

Universal Inference

Behrad Moniri

Dept. of Electrical and Systems Engineering University of Pennsylvania bemoniri@seas.upenn.edu

April 12, 2022

What is this presentation about?

Universal Inference

Larry Wasserman Aaditya Ramdas Sivaraman Balakrishnan

Department of Statistics and Data Science Machine Learning Department Carnegie Mellon University, Pittsburgh, PA 15213.

{larry, aramdas, siva}@stat.cmu.edu

June 4, 2020

Published in the Proceedings of the National Academy of Sciences (PNAS).

Introduction

▶ Pillars of classical statistics: Likelihood ratio test, and confidence intervals obtained from asymptotically pivotal estimators.

Introduction

- ▶ Pillars of classical statistics: Likelihood ratio test, and confidence intervals obtained from asymptotically pivotal estimators.
- ► These methods rely on large sample asymptotic theory and this often need regularity conditions.

Introduction

- ▶ Pillars of classical statistics: Likelihood ratio test, and confidence intervals obtained from asymptotically pivotal estimators.
- ► These methods rely on large sample asymptotic theory and this often need regularity conditions.
- ▶ When these conditions do not hold, there is no general method for statistical inference, with provable guarantees and these settings are typically considered in an *ad-hoc* manner.

► One-sentence summary:

One-sentence summary:

They propose a general method for constructing confidence sets and hypothesis tests that have **finite-sample** guarantees **without** regularity conditions.

One-sentence summary:

They propose a general method for constructing confidence sets and hypothesis tests that have **finite-sample** guarantees **without** regularity conditions. \rightsquigarrow *Universal* Inference.

- ► One-sentence summary:
 - They propose a general method for constructing confidence sets and hypothesis tests that have **finite-sample** guarantees **without** regularity conditions. \rightsquigarrow *Universal* Inference.
- ▶ Based on a modified version of the usual likelihood ratio statistic, called "the split likelihood ratio statistics".

- One-sentence summary:
 - They propose a general method for constructing confidence sets and hypothesis tests that have **finite-sample** guarantees **without** regularity conditions. \rightsquigarrow *Universal* Inference.
- ▶ Based on a modified version of the usual likelihood ratio statistic, called "the split likelihood ratio statistics".
- ▶ They also develop various extensions of this basic methods.

Notation

▶ Consider a parametric family $\{P_{\theta} : \theta \in \Theta\}$, for some set Θ .

Notation

- ▶ Consider a parametric family $\{P_{\theta} : \theta \in \Theta\}$, for some set Θ .
- Assume that each distribution has density with respect to some fixed measure μ . Let the corresponding densities be p_{θ} .

- ▶ Consider a parametric family $\{P_{\theta} : \theta \in \Theta\}$, for some set Θ .
- Assume that each distribution has density with respect to some fixed measure μ . Let the corresponding densities be p_{θ} .
- ▶ We are given $Y_1, ..., Y_{2n} \sim P_{\theta^*}$ for some $\theta^* \in \Theta$.

- ▶ Consider a parametric family $\{P_{\theta} : \theta \in \Theta\}$, for some set Θ .
- Assume that each distribution has density with respect to some fixed measure μ . Let the corresponding densities be p_{θ} .
- ▶ We are given $Y_1, ..., Y_{2n} \sim P_{\theta^*}$ for some $\theta^* \in \Theta$.
- \blacktriangleright We want to construct confidence intervals for θ^* .

Recap: Regular Models

15

Regular Models: Likelihood-Ratio Statistics

For regular models, we proceed as follows:

Regular Models: Likelihood-Ratio Statistics

For regular models, we proceed as follows:

▶ If $\Theta = \mathbb{R}^d$, set

$$A_n = \left\{ \theta : 2 \log \frac{\mathcal{L}(\widehat{\theta})}{\mathcal{L}(\theta)} \le c_{\alpha,d} \right\},\,$$

- $c_{\alpha,d}$ is the α -quantile of a χ^2_d distribution.
- $\triangleright \mathcal{L}(\cdot)$ is the likelihood function.
- \triangleright $\hat{\theta}$ is the MLE.

Regular Models: Likelihood-Ratio Statistics

For regular models, we proceed as follows:

▶ If $\Theta = \mathbb{R}^d$, set

$$A_n = \left\{ \theta : 2 \log \frac{\mathcal{L}(\widehat{\theta})}{\mathcal{L}(\theta)} \le c_{\alpha,d} \right\},$$

- $c_{\alpha,d}$ is the α -quantile of a χ^2_d distribution.
- $\triangleright \mathcal{L}(\cdot)$ is the likelihood function.
- \triangleright $\hat{\theta}$ is the MLE.

Wilks' Theorem (Wilks, 1938)

For regular models,

$$P_{\theta^*}\left(\theta^*\in A_n\right)\to 1-\alpha.$$

Universal Confidence Intervals

Confidence Intervals with Split Likelihood-Ratio Statistics

▶ Split data into two sets D_0 , D_1 randomly.

- ▶ Split data into two sets D_0 , D_1 randomly.
- ▶ Let $\hat{\theta}_1$ be **any** estimator constructed from D_1 .

- ▶ Split data into two sets D_0 , D_1 randomly.
- Let $\hat{\theta}_1$ be **any** estimator constructed from D_1 . This can be the MLE, a Bayes estimator that utilizes prior knowledge, a robust estimator, etc.

