

Atividade: O gráfico e a forma canônica

Para melhor explorarmos essa atividade sugerimos a versão online, disponível nos links a seguir:

- Parte 1: Forma Canônica e o parâmetro 'a'
- Parte 2: Forma Canônica e o parâmetro 'p'
- Parte 3: Forma Canônica e o parâmetro 'q'
- Parte 4: Forma Canônica

Caso não seja possível, segue a atividade que corresponde à apresentada nos "links":

Na Em busca de padrões em $f(x)=x^2$, você teve a oportunidade de explorar as propriedades do gráfico da função $f:\mathbb{R}\to\mathbb{R}$ dada por $f(x)=x^2$, já na atividade 3, você foi apresentado à um processo que o levou a transformar a relação quadrática dada na forma polinomial: $f(x)=ax^2+bx+c$ para forma canônica $f(x)=a(x-p)^2+q$. O objetivo desta atividade é que você consiga perceber as mudanças ocorridas no gráfico da função f (dada em sua forma canônica) acarretadas pelas variações dos coeficientes a,p e q. Esperamos que além de você ter contato com novos conceitos, comprove e consolide os conceitos abordados nas atividades anteriores deste capítulo.

Parte 1 Dada a função $f: \mathbb{R} \to \mathbb{R}$, definida na sua forma canônica: $f(x) = a(x-p)^2 + q$, ao assumirmos p = q = 0 temos que $f(x) = ax^2$, onde analisaremos as variações dos valores de a > 0, observando a figura a seguir:

OLIMPÍADA BRASILEIRA
O J DE MATEMÁTICA
DAS ESCOLAS PUBLICAS

Note que os gráficos apresentados na figura acima apresentam apenas valores de a maiores que zero, e que a curva em questão é côncava, com base nessa afirmação responda:

- a) Quando o valor de a aumenta, a concavidade da curva fica mais aberta ou mais fechada?
- b) Quando o valor de a se aproxima de zero, a concavidade da curva fica mais aberta ou mais fechada?
- c) Tente explicar com suas palavras uma justificativa para as respostas dadas no item anterior. Observe as novas figuras a seguir que apresentam novos valores de a < 0.

- d) Quando o valor de a diminui (fica "mais negativo"), a concavidade da curva fica mais aberta ou mais fechada?
- e) Quando o valor de a se aproxima de zero, a concavidade da curva fica mais aberta ou mais fechada? A figura a seguir apresenta o gráfico da função f definida anteriormente para a=0.

- f) Com base no gráfico acima, comente cada uma das alternativas a seguir, que indicam o comportamento do gráfico quando a=0.
 - i) A curva some, pois não é mais função.
 - ii) Não existe mais curva, o gráfico apresentado é uma reta representada pela função constante $f:\mathbb{R} \to \mathbb{R}$ dado por f(x)=0
 - iii) A curva ainda existe mais fica invisível, pois a abertura de sua concavidade tende ao infinito. A curva se transforma numa reta que está sobreposta ao eixo das abscissas.
- g) Você deve ter notado que quando o valor de a>0 a concavidade da curva aponta para cima, e quando a<0 a concavidade aponta para baixo. Com base neste fato, reescreva as falsas afirmações a seguir, tornando-as verdadeiras:
 - i) Quando a>0 a, da esquerda para direita, a curva é decrescente e ao assumir o seu valor máximo passa a ser crescente.
 - ii) Quando a>0 a, da esquerda para direita, a curva é crescente e ao assumir o seu valor mínimo passa a ser decrescente.
 - iii) Quando a<0 a, da esquerda para direita, a curva é decrescente e ao assumir o seu valor máximo passa a ser crescente.
 - iv) Quando a < 0 a, da esquerda para direita, a curva é crescente e ao assumir o seu valor mínimo passa a ser decrescente.

Parte 2 Dada a função $g: \mathbb{R} \to \mathbb{R}$, definida na sua forma canônica: $g(x) = a(x-p)^2 + q$, tomemos a=1 e q=0 e analisaremos os valores de p na função $f(x) = (x-p)^2$ observando a figura a seguir:

Figura 1: Variações de p.

