Mapping, Localization and Path Planning for Image-based Navigation using Visual Features and Map

Authors: Janine Thoma, Danda Pani Paudel, Ajad Chhatkuli, Thomas Probst, Luc Van Gool

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019

Outline

- Motivation
- Map representation
- Self localization
- Experimental results
- Conclusions

Motivation

- □ Feature matching plays an important rule in image-based localization
- □ Map representation problem is not well-addressed by current methods
- □ The order of query image sequences is often neglected

SeqSLAM (1/2)

□ Navigation for sunny summer days and stormy winter nights

Instead of calculating the single location most likely given a current image, calculates the best candidate matching location within every local navigation

sequence.

SeqSLAM (2/2)

Local best match

Fig. 2: Contrast enhancement of the original image difference vectors increases the number of strongly matching templates. Darker shading = smaller image difference = stronger match.

□ Sequence recognition

What they want to do

- □ Network flow problem (for map construction and localization)
 - maximum flow problem ...

Outline

- □ Motivation
- Map representation
- □ Self localization
- Experimental results
- Conclusions

summarize the reference images as a set of "landmarks"

Map representation (1/6)

□ Construct Graph *G*

 \blacksquare given database images I with their location coordinates X, and visual feature F

- 1. Construct $\mathcal{G} = \{\mathcal{V}, \mathcal{E}\}$ using \mathcal{I}, \mathcal{F} and \mathcal{X} (ref. Sec 4.1/(16)).
- 2. Compute capacity u_{ij} and rate c_{ij} for all $e_{ij} \in \mathcal{E}$, using (9).
- 3. Select anchor points $A \subset M$, by solving (10) for k-centers.
- 4. Compute the flow sensitivity ρ_{ij} for all $e_{ij} \in \mathcal{E}$, using (13).
- 5. Solve the flow problem (17) for sources S and targets T.
- 6. Derive \hat{y}_i for all $v_i \in \mathcal{V}$ from y_{ij} . Return, $\mathcal{V}' = \{v_i : \hat{y}_i \geq \tau\}$.

Graph obtained by *I*, *X*

Map representation (2/6)

- □ Navigation assurance the design of flow capacity u_{ij} and flow cost rate c_{ij}
 - $\mathbf{u}_{ij} = \lambda_x d(x_i, x_j), where d(x_i, x_j) \leq \alpha, \forall e_{ij} \in E$
 - encourage the flow to make bigger geometric jumps
 - $c_{ij} = \lambda_f/d (f_i, f_j)$
 - encourage the distinctive consecutive features along the flow path

- 1. Construct $\mathcal{G} = \{\mathcal{V}, \mathcal{E}\}$ using \mathcal{I}, \mathcal{F} and \mathcal{X} (ref. Sec 4.1/(16)).
- 2. Compute capacity u_{ij} and rate c_{ij} for all $e_{ij} \in \mathcal{E}$, using (9).
- 3. Select anchor points $A \subset M$, by solving (10) for k-centers.
- 4. Compute the flow sensitivity ρ_{ij} for all $e_{ij} \in \mathcal{E}$, using (13).
- 5. Solve the flow problem (17) for sources S and targets T.
- 6. Derive \hat{y}_i for all $v_i \in \mathcal{V}$ from y_{ij} . Return, $\mathcal{V}' = \{v_i : \hat{y}_i \geq \tau\}$.

Graph with u_{ij} , c_{ij} settings

Map representation (3/6)

- □ Geometric representation introduce anchor points
 - \blacksquare anchors points finding problem \rightarrow k-Center problem (NP-hard)

- 1. Construct $\mathcal{G} = \{\mathcal{V}, \mathcal{E}\}$ using \mathcal{I}, \mathcal{F} and \mathcal{X} (ref. Sec 4.1/(16)).
- 2. Compute capacity u_{ij} and rate c_{ij} for all $e_{ij} \in \mathcal{E}$, using (9).
- 3. Select anchor points $A \subset M$, by solving (10) for k-centers.
- 4. Compute the flow sensitivity ρ_{ij} for all $e_{ij} \in \mathcal{E}$, using (13).
- 5. Solve the flow problem (17) for sources S and targets T.
- 6. Derive \hat{y}_i for all $v_i \in \mathcal{V}$ from y_{ij} . Return, $\mathcal{V}' = \{v_i : \hat{y}_i \geq \tau\}$.

