RAM과 캐시 메모리

RAM, 논리 주소와 물리 주소 그리고 캐시 메모리

OS-Challenge 4주 차 - 심수현

INDEX

- 컴퓨터의 4가지 핵심
 - 중앙처리장치(CPU) / 주기억장치(메모리) / 보조기억장치 / 입출력장치
- 주기억장치
 - ROM/RAM
- RAM
 - 특징, 용량, 성능, 종류
- 물리 주소와 논리 주소
 - 주소 변환 예제
- 캐시 메모리
 - 저장 장치 계층 구조
 - 캐시 읽기, 쓰기, 더티 플래그
 - 참조 지역성 원리
- 퀴즈

컴퓨터의 4가지 핵심

중앙처리장치(CPU) / 주기억장치(메모리) / 보조기억장치 / 입출력장치

Q. 컴퓨터를 구성하는 핵심 부품을 그려보세요!

ा शर्म

- 현재 실행되는 프로그램의 명령어와 데이터를 저장하는 부품
 - 프로그램이 실행되기 위해서는 반드시 메모리에 저장되어 있어야 함
- 컴퓨터가 빠르게 작동하기 위해서는 저장된 메모리 속 명령어와 데이터 값에 빠르고 효율적으로 접근해야 함
 - => 주소의 개념 사용

주기억장치

ROM / RAM

주기억장치

컴퓨터 내부에서 현재 CPU가 처리하고 있는 내용을 저장하고 있는 기억장치

ROM(Read Only Memory)

- 전원이 끊어져도 기록된 데이터가 소실되지 않음 비휘발성 메모리(Non-Volatile Memory)
- 데이터를 저장한 후 반영구적으로 사용
- 시스템에 기억시키고 변화시키면 안되는 BIOS 같은 주요 데이터 저장
- Mask ROM, OTP(One Time PROM), EPROM(Erasable PROM), EEPROM(Electrically Erasable PROM), UVEPROM...

RAM(Random Access Memory)

- 읽고 쓰기가 가능, 응용 프로그램, 운영체제 등을 불러와 CPU가 작업할 수 있게 하는 기억장치
- 전원이 끊어지면 데이터가 전부 지워짐 **휘발성 메모리(Volatile Memory)**
- 데이터를 읽는 속도와 기록하는 속도가 같고 프로그램을 로딩하거나 데 이터를 임시 저장하는 곳에 사용
- SRAM, DRAM, SDRAM, DDR SDRAM

RAM

특징, 용량, 성능, 종류

RAM(Random Access Memory) 보조기억장치 RAM

- 보조기억장치는 전원을 꺼도 내용을 유지하지만 CPU는
 보조기억장치에 직접 접근하지 못함
- 보조기억장치(비휘발성 저장장치)에는 **보관할 대상을 저장**
- RAM(휘발성 저장장치)에는 실행할 대상을 저장
- CPU가 실행하고 싶은 프로그램이 보조기억장치에 있으면 RAM에 복사해서 저장 후 실행

- RAM 용량이 **적으면** 보조기억장치에서 실행할 프로그램을 가져 오는 일이 잦아 실행 시간이 길어짐
- RAM 용량이 충분히 **크다면** 보조기억장치에서 많은 데이터를 가져와 **미리 RAM에 저장**할 수 있어 여러 번 가져오지 않아도 됨

RAM

특징, 용량, 성능, 종류

RAM(Random Access Memory)

	DRAM Dynamic RAM	SRAM Static RAM
재충전	필요함	필요 없음
속도	느림	빠름
가격	저렴함	비쌈
집적도	높음	낮음
소비 전력	적음	높음
사용 용도	주기억장치(RAM)	캐시 메모리

X 2 DDR4 SDRAM

물리 주소와 논리 주소

주소 변환 예제

물리 주소와 논리 주소

주소 변환 예제

주소 변환

프로그램 A의 1200번지 데이터를 삭제해라

메모리

한계 레지스터

- 논리 주소의 **최대 크기**를 저장
- 다른 프로그램의 영역을 침범할 수 있는 명령어는 위험
- 논리 주소 범위를 벗어나는 명령어 실행 방지
- 실행 중인 프로그램이 다른 프로그램에 영향을 받지 않도록 보호하는 방법

캐시 메모리

저장 장치 계층 구조

CPU

저장 장치 계층 구조:

"CPU에 얼마나 가까운가"를 기준으로 계층적으로 나타내기

처리 (1): 명령어를 바탕으로 메모리에서 레지스터로 데이터를 읽음

처리 (2): 레지스터에 있는 데이터를 바탕으로 계산

처리 (3): 계산 결과를 메모리에 씀

▲처리 (1) & (3) 병목

캐시 메모리

캐시 읽기, 쓰기, 더티

캐시 메모리

참조 지역성 원리

캐시 히트(Cache Hit)

• 자주 사용될 것으로 예측한 데이터가 실제로 들어맞아 캐시 메모리 내 데이터가 CPU에서 활용될 경우

캐시 미스(Cache Miss)

- 자주 사용될 것으로 예측하여 캐시 메모리에 저장했지만 예측이 틀려 메모리에서 필요한 데이터를 직접 가져와야 하는 경우
- 캐시 미스가 자주 발생하면 성능이 떨어짐

캐시 적중률(Cache Hit Ratio)

- 캐시가 히트되는 비율
- 캐시 히트 횟수 / (캐시 히트 횟수 + 캐시 미스 횟수)
- 캐시 적중률이 높으면 CPU의 메모리 접근 횟수를 줄일 수 있음

캐시 적중률을 높이기 위해 CPU가 사용할 법한 데이터를 알아내려면?

참조 지역성 원리 CPU가 메모리에 접근할 때 주된 경향을 바탕으로 만들어진 원리

시간 국소성(시간 지역성; temporal locality)

- 최근에 접근했던 메모리 공간에 다시 접근하려는 경향
- CPU는 변수가 저장된 메모리 공간을 언제든 다시 참조할 수 있음
- CPU는 최근에 접근했던 (변수가 저장된) 메모리 공간을 여러 번 다시 접근할 수 있음

공간 국소성(공간 지역성; spatial locality)

- 접근한 메모리 공간 근처를 접근하려는 경향
- CPU가 실행하려는 프로그램은 보통 관련 데이터들끼리 한데 모여있음
- 하나의 프로그램 내에서도 관련있는 데이터들은 모여서 저장됨

Quiz

- Q1. 각각 어떤 RAM을 설명한 것인지 맞춰보세요.
 - (DRAM, SRAM, SDRAM, DDR SDRAM)
 - 1) 대역폭을 2배 넓힌 SDRAM:
 - 2) 시간이 지나도 저장된 데이터가 사라지지 않는 RAM:
 - 3) 데이터의 소멸을 막기 위해 일정 주기로 데이터를 재활성화해야 하는 RAM
 - 4) 클럭과 동기화된 DRAM:
 - 5) 주로 캐시 메모리로 활용:
 - 6) 주로 주기억장치로 활용:
 - 7) 대용량화하기 유리:
 - 8) 집적도가 상대적으로 낮음:
- Q2. 캐시 메모리를 사용하는 이유는 무엇인가요?
- Q3. 저장 장치 계층 구조를 완성해보세요. (메모리, 보조기억장치, 캐시 메모리, 레지스터)

Quiz

• Q1. 각각 어떤 RAM을 설명한 것인지 맞춰보세요.

(DRAM, SRAM, SDRAM, DDR SDRAM)

- 1) 대역폭을 2배 넓힌 SDRAM: DDR SDRAM
- 2) 시간이 지나도 저장된 데이터가 사라지지 않는 RAM: SRAM
- 3) 데이터의 소멸을 막기 위해 일정 주기로 데이터를 재활성화해야 하는 RAM: DRAM
- 4) 클럭과 동기화된 DRAM: SDRAM
- 5) 주로 캐시 메모리로 활용: SRAM
- 6) 주로 주기억장치로 활용: DRAM
- 7) 대용량화하기 유리: DRAM
- 8) 집적도가 상대적으로 낮음: SRAM

• Q2. 캐시 메모리를 사용하는 이유는 무엇인가요?

CPU가 메모리에 접근하는 시간이 CPU의 연산 속도보다 느리기 때문에 이러한 병목 지점의 처리 시간 차이를 메우기 위해 사용

• Q3. 저장 장치 계층 구조를 완성해보세요. (메모리, 보조기억장치, 캐시 메모리, 레지스터)

References

Books

- 강민철(2022). 혼자 공부하는 컴퓨터 구조 + 운영체제. 한빛미디어
- 실습과 그림으로 배우는 리눅스 구조

Youtube Videos

- [10분 테코톡] **등** 큰곰의 Cache
- RAM Vs. ROM | Animation