Variações de p.

Em cada um dos itens a seguir destaque as alternativas verdadeiras.

a)	Quando os valores de \emph{p} aumentam a curva se desloca para
	() direita.
	() cima.
	() esquerda.
	() baixo.
b)	Quando os valores de \emph{p} diminuem a curva se desloca para

- () direita.
- () cima.
- () esquerda.
- () baixo.
- c) Você deve ter notado que a curva tangencia o eixo das abscissas em um ponto, que é justamente o ponto em que a curva deixa de ser decrescente e passa a ser crescente. Qual é a relação dos valores de p com este ponto?
 - () O ponto de tangência em questão é (-p,0).
 - () O ponto de tangência em questão é (0, -p).

Realização:

OLIMPÍADA BRASILEIRA
DE MATEMÁTICA
DAS ESCOLAS PÚBLICAS

	() O ponto de tangência em questão é $(0,p)$.
	() O ponto de tangência em questão é $(p,0)$.
d)	0	movimento que a curva faz quando \emph{p} varia, é uma
	() translação vertical.
	() translação horizontal.
	() rotação em 360° .
	() rotação em 180°.

Parte 3 Dada a função $g: \mathbb{R} \to \mathbb{R}$, definida na sua forma canônica: $g(x) = a(x-p)^2 + q$, tomemos a=1e p=0 e analisaremos os valores de q na função $f(x)=x^2+q$ observando a figura a seguir:

Figura 2: Variação de q

Em cada um dos itens a seguir destaque as alternativas verdadeiras.

a)	Quando os valores de q aumentam a curva se desloca para
	() direita.
	() cima.
	() esquerda.
	() baixo.
b)	Quando os valores de \emph{q} diminuem a curva se desloca para
	() direita.
	() cima.
	() esquerda.
	() baixo.

- c) Você deve ter notado que a curva intersecta o eixo das ordenadas em um ponto, que é justamente o ponto em que a curva deixa de ser decrescente e passa a ser crescente. Quais são relações dos valores de q com esse ponto?
 - () O ponto de intersecção é (-q,0).
 - () O ponto de intersecção é (q,0).
 - () O ponto de intersecção é (0, -q).
 - () O ponto de intersecção é (0,q).
 - () Na figura, q representa o maior valor que essa função atinge.
 - () Na figura, q representa o menor valor que essa função atinge.

Realização: OLIMPÍADA BRASILEIRA D E M A T E M Á T I C A DAS ESCOLAS PÚBLICAS

- d) O movimento que a curva faz quando q varia, é uma
 - () translação vertical.
 - () translação horizontal.
 - () rotação em 360°.
 - () rotação em 180°.

Parte 4 Em cada uma das partes anteriores, estudamos as variações gráficas que cada um dos valores de a, p e q fazem na curva. Para elucidarmos essas ideias, convidamos a variar esses valores juntos na função $f: \mathbb{R} \to \mathbb{R}$, definida na sua forma canônica: $f(x) = a(x-p)^2 + q$.

a) Observe as figuras a seguir, e note que em todas os valores de a são sempre iguais a 1, já os valores de p e q variam.

Figura 3: (p = 4 e q = -3)

Figura 4: (p = 3 e q = 0)

Figura 5: (p = -1 e q = 2)

- i) A variação de p faz com que o gráfico sofra que tipo de translação (vertical ou horizontal?
- ii) A variação de q faz com que o gráfico sofra que tipo de translação (vertical ou horizontal?
- b) As figuras a seguir mostram as variações obtidas no gráfico para os valores de a=1, $(p=5\ e\ q=5)$; $(p=-5\ e\ q=5)$; em seguida $(p=5\ e\ q=-5)$ e por último $(p=-5\ e\ q=-5)$. Já vimos anteriormente que existe um ponto no gráfico em que a função deixa de ser decrescente e passa a ser crescente, este ponto chamamos de **vértice** da curva.

