Resolution to Sutner's Conjecture

William Boyles*

June 20, 2022

1 Introduction

Consider a game played on a simple graph G = (V, E) where each vertex consists of a clickable light. Clicking any vertex v toggles on on/off state of v and its neighbors. One wins the game by finding a sequence of clicks that turns off all the lights. When G is a 5×5 grid, this game was commercially available from Tiger Electronics as Lights Out.

Sutner was one of the first to study these games mathematically. He showed that for any G the initial configuration of all lights on is solvable [3]. He also found that when $d(G) = \dim(\ker(A+I))$ over the field \mathbb{Z}_2 , where A is the adjacency matrix of G, is 0 all initial configurations are solvable. In particular, 1 out of every $2^{d(G)}$ initial configurations are solvable, while each solvable configuration has $2^{d(G)}$ distinct solutions [3]. When investigating $n \times n$ grid graphs, Sutner conjectured the following relationship:

$$d_{2n+1} = 2d_n + \delta_n, \ \delta_n \in \{0, 2\}$$

 $\delta_{2n+1} = \delta_n,$

where $d_n = d(G)$ for G an $n \times n$ grid graph [3].

We resolve this conjecture in the affirmative. We use results from Sutner that give the nullity of a $n \times n$ board as the GCD of two polynomials in the ring $\mathbb{Z}_2[x]$ [4]. We then apply identities from Hunziker, Machiavelo, and Park that relate the polynomials $(2n+1) \times (2n+1)$ grids and $n \times n$ grids [2]. We then apply a result from Ore about the GCD of two products [6]. Together, these results allow us to prove Sutner's conjecture. We then go further and show for exactly which values of $n \delta_n$ is 0 or 2.

2 Preliminary Results

Sutner showed how to calculate d_n as the degree of the GCD of two polynomials in $\mathbb{Z}_2[x]$ [4].

Theorem 1 (Sutner). Let $f_n(x)$ be the polynomial in the ring $\mathbb{Z}_2[x]$ defined recursively by

$$f_n(x) = \begin{cases} 0 & n = 0 \\ 1 & n = 1 \\ xf_{n-1}(x) + f_{n-2}(x) & otherwise \end{cases}.$$

Then for all $n \in \mathbb{N}$.

$$d_n = \deg \gcd (f_{n+1}(x), f_{n+1}(x+1)).$$

^{*}Department of Mathematics, North Carolina State University, Raleigh, NC 27695 (wmboyle2@ncsu.edu)

This recursive definition gives a brute force approach to calculate $f_n(x)$. However, Hunziker, Machiavelo, and Park show the following identity that makes calculating $f_n(x)$ easier when n is divisible by powers of 2 [2].

Theorem 2 (Hunziker, Machiavelo, and Park). Let $n = b \cdot 2^k$ where b and k are non-negative integers. Then

$$f_n(x) = x^{2^k - 1} f_b^{2^k}(x).$$

In particular, we will use this result to relate $f_{2n+2}(x)$ and $f_{4n+4}(x)$ to $f_{n+1}(x)$.

Corollary 1. The following identities hold

$$f_{2n+2}(x) = x f_{n+1}^{2}(x)$$
$$f_{4n+4}(x) = x^{3} f_{n+1}^{4}(x).$$

Proof. Notice that $2n + 2 = (n + 1)2^1$ and $4n + 4 = (n + 1)2^2$. Thus, our desired identities follow from Theorem 2.

Now that we have a way to express $f_{2n+2}(x)$ and $f_{4n+4}(x)$ as a product of $f_{n+1}(x)$ and a power of x, we simply need a way to express the GCD of products so we can relate d_{2n+1} and d_n . This is where a number-theoretic result from Ore comes in handy [6].

