TALENT COURSE I I LEARNING FROM DATA: BAYESIAN METHODS AND MACHINE LEARNING

Lecture 12: More on priors and Maximum Entropy

Daniel Phillips
Ohio University
TU Darmstadt
ExtreMe Matter Institute

TALENT Course II is possible thanks to funding from the STFC

Thomas Bayes (1701?-1761)

$$\operatorname{pr}(A \mid B, I) = \frac{\operatorname{pr}(B \mid A, I)\operatorname{pr}(A \mid I)}{\operatorname{pr}(B \mid I)}$$

Thomas Bayes (1701?-1761)

http://www.bayesian-inference.com

$$\operatorname{pr}(A \mid B, I) = \frac{\operatorname{pr}(B \mid A, I)\operatorname{pr}(A \mid I)}{\operatorname{pr}(B \mid I)}$$

Thomas Bayes (1701?-1761)

$$\operatorname{pr}(A \mid B, I) = \frac{\operatorname{pr}(B \mid A, I)\operatorname{pr}(A \mid I)}{\operatorname{pr}(B \mid I)}$$

http://www.bayesian-inference.com

$$pr(\text{model} | \text{data}, I) = \frac{pr(\text{data} | \text{model}, I)pr(\text{model} | I)}{pr(\text{data} | I)}$$

Thomas Bayes (1701?-1761)

$$\operatorname{pr}(A \mid B, I) = \frac{\operatorname{pr}(B \mid A, I)\operatorname{pr}(A \mid I)}{\operatorname{pr}(B \mid I)}$$

http://www.bayesian-inference.com

$$pr(\text{model} | \text{data}, I) = \frac{pr(\text{data} | \text{model}, I)pr(\text{model} | I)}{pr(\text{data} | I)}$$

Thomas Bayes (1701?-1761)

http://www.bayesian-inference.com

$$\operatorname{pr}(A \mid B, I) = \frac{\operatorname{pr}(B \mid A, I)\operatorname{pr}(A \mid I)}{\operatorname{pr}(B \mid I)}$$

Likelihood

$$pr(\text{model} | \text{data}, I) = \frac{pr(\text{data} | \text{model}, I)pr(\text{model} | I)}{pr(\text{data} | I)}$$

Thomas Bayes (1701?-1761)

http://www.bayesian-inference.com

$$\operatorname{pr}(A \mid B, I) = \frac{\operatorname{pr}(B \mid A, I)\operatorname{pr}(A \mid I)}{\operatorname{pr}(B \mid I)}$$

Likelihood

Prior

$$pr(\text{model} | \text{data}, I) = \frac{pr(\text{data} | \text{model}, I)pr(\text{model} | I)}{pr(\text{data} | I)}$$

Thomas Bayes (1701?-1761)

http://www.bayesian-inference.com

$$\operatorname{pr}(A \mid B, I) = \frac{\operatorname{pr}(B \mid A, I)\operatorname{pr}(A \mid I)}{\operatorname{pr}(B \mid I)}$$

Evidence

Likelihood

Prior

$$pr(\text{model} \mid \text{data}, I) = \frac{pr(\text{data} \mid \text{model}, I)pr(\text{model} \mid I)}{pr(\text{data} \mid I)}$$

Thomas Bayes (1701?-1761)

http://www.bayesian-inference.com

$$\operatorname{pr}(A \mid B, I) = \frac{\operatorname{pr}(B \mid A, I)\operatorname{pr}(A \mid I)}{\operatorname{pr}(B \mid I)}$$

Likelihood

Prior

$$pr(model | data, I) = \frac{pr(data | model, I)pr(model | I)}{pr(data | I)}$$

$$pr(data | I)$$

Probability as degree of belief cf. frequentist view

Prior is assigned based on available information

- Prior is assigned based on available information
- Invariance arguments/"indifference priors": priors that are independent of labeling, i.e., uniform.

- Prior is assigned based on available information
- Invariance arguments/"indifference priors": priors that are independent of labeling, i.e., uniform.
- Uniform, but uniform in what?

- Prior is assigned based on available information
- Invariance arguments/"indifference priors": priors that are independent of labeling, i.e., uniform.
- Uniform, but uniform in what?
- Parameterization of priors: independent variables?

- Prior is assigned based on available information
- Invariance arguments/"indifference priors": priors that are independent of labeling, i.e., uniform.
- Uniform, but uniform in what?

