BÀI TẬP CUNG VÀ GÓC LƯỢNG GIÁC -CÔNG THỨC LƯỢNG GIÁC

Dạng 1. LÝ THUYẾT

- CÂU 1. Quy ước chiều dương của một góc lượng giác là:
 - A Luôn cùng chiều quay kim đồng hồ.
 - (B) Luôn ngược chiều quay kim đồng hồ.
 - Có thể cùng chiều quay kim đồng hồ mà cũng có thể là ngược chiều quay kim đồng hồ.
 - D Không cùng chiều quay kim đồng hồ và cũng không ngược chiều quay kim đồng hồ.
- **CÂU 2.** Trên đường tròn lượng giác, mỗi cung lượng giác $\stackrel{\frown}{AB}$ xác định:
 - lack A Một góc lượng giác tia đầu OA, tia cuối OB.
 - (\mathbf{B}) Hai góc lượng giác tia đầu OA, tia cuối OB.
 - (**c**) Bốn góc lượng giác tia đầu OA, tia cuối OB.
 - \bigcirc Vô số góc lượng giác tia đầu OA, tia cuối OB.
- CÂU 3. Khẳng định nào sau đây là đúng khi nói về "đường tròn lượng giác"?
 - (A) Mỗi đường tròn là một đường tròn lượng giác.
 - (\mathbf{B}) Mỗi đường tròn có bán kính R=1 là một đường tròn lượng giác.
 - igcepsilon Mỗi đường tròn có bán kính R=1, tâm trùng với gốc tọa độ là một đường tròn lượng giác.
 - \blacksquare Mỗi đường tròn có bán kính R=1, tâm trùng với gốc tọa độ, được định hướng và lấy điểm A(1;0) làm điểm gốc là một đường tròn lượng giác.

Dạng 2. ĐỔI TỪ ĐỘ SANG RADIAN VÀ NGƯỢC LẠI

- CÂU 1. Trên đường tròn cung có số đo 1 rad là?
 - (A) Cung có độ dài bằng 1.
- (B) Cung tương ứng với góc ở tâm 60°.
- Cung có độ dài bằng đường kính.
- D Cung có độ dài bằng nửa đường kính.
- CÂU 2. Khẳng định nào sau đây là đúng?

 - \mathbf{C} π rad =180°.

- $\mathbf{B} \pi \operatorname{rad} = 60^{\circ}.$ $\mathbf{D} \pi \operatorname{rad} = \left(\frac{180}{\pi}\right)^{\circ}.$
- CÂU 3. Khẳng định nào sau đây là đúng?
 - \bigcirc 1 rad = 1°.
 - \bigcirc 1 rad = 180°.

- **B** $1 \text{ rad} = 60^{\circ}$.
- **CÂU 4.** Nếu một cung tròn có số đo là a° thì số đo radian của nó là
 - **A** $180\pi a$.
- $\bigcirc \frac{a\pi}{180}.$
- **CÂU 5.** Nếu một cung tròn có số đo là $3a^{\circ}$ thì số đo radian của nó là
 - $\mathbf{A} \frac{a\pi}{60}.$
- $\bigcirc \frac{180}{a\pi}$
- **CÂU 6.** Đổi số đo của góc 70° sang đơn vị radian.
 - $\bigcirc A \frac{70}{\pi}.$
- **B** $\frac{7}{18}$.
- $\mathbf{c} \frac{7\pi}{18}$
- **CÂU 7.** Đổi số đo của góc 108° sang đơn vị radian.
 - $\mathbf{A} \frac{3\pi}{5}.$
- $\mathbf{c} \frac{3\pi}{2}$.
- \bigcirc $\frac{\pi}{4}$

ĐIỂM:

Be yourself; everyone else is already taken.

QUICK NOTE

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•						•	•	•				•	•	•	•	•					

•			•	•	•	•	•						•	•	•	•	•				٠

٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠
٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠
								٠			•	•	•	•	•												•	•	•		•		٠
	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠

🕈 Địa chỉ: KDC Mỹ Điền, TT. Tuy Phi	ước 🗣
-------------------------------------	-------

nghìn.			
 A 0,7947.	B 0,7948.	© 0,795.	D 0,794.
	của góc $40^{\circ}25'$ sang đ	ơn vị radian với độ ch	ính xác đến hàng phần
 trăm. (A) 0,705.	B) 0,70.	© 0,7054.	D 0,71.
 CÂU 10. Đổi số đo	của góc $-125^{\circ}45'$ sang	g đơn vi radian.	
 $\mathbf{A} - \frac{503\pi}{720}$.	$\mathbf{B} \frac{503\pi}{720}$.	$\mathbf{c} \frac{251\pi}{360}$.	\bigcirc $-\frac{251\pi}{360}$.
 720	0		300
	của góc $\frac{\pi}{12}$ rad sang đ		P P 0
 (A) 15°.	B) 10°.	© 6°.	D 5°.
 CÂU 12. Đổi số đo	của góc $-\frac{3\pi}{16}$ rad sang	_	
 A 33°45′.	B) $-29^{\circ}30'$.	\bigcirc -33°45′.	\bigcirc -32°55.
	của góc -5 rad sang đ		
 $(A) -286^{\circ}44'28''.$	B) $-286^{\circ}28'44''$.	(c) -286°.	D) 286°28′44″.
 CÂU 14. Đổi số đo	của góc $\frac{3}{4}$ rad sang đơ	n vị độ, phút, giây.	
 A 42°97′18″.	B 42°58′.	C 42°97′.	D 42°58′18″.
 CÂU 15. Đổi số đo	của góc -2 rad sang đ	lơn vị độ, phút, giây.	
 \bigcirc -114°59′15″.	B $-114^{\circ}35'$.	\bigcirc -114°35′29″.	\bigcirc -114°59′.
	\vdash Dạng 3. ĐỘ	DÀI CUNG TRÒN	
 CÂU 1. Mệnh đề nà	o gay đây là đứng?		
	g tròn tỉ lệ với độ dài c	cung đó.	
	ng tròn tỉ lệ với bán kín	_	
 1 × '	g tròn tỉ lệ với bán kínl		
	ng tròn tỉ lệ nghịch với	_	_
 CÂU 2. Tính độ dài	ℓ của cung trên đường	tròn có bán kính bằng	$20 \text{ cm và số đo } \frac{\pi}{16}.$
$\ell = 3.93 \text{ cm}.$	(P) (1 2 0.4 area	(A) 2 20	0 1 10
	(B) $\ell = 2.94 \text{ cm}.$	C) $\ell = 3.39 \text{ cm}.$	D) $\ell = 1{,}49 \text{ cm}.$
 CÂU 3. Tính độ dài	0	tròn có số đo 1,5 và bán	
 CÂU 3. Tính độ dài A 30 cm.	0		
A 30 cm. CÂU 4. Một đường	của cung trên đường t (B) 40 cm. tròn có đường kính bằn	tròn có số đo 1,5 và bán © 20 cm.	ı kính bằng 20 cm.
(A) 30 cm. (CÂU 4. Một đường có số đo 35° (lấy 2 ch	của cung trên đường t B 40 cm. tròn có đường kính bằn ữ số thập phân).	tròn có số đo 1,5 và bán 20 cm. 20 cm. Tính độ dài c	n kính bằng 20 cm. © 60 cm. ua cung trên đường tròn
(A) 30 cm. (CÂU 4. Một đường có số đo 35° (lấy 2 ch	t của cung trên đường t B 40 cm. tròn có đường kính bằn ữ số thập phân). B 6,11 cm.	tròn có số đo 1,5 và bán 20 cm. 1 cm. 1 cm. 2 cm.	a kính bằng 20 cm. © 60 cm. ua cung trên đường tròn © 6,31 cm.
(A) 30 cm. (CÂU 4. Một đường có số đo 35° (lấy 2 ch	t của cung trên đường t B 40 cm. tròn có đường kính bằn ữ số thập phân). B 6,11 cm.	tròn có số đo 1,5 và bán 20 cm. 1 cm. 1 cm. 2 cm.	n kính bằng 20 cm. © 60 cm. ua cung trên đường tròn
(A) 30 cm. (CÂU 4. Một đường có số đo 35° (lấy 2 ch (A) 6,01 cm. (CÂU 5. Tính số đo	t của cung trên đường t B 40 cm. tròn có đường kính bằn ữ số thập phân). B 6,11 cm.	tròn có số đo 1,5 và bán 20 cm. 1 cm. 1 cm. 2 cm.	a kính bằng 20 cm. © 60 cm. ua cung trên đường tròn © 6,31 cm.
 A 30 cm. CÂU 4. Một đường có số đo 35° (lấy 2 ch A 6,01 cm. CÂU 5. Tính số đo cm. A 1,5 rad. CÂU 6. Một cung t 	t của cung trên đường trìn có đường kính bằn tròn có đường kính bằn tròn số thập phân). B 6,11 cm. cung có độ dài của cun D 0,67 rad.	tròn có số đo 1,5 và bán \bigcirc 20 cm. ng 20 cm. Tính độ dài c \bigcirc 6,21 cm. ng bằng $\frac{40}{3}$ cm trên được \bigcirc 80°.	a kính bằng 20 cm. • 60 cm. • a cung trên đường tròn • 6,31 cm. • cờng tròn có bán kính 20
 A 30 cm. CÂU 4. Một đường có số đo 35° (lấy 2 ch A 6,01 cm. CÂU 5. Tính số đo cm. A 1,5 rad. CÂU 6. Một cung t là 	tròn có đường kính bằn tròn có đường kính bằn tròn có đường kính bằn tròn có độ dài của cun có độ dài của cun có độ dài bằng 2	tròn có số đo 1,5 và bán \bigcirc 20 cm. ng 20 cm. Tính độ dài c \bigcirc 6,21 cm. ng bằng $\frac{40}{3}$ cm trên đư \bigcirc 80°. lần bán kính. Số đo ra	a kính bằng 20 cm.
 A 30 cm. CÂU 4. Một đường có số đo 35° (lấy 2 ch A 6,01 cm. CÂU 5. Tính số đo cm. A 1,5 rad. CÂU 6. Một cung t là A 1. 	tròn có đường kính bằn tròn có đường kính bằn trồn có đường kính bằn trồn có độ dài của cun có độ dài của cun có độ dài bằng 2 B 2.	tròn có số đo 1,5 và bán 20 cm. ng 20 cm. Tính độ dài c 6,21 cm. ng bằng $\frac{40}{3}$ cm trên đư 80°. lần bán kính. Số đo ra	a kính bằng 20 cm.
 A 30 cm. CÂU 4. Một đường có số đo 35° (lấy 2 ch A 6,01 cm. CÂU 5. Tính số đo cm. A 1,5 rad. CÂU 6. Một cung t là A 1. CÂU 7. Trên đường 	tròn có đường kính bằn tròn có đường kính bằn tròn có đường kính bằn tron có độ dài của cun có độ dài của cun có độ dài bằng 2 B 2. tròn bán kính R, cung	tròn có số đo 1,5 và bán 20 cm. ng 20 cm. Tính độ dài c 6,21 cm. ng bằng $\frac{40}{3}$ cm trên đư 80°. lần bán kính. Số đo ra	a kính bằng 20 cm.
 A 30 cm. CÂU 4. Một đường có số đo 35° (lấy 2 ch A 6,01 cm. CÂU 5. Tính số đo cm. A 1,5 rad. CÂU 6. Một cung t là A 1. CÂU 7. Trên đường thì có số đo (tính bằn 	tròn có đường kính bằn tròn có đường kính bằn tròn có đường kính bằn tron có độ dài của cun có độ dài của cun có độ dài bằng 2 B 2. tròn bán kính R, cung	tròn có số đo 1,5 và bán 20 cm. ng 20 cm. Tính độ dài c 6,21 cm. ng bằng $\frac{40}{3}$ cm trên đư 80°. lần bán kính. Số đo ra	a kính bằng 20 cm.
 A 30 cm. CÂU 4. Một đường có số đo 35° (lấy 2 ch A 6,01 cm. CÂU 5. Tính số đo cm. A 1,5 rad. CÂU 6. Một cung t là A 1. CÂU 7. Trên đường thì có số đo (tính bằn A π/2. 	a của cung trên đường the sum sum số thập phân). B 6,11 cm. cung có độ dài của cun số thập phân). cung có độ dài bằng 2 B 2. tròn có độ dài bằng 2 tròn bán kính R, cung ng radian) là B π/3.	tròn có số đo 1,5 và bán \bigcirc 20 cm. ng 20 cm. Tính độ dài c \bigcirc 6,21 cm. ng bằng $\frac{40}{3}$ cm trên đư \bigcirc 80°. lần bán kính. Số đo ro \bigcirc 3. g tròn có độ dài bằng $\frac{1}{6}$	n kính bằng 20 cm. D 60 cm. ủa cung trên đường tròn D 6,31 cm. rờng tròn có bán kính 20 D 88°. adian của cung tròn đó D 4. d độ dài nửa đường tròn D $\pi/6$.
 A 30 cm. CÂU 4. Một đường có số đo 35° (lấy 2 ch A 6,01 cm. CÂU 5. Tính số đo cm. A 1,5 rad. CÂU 6. Một cung t là A 1. CÂU 7. Trên đường thì có số đo (tính bằn A π/2. 	a của cung trên đường the sum sum số thập phân). B 6,11 cm. cung có độ dài của cun số thập phân). cung có độ dài bằng 2 B 2. tròn có độ dài bằng 2 tròn bán kính R, cung ng radian) là B π/3.	tròn có số đo 1,5 và bán \bigcirc 20 cm. ng 20 cm. Tính độ dài c \bigcirc 6,21 cm. ng bằng $\frac{40}{3}$ cm trên đư \bigcirc 80°. lần bán kính. Số đo ro \bigcirc 3. g tròn có độ dài bằng $\frac{1}{6}$	n kính bằng 20 cm. D 60 cm. ủa cung trên đường tròn D 6,31 cm. rờng tròn có bán kính 20 D 88°. adian của cung tròn đó D 4.

QUICK NOTE

CÂU 9. Bánh xe đạp của người đi xe đạp quay được 2 vòng trong 5 giây. Hỏi trong 2 giây, bánh xe quay được 1 góc bao nhiều độ.

 \mathbf{c} $\frac{3}{5}\pi$.

 $\bigcirc \frac{5}{2}\pi.$

CÂU 10. Một bánh xe có 72 răng. Số đo góc mà bánh xe đã quay được khi di chuyển 10 răng là

(A) 30°.

(**B**) 40°.

(C) 50°.

(**D**) 60°.

🖶 Dạng 4. GÓC LƯỢNG GIÁC

CÂU 1. Cho góc lượng giác $(Ox, Oy) = 22^{\circ}30' + k360^{\circ}$. Với giá trị k bằng bao nhiêu thì góc $(Ox, Oy) = 1822^{\circ}30'$?

 $(\mathbf{A}) \ k \in \emptyset.$

(B) k = 3.

CÂU 2. Cho góc lượng giác $\alpha=\frac{\pi}{2}+k2\pi$. Tìm k để $10\pi<\alpha<11\pi$. **(a)** k=4. **(b)** k=5.

CÂU 3. Một chiếc đồng hồ, có kim chỉ giờ OG chỉ số 9 và kim phút OP chỉ số 12. Số đo của góc lượng giác (OG, OP) là

 $\frac{\pi}{2} + k2\pi, k \in \mathbb{Z}.$

(B) $-270^{\circ} + k360^{\circ}, k \in \mathbb{Z}..$

(C) $270^{\circ} + k360^{\circ}, k \in \mathbb{Z}$.

 \mathbf{CAU} 4. Trên đường tròn lượng giác có điểm gốc là A. Điểm M thuộc đường tròn sao cho cung lượng giác AM có số đo 45° . Gọi N là điểm đối xứng với M qua trục Ox, số đo cung lượng giác AN bằng

 $(A) -45^{\circ}.$

B) 315°.

(**c**) 45° hoặc 315°.

 (\mathbf{D}) $-45^{\circ} + k360^{\circ}, k \in \mathbb{Z}.$

 \hat{CAU} 5. Trên đường tròn với điểm gốc là A. Điểm M thuộc đường tròn sao cho cung lượng giác AM có số đo 60° . Gọi N là điểm đối xứng với điểm M qua trực Oy, số đo cung AN

(**A**) 120°.

B) -240° .

(c) -120° hoặc 240° .

(D) $120^{\circ} + k360^{\circ}, k \in \mathbb{Z}.$

 \mathbf{CAU} 6. Trên đường tròn lượng giác với điểm gốc là A. Điểm M thuộc đường tròn sao cho cung lượng giác AM có số đo 75°. Gọi N là điểm đối xứng với điểm M qua gốc tọa độ O, số đo cung lượng giác AN bằng

(A) 255° .

(**B**) −105°.

(**C**) -105° hoặc 255° .

 $(D) -105^{\circ} + k360^{\circ}, k \in \mathbb{Z}.$

CÂU 7. Cho bốn cung (trên một đường tròn định hướng): $\alpha = -\frac{5\pi}{6}, \beta = \frac{\pi}{3}, \gamma = \frac{25\pi}{3}, \delta = \frac{\pi}{3}$

. Các cung nào có điểm cuối trùng nhau?

(A) α và β ; γ và δ . (B) β và γ ; α và δ .

CÂU 8. Các cặp góc lượng giác sau ở trên cùng một đường tròn đơn vị, cùng tia đầu và tia

 $\bigcirc \frac{\pi}{7} \text{ và } \frac{281\pi}{7}.$

CÂU 9. Trên đường tròn lượng giác gốc A, cung lượng giác nào có các điểm biểu diễn tạo thành tam giác đều?

 $\frac{k2\pi}{}$

 $\bigcirc \frac{k\pi}{2}$.

CÂU 10. Trên đường tròn lượng giác gốc A, cung lượng giác nào có các điểm biểu diễn tạo thành hình vuông?

Dang 5. XÁC ĐỊNH DẤU CỦA CÁC GIÁ TRI LƯƠNG GIÁC

QUICK NOTE			at của đường tròn lượng	g giác. Hãy chọn kết quả
	đúng trong các kết q $\sin \alpha > 0$.	tua sau day. $\mathbf{B} \cos \alpha < 0.$	\bigcirc $\tan \alpha < 0$.	\bigcirc $\cot \alpha < 0$.
	CÂU 2. Cho α thu	ộc góc phần tư thứ hai		giác. Hãy chọn kết quả
	đúng trong các kết q	uả sau đây.		
	$(\mathbf{A}) \sin \alpha > 0; \cos \alpha$		$\mathbf{B})\sin\alpha < 0;\cos\alpha$	
	$(\mathbf{C})\sin\alpha > 0;\cos\alpha$		$(\mathbf{D})\sin\alpha < 0;\cos\alpha$	
	CAU 3. Cho α thuộ đây là SAI ?	ốc góc phần tư thứ ba	của đường tròn lượng g	iác. Khẳng định nào sau
	$\mathbf{\hat{A}} \sin \alpha > 0.$	$lacksquare$ $\cos \alpha < 0.$	\bigcirc $\tan \alpha > 0$.	\bigcirc $\cot \alpha > 0$.
		òc góc phần tư thứ tư c	của đường tròn lượng g	iác. Khẳng định nào sau
	đây là đúng?	$lacksquare$ $\cos \alpha > 0$.	\bigcirc $\tan \alpha > 0$.	\bigcirc $\cot \alpha > 0$.
	CÂU 5. Điểm cuối	của góc lượng giác α	ở góc phần tư thứ m	ấy nếu $\sin \alpha, \cos \alpha$ cùng
	dấu?			,
	$egin{pmatrix} oldsymbol{A} & ext{Thứ } II. \ oldsymbol{C} & ext{Thứ } II ext{ hoặc } I. \end{bmatrix}$	IV	(B) Thứ IV . (D) Thứ I hoặc II .	ī
	CAU 6. Điểm cuối c \bigcirc Thứ I .	của góc lượng giác $lpha$ ở gó	ốc phần tư thứ mấy nếu $\stackrel{ullet}{oxtled}$ Thứ II hoặc I	
	\bigcirc Thứ II hoặc I	III.	$lackbox{D}$ Thứ I hoặc IV	
	CÂU 7. Điểm cuối c	ria góc lương giác $lpha$ ở gó	óc phần tư thứ mấy nếu	$\cos \alpha = \sqrt{1 - \sin^2 \alpha}$
	A Thứ II.	aa goe raong grae a o ge	$oxed{\mathbf{B}}$ Thứ I hoặc II .	
	$leve{f C}$ Thứ II hoặc I	III.	lue Thứ I hoặc IV	
	CÂU 8. Điểm cuối d	của góc lương giác α ở	góc phần tư thứ mấy n	
	🛕 Thứ III.		lacksquare Thứ I hoặc II .	
	$lue{c}$ Thứ I hoặc II	Ι.	D Thứ III hoặc .	IV.
	CÂU 9. Cho $2\pi < c$	$lpha < rac{5\pi}{2}$. Khẳng định nà	o sau đâv đúng?	
	\triangle $\tan \alpha > 0$; $\cot \alpha$	2	$\mathbf{B}) \tan \alpha < 0; \cot \alpha$	$\alpha < 0$.
	$\cot \alpha > 0$; $\cot \alpha$		$\mathbf{D} \tan \alpha < 0; \cot \alpha$	
	CÂU 10. Cho 0 < c	$\alpha < \frac{\pi}{2}$. Khẳng định nào	sau đây đúng?	
	_	4 _		$0. \bigcirc \sin(\alpha - \pi) < 0.$
		_		$Sim(\alpha - n) < 0.$
	- (-)	$\alpha < \frac{\pi}{2}$. Khẳng định nào	, _,	
	\bigcirc $\cot\left(\alpha + \frac{\pi}{2}\right) >$			
	\bigcirc $\tan (\alpha + \pi) < $	0.	$ (\mathbf{D}) \tan \left(\alpha + \pi \right) > 0 $).
	CÂU 12. Cho $\frac{\pi}{2}$ <	$\alpha < \pi$. Giá trị lượng gi	ác nào sau đây luôn dư	ong?
	$\mathbf{A} \sin{(\pi + \alpha)}.$	$lackbox{\textbf{B}}\cot\left(\frac{\pi}{2}-\alpha\right).$	$\mathbf{C}\cos(-\alpha)$.	
	CÂU 12 Cha - <	3π Vhểng định nà	à a gan độn đóng?	
	(2)	$lpha < rac{3\pi}{2}$. Khẳng định nà	(0)	
	$\mathbf{A} \tan \left(\frac{3\pi}{2} - \alpha \right)$	< 0.		> 0.
	\mathbf{c} $\tan\left(\frac{3\pi}{2} - \alpha\right)$	≤ 0 .	\bigcirc $\tan\left(\frac{3\pi}{2} - \alpha\right)$	$\geqslant 0.$
	(2)		(2)	
		_	a biểu thức $M = \cos\left(-\frac{1}{2}\right)$	<u> </u>
			$(\mathbf{C}) M \leqslant 0.$	
	CÂU 15. Cho $\pi < c$	$\alpha < \frac{3\pi}{2}$. Xác định dấu c	ủa biểu thức $M = \sin \left(\frac{1}{2} \right)$	$\left(\frac{\pi}{2} - \alpha\right) \cdot \cot\left(\pi + \alpha\right)$.
			$\bigcirc M \leqslant 0.$	$ \begin{array}{c} 2 \\ \hline \mathbf{D} \end{array} M < 0. $

🖶 Dạng 6. TÍNH GIÁ TRỊ LƯỢNG GIÁC

CÂU 1. Tính giá trị của $\sin \frac{47\pi}{6}$

(A)
$$\sin \frac{47\pi}{6} = \frac{\sqrt{3}}{2}$$
. (B) $\sin \frac{47\pi}{6} = \frac{1}{2}$. (C) $\sin \frac{47\pi}{6} = \frac{\sqrt{2}}{2}$. (D) $\sin \frac{47\pi}{6} = -\frac{1}{2}$.

$$\mathbf{B}\sin\frac{47\pi}{6} = \frac{1}{2}$$

$$\bigcirc \sin \frac{47\pi}{6} = \frac{\sqrt{2}}{2}$$

CÂU 2. Tính giá trị của cot $\frac{89\pi}{c}$

$$\mathbf{C}\cot\frac{89\pi}{6} = \frac{\sqrt{3}}{3}.$$

$$\bigcirc \cot \frac{89\pi}{6} = -\frac{\sqrt{3}}{3}.$$

CÂU 3. Tính giá trị của $\cos \left[\frac{\pi}{4} + (2k+1)\pi \right]$.

$$\mathbf{A} \cos \left[\frac{\pi}{4} + (2k+1)\pi \right] = -\frac{\sqrt{3}}{2}.$$

$$\mathbf{C}\cos\left[\frac{\pi}{4}+\left(2k+1\right)\pi\right]=-\frac{1}{2}.$$

CÂU 4. Tính giá trị của $\cos \left[\frac{\pi}{2} + (2k+1)\pi \right]$.

(A)
$$\cos \left[\frac{\pi}{3} + (2k+1)\pi \right] = -\frac{\sqrt{3}}{2}.$$

$$\mathbf{B}\cos\left[\frac{\pi}{3} + (2k+1)\,\pi\right] = \frac{1}{2}.$$

$$\mathbf{C}\cos\left[\frac{\pi}{3}+\left(2k+1\right)\pi\right]=-\frac{1}{2}.$$

CÂU 5. Tính giá trị biểu thức $P = \frac{(\cot 44^{\circ} + \tan 226^{\circ})\cos 406^{\circ}}{\cos 316^{\circ}} - \cot 72^{\circ}\cot 18^{\circ}.$ **(A)** P = 1. **(B)** P = 1. **(C)** $P = -\frac{1}{2}$. **(D)** $P = \frac{1}{2}$.

$$\bigcirc P = 1.$$

$$\bigcirc P = 1.$$

$$P = -\frac{1}{2}$$
.

CÂU 6. Tính giá trị biểu thức $P = \sin\left(-\frac{14\pi}{3}\right) + \frac{1}{\sin^2\frac{29\pi}{3}} - \tan^2\frac{3\pi}{4}$

(A)
$$P = 1 + \frac{\sqrt{3}}{2}$$
. (B) $P = 1 - \frac{\sqrt{3}}{2}$. (C) $P = 2 + \frac{\sqrt{3}}{2}$.

B
$$P = 1 - \frac{\sqrt{3}}{2}$$
.

$$P = 2 + \frac{\sqrt{3}}{2}$$

CÂU 7. Tính giá trị biểu thức $P = \cos^2 \frac{\pi}{8} + \cos^2 \frac{3\pi}{8} + \cos^2 \frac{5\pi}{8} + \cos^2 \frac{7\pi}{8}$.

$$\bigcirc P = -1.$$

$$\bigcirc \hspace{-0.2cm} P=0.$$

$$P = 1.$$

CÂU 8. Tính giá trị biểu thức $P = \sin^2 10^\circ + \sin^2 20^\circ + \sin^2 30^\circ + \ldots + \sin^2 80^\circ$.

$$\bigcirc P=2.$$

$$(C) P = 4.$$

CÂU 9. Tính giá trị biểu thức $P = \tan 10^{\circ} \cdot \tan 20^{\circ} \cdot \tan 30^{\circ} \dots \tan 80^{\circ}$.

$$\bigcirc P = 1.$$

$$P = 4.$$

$$\stackrel{\cdot}{\mathbf{D}} P = 8.$$

CÂU 10. Tính giá trị biểu thức $P = \tan 1^{\circ} \tan 2^{\circ} \tan 3^{\circ} \dots \tan 89^{\circ}$.

$$(\mathbf{B}) P = 1.$$

$$\bigcirc P = 2$$

🖶 Dạng 7. TÍNH ĐÚNG SAI

CÂU 1. Với góc α bất kì. Khẳng định nào sau đây đúng?

(A) $\sin \alpha + \cos \alpha = 1$.

 $\mathbf{(B)}\sin^2\alpha + \cos^2\alpha = 1.$

 $\mathbf{(C)}\sin^3\alpha + \cos^3\alpha = 1.$

 $(\mathbf{D})\sin^4\alpha + \cos^4\alpha = 1.$

CÂU 2. Với góc α bất kì. Khẳng định nào sau đây đúng?

- $(A) \sin 2\alpha^2 + \cos^2 2\alpha = 1.$
- $\mathbf{B})\sin\left(\alpha^2\right) + \cos\left(\alpha^2\right) = 1.$
- $\sin^2 \alpha + \cos^2 (180^\circ \alpha) = 1.$
- CÂU 3. Mệnh đề nào sau đây là SAI? $(\mathbf{A}) - 1 \leqslant \sin \alpha \leqslant 1; -1 \leqslant \cos \alpha \leqslant 1.$

 $(\mathbf{D})\sin^2\alpha - \cos^2(180^\circ - \alpha) = 1.$

- \mathbf{C} $\cot \alpha = \frac{\cos \alpha}{\sin \alpha} (\sin \alpha \neq 0).$
- $(\mathbf{D})\sin^2(2018\alpha) + \cos^2(2018\alpha) = 2018.$

QUICK NOTE	CÂU 4. Mệnh đề nào	gan đây là CAT ?		
	$\mathbf{A} \ 1 + \tan^2 \alpha = \frac{1}{\sin^2 \alpha}$	1		1
	$\cot \alpha + \cot \alpha =$		$\mathbf{D} \tan \alpha . \cot \alpha =$	eob a
	CÂU 5. Để $\tan x$ có 1			
	$\mathbf{A} \ x = \pm \frac{\pi}{2}.$			
	CÂU 6. Điều kiện tro	ong đẳng thức tan	$\alpha \cdot \cot \alpha = 1$ là	l. c 7/
	$ \begin{array}{c c} & \mathbf{A} & \alpha \neq k \frac{\pi}{2}, k \in \mathbb{Z}. \\ & \mathbf{C} & \alpha \neq k \pi, k \in \mathbb{Z}. \end{array} $			$n\in\mathbb{Z}.$
		hiểu thức $P = ta$	$\ln\left(\alpha + \frac{\pi}{3}\right) + \cot\left(\alpha - \frac{\pi}{6}\right)$	
	_		$\mathbf{B} \alpha \neq \frac{2\pi}{3} + k\pi$	
	$ \begin{array}{c c} $	$\in \mathbb{Z}$.	$\mathbf{D} \alpha \neq \frac{\pi}{3} + k\pi$ $\mathbf{D} \alpha \neq -\frac{\pi}{3} + k2$	
	CÂU 8. Mệnh đề nào		\bigcirc , 3	
		0°.	$\mathbf{B} \cos 30^{\circ} < \cos$	
	$(\mathbf{C}) \tan 45^{\circ} < \tan 60$		\bigcirc $\cot 60^{\circ} > \cot$	240°.
	CÂU 9. Mệnh đề nào		1400 >	1490
	(A) $\tan 45^{\circ} > \tan 46^{\circ}$ (C) $\sin 90^{\circ}13' < \sin 90^{\circ}$		(B) $\cos 142^{\circ} > \cos 128^{\circ} > $	
	.			
		Dạng 8. CAC C	cung liên quan đặc	BIEL
		43.47	. 1 12	
	CÂU 1. Chọn mệnh co $\left(\frac{\pi}{2} - \alpha\right) =$		mệnh để sau: $\mathbf{B}\sin(\pi + \alpha) =$	$\sin \alpha$
	. \ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			
	$\mathbf{C}\cos\left(\frac{\pi}{2} + \alpha\right) =$			$=\cot(2\alpha).$
	CÂU 2. Với mọi số th	hực α , ta có $\sin\left(\frac{Q}{r}\right)$	$\left(\frac{\partial \pi}{2} + \alpha\right)$ bằng	
	$-\sin \alpha$.	$lacksquare$ $\cos \alpha$.	\bigcirc $\sin \alpha$.	\bigcirc $-\cos \alpha$.
	CÂU 3. Cho $\cos \alpha =$	$\frac{1}{3}$. Khi đó $\sin \left(\alpha - \frac{1}{3}\right)$	$-\frac{3\pi}{2}$) bằng	
	$-\frac{2}{3}$.	B $-\frac{1}{3}$.	$\frac{1}{2}$.	\bigcirc $\frac{2}{3}$.
	CÂU 4. Với mọi $\alpha \in$	9	3	<u> </u>
		$\mathbf{B} \cot \alpha.$	$\mathbf{C} \tan \alpha$.	\bigcirc $-\cot \alpha$.
	CÂU 5. Đơn giản biể	Su thức $A = \cos(\alpha)$	$\left(x-\frac{\pi}{2}\right)+\sin(\alpha-\pi)$, ta d	uçc
	$A = \cos \alpha + \sin \alpha$	`	$\mathbf{B} A = 2\sin\alpha.$	
	$\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet $			
	CÂU 6. Rút gọn biểu	$1 thức S = \cos\left(\frac{\pi}{2}\right)$	$(x-x)\sin(\pi-x)-\sin(x)$	$\left(\frac{\pi}{2}-x\right)\cos\left(\pi-x\right)$ ta được
	$\bullet \boxed{\mathbf{A}} \ S = 0.$	\2	$\mathbf{B} S = \sin^2 x -$	$\cos^2 x$.
	$S = 2\sin x \cos x$	c.	$\mathbf{B} S = \sin^2 x - \mathbf{D} S = 1.$	
	CÂU 7. Cho $P = \sin \theta$	$(\pi + \alpha) \cdot \cos(\pi - \alpha)$	(α) và $Q = \sin\left(\frac{\pi}{2} - \alpha\right) \cdot \alpha$	$\cos\left(\frac{\pi}{2} + \alpha\right)$. Mệnh đề nào
	dưới đây là đúng?		, 2	,
		P+Q=-	-1. © $P + Q = 1$.	
	CÂU 8. Biểu thức lượ	ong giác $\left[\sin\left(\frac{\pi}{2}\right)\right]$	$(x) + \sin(10\pi + x)$ $\Big ^2 + \Big \cos(x)$	$\cos\left(\frac{3\pi}{2} - x\right) + \cos\left(8\pi - x\right)\right]$
	có giá trị bằng?	L \2	/ ' ' ']	(2 / ')
	• A 1.	B) 2.	$\bigcirc \frac{1}{2}$.	\bigcirc $\frac{3}{4}$.

QUICK NOTE

CÂU 9. Giá trị biểu thức $P = \left[\tan\frac{17\pi}{4} + \tan\left(\frac{7\pi}{2} - x\right)\right]^2 + \left[\cot\frac{13\pi}{4} + \cot\left(7\pi - x\right)\right]^2$

bằng

$$\frac{1}{\sin^2 x}$$

$$\frac{2}{\sin^2 x}$$

CÂU 10. Biết rằng $\sin\left(x-\frac{\pi}{2}\right)+\sin\frac{13\pi}{2}=\sin\left(x+\frac{\pi}{2}\right)$ thì giá trị đúng của $\cos x$ là

B
$$-1$$
.

$$\frac{1}{2}$$

$$\bigcirc$$
 $-\frac{1}{2}$.

CÂU 11. Nếu cot $1,25 \cdot \tan (4\pi + 1,25) - \sin \left(x + \frac{\pi}{2}\right) \cdot \cos (6\pi - x) = 0$ thì $\tan x$ bằng

(A) 1.

 (\mathbf{C}) 0.

(D) Một giá trị khác.

CÂU 12. Biết A, B, C là các góc của tam giác ABC, mệnh đề nào sau đây đúng:

- $(\mathbf{A})\sin\left(A+C\right) = -\sin B.$
- $(\mathbf{B})\cos(A+C) = -\cos B.$
- $(\mathbf{C})\tan\left(A+C\right) = \tan B.$

 $(\mathbf{D})\cot(A+C)=\cot B.$

CÂU 13. Biết A, B, C là các góc của tam giác ABC, khi đó

- $(\mathbf{A})\sin C = -\sin\left(A + B\right).$
- (B) $\cos C = \cos (A + B)$.
- $(\mathbf{C})\tan C = \tan (A+B).$
- $(\mathbf{D})\cot C = -\cot\left(A + B\right).$

CÂU 14. Cho tam giác ABC. Khẳng định nào sau đây là **SAI**?

 \bigcirc $\cos \frac{A+C}{2} = \sin \frac{B}{2}$.

 $(\mathbf{C})\sin\left(A+B\right) = \sin C.$

 $(\mathbf{D})\cos(A+B) = \cos C.$

CÂU 15. A,B,C là ba góc của một tam giác. Hãy tìm hệ thức **SAI**:

- $(\mathbf{A})\sin A = -\sin\left(2A + B + C\right).$
- $\mathbf{B} \sin A = -\cos \frac{3A + B + C}{2}.$
- $\bigcirc \cos C = \sin \frac{A + B + 3C}{2}.$
- $(\mathbf{D})\sin C = \sin\left(A + B + 2C\right).$

🖶 Dạng 9. TÍNH BIỂU THỨC LƯỢNG GIÁC

CÂU 2. Cho góc α thỏa mãn $\cos \alpha = -\frac{\sqrt{5}}{3}$ và $\pi < \alpha < \frac{3\pi}{2}$. Tính $\tan \alpha$.

