数学试题(七)参考答案

12.
$$-\frac{1}{2}$$
 13.4 14. $2\sqrt{2} + 4\sqrt{5}$

14.长方体 $ABCD - A_1B_1C_1D_1$ 中,AB = AD = 2,点M为 AA_1 的中点,且 $MB \perp MC_1$,如图所示:

设 $AA_1 = 2x$,由于点M为 AA_1 的中点,则AM = x, $AC = 2\sqrt{2}$,

由于 $MB \perp MC_1$,利用勾股定理 $MB^2 + MC_1^2 = BC_1^2$,

即
$$(4+x^2)+\left[x^2+\left(2\sqrt{2}\right)^2\right]=4+4x^2$$
,解得 $x=2$,故 $AA_1=4$,

设N为平面 MBC_1 与棱 A_1D_1 的交点,

平面 $MBC_1 \cap$ 平面 $BB_1C_1C = BC_1$,

则平面 MBC_1 被长方体 $ABCD-A_1B_1C_1D_1$ 截得的平面图形为四边形 $BMNC_1$,

连接 AD_1 ,由于平面 $AA_1D_1D//$ 平面 BB_1C_1C ,平面 $MBC_1\cap$ 平面 $AA_1D_1D=MN$,

 $:: M 为 A A_1$ 的中点, $:: N 为 A_1 D_1$ 的中点,

所以,
$$BM = 2\sqrt{2}$$
, $MN = \sqrt{5}$, $C_1N = \sqrt{5}$, $BC_1 = 2\sqrt{5}$,

因此,截面图形 $BMNC_1$ 的周长为 $2\sqrt{2} + \sqrt{5} \times 2 + 2\sqrt{5} = 2\sqrt{2} + 4\sqrt{5}$.

15. (1) 若
$$\vec{a} \perp \vec{b}$$
, 则 $\vec{a} \cdot \vec{b} = 0$, 即 8 – $m = 0$, $m = 8$.

(2) 若 \vec{a} 与 \vec{b} 的夹角为锐角,则 $\vec{a} \cdot \vec{b} > 0$ 且 $\vec{a} \cdot \vec{b}$ 不共线,

由
$$\vec{a} \cdot \vec{b} > 0$$
,得 8 – $m > 0$,即 $m < 8$,

假设 \vec{a} 、 \vec{b} 共线,则-4=2m,即m=-2,

所以当 \vec{a} 与 \vec{b} 的夹角为锐角时,m < 8且 $m \neq -2$.

16. (1) 因为
$$\sin\alpha + \cos\alpha = \frac{2\sqrt{10}}{5}$$
,所以 $(\sin\alpha + \cos\alpha)^2 = \left(\frac{2\sqrt{10}}{5}\right)^2$,化简得 $2\sin\alpha\cos\alpha = \frac{3}{5}$,

因为 $\alpha \in \left(0, \frac{\pi}{4}\right)$, 所以 $\cos \alpha > \sin \alpha$,

所以
$$\cos \alpha - \sin \alpha = \sqrt{(\cos \alpha + \sin \alpha)^2 - 4 \sin \alpha \cos \alpha} = \sqrt{\left(\frac{2\sqrt{10}}{5}\right)^2 - \frac{6}{5}} = \frac{\sqrt{10}}{5}$$
,

所以
$$\cos \alpha = \frac{\frac{2\sqrt{10}}{5} + \frac{\sqrt{10}}{5}}{2} = \frac{3\sqrt{10}}{10}, \quad \sin \alpha = \frac{\frac{2\sqrt{10}}{5} - \frac{\sqrt{10}}{5}}{5} = \frac{\sqrt{10}}{10},$$

所以
$$\tan \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{\frac{\sqrt{10}}{10}}{\frac{3\sqrt{10}}{10}} = \frac{1}{3}.$$

(2) 由 (1) 知,
$$\tan \alpha = \frac{1}{3}$$
,所以 $\tan(2\alpha + \beta) = \tan[(\alpha + \beta) + \alpha] = \frac{\tan(\alpha + \beta) + \tan\alpha}{1 - \tan(\alpha + \beta)\tan\alpha}$

所以
$$-\frac{1}{2} = \frac{\tan(\alpha+\beta)+\frac{1}{3}}{1-\frac{1}{2}\tan(\alpha+\beta)}$$
,解得 $\tan(\alpha+\beta) = -1$,

因为
$$0 < \beta < \pi$$
, $0 < \alpha < \frac{\pi}{2}$, 所以 $0 < \alpha + \beta < \frac{3\pi}{2}$, 所以 $\alpha + \beta = \frac{3\pi}{4}$.

