Efficient Algorithms for Geometric Partial Matching

Pankaj K. Agarwal Hsien-Chih Chang Allen Xiao

Department of Computer Science, Duke University

June 2019

Geometric (bipartite) matching

Geometric (bipartite) matching

Geometric (bipartite) matching

Geometric (bipartite) partial matching

Prior work

	approx.	time	
Hungarian algorithm (Kuhn)	exact	$O(km + k^2 \log n)$	$q \ge 1$
		$O(kn \operatorname{polylog} n)$	
Ramshaw, Tarjan 2012	exact ¹	$O(m\sqrt{k}\log(kC))$	$q \ge 1$
	$(1+\varepsilon)$	$O(n\sqrt{k}\operatorname{polylog} n\log(1/\varepsilon))$	
Sharathkumar, Agarwal 2012	$(1+\varepsilon)$	$O(n\operatorname{poly}(\log n, 1/\varepsilon)$	q = 1
new (Hungarian)	1	$O((n+k^2)\operatorname{polylog} n)$	$q \ge 1$
new (cost-scaling)	$(1+\varepsilon)$	$O((n+k\sqrt{k}) \operatorname{polylog} n \log(1/\varepsilon))$	$q \ge 1$

¹Assuming integer costs $\leq C$.

- ► Reduced cost: $c_{\pi}(v \rightarrow w) := c(v \rightarrow w) \pi(v) + \pi(w)$
- lacktriangledown heta-optimality: $c_{\pi}(v{
 ightarrow}w)\geq - heta$ on all residual arcs
- ▶ admissible residual arcs: $c_{\pi}(v \rightarrow w) \leq 0$

- ► Reduced cost: $c_{\pi}(v \rightarrow w) := c(v \rightarrow w) \pi(v) + \pi(w)$
- lacktriangledown heta-optimality: $c_{\pi}(v{
 ightarrow}w)\geq - heta$ on all residual arcs
- ▶ admissible residual arcs: $c_{\pi}(v \rightarrow w) \leq 0$

- ► Reduced cost: $c_{\pi}(v \rightarrow w) := c(v \rightarrow w) \pi(v) + \pi(w)$
- lacktriangledown heta-optimality: $c_{\pi}(v{
 ightarrow}w)\geq - heta$ on all residual arcs
- ▶ admissible residual arcs: $c_{\pi}(v \rightarrow w) \leq 0$

- ► Reduced cost: $c_{\pi}(v \rightarrow w) := c(v \rightarrow w) \pi(v) + \pi(w)$
- lacktriangledown heta-optimality: $c_{\pi}(v{ o}w) \geq - heta$ on all residual arcs
- ▶ admissible residual arcs: $c_{\pi}(v \rightarrow w) \leq 0$

- ► Reduced cost: $c_{\pi}(v \rightarrow w) := c(v \rightarrow w) \pi(v) + \pi(w)$
- lacktriangledown heta-optimality: $c_{\pi}(v{ o}w) \geq - heta$ on all residual arcs
- ▶ admissible residual arcs: $c_{\pi}(v \rightarrow w) \leq 0$

- ► Reduced cost: $c_{\pi}(v \rightarrow w) := c(v \rightarrow w) \pi(v) + \pi(w)$
- θ -optimality: $c_{\pi}(v \rightarrow w) \geq -\theta$ on all residual arcs
- ▶ admissible residual arcs: $c_{\pi}(v \rightarrow w) \leq 0$

Cost-scaling (Ramshaw-Tarjan)

- ▶ θ -optimality: $c_{\pi}(v \rightarrow w) \geq -\theta$ on all residual arcs
- lacktriangledown heta-optimal circulation is +n heta approx. in general (+6k heta in our graph).
- ▶ Find θ -optimal circulations for geometrically decreasing values of θ :
 - 1. Reduce $\theta \leftarrow \theta/2$, while creating O(k) excess.
 - 2. Refine this pseudoflow into a circulation, while preserving θ -optimality

- ▶ Compute $\alpha \ge 0$ satisfying:
 - 1. there exists a k-matching whose longest edge has $\cos t \leq n^q \cdot \alpha$
 - 2. a $(\varepsilon \alpha/6k)$ -optimal circulation is $(1+\varepsilon)$ -approx.
- $(1+\varepsilon)$ -approx. geometric partial matching by executing $O(\log(n^q/\varepsilon))$ cost scales.