- (A) $\tan \alpha = -\frac{3}{\sqrt{5}}$. (B) $\tan \alpha = \frac{2}{\sqrt{5}}$. (C) $\tan \alpha = -\frac{4}{\sqrt{5}}$. (D) $\tan \alpha = -\frac{2}{\sqrt{5}}$.

CÂU 4. Cho góc α thỏa mãn $\cos \alpha = -\frac{12}{13}$ và $\frac{\pi}{2} < \alpha < \pi$. Tính $\tan \alpha$.

- (A) $\tan \alpha = -\frac{12}{5}$. (B) $\tan \alpha = \frac{5}{12}$. (C) $\tan \alpha = -\frac{5}{12}$. (D) $\tan \alpha = \frac{12}{5}$.

CÂU 5. Cho góc α thỏa mãn tan $\alpha=2$ và $180^{\circ}<\alpha<270^{\circ}$. Tính $P=\cos\alpha+\sin\alpha$.

- **B** $P = 1 \sqrt{5}$. **C** $P = \frac{3\sqrt{5}}{2}$. **D** $P = \frac{\sqrt{5} 1}{2}$.

CÂU 6. Cho góc α thỏa $\sin \alpha = \frac{3}{5}$ và $90^{\circ} < \alpha < 180^{\circ}$. Khẳng định nào sau đây đúng?

- (A) $\cot \alpha = -\frac{4}{5}$. (B) $\cos \alpha = \frac{4}{5}$. (C) $\tan \alpha = \frac{5}{4}$.

CÂU 7. Cho góc α thỏa $\cot \alpha = \frac{3}{4}$ và $0^{\circ} < \alpha < 90^{\circ}$. Khẳng định nào sau đây đúng?

- (A) $\cos \alpha = -\frac{4}{5}$. (B) $\cos \alpha = \frac{4}{5}$. (C) $\sin \alpha = \frac{4}{5}$.

Δ II	-	NIC	TT.
ຄຸມ	IC.K	INC	лЕ

CÂU 8. Cho góc α thỏa mãn $\sin \alpha = \frac{3}{5}$ và $\frac{\pi}{2} < \alpha < \pi$. Tính $P = \frac{\tan \alpha}{1 + \tan^2 \alpha}$

B $P = \frac{3}{7}$. **C** $P = \frac{12}{25}$.

CÂU 10. Cho góc α thỏa mãn $\sin(\pi + \alpha) = -\frac{1}{3}$ và $\frac{\pi}{2} < \alpha < \pi$. Tính $P = \tan\left(\frac{7\pi}{2} - \alpha\right)$.

(A) $P = 2\sqrt{2}$. **(B)** $P = -2\sqrt{2}$. **(C)** $P = \frac{\sqrt{2}}{4}$. **(D)** $P = -\frac{\sqrt{2}}{4}$.

CÂU 11. Cho góc α thỏa mãn $\cos \alpha = \frac{3}{5}$ và $-\frac{\pi}{2} < \alpha < 0$. Tính $P = \sqrt{5 + 3 \tan a} + 1$ $\sqrt{6-4\cot a}$.

 $\bigcirc P = 4.$

B) P = -4. **(C)** P = 6.

CÂU 12. Cho góc α thỏa mãn $\cos \alpha = \frac{3}{5}$ và $\frac{\pi}{4} < \alpha < \frac{\pi}{2}$. Tính $P = \sqrt{\tan^2 \alpha - 2 \tan \alpha + 1}$.

(A) $P = -\frac{1}{3}$. **(B)** $P = \frac{1}{3}$. **(C)** $P = \frac{7}{3}$.

CÂU 13. Cho góc α thỏa mãn $\frac{\pi}{2} < \alpha < 2\pi$ và $\tan\left(\alpha + \frac{\pi}{4}\right) = 1$. Tính $P = \cos\left(\alpha - \frac{\pi}{6}\right) + \frac{\pi}{4}$

(A) $P = \frac{\sqrt{3}}{2}$. **(B)** $P = \frac{\sqrt{6} + 3\sqrt{2}}{4}$. **(C)** $P = -\frac{\sqrt{3}}{2}$.

CÂU 14. Cho góc α thỏa mãn $\frac{\pi}{2} < \alpha < 2\pi$ và $\cot\left(\alpha + \frac{\pi}{3}\right) = -\sqrt{3}$. Tính giá trị của biểu thức $P = \sin\left(\alpha + \frac{\pi}{6}\right) + \cos\alpha$.

(A) $P = \frac{\sqrt{3}}{2}$. **(B)** P = 1.

(c) P = -1.

CÂU 15. Cho góc α thỏa mãn $\tan \alpha = -\frac{4}{3}$ và $\frac{\pi}{2} < \alpha < \pi$. Tính $P = \frac{\sin^2 \alpha - \cos \alpha}{\sin \alpha - \cos^2 \alpha}$. **(A)** $P = \frac{30}{11}$. **(B)** $P = \frac{31}{11}$. **(C)** $P = \frac{32}{11}$.

CÂU 16. Cho góc α thỏa mãn $\tan \alpha = 2$. Tính $P = \frac{3 \sin \alpha - 2 \cos \alpha}{5 \cos \alpha + 7 \sin \alpha}$.

(A) $P = -\frac{4}{9}$.
(B) $P = \frac{4}{9}$.
(C) $P = -\frac{4}{19}$.
(D) $P = \frac{4}{19}$.

(A) $P = -\frac{4}{9}$. **(B)** $P = \frac{4}{9}$.

CÂU 17. Cho góc α thỏa mãn $\cot \alpha = \frac{1}{3}$. Tính $P = \frac{3 \sin \alpha + 4 \cos \alpha}{2 \sin \alpha - 5 \cos \alpha}$

B $P = \frac{15}{13}$.

CÂU 18. Cho góc α thỏa mãn $\tan \alpha = 2$. Tính $P = \frac{2\sin^2 \alpha + 3\sin \alpha \cdot \cos \alpha + 4\cos^2 \alpha}{5\sin^2 \alpha + 6\cos^2 \alpha}$. **(A)** $P = \frac{9}{13}$. **(B)** $P = \frac{9}{65}$. **(C)** $P = -\frac{9}{65}$. **(D)** $P = \frac{24}{29}$.

CÂU 19. Cho góc α thỏa mãn $\tan \alpha = \frac{1}{2}$. Tính $P = \frac{2\sin^2 \alpha + 3\sin \alpha \cdot \cos \alpha - 4\cos^2 \alpha}{5\cos^2 \alpha - \sin^2 \alpha}$. **(a)** $P = -\frac{8}{19}$. **(b)** $P = -\frac{8}{19}$.

CÂU 20. Cho góc α thỏa mãn $\tan \alpha = 5$. Tính $P = \sin^4 \alpha - \cos^4 \alpha$.

(A) $P = \frac{9}{13}$.
(B) $P = \frac{10}{13}$.
(C) $P = \frac{11}{13}$.
(D) $P = \frac{12}{13}$.

CÂU 21. Cho góc α thỏa mãn $\sin \alpha + \cos \alpha = \frac{5}{4}$. Tính $P = \sin \alpha \cdot \cos \alpha$.

(A) $P = \frac{9}{16}$. **(B)** $P = \frac{9}{32}$. **(C)** $P = \frac{9}{8}$.

CÂU 22. Cho góc α thỏa mãn $\sin \alpha \cos \alpha = \frac{12}{25}$ và $\sin \alpha + \cos \alpha > 0$. Tính $P = \sin^3 \alpha + \cos \alpha$

(A) $P = \frac{91}{125}$.

B $P = \frac{49}{25}$.

 \mathbf{C} $P = \frac{7}{5}$.

QUICK NOTE

CÂU 23. Cho góc α thỏa mãn $0 < \alpha < \frac{\pi}{4}$ và $\sin \alpha + \cos \alpha = \frac{\sqrt{5}}{2}$. Tính $P = \sin \alpha - \cos \alpha$.

$$\bigcirc P = \frac{1}{2}$$

$$\bigcirc P = -\frac{1}{2}.$$

B
$$P = \frac{1}{2}$$
. **C** $P = -\frac{1}{2}$. **D** $P = -\frac{\sqrt{3}}{2}$.

CÂU 24. Cho góc α thỏa mãn $\sin \alpha + \cos \alpha = m$.. Tính $P = |\sin \alpha - \cos \alpha|$.

$$P = 2 - m.$$

B)
$$P = 2 - m^2$$
.

$$(\mathbf{C}) P = m^2 - 2.$$

$$\mathbf{D} P = \sqrt{2 - m^2}.$$

CÂU 25. Cho góc α thỏa mãn $\tan \alpha + \cot \alpha = 2$. Tính $P = \tan^2 \alpha + \cot^2 \alpha$.

$$\bigcirc P = 1.$$

$$\mathbf{B} P = 2.$$

$$\bigcirc P = 3$$

$$\begin{array}{c}
\hline
\mathbf{D}
\end{array} P = 4.$$

CÂU 26. Cho góc α thỏa mãn $\tan \alpha + \cot \alpha = 5$. Tính $P = \tan^3 \alpha + \cot^3 \alpha$.

$$P = 100.$$

B)
$$P = 110$$
.

$$(c) P = 112.$$

(D)
$$P = 115$$
.

CÂU 27. Cho góc α thỏa mãn $\sin \alpha + \cos \alpha = \frac{\sqrt{2}}{2}$. Tính $P = \tan^2 \alpha + \cot^2 \alpha$.

A
$$P = 12$$
.

B
$$P = 14$$
.

$$(\hat{\mathbf{C}}) P = 16.$$

CÂU 28. Cho góc α thỏa mãn $\frac{\pi}{2} < \alpha < \pi$ và $\tan \alpha - \cot \alpha = 1$. Tính $P = \tan \alpha + \cot \alpha$.

$$\bigcirc$$
 $P=1$.

B
$$P = -1$$
.

$$\mathbf{C} P = -\sqrt{5}.$$

CÂU 29. Cho góc α thỏa mãn $3\cos\alpha+2\sin\alpha=2$ và $\sin\alpha<0$. Tính $\sin\alpha$. **(A)** $\sin\alpha=-\frac{5}{13}$. **(B)** $\sin\alpha=-\frac{7}{13}$. **(C)** $\sin\alpha=-\frac{9}{13}$. **(D)** $\sin\alpha=-\frac{12}{13}$.

$$\mathbf{A}\sin\alpha = -\frac{5}{13}.$$

$$\mathbf{B}\sin\alpha = -\frac{7}{13}.$$

$$\mathbf{c} \sin \alpha = -\frac{9}{13}.$$

CÂU 30. Cho góc α thỏa mãn $\pi < \alpha < \frac{3\pi}{2}$ và $\sin \alpha - 2\cos \alpha = 1$. Tính $P = 2\tan \alpha - 2\cos \alpha$

B
$$P = \frac{1}{4}$$
.

$$P = \frac{1}{6}$$
.

Dạng 10. RÚT GỌN BIỂU THỰC

CÂU 1. Rút gon biểu thức $M = (\sin x + \cos x)^2 + (\sin x - \cos x)^2$.

(A) M = 1.

(B) M = 2.

(**c**) M = 4.

 \mathbf{D} $M = 4 \sin x \cdot \cos x$.

CÂU 2. Mệnh đề nào sau đây là đúng?

- **B** $\sin^4 x + \cos^4 x = \frac{5}{8} + \frac{3}{8}\cos 4x$.
- $\sin^4 x + \cos^4 x = \frac{3}{4} + \frac{1}{4}\cos 4x.$

CÂU 3. Mệnh đề nào sau đây là đúng?

- $(A) \sin^4 x \cos^4 x = 1 2\cos^2 x.$
- (B) $\sin^4 x \cos^4 x = 1 2\sin^2 x \cos^2 x$.
- $(\mathbf{c})\sin^4 x \cos^4 x = 1 2\sin^2 x.$
- $(\mathbf{D})\sin^4 x \cos^4 x = 2\cos^2 x 1.$

CÂU 4. Rút gon biểu thức $M = \sin^6 x + \cos^6 x$.

- $\mathbf{A} M = 1 + 3\sin^2 x \cos^2 x.$
- **(B)** $M = 1 3\sin^2 x$.

 $M = 1 - \frac{3}{2}\sin^2 2x.$

 $\overline{\bigcirc} M = 1 - \frac{3}{4} \sin^2 2x.$

CÂU 5. Rút gọn biểu thức $M = 2 (\sin^4 x + \cos^4 x + \cos^2 x \sin^2 x)^2 - (\sin^8 x + \cos^8 x)$.

- **B**) M = -1.
- (**c**) M = 2.

CÂU 6. Rút gọn biểu thức $M = \tan^2 x - \sin^2 x$.

 $(\mathbf{A}) M = \tan^2 x.$

(B) $M = \sin^2 x$.

 $\mathbf{(C)} M = \tan^2 x \cdot \sin^2 x.$

(D) M = 1.

CÂU 7. Rút gọn biểu thức $M = \cot^2 x - \cos^2 x$.

 $(\mathbf{A}) M = \cot^2 x.$

 $\mathbf{B}) M = \cos^2 x.$

(**c**) M = 1.

(**D**) $M = \cot^2 x \cdot \cos^2 x$.

CÂU 8. Rút gọn biểu thức $M = (1 - \sin^2 x) \cot^2 x + (1 - \cot^2 x)$.

- $\mathbf{A} M = \sin^2 x$.
- $\mathbf{B} M = \cos^2 x.$
- (**c**) $M = \sin^2 x$.
- (**D**) $M = \cos^2 x$.

-	IICK	
	11 (2) (4)	

CÂU 9. Rút gọn biểu thức $M = \sin^2 \alpha \tan^2 \alpha + 4 \sin^2 \alpha - \tan^2 \alpha + 3 \cos^2 \alpha$.

$$\mathbf{B}) M = \sin \alpha$$

$$\bigcirc$$
 $M=2\sin\alpha$.

CÂU 10. Rút gọn biểu thức $M = (\sin^4 x + \cos^4 x - 1) (\tan^2 x + \cot^2 x + 2)$.

$$\bigcirc$$
 $M=-4.$

$$(\mathbf{B}) M = -2.$$

$$(c) M = 2.$$

$$\bigcirc$$
 $M=4$

CÂU 11. Đơn giản biểu thức $P = \sqrt{\sin^4 \alpha + \sin^2 \alpha \cos^2 \alpha}$.

$$\mathbf{B}) P = \sin \alpha.$$

$$\mathbf{C} P = \cos \alpha.$$

$$\mathbf{D} P = |\cos \alpha|.$$

CÂU 12. Đơn giản biểu thức $P = \frac{1 + \sin^2 \alpha}{1 - \sin^2 \alpha}$.

$$P = 1 + 2\tan^2 \alpha.$$

$$\bigcirc P = -1 + 2\tan^2\alpha.$$

$$P = -\frac{2\cos\alpha}{\sin^2\alpha}.$$

$$P = \frac{2}{\sin^2 \alpha}.$$

$$\mathbf{C} P = \frac{2}{1 + \cos \alpha}$$

CÂU 14. Đơn giản biểu thức $P = \frac{1 - \sin^2 \alpha \cos^2 \alpha}{\cos^2 \alpha} - \cos^2 \alpha$.

$$\bigcirc$$
 $P=1$

$$(\mathbf{D}) P = \cot^2 \alpha.$$

CÂU 15. Đơn giản biểu thức $P = \frac{2\cos^2 x - 1}{\sin x + \cos x}$

$$(\mathbf{A}) P = \cos x + \sin x.$$

$$\bigcirc P = \cos 2x - \sin 2x.$$

CÂU 16. Đơn giản biểu thức $P = \frac{\left(\sin \alpha + \cos \alpha\right)^2 - 1}{\cot \alpha - \sin \alpha \cos \alpha}$. **A** $P = 2 \tan^2 \alpha$. **B** $P = \frac{\sin \alpha}{\cos^3 \alpha}$. **C** $P = 2 \cot^2 \alpha$.

$$\mathbf{B} P = \frac{\sin \alpha}{\cos^3 \alpha}$$

$$\bigcirc P = 2\cot^2\alpha.$$

CÂU 17. Đơn giản biểu thức $P = \left(\frac{\sin \alpha + \tan \alpha}{\cos \alpha + 1}\right)^2 + 1.$

$$\bigcirc P = 2.$$

$$\mathbf{B}) P = 1 + \tan \alpha$$

B
$$P = 1 + \tan \alpha$$
. **C** $P = \frac{1}{\cos^2 \alpha}$.

$$\mathbf{D} P = \frac{1}{\sin^2 \alpha}.$$

CÂU 18. Đơn giản biểu thức $P = \tan \alpha \left(\frac{1 + \cos^2 \alpha}{\sin \alpha} - \sin \alpha \right)$.

$$(\mathbf{B}) P = 2\cos\alpha$$

CÂU 19. Đơn giản biểu thức $P = \frac{\cot^2 x - \cos^2 x}{\cot^2 x} + \frac{\sin x \cos x}{\cot x}$.

$$(\mathbf{B}) P = -1$$

$$P = \frac{1}{2}.$$

CÂU 20. Hệ thức nào sau đây là SAI?

$$\frac{\sin^2 \alpha + 1}{2\left(1 - \sin^2 \alpha\right)} + \frac{1 + \cos^2 \alpha}{2\left(1 - \cos^2 \alpha\right)} + 1 = (\tan \alpha + \cot \alpha)^2.$$

$$\frac{\sin x + \tan x}{\tan x} = 1 + \sin x + \cot x$$

ե Dạng 11. TÍNH GIÁ TRỊ LƯỢNG GIÁC

CÂU 1. Rút gọn biểu thức $M = \cos^4 15^\circ - \sin^4 15^\circ$.

$$M=1.$$

B
$$M = \frac{\sqrt{3}}{2}$$
. **C** $M = \frac{1}{4}$.

$$\bigcirc M = \frac{1}{4}.$$

$$\bigcirc \hspace{-0.2cm} D M = 0.$$

CÂU 2. Tính giá trị của biểu thức $M = \cos^4 15^\circ - \sin^4 15^\circ + \cos^2 15^\circ - \sin^2 15^\circ$.

B
$$M = \frac{1}{2}$$
.

$$M = \frac{1}{4}$$
.

$$\bigcirc M = 0.$$

QUICK NOTE

CÂU 3. Tính giá trị của biểu thức $M = \cos^6 15^\circ - \sin^6 15^\circ$.

B
$$M = \frac{1}{2}$$
. **C** $M = \frac{1}{4}$.

$$\bigcirc M = \frac{1}{4}$$

CÂU 4. Giá trị của biểu thức $\cos \frac{\pi}{30} \cos \frac{\pi}{5} + \sin \frac{\pi}{30} \sin \frac{\pi}{5}$ là

B
$$-\frac{\sqrt{3}}{2}$$
. **C** $\frac{\sqrt{3}}{4}$.

$$\frac{\sqrt{3}}{4}$$
.

$$\bigcirc \frac{1}{2}$$
.

CÂU 5. Giá trị của biểu thức $P = \frac{\sin\frac{5\pi}{18}\cos\frac{\pi}{9} - \sin\frac{\pi}{9}\cos\frac{5\pi}{18}}{\cos\frac{\pi}{4}\cos\frac{\pi}{12} - \sin\frac{\pi}{4}\sin\frac{\pi}{12}}$ là

- (A) 1.
- $c \frac{\sqrt{2}}{2}$.
- $\bigcirc \frac{\sqrt{3}}{2}.$

CÂU 6. Giá trị đúng của biểu thức $\frac{\tan 225^\circ - \cot 81^\circ \cdot \cot 69^\circ}{\cot 261^\circ + \tan 201^\circ}$ bằng

$$\bigcirc$$
 $\sqrt{3}$.

$$\bigcirc -\sqrt{3}.$$

CÂU 7. Giá trị của biểu thức $M = \sin \frac{\pi}{24} \sin \frac{5\pi}{24} \sin \frac{7\pi}{24} \sin \frac{11\pi}{24}$ bằng $\frac{1}{2}$.

B
$$\frac{1}{4}$$
.

$$\frac{1}{8}$$
.

$$\bigcirc \frac{1}{16}$$

CÂU 8. Giá trị của biểu thức $M = \sin \frac{\pi}{48} \cos \frac{\pi}{48} \cos \frac{\pi}{24} \cos \frac{\pi}{12} \cos \frac{\pi}{6}$ là

$$\bigcirc$$
 $\frac{1}{32}$.

$$\frac{\sqrt{3}}{16}$$
.

$$\bigcirc \frac{\sqrt{3}}{32}$$
.

CÂU 9. Tính giá trị của biểu thức $M = \cos 10^{\circ} \cos 20^{\circ} \cos 40^{\circ} \cos 80^{\circ}$. **(a)** $M = \frac{1}{16} \cos 10^{\circ}$. **(b)** $M = \frac{1}{2} \cos 10^{\circ}$. **(c)** $M = \frac{1}{4} \cos 10^{\circ}$. **(d)** $M = \frac{1}{8} \cos 10^{\circ}$.

$$M = \frac{1}{16} \cos 10^{\circ}.$$

$$\mathbf{B} M = \frac{1}{2}\cos 10^{\circ}$$

$$M = \frac{1}{4} \cos 10^{\circ}.$$

CÂU 10. Tính giá trị của biểu thức $M = \cos \frac{2\pi}{7} + \cos \frac{4\pi}{7} + \cos \frac{6\pi}{7}$.

B
$$M = -\frac{1}{2}$$
.

$$\bigcirc M = 1.$$

$$\bigcirc$$
 $M=2.$

Dạng 12. TÍNH ĐÚNG SAI

CÂU 1. Công thức nào sau đây sai?

- $(\mathbf{A})\cos(a-b) = \sin a \sin b + \cos a \cos b.$
- $(\mathbf{B})\cos(a+b) = \sin a \sin b \cos a \cos b.$
- $(\mathbf{C})\sin(a-b) = \sin a \cos b \cos a \sin b.$
- $(\mathbf{D})\sin(a+b) = \sin a \cos b + \cos a \sin b.$

CÂU 2. Khẳng định nào sau đây đúng?

- $(A) \sin(2018a) = 2018 \sin a \cdot \cos a.$
- $(\mathbf{B})\sin(2018a) = 2018\sin(1009a) \cdot \cos(1009a).$
- $(\mathbf{C})\sin(2018a) = 2\sin a\cos a.$
- $(\mathbf{D})\sin(2018a) = 2\sin(1009a) \cdot \cos(1009a).$

CÂU 3. Khẳng định nào sai trong các khẳng định sau?

- $(\mathbf{A})\cos 6a = \cos^2 3a \sin^2 3a.$
- **B**) $\cos 6a = 1 2\sin^2 3a$.

 $\mathbf{C}\cos 6a = 1 - 6\sin^2 a.$

 $(\mathbf{D})\cos 6a = 2\cos^2 3a - 1.$

 $(\mathbf{D})\cos 3x = \cos^3 x - \sin^3 x.$

CÂU 5. Khẳng định nào đúng trong các khẳng định sau?

- $(A) \sin a + \cos a = \sqrt{2} \sin \left(a \frac{\pi}{4} \right).$
- $\mathbf{B}\sin a + \cos a = \sqrt{2}\sin\left(a + \frac{\pi}{4}\right).$
- $\mathbf{C}\sin a + \cos a = -\sqrt{2}\sin\left(a \frac{\pi}{4}\right).$

CÂU 6. Có bao nhiêu đẳng thức dưới đây là đồng nhất thức?

1) $\cos x - \sin x = \sqrt{2} \sin \left(x + \frac{\pi}{4}\right)$.

QUICK NOTE	$2)\cos x - \sin x = \sqrt{2}\cos x$	$\cos\left(x+\frac{\pi}{4}\right)$.		
	3) $\cos x - \sin x = \sqrt{2} \operatorname{si}$) <u>+</u> (
		\mu_ 4/		
	4) $\cos x - \sin x = \sqrt{2} \operatorname{si}$	(4 /		
	(A) 1.	B) 2.	© 3.	D) 4.
	CÂU 7. Công thức nà			
	$(\mathbf{A})\cos 3a = 3\cos a - 3\cos a$			
	$\mathbf{C}\cos 3a = 3\cos^3 a$	$-4\cos a$.	$\mathbf{D}\cos 3a = 4\cos a$	$-3\cos^3 a$.
	CÂU 8. Công thức nà		2	
	$\mathbf{A} \sin 3a = 3\sin a - 3\sin a$		$\mathbf{B}\sin 3a = 4\sin^3 a$	
	$\mathbf{C}\sin 3a = 3\sin^3 a$		$\mathbf{D}\sin 3a = 4\sin a - 2\sin a - 2\sin a - 2\sin a - 2\sin a - 3\sin $	$-3\sin^3 a$.
		(b) = 0 thì khẳng định n		
	$ \sin\left(a+2b\right) = \sin\left(a+2b\right) = $		$ \sin\left(a+2b\right) =$	
	$ \sin\left(a+2b\right) = \cos\left(a+2b\right) = $	$\cos a .$	$(\mathbf{D})\left \sin\left(a+2b\right)\right =$	$ \cos b $.
	· · · · · · · · · · · · · · · · · · ·	(b) = 0 thì khẳng định		
	$ \cos(a+2b) = $		$ \cos(a+2b) =$	
	$ \cos\left(a+2b\right) = $	$\cos a$.	$(\mathbf{D})\left \cos\left(a+2b\right)\right =$	$ \cos b $.
	🗁 Dạn	ng 13. VẬN DỤNG CỐ	ÔNG THỨC LƯỢNG	GIÁC
	^			
		$\sin(x-y)\cos y + \cos(y)$		
			$\mathbf{B} M = \sin x.$	
	$\mathbf{C} M = \sin x \cos 2y$	•	$\mathbf{D} M = \cos x \cos 2y$	y.
		$\cos(a+b)\cos(a-b)$	_ ` ' ' '	
	$M = 1 - 2\cos^2 a$	ı.	$\mathbf{B} M = 1 - 2\sin^2 \alpha$	a.
			$\mathbf{D}) M = \sin 4a.$	
		$\cos(a+b)\cos(a-b) +$		
	$\mathbf{A} M = 1 - 2\sin^2 b$		$\mathbf{B} M = 1 + 2\sin^2 \theta$	b.
			$\mathbf{D}) M = \sin 4b.$	
		tu đây của x thỏa mãn		
	(A) 18°.	B) 30°.	(C) 36°.	D) 45°.
	CÂU 5. Đẳng thức nà		1	
		$\frac{\ln(b-a)}{\ln a \cdot \sin b}$.	B $\cos^2 a = \frac{1}{2} (1 + \frac{1}{2})^2$	$\cos 2a$).
	$\mathbf{c}\sin\left(a+b\right) = \frac{1}{2}\sin\left(a+b\right)$			$\frac{\ln(a+b)}{\ln(a+b)}$
	2			$\cos a \cdot \cos b$
	1	ức đúng trong các công		
	_	$\left[\cos\left(a+b\right)-\cos\left(a-b\right)\right]$	b)].	
	$\mathbf{B}\sin a - \sin b = 2\mathrm{s}$	$\sin \frac{a+b}{2} \cdot \cos \frac{a-b}{2}$.		
	$\mathbf{C}\tan 2a = \frac{2\tan a}{1-\tan a}$	2 2		
	1 0011	CC .		
	$\bigcirc \cos 2a = \sin^2 a - $, _, ,	π \	
	CAU 7. Rút gọn $M=$	$=\cos\left(x+\frac{\pi}{4}\right)-\cos\left(x-\frac{\pi}{4}\right)$	$-\frac{n}{4}$).	
			$\bigcirc M = \sqrt{2}\cos x.$	
	CÂU 8. Tam giác AB	$C \operatorname{coc} \operatorname{cos} A = \frac{4}{-} \operatorname{và} \operatorname{cos} A$	$B = \frac{5}{2}$. Khi đó $\cos C$	bằng
				9.9
	$\frac{\mathbf{A}}{65}$.	B $-\frac{56}{65}$.	$\bigcirc \frac{16}{65}$.	\bigcirc $\frac{33}{65}$.
	CÂU 9. Cho A, B, C	là ba góc nhọn thỏa m	$ \tilde{\text{nan}} \tan A = \frac{1}{2}, \tan B $	$=\frac{1}{5}$, $\tan C = \frac{1}{8}$. Tổng
	A+B+C bằng	- '	2	5 8

QUICK NOTE

 $\frac{\pi}{2}$.

CÂU 10. Cho A, B, C là các góc của tam giác ABC. Khi đó $P = \sin A + \sin B + \sin C$ tương đương với

 $P = 4 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}.$ $P = 2 \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2}.$

CÂU 11. Cho A, B, C là các góc của tam giác ABC. Khi đó $P = \sin 2A + \sin 2B + \sin 2C$ tương đương với:

 $(\mathbf{A}) P = 4\cos A \cdot \cos B \cdot \cos C.$

 $\mathbf{B}) P = 4\sin A \cdot \sin B \cdot \sin C.$

 $(\mathbf{C}) P = -4 \cos A \cdot \cos B \cdot \cos C.$

 $P = -4\sin A \cdot \sin B \cdot \sin C$

CÂU 12. Cho A, B, C là các góc của tam giác ABC (không phải tam giác vuông). Khi đó

 $P = -\tan\frac{A}{2} \cdot \tan\frac{B}{2} \cdot \tan\frac{C}{2}.$

 $\mathbf{(C)} P = -\tan \cdot \tan B \cdot \tan C.$

CÂU 13. Cho A, B, C là các góc của tam giác ABC. Khi đó $P = \tan \frac{A}{2} \cdot \tan \frac{B}{2} + \tan \frac{B}{2}$ $\tan \frac{C}{2} + \tan \frac{C}{2} \cdot \tan \frac{A}{2}$ tương đương với

B P = -1.

Dáp án khác.

CÂU 14. Trong $\triangle ABC$, nếu $\frac{\sin B}{\sin C} = 2\cos A$ thì $\triangle ABC$ là tam giác có tính chất nào sau đây?

(\mathbf{A}) Cân tại B.

(**B**) Cân tại A.

(**C**) Cân tại C.

(**D**) Vuông tại B.

CÂU 15. Trong $\triangle ABC$, nếu $\frac{\tan A}{\tan C} = \frac{\sin^2 A}{\sin^2 C}$ thì $\triangle ABC$ là tam giác gì?

(A) Tam giác vuông.

(B) Tam giác cân.

(C) Tam giác đều.

(D) Tam giác vuông hoặc cân.

🖶 Dạng 14. TÍNH BIỂU THỨC LƯỢNG GIÁC

CÂU 1. Cho góc α thỏa mãn $\frac{\pi}{2} < \alpha < \pi$ và $\sin \alpha = \frac{4}{5}$. Tính $P = \sin 2 (\alpha + \pi)$. **(A)** $P = -\frac{24}{25}$. **(B)** $P = \frac{24}{25}$. **(C)** $P = -\frac{12}{25}$. **(D)** $P = \frac{12}{25}$

CÂU 2. Cho góc α thỏa mãn $0 < \alpha < \frac{\pi}{2}$ và $\sin \alpha = \frac{2}{3}$. Tính $P = \frac{1 + \sin 2\alpha + \cos 2\alpha}{\sin \alpha + \cos \alpha}$

A $P = -\frac{2\sqrt{5}}{2}$. **B** $P = \frac{3}{2}$.

© $P = -\frac{3}{2}$. **D** $P = \frac{2\sqrt{5}}{2}$.

CÂU 3. Biết $\sin(\pi - \alpha) = -\frac{3}{5}$ và $\pi < \alpha < \frac{3\pi}{2}$. Tính $P = \sin\left(\alpha + \frac{\pi}{6}\right)$.

A $P = -\frac{3}{5}$. **B** $P = \frac{3}{5}$.

 \mathbf{C} $P = \frac{-4 - 3\sqrt{3}}{10}$. \mathbf{D} $P = \frac{4 - 3\sqrt{3}}{10}$.

CÂU 4. Cho góc α thỏa mãn $\sin \alpha = \frac{3}{5}$. Tính $P = \sin \left(\alpha + \frac{\pi}{6}\right) \sin \left(\alpha - \frac{\pi}{6}\right)$. **(A)** $P = \frac{11}{100}$. **(B)** $P = -\frac{11}{100}$. **(C)** $P = \frac{7}{25}$. **(D)** $P = \frac{10}{11}$.

CÂU 5. Cho góc α thỏa mãn $\sin \alpha = \frac{4}{5}$. Tính $P = \cos 4\alpha$.

(A) $P = \frac{527}{625}$.
(B) $P = -\frac{527}{625}$.
(C) $P = \frac{524}{625}$.

 $P = -\frac{524}{625}$

CÂU 6. Cho góc α thỏa mãn $\sin 2\alpha = -\frac{4}{5}$ và $\frac{3\pi}{4} < \alpha < \pi$. Tính $P = \sin \alpha - \cos \alpha$.

(A) $P = \frac{3}{\sqrt{5}}$. (B) $P = -\frac{3}{\sqrt{5}}$. (C) $P = \frac{\sqrt{5}}{3}$.

\sim	JICK	$M \cap I$	
Ыι	$II \cup IV$		

CÂU 7. Cho góc α thỏa mãn $\sin 2\alpha = \frac{2}{3}$. Tính $P = \sin^4 \alpha + \cos^4 \alpha$.

B
$$P = \frac{17}{81}$$
.

$$ightharpoonup P = rac{7}{9}.$$

CÂU 8. Cho góc α thỏa mãn $\cos \alpha = \frac{5}{13}$ và $\frac{3\pi}{2} < \alpha < 2\pi$. Tính $P = \tan 2\alpha$.

(A) $P = -\frac{120}{119}$.
(B) $P = -\frac{119}{120}$.
(C) $P = \frac{120}{119}$.
(D) $P = \frac{119}{120}$.

$$P = -\frac{120}{119}.$$

B
$$P = -\frac{119}{120}$$

$$\bigcirc P = \frac{120}{119}.$$

CÂU 9. Cho góc α thỏa mãn $\cos 2\alpha = -\frac{2}{3}$. Tính $P = (1 + 3\sin^2\alpha)(1 - 4\cos^2\alpha)$.

A
$$P = 12$$
.

B
$$P = \frac{21}{2}$$
.

$$P = 6.$$

CÂU 10. Cho góc α thỏa mãn $\cos \alpha = \frac{3}{4}$ và $\frac{3\pi}{2} < \alpha < 2\pi$. Tính $P = \cos \left(\frac{\pi}{3} - \alpha\right)$.

B
$$P = \frac{3 - \sqrt{21}}{8}$$
.

$$P = \frac{3\sqrt{3} + \sqrt{7}}{8}$$

(A)
$$P = \frac{3 + \sqrt{21}}{8}$$
. (B) $P = \frac{3 - \sqrt{\frac{4}{21}}}{8}$. (C) $P = \frac{3\sqrt{3} + \sqrt{7}}{8}$. (D) $P = \frac{3\sqrt{3} - \sqrt{7}}{8}$.

CÂU 11. Cho góc α thỏa mãn $\cos \alpha = -\frac{4}{5}$ và $\pi < \alpha < \frac{3\pi}{2}$. Tính $P = \tan \left(\alpha - \frac{\pi}{4}\right)$.

(A)
$$P = -\frac{1}{7}$$
. **(B)** $P = \frac{1}{7}$.

B
$$P = \frac{1}{7}$$
.

$$P = -7.$$

CÂU 12. Cho góc α thỏa mãn $\cos 2\alpha = -\frac{4}{5}$ và $\frac{\pi}{4} < \alpha < \frac{\pi}{2}$. Tính $P = \cos \left(2\alpha - \frac{\pi}{4}\right)$.

(A)
$$P = \frac{\sqrt{2}}{10}$$
. (B) $P = -\frac{\sqrt{2}}{10}$. (C) $P = -\frac{1}{5}$.

$$P = -\frac{1}{5}.$$

CÂU 13. Cho góc α thỏa mãn $\cos \alpha = -\frac{4}{5}$ và $\pi < \alpha < \frac{3\pi}{2}$. Tính $P = \sin \frac{\alpha}{2} \cdot \cos \frac{3\alpha}{2}$. **(a)** $P = -\frac{39}{50}$. **(b)** $P = \frac{49}{50}$.

$$P = -\frac{39}{50}.$$

B
$$P = \frac{49}{50}$$
.

$$P = -\frac{49}{50}$$

$$P = \frac{39}{50}$$
.

CÂU 14. Cho góc α thỏa mãn $\cot\left(\frac{5\pi}{2} - \alpha\right) = 2$. Tính $P = \tan\left(\alpha + \frac{\pi}{4}\right)$.

A
$$P = \frac{1}{2}$$
.

B
$$P = -\frac{1}{2}$$
.

©
$$P = 3$$
.

$$\bigcirc P = 4$$

CÂU 15. Cho góc α thỏa mãn cot $\alpha = 15$. Tính $P = \sin 2\alpha$. **(A)** $P = \frac{11}{113}$. **(B)** $P = \frac{13}{113}$. **(C)** $P = \frac{15}{113}$.