Map representation (4/6)

- □ **Visual representation** introduce flow sensitivity
 - new cost rate: $b_{ij} = c_{ij} + \frac{y_{ij}}{1 y_{ij}/u_{ij}} \times \rho_{ij}$, where $\rho_{ij} = 1 \frac{d(f_i, f_j)}{\sum_{k \in N(x_i)} d(f_i, f_k)}$
 - encourage the flow spread around such that more than one landmark is selected

Algorithm 1 V' = selectLandmarks($\mathcal{I}, \mathcal{F}, \mathcal{X}, \mathcal{M}, \mathcal{S}, \mathcal{T}$)

- 1. Construct $\mathcal{G} = \{\mathcal{V}, \mathcal{E}\}$ using \mathcal{I}, \mathcal{F} and \mathcal{X} (ref. Sec 4.1/(16)).
- 2. Compute capacity u_{ij} and rate c_{ij} for all $e_{ij} \in \mathcal{E}$, using (9).
- 3. Select anchor points $A \subset M$, by solving (10) for k-centers.
- 4. Compute the flow sensitivity ρ_{ij} for all $e_{ij} \in \mathcal{E}$, using (13).
- 5. Solve the flow problem (17) for sources S and targets T.
- 6. Derive \hat{y}_i for all $v_i \in \mathcal{V}$ from y_{ij} . Return, $\mathcal{V}' = \{v_i : \hat{y}_i \geq \tau\}$.

Graph with yellow anchor points

Graph with updated cost rates

Map representation (5/6)

■ Map construction

- solve the network flow problem
 - to transport from S to T with minimal transportation cost: $\sum_{e_{ij} \in E} y_{ij} b_{ij}$
 - each cluster should satisfy $\sum_{v_i \in N(a)} \hat{y}_i \ge t_g$ (neighborhood flow threshold)

- 1. Construct $\mathcal{G} = \{\mathcal{V}, \mathcal{E}\}$ using \mathcal{I}, \mathcal{F} and \mathcal{X} (ref. Sec 4.1/(16)).
- 2. Compute capacity u_{ij} and rate c_{ij} for all $e_{ij} \in \mathcal{E}$, using (9).
- 3. Select anchor points $A \subset M$, by solving (10) for k-centers.
- 4. Compute the flow sensitivity ρ_{ij} for all $e_{ij} \in \mathcal{E}$, using (13).
- 5. Solve the flow problem (17) for sources S and targets T.
- 6. Derive \hat{y}_i for all $v_i \in \mathcal{V}$ from y_{ij} . Return, $\mathcal{V}' = \{v_i : \hat{y}_i \geq \tau\}$.

Graph with network flows

Map representation (6/6)

■ Map compactness

- \blacksquare the number of landmarks must be small, i.e. $|V'| \le N$
 - by gradually increasing the input flow and solve the network flow problem

- 1. Construct $\mathcal{G} = \{\mathcal{V}, \mathcal{E}\}$ using \mathcal{I}, \mathcal{F} and \mathcal{X} (ref. Sec 4.1/(16)).
- 2. Compute capacity u_{ij} and rate c_{ij} for all $e_{ij} \in \mathcal{E}$, using (9).
- 3. Select anchor points $A \subset M$, by solving (10) for k-centers.
- 4. Compute the flow sensitivity ρ_{ij} for all $e_{ij} \in \mathcal{E}$, using (13).
- 5. Solve the flow problem (17) for sources S and targets T.
- 6. Derive \hat{y}_i for all $v_i \in \mathcal{V}$ from y_{ij} . Return, $\mathcal{V}' = \{v_i : \hat{y}_i \geq \tau\}$

Landmarks are marked in orange color

Outline

- □ Motivation
- Map representation
- Self localization
- Experimental results
- Conclusions

With such a good map representation, how to do localization?

Self localization (1/3)

Graph matching problem

 \blacksquare graph setup (vertices V, edges \mathcal{E} w.r.t. geometric and feature measures)

Algorithm 2 \mathcal{L} = selfLocalization($\mathcal{V}', \mathcal{I}_p$)

- 1. Construct $\mathcal{G} = \{\mathcal{V}, \mathcal{E}\}$ using \mathcal{V}' and \mathcal{I}_p (ref. Fig. 2).
- 2. Compute rates $\{c_{ij}\}$ and capacities $\{u_{ij}\}$, using (18)–(19).
- 3. Obtain flows $\{y_{ij}\}$ by solving the flow problem (22).
- 4. Compute the location x_l using (20). Return, $\mathcal{L} = \{x_l\}_{l=1}^q$.

