RIBA

G. Stepanauskas

2011 08 13

Turinys

1	\mathbf{SK}	AIČIAI	3
	1.1	Natūralieji skaičiai	3
	1.2	Sveikieji skaičiai	
	1.3	Racionalieji skaičiai	
	1.4	Realieji skaičiai	
2	\mathbf{FU}	NKCIJA	3
	2.1	Funkcijos apibrėžimas. Jos grafikas. Įvairiai užduotos funkcijos.	3
	2.2	Atvirkštinė funkcija.	3
	2.3	Sudėtinė funkcija	3
	2.4	Funkcijų periodiškumas ir lygiškumas.	3
	2.5	Elementariosios funkcijos	3
3	AII	BĖS	3
4	SEI	KA	3
	4.1	Posekiai	3
	4.2	Montoninės sekos	3
5	SEI	KOS RIBA	3
	5.1	Sekų savybės	4
	5.2		9
	5.3		11
	5.4		12
6	FU:	NKCIJOS RIBA	13
	6.1		13

$\frac{T}{T}$	TURINYS TURIN		
7	FUNKCIJOS TOLYDUMAS 7.1	13 13	
8	TOLYDŽIŲJŲ FUNKCIJŲ SAVYBĖS 8.1	13 13	
9	GRAIKIŠKOS RAIDĖS	14	

1 SKAIČIAI

- 1.1 Natūralieji skaičiai
- 1.2 Sveikieji skaičiai
- 1.3 Racionalieji skaičiai
- 1.4 Realieji skaičiai

2 FUNKCIJA

- 2.1 Funkcijos apibrėžimas. Jos grafikas. Įvairiai užduotos funkcijos.
- 2.2 Atvirkštinė funkcija.
- 2.3 Sudėtinė funkcija.
- 2.4 Funkcijų periodiškumas ir lygiškumas.
- 2.5 Elementariosios funkcijos.
- 3 AIBĖS IR JŲ RĖŽIAI
- 4 SEKA
- 4.1 Posekiai
- 4.2 Montoninės sekos

5 SEKOS RIBA

1 apibrėžimas. Skaičius a vadinamas sekos x_n riba, jei kiekvienam teigiamam skaičiui ε egzistuoja (galima surasti) toks natūralusis skaičius N, kad visiems n > N teisinga nelygybė

$$|x_n - a| < \varepsilon$$
.

Ribų trumpiniai (žymėjimai): $\lim_{n\to\infty} x_n = a$ arba $x_n \xrightarrow{n\to\infty} a$, arba $x_n \to a$. Sekos ribos apibrėžimą galima užrašyti ir simboliais:

$$\lim_{n \to \infty} x_n = a \iff \forall \varepsilon > 0 \; \exists N : n > N \Rightarrow |x_n - a| < \varepsilon.$$

Sekos, turinčios (baigtines) ribas, vadinamos konverguojančiomis sekomis. Jeigu seka ribos neturi arba ta riba begalinė (begalinę ribą apibrėšime vėliau), tai seka vadinama diverguojančia.

5.1 Konverguojančių sekų savybės

1 teorema. Seka gali turėti ne daugiau kaip vieną ribą.

I rodymas. Tarkime, kad seka x_n turi dvi skirtingas ribas a ir b, $a \neq b$. Iš ribos apibrėžimo turime, kad

$$\forall \varepsilon > 0 \ \exists N_1 : n > N_1 \Rightarrow |x_n - a| < \varepsilon,$$

$$\forall \varepsilon > 0 \ \exists N_2 : n > N_2 \Rightarrow |x_n - b| < \varepsilon.$$

Kai $n > N = \max(N_1, N_2)$, abi parašytos nelygybės yra teisingos. Jos teisingos $\forall \varepsilon > 0$, taigi ir, kai $\varepsilon = \frac{|a-b|}{4}$. Bet, kai n > N,

$$4\varepsilon = |a - b| = |a - x_n + x_n - b| \le |a - x_n| + |x_n - b| < \varepsilon + \varepsilon = 2\varepsilon.$$

Gautas prieštaravimas, $4\varepsilon < 2\varepsilon$, paneigia prielaidą, kad seka gali turėti dvi skirtingas ribas. Teorema įrodyta.

