

Escuela de Ingeniería en Computación Compiladores e Intérpretes

Profesor

Dr. Francisco Torres Rojas

Apuntes de Clase

22 de marzo de 2017

Autómatas

Estudiante Samantha Arburola 2013101697

Próximas Evaluaciones

I Semestre

Semana 8	Lunes	Martes	Miércoles	Jueves	Viernes	Sábado	Domingo
			+ Entrega Tarea Corta 1: Autómatas + Quiz		+Entrega Resumen: Capítulo 4 Pinker		
	27-mar.	28-mar.	29-mar.	30-mar.	31-mar.	1-abr.	2-abr.
Semana 9	Lunes	Martes	Miércoles	Jueves	Viernes	Sábado	Domingo
			+Entrega de Proyecto 1 + Quiz		l Examen Parcial		
	3-abr.	4-abr.		6-abr.	I Examen Parcial 7-abr.	8-abr.	9-abr.
	3-abr.	4-abr.	+ Quiz			8-abr.	
Semana	3-abr.	4-abr.	+ Quiz			8-abr. Sábado	

Recuerde: la Tarea Corta 1 se envía por correo; debido a que la extensión del documento puede ser grande dada la cantidad de ejercicios

Quiz 05

- 1. Diseñe un DFA que reconozca el lenguaje sobre $\Sigma = \{A, T, C, G\}$ de hileras que no contengan la subhilera "GCC" y donde toda T está inmediatamente precedida de una G
- 2. Diseñe un DFA que reconozca el lenguaje sobre $\Sigma = \{0, 1\}$ de hileras que contengan al menos dos 0s y que termine en 111.
- 3. Dé un ejemplo de dos hileras no vacías v, w sobre $\Sigma = \{a, b\}$, tales que cumplan todas las siguientes características al mismo tiempo:
 - a) $v \neq w$
 - b) vw = wv
 - c) $(vw)^{-1} \neq vw$

Autómatas

Ejemplo 11

- Sea \mathcal{I} el lenguaje sobre $\Sigma = \{0,1\}$ de hileras que **no terminen** con el mismo símbolo con el que empezaron
- Diseñe un DFA que reconozca a $\mathcal I$

- Sea \mathcal{I} el lenguaje sobre $\Sigma = \{A, T, C, G\}$ de hileras que **no contengan** la subhilera "CC" y donde toda A es precedida de una T
- Diseñe un DFA que reconozca a $\mathcal I$

- Sea \mathcal{I} el lenguaje sobre $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ de hileras que representen un número de base 10 divisible entre 3
- Podemos suponer que la hilera vacía es equivalente a 0
- ullet Diseñe un DFA que reconozca a ${\mathcal I}$

Análisis

- Si divido un número entre 3, ¿Cuáles son los posibles residuos?
 - 0,1,2
- ¿Qué significa ser divisible por 3?
 - o Ser de la forma 3 x k
 - o Residuo 0
 - o Residuo 1 o 0 significa que no es divisible por 3
- ¿Qué significa estar en base 10?
 - Cada posición corresponde a una potencia de 10
 Recuerde: las base 10 posicionalmente es 10º aumentando el exponente según las posiciones hacia la izquierda

10 ¹		10^{0}		
4 x10 ¹	+	3×10^{0}	II	43
40	+	3	=	43

Análisis 2

- Si el número actual el *n* y le concateno un nuevo símbolo *q* a la derecha, ¿Cuál es el nuevo valor?
- Nuevo valor es $(n \times 10) + q$
- Si un número divisible por 3 le concateno un 0 a la derecha, ¿Cuál es el residuo?
 - o Antes \rightarrow 3 x k
 - Después \rightarrow (3 x k) x 10 + 0 = 3 x (k x 10) = 3 x k'
 - o Residuo al dividir entre 3 es 0
 - Sigue siendo divisibles por 3
 Ejemplo: Tengo 3, 6, 9, 12, 15 al multiplicar por 10 serían 30,60,90,120; estos siguen siendo divisibles entre 3
- Hacer el mismo análisis para los 10 dígitos

Análisis 3

• Si el número actual es de la forma **3 x k** (es decir, residuo 0) y le concateno un dígito, ¿Cuál es el nuevo residuo?

