Sciences

Application 1 - Corrigé

Application – Détermination de l'inertie équivalente de réducteurs

Savoirs et compétences :

- Mod2.C18.SF1: Déterminer l'énergie cinétique d'un solide, ou d'un ensemble de solides, dans son mouvement par rapport à un autre solide.
- Res1.C1.SF1 : Proposer une démarche permettant la détermination de la loi de mouvement.

Exercice 1 – Calcul de l'inertie équivalente d'un train simple

On donne un train d'engrenages simple avec Z_1 , Z_{21} , Z_{23} et Z_3 le nombre de dents des roues dentées. On nomme k_1 le rapport du train de S_1 et S_2 avec $k_1 = \frac{\omega(2/0)}{\omega(1/0)}$ et k_2 le rapport de S_2 et S_3 avec $k_2 = \frac{\omega(3/0)}{\omega(2/0)}$.

On applique en entrée, sur l'arbre 1, un couple moteur $C_m \overline{z_0}$ destiné à entraı̂ner une charge, sur l'arbre 3, modélisée par un couple résistant $C_r \overline{z_0}$

On rappelle que pour les engrenages à denture droite d=mz avec d le diamètre primitif, m le module, z le nombre de dents du pignon. $\omega(1/0)$, $\omega(2/0)$ et $\omega(3/0)$ sont les vitesses de rotation de S_1 , S_2 et S_3 autour des axes O_1 , O_2 , O_3 , O_4 , O_5 , O_5 , O_5 , O_6 , O_7 , O_8

forme:
$$I_{O_i}(S_i) = \begin{pmatrix} A_i & 0 & 0 \\ 0 & B_i & 0 \\ 0 & 0 & C_i \end{pmatrix}_{O_i, R_i}$$
.

Le train d'engrenage est entrainé par un couple moteur C_m agissant sur la liaison pivot entre 1 et 0. Une charge résistante C_r s'exerce sur l'arbre 3.

Question 1 Déterminer le rapport de réduction du train d'engrenages.

Question 2 Déterminer l'inertie équivalente du réducteur ramené à l'axe moteur.

Question 3 Déterminer la relation entre le couple d'entrée et le couple de sortie du réducteur.

Exercice 2 - Calcul de l'inertie équivalente d'un train épicycloïdal

On considère le train épicycloïdal suivant à trois satellites. Chacune des pièces est axisymétrique. On donne leurs matrices d'inertie :

$$\overline{\overline{I_A}}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}_{\mathcal{R}_1} \quad \overline{\overline{I_B}}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}_{\mathcal{R}_2}$$

$$\overline{\overline{I_A}}(3) = \begin{pmatrix} A_3 & 0 & 0 \\ 0 & B_3 & 0 \\ 0 & 0 & C_3 \end{pmatrix}_{\mathcal{R}_3}$$

On applique en entrée, sur l'arbre 1, un couple moteur $C_m \overrightarrow{z_0}$ destiné à entraı̂ner une charge, sur l'arbre 3, modélisée par un couple résistant $C_r \overrightarrow{z_0}$

Question 4 Déterminer le rapport de réduction du train épicycloïdal.

Méthode 1. Écrire le rapport de réduction recherché.

- 2. Refaire le schéma en fixant le porte satellite et en libérant le bâti. Le porte satellite devient donc le bâti et le train peut être considéra comme un train simple.
- 3. Déterminer le rapport de réduction du train simple (les taux de rotation seront donc exprimés en fonction du porte-satellite) en fonction du nombre de dents des roues dentées.
- 4. Introduire les fréquences de rotation exprimées au point 1.
- 5. Exprimer le rapport de réduction cherché en fonction du nombre de dents des solides.

Question 5 Déterminer l'inertie équivalente du train épicycloïdal.

Question 6 Déterminer le couple moteur (à appliquer sur l'arbre 1) nécessaire à la mise en mouvement de la charge sur l'arbre de sortie 3 sur lequel est appliqué un couple résistant.