- ▶ Split data into two sets D_0 , D_1 randomly.
- Let $\hat{\theta}_1$ be **any** estimator constructed from D_1 . This can be the MLE, a Bayes estimator that utilizes prior knowledge, a robust estimator, etc.
- ▶ The likelihood function based on D_0 is $\mathcal{L}_0(\theta) = \prod_{i \in D_0} p_{\theta}(Y_i)$

- ▶ Split data into two sets D_0 , D_1 randomly.
- Let $\hat{\theta}_1$ be **any** estimator constructed from D_1 . This can be the MLE, a Bayes estimator that utilizes prior knowledge, a robust estimator, etc.
- ▶ The likelihood function based on D_0 is $\mathcal{L}_0(\theta) = \prod_{i \in D_0} p_{\theta}(Y_i)$
- Define the split likelihood ratio statistic as

$$T_n(\theta) = rac{\mathcal{L}_0(\hat{ heta}_1)}{\mathcal{L}_0(heta)}$$

Confidence Intervals with Split Likelihood-Ratio Statistics

- ▶ Split data into two sets D_0 , D_1 randomly.
- Let $\hat{\theta}_1$ be **any** estimator constructed from D_1 . This can be the MLE, a Bayes estimator that utilizes prior knowledge, a robust estimator, etc.
- ▶ The likelihood function based on D_0 is $\mathcal{L}_0(\theta) = \prod_{i \in D_0} p_{\theta}(Y_i)$
- Define the split likelihood ratio statistic as

$$T_n(\theta) = rac{\mathcal{L}_0(\hat{ heta}_1)}{\mathcal{L}_0(heta)}$$

► The universal confidence set is

$$C_n = \left\{ \theta \in \Theta : T_n(\theta) \le \frac{1}{\alpha} \right\}$$

Discussion

▶ If we did not split the data and $\hat{\theta}_1$ was the MLE, then $T_n(\theta)$ would have been the usual likelihood ratio statistic.

Discussion

- ▶ If we did not split the data and $\hat{\theta}_1$ was the MLE, then $T_n(\theta)$ would have been the usual likelihood ratio statistic.
- ► Can we prove an analog of Wilks' theorem here?

Discussion

- ▶ If we did not split the data and $\hat{\theta}_1$ was the MLE, then $T_n(\theta)$ would have been the usual likelihood ratio statistic.
- ▶ Can we prove an analog of Wilks' theorem here? The answer is yes.

- ▶ If we did not split the data and $\hat{\theta}_1$ was the MLE, then $T_n(\theta)$ would have been the usual likelihood ratio statistic.
- ▶ Can we prove an analog of Wilks' theorem here? The answer is yes.
- ► Finding or approximating the distribution of the likelihood ratio statistic is highly nontrivial in irregular models. The split LRS avoids these complications.

Theorem

 C_n is a **finite-sample** valid $1-\alpha$ confidence set for θ^* , meaning that

$$P_{\theta^*}(\theta^* \in C_n) \ge 1 - \alpha.$$

The proof is extremely simple.

Proof

Proof.

Proof

Proof.

Proof.

$$\mathbb{E}_{\theta^*} \left[\frac{\mathcal{L}_0(\psi)}{\mathcal{L}_0(\theta^*)} \right] = \mathbb{E}_{\theta^*} \left[\frac{\prod_{i \in D_0} p_{\psi}(Y_i)}{\prod_{i \in D_0} p_{\theta^*}(Y_i)} \right]$$

Proof.

$$\mathbb{E}_{\theta^*} \left[\frac{\mathcal{L}_0(\psi)}{\mathcal{L}_0(\theta^*)} \right] = \mathbb{E}_{\theta^*} \left[\frac{\prod_{i \in D_0} p_{\psi}(Y_i)}{\prod_{i \in D_0} p_{\theta^*}(Y_i)} \right]$$

$$= \int_A \frac{\prod_{i \in D_0} p_{\psi}(y_i)}{\prod_{i \in D_0} p_{\theta^*}(y_i)} \prod_{i \in D_0} p_{\theta^*}(y_i) dy_1 \cdots dy_n$$

Proof.

$$\mathbb{E}_{\theta^*} \left[\frac{\mathcal{L}_0(\psi)}{\mathcal{L}_0(\theta^*)} \right] = \mathbb{E}_{\theta^*} \left[\frac{\prod_{i \in D_0} p_{\psi} (Y_i)}{\prod_{i \in D_0} p_{\theta^*} (Y_i)} \right]$$

$$= \int_A \frac{\prod_{i \in D_0} p_{\psi} (y_i)}{\prod_{i \in D_0} p_{\theta^*} (y_i)} \prod_{i \in D_0} p_{\theta^*} (y_i) dy_1 \cdots dy_n$$

$$= \int_A \prod_{i \in D_0} p_{\psi} (y_i) dy_1 \cdots dy_n$$

Proof.

Consider any fixed $\psi \in \Theta$ and let A denote the support of P_{θ^*} .

$$\mathbb{E}_{\theta^*} \left[\frac{\mathcal{L}_0(\psi)}{\mathcal{L}_0(\theta^*)} \right] = \mathbb{E}_{\theta^*} \left[\frac{\prod_{i \in D_0} p_{\psi} (Y_i)}{\prod_{i \in D_0} p_{\theta^*} (Y_i)} \right]$$

$$= \int_A \frac{\prod_{i \in D_0} p_{\psi} (y_i)}{\prod_{i \in D_0} p_{\theta^*} (y_i)} \prod_{i \in D_0} p_{\theta^*} (y_i) dy_1 \cdots dy_n$$

$$= \int_A \prod_{i \in D_0} p_{\psi} (y_i) dy_1 \cdots dy_n \leq \prod_{i \in D_0} \left[\int p_{\psi} (y_i) dy_i \right]$$

Proof.

