยะคุณานั้นท์
- 2. นางสาวรุ่งทิวา บุญมาโตน

ชื่อโครงงาน การศึกษาแบบจำลองทางคณิตศาสตร์และเกมกลยุทธ์ของมาตรการที่รัฐบาล

ใช้ในการควบคุมการแพร่ระบาคของเชื้อไวรัสโคโรนา 2019 ในประเทศไทย

ชื่อนักเรียน 1. นายบริวุฒิ จิรมงคลรัช

2. นายจิรัชพัท นันตา

3. นายกิตติภัฏ กนกทิพยกุล

ครูที่ปรึกษาโครงงาน นางสาวรุ่งทิวา บุญมาโตน

ที่ปรึกษาพิเศษ นายศรายุทธ วิริยะคุณานั้นท์

โรงเรียน ยุพราชวิทยาลัย

ที่อยู่ 238 ถนนพระปกเกล้า ตำบลศรีภูมิ อำเภอเมือง จังหวัดเชียงใหม่ 50200

โทรศัพท์ 053-418673-5 โทรสาร 053-418673-5 ต่อ 111

ระยะเวลาทำโครงงาน ตั้งแต่วันที่ 1 พฤศจิกายน 2563 – วันที่ 30 มิถุนายน 2564

บทคัดย่อ

ในปัจจุบันทั่วโลกได้เผชิญกับวิกฤตการณ์การแพร่ระบาคของเชื้อไวรัสโคโรนา 2019 ซึ่งเกิดจากไวรัส SARS-CoV-2 โดยทำให้เกิดอาการเกี่ยวกับทางเดินหายใจ ที่มีความรุนแรงและ มีโอกาสการเสียชีวิตมากกว่าไข้หวัดทั่วไป โดยประเทศไทยได้พบผู้ติดเชื้อเป็นครั้งแรกเมื่อวันที่ 12 มกราคม 2563 และนำไปสู่การระบาคภายในประเทศในเวลาต่อมา ซึ่งรัฐบาลไทยได้ประกาศใช้ พระราชกำหนดการบริหารราชการในสถานการณ์ฉุกเฉิน และมาตรการต่าง ๆ เพื่อทำการควบคุม การแพร่ระบาค จนถึงปัจจุบันสามารถแบ่งช่วงที่มีการแพร่ระบาคในประเทศไทยได้เป็น 3 ระลอก โดยในแต่ละระลอกของการแพร่ระบาค รัฐบาลได้เลือกใช้มาตรการที่มีความเข้มงวดแตกต่างกัน ส่งผลให้ระยะเวลาในการแพร่ระบาค จำนวนผู้ติดเชื้อ และผลกระทบทางเศรษฐกิจที่แตกต่างกัน

ผู้จัดทำมีความตั้งใจในการหามาตรการของรัฐบาลไทยที่มีประสิทธิภาพและ กวามเหมาะสมในการลดผลกระทบทางด้านสาธารณสุขและเสรษฐกิจให้ได้มากที่สุด พร้อมระบุ ปัจจัยที่ช่วยส่งเสริมประสิทธิภาพของมาตรการ โดยใช้แบบจำลองทางคณิตสาสตร์และเกมกลยุทธ์ มาใช้ในการจำลองการแพร่ระบาดและเปรียบเทียบประสิทธิภาพของแต่ละมาตรการ จากการศึกษา พบว่ามาตรการของรัฐบาลที่ดีที่สุดในการควบคุมการแพร่ระบาดคือ มาตรการที่รัฐบาลประกาศใช้ ในการควบคุมการแพร่ระบาดระลอกที่ 2 โดยจะต้องมีประชาชนทำตามมาตรการอย่างน้อยร้อยละ 97.86 ของผู้ที่ทำตามมาตรการจริงในระลอกที่ 2 จึงจะสามารถควบคุมการแพร่ระบาดได้ และมี ปัจจัยในการส่งเสริมประสิทธิภาพของมาตรการ ได้แก่ การลดค่าใช้จ่ายในการทำตามมาตรการ ของประชาชนและการเพิ่มบทลงโทษจากการฝ่าฝืนมาตรการ

กิตติกรรมประกาศ

โครงงานนี้สามารถสำเร็จลุล่วงตามเป้าหมายเพราะได้รับความช่วยเหลือและคำแนะนำที่ เป็นประโยชน์อย่างยิ่งจากผู้มีพระคุณหลายท่าน จึงขอขอบคุณทุก ๆ ท่าน ดังนี้

กราบขอบพระคุณ คุณครูรุ่งทิวา บุญมาโตน คุณครูที่ปรึกษาโครงงาน และคุณครูศรายุทธ วิริยะคุณานันท์ คุณครูจากกลุ่มสาระการเรียนรู้คณิตศาสตร์ โรงเรียนยุพราชวิทยาลัย ผู้ที่ให้ คำแนะนำและได้เมตตาให้ความช่วยเหลือในทุก ๆ ด้าน ตลอดจนให้คำปรึกษาเกี่ยวกับปัญหาที่ เกิดขึ้นในระหว่างการทำโครงงานนี้ ตรวจทานรูปเล่มรายงานจนโครงงานสำเร็จลุล่วงไปด้วยดี

ท้ายที่สุด ขอกราบขอบพระคุณ คุณพ่อและคุณแม่ ผู้เป็นที่รัก ผู้ให้กำลังใจและให้โอกาส ในการศึกษาอันมีค่ายิ่ง

คณะผู้จัดทำ

สารบัญ

	หน้า
บทคัดย่อ	ก
กิตติกรรมประกาศ	ข
สารบัญ	ค
สารบัญตาราง	1
สารบัญรูปภาพ	ข
บทที่ 1 บทนำ	1
บทที่ 2 เอกสารและงานวิจัยที่เกี่ยวข้อง	4
2.1 โรคติดเชื้อไวรัสโคโรนา 2019	4
2.2 มาตรการของรัฐบาลไทยในการควบคุมการแพร่ระบาดของเชื้อไวรัส	4
โคโรนา 2019	
2.3 SEIR Model	5
2.4 ทฤษฎีเกม (Game Theory)	6
2.5 ผลิตภัณฑ์มวลรวมของประเทศ (Gross Domestic Product : GDP)	6
บทที่ 3 วิธีดำเนินงาน	7
บทที่ 4 ผลการศึกษา	11
บทที่ 5 สรุปผลการศึกษา	14
บรรณานุกรม	16

สารบัญตาราง

		หน้า
ตารางที่ 3.1	ตารางแสดงลักษณะทั่วไปของเชื้อไวรัสโคโรนา 2019 และจำนวนประชากรไทย	7
ตารางที่ 3.2	ตารางแสดงค่าของสัญลักษณ์ที่ใช้ในแบบจำลองทางคณิตศาสตร์	9
ตารางที่ 3.3	ตารางแสดงอัตราการเติบโตของ GDP รายไตรมาสในไตรมาส	10
	ในช่วงที่มีการแพร่ระบาดของเชื้อไวรัสโคโรนา 2019 และช่วงที่ไม่มีการระบาด	
ตารางที่ 4.1	แสดงอัตราการติดต่อของแต่ละมาตรการที่ให้ค่า R-squared สูงที่สุด	11
	ทั้งก่อนและหลังการประกาศใช้มาตรการของรัฐบาล	
ตารางที่ 4.2	แสดงจำนวนผู้ติดเชื้อสะสมและจำนวนวันที่มีการแพร่ระบาด	11
	จากการจำลองการใช้มาตรการในสถานการณ์ที่กำหนด	
ตารางที่ 4.3	แสดงผลตอบแทนของแต่ละมาตรการของรัฐบาลจากการจำลอง	12
	การใช้แต่ละมาตรการในสถานการณ์ที่กำหนด	
ตารางที่ 4.4	แสดงร้อยละของผู้ที่ทำตามมาตรการที่น้อยที่สุดที่ยังทำให้การควบคุม	12
	การแพร่ระบาดของแต่ละมาตรการสามารถทำได้	
ตารางที่ 4.5	แสดงผลตอบแทนจากการตัดสินใจของประชาชนในแต่ละมาตรการของรัฐบาล	13

