Affecting Mealtime Choices through Smartphone Reminders

Personalizing the Fight Against Climate Change A Randomized Control Study

Diana Iftimie, Alex Zhou Thorp, Laura Chutny 12 December 2019

Research Question

- Can we alter people's meat eating behaviour by reminding them about the climate and environmental consequences of eating meat?
- Livestock impacts:
 - Greenhouse Gases 14.5 % of Anthropogenic GHGs (FAO¹)
 - Deforestation 75% of deforested areas in Amazonia are cattle ranches (WorldBank²)
 - Reduced Biodiversity
 - Reduced Water Quality
- Habits are hard to break, 'doing the right thing' doesn't usually work

Hypothesis

- When subjects are sent an SMS reminder which includes facts about the effects of eating land-based meat on the environment, along with a recipe for a meatless meal, they will eat less meat.
- We expect that people will eat meat less frequently after receiving treatment.

Icon made by Freepik from www.flaticon.com

What is Treatment?

Daily SMS Reminder

- Fact about impact of eating land-based meat on the environment.
- Include recipe for meatless meal

What are our Outcomes?

- Number of times a person eats in a day 'Total Eating Occasions'
- Number of times they eat meat in a day 'Meat Eating Occasions'

Study Phases

- Phase 1: Enrollment Survey, Social Media + Outreach, Opt-in
- Phase 2: Baseline 3 Days Initial Eating Habits
- Phase 3: Randomization Assignment to Treatment/Control
- **Phase 4: Experiment** 7 days Apply Treatment, Collect Outcome Measures
- Phase 5: Evaluation Post-Experiment Survey & Results Analysis

Measurement Units

- Single participant unit
 - 0 18+
 - Canada or USA
 - Eats Food
 - Cell Phone
- Recruitment
 - Posted enrollment survey link on social media (Facebook, Instagram, etc.)
 - Sent survey link by direct email
 - Self selected
- Acceptance
 - Confirmation of enrollment SMS required to be considered a 'complier' and active in the study

Collecting Baseline Outcomes

- Personalized greeting
- Setting expectations
- Two types of questions
 - Measures of interest (1 & 3)
 - Measures to "throw off" (2 & 4)
- Closing with a "thank you"

Randomization

- Blocked Randomization / Matched Pair Design
- blockTools`package
- Blocked on (things we felt might make a difference to eating habits):
 - Meat eaten in Baseline (fraction)
 - Food Allergy Status
 - If person was meal planner
 - Ketogenic Diet status
 - Vegetarian Diet Status
 - Time of day person is finished eating
- Did the randomization work?

Randomization - Successful!

Covariate Balance, Treatment-Control Confidence Interval

Administering Treatment

- SMS reminder approximately 11 am daily to Treatment Group for 7 days
- Contained:
 - Message regarding meat and environment
 - Link to meatless recipe
 - Request for Confirmation

Participant Flow Diagram

Causality

• Pretest-Posttest Control Group Design (Time Series) / Difference in Differences

	Randomization	Baseline Meas. (3d)	Treatment (7d)	Experiment Meas. (7d)
Treatment	R	0	X	0
Control	R	0		0

- Differences per individual: (Experimental Measurement) (Baseline Measurement)
- Causal:
 - o (Treatment Group) (Control Group)
 - Random
 - Blocked

Outcome Measures - First Look

- Computed Ratio: Fraction of Meat Meals
- If FracMeatMeals is different Treatment to Control, once the Baseline is factored out, that = effect.

Analysis & Results

Excludability Assumption Checking

- Number of eating occasions
- Decreased slightly with Treatment
- Clustered on individual over 7 days of treatment
- Were expecting # of Eating
 Occasions to be insensitive to
 treatment

Treatment effect on number of Eating Occasions in experiment

	Dependent variable:	
	TotalNumEO	
Constant	0.908 (0.385, 1.432)	
MeanEO_Baseline	0.794 (0.640, 0.947)	
Treat	-0.325 (-0.556, -0.094)	
Observations	498	
R ²	0.481	
Adjusted R ²	0.479	
Residual Std. Error	1.083 (df = 495)	
F Statistic	229.174*** (df = 2; 495)	
Note:	*p<0.05; **p<0.01; ***p<0.00	

Analysis & Results - Mixed Effects Model

- Fixed Effects constants across individual participants
- Random Effects vary across individual participants

Analysis & Results - Mixed Effects Model

Mixed Effects modeling, No Covariates

	Dependent variable:	
	FracMeat	
Constant	0.087 (0.113)	
Treat	0.046 (0.032)	
factor(MeasureNum, ordered = TRUE).L	0.013 (0.026)	
factor(MeasureNum, ordered = TRUE).Q	0.084** (0.026)	
factor(MeasureNum, ordered = TRUE).C	-0.013 (0.027)	
factor(MeasureNum, ordered = TRUE)4	0.002 (0.026)	
factor(MeasureNum, ordered = TRUE)5	0.008 (0.027)	
factor(MeasureNum, ordered = TRUE)6	-0.009 (0.026)	
Observations	488	
Log Likelihood	-36.477	
Akaike Inf. Crit.	174.954	
Bayesian Inf. Crit.	388.660	
Note:	*p<0.05; **p<0.01; ***p<0.0	

