

Analysis and validation of spaceborne synthetic imagery using a Vision-Based pose initialization algorithm for non-cooperative spacecrafts

Francescodario Cuzzocrea April 28, 2021

Pose determination for close range proximity operations using monocular camera

Purposes: • Formation Flying (FF)

• On-Orbit Servicing (OOS)

Active Debris Removal (ADR)

Advantages:

Reliability

Low weight

Simplicity

Low power

Challenge
Estimate the pose of an uncooperative target from a monocular image

Monocular algorithm requirements

- Target 3D model availability
- On-Board real-time execution
- Robustness to illumination
- Robustness to background
- Robustness to variability of pose

- → Need a representative data-set to develop image processing algorithms
- → A lack of realism can lead to wrong assumptions and thus incoherent results

Available Solutions

ESA PANGU

AIRBUS SURRENDER

SPEED DATA-SET

URSO DATA-SET

Motivation

Data-set requirements

- → Emerges the need for a tool capable of rendering images for CV algorithms training which must:
 - be affordable for small research center or small companies
 - be capable of rendering different kinds S/C
 - be able to accomodate solar-system sized scenes
 - be able to also render composite background

Aim of the thesis → Develop a tool capable of producing a data-set of images representative of in-orbit real operative conditions and use them to implement and test a State-of-Art pose initialization algorithm

Synthetic Image Generation

POV-Ray represents a viable solution

- → It simulates the physics of light!
 - Support meshes for objects
 - Customizable textures support
 - Customizable optical properties
 - Customizable light properties
 - Customizable camera parameters
 - Accepted by ESA in past studies

Image

→ Noise can be modeled and added a posteriori to enhance fidelity.

Earth and Light Modeling

- → Use three different layers to differentiate optical parameters and textures for seasonality variations
- → Include 25 km tick atmosphere with scattering properties

→ The Sun has been modeled using POV-Ray area_light feature

3D Model of the Spacecraft

→ Based on the TANGO spacecraft from the PRISMA mission to perform comparison with SPEED

POV-Ray

- CAD is created using Autodesk Inventor
- Imported in Blender to exploit POV-Ray add-on
- Textures are applied
- Optical parameters are defined
- SDL code is refactord for MATLAB implementation

▶ Process has to be carried out only one time per S/C

Camera Modeling

Simulate a pin-hole camera

 \longrightarrow POV-Ray allows to set camera aperture angle α and Aspect Ratio:

$$CCD_{size} = d_u \cdot N_u$$

$$\alpha = 2 \cdot \arctan\left(\frac{CCD_{size}}{2 \cdot f_x}\right)$$

$$A.R. = \frac{N_u}{N_v}$$

 $egin{array}{ll} N_u & {
m Number \ of \ horizontal \ pixels} \ N_v & {
m Number \ of \ vertical \ pixels} \ f_x & {
m Horizontal \ focal \ length} \ d_u & {
m Horizontal \ pixel \ length} \ \end{array}$

- → Under the assumption of square CCD sensor having square pixels
- → If camera model is known, distortion can be added in post-processing

Add Gaussian white noise and speckle noise

To enhance the fidelity noise is added to the image

Normal

Noisy

Gaussian: $\sigma^2 = 0.003$ Speckle: $\sigma^2 = 0.004$

Simulink Model

- → Simulate uncontrolled behavior on LEO orbit
- → Easily extendable to include controlled behavior too
- → Chaser constrained to be between 3 to 18 meters far from the target
- → Extendable to simulate precise chaser approach

MATLAB Functions

- → Write .pov SDL files for each image
- → Annotate ground truth pose for each image
- → Sets relevant POV-Ray options and run it
- → Can re-parse ground truth pose for each image

Results

Samples

WARNING: Custom POV-Ray version needed to replicate results

The SVD Architecture for Pose Initialization

Solve the pose initialization problem

→ General architecture

→ Enhance current State-of-the-art

- Introduces WGE technique which allows to distinguish S/C from background and allows to determine a ROI
- Uses 2D/3D feature groups to solve feature correspondence problem

→ Weak Gradient Eliminator

Most of the gradient intensities are weak and corresponds to the feature in the background or on the spacecraft surface \to Treshold normalized gradient

Found by limiting CDFs of the vertical and horizontal gradient of WGE filtered image

- The knowledge of the ROI allows to tune Hough hyperparameters adaptively to obtain desired behavior
- Edges outside the ROI are rejected

- $\rightarrow\,$ Two streams of features are extracted using Hough transform:
 - WGE stream
 - S&H stream
- → Multiple truncated edges are merged into one line

