

Rolly Maulana Awangga, S.T., MT., CAIP, SFPC.

2022

SISTEM REKOMENDASI LAGU TERATAS – GLOBAL

Berdasarkan Properti Trek menggunakan metode Content-Based Filtering.

Penulis:

Naomi C.H Tampubolon Rolly Maulana Awangga

ISBN:-

Editor:

Nisa Hanum Harani

Penyunting:

Nisa Hanum Harani

Desain sampul dan Tata letak:

Naomi C.H Tampubolon

Penerbit:

Penerbit Buku Pedia

Redaksi:

Athena Residence Blok. E No. 1, Desa Ciwaruga, Kec. Parongpong, Kab. Bandung Barat 40559 Tel. 628-775-2000-300

Email: penerbit@bukupedia.co.id

Distributor:

Informatics Research Center Jl. Sariasih No. 54 Bandung 40151 Email: irc@poltekpos.ac.id

Cetakan Pertama, 2022

Hak cipta dilindungi undang-undang Dilarang memperbanyak karya tulis ini dalam bentuk dan dengan cara apa pun tanpa ijin tertulis dari penerbit

KATA PENGANTAR

uji dan Syukur kita panjatkan ke hadirat Tuhan Yang Maha Esa, karena telah melimpahkan berkat dan rahmat-Nya sehingga penulis dapat menyelesaikan buku Tugas Akhir yang berjudul Sistem Rekomendasi Lagu Teratas – Global berdasarkan Properti Trek menggunakan Metode *Content-Based Filtering* ini dapat diselesaikan dengan baik adanya sebagai syarat kelulusan matakuliah Tugas Akhir.

Namun keberhasilan penulisan buku yang penulis buat bukan hanya semata usaha penulis saja, tapi juga banyak bantuan dukungan dari orang-orang sekitar. Dan pada kesempatan ini penulis ingin mengucapkan terimakasih kepada beliau-beliau atau semua pihak yang sudah membantu penyusunan buku Tugas Akhir ini. Diantaranya:

- 1. Rolly Maulana Awangga, S.T., MT., CAIP, SFPC. selaku Bapak dosen Pembimbing.
- 2. Orangtua kami yang senantiasa mendoakan dan kelancaran pengususunan laporan dan sidang Tugas Akhir.
- 3. Bapak Roni Andarsyah, S.T., M.Kom., SFPC selaku Bapak koordinator Tugas Akhir.
- 4. Bapak Mohamad Nurkamal Fauzan, S.T., M.T. selaku Wali Kelas 4B D4 TI.
- 5. Bapak M. Yusril Helmi Setyawan, S. Kom., M. Kom, selaku Ketua Program Studi DIV Teknik Informatika.
- 6. Teman seperjuangan YO DREAM dan S U * R A.
- Dan kepada EXO, NCT, NCT Dream, NCT 127, WayV dan DPR IAN yang telah menemani dan sebagai penyemangat penulis melalui lagu yang mereka sumbangkan dalam pengerjaan buku Tugas Akhir ini.

i

Penulis memohon kepada Pembaca, apabila menemukan kesalahan ataupun kekurangan dalam penulisan buku Tugas Akhir ini, dari segi Bahasa maupun Isi, sekiranya pembaca memahami bahwa buku ini masih jauh dari kata sempurna, sehingga penulis sangat mengharapkan kritik serta saran yang bersifat membangun demi terciptanya buku yang akan penulis susun selanjutnya menjadi lebih baik lagi adanya. Mohon maaf jika masih banyak kekurangan dan semoga laporan ini memberi manfaat untuk setiap pembaca dan juga menambah ilmu bagi penulis. Terimakasih.

