

Preparing images for deep learning

Normalization / Standardization / Feature Scaling

- Standardization (most widely used)
 - Works well for populations that are normally distributed
 - Output can be -ve (bad for methods that expect positive inputs, e.g. RBMs)

$$x'=rac{x-ar{x}}{\sigma}$$

- Rescaling (min-max normalization)
 - Very fast

$$x' = \frac{x - \min(x)}{\max(x) - \min(x)}$$

- Mean normalization

$$x' = \frac{x - \operatorname{average}(x)}{\max(x) - \min(x)}$$

- Rescaling by dividing by maximum (most common for images)
- Why data normalization or standardization?
 - In stochastic gradient descent, feature scaling can improve the convergence speed of the algorithm
 - In support vector machines, it can reduce the time to find support vectors

5.2.4 Data preprocessing

- We should load the data into memory to do the training
 - Here is what we have been doing:

	In future, we will have X but not $Input(X)$				Output (Y)		Fixed acidity	Volatile acidity	Citric acid	Residual sugar		Sulphates	Alcohol	Quality	
								7.4	0.70	0.00	1.90		0.6	9.4	5
			Residual	Sulphates	Alcohol	Quality		7.8	0.88	0.00	2.60		0.7	9.8	5
7.4	acidity 0.70	0.00	sugar 1.90	0.6	9.4	5		7.8	0.76	0.04	2.30		0.7	9.8	5
7.8	0.88	0.00	2.60	0.7	9.8	5		11.2	0.28	0.56	7.139	VΤ	0.6	9.8	6
7.8	0.76	0.04	2.30	0.7	9.8	5	Split for	7.4	0.70	0.00	$\mathbf{L}_{\mathbf{L}}\mathbf{g}_{\mathbf{L}}$	TF	0.6	9.4	5
11.2	0.28	0.56	1.90	0.6	9.8	6	training								
7.4	0.70	0.00	1.90	0.6	9.4	5	and	7.0	0.00		4.00				
							validation	7.9	0.60	0.06	1.60		0.5	9.4	5
7.9	0.60	0.06	1.60	0.5	9.4	5 -	\longrightarrow	7.3	0.65	0.00	1.20		0.5	10.0	7
7.3	0.65	0.00	1.20	0.5	10.0	7		7.8	0.58	0.02	2.00		0.6	9.5	7
7.8	0.58	0.02	200 1	ole dat	9.5	7					$\overline{X}\overline{\lambda}\lambda$	ТТ	0.8		5
7.5	0.50	U.36	6.10		10.5	5		7.5	0.50	0.36	7 (A.IA.7)		0.8	10.5	5
6.7	0.58	0.08	1.80	0.5	9.2	5		6.7	0.58	0.08	1.80		0.5	9.2	5

history = model.fit(XTRAIN, YTRAIN, validation data=(XVALIDATION, YVALIDATION), epochs=256)

 If we have Terabytes of data, can we load the entire dataset into XTRAIN and YTRAIN? Why?

RIA9THINK BRAHS

An ideal way of loading the data & training

- As the training starts:
 - 1. Read a picture file
 - 2. Decode the JPEG content to RGB grids of pixels
 - 3. Convert these into floating-point tensors
 - 4. Rescale the pixel values (between 0 and 255) to the [0, 1] interval
 - 5. Add it to the pool of training/validation dataset
- Keras has utilities to take care of these steps automatically
 - contains the class ImageDataGenerator which lets you quickly set up Python generators that can automatically turn image files on disk into batches of preprocessed tensors

Python generators

- Python has a 'yield' operator that you can use in place of 'return'
- A Python generator is an object that acts as an iterator
 - You can use it with the for ... in operator

```
1 def generator():
2     i = 0
3     while True:
4     i += 1
5     yield i
```

```
1 for x in generator():
2    print(x)
3    if x > 5:
4    break
```

5.7 Data generator for generating images

```
from keras.preprocessing.image import ImageDataGenerator
       train_datagen = ImageDataGenerator(rescale=1./255)
                                                                         Rescales all images by 1/255
        train_generator = train_datagen.flow_from_directory(
                 train_dir,
                 target_size=(150, 150) \triangleleft Resizes all images to 150 \times 150
  Target
                 batch_size=20,
directory
                 class_mode='binary')
                                                                                 Because you use
                                                                                 binary crossentropy
                                                                                 loss, you need binary
                                                                                 labels.
         history = model.fit generator(
               train generator,
               steps per epoch=100,
               epochs=10.
               validation data=validation generator,
               validation steps=50)
```

5.2.5 Data augmentation

- The approach of generating more training data from existing training samples
 - by augmenting the samples via a number of random transformations that yield believable-looking images
- The goal is: "at training time, the model will never see the exact same picture twice"
 - This helps expose the model to more aspects of the data and generalize better
- If we read images using ImageDataGenerator instance (in Keras)
 - a number of random transformations can be performed

```
datagen = ImageDataGenerator(
    rotation_range=40,
    width_shift_range=0.2,
    height_shift_range=0.2,
    shear_range=0.2,
    zoom_range=0.2,
    horizontal_flip=True,
    fill_mode='nearest')
```

Augmentation using ImageDataGenerator

• rotation_range

a value in degrees (0–180), a range within which to randomly rotate pictures

width_shift and height_shift

ranges (as a fraction of total width or height) within which to randomly translate pictures vertically or horizontally

shear_range

randomly applying shearing transformations.

zoom_range

randomly zooming inside pictures.

• horizontal flip

is for randomly flipping half the images horizontally—relevant when there are no assumptions of horizontal asymmetry (for example, real-world pictures)

• fill mode

the strategy used for filling in newly created pixels, which can appear after a rotation or a width/height shift

... (there are more)

```
datagen = ImageDataGenerator(
    rotation_range=40,
    width_shift_range=0.2,
    height_shift_range=0.2,
    shear_range=0.2,
    zoom_range=0.2,
    horizontal_flip=True,
    fill_mode='nearest')
```