V/F	Es. 1	Es. 2	Voto
/12	/10	/10	/32

Sapienza Università di Roma, Corso di Laurea in Informatica - canale telematico (a.a. 2022/2023)

Prova scritta di Calcolo Differenziale - 7 Luglio 2023

Nome e Cognome (in stampatello):

Numero matricola:

NOTA BENE: devono essere riconsegnati <u>soltanto</u> i fogli contenenti i testi degli esercizi. È vietato usare testi, appunti e strumenti elettronici di ogni tipo. Ogni affermazione negli esercizi a risposta aperta deve essere motivata dettagliatamente! È possibile utilizzare anche il retro dei fogli per inserire i calcoli. Il tempo a disposizione per la prova è di 2h.

Domande V/F

NOTA BENE: +1 risposta esatta, -0.5 risposta sbagliata, 0 risposta assente

1. Sia data la successione numerica reale

$$a_n = (-1)^n \frac{n^3 + 2n - 1}{n^2 + n + 1}$$

- 1A a_n è infinitesimaVF1Bla successione $b_n = (-1)^n a_n$ non ammette limite finito per $n \longrightarrow \infty$ VF1Cla successione $c_n = (a_n)^2$ è limitataVF1D a_n è indeterminataVF
- 2. Sia data la funzione

$$f(x) = \arctan \frac{1}{x}$$

- 2Af ammette asintoti orizzontaliVF2Bf non ammette punti né di massimo né di minimo relativiVF2Cf è decrescente su \mathbb{R} VF2Dl'insieme immagine di f è $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ VF
- **3.** Sia

$$f(x) = x^5 + x + 1$$

3AL'insieme immagine di f è l'insieme \mathbb{R} .VF3BLa funzione f è invertibileVF3CLa funzione f ha esattamente uno zero reale negativo.VF3Df è convessa in tutto il suo dominioVF

Esercizio 1

(1) Studiare continuità e derivabilità della funzione

$$f(x) = \begin{cases} x^3 \sin\frac{2}{x} & \text{se } x \neq 0\\ 0 & \text{se } x = 0 \end{cases}$$

Usando il teorema dei carabinieri si trova che la funzione è continua nell'origine. La derivata di f, definita per $x \neq 0$, è

 $f'(x) = 3x^2 \sin\frac{2}{x} - 2x\cos\frac{2}{x}$

Usando ancora il teorema dei carabinieri, si trova che la derivata ammette limite nullo nell'origine e, per la condizione sufficiente di derivabilità, f è derivabile nell'origine.

(2) Applicare, se possibile, il teorema di Rolle alla funzione

$$f(x) = \sin x \cos x$$

definita nell'intervallo $[0,\pi]$.

Il teorema di Rolle è applicabile poiché f è derivabile (e continua) su tutto \mathbb{R} . Inoltre $f(0) = f(\pi) = 0$. Si osservi che $f(x) = \frac{1}{2}\sin 2x$ e quindi $f'(x) = \cos 2x$. Allora risolviamo l'equazione

$$\cos 2x = 0$$

nel dominio di f e troviamo $x = \frac{\pi}{4}$ e $x = \frac{3}{4}\pi$.

(3) Calcolare il polinomio di MacLaurin di

$$f(x) = \log \frac{1}{x+1}$$

di grado 2.

Si trova $p(x) = -x + \frac{1}{2}x^2$.

Esercizio 2

Studiare la seguente funzione

$$f(x) = (x^2 - 1)e^x$$

In particolare: determinarne il dominio, eventuali simmetrie, studiarne il segno, studiare i limiti agli estremi del dominio, determinare eventuali asintoti, studiarne la continuità, derivabilità, la monotonia, la convessità, determinarne eventuali punti di massimo, di minimo (locali e/o assoluti) e di flesso. Tracciare un grafico qualitativo di f.

La funzione è definita su \mathbb{R} e non ha simmetrie notevoli. Interseca l'asse x in $x=\pm 1$. È negativa su (-1,1), positiva altrove. Ha l'asse x come asintoto orizzontale per $x \longrightarrow -\infty$. Si ha che

$$f'(x) = (x^2 + 2x - 1)e^x$$

e

$$f''(x) = (x^2 + 4x + 1)e^x.$$

La funzione ha un massimo in $-1-\sqrt{2}$ e un minimo in $x=\sqrt{2}-1$; ha due flessi in $x=-2\pm\sqrt{3}$.