Consider any fixed $\psi \in \Theta$ and let A denote the support of P_{θ^*} .

$$\begin{split} \mathbb{E}_{\theta^*} \left[\frac{\mathcal{L}_0(\psi)}{\mathcal{L}_0(\theta^*)} \right] &= \mathbb{E}_{\theta^*} \left[\frac{\prod_{i \in D_0} p_{\psi} \left(Y_i \right)}{\prod_{i \in D_0} p_{\theta^*} \left(Y_i \right)} \right] \\ &= \int_A \frac{\prod_{i \in D_0} p_{\psi} \left(y_i \right)}{\prod_{i \in D_0} p_{\theta^*} \left(y_i \right)} \prod_{i \in D_0} p_{\theta^*} \left(y_i \right) dy_1 \cdots dy_n \\ &= \int_A \prod_{i \in D_0} p_{\psi} \left(y_i \right) dy_1 \cdots dy_n \leq \prod_{i \in D_0} \left[\int p_{\psi} \left(y_i \right) dy_i \right] = 1 \end{split}$$

Proof.

Consider any fixed $\psi \in \Theta$ and let A denote the support of P_{θ^*} .

$$\mathbb{E}_{\theta^*} \left[\frac{\mathcal{L}_0(\psi)}{\mathcal{L}_0(\theta^*)} \right] = \mathbb{E}_{\theta^*} \left[\frac{\prod_{i \in D_0} p_{\psi}(Y_i)}{\prod_{i \in D_0} p_{\theta^*}(Y_i)} \right]$$

$$= \int_A \frac{\prod_{i \in D_0} p_{\psi}(y_i)}{\prod_{i \in D_0} p_{\theta^*}(y_i)} \prod_{i \in D_0} p_{\theta^*}(y_i) dy_1 \cdots dy_n$$

$$= \int_A \prod_{i \in D_0} p_{\psi}(y_i) dy_1 \cdots dy_n \le \prod_{i \in D_0} \left[\int p_{\psi}(y_i) dy_i \right] = 1$$

 $\hat{ heta}_1$ is fixed when we condition on D_1 . So we have

$$\mathbb{E}_{ heta^*}\left[\mathcal{T}_n\left(heta^*
ight)\mid D_1
ight] = \mathbb{E}_{ heta^*}\left[rac{\mathcal{L}_0\left(\widehat{ heta}_1
ight)}{\mathcal{L}_0\left(heta^*
ight)}\Bigg|D_1
ight] \leq 1.$$

Now, using Markov's inequality,

$$P_{\theta^*}\left(\theta^* \notin \mathcal{C}_n\right) = P_{\theta^*}\left(T_n\left(\theta^*\right) > \frac{1}{\alpha}\right) \leq \alpha \mathbb{E}_{\theta^*}\left[T_n\left(\theta^*\right)\right]$$

Now, using Markov's inequality,

$$P_{\theta^*} (\theta^* \notin \mathcal{C}_n) = P_{\theta^*} \left(T_n(\theta^*) > \frac{1}{\alpha} \right) \leq \alpha \mathbb{E}_{\theta^*} \left[T_n(\theta^*) \right]$$
$$= \alpha \mathbb{E}_{\theta^*} \left[\frac{\mathcal{L}_0 (\hat{\theta}_1)}{\mathcal{L}_0 (\theta^*)} \right] = \alpha \mathbb{E}_{\theta^*} \left(\mathbb{E}_{\theta^*} \left[\frac{\mathcal{L}_0 (\hat{\theta}_1)}{\mathcal{L}_0 (\theta^*)} \middle| D_1 \right] \right) \leq \alpha$$

This completes the proof.

Non-parametric Settings

► The parametric setup adopted above generalizes easily to nonparametric settings as long as we can calculate a likelihood.

Non-parametric Settings

- ► The parametric setup adopted above generalizes easily to nonparametric settings as long as we can calculate a likelihood.
- ▶ For a collection of densities \mathcal{P} , and a true density $p^* \in \mathcal{P}$, suppose we use D_1 to identify $\hat{p}_1 \in \mathcal{P}$, and D_0 to calculate

$$T_n(p) = \prod_{i \in D_0} \frac{\widehat{p}_1(Y_i)}{p(Y_i)}.$$

▶ We then define, $C_n = \{p \in \mathcal{P} : T_n(p) \leq \frac{1}{\alpha}\}$, and our previous argument ensures that

$$P_{p^*}(p^* \in \mathcal{C}_n) \geq 1 - \alpha.$$

▶ Let $\Theta_0 \subset \Theta$ be a null-set and consider testing

$$H_0: \theta^* \in \Theta_0$$
 versus $\theta^* \notin \Theta_0$

Using the duality between hypothesis testing and confidence intervals:

We simply reject the null hypothesis if $C_n \cap \Theta_0 = \emptyset$. The type I error of this test is clearly at most α .

▶ Let $\Theta_0 \subset \Theta$ be a null-set and consider testing

$$H_0: \theta^* \in \Theta_0$$
 versus $\theta^* \notin \Theta_0$

Using the duality between hypothesis testing and confidence intervals:

We simply reject the null hypothesis if $C_n \cap \Theta_0 = \emptyset$. The type I error of this test is clearly at most α .

► Can we find a computationally efficient way?

Let $\hat{\theta}_1$ be any estimator constructed from D_1 .

- Let $\hat{\theta}_1$ be any estimator constructed from D_1 .
- Let $\hat{\theta}_0 := \underset{\theta \in \Theta_0}{\operatorname{argmax}} \mathcal{L}_0(\theta)$ be the MLE under null from D_0 .

- Let $\hat{\theta}_1$ be any estimator constructed from D_1 .
- ▶ Let $\hat{\theta}_0 := \underset{\theta \in \Theta_0}{\operatorname{argmax}} \mathcal{L}_0(\theta)$ be the MLE under null from D_0 .
- ► Reject *H*₀ if

$$\frac{\mathcal{L}_0(\hat{\theta}_1)}{\mathcal{L}_0(\hat{\theta}_0)} > \frac{1}{\alpha}.$$

- Let $\hat{\theta}_1$ be any estimator constructed from D_1 .
- ▶ Let $\hat{\theta}_0 := \underset{\theta \in \Theta_0}{\operatorname{argmax}} \mathcal{L}_0(\theta)$ be the MLE under null from D_0 .
- ► Reject *H*₀ if

$$\frac{\mathcal{L}_0(\hat{\theta}_1)}{\mathcal{L}_0(\hat{\theta}_0)} > \frac{1}{\alpha}.$$

Theorem

This test controls the type I error at level α .