Bandung, 30 Agustus 2022

Penulis

DAFTAR ISI

KATA PENGANTAR	i
DAFTAR ISI	iii
DAFTAR GAMBAR	v
DAFTAR TABEL	vi
BAB 1 PENDAHULUAN	1
1.1 LATAR BELAKANG	1
1.2 IDENTIFIKASI MASALAH	2
1.3 TUJUAN DAN MANFAAT	2
1.4 BATASAN MASALAH	3
1.5 SISTEMATIKA PENULISAN	3
BAB 2 LANDASAN TEORI	5
2.1 STATE OF THE ART (SOTA)	5
2.2 TINJAUAN PUSTAKA	6
2.3 LANDASAN TEORI PENDUKUNG	11
2.4 KAJIAN PENDEKATAN YANG DIUSULKAN	17
2.5 KARAKTERISTIK DATA YANG DIGUNAKAN	17
BAB 3 METODOLOGI PENELITIAN	19
3.1 DIAGRAM ALUR METODOLOGI PENELITIAN	19
3.2 INDIKATOR CAPAIAN	20
3.3 TAHAPAN – TAHAPAN METODE PENELITIAN	21
BAB 4 PEMBAHASAN DAN HASIL	25
4.1 STATE OF THE ART (SOTA)	25

4.2 HASIL	39
BAB 5 KESIMPULAN DAN SARAN	41
5.1 KESIMPULAN	41
5.2 SARAN	41
DAFTAR PUSTAKA	42

DAFTAR GAMBAR

Gambar II-1 Spotify	11
Gambar II-2 Content-Based Filtering	16
Gambar III-1 Metodologi Penelitian	19
Gambar III-2 Indikator Capaian	20
Gambar III-3 Flowchart pengumpulan data	22
Gambar IV-1 Chart Spotify (a)	25
Gambar IV-2 IV 1 Chart Spotify (b)	26
Gambar IV-3 IV 1 Chart Spotify (c)	27
Gambar IV-4 Data dalam bentuk file csv	27
Gambar IV-6 Import Library	35
Gambar IV-7 Menampilkan data	35
Gambar IV-8 Drop tabel	36
Gambar IV-9 Missing Value	36
Gambar IV-10 Mengisi nilai NA/NaN	36
Gambar IV-11 Menghilangkan nilai NaN atau 0	37
Gambar IV-12 Encode data	37
Gambar IV-13 Mencari similarity	38
Gambar IV-14 Pemodelan Content-based filtering	39

DAFTAR TABEL

Tabel II-1 Penelitian Terkait	6
Tabel II-2 Karakteristik data yang digunakan	17
Tabel IV-1 Tabel Data	28
Tabel IV-2 Hasil	39

BAB 1 PENDAHULUAN

1.1 LATAR BELAKANG

Musik terdiri dari beberapa unsur, seperti melodi, harmoni, ritme, dan timbre. Musik adalah fenomena intuitif yang dapat dikembangkan, ditingkatkan, dan disebarluaskan dengan berbagai cara. Musik adalah fenomena unik yang dihasilkan oleh berbagai alat musik. Musik memang menjadi salah satu hobi yang paling digemari, hal tersebut terbukti dengan manfaat yang bisa didapatkan dengan mendengarkan musik. Musik memiliki kemampuan untuk mengurangi stres. Manfaat mendengarkan musik adalah kita bisa mendengarkannya sambil melakukan hal lain. Musik adalah komponen yang tak terpisahkan dari kehidupan dan teknologi. Perkembangan yang semakin berkembang pesat juga mempengaruhi dunia industri. (Muslimin M, n.d.) Dimana pada jaman era digital saat ini tidak perlu repot dalam mengengarkan musik dimanapun dan kapanpun, dikarenakan kecanggihan teknologi tersebut. Spotify adalah layanan streaming musik terpopuler di Indonesia, telah mencapai 200 juta pengguna perbulan.(Noviani et al., 2020) Data yang digunakan pada penelitian ini adalah data lagu yang diambil dari playlist chart spotify 50 Lagu Teratas - Global (50 Top Songs - Global).(Fitriani, n.d.) Spotify memiliki properti lagu yang berfungsi untuk mengetahui lebih mendalam mengenai lagu atau sebuah musik. Ada beberapa fitur atau properti lagu pada spotify yaitu, sebagai berikut: track name, album name, artist name, duration, popularity, genres, danceability, energi, key, loudness, speechiness, acousticness, instrumentaness, liveness, tempo

dan valence. Berdasarkan properti trek tersebut kita dibutuhkan sitem yang dapat merekomendasikan berdasarkan properti trek yang ada. Maka dari itu bagaimana caranya untuk merekomendasikan sebuah lagu berdasarkan properti trek yang ada. Dari permasalahan tersebut dibutuhkan sebuah sistem yang dapat merekomendasikan lagu berdasarkan properti trek yang ada. Properti trek 'genres' merupakan properti trek yang digunakan dalam rekomendasi sistem.

