Отчет о выполненой лабораторной работе 1.4.5

Антон Хмельницкий, Б01-306

October 24, 2023

1 Введение

Цель работы: исследовать вынужденную прецессию гироскопа, установить зависимость скорости вынужденной прецессии от величины момента сил, действующий на ось гироскопа и сравнить ее со скоростью, рассчитанной по скорости прецессии.

Оборудование: гироскоп в кардановом подвесе, секундомер, набор грузов, отдельный ротор гироскопа, цилиндр известной массы, крутильный маятник, штангенсциркуль, линейка.

2 Теоретические сведения

В этой работе исследуется зависимость скорости прецессии гироскопа от момента силы, приложенной к его оси. Для этого к оси гироскопа подвешиваются грузы. Скорость прецессии определяется по числу оборотов рычага вокруг вертикальной оси и времни, которое на это ушло, определяемоу секундомером. В процессе измерений рычаг не только поворачивается в результате прецессии гироскопа, но и опускается. Поэтому его в начале опыта следует преподнять на 5-6 градусов. Опять надо закончить, когда рычаг опустится на такой же угол.

Рис. 1. Маховик

Рис. 2. Гироскоп в кардановом подвесе

Измерение скорости прецессии гироскопа позволяет вычислить угловую скорость вращения его ротора. Расчет производится по формуле:

$$\Omega = \frac{mgl}{I_z \omega_0},\tag{1}$$

где m — масса груза, l — расстояние от центра карданова подвеса до точки крепления груза на оси гироскопа, I_z — момент инерции гироскопа по его главной оси вращения. ω_0 — частота его вращения относительно главной оси, Ω — частота прецессии.

Момент инерции ротора относительно оси симметрии I_0 измеряется по крутильным колебаниям точной копии

ротора, подвешиваемой вдоль оси симметрии на десткой проволоке. Период крутильных колебаний T_0 зависит от момента инерции I_0 и модуля кручения проволоки f:

$$T_0 = 2\pi \sqrt{\frac{I_0}{f}}. (2)$$

Чтобы исключить модуль кручения проволоки, вместо ротора гироскопа к той же проволоке подвешивают цилиндр правильной формы с известными размерами и массой, для которого легко можно вычислить момент инерции $I_{\rm q}$. Для определения момента инерции ротора гироскопа имеем:

$$I_0 = I_{\text{II}} \frac{T_0^2}{T_{\text{II}}^2},\tag{3}$$

Здесь $T_{\rm ц}$ – период крутильных колебаний цилиндра.

Рис. 3. Схема экспериментальной установки

Скорость вращения ротора гироскопа можно определить и не прибегая к исследованию прецессии. У используемых в работе гироскопов статор имеет две обмотки, необходимые для быстрой раскрутки гироскопа. В данной работе одну обмотку искользубт для раскрутки гироскопа, а вторую — для измерения числа оборотов ротора. Ротор электромотора всегда немного намагничен. Вращаясь, он наводит во второй обмотке переменную ЭДС индукции, частота которой равна частоте врещения ротора. Частоту этой ЭДС можно, в частности, измерить по фигурам Лиссажу, получаемым на экране осциллографа, если на один вход подать исследуемую ЭДС, а на другой — переменное напряжение с хорошо прокалиброванного генератора. При совпадении частот на эеране получаем эллипс.

3 Приборы и данные

- Штангенциркуль, погрешность $\sigma_{sht}=0,1$ мм
- Секундомер, погрешность $\sigma_{sec} = 0,1$ с (с учетом реакции экспериментатора)

- Осциллограф
- Генератор частот
- \bullet Весы, погрешность $\sigma_{sht}=0,01$ г

	Масса, г	Радиус, см	Период, с
Цилиндр	1616,6	3,9	3,91
Ротор	1083	3,4	3,22

Таблица 1: Данные полученные для расчета момента инерции ротора с помощью цилиндра

	Масса груза, г	Время прецессии, с	Угол поворота, рад
№1	57	153	5,76
№2	173	156	16,76
№3	215	154	18,85
Nº4	268	156	26,44
№5	338	155	37,7

Таблица 2: Данные для измерения прецессии, зависимость угла поворота от момента сил