สารบัญรูปภาพ

		หน้า
ภาพที่ 2.1	กราฟแสดงสัดส่วนของประชากรในแต่ละกลุ่ม ณ เวลาต่าง ๆ	5
	โดยการใช้ SEIR Model	
ภาพที่ 3.1	แผนผังแสดงกลุ่มประชากรและความสัมพันธ์ระหว่างกลุ่มประชากร	8
	ในแบบจำลองทางคณิตศาสตร์	

บทที่ 1 บทนำ

1.1 ที่มาและความสำคัญของโครงงาน

ในปัจจุบันทั่วโลกได้เผชิญกับวิกฤตการณ์การแพร่ระบาดของเชื้อไวรัสโคโรนา 2019 ซึ่งเกิดจากไวรัส SARS-CoV-2 โดยทำให้เกิดอาการเกี่ยวกับทางเดินหายใจ ที่มีความรุนแรงและ มีโอกาสการเสียชีวิตมากกว่าไข้หวัดทั่วไป และในวันที่ 11 มีนาคม 2563 องค์การอนามัยโลก (WHO) ได้ออกประกาศให้การแพร่ระบาดของเชื้อไวรัสโคโรนา 2019 เข้าสู่ระดับการระบาดใหญ่ (pandemic) และกระจายไปทั่วโลก (World Health Organization, 2020) โดยประเทศไทยได้พบ ผู้ติดเชื้อไวรัสโคโรนา 2019 เป็นครั้งแรกเมื่อวันที่ 12 มกราคม 2563 และนำไปสู่การระบาด ภายในประเทศในเวลาต่อมา โดยรัฐบาลไทยได้ประกาศใช้พระราชกำหนดการบริหารราชการ ในสถานการณ์ฉุกเฉิน กฎหมายและมาตรการต่าง ๆ เพื่อควบคุมการแพร่ระบาด โดยจนถึงปัจจุบัน สามารถแบ่งช่วงที่มีการแพร่ระบาดในประเทศไทยได้เป็น 3 ระลอก

ในการจัดการและควบกุมการแพร่ระบาดโดยรัฐบาลไทย รัฐบาลได้ให้ความรู้และ ขอกวามร่วมมือประชาชนในการสวมหน้ากากอนามัย หมั่นล้างมือ เว้นระยะห่างทางสังคม หลีกเลี่ยงสถานที่เสี่ยงและกิจกรรมต่าง ๆ ที่อาจก่อให้เกิดการแพร่ระบาด (กรมควบกุมโรค, 2563) และนอกเหนือจากแนวทางข้างต้น ในแต่ละระลอกของการแพร่ระบาด รัฐบาลได้เลือกใช้มาตรการ ในการควบกุมการแพร่ระบาดที่มีความเข้มงวดแตกต่างกัน ส่งผลให้ระยะเวลาในการแพร่ระบาด จำนวนผู้ติดเชื้อ และผลกระทบทางเสรษฐกิจของแต่ละระลอกมีความแตกต่างกัน โดยมาตรการใน ระลอกแรกส่งผลให้เสรษฐกิจหดตัวถึงร้อยละ 9.5 ในขณะที่มาตรการในระลอกที่สองกลับส่งผลให้ เสรษฐกิจขยายตัวร้อยละ 0.2 (สำนักงานสภาพัฒนาการเสรษฐกิจและสังคมแห่งชาติ, 2564) แต่ก็ไม่สามารถทำให้การแพร่ระบาดหยุดลงภายใน 3 เดือนได้และทำให้มีผู้ติดเชื้อเพิ่มขึ้นมาก จากระลอกแรก (สบค., 2564) มาตรการที่เหมาะสมจึงมีความสำคัญในการลดผลกระทบ จากการแพร่ระบาดทั้งด้านสาธารณสุขและด้านเสรษฐกิจเป็นอย่างมาก

Jinyu Wei และคณะ (2020) ได้นำเกมกลยุทธ์มาใช้ศึกษากลยุทธ์ที่ดีที่สุดของรัฐบาลและ ประชาชนต่อการแพร่ระบาดของเชื้อไวรัสโคโรนา 2019 ในประเทศจีน พบว่าผลของเกมที่ดีที่สุด จะเกิดขึ้นเมื่อรัฐบาลกำหนดมาตรการและประชาชนทำตามมาตรการนั้น ต่อมา วิริยา มหิกุล และคณะ (2564) ได้นำแบบจำลองทางคณิตศาสตร์ คือ SEIR Model มาศึกษาผลของมาตรการ ของรัฐบาลไทยที่มีต่อการแพร่ระบาดในระลอกแรก พบว่าสามารถนำ SEIR Model มาจำลองการแพร่ระบาดได้ และพบว่ามาตรการของรัฐบาลสามารถลดขนาดของการแพร่ระบาด และชะลอการเกิดการแพร่ระบาดในระลอกที่สองได้เป็นอย่างมาก

ผู้จัดทำมีความตั้งใจในการหามาตรการของรัฐบาลไทยที่มีประสิทธิภาพและมีความ เหมาะสมในการลดผลกระทบทางด้านสาธารณสุขและด้านเสรษฐกิจให้ได้มากที่สุด พร้อมทั้ง หาปัจจัยที่ช่วยส่งเสริมประสิทธิภาพของมาตรการ โดยใช้เกมกลยุทธ์ แบบจำลองทางคณิตศาสตร์ และความรู้ด้านสถิติมาใช้ในการจำลองการแพร่ระบาดและเปรียบเทียบแต่ละมาตรการ ให้ได้รูปแบบมาตรการที่เหมาะสมที่สุด

1.2 วัตถุประสงค์ของโครงงาน

- 1.2.1 เพื่อศึกษาและเปรียบเทียบประสิทธิภาพของมาตรการที่รัฐบาลใช้ในการควบคุม การแพร่ระบาดของเชื้อไวรัสโคโรนา 2019 ในประเทศไทย และหามาตรการที่ดีที่สุด ด้วยแบบจำลองทางคณิตศาสตร์
- 1.2.2 เพื่อระบุปัจจัยที่ช่วยส่งเสริมประสิทธิภาพของมาตรการที่รัฐบาลใช้ในการควบคุม การแพร่ระบาคของเชื้อไวรัสโคโรนา 2019 ในประเทศไทยด้วยแบบจำลองทางคณิตศาสตร์ และเกมกลยุทธ์

1.3 สมมติฐาน

- 1.3.1 สามารถใช้แบบจำลองทางคณิตศาสตร์ในการหามาตรการของรัฐบาลที่มี ประสิทธิภาพสูงสุดในการควบคุมการแพร่ระบาดของเชื้อไวรัสโคโรนา 2019 ในประเทศไทยได้
- 1.3.2 สามารถใช้แบบจำลองทางคณิตศาสตร์และเกมกลยุทธ์ในการระบุปัจจัยที่ช่วย ส่งเสริมประสิทธิภาพของมาตรการที่รัฐบาลใช้ในการควบคุมการแพร่ระบาดของเชื้อไวรัส โคโรนา 2019 ในประเทศไทยได้

1.4 ตัวแปรที่ศึกษา

ตอนที่ 1 : การศึกษาและเปรียบเทียบประสิทธิภาพของมาตรการที่รัฐบาลใช้ในการควบคุม การแพร่ระบาดของเชื้อไวรัสโคโรนา 2019 ในประเทศไทย

