This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

4)

Europäisches Patentamt **European Patent Office** Office européen des brevets

EP 0 682 710 B1 (11)

(12)

EUROPEAN PATENT SPECIFICATION

- (45) Date of publication and mention of the grant of the patent: 29.10.2003 Bulletin 2003/44
- (21) Application number: 94908307.5
- (22) Date of filing: 10.02.1994

- (51) Int Cl.7: C12N 15/62, C12N 1/19, C12N 1/20, C12N 11/16 // (C12N15/62, 1:19, C12R1:465)
- (86) International application number: PCT/EP94/00427
- (87) International publication number: WO 94/018330 (18.08.1994 Gazette 1994/19)
- (54) ISOLATION PROCESS USING IMMOBILIZED PROTEINS WITH SPECIFIC BINDING CAPACITIES ISOLIERUNGSVERFAHREN VERWENDEND IMMOBILISIERTE PROTEINE MIT SPEZIFISCHEN BINDUNGSKAPAZITÄTEN PROCEDE D'ISOLATION UTILISANT DES PROTEINES IMMOBILISEES A CAPACITES DE **FIXATION SPECIFIQUE**
- (84) Designated Contracting States: AT BE CH DE DK ES FR GB GR IE IT LI NL PT SE
- (30) Priority: 10.02.1993 EP 93200350
- (43) Date of publication of application: 22.11.1995 Bulletin 1995/47
- (73) Proprietors:
 - UNILEVER PLC London EC4P 4BQ (GB) **Designated Contracting States:** GB IE
 - UNILEVER N.V. 3013 AL Rotterdam (NL) **Designated Contracting States:** AT BE CH DE DK ES FR GR IT LI NL PT SE
- (72) Inventors:
 - FRENKEN, Leon Gerardus J., c/o Unilever Research NL-3133 AT Vlaardingen (NL)

- . DE GEUS, Pieter NL-2991 KB Barendrecht (NL)
- · KLIS, Franciscus Maria NL-1025 KL Amsterdam (NL)
- TOSCHKA, Holger York D-48734 Reken (DE)
- VERRIPS, Cornelis Theodorus, c/o Unilever Research NL-3133 AT Vlaardingen (NL)
- (74) Representative: Van Velzen, Maaike Mathilde et al **Unilever Patent Department** Postbus 137 3130 AC Vlaardingen (NL)
- (56) References cited:

EP-A- 0 244 221 WO-A-92/20805

WO-A-92/04363 WO-A-94/01567

US-A- 5 223 408

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

Background of the invention

[0001] The pharmaceutical, the fine chemicals and the food industry need a number of compounds that have to be isolated from complex mixtures such as extracts of animal or plant tissue, or fermentation broth. Often these isolation processes determine the price of the product.

[0002] Conventional isolation processes are not very specific and during the isolation processes the compound to be isolated is diluted considerably with the consequence that expensive steps for removing water or other solvents have to be applied.

[0003] For the isolation of some specific compounds affinity techniques are used. The advantage of these techniques is that the compounds bind very specifically to a certain ligand. However these ligands are quite often very expensive.

[0004] To avoid spillage of these expensive ligands they can be linked to an insoluble support. However, often linking the ligand is also expensive and, moreover, the functionality of the ligand is often affected negatively by such procedure.

[0005] So a need exists for developing cheap processes for preparing highly effective immobilized ligands.

[0006] The non-prepublished co-pending international patent application WO 94/01567 (UNILEVER) discloses a method for immobilizing an enzyme or functional part thereof on the cell wall of a lower eukaryote, whereby the enzyme or functional part thereof is localized at the exterior of the cell wall.

[0007] WO 92/20805 discloses the production of heterologous proteins in Gram-positive bacteria wherein the heterologous proteins are bound to the surface of the bacteria by a cell wall spanning and membrane anchoring amino acid sequence.

[0008] J.E. Francisco et al, Proc. Natl. Acad. Sci. USA <u>89</u> (1992) 2713-2717, disclose a fusion protein obtained by the expression of a chimeric gene consisting of (i) the signal sequence and first nine N-terminal amino acids of the mature major *E. coli* lipoprotein, (ii) amino acids 46-159 of the outer membrane OmpA, and (iii) the complete mature B-lactamase sequence.

[0009] The fusion protein had an enzymatically active β -lactamase and was found predominantly in the outer membrane. A substantial fraction (20-30%) of the β -lactamase domain of the protein was exposed on the external surface of *E. coli.*

[0010] In J. Bacteriol. $\frac{171}{1}$ (1989) 4569-4576, the anchoring of β -galactosidase to the *E. coli* inner plasma membrane is disclosed. It is suggested that by combining a signal sequence at the N-terminus with the hydrophobic domain at the N-terminus, many proteins, although not β -galactosidase, could become associated with the outer aspect of the inner membrane or with the outer membrane. Such modified bacteria might have potential use as immobilized enzyme systems.

[0011] S.W. Hiebert et al, J. Cell Biology 107 (1988) 865-876, describe that the soluble cytoplasmic protein pyruvate kinase (PK) has been expressed at the cell surface of CV1 cells in a membrane-anchored form (APK). Truncated forms of the APK molecule, with up to 80% of the PK region of APK removed, can also be expressed at the cell surface.

[0012] In WO 89/07140 a tripartite DNA sequence is described that is so fused that the gene will upon expression in a eukaryotic cell (exemplified are COS cells) give rise to a correctly processed, appropriately folded, membrane bound version of the protein. Various anchor domains are mentioned.

[0013] C.C. Chen et al, J. Biol. Chem. <u>265</u> (1990) 3161-3167, describe that the predicted amino acid sequence reveals the presence of a proline-rich cell wall anchor region similar to that of other Gram-positive surface proteins.

[0014] Vijaya et al, Mol. Cell. Biol. 8 (1988) 1709-1714, describe the cell surface localization of hybrid proteins on

the outer surface of CV-1 cells infected by recombinant viruses.

45 Summary of the invention

[0015] The invention is a process for carrying out an isolation process by using an immobilized binding protein or functional part thereof still capable of binding to a specific compound, wherein a medium containing said specific compound is contacted with a host cell according to the invention under conditions whereby a complex between said specific compound and said immobilized binding protein is formed, separating said complex from the medium originally containing said specific compound and, optionally, releasing said specific compound from said binding protein or functional part thereof.

[0016] Preferably, the host is selected from Gram-positive bacteria and fungi, which have a cell wall at the outside of the host cell, in contrast to Gram-negative bacteria and cells of higher eukaryotes such as animal cells and plant cells, which have a membrane at the outside of their cells. Suitable Gram-positive bacteria comprise lactic acid bacteria and bacteria belonging to the genera Bacillus and Streptomyces. Suitable fungi comprise yeasts belonging to the genera Candida, Debaryomyces, Hansenula, Kluyveromyces, Pichia and Saccharomyces, and moulds belonging to the genera Aspergillus, Penicillium and Rhizopus. In this specification the group of fungi comprises the group of yeasts

and the group of moulds, which are also known as lower eukaryotes. In contrast to the cells in plants and animals, the group of bacteria and lower eukaryotes are also indicated in this specification as microorganisms.

[0017] Recombinant polynucleotides capable of being used in a method as described above, are polynucleotides comprising (i) a structural gene encoding a binding protein or a functional part thereof still having the specific binding capability, and (ii) at least part of a gene encoding an anchoring protein capable of anchoring in the cell wall of a Grampositive bacterium or a fungus, said part of a gene encoding at least the anchoring part of said anchoring protein, which anchoring part is derivable from the C-terminal part of said anchoring protein.

[0018] The anchoring protein can be selected from α -agglutinin, α -agglutinin, FLO1, the Major Cell Wall Protein of a lower eukaryote, and proteinase of lactic acid bacteria. Preferably, such polynucleotide further comprises a nucleotide sequence encoding a signal peptide ensuring secretion of the expression product of the polynucleotide, which signal peptide can be derived from a protein selected from the α -mating factor of yeast, α -agglutinin of yeast, invertase of Saccharomyces, inulinase of Kluyveromyces, α -amylase of Bacillus, and proteinase of lactic acid bacteria. The polynucleotide can be operably linked to a promoter, which is preferably an inducible promoter.

Brief description of the figures

[0019]

15

20

25

30

35

40

45

50

55

In **Figure 1** the composition of pEMBL9-derived plasmid pUR4122 is indicated, the preparation of which is described in Example 1.

In Figure 2 the composition of plasmid pUR2741 is indicated, which is a derivative of published plasmid pUR2740, see Example 1.

In Figure 3 the composition of pEMBL9-derived plasmid pUR2968 is indicated. Its preparation is described in Example 1.

In **Figure 4** the preparation of plasmid pUR4174 starting from plasmids pUR2741, pUR2968 and pUR4122 is indicated, as well as the preparation of plasmid pUR4175 starting from plasmids pSY16, pUR2968 and pUR4122. These preparations are described in Example 1.

In Figure 5 the composition of plasmid pUR2743.4 is indicated. Its preparation is described in Example 2. It contains the 714 bp *Pstl-Xhol* fragment given in SEQ ID NO: 12, which fragment encodes an scFv-TRAS fragment of anti-traseolide® antibody 02/01/01.

In **Figure 6** the composition of plasmid pUR4178 is indicated. Its preparation is indicated in Example 2. It contains the above mentioned 714 bp Pstl-Xhol fragment given in SEQ ID NO: 12. This plasmid is suitable for the expression of a fusion protein between scFv-TRAS and α AGG preceded by the invertase signal sequence (SUC2).

In **Figure 7** the composition of plasmid pUR4179 is indicated. Its preparation is indicated in Example 2. It contains the above mentioned 714 bp *Pstl-Xhol* fragment given in SEQ ID NO: 12. This plasmid is suitable for the expression of a fusion protein between scFv-TRAS and αAGG preceded by the prepro-α-mating factor signal signal sequence. In **Figure 8** a molecular design picture is given, showing the musk odour molecule traseolide® and a modified musk antigen, described in Example 3.

In Figure 9 the composition of plasmid pUR4177 is indicated. Its construction is described in Example 4. Plasmid pUR4177 contains the 734 bp *Eagl-Xhol* DNA fragment given in SEQ ID NO: 13 encoding the variable regions of the heavy and light chain fragments from the monoclonal antibody directed against the human chorionic gonadotropin (an scFv-HCG fragment) and is a 2 μm-based vector suitable for production of the chimeric scFv HCG-αAGG fusion protein preceded by the invertase signal sequence and under the control of the GAL7 promoter.

In **Figure 10** the composition of plasmid pUR4180 is indicated. Its preparation is indicated in Example 4. It contains the above mentioned 734 bp Eagl-Xhol DNA fragment given in SEQ ID NO: 13 and is a 2 μ m-based vector suitable for production of the chimeric scFv-HCG- α AGG fusion protein preceded by the prepro- α -mating factor signal sequence and under the control of the GAL7 promoter.

In Figure 11 the composition of plasmid pUR2990, a 2 μ m-based vector, is indicated, which is suggested in Example 5 as a starting vector for the preparation of plasmid pUR4196 (see Figure 12). Plasmid pUR2990 contains a DNA fragment encoding a chimeric lipase-FLO1 protein that will be anchored in the cell wall of a lower eukaryote and can catalyze lipid hydrolysis.

In Figure 12 the composition of plasmid pUR4196 is indicated. Its preparation is explained in Example 5. It contains a DNA fragment encoding a chimeric protein comprising the scFv-HCG followed by the C-terminal part of the FLO1-protein, and is a vector suitable for the production of a chimeric protein anchored in the cell wall of the host organism and can bind HCG.

In Figure 13 the composition of plasmid pUR2985 is indicated. Its preparation is described in Example 6. It contains a *cho*B gene coding for the mature part of the cholesterol oxidase (EC 1.1.3.6) obtained via PCR techniques from the chromosome of *Brevibacterium sterolicum*.

In Figure 14 the composition of plasmid pUR2987 is indicated. Its preparation from plasmid pUR2985 is described in Example 6. It contains a DNA sequence comprising the choB gene coding for the mature part of the cholesterol oxidase preceded by DNA encoding the prepro-α-mating factor signal sequence and followed by DNA encoding the C-terminal part of α -agglutinin.

In Figure 15 the composition of the published plasmid pGKV550 is indicated. It is described in Example 7 and contains the complete cell wall proteinase operon of Lactococcus lactis subsp. cremoris Wg2, including the promoter, the ribosome binding site and the prtP gene.

In Figure 16 the composition of plasmid pUR2988 is indicated. Its preparation is described in Example 7. It is anticipated that this plasmid can be used for preparing a further plasmid pUR2989, which after introduction in a lactic acid bacterium will be responsible for producing a chimeric protein that will be anchored at the outer surface of the lactic acid bacterium and is capable of binding cholesterol.

In Figure 17 the composition of plasmid pUR2993 is indicated. Its preparation is described in Example 8. It is anticipated that this plasmid can be used for transforming yeast cells that can bind a human epidermal growth factor (EGF) through an anchored chimeric protein containing an EGF receptor.

In Figure 18 the composition of plasmids pUR4482 and 4483 is indicated. Their preparation is described in Example 9. Plasmid pUR4482 is a yeast episomal expression plasmid for expression of a fusion protein with the invertase signal sequence, the CH_V09 variable region, the Myc-tail, and the "X-P-X-P" Hinge region of a camel antibody, and the α -agglutinin cell wall anchor region. Plasmid pUR4483 differs from pUR4482 in that it does not contain the "X-P-X-P" Hinge region.

In Figure 19 immunofluorescent labelling (anti-Myc antibody) of SU10 cells in the exponential phase (OD $_{530}$ = 20 0.5) expressing the genes of camel antibodies present on plasmids pUR4424, pUR4482 and pUR4483 is shown. Ph = phase contrast, FI = fluorescence.

In Figure 20 immunofluorescent labelling (anti-human IgG antibody) of SU10 cells in the exponential phase (OD₅₃₀=0.5) expressing the genes of camel antibodies present on plasmids pUR4424, pUR4482 and pUR4483 is

Ph = phase contrast, FI = fluorescence.

