Trigonometry Cheatsheet

Donato Martinelli

September 28, 2024

Contents

1	Valori trigonometrici per angoli noti	2
2	Formule per gli archi associati	3
3	Formule goniometriche	4

1 Valori trigonometrici per angoli noti

$lpha^{\circ}$	α	$\cos \alpha$	$\sin \alpha$	$\tan \alpha$	$\cot \alpha$	$\sec \alpha$	$\csc \alpha$
0°	0	1	0	0	∞	1	∞
30°	$\frac{\pi}{6}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{3}$	$\sqrt{3}$	$\frac{2\sqrt{3}}{3}$	2
45°	$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	1	$\sqrt{2}$	$\sqrt{2}$
60°	$\frac{\pi}{3}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\sqrt{3}$	$\frac{\sqrt{3}}{3}$	2	$\frac{2\sqrt{3}}{3}$
90°	$\frac{\pi}{2}$	0	1	∞	0	∞	1
120°	$\frac{2\pi}{3}$	$-\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$-\sqrt{3}$	$-\frac{\sqrt{3}}{3}$	-2	$\frac{2\sqrt{3}}{3}$
135°	$\frac{3\pi}{4}$	$-\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	-1	-1	$-\sqrt{2}$	$\sqrt{2}$
150°	$\frac{5\pi}{6}$	$-\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$-\frac{\sqrt{3}}{3}$	$-\sqrt{3}$	$-\frac{2\sqrt{3}}{3}$	2
180°	π	-1	0	0	∞	-1	∞
210°	$\frac{7\pi}{6}$	$-\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	$\frac{\sqrt{3}}{3}$	$\sqrt{3}$	$-\frac{2\sqrt{3}}{3}$	-2
225°	$\frac{5\pi}{4}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$	1	1	$-\sqrt{2}$	$-\sqrt{2}$
240°	$\frac{4\pi}{3}$	$-\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	$\sqrt{3}$	$\frac{\sqrt{3}}{3}$	-2	$-\frac{2\sqrt{3}}{3}$
270°	$\frac{3\pi}{2}$	0	-1	∞	0	∞	-1
						2	
315°	$\frac{7\pi}{4}$	$\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$	-1	-1	$\sqrt{2}$	$-\sqrt{2}$
330°	$\frac{11\pi}{6}$	$\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	$-\frac{\sqrt{3}}{3}$	$-\sqrt{3}$	$\frac{2\sqrt{3}}{3}$	-2

2 Formule per gli archi associati

Angoli complementari

$$\sin\left(\frac{\pi}{2} - \alpha\right) = \cos\alpha$$

$$\cos\left(\frac{\pi}{2} - \alpha\right) = \sin\alpha$$

$$\tan\left(\frac{\pi}{2} - \alpha\right) = \cot\alpha$$

$$\cot\left(\frac{\pi}{2} - \alpha\right) = \tan\alpha$$

Angoli che differiscono di un angolo retto

$$\sin\left(\frac{\pi}{2} + \alpha\right) = \cos\alpha$$

$$\cos\left(\frac{\pi}{2} + \alpha\right) = -\sin\alpha$$

$$\tan\left(\frac{\pi}{2} + \alpha\right) = -\cot\alpha$$

$$\cot\left(\frac{\pi}{2} + \alpha\right) = -\tan\alpha$$

Angoli supplementari

$$\sin (\pi - \alpha) = \sin \alpha$$

$$\cos (\pi - \alpha) = -\cos \alpha$$

$$\tan (\pi - \alpha) = -\tan \alpha$$

$$\cot (\pi - \alpha) = -\cot \alpha$$

Angoli che differiscono di un angolo piatto

$$\sin (\pi + \alpha) = -\sin \alpha$$
$$\cos (\pi + \alpha) = -\cos \alpha$$
$$\tan (\pi + \alpha) = \tan \alpha$$
$$\cot (\pi + \alpha) = \cot \alpha$$

Angoli la cui somma è $\frac{3\pi}{2}$ $\sin\left(\frac{3\pi}{2} - \alpha\right) = -\cos\alpha$ $\cos\left(\frac{3\pi}{2} - \alpha\right) = -\sin\alpha$ $\tan\left(\frac{3\pi}{2} - \alpha\right) = \cot\alpha$ $\cot\left(\frac{3\pi}{2} - \alpha\right) = \tan\alpha$

