ÉLEMENTS DE CORRECTION CONCOURS COMMUN POLYTECHNIQUE TSI 2013

Question 1

Les 3 principaux modes de fonctionnement sont :

- un mode « route »,
- un mode « chenille »,
- un mode « escalier ».

Question 2

Question 3

UPSTI Page 1 sur 13

Caractéristiques du capteur SHARP (référence GP2Y0A21YK0F)

Type de rayon émis	infrarouge
Tension d'alimentation recommandée	$4,5 V \le V_{CC} \le 5 V$
Temps maximum (T_m) entre deux mesures	(38,3+9,6) ms = 47,9 ms

Commentaire : les 5 ms n'affecte que la première mesure mais sont ensuite en temps masqué.

On en déduit la fréquence minimale $f_m = \frac{1}{T_m} = \frac{1}{47,9.10^{-3}} = 20,9 \ Hz$.

D'après la courbe de la figure 16, la tension maximale en sortie du capteur est d'environ 2,8 V.

Question 5

Commentaire : le terme « micro-processeur » est utilisé pour cette question alors que dans la suite du sujet on emploie le terme « microcontrôleur ».

Le signal de sortie est de nature analogique, il faut le convertir en grandeur numérique d'où la nécessité d'un convertisseur analogique/numérique. Le capteur pouvant être alimenté en $5\,V$, on peut directement le connecter sur une entrée analogique du micro-processeur.

Commentaire : toutefois, on n'exploitera pas le CNA au maximum de sa plage de 5V donc cela entraîne une perte de précision intrinsèque. Il aurait fallu une amplification pour exploiter la plage.

Question 6

1.

Distance (cm)	4	9	15	30	65
Tension en sortie du capteur v_0 (V)	1	2	2,8	2	1

On constate que la tension de sortie est la même pour deux valeurs différentes de distance.

- 2. Le domaine d'emploi du capteur est une distance comprise entre 20 cm et 150 cm.
- 3. Sur la plage de mesure du capteur, la tension de sortie varie entre 0,4V et 2,55V lorsque la distance diminue. Si la distance est inférieure à $20\,cm$, la tension de sortie est supérieure à 2,55V, il suffit de comparer la grandeur numérique N_{v_0} correspondant à la tension v_0 à la valeur numérique $N_{2,55}$ correspondant à 2,55V. Si $N_{v_0} > N_{2,55}$, la distance est inférieure à $20\,cm$.
- **4.** Le cahier des charges impose une détection d'obstacle dans l'intervalle 20 cm 60 cm, donc les capteurs conviennent.

Commentaire : en annexe A-3, il est mentionné une mesure de 10 cm.

Question 7

Notion « 8 entrées multiplexées »: le microprocesseur possède un convertisseur CNA dont l'entrée est reliée à un multiplexeur ayant une sortie et 8 entrées.

Notion « résolution 8 ou 10 bits » : cela signifie que la grandeur numérique de sortie du CNA peut être codée sur 8 ou 10 bits.

UPSTI Page 2 sur 13

Commentaire : la notation d'un nombre codé en hexadécimal est indiqué par la lettre h ajoutée à la fin du nombre dans le sujet (page 6/19) alors qu'on ajoute le caractère \$ au début du nombre sur l'annexe A-9.4 (tableau adressage page 13/16).

1. Calcul du quantum $q: q = \frac{(Vrh - Vrl)}{2^n}$ avec n le nombre de bits du codage.

$$q_{8bits} = \frac{5,12}{2^8} = 0,02 V$$
 $q_{10bits} = \frac{5,12}{2^{10}} = 0,005 V$.

2. Conversion analogique /numérique :

distance	Signal capteur	8 bits	10 bits
≈ 150 cm	0,4V	14	1400
≈ 30 cm	2 V	64	6400
≈ 20 cm	2,55 V	7 <i>F</i>	7 <i>F</i> 80

D'après le tableau donné en page 7/16, pour une tension d'entrée égale au quantum N=1.

