Chapter 13

Complex Numbers and Functions, Complex Differentiation

13.1 Complex Numbers and Their Geometric Representation

1. Powers of i,

$$i = (0, 1)$$
 $i^2 = (0, 1) \cdot (0, 1) = -1$ 13.1.1

$$i^3 = i^2 \cdot i = -i$$
 $i^4 = (i^2)^2 = (-1)^2 = 1$ 13.1.2

This repeats with a period of 4.

$$\mathbf{i} = (0, 1) \qquad \qquad \frac{1}{\mathbf{i}} = \frac{-\mathbf{i}}{\mathbf{i}^2} = -\mathbf{i}$$
 13.1.3

$$\frac{1}{i^2} = \frac{1}{-1} = -1 \qquad \qquad \frac{1}{i^3} = \frac{1}{(-1) \cdot i} = i$$
 13.1.4

This also repeats with a period of 4.

2. Plotting the rotated real numbers,

$$z_1 = 1 + i$$
 $iz_1 = -1 + i$ 13.1.5

$$z_2 = -1 + 2i$$
 $iz_2 = -2 - i$ 13.1.6

$$z_3 = 4 - 3i$$
 $iz_3 = 3 + 4i$ 13.1.7

Using the geometric verificiation of perpendicular lines having their slopes multiply to -1,

$$m_1 n_1 = 1 \cdot -1 = -1$$
 $m_2 n_2 = -2 \cdot (1/2) = -1$ 13.1.8

$$m_3 n_3 = (-3/4) \cdot (4/3) = -1$$
 13.1.9

3. Verifying the division,

$$z = \frac{x_1 + y_1 \mathbf{i}}{x_2 + y_2 \mathbf{i}} = \frac{x_1 + y_1 \mathbf{i}}{x_2 + y_2 \mathbf{i}} \cdot \frac{x_2 - y_2 \mathbf{i}}{x_2 - y_2 \mathbf{i}}$$
 13.1.10

$$=\frac{x_1x_2+y_1y_2}{x_2^2+y_2^2}+\frac{x_2y_1-x_1y_2}{x_2^2+y_2^2}\,\mathfrak{i}$$

Applying the above relation to the given complex number quotient,

$$z = \frac{26 - 18i}{6 - 2i} \qquad \qquad z = \frac{192 - 56i}{40}$$
 13.1.12

$$z = 4.8 - 1.4i$$

4. Verifying the relations for arithmetic on conjugate complex numbers,

$$\overline{(z_1 + z_2)} = \overline{(-12 + 14i)} = -12 - 14i$$

$$\bar{z_1} + \bar{z_2} = (-11 - 10i) + (-1 - 4i) = -12 - 14i$$
 13.1.15

$$\overline{(z_1 - z_2)} = \overline{(-10 + 6i)} = -10 - 6i$$
 13.1.16

$$\bar{z_1} - \bar{z_2} = (-11 - 10i) - (-1 - 4i) = -10 - 6i$$
 13.1.17

$$\overline{(z_1 \cdot z_2)} = \overline{(-11+10i) \cdot (-1+4i)} = \overline{-29-54i} = -29+54i$$
 13.1.18

$$\bar{z_1} \cdot \bar{z_2} = (-11 + 10i) \cdot (-1 + 4i) = -29 - 54i$$
 13.1.19

For division, using the formula,

$$\overline{\left(\frac{z_1}{z_2}\right)} = \overline{\frac{54 + 34i}{9}} = \frac{54 - 34i}{9}$$
 13.1.20

$$\frac{\bar{z_1}}{\bar{z_2}} = \frac{-11 - 10i}{-1 - 4i} = \frac{54 - 34i}{9}$$
 13.1.21

5. Checking if the real part of z is zero, which makes it purely imaginary,

$$\bar{z} + z = (x+x) + (y-y)i = 2x + 0i$$
 13.1.22

$$\bar{z} + z = 0 \iff x = 0$$
 13.1.23

6. Product of two complex numbers is zero,

$$z_1 \cdot z_2 = (x_1 x_2 - y_1 y_2) + (x_1 y_2 + x_2 y_1) \,\mathbf{i} = 0 + 0\mathbf{i}$$
 13.1.24

$$x_1 x_2 = y_1 y_2 13.1.25$$

$$x_1 y_2 = -x_2 y_1 ag{3.1.26}$$

These two conditions are only satisfied if at least $x_1 = y_1 = 0$. Only one of the two being zero means that the product has either a nonzero real or imaginary part.

7. Commutative law,

$$z_1 + z_2 = (x_1 + x_2) + (y_1 + y_2) i$$
 13.1.27

$$= (x_2 + x_1) + (y_2 + y_1) i = z_2 + z_1$$
 13.1.28

$$z_1 \cdot z_2 = (x_1 x_2 - y_1 y_2) + (x_1 y_2 + x_2 y_1) i$$
 13.1.29

$$= (x_2x_1 - y_2y_1) + (x_2y_1 + x_1y_2) \mathbf{i} = \mathbf{z_2} \cdot \mathbf{z_1}$$
 13.1.30

Associative law,

$$(z_1 + z_2) + z_3 = (x_1 + x_2) + x_3 + (y_1 + y_2) i + y_3 i$$
 13.1.31

$$= x_1 + (x_2 + x_3) + y_1 \, \mathbf{i} + (y_2 + y_3) \, \mathbf{i} = z_1 + (z_2 + z_3)$$
 13.1.32

$$(z_1 \cdot z_2) \cdot z_3 = (x_1 x_2 - y_1 y_2) + (x_1 y_2 + x_2 y_1) i$$
13.1.33

$$= (x_1x_2x_3 - y_1y_2x_3 - x_1y_2y_3 - x_2y_1y_3)$$
13.1.34

$$+(x_1x_3y_2+x_2x_3y_1+x_1x_2y_3-y_1y_2y_3)i$$
 13.1.35

$$= x_1 (x_2 x_3 - y_2 y_3) - y_1 (x_2 y_3 + x_3 y_2)$$
13.1.36

$$+x_1(x_2y_3+x_3y_2)i+y_1(x_2x_3-y_2y_3)i=z_1\cdot(z_2\cdot z_3)$$
 13.1.37

Distributive law,

$$z_1(z_2 + z_3) = \left[x_1(x_2 + x_3) - y_1(y_2 + y_3) \right] + \left[x_1(y_2 + y_3) + y_1(x_2 + x_3) \right] i$$

$$= (x_1x_2 - y_1y_2) + (x_1y_2 + x_2y_1) i$$

$$+ (x_1x_3 - y_1y_3) + (x_1y_3 + x_3y_1) i$$

$$= z_1z_2 + z_1z_3$$
13.1.41

Additive null,

$$z + 0 = (x + 0) + (y + 0) i = (0 + x) + (0 + y) i = 0 + z = z$$
 13.1.42

Additive inverse,

$$z + 0 = z \qquad \Longrightarrow z + (-z) = 0 \tag{13.1.43}$$

Multiplicative identity,

$$z \cdot 1 = (x \cdot 1 - y_1 \cdot 0) + (x \cdot 0 + 1 \cdot y) \, \mathbf{i} = x + y \mathbf{i} = \mathbf{z}$$
 13.1.44

8. Performing the given computations,

$$z_1 z_2 = (-2 + 11i) \cdot (2 - i) = 7 + 24i$$
 13.1.45

$$\overline{(z_1 z_2)} = (-2 - 11i) \cdot (2 + i) = 7 - 24i$$
 13.1.46

9. Performing the given computations,

$$\operatorname{Re}(z_1^2) = \operatorname{Re}(-117 - 44i) = -117$$
 13.1.47

$$\left[\text{Re} (z_1) \right]^2 = (-2)^2 = 4$$
 13.1.48

10. Performing the given computations,

$$\operatorname{Re}\left(\frac{1}{z_2^2}\right) = \operatorname{Re}\left(\frac{1}{3-4i}\right) = \operatorname{Re}\left(\frac{3+4i}{25}\right) = \frac{3}{25}$$
 13.1.49

$$\frac{1}{\text{Re}(z_2^2)} = \frac{1}{\text{Re}(3-4i)} = \frac{1}{3}$$
 13.1.50

11. Performing the given computations,

$$\frac{(z_1 - z_2)^2}{16} = \frac{(-4 + 12i)^2}{16} = \frac{-128 - 96i}{16} = -8 - 6i$$
 13.1.51

$$\left(\frac{z_1}{4} - \frac{z_2}{4}\right)^2 = \left(\frac{-2}{4} + \frac{11}{4}i - \frac{2}{4} + \frac{1}{4}i\right)^2 = (-1 + 3i)^2 = -8 - 6i$$
13.1.52

12. Performing the given computations,

$$\frac{z_1}{z_2} = \frac{-2 + 11i}{2 - i} = \frac{(-2 + 11i) \cdot (2 + i)}{5} = -3 + 4i$$
 13.1.53

$$\frac{z_2}{z_1} = \frac{2 - i}{-2 + 11i} = \frac{(2 - i) \cdot (-2 - 11i)}{125} = \frac{-3 - 4i}{25}$$
 13.1.54

13. Performing the given computations,

$$(z_1 + z_2) \cdot (z_1 - z_2) = (10i) \cdot (-4 + 12i) = -120 - 40i$$
 13.1.55

$$z_1^2 - z_2^2 = (-117 - 44i) - (3 - 4i) = -120 - 40i$$
 13.1.56

14. Performing the given computations,

$$\overline{\left(\frac{z_1}{z_2}\right)} = \overline{-3 + 4i} = -3 - 4i$$

$$\frac{\bar{z_1}}{\bar{z_2}} = \frac{-2 - 11i}{2 + i} = \frac{(-2 - 11i) \cdot (2 - i)}{5} = -3 - 4i$$
 13.1.58

15. Performing the given computations,

$$4 \frac{z_1 + z_2}{z_1 - z_2} = 4 \frac{10i}{-4 + 12i} = \frac{120 - 40i}{40} = 3 - i$$
 13.1.59

16. Performing the given computations,

$$\frac{1}{z} = \frac{x - yi}{x^2 + y^2} \qquad \operatorname{Im}\left(\frac{1}{z}\right) = \frac{-y}{x^2 + y^2}$$
 13.1.60

$$\frac{1}{z^2} = \frac{1}{x^2 - y^2 + 2xyi}$$

$$\frac{1}{z^2} = \frac{x^2 - y^2 - 2xyi}{(x^2 - y^2)^2 + (2xy)^2}$$
13.1.61

$$\operatorname{Im}\left(\frac{1}{z^2}\right) = \frac{-2xy}{(x^2 - y^2)^2 + (2xy)^2}$$
 13.1.62

17. Performing the given computations,

$$z^2 = x^2 - y^2 + (2xy)i$$
 13.1.63

$$z^{4} = (x^{4} + y^{4} - 6x^{2}y^{2}) + 4xy(x^{2} - y^{2})i$$
13.1.64

$$Re (z^4) = x^4 + y^4 - 6x^2y^2$$
13.1.65

$$\left[\operatorname{Re}(z^2)\right]^2 = (x^2 - y^2)^2 = x^4 + y^4 - 2x^2y^2$$
13.1.66

$$\operatorname{Re}(z^4) - \left[\operatorname{Re}(z^2)\right]^2 = -4x^2y^2$$
 13.1.67

18. Performing the given computations,

$$(1+i)^2 = 2i$$
 $(1+i)^{16} = (2i)^8 = 256$ 13.1.68

$$Re (256 z^2) = 256 (x^2 - y^2)$$
13.1.69

19. Performing the given computations,

$$\frac{z}{\bar{z}} = \frac{x + yi}{x - yi} \qquad \qquad \frac{z}{\bar{z}} = \frac{(x^2 - y^2) + 2xyi}{x^2 + y^2}$$
 13.1.70

$$\operatorname{Re}\left(\frac{z}{\overline{z}}\right) = \frac{(x^2 - y^2)}{x^2 + y^2} \qquad \operatorname{Im}\left(\frac{z}{\overline{z}}\right) = \frac{2xy}{x^2 + y^2}$$
 13.1.71

20. Using the result from Problem 16 with $y \to -y$,

$$\operatorname{Im}\left(\frac{1}{\bar{z}^2}\right) = \frac{2xy}{(x^2 - y^2)^2 + (2xy)^2}$$
 13.1.72