Méthode 1. On calcule T(1/0),

Calcul de l'énergie cinétique du planétaire : T(1/0)

Par définition, $2T(1/0) = {\mathcal{V}(1/0)} \otimes {\mathcal{C}(1/0)} A$ étant un point fixe dans **0**, on a :

$$\{\mathcal{V}(1/0)\} = \left\{ \begin{array}{c} \overrightarrow{\Omega(1/0)} = \omega(1/0)\overrightarrow{z_0} \\ \overrightarrow{V(A, 1/0)} = \overrightarrow{0} \end{array} \right\}_A$$

$$\{ \mathcal{C}(1/0) \} = \left\{ \begin{array}{l} M_1 \overrightarrow{V(G,1/0)} \\ \overrightarrow{\sigma(A \in 1/0)} = \overrightarrow{\overline{I}}(A,0) \overrightarrow{\Omega(1/0)} = C_1 \omega(1/0) \overrightarrow{z} \end{array} \right\}_A$$

On a donc:

$$T(1/0) = \frac{1}{2} C_1 \omega (1/0)^2$$

Correction Calcul de l'énergie cinétique du porte-satellite : T(3/0)

Par définition, $2T(2/0) = \{ \mathcal{V}(2/0) \} \otimes \{ \mathcal{C}(2/0) \}$; on a :

$$\{\mathcal{V}(3/0)\} = \left\{ \begin{array}{l} \overrightarrow{\Omega(3/0)} = \omega(3/0)\overrightarrow{z_0} \\ \overrightarrow{V(A,3/0)} = \overrightarrow{0} \end{array} \right\}_A$$

$$\{\mathscr{C}(3/0)\} = \left\{ \begin{array}{l} M_3 \overrightarrow{V(G,3/0)} \\ \overrightarrow{\sigma(A \in 3/0)} = \overrightarrow{\overline{I}}(A,3) \overrightarrow{\Omega(3/0)} = C_3 \omega(3/0) \overrightarrow{z} \end{array} \right\}_A$$

On a donc:

$$T(3/0) = \frac{1}{2}C_3\omega(3/0)^2 = \frac{1}{2}k^2C_3\omega(1/0)^2$$

Correction Calcul de l'énergie cinétique d'un seul satellite : T(2/0)

Par définition, $2T(2/0) = \{\mathcal{V}(2/0)\} \otimes \{\mathcal{C}(2/0)\}\$ et le centre d'inertie d'un porte satellite est au point B on a donc :

$$\{ \mathcal{V}(2/0) \} = \left\{ \begin{array}{l} \overline{\Omega(2/0)} = \omega(2/0) \overline{z_0} \\ \overline{V(B,2/0)} \end{array} \right\}_B$$

$$\{ \mathcal{C}(2/0) \} = \left\{ \begin{array}{l} \underline{M_2} \overline{V(G,2/0)} \\ \overline{\sigma(A \in 2/0)} = \overline{\overline{I}}(A,2) \overline{\Omega(2/0)} = C_2 \omega(2/0) \overline{z} \end{array} \right\}_A$$

$$\overline{V(B,2/0)} = \overline{V(B,2/3)} + \overline{V(B,3/0)} = \overline{0} + \overline{V(A,3/0)} + \overline{BA} \wedge \overline{\Omega(3/0)} = -R_3 \overline{x_3} \wedge \omega(3/0) \overline{z_0} = -R_3 \omega(3/0) \overline{y_3}.$$

Le vecteur \overrightarrow{AB} est porté par le porte satellite. Par ailleurs, les points A, B ainsi que les points de contact dans les engrenages sont toujours suivant la direction du porte satellite. Enfin, $R_3 = R_1 + R_2$.

