APPLIED STATISTICS

Project Report

By Sachin Janwalkar A20479201

PART 1]

BIO ~ all predictor

Regression Co-efficient:

```
Residuals:
```

```
Min 1Q Median 3Q Max -673.61 -148.68 -29.16 160.87 1012.18
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept)
             2.910e+03 3.413e+03
                                    0.853 0.40062
H2S
             4.290e-01
                       2.998e+00
                                    0.143 0.88717
SAL
            -2.398e+01
                        2.617e+01
                                   -0.916
                                           0.36678
Eh7
             2.553e+00
                        2.012e+00
                                    1.269
                                           0.21430
рН
             2.425e+02
                       3.342e+02
                                    0.726
                                           0.47361
BUF
            -6.902e+00 1.238e+02
                                   -0.056
                                           0.95592
Р
            -1.702e+00
                        2.640e+00
                                   -0.645
                                           0.52409
                                   -2.170
            -1.047e+00 4.824e-01
                                           0.03808 *
Κ
            -1.161e-01
                        1.256e-01
                                   -0.924
                                           0.36293
Ca
            -2.802e-01
                        2.745e-01
                                   -1.021
                                           0.31540
Μg
             4.451e-03
                        2.472e-02
Na
                                    0.180
                                           0.85834
                        5.373e+00
                                   -0.312
            -1.679e+00
                                           0.75687
Mn
            -1.879e+01
                        2.178e+01
                                   -0.863
Zn
                                           0.39503
                        1.121e+02
                                           0.00441 **
Cu
             3.452e+02
                                    3.080
NH4
            -2.705e+00
                        3.238e+00
                                   -0.835
                                           0.41007
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 350.8 on 30 degrees of freedom Multiple R-squared: 0.8074, Adjusted R-squared: 0.7175

F-statistic: 8.983 on 14 and 30 DF, p-value: 3.066e-07

Correlation Matrix:

As It can be seen from the correlation diagram features that have dark blue color relation are +ve correlated and feature that have red relation have –ve correlation.

Positive correlation: (PH, Ca), (NH4, BUF), (Mg, K), (Na, K), (Cu, K), (NH4, Zu)

Negative correlation: (BUF, pH),(Ca, BUF),(Zn, pH),(NH4, pH),(Zn, Ca)

Collinearity Diagnostic Test:

$$\sum_{j=1}^{p} \frac{1}{\lambda_j} \cdot = 195.9633$$

As the sum of reciprocals of all the Eigen values is 195.9633 > 5 x number of predictor, we can conclude there is collinearity.

Condition Number = 22.7752

Sets of Collinearity =1, Since only 1 kappa value is greater than 15.

PART II]

Principal components:

