

Leonard Traeger M. Sc. Information Systems leonard.traeger@fh-dortmund.de

Disclaimer

Slides are mainly based on

- https://pandas.pydata.org/docs/index.html and
- https://www.w3schools.com/python/pandas/pandas intro.asp
- → Find everything you need to know there!

Official Pandas cheat sheet:

https://pandas.pydata.org/Pandas Cheat Sheet.pdf

More beginner-friendly Pandas cheat sheet by Dataquest:

https://drive.google.com/file/d/1UHK8wtWbADvHKXFC937IS6MTnISZC_zB/view

Learning Goals Python Pandas I

- Explain how I/O integrates into the Pandas library and list a few different supported data formats.
- Explain the core data structures of Pandas and relate these to regular Python containers.
- Demonstrate Pandas I/O, Data Inspection, Indexing, Selection, and Deletion.
- Analyse on what attributes to apply Data Reduction given an example.
- Apply Data Masking and demonstrate how to insert new records and change values of rows or columns of a DataFrame.
- Identify potential cleaning functions, data transformations and visualisations and justify.

NumPy Structured Arrays (Recap)

```
nameageheightBiden781.83Trump701.9Obama471.87
```

We have constructed a relational table!

Fill the array with our lists of values.

```
presidents['name'] = name
presidents['age'] = age
presidents['height'] = height
print(presidents)
# Prints "[('Biden', 78, 1.83) ('Trump', 70, 1.9 ) ('Obama', 47, 1.87)]"
```

Data is now conveniently arranged in one structured array.

What is Pandas? Why use it?

"Panel Data" or "Python Data Analysis" (Wes McKinney 2008)

- Open-source library in Python.
- High-performance tool for data structures and analytics.

- Pandas helps us to import, clean, explore, manipulate, and analyze data and make conclusions based on statistical theories.
- Use as soon tabular data comes up e.g., spreadsheets, databases, ...
 assuming not so large files.

```
import numpy as np
import pandas as pd
```

How to master Python Libraries?

Narrow down your focus by learning the basics first (Python I,II,III, NumPy).

What can I do with Pandas?

- View your data.
- Get a quick idea of what you are dealing with.
- Get statistic summary.
- View and cast data types.
- Group, select, and apply functions...

... and much more!

→ Excel, SPSS and the power of Python combined!

Technology

Arts Sciences TH Köln

Series Object

- One-dimensional labeled array.
- Created from Python lists, tuples or dictionaries (ordered or indexed).
- Can have indices
 - Dictionaries return key as index with value
 - If none, an index will be created having the values [0, ..., len(data) 1].

		Ordered	Changeable	Indexed	Duplicates
List	[]	Yes	Yes	Yes	Yes
Tuple	()	Yes	No	Yes	Yes
Set	€}	No	Yes	No	No
Dictionary	{"_:_"}	No	Yes	Yes	No

Series Object (cont.)

```
t = ('Zuckerberg', 42, 'Gates', 'Bezos', 'Musk')
print(pd.Series(data=t))
print(type(pd.Series(data=t)[0])) # Prints "<class 'str'>"
print(type(pd.Series(data=t)[1])) # Prints "<class 'int'>"
s = pd.Series(data=t, index=['a', 'b', 'c', 'd', 'e'])
print(s)
print(s['a'])
                               # Prints "Zuckerberg"
d = {'person': 2, 'cat': 4, 'spider': 8}
print(pd.Series(data=d))
                               Zuckerberg
          Zuckerberg
                                              person
                                              cat
                  42
                                              spider
                          c Gates
               Gates
                                              dtype: int64
                          d Bezos
               Bezos
                                   Musk
                Musk
                          dtype: object
      dtype: object
```

Data Frame

- Combine Series Objects and you get DataFrames.
- Two-dimensional labeled data structure with columns of different types.
- Has columns and optional indices (row keys).
- Think of it like a spreadsheet or SQL table, or a dictionary of Series objects.
- Created from Python arrays, dictionaries, pandas. Series or numpy. Array. pandas. Data Frame

Slides may use interchangeably

- Column, attribute, feature, and object.
- Row, record, values, instance.

Data Frame (cont.)

Avoid print(DataFrame) as Jypiter has a great DataFrame interpreter

Colab Data Frame (cont.)

animal

person

cat

import numpy as np
import pandas as pd

Training #1

Create a Pandas DataFrame based on the following data:

name	#games	age
Roman Bürki	200	31
Marwin Hitz	60	34
Gregor Kobel	30	23
Marco Reus	372	34

• Explore the 🖽 and 🕕 function. What do you think about them?

