Implementation of the isogeny-based key-exchange protocol CRS

Hugo Nartz, Clément Jacquot

February 16, 2022

Définitions et permier résultat

Algorithme des fractions continues

Fraction rationelle

- $n \in \mathbb{N}$
- \triangleright X_0, X_1, \dots, X_n des variables
- ► $F_0 = X_0$
- $F_{n+1}(X_0, \cdots, X_{n+1}) = F_n(X_0, \cdots, X_n + \frac{1}{X_{n+1}})$
- Notation: $F_n = [X_0, \dots, X_n]$

Réduite et quotients

Proposition

- ▶ Il existe deux suites (P_n) et (Q_n) de polynomes tels que:
- $ightharpoonup P_n$ et Q_n ne dépendent que de X_0, \cdots, X_n
- $P_0 = X_0, P_1 = X_0X_1 + 1 \text{ et } Q_0 = 1, Q_1 = X_1$
- $\forall n \geq 2 : P_n = X_n P_{n-1} + P_{n-2} \text{ et } Q_n = X_n Q_{n-1} + Q_{n-2}$

Théorème

▶
$$\forall n \geq 0$$

$$\blacktriangleright F_n = [X_0, \cdots, X_n] = \frac{P_n}{Q_n}$$

Algorithme

- $\theta \in \mathbb{R}$
- ightharpoonup $a_0 = [\theta]$
- ▶ Si $\theta \in \mathbb{Z}$ alors $\theta = a_0$ fin
- ▶ Sinon $\theta a_0 \in]0,1[$ et il existe θ_1 tel que $\theta = a_0 + \frac{1}{\theta_1}$, on réitère le processur pour $\theta = \theta_1$ et $a_1 = [\theta_1]$
- L'algorithme termine si et seulement si il existe n tel que $\theta_n = [a_n]$