# BUNDESREPUBLIK DEUTSCHLAND



# Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

101 55 960.7

Anmeldetag:

09. November 2001

Anmelder/Inhaber:

Beiersdorf Aktiengesellschaft, 20253 Hamburg/DE

Bezeichnung:

Kosmetische und dermatologische Stifte

IPC:

A 61 K 7/00

CERTIFIED COPY OF PRIORITY DOCUMENT

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 23. August 2004 Deutsches Ratent- und Markenamt Der Präsident

Im Auftrag

# Beiersdorf Aktiengesellschaft Hamburg

### Kosmetische und dermatologische Stifte

## Beschreibung

Die vorliegende Erfindung betrifft dermatologische oder kosmetische Stiftformulierungen, welche sich durch einen hohen Wassergehalt und einem Gehalt an Hydroxybenzophenonen auszeichnen und W/O-Emulsionen darstellen.

Insbesondere betrifft die vorliegende Erfindung Sonnenschutzstifte.

Diese können zusätzlich Pigmente, Farbstoffe, Selbstbräunungssubstanzen,

Repellentien oder "Mischungen" enthalten.

Technisch betrachtet, sind die meisten Stiftformulierungen wasserfreie Fettmischungen aus festen oder halbfesten Wachsen und flüssigen Ölen, wobei die hochgereinigten Paraffinöle und -wachse die Lippenstiftgrundmasse darstellen. Auch wasserhaltige Zubereitungen sind bekannt, welche gelegentlich auch in Form von W/O-Emulsionen vorliegen.

Übliche Grundstoffe des Standes der Technik für stiftförmige Zubereitungen sind beispielsweise flüssige Öle (z.B. Paraffinöle, Ricinusöl, Isopropylmyristat), halbfeste Bestandteile (z.B. Vaseline, Lanolin), feste Bestandteile (z.B. Bienenwachs, Ceresin und mikrokristalline Wachse bzw. Ozokerit), hochschmelzende Wachse (z.B. Carnaubawachs, Candelillawachs).

Ein kosmetischer Stift soll schon bei leichtem Andruck einen nicht schmierigen, stumpfen oder klebrigen, aber dennoch gut haftenden Fettfilm an die abgeben. Durch diesen Fettfilm soll die Haut dann glatt und geschmeidig gemacht werden.

Lippenpflegestifte enthalten meist zu einem hohen Anteil Wachse und Fettkomponenten, die nach dem Auftragen eine abdeckende Schicht über den Lippen ausbilden. In die Zubereitungen für Lippenpflegestifte können zusätzlich Wirkstoffe eingearbeitet werden, die der Lippenpflege oder dem Lippenschutz förderlich sind, z.B. Vitamine, Feuchtigkeit spendende Mittel, Lichtschutzmittel, abdeckende Pigmente usw.





Lippenstifte des Standes der Technik mit einem Gehalt an Paraffinen und Bienenwachs sind in "Kosmetik, Entwicklung Herstellung und Anwendung kosmetischer Mittel", S. 105, Herausgeber: W. Umbach, Georg Thieme Verlag, Stuttgart - New York, 1988, beschrieben.

Da sowohl pflegende als auch vorwiegend dekorative Lippenstifte des Standes der Technik teilweise gravierende Mängel aufweisen, war eine weitere Aufgabe der vorliegenden Erfindung, diesen Mängeln Abhilfe zu schaffen.

a Company

Wegen der hohen Empfindlichkeit des Lippenbereiches, insbesondere gegenüber ultravioletter Strahlung infolge des praktisch völligen Mangels an Melanin, empfiehlt sich, zumal bei erhöhter UV-Exposition wie im Hochgebirge, dem Lippenbereich einen Schutz gegen UV-Strahlung in Form von entsprechenden stiftförmigen Lichtschutzzubereitungen zukommen zulassen. Gerade in stiftförmigen Zubereitungen des Standes der Technik werden oft anorganischen Pigmente als UV-Absorber bzw. UV-Reflektoren zum Schutze des Lippenbereiches vor UV-Strahlen verwendet. Dabei handelt es sich insbesondere um Oxide des Titans, aber auch gelegentlich des Zinks, Eisens, Zirkoniums, Siliciums, Mangans, Aluminiums, Cers und Mischungen davon, sowie Abwandlungen.

Ein erheblicher Mangel der Formulierungen des Standes der Technik besteht unter anderem darin, daß es wegen der niedrigen Wassergehalte an sich akzeptabler Emulsionsstifte praktisch unmöglich war, Kombinationen von wasserlöslichen (oder dispergierbaren) und fettlöslichen (oder dispergierbaren) UV-Filtersubstanzen in solche Formulierungen einzuarbeiten. Eine weitere Aufgabe der vorliegenden Erfindung war also, Stifte mit wasserlöslichen UV-Filtern oder wasserdispergierbaren Pigmenten (zum Beispiel Titandioxid) zugänglich zu machen beziehungsweise Kombinationen aus wasserlöslichen und fettlöslichen UV-Filtern.



Aus DE 23 35 549 ist ein Verfahren zur Herstellung eines kosmetischen Stiftes auf der Basis einer W/O-Emulsion bekannt. Nach dieser Lehre wird aus einer Polyhydroxyverbindung und einer nichtionogenen, oberflächenaktiven Verbindung ein Gel hergestellt, dieses mit einer kosmetischen Grundlage vermischt und Wasser in die Mischung emulgiert.

Die DE 41 28 748 beschreibt kosmetische Stifte, welche dadurch gekennzeichnet sind, daß sie Emulsionen darstellen und als wesentliche Bestandteile Bienenwachs, einen oder mehrere Ester aus einer gesättigten Carbonsäure mit 20 - 40 Kohlenstoffatomen und einem gesättigten Alkohol mit 14 - 34 Kohlenstoffatomen, Wasser, sowie gegebenenfalls weitere Lipide und/oder übliche Hilfs- und Zusatzstoffe enthalten.

Die US 4,719,103 beschreibt einen Antitranspirantstift auf der Basis einer W/O-Emulsion, welcher einen hohen Wasseranteil enthalte, welcher sich auszeichnet durch einen Gehalt an flüchtigen Silikonkomponenten, ein festes Alkanol sowie Polyglycerinfettsäureester, beispielsweise Polyglycerylisostearat, als Emulgator. Die US 4,704,271 und die US 4,725,431 beschreiben ähnliche Zubereitungen.

EP 0748622 beschreibt Stifte mit flüchtigen Ölen, wasserabweisenden Polymeren, die im flüchtigen Öl löslich sind und nichtflüchtigen Ölen sowie Puderinhaltstoffen.

Die GB 2162439 beschreibt paraffinhaltige Stifte, welche einen hohen Wasseranteil enthalten sollen, wobei die Emulgatoren aus der Gruppe der Metallsalze gewählt werden.

DE 19643237 beschreibt kosmetische Stifte, die sich durch einen höheren Wasseranteil auszeichnen. Diese enthalten unter anderem bestimmte Wachs- und Ölkomponenten, bestimmte W/O-Emulgatoren neben 30 bis 85 Gew.% Wasser. Der Einsatz von größeren Mengen an Hautbefeuchtungsmitteln ist nicht beschrieben, in den Beispielen ist lediglich der Einsatz von 2 Gew.% Glycerin offenbart.



In DE 29919474 werden W/O-Emulsionsstifte beschrieben. Durch die Verwendung von Polysacchariden wird eine dreidimensionale Struktur erzeugt, die den Stiften mehr Stabilität verleihen soll. Die Verwendung hoher Mengen an Hautbefeuchtungsmittel auch in Gegenwart von Pigmenten wird nicht beschrieben. Auch der Verzicht der Polysaccharide unter Erhalt der Stiftstruktur wird nicht als vorteilhaft angesehen.

In DE 20009445 werden Stifte beansprucht, die nur geringe Wassermengen enthalten (25%). Über Hautbefeuchtungsmittel wird nichts ausgesagt.

In EP 1064908 werden Emulsionsstifte beschrieben, die nur sehr geringe Anteile an Wasser enthalten (14%, S. 4, Bsp. 3). Der Gehalt an Hautbefeuchtungsmittel beträgt 9% (Glycerin, Butylenglycol, Sorbitol).

EP 0194887 beschreibt den Einsatz ethoxylierter Wachse oder auch Triglyceridwachse zur Herstellung von wasserfreien Stiften.

In WO 9817232 und in werden Lippenstifte beschrieben, die sich durch einen höheren Wasseranteil auszeichnen. Da neben dem beschriebenen Kühleffekt auch die Substantivität (beispielsweise bei Verwendung farbiger Pigmente oder Perlglanzpigmente) bei derartigen Stiften, die zusätzlich höhere Mengen an Hautbefeuchtungsmitteln enthalten sollen, wichtig ist, wurde in der Schrift nicht näher ausgeführt.



Dieses wurde auch nicht in den vorab beschriebenen Erfindungen dargelegt. Ferner wurde bisher nicht erwähnt, daß sich auch in Gegenwart von Triglyceridwachsen oder ethoxlierten Wachsen kosmetische Stifte herstellen lassen.

Der Stand der Technik hat weitere Nachteile. Dazu zählt die Tatsache, daß wasserlösliche Wirkstoffe häufig nicht gut genug fettlöslich sind, als daß sie in nennenswertem Maße in die kosmetischen Grundlagen einzubauen wären. Andererseits wäre ein gewisser Wassergehalt durchaus erwünscht, um die Kompatibilität des kosmetischen Stiftes mit der menschlichen Haut zu erhöhen. Ferner sind Stifte mit sehr hohen Wasseranteilen nach dem Stand der Technik deshalb nicht machbar, weil das Wasser mit der hydrophoben Öl/Wachs/Emulgator-Matrix nicht kompatibel ist.



Stifte, die zusätzlich neben höheren Wassermengen größere Konzentrationen an wasserlöslichen Wirkstoffen (3-50% Glycerin z.B.) und an fettlöslichen Wirkstoffen enthalten, sind nicht beschrieben. Es sind zwar Stifte mit größeren Wassermengen bekannt. Eine aktive Befeuchtung der Lippen, die zudem länger anhalten soll und biophysikalisch messbare Befeuchtungswerte wie eine klassische O/W oder W/O-Emulsion aufweist, ist allerdings unbekannt. Dies liegt wohl daran, daß durch Wasser nur eine extrem kurzzeitige Befeuchtung hervorgerufen gerufen wird. Ferner sind wasserarme oder wasserfreie Stiftrezepturen nur deshalb passiv befeuchtend, weil okklusive Wachse verwendet werden, die einen Wasserstau in der Haut hervorrufen. Eine aktive Befeuchtung durch einen Hydrolipidfilm aus Wasser, der zusätzlich größere Mengen an Hautbefeuchtungsmitteln statt eines okklusiven Lipidfilms enthält oder eines nur wasserhaltigen Stiftes ist bisher nicht als vorteilhaft beschrieben worden. Solche Stifte wären aber vorteilhaft, weil sich dann wirkstoffhaltige Hydrolipidfilme statt Lipidfilme

bilden könnten. Ferner könnten zusätzlich durch die verwendeten Wachse okklusive Effekte wie bei wasserfreien Stiften hervorgerufen werden, sodass ein Synergismus aus Wasser, Befeuchtungsmittel und Wachs für derart konzipierte Emulsionsstifte resultiert.

Ferner war bisher nicht bekannt, dass wasserhaltige Stifte zusätzlich Abdeckpigmente enthalten können oder auch Kombinationen aus Abdeckpigmenten und Perlglanzpigmenten oder ausschließlich Perlglanzpigmente. Perlglanzpigmente sind beispielsweise deshalb schwer in wasserhaltige Rezepturen zu integrieren, weil sie scherempfindlich sind, so daß der Perlglanzeffekt ausbleibt oder nur instabile Rezepturen entstehen. Ferner müssen generell die verwendeten Piamente mit der Wasser/Befeuchtungsmittel/Lipid/Wachs-Matrix kompatibel gemacht werden.

Nach dem idealen Anforderungsprofil sollen sich kosmetische oder dermatologische Stifte glatt und ohne großen Reibungswiderstand auftragen lassen. Darüber hinaus muss eine solche Formulierung auch noch die Anforderungen erfüllen, daß der betreffende Stift bruchfest und temperaturbeständig sein muss und die Formulierung nicht ausölen darf.

Sollen kosmetische oder pharmazeutische Stifte bestimmte Wirkstoffe enthalten, ist denkbar, daß die übrigen Bestandteile mit den Wirkstoffen nicht kompatibel sind. Dies ist besonders häufig der Fall, wenn die Verwendung der kosmetischen Stifte als Sonnenschutzstifte oder Aftersun-Stifte vorgesehen ist, wenn wasserlösliche Lichtschutzfilter in größeren Mengen im Stift enthalten sein sollen, wenn wasserlösliche Hautbefeuchtungsmittel in größeren Mengen im Stift enthalten sein sollen oder wenn zur Herstellung eines Stifts zusätzlich weitere fett- oder wasserlösliche Wirkstoffe wie Pigmente, Perlglanzpigmente, Vitamine und/oder Antioxidantien eingearbeitet werden sollen.

Perlglanzpigmente sind schwer in wasserhaltige Rezepturen zu integrieren, weil sie scherempfindlich sind, so daß der Perlglanzeffekt ausbleibt oder nur instabile Rezepturen entstehen. Ferner müssen generell die verwendeten Pigmente mit der Wasser/Befeuchtungsmittel/Lipid/Wachs-Matrix kompatibel gemacht werden.

Wasserlösliche Wirkstoffe sind häufig nicht gut genug fettlöslich, als daß sie in nennenswertem Maße in wasserfreie kosmetischen Grundlagen einzuarbeiten wären. Andererseits wäre ein gewisser Wassergehalt durchaus erwünscht, um die Kompatibilität des kosmetischen Stiftes mit der menschlichen Haut zu erhöhen. Ferner sind Stifte mit sehr





hohen Wasseranteilen nach dem Stand der Technik deshalb nicht machbar, weil das Wasser mit der hydrophoben Öl/Wachs/Emulgator-Matrix nicht kompatibel ist. Stifte, die zusätzlich neben höheren Wassermengen größere Konzentrationen an wasserlöslichen Wirkstoffen beispielsweise 3-50% Glycerin und an fettlöslichen Wirkstoffen enthalten, wären wünschenswert, es sind aber nur Stifte mit größeren Wassermengen bekannt. Stiftpräparate, die sich durch eine aktive Befeuchtung der Lippen, die zudem länger anhalten soll und die biophysikalisch messbare Befeuchtungswerte wie eine klassische O/W oder W/O-Emulsion aufweisen, konnten bisher nicht hergestellt werden. Dies ist erklärbar, da durch Wasser nur eine extrem kurzzeitige Befeuchtung hervorgerufen gerufen wird. Ferner sind wasserarme oder wasserfreie Stiftrezepturen nur deshalb passiv befeuchtend, weil im allgemeinen okklusive Wachse verwendet werden, die einen Wasserstau in der Haut hervorrufen. Eine aktive Befeuchtung durch einen Hydrolipidfilm aus Wasser, der zusätzlich größere Mengen an Hautbefeuchtungsmitteln statt eines okklusiven Lipidfilms enthält oder eines nur wasserhaltigen Stiftes wäre vorteilhaft, weil sich dann wirkstoffhaltige Hydrolipidfilme statt Lipidfilme bilden können. Ferner können zusätzlich durch die verwendeten Wachse okklusiven Effekte wie bei wasserfreien Stiften hervorgerufen werden, sodass ein Synergismus aus Wasser, Befeuchtungsmittel und Wachs für derart konzipierte Emulsionsstifte resultiert.

Mit Stiften des Stabdes der Technik ist es schwierig hohe Lichtschutzfaktoren mit einem hohen UVA- & UVB Schutz zu erreichen. Ganz besonders extrem hoher UVA-Schutz ist in derzeitigen Formulierungen sehr schwer zu verwirklichen, da z.Zt. fast ausschließlich eher unpolare Lipide für die Herstellung derartiger Stifte verwendet werden können. Diese Lipide sind nicht oder nur sehr schwer in der Lage die gängigen UVA-Filter (z.B. Butylmethoxydibenzoylmethan)zu lösen und in Lösung zu halten.

Ausgehend hiervon liegt der Erfindung die Aufgabe zugrunde, feste W/O-Emulsionen so zu formulieren, daß neben hohen Wasseranteilen und einem hohen Gehalt an Hautbefeuchtungsmitteln auch Feststoffe wie Pigmente und UVA- und UVB-Filter sowie sowohl wasserlösliche bzw. in Wasser dispergierbare Wirkstoffe neben lipidlöslichen bzw. in Lipiden dispergierbaren Wirkstoffen, insbesondere Antioxidantien, Selbstbräunungssubstanzen, Repellentien stabil eingearbeitet werden können.

Es war nach all diesem überraschend und nicht vorhersehbar, daß bei Raumtemperatur feste W/O-Emulsionen enthaltend

- (a) eine Fettphase, welche
  - (a1) mindestens eine Ölkomponente





- (a2) mindestens eine Wachskomponente umfaßt,
- (b) eine Wasserphase, welche
  - (b1) 30 bis 85 Gew.% Wasser sowie
  - (b2) 5 bis 50 Gew.% eines Hautbefeuchtungsmittels gewählt aus der Gruppe Glycerin, Chitosan, Fucogel, Propylenglycol, Polyethylenglycol, Dipropylenglycol, Butylenglycol, Mannitol, Milchsäure, Glycin, Natriumpyrolidoncarbonsäure, Hyaluronsäure, Salze der angegebenen Säuren sowie, Harnstoff und Salze von Metallen der ersten und zweiten Hauptgruppe umfaßt,
- (c) mindestens ein Hydroxybenzophenonderivat
- (d) einen W/O-Emulgator oder ein Gemisch aus mehreren W/O-Emulgatoren, gewählt aus der Gruppe der grenzflächenaktiven Substanzen der allgemeinen Struktur A-B-A', wobei A und A' gleiche oder verschiedene hydrophobe organische Reste darstellen und B eine hydrophile Gruppe bedeutet,

den Nachteilen des Standes der Technik abhelfen.

Dabei ist es bevorzugt, wenn als Hydroxybenzophenon ein Hydroxybenzophenon, welches durch die chemische Strukturformel

#### worin

- R¹ und R² unabhängig voneinander Wasserstoff, C₁-C₂₀-Alkyl, C₃-C₁₀-Cycloalkyl oder C₃-C₁₀-Cycloalkenyl bedeuten, wobei die Substituenten R¹ und R² gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, einen 5- oder 6-Ring bilden können und
- R³ einen C<sub>1</sub>-C<sub>20</sub>-Alkyl Rest bedeutet, verwendet wird.

