

2022 Synopsys ARC 盃 AloT 設計應用競賽 決賽作品

作品標題-基於深度學習之睡眠呼吸中止症檢測

指導老師- 林淵翔 教授

報告人- 蔡明翰, 王樹盛, 林煜凱

2022/07/22

Agenda

- 作品概述
- 難點與創新
- 設計與實現
- 作品進度
- 測試結果
- 總結展望

Agenda

- 作品概述
- 難點與創新
- 設計與實現
- 作品進度
- 測試結果
- 總結展望

-動機

• 根據呼吸醫學領域世界一流的期刊《柳葉刀雜誌呼吸醫學分冊》(The Lancet Respiratory Medicine)報導,超過9.36億人患有阻塞型睡眠呼吸中止症(Obstructive Sleep Apnea),簡稱OSA。

• 有半數以上肥胖、心臟衰竭、中風或暫時性腦缺血發作(TIA)、心房顫動

或糖尿病患者皆患有睡眠呼吸中止症。

-動機

- 診斷阻塞型睡眠呼吸中止症(OSA)患者的標準方法是使用多導睡眠圖(PSG) ,但使用多導睡眠圖(PSG) 是一個長期的過程,患者需要在睡眠中心過夜以觀察呼吸及各項生理訊號。
- PSG要記錄的資料包括:
- 心電圖(ECG)
- 腦波圖 (EEG)
- 眼電圖 (EOG)
- 肌電圖(EMG)
- 胸腹呼吸動作(Thoracic Abdominal Effort)
- 呼吸氣流(Respiratory airflow)
- 血氧飽和度 (SaO2 Saturation)
- 呼吸事件
- 雖然多導睡眠圖能提供準確的結果,但它的設備會為OSA患者帶來不舒服且不便。

傳統睡眠多導圖檢測

- 創意發想

- •是否可以讓睡眠呼吸中止症的檢測,就像快篩試劑一樣,在家就能自行 檢測呢?
- •透過抓取呼吸中止症患者的ECG心電訊號特徵,提供阻塞型睡眠呼吸中 止症病癥的檢測。

傳統多導睡眠圖檢測儀器

輕量化ECG檢測儀器

Agenda

- 作品概述
- 難點與創新
- 設計與實現
- 作品進度
- 測試結果
- 總結展望

基於深度學習之睡眠呼吸中止症檢測-難點與創新

-創新

- 不需配戴繁雜的線材及儀器。
- 自己一人就能在家輕鬆檢測。

輕量化ECG檢測儀器

基於深度學習之睡眠呼吸中止症檢測-難點與創新

- 難點

- EM9D開發板並沒有內建相關的生理訊號感測器。
- 心電訊號容易受到雜訊或是患者其他動作影響。
- •需要蒐集睡眠呼吸中止症患者的ECG訊號。
- 建立輕量且高準確率的模型。

Agenda

- 作品概述
- 難點與創新
- 設計與實現
- 作品進度
- 測試結果
- 總結展望

-設計與實現

- 本作品預期的使用流程為:
- 使用者將作品本體配戴在身上,並將心電訊號感測貼片分別貼在左、右 胸部及左腹後,臥躺進行睡眠。
- 2. 使用者進入睡眠狀態後, 感測器擷取即時心電訊號輸入開發板。
- 3. 由開發板內的模型分析使用者睡眠中的心電訊號,並透過OLED顯示器,每一分鐘輸出一次檢測結果,且在睡眠結束後輸出平均AI(Apnea Index)指數(每小時所發生的呼吸中止次數平均)作為診斷指標。

- 硬體架構圖

- 軟體流程圖

- -訓練資料來源
 - 本作品用以訓練模型的資料來自麻省理工學院(MIT)開源資料庫PhysioNet中提供的開源資料集:
 - Department of Internal Medicine, Philipps-University/Harvard-M.I.T.
 Division of Health Sciences and Technology/Beth Israel Deaconess
 Medical Center Apnea-ECG Database

George Moody 🛈 , Roger Mark 🕕

Published: Feb. 10, 2000. Version: 1.0.0

When using this resource, please cite the original publication:

T Penzel, GB Moody, RG Mark, AL Goldberger, JH Peter. The Apnea-ECG Database. Computers in Cardiology 2000;27:255-258.