Pour 8 bits,
$$N = E\left(\frac{2,55}{0,02}\right)$$
 $v_0 = 2,55 V \rightarrow N = 127 = (01111111)_2 = 7Fh$
Pour 10 bits, $N = E\left(\frac{2,55}{0,005}\right)$ $v_0 = 2,55 V \rightarrow N = 510 = \%0111111110$

Pour 10 bits,
$$N = E\left(\frac{2,55}{0,005}\right)$$
 $v_0 = 2,55 V \rightarrow N = 510 = \%01111111110$

On rajoute les 6 zéros à droite : %01111111110000000 = 7F80h

3. Calcul de la précision :

La variation moyenne de la tension de sortie est de $\Delta V_T = (2, 4-0, 4)V$ pour une variation de distance de $150 \, cm$ à $20 \, cm$, soit $\Delta L_T = 130 \, cm$. On cherche la variation de longueur pour laquelle on obtient une variation égale au quantum en sortie.

Pour 8 bits,
$$q = 0.02 V$$
 \Rightarrow $\Delta L = \frac{q.\Delta L_T}{\Delta V_T} = \frac{0.02 \times 130}{2}$ \Rightarrow $\Delta L = 1.3 cm$

Pour 10 bits,
$$q = 0,005 V$$
 \Rightarrow $\Delta L = \frac{q.\Delta L_T}{\Delta V_T} = \frac{0,005 \times 130}{2}$ \Rightarrow $\Delta L = 0,32 cm$

La précision attendue devant être inférieure à 1 cm, le codage sur 10 bits convient mais pas celui sur 8 bits.

Commentaire: si on prend la plage du CdC soit 20 cm à 60 cm, alors avec 8 bit on a $\Delta L = 0.53$ cm, ce qui est suffisant!

UPSTI Page 3 sur 13

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DJM	DSGN	SCAN	MULT		CC	СВ	CA
0	0	1	0	0	0	0	0
Justification des données à gauche	Résultat non signé	Exécute la séquence de conversion en continu	Acquisition uniquement sur le canal sélectionné			Canal d'entrée analogique sélectionné : voie 0	

La configuration actuelle permet de réaliser une mesure sur la voie 0 en continu.

Question 10

1. Les adresses d'accès aux registres du CAN sont :

	Adresse	Commentaires
Registre de contrôle 2 (ATDCTL2)	302h	
Registre de contrôle 3 (ATDCTL3)	303h	
Registre de contrôle 4 (ATDCTL4)	304h	
Registre de contrôle 5 (ATDCTL5)	305h	
Registre ATDDR0H	310h	Résultat de la conversion (octet de poids fort)
Registre ATDDR0L	311h	Résultat de la conversion (octet de poids fort)

2. On doit écrire %00100000 = 20h dans le registre ATDCTL5 6400h correspond à une distance de 30 cm.

```
1
        AvanceAvecDetectionObstacle (néant): néant;
2
        Variables : valeur_Courante : entier non signé ;
3
        valeur_Précédente : entier non signé ;
4
        DEBUT
5
               // initialisations des variables.
6
               valeur_Courante <- 0;
7
               valeur Précédente <-0;
8
               // configuration de ATDCTL5
9
               écrire Octet (305h, 20h);
10
               // mise en fonctionnement moteur mode Avance
               écrire_Octet(600h,01h);
11
12
               // lecture de la donnée du convertisseur
13
                valeur_Courante <- lire_2_Octets( 310h );</pre>
14
               //début de la détection
15
               Tant que ((valeur_Courante < 6400h) ET valeur_Courante > valeur_Précédente))
               faire
16
17
               Début
18
                       // affectation de la valeur précédente ;
19
                       valeur_Précédente <- valeur_Courante ;
20
                       //temporisation entre 2 lectures
                       temporisation(50ms);
21
22
                       // lecture de la donnée du convertisseur
23
                       valeur_Courante <- lire_2_Octets( 310h ) ;</pre>
24
               Fin (du tant que)
25
               // mise en fonctionnement moteur mode ARRET
26
               écrire_Octet(600h,00h);
27
        FIN (du programme)
```

UPSTI Page 4 sur 13

Ouestion 11

Le système est capable de détecter une marche avec la précision demandée et de commander le moteur.