→ Custom implementation

- ROI it's enlarged by adding the 5% of the mean edge length of the detected ROI to not penalize images presenting a black background
- Prior applying Hough transform to the Sobel image, to eliminate the pixel chunks belonging to smaller reflective elements from the output of Hough, all connected components (objects) that have fewer than P pixels from the input binary image are removed
- The edge merging procedure is applied to both streams

Perceptual Grouping

→ Allows to reduce the search space of the correspondence problem

2D perceptual groups are defined on the basis of some geometrical constraints

Carried out on a wireframe model too by applying 3D geometry definitions instead of 2D ones Result

Successful pose initialization

→ Obtained using P3P solver coupled with a RANSAC algorithm for outlier rejection instead of ePnP

Figures are showing the map superposed to the image and the 3D camera pose in map coordinates

Results

SPEED VS Implemented Tool

→ Speed

➤ Implemented Tool

Unfiltered Image

Image Histogram

Image Histogram

Sobel Image

Sobel Image

SPEED VS Implemented Tool

→ Speed

Unfiltered Image

→ Implemented Tool

Unfiltered Image

Image Histogram

Image Histogram

Sobel Image

Sobel Image

Failures

ROI Detection → Due to composite background

Implemented Tool SPEED

Tresholded Gradient

Tresholded Gradient

Rotational and translational errors

Translational Error

→ Mean error: 0.2506 m

Rotational Error

→ Mean error: 0.0528°

Errors WRT inter-spacecraft distance

Translational Error

→ Increases with distance

Rotational Error

→ No recognizable trend

Camera axis error

→ No preferred axis

Conclusions

POLITECNICO MILANO 1863

Francescodario Cuzzocrea

Image Generation Tool

- → Image toolbox is fully automated
- Controlled and uncontrolled behavior can be simulated as well as well as approach
- Generated images are compatible with data-sets claimed to be representative by the scientific community

SVD Algorithm

- → Successfully tested SVD algorithm
- → Results seems to be promising

Image Generation Tool

- \rightarrow Use better textures for the S/C and the Earth
- → Use a more rigorous method to set optical parameters
- → Improve noise model
- → Patch POV-Ray code to allow GPU cores usage for rendering

SVD Algorithm

- → Employ separated Hough transforms to detect different geometric shapes
- → Improve edge detection procedure (solar panels, distance are an issue)
- → Compare different pose solvers
- → Hardware-in-the-loop experiments to evaluate the computational time on real H/W.

Thanks for your attention!

If you have any question, feel free to ask!

Additional Material

Earth Modeling

→ Binary image Comparison

Light Modeling

- → The Sun can be modeled using POV-Ray area_light feature:
 - it create a cluster of point-like light sources distributed on a disc
 - the radius of the disc is set to the radius of the Sun, and placed at the exact distance which the Sun has from the Earth
 - the orient option makes every object see the Sun's disc as oriented toward it, from any position around it

3D Model of the Spacecraft

→ Based on the TANGO spacecraft from the PRISMA mission:

- 570 mm x 759 mm solar panel
- 560 mm × 550 mm × 300 mm body
- 4x 204 mm antennas

Reference Frames and Ground Truth Pose

- → POV-Ray by default works using a Left Handed Coordinate System
 - Flip it to use a Right Handed Coordinate System
 - Compute camera attitude by the knowledge of camera position and camera looking direction
 - Compute ground truth pose by knowledge of camera attitude and target attitude

Bounding issue

This system compartmentalizes all finite objects in a scene into invisible rectangular boxes that are arranged in a tree-like hierarchy. Before testing the objects within the bounding boxes the tree is descended and only those objects whose bounds are hit by a ray are tested.

Bounding on

Bounding off

Pose Problem

Pose estimation problem

2D/3D true perspective equations

$$r_{C} = \begin{bmatrix} x_{C} & y_{C} & z_{C} \end{bmatrix}^{T} = A_{TC} q_{B} + t_{C}$$

$$p = \begin{bmatrix} \frac{x_{C}}{z_{C}} f_{x} + C_{x}, & \frac{y_{C}}{z_{C}} f_{y} + C_{y} \end{bmatrix}$$

$$\rightarrow (A_{TC}, t_{C}) \blacktriangleleft$$

- ullet Highly non linear and can have ∞ solutions if undercostrained
- No a priori knowledge of the correspondence between qB and p
- Image has to be corrected for pixel's non-quadratism and lens distortion

ROI it's enlarged by adding the 5% of the mean edge length of the detected ROI to not penalize images having a black background from a too strict tresholding of the normalized gradient.

Detected ROI

Enlarged ROI

Failures

Edge Detection → Due to solar panels or distance