- Compute $\alpha \geq 0$ satisfying:
 - 1. there exists a k-matching whose longest edge has $\cos t \le n^q \cdot \alpha$
 - 2. a $(\varepsilon \alpha/6k)$ -optimal circulation is $(1+\varepsilon)$ -approx.
- ▶ $(1+\varepsilon)$ -approx. geometric partial matching by executing $O(\log(n^q/\varepsilon))$ cost scales.

- Compute $\alpha \geq 0$ satisfying:
 - 1. there exists a k-matching whose longest edge has $\cos t \leq n^q \cdot \alpha$
 - 2. a $(\varepsilon \alpha/6k)$ -optimal circulation is $(1+\varepsilon)$ -approx.
- $(1+\varepsilon)$ -approx. geometric partial matching by executing $O(\log(n^q/\varepsilon))$ cost scales.

- Compute $\alpha \geq 0$ satisfying:
 - 1. there exists a k-matching whose longest edge has $\cos t \le n^q \cdot \alpha$
 - 2. a $(\varepsilon \alpha/6k)$ -optimal circulation is $(1+\varepsilon)$ -approx.
- $(1+\varepsilon)$ -approx. geometric partial matching by executing $O(\log(n^q/\varepsilon))$ cost scales.

- Compute $\alpha \geq 0$ satisfying:
 - 1. there exists a k-matching whose longest edge has $\cos t \leq n^q \cdot \alpha$
 - 2. a $(\varepsilon \alpha/6k)$ -optimal circulation is $(1+\varepsilon)$ -approx.
- $(1+\varepsilon)$ -approx. geometric partial matching by executing $O(\log(n^q/\varepsilon))$ cost scales.

- Compute $\alpha \geq 0$ satisfying:
 - 1. there exists a k-matching whose longest edge has $\cos t \le n^q \cdot \alpha$
 - 2. a $(\varepsilon \alpha/6k)$ -optimal circulation is $(1+\varepsilon)$ -approx.
- $(1+\varepsilon)$ -approx. geometric partial matching by executing $O(\log(n^q/\varepsilon))$ cost scales.

- ▶ Compute $\alpha \ge 0$ satisfying:
 - 1. there exists a k-matching whose longest edge has $\cos t \leq n^q \cdot \alpha$
 - 2. a $(\varepsilon \alpha/6k)$ -optimal circulation is $(1+\varepsilon)$ -approx.
- $(1+\varepsilon)$ -approx. geometric partial matching by executing $O(\log(n^q/\varepsilon))$ cost scales.

- ▶ Compute $\alpha \ge 0$ satisfying:
 - 1. there exists a k-matching whose longest edge has $\cos t \leq n^q \cdot \alpha$
 - 2. a $(\varepsilon \alpha/6k)$ -optimal circulation is $(1+\varepsilon)$ -approx.
- $(1+\varepsilon)$ -approx. geometric partial matching by executing $O(\log(n^q/\varepsilon))$ cost scales.

- ▶ Compute $\alpha \ge 0$ satisfying:
 - 1. there exists a k-matching whose longest edge has $\cos t \leq n^q \cdot \alpha$
 - 2. a $(\varepsilon \alpha/6k)$ -optimal circulation is $(1+\varepsilon)$ -approx.
- $(1+\varepsilon)$ -approx. geometric partial matching by executing $O(\log(n^q/\varepsilon))$ cost scales.