Pandas Integration

I/O API

- Pandas Reader function (...to read some file) e.g.,
 - pd.read csv("someFolder/.../someFile.csv")
 - generally returns a pandas DataFrame object.
- Pandas Writer function (reverse operation) e.g.,
 - DataFrame.to csv("Folder/.../FileVer2.csv")
 - transforms a pandas DataFrame to the desired format file and uploads it to the path.

Format			
Type	Data Description	Reader	Writer
text	CSV	read_csv	to_csv
text	Fixed-Width Text File	read_fwf	
text	JSON	read_json	to_json
text	HTML	read_html	to_html
text	LaTeX		Styler.to_latex
text	XML	read_xml	to_xml
text	Local clipboard	read_clipboard	to_clipboard
binary	MS Excel	read_excel	to_excel
binary	OpenDocument	read_excel	
binary	HDF5 Format	read_hdf	to_hdf
binary	Feather Format	read_feather	to_feather
binary	Parquet Format	read_parquet	to_parquet
binary	ORC Format	read_orc	to_orc
binary	Stata	read_stata	to_stata
binary	SAS	read_sas	
binary	SPSS	read_spss	
binary	Python Pickle Format	read_pickle	to_pickle
SQL	SQL	read_sql	to_sql
SQL	Google BigQuery	read_gbq	to_gbq

https://pandas.pydata.org/docs/user_guide/io.html

df_bvb_player = pd.read_csv(url)

I/O with Google Colab + Drive

Data Inspection

• df.columns or df.keys returns a list with columnames.

df.shape returns number of instances and number of columns.

```
df_bvb_player.shape

(30, 8)
• df.size returns total number of cells.

df_bvb_player.size
```

no function, no () !

240

Data Inspection (cont.)

• df.index returns the range of the index of the frame.

```
df_bvb_player.index
RangeIndex(start=0, stop=30, step=1)
```

• df.s.value_counts() returns a dictionary of a series (attribute) with key(distinct row value elements) and value(count).

```
df_bvb_player.player_position.value_counts()

Abwehr 10
Mittelfeld 9
Sturm 7
Torwart 4
Name: player_position, dtype: int64

Let's see what makes Python superior to Excel
```

Example: Power of Pandas+Python

```
for position, count in df_bvb_player.player_position.value_counts().items():
    percentage = round(count/len(df_bvb_player), 2) * 100
    print(position, percentage)
```

Abwehr 33.0 Mittelfeld 30.0 Sturm 23.0 Torwart 13.0

Example: Power of Pandas+Python

```
position_plot = []

value_plot = []

for position, count in df_bvb_player.player_position.value_counts().items():
    percentage = round(count/len(df_bvb_player), 2) * 100
    #print(position, percentage)
    position_plot.append(position)
    value_plot.append(percentage)
```

Example: Power of Pandas+Python

```
position_plot = []

value_plot = []

for position, count in df_bvb_player.player_position.value_counts().items():
    percentage = round(count/len(df_bvb_player), 2) * 100
    #print(position, percentage)
    position_plot.append(position)
    value_plot.append(percentage)
```

We will learn about this library soon!

```
import matplotlib.pyplot as plt
fig1, ax1 = plt.subplots()
ax1.pie(value_plot, labels=position_plot)
plt.show()
```


Viewing Data

• df.head(n) returns n rows from the top of the frame.

df	_bvb_player	.head(2)				
	club_name	club_league	player_position	player_number	player_name	player_dob
0	Borussia Dortmund	Bundesliga	Torwart	1	Gregor Kobel	06.12.1997 (25)
1	Borussia Dortmund	Bundesliga	Torwart	35	Marcel Lotka	25.05.2001 (22)

• df.tail(n) returns n rows from the bottom of the frame.

df_l	ovb_player.	tail(2)				
	club_name	club_league	player_position	player_number	player_name	player_do
28	Borussia Dortmund	Bundesliga	Sturm	9	Sébastien Haller	22.06.199 (29
29	Borussia Dortmund	Bundesliga	Sturm	18	Youssoufa Moukoko	20.11.200 (18

Data Indexing

df[start:end]returns frame with inbound implicit integer index.

df_	_bvb_player	[1:3]				
	club_name	club_league	player_position	player_number	player_name	player_dot
1	Borussia Dortmund	Bundesliga	Torwart	35	Marcel Lotka	25.05.2001 (22)
2	Borussia Dortmund	Bundesliga	Torwart	33	Alexander Meyer	13.04.1991 (32)

• df.set_index([column_a]) returns copy of a frame with reassigned index based on column.