2 teorema. Konverguojanti seka yra aprėžta.

Įrodymas. Iš konverguojančios sekos apibrėžimo išplaukia, kad

$$\forall \varepsilon > 0 \ \exists N : n > N \Rightarrow |x_n - a| < \varepsilon.$$

Iš paskutiniosios nelygybės turime, kad

$$a - \varepsilon < x_n < a + \varepsilon$$
,

kai n > N. Už intervalo $(a - \varepsilon, a + \varepsilon)$ ribų gali būti tik baigtinis skaičius sekos x_n narių, t.y. tik nariai x_1, x_2, \ldots, x_N . Galime paimti

$$m = \min(a - \varepsilon, x_1, \dots, x_N), \quad M = \max(a + \varepsilon, x_1, \dots, x_N).$$

Skaičiai m ir M ir bus sekos x_n apatinis ir viršutinis rėžiai. Seka x_n yra aprėžta:

$$\forall n \ m \leqslant x_n \leqslant M.$$

Teorema irodyta.

3 teorema. (Ribinis perėjimas nelygybėse.) Tegul $x_n \to a$, $y_n \to b$ ir $\forall n \ x_n \leqslant y_n$. Tuomet $a \geqslant b$.

Irodymas. Tarkime, priešingai, a < b. Iš ribos apibrėžimo turime, kad

$$\forall \varepsilon > 0 \ \exists N_1 : n > N_1 \Rightarrow |x_n - a| < \varepsilon,$$

$$\forall \varepsilon > 0 \ \exists N_2 : n > N_2 \Rightarrow |x_n - b| < \varepsilon.$$

Kai $n>N=\max(N_1,N_2)$, abi parašytos nelygybės yra teisingos. Jos teisingos $\forall \varepsilon>0$, taigi ir, kai $\varepsilon=\frac{b-a}{2}$. Bet, kai n>N, iš jų gauname, kad

$$x_n < a + \varepsilon = a + \frac{b-a}{2} = \frac{b+a}{2} = b - \frac{b-a}{2} = b - \varepsilon < y_n.$$

Gautas prieštaravimas, $x_n < y_n$, paneigia prielaidą, kad a < b. Taigi $a \ge b$. Teorema įrodyta.

4 teorema. (Veiksmai su ribomis.) Tegul $x_n \to a$, $y_n \to b$ (a ir b – baigtinės ribos). Tuomet

1.

$$(1) x_n + y_n \to a + b;$$

2.

$$(2) x_n \cdot y_n \to a \cdot b;$$

3.

(3)
$$\frac{x_n}{y_n} \to \frac{a}{b}, \ b \neq 0.$$

Įrodymas. Iš ribos apibrėžimo turime, kad

$$\forall \varepsilon > 0 \ \exists N_1 : n > N_1 \Rightarrow |x_n - a| < \varepsilon,$$

$$\forall \varepsilon > 0 \ \exists N_2 : n > N_2 \Rightarrow |y_n - b| < \varepsilon.$$

1. Kai $n>N=\max(N_1,N_2)$, abi parašytos nelygybės yra teisingos. Kadangi

$$|(x_n+y_n)-(a+b)|=|(x_n-a)+(y_n-b)|\leqslant |x_n-a|+|y_n-b|<\varepsilon+\varepsilon=2\varepsilon=\varepsilon_1,$$
 kai $n>N$, tai (1) lygybė teisinga.

