ALLEVIATING LABEL SWITCHING WITH OPTIMAL TRANSPORT

{Pierre Monteiller 1 , Sebastian Claici 2,4 , Edward Chien 2,4 , Farzaneh Mirzazadeh 3,4 , Justin Solomon 2,4 and Mikhail Yurochkin 3,4 } 1 ENS Ulm, 2 MIT CSAIL, 3 IBM Research, 4 MIT-IBM Watson AI Lab

LABEL SWITCHING

Invariance of prior and likelihood under group action $\rightarrow K!$ symmetric regions in the posterior landscape

Example: Gaussian mixture

$$p(x|\Theta) = \sum_{k=1}^{K} \pi_k f(x; \mu_k, \Sigma_k)$$
$$= p(x|\sigma(\Theta))$$

- An algorithm to address the label switching problem.
- Theory relating Wasserstein barycenters to estimates of the symmetrized posterior statistics.
- A simple stochastic gradient descent algorithm.

Setting:

- Mixture of five Gaussians
- Mean 0 and Covariances rotated by angle $\theta \in \{-\pi/12, -\pi/24, 0, \pi/12, \pi/24\}$
- True covariances blue, SGD in green and pivot in red

Failure of fast Pivot method [3]

OPTIMAL TRANSPORT WITH GROUP ACTIONS BARYCENTER OF Ω ON QUOTIENT SPACE

p-Wasserstein distance on P(X): for (X, d) complete and separable metric space, μ and ν measures, and $\Pi(\mu,\nu)$ the set of probability measures on the product space with marginals μ and ν :

$$W_p^p(\mu, \nu) = \inf_{\pi \in \Pi(\mu, \nu)} \int_{X \times X} d(x, y)^p d\pi(x, y)$$

Set of measures invariant under group action: for G a finite group acting by isometries on X, and $P_2(X)$ finite second moments measures,

$$P_2(X)^G = \{ \mu \in P_2(X) \mid g_{\#}\mu = \mu, \forall g \in G \}$$

Relation between the space $P_2(X)^G$ and $P_2(X/G)$: [2]

Let p be the quotient map, $p_*: P_2(X) \to P_2(X/G)$ restricts to an isometric isomorphism between the set of $P_2(X)^G$ of G-invariant elements in $P_2(X)$ and $P_2(X/G)$.

WASSERSTEIN BARYCENTER

Generalization of Wasserstein barycenter: [1] Let $\Omega \in P_2(P_2(X))$

$$B(\mu) = \int_{P_2(X)} W_2^2(\mu, \nu) \, d\Omega(\nu) = \mathbb{E}_{\nu \sim \Omega} \left[W_2^2(\mu, \nu) \right]. \tag{1}$$

Theorem 1. $B(\mu)$ has at least one minimizer in $P_2(X)$ if $supp(\Omega)$ is tight.

Assumption on Ω : $\nu \sim \Omega$ has the following form: $\nu = \frac{1}{|G|} \sum_{g \in G} \delta_{g \cdot x}$ for some $x \in X$.

Barycenters under Group Action: Under this assumption, minimization of $B(\mu)$ is equivalent (with $\Omega_* := p_{*\#}\Omega$) to

$$\operatorname{arg\,min}_{\mu \in P_2(X/G)} \mathbb{E}_{\delta_x \sim \Omega_*} \left[W_2^2(\mu, \delta_x) \right].$$

Main Theoretical Result:

Theorem: Single Orbit Barycenters

There is a barycenter solution of (1) that can be written as

$$\mu = \frac{1}{|G|} \sum_{g \in G} \delta_{g \cdot z^*} \quad \text{for a point } z^* \in X/G.$$

Principled method for extracting point estimates: take a quotient, find a mean in X/G, and then pull the result back to X.

Input: sampler from Ω over a manifold \mathcal{M} **Output:** a barycenter of the form $\frac{1}{|G|} \sum_{g \in G} \delta_{g \cdot x}$ for some $x \in \mathcal{M}$, using Riemannian SGD (i.e. taking the log then the exponential) on (1).

Gradient descent on quotient space: for parameters $(p_1, \ldots, p_K) \in \mathcal{M}^K$, let's consider

$$\operatorname{Conf}_K(\mathcal{M}) := \mathcal{M}^K \setminus \{(p_1, \dots, p_K) \mid p_i = p_j \text{ for some } i \neq j\}$$

As $\Omega \in P(\operatorname{Conf}_K(M))$, we quotient $\operatorname{Conf}_K(\mathcal{M})$ by G, the obtained manifold $\mathrm{UConf}_K(M)$ has a structure inherited from the product metric,

$$d_{\text{UConf}_{K}(M)}([(p_{1},\ldots,p_{K})],[(q_{1},\ldots,q_{K})]) = \min_{\sigma \in S_{K}} d_{\mathcal{M}^{K}}((p_{1},\ldots,p_{K}),$$

$$(q_{\sigma(1)},\ldots,q_{\sigma(K)})).$$
(2)

At each iteration we draw q, compute σ , and apply a gradient step.

Setting: Mixture of 5 Gaussians over \mathbb{R}^5 with means $0.5e_i$ and covariances $0.4I_{5\times5}$. Results: Pivoting obtains a suboptimal solution quickly, but if a more accurate solution is desired, our algorithm performs better.

GRADIENT STEP FOR GAUSSIAN MIXTURES

- Means: $\mu^* = \mu^* \eta(\mu^* \mu)$
- Covariances: with a Cholesky decomposition $\Sigma_i = L_i L_i^{\mathsf{T}}$ for every component in the mixture,

$$\left(L_{i}^{*} = L_{i}^{*} - \eta(I - T^{\sum_{i}^{*}\sum_{i}})L_{i}^{*}\right) T^{\sum_{i}^{*}\sum_{i}} = \sum_{i}^{*-\frac{1}{2}} \left(\sum_{i}^{*\frac{1}{2}}\sum_{i}\sum_{i}^{*\frac{1}{2}}\right)^{\frac{1}{2}} \sum_{i}^{*-\frac{1}{2}}.$$

ALGORITHM

Input: Distribution Ω Output: Barycenter (p_1, \ldots, p_K) $(p_1,\ldots,p_K)\sim\Omega$ for $t=1,\ldots$ do Draw $(q_1, \ldots, q_K) \sim \Omega$ Compute σ in (2) $p_i \leftarrow \exp_{p_i} \left(-\frac{1}{t} D_{p_i} c(p_i, q_{\sigma(i)}) \right)$ end for end for

Multi-reference alignment: Reconstruction of a template signal $x \in \mathbb{R}^K$ given noisy and cyclically shifted samples $y \sim g \cdot x +$ $\mathcal{N}(0,\sigma^2I)$.

REFERENCES

- [1] Young-Heon Kim and Brendan Pass. Wasserstein barycenters over Riemannian manifolds. Advances in Mathematics, 307:640–683, February 2017.
- John Lott and Cédric Villani. Ricci curvature for metric measure spaces via optimal transport. Annals of Mathe matics, pages 903–991, 2009.
- [3] Panagiotis Papastamoulis. label.switching: An R package for dealing with the label switching problem in MCMC outputs. arXiv preprint arXiv:1503.02271,