Abbreviations used in the Figures:

30 [0020]

5

10

15

25

35

gene encoding guar α-galactosidase α-gal:

AG-alpha-1/AGα1: gene expressing α-agglutinin from S. cerevisiae

AG α 1 cds/ α -AGG: coding sequence of a-agglutinin B-lactamase resistance gene Amp/amp r:

camel heavy chain variable 09 fragment CHv09:

EmR: erythromycin resistance gene phage f1 replication sequence f1:

FLO1/FLO (C-part): C-terminal part of FLO1 coding sequence of flocculation protein

40 Camel "X-P-X-P" Hinge region, see Example 9 Hinge:

LEU2: LEU2 gene

LEU2d/Leu2d: truncated LEU2 gene

coding sequence LEU2d gene Leu 2d cs:

MycT: camel Myc-tail

origin of replication MB1 derived from E. coli plasmid Ori MB1:

Pga17/pGAL7: GAL7 promoter

terminator of the phosphoglyceratekinase gene Tpgk: prepro-part of α-mating factor (= signal sequence) ppα-MF/MFα1ss:

gene encoding the repA protein required for replication (Fig. 15/16). repA: single chain antibody fragment containing V_H and V_L chains

ScFv (Vh-VI):

signal sequence SS:

invertase signal sequence SUC2:

2u/2 micron: 2µm sequence

55 Detailed description of the invention

[0021] The present invention relates to the isolation of valuable compounds from complex mixtures by making use of immobilized ligands. The immobilized ligands can be proteins obtainable via genetic engineering and can consist

of two parts, namely both an <u>anchoring protein</u> or functional part thereof and a <u>binding protein</u> or functional part thereof. [0022] The <u>anchoring protein</u> sticks into cell walls of microorganisms, preferably lower eukaryotes, e.g. yeasts and moulds. Often this type of proteins has a long C-terminal part that anchors it in the cell wall. These C-terminal parts have very special amino acid sequences. A typical example is anchoring via C-terminal sequences of proteins enriched in proline, see **Kok** (1990).

[0023] The C-terminal part of these anchoring proteins can contain a substantial number of potential serine and threonine glycosylation sites. O-glycosylation of these sites gives a rod-like conformation to the C-terminal part of these proteins.

In the case of anchored manno-proteins they seem to be linked to the glucan in the cell wall of lower eukaryotes, as they cannot be extracted from the cell wall with sodium dodecyl sulphate (SDS), but can be liberated by glucanase treatment, see our co-pending patent application WO-94/01567 (UNILEVER) published 20 January 1994 and Schreuder c.s. (1993), both being published after the claimed priority date. WO-A-94/01567 discloses the use of anchored enzymes in an enzymatic process. Another mechanism to anchor proteins at the outer side of a cell is to make use of the property that a protein containing a glycosyl-phosphatidyl-inositol (GPI) group anchors via this GPI group to the cell surface, see Conzelmann c.s. (1990).

[0024] The binding protein is so called, because it ligates or binds to the specific compound to be isolated. If the N-terminal part of the anchoring protein is sufficiently capable of binding to a specific compound, the anchoring protein itself can be used in a process for isolating that specific compound. Suitable examples of a binding protein comprise an antibody, an antibody fragment, a combination of antibody fragments, a receptor protein, an inactivated enzyme still capable of binding the corresponding substrate, and a peptide obtained via Applied Molecular Evolution, see Lewin (1990), as well as a part of any of these proteinaceous substances still capable of binding to the specific compound to be isolated. All these binding proteins are characterized by specific recognition of the compounds or group of related compounds to be isolated. The binding rate and release rate, and therefore the binding constant between the specific compound to be isolated and the binding protein, can be regulated either by changing the composition of the liquid extract in which the compound is present or, preferably, by changing the binding protein by protein engineering.

[0025] The gene coding for the chimeric protein comprising both the binding protein and the anchoring protein (or functional parts thereof) can be placed under control of a constitutive, inducible or derepressible promoter and will generally be preceded by a DNA fragment encoding a signal sequence ensuring efficient secretion of the chimeric protein. Upon secretion the chimeric protein will be anchored in the cell wall of the microorganisms, thereby covering the surface of the microorganisms with the chimeric protein. These microorganisms can be obtained in normal fermentation processes and their isolation is a cheap process, when physical separation processes are used, e.g. centrifugation or membrane filtration.

[0026] After washing, the isolated microorganisms can be added to liquid extracts containing the valuable specific compound or compounds. After some time the equilibrium between the bound and free specific compound(s) will be reached and the microorganisms to which the specific compound or group of related compounds is bound can be separated from the extract by simple physical techniques. Alternatively, the microorganisms covered with ligands can be brought on a support material and subsequently this coated support material can be used in a column.

[0027] The liquid extract containing the specific compound or compounds of interest can be added to the column and afterwards the compound(s) can be released from the ligand by changing the composition of the eluting liquid or the temperature or both. A skilled person will recognize that in addition to these two possibilities other modifications can be used for effecting the binding of the specific compound and the ligand, their subsequent isolation and/or the release of the specific compound(s).

[0028] In particular the invention relates to chimeric proteins that are bound to the cell wall of lower eukaryotes. Suitable lower eukaryotes comprise yeasts, e.g. Candida, Debaryomyces, Hansenula, Kluyveromyces, Pichia and Saccharomyces, and moulds e.g. Aspergillus, Penicillium and Rhizopus. For some applications prokaryotes are also applicable, especially Gram-positive bacteria, examples of which include lactic acid bacteria, and bacteria belonging to the genera Bacillus and Streptomyces.

[0029] For lower eukaryotes the present invention provides genes encoding chimeric proteins consisting of:

a. a DNA sequence encoding a signal sequence functional in a lower eukaryotic host, e.g. derived from a yeast protein including the α -mating factor,invertase, α -agglutinin, inulinase or derived from a mould protein e.g. xylanase;

b. a structural gene encoding a C-terminal part of a cell wall protein preceded by a structural gene encoding a protein, that is capable of binding to the specific compound or group of compounds of interest, examples of which include

an antibody,

50

55

10

- a single chain antibody fragment (scFv; see Bird and Webb Walker (1991),

- a variable region of the heavy chain (V_H) or a variable region of the light chain (V_L) of an antibody or that part
 of such variable region still containing one to three of the complementarity determining regions (CDRs),
- an agonist-recognizing part of a receptor protein or a part thereof still capable of binding the agonist,
- a catalytically inactivated enzyme, or a fragment of such enzyme still containing a substrate binding site of the enzyme,
- specific lipid binding proteins or parts of these proteins still containing the lipid binding site(s), see Ossendorp (1992), and
- a peptide that has been obtained via Applied Molecular Evolution, see Lewin (1990).
- [0030] All expression products of these genes are characterized in that they consists of a signal sequence and both a protein part, that is capable of binding to the compound(s) to be isolated, and a C-terminus of a typically cell wall bound protein, examples of the latter including α-agglutinin, see Lipke c.s. (1989), a-agglutinin, see Roy c.s. (1991), FLO1 (see Example 5 and SEQ ID NO: 14) and the Major Cell Wall Protein of lower eukaryotes, which C-terminus is capable of anchoring the expression product in the cell wall of the lower eukaryote host organism.
- [0031] The expression of these genes encoding chimeric proteins can be under control of a constitutive promoter, but an inducible promoter is preferred, suitable examples of which include the GAL7 promoter from Saccharomyces, the inulinase promoter from Kluyveromyces, the methanol-oxidase promoter from Hansenula, and the xylanase promoter of Aspergillus. Preferably the constructs are made in such a way that the new genetic information is integrated in a stable way in the chromosome of the host cell, see e.g. WO-91/00920 (UNILEVER).
- [0032] The lower eukaryotes transformed with the above mentioned genes can be grown in normal fermentation, continous fermentation, or fed batch fermentation processes.
 - [0033] The selection of a suitable process for growing the microorganism will depend on the construction of the gene and the promoter used, and on the desired purity of the cells after the physical separation procedure(s).
 - [0034] For bacteria the present invention deals with genes encoding chimeric proteins consisting of:
 - a. a DNA sequence encoding a signal sequence functional in the specific bacterium, e.g. derived from a *Bacillus* α -amylase, a *Bacillus subtilis* subtilisin, or a *Lactococcus lactis* subsp. *cremoris* proteinase;
 - b. a structural gene encoding a C-terminal part of a cell wall protein preceded by a structural gene encoding a protein capable of binding to the specific compound or group of compounds of interest, examples of which are given above for a lower eukaryote.
 - [0035] All expression products of these genes are characterized in that they consist of a signal sequence and both a protein part, that is capable of binding to the specific compound or specific group of compounds to be isolated, and a C-terminus of a typically cell wall-bound protein such as the proteinase of *Lactococcus lactis* subsp. *cremoris* strain Wg2, see Kok c.s. (1988) and Kok (1990), the C-terminus of which is capable of anchoring the expression product in the cell wall of the host bacterium.
 - [0036] The invention is illustrated with the following Examples without being limited thereto. First the endonuclease restriction sites mentioned in the Examples are given.

	BstEII	G GTNACC CCANTG G	ClaI	AT CGAT TAGC TA	EagI	C GGCCG
45	EcoRI	G AATTC CTTAA G	HindIII	A AGCTT TTCGA A	NheI	G CTAGC CGATC G
50	NotI	GC GGCCGC	NruI	TCG CGA AGC GCT	PstI	CTGCA G G ACGTC
	SacI	GAGCT C C TCGAG	SalI	G TCGAC CAGCT G	XhoI	C TCGAG GAGCT C

55

5

25

30

Example 1. Construction of a gene encoding a chimeric protein that will be anchored in the cell wall of a lower eukaryote and is able to bind with high specificity lysozyme from a complex mixture.

[0037] Lysozyme is an anti-microbial enzyme with a number of applications in the pharmaceutical and food industries. Several sources of lysozyme are known, e.g. egg yolk or a fermentation broth containing a microorganism producing lysozyme. Monoclonal antibodies have been raised against lysozyme, see Ward c.s. (1989), and the mRNA's encoding the light and heavy chains of such antibodies have been isolated from the hybridoma cells and used as template for the synthesis of cDNA using reverse transcriptase. Starting from the plasmids as described by Ward c.s. (1989), we constructed a pEMBL-derived plasmid, designated pUR4122, in which the multiple cloning site of the pEMBL-vector, ranging from the EcoRI to the HindIII site, was replaced by a 231 bp DNA fragment, whose nucleotide sequence is given in SEQ ID NO: 1 and has an EcoRI site (GAATTC) at nucleotides 1-6, a PstI site (CTGCAG) at nucleotides 105-110, a BstEII site (GGTCACC) at nucleotides 122-128, a Xhol site (CTCGAG) at nucleotides 207-212, and a HindIII site (AAGCTT) at nucleotides 226-231.

15 Construction of pUR4122

[0038] Plasmid pEMBL9, see Dente c.s. (1983), was digested with EcoRI and HindIII and the resulting large fragment was ligated with the double stranded synthetic DNA fragment given in SEO ID NO: 1. For the successive ligation of DNA fragments, which finally form the coding sequence of a single chain antibody fragment for lysozyme, the following elements were combined in the 231 bp DNA fragment (SEQ ID NO: 1) inserted into the pEMBL-9 vector: the 3' part of the GAL7 promoter, the invertase signal sequence (SUC2), a Pstl restriction site, a BstEII restriction site, a sequence encoding the (GGGGS)x3 peptide linker connecting the V_Hand V_L fragments, a SacI restriction site, a XhoI restriction site and a HindIII restriction site, resulting in plasmid pUR4119. To obtain the in frame fusion between V_H and the GGGGS-linker plasmid pSW1-VHD1.3-VKD1.3-TAG1, see Ward c.s. (1989), was digested with Pstl and BstEII and a DNA fragment of 0.35 kbp was ligated in the correspondingly digested pUR4119 resulting in plasmid pUR4119A. Subsequently the plasmid pSW1-VHD1.3-VKD1.3-TAG1 was digested with SacI and XhoI and this fragment containing the coding part of V_L was finally ligated into the SacI/XhoI sites of pUR4119A, resulting in plasmid pUR4122 (see Figure 1).

Construction of pUR4174, see Figure 4

30

50

[0039] To obtain *S. cerevisiae* episomal expression plasmids containing DNA encoding a cell wall anchor derived from the C-terminal part of α-agglutinin, plasmid pUR2741 (see Figure 2) was selected as starting vector. Basically, this plasmid is a derivative of pUR2740, which is a derivative of plasmid pUR2730 as described in WO-91/19782 (UNILEVER) and by Verbakel (1991). The preparation of pUR2730 is clearly described in Example 9 of EP-A1-0255153 (UNILEVER). Plasmid pUR2741 differs from plasmid pUR2740 in that the *Eagl* restriction site within the remaining part of the already inactive *tet* resistance gene was deleted through *Nrul/Sall* digestion. The *Sail* site was filled in prior to religation.

[0040] After digesting pUR4122 with SacI (partially) and *Hin*dIII, the approximately 800 bp fragment was isolated and cloned into the pUR2741 vector fragment, which was obtained after digestion of pUR2741 with the same enzymes. The resulting plasmid was named pUR4125.

[0041] A plasmid named pUR2968 (see Figure 3) was made by (1) digesting with HindIII the $Ag\alpha 1$ -containing plasmid pL α 21 published by Lipke c.s. (1989), (2) isolating an about 6.1 kbp fragment and (3) ligating that fragment with HindIII-treated pEMBL9, so that the 6.1 kbp fragment was introduced into the HindIII site present in the multiple cloning site of the pEMBL9 vector.

[0042] Plasmid pUR4125 was digested with Xhol and HindIII and the about 8 kbp fragment was ligated with the approximately 1.4 kbp Nhel-HindIII fragment of pUR2968, using Xhol/Nhel adapters having the following sequence:

XhoINheI5'-TC GAG ATC AAA GGC GGA TCT G -3'= SEQ ID NO: 23'- C TAG TTT CCG CCT AGA CGATC-5'= SEQ ID NO: 3.