Pastebėkime, jeigu griežtai laikytumės ribos apibrėžimo, tai paskutinės nelygybės dešiniojoje pusėje turėtume gauti ε , bet gautasis ε_1 nekeičia esmės. Nesunku suprasti, kad ir ε_1 gali būti bet koks teigiamas skaičius, kai ε yra bet koks teigiamas skaičius, t.y. kai ε perbėga visus teigiamus skaičius, tai ε_1 taip pat perbėga visus teigiamus skaičius. Kituose įrodymuose nekreipsime į tai dėmesio. Svarbu, kad panašių nelygybių dešiniosiose pusėse gautume pakankamai mažus dydžius, kai tik ε maži (tai galės būti šaknys, laipsniai, daugikliai, kuriuose yra ε , ir pan.).

2. Kaip ir anksčiau, iš ribos apibrėžimo turime, kad

(4)
$$|x_n y_n - ab| = |(x_n y_n - x_n b) + (x_n b - ab)|$$

 $\leq |x_n||y_n - b| + |b||x_n - a| \leq |x_n|\varepsilon + |b|\varepsilon,$

kai $n>N=\max(N_1,N_2)$. Kadangi konverguojanti seka yra aprėžta (žr. 2 teoremą), tai egzistuoja toks M, kad $|x_n|\leqslant M$ $\forall n$. Tęsdami (4) nelygybę gausime

$$|x_n y_n - ab| \le M\varepsilon + |b|\varepsilon = (M + |b|)\varepsilon.$$

Taigi (2) nelygybė teisinga.

3. Šioje dalyje pirmiausia parodysime, kad

$$(5) |y_n| \geqslant \frac{|b|}{2},$$

kai tik n pakankamai dideli, t.y. $n>N_3$. Iš ribos apibrėžimo turime, kad teigiamam skaičiui $\varepsilon=\frac{|b|}{2}$

$$\exists N_3 : n > N_3 \Rightarrow |y_n - b| < \varepsilon = \frac{|b|}{2}$$

arba

(6)
$$b - \frac{|b|}{2} < y_n < b + \frac{|b|}{2}.$$

Tegul b > 0. Tuomet iš kairiosios (6) nelygybės pusės gausime

$$|y_n| = y_n > b - \frac{|b|}{2} = \frac{|b|}{2}.$$

Tegul b < 0. Tuomet iš dešiniosios (6) nelygybės pusės gausime

$$y_n < b + \frac{|b|}{2} = b - \frac{b}{2} = \frac{b}{2}$$

arba

$$|y_n| = -y_n > -\frac{b}{2} = \frac{|b|}{2}$$
.

Taigi (5) nelygybė teisinga, kai tik $n > N_3$.

Dabar iš ribos apibrėžimo ir gautosios (5) nelygybės turėsime

$$|\frac{x_n}{y_n} - \frac{a}{b}| = \left| \frac{x_n b - ay_n}{by_n} \right| \leqslant \frac{2}{b^2} |x_n b - ay_n|$$

$$= \frac{2}{b^2} |(x_n b - ab) + (ab - ay_n)| \leqslant \frac{2}{b^2} (|x_n b - ab| + |ab - ay_n|)$$

$$= \frac{2}{b^2} (|b| |x_n - a| + |a| |b - y_n|) < \frac{2}{b^2} (|b| \varepsilon + |a| \varepsilon) = \frac{2}{b^2} (|b| + |a|) \varepsilon,$$

kai $n > N = \max(N_1, N_2, N_3)$. Taigi (3) nelygybė teisinga. Teorema įrodyta.

5 teorema. (Monotoninės sekos ribos egzistavimo požymis.) Jei seka yra monotoninė ir aprėžta, tai ji turi ribą.

Imul Indymas. Tegul seka yra nemažėjanti, $x_n \not I$. Kadangi ji yra aprėžta iš viršaus, tai ji turi tikslų viršutinį rėžį sup $x_n=a$, be to $x_n\leqslant a$. Įrodysime, kad a yra šios sekos riba.

