Lesson 9: Inference for One Mean; Sigma Known (Hypothesis Test)

Preparation

Solutions

Problem	Part	Solution				
1	-	Null hypothesis				
2	-	One Side				
				Truth about the por	oulation (Reality)	
				H _o True	H _o is False	
		Decision based on sample (Conclusion)	Fail to Reject H _o	Correct Decision	Type II Error	
			Reject H _o	Type I Error	Correct Decision	
3	-					
4	-	The level of significance is a number to determine if the P-value is small				
		enough to reject the null hypothesis. It is denoted with the Greek letter				
		alpha α . It is the p	probability of n	naking a Type I Er	ror.	
5	-	$z = \frac{\bar{x} - \mu}{\sigma / \sqrt{n}}$				
6	-	P-value is the probab	oility that you	will observe the san	mple test statistic	
		you did or one more	extreme assum	ning the null hypoth	nesis is true.	
7	-	We have sufficient ev	idence to conc	lude the alternative	hypothesis is true	
8	-	Answers may vary				
9	A	$H_o: \mu = 529$				
		$H_a: \mu > 529$				
9	В	A Type I error was o	committed.			
9	C	There was about a 1	in 100 or 1%	chance that there w	ould be a Type 1	
		Error.				
9	D	Increase the level of	significance.			
10	Design the study	The researcher collects data from the population of second home buyers.				
		It says that he randomly selects his sample from his own clients. His				
		research question is,	Is the average	age of the people b	uying a second	
		investment property	in my area dif	ferent than the nati	ional average?'	
10	Collect the data	(Answers may vary)	*		-	

		6 -					
	ınt	4 -					
	count	2 -					
		0 -					•
		2	20	30	40	50	60
					У		
nce-I	7.7	457	1.1				

10	Make Inference-I	
10	Make -Inference II	$H_o: \mu = 47 \text{ years old}$
		$H_a: \mu \neq 47$ years old
10	Make Inference- III	$\alpha = 0.05$
10	Make Inference-IV	$\frac{\bar{x} - \mu}{\sigma / \sqrt{n}}$; z=-0.207
10	Make Inference-V	P-value = 0.836

Solution

Problem

Part

Normal Probability Applet

10	Make Inference-VI	P-value is $>$ level of significance; $0.836 > 0.05$ so we fall to reject the null
		hypothesis
10	Make Inference-VII	We have insufficient evidence to conclude that the mean age of people
		buying a second home is different in this area, than that of the national
		average of 47.
10	Take Action	(Answers may vary) One could would suggest that the realtor keeps
		targeting that population of middle aged people as second home buyers.
		~ ~ · · · · · · · · · · · · · · · ·