[0043] The plasmid resulting from the ligation of the appropriate parts of plasmids pUR2968, pUR4125 and *Xholl Nhel* adapters, was designated pUR4174 and encodes a chimeric fusion protein at the amino terminus consisting of the invertase signal (pre) peptide, followed by the scFv-LYS polypeptide and, finally, the C-terminal part of α -agglutinin (see Figure 4).

Construction of pUR4175, see Figure 4

[0044] Upon digesting pUR4122 (see above) with *Pst*I and *HindIII*, the approximately 700 bp fragment was isolated and ligated into a vector fragment of plasmid pSY16, see Harmsen c.s. (1993), which was digested with *Eag*I and *HindIII* and using *EagI-Pst*I adapters, having the following sequence:

[0045] The resulting plasmid, named pUR4132, was digested with Xhol and HindIII and ligated with the approximately 1.4 kbp Nhel-HindIII fragment of pUR2968 (see above), using Xhol/Nhel adapters as described above, resulting in pUR4175 (see Figure 4). This plasmid contains a gene encoding a chimeric protein consisting of the α -mating factor prepro-peptide, followed by the scFv-LYS polypeptide and, finally, the C-terminal part of α -agglutinin.

Example 2. Construction of genes encoding a series of homologous chimeric proteins that will be anchored in the cell wall of a lower eukaryote and are able to bind with high specificities the musk fragrance trascolide® from a complex mixture.

[0046] The isolation of RNA from the hybridoma cell lines, the preparation of cDNA and amplification of gene fragments encoding the variable regions of antibodies by PCR was performed according to standard procedures known from the literature, see e.g. Orlandi c.s. (1989). For the PCR amplification different oligonucleotide primers have been used.

25 [0047] For the heavy chain fragment:

in which S is C or G, M is A or C, R is A or G, and W is A or T, and

B: TGA GGA GAC GGT GAC CGT GGT CCC TTG GCC CC

$$B_{SI}$$
EII = SEQ ID NO: 7.

For the light chain fragment (Kappa):

45 and

10

15

20

30

35

40

50

D: GTT TGA TCT CGA GCT TGG TCC C = SEQ ID NO: 9.
$$XhoI$$

Construction of pUR4143

[0048] To simplify future construction work an *Eag*I restriction site was introduced in pUR4122 (see above), at the junction between the invertase signal sequence and the scFv-LYS. This was achieved by replacing the about 110 bp *EcoRI-PstI* fragment within the synthetic fragment given in SEQ ID NO: 1 by synthetic adapters with the following sequence:

EcoRI Pstl

<u>AATTC</u>GGCCGTTCAGGTGCAG<u>CTGCA</u>

<u>G</u>CCGGCAAGTCCACGTC<u>G</u>

= SEQ ID NO: 10 = SEQ ID NO: 11.

[0049] The resulting plasmid was designated pUR4122.1: a construction vector for single chain Fv assembly in frame behind an Eagl site for expression behind either the prepro- α -mating factor sequence or the SUC2 invertase signal sequence.

[0050] After digesting the heavy chain PCR fragment with Pst and BstEII, two fragments were obtained: a Pst fragment of about 230 bp and a PstI/BstEII fragment of about 110 bp. The latter fragment was cloned into vector pUR4122.1, which was digested with Pst and BstEII. The newly obtained plasmid (pUR4122.2) was digested with SacI and XhoI, after which the light chain PCR fragment (digested with the same restriction enzymes) was cloned into the vector, resulting in pUR41223. This plasmid was digested with PstI, after which the above described about 230 bp PstI fragment was cloned into the plasmid vector, resulting in a plasmid called pUR4143. Two orientations are possible, but selection can be made by restriction analysis, as usual. Instead of the scFv-LYS gene originally present in pUR4122, this new plasmid pUR4143 contains a gene encoding an scFv-TRAS fragment of anti-traseolide antibody 02/01/01 (for the nucleotide sequence of the 714 bp PstI-XhoI fragment see SEQ ID NO: 12).

Construction of pUR4178 and pUR4179.

[0051] After digesting pUR4143 with Eagl and with HindIII, an about 715 bp fragment can be isolated. Subsequentely, this fragment can be cloned into the vector backbone fragments of pUR2741 and pUR4175, that were digested with the same restriction enzymes. In the case of pUR2741, this resulted in plasmid pUR2743.4 (see Figure 5). This plasmid can subsequently be cleaved with Xhol and HindIII and ligated with the about 8 kbp Xhol-HindIII fragment of pUR4174, resulting in pUR4178 (see Figure 6).

[0052] In the situation where pUR4175 was used as a starting vector, the resulting plasmid was designated pUR4179 (see Figure 7).

Both plasmids, pUR4178 and pUR4179 were introduced into S. cerevisiae.

Example 3. The modification of the binding parts of the chimeric protein that can bind traseolide® in order to improve the binding or release of traseolide® under certain conditions.

[0053] Modification of binding properties of antibodies during the immune response is a well known immunological phenomenon originating from the fine tuning of complementarity determining sequences in the antibody's binding region to the antigen's molecular properties. This phenomenon can be mimicked *in vitro* by adjusting the antigen binding regions of antibody fragments based on molecular models of these regions in contact with the antigen.

[0054] One such example consists of protein engineering the antimusk antibody M02/01/01 to a stronger binding variant M020501i.

[0055] First, a molecular model of M02/01/01 variable fragment (Fv) was constructed by homology modelling, using the coordinates of the anti-lysozyme antibody HYHEL-10 as a template (Brookhaven Protein Data Bank entry: 3HFM). This model was refined using Molecular Mechanics and Molecular Dynamics methods from within the Biosym program DISCOVER, on a Silicon Graphics 4D240 workstation. Secondly, the binding site of the resulting Fv was mapped by visually docking the musk antigen into the CDR region, followed by a refinement using molecular dynamics again. Upon inspection of the resulting model for packing efficiency (van der Waals contact areas), it was concluded that substitution of ALA H96 by VAL would increase the (hydrophobic) contact area between the ligand and Fv, and consequently lead to a stronger interaction (see Figure 8).

[0056] When this mutation is introduced into M02/01/01, the cDNA-derived scFv from Example 2, the result will be Fv M020501i; a variant with an increased affinity of at least a factor of 5 can be expected, and the increased affinity could be measured using fluorescence titration of the Fv with the musk odour molecule.

Example 4. Construction of a gene encoding a chimeric protein that will be anchored in the cell wall of lower eukaryote and is able to bind hormones such as HCG.

[0057] Gene fragments, encoding the variable regions of the heavy and light chain fragments from the monoclonal antibody directed against the human chorionic gonadotropin were obtained from a hybridoma cell line in a similar way as described in Example 2.

55

5

10

20

[0058] Subsequently, these HCG V₁₁ and V₁ gene fragments were cloned into plasmid pUR4143 by replacing the corresponding *Pstl-Bst*EII and *Sacl-Xho*I gene fragments, resulting in plasmid pUR4146.

[0059] Similar to the method described in Example 2, the 734 bp Eagl-Xhol fragment (nucleotide sequence given in SEQ ID NO: 13) encoding the variable regions of the heavy and light chain fragments from the monoclonal antibody directed against the human chorionic gonadotropin (an scFv-HCG fragment) was isolated from pUR4146 and was introduced into the vector backbone fragment of pUR4178 (see Example 2) and will be introduced into the vector backbone fragment of pUR4175 (see Example 1), both digested with the same restriction enzymes. The resulting plasmids pUR4177 (see Figure 9) was, and pUR4180 (see Figure 10) will be, introduced into S. cerevisiae strain SU10.

Example 5. Construction of a gene encoding a chimeric scFv-FLO1 protein that will be anchored in the cell wall of lower eukaryote and is able to bind hormones such as HCG.

[0060]. One of the genes associated with the flocculation phenotype in *S. cerevisiae* is the FLO1 gene. The DNA sequence of a clone containing major parts of the FLO1 gene has been determined, see SEQ ID NO: 14 giving 2685 bp of the FLO1 gene. The cloned fragment appeared to be approximately 2 kb shorter than the genomic copy as judged from Southern and Northern hybridizations, but encloses both ends of the FLO1 gene. Analysis of the DNA sequence data indicates that the putative protein contains at the N-terminus a hydrophobic region which confirms a signal sequence for secretion, a hydrophobic C-terminus that might function as a signal for the attachment of a GPI-anchor and many glycosylation sites, especially in the C-terminus, with 46.6% serine and threonine in the arbitrarily defined C-terminus (aa 271-894). Hence, it is likely that the FLO1 gene product is located in an orientated fashion in the yeast cell wall and may be directly involved in the process of interaction with neighbouring cells.

[0061] The cloned FLO1 sequence might therefore be suitable for the immobilization of proteins or peptides on the cell surface by a different type of cell wall anchor.

[0062] For the production of a chimeric protein comprising the scFv-HCG followed by the C-terminal part of the FLO1-protein, plasmid pUR2990 (see Figure 11) can be used as a starting vector. The preparation of episomal plasmid pUR2990 was described in our co-pending patent application WO-94/01567 (UNILEVER) published on 20 January 1994, i.e. during the priority year. Plasmid pUR2990 comprises the chimeric gene consisting of the gene encoding the *Humicola* lipase and a gene encoding the putative C-terminal cell wall anchor domain of the FLO1 gene product, the chimeric gene being preceded by the invertase signal sequence (SUC2) and the GAL7 promoter; further the plasmid comprises the yeast 2 μm sequence, the defective Leu2 promoter described by Eckard and Hollenberg (1983), and the Leu2 gene, see Roy c.s. (1991). Plasmid pUR4146, described in Example 4, can be digested with *Pst*I and *Xho*I, and the about 0.7 kbp *Pst*I-*Xho*I fragment containing the scFv-HCG coding sequence can be isolated. For the in frame fusion of this DNA sequence between the C-terminal FLO1 part and the SUC2 signal sequence, the fragment can be directly ligated with the 9,3 kbp *Eagl/Nhe*I (partial) backbone of plasmid pUR2990, resulting in plasmid pUR4196 (see Figure 12). This plasmid will comprise an additional triplet encoding Ala at the transition between the SUC2 signal sequence and the start of the scFv-HCG, and a E-I-K-G-G amino acid sequence in front of the first amino acid (Ser) of the C part of FLO1 protein.

[0063] If in the previous Examples 1-5 the level of exposed antibody fragments is too low, the production level can he increased by mutagenesis of the frame work regions of the antibody fragment. This can he done in a site directed way or by (targeted) random mutagenesis, using techniques described in the literature.

Example 6. Construction of a gene encoding a chimeric protein that will be anchored in the cell wall of a lower eukaryote and is able to bind cholesterol.

[0064] In the literature two DNA sequences for cholesterol oxidase are described, the choB gene from Brevibacterium sterolicum, see Ohta c.s. (1991) and the choA gene from Streptomyces sp. SA-COO, see Ishizaka c.s. (1989). For the construction of a DNA fusion between the choB gene coding for cholesterol oxidase (EC 1.1.3.6) and the 3' part of the AG-α1 gene, the PCR technique on chromosomal DNA can be applied. Chromosomal DNA can be isolated by standard techniques from Brevibacterium sterolicum, and the DNA part coding for the mature part of the cholesterol oxidase can he amplified through application with the following corresponding PCR primers cho01pcr and cho02pcr:

15

25

```
cho01pcr

5:-

GCC CCC AGC CGC ACC CTC G-3:

CGG GGG TCG GCG TGG GAG C-5:

SEQ ID NO: 17

S:-AGATCTGAATTCGCGGCC

Ecori Noti

Eagi
```

10

15

20

30

40

45

5

cho02pcr

```
Nhel Hindlil

3'-TAG TAG AGG AGG CTG TAG GTC CGATCGACTTTCGAATCTAGA-5' = SEQ ID NO: 19

111 111 111 111 111 111 111

5'-ATC ATC TCG TCC GAC ATC CAG-3' = SEQ ID NO: 20

3'-TAG TAG AGC AGG CTG TAG GTC-5' = SEQ ID NO: 21
```

[0065] Both primers can specifically hybridize with the target sequence, thereby amplifying the coding part of the gene in such a way, that the specific PCR product -after Proteinase K treatment and digestion with *Eco*RI and *HindIII*-can be directly cloned into a suitable vector, here preferably pTZ19R, see **Mead c.s.** (1986). This will result in plasmid pUR2985 (see Figure 13).

[0066] In addition to the already mentioned restriction sites both PCR primers generate other restriction sites at the 5' end and the 3' end of the 1.5 kbp DNA fragment, which can be used later on to fuse the fragment in frame between either the SUC2 signal sequence or the prepro- α -mating factor signal sequence on one side and the C-terminus coding part of the α -agglutinin gene on the other side. To facilitate the ligation behind the prepro-MF sequence a *Not*1 site is introduced at the 5' end of PCR oligonucleotide cho01pcr, allowing for example, the exchange of the 731 bp Eagl/Nhel fragment containing the scFv-Lys coding sequence in pUR4175 for the *cho*B coding sequence.

[0067] To create an enzymatically inactive fusion protein between cholesterol oxidase and α-agglutinin, the above described subcloning into pTZ19R can be used. Cholesterol oxidase is an FAD-dependent enzyme for which the crystal structure of the *Brevibacterum sterolicum* enzyme has been determined, see Vrielink c.s. (1991). The enzyme displays homology with the typical pattern of the FAD-binding domain with the Gly-X-Gly-X-X-Gly sequence near the N-terminus (amino acid 18-23). Site-directed *in vitro* mutagenesis on the plasmid pUR2985 according to the manufacturer's protocol (Muta-Gene kit, Bio-Rad) can be applied to inactivate the FAD-binding site through replacing the triplet(s) encoding the Gly residue(s) by triplets encoding other amino acids, thereby presumably inactivating the enzyme. E.g. the following primer can be used for site-directed mutagenesis of 2 of the conserved Gly residues.