Плечо от груза до ц.м., мм	121
Частота для фигур Лиссажу, Гц	388,4

Таблица 3: Дополнительные данные

4 Обработка результатов

4.1 Нахождение момента инерции ротора

Используя данные таблицы 1 и формулу получаем:

$$\begin{split} I_{\mathrm{I}_{\mathrm{I}}} &= \frac{m_{\mathrm{I}_{\mathrm{I}}}R^2}{2} = (123 \pm 1, 23) \cdot 10^{-5} \text{ kg} \cdot \text{m}^2 (\varepsilon_{I_{\mathrm{I}_{\mathrm{I}}}} = 1\%) \\ I_{0} &= I_{\mathrm{I}_{\mathrm{I}}} \cdot \frac{T_{0}^2}{T_{\mathrm{I}_{\mathrm{I}}}^2} = (8, 34 \pm 0, 067) \cdot 10^{-4} \text{ kg} \cdot \text{m}^2 (\varepsilon_{I_{0}} = 0, 8\%) \end{split}$$

4.2 Измерение угловой скорости регулярной прецессии

По таблице 2: Используя формулу $\Omega=\frac{\Delta\phi}{T}$ находим угловую скорость рецессии. Далее найдем момент силы M=mgl для каждой массы и $\omega=\frac{\Delta\phi'}{T}, \phi=0,17$ рад - угловую скорость опускания рычага. Погрешность:

$$\begin{split} \sigma_{\text{случ}} &= \sqrt{\frac{1}{5 \cdot 4} \sum_{i=1}^{5} (\overline{\Omega_i} - \Omega_i)^2} \\ \sigma_{\text{сист}} &= \Omega \cdot \varepsilon_T \\ \sigma_{\text{полн}} &= \sqrt{\sigma_{\text{случ}}^2 + \sigma_{\text{сист}}^2} \end{split}$$

	Масса груза, т, г	Угловая скорость рецессии, Ω , c^-1	Момент силы, M , $H \cdot M$	Угловая скорость, ω , c^{-1}
№ 1	57	0.0378 ± 0.00012	0,069	0,00110
№ 2	173	$0,107 \pm 0,0003$	0,21	0,00109
№3	215	$0,122 \pm 0,0004$	0,26	0,00110
№ 4	268	0.17 ± 0.00055	0,324	0,00108
№5	338	0.243 ± 0.0008	0,41	0,00111

Таблица 4: Полученные величины Ω, M, ω

4.3 Построение графика зависимости угловой скорости рецессии от момента силы

С помощью расчетов из таблицы 4 построим график $\Omega(M)$

Рисунок 1: График зависимости угловой скорости рецессии Ω от момента силы M

4.4 Нахождение частоты вращения ротора гироскопа

Частота вращения будет равна $\omega_0 = \frac{1}{kI_0}$, где k - угол наклона прямой графика $\Omega(M)$

$$k = \frac{\langle xy \rangle - \langle x \rangle \langle y \rangle}{\langle x^2 \rangle - \langle x \rangle^2} \approx 0,543$$

Получаем $\omega_0 = 2245, 4 \text{ c}^{-1}$

Погрешность $\sigma_{\omega_0} = \omega_0 \cdot \varepsilon_{I_0} \approx 17,96 \text{ c}^{-1}(\varepsilon_{\omega_0} = 0,8\%)$

Отсюда частота вращения ротора гироскопа будет расчитываться как $\nu = \frac{\omega_0}{2\pi} \approx 357,4~\Gamma$ ц

Погрешность частоты: $\sigma_{\nu} = \nu \cdot \varepsilon_{\omega_0} \approx 2,86 \; \Gamma \mathfrak{q}(\varepsilon_{\nu} = 0,8\%)$

Получаем частота вращения ротора гироскопа $\nu = 357, 4 \pm 2, 86$ Гц с точностью 0,8 %.

4.5 Определение частоты вращения по фигурам Лиссажу

С помощью осциллографа и генератора частот подключенных к гироскопу была найдена частота вращения ротора гироскопа.

Подобранная частота $\nu=388,4\pm0,5~\Gamma$ ц , при которой эллипс отображаемый на осциллографе стал неподвижным. Также были замечены помехи от внутренней ЭДС гироскопа, поэтому наблюдение фигуры Лиссажу было во время выключения гироскопа.

5 Выводы

В данной работе были полученны частоты вращения ротора гироскопа двумя способами с разными погрешностями:

- Через прецессию гироскопа: $\nu_1 = 357, 4 \pm 2, 86$ Гц с точностью 0,8 %.

Сравнивая результаты приходим к выводу что при расчете 1 способом на значения оказывает влияние погрешность в отличии от способа 2 где используются более точные приборы.

В работе была исследована вынужденная перцессия гироскопа, установлена зависимость скорости прецессии от момента сил действующих на ось гироскопа, и также были посчитаны частоты вращения двумя методами, а затем было проведено их сравнение с учетом погрешностей.