Computational *Microscopy* of Biomolecular Processes using High Performance Computing Challenges and Perspectives

Divya Nayar

Centre for Computational and Data Sciences, Indian Institute of Technology Kharagpur

A living cell environment: Macromolecular crowding

Representation of a living cell

- Steric interactions
- Water behaves differently
- Dynamics affected

A living cell environment: Macromolecular crowding

Representation of a living cell

Macromolecular crowding needs to be accounted for !

Breakthroughs: Molecular-level understanding

Computational Challenges

- Accurate modelling
- Large system sizes: N~10 million atoms
- Long simulation times needed: ~ 100 μsec

- Large data size generated: ~ 50 TB

Dilute ~ 5X10 atoms

Current understanding

Tera/Petascale

Crowded ~ 10 atoms

For complete understanding

Exascale

- -Efficient parallel simulations
- -GPU acceleration
- -Making MD packages efficient

Molecular dynamics algorithm: Make it efficient!

MD packages (open-source): GROMACS, NAMD, LAMMPS

Benchmark performance of MD simulations

Intel Xeon E5-2690 CPUs, each with eight 2.9GHz cores; System size: ~1 million atoms

GROMACS 5.1.2 package

https://www.nvidia.com/en-us/data-center/gpu-accelerated-applications/gromac

Example: Aggregation of α-synuclein protein-Parkinson's disease Enabled predicting binding free energy to form Amyloid

Parallel MD simulations of dimers using HPC

Next step: Realistic cellular environment Challenges to be addressed!

- Dilute solutions !!
- Only dimers studied
- ~ 2 μsec (Petascale)
- **GROMACS 2016**

Centre for Computational and Data Sciences (CCDS) IIT Kharagpur

(Estd. March, 2017)

- ➤1.3 Peta-Flop Supercomputing facility: National Supercomputing Mission (NSM).
- ➤ IIT Kharagpur: Nodal Centre for the HR-development activities
- > Interdisciplinary Centre
- Faculty working in different HPC application domains: Computational Chemistry/Biology, Material science, Atmospheric Modeling, Computational Fluid Dynamics, Geo-Scientific Computations, Modeling and Mining of Heterogeneous Information Network, Computational Physics, Cryptanalysis, Numerical Mathematics, Computational Mechanics, Non-equilibrium Molecular Dynamics
- ➤ Interdisciplinary teaching for Ph.D./ Master's students

Acknowledgements

Prof. Nico van der Vegt: Technische Universitaet (TU) Darmstadt, Germany

Prof. Wim Briels: University of Twente, Netherlands

Dr. Ioana M. Ilie: University of Zurich

Dr. Wouter K. den Otter: University of Twente, Netherlands

Computational facility: Lichtenberg HPC Cluster, TU Darmstadt

Organizers of SCEC 2018

Thank you for your attention !

Example 1: Parallel MD simulations protocol

Polymer in aqueous urea solution

Big question: How do cosolvents protect proteins in the cell under extreme conditions?

Polymer System	System size (atoms)	No. of parallel simulations	Total simulation time per concentration	Total CPU time (core-hours)	Wall clock time per run of 20 ns (hrs)	CPU memory per core
PNiPAM	26000	1800	4 µs	648000	9	200 MB
PDEA	72000	2000	4 µs	3456000	20	400 MB
Total		3800	8 µs	~4.1 million		

MD package: GROMACS 4.6.7 (MPI enabled, 64-bit)

Hardware: Intel(R) Xeon(R) CPU E5-4650 @ 2.70GHz

- Particle Mesh Ewald: electrostatics

- Domain decomposition

CPU accelerator: avx2

http://www.ks.uiuc.edu/Training/Workshop/Bremen/lectures/day1/Day1b_MD_intro.key.pdf

Molecular dynamics (MD) simulations...

(open-source): GROMACS, NAMD, LAMMPS

Parallelization schemes:

- -MPI
- -MPI+OpenMP multi-threading

A living cell: Crowded environment!

Microscope

Our Computational *Microscope:* Molecular dynamics simulations

Molecular simulations

Elucidating molecular mechanisms

High Performance Computing

Molecular dynamics algorithm: Make it efficient!

MD packages (open-source): GROMACS, NAMD, LAMMPS

Parallelization schemes: MPI, MPI+OpenMP multi-threading

Other breakthroughs: Molecular-level understanding