[0068] As a result of the mutagenesis with the described primer, plasmid pUR2986 will be obtained. From this plasmid the DNA coding for the presumably inactivated cholesterol oxidase can be released as a 1527 bp fragment through Notl/Nhel digestion, and subsequently directly used to exchange the scFv-Lys coding sequence in pUR4175, thereby generating plasmid pUR2987 (see Figure 14). To obtain a variant yeast secretion vector, where the secretion is directed through the SUC2 signal sequence, for example the 1823 bp long Sacl/Nhel segment of plasmid pUR2986 can be used to replace the Sacl/Nhel fragment in pUR4174.

[0069] This inactivation of the FAD-binding site might be preferable over other mutations, since an unchanged active centre can be expected to leave the binding properties of cholesterol oxidase for cholesterol unaltered. Instead of the described Gly-Ala exchanges at position 18 and 20 of the mature coding sequence, every other suitable amino acid change can also be performed.

[0070] To inactivate the enzyme, site directed mutagenesis can be optionally immediately performed in the active

site cavity, for example through exchange of the Glu331, a residue appropriately positioned to act as the proton acceptor, thus generating a new variant of an immobilized, enzymatically inactive fusion protein.

Example 7. Construction of a gene encoding a chimeric protein that will be anchored in the cell wall of a lactic acid bacterium and is able to bind cholesterol.

[0071] It has been described that proteinase of *Lactococcus lactis* subsp. *cremoris* is anchored to the cell wall through its 127 amino acid long C-terminal, see **Kok c.s.** (1988) and **Kok** (1990). In a way similar to that described in Example 6, the cholesterol oxidase of *Brevibacterium sterolicum* (*choB*) can be immobilized on the surface of *Lactococcus lactis*. Fusions can be made can be made between the *choB* structural gene and the N-terminal signal sequence and the C-terminal anchor of the proteinase of *Lactococcus lactic*. Plasmid pGKV550 (see Figure 15) contains the complete proteinase operon of *Lactococcus lactis* subsp. *cremoris* Wg2, including the promoter, a ribosome binding site and DNA fragments encoding the already mentioned signal and anchor sequences, see **Kok** (1990). First a DNA fragment, containing the main part of the signal sequence, flanked by a *ClaI* site and an *EagI* site can be constructed with PCR on pGKV550 as follows:

Primer prt1:

5

10

15

20

25

30

50

5'-AA GAT CTA TCG ATC TTG TTA GCC GGT ACA-3' = SEQ ID NO: 24
Proteinase gene (non coding strand):
3'-TT CCC GAT AGC TAG AAC AAT CGG CCA TGT CAG-5'

clai = SEQ ID NO: 25

Proteinase gene:

5'-GTC GGC GAA ATC CAA GCA AAG GCG GCT-3'

Primer prt2:

3'-CAG CCG CTT TAG GTT CGT TGC CGG CCC CCC TTC GAA CCC-5'

Eag1 HindIII

[0072] After the PCR reaction as described in Example 6, the 98 bp long PCR fragment can be isolated and digested with Clal and HindIII. pGKV550 can subsequently be cleaved partially with Clal and completely with HindIII, after which digestions the vector fragment, containing the promoter, the ribosome binding site, the DNA fragment encoding the N-terminal 8 amino acids and the cell wall binding fragment containing the 127 C-terminal amino acids of the proteinase gene can be isolated on gel.

[0073] A copy of the cholesterol oxidase gene, suitable for fusion with the prtP anchor domain can be produced by a PCR reaction using plasmid pUR2985 (Example 6) as template and a combination of primer cho01pcr (see Example 6) and the following primer cho03pcr instead of primer cho02pcr:

[0074] The about 1.53 kbp fragment generated by this reaction can be digested with *Not*I and *HindIII* to produce a molecule which can subsequently be ligated with the large *Eagl/HindIII* fragment from pUR2988 (see Figure 16). The resulting plasmid, pUR2989, will contain the cholesterol oxidase coding sequence inserted between the signal sequence and the C-terminal cell wall anchor domain of the proteinase gene.

[0075] After introduction into Lactobacillus lactis subsp. lactis MG1363 by electroporation, this plasmid will express cholesterol oxidase under control of the proteinase promoter. The transport through the membrane will be mediated by the proteinase signal sequence and the immobilization of the cholesterol oxidase by the proteinase anchor. As it is unlikely that the Lactococcus will secrete FAD as well, the cholesterol oxidase will not be active but will be capable to

bind cholesterol.

5

20

25

30

35

45

55

Example 8. Construction of a gene encoding a chimeric protein that will be anchored in the cell wall of a lower eukaryote and is able to bind growth hormones, such as the epidermal growth factor.

[0076] For the isolation of larger amounts of human epidermal growth factor (EGF) the corresponding receptor can be used in form of a fusion between the binding domain and a C-terminal part of α -agglutinin as cell wall anchor. The complete cDNA sequence of the human epidermal growth factor is cloned and sequenced. For the construction of a fusion protein with EGF binding capacity the N-terminal part of the mature receptor until the central 23 amino acids transmenbrane region can be utilized.

[0077] The plasmid pUR4175 can be used for the construction. Through digestion with *Eag*I and *Nhe*I (partial) a 731 bp DNA fragment containing the sequence coding for scFv is released and can be replaced by a DNA fragment coding for the first 621 amino acids of human epidermal growth factor receptor. Initiating from an existing human cDNA library or otherwise through production of a cDNA library by standard techniques from preferentially EGF receptor overexpressing cells, e.g. A431 carcinoma cells, see *Ullrich c.s.* (1984), further PCR can be applied for the generation of in frame linkage between the extracellular binding domain of the human growth factor receptor (amino acid 1-622) and the C-terminal part of α-agglutinin.

[0078] PCR oligonucleotides for the in frame linkage of human epidermal growth factor receptor and the C-terminus of α -agglutinin.

a: PCR oligonucleotides for the transition between SUC2 signal sequence and the N-terminus of mature EGF receptor.

b: PCR oligonucleotides for the in frame transition between C terminus of the extracellular binding domain of EGF receptor and the C terminal part of α -agglutinin.

[0079] This fusion would result in an addition of 2 Ala amino acids between the signal sequence and the mature N-terminus of EGF receptor.

[0080] The newly obtained 1.9 kbp PCR fragment can be digested with *Not*1 and *Nhe*1 and directly ligated into the vector pUR4175 after digesting with the same enzymes, resulting in plasmid pUR2993 (see Figure 17), comprising the GAL7 promoter, the prepro- α -mating factor sequence, the chimeric EGF receptor binding domain gene / α -agglutinin gene, the yeast 2 μ m sequence, the defective LEU2 promoter and the LEU2 gene. This plasmid can be transformed into *S. cerevisiae* and the transformed cells can be cultivated in YP medium whereby expression of the chimeric protein can be induced by adding galactose to the medium.

Example 9. Construction of genes encoding a chimeric protein anchored to the cell wall of yeast, comprising a binding domain of a "Camelidae" heavy chain antibody

[0081] Recently it was described that camels as well as a number of related species (e.g. lamas) contain a considerable amount of IgG antibody molecules which are only composed of heavy-chain dimers, see Hamers-Casterman

c.s. (1993). Although these "heavy-chain" antibodies are devoid of light chains, it was demonstrated, that they nevertheless have an extensive antigen-binding repertoire. In order to show that the variable regions of this type of antibodies can be produced and will be linked to the exterior of the cell wall of a yeast, the following constructs were prepared.

Construction of pUR2997, pUR2998 and pUR2999

[0082] The about 2.1 kbp Eagl-HindIII fragment of pUR4177 (Example 4, Fig 9) was isolated. By using PCR technology, an EcoRI restriction site was introduced immediately upstream of the Eagl site, whereby the C of the EcoRI site is the same as the first C of the Eagl site. The thus obtained EcoRI-HindIII fragment was ligated into plasmid pEMBL9, which was digested with EcoRI and HindIII, which resulted in pUR4177.A

[0083] The EcoRI/Nhel fragment of plasmid pUR4177.A was replaced by the EcoRI/Nhel fragments of three different synthetic DNA fragments (SEQ ID NO: 32, SEQ ID NO: 33, and SEQ ID NO: 34) resulting in pUR2997, pUR2998 and pUR2999, respectively. The about 1.5 kbp BstEII-HindIII fragments of pUR2997 and pUR2998 were isolated.

15 Construction of pUR4421

10

[0084] The multiple cloning site of plasmid pEMBL9, see Dente c.s. (1983), (ranging from the *EcoRI* to the *HindIII* site) was replaced by a synthetic DNA fragment having the nucleotide sequence given below, see SEQ ID NO: 35 giving the coding strand and SEQ ID NO: 36 giving the non-coding strand. The 5'-part of this nucleotide sequence comprises an *Eagl* site, the first 4 codons of a *Camelidae* V_H gene fragment (nucleotides 16-27) and a *XhoI* site (CTCGAG) coinciding with codons 5 and 6 (nucleotides 28-33). The 3'-part comprises the last 5 codons of the *Camelidae* V_H gene (nucleotides 46-60) (part of which coincides with a *Bst*EII site), eleven codons of the Myc tail (nucleotides 61-93), see SEQ ID NO: 35 containing these eleven codons and SEQ ID·NO: 37 giving the amino acid sequence, and an *EcoRI* site (GAATTC). The *EcoRI* site, originally present in pEMBL9, is not functional any more, because the 5'-end of the nucleotide sequence contains AATTT instead of AATTC, indicated below as (*EcoRI*). The resulting plasmid is called pUR4421. The *Camelidae* V_H fragment starts with amino acids Q-V-K and ends with amino acids V-S-S.

30	(EcoRI) EagI 5'-AATTTAGCGG CCGCCCAGG 3' 1 ATCGCC GGCGGGTCC 5 Q	CTTTGACGAG	CACTAAGTGA	BSTEII CTAA <u>GGTCAC</u> - 50 GATTCCAGTG-
35	- <u>C</u> GTCTCCTCA GAÁCAAAAA -GCAGAGGAGT CTTGTTTTT V S S E Q K	3 AGTAGAGTCI	TCTCCTAGAC	AATTAATGAG- 100 TTAATTACTC- N * * = SEO ID NO: 37
40	ECORI - <u>AATTC</u> ATCAA ACGGTGAT <u>A</u> -TTAAGTAGTT TGCCACTAI	HindIII T CGA -5'	119 123	= SEQ ID NO: 35 = SEQ ID NO: 36

Construction of pUR4424

55

[0085] After digesting the plasmid pB09 with *Xho*I and *Bst*EII, a DNA fragment of about 0.34 kbp was isolated from agarose gel. This fragment codes for a truncated V_H fragment, missing both the first 4 and the last 5 amino acids of the *Camelidae* V_H fragment. Plasmid pB09 was deposited as *E. coli* JM109 pB09 at the Centraal Bureau voor Schimmelcultures, Baarn on 20 April 1993 with deposition number CBS 271.93. The DNA and amino acid sequences of the Camel V_H fragments followed by the Flag sequence as present in plasmid pB09 were given in Figure 6B of European patent application 93201239.6 (not yet published), which is herein incorporated by reference. The obtained about 0.34 kbp fragment was cloned into pUR4421. To this end plasmid pUR4421 was digested with *Xho*I and *Hin*dIII, after which the about 4 kb vector fragment was isolated from an agarose gel. The resulting vector was ligated with the about 0.34 kbp *XhoI/Bst*EII fragment and a synthetic DNA linker having the following sequence:

	BstEII Hi	ndill					
•	GTCACCGTCTCCTCATAATGA_			SEQ			
	GCAGAGGAGTATTACTT	CGA	=	SEQ	ID	NO:	39

resulting in plasmid pUR4421-09.

[0086] Plasmid pSY16 was digested with Eagl and HindIII, after which the about 6.5 kbp long vector backbone was isolated and ligated with the about 0.38 kbp Eagl/HindIII fragment from pUR4421-09 resulting in pUR4424.

5 Construction of pUR4482 and pUR4483

[0087] From pUR4424 the about 0.44 kbp Sacl-BstEII fragment, coding for the invertase signal sequence and the camel heavy chain variable 09 (= CH_v09) fragment, was isolated as well as the about 6.3 kbp Sacl-HindIII vector fragment. The about 6.3 kbp fragment and the about 0.44 kbp fragment from pUR4424 were ligated with the BstEII-HindIII fragment from pUR2997 or pUR2998 yielding pUR4482 and pUR4483, respectively.

[0088] Plasmid pUR4482 is thus an yeast episomal expression plasmid for expression of a fusion protein with the invertase signal sequence, the CH_V09 variable region, the Myc-tail and the Camel "X-P-X-P" Hinge region, see Hamers-Casterman c.s. (1993), (1993), and the α-agglutinin cell wall anchor region. Plasmid pUR4483 differs from pUR4482 in that it contains the Myc-tail hut not the "X-P-X-P" Hinge region. Similarly, the BstEII-HindIII fragment from pUR2999 can be ligated with the about 6.3 kbp vector fragment and the about 0.44 kbp fragment from pUR4424, resulting in pUR4497, which will differ from pUR4482 in that it contains the "X-P-X-P" Hinge region but not the Myc-tail. [0089] The plasmids pUR4424, pUR4482 and pUR4483 were introduced into Saccharomyces cerevisiae SU10 by electroporation, and transformants were selected on plates lacking leucine. Transformants from SU10 with pUR4424, pUR4482 or pUR4483, respectively, were grown on YP with 5% galactose and analysed with immune-fluorescence microscopy, as described in Example 1 of our co-pending WO-94/01567 (UNILEVER) published on 20 January 1994. This method was slightly modified to detect the chimeric proteins, containing both the camel antibody and the Myc tail, present at the cell surface.

[0090] In one method a monoclonal mouse anti-Myc antibody was used as a first antibody to bind to the Myc part of the chimeric protein; subsequently a polyclonal antimouse 1g antiserum labeled with fluorescein isothiocyanate (= FITC) ex Sigma, Product No. F-0527, was used to detect the bound mouse antibody and a positive signal was determined by fluorescence microscopy.

[0091] In the other method a polyclonal rabbit anti-human IgG serum, which had earlier been proven to cross-react with the camel antibodies, was used as a first antibody to bind the camel antibody part of the chimeric protein; subsequently a polyclonal anti-rabbit 1g antiserum labeled with FITC ex Sigma, Product No. F-0382, was used to detect the bound rabbit antibody and a positive signal was determined by fluorescence microscopy.

