Does knowledge of different orthographic regularities rely on a domain-general statistical learning mechanism?

An SEM analysis of a large-scale database

Alvaro Darcourt

MSc(c) Psychology: Learning Sciences - LMU

Supervisor

Dr. Xenia Schmalz

July 1, 2022

Background: Morphological awareness

Definition and role for literacy skills

- ► MA reflects the implicit understanding of the **morphological structure of words** + ability to manipulate this structure.
- Makes possible creating new words, i.e., derivational (e.g., "work + er"), inflectional (e.g., "work + ing") or compound (e.g., "work + sheet") morphology.

Empirical evidence

- Contributes to reading accuracy in orthographies of varying transparency, i.e., English, Italian, Portuguese, French, and Greek.
- Unlike its association with reading accuracy, its relationship with reading fluency has been less explored.

Carlisle, 2010; Nagy et al., 2013; Deacon & Kirby, 2004, Desrochers et al., 2017; Görgen et al., 2021; Diamanti et al., 2017.

Background: Morphological awareness

Empirical evidence with German school children

- Few studies + mixed results.
- 1. MA was the **most robust predictor** of reading fluency (4.0%, expl. var.) and spelling (6.8%).
- 2. MA did not predict additional variance in these outcomes in addition to phonological awareness and other variables.

Methodological limitations

- ▶ Low reliabilities + underreporting of psychometric properties.
- ▶ Sum scores without inspecting the **dimensionality** of the construct.

Görgen et al., 2021; Haasee et al., 2022; Bratlie et al., 2022.

Background: Word-specific orthographic knowledge

Definition and measurement

- WOK reflects explicit representations stored in memory about the correct spelling of words and word-units.
- Orthographic choice task: pseudohomophone (Y/N) (e.g., "tertle") vs. word (Y/N) (e.g., "turtle").

Empirical evidence

- ► WOK predicts reading and spelling skills in opaque (e.g., English) and transparent orthographies (e.g., Dutch).
- ► German: WOK contributes to reading at the *basic* (i.e., word-reading) and *complex* (i.e., sentence and text-reading) levels.

Barker et al., 1992; Olson et al., 1994; Deacon et al., 2013; Bekebrede et al., 2009; Zaric et al., 2021.

Background: General orthographic knowledge

Definition and measurement

- GOK involves an implicit understanding of the rules/patterns of which letters (a) may or may not be combined or (b) appear in specific positions in words.
- Word similarity choice task: which of 2 pseudowords most closely resembles a word, illegal (e.g., "bbaf") vs. legal pseudoword (e.g., "baff")

German: Mixed results

- 1. GOK explained a significant amount of unique variance in **reading** and spelling.
- 2. GOK significantly predicted spelling but **not reading**.

Apel et al., 2018; Rothe et al., 2013; Zaric et al., 2021; Görgen et al., 2021.

Background: WOK & GOK

- ▶ (1) $GOK \rightarrow (2)$ WOK.
- Statistical properties of letter combinations → GOK.
- Correlations between literacy skills and WOK > GOK.
 - Association varies by item type (WOK & GOK), i.e., higher correlations with pseudohomophones (vs. words) & illegal (vs. legal) pseudowords.
- WOK mediates relationship between GOK and reading & spelling.

Apel et al., 2018; Deacon et al, 2008; Rothe et al. (In preparation).

Statistical learning

Definition and importance

- ► SL: ability that allows cognitive systems to automatically detect underlying structures in the continuous stream of sensory stimuli.
- Underlies several cognitive functions (e.g., segmentation of continuous auditory input), but role for language skills is not clear.

Controversial construct

- Pro: When spelling, children draw not only on rule-based knowledge but also on the implicit processing of statistical regularities, e.g., sublexical GOK & morphological patterns.
- Against: results don't replicate + poor psychometric properties for SL tasks.

Frost et al., 2015; Deacon et al. 2008; Schmalz et al., 2018; Siegelman et al., 2016.

