Genotype probabilities at intermediate generations in the construction of recombinant inbred lines

SUPPLEMENT

Karl W. Broman

Department of Biostatistics and Medical Informatics,
University of Wisconsin--Madison, Madison, Wisconsin 53706

Figure S1 One-locus genotype probabilities for a random individual on the autosome **(A)**, the female on the X chromosome **(C)**, at generation F_k in the production of four-way RIL by sibling mating, as a function of k.

Figure S2 The X chromosome in the generation of two-way (A), four-way (B), and eight-way (C) RIL by sibling mating.

K. W. Broman 3 SI

Figure S3 Two-locus haplotype probabilities, as a function of recombination fraction, for a random autosome haplotype (left column), a random X chromosome haplotype from the female (middle column), and the male X chromosome haplotype (right column) at generation F_k in the production of four-way RIL by sibling mating, with the individual curves corresponding to different values of k.

Table S1 Recursion matrix for calculating two-locus autosomal haplotype probabilities in the generation of four-way RIL by sibling mating

		State at $k+1$				
9	State at k	1	2	3		
1	•	1-r	0	1/4		
2		r	0	1/4		
3	•	0	1	1/2		

Table S2 Starting states for calculating two-locus autosomal haplotype probabilities in the generation of four-way RIL by sibling mating

Prototype	No. states	Initial pattern	Initial probability
AA	4	• (1)	1/4
AB	4	• • (2)	1/4
AC	8	• (3)	1/8

Table S3 Transition matrix for two loci in the generation of two-way RIL by selfing

	g_{k+1}									
g_k	AA AA	AB AB	AA AB	AA BB	AB BA					
AA AA	1	0	0	0	0					
AB AB	0	1	0	0	0					
AA AB	1/4	1/4	1/2	0	0					
AA BB	$(1-r)^2/2$	$r^2/2$	2r(1-r)	$(1-r)^2/2$	$r^2/2$					
AB BA	$r^2/2$	$(1-r)^2/2$	2r(1-r)	$r^2/2$	$(1-r)^2/2$					

K. W. Broman 7 SI

Table S4 Transition matrix for one autosomal locus in the generation of four-way RIL by sibling mating

								g_{k+1}						
	g_k	1	2	3	4	5	6	7	8	9	10	11	12	13
1:	$AA \times AA$	1	0	0	0	0	0	0	0	0	0	0	0	0
2:	$AA \times AB$	1/4	1/2	0	0	0	0	0	1/4	0	0	0	0	0
3:	$AA \times AC$	1/4	0	1/2	0	0	0	0	0	0	0	1/4	0	0
4:	$AA \times BB$	0	0	0	0	0	0	0	1	0	0	0	0	0
5:	$AA \times BC$	0	0	0	0	0	0	0	1/4	1/2	0	1/4	0	0
6:	$AA \times CC$	0	0	0	0	0	0	0	0	0	0	1	0	0
7:	$AA \times CD$	0	0	0	0	0	0	0	0	0	0	1/2	1/2	0
8:	$AB \times AB$	1/8	1/2	0	1/8	0	0	0	1/4	0	0	0	0	0
9:	$AB \times AC$	1/16	1/8	1/8	0	1/8	0	0	1/16	1/4	0	1/8	1/8	0
10:	$AB \times CD$	0	0	0	0	0	0	0	0	0	0	1/4	1/2	1/4
11:	$AC \times AC$	1/8	0	1/2	0	0	1/8	0	0	0	0	1/4	0	0
12:	$AC \times AD$	1/16	0	1/4	0	0	0	1/8	1/16	1/4	0	1/8	1/8	0
13:	$AC \times BD$	0	0	0	0	0	0	0	1/8	1/2	1/8	1/8	0	1/8

Table S5 Probabilities for the genotypes of the pair of individuals at a single autosomal locus, at generation F_k in the formation of four-way RIL by sibling mating