- Let $\hat{\theta}_1$ be any estimator constructed from D_1 .
- ▶ Let $\hat{\theta}_0 := \underset{\theta \in \Theta_0}{\operatorname{argmax}} \mathcal{L}_0(\theta)$ be the MLE under null from D_0 .
- ► Reject *H*₀ if

$$\frac{\mathcal{L}_0(\hat{\theta}_1)}{\mathcal{L}_0(\hat{\theta}_0)} > \frac{1}{\alpha}.$$

Theorem

This test controls the type I error at level α .

Proof.

The proof is one line.

$$P_{\theta^*}\left(\mathcal{L}_0\left(\widehat{\theta}_1\right)/\mathcal{L}_0\left(\widehat{\theta}_0\right) > 1/\alpha\right) \leq \alpha \mathbb{E}_{\theta^*}\left[\frac{\mathcal{L}_0\left(\widehat{\theta}_1\right)}{\mathcal{L}_0\left(\widehat{\theta}_0\right)}\right] \leq \alpha \mathbb{E}_{\theta^*}\left[\frac{\mathcal{L}_0\left(\widehat{\theta}_1\right)}{\mathcal{L}_0\left(\theta^*\right)}\right] \leq \alpha$$

Some Discussions

What are we doing?

► Regular models:

Compare the log-likelihood ratio to the $(1 - \alpha)$ -quantile of a χ^2 distribution (dof = dimension of null - dimension of alternative)

What are we doing?

► Regular models:

Compare the log-likelihood ratio to the $(1 - \alpha)$ -quantile of a χ^2 distribution (dof = dimension of null - dimension of alternative)

► This paper:

Compare the **split**-log-split-likelihood ratio to $\log(1/\alpha) \leadsto (1-\alpha)$ -quantile of a χ^2 distribution with **one** degree of freedom.

► You are only using Markov?! This isn't tight enough!

► You are only using Markov?! This isn't tight enough! Yes and No!

- ➤ You are only using Markov?! This isn't tight enough! Yes and No!
- ▶ We are really using the fact that $\log \frac{\mathcal{L}_0(\hat{\theta}_1)}{\mathcal{L}_0(\hat{\theta}_0)}$ has an exponential tail, just as an asymptotic argument would.

- ➤ You are only using Markov?! This isn't tight enough! Yes and No!
- ▶ We are really using the fact that $\log \frac{\mathcal{L}_0(\hat{\theta}_1)}{\mathcal{L}_0(\hat{\theta}_0)}$ has an exponential tail, just as an asymptotic argument would.
- ► In true Chernoff bounds:

$$\mathbb{E}_{\theta^*}\Big[\exp\big(a\log\frac{\mathcal{L}_0(\hat{\theta}_1)}{\mathcal{L}_0(\hat{\theta}_0)}\big)\Big] \leq \ \mathsf{MGF} \ \mathsf{of} \ \chi^2, \mathcal{N}, \dots$$

One should view this proof as a poor man's Chernoff bound:

$$\mathbb{E}_{ heta^*} \Big[\exp ig(\log rac{\mathcal{L}_0(\hat{ heta}_1)}{\mathcal{L}_0(\hat{ heta}_0)} ig) \Big] \leq 1$$

Behrad Moniri Universal Inference

▶ Suppose that $Y_1, ..., Y_n \sim \mathcal{N}_d(\theta, I)$ where $\theta \in \mathbb{R}^d$.

- ▶ Suppose that $Y_1, ..., Y_n \sim \mathcal{N}_d(\theta, I)$ where $\theta \in \mathbb{R}^d$.
- Let $c_{\alpha,d}$ and z_{α} denote the upper α quantiles of the χ_d^2 and standard Gaussian respectively.

- ▶ Suppose that $Y_1, ..., Y_n \sim \mathcal{N}_d(\theta, I)$ where $\theta \in \mathbb{R}^d$.
- Let $c_{\alpha,d}$ and z_{α} denote the upper α quantiles of the χ_d^2 and standard Gaussian respectively.
- ▶ The usual confidence set for θ based on the LRT can be computed as follows:
 - The likelihood function and MLE:

$$\mathcal{L}(heta) = \prod_{i=1}^n rac{1}{\sqrt{2\pi}} \exp\left(-rac{(Y_i - \mu)^2}{2}
ight), \qquad \hat{ heta}_{ extit{MLE}} = ar{Y}$$

$$A_n = \left\{ \theta : \|\theta - \overline{Y}\|^2 \le \frac{c_{\alpha,d}}{n} \right\}$$
$$= \left\{ \theta : \|\theta - \overline{Y}\|^2 \le \frac{d + \sqrt{2d}z_\alpha + o(\sqrt{d})}{n} \right\}.$$

▶ Denoting the sample means \overline{Y}_1 and \overline{Y}_0 we see that:

$$\log \mathcal{L}_0(\overline{Y}_1) - \log \mathcal{L}_0(\theta) = -\left(\frac{n}{2}\right) \frac{\|\overline{Y}_0 - \overline{Y}_1\|^2}{2} + \left(\frac{n}{2}\right) \frac{\|\theta - \overline{Y}_0\|^2}{2}.$$

▶ Denoting the sample means \overline{Y}_1 and \overline{Y}_0 we see that:

$$\log \mathcal{L}_0(\overline{Y}_1) - \log \mathcal{L}_0(\theta) = -\left(\frac{n}{2}\right) \frac{\|\overline{Y}_0 - \overline{Y}_1\|^2}{2} + \left(\frac{n}{2}\right) \frac{\|\theta - \overline{Y}_0\|^2}{2}.$$