Copy behavior of DataFrame.methods

- DataFrame methods usually behave default-wise with inplace=False.
- This means that the method is executed on a copy of the DataFrame and returned.

```
df_bvb_player.set_index(['player_number'])
```

The original DataFrame variable remains the same. If you want to actually change it:

• The newly assigned column becomes the index and is dropped as a column.

Data Selection

• df.loc[index] returns row object of explicit integer index.

https://www.bundesliga.com/en/news/Bundesliga/marco-reusstill-getting-better-borussia-dortmund-position-517380.jsp

```
df_bvb_player.loc[11]

club_name Borussia Dortmund
club_league Bundesliga
player_position Mittelfeld
player_name Marco Reus
player_dob 31.05.1989 (34)
player_country Deutschland
player_value 7,00 Mio. €
```

df.iloc[index] returns row object of implicit integer index.

```
df_bvb_player.iloc[11]

club_name Borussia Dortmund
club_league Bundesliga
player_position Abwehr
player_name Marius Wolf
player_dob 27.05.1995 (28)
player_country Deutschland
player_value 10,00 Mio. €
```

.loc and
.iloc also
work for Series

Data Selection (cont.)

• df [column] returns specified attribute dictionary of frame.

```
df_bvb_player["club_name"]

player_number

1    Borussia Dortmund

35    Borussia Dortmund

33    Borussia Dortmund

31    Borussia Dortmund
```

• df[[column a, column b, ...]]returns frame of specified attributes.

Data Deletion / Reduction / Subset Selection

• df.drop(index=[index_a, index_b, ...] returns frame copy with

naining records.	df_bvb_player.drop(index=[1])						
		club_name	club_league	player_position	player_name	player_dob	
	player_number						
	35	Borussia Dortmund	Bundesliga	Torwart	Marcel Lotka	25.05.2001 (22)	
	33	Borussia	Bundesliga	Torwart	Alexander	13.04.1991	

Dortmund

• df.drop(columns=[column_a, column_b, ...] returns frame copy with

remaining columns.

```
df bvb player.drop(columns=["club league"]).head()
                club name player position player name player dob player country
player_number
                                                            06.12.1997
                  Borussia
                                     Torwart Gregor Kobel
                                                                                Schweiz
                 Dortmund
                  Borussia
                                                            25.05.2001
      35
                                                                            Deutschland
                                              Marcel Lotka
                 Dortmund
                                                            13.04.1991
                  Borussia
      33
                                                                            Deutschland
                                     Torwart
                 Dortmund
                                                                   (32)
                                                    Mever
```

When to do Data Reduction?

Redundant attributes

- Duplicate much or all of the information contained in one or more other attributes,
- E.g., date of birth and age (if snapshot time of age computation is today).

Irrelevant attributes

- Contain no information that becomes more valueable for the analysis than without.
- E.g., club name or club league as they have the same value for all player records.
 - Different if more players from different clubs and leagues join analysis!

Disclaimer: Machine Learning, particularly Neural Networks, do this automatically ©

DataFrame as Array

 View the DataFrame as an enhanced two-dimensional array using the values attribute:

All array functions can be used like masking, Ufuncs up to comprehension lists...

• We can **transpose** the full DataFrame to swap rows and columns using the ${\mathbb T}$ attribute:

Preview: Data Transformation

• We can easily modify the DataFrame and **filter** for **rows** and **conditions**:

```
df_bvb_player.player_number %2 == 0

0    False
1    False
2    False
3    False
4    True
```

Using Masking, we can view the DataFrame with rows satisfying the conditions:

<pre>df_bvb_player[df_bvb_player.player_number %2 == 0]</pre>							
	club_name	club_league	player_position	player_number	player_name	player_do	
4	Borussia Dortmund	Bundesliga	Abwehr	4	Nico Schlotterbeck	01.12.199	
7	Borussia Dortmund	Bundesliga	Abwehr	44	Soumaïla Coulibaly	14.10.200	
10	Borussia Dortmund	Bundesliga	Abwehr	26	Julian Ryerson	17.11.199 (2:	

Preview: Data Transformation (cont.)