f+- (DI1NI)2	0.245* (0.154)	C + (DI INI)22	0 500***
as.factor(BlockNum)2	$0.345^* (0.154)$	as.factor(BlockNum)22	0.532*** (0.140)
as.factor(BlockNum)3	0.208 (0.156)	as.factor(BlockNum)23	0.413** (0.140)
as.factor(BlockNum)4	0.060 (0.142)	as.factor(BlockNum)24	0.356^* (0.143)
as.factor(BlockNum)5	0.711*** (0.165)	as.factor(BlockNum)25	0.083 (0.148)
as.factor(BlockNum)6	0.404** (0.147)	as.factor(BlockNum)26	0.426** (0.160)
as.factor(BlockNum)7	0.483** (0.151)	as.factor(BlockNum)27	0.475*** (0.142)
as.factor(BlockNum)8	0.278 (0.150)	as.factor(BlockNum)28	0.136 (0.148)
as.factor(BlockNum)9	0.059 (0.100)	as.factor(BlockNum)29	0.343* (0.144)
as.factor(BlockNum)10	0.297 (0.156)	as.factor(BlockNum)30	-0.029 (0.092)
as.factor(BlockNum)11	$0.352^* (0.148)$	as.factor(BlockNum)31	0.258 (0.156)
as.factor(BlockNum)12	0.380** (0.142)	as.factor(BlockNum)32	0.397** (0.145)
as.factor(BlockNum)13	0.423** (0.142)	as.factor(BlockNum)33	0.529*** (0.142)
as.factor(BlockNum)14	0.373*(0.151)	as.factor(BlockNum)34	0.665*** (0.190)
as.factor(BlockNum)15	$0.360^* (0.150)$	as.factor(BlockNum)35	$0.307^* (0.149)$
as.factor(BlockNum)16	0.429** (0.138)	as.factor(BlockNum)36	0.459*** (0.138)
as.factor(BlockNum)17	0.340^* (0.147)	as.factor(BlockNum)37	0.035 (0.084)
as.factor(BlockNum)18	0.467*** (0.137)	as.factor(BlockNum)38	0.303 (0.157)
as.factor(BlockNum)19	0.296** (0.111)	as.factor(BlockNum)39	$0.306^* (0.138)$
as.factor(BlockNum)20	0.216 (0.162)	as.factor(BlockNum)40	0.466*** (0.136)
as.factor(BlockNum)21	0.121 (0.169)	as.factor(BlockNum)41	0.139 (0.190)

Missing Data

Mean Proportion of Data Received: Baseline vs Experiment 9 Baseline Experiment 50 40 Frequency 30 20 10 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Proportion of Data Received

Mean Proportion of Data Received: Control vs Treatment Control 25 Treatment 20 Frequency 15 10 2 0 0.0 0.2 0.4 0.6 8.0 1.0

Proportion of Data Received

T-test p-value: 0.3373

T-test p-value: 0.2737

Outstanding Questions and Concerns

- Eating Occasions a function of treatment
 - O How to address?
 - Instrumental Variable approach?
- Attrition/Missingness
 - Number of responses per person is variable how to take into account?
 - Especially for Panel Data case
- Power
 - Number of participants low
 - Length of study
 - More accurate measures (how?)
- Short code Phone numbers (\$\$)
- Priming and irking people with remarks
 - Do a panel to determine best treatment messages?

References

- 1) Gerber, P. J., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., Dijkman, J., ... Tempio, G. (2013). *Tackling climate change through livestock—A global assessment of emissions and mitigation opportunities*. Retrieved from Food and Agriculture Organization of the United Nations (FAO) website: http://www.fao.org/docrep/018/i3437e/i3437e.pdf
- 2) Margulis, S. (2003). Causes of Deforestation of the Brazilian Amazon. https://doi.org/10.1596/0-8213-5691-7
- 3) https://stats.stackexchange.com/questions/4700/what-is-the-difference-between-fixed-effect-random-effect-and-mixed-effect-mode
- 4) W271 Week 13 on Linear Mixed Effects Modeling
- 5) Gerber and Green (2012). Field Experiments: Design, Analysis, and Interpretation.

EXTRA SLIDES

Key Assumptions

- Non-interference (SUTVA)
 - Only 2 of 73 respondents to final survey noted discussing with other survey participants
- Excludability Assumption
 - Treatment is the only thing that differs systematically between our two groups that affects meat consumption
- Data missing completely at random
 - o If missing data are systematically related to our observations, then calculated values are biased
- Weak Generalizability
 - Convenience sample
 - No overweighting of underrepresented groups of interest
 - No sampling in accordance with population subgroup proportions
- Measurement Asymmetries Balanced through Parallelism
 - Treatment and Control are interacted with in the same way, with only treatment differing

Analysis & Results-Means over Time

```
model = lm(
     MeanFracMeat_Experiment ~
          MeanFracMeat_Baseline +
          Treat
)
```

Basic Model, All Treatment Days Aggregated, No Covariates

	Dependent variable:	
	MeanFracMeat_Experiment	
Constant	0.138 (0.070, 0.205)	
Treat	0.056 (-0.012, 0.125)	
MeanFracMeat_Baseline	0.611 (0.475, 0.748)	
Observations	81	
\mathbb{R}^2	0.467	
Adjusted R ²	0.453	
Residual Std. Error	0.155 (df = 78)	
F Statistic	34.172^{***} (df = 2; 78)	
Note:	*p<0.1; **p<0.05; ***p<0.01	