Theorem 3 (Ore). Let a, b, c, and d be integers. Let (a,b) denote gcd(a,b). Then

$$(ab, cd) = (a, c)(b, d) \left(\frac{a}{(a, c)}, \frac{d}{(b, d)}\right) \left(\frac{c}{(a, c)}, \frac{b}{(b, d)}\right).$$

Ore's result deals specifically with integers. However, because both the integers and $\mathbb{Z}_2[x]$ are Euclidean domains, the result will still hold.

3 Proof of Sutner's Conjecture

Finally, we are ready to prove Sutner's conjecture [3].

Theorem 4. For all $n \in \mathbb{N}$,

$$d_{2n+1} = 2d_n + \delta_n,$$

where $\delta_n \in \{0, 2\}$, and $\delta_{2n+1} = \delta_n$.

Proof. Let (a,b) denote gcd(a,b). Applying the results from Theorems 1, 2, and 3,

$$\begin{split} d_{2n+1} &= \deg \left(f_{2n+2}(x), f_{2n+2}(x+1) \right) \\ &= \deg \left(x f_{n+1}^2(x), (x+1) f_{n+1}^2(x+1) \right) \\ &= \deg \left(x, x+1 \right) \left(f_{n+1}^2(x), f_{n+1}^2(x+1) \right) \left(\frac{x+1}{(x,x+1)}, \frac{f_{n+1}^2(x)}{(f_{n+1}^2(x), f_{n+1}^2(x+1))} \right) \left(\frac{x}{(x,x+1)}, \frac{f_{n+1}^2(x+1)}{(f_{n+1}^2(x), f_{n+1}^2(x+1))} \right) \\ &= \deg \left(f_{n+1}(x), f_{n+1}(x+1) \right)^2 \left(x+1, \frac{f_{n+1}^2(x)}{(f_{n+1}(x), f_{n+1}(x+1))^2} \right) \left(x, \frac{f_{n+1}^2(x+1)}{(f_{n+1}(x), f_{n+1}(x+1))^2} \right) \\ &= \deg \left(f_{n+1}(x), f_{n+1}(x+1) \right)^2 \left(x+1, \frac{f_{n+1}(x)}{(f_{n+1}(x), f_{n+1}(x+1))} \right) \left(x, \frac{f_{n+1}(x+1)}{(f_{n+1}(x), f_{n+1}(x+1))} \right) \\ &= 2d_n + \deg \left(x+1, \frac{f_{n+1}(x)}{(f_{n+1}(x), f_{n+1}(x+1))} \right) \left(x, \frac{f_{n+1}(x+1)}{(f_{n+1}(x), f_{n+1}(x+1))} \right). \end{split}$$

Notice that if we substitute x + 1 for x,

$$\left(x+1, \frac{f_{n+1}(x)}{(f_{n+1}(x+1), f_{n+1}(x))}\right)$$
 becomes $\left(x, \frac{f_{n+1}(x+1)}{(f_{n+1}(x), f_{n+1}(x+1))}\right)$.

Thus, we see that these two remaining GCD terms in our expression for d_{2n+1} are either both 1 or not 1 simultaneously. This means we can further simplify to

$$d_{2n+1} = 2d_n + 2\deg\left(x, \frac{f_{n+1}(x+1)}{(f_{n+1}(x), f_{n+1}(x+1))}\right).$$

So, we see that

$$d_{2n+1} = 2d_n + \delta_n$$
, where $\delta_n = 2 \deg \left(x, \frac{f_{n+1}(x+1)}{(f_{n+1}(x), f_{n+1}(x+1))} \right)$.

Thus, $\delta_n \in \{0, 2\}$ as desired.