Prototype	No. states	Probability of each
$AA \times AA$	4	$\frac{1}{4} + \frac{1}{4} \left(\frac{1}{2}\right)^k - \frac{1}{20} \left(\frac{1}{4}\right)^k - \left(\frac{9+4\sqrt{5}}{40}\right) \left(\frac{1+\sqrt{5}}{4}\right)^k - \left(\frac{9-4\sqrt{5}}{40}\right) \left(\frac{1-\sqrt{5}}{4}\right)^k$
$AA \times AB$	4	$\frac{1}{6} \left(-\frac{1}{4}\right)^k + \frac{1}{10} \left(\frac{1}{4}\right)^k - \frac{1}{6} \left(\frac{1}{2}\right)^k - \left(\frac{1-\sqrt{5}}{20}\right) \left(\frac{1+\sqrt{5}}{4}\right)^k - \left(\frac{1+\sqrt{5}}{20}\right) \left(\frac{1-\sqrt{5}}{4}\right)^k$
$AA \times AC$	8	$-\frac{1}{12} \left(-\frac{1}{4}\right)^k + \frac{1}{20} \left(\frac{1}{4}\right)^k - \frac{1}{6} \left(\frac{1}{2}\right)^k + \frac{1}{10} \left[\left(\frac{1+\sqrt{5}}{4}\right)^k + \left(\frac{1-\sqrt{5}}{4}\right)^k \right]$
$AA \times BB$	2	$\frac{1}{3} \left(-\frac{1}{4}\right)^k - \frac{2}{15} \left(-\frac{1}{8}\right)^k + \frac{1}{30} \left(\frac{1}{4}\right)^k - \frac{1}{30} \left(\frac{1}{2}\right)^k - \left(\frac{2-\sqrt{5}}{20}\right) \left(\frac{1+\sqrt{5}}{4}\right)^k - \left(\frac{2+\sqrt{5}}{20}\right) \left(\frac{1-\sqrt{5}}{4}\right)^k$
$AA \times BC$	8	$-\frac{1}{12} \left(-\frac{1}{4}\right)^k + \frac{2}{15} \left(-\frac{1}{8}\right)^k - \frac{1}{12} \left(\frac{1}{4}\right)^k + \frac{1}{30} \left(\frac{1}{2}\right)^k$
$AA \times CC$	4	$-\frac{1}{6} \left(-\frac{1}{4}\right)^k + \frac{1}{30} \left(-\frac{1}{8}\right)^k + \frac{1}{60} \left(\frac{1}{4}\right)^k - \frac{1}{30} \left(\frac{1}{2}\right)^k + \left(\frac{3-\sqrt{5}}{40}\right) \left(\frac{1+\sqrt{5}}{4}\right)^k + \left(\frac{3+\sqrt{5}}{40}\right) \left(\frac{1-\sqrt{5}}{4}\right)^k$
$AA \times CD$	4	$\frac{1}{6} \left(-\frac{1}{4}\right)^k - \frac{1}{5} \left(-\frac{1}{8}\right)^k + \frac{1}{30} \left(\frac{1}{2}\right)^k$
$AB \times AB$	2	$-\frac{2}{3}\left(-\frac{1}{4}\right)^{k} + \frac{2}{15}\left(-\frac{1}{8}\right)^{k} + \frac{1}{15}\left(\frac{1}{4}\right)^{k} - \frac{2}{15}\left(\frac{1}{2}\right)^{k} + \left(\frac{3-\sqrt{5}}{10}\right)\left(\frac{1+\sqrt{5}}{4}\right)^{k} + \left(\frac{3+\sqrt{5}}{10}\right)\left(\frac{1-\sqrt{5}}{4}\right)^{k}$
$AB \times AC$	8	$rac{1}{6} \left(-rac{1}{4} ight)^k - rac{2}{15} \left(-rac{1}{8} ight)^k - rac{1}{6} \left(rac{1}{4} ight)^k + rac{2}{15} \left(rac{1}{2} ight)^k$
$AB \times CD$	1	$\frac{2}{3} \left(-\frac{1}{8}\right)^k + \frac{1}{3} \left(\frac{1}{4}\right)^k$
$AC \times AC$	4	$\frac{1}{3} \left(-\frac{1}{4}\right)^k - \frac{1}{30} \left(-\frac{1}{8}\right)^k + \frac{1}{30} \left(\frac{1}{4}\right)^k - \frac{2}{15} \left(\frac{1}{2}\right)^k - \left(\frac{2 - 2\sqrt{5}}{20}\right) \left(\frac{1 + \sqrt{5}}{4}\right)^k - \left(\frac{2 + 2\sqrt{5}}{20}\right) \left(\frac{1 - \sqrt{5}}{4}\right)^k$
$AC \times AD$	4	$-\frac{1}{3}\left(-\frac{1}{4}\right)^k + \frac{1}{5}\left(-\frac{1}{8}\right)^k + \frac{2}{15}\left(\frac{1}{2}\right)^k$
$AC \times BD$	2	$-\frac{1}{3}\left(-\frac{1}{8}\right)^k + \frac{1}{3}\left(\frac{1}{4}\right)^k$