- ▶ Compute $\alpha \ge 0$ satisfying:
 - 1. there exists a k-matching whose longest edge has $\cos t \leq n^q \cdot \alpha$
 - 2. a $(\varepsilon \alpha/6k)$ -optimal circulation is $(1+\varepsilon)$ -approx.
- $(1+\varepsilon)$ -approx. geometric partial matching by executing $O(\log(n^q/\varepsilon))$ cost scales.

- ightharpoonup Compute $\alpha \geq 0$ satisfying:
 - 1. there exists a k-matching whose longest edge has cost $\leq n^q \cdot \alpha$
 - 2. a $(\varepsilon \alpha/6k)$ -optimal circulation is $(1+\varepsilon)$ -approx.
- \triangleright $(1+\varepsilon)$ -approx. geometric partial matching by executing $O(\log(n^q/\varepsilon))$ cost scales.

- ► Inside Refine:
 - Hungarian search: raise potentials until an excess-deficit admissible path exists.
 - 2. Augment by an admissible blocking flow.

- ► Inside Refine:
 - Hungarian search: raise potentials until an excess-deficit admissible path exists.
 - 2. Augment by an admissible blocking flow.

- ► Inside Refine:
 - Hungarian search: raise potentials until an excess-deficit admissible path exists.
 - 2. Augment by an admissible blocking flow.

- ► Inside Refine:
 - Hungarian search: raise potentials until an excess-deficit admissible path exists.
 - 2. Augment by an admissible blocking flow.

Refinement by blocking flows (Ramshaw-Tarjan)

- ► Inside Refine:
 - Hungarian search: raise potentials until an excess-deficit admissible path exists.
 - 2. Augment by an admissible blocking flow.

 $ightharpoonup O(\sqrt{k})$ blocking flows before f becomes a circulation.

High-level goal per scale

- Inside Refine:
 - 1. Hungarian search: raise potentials until an excess-deficit admissible path exists.
 - 2. Augment by an admissible blocking flow.
- After $O(n \operatorname{polylog} n)$ -time preprocessing, perform Hungarian search and find each blocking flow in $O(k \operatorname{polylog} n)$ time.

10/17

- ▶ Dynamic 2D BCP with $O(\operatorname{polylog} n)$ update time, $O(\log^2 n)$ query time (Kaplan *et al.* SODA'17)
- Possible to batch potential updates (Vaidya) only need to bound number of relaxations.

- ▶ Dynamic 2D BCP with $O(\operatorname{polylog} n)$ update time, $O(\log^2 n)$ query time (Kaplan *et al.* SODA'17)
- Possible to batch potential updates (Vaidya) only need to bound number of relaxations.

- ▶ Dynamic 2D BCP with $O(\operatorname{polylog} n)$ update time, $O(\log^2 n)$ query time (Kaplan *et al.* SODA'17)
- Possible to batch potential updates (Vaidya) only need to bound number of relaxations.

- ▶ Dynamic 2D BCP with $O(\operatorname{polylog} n)$ update time, $O(\log^2 n)$ query time (Kaplan *et al.* SODA'17)
- Possible to batch potential updates (Vaidya) only need to bound number of relaxations.

- ▶ Dynamic 2D BCP with $O(\operatorname{polylog} n)$ update time, $O(\log^2 n)$ query time (Kaplan *et al.* SODA'17)
- Possible to batch potential updates (Vaidya) only need to bound number of relaxations.

- ▶ Dynamic 2D BCP with $O(\operatorname{polylog} n)$ update time, $O(\log^2 n)$ query time (Kaplan *et al.* SODA'17)
- Possible to batch potential updates (Vaidya) only need to bound number of relaxations.

- ▶ Dynamic 2D BCP with $O(\operatorname{polylog} n)$ update time, $O(\log^2 n)$ query time (Kaplan *et al.* SODA'17)
- Possible to batch potential updates (Vaidya) only need to bound number of relaxations.

- ▶ Dynamic 2D BCP with $O(\operatorname{polylog} n)$ update time, $O(\log^2 n)$ query time (Kaplan *et al.* SODA'17)
- Possible to batch potential updates (Vaidya) only need to bound number of relaxations.