B
$$P = \frac{13}{113}$$

$$P = \frac{15}{113}$$

$$P = \frac{17}{113}$$
.

CÂU 16. Cho góc α thỏa mãn $\cot \alpha = -3\sqrt{2}$ và $\frac{\pi}{2} < \alpha < \pi$. Tính $P = \tan \frac{\alpha}{2} + \cot \frac{\alpha}{2}$.

(A)
$$P = 2\sqrt{19}$$
. **(B)** $P = -2\sqrt{19}$. **(C)** $P = \sqrt{19}$.

$$\stackrel{2}{\mathbf{C}}P = \sqrt{19}$$

$$\widehat{\mathbf{D}}) P = -\sqrt{19}.$$

CÂU 17. Cho góc α thỏa mãn $\tan \alpha = -\frac{4}{3}$ và $\alpha \in \left(\frac{3\pi}{2}; 2\pi\right]$. Tính $P = \sin \frac{\alpha}{2} + \cos \frac{\alpha}{2}$

B
$$P = -\sqrt{5}$$
. **C** $P = -\frac{\sqrt{5}}{5}$. **D** $P = \frac{\sqrt{5}}{5}$.

CÂU 18. Cho góc α thỏa mãn $\tan \alpha = -2$. Tính $P = \frac{\sin 2\alpha}{\cos 4\alpha + 1}$.

(A) $P = \frac{10}{9}$.
(B) $P = \frac{9}{10}$.
(C) $P = -\frac{10}{9}$.

$$\bigcirc P = \frac{10}{9}.$$

$$P = -\frac{10}{9}$$

$$P = -\frac{9}{10}$$
.

CÂU 19. Cho góc α thỏa mãn $\tan \alpha + \cot \alpha < 0$ và $\sin \alpha = \frac{1}{5}$. Tính $P = \sin 2\alpha$.

$$\bigcirc P = \frac{2\sqrt{6}}{25}$$

(A)
$$P = \frac{4\sqrt{6}}{25}$$
. **(B)** $P = -\frac{4\sqrt{6}}{25}$. **(C)** $P = \frac{2\sqrt{6}}{25}$.

CÂU 20. Cho góc α thỏa mãn $\frac{\pi}{2} < \alpha < \pi$ và $\sin \alpha + 2\cos \alpha = -1$. Tính $P = \sin 2\alpha$.

$$P = \frac{24}{25}$$
.

$$P = \frac{2\sqrt{6}}{5}$$

$$ightharpoonup P = -rac{24}{25}.$$

B
$$P = \frac{2\sqrt{6}}{5}$$
. **C** $P = -\frac{24}{25}$. **D** $P = -\frac{2\sqrt{6}}{5}$.

CÂU 21. Biết $\sin a = \frac{5}{13}; \cos b = \frac{3}{5}; \frac{\pi}{2} < a < \pi; 0 < b < \frac{\pi}{2}.$ Hãy tính $\sin (a + b)$.

$$A \frac{56}{65}$$
.

B
$$\frac{63}{65}$$
.

$$\mathbf{c} - \frac{33}{65}$$

$$\bigcirc$$
 0.

CÂU 22. Nếu biết rằng $\sin \alpha = \frac{5}{13} \left(\frac{\pi}{2} < \alpha < \pi \right), \cos \beta = \frac{3}{5} \left(0 < \beta < \frac{\pi}{2} \right)$ thì giá trị đúng của biểu thức $\cos(\alpha - \beta)$ là

$$\triangle \frac{16}{65}$$
.

$$-\frac{16}{65}$$
.

$$\frac{18}{65}$$
.

$$-\frac{18}{65}$$
.

QUICK NOTE

CÂU 23. Cho hai góc nhọn a; b và biết rằng $\cos a = \frac{1}{3}; \cos b = \frac{1}{4}$. Tính giá trị của biểu

 \bigcirc $-\frac{117}{144}$. \bigcirc $-\frac{119}{144}$.

CÂU 24. Nếu a,b là hai góc nhọn và $\sin a = \frac{1}{3}$; $\sin b = \frac{1}{2}$ thì $\cos 2 (a+b)$ có giá trị bằng

(A) $\frac{7-2\sqrt{6}}{18}$. (B) $\frac{7+2\sqrt{6}}{18}$. (C) $\frac{7+4\sqrt{6}}{18}$. (D) $\frac{7-4\sqrt{6}}{18}$.

CÂU 25. Cho $0 < \alpha, \beta < \frac{\pi}{2}$ và thỏa mãn $\tan \alpha = \frac{1}{7}$, $\tan \beta = \frac{3}{4}$. Góc $\alpha + \beta$ có giá trị

 $\frac{\pi}{4}$

CÂU 26. Cho x,y là các góc nhọn và dương thỏa mãn $\cot x = \frac{3}{4}$, $\cot y = \frac{1}{7}$. Tổng x+ybằng

 \triangle $\frac{\pi}{4}$.

 \bigcirc $\frac{3\pi}{4}$.

 $(\mathbf{c}) \frac{\pi}{2}$.

CÂU 27. Nếu α, β, γ là ba góc nhọn thỏa mãn $\tan{(\alpha + \beta)} \cdot \sin{\gamma} = \cos{\gamma}$ thì

(A) $\alpha + \beta + \gamma = \frac{\pi}{4}$. (B) $\alpha + \beta + \gamma = \frac{\pi}{3}$. (C) $\alpha + \beta + \gamma = \frac{\pi}{2}$. (D) $\alpha + \beta + \gamma = \frac{3\pi}{4}$.

CÂU 28. Biết rằng $\tan a = \frac{1}{2} (0 < a < 90^{\circ})$ và $\tan b = -\frac{1}{3} (90^{\circ} < b < 180^{\circ})$ thì biểu thức $\cos(2a-b)$ có giá trị bằng

 $-\frac{\sqrt{10}}{10}$.

B $\frac{\sqrt{10}}{10}$.

 \bigcirc $-\frac{\sqrt{5}}{5}$.

CÂU 30. Nếu $\tan{(a+b)} = 7$, $\tan{(a-b)} = 4$ thì giá trị đúng của $\tan{2a}$ là $\mathbf{A} - \frac{11}{27}$. $\mathbf{B} \frac{11}{27}$. $\mathbf{C} - \frac{13}{27}$. $\mathbf{D} \frac{1}{2}$

CÂU 31. Nếu $\sin \alpha \cdot \cos (\alpha + \beta) = \sin \beta$ với $\alpha + \beta \neq \frac{\pi}{2} + k\pi, \alpha \neq \frac{\pi}{2} + l\pi, (k, l \in \mathbb{Z})$ thì

 $(\mathbf{A})\tan\left(\alpha+\beta\right) = 2\cot\alpha.$

(B) $\tan (\alpha + \beta) = 2 \cot \beta$.

(C) $\tan (\alpha + \beta) = 2 \tan \beta$.

 $(\mathbf{D})\tan{(\alpha+\beta)}=2\tan{\alpha}.$

CÂU 32. Nếu $\alpha + \beta + \gamma = \frac{\pi}{2}$ và $\cot \alpha + \cot \gamma = 2 \cot \beta$ thì $\cot \alpha \cdot \cot \gamma$ bằng **(A)** $\sqrt{3}$. **(D)** -3

CÂU 33. Nếu tan α và tan β là hai nghiệm của phương trình $x^2 + px + q = 0 \ (q \neq 1)$ thì $\tan (\alpha + \beta)$ bằng

 $\bigcirc \mathbf{B} - \frac{p}{q-1}$.

 $\bigcirc \frac{2p}{1-a}$.

CÂU 34. Nếu tan α ; tan β là hai nghiệm của phương trình $x^2 - px + q = 0$ $(p \cdot q \neq 0)$. Và cot α ; cot β là hai nghiệm của phương trình $x^2 - rx + s = 0$ thì tích P = rs bằng $\frac{1}{pq}$.

(a) pq.

(b) $\frac{q}{p^2}$.

(c) $\frac{1}{pq}$.

(d) $\frac{q}{p^2}$.

CÂU 35. Nếu tan α và tan β là hai nghiệm của phương trình $x^2 - px + q = 0 \ (q \neq 0)$ thì giá trị biểu thức $P = \cos^2(\alpha + \beta) + p\sin(\alpha + \beta) \cdot \cos(\alpha + \beta) + q\sin^2(\alpha + \beta)$ bằng:

 $(\mathbf{A}) p.$

🖶 Dạng 15. RÚT GỌN BIỂU THỨC

CÂU 1. Rút gọn biểu thức $M = \tan x - \tan y$.

 $(\mathbf{A}) M = \tan(x - y).$

 $\bigcirc M = \frac{\sin(x-y)}{\cos x \cdot \cos y}$

\sim	JICK	$M \cap I$	
Ыι	$II \cup IV$		

$\sim V$		\cap T	
	- 1	-	_
$\mathbf{L} \cdot \mathbf{N}$	- 6' 1	9/11	_

CÂU 2. Rút gọn biểu thức $M = \cos^2\left(\frac{\pi}{4} + \alpha\right) - \cos^2\left(\frac{\pi}{4} - \alpha\right)$. (A) $M = \sin 2\alpha$.

(B) $M = \cos 2\alpha$.

(c) $M = -\cos 2\alpha$.

 $\mathbf{D}M = -\sin 2\alpha.$

CÂU 3. Chọn đẳng thức đúng

 $(\mathbf{A}) \cos^2\left(\frac{\pi}{4} + \frac{a}{2}\right) = \frac{1 - \sin a}{2}.$ $(\mathbf{C}) \cos^2\left(\frac{\pi}{4} + \frac{a}{2}\right) = \frac{1 - \cos a}{2}.$

CÂU 4. Gọi $M = \frac{\sin(y-x)}{\sin x \cdot \sin y}$ thì

 $\mathbf{A} M = \tan x - \tan y$

 $\mathbf{(C)} M = \cot y - \cot x.$

CÂU 5. Gọi $M = \cos x + \cos 2x + \cos 3x$ thì

 $(\mathbf{A}) M = 2\cos 2x (\cos x + 1).$

(C) $M = \cos 2x (2\cos x - 1)$.

 $\mathbf{(D)} M = \cos 2x (2\cos x + 1).$

CÂU 6. Rút gọn biểu thức $M = \frac{\sin 3x - \sin x}{2\cos^2 x - 1}$

(A) $\tan 2x$.

 $(\mathbf{B})\sin x.$

 $(\mathbf{C}) 2 \tan x.$

 $(\mathbf{D}) 2 \sin x.$

CÂU 7. Rút gọn biểu thức $A = \frac{1+\cos x + \cos 2x + \cos 3x}{2\cos^2 x + \cos x - 1}$

 $(\mathbf{A})\cos x.$

(B) $2\cos x - 1$.

 $(\mathbf{C}) 2 \cos x.$

 $(\mathbf{D})\cos x - 1.$

CÂU 8. Rút gọn biểu thức $A = \frac{\tan \alpha - \cot \alpha}{\tan \alpha + \cot \alpha}$

 (\mathbf{A}) 0.

(B) $2\cos^2 x$.

 $(\mathbf{D})\cos 2x.$

CÂU 9. Rút gọn biểu thức $A = \frac{1 + \sin 4\alpha - \cos 4\alpha}{1 + \sin 4\alpha + \cos 4\alpha}$

(A) $\sin 2\alpha$.

(B) $\cos 2\alpha$.

(C) $\tan 2\alpha$.

(**D**) $\cot 2\alpha$.

CÂU 10. Biểu thức $A=\frac{3-4\cos2\alpha+\cos4\alpha}{3+4\cos2\alpha+\cos4\alpha}$ có kết quả rút gọn bằng

 $(\mathbf{A}) - \tan^4 \alpha$.

 $(\mathbf{B}) \tan^4 \alpha$.

 $(\mathbf{C}) - \cot^4 \alpha$.

 \bigcirc $\cot^4 \alpha$.

CÂU 12. Rút gọn biểu thức $A = \frac{\sin 2\alpha + \sin \alpha}{1 + \cos 2\alpha + \cos \alpha}$

(A) $\tan \alpha$.

(B) $2 \tan \alpha$.

(c) $\tan 2\alpha + \tan \alpha$.

(**D**) $\tan 2\alpha$.

CÂU 13. Rút gọn biểu thức $A = \frac{1 - \sin a - \cos 2a}{\sin a}$

(A) 1.

(B) $\tan \alpha$.

(**D**) $2 \tan \alpha$.

CÂU 14. Rút gọn biểu thức $A=\dfrac{\sin x+\sin\dfrac{x}{2}}{1+\cos x+\cos\dfrac{x}{2}}$ được kết quả là

 \bigcirc $\tan \frac{x}{2}$.

 \bigcirc cot x.

 \mathbf{C} $\tan^2\left(\frac{\pi}{4}-x\right)$.

 \bigcirc $\sin x$.

CÂU 15. Rút gọn biểu thức $A = \sin \alpha \cdot \cos^5 \alpha - \sin^5 \alpha \cdot \cos \alpha$. **A** $\frac{1}{2} \sin 2\alpha$. **B** $-\frac{1}{2} \sin 4\alpha$. **C** $\frac{3}{4} \sin 4\alpha$.

🖶 Dạng 16. TÌM GIÁ TRỊ LỚN NHẤT-GIÁ TRỊ NHỎ NHẤT

CÂU 1. Tìm giá trị lớn nhất M và nhỏ nhất m của biểu thức $P = 3 \sin x - 2$.

(A) M = 1, m = -5. (B) M = 3, m = 1.

(**C**) M = 2, m = -2. (**D**) M = 0, m = -2.

CÂU 2. Cho biểu thức $P=-2\sin$	$a\left(x+\frac{\pi}{3}\right)+2$. Mệnh đề nào sau đây là đ	đúng?
--	--	-------

$$P \geqslant 0, \forall x \in \mathbb{R}.$$

CÂU 3. Biểu thức $P = \sin\left(x + \frac{\pi}{3}\right) - \sin x$ có tất cả bao nhiêu giá trị nguyên?

- (A) 1.
- **(B)** 2.

CÂU 4. Tìm giá trị lớn nhất M và nhỏ nhất m của biểu thức $P = \sin^2 x + 2\cos^2 x$.

- (A) M = 3, m = 0.
- **(B)** M = 2, m = 0.
- (**c**) M = 2, m = 1.
- **(D)** M = 3, m = 1.

CÂU 5. Gọi M,m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P= $8\sin^2 x + 3\cos 2x$. Tính $T = 2M - m^2$.

- **(A)** T = 1.
- **(B)** T=2.
- (**c**) T = 112.
- **(D)** T = 130.

CÂU 6. Cho biểu thức $P = \cos^4 x + \sin^4 x$. Mệnh đề nào sau đây là đúng?

(A) $P \leq 2, \forall x \in \mathbb{R}$.

(B) $P \leq 1, \forall x \in \mathbb{R}.$

 $(\mathbf{C}) P \leqslant \sqrt{2}, \forall x \in \mathbb{R}.$

 \triangleright $P \leqslant \frac{\sqrt{2}}{2}, \forall x \in \mathbb{R}.$

CÂU 7. Tìm giá trị lớn nhất M và nhỏ nhất m của biểu thức $P = \sin^4 x - \cos^4 x$.

(A) M = 2, m = -2.

B) $M = \sqrt{2}, m = -\sqrt{2}$.

(**c**) M = 1, m = -1.

 $M = 1, m = \frac{1}{2}.$

CÂU 8. Tìm giá trị lớn nhất M và nhỏ nhất m của biểu thức $P = \sin^6 x + \cos^6 x$.

- M = 2, m = 0.

- **B** $M = 1, m = \frac{1}{2}$. **C** $M = 1, m = \frac{1}{4}$. **D** $M = \frac{1}{4}, m = 0$.

CÂU 9. Tìm giá trị lớn nhất M và nhỏ nhất m của biểu thức $P = 1 - 2 |\cos 3x|$.

- (A) M = 3, m = -1. (B) M = 1, m = -1. (C) M = 2, m = -2. (D) M = 0, m = -2.

CÂU 10. Tìm giá trị lớn nhất M của biểu thức $P = 4\sin^2 x + \sqrt{2}\sin\left(2x + \frac{\pi}{4}\right)$.

- $(\mathbf{A}) M = \sqrt{2}.$
- **(B)** $M = \sqrt{2} 1$. **(C)** $M = \sqrt{2} + 1$. **(D)** $M = \sqrt{2} + 2$.

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

		•		•	•	•	•	•						•	•	•	•	•			

•	•	•	•	•	•	٠	٠	٠	٠	٠	•	•	•	•	•	•	•	•	•	•	•	٠	٠	٠	٠	٠	•	•	•	•	•	

LỜI GIẢI CHI 1

Dạng 1. LÝ THUYẾT

CÂU 1. Quy ước chiều dương của một góc lượng giác là:

- (A) Luôn cùng chiều quay kim đồng hồ.
- (B) Luôn ngược chiều quay kim đồng hồ.
- (C) Có thể cùng chiều quay kim đồng hồ mà cũng có thể là ngược chiều quay kim đồng hồ.
- (D) Không cùng chiều quay kim đồng hồ và cũng không ngược chiều quay kim đồng hồ.

🗭 Lời giải.

Chọn đáp án (B)

CÂU 2. Trên đường tròn lượng giác, mỗi cung lượng giác AB xác định:

- (A) Một góc lượng giác tia đầu OA, tia cuối OB.
- (B) Hai góc lượng giác tia đầu OA, tia cuối OB.
- (**c**) Bốn góc lượng giác tia đầu OA, tia cuối OB.
- \bigcirc Vô số góc lượng giác tia đầu OA, tia cuối OB.

Dòi giải.

Chọn đáp án (D)

CÂU 3. Khẳng định nào sau đây là đúng khi nói về "đường tròn lượng giác"?

- (A) Mỗi đường tròn là một đường tròn lượng giác.
- (\mathbf{B}) Mỗi đường tròn có bán kính R=1 là một đường tròn lượng giác.
- (\mathbf{C}) Mỗi đường tròn có bán kính R=1, tâm trùng với gốc tọa độ là một đường tròn lượng giác.
- (\mathbf{D}) Mỗi đường tròn có bán kính R=1, tâm trùng với gốc tọa độ, được định hướng và lấy điểm A(1;0) làm điểm gốc là một đường tròn lượng giác.

Dòi giải.

Chọn đáp án (D)

🖶 Dang 2. ĐỐI TỪ ĐÔ SANG RADIAN VÀ NGƯỢC LAI

CÂU 1. Trên đường tròn cung có số đo 1 rad là?

(A) Cung có độ dài bằng 1.

(B) Cung tương ứng với góc ở tâm 60°.

(C) Cung có độ dài bằng đường kính.

(**D**) Cung có độ dài bằng nửa đường kính.

Lời giải.

Cung có độ dài bằng bán kính (nửa đường kính) thì có số đó bằng 1 rad.

Chon đáp án (D)

CÂU 2. Khẳng định nào sau đây là đúng?

- $(\mathbf{A}) \pi \operatorname{rad} = 1^{\circ}.$
 - (B) $\pi \text{ rad} = 60^{\circ}$.
- $(\mathbf{c}) \pi \text{ rad } = 180^{\circ}.$
- $\mathbf{D} \pi \operatorname{rad} = \left(\frac{180}{\pi}\right)^{\circ}.$

Dèi giải.

 π rad tướng ứng với 180°.

Chọn đáp án (C)

CÂU 3. Khẳng định nào sau đây là đúng?

- \bigcirc 1 rad = 1°.
- **B**) $1 \text{ rad} = 60^{\circ}$.
- **(c)** $1 \text{ rad} = 180^{\circ}$.

Dòi giải.

Ta có π rad tướng ứng với 180°. Suy ra 1 rad tương ứng với x° . Vậy $x = \frac{180 \cdot 1}{\pi}$.

Chọn đáp án (D)

CÂU 4. Nếu một cung tròn có số đo là a° thì số đo radian của nó là

- (A) $180\pi a$.

 $\bigcirc \frac{\pi}{180a}$

Dòi giải.

Áp dụng công thức $\alpha = \frac{a \cdot \pi}{180}$ với α tính bằng radian, a tính bằng độ.

Chọn đáp án \bigcirc

CÂU 5. Nếu một cung tròn có số đo là $3a^{\circ}$ thì số đo radian của nó là

$$\frac{180}{a\pi}$$
.

$$\bigcirc \frac{60}{a\pi}.$$

🗩 Lời giải.

Áp dụng công thức $\alpha = \frac{a \cdot \pi}{180}$ với α tính bằng radian, a tính bằng độ.

Trong trường hợp này là $3a \rightarrow \alpha = \frac{3a \cdot \pi}{180} = \frac{a\pi}{60}$

Chọn đáp án \bigcirc

CÂU 6. Đổi số đo của góc 70° sang đơn vị radian.

$$\frac{8}{18}$$
.

$$\bigcirc \frac{7\pi}{18}.$$

$$\bigcirc \hspace{-3pt} \frac{7}{18\pi}.$$

🗩 Lời giải.

Áp dụng công thức $\alpha = \frac{a \cdot \pi}{180}$ với α tính bằng radian, a tính bằng độ.

Ta có $\alpha = \frac{a \cdot \pi}{180} = \frac{70\pi}{180} = \frac{7\pi}{18}.$

Chọn đáp án (C)

CÂU 7. Đổi số đo của góc 108° sang đơn vị radian.

$$\bigcirc$$
 $\frac{3\pi}{2}$.

$$\bigcirc \frac{\pi}{4}$$

p Lời giải.

Tương tự như câu trên.

Chọn đáp án A

CÂU 8. Đổi số đo của góc $45^{\circ}32'$ sang đơn vị radian với độ chính xác đến hàng phần nghìn.

🗩 Lời giải.

Áp dụng công thức $\alpha = \frac{a \cdot \pi}{180}$ với α tính bằng radian, a tính bằng độ.

Trước tiên ta đổi $45^{\circ}32' = \left(45 + \frac{32}{60}\right)^{\circ}$.

Áp dụng công thức, ta được $\alpha=\dfrac{\left(45+\dfrac{32}{60}\right)\cdot\pi}{180}=0,7947065861.$

Chọn đáp án (C)

CÂU 9. Đổi số đo của góc $40^{\circ}25'$ sang đơn vị radian với độ chính xác đến hàng phần trăm.

D 0,71.

∞ Lời giải.

Áp dụng công thức $\alpha=\frac{a\cdot\pi}{180}$ với α tính bằng radian, a tính bằng độ.

Trước tiên ta đổi $40^{\circ}25' = \left(40 + \frac{25}{60}\right)^{\circ}$.

Áp dụng công thức, ta được $\alpha = \frac{\left(40 + \frac{25}{60}\right) \cdot \pi}{180} = \frac{97\pi}{432} = 0,705403906.$

Chọn đáp án \bigcirc

CÂU 10. Đổi số đo của góc $-125^{\circ}45'$ sang đơn vị radian.

$$-\frac{503\pi}{720}$$
.

B
$$\frac{503\pi}{720}$$
.

$$-\frac{251\pi}{360}$$
.

🗩 Lời giải.

Tương tự như câu trên.

Chọn đáp án (A)

CÂU 11. Đổi số đo của góc $\frac{\pi}{12}$ rad sang đơn vị độ, phút, giây.

Dòi giải.

♥ Địa chỉ: KDC Mỹ Điền, TT. Tuy Phước ♥

HÀM SỐ LƯỢNG GIÁC VÀ PHƯƠNG TRÌNH LƯỢNG GIÁC

Từ công thức $\alpha = \frac{a \cdot \pi}{180} \Rightarrow a = \left(\frac{\alpha \cdot 180}{\pi}\right)^{\circ}$ với α tính bằng radian, a tính bằng độ.

Ta có
$$a = \left(\frac{\alpha \cdot 180}{\pi}\right)^{\circ} = \left(\frac{\frac{\pi}{12} \cdot 180}{\pi}\right)^{\circ} = 15^{\circ}.$$

Chọn đáp án $\stackrel{\frown}{\bf A}$

CÂU 12. Đổi số đo của góc $-\frac{3\pi}{16}$ rad sang đơn vị độ, phút, giây.

A 33°45′.

$$(B)$$
 $-29^{\circ}30'$.

$$(\mathbf{C})$$
 -33°45′.

$$\bigcirc$$
 -32°55.

D Lời giải.

Ta có
$$a = \left(\frac{\alpha \cdot 180}{\pi}\right)^{\circ} = \left(\frac{-\frac{3\pi}{16} \cdot 180}{\pi}\right)^{\circ} = \left(-\frac{135}{4}\right)^{\circ} = -33^{\circ}45'.$$

Chọn đáp án \bigcirc

CÂU 13. Đổi số đo của góc -5 rad sang đơn vị độ, phút, giây.

 \bigcirc -286°44′28″.

$$(B) -286^{\circ}28'44''.$$

∞ Lời giải.

Ta có
$$a = \left(\frac{\alpha \cdot 180}{\pi}\right)^{\circ} = \left(\frac{-5.180}{\pi}\right)^{\circ} = -286^{\circ}28'44''.$$

Chọn đáp án $\stackrel{\textstyle \frown}{(B)}$

CÂU 14. Đổi số đo của góc $\frac{3}{4}$ rad sang đơn vị độ, phút, giây.

A 42°97′18″.

B 42°58′.

(c) 42°97′.

D 42°58′18″.

🗩 Lời giải.

Tương tự như câu trên.

Chọn đáp án (D)

CÂU 15. Đổi số đo của góc -2 rad sang đơn vị độ, phút, giây.

 \bigcirc -114°59′15″.

(B) -114°35′.

(c) -114°35′29″.

 \bigcirc -114°59′.

🗭 Lời giải.

Tương tự như câu trên.

Chọn đáp án (C)

Dạng 3. ĐỘ DÀI CUNG TRÒN

CÂU 1. Mệnh đề nào sau đây là đúng?

A Số đo của cung tròn tỉ lệ với độ dài cung đó.

B Độ dài của cung tròn tỉ lệ với bán kính của nó.

C Số đo của cung tròn tỉ lệ với bán kính của nó.

Dộ dài của cung tròn tỉ lệ nghịch với số đo của cung đó.

D Lời giải.

Từ công thức $\ell = R\alpha \Rightarrow \ell$ và α tỷ lệ nhau.

Chọn đáp án A

CÂU 2. Tính độ dài ℓ của cung trên đường tròn có bán kính bằng 20 cm và số đo $\frac{\pi}{16}$.

 \triangle $\ell = 3.93$ cm.

B $\ell = 2,94 \text{ cm}.$

 $\ell = 3,39 \text{ cm}.$

 $\ell = 1,49 \text{ cm}.$

Lời giải.

Áp dụng công thức $\ell = R\alpha = 20 \cdot \frac{\pi}{16} \approx 3.93$ cm.

Chọn đáp án $\stackrel{\textstyle \cdot}{\mathbb{A}}$

 \hat{CAU} 3. Tính độ dài của cung trên đường tròn có số đo 1,5 và bán kính bằng $20~\mathrm{cm}$.

A 30 cm.

B 40 cm.

© 20 cm.

D 60 cm.

🗩 Lời giải.

Ta có $\ell = \alpha R = 1.5 \cdot 20 = 30$ cm.

Chọn đáp án $\stackrel{\textstyle ext{\wedge}}{\textstyle ext{\wedge}}$

CÂU 4. Một đường tròn có đường kính bằng $20~\mathrm{cm}$. Tính độ dài của cung trên đường tròn có số đo 35° (lấy $2~\mathrm{chữ}$ số thập phân).

A 6,01 cm.

B) 6,11 cm.

c 6,21 cm.

(D) 6,31 cm.

🗩 Lời giải.

Cung có số đo 35° thì có số đó radian là $\alpha=\frac{a\pi}{180}=\frac{35\pi}{180}=\frac{7\pi}{36}$. Bán kính đường tròn $R=\frac{20}{2}=10$ cm. Suy ra $\ell=\alpha R=\frac{7\pi}{36}\cdot 10\approx 6,11$ cm.

Chọn đáp án B

CÂU 5. Tính số đo cung có độ dài của cung bằng $\frac{40}{3}$ cm trên đường tròn có bán kính 20 cm.

(A) 1,5 rad.

Chon đáp án (B)

B) 0, 67 rad.

© 80°.

(**D**) 88°.

🗩 Lời giải.

Ta có $\ell=\alpha R \Leftrightarrow \alpha=\frac{\ell}{R}=\frac{\frac{40}{3}}{20}=\frac{2}{3}\approx 0,67$ rad.

CÂU 6. Một cung tròn có độ dài bằng 2 lần bán kính. Số đo radian của cung tròn đó là

(A) 1.

B) 2.

 (\mathbf{C}) 3.

 \bigcirc 4.

D Lời giải.

 $\ell = \alpha R \Leftrightarrow \alpha = \frac{\ell}{R} = \frac{2R}{R} = 2 \text{ rad.}$

Chọn đáp án B

CÂU 7. Trên đường tròn bán kính R, cung tròn có độ dài bằng $\frac{1}{6}$ độ dài nửa đường tròn thì có số đo (tính bằng radian)

là

 \bigwedge $\pi/2$.

 \mathbf{B} $\pi/3$.

 \mathbf{C} $\pi/4$.

 \bigcirc $\pi/6$.

D Lời giải.

Ta có $\ell=\alpha R \Leftrightarrow \alpha=\frac{\ell}{R}=\frac{\frac{1}{6}\pi R}{R}=\frac{\pi}{6}.$

Chọn đáp án (D)

CÂU 8. Một cung có độ dài 10 cm, có số đo bằng radian là 2,5 thì đường tròn của cung đó có bán kính là

A 2,5 cm.

B 3,5 cm.

C 4 cm.

D) 4,5 cm.

🗩 Lời giải.

Ta có $l = R\alpha \Leftrightarrow R = \frac{l}{\alpha} = \frac{10}{2.5} = 4.$

Chọn đáp án C

CÂU 9. Bánh xe đạp của người đi xe đạp quay được 2 vòng trong 5 giây. Hỏi trong 2 giây, bánh xe quay được 1 góc bao nhiêu độ.

 \mathbf{c} $\frac{3}{5}\pi$.

 $\bigcirc \frac{5}{2}\pi$

D Lời giải.

Trong 2 giây bánh xe đạp quay được $\frac{2\cdot 2}{5} = \frac{4}{5}$ vòng tức là quay được cung có độ dài là $l = \frac{4}{5} \cdot 2\pi R = \frac{8}{5}\pi R$.

Ta có $l = R\alpha \Leftrightarrow \alpha = \frac{l}{R} = \frac{\frac{8}{5}\pi R}{R} = \frac{8}{5}\pi.$

Chọn đáp án $\stackrel{\frown}{\bf A}$

CÂU 10. Một bánh xe có 72 răng. Số đo góc mà bánh xe đã quay được khi di chuyển 10 răng là

A 30°.

B) 40°.

C 50°.

D 60°.

D Lời giải.

72 răng có chiều dài là $2\pi R$ nên 10 răng có chiều dài $l = \frac{10 \cdot 2\pi R}{72} = \frac{5\pi}{18} R$.

Theo công thức $l = R\alpha \Leftrightarrow \alpha = \frac{l}{R} = \frac{\frac{5}{18}\pi R}{R} = \frac{5}{18}\pi$ mà $a = \frac{180\alpha}{\pi} = \frac{180 \cdot \frac{5}{18}\pi}{1000} = 50^{\circ}$.

Cách khác. 72 răng tương ứng với 360° nên 10 răng tương ứng với $\frac{\pi}{72} = 50^\circ$.

Dạng 4. GÓC LƯỢNG GIÁC

CÂU 1. Cho góc lượng giác $(Ox, Oy) = 22^{\circ}30' + k360^{\circ}$. Với giá trị k bằng bao nhiêu thì góc $(Ox, Oy) = 1822^{\circ}30'$?

$$(A)$$
 $k \in \emptyset$.

$$(\mathbf{B}) k = 3$$

$$(c)$$
 $k = -5.$

$$\bigcirc k = 5.$$

🗭 Lời giải.

Theo $\stackrel{\text{de}}{\text{e}}(Ox, Oy) = 1822^{\circ}30' \Rightarrow 22^{\circ}30' + k.360^{\circ} = 1822^{\circ}30' \Rightarrow k = 5.$

Chon đáp án (D)

CÂU 2. Cho góc lượng giác $\alpha = \frac{\pi}{2} + k2\pi$. Tìm k để $10\pi < \alpha < 11\pi$.

$$(\mathbf{B}) k = 5.$$

$$(\mathbf{C}) k = 6.$$

$$\bigcirc$$
 $k=7.$

🗩 Lời giải.

Ta có $10\pi < \alpha < 11\pi \Rightarrow \frac{19\pi}{2} < k2\pi < \frac{21\pi}{2} \Rightarrow k = 5.$

Chọn đáp án (B)

CÂU 3. Một chiếc đồng hồ, có kim chỉ giờ OG chỉ số 9 và kim phút OP chỉ số 12. Số đo của góc lượng giác (OG, OP)

$$270^{\circ} + k360^{\circ}, k \in \mathbb{Z}.$$

Dèi giải.

Góc lượng giác (OG, OP) chiếm $\frac{1}{4}$ đường tròn. Số đo là $\frac{1}{4}.2\pi + k2\pi, k \in \mathbb{Z}$.

Chọn đáp án (A)

 \mathbf{CAU} 4. Trên đường tròn lượng giác có điểm gốc là A. Điểm M thuộc đường tròn sao cho cung lượng giác AM có số đo 45° . Gọi N là điểm đối xứng với M qua trục Ox, số đo cung lượng giác AN bằng

$$(\mathbf{D}) - 45^{\circ} + k360^{\circ}, k \in \mathbb{Z}.$$

🗩 Lời giải.

Vì số đo cung AM bằng 45° nên $\widehat{AOM} = 45^{\circ}$, N là điểm đối xứng với M qua trục Ox nên $\widehat{AON} = 45^{\circ}$. Do đó số đo cung AN bằng 45° nên số đo cung lượng giác AN có số đo là $-45^{\circ} + k360^{\circ}, k \in \mathbb{Z}$.

Chọn đáp án (D)

CÂU 5. Trên đường tròn với điểm gốc là A. Điểm M thuộc đường tròn sao cho cung lượng giác AM có số đo 60° . Gọi Nlà điểm đối xứng với điểm M qua trục Oy, số đo cung AN là

B
$$-240^{\circ}$$
.

$$\bigcirc$$
 -120° hoặc 240°.

🗩 Lời giải.

Ta có $\widehat{AOM} = 60^{\circ}, \widehat{MON} = 60^{\circ}$.

Nên $\widehat{AON} = 120^{\circ}$.

Khi đó số đo cung AN bằng 120° .

Chọn đáp án (A)

 \hat{CAU} 6. Trên đường tròn lượng giác với điểm gốc là A. Điểm M thuộc đường tròn sao cho cung lượng giác AM có số đo 75° . Gọi N là điểm đối xứng với điểm M qua gốc tọa độ O, số đo cung lượng giác AN bằng

B
$$-105^{\circ}$$
.

$$\bigcirc$$
 -105° hoặc 255°.

Lời giải.

Ta có $\widehat{AOM} = 75^{\circ}$, $\widehat{MON} = 180^{\circ}$. Nên cung lượng giác AN có số đo bằng $-105^{\circ} + k360^{\circ}, k \in \mathbb{Z}.$

Chọn đáp án (D)

CÂU 7. Cho bốn cung (trên một đường tròn định hướng): $\alpha = -\frac{5\pi}{6}, \beta = \frac{\pi}{3}, \gamma = \frac{25\pi}{3}, \delta = \frac{19\pi}{6}$. Các cung nào có điểm cuối trùng nhau?

- (A) α và β ; γ và δ .
- **(B)** β và γ ; α và δ .
- $(\mathbf{C}) \alpha, \beta, \gamma.$
- $(\mathbf{D}) \beta, \gamma, \delta.$

Dèi giải.

Ta có $\delta - \alpha = 4\pi \Rightarrow$ hai cung α và δ có điểm cuối trùng nhau.

Và $\gamma - \beta = 8\pi \Rightarrow$ hai cung β và γ có điểm cuối trùng nhau.

Cách khác. Gọi A, B, C, D là điểm cuối của các cung $\alpha, \beta, \gamma, \delta$.

Biểu diễn các cung trên đường tròn lượng giác ta có $B \equiv C, A \equiv D$.

Chọn đáp án (B)

CÂU 8. Các cặp góc lượng giác sau ở trên cùng một đường tròn đơn vị, cùng tia đầu và tia cuối. Hãy nêu kết quả SAI trong các kết quả sau đây

- **B** $\frac{\pi}{10}$ và $\frac{152\pi}{5}$. **C** $-\frac{\pi}{3}$ và $\frac{155\pi}{3}$. **D** $\frac{\pi}{7}$ và $\frac{281\pi}{7}$.

🕰 Lời giải.