Table S6 Transition matrix for one X chromosome locus in the generation of four-way RIL by sibling mating

			g_{k+1}								
	g_k	1	2	3	4	5	6	7	8	9	10
1:	$AA \times A$	1	0	0	0	0	0	0	0	0	0
2:	$AA \times B$	0	0	0	1	0	0	0	0	0	0
3:	$AA\times C$	0	0	0	0	0	1	0	0	0	0
4:	$AB \times A$	1/4	1/4	0	1/2	0	0	0	0	0	0
5:	$AB \times C$	0	0	0	0	0	1/2	1/2	0	0	0
6:	$AC\times A$	1/4	0	1/4	0	0	1/4	0	1/4	0	0
7:	$AC\times B$	0	0	0	1/4	1/4	0	1/4	1/4	0	0
8:	$AC \times C$	0	0	0	0	0	1/4	0	1/4	1/4	1/4
9:	$CC\times A$	0	0	0	0	0	0	0	1	0	0
10:	$CC \times C$	0	0	0	0	0	0	0	0	0	1

Table S7 Probabilities for the genotypes of the pair of individuals at a single X chromosome locus, at generation F_k in the formation of four-way RIL by sibling mating

Prototype	No. states	Probability of each
$AA \times A$	2	$\frac{1}{3} + \frac{1}{24} \left(-\frac{1}{2}\right)^k + \frac{1}{8} \left(\frac{1}{2}\right)^k - \left(\frac{5+2\sqrt{5}}{20}\right) \left(\frac{1+\sqrt{5}}{4}\right)^k - \left(\frac{5-2\sqrt{5}}{20}\right) \left(\frac{1-\sqrt{5}}{4}\right)^k$
$AA \times B$	2	$\frac{1}{3} \left(-\frac{1}{4}\right)^k - \frac{1}{12} \left(\frac{1}{2}\right)^k - \left(\frac{5 - 3\sqrt{5}}{40}\right) \left(\frac{1 + \sqrt{5}}{4}\right)^k - \left(\frac{5 + 3\sqrt{5}}{40}\right) \left(\frac{1 - \sqrt{5}}{4}\right)^k$
$AA\times C$	2	$\frac{1}{8} \left(-\frac{1}{2} \right)^k - \frac{1}{24} \left(\frac{1}{2} \right)^k - \frac{1}{3} \left(-\frac{1}{4} \right)^k + \left(\frac{5 - \sqrt{5}}{40} \right) \left(\frac{1 + \sqrt{5}}{4} \right)^k + \left(\frac{5 + \sqrt{5}}{40} \right) \left(\frac{1 - \sqrt{5}}{4} \right)^k$
$AB \times A$	2	$-\frac{1}{6} \left(\frac{1}{2}\right)^k - \frac{1}{3} \left(-\frac{1}{4}\right)^k + \left(\frac{5 - \sqrt{5}}{20}\right) \left(\frac{1 + \sqrt{5}}{4}\right)^k + \left(\frac{5 + \sqrt{5}}{20}\right) \left(\frac{1 - \sqrt{5}}{4}\right)^k$
$AB \times C$	1	$\frac{1}{3} \left(\frac{1}{2} \right)^k + \frac{2}{3} \left(-\frac{1}{4} \right)^k$
$AC\times A$	2	$-\frac{1}{4} \left(-\frac{1}{2}\right)^k - \frac{1}{12} \left(\frac{1}{2}\right)^k + \frac{1}{3} \left(-\frac{1}{4}\right)^k + \frac{\sqrt{5}}{10} \left[\left(\frac{1+\sqrt{5}}{4}\right)^k - \left(\frac{1-\sqrt{5}}{4}\right)^k \right]$
$AC\times B$	2	$rac{1}{3}\left(rac{1}{2} ight)^k-rac{1}{3}\left(-rac{1}{4} ight)^k$
$AC \times C$	2	$\frac{1}{4} \left(-\frac{1}{2}\right)^k - \frac{1}{4} \left(\frac{1}{2}\right)^k + \frac{\sqrt{5}}{10} \left[\left(\frac{1+\sqrt{5}}{4}\right)^k - \left(\frac{1-\sqrt{5}}{4}\right)^k \right]$
$CC \times A$	2	$-\frac{1}{8} \left(-\frac{1}{2}\right)^k - \frac{1}{8} \left(\frac{1}{2}\right)^k + \left(\frac{5 - \sqrt{5}}{40}\right) \left(\frac{1 + \sqrt{5}}{4}\right)^k + \left(\frac{5 + \sqrt{5}}{40}\right) \left(\frac{1 - \sqrt{5}}{4}\right)^k$
$CC \times C$	1	$\frac{1}{3} - \frac{1}{12} \left(-\frac{1}{2} \right)^k + \frac{1}{4} \left(\frac{1}{2} \right)^k - \left(\frac{5+3\sqrt{5}}{20} \right) \left(\frac{1+\sqrt{5}}{4} \right)^k - \left(\frac{5-3\sqrt{5}}{20} \right) \left(\frac{1-\sqrt{5}}{4} \right)^k$

Table S8 Recursion matrix for calculating two-locus X chromosome haplotype probabilities in the generation of four-way RIL by sibling mating