- Prior is assigned based on available information
- Invariance arguments/"indifference priors": priors that are independent of labeling, i.e., uniform.
- Uniform, but uniform in what?
- Parameterization of priors: independent variables?

- Prior is assigned based on available information
- Invariance arguments/"indifference priors": priors that are independent of labeling, i.e., uniform.
- Uniform, but uniform in what?
- Parameterization of priors: independent variables?
- MaxEnt: allows incorporation of further information, e.g. constraints on mean, variance, etc.
- MaxEnt: maximizes Shannon information, generates smooth functions

- Prior is assigned based on available information
- Invariance arguments/"indifference priors": priors that are independent of labeling, i.e., uniform.
- Uniform, but uniform in what?
- Parameterization of priors: independent variables?
- MaxEnt: allows incorporation of further information, e.g. constraints on mean, variance, etc.
- MaxEnt: maximizes Shannon information, generates smooth functions

Should the likelihood dominate?

PRIOR VS. LIKELIHOOD

- Prior can only be assessed in context of likelihood
- "Robustness" analysis

BACKTO THE MINI-PROJECT

Schindler, DP (2009); Wesolowski, Klco, Furnstahl, DP, Thapaliya (2016)

$$g(x) = 0.25 + 1.57x + 2.47x^2 + 1.29x^3 + \dots$$

BACKTO THE MINI-PROJECT

Schindler, DP (2009); Wesolowski, Klco, Furnstahl, DP, Thapaliya (2016)

$$g(x) = 0.25 + 1.57x + 2.47x^2 + 1.29x^3 + \dots$$

■ Gaussian prior that encodes naturalness: $pr(a_k|\bar{a},I) \propto exp\left(-\frac{a_k^2}{2\bar{a}^2}\right)$

Table 3 Fit results for Bayesian approach with R = 1, $x_{\text{max}} = 1/\pi$ and c = 0.05

М	$\log[\operatorname{pr}(\langle \mathbf{a} \rangle D_1, M, R)]$	a_0	a_1	a_2
2	12.00	0.228 ± 0.018	2.06 ± 0.25	1.60 ± 0.78
3	11.25	0.230 ± 0.018	2.04 ± 0.25	1.50 ± 0.79
4	10.35	0.230 ± 0.018	2.04 ± 0.25	1.49 ± 0.80
5	9.43	0.230 ± 0.018	2.04 ± 0.25	1.49 ± 0.80
6	8.51	0.230 ± 0.018	2.04 ± 0.25	1.49 ± 0.80
7	7.60	0.230 ± 0.018	2.04 ± 0.25	1.49 ± 0.80

Table 4 Fit results for Bayesian approach with R = 5, $x_{\text{max}} = 1/\pi$ and c = 0.05

М	$\log[\operatorname{pr}(\langle \mathbf{a} \rangle D_1, M, R)]$	a_0	a_1	a_2
2	9.62	0.248 ± 0.023	1.63 ± 0.39	3.15 ± 1.27
3	7.10	0.247 ± 0.024	1.65 ± 0.45	2.98 ± 2.32
4	4.57	0.247 ± 0.024	1.64 ± 0.46	2.98 ± 2.39
5	2.04	0.247 ± 0.024	1.64 ± 0.46	2.98 ± 2.39
6	-0.488	0.247 ± 0.024	1.64 ± 0.46	2.98 ± 2.39
7	-3.02	0.247 ± 0.024	1.64 ± 0.46	2.98 ± 2.39

RELAXATION PLOT

FIVE LEVELS OF PRIOR

https://github.com/stan-dev/stan/wiki/Prior-Choice-Recommendations

- Flat prior
- Super-vague, but proper, prior: N(0,1,000,000)
- (Very) weakly informative prior: N (0,10)
- Weak informative prior: N(0,1): enough information to regularize
- Specific informative prior: N(0.4,.0.2)

FIVE LEVELS OF PRIOR

https://github.com/stan-dev/stan/wiki/Prior-Choice-Recommendations

- Flat prior
- Super-vague, but proper, prior: N(0,1,000,000)
- (Very) weakly informative prior: N (0,10)
- Weak informative prior: N(0, I): enough information to regularize
- Specific informative prior: N(0.4,.0.2)
- If you have to choose: weakly informative better than fully informative.
- Tails: maybe use t-distributions rather than Gaussians
- When using informative priors, be explicit about every choice!
- Conjugate priors

Consider a function f(x) that is positive definite and defined on [0,1]

- Consider a function f(x) that is positive definite and defined on [0,1]
- Suppose we know N moments of the function.