[0092] The results in Figure 19 and Figure 20 show clearly that fluorescence can be observed on those cells in which a fusion protein of the CH_V09 fragment with the α -agglutinin cell wall anchor region is produced (pUR4482 and pUR4483). No fluorescence however, was visible on the cells which produce the CH_V09 fragment without this anchor (pUR4424), when viewed under the same circumstances.

Patent literature references:

35

[0093] EP-A1-0255153 (UNILEVER) Production of guar alpha-galactosidase by hosts transformed by recombinant DNA methods. First priority date 03.06.86; published 03.02.88

[0094] WO-91/00920 (UNILEVER) Process for preparing a protein by a fungus transformed by multicopy integration of an expression vector. First priority date 07.07.89; published 24.01.91

[0095] WO-91/19782 (UNILEVER) Xylanase production. Priority date 19.06.90; published 26.12.91

[0096] WO-94/01567 (UNILEVER) Process for immobilizing enzymes to the cell wall of a microbial cell by producing a fusion protein. First priority date 08.07.92; published 20.01.94

[0097] EP patent application 93201239.6 (not yet published) Production of antibodies or (functionalized) fragments thereof derived from heavy chain immunoglobulins of Camelidae. Filing date 29.04.93

Non-patent literature references:

[0098] R.E. Bird & B. Webb Walker Single chain antibody variable regions. TIBTECH 9 (April 1991) 132-137

A. Conzelmann, C. Fankhauser & C. Desponds Myoinositol gets incorporated into numerous membrane glycoproteins of Saccharomyces cerevisiae; incorporation is dependent on phosphomannomutase (SEC53). The EMBO Journal 9, No.3 (1990) 653-661

L. Dente, G. Cesareni & R. Cortese pEMBL: a new family of single stranded plasmids. Nucleic Acids Research 11, No. 6 (1983) 1645-1655

E. Erhart, & C.P. Hollenberg The Presence of a Defective Leu2 Gene on 2μ DNA Recombinant Plasmids of Saccharomyces cerevisiae Is Responsible for Curing and High Copy Number. Journal of Bacteriology. 156, No.2 (Nov. 1983) 625-635

C. Hamers-Casterman, T. Atarhouch, S.Muyldermans, G. Robinson, C. Hamers, E. Bajyana Songa, N. Bendahman & R. Hamers Naturally occurring antibodies devoid of light chains. Nature 363 (3 June 1993) 446-448.

M.M. Harmsen, A.C. Langedijk, E. van Tuinen, R.H. Geerse, H.A. Rauè, & J. Maat Effect of pmrl disruption and different signal sequences on the intracellular processing and secretion of *Cyamopsis tetragonoloba* α-galactosidase by *Saccharomyces cerevisiae*. Gene 125 (1993) 115-123

- T. Ishizaki, N. Hirayama, H. Shinkawa, O. Nimi, & Y. Murooka Nucleotide Sequence of the Gene for Cholesterol Oxidase from a *Streptomyces* sp. Journal of Bacteriology <u>171</u>, No.1 (Jan. 1989) 596-601
- J. Kok, K.J. Leenhouts, A.J. Haandrikman, A.M. Ledeboer & G. Venema Nucleotide Sequence of the Cell Wall Proteinase Gene of *Streptococcus cremoris* Wg2. Applied and Environmental Microbiology <u>54</u>, No. 1 (Jan. 1988) 231-238
- J. Kok Genetics of the proteolytic system of lactic acid bacteria. FEMS Microbiology Reviews. 87 (1990) 15-42, esp. item 3.2 and Figure 7 on pages 22-23 R. Lewin The universal constructor set. New Scientist (8 December 1990) 30-33 P.N. Lipke, D. Wojciechowicz & J. Kurjan *AG*α1 Is the Structural Gene for the *Saccharomyces cerevisiae* α-Agglutinin, a Cell Surface Glycoprotein Involved in Cell-Cell Interactions during Mating. Molecular and Cellular Biology. 9, No.8 (Aug. 1989) 3155-3165.
- D.A. Mead, E. Szczesna-Skorupa & B. Kemper Single-stranded DNA 'blue' T7 promoter plasmids: a versatile tandem promoter system for cloning and protein engineering. Protein Engineering 1, No. 1 (1986) 67-74
- R. Orlandi, D.H. Güssow, P.T. Jones, & G. Winter Cloning immunoglobulin variable domains for expression by the polymerase chain reaction. Proc. Natl. Acad. Sci. USA <u>86</u> (May 1989) 3833-3837
- B.C. Ossendorp The non-specific lipid-transfer binding protein: a recombinant DNA and immunological approach. Thesis University of Utrecht (30 September 1992) T. Ohta, K. Fujishiro, K. Yamaguchi, Y. Tamura, K. Aisaka, T. Uwajima & M. Hasegawa Sequence of gene choB encoding cholesterol oxidase of Brevibacterium sterolicum: comparison with choA of Streptomyces sp. SA-COO. Gene 103 (1991) 93-96
- A. Roy, C.F. Lu, D.L. Marykwas, P.N. Lipke & J. Kurjan The AGA1 Product Is Involved in Cell Surface Attachment of the Saccharomyces cerevisiae Cell Adhesion Glycoprotein a-Agglutinin. Molecular and Cellular Biology 11 No.8 (Aug. 1991) 4196-4206
 - M.P. Schreuder, S. Brekelmans, H. van den Ende, & F.M. Klis Targeting of a Heterologous Protein to the Cell Wall of Saccharomyces cerevisiae. Yeast 9 (1993) 399-409
 - A. Ullrich, L. Coussens, J.S. Hayflick, T.J. Dull, A. Gray, A.W. Tam, J. Lee, Y.
- 30 Yarden, T.A. Libermann, J. Schlessinger, J. Downward, E.L.V. Mayes, N. Whittle,
 - M.D. Waterfield & P.H. Seeburg Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells. Nature 309 (31 May 1984) 418-425
 - J.M.A. Verbakel Heterologous gene expression in the yeast Saccharomyces cerevisiae. Thesis University of Utrecht (1 May 1991), esp. pages 76-89
- A. Vrielink, L.F. Lloyd, & D.M. Blow Crystal Structure of Cholesterol Oxidase from *Brevibacterium sterolicum* Refined at 1.8 Å Resolution. J. Mol. Biol., <u>219</u> (1991) 533-554
 - E.S. Ward, D. Güssow, A.D. Griffiths, P.T. Jones & G. Winter. Binding activities of a repertoire of single immunoglobulin variable domains secreted from *E. coli*. Nature 341 (12 October 1989) 544-546
- [0099] Information on a deposit of a micro-organism under the Budapest Treaty is given on page 26, lines 5-7 above. In agreement with Rule 28 (4) EPC, or a similar arrangement for a State not being a Contracting State of the EPC, it is hereby requested that a sample of such deposit, when requested, will be submitted to an expert only.

SEQUENCE LISTING

45 [0100]

(1) GENERAL INFORMATION:

(i) APPLICANT:

- (A) NAME: Unilever N.V.
- (B) STREET: Weena 455
- (C) CITY: Rotterdam
- (E) COUNTRY: The Netherlands
- (F) POSTAL CODE (ZIP): NL-3013 AL
- (A) NAME: Unilever PLC
- (B) STREET: Unilever House Blackfriars

	(C) CITY: London (E) COUNTRY: United Kingdom (F) POSTAL CODE (ZIP): EC4P 4BQ
5	(A) NAME: Leon Gerardus J. FRENKEN
	(B) STREET: Geldersestraat 90
	(C) CITY: Rotterdam
	(E) COUNTRY: The Netherlands
10	(F) POSTAL CODE (ZIP): NL-3011 MP
70	(A) NAME: Pieter DE GEUS
	(B) STREET: Boeier 24
	(C) CITY: Barendrecht
	(E) COUNTRY: The Netherlands
15	(F) POSTAL CODE (ZIP): NL-2991 KB
	(A) NAME: Franciscus Maria KLIS
	(B) STREET: Benedenlangs 102
	(C) CITY: Amsterdam
20	(E) COUNTRY: The Netherlands
	(F) POSTAL CODE (ZIP): NL-1025 KL
	(A) NAME: Holger York TOSCHKA; c/o Langnese Iglo, BR3
	(B) STREET: Aeckern 1
25	(C) CITY: REKEN
	(E) COUNTRY: Germany
	(F) POSTAL CODE (ZIP): D-48734
	(A) NAME: cornelis Theodorus VERRIPS
30	(B) STREET: Hagedoorn 18
	(C) CITY: Maassluis
	(E) COUNTRY: The Netherlands
	(F) POSTAL CODE (ZIP): NL-3142 KB
35	(ii) TITLE OF INVENTION: Immobilized proteins with specific binding capacities and their use in processes
	and products.
	(iii) NUMBER OF SEQUENCES: 40
	(I) COMPUTED DEADADIE FORM.
40	(iv) COMPUTER READABLE FORM:
	(A) MEDIUM TYPE: Floppy disk
	(B) COMPUTER: IBM PC compatible
	(C) OPERATING SYSTEM: PC-DOS/MS-DOS
45	(D) SOFTWARE: Patentin Release #1.0, Version #1.25 (EPO)
	(2) INFORMATION FOR SEQ ID NO: 1:
	· · · · · · · · · · · · · · · · · · ·
	(i) SEQUENCE CHARACTERISTICS:
50	(AVI CNICTU 224 have point
	(A) LENGTH: 231 base pairs (B) TYPE: nucleic acid
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double
	(C) STRANDEDINESS: double (D) TOPOLOGY: linear
55	(D) TOT OLOGI. Inteat
	(ii) MOLECULE TYPE: DNA (genomic)
	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

(vii) IMMEDIATE SOURCE:

(B) CLONE: fragment in pUR4119

	(xi) SEQU	JENCE DESCRI	PTION: SEQ ID 1	NO: 1:											
5	GAATTCGAGC	TCATCACACA	AACAAACAAA	ACAAAATGAT	GCTTTTGCAA	GCCTTTCTTT	60								
		TGGTTTTGCA					120								
40		CTCCTCAGGT					180								
10		GCTCACTCAG					231								
15	(2) INFORMA	TION FOR SEQ	ID NO: 2:												
13	(i) SEQUE	ENCE CHARACT	TERISTICS:												
20	(A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic)														
	(ii) MOLE	CULE TYPE: DN	IA (genomic)												
25	(vii) IMMEDIATE SOURCE:														
	(B) C	CLONE: linker Xh	ol-Nhel coding st	trand											
30	(xi) SEQU	JENCE DESCRI	PTION: SEQ ID I	NO: 2:											
	TOGAGATOAA	AGGCGGATCT	G				21								
35	(2) INFORMA	ATION FOR SEQ	ID NO: 3:												
	(i) SEQUI	ENCE CHARAC	TERISTICS:												
40	(B) T (C) S	ENGTH: 21 base YPE: nucleic aci STRANDEDNESS OPOLOGY: linea	d S: single												
	(ii) MOLE	ECULE TYPE: DN	NA (genomic)				**								
45	(vii) IMME	EDIATE SOURC	E :												
	(B) C	CLONE: linker Xh	ol-Nhel non-codi	ng strand											
50	(xi) SEQU	UENCE DESCRI	PTION: SEQ ID	NO: 3:											
	CTAGCAGATC	CGCCTTTGAT	c				21								
	(2) INFORMA	ATION FOR SEQ	ID NO: 4:												
55	(i) SEQU	ENCE CHARAC	TERISTICS:												
	(A) L	ENGTH: 21 base	e pairs												

	(B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
5	(ii) MOLECULE TYPE: DNA (genomic)	
	(vii) IMMEDIATE SOURCE:	
	(B) CLONE: linker Eagl-Pstl coding strand	•
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:	
15	GGCCGCCCAG GTGCAGCTGC A	21
	(2) INFORMATION FOR SEQ ID NO: 5:	
	(i) SEQUENCE CHARACTERISTICS:	
20	(A) LENGTH: 13 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	
25	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(vii) IMMEDIATE SOURCE:	
30	(B) CLONE: linker Eagl-Pstl non-coding strand	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:	٠
35	GCTGCACCTG GGC	. 1:
	(2) INFORMATION FOR SEQ ID NO: 6:	
40	(i) SEQUENCE CHARACTERISTICS:	
40	(A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	· -
45	(D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic)	
	(vii) IMMEDIATE SOURCE:	
50	(B) CLONE: PCR primer A (heavy chain)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:	
55	AGGTSMARCT GCAGSAGTCW GG	22
	(2) INFORMATION FOR SEQ ID NO: 7:	

	GTTTGATCTC GAGCTTGGTC CC		22
55	(B). CLONE: PCR primer D (light chain) (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:		
50	(vii) IMMEDIATE SOURCE:		
50	(ii) MOLECULE TYPE: DNA (genomic)		
45	(A) LENGTH: 22 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear		
	(i) SEQUENCE CHARACTERISTICS:		
40	(2) INFORMATION FOR SEQ ID NO: 9:		
35	GACATTGAGC TCACCCAGTC TCCA		24
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:		
	(B) CLONE: PCR primer C (light chain)		
30	(vii) IMMEDIATE SOURCE:		
	(ii) MOLECULE TYPE: DNA (genomic)		
25	(A) LENGTH: 24 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear		
20	(i) SEQUENCE CHARACTERISTICS:		
	(2) INFORMATION FOR SEQ ID NO: 8:		
75	TGAGGAGACG GTGACCGTGG TCCCTTGGCC CC	. 32	1
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:		
	(B) CLONE: PCR primer B (heavy chain)		
10	(vii) IMMEDIATE SOURCE:		
	(ii) MOLECULE TYPE: DNA (genomic)		
5	(A) LENGTH: 32 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear		
	(i) SEQUENCE CHARACTERISTICS:		
	(I) SECULENCE CHADACTEDISTICS:		