Angoli che differiscono di $\frac{3\pi}{2}$ $\sin\left(\frac{3\pi}{2} + \alpha\right) = -\cos\alpha$ $\cos\left(\frac{3\pi}{2} + \alpha\right) = \sin\alpha$ $\tan\left(\frac{3\pi}{2} + \alpha\right) = -\cot\alpha$ $\cot\left(\frac{3\pi}{2} + \alpha\right) = -\tan\alpha$

Angoli opposti

$$\sin(-\alpha) = -\sin \alpha$$
$$\cos(-\alpha) = \cos \alpha$$
$$\tan(-\alpha) = -\tan \alpha$$
$$\cot(-\alpha) = -\cot \alpha$$

3 Formule goniometriche

- Addizione e sottrazione
 - $-\sin(\alpha \pm \beta) = \sin(\alpha)\cos(\beta) \pm \sin(\beta)\cos(\alpha)$ $-\cos(\alpha \pm \beta) = \cos(\alpha)\cos(\beta) \mp \sin(\alpha)\sin(\beta)$ $-\tan(\alpha \pm \beta) = \frac{\tan(\alpha) \pm \tan(\beta)}{1 \mp \tan(\alpha)\tan(\beta)}$ $-\cot(\alpha \pm \beta) = \frac{\cot(\alpha)\cot(\beta) \mp 1}{\cot(\beta) \pm \cot(\alpha)}$
- Duplicazione

$$\sin(2\alpha) = 2\sin(\alpha)\cos(\alpha)$$

$$\cos(2\alpha) = \cos^2(\alpha) - \sin^2(\alpha)$$

$$\tan(2\alpha) = \frac{2\tan(\alpha)}{1 - \tan^2(\alpha)}$$

$$\cot(2\alpha) = \frac{\cot^2\alpha - 1}{2\cot(\alpha)}$$

- Bisezione
 - $\sin\left(\frac{\alpha}{2}\right) = \pm\sqrt{\frac{1 \cos(\alpha)}{2}}$ $\cos\left(\frac{\alpha}{2}\right) = \pm\sqrt{\frac{1 + \cos(\alpha)}{2}}$ $\tan\left(\frac{\alpha}{2}\right) = \pm\sqrt{\frac{1 \cos(\alpha)}{1 + \cos(\alpha)}} = \frac{\sin(\alpha)}{1 + \cos(\alpha)} = \frac{1 \cos(\alpha)}{\sin(\alpha)}$ $\cot\left(\frac{\alpha}{2}\right) = \pm\sqrt{\frac{1 + \cos(\alpha)}{1 \cos(\alpha)}} = \frac{\sin(\alpha)}{1 \cos(\alpha)} = \frac{1 + \cos(\alpha)}{\sin(\alpha)}$

• Parametriche o razionali $t = \tan(\frac{\alpha}{2})$.

$$\sin(\alpha) = \frac{2t}{1+t^2}$$
$$\cos(\alpha) = \frac{1-t^2}{1+t^2}$$
$$\tan(\alpha) = \frac{2t}{1-t^2}$$
$$\cot(\alpha) = \frac{1-t^2}{2t}$$

• Prostaferesi

$$\sin(\alpha) + \sin(\beta) = 2\sin\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)$$
$$\sin(\alpha) - \sin(\beta) = 2\sin\left(\frac{\alpha-\beta}{2}\right)\cos\left(\frac{\alpha+\beta}{2}\right)$$
$$\cos(\alpha) + \cos(\beta) = 2\cos\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)$$
$$\cos(\alpha) - \cos(\beta) = -2\sin\left(\frac{\alpha+\beta}{2}\right)\sin\left(\frac{\alpha-\beta}{2}\right)$$

• Werner

$$\sin(\alpha)\sin(\beta) = \frac{\cos(\alpha - \beta) - \cos(\alpha + \beta)}{2}$$
$$\cos(\alpha)\cos(\beta) = \frac{\cos(\alpha + \beta) + \cos(\alpha - \beta)}{2}$$
$$\sin(\alpha)\cos(\beta) = \frac{\sin(\alpha - \beta) + \sin(\alpha + \beta)}{2}$$
$$\sin(\beta)\cos(\alpha) = \frac{\sin(\alpha + \beta) - \sin(\alpha - \beta)}{2}$$