Lecture 1: Human Visual Perception

เนื้อหา: การมองเห็นของมนุษย์เกี่ยวข้องกับการรับรู้ภาพจากเซลล์รับแสง (cones และ rods) ที่อยู่ในเรตินา โดยสมอง จะประมวลผลข้อมูลภาพจากดวงตา ซึ่งมีการเปรียบเทียบกับการประมวลผลภาพในคอมพิวเตอร์ เช่น การปรับปรุง ภาพ (Image Enhancement) และการตรวจจับวัตถุ (Object Detection)

Filter **ที่เกี่ยวข้อง** : ไม่มีการกล่าวถึงฟิลเตอร์โดยตรง แต่มีการเน้นเรื่องการรับรู้ภาพและการทำงานของดวงตาที่คล้าย กับการประมวลผลภาพดิจิทัล

slide 1-3: เนื้อหาบทเรียนเริ่มต้นด้วยการแนะนำภาพรวมของวิชาประมวลผลภาพ (Image Processing) และกล่าวถึง ความสำคัญของการศึกษาเกี่ยวกับดวงตาของมนุษย์ในบริบทของการประมวลผลภาพ

Slide 4-6: อธิบายเกี่ยวกับโครงสร้างของดวงตาและการทำงานของดวงตา ซึ่งมีส่วนประกอบหลักได้แก่:

- Cornea : เป็นเนื้อเยื่อโปร่งใสที่ครอบคลุมส่วนหน้าของดวงตา
- Lens : ทำหน้าที่ปรับให้ดวงตาสามารถโฟกัสวัตถุใกล้ไกลได้
- Retina : ชั้นในสุดที่มีเซลล์รับแสง (cones และ rods) ซึ่งสำคัญในการรับรู้ภาพ
- Slide 7-9: เปรียบเทียบเลนส์ของดวงตากับเลนส์ของกล้อง โดยอธิบายความแตกต่างระหว่างการทำงานของทั้งสอง รวมถึงการปรับโฟกัสในดวงตาเมื่อมองเห็นวัตถุใกล้และไกล
- Slide 10-12: กล่าวถึงเทคโนโลยีใหม่ ๆ เช่น **กล้องมือถือ Xiaomi Mi Mix Fold** ซึ่งใช้เลนส์เหลวที่สามารถปรับ รูปแบบได้ ทำให้สามารถถ่ายภาพเทเลโฟโต้และมาโครได้ด้วยเลนส์เดียวกัน
- Stide 13-14: แสดงให้เห็นถึงการเปรียบเทียบการมองเห็นระหว่างมนุษย์และสัตว์ โดยระบุว่าดวงตาของสัตว์บางชนิด สามารถมองเห็นในมุมมองที่แตกต่างจากมนุษย์ได้มาก
- Slide 15-17: อธิบายเกี่ยวกับข้อจำกัดในการรับรู้ของมนุษย์ เช่น ภาพลวงตา **koffka Ring** ที่แสดงให้เห็นว่าการ มองเห็นของมนุษย์สามารถถูกหลอกลวงได้
- Stide 18-22: แสดงให้เห็นถึงความไม่แม่นยำของการมองเห็นในบางครั้ง และยกตัวอย่างการทดสอบภาพลวงตาที่ สมองมนุษย์อาจเข้าใจผิดไปจากความเป็นจริง
- Slide 23-25: ย้ำถึงความสำคัญของการทำความเข้าใจดวงตาและการมองเห็นในบริบทของการประมวลผลภาพ ซึ่ง นำไปสู่การพัฒนากล้องถ่ายภาพและเทคโนโลยีภาพอื่น ๆ ที่มีความซับซ้อนมากขึ้น

Lecture 2: Point Operation

เนื้อหา: การเปลี่ยนแปลงค่าความเข้ม (Intensity Transformation) และการปรับความเปรียบต่างของภาพ เช่น Negative, Logarithmic และ Power-law Transformation

Filter ที่เกี่ยวข้อง ไม่มี แต่มีการกล่าวถึง Point Operation ที่เป็นการเปลี่ยนแปลงค่าพิกเซลเฉพาะจุด เช่น Contrast Stretching ที่ปรับระดับความเข้มเพื่อให้เห็นรายละเอียดชัดเจนขึ้น Lecture 3: Filtering (Part 1)

เนื้อหา: การใช้ฟิลเตอร์ในโดเมนของพื้นที่ (Spatial Domain) เพื่อปรับปรุงภาพ เช่น การเบลอภาพหรือทำให้ภาพคมชัด ขึ้น

