ME 3109: Measurement & Instrumentation

Azmir Hasan Mojumder

Lecturer

Department of Mechanical and Production Engineering Ahsanullah University of Science and Technology

ME 3109: Measurement & Instrumentation

Topic_06: Data Acquisition System ^[1]				
1	Signals			
2	A/D Conversion			
3	D/A Conversion			
4	DAS			

[1] Figliola's "Theory & Design for Mechanical Measurements", 5th Edition

(C) AHM

1. Signals

- Continuous in time
- Exact time dependent behaviors
- most natural processes
- -- 10 to + 10 V or 4 to 20 mA

Signals: They are defined by how they convery information.

Amplitude, state, frequency. - useful!

pulse width, phase

1. Signals

- Information available only at discrete time
- Results from sampling at repeated finite time interval
- No nestriction on the amplitude of the signal

1. Signals

2. A/D Conversion Compromise

2. A/D Conversion Compromise

Analog Side

EFSR

Digital Side

M-bit Registers

2M-poserible binary value

Resolution: Smallest voltage increment that causes a bit change. $Q = \frac{E_{FSR}}{2}M$

- Quantization ennow is the whenent uncentainty in the A/D conversion due to the finite resolution of the system

2. A/D Conversion Errors

Bits	Q ^a	SNR
M	(V/bit)	(dB)
2	2.50	12
4	0.625	24
8	0.0390	48
12	0.00244	72
16	$0.153 (10^{-3})$	96
18	0.0381 (10 ⁻³)	108

 a Assumes $E_{\rm FSR} = 10$ V.

* Saturation Ennor and Convension Ennor

2. Successive Approximation ADC

Sequence	Register	E*	E;	Comparator
Initial status	0000	0	10.1	
MSB set to 1	1000	7.5	10.1	High
Leave at 1	1000	7.5		
Next highest bit set to 1	1100	11.25		Low
Reset to 0	1000	7.5	10.1	
Next highest bit set to 1	1010	9.375		High
Leave at 1	1010	9.375		
LSB set to 1	1011	10.3125	10.1	Low
Reset to 0	1010	9.375		
• 4-bis	5 v }			0.9375
*	1000 -	8×6	2 = 7	·5 V
		I	/A	

2. A/D Conversion

Ramp (Integrating) Converters

Time is integrated by a counter that increases the register value by 1 bit at each time step. Time step size depends on the value of 2^M . When the input voltage and ramp voltage magnitudes cross during a time step, the comparator output goes to zero, which flips a flip-flop halting the process. The register count value then indicates the digital binary equivalent of the input voltage.

2. A/D Conversion

Dual Ramp/Slope Integrating Converters

2. A/D Conversion

Parallel/Flash Converters

3. D/A Conversion

Typical values for $E_{\rm FSR}$ are 0 to 10 V (unipolar) and

 ± 5 V (bipolar) and for M are 8, 12, 16, and 18 bits.

4. DAS

Reading

Theory and Design for Mechanical Measurements, 7th Edition, *Richard S. Figliola & Donald E. Beasley*

- Chapter 2
 - **✓** 2.1, 2.2
- Chapter 7
 - **√** 7.1-7.7
 - ✓ Example problem: 7.3, 7.4, 7.5, 7.6

15

ME 3109: Measurement & Instrumentation

Thank you