Figura 6: (p = 5 e q = 5)

Figura 7: (p = -5 e q = 5)

Figura 8: (p = 5 e q = -5)

Figura 9: (p = -5 e q = -5)

Exiba as coordenadas do vértice em função de p e q.

c) Observe que ao mantermos os valores de $a=1,\,p=0$ e q=0, temos a curva $y=x^2$. Considerando uma função f de Domínio D e imagem I dada por f(x)=y, utilize a figura a seguir, e em seguida escolha a alternativa na qual os conjuntos D e I estão definidos na atividade.

Figura 10: (a = 1; p = q = 0)

()
$$D=[-5,5] \in I=[0,5]$$

()
$$D=[0,+\infty[$$
 e $I=[0,+\infty[$

()
$$D = [0, 5] \in I = [-5, 5]$$

()
$$D = \mathbb{R} \in I = [0, +\infty[$$

()
$$D = \mathbb{R} \in I = \mathbb{R}$$

livroaberto@impa.br

d) Observe que ao mantermos os valores de a=-2, p=3 e q=-4, temos que $y=-2(x-3)^2-4$. Considerando uma função f de Domínio D e imagem I dada por f(x)=y, utilize a figura a seguir, e em seguida escolha a alternativa na qual os conjuntos D e I estão definidos na atividade.

Figura 11: (a = -2, p = 3, q = -4)

()
$$D = [-4, 3] \in I = [-4, 3]$$

$$(\quad) D = \mathbb{R} \in I =]-\infty, -4]$$

()
$$D = [-5, 5] \in I = [-5, 5]$$

()
$$D = [-4, 3] \in I = [-4, +\infty[$$

()
$$D = \mathbb{R} \in I = \mathbb{R}$$

e)	Em relação à função real f definida por $f(x)=a(x-p)^2+q$, caso a assuma apenas valores positivos , assinale quais das afirmações seguintes são verdadeiras:
	() O valor de \emph{p} representa o maior valor que \emph{f} pode assumir.
	() O valor de \emph{p} representa o menor valor que \emph{f} pode assumir.
	() O valor de \emph{q} representa o maior valor que \emph{f} pode assumir.
	() O valor de \emph{q} representa o menor valor que \emph{f} pode assumir.
	() A função f , não tem valor máximo, mas tem valor mínimo.
	() A função f , não tem valor mínimo, mas tem valor máximo.
	() A função f, tem valores de máximo e mínimo.
f)	Em relação à função real f definida por $f(x)=a(x-p)^2+q$, caso a assuma apenas valores negativos , assinale quais das afirmações seguintes são verdadeiras:
	() O valor de \emph{p} representa o maior valor que \emph{f} pode assumir.
	() O valor de \emph{p} representa o menor valor que \emph{f} pode assumir.
	() O valor de q representa o maior valor que f pode assumir.
	() O valor de \emph{q} representa o menor valor que \emph{f} pode assumir.
	() A função f , não tem valor máximo, mas tem valor mínimo.
	() A função f , não tem valor mínimo, mas tem valor máximo.
	() A função f, tem valores de máximo e mínimo.
g)	Ainda na função f ao assumirmos os valores de $a=3; p=1$ e $q=-2$, Assinale quais afirmações a seguir são verdadeiras.
	() O vértice da curva é $V=(3,1).$
	() O vértice da curva é $V=(3,-2)$.
	() O vértice da curva é $V=(1,-2).$
	() O vértice da curva é $V=(-2,1).$
	() -2 , é o maior valor que a função f pode assumir.
	() 3, é o maior valor que a função f pode assumir.
	() 1, é o maior valor que a função f pode assumir.
	() -2 , é o menor valor que a função f pode assumir.
	() 3 , $\acute{\mathrm{e}}$ o menor valor que a função f pode assumir.
	() 1, é o menor valor que a função f pode assumir.
	() A concavidade da curva está voltada para cima, pois $a>0$.
	() A concavidade da curva está voltada para cima, pois $p>0.$
	() A concavidade da curva está voltada para cima, pois $q<0.$