We can also easily modify the DataFrame, .e.g., adding a new column:

1 Gregor Kobel 06.12.1997 (25) Schweiz 35,00 Mio. € False 35 Marcel Lotka 25.05.2001 Deutschland 1,50 Mio. € False 33 Alexander 13.04.1991 Deutschland 1,00 Mio. € False Silas 19.11.2003	<pre>df_bvb_player.player_number %2 == 0</pre>						
df_bvb_player.head() player_number player_name player_dob player_country player_value is_even 1 Gregor Kobel 06.12.1997 (25) Schweiz 35,00 Mio. € False 35 Marcel Lotka 25.05.2001 (22) Deutschland 1,50 Mio. € False 38 Alexander Meyer (32) Deutschland 1,00 Mio. € False	1 False 2 False 3 False						
player_number player_name player_dob player_country player_value is_even 1 Gregor Kobel 06.12.1997 (25) Schweiz 35,00 Mio. € False 35 Marcel Lotka 25.05.2001 (22) Deutschland 1,50 Mio. € False 33 Alexander Meyer (32) Deutschland 1,00 Mio. € False	df_bvb_player	['is_even'] =	df_bvb_play	er.player_number	%2 == 0		
1 Gregor Kobel 06.12.1997 (25) Schweiz 35,00 Mio. € False 35 Marcel Lotka 25.05.2001 (22) Deutschland 1,50 Mio. € False 33 Alexander (32) Deutschland 1,00 Mio. € False Silas 19.11.2003	df_bvb_player	.head()					
1 Gregor Robel (25) Schweiz 35,00 Mio. € False 35 Marcel Lotka 25.05.2001 (22) Deutschland 1,50 Mio. € False 33 Alexander 13.04.1991 Meyer (32) Deutschland 1,00 Mio. € False	player_number	player_name	player_dob	player_country	player_value	is_even	
35 Marcel Lotka (22) Deutschland 1,50 Mio. € False 33 Alexander 13.04.1991 Meyer (32) Deutschland 1,00 Mio. € False	1	Gregor Kobel		Schweiz	35,00 Mio. €	False	11.
Meyer (32) Deutschland 1,00 Mio. € False	35	Marcel Lotka		Deutschland	1,50 Mio. €	False	
Silas 19.11.2003	33			Deutschland	1,00 Mio. €	False	
Ostrzinski (19) Deutschland 150 lsd. € False	31			Deutschland	150 Tsd. €	False	
Nico 01.12.1999 4 Schlotterbeck (23) Deutschland 40,00 Mio. € True	4			Deutschland	40,00 Mio. €	True	ı

Data Masking

• df.column operator value returns index mask.

```
df_bvb_player.player_number > 40

0    False
1    False
2    False
3    False
4    False
5    False
6    False
7    True
```

df [mask] returns dataframe with rows based on mask.

```
df_bvb_player[df_bvb_player.player_number > 40]
    club name club league player position player number player name player de
                                                                   Soumaïla
                                                                             14.10.20
       Borussia
                                                          44
                  Bundesliga
                                       Abwehr
     Dortmund
                                                                   Coulibaly
                                                                              10.09.19
       Borussia
                                                                   Antonios
                  Bundesliga
                                       Abwehr
                                                              Papadopoulos
      Dortmund
                                                               Jamie Bynoe-
                                                                             08.08.20
                  Bundesliga
                                        Sturm
     Dortmund
                                                                     Gittens
```

Data Masking (cont.)

Use & and | instead of and and or for multiple masking conditions

Masks can become as complex as you want via Boolean logic.

• df.loc[mask, column] returns the row object(s), and the attribute value of a specified column capable to changes.

Training #2

Open a blank .ipynb file and import the .csv file

```
url = "https://raw.githubusercontent.com/leotraeg/FHDTM-P2DS-
WS2425/refs/heads/main/Demo/Datensaetze/FHDTM-P2DS-WS2425-Project-Demo-1.1-Data-
Acquisition-Transfermarkt BVB.csv"
```

as a pandas data frame pd.read_csv(url).