Cặp góc lượng giác a và b ở trên cùng một đường tròn đơn vị, cùng tia đầu và tia cuối. Khi đó $a=b+k2\pi,\ k\in\mathbb{Z}$ hay

Dễ thấy, ở **đáp án B** vì $k = \frac{\frac{\pi}{10} - \frac{152\pi}{5}}{\frac{2\pi}{30}} = -\frac{303}{20} \notin \mathbb{Z}.$

CÂU 9. Trên đường tròn lượng giác gốc A, cung lượng giác nào có các điểm biểu diễn tạo thành tam giác đều?

D Lời giải.

Tam giác đều có góc ở đỉnh là 60° nên góc ở tâm là 120° tương ứng $\frac{k2\pi}{3}$.

CÂU 10. Trên đường tròn lượng giác gốc A, cung lượng giác nào có các điểm biểu diễn tạo thành hình vuông?

🗩 Lời giải.

Hình vẽ tham khảo (hình vẽ bên). Hình vuông CDEF có góc \widehat{DCE} là 45° nên góc ở tâm là 90° tương ứng $\frac{k\pi}{2}$

Chon đáp án (A)

🖶 Dang 5. XÁC ĐINH DẤU CỦA CÁC GIÁ TRI LƯƠNG GIÁC

CÂU 1. Cho α thuộc góc phần tư thứ nhất của đường tròn lượng giác. Hãy chọn kết quả đúng trong các kết quả sau

🕈 Địa chỉ: KDC Mỹ Điền, TT. Tuy F	Phước Q I HÀM S	Ố LƯỢNG GIÁC VÀ PHƯC	NG TRÌNH LƯỢNG GIÁC
$oldsymbol{\hat{A}} \sin lpha > 0.$ $oldsymbol{\hat{P}}$ Lời giải.	$oldsymbol{\mathbb{B}}\cos \alpha < 0.$	\bigcirc $\tan \alpha < 0$.	\bigcirc $\cot \alpha < 0$.
\wp Lời giải. Do α thuộc góc phần tư thứ n	$\text{hát} \Rightarrow \begin{cases} \sin \alpha > 0 \\ \cos \alpha > 0 \\ \tan \alpha > 0 \end{cases}$		
Chọn đáp án (A)	$(\cos \alpha > 0.$		
(A) $\sin \alpha > 0; \cos \alpha > 0.$ (2) Lời giải.	$\mathbf{B}\sin\alpha < 0; \cos\alpha < 0.$	lượng giác. Hãy chọn kết quả đúng	g trong các kết quả sau đây.
α thuộc góc phần tư thứ hai =	$\Rightarrow \begin{cases} \sin \alpha > 0 \\ \cos \alpha < 0 \end{cases}$		
Chọn đáp án C	(0004 < 0.		
CÂU 3. Cho α thuộc góc phầ \bigcirc $\sin \alpha > 0$.	n tư thứ ba của đường tròn	lượng giác. Khẳng định nào sau c	$\hat{\mathbf{D}}$ cot $\alpha > 0$.
α thuộc góc phần tư thứ hai =	$\Rightarrow \begin{cases} \sin \alpha < 0 \\ \cos \alpha < 0 \\ \tan \alpha > 0 \\ \cot \alpha > 0. \end{cases}$		
Chọn đáp án (A)	(
CÂU 4. Cho α thuộc góc phầ \bigcirc $\sin \alpha > 0$.	n tư thứ tư của đường tròn	lượng giác. Khẳng định nào sau c 	đây là đúng?
α thuộc góc phần tư thứ tư \Rightarrow	$\begin{cases} \sin \alpha < 0 \\ \cos \alpha > 0 \\ \tan \alpha < 0 \\ \cot \alpha < 0. \end{cases}$		
Chọn đáp án B			
CÂU 5. Điểm cuối của góc lư A Thứ II. D Lời giải.	ợng giác $lpha$ ở góc phần tư th $lacksquare$ Thứ IV .	ứ mấy nếu $\sin\alpha,\cos\alpha$ cùng dấu?	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
Chọn đáp án D			
CÂU 6. Điểm cuối của góc lư Thứ <i>I</i> . P Lời giải.	ợng giác α ở góc phần tư th $lacksquare$ Thứ II hoặc IV .	ứ mấy nếu $\sin\alpha, tan\alpha$ trái dấu? Thứ II hoặc III .	$\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$
Chọn đáp án C			
CÂU 7. Điểm cuối của góc lư A Thứ II. D Lời giải.	ợng giác α ở góc phần tư the $lacksquare$ Thứ I hoặc II .	ứ mấy nếu $\cos \alpha = \sqrt{1 - \sin^2 \alpha}$. Thứ II hoặc III .	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
Ta có $\cos \alpha = \sqrt{1-\sin^2 \alpha} \Leftrightarrow \cot \theta$ tư thứ I hoặc IV . Chọn đáp án \bigcirc	$\cos \alpha = \sqrt{\cos^2 \alpha} \Leftrightarrow \cos \alpha = \alpha $	$\cos \alpha \Rightarrow \cos \alpha \geqslant 0 \Rightarrow$ điểm cuối c	ủa góc lượng giác α ở góc phần \Box
CÂU 8. Điểm cuối của góc lư A Thứ III. D Lời giải.	ợng giác α ở góc phần tư th $lacktriangle$ Thứ I hoặc III .	tứ mấy nếu $\sqrt{\sin^2}\alpha = \sin \alpha$. C Thứ I hoặc II .	lacktriangle Thứ III hoặc $IV.$
Ta có $\sqrt{\sin^2 \alpha} \Leftrightarrow \sin \alpha \Leftrightarrow \sin \alpha $	$ =\sin \alpha$. Đẳng thức $ \sin \alpha $	$=\sin \alpha \Rightarrow \sin \alpha \geqslant 0 \Rightarrow \text{điểm cuối o}$	của góc lượng giác α là góc phần
tư thứ I hoặc II . Chọn đáp án \bigcirc			
CÂU 9. Cho $2\pi < \alpha < \frac{5\pi}{2}$. K	hẳng định nào sau đây đúng	g?	
		\bigcirc $\tan \alpha > 0$; $\cot \alpha < 0$.	

HÀM SỐ LƯỢNG GIÁC VÀ PHƯƠNG TRÌNH LƯỢNG GIÁC

🗩 Lời giải.

Ta có $2\pi < \alpha < \frac{5\pi}{2} \Rightarrow$ điểm cuối cùng $\alpha - \pi$ thuộc góc phần tư thứ $I \Rightarrow \begin{cases} \tan \alpha > 0 \\ \cot \alpha > 0. \end{cases}$

Chọn đáp án A

- (**D**) $\sin (\alpha \pi) < 0$.

P Lời giải.

 $\text{Ta có } 0 < \alpha < \frac{\pi}{2} \Rightarrow -\pi < \alpha - \pi < -\frac{\pi}{2} \Rightarrow \text{ diểm cuối cung } \alpha - \pi \text{ thuộc góc phần tư thứ } III \Rightarrow \sin{(\alpha - \pi)} < 0.$

Chọn đáp án D

CÂU 11. Cho $0 < \alpha < \frac{\pi}{2}$. Khẳng định nào sau đây đúng?

(A) $\cot\left(\alpha + \frac{\pi}{2}\right) > 0$.
(B) $\cot\left(\alpha + \frac{\pi}{2}\right) \geqslant 0$.
(C) $\tan\left(\alpha + \pi\right) < 0$.

- $(\mathbf{D})\tan\left(\alpha+\pi\right)>0.$

Ta có $\begin{cases} 0 < \alpha < \frac{\pi}{2} \Rightarrow \frac{\pi}{2} < \alpha + \frac{\pi}{2} < \pi \Rightarrow \cot\left(\alpha + \frac{\pi}{2}\right) < 0\\ 0 < \alpha < \frac{\pi}{2} \Rightarrow \pi < \alpha + \pi < \frac{3\pi}{2} \Rightarrow \tan\left(\alpha + \pi\right) > 0 \end{cases}$

Chọn đáp án (D

CÂU 12. Cho $\frac{\pi}{2} < \alpha < \pi$. Giá trị lượng giác nào sau đây luôn dương?

- \bigcirc $\cot\left(\frac{\pi}{2} \alpha\right)$.
- (**D**) $\tan (\pi + \alpha)$.

Ta có $\sin(\pi + \alpha) = -\sin\alpha$; $\cot(\frac{\pi}{2} - \alpha) = \sin\alpha$; $\cos(-\alpha) = \cos\alpha$; $\tan(\pi + \alpha) = \tan\alpha$.

Do $\frac{\pi}{2} < \alpha < \pi \Rightarrow \begin{cases} \sin \alpha > 0 \\ \cos \alpha < 0 \\ \tan \alpha < 0. \end{cases}$

Chọn đáp án (B)

🗩 Lời giải.

Ta có $\pi < \alpha < \frac{3\pi}{2} \Rightarrow 0 < \frac{3\pi}{2} - \alpha < \frac{\pi}{2} \Rightarrow \begin{cases} \sin\left(\frac{3\pi}{2} - \alpha\right) > 0 \\ \cos\left(\frac{3\pi}{2} - \alpha\right) > 0 \end{cases} \Rightarrow \tan\left(\frac{3\pi}{2} - \alpha\right) > 0.$

Chọn đáp án (B)

CÂU 14. Cho $\frac{\pi}{2} < \alpha < \pi$. Xác định dấu của biểu thức $M = \cos\left(-\frac{\pi}{2} + \alpha\right) \cdot \tan\left(\pi - \alpha\right)$.

- $(A) M \geqslant 0.$

- **(D)** M < 0.

🗗 Lời giải.

Ta có $\begin{cases} \frac{\pi}{2} < \alpha < \pi \Rightarrow 0 < -\frac{\pi}{2} + \alpha < \frac{\pi}{2} \Rightarrow \cos\left(-\frac{\pi}{2} + \alpha\right) > 0 \\ \frac{\pi}{2} < \alpha < \pi \Rightarrow 0 < \pi - \alpha < \frac{\pi}{2} \Rightarrow \tan\left(\pi - \alpha\right) > 0 \end{cases} \Rightarrow M > 0.$

Chọn đáp án B

- **CÂU 15.** Cho $\pi < \alpha < \frac{3\pi}{2}$. Xác định dấu của biểu thức $M = \sin\left(\frac{\pi}{2} \alpha\right) \cdot \cot\left(\pi + \alpha\right)$.

- **(D)** M < 0.

 $\text{Ta c\'o} \begin{cases} \pi < \alpha < \frac{3\pi}{2} \Rightarrow -\frac{3\pi}{2} < -\alpha < -\pi \Rightarrow -\pi < \frac{\pi}{2} - \alpha < -\frac{\pi}{2} \Rightarrow \sin\left(\frac{\pi}{2} - \alpha\right) < 0 \\ \pi < \alpha < \frac{3\pi}{2} \Rightarrow 2\pi < \pi + \alpha < \frac{5\pi}{2} \Rightarrow \cot\left(\pi + \alpha\right) > 0 \end{cases} \Rightarrow M < 0.$

🖶 Dạng 6. TÍNH GIÁ TRỊ LƯỢNG GIÁC

CÂU 1. Tính giá trị của $\sin \frac{47\pi}{e}$

$$\mathbf{B}\sin\frac{47\pi}{6} = \frac{1}{2}.$$

$$\mathbf{C}\sin\frac{47\pi}{6} = \frac{\sqrt{2}}{2}.$$

Lời giả

Ta có
$$\sin \frac{47\pi}{6} = \sin \left(8\pi - \frac{\pi}{6}\right) = \sin \left(-\frac{\pi}{6}\right) = -\sin \frac{\pi}{6} = -\frac{1}{2}.$$

Chọn đáp án (D)

CÂU 2. Tính giá trị của cot $\frac{89\pi}{6}$.

$$\mathbf{B}\cot\frac{89\pi}{6} = -\sqrt{3}.$$

$$\mathbf{C}\cot\frac{89\pi}{6} = \frac{\sqrt{3}}{3}.$$

$$\bigcirc \cot \frac{89\pi}{6} = -\frac{\sqrt{3}}{3}.$$

Ta có
$$\cot \frac{89\pi}{6} = \cot \left(\frac{5\pi}{6} + 14\pi \right) = \cot \frac{5\pi}{6} = -\sqrt{3}.$$

Chọn đáp án (B)

CÂU 3. Tính giá trị của $\cos \left[\frac{\pi}{4} + (2k+1) \pi \right]$.

$$\left(\mathbf{A}\right)\cos\left[\frac{\pi}{4} + (2k+1)\,\pi\right] = -\frac{\sqrt{3}}{2}.$$

$$\mathbf{C}\cos\left[\frac{\pi}{4} + (2k+1)\,\pi\right] = -\frac{1}{2}.$$

P Lời giải

Ta có
$$\cos \left[\frac{\pi}{4} + (2k+1)\pi \right] = \cos \left(\frac{5\pi}{4} + 2k\pi \right) = \cos \frac{5\pi}{4} = \cos \left(\pi + \frac{\pi}{4} \right) = -\cos \frac{\pi}{4} = -\frac{\sqrt{2}}{2}.$$

Chọn đáp án (B)

CÂU 4. Tính giá trị của $\cos \left[\frac{\pi}{2} + (2k+1) \pi \right]$.

$$\left(\mathbf{A} \right) \cos \left[\frac{\pi}{3} + (2k+1)\pi \right] = -\frac{\sqrt{3}}{2}.$$

$$\mathbf{C}\cos\left[\frac{\pi}{3} + (2k+1)\,\pi\right] = -\frac{1}{2}.$$

$$\boxed{\mathbf{D}} \cos \left[\frac{\pi}{3} + (2k+1)\pi \right] = \frac{\sqrt{3}}{2}.$$

Ta có
$$\cos\left[\frac{\pi}{3} + (2k+1)\pi\right] = \cos\left(\frac{\pi}{3} + \pi + k2\pi\right) = \cos\left(\frac{\pi}{3} + \pi\right) = -\cos\frac{\pi}{3} = -\frac{1}{2}.$$

Chon đáp án (C)

CÂU 5. Tính giá trị biểu thức $P = \frac{(\cot 44^{\circ} + \tan 226^{\circ}) \cos 406^{\circ}}{\cos 316^{\circ}} - \cot 72^{\circ} \cot 18^{\circ}.$

$$\bigcirc P = 1$$

$$P = -\frac{1}{2}$$
.

🗩 Lời giải.

Sử dụng mối quan hệ của các cung có liên quan đặc biệt, ta có
$$P = \frac{(\cot 44^\circ + \tan 46^\circ)\cos 46^\circ}{\cos 44^\circ} - 1 = \frac{2\tan 46^\circ\cos 46^\circ}{\sin 46^\circ} - 1 = 2 - 1 = 1.$$

CÂU 6. Tính giá trị biểu thức $P = \sin\left(-\frac{14\pi}{3}\right) + \frac{1}{\sin^2\frac{29\pi}{4}} - \tan^2\frac{3\pi}{4}$.

(A)
$$P = 1 + \frac{\sqrt{3}}{2}$$
.

B
$$P = 1 - \frac{\sqrt{3}}{2}$$

B
$$P = 1 - \frac{\sqrt{3}}{2}$$
.

D
$$P = 3 - \frac{\sqrt{3}}{2}$$
.

🗭 Lời giải.

Ta có
$$P = \sin\left(-4\pi - \frac{2\pi}{3}\right) + \frac{1}{\sin^2\left(6\pi + \pi + \frac{\pi}{4}\right)} - \tan^2\left(\pi - \frac{\pi}{4}\right) = \sin\left(-\frac{2\pi}{3}\right) + \frac{1}{\sin^2\left(\pi + \frac{\pi}{4}\right)} - \tan^2\left(-\frac{\pi}{4}\right) = -\frac{\sqrt{3}}{2} + \frac{1}{\sin^2\left(\pi + \frac{\pi}{4}\right)} - \tan^2\left(\pi - \frac{\pi}{4}\right) = -\frac{\pi}{4}$$

$$\frac{1}{\left(-\frac{\sqrt{2}}{2}\right)^2} - \left(-1\right)^2 = 1 - \frac{\sqrt{3}}{2}.$$

Chọn đáp án (B)

CÂU 7. Tính giá trị biểu thức $P = \cos^2 \frac{\pi}{8} + \cos^2 \frac{3\pi}{8} + \cos^2 \frac{5\pi}{8} + \cos^2 \frac{7\pi}{8}$.

- **(A)** P = -1.
- $(\mathbf{B}) P = 0.$

(D) P = 2.

🗩 Lời giải.

Ta có $\tan(2017\pi + \alpha) \Rightarrow P = 2\left(\cos^2\frac{\pi}{8} + \cos^2\frac{3\pi}{8}\right).$

 $\begin{array}{l} \text{Vì } \frac{\pi}{8} + \frac{3\pi}{8} = \frac{\pi}{2} \Rightarrow \cos\frac{\pi}{8} = \sin\frac{3\pi}{8} \Rightarrow \cos^2\frac{\pi}{8} = \sin^2\frac{3\pi}{8}. \\ \text{Do dó } P = 2\left(\sin^2\frac{3\pi}{8} + \cos^2\frac{3\pi}{8}\right) = 2 \cdot 1 = 2. \end{array}$

Chọn đáp án (D)

CÂU 8. Tính giá trị biểu thức $P = \sin^2 10^\circ + \sin^2 20^\circ + \sin^2 30^\circ + \dots + \sin^2 80^\circ$.

- (**A**) P = 0.
- **(B)** P = 2.
- **(D)** P = 8.

🗩 Lời giải.

Do $10^{\circ} + 80^{\circ} = 20^{\circ} + 70^{\circ} = 30^{\circ} + 60^{\circ} = 40^{\circ} + 50^{\circ} = 90^{\circ}$ nên các cung lượng giác tương ứng đôi một phụ nhau. Áp dụng công thức $\sin (90^{\circ} - x) = \cos x$, ta được

 $P = (\sin^2 10^\circ + \cos^2 10^\circ) + (\sin^2 20^\circ + \cos^2 20^\circ)$

 $+(\sin^2 30^\circ + \cos^2 30^\circ) + (\sin^2 40^\circ + \cos^2 40^\circ) = 1 + 1 + 1 + 1 = 4.$

Chọn đáp án (C)

CÂU 9. Tính giá trị biểu thức $P = \tan 10^{\circ} \cdot \tan 20^{\circ} \cdot \tan 30^{\circ} \dots \tan 80^{\circ}$.

- (**A**) P = 0.
- **(B)** P = 1.

(D) P = 8.

Lời giải.

Áp dụng công thức $\tan x \cdot \tan (90^{\circ} - x) = \tan x \cdot \cot x = 1$. Do đó P = 1.

Chọn đáp án (B)

CÂU 10. Tính giá trị biểu thức $P = \tan 1^{\circ} \tan 2^{\circ} \tan 3^{\circ} \dots \tan 89^{\circ}$.

- (A) P = 0.

- **(D)** P = 3.

Dòi giải.

Áp dụng công thức $\tan x \cdot \tan (90^{\circ} - x) = \tan x \cdot \cot x = 1$. Do đó P = 1.

Chọn đáp án (B)

🖶 Dạng 7. TÍNH ĐÚNG SAI

CÂU 1. Với góc α bất kì. Khẳng định nào sau đây đúng?

- (A) $\sin \alpha + \cos \alpha = 1$.
- (B) $\sin^2 \alpha + \cos^2 \alpha = 1$.
- $(\mathbf{c})\sin^3\alpha + \cos^3\alpha = 1.$

 $\mathbf{(B)}\sin\left(\alpha^2\right) + \cos\left(\alpha^2\right) = 1.$

 $(\mathbf{D})\sin^2\alpha - \cos^2(180^\circ - \alpha) = 1.$

 $(\mathbf{D})\sin^4\alpha + \cos^4\alpha = 1.$

🗩 Lời giải.

Chọn đáp án (B)

CÂU 2. Với góc α bất kì. Khẳng định nào sau đây đúng?

- $(\mathbf{A})\sin 2\alpha^2 + \cos^2 2\alpha = 1.$
- $(\mathbf{c})\sin^2\alpha + \cos^2(180^\circ \alpha) = 1.$

Ta có $\cos(180^{\circ} - \alpha) = -\cos\alpha \Rightarrow \cos^2(180^{\circ} - \alpha) = \cos^2\alpha$. Do đó $\sin^2 \alpha + \cos^2 (180^\circ - \alpha) = \sin^2 \alpha + \cos^2 \alpha = 1.$

Chọn đáp án (C)

CÂU 3. Mệnh đề nào sau đây là SAI?

- (\mathbf{A}) $-1 \leqslant \sin \alpha \leqslant 1$; $-1 \leqslant \cos \alpha \leqslant 1$.
- \mathbf{C} $\cot \alpha = \frac{\cos \alpha}{\sin \alpha} (\sin \alpha \neq 0).$

🗭 Lời giải.

 $Vi \sin^2(2018\alpha) + \cos^2(2018\alpha) = 1.$

Chọn đáp án (D)

CÂU 4. Mệnh đề nào sau đây là SAI?

- $\mathbf{B} \tan \alpha = \frac{\sin \alpha}{\cos \alpha} (\cos \alpha \neq 0).$
- $(\mathbf{D})\sin^2(2018\alpha) + \cos^2(2018\alpha) = 2018.$
- (C) $\tan \alpha + \cot \alpha = 2$.
- (**D**) $\tan \alpha \cdot \cot \alpha = 1$.

🗩 Lời giải.

Chọn đáp án (C)

CÂU 5. Để $\tan x$ có nghĩa khi

$$\bigcirc \hspace{-3pt} D \hspace{-3pt} x \neq k\pi.$$

P Lời giải.

Chọn đáp án (C)

$$\bigcirc \alpha \neq k\pi, k \in \mathbb{Z}$$

🗩 Lời giải.

Ta có $\tan \alpha . \cot \alpha = 1 \Leftrightarrow \frac{\sin \alpha}{\cos \alpha} . \frac{\cos \alpha}{\sin \alpha} = 1.$

Đẳng thức xác định khi $\begin{cases} \cos \alpha \neq 0 \\ \sin \alpha \neq 0 \end{cases} \Leftrightarrow \begin{cases} \alpha \neq \frac{\pi}{2} + k\pi \\ \alpha \neq k\pi \end{cases} \Leftrightarrow \alpha \neq k\frac{\pi}{2}, (k \in \mathbb{Z}).$

Chon đáp án (A)

CÂU 7. Điều kiện để biểu thức $P = \tan\left(\alpha + \frac{\pi}{3}\right) + \cot\left(\alpha - \frac{\pi}{6}\right)$ xác định là

Biểu thức xác định khi $\begin{cases} \alpha + \frac{\pi}{3} \neq \frac{\pi}{2} + k\pi \\ \alpha - \frac{\pi}{6} \neq k\pi \end{cases} \Leftrightarrow \alpha \neq \frac{\pi}{6} + k\pi \left(k \in \mathbb{Z} \right).$

Chọn đáp án (C)

CÂU 8. Mệnh đề nào sau đây đúng?

$$(\mathbf{A}) \sin 60^{\circ} < \sin 150^{\circ}.$$

B
$$\cos 30^{\circ} < \cos 60^{\circ}$$
.

$$\bigcirc$$
 $\tan 45^{\circ} < \tan 60^{\circ}$.

$$\bigcirc$$
 cot 60° > cot 240° .

🗩 Lời giải.

Dùng MTCT kiểm tra từng đáp án.

Chọn đáp án (C)

CÂU 9. Mệnh đề nào sau đây đúng?

$$\mathbf{B} \cos 142^{\circ} > \cos 143^{\circ}.$$

$$\bigcirc$$
 $\sin 90^{\circ}13' < \sin 90^{\circ}14'.$

$$\bigcirc \cot 128^{\circ} > \cot 126^{\circ}.$$

Dòi giải.

Trong khoảng giá trị từ 90° đến 180°, khi giá trị góc tăng thì giá trị cos của góc tương ứng giảm Chọn đáp án (B)

🖶 Dạng 8. CÁC CUNG LIÊN QUAN ĐẶC BIỆT

CÂU 1. Chọn mệnh đề đúng trong các mệnh đề sau:

$$(\mathbf{A})\cos\left(\frac{\dot{\pi}}{2}-\dot{\alpha}\right)=\sin\alpha.$$
 $(\mathbf{B})\sin\left(\dot{\pi}+\alpha\right)=\sin\alpha.$

$$\mathbf{B}\sin\left(\pi + \alpha\right) = \sin\alpha$$

$$\mathbf{C}\cos\left(\frac{\pi}{2} + \alpha\right) = \sin\alpha.$$

$$\mathbf{D}\tan\left(\pi + 2\alpha\right) = \cot\left(2\alpha\right).$$

P Lời giải.

Chọn đáp án (A) **CÂU 2.** Với mọi số thực α , ta có $\sin\left(\frac{9\pi}{2} + \alpha\right)$ bằng

$$\bigcirc$$
 - $\sin \alpha$.

$$\bigcirc$$
 $\cos \alpha$.

$$(\mathbf{c})\sin\alpha$$
.

$$\bigcirc$$
 $-\cos \alpha$.

D Lời giải.

Ta có $\sin\left(\frac{9\pi}{2} + \alpha\right) = \sin\left(4\pi + \frac{\pi}{2} + \alpha\right) = \sin\left(\frac{\pi}{2} + \alpha\right) = \cos\alpha.$

Chọn đáp án (B)

CÂU 3. Cho $\cos \alpha = \frac{1}{3}$. Khi đó $\sin \left(\alpha - \frac{3\pi}{2}\right)$ bằng

$$\bigcirc -\frac{2}{3}$$
.

B
$$-\frac{1}{3}$$
.

$$\bigcirc$$
 $\frac{1}{3}$

$$\bigcirc \frac{2}{3}.$$

Ta có $\sin\left(\alpha - \frac{3\pi}{2}\right) = \sin\left(\alpha + \frac{\pi}{2} - 2\pi\right) = \sin\left(\alpha + \frac{\pi}{2}\right) = \cos\alpha = \frac{1}{3}$.

Chọn đáp án (C)

CÂU 4. Với mọi $\alpha \in \mathbb{R}$ thì $\tan (2017\pi + \alpha)$ bằng

(c) $\tan \alpha$.

 $(\mathbf{D}) - \cot \alpha$.

Dèi giải.

Ta có $\tan (2017\pi + \alpha) = \tan \alpha$.

Chọn đáp án (C)

CÂU 5. Đơn giản biểu thức $A = \cos\left(\alpha - \frac{\pi}{2}\right) + \sin(\alpha - \pi)$, ta được

 $(\mathbf{A}) A = \cos \alpha + \sin \alpha.$

(B) $A = 2\sin\alpha$.

(c) $A = \sin \alpha \cos \alpha$.

 $(\mathbf{D}) A = 0.$

🗩 Lời giải.

Ta có $A = \cos\left(\alpha - \frac{\pi}{2}\right) + \sin\left(\alpha - \pi\right) = \cos\left(\frac{\pi}{2} - \alpha\right) - \sin\left(\pi - \alpha\right) = \sin\alpha - \sin\alpha = 0.$

Chọn đáp án (D)

CÂU 6. Rút gọn biểu thức $S = \cos\left(\frac{\pi}{2} - x\right)\sin\left(\pi - x\right) - \sin\left(\frac{\pi}{2} - x\right)\cos\left(\pi - x\right)$ ta được

(B) $S = \sin^2 x - \cos^2 x$. (C) $S = 2\sin x \cos x$.

(D) S = 1.

P Lời giải.

 $\operatorname{Ta} \operatorname{co} S = \cos \left(\frac{\pi}{2} - x \right) \cdot \sin \left(\pi - x \right) - \sin \left(\frac{\pi}{2} - x \right) \cdot \cos \left(\pi - x \right) = \sin x \cdot \sin x - \cos x \cdot \left(-\cos x \right) = \sin^2 x + \cos^2 x = 1.$

Chọn đáp án (D)

CÂU 7. Cho $P = \sin(\pi + \alpha) \cdot \cos(\pi - \alpha)$ và $Q = \sin(\frac{\pi}{2} - \alpha) \cdot \cos(\frac{\pi}{2} + \alpha)$. Mệnh đề nào dưới đây là đúng?

P Lời giải.

Ta có $P = \sin(\pi + \alpha) \cdot \cos(\pi - \alpha) = -\sin\alpha \cdot (-\cos\alpha) = \sin\alpha \cdot \cos\alpha$. Và $Q = \sin(\frac{\pi}{2} - \alpha) \cdot \cos(\frac{\pi}{2} + \alpha) = \cos\alpha \cdot (-\sin\alpha) = -\sin\alpha \cdot \cos\alpha$.

Khi đó $P + Q = \sin \alpha \cdot \cos \alpha - \sin \alpha \cdot \cos \alpha = 0.$

Chọn đáp án (A)

CÂU 8. Biểu thức lượng giác $\left[\sin\left(\frac{\pi}{2}-x\right)+\sin\left(10\pi+x\right)\right]^2+\left[\cos\left(\frac{3\pi}{2}-x\right)+\cos\left(8\pi-x\right)\right]^2$ có giá trị bằng?

(A) 1.

 $\bigcirc \frac{1}{2}$.

🗭 Lời giải.

Ta có $\sin\left(\frac{\pi}{2} - x\right) = \cos x$; $\sin\left(10\pi + x\right) = \sin x$.

 $\operatorname{Va} \cos \left(\frac{3\pi}{2} - x\right) = \cos \left(2\pi - \frac{\pi}{2} - x\right) = \cos \left(\frac{\pi}{2} + x\right) = -\sin x; \cos (8\pi - x) = \cos x.$

Khi đó $\left[\sin\left(\frac{\pi}{2}-x\right)+\sin\left(10\pi+x\right)\right]^2+\left[\cos\left(\frac{3\pi}{2}-x\right)+\cos\left(8\pi-x\right)\right]^2$

 $= (\cos x + \sin x)^{2} + (\cos x - \sin x)^{2} = \cos^{2} x + 2 \cdot \sin x \cdot \cos x + \sin^{2} x + \cos^{2} x - 2 \cdot \sin x \cdot \cos x + \sin^{2} x = 2.$

Chọn đáp án (B)

CÂU 9. Giá trị biểu thức $P = \left[\tan\frac{17\pi}{4} + \tan\left(\frac{7\pi}{2} - x\right)\right]^2 + \left[\cot\frac{13\pi}{4} + \cot\left(7\pi - x\right)\right]^2$ bằng

 \bigcirc $\frac{1}{\cos^2 x}$.

 \bigcirc $\frac{2}{\cos^2 x}$.

Lời giải

Ta có $\tan \frac{17\pi}{4} = \tan \left(\frac{\pi}{4} + 4\pi\right) = \tan \frac{\pi}{4} = 1$ và $\tan \left(\frac{7\pi}{2} - x\right) = \cot x$.

Và $\cot \frac{13\pi}{4} = \cot \left(\frac{\pi}{4} + 3\pi\right) = \cot \frac{\pi}{4} = 1; \cot (7\pi - x) = -\cot x.$

Suy ra $P = (1 + \cot x)^2 + (1 - \cot x)^2 = 2 + 2\cot^2 x = \frac{2}{\sin^2 x}$

Chọn đáp án (C)

CÂU 10. Biết rằng $\sin\left(x-\frac{\pi}{2}\right)+\sin\frac{13\pi}{2}=\sin\left(x+\frac{\pi}{2}\right)$ thì giá trị đúng của $\cos x$ là

(**A**) 1.

🗩 Lời giải.

HÀM SỐ LƯỢNG GIÁC VÀ PHƯƠNG TRÌNH LƯỢNG GIÁC ♥ Địa chỉ: KDC Mỹ Điền, TT. Tuy Phước ♥

Ta có $\sin\left(x - \frac{\pi}{2}\right) = -\sin\left(\frac{\pi}{2} - x\right) = -\cos x$ và $\sin\left(x + \frac{\pi}{2}\right) = \cos x$.

Kết hợp với giá trị $\sin \frac{13\pi}{2} = \sin \left(\frac{\pi}{2} + 6\pi\right) = \sin \frac{\pi}{2} = 1.$

Suy ra $\sin\left(x - \frac{\pi}{2}\right) + \sin\frac{13\pi}{2} = \sin\left(x + \frac{\pi}{2}\right) \Leftrightarrow -\cos x + 1 = \cos x \Leftrightarrow \cos x = \frac{1}{2}$.

Chọn đáp án (C)

CÂU 11. Nếu $\cot 1,25 \cdot \tan (4\pi + 1,25) - \sin \left(x + \frac{\pi}{2}\right) \cdot \cos (6\pi - x) = 0$ thì $\tan x$ bằng

(**D**) Một giá trị khác.

🗩 Lời giải.

Ta có $\tan(4\pi + 1,25) = \tan 1,25$ suy ra $\cot 1,25 \cdot \tan 1,25 = 1$.

Và $\sin\left(x + \frac{\pi}{2}\right) = \cos x; \cos(6\pi - x) = \cos(x - 6\pi) = \cos x.$

Khi đó $\cot 1,25 \cdot \tan (4\pi + 1,25) - \sin \left(x + \frac{\pi}{2}\right) \cdot \cos (6\pi - x) = 1 - \cos^2 x = 0 \Leftrightarrow \sin x = 0.$

Mặt khác $\tan x = \frac{\sin x}{\cos x} \Rightarrow \tan x = 0.$

Chon đáp án (C)

CÂU 12. Biết A, B, C là các góc của tam giác ABC, mệnh đề nào sau đây đúng:

 $(\mathbf{A})\sin\left(A+C\right) = -\sin B.$

 $\mathbf{B})\cos\left(A+C\right) = -\cos B.$

(C) $\tan (A+C) = \tan B$.

 $(\mathbf{D})\cot(A+C)=\cot B.$

🗩 Lời giải.

Vì A, B, C là ba góc của một tam giác suy ra $A + C = \pi - B$.

Khi đó $\sin(A + C) = \sin(\pi - B) = \sin B; \cos(A + C) = \cos(\pi - B) = -\cos B.$

 $\tan (A + C) = \tan (\pi - B) = -\tan B; \cot (A + C) = \cot (\pi - B) = -\cot B.$

Chon đáp án (B)

CAU 13. Biết A, B, C là các góc của tam giác ABC, khi đó

(A) $\sin C = -\sin (A+B)$. (B) $\cos C = \cos (A+B)$.

(**c**) $\tan C = \tan (A+B)$.

 $(\mathbf{D})\cot C = -\cot\left(A+B\right).$

🗩 Lời giải.

Vì A, B, C là các góc của tam giác ABC nên $C = 180^{\circ} - (A + B)$.

Do đó C và A+B là 2 góc bù nhau $\Rightarrow \sin C = \sin (A+B)$; $\cos C = -\cos (A+B)$.

 $Va \tan C = -\tan (A + B); \cot C = \cot (A + B).$

Chọn đáp án (B)

CÂU 14. Cho tam giác ABC. Khẳng định nào sau đây là **SAI**?

 $\mathbf{\hat{c}}\sin\left(A+B\right) = \sin C.$

 $(\mathbf{D})\cos(A+B) = \cos C.$

Dòi giải.

Ta có $A+B+C=\pi \Leftrightarrow A+B=\pi-C$

Do đó $\cos(A+B) = \cos(\pi-C) = -\cos C$.

Chọn đáp án (D)

CÂU 15. A,B,C là ba góc của một tam giác. Hãy tìm hệ thức **SAI**:

 $(\mathbf{A})\sin A = -\sin\left(2A + B + C\right)$

 \bigcirc $\cos C = \sin \frac{A+B+3C}{2}$.

 $(\mathbf{D})\sin C = \sin\left(A + B + 2C\right).$

🗩 Lời giải.

A, B, C là ba góc của một tam giác $\Rightarrow A + B + C = 180^{\circ} \Leftrightarrow A + B = 180^{\circ} - C$.

Ta có $\sin(A + B + 2C) = \sin(180^{\circ} - C + 2C) = \sin(180^{\circ} + C) = -\sin C.$

Chọn đáp án (D)

🖶 Dạng 9. TÍNH BIẾU THỨC LƯỢNG GIÁC

CÂU 1. Cho góc α thỏa mãn $\sin \alpha = \frac{12}{13}$ và $\frac{\pi}{2} < \alpha < \pi$. Tính $\cos \alpha$.

 $\mathbf{B}\cos\alpha = \frac{5}{13}.$

 $\mathbf{c} \cos \alpha = -\frac{5}{12}.$

 $\bigcirc \cos \alpha = -\frac{1}{13}.$

Ta có $\begin{cases} \cos \alpha = \pm \sqrt{1 - \sin^2 \alpha} = \pm \frac{5}{13} \\ \frac{\pi}{- < \alpha < \pi} \end{cases} \Rightarrow \cos \alpha = -\frac{5}{12}.$

HÀM SỐ LƯỢNG GIÁC VÀ PHƯƠNG TRÌNH LƯỢNG GIÁC

₱ Địa chỉ: KDC Mỹ Điền, TT. Tuy Phước ₱

Chọn đáp án (D)

CÂU 2. Cho góc α thỏa mãn $\cos \alpha = -\frac{\sqrt{5}}{3}$ và $\pi < \alpha < \frac{3\pi}{2}$. Tính $\tan \alpha$.

$$\mathbf{B} \tan \alpha = \frac{2}{\sqrt{5}}.$$

$$\bigcirc$$
 $\tan \alpha = -\frac{4}{\sqrt{5}}$

🗩 Lời giải.

