

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ :	A1	(11) International Publication Number:	WO 96/19661
F02M 61/18		(43) International Publication Date:	27 June 1996 (27.06.96)
(21) International Application Number:	PCT/GB95/02880	(81) Designated States:	DE, GB, JP, KR, US, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).
(22) International Filing Date:	11 December 1995 (11.12.95)	Published	With international search report.
(30) Priority Data:	9425652.6 20 December 1994 (20.12.94) GB		
(71) Applicant (for all designated States except US):	LUCAS INDUSTRIES PUBLIC LIMITED COMPANY [GB/GB]; Brueton House, New Road, Solihull B91 3TX (GB).		
(72) Inventor; and			
(75) Inventor/Applicant (for US only):	STEVENS, John, William [GB/GB]; 13 Shepherds Gate, Hempstead, Gillingham, Kent ME7 3TG (GB).		
(74) Agents:	THOMPSON, George, Michael et al.; Marks & Clerk, Alpha Tower, Suffolk Street Queensway, Birmingham B1 1TT (GB).		
(54) Title:	FUEL INJECTION NOZZLE		
(57) Abstract	<p>A fuel injection nozzle is disclosed which comprises a valve needle (18) slidable within a bore (11) and biased by means of a spring (22) into engagement with a seating (12A). The seating (12A) is of conical form, and the valve needle (18) includes an upstream conical region (27) of cone angle slightly larger than the seating (12A) and a downstream conical region (29) of cone angle slightly smaller than the seating. An annular groove or slot (26) is provided between the upstream and downstream regions (27, 29), the upstream edge of the groove (26) forming with the upstream region (27) a seating line (28) along which the valve needle (18) engages the seating (12A) when the valve needle (18) is in its closed position.</p>		
	<p>The diagram illustrates a cross-section of a fuel injection nozzle. It features a central vertical axis. A valve needle (18) is shown in its closed position, seated against a seating (12A) which is part of a larger seating assembly (12). The seating (12A) has a conical shape. The valve needle (18) has two distinct conical regions: an upstream region (27) and a downstream region (29). Between these regions is an annular groove or slot (26). The upstream edge of this groove (26) forms a seating line (28) that engages with the seating (12A). A spring (22) is wound around the valve needle (18) and is held in place by a retainer (23). The valve needle (18) is guided by a bore (11) and is supported by a bearing (14). A plunger (10) is located below the valve needle (18). Various other parts are labeled with numbers such as 13, 16, 21, 15, 20, 17, and 25.</p>		

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
AU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	IE	Ireland	NZ	New Zealand
BJ	Benin	IT	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgyzstan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic of Korea	SD	Sudan
CG	Congo	KR	Republic of Korea	SE	Sweden
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	LJ	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LU	Luxembourg	TD	Chad
CS	Czechoslovakia	LV	Latvia	TG	Togo
CZ	Czech Republic	MC	Monaco	TJ	Tajikistan
DE	Germany	MD	Republic of Moldova	TT	Trinidad and Tobago
DK	Denmark	MG	Madagascar	UA	Ukraine
ES	Spain	ML	Mali	US	United States of America
FI	Finland	MN	Mongolia	UZ	Uzbekistan
FR	France			VN	Viet Nam
GA	Gabon				

FUEL INJECTION NOZZLE

Technical Field

This invention relates to fuel injection nozzles for supplying fuel to compression ignition engines, the nozzles being of the kind comprising an inwardly opening valve member which is slidable in a bore, resilient means biasing the valve member into engagement with a seating, the valve member being shaped to define with the seating when in engagement therewith, a so called seating line, the valve member being lifted from the seating against the action of the resilient means by fuel under pressure which acts on an annular end area of the valve member, the inner boundary of which is defined by the seat line, the valve member when lifted from the seating allowing fuel flow past the seating to an outlet orifice.