- ▶ Dynamic 2D BCP with $O(\operatorname{polylog} n)$ update time, $O(\log^2 n)$ query time (Kaplan *et al.* SODA'17)
- Possible to batch potential updates (Vaidya) only need to bound number of relaxations.

- ▶ Dynamic 2D BCP with $O(\operatorname{polylog} n)$ update time, $O(\log^2 n)$ query time (Kaplan *et al.* SODA'17)
- Possible to batch potential updates (Vaidya) only need to bound number of relaxations.

- Alive nodes: nonzero excess/deficit, or adjoining flow support arcs.
- ▶ Dead nodes: ones which aren't alive.

- Alive nodes: nonzero excess/deficit, or adjoining flow support arcs.
- ▶ Dead nodes: ones which aren't alive.

- Alive nodes: nonzero excess/deficit, or adjoining flow support arcs.
- ▶ Dead nodes: ones which aren't alive.

- Alive nodes: nonzero excess/deficit, or adjoining flow support arcs.
- ▶ Dead nodes: ones which aren't alive.

- ► Alive nodes: nonzero excess/deficit, or adjoining flow support arcs.
- ▶ Dead nodes: ones which aren't alive.

- Alive nodes: nonzero excess/deficit, or adjoining flow support arcs.
- Dead nodes: ones which aren't alive.

- ► Telescoping: $c_{\pi}(s \rightarrow a \rightarrow b) = c(a \rightarrow b) \pi(s) + \pi(b)$ (use BCP)
- ▶ Only O(k) relaxations per Hungarian search.
- Also: find a blocking flow in O(k) relaxations (DFS).

- ► Telescoping: $c_{\pi}(s \rightarrow a \rightarrow b) = c(a \rightarrow b) \pi(s) + \pi(b)$ (use BCP)
- ▶ Only O(k) relaxations per Hungarian search.
- Also: find a blocking flow in O(k) relaxations (DFS).

- ► Telescoping: $c_{\pi}(s \rightarrow a \rightarrow b) = c(a \rightarrow b) \pi(s) + \pi(b)$ (use BCP)
- ▶ Only O(k) relaxations per Hungarian search.
- Also: find a blocking flow in O(k) relaxations (DFS).

- ► Telescoping: $c_{\pi}(s \rightarrow a \rightarrow b) = c(a \rightarrow b) \pi(s) + \pi(b)$ (use BCP)
- ightharpoonup Only O(k) relaxations per Hungarian search.
- Also: find a blocking flow in O(k) relaxations (DFS).

- ► Telescoping: $c_{\pi}(s \rightarrow a \rightarrow b) = c(a \rightarrow b) \pi(s) + \pi(b)$ (use BCP)
- ▶ Only O(k) relaxations per Hungarian search.
- Also: find a blocking flow in O(k) relaxations (DFS).

- ► Telescoping: $c_{\pi}(s \rightarrow a \rightarrow b) = c(a \rightarrow b) \pi(s) + \pi(b)$ (use BCP)
- ▶ Only O(k) relaxations per Hungarian search.
- Also: find a blocking flow in O(k) relaxations (DFS).

- ► Telescoping: $c_{\pi}(s \rightarrow a \rightarrow b) = c(a \rightarrow b) \pi(s) + \pi(b)$ (use BCP)
- ▶ Only O(k) relaxations per Hungarian search.
- Also: find a blocking flow in O(k) relaxations (DFS).

Problem: BCP initialization

▶ Dynamic 2D BCP with $O(\operatorname{polylog} n)$ update time, $O(\log^2 n)$ query time (Kaplan *et al.* SODA'17)

- ▶ Some BCP may begin a Hungarian search with $\Theta(n)$ vertices.
- ► Can't afford to construct from scratch for every Hungarian search.

