Machine Learning System Design

5 questions

1.

You are working on a spam classification system using regularized logistic regression. "Spam" is a positive class (y = 1) and "not spam" is the negative class (y = 0). You have trained your classifier and there are m = 1000 examples in the cross-validation set. The chart of predicted class vs. actual class is:

	Actual Class: 1	Actual Class: 0
Predicted Class: 1	85	890
Predicted Class: 0	15	10

For reference:

- Accuracy = (true positives + true negatives) / (total examples)
- Precision = (true positives) / (true positives + false positives)
- Recall = (true positives) / (true positives + false negatives)
- F_1 score = (2 * precision * recall) / (precision + recall)

What is the classifier's accuracy (as a value from 0 to 1)?

Enter your answer in the box below. If necessary, provide at least two values after the decimal point.

0.47

2.

Suppose a massive dataset is available for training a learning algorithm. Training on a lot of data is likely to give good performance when two of the following conditions hold true.

Which are the two?

The features $oldsymbol{x}$ contain sufficient
information to predict \boldsymbol{y} accurately. (For example, one
way to verify this is if a human expert on the domain
can confidently predict y when given only x).
We train a learning algorithm with a
small number of parameters (that is thus unlikely to
overfit).
We train a learning algorithm with a
large number of parameters (that is able to
learn/represent fairly complex functions).
We train a model that does not use regularization.

3. Suppose you have trained a logistic regression classifier which is outputing $h_{\theta}(x)$.

Currently, you predict 1 if $h_{\theta}(x) \geq \text{threshold}$, and predict 0 if $h_{\theta}(x) < \text{threshold}$, where currently the threshold is set to 0.5.

Suppose you **increase** the threshold to 0.7. Which of the following are true? Check all that apply.

	The classifier is likely to have unchanged precision and recall, but
	higher accuracy.
	The classifier is likely to now have lower precision.
	The classifier is likely to have unchanged precision and recall, but
	lower accuracy.
	The classifier is likely to now have lower recall.
4.	
	se you are working on a spam classifier, where spam
emails	are positive examples ($y=1$) and non-spam emails are
negativ	ve examples ($y=0$). You have a training set of emails
in whic	th 99% of the emails are non-spam and the other 1% is
spam.	Which of the following statements are true? Check all
that ap	pply.
	If you always predict non-spam (output
	y=0), your classifier will have 99% accuracy on the
	training set, but it will do much worse on the cross
	validation set because it has overfit the training
	data.
	A good classifier should have both a
	high precision and high recall on the cross validation
	set.

	If you always predict non-spam (output
	y=0), your classifier will have an accuracy of
	99%.
	If you always predict non-spam (output
	y=0), your classifier will have 99% accuracy on the
	training set, and it will likely perform similarly on
	the cross validation set.
5. Which	of the following statements are true? Check all that apply.
	Using a very large training set
	makes it unlikely for model to overfit the training
	data.
	If your model is underfitting the
	training set, then obtaining more data is likely to
	help.
	After training a logistic regression
	classifier, you must use 0.5 as your threshold
	for predicting whether an example is positive or
	negative.
	The "error analysis" process of manually
	examining the examples which your algorithm got wrong

developing new features) to improve your algorithm's performance. It is a good idea to spend a lot of time collecting a large amount of data before building your first version of a learning algorithm.	can help suggest what are good steps to take (e.g.,
It is a good idea to spend a lot of time collecting a large amount of data before building	developing new features) to improve your algorithm's
collecting a large amount of data before building	performance.
.	It is a good idea to spend a lot of time
your first version of a learning algorithm.	collecting a large amount of data before building
	your first version of a learning algorithm.
	Submit Quiz

