Lecture 7: Machine Architecture and Stored Program Concept (in Hardware)

.

The Architecture

- CPU
 - □ ALU
 - Control Unit
 - PC
 - IR
 - MM memory address
 - Registers
 - □ Buses connecting ALU and registers
- Main memory
 - □ Memory cell
 - Address
- Buses connecting CPU and Main memory

ALU

- The arithmetic logic unit (ALU) is the collection of circuitry that performs actual operations on data.
- Basic operations include
 - Addition
 - □ Subtraction
 - □ Bit manipulation (such as shifting or combing bits)

Registers

- Registers are memory locations that are built into the CPU.
- Data in registers can be accessed more quickly than the data in memory (as much as 5-10 times faster).
- Limited number of registers in CPU due to the cost (commonly 16 or 32 registers).

Buses

- Bus is a collection of wires which are responsible for transferring data between computer components.
- A set of buses inside CPU connect the registers to ALU.
- A bus Between CPU and memory connect the memory to CPU.

- The control unit (CU) can be thought as "the brain within the brain", in that it oversees the various functions of the CPU.
- The control unit is a set of circuitry.
- Control unit is in charge of
 - □ Fetching data from main memory to CPU
 - Fetching instructions from main memory to CPU
 - Controlling the flow of data from registers to the ALU as well as from ALU to registers
 - Controlling the operations of ALU
 - Storing data from CPU to main memory
 - ☐ Storing **instructions** from CPU to main memory
- Basic controlling means are setting the switches.

Basic Components: Switches (made by transistors)

PMOS transistor

NMOS transistor

The simulation link

Main Memory

- We can think of main memory as a large collection of memory locations (cells).
- Each location is labeled by an address (binary number).
- Each location can be accessed by given its address.
- A bus connects main memory to CPU.
- A little bit details
 - A memory address (a sequence of 0s and 1s) will activate a set of switches which select a specified memory location.
 - The switches connect this specified memory location to an interface connecting to the Memory-CPU bus.

More Details about Control Unit

- Program Counter (PC) contains the memory address of next instruction to be executed.
- Instruction register (IR) contains the instruction that the control unit is currently executing.
- Configuration of switches for
 - ALU
 - □ ALU-register bus
 - Memory-CPU bus
 - □ Addresses of selected registers
 - □ Address of selected memory

Instruction Cycle

- Fetch the instruction from main memory whose address is in the PC (program counter).
 - □ Store the instruction in IR (instruction register)
 - □ Increase the instruction address in PC by 1
- The control unit (CU) decodes the instruction and figure out the configuration of the switches to select the registers, buses, memory, etc.
- The control unit (CU) executes the instructions by activating the switches following the configuration given figured out above.
- A little bit more details: Some instruction (e.g. Jump xxx) is just intended to modify the content of PC, so as to modify the execution path of the program.

Speed of Today's Computer

 Millions or billions of instructions are being executed in one second in modern computer

Summary

- The computer architecture
- CPU: ALU, Control Unit, Buses
- Main memory
- Instruction cycle