13.2 Polar Form of Complex Numbers, Powers and Roots

1. Plotting on the complex plane,

2. Plotting on the complex plane,

$$z = -4 + 4i$$

3. Plotting on the complex plane,

 $-2 \diamondsuit$

4. Plotting on the complex plane,

5. Simplifying,

$$z = \frac{\sqrt{2} + i/3}{-\sqrt{8} - 2i/3} = \frac{-4 - 2/9}{8 + 4/9} = \frac{-38}{76} = \frac{-1}{2} + 0 i$$
 13.2.1

6. Simplifying,

$$z = \frac{\sqrt{3} - 10i}{-0.5\sqrt{3} + 5i} = \frac{-51.5}{103/4} = -2 + 0 i$$
 13.2.2

7. Plotting on the complex plane, with $\theta = \arctan(\pi/2)$ and $|z| = \sqrt{1 + \pi^2/4}$

$$z=1+\frac{\pi}{2}$$
 i

8. Simplifying,

$$z = \frac{-4 + 19i}{2 + 5i} = \frac{87 + 58i}{29} = 3 + 2i$$
 13.2.3

$$\theta = \arctan(2/3) \tag{13.2.4}$$

9. Plotting on the complex plane,

 ${f 10.}$ Plotting on the complex plane, with

$$Arg(z_1) = \pi$$
 $Arg(z_2) = -\pi + \arctan(1/5)$ 13.2.5

$$Arg(z_3) = \pi + arctan(-1/5)$$
 13.2.6

11. Plotting on the complex plane, with

$$Arg(z_1) = \arctan(4/3)$$
 $Arg(z_2) = \arctan(-4/3)$ 13.2.7

12. Plotting on the complex plane, with

13. Simplifying,

$$w = (1+i)$$
 $w^4 = (1+i)^4 = [(1+i)^2]^2 = -4$ 13.2.8

$$z = w^{20}$$
 $z = (-4)^5 = -1024 + 0i$ 13.2.9

14. Plotting on the complex plane, with

$$Arg(z_1) = \pi + \arctan(-1/10)$$
 $Arg(z_2) = -\pi + \arctan(1/10)$ 13.2.10

15. Using the polar representation, with $r=3,\,\theta=\pi/2,$

16. Using the polar representation, with r = 6, $\theta = \pi/3$,

17. Using the polar representation, with $r = \sqrt{8}$, $\theta = \pi/4$,

18. Using the polar representation, with $r = \sqrt{50}$, $\theta = 3\pi/4$,

19. Using numpy, to find the zeros of -1, for the illustrative case n=10 as illustrative examples. For a general complex number $z \neq -1$, such that

$$w = z^{1/n} 13.2.11$$

The set of all roots of z is now $\{\omega_k \cdot w\}$. Since the roots have equal magnitude and are evenly oriented around the full 2π angle, this is readily visible in a plot.

- 20. Square roots of complex numbers,
 - (a) To find the *n* roots of a complex number when n = 2,

$$w = \sqrt{z}$$
 $z = r \left[\cos \theta + i \sin \theta \right]$ 13.2.12

$$|w_k| = |z|^{1/2} = \sqrt{r} ag{3.2.13}$$

$$\arg\left(w_{k}\right) = \frac{\theta + 2k\pi}{2} \qquad \qquad = \frac{\theta}{2} + k\pi \qquad \qquad 13.2.14$$

$$w_1 = \sqrt{r} \left[\cos(\theta/2) + \mathfrak{i} \sin(\theta/2) \right]$$
 13.2.15

$$w_2 = \sqrt{r} \left[\cos(\pi + \theta/2) + i \sin(\pi + \theta/2) \right]$$
 13.2.16

Using the properties of trigonometric functions, $w_2 = -w_1$

(b) Using the half angle formulas,

$$\cos^2(\theta/2) = \frac{1 + \cos \theta}{2} \qquad \qquad \sin^2(\theta/2) = \frac{1 - \cos \theta}{2}$$
 13.2.17

$$r\cos(\theta/2) = \sqrt{r} \cdot \sqrt{\frac{r + r\cos\theta}{2}}$$
 $r\sin(\theta/2) = \sqrt{r} \cdot \sqrt{\frac{r - r\cos\theta}{2}}$ 13.2.18

Now, using the polar representation of \sqrt{z} ,

$$w_1 = \sqrt{z} = \sqrt{r} \left[\cos(\theta/2) + i \sin(\theta/2) \right]$$
 13.2.19

$$= \sqrt{\frac{|z| + x}{2}} + i (\operatorname{sgn} y) \sqrt{\frac{|z| - x}{2}}$$
 13.2.20

$$w_2 = -w_1 13.2.21$$

The signum comes from the fact that the sign of y determines whether the positive or negative root of $\sin^2 \theta$ will be taken in the second step.

(c) Using the new method,

$$z_1 = -14i$$
 $\sqrt{z_1} = \sqrt{\frac{14+0}{2}} + i(-1) \cdot \sqrt{\frac{14-0}{2}}$ 13.2.22

$$\sqrt{z_1} = \sqrt{7} - \sqrt{7} i$$
 13.2.23

$$z_2 = -9 - 40i$$
 $\sqrt{z_2} = \sqrt{\frac{41 - 9}{2}} + i(-1) \cdot \sqrt{\frac{41 + 9}{2}}$ 13.2.24

$$\sqrt{z_2} = 4 - 5 i$$
 13.2.25

$$z_3 = 1 + \sqrt{48}i$$
 $\sqrt{z_3} = \sqrt{\frac{7+1}{2}} + i(1) \cdot \sqrt{\frac{7-1}{2}}$ 13.2.26

$$\sqrt{z_3} = 2 + \sqrt{3} \,i$$

Using the old method,

$$z_1 = -14i$$
 $\sqrt{z_1} = \sqrt{14} \left[\cos(-\pi/4) + i \sin(-\pi/4) \right]$ 13.2.28

$$\sqrt{z_1} = \sqrt{7} - \sqrt{7} i$$
 13.2.29

For z_2 whose argument is not readily apparent,

$$z_2 = -9 - 40i$$
 $\tan \theta = 40/9$ 13.2.30

$$\frac{40}{9} = \frac{2\tan(\theta/2)}{1 - \tan^2(\theta/2)} \qquad \tan(\theta/2) = \frac{-5}{4}$$
 13.2.31

$$\sqrt{z_2} = \sqrt{41} \left[\frac{4}{\sqrt{41}} - i \frac{5}{\sqrt{41}} \right] \qquad \sqrt{z_2} = 4 - 5 i \qquad 13.2.32$$

For z_3 whose argument is not readily apparent,

$$z_3 = 1 + \sqrt{48}i \qquad \tan \theta = \sqrt{48}$$

$$\sqrt{48} = \frac{2\tan(\theta/2)}{1 - \tan^2(\theta/2)} \qquad \tan(\theta/2) = \frac{\sqrt{3}}{2}$$
 13.2.34

$$\sqrt{z_3} = \sqrt{7} \left[\frac{2}{\sqrt{7}} + i \frac{\sqrt{3}}{\sqrt{7}} \right]$$
 $\sqrt{z_3} = 2 + \sqrt{3} i$ 13.2.35

The newer method is clearly better.

- (d) TBC. Both methods are coded in sympy.
- **21.** Finding the roots of the complex number,

$$w_1 = (1+i)^{1/3} 13.2.36$$

$$w_1 = 2^{1/6} \left[\cos(\pi/12) + i \sin(\pi/12) \right]$$
 13.2.37

$$w_2 = \omega \cdot w_1 = 2^{1/6} \left[\cos(5\pi/12) + i \sin(5\pi/12) \right]$$
 13.2.38

$$w_3 = \omega^2 \cdot w_1 = 2^{1/6} \left[\cos(9\pi/12) + i \sin(9\pi/12) \right]$$
 13.2.39

22. Finding the roots of the complex number,

$$w_1 = (3+4i)^{1/3} \tan(\theta) = \frac{4}{3} 13.2.40$$

$$w_1 = 5^{1/6} \left[\frac{2}{\sqrt{5}} + i \frac{1}{\sqrt{5}} \right]$$
 $\tan(\theta/2) = \frac{1}{2}$ 13.2.41

23. Finding the roots of the complex number,

$$w_1 = (216)^{1/3}$$
 $\tan(\theta) = 0$ 13.2.42

$$w_1 = 6 + 0 i$$
 $\tan(\theta/2) = 0$ 13.2.43

24. Finding the roots of the complex number,

$$w_1 = (-4)^{1/4} \tan(\theta) = 0 13.2.44$$

$$w_1 = \sqrt{2} \left[\cos(\pi/4) + i \sin(\pi/4) \right]$$
 $w_1 = 1 + i$ 13.2.45

25. Finding the roots of the complex number,

$$w_1 = (\mathfrak{i})^{1/4}$$
 $\tan(\theta) = \frac{\pi}{2}$ 13.2.46

$$w_1 = \cos(\pi/8) + i \sin(\pi/8)$$
 $w_1 = 1 + i$ 13.2.47

26. Finding the roots of the complex number,

$$w_1 = (1)^{1/8} \tan(\theta) = 0 13.2.48$$

$$w_1 = \cos(\pi/4) + i \sin(\pi/4)$$
 $w_1 = \frac{1}{\sqrt{2}} [1 + i]$ 13.2.49

27. Finding the roots of the complex number,

$$w_1 = (-1)^{1/5} \theta = \pi 13.2.50$$

$$w_1 = \cos(\pi/5) + i \sin(\pi/5)$$
 13.2.51

28. Solving the equation,

$$0 = z^2 - (6 - 2i) z + (17 - 6i)$$
 $D = 32 - 24i - 68 + 24i = -36$ 13.2.52

$$\sqrt{D} = \pm 6\mathfrak{i} \qquad \qquad z = \frac{6 - 2\mathfrak{i} \pm 6\mathfrak{i}}{2}$$
 13.2.53

$$z = 3 - 4i, 3 + 2i$$
 13.2.54

29. Solving the equation,

$$0 = z^{2} + z + (1 - i)$$

$$D = 1 - 4 + 4i = -3 + 4i$$
13.2.55

$$\sqrt{D} = 1 + 2i, -1 - 2i$$
 $z = i, -1 - i$ 13.2.56

30. Solving the equation,

$$0 = z^4 + 324 D = -1296 13.2.57$$

$$\sqrt{D}=\pm 36\,\mathfrak{i}$$
 $z^2=\pm 18\,\mathfrak{i}$ 13.2.58

$$(36i)^{1/2} = 3 [1+i], \ 3 [-1-i]$$
 $(-36i)^{1/2} = 3 [1-i], \ 3 [-1+i]$ 13.2.59

$$z^4 + 324 = (z^2 - 6 + 18) \cdot (z^2 + 6 + 18)$$
13.2.60

The last step uses pairs of roots which are complex conjugates, which is a necessary condition for quadratic polynomials with real coefficients.

31. Solving the equation, with $w=z^2$

$$0 = w^2 - 6i w + 16$$
 $D = -36 - 64 = -100$ 13.2.61

$$\sqrt{D} = \pm 10 i$$
 $w = 3i \pm 5i = -2i, 8i$ 13.2.62

$$\sqrt{w_1} = \sqrt{2} [1 - i], \sqrt{2} [-1 + i]$$
 $\sqrt{w_2} = 2 [1 + i], 2 [-1 - i]$
13.2.63

32. Verifying the triangle inequality,

$$|z_1| = |3 + \mathfrak{i}| = \sqrt{10}$$
 $|z_2| = |-2 + 4\mathfrak{i}| = \sqrt{20}$ 13.2.64

$$z_1 + z_2 = 1 + 5i$$
 $|z_1 + z_2| = \sqrt{26}$ 13.2.65

$$|z_1 + z_2| \le |z_1| + |z_2| \tag{13.2.66}$$

33. Proving the triangle inequality,

$$|z_1 + z_2|^2 = (z_1 + z_2)(\bar{z_1} + \bar{z_2}) = z_1\bar{z_1} + z_2\bar{z_2} + z_1\bar{z_2} + \bar{z_1}z_2$$
 13.2.67

$$= |z_1|^2 + |z_2|^2 + 2 \cdot \text{Re}(z_1 \bar{z_2})$$
13.2.68

$$\leq |z_1|^2 + |z_2|^2 + 2|z_1|\bar{z_2}|$$
 13.2.69

$$\leq |z_1|^2 + |z_2|^2 + 2|z_1||z_2|$$
 13.2.70

Taking the positive square root of both sides proves the inequality. The real part of a complex number is not larger than its modulus. The modulus of a complex number is equal to its conjugate.