► The universal confidence set is

$$\begin{split} \mathcal{C}_n &= \left\{ \theta: \; \log \mathcal{L}_0(\overline{Y}_1) - \log \mathcal{L}_0(\theta) \leq \log(1/\alpha) \right\} \\ &= \left\{ \theta: \; \|\theta - \overline{Y}_0\|^2 \leq \frac{4}{n} \log \left(\frac{1}{\alpha}\right) + \|\overline{Y}_0 - \overline{Y}_1\|^2 \right\}. \end{split}$$

▶ Denoting the sample means \overline{Y}_1 and \overline{Y}_0 we see that:

$$\log \mathcal{L}_0(\overline{Y}_1) - \log \mathcal{L}_0(\theta) = -\left(\frac{n}{2}\right) \frac{\|\overline{Y}_0 - \overline{Y}_1\|^2}{2} + \left(\frac{n}{2}\right) \frac{\|\theta - \overline{Y}_0\|^2}{2}.$$

► The universal confidence set is

$$\begin{split} \mathcal{C}_n &= \left\{\theta: \ \log \mathcal{L}_0(\overline{Y}_1) - \log \mathcal{L}_0(\theta) \leq \log(1/\alpha) \right\} \\ &= \left\{\theta: \ \|\theta - \overline{Y}_0\|^2 \leq \frac{4}{n} \log \left(\frac{1}{\alpha}\right) + \|\overline{Y}_0 - \overline{Y}_1\|^2 \right\}. \end{split}$$

▶ Note that $\|\overline{Y}_0 - \overline{Y}_1\|^2 = O_p(d/n)$, so both sets have radii $O_p(d/n)$.

▶ Denoting the sample means \overline{Y}_1 and \overline{Y}_0 we see that:

$$\log \mathcal{L}_0(\overline{Y}_1) - \log \mathcal{L}_0(\theta) = -\left(\frac{n}{2}\right) \frac{\|\overline{Y}_0 - \overline{Y}_1\|^2}{2} + \left(\frac{n}{2}\right) \frac{\|\theta - \overline{Y}_0\|^2}{2}.$$

► The universal confidence set is

$$\begin{split} \mathcal{C}_n &= \left\{ \theta: \; \log \mathcal{L}_0(\overline{Y}_1) - \log \mathcal{L}_0(\theta) \leq \log(1/\alpha) \right\} \\ &= \left\{ \theta: \; \|\theta - \overline{Y}_0\|^2 \leq \frac{4}{n} \log \left(\frac{1}{\alpha}\right) + \|\overline{Y}_0 - \overline{Y}_1\|^2 \right\}. \end{split}$$

- ▶ Note that $\|\overline{Y}_0 \overline{Y}_1\|^2 = O_p(d/n)$, so both sets have radii $O_p(d/n)$.
- ▶ For constant α , the radius is four times larger.

- 1. **Identifiable**: any $\theta \neq \theta^*$ it is the case that $P_{\theta} \neq P_{\theta^*}$.
- 2. Differentiable in quadratic mean **(DQM)** at θ^* : there exists a function s_{θ^*} such that:

$$\int \left[\sqrt{p_\theta} - \sqrt{p_{\theta^*}} - \frac{1}{2} (\theta - \theta^*)^\mathsf{T} s_{\theta^*} \sqrt{p_{\theta^*}} \right]^2 d\mu = -o(\|\theta - \theta^*\|^2), \text{ as } \theta \to \theta^*.$$

- 3. The parameter space $\Theta \subset \mathbb{R}^d$ is **compact**.
- 4. **Smoothness**: There is a function ℓ with $\sup_{\theta} \mathbb{E}_{x \sim P_{\theta}} \ell^{2}(X) < \infty$ s.t.

$$\forall \theta_1, \theta_2 \in \Theta : |\log p_{\theta_1}(x) - \log p_{\theta_2}(x)| \le \ell(x) \|\theta_1 - \theta_2\|.$$

5. A consequence of the DQM condition is that the Fisher information matrix is well-defined, and we assume it is **non-degenerate**.

Theorem

Under the regularity conditions in the previous slide, and $||\hat{\theta}_1 - \theta^*|| = O_p(1/\sqrt{n})$, the split LRT has diameter $O_p(\sqrt{\log(1/\delta)/n})$

Theorem

Under the regularity conditions in the previous slide, and $||\hat{\theta}_1 - \theta^*|| = O_p(1/\sqrt{n}), \text{ the split LRT has diameter } O_p(\sqrt{\log(1/\delta)/n})$

Proof.

The high level idea: it suffices to show that for all θ sufficiently far from θ^* , we have

$$\frac{\mathcal{L}_0(\theta)}{\mathcal{L}_0(\hat{\theta}_1)} \le \alpha.$$

Example of an Irregular Model

Behrad Moniri Universal Inference 70

Example: Mixture Models

- ▶ Let $Y_1, ..., Y_{2n} \sim P$ where $Y_i \in \mathbb{R}$.
- ► We want to test

$$H_0: P \in \mathcal{M}_1 \text{ versus } H_1: P \in \mathcal{M}_2,$$

where \mathcal{M}_k denotes the set of mixtures of k Gaussians, with an appropriately restricted parameter space Θ .

Example: Mixture Models

- ▶ Let $Y_1, ..., Y_{2n} \sim P$ where $Y_i \in \mathbb{R}$.
- We want to test

$$H_0: P \in \mathcal{M}_1 \text{ versus } H_1: P \in \mathcal{M}_2,$$

where \mathcal{M}_k denotes the set of mixtures of k Gaussians, with an appropriately restricted parameter space Θ .

LRT has an intractable limiting distribution. There is no known confidence set for mixture problems with guaranteed coverage properties.