	(2) INFORMATION FOR SEQ ID NO: 10:	
	(i) SEQUENCE CHARACTERISTICS:	
5	(A) LENGTH: 26 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
10	(ii) MOLECULE TYPE: DNA (genomic)	
	(vii) IMMEDIATE SOURCE:	
	(B) CLONE: linker EcoRI-Patl coding strand	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:	
	AATTCGGCCG TTCAGGTGCA GCTGCA	26
20	(2) INFORMATION FOR SEQ ID NO: 11:	
	(i) SEQUENCE CHARACTERISTICS:	
25	(A) LENGTH: 18 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
30	(ii) MOLECULE TYPE: DNA (genomic)	
	(vii) IMMEDIATE SOURCE:	
25	(B) CLONE: linker EcoRI-PstI non-coding strand	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:	
	GCTGCACCTG AACGGCCG	18
40	(2) INFORMATION FOR SEQ ID NO: 12:	
	(i) SEQUENCE CHARACTERISTICS:	
45	(A) LENGTH: 714 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear	
50	(ii) MOLECULE TYPE: DNA (genomic)	
	(vii) IMMEDIATE SOURCE:	
	(B) CLONE: ScFv antitraseolide 02/01/01	
55	(vi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:	

	CTGCAGGAGT	CTGGACCTGG	CCTGGTGAAA	CCTTCTCAGT	CTCTGTCCCT	CACCTGCACT	60
	GTCACTGGCT	ACTCAATCAC	CAGTGATTTT	GCCTGGAACT	GGATCCGGCA	GTTTCCAGGA	120
5	AACCAACTGG	AGTGGATGGG	CTACATAAGC	TACAGTGGTA	GCACTAGCTA	CAACCCATCT	180
	CTCAAAAGTC	GAATCTCTCT	CACTCGAGAC	ACATCCAAGA	ACCAGTTCTT	CCTGCAGTTG	240
	AATTCTGTGA	CTACTGAGGA	CACAGCCACA	TATTACTGTG	CAACGTCCCT	AACATGGTTA	300
10	CTACGTCGGA	AACGTTCTTA	CTGGGGCCAA	GGGACCACGG	TCACCGTCTC	CTCAGGTGGA	360
	GGCGGTTCAG	GCGGAGGTGG	CTCTGGCGGT	GGCGGATCGG	ACATCGAGCT	CACCCAGTCT	420
	CCATCCTCCA	TGTCTGTATC	TCTGGGAGAC	ACAGTCAGCA	TCACTTGCCA	TGCAAGTCAG	480
15	GACATTAGCA	GTAATATAGG	GTGGTTGCAG	CAGAAACCAG	GGAAATCATT	TAAGGGCCTG	540
	ATCTATCATG	GAACCAACTT	GGAAGATGGT	ATTCCATCAA	GGTTCAGTGG	CAGTGGATCT	600
	GGAGCAGATT	ATTCCCTCAC	CATCAGCAGC	CTGGAATCTG	AAGATTTTGC	AGACTATTAC	660
20	TGTGTACAGT	ATGCTCAGTT	TCCATTCACG	TTCGGCTCGG	GGACCAAGCT	CGAG	714

- (2) INFORMATION FOR SEQ ID NO: 13:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 734 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (vii) IMMEDIATE SOURCE:
- (B) CLONE: ScFv anti-HCG
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:

55

25

30

35

40

45

	CGCCCGTTCA	GGTGCAGCTG	CAGGAGTCTG	GGGGACACTT	AGTGAAGCCT	GGAGGGTCCC	60
	TGAAACTCTC	CTGTGCAGCC	TCTGGATTCG	CTTTCAGTAG	CTTTGACATG	TCTTGGATTC	120
i	GCCAGACTCC	GGAGAAGAGG	CTGGAGTGGG	TCGCAAGCAT	TACTARTGTT	GGTACTTACA	180
	CCTACTATCC	AGGCAGTGTG	AAGGCCGAT	TCTCCATCTC	CAGAGACAAT	GCCAGGAACA	240
	CCCTAAACCT	GCAAATGAGC	AGTCTGAGGT	CTGAGGACAC	GGCCTTGTAT	TTCTGTGCAA	300
0	GACAGGGGAC	TGCGGCACAA	CCTTACTGGT	ACTTCGATGT	CTGGGGCCAA	GGGACCACGG	360
	TCACCGTCTC	CTCAGGTGGA	GGCGGTTCAG	GCGGAGGTGG	CTCTGGCGGT	GGCGGATCGG	420
	ACATCGAGCT	CACCCAGTCT	CCAAAATCCA	TGTCCATGTC	CGTAGGAGAG	AGGGTCACCT	480
5	TGAGCTGCAA	GGCCAGTGAG	ACTGTGGATT	CTTTTGTGTC	CTGGTATCAA	CAGAAACCAG	540
	AACAGTCTCC	TAAATTGTTG	ATATTCGGGG	CATCCAACCG	GTTCAGTGGG	GTCCCCGATC	606
	GCTTCACTGG	CAGTGGATCT	GCAACAGACT	TCACTCTGAC	CATCAGCAGT	GTGCAGGCTG	666
0	AGGACTTTGC	GGATTACCAC	TGTGGACAGA	CTTACAATCA	TCCGTATACG	TTCGGAGGGG	720
	GGACCAAGCT	CGAG					73
25							
	(2) INFORMATI	ON FOR SEQ 1	D NO: 14:		.=.		
	(i) SEQUE	NCE CHARACT	ERISTICS:				
30	(A) LEI	NGTH: 2685 ba	se pairs				

- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Saccharomyces cerevisiae
- (vii) IMMEDIATE SOURCE:
 - (B) CLONE: pYY105
- 45 (ix) FEATURE:
 - (A) NAME/KEY: CDS (B) LOCATION: 1..2685
 - (D) OTHER INFORMATION: /product= "Flocculation protein" /gene= "FLO1"
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:

55

50

35

					CAT His 5												48
5					GTG Val												96
10					agt Sei												144
					ACA Thr												192
					AAA Lys												240
20	ATT Ile	GAT Asp	TAT Tyr	AAT nek	ATT Ile 85	CCC Pro	TGT Cys	GTT Val	AGT Ser	TCA Ser 90	TCA Ser	GCC	ACA Thr	TTT Phe	CCT Pro 95	TGT Cys	288
					TCC Ser												336
25				Ser	CAA Gln												384
30	TTC Phe	TAT Tyr 130	Thr	ACC Thr	CCA Pro	ACA Thr	AAC Asn 135	GTA Val	ACC Thr	CTA Leu	GAA Glu	ATG Het 140	ACA Thr	GJÄ	TAT Tyr	TTT	432
	TTA Leu 145	Pro	CCA Pro	CAG Gln	acg Thr	GGT Gly 150	TCT Ser	TAC Tyr	aca Thr	TTC Phe	AAG Lys 155	TTT Phe	GCT Ala	ACA Thr	GTT Val	GAC Asp 160	480
35	GAC Asp	TCT Ser	GCA Ala	ATT	CTA Leu 165	TCA Ser	GTA Val	GLY	GGT Gly	GCA Ala 170	Thr	GCG Ala	TTC Phe	AAC Asn	TGT Cys 175	TGT Cys	528

	GCT Ala	CAA Gln	CAG Gln	CAA Gln 180	CCG Pro	ccg Pro	ATC Ile	aca Thr	TCA Ser 185	ACG Thr	AAC Asn	TTT Phe	acc Thr	ATT Ile 190	GAC Asp	GGT Gly	57	6
5	ATC Ile	AAG Lys	CCA Pro 195	TGG Trp	GGT	GGA Gly	AGT Ser	TTG Leu 200	CCA Pro	CCT Pro	AAT Asn	ATC Ile	GAA Glu 205	GGA Gly	ACC Thr	GTC Val	62	4
10	Tyr	ATG Met 210	Tyr	Ala	Gly	Tyr	Tyr 215	Tyr	Pro	Met	Lys	Val 220	Val	Tyr	Ser	Aen	67	2
	Ala 225	GTT Val	Ser	Trp	Gly	Thr 230	Leu	Pro	Ile	Ser	Val 235	Thr	Leu	Pro	qaA	Gly 240		
15	Thr	ACT Thr	Val	Ser	Asp 245	Asp	Phe	Glu	Gly	Tyr 250	Val	Tyr	Ser	Phe'	Asp 255	Asp	76	8
20	Asp	CTA Leu	Ser	Gln 260	Ser	Asn	Сув	Thr	Val 265	Pro	двр	Pro	Ser	Asn 270	Tyr	Ala	81	6
	GTC Val	AGT Ser	ACC Thr 275	ACT Thr	ACA Thr	ACT Thr	ACA Thr	ACG Thr 280	GAA Glu	CCA Pro	TGG Trp	ACC Thr	GGT Gly 285	ACT Thr	TTC Phe	ACT Thr	86-	4
25	Ser	ACA Thr 290	Ser	Thr	Glu	Met	Thr 295	Thr	Val	Thr	Gly	Thr 300	Asn	Gly	Val	Pro	91:	
30	Thr 305	gac Asp	Glu	Thr	Val	11e 310	Val	Ile	Arg	Thr	Pro 315	Thr	Ser	Glu	Gly	Leu 320	96	
	Ile	AGC Ser	Thr	Thr	Thr 325	Glu	Pro	Trp	Thr	Gly 330	Thr	Phe	Thr	Ser	Thr 335	Ser	100	
35	Thr	GAG Glu	Val	Thr 340	Thr	Ile	Thr	Gly	Thr 345	Asn	Gly	Gln	Pro	Thr 350	yab	Glu	105	
40	Thr	GTG Val	Ile 355	Val	Ile	Arg	Thr	Pro 360	Thr	Ser	Glu	Gly	Leu 365	Ile	Ser	Thr	110	
40		ACT Thr 370	Glu														115	2
45		ACC															120	0
		ATC Ile															124	8
50	CCA Pro	TGG	ACT Thr	GGT Gly 420	Thr	TTT Phe	ACT Thr	TCG Ser	ACT Thr 425	TCC Ser	ACT Thr	GAA Glu	ATG Met	TCT Ser 430	ACT	GTC Val	129	6
55		GGA Gly		Asn													134	4

	ACT Thr	CCA Pro 450	ACT Thr	ACT Thr	GCC Ala	ATC 11e	TCA Ser 455	TCC Ser	AGT Ser	TTG Leu	TCA Ser	TCA ser 460	TCA Ser	TÇT Ser	TCA Ser	GGA Gly	1392
5	CAA Gln 465	Ile	Thr	Ser	Ser	11e 470	Thr	Ser	Ser	Arg	Pro 475	Ile	Ile	Thr	Pro	480	1440
10	TAT Tyr	Pro	Ser	Asn	Gly 485	Thr	Ser	Val	Ile	Ser 490	Ser	Ser	Val	IIe	ser 495	Ser	1488
	Ser	Val	Thr	Ser 500	Ser	Leu	Phe	ACT Thr	Ser 505	Ser	Pro	Val	Ile	5er 510	ser	ser	1536
15		Ile	Ser 515	Ser	Ser	Thr	Thr	Thr 520	Ser	Thr	Ser	Ile	525	Ser	GIA	ser	1584
20	Ser	Lys 530	Ser	Ser	Val	Ile	Pro 535	ACC Thr	Ser	Ser	Ser	540	ser	GIY	ser	ser	1632
	Glu 545	Ser	Glu	Thr	Ser	Ser 550	Ala	GGT	Ser	Val	Ser 555	ser	ser	ser	Pne	560	1680 1728
	Ser	Ser	Glu	Ser	Ser 565	Lys	Ser	CCT	Thr	TY: 570	Ser	Ser	ser	ser	575	Pro	1776
30	Leu	Val	Thr	Ser 580	Ala	Thr	Thr	Ser	Gln 585	Glu	Thr	Ala	ser	590	red	CCA Pro	1824
	Pro	Ala	Thr 595	Thr	Thr	Lys	Thr	Ser 600	Glu	Gln	Thr	Thr	605	AST	THE	Val .	1872
35	Thr	Ser 610	Сув	Glu	Ser	His	Val 615	Сув	Thr	Glu	Ser	620	ser	Pro	WTE	Ile	1920
40	Val 625	Ser	Thr	Ala	Thr	Val 630	Thr	Val	Ser	Gly	Val 635	Thr	Thr	GIA	Tyr	Thr 640	1968
	Thr	Trp	Сув	Pro	11e 645	Ser	Thr	Thr	Glu	650	Thr	гув	GIN	Ing	655	GIY	2016
45	Thr	Thr	Glu	G1n 660	Thr	Thr	Glu	Thr	665	Lys	Gln	Thr	Thr	670	Val	Thr	2064
	Ile	Ser	675	Cys	: Glu	Ser	Asp	680	Cys	ser	rys	Thr	685	ser	PIC	Ala	2112
50 -	Ile	(Va)	Ser	Thr	Ser	Thr	699	Thr	: Ile	. Asn	Gly	700	Thr	Tnr	GIU	ıyr	2160
55	ACF Thr 705	Thi	TGG Tr	Cys	r cci	T ATT	s Sei	Thi	Thi	Glu	715	Arc	Glr	Glr	Thi	ACG Thr 720	2200

