Math 494

Yiwei Fu

Jan 27, 2022

Finish the proof on Hilbert's Nullstellenstaz.

Corollary. If I is an ideal of $\mathbb{C}[x_1,\ldots,x_n]$ generated by f_1,\ldots,f_k , and V is the set of all $\alpha:=(\alpha_1,\ldots,\alpha_n)\in\mathbb{C}^n$ s.t. $f_i(\alpha)=0$ $\forall i$, then the maximal ideals of R/I are in bijection with V.

R/I is called the "coordinate ring".

Proof. Correpondence Theorem \implies maximal ideals of R/I are $\pi(M)$ where $\pi:R \twoheadrightarrow R/I$ and M is a maximal ideal of R containing I. (also $M \neq M' \implies \pi(M) \neq \pi(M')$)

An ideal M of R contains $I \iff M$ contains $f_i \forall i$.

M is maximal $\iff M = (x_1 - \alpha_1, x_2 - \alpha_2, \dots, x_n - \alpha_n)$. So $f_i \in M \iff f_i(\alpha) = 0$.

So the maximal idals of R containing I are $(x_1 - \alpha_1, \dots, x_n - \alpha_n)$ where $f_i(\alpha) = 0 \ \forall i$.

Lemma (Zorn's lemma). If a partially ordered set S in which every chain has a upper bound, then S has at least one maximal element.

Corollary. *If* R = ring *and* $I \neq (1)$ *is an ideal of* R, *then* I *is contained in a maximal ideal.*

Proof. Let $S = \{\text{ideals containing } I \text{ which aren't } (1)\}$ partially ordered under containment. If T is a totally ordered subset of S then let $J = \bigcup_{I' \in T} I'$. J is an ideal not containing (1). We can see that $J \in T$ and is an upper bounde of T.

By Zorn's lemma we conclude that S contains a maximal element, which is a maximum ideal containing I.

Corollary. If a ring R has no maximal ideals then R is the zero ring.

Corollary. If $f_1, \ldots, f_k \in R := \mathbb{C}[x_1, \ldots, x_k]$ have no common zeros in \mathbb{C}^n , then the ideal

 (f_1, \ldots, f_k) is (1) i.e.

$$1 = g_1 f_1 + \ldots + g_k f_k, g_1, \ldots, g_k \in \mathbb{C}[x_1, \ldots, x_k]$$

Proof. If $(f_1,\ldots,f_k)\neq (1)$ then it is contained in a maximal ideal of R which is $(x_1-\alpha_1,\ldots,x_n-\alpha_n)$ hwere $\alpha_1,\ldots,\alpha_n\in\mathbb{C}$ and $f_i(\alpha)=0\ \forall i\implies f_i$'s have a common zero, a contradiction.

Theorem (Bezout's theorem). If f(x, y) and g(x, y) are polynomials in $\mathbb{C}[x, y]$ with no (non-constant) common factor. Then they only have finitely many common zeros.

In fact

$$\#$$
of zeros \leq (total deg of $f(x,y)$) \cdot (total deg of $g(x,y)$).

Proof. We have $\mathbb{C}[x,y] = (\mathbb{C}[y])[x] \subseteq (\mathbb{C}(y))[x]$.

The ideal (f,g) in $(\mathbb{C}(y))[x]$ is principal, say it's (h) where $h \in (\mathbb{C}(y))[x]$. If $(h) \neq (1)$ then

$$h = \frac{h_1(x, y)}{u(y)}, h_1 \in \mathbb{C}[x, y], u \in \mathbb{C}[y], u \neq 0.$$

But u(y) is a unit in $\mathbb{C}(y)[x] \implies (h) = (h_1)$.

So we may assume $h \in \mathbb{C}[x,y], (h) \neq (1)$ and $h \mid f,h \mid g$ in $\mathbb{C}(y)[x]$

$$\implies hA = f, hB = g, \qquad A, B \in \mathbb{C}(y)[x]$$

$$\implies hA_1 = fu_1, hB_1 = gu_2, \qquad A_1, B_1 \in \mathbb{C}[x, y], u_1, u_2 \in \mathbb{C}[y]$$

If $g_1g_2 \in \mathbb{C}^*$ then there is a contradiction. So assume $u_1 \notin \mathbb{C}^*$. Then u_1 has a root α

$$\implies h(x,\alpha)A_1(x,\alpha) = 0 \text{ in } \mathbb{C}[x]$$

$$\implies h(x,\alpha) = 0 \text{ or } A_1(x,\alpha)$$

$$\implies y - \alpha \mid h(x,\alpha) \text{ or } y - \alpha \mid A_1(x,\alpha)$$