Dalam penelitian ini sistem rekomendasi akan dianalisa dan dibangun dengan menggunakan metode *content-based filtering* karena dengan algoritma ini berdasarkan *similarity* konten sehingga rekomendasi yang dihasilkan mempunyai kualitas yang baik. Visualisasi hasil rekomendasi tersebut akan diimplementasikan dengan *framework Jupyter Notebook*. Target luaran yang ingin dicapai pada penelitian ini adalah jurnal nasional terakreditas.

1.2 IDENTIFIKASI MASALAH

Adapun identifikasi masalah pada penelitian ini sebagai berikut:

- 1. Bagaimana menganalisa data 50 lagu teratas-global?
- 2. Bagaimana membuat model sistem rekomendasi lagu berdasarkan properti trek 'genres'?
- 3. Bagaimana mengimplementasikan proses data yang sudah diuji dalam sebuah sistem rekomendasi untuk hasil pengujian lagu?

1.3 TUJUAN DAN MANFAAT

Adapun tujuan pada penelitian ini sebagai berikut:

1. Untuk memberikan rekomendasi lagu berdasarkan properti trek 'qenres' pada sebuah sistem yang diberikan.

- 2. Memberikan pengalaman baru tentang rekomendasi atau *mengeksplore* lagu-lagu yang mungkin belum pernah didengarkan atau disukai.
- 3. Menggunakan pendekatan sistem rekomendasi yaitu model content-based filtering untuk pemodelan sistem rekomendasi lagu berdasarkan properti trek lagu.
- 4. Menerapkan *framework Jupyter Notebook* untuk menampilkan hasil rekomendasi sistem.

Adapun manfaat pada penelitian ini sebagai berikut,

- 1. Merekomendasikan lagu-lagu berdasarkan peroperti trek.
- 2. Membuat tampilan *framework* agar mudah digunakan untuk melakukan proses perekomendasian.

1.4 BATASAN MASALAH

Adapun ruang lingkup pada penelitian ini sebagai berikut,

- Dikarenakan kondisi pandemi, data yang digunakan dalam penelitian ini bersumber dari data yang di convert dari playlist chart pada Spotify.
- 2. Periode waktu 1 minggu.
- 3. Bahasa pemograman menggunakan python.
- 4. Software yang digunakan Jupyiter dan Anaconda.

1.5 SISTEMATIKA PENULISAN

Berdasarkan latar belakang dan perumusan masalah diatas, maka penyusunan laporan ini dibuat dalam suatu sistematika yang terdiri dalam beberapa BAB, yaitu:

BAB I PENDAHULUAN

Pada BAB I PENDAHULUAN berisi mengenai latar berlakang masalah, identifikasi masalah, tujuan dan manfaat, ruang lingkup masalah, serta sistematika penulisan dari laporan Tugas Akhir.

BAB II LANDASAN TEORI

Pada BAB LANDASAN TEORI berisi *State of The Art (SOTA)*, tinjauan pustaka, landasan teori, kajian pendekatan yang diusulkan, dan karakteristik data yang digunakan pada laporan Tugas Akhir.

BAB III METODOLOGI PENELITIAN

Pada BAB METODOLOGI PENELITIAN berisi diagram alur metode penelitian, indikator penelitian, tahap-tahap penelitian laporan Tugas Akhir.

BAB IV PEMBAHASAN DAN HASIL

Pada BAB PEMBAHASAN & HASIL berisi hasil dan pembahasan pada laporan Tugas Akhir.

BAB V PENUTUP

Pada BAB PENUTUP berisi kesimpulan dan saran pada laporanTugas Akhir.

DAFTAR PUSTAKA

Berisikan referensi yang menjadi dasar teori dan pikiran peneliti dalam menyusun Tugas Akhir.

LAMPIRAN-LAMPIRAN

Berisikan bukti sejumlah lampiran yang dibutuhkan sebelum melaksanakan sidang Tugas Akhir.