ตัวแปรต้น - มาตรการของรัฐบาลไทยในแต่ละระลอก

ตัวแปรตาม - จำนวนผู้ติดเชื้อ

- จำนวนวันที่มีการแพร่ระบาด

- ผลตอบแทนของแต่ละมาตรการที่รัฐบาลกำหนด

ตัวแปรควบคุม - จำนวนผู้ติดเชื้อในวันแรก

- อัตราการติดต่อเริ่มต้น

- วันแรกที่มีการเริ่มประกาศใช้มาตรการ

ตอนที่ 2 : การศึกษาปัจจัยที่ช่วยส่งเสริมประสิทธิภาพของมาตรการที่รัฐบาลใช้ในการควบคุม การแพร่ระบาดของเชื้อไวรัสโคโรนา 2019 ในประเทศไทย

ตัวแปรต้น - การเลือกทำตามหรือไม่ทำตามมาตรการที่รัฐบาลกำหนดของประชาชน

ตัวแปรตาม - ผลตอบแทนของกลยุทธ์

ตัวแปรควบคุม - กลุ่มของประชากรที่ศึกษา

1.5 นิยามศัพท์เฉพาะและนิยามเชิงปฏิบัติการ

- 1.5.1 มาตรการของรัฐบาล คือ มาตรการของรัฐบาลที่ประกาศใช้เพื่อควบคุม การแพร่ระบาดของเชื้อไวรัสโคโรนา 2019 ในประเทศไทย
- 1.5.2 มาตรการของระลอกที่ 1 คือ มาตรการของรัฐบาลที่ประกาศใช้เพื่อควบคุม การแพร่ระบาดในประเทศไทย ในระลอกที่ 1 คือตั้งแต่ 26 มีนาคม 2563 จนถึง 30 มิถุนายน 2563
- 1.5.3 มาตรการของระลอกที่ 2 คือ มาตรการของรัฐบาลที่ประกาศใช้เพื่อควบคุม การแพร่ระบาดในประเทศไทย ในระลอกที่ 2 คือตั้งแต่ 26 ธันวาคม 2563 จนถึง 31 มีนาคม 2564
- 1.5.4 **มาตรการของระลอกที่ 3** คือ มาตรการของรัฐบาลที่ประกาศใช้เพื่อควบคุม การแพร่ระบาดในประเทศไทย ในระลอกที่ 3 คือตั้งแต่ 9 เมษายน 2564 จนถึง 30 มิถุนายน 2564
 - 1.5.5 อัตราการติดต่อ คือ จำนวนคนโดยเฉลี่ยที่คน 1 คนสัมผัสใน 1 วัน
- 1.5.6 **ผู้ติดเชื้อรายใหม่ในแต่ละวัน** คือ ผู้ที่ตรวจพบว่าติดเชื้อไวรัสโคโรนา 2019 ในวันนั้น โดยอ้างอิงจากการรายงานของศูนย์บริหารสถานการณ์โควิค-19 ในแต่ละวัน และกำหนดให้เป็น ผู้ที่เข้ารับการรักษาหรือกักตัวรายใหม่ในแต่ละวันของแบบจำลองทางคณิตศาสตร์

1.6 ขอบเขตของการศึกษา

- 1.6.1 โครงงานนี้ศึกษาการแพร่ระบาดของเชื้อไวรัสโคโรนา 2019 ในประเทศไทยตั้งแต่ วันที่ 12 มกราคม 2563 จนถึงวันที่ 30 มิถุนายน 2564
- 1.6.2 โครงงานนี้ศึกษาการป้องกันการแพร่ระบาคของเชื้อไวรัสโคโรนา 2019 ของ ประชาชน ด้วยการใส่หน้ากากอนามัยเท่านั้น
- 1.6.3 โครงงานนี้กำหนดให้ประชาชนสามารถเลือกทำตามหรือไม่ทำตามมาตรการ ของรัฐบาลเท่านั้น และไม่สามารถเปลี่ยนการตัดสินใจในขณะที่การแพร่ระบาดคำเนินอยู่ได้

1.7 ประโยชน์ที่คาดว่าจะได้รับ

ได้มาตรการของรัฐบาลที่มีประสิทธิภาพสูงสุดในการควบคุมการแพร่ระบาคของเชื้อไวรัส โคโรนา 2019 ในประเทศไทย พร้อมระบุปัจจัยที่ช่วยส่งเสริมประสิทธิภาพของมาตรการด้วย

บทที่ 2 เอกสารและงานวิจัยที่เกี่ยวข้อง

2.1 โรคติดเชื้อไวรัสโคโรนา 2019

โรคติดเชื้อ ไวรัสโคโรนา 2019 เป็นโรคติดเชื้อที่เกิดจากไวรัส SARS-CoV-2 โดยผู้ที่ติดเชื้อ จะอยู่ในระยะฟักตัวของเชื้อภายใน 14 วัน หลังจากนั้นจะมีอาการใช้ ไอแห้ง เหนื่อยล้าและอาจมี อาการอื่น ๆ ได้แก่ สูญเสียการรับรู้รสชาติและกลิ่น คัดจมูก เยื่อบุตาอักเสบ เจ็บคอ ปวดหัว ปวด กล้ามเนื้อหรือข้อ ผื่นผิวหนังชนิดต่าง ๆ คลื่นไส้ อาเจียน ท้องร่วง หนาวสั่นหรือเวียนศีรษะ ใน ผู้ป่วยบางรายอาจมีการป่วยรุนแรงได้แก่ หายใจถี่ สับสน เจ็บหรือกดทับที่หน้าอกอย่างต่อเนื่อง มี ใช้สูงกว่า 38 °C โดยที่ทุกคนสามารถป่วยเป็นโรคหรือป่วยหนักหรือเสียชีวิตได้ทุกวัย

เชื้อไวรัสสามารถแพร่กระจายได้ทางน้ำลาย น้ำมูกหรือสารคัดหลั่งต่าง ๆ ของผู้ที่ติดเชื้อ การป้องกันเชื้อโรคจึงสามารถทำได้ด้วยการสวมหน้ากากอนามัย หมั่นล้างมือโดยใช้สบู่หรือ แอลกอฮอล์ เว้นระยะห่างจากผู้อื่น ไม่นำมือมาสัมผัสบริเวณใบหน้าของตนเอง รวมทั้งลดการ เดินทางและงดการรวมกลุ่มทางสังคม

การรายงาน โรคติดเชื้อ โคโรนา 2019 เกิดขึ้นครั้งแรกเมื่อวันที่ 31 ธันวาคม 2562 ณ เมือง อู่ฮั่น ประเทศจีน และมีการแพร่ระบาดในวงกว้างในเวลาต่อมา โดยพบผู้ติดเชื้อนอกประเทศจีน รายแรกเมื่อวันที่ 12 มกราคม 2563 ณ ประเทศไทย จนในปัจจุบันการแพร่ระบาดของเชื้อไวรัส โคโรนา 2019 ได้ถูกประกาศเป็นการระบาดใหญ่ ที่ระบาดไปทั่วทั้งโลกและส่งผลกระทบแก่ หลายประเทศทั่วโลก (WHO, 2020)

2.2 มาตรการของรัฐบาลไทยในการควบคุมการแพร่ระบาดของเชื้อไวรัสโคโรนา 2019

จนถึงปัจจุบันการแพร่ระบาดของเชื้อไวรัสโคโรนา 2019 ในประเทศไทยสามารถแบ่งออก ได้เป็น 3 ระลอก ได้แก่ ระลอกที่ 1 ในช่วงปลายเดือนมีนาคม 2563 จนถึงกรกฎาคม 2563 ระลอกที่ 2ในช่วงปลายเดือนชั้นวาคม 2563 จนถึงมีนาคม 2564 และระลอกที่ 3 ในช่วงเมษายน 2564 จนถึง ปัจจุบัน โดยรัฐบาลไทยได้ประกาศใช้พระราชกำหนดการบริหารราชการในสถานการณ์ฉุกเฉิน พ.ศ.2548 เพื่อกำหนดมาตรการที่ใช้ในการควบคุมการแพร่ระบาดในแต่ละระลอก โดยมาตรการ ที่ใช้ในแต่ละระลอกมีสาระสำคัญดังนี้