- 1. Delete all players from Norway "Norwegen".
 - Use masking to get the index of relevant players, e.g., df.drop(mask.index, inplace=True)
- 2. "Hanna Muster" joined the BVB club this season. You can add a new record to the DataFrame using a dictionary { } and pd. Series object by df.loc[len(df)] = pd. Series (data=dictionary).
 - Assign the unknown attributes with numpy's np.NaN value.
 - You can compute Hanna's age by yourself or use the get age method from the Python III class.
 from datetime import date, timedelta, datetime

Training #2

Check:

2) df_bvb_player.tail()

club_name club_league player_position player_number

	club_name	club_league	player_position	player_number	player_name	player_dob	player_country	player_value
26	Borussia Dortmund	Bundesliga	Sturm	21.0	Donyell Malen	19.01.1999 (24)	Niederlande	28,00 Mio. €
27	Borussia Dortmund	Bundesliga	Sturm	16.0	Julien Duranville	05.05.2006 (17)	Belgien	8,50 Mio. €
28	Borussia Dortmund	Bundesliga	Sturm	9.0	Sébastien Haller	22.06.1994 (29)	Elfenbeinküste	30,00 Mio. €
29	Borussia Dortmund	Bundesliga	Sturm	18.0	Youssoufa Moukoko	20.11.2004 (18)	Deutschland	30,00 Mio. €
30	Borussia Dortmund	Bundesliga	NaN	NaN	Hanna Muster	17.07.2000 (23)	Deutschland	NaN

Getting to know your data

It is pretty **hard** to work, analyze and apply statistical methods on data...

...if you do not know anything about your data!

An **initial exploration** of your data can help you decide how to proceed.

Getting to know your data (cont.)

Take the **time** to **open** up your data **file** and have a look.

You might be surprised at what you find!

You may **notice obvious issues** with the data, e.g.:

- Duplicate records
- Duplicate attributes
- Nonsensical values
- Useless attributes
- Incomplete data formatting during I/O ©

Too much data to inspect manually? Take a sample!

Viewing Meta Data

df.info() returns meta data about the frame.

```
df_bvb_player.info()
                                <class 'pandas.core.frame.DataFrame'>
                                 RangeIndex: 30 entries, 0 to 29
                                Data columns (total 8 columns):
                                     Column
                                                     Non-Null Count
                                                                   Dtype
                                     club name
                                                     30 non-null
                                                                   object
                                                     30 non-null
                                                                   object
                                     club league
                                                                                           What did go unfavorable
                                     player position 30 non-null
                                                                   object
                                     player number
                                                     30 non-null
                                                                   int64
                                                                                            during the I/O process?
                                     player name
                                                                   object
                                                     30 non-null
                                     player_dob
                                                                   object
                                                     30 non-null
                                     player country
                                                     30 non-null
                                                                   object
                                     player value
                                                                   object
                                                     30 non-null
                                dtypes: int64(1), object(7)
                                memory usage: 2.0+ KB
        club_name club_league
                               player_position player_number player_name
                                                                               player_dob player_country player_value
```

Gregor Kobel 06.12.1997 (25)

Marcel Lotka 25.05.2001 (22)

35,00 Mio. €

1,50 Mio. €

Schweiz

Deutschland

Torwart

Torwart

Bundesliga

Bundesliga

0 Borussia Dortmund

Borussia Dortmund

Viewing Meta Data (cont.)

• df.describe() returns summary statistics for all numerical attributes in the frame.

Think-Pair-Share #1

Continue working on your Training#1 .ipynb file with the imported.csv file

```
url = "https://raw.githubusercontent.com/leotraeg/FHDTM-P2DS-
WS2425/refs/heads/main/Demo/Datensaetze/FHDTM-P2DS-WS2425-
Project-Demo-1.1-Data-Acquisition-Transfermarkt_BVB.csv"
as a pandas data frame pd.read_csv(url).
```

Explore the data frame and discuss with your peers potential preprocessing steps:

- Cleaning functions
- Data transformations, e.g., column generation, grouping, aggregations
- You can get creative, e.g., merge different data

...but always **explain why**, e.g., relevant to visualize.

Think-Pair-Share #1

Cleaning functions

Visualizations

Other

Getting to know your data (cont.)

Simple visualization tools and summary statistics are very useful!

- Make some plots
- Calculate summary statistics

...and think:

- Is the distribution consistent with the background knowledge?
 (You may need to consult domain experts)
- Any obvious outliers?
- Are some attributes heavily correlated with each other?

Takeaways

- Python and Pandas provide powerful toolkits for data science processes.
- Manual inspection and data preprocessing remains relevant.
- It is pretty hard to work, analyze and apply statistical methods on data if you do not know anything about your data!
- Take the time to open up your data file and have a look.
- You may notice obvious and less obvious issues with the data!

Outlook

- In the next week, we will dive deep into Preprocessing with Python Pandas.
- Similar to the functional approach of NumPy ufuncs, we can deploy functions for data reduction, data cleaning, data integration, and data transformations!

• In week 9 we will dive deep into Python Matplotlib to plot data:

See you again next week in person.

Questions?