BAB 2 LANDASAN TEORI

2.1 STATE OF THE ART (SOTA)

Teknologi informasi menjadi tantangan berat bagi pengguna teknologi informasi dengan perkembangnya dari tahun ke ketahun. Akibatnya pengguna teknologi harus lebih memahami dan mengikuti arus perkembangan tersebut. Seiring dengan berkembangnya teknologi, banyak yang mempengaruhi teknologi infromasi yang ada. Baik dibidang bisnis, hiburan, pendidikan, industri pelayanan dan banyak lagi. Salah satu contoh yang dapat diambil yaitu pada bidang industri musik. Industri musik selalu berubah dari tahun ke tahun dan menjadi salah satu dampak yang sangat berpengaruh dan juga sangat populer dikalangan pengguna teknologi saat ini. Layanan musik digital merupakan segmen penting dalam industri musik, hal ini dikarenakan memiliki manfaat seperti streaming online termasuk ukuran audiens, paparan yang lebih baik, konten yang kaya, berbagai platform, dan interaksi yang lebih baik dengan target pasar.(Noviani et al., 2020) Lagu memiliki kemampuan untuk mengekspresikan emosi manusia dan memberikan kenikmatan bagi pendengarnya. Akibatnya, sangat penting bahwa sebuah lagu tidak diputar lagi. Setelah itu, sistem rekomendasi dikembangkan untuk menjawab kebutuhan masyarakat.(Fawzan et al., 2021) Spotify merupakan salah satu layanan musik digital yang banyak digemari penggunanya, hal ini dikarenakan spotify kaya akan daftar musik yang banyak dan dapat didengarkan pengguna. Penelitian ini bertujuan untuk membuat sistem yang dapat menyajikan rekomendasi musik sesuai dengan preferensi user sehingga tingkat kenyamanan user akan meningkat.

Tim peneliti telah mengkaji sejumlah referensi mengenai perkembangan teknologi mengenai rekomendasi sistem, serta pemodelan untuk rekomendasi sistem dengan pendekatan content based filtering. Selain itu, terkait dengan kajian literatur terkait dalam melakukan rekomendasi sistem, faktor-faktor apa saja yang mempengaruhi dan model rekomendasi yang digunakan lebih lanjut. Detail dari tiap referensi lainnya ditunjukkan pada tabel. (Pereira & Varma, 2019) - (Luo, 2018)

2.2 TINJAUAN PUSTAKA

Berikut ini akan ditampilakan beberapa penelitian sebelumnya yang berkaitan penelitian, yaitu:

Tabel II-1 Penelitian Terkait

No.	Judul Jurnal	Tahun	Intisari
1.	Sistem rekomendasi	2019	Sistem ini berjalan di
	perencanaan		perangkat Android. Dengan
	keuangan. (Pereira &		penambahan sistem ini
	Varma, 2019)		diharapkan dapat
			mempermudah masyarakat
			untuk mengunjungi apotek
			yang lebih dekat dengan
			rumahnya, memiliki fasilitas
			yang lebih banyak, dan
			memberikan pelayanan
			kesehatan.
2.	Mengganti model	2022	Hasil menunjukkan bahwa
	<i>Hybrid</i> untuk		model hibrida mengungguli

	rokomondosi yana		semua model tradisional
	rekomendasi yang		
	dipersonalisasi dengan		lainnya dalam hal prediksi dan
	menggabungkan		kualitas rekomendasi.
	pengguna		
	Demographic. (K & C,		
	2022)		
3.	Kepercayaan User	2022	Studi saat ini juga membantu
	pada Sistem		memperluas literatur saat ini
	Rekomendasi: Sebuah		tentang bagaimana pengguna
	Perbandingan dari		sendiri memahami proses
	Content-Based,		rekomendasi dan sejauh mana
	Collaborative dan		mereka menetapkan
	Demographic Filtering.		tanggung jawab untuk diri
	(Liao et al., 2022)		mereka sendiri vs. sistem, dan
			bagaimana atribusi ini pada
			gilirannya mempengaruhi
			kepercayaan mereka pada
			rekomendasi. Dengan
			berfokus pada faktor
			psikologis seperti itu dan
			evaluasi subjektif pengguna
			terhadap sistem pemberi
			rekomendasi, kami
			menawarkan wawasan praktis
			untuk membangun sistem
			tepercaya yang lebih berpusat
			pada manusia.
4.	Meningkatkan	2021	Dalam pekerjaan ini kami
	Kuesioner yang		meningkatkan pendekatan
	Dipersonalisasi Dengan		kuesioner yang dipersonalisasi
	Pengurangan		untuk memecahkan masalah
	l .	L	