Aims of the present study

- Psychometric analysis of MA task (uni vs. multidimensional).
- Does MA, lexical processing, GOK, and age positively predict reading fluency?

Test for SL in a novel way

- ▶ If MA and GOK are influenced by SL...
- ▶ A model where a correlation between these is included should fit better than one that does not.

Method

Participants

- ▶ BMBF dataset (online study). 2,624 children (only complete cases).
- ▶ 3rd Grade (B = 608, G = 630); 4th Grade (B = 687, G = 699).
- ▶ Randomly divided total sample: training (80%) & testing sets (20%).

Measures

- Criterion. Reading fluency (WLLP-R; VSL)
- Predictors. Spelling (WRT 3+/+4), WOK (orthographic word-choice task), GOK (orthographic pseudoword-choice task), MA (plural formation, derivation, inflection).

Statistical analyses

- **CFA.** Psychometric properties MA task.
- ▶ SEM. Predicting reading fluency and testing SL mechanism (training + testing sets).

4. Der Inf

Table 1: Fit indices for morphological awareness CFA models

	Model 1	Model 2	Model 3	Model 4
chisq.scaled	1056.46	705.78	245.12	144.85
df.scaled	252.00	249.00	103.00	76.00
pvalue.scaled	0.00	0.00	0.00	0.00
cfi.scaled	0.78	0.87	0.93	0.96
rmsea.scaled	0.04	0.03	0.02	0.02
srmr	0.08	0.08	0.06	0.06

SEM 1. Predicting Reading Fluency

11

SEM 2. Predicting Reading Fluency + SL parameter

SEM 1. Predicting Reading Fluency (training)

SEM 2. Predicting Reading Fluency + SL parameter (training)

Table 2: Fit indices for SEM models 1 and 2 in training test

	fit_model1a_M	fit_model2a_M
chisq.scaled	355.78	354.31
df.scaled	16.00	15.00
pvalue.scaled	0.00	0.00
cfi.robust	0.92	0.92
rmsea.robust	0.10	0.11
srmr_bentler	0.08	0.08

Table 3: Scaled Chi-Squared Difference Test

	Df	AIC	BIC	Chisq	Chisq diff	Df diff	Pr(>Chisq)
fit_model2a	15	93395.78	93514.51	374.523	NA	NA	NA
fit_model1a	16	93398.58	93511.66	379.323	3.99	1	0.046

SEM 1. Predicting Reading Fluency (testing)

SEM 2. Predicting Reading Fluency + SL parameter (testing)

Table 4: Fit indices for SEM models 1 and 2 in testing test

	fit_model1b_M	fit_model2b_M
chisq.scaled	99.99	97.92
df.scaled	16.00	15.00
pvalue.scaled	0.00	0.00
cfi.robust	0.90	0.90
rmsea.robust	0.11	0.11
srmr_bentler	0.09	0.08

Table 5: Scaled Chi-Squared Difference Test

	Df	AIC	BIC	Chisq	Chisq diff	Df diff	Pr(>Chisq)
fit_model2b	15	22706.31	22795.44	111.669	NA	NA	NA
fit_model1b	16	22706.46	22791.34	113.812	1.94	1	0.164

In summary

MA task

► CFA: Best fit for 2-dimensional structure (F1: Inflection, F2: Derivation -2 items).

Does MA, lexical processing, GOK, and age positively predict reading fluency?

Only lexical processing & age.

Testing for SL in a novel way using SEM: additional parameter for a correlation between MA and GOK.

- No intervention of an SL mechanism. Same fit in two models using both datasets.
- ► Could not fully cross-validate models: SL parameter significant in training set but not in testing set.