Ouestion 12

- 1. Inventaire des actions mécaniques extérieures appliquées sur l'ensemble {fauteuil roulant + passager} :
 - action du sol sur la roue arrière au point $I: \{A_{0\to 9}\} = \begin{cases} N_I \cdot \overrightarrow{y_0} \\ \overrightarrow{0} \end{cases}_I$
 - action du sol sur la chenille au point $K: \{A_{0 \to c}\} = \begin{cases} N_K \cdot \overrightarrow{y_0} \\ \overrightarrow{0} \end{cases}_K$
 - action de la pesanteur sur le châssis au point $G: \{A_{pes \to 1}\} = \begin{cases} -m_C \cdot g \cdot \overrightarrow{y_0} \\ \overrightarrow{0} \end{cases}_G$
 - action de la pesanteur sur {siège + utilisateur} au point $U: \{A_{pes \to 7+u}\} = \begin{cases} -M_u \cdot g \cdot \overrightarrow{y_0} \\ \overrightarrow{0} \end{cases}_U$
- 2. Théorème du moment statique appliqué à l'ensemble {fauteuil roulant + passager} au point I en projection sur $\overrightarrow{z_0}$:

$$-(x_U-x_I)\cdot M_U\cdot g-(x_G-x_I)\cdot m_C\cdot g+(x_K-x_I)\cdot N_K=0$$

$$N_K = \frac{1}{x_K - x_I} \left[(x_U - x_I) \cdot M_U \cdot g + (x_G - x_I) \cdot m_C \cdot g \right]$$

Théorème du moment statique appliqué à l'ensemble {fauteuil roulant + passager} au point K en projection sur $\overrightarrow{z_0}$:

$$-(x_K - x_I) \cdot N_I + (x_K - x_U) \cdot M_U \cdot g + (x_K - x_G) \cdot m_C \cdot g = 0$$

$$N_I = \frac{1}{x_K - x_I} \left[(x_K - x_U) \cdot M_U \cdot g + (x_K - x_G) \cdot m_C \cdot g \right]$$

3. Applications numériques : cas extrême (c) : $N_K = 921,1 \ N$ $N_I = 1580,4 \ N$ cas extrême (e) : $N_K = 483,5 \ N$ $N_I = 2018,1 \ N$

Question 13

Commentaires:

- le sujet ne précise pas dans quel vérin sont exercées F_r et F_v (même si on peut le déduire de aVant et aRrière)
- passage de l'état (c) à la phase (d) : le vérin avant ne devrait-il pas continuer à être alimenté afin de terminer l'escamotage de la roue avant (pour compenser le poids propre du train avant) ?
- passage de l'état (e) à la phase (f) : le vérin arrière ne devrait-il pas continuer à être alimenté afin de terminer l'escamotage de la roue arrière (pour compenser le poids propre du train arrière) ?
- **1.** On suppose que F_r représente l'effort dans le vérin arrière et F_v l'effort dans le vérin avant. Evolution de F_v :
 - de 0 à 4,5 s : basculement du train avant : le vérin avant doit être alimenté ($F_{\nu} > 0$). L'effort du sol sur la roue avant N_J augmente et la cinématique évolue donc F_{ν} croît.
 - à 4,5 s : position limite (c) : le vérin avant cesse d'être alimenté ($F_v = 0$).

UPSTI Page 5 sur 13

Evolution de F_r :

- de 0 à 4,5 s : le basculement du train avant implique un déplacement du châssis (1) et donc du siège (7). Le vérin arrière doit être alimenté (F_r > 0) afin de maintenir l'horizontalité du siège (7).
 L'effort sur la roue arrière N_I diminue durant cette phase, ce qui justifie la diminution de F_r.
- de 4,5 s à 5 s : F_r suit l'évolution de N_I .
- à 5 s à 8,5 s: basculement du train arrière : le vérin arrière continue d'être alimenté (F_r > 0).
 L'effort du sol sur la roue arrière N_I augmente et la cinématique évolue donc F_r croît de manière importante.
- à 8,5 s : position limite (e) : le vérin arrière cesse d'être alimenté ($F_r = 0$).

Valeurs limites de F_r durant la phase d'escamotage du train arrière : $F_{rmin} = 1750 \ N$ et $F_{rmax} = 7750 \ N$

2. L'annexe A-9.1 indique une force de poussée nominale de 8000~N pour le vérin choisi. Le choix fait par le constructeur est donc validé (F_{max} < 8000~N).

