Hochschule KarlsruheUniversity of Applied Sciences

Fakultät für Informatik und Wirtschaftsinformatik

Prof. Dr. Carsten Sinz Lehrgebiet Software-Entwicklung

Übungsblatt 2 zur Vorlesung Programmieren

Ausgabe: 24.03.2023 - Abgabe: 07.04.2023

Hinweise (diese gelten auch für zukünftige Übungen):

• Ab diesem Aufgabenblatt ist neben einer Abgabe in ILIAS auch eine Präsentation der Lösung bei einem Tutor in der Übungsgruppe erforderlich.

Aufgabe 1 (Datei-Signaturen): Datei-Signaturen, auch *magic numbers* genannt, dienen der Erkennung und Prüfung, welchen Typ der Inhalt einer Datei besitzt. Sie sind, falls vorhanden, die ersten Bytes einer Datei. Unter https://en.wikipedia.org/wiki/List_of_file_signatures finden Sie eine Liste von gängigen Dateisignaturen.

- a) Geben Sie die Signaturen von drei von Ihnen frei gewählten Audio-Dateiformaten an, außerdem die von Java .class-Dateien und von UTF-8- und UTF-16-Dateien. Geben Sie bei den Audioformaten den Namen des Formats an und wozu es verwendet wird/wurde.
- b) Ein Hex-Editor ist ein Programm, mit dem sich die Bytes einer beliebigen Datei als Folge von Hexadezimalwerten (und meist zusätzlich als ASCII-Werte) darstellen lassen. Hex-Editoren können eingesetzt werden, um Dateiformate zu verstehen, binär codierte Dateien zu modifizieren oder eigene solche Dateien zu erstellen. Unter https://hexed.it können Sie den Online-Hex-Editor HexEd.it finden.¹

Verwenden Sie HexEd.it, um sich den Inhalt einer von Ihnen erstellten .class-Datei (z.B. von Übungsblatt 1) anzeigen zu lassen.

Für diese Teilaufgabe ist keine Abgabe, nur eine Präsentation beim Tutor erforderlich.

Aufgabe 2 (UTF-Codierung): Verwenden Sie den Online-Hex-Editor HexEd.it, um einen Unicode-Text in verschiedenen UTF-Codierungen darzustellen und in einer Datei zu speichern. Die betrachteten Codierungen sollen sein

- UTF-8,
- UTF-16LE und
- UTF-16BE.

Verwenden Sie bei allen drei Codierungen eine Byte-Order-Mark (BOM) am Beginn der Datei (2 Byte bei UTF-16, 3 Byte bei UTF-8). Der zu codierende Text soll aus den vier Unicode-Codepoints U+0041 ("A"), U+00F6 ("ö"), U+4210 (Han-Chinesisches Schriftzeichen), U+1D11E (Violinschlüssel) in genau dieser Reihenfolge bestehen. Die Abgabe besteht aus den drei Dateien mit den verschiedenen UTF-Codierungen.

¹Die vollständige Funktionalität ist nicht in allen Browsern verfügbar. Verwenden Sie Chrome oder Edge.

Aufgabe 3 (Daten-Layout im Speicher): Geben Sie Speicherabbilder an, wie in der Vorlesung in Kapitel 2 auf den Seiten 20–22 gezeigt, für drei verschiedene Punkte im Ablauf eines Programms. Das relevante Programmfragment soll wie folgt aussehen:

```
Vector2D p = new Vector2D();
Vector2D q = new Vector2D();
Vector2D r = p;
p.x = 1.0;
p.y = 30.9;
q.x = -7.1;
q.y = 10.5;
// <Situation 1>
r = q;
r.x = 22.2;
// <Situation 2>
r = new Vector2D();
r.x = 0.0;
r.y = 0.0;
// <Situation 3>
```

Dabei soll die Klasse Vector2D wie in der Vorlesung definiert sein. Sie können annehmen, dass die Speicheradressen von 1 an aufsteigend nummeriert sind und neue Objektidentitäten und Referenzen immer an der kleinsten noch freien Adresse abgelegt werden. Ferner können Sie, wie in der Vorlesung, annehmen, dass Referenzen und Objektattribute (z.B. vom Typ float) jeweils genau eine Speicherstelle belegen.

- a) Geben Sie Speicherabbilder zu den Situationen 1, 2 und 3 an.
- b) Welche Referenzen sind Aliase in den Situationen 1, 2 und 3?

Aufgabe 4 (Flächen-Berechnung): Im Königreich Babaku gibt es jedes Jahr im Oktober ein Fest, auf dem das große Halloumi-Grillen stattfindet. Die eingesetzten Grills sind kreisrund, haben aber unterschiedliche Durchmesser. Die Halloumi-Käse-Stücke sind alle rechteckig und haben dieselbe Größe. Sie können aber so zusammengeschnitten werden, dass die Grillfläche soptimal genutzt wird.

- a) Schreiben Sie ein Programm Babaku, das als Eingaben auf der Kommandozeile entgegennimmt:
 - Den Durchmesser d des Grills in cm.
 - Die Länge *l* und Breite *b* der Halloumi-Stücke in cm.

Das Programm soll berechnen und ausgeben, wie viele Halloumi-Stücke maximal (ohne Stapeln) auf den Grill passen. Auch Bruchstücke sind erlaubt.

b) Ein Kind isst auf dem Fest immer ein Stück Halloumi, ein Erwachsener zwei. Erweitern Sie das Programm aus Teil a) so, dass als zusätzliche Eingabe die Anzahl Personen (sowohl Kinder als auch Erwachsene) entgegengenommen wird, und ausgerechnet wird, wie oft der Grill nacheinander vollständig befüllt werden muss (als Ganzzahl), um alle Personen zu versorgen.

Aufgabe 5 (Bremsweg-Berechnung): Fährt ein Auto mit der Geschwindigkeit v (in km/h), so wird als Faustformel zur Berechnung des Bremswegs b in Metern gerne die folgende Formel verwendet:

$$b = \frac{v}{10} \cdot \frac{v}{10} \ .$$

- a) Schreiben Sie ein Programm BrakingDistance, das bei Eingabe einer Geschwindigkeit in km/h den Bremsweg in Metern anhand der angegebenen Faustformel berechnet.
- b) Überlegen Sie sich, ob die Reihenfolge der Berechnungsschritte (Multiplikation, Divisionen) und/oder die Typen der Variablen einen Einfluss auf das Ergebnis haben kann. Beschreiben Sie Situationen, in denen dies der Fall ist.