Besonders bevorzugt ist es, wenn als Hydroxybenzophenon das Aminobenzophenon, welches durch die chemische Strukturformel



gekennzeichnet ist, gewählt wird. Dieses trägt die chemische Bezeichnung 2-(4'- (Diethylamino)-2'-hydoxybenzoyl)-benzoesäurehexylester.

Weiterhin ist es bevorzugt, wenn der W/O-Emulgator oder die W/O-Emulgatoren gewählt werden aus der Gruppe der Substanzen der allgemeinen Formel

$$A \longrightarrow O \xrightarrow{CH-X-CH-O} A'$$

$$R_1 \qquad R_2$$
a wobe

- A und A' gleiche oder verschiedene hydrophobe organische Reste darstellen,
- a eine Zahl von 1 bis 100, vorzugsweise 2 bis 60, insbesondere 5 bis 40 darstellt,
- X eine Einfachbindung oder die Gruppe

- darstellt,
- R<sub>1</sub> und R<sub>2</sub> unabhängig voneinander so gewählt werden H, Methyl, daß aber nicht beide Reste gleichzeitig Methyl darstellen,
- R<sub>3</sub> gewählt wird aus der Gruppe H, sowie der verzweigten und unverzweigten, gesättigten und ungesättigten Alkyl- und Acylreste mit 1 20 Kohlenstoffatomen,

oder daß der oder die W/O-Emulgatoren gewählt werden aus der Gruppe der Fettal-kohole mit 8 - 30 Kohlenstoffatomen, Monoglycerinester gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkancarbonsäuren oder Hydroxyalkansäuren einer Kettenlänge von 8 - 24, insbesondere 12 - 18 C-Atomen, Diglycerinester gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkancarbonsäuren oder Hydroxyalkansäuren einer Kettenlänge von 8 - 24, insbesondere 12 - 18 C-Atomen, Triglycerinester gesättigter und/oder ungesättigter, verzweigter

und/oder unverzweigter Alkancarbonsäuren oder Hydroxyalkansäuren einer Kettenlänge von 8 - 24, insbesondere 12 - 18 C-Atomen, Polyglycerinester gesättigter und/oder ungesättigter. verzweigter und/oder unverzweigter Alkancarbonsäuren Hydroxyalkansäuren einer Kettenlänge von 8 - 24, insbesondere 12 - 18 C-Atomen mit bis zu 10 Glycerineinheiten, Monoglycerinether gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkohole einer Kettenlänge von 8 - 24, insbesondere 12 - 18 C-Atomen, Diglycerinether gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkohole einer Kettenlänge von 8 - 24, insbesondere 12 - 18 C-Atomen, Triglycerinether gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkohole einer Kettenlänge von 8 - 24, insbesondere 12 - 18 C-Atomen, Polyglycerinether gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkohole einer Kettenlänge von 8 - 24, insbesondere 12 - 18 C-Atomen mit bis zu 10 Glycerineinheiten, Propylenglycolester gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkancarbonsäuren oder Hydroxyalkansäuren einer Kettenlänge von 8 -24, insbesondere 12 - 18 C-Atomen, Sorbitanester gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkancarbonsäuren einer Kettenlänge von 8 - 24, insbesondere 12 - 18 C-Atomen, Sorbitanester von Polyolen, insbesondere des Glycerins, Pentaerythritylester gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkancarbonsäuren oder Hydroxyalkansäuren einer Kettenlänge von 8 -24, insbesondere 12 - 18 C-Atomen, Methylglucose Ester gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkancarbonsäuren oder Hydroxyalkansäuren einer Kettenlänge von 8 - 24, insbesondere 12 - 18 C-Atomen, Polyglycerin Methylglucose Ester gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkancarbonsäuren oder Hydroxycarbonsäuren einer Kettenlänge von 8 - 24, insbesondere 12 - 18 C-Atomen, der Glyceryfettsäure Citrate, Cetyl Dimethicon Copolyole, der Alkyl Methicon Copolyole, der Alkyl Dimthicon Ethoxy Glucoside,

oder daß die vorstehend genannten Typen von W/O-Emulgatoren zusätzlich in der Weise polyethoxyliert und/oder polypropoxyliert sind, daß sie ethoxylierte und/oder propopoxylierte W/O-Emulgatoren darstellen.

Weiterhin ist es besonders bevorzugt, wenn der W/O-Emulgator oder die W/O-Emulgatoren so gewählt werden, daß die Reste A und A' werden vorteilhaft gewählt aus der Gruppe der verzweigten und unverzweigten, gesättigten und ungesättigten Alkyl- und

Acylreste und Hydroxyacylreste mit 10 - 30 Kohlenstoffatomen sowie ferner aus der Gruppe der über Esterfunktionen miteinander verbundenen Hydroxyacylgruppen, nach dem Schema

wobei R' gewählt wird aus der Gruppe der verzweigten und unverzweigten Alkylgruppen mit 1 bis 20 Kohlenstoffatomen und R" gewählt wird aus der Gruppe der verzweigten und unverzweigten Alkylengruppen mit 1 bis 20 Kohlenstoffatomen und b Zahlen von 0 bis 200 annehmen kann.

Weiterhin ist es ganz besonders bevorzugt, wenn der oder die W/O-Emulgatoren gewählt werden aus der Gruppe PEG-30 Dipolyhydroxystearat, Decaglycerylheptaoleat, Polyglyceryl-3-Diisostearat, PEG-8 Distearat, Diglycerin Dipolyhydroxystearat, Glycerinisostearat, Sorbitanisostearat, Polyglyceryl-3 methylglucose distearat, Steareth-2.

Es ist weiter bevorzugt, wenn der oder die Stabilisatoren gewählt werden aus der Gruppe der Substanzen der allgemeinen Formel

$$A''' \longrightarrow O \left( \begin{array}{ccc} CH - X - CH - O \\ R_1 & R_2 \end{array} \right) = A''''$$
a , wobei

- A" und A" gleiche oder verschiedene hydrophobe organische Reste darstellen,
- a eine Zahl von 1 bis 100, vorzugsweise 2 bis 60, darstellt,

X eine Einfachbindung oder die Gruppe

- darstellt,
- R<sub>1</sub> und R<sub>2</sub> unabhängig voneinander aus der Gruppe H, Methyl gewählt werden, daß aber nicht beide Reste gleichzeitig Methyl darstellen,
- R₃ gewählt wird aus der Gruppe H, sowie der verzweigten und unverzweigten, gesättigten und ungesättigten Alkyl- und Acylreste mit 1 20 Kohlenstoffatomen,
- wobei die Reste A" und A" können gleich oder verschieden sein und gewählt werden aus der Gruppe

wobei  $R_8$  und  $R_9$  gleich oder verschieden sein können und gewählt werden aus der Gruppe der gesättigten und ungesättigten Alkyl- und Acylreste mit 1 —30 Kohlenstoffatomen, p eine Zahl von 1 – 20 darstellt und Y eine Einfachbindung oder die Gruppe

wobei R<sub>3</sub> gewählt wird aus der Gruppe H, sowie der verzweigten und unverzweigten, gesättigten und ungesättigten Alkyl- und Acylreste mit 1 —30 Kohlenstoffatomen,

ferner können die Gruppe A``` und A```` unabhängig voneinander auch Alkylreste oder Acylreste darstellen.

Es ist besonders bevorzugt, wenn als Stabilisator das PEG-45 /Dodecylglycolcopolymer und/oder das PEG-22 / Dodecylglycolcopolymer und/oder das Methoxy PEG-22/Dodecyl Glycol Copolymer verwendet werden.

Weiterhin ist es bevorzugt, wenn die erfindungsgemäßen Zubereitungen weitere UV-Filter aus der Gruppe der Benzotriazole, Triazine, bei Raumtemperatur flüssigen, wasserlöslichen, sulfonierten und organische und/oder anorganische Pigmente enthalten.

Ebenfalls ist es bevorzugt, wenn die Ölkomponente oder die Gesamtheit der Ölkomponenten gewählt wird aus der Gruppe der Ester aus gesättigten und/oder ungesättigten, verzweigten und/oder unverzweigten Alkancarbonsäuren einer Kettenlänge von 1 bis 44 C-Atomen und gesättigten und/oder ungesättigten, verzweigten und/oder unverzweigten Alkoholen einer Kettenlänge von 1 bis 44 C-Atomen, aus der Gruppe der Ester aus aromatischen Carbonsäuren und gesättigten und/oder ungesättigten, verzweigten und/oder unverzweigten Alkoholen einer Kettenlänge von 1 bis 30 C-Atomen sofern die Ölkomponente oder die Gesamtheit der Ölkomponenten bei Raumtemperatur eine Flüssigkeit darstellen.

Dabei ist es besonders bevorzugt, wenn die Ölkomponente oder die Gesamtheit der Ölkomponenten gewählt wird aus der Gruppe der verzweigten und unverzweigten Kohlenwasserstoffe, Lanoline, der Adipinsäureester, der Butylenglycoldiester der cyclischen oder linearen Silikonöle, der Dialkylether, der Dialkylcarbonate, der Gruppe der gesättigten oder ungesättigten, verzweigten Alkohole, sowie der Fettsäuretriglyceride, namentlich der synthetischen oder natürlichen Triglycerinester gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkancarbonsäuren einer Kettenlänge von 8 bis 24, insbesondere 12 - 18 C-Atomen, der verzweigten und unverzweigten Salicylate und Benzoate.

Ebenfalls ist es bevorzugt, wenn die Wachskomponente oder die Gesamtheit der Wachskomponenten gewählt wird aus der Gruppe

der Ester aus gesättigten und/oder ungesättigten, verzweigten und/oder unverzweigten Alkancarbonsäuren einer Kettenlänge von 1 bis 80 C-Atomen und gesättigten und/oder ungesättigten, verzweigten und/oder unverzweigten Alkoholen einer Kettenlänge von 1 bis 80 C-Atomen, aus der Gruppe der Ester aus aromatischen Carbonsäuren und gesättigten und/oder ungesättigten, verzweigten und/oder unverzweigten Alkoholen einer Kettenlänge von 1 bis 80 C-Atomen



sofern die Wachskomponente oder die Gesamtheit der Wachskomponenten bei Raumtemperatur einen Festkörper darstellen,

- der natürlichen Wachse,
- der Diester von Polyolen und C10-C80 Fettsäuren,
- der ethoxylierten Wachse,
- der Triglyceridwachse,
- der C16-C60 Fettsäuren (bzw. deren Salze) und/oder C16-C80 Fettalkohole.

Dabei ist es besonders bevorzugt, wenn die Wachskomponente oder die Gesamtheit der Wachskomponenten gewählt wird aus der Gruppe

- der Ester aus gesättigten verzweigten Alkancarbonsäuren einer Kettenlänge von 1 bis 44 C-Atomen und gesättigten verzweigten Alkoholen einer Kettenlänge von 1 bis 44 C-Atomen, sofern die Wachskomponente oder die Gesamtheit der Wachskomponenten bei Raumtemperatur einen Festkörper darstellen,
- der natürlichen Wachse,
- der Diester von Polyolen und C10-C80 Fettsäuren,
- der ethoxylierten Wachse,
- der Triglyceridwachse,
- der C16-C60 Fettsäuren (bzw. deren Salze) und/oder C16-C80 Fettalkohole.

Ferner können die erfindungsgemäßen Zubereitungen einen zusätzlichen Gehalt an einem oder mehreren wasserlöslichen und/oder mit Wasser quellbaren Polymeren aufweisen, insbesondere mit Alkylgruppen veretherte Cellulose- und/oder Stärkederivate, bevorzugt β-Glucane, Xanthangummi, Dextrane, Hydroxymethylcellulose, Hydroxyethylcellulose und/oder Hydroxypropylcellulose, Methoxy-PEG-22/ Dodecyl-Glycol-Copolymere, Poloxamere, mit einem oder mehreren n-Octenylsuccinatresten veresterter hydrophiler Stärke.

Die Erfindung umfaßt ebenfalls die Verwendung von erfindungsgemäßen W/O-Emulsionen als kosmetische und/oder dermatologische Zubereitungen zur Vorbeugung oder Behandlung von UV-Licht bedingten Schäden der Haut und/oder zur Hautbefeuchtung.





Als Öle, die Ester aus aromatischen Carbonsäuren und gesättigten und/oder ungesättigten, verzweigten und/oder unverzweigten Alkoholen darstellen (Esteröle), können vorteilhaft gewählt werden aus der Gruppe Isopropylmyristat, Isopropylpalmitat, Isopropylstearat, Isopropyloleat, n-Butylstearat, n-Hexyllaurat, n-Decyloleat, Isooctylstearat, Isononylstearat, Isononylisononanoat, 2-Ethylhexylpalmitat, 2-Ethylhexyllaurat, 2-Hexyldecylstearat, 2-Octyldodecylpalmitat, Oleyloleat, Oleylerucat, Erucyloleat, Erucylerucat sowie synthetische, halbsynthetische und natürliche Gemische solcher Ester, z.B. Jojobaöl.

Weitere vorteilhafte Ölkomponenten sind Fettsäuretriglyceride z.B. Olivenöl, Sonnenblumenöl, Sojaöl, Erdnußöl, Rapsöl, Mandelöl, Palmöl, Kokosöl, Palmkernöl und dergleichen mehr sowie Silikonöle wie Cyclomethicon, Hexamethylcyclotrisiloxan, Polydimethylsiloxan, Poly(methylphenylsiloxan).

Besonders vorteilhaft wird die Ölphase gewählt aus der Gruppe Dicaprylylcarbonat, 2-Dicaprylyether, Ethylhexylcocoat, Capryl-Caprinsäure-triglycerid, Di-(2-Ethylhexyl)adipat, Cocoglycerid, C12-15 Alkyl Benzoat, Cocoglyceride Lanolinöl, Butylenglycol Dicaprylat/dicaprat, Cetearylisononanoat.

Die Ölkomponenten können vorteilhaft in einem Gehalt von 0,5 bis 80 Gew.-%, bezogen auf die Gesamtzubereitung vorliegen, bevorzugt sind etwa 1 bis 30 Gew.-%.



Es können unverzweigten, gesättigten und/oder ungesättigten, aliphatische Fettalkohole oder Fettsäuren eingesetzt werden, die eine Kettenlänge von C22 bis C60 haben, wobei die genannten Alkohole bzw Fettsäuren sowohl einzeln als auch im Gemisch vorliegen können. Behensäuren sowie noch längerkettige Fettsäuren (C-24-60 Fettsäuren) sind besonders vorteilhaft zu verwenden. Ferner können diese auch verzeigt sein.

Vorteilhafte Ölkomponenten sind ferner z. B. Butyloctylsalicylat (beispielsweise das unter der Handelsbezeichnung *Hallbrite BHB* bei der Fa. CP Hall erhältliche), Hexadecylbenzoat und Butyloctylbenzoat und Gemische davon (*Hallstar AB*) und/oder Diethylhexylnaphthalat (*Hallbrite TQ*).

Weiterhin bevorzugt ist es, wenn als Wachskomponenten Fettalkohole bzw. Fettalkoholgemische, welche durch Verseifung von Wachsen oder Wachsgemischen erhältlich sind, verwendet werden. Die als Ausgangsprodukt verwendeten Wachse bzw. Wachsgemische können als natürliche Produkte unterschiedlich zusammengesetzt sein. Vorteilhafte Fettalkohole bzw. Fettalkoholgemische sind beispielsweise aus Bienenwachs, Chinawachs, Hummelwachs und anderen Insektenwachsen erhältlich. Auch Fettalkohole bzw. Fettalkoholgemische, welche aus Pflanzenwachsen erhältlich sind, sind vorteilhaft im Sinne der vorliegenden Erfindung. Vorzugsweise verwendbar sind Cuticularwachse niederer und höherer Pflanzen, Algen, Flechten, Moose und Pilze, wie beispielsweise Candelillawachs, Carnaubawachs, Japanwachs, Espartograswachs, Korkwachs, Reiswachs, Zuckerrohrwachs, Fruchtwachse, z. B. Apfelwachs, Blütenwachse, Blattwachse von Nadelhölzern, Kaffeewachs, Flachswachs, Sesamwachs, Jojobaöl und dergleichen mehr. Ferner können auch Reiswachse, Fruchtwachse wie Apfelwachs, Orangenwachs, Zitronenwachs, Grapefruitwachs, Lorbeerwachs (= Bayberrywax) und dergleichen, vorteilhaft verwendet werden. Außerdem können diese natürlichen Wachse auch ohne synthetische Wachse allein eingesetzt werden. Ferner können auch Wachse von Diestern der C10-C80 Fettsäuren eingesetzt werden, wobei als Alkoholkomponente Propylenglycol, Ethylenglycol, Polyethylenglycol, Polypropylengicol, Polyglycerin gewählt ist. Ferner können auch Pentaerythritol tri orthotetra -ester von C10 bis C80 Fettsäuren oder auch entspr. Fettsäuren der Sorbitantriester sowie Sucrosepolyester mit 3-8 mol Substitutionsgrad eingesetzt werden. Beispielsweise ist der Ethylenglycolester von C18-36-Fettsäuren (Syncrowax ERL-C) oder auch Ethylenglycoldistearate und Glycol Distearat geeignet. Ferner können Wachse aus der Gruppe der Ester aus gesättigten und/oder ungesättigten, verzweigten und/oder unverzweigten Alkancarbonsäuren einer Kettenlänge von 1 bis 80 C-Atomen und gesättigten und/oder ungesättigten, verzweigten und/oder unverzweigten Alkoholen einer Kettenlänge von 1 bis 80 C-Atomen, aus der Gruppe der Ester aus aromatischen Carbonsäuren bzw. Hydroxycarbonsäuren (z.B. 12-Hydroxystearinsäure) und gesättigten und/oder ungesättigten, verzweigten und/oder unverzweigten Alkoholen einer Kettenlänge von 1 bis 80 C-Atomen sofern die Wachskomponente oder die Gesamtheit der Wachskomponenten bei Raumtemperatur einen Festkörper darstellen, gewählt werden. Bevorzugt ist, die Wachskomponenten zu wählen aus der Gruppe der

Ester aus gesättigten verzweigten Alkancarbonsäuren einer Kettenlänge von 1 bis
 60 C-Atomen und gesättigten unverzweigten Alkoholen einer Kettenlänge von 1





bis 60 C-Atomen, sofern die Wachskomponente oder die Gesamtheit der Wachskomponenten bei Raumtemperatur einen Festkörper darstellen,

#### und/oder der

 Ester aus gesättigten unverzweigten Alkancarbonsäuren einer Kettenlänge von 1 bis 60 C-Atomen und gesättigten verzweigten Alkoholen einer Kettenlänge von 1 bis 60 C-Atomen, sofern die Wachskomponente oder die Gesamtheit der Wachskomponenten bei Raumtemperatur einen Festkörper darstellen.