Example: Mixture Models

- ► The true model is assumed to be $\frac{1}{2}\phi(y; -\mu, 1) + \frac{1}{2}\phi(y; \mu, 1)$
- ▶ The null: $\mu = 0$. We set $\alpha = 0.1$ and n = 200.
- ▶ Let $\hat{\theta}_1$ be the MLE under \mathcal{M}_2 .
- ► This MLE is calculated using the EM algorithm (does it converge? IDK!)

Figure: Black = Universal / Red = Bootstrap

Figure: Black = Universal / Red = Bootstrap

The bootstrap test does not have any guarantee on the type Lerror.

Extensions

► The universal method involves randomly splitting the data and the final inferences will depend on the randomness of the split.

- ► The universal method involves randomly splitting the data and the final inferences will depend on the randomness of the split.
- ▶ For the test to work, we needed $\mathbb{E}_{\theta^*}[T_n] \leq 1$ where $T_n = \frac{\mathcal{L}_0(\hat{\theta}_1)}{\mathcal{L}_0(\hat{\theta}_0)}$.

- ► The universal method involves randomly splitting the data and the final inferences will depend on the randomness of the split.
- ▶ For the test to work, we needed $\mathbb{E}_{\theta^*}[T_n] \leq 1$ where $T_n = \frac{\mathcal{L}_0(\hat{\theta}_1)}{\mathcal{L}_0(\hat{\theta}_0)}$.
- Imagine that we obtained B such statistics $T_{n,1}...,T_{n,B}$ with the same property. Let

$$\bar{T}_n = B^{-1} \sum_{j=1}^B T_{n,j}.$$

Then we still have that $\mathbb{E}_{\theta^*}[\bar{T}_n]$.

- ► The universal method involves randomly splitting the data and the final inferences will depend on the randomness of the split.
- ▶ For the test to work, we needed $\mathbb{E}_{\theta^*}[T_n] \leq 1$ where $T_n = \frac{\mathcal{L}_0(\hat{\theta}_1)}{\mathcal{L}_0(\hat{\theta}_0)}$.
- ▶ Imagine that we obtained B such statistics $T_{n,1}..., T_{n,B}$ with the same property. Let

$$\bar{T}_n = B^{-1} \sum_{j=1}^B T_{n,j}.$$

Then we still have that $\mathbb{E}_{\theta^*}[\bar{T}_n]$.

K-fold and All split.

- ► The universal method involves randomly splitting the data and the final inferences will depend on the randomness of the split.
- ▶ For the test to work, we needed $\mathbb{E}_{\theta^*}[T_n] \leq 1$ where $T_n = \frac{\mathcal{L}_0(\hat{\theta}_1)}{\mathcal{L}_0(\hat{\theta}_0)}$.
- Imagine that we obtained B such statistics $T_{n,1}...,T_{n,B}$ with the same property. Let

$$\bar{T}_n = B^{-1} \sum_{j=1}^B T_{n,j}.$$

Then we still have that $\mathbb{E}_{\theta^*}[\bar{T}_n]$.

- K-fold and All split.
- ▶ Broader Impact: These methods will potentially lead to cherry-picking:)

Computing the maximum likelihood (under the null) is sometimes computationally hard.

- Computing the maximum likelihood (under the null) is sometimes computationally hard.
- Suppose one could come up with a relaxation F_0 of the null likelihood \mathcal{L}_0 :

$$\max_{\theta} F_0(\theta) \geq \max_{\theta} \mathcal{L}_0(\theta).$$

- Computing the maximum likelihood (under the null) is sometimes computationally hard.
- ▶ Suppose one could come up with a relaxation F_0 of the null likelihood \mathcal{L}_0 :

$$\max_{\theta} F_0(\theta) \geq \max_{\theta} \mathcal{L}_0(\theta).$$

▶ Define $\widehat{\theta}_0^F := \underset{\theta}{\operatorname{argmax}} F_0(\theta)$, and consider the statistics

$$T'_n := \frac{\mathcal{L}_0\left(\widehat{\theta}_1\right)}{F_0\left(\widehat{\theta}_0^F\right)}$$

- Computing the maximum likelihood (under the null) is sometimes computationally hard.
- ▶ Suppose one could come up with a relaxation F_0 of the null likelihood \mathcal{L}_0 :

$$\max_{\theta} F_0(\theta) \geq \max_{\theta} \mathcal{L}_0(\theta).$$

▶ Define $\widehat{\theta}_0^F := \underset{\theta}{\operatorname{argmax}} F_0(\theta)$, and consider the statistics

$$T'_n := \frac{\mathcal{L}_0\left(\widehat{\theta}_1\right)}{F_0\left(\widehat{\theta}_0^F\right)}$$

▶ then the split LRT may proceed using T' instead of T. This is because $F(\hat{\theta}_0^F) \ge \mathcal{L}(\hat{\theta})$, and hence $T'_n \le T_n$.

Sometimes the MLE may not exist since the likelihood function is unbounded. A smoothed likelihood has been proposed as an alternative.

- Sometimes the MLE may not exist since the likelihood function is unbounded. A smoothed likelihood has been proposed as an alternative.
- ▶ Consider a kernel k(x, y) such that $\int k(x, y) dy = 1$ for any x.

$$\widetilde{p}_{\theta}(y) := \int k(x,y)p_{\theta}(x)dx.$$

- Sometimes the MLE may not exist since the likelihood function is unbounded. A smoothed likelihood has been proposed as an alternative.
- ▶ Consider a kernel k(x, y) such that $\int k(x, y) dy = 1$ for any x.

$$\widetilde{p}_{\theta}(y) := \int k(x,y)p_{\theta}(x)dx.$$

ightharpoonup Denote the smoothed empirical density based on D_0 as

$$\widetilde{p}_n := \frac{1}{|D_0|} \sum_{i \in D_0} k(X_i, \cdot).$$

- Sometimes the MLE may not exist since the likelihood function is unbounded. A smoothed likelihood has been proposed as an alternative.
- ▶ Consider a kernel k(x, y) such that $\int k(x, y) dy = 1$ for any x.

