I dati del Titanic

Data Mining CLAMSES - University of Milano-Bicocca

Aldo Solari

Riferimenti bibliografici

Si consiglia la lettura di Varian (2014) Big Data: New Tricks for Econometrics. In particolare

- l'esempio Titanic (sezione Classification and Regression Trees)
- il codice R utilizzato (potete scaricare il dataset nella sezione Additional Materials)

La competizione Kaggle Titanic: Machine Learning from Disaster. In particolare

- Exploring Survival on the Titanic : è un buon tutorial da cui partire
- Tidy TitaRnic : fornisce un buon esempio di EDA
- Titanic using Name only : fornisce un buon esempio di feature engineering

Table of Contents

Problema di classificazione

I dat

Valori mancant

Analisi esplorativa

Feature engineering

Il contesto della classificazione

Siano $(X,Y) \in \mathcal{X} \times \mathcal{Y}$ variabili casuali con distribuzione congiunta (ignota), dove

 $Y \in \{0,1\}$ è una variabile risposta binaria

$$X = (X_1, \dots, X_p)^\mathsf{T}$$
 sono p predittori

Un classificatore è una funzione $\hat{h}: \mathcal{X} \mapsto \{0,1\}$. L'errore di classificazione di \hat{h} è definito da

$$\operatorname{Err}(\hat{h}) = \mathbb{P}(Y \neq \hat{h}(X))$$

E' possibile mostrare che l'errore di classificazione è minimizzato dal classificatore di Bayes

$$h_{\text{Bayes}}(x) = \begin{cases} 1 & \text{se } \mathbb{P}(Y=1|X=x) > 1/2 \\ 0 & \text{altrimenti} \end{cases}$$

Errore stocastico e di approssimazione

Sia

$$h^* = \arg\min_{h \in \mathcal{H}} \operatorname{Err}(h)$$

dove \mathcal{H} è la classe di classificatori considerata.

L'errore di previsione si può scomporre in errore stocastico $\hat{h}-h^*$ ed errore di approssimazione $h^*-h_{\rm Bayes}$

Errore di training e di test

Training set: $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$

Test set: $(x_1^*, y_1^*), (x_2^*, y_2^*), \dots, (x_m^*, y_m^*)$

Errore di classificazione (training set)

$$Err_{Tr} = \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\{y_i \neq \hat{h}(x_i)\}$$

Errore di classificazione (test set)

$$\operatorname{Err}_{\operatorname{Te}} = \frac{1}{m} \sum_{i=1}^{m} \mathbb{I} \{ y_i^* \neq \hat{h}(x_i^*) \}$$

Accuratezza (test set)

$$Acc_{Te} = 1 - Err_{Te}$$

Table of Contents

Problema di classificazione

I dati

Valori mancant

Analisi esplorativa

Feature engineering

Il disastro

Il 15 aprile 1912, durante il suo viaggio inaugurale, il Titanic affondò dopo essersi scontrato con un iceberg, causando la morte di 1502 persone (su 2224 tra passeggeri ed equipaggio)

Training set di n=891 passeggeri, sui quali sono state misurate 10 variabili (predittori)

L'obiettivo è prevedere la sorte (1 = sopravissuto, 0 = deceduto) di m=418 passeggeri del test set

```
$ pclass : int  3 1 3 1 3 3 1 3 3 2 ...
$ survived: int  0 1 1 1 0 0 0 0 1 1 ...
$ name : chr "Braund, Mr. Owen Harris" "Cumings, Mrs.
$ sex : chr "male" "female" "female" "female" ...
```

\$ age : num 22 38 26 35 35 NA 54 2 27 14 ...

\$ ticket : chr "A/5 21171" "PC 17599" "STON/O2. 3101282"

\$ fare : num 7.25 71.28 7.92 53.1 8.05 ...
\$ cabin : chr "" "C85" "" "C123" ...
\$ embarked: chr "S" "C" "S" "S" ...

\$ sibsp : int 1 1 0 1 0 0 0 3 0 1 ...
\$ parch : int 0 0 0 0 0 0 1 2 0 ...

Si veda questo file di informazioni sulle variabili

Table of Contents

Problema di classificazione

I dati

Valori mancanti

Analisi esplorativa

Feature engineering

Tariffa (fare)

```
pclass survived name

1282 3 <NA> Storey, Mr. Thomas

sex age sibsp parch ticket fare

1282 male 60.5 0 0 3701 NA

cabin embarked survived01

1282 <NA> S NA
```

Sostituzione del valore mancante

	pclass	${\tt embarked}$	fare
1	1	C	76.7292
2	2	C	15.3146
3	3	C	7.8958
4	1	Q	90.0000
5	2	Q	12.3500
6	3	Q	7.7500
7	1	S	52.0000
8	2	S	15.3750
9	3	S	8.0500