		State at $k+1$							
9	State at k	1	2	3	4				
1	•	(1-r)/2	0	1-r	1/4				
2		r/2	0	r	1/4				
3		1/2	0	0	0				
4	•	0	1	0	1/2				

Table S9 Starting states for calculating two-locus X chromosome haplotype probabilities in the generation of four-way RIL by sibling mating

Prototype	No. states	Initial pattern		Initial probability
AA	2		(1)	1/2
AB	2		(2)	1/2
AC	4		(4)	1/4
CC	1		(3)	1

K. W. Broman 13 SI

Table S10 Transpose of the recursion matrix for calculating probabilities of two-locus autosomal diplotypes of the form AA|AA, in the generation of four-way RIL by sibling mating. Only the non-zero entries are shown

Stat	e at $k+1$			State	at k			
1		2: $(1-r)^2$	3: $2r(1-r)$	4: r ²				
2		1: $\frac{[r^2+(1-r)^2]}{4}$	2: $\frac{(1-r)^2}{2}$	3: $r(1-r)$	4: $\frac{r^2}{2}$	5: $\frac{(1-r)^2}{4}$	6: $\frac{r^2}{4}$	7: $r(1-r)$
3		8: $\frac{1-r}{2}$	9: $\frac{r}{2}$	10: $\frac{1}{2}$				
4		2: $\frac{1}{8}$	3: ½	4: $\frac{1}{8}$	11: $\frac{1}{8}$	12: $\frac{1}{4}$	13: $\frac{1}{8}$	
5		5: 1 − <i>r</i>	6: <i>r</i>					
6		11 : 1						
7		8: 1 – <i>r</i>	9: <i>r</i>					
8		5: $\frac{1-r}{4}$	6: $\frac{r}{4}$	7: ½	8: $\frac{1-r}{2}$	9: $\frac{r}{2}$		
9		8: ¹ / ₄	9: ½	11: $\frac{1}{4}$	12: $\frac{1}{4}$			
10		2: $\frac{1-r}{4}$	3: ½	4: $\frac{r}{4}$	8: $\frac{1-r}{4}$	9: $\frac{r}{4}$	10: $\frac{1}{4}$	
11		5: ½	6: $\frac{1}{4}$	11: $\frac{1}{2}$				
12		8: ½	9: ½					
13		2: $\frac{1}{4}$	3 : $\frac{1}{2}$	4 : $\frac{1}{4}$				

Table S11 Starting states for the calculation of probabilities of two-locus autosomal diplotypes of the form $AA \mid AA$, in the generation of four-way RIL by sibling mating

Prototype	No. states	Initial pattern	Initial probability
AA AA	4	(5)	1/4
AB AB	4	● ● (6)	1/4
AC AC	8	• • (11)	1/8

K. W. Broman 15 SI

Table S12 Transpose of the recursion matrix for calculating probabilities of two-locus autosomal diplotypes of the form AA|AB, in the generation of four-way RIL by sibling mating

State	e at $k+1$			Sta	ite at k			
1		2: $(1-r)^2$	3: $r(1-r)$	4 : $r(1-r)$	5: r ²			
2		1: $\frac{r^2+(1-r)^2}{4}$	2: $\frac{(1-r)^2}{2}$	3: $\frac{r(1-r)}{2}$	4: $\frac{r(1-r)}{2}$	5: $\frac{r^2}{2}$	6: $\frac{r(1-r)}{4}$	17: $\frac{r(1-r)}{4}$
3		7: ½	8: $\frac{1-r}{4}$	9: $\frac{1-r}{4}$	10: $\frac{r}{4}$	16 : $\frac{r}{4}$		
4		9: $\frac{r}{4}$	10: $\frac{1-r}{4}$	11: $\frac{1}{4}$	12: $\frac{1-r}{4}$	13: $\frac{r}{4}$		
5		2: $\frac{1}{8}$	3: $\frac{1}{8}$	4: $\frac{1}{8}$	5: $\frac{1}{8}$	14 : $\frac{1}{8}$	15: $\frac{1}{8}$	
6		8: $(1-r)$	16 : r					
7		2: $\frac{1-r}{4}$	3: $\frac{1-r}{4}$	4: $\frac{r}{4}$	5: $\frac{r}{4}$	9: $\frac{1-r}{4}$	10 : $\frac{r}{4}$	
8		6: $\frac{1-r}{4}$	8: $\frac{1-r}{2}$	16: $\frac{r}{2}$	17 : $\frac{r}{4}$			
9		2: $\frac{1-r}{4}$	3: $\frac{1-r}{4}$	4: $\frac{r}{4}$	5: $\frac{r}{4}$	7 : $\frac{1}{4}$	8: $\frac{1-r}{4}$	16: $\frac{r}{4}$
10		2: $\frac{1-r}{4}$	3: $\frac{r}{4}$	4: $\frac{1-r}{4}$	5: $\frac{r}{4}$	11: $\frac{1}{4}$	12: $\frac{1-r}{4}$	13: $\frac{r}{4}$
11		2: $\frac{1-r}{4}$	3: $\frac{r}{4}$	4: $\frac{1-r}{4}$	5: $\frac{r}{4}$	9: $\frac{r}{4}$	10: $\frac{1-r}{4}$	
12		6: $\frac{r}{4}$	12: $\frac{1-r}{2}$	13: $\frac{r}{2}$	17: $\frac{1-r}{4}$			
13		8: ¹ / ₄	15: $\frac{1}{4}$	16: $\frac{1}{4}$				
14		2: $\frac{1}{4}$	3: $\frac{1}{4}$	4 : $\frac{1}{4}$	5: $\frac{1}{4}$			
15		8: ½	12: $\frac{1}{4}$	13: ½	16: $\frac{1}{4}$			
16		12: $\frac{1}{4}$	13: ½	15: $\frac{1}{4}$				
17		12 : (1 – r)	13: <i>r</i>					