```
PC4
                                               PC5
                                                            PC6
           PC2
                       PC3
                                                                       PC7
                                                                                    PC8
H2S
    0.02672554 \ -0.15586279 \ -0.70530467 \ -0.027950823 \ -0.422167299
                                                                0.03574202
                                                                            0.202925606
                            0.18321795 -0.437897191 -0.056066851
    0.04122741 -0.63092985
                                                                0.30643287
                                                                            0.363810937
Eh7
    0.24085934 -0.40186676 -0.36819105
                                      0.178944154
                                                    0.572998009
                                                                0.19243134 -0.426992231
    0.01837398 \quad 0.23545040 \ -0.01387923 \ -0.138260733
                                                    0.203499842 -0.01688784
рΗ
                                                                            0.031579288
BUF -0.04745626 -0.16677117 0.10501717
                                      0.218508089 -0.061190274 0.21251072
                                                                            0.002665994
   -0.14535308 0.18956864 -0.17349501 -0.725112928 -0.067071518 0.21063401 -0.510060224
Κ
    0.48707657
                0.03883496 -0.04258141 0.048568266 -0.001934436 -0.06122624 -0.117534397
Ca
   -0.13508571
                0.13359714
                           0.11657897 -0.263051611
                                                    0.452305646 -0.09570234
                                                                            0.197711009
                            0.03312437 -0.098504118
    0.48379987
                0.06861396
                                                    0.040202780 -0.07293102
    0.46995031 -0.04714494
                           0.04561329 - 0.245085248 - 0.028029378 - 0.28489235
Na
                                                                            0.114997084
   -0.21527695
                0.04742859 - 0.47904626 - 0.080870019 0.340782917 - 0.24312766
                                                                            0.413824257
Mn
    0.006378997
                                                    0.047089167 -0.10499162
                                                                            0.061329385
    0.37974883
                0.40817617 -0.06242147 -0.029045631
                                                    0.002730755 0.49696944
Cu
                                                                            0.289228446
NH4 -0.07439056
                0.04352488
                           0.08003412
                                       0.050845368
                                                    0.322405717
                                                                0.39039337
                                                                            0.232183967
H2S 0.27867726 0.29241706 0.22322470 -0.10786116
                                                   0.01905068 0.006688475
                                                                           0.07878029
SAL -0.11606110 -0.27067736  0.01663810 -0.08203930
                                                   0.17457138 -0.090867881 -0.08498414
Eh7 -0.12774893 -0.01975786 0.15668966 0.09153737 -0.07478946 -0.036536831
                                                                          0.01917707
    0.13125486 0.11465145
                           0.15136272  0.09312251  0.31495563  0.028210895  -0.75232611
BUF
    0.07797792 0.11748936 0.11065350 -0.41408037 -0.39741388
                                                              0.354280904 -0.47142315
    0.066140660 -0.01294435
K
    0.45938257 -0.27591230 -0.43956686 -0.43059125
                                                   0.11195341 -0.239649921 -0.06012598
    0.18329077
                0.10147464
                           0.20755473 -0.47973932
                                                  -0.29141259
                                                              0.081106985
                                                                           0.31129031
Ca
   -0.13259825
                0.10041103
                           0.07520757 -0.05737963
                                                   0.40542195
                                                              0.696024965
                                                                           0.20074705
Na -0.36772703 0.48910013 -0.14423626
                                       0.03004754 -0.35268111 -0.278180232 -0.14415126
Mn -0.13696032 -0.24239488 -0.41780726 0.06523264 -0.07186418 0.173930934 -0.13794549
Zn
   -0.32191001 -0.19624129
                            0.51278582 -0.36510774
                                                   0.27095341 -0.389315602 -0.03472212
    0.06755888 -0.29388020
                           0.17480963
                                       0.30813394 -0.36931180 -0.011693154
                                                                           0.02882549
NH4 0.25758384 0.53272898 -0.14679146 0.07929260 0.30335031 -0.227326602
                                                                           0.12077339
```

Screen Plot explaining variance explained by each PC.

we will only consider first 11 PC's as the proportion of variance explained from the 12th PC is very less.

Same calculation for considering number of PC is done with calculation of R^2.

Calculation of R^2 for theta:

	ncomp <db ></db >	R^2 <dbl></dbl>	theta1 <dbl></dbl>	theta2 <dbl></dbl>	theta3 <dbl></dbl>	theta4 <dbl></dbl>	theta5 <dbl></dbl>	
	1	0.01646567	-0.001786959	-0.002756603	-0.01610466	-0.001228546	0.003173084	
	2	0.03121064	-0.016959987	-0.064025900	-0.05561326	0.021559869	-0.012890510	
	3	0.03308012	0.009262266	-0.071701982	-0.04243263	0.022366518	-0.017012672	
	4	0.03563041	0.010526815	-0.043512367	-0.05262090	0.030262064	-0.029854529	
	5	0.04025811	-0.030338868	-0.047247518	0.00288693	0.049511270	-0.035559044	
	6	0.15134276	-0.054978264	-0.163708725	-0.08034846	0.051523165	-0.135887682	
	7	0.15155086	-0.050260078	-0.155180303	-0.09026896	0.052246404	-0.135811287	
	8	0.48688213	0.221029255	-0.189278799	-0.17740628	0.158305317	-0.023278295	
	9	0.50162169	0.123408518	-0.098810933	-0.16657929	0.118339637	-0.059795197	
	10	0.66545722	0.303199763	-0.046087540	0.03814262	0.231844861	0.064396861	
	ncomp <dbl></dbl>	R^2 <dbl></dbl>	theta1 <dbl></dbl>	theta2 <dbl></dbl>	theta3 <dbl></dbl>	theta4 <dbl></dbl>	theta5 <dbl></dbl>	
	11	0.79603135	0.070516604	-0.115219393	0.12325211	0.248157835	-0.416042969	
	12	0.80494749	0.059245238	-0.186687288	0.15076271	0.099511259	-0.223956517	
	13	0.80519927	0.058557964	-0.178101673	0.15392468	0.096799519	-0.256204999	
	14	0.80740491	0.019949754	-0.135138003	0.14294802	0.458173966	-0.026208294	

We will consider first 11 PC as after that there is barely any change/ increase in R^2 value by adding another Principal component.

Computed Regression co-efficient from result of PC regression:

Calculate alpha: we need to get PC's coefficients i.e. alpha by regression Y \sim PC1+.....PC14

Calculate theta: multiplying the eigen vectors with alphas

Calculate betas: theta * (Sy/Sj)

Where Sy = standard deviation of Response variable

Si = Standard deviation of all the predictor variables where i=1,2...p

For Beta_0 Intercept co-effcicient

 $Beta_0 = 2909.934$

Beta_0 = y_bar - summation(betas * x_bar)

Where y_bar is mean of Y

Beats are the coefficients that we got from above

X_bar is the mean of each predictor variable

Beta Coefficients obtained:

```
[,1]
H2S
     0.428999215
SAL -23.980715733
Eh7
     2.553223782
   242.527810058
pН
    -6.902267789
BUF
     -1.701510693
     -1.046591019
K
    -0.116070623
Ca
    -0.280228359
Mg
    0.004451049
Na
Mn
    -1.678759799
Zn -18.794521173
Cu 345.162813094
NH4 -2.705172439
```

PART III]

Stepwise Regression

Model with 1 predictor:

BIO ~SAL

```
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
                       820.68 1.895
                                      0.0649 .
(Intercept) 1554.91
SAL
             -18.31
                        26.92 -0.680
                                      0.5001
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Residual standard error: 664.1 on 43 degrees of freedom
Multiple R-squared: 0.01064, Adjusted R-squared: -0.01236
F-statistic: 0.4626 on 1 and 43 DF, p-value: 0.5001
BIO ~ pH
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
                         243.44 -3.636 0.000735 ***
            -885.21
(Intercept)
                          51.09 8.021 4.43e-10 ***
              409.80
рН
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 422.6 on 43 degrees of freedom
Multiple R-squared: 0.5994,
                               Adiusted R-squared:
F-statistic: 64.33 on 1 and 43 DF, p-value: 4.433e-10
BIO ~ K
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 1362.8413
                       281.4781 4.842 1.7e-05 ***
             -0.4539
                         0.3311 -1.371
                                          0.178
K
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 653.6 on 43 degrees of freedom
Multiple R-squared: 0.04188, Adjusted R-squared: 0.0196
```

F-statistic: 1.88 on 1 and 43 DF, p-value: 0.1775

BIO ~ Na

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1433.86803 252.45876 5.680 1.07e-06 ***
Na -0.02609 0.01407 -1.854 0.0706 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 642.5 on 43 degrees of freedom
Multiple R-squared: 0.07402, Adjusted R-squared: 0.05249
F-statistic: 3.437 on 1 and 43 DF, p-value: 0.0706
```

BIO ~ Zn

Coefficients:

From all the models with 1 Predictor the model BIO \sim PH has the lowest p-value, means it's the most statistically significant, Also it's R 2 value is highest among all the significant models with 1 predictors. So we will include PH into our model.

Model with 2 predictors:

BIO ~ PH + 2ND Feature

BIO ~ pH + SAL

```
Coefficients:
```

Residual standard error: 425.5 on 42 degrees of freedom Multiple R-squared: 0.6034, Adjusted R-squared: 0.5845 F-statistic: 31.95 on 2 and 42 DF, p-value: 3.677e-09

BIO~pH+K

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) -506.9774 279.7714 -1.812 0.0771 .
pH 412.0395 48.4975 8.496 1.15e-10 ***
K -0.4871 0.2032 -2.397 0.0211 *
---
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 401.1 on 42 degrees of freedom Multiple R-squared: 0.6476, Adjusted R-squared: 0.6308 F-statistic: 38.59 on 2 and 42 DF, p-value: 3.079e-10

BIO ~ Ph + Na

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) -4.757e+02 2.735e+02 -1.739 0.0893 .
pH 4.049e+02 4.777e+01 8.477 1.22e-10 ***
Na -2.333e-02 8.655e-03 -2.695 0.0101 *
---
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 394.9 on 42 degrees of freedom Multiple R-squared: 0.6584, Adjusted R-squared: 0.6422 F-statistic: 40.48 on 2 and 42 DF, p-value: 1.596e-10

BIO ~ Ph + Zn

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) -450.52
                        506.93 -0.889
                                         0.379
             357.62
                         73.90 4.839 1.79e-05 ***
pН
                         11.13 -0.978
Zn
             -10.88
                                         0.334
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 422.8 on 42 degrees of freedom
Multiple R-squared: 0.6083,
                             Adjusted R-squared: 0.5896
F-statistic: 32.61 on 2 and 42 DF, p-value: 2.835e-09
```

The model with PH + Na and PH+ K are both statistically significant, but the p-value of predictor Na is the smallest and it has the largest R^2 (means this model can capture the variation in the i/p data better). So we will consider model with 2nd feature as Na

BIO ~ PH + Na

Model 3 predictor:

```
BIO ~ PH + Na + 3rd feature
```

BIO ~ PH + Na +SAL

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) -3.443e+02 5.570e+02 -0.618
                                          0.5399
            4.043e+02 4.836e+01
                                  8.362 2.12e-10 ***
Hd
           -2.294e-02 8.867e-03 -2.587
                                          0.0133 *
Na
           -4.462e+00 1.642e+01 -0.272
                                          0.7871
SAL
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 399.3 on 41 degrees of freedom
Multiple R-squared: 0.659, Adjusted R-squared: 0.6341
F-statistic: 26.42 on 3 and 41 DF, p-value: 1.125e-09
```

BIO ~ PH + Na + K

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) -447.90979 282.01696 -1.588
                               8.411 1.82e-10 ***
           406.82621
                     48.36933
                       0.01435 -1.242
Na
            -0.01783
                                         0.221
            -0.16002
                        0.33180 -0.482
K
                                         0.632
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 398.5 on 41 degrees of freedom Multiple R-squared: 0.6604, Adjusted R-squared:

F-statistic: 26.57 on 3 and 41 DF, p-value: 1.04e-09

$BIO \sim PH + Na + Zn$

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.954e+02 4.865e+02 -0.402
                                         0.6900
           3.698e+02 6.960e+01 5.313 4.07e-06 ***
           -2.253e-02 8.783e-03 -2.565 0.0141 *
Na
           -7.368e+00 1.055e+01 -0.699
Zn
                                         0.4888
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 397.3 on 41 degrees of freedom Multiple R-squared: 0.6625, Adjusted R-squared: F-statistic: 26.82 on 3 and 41 DF, p-value: 9.177e-10

In all the models with 3 features the 3rd feature is not statistically significant, Also the R^2 of the model doesn't increases by adding 3rd predictor. Hence we will stop the stepwise regression with addition of 2 predictors as our final model

Final model: BIO ~ pH + Na

Subset Selection:

	rsq <dbl></dbl>	adjr2 <dbl></dbl>	cp <dbl></dbl>	rss <dbl></dbl>	SAL <chr></chr>	pH <chr></chr>	K <chr></chr>	Na <chr></chr>	Zn <chr></chr>
1(1)	0.59936417	0.590047054	7.420574	7680575		ste .			
1(2)	0.38988515	0.375696433	32.738066	11696489					¥e
1(3)	0.07402181	0.052487434	70.913094	17751894				¥e	
1(4)	0.04187960	0.019597726	74.797780	18368091			¥e		
1(5)	0.01064359	-0.012364694	78.572942	18966915	¥¢				
2(1)	0.65843269	0.642167585	2.281592	6548174		¥e		¥	
2(2)	0.64757591	0.630793808	3.593736	6756309		¥r	¥e		
2(3)	0.60828040	0.589627082	8.342965	7509642		Ý			¥
2(4)	0.60339774	0.584511913	8.933080	7603247	ye.	¥e			
2(5)	0.55261682	0.531312863	15.070426	8576766	¥r				¥
1.10 (1.5									
	rsq <dbl></dbl>	adjr2 <dbl></dbl>	cp <dbl></dbl>	rss <dbl></dbl>	SAL <chr></chr>	pH <chr></chr>	K <chr></chr>	Na <chr></chr>	Zn <chr></chr>
2(6)	0.43002995	0.402888523	29.886192	10926875				¥r	¥
2(7)	0.41520259	0.387355091	31.678218	11211130			¥		*
2(8)	0.07759940	0.033675562	72.480709	17683308	Ye.			¥r	
2(9)	0.07433836	0.030259235	72.874836	17745825			¥ř.	W	
2(10)	0.05341717	0.008341792	75.403358	18146905	Ye		¥r		

By looking at the summary table Adj_R^2 and Cp values, we can narrow it down to 2 models

BIO~ pH + Na & BIO ~ pH + K as their Cp values are close to the the number of features+1 i.e. (p+1) and they have highest Adj_R^2

To break the tie, we use VIF

VIF:

Since VIF values of features pH and Na are higher that pH+K, higher VIF values indicate collinearity also Cp value of model with pH+ K is equal to 3 that equals p+1 but on the other hand Cp value of pH and Na is closer to 2.

Hence we can proceed with model with 2 features pH +k as there is barely any difference in the R^2 value.

Final model: BIO~ PH + k

The model selected in Stepwise and best subset regression are different as in stepwise there is a possibility that we may not get the most optimum model as it does not verify every possibility of subset as subset selection method does. Also the order in which the features are added also matters in computing the final result in step wise regression.