Background Art

It is known from the prior art described in US-A-4153205 and in US 3980237 to form the valve member so that the seating line is defined by the meeting line of two conical surfaces the upstream one of which has a cone angle which is less than the cone angle of the frusto conical seating and the downstream one of which has a cone angle which is greater than that of the seating. In one example the included angle between the conical surface of the seating and the downstream conical surface of the valve member is greater than the included angle between the conical surface of the seating and the upstream conical surface of the valve member. With this arrangement as the surfaces wear the effective seating line moves in the upstream direction so that the nozzle opening pressure increases assuming that there is no substantial deterioration in the force exerted by the resilient means. The disadvantage of this

arrangement is that the greater included angle between the downstream conical surface of the valve member and the seating results in an increased volume of fuel trapped in the space between the seating line and the outlet orifice when the valve member is in the closed position. This fuel can dribble through the orifice into the engine and cause unwanted exhaust emissions. If the included angle downstream of the seating line is reduced the aforesaid volume of fuel is reduced but there is an increasing tendency for the effective seating line to move in the downstream direction particularly if the downstream included angle is less than the upstream included angle. As a result the area of the valve member exposed to the fuel pressure in the closed position of the valve member increases and the nozzle opening pressure falls so that there is a deterioration in the performance of the nozzle.

US 4153205 also describes how a groove may be formed in the downstream conical surface of the valve member, the groove being spaced in the downstream direction from the seating line. The downstream included angle is less than the upstream included angle and the action of the groove is to minimise the movement as wear takes place, of the seating line in the downstream direction. Thus whilst in use there will be a reduction of the nozzle opening pressure the extent of the reduction will be limited by the action of the groove.

GB 2186632 describes a nozzle arrangement including a nozzle body having an inner conical seating, and a valve needle including a conical surface engageable with the seating, the conical surface of the valve needle being interrupted by an annular groove or slot arranged to alter the flow characteristics of fuel through the nozzle when the valve needle is lifted from the seating. A similar annular groove is provided in the

arrangement described in US 1952816, in this case the groove being upstream of the effective seating line of the nozzle

The object of the present invention is to provide a fuel injection nozzle of the kind specified in an improved form.

Disclosure of the Invention

According to the invention in a fuel injection nozzle of the kind specified the seating is machined to frusto conical form with a constant cone angle and the valve member is machined to define two conical surfaces, the downstream one in terms of the direction of flow of fuel through the outlet orifice, having a cone angle which is greater than that of the seating and the upstream one having a cone angle less than that of the seating, and a circumferential groove formed in the valve member, the upstream edge of said groove forming with the upstream conical surface a seating line along which in the closed position of the valve member the valve member engages with the seating, the downstream edge of said groove lying on the downstream conical surface.

Brief Description of the Drawings

An example of a fuel injection nozzle in accordance with the invention will now be described with reference to the accompanying drawings in which:-

Figure 1 is a sectional side elevation of part of a fuel injection nozzle, and

Figure 2 is a view to an enlarged scale of part of the nozzle seen in Figure 1.

Detailed Description of the Invention

Referring to the drawings the fuel injection nozzle comprises a nozzle body 10 of stepped cylindrical form and within the body and extending from the wider end thereof there is formed a blind bore 11. At the blind end of the bore there is formed a seating 12A which is shown more clearly in Figure 2. Intermediate the ends of the bore there is formed an enlargement 12 which communicates with a fuel inlet passage 13. The fuel inlet passage 13 extends through a distance piece 14 and a nozzle holder 15 to a fuel inlet which in use is connected to the outlet of a fuel injection pump.

The nozzle body is secured to the holder 15 by means of the usual cap nut 17 and in use the narrower portion of the nozzle body passes through a bore into a combustion space of the associated engine.

Slidable within the bore 11 is a valve member 18. The valve member intermediate the enlargement 12 and the seating is of reduced diameter so as to define an annular space 19 through which fuel can flow when the valve member is in the open position.

The valve member 18 is provided with an extension 20 which extends with clearance through an aperture in the distance piece 14. The extension 20 is engaged by a spring abutment 21 against which is located one end of a coiled compression spring 22 the other end of which bears against an abutment 23. The spring acts to maintain the valve member in the closed position and the chamber in which the spring is located is connected to a drain through a passage 16.

Turning now to Figure 2, the seating 12A is of frusto conical form and at its narrower end opens into a small recess 24 the purpose of which is to permit accurate grinding of the surface of the seating. Opening onto the seating adjacent the recess is in the particular example, a pair of outlet orifices 25. Instead of the orifices being positioned as shown they could extend from a deeper recess known in the art as a sac volume and there may be just a single orifice or more than two depending on the application.

The end of the valve member 18 is of tapering form and it is provided intermediate its ends with a circumferential groove 26. Intermediate the groove 26 and the main body of the valve member is a so called upstream conical surface 27 which has an included angle with the seating of 0.75° so that its cone angle is slightly less than that of the seating. The upstream edge of the groove forms with the surface a so called seating line indicated at 28 and having a diameter "D". The downstream edge of the groove 26 forms a boundary with a downstream seating surface 29 which has a cone angle slightly greater than that of the seating. In the closed position of the valve member there is therefore engagement between the valve member and the seating along the seating line 28 but there is a clearance between the seating and the valve member particularly in the region of the downstream edge of the groove 26.