34. Starting with the properties of sine and cosine functions,

Re
$$z=x=|z|\cos\theta$$
 Im $z=y=|z|\sin\theta$ 13.2.71

$$\cos \theta \le 1$$
 $\implies x \le |z|$ 13.2.72

$$\sin \theta \le 1$$
 $\implies y \le |z|$ 13.2.73

35. The name comes from the fact that the left side is each of the diagonals of a parallellogram and the right side is each of its adjacent sides.

Using the fact that $|w|^2 = w\bar{w}$,

$$|z_1 + z_2|^2 = z_1\bar{z_1} + z_2\bar{z_2} + z_1\bar{z_2} + \bar{z_1}z_2$$
 13.2.74

$$= |z_1|^2 + |z_2|^2 + 2 \operatorname{Re}(z_1 \bar{z_2})$$
 13.2.75

$$|z_1 - z_2|^2 = z_1\bar{z_1} + z_2\bar{z_2} - z_1\bar{z_2} - \bar{z_1}z_2$$
 13.2.76

$$= |z_1|^2 + |z_2|^2 - 2 \operatorname{Re}(z_1 \bar{z_2})$$
 13.2.77

$$|z_1 + z_2|^2 + |z_1 - z_2|^2 = 2|z_1|^2 + 2|z_2|^2$$
 13.2.78

13.3 Derivative, Analytic Function

1. Plotting the region in the complex plane, with center of circle $z_0 = 1 - 5i$ and radius of circle $\rho = 1.5$

2. Plotting the region in the complex plane, with center of circle $z_0 = 0$ and radius of circle 1

3. Plotting the region in the complex plane, with center of circle $z_0 = 4 - 2i$ and radius of circle in the range $(\pi, 3\pi)$

4. Plotting the region in the complex plane,

5. Plotting the region in the complex plane,

6. Plotting the region in the complex plane,

Vertical band of exclusion

7. Plotting the region in the complex plane,

Off center horizontal half-plane

8. The distance of z from A = -i is not less than its distance from B = i. The perpendicular bisector of the line joining these two points happens to be the real axis.

The region is simply Im $(z) \ge 0$

Vertical half-plane

- **9.** Refer notes. Use Problems 1 8 as examples.
- **10.** Finding the real and imaginary parts of the function.

$$f(z) = u(x, y) + i v(x, y)$$
 $f(z) = 5z^2 - 12z + (3 + 2i)$ 13.3.2

$$u = 5(x^2 - y^2) - 12x + 3$$
 $v = 10xy - 12y + 2$ 13.3.3

$$P = 4 - 3 i$$
 $f(P) = 10 - 82 i$ 13.3.4

11. Finding the real and imaginary parts of the function.

$$f(z) = u(x, y) + i v(x, y)$$
 $f(z) = \frac{1}{1-z}$ 13.3.5

$$f(z) = \frac{1}{(1-x)-y i} \qquad f(z) = \frac{(1-x)+y i}{(1-x)^2+y^2}$$
 13.3.6

$$u = \frac{1-x}{(1-x)^2 + y^2} \qquad v = \frac{y}{(1-x)^2 + y^2}$$
 13.3.7

$$P = 1 - i$$
 $f(P) = 0 - 1 i$ 13.3.8

12. Finding the real and imaginary parts of the function.

$$f(z) = u(x, y) + v(x, y)$$
 i
$$f(z) = \frac{z - 2}{z + 2}$$
 13.3.9

$$f(z) = \frac{(x-2) + y i}{(x+2) + y i}$$

$$f(z) = \frac{(x^2 + y^2 - 4) + (4y) i}{(x+2)^2 + y^2}$$
 13.3.10

$$u = \frac{x^2 + y^2 - 4}{(x+2)^2 + y^2} \qquad v = \frac{4y}{(x+2)^2 + y^2}$$
 13.3.11

$$P = 8i$$
 $f(P) = 15/17 + 8/17 i$ 13.3.12

${f 13.}$ Plotting the graphs separately to avoid clutter.

(a) Finding the real and imaginary parts of the function.

$$f(z) = u(x, y) + v(x, y)$$
 i
$$f(z) = z^2 = (x^2 - y^2) + (2xy)$$
 i 13.3.13

(b) Finding the real and imaginary parts of the function.

$$f(z) = u(x, y) + v(x, y)$$
 i
$$f(z) = \frac{1}{z} = \frac{x - i y}{x^2 + y^2}$$
 13.3.14

(c) Finding the real and imaginary parts of the function.

$$f(z) = u(x, y) + v(x, y) i$$
 13.3.15

$$f(z) = z^4 = (x^4 + y^4 - 6x^2y^2) + (4xy)(x^2 - y^2) i$$
 13.3.16

14. Testing the continuity at the origin,

$$f(z) = \frac{\text{Re }(z^2)}{|z|} = \frac{x^2 - y^2}{\sqrt{x^2 + y^2}}$$

$$y = mx$$

$$f(z) = \frac{1 - m^2}{\sqrt{1 + m^2}} x$$

$$\lim_{x \to 0} f(z) = 0 \quad \forall \quad m \in \mathbb{R}$$
13.3.18

Thus, the function is continuous.

15. Testing the continuity at the origin,

$$f(z) = |z|^2 \cdot \text{Im}(1/z)$$
 $f(z) = -y$ 13.3.19

$$\lim_{(x,y)\to(0,0)} f(z) = 0 \quad \forall \quad m \in \mathcal{R}$$
 13.3.20

Thus, the function is continuous.

16. Testing the continuity at the origin,

$$f(z) = \frac{\text{Im}(z^2)}{|z|^2} \qquad f(z) = \frac{2xy}{x^2 + y^2}$$
 13.3.21

$$y = mx \qquad \Longrightarrow \qquad f(z) = \frac{2m}{(1+m^2)}$$
 13.3.22

$$\lim_{(x,y)\to(0,0)} f(z) = \frac{2m}{1+m^2}$$
 13.3.23

Thus, the limit at the origin depends on the direction of approach, making f(z) discontinuous.

17. Testing the continuity at the origin,

$$f(z) = \frac{\text{Re}(z)}{1 - |z|} \qquad f(z) = \frac{x}{1 - \sqrt{x^2 + y^2}}$$
 13.3.24

$$\lim_{(x,y)\to(0,0)} f(z) = \frac{\to 0}{\to 1} = 0$$
 13.3.25

Thus, the function is continuous.

18. To find the derivative of the complex function,

$$f(z) = \frac{z - i}{z + i} \qquad f'(z) = \frac{(z + i) - (z - i)}{(z + i)^2}$$
 13.3.26

$$f'(z) = \frac{2\mathfrak{i}}{(z+\mathfrak{i})^2} \qquad \qquad f'(\mathfrak{i}) = \frac{-\mathfrak{i}}{2}$$
 13.3.27

19. To find the derivative of the complex function,

$$f(z) = (z - 4i)^8$$
 $f'(z) = 8(z - 4i)^7$ 13.3.28

$$f'(3+4i) = 17496 13.3.29$$

20. To find the derivative of the complex function,

$$f(z) = \frac{1.5z + 2i}{3i z - 4} \qquad f'(z) = \frac{4.5i z - 6 - 4.5i z + 6}{(3i z - 4)^2} = 0$$
 13.3.30

This is because f(z) simplifies to (1/2i) and is a constant.

21. To find the derivative of the complex function, Typo in question

$$f(z) = i (1-z)^{-n}$$
 $f'(z) = ni (1-z)^{-n-1}$ 13.3.31

$$P = 0 f'(P) = ni 13.3.32$$

22. To find the derivative of the complex function,

$$f(z) = (iz^3 + 3z^2)^3 f'(z) = 3 (iz^3 + 3z^2)^2 \cdot (3i z)(z - 2i) 13.3.33$$

$$P = 2i f'(P) = 0 13.3.34$$

23. To find the derivative of the complex function,

$$f(z) = \frac{z^3}{(z+\mathfrak{i})^3} \qquad f'(z) = \frac{3z^2\,\mathfrak{i}}{(z+\mathfrak{i})^4}$$
 13.3.35

$$P = \mathfrak{i}$$
 $f'(P) = \frac{-3}{16} \, \mathfrak{i}$ 13.3.36

- 24. Team Project
 - (a) Using the linearity of the limit operator,

$$f(z) = \operatorname{Re} f(z) + \mathfrak{i} \operatorname{Im} f(z) \qquad \lim_{z \to z_0} f(z) = l = \operatorname{Re} (l) + \mathfrak{i} \operatorname{Im} (l) \qquad 13.3.37$$

$$\lim_{z\to z_0} \operatorname{Re} f(z) = \operatorname{Re} (l) \qquad \qquad \lim_{z\to z_0} \operatorname{Im} f(z) = \operatorname{Im} (l)$$
 13.3.38

13.3.39

(b) Suppose the limit is not unique. Let the two possible limits be A, B at $z=z_0$

$$|z - z_0| < \delta_1 \qquad \Longrightarrow |f(z) - A| < \epsilon/2 \qquad 13.3.40$$

$$|z - z_0| < \delta_2$$
 $\Longrightarrow |f(z) - B| < \epsilon/2$ 13.3.41

for some fixed value of ϵ .

Let δ be the smaller among $\delta_1 > 0$, $\delta_2 > 0$.

$$|A - B| = |A - f(z) + f(z) - B|$$
13.3.42

$$\leq |A - f(z)| + |f(z) - B|$$
 13.3.43

$$\leq \epsilon$$
 13.3.44

the distance between the two limits |A - B| is less than ϵ for any choice of positive real epsilon, however small.

This means that |A - B| = 0 and the limit is unique, if it exists.

(c) Given a infinite series of complex numbers $\{z_i\}$ such that

$$\lim_{n \to \infty} z_n = a \qquad \qquad \lim_{z \to a} f(z) = f(a)$$
 13.3.45

Consider some sufficiently large n such that,

$$|z_n - a| < \delta \qquad \qquad \forall \quad n > N$$
 13.3.46

$$\implies |f(z_n) - f(a)| < \epsilon \implies \lim_{n \to \infty} f(z_n) = f(a)$$
 13.3.47

(d) If f(z) is differentiable at $z=z_0$ then this limit exists.

$$f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$
13.3.48

$$\lim_{z \to z_0} [f(z) - f(z_0)] = \lim_{z \to z_0} (z - z_0) \cdot f'(z_0) = 0$$
13.3.49

$$\implies \lim_{z \to z_0} f(z) = f(z_0)$$
 13.3.50

This uses the linearity of the limit operator. The last expression implies that f(z) is continuous at z_0 .

(e) Checking the differentiability,

$$\lim_{z \to z_0} \frac{x - x_0}{z - z_0} = L \tag{13.3.51}$$

Consider two approaches, one vertical $z_1 = x_0 + \mathfrak{i} y$, and the other horizontal $z_2 = x + \mathfrak{i} y_0$

$$L_1 = \lim_{z_1 \to z_0} \frac{x - x_0}{z - z_0} = \lim_{y \to y_0} \frac{x_0 - x_0}{y - y_0} = 0$$
13.3.52

$$L_2 = \lim_{z_2 \to z_0} \frac{x - x_0}{z - z_0} = \lim_{x \to x_0} \frac{x - x_0}{x - x_0} = 1$$
13.3.53

Since the two limits at the same point z_0 are different, the function is not differentiable at z_0 , regardless of where in the complex plane z_0 is located.

