

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»
КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»
Лабораторная работа № <u>10</u>
По дисциплине «Функциональное и логическое программирование»
Студент: Тимонин А. С.
Группа _ИУ7-626
1 pynna <u>113 7-020 </u>

Преподаватель Толпинская Н. Б.

Практическая часть

Ответить на вопросы (коротко):

- 1. Как организуется хвостовая рекурсия в Prolog?
- 2. Какое первое состояние резольвенты?
- 3. Каким способом можно разделить список на части, какие, требования к частям?
- 4. Как выделить за один шаг первые два подряд идущих элемента списка? Как выделить 1-й и 3-й элемент за один шаг?
- 5. Как формируется новое состояние резольвенты?
- 6. Когда останавливается работа системы? Как это определяется на формальном уровне?

Используя хвостовую рекурсию, разработать, <u>комментируя аргументы</u>, эффективную программу, позволяющую:

- 1. Сформировать список из элементов числового списка, больших заданного значения;
- 2. Сформировать список из элементов, стоящих на нечетных позициях исходного списка (нумерация от 0);
- 3. Удалить заданный элемент из списка (один или все вхождения);
- 4. Преобразовать список в множество (можно использовать ранее разработанные процедуры).

Убедиться в правильности результатов

Для одного из вариантов **ВОПРОСА** и **1-ого задания составить таблицу**, отражающую конкретный порядок работы системы:

Т.к. резольвента хранится в виде стека, то состояние резольвенты требуется отображать в столбик: вершина — сверху! Новый шаг надо начинать с нового состояния резольвенты! Для каждого запуска алгоритма унификации, требуется указать № выбранного правила и соответствующий вывод: успех или нет —и почему.

Формирование ответа

Таблица 1.

№ шага	Состояние резольвенты, и вывод: дальнейшие действия (почему?)	Для каких термов запускается алгоритм унификации: T1=T2 и каков результат	Дальнейш ие действия: прямой ход или откат
1			Прямой
2			ход
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			

Теоретическая часть

Как организуется хвостовая рекурсия в Prolog?

Хвостовая рекурсия в Пролог организуется при помощи правила, которое обращается к тому же правилу.

Какое первое состояние резольвенты?

Простой вопрос

Каким способом можно разделить список на части, какие, требования к частям?

Prolog существует более общий способ доступа к элементам списка. Для этого используется метод разбиения списка на начало и остаток. Начало списка — это группа первых элементов, не менее одного. Остаток списка — обязательно список (может быть пустой). Для разделения списка на начало, и остаток используется вертикальная черта (|) за последним элементом начала.

Как выделить за один шаг первые два подряд идущих элемента списка? Как выделить 1-й и 3-й элемент за один шаг?

Как формируется новое состояние резольвенты?

При возврате отменяется последняя уже выполненная редукция (восстанавливается предыдущее состояние резольвенты) и система выполняет ре- конкретизацию переменных, которые были конкретизированы на предыдущем шаге.

Когда останавливается работа системы? Как это определяется на формальном уровне?

Работа интерпретатора завершается либо когда список инструкций опустеет, либо когда произойдет какая-либо ошибка во время выполнения инструкции.