- Consider a function f(x) that is positive definite and defined on [0, 1]
- Suppose we know N moments of the function.

Define

$$S[f] = -\int dx \, \left(f(x) \, \log \left[f(x) \right] - f(x) \right)$$

- Consider a function f(x) that is positive definite and defined on [0, 1]
- Suppose we know N moments of the function.

Define

$$S[f] = -\int dx \, \left(f(x) \, \log \left[f(x) \right] - f(x) \right)$$

- Consider a function f(x) that is positive definite and defined on [0, 1]
- Suppose we know N moments of the function.

Define

$$S[f] = -\int dx \, \left(f(x) \, \log \left[f(x) \right] - f(x) \right)$$

Maximize S subject to:

$$\int dx \, x^j f(x) = \mu_j; j = 0, \dots, N$$

- Consider a function f(x) that is positive definite and defined on [0, 1]
- Suppose we know N moments of the function.

Define

$$S[f] = -\int dx \, \left(f(x) \, \log \left[f(x) \right] - f(x) \right)$$

Maximize S subject to:

$$\int dx \, x^j f(x) = \mu_j; j = 0, \dots, N$$

$$Q[f; \{\lambda_j\}] = S[f] + \sum_{j=0}^N \lambda_j \left(\mu_j - \int dx \, x^j f(x)\right)$$

MEAD & PAPANICOLAOU FORMULATION

Mead & Papanicolaou, JMP (1984)

Solution:
$$f(x) = \exp\left(-\sum_{j=0}^{N} \lambda_j x^j\right)$$

Solution:
$$f(x) = \exp\left(-\sum_{j=0}^{N} \lambda_j x^j\right)$$
Define: $Z = e^{\lambda_0} = \int dx \exp\left(-\sum_{j=1}^{N} \lambda_j x^j\right)$

• Solution:
$$f(x) = \exp\left(-\sum_{j=0}^{N} \lambda_j x^j\right)$$

• Define: $Z = e^{\lambda_0} = \int dx \exp\left(-\sum_{j=1}^{N} \lambda_j x^j\right)$
• Introduce: $\Gamma(\lambda_1, \dots, \lambda_N) = \log Z + \sum_{j=1}^{N} \mu_j \lambda_j$

Mead & Papanicolaou, JMP (1984)

• Solution:
$$f(x) = \exp\left(-\sum_{j=0}^{N} \lambda_j x^j\right)$$

• Define: $Z = e^{\lambda_0} = \int dx \exp\left(-\sum_{j=1}^{N} \lambda_j x^j\right)$
• Introduce: $\Gamma(\lambda_1, \dots, \lambda_N) = \log Z + \sum_{j=1}^{N} \mu_j \lambda_j$

Γ is everywhere convex, and its stationary points are solutions of the moment equations.

• Solution:
$$f(x) = \exp\left(-\sum_{j=0}^{N} \lambda_j x^j\right)$$

• Define: $Z = e^{\lambda_0} = \int dx \exp\left(-\sum_{j=1}^{N} \lambda_j x^j\right)$
• Introduce: $\Gamma(\lambda_1, \dots, \lambda_N) = \log Z + \sum_{j=1}^{N} \mu_j \lambda_j$

- Γ is everywhere convex, and its stationary points are solutions of the moment equations.
- N=I: $\Gamma = \ln[(1 e^{-\lambda_1})/\lambda_1] + \mu_1 \lambda_1$

• Solution:
$$f(x) = \exp\left(-\sum_{j=0}^{N} \lambda_j x^j\right)$$

• Define: $Z = e^{\lambda_0} = \int dx \exp\left(-\sum_{j=1}^{N} \lambda_j x^j\right)$
• Introduce: $\Gamma(\lambda_1, \dots, \lambda_N) = \log Z + \sum_{j=1}^{N} \mu_j \lambda_j$

- Γ is everywhere convex, and its stationary points are solutions of the moment equations.
- N=I: $\Gamma = \ln[(1 e^{-\lambda_1})/\lambda_1] + \mu_1 \lambda_1$
- Only possesses a minimum if $\mu_1 < 1 = \mu_0$.

