Logic - Problem Sheet 3

Dom Hutchinson

February 29, 2020

Question 1 b) - Show that the following is *not* the case for all languages \mathcal{L} and \mathcal{L} -formulae ϕ, ψ .

$$\forall y \exists x \phi \vDash \exists x \forall y \psi$$

Answer 1 b)

Consider the scenario where $\phi := x \equiv y$ and $\psi := x \equiv y$ and are restricted to the natural numbers.

 $\forall y \exists x \phi$ is satisfied for all $y \in \mathbb{N}$ since x = y is a valid assignment.

However, there does not exist a natural number which is equivalent to all natural numbers.

Thus, $\exists x \forall y \psi$ does not hold for any x.

Thus $\forall y \exists x \phi \vDash \exists x \forall y \psi$ does not hold for all languages \mathcal{L} and \mathcal{L} -formulae ϕ, ψ .

Question 2 b) - Show that the following is *not* the case for all languages \mathcal{L} and \mathcal{L} -formulae ϕ, ψ .

 $\exists x(\phi \land \psi)$ is logically equivalent to $\exists x\phi \land \exists x\psi$.

Answer 2 b)

Consider the case where $\phi := x \equiv 1$ and $\psi := x \equiv 2$.

There is no x which satisfies $\phi \wedge \psi$.

However $\exists x \phi \land \exists x \psi$ holds trivally.

Thus $\exists x(\phi \land \psi) \not\vDash \exists x\phi \land \exists x\psi$. Further, these two are not logically equivalent for all languages \mathcal{L} and \mathcal{L} -formulae, ϕ, ψ .

Question - 5.

Let $\{P, f, c\} \subset \mathcal{L}$ where P is a binary predicate symbol, f is a binary function symbol and c is a constant symbol. Perform the following substitutions.

NOTE

$$[\exists x P(x)] \frac{t}{x} \qquad \qquad [P \lor Q] \frac{t}{x} \qquad \Leftrightarrow [\neg (\forall x \neg P(x)] \frac{t}{x} \qquad \Leftrightarrow [\neg P \rightarrow Q] \frac{t}$$

Question 5 a) - $\left[\exists z \left(P(x,z) \lor P(y,x)\right)\right] \frac{f(x,c)}{y}$

Answer 5 a)

$$\left[\exists z \left(P(x,z) \lor P(y,x) \right) \right] \frac{f(x,c)}{y}$$

$$\iff \exists z \left[P(x,z) \lor P(y,x) \right] \frac{f(x,c)}{y}$$

$$\iff \exists z \left[P(x,z) \right] \frac{f(x,c)}{y} \lor \left[P(y,x) \right] \frac{f(x,c)}{y}$$

$$\iff \exists z \left(P(x,z) \lor P(f(x,c),x) \right)$$

Question 5 b) - $\left[\exists y \left(\neg P(x,y) \rightarrow \exists y \left(P(z,y) \land \exists z (P(x,z) \land P(y,x)) \right) \right) \right] \frac{f(z,c)}{x}$

Answer 5 b)

$$\left[\exists y \left(\neg P(x,y) \to \exists y \left(P(z,y) \land \exists z (P(x,z) \land P(y,x)) \right) \right) \right] \frac{f(z,c)}{x}$$

$$\iff \exists y \left[\left(\neg P(x,y) \right) \to \exists y \left(P(z,y) \land \exists z (P(x,z) \land P(y,x)) \right) \right] \frac{f(z,c)}{x}$$

$$\iff \exists y \left[\left(\neg P(x,y) \right) \right] \frac{f(z,c)}{x} \to \left[\exists y \left(P(z,y) \land \exists z (P(x,z) \land P(y,x)) \right) \right] \frac{f(z,c)}{x}$$

$$\iff \exists y \left(\neg [P(x,y)] \frac{f(z,c)}{x} \right) \to \exists y \left[P(z,y) \land \exists z (P(x,z) \land P(y,x)) \right] \frac{f(z,c)}{x}$$

$$\iff \exists y \left(\neg [P(x,y)] \frac{f(z,c)}{x} \right) \to \exists y \left([P(z,y)] \frac{f(z,c)}{x} \land \left[\exists z (P(x,z) \land P(y,x)) \right] \frac{f(z,c)}{x} \right)$$

$$\iff \exists y \left(\neg [P(x,y)] \frac{f(z,c)}{x} \right) \to \exists y \left([P(z,y)] \frac{f(z,c)}{x} \land \exists z \left[P(x,z) \land P(y,x) \right] \frac{f(z,c)}{x} \right)$$

