A layout algorithm for higher-dimensional string diagrams

Calin Tataru

University of Cambridge

SYCO 10, 20 December 2022

Homotopy.io

- ► Homotopy.io is a proof assistant for higher category theory.
- ▶ It lets you build terms in finitely-presented *n*-categories.
- ► Terms have a direct geometrical representation.

Example of 2-diagram

Corresponding zigzag diagram

Corresponding zigzag diagram

Mono-epi factorization

Poset admits a mono-epi factorization system:

where $E_f = A \sqcup (B \setminus f[A])$, m_f is the canonical inclusion, $e_f = [f, id]$.

Definition

Given a diagram in a category C,

$$X: J \rightarrow \mathbf{C}$$

an injectification is defined to be a diagram

$$\widehat{X}: J \to \mathbf{C}_{\text{mono}}$$

equipped with a pointwise epi natural transformation

▶ We will show how to compute injectifications for finite poset-shaped diagrams $X: J \rightarrow \mathbf{Poset}$.

- ▶ We will show how to compute injectifications for finite poset-shaped diagrams $X: J \rightarrow \mathbf{Poset}$.
- ▶ The construction works by induction on *J*.

- ▶ We will show how to compute injectifications for finite poset-shaped diagrams $X: J \rightarrow \mathbf{Poset}$.
- ▶ The construction works by induction on *J*.
- ▶ For every $i \in J$, let $J \downarrow i = \{j \in J : j < i\}$.

- We will show how to compute injectifications for finite poset-shaped diagrams $X: J \rightarrow \mathbf{Poset}$.
- ▶ The construction works by induction on *J*.
- ▶ For every $i \in J$, let $J \downarrow i = \{j \in J : j < i\}$.
- ▶ If $J \downarrow i$ is empty, then define

$$\widehat{X}j := Xj$$
 $\epsilon_j := \mathrm{id}_{Xj}$

- We will show how to compute injectifications for finite poset-shaped diagrams $X: J \rightarrow \mathbf{Poset}$.
- ▶ The construction works by induction on *J*.
- ▶ For every $i \in J$, let $J \downarrow i = \{j \in J : j < i\}$.
- ▶ If $J \downarrow i$ is empty, then define

$$\widehat{X}j := Xj$$
 $\epsilon_j := \operatorname{id}_{Xj}$

▶ If not, \widehat{X} and ϵ must already be defined on $J \downarrow i$.

Distance constraints

$$f_2 - f_1 \ge 1$$

 $f_3 - f_2 \ge 1$
 $f_3 - f_4 \ge 1$
 $f_5 - f_2 \ge 1$
 $f_5 - f_4 \ge 1$

Fair averaging constraints (strict)

$$\frac{1}{2}(f_1 + f_2) - f_4 = 0$$

$$f_3 - f_5 = 0$$

$$\frac{1}{2}(f_4 + f_5) - f_6 = 0$$

Fair averaging constraints (weak)

minimize
$$c_1+c_2+c_3$$

subject to $|\frac{1}{2}(f_1+f_2)-f_4|\leq c_1$
 $|f_3-f_5|\leq c_2$
 $|\frac{1}{2}(f_4+f_5)-f_6|\leq c_3$

Available at beta.homotopy.io

- Available at beta.homotopy.io
- ► New layout algorithm

- Available at beta.homotopy.io
- ► New layout algorithm
 - ► Re-engineered 3D renderer

- Available at beta.homotopy.io
- New layout algorithm
 - ► Re-engineered 3D renderer
 - ▶ 4D renderer (i.e. smooth movies of 3D diagrams)

- Available at beta.homotopy.io
- New layout algorithm
 - ► Re-engineered 3D renderer
 - ▶ 4D renderer (i.e. smooth movies of 3D diagrams)
- Invertible generators

- Available at beta.homotopy.io
- New layout algorithm
 - ► Re-engineered 3D renderer
 - ▶ 4D renderer (i.e. smooth movies of 3D diagrams)
- Invertible generators
- Oriented manifold diagrams

- Available at beta.homotopy.io
- ► New layout algorithm
 - ► Re-engineered 3D renderer
 - ▶ 4D renderer (i.e. smooth movies of 3D diagrams)
- Invertible generators
- Oriented manifold diagrams
- TikZ export (finally!)