Mead & Papanicolaou, JMP (1984)

• Solution:
$$f(x) = \exp\left(-\sum_{j=0}^{N} \lambda_j x^j\right)$$

• Define: $Z = e^{\lambda_0} = \int dx \exp\left(-\sum_{j=1}^{N} \lambda_j x^j\right)$
• Introduce: $\Gamma(\lambda_1, \dots, \lambda_N) = \log Z + \sum_{j=1}^{N} \mu_j \lambda_j$

- Γ is everywhere convex, and its stationary points are solutions of the moment equations.
 Moment
- N=I: $\Gamma = \ln[(1 e^{-\lambda_1})/\lambda_1] + \mu_1 \lambda_1$
- Only possesses a minimum if $\mu_1 < 1 = \mu_0$.

conditions: $\{\mu_j : j=0, ..., N\}$ must be completely monotonic

• Suppose we have data d_j , with errors σ_j , on the function at points x_j .

- Suppose we have data d_j , with errors σ_j , on the function at points x_j .
- We can formulate this as a likelihood for $f(x_j)$'s

- Suppose we have data d_j , with errors σ_j , on the function at points x_j .
- We can formulate this as a likelihood for $f(x_i)$'s
- Combine it with MaxEnt prior: maximize $\alpha S \chi^2/2$

- Suppose we have data d_j , with errors σ_j , on the function at points x_j .
- We can formulate this as a likelihood for $f(x_j)$'s
- Combine it with MaxEnt prior: maximize $\alpha S \chi^2/2$
- Non-parametric estimation technique

- Suppose we have data d_j , with errors σ_j , on the function at points x_j .
- We can formulate this as a likelihood for $f(x_j)$'s
- Combine it with MaxEnt prior: maximize $\alpha S \chi^2/2$
- Non-parametric estimation technique
- Likelihood prefers something with lots of wiggles

- Suppose we have data d_j , with errors σ_j , on the function at points x_j .
- We can formulate this as a likelihood for $f(x_j)$'s
- Combine it with MaxEnt prior: maximize $\alpha S \chi^2/2$
- Non-parametric estimation technique
- Likelihood prefers something with lots of wiggles
- MaxEnt prefers something smooth

- Suppose we have data d_j , with errors σ_j , on the function at points x_j .
- We can formulate this as a likelihood for $f(x_j)$'s
- Combine it with MaxEnt prior: maximize $\alpha S \chi^2/2$
- Non-parametric estimation technique
- Likelihood prefers something with lots of wiggles
- MaxEnt prefers something smooth
- Discussion in literature over how Bayesian this is

- Suppose we have data d_j , with errors σ_j , on the function at points x_j .
- We can formulate this as a likelihood for $f(x_j)$'s
- Combine it with MaxEnt prior: maximize $\alpha S \chi^2/2$
- Non-parametric estimation technique
- Likelihood prefers something with lots of wiggles
- MaxEnt prefers something smooth
- Discussion in literature over how Bayesian this is
- Choice of α: classic maximum entropy, historic maximum entropy,
 Bryan's method

Lovato, Gandolfi, Carlson, Pieper, Schiavilla, PRC (2015) Jarrell & Gubernatis, Phys. Rep. (1996)

Lovato, Gandolfi, Carlson, Pieper, Schiavilla, PRC (2015)

Jarrell & Gubernatis, Phys. Rep. (1996)

Theorist calculates:
$$\frac{E_{\alpha\beta}(q,\tau)}{C_{\alpha\beta}(q)} = \frac{\langle 0 | O_{\alpha}^{\dagger}(\mathbf{q}) e^{-(H-E_0)\tau} O_{\beta}(\mathbf{q}) | 0 \rangle}{\langle 0 | e^{-(H-E_0)\tau} | 0 \rangle}$$

Lovato, Gandolfi, Carlson, Pieper, Schiavilla, PRC (2015)

Jarrell & Gubernatis, Phys. Rep. (1996)

Theorist calculates:
$$\frac{E_{\alpha\beta}(q,\tau)}{C_{\alpha\beta}(q)} = \frac{\langle 0 \, | \, O_{\alpha}^{\dagger}(\mathbf{q}) e^{-(H-E_0)\tau} O_{\beta}(\mathbf{q}) \, | \, 0 \rangle}{\langle 0 \, | \, e^{-(H-E_0)\tau} \, | \, 0 \rangle}$$