Question 14

Commentaires: erreurs sur le DR6

- $L6_a$: rotule de centre E_I (au lieu de F_I)
- L6_b: linéaire annulaire de centre E_2 (au lieu de F_2) d'axe $(E_2, \vec{z_1})$ (au lieu de $(F_2, \vec{z_1})$)
- L7_b: pivot d'axe $(R_1, \overrightarrow{z_1})$ (au lieu de $(Q_1, \overrightarrow{z_1})$)
- L8_b: pivot d'axe $(R_2, \vec{z_1})$ (au lieu de $(Q_2, \vec{z_1})$)
- L4 : hélicoïdale d'axe $(D_2, \overrightarrow{x_7})$ (au lieu de $(D, \overrightarrow{x_7})$)
- 1. Identification des liaisons :

 $L1_a$: rotule de centre F_1

 $L1_b$: linéaire annulaire de centre F_2 d'axe $(F_2, \overline{z_1})$

L2: pivot d'axe $(D, \vec{z_1})$

L3: pivot d'axe $(D_1, \overrightarrow{x_7})$

L5: pivot d'axe $(P, \overrightarrow{z_1})$

2. Nombre cyclomatique : $\mu = L - P + 1 = 12 - 8 + 1 = 5$

Question 15

1. Degré de mobilité : m = 1

2. Degré d'hyperstaticité : $h = 6 \cdot \mu + m - I_c = 6 \cdot 5 + 1 - 22 = 9$: le mécanisme est hyperstatique de degré 9.

3. Le concepteur a fait le choix d'une structure hyperstatique car les efforts à transmettre sont importants, une structure hyperstatique étant plus rigide qu'une structure isostatique (mais également plus onéreuse).

Question 16

Autres solutions technologiques pour réaliser la liaison entre le levier et l'arbre :

- cannelures ou dentelures avec deux anneaux élastiques
- manchon de blocage / frette d'assemblage
- goupille radiale
- par pincement élastique.

UPSTI Page 6 sur 13

Question 19

- **1.** Les résistances (R93 et R94) servent à fixer l'état logique à 0 en entrée des circuits logiques lorsque les signaux de pilotage sont en haute impédance ("en l'air").
- 2. Table de vérité du pilotage moteur :

Incliner siège	Redresser siège	v_1	v_2
0	0	0	0
0	1	0	1
1	0	1	0
1	1	0	0
Z	Z	0	0

Équations logiques des sorties :

$$v_1 =$$
« Incliner siège »•« Redresser siège »

$$v_2$$
 = « Incliner siège »•« Redresser siège »

3. Cette structure réalise un verrouillage évitant ainsi d'avoir tout mouvement lorsque l'on désire obtenir l'inclinaison et le redressement du siège en même temps.

Question 20

Pont en H (hacheur 4 quadrants).

Question 21

Pour obtenir $u_{moteur} > 0$, il faut commander les interrupteurs K8 et K9.

Pour obtenir $u_{moteur} < 0$, il faut commander les interrupteurs K7 et K10.

UPSTI Page 8 sur 13

Les résistances R9, R10 et le transistor Q3 permettent de réaliser une fonction NON. De même pour les résistances R12, R13 et le transistor Q4.

T7 et T8: Transistor MOSFET à canal N

T9 et T10 : Transistor MOSFET à canal P

Les transistors T7 et T8 sont passants quand leur tension $v_{GS} > 0$ et bloqués quand $v_{GS} = 0$.

Les transistors T9 et T10 sont passants quand leur tension $v_{\rm GS}=0$ et bloqués quand $v_{\rm GS}>0$.

v_1	v_2	Signe tension moteur
1	0	$u_{moteur} > 0$
0	1	$u_{moteur} < 0$

Question 23

1. Chronogrammes de la tension aux bornes du moteur :

2. Calcul de $\langle u_{moteur} \rangle$:

En utilisant la méthode des aires : $U_{moy} = \frac{\alpha T V_{CC} - (1-\alpha) V_{CC}}{T}$ $U_{moy} = (2\alpha - 1) V_{CC}$

$$U_{moy} = (2\alpha - 1)V_{CC}$$

3. Allure de U_{mov} :

UPSTI Page 9 sur 13

Commande MLI (PWM). La fonction « distribuer » est capable d'obtenir une vitesse variable dans les deux sens du siège.