- 17. (1) 如图, 连接BM交AF于点O, 连接OE,
- ::底面ABCD为正方形,F为BC中点,M为AD中点,
- $∴ AM//BF \bot AM = BF$,
- :四边形ABFM为平行四边形,:0为BM中点.
- 又: E为PB中点, :: OE//PM,
- 又OE ⊂平面AEF, PM ⊄平面AEF, :: PM//平面AEF.
- (2):底面*ABCD*为正方形, :: *AB* ⊥ *BC*,
- $: PA \perp$ 平面ABCD, $BC \subset$ 平面ABCD, $: PA \perp BC$,
- $:: AE \subset \text{\text{π}} mPAB, :: BC \to AE,$
- :: PA = AB = 4,且E为PB中点,则AE \perp PB,
- 又: $BC \cap PB = B$, BC, $PB \subset$ 平面PBC,
- ∴ AE ⊥平面PBC.
- 18. (1) $\pm 2a\sin B = \sqrt{3}b$,
- 利用正弦定理得: $2\sin A \sin B = \sqrt{3} \sin B$,

$$\because \sin B \neq 0$$
, $\therefore \sin A = \frac{\sqrt{3}}{2}$,又 A 为锐角,则 $A = \frac{\pi}{3}$;

(2) 由余弦定理得:
$$a^2 = b^2 + c^2 - 2bc \cdot \cos A$$
,

$$\therefore bc = 17$$
,又 $\sin A = \frac{\sqrt{3}}{2}$,则 $S_{\triangle ABC} = \frac{1}{2}bc\sin A = \frac{17\sqrt{3}}{4}$.

19. (1) 以D为原点, \overrightarrow{DA} , \overrightarrow{DC} , \overrightarrow{DP} 分别为x轴、y轴、z轴正方向建立空间直角坐标系,设PD=DC=1,则D(0,0,0),A(1,0,0),B(1,1,0),C(0,1,0),P(0,0,1)

连接
$$AC$$
,交 BD 于 O ,连接 OE ,则 O 是 AC 的中点,则 $O\left(\frac{1}{2},\frac{1}{2},0\right)$,

又E是PC的中点,
$$: E\left(0,\frac{1}{2},\frac{1}{2}\right), \ \overrightarrow{OE} = \left(-\frac{1}{2},0,\frac{1}{2}\right), \ \overrightarrow{PA} = (1,0,-1),$$

所以 $\overrightarrow{PA} = -2\overrightarrow{OE}$,所以PA//OE

又OE ⊂ 平面EDB, PA ⊄ 平面EDB,

- ∴PA//平面EDB
- (2) 由题意知平面PBD的一个法向量是 $\overrightarrow{AC} = (-1,1,0)$;

平面
$$PBC$$
的一个法向量是 $\overrightarrow{DE} = \left(0, \frac{1}{2}, \frac{1}{2}\right)$

$$\mathbb{N} \cos(\overrightarrow{AC}, \overrightarrow{DE}) = \frac{\overrightarrow{AC} \cdot \overrightarrow{DE}}{|\overrightarrow{AC}| \cdot |\overrightarrow{DE}|} = \frac{(-1,1,0) \cdot \left(0,\frac{1}{2},\frac{1}{2}\right)}{\sqrt{(-1)^2 + 1^2 + 0^2} \cdot \sqrt{0^2 + \left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^2}} = \frac{1}{2}$$

所以,
$$\langle \overrightarrow{AC}, \overrightarrow{DE} \rangle = \frac{\pi}{3}$$

即二面角C - PB - D的大小为 $\frac{\pi}{3}$.