Please include the standard citation for PhysioNet: (show more options)

Goldberger, A., Amaral, L., Glass, L., Hausdorff, J., Ivanov, P. C., Mark, R., ... & Stanley, H. E. (2000). PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation [Online]. 101 (23), pp. e215–e220.

- -資料集資訊
 - 此資料集為PhysioNet和Computer in Cardiology(CINC)在2000年舉辦的以ECG為基礎,來偵測呼吸中止的挑戰比賽所提供的資料集。
 - 資料由專家(Thomas Penzel)嚴格審視後,將每筆資料以每一分鐘為單位標明哪些片段發生了呼吸中止症狀。
 - •如下圖,標記 'A' 為發生呼吸中止, 'N' 為正常呼吸。

-資料集資訊

- 該資料集提供了70個人的夜間連續記錄,每人長度約8小時的ECG訊號, 做為訓練資料以及測試資料使用。
- 採樣頻率為100Hz,每一分鐘得到的資料量為60*100=6000個採樣,70個人錄製的總時間長度為33778分鐘。
- •總資料量為33778*6000=202,668,000個採樣。

總錄製時長(分鐘)	每分鐘資料量(採樣)	總資料量(採樣)
33778	6000	202,668,000

- -70位受試者夜間ECG訊號
 - AHI(Apnea Hypopnea Index)指數為:一小時內發生的呼吸中止次數(AI)+呼吸障礙次數(HI)。
 - •醫學上的睡眠呼吸中止症嚴重程度會依此指數判定。
 - 正常: AHI<5
 - 輕度睡眠呼吸暫停: 5≤AHI<15
 - 中度睡眠呼吸暫停: 15≤AHI<30
 - 重度睡眠呼吸暫停: AHI≥30

	Record	Length	non-apn	apnea	hours	,	AI	HI	AHI	Age	Sex	height	weigh
		minutes	minutes	minutes	w/apn	ea						(cm)	(kg)
	a01	490	20	470	9		12.5	57.1	69.6	51	М	175	102
	a02	529	109	420	9		57.2	12.3	69.5	38	М	180	120
	a03	520	274	246	9		38.4	0.7	39.1	54	М	168	80
<u>{</u> 7	a04	493	40	453	9		73.4	4	77.4	52	М	173	121
Ī	a05	455	179	276	8		35	6	41	58	М	176	78
•	a06	511	305	206	8		16.6	8.1	24.7	63	М	179	104
	a07	512	190	322	9	4	46	17	63	44	М	177	105
	a08	502	313	189	7		32	10	42	51	M	179	88
	a09	496	115	381	9		23.1	8.6	31.7	52	M	178	82
	a10	518	418	100	6		11	10	21	58	M	176	78
	a11	467	245	222	8		11	3	14	58	M	168	103
	a12	578	44	534	10		70	10.2	80.2	52	M	173	121
	a13	496	252	244	9		32	10	42	51	M	179	88
	a14	510	127	383	8		17.3	37.4	54.7	51	M	175	102
	a15	511	143	368	9		46	6	52	60	M	176	113
	a16	483	163	320	7		17	24	41	44	M	177	105
	a17	486	328	158	5		21	12	33	40	M	179	96
	a18	490	52	438	9		75.5	6.9	82.4	52	M	178	82
	a19	503	298	205	9		34	0	34	55	M	178	90
	a20	511	196	315	9		35	6	41	58	M	176	78
	b01	488	469	19	2	(0.12	0.12	0.24	44	F	170	63
	b02	518	425	93	5		14	5	19	53	M	176	85
	b03	442	369	73	4		22	2	24	53	M	176	85
	b04	430	420	10	1	(0.7	0	0.7	42	M	180	64
	b05	434	377	57	3		2	3	5	52	M	180	135
	c01	485	485	0	0	(9	0	0	31	M	184	74
	c02	503	502	1	0	(0	0	0	37	M	180	83
	c03	455	455	0	0	(0	0	0	39	M	184	65
	c04	483	483	0	0	(0	0	0	41	F	180	65
	c05	467	464	3	0	(0	0	0	28	F	169	57
	c06	469	468	1	0	(9	0.25	0.25	28	F	171	65
	c07	454	450	4	0	(9	0	0	30	F	168	56
	c08	535	535	0	0		9	0	0	42	M	180	64
	c09	469	467	2	0		9	0	0	37	M	180	83
	c10	432	431	1	0		9	0	0	27	М	184	72
					L								