มาตรการที่ใช้ในระลอกที่ 1 ได้แก่ ปิดและห้ามเข้าพื้นที่เสี่ยง ปิดการเข้าออกระหว่างประเทศ ห้ามชุมนุม ห้ามเดินทางข้ามจังหวัด โดยประกาศให้ใช้ทั่วประเทศและได้มีการประกาศมาตรการ ผ่อนปรนในเวลาต่อมา มาตรการที่ใช้ในระลอกที่ 2 ได้แก่ ปิดและห้ามเข้าพื้นที่เสี่ยงต่อโรก ห้ามชุมนุม คัดกรอง การเคลื่อนย้ายแรงงานต่างด้าว ชะลอเดินทางข้ามจังหวัด โดยประกาศใช้ในจังหวัดที่มีการแพร่ ระบาดและได้มีการประกาศมาตรการผ่อนปรนในเวลาต่อมา

มาตรการที่ใช้ในระลอกที่ 3 ได้แก่ ปิดและห้ามเข้าพื้นที่เสี่ยงต่อ โรค ห้ามชุมนุม ควบคุม การเปิดปิดของสถานที่ที่เสี่ยงต่อการแพร่ระบาดของโรค โดยประกาศใช้ในจังหวัดที่มีการแพร่ ระบาดและแบ่งระดับความเข้มงวดตามระดับการแพร่ระบาด (กรมการปกครอง, 2564)

2.3 SEIR Model

SEIR Model เป็นแบบจำลองทางคณิตศาสตร์ที่ใช้จำลองการแพร่ระบาดของโรคติดเชื้อที่มี ระยะฟักตัว เช่น โรคฝีดาษ รวมทั้งโรคติดเชื้อไวรัสโคโรนา 2019 เพื่อคาดการณ์การแพร่ระบาด จำนวนผู้ติดเชื้อ ระยะเวลาที่มีการแพร่ระบาดและประมาณค่าพารามิเตอร์เกี่ยวกับโรค โดยแบ่ง ประชากรออกเป็น 4 กลุ่มได้แก่ ผู้ที่สามารถติดเชื้อได้ (Susceptible) ผู้ที่ติดเชื้อแต่ยังไม่แสดงอาการ ของโรค (Exposed) ผู้ที่ติดเชื้อและมีการแสดงอาการของโรค (Infectious) และผู้ที่หายจากโรคแล้ว (Recovered) และใช้สมการเชิงอนุพันธ์เพื่อแสดงความสัมพันธ์ระหว่างกลุ่มประชากร ดังนี้

$$\frac{dS}{dt} = -\frac{\beta SI}{N}$$

$$\frac{dI}{dt} = \sigma E - \gamma I$$

$$\frac{dE}{dt} = \frac{\beta SI}{N} - \sigma E$$

$$\frac{dR}{dt} = \gamma I$$

เมื่อ N แทนจำนวนประชากรทั้งหมด

- $oldsymbol{eta}$ แทนอัตราการติดเชื้อ
- σ แทนอัตราการฟักตัว
- γ แทนอัตราการรักษา

ภาพที่ 2.1 กราฟแสดงสัดส่วนของประชากรในแต่ละกลุ่ม ณ เวลาต่าง ๆ โดยการใช้ SEIR Model ที่มา : The Institute for Disease Modeling, n.d.

2.4 ทฤษฎีเกม (Game Theory)

ทฤษฎีเกม เป็นศาสตร์ในการศึกษาและจำลองเกี่ยวกับการตัดสินใจของผู้ตัดสินใจหลาย ฝ่าย ที่จะได้รับผลตอบแทนแตกต่างกันไปตามการตัดสินใจ โดยผู้ตัดสินใจแต่ละฝ่ายพยายามเลือก ทางเลือกให้ได้ผลตอบแทนที่มากที่สุด โดยมีองค์ประกอบดังนี้

ผู้เล่น (player) คือ ผู้ที่ตัดสินใจเลือกกลยุทธ์ในเกม

กลยุทธ์ (strategy) คือ ทางเลือกของผู้เล่นสำหรับตัดสินใจนำไปใช้แข่งขัน โดยกลยุทธ์ที่ ทำให้ได้รับผลตอบแทนมากที่สุดไม่ว่าผู้เล่นอื่นจะเลือกกลยุทธ์แบบใด เรียกว่า กลยุทธ์เด่น

ผลตอบแทนของผู้เล่น (payoff) คือ อรรถประโยชน์ที่ผู้เล่นใค้รับเมื่อเลือกกลยุทธ์ จากกลยุทธ์ทั้งหมดที่เป็นไปได้และขึ้นอยู่กับกลยุทธ์ของผู้เล่นทั้งหมด

ผลของเกม (outcome) คือ ผลของการแข่งขันที่ผู้เล่นแต่ละคนจะได้รับ และมีรูปแบบในการเลือกกลยุทธ์ดังนี้

กลยุทธ์แท้ (pure strategy) เป็นรูปแบบที่ผู้เล่นเลือกเพียงกลยุทธ์เคียวตลอดทั้งการแข่งขัน กลยุทธ์ผสม (mixed strategy) เป็นรูปแบบที่ผู้เล่นไม่ได้เลือกกลยุทธ์เพียงกลยุทธ์เคียว มาใช้ในการแข่งขัน โดยจะกำหนดเป็นความน่าจะเป็นในการเลือกใช้ให้กับแต่ละกลยุทธ์ (กรกรัณย์ ชีวะตระกุลพงษ์, ม.ป.ป.)

2.5 ผลิตภัณฑ์มวลรวมของประเทศ (Gross Domestic Product : GDP)

ผลิตภัณฑ์มวลรวมของประเทศ หรือ GDP คือ มูลค่าตลาดของสินค้าและบริการขั้น สุดท้ายที่ผลิตในประเทศในช่วงเวลาหนึ่ง ๆ โดยไม่คำนึงว่าผลผลิตนั้นจะเป็นผลผลิตที่ได้จาก ทรัพยากรภายในหรือภายนอกประเทศ ค่า GDP สามารถคำนวณได้ด้วยสมการต่อไปนี้

$$GDP = C + I + G + (X - M)$$

เมื่อ $oldsymbol{C}$ แทนมูลค่าของการบริโภคของภาคเอกชนและประชาชน

I แทนมูลค่าของการลงทุนจากภาคเอกชนในสินค้ำทุน

G แทนมูลค่าของการซื้อสินค้าและบริการขั้นสุดท้ายของรัฐบาล

X แทนมูลค่าการส่งออกสินรวม

M แทนมูลค่าการนำเข้ารวม มิอาพับธ์ พบเสลียรทรัพย์ บ.ป.ป.

(นิภาพันธ์ พูนเสถียรทรัพย์, ม.ป.ป.)