Question 25

Commentaire : erreur dans le sujet p15/19 : $\gamma = \alpha + \theta$ (au lieu de $\gamma = \alpha + \beta$).

$$\left\{ V_{10/0} \right\} = \sqrt{\left\{ \Omega(10/0) \quad \overline{V(U \in 10/0)} \right\}}$$

$$\left\{ V_{10/0} \right\} = \left\{ \frac{d\theta}{dt} \cdot \overrightarrow{z_0} - R_u \cdot \frac{d\theta}{dt} \cdot \overrightarrow{x_{10}} \right\}$$

$$\left\{ \left\{ V_{10/0} \right\} = \left\{ \frac{d\theta}{dt} \cdot \overrightarrow{z_0} - R_u \cdot \frac{d\theta}{dt} \cdot \overrightarrow{x_{10}} \right\} \right\} \left\{ \left\{ V_{10/0} \right\} = \left\{ \frac{r \cdot p_a}{2 \cdot \pi \cdot b} \cdot \omega_m \cdot \overrightarrow{z_0} - R_u \cdot \frac{r \cdot p_a}{2 \cdot \pi \cdot b} \cdot \omega_m \cdot \overrightarrow{x_{10}} \right\} \right\}$$

Question 26

Sachant que toutes les masses et inerties sont négligées devant M_u et J_u , l'énergie cinétique de

l'ensemble S s'écrit :
$$Ec(S/R_g) = \frac{1}{2} \cdot J_u \cdot \dot{\theta}^2 = \frac{1}{2} \cdot J_u \cdot \left(\frac{r \cdot p_a}{2 \cdot \pi \cdot b} \cdot \omega_m\right)^2$$
.

$$Ec(S/R_g) = \frac{1}{2} \cdot J_u \cdot \frac{r^2 \cdot p_a^2}{4 \cdot \pi^2 \cdot b^2} \cdot \omega_m^2 = \frac{1}{2} \cdot J_e \cdot \omega_m^2$$

Question 27

- **1.** Puissance développée par le moteur sur le système $S: P_m = c_m \cdot \omega_m$
- **2.** Puissance due au poids de l'ensemble $E = \{si\`ege + passager\}$:

$$P(pes \to E, 0) = \left(-M_u \cdot g \cdot \overrightarrow{y_0}\right) \bullet \overrightarrow{V(U \in 10/0)} = \left(-M_u \cdot g \cdot \overrightarrow{y_0}\right) \bullet \left(-R_u \cdot \dot{\theta} \cdot \overrightarrow{x_{10}}\right)$$

$$\text{Donc} : P(pes \to E, 0) = M_u \cdot g \cdot R_u \cdot \dot{\theta} \cdot \sin \gamma.$$

3. Puissance des efforts extérieurs au système *S* :

Les liaisons étant supposées parfaites, il n'y a pas de puissance développée aux liaisons en V et B.

Donc:
$$P(ext \to S, 0) = c_m \cdot \omega_m + M_u \cdot g \cdot R_u \cdot \dot{\theta} \cdot \sin \gamma$$
.

$$P(ext \to S, 0) = \left(c_m + M_u \cdot g \cdot R_u \cdot \frac{r \cdot p_a}{2 \cdot \pi \cdot b} \cdot \sin \gamma\right) \cdot \omega_m$$

Question 28

Théorème de l'énergie cinétique appliqué au système $S: \frac{dEc(S/R_g)}{dt} = P(ext \rightarrow S, 0) + P(int)$.

Or les liaisons sont supposées parfaites donc les puissances intérieures sont nulles.

D'où:
$$J_e \cdot \omega_m \cdot \dot{\omega}_m = \left(c_m + M_u \cdot g \cdot R_u \cdot \frac{r \cdot p_a}{2 \cdot \pi \cdot b} \cdot \sin \gamma\right) \cdot \omega_m$$
.

On obtient :
$$J_e \cdot \dot{\omega}_m = c_m + M_u \cdot g \cdot R_u \cdot \frac{r \cdot p_a}{2 \cdot \pi \cdot b} \cdot \sin \gamma$$
.

