

# Surgical Drill Bit: Bone Accumulation On Drill Bit Set

Raushan Kumar, Manish Kumar Prasad and S.Kanagaraj

raushank.3221@iitg.ac.in , p.manish@iitg.ac.in kanagaraj@iitg.ac.in

# ME 696 – Biomedical Devices and Systems

Department of Mechanical Engineering

### INTRODUCTION

### Introduction

- Surgeons encounter challenges during bone drilling surgeries, including potential bone damage and bone tissue getting stuck in the drill bit.
- Modern technology, like 3D printing and computers, ensures top-notch quality tools for surgical precision.
- Thorough checks are conducted to verify tool perfection before surgical use.



**Drilling Process** 

- For Techniques and tools are employed to manage bone tissue accumulation in drill bits:
- > Irrigation systems flush the area with sterile fluid to clear bone debris and maintain drill bit coolness.
- > Surgeons may pause to clean or replace the drill bit if bone becomes stuck, ensuring continued safe and effective surgery.

### TECHNICAL GAP AND OBJECTIVE

- ➤ Poor design hampers effective removal of bone debris, increasing the risk of clogging and reducing drilling efficiency.
- Existing drill bits may lack the precision required for delicate bone surgeries, potentially resulting in inaccuracies or damage.
- ➤ Off-the-shelf drill bits may not meet the specific requirements of each surgical procedure, limiting versatility and adaptability
- Current drill bits lack efficient cooling systems, leading to overheating during prolonged use.

# Proposed solution in one sentence

➤ Creating a drill bit for bone drilling with a 3D printer, especially with features like a passage for coolant and minimizing bone accumulation for better drilling and reducing tissue damage due to heat generation.

## DESIGN APPROACH/METHODOLOGY

# Manufacturing drill bit with passage for coolant using 3D Printer

- Allowing for the swift evacuation of bone debris to prevent clogging and maintain drilling efficiency.
- Enabling the continuous flow of coolant to dissipate heat and maintain optimal operating temperatures.
- Selecting an appropriate size based on the surgical application and bone type to achieve the desired drilling depth and precision.



**Drill Bit With Passage for Coolant** 

# **Surgical Drill Bit Geometry**

- Different angles such as point, rake, and clearance, crucial for initiating and cutting into bone.
- Features like helix angle and flute aid in chip evacuation and coolant flow, influencing drilling force, torque, temperature, and hole quality.
- Shank provides stability and compatibility with drilling equipment, ensuring precise and controlled drilling.

- Fabrication using Fused Deposition Modelling (FDM) involves layer-by-layer deposition of thermoplastic materials to create bone drilling tools.
- Set up FDM 3D printer with appropriate parameters, including layer height, infill density, and print speed.



Fabrication of Drill bit Using FDM (Fused Deposition Modelling)

- > Remove any support structures and smooth rough surfaces to enhance functionality and biocompatibility.
- Conduct quality checks to verify dimensional accuracy and material integrity before sterilization and surgical use.

### **RESULTS**





Thermal analysis of Conventional drill and Drill with Passage for coolant flow manufacture by 3D Printer while Bone Drilling

### CONCLUSION

- ➤ Incorporating a passage for coolant flow in bone drill bits manufactured using 3D printing technology enhances surgical efficiency and patient safety.
- The design consideration of minimizing bone accumulation on the drill bit improves procedural effectiveness and reduces the risk of complications during surgeries.
- ➤ Utilizing 3D printing for manufacturing enables precise customization of drill bits, ensuring compatibility with specific surgical requirements and bone types.
- Enhanced cooling and chip removal capabilities contribute to smoother drilling operations, reducing procedure time and enhancing overall surgical outcomes.
- The integration of advanced features such as coolant passages demonstrates the potential of additive manufacturing to innovate and optimize medical device design for improved patient care.

# References

- Hou, J.; Tamura, Y.; Lu, H.-Y.; Takahashi, Y.; Kasugai, S.; Nakata, H.; Kuroda, S.
  An In Vitro Evaluation of Selenium Nanoparticles on Osteoblastic
  Differentiation and Antimicrobial Properties Porphyromonas Gingivalis.
- ➤ Alam K. Experimental and numerical investigation of cracking behavior of cortical bone in cutting. Technol. Health Care. 2014;22:741–750. doi: 10.3233/THC-140848. DOI PubMed

### Acknowledgement

- > Dr. Madan Kumar MBBS MMU Ambala
- > GNRC, Guwahati
- > Arjun Kumar ,Research scholar , Design Department IIT Guwahati



a.) Twist drill bit, b.) axial view of drill bit tip