Filter ที่เกี่ยวข้อง :

Linear Spatial Filtering : ฟิลเตอร์ที่ใช้คำนวณค่าพิกเซลใหม่จากพิกเซลรอบๆ เช่น Average Filter, Gaussian Filter Sobel Filter: ใช้สำหรับตรวจจับขอบของวัตถุ Sharpening Filter: ใช้ทำให้ภาพคมชัดขึ้น

Lecture 3: Filtering (Part 1)

Slide 1-3: แนะนำการใช้งาน **Filtering** ในโดเมนพื้นที่ (Spatial Domain) โดยมีการใช้คอนเซปต์ของการคำนวณค่าใหม่ ของพิกเซลจากพิกเซลรอบข้าง เพื่อการลบ noise หรือปรับภาพให้คมชัดขึ้น

Slide 4-6: อธิบายการทำงานของ **Linear Spatial Filtering** เช่น **Average Filter** ซึ่งใช้สำหรับการลบ noise โดยการ เฉลี่ยค่าความเข้มของพิกเซลรอบข้าง การใช้ **Gaussian Filter** สำหรับการเบลอภาพโดยใช้ Gaussian distribution slide 7-9: การใช้ Sobel Filter สำหรับการตรวจจับขอบของภาพโดยการคำนวณค่าความเปลี่ยนแปลงในทิศทางของ gradient การใช้ Sharpening Filter เพื่อเพิ่มความคมชัดของภาพ

Lecture 4: Filtering (Part 2)

เนื้อหา : เน้นการลับขอบภาพและการตรวจจับขอบวัตถุในภาพ (Edge Detection) ซึ่งขอบภาพเป็นส่วนสำคัญในการ วิเคราะห์ภาพ

Filter ที่เกี่ยวข้อง

- Sobel Filter ฟิลเตอร์ที่ใช้ตรวจจับขอบโดยคำนวณค่า gradient ของภาพ
- Laplacian Filter ใช้ตรวจจับขอบด้วยการคำนวณค่า second-order derivative
- Bilateral Filter ฟิลเตอร์ที่ช่วยลด noise ในภาพโดยยังคงรักษาขอบวัตถุให้ชัดเจน
- Non-linear Filters ใช้สำหรับลบ noise โดยไม่ทำลายรายละเอียดขอบในภาพ

Lecture 4: Filtering (Part 2)

Slide 1-3:แนะนำการตรวจจับขอบภาพ (Edge Detection) โดยเน้นการใช้งาน **Sobel Filter** และ **Laplacian Filter** ซึ่งช่วยในการตรวจจับขอบวัตถุในภาพ

Slide 4-6: การลับขอบภาพด้วย **Laplacian Filter** ซึ่งคำนวณค่า second-order derivative ของภาพเพื่อเน้นขอบวัตถุ

- การใช้ **Bilateral Filter** สำหรับการลด noise โดยยังคงรักษารายละเอียดขอบวัตถุในภาพ

Slide 7-9: อธิบายการใช้งาน **Non-linear Filters** ที่ใช้ในการลบ noise โดยไม่ทำลายรายละเอียดของขอบ เช่น การลบ noise จากภาพโดยยังคงรักษารายละเอียดของวัตถุ

**Lecture 5: Frequency Domain Analysis*

- **เนื้อหา**: การวิเคราะห์ภาพในโดเมนความถี่ (Frequency Domain) โดยใช้ Fourier Transform เพื่อแยกสัญญาณ ออกเป็นความถี่ต่างๆ
- **Filter ที่เกี่ยวข้อง**:
- **Fourier Transform**: การแปลงภาพจากโดเมนเวลา (Time Domain) ไปเป็นโดเมนความถึ่
- **Low-pass Filter**: ฟิลเตอร์ที่กรองความถี่สูงออกจากภาพ ทำให้ภาพนุ่มนวลขึ้น
- **High-pass Filter**: ฟิลเตอร์ที่กรองความถี่ต่ำออกจากภาพ ทำให้ภาพคมชัดขึ้น

Slide 1-3:

อธิบายพื้นฐานของการวิเคราะห์ภาพในโดเมนความถี่ (Frequency Domain) โดยใช้ **Fourier Transform** ซึ่งใช้ในการ แปลงสัญญาณภาพจากโดเมนเวลาไปเป็นโดเมนความถี่

Slide 4-6:

- การแปลงภาพด้วย **Fourier Transform** เพื่อแยกสัญญาณออกเป็นความถี่ต่าง ๆ ทำให้สามารถใช้ **Low-pass Filter** และ **High-pass Filter** เพื่อปรับปรุงภาพได้

Slide 7-9:

- **Low-pass Filter** ใช้ในการกรองความถี่สูงออกจากภาพ ทำให้ภาพนุ่มนวลขึ้น
- **High-pass Filter** ใช้ในการกรองความถี่ต่ำออกจากภาพ ทำให้ภาพคมชัดขึ้นและเน้นขอบวัตถุ

Lecture 6: Image Restoration (Part 1) 【21†source】

- **เนื้อหา**: การคืนค่าภาพที่ถูกบิดเบือนด้วยการใช้ Point Spread Function (PSF) และการฟิลเตอร์เพื่อปรับปรุง คุณภาพของภาพ
- **Filter ที่เกี่ยวข้อง**:
 - **Point Spread Function (PSF)**: การใช้ PSF เพื่อจำลองการบิดเบือนของเลนส์หรือแสง
- **Inverse Filter**: ฟิลเตอร์ที่ใช้คืนค่าภาพที่ถูกเบลอหรือบิดเบือน

Slide 1-3:

แนะนำการคืนค่าภาพ (Image Restoration) ที่ถูกบิดเบือนหรือเบลอด้วย **Point Spread Function (PSF)** ซึ่งใช้ในการ จำลองการเบลอของเลนส

Slide 4-6:

- อธิบายการใช้ **Inverse Filter** เพื่อคืนค่าภาพที่ถูกบิดเบือนหรือเบลอโดยใช้ **PSF** #### Slide 7-9:
- การลบ noise และเบลอออกจากภาพโดยใช้การกรองเชิงคณิตศาสตร์เพื่อทำให้ภาพที่ถูกบิดเบือนกลับคืนสู่สภาพเดิม

Lecture 7: Image Restoration (Part 2)

- **เนื้อหา**: การคืนค่าภาพเพิ่มเติมจาก Lecture 6 โดยใช้เทคนิคการฟิลเตอร์แบบขั้นสูง
- **Filter ที่เกี่ยวข้อง**:
 - **Naïve Inverse Filter**: การฟิลเตอร์แบบย้อนกลับเพื่อลดการเบลอของภาพ
 - **Wiener Filter**: ฟิลเตอร์ที่ช่วยคืนค่าภาพที่ถูกบิดเบือนโดยไม่ขยาย noise
- **Regularization**: ใช้ในการแก้ปัญหา ill-posed problem โดยเพิ่ม regularizer term

Slide 1-3:

ต่อจาก Lecture 6 เน้นการใช้งาน **Wiener Filter** เพื่อคืนค่าภาพที่ถูกบิดเบือนและลดผลกระทบจาก noise #### Slide 4-6:

- **Naïve Inverse Filter** เป็นการฟิลเตอร์แบบย้อนกลับเพื่อลดการเบลอของภาพ #### Slide 7-9:
- อธิบายการใช้ **Regularization** ในการแก้ปัญหาภาพที่มีการบิดเบือนหรือ noise โดยการเพิ่มเทอมของ regularizer เพื่อทำให้ภาพคงค่าได้ดีขึ้น

Lecture 8: Camera Model

- **เนื้อหา**: การทำงานของกล้องถ่ายภาพ รวมถึงการคำนวณ Field of View (FOV) และการใช้เลนส์เพื่อโฟกัสภาพ
- **Filter ที่เกี่ยวข้อง**: ไม่มีฟิลเตอร์ที่กล่าวถึงโดยตรง แต่มีการกล่าวถึงการทำงานของกล้องและการบิดเบือนของ เลนส์

Slide 1-3:

แนะนำพื้นฐานการทำงานของกล้องถ่ายภาพ โดยใช้กล้องรูเข็ม (Pinhole Camera) และเลนส์ในการโฟกัสแสงเข้าสู่ เซนเซอร์

Slide 4-6:

- อธิบายวิธีการคำนวณ **Field of View (FOV)** และการเลือกเซนเซอร์และเลนส์ที่เหมาะสมสำหรับการถ่ายภาพ #### Slide 7-9:
- การใช้ **Pinhole Camera** และการคำนวณทิศทางของแสงในการจับภาพที่มีความละเอียดสูง