- –AI(Apnea Index)
 - 呼吸障礙(Hypopnea)是呼吸氣通量不足導致,並不會造成心電訊號的 變化,因此我們只能辦別呼吸中止(Apnea)的事件。
 - 在檢測結束後,會提供患者睡眠期間,每小時平均發生的呼吸中止次數, 也就是AI(Apnea Index)指數。

Agenda

- 作品概述
- 難點與創新
- 設計與實現
- 作品進度
- 測試結果
- 總結展望

-作品進度

使用開源資料庫的ECG訊號來訓練模型,資料庫總共有33778筆資料,我們將全部的資料分割為30400筆訓練資料及3378筆測試資料。分割後的資料會分別拿去訓練與測試,如下表所示。

分類	錄製時長(分鐘)	呼吸中止(分鐘)	非呼吸中止(分鐘)
訓練集	30400	11734	18666
測試集	3378	1305	2073

資料分割資訊表

- 濾波處理

心電訊號容易受到肌電訊號等雜訊干擾,因此在開發板上對心電訊號進行0.5Hz~40Hz帶通濾波處理。

濾波處理資料

- 資料正規化

為了提升模型的準確率,以及避免兩個不同的感測器間解析度和基準點不同, 因此我們將資料進行正規化,讓資料的範圍落在[-1,1]的區間內。

- 經優化的神經網路模型
 - 模型架構如右圖所示。
 - •由於MLI指令集不支援Conv1D,因此使用Conv2D來進 行模擬。
 - 模型總參數為12726,測試準確度(Test accuracy)可達 92.11%,如下圖所示。

Total params: 12,726 Trainable params: 12,660 Non-trainable params: 66 0.9211605171870072

0.9211605171870072

Layer (type)	Output Shape	Param #
batch_normalization_2 (BatchNormalization)	(None, 6000, 1, 1)	4
conv2d_6 (Conv2D)	(None, 3000, 1, 8)	40
conv2d_7 (Conv2D)	(None, 1500, 1, 8)	264
depthwise_conv2d_3 (Depthwi seConv2D)	(None, 750, 1, 8)	32
average_pooling2d_3 (Averag ePooling2D)	(None, 375, 1, 8)	
dropout_3 (Dropout)	(None, 375, 1, 8)	
conv2d_8 (Conv2D)	(None, 188, 1, 16)	528
conv2d_9 (Conv2D)	(None, 94, 1, 16)	1040
depthwise_conv2d_4 (Depthwi seConv2D)	(None, 47, 1, 16)	64
average_pooling2d_4 (Averag ePooling2D)	(None, 24, 1, 16)	
dropout_4 (Dropout)	(None, 24, 1, 16)	
conv2d_10 (Conv2D)	(None, 12, 1, 32)	2080
conv2d_11 (Conv2D)	(None, 6, 1, 32)	4128
depthwise_conv2d_5 (Depthwi seConv2D)	(None, 3, 1, 32)	128
average_pooling2d_5 (Averag ePooling2D)	(None, 2, 1, 32)	
dropout_5 (Dropout)	(None, 2, 1, 32)	
batch_normalization_3 (Batc hNormalization)	(None, 2, 1, 32)	128
flatten_1 (Flatten)	(None, 64)	
dense_2 (Dense)	(None, 64)	4160
dense_3 (Dense)	(None, 2)	130

-作品進度

•可以成功將TFLite形式的模型進行量化,將權重原本float32形式轉換為int8,使模型的大小減少81.63%。

將高精度連續值近似為離散值

模型大小降低了81.63%

-作品進度

• 使用自製支架,將MAX86150 ECG感測模組以及OLED顯示器,安裝在開發板上,並可以配戴於使用者身上。

作品完成圖

MAX86150模組

OLED顯示器

-作品進度

• OLED的顯示畫面共有四個狀態,分別為待機畫面、檢測結果為呼吸中止 (打叉)、呼吸正常(打勾)、以及使用者醒來後,會顯示在這睡眠時間內, 每小時平均的呼吸中止次數(AI指數),讓使用者作為診斷的參考指數。

