Predicting Uber Users Churn

Supervised Learning Case Study

Demo Data Target Cities

- Winterfell/Wintertown
 - Cold Climate
 - Under Monarchical system of gov.
 - Small population (Small city)
- King's Landing
 - Warm Climate
 - Many wealthy potential customers
 - Under Monarchical system of gov.
 - Large population (Urban center)
 - Port City
- Astapor
 - Warm Climate
 - Many wealthy potential customers
 - Ruled by a council of Slave Masters
 - Port City

How did we determine the target?

- 50,000 users with 12 features about each user (Date joined, Last active date, etc...)
- 'Churn' was defined as any client that had been inactive for greater than 30 days (data was uploaded 7/1/2014).
- This was seen as good indicator that we were losing business to a competitor
- This analysis was conducted to determine how to predict, and minimize this effect.
- Factors not considered: Political upheaval, Natural Disasters, and Dragons.

Models Considered:

- Logistic Regression:
 - Accuracy: 71.4%, Precision: 73.5%, Recall: 84.9%
 - Dropped 'Weekday pct', (p value 0.9)
 - Accuracy: 71.3%, Precision: 73.4%, Recall: 85.0%

- Random Forest
 - Initial out of bag (OOB) score: 0.768

Logistic Regression: Accuracy: 71.4%, Precision: 73.5%, Recall: 84.9%

Logit Regression Results							
Dep. Variable:		1 No. Ob	t Df Residuals:		39683		
Model:	Log	it Df Res			39671		
Method: Date: F	M	LE Df Mod			11		
	ri, 24 Apr 20	0 Pseudo R-squ.:		0.1614			
Time:	14:52:	03 Log-Li	3		-22046.		
converged:	Tr	ue LL-Nul			-26288.	3.	
Covariance Type:	nonrobu	st LLR p-	value:	0.000			
	coef	std err	Z	P> z	[0.025	0.975]	
avg dist	0.0358	0.002	15.455	0.000	0.031	0.040	
avg rating by driver	0.1400	0.024	5.954	0.000	0.094	0.186	D
avg rating of driver	0.0497	0.019	2.570	0.010	0.012	0.088	h
avg surge	0.1752	0.084	2.086	0.037	0.011	0.340	
phone	1.1021	0.028	39.899	0.000	1.048	1.156	
surge pct	-0.0035	0.001	-3.694	0.000	-0.005	-0.002	
trips in first 30 days	-0.1214	0.004	-31.296	0.000	-0.129	-0.114	
luxury car user	-0.8888	0.024	-37.046	0.000	-0.936	-0.842	
weekday_pct	3.983e-05	0.000	0.124	0.902	-0.001	0.001	
dayssince	-0.0091	0.001	-10.886	0.000	-0.011	-0.007	
Winterfell	1.1911	0.030	39.224	0.000	1.132	1.251	
Astapor	1.7105	0.033	51.447	0.000	1.645	1.776	

Final Random Forest Model - Training

- Number of Trees = 250
- Out of Bag Score (OOB) = 0.7710937290003494

Final Random Forest Model - Feature Importance

Final Random Forest Model - Test

- Final Accuracy Score = 0.943
- Based on this score, our model is ready for deployment.

Action Items:

- Use our random forest model to predict users who are at risk of churning
- Target these users for promotional offers:
 - High average Distance
 - Long term users
 - High weekday Surge users
- Create a cost benefit matrix to determine the appropriate dollar-amount for promotions
- Update the model with new data added over the next 30 days and re-assess.
- Our firm is currently designing and training and implementing a Neural network For better prediction ability