Insbesondere vorteilhaft können die Wachskomponenten aus der Gruppe der  $C_{16-36}$ -Alkylstearate, der  $C_{10-40}$ -Alkylstearate, der  $C_{20-40}$ Alkylstearate, der  $C_{20-40}$ -Dialkyldimerate, der  $C_{18-38}$ -Alkylhydroxystearoylstearate, der  $C_{20-40}$ -Dialkyldimerate, der  $C_{20-40}$ -Alkylerucate gewählt werden, ferner  $C_{30-50}$ -Alkylbienenwachs, Cetylpalmitat, Methylpalmitat, Cetearylbehenat, Octacosanyl Stearate. Auch Siliconwachse wie beispielsweise Stearyltrimethylsilan/Stearylalkohol sind gegebenenfalls vorteilhaft.

Vorteilhaft im Sinne der vorliegenden Erfindung sind außerdem Esterwachse, die Ester aus

- 1. gesättigten und/oder ungesättigten, verzweigten und/oder unverzweigten Monound/oder Dicarbonsäure mit 10 bis 50 Kohlenstoffatomen, bevorzugt 15 - 45 Kohlenstoffatomen und
- 2. Glycerin

darstellen. Dabei können Mono-, Di- und Triglyceride vorteilhaft sein.

Besonders vorteilhaft sind die im folgenden aufgelisteten Glyceride:

| Glycerid                                  | Handelsname       | erhältlich bei    |
|-------------------------------------------|-------------------|-------------------|
| C <sub>16-18</sub> -Triglycerid           | Cremeol HF-52-SPC | Aarhus Oliefabrik |
| Glycerylhydroxystearat                    | Naturchem GMHS    | Rahn              |
| Hydrierte Coco-Glyceride                  | Softisan 100      | Hüls AG           |
| Caprylisäure/Caprinsäure/Isostearinsäure/ | Softisan 649      | Dynamit Nobel     |
| Adipinsäure Triglycerid                   |                   |                   |
| C <sub>18-36</sub> Triglycerid            | Syncrowax HGLC    | Croda GmbH        |
| Glyceryltribehenat                        | Syncrowax HRC     | Croda GmbH        |
| Glyceryl-tri-(12-hydroxystearat)          | Thixcin R         | Rheox / NRC       |





Hydriertes Ricinusöl C<sub>16-24</sub> -Triglycerid

Cutina HR

Henkel KGaA

Cremeol HF-62-SPC Aarhus Oliefabrik

Besonders bevorzugt ist, die Wachskomponenten zu wählen aus der Gruppe der

Triglyceridwachse wie C18-38 Triglycerid oder Tribehenin zu wählen.

Ferner hat sich herausgestellt, daß ethoxylierte Wachse wie beispielsweise PEG-8 Bienenwachs, PEG 6 Sorbitanbienenwachs, PEG-2 hydrogeniertes Castoroil, PEG-12 Carnaubawachs vorteilhaft sind, da sie die Stiftmatrix weicher machen und ferner eine bessere Solublisierung wasserlöslicher Inhaltsstoffe ermöglichen.

Ferner hat sich herausgestellt, daß neben des Einsatzes einer der vorab beschriebenen Wachse bestimmte Wachskombinationen vorteilhaft sind.

Die Wachskomponenten können vorteilhaft in einem Gehalt von 0,5 bis 80 Gew.-%, bezogen auf die Gesamtzubereitung vorliegen, bevorzugt sind etwa 1 bis 20 Gew.-%.

Es ist von Vorteil, das Verhältnis von Öl- und Wachskomponenten zueinander ungefähr aus dem Bereich der Gewichtsverhältnisse zwischen 4 : 1 bis 1 : 4, insbesondere 3 : 1 bis 1:3, ganz besonders bevorzugt 2:1 bis 1:2, einzustellen.



Die unter (c) genannten Hydroxybenzophenone zeichnen sich durch die folgende Strukturformel aus:

#### worin

R<sup>1</sup> und R<sup>2</sup> unabhängig voneinander Wasserstoff, C<sub>1</sub>-C<sub>20</sub>-Alkyl, C<sub>3</sub>-C<sub>10</sub>-Cycloalkyl oder C<sub>3</sub>-C<sub>10</sub>-Cycloalkenyl bedeuten, wobei die Substituenten R<sup>1</sup> und R<sup>2</sup> gemeinsam mit

dem Stickstoffatom, an das sie gebunden sind, einen 5- oder 6-Ring bilden können und

R<sup>3</sup> einen C<sub>1</sub>-C<sub>20</sub>-Alkyl Rest bedeutet.

Ein besonders vorteilhaftes Hydroxybenzophenon im Sinne der vorliegenden Erfindung ist das Aminobenzophenon, welches durch die chemische Strukturformel

gekennzeichnet ist.

Erfindungsgemäß enthalten kosmetische oder dermatologische Zubereitungen 0,1 bis 20 Gew.-%, vorteilhaft 0,1 bis 15 Gew.-%, ganz besonders bevorzugt 0,1 bis 10 Gew.-% eines oder mehrerer Hydroxybenzophenone.

Die beschriebenen W/O-Emulsionen eignen sich besonders als kosmetische und/oder dermatologische Zubereitungen zur Vorbeugung oder Behandlung von Licht bedingten Schäden der Haut.

Dabei ist es bevorzugt, die Emulsionen als Stifte herzustellen.

Es war erstaunlich, daß die erfindungsgemäßen Zubereitungen die Einarbeitung hoher Wassermengen, selbst bei Gegenwart nur geringer Mengen an erfindungsgemäß verwendeten Emulgatoren erlaubt. Die Freisetzung insbesondere wasserlöslicher Wirkstoffe ist gegenüber herkömmlicher Zubereitungen deutlich erhöht.

Es kann gezeigt werden, daß Hautbefeuchtungswerte resultieren, die man üblicherweise nur von fließfähigen O/W oder W/O Emulsionen her kennt (Nivea). Ferner lassen sich in Gegenwart von höheren Konzentrationen an Wasser und Befeuchtungsmittel Pigmente oder sogar Perlglanzpigmente einarbeiten. Erstaunlich war, daß die Adhäsion derartiger Stiftformulierungen ausgezeichnet ist, ein Kühleffekt resultiert, die Produkte nicht klebrig sind. Dies war insofern bemerkenswert, da durch die Verwendung größerer Anteile an





Wasser und größerer Konzentrationen an Befeuchtungsmitteln (3-60%) wesentlich weniger haftende Inhaltsstoffe wie Ölkomponenten und Wachse pro abgeriebene Stiftmenge im Vergleich zu wasserfreien Stiften oder nur wasserhaltigen Stiften zu Verfügung steht. Ferner weisen derartige farbige Stifte ebenfalls sehr gute befeuchtende Eigenschaften aus und unterscheiden sich daher von üblichen Marktprodukten, deren Befeuchtungseffekte nur durch Okklusion hervorgerufen wird.

Überraschend war. daß sich in Gegenwart größerer Konzentrationen Hautbefeuchtungsmitteln erfindungsgemäße Emulsionsstifte herstellen lassen, die SPF-Werte von 25 oder höher erhalten lassen. Stifte mit hohen SPF-Werten, die gleichzeitig die Haut kühlen und zusätzlich Hautbefeuchtungsmittel und/oder Wirkstoffe an die Haut abgeben, sind besonders elegant. Es konnten hohe SPF-Werte auch durch den kombinierten Einsatz wasser- und fettlöslicher UV-Filter realisiert werden, wobei zusätzlich auch Titandioxid als **Pigment** vorteilhaft ist. Insbesondere Aminobenzophenone lösen sich hervorragend in den erfindungsgemäßen Zubereitungen und bietet dadurch einen sehr hohen UVA-Schutz.

Der kombinierte Einsatz von wasser- und fettlöslichen UV-Filtern ist im Unterschied zu reinen Fettstiften erleichtert, weil in den festen W/O-Stiften zusätzlich eine Wasserphase anwesend ist, die ein Lösen des wasserlöslichen Filters erst ermöglicht und so einen Synergismus erlaubt. Dies gilt analog für in Wasser dispergierbare Pigmente. Die Wasserphase in derartigen Stiften hat daher mehrere Vorteile: Sie erzeugt einen Kühleffekt, ist ein Medium zum Lösen der Hautbefeuchtungsmittel, erlaubt die Auflösung wasserlöslicher Filter und Pigmente sowie weiterer wasserlöslicher Wirkstoffe, verleiht dem Stift eine angenehme Sensorik und erlaubt es, kostengünstigere Rezepturen im Vergleich zu reinen Fettstiften anzubieten.

Aber auch die kosmetischen Eigenschaften der erfindungsgemäßen wasserreichen Stifte erweisen sich gegenüber denen des Standes der Technik deutlich verbessert. Beispielsweise lässt sich selbst ohne weitere Zusätze eine angenehme Kühlwirkung auf der Haut durch bloßes Auftragen erzielen, was sich insbesondere bei der Verwendung als Sonnenschutzstift, Antiaknestift und Lippenstift angenehm bemerkbar macht.

Bei der Verwendung als dekorative Lippenstifte, Kajalstifte, Foundationstifte, Lidschattenstifte, Abdeckstifte machen sich deutliche Verbesserungen gegenüber dem Stande der Technik dadurch bemerkbar, daß beispielsweise zur Herstellung dieser Stifte





es möglich ist, wasserdispergierbares Titandioxid einzusetzen beziehungsweise auch Kombinationen aus lipiddispergierbaren und wasserdispergiebaren Metalloxiden.

Die Herstellung erfindungsgemäßer Stifte ist dabei sehr einfach, da es sich um ein Ein-Schritt-Verfahren handelt, bei der beispielsweise die Wasserphase zur heißen Fettphase gegeben und anschließend auf Raumtemperatur abgekühlt wird.

Ferner zeichnet sich das erfindungsgemäße Verfahren dadurch aus, daß zur Herstellung der erfindungsgemäßen Stifte eine Vielzahl von Emulgatoren beziehungsweise Ölkomponenten eingesetzt werden können.

Es hat sich in erstaunlicher Weise herausgestellt, daß die erfindungsgemäß verwendeten wasserlöslichen und/oder mit Wasser quellbaren Polymere darüber hinaus die Hautfreundlichkeit der erfindungsgemäßen kosmetischen Zubereitungen erhöhen. Es wird ein angenehmeres Gefühl beim Auftragen der Stiftmasse auf die Haut erzielt.

Die Wassermenge kann bis zu etwa 85 Gew.-% betragen, bezogen auf das Gesamtgewicht der Zubereitungen, wobei üblicherweise optimale Wassergehalte im Bereich zwischen 30 und 80 Gew.-%, bevorzugt zwischen 50 und 75 Gew.-% gewählt werden. Gewünschtenfalls kann der Mindestwassergehalt zwar 10 Gew.-% unterschreiten. Es ist aber von größerem Vorteil, erfindungsgemäße Emulsionsstifte mit Gehalt von über 10 Gew.-% Wasser auszustatten insbesondere dann, wenn wasserlösliche oder wasserdispergierbare Wirkstoffe wie Hautbefeuchtungsmittel, UV-Filter, Abdeckpigmente, und wasserdispergierbare Pigmente in dem Fachmann bekannten Konzentrationen eingesetzt werden sollen.



Als Hautbefeuchtungsmittel lassen sich vorteilhaft Glycerin, Chitosan, Fucogel, Propylenglycol, Dipropylenglycol, Butylenglycol, Mannitol, Milchsäure, Natriumpyrolidoncarbonsäure, Hyaluronsäure, Salze der angegebenen Säuren sowie Glycin, Harnstoff und Salze von Metallen der ersten und zweiten Hauptgruppe verwenden.

Besonders geeignet sind Glycerin, Milchsäure, Butylenglycol, Harnstoff, Hyaluronsäure.

Der Gehalt an Hautbefeuchtungsmitteln beträgt vorteilhaft 3 Gew.-% bis 60 Gew.-%, vorzugsweise 4 bis 50 Gew.-%, insbesondere 5 bis 40 Gew.-%, bezogen auf das Gesamtgewicht der Zubereitungen.

Ferner zeichnet sich das erfindungsgemäße Verfahren dadurch aus, daß zur Herstellung der erfindungsgemäßen Stifte eine Vielzahl von Emulgatoren beziehungsweise Ölkomponenten eingesetzt werden können.

Der erfindungsgemäß verwendete W/O-Emulgator bzw. die W/O-Emulgatoren aus der Substanzgruppe A-B-A' wird oder werden erfindungsgemäß vorteilhaft gewählt aus der Gruppe der Substanzen der allgemeinen Formel

$$A \longrightarrow O \left( \begin{array}{ccc} CH - X - CH \longrightarrow O \\ R_1 & R_2 \end{array} \right) A'$$

- A und A' gleiche oder verschiedene hydrophobe organische Reste darstellen,
- a eine Zahl von 1 bis 100, vorzugsweise 2 bis 60, insbesondere 5 bis 40 darstellt,
- X eine Einfachbindung oder die Gruppe

darstellt,

- R<sub>1</sub> und R<sub>2</sub> unabhängig voneinander aus der Gruppe H, Methyl gewählt werden daß aber nicht beide Reste gleichzeitig Methyl darstellen,
- R<sub>3</sub> gewählt wird aus der Gruppe H, sowie der verzweigten und unverzweigten, gesättigten und ungesättigten Alkyl- und Acylreste mit 1 20 Kohlenstoffatomen.

Die Strukturformel ist nicht so zu interpretieren, daß durch den Index a alle in der Klammer repräsentierten Reste R<sub>1</sub>, R<sub>2</sub> bzw R<sub>3</sub> im gesamten Molekül jeweils gleich sein müssen. Vielmehr können diese Reste in jedem der a Fragmente



### frei gewählt werden

Die Reste A und A' werden vorteilhaft gewählt aus der Gruppe der verzweigten und unverzweigten, gesättigten und ungesättigten Alkyl- und Acylreste und Hydroxyacylreste mit 10 - 30 Kohlenstoffatomen sowie ferner aus der Gruppe der über Esterfunktionen miteinander verbundenen Hydroxyacylgruppen, nach dem Schema

wobei R' gewählt wird aus der Gruppe der verzweigten und unverzweigten Alkylgruppen mit 1 bis 20 Kohlenstoffatomen und R" gewählt wird aus der Gruppe der verzweigten und unverzweigten Alkylengruppen mit 1 bis 20 Kohlenstoffatomen und b Zahlen von 0 bis 200 annehmen kann.

Beispiele für besonders vorteilhaft im Sinne der vorliegenden Erfindung zu verwendende W/O-Emulgatoren des A-B-A'-Typs sind PEG-30-Dipolyhydroxystearat, Decaglycerylheptaoleat, Polyglyceryl-3-Diisostearat, PEG-8-Distearat, Diglycerindipolyhydroxystearat.

Erfindungsgemäß können der oder die W/O-Emulgatoren allerdings auch gewählt werden aus der Gruppe Fettalkohole mit 8 - 30 Kohlenstoffatomen, Monoglycerinester gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkancarbonsäuren oder Hydroxycarbonsäuren einer Kettenlänge von 8 - 24, insbesondere 12 - 18 C-Atomen,

Diglycerinester gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkancarbonsäuren oder Hydroxycarbonsäuren einer Kettenlänge von 8 - 24, insbesondere 12 - 18 C-Atomen, Triglycerinester gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkancarbonsäuren oder Hydroxycarbonsäuren Kettenlänge von 8 - 24, insbesondere 12 - 18 C-Atomen, Polyglycerinester gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkancarbonsäuren oder Hydroxycarbonsäuren einer Kettenlänge von 8 - 24, insbesondere 12 - 18 C-Atomen mit bis zu 10 Glycerineinheiten, Monoglycerinether gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkohole einer Kettenlänge von 8 - 24, insbesondere 12 - 18 C-Atomen, Diglycerinether gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkohole einer Kettenlänge von 8 - 24, insbesondere 12 - 18 C-Atomen, Triglycerinether gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkohole einer Kettenlänge von 8 - 24, insbesondere 12 - 18 C-Atomen, Polyglycerinether gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkancarbonsäuren oder Hydroxycarbonsäuren einer Kettenlänge von 8 - 24, insbesondere 12 - 18 C-Atomen mit bis zu 10 Glycerineinheiten, Propylenglycolester gesättigter und/oder ungeverzweigter und/oder unverzweigter Alkancarbonsäuren Hydroxycarbonsäuren einer Kettenlänge von 8 - 24, insbesondere 12 - 18 C-Atomen, Sorbitanester gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkancarbonsäuren oder Hydroxycarbonsäuren einer Kettenlänge von 8 - 24, insbesondere 12 - 18 C-Atomen, Sorbitanester von Polyolen, insbesondere des Glycerins, Pentaerythritylester gesättigter und/oder ungesättigter, verzweigter unverzweigter Alkancarbonsäuren oder Hydroxycarbonsäuren einer Kettenlänge von 8 -24, insbesondere 12 - 18 C-Atomen, Methylglucose Ester gesättigter und/oder ungesättigter. verzweigter und/oder unverzweigter Alkancarbonsäuren Hydroxycarbonsäuren einer Kettenlänge von 8 - 24, insbesondere 12 - 18 C-Atomen, Polyglycerin Methylglucose Ester gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkancarbonsäuren oder Hydroxycarbonsäuren einer Kettenlänge von 8 - 24, insbesondere 12 - 18 C-Atomen, Cetyl Dimethicon Copolyole, Alkyl Methicone Copolyole, Alkyl Diemethicone Ethoxy Glucoside.

Es kann erfindungsgemäß von Vorteil sein, daß die vorstehend genannten Typen von W/O-Emulgatoren zusätzlich polyethoxyliert und/oder polypropoxyliert sind, oder daß auch andere polyethoxylierte und/oder polypropoxylierte Produkte Verwendung finden,

beispielsweise polyethoxyliertes hydrogeniertes oder nichthydrogeniertes Ricinusöl, ethoxyliertes Cholesterin, ethoxlierte Fettalkohole wie Steareth- 2, ethoxylierte Fettsäuren, ethoxylierte Dicarbonsäuren, ethoxylierte Wachse wie PEG (-6, -8, -12, -20) Bienenwachs, PEG (-6, -8, - 20 Sorbitanbienenwachs), ethoylierte Carnaubawachse (PEG-12 Carnaubawachs).

