Properties of Quadrilaterals

Polygon: a geometric figure formed by three or more coplanar segments called sides. The sides that have a common endpoint are non-collinear. Each side intersects exactly two other sides only at their endpoints called vertices.

Diagonal: a segment that connects any two non-consecutive vertices of a polygon

Quadrilateral: a four-sided polygon

Types of Quadrilaterals

- 1. Trapezium: a quadrilateral with no pair of parallel sides
- 2. Trapezoid: a quadrilateral with exactly one pair of parallel sides. If the nonparallel sides are congruent, the trapezoid is isosceles.
- 3. Parallelogram: a special quadrilateral with both pairs of opposite sides parallel
 - a. Rectangle: has four right angles
 - b. Rhombus: has four congruent sides
 - c. Square: has four congruent angles and four congruent sides

Theorems on Parallelograms

- 1. Opposite sides of a parallelogram are congruent.
- 2. Opposite angles of a parallelogram are congruent.
- 3. Consecutive angles in a parallelogram are supplementary.
- 4. The diagonals of a parallelogram bisect each other

4. The diagonals of a parallelogram bisect each other.						
Property	Rectangle	Rhombus	Square	All Parallel- ograms		
The Sides						
Opposite sides are parallel.	✓	✓	✓	✓		
Opposite sides are congruent.	✓	~	✓	✓		
All sides are congruent.		✓	✓			
The Angles						
Sum of angles is 360°	✓	✓	✓	✓		
Opposite angles are \cong .	✓	✓	✓	✓		
All four angles are right.	✓		✓			
Consecutive angles are supplementary.	✓	✓	✓	✓		
The Diagonals						
Diagonals bisect each other.	✓	✓	✓	✓		
Diagonals are congruent.	✓		✓			
Diagonals are perpendicular.		✓	✓			
Diagonals bisect opposite $\angle s$.		✓	✓			

Properties of Quadrilaterals

Polygon: a geometric figure formed by three or more coplanar segments called sides. The sides that have a common endpoint are non-collinear. Each side intersects exactly two other sides only at their endpoints called vertices.

Diagonal: a segment that connects any two non-consecutive vertices of a polygon

Quadrilateral: a four-sided polygon

Types of Quadrilaterals

- 1. Trapezium: a quadrilateral with no pair of parallel sides
- 2. Trapezoid: a quadrilateral with exactly one pair of parallel sides. If the nonparallel sides are congruent, the trapezoid is isosceles.
- ${\it 3. \ Parallelogram: a special quadrilateral with both pairs of opposite}\\$ sides parallel
 - a. Rectangle: has four right angles
 - b. Rhombus: has four congruent sides
 - c. Square: has four congruent angles and four congruent sides

Theorems on Parallelograms

- 1. Opposite sides of a parallelogram are congruent.
- 2. Opposite angles of a parallelogram are congruent
- 3. Consecutive angles in a parallelogram are supplementary.

4. The diagonals of a parallelogram bisect each other.						
Property	Rectangle	Rhombus	Square	All Parallel- ograms		
The Sides						
Opposite sides are parallel.	✓	✓	✓	✓		
Opposite sides are congruent.	✓	✓	✓	✓		
All sides are congruent.		✓	✓			
The Angles						
Sum of angles is 360°	✓	✓	✓	✓		
Opposite angles are \cong .	✓	✓	✓	✓		
All four angles are right.	✓		✓			
Consecutive angles are supplementary.	✓	✓	✓	✓		
The Diagonals						
Diagonals bisect each other.	✓	✓	✓	✓		
Diagonals are congruent.	✓		✓			
Diagonals are perpendicular.		✓	✓			
Diagonals bisect opposite $\angle s$.		✓	✓			

Practice Exercises

Given: BLUE is a parallelogram.

A. Determine whether each statement is TRUE. If the statement is $\ensuremath{\textit{TRUE}}\xspace$, write the theorem, postulate or definition that justifies the statement.

- 1. $\overline{BE}||\overline{LU}$
- 2. R is the midpoint of $\overline{\textit{EL}}$ and $\overline{\textit{BU}}$
- 3. $m\angle B = m\angle U$
- 4. $m \angle BLU$ and $m \angle LUE$ are supplementary
- 5. $\angle BLE \cong \angle UEL$
- 6. ∠BRE ≅ ∠URL
- 7. $\overline{BE} \cong \overline{UL}$
- 8. $\angle BLU \cong \angle UEB$
- B. Solve each problem completely.
 - 1. If BL = 3y + 2, LU = 5x 13,

EU = 2y + 5, and EB = 2x - 1, find the perimeter of BLUE.

2. If BR = x and ER = y, find \overline{BU} and \overline{EL}

Problem Set

 \emph{PINK} is a parallelogram. Determine whether each statement is TRUE. If the statement is TRUE, write the theorem, postulate or definition that justifies the statement.

- 1. $\overline{PK}||\overline{IN}|$
- 2. $\angle PIK \cong \angle NKI$
- 3. $\angle KYN \cong \angle IYP$
- 4. $\overline{PN} \perp \overline{KI}$
- 5. $\overline{PI} \cong \overline{NK}$
- 6. $\triangle PYK \cong \triangle NYI$
- 7. $\triangle PIN \cong \triangle NKP$
- 8. $\overline{PN}||\overline{KN}|$
- 9. $\angle KIN \cong \angle PKY$
- 10. $\overline{KN} \perp \overline{PI}$

Practice Exercises

Given: BLUE is a parallelogram.

A. Determine whether each statement is TRUE. If the statement is TRUE, write the theorem, postulate or definition that justifies the statement.

- 1. $\overline{BE}||\overline{LU}$
- 2. R is the midpoint of \overline{EL} and \overline{BU}
- 3. $m \angle B = m \angle U$
- 4. $m \angle BLU$ and $m \angle LUE$ are supplementary
- 5. ∠*BLE* ≅ ∠*UEL*
- 6 $/BRF \simeq /URI$
- 7. $\overline{BE} \cong \overline{UL}$
- 8. $\angle BLU \cong \angle UEB$

- 1. If BL = 3y + 2, LU = 5x 13,
 - EU = 2y + 5, and EB = 2x 1, find the perimeter of BLUE.
- 2. If BR = x and ER = y, find \overline{BU} and \overline{EL}

Problem Set

PINK is a parallelogram. Determine whether each statement is TRUE. If the statement is TRUE, write the theorem, postulate or definition that justifies the statement.

- 1. $\overline{PK}||\overline{IN}$
- 2. $\angle PIK \cong \angle NKI$
- 3. $\angle KYN \cong \angle IYP$
- 4. $\overline{PN} \perp \overline{KI}$
- 5. $\overline{PI} \cong \overline{NK}$
- 6. $\triangle PYK \cong \triangle NYI$
- 7. $\triangle PIN \cong \triangle NKP$
- 8. $\overline{PN}||\overline{KN}|$
- 9. $\angle KIN \cong \angle PKY$
- 10. $\overline{KN} \perp \overline{PI}$