In operation, when fuel under pressure is supplied to the inlet 13, fuel pressure acts on the end area of the valve member defined outside the seating line 28 and a force is therefore generated on the valve member in opposition to the force exerted by the spring. When the force due to the fuel pressure exceeds the spring force, the valve member moves to

the open position and fuel can then flow between the valve member and the seating and through the orifices 25. The pressure which is required to lift the valve member from its seating is known in the art as the "nozzle opening pressure". When the flow of fuel from the fuel pump ceases, the pressure falls and the valve member will be returned into engagement with the seating by the action of the spring, when the fuel pressure falls to a value less than the nozzle opening pressure.

Over a period of time deformation of the seating line will take place so that it effectively becomes a zone however, the presence of the groove prevents the effective seating line moving in the downstream direction so that the nozzle opening pressure will be substantially unaffected. This enables the included angle between the downstream conical surface 29 and the seating to be made as small as possible. In the example, the included angle is 2.5°. The junction of the two conical surfaces would lie on the seat line but because of the groove there is no actual junction and the manufacturing difficulties of providing an accurate junction are avoided. In practice the zone contact which develops means that the effective seat line moves in the upstream direction to provide compensation for spring relaxation.

CLAIMS

1. A fuel injection nozzle comprising a valve member slidable in a bore, and resilient means for biasing the valve member into engagement with a seating, the valve member being arranged to be lifted from the seating against the action of the resilient means by fuel under pressure being applied to the valve member, the valve member, when lifted from the seating, permitting fuel to flow past the seating to an outlet orifice, wherein the seating is machined to frusto conical form with a constant cone angle and the valve member is machined to define two conical surfaces, the downstream one in terms of the direction of flow of fuel through the outlet orifice, having a cone angle which is greater than that of the seating and the upstream one having a cone angle less than that of the seating, and a circumferential groove formed in the valve member, the upstream edge of said groove forming with the upstream conical surface a seating line along which in the closed position of the valve member the valve member engages with the seating, the downstream edge of said groove lying on the downstream conical surface.
2. A nozzle as claimed in Claim 1, wherein the part of the valve member downstream of the seating line is adapted to occupy a significant proportion of the part of the bore downstream of the seating line.
3. A nozzle as claimed in Claim 1 or Claim 2, wherein the downstream conical surface is spaced from the seating when the valve member is in its closed position.

4. A nozzle as claimed in any one of the preceding claims, wherein the narrower end of the seating opens into a recess.
5. A nozzle as claimed in any one of the preceding claims in which the downstream one of said conical surfaces had an included angle of about 2.5° with the seating and the upstream one of said conical surfaces has an included angle of 0.75° .

1 / 1

FIG 1

FIG 2

INTERNATIONAL SEARCH REPORT

Intern: Application No.
PCT/GB 95/02880A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 F02M61/18

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 6 F02M

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	EP,A,0 460 326 (LUCAS INDUSTRIES) 11 December 1991 see the whole document ---	1-4
A	EP,A,0 345 348 (NAUCHNO-PROIZVODSTVENNOE OBIEDINENIE PO TOPLIVNOI APPARATURE ...) 13 December 1989 see page 8, line 23 - page 9, line 16; figures 1-3 ---	1,3-5
A	DE,A,41 17 910 (YAROSLAVSKIJ ZAVOD DIZEL'NOJ APPARATURY PROSPEKT MASINOSTROITELEJ) 3 December 1992 see the whole document ---	1,3,4
A	GB,A,562 033 (COBB) 15 June 1944 -----	

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents:

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

& document member of the same patent family

1

Date of the actual completion of the international search

28 February 1996

Date of mailing of the international search report

07.03.96

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl.
Fax (+ 31-70) 340-3016

Authorized officer

Friden, C

INTERNATIONAL SEARCH REPORT

Information on patent family members

Intern'l Application No

PCT/GB 95/02880

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
EP-A-460326	11-12-91	NONE		
EP-A-345348	13-12-89	WO-A-	8903935	05-05-89
		US-A-	5033679	23-07-91
DE-A-4117910	03-12-92	NONE		
GB-A-562033		NONE		