Experimentalist measures:

$$R_{\alpha\beta}(q,\omega) \propto \sum_{f} \delta(\omega + E_0 - E_f) \langle 0 | O_{\alpha}(\mathbf{q}) | f \rangle \langle f | O_{\beta}(\mathbf{q}) | 0 \rangle$$

Lovato, Gandolfi, Carlson, Pieper, Schiavilla, PRC (2015)

Jarrell & Gubernatis, Phys. Rep. (1996)

Theorist calculates:
$$\frac{E_{\alpha\beta}(q,\tau)}{C_{\alpha\beta}(q)} = \frac{\langle 0 \, | \, O_{\alpha}^{\dagger}(\mathbf{q}) e^{-(H-E_0)\tau} O_{\beta}(\mathbf{q}) \, | \, 0 \rangle}{\langle 0 \, | \, e^{-(H-E_0)\tau} \, | \, 0 \rangle}$$

Experimentalist measures:

$$R_{\alpha\beta}(q,\omega) \propto \sum_f \delta(\omega + E_0 - E_f) \langle 0 \, | \, O_\alpha(\mathbf{q}) \, | \, f \rangle \langle f \, | \, O_\beta(\mathbf{q}) \, | \, 0 \rangle$$

$$\bullet \text{ Relationship:} E_{\alpha\beta}(q,\tau) = C_{\alpha\beta}(\tau) \int_{\omega_{th}}^{\infty} d\omega \, e^{-\tau\omega} R_{\alpha\beta}(q,\omega)$$

Lovato, Gandolfi, Carlson, Pieper, Schiavilla, PRC (2015)

Jarrell & Gubernatis, Phys. Rep. (1996)

Theorist calculates:
$$\frac{E_{\alpha\beta}(q,\tau)}{C_{\alpha\beta}(q)} = \frac{\langle 0 \, | \, O_{\alpha}^{\dagger}(\mathbf{q}) e^{-(H-E_0)\tau} O_{\beta}(\mathbf{q}) \, | \, 0 \rangle}{\langle 0 \, | \, e^{-(H-E_0)\tau} \, | \, 0 \rangle}$$

Experimentalist measures:

$$R_{\alpha\beta}(q,\omega) \propto \sum_f \delta(\omega + E_0 - E_f) \langle 0 \, | \, O_\alpha(\mathbf{q}) \, | \, f \rangle \langle f \, | \, O_\beta(\mathbf{q}) \, | \, 0 \rangle$$

$$\bullet \text{ Relationship:} E_{\alpha\beta}(q,\tau) = C_{\alpha\beta}(\tau) \int_{\omega_{th}}^{\infty} d\omega \, e^{-\tau\omega} R_{\alpha\beta}(q,\omega)$$

Relationship:
$$E_{\alpha\beta}(q,\tau) = C_{\alpha\beta}(\tau) \int_{\omega_{th}}^{\infty} d\omega \, e^{-\tau\omega} R_{\alpha\beta}(q,\omega)$$

Why not just invert the Laplace transform?

Lovato, Gandolfi, Carlson, Pieper, Schiavilla, PRC (2015)

Jarrell & Gubernatis, Phys. Rep. (1996)

Theorist calculates:
$$\frac{E_{\alpha\beta}(q,\tau)}{C_{\alpha\beta}(q)} = \frac{\langle 0 \,|\, O_{\alpha}^{\dagger}(\mathbf{q}) e^{-(H-E_0)\tau} O_{\beta}(\mathbf{q}) \,|\, 0 \rangle}{\langle 0 \,|\, e^{-(H-E_0)\tau} \,|\, 0 \rangle}$$

Experimentalist measures:

$$R_{\alpha\beta}(q,\omega) \propto \sum_f \delta(\omega + E_0 - E_f) \langle 0 \, | \, O_\alpha(\mathbf{q}) \, | \, f \rangle \langle f \, | \, O_\beta(\mathbf{q}) \, | \, 0 \rangle$$

$$\bullet \text{ Relationship:} E_{\alpha\beta}(q,\tau) = C_{\alpha\beta}(\tau) \int_{\omega_{th}}^\infty d\omega \, e^{-\tau\omega} R_{\alpha\beta}(q,\omega)$$

- Why not just invert the Laplace transform?
- At large positive frequencies the kernel is exponentially small, so large ω features of R(ω) depend on subtle features of E(T).

RESULTS