Table S13 Starting states for the calculation of probabilities of two-locus autosomal diplotypes of the form $AA \mid AB$, in the generation of four-way RIL by sibling mating

Prototype	No. states	Initial pattern	Initial probability
AA AB	8	• o (6)	1/2
AA AC	16	• o (8)	1/4
AB AC	16	● ○ (16)	1/4
AC AD	8	● ○ (15)	1/4

K. W. Broman 17 SI

Table S14 Transpose of the recursion matrix for calculating probabilities of two-locus autosomal diplotypes of the form $AA \mid BB$, in the generation of four-way RIL by sibling mating

Stat	e at $k+1$			State	\mathbf{e} at k			
1		2: $\frac{(1-r)^2}{2}$	3: $\frac{r(1-r)}{2}$	4: $\frac{r(1-r)}{2}$	5: $\frac{r^2}{2}$			
2		1: $\frac{(1-r)^2}{2}$	2: $\frac{(1-r)^2}{2}$	3: $\frac{r(1-r)}{2}$	4: $\frac{r(1-r)}{2}$	5: $\frac{r^2}{2}$	6: $\frac{r^2}{2}$	
3		7: $\frac{1-r}{4}$	8: $\frac{r}{4}$					
4		9: $\frac{1-r}{4}$	10: $\frac{r}{4}$					
5		11: $\frac{1}{8}$	12: $\frac{1}{8}$	13 : $\frac{1}{8}$	14: $\frac{1}{8}$			
6		12: $\frac{(1-r)^2}{2}$	13: $\frac{r(1-r)}{2}$	14: $\frac{r^2}{2}$				
7		2: $\frac{1-r}{2}$	3: $\frac{1-r}{2}$	4: $\frac{r}{2}$	5: $\frac{r}{2}$	7: $\frac{1-r}{4}$	8: $\frac{r}{4}$	
8		9: $\frac{r}{4}$	10: $\frac{1-r}{4}$	12: $\frac{1-r}{2}$	13 : $\frac{1}{4}$	14 : $\frac{r}{2}$		
9		2: $\frac{1-r}{2}$	3: $\frac{r}{2}$	4: $\frac{1-r}{2}$	5: $\frac{r}{2}$	9: $\frac{1-r}{4}$	10: $\frac{r}{4}$	
10		7: $\frac{r}{4}$	8: $\frac{1-r}{4}$	12: $\frac{1-r}{2}$	13: $\frac{1}{4}$	14 : $\frac{r}{2}$		
11		2: $\frac{1}{8}$	3: $\frac{1}{8}$	4 : $\frac{1}{8}$	5: $\frac{1}{8}$	12 : $\frac{1}{8}$	13: $\frac{1}{8}$	14: $\frac{1}{8}$
12		1: $\frac{r^2}{2}$	6: $\frac{(1-r)^2}{2}$	12: $\frac{(1-r)^2}{2}$	13: $\frac{r(1-r)}{2}$	14: $\frac{r^2}{2}$		
13		7: $\frac{r}{4}$	8: $\frac{1-r}{4}$	9: $\frac{r}{4}$	10: $\frac{1-r}{4}$			
14		2: ½	3: ½	4 : $\frac{1}{8}$	5: ½	11: $\frac{1}{8}$		

Table S15 Starting states for the calculation of probabilities of two-locus autosomal diplotypes of the form $AA \mid BB$, in the generation of four-way RIL by sibling mating