 γ est considéré petit donc $\sin \gamma \simeq \gamma$

$$J_e \cdot \dot{\omega}_m = c_m + M_u \cdot g \cdot R_u \cdot \frac{r \cdot p_a}{2 \cdot \pi \cdot b} \cdot \gamma$$

L'équation devient :
$$I_e \cdot \dot{\omega}_m = c_m + M_u \cdot g \cdot R_u \cdot \frac{r \cdot p_a}{2 \cdot \pi \cdot b} \cdot (\alpha + \theta).$$

UPSTI Page 10 sur 13

Les équations de départ sont :

$$S_1(p) = K_2.\Omega_m(p)$$

$$S_2(p) = K_1 \cdot [U(p) - S_1(p)]$$

$$S_3(p) = K_5.\Gamma(p)$$

$$\Omega_m(p) = G_3(p).[S_2(p) + S_3(p)]$$

$$\Gamma(p) = G_4(p).\Omega_m(p) + \alpha(p)$$

Détails des calculs :

$$S_{2}(p) = \frac{\Omega_{m}(p)}{G_{3}(p)} - S_{3}(p) = K_{1}.[U(p) - K_{2}.\Omega_{m}(p)]$$

$$\frac{\Omega_{m}(p)}{G_{3}(p)} + K_{1}.K_{2}.\Omega_{m}(p) = K_{1}.U(p) + S_{3}(p) = K_{1}.U(p) + K_{5}.\Gamma(p)$$

$$\Omega_m(p)(1+K_1.K_2.G_3(p))=K_1.G_3(p).U(p)+K_5.G_3(p).\Gamma(p)$$

$$\Omega_m(p) = \frac{\Gamma(p) - \alpha(p)}{G_4(p)}$$

$$\left(\frac{\Gamma(p) - \alpha(p)}{G_4(p)}\right) (1 + K_1.K_2.G_3(p)) = K_1.G_3(p).U(p) + K_5.G_3(p).\Gamma(p)$$

$$\Gamma(p) \left[\left(\frac{1 + K_1 \cdot K_2 \cdot G_3(p)}{G_4(p)} \right) - K_5 \cdot G_3(p) \right] = K_1 \cdot G_3(p) \cdot U(p) + \left(\frac{1 + K_1 \cdot K_2 \cdot G_3(p)}{G_4(p)} \right) \alpha(p)$$

$$\Gamma(p)\big[1+K_{1}.K_{2}.G_{3}(p)-K_{5}.G_{3}(p).G_{4}(p)\big]=K_{1}.G_{3}(p).G_{4}(p).U(p)+\big(1+K_{1}.K_{2}.G_{3}(p)\big)\alpha(p)$$

$$\left(\frac{\Gamma(p) - \alpha(p)}{G_4(p)}\right) (1 + K_1.K_2.G_3(p)) = K_1.G_3(p).U(p) + K_5.G_3(p).\Gamma(p)$$

$$\Gamma(p) \left[\left(\frac{1 + K_1 . K_2 . G_3(p)}{G_4(p)} \right) - K_5 . G_3(p) \right] = K_1 . G_3(p) . U(p) + \left(\frac{1 + K_1 . K_2 . G_3(p)}{G_4(p)} \right) \alpha(p)$$

$$\Gamma(p)\big[1+K_1.K_2.G_3(p)-K_5.G_3(p).G_4(p)\big]=K_1.G_3(p).G_4(p).U(p)+\big(1+K_1.K_2.G_3(p)\big)\alpha(p)$$

UPSTI Page 11 sur 13

$$\begin{split} \Gamma(p) = \frac{K_1.G_3(p).G_4(p).U(p) + \left[1 + K_1.K_2.G_3(p)\right].\alpha(p)}{1 + K_1.K_2.G_3(p) - K_5.G_3(p).G_4(p)} \\ \hline \\ T_1(p) = \frac{K_1.G_3(p).G_4(p)}{1 + K_1.K_2.G_3(p) - K_5.G_3(p).G_4(p)} \\ \hline \\ T_2(p) = \frac{\left(1 + K_1.K_2.G_3(p)\right)}{1 + K_1.K_2.G_3(p) - K_5.G_3(p).G_4(p)} \end{split}$$

