

Marché e-commerce brésilien fractionné

Missions:

Segmentation utilisable par le marketing

Contrat de Maintenance

Extraits de 9 tables SQL

Clients

Ligne = une commande

Produits

Ligne = un produit commandé

Paiement

Ligne = un moyen de paiement utilisé

Avis

Ligne = un commentaire

Commandes

Ligne = une commande

96_096 clients

Construction jeu de données

Traitement des valeurs manquantes

O Note satisfaction client — → Moyenne

Nombre de produits

Montant commande

Coût moyen d'un produit

**Conserve les outliers

5 Features

Nombre de jours depuis la dernière commande

Fréquence

Nombre de commandes

Montant

Montant total des achats

Nombre moyen de produits par commande

Classification non supervisée = Clustering

3 algorithmes d'apprentissage:

Classification ascendante hiérarchique

KMeans

DBSCAN

Clustering Agglomératif

Méthode de Ward:

Agrège les clusters dont l'agrégation minimise l'augmentation de l'inertie intraclasse.

Choix du nombre de clusters

K-Means

Centre de gravité du cluster

K-Means

Limites

- Algorithme non-déterministe
- Minimum local

Solutions

- Relancer + choisir le résultat qui minimise l'inertie intra-classe
- K-Means ++

**par défaut dans sklearn

DBSCAN

Clusters = points atteignables par densité les uns depuis les autres

Epsilon voisinage

Choix des hyperparamètres

Nombre de voisins minimum :

2 * nombre de dimensions Distance moyenne de chaque observation à ses 6 voisins Epsilon voisinage: méthode du coude Distance moyenne aux 6 voisins

Observations

Algorithme le plus adapté

Evaluer la performance des modèles

- O Clusters vs connaissances du domaine : pairplot, boxplot, radarplot
- O Clusters équilibrés : diagramme circulaire
- Forme des clusters : coefficient de silhouette

Coefficient de silhouette

Évalue à quel point l'individu x appartient au "bon" cluster

Homogénéité : "x" proche des points du cluster auquel il appartient ?

$$a(x) = \frac{1}{|C_k| - 1} \sum_{u \in C_k, u \neq x} d(u, x)$$

Séparation: "x" loin des points des autres clusters?

$$b(x) = \min_{l \neq k} \frac{1}{|C_l|} \sum_{l \in C_l} d(u, x)$$

Coefficient de silhouette

Évalue à quel point l'individu x appartient au "bon" cluster

$$s(x) = \frac{1}{\max(a(x), b(x))}$$

Comparaison modèles

	Nombre de Clusters	Coefficient de Silhouette	Répartition
RFM	4	0.489	40% 54% 3% 3%
RFM + Produits	5	0.442	39% 53% 3% 2% 2%
RFM + Note	5	0.418	33% 44% 17% 3% 2%
RFM + Note + Produits	5	0.368	33% 44% 17% 3% 3%

one time shoppers

new customers

dissatisfied customers

loyal customers

spendthrifts

Nombre d'individus par cluster

Coefficients de silhouette

Indice de Rand ajusté

Évalue la concordance de deux partitions du jeu de données

$$ARI = \frac{RI - E(RI)}{\max(RI) - E(RI)}$$

Clustering aléatoire

Clustering correspond exactement à la partition initiale

*RI: indice de rand

Fréquence de mise à jour du modèle:

Evolution de l'indice de rand ajusté :

Evolution de l'indice de rand ajusté :

Evolution de l'indice de rand ajusté :

Conclusion:

- Algo d'apprentissage : KMeans
- Features : RFM + note moyenne
- Profils Clients: 5

Mise à jour : tous les 2 mois ou automatiser

Inertie:

Inertie interclasse = $1/n * \Sigma n_c d(G_c, G)^2$

Inertie intra-classe = $1/n * \Sigma \Sigma d(M_i, G_c)^2$

d : distance euclidienne

n : nombre d'individus dans le nuage

n_c: nombre d'individus dans la classe "c"

G : centre de gravité du nuage d'individus

 G_{\circ} : centre de gravité de la classe "c"

M: point correspondant à l'individu i

slidesgo