Machine Learning, Advanced Topics, 6th Seminar

Приложения современного машинного обучения в музыке

Valentin Malykh

Moscow Institute of Physics and Technology

mail: valentin.malykh@phystech.edu

12 октября 2016 г.

How to apply ML for Music Data to get Money?

▶ Вы работаете data scientist в большом музыкальном сервисе

▶ У сервиса есть много музыкальных данных – mp3 files

user_id	tracks_id
123	[1, 2, 3]
124	[1000, 11, 23, 23]
999999	[1]

tracks_id	file
1	1.mp3
2	2.mp3
999999	999999.mp3

У вас есть задача – получить деньги, используя эти данные

Что такое звук?

► Waves and Recording

Как сохранить звук? Как огромный массив данных

 \blacktriangleright [1, 2, 3, 5, 3, 2, 1, 1, 1, 1, 2, 3, 5, 3, 2], Обычно 16 000 float в секунду

Нахождение похожих треков

▶ Как найти похожие треки, используя ML-методы?

Data: 30 sec * 16000 features, 10⁷ items

Task: определить функцию $similarity(track_i, track_i)$

- ▶ Почему обычные методы такие плохие?
 - ▶ смещение и шум, переобучение
- Метрический подход по-прежнему хорошая идея, если у нас высокоуровневое описание
- > Хорошее представление музыкального трека
 - ▶ Human guitar, rock, Queen, 1997, UK, 3 min.,
 - Computer good small vector of numbers

Получим хорошее представление, используя Convolutional Neural Nets

Issue

We need to get picture!

Что такое звук? (2)

У нас есть некоторая волка

представим эту волну как сумму двух волн

звук — комбинация различных волн

Что мы потеряли в нашем представлении?

Получение частоты

Мы должны обучить нейронную сеть, но как мы можем сделать это?!

- ▶ Но как мы обучим сеть на музыке?
- Давайте подадим ей картинку

- классификация по жанру
- классификация по исполнителям
- предсказание рейтинга
- **>**

Полносвязные NN

- ▶ слишком много параметров число весов = $16^4 * neurons + ...$
- ► It doesn't work =(

Convolution NN

Давайте возьмем некоторую сверточную архитектуру

важная деталь – свертка только по оси времени [Spotify Deep Learning]

General scheme, what did we do?

Как измерять качество хорошего представления?

Что мы имеем?

- ▶ Мы имеем представление каждого трека в виде вектора
- ▶ Но м.б. наше решение слишком плохое, как мы можем это понять?
- ▶ Как тестировать "хорошее представление"?

Давайте придумаем метрики:

- используя ассесоров
- качество рекомендации
- ▶ используя векторы для классификации других меток

Давайте адаптируемся к различной длине и дополнительной информации

Как использовать различную длину?:

- 1. Усреднение предсказаний для многих кусков
- 2. Рекуррентная сеть на многих кусках

3. Что еще?

Как учитывать?:

Текст

$$Concat(TextRNN, Conv) \rightarrow FC \rightarrow Cost$$

- 2. Жанр, исполнитель, год embedding too, multi-cost task
- 3.

Технические детали

Как построить быструю систему для миллионов пользователей?

- 1. предварительное вычисление векторов и симулирование треков
- 2. быстрое key-value хранилище

End

Current Status of your Field! Thanks for your attention!