Another such function is g(z) = Im (z)

(f) Checking the differentiability,

$$\lim_{\Delta z \to 0} \frac{|z_0 + \Delta z|^2 - |z_0|^2}{\Delta z} = \lim_{\Delta z \to 0} \frac{\Delta x^2 + \Delta y^2 + 2x_0 \Delta x + 2y_0 \Delta y}{\Delta x + i \Delta y}$$
13.3.54

Consider two approaches, one vertical $z_1 = 0 + i \Delta y$, and the other horizontal $z_2 = \Delta x + 0 i$

$$L_1 = \lim_{\Delta y \to 0} \frac{\Delta y (\Delta y + 2y_0)}{\mathfrak{i} \Delta y} = \frac{2y_0}{\mathfrak{i}}$$
 13.3.55

$$L_2 = \lim_{\Delta x \to 0} \frac{\Delta x (\Delta x + 2x_0)}{\Delta x} = 2x_0$$
 13.3.56

Since the two limits at the same point z_0 are different, the function is not differentiable at z_0 , regardless of where in the complex plane z_0 is located except the origin.

Even when $x_0 = y_0 = 0$, the function is not differentiable everywhere in the neighbourhood of z_0 . Hence, the function is nowhere analytic.

25. Refer notes. TBC.

13.4 Cauchy-Riemann Equations, Laplace's Equation

1. Deriving the Cauchy-Riemann equations in polar form,

$$f(z) = u(r,\theta) + i v(r,\theta) \qquad (x,y) = (r\cos\theta, r\sin\theta)$$
 13.4.1

$$u_x = v_y u_y = -v_x 13.4.2$$

Using partial differentiation,

$$u_r = u_x x_r + u_y y_r \qquad \qquad u_\theta = u_x x_\theta + u_y y_\theta$$
 13.4.3

$$u_r = u_x \cos \theta + u_y \sin \theta$$
 $u_\theta = -u_x r \sin \theta + u_y r \cos \theta$ 13.4.4

$$v_r = v_x \cos \theta + v_y \sin \theta$$

$$v_\theta = -v_x r \sin \theta + v_y r \cos \theta$$
 13.4.5

13.4.6

Equating after dividing by r,

$$u_r = u_x \cos \theta + u_y \sin \theta = \frac{v_y r \cos \theta - v_x r \sin \theta}{r} = \frac{v_\theta}{r}$$
 13.4.7

$$v_r = v_x \cos \theta + v_y \sin \theta = \frac{-u_y \, r \cos \theta + u_x \, r \sin \theta}{r} = -\frac{u_\theta}{r}$$
 13.4.8

2. The function is not analytic.

$$f(z) = i z\bar{z} = 0 + i (x^2 + y^2)$$
 13.4.9

$$u_x = 0$$
 13.4.10

$$v_x = 2x v_y = 2y 13.4.11$$

3. The function is analytic.

$$f(z) = e^{-2x} \left[\cos(2y) - i \sin(2y) \right]$$
13.4.12

$$u_x = -2e^{-2x}\cos(2y) u_y = -2e^{-2x}\sin(2y) 13.4.13$$

$$v_x = 2e^{-2x}\sin(2y)$$
 $v_y = -2e^{-2x}\cos(2y)$ 13.4.14

4. The function is **not** analytic.

$$f(z) = e^x \left[\cos(y) - i \sin(y) \right]$$
13.4.15

$$u_x = e^x \cos(y) \qquad \qquad u_y = -e^x \sin(y) \qquad \qquad 13.4.16$$

$$v_x = -e^x \sin(y) \qquad \qquad v_y = -e^x \cos(y) \qquad \qquad 13.4.17$$

5. The function is **not** analytic.

$$f(z) = \text{Re}(z^2) - i \text{ Im}(z^2)$$
 $f(z) = x^2 - y^2 - (2xy)i$ 13.4.18

$$u_x = 2x u_y = -2y 13.4.19$$

$$v_x = -2y v_y = -2x 13.4.20$$

6. The function is analytic.

$$f(z) = \frac{1}{z - z^5} = \frac{1}{z(z+1)(z-1)(z+\mathfrak{i})(z-\mathfrak{i})}$$
 13.4.21

$$= -\frac{1}{z} + \frac{0.25}{z+1} + \frac{0.25}{z-1} + \frac{0.25}{z+\mathfrak{i}} + \frac{0.25}{z-\mathfrak{i}}$$
 13.4.22

$$= -\frac{x - i y}{x^2 + y^2} + \frac{1}{4} \left[\frac{x + 1 - i y}{(x + 1)^2 + y^2} + \frac{x - 1 - i y}{(x - 1)^2 + y^2} \right]$$
 13.4.23

$$+\frac{x-i(y+1)}{x^2+(y+1)^2}+\frac{x-i(y-1)}{x^2+(y-1)^2}$$

Finding the first partial derivatives,

$$u_x = \frac{x^2 - y^2}{[x^2 + y^2]^2} + \frac{1}{4} \left[\frac{y^2 - (x+1)^2}{[(x+1)^2 + y^2]^2} + \frac{y^2 - (x-1)^2}{[(x-1)^2 + y^2]^2} \right]$$
 13.4.25

$$+\frac{(y+1)^2-x^2}{[x^2+(y+1)^2]^2}+\frac{(y-1)^2-x^2}{[x^2+(y-1)^2]^2}$$

$$v_x = \frac{-2xy}{[x^2 + y^2]^2} + \frac{1}{4} \left[\frac{2y(x+1)}{[(x+1)^2 + y^2]^2} + \frac{2y(x-1)}{[(x-1)^2 + y^2]^2} \right]$$
 13.4.27

$$+\frac{2x(y+1)}{[x^2+(y+1)^2]^2} + \frac{2x(y-1)}{[x^2+(y-1)^2]^2}$$
13.4.28

Finding the first partial derivatives,

$$u_y = \frac{2xy}{[x^2 + y^2]^2} - \frac{1}{4} \left[\frac{2y(x+1)}{[(x+1)^2 + y^2]^2} + \frac{2y(x-1)}{[(x-1)^2 + y^2]^2} \right]$$
 13.4.29

$$+\frac{2x(y+1)}{[x^2+(y+1)^2]^2} + \frac{2x(y-1)}{[x^2+(y-1)^2]^2}$$
13.4.30

$$v_y = \frac{x^2 - y^2}{[x^2 + y^2]^2} + \frac{1}{4} \left[\frac{y^2 - (x+1)^2}{[(x+1)^2 + y^2]^2} + \frac{y^2 - (x-1)^2}{[(x-1)^2 + y^2]^2} \right]$$
 13.4.31

$$+\frac{(y+1)^2-x^2}{[x^2+(y+1)^2]^2}+\frac{(y-1)^2-x^2}{[x^2+(y-1)^2]^2}$$

7. The function is analytic.

$$f(z) = \frac{i}{z^8} \qquad f(z) = e^{i \pi/2} \cdot r^{-8} e^{-i 8\theta}$$
 13.4.33

$$u = r^{-8}\sin(8\theta) v = r^{-8}\cos(8\theta) 13.4.34$$

$$u_r = -8r^{-9}\sin(8\theta)$$
 $u_\theta = 8r^{-8}\cos(8\theta)$ 13.4.35

$$v_r = -8r^{-9}\cos(8\theta)$$
 $v_\theta = -8r^{-8}\sin(8\theta)$ 13.4.36

$$u_r = \frac{1}{r} v_\theta \qquad \qquad v_r = \frac{-1}{r} u_\theta \qquad \qquad 13.4.37$$

8. The function is **not** analytic.

$$f(z) = \operatorname{Arg}(2\pi z) \qquad \qquad f(z) = \operatorname{Arg}\left(2\pi r \ e^{\mathrm{i} \ \theta}\right) = \theta \qquad \qquad \text{13.4.38}$$

$$u_r = 0 u_\theta = 1 13.4.39$$

$$v_r = 0 v_\theta = 0 13.4.40$$

$$u_r = -\frac{1}{r} v_\theta \qquad v_r = -\frac{1}{r} u_\theta \qquad 13.4.41$$

9. The function is analytic, barring the points where the denominator is zero.

$$f(z) = \frac{3\pi^2}{z^3 + 4\pi^2 z} = \frac{3\pi^2}{r^3 e^{i 3\theta} + 4\pi^2 r e^{i \theta}}$$
 13.4.42

$$\overline{f(z)} = \frac{3\pi^2}{r^3 e^{-i 3\theta} + 4\pi^2 r e^{-i \theta}}$$
 13.4.43

$$f_r = -3\pi^2 \left[\frac{3r^2 e^{i 3\theta} + 4\pi^2 e^{i \theta}}{(r^3 e^{i 3\theta} + 4\pi^2 r e^{i \theta})^2} \right]$$
 13.4.44

$$\overline{f}_r = -3\pi^2 \left[\frac{3r^2 e^{-i 3\theta} + 4\pi^2 e^{-i \theta}}{(r^3 e^{-i 3\theta} + 4\pi^2 r e^{-i \theta})^2} \right]$$
 13.4.45

$$f_{\theta} = -3\pi^2 i \left[\frac{3r^3 e^{i 3\theta} + 4\pi^2 r e^{i \theta}}{(r^3 e^{i 3\theta} + 4\pi^2 r e^{i \theta})^2} \right]$$
 13.4.46

$$\overline{f}_{\theta} = 3\pi^2 i \left[\frac{3r^3 e^{-i 3\theta} + 4\pi^2 r e^{-i \theta}}{(r^3 e^{-i 3\theta} + 4\pi^2 r e^{-i \theta})^2} \right]$$
 13.4.47

$$u_r = \frac{f_r + \bar{f}_r}{2} = \frac{1}{2} \left[\frac{f_\theta - \bar{f}_\theta}{ri} \right] = \frac{v_\theta}{r}$$
 13.4.48

$$v_r = \frac{f_r - \bar{f}_r}{2i} = \frac{1}{2i} \left[\frac{f_\theta + \bar{f}_\theta}{ri} \right] = -\frac{u_\theta}{r}$$
 13.4.49

This is a more elegant method of solving Problem 6.

10. The function is analytic.

$$f(z) = \ln|z| + \mathfrak{i} \operatorname{Arg}(z)$$
 $f(z) = \ln(r) + \mathfrak{i} \theta$ 13.4.50

$$u_r = \frac{1}{r} \qquad \qquad u_\theta = 0 \tag{13.4.51}$$

$$v_r = 0 v_\theta = 1 13.4.52$$

$$u_x = v_y u_y = -v_x 13.4.53$$

11. The function is analytic.

$$f(z) = \cos x \cosh y - \mathfrak{i} \sin x \sinh y$$
 13.4.54
 $u_x = -\sin x \cosh y$ $u_y = \cos x \sinh y$ 13.4.55
 $v_x = -\cos x \sinh y$ $v_y = -\sin x \cosh y$ 13.4.56
 $u_x = v_y$ $u_y = -v_x$ 13.4.57

12. The function is not harmonic,

$$u(x, y) = x^2 + y^2$$
 13.4.58
$$u_{xx} = 2$$

$$u_{yy} = 2$$
 13.4.59
$$u_{xx} + u_{yy} \neq 0$$
 13.4.60

13. The function is harmonic,

$$u(x, y) = xy$$
 13.4.61 $u_{xx} = 0$ $u_{yy} = 0$ 13.4.62 $u_{xx} + u_{yy} = 0$ 13.4.63

Using the Cauchy Riemann equations,

$$v_y = u_x = y$$
 $v_x = -u_y = -x$ 13.4.64
$$v = \frac{y^2}{2} + f(x) + c_1 \qquad v = -\frac{x^2}{2} + g(y) + c_2 \qquad 13.4.65$$

$$v(x, y) = \frac{y^2 - x^2}{2} \qquad 13.4.66$$

The analytic function is, (with c real)

$$f(z) = \frac{1}{2} [2xy + i (y^2 - x^2) + c]$$

$$= \frac{-i (z^2 + c)}{2}$$
13.4.68

14. The function is harmonic,

$$v(x,y) = xy ag{13.4.69}$$

$$v_{xx} = 0$$
 $v_{yy} = 0$ 13.4.70

$$v_{xx} + v_{yy} = 0 ag{3.4.71}$$

Using the Cauchy Riemann equations,

$$u_y = v_x = y$$
 $u_x = -v_y = -x$ 13.4.72

$$u = \frac{y^2}{2} + f(x) + c_1$$
 $u = -\frac{x^2}{2} + g(y) + c_2$ 13.4.73

$$u(x,y) = \frac{y^2 - x^2}{2}$$
 13.4.74

The analytic function is, (with c real)

$$f(z) = \frac{1}{2} \left[y^2 - x^2 + i (2xy) + c \right]$$
 13.4.75

$$=\frac{(z^2+c)}{2}$$
 13.4.76

15. The function is harmonic,

$$u(x,y) = \frac{\cos \theta}{r}$$
 13.4.77

$$u_r = -\frac{\cos \theta}{r^2} \qquad \qquad u_\theta = -\frac{\sin \theta}{r} \qquad \qquad 13.4.78$$

$$u_{rr} = \frac{2\cos\theta}{r^3} \qquad u_{\theta\theta} = -\frac{\cos\theta}{r}$$
 13.4.79

$$u_{rr} + \frac{1}{r} u_r + \frac{1}{r^2} u_{\theta\theta} = \frac{\cos \theta}{r^3} (2 - 1 - 1)$$
 = 0 13.4.80