References I

- Apel, K., Henbest, V. S., & Masterson, J. (2019). Orthographic knowledge: Clarifications, challenges, and future directions. *Reading and Writing*, 32(4), 873–889. https://doi.org/10.1007/s11145-018-9895-9
- Barker, T. A., Torgesen, J. K., & Wagner, R. K. (1992). The Role of Orthographic Processing Skills on Five Different Reading Tasks. *Reading Research Quarterly*, 27(4), 334. https://doi.org/10.2307/747673
- Bekebrede, J., Leij, A. van der, & Share, D. L. (2009). Dutch dyslexic adolescents: Phonological-core variable-orthographic differences. *Reading and Writing*, 22(2), 133–165. https://doi.org/10.1007/s11145-007-9105-7
- Bratlie, S. S., Brinchmann, E. I., Melby-Lervåg, M., & Torkildsen, J. von K. (2022). Morphology—A Gateway to Advanced Language: Meta-Analysis of Morphological Knowledge in Language-Minority Children. Review of Educational Research, 003465432110731. https://doi.org/10.3102/00346543211073186
- Carlisle, J. F., McBride-Chang, C., Nagy, W., & Nunes, T. (2010). Effects of Instruction in Morphological Awareness on Literacy Achievement: An Integrative Review. Reading Research Quarterly, 45(4), 464–487. https://doi.org/10.1598/RRQ.45.4.5
- Deacon, S. H., Conrad, N., & Pacton, S. (2008). A statistical learning perspective on children's learning about graphotactic and morphological regularities in spelling. Canadian Psychology/Psychologie Canadienne, 49(2), 118–124. https://doi.org/10.1037/0708-5591.49.2.118

References II

- Deacon, S. H., & Kirby, J. R. (2004). Morphological awareness: Just "more phonological"? The roles of morphological and phonological awareness in reading development. *Applied Psycholinguistics*, 25(2), 223–238. https://doi.org/10.1017/S0142716404001110
- Desrochers, A., Manolitsis, G., Gaudreau, P., & Georgiou, G. (2018). Early contribution of morphological awareness to literacy skills across languages varying in orthographic consistency. *Reading and Writing*, *31*(8), 1695–1719. https://doi.org/10.1007/s11145-017-9772-y
- Diamanti, V., Mouzaki, A., Ralli, A., Antoniou, F., Papaioannou, S., & Protopapas, A. (2017). Preschool Phonological and Morphological Awareness As Longitudinal Predictors of Early Reading and Spelling Development in Greek. Frontiers in Psychology, 8, 2039. https://doi.org/10.3389/fpsyg.2017.02039
- Görgen, R., De Simone, E., Schulte-Körne, G., & Moll, K. (2021). Predictors of reading and spelling skills in German: The role of morphological awareness. *Journal of Research in Reading*, 44(1), 210–227. https://doi.org/10.1111/1467-9817.12343
- Haase, A., & Steinbrink, C. (2022). Associations between morphological awareness and literacy skills in German primary school children: The roles of grade level, phonological processing and vocabulary. *Reading and Writing*, *35*(7), 1675–1709. https://doi.org/10.1007/s11145-021-10247-1
- Nagy, W. E., Carlisle, J. F., & Goodwin, A. P. (2014). Morphological Knowledge and Literacy Acquisition. *Journal of Learning Disabilities*, 47(1), 3–12. https://doi.org/10.1177/0022219413509967

References III

- Rothe, J., Schulte-Körne, G., & Ise, E. (2014). Does sensitivity to orthographic regularities influence reading and spelling acquisition? A 1-year prospective study. *Reading and Writing*, 27(7), 1141–1161. https://doi.org/10.1007/s11145-013-9479-7
- Siegelman, N., Bogaerts, L., & Frost, R. (2017). Measuring individual differences in statistical learning: Current pitfalls and possible solutions. *Behavior Research Methods*, 49(2), 418–432. https://doi.org/10.3758/s13428-016-0719-z
- Zarić, J., Hasselhorn, M., & Nagler, T. (2021). Orthographic knowledge predicts reading and spelling skills over and above general intelligence and phonological awareness. *European Journal of Psychology of Education*, *36*(1), 21–43. https://doi.org/10.1007/s10212-020-00464-7