Государственный комитет СССР по народному образованию Челябинский политехнический институт имени Ленинского комсомола

Nº 1751 - 1889.

УДК 517.43

И.Г.Корепанов

НОВЫЕ РЕШЕНИЯ УРАВНЕНИЯ ТЕТРАЭДРОВ

Челябинск 1989

І. ФОРМУЛИРОВКА РЕЗУЛЬТАТОВ

Пусть V_1 , V_2 , V_3 , V_4 – двумерные комплексные линейные пространства с фиксированными базисами, λ_1 , λ_2 , λ_3 , λ_4 – комплексные числа. Рассмотрим операторы

$$R_{ij}^{0}(\lambda_{i},\lambda_{j}) = \begin{pmatrix} a & d \\ b & c \\ c & b \end{pmatrix},$$

$$R_{ij}^{1}(\lambda_{i},\lambda_{j}) = \begin{pmatrix} -a' & -b' & c' \\ -c' & b' \\ -d' & a' \end{pmatrix},$$

действующие в $V_i \otimes V_j$, $1 \leq i < j \leq 4$. Здесь $\alpha = cn(\lambda_i - \lambda_j)$, $b = sn(\lambda_i - \lambda_j) dn(\lambda_i - \lambda_j)$, $c = dn(\lambda_i - \lambda_j)$, $d = k sn(\lambda_i - \lambda_j) cn(\lambda_i - \lambda_j)$, $a' = cn(\lambda_i + \lambda_j)$, $b' = sn(\lambda_i + \lambda_j) dn(\lambda_i + \lambda_j)$, $c' = dn(\lambda_i + \lambda_j)$, $d' = k sn(\lambda_i + \lambda_j) cn(\lambda_i + \lambda_j)$;

ВИНИТИ, 1989 г.

Как показывается в разделе 2, существуют матрицы S_{123} , S_{124} , S_{134} , S_{234} размера 8x8, компоненты которых будут обозначаться, например, так: $\left(S_{123}\right)_{def}^{\alpha b c}$, α , ..., f=0

или / , такие, что выполнены соотношения тетраэдральной алгебры Замолодчикова [I]:

$$R_{12}^{a}R_{13}^{b}R_{23}^{c} = \sum_{d,e,f=0}^{1} (S_{123})_{def}^{abc}R_{23}^{f}R_{13}^{e}R_{12}^{d}$$
 (I)

и аналогично для остальных S -матриц. В формуле (I) опущены аргументы λ_i ; понятно также, что S_{123} зависит от λ_1 , λ_2 , λ_3 и т. д.

В отличие от специального случая k=0 работы [I], в общем случае S -матрицы определены однозначно (устремив k к нулю, получаем единственные матрицы и для k=0). Введем двумерные пространства E_{12} , E_{13} , E_{14} , E_{23} , E_{24} , E_{34} и рассмотрим S_{123} как оператор в $E_{12} \otimes E_{13} \otimes E_{23}$, как оператор в $E_{12} \otimes E_{13} \otimes E_{23}$, уравнение тетраэдров

$$S_{123}S_{124}S_{134}S_{234} = S_{234}S_{134}S_{124}S_{123}$$
?

Автор провел непосредственные вычисления при k=0 , и они дали положительный ответ. Приведем явный вид матрицы S_{123} , которую выразим через величины $\mathcal{T}_i = tg\,\lambda_i$ (очевидными заменами индексов получаются остальные S -матрицы).

1251-89

Введем функцию

$$f(p, 3) = \frac{1+p6}{p+3}$$

Итак, все элементы матрицы S_{123} равны нулю, кроме следующих:

$$S_{000}^{000} = S_{011}^{011} = S_{101}^{101} = S_{110}^{110} = 1,$$

$$S_{010}^{001} = f(\tau_1, \tau_3) f(\tau_2^{-1}, \tau_3),$$

$$S_{100}^{001} = f(\tau_1, -\tau_2^{-1}) f(\tau_2^{-1}, \tau_3),$$

$$S_{111}^{001} = f(\tau_1, -\tau_2^{-1}) f(\tau_1, \tau_3),$$

$$S_{001}^{010} = f(\tau_1, -\tau_2^{-1}) f(\tau_1, \tau_3),$$

$$S_{001}^{010} = f(\tau_1, -\tau_2^{-1}) f(\tau_1, -\tau_3),$$

$$S_{100}^{010} = f(\tau_1, -\tau_2^{-1}) f(\tau_1, -\tau_3),$$

$$S_{111}^{010} = f(\tau_1, -\tau_2^{-1}) f(\tau_1, -\tau_3),$$

$$S_{001}^{100} = -f(\tau_{2}^{-1}, -\tau_{3}) f(\tau_{1}, \tau_{2}^{-1}),$$

$$S_{010}^{100} = f(\tau_{1}, \tau_{3}) f(\tau_{1}, \tau_{2}^{-1}),$$

$$S_{111}^{100} = -f(\tau_{1}, \tau_{3}) f(\tau_{2}^{-1}, -\tau_{3}),$$

$$S_{001}^{111} = f(\tau_{1}, \tau_{2}^{-1}) f(\tau_{1}, -\tau_{3}),$$

$$S_{010}^{111} = -f(\tau_{1}, \tau_{2}^{-1}) f(\tau_{2}^{-1}, \tau_{3}),$$

$$S_{010}^{111} = -f(\tau_{1}, \tau_{2}^{-1}) f(\tau_{2}^{-1}, \tau_{3}),$$

$$S_{100}^{111} = -f(\tau_{1}, -\tau_{3}) f(\tau_{2}^{-1}, \tau_{3}).$$

Напомним, что в работе [I] построена модель на двух двумерных слоях, "больцмановские веса" которой могут быть сделаны положительными, связанная с построенными здесь S -матрицами.

2. ВОЗМОЖНЫЕ ОБОБЩЕНИЯ

Рассмотрим уравнение Янга - Бакстера

где нижние индексы указывают номера двумерных пространств, в тензорном произведении которых действует данный оператор. Пусть L_{01} и M_{02} – L –матрицы типа Фельдергофа [2]. В частности они симметричны относительно транспонирования T. Тогда, как известно (см. например, [3]), кроме симметричной матрицы $R_{12} = R_{12}^{0}$, существует еще R_{12}^{1} , несимметричная, для которой

$$(R_{12}^{1})^{T} L_{01} M_{02} = M_{02} L_{01} R_{12}^{1}$$

Развивая идеи работы [3], можно показать, что пространство операторов \mathcal{R}_{123} , осуществляющих следующую перестановку \bot -матриц:

$$(R_{123})^T L_{01} M_{02} N_{03} = N_{03} M_{02} L_{01} R_{123}$$

восьмимерно. Подробнее автор надеется разъяснить это в другой статье. Как раз 8 таких операторов \mathcal{R}_{123} получаются, с одной стороны, в виде

а с другой - в виде

что и приводит к линейным зависимостям типа (I). Однако проверка выполнения уравнения тетраэдров для получающихся S -матриц крайне трудна и пока не проделана.

СПИСОК ЛИТЕРАТУРЫ

- І. Корепанов И.Г. Тетраэдральный аналог алгебры Замолодчикова и двуслойная модель двумерной статистической физики / Челяб. политехн. ин-т. Челябинск, 1988. 9с. Деп. в ВИНИТИ 06.06.88, №4433-В88.
- 2. Felderhof B.U. Diagonalization of the transfer matrix of the free fermion model// Physica. -1973. -V. 66, w°2. -P. 279-298.
- 3. Кричевер И.М. Уравнения Бакстера и алгебраическая геометрия// Функцион. анализ и его приложения. 1981. Т.15, №2. С.22-35.

Печатается в соответствии с решением Ученого Совета Челябинского политехнического института имени Ленинского комсомола от 26 декабря 1988 года.

В печать 6.3.89

Tmp.

Цена

1=35

3ak. 32792

Производственно-издательский комбинат ВИНИТИ
Люберцы, Октябрьский пр., 403