Ta có
$$\begin{cases} \sin \alpha = \pm \sqrt{1 - \cos^2 \alpha} = \pm \frac{2}{3} \\ \pi < \alpha < \frac{3\pi}{2} \end{cases} \Rightarrow \alpha = -\frac{2}{3} \Rightarrow \tan \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{2}{\sqrt{5}}.$$

Chọn đáp án (B)

CÂU 3. Cho góc α thỏa mãn $\tan \alpha = -\frac{4}{3}$ và $\frac{2017\pi}{2} < \alpha < \frac{2019\pi}{2}$. Tính $\sin \alpha$.

$$\mathbf{B}\sin\alpha = \frac{3}{5}.$$

$$\operatorname{Ta c\acute{o}} \begin{cases} 1 + \tan^2 \alpha = \frac{1}{\cos^2 \alpha} \\ \frac{2017\pi}{2} < \alpha < \frac{2019\pi}{2} \end{cases} \longleftrightarrow \begin{cases} 1 + \left(-\frac{4}{3}\right)^2 = \frac{1}{\cos^2 \alpha} \\ \frac{\pi}{2} + 504 \cdot 2\pi < \alpha < \frac{3\pi}{2} + 504 \cdot 2\pi \end{cases}$$
$$\Rightarrow \cos \alpha = -\frac{3}{5}. \text{ Mà } \tan \alpha = \frac{\sin \alpha}{\cos \alpha} = -\frac{4}{3} = \frac{\sin \alpha}{\frac{3}{2}} \Rightarrow \sin \alpha = \frac{4}{5}.$$

Chọn đáp án (D)

CÂU 4. Cho góc α thỏa mãn $\cos \alpha = -\frac{12}{13}$ và $\frac{\pi}{2} < \alpha < \pi$. Tính $\tan \alpha$.

(A) $\tan \alpha = -\frac{12}{5}$.
(B) $\tan \alpha = \frac{5}{12}$.
(C) $\tan \alpha = \frac{5}{12}$.

$$\mathbf{B} \tan \alpha = \frac{5}{12}.$$

$$\bigcirc \tan \alpha = -\frac{5}{12}$$

Ta có
$$\begin{cases} \sin \alpha = \pm \sqrt{1 - \cos^2 \alpha} = \pm \frac{5}{13} \\ \frac{\pi}{2} < \alpha < \pi \end{cases} \Rightarrow \alpha = \frac{5}{13} \Rightarrow \tan \alpha = \frac{\sin \alpha}{\cos \alpha} = -\frac{5}{12}.$$

Chọn đáp án (C)

CÂU 5. Cho góc α thỏa mãn $\tan \alpha = 2$ và $180^{\circ} < \alpha < 270^{\circ}$. Tính $P = \cos \alpha + \sin \alpha$.

B
$$P = 1 - \sqrt{5}$$
.

$$\bigcirc P = \frac{3\sqrt{5}}{2}.$$

Ta có
$$\begin{cases} \cos^2 \alpha = \frac{1}{1 + \tan^2 \alpha} = \frac{1}{5} \Rightarrow \cos \alpha = \pm \frac{1}{\sqrt{5}} \Rightarrow \cos \alpha = -\frac{1}{\sqrt{5}} \\ 180^\circ < \alpha < 270^\circ \end{cases}$$

 $\Rightarrow \sin \alpha = \tan \alpha. \cos \alpha = -\frac{2}{\sqrt{5}}.$ Do đó, $\sin \alpha + \cos \alpha = -\frac{3}{\sqrt{5}} = -\frac{3\sqrt{5}}{5}.$

Chọn đáp án (A)

CÂU 6. Cho góc α thỏa $\sin \alpha = \frac{3}{5}$ và $90^{\circ} < \alpha < 180^{\circ}$. Khẳng định nào sau đây đúng?

$$\mathbf{C} \tan \alpha = \frac{5}{4}.$$

$$\bigcirc \cos \alpha = -\frac{4}{5}.$$

🗭 Lời giải.

Ta có
$$\begin{cases} \cos \alpha = \pm \sqrt{1 - \sin^2 \alpha} = \pm \frac{4}{5} \Rightarrow \cos \alpha = -\frac{4}{5}. \\ 90^\circ < \alpha < 180^\circ \end{cases}$$

Chọn đáp án (D

CÂU 7. Cho góc α thỏa $\cot \alpha = \frac{3}{4}$ và $0^{\circ} < \alpha < 90^{\circ}$. Khẳng định nào sau đây đúng?

$$\mathbf{\hat{c}}\sin\alpha = \frac{4}{5}.$$

Dòi giải.

HÀM SỐ LƯỢNG GIÁC VÀ PHƯƠNG TRÌNH LƯỢNG GIÁC 🕈 Địa chỉ: KDC Mỹ Điền, TT. Tuy Phước 🗣

Ta có
$$\begin{cases} \frac{1}{\sin^2 \alpha} = 1 + \cot^2 \alpha = 1 + \left(\frac{3}{4}\right)^2 = \frac{25}{16} \Rightarrow \sin \alpha = \frac{4}{5}. \\ 0^\circ < \alpha < 90^\circ \end{cases}$$

Chọn đáp án (C)

$$P = -3$$

$$P = \frac{3}{7}.$$

$$P = \frac{12}{25}$$
.

Ta có
$$\begin{cases} \cos \alpha = \pm \sqrt{1 - \sin^2 \alpha} = \pm \frac{4}{5} \\ \frac{\pi}{2} < \alpha < \pi \end{cases} \Rightarrow \cos \alpha = -\frac{4}{5} \Rightarrow \tan \alpha = -\frac{3}{4}.$$

Thay $\tan \alpha = -\frac{3}{4}$ vào P, ta được $P = -\frac{12}{25}.$

Chọn đáp án (D)

CÂU 9. Cho góc α thỏa $\sin \alpha = \frac{1}{3}$ và $90^{\circ} < \alpha < 180^{\circ}$. Tính $P = \frac{2 \tan \alpha + 3 \cot \alpha + 1}{\tan \alpha + \cot \alpha}$.

(A) $P = \frac{19 + 2\sqrt{2}}{9}$.
(B) $P = \frac{19 - 2\sqrt{2}}{9}$.
(C) $P = \frac{26 - 2\sqrt{2}}{9}$.

(A)
$$P = \frac{19 + 2\sqrt{2}}{9}$$
.

B
$$P = \frac{19 - 2\sqrt{2}}{9}$$
.

$$P = \frac{26 - 2\sqrt{2}}{9}.$$

D
$$P = \frac{26 + 2\sqrt{2}}{9}$$
.

D Lời giải.

Ta có
$$\begin{cases} \cos \alpha = \pm \sqrt{1 - \sin^2 \alpha} = \pm \frac{2\sqrt{2}}{3} \\ 90^\circ < \alpha < 180^\circ \end{cases} \Rightarrow \cos \alpha = -\frac{2\sqrt{2}}{3} \Rightarrow \begin{cases} \tan \alpha = -\frac{\sqrt{2}}{4} \\ \cot \alpha = -2\sqrt{2}. \end{cases}$$
Thay
$$\begin{cases} \tan \alpha = -\frac{\sqrt{2}}{4} \\ \cot \alpha = -2\sqrt{2}. \end{cases}$$

$$\cot \alpha = -2\sqrt{2}.$$

Chọn đáp án (C

CÂU 10. Cho góc α thỏa mãn $\sin(\pi + \alpha) = -\frac{1}{3}$ và $\frac{\pi}{2} < \alpha < \pi$. Tính $P = \tan\left(\frac{7\pi}{2} - \alpha\right)$.

$$\mathbf{A} P = 2\sqrt{2}.$$

$$\mathbf{B}) P = -2\sqrt{2}.$$

$$\bigcirc P = \frac{\sqrt{2}}{4}.$$

🗩 Lời giải.

Ta có
$$P = \tan\left(\frac{7\pi}{2} - \alpha\right) = \tan\left(3\pi + \frac{\pi}{2} - \alpha\right) = \tan\left(\frac{\pi}{2} - \alpha\right) = \cot\alpha = \frac{\cos\alpha}{\sin\alpha}$$
.

Theo giả thiết: $\sin(\pi + \alpha) = -\frac{1}{3} \Leftrightarrow -\sin\alpha = -\frac{1}{3} \Leftrightarrow \sin\alpha = \frac{1}{3}$.

Ta có
$$\begin{cases} \cos \alpha = \pm \sqrt{1 - \sin^2 \alpha} = \pm \frac{2\sqrt{2}}{3} \\ \frac{\pi}{2} < \alpha < \pi \end{cases} \Rightarrow \cos \alpha = -\frac{2\sqrt{2}}{3} \Rightarrow P = -2\sqrt{2}.$$

CÂU 11. Cho góc α thỏa mãn $\cos \alpha = \frac{3}{5}$ và $-\frac{\pi}{2} < \alpha < 0$. Tính $P = \sqrt{5 + 3\tan a} + \sqrt{6 - 4\cot a}$.

$$P = 4.$$

$$\mathbf{B} P = -4$$

$$\bigcirc P = 6$$

$$\mathbf{D} P = -6.$$

🗩 Lời giải.

Ta có
$$\begin{cases} \sin \alpha = \pm \sqrt{1 - \cos^2 \alpha} = \pm \frac{4}{5} \\ -\frac{\pi}{2} < \alpha < 0 \end{cases} \Rightarrow \sin \alpha = -\frac{4}{5} \Rightarrow \begin{cases} \tan \alpha = -\frac{4}{3} \\ \cot \alpha = -\frac{3}{4} \end{cases}.$$

Thay $\begin{cases} \tan\alpha = -\frac{4}{3} \\ \cot\alpha = -\frac{3}{3} \end{cases}$ vào P, ta được P=4.

Chọn đáp án (A)

CÂU 12. Cho góc α thỏa mãn $\cos \alpha = \frac{3}{5}$ và $\frac{\pi}{4} < \alpha < \frac{\pi}{2}$. Tính $P = \sqrt{\tan^2 \alpha - 2 \tan \alpha + 1}$.

(A) $P = -\frac{1}{3}$.
(B) $P = \frac{1}{3}$.

(A)
$$P = -\frac{1}{3}$$
.

$$P = \frac{1}{3}.$$

$$P = \frac{7}{3}$$
.

🗩 Lời giải.

 $\text{Ta có } P = \sqrt{\left(\tan\alpha - 1\right)^2} = \left|\tan\alpha - 1\right|. \text{ Vì } \frac{\pi}{4} < \alpha < \frac{\pi}{2} \Rightarrow \tan\alpha > 1 \Rightarrow P = \tan\alpha - 1.$ Theo giả thiết $\begin{cases} \sin\alpha = \pm\sqrt{1-\cos^2\alpha} = \pm\frac{4}{5} \\ \frac{\pi}{4} < \alpha < \frac{\pi}{2} \end{cases} \Rightarrow \sin\alpha = \frac{4}{5} \Rightarrow \tan\alpha = \frac{4}{3} \Rightarrow P = \frac{1}{3}.$

Chọn đáp án (B

CÂU 13. Cho góc α thỏa mãn $\frac{\pi}{2} < \alpha < 2\pi$ và $\tan\left(\alpha + \frac{\pi}{4}\right) = 1$. Tính $P = \cos\left(\alpha - \frac{\pi}{6}\right) + \sin\alpha$.

B
$$P = \frac{\sqrt{6} + 3\sqrt{2}}{4}$$
. **C** $P = -\frac{\sqrt{3}}{2}$.

$$\bigcirc P = -\frac{\sqrt{3}}{2}.$$

Ta có
$$\begin{cases} \frac{\pi}{2} < \alpha < 2\pi \Leftrightarrow \frac{3\pi}{4} < \alpha + \frac{\pi}{4} < \frac{9\pi}{4} \\ \tan\left(\alpha + \frac{\pi}{4}\right) = 1 \end{cases} \Rightarrow \alpha + \frac{\pi}{4} = \frac{5\pi}{4} \Rightarrow \alpha = \pi.$$

Thay $\alpha = \pi$ vào P, ta được $P = -\frac{\sqrt{3}}{2}$

Chọn đáp án (C)

CÂU 14. Cho góc α thỏa mãn $\frac{\pi}{2} < \alpha < 2\pi$ và cot $\left(\alpha + \frac{\pi}{3}\right) = -\sqrt{3}$. Tính giá trị của biểu thức $P = \sin\left(\alpha + \frac{\pi}{6}\right) + \cos\alpha$.

$$\mathbf{B}) P = 1.$$

$$\bigcirc P = -1$$

Ta có
$$\begin{cases} \frac{\pi}{2} < \alpha < 2\pi \Leftrightarrow \frac{5\pi}{6} < \alpha + \frac{\pi}{3} < \frac{7\pi}{3} \\ \cot\left(\alpha + \frac{\pi}{3}\right) = -\sqrt{3} \end{cases} \Rightarrow \alpha + \frac{\pi}{3} = \frac{11\pi}{6} \Rightarrow \alpha = \frac{3\pi}{2}.$$

Thay $\alpha = \frac{3\pi}{2}$ vào P, ta được $P = -\frac{\sqrt{3}}{2}$.

CÂU 15. Cho góc α thỏa mãn $\tan \alpha = -\frac{4}{3}$ và $\frac{\pi}{2} < \alpha < \pi$. Tính $P = \frac{\sin^2 \alpha - \cos \alpha}{\sin \alpha - \cos^2 \alpha}$.

(A) $P = \frac{30}{11}$.
(B) $P = \frac{31}{11}$.
(C) $P = \frac{32}{11}$.

B
$$P = \frac{31}{11}$$
.

$$P = \frac{32}{11}$$
.

$$P = \frac{34}{11}$$
.

Ta có
$$\begin{cases} \cos^2 \alpha = \frac{1}{1 + \tan^2 \alpha} = \frac{9}{25} \Rightarrow \cos \alpha = \pm \frac{3}{5} \\ \frac{\pi}{2} < \alpha < \pi \end{cases} \Rightarrow \cos \alpha = -\frac{3}{5} \Rightarrow \sin \alpha = \tan \alpha \cdot \cos \alpha = \frac{4}{5}.$$

Thay $\sin\alpha=\frac{4}{5}$ và $\cos\alpha=-\frac{3}{5}$ vào P, ta được $P=\frac{31}{11}.$

Chọn đáp án (B)

CÂU 16. Cho góc α thỏa mãn $\tan \alpha = 2$. Tính $P = \frac{3 \sin \alpha - 2 \cos \alpha}{5 \cos \alpha + 7 \sin \alpha}$. **(A)** $P = -\frac{4}{9}$. **(B)** $P = \frac{4}{9}$. **(C)** $P = -\frac{4}{19}$.

A
$$P = -\frac{4}{9}$$
.

$$P = -\frac{4}{19}$$
.

$$P = \frac{4}{19}$$
.

🗩 Lời giải.

Chia cả tử và mẫu của P cho $\cos \alpha$ ta được $P = \frac{3 \tan \alpha - 2}{5 + 7 \tan \alpha} = \frac{3 \cdot 2 - 2}{5 + 7 \cdot 2} = \frac{4}{19}$.

Chọn đáp án (D)

CÂU 17. Cho góc α thỏa mãn cot $\alpha=\frac{1}{3}$. Tính $P=\frac{3\sin\alpha+4\cos\alpha}{2\sin\alpha-5\cos\alpha}$. (B) $P=\frac{15}{13}$. (C) P=-13.

(A)
$$P = -\frac{15}{13}$$
.

$$\mathbf{B} P = \frac{15}{13}.$$

$$ightharpoonup P = -13$$

(D)
$$P = 13$$
.

🗭 Lời giải.

Chia cả tử và mẫu của P cho $\sin \alpha$ ta được $P = \frac{3+4\cot\alpha}{2-5\cot\alpha} = \frac{3+4\cdot\frac{1}{3}}{2-5\cdot\frac{1}{3}} = 13.$

Chọn đáp án (D)

CÂU 18. Cho góc α thỏa mãn $\tan \alpha = 2$. Tính $P = \frac{2\sin^2 \alpha + 3\sin \alpha \cdot \cos \alpha + 4\cos^2 \alpha}{5\sin^2 \alpha + 6\cos^2 \alpha}$. **(A)** $P = \frac{9}{13}$. **(B)** $P = \frac{9}{65}$.

A
$$P = \frac{9}{13}$$
.

B
$$P = \frac{9}{65}$$
.

$$P = -\frac{9}{65}$$
.

$$P = \frac{24}{29}$$
.

🗩 Lời giải.

Chia cả tử và mẫu của P cho $\cos^2 \alpha$ ta được $P = \frac{2\tan^2 \alpha + 3\tan \alpha + 4}{5\tan^2 \alpha + 6} = \frac{2 \cdot 2^2 + 3 \cdot 2 + 4}{5 \cdot 2^2 + 6} = \frac{9}{13}$.

Chọn đáp án (A)

CÂU 19. Cho góc α thỏa mãn $\tan \alpha = \frac{1}{2}$. Tính $P = \frac{2\sin^2 \alpha + 3\sin \alpha \cdot \cos \alpha - 4\cos^2 \alpha}{5\cos^2 \alpha - \sin^2 \alpha}$. **(A)** $P = -\frac{8}{13}$. **(B)** $P = \frac{2}{19}$. **(C)** $P = -\frac{2}{19}$.

B
$$P = \frac{2}{19}$$

$$\mathbf{C} P = -\frac{2}{19}$$

D
$$P = -\frac{8}{19}$$
.

Dèi giải.

Chia cả tử và mẫu của P cho $\cos^2\alpha$ ta được

$$P = \frac{2\tan^2\alpha + 3\tan\alpha - 4}{5 - \tan^2\alpha} = \frac{2 \cdot \left(\frac{1}{2}\right)^2 + 3 \cdot \frac{1}{2} - 4}{5 - \left(\frac{1}{2}\right)^2} = -\frac{8}{19}.$$

Chon đáp án (D)

CÂU 20. Cho góc α thỏa mãn $\tan \alpha = 5$. Tính $P = \sin^4 \alpha - \cos^4 \alpha$.

(A) $P = \frac{9}{13}$.
(B) $P = \frac{10}{13}$.
(C) $P = \frac{11}{13}$.

A
$$P = \frac{9}{13}$$
.

B
$$P = \frac{10}{13}$$
.

$$P = \frac{11}{13}$$

$$P = \frac{12}{13}$$
.

P Lời giải.

Ta có $P = (\sin^2 \alpha - \cos^2 \alpha) \cdot (\sin^2 \alpha + \cos^2 \alpha) = \sin^2 \alpha - \cos^2 \alpha \cdot (*)$

Chia hai vế của (*) cho $\cos^2 \alpha$ ta được $\frac{P}{\cos^2 \alpha} = \frac{\sin^2 \alpha}{\cos^2 \alpha} - 1$

$$\Leftrightarrow P\left(1 + \tan^2\alpha\right) = \tan^2\alpha - 1 \Leftrightarrow P = \frac{\tan^2\alpha - 1}{1 + \tan^2\alpha} = \frac{5^2 - 1}{1 + 5^2} = \frac{12}{13}.$$

Chọn đáp án (D)

CÂU 21. Cho góc α thỏa mãn $\sin \alpha + \cos \alpha = \frac{5}{4}$. Tính $P = \sin \alpha \cdot \cos \alpha$.

$$P = \frac{9}{8}$$
.

🗭 Lời giải.

Từ giả thiết, ta có $(\sin \alpha + \cos \alpha)^2 = \frac{25}{16} \Leftrightarrow 1 + 2\sin \alpha \cdot \cos \alpha = \frac{25}{16} \Rightarrow P = \sin \alpha \cdot \cos \alpha = \frac{9}{32}$

Chọn đáp án (B)

CÂU 22. Cho góc α thỏa mãn $\sin \alpha \cos \alpha = \frac{12}{25}$ và $\sin \alpha + \cos \alpha > 0$. Tính $P = \sin^3 \alpha + \cos^3 \alpha$.

(A) $P = \frac{91}{125}$.
(B) $P = \frac{49}{25}$.
(C) $P = \frac{7}{5}$.

$$P = \frac{91}{125}$$

B
$$P = \frac{49}{25}$$
.

$$\bigcirc P = \frac{7}{5}.$$

🗭 Lời giải

Áp dụng $a^3 + b^3 = (a+b)^3 - 3ab(a+b)$, ta có $P = \sin^3 \alpha + \cos^3 \alpha = (\sin \alpha + \cos \alpha)^3 - 3\sin \alpha \cos \alpha (\sin \alpha + \cos \alpha).$ Ta có $(\sin \alpha + \cos \alpha)^2 = \sin^2 \alpha + 2\sin \alpha \cos \alpha + \cos^2 \alpha = 1 + \frac{24}{25} = \frac{49}{25}.$

Vì $\sin \alpha + \cos \alpha > 0$ nên ta chọn $\sin \alpha + \cos \alpha = \frac{7}{5}$.

Thay
$$\begin{cases} \sin \alpha + \cos \alpha = \frac{7}{5} \\ \sin \alpha \cos \alpha = \frac{12}{25} \end{cases}$$
 vào P , ta được $P = \left(\frac{7}{5}\right)^3 - 3 \cdot \frac{12}{25} \cdot \frac{7}{5} = \frac{91}{125}.$

Chọn đáp án (A)

CÂU 23. Cho góc α thỏa mãn $0 < \alpha < \frac{\pi}{4}$ và $\sin \alpha + \cos \alpha = \frac{\sqrt{5}}{2}$. Tính $P = \sin \alpha - \cos \alpha$.

B
$$P = \frac{1}{2}$$
.

$$P = -\frac{1}{2}$$
.

Ta có $(\sin \alpha - \cos \alpha)^2 + (\sin \alpha + \cos \alpha)^2 = 2(\sin^2 \alpha + \cos^2 \alpha) = 2$.

Suy ra $(\sin \alpha - \cos \alpha)^2 = 2 - (\sin \alpha + \cos \alpha)^2 = 2 - \frac{5}{4} = \frac{3}{4}$.

Do $0 < \alpha < \frac{\pi}{4}$ suy ra $\sin \alpha < \cos \alpha$ nên $\sin \alpha - \cos \alpha < 0$. Vậy $P = -\frac{\sqrt{3}}{2}$

HÀM SỐ LƯỢNG GIÁC VÀ PHƯƠNG TRÌNH LƯỢNG GIÁC

₱ Địa chỉ: KDC Mỹ Điền, TT. Tuy Phước ₱

Chọn đáp án (D)

CÂU 24. Cho góc α thỏa mãn $\sin \alpha + \cos \alpha = m$.. Tính $P = |\sin \alpha - \cos \alpha|$.

(A)
$$P = 2 - m$$
.

(B)
$$P = 2 - m^2$$
.

$$(\mathbf{C}) P = m^2 - 2$$

$$\mathbf{D}) P = \sqrt{2 - m^2}.$$

🗩 Lời giải.

Ta có $(\sin \alpha - \cos \alpha)^2 + (\sin \alpha + \cos \alpha)^2 = 2(\sin^2 \alpha + \cos^2 \alpha) = 2.$

Suy ra $(\sin \alpha - \cos \alpha)^2 = 2 - (\sin \alpha + \cos \alpha)^2 = 2 - m^2 \Rightarrow P = |\sin \alpha - \cos \alpha| = \sqrt{2 - m^2}$.

Chọn đáp án (D)

CÂU 25. Cho góc α thỏa mãn $\tan \alpha + \cot \alpha = 2$. Tính $P = \tan^2 \alpha + \cot^2 \alpha$.

$$\bigcirc P = 1.$$

$$\mathbf{B}) P = 2.$$

(c)
$$P = 3$$
.

🗩 Lời giải.

Ta có $P = \tan^2 \alpha + \cot^2 \alpha = (\tan \alpha + \cot \alpha)^2 - 2\tan \alpha \cdot \cot \alpha = 2^2 - 2 \cdot 1 = 2.$

Chọn đáp án (B)

CÂU 26. Cho góc α thỏa mãn $\tan \alpha + \cot \alpha = 5$. Tính $P = \tan^3 \alpha + \cot^3 \alpha$.

$$P = 100.$$

B)
$$P = 110$$
.

$$(c) P = 112$$

$$(\mathbf{D}) P = 115.$$

Lời giải.

Ta có $P = \tan^3 \alpha + \cot^3 \alpha = (\tan \alpha + \cot \alpha)^3 - 3\tan \alpha \cot \alpha (\tan \alpha + \cot \alpha) = 5^3 - 3 \cdot 5 = 110.$

CÂU 27. Cho góc α thỏa mãn $\sin \alpha + \cos \alpha = \frac{\sqrt{2}}{2}$. Tính $P = \tan^2 \alpha + \cot^2 \alpha$.

$$(A) P = 12.$$

B
$$P = 14$$
.

$$(c) P = 16.$$

$$(\mathbf{D}) P = 18.$$

🗩 Lời giải.

Ta có
$$\sin \alpha + \cos \alpha = \frac{\sqrt{2}}{2} \to (\sin \alpha + \cos \alpha)^2 = \frac{1}{2} \Leftrightarrow \sin \alpha \cos \alpha = -\frac{1}{4}$$
.

Khi đó $P = \frac{\sin^2 \alpha}{\cos^2 \alpha} + \frac{\cos^2 \alpha}{\sin^2 \alpha} = \frac{\sin^4 \alpha + \cos^4 \alpha}{\sin^2 \alpha \cdot \cos^2 \alpha}$

$$= \frac{\left(\sin^2 \alpha + \cos^2 \alpha\right)^2 - 2\sin^2 \alpha \cdot \cos^2 \alpha}{\sin^2 \alpha \cdot \cos^2 \alpha} = \frac{1 - 2(\sin \alpha \cos \alpha)^2}{\left(\sin \alpha \cos \alpha\right)^2} = 14.$$

Chọn đáp án (B)

CÂU 28. Cho góc α thỏa mãn $\frac{\pi}{2} < \alpha < \pi$ và $\tan \alpha - \cot \alpha = 1$. Tính $P = \tan \alpha + \cot \alpha$.

$$\bigcirc P = 1.$$

B
$$P = -1$$
.

$$\bigcirc P = -\sqrt{5}.$$

$$\mathbf{D} P = \sqrt{5}.$$

🗩 Lời giải.

Ta có $\tan \alpha - \cot \alpha = 1 \Leftrightarrow \tan \alpha - \frac{1}{\tan \alpha} = 1$

 $\Leftrightarrow \tan^2 \alpha - \tan \alpha - 1 = 0 \Leftrightarrow \tan \alpha = \frac{1 \pm \sqrt{5}}{2}$

Do $\frac{\pi}{2} < \alpha < \pi$ suy ra $\tan \alpha < 0$ nên $\tan \alpha = \frac{1 - \sqrt{5}}{2} \Rightarrow \cot \alpha = \frac{1}{\tan \alpha} = \frac{2}{1 - \sqrt{5}}$.

Thay $\tan \alpha = \frac{1-\sqrt{5}}{2}$ và $\cot \alpha = \frac{2}{1-\sqrt{5}}$ vào P, ta được $P = \frac{1-\sqrt{5}}{2} + \frac{2}{1-\sqrt{5}} = -\sqrt{5}$.

CÂU 29. Cho góc α thỏa mãn $3\cos\alpha+2\sin\alpha=2$ và $\sin\alpha<0$. Tính $\sin\alpha$.
(A) $\sin\alpha=-\frac{5}{13}$.
(B) $\sin\alpha=-\frac{7}{13}$.
(C) $\sin\alpha=-\frac{9}{13}$.

$$\mathbf{A}\sin\alpha = -\frac{5}{13}.$$

$$\mathbf{B}\sin\alpha = -\frac{7}{13}.$$

$$\mathbf{c} \sin \alpha = -\frac{9}{13}$$

Dèi giải.

Ta có $3\cos\alpha + 2\sin\alpha = 2 \Leftrightarrow (3\cos\alpha + 2\sin\alpha)^2 = 4$

 $\Leftrightarrow 9\cos^2\alpha + 12\cos\alpha \cdot \sin\alpha + 4\sin^2\alpha = 4 \Leftrightarrow 5\cos^2\alpha + 12\cos\alpha \cdot \sin\alpha = 0$

 $\Leftrightarrow \cos \alpha \left(5\cos \alpha + 12\sin \alpha \right) = 0 \Leftrightarrow \begin{bmatrix} \cos \alpha = 0 \\ 5\cos \alpha + 12\sin \alpha = 0. \end{bmatrix}$

 $\odot \cos \alpha = 0 \Rightarrow \sin \alpha = 1$: loại (vì $\sin \alpha < 0$).

Chọn đáp án (A)

$$P = \frac{1}{2}$$

$$P = \frac{1}{4}.$$

$$P = \frac{1}{6}$$
.

🗩 Lời giải.

Với $\pi < \alpha < \frac{3\pi}{2}$ suy ra $\begin{cases} \sin \alpha < 0 \\ \cos \alpha < 0 \end{cases}$

Ta có
$$\begin{cases} \sin \alpha - 2\cos \alpha = 1 \\ \sin^2 \alpha + \cos^2 \alpha = 1 \end{cases} \Rightarrow (1 + 2\cos \alpha)^2 + \cos^2 \alpha = 1 \Leftrightarrow 5\cos^2 \alpha + 4\cos \alpha = 0 \Leftrightarrow \begin{bmatrix} \cos \alpha = 0 \text{ (loại)} \\ \cos \alpha = -\frac{4}{5} \end{bmatrix}$$

Từ hệ thức $\sin^2\alpha+\cos^2\alpha=1,$ suy ra $\sin\alpha=-\frac{3}{5}$ (do $\sin\alpha<0)$

$$\Rightarrow \tan \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{3}{4} \text{ và } \cot \alpha = \frac{\cos \alpha}{\sin \alpha} = \frac{4}{3}.$$

 $\Rightarrow \tan \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{3}{4} \text{ và } \cot \alpha = \frac{\cos \alpha}{\sin \alpha} = \frac{4}{3}.$ Thay $\tan \alpha = \frac{3}{4} \text{ và } \cot \alpha = \frac{4}{3} \text{ vào } P$, ta được $P = \frac{1}{6}$.

Chọn đáp án (C)

🖢 Dang 10. RÚT GON BIỂU THỰC

CÂU 1. Rút gọn biểu thức $M = (\sin x + \cos x)^2 + (\sin x - \cos x)^2$.

$$\stackrel{\frown}{\mathbf{A}} M = 1.$$

$$(\mathbf{B}) M = 2.$$

$$(c) M = 4.$$

$$\mathbf{D} M = 4\sin x \cdot \cos x.$$

🗩 Lời giải.

Ta có $\begin{cases} (\sin x + \cos x)^2 = \sin^2 x + \cos^2 x + 2\sin x \cdot \cos x = 1 + 2\sin x \cdot \cos x \\ (\sin x - \cos x)^2 = \sin^2 x + \cos^2 x - 2\sin x \cdot \cos x = 1 - 2\sin x \cdot \cos x \end{cases}$

Suy ra M=2. Chon đáp án (B)

CÂU 2. Mệnh đề nào sau đây là đúng?

🗩 Lời giải.

Ta có
$$\sin^4 x + \cos^4 x = (\sin^2 x)^2 + 2 \cdot \sin^2 x \cdot \cos^2 x + (\cos^2 x)^2 - 2 \cdot \sin^2 x \cdot \cos^2 x$$

= $(\sin^2 x + \cos^2 x)^2 - \frac{1}{2} (2 \cdot \sin x \cdot \cos x)^2 = 1 - \frac{1}{2} \sin^2 2x = 1 - \frac{1}{2} \cdot \frac{1 - \cos 4x}{2} = \frac{3}{4} + \frac{1}{4} \cos 4x.$

Chọn đáp án (C)

CÂU 3. Mênh đề nào sau đây là đúng?

$$\mathbf{\hat{c}} \sin^4 x - \cos^4 x = 1 - 2\sin^2 x.$$

$$\mathbf{B})\sin^4 x - \cos^4 x = 1 - 2\sin^2 x \cos^2 x.$$

🗩 Lời giải.

Ta có $\sin^4 x - \cos^4 x = (\sin^2 x)^2 - (\cos^2 x)^2 = (\sin^2 x - \cos^2 x)(\sin^2 x + \cos^2 x)$ $= \sin^2 x - \cos^2 x = (1 - \cos^2 x) - \cos^2 x = 1 - 2\cos^2 x.$

Chọn đáp án (A)

CÂU 4. Rút gọn biểu thức $M = \sin^6 x + \cos^6 x$.

$$M = 1 + 3\sin^2 x \cos^2 x.$$

$$\bigcirc M = 1 - \frac{3}{2}\sin^2 2x$$

(A)
$$M = 1 + 3\sin^2 x \cos^2 x$$
. (B) $M = 1 - 3\sin^2 x$. (C) $M = 1 - \frac{3}{2}\sin^2 2x$. (D) $M = 1 - \frac{3}{4}\sin^2 2x$.

🗭 Lời giải.

 $\text{Ta có } M = \sin^6 x + \cos^6 x = \left(\sin^2 x\right)^3 + \left(\cos^2 x\right)^3 = \left(\sin^2 x + \cos^2 x\right)^3 - 3\sin^2 x \cos^2 x \left(\sin^2 x + \cos^2 x\right) = 1 - 3\sin^2 x \cos^2 x = 1 - 3\sin^2 x \cos$ $1 - \frac{3}{4}\sin^2 2x.$

Chọn đáp án (D)

CÂU 5. Rút gọn biểu thức $M = 2 (\sin^4 x + \cos^4 x + \cos^2 x \sin^2 x)^2 - (\sin^8 x + \cos^8 x)$.

$$\bigcirc M = 1.$$

B
$$M = -1$$
.

$$M = 2.$$

$$\bigcirc M = -2.$$

🗩 Lời giải.

Ta có $\sin^4 x + \cos^4 x + \cos^2 x \sin^2 x = (\sin^2 x + \cos^2 x)^2 - \cos^2 x \sin^2 x = 1 - \cos^2 x \sin^2 x$.

Suy ra $M = 2(1 - \sin^2 x \cos^2 x)^2 - (\sin^8 x + \cos^8 x) = 2(1 - 2\sin^2 x \cos^2 x + \sin^4 x \cos^4 x) - (\sin^8 x + \cos^8 x)$

- $= 2 4\sin^2 x \cos^2 x + 2\sin^4 x \cos^4 x (\sin^8 x + \cos^8 x)$
- $= 2 4\sin^2 x \cos^2 x \left(\sin^4 x \cos^4 x\right)^2 = 2 4\sin^2 x \cdot \cos^2 x \left(\sin^2 x \cos^2 x\right)^2$
- $= 2 2\sin^2 x \cdot \cos^2 x \sin^4 x \cos^4 x = 2 (\sin^2 x + \cos^2 x)^2 = 2 1 = 1.$

Chọn đáp án (A)

CÂU 6. Rút gọn biểu thức $M = \tan^2 x - \sin^2 x$.

- (A) $M = \tan^2 x$.
- $\mathbf{(B)}\ M = \sin^2 x.$
- $\mathbf{C} M = \tan^2 x \cdot \sin^2 x.$
- **(D)** M = 1.

🗩 Lời giải.

Ta có $M = \tan^2 x - \sin^2 x = \frac{\sin^2 x}{\cos^2 x} - \sin^2 x = \sin^2 x \left(\frac{1}{\cos^2 x} - 1\right) = \sin^2 x \cdot \tan^2 x.$

Chọn đáp án (C)

CÂU 7. Rút gọn biểu thức $M = \cot^2 x - \cos^2 x$.

- (A) $M = \cot^2 x$.
- $\mathbf{B}) M = \cos^2 x.$
- (c) M = 1.
- $\mathbf{D} M = \cot^2 x \cdot \cos^2 x.$

🗩 Lời giải.

Ta có $M = \cot^2 x - \cos^2 x = \frac{\cos^2 x}{\sin^2 x} - \cos^2 x = \cos^2 x \left(\frac{1}{\sin^2 x} - 1\right) = \cos^2 x \cdot \cot^2 x.$

Chọn đáp án (D)

CÂU 8. Rút gọn biểu thức $M = (1 - \sin^2 x) \cot^2 x + (1 - \cot^2 x)$.

- (A) $M = \sin^2 x$. (B) $M = \cos^2 x$. (C) $M = \sin^2 x$.

- \mathbf{D} $M = \cos^2 x$.

Dòi giải.

Ta biến đổi $M = (\cot^2 x - \cos^2 x) + (1 - \cot^2 x) = 1 - \cos^2 x = \sin^2 x$.

Chọn đáp án (A)

CÂU 9. Rút gọn biểu thức $M = \sin^2 \alpha \tan^2 \alpha + 4 \sin^2 \alpha - \tan^2 \alpha + 3 \cos^2 \alpha$.

