Introduction
Example 1 : Knapsack
Dynamic Programming
Conclusion
References

Combinatorial Optimization : Basics

Houcine Senoussi

March 19, 2020

- Introduction
- 2 Example 1 : Knapsack
- 3 Dynamic Programming
- 4 Conclusion
- 6 References

What is it about?

Optimization:

An optimization problem can be defined as follows:

- find *x** to :
 - minimise f(x)
- where f is a real function of $x \in S$ for some set S.

Categories:

Optimization problems can be divided into two categories :

- problems with **continuous** variables.
- 2 problems with discrete variables, i.e.variables belonging to a finite (e.g. the set V of a graph's vertices) or countably infinite set (typically the set N of natural numbers).

What is it about?

- When the set S is the set of all the subsets 2^E of some finite set E, we have a **combinatorial optimization** problem.
- Examples :
 - **1** Traveling Salesman Problem (TSP).
 - Minimum Spanning Tree (MST).
 - Knapsack Problem.

Knapsack

Definition:

- Given a set O of p items, $O = \{o_1, ..., o_p\}$,
- each item o_i has a value v_i and a weight w_i .
- Given the total capacity W
- Find $(n_1, ..., n_p) \in \{0, 1\}^p$ to :
 - maximize the total value $V = \sum_{i=1}^{p} n_i * v_i$,
 - subject to constraint : $\sum_{i=1}^{p} n_i * w_i \le W$.

Knapsack-2

- First method : brute force (try all 2^p possibilities).
- A better method : Dynamic programming.

Divide & Conquer

- $lue{1}$ To solve a problem P:
 - **1** Decompose it into smaller problems $P_1,...P_k$.
 - Use optimal solutions of smaller problems to discover those of larger ones.
- ② But what if (larger) subproblems share (smaller) subproblems?
 - We will repeatedly solve the common subproblems !
 - Example : Computing Fibonacci series.

Fibonacci Series

- **1** $F_0 = F_1 = 1$, $F_n = F_{n-1} + F_{n-2}$ for $n \ge 2$
- ② From this definition we deduce an obvious recursive algorithm (the naive algorithm).
- **3** Example : to compute F_6
 - Compute F_5 , F_4 .
 - Compute F_4 , F_3 , F_3 , F_2 .
 - Compute F_3 , F_2 , F_2 , F_1 , F_2 , F_1 , F_1 , F_0 .
 - Compute

Fibonacci Series-A better algorithm

- ② tab[1] = 1
- **3** For i = 2, ..., n
 - tab[n] = tab[n-1] + tab[n-2]
- Every value is calculated only once but we need more space (linear space complexity).

Dynamic Programming-Principle

- $lue{1}$ To solve a problem P:
 - **1** Decompose it into smaller problems $P_1,...P_k$.
 - Use optimal solutions of smaller problems to discover those of larger ones.
 - Ompute subproblems' solutions only once and store them in a table so that they can be reused.

Dynamic Programming-Principle

• Bellman's Optimality principle "From any point on an optimal trajectory, the remaining trajectory is optimal for the corresponding problem initiated at that point".

- We define a matrix V[0..p, 0..W] as follows :
 - For k = 0, ..., p, w = 0, ..., W, V[k, w] stores the maximal value if we consider the k first objects and w as a capacity. In other words it represents the solution of the subproblem corresponding to the k first objects and the capacity w.
 - it follows that V(p, W) will contain the "solution" of the whole problem.

- The solution can be defined recursively as follows:
 - For k = 1, ..., p, w = 0, ..., W, $V(k, w) = max(V(k-1, w), v_k + V(k-1, w w_k))$
 - **1** O_k belongs to the solution of the problem $(k, w) \rightarrow V(k, w)$ = $v_k + V(k - 1, w - w_k)$
 - ② O_k doen't belong to this solution of the problem () \rightarrow V(k,w) = V(k-1,w)
 - 2 For w = 0, ..., W, V(0, w) = 0.
 - **3** For k = 1, ..., p, w < 0, $V(k, w) = -\infty$.

- Input : p, W, w[1..p], v[1..p]
- **1** For w = 0, ..., W, V[0, w] = 0.
- ② For k = 1, ..., p
 - For w = 0, ..., W
 - If $(w[k] \le w)$ V[k, w] = max(V[k-1, w], v[k] + V[k-1, w-w[k]])
 - 2 Else V[k, w] = V[k-1, w]
 - Output : V[p, W]

- In this version of the algorithm an important part of the solution is missing :
 - Which set of items gives the optimal solution ?
- We add a boolean table Belongs[1..p, 1..W] defined by :
 - if O_k the solution of the problem (k, w) Belongs[k, w]=1
 - else Belongs[k, w]=0.
- We use this table as follows :
 - ① If Belongs[n, W]=1 add O_n to the solution and continue with Belongs[n-1, W-w[n]]
 - ② If Belongs[n, W] = 0 continue with Belongs[n 1, W]

- Input : p, W, w[1..p], v[1..p]
- Part I
- **1** For w = 0, ..., W, V[0, w] = 0.
- ② For k = 1, ..., p
 - For w = 0, ..., W
 - If $((w[k] \le w) \text{ And } (V[k-1, w] \le v[k] + V[k-1, w-w[k]]))$ • V[k, w] = v[k] + V[k-1, w-w[k]]• Belongs[k, w] = 1
 - ② Else V[k, w] = V[k-1, w] Belongs[k, w] = 0

- Part II
- $T = \emptyset$
- \mathbf{o} $\mathbf{w} = \mathbf{W}$
- **3** For k = p, ..., 1
 - If (Belongs(k, w) = = 1) $T = T \bigcup \{k\}$ w = w - w[k]
 - Output : V[p, W], T

- An example :
 - W=10
 - w = [5, 4, 6, 3]
 - v = [10, 40, 30, 50]

Conclusion

We introduced Combinatorial optimization through three well known problems. In the next chapter we will study the third problem (Knapsack problem) and its dynamic programming resolution.

References

Ralph Otten, "Combinatorial algorithms",
 http://www.es.ele.tue.nl/education/5MC10/.