What remains is to show that $\delta_n = \delta_{2n+1}$. Applying Corollary 1,

$$\begin{aligned} d_{4n+3} &= \deg \left(x^3 f_{n+1}^4(x), (x+1)^3 f_{n+1}^4(x+1) \right) \\ &= \deg \left(x^3, (x+1)^3 \right) \left(f_{n+1}^4(x), f_{n+1}^4(x+1) \right) \left(x^3, \frac{f_{n+1}^4(x+1)}{(f_{n+1}^4(x), f_{n+1}^4(x+1))} \right) \left((x+1)^3, \frac{f_{n+1}^4(x)}{(f_{n+1}^4(x), f_{n+1}^4(x+1))} \right) \\ &= \deg \left(f_{n+1}(x), f_{n+1}(x+1) \right)^4 \left(x^3, \frac{f_{n+1}^4(x+1)}{(f_{n+1}(x), f_{n+1}(x+1))^4} \right) \left((x+1)^3, \frac{f_{n+1}^4(x)}{(f_{n+1}(x), f_{n+1}(x+1))^4} \right) \\ &= \deg \left(f_{n+1}(x), f_{n+1}(x+1) \right)^4 \left(x^3, \frac{f_{n+1}^3(x+1)}{(f_{n+1}(x), f_{n+1}(x+1))^3} \right) \left((x+1)^3, \frac{f_{n+1}^3(x)}{(f_{n+1}(x), f_{n+1}(x+1))^3} \right) \\ &= \deg \left(f_{n+1}(x), f_{n+1}(x+1) \right)^4 \left(x, \frac{f_{n+1}(x+1)}{(f_{n+1}(x), f_{n+1}(x+1))} \right)^3 \left((x+1), \frac{f_{n+1}(x)}{(f_{n+1}(x), f_{n+1}(x+1))} \right)^3 \\ &= 4d_n + 3\delta_n. \end{aligned}$$

Also, from our work previously in this proof,

$$\begin{aligned} d_{4n+3} &= d_{2(2n+1)+1} \\ &= 2d_{2n+1} + \delta_{2n+1} \\ &= 2(2d_n + \delta_n) + \delta_{2n+1} \\ &= 4d_n + 2\delta_n + \delta_{2n+1}. \end{aligned}$$

For these two expressions for d_{4n+3} to be equal, we must have $\delta_{2n+1} = \delta_n$, as desired.

This result seems to have been proven prior by Yamagishi [5]. However, Yamagishi does not mention the connection to Sutner's conjecture, and the proof provided is not as direct as the one we provide.

4 Extended Results

Theorem 4 proves Sutner's conjecture as stated and even gives a formula for finding δ_n . However, this formula is somewhat messy, containing one polynomial division and two polynomial GCDs. We can improve this formula to just a modulo operation on n. First, we'll need a few lemmas establishing divisibility properties on $f_n(x)$.

Lemma 1. The polynomial $f_n(x)$ is divisible by x if and only if n is even.

Proof. First, we'll prove that if n is even, then $f_n(x)$ is divisible by x. We will proceed by induction. Notice that x divides $f_0(x) = 0$. Assume for some integer $k \ge 0$ that x divides $f_{2k}(x)$. Then

$$f_{2k}(x) = xg(x),$$

for some $g(x) \in \mathbb{Z}_2[x]$. Applying the recursive definition of $f_n(x)$ provided in Theorem 1,

$$f_{2k+2}(x) = xf_{2k+1}(x) + f_{2k}(x)$$
$$= x (f_{2k+1}(x) + g(x)).$$

So, $f_{2k+2}(x)$ is also divisible by x.

Second, we'll prove that if n is odd, then $f_n(x)$ is not divisible by x. We will proceed by induction. Notice that x does not divide $f_1(x) = 1$. Assume for some natural number k that x does not divide $f_{2k-1}(x)$. Then

$$f_{2k-1}(x) = xg(x) + 1,$$

for some $g(x) \in \mathbb{Z}_2[x]$. Applying the recursive definition of $f_n(x)$ provided in Theorem 1,

$$f_{2k+1}(x) = xf_{2k}(x) + f_{2k-1}(x)$$

= $x (f_{2k}(x) + g(x)) + 1$.

So, $f_{2k+1}(x)$ is also not divisible by x.