	Redundansi untuk		nongguna yang dingin	
			pengguna yang dingin	
	Mengatasi Masalah		menggunakan strategi	
	Pengguna yang Dingin		pengurangan ketidakpastian.	
	(Kabiru & Muhammad,		Hasil eksperimen pada dataset	
	2021)		Movielens menandakan	
			peningkatan RMSE, Precision,	
			Recall, F1 dan NDCG masing-	
			masing sebesar 0.200, 0.227,	
			0.261, 0.174 dan 0.249 pada	
			dataset 1M dan 0.168, 0.159,	
			0.205, 0.076 dan 0.213 dalam	
			dataset 10M masing-masing	
			pada pekerjaan kuesioner	
			yang dipersonalisasi dari Pozo	
			(2018).	
5.	Rekomendasi Sistem	2021	Sistem yang diusulkan akan	
	menggunakan Hybrid		membantu mengatasi	
	Filtering (Toradmalle et		kelemahan yang dihadapi oleh	
	al., 2021)		masing-masing metode,	
			sehingga meningkatkan	
			akurasi sistem.	
6.	Kajian Sistem	2021	Hasil penelitian	
	Rekomendasi Pada		menyimpulkan bahwa tingkat	
	Keanekaragaman		keragaman podcast dan	
	Podcast (Huda, 2021)		perilaku pendengarnya	
			menciptakan peluang	
			eksplorasi karena sedikitnya	
			studi terkait untuk menjawab	
			tantangan yang terus	
			berkembang.	

7.	Sistem Rekomendasi	2020	Nilai RMSE dari model yang		
	untuk Item yang dapat		diusulkan dibandingkan		
	disesuaikan (Sharma et		dengan teknik rekomendasi		
	al., 2021)		umum lainnya yang ada. Nilai		
			RMSE dari model yang		
			diusulkan dibandingkan		
			dengan teknik rekomendasi		
			umum lainnya seperti		
			Content-based filtering		
			memiliki nilai RMSE 0.644 dan		
			Demographic filtering 0.610.		
8.	Tinjauan Komprehensif	2020	Tantangan masing-masing		
	Pendekatan dan		seperti cold start dan skala		
	Tantangan Sistem		pada dataset yang lebih besar		
	Rekomendasi (Narke &		dibahas dan telah ditemukan		
	Nasreen, 2020)		bahwa model hybrid efektif		
			dalam memecahkan masalah		
			ini. Lingkup pekerjaan di masa		
			depan termasuk menemukan		
			lebih banyak model pelengkap		
			yang dapat membantu sistem		
			ini dalam mencapai skala yang		
			lebih besar dan akurasi yang		
			lebih baik, ada juga		
			kelangkaan metrik		
			perbandingan model ini.		
			Hanya menggunakan metrik akurasi sederhana tidak		
			menunjukkan seberapa baik		
			model telah mengidentifikasi		

			beberapa hubungan semantik lokal.
9.	Sistem Rekomendasi Film Menggunakan Pembelajaran Semi Supervised (Roy et al., 2019)	2019	Penelitian ini menyajikan sistem rekomendasi untuk film menggunakan pendekatan yang berbeda dalam paradigma pemrograman Python. Sistem rekomendasi yang baik harus memberikan rekomendasi yang positif dan bermanfaat dan juga memberikan rekomendasi yang berbeda dari apa yang sudah disediakan oleh algoritma yang ada.
10.	Kepercayaan User pada Sistem Rekomendasi: Sebuah Perbandingan dari Content-Based, Collaborative dan Demographic Filtering. (Luo, 2018)	2018	Studi saat ini juga membantu memperluas literatur saat ini tentang bagaimana pengguna sendiri memahami proses rekomendasi dan sejauh mana mereka menetapkan tanggung jawab untuk diri mereka sendiri vs. sistem, dan bagaimana atribusi ini pada gilirannya mempengaruhi kepercayaan mereka pada rekomendasi. Dengan berfokus pada faktor psikologis seperti itu dan evaluasi subjektif pengguna

	terhada	р	sistem	pemberi
	rekome	enda	ısi,	kami
	menaw	arka	an wawas	san praktis
	untuk	me	embangu	n sistem
	teperca	ıya y	ang lebil