- $(\mathbf{A}) M = 1 + \sin^2 \alpha.$
- (B) $M = \sin \alpha$.
- (c) $M=2\sin\alpha$.
- **(D)** M = 3.

🗩 Lời giải.

Ta có $M = \tan^2 \alpha \left(\sin^2 \alpha - 1 \right) + 4 \sin^2 \alpha + 3 \cos^2 \alpha$

- $= \tan^2 \alpha \left(-\cos^2 \alpha \right) + 4\sin^2 \alpha + 3\cos^2 \alpha$
- $= -\sin^{2} \alpha + 4\sin^{2} \alpha + 3\cos^{2} \alpha = 3(\sin^{2} \alpha + \cos^{2} \alpha) = 3.$

Chọn đáp án (D)

CÂU 10. Rút gọn biểu thức $M = (\sin^4 x + \cos^4 x - 1) (\tan^2 x + \cot^2 x + 2)$.

- **B**) M = -2.
- **(D)** M = 4.

🗩 Lời giải.

Ta có
$$M = (1 - 2\sin^2 x \cdot \cos^2 x - 1) \left(\frac{\sin^2 x}{\cos^2 x} + \frac{\cos^2 x}{\sin^2 x} + 2 \right)$$

= $\left(-2\sin^2 x \cdot \cos^2 x \right) \left(\frac{\sin^4 x + \cos^4 x + 2\sin^2 x \cdot \cos^2 x}{\sin^2 x \cos^2 x} \right) = (-2) \cdot \left(\sin^2 x + \cos^2 x \right)^2 = -2.$

Chọn đáp án (D)

CÂU 11. Đơn giản biểu thức $P = \sqrt{\sin^4 \alpha + \sin^2 \alpha \cos^2 \alpha}$.

- $(\mathbf{A}) P = |\sin \alpha|. \qquad (\mathbf{B}) P = \sin \alpha.$
- (c) $P = \cos \alpha$.
- (**D**) $P = |\cos \alpha|$.

🗩 Lời giải.

Ta có $P = \sqrt{\sin^4 \alpha + \sin^2 \alpha \cos^2 \alpha} = \sqrt{\sin^2 \alpha \left(\sin^2 \alpha + \cos^2 \alpha\right)} = \sqrt{\sin^2 \alpha} = |\sin \alpha|$.

Chọn đáp án (A)

CÂU 12. Đơn giản biểu thức $P = \frac{1 + \sin^2 \alpha}{1 - \sin^2 \alpha}$.

- (A) $P = 1 + 2 \tan^2 \alpha$.

- **(B)** $P = 1 2 \tan^2 \alpha$. **(C)** $P = -1 + 2 \tan^2 \alpha$. **(D)** $P = -1 2 \tan^2 \alpha$.

 $\mathrm{Ta~c\acute{o}}~P = \frac{1+\sin^2\!\alpha}{1-\sin^2\!\alpha} = \frac{1+\sin^2\!\alpha}{\cos^2\!\alpha} = \frac{1}{\cos^2\!\alpha} + \tan^2\!\alpha = 1 + 2\tan^2\!\alpha.$

CÂU 13. Đơn giản biểu thức
$$P=\frac{1-\cos\alpha}{\sin^2\alpha}-\frac{1}{1+\cos\alpha}$$
.

(A) $P=-\frac{2\cos\alpha}{\sin^2\alpha}$.
(B) $P=\frac{2}{\sin^2\alpha}$.

$$P = \frac{2}{\sin^2 \alpha}$$

$$\mathbf{C} P = \frac{2}{1 + \cos \alpha}.$$

P Lời giải.

Ta có
$$P = \frac{1 - \cos \alpha}{\sin^2 \alpha} - \frac{1}{1 + \cos \alpha} = \frac{1 - \cos \alpha}{1 - \cos^2 \alpha} - \frac{1}{1 + \cos \alpha} = \frac{1 - \cos \alpha}{(1 - \cos \alpha)(1 + \cos \alpha)} - \frac{1}{1 + \cos \alpha} = \frac{1}{1 + \cos \alpha} - \frac{1}{1 + \cos \alpha} = 0.$$

Chọn đáp án (D)

B
$$P = 1$$
.

$$\mathbf{C} P = -\cos^2 \alpha.$$

$$\mathbf{D} P = \cot^2 \alpha.$$

🗩 Lời giải.

Ta có
$$P = \frac{1 - \sin^2 \alpha \cos^2 \alpha - \cos^4 \alpha}{\cos^2 \alpha} = \frac{1 - \cos^2 \alpha \left(\sin^2 \alpha + \cos^2 \alpha\right)}{\cos^2 \alpha}$$

$$= \frac{1 - \cos^2 \alpha}{\cos^2 \alpha} = \frac{\sin^2 \alpha}{\cos^2 \alpha} = \tan^2 \alpha.$$
Chọn đáp án (A)

CÂU 15. Đơn giản biểu thức $P = \frac{2\cos^2 x - 1}{\sin x + \cos x}$.

$$\mathbf{B} P = \cos x - \sin x.$$

$$\bigcirc P = \cos 2x - \sin 2x.$$

(B)
$$P = \cos x - \sin x$$
. (C) $P = \cos 2x - \sin 2x$. (D) $P = \cos 2x + \sin 2x$.

🗩 Lời giải.

Ta có
$$P = \frac{2\cos^2 x - (\sin^2 x + \cos^2 x)}{\sin x + \cos x} = \frac{\cos^2 x - \sin^2 x}{\sin x + \cos x} = \cos x - \sin x.$$

Chọn đáp án (B

CÂU 16. Đơn giản biểu thức $P = \frac{(\sin \alpha + \cos \alpha)^2 - 1}{\cot \alpha - \sin \alpha \cos \alpha}$. **(A)** $P = 2 \tan^2 \alpha$. **(B)** $P = \frac{\sin \alpha}{\cos^3 \alpha}$.

$$P = 2 \tan^2 \alpha.$$

$$P = \frac{\sin \alpha}{\cos^3 \alpha}.$$

$$\bigcirc P = 2\cot^2\alpha.$$

🗩 Lời giải.

Ta có
$$P = \frac{(\sin \alpha + \cos \alpha)^2 - 1}{\cot \alpha - \sin \alpha \cos \alpha} = \frac{\sin^2 \alpha + 2\sin \alpha \cdot \cos \alpha + \cos^2 \alpha - 1}{\cos \alpha \cdot \left(\frac{1}{\sin \alpha} - \sin \alpha\right)}.$$

$$= \frac{1 + 2\sin\alpha \cdot \cos\alpha - 1}{\cos\alpha \cdot \frac{1 - \sin^2\alpha}{\sin\alpha}} = \frac{2\sin\alpha \cdot \cos\alpha}{\frac{\cos^3\alpha}{\sin\alpha}} = \frac{2\sin^2\alpha}{\cos^2\alpha} = 2\tan^2\alpha.$$

Chọn đáp án (A)

CÂU 17. Đơn giản biểu thức $P = \left(\frac{\sin \alpha + \tan \alpha}{\cos \alpha + 1}\right)^2 + 1$.

$$P = 1 + \tan \alpha.$$

$$\mathbf{C} P = \frac{1}{\cos^2 \alpha}.$$

Dòi giải.

Ta có
$$\frac{\sin \alpha + \tan \alpha}{\cos \alpha + 1} = \frac{\sin \alpha \left(1 + \frac{1}{\cos \alpha}\right)}{\cos \alpha + 1} = \frac{\sin \alpha \left(\frac{\cos \alpha + 1}{\cos \alpha}\right)}{\cos \alpha + 1} = \frac{\sin \alpha}{\cos \alpha} = \tan \alpha.$$

Suy ra $P = \tan^2 \alpha + 1 = \frac{1}{\cos^2 \alpha}$

Chọn đáp án (C)

$$\bigcirc P = 2.$$

$$\mathbf{B}) P = 2\cos\alpha.$$

$$\bigcirc P = 2 \tan \alpha$$

🗩 Lời giải.

Ta có
$$P = \tan \alpha \left(\frac{1 + \cos^2 \alpha}{\sin \alpha} - \sin \alpha \right) = \frac{\sin \alpha}{\cos \alpha} \left(\frac{1}{\sin \alpha} + \frac{\cos^2 \alpha}{\sin \alpha} - \sin \alpha \right)$$

$$= \frac{1}{\cos \alpha} + \cos \alpha - \frac{\sin^2 \alpha}{\cos \alpha} = \frac{1 + \cos^2 \alpha - \sin^2 \alpha}{\cos \alpha} = \frac{(1 - \sin^2 \alpha) + \cos^2 \alpha}{\cos \alpha} = \frac{2\cos^2 \alpha}{\cos \alpha} = 2\cos \alpha.$$

Chọn đáp án (B)

CÂU 19. Đơn giản biểu thức $P = \frac{\cot^2 x - \cos^2 x}{\cot^2 x} + \frac{\sin x \cos x}{\cot x}$.

$$\bigcirc$$
 $P=1.$

$$\bigcirc P = -1$$

$$\bigcirc P = \frac{1}{2}$$

$$P = -\frac{1}{2}$$
.

🗩 Lời giải.

Ta có
$$\frac{\cot^2 x - \cos^2 x}{\cot^2 x} = 1 - \frac{\cos^2 x}{\cot^2 x} = 1 - \cos^2 x \cdot \frac{\sin^2 x}{\cos^2 x} = 1 - \sin^2 x.$$

Và $\frac{\sin x \cdot \cos x}{\cot x} = \sin x \cdot \cos x \cdot \frac{\sin x}{\cos x} = \sin^2 x.$

Chọn đáp án (A)

$$(\textbf{B}) \frac{1 - 4\sin^2 x \cdot \cos^2 x}{4\sin^2 x \cdot \cos^2 x} = \frac{1 + \tan^4 x - 2\tan^2 x}{4\tan^2 x}.$$

$$\mathbf{c} \frac{\sin x + \tan x}{\tan x} = 1 + \sin x + \cot x.$$

🗭 Lời giải.

Ta có
$$\frac{\sin x + \tan x}{\tan x} = \frac{\sin x}{\tan x} + 1 = \sin x \cdot \frac{\cos x}{\sin x} + 1 = 1 + \cos x \neq 1 + \sin x + \cot x.$$

Chọn đáp án (C)

🖶 Dạng 11. TÍNH GIÁ TRỊ LƯỢNG GIÁC

CÂU 1. Rút gọn biểu thức $M = \cos^4 15^\circ - \sin^4 15^\circ$.

$$\bigcirc M = \frac{1}{4}.$$

$$\bigcirc M=0.$$

Dòi giải.

Ta có $M = \cos^4 15^\circ - \sin^4 15^\circ = (\cos^2 15^\circ)^2 - (\sin^2 15^\circ)^2 = (\cos^2 15^\circ - \sin^2 15^\circ) (\cos^2 15^\circ + \sin^2 15^\circ) = \cos^2 15^\circ - \sin^2 15^\circ = (\cos^2 15^\circ - \sin^2 15^\circ) = \cos^2 15^\circ - \sin^2 15^\circ = (\cos^2 15^\circ - \sin^2 15^\circ) = \cos^2 15^\circ - \sin^2 15^\circ = (\cos^2 15^\circ - \sin^2 15^\circ) = \cos^2 15^\circ - \sin^2 15^\circ = (\cos^2 15^\circ - \sin^2 15^\circ) = \cos^2 15^\circ - \sin^2 15^\circ = (\cos^2 15^\circ - \sin^2 15^\circ) = \cos^2 15^\circ - \sin^2 15^\circ = (\cos^2 15^\circ - \sin^2 15^\circ) = \cos^2 15^\circ - \sin^2 15^\circ = (\cos^2 15^\circ - \sin^2 15^\circ) = \cos^2 15^\circ - \sin^2 15^\circ = (\cos^2 15^\circ - \sin^2 15^\circ) = \cos^2 15^\circ - \sin^2 15^\circ = (\cos^2 15^\circ - \sin^2 15^\circ) = (\cos^2 15^\circ - \cos^2 15^\circ) = (\cos^2 15^\circ)$ $\cos(2.15^\circ) = \cos 30^\circ = \frac{\sqrt{3}}{2}.$

Chọn đáp án (B)

CÂU 2. Tính giá trị của biểu thức $M = \cos^4 15^{\circ} - \sin^4 15^{\circ} + \cos^2 15^{\circ} - \sin^2 15^{\circ}$. **(A)** $M = \sqrt{3}$. **(B)** $M = \frac{1}{2}$.

B
$$M = \frac{1}{2}$$
.

$$M = \frac{1}{4}$$
.

$$\bigcirc M=0.$$

P Lời giải.

Áp dụng công thức nhân đôi $\cos^2 a - \sin^2 a = \cos 2a$.

$$M = (\cos^4 15^\circ - \sin^4 15^\circ) + (\cos^2 15^\circ - \sin^2 15^\circ)$$

$$= (\cos^2 15^\circ - \sin^2 15^\circ) (\cos^2 15^\circ + \sin^2 15^\circ) + (\cos^2 15^\circ - \sin^2 15^\circ)$$

$$= (\cos^2 15^\circ - \sin^2 15^\circ) + (\cos^2 15^\circ - \sin^2 15^\circ)$$

$$= \cos 30^\circ + \cos 30^\circ = \sqrt{3}.$$

Chọn đáp án (A)

CÂU 3. Tính giá trị của biểu thức $M = \cos^6 15^\circ - \sin^6 15^\circ$.

B
$$M = \frac{1}{2}$$
. **C** $M = \frac{1}{4}$.

🗩 Lời giải.

Ta có

 $\cos^6 \alpha - \sin^6 \alpha = (\cos^2 \alpha - \sin^2 \alpha) (\cos^4 \alpha + \cos^2 \alpha \cdot \sin^2 \alpha + \sin^4 \alpha)$ $=\cos 2\alpha \cdot \left[\left(\cos^2\alpha + \sin^2\alpha\right)^2 - \cos^2\alpha \cdot \sin^2\alpha\right]$

$$= \cos 2\alpha \cdot \left[(\cos^2 \alpha + \sin^2 \alpha) \right]$$
$$= \cos 2\alpha \cdot \left(1 - \frac{1}{4} \sin^2 2\alpha \right).$$

Vậy $M = \cos 30^{\circ} \cdot \left(1 - \frac{1}{4}\sin^2 30^{\circ}\right) = \frac{\sqrt{3}}{2} \cdot \left(1 - \frac{1}{4} \cdot \frac{1}{4}\right) = \frac{15\sqrt{3}}{32}.$

Chọn đáp án (D)

THÀM SỐ LƯỢNG GIÁC VÀ PHƯƠNG TRÌNH LƯỢNG GIÁC ₱ Địa chỉ: KDC Mỹ Điền, TT. Tuy Phước ₱

CÂU 4. Giá trị của biểu thức $\cos \frac{\pi}{30} \cos \frac{\pi}{5} + \sin \frac{\pi}{30} \sin \frac{\pi}{5}$ là

$$\mathbf{B} - \frac{\sqrt{3}}{2}$$

$$\bigcirc \frac{\sqrt{3}}{4}$$
.

 $\bigcirc \frac{1}{2}$.

Ta có $\cos \frac{\pi}{30} \cos \frac{\pi}{5} + \sin \frac{\pi}{30} \sin \frac{\pi}{5} = \cos \left(\frac{\pi}{30} - \frac{\pi}{5}\right) = \cos \left(-\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}.$ Chọn đáp án (A)

CÂU 5. Giá trị của biểu thức $P = \frac{\sin\frac{5\pi}{18}\cos\frac{\pi}{9} - \sin\frac{\pi}{9}\cos\frac{5\pi}{18}}{\cos\frac{\pi}{4}\cos\frac{\pi}{12} - \sin\frac{\pi}{4}\sin\frac{\pi}{12}}$ là

B
$$\frac{1}{2}$$
.

$$\bigcirc \frac{\sqrt{2}}{2}$$
.

🗩 Lời giải.

 $Va \cos \frac{\pi}{4} \cos \frac{\pi}{12} - \sin \frac{\pi}{4} \sin \frac{\pi}{12} = \cos \left(\frac{\pi}{4} + \frac{\pi}{12}\right) = \cos \frac{\pi}{3} = \frac{1}{2}. \ \ Vay \ P = \frac{1}{2} : \frac{1}{2} = 1.$

CÂU 6. Giá trị đúng của biểu thức $\frac{\tan 225^\circ - \cot 81^\circ \cdot \cot 69^\circ}{\cot 261^\circ + \tan 201^\circ}$ bằng $\boxed{\mathbf{A}} \frac{1}{\sqrt{3}}.$ $\boxed{\mathbf{B}} -\frac{1}{\sqrt{3}}.$ $\boxed{\mathbf{C}} \sqrt{3}.$

$$\frac{\cot 2}{\cot 2}$$

$$\bigcirc$$
 $\sqrt{3}$.

$$\mathbf{D}$$
 $-\sqrt{3}$.

Ta có $\frac{\tan 225^{\circ} - \cot 81^{\circ} \cdot \cot 69^{\circ}}{\cot 261^{\circ} + \tan 201^{\circ}} = \frac{\tan (180^{\circ} + 45^{\circ}) - \tan 9^{\circ} \cdot \cot 69^{\circ}}{\cot (180^{\circ} + 81^{\circ}) + \tan (180^{\circ} + 21^{\circ})} = \frac{1 - \tan 9^{\circ} \cdot \tan 21^{\circ}}{\tan 9^{\circ} + \tan 21^{\circ}}$ $= \frac{1}{\tan (9^{\circ} + 21^{\circ})} = \frac{1}{\tan 30^{\circ}} = \sqrt{3}.$

Chọn đáp án (C)

Chọn đáp an \bigcirc $\textbf{CÂU 7.} \text{ Giá trị của biểu thức } M = \sin\frac{\pi}{24}\sin\frac{5\pi}{24}\sin\frac{7\pi}{24}\sin\frac{11\pi}{24} \text{ bằng }$ $\boxed{ \textbf{C}} \frac{1}{9}$

$$\mathbf{A} \frac{1}{2}$$

$$\frac{1}{8}$$
.

$$\bigcirc \frac{1}{16}$$
.

Ta có $\sin \frac{7\pi}{24} = \cos \frac{5\pi}{24}$ và $\sin \frac{11\pi}{24} = \cos \frac{\pi}{24}$. Do đó $M = \sin \frac{\pi}{24} \sin \frac{5\pi}{24} \cos \frac{5\pi}{24} \cos \frac{\pi}{24} = \frac{1}{4} \cdot \left(2 \sin \frac{\pi}{24} \cdot \cos \frac{\pi}{24}\right) \cdot \left(2 \sin \frac{5\pi}{24} \cdot \cos \frac{5\pi}{24}\right)$

 $=\frac{1}{4}\cdot\sin\frac{\pi}{12}\cdot\sin\frac{5\pi}{12}=\frac{1}{4}\cdot\frac{1}{2}\left(\cos\frac{6\pi}{12}+\cos\frac{\pi}{3}\right)=\frac{1}{8}\cdot\left(0+\frac{1}{2}\right)=\frac{1}{16}.$

CÂU 8. Giá trị của biểu thức $M=\sin\frac{\pi}{48}\cos\frac{\pi}{48}\cos\frac{\pi}{24}\cos\frac{\pi}{12}\cos\frac{\pi}{6}$ là

$$\bigcirc$$
 $\frac{1}{32}$.

$$\mathbf{c} \frac{\sqrt{3}}{16}$$
.

D Lời giải

Áp dụng công thức $\sin 2a = 2 \sin a \cdot \cos a$, ta có $A = \sin \frac{\pi}{48} \cdot \cos \frac{\pi}{48} \cdot \cos \frac{\pi}{24} \cdot \cos \frac{\pi}{12} \cdot \cos \frac{\pi}{6} = \frac{1}{2} \cdot \sin \frac{\pi}{24} \cdot \cos \frac{\pi}{24} \cdot \cos \frac{\pi}{12} \cdot \cos \frac{\pi}{6}$ $= \frac{1}{4} \cdot \sin \frac{\pi}{12} \cdot \cos \frac{\pi}{12} \cdot \cos \frac{\pi}{6} = \frac{1}{8} \cdot \sin \frac{\pi}{6} \cdot \cos \frac{\pi}{6} = \frac{1}{16} \cdot \sin \frac{\pi}{3} = \frac{\sqrt{3}}{32}.$ Chọn đáp án (D)

CÂU 9. Tính giá trị của biểu thức $M = \cos 10^{\circ} \cos 20^{\circ} \cos 40^{\circ} \cos 80^{\circ}$. **A** $M = \frac{1}{16} \cos 10^{\circ}$. **B** $M = \frac{1}{2} \cos 10^{\circ}$. **C** $M = \frac{1}{4} \cos 10^{\circ}$.

$$M = \frac{1}{16} \cos 10^{\circ}.$$

B
$$M = \frac{1}{2}\cos 10^{\circ}$$
.

P Lời giải.

Vì $\sin 10^{\circ} \neq 0$ nên suy ra $M = \frac{16 \sin 10^{\circ} \cos 10^{\circ} \cos 20^{\circ} \cos 40^{\circ} \cos 80^{\circ}}{16 \sin 10^{\circ} \cos 10^{\circ} \cos 10^{\circ}} = \frac{8 \sin 20^{\circ} \cos 20^{\circ} \cos 40^{\circ} \cos 80^{\circ}}{16 \sin 10^{\circ}}$ $16\sin 10^{\circ}$

₱ Địa chỉ: KDC Mỹ Điền, TT. Tuy Phước ₱

$$\Rightarrow M = \frac{4\sin 40^{\circ}\cos 40^{\circ}\cos 80^{\circ}}{16\sin 10^{\circ}} = \frac{2\sin 80^{\circ}\cos 80^{\circ}}{16\sin 10^{\circ}} = \frac{\sin 160^{\circ}}{16\sin 10^{\circ}}.$$

$$\Rightarrow M = \frac{\sin 20^{\circ}}{16\sin 10^{\circ}} = \frac{2\sin 10^{\circ}\cos 10^{\circ}}{16\sin 10^{\circ}} = \frac{1}{8}\cos 10^{\circ}.$$
Chọn đáp án \bigcirc

CÂU 10. Tính giá trị của biểu thức $M = \cos \frac{2\pi}{7} + \cos \frac{4\pi}{7} + \cos \frac{6\pi}{7}$.

B
$$M = -\frac{1}{2}$$
.

$$\bigcirc$$
 $M=1.$

$$\bigcirc M=2.$$

🗩 Lời giải.

$$\begin{split} & \text{ Ap dung cong thức } \sin a - \sin b = 2 \cdot \cos \frac{a+b}{2} \cdot \sin \frac{a-b}{2}. \\ & \text{ Ta có } 2 \sin \frac{\pi}{7} \cdot M = 2 \cdot \cos \frac{2\pi}{7} \cdot \sin \frac{\pi}{7} + 2 \cdot \cos \frac{4\pi}{7} \cdot \sin \frac{\pi}{7} + 2 \cdot \cos \frac{6\pi}{7} \cdot \sin \frac{\pi}{7} \\ & = \sin \frac{3\pi}{7} - \sin \frac{\pi}{7} + \sin \frac{5\pi}{7} - \sin \frac{3\pi}{7} + \sin \frac{7\pi}{7} - \sin \frac{5\pi}{7} = -\sin \frac{\pi}{7} + \sin \pi = -\sin \frac{\pi}{7}. \end{split}$$

Vậy giá trị biểu thức $M = -\frac{1}{2}$.

Chọn đáp án (B)

🖶 Dạng 12. TÍNH ĐÚNG SAI

CÂU 1. Công thức nào sau đây sai?

- $(\mathbf{A})\cos(a-b) = \sin a \sin b + \cos a \cos b.$
- $(\mathbf{c})\sin(a-b) = \sin a \cos b \cos a \sin b.$

- $(\mathbf{B})\cos(a+b) = \sin a \sin b \cos a \cos b.$
- $(\mathbf{D})\sin(a+b) = \sin a \cos b + \cos a \sin b.$

Lời giải.

Ta có $\cos(a+b) = \cos a \cos b - \sin a \sin b$.

Chọn đáp án (B)

CÂU 2. Khẳng định nào sau đây đúng?

- $(\mathbf{A})\sin(2018a) = 2018\sin a \cdot \cos a.$
- $(\mathbf{C})\sin(2018a) = 2\sin a\cos a.$

- (B) $\sin(2018a) = 2018\sin(1009a) \cdot \cos(1009a)$.
- $(\mathbf{D})\sin(2018a) = 2\sin(1009a) \cdot \cos(1009a).$

Lời giải.

Áp dụng công thức $\sin 2\alpha = 2\sin \alpha \cdot \cos \alpha$ ta được $\sin (2018a) = 2\sin (1009a) \cdot \cos (1009a)$. Chọn đáp án (D)

CÂU 3. Khẳng định nào sai trong các khẳng định sau?

- $(\mathbf{A})\cos 6a = \cos^2 3a \sin^2 3a.$
- $(\mathbf{c})\cos 6a = 1 6\sin^2 a.$

- **B**) $\cos 6a = 1 2\sin^2 3a$.
- $(\mathbf{D})\cos 6a = 2\cos^2 3a 1.$

🗩 Lời giải.

Áp dụng công thức $\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha = 2\cos^2 \alpha - 1 = 1 - 2\sin^2 \alpha$, ta được $\cos 6a = \cos^2 3a - \sin^2 3a = 2\cos^2 3a - 1 = 1 - 2\sin^2 3a.$ Chọn đáp án (C)

🗭 Lời giải.

Ta có $\cos 3x = 4\cos^3 x - 3\cos x$ Chọn đáp án (D)

CÂU 5. Khẳng định nào đúng trong các khẳng định sau?

- \mathbf{C} $\sin a + \cos a = -\sqrt{2}\sin\left(a \frac{\pi}{4}\right)$.

- $\mathbf{B}\sin a + \cos a = \sqrt{2}\sin\left(a + \frac{\pi}{4}\right).$

🗩 Lời giải.

Chon đáp án (B)

CÂU 6. Có bao nhiêu đẳng thức dưới đây là đồng nhất thức?

- 1) $\cos x \sin x = \sqrt{2} \sin \left(x + \frac{\pi}{4}\right)$.
- 2) $\cos x \sin x = \sqrt{2} \cos \left(x + \frac{\pi}{4}\right)$.

HÀM SỐ LƯỢNG GIÁC VÀ PHƯƠNG TRÌNH LƯỢNG GIÁC ₱ Địa chỉ: KDC Mỹ Điền, TT. Tuy Phước ₱ 3) $\cos x - \sin x = \sqrt{2} \sin \left(x - \frac{\pi}{4}\right)$. 4) $\cos x - \sin x = \sqrt{2} \sin \left(\frac{\pi}{4} - x\right)$. **(D)** 4. (**A**) 1. 🗩 Lời giải. Ta có $\cos x - \sin x = \sqrt{2}\cos\left(x + \frac{\pi}{4}\right) = \sqrt{2}\cos\left[\frac{\pi}{2} - \left(\frac{\pi}{4} - x\right)\right] = \sqrt{2}\sin\left(\frac{\pi}{4} - x\right).$ Chọn đáp án (B) **CÂU 7.** Công thức nào sau đây đúng? **B** $\cos 3a = 4\cos^3 a - 3\cos a$. $(\mathbf{A})\cos 3a = 3\cos a - 4\cos^3 a.$ $(\mathbf{c})\cos 3a = 3\cos^3 a - 4\cos a.$ $(\mathbf{D})\cos 3a = 4\cos a - 3\cos^3 a.$ 🗩 Lời giải. Chọn đáp án (B) CÂU 8. Công thức nào sau đây đúng? **B**) $\sin 3a = 4 \sin^3 a - 3 \sin a$. $(\mathbf{A})\sin 3a = 3\sin a - 4\sin^3 a.$ $(\mathbf{c}) \sin 3a = 3 \sin^3 a - 4 \sin a.$ $(\mathbf{D}) \sin 3a = 4 \sin a - 3 \sin^3 a.$ 🗩 Lời giải. Chọn đáp án (A) **CÂU 9.** Nếu $\cos(a+b)=0$ thì khẳng định nào sau đây đúng? $(\mathbf{A})|\sin(a+2b)| = |\sin a|.$ **(B)** $|\sin{(a+2b)}| = |\sin{b}|$. (C) $|\sin{(a+2b)}| = |\cos{a}|$. $(\mathbf{D}) |\sin (a+2b)| = |\cos b|.$ Lời giải. Ta có $\cos(a+b) = 0 \Leftrightarrow a+b = \frac{\pi}{2} + k\pi \Rightarrow = -b + \frac{\pi}{2} + k\pi.$ $\Rightarrow |\sin(a+2b)| = \left|\sin\left(-b+2b+\frac{\pi}{2}+k\pi\right)\right| = |\cos(b+k\pi)| = |\cos b|.$ Chon đáp án (D) **CÂU 10.** Nếu $\sin(a+b) = 0$ thì khẳng định nào sau đây đúng? $(\mathbf{C}) |\cos{(a+2b)}| = |\cos{a}|.$ $(\mathbf{A}) \left| \cos \left(a + 2b \right) \right| = \left| \sin a \right|.$ **(B)** $|\cos{(a+2b)}| = |\sin{b}|$. $(\mathbf{D}) |\cos{(a+2b)}| = |\cos{b}|.$ Lời giải. Ta có $\sin(a+b) = 0 \Leftrightarrow a+b = k\pi \Rightarrow a = -b + k\pi \Rightarrow |\cos(a+2b)| = |\cos(-b+2b+k\pi)| = |\cos(b+k\pi)| = |\cos b|$. Chọn đáp án (D) 🖶 Dạng 13. VẬN DỤNG CÔNG THỰC LƯỢNG GIÁC **CÂU 1.** Rút gọn $M = \sin(x - y)\cos y + \cos(x - y)\sin y$. (A) $M = \cos x$. (B) $M = \sin x$. (C) $M = \sin x \cos 2y$. $(\mathbf{D}) M = \cos x \cos 2y.$ Dòi giải. Áp dụng công thức $\sin(a+b) = \sin a \cos b + \sin b \cos a$, ta được $M = \sin(x - y)\cos y + \cos(x - y)\sin y = \sin[(x - y) + y] = \sin x.$ Chọn đáp án (B) **CÂU 2.** Rút gọn $M = \cos(a+b)\cos(a-b) - \sin(a+b)\sin(a-b)$. **B**) $M = 1 - 2\sin^2 a$. (A) $M = 1 - 2\cos^2 a$. (**c**) $M = \cos 4a$. (**D**) $M = \sin 4a$. Dèi giải. Áp dụng công thức $\cos x \cos y - \sin x \sin y = \cos (x + y)$, ta được $M = \cos(a+b)\cos(a-b) - \sin(a+b)\sin(a-b) = \cos(a+b+a-b) = \cos 2a = 1 - 2\sin^2 a.$ Chọn đáp án (B) **CÂU 3.** Rút gọn $M = \cos(a+b)\cos(a-b) + \sin(a+b)\sin(a-b)$. **(B)** $M = 1 + 2\sin^2 b$. (A) $M = 1 - 2\sin^2 b$. (**C**) $M = \cos 4b$. (**D**) $M = \sin 4b$. 🗩 Lời giải.

Áp dụng công thức $\cos x \cos y + \sin x \sin y = \cos (x - y)$, ta được

 $M = \cos(a+b)\cos(a-b) + \sin(a+b)\sin(a-b)$ = \cos (a+b-(a-b)) = \cos 2b = 1 - 2\sin^2 b.

Chọn đáp án (A)

CÂU 4. Giá trị nào sau đây của x thỏa mãn $\sin 2x \cdot \sin 3x = \cos 2x \cdot \cos 3x$?

(A) 18°.

(**B**) 30°.

(**D**) 45°.

🗩 Lời giải.

Áp dụng công thức $\cos a \cdot \cos b - \sin a \cdot \sin b = \cos (a + b)$, ta được $\sin 2x \cdot \sin 3x = \cos 2x \cdot \cos 3x \Leftrightarrow \cos 2x \cdot \cos 3x - \sin 2x \cdot \sin 3x = 0$ $\Leftrightarrow \cos 5x = 0 \Leftrightarrow 5x = \frac{\pi}{2} + k\pi \Leftrightarrow x = \frac{\pi}{10} + k\frac{\pi}{5}.$

Chọn đáp án (A)

CÂU 5. Đẳng thức nào sau đây đúng?

B
$$\cos^2 a = \frac{1}{2} (1 + \cos 2a).$$

$$\mathbf{C}\sin(a+b) = \frac{1}{2}\sin 2(a+b)$$

$$(\mathbf{D} \tan (a+b) = \frac{\sin (a+b)}{\cos a \cdot \cos b}$$

🗭 Lời giải.

Xét các đáp án sau

$$\odot$$
 Ta có $\cos 2a = 2\cos^2 a - 1 \Leftrightarrow \cos^2 a = \frac{1}{2}(1 + \cos 2a)$.

Chọn đáp án (B)

CÂU 6. Chọn công thức đúng trong các công thức sau:

(A)
$$\sin a \cdot \sin b = -\frac{1}{2} \left[\cos \left(a + b\right) - \cos \left(a - b\right)\right].$$
(C) $\tan 2a = \frac{2 \tan a}{1 - \tan a}.$

$$\mathbf{B}\sin a - \sin b = 2\sin\frac{a+b}{2}\cdot\cos\frac{a-b}{2}.$$

$$\cot 2a = \frac{2\tan^2 a}{1 - \tan a}.$$

$$\bigcirc \cos 2a = \sin^2 a - \cos^2 a$$

Dòi giải.

Chọn đáp án (B)

CÂU 7. Rút gọn $M = \cos\left(x + \frac{\pi}{4}\right) - \cos\left(x - \frac{\pi}{4}\right)$.

$$\mathbf{C} M = \sqrt{2}\cos x.$$

🗩 Lời giải.

Áp dụng công thức $\cos a - \cos b = -2\sin\frac{a+b}{2} \cdot \sin\frac{a-b}{2}$, ta được

$$M = \cos\left(x + \frac{\pi}{4}\right) - \cos\left(x - \frac{\pi}{4}\right) = -2\sin\left(\frac{x + \frac{\pi}{4} + x - \frac{\pi}{4}}{2}\right) \cdot \sin\left(\frac{x + \frac{\pi}{4} - x + \frac{\pi}{4}}{2}\right)$$

 $=-2\sin x\cdot\sin\frac{\pi}{4}=-\sqrt{2}\sin x.$

Chọn đáp án (B)

CÂU 8. Tam giác ABC có $\cos A = \frac{4}{5}$ và $\cos B = \frac{5}{13}$. Khi đó $\cos C$ bằng

$$\triangle \frac{56}{65}$$
.

$$(B) - \frac{56}{65}$$
.

$$\bigcirc \frac{16}{65}$$
.

$$\bigcirc$$
 $\frac{33}{65}$.

D Lời giải.

Ta có
$$\begin{cases} \cos A = \frac{4}{5} \\ \cos B = \frac{5}{13} \end{cases} \Rightarrow \begin{cases} \sin A = \frac{3}{5} \\ \sin B = \frac{12}{13}. \end{cases}$$

Mà $A + B + C = 180^{\circ}$, do đó $\cos C = \cos [180^{\circ} - (A+B)] = -\cos (A+B)$ = $-(\cos A \cdot \cos B - \sin A \cdot \sin B) = -\left(\frac{4}{5} \cdot \frac{5}{13} - \frac{3}{5} \cdot \frac{12}{13}\right) = \frac{16}{65}$.

Chọn đáp án (C)

CÂU 9. Cho A,B,C là ba góc nhọn thỏa mãn $\tan A = \frac{1}{2}, \tan B = \frac{1}{5}, \tan C = \frac{1}{8}$. Tổng A+B+C bằng

$$\mathbf{C}$$
 $\frac{\pi}{4}$

🗭 Lời giải.

