B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

August 2024 Semester End Main Examinations

Programme: B.E.

Branch: Computer Science and Engineering

Course Code: 23CS4ESCRP

Semester: IV

Duration: 3 hrs.

Max Marks: 100

Course: Cryptography

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.

2. Missing data, if any, may be suitably assumed.

k			UNIT - I	co	PO	Marks
blan;	1	a)	Identify the different security goals and attacks in cryptography.	CO1	PO3	8
emaining		b)	Explain how transposition techniques differ from substitution technique.	CO1	PO1	5
on the r		c)	Illustrate with an example the encryption process of the Playfair cipher.	CO1	PO1	7
ines			OR			
al cross E malprac	2	a)	What is monoalphabetic cipher? Explain how it differs from Caesar cipher with an example.	CO1	PO1	8
lraw diagona be treated as		b)	Identify the properties of modular arithmetic operation and consider modulo 8 perform the arithmetic modulo 8 and multiplication modulo 8.	CO1	PO1	5
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.		c)	Explain the following with an example. i) Playfair cipher ii) Rail fence cipher iii) Vigenere cipher	CO1	PO1	7
			UNIT - II			
our answe	3	a)	Illustrate the encryption and decryption process for the Advanced Encryption standard (AES).	CO2	PO2	10
Important Note: Completing your answers, compulsorily draw diagonal cross lines pages. Revealing of identification, appeal to evaluator will be treated as malpractice		b)	Explain in detail about the entities in the symmetric cipher model with their requirements for secure usage of the model.	CO1	PO1	5
)	c)	Differentiate between Advance Encryption standard (AES) and Data Encryption Standard (DES).	CO2	PO2	5
t Not			UNIT - III			
Important pages. Re	4	a)	Apply Fermat's theorem to find the values of the following: (i) 5 ¹⁵ mod 13 (ii) 15 ¹⁸ mod 17	CO1	PO1	6

	b)	State Chinese Remainder theorem and find the value of x for the	CO1	P01	8
		given set of congruent equations using Chinese Remainder theorem.			
		$X \equiv l \pmod{5}$			
		$X \equiv 2 \pmod{7}$			
		$X \equiv 3 \pmod{9}$			
		$X \equiv 4 \pmod{11}$	CO1	DO1	
	c)	Find the values of the following and justify: (a) $\phi(29)$	COI	PO1	6
		(b) $\phi(32)$			
		(c) $\phi(80)$			
		UNIT - IV			
5	a)	Analyze the Elliptic curve cryptography method to explain the	CO2	PO2	5
		generation of private and public key.	'		
	b)	Outline the step-by-step procedure for generating a digest using	CO1	PO1	8
		SHA-512. Explain how an input message is handled, covering the			
		padding scheme, processing of message blocks, utilization of the			
		compression function and the finalization steps.			
	c)	Identify main components of the ElGamal cryptosystem. Explain	CO1	PO1	7
		how the keys are generated in the ElGamal cryptosystem? OR			
6	a)	Given prime numbers p=11, q=19 and value of d=17. Apply RSA	CO1	PO1	5
Ü	α,	algorithm for the cipher message =80 and find the plain text.			
	b)	Why asymmetric key cryptographic is not suitable for large data?	CO1	PO1	8
		What are some commonly used asymmetric key algorithms?			
	,		CO1	PO1	7
	c)	Explain cryptographic hash function. List essential properties of a good cryptographic hash function.			
		UNIT - V			
7	a)	Demonstrate the Diffie Hellman key exchange methodology using	CO1	PO1	7
		following key values: p=11, g=2, X _A =9, X _B =4			
	b)	Discuss the four requirements of Kerberos.	CO1	PO1	4
-	c)	Discuss about the elements of X.509 Certificate.	CO1	PO1	9
		AV	l	1	