Iš tikslaus viršutinio rėžio apibrėžimo išplaukia, kad

$$\forall \varepsilon > 0 \; \exists N : x_N > a - \varepsilon.$$

Kadangi seka nemažėjanti, tai

$$n > N \Rightarrow x_n \geqslant x_N > a - \varepsilon$$
.

Perrašę turėsime

$$\forall \varepsilon > 0 \ \exists N : n > N \Rightarrow |x_n - a| < \varepsilon.$$

Vadinasi $x_n \to a$. Teorema įrodyta.

6 teorema. (Tarpinės sekos ribos teorema.) Tegul $x_n \to a$, $y_n \to a$, ir $\forall n \ x_n \leqslant z_n \leqslant y_n$. Tuomet ir $z_n \to a$.

Įrodymas. Iš ribos apibrėžimo turime, kad

$$\forall \varepsilon > 0 \ \exists N_1 : n > N_1 \Rightarrow |x_n - a| < \varepsilon \Leftrightarrow a - \varepsilon < x_n < a + \varepsilon,$$

$$\forall \varepsilon > 0 \ \exists N_2 : n > N_2 \Rightarrow |y_n - a| < \varepsilon \Leftrightarrow a - \varepsilon < y_n < a + \varepsilon.$$

Kai $n > N = \max(N_1, N_2)$, abi parašytos nelygybės yra teisingos. Iš teoremos sąlygos ir šių nelygybių lengvai gausime

$$a - \varepsilon < x_n < z_n < y_n < a + \varepsilon$$
.

Taigi

$$|z_n - a| < \varepsilon$$
, kai $n > N$.

Tai reiškia. kad $z_n \to a$. Teorema įrodyta.

7 teorema. (Bolcano-Vejerštraso lema.) Kiekviena aprėžta seka turi konverguojantį posekį.

Irodymas. Kadangi seka x_n aprėžta, tai egzistuoja toks intervalas $[a_1,b_1]$, kad visi $x_n \in [a,b]$. Padalykime intervalą $[a_1,b_1]$ pusiau ir tą jo pusę, kurioje yra be galo daug sekos x_n narių, pažymėkime $[a_2,b_2]$. Toliau jau intervalą $[a_2,b_2]$ padalykime pusiau ir tą jo pusę, kurioje yra be galo daug sekos x_n narių, pažymėkime $[a_3,b_3]$. Taip toliau dalydami intervalus gausime mažėjančių intervalų seką:

$$[a_1,b_1]\supset [a_2,b_2]\supset\cdots\supset [a_k,b_k]\supset\ldots$$

Intervalo $[a_2,b_2]$ ilgis $b_2-a_2=\frac{b_1-a_1}{2}$. Intervalo $[a_3,b_3]$ ilgis $b_3-a_3=\frac{b_1-a_1}{2^2}$. Intervalo $[a_k,b_k]$ ilgis $b_k-a_k=\frac{b_1-a_1}{2^{k-1}}$.

Kairiųjų intervalų galų seka $a_1, a_2, \ldots, a_k, \ldots$ yra nemažėjanti ir aprėžta iš viršaus. Iš 5 teoremos išplaukia, kad ji turi ribą:

$$\lim_{k \to \infty} a_k = a.$$

Tokią pat ribą turi ir dešiniųjų intervalų galų seka $b_1, b_2, \ldots, b_k, \ldots$, nes

$$\lim_{k \to \infty} b_k = \lim_{k \to \infty} ((b_k - a_k) + a_k) = \lim_{k \to \infty} \frac{b_1 - a_1}{2^{k-1}} + \lim_{k \to \infty} a_k = 0 + a = a.$$

Dabar parinkime sekos x_n posekį tokiu būdu:

$$x_{n_1} \in [a_1, b_1],$$

 $x_{n_2} \in [a_2, b_2], \ n_2 > n_1,$
 \dots
 $x_{n_k} \in [a_k, b_k], \ n_k > n_{k-1},$
 \dots

5.2 Skaičius e 5 SEKOS RIBA

Taip parinkti galime, nes intervaluose $[a_k, b_k]$, k = 1, 2, ..., yra be galo daug sekos narių.

