Просуммируем уравнения , относящиеся ко всем участкам веревки. Учтем, что силы натяжения отдельных участков встречаются дважды, причем с различными знаками, поэтому их сумма для всех внутренних участков обратится в нуль, останется только сила натяжения одного из концов веревки (то есть F). Очевидно, что сумма длин  $\Delta l_i$  равна длине веревки L; величина  $\Delta l_i \cos \alpha_i = \Delta h_i$  есть разность высот концов выделенного участка, поэтому сумма этин величин равна h. Таким образом, после суммирования получим

$$ma = F - \frac{h}{L}mg.$$

Откуда находим ускорение

$$a = \frac{F}{m} - \frac{h}{L}g.$$

Данная задача может быть также легко решена с использованием энергетического подхода. Пусть за время  $\Delta t$  веревка сместилась на расстояние  $\Delta x$ , тогда сила F совершила работу  $A = F\Delta x$ , которая пошла на увеличение кинетической  $\Delta E_{\text{кин.}} = \Delta (\frac{mv^2}{2}) = mv\Delta v$  и

потенциальной энергии  $\Delta E_{nom.} = m \frac{\Delta x}{L} gh$  веревки.

Таким образом,

$$F\Delta x = mv\Delta v + m\frac{\Delta x}{L}gh.$$

Разделим это уравнение на  $\Delta t$  ( с учетом  $\frac{\Delta x}{\Delta t} = v, \frac{\Delta v}{\Delta t} = a$ ) и сократим на v, получим

$$F = ma + \frac{h}{L}mg,$$

откуда следует ответ задачи.

10.1. Давление газа в трубке определяется атмосферным давлением и гидростатическим давлением столбика ртути

$$P_0 = P_a + \rho g l; \qquad (1)$$

а по закону Дальтона равно сумме парциальных давлений водяных паров  $P_{\!\scriptscriptstyle Hac.}$ и сухого воздуха  $P_{\!\scriptscriptstyle I}$ 

$$P_0 = P_I + P_{\mu ac} . \tag{2}$$

Так как воды имеется в избытке, то давление водяных паров при любой температуре будет равно давлению насыщенного пара, зависимость которого от температуры представлена в виде графика.

Параметры сухого воздуха подчиняются уравнению состояния, которое мы запишем в виде уравнения Клапейрона:

$$\frac{P_I h}{T} = \frac{P_0 h_0}{T_0}; \quad (3)$$

где  $T_0$  - начальная температура ( $T_0 = 20 + 273 = 293 K$ ), при этой температуре можно пренебречь давлением водяного пара и считать, что давление воздуха равно  $P_0 = 1.2 \cdot 10^5 \, \Pi a$  (расчет по формуле (1)). Тогда из формул (3) и (2) следует

$$h = h_0 \frac{T}{T_0} \cdot \frac{P_0}{P_1} = h_0 \frac{T}{T_0} \cdot \frac{P_0}{P_0 - P_{uac.}} . \tag{4}$$

Используя данные, взятые из графика, не представляет труда рассчитать зависимость высоты столба от температуры. Результаты таких расчетов представлены в таблице и на графике.

| $t(^{0}C)$ | $P_{\scriptscriptstyle{	extit{	extit{Hac}}.}}$ | $P_1$          | h(cM) |
|------------|------------------------------------------------|----------------|-------|
|            | $(10^5 \Pi a)$                                 | $(10^5 \Pi a)$ |       |
|            |                                                |                | N I   |
| 30         | 0.04                                           | 1,16           | 10,7  |
| 40         | 0.08                                           | 1.12           | 11.4  |
| 50         | 0.11                                           | 1.09           | 12.1  |
| 60         | 0.20                                           | 1.00           | 13.6  |
| 70         | 0.32                                           | 0.88           | 15.9  |
| 80         | 0.47                                           | 0.73           | 19.8  |
| 90         | 0.70                                           | 0.50           | 29.7  |



**10.2**. Для решения данной задачи удобно воспользоваться уравнением движения для системы тел: произведение массы системы на ускорение центра масс равно сумме внешних сил, действующих на систему.

В данном случае

$$Ma_c = P - Mg$$
, (1)

где M - масса всей системы, P - ее вес,  $a_c$  - ускорение центра масс. Когда вода (а, следовательно и центр масс) неподвижна, то вес системы  $P_\theta$  равен силе тяжести Mg. Поэтому изменение веса при перекачке воды определяется выражением

$$\Delta P = Ma_c. (2)$$