Code ▼

6210422036: Tanat lempreedee

Hide

library(ggplot2)
library(fpp2)
library(forecast)
library(GGally)

data <- read.table('c5p9.csv',sep=',',header=TRUE)
data</pre>

Area <int></int>	AS <int></int>	INC <int></int>	POP <dbl></dbl>
1	185792	23409	133.17
2	85643	19215	110.86
3	97101	20374	68.04
4	100249	16107	99.59
5	527817	23423	289.52
6	403916	19426	339.98
7	78283	18742	89.53
8	188756	18553	155.78
9	329531	21953	248.95
10	91944	16358	102.13
1-10 of 10 rows			

Correlations

Hide

Fit linear regression

Hide

```
reg <- lm(AS~INC+POP, data=data)
summary(reg)</pre>
```

```
Call:
lm(formula = AS \sim INC + POP, data = data)
Residuals:
  Min
          1Q Median
                      3Q
                              Max
-46425 -32764 -1817 17198 89799
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) -3.075e+05 1.263e+05 -2.435 0.045076 *
           1.456e+01 6.884e+00 2.115 0.072276 .
POP
            1.397e+03 1.875e+02 7.452 0.000143 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 47640 on 7 degrees of freedom
Multiple R-squared: 0.9295,
                             Adjusted R-squared:
F-statistic: 46.17 on 2 and 7 DF, p-value: 9.288e-05
```

1) Estimate values for b_0, b_1, b_2 for model

- $\beta_0 = -307500$
- $\beta_1 = 14.56$
- $\beta_2 = 1397$

AS = -307500 + 14.56(INC) + 1397(POP)

2) Are the signs you find for the coefficients consistent with your expectations?

Both coefficients for INC and POP are positive

- Area with higher income should have a higher sales
- Also, greater population should increase the sales

3) Are the coefficients for the two explanatory variables significantly different from zero?

- INC: β_1 is significantly different from zero but at significance level of 0.9
- POP: β_2 is significantly different from zero

4) What percentage of the variation in AS is explained by this model

R-squared = 0.9295

This model can explain the variation in AS by 92.95%

5) What point estimate of AS would you make for a city where INC=23175 and POP=128.07? Also find the 95% prediction interval

newX <- data.frame(INC=23175, POP=128.07)
forecast(reg, newdata = newX)</pre>

	Point Forecast	Lo 80	Hi 80	Lo 95	Hi 95
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	208811.3	128328.6	289294	74308.43	343314.2
1 row					

- Point estimate = 208,811.3
- Prediction interval = [74308.43, 343314.2]