Kadangi

$$a_k \leqslant x_{n_k} \leqslant b_k$$

tai iš 6 teoremos išplaukia, kad posekis x_{n_k} yra konverguojantis, t.y. turi riba:

$$\lim_{k \to \infty} x_{n_k} = a.$$

Teorema įrodyta.

Nedaug ką pakeitus teoremos įrodyme galima būtų įrodyti tokią teoremą.

8 teorema. Kiekviena aprėžta seka turi monotoninį konverguojantį posekį.

5.2 Skaičius e

Imkime seką

$$(8) x_n = \left(1 + \frac{1}{n}\right)^n.$$

Įrodysime, kad ji turi ribą. Pasinaudosime monotoninės sekos ribos egzistavimo požymiu, 5 teorema. Parodysime, kad seka yra didėjanti ir aprėžta iš viršaus.

1. Pritaikę Niutono binomo formulę, gausime

$$(9) \quad x_{n} = \left(1 + \frac{1}{n}\right)^{n} = 1 + n\frac{1}{n} + \frac{n(n-1)}{2}\frac{1}{n^{2}} + \frac{n(n-1)(n-2)}{2 \cdot 3}\frac{1}{n^{3}} + \dots + \frac{n(n-1)\dots(n-(n-2))}{2 \cdot 3\dots(n-1)}\frac{1}{n^{n-1}} + \frac{n(n-1)\dots(n-(n-1))}{2 \cdot 3\dots n}\frac{1}{n^{n}}$$

$$= 2 + \frac{1}{2!}\left(1 - \frac{1}{n}\right) + \frac{1}{3!}\left(1 - \frac{1}{n}\right)\left(1 - \frac{2}{n}\right) + \dots + \frac{1}{(n-1)!}\left(1 - \frac{1}{n}\right)\left(1 - \frac{2}{n}\right)\dots\left(1 - \frac{n-2}{n}\right)$$

$$+ \frac{1}{n!}\left(1 - \frac{1}{n}\right)\left(1 - \frac{2}{n}\right)\dots\left(1 - \frac{n-1}{n}\right).$$

5.2 Skaičius e 5 SEKOS RIBA

Vietoje n įrašę n+1 gausime x_{n+1} :

$$(10) \quad x_{n+1} == 2 + \frac{1}{2!} \left(1 - \frac{1}{n+1} \right) + \frac{1}{3!} \left(1 - \frac{1}{n+1} \right) \left(1 - \frac{2}{n+1} \right) + \dots$$

$$+ \frac{1}{n!} \left(1 - \frac{1}{n+1} \right) \left(1 - \frac{2}{n+1} \right) \dots \left(1 - \frac{n-1}{n+1} \right)$$

$$+ \frac{1}{(n+1)!} \left(1 - \frac{1}{n+1} \right) \left(1 - \frac{2}{n+1} \right) \dots \left(1 - \frac{n}{n+1} \right).$$

Palyginkime x_n su x_{n+1} . Atitinkamų dėmenų daugikliai skliaustuose yra didesni pas x_{n+1} . Beto x_{n+1} turi vienu dėmeniu daugiau. Taigi $\forall n \ x_{n+1} > x_n$. Seka x_n yra didėjanti, $x_n \uparrow$.