Insbesondere vorteilhafte W/O-Emulgatoren sind Glyceryllanolat, Glycerylmonostearat, Glycerylmonoisostearat, Glycerylmonomyristat, Glycerylmonooleat, Diglycerylmonostearat, Diglycerylmonoisostearat, Diglyceryldiisostearat, Propylenglycolmonostearat, Propylenglycolmonoisostearat, Propylenglycolmonocaprylat, Propylenglycolmonolaurat, Sorbitanmonoisostearat, Sorbitanmonolaurat, Sorbitanmonoisostearat, Cetylalkohol, Stearylalkohol, Arachidylalkohol, Behenylalkohol, Isobehenylalkohol, 2-Ethylhexylglycerinether, Selachylalkohol, Chimylalkohol, Polyethylenglycol(2)stearylether (Steareth-2), Glycerylmonolaurat, Glycerylmonocaprinat, Glycerylmonocaprylat, Glycerylsorbitanstearat Polyglyceryl-4 Isostearat, Polyglyceryl-2-sesquiisostearat, PEG-7 hydrogeniertes Castoröl, PEG-40-Sorbitanperisostearat, Isostearyldiglycerylsuccinat, PEG-5-Cholesterylether.

Der erfindungsgemäß verwendete W/O-Emulgator bzw. die erfindungsgemäß verwendeten W/O-Emulgatoren, welcher oder welche in das Schema A-B-A' passen, liegt bzw. liegen vorteilhaft in Konzentrationen von 0,1 - 25 Gew.-% vor, wobei es allerdings möglich und vorteilhaft ist, den Gehalt an Emulgatoren niedrig zu halten, etwa bis 5 Gew.-%, jeweils bezogen auf das Gesamtgewicht der Zusammensetzung. Es ist vorteilhaft, die Gesamtkonzentration der W/O-Emulgatoren, was auch diejenigen Emulgatoren einschließt, die nicht in das Schema A-B-A' passen, nicht größer als etwa 25 - 30 Gew.-% und nicht geringer als etwa 0,1 Gew.-% zu wählen, jeweils bezogen auf das Gesamtgewicht der Zubereitungen.

Es kann erfindungsgemäß von Vorteil sein, daß die vorstehend genannten Typen von W/O-Emulgatoren zusätzlich polyethoxyliert und/oder polypropoxyliert sind, oder daß auch andere polyethoxylierte und/oder polypropoxylierte Produkte Verwendung finden, beispielsweise polyethoxyliertes hydrogeniertes oder nichthydrogeniertes Ricinusöl, ethoxyliertes Cholesterin, ethoxlierte Fettalkohole wie Steareth- 2.

Vorteilhaft können erfindungsgemäße Emulsionen auch Stabilisatoren enthalten. Diese werden vorteilhaft gewählt aus der Gruppe der Substanzen der allgemeinen Formel

$$A''' \longrightarrow O \left( \begin{array}{ccc} CH - X - CH - O \\ R_1 & R_2 \end{array} \right) A''''$$
a , wobei

- A" und A" gleiche oder verschiedene hydrophobe organische Reste darstellen,
- a eine Zahl von 1 bis 100, vorzugsweise 2 bis 60, darstellt,
- X eine Einfachbindung oder die Gruppe

- darstellt,
- R<sub>1</sub> und R<sub>2</sub> unabhängig voneinander aus der Gruppe H, Methyl gewählt werden daß aber nicht beide Reste gleichzeitig Methyl darstellen,
- R<sub>3</sub> gewählt wird aus der Gruppe H, sowie der verzweigten und unverzweigten, gesättigten und ungesättigten Alkyl- und Acylreste mit 1 20 Kohlenstoffatomen.

Die Strukturformel ist nicht so zu interpretieren, daß durch den Index a alle in der Klammer repräsentierten Reste R<sub>1</sub>, R<sub>2</sub> bzw R<sub>3</sub> im gesamten Molekül jeweils gleich sein müssen. Vielmehr können diese Reste in jedem der a Fragmente

frei gewählt werden.

Die Reste A" und A" können gleich oder verschieden sein und werden bevorzugt gewählt aus der Gruppe

wobei  $R_8$  und  $R_9$  gleich oder verschieden sein können und gewählt werden aus der Gruppe der gesättigten und ungesättigten Alkyl- und Acylreste mit 1 - 30 Kohlenstoffatomen, peine Zahl von 1 - 20 darstellt und Y eine Einfachbindung oder die Gruppe

darstellt, wobei R<sub>3</sub> gewählt wird aus der Gruppe H, sowie der verzweigten und unverzweigten, gesättigten und ungesättigten Alkyl- und Acylreste mit 1 - 30 Kohlenstoffatomen.(alt)

Bevorzugter Stabilisator ist das PEG-45 /Dodecylglycolcopolymer, welches die Struktur

besitzt. Es wird von der Gesellschaft Akzo Nobel Chemicals GmbH unter der Bezeichnung ELFACOS® ST 9 angeboten. Aber auch das entsprechende PEG-22 / Dodecylgly-colcoplymer ist vorteilhaft zu verwenden.

Ferner können die Gruppe A" und A"unabhängig voneinander auch Alkylreste oder Acylreste darstellen. Besonders vorteilhaft ist auch als Stabilisator das Methoxy-PEG-22-Dodecyl Glycol Copolymer zu verwenden. Es wird von der Gesellschaft Akzo Nobel Chemicals GmbH unter der Bezeichnung ELFACOS® E 200 angeboten.

Der Stabilisator bzw. die Stabilisatoren liegen vorteilhaft in Konzentrationen von 0,01 - 25 Gew.-% vor, wobei es allerdings möglich und vorteilhaft ist, den Gehalt an Stabilisatoren niedrig zu halten, etwa bis 5 Gew.-%, jeweils bezogen auf das Gesamtgewicht der Zusammensetzung.

Es ist insbesondere dann vorteilhaft, Stabilisatoren zu wählen, wenn erfindungsgemäße Zubereitungen einen hohen Gehalt an destabilisierenden Substanzen, beispielsweise Lichtschutzfilter enthalten sollen. Ist der Gehalt an destabilisierenden Substanzen gering, kann man auf den Stabilisator verzichten.

Außerdem können die erfindungsgemäßen Emulsionen Farbstoffe und/oder Pigmente enthalten. Die Farbstoffe und -pigmente können aus der entsprechenden Positivliste der Kosmetikverordnung bzw. der EG-Liste kosmetischer Färbemittel ausgewählt werden. In den meisten Fällen sind sie mit den für Lebensmittel zugelassenen Farbstoffen identisch. Pigmente können organischen und anorganischen Ursprungs sein, wie beispielsweise organische vom Azo-Typ, Indigoide, Triphenylmethan-artige, Anthrachinone, und Xanthin Farbstoffe, die als D&C and FD&C blues, browns, greens, oranges, reds, yellows bekannt sind. Anorganische Pigmente bestehen aus unlöslichen Salzen von zertifizierten Farbstoffen, die als Lakes oder Eisenoxide bezeichnet werden. Beispielsweise können Barium lakes, calcium lakes, aluminum lakes, titandioxide, mica and iron oxides Verwendung finden. Als Al-Salze sind z.B Red 3 Aluminum Lake, Red 21 Aluminum Lake, Red 27 Aluminum Lake, Red 28 Aluminum Lake, Red 33 Aluminum Lake, Yellow 5 Aluminum Lake, Yellow 6 Aluminum Lake, Yellow 10 Aluminum Lake, Orange 5 Aluminum Lake, Blue 1 Aluminum Lake und Kombinationen einsetzbar.

Als Eisenoxide oder —oxidhydrate sind z.B. cosmetic yellow oxide C22-8073 (Sunchemical) cosmetic oxide MC 33-120 (Sunchemical), cosmetic brown oxide C33-115 (Nordmann& Rassmann), cosmetic russet oxide C33-8075 (Sunchemical) bekannt und gegebenfalls vorteilhaft. Als Alumosilicat ist ultramarinblau (Les colorants Wacker) einsetzbar.

Vorteilhafte Farbpigmente sind weiterhin Titandioxid, Glimmer, Eisenoxide (z. B. Fe<sub>2</sub>O<sub>3</sub>, Fe<sub>3</sub>O<sub>4</sub>, FeO(OH)) und/oder Zinnoxid. Vorteilhafte Farbstoffe sind beispielsweise Carmin, Berliner Blau, Chromoxidgrün, Ultramarinblau und/oder Manganviolett. Es ist insbesondere vorteilhaft, die Farbstoffe und/oder Farbpigmente aus der folgenden Liste zu wählen. (Die Stoffe sind nach ihrer Colour Index Number geordnet.)

| Colour Index | Deutsche Bezeichnung           | CAS-Nr. bzw. Summenfor-                                                                                        |  |
|--------------|--------------------------------|----------------------------------------------------------------------------------------------------------------|--|
| Number       |                                | mel                                                                                                            |  |
| 10316        | C-ext. Gelb 1                  | 846-70-8                                                                                                       |  |
| 12075        | C-Orange                       | 3468-63-1                                                                                                      |  |
| 14700        | C-Rot 57                       | 4548-53-2                                                                                                      |  |
| 15510        | C-ext.0range 8                 | 633-96-5                                                                                                       |  |
| 15585        | C-Rot 55                       | 2092-56-0                                                                                                      |  |
| 15585:1      | C-Rot 55                       | 5160-02-1                                                                                                      |  |
| 15800:1      | C-ext. Rot 57                  | 6371-76-2                                                                                                      |  |
| 15850        | Lithol Rubin 8                 | 5858-81-1                                                                                                      |  |
| 15850:1      | C-Rot 12                       | 5281-04-9                                                                                                      |  |
| 15880:1      | C-ext. Rot 61                  | 6417-83-0                                                                                                      |  |
| 15980        | C-Orange 9                     | C <sub>16</sub> H <sub>10</sub> N <sub>2</sub> O <sub>7</sub> S <sub>2</sub> 2Na                               |  |
| 15985        | C-Orange 10                    | 2783-94-0                                                                                                      |  |
| 16035        | C-Rot 60                       | 29956-17-6                                                                                                     |  |
| 17200        | C-Rot 58                       | C <sub>16</sub> H <sub>13</sub> N <sub>3</sub> O <sub>7</sub> S <sub>2</sub> 2Na                               |  |
| 19140        | C-Gelb 10                      | 1934-21-0                                                                                                      |  |
| 20170        | C-ext. Braun 4                 | 1320-07-6                                                                                                      |  |
|              |                                | 6371-84-2                                                                                                      |  |
| 26100        | C-ext. Rot 56                  | 85-86-9                                                                                                        |  |
| 42053        | C-Grün 12                      | C <sub>37</sub> H <sub>36</sub> N <sub>2</sub> O <sub>10</sub> S <sub>3</sub> 2Na                              |  |
| 42090        | C-Blau 21                      | 2650-18-2                                                                                                      |  |
| 42090        | C-Blau 21                      | 2650-18-2                                                                                                      |  |
|              | (Ammonium Salz)                | 6371-85-3                                                                                                      |  |
|              |                                | 37307-56-5                                                                                                     |  |
| 45170        | C-Rot 59                       | 81-88-9                                                                                                        |  |
| 45170:1      | (Rhodamin B-stearat)           | C <sub>28</sub> H <sub>31</sub> N <sub>2</sub> O <sub>3</sub> · C <sub>18</sub> H <sub>35</sub> O <sub>2</sub> |  |
| 45370:1      | C-Rot 27                       | C <sub>20</sub> H <sub>10</sub> Br <sub>2</sub> O <sub>5</sub>                                                 |  |
| 45380        | C-Rot 30                       | 17372-87-1                                                                                                     |  |
| 45380:2      | Tetrabromfluoreszein           | 15086-94-9                                                                                                     |  |
| 45410        | C-Rot 34                       | 18472-87-2                                                                                                     |  |
| 45410:1      | Tetrabromtetrachlorfluoreszein | 13473-26-2                                                                                                     |  |
| 45425        | C-Rot 35                       | C <sub>20</sub> H <sub>10</sub> I <sub>2</sub> O <sub>5</sub> 2Na                                              |  |

| Colour Index | Deutsche Bezeichnung | CAS-Nr. bzw. Summenfor-                                |  |
|--------------|----------------------|--------------------------------------------------------|--|
| Number       |                      | mel                                                    |  |
| 45425:1      | Fluoreszein-Gemisch  | 518-40-7                                               |  |
|              |                      | 38577-97-8                                             |  |
| 47000        | C-ext. Gelb 23       | 8003-22-3                                              |  |
| 47005        | C-Gelb 11            | 8004-92-0                                              |  |
| 59040        | C-ext. Gelb 24       | 6358-69-6                                              |  |
| 60725        | C-ext. Violett 18    | 81-48-1                                                |  |
| 61565        | C-Grün 10            | 128-80-3                                               |  |
| 61570        | C-Grün 11            | 4403-90-1                                              |  |
| 73360        | C-Rot 28             | 2379-74-0                                              |  |
| 75120        | C-Orange 12          | 8015-67-6                                              |  |
| 75130        | C-Orange 11          | 7235-40-7                                              |  |
| 75170        | Guanin               | 68-94-0                                                |  |
|              |                      | 73-40-50                                               |  |
| 75470        | C-Rot 50             | C <sub>22</sub> H <sub>20</sub> O <sub>13</sub>        |  |
| 75480        | Henna                | C <sub>10</sub> H <sub>6</sub> O <sub>3</sub> (Lawson) |  |
| 75810        | C-Grün 8             | 11006-34-1                                             |  |
| 75810        | C-Grün 7             | 479-61-8                                               |  |
|              |                      | 519-62-0                                               |  |
| 77000        | C-Pigment 1          | Al                                                     |  |
| 77007        | C-Blau 16            | 57455-37-5                                             |  |
| 77019        | C-Weiß 11            | 12001-26-2                                             |  |
| 77288        | C-Grün 9             | 1308-38-9                                              |  |
| 77289        | C-Grün 14            | 12001-99-9                                             |  |
| 77400        | Bronze               | 7440-50-8                                              |  |
| 77491        | C-Rot 45             | 1309-37-1                                              |  |
| 77492        | C-Braun 3            | Fe <sub>2</sub> O <sub>3</sub> FeO(OH)                 |  |
|              | (C-Gelb 8)           |                                                        |  |
| 77499        | C-Schwarz 5          | Fe <sub>3</sub> O <sub>4</sub>                         |  |
| 77510/20     | C-Blau 17            | C <sub>6</sub> FeN <sub>6</sub> · 4/3 Fe               |  |
| 77742        | C-Violett 11         | 10101-66-3                                             |  |
| 77820        | C-Pigment 2          | 7440-22-4                                              |  |
| 77891        | C-Weiß 7             | 13463-67-7 (TiO₂)                                      |  |

| Colour Index | Deutsche Bezeichnung | CAS-Nr. bzw. Summenfor- |
|--------------|----------------------|-------------------------|
| Number       |                      | mel                     |
| 77947        | C-Weiß 8             | 1314-13-2               |

Die Farbstoffe und Pigmente können sowohl einzeln als auch im Gemisch vorliegen sowie gegenseitig miteinander beschichtet sein, wobei durch unterschiedliche Beschichtungsdicken im allgemeinen verschiedene Farbeffekte hervorgerufen werden.

Die Liste der genannten Farbstoffe und Farbpigmente, die in den erfindungsgemäßen Emulsionen verwendet werden können, soll selbstverständlich nicht limitierend sein.

Auch Perlglanzpigmente lassen sich in die erfindungsgemäßen Emulsionen einarbeiten. Diese sind beipsielsweise von den Firmen Costenoble (Cloisonne-Typ, Flamenco-Typ, Low Lustre-Typ), Merck (Colorona-Typen, Microna-Typ, Timiron-Typ, Colorona, Ronasphere), Les Colornats Wacker (Covapure, Vert oxyde de Chrome), Cadre (Colorona, Sicopearl), BASF (Sicopearl, Sicovit), Rona (Colorona) bekannt.

Als besonders vorteilhaftes Perlglanzpigment haben sich beispielsweise Timiron Silk Gold und Colrona Red Gold bewährt.

Aufgrund des hohen Anteils der Wasserphase erfindungsgemäßer Emulsionen lassen sich sowohl große Mengen hydrophiler, als auch hydrophober Wirkstoffe in die Formulierungen einarbeiten. Derartige erfindungsgemäß vorteilhafte Wirkstoffe sind beispielsweise Acetylsalicylsäure, Azulen, Ascorbinsäure, Vitamin B<sub>1</sub>, das Vitamin B<sub>12</sub> das Vitamin D<sub>1</sub>, aber auch Bisabolol, ungesättigte Fettsäuren, namentlich die essentiellen Fettsäuren (oft auch Vitamin F genannt), insbesondere die γ-Linolensäure, Ölsäure, Eicosapentaënsäure, Docosahexaënsäure, Campher, Extrakte oder andere Produkte pflanzlicher und tierischer Herkunft, z.B. Nachtkerzenöl, Borretschöl oder Johannisbeerkernöl, Fischöle, Lebertran aber auch Ceramide und ceramidähnliche Verbindungen und so weiter.

Zusätzlich können Pflegewirkstoffe eingearbeitet werden, welche sich nicht wie bisher auf die fettlöslichen Wirkstoffe beschränken, sondern auch aus der Gruppe der wasser-

löslichen Wirkstoffe gewählt werden können, beispielsweise Vitamine und dergleichen mehr.

Besonders bevorzugte Wirkstoffe im Sinne der vorliegenden Erfindung sind  $\alpha$ -Glucosylrutin, Coenzym Q10, 3-Hydroxy-4-(trimethylammonio)-buttersäurebetain und Sericosid.

Vorteilhafte Wirkstoffe sind weiterhin Antioxidantien, insbesondere solche, welche nicht nur die Bestandteile der Formulierung, sondern auch die Haut vor oxidativer Beanspruchung schützen können.

1 D

Die Zubereitungen enthalten daher vorteilhaft eines oder mehrere Antioxidantien. Als günstige, aber dennoch fakultativ zu verwendende Antioxidantien können alle für kosmetische und/oder dermatologische Anwendungen geeigneten oder gebräuchlichen Antioxidantien verwendet werden. Es ist dabei vorteilhaft, Antioxidantien als einzige Wirkstoffklasse zu verwenden, etwa dann, wenn eine kosmetische oder dermatologische Anwendung im Vordergrunde steht wie die Bekämpfung der oxidativen Beanspruchung der Haut. Es ist aber auch günstig, die erfindungsgemäßen W/O-Emulsionsstifte mit einem Gehalt an einem oder mehreren Antioxidantien zu versehen, wenn die Zubereitungen einem anderen Zwecke dienen sollen, z.B. als Desodorantien oder Sonnenschutzmittel.