Using the Cauchy Riemann equations,

$$v_r = \frac{-1}{r} u_\theta = \frac{\sin \theta}{r^2} \qquad v_\theta = r u_r = -\frac{\cos \theta}{r}$$
 13.4.81

$$v = -\frac{\sin \theta}{r} + f(\theta) \qquad \qquad v = -\frac{\sin \theta}{r} + g(r)$$
 13.4.82

$$v(x,y) = -\frac{\sin\theta}{r}$$
 13.4.83

The analytic function is, (with c real)

$$f(z) = \frac{\bar{z}}{|z|^2} + c = \frac{1}{z} + c$$
 13.4.84

16. The function is harmonic,

$$u(x, y) = \sin x \cosh y \tag{13.4.85}$$

$$u_{xx} = -\sin x \cosh y \qquad \qquad u_{yy} = \sin x \cosh y \qquad \qquad 13.4.86$$

$$u_{xx} + u_{yy} = 0 ag{13.4.87}$$

Using the Cauchy Riemann equations,

$$v_x = -u_y = -\sin x \sinh y \qquad v_y = u_x = \cos x \cosh y \qquad 13.4.88$$

$$v = \cos x \sinh y + f(x) + c_1 \qquad v = \cos x \sinh y + g(y) + c_2 \qquad 13.4.89$$

$$v(x, y) = \cos x \sinh y \qquad 13.4.90$$

The analytic function is, (with c real)

$$f(z) = (\sin x \cosh y) + \mathfrak{i} (\cos x \sinh y + c)$$
 13.4.91

$$\sin(z) + i c$$
 13.4.92

This uses the Euler's formula to define the sine function on the complex plane.

17. The function is harmonic,

$$v(x,y) = (2x+1)y 13.4.93$$

$$v_{xx} = 0$$
 $v_{yy} = 0$ 13.4.94

$$v_{xx} + v_{yy} = 0 ag{13.4.95}$$

Using the Cauchy Riemann equations,

$$u_x = v_y = (2x+1)$$
 $u_y = -v_x = -2y$ 13.4.96

$$u = x^2 + x + g(y) + c_1$$
 $u = -y^2 + f(x) + c_2$ 13.4.97

$$u(x, y) = x^2 + x - y^2 + c 13.4.98$$

The analytic function is, (with c real)

$$f(z) = (x^2 + x - y^2) + i(2xy + y) + c$$
13.4.99

$$= z^2 + z + c ag{3.4.100}$$

18. The function is harmonic,

$$u(x,y) = x^3 - 3xy^2 13.4.101$$

$$u_{xx} = 6x$$
 $u_{yy} = -6x$ 13.4.102

$$u_{xx} + u_{yy} = 0 ag{13.4.103}$$

Using the Cauchy Riemann equations,

$$v_x = -u_y = 6xy$$
 $v_y = u_x = 3(x^2 - y^2)$ 13.4.104

$$v = 3x^2y + g(y) + c_1$$
 $v = 3x^2y - y^3 + f(x) + c_2$ 13.4.105

$$v(x,y) = 3x^2y - y^3 + c 13.4.106$$

The analytic function is, (with c real)

$$f(z) = (x^3 - 3xy^2) + i(3x^2y - y^3) + c$$
13.4.107

$$=z^3+c$$
 13.4.108

19. The function is not harmonic,

$$v(x,y) = e^x \sin(2y) \tag{3.4.109}$$

$$v_{xx} = e^x \sin(2y)$$
 $v_{yy} = -4e^x \sin(2y)$ 13.4.110

$$v_{xx} + v_{yy} \neq 0 ag{3.4.111}$$

20. Starting with the Cauchy Euler equations,

$$u_x = v_y u_y = -v_x 13.4.112$$

$$u_{xy} = v_{yy}$$
 $u_{yx} = -v_{xx}$ 13.4.113

$$v_{xx} + v_{yy} = -u_{yx} + u_{xy} = 0 ag{3.4.114}$$

$$\Rightarrow \quad \nabla^2 v = 0 \tag{13.4.115}$$

21. For the given function to be harmonic,

$$u(x,y) = e^{\pi x} \cos(ay) \qquad u_{xx} + u_{yy} = 0$$
 13.4.116

$$u_{xx} = \pi^2 e^{\pi x} \cos(ay)$$
 $u_{yy} = -a^2 e^{\pi x} \cos(ay)$ 13.4.117

$$\nabla^2 u = 0 \qquad \Longrightarrow \quad a = \pi \tag{3.4.118}$$

To find the harmonic conjugate,

$$v_y = u_x = \pi e^{\pi x} \cos(\pi y)$$
 $v_x = -u_y = \pi e^{\pi x} \sin(\pi y)$ 13.4.119

$$v = e^{\pi x} \sin(\pi y) + f(x) + c_1$$
 $v = e^{\pi x} \sin(\pi y) + g(y) + c_2$ 13.4.120

$$v(x,y) = e^{\pi x} \sin(\pi y) \tag{3.4.121}$$

22. For the given function to be harmonic,

$$u(x, y) = \cos(ax)\cosh(2y)$$
 $u_{xx} + u_{yy} = 0$ 13.4.122

$$u_{xx} = -a^2 \cos(ax) \cosh(2y)$$
 $u_{yy} = 4 \cos(ax) \cosh(2y)$ 13.4.123

$$\nabla^2 u = 0 \qquad \Longrightarrow \quad a = 2 \qquad 13.4.124$$

To find the harmonic conjugate,

$$v_y = u_x = -2\sin(2x)\cosh(2y)$$
 $v_x = -u_y = -2\cos(2x)\sinh(2y)$ 13.4.125

$$v(x, y) = -\sin(2x)\sinh(2y)$$
13.4.126

23. For the given function to be harmonic,

$$u(x,y) = ax^3 + bxy u_{xx} + u_{yy} = 0 13.4.127$$

$$u_{xx} = 6ax$$
 $u_{yy} = 0$ 13.4.128

$$b = \text{free}$$
 $\implies a = 0$ 13.4.129

To find the harmonic conjugate,

$$v_y = u_x = by$$
 $v_x = -u_y = -bx$ 13.4.130

$$v = \frac{by^2}{2} + f(x)$$
 $v = -\frac{bx^2}{2} + f(y)$ 13.4.131

$$v(x,y) = \frac{b}{2} (y^2 - x^2)$$
 13.4.132

24. For the given function to be harmonic,

$$u(x, y) = \cosh(ax)\cos(y)$$

$$u_{xx} + u_{yy} = 0$$

$$13.4.133$$

$$u_{xx} = a^2 \cosh(ax)\cos(y)$$

$$u_{yy} = -\cosh(ax)\cos(y)$$

$$13.4.134$$

$$\nabla^2 u = 0$$

$$\Rightarrow a = 1$$

$$13.4.135$$

To find the harmonic conjugate,

$$v_y = u_x = \sinh(x)\cos(y)$$

$$v_x = -u_y = \cosh(x)\sin(y)$$

$$v(x, y) = \sinh(x)\sin(y)$$
13.4.136

25. The equipotential lines of harmonic conjugates happen to be orthogonal families of curves.

26. Applying the program to the given function,

27. Given v is the harmonic conjugate of u,

$$u_x = v_y$$
 $u_y = -v_x$ 13.4.138 $v_x = (-u)_y$ $v_y = -(-u)_x$ 13.4.139

Thus (-u) is the harmonic conjugate of v.

28. Use Problem 14.

29. Starting with equations 4, 5 and substituting the Cauchy-Riemann relations,

$$f'(z) = u_x + \mathfrak{i} \ v_x \qquad \qquad u_y = -v_x$$
 13.4.140

$$f'(z) = u_x - \mathfrak{i} \ u_y \tag{3.4.141}$$

$$f'(z) = -iu_y + v_y$$
 $f'(z) = v_y + i v_x$ 13.4.142

- **30.** Conditions for a constant complex function
 - (a) Checking the given function,

$$f(z) = c + i v(x, y)$$
 13.4.143

$$u_x = v_y$$
 \Longrightarrow $0 = v_y$ 13.4.144

$$u_y = -v_x \qquad \Longrightarrow \qquad 0 = v_x \qquad \qquad 13.4.145$$

$$v = c_1 + f(x)$$
 $v_x = \frac{\mathrm{d}f}{\mathrm{d}x} = 0$ 13.4.146

$$v(x,y) = c ag{3.4.147}$$

Thus, f(z) is a constant function.

(b) Checking the given function,

$$f(z) = u(x, y) + c i$$
 13.4.148

$$u_x = v_y$$
 \Longrightarrow $0 = u_x$ 13.4.149

$$u_y = -v_x$$
 \Longrightarrow $0 = u_y$ 13.4.150

$$u = c_1 + f(x)$$
 $u_x = \frac{\mathrm{d}f}{\mathrm{d}x} = 0$ 13.4.151

$$u(x,y) = c ag{3.4.152}$$

Thus, f(z) is a constant function.

(c) Checking the given function,

$$f'(z) = 0 13.4.153$$

$$u_x = \mathfrak{i} \ u_y$$
 \Longrightarrow $u_x = -\mathfrak{i} \ v_x$ 13.4.154

$$u_x = u_y = 0$$
 $v_x = v_y = 0$ 13.4.156

$$f(x,y) = c 13.4.157$$

Since a real and complex number are being equated, the only solution is for both sides to be identically zero.

(d) Checking the given function,

$$|f(z)| = c$$
 $|f(z)|^2 = u^2 + v^2 = c^2$ 13.4.158

$$uu_x + vv_x = 0$$
 $uu_y + vv_y = 0$ 13.4.159

$$-uv_x + vu_x = 0 (u^2 + v^2) u_x = 0 13.4.160$$

Similarly, all four first order partial derivatives are constrained to be zero. This means f(z) = c

13.5 Exponential Function

1. To prove that e^z is entire,

$$f(z) = e^z = e^x (\cos y + i \sin y) \qquad f(z) = u(x, y) + i v(x, y)$$
 13.5.1

$$u_x = e^x \cos y \qquad \qquad u_y = -e^x \sin y \qquad \qquad 13.5.2$$

$$v_x = e^x \sin y \qquad \qquad v_y = e^x \cos y \qquad \qquad 13.5.3$$

$$u_x = v_y u_y = -v_x 13.5.4$$

Since e^a , $\sin(a)$, $\cos(a)$ are themselves defined for all real a, the Euler-Cauchy relations are satisfied everywhere in the complex plane.

This makes the function entire.