Corollary 2. The polynomial $f_n(x+1)$ is divisible by x+1 if and only if n is even.

Proof. Substitute x + 1 for x in Lemma 1 to obtain the desired result.

Lemma 2. The polynomial $f_n(x)$ is divisible by x+1 if and only if n is divisible by 3.

Proof. First, we'll prove that if n is divisible by 3, then x+1 divides $f_n(x)$. We will proceed by induction. Notice that x+1 divides $f_0(x)=0$. Assume for some integer $k\geq 0$ that x+1 divides $f_{3k}(x)$. Then

$$f_{3k}(x) = (x+1)g(x),$$

for some $g(x) \in \mathbb{Z}_2[x]$. Applying the recursive definition of $f_n(x)$ provided in Theorem 1,

$$f_{3k+3}(x) = xf_{3k+2}(x) + f_{3k+1}(x)$$

$$= x (xf_{3k+1}(x) + f_{3k}(x)) + f_{3k+1}(x)$$

$$= (x^2 + 1)f_{3k+1}(x) + xf_{3k}(x)$$

$$= (x + 1)^2 f_{3k+1}(x) + x(x + 1)g(x)$$

$$= (x + 1) ((x + 1)f_{3k+1} + xg(x)).$$

So, $f_{3k+3}(x)$ is also divisible by x+1.

Next, we'll prove that if n is not divisible by 3, then x + 1 does not divide $f_n(x)$. We will proceed by induction. Notice that x + 1 neither divides $f_1(x) = 1$ nor $f_2(x) = x$. Assume for some integer $k \ge 0$ that x + 1 does not divide $f_{3k+1}(x)$. Then

$$f_{3k+1}(x) = (x+1)g_1(x) + 1,$$

for some $g_1(x) \in \mathbb{Z}_2[x]$. Applying the recursive definition of $f_n(x)$ provided in Theorem 1,

$$f_{3k+2}(x) = xf_{3k+1}(x) + f_{3k}(x).$$

By our work earlier in this proof, we know that x + 1 divides $f_{3k}(x)$. Thus,

$$f_{3k}(x) = (x+1)g_2(x),$$

for some $g_1(x) \in \mathbb{Z}_2[x]$. So,

$$f_{3k+2}(x) = x ((x+1)g_1(x) + 1) + (x+1)g_2(x)$$

= $x(x+1)g_1(x) + x + (x+1)g_2(x)$
= $(x+1)(xg_1(x) + g_2(x) + 1) + 1$.

So, f_{3k+2} is also not divisible by x+1.

Now assume that for some integer $k \ge 1$ that x + 1 does not divide $f_{3k-1}(x)$. Thus,

$$f_{3k-1}(x) = (x+1)g_3(x) + 1,$$

for some $g_3(x) \in \mathbb{Z}_2[x]$. Applying the recursive definition of $f_n(x)$ provided in Theorem 1 and our work previously in this proof,

$$f_{3k+1}(x) = xf_{3k}(x) + f_{3k-1}(x)$$

= $x(x+1)g_2(x) + (x+1)g_3(x) + 1$
= $(x+1)(xg_2(x) + g_3(x)) + 1$.

So, $f_{3k+1}(x)$ is also not divisible by x+1.

Corollary 3. The polynomial $f_n(x+1)$ is divisible by x if and only if n is divisible by 3.

Proof. Substitute x for x + 1 in Lemma 2 to obtain the desired result.

Now with these divisibility properties about $f_n(x)$, we can state and prove a much simpler way to find when δ_n is 0 or 2.

Theorem 5. The value of δ_n is 2 if and only if n+1 is divisible by 3.

Proof. From our work in Theorem 4, we know that

$$\delta_n = 2 \deg \left(x + 1, \frac{f_{n+1}(x)}{(f_{n+1}(x), f_{n+1}(x+1))} \right).$$

So we see that δ_n is 2 exactly when $f_{n+1}(x)$ can be divided without remainder by x+1 more times than $f_{n+1}(x+1)$.