Besonders vorteilhaft werden die Antioxidantien gewählt aus der Gruppe, bestehend aus Aminosäuren (z.B. Glycin, Histidin, Tyrosin, Tryptophan) und deren Derivate, Imidazole (z.B. Urocaninsäure) und deren Derivate, Peptide wie D,L-Carnosin, D-Carnosin, L-Carnosin und deren Derivate (z.B. Anserin), Carotinoide, Carotine (z.B. α-Carotin, β-Carotin, Lycopin) und deren Derivate, Liponsäure und deren Derivate (z.B. Dihydroliponsäure), Aurothioglucose, Propylthiouracil und andere Thiole (z.B. Thioglycerin, Thiosorbitol, Thioglycolsäure, Thioredoxin, Glutathion, Cystein, Cystin, Cystamin und deren Glycosyl-, N-Acetyl-, Methyl-, Ethyl-, Propyl-, Amyl-, Butyl- und Lauryl-, Palmitoyl-, Oleyl-,γ-Linoleyl-, Cholesteryl - und Glycerylester) sowie deren Salze, Dilaurylthiodipropionat, Distearylthiodipropionat, Thiodipropionsäure und deren Derivate (Ester, Ether, Peptide, Lipide, Nukleotide, Nukleoside und Salze) sowie Sulfoximinverbindungen (z.B. Buthioninsulfoximine, Homocysteinsulfoximin, Buthioninsulfone, Pentat-, Hexa-, Heptahioninsulfoximin) in sehr geringen verträglichen Dosierungen (z.B. pmol bis μmol/kg), ferner

(Metall)-Chelatoren (z.B.  $\alpha$ -Hydroxyfettsäuren, Palmitinsäure, Phytinsäure, Lactoferrin), Zitronensäure, Milchsäure, Apfelsäure), Huminsäure, α-Hydroxysäuren (z.B. Gallensäure, Gallenextrakte, Bilirubin, Biliverdin, EDTA, EGTA und deren Derivate, ungesättigte Fettsäuren und deren Derivate (z.B. gamma-Linolensäure, Linolsäure, Ölsäure), Folsäure und deren Derivate, Ubichinon und Ubichinol deren Derivate, Vitamin C und Derivate (z.B. Ascorbylpalmitate, Mg - Ascorbylphosphate, Ascorbylacetate), Isoascorbinsäure und ihre Derivate, Tocopherole und Derivate (z.B. Vitamin E - acetat), Vitamin A und Derivate (Vitamin A - palmitat) sowie Koniferylbenzoat des Benzoeharzes, Rutinsäure und deren Derivate, Ferulasäure und deren Derivate, Butylhydroxytoluol, Nordihydroguajaretsäure, Nordihydroguajakharzsäure, Butylhydroxyanisol, Trihydroxybutyrophenon, Harnsäure und deren Derivate, Mannose und deren Derivate, Zink und dessen Derivate (z.B. ZnO, ZnSO<sub>4</sub>) Selen und dessen Derivate (z.B. Selenmethionin), Stilbene und deren Derivate (z.B. Stilbenoxid, Trans-Stilbenoxid) und die erfindungsgemäß geeigneten Derivate (Salze, Ester, Ether, Zucker, Nukleotide, Nukleoside, Peptide und Lipide) dieser genannten Wirkstoffe.

Besonders vorteilhaft im Sinne der vorliegenden Erfindung können zwar öllösliche oder öldispergierbare Antioxidantien eingesetzt werden. Es hat sich jedoch herausgestellt, daß die Erfindung gerade dem Einsatz wasserlöslicher oder wasserdispergierbarer Antioxidantien in Stiftformulierungen die Pforten öffnet.

Die Menge der Antioxidantien (eine oder mehrere Verbindungen) in den Zubereitungen beträgt vorzugsweise 0,001 bis 30 Gew.-%, besonders bevorzugt 0,05 - 20 Gew.-%, insbesondere 1 - 10 Gew.-%, bezogen auf das Gesamtgewicht der Zubereitung.

Sofern Vitamin E und/oder dessen Derivate das oder die Antioxidantien darstellen, ist es vorteilhaft, deren jeweilige Konzentrationen aus dem Bereich von 0,001 - 10 Gew.-%, bezogen auf das Gesamtgewicht der Formulierung, zu wählen.

Sofern Vitamin A, bzw. Vitamin-A-Derivate, bzw. Carotine bzw. deren Derivate das oder die Antioxidantien darstellen, ist vorteilhaft, deren jeweilige Konzentrationen aus dem Bereich von 0,001 - 10 Gew.-%, bezogen auf das Gesamtgewicht der Formulierung, zu wählen.

Erfindungsgemäß können Wirkstoffe auch sehr vorteilhaft gewählt werden aus der Gruppe der lipophilen Wirkstoffe, insbesondere aus folgender Gruppe:

Acetylsalicylsäure, Atropin, Azulen, Hydrocortison und dessen Derivaten, z.B. Hydrocortison-17-valerat, Vitamine, z.B. Ascorbinsäure und deren Derivate, Vitamine der B- und D-Reihe, sehr günstig das Vitamin B<sub>1</sub>, das Vitamin B<sub>12</sub> das Vitamin D<sub>1</sub>, aber auch Bisabolol, ungesättigte Fettsäuren, namentlich die essentiellen Fettsäuren (oft auch Vitamin F genannt), insbesondere die γ-Linolensäure, Ölsäure, Eicosapentaënsäure, Docosahexaënsäure und deren Derivate, Chloramphenicol, Coffein, Prostaglandine, Thymol, Campher, Extrakte oder andere Produkte pflanzlicher und tierischer Herkunft, z.B. Nachtkerzenöl, Borretschöl oder Johannisbeerkernöl, Fischöle, Lebertran aber auch Ceramide und ceramidähnliche Verbindungen und so weiter. Besonders bevorzugt ist der Einsatz von Vitamin E und/oder Derivate sowie alpha-Glucosylrutin.

Vorteilhaft ist es auch, die Wirkstoffe aus der Gruppe der rückfettenden Substanzen zu wählen, beispielsweise Purcellinöl®, Eucerit® und Neocerit®.

Die erfindungsgemäßen Stifte tragen ferner in vorzüglicher Weise zur Hautglättung bei, insbesondere, wenn sie mit einer oder mehreren Substanzen versehen sind, die die Hautglättung fördern.

Eine erstaunliche Eigenschaft der erfindungsgemäße Zubereitungen ist, daß diese sehr gute Vehikel für kosmetische oder dermatologische Wirkstoffe in die Haut sind, wobei bevorzugte Wirkstoffe Antioxidantien sind, welche die Haut vor oxidativer Beanspruchung schützen können. Bevorzugte Antioxidantien sind dabei Vitamin E und dessen Derivate sowie Vitamin A und dessen Derivate



Besonders vorteilhaft werden der oder die Wirkstoffe ferner gewählt aus der Gruppe der NO-Synthasehemmer, insbesondere wenn die erfindungsgemäßen Zubereitungen zur Behandlung und Prophylaxe der Symptome der intrinsischen und/oder extrinsischen Hautalterung sowie zur Behandlung und Prophylaxe der schädlichen Auswirkungen ultravioletter Strahlung auf die Haut dienen sollen.

Bevorzugter NO-Synthasehemmer ist das Nitroarginin.

Weiter vorteilhaft werden der oder die Wirkstoffe gewählt aus der Gruppe, welche Catechine und Gallensäureester von Catechinen und wäßrige bzw. organische Extrakte aus Pflanzen oder Pflanzenteilen umfaßt, die einen Gehalt an Catechinen oder Gallensäureestern von Catechinen aufweisen, wie beispielsweise den Blättern der Pflanzenfamilie Theaceae, insbesondere der Spezies Camellia sinensis (grüner Tee). Insbesondere vorteilhaft sind deren typische Inhaltsstoffe (wie z. B. Polyphenole bzw. Catechine, Coffein, Vitamine, Zucker, Mineralien, Aminosäuren, Lipide).

Catechine stellen eine Gruppe von Verbindungen dar, die als hydrierte Flavone oder Anthocyanidine aufzufassen sind und Derivate des "Catechins" (Catechol, 3,3',4',5,7-Flavanpentaol, 2-(3,4-Dihydroxyphenyl)-chroman-3,5,7-triol) darstellen. Auch Epicatechin ((2R,3R)-3,3',4',5,7-Flavanpentaol) ist ein vorteilhafter Wirkstoff im Sinne der vorliegenden Erfindung.

Vorteilhaft sind ferner pflanzliche Auszüge mit einem Gehalt an Catechinen, insbesondere Extrakte des grünen Tees, wie z. B. Extrakte aus Blättern der Pflanzen der Spezies Camellia spec., ganz besonders der Teesorten Camellia sinenis, C. assamica, C. taliensis bzw. C. irrawadiensis und Kreuzungen aus diesen mit beispielsweise Camellia japonica.

Bevorzugte Wirkstoffe sind ferner Polyphenole bzw. Catechine aus der Gruppe (-)-Catechin, (+)-Catechin, (-)-Catechingallat, (-)-Gallocatechingallat, (+)-Epicatechin, (-)-Epicatechin, (-)-Epigallocatechin, (-)-Epigallocatechingallat.

Auch Flavon und seine Derivate (oft auch kollektiv "Flavone" genannt) sind vorteilhafte Wirkstoffe im Sinne der vorliegenden Erfindung. Sie sind durch folgende Grundstruktur gekennzeichnet (Substitutionspostitionen angegeben):







Einige der wichtigeren Flavone, welche auch bevorzugt in erfindungsgemäßen Zubereitungen eingesetz werden können, sind in der nachstehenden Tabelle aufgeführt:

|            | OH-Substitutionspositionen |   |   |          |    |    |    |    |
|------------|----------------------------|---|---|----------|----|----|----|----|
|            | 3                          | 5 | 7 | 8        | 2' | 3' | 4' | 5' |
| Flavon     | -                          | _ | - | -        |    | _  | -  | -  |
| Flavonol   | +                          | - | - | -        | _  | _  | -  | -  |
| Chrysin    | -                          | + | + | -        | -  | -  | -  | -  |
| Galangin   | +                          | + | + | -        |    | -  |    |    |
| Apigenin   | -                          | + | + | _        | -  | -  | +  | _  |
| Fisetin    | +                          | - | + | -        |    | +  | +  | _  |
| Luteolin   | -                          | + | + | -        | -  | +  | .+ | ,  |
| Kämpferol  | +                          | + | + | -        | -  | _  | +  | _  |
| Quercetin  | +                          | + | + | -        | -  | +  | +  | -  |
| Morin      | +                          | + | + | -        | +  | -  | +  | -  |
| Robinetin  | +                          | - | + | -        | -  | +  | +  | +  |
| Gossypetin | +                          | + | + | +        | _  | +  | +  | _  |
| Myricetin  | +                          | + | + | <b>-</b> | -  | +  | +  | +  |

In der Natur kommen Flavone in der Regel in glycosidierter Form vor.

Erfindungsgemäß werden die Flavonoide bevorzugt gewählt gewählt aus der Gruppe der Substanzen der generischen Strukturformel



wobei Z<sub>1</sub> bis Z<sub>7</sub> unabhängig voneinander gewählt werden aus der Gruppe H, OH, Alkoxysowie Hydroxyalkoxy-, wobei die Alkoxy- bzw. Hydroxyalkoxygruppen verzweigt und unverzweigt sein und 1 bis 18 C-Atome aufweisen können, und wobei Gly gewählt wird aus der Gruppe der Mono- und Oligoglycosidreste.

Erfindungsgemäß können die Flavonoide aber auch vorteilhaft gewählt werden aus der Gruppe der Substanzen der generischen Strukturformel

$$\begin{array}{c|c} Z_2 \\ Z_1 \\ \hline Z_2 \\ \hline Z_3 \\ \hline Z_4 \\ \hline Z_6 \\ \hline \end{array}$$

wobei Z<sub>1</sub> bis Z<sub>6</sub> unabhängig voneinander gewählt werden aus der Gruppe H, OH, Alkoxysowie Hydroxyalkoxy-, wobei die Alkoxy- bzw. Hydroxyalkoxygruppen verzweigt und unverzweigt sein und 1 bis 18 C-Atome aufweisen können, und wobei Gly gewählt wird aus der Gruppe der Mono- und Oligoglycosidreste.

Bevorzugt können solche Strukturen gewählt werden aus der Gruppe der Substanzen der generischen Strukturformel

wobei Gly<sub>1</sub>, Gly<sub>2</sub> und Gly<sub>3</sub> unabhängig voneinander Monoglycosidreste oder darstellen. Gly<sub>2</sub> bzw. Gly<sub>3</sub> können auch einzeln oder gemeinsam Absättigungen durch Wasserstoffatome darstellen.

Bevorzugt werden Gly<sub>1</sub>, Gly<sub>2</sub> und Gly<sub>3</sub> unabhängig voneinander gewählt aus der Gruppe der Hexosylreste, insbesondere der Rhamnosylreste und Glucosylreste. Aber auch andere Hexosylreste, beispielsweise Allosyl, Altrosyl, Galactosyl, Gulosyl, Idosyl, Mannosyl und Talosyl sind gegebenenfalls vorteilhaft zu verwenden. Es kann auch erfindungsgemäß vorteilhaft sein, Pentosylreste zu verwenden.

Vorteilhaft werden Z₁ bis Z₅ unabhängig voneinander gewählt aus der Gruppe H, OH, Methoxy-, Ethoxy- sowie 2-Hydroxyethoxy-, und die Flavonglycoside haben die Struktur

$$Z_1$$
 $Z_2$ 
 $Z_3$ 
 $Z_4$ 
 $Z_5$ 
 $Z_6$ 
 $Z_6$ 
 $Z_6$ 
 $Z_6$ 
 $Z_7$ 
 $Z_8$ 
 $Z_8$ 

Besonders vorteilhaft werden die erfindungsgemäßen Flavonglycoside aus der Gruppe, welche durch die folgende Struktur wiedergegeben werden:

$$\begin{array}{c|c} Z_2 \\ \hline \\ OH \\ O \\ \hline \\ OH \\ O \\ Gly_1 \\ \hline \\ Gly_2 \\ Gly_3 \\ \end{array}$$



wobei Gly<sub>1</sub>, Gly<sub>2</sub> und Gly<sub>3</sub> unabhängig voneinander Monoglycosidreste oder darstellen. Gly<sub>2</sub> bzw. Gly<sub>3</sub> können auch einzeln oder gemeinsam Absättigungen durch Wasserstoffatome darstellen.

Bevorzugt werden Gly<sub>1</sub>, Gly<sub>2</sub> und Gly<sub>3</sub> unabhängig voneinander gewählt aus der Gruppe der Hexosylreste, insbesondere der Rhamnosylreste und Glucosylreste. Aber auch andere Hexosylreste, beispielsweise Allosyl, Altrosyl, Galactosyl, Gulosyl, Idosyl, Mannosyl und Talosyl sind gegebenenfalls vorteilhaft zu verwenden. Es kann auch erfindungsgemäß vorteilhaft sein, Pentosylreste zu verwenden.

Besonders vorteilhaft im Sinne der vorliegenden Erfindung ist, das oder die Flavonglycoside zu wählen aus der Gruppe  $\alpha$ -Glucosylrutin,  $\alpha$ -Glucosylmyricetin,  $\alpha$ -Glucosylisoquercitrin,  $\alpha$ -Glucosylisoquercetin und  $\alpha$ -Glucosylquercitrin.

Erfindungsgemäß besonders bevorzugt ist  $\alpha$ -Glucosylrutin.

Erfindungsgemäß vorteilhaft sind auch Naringin (Aurantiin, Naringenin-7-rhamnoglucosid), Hesperidin (3',5,7-Trihydroxy-4'-methoxyflavanon-7-rutinosid, Hesperidosid, Hesperetin-7-O-rutinosid). Rutin (3,3',4',5,7-Pentahydroxyflyvon-3-rutinosid, Quercetin-3-rutinosid, Sophorin, Birutan, Rutabion, Taurutin, Phytomelin, Melin), Troxerutin (3,5-Dihydroxy-3',4',7-tris(2-hydroxyethoxy)-flavon-3-(6-O-(6-deoxy-α-L-mannopyranosyl)-β-D-glucopyranosid)), Monoxerutin (3,3',4',5-Tetrahydroxy-7-(2-hydroxyethoxy)-flavon-3-(6-O-(6-deoxy-α-L-mannopyranosyl)-β-D-glucopyranosid)), Dihydrorobinetin (3,3',4',5',7-Pentahydroxyflavanon), Taxifolin (3,3',4',5,7-Pentahydroxyflavanon), Eriodictyol-7-glucosid (3',4',5,7-Tetrahydroxyflavanon-7-glucosid), Flavanomareïn (3',4',7,8-Tetrahydroxyflavanon-7-glucosid) und Isoquercetin (3,3',4',5,7-Pentahydro-xyflavanon-3-(β-D-Glucopyranosid).

Vorteilhaft ist es auch, den oder die Wirkstoffe aus der Gruppe der Ubichinone und Plastochinone zu wählen.

Ubichinone zeichnen sich durch die Strukturformel

aus und stellen die am weitesten verbreiteten und damit am besten untersuchten Biochinone dar. Ubichinone werden je nach Zahl der in der Seitenkette verknüpften Isopren-Einheiten als Q-1, Q-2, Q-3 usw. oder nach Anzahl der C-Atome als U-5, U-10, U-15 usw. bezeichnet. Sie treten bevorzugt mit bestimmten Kettenlängen auf, z. B. in einigen Mikroorganismen und Hefen mit n=6. Bei den meisten Säugetieren einschließlich des Menschen überwiegt Q10.

Besonders vorteilhaft ist Coenzym Q10, welches durch folgende Strukturformel gekennzeichnet ist:

$$H_3CO$$
 $CH_3$ 
 $H_3CO$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 

Plastochinone weisen die allgemeine Strukturformel

$$H_3C$$
 $H_3C$ 
 $CH_3$ 
 $C$ 

auf. Plastoschinone unterscheiden sich in der Anzahl n der Isopren-Reste und werden endsprechend bezeichnet, z. B. PQ-9 (n=9). Ferner existieren andere Plastochinone mit unterschiedlichen Substituenten am Chinon-Ring.