2. Finding the functional form and modulus,

$$z = 3 + 4i$$
 $e^z = e^3 (\cos 4 + \sin 4 i)$ 13.5.5

$$|e^z| = e^x = e^3 13.5.6$$

3. Finding the functional form and modulus,

$$z = 2\pi i(1+i)$$
 $e^z = e^{-2\pi} [\cos(2\pi) + \sin(2\pi) i]$ 13.5.7

$$e^z = e^{-2\pi}$$
 $|e^z| = e^x = e^{-2\pi}$ 13.5.8

4. Finding the functional form and modulus,

$$z = 0.6 - 1.8i$$
 $e^z = e^{0.6} [\cos(1.8) - \sin(1.8) i]$ 13.5.9

$$|e^z| = e^x = e^{0.6} 13.5.10$$

5. Finding the functional form and modulus,

$$z = 2 + 3\pi i$$
 $e^z = e^2 \left[\cos(3\pi) + \sin(3\pi) i \right]$ 13.5.11

$$e^z = -e^2$$
 $|e^z| = e^x = e^2$ 13.5.12

6. Finding the functional form and modulus,

$$z = \frac{11\pi}{2} i$$
 $e^z = e^0 \left[\cos(5.5\pi) + \sin(5.5\pi) i \right]$ 13.5.13

$$e^z = -\mathbf{i}$$
 $|e^z| = e^x = e^0 = 1$ 13.5.14

7. Finding the functional form and modulus,

$$z = \sqrt{2} + \frac{\pi}{2} i$$
 $e^z = e^{\sqrt{2}} \left[\cos(\pi/2) + \sin(\pi/2) i \right]$ 13.5.15

$$e^z = e^{\sqrt{2}} i$$
 $|e^z| = e^x = e^{\sqrt{2}}$ 13.5.16

8. Finding the polar form,

$$z = e \exp(i\theta) \qquad \qquad z^{1/n} = r^{1/n} \exp\left(\frac{i\theta}{n}\right)$$
 13.5.17

9. Finding the polar form,

$$z = 4 + 3i$$
 $r = \sqrt{3^2 + 4^2} = 5$ 13.5.18

$$\theta = \arctan(3/4) \qquad \qquad z = 5 \exp(\mathfrak{i} \; \theta)$$
 13.5.19

10. Finding the polar form,

$$z_1 = \sqrt{i} r_1 = \sqrt{1} = 1 13.5.20$$

$$\theta_1 = \frac{1}{2} \cdot \frac{\pi}{2} = \frac{\pi}{4}$$

$$z_1 = 1 \cdot \exp\left(i \frac{\pi}{4}\right)$$
 13.5.21

$$z_2 = \sqrt{-i} r_2 = \sqrt{1} = 1 13.5.22$$

$$\theta_2 = \frac{1}{2} \cdot \frac{-\pi}{2} = \frac{-\pi}{4}$$
 $z_2 = 1 \cdot \exp\left(-i\frac{\pi}{4}\right)$ 13.5.23

11. Finding the polar form,

$$z = -6.3 + 0 i$$
 $z = 6.3 \exp(i \pi)$ 13.5.24

12. Finding the polar form,

$$z = re^{i \theta}$$

$$w = \frac{1}{1-z} = \frac{1-\bar{z}}{|1-z|^2}$$
 13.5.25

$$w = \frac{1 - r\cos\theta + r\sin\theta i}{(1 - r\cos\theta)^2 + (r\sin\theta)^2} \qquad \qquad w = \frac{(1 - r\cos\theta) + i(r\sin\theta)}{1 + r^2 - 2r\cos\theta}$$
 13.5.26

$$|w| = \frac{1}{1 + r^2 - 2r\cos\theta} \qquad \text{Arg } (w) = \frac{r\sin\theta}{1 - r\cos\theta}$$
 13.5.27

13. Finding the polar form,

$$z = 1 + \mathfrak{i} \qquad \qquad z = \sqrt{2} \exp(\mathfrak{i} \pi/4) \qquad \qquad \text{13.5.28}$$

14. Finding the real and imaginary parts of the function,

$$f(z) = e^{-\pi z}$$
 Re $f = e^{-\pi x} \cos(\pi y)$ 13.5.29

$$\operatorname{Im} f = -e^{-\pi x} \sin(\pi y) \tag{3.5.30}$$

15. Finding the real and imaginary parts of the function,

$$f(z) = e^{z^2}$$
 $f(z) = \exp(x^2 - y^2 + 2xy i)$ 13.5.31

Re
$$f = e^{x^2 - y^2} \cos(2xy)$$
 Im $f = e^{x^2 - y^2} \sin(2xy)$ 13.5.32

16. Finding the real and imaginary parts of the function,

$$f(z) = e^{1/z}$$
 $f(z) = \exp\left(\frac{x - i y}{x^2 + y^2}\right)$ 13.5.33

Re
$$f = e^{x/(x^2+y^2)} \cos\left(\frac{y}{x^2+y^2}\right)$$
 Im $f = -e^{x/(x^2+y^2)} \sin\left(\frac{y}{x^2+y^2}\right)$ 13.5.34

17. Finding the real and imaginary parts of the function,

$$f(z) = e^{z^3} f(z) = \exp(x^3 - 3xy^2 - y^3\mathbf{i} + 3x^2y\mathbf{i}) 13.5.35$$

Re
$$f = e^{x^3 - 3xy^2} \cos(3x^2y - y^3)$$
 Im $f = e^{x^3 - 3xy^2} \sin(3x^2y - y^3)$ 13.5.36

- **18.** Properties of the exponential function
 - (a) Since this power is not defined at z = 0 + 0 i, the function $e^{1/z}$ is not entire.

Checking $e^{\bar{z}}$,

$$e^{\bar{z}} = e^x \left(\cos y - \mathfrak{i} \sin y\right) \tag{3.5.37}$$

$$u_x = e^x \cos(y) \qquad \qquad v_y = -e^x \cos(y) \qquad \qquad 13.5.38$$

$$u_y = -e^x \sin(y) \qquad v_x = -e^x \sin(y) \qquad 13.5.39$$

13.5.40

This function does not satisfy Cauchy-Riemann relations and is **not entire**. Checking the third function,

$$f(z) = e^x \left[\cos(ky) + i \sin(ky) \right]$$
13.5.41

$$u_x = e^x \cos(ky) \qquad \qquad v_y = ke^x \cos(ky) \qquad \qquad 13.5.42$$

$$u_y = -ke^x \sin(ky) \qquad v_x = e^x \sin(ky) \qquad 13.5.43$$

This function is entire if k = 1.

(b) Condition for e^z to be real,

$$\operatorname{Im}(e^z) = e^x \sin(y) = 0 \qquad \Longrightarrow \quad y = n\pi$$
 13.5.44

Condition for $|e^{-z}| < 1$,

$$e^{-z} = e^{-x} \left[\cos(y) - \mathfrak{i} \sin(y) \right]$$
 $\left| e^{-z} \right| = e^{-x}$ 13.5.45

$$|e^{-z}| < 1 \qquad \Longrightarrow \quad e^x > 1 \qquad \qquad \text{13.5.46}$$

$$x > 0 ag{13.5.47}$$

Condition for $e^{\bar{z}} = \overline{e^z}$,

$$e^{\overline{z}} = e^x \left[\cos(y) - \mathfrak{i} \sin(y) \right] \qquad \qquad \overline{e^z} = e^x \left[\cos(y) - \mathfrak{i} \sin(y) \right] \qquad \qquad 13.5.48$$

This relation is identically true for all z.

(c) The given function is harmonic, using

$$\frac{x^2 - y^2}{2} = \lambda ag{13.5.49}$$

$$u = e^{xy} \cos \lambda \tag{13.5.50}$$

$$u_x = ye^{xy}\cos\lambda - xe^{xy}\sin\lambda \tag{3.5.51}$$

$$u_{xx} = e^{xy} \cos \lambda \left[y^2 - x^2 \right] - e^{xy} \sin \lambda \left[1 + 2xy \right]$$
 13.5.52

$$u_y = xe^{xy}\cos\lambda + ye^{xy}\sin\lambda \tag{3.5.53}$$

$$u_{yy} = e^{xy} \cos \lambda \left[x^2 - y^2 \right] + e^{xy} \sin \lambda \left[1 + 2xy \right]$$
 13.5.54

$$u_{xx} + u_{yy} = 0 ag{3.5.55}$$

Attempting to find a complex function whose real or imaginary part is u(x, y),

$$f(z) = \exp(-i z^2/2) = \exp\left[xy + \frac{y^2 - x^2}{2}i\right]$$
 13.5.56

$$\operatorname{Re} f = e^{xy} \cos \left(\frac{y^2 - x^2}{2} \right)$$
 13.5.57

$$\operatorname{Im} f = e^{xy} \sin\left(\frac{y^2 - x^2}{2}\right)$$
 13.5.58

Since f(z) is entire, its imaginary part is the harmonic conjugate of u.

(d) Using the two constraints,

$$f'(z) = f(z)$$
 $f(z) = u(x, y) + i v(x, y)$ 13.5.59

$$u_x + \mathfrak{i} \ v_x = u + \mathfrak{i} \ v \qquad \qquad -\mathfrak{i} \ u_y + v_y = u + \mathfrak{i} \ v \qquad \qquad \text{13.5.60}$$

$$u = A(x) \cdot B(y) \qquad \qquad u = c_1 e^x \cdot B(y)$$
 13.5.61

$$u_{xx} + u_{yy} = 0$$
 $B(y) = c_2 \cos(y) + c_3 \sin(y)$ 13.5.62

Applying the "boundary condition",

$$f(x+0i) = e^x \qquad \Longrightarrow \qquad u(x,y) = e^x \left[\cos y + c_3 \sin(y)\right] \qquad 13.5.63$$

$$v(x, y) = e^x [c_5 \sin y]$$
 $u_x = v_y$ 13.5.64

$$\implies c_5 = 1 \qquad c_3 = 0 \qquad 13.5.65$$

$$f(z) = e^x \cos y + i e^x \sin y$$
 13.5.66

The parallel computation leading to v(x, y) is omitted.

19. Finding the solutions,

$$e^z = 1$$
 13.5.67

$$x = 0 y = 2n\pi 13.5.68$$

20. Finding the solutions,

$$e^z = 4 + 3 i$$
 13.5.69

$$e^x = \sqrt{4^2 + 3^2} = 5 x = \ln 5 13.5.70$$

$$y = \arctan 3/4 + 2n\pi \tag{13.5.71}$$

- **21.** No solution exists, since the modulus of e^z is e^x which is always a positive real number.
- **22.** Finding the solutions,

$$e^z = -2 + 0 i$$
 13.5.72

$$e^x = \sqrt{-2^2 + 0^2} = 2 \qquad x = \ln 2$$
 13.5.73

$$\cos y = -1$$
 $\sin y = 0$ $y = \pi + 2n\pi$ 13.5.74

13.6 Trigonometric and Hyperbolic Functions, Euler's Formula

1. To prove these identities,

$$\cosh z = \cosh(x + iy) = \cosh x \cosh(iy) + \sinh x \sinh(iy)$$

$$= \cosh x \cos y + i \sinh x \sin y$$

$$13.6.2$$

$$\sinh z = \cosh(x + iy) = \sinh x \cosh(iy) + \cosh x \sinh(iy)$$

$$= \sinh x \cos y + i \cosh x \sin y$$

$$13.6.4$$

2. To prove these identities,

$$\cosh(z_1 + z_2) = \cosh(x_1 + x_2) \cosh[\mathfrak{i}(y_1 + y_2)] + \sinh(x_1 + x_2) \sinh[\mathfrak{i}(y_2 + y_2)]$$

$$= \cosh(x_1 + x_2) \cos(y_1 + y_2) + \mathfrak{i} \sinh(x_1 + x_2) \sin(y_2 + y_2)$$

$$= (\cosh x_1 \cosh x_2 + \sinh x_1 \sinh x_2) (\cos y_1 \cos y_2 - \sin y_1 \sin y_2)$$

$$+ \mathfrak{i} (\sinh x_1 \cosh x_2 + \cosh x_1 \sinh x_2) (\sin y_1 \cos y_2 + \cos y_1 \sin y_2)$$
13.6.8

Collecting terms and simplifying,

$$\cosh(z_1 + z_2) = \left[\cosh x_1 \cos y_1 + \mathfrak{i} \sinh x_1 \sin y_1 \right] \left[\cosh x_2 \cos y_2 + \mathfrak{i} \sinh x_2 \sin y_2 \right] \\
+ \left[\sinh x_1 \cos y_1 + \mathfrak{i} \cosh x_1 \sin y_1 \right] \left[\sinh x_2 \cos y_2 + \mathfrak{i} \cosh x_2 \sin y_2 \right] \\
= \cosh z_1 \cosh z_2 + \sinh z_1 \sinh z_2 \\$$
13.6.10

Starting with the right-hand side instead,

$$sinh z_1 \cosh z_2 + \cosh z_1 \sinh z_2 = -i \sin(iz_1) \cos(iz_2) - i \cos(iz_1) \sin(iz_2)$$

$$= -i \left[\sin(iz_1 + iz_2) \right]$$

$$= -i^2 \sinh(z_1 + z_2) = \sinh(z_1 + z_2)$$
13.6.14

This is a much simpler approach.