Ta có
$$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \cdot \tan B} = \frac{\frac{1}{2} + \frac{1}{5}}{1 - \frac{1}{2} \cdot \frac{1}{5}} = \frac{7}{9}$$

$$\Rightarrow \tan(A+B+C) = \frac{\tan(A+B) + \tan C}{1 - \tan(A+B) \cdot \tan C} = \frac{\frac{7}{9} + \frac{1}{8}}{1 - \frac{7}{9} \cdot \frac{1}{8}} = 1 \Rightarrow A+B+C = \frac{\pi}{4}.$$

Chọn đáp án (C)

$$\mathbf{B} P = 4\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}.$$

D Lời giải.

$$\operatorname{Do} \left\{ \begin{aligned} \frac{A+B}{2} &= \frac{\pi}{2} - \frac{C}{2} \\ \frac{C}{2} &= \frac{\pi}{2} - \frac{A+B}{2} \end{aligned} \right. \Rightarrow \left\{ \begin{aligned} \sin \frac{A+B}{2} &= \cos \frac{C}{2} \\ \sin \frac{C}{2} &= \cos \frac{A+B}{2} \end{aligned} \right.$$

$$P = (\sin A + \sin B) + \sin C = 2\sin\frac{A+B}{2}\cos\frac{A-B}{2} + 2\sin\frac{C}{2}\cos\frac{C}{2}$$

$$=2\cos\frac{C}{2}\cos\frac{A-B}{2}+2\cos\frac{A+B}{2}\cos\frac{C}{2}$$

$$= 2\cos\frac{\frac{2}{C}}{2}\left(\cos\frac{\frac{A}{B} - B}{2} + \cos\frac{\frac{A}{B} + B}{2}\right) = 4\cos\frac{C}{2}\cos\frac{A}{2}\cos\frac{B}{2}.$$

CÂU 11. Cho A, B, C là các góc của tam giác ABC. Khi đó $P = \sin 2A + \sin 2B + \sin 2C$ tương đương với:

$$(\mathbf{A}) P = 4\cos A \cdot \cos B \cdot \cos C.$$

$$\mathbf{B} P = 4\sin A \cdot \sin B \cdot \sin C.$$

$$(\mathbf{C}) P = -4\cos A \cdot \cos B \cdot \cos C.$$

$$(\mathbf{D}) P = -4\sin A \cdot \sin B \cdot \sin C.$$

🗩 Lời giải.

Do $A + B = \pi - C \Rightarrow \sin(A + B) = \sin C$. Áp dụng, ta được

 $P = (\sin 2A + \sin 2B) + \sin 2C = 2\sin(A+B) \cdot \cos(A-B) + 2\sin C \cdot \cos C$

$$= 2 \sin C \cdot \cos (A - B) + 2 \sin C \cdot \cos C = 2 \sin C \left[\cos (A - B) + \cos C\right]$$

$$=4\sin C\cdot\cos\frac{A-B+C}{2}\cdot\cos\frac{A-B-C}{2}$$

$$= 2 \sin C \cdot \cos (A - B) + 2 \sin C \cdot \cos C = 2 \sin C \left[\cos (A - B) + \cos C\right]$$

$$= 4 \sin C \cdot \cos \frac{A - B + C}{2} \cdot \cos \frac{A - B - C}{2}$$

$$= 4 \sin C \cdot \cos \frac{(A + B + C) - 2B}{2} \cdot \cos \frac{(-A - B - C) + 2A}{2} = 4 \sin C \cdot \cos \left(\frac{\pi}{2} - B\right) \cdot \cos \left(-\frac{\pi}{2} + A\right)$$

$$= 4 \sin C \cdot \sin B \cdot \sin A = 4 \sin A \cdot \sin B \cdot \sin C.$$

Chọn đáp án (B)

CÂU 12. Cho A, B, C là các góc của tam giác ABC (không phải tam giác vuông). Khi đó $P = \tan A + \tan B + \tan C$ tương đương với

$$\mathbf{C} P = -\tan \cdot \tan B \cdot \tan C.$$

Dèi giải.

Ta có $P = \tan A + \tan B + \tan C = (\tan A + \tan B) + \tan C = \frac{\sin (A + B)}{\cos A \cdot \cos B} + \frac{\sin C}{\cos C}$.

Mà $A + B = \pi - C \Rightarrow \begin{cases} \sin (A + B) = \sin C \\ -\cos (A + B) = \cos C \end{cases}$.

Mà
$$A + B = \pi - C \Rightarrow \begin{cases} \sin(A + B) = \sin C \\ -\cos(A + B) = \cos C \end{cases}$$

Khi đó, ta được
$$P = \frac{\sin C}{\cos A \cdot \cos B} + \frac{\sin C}{\cos C} = \sin C \left(\frac{\cos C + \cos A \cdot \cos B}{\cos A \cdot \cos B \cdot \cos C} \right) = \sin C \cdot \left(\frac{-\cos (A+B) + \cos A \cdot \cos B}{\cos A \cdot \cos B \cdot \cos C} \right)$$
$$= \sin C \cdot \frac{-\cos A \cdot \cos B + \sin A \cdot \sin B + \cos A \cdot \cos B}{\cos A \cdot \cos B \cdot \cos C} = \frac{\sin A \cdot \sin B \cdot \sin C}{\cos A \cdot \cos B \cdot \cos C} = \tan A \cdot \tan B \cdot \tan C.$$
Chan đớp áp (D)

Chon đáp án (D)

CÂU 13. Cho A,B,C là các góc của tam giác ABC. Khi đó $P=\tan\frac{A}{2}\cdot\tan\frac{B}{2}+\tan\frac{B}{2}\cdot\tan\frac{C}{2}+\tan\frac{A}{2}\cdot\tan\frac{A}{2}$ tương đương với

B
$$P = -1$$
.

🗩 Lời giải.

Do
$$A + B + C = \pi \Rightarrow \frac{C + B}{2} = \frac{\pi}{2} - \frac{A}{2} \Rightarrow \tan\left(\frac{C + B}{2}\right) = \tan\left(\frac{\pi}{2} - \frac{A}{2}\right).$$

$$\Rightarrow \frac{\tan\frac{C}{2} + \tan\frac{B}{2}}{1 - \tan\frac{C}{2}\tan\frac{B}{2}} = \cot\frac{A}{2} = \frac{1}{\tan\frac{A}{2}}$$

$$\Rightarrow \tan \frac{A}{2} \left(\tan \frac{C}{2} + \tan \frac{B}{2} \right) + \tan \frac{C}{2} \cdot \tan \frac{B}{2} = 1$$

$$\Rightarrow \tan \frac{A}{2} \left(\tan \frac{C}{2} + \tan \frac{B}{2} \right) + \tan \frac{C}{2} \cdot \tan \frac{B}{2} = 1$$

$$\Rightarrow \tan \frac{A}{2} \cdot \tan \frac{B}{2} + \tan \frac{B}{2} \cdot \tan \frac{C}{2} + \tan \frac{C}{2} \cdot \tan \frac{A}{2} = 1.$$

Chọn đáp án (A

CÂU 14. Trong ΔABC , nếu $\frac{\sin B}{\sin C}=2\cos A$ thì ΔABC là tam giác có tính chất nào sau đây?

- (\mathbf{A}) Cân tại B.
- (**B**) Cân tại A.
- (**C**) Cân tại C.
- (**D**) Vuông tại B.

P Lời giải.

Ta có $\frac{\sin B}{\sin C} = 2\cos A \Rightarrow \sin B = 2\sin C \cdot \cos A = \sin(C+A) + \sin(C-A)$.

Mặt khác $A + B + C = \pi \Rightarrow B = \pi - (A + C) \Rightarrow \sin B = \sin (A + C)$.

Do đó, ta được $\sin(C - A) = 0 \Rightarrow A = C$.

Chọn đáp án (A)

CÂU 15. Trong $\triangle ABC$, nếu $\frac{\tan A}{\tan C} = \frac{\sin^2 A}{\sin^2 C}$ thì $\triangle ABC$ là tam giác gì?

(A) Tam giác vuông.

(B) Tam giác cân.

(C) Tam giác đều.

(D) Tam giác vuông hoặc cân.

🗩 Lời giải.

$$\operatorname{Ta} \operatorname{c\acute{o}} \frac{\tan A}{\tan C} = \frac{\sin^2 A}{\sin^2 C} \Leftrightarrow \frac{\sin A \cos C}{\cos A \sin C} = \frac{\sin^2 A}{\sin^2 C} \Leftrightarrow \sin 2C = \sin 2A \Rightarrow \begin{bmatrix} 2C = 2A \\ 2C = \pi - 2A \end{bmatrix} \Rightarrow \begin{bmatrix} C = A \\ A + C = \frac{\pi}{2} \end{bmatrix}$$

Chon đáp án (D)

🖶 Dạng 14. TÍNH BIẾU THỰC LƯỢNG GIÁC

CÂU 1. Cho góc α thỏa mãn $\frac{\pi}{2} < \alpha < \pi$ và $\sin \alpha = \frac{4}{5}$. Tính $P = \sin 2(\alpha + \pi)$.

$$P = -\frac{24}{25}.$$

B
$$P = \frac{24}{25}$$
.

$$P = -\frac{12}{25}.$$

$$P = \frac{12}{25}$$
.

🗩 Lời giải.

Ta có $P = \sin 2 (\alpha + \pi) = \sin (2\alpha + 2\pi) = \sin 2\alpha = 2 \sin \alpha \cos \alpha$.

Từ hệ thức $\sin^2 \alpha + \cos^2 \alpha = 1$, suy ra $\cos \alpha = \pm \sqrt{1 - \sin^2 \alpha} = \pm \frac{3}{\kappa}$

Do $\frac{\pi}{2} < \alpha < \pi$ nên ta chọn $\cos \alpha = -\frac{3}{5}$.

Thay $\sin \alpha = \frac{4}{5}$ và $\cos \alpha = -\frac{3}{5}$ vào P, ta được $P = 2 \cdot \frac{4}{5} \cdot \left(-\frac{3}{5}\right) = -\frac{24}{25}$

Chọn đáp án (A)

CÂU 2. Cho góc α thỏa mãn $0 < \alpha < \frac{\pi}{2}$ và $\sin \alpha = \frac{2}{3}$. Tính $P = \frac{1 + \sin 2\alpha + \cos 2\alpha}{\sin \alpha + \cos \alpha}$.

B
$$P = \frac{3}{2}$$
.

$$\bigcirc P = -\frac{3}{2}.$$

 $\text{Ta có } P = \frac{2 \sin \alpha \cos \alpha + 2 \text{cos}^2 \alpha}{\sin \alpha + \cos \alpha} = \frac{2 \cos \alpha \left(\sin \alpha + \cos \alpha\right)}{\sin \alpha + \cos \alpha} = 2 \cos \alpha.$

Từ hệ thức $\sin^2 \alpha + \cos^2 \alpha = 1$, suy ra $\cos \alpha = \pm \sqrt{1 - \sin^2 \alpha} = \pm \frac{\sqrt{5}}{2}$

Do $0 < \alpha < \frac{\pi}{2}$ nên ta chọn $\cos \alpha = \frac{\sqrt{5}}{3} \Rightarrow P = \frac{2\sqrt{5}}{3}$.

Chọn đáp án (D) **CÂU 3.** Biết $\sin(\pi - \alpha) = -\frac{3}{5}$ và $\pi < \alpha < \frac{3\pi}{2}$. Tính $P = \sin(\alpha + \frac{\pi}{6})$.

₱ Địa chỉ: KDC Mỹ Điền, TT. Tuy Phước ₱

$$P = -\frac{3}{5}$$
.

B
$$P = \frac{3}{5}$$
.

©
$$P = \frac{-4 - 3\sqrt{3}}{10}$$
. **D** $P = \frac{4 - 3\sqrt{3}}{10}$

$$P = \frac{4 - 3\sqrt{3}}{10}.$$

Φ Lời aiải.

Ta có $-\frac{3}{5} = \sin{(\pi - \alpha)} = \sin{\alpha}$. Từ hệ thức $\sin^2{\alpha} + \cos^2{\alpha} = 1$, suy ra $\cos{\alpha} = \pm \sqrt{1 - \sin^2{\alpha}} = \pm \frac{4}{5}$. Do $\pi < \alpha < \frac{3\pi}{2}$ nên ta chọn $\cos \alpha = -\frac{4}{5}$.

Suy ra $P = \sin\left(\alpha + \frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}\sin\alpha + \frac{1}{2}\cos\alpha = \frac{\sqrt{3}}{2}\left(-\frac{3}{5}\right) + \frac{1}{2}\left(-\frac{4}{5}\right) = \frac{-4 - 3\sqrt{3}}{10}$.

Chọn đáp án (C)

CÂU 4. Cho góc α thỏa mãn $\sin \alpha = \frac{3}{5}$. Tính $P = \sin \left(\alpha + \frac{\pi}{6}\right) \sin \left(\alpha - \frac{\pi}{6}\right)$.

A
$$P = \frac{11}{100}$$
.

$$P = -\frac{11}{100}.$$

$$P = \frac{7}{25}$$
.

$$P = \frac{10}{11}$$

🗩 Lời giải.

Áp dụng công thức $\sin a \cdot \sin b = \frac{1}{2} \left[\cos \left(a - b \right) - \cos \left(a + b \right) \right]$, ta được $P = \sin \left(\alpha + \frac{\pi}{6} \right) \sin \left(\alpha - \frac{\pi}{6} \right) = \frac{1}{2} \left(\cos \frac{\pi}{3} - \cos 2\alpha \right).$

Ta có $\cos 2\alpha = 1 - 2\sin^2 \alpha = 1 - 2\cdot \left(\frac{3}{5}\right)^2 = \frac{7}{25}$. Thay vào P, ta được $P = \frac{1}{2}\left(\frac{1}{2} - \frac{7}{25}\right) = \frac{11}{100}$.

Chọn đáp án (A)

CÂU 5. Cho góc α thỏa mãn $\sin \alpha = \frac{4}{5}$. Tính $P = \cos 4\alpha$.

$$\bigcirc P = \frac{527}{625}.$$

B
$$P = -\frac{527}{625}$$
.

$$P = \frac{524}{625}$$
.

🗩 Lời giải

Ta có $\cos 2\alpha = 1 - 2\sin^2 \alpha = 1 - 2 \cdot \left(\frac{4}{5}\right)^2 = -\frac{7}{25}$

Suy ra $P = \cos 4\alpha = 2\cos^2 2\alpha - 1 = 2 \cdot \frac{49}{625} - 1 = -\frac{527}{625}$

Chọn đáp án (B)

CÂU 6. Cho góc α thỏa mãn $\sin 2\alpha = -\frac{4}{5}$ và $\frac{3\pi}{4} < \alpha < \pi$. Tính $P = \sin \alpha - \cos \alpha$.

$$\bigcirc P = \frac{\sqrt{5}}{3}.$$

D Lời giải.

 $\text{Vì } \frac{3\pi}{4} < \alpha < \pi \text{ suy ra } \begin{cases} \sin \alpha > 0 \\ \cos \alpha < 0 \end{cases} \text{ nên } \sin \alpha - \cos \alpha > 0.$

Ta có $(\sin \alpha - \cos \alpha)^2 = 1 - \sin 2\alpha = 1 + \frac{4}{5} = \frac{9}{5}$.

Suy ra $\sin \alpha - \cos \alpha = \pm \frac{3}{\sqrt{5}}$. Do $\sin \alpha - \cos \alpha > 0$ nên $\sin \alpha - \cos \alpha = \frac{3}{\sqrt{5}}$.

Vậy $P = \frac{3}{\sqrt{5}}$.

Chọn đáp án (A)

CÂU 7. Cho góc α thỏa mãn $\sin 2\alpha = \frac{2}{3}$. Tính $P = \sin^4 \alpha + \cos^4 \alpha$.

B
$$P = \frac{17}{81}$$
.

$$P = \frac{7}{9}$$
.

🗩 Lời giải.

Áp dụng $a^4 + b^4 = (a^2 + b^2)^2 - 2a^2b^2$.

Ta có $P = \sin^4 \alpha + \cos^4 \alpha = (\sin^2 \alpha + \cos^2 \alpha)^2 - 2\sin^2 \alpha \cdot \cos^2 \alpha = 1 - \frac{1}{2}\sin^2 2\alpha = \frac{7}{9}$

Chọn đáp án (C)

CÂU 8. Cho góc α thỏa mãn $\cos \alpha = \frac{5}{13}$ và $\frac{3\pi}{2} < \alpha < 2\pi$. Tính $P = \tan 2\alpha$.

$$P = -\frac{120}{119}.$$

$$P = -\frac{119}{120}.$$

$$P = \frac{120}{119}$$

$$P = \frac{119}{120}$$

🗩 Lời giải.

₱ Địa chỉ: KDC Mỹ Điền, TT. Tuy Phước ₱

Ta có $P = \tan 2\alpha = \frac{\sin 2\alpha}{\cos 2\alpha} = \frac{2\sin \alpha \cdot \cos \alpha}{2\cos^2 \alpha - 1}$

Từ hệ thức $\sin^2 \alpha + \cos^2 \alpha = 1$, suy ra $\sin \alpha = \pm \sqrt{1 - \cos^2 \alpha} = \pm \frac{12}{12}$.

Do $\frac{3\pi}{2} < \alpha < 2\pi$ nên ta chọn $\sin \alpha = -\frac{12}{13}$

Thay $\sin \alpha = -\frac{12}{13}$ và $\cos \alpha = \frac{5}{13}$ vào P, ta được $P = \frac{120}{110}$

Chọn đáp án (C

CÂU 9. Cho góc α thỏa mãn $\cos 2\alpha = -\frac{2}{3}$. Tính $P = (1 + 3\sin^2\alpha) (1 - 4\cos^2\alpha)$. **(A)** P = 12. **(B)** $P = \frac{21}{2}$. **(C)** P = 6.

$$P = 12.$$

B
$$P = \frac{31}{2}$$
.

$$\bigcirc P = 6.$$

D
$$P = 21$$
.

🗩 Lời giải.

Ta có $P = \left(1 + 3 \cdot \frac{1 - \cos 2\alpha}{2}\right) \left(1 - 4 \cdot \frac{1 + \cos 2\alpha}{2}\right) = \left(\frac{5}{2} - \frac{3}{2}\cos 2\alpha\right) (-1 - 2\cos 2\alpha).$

Thay $\cos 2\alpha = -\frac{2}{3}$ vào P, ta được $P = \left(\frac{5}{2} + 1\right)\left(-1 + \frac{4}{3}\right) = \frac{7}{6}$.

Chọn đáp án (D)

CÂU 10. Cho góc α thỏa mãn $\cos \alpha = \frac{3}{4}$ và $\frac{3\pi}{2} < \alpha < 2\pi$. Tính $P = \cos \left(\frac{\pi}{3} - \alpha\right)$.

B
$$P = \frac{3 - \sqrt{21}}{8}$$
.

$$P = \frac{3\sqrt{3} + \sqrt{7}}{8}.$$

$$\mathbf{D} P = \frac{3\sqrt{3} - \sqrt{7}}{8}$$

Ta có $P = \cos\left(\frac{\pi}{3} - \alpha\right) = \cos\frac{\pi}{3}\cos\alpha + \sin\frac{\pi}{3}\sin\alpha = \frac{1}{2}\cos\alpha + \frac{\sqrt{3}}{2}\sin\alpha$.

Từ hệ thức $\sin^2 \alpha + \cos^2 \alpha = 1$, suy ra $\sin \alpha = \pm \sqrt{1 - \cos^2 \alpha} = \pm \frac{\sqrt{7}}{4}$

Do $\frac{3\pi}{2} < \alpha < 2\pi$ nên ta chọn $\sin \alpha = -\frac{\sqrt{7}}{4}$.

Thay $\sin \alpha = -\frac{\sqrt{7}}{4}$ và $\cos \alpha = \frac{3}{4}$ vào P, ta được $P = \frac{1}{2} \cdot \frac{3}{4} + \frac{\sqrt{3}}{2} \cdot \left(-\frac{\sqrt{7}}{4}\right) = \frac{3 - \sqrt{21}}{8}$.

Chọn đáp án (B)

CÂU 11. Cho góc α thỏa mãn $\cos \alpha = -\frac{4}{5}$ và $\pi < \alpha < \frac{3\pi}{2}$. Tính $P = \tan \left(\alpha - \frac{\pi}{4}\right)$. **(a)** $P = -\frac{1}{7}$.

$$P = \frac{1}{7}.$$

$$P = -7.$$

$$\bigcirc P = 7.$$

🗩 Lời giải.

Ta có $P = \tan\left(\alpha - \frac{\pi}{4}\right) = \frac{\tan\alpha - 1}{1 + \tan\alpha}$.

Từ hệ thức $\sin^2\alpha + \cos^2\alpha = 1$, suy ra $\sin\alpha = \pm\sqrt{1-\cos^2\alpha} = \pm\frac{3}{5}$. Do $\pi < \alpha < \frac{3\pi}{2}$ nên ta chọn $\sin\alpha = -\frac{3}{5}$. Suy ra $\tan\alpha = \frac{\sin\alpha}{\cos\alpha} = \frac{3}{4}$. Thay $\tan\alpha = \frac{3}{4}$ vào P, ta được $P = -\frac{1}{7}$.

Chọn đáp án (A)

CÂU 12. Cho góc α thỏa mãn $\cos 2\alpha = -\frac{4}{5}$ và $\frac{\pi}{4} < \alpha < \frac{\pi}{2}$. Tính $P = \cos\left(2\alpha - \frac{\pi}{4}\right)$.

B
$$P = -\frac{\sqrt{2}}{10}$$
. **C** $P = -\frac{1}{5}$.

$$P = -\frac{1}{5}$$
.

$$\bigcirc P = \frac{1}{5}.$$

Ta có $P = \cos\left(2\alpha - \frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}\left(\cos 2\alpha + \sin 2\alpha\right).$

Từ hệ thức $\sin^2 2\alpha + \cos^2 2\alpha = 1$, suy ra $\sin 2\alpha = \pm \sqrt{1 - \cos^2 2\alpha} = \pm \frac{3}{5}$.

Do $\frac{\pi}{4} < \alpha < \frac{\pi}{2} \Leftrightarrow \frac{\pi}{2} < 2\alpha < \pi$ nên ta chọn $\sin 2\alpha = \frac{3}{5}$.

Thay $\sin 2\alpha = \frac{3}{5}$ và $\cos 2\alpha = -\frac{4}{5}$ vào P, ta được $P = -\frac{\sqrt{2}}{10}$

Chọn đáp án (B

CÂU 13. Cho góc α thỏa mãn $\cos \alpha = -\frac{4}{5}$ và $\pi < \alpha < \frac{3\pi}{2}$. Tính $P = \sin \frac{\alpha}{2}$. $\cos \frac{3\alpha}{2}$

◆ Địa chỉ: KDC Mỹ Điền, TT. Tuy Phước ◆

$$P = -\frac{39}{50}$$
.

B
$$P = \frac{49}{50}$$
.

$$P = -\frac{49}{50}$$
.

$$P = \frac{39}{50}$$

🗩 Lời giải.

Ta có $P = \sin \frac{\alpha}{2} \cdot \cos \frac{3\alpha}{2} = \frac{1}{2} (\sin 2\alpha - \sin \alpha) = \frac{1}{2} \sin \alpha (2 \cos \alpha - 1).$

Từ hệ thức $\sin^2 \alpha + \cos^2 \alpha = 1$, suy ra $\sin \alpha = \pm \sqrt{1 - \cos^2 \alpha} = \pm \frac{3}{5}$.

Do $\pi < \alpha < \frac{3\pi}{2}$ nên ta chọn $\sin \alpha = -\frac{3}{5}$.

Thay $\sin \alpha = -\frac{3}{5}$ và $\cos \alpha = -\frac{4}{5}$ vào P, ta được $P = \frac{39}{50}$.

Chọn đáp án D

CÂU 14. Cho góc α thỏa mãn $\cot\left(\frac{5\pi}{2} - \alpha\right) = 2$. Tính $P = \tan\left(\alpha + \frac{\pi}{4}\right)$.

$$P = -\frac{1}{2}.$$

$$\mathbf{C} P = 3.$$

$$(\mathbf{D}) P = 4.$$

🗩 Lời giải.

Ta có $P = \tan\left(\alpha + \frac{\pi}{4}\right) = \frac{\tan\alpha + \tan\frac{\pi}{4}}{1 - \tan\alpha \cdot \tan\frac{\pi}{4}} = \frac{\tan\alpha + 1}{1 - \tan\alpha}.$

Từ giả thiết $\cot\left(\frac{5\pi}{2} - \alpha\right) = 2 \Leftrightarrow \cot\left(2\pi + \frac{\pi}{2} - \alpha\right) = 2 \Leftrightarrow \cot\left(\frac{\pi}{2} - \alpha\right) = 2 \Leftrightarrow \tan\alpha = 2.$

Thay $\tan \alpha = 2$ vào P, ta được P = -3.

Chọn đáp án \bigcirc

CÂU 15. Cho góc α thỏa mãn $\cot \alpha = 15$. Tính $P = \sin 2\alpha$.

B
$$P = \frac{13}{113}$$
.

$$P = \frac{15}{113}$$
.

$$P = \frac{17}{113}$$

🗩 Lời giải.

Ta có $\cot \alpha = 15 \Leftrightarrow \frac{\cos \alpha}{\sin \alpha} = 15 \Leftrightarrow \cos \alpha = 15 \sin \alpha.$

Suy ra $P = \sin 2\alpha = 2 \sin \alpha \cdot \cos \alpha = 30 \sin^2 \alpha = \frac{30}{\frac{1}{\sin^2 \alpha}} = \frac{30}{1 + \cot^2 \alpha} = \frac{30}{1 + 15^2} = \frac{15}{113}$.

Chọn đáp án \bigcirc

CÂU 16. Cho góc α thỏa mãn $\cot \alpha = -3\sqrt{2}$ và $\frac{\pi}{2} < \alpha < \pi$. Tính $P = \tan \frac{\alpha}{2} + \cot \frac{\alpha}{2}$.

$$\mathbf{B}) P = -2\sqrt{19}$$

(c)
$$P = \sqrt{19}$$
.

$$\mathbf{D} P = -\sqrt{19}.$$

₽ Lời giải.

 $\operatorname{Ta} \operatorname{co} P = \tan \frac{\alpha}{2} + \cot \frac{\alpha}{2} = \frac{\sin \frac{\alpha}{2}}{\cos \frac{\alpha}{2}} + \frac{\cos \frac{\alpha}{2}}{\sin \frac{\alpha}{2}} = \frac{\sin^2 \frac{\alpha}{2} + \cos^2 \frac{\alpha}{2}}{\sin \frac{\alpha}{2} \cos \frac{\alpha}{2}} = \frac{2}{\sin \alpha}.$

Từ hệ thức $1 + \cot^2 \alpha = \frac{1}{\sin^2 \alpha} \Rightarrow \sin \alpha = \pm \frac{1}{\sqrt{19}}$

Do $\frac{\pi}{2} < \alpha < \pi \Rightarrow \sin \alpha > 0$ nên ta chọn $\sin \alpha = \frac{1}{\sqrt{19}} \Rightarrow P = 2\sqrt{19}$.

Chọn đáp án \bigcirc

CÂU 17. Cho góc α thỏa mãn $\tan \alpha = -\frac{4}{3}$ và $\alpha \in \left(\frac{3\pi}{2}; 2\pi\right]$. Tính $P = \sin \frac{\alpha}{2} + \cos \frac{\alpha}{2}$.

$$\bigcirc P = -\frac{\sqrt{5}}{5}.$$

🗩 Lời giải.

Ta có $P^2=1+\sin\alpha$. Với $\alpha\in\left(\frac{3\pi}{2};2\pi\right]\Rightarrow\frac{\alpha}{2}\in\left(\frac{3\pi}{4};\pi\right]$. Khi đó $\begin{cases} 0\leqslant\sin\frac{\alpha}{2}<\frac{\sqrt{2}}{2}\\ -1\leqslant\cos\frac{\alpha}{2}<-\frac{\sqrt{2}}{2} \end{cases}, \text{ suy ra }P=\sin\frac{\alpha}{2}+\cos\frac{\alpha}{2}<0.$

Từ hệ thức $\sin^2\alpha + \cos^2\alpha = 1$, suy ra $\sin^2\alpha = 1 - \cos^2\alpha = 1 - \frac{1}{1 + \tan^2\alpha} = \frac{\frac{1}{16}}{25}$. Vì $\alpha \in \left(\frac{3\pi}{2}; 2\pi\right]$ nên ta chọn $\sin\alpha = -\frac{4}{5}$.

Thay $\sin\alpha=-\frac{4}{5}$ vào $P^2,$ ta được $P^2=\frac{1}{5}.$ Suy ra $P=-\frac{\sqrt{5}}{5}.$ Chọn đáp án \bigcirc

CÂU 18. Cho góc α thỏa mãn $\tan \alpha = -2$. Tính $P = \frac{\sin 2\alpha}{\cos 4\alpha + 1}$

A
$$P = \frac{10}{9}$$
.

B
$$P = \frac{9}{10}$$
.

$$P = -\frac{10}{9}$$
.

$$P = -\frac{9}{10}$$
.

🗩 Lời giải.

Ta có $P = \frac{\sin 2\alpha}{\cos 4\alpha + 1} = \frac{\sin 2\alpha}{2\cos^2 2\alpha}$.

Nhắc lại công thức: Nếu đặt $t = \tan \alpha$ thì $\sin 2\alpha = \frac{2t}{1+t^2}$ và $\cos 2\alpha = \frac{1-t^2}{1+t^2}$.

Do đó $\sin 2\alpha = \frac{2\tan\alpha}{1+\tan^2\alpha} = -\frac{4}{5}$, $\cos 2\alpha = \frac{1-\tan^2\alpha}{1+\tan^2\alpha} = -\frac{3}{5}$. Thay $\sin 2\alpha = -\frac{4}{5}$ và $\cos 2\alpha = -\frac{3}{5}$ vào P, ta được $P = -\frac{10}{9}$

Chọn đáp án (C

CÂU 19. Cho góc α thỏa mãn $\tan \alpha + \cot \alpha < 0$ và $\sin \alpha = \frac{1}{5}$. Tính $P = \sin 2\alpha$.

$$\mathbf{B} P = -\frac{4\sqrt{6}}{25}.$$

$$\bigcirc P = \frac{2\sqrt{6}}{25}.$$

Ta có $A = \sin 2\alpha = 2 \sin \alpha \cos \alpha$. Từ hệ thức $\cot^2 \alpha + 1 = \frac{1}{\sin^2 \alpha} = 25 \Leftrightarrow \cot^2 \alpha = 24 \Rightarrow \cot \alpha = \pm 2\sqrt{6}$. Vì $\tan \alpha$, $\cot \alpha$ cùng

dấu và $\tan \alpha + \cot \alpha < 0$ nên $\tan \alpha < 0$, $\cot \alpha < 0$. Do đó ta chọn $\cot \alpha = -2\sqrt{6}$. Suy ra $\cos \alpha = \cot \alpha$. $\sin \alpha = -\frac{2\sqrt{6}}{5}$

Thay $\sin \alpha = \frac{1}{5}$ và $\cos \alpha = -\frac{2\sqrt{6}}{5}$ vào P, ta được $P = 2 \cdot \frac{1}{5} \cdot \left(-\frac{2\sqrt{6}}{5}\right) = -\frac{4\sqrt{6}}{25}$

Chọn đáp án (B)

CÂU 20. Cho góc α thỏa mãn $\frac{\pi}{2} < \alpha < \pi$ và $\sin \alpha + 2\cos \alpha = -1$. Tính $P = \sin 2\alpha$.

$$P = \frac{2\sqrt{6}}{5}.$$

$$ightharpoonup P = -rac{24}{25}.$$

Với $\frac{\pi}{2} < \alpha < \pi$ suy ra $\begin{cases} \sin \alpha > 0 \\ \cos \alpha < 0 \end{cases}$ Ta có $\begin{cases} \sin \alpha + 2\cos \alpha = -1 \\ \sin^2 \alpha + \cos^2 \alpha = 1 \end{cases} \Rightarrow (-1 - 2\cos \alpha)^2 + \cos^2 \alpha = 1$ $\Leftrightarrow 5\cos^2 \alpha + 4\cos \alpha = 0 \Leftrightarrow \begin{bmatrix} \cos \alpha = 0 \text{ (loại)} \\ \cos \alpha = -\frac{4}{5}. \end{cases}$

Từ hệ thức $\sin^2 \alpha + \cos^2 \alpha = 1$, suy ra $\sin \alpha = \frac{3}{5}$ (do $\sin \alpha > 0$).

Vậy $P = \sin 2\alpha = 2 \sin \alpha$. $\cos \alpha = 2 \cdot \frac{3}{5} \cdot \left(-\frac{4}{5}\right) = -\frac{24}{25}$

Chọn đáp án (C)

CÂU 21. Biết $\sin a = \frac{5}{13}$; $\cos b = \frac{3}{5}$; $\frac{\pi}{2} < a < \pi$; $0 < b < \frac{\pi}{2}$. Hãy tính $\sin (a + b)$.

 (\mathbf{D}) 0.

Ta có $\cos^2 a = 1 - \sin^2 a = 1 - \left(\frac{5}{13}\right)^2 = \frac{144}{169}$ mà $a \in \left(\frac{\pi}{2}; \pi\right) \Rightarrow \cos a = -\frac{12}{13}$

Tương tự, ta có $\sin^2 b = 1 - \cos^2 b = 1 - \left(\frac{3}{5}\right)^2 = \frac{16}{25}$ mà $b \in \left(0; \frac{\pi}{2}\right) \Rightarrow \sin b = \frac{4}{5}$

Khi đó $\sin(a+b) = \sin a \cdot \cos b + \sin b \cdot \cos a = \frac{5}{13} \cdot \frac{3}{5} - \frac{12}{13} \cdot \frac{4}{5} = -\frac{33}{65}$

Chọn đáp án (C)

D Lời giải.

Ta có sin α = $\frac{5}{13}$ với $\frac{\pi}{2}$ < α < π suy ra cos α = $-\sqrt{1 - \frac{25}{169}} = -\frac{12}{13}$

Tương tự, có $\cos \beta = \frac{3}{5}$ với $0 < \beta < \frac{\pi}{2}$ suy ra $\sin \beta = \sqrt{1 - \frac{9}{25}} = \frac{4}{5}$.

₱ Địa chỉ: KDC Mỹ Điền, TT. Tuy Phước ₱

HÀM SỐ LƯỢNG GIÁC VÀ PHƯƠNG TRÌNH LƯỢNG GIÁC

Vây $\cos(\alpha - \beta) = \cos\alpha \cdot \cos\beta + \sin\alpha \cdot \sin\beta = -\frac{12}{13} \cdot \frac{3}{5} + \frac{5}{13} \cdot \frac{4}{5} = -\frac{16}{65}$

Chon đáp án (B)

CÂU 23. Cho hai góc nhọn a; b và biết rằng $\cos a = \frac{1}{3}; \cos b = \frac{1}{4}$. Tính giá trị của biểu thức $P = \cos (a + b) \cdot \cos (a - b)$. **(a)** $-\frac{113}{144}$. **(b)** $-\frac{119}{144}$.

$$\bigcirc -\frac{113}{144}$$

B
$$-\frac{115}{144}$$

$$-\frac{117}{144}$$

$$\bigcirc$$
 $-\frac{119}{144}$

Dèi aiải.

Ta có $P = \cos(a+b) \cdot \cos(a-b) = (\cos a \cdot \cos b + \sin a \cdot \sin b)(\cos a \cdot \cos b - \sin a \cdot \sin b)$ $= (\cos a \cdot \cos b)^2 - (\sin a \cdot \sin b)^2 = \cos^2 a \cdot \cos^2 b - (1 - \cos^2 a) \cdot (1 - \cos^2 b) \cdot = \frac{1}{9} \cdot \frac{1}{16} - \left(1 - \frac{1}{9}\right) \cdot \left(1 - \frac{1}{16}\right) = -\frac{119}{144}.$

Chọn đáp án (D)

CÂU 24. Nếu a,b là hai góc nhọn và $\sin a = \frac{1}{3}$; $\sin b = \frac{1}{2}$ thì $\cos 2 \left(a + b \right)$ có giá trị bằng $\frac{7 - 2\sqrt{6}}{18}.$ $\boxed{\textbf{B}} \frac{7 + 2\sqrt{6}}{18}.$ $\boxed{\textbf{C}} \frac{7 + 4\sqrt{6}}{19}.$

$$\frac{7-2\sqrt{6}}{18}$$

B
$$\frac{7+2\sqrt{6}}{18}$$
.

$$\frac{7+4\sqrt{6}}{18}$$
.

$$\bigcirc \frac{7-4\sqrt{6}}{18}.$$

$$\text{Vì } a,b \in \left(0;\frac{\pi}{2}\right) \text{ nên suy ra} \begin{cases} \cos a = \sqrt{1-\sin^2 a} = \sqrt{1-\left(\frac{1}{3}\right)^2} = \frac{2\sqrt{2}}{3} \\ \cos b = \sqrt{1-\sin^2 b} = \sqrt{1-\left(\frac{1}{2}\right)^2} = \frac{\sqrt{3}}{2}. \end{cases}$$

Khi đó $\cos(a+b) = \cos a \cdot \cos b - \sin a \cdot \sin b = \frac{2\sqrt{2}}{3} \cdot \frac{\sqrt{3}}{2} - \frac{1}{3} \cdot \frac{1}{2} = \frac{-1 + 2\sqrt{6}}{6}.$

Vậy
$$\cos 2(a+b) = 2\cos^2(a+b) - 1 = 2 \cdot \left(\frac{-1+2\sqrt{6}}{6}\right)^2 - 1 = \frac{7-4\sqrt{6}}{18}$$
.

Chọn đáp án (D)

CÂU 25. Cho $0 < \alpha, \beta < \frac{\pi}{2}$ và thỏa mãn $\tan \alpha = \frac{1}{7}, \tan \beta = \frac{3}{4}$. Góc $\alpha + \beta$ có giá trị bằng $\frac{\pi}{4}$. \bigcirc $\frac{\pi}{2}$.