$$\widetilde{p}_{\theta}(y) := \int k(x,y)p_{\theta}(x)dx.$$

ightharpoonup Denote the smoothed empirical density based on D_0 as

$$\widetilde{p}_n := \frac{1}{|D_0|} \sum_{i \in D_0} k(X_i, \cdot).$$

▶ Define the smoothed likelihood on D_0 as

$$\widetilde{\mathcal{L}}_0(heta) := \prod_{i \in D_0} \exp \int k(X_i, y) \log \widetilde{p}_{ heta}(y) dy \leadsto \widetilde{ heta}_0 := \arg \min_{ heta \in \Theta_0} \mathit{KL}(\widetilde{p}_n, \widetilde{p}_{ heta})$$

▶ As before, let $\widehat{\theta}_1 \in \Theta$ be any estimator based on D_1 . The smoothed split LRT:

reject
$$H_0$$
 if $\widetilde{U}_n > 1/\alpha$, where $\widetilde{U}_n = \frac{\widetilde{\mathcal{L}}_0(\widehat{\theta}_1)}{\widetilde{\mathcal{L}}_0(\widetilde{\theta}_0)}$.

▶ As before, let $\widehat{\theta}_1 \in \Theta$ be any estimator based on D_1 . The smoothed split LRT:

reject
$$H_0$$
 if $\widetilde{U}_n > 1/\alpha$, where $\widetilde{U}_n = \frac{\widetilde{\mathcal{L}}_0(\widehat{\theta}_1)}{\widetilde{\mathcal{L}}_0(\widetilde{\theta}_0)}$.

Fix $\psi \in \Theta$, we have

$$\mathbb{E}_{\theta^*} \left[\frac{\widetilde{\mathcal{L}}_0(\psi)}{\widetilde{\mathcal{L}}_0(\widetilde{\theta}_0)} \right] \stackrel{\text{(i)}}{\leq} \mathbb{E}_{\theta^*} \left[\frac{\widetilde{\mathcal{L}}_0(\psi)}{\widetilde{\mathcal{L}}_0(\theta^*)} \right] = \mathbb{E}_{\theta^*} \left[\frac{\prod_{i \in D_0} \exp \int k(X_i, y) \log \widetilde{\rho}_{\psi}(y) dy}{\prod_{i \in D_0} \exp \int k(X_i, y) \log \widetilde{\rho}_{\theta^*}(y) dy} \right]$$
$$= \prod_{i \in D_0} \int \exp \left(\int k(x, y) \log \frac{\widetilde{\rho}_{\psi}(y)}{\widetilde{\rho}_{\theta^*}(y)} dy \right) p_{\theta^*}(x) dx \leq \dots \leq 1.$$

Sequential Testing

- Consider the following, standard, sequential testing/estimation setup:
- ▶ We observe an i.i.d. sequence $Y_1, Y_2,...$ from P_{θ^*} .

- Consider the following, standard, sequential testing/estimation setup:
- ▶ We observe an i.i.d. sequence $Y_1, Y_2,...$ from P_{θ^*} .
- Let $\widehat{\theta}_{1,t-1}$ be any *non-anticipating* estimator based on the first t-1 samples.

- Consider the following, standard, sequential testing/estimation setup:
- ▶ We observe an i.i.d. sequence $Y_1, Y_2,...$ from P_{θ^*} .
- Let $\widehat{\theta}_{1,t-1}$ be any *non-anticipating* estimator based on the first t-1 samples.
- ▶ Denote the null MLE as $\widehat{\theta}_{0,t} = \arg \max_{\theta \in \Theta_0} \prod_{i=1}^t p_{\theta}(Y_i)$.

- Consider the following, standard, sequential testing/estimation setup:
- ▶ We observe an i.i.d. sequence $Y_1, Y_2,...$ from P_{θ^*} .
- Let $\widehat{\theta}_{1,t-1}$ be any *non-anticipating* estimator based on the first t-1 samples.
- ▶ Denote the null MLE as $\widehat{\theta}_{0,t} = \arg\max_{\theta \in \Theta_0} \prod_{i=1}^t p_{\theta}(Y_i)$.
- ► At any time t, reject the null and stop if

$$M_t := \frac{\prod_{i=1}^t p_{\widehat{\theta}_{1,i-1}}(Y_i)}{\prod_{i=1}^t p_{\widehat{\theta}_{0,t}}(Y_i)} > 1/\alpha.$$

- Consider the following, standard, sequential testing/estimation setup:
- ▶ We observe an i.i.d. sequence $Y_1, Y_2,...$ from P_{θ^*} .
- Let $\widehat{\theta}_{1,t-1}$ be any *non-anticipating* estimator based on the first t-1 samples.
- ▶ Denote the null MLE as $\widehat{\theta}_{0,t} = \arg \max_{\theta \in \Theta_0} \prod_{i=1}^t p_{\theta}(Y_i)$.
- ► At any time t, reject the null and stop if

$$M_t := \frac{\prod_{i=1}^t p_{\widehat{\theta}_{1,i-1}}(Y_i)}{\prod_{i=1}^t p_{\widehat{\theta}_{0,t}}(Y_i)} > 1/\alpha.$$

Let τ_{θ} denote the stopping time when the data is drawn from P_{θ} .