D'où:

$$\{\mathscr{V}(2/0)\} = \left\{ \begin{array}{l} \overrightarrow{\Omega(2/0)} = \omega(2/0)\overrightarrow{z_0} \\ \overrightarrow{V(B,2/0)} = -R_3\omega(3/0)\overrightarrow{y_3} \end{array} \right\}_B$$
$$\{\mathscr{C}(2/0)\} = \left\{ \begin{array}{l} M_2\overrightarrow{V(G,2/0)} = -R_3\omega(3/0)\overrightarrow{y_3} \\ \overrightarrow{\sigma(A \in 2/0)} = C_2\omega(2/0)\overrightarrow{z} \end{array} \right\}$$

On a donc:

$$T(3/0) = \frac{1}{2}C_2\omega(2/0)^2 + \frac{1}{2}M_2R_3^2\omega(3/0)^2 = \frac{1}{2}C_2\frac{r_1^2}{4r_2^2}\omega(1/0)^2 + \frac{1}{2}M_2R_3^2k^2\omega(1/0)^2 = \frac{1}{2}C_2\mu^2\omega(1/0)^2 + \frac{1}{2}M_2R_3^2\omega(3/0)^2$$

Correction Calcul de l'énergie cinétique de l'ensemble E: T(E/0)

Sans oublier qu'il y a 3 satellites (...), on a donc :

$$T(E/0) = T(1/0) + T(2/0) + T(3/0)$$

$$T(E/0) = \frac{3}{2}C_2 \frac{r_1^2}{4r_2^2}\omega(1/0)^2 + \frac{3}{2}M_2R_3^2k^2\omega(1/0)^2 + \frac{1}{2}C_1\omega(1/0)^2 + \frac{1}{2}k^2C_3\omega(1/0)^2$$

D'où

$$T(E/0) = \frac{1}{2} \left(3C_2 \mu^2 + 3M_2 R_3^2 k^2 + C_1 + k^2 C_3 \right) \omega (1/0)^2$$

On note donc $J_{eq}=3\,C_2\mu^2+3M_2R_3^2\,k^2+C_1+k^2\,C_3$ l'inertie équivalente du train épicycloïdal.

Méthode

Correction Calcul des puissances externes

Calcul des puissances dues aux actions de contact

Puissance dissipée dans la liaison pivot entre 1 et $0: \mathcal{P}_{0\rightarrow 1}$:

On a: $\mathcal{P}_{0\to 1} = \{ \mathcal{V}(1/0) \} \otimes \{ \mathcal{T}(1\to 0) \}$

$$\{ \mathcal{V}(1/0) \} = \left\{ \begin{array}{l} \overline{\Omega(1/0)} = \omega(1/0) \overrightarrow{z_0} \\ \overline{V(A,1/0)} = \overrightarrow{0} \end{array} \right\}_A \quad \{ \mathcal{T}(1 \to 0) \} = \left\{ \begin{array}{l} \overline{R(1 \to 0)} \\ \overline{\mathcal{M}(A,1 \to 0)} = L_{01} \overrightarrow{x_0} + L_{01} \overrightarrow{y_0} \end{array} \right\}_A$$

On a donc : $\mathcal{P}_{0\to 1} = 0$.

- Puissance dissipée dans la liaison engrenage entre 2 et 0 : $\mathcal{P}_{0 \to 2} = 0$
- Puissance dissipée dans la liaison pivot entre 3 et 0 : $\mathcal{P}_{0\rightarrow 3} = 0$
- Puissance fournie à l'arbre 1 : $\mathcal{P}_{ext\to 1} = C_e \omega(1/0)$
- Puissance transmise par l'arbre 3 : $\mathcal{P}_{3\rightarrow \text{ext}} = C_s \omega(3/0) = k C_s \omega(1/0)$
- Calcul des puissances dues aux actions à distance
- Puissance due à la pesanteur sur la pièce 1
- Puissance due à la pesanteur sur la pièce 3
- Puissance due à la pesanteur sur la pièce 2
- Calcul des puissances internes
- Puissance dissipée dans la liaison engrenage entre 1 et 2 : $\mathcal{P}_{1\rightarrow 2}=0$ (RSG)
- Puissance dissipée dans la liaison pivot entre 2 et 3 : $\mathcal{P}_{3\to 2} = 0$ D'après le théorème de l'énergie puissance, on a :

$$\frac{\mathrm{d}T(E/0)}{\mathrm{d}t} = (C_e + kC_s)\omega(1/0) \Leftrightarrow J_{eq}\dot{\omega}(1/0) = (C_e + kC_s)$$