For n+1 is not divisible by 3, Lemma 2 tells us that $f_{n+1}(x)$ is not divisible by x+1. So in this case, $\delta_n=0$, as desired.

For n+1 divisible by 3, let $n+1=b\cdot 2^k$ for some integers $b,k\geq 0$ where b is odd. Notice that since n+1 is divisible by 3, b must also be divisible by 3. Applying Corollary 1,

$$f_{n+1}(x) = x^{2^k-1} f_b^{2^k}(x)$$
 and $f_{n+1}(x+1) = (x+1)^{2^k-1} f_b^{2^k}(x+1)$.

Since b is an odd multiple of 3, Lemma 2 and Corollary 2 tell us that x + 1 divides $f_b(x)$, but x + 1 does not divide $f_b(x + 1)$. So,

$$f_{n+1}(x) = x^{2^k - 1}(x+1)^{2^k} g^{2^k}(x)$$
 and $f_{n+1}(x+1) = (x+1)^{2^k - 1} x^{2^k} g^{2^k}(x+1)$,

for some $g(x) \in \mathbb{Z}_2[x]$, where g(x) and g(x+1) are both divisible by neither x nor x+1. So, we see that $f_{n+1}(x)$ can be divided without remainder by x+1 one more time than $f_{n+1}(x+1)$. So, $\delta_n=2$, as desired.

5 Future Work

There are many other relationships with d_n , some of which are yet to be proven. For example, Sutner mentions that for all $k \in \mathbb{N}$, $d_{2^k-1} = 0$ [3]. We believe that the following relationships hold, but are unaware of a proof.

Conjecture 1. There are infinitely many n such that $d_n = 2$. In particular, for all $k \in \mathbb{N}$, $d_{2\cdot 3^k - 1} = 2$.

This conjecture is similar to Sutner's result that shows there are infinitely many n such that $d_n = 0$.

Conjecture 2. Let a be an odd natural number. If a is not divisible by 21, then for all $k \in \mathbb{N}$,

$$d_{a^k-1} = d_{a-1}.$$

Goshima and Yamagishi conjectured a similar statement on tori instead of grids and for a prime [1].

Theorem 6. The case of a = 3 for Conjecture 2 and 1 are equivalent.

Proof. For a = 3, Conjecture 2 says that for all $k \in \mathbb{N}$,

$$d_{3^k - 1} = d_{3 - 1} = 0.$$

Since 3^k is divisible by 3, Theorem 5 tells us that $\delta_{3^k-1}=2$. So, applying Theorem 4,

$$d_{2\cdot 3^k - 1} = 2d_{3^k - 1} + \delta_{3^k - 1} = 2,$$

exactly what Conjecture 1 states. Apply all the same results in reverse to shows that Conjecture 2 implies 1. \blacksquare

References

- [1] Masato Goshima and Masakazu Yamagishi, On the dimension of the space of harmonic functions on a discrete torus, Experimental Mathematics 19 (2010), no. 4, 421–429.
- [2] Markus Hunziker, António Machiavelo, and Jihun Park, Chebyshev polynomials over finite fields and reversibility of σ-automata on square grids, Theoretical Computer Science **320** (2004), no. 2, 465–483.
- [3] Klaus Sutner, Linear cellular automata and the Garden-of-Eden, The Mathematical Intelligencer 11 (1989), no. 2, 49–53.
- [4] _____, sigma-automata and chebyshev-polynomials, Theoretical Computer Science **230** (1996), 49–73.
- [5] Masakazu Yamagishi, Periodic harmonic functions on lattices and chebyshev polynomials, Linear Algebra and its Applications 476 (2015), 1–15.
- [6] Øystein Ore, Number theory and its history, p. 109, McGraw-Hill, 1948, Section 5-4, Problem 2.