Prototype	No. states	Initial pattern	Initial probability
AA BB	2	○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	1/2
AA BC	16	○ ○ ○○ (7)	1/2
AA CC	4	● ○ ○ (2)	1/2
AA CD	8	• ° (3)	1/2
AB BA	2	○○○○(6)	1/2
AB BC	16	(8)	1/2
AB CD	4	● ○ ○ ○ (5)	1/2
AC BD	4		1/2
AC CA	4		1/2
AC CB	8) 1/2
AC DB	4) 1/2

K. W. Broman 19 SI

Table S16 Transpose of the recursion matrix for calculating probabilities of the two-locus X chromosome female diplotype of the form AA|AA, in the generation of four-way RIL by sibling mating

Stat	e at $k+1$			State	\mathbf{e} at k		
1		2 : (1 – r)	3: <i>r</i>				
2		1: $\frac{r^2+(1-r)^2}{4}$	2: $\frac{1-r}{2}$	3: $\frac{r}{2}$	4: $\frac{(1-r)^2}{4}$	5: $r(1-r)$	9: $\frac{r^2}{4}$
3		6: $\frac{1-r}{2}$	7: $\frac{r}{2}$	11: $\frac{1}{2}$			
4	•	4: $\frac{1-r}{2}$	9: $\frac{r}{2}$	10: $\frac{1}{2}$			
5		6: $\frac{1-r}{2}$	7: $\frac{r}{2}$	12: $\frac{1}{2}$			
6		4: $\frac{1-r}{4}$	5: $\frac{1}{4}$	9: $\frac{r}{4}$	12: $\frac{1}{2}$		
7		6: $\frac{1}{4}$	7: $\frac{1}{4}$	8: ½	13: ½		
8		4 : $\frac{1}{4}$	8: ½	9: $\frac{1}{4}$			
9		8: 1					
10		4 : (1 – r)	9: <i>r</i>				
11		2: $\frac{1}{4}$	3: ½	6: $\frac{1-r}{4}$	7: $\frac{r}{4}$	11: $\frac{1}{4}$	
12		4: $\frac{1-r}{4}$	5: $\frac{1}{4}$	6: $\frac{1-r}{2}$	7: $\frac{r}{2}$	9: $\frac{r}{4}$	
13		6: ½	7 : $\frac{1}{2}$				

Table S17 Starting states for the calculation of probabilities of the two-locus X chromosome female diplotype of the form AA|AA, in the generation of four-way RIL by sibling mating

Prototype	No. states	Initial pattern		Initial probability
AA AA	2	•	(4)	1/2
AB AB	2		(9)	1/2
AC AC	4	•	(8)	1/4
CC CC	1		(10)	1

K. W. Broman 21 SI

Table S18 Transpose of the recursion matrix for calculating probabilities of the two-locus X chromosome female diplotype of the form AA|AB, in the generation of four-way RIL by sibling mating

Stat	e at $k+1$			State at k		
1		2 : (1 - r)	3: r		5: <i>r</i>	
2		1: $\frac{r^2 + (1-r)^2}{8}$				7: $\frac{r(1-r)}{4}$
3		8: ¹ / ₄				
4		1: $\frac{r^2 + (1-r)^2}{8}$	2: $\frac{1-r}{2}$	3: $\frac{r}{2}$	6: $\frac{r(1-r)}{4}$	7: $\frac{r(1-r)}{4}$
5		11: $\frac{1}{4}$	12: $\frac{1-r}{4}$	13: $\frac{r}{4}$	14: $\frac{1-r}{4}$	15: $\frac{r}{4}$
6	• 0	12: $\frac{1-r}{2}$	13: $\frac{r}{2}$	16: $\frac{1}{2}$		
7	0 •	9: $\frac{1-r}{2}$	10: $\frac{r}{2}$	17: ½		
8		2: $\frac{1}{4}$	3: $\frac{1}{4}$	14 : $\frac{r}{4}$	15: $\frac{1-r}{4}$	
9		6: $\frac{r}{4}$	7: $\frac{1-r}{4}$	17: $\frac{1}{2}$		
10		12: $\frac{1}{4}$	13: $\frac{1}{4}$	18: $\frac{1}{8}$		
11		4 : $\frac{1}{4}$	5: $\frac{1}{4}$	14: $\frac{1-r}{4}$	15: $\frac{r}{4}$	
12		6: $\frac{1-r}{4}$	7: $\frac{r}{4}$	16: $\frac{1}{2}$		
13		9: ½	10: $\frac{1}{4}$	18: ½		
14		4 : $\frac{1}{4}$	5: $\frac{1}{4}$	11: $\frac{1}{4}$	12: $\frac{1-r}{4}$	13: $\frac{r}{4}$
15		2: $\frac{1}{4}$	3: $\frac{1}{4}$	8: ¹ / ₄	9: $\frac{1-r}{4}$	10: $\frac{r}{4}$
16	0 0	6: $\frac{1-r}{4}$	7: $\frac{r}{4}$	12: $\frac{1-r}{2}$	13: $\frac{r}{2}$	
17		6: $\frac{r}{4}$	7: $\frac{1-r}{4}$	9: $\frac{1-r}{2}$	10: $\frac{r}{2}$	
18		9: ½	10 : $\frac{1}{2}$	12: ½	13: ½	

