SETS

1. INTRODUCTION:

What is an object?

In Mathematical language, everything in this universe, whether living or non-living, is called an object.

What is called a well-defined collection of objects?

If we consider a collection of objects given in such a way that it is possible to tell beyond doubt whether a given object is in the collection under consideration or not, then such a collection of objects is called a well-defined collection of objects.

2. SET

"A well-defined collection of objects is called a set."

3. ELEMENT

"Each object in a set is called its element."

Examples:

- (i) The set of vowels in English alphabet.
- (ii) The set of planets in our Solar System.
- (iii) The set of days in a week.
- (iv) The set of Chief Ministers in India.
- (v) The set of natural numbers.

4. NOTATION

Capital letters such as A, B, C, D, ... etc. are used to denote sets while small letters such as a, b, c, ... are used to denote elements.

Examples:

(i)
$$A = \{a, e, i, o, u\}$$

(ii)
$$B = \{2, 4, 6, 8, 10, \dots\}$$

(iii)
$$C = \{1, 2, 3, 4, 5, ...\}$$

5. SOME STANDARD NOTATIONS

- (i) N =The set of all natural numbers.
- (ii) Z =The set of all Integers.
- (iii) Q =The set of all Rational numbers.
- (iv) R =The set of all Real numbers.
- (v) Z_+ = The set of all positive Integers.

- (vi) Q_+ = The set of all positive Rational numbers.
- (vii) R_{+} = The set of all positive Real numbers.

6. NOTATION OF BELONGINGNESS OF AN ELEMENT

If x is an element of a set A, then we write it in symbolic form as $x \in A$, which is read as x belongs to A.

And if x does not belong to A, then we write $x \notin A$

Example:

If
$$A = \{a, e, i, o, u\}$$
, then we may write $a \in A$, $e \in A$, $i \in A$, $o \in A$, $u \in A$ and $b \notin A$, $c \notin A$, $d \notin A$, $f \notin A$ etc.

7. METHOD OF DESCRIBING A SET

There are two methods of describing a set:

- (i) Tabular Form or Roster Form
- (ii) Set builder Form or Rule Form

8. TABULAR FORM/ROSTER FORM

In Tabular Form,

- (i) All the elements of a set are listed, the elements are separated by commas and are enclosed within braces { }.
- (ii) Identical elements of the set are written only once.
- (iii) The order of the element within the braces is immaterial.

Examples:

- (i) If A is the set of vowels in English alphabet, then we write it in Roster Form as $A = \{a, e, i, o, u\}$
- (ii) If B is the set of Prime numbers less than 20, then we write $B = \{2, 3, 5, 7, 11, 13, 17, 19\}$
- (iii) If C is the set of letters of the word "MISSISSIPPI", then we write $C = \{M, I, S. P\}$

9. <u>SET BUILDER FORM/RULE FORM</u>

This form is used in those cases, where all the elements of a set, possess a single common property, which is not possessed by any element outside the set.

Examples:

(i) The set builder form of the $A = \{a, e, i, o, u\}$ is

$$A = \{x : x \text{ is a vowel in English alphabet}\}$$

This is read as

" A is the set of all x such that x is a vowel of English alphabet"

In the above representation, the braces { } stands for " the set of all " and the colon ': ' stands for "such that ".

(ii) The set builder form of the $B = \{4, 5, 6, 7, 8, 9\}$ is

$$B = \{y : y \in N \text{ and } 4 \le y \le 9 \}$$

(iii) The set builder form of the $C = \{2, 4, 6, 8, 10\}$ is

$$C = \{z : z = 2n, n \in N \ and \ n \le 5\}$$

(iv) The set builder form of the $D = \{2, 4, 8, 16, 32, 64\}$ is

$$D = \{x : x = 2^n, n \in N \text{ and } n \le 6\}$$

(v) The set builder form of the $H = \{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}, \frac{6}{7}\}$ is

$$H = \left\{ x : x = \frac{n}{n+1}, n \in \mathbb{N} \text{ and } n \le 6 \right\}$$