2. Parodysime sekos x_n aprėžtumą. (9) formulėje išmeskime visus daugiklius, esančius skliaustuose. Jie yra mažesni už 1. Dėl to reiškinys tik padidės. Dar pasinaudokime nelygybe $k! \ge 2^{k-1}$. Taigi iš (9) formulės turėsime, kad

(11)
$$x_n < 2 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{(n-1)!} + \frac{1}{n!}$$

 $\leq 2 + \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^{n-2}} + \frac{1}{2^{n-1}}$
 $< 2 + \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^n} + \dots = 2 + \frac{\frac{1}{2}}{1 - \frac{1}{2}} = 3.$

Taip pat aišku (nes seka yra didėjanti), kad $x_n \geqslant x_1 = 2$. Taigi seka x_n yra aprėžta:

$$2 \leqslant x_n < 3.$$

3. Monotoninė ir aprėžta seka turi ribą (žr. 5 teoremą). Sekos $x_n = \left(1+\frac{1}{n}\right)^n$ riba vadinama skaičiumi e ir žymima taip pat e:

$$\lim_{n \to \infty} x_n = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e.$$

Apytikslė skaičiaus e reikšmė 5 ženklų po kablelio tikslumu yra tokia:

$$e \approx 2,71828.$$

Skaičius e yra vienas iš svarbesnių skaičių matematikoje ir fizikoje. Dažnai naudojami logaritmai pagrindu e. Jie vadinami natūraliaisiais logaritmais ir žymimi

$$\log_{\mathbf{e}} x = \log x = \ln x.$$

Rodiklinė funkcija, kurios pagrindas e, taip pat svarbi ir dažnai pasitaiko. Ji vadinama eksponentine funkcija ir žymima

$$e^x = \exp x$$
.

5.3 Sekos konvergavimo Koši kriterijus

2 apibrėžimas. Seka x_n vadinama Koši seka, jei

(12)
$$\forall \varepsilon > 0 \ \exists N : n > N, m > N \Rightarrow |x_n - x_m| < \varepsilon.$$

Koši sekos apibrėžimo (12) sąlygas galima pakeisti ekvivalenčiomis:

(13)
$$\forall \varepsilon > 0 \; \exists N : n > N, \forall p \in \mathbb{N} \Rightarrow |x_{n+p} - x_n| < \varepsilon.$$

9 teorema. Seka x_n konverguoja tada ir tik tada, kai ji yra Koši seka.

Irodymas. Būtinumas. Tarkime, kad $x_n \to a$. Tuomet

$$\forall \varepsilon > 0 \ \exists N : n > N \Rightarrow |x_n - a| < \varepsilon.$$

Aišku, jei m > N, tai $|x_m - a| < \varepsilon$. Iš parašytų pareinamybių turėsime, kad

(14)
$$\forall \varepsilon > 0 \ \exists N : n > N, m > N \Rightarrow |x_n - x_m| = |(x_n - a) + (a - x_m)|$$

 $\leq |x_n - a| + |x_n - a| < \varepsilon + \varepsilon = 2\varepsilon = \varepsilon_1.$

Taigi x_n yra Koši seka. Teoremos būtinumas įrodytas.

Pakankamumas. Tarkime, kad x_n yra Koši seka. 1. Pirmiausia įrodysime Koši sekos aprėžtumą. Iš Koši sekos apibrėžimo išplaukia, kad

$$|x_n - x_m| < \varepsilon,$$

kai tik n ir m > N. Paimkime m = N + 1. Tuomet

$$|x_n - x_{N+1}| < \varepsilon$$
, kai tik $n > N$.

Arba

$$x_{N+1} - \varepsilon < x_n < x_{N+1} + \varepsilon$$
, kai $n > N$.

Matome, kad už intervalo $(x_{N+1} - \varepsilon, x_{N+1} + \varepsilon)$ ribų gali papulti tik baigtinis skaičius sekos x_n narių, t.y. tik nariai x_1, x_2, \ldots, x_N . Paimkime

$$m = \min(x_{N+1} - \varepsilon, x_1, x_2, \dots, x_N), M = \max(x_{N+1} + \varepsilon, x_1, x_2, \dots, x_N).$$

Dabar jau aišku, kad $\forall n \ m \leqslant x_n \leqslant M$. Taigi Koši seka yra aprėžta.