Auch Kreatin und/oder Kreatinderivate sind bevorzugte Wirkstoffe im Sinne der vorliegenden Erfindung. Kreatin zeichnet sich durch folgende Struktur aus:

$$H_2N$$
 $CH_2$ 
 $CH_3$ 
 $CH_3$ 

Bevorzugte Derivate sind Kreatinphosphat sowie Kreatinsulfat, Kreatinacetat, Krea

Ein weiterer vorteilhafter Wirkstoff ist L-Carnitin [3-Hydroxy-4-(trimethylammonio)-buttersäurebetain]. Auch Acyl-Carnitine, welche gewählt aus der Gruppe der Substanzen der folgenden allgemeinen Strukturformel



wobei R gewählt wird aus der Gruppe der verzweigten und unverzweigten Alkylreste mit bis zu 10 Kohlenstoffatomen sind vorteilhafte Wirkstoffe im Sinne der vorliegenden Erfindung. Bevorzugt sind Propionylcarnitin und insbesondere Acetylcarnitin. Beide Entantiomere (D- und L-Form) sind vorteilhaft im Sinne der vorliegenden Erfindung zu verwenden. Es kann auch von Vorteil sein, beliebige Enantiomerengemische, beispielsweise ein Racemat aus D- und L-Form, zu verwenden.

Weitere vorteilhafte Wirkstoffe sind Sericosid, Pyridoxol, Vitamin K, Biotin und Aromastoffe.

Die Liste der genannten Wirkstoffe bzw. Wirkstoffkombinationen, die in den erfindungsgemäßen Zubereitungen verwendet werden können, soll selbstverständlich nicht limitierend sein. Die Wirkstoffe können einzelnen oder in beliebigen Kombinationen miteinander verwendet werden.



Vorteilhafte Wirkstoffe sind weiterhin Antioxidantien, insbesondere solche, welche nicht nur die Bestandteile der Formulierung, sondern auch die Haut vor oxidativer Beanspruchung schützen können. Besonders vorteilhafte Antioxidantien sind Urocaninsäure, Carnosin, Carotinoide, Carotine, Liponsäure, α-Hydroxyfettsäuren, α-Hydroxysäuren, Ubichinon. Die Menge der Antioxidantien (eine oder mehrere Verbindungen) in den Zubereitungen beträgt vorzugsweise 0,001 bis 30 Gew.-%, besonders bevorzugt 0,05 - 20 Gew.-%, insbesondere 1 - 10 Gew.-%, bezogen auf das Gesamtgewicht der Zubereitung.

Es ist gegebenenfalls möglich und vorteilhaft, die erfindungsgemäßen Zubereitungen als Grundlage für pharmazeutische Formulierungen zu verwenden. Mutatis mutandis gelten entsprechende Anforderungen an die Formulierung medizinischer Zubereitungen. Die Übergänge zwischen reinen Kosmetika und reinen Pharmaka sind dabei fließend. Als pharmazeutische Wirkstoffe sind erfindungsgemäß grundsätzlich alle Wirkstoffklassen geeginet, wobei lipophile Wirkstoffe bevorzugt sind. Beispiele sind: Antihistaminika, Antiphlogistika, Antibiotika, Antimykotika, die Durchblutung fördernde Wirkstoffe, Keratolytika, Antiphlogistika, Antibiotika, Antimykotika, die Durchblutung fördernde Wirkstoffe, Keratolytika, Hormone, Steroide, Vitamine, Hormone, Steroide, Vitamine usw.

Es ist gegebenenfalls möglich und vorteilhaft, in die erfindungsgemäßen Zubereitungen Repellentien einzuarbeiten. Besonders vorteilhafte Repellent-Wirkstoffe im Sinne der vorliegenden Erfindung sind die obengenannten Wirkstoffe N,N-Diethyl-3-methylbenzamid, 3-(N-n-Butyl-N-acetyl-amino)propionsäureethylester, 1-Piperidincarbonsäure-2-(2-hydroxyethyl)-1-methylpropylester und Dimethylphthalat. Weiterhin vorteilhaft ist es Selbstbräuner z.B. Dihydroxyaceton (DHA) einzuarbeiten. Diese lassen sich aufgrund der Anwesenheit einer Wasserphase erstmalig in Stiftformulierungen sehr stabil einarbeiten.

Es ist auch möglich, zusätzliche Substanzen zu verwenden, welche die Konsistenz der erfindungsgemäßen Zubereitungen modifizieren, beispielsweise Verdicker, welche gewählt werden können aus der Gruppe der Substanzen welche mindestens zwei hydrophile Reste tragen, welche über eine hydrophobe Gruppierung miteinander verbunden sind, also den Molekülschemata

Dabei stellen die Reste B mit den verschiedenen Indizes hydrophile Gruppen dar, die Reste A mit den verschiedenen Indizes hydrophobe Gruppen.

Solche Verdicker werden bevorzugt gewählt aus der Gruppe der Triblockcopolymere des Typs

wobei m eine Zahl von 10 bis 10000 darstellen kann,  $R_4$  und  $R_5$  gleich oder verschieden sein können und gewählt werden aus der Gruppe, die durch die allgemeine Struktur

$$\begin{array}{c|c}
--O + CH - CH - O + H \\
R_6 & R_7
\end{array}$$

repräsentiert wird. Dabei können  $R_6$  und  $R_7$  unabhängig voneinander so gewählt werden daß sie H und Methyl, daß aber nicht beide Reste gleichzeitig Methyl darstellen können. q ist eine Zahl von 2 bis 1000, bevorzugt von 10 bis 200.

 $R_4$  und  $R_5$  können auch Polylolreste darstellen (z.B. Glyceryl-, Polyglyceryl-, Sorbityl-, Cellulosereste usw.).

Insbesondere dann, wenn die erfindungsgemäßen Zubereitungen sich durch leichte oder erleichterte Abwaschbarkeit von menschlicher Haut auszeichnen sollen, ist es von Vorteil, den Zubereitungen wasserlösliche und/oder mit Wasser quellbare Polymere einzuverleiben, insbesondere mit Alkylgruppen veretherte Cellulose- und/oder Stärkederivate. Besonders vorteilhaft sind  $\beta$ -Glucane, Xanthangummi, Dextrane, Hydroxymethylcellulose, Hydroxyethylcellulose und/oder Hydroxypropylcellulose, Methoxy-PEG-22/Dodecyl-Glycol-Copolymere, Poloxamere.

Vorteilhafte wasserlösliche und/oder mit Wasser quellbare Polymere können auch gewählt werden als mit einem oder mehreren n-Octenylsuccinatresten veresterter hydrophiler Stärke enthalten. Solche Stärkederivate zeichnen sich aus durch eine Struktur

Stärke-X<sub>n</sub>, wobei X den Rest

symbolisiert.

Erfindungsgemäß vorteilhaft zu verwendende Stärkederivate tragen offiziell noch keinen INCI-Namen (International Nomenclature Cosmetic Ingredient) dieser müßte die Bezeichnung "Starch Sodium Octenyl Succinate" tragen. Besonders vorteilhaft sind solche Produkte, welcher unter der Bezeichnung Amiogum®, insbesondere Amiogum®23 von der Gesellschaft Cerestar US verkauft werden.

Es wird bevorzugt, den Gehalt an wasserlöslichen und/oder mit Wasser quellbaren Polymeren im Konzentrationsbereich von 0,01 - 5,0 Gew.-%, besonders bevorzugt 0,1 - 1,0 Gew.-%, zu wählen.

Die Einarbeitung solcher wasserlöslichen und/oder mit Wasser quellbaren Polymere erfolgt bevorzugt dadurch, daß sie der Wasserphase einverleibt und mit der Wasserphase, besonders bevorzugt nach vollständiger Auflösung bzw. Quellung in die aufgeschmolzene Fettphase der Zubereitungen gegeben werden.

Erfindungsgemäße Zubereitungen enthalten mindestens eine UVA-Filtersubstanz und/oder mindestens eine UVB-Filtersubstanz und/oder mindestens ein organisches und/oder anorganisches Pigment.

Vorteilhaft können erfindungsgemäße Zubereitungen Substanzen enthalten, die UV-Strahlung im UVB-Bereich absorbieren, wobei die Gesamtmenge der Filtersubstanzen z.B. 0,1 Gew.-% bis 30 Gew.-%, vorzugsweise 0,1 bis 20 Gew.-%, insbesondere 0,5 bis 15 Gew.-% beträgt, bezogen auf das Gesamtgewicht der Zubereitungen, um kosmetische und/oder dermatologische Zubereitungen zur Verfügung zu stellen, die die Haut vor dem gesamten Bereich der ultravioletten Strahlung schützen. Sie können auch als Sonnenschutzmittel dienen.

Vorteilhaftes organisches Pigment im Sinne der vorliegenden Erfindung ist das 2,2'-Methylen-bis-(6-(2H-benzotriazol-2-yl)-4-(1,1,3,3-tetramethylbutyl)-phenol) [INCI: Bisoctyltriazol], welches unter der Handelsbezeichnung Tinosorb® M bei der CIBA-Chemikalien GmbH erhältlich ist.

Es ist auch vorteilhaft im Sinne der vorliegenden Erfindung, kosmetische und dermatologische Zubereitungen zu erstellen, deren hauptsächlicher Zweck nicht der Schutz vor Sonnenlicht ist, die aber dennoch einen Gehalt an weiteren UV-Schutzsubstanzen enthalten. So werden z. B. in Tagescrèmes oder Makeup-Produkten gewöhnlich UV-A- bzw. UV-B-Filtersubstanzen eingearbeitet. Auch stellen UV-Schutzsubstanzen, ebenso wie Antioxidantien und, gewünschtenfalls, Konservierungsstoffe, einen wirksamen Schutz der Zubereitungen selbst gegen Verderb dar. Günstig sind ferner kosmetische und dermatologische Zubereitungen, die in der Form eines Sonnenschutzmittels vorliegen.

Dementsprechend enthalten die Zubereitungen im Sinne der vorliegenden Erfindung vorzugsweise mindestens eine weitere UV-A-, UV-B- und/oder Breitbandfiltersubstanz. Die Formulierungen können, obgleich nicht notwendig, gegebenenfalls auch ein oder mehrere organische und/oder anorganische Pigmente als UV-Filtersubstanzen enthalten, welche in der Wasser- und/oder der Ölphase vorliegen können.

Die erfindungsgemäßen Zubereitungen können ferner vorteilhaft auch in Form von sogenannten ölfreien kosmetischen oder dermatologischen Emulsionen vorliegen, welche eine Wasserphase und mindestens eine bei Raumtemperatur flüssige UV-Filtersubstanz als weitere Phase enthalten.

Besonders vorteilhafte bei Raumtemperatur flüssige UV-Filtersubstanzen im Sinne der vorliegenden Erfindung sind Homomenthylsalicylat (INCI: Homosalate), 2-Ethylhexyl-2-cyano-3,3-diphenylacrylat (INCI: Octocrylene), 2-Ethylhexyl-2-hydroxybenzoat (2-Ethylhexylsalicylat, Octylsalicylat, INCI: Ethylhexyl Salicylate) und Ester der Zimtsäure, vorzugsweise 4-Methoxyzimtsäure(2-ethylhexyl)ester (2-Ethylhexyl-4-methoxycinnamat, INCI: Ethylhexyl Methoxycinnamate) und 4-Methoxyzimtsäureisopentylester (Isopentyl-4-methoxycinnamat, INCI: Isoamyl p-Methoxycinnamate).

Bevorzugte anorganische Pigmente sind Metalloxide und/oder andere in Wasser schwerlösliche oder unlösliche Metallverbindungen, insbesondere Oxide des Titans (TiO<sub>2</sub>), Zinks

(ZnO), Eisens (z. B. Fe<sub>2</sub>O<sub>3</sub>), Zirkoniums (ZrO<sub>2</sub>), Siliciums (SiO<sub>2</sub>), Mangans (z. B. MnO), Aluminiums (Al<sub>2</sub>O<sub>3</sub>), Cers (z. B. Ce<sub>2</sub>O<sub>3</sub>), Mischoxide der entsprechenden Metalle sowie Abmischungen aus solchen Oxiden sowie das Sulfat des Bariums (BaSO<sub>4</sub>).

Die Pigmente können vorteilhaft im Sinne der vorliegenden Erfindung auch in Form kommerziell erhältlicher öliger oder wäßriger Vordispersionen zur Anwendung kommen. Diesen Vordispersionen können vorteilhaft Dispergierhilfsmittel und/oder Solubilisationsvermittler zugesetzt sein.

Die Pigmente können erfindungsgemäß vorteilhaft oberflächlich behandelt ("gecoatet") sein, wobei beispielsweise ein hydrophiler, amphiphiler oder hydrophober Charakter gebildet werden bzw. erhalten bleiben soll. Diese Oberflächenbehandlung kann darin bestehen, daß die Pigmente nach an sich bekannten Verfahren mit einer dünnen hydrophilen und/oder hydrophoben anorganischen und/oder organischen Schicht versehen werden. Die verschiedenen Oberflächenbeschichtungen können im Sinne der vorliegenden Erfindung auch Wasser enthalten.

Anorganische Oberflächenbeschichtungen im Sinne der vorliegenden Erfindung können bestehen aus Aluminiumoxid (Al<sub>2</sub>O<sub>3</sub>), Aluminiumhydroxid Al(OH)<sub>3</sub>, bzw. Aluminiumoxidhydrat (auch: Alumina, CAS-Nr.: 1333-84-2), Natriumhexametaphosphat (NaPO<sub>3</sub>)<sub>6</sub>, Natriummetaphosphat (NaPO<sub>3</sub>)<sub>n</sub>, Siliciumdioxid (SiO<sub>2</sub>) (auch: Silica, CAS-Nr.: 7631-86-9), oder Eisenoxid (Fe<sub>2</sub>O<sub>3</sub>). Diese anorganischen Oberflächenbeschichtungen können allein, in Kombination und/oder in Kombination mit organischen Beschichtungsmaterialien vorkommen.

Organische Oberflächenbeschichtungen im Sinne der vorliegenden Erfindung können bestehen aus pflanzlichem oder tierischem Aluminiumstearat, pflanzlicher oder tierischer Stearinsäure, Laurinsäure, Dimethylpolysiloxan (auch: Dimethicone), Methylpolysiloxan (Methicone), Simethicone (einem Gemisch aus Dimethylpolysiloxan mit einer durchschnittlichen Kettenlänge von 200 bis 350 Dimethylsiloxan-Einheiten und Silicagel) oder Alginsäure. Diese organischen Oberflächenbeschichtungen können allein, in Kombination und/oder in Kombination mit anorganischen Beschichtungsmaterialien vorkommen.

Erfindungsgemäß geeignete Zinkoxidpartikel und Vordispersionen von Zinkoxidpartikeln sind unter folgenden Handelsbezeichnungen bei den aufgeführten Firmen erhältlich:

| Handelsname | Coating        | Hersteller |
|-------------|----------------|------------|
| Z- Cote HP1 | 2% Dimethicone | BASF       |
| Z- Cote     | 1              | BASF       |
| ZnO NDM     | 5% Dimethicone | H&R        |

Geeignete Titandioxidpartikel und Vordispersionen von Titandioxidpartikeln sind unter folgenden Handelsbezeichnungen bei den aufgeführten Firmen erhältlich:

| Handelsname      | Coating                          | Hersteller        |
|------------------|----------------------------------|-------------------|
| MT-100TV         | Aluminiumhydroxid / Stearinsäure | Tayca Corporation |
| MT-100Z          | Aluminiumhydroxid / Stearinsäure | Tayca Corporation |
| Eusolex T-2000   | Alumina / Simethicone            | Merck KgaA        |
| Titandioxid T805 | Octyltrimethylsilan              | Degussa           |
| (Uvinul TiO₂)    |                                  |                   |

Vorteilhafte UV-A-Filtersubstanzen im Sinne der vorliegenden Erfindung sind Dibenzoylmethanderivate, insbesondere das 4-(tert.-Butyl)-4'-methoxydibenzoylmethan (CAS-Nr. 70356-09-1), welches von Givaudan unter der Marke Parsol® 1789 und von Merck unter der Handelsbezeichnung Eusolex® 9020 verkauft wird.

Vorteilhafte weitere UV-Filtersubstanzen im Sinne der vorliegenden Erfindung sind sulfonierte, wasserlösliche UV-Filter, wie z. B.:

- Phenylen-1,4-bis-(2-benzimidazyl)-3,3'-5,5'-tetrasulfonsäure und ihre Salze, besonders die entsprechenden Natrium-, Kalium- oder Triethanolammonium-Salze, insbesondere das Phenylen-1,4-bis-(2-benzimidazyl)-3,3'-5,5'-tetrasulfonsäure-bis-natriumsalz mit der INCI-Bezeichnung Bisimidazylate (CAS-Nr.: 180898-37-7), welches beispielsweise unter der Handelsbezeichnung Neo Heliopan AP bei Haarmann & Reimer erhältlich ist;
- Salze der 2-Phenylbenzimidazol-5-sulfonsäure, wie ihr Natrium-, Kalium- oder ihr Triethanolammonium-Salz sowie die Sulfonsäure selbst mit der INCI Bezeichnung Phenylbenzimidazole Sulfonsäure (CAS.-Nr. 27503-81-7), welches beispielsweise unter

der Handelsbezeichnung Eusolex 232 bei Merck oder unter Neo Heliopan Hydro bei Haarmann & Reimer erhältlich ist;

- 1,4-di(2-oxo-10-Sulfo-3-bornylidenmethyl)-Benzol (auch: 3,3'-(1,4-Phenylendimethylene)-bis-(7,7-dimethyl-2-oxo-bicyclo-[2.2.1]hept-1-ylmethan Sulfonsäure) und dessen Salze (besonders die entprechenden 10-Sulfato-verbindungen, insbesondere das entsprechende Natrium-, Kalium- oder Triethanolammonium-Salz), das auch als Benzol-1,4-di(2-oxo-3-bornylidenmethyl-10-sulfonsäure) bezeichnet wird. Benzol-1,4-di(2-oxo-3-bornylidenmethyl-10-sulfonsäure) hat die INCI-Bezeichnung Terephtalidene Dicampher Sulfonsäure (CAS.-Nr.: 90457-82-2) und ist beispielsweise unter dem Handelsnamen Mexoryl SX von der Fa. Chimex erhältlich;
- Sulfonsäure-Derivate des 3-Benzylidencamphers, wie z. B. 4-(2-Oxo-3-bornylidenmethyl)benzolsulfonsäure, 2-Methyl-5-(2-oxo-3-bornylidenmethyl)sulfonsäure und deren Salze.