อัตราการเติบโตของ GDP หรือ GDP Growth เป็นการวัคอัตราการเติบโตของ GDP โคยการเปรียบเทียบกับ GDP ของไตรมาสก่อนหน้าไตรมาสที่ต้องการวัค (QoQ) หรือ GDP ของไตรมาสเดียวกันในปีก่อนหน้าของปีที่ต้องการวัค (YoY) (Finvestory, 2564)

บทที่ 3 วิธีดำเนินงาน

โครงงาน เรื่อง การศึกษาแบบจำลองทางคณิตศาสตร์และเกมกลยุทธ์ของมาตรการ ที่รัฐบาลใช้ในการควบคุมการแพร่ระบาดของเชื้อไวรัสโคโรนา 2019 ในประเทศไทย แบ่งการศึกษาออกเป็น 2 ตอน ดังนี้

ตอนที่ 1 ศึกษาประสิทธิภาพของมาตรการของรัฐบาลไทยที่ใช้ในการควบคุมการแพร่ระบาด ของเชื้อไวรัสโคโรนา 2019 ในประเทศไทยแต่ละระลอก

1.1 ศึกษาข้อมูลเกี่ยวกับลักษณะทั่วไปของเชื้อไวรัสโคโรนา 2019 เก็บรวบรวมข้อมูล เกี่ยวกับจำนวนผู้ติดเชื้อในแต่ละวันและสถานการณ์การแพร่ระบาดของเชื้อไวรัสโคโรนา 2019 ในประเทศไทยในแต่ละระลอก โดยอาศัยข้อมูลจากองค์การอนามัยโลกและข้อมูลจากศูนย์บริหาร สถานการณ์โควิด-19 (ศบค.) และงานวิจัยที่เกี่ยวข้อง ดังตารางที่ 3.1

ตารางที่ 3.1 ตารางแสดงลักษณะทั่วไปของเชื้อไวรัสโคโรนา 2019 และจำนวนประชากรไทย

ข้อมูล	ค่าของข้อมูล	แหล่งอ้างอิง
ระยะเวลาเฉลี่ยในการฟักตัวของเชื้อ	5.5 วัน	(WHO, 2020)
ระยะเวลาเฉลี่ยในการรับเข้ารักษาในโรงพยาบาล	1.72 วัน	(ศบค., 2564)
หรือกักตัว โดยเริ่มนับเมื่อเชื้อแสดงอาการ		
ระยะเวลาเฉลี่ยในการรักษา	16.4 วัน	(WHO, 2020)
อัตราการเสียชีวิต	0.803 %	(ศบค., 2564)
ประสิทธิภาพของหน้ากากอนามัยต่อการแพร่กระจาย	79 %	(Wang Y et al, 2020)
ของเชื้อระหว่าง 2 บุคคลที่สวมหน้ากากอนามัย		
จำนวนประชากรไทย	66,186,727 คน	(กรมการปกครอง, 2563)

โดย สมมติให้อัตราการแพร่เชื้อเมื่อสวมหน้ากากอนามัยมีค่าเท่ากับอัตราการรับเชื้อเมื่อสวม หน้ากากอนามัยซึ่งมีค่าเท่ากับ $\sqrt{1-0.79} \approx 0.458$

- 1.2 สร้างแบบจำลองทางคณิตศาสตร์ โดยแบ่งประชากรไทยออกเป็น 9 กลุ่ม ได้แก่
- กลุ่มที่ 1 ผู้ที่สามารถติดเชื้อได้และทำตามมาตรการ (S_c)
- กลุ่มที่ 2 ผู้ที่สามารถติดเชื้อได้และไม่ทำตามมาตรการ (S_N)
- กลุ่มที่ 3 ผู้ที่ติดเชื้อแต่ยังไม่แสดงอาการของโรกและทำตามมาตรการ ($E_{\scriptscriptstyle C}$)
- กลุ่มที่ 4 ผู้ที่ติดเชื้อแต่ยังไม่แสดงอาการของโรกและไม่ทำตามมาตรการ ($E_{\scriptscriptstyle N}$)

กลุ่มที่ s ผู้ที่ติดเชื้อที่มีการแสดงอาการของโรคและทำตามมาตรการ (I_c)

กลุ่มที่ 6 ผู้ที่ติดเชื้อที่มีการแสดงอาการของโรคและ ไม่ทำตามมาตรการ ($I_{\scriptscriptstyle N}$)

กลุ่มที่ 7 ผู้ที่ติดเชื้อที่เข้ารับการรักษาหรือผู้ที่ต้องกักตัว (Q)

กลุ่มที่ 8 ผู้ที่ติดเชื้อที่รักษาหายแล้ว (R)

กลุ่มที่ 9 ผู้ที่ตายจากการติดเชื้อ (D)

โดยกำหนดให้ผู้ที่ทำตามมาตรการสวมหน้ากากอนามัยทั้งก่อนและหลังการประกาศใช้ มาตรการ และผู้ที่ไม่ทำตามมาตรการไม่สวมหน้ากากอนามัยทั้งก่อนและหลังการประกาศใช้ มาตรการและยังมีอัตราการติดต่อเท่ากับก่อนประกาศมาตรการ โดยมีความสัมพันธ์ระหว่างกลุ่ม ประชากรก่อนประกาศมาตรการ ดังนี้

$$\frac{dS_{C}}{dt} = -\frac{S_{C}}{N}\varphi(\theta I_{C} + I_{N})\alpha_{1} \qquad \frac{dI_{C}}{dt} = \beta E_{C} - \gamma I_{C}$$

$$\frac{dS_{N}}{dt} = -\frac{S_{N}}{N}(\theta I_{C} + I_{N})\alpha_{1} \qquad \frac{dI_{N}}{dt} = \beta E_{N} - \gamma I_{N}$$

$$\frac{dE_{C}}{dt} = \frac{S_{C}}{N}\varphi(\theta I_{C} + I_{N})\alpha_{1} - \beta E_{C} \qquad \frac{dQ}{dt} = \gamma(I_{C} + I_{N}) - \varepsilon Q$$

$$\frac{dE_{N}}{dt} = \frac{S_{N}}{N}(\theta I_{C} + I_{N})\alpha_{1} - \beta E_{N} \qquad \frac{dR}{dt} = \varepsilon Q(1 - \delta)$$

$$\frac{dD}{dt} = \varepsilon \delta Q$$

และมีความสัมพันธ์ระหว่างกลุ่มประชากรที่มีสมการเปลี่ยนแปลงหลังประกาศมาตรการ ดังนี้

$$\frac{dS_C}{dt} = -\frac{S_C}{N} \varphi \left(\theta \alpha_2 I_C + \alpha_1 I_N \right) \qquad \frac{dE_C}{dt} = \frac{S_C}{N} \varphi \left(\theta \alpha_2 I_C + \alpha_1 I_N \right) - \beta E_C$$

$$\frac{dS_N}{dt} = -\frac{S_N}{N} \left(\theta \alpha_2 I_C + \alpha_1 I_N \right) \qquad \frac{dE_N}{dt} = \frac{S_N}{N} \left(\theta \alpha_2 I_C + \alpha_1 I_N \right) - \beta E_N$$

ความสัมพันธ์ระหว่างกลุ่มประชากรในแบบจำลองทางคณิตศาสตร์ข้างต้นสามารถเขียน ในรูปของแผนผังได้ดังภาพที่ 3.1

ภาพที่ 3.1 แผนผังแสดงกลุ่มประชากรและความสัมพันธ์ระหว่างกลุ่มประชากรในแบบจำลอง ทางคณิตศาสตร์

ตารางที่ 3.2 ตารางแสดงค่าของสัญลักษณ์ที่ใช้ในแบบจำลองทางคณิตศาสตร์

สัญลักษณ์	ความหมาย	ค่าของข้อมูล
t	วันที่ในการแพร่ระบาด	-
N	จำนวนประชากรไทย	66,186,727 คน
$\alpha_{_1}$	อัตราการติดต่อก่อนประกาศมาตรการ	กำหนดเอง
α_2	อัตราการติดต่อหลังประกาศมาตรการ	กำหนดเอง
$\frac{1}{\beta}$	ระยะเวลาเฉลี่ยในการฟักตัวของเชื้อ	5.5 วัน
$\frac{1}{\gamma}$	ระยะเวลาเฉลี่ยในการรับเข้ารักษาในโรงพยาบาล หรือกักตัว โดยเริ่มนับเมื่อมีการแสดงอาการของโรค	1.72 วัน
δ	อัตราการเสียชีวิต	0.803 %
$\frac{1}{\varepsilon}$	ระยะเวลาเฉลี่ยในการรักษา	16.4 วัน
φ	อัตราการรับเชื้อเมื่อสวมแมสก์	45.8 %
θ	อัตราการแพร่เชื้อเมื่อสวมแมสก์	45.8 %