3. Using the relations between trigonometric and hyperbolic functions,

$$\cosh^{2}(z) - \sinh^{2}(z) = \cos^{2}(iz) - i^{2} \sin^{2}(iz)$$

$$= \cos^{2}(iz) + \sin^{2}(iz) = 1$$

$$\cosh^{2}(z) + \sinh^{2}(z) = \cos^{2}(iz) + i^{2} \sin^{2}(iz)$$

$$= \cos^{2}(iz) - \sin^{2}(iz) = \cos(2iz)$$

$$= \cosh(2z)$$
13.6.18
$$= \cosh(2z)$$
13.6.19

4. Since hyperbolic functions are linear combinations of exponential functions, they are also entire. Using the relations,

$$\cos z = \cosh(iz)$$
 $\sin z = -i \sinh(iz)$ 13.6.20

The trigonometric functions are also entire.

5. The first function is harmonic,

$$\cos z = \cosh(iz) = \cosh(-y + ix)$$

$$= \cosh(y)\cos(x) - i \sinh(y)\sin(x)$$

$$13.6.22$$

$$\operatorname{Im}(\cos z) = f(z) = -\sinh y \sin x$$

$$13.6.23$$

$$f_{xx} + f_{yy} = \sinh y \sin x - \sinh y \sin x = 0$$

$$13.6.24$$

The second function is harmonic,

$$\sin z = -i \, \sinh(iz) = -i \, \sinh(-y + iz)$$

$$= -i \, \left[-\sinh(y) \cos(x) + i \, \cosh(y) \sin(x) \right]$$

$$= -i \, \left[-\sinh(y) \cos(x) + i \, \cosh(y) \sin(x) \right]$$

$$\operatorname{Re} \, (\sin z) = g(z) = \cosh y \sin x$$

$$g_{zx} + g_{yy} = -\cosh y \sin x + \cosh y \sin x = 0$$
136.28

6. Calculating,
$$\sin(2\pi \, i) = i \, \sinh(2\pi)$$
136.29

7. Calculating,
$$\cos(i) = \cosh(i)$$

$$\sin(i) = i \, \sinh(i)$$
136.31
$$\sin(i) = i \, \sinh(i)$$
136.32

8. Calculating,
$$\cos(\pi \, i) = \cos(\pi)$$

$$\cos(\pi \, i) = \cos(\pi)$$
136.33
$$\cosh(\pi \, i) = \cos(\pi) = -1$$
136.34

9. Calculating,
$$\cosh(-1 + 2i) = \cosh(1) \cos(2) - i \, \sinh(1) \sin(2)$$
136.35
$$\cos(-2 - i) = \cosh(1) \cos(2) - i \, \sinh(1) \sin(2)$$
136.36
$$\cosh(3 + 4i) = \sinh(3) \cos(4) + i \, \cosh(3) \sin(4)$$
136.37
$$\cosh(3 + 4i) = \cosh(3) \cos(4) + i \, \sinh(3) \sin(4)$$
136.38

11. Calculating,
$$\sin(\pi \, i) = i \, \sinh(\pi)$$

$$\cos\left(\frac{\pi}{2} - \pi \, i\right) = \sin(\pi \, i) = i \, \sinh(\pi)$$
136.39

13.6.40

12. Calculating,

$$\cos(i \pi/2) = \cosh(\pi/2) \tag{13.6.41}$$

$$\cos\left(\frac{\pi}{2} + i\frac{\pi}{2}\right) = -\sin(i\pi/2) = -i\sinh(\pi/2)$$
13.6.42

13. Proving $\cos(z)$ is even,

$$\cos(-z) = \cos(-x - i y) = \cos(-x) \cosh(-y) - i \sin(-x) \sinh(-y)$$

$$= \cos(x) \cosh(y) - i \sin(x) \sinh(y) = \cos(z)$$
13.6.44

Proving sin(z) is odd,

$$\frac{\sin(-z)}{\sin(-z)} = \sin(-x - iy) = \sin(-x)\cosh(-y) + i\cos(-x)\sinh(-y)$$

$$= -\sin(x)\cosh(y) - i\cos(x)\sinh(y) = -\sin(z)$$
13.6.46

14. Proving the first inequality,

$$|\cos z|^2 = \cos^2 x \cosh^2 y + \sin^2 x \sinh^2 y \qquad = \cos^2 x + \sinh^2 y \qquad 13.6.47$$

$$|\cos z| \ge |\sinh y| \qquad 13.6.48$$

$$|\cos z|^2 = \cosh^2 y - \sin^2 x \qquad |\cos z| \le \cosh y \qquad 13.6.49$$

Proving the second inequality,

$$|\sin z|^2 = \sin^2 x \cosh^2 y + \cos^2 x \sinh^2 y$$
 = $\sin^2 x + \sinh^2 y$ 13.6.50
 $|\sin z| \ge |\sinh y|$ 13.6.51
 $|\sin z|^2 = \cosh^2 y - \cos^2 x$ $|\sin z| \le \cosh y$ 13.6.52

Since the hyperbolic functions in real numbers are not bounded, the complex sine and cosine functions are also not bounded.

15. Calculating directly,

$$\sin z_1 \cos z_2 = \left[\sin x_1 \cosh y_1 + \mathfrak{i} \cos x_1 \sinh y_1 \right] \left[\cos x_2 \cosh y_2 - \mathfrak{i} \sin x_2 \sinh y_2 \right]$$

$$= \left[\sin x_1 \cos(\mathfrak{i} y_1) + \cos x_1 \sin(\mathfrak{i} y_1) \right] \left[\cos x_2 \cos(\mathfrak{i} y_2) - \sin x_2 \sin(\mathfrak{i} y_2) \right]$$

$$\sin(z_1 + z_2) = \sin(x_1 + x_2) \cos[\mathfrak{i}(y_1 + y_2)] + \cos(x_1 + x_2) \sin[\mathfrak{i}(y_1 + y_2)]$$

$$\sin(z_1 - z_2) = \sin(x_1 - x_2) \cos[\mathfrak{i}(y_1 - y_2)] + \cos(x_1 - x_2) \sin[\mathfrak{i}(y_1 - y_2)]$$

$$13.6.56$$

Using the properties of sines and cosine addition,

$$\frac{\sin(z_1 + z_2) + \sin(z_1 - z_2)}{2} = \sin x_1 \cos x_2 \cos(iy_1) \cos(iy_2)$$

$$-\cos x_2 \sin x_1 \sin(iy_1) \sin(iy_2)$$

$$+\cos x_1 \cos x_2 \sin(iy_1) \cos(iy_2)$$

$$-\sin x_1 \sin x_2 \cos(iy_1) \sin(iy_2)$$
13.6.58

The two expressions match.

16. Finding all solutions,

$$\sin z = 100$$
 13.6.59 $\sin x \cosh y = 100$ $\cos x \sinh y = 0$ 13.6.60 $x = 2n\pi + \frac{\pi}{2}$ $y = \cosh^{-1}(100)$ 13.6.61

17. Finding all solutions,

$$\cosh z = 0$$

$$\cos y \cosh x = 0$$

$$\sinh x \sin y = 0$$

$$x = 0$$

$$y = n\pi + \frac{\pi}{2}$$

$$13.6.62$$

18. Finding all solutions,

$$\cosh z = -1$$
 $\cosh x = -1$
 $\sinh x \sin y = 0$
 $\sinh x \sin y = 0$
 $3.6.66$
 $x_1 = 0$
 $\Rightarrow y_1 = (2n+1)\pi$
 $13.6.67$
 $y_2 = (2m+1)\pi$
 $\Rightarrow x_2 = 0$
 $13.6.68$

Since (x_1, y_1) and (x_2, y_2) are the same solution, there is only one distinct family of solutions.

19. Finding all solutions,

$$\sinh z = 0$$

$$\sinh x \cos y = 0$$

$$\cosh x \sin y = 0$$

$$y = n\pi$$

$$z = 0$$

20. Finding the expression for tan(z),

$$\tan z = \frac{\sin z}{\cos z} = \frac{\sin x \cos x + i \sinh y \cosh y}{\cos^2 x \cosh^2 y + \sin^2 x \sinh^2 y}$$
13.6.73

$$\operatorname{Re} \tan(z) = \frac{\sin x \cos x}{\cos^2 x + \sinh^2 y}$$
13.6.74

$$\operatorname{Im} \tan(z) = \frac{\sinh y \cosh y}{\cos^2 x + \sinh^2 y}$$
13.6.75

13.7 Logarithm, General Power, Principal Value

 $\ln(3-4i) = \ln(5) - i \left[\arctan(4/3) + 2n\pi\right]$

1. Performing the computations in Example 1,

$$\ln(1+0i) = \ln(1) + i (0 + 2n\pi) = i 2n\pi$$

$$\ln(4+0i) = \ln(4) + i (0 + 2n\pi) = 2 \ln(2) + i 2n\pi$$

$$\ln(-1+0i) = \ln(1) + i (-\pi + 2n\pi) = i (2n-1)\pi$$

$$\ln(-4+0i) = \ln(4) + i (\pi + 2n\pi) = 2 \ln(2) + i (2n-1)\pi$$

$$\ln(i) = \ln(1) + i (\pi/2 + 2n\pi) = i \left[2n\pi + \frac{\pi}{2}\right]$$

$$\ln(4i) = \ln(4) + i (\pi/2 + 2n\pi) = 2 \ln(2) + i \left[2n\pi + \frac{\pi}{2}\right]$$

$$\ln(-4i) = \ln(4) + i (-\pi/2 + 2n\pi) = 2 \ln(2) + i \left[2n\pi + \frac{\pi}{2}\right]$$

$$\ln(-4i) = \ln(4) + i (-\pi/2 + 2n\pi) = 2 \ln(2) + i \left[2n\pi - \frac{\pi}{2}\right]$$

$$\ln(-4i) = \ln(4) + i (-\pi/2 + 2n\pi)$$

$$\ln(2i) = \ln(2i) + i \left[2n\pi - \frac{\pi}{2}\right]$$

13.7.8

2. Verifying the relations,

$$z_{1} = -\mathfrak{i} \qquad z_{2} = -1 \qquad 13.7.9$$

$$\ln(z_{1} \cdot z_{2}) = \ln(\mathfrak{i}) \qquad = 0 + \mathfrak{i} \frac{\pi}{2} \qquad 13.7.10$$

$$\ln z_{1} = \ln(-\mathfrak{i}) \qquad = 0 - \mathfrak{i} \frac{\pi}{2} \qquad 13.7.11$$

$$\ln z_{2} = \ln(-1) \qquad = 0 + \mathfrak{i} \pi \qquad 13.7.12$$

$$\ln(z_{1} \cdot z_{2}) = \ln z_{1} + \ln z_{2} \qquad 13.7.13$$

$$\ln(z_{1}/z_{2}) = \ln(\mathfrak{i}) \qquad = 0 + \mathfrak{i} \frac{\pi}{2} \qquad 13.7.14$$

$$\ln(z_{1}) - \ln(z_{2}) = -\mathfrak{i} \frac{3\pi}{2} \qquad = \mathfrak{i} \frac{\pi}{2} \qquad 13.7.15$$

3. Using the Cauchy Riemann relations in polar form,

$$\ln z = \ln r + i (\theta + c)$$
 13.7.16
 $u_r = \frac{1}{r}$ $u_\theta = 0$ 13.7.17
 $v_r = 0$ $v_\theta = 1$ 13.7.18
 $u_r = \frac{1}{r} v_\theta$ $v_r = \frac{-1}{r} u_\theta$ 13.7.19

Since the Cauchy-Riemann relations hold, the function is analytic, except at the origin and the negative real axis (which is a branch cut).