- $\triangleright X_t$ and X_{t+1} differ by the newly-matched A nodes.
- ightharpoonup Generate X_{t+1} by rewinding the BCP updates done on X_t , then
- ► Persistence?

- $ightharpoonup X_t$ and X_{t+1} differ by the newly-matched A nodes.
- ▶ Generate X_{t+1} by rewinding the BCP updates done on X_t , then deleting the newly-matched nodes. Same number of BCP updates as the Hungarian search.
- ► Persistence?
- Construct once in $O(n \operatorname{polylog} n)$, then spend $O(k \operatorname{polylog} n)$ to rewind and generate the next BCP.

- $ightharpoonup X_t$ and X_{t+1} differ by the newly-matched A nodes.
- Generate X_{t+1} by rewinding the BCP updates done on X_t , then deleting the newly-matched nodes. Same number of BCP updates as the Hungarian search.
- ► Persistence?
- Construct once in $O(n \operatorname{polylog} n)$, then spend $O(k \operatorname{polylog} n)$ to rewind and generate the next BCP.

- $ightharpoonup X_t$ and X_{t+1} differ by the newly-matched A nodes.
- ▶ Generate X_{t+1} by rewinding the BCP updates done on X_t , then deleting the newly-matched nodes. Same number of BCP updates as the Hungarian search.
- ► Persistence?
- Construct once in $O(n \operatorname{polylog} n)$, then spend $O(k \operatorname{polylog} n)$ to rewind and generate the next BCP.

- $ightharpoonup X_t$ and X_{t+1} differ by the newly-matched A nodes.
- Generate X_{t+1} by rewinding the BCP updates done on X_t , then deleting the newly-matched nodes. Same number of BCP updates as the Hungarian search.
- ► Persistence?
- Construct once in $O(n \operatorname{polylog} n)$, then spend $O(k \operatorname{polylog} n)$ to rewind and generate the next BCP.

- $ightharpoonup X_t$ and X_{t+1} differ by the newly-matched A nodes.
- Generate X_{t+1} by rewinding the BCP updates done on X_t , then deleting the newly-matched nodes. Same number of BCP updates as the Hungarian search.
- ► Persistence?
- Construct once in $O(n \operatorname{polylog} n)$, then spend $O(k \operatorname{polylog} n)$ to rewind and generate the next BCP.

- $ightharpoonup X_t$ and X_{t+1} differ by the newly-matched A nodes.
- ▶ Generate X_{t+1} by rewinding the BCP updates done on X_t , then deleting the newly-matched nodes. Same number of BCP updates as the Hungarian search.
- ► Persistence?
- Construct once in $O(n \operatorname{polylog} n)$, then spend $O(k \operatorname{polylog} n)$ to rewind and generate the next BCP.

- $ightharpoonup X_t$ and X_{t+1} differ by the newly-matched A nodes.
- Generate X_{t+1} by rewinding the BCP updates done on X_t , then deleting the newly-matched nodes. Same number of BCP updates as the Hungarian search.
- ► Persistence?
- Construct once in $O(n \operatorname{polylog} n)$, then spend $O(k \operatorname{polylog} n)$ to rewind and generate the next BCP.

- $ightharpoonup X_t$ and X_{t+1} differ by the newly-matched A nodes.
- Generate X_{t+1} by rewinding the BCP updates done on X_t , then deleting the newly-matched nodes. Same number of BCP updates as the Hungarian search.
- ► Persistence?
- Construct once in $O(n \operatorname{polylog} n)$, then spend $O(k \operatorname{polylog} n)$ to rewind and generate the next BCP.

- $ightharpoonup X_t$ and X_{t+1} differ by the newly-matched A nodes.
- Generate X_{t+1} by rewinding the BCP updates done on X_t , then deleting the newly-matched nodes. Same number of BCP updates as the Hungarian search.
- Persistence?
- Construct once in $O(n \operatorname{polylog} n)$, then spend $O(k \operatorname{polylog} n)$ to rewind and generate the next BCP.

The End

Thank you.