- 1.3 คำนวณหาจำนวนผู้ติดเชื้อในแต่ละวันด้วยแบบจำลองที่สร้างขึ้น โดยจำลอง สถานการณ์ให้ตรงกับสถานการณ์ในการแพร่ระบาดแต่ละระลอก และสมมติให้ทุกคน ทำตามมาตรการ เพื่อหาอัตราการติดต่อของแต่ละมาตรการที่ให้ค่า R-squared สูงที่สุด ทั้งก่อน และหลังการประกาศใช้มาตรการของรัฐบาล
- 1.4 คำนวณหาจำนวนผู้ติดเชื้อสะสมและจำนวนวันที่มีการแพร่ระบาด โดยนำ อัตราการติดต่อของแต่ละมาตรการมาจำลองในสถานการณ์การแพร่ระบาดขนาดเล็ก ขนาดกลาง และขนาดใหญ่ ซึ่งมีผู้ติดเชื้อวันแรก 10 คน 100 คน และ 1,000 คน ตามลำดับ ผ่านแบบจำลอง ทางคณิตศาสตร์ในข้อ 1.2 โดยมีเงื่อนไขของการคำนวณ ดังนี้
 - 1) มีอัตราการติดต่อก่อนการประกาศใช้มาตรการเป็น 8.00
 - 2) ประกาศใช้มาตรการในวันที่ 14 ของการแพร่ระบาด
 - 3) กำหนดให้ทุกคนทำตามมาตรการ
 - 4) การคำเนินการตามมาตรการจะหยุคลงเมื่อมีผู้ติดเชื้อรายใหม่ในแต่ละวัน น้อยกว่า 1 คน ติดต่อกันทั้งสิ้น 28 วัน

และ 5) ภายในระยะเวลา 1 ปี

1.5 ศึกษาข้อมูลและคำนวณหา 1) ค่าใช้จ่ายเฉลี่ยสำหรับผู้ป่วยแต่ละคน 2) รายได้ของ ประชาชนไทยต่อคนต่อวัน 3) การเติบโตของเศรษฐกิจขณะไม่มีการแพร่ระบาด และ 4) ผลกระทบ ทางเศรษฐกิจจากมาตรการในแต่ละระลอก โดยเลือกใช้อัตราการเติบโตของ GDP รายไตรมาส โดยอาศัยข้อมูลจากสำนักงานหลักประกันสุขภาพแห่งชาติ (สปสช.) สำนักงานสภาพัฒนาเศรษฐกิจ และสังคมแห่งชาติ (สศช.) และธนาคารแห่งประเทศไทย (ธปท.) ดังตารางที่ 3.3

ตารางที่ 3.3 ตารางแสดงอัตราการเติบโตของ GDP รายไตรมาสในไตรมาสในช่วงที่มีการแพร่ ระบาดของเชื้อไวรัสโคโรนา 2019 และช่วงที่ไม่มีการระบาด

ระลอกที่	ใตรมาส	อัตราการเติบโตของ GDP (% (QoQ))	แหล่งอ้างอิง
1	2/2653	-9.50	(สศช., 2564)
2	1/2564	0.20	(สศช., 2564)
3	2/2564	0.45	ประมาณค่า
ไม่มีการแพร่ระบาด	-	0.50	(สศช., 2563)

1.6 คำนวณผลตอบแทนของแต่ละมาตรการของรัฐบาลซึ่งประกอบค้วย 1) ผลกระทบ ทางเศรษฐกิจ โดยคำนวณจากผลรวมของ GDP ที่ได้ในแต่ละวันที่มีการคำเนินการตามมาตรการ ของรัฐบาลเทียบกับผลรวมของ GDP ที่ได้ในแต่ละวันในสภาวะปกติ ซึ่งคำนวณโดยใช้ อนุกรมเรขาคณิต และ 2) ค่าใช้จ่ายของผู้ป่วยทั้งหมด โดยคำนวณจากค่าใช้จ่ายเฉลี่ยสำหรับ ผู้ป่วยแต่ละคนรวมกับรายได้ที่เสียไปขณะที่ผู้ป่วยเข้ารับการรักษาซึ่งมีค่าประมาณ 59,618 บาท แล้วนำมาคูณกับจำนวนผู้ป่วยทั้งหมด

1.7 สรุปและอภิปรายผลการศึกษา

ตอนที่ 2 ศึกษาปัจจัยที่ช่วยส่งเสริมประสิทธิภาพของมาตรการของรัฐบาล

- 2.1 คำนวณหาร้อยละของผู้ที่ทำตามมาตรการที่มีค่าน้อยที่สุดที่ยังทำให้การควบคุม การแพร่ระบาดของแต่ละมาตรการสามารถทำได้ (จำนวนผู้ติดเชื้อรายใหม่ในวันที่ 14 หลังจาก ประกาศมาตรการมีค่าลดลง) ผ่านแบบจำลองทางคณิตศาสตร์ในข้อ 1.2
- 2.2 เปรียบเทียบผลตอบแทนจากการตัดสินใจของประชาชนในแต่ละมาตรการของ รัฐบาลโดยใช้เกมกลยุทธ์ ซึ่งผลตอบแทนของประชาชนประกอบด้วย 1) ผลกระทบทางเศรษฐกิจที่ ได้รับ 2) ค่าใช้จ่ายในการทำตามมาตรการ 3) โทษจากการฝ่าฝืนมาตรการ และ 4) ความเสี่ยง ในการติดเชื้อ เพื่อระบุปัจจัยที่ช่วยส่งเสริมประสิทธิภาพของมาตรการ
 - 2.3 สรุปและอภิปรายผลการศึกษา

บทที่ 4 ผลการศึกษา

โครงงาน เรื่อง การศึกษาแบบจำลองทางคณิตศาสตร์และเกมกลยุทธ์ของมาตรการ ที่รัฐบาลใช้ในการควบคุมการแพร่ระบาดของเชื้อไวรัสโคโรนา 2019 ในประเทศไทย แบ่งการศึกษาออกเป็น 2 ตอน และได้ผลการศึกษา ดังนี้

ตอนที่ 1 ศึกษาประสิทธิภาพของมาตรการของรัฐบาลไทยที่ใช้ในการควบคุมการแพร่ระบาด ของเชื้อไวรัสโคโรนา 2019 ในประเทศไทยแต่ละระลอก

ตารางที่ 4.1 แสดงอัตราการติดต่อของแต่ละมาตรการที่ให้ค่า R-squared สูงที่สุด ทั้งก่อนและหลัง การประกาศใช้มาตรการของรัฐบาล

ระลอกที่	อัตราการติดต่อ		
วะตอบท	ก่อนประกาศมาตรการ	หลังประกาศมาตรการ	
1	9.650	1.020	
2	9.903	1.998	
3	8.019	2.866	

ตารางที่ 4.2 แสดงจำนวนผู้ติดเชื้อสะสมและจำนวนวันที่มีการแพร่ระบาด จากการจำลองการใช้ มาตรการในสถานการณ์ที่กำหนด