$$\iff \exists y \left(\neg [P(x,y)] \frac{f(z,c)}{x} \right) \to \exists y \left([P(z,y)] \frac{f(z,c)}{x} \land \exists z \left[P(x,z) \right] \frac{f(z,c)}{x} \land \left[P(y,x) \right] \frac{f(z,c)}{x} \right)$$

$$\iff \exists y \left(\neg [P(x,y)] \frac{f(z,c)}{x} \right) \to \exists y \left([P(z,y)] \frac{f(z,c)}{x} \land \exists z \left[P(x,z) \right] \frac{f(z,c)}{x} \land \left[P(y,x) \right] \frac{f(z,c)}{x} \right)$$

$$\iff \exists y \left(\neg [P(x,y)] \frac{f(z,c)}{x} \right) \to \exists y \left([P(z,y)] \frac{f(z,c)}{x} \land \exists z \left[P(x,z) \right] \frac{f(z,c)}{x} \land \left[P(y,x) \right] \frac{f(z,c)}{x} \right)$$

$$\iff \exists y \left(\neg [P(x,y)] \frac{f(z,c)}{x} \right) \to \exists y \left([P(z,y)] \frac{f(z,c)}{x} \land \exists z \left[P(x,z) \right] \frac{f(z,c)}{x} \land \left[P(y,x) \right] \frac{f(z,c)}{x} \right)$$

Question 5 c) - $\left[\forall x \left(P(x,y) \to \exists y \left(P(z,y) \land \exists z (P(x,z) \lor P(y,x)) \right) \right) \right] \frac{f(z,z)}{z}$

Answer 5 c)

Question - 6.

In the substitutions performed in 5 b) & 5 c) state whether or not the terms you substituted are substitutable for the variables in the formulae; provide a proof.

Answer 6

- 5b) By definition of substitutability we have $\mathtt{SubSt}(f(z,c),x,P(x,z))$ & $\mathtt{SubSt}(f(z,c),x,P(y,z))$. Thus $\mathtt{SubSt}(f(z,c),x,P(x,z)\vee P(y,z))$. However $z\in \mathrm{Var}(f(z,c))=\{z\}$ and $x\in \mathrm{FV}(\exists z(P(x,z)\vee P(y,x)))=\{x,y\}$. Thus we do <u>not</u> have that $\mathtt{SubSt}(f(z,c),x,\exists z(P(x,z)\vee P(y,z)))$. Thus f(z,c) is <u>not</u> substitutable for x in $\exists y(\neg P(x,y)\to \exists y(P(z,y)\wedge\exists z(P(x,z)\wedge P(y,x))))$.
- 5c) We have $\operatorname{SubSt}(f(z,z),z,P(x,z))$ & $\operatorname{SubSt}(f(z,z),z,P(y,x))$. Thus $\operatorname{SubSt}(f(z,z),z,P(x,z)\wedge P(y,x))$. Note that $z\not\in FV(\exists (P(x,z)\vee P(y,x)))=\{x,y\}$. Thus $\operatorname{SubSt}(f(z,z),z,\exists z(P(x,z)\wedge P(y,x)))$. We have $\operatorname{SubSt}(f(z,z),z,P(z,y))$ so $\operatorname{SubSt}(f(z,z),z,P(z,y)\wedge \exists z(P(x,z)\wedge P(y,x)))$. Note that $y\not\in\operatorname{Var}(f(z,z))=\{z\}$. Thus $\operatorname{SubSt}(f(z,z),z,\exists y(P(z,y)\wedge \exists z(P(x,z)\wedge P(y,x))))$.

```
Let \phi := \exists y \big( P(z,y) \land \exists z (P(x,z) \land P(y,x)) \big) noting \mathtt{SubSt}(f(z,z),z,\phi).

We have \mathtt{SubSt}(f(z,z),z,P(x,y)).

Thus \mathtt{SubSt}(f(z,z),z,P(x,y) \to \phi).

Note that x \not\in \mathtt{Var}(f(z,z)) = \{z\}.

Thus \mathtt{SubSt}(f(z,z),z, \forall x (P(x,y) \to \phi)).

Thus f(z,z) is substitutable for z in \forall x (P(x,y) \to \exists y (P(z,y) \land \exists z (P(x,z) \lor P(y,x)))).
```