Causal Inference - Homework 3

Introduction to Causal Inference 096260 Winter 2020/2021

Submission date: 27 December, 2020

Question 1

Consider the DAG in Figure 1. For each of the following pairs of nodes, list: (1) all possible paths between them (2) what set of nodes is required (in a d-separation sense) to block all of their paths:

- (1) $Z \to Y$.
- (2) $X \to W$.
- (3) $H \rightarrow S$.

Question 2

Consider the casual graph in Figure 2.

- (i) List all of the sets of variables that satisfy the backdoor criterion to determine the causal effect of T on Y.
- (ii) List all of the minimal sets of variables that satisfy the backdoor criterion to determine the casual effect of T on Y (i.e., any set of variables such that, if you removed any one of the variables from the set, it would no longer meet the criterion).
- (iii) Give a minimal set of variables that need to be measured in order to identify the effect of D on Y.

Question 3

Consider the following scenario, which is loose adaptation of the LaLonde experiment (as described in the tutorial).

You received data collected from an experiment run in a 3 years (2025-2027) span in Gotham City, USA, trying to estimate the effect of job training on real income a year following the training. In the data (See Table 1), you have binary indicators for: prior education (Z), whether the annual

real income in 2025 is higher than 50K\$ (X), had job training (T), whether the annual real income in 2027 is higher than 100K\$ (Y), and whether the citizen bought a house in 2027 (W). We know the following:

- (i) The income in 2024 depends solely on the prior education.
- (ii) A person is selected to the job training program based on her prior education, and income in 2025.
- (iii) The income in 2027 depends on the job training, prior education and income in 2025.
- (iv) Whether a citizen purchased a house is directly based on her income in 2025 and 2027.

Your task is as follows:

- 1. Draw the causal graph that describe the above experiment.
- 2. Calculate and specify the conditional probability tables of the model from Table 1
- 3. Calculate the ATE of the experiment (derive the necessary probabilities from Table 1)

Figure 1

Figure 2

\mathbf{Z}	X	\mathbf{T}	\mathbf{Y}	W
0	1	1	1	0
0	0	1	1	0
0	0	1		0
1	1	1 1 1 0	1 1 1 0	1 1 1 0 0
1	0	1	1	1
1	0	1	1	1
1	1	0	0	0
1	0	0	0	0
0	0	0	0	0
1	1	1 0	1 1 0	1 0
1	0	0	1	0
1 1	0	1 0	0	0
	I	0	1 0	0 1 1 0
0	1	0	0	1
0	1	0	0	
1 0 0	0	0	0	0 0 0
0	0	0	0	0
0	0	1	0 0 0	
1	0	1	0	1
0	0	1	0	
1	1	0	1	1
0	1	1	0	1

Table 1: Table1