Vorteilhafte UV-Filtersubstanzen im Sinne der vorliegenden Erfindung sind ferner sogenannte Breitbandfilter, d.h. Filtersubstanzen, die sowohl UV-A- als auch UV-B-Strahlung absorbieren.

Vorteilhafte Breitbandfilter oder UV-B-Filtersubstanzen sind beispielsweise Triazinderivate, wie z. B.

- 2,4-Bis-{[4-(2-Ethyl-hexyloxy)-2-hydroxy]-phenyl}-6-(4-methoxyphenyl)-1,3,5-triazin (INCI: Aniso Triazin), welches unter der Handelsbezeichnung Tinosorb® S bei der CIBA-Chemikalien GmbH erhältlich ist;
- Diethylhexylbutylamidotriazon (INCI: Diethylhexylbutamidotriazone), welches unter der Handelsbezeichnung UVASORB HEB bei Sigma 3V erhältlich ist;
- 4,4',4"-(1,3,5-Triazin-2,4,6-triyltriimino)-tris-benzoësäure-tris(2-ethylhexylester), auch:
   2,4,6-Tris-[anilino-(p-carbo-2'-ethyl-1'-hexyloxy)]-1,3,5-triazin (INCI: Ethylhexyl Triazone), welches von der BASF Aktiengesellschaft unter der Warenbezeichnung UVINUL® T 150 vertrieben wird.

Ein vorteilhafter Breitbandfilter im Sinne der vorliegenden Erfindung ist auch das 2,2'-Methylen-bis-(6-(2H-benzotriazol-2-yl)-4-(1,1,3,3-tetramethylbutyl)-phenol), welches unter der Handelsbezeichnung Tinosorb® M bei der CIBA-Chemikalien GmbH erhältlich ist.

Vorteilhafter Breitbandfilter im Sinne der vorliegenden Erfindung ist ferner das 2-(2H-benzotriazol-2-yl)-4-methyl-6-[2-methyl-3-[1,3,3,3-tetramethyl-1-[(trimethylsilyl)oxy]disiloxanyl]propyl]-phenol (CAS-Nr.: 155633-54-8) mit der INCI-Bezeichnung Drometrizole Trisiloxane, welches unter der Handelsbezeichnung Mexoryl® XL bei der Fa. Chimex erhältlich ist.

Die weiteren UV-Filtersubstanzen können öllöslich oder wasserlöslich sein.

Vorteilhafte öllösliche UV-B- und/oder Breitband-Filtersubstanzen im Sinne der vorliegenden Erfindung sind z. B.:

- 3-Benzylidencampher-Derivate, vorzugsweise 3-(4-Methylbenzyliden)campher, 3-Benzylidencampher;
- 4-Aminobenzoesäure-Derivate, vorzugsweise 4-(Dimethylamino)-benzoesäure(2ethylhexyl)ester, 4-(Dimethylamino)benzoesäureamylester;
- Derivate des Benzophenons, vorzugsweise 2-Hydroxy-4-methoxybenzophenon, 2-Hydroxy-4-methoxy-4'-methylbenzophenon, 2,2'-Dihydroxy-4-methoxybenzophenon
- sowie an Polymere gebundene UV-Filter.
- 3-(4-(2,2-bis Ethoxycarbonylvinyl)-phenoxypropenyl)-methoxysiloxan/Dimethylsiloxan
   Copolymer welches beispielsweise unter der Handelsbezeichnung Parsol® SLX bei Hoffmann La Roche erhältlich ist.

Vorteilhafte wasserlösliche Filtersubstanzen sind z. B.:

Sulfonsäure-Derivate des 3-Benzylidencamphers, wie z. B. 4-(2-Oxo-3-bornylidenmethyl)benzolsulfonsäure, 2-Methyl-5-(2-oxo-3-bornylidenmethyl)sulfonsäure und deren Salze.

Eine weiterere erfindungsgemäß vorteilhaft zu verwendende Lichtschutzfiltersubstanz ist das Ethylhexyl-2-cyano-3,3-diphenylacrylat (Octocrylen), welches von BASF unter der Bezeichnung Uvinul® N 539 erhältlich ist.

Besonders vorteilhafte Zubereitungen im Sinne der vorliegenden Erfindung, die sich durch einen hohen bzw. sehr hohen UV-A- und/oder UV-B-Schutz auszeichnen, enthalten neben der oder den erfindungsgemäßen Filtersubstanz(en) bevorzugt ferner weitere UV-A- und/oder Breitbandfilter, insbesondere Dibenzoylmethanderivate



[beispielsweise das 4-(tert.-Butyl)-4'-methoxydibenzoylmethan], Phenylen-1,4-bis-(2-benzimidazyl)-3,3'-5,5'-tetrasulfonsäure und/oder ihre Salze, das 1,4-di(2-oxo-10-Sulfo-3-bornylidenmethyl)-Benzol und/oder dessen Salze und/oder das 2,4-Bis-{[4-(2-Ethyl-hexyloxy)-2-hydroxy]-phenyl}-6-(4-methoxyphenyl)-1,3,5-triazin, jeweils einzeln oder in beliebigen Kombinationen miteinander.

Die Liste der genannten UV-Filter, die im Sinne der vorliegenden Erfindung eingesetzt werden können, soll selbstverständlich nicht limitierend sein.

Vorteilhaft enthalten die erfindungsgemäßen Zubereitungen die Substanzen, die UV-Strahlung im UV-A- und/oder UV-B-Bereich absorbieren, in einer Gesamtmenge von z. B. 0,1 Gew.-% bis 30 Gew.-%, vorzugsweise 0,5 bis 20 Gew.-%, insbesondere 1,0 bis 15,0 Gew.-%, jeweils bezogen auf das Gesamtgewicht der Zubereitungen, um kosmetische Zubereitungen zur Verfügung zu stellen, die das Haar bzw. die Haut vor dem gesamten Be

Die Liste der genannten UV-Filter, die im Sinne der vorliegenden Erfindung eingesetzt werden können, soll selbstverständlich nicht limitierend sein.

Vorteilhafte Konservierungsmittel im Sinne der vorliegenden Erfindung sind beispielsweise

Formaldehydabspalter (wie z. B. DMDM Hydantoin, welches beispielsweise unter der Handelsbezeichnung Glydant ™ von der Fa. Lonza erhältlich ist), lodopropylbutyl-carbamate (z. B. die unter den Handelsbezeichnungen Glycacil-2000, Glycacil-L, Glycacil-S von der Fa. Lonza erhältlichen und/oder Dekaben LMB von Jan Dekker), Parabene (d. h. p-Hydroxybenzoesäurealkylester, wie Methyl-, Ethyl-, Propyl- und/oder Butylparaben), Phenoxyethanol, Ethanol, Benzoesäure und dergleichen mehr. Üblicherweise umfaßt das Konservierungssystem erfindungsgemäß ferner vorteilhaft auch Konservierungshelfer, wie beispielsweise Octoxyglycerin, Glycine Soja etc.

In die erfindungsgemäßen Zubereitungen können vorteilhaft zusätzlich die üblichen Bestandteile kosmetischer Stifte eingearbeitet werden, z.B. die üblichen Hilfs- und Zusatzstoffe wie Parfümöle, Konservierungsmittel, Selbstbräunungssubstanzen, Farbpigmente, Lichtschutzmittel, Stabilisatoren.

Ferner kann es gegebenenfalls von Vorteil sein, Filmbildner in die erfindungsgemäßen kosmetischen oder dermatologischen Zubereitungen einzuarbeiten, beispielsweise um die Wasserfestigkeit der Zubereitungen zu verbessern oder die UV-Schutzleistung zu erhöhen (UV-A- und/oder UV-B-Boosting). Geeignet sind sowohl wasserlösliche bzw. dispergierbare als auch fettlösliche Filmbildner, jeweils einzeln oder in Kombination miteinander.

Vorteilhafte wasserlöslich bzw. dispergierbare Filmbildner sind z. B. Polyurethane (z. B. die Avalure® -Typen von Goodrich), Dimethicone Copolyol Polyacrylate (Silsoft Surface® von der Witco Organo Silicones Group), PVP/VA (VA = Vinylacetat) Copolymer (Luviscol VA 64 Powder der BASF) etc.

Vorteilhafte fettlösliche Filmbildner sind z. B., die Filmbildner aus der Gruppe der Polymere auf Basis von Polyvinylpyrrolidon (PVP)

Besonders bevorzugt sind Copolymere des Polyvinylpyrrolidons, beispielsweise das PVP Hexadecen Copolymer und das PVP Eicosen Copolymer, welche unter den Handelsbezeichnungen Antaron V216 und Antaron V220 bei der GAF Chemicals Cooperation erhältlich sind, sowie das Tricontayl PVP und dergleichen mehr.

Es ist dem Fachmanne natürlich bekannt, daß anspruchsvolle kosmetische Zubereitungen zumeist nicht ohne die üblichen Hilfs- und Zusatzstoffe denkbar sind. Darunter zählen beispielsweise Konsistenzgeber, Füllstoffe, Parfum, zusätzliche Wirkstoffe wie Vitamine oder Proteine, Insektenrepellentien, Alkohol, Wasser, Salze, antimikrobiell, proteolytisch oder keratolytisch wirksame Substanzen usw.

## Beispiele

Alle Mengenangaben, Prozentangaben oder Teile beziehen sich, soweit nicht anders angegeben, auf das Gewicht, insbesondere auf das Gesamtgewicht der Zubereitungen oder der jeweiligen Mischungen. Unter "Aminobenzophenon" soll in den Beispielen der 2-(4'-(Diethylamino)-2'-hydoxybenzoyl)-benzoesäurehexylester zu verstehen sein.

Die nachfolgenden Beispiele sollen die Erfindung erläutern, ohne sie einzuschränken.

| Beispiel                              | 1           | 2    | 3   | 4   | 5   | 6   | 7    |
|---------------------------------------|-------------|------|-----|-----|-----|-----|------|
| PEG-45 Dodecyl Glycol Copolymer       | 1,5         | 2    | 1   | 1,5 | 2.  |     |      |
| Polyglyceryl-3-diisostearat           | 1,5         | 1,75 | 3   |     |     | 2   | 1    |
| Cetyldimethicon Copolyol              |             |      |     |     | 1   | 2   | 1,5  |
| PEG-30 Dipolyhydroxysterat            | 0,25        |      |     | 2   | 1,5 |     | 2    |
| Stearyl Alcohol                       | 1           |      |     |     | 2   |     | 1    |
| Cetyl Alcohol                         | 1           |      | 1,5 |     |     | 2   |      |
| Hydrogenated Coco-Glycerides          | 1           | 2    |     |     | 3   | . 1 | 2    |
| Shea Butter                           | 1           |      |     | 1   |     |     | 5    |
| C18-36 Acid Triglyceride              | 6           | 0,5  | 10  |     | 5   | 1   | 3    |
| C20-40-Alkylstearat                   |             | 5    | 2   | 12  | 5   |     | 2    |
| C12-15 Alkyl Benzoate                 | 2           |      |     | 2   | 2   |     |      |
| Butylene Glycol Dicaprylate/Dicaprate | 5           | 2    |     |     | 6   |     | 5    |
| Dicaprylyl Ether                      |             | 2    |     |     |     | 3   |      |
| Dicarprylyl Carbonate                 | 2           |      |     | 3   |     | 2   |      |
| Caprylic/Capric Triglyceride          |             | 1    |     | 1,5 |     |     | 1,5  |
| Octyldodecanol                        |             |      |     | 2   |     |     |      |
| Mineral Oil                           | 2           |      |     |     |     | 2   | •    |
| Cyclomethicone                        |             |      | 2   |     |     |     |      |
| Dimethicone                           | 2           |      |     |     |     | 2   | 1    |
| Cyclomethicon                         |             |      |     | 2   |     |     | 1    |
| Aminobenzophenon                      | 3           | 4    | 0,5 | 1   | 1   | 6   | 0,75 |
| Bis-Ethylhexyloxyphenol Methoxyphe-   | 1,7         |      | 2   |     | 1,5 | 2   |      |
| nyl Triazine                          |             |      | ;   |     |     |     |      |
| Butyl Methoxydibenzolymethane         | <del></del> |      | ,   | 1,5 |     |     | 2    |
| Bisimidazylate                        | 0,5         | 2    |     | -   |     | 0,5 |      |

| Beispiel                             | 1    | 2    | 3   | 4   | 5    | 6    | 7            |
|--------------------------------------|------|------|-----|-----|------|------|--------------|
| Octocrylene                          |      |      |     | _   | 5    | 10   |              |
| Ethylhexyl Salicylate                |      |      |     |     | 1    |      |              |
| Ethylhexyl Methoxycinnamate          |      |      | 5   | 7,5 | 5    |      |              |
| Homosalate                           |      |      | 1   |     |      |      | ·            |
| Diethylhexyl Butamido Triazone       | 2    | 1    | 1   |     | 1    | 3    | 2            |
| Ethylhexyl Triazone                  | 1    | 2    | 2   | 3   | 2    | 1    | 2            |
| Phenylbenzimidazole Sulfonic Acid    |      | 1    |     |     | , .  |      |              |
| Bisoctyltriazol                      | -    | 1    |     | 2   | 4    |      |              |
| Titandioxid MT 100-Z                 |      | 2    |     |     | -    | 5    |              |
| Titandioxid T 805                    | 2    | :    | · 1 | -   |      | 2    | 1            |
| Zinkoxid Neutral                     |      | 1    |     | 0,5 |      |      |              |
| Trisodium EDTA                       | 1    | 1    |     | 1   | 1    | 1    | 1            |
| PVP / Hexadecene Copolymer           | 1    |      |     | 0,5 |      | 0,5  |              |
| Tricontayl PVP                       |      | 0,5  | 0,5 |     | 1    |      | 1            |
| Polyurethane-4 (Avalure UR-445 ®)    | 1    |      |     | 1   | 1    |      |              |
| Tocopheryl Acetate                   | 0,5  | 0,5  |     | 0,5 |      | 1    | 0,5          |
| Glucosylrutin + Isoquercitrin        | -    | 0,5  | 0,2 |     |      | 0,5  |              |
| Phenoxyethanol                       | 0,1  | 0,5  | 0,5 |     | 0,5  |      | 0,5          |
| Parabene                             | 0,6  |      |     |     |      |      |              |
| Xanthan Gum                          | 0,2  |      |     | 0,5 | 0,2  | 0,15 |              |
| Carbomer                             |      | 0,2  |     |     | 0,1  | 0,3  | 0,3          |
| Alkyl Acrylates Cosspolymere         |      |      | 0,1 |     |      |      |              |
| Celluloseether                       |      |      | 0,2 | 0,5 |      |      |              |
| lodopropynyl Butylcarbamate(Koncyl-  | 0,05 | 0,15 | ·   | 0,2 |      |      | 0,1          |
| Typen ®,Konkaben LMB®)               |      |      |     |     |      |      |              |
| Natronlauge 45%                      |      | 0,5  |     |     |      |      | 0,25         |
| Glycerin                             | 5    | 7,5  | 2,5 |     | 5 .  | · ·  | 2            |
| Butylene Glycol                      |      |      | 5   | 7,5 |      | 3    | 3            |
| Octoxyglycerin                       | 0,5  | 0,4  |     |     |      |      | <del> </del> |
| DMDM Hydantoin (Kondant®)            |      |      | 0,5 |     | 0,6  | 0,4  | 0,05         |
| Alcohol Denat.                       |      | 1    |     | 2,5 | 2    |      | 3            |
| Colour (water- and/or oil – soluble) | 0,2  |      |     |     | 0,05 |      |              |



| Beispiel           | 1   | 2    | 3   | 4   | 5   | 6    | 7   |
|--------------------|-----|------|-----|-----|-----|------|-----|
| Distarch Phosphate |     | 0,5  |     |     |     |      | 5   |
| Parfum             | 0,5 | 0,15 | -   |     | -   | 0,45 | 0,5 |
| Aqua               | Ad  | Ad   | Ad  | Ad  | Ad  | Ad   | Ad  |
|                    | 100 | 100  | 100 | 100 | 100 | 100  | 100 |

| Beispiel                              | 8   | 9   | 10          | 11  | 12          | 13  | 14  |
|---------------------------------------|-----|-----|-------------|-----|-------------|-----|-----|
| PEG-45 Dodecyl Glycol Copolymer       | ·   | 2   |             |     |             | _   |     |
| Polyglyceryl-3-diisostearat           | 2   | 3   |             | 0,5 |             | -   | 2   |
| Laurylmethicon Copolyol               |     |     | 1           |     | 1           |     | 4   |
| PEG-30 Dipolyhydroxysterat            | 2   |     | 1           |     | 2           | 1   |     |
| Sorbitan Stearat                      |     | 3   |             | 5   |             |     |     |
| Hydrogenated Coco-Glyceride           |     |     |             |     |             | 1   | 3   |
| Vaseline                              | 6   |     | 3,5         |     |             |     |     |
| Shea Butter                           |     | 2   |             |     |             |     |     |
| Paraffin Wachs                        |     |     | 6,5         | 9,5 |             | 12  |     |
| C18-36 Acid Triglyceride              |     | 6   | 2           |     | 0,5         |     | -   |
| C20-40 Alkyl Stearat                  | 9   |     |             | 12  | <del></del> | 10  | 14  |
| C12-15 Alkyl Benzoate                 | 2   |     | <del></del> | 9   |             |     | ·   |
| Butylene Glycol Dicaprylate/Dicaprate |     | 5   |             |     |             |     | 2   |
| Dicaprylyl Ether                      | 4   |     |             |     |             |     | . 2 |
| Dicarprylyl Carbonate                 |     | 5   | L.,         | 3   |             |     |     |
| Caprylic/Capric Triglyceride          |     |     | 4           |     |             | 2   | 3   |
| Octyldodecanol                        |     |     |             | 2   |             |     | 2   |
| Mineral Oil                           |     |     |             |     |             | 2   |     |
| Cyclomethicone                        |     | 2   |             |     |             |     | 1   |
| Dimethicone                           | 2   |     |             |     | 2           |     |     |
| Phenyltrimethicone                    |     |     |             | 2   |             |     | 1   |
| Aminobenzophenon                      | 3,5 | 1   | 2           | 0,5 | 1           | 1,5 | 3   |
| Bis-Ethylhexyloxyphenol Methoxyphe-   | 1,5 | 2,5 | 1,7         |     | 0,5         |     |     |
| nyl Triazine                          |     |     |             |     |             |     |     |
| Butyl Methoxydibenzolymethane         | 1   | 1   |             | 3   | 1           | 2   |     |
| Bisimidazylate                        | 0,5 |     |             | 1   |             | 1   | 1   |
| Octocrylene                           | 5   |     | 7,5         |     | 5           |     | 10  |
| Ethylhexyl Salicylate                 | _   |     |             |     | 2           |     |     |
| Ethylhexyl Methoxycinnamate           | 5   | 7,5 |             |     | 5           | 10  |     |
| Homosalate                            | 1   |     |             |     |             |     |     |
| Diethylhexyl Butamido Triazone        |     | 2   |             | 2   | 2           | 1   | 4   |