มาตรการของ ระลอกที่	จำนวนผู้ติดเชื้อสะสม (คน)		จำนวนวันที่มีการแพร่ระบาด (วัน)				
	ขนาดเล็ก	ขนาด	ขนาดใหญ่	ຄວາວຄ່າຄວ່	ขนาดเล็ก	ขนาด	ขนาดใหญ่
	OM IAIRRIII	กลาง		บน เพเนน	กลาง	บผาหาเก็	
1	417	4,176	41,751	76	98	120	
2	810	8,174	81,644	125	180	235	
3	24,461	238,316	1,903,484	365	365	365	

จากตารางที่ 4.2 พบว่ามาตรการของระลอกที่ 1 มีประสิทธิภาพในการลดจำนวนผู้ติดเชื้อ และจำนวนวันที่มีการแพร่ระบาดมากที่สุด ในขณะที่มาตรการของระลอกที่ 3 ไม่สามารถควบกุม การแพร่ระบาดให้หยุดลงภายใน 1 ปีได้และทำให้มีจำนวนผู้ติดเชื้อเป็นจำนวนมาก แต่เนื่องจาก ยังไม่ได้นำผลกระทบทางเสรษฐกิจมาพิจารณาร่วมด้วย ค่าที่ได้จึงยังไม่สามารถนำมาเปรียบเทียบ ประสิทธิภาพกันได้

ตารางที่ 4.3 แสดงผลตอบแทนของแต่ละมาตรการของรัฐบาลจากการจำลองการใช้ แต่ละมาตรการในสถานการณ์ที่กำหนด

มาตรการของ	ผลตอบแทนของรัฐบาล (ล้านบาท)		
ระลอกที่	ขนาดเล็ก	ขนาดกลาง	ขนาดใหญ่
1	-121,887.48	-219,709.95	-345,990.04
2	-12,353.16	-28,001.50	-53,696.07
3	-19,264.83	-32,013.58	-131,288.71

จากตารางที่ 4.3 พบว่ามาตรการของระลอกที่ 2 ทำให้ผลตอบแทนของรัฐบาลมีค่ามากที่สุด โดยที่มาตรการที่สามารถควบคุมการแพร่ระบาดได้ดีที่สุดจากมากไปน้อย คือ มาตรการของระลอก ที่ 1 2 และ 3 ตามลำดับ ในขณะที่มาตรการที่ส่งผลกระทบต่อเสรษฐกิจจากน้อยไปมาก คือ มาตรการของระลอกที่ 3 2 และ 1 ตามลำดับ ทำให้มาตรการของระลอกที่ 1 และ 3 สร้าง ผลตอบแทนของรัฐบาลได้น้อย เนื่องจากมีผลกระทบในบางด้านมากเกินไป ดังนั้นมาตรการของระลอกที่ 2 จึงมีประสิทธิภาพมากที่สุด

ตอนที่ 2 ศึกษาปัจจัยที่ช่วยส่งเสริมประสิทธิภาพของมาตรการของรัฐบาล

ตารางที่ 4.4 แสดงร้อยละของผู้ที่ทำตามมาตรการที่น้อยที่สุดที่ยังทำให้การควบคุมการแพร่ระบาด ของแต่ละมาตรการสามารถทำได้

มาตรการของระลอกที่	ร้อยละของผู้ที่ทำตามมาตรการ
1	95.28
2	97.86
3	มากกว่า 100.00

จากตารางที่ 4.4 พบว่าร้อยละของผู้ทำตามมาตรการที่น้อยที่สุดที่ทำให้การแพร่ระบาด ยังสามารถควบคุมได้ คือ ร้อยละ 95.28 ร้อยละ 97.86 และมากกว่าร้อยละ 100 สำหรับมาตรการ ของระลอกที่ 1 2 และ 3 ตามลำดับ และเนื่องจากในการจำลองได้สมมติให้ทุกคนทำตามมาตรการ เพราะไม่ทราบค่าที่แน่นอน ร้อยละที่แสดงนี้จึงเป็นร้อยละจากผู้ที่ทำตามมาตรการจริง ในแต่ละระลอกแทน แสดงว่าในการใช้มาตรการของระลอกที่ 3 รัฐบาลจำเป็นต้องทำให้ประชาชน ทำตามมาตรการมากกว่าที่เป็นอยู่เดิมเพื่อให้สามารถควบคุมการแพร่ระบาดได้

ตารางที่ 4.5 แสดงผลตอบแทนจากการตัดสินใจของประชาชนในแต่ละมาตรการของรัฐบาล

กลยุทธ์	มาตรการของระลอก			
ของประชาชน	1 2 3			
ทำตาม	$-a_1-c_1-et_1$	$-a_2-c_2-et_2$	$-a_3-c_3-et_3$	
ไม่ทำตาม	$-b_1-d_1-f$	$-b_2-d_2-f$	$-b_3-d_3-f$	

- เมื่อ a_i แทน ผลกระทบทางเศรษฐกิจต่อคนเมื่อเลือกทำตามมาตรการของระลอก i
 - b_i แทน ผลกระทบทางเศรษฐกิจต่อคนเมื่อเลือกไม่ทำตามมาตรการของระลอก i
 - c แทน ความเสี่ยงในการติดเชื้อเมื่อเลือกทำตามมาตรการของระลอก i
 - d_i แทน ความเสี่ยงในการติดเชื้อเมื่อเลือกไม่ทำตามมาตรการของระลอก i
 - t_i แทน วันที่มีการแพร่ระบาดเมื่อใช้มาตรการของระลอก i
 - e แทน ค่าใช้จ่ายในการทำตามมาตรการต่อวัน
 - f แทน โทษจากการฝ่าฝืนมาตรการ

โดยเห็นได้ชัดว่า $b_i > a_i$ และ $d_i > c_i$ เนื่องจากการแพร่ระบาดของโรคมีความรุนแรง มากขึ้นเมื่อประชาชนเลือกไม่ทำตามมาตรการ และผลตอบแทนจากการแพร่ระบาดจะมีค่ามาก ที่สุดเมื่อทุกคนทำตามมาตรการ นั่นคือต้องให้กลยุทธ์เด่นของประชาชนคือการทำตามมาตรการ ซึ่ง จะเกิดขึ้นเมื่อ $-a_i-c_i-et_i > -b_i-d_i-f$ ซึ่งสมมูลกับ $f>et_i-\left(\left(b_i-a_i\right)+\left(d_i-c_i\right)\right)$ โดย รัฐบาลสามารถควบคุมค่าใช้จ่ายในการทำมาตรการ (e) และ โทษจากการฝ่าฝืนมาตรการ (f) ได้ ดังนั้นรัฐบาลจึงต้องกำหนดโทษจากการฝ่าฝืนมาตรการและค่าใช้จ่ายในการทำตามมาตรการให้ สอดกล้องกับอสมการข้างต้น เพื่อให้เกิดผลของเกมที่ดีที่สุด

บทที่ 5 สรุปและอภิปรายผลการศึกษา

5.1 สรุปผลการศึกษา

จากการศึกษาและเปรียบเทียบประสิทธิภาพของมาตรการที่รัฐบาลใช้ในการควบคุม การแพร่ระบาดของเชื้อไวรัสโคโรนา 2019 ในประเทศไทย โดยอาศัยแบบจำลองทางคณิตศาสตร์ ที่ปรับปรุงจากแบบจำลอง SEIR พบว่า มาตรการที่ดีที่สุด คือ มาตรการที่รัฐบาลประกาศใช้ ในการควบคุมการแพร่ระบาดระลอกที่ 2

และปัจจัยที่ส่งเสริมประสิทธิภาพของมาตรการที่รัฐบาลประกาศใช้ในการควบคุม การแพร่ระบาด คือ การลดค่าใช้จ่ายในการทำตามมาตรการของประชาชนและการเพิ่มบทลงโทษ จากการฝ่าฝืนมาตรการ

