Compito di Laboratorio di Fisica I 1 Dicembre 2015

(1.5) 1. Per misurare l'accelerazione di gravità g si studia la caduta libera di una sferetta; nell'ipotesi di poter trascurare gli effetti di attrito dell'aria, e facendo cadere la sferetta da ferma, il moto del suo centro di massa è uniformemente accelerato. L'equazione che descrive la variazione di quota del centro di massa della sferetta (indicata con y) in funzione del tempo t impiegato è:

$$y = \frac{1}{2}gt^2$$

Il tempo di caduta *t* viene misurato con un sistema elettronico (fotocellula), con un errore di sensibilità di 10 *ms*. La variazione di quota *y* viene invece misurata con una riga graduata, con errore di sensibilità di 1 *mm*.

Supponendo di avere a disposizione un tratto y \sim 45 cm, con che errore relativo ci si aspetta di poter misurare g?

(3.0) 2. Due grandezze fisiche y e x sono legate tra di loro dalla relazione: $y = A + B \cdot x$

I risultati di alcune misure delle grandezze y e x sono i seguenti (l'incertezza relativa sulla misura di x è $1 \cdot 10^{-5}$):

x (mm)	89	75	67	39	31	12
y (g)	36	86	$9 \cdot 10^{1}$	191	221	266
Δy (g)	12	16	$3 \cdot 10^{1}$	12	19	10

Determinare graficamente A e B, dando anche una stima della loro incertezza.

(0.5) 3. Riportare in maniera corretta, nella forma $z \pm \Delta z$, i risultati e i corrispondenti errori delle seguenti misure della grandezza fisica z (Δz indica l'incertezza di misura), indicando anche il numero di cifre significative:

Z	$127856 \cdot 10^{-2}$	$79309 \cdot 10^{1}$	640.459	0.0037902
Δz	2.198	$3398 \cdot 10^{2}$	$7.761 \cdot 10^{-3}$	$27.12 \cdot 10^{-5}$

4. Calcolare i valori delle seguenti funzioni, nei punti indicati, con una approssimazione relativa di 10^{-2} :

$$\frac{2}{2+x} \text{ in } x = 3.0 \cdot 10^{-2} \qquad e^{\sqrt[3]{x}} \text{ in } x = 8 \cdot 10^{-6}$$

(0.5) 5. Lo spessore *S* di una lastra di alluminio viene misurato più volte con un compasso di Palmer, che ha errore di sensibilità di 0.01 *mm*. I risultati ottenuti, espressi in *mm*, sono i seguenti:

In seguito si è misurato l'offset dello strumento, ottenendo i seguenti valori (espressi in mm):

Si determini la migliore stima del valore vero e dell'incertezza di misura dello spessore S.

(1.0) 6. Si consideri la relazione

$$w = \frac{1}{8} \frac{1}{F^2} \frac{v h^2 \cos^2(\alpha)}{v T^3},$$

dove w è una velocità, h una lunghezza, v una frequenza, F una forza, α un angolo e T un tempo.

Si determinino le dimensioni fisiche della grandezza γ , le sue unità di misura nel S.I. e nel C.G.S., ed il fattore di conversione tra di loro (S.I. \rightarrow C.G.S.).

(2.0) 7. Il tempo di caduta di un grave viene misurato più volte con un cronometro elettronico, che ha un errore di sensibilità di 10 ms, ottenendo le seguenti misure (espresse in s, e già ordinate in ordine crescente).

1.11	1.11	1.11	1.12	1.12	1.12	1.12	1.12	1.13	1.13
1.13	1.13	1.13	1.13	1.13	1.13	1.13	1.13	1.13	1.13
1.13	1.13	1.13	1.13	1.13	1.13	1.13	1.13	1.13	1.14
1.14	1.14	1.14	1.14	1.14	1.15	1.16		•	

- a. Si disegni su carta millimetrata l'istogramma ad intervalli della distribuzione delle misure, riportando sull'asse delle ordinate il numero di misure nell'intervallo n_k;
- b. Si determini la miglior stima del valore centrale e del parametro di larghezza della distribuzione di Gauss che meglio approssima i dati sperimentali.