2. Iš Koši sekos apibrėžimo išplaukia, kad

(15)
$$\forall \varepsilon > 0 \ \exists N_1 : n > N_1, m > N_1 \Rightarrow |x_n - x_m| < \varepsilon.$$

Kadangi pagal pirmąją įrodymo dalį seka yra aprėžta, tai ji turi konverguojantį posekį (žr. 7 teoremą) $x_{n_k} \to a$.

Iš ribos apibrėžimo išplaukia, kad

(16)
$$\forall \varepsilon > 0 \ \exists N_2 : k > N_2 \Rightarrow |x_{n_k} - a| < \varepsilon.$$

Paimkime $N = \max(N_1, N_2)$ ir įvertinkime $|x_k - a|$, kai k > N. Galime užrašyti

$$|x_k - a| = |(x_k - x_{n_k}) + (x_{n_k} - a)| \le |x_k - x_{n_k}| + |x_{n_k} - a|$$

Iš posekio apibrėžimo turėsime, kad indeksas n_k yra nemažesnis už $k, n_k \ge k$. Todėl, kai k > N, iš (15) pareinamybės gausime, kad

$$|x_k - x_{n_k}| < \varepsilon$$
.

Atsižvelgę dar ir į (16) pareinamybę, turėsime

$$|x_k - a| < \varepsilon + \varepsilon = 2\varepsilon = \varepsilon_1$$
, kai $k > N$.

Taigi seka x_n konverguoja. Teoremos pakankamumas įrodytas.

5.4 Begalinės ribos

3 apibrėžimas. Sakysime, kad sekos x_n riba yra begalybė (seka diverguoja į begalybę), jei

$$\forall E > 0 \; \exists N : n > N \Rightarrow |x_n| > E.$$

Trumpiniai (žymėjimai): $\lim_{n\to\infty} x_n = \infty$ arba $x_n \xrightarrow{n\to\infty} \infty$, arba $x_n\to\infty$.

4 apibrėžimas. Sakysime, kad sekos x_n riba yra plius begalybė (seka diverguoja į plius begalybė), jei

$$\forall E > 0 \; \exists N : n > N \Rightarrow x_n > E.$$

Trumpiniai (žymėjimai): $\lim_{n\to\infty} x_n = +\infty$ arba $x_n \xrightarrow{n\to\infty} +\infty$, arba $x_n\to+\infty$.

5 apibrėžimas. Sakysime, kad sekos x_n riba yra minus begalybė (seka diverguoja į minus begalybę), jei

$$\forall E > 0 \; \exists N : n > N \Rightarrow x_n < -E.$$

Trumpiniai (žymėjimai): $\lim_{n\to\infty} x_n = -\infty$ arba $x_n \xrightarrow{n\to\infty} -\infty$, arba $x_n \to -\infty$.

6 FUNKCIJOS RIBA

- 6.1 ...
- 7 FUNKCIJOS TOLYDUMAS
- 7.1 ...
- 8 TOLYDŽIŲJŲ FUNKCIJŲ SAVYBĖS
- 8.1 ...

9 GRAIKIŠKOS RAIDĖS

Nr.	Didžiosios raidės	Mažosios raidės	Tarimas
1		α	alfa
2		β	beta
3	Γ	$egin{pmatrix} \gamma \ \delta \end{bmatrix}$	gama
4	Δ	δ	delta
5		$arepsilon,\epsilon$	epsilion
6		ζ	dzeta
7		$\mid \hspace{0.5cm} \eta \hspace{0.5cm} \mid$	eta
8	Θ	θ, ϑ	teta
9		ι	jota
10		κ, \varkappa	kapa
11	Λ	λ	lambda
12		μ	miū
13		ν	niū
14	Ξ	ξ	ksy
15		О	0
16	П	π, ϖ	ру
17		$ ho, \varrho$	ro
18	Σ	σ, ς	sigma
19		au	tau
20	Υ	v	upsilion
21	Φ	φ,ϕ	fy
22		χ	chy
23	Ψ	ψ	psy
24	Ω	ω	omega