 $oldsymbol{A} rac{\pi}{3}.$ $oldsymbol{\wp}$ Lời giải.

Ta có
$$\tan{(\alpha+\beta)}=\frac{\tan{\alpha}+\tan{\beta}}{1-\tan{\alpha}\cdot\tan{\beta}}=\frac{\frac{1}{7}+\frac{3}{4}}{1-\frac{1}{7}\cdot\frac{3}{4}}=1$$
 suy ra $a+b=\frac{\pi}{4}.$

Chọn đáp án (B)

CÂU 26. Cho x, y là các góc nhọn và dương thỏa mãn $\cot x = \frac{3}{4}$, $\cot y = \frac{1}{7}$. Tổng x + y bằng

$$\bigcirc$$
 $\frac{\pi}{3}$.

$$\bigcirc$$
 π .

🗩 Lời giải.

Ta có
$$\cot(x+y) = \frac{\cot x \cdot \cot y - 1}{\cot x + \cot y} = \frac{\frac{3}{4} \cdot \frac{1}{7} - 1}{\frac{3}{4} + \frac{1}{7}} = -1.$$

Mặt khác $0 < x, y < \frac{\pi}{2}$ suy ra $0 < x + y < \pi$. Do đó $x + y = \frac{3\pi}{4}$

Chọn đáp án (B)

CÂU 27. Nếu α, β, γ là ba góc nhọn thỏa mãn $\tan{(\alpha + \beta)} \cdot \sin{\gamma} = \cos{\gamma}$ thì **A** $\alpha + \beta + \gamma = \frac{\pi}{4}$. **B** $\alpha + \beta + \gamma = \frac{\pi}{3}$. **C** $\alpha + \beta + \gamma = \frac{\pi}{2}$.

$$\bigcirc \alpha + \beta + \gamma = \frac{3\pi}{4}.$$

🗭 Lời giải.

Ta có $\tan(\alpha + \beta) \cdot \sin \gamma = \cos \gamma \Rightarrow \sin(\alpha + \beta) \cdot \sin \gamma = \cos(\alpha + \beta) \cdot \cos \gamma$. $\Rightarrow \cos{(\alpha+\beta)} \cdot \cos{\gamma} - \sin{(\alpha+\beta)} \cdot \sin{\gamma} = 0 \Rightarrow \cos{(\alpha+\beta+\gamma)} = 0.$ Vây tổng ba góc $\alpha+\beta+\gamma=\frac{\pi}{2}$ (vì α,β,γ là ba góc nhọn).

Chọn đáp án (C)

CÂU 28. Biết rằng $\tan a = \frac{1}{2} \left(0 < a < 90^{\circ}\right)$ và $\tan b = -\frac{1}{3} \left(90^{\circ} < b < 180^{\circ}\right)$ thì biểu thức $\cos \left(2a - b\right)$ có giá trị bằng

$$\mathbf{A} - \frac{\sqrt{10}}{10}$$

B
$$\frac{\sqrt{10}}{10}$$
.

$$\mathbf{c} - \frac{\sqrt{5}}{5}$$
.

Ta có
$$\cos 2a = \frac{1 - \tan^2 a}{1 + \tan^2 a} = \frac{1 - \left(\frac{1}{2}\right)^2}{1 + \left(\frac{1}{2}\right)^2} = \frac{3}{5}$$
 suy ra $\sin 2a = \sqrt{1 - \cos^2 2a} = \frac{4}{5}$.

Lại có
$$1 + \tan^2 b = \frac{1}{\cos^2 b} \Rightarrow \cos b = -\frac{1}{\sqrt{1 + \tan^2 b}} = -\frac{3}{\sqrt{10}}$$
 vì $90^\circ < b < 180^\circ$

Mặt khác $\sin b = \tan b \cdot \cos b = \left(-\frac{1}{3}\right) \cdot \left(-\frac{3}{\sqrt{10}}\right) = \frac{1}{\sqrt{10}}$

Khi đó $\cos(2a - b) = \cos 2a \cdot \cos b + \sin 2a \cdot \sin b = \frac{3}{5} \cdot \left(-\frac{3}{\sqrt{10}}\right) + \frac{4}{5} \cdot \frac{1}{\sqrt{10}} = -\frac{1}{\sqrt{10}}$

Chọn đáp án (A)

CÂU 29. Nếu $\sin a - \cos a = \frac{1}{5} \left(135^\circ < a < 180^\circ\right)$ thì giá trị của biểu thức $\tan 2a$ bằng

 \bigcirc $-\frac{24}{7}$.

Ta có $\sin a - \cos a = \frac{1}{5} \Rightarrow (\sin a - \cos a)^2 = \frac{1}{25} \Leftrightarrow 1 - \sin 2a = \frac{1}{25} \Leftrightarrow \sin 2a = \frac{24}{25}$. Khi đó $\cos 2a = \sqrt{1 - \sin^2 2a} = \frac{1}{25}$ $\sqrt{1 - \left(\frac{24}{25}\right)^2} = \frac{7}{25} \text{ vì } 270^\circ < 2a < 360^\circ.$

Vậy giá trị của biểu thức $\tan 2a = \frac{\sin 2a}{\cos^2 2a} = \frac{24}{7}$

Chọn đáp án (C)

CÂU 30. Nếu $\tan(a+b) = 7, \tan(a-b) = 4$ thì giá trị đúng của $\tan 2a$ là

B $\frac{11}{27}$.

 \bigcirc $\frac{13}{27}$.

❷ Lời aiải.

Ta có $\tan 2a = \tan [(a+b) + (a-b)] = \frac{\tan (a+b) + \tan (a-b)}{1 + \tan (a+b) \cdot \tan (a-b)} = \frac{7+4}{1-7\cdot 4} = -\frac{11}{27}$

Chọn đáp án (A)

CÂU 31. Nếu $\sin \alpha \cdot \cos (\alpha + \beta) = \sin \beta$ với $\alpha + \beta \neq \frac{\pi}{2} + k\pi, \alpha \neq \frac{\pi}{2} + l\pi, (k, l \in \mathbb{Z})$ thì

- $(\mathbf{A})\tan\left(\alpha+\beta\right) = 2\cot\alpha.$
- **B** $\tan (\alpha + \beta) = 2 \cot \beta$. **C** $\tan (\alpha + \beta) = 2 \tan \beta$.
- (**D**) $\tan (\alpha + \beta) = 2 \tan \alpha$.

Dòi giải.

Ta có $\sin \alpha \cdot \cos (\alpha + \beta) = \sin \beta = \sin [(\alpha + \beta) - \alpha] \Leftrightarrow \sin \alpha \cdot \cos (\alpha + \beta) = \sin (\alpha + \beta) \cdot \cos \alpha - \cos (\alpha + \beta) \cdot \sin \alpha$ $\Leftrightarrow 2 \sin \alpha \cdot \cos (\alpha + \beta) = \sin (\alpha + \beta) \cdot \cos \alpha \Rightarrow \frac{\sin (\alpha + \beta)}{\cos (\alpha + \beta)} = 2 \cdot \frac{\sin \alpha}{\cos \alpha} = 2 \tan \alpha.$

Chọn đáp án (D)

CÂU 32. Nếu $\alpha + \beta + \gamma = \frac{\pi}{2}$ và $\cot \alpha + \cot \gamma = 2 \cot \beta$ thì $\cot \alpha \cdot \cot \gamma$ bằng

🗭 Lời giải.

Từ giả thiết, ta c
ó $\alpha+\beta+\gamma=\frac{\pi}{2}\Rightarrow\beta=\frac{\pi}{2}-(\alpha+\gamma)\,.$

Suy ra $\cot \alpha + \cot \gamma = 2 \cot \beta = 2 \cot \left[\frac{\pi}{2} - (\alpha + \gamma)\right] = 2 \cdot \tan (\alpha + \gamma) = 2 \cdot \frac{\tan \alpha + \tan \gamma}{1 - \tan \alpha \cdot \tan \gamma}$

Mặt khác $\frac{\tan\alpha+\tan\gamma}{1-\tan\alpha.\tan\gamma}=\frac{\frac{1}{\cot\alpha}+\frac{1}{\cot\gamma}}{1-\frac{1}{1-\frac{1}{\cdots}\cdot\frac{1}{1-\cdots}}}=\frac{\cot\alpha+\cot\gamma}{\cot\alpha\cdot\cot\gamma-1}$ nên suy ra

 $\cot \alpha + \cot \gamma = 2 \cdot \frac{\cot \alpha + \cot \gamma}{\cot \alpha \cdot \cot \gamma - 1} \Leftrightarrow \cot \alpha \cdot \cot \gamma - 1 = 2 \Leftrightarrow \cot \alpha \cdot \cot \gamma = 3.$

Chọn đáp án (C)

CÂU 33. Nếu $\tan \alpha$ và $\tan \beta$ là hai nghiệm của phương trình $x^2 + px + q = 0 \ (q \neq 1)$ thì $\tan (\alpha + \beta)$ bằng

- \bigcirc $\frac{p}{a-1}$.

Dòi giải.

₱ Địa chỉ: KDC Mỹ Điền, TT. Tuy Phước ₱

HÀM SỐ LƯỢNG GIÁC VÀ PHƯƠNG TRÌNH LƯỢNG GIÁC

Vì $\tan \alpha, \tan \beta$ là hai nghiệm của phương trình $x^2 + px + q = 0$ nên theo định lí Viet, ta có $\begin{cases} \tan \alpha + \tan \beta = -p \\ \tan \alpha . \tan \beta = q \end{cases}$. Khi đó

$$\tan(\alpha + \beta) = \frac{\tan\alpha + \tan\beta}{1 - \tan\alpha \tan\beta} = \frac{p}{q - 1}.$$

Chon đáp án (

CÂU 34. Nếu tan α ; tan β là hai nghiệm của phương trình $x^2 - px + q = 0$ $(p \cdot q \neq 0)$. Và $\cot \alpha$; $\cot \beta$ là hai nghiệm của phương trình $x^2 - rx + s = 0$ thì tích P = rs bằng

🗩 Lời giải.

Theo định lí Viet, ta có $\begin{cases} \tan\alpha + \tan\beta = p \\ \tan\alpha \cdot \tan\beta = q \end{cases}$ và $\begin{cases} \cot\alpha + \cot\beta = r \\ \cot\alpha \cdot \cot\beta = s \end{cases}$.

Khi đó $P = r \cdot s = (\cot\alpha + \cot\beta) \cdot \cot\alpha \cdot \cot\beta = \left(\frac{1}{\tan\alpha} + \frac{1}{\tan\beta}\right) \cdot \frac{1}{\tan\alpha} \cdot \frac{1}{\tan\beta} = \frac{\tan\alpha + \tan\beta}{(\tan\alpha \cdot \tan\beta)^2} = \frac{p}{q^2}$. Vậy $P = r \cdot s = \frac{p}{q^2}$.

Chọn đáp án (B)

CÂU 35. Nếu tan α và tan β là hai nghiệm của phương trình $x^2 - px + q = 0$ ($q \neq 0$) thì giá trị biểu thức $P = \cos^2(\alpha + \beta) + \cos^2(\alpha + \beta)$ $p\sin(\alpha + \beta) \cdot \cos(\alpha + \beta) + q\sin^2(\alpha + \beta)$ bằng:

(C) 1.

 $\bigcirc \frac{p}{a}$.

🗩 Lời giải.

Vì $\tan\alpha, \tan\beta$ là hai nghiệm của phương trình $x^2-px+q=0$ nên theo định lí Viet, ta có

$$\begin{cases} \tan \alpha + \tan \beta = p \\ \tan \alpha \cdot \tan \beta = q \end{cases} \Rightarrow \tan (\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \cdot \tan \beta} = \frac{p}{1 - q}.$$

Khi đó $P = \cos^2(\alpha + \beta) \cdot [1 + p \cdot \tan(\alpha + \beta) + q \cdot \tan^2(\alpha + \beta)]$

$$= \frac{1 + p \cdot \tan (\alpha + \beta) + q \cdot \tan^2 (\alpha + \beta)}{1 + \tan^2 (\alpha + \beta)} = \frac{1 + p \cdot \frac{p}{1 - q} + q \cdot \left(\frac{p}{1 - q}\right)^2}{1 + \left(\frac{p}{1 - q}\right)^2}$$

$$= \frac{(1-q)^2 + p^2 (1-q) + q \cdot p^2}{(1-q)^2 + p^2} = \frac{(1-q)^2 + p^2 - p^2 \cdot q + q \cdot p^2}{(1-q)^2 + p^2} = 1.$$

Chon đáp án (C

Dang 15. RÚT GON BIẾU THỰC

CÂU 1. Rút gọn biểu thức $M = \tan x - \tan y$. **B** $M = \frac{\sin (x+y)}{\cos x \cdot \cos y}$.

- $\bigcirc M = \frac{\sin(x-y)}{\cos x \cdot \cos y}.$

🗩 Lời giải.

 $\operatorname{Ta}\,\operatorname{c\'o} M = \tan x - \tan y = \frac{\sin x}{\cos x} - \frac{\sin y}{\cos y} = \frac{\sin x \cos y - \cos x \sin y}{\cos x \cos y} = \frac{\sin \left(x - y\right)}{\cos x \cos y}$

Chọn đáp án (C)

CÂU 2. Rút gọn biểu thức $M = \cos^2\left(\frac{\pi}{4} + \alpha\right) - \cos^2\left(\frac{\pi}{4} - \alpha\right)$.

- $(\mathbf{A}) M = \sin 2\alpha.$

- \mathbf{D} $M = -\sin 2\alpha$.

Dòi giải.

Vì hai góc $\left(\frac{\pi}{4} - \alpha\right)$ và $\left(\frac{\pi}{4} + \alpha\right)$ phụ nhau nên $\cos\left(\frac{\pi}{4} - \alpha\right) = \sin\left(\frac{\pi}{4} + \alpha\right)$.

Suy ra $M = \cos^2\left(\frac{\pi}{4} + \alpha\right) - \cos^2\left(\frac{\pi}{4} - \alpha\right) = \cos^2\left(\frac{\pi}{4} + \alpha\right) - \sin^2\left(\frac{\pi}{4} + \alpha\right) = \cos\left(\frac{\pi}{2} + 2\alpha\right) = -\sin 2\alpha$.

Chon đáp án (D)

CÂU 3. Chọn đẳng thức đú:

Dèi giải

 $\cos^2\left(\frac{\pi}{4} + \frac{a}{2}\right) = \frac{1 + \cos\left(\frac{\pi}{2} + a\right)}{2} = \frac{1 + \sin\left(-a\right)}{2} = \frac{1 - \sin a}{2}$

Chọn đáp án (A)

CÂU 4. Gọi
$$M = \frac{\sin(y-x)}{\sin x \cdot \sin y}$$
 thì

$$\mathbf{C} M = \cot y - \cot x$$

B
$$M = \cot x - \cot y$$
. **C** $M = \cot y - \cot x$. **D** $M = \frac{1}{\sin x} - \frac{1}{\sin y}$.

Lời giải.

$$\operatorname{Ta} \operatorname{c\acute{o}} M = \frac{\sin y \cdot \cos x - \cos y \cdot \sin x}{\sin x \cdot \sin y} = \frac{\sin y \cdot \cos x}{\sin x \cdot \sin y} - \frac{\cos y \cdot \sin x}{\sin x \cdot \sin y} = \frac{\cos x}{\sin x} - \frac{\cos y}{\sin y} = \cot x - \cot y.$$

Chọn đáp án (B)

CÂU 5. Goi $M = \cos x + \cos 2x + \cos 3x$ thì

$$\bigcirc M = \cos 2x \, (2\cos x - 1).$$

$$\mathbf{D} M = \cos 2x \left(2\cos x + 1 \right).$$

🗩 Lời giải.

Ta có $M = \cos x + \cos 2x + \cos 3x = (\cos x + \cos 3x) + \cos 2x = 2\cos 2x \cdot \cos x + \cos 2x = \cos 2x (2\cos x + 1).$

Chon đáp án (D)

CÂU 6. Rút gọn biểu thức $M = \frac{\sin 3x - \sin x}{2\cos^2 x - 1}$

 $(\mathbf{A}) \tan 2x$.

 $(\mathbf{C}) 2 \tan x.$

 $(\mathbf{D}) 2 \sin x.$

🗭 Lời giải.

Ta có $\frac{\sin 3x - \sin x}{2\cos^2 x - 1} = \frac{2\cos 2x \sin x}{\cos 2x} = 2\sin x.$

Chọn đáp án (D)

CÂU 7. Rút gọn biểu thức $A=\frac{1+\cos x+\cos 2x+\cos 3x}{2\cos^2 x+\cos x-1}$.

(B) $2\cos x-1$.

 $(\mathbf{D})\cos x - 1.$

🗩 Lời giải.

 $\frac{(1+\cos 2x) + (\cos x + \cos 3x)}{(2\cos^2 x - 1) + \cos x} = \frac{2\cos^2 x + 2\cos 2x \cos x}{\cos x + \cos 2x} = \frac{2\cos x (\cos x + \cos 2x)}{\cos x + \cos 2x} = 2\cos x.$

Chọn đáp án (C)

CÂU 8. Rút gọn biểu thức $A = \frac{\tan \alpha - \cot \alpha}{\tan \alpha + \cot \alpha} + \cos 2\alpha$.

 (\mathbf{A}) 0.

(C) 2.

 $(\mathbf{D})\cos 2x.$

🗩 Lời giải.

 $\operatorname{Ta}\operatorname{c\acute{o}}\frac{\frac{\sin\alpha}{\cos\alpha} - \frac{\cos\alpha}{\sin\alpha}}{\frac{\sin\alpha}{\sin\alpha} + \frac{\cos\alpha}{\sin\alpha}} = \frac{\frac{\sin^2\alpha - \cos^2\alpha}{\sin\alpha \cdot \cos\alpha}}{\frac{\sin^2\alpha + \cos^2\alpha}{\sin^2\alpha + \cos^2\alpha}} = \frac{\sin^2\alpha - \cos^2\alpha}{\sin^2\alpha + \cos^2\alpha} = \sin^2\alpha - \cos^2\alpha = -\cos2\alpha.$ $\sin \alpha$

Do đó $A = -\cos 2\alpha + \cos 2\alpha = 0$.

Chọn đáp án (A)

CÂU 9. Rút gọn biểu thức $A = \frac{1 + \sin 4\alpha - \cos 4\alpha}{1 + \sin 4\alpha + \cos 4\alpha}$. **(A)** $\sin 2\alpha$.

(A) $\sin 2\alpha$.

(**D**) $\cot 2\alpha$.

Dèi giải.

 $\operatorname{Ta} \operatorname{co} A = \frac{(1 - \cos 4\alpha) + \sin 4\alpha}{(1 + \cos 4\alpha) + \sin 4\alpha} = \frac{2\sin^2 2\alpha + 2\sin 2\alpha \cos 2\alpha}{2\cos^2 2\alpha + 2\sin 2\alpha \cos 2\alpha} = \frac{2\sin 2\alpha (\sin 2\alpha + \cos 2\alpha)}{2\cos 2\alpha (\sin 2\alpha + \cos 2\alpha)} = \tan 2\alpha.$

Chọn đáp án (C)

CÂU 10. Biểu thức $A = \frac{3-4\cos 2\alpha + \cos 4\alpha}{3+4\cos 2\alpha + \cos 4\alpha}$ có kết quả rút gọn bằng

 $(\mathbf{A}) - \tan^4 \alpha$.

 $(\mathbf{C}) - \cot^4 \alpha$.

 \bigcirc $\cot^4 \alpha$.

Dòi giải.

Ta có $\cos 2\alpha = 1 - 2\sin^2\alpha; \cos 4\alpha = 2\cos^2 2\alpha - 1 = 2\left(1 - 2\sin^2\alpha\right)^2 - 1.$ Do đó $A = \frac{3 - 4\left(1 - 2\sin^2\alpha\right) + 2\left(1 - 2\sin^2\alpha\right)^2 - 1}{3 + 4\left(2\cos^2\alpha - 1\right) + 2\left(2\cos^2\alpha - 1\right)^2 - 1} = \frac{8\sin^2\alpha - 8\sin^2\alpha + 8\sin^4\alpha}{8\cos^2\alpha - 8\cos^2\alpha + 8\cos^4\alpha} = \tan^4\alpha.$

Chọn đáp án (B)

HÀM SỐ LƯỢNG GIÁC VÀ PHƯƠNG TRÌNH LƯỢNG GIÁC ₱ Địa chỉ: KDC Mỹ Điền, TT. Tuy Phước ₱

CÂU 11. Khi $\alpha = \frac{\pi}{6}$ thì biểu thức $A = \frac{\sin^2 2\alpha + 4\sin^4 \alpha - 4\sin^2 \alpha .\cos^2 \alpha}{4 - \sin^2 2\alpha - 4\sin^2 \alpha}$ có giá trị bằng

A
$$\frac{1}{3}$$
.

$$\bigcirc \mathbb{B} \frac{1}{6}$$

$$\frac{1}{2}$$
 $\frac{1}{9}$.

$$\bigcirc$$
 $\frac{1}{12}$.

🗭 Lời giải.

Ta có
$$A = \frac{\sin^2 2\alpha + 4\sin^4 \alpha - 4\sin^2 \alpha \cdot \cos^2 \alpha}{4 - \sin^2 2\alpha - 4\sin^2 \alpha} = \frac{4\sin^4 \alpha}{4(1 - \sin^2 \alpha) - 4\sin^2 \alpha \cdot \cos^2 \alpha}$$
$$= \frac{\sin^4 \alpha}{\cos^2 \alpha (1 - \sin^2 \alpha)} = \frac{\sin^4 \alpha}{\cos^4 \alpha} = \tan^4 \alpha.$$

Do đó giá trị của biểu thức A tại $\alpha=\frac{\pi}{6}$ là $\tan^4\left(\frac{\pi}{6}\right)=\left(\frac{1}{\sqrt{2}}\right)^4=\frac{1}{6}$

Chọn đáp án (C)

CÂU 12. Rút gọn biểu thức $A = \frac{\sin 2\alpha + \sin \alpha}{1 + \cos 2\alpha + \cos \alpha}$

$$\triangle$$
 tan α .

$$\bigcirc$$
 $2 \tan \alpha$.

$$(\mathbf{c}) \tan 2\alpha + \tan \alpha.$$

(**D**) $\tan 2\alpha$.

🗩 Lời giải.

$$\operatorname{Ta} \operatorname{c\'o} A = \frac{\sin 2\alpha + \sin \alpha}{1 + \cos 2\alpha + \cos \alpha} = \frac{\sin \alpha \left(2 \cos \alpha + 1\right)}{2 \cos^2 \alpha + \cos \alpha} = \frac{\sin \alpha \left(2 \cos \alpha + 1\right)}{\cos \alpha \left(2 \cos \alpha + 1\right)} = \tan \alpha.$$

Chọn đáp án (A)

CÂU 13. Rút gọn biểu thức $A = \frac{1 - \sin a - \cos 2a}{\sin 2a - \cos a}$.

$$(\mathbf{B}) \tan \alpha.$$

$$\bigcirc \frac{5}{2}$$
.

(**D**) $2 \tan \alpha$.

🗩 Lời giải.

Ta có
$$A = \frac{1 - \sin a + 2\sin^2 a - 1}{2\sin a \cdot \cos a - \cos a} = \frac{\sin a (2\sin a - 1)}{\cos a (2\sin a - 1)} = \frac{\sin a}{\cos a} = \tan a.$$

Chon đáp án (B)

CÂU 14. Rút gọn biểu thức $A = \frac{\sin x + \sin \frac{x}{2}}{1 + \cos x + \cos \frac{x}{2}}$ được kết quả là

$$\bigcirc$$
 $\tan \frac{x}{2}$.

$$lacksquare$$
 $\cot x$.

$$\bigcirc$$
 $\tan^2\left(\frac{\pi}{4}-x\right)$.

 $(\mathbf{D})\sin x.$

₽ Lời giải.

Ta có
$$\sin x = \sin\left(2 \cdot \frac{x}{2}\right) = 2\sin\frac{x}{2}\cos\frac{x}{2}$$

 $1 + \cos x = 1 + \cos\left(2 \cdot \frac{x}{2}\right) = 2\cos^2\frac{x}{2}$.

Ta có
$$\sin x = \sin\left(2.\frac{x}{2}\right) = 2\sin\frac{x}{2}\cos\frac{x}{2},$$

$$1 + \cos x = 1 + \cos\left(2\cdot\frac{x}{2}\right) = 2\cos^2\frac{x}{2}.$$
Do đó $A = \frac{2\sin\frac{x}{2}\cos\frac{x}{2} + \sin\frac{x}{2}}{2\cos^2\frac{x}{2} + \cos\frac{x}{2}} = \frac{\sin\frac{x}{2}\left(2\cos\frac{x}{2} + 1\right)}{\cos\frac{x}{2}\left(2\cos\frac{x}{2} + 1\right)} = \tan\frac{x}{2}.$

Chọn đáp án (A)

CÂU 15. Rút gọn biểu thức $A = \sin \alpha \cdot \cos^5 \alpha - \sin^5 \alpha \cdot \cos \alpha$.

(A) $\frac{1}{2} \sin 2\alpha$.

(B) $-\frac{1}{2} \sin 4\alpha$.

(C) $\frac{3}{4} \sin 4\alpha$.

$$\bigcirc \frac{3}{4}\sin 4\alpha.$$

 $\frac{1}{4}\sin 4\alpha$.

🗩 Lời giải.

Ta có

$$A = \sin \alpha \cdot \cos^5 \alpha - \sin^5 \alpha \cdot \cos \alpha$$

$$= \sin \alpha \cdot \cos \alpha \left(\cos^4 \alpha - \sin^4 \alpha\right)$$

$$= \frac{1}{2} \sin 2\alpha \left(\cos^2 \alpha - \sin^2 \alpha\right) \left(\cos^2 \alpha + \sin^2 \alpha\right)$$

$$= \frac{1}{2} \sin 2\alpha \left(\cos^2 \alpha - \sin^2 \alpha\right)$$

$$= \frac{1}{2} \sin 2\alpha \cos 2\alpha$$

$$= \frac{1}{4} \sin 4\alpha.$$

Chọn đáp án (D)

🖒 Dạng 16. TÌM GIÁ TRỊ LỚN NHẤT-GIÁ TRỊ NHỎ NHẤT

CÂU 1. Tìm giá trị lớn nhất M và nhỏ nhất m của biểu thức $P = 3 \sin x - 2$.

$$(A)$$
 $M = 1, m = -5.$

B)
$$M = 3, m = 1.$$

$$(\mathbf{C}) M = 2, m = -2.$$

$$M = 0, m = -2.$$

Dèi giải.

Ta có $-1 \le \sin x \le 1 \Rightarrow -3 \le 3 \sin x \le 3 \Rightarrow -5 \le 3 \sin x - 2 \le 1 \Rightarrow -5 \le P \le 1 \Rightarrow \begin{cases} M = 1 \\ m = -5. \end{cases}$

Chọn đáp án (A)

CÂU 2. Cho biểu thức $P=-2\sin\left(x+\frac{\pi}{3}\right)+2$. Mệnh đề nào sau đây là đúng?

$$(\mathbf{A}) P \geqslant -4, \forall x \in \mathbb{R}.$$

$$(\mathbf{B}) \ P \geqslant 4, \forall x \in \mathbb{R}.$$

$$(\mathbf{C}) P \geqslant 0, \forall x \in \mathbb{R}$$

$$(\mathbf{D}) P \geqslant 2, \forall x \in \mathbb{R}.$$

D Lời giải.

Ta có $-1 \leqslant \sin\left(x + \frac{\pi}{3}\right) \leqslant 1 \Rightarrow 2 \geqslant -2\sin\left(x + \frac{\pi}{3}\right) \geqslant -2 \Rightarrow 4 \geqslant -2\sin\left(x + \frac{\pi}{3}\right) + 2 \geqslant 0.$

Vậy $4 \geqslant P \geqslant 0$

Chọn đáp án (C)

CÂU 3. Biểu thức $P = \sin\left(x + \frac{\pi}{3}\right) - \sin x$ có tất cả bao nhiêu giá trị nguyên?

$$\bigcirc$$
 4.

p Lời giải.

Áp dụng công thức $\sin a - \sin b = 2\cos\frac{a+b}{2}\sin\frac{a-b}{2}$.

Ta có $\sin\left(x + \frac{\pi}{3}\right) - \sin x = 2\cos\left(x + \frac{\pi}{6}\right)^2 \sin\frac{\pi}{6} = \cos\left(x + \frac{\pi}{6}\right)$.

Ta có $-1 \leqslant \cos\left(x + \frac{\pi}{6}\right) \leqslant 1 \Rightarrow -1 \leqslant P \leqslant 1 \xrightarrow{P \in \mathbb{Z}} P \in \{-1; 0; 1\}$.

Chọn đáp án C

CÂU 4. Tìm giá trị lớn nhất M và nhỏ nhất m của biểu thức $P = \sin^2 x + 2\cos^2 x$.

$$\mathbf{A} M = 3, m = 0.$$

B
$$M = 2, m = 0.$$

$$M = 2, m = 1.$$

$$(\mathbf{D}) M = 3, m = 1.$$

🗩 Lời giải.

Ta có $P = \sin^2 x + 2\cos^2 x = (\sin^2 x + \cos^2 x) + \cos^2 x = 1 + \cos^2 x$.

Do $-1 \le \cos x \le 1 \Rightarrow 0 \le \cos^2 x \le 1 \Rightarrow 1 \le 1 + \cos^2 x \le 2 \Rightarrow \begin{cases} M = 2 \\ m = 1. \end{cases}$

Chọn đáp án \bigcirc

CÂU 5. Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức $P = 8 \sin^2 x + 3 \cos 2x$. Tính $T = 2M - m^2$.

B
$$T = 2$$
.

$$T = 112.$$

$$T = 130.$$

🗩 Lời giải.

Ta có $P = 8\sin^2 x + 3\cos 2x = 8\sin^2 x + 3(1 - 2\sin^2 x) = 2\sin^2 x + 3.$

 $\text{Mà} -1 \le \sin x \le 1 \Rightarrow 0 \le \sin^2 x \le 1 \Rightarrow 3 \le 2 \sin^2 x + 3 \le 5 \Rightarrow 3 \le P \le 5 \Rightarrow \begin{cases} M = 5 \\ m = 3. \end{cases}$

 $\Rightarrow T = 2M - m^2 = 1.$

Chọn đáp án \bigodot

CÂU 6. Cho biểu thức $P = \cos^4 x + \sin^4 x$. Mệnh đề nào sau đây là đúng?

🗩 Lời giải.

Ta có

$$P = \cos^{4} x + \sin^{4} x$$

$$= (\sin^{2} x + \cos^{2} x)^{2} - 2\sin^{2} x \cos^{2} x$$

$$= 1 - \frac{1}{2}\sin^{2} 2x$$

$$= 1 - \frac{1}{2} \cdot \frac{1 - \cos 4x}{2}$$

$$= \frac{3}{4} + \frac{1}{4}\sin 4x.$$

Chọn đáp án (B)

CÂU 7. Tìm giá trị lớn nhất M và nhỏ nhất m của biểu thức $P = \sin^4 x - \cos^4 x$.

$$(A) M = 2, m = -2.$$

B)
$$M = \sqrt{2}, m = -\sqrt{2}.$$
 C) $M = 1, m = -1.$

$$\bigcirc M = 1, m = -1.$$

D
$$M = 1, m = \frac{1}{2}.$$

🗩 Lời giải.

Ta có $P = \sin^4 x - \cos^4 x = (\sin^2 x + \cos^2 x)^2 (\sin^2 x - \cos^2 x) = -\cos 2x.$

$$\text{M\`{a}} - 1 \le \cos 2x \le 1 \Rightarrow -1 \ge -\cos 2x \ge 1 \Rightarrow -1 \le P \le 1 \Rightarrow \begin{cases} M = 1 \\ m = -1. \end{cases}$$

Chọn đáp án (C)

CÂU 8. Tìm giá trị lớn nhất M và nhỏ nhất m của biểu thức $P=\sin^6 x + \cos^6 x$. **(A)** M=2, m=0. **(B)** $M=1, m=\frac{1}{2}$. **(C)** $M=1, m=\frac{1}{4}$.

$$M = 2, m = 0.$$

B
$$M = 1, m = \frac{1}{2}$$
.

$$M = 1, m = \frac{1}{4}.$$

D
$$M = \frac{1}{4}, m = 0.$$

🗩 Lời giải.

Ta có $P = \sin^6 x + \cos^6 x = (\sin^2 x + \cos^2 x)^3 - 3\sin^2 x \cos^2 x (\sin^2 x + \cos^2 x) = 1 - \frac{3}{4}\sin^2 2x$.

Chọn đáp án (C)

CÂU 9. Tìm giá trị lớn nhất M và nhỏ nhất m của biểu thức $P = 1 - 2 |\cos 3x|$.

$$(A)$$
 $M = 3, m = -1.$

B
$$M = 1, m = -1.$$

$$(\mathbf{C}) M = 2, m = -2.$$

$$(\mathbf{D}) M = 0, m = -2.$$

Dài giải.

Chọn đáp án (D)

CÂU 10. Tìm giá trị lớn nhất M của biểu thức $P=4\sin^2 x+\sqrt{2}\sin\left(2x+\frac{\pi}{4}\right)$.

B
$$M = \sqrt{2} - 1$$
.

(c)
$$M = \sqrt{2} + 1$$
.

$$\mathbf{D} M = \sqrt{2} + 2.$$

🗩 Lời giải.

Ta có $P = 4\frac{1 - \cos 2x}{2} + \sin 2x + \cos 2x = \sin 2x - \cos 2x + 2 = \sqrt{2}\sin\left(2x - \frac{\pi}{4}\right) + 2 \le \sqrt{2} + 2.$

Chọn đáp án (D)

BÀI TẬP CUNG VÀ	GÓC LƯỢNG GIÁC - CÔNG THỨC LƯỢNG GIÁC	1
	Dạng 1.LÝ THUYẾT	
	► Dạng 2.ĐỔI TỪ ĐỘ SANG RADIAN VÀ NGƯỢC LẠI	
	► Dạng 3. ĐỘ DÀI CUNG TRÒN	
	Dạng 4. GÓC LƯỢNG GIÁC	
	Dạng 5. XÁC ĐỊNH DẤU CỦA CÁC GIÁ TRỊ LƯỢNG GIÁC	
	Dạng 6.TÍNH GIÁ TRỊ LƯỢNG GIÁC	
	Dạng 7. TÍNH ĐÚNG SAI	
	► Dạng 8. CÁC CUNG LIÊN QUAN ĐẶC BIỆT	6
	► Dạng 9.TÍNH BIỂU THỨC LƯỢNG GIÁC	
	► Dạng 10.RÚT GỌN BIỂU THỨC	
	Dạng 11.TÍNH GIÁ TRỊ LƯỢNG GIÁC	10
	Dạng 12.TÍNH ĐÚNG SAI	11
	Dạng 13. VẬN DỤNG CÔNG THỨC LƯỢNG GIÁC	12
	► Dạng 14. TÍNH BIỂU THỨC LƯỢNG GIÁC	15
	► Dạng 15. RÚT GỌN BIỂU THỨC	15
	Dạng 16. TÌM GIÁ TRỊ LỚN NHẤT-GIÁ TRỊ NHỎ NHẤT	16
LỜI GIẢI CHI TIẾT		18
	Dạng 1.LÝ THUYẾT	18
	► Dạng 2.ĐỔI TỪ ĐỘ SANG RADIAN VÀ NGƯỢC LẠI	18
	► Dạng 3. ĐỘ DÀI CUNG TRÒN	20
	► Dạng 4. GÓC LƯỢNG GIÁC	22
	Dạng 5. XÁC ĐỊNH DẤU CỦA CÁC GIÁ TRỊ LƯỢNG GIÁC	25
	Dạng 6.TÍNH GIÁ TRỊ LƯỢNG GIÁC	26
	Dạng 7. TÍNH ĐÚNG SAI	
	► Dạng 8. CÁC CUNG LIÊN QUAN ĐẶC BIỆT	28
	► Dạng 9.TÍNH BIỂU THỨC LƯỢNG GIÁC	30
	► Dạng 10.RÚT GỌN BIỂU THỨC	36
	Dạng 11.TÍNH GIÁ TRỊ LƯỢNG GIÁC	39
	Dạng 12.TÍNH ĐÚNG SAI	
	► Dạng 13. VẬN DỤNG CÔNG THỨC LƯỢNG GIÁC	
	Dạng 14. TÍNH BIỂU THỨC LƯỢNG GIÁC	45
	► Dạng 15. RÚT GỌN BIỂU THỨC	
	b Dạng 16. TÌM GIÁ TRỊ LỚN NHẤT-GIÁ TRỊ NHỎ NHẤT	55