Lecture 9: Color Image Processing

- **เนื้อหา**: การประมวลผลภาพสีและการรับรู้สีของมนุษย์ รวมถึงการใช้ Color Models เช่น RGB, CMYK และ HSL
- **Filter ที่เกี่ยวข้อง**: ไม่มีการกล่าวถึงฟิลเตอร์เฉพาะเจาะจง แต่มีการใช้ **Color Space Transformations** เพื่อ ปรับแต่งสีในภาพ

Slide 1-3:

แนะนำการประมวลผลภาพสีและการรับรู้สีของมนุษย์ โดยมีการกล่าวถึง **Cone Cells** ในตาที่รับรู้แสงสีแดง (L), เขียว (M), และน้ำเงิน (S)

Slide 4-6:

- การใช้ **Color Models** เช่น **RGB** และ **CMYK** ในการอธิบายสีและการจัดการภาพสี

Slide 7-9:

- การใช้ **Color Space** เช่น **HSL**, **HSV** และ **HSI** เพื่อปรับแต่งสีในภาพให้เหมาะสมตามการใช้งาน

Lecture 10: Morphological Image Processing

- **เนื้อหา**: การประมวลผลภาพด้วยฟิลเตอร์ทางคณิตศาสตร์ที่ใช้กับภาพไบนารี (Binary Images) เพื่อปรับปรุง โครงสร้างของวัตถุในภาพ
- **Filter ที่เกี่ยวข้อง**:
 - **Dilation**: การขยายวัตถุโดยการเพิ่มพิกเซลในบริเวณขอบ
 - **Erosion**: การย่อวัตถุโดยการลบพิกเซลจากบริเวณขอบ
 - **Opening และ Closing**: การลบ noise และปรับโครงสร้างภาพด้วยการผสมผสาน Dilation และ Erosion
 - **Hit-or-Miss Transformation**: การตรวจจับรูปแบบเฉพาะในภาพ

Slide 1-3:

แนะนำการประมวลผลภาพแบบ **Morphological** ซึ่งใช้การคำนวณทางคณิตศาสตร์กับภาพไบนารี เช่นการขยาย (Dilation) และการย่อ (Erosion)

Slide 4-6:

- **Dilation** ใช้ในการขยายหรือทำให้วัตถุในภาพใหญ่ขึ้นโดยการเพิ่มพิกเซลบริเวณขอบ
- **Erosion** ใช้ในการย่อวัตถุในภาพโดยการลบพิกเซลบริเวณขอบ

Slide 7-9:

- การใช้ **Opening** และ **Closing** ซึ่งเป็นการผสมผสานระหว่าง Dilation และ Erosion เพื่อปรับปรุงโครงสร้างของ ภาพ

Lecture 11: Edge and Corner Detection

- **เนื้อหา**: การตรวจจับขอบและมุมในภาพโดยใช้ฟิลเตอร์ตรวจจับขอบ (Edge Detection)
- **Filter ที่เกี่ยวข้อง**:
- **Canny Edge Detector**: ใช้ **Gaussian Filter** เพื่อลบ noise และ **Sobel Filter** เพื่อตรวจจับขอบ
- **Harris Corner Detection**: ใช้ **Low-pass Filter** สำหรับการ smooth ค่าของ gradient ก่อนตรวจจับจุดมุม # Slide 1-3:

แนะนำการตรวจจับขอบในภาพ (Edge Detection) โดยใช้ **Canny Edge Detector** และ **Harris Corner Detection** #### Slide 4-6:

- การทำงานของ **Canny Edge Detector** ที่ประกอบด้วย 5 ขั้นตอนหลัก ได้แก่ การลบ noise, การคำนวณ gradient, และการใช้ non-maximum suppression เพื่อลดขนาดของขอบ

Slide 7-9:

- **Harris Corner Detection** ใช้ในการตรวจจับจุดมุมของวัตถุในภาพ โดยการคำนวณ covariance matrix และใช้ gradient smoothing ด้วย Low-pass filter

สรุป:

- **Lecture 3-11** มีการกล่าวถึงการใช้ **Filters** ในหลายรูปแบบ ตั้งแต่การ **Spatial Filtering** (Sobel, Gaussian) ไป จนถึง **Frequency Domain Filtering** (Fourier Transform, Low-pass/High-pass Filter) และ **Morphological Filters** (Dilation, Erosion) นอกจากนี้ยังมีการใช้ **Edge Detection Filters** เช่น Canny Edge Detector และ Harris Corner Detection