	CTA Leu	GTT Val	ACT Thr	GTT Val	ACT Thr 725	TCC Ser	TGC Cys	GAA Glu	TCT Ser	GGT Gly 730	GTG Val	TGT Cys	TCC Ser	GAA Glu	ACT Thr 735	GCT Ala	2208
5	TCA Ser	CCT Pro	GCC Ala	ATT Ile 740	GTT Val	TCG Ser	ACG Thr	GCC Ala	ACG Thr 745	GCT Ala	ACT Thr	GTG Val	AAT Asn	GAT Asp 750	GTT Val	GTT Val	2256
10	ACG Thr	GTC Val	TAT Tyr 755	CCT Pro	ACA Thr	TGG Trp	AGG Arg	CCA Pro 760	CAG Gln	ACT Thr	GCG Ala	AAT Asn	GAA Glu 765	GAG Glu	TCT Ser	GTC Val	2304
	AGC Ser	TCT Ser 770	AAA Lys	ATG Met	AAC Asn	AGT Ser	GCT Ala 775	ACC Thr	GGT	GAG Glu	ACA Thr	ACA Thr 780	ACC Thr	AAT Asn	ACT Thr	TTA . Leu	2352
15	GCT Ala 785	GCT Ala	GAA Glu	ACG Thr	ACT Thr	ACC Thr 790	AAT Asn	ACT Thr	GTA Val	GCT Ala	GCT Ala 795	GAG Glu	ACG Thr	ATT Ile	ACC Thr	TAA neA 008	2400
20	Thr	GGA Gly	Ala	Ala	Glu 805	Thr	Lys	Thr	Val	Val 810	Thr	Ser	Ser	Leu	Ser 815	Arg	2448
	TCT Ser	AAT Asn	CAC His	GCT Ala 820	GAA Glu	ACA Thr	CAG Gln	ACG Thr	GCT Ala 825	TCC Ser	GCG Ala	ACC Thr	GAT Asp	GTG Val 830	ATT	Gly	2496
25	His	AGC Ser	Ser 835	Ser	Val	Val	Ser	Val 640	Ser	Glu	Thr	Gly	845	Thr	Lys	Ser	2544
30	Leu	ACA Thr 850	Ser	Ser	Gly	Leu	Ser 855	Thr	Het	Ser	Gln	61n 860	Pro	Arg	Ser	Thr	2592
	Pro 865		Ser	Ser	Met	Val 870	Gly	Tyr	Ser	Thr	Ala 875	Ser	Leu	Glu	Ile	Ser 880	2640
35	ACG Thr	TAT Tyr	GCT Ala	GGC	AGT Ser 885	GCA Ala	ACA Thr	GCT Ala	TAC Tyr	TGG Trp 890	Pro	GTA Val	GTG Val	GTT Val	TAA 895		2685

(2) INFORMATION FOR SEQ ID NO: 15:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 894 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15:

55

50

40

	Met 1	Thr	Met	Pro	His 5	Arg	Tyr	Met	Phe	Leu 10	Ala	Val	Phe	Thr	Leu 15	Leu	
5	Ala	Leu	Thr	Ser 20	Val	Ala	Ser	Gly	Ala 25	Thr	Glu	Ala	Сув	Leu 30	Pro	Ala	
	Gly	Gln	Arg 35	Lys	Ser	Gly	Met	Asn 40	Ile	neA	Phe	Tyr	Gln 45	Tyr	Ser	Leu	
10	Lys	Asp 50	Ser	Ser	Thr	Tyr	Ser 55	Asn	Ala	Ala	Tyr	Het 60	Ala	Tyr	СŢĀ	Tyr	
15																	
20																	
25	4																
30																	
35																	
40				-													

	Ala 65	Ser	Lys	Thr	Lys	Leu 70	Gly	Ser	Val	Gly	Gly 75	Gln	Thr	Asp	Ile	Ser 80
, ·	Ile	Asp	Tyr	Asn	Ile 85	Pro	Суз	Val	Ser	Ser 90	Ser	G,l y	Thr	Phe	Pro 95	Сув
	Pro	Gln	Glu	Asp 100	Ser	Tyr	Gly	Asn	Trp 105	Gly	Сув	Lys	Gly	Met 110	Gly	Ala
o	Сув	Ser	Asn 115	Ser	Gln	Gly	Ile	Ala 120	Tyr	Trp	Ser	Thr	Asp 125	Leu	Phe	Gly
	Phe	Tyr 130	Thr	Thr	Pro	Thr	Asn 135	Val	Thr	Leu	Glu	Met 140	Thr	Gly	Tyr	Phe
5	Leu 145	Pro	Pro	Gln	Thr	Gly 150	Ser	Tyr	Thr	Phe	Lys 155	Phe	Ala	Thr	Val	Авр 160
	Asp	Ser	Ala	Ile	Leu 165	Ser	Val	Gly	Gly	Ala 170	Thr	Ala	Phe	ABD	Cys 175	Сув
20	Ala	Gln	Gln	Gln 180	Pro	Pro	Ile	Thr	Ser 185	Thr	Asn	Phe	Thr	11e 190	Asp	Gly
	Ile	Lув	Pro 195	Trp	Gly	Gly	Ser	Leu 200	Pro	Pro	Asn	Ile	Glu 205	Gly	Thr	Val
25	Tyr	Met 210	Tyr	Ala	Gly	Tyr	Tyr 215	Tyr	Pro	Met	Lys	Val 220	Val	Tyr	Ser	Asn
	225			_	_	230					235				Asp	240
30					245					250					Авр 255	
	_			260					265				•	270	Tyr	
35	Val	Ser	Thr 275	Thr	Thr	Thr	Thr	Thr 280	Glu	Pro	Trp	Thr	Gly 285	Thr	Phe	Thr
		290					295					300			Val	
40	305	_				310		*	•		315				Gly	320
••	Ile	Ser	Thr	Thr	Thr 325	Glu	Pro	Trp	Thr	Gly 330	Thr	Phe	Thr	Ser	Thr 335	Ser
	Thr	Glu	Val	Thr 340		Ile	Thr	Gly	Thr 345	Asn	Gly	Gln	Pro	Thr 350	Asp	Glu
45	Thr	Val	Ile 355	Val	Ile	Arg	Thr	Pro 360		Ser	Glu	Gly	Leu 365	Ile	Ser	Thr
		370					375					380			Glu	
50	385					390					395				Val	400
	Val	Ile	Arg	Thr	Pro 405		Ser	Glu	Gly	Leu 410		Thr	Thr	Thr	Thr 415	Glu

	Pro	Trp	Thr	Gly 420	Thr	Phe	Thr	Ser	Thr 425	Ser	Thr	Glu	Met	Ser 430	Thr	Val
5	Thr	Gly	Thr 435	Asn	Gly	Leu	Pro	Thr 440	Asp	Glu	Thr	Val	Ile 445	Val	Val	Lys
	Thr	Pro 450	Thr	Thr	Ala	Ile	ser 455	Ser	Ser	Leu	Ser	ser 460	Ser	Ser	Ser	Gly
10	Gln 465	Ile	Thr	Ser	Ser	11e 470	Thr	Ser	Ser	Arg	Pro 475	Ile	Ile	Thr	Pro	Phe 480
	Tyr	Pro	Ser	asA	Gly 485	Thr	Ser	Val	Ile	Ser 490	Ser	Ser	Val	Ile	ser 495	Ser
15	Ser	Val	Thr	Ser 500	Ser	Leu	Phe		Ser 505	Ser	Pro	Val	lle	Ser 510	Ser	Ser
	Val	Ile	Ser 515	Ser	Ser	Thr	Thr	Thr 520	Ser	Thr	Ser	Ile	Phe 525	Ser	Glu	Ser
20		530					535					540			Ser	
	545					550					555					Ile 560
25					565					570					Leu 575	
				580					585	•				590	Leu	
30			595		•	-		600					605			Val
,		610	_				615					620			Ala	
	625					630					635					Thr 640
35					645					650					Lys 655	
				660					665		•			670	Val	
40			675	_				680					685			Ala
		690					695					700			Glu	
45	705					710					715					Thr 720
					725					730					735	
50	Ser	Pro	Ala	11e		Ser	Thr	Ala	Thr 745		Thr	Val	ABn	АБР 750	Val	Val
						_		_					~ .			Val

		Ser	Ser 770	Lys	Иet	Asn	Ser	Ala 775	Thr	Gly	Glu	Thr	Thr 780	Thr	Asn	Thr	Leu	
5		Ala 785	Ala	Glu	Thr	Thr	Thr 790	Asn	Thr	Val	Ala	Ala 795	Glu	Thr	Ile	Thr	Asn 008	
		Thr	Gİy	Ala	Ala	Glu 805	Thr	Lys	Thr	Val	Val 810	Thr	Ser	Ser	Leu	Ser 815	Arg	•
10		Ser	Asn	His	Ala 820	Glu	Thr	Gln	Thr	Ala 825	Ser	Ala	Thr	Asp	Val 830	Ile	Gly	
		His	Ser	Ser 835	Ser	Val	Val	Ser	Val 840	Ser	Glu	Thr	Gly	Asn 845	Thr	Lys	Ser	
15		Leu	Thr 850	Ser	Ser	Gly	Leu	Ser 855	Thr	Met	Ser	Gln	Gln 860	Pro	Arg	Ser	Thr	
20		Pro 865	Ala	Ser	Ser	Met	Va1 870	Gly	Tyr	Ser	Thr	A1a 875	Ser	Leu	Glu	Ile	Ser 880	
20		Thr	Tyr	Ala	Gly	Ser 885	Ala	Thr	Ala	Tyr	Trp 890	Pro	Val	Val	Val			
25	(2)	INFOI	RMATI	ION F	OR SE	EQ ID	NO: 1	6:										
		(i) SE	EQUE	NCE C	HARA	ACTE	RISTIC	CS:										
30	,	(A) LEI B) TYI C) ST D) TO	PE: nu RAND	icleic EDNE	acid ESS: s												
		(ii) M	OLEC	ULE 1	TYPES	S DNA	(genc	omic)										
35		(vii) 1	MME	DIATE	SOUF	RCE:												
		(B) CL	ONE:	ChoB	templ	ate co	ding s	trand									
40		(xi) S	EQUE	ENCE	DESC	RIPTI	ON: S	EQ IC	NO:	16:								
	GCC	CCCA	GCC	GCAC	CCTC	G			·									19
45	(2)	INFO	RMAT	ION F	OR SI	EQ ID	NO: 1	7 :										
45		(i) SE	EQUE	NCE C	CHAR	ACTE	RISTIC	CS:										
50		((A) LE: (B) TY (C) ST (D) TO	PE: nu	ucleic EDNE	acid ESS: s												
		(ii) M	OLEC	ULE	TYPE:	DNA	(geno	mic)										
55		(vii) l	IMME	DIATE	SOUI	RCE:												
		((B) CL	ONE:	ChoB	templ	ate no	n-cod	ing str	and								

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17:

5	CGAGGGTGCG GCTGGGGGC	19
	(2) INFORMATION FOR SEQ ID NO: 18:	
10	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 37 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	
15	(D) TOPOLOGY: linear	
75	(ii) MOLECULE TYPE: DNA (genomic)	
	(vii) IMMEDIATE SOURCE:	
20	(B) CLONE: cho01pcr primer	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 18:	
25	AGATCTGAAT TCGCGGCCGC CCCCAGCCGC ACCCTCG	37
	(2) INFORMATION FOR SEQ ID NO: 19:	
30	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 42 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
35	(b) TOPOLOGY. Illileal	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(vii) IMMEDIATE SOURCE:	
40	(B) CLONE: cho02pcr primer	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 19:	
45	AGATCTAAGC TTTCAGCTAG CCTGGATGTC GGACGAGATG AT	42
	(2) INFORMATION FOR SEQ ID NO: 20:	
50	(i) SEQUENCE CHARACTERISTICS:	
30	(A) LENGTH: 21 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
55	(ii) MOLECULE TYPE: DNA (genomic)	
	(vii) IMMEDIATE SOURCE:	

(B) CLONE: ChoB template coding strand

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 20:	
5	ATCATCTCGT CCGACATCCA G	21
	(2) INFORMATION FOR SEQ ID NO: 21:	
10	(i) SEQUENCE CHARACTERISTICS:	
15	(A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
20	(vii) IMMEDIATE SOURCE:	
	(B) CLONE: ChoB template non-coding strand	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 21:	
25	CTGGATGTCG GACGAGATGA T	21 ,
30	(2) INFORMATION FOR SEQ ID NO: 22:	
	(i) SEQUENCE CHARACTERISTICS:	
35	(A) LENGTH: 42 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
40	(vii) IMMEDIATE SOURCE:	
	(B) CLONE: mutagenesis primer ChoB	
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 22:	
73	CGCGGCGACG GCACCGCCGT ATGCACTGGC GATGACGAGG GC	42
50	(2) INFORMATION FOR SEQ ID NO: 23:	
50	(i) SEQUENCE CHARACTERISTICS:	
55	(A) LENGTH: 42 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	

	(vii) IMMEDIATE SOURCE:	
	(B) CLONE: ChoB template coding strand	
5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 23:	
	GCCCTCGTCA TCGGCAGTGG ATACGGCGGT GCCGTCGCCG CG	42
10	(2) INFORMATION FOR SEQ ID NO: 24:	
	(i) SEQUENCE CHARACTERISTICS:	
15	(A) LENGTH: 29 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
20	(ii) MOLECULE TYPE: DNA (genomic)	
20	(vii) IMMEDIATE SOURCE:	
	(B) CLONE: primer prtl	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 24:	
	ARGATCTATC GATCTTGTTA GCCGGTACA	29
30	(2) INFORMATION FOR SEQ ID NO: 25:	
	(i) SEQUENCE CHARACTERISTICS:	
35	(A) LENGTH: 32 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
40	(vii) IMMEDIATE SOURCE:	
	(B) CLONE: proteinase template non-coding strand	
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 25:	
	GACTGTACCG GCTAACAAGA TCGATAGCCC TT	32
50	(2) INFORMATION FOR SEQ ID NO: 26:	
	(i) SEQUENCE CHARACTERISTICS:	
55	(A) LENGTH: 27 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	

	(ii) MOLECULE TYPE: DNA (genomic)	
	(vii) IMMEDIATE SOURCE:	
5	(B) CLONE: proteinase template coding strand	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 26:	
10	GTCGGCGAAA TCCAAGCAAA GGCGGCT	27
	(2) INFORMATION FOR SEQ ID NO: 27:	
15	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 39 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
20	(ii) MOLECULE TYPE: DNA (genomic)	
	(vii) IMMEDIATE SOURCE:	
25	(B) CLONE: prt2 primer	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 27:	
30	CCCAAGCTTC CCCCCGGCCG TTGCTTGGAT TTCGCCGAC	39
	(2) INFORNATION FOR SEQ ID NO: 28:	
	(i) SEQUENCE CHARACTERISTICS:	
35	(A) LENGTH: 33 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
40	(ii) MOLECULE TYPE: DNA (genomic)	
	(vii) IMMEDIATE SOURCE:	
45	(B) CLONE: EGF1 primer	,
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 28:	
	GGGGGGGCC CGCTGGAGGA AAAGAAAGTT TGC	33
50	(2) INFORMATION FOR SEQ ID NO: 29:	
	(2) INFORMATION FOR SEQ ID NO. 29. (i) SEQUENCE CHARACTERISTICS:	
55	(A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	

	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	•
5	(vii) IMMEDIATE SOURCE:	
	(B) CLONE: EGF receptor template non-coding strand	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 29:	
10	GCAAACTTTC TTTTCCTCCA GAGCCCGACT CGC	33
15	(2) INFORMATION FOR SEQ ID NO: 30:	
	(i) SEQUENCE CHARACTERISTICS:	
20	(A) LENGTH: 30 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
25	(ii) MOLECULE TYPE: DNA (genomic)	
25	(vii) IMMEDIATE SOURCE:	
	(B) CLONE: EGF receptor template coding strand	
30 .	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 30:	
	ANTEGECCTA AGATECEGTE CATEGECACT	3
35	(2) INFORMATION FOR SEQ ID NO: 31:	
	(i) SEQUENCE CHARACTERISTICS:	
40	(A) LENGTH: 40 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
45	(ii) MOLECULE TYPE: DNA (genomic)	-
45	(vii) IMMEDIATE SOURCE:	
	(B) CLONE: EGF2 primer	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 31:	
	CCCCAAGCTT ARGGCTRGCG GRCGGGRTCT TRGGCCCATT	40
55	(2) INFORMATION FOR SEQ ID NO: 32:	
	(i) SEQUENCE CHARACTERISTICS:	

...