Self localization (2/3)

Visual matching

- □ flow cost rate: $c_{ij} = h\left(d(f_i, f_j)\right)$, $\forall e_{ij} \in \mathcal{E}_p$; $c_{ij} = 0$, $\forall e_{ij} \in \mathcal{E} \setminus \mathcal{E}_p$
- flow capacity: $u_{ij} = q$, $\forall e_{ij} \in \mathcal{E}_v$; $u_{ij} = 1$, $\forall e_{ij} \in \mathcal{E} \setminus \mathcal{E}_v$
 - ensure a query image cannot be matched to more than one landmark
 - while allow many query images to be matched to a landmark

Algorithm 2 \mathcal{L} = selfLocalization($\mathcal{V}', \mathcal{I}_p$)

- 1. Construct $\mathcal{G} = \{\mathcal{V}, \mathcal{E}\}$ using \mathcal{V}' and \mathcal{I}_p (ref. Fig. 2).
- 2. Compute rates $\{c_{ij}\}$ and capacities $\{u_{ij}\}$, using (18)–(19).
- 3. Obtain flows $\{y_{ij}\}$ by solving the flow problem (22).
- 4. Compute the location x_l using (20). Return, $\mathcal{L} = \{x_l\}_{l=1}^q$.

 $c_{ij} = 0$ $u_{ij} = q$ $c_{i} = 0$ $c_{i} = k(d(f_{i}, f_{j}))$ $\sum_{i} y_{i3} \times_{i}$ $\sum_{i} y_{i1} \times_{i}$

^{*} solved by Second Order Cone Programming (SOCP)

Self localization (3/3)

Geometric matching

- infer the geometric locations of the query images
- □ location: $x_l = \sum_{v_i \in v'} x_i y_{il}$ for $p_l \in P$, where $\sum_i y_{il} = 1$
- $\left| \sum_{v_i \in v'} x_i y_{i(l+1)} \sum_{v_i \in v'} x_i y_{il} \right| \le r, \forall p_l, p_{l+1} \in P$

Algorithm 2 $\mathcal{L} = \text{selfLocalization}(\mathcal{V}', \mathcal{I}_p)$

- 1. Construct $\mathcal{G} = \{\mathcal{V}, \mathcal{E}\}$ using \mathcal{V}' and \mathcal{I}_p (ref. Fig. 2).
- 2. Compute rates $\{c_{ij}\}$ and capacities $\{u_{ij}\}$, using (18)–(19).
- 3. Obtain flows $\{y_{ij}\}$ by solving the flow problem (22).
- 4. Compute the location x_l using (20). Return, $\mathcal{L} = \{x_l\}_{l=1}^q$.

Outline

- □ Motivation
- Map representation
- □ Self localization
- Experimental results
- □ Conclusion

Dataset & visual features

Datasets

- Indoor: the COLD-Freiburg database
- Outdoor: the Oxford Robotcar database

Visual features

Obtained by NetVLAD and VGG16 FC3

Representation comparison

Distribution of normalized feature and geometric distances between reference set V and geometric nearest neighbors in the summarized reference set V' (|V| = 4833 |V'| = 250, rainy Oxford Robotcar sequence 2015-10-29 12:18:17)

Difference of top-1 matches

□ (Left): original top-1 matches; (Right): refined top-1 matches between a rainy sampled reference and an overcast query sequence of Oxford Robotcar dataset

2015/10/29 Time: 12:18:17 GMT Size: 210GB ✓ rain

2015/02/13 Time: 09:16:26 GMT Size: 195GB

⊘overcast

Compare to SeqSLAM

- □ Tolerance of 80m, SeqSLAM reaches 60.9% while our method reaches 68.7%
- □ Top 1 initial and Top 5 initial are the localization without sequence information

Accuracy vs. Distance (1/2)

□ Rainy sequence for reference

uniform map vs. our map

benefit from matching?

our matching vs. SeqSLAM

```
...... Top-1 uniform map + our matching
..... Top-1 uniform map + SeqSLAM
```


Accuracy vs. Distance (2/2)

...... Top-1 uniform map + our matching

Second sunny sequence for reference

□ First cloudy, night, sunny sequences for query

COLD-Freiburg

..... Top-1 uniform map + SeqSLAM

····· Top-1 initial

Some failure cases (ours and SeqSLAM)

□ fails on sequences with non-distinctive image features, such as the outdoor night

sequences in the Oxford Robotcar dataset

150

100

Distance [m]

Outline

- □ Motivation
- Map representation
- □ Self localization
- Experimental results
- Conclusions

Conclusions

- □ Formulated requirements for map building, and self localization
- □ Based on these requirements, experiments show the benefit during localization