4. Proving formula 4a,

$$\exp(\ln z) = \exp[\ln r + \mathfrak{i} \, \theta] \qquad \qquad = e^{\ln r} \left[\cos \theta + \mathfrak{i} \, \sin \theta\right]$$

$$= r \left[\cos \theta + \mathfrak{i} \, \sin \theta\right] \qquad \qquad = z$$
13.7.21

Proving formula 4b,

$$\ln(e^z) = \ln(e^x \cos y + i e^x \sin y)$$

$$= \ln(e^x) + i (y + 2n\pi)$$

$$= x + iy + i (2n\pi)$$

$$= z + i 2n\pi$$
13.7.23

5. Finding the principal logarithm,

$$z=-11+0\mathfrak{i} \qquad \qquad \ln z=\ln(11)-\mathfrak{i}\ \pi$$
 13.7.24

$$\operatorname{Ln}\ z=\ln(11)+\mathfrak{i}\ \pi$$
 13.7.25

6. Finding the principal logarithm,

$$z = 4 + 4\mathfrak{i} \qquad \qquad \ln z = \ln(\sqrt{32}) + \mathfrak{i} \frac{\pi}{4}$$
 13.7.26

$$\operatorname{Ln} z = \frac{5}{2} \ln 2 + \mathfrak{i} \frac{\pi}{4}$$
 13.7.27

7. Finding the principal logarithm,

$$\operatorname{Ln} z = \frac{5}{2} \, \ln 2 - \mathfrak{i} \, \frac{\pi}{4}$$
 13.7.29

8. Finding the principal logarithm,

9. Finding the principal logarithm,

$$\operatorname{Ln} z = \mathfrak{i} \operatorname{arctan}(4/3)$$

10. Finding the principal logarithm,

$$z_1 = -15 + 0.1 i$$
 13.7.35

$$\ln z_1 = \frac{1}{2} \ln(225.01) + \mathfrak{i} \left[\pi - \arctan(1/150) \right]$$
 13.7.36

$$z_2 = -15 - 0.1 \,i$$

$$\ln z_2 = \frac{1}{2} \ln(225.01) + \mathfrak{i} \arctan(1/150)$$
 13.7.38

Ln
$$z_2 = \frac{1}{2} \ln(225.01) + i \left[\arctan(1/150) - \pi\right]$$
 13.7.39

11. Finding the principal logarithm,

$$z = 0 + e \mathfrak{i} \qquad \qquad \ln z = \ln(e) + \mathfrak{i} \frac{\pi}{2}$$
 13.7.40

$$\operatorname{Ln} z = 1 + \mathfrak{i} \, \frac{\pi}{2}$$
 13.7.41

12. Graphing some solutions in the complex plane,

$$z = e + 0 \mathfrak{i} \qquad \qquad \ln z = \ln(e) + 2n\pi \mathfrak{i} \qquad \qquad 13.7.42$$

$$\ln z = 1 + 2n\pi \,\mathbf{i} \tag{3.7.43}$$

13. Graphing some solutions in the complex plane,

$$z=1+0~\mathfrak{i} \qquad \qquad \ln z=\ln(1)+2n\pi~\mathfrak{i} \qquad \qquad \text{13.7.44}$$

$$\ln z = 0 + 2n\pi i \tag{13.7.45}$$

14. Graphing some solutions in the complex plane,

$$z = -7 + 0$$
 i
$$\ln z = \ln(7) + (2n+1)\pi$$
 i 13.7.46

15. Graphing some solutions in the complex plane,

$$z = \exp(0 + \mathfrak{i}) \qquad \qquad \ln z = \mathfrak{i} + 2n\pi \,\mathfrak{i} \qquad \qquad 13.7.47$$

16. Graphing some solutions in the complex plane,

17. Graphing some solutions in the complex plane,

13.7.51

18. Solving,

$$\ln z = -\frac{\pi}{2} i$$
 $e^{\ln z} = \exp(-\pi/2 i) = -i$ 13.7.52

$$z+2n\pi \ \mathfrak{i}=-\mathfrak{i}$$
 $z=-\mathfrak{i}+2n\pi \ \mathfrak{i}$ 13.7.53

19. Solving,

$$\ln z = 4 - 3i \qquad e^{\ln z} = \exp(4 - 3i) \qquad 13.7.54$$

$$z + 2n\pi \, i = e^4 (\cos 3 - i \sin 3)$$
 13.7.55

20. Solving,

$$\ln z = e - \pi \mathfrak{i} \qquad \qquad e^{\ln z} = \exp(e - \pi \mathfrak{i}) \qquad \qquad 13.7.56$$

$$z + 2n\pi i = e^e (\cos \pi - i \sin \pi) \qquad z = -e^e$$
 13.7.57

21. Solving,

$$\ln z = 0.6 + 0.4i \qquad e^{\ln z} = \exp(0.6 + 0.4i) \qquad 13.7.58$$

$$z + 2n\pi i = e^{0.6} [\cos(0.4) + i \sin(0.4)]$$
 13.7.59

22. Finding the principal value,

$$(2i)^{2i} = \exp[2i \ln(2i)]$$
 $\ln(2i) = \ln(2) + i \frac{\pi}{2}$ 13.7.60

$$z = \exp[\ln(4) i - \pi]$$
 $z = e^{-\pi} [\cos(\ln 4) + i \sin(\ln 4)]$ 13.7.61

23. Finding the principal value,

$$(1+i)^{1-i} = \exp[(1-i) \ln(1+i)]$$
 13.7.62

$$\ln(1+\mathfrak{i}) = \ln(\sqrt{2}) + \mathfrak{i} \frac{\pi}{4}$$
13.7.63

$$z = \exp[\ln(\sqrt{2}) + \pi/4 + i(\pi/4 - \ln\sqrt{2})]$$
13.7.64

$$z = \sqrt{2}e^{\pi/4} \left[\cos(\pi/4 - \ln\sqrt{2}) + i \sin(\pi/4 - \ln\sqrt{2}) \right]$$
 13.7.65

24. Finding the principal value,

$$(1-i)^{1+i} = \exp[(1+i) \ln(1-i)]$$
 13.7.66

$$\ln(1-\mathfrak{i}) = \ln(\sqrt{2}) - \mathfrak{i} \frac{\pi}{4}$$
13.7.67

$$z = \exp[\ln(\sqrt{2}) + \pi/4 + i \left(\ln\sqrt{2} - \pi/4\right)]$$
13.7.68

$$z = \sqrt{2}e^{\pi/4} \left[\cos(\ln\sqrt{2} - \pi/4) + i \sin(\ln\sqrt{2} - \pi/4) \right]$$
 13.7.69

25. Finding the principal value,

$$(-3)^{3-i} = \exp[(3-i) \ln(-3)]$$
13.7.70

$$\ln(-3) = \ln 3 + i \pi$$
 13.7.71

$$z = \exp[3 \ln 3 + \pi + i (3\pi - \ln 3)]$$
13.7.72

$$z = 27e^{\pi} \left[-\cos(\ln 3) + i \sin(\ln 3) \right]$$
 13.7.73

26. Finding the principal value,

$$\mathfrak{i}^{\mathfrak{i}} = \exp[\mathfrak{i} \ \ln(\mathfrak{i})] \qquad \qquad \ln(\mathfrak{i}) = \ln(1) + \mathfrak{i} \ \frac{\pi}{2}$$
 13.7.74

$$z = \exp(-\pi/2) \tag{13.7.75}$$

27. Finding the principal value,

$$(-1)^{2-i} = \exp[(2-i) \ln(-1)]$$
 13.7.76

$$\ln(-1) = \ln 1 + i \pi$$
 13.7.77

$$z = \exp[\pi + i \ 2\pi] \tag{3.7.78}$$

$$z = e^{\pi} \left[\cos(2\pi) + i \sin(2\pi) \right] = e^{\pi}$$
 13.7.79

28. Finding the principal value,

$$(3+4i)^{1/3} = \exp[(1/3) \ln(3+4i)]$$
 13.7.80

$$\ln(3+4i) = \ln 5 + i \arctan(4/3)$$
 13.7.81

$$z = \exp\left[\frac{\ln 5}{3} + i \frac{\arctan(4/3)}{3}\right]$$
 13.7.82

$$z = 5^{1/3} \left[\cos \left(\frac{\arctan(4/3)}{3} \right) + i \sin \left(\frac{\arctan(4/3)}{3} \right) \right]$$
 13.7.83

29. Starting with problem 23,

$$z_1 = (x + iy)^{a+ib} = \exp\left[(a+ib)\left(\ln x\cos y + i\ln x\sin y\right)\right]$$
13.7.84

$$= \exp(\alpha + \mathfrak{i} \beta)$$
 13.7.85

$$z_2 = (x - iy)^{a - ib} = \exp\left[(a - ib) \left(\ln x \cos y - i \ln x \sin y \right) \right]$$
 13.7.86

$$= \exp(\alpha - \mathfrak{i} \beta)$$
 13.7.87

Clearly, $z_2 = \bar{z}_1$, which provides the answer to problem 24.

- **30.** Inverse trigonometric functions,
 - (a) Finding the expression,

$$z = \cos w = \frac{e^{iw} + e^{-iw}}{2} = \frac{e^{2iw} + 1}{2e^{iw}} \qquad t = e^{iw}$$
 13.7.88

$$t^2 - 2zt + 1 = 0 t = z \pm \sqrt{z^2 - 1} 13.7.89$$

$$\arccos(z) = w = -i \ln\left(z + \sqrt{z^2 - 1}\right)$$
 13.7.90

(b) Finding the expression,

$$z = \sin w = \frac{e^{iw} - e^{-iw}}{2i} = \frac{e^{2iw} - 1}{2i e^{iw}}$$
 $t = e^{iw}$ 13.7.91

$$t^2 - 2i zt - 1 = 0$$
 $t = iz \pm \sqrt{1 - z^2}$ 13.7.92

$$\arcsin(z) = w = -\mathfrak{i} \ln\left(\mathfrak{i}z + \sqrt{1-z^2}\right)$$
 13.7.93

(c) Finding the expression,

$$z = \cosh w = \frac{e^w + e^{-w}}{2} = \frac{e^{2w} + 1}{2e^w} \qquad t = e^w$$
 13.7.94

$$t^2 - 2zt + 1 = 0 t = z \pm \sqrt{z^2 - 1} 13.7.95$$

$$\cosh^{-1} z = w = \ln \left(z + \sqrt{z^2 - 1} \right)$$
 13.7.96

(d) Finding the expression,

$$z = \sinh w = \frac{e^w - e^{-w}}{2} = \frac{e^{2w} - 1}{2e^w} \qquad t = e^w$$
 13.7.97

$$t^2 - 2zt - 1 = 0 t = z \pm \sqrt{1 + z^2} 13.7.98$$

$$\sinh^{-1}(z) = w = \ln\left(iz + \sqrt{1+z^2}\right)$$
13.7.99

(e) Finding the expression,

$$z = \tan w = \frac{1}{i} \frac{e^{iw} - e^{-iw}}{e^{iw} + e^{-iw}} = \frac{e^{2iw} - 1}{i e^{2iw} + i}$$
 $t = e^{iw}$ 13.7.100

$$t^2 - 1 = izt^2 + iz$$
 $t^2 = \frac{iz + 1}{1 - iz}$ 13.7.101

$$t = \sqrt{\frac{\mathfrak{i} - z}{\mathfrak{i} + z}} = \left(\frac{\mathfrak{i} + z}{\mathfrak{i} - z}\right)^{-1/2}$$
13.7.102

$$\arctan(z) = w = \frac{i}{2} \ln \left[\frac{i+z}{i-z} \right]$$
 13.7.103

(f) Finding the expression,

$$z = \tanh w = \frac{e^w - e^{-w}}{e^w + e^{-w}} = \frac{e^{2w} - 1}{e^{2w} + 1}$$
 $t = e^w$ 13.7.104

$$t^2 - 1 = zt^2 + z t^2 = \frac{z+1}{1-z} 13.7.105$$

$$t = \sqrt{\frac{1+z}{1-z}}$$
 13.7.106

$$\tanh^{-1}(z) = w = \frac{1}{2} \ln \left[\frac{1+z}{1-z} \right]$$
 13.7.107

(g) To show the many-valued nature of $\sin^{-1} z$, look at the fact that sin and cos are periodic with period 2π . This means that $z \to z + 2n\pi$ makes no change to the output of $\sin(z)$.

The converse of this statement is that $\arcsin(z)$ is many valued with separation $\Delta w = 2n\pi$. Since $\sqrt{1-z^2}$ can have two possible results which differ by a factor of (-1), the two possible values of w differ by π

This provides the second branch of solutions $w_1 + (2n + 1)\pi$.