	(A) LENGTH: 177 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
5	(ii) MOLECULE TYPE: DNA (genomic)	
	(vii) IMMEDIATE SOURCE:	
10	(B) CLONE: VhC - AGα1 linker with MycT and Hinge	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 32:	
15	GRATTCCAGG TCACCGTCTC CTCAGAACAA AAACTCATCT CAGAAGAGGA TCTGAATGAA	60
	CCAAAGATTC CACAACCTCA ACCAAAGCCA CAACCTCAAC CACAACCACA ACCAAAACCT	120
	CAACCAAAGC CAGAACCAGA ATCTACTTCC CCAAAGTCTC CAGCTAGCCT TAAGCTT	177
20	(2) INFORMATION FOR SEQ ID NO: 33:	
	(i) SEQUENCE CHARACTERISTICS:	
25	(A) LENGTH: 63 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear	
30	(ii) MOLECULE TYPE: DNA (genomic)	
	(vii) IMMEDIATE SOURCE:	
	(B) CLONE: VhC - AGα1 linker with MycT	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 33:	
	GAATTCCAGG TCACCGTCTC CTCAGAACAA AAACTCATCT CAGAAGAGGA TCTGAATGCT	60
	AGC	63
40	(2) INFORMATION FOR SEQ ID NO: 34:	
	(i) SEQUENCE CHARACTERISTICS:	
45	(A) LENGTH: 144 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear	
50	(ii) MOLECULE TYPE: DNA (genomic)	
	(vii) IMMEDIATE SOURCE:	
55	(B) CLONE: VhC - AGα1 linker with Hinge	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 34:	

	GANTICCAGG TCACCGTCTC CTCAGAACCA AAGATTCCAC AACCTCAACC AAAGCCACAA	60
	CCTCAACCAC AACCACAACC AAAACCTCAA CCAAAGCCAG AACCAGAATC TACTTCCCCA	120
5	AAGTCTCCAG CTAGCCTTAA GCTT	144
	(2) INFORMATION FOR SEQ ID NO: 35:	
10	(i) SEQUENCE CHARACTERISTICS:	
15	(A) LENGTH: 119 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
20	(vii) IMMEDIATE SOURCE:	
20	(B) CLONE: fragment in pUR4421 coding strand	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 35:	
25	AATTTAGCGG CCGCCCAGGT GAAACTGCTC GAGTAAGTGA CTAAGGTCAC CGTCTCCTCA GAACAAAAAC TCATCTCAGA AGAGGATCTG AATTAATGAG AATTCATCAA ACGGTGATA	60 119
30	(2) INFORMATION FOR SEQ ID NO: 36:	
	(i) SEQUENCE CHARACTERISTICS:	
35	(A) LENGTH: 119 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
40	(vii) IMMEDIATE SOURCE:	
	(B) CLONE: fragment in pUR4421 non-coding strand	
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 36:	
	AGCITATCAC CGITTGATGA ATTCTCATTA ATTCAGATCC TCTTCTGAGA TGAGTTTTTG	60
50	TTCTGAGGAG ACGGTGACCT TAGTCACTTA CTCGAGCAGT TTCACCTGGG CGGCCGCTA	119
55	(2) INFORMATION FOR SEQ ID NO: 37:	
	(i) SEQUENCE CHARACTERISTICS:	

•

	(A) LENGTH: 11 amino acids(B) TYPE: amino acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
5	(ii) MOLECULE TYPE: peptide	
	(vii) IMMEDIATE SOURCE:	
10	(B) CLONE: Myc tail	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 37:	
15	Glu Gln Lys Leu Île Ser Glu Glu Asp Leu Asn 1 5 10	
	(2) INFORMATION FOR SEQ ID NO: 38:	
20	(i) SEQUENCE CHARACTERISTICS:	
25	(A) LENGTH: 21 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
30	(vii) IMMEDIATE SOURCE:	
30	(B) CLONE: BstEII-HindIII linker coding strand	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 38:	
35	GTCACCGTCT CCTCATAATG A	21
	(2) INFORMATION FOR SEQ ID NO: 39:	
40	(i) SEQUENCE CHARACTERISTICS:	
45	(A) LENGTH: 20 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
50	(vii) IMMEDIATE SOURCE:	
	(B) CLONE: BstEII HindIII linker non-coding strand	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 39:	
55	AGCTTCATTA TGAGGAGACG	20
	(2) INFORMATION FOR SEQ ID NO: 40:	

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 38 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(vii) IMMEDIATE SOURCE: (B) CLONE: primer cho03pcr

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 40:

CGGATCCAAG CTTGAGCCTG GATGTCGGAC GAGATGAT

38

Claims

5

10

15

30

35

45

50

55

- 20 1. A process for carrying out an isolation process by using an immobilised binding protein or functional part thereof still capable of binding to a specific compound, wherein the immobilised protein is localized at the exterior of the cell wall of a host cell, wherein a medium containing said specific compound is contacted with a host cell under conditions whereby a complex between said specific compound and said immobilised binding protein is formed, separating said complex from the medium originally containing said specific compound, wherein the host cell is a fungus selected from the group consisting of yeasts and moulds, containing an expressible polynucleotide comprising
 - (i) a structural gene encoding the binding protein or a functional part thereof still having the specific binding capability, said binding protein or said functional part thereof being localized at the cell wall of said fungus, and (ii) at least a part of a gene encoding an anchoring protein capable of anchoring in the cell wall of said fungus, said part of a gene encoding at least the anchoring part of said anchoring protein, which anchoring part is derivable from the C-terminal part of said anchoring protein;

said polynucleotide being present in a vector or in the chromosome of said fungus.

- A process according to claim 1, wherein the fungus is selected from the group consisting of yeasts belonging to the genera Candida, Debaryomyces, Hansenula, Kluyveromyces, Pichia and Saccharomyces and moulds belonging to the genera Aspergillus, Penicillium and Rhizopus can be used.
- 40 3. Process according to claim 1 or 2 wherein the protein capable of anchoring in the cell wall is selected from the group consisting of, AGA1 (=a-agglutinin) of S. cerevisiae, FLO1 (= flocculation protein), Major Cell Wall Protein of lower eukaryotes, selected from the group consisting of yeasts and fungi.
 - 4. Process according to any of claims 1-3 wherein said fungus further comprises a sequence encoding a signal peptide ensuring secretion of the expression product of said first polynucleotide.
 - Process according to any of claims 1-4 wherein the binding protein is an antibody, an antibody fragment, a combination of antibody fragments, a receptor protein, or an inactivated enzyme still capable of binding the corresponding substrate.

Patentansprüche

1. Verfahren zum Durchführen eines Isolierungsverfahrens durch Verwenden eines immobilisierten Bindungsproteins oder eines funktionalen Teils davon, das (der) immer noch zur Bindung einer spezifischen Verbindung fähig ist, wobei das immobilisierte Protein an der Außenseite der Zellwand einer Wirtszelle lokalisiert ist, wobei ein Medium, das die spezifische Verbindung enthält, mit einer Wirtszelle unter Bedingungen in Kontakt gebracht wird, unter denen ein Komplex zwischen der spezifischen Verbindung und dem immobilisierten Bindungsprotein gebildet wird

und der Komplex von dem die spezifische Verbindung ursprünglich enthaltenden Medium getrennt wird, wobei die Wirtszelle ein Pilz ist, ausgewählt aus der Gruppe, die aus Hefen und Schimmelpilzen besteht, enthaltend ein exprimierbares Polynucleotid, umfassend

- (i) ein Strukturgen, das für das Bindungsprotein oder einen funktionalen Teil davon, der immer noch die spezifische Bindungskapazität aufweist, codiert, wobei das Bindungsprotein oder der funktionale Teil davon auf der Zellwand des Pilzes lokalisiert ist, und
 - (ii) zumindest einen Teil eines Genes, das für ein Ankerprotein codiert, das zur Verankerung in der Zellwand des Pilzes fähig ist, wobei der Teil eines Genes zumindest für den Verankerungsteil des Ankerproteins codiert, wobei der Verankerungsteil vom C-terminalen Teil des Ankerproteins ableitbar ist;

wobei das Polynucleotid in einem Vektor oder Chromosom des Pilzes vorliegt.

- 2. Verfahren gemäß Anspruch 1, wobei der Pilz aus der Gruppe ausgewählt ist, die aus Hefen besteht, die zu den Genera Candida, Debaryomyces, Nansenula, Kluyveromyces, Pichia und Saccharomyces besteht und darüber hinaus Schimmelpilze verwendet werden können, die zu den Genera Aspergillus, Penicillium und Rhizopus gehören.
- 20 3. Verfahren gemäß Anspruch 1 oder 2, wobei das zum Verankern in der Zellwand f\u00e4hige Proteine aus der Gruppe ausgew\u00e4hlt ist, die besteht aus: AGA1 (=a-Agglutinin) von S. cerevisiae, FLO1 (= Flocculationsprotein), Hauptzellwandprotein von niederen Eukaryoten, ausgew\u00e4hlt aus der Gruppe, die aus Hefen und Pilzen besteht.
 - 4. Verfahren gemäß mindestens einem der Ansprüche 1 bis 3, wobei der Pilz darüber hinaus eine Sequenz umfasst, die für ein Sigalpeptid codiert, wodurch die Sekretion des Expressionsproduktes des ersten Polynucleotids sichergestellt wird.
 - Verfahren gemäß mindestens einem der Ansprüche 1 bis 4, wobei das Bindungsprotein ein Antikörper, ein Antikörperfragment, eine Kombination von Antikörperfragmenten, ein Rezeptorprotein oder ein inaktiviertes Enzym ist, das immer noch zur Bindung des entsprechenden Substrats fähig ist.

Revendications

5

10

25

30

45

55

- Processus adapté pour réaliser un processus d'isolation en utilisant une protéine de liaison immobilisée ou une partie fonctionnelle de celle-ci toujours capable de se lier à un composé spécifique, dans lequel la protéine immobilisée est située à l'extérieur de la paroi cellulaire d'une cellule hôte, dans lequel un milieu contenant ledit composé spécifique est mis en contact avec une cellule hôte dans des conditions où un complexe entre ledit composé spécifique et ladite protéine de liaison immobilisée est formé, séparant ledit complexe du milieu contenant initialement ledit composé spécifique, dans lequel la cellule hôte est un champignon choisi dans le groupe constitué par les levures et les moisissures, contenant un polynucléotide d'expression comprenant
 - (i) un gène structurel codant la protéine de liaison ou une partie fonctionnelle de celle-ci ayant toujours la capacité de liaison spécifique, ladite protéine de liaison ou ladite partie fonctionnelle de celle-ci étant située au niveau de la paroi cellulaire dudit champignon, et
 - (ii) au moins une partie d'un gène codant une protéine d'ancrage capable de se fixer à la paroi cellulaire dudit champignon, ladite partie d'un gène codant au moins la partie de fixation de ladite protéine d'ancrage, laquelle partie de fixation est susceptible de dériver de la partie C-terminal de ladite protéine d'ancrage;
- 50 ledit polynucléotide étant présent dans un vecteur ou dans le chromosome dudit champignon.
 - Processus selon la revendication 1 dans lequel il est possible d'utiliser le champignon choisi dans le groupe constitué par les levures appartenant aux genres Candida, Debaryomyces, Hansenula, Kluyveromyces, Pichia et Saccharomyces et les moisissures appartenant aux genres Aspergillus, Penicillium et Rhizopus.
 - 3. Processus selon la revendication 1 ou 2 dans lequel la protéine capable de se fixer à la paroi cellulaire est choisie dans le groupe constitué par AGA1 (agglutinine A) de S. cerevisiae, FLO1 (protéine de floculation), protéine majeure de paroi cellulaire des eucaryotes inférieurs, sélectionnée dans le groupe constitué par les levures et les

champignons.

- 4. Processus selon l'une quelconque des revendications 1 à 3 dans lequel ledit champignon comprend en outre une séquence encodant un peptide signal garantissant la sécrétion du produit d'expression dudit premier polynucléotide.
 - 5. Processus selon l'une quelconque des revendications 1 à 4 dans lequel la protéine de liaison est un anticorps, un fragment d'anticorps, une combinaison de fragments d'anticorps, une protéine réceptrice ou une enzyme inactivée toujours capable de se lier au substrat correspondant.

pUR4483 8179 bps

BstEII

AG-alpha-

Tpgk1

A ori MB1 SacI

-HindIII

NheI

Figure 19

pUR4482

FI

Figure 20

pUR4424

Ph + Fl

pUR4482

Ph + Fl

Ē