LÒGICA I LLENGUATGES

CURSO 2017-18

SEGUNDA PRUEBA PARCIAL DE PROBLEMAS

- (a) Consideremos el vocabulario $\sigma = \{c, P^1, Q^1, R^2\}$ y la σ -interpretación I definida de la siguiente forma:
 - dominio de $I = \{1, 2, 3, 4, 5\},\$
 - I(c) = 5,
 - $I(P) = \{2, 5\},$
 - $I(Q) = \{3, 4, 5\},\$
 - $I(R) = \{(1,1), (2,2), (3,4), (4,3), (4,4), (5,5), (1,5)\}.$

Determinar entonces, razonando la respuesta, si las siguientes fórmulas son verdaderas o falsas en I:

- (1) $\forall x (Rxc \rightarrow Qx)$,
- (2) $\forall x (Px \lor Qx \lor Rxx)$,
- (3) $\forall x \exists y Rxy$,
- (4) $\exists x \forall y (Rxy \lor Ryx)$.

(7 puntos)

(b) Demostrar por resolución que la cláusula vacía \square se deduce de las siguientes cláusulas:

$$\varphi_1 = \neg Qxy \lor \neg Py \lor Rf(x),$$

$$\varphi_2 = \neg Rz,$$

$$\varphi_3 = Qab,$$

 $\varphi_4 = Pb$.

(3 puntos)

Solución:

- (a) (1) es falsa, pues el valor x=1 hace falsa la fórmula $Rxc \to Qx$, ya que tenemos que $\overline{R}15 \to \overline{Q}1 = V \to F = F$.
- (2) es verdadera. Para demostrarlo, comprobamos que todos los valores posibles de x en el conjunto $\{1,2,3,4,5\}$ hacen verdadera la fórmula $Px \lor Qx \lor Rxx$. Si x=1, tenemos que $\overline{R}11=V$. Si x=2, tenemos que $\overline{P}2=V$. Si x=3, $\overline{Q}3=V$. Si x=4, $\overline{Q}4=V$. Y si x=5, tenemos que $\overline{P}5=V$.
- (3) es verdadera. Para demostrarlo, comprobamos que todos los valores posibles de x en el conjunto $\{1,2,3,4,5\}$ hacen verdadera la fórmula $\exists yRxy$. Para ello, si x=1, tomamos y=1 y tenemos que $\overline{R}11=V$. Si x=2, tomamos y=2 y vemos que $\overline{R}22=V$. Si x=3, tomamos y=4 y vemos que $\overline{R}34=V$. Si x=4, tomamos y=3 y vemos que $\overline{R}43=V$. Y si x=5, tomamos y=5 y tenemos que $\overline{R}55=V$.
- (4) es falsa, pues no hay ningún valor de x en el conjunto $\{1,2,3,4,5\}$ que haga cierta la fórmula $\forall y(Rxy \lor Ryx)$. Para ello, comprobamos que para cada valor de x en el dominio $\{1,2,3,4,5\}$ hay un valor de y en ese dominio que hace falsa la fórmula $Rxy \lor Ryx$. Entonces, si x=1, tomamos y=2. Si x=2, tomamos y=1. Si x=3, tomamos y=1. Si x=4, tomamos y=1. Y si x=5, tomamos y=2.
 - (b) Tenemos la siguiente prueba por resolución:

1. $\neg Qxy \lor \neg Py \lor Rf(x)$	input
$2. \neg Rz$	input
$3. \ Qab$	input
4. <i>Pb</i>	input
5. $\neg Pb \lor Rf(a)$	(1,3) tomando $\{x=a,y=b\}$
6. $Rf(a)$	(4,5)
7. 🗆	$(2,6)$ tomando $\{z=f(a)\}$