5.2 อภิปรายผลการศึกษา

จากการศึกษาประสิทธิภาพของมาตรการในแต่ละระลอก พบว่าการให้ความสำคัญ ต่อผลกระทบค้านสาธารณสุขและค้านเสรษฐกิจมีความสำคัญในการตัดสินเลือกมาตรการที่มี ประสิทธิภาพสูงสุด โดยที่มาตรการของระลอกที่ 2 เป็นมาตรการที่ประสิทธิภาพสูงสุด เนื่องจากมี ผลกระทบต่อทั้งสองค้าน (ค้านสาธารณสุขและค้านเสรษฐกิจ) ไม่มากจนเกินไปและสร้าง ผลกระทบโดยรวมต่อประเทศน้อยที่สุด ในขณะที่มาตรการของระลอกที่ 1 แม้จะควบคุมการแพร่ ระบาคได้ดีแต่ก็มีผลกระทบต่อเสรษฐกิจเป็นอย่างมาก และมาตรการของระลอกที่ 3 แม้จะสร้าง ผลกระทบต่อเสรษฐกิจน้อยแต่ก็ไม่สามารถควบคุมการแพร่ระบาคให้หยุดลงภายใน 1 ปีได้ ทำให้มีผู้ติดเชื้อเป็นจำนวนมากจนอาจเกินขีดจำกัดของระบบสาธารณสุขได้

ทั้งนี้ การเลือกใช้มาตรการขึ้นอยู่กับรัฐบาลว่าให้ความสำคัญแก่ด้านใดมากกว่า เช่น หากรัฐบาลเล็งเห็นว่าการลดจำนวนผู้ติดเชื้อและชีวิตของประชาชนมีความสำคัญมากกว่า ด้านเสรษฐกิจ มาตรการของระลอกที่ 1 จะมีความเหมาะสมมากกว่า เป็นต้น

จากการศึกษาปัจจัยที่ช่วยส่งเสริมประสิทธิภาพของมาตรการ ที่รัฐบาลใช้ในการควบคุม การแพร่ระบาด พบว่ารัฐบาลยังสามารถควบคุมให้ประชาชนทำตามมาตรการค้วยแนวทางอื่น ๆ นอกเหนือจากการศึกษาข้างต้น ได้ เช่น การสนับสนุนค่าใช้จ่ายทางด้านอินเตอร์เน็ต เพื่อให้ประชาชนทำงานจากบ้านได้ การลดค่าใช้จ่ายที่ไม่จำเป็นของประชาชนและ การประชาสัมพันธ์ขอความร่วมมือและให้ความรู้ที่ถูกต้องแก่ประชาชน เป็นต้น นอกจากนี้บทลงโทษเมื่อประชาชนฝ่าฝืนมาตรการควรใช้อย่างทั่วถึง เท่าเทียมและประเมิน จากความตั้งใจในการฝ่าฝืนด้วย เพื่อป้องกันไม่ให้ผู้ที่กระทำ โดยประมาทได้รับบทลงโทษ ที่มากเกินไป และป้องกันไม่ให้ผู้ที่ตั้งใจฝ่าฝืนจริงได้รับบทลงโทษที่น้อยเกินไปหรือไม่ได้รับเลย และเมื่อให้ประชาชนทำตามมาตรการแล้ว รัฐบาลก็ควรต้องมีนโยบายในการตรวจหาโรคและ รับผู้ป่วยที่มีความชัดเจนและมีประสิทธิภาพด้วย เพื่อให้การแพร่ระบาดจบลงได้โดยเร็ว

5.3 ปัญหาและอุปสรรค

- 5.3.1 ขาดข้อมูลร้อยละของผู้ที่ทำตามมาตรการจริงในแต่ละระลอกของการแพร่ระบาด
- 5.3.2 ยังไม่มีข้อมูลของอัตราการเติบโตของ GDP ในไตรมาส 2/2564 จึงต้องใช้ค่าจากการ คาดการณ์แทนค่าจริง

5.4 ข้อเสนอแนะ

- 5.4.1 ควรพิจารณาการฉีดวัคซีนเพื่อป้องกันโรคร่วมกับการใช้มาตรการด้วยเพื่อให้ตรง กับสถานการณ์จริงในปัจจุบัน
- 5.4.2 ควรพิจารณาข้อมูลทางค้านเศรษฐกิจอื่น ๆ เช่น อัตราการว่างงาน อัตราเงินเฟื้อและ อัตราเงินฝึคประกอบกับอัตราการเติบโตของ GDP เพื่อให้การคำนวณผลกระทบทางค้านเศรษฐกิจ มีความแม่นยำมากขึ้น

บรรณานุกรม

- กรกรัณย์ ชีวะตระกุลพงษ์. (ม.ป.ป.). ทฤษฎีเกมส์ (Game Theory) ตอนที่ 1. สืบค้นเมื่อ 26 กรกฎาคม 2564,สืบค้นจาก: http://pioneer.netserv.chula.ac.th/~kkornkar/micro%20II%20(2008)/Lecture Note 1.pdf.
- กรมการปกครอง. (2564). รวมประกาศจากราชกิจจานุเบกษา. สืบค้นเมื่อ 11 กรกฎาคม 2564, สืบค้นจาก : http://report.dopa.go.th/covid19/ratchkitja.html
- กรมควบคุมโรค. (2563). อินโฟกราฟฟิกสำหรับประชาชน. สืบค้นเมื่อ 20 กรกฎาคม 2564, สืบค้นจาก: https://ddc.moph.go.th/viralpneumonia/info.php
- นิภาพันธ์ พูนเสถียรทรัพย์. (ม.ป.ป.). ทำไม? เราต้องรู้จัก GDP. สืบค้นเมื่อ 26 กรกฎาคม 2564,
 สื บ ค้ น จ า ก : https://www.scb.co.th/th/personal-banking/stories/why-we-must-knowgdp.html
- สำนักงานสภาพัฒนาการเศรษฐกิจและสังคมแห่งชาติ. (2564). ผลิตภัณฑ์มวลรวมในประเทศ ใตรมาสที่ 1/2564. สืบค้นเมื่อ 11 กรกฎาคม 2564, สืบค้นจาก : https://www.nesdc.go.th/ewt dl link.php?nid=5176&filename=QGDP report
- Finvestory. (2564). GDP คืออะไร? ทำไม GDP เป็นตัวเลขที่ใช้วัดมูลค่าทางเศรษฐกิจ. สืบค้นเมื่อ 26 กรกฎาคม 2564, สืบค้นจาก: https://finvestory.com/what-is-gdp
- Mahikul, W.; Chotsiri, P.; Ploddi, K.; Pan-ngum, W. Evaluating the Impact of Intervention Strategies on the First Wave and Predicting the Second Wave of COVID-19 in Thailand: A Mathematical Modeling Study. Biology 2021, 10, 80. https://doi.org/10.3390/biology10020080
- The Institute for Disease Modeling. (n.d.). SEIR and SEIRS models. Retrived July 26, 2021, from: https://docs.idmod.org/projects/emod-hiv/en/model-seir.html
- Wang Y, Tian H, Zhang L, et al. (2020). Reduction of secondary transmission of SARS-CoV-2 in households by face mask use, disinfection and social distancing: a cohort study in Beijing, China. BMJ Glob Health. 2020;5(5):e002794.
- Wei J, Wang L, Yang X. (2020). Game analysis on the evolution of COVID-19 epidemic under the prevention and control measures of the government. PLoS ONE 15(10):e0240961. https://doi.org/10.1371/journal.pone.0240961
- World Health Organization. (2020). Coronavirus disease (COVID-19). Retrived July 21, 2021, from: https://www.who.int/emergencies/diseases/novel-coronavirus2019