Diffusion d'opinions dans les réseaux sociaux : l'évacuation d'une foule

Encadrement: Dominique LONGIN (IRIT)

HO Tuong Vinh (IFI)

Étudiante : DAO Thuy Hong

Hanoi, octobre 2016

Le plan

- 1. Analyse du sujet
- 2. État de l'art
- 3. Solution proposée
- 4. Outils

Analyse du sujet

Active Users Worldwide (2010 - 2015)

Figure 1 : la croissance des réseaux sociaux entre 2010 et 2015 (Source : http://www.blogdumoderateur.com)

Rôle des réseaux sociaux dans la vie

- De plus en plus important
- ✓ **Pourquoi?** Dans le réseau social, on peut
 - donner son point de vue
 - donner ses pensées
 - exprimer ses goûts
 - se connecter à d'autres personnes
 - etc
- ⇒ Donner son opinion

Attention: ici, opinion ne fait pas référence à l'attitude mentale mais à son expression

Facteurs qui influencent les opinions

- Les buts, les connaissances, parfois les normes sociales
- ✓ Influenceur = personnes qui influence l'opinion de quelqu'un sur un sujet donné
- ✓ Son entourage : on parle alors de «l'opinion d'une foule» => la psychologie de masse.
- L'opinion peut changer au fil du temps (car les buts, connaissances et normes sociales évoluent, mais aussi on se laisse influencer par les opinions des autres)

Domaine et but du sujet

- ✓ Domaine : intelligence artificielle (plus précisément : domaine de la diffusion d'opinion)
 - => étude et modélisation de phénomènes sociaux
- ✓ **But du sujet** : étude de la dynamique des opinions par influence des opinions des autres, application à l'évacuation d'une foule en situation de crise

Des modèles existants

- ✓ Modèle à seuil
- ✓ Modèle à seuil linéaire
- ✓ Modèle de DeGroot
- Modèle de confiance bornée

Modèle à seuil

- ✓ proposé par Schelling et Granovetter en 1978.
- ✓ L'opinion est de type oui ou non.
- ✓ Tout individu a un « seuil d'influence ».
- ✓ Un individu adopte une opinion à condition que le nombre d'individus dans son entourage ayant choisi cette opinion atteint ou dépasse ce seuil d'influence.

Modèle à seuil linéaire

- ✓ Graphe où chaque nœud est un individu.
- ✓ L'opinion est de type oui ou non.
- ✓ Un nœud **devient actif** si ce nœud adopte l'opinion des autres, et **reste inactif** sinon.
- Le poids $b_{v,w}$ est la force de la relation d'influence sur v de son voisin w $(\sum_w b_{v,w} \le 1)$.
- Chaque nœud v choisit un seuil $\theta_v \in [0, 1]$ v adopte devient actif si $\sum_w b_{v,w} \ge \theta_v$ où w est un voisin de v

Modèle de DeGroot

- ✓ Des opinions continues (+ de 2 valeurs possibles).
- V Comme le modèle de seuil linéaire, il y a aussi le concept de "poids" p_{ij} .
- $\checkmark F_i$ est la distribution de probabilité subjective de l'individu i.
- ✓ Une révision de ses probabilités subjectives à l'instant $t+1: F_{it} = \sum_{j=1}^k p_{ij} F_j$.

Modèle de la confiance bornée

- ✓ Proposé par Hegselmann & Krause
- ✓ Les opinions sont continues.
- ✓ Utilise le concept de « niveau de confiance ε_i » de l'agent i
- ✓ I(i,x(t)) est l'ensemble des agents dont l'opinion ne diffère qu'au plus de ε_i par rapport à l'opinion de i.
 - (=> agents ayant une opinion proche de celle de i)

Modèle de la confiance bornée

L'opinion x de l'agent i à l'instant t + 1 est :

$$x_i(t+1) = |I(i,x(t))|^{-1} \sum_{j \in I(i,x(t))} x_j(t)$$

- Où :
- $|I(i,x(t))|^{-1}$ est le niveau de l'influence attribué par i aux agents j qui l'influencent
- (plus il y a d'agents qui influencent i et plus ce niveau
 est faible)

Synthèse

- ✓ Il y a plusieurs modèles intéressants qui sont proposés.
- ✓ Tous ces modèles utilisent une notion de "seuil".
- ✓ Un individu va changer son opinion si le résultat de la fonction estimative atteint son seuil => dans ces modèles, la fonction estimative est importante.
 - Dans les deux premiers modèles, l'opinion est simple (décision binaire).