Porto di imbarcazione (embarked)

```
pclass survived
62
            Alive
             Alive
830
                                      name
62
                        Icard, Miss. Amelie
830 Stone, Mrs. George Nelson (Martha Evelyn)
      sex age sibsp parch ticket fare
62
   female 38 0 0 113572
                               80
830 female 62
                       0 113572 80
   cabin embarked survived01
62
     B28
             <NA>
830
     B28
             <NA>
```

Table of Contents

Problema di classificazione

I dati

Valori mancanti

Analisi esplorativa

Feature engineering

Modello nullo

Training set: il 38.38% dei passeggeri è sopravvissuto

Il modello nullo utilizza solo y e prevede tutti i passeggeri del test set nella classe "non sopravvissuto"

Accuratezza delle previsioni sul test set : 62.2%

Tabella di confusione:

	Death	Alive
Death	260	158

Genere (sex)

Prima le donne?

Modello con solo il genere

Questo modello classifica i passeggeri del test set in funzione del sesso: se donna, sopravvissuta, se uomo, deceduto.

Tabella di confusione:

	Death	Alive
Alive	46	106
Death	214	52

Accuratezza: 76.5%

Classe (pclass)

I passeggeri che viaggiavano in prima classe hanno avuto maggiore probabilità di sopravvivenza?

Modello con solo la classe

Questo modello classifica i passeggeri del test set in funzione della classe: se prima, sopravvissuto, se seconda o terza, deceduto.

Tabella di confusione:

Death	Alive
43	64
217	94
	43

Accuratezza: 67.2%

Età (age)

Prima i bambini? Qual è la relazione tra età e sopravvivenza?

glm(survived ~ age, train, family="binomial")

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	-0.19	0.17	-1.16	0.25
age	-0.01	0.01	-1.83	0.07

Età e classe

Albero di classificazione

Regola decisionale

Status	Pr(Death)	Prediction
Class 3	76%	Death
Class 1-2, younger than 18	9%	Alive
Class 2, older than 18	56%	Death
Class 1, older than 18	39%	Alive

Albero di classificazione con età e classe

Tabella di confusione:

	Death	Alive
Death	215	86
Alive	45	72

Accuratezza: 68.6%

Modello logistico

Predictors	Acc.Tr	Acc.Te
1	61.6%	62.2%
age	61.6%	62.2%
pclass	67.9%	67.2%
sex	78.7%	76.6%
age + pclass	69.1%	65.3%
age + sex	78.7%	76.6%
pclass + sex	78.7%	76.5%
age + pclass + sex	79.5%	75.6%

Come migliorare il modello gender-only?

Per migliorare il modello sex-only, dobbiamo capire

- quali maschi sopravvivono
- quali femmine muoiono

Età e genere

Molti maschi sopravvissuti sono tra i giovani

Classe e genere

La maggior parte delle femmine che muoiono viaggiano in terza classe

21/40 maschi sotto i 16 anni sopravvivono

table(train\$survived[train\$sex=='male' & train\$age<16])</pre>

72/144 femmine che viaggiano in III classe non sopravvivo table(train\$survived[train\$sex=='female'&train\$pclass==3])

Death Alive

Death Alive 72.

72

19 21

Table of Contents

Problema di classificazione

I dati

Valori mancanti

Analisi esplorativa

Feature engineering

Cabina

the first character of cabin is the deck
table(substr(combi\$cabin, 1, 1))

Titolo

```
combi$name[1]
"Braund, Mr. Owen Harris"
table(combi$title)
                Col. Countess.
    Capt.
               Dona.
     Don.
                            Dr.
Jonkheer.
               Lady.
                         Major.
  Master.
                          Mlle.
               Miss.
                 260
       61
     \texttt{Mme}.
                 Mr.
                           Mrs.
                 757
                           197
      Ms.
                Rev.
                           Sir.
```

Titolo

Uomo, ragazzo e donna

Distribuzione di frequenza dei cognomi

famiglie con almeno 5 componenti
table(combi\$surname[combi\$surnameFreq>4])

Andersson	Asplund	Brown
11	8	6
Carter	Davies	Ford
6	7	6
Fortune	Goodwin	Johnson
6	8	6
Kelly	Lefebre	Palsson
5	5	5
Panula	Rice	Ryerson
6	6	5
Sage	Skoog	${\tt Smith}$
11	6	6
Thomas	Williams	
5	5	

Modello Gender Surname

Modello Gender Surname

Training set - tabella di confusione :

	Death	Alive
Alive	31	253
Death	518	89

Training set - Accuratezza : 86.5%

Test set - tabella di confusione :

	Death	Alive
Alive	38	113
Death	222	45

Test set - Accuratezza : 80.1%

Confronto tra modelli

Model	Acc.Tr	Acc.Te
All-dead	61.6%	62.2%
Gender-only	78.7%	76.6%
Gender surname	85.5%	80.1%