Comparison My Hardcoding function with "drgee" function

-- 9월 26일 Version

[What To Do]

1) N=100인 Data를 Set. Seed 바꾸어가며 1000개의 Set 만들어서 각 Set 마다 내가 작성한 DR ATE
estimator function라 "drgee" package 이용해 DR ATE 추정량 얻기 (Ĉate , Ĉate)

- 2) 각 DR ATE 추정량 Set (총 1000개)의 표본분산 * h = "Sample Variance" x 100 구하기
 - · 두 Set의 "포본산 * n"이 두 분산 추정량 중 (Ŷar DR. 1 , Ŷar, DR. 2) 어느 값에 더 가까운지 확인 !
- 3) 1), 2) 라정은 #of obs = 100 이었다. ReplTcatTon (1000번) 은 유지하면서, #of obs를 100,1000,10000,20000,50000개씩 늘려가며 1), 2) 라정 다시 뱅ሪ

[Result]

	"Sample Variance" x # of obs		Variance estimator X #of obs		
# of obs	My estimator	"drgee" package	My Hardcoding Ft ⁿ	"drgee" Package	<u> </u>
100	0.9966251	0.9933766	0.0457	6.062378	Package of 884
1000	9.966251	9.933766	0.0002414843	7.907542	연유 값이 더
10000	9.750713	9.773969	0.006477602	9.37417	7+7g=+
20000	8.960728	8.966187	2.655847e-08	9.088619	
50000	9.163777	9.150782	0.0064243	9.613415	,