On applique la formule de Black-Nichols en considérant que $\alpha(p) = 0$:

$$F_{1}(p) = \frac{C(p)T_{1}(p)}{1 + C(p)T_{1}(p)} = \frac{K_{r} \cdot \frac{6,5 \cdot 10^{-5}}{p^{2} + 2,6 \cdot 10^{-2} \cdot p - 3,2 \cdot 10^{-4}}}{1 + K_{r}(p) \cdot \frac{6,5 \cdot 10^{-5}}{p^{2} + 2,6 \cdot 10^{-2} \cdot p - 3,2 \cdot 10^{-4}}} = \frac{6,5 \cdot 10^{-5} \cdot K_{r}}{p^{2} + 2,6 \cdot 10^{-2} \cdot p - 3,2 \cdot 10^{-4} + 6,5 \cdot 10^{-5} \cdot K_{r}}$$

$$F_{1}(p) = \frac{6,5.10^{-5}.K_{r}}{p^{2} + 2,6.10^{-2}.p + 6,5.10^{-5}.K_{r} - 3,2.10^{-4}}$$

$$Stable \implies 6,5.10^{-5}.K_{r} - 3,2.10^{-4} > 0 \iff K_{r} > 4,92$$

Ouestion 32

1. Application du théorème de la valeur finale :

$$\varepsilon_{\infty} = \lim_{t \to \infty} \varepsilon(t) = \lim_{p \to \infty} p \varepsilon(p) \text{ avec } \varepsilon(p) = \frac{\Gamma_{C}(p)}{1 + C(p)T_{1}(p)}.$$

$$\varepsilon(p) = \frac{\Gamma_{C}(p)}{1 + K_{r} \cdot \frac{6,5.10^{-5}}{p^{2} + 2,6.10^{-2}, p - 3,2.10^{-4}}} = \frac{\left(p^{2} + 2,6.10^{-2}, p + 3,2.10^{-4}\right)\Gamma_{C}(p)}{p^{2} + 2,6.10^{-2}, p - 3,2.10^{-4} + 6,5.10^{-5}, K_{r}}$$

On applique un échelon en entrée d'amplitude γ_0 : $\Gamma_C(p) = \frac{\gamma_0}{p}$.

$$\varepsilon_{\infty} = \lim_{t \to \infty} \varepsilon(t) = \lim_{p \to 0} p \varepsilon(p) = \frac{3, 2.10^{-4}.\gamma_0}{6, 5.10^{-5}.K_x - 3, 2.10^{-4}} = \frac{32.\gamma_0}{6, 5.K_x - 32}$$

2. On veut
$$\left| \frac{\mathcal{E}_{\infty}}{\gamma_0} \right| < 0.1 \iff \left[K_r > 54.15 \right]$$

Question 33

1.

$$K_r = 100 F_1(p) = \frac{6.5 \cdot 10^{-3}}{p^2 + 2.6 \cdot 10^{-2} \cdot p + 6.18 \cdot 10^{-3}} = \frac{K_S}{1 + 2z \frac{p}{\omega_n} + \frac{p^2}{\omega_n^2}}$$

$$K_{S} = \frac{6.5}{6.18} = 1,05 \qquad \omega_{n} = \sqrt{6,18.10^{-3}} = 78,6.10^{-3} \text{ rad/s} \qquad z = \frac{2,6.10^{-2}}{2 \times 6,18.10^{-3}} \omega_{n} = \frac{2,6.10^{-2}}{2 \times \sqrt{6,18.10^{-3}}} = 0,16$$

UPSTI Page 12 sur 13

2. Le coefficient d'amortissement est faible, il y aura beaucoup d'oscillations en sortie pour un échelon en entrée.

Question 34

- 1. $C_2(p)$ est un correcteur à avance de phase, il permet d'augmenter la marge de phase (système plus stable).
- 2. Il suffit de faire la somme des deux diagrammes.

En rouge les diagrammes de Bode de $BO_1(p)$.

En bleu les diagrammes de Bode de $C_2(p)$.

En vert les diagrammes de Bode de BO(p).

- 3. La marge de phase vaut 72°. La marge de gain ne peut être déterminée.
- 4. Le cahier des charges est bien respecté :
 - précision à 10% $(K_r > 49,3)$,
 - marge de phase supérieure à 70° ($M \varphi = 72^{\circ}$).

UPSTI Page 13 sur 13