Nuevo Dígito	Nuevo Valor	Residuo
0	$(3 \times k) \times 10 + 0$	0
1	$(3 \times k) \times 10 + 1$	1
2	$(3 \times k) \times 10 + 2$	2
3	$(3 \times k) \times 10 + 3$	0
4	$(3 \times k) \times 10 + 4$	1
5	$(3 \times k) \times 10 + 5$	2
6	$(3 \times k) \times 10 + 6$	0
7	$(3 \times k) \times 10 + 7$	1
8	$(3 \times k) \times 10 + 8$	2
9	$(3 \times k) \times 10 + 9$	0

Análisis 4

• Si el número actual es la forma (3 x k) + 1 y le concateno un dígito, ¿Cuál es el nuevo residuo?

Nuevo Dígito	Nuevo Valor	Residuo
0	$((3 \times k) + 1) \times 10 + 0$	1
1	$((3 \times k) + 1) \times 10 + 1$	2
2	$((3 \times k) + 1) \times 10 + 2$	0
3	$((3 \times k) + 1) \times 10 + 3$	1
4	$((3 \times k) + 1) \times 10 + 4$	2
5	$((3 \times k) + 1) \times 10 + 5$	0
6	$((3 \times k) + 1) \times 10 + 6$	1
7	$((3 \times k) + 1) \times 10 + 7$	2
8	$((3 \times k) + 1) \times 10 + 8$	0
9	$((3 \times k) + 1) \times 10 + 9$	1

Análisis 5

• Si el número actual es de la forma (3 x k) + 2 (es decir residuo 2) y le concateno un dígito, ¿Cuál es el nuevo residuo?

Nuevo Dígito	Nuevo Valor	Residuo
0	$((3 \times k) + 2) \times 10 + 0$	2
1	$((3 \times k) + 2) \times 10 + 1$	0
2	$((3 \times k) + 2) \times 10 + 2$	1
3	$((3 \times k) + 2) \times 10 + 3$	2
4	$((3 \times k) + 2) \times 10 + 4$	0
5	$((3 \times k) + 2) \times 10 + 5$	1
6	$((3 \times k) + 2) \times 10 + 6$	2
7	$((3 \times k) + 2) \times 10 + 7$	0
8	$((3 \times k) + 2) \times 10 + 8$	1
9	$((3 \times k) + 2) \times 10 + 9$	2

Construcción

- Sea \mathcal{I} el lenguaje sobre $\Sigma = \{0, 1, 2\}$ de hileras que representen un número en base 3 que **no sea divisible entre 5** (de base 10)
- Podemos suponer que la hilera vacía es equivalente a 0
- Diseñe un DFA que reconozca a $\mathcal I$

Análisis

- Si divido un número entre 5, ¿Cuáles son los posibles residuos?
 - 0,1,2,3,4
- ¿Qué significa ser divisible por 5?
 - o Ser de forma 5 x k
 - o Residuo 0
 - o Residuo 1,2,3 ó 4 significa que **no es divisible** por 5
- ¿Qué significa estar en base 3?
 - o Cada posición corresponde a una potencia de 3

Análisis 2

- Si el número actual es *n* y le concateno un nuevo símbolo *q* a la derecha, ¿Cuál es el nuevo valor?
- Nuevo valor es $(n \times 3) + q$
- Si a un número en base 3 y divisible por 5 le concateno un 0 a la derecha, ¿Cuál es el residuo?
 - o Antes \rightarrow 5 x k
 - o Después \rightarrow (5 x k) x 3 + 0 = 15 x k = 5 x k'
 - o Residuo al dividir entre 5 es 0
 - Sigue siendo divisible por 5
- Hacer el mismo análisis para los 3 dígitos

Análisis 3

• Si el número actual es de la forma **5 x k** (es decir, residuo 0) y le concateno un dígito, ¿Cuál es el nuevo residuo?