Application 3 - Corrigé

Chariot élévateur à bateaux

X - ENS - PSI - 2012

Savoirs et compétences :

- Mod2.C18.SF1 : Déterminer l'énergie cinétique d'un solide, ou d'un ensemble de solides, dans son mouvement par rapport à un autre solide.
- Res1.C1.SF1 : Proposer une démarche permettant la détermination de la loi de mouvement.

Présentation

Question 1 Déterminer l'accélération galiléenne du bateau en fonction de l'effort fourni par le vérin et des caractéristiques du système. Expliquer qualitativement comment cette valeur peut permettre de valider l'exigence 103.

Correction

Phase de déplacement

Question 2 Quand le chariot circule à vitesse constante, quelle est la valeur de l'angle $\varphi(t)$ qui permet d'assurer le maintien de l'horizontalité des fourches? Justifier.

Correction

Question 3 En appliquant le théorème de l'énergie-puissance et en admettant que l'angle α est petit, montrer $que \, \alpha(t) \, et \, p(t) \, sont \, li\'es \, par \, l\'equation \, diff\'erentielle \, suivante \, : \, J_{eq}\ddot{\alpha}(t) + \mu \dot{\alpha}(t) = \frac{Sp(t)}{k} + m_{S_2} g \, x_{G_{S_2}} \, . \, Exprimer \, J_{eq}$

Correction

On isole l'ensemble : {bateau; S; chaîne; T12; T4}. On applique le théorème de l'énergie cinétique à l'ensemble dans le référentiel terrestre supposé galiléen : $P_{\text{int}}(E) + \mathcal{P}\left(\overline{E} \to E/\mathcal{R}_g\right) = \frac{d}{dt}\left[\mathcal{E}_c\left(E/\mathcal{R}_g\right)\right]$

Relation cinématique:

- $\overrightarrow{V(G,S/T_3)} = V_B \overrightarrow{z}$ et $\overrightarrow{V(G,T_4/T_3)} = V_V \overrightarrow{z}$
- $\overrightarrow{V(G,S/T_3)} = \overrightarrow{V(G,S/T_{12})} + \overrightarrow{V(G,T_{12}/T_4)} + \overrightarrow{V(G,T_4/T_3)}$
 - $-\overrightarrow{V(G,S/T_{12})} = \overrightarrow{V(J,S/T_{12})} + \overrightarrow{GJ} \wedge \overrightarrow{\Omega(S/T_{12})} = R\overrightarrow{x} \wedge \omega(T_4/T_{12}) \overrightarrow{y} = R\omega(T_4/T_{12}) \overrightarrow{z}$
- $V_B = R\omega(T_4/T_{12}) + V_V$ $V(G, S/T_3) = V(G, S/T_{12}) + V(G, T_{12}/T_3)$
 - $-\overrightarrow{V(G,T_{12}/T_3)} = \overrightarrow{V(I,T_{12}/T_3)} + \overrightarrow{GI} \wedge \overrightarrow{\Omega(T_{12}/T_3)} = -R\overrightarrow{x} \wedge \omega(T_{12}/T_4)\overrightarrow{y} = R\omega(T_4/T_{12})\overrightarrow{z}$
 - $V_B = R\omega(T_4/T_{12}) + R\omega(T_4/T_{12}) = 2R\omega(T_4/T_{12})$
- $V_B = V_B/2 + V_V \iff V_B = 2V_V \text{ et } \omega(T_4/T_{12}) = -V_B/2R$.