| Beispiel                             | 8           | 9    | 10                                    | 11    | 12          | 13   | 14          |
|--------------------------------------|-------------|------|---------------------------------------|-------|-------------|------|-------------|
| Ethylhexyl Triazone                  |             |      | 3                                     | 2     | 1           | 3    |             |
| Mexoryl® XL                          |             | 3    |                                       | 4     |             | 1    | <del></del> |
| Mexoryl® SX                          |             | 0,75 |                                       |       | 2           |      |             |
| Phenylbenzimidazole Sulfonic Acid    | 1           |      |                                       |       | 2           |      |             |
| Bisoctyltriazol                      |             | 2    |                                       | 4     | 1           |      | 5           |
| Eusolex T-aqua                       | 1           |      |                                       | 2     |             | 2    | 3           |
| Z-Cote                               |             |      |                                       |       |             | 5    |             |
| Z-Cote HP1                           |             |      |                                       |       | 7           |      |             |
| Trisodium EDTA                       |             | 1    | · · · · · · · · · · · · · · · · · · · | 1     |             | 1    | 1           |
| PVP / Hexadecene Copolymer           | 0,5         | 0,5  |                                       |       |             |      | 0,5         |
| Tricontayl PVP                       |             |      | 0,5                                   |       | 0,5         |      |             |
| Glycin Soja                          |             | 1    |                                       |       |             | 1    |             |
| Tocopheryl Acetate                   |             | 1    |                                       | 0,5   | 1           |      | 0,5         |
| Glucosylrutin + Isoquercitrin        | 0,25        |      | 0,1                                   |       |             | 0,2  | 0,1         |
| Coenzym Q10                          |             |      |                                       | 0,35  |             | 0,5  | ·           |
| Phenoxyethanol                       | 0,3         | 0,5  |                                       |       | 0,25        |      | 0,2         |
| Parabene                             |             |      |                                       |       |             |      | 0,5         |
| Xanthan Gum                          |             | 0,2  |                                       | 0,2   |             |      | 0,3         |
| Carbomer                             |             |      |                                       |       | <del></del> | 0,3  |             |
| Alkyl Acrylates Cosspolymere         | 0,2         |      | 0,25                                  |       | 0,3         |      |             |
| Celluloseether                       | <del></del> |      |                                       | 0,1   |             |      |             |
| lodopropynyl Butylcarbamate(Koncyl – | -           | 0,05 |                                       | 0,1   |             |      | 0,18        |
| Typen ®,Konkaben LMB®)               |             | ·    |                                       |       |             | !    |             |
| Natronlauge 45%                      | 0,7         |      |                                       |       |             | 0,15 | 0,10        |
| Glycerin                             | 2           |      | 5                                     | . 7,5 |             | 7,5  | 5           |
| Butylene Glycol                      | 2           | 7,5  |                                       |       | 10          |      |             |
| Octoxyglycerin                       | 0,2         |      |                                       | 0,3   |             |      |             |
| DMDM Hydantoin (Kondant®)            | 0,4         |      | 0,6                                   |       | 0,2         | 0,3  |             |
| Alcohol Denat.                       |             |      |                                       | 5     | _           |      | 3           |
| Lösliche Farbstoffe                  |             | 0,02 |                                       |       |             |      |             |
| Farbpigmente                         |             |      | 0,45                                  | -     | 6           |      |             |
| Glycin Soja                          | 0,45        |      |                                       | 1     |             |      |             |



| Beispiel           | 8   | 9   | 10  | 11   | 12  | 13  | 14   |
|--------------------|-----|-----|-----|------|-----|-----|------|
| Distarch Phosphate |     |     | 3   |      | 2   |     |      |
| Parfum             |     | 0,5 | 0,3 | 0,75 |     |     | 0,35 |
| Aqua               | Ad  | Ad  | Ad  | Ad   | Ad  | Ad  | Ad   |
|                    | 100 | 100 | 100 | 100  | 100 | 100 | 100  |

## **Patentansprüche**

- 1. Bei Raumtemperatur feste W/O-Emulsionen enthaltend
- (a) eine Fettphase, welche
  - (a1) mindestens eine Ölkomponente
  - (a2) mindestens eine Wachskomponente umfaßt,
- (b) eine Wasserphase, welche
  - (b1) 30 bis 85 Gew.% Wasser sowie
  - (b2) 5 bis 50 Gew.% eines Hautbefeuchtungsmittels gewählt aus der Gruppe Glycerin, Chitosan, Fucogel, Propylenglycol, Polyethylenglycol, Dipropylenglycol, Butylenglycol, Mannitol, Milchsäure, Glycin, Natriumpyrolidoncarbonsäure, Hyaluronsäure, Salze der angegebenen Säuren sowie, Harnstoff und Salze von Metallen der ersten und zweiten Hauptgruppe umfaßt,
- (c) mindestens ein Hydroxybenzophenonderivat,
- (c) einen W/O-Emulgator oder ein Gemisch aus mehreren W/O-Emulgatoren, gewählt aus der Gruppe der grenzflächenaktiven Substanzen der allgemeinen Struktur A-B-A', wobei A und A' gleiche oder verschiedene hydrophobe organische Reste darstellen und B eine hydrophile Gruppe bedeutet.
- Zubereitung nach Anspruch 1, dadurch gekennzeichnet, daß als Hydroxybenzophenon ein Hydroxybenzophenon, welches durch die chemische Strukturformel

## worin

- R¹ und R² unabhängig voneinander Wasserstoff, C₁-C₂₀-Alkyl, C₃-C₁₀-Cycloalkyl oder C₃-C₁₀-Cycloalkenyl bedeuten, wobei die Substituenten R¹ und R² gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, einen 5- oder 6-Ring bilden können und
- R<sup>3</sup> einen C<sub>1</sub>-C<sub>20</sub>-Alkyl Rest bedeutet, verwendet wird.

3. Zubereitung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß als Hydroxybenzophenon das Aminobenzophenon, welches durch die chemische Strukturformel

gekennzeichnet ist, gewählt wird.

4. W/O-Emulsionen nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß der W/O-Emulgator oder die W/O-Emulgatoren gewählt werden aus der Gruppe der Substanzen der allgemeinen Formel

$$A \longrightarrow O \xrightarrow{CH-X-CH-O} A'$$

$$R_1 \qquad R_2$$

$$a \qquad wobe$$

- A und A' gleiche oder verschiedene hydrophobe organische Reste darstellen,
- a eine Zahl von 1 bis 100, vorzugsweise 2 bis 60, insbesondere 5 bis 40 darstellt,
- X eine Einfachbindung oder die Gruppe

- darstellt,
- R<sub>1</sub> und R<sub>2</sub> unabhängig voneinander so gewählt werden H, Methyl, daß aber nicht beide Reste gleichzeitig Methyl darstellen,
- R<sub>3</sub> gewählt wird aus der Gruppe H, sowie der verzweigten und unverzweigten, gesättigten und ungesättigten Alkyl- und Acylreste mit 1 20 Kohlenstoffatomen,

oder daß der oder die W/O-Emulgatoren gewählt werden aus der Gruppe der Fettalkohole mit 8 - 30 Kohlenstoffatomen, Monoglycerinester gesättigter und/oder unge-



sättigter, verzweigter und/oder unverzweigter Alkancarbonsäuren oder Hydroxyalkansäuren einer Kettenlänge von 8 - 24, insbesondere 12 - 18 C-Atomen, Diglycerinester gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkancarbonsäuren oder Hydroxyalkansäuren einer Kettenlänge von 8 - 24, insbesondere 12 - 18 C-Atomen, Triglycerinester gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkancarbonsäuren oder Hydroxyalkansäuren einer Kettenlänge von 8 - 24, insbesondere 12 - 18 C-Atomen, Polyglycerinester gesättigter und/oder Alkancarbonsäuren ungesättigter, verzweigter und/oder unverzweigter oder Hydroxyalkansäuren einer Kettenlänge von 8 - 24, insbesondere 12 - 18 C-Atomen mit bis zu 10 Glycerineinheiten, Monoglycerinether gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkohole einer Kettenlänge von 8 - 24, insbesondere 12 18 C-Atomen, Diglycerinether gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkohole einer Kettenlänge von 8 - 24, insbesondere 12 - 18 C-Atomen, Triglycerinether gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkohole einer Kettenlänge von 8 - 24, insbesondere 12 - 18 C-Atomen, Polyglycerinether gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkohole einer Kettenlänge von 8 - 24, insbesondere 12 - 18 C-Atomen mit bis zu 10 Glycerineinheiten, Propylenglycolester gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkancarbonsäuren oder Hydroxyalkansäuren einer Kettenlänge von 8 -24, insbesondere 12 - 18 C-Atomen, Sorbitanester gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkancarbonsäuren einer Kettenlänge von 8 - 24, insbesondere 12 - 18 C-Atomen, Sorbitanester von Polyolen, insbesondere des Glycerins, Pentaerythritylester gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkancarbonsäuren oder Hydroxyalkansäuren einer Kettenlänge von 8 -24, insbesondere 12 - 18 C-Atomen, Methylglucose Ester gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkancarbonsäuren oder Hydroxyalkansäuren einer Kettenlänge von 8 - 24, insbesondere 12 - 18 C-Atomen, Polyglycerin Methylglucose Ester gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkancarbonsäuren oder Hydroxycarbonsäuren einer Kettenlänge von 8 - 24, insbesondere 12 - 18 C-Atomen, der Glyceryfettsäure Citrate, Cetyl Dimethicon Copolyole, der Alkyl Methicon Copolyole, der Alkyl Dimthicon Ethoxy Glucoside,





oder daß die vorstehend genannten Typen von W/O-Emulgatoren zusätzlich in der Weise polyethoxyliert und/oder polypropoxyliert sind, daß sie ethoxylierte und/oder propopoxylierte W/O-Emulgatoren darstellen.

5. W/O-Emulsionen nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß der W/O-Emulgator oder die W/O-Emulgatoren so gewählt werden, daß die Reste A und A' werden vorteilhaft gewählt aus der Gruppe der verzweigten und unverzweigten, gesättigten und ungesättigten Alkyl- und Acylreste und Hydroxyacylreste mit 10 - 30 Kohlenstoffatomen sowie ferner aus der Gruppe der über Esterfunktionen miteinander verbundenen Hydroxyacylgruppen, nach dem Schema

P

wobei R' gewählt wird aus der Gruppe der verzweigten und unverzweigten Alkylgruppen mit 1 bis 20 Kohlenstoffatomen und R" gewählt wird aus der Gruppe der verzweigten und unverzweigten Alkylengruppen mit 1 bis 20 Kohlenstoffatomen und b Zahlen von 0 bis 200 annehmen kann.

6. W/O-Emulsionen nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß der oder die W/O-Emulgatoren gewählt werden aus der Gruppe PEG-30 Dipolyhydroxystearat, Decaglycerylheptaoleat, Polyglyceryl-3-Diisostearat, PEG-8 Distearat, Diglycerin Dipolyhydroxystearat, Glycerinisostearat, Sorbitanisostearat, Polyglyceryl-3 methylglucose distearat, Steareth-2.

7. W/O-Emulsionen nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß der oder die Stabilisatoren gewählt wird aus der Gruppe der Substanzen der allgemeinen Formel

$$A''' - O \leftarrow CH - X - CH - O \rightarrow A''''$$

$$R_1 \qquad R_2 \qquad a \qquad , \text{ wobeing the properties of the properties o$$

- A" und A" gleiche oder verschiedene hydrophobe organische Reste darstellen,
- a eine Zahl von 1 bis 100, vorzugsweise 2 bis 60, darstellt,
- X eine Einfachbindung oder die Gruppe



- darstellt,
- R<sub>1</sub> und R<sub>2</sub> unabhängig voneinander aus der Gruppe H, Methyl gewählt werden, daß aber nicht beide Reste gleichzeitig Methyl darstellen,
- R<sub>3</sub> gewählt wird aus der Gruppe H, sowie der verzweigten und unverzweigten, gesättigten und ungesättigten Alkyl- und Acylreste mit 1 20 Kohlenstoffatomen,
- wobei die Reste A" und A" können gleich oder verschieden sein und gewählt werden aus der Gruppe



$$\begin{array}{c|c} H & \begin{array}{c} CH-Y-CH-O \\ I & I \\ R_8 & R_9 \end{array} \end{array} \right)_p$$

wobei R<sub>8</sub> und R<sub>9</sub> gleich oder verschieden sein können und gewählt werden aus der Gruppe der gesättigten und ungesättigten Alkyl- und Acylreste mit 1 —30 Kohlenstoffatomen, p eine Zahl von 1 – 20 darstellt und Y eine Einfachbindung oder die Gruppe



wobei R<sub>3</sub> gewählt wird aus der Gruppe H, sowie der verzweigten und unverzweigten, gesättigten und ungesättigten Alkyl- und Acylreste mit 1 —30 Kohlenstoffatomen, ferner können die Gruppe A``` und A```` unabhängig voneinander auch Alkylreste oder Acylreste darstellen.



- 8. W/O-Emulsionen nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß als Stabilisator das PEG-45 /Dodecylglycolcopolymer und/oder das PEG-22 / Dodecylglycolcopolymer und/oder das Methoxy PEG-22/Dodecyl Glycol Copolymer verwendet werden.
- 9. Zubereitungen nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß sie weitere UV-Filter aus der Gruppe der Benzotriazole, Triazine, bei Raumtemperatur flüssigen, wasserlöslichen, sulfonierten und organische und/oder anorganische Pigmente enthalten.
- 10. W/O-Emulsionen nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die Ölkomponente oder die Gesamtheit der Ölkomponenten gewählt wird aus der Gruppe der Ester aus gesättigten und/oder ungesättigten, verzweigten und/oder unverzweigten Alkancarbonsäuren einer Kettenlänge von 1 bis 44 C-Atomen und gesättigten und/oder ungesättigten, verzweigten und/oder unverzweigten Alkoholen einer Kettenlänge von 1 bis 44 C-Atomen, aus der Gruppe der Ester aus aromatischen Carbonsäuren und gesättigten und/oder ungesättigten, verzweigten und/oder unverzweigten Alkoholen einer Kettenlänge von 1 bis 30 C-Atomen sofern die Ölkomponente oder die Gesamtheit der Ölkomponenten bei Raumtemperatur eine Flüssigkeit darstellen.



ungesättigten, verzweigten Alkohole, sowie der Fettsäuretriglyceride, namentlich der synthetischen oder natürlichen Triglycerinester gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkancarbonsäuren einer Kettenlänge von 8 bis 24, insbesondere 12 - 18 C-Atomen, der verzweigten und unverzweigten Salicylate und Benzoate.

- 12. W/O-Emulsionen nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die Wachskomponente oder die Gesamtheit der Wachskomponenten gewählt wird aus der Gruppe
- der Ester aus gesättigten und/oder ungesättigten, verzweigten und/oder unverzweigten Alkancarbonsäuren einer Kettenlänge von 1 bis 80 C-Atomen und gesättigten und/oder ungesättigten, verzweigten und/oder unverzweigten Alkoholen einer Kettenlänge von 1 bis 80 C-Atomen, aus der Gruppe der Ester aus aromatischen Carbonsäuren und gesättigten und/oder ungesättigten, verzweigten und/oder unverzweigten Alkoholen einer Kettenlänge von 1 bis 80 C-Atomen sofern die Wachskomponente oder die Gesamtheit der Wachskomponenten bei Raumtemperatur einen Festkörper darstellen,
- der natürlichen Wachse,
- der Diester von Polyolen und C10-C80 Fettsäuren,
- der ethoxylierten Wachse,
- der Triglyceridwachse,
- der C16-C60 Fettsäuren (bzw. deren Salze) und/oder C16-C80 Fettalkohole.



- 13. W/O-Emulsionen nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die Wachskomponente oder die Gesamtheit der Wachskomponenten gewählt wird aus der Gruppe
- der Ester aus gesättigten verzweigten Alkancarbonsäuren einer Kettenlänge von 1 bis 44 C-Atomen und gesättigten verzweigten Alkoholen einer Kettenlänge von 1 bis 44 C-Atomen, sofern die Wachskomponente oder die Gesamtheit der Wachskomponenten bei Raumtemperatur einen Festkörper darstellen,
- der natürlichen Wachse.
- der Diester von Polyolen und C10-C80 Fettsäuren,
- der ethoxylierten Wachse,
- der Triglyceridwachse,

der C16-C60 Fettsäuren (bzw. deren Salze) und/oder C16-C80 Fettalkohole.

14. W/O-Emulsionen nach mindestens einem der vorangehenden Ansprüche, durch einen zusätzlichen Gehalt an einem oder mehreren wasserlöslichen und/oder mit Wasser quellbaren Polymeren gekennzeichnet, insbesondere mit Alkylgruppen veretherte Cellulose- und/oder Stärkederivate, bevorzugt β-Glucane, Xanthangummi, Dextrane, Hydroxymethylcellulose, Hydroxyethylcellulose und/oder Hydroxypropylcellulose, Methoxy-PEG-22/ Dodecyl-Glycol-Copolymere, Poloxamere, mit einem oder mehreren n-Octenylsuccinatresten veresterter hydrophiler Stärke.



- 15. Verwendung von W/O-Emulsionen nach mindestens einem der vorangehenden Ansprüche als kosmetische und/oder dermatologische Zubereitungen zur Vorbeugung oder Behandlung von UV-Licht bedingten Schäden der Haut.
- 16. Verwendung von W/O-Emulsionen nach mindestens einem der vorangehenden Ansprüche zur Hautbefeuchtung.



## Zusammenfassung

Bei Raumtemperatur feste W/O-Emulsionen enthaltend

- (a) eine Fettphase, welche
  - (a1) mindestens eine Ölkomponente
  - (a2) mindestens eine Wachskomponente umfaßt,
- (b) eine Wasserphase, welche
  - (b1) 30 bis 85 Gew.% Wasser sowie
  - (b2) 5 bis 50 Gew.% eines Hautbefeuchtungsmittels,
- (c) mindestens ein Hydroxybenzophenonderivat,
- (d) einen W/O-Emulgator oder ein Gemisch aus mehreren W/O-Emulgatoren.