Table S19 Starting states for the calculation of probabilities of the two-locus X chromosome female diplotype of the form $AA \mid AB$, in the generation of four-way RIL by sibling mating

Prototype	No. states	Initial pa	ttern	Initial probability
AA AB	4	• 0	(6)	1/2
AA AC	4	• 0	(12)	1/2
AB AC	4	• • 0	(13)	1/2
AC BC	2	• 0	(18)	1
AC CC	4	0 0	(16)	1/2

K. W. Broman 23 SI

Table S20 Transpose of the recursion matrix for calculating probabilities of the two-locus X chromosome female diplotype of the form $AA \mid BB$, in the generation of four-way RIL by sibling mating

Stat	te at $k+1$		State	at k	
1		2: $\frac{1-r}{2}$	3: $\frac{r}{2}$	4: $\frac{1-r}{2}$	5: $\frac{r}{2}$
2		1: $\frac{(1-r)^2}{4}$	4: $\frac{1-r}{2}$	5: $\frac{r}{2}$	6: $\frac{r^2}{4}$
3		7: $\frac{1-r}{4}$	8: $\frac{r}{4}$		
4		1: $\frac{(1-r)^2}{4}$	2: $\frac{1-r}{2}$	3: $\frac{r}{2}$	6: $\frac{r^2}{4}$
5		9: $\frac{1-r}{4}$	10: $\frac{r}{4}$		
6		11: $\frac{1-r}{2}$	12: $\frac{r}{2}$		
7		2: $\frac{1}{2}$	3: $\frac{1}{2}$	7: $\frac{1-r}{4}$	8: $\frac{r}{4}$
8		9: $\frac{r}{4}$	10: $\frac{1-r}{4}$	11: $\frac{1}{4}$	12: $\frac{1}{4}$
9		4: $\frac{1}{2}$	5: $\frac{1}{2}$	9: $\frac{1-r}{4}$	10: $\frac{r}{4}$
10		7: $\frac{r}{4}$	8: $\frac{1-r}{4}$	11: $\frac{1}{4}$	12: $\frac{1}{4}$
11		1: $\frac{r^2}{2}$	6: $\frac{(1-r)^2}{2}$	11: $\frac{1-r}{2}$	12: $\frac{r}{2}$
12		7: $\frac{r}{4}$	8: $\frac{1-r}{4}$	9: $\frac{r}{4}$	10: $\frac{1-r}{4}$

Table S21 Starting states for the calculation of probabilities of the two-locus X chromosome female diplotype of the form $AA \mid BB$, in the generation four-way RIL by sibling mating

Prototype	No. states	Initial pa	ttern	Initial probability
AA BB	1	OO	(1)	1
AA BC	4		(9)	1
AA CC	2		(2)	1
AB BA	1		(6)	1
AB BC	4		(10)	1
AB CC	2		(3)	1
AC CA	2		(11)	1
AC CB	2		(12)	1

K. W. Broman 25 SI

Table S22 Prescription for the calculation of two-locus autosomal diplotype probabilities at intermediate generations in the construction of 8-way RIL, from the corresponding probabilities for 4-way RIL