待機畫面

檢測為呼吸中止

檢測為呼吸正常

AI指數

Agenda

- 作品概述
- 難點與創新
- 設計與實現
- 作品進度
- 測試結果
- 總結展望

基於深度學習之睡眠呼吸中止症檢測-測試結果

-測試結果

本作品能正確判別睡眠時的正常呼吸狀態,以及檢測完成後輸出使用者的 Al(Apnea Index)指數,也就是睡眠時間內平均每小時發生的呼吸中止次 數。

臥躺睡眠狀態

正常呼吸檢出畫面

AI指數畫面

基於深度學習之睡眠呼吸中止症檢測-測試結果

-測試結果

將呼吸中止症患者的心電訊號資料,透過DAC訊號產生器轉換為類比訊號,模擬真實使用者的即時心電訊號,輸入開發板測試。

無呼吸中止波形判斷結果

呼吸中止波形判斷結果

基於深度學習之睡眠呼吸中止症檢測-測試結果

-測試結果

• 從先前分割好的測試資料集中,隨機取出100筆波形,透過DAC訊號產生器轉換為類比訊號,輸入開發板測試,模擬真實使用者,準確率為91%。

輸入資料	數量	判斷正確數量	準確率		
無呼吸中止	64	58	04/400-040/		
有呼吸中止	36	33	91/100=91%		

Agenda

- 作品概述
- 難點與創新
- 設計與實現
- 作品進度
- 測試結果
- 總結展望

基於深度學習之睡眠呼吸中止症檢測-總結展望

-結論

- 我們完成了一個基於嵌入式系統的睡眠呼吸中止症檢測裝置,成功使用 ECG心電訊號來檢測睡眠呼吸中止症。
- 準確率可達91%,且可以提供Apnea Index做為檢測指標。
- 成功達到輕量化,低功耗且高效率之訴求,且大幅減少檢測需要配戴之 感測器與線材,讓使用者能夠舒適的睡眠,在家就能夠輕鬆的檢測。

基於深度學習之睡眠呼吸中止症檢測-總結展望

-未來展望

- 未來我們希望能再縮小裝置的體積,讓使用上更方便。
- 推廣此產品,讓更多人能試著在家自行檢測。
- 能夠與相關的睡眠中心合作,實際配戴在患者身上測試並得到更多測試 結果與回饋。

基於深度學習之睡眠呼吸中止症檢測-參考資料

-參考文獻

- Nguyen Thi Hoang Trang, "Development of a SMOTE-based Sleep Apnea/Hypopnea Event Classification Algorithm using Electrocardiogram Spectrogram and DWT coefficients with Machine Learning/Deep Learning Approaches", 2021.
- 王元宏, "Electrocardiogram Signal for the Detection of Obstructive Sleep Apnoea Via Artificial Neural Networks", 2021.

基於深度學習之睡眠呼吸中止症檢測-參考資料

-圖片來源

- https://cpapsupplies.com/blog/treating-sleep-apnea-without-the-mask CPAP Alternatives: How to Treat Sleep Apnea without CPAP •
- https://beautifulsmiles.com.tw/keyproject.php?id=39 何謂睡眠呼吸中止症?
- https://tw.element14.com/mikroelektronika/mikroe-4061/ecg-6-clickboard/dp/3528537
- https://nettigo.eu/products/oled-display-0-96-i2c-128x64-ssd1306-white
- https://zh.wikipedia.org/zhtw/%E5%91%BC%E5%90%B8%E6%9A%82%E5%81%9C%E4%BD%8E %E9%80%9A%E6%B0%94%E6%8C%87%E6%95%B0

基於深度學習之睡眠呼吸中止症檢測-參考資料

-圖片來源

- https://www.transfer.org.cn/210.html/zh-tw
- https://medebm.blogspot.com/2017/12/electrocardiogram-ekgecg.html
- https://zhuanlan.zhihu.com/p/42281380
- https://www.researchgate.net/figure/EMG-signal-process-recommended-Green-The-raw-signal-no-treatment-was-applied-until_fig2_258344784
- https://thorax.bmj.com/content/67/6/546
- https://biomedical-engineeringonline.biomedcentral.com/articles/10.1186/1475-925X-4-34
- https://m.mcpcourse.com/difference-between-pao2-and-vs-sao2/

Thank You