3. Solution proposée

Quelques définitions

- ✓ *A* l'ensemble de tous les agents considérés.
- ✓ T l'ensemble fini des indices temporels $(T = \{1, 2, ..., N\}).$
- $V_i(t)$ est l'ensemble des voisins de l'utilisateur i à l'instant t (définition récursive).
- $\bigcirc V_i(0) \subseteq A$ est un sous-ensemble d'agents tiré aléatoirement pour chaque agent i
- $\bigcirc V_i(t) = P_i(t-1) \cup Q_i(t-1)$ pour t > 0, où $P_i(t-1) \subseteq V_i(t-1)$ et $Q_i(t-1) \subseteq A \setminus V_i(t-1)$

Quelques définitions

- ✓ $I_i(t)$ = ensemble des **influenceurs** de l'utilisateur i à l'instant t.
- ✓ $I = \{I_i: 1 \le i \le |A|\}$ est l'ensemble de toutes les relations d'influence entre agents.
- ✓ **Hypothèse:** Dans ce qui suit, par soucis de simplification du modèle, on suppose que $I_i(t) = V_i(t)$ (les influenceurs sont tous les voisins)

Réseau d'influence

✓ Les relations dans *I(t)* créent un réseau d'influence à l'instant *t* représenté par un graphe partiel orienté irréflexif

$$G(t) = \langle N, B(t) \rangle$$

- *N* = {nœuds du graphe} (isomorphe à *A*)
- $-B(t) \subseteq \{p_{ij}(t) \in [0,1] : (i,j) \in N \times N\}$ est l'ensemble des arcs reliant les nœuds iet j avec une probabilité p_{ij}
- ATTENTION : des nœuds peuvent ne pas être reliés entre eux (le graphe n'est pas total)

Réseau d'influence

Les arcs traduisent une relation d'influence pondérée et $p_{ij}(t)$ se lit : l'agent i influence l'agent j à l'instant t avec une probabilité p.

Figure 1 : Un réseau d'influence simple

- $✓ o_i(t) ∈ [0, 1]$ est l'opinion de l'agent i à l'instant t.
- ✓ Deux types de facteurs influencent l'opinion d'un utilisateur : les facteurs internes, et les facteurs externes.

- Les facteurs internes sont relatifs aux croyances et aux buts, désirs, normes, etc. de l'agent considéré. Pour l'agent i, les facteurs internes sont donc représentés par $o_i(0)$.
- Les facteurs externes sont des facteurs d'influence de deux types : l'influence des agents en qui *i* a confiance d'une part, et l'influence de l'opinion de masse (tous les agents qui l'influencent).

On appelle $x_i(t)$ l'opinion de i issue de l'influence des voisins en qui il a confiance. Alors dans ce cas :

$$x_{i}(t+1) = \frac{\sum_{j \in I_{i}(t)} p_{ji}(t) o_{j}(t)}{\sum_{j \in I_{i}(t)} p_{ji}(t)}$$

✓ Pour l'influence de l'opinion de masse, dans le graphe *G*, pour un nœud *i*, c'est tous les nœuds qui sont directement liés à *i*. Soit, formellement :

$$y_i(t+1) = \frac{\sum_{j \in I_i(t)} o_j(t)}{|I_i(t)|}$$

Mécanisme d'agrégation des opinions

On considère les deux distances suivantes :

$$\Delta_{x_i}(t+1) = |o_i(0) - x_i(t+1)|$$

$$\Delta_{y_i}(t+1) = |o_i(0) - y_i(t+1)|$$

✓ SI $\Delta_{x_i}(t+1) \le \Delta_{y_i}(t+1) =>$ l'opinion des influenceurs en qui i a confiance est plus proche des opinions initiales de l'agent i, que ce que l'est l'opinion de la foule des influenceurs $\Rightarrow o_i(t+1) = x_i(t+1)$ ✓ SINON : $o_i(t+1) = y_i(t+1)$

JAVA

GAMA

- ✓ Un environnement pour le développement de modèles de simulations à base d'agents
- ✓ Particulièrement adapté pour des problèmes mettant en jeu des configurations spatiale, telle l'évacuation des personnes depuis un lieu de catastrophe

Référence

- [1] T. Schelling. Micromotives and macrobehavior. Norton, 1978.
- [2] M.Granovetter. Threshold models of collective behavior. American Journal of Sociology, 83(6):1420–1443, 1978.
- [3] D. Kempe, J. M. Kleinberg, and E. Tardos. Maximizing the spread of influence through a social network. In Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2003.
- [4] D. Kempe, J. M. Kleinberg, and E. Tardos. Influential nodes in a diffusion model for social networks. In Proceedings of the 32nd International Colloquium on Automata, Languages and Programming (ICALP-2005), 2005.
- [5] M. H. de Groot. Reaching a consensus. Journal of the American Statistical Association, 69(345):118–121, 1974.
- [6] R. Hegselmann and U. Krause. Opinion dynamics and bounded confidence models, analysis, and simulations. Journal of Artificial Societies and Social Simulation, 5(3), 2002.
- [7] S. Chatterjee and E. Seneta. Toward consensus: some convergence theorems on repeated averaging. Journal of Applied Probability, 14:89–97, 1977.
- [8] G. Deffuant, F. Amblard, G. Weisbuch, and T. Faure. How can extremism prevail? a study based on the relative agreement interaction model. Journal of Artificial Societies and Social Simulation, 4, 2002.

Merci pour votre attention