Prototype	No. states	4-way state	Probability multiplier	Prototype	No. states	4-way state	Probabilit multiplie
aa aa	8	AA AA	$\frac{1-r}{2}$	ac ac	16	AB AB	$\frac{1}{4}$
aa ab	16	AA AA	0	ac ad	16	AB AB	0
aa bb	4	AA AA	0	ac bd	8	AB AB	0
ab ab	8	AA AA	$\frac{r}{2}$	ac ae	128	AB AC	$\frac{1}{8}$
ab ba	4	AA AA	0	ac be	128	AB AC	0
aa ac	32	AA AB	$\frac{1-r}{4}$	ac ca	8	AB BA	$\frac{(1-r)^2}{4}$
aa bc	32	AA AB	0	ac cb	16	AB BA	$\frac{r(1-r)}{4}$
ab ac	32	AA AB	$\frac{r}{4}$	ac db	8	AB BA	$\frac{r^2}{4}$
ab bc	32	AA AB	0	ac ce	128	AB BC	$\frac{1-r}{8}$
aa ae	64	AA AC	$\frac{1-r}{4}$	ac de	128	AB BC	$\frac{r}{8}$
aa be	64	AA AC	0	ac eg	64	AB CD	$\frac{1}{16}$
ab ae	64	AA AC	$\frac{r}{4}$	ae ae	32	AC AC	$\frac{1}{4}$
ab be	64	AA AC	0	ae af	32	AC AC	0
aa cc	8	AA BB	$\frac{(1-r)^2}{4}$	ae bf	16	AC AC	0
aa cd	16	AA BB	$\frac{r(1-r)}{4}$	ae ag	64	AC AD	$\frac{1}{8}$
ab cd	8	AA BB	$\frac{r^2}{4}$	ae bg	64	AC AD	0
aa ce	128	AA BC	$\frac{1-r}{8}$	ae cg	64	AC BD	$\frac{1}{16}$
ab ce	128	AA BC	$\frac{r}{8}$	ae ea	16	AC CA	$\frac{(1-r)^2}{4}$
aa ee	16	AA CC	$\frac{(1-r)^2}{4}$	ae eb	32	AC CA	$\frac{r(1\!-\!r)}{4}$
aa ef	32	AA CC	$\frac{r(1-r)}{4}$	ae fb	16	AC CA	$\frac{r^2}{4}$
ab ef	16	AA CC	$\frac{r^2}{4}$	ae ec	64	AC CB	$\frac{1-r}{8}$
aa eg	64	AA CD	$\frac{1-r}{8}$	ae fc	64	AC CB	$\frac{r}{8}$
ab eg	64	AA CD	$\frac{r}{8}$	ae gc	64	AC DB	$\frac{1}{16}$

Table S23 Prescription for the calculation of two-locus X chromosome female diplotype probabilities at intermediate generations in the construction of 8-way RIL, from the corresponding probabilities for 4-way RIL. Only the states with non-zero probability are shown.

Prototype	No. states	4-way state	Probability multiplier
aa aa	2	AA AA	$\frac{1-r}{2}$
ab ab	2	AA AA	$\frac{r}{2}$
aa ac	4	AA AB	$\frac{1-r}{2}$
ab ac	4	AA AB	$\frac{r}{2}$
aa ae	8	AA AC	$\frac{1-r}{4}$
ab ae	8	AA AC	$rac{r}{4}$
aa cc	2	AA BB	$\frac{1-r}{2}$
ab cc	2	AA BB	$\frac{r}{2}$
aa ce	8	AA BC	$\frac{1-r}{4}$
ab ce	8	AA BC	$rac{r}{4}$
aa ee	4	AA CC	$\frac{(1-r)^2}{4}$
aa ef	4	AA CC	$\frac{r(1-r)}{4}$
ab ee	4	AA CC	$\frac{r(1-r)}{4}$
ab ef	4	AA CC	$\frac{r^2}{4}$
ac ac	4	AB AB	$\frac{1}{2}$
ac ae	8	AB AC	$\frac{1}{4}$
ac ca	2	AB BA	$\frac{1-r}{2}$
ac cb	2	AB BA	$\frac{r}{2}$
ac cc	4	AB BB	$\frac{1}{2}$
ac ce	8	AB BC	$\frac{1}{4}$
ac ea	8	AB CA	$\frac{1-r}{4}$
ac eb	8	AB CA	$rac{r}{4}$
ac ec	8	AB CB	$\frac{1}{4}$
ac ee	8	AB CC	$\frac{1-r}{4}$

Prototype	No. states	4-way state	Probability multiplier
ac ef	8	AB CC	$\frac{r}{4}$
ae ae	8	AC AC	$\frac{1}{4}$
ae cc	8	AC BB	$\frac{1}{4}$
ae ce	8	AC BC	$\frac{1}{4}$
ae ea	4	AC CA	$\frac{(1-r)^2}{4}$
ae eb	4	AC CA	$\frac{r(1-r)}{4}$
ae fa	4	AC CA	$\frac{r(1-r)}{4}$
ae fb	4	AC CA	$\frac{r^2}{4}$
ae ec	8	AC CB	$\frac{1-r}{4}$
ae fc	8	AC CB	$rac{r}{4}$
ae ee	8	AC CC	$\frac{1-r}{4}$
ae fe	8	AC CC	$rac{r}{4}$
cc cc	1	BB BB	1
cc ce	4	BB BC	$\frac{1}{2}$
cc ee	2	BB CC	$\frac{1-r}{2}$
cc ef	2	BB CC	$\frac{r}{2}$
ce ce	4	BC BC	$\frac{1}{2}$
ce ec	2	BC CB	$\frac{1-r}{2}$
ce fc	2	BC CB	$\frac{r}{2}$
ce ee	4	BC CC	$\frac{1-r}{2}$
ce fe	4	BC CC	$\frac{r}{2}$
ee ee	2	CC CC	$\frac{1-r}{2}$
ef ef	2	CC CC	$\frac{r}{2}$

K. W. Broman 27 SI