Nuevo Dígito	Nuevo Valor	Residuo
0	$(5 \times k) \times 3 + 0$	0
1	$(5 \times k) \times 3 + 1$	1
2	$(5 \times k) \times 3 + 2$	2

Análisis 4

• Si el número actual es de la forma (5 x k) + 1 (es decir, residuo 1) y le concateno un dígito, ¿Cuál es el nuevo residuo?

Nuevo Dígito	Nuevo Valor	Residuo
0	$((5 \times k) + 1) \times 3 + 0$	3
1	$((5 \times k) + 1) \times 3 + 1$	4
2	$((5 \times k) + 1) \times 3 + 2$	0

Análisis 5

• Si el número actual es de la forma (5 x k) + 2 (es decir, residuo 2) y le concateno un dígito, ¿Cuál es el nuevo resultado?

Nuevo Dígito	Nuevo Valor	Residuo
0	$((5 \times k) + 2) \times 3 + 0$	1
1	$((5 \times k) + 2) \times 3 + 1$	2
2	$((5 \times k) + 2) \times 3 + 2$	3

Análisis 6

• Si el número actual es de la forma (5 x k) + 3 (es decir, residuo 3) y le concateno un dígito, ¿Cuál es el nuevo residuo?

Nuevo Dígito	Nuevo Valor	Residuo
0	$((5 \times k) + 3) \times 3 + 0$	4
1	$((5 \times k) + 3) \times 3 + 1$	0
2	$((5 \times k) + 3) \times 3 + 2$	1

Análisis 7

• Si el número actual es de la forma (5 x k) + 4 (es decir, residuo 4) y le concateno un dígito, ¿Cuál es el nuevo residuo?

Nuevo Dígito	Nuevo Valor	Residuo
0	$((5 \times k) + 4) \times 3 + 0$	2
1	$((5 \times k) + 4) \times 3 + 1$	3
2	$((5 \times k) + 4) \times 3 + 2$	4

Construcción

Ejemplo 15

- Sea \mathcal{I} el lenguaje sobre $\Sigma = \{A, B\}$ de hileras que contengan un número par de As y un número impar de Bs
- Diseñe un DFA que reconozca a $\mathcal I$

- Sea \mathcal{I} el lenguaje sobre $\Sigma = \{A, B\}$ de hileras que contengan un número impar de As y un número impar de Bs
- ullet Diseñe un DFA que reconozca a ${\mathcal I}$

Ejemplo 17

- Sea \mathcal{I} el lenguaje sobre $\Sigma = \{A, B\}$ de hileras que contengan un número impar de As **o** un número impar de Bs
- Diseñe un DFA que reconozca a I
 NOTE: es número impar de As o número impar de B, es decir, donde alguno de los 2 sea impar se va a aceptar

Recuerde:

- Ser cuidadoso con los ε
- a. Restricción: es prohibido que pase un carro cuyo último número de la placa y el primer sean iguales. Al pasar una bicicleta no hay problema, ya que esta no tiene placa y la prohibición es para carros
- b. Restricción: sólo pueden pasar carros cuyo último número de la placa y el primer sean iguales. La bicicleta no puede pasar, porque no

tiene placa que evaluar.

Recomendaciones

Acá es fácil construir los autómatas: http://madebyevan.com/fsm/

Las instrucciones para dibujar son agiles, y los dibujos quedan similares a los de clase

Este es un simulador http://automatonsimulator.com/

Se pueden simular autómatas: DFA, NFA y PDA, es intuitivo de utilizar, aun así, les dejo algunas notas para iniciar a construir los autómatas.

Estados:

Agregar: clic en el cual es el tercer ícono arriba a la izquierda

Eliminar: clic en x que está sobre el estado

Arcos:

- Para crear un arco se arrastra el cursor del cuadro azul del estado a mi estado destino, y en la ventana corroboro el símbolo del arco
- Para borrar el arco, le doy clic y escojo la opción de borrado

Con los botones: la **flecha** corre la hilera en el autómata, el 2do botón detiene la ejecución y el 3ero se da la ejecución paso a paso