- Consider the following, standard, sequential testing/estimation setup:
- ▶ We observe an i.i.d. sequence $Y_1, Y_2,...$ from P_{θ^*} .
- Let $\widehat{\theta}_{1,t-1}$ be any *non-anticipating* estimator based on the first t-1 samples.
- ▶ Denote the null MLE as $\widehat{\theta}_{0,t} = \arg \max_{\theta \in \Theta_0} \prod_{i=1}^t p_{\theta}(Y_i)$.
- At any time t, reject the null and stop if

$$M_t := \frac{\prod_{i=1}^t p_{\widehat{\theta}_{1,i-1}}(Y_i)}{\prod_{i=1}^t p_{\widehat{\theta}_{0,t}}(Y_i)} > 1/\alpha.$$

Let τ_{θ} denote the stopping time when the data is drawn from P_{θ} .

Theorem

The running MLE LRT has type I error at most α , meaning that $\sup_{\theta^* \in \Theta_0} P_{\theta^*}(\tau_{\theta^*} < \infty) \leq \alpha$.

ightharpoonup For M_t we can write:

$$M_{t} := \frac{\prod_{i=1}^{t} p_{\widehat{\theta}_{1,i-1}}(Y_{i})}{\prod_{i=1}^{t} p_{\widehat{\theta}_{0,t}}(Y_{i})} \leq \underbrace{\frac{\prod_{i=1}^{t} p_{\widehat{\theta}_{i-1}}(Y_{i})}{\prod_{i=1}^{t} p_{\theta^{*}}(Y_{i})}}_{L_{t}} = L_{t-1} \frac{p_{\widehat{\theta}_{t-1}}(Y_{t})}{p_{\theta^{*}}(Y_{t})}.$$

ightharpoonup For M_t we can write:

$$M_{t} := \frac{\prod_{i=1}^{t} p_{\widehat{\theta}_{1,i-1}}(Y_{i})}{\prod_{i=1}^{t} p_{\widehat{\theta}_{0,t}}(Y_{i})} \leq \underbrace{\frac{\prod_{i=1}^{t} p_{\widehat{\theta}_{i-1}}(Y_{i})}{\prod_{i=1}^{t} p_{\theta^{*}}(Y_{i})}}_{L_{t}} = L_{t-1} \frac{p_{\widehat{\theta}_{t-1}}(Y_{t})}{p_{\theta^{*}}(Y_{t})}.$$

It is easy to verify that L_t is a nonnegative super-martingale with respect to the natural filtration $\mathcal{F}_t = \sigma(Y_1, \dots, Y_t)$:

$$\begin{split} \mathbb{E}_{\theta^*}[L_t|\mathcal{F}_{t-1}] &= \mathbb{E}_{\theta^*} \left[\frac{\prod_{i=1}^t p_{\widehat{\theta}_{i-1}}(Y_i)}{\prod_{i=1}^t p_{\theta^*}(Y_i)} \, \middle| \, \mathcal{F}_{t-1} \right] \\ &= L_{t-1} \mathbb{E}_{\theta^*} \left[\frac{p_{\widehat{\theta}_{t-1}}(Y_t)}{p_{\theta^*}(Y_t)} \, \middle| \, \mathcal{F}_{t-1} \right] \leq L_{t-1} \leadsto \mathsf{Super-Martingale} \end{split}$$

ightharpoonup For M_t we can write:

$$M_{t} := \frac{\prod_{i=1}^{t} p_{\widehat{\theta}_{1,i-1}}(Y_{i})}{\prod_{i=1}^{t} p_{\widehat{\theta}_{0,t}}(Y_{i})} \leq \underbrace{\frac{\prod_{i=1}^{t} p_{\widehat{\theta}_{i-1}}(Y_{i})}{\prod_{i=1}^{t} p_{\theta^{*}}(Y_{i})}}_{L_{t}} = L_{t-1} \frac{p_{\widehat{\theta}_{t-1}}(Y_{t})}{p_{\theta^{*}}(Y_{t})}.$$

It is easy to verify that L_t is a nonnegative super-martingale with respect to the natural filtration $\mathcal{F}_t = \sigma(Y_1, \dots, Y_t)$:

$$\begin{split} \mathbb{E}_{\theta^*}[L_t|\mathcal{F}_{t-1}] &= \mathbb{E}_{\theta^*} \left[\frac{\prod_{i=1}^t p_{\widehat{\theta}_{i-1}}(Y_i)}{\prod_{i=1}^t p_{\theta^*}(Y_i)} \, \middle| \, \mathcal{F}_{t-1} \right] \\ &= L_{t-1} \mathbb{E}_{\theta^*} \left[\frac{p_{\widehat{\theta}_{t-1}}(Y_t)}{p_{\theta^*}(Y_t)} \, \middle| \, \mathcal{F}_{t-1} \right] \leq L_{t-1} \leadsto \text{Super-Martingale} \end{split}$$

Now we proceed as follows:

$$P_{\theta^*}(\exists t \in \mathbb{N} : M_t > 1/\alpha) \le P_{\theta^*}(\exists t \in \mathbb{N} : L_t > 1/\alpha)$$

$$\stackrel{(\star)}{\le} \mathbb{E}_{\theta^*}[L_0] : \alpha := \alpha, \quad \exists t \in \mathbb{R}$$

(*) Ville's Inequality

Theorem [Ville (1939)]

For any nonnegative supermartingale L_t and any x > 1, we have

$$\mathbb{P}[\exists t: L_t \geq x] \leq \frac{\mathbb{E}[L_0]}{x}$$

Proof.

The idea is to consider the following stopping time

$$N = \inf\{t \ge 1 : L_t \ge x\},\$$

and use the optional stopping time theorem.

Conclusion

Conclusion

► Inference based on the split likelihood ratio statistic (and variants) leads to simple tests and confidence sets with finite-sample guarantees.

Conclusion

- ► Inference based on the split likelihood ratio statistic (and variants) leads to simple tests and confidence sets with finite-sample guarantees.
- These methods are most useful in problems where standard asymptotic methods are difficult/impossible to apply.

▶ Going forward: Optimality? Power of the Test? How does the choice of $\hat{\theta}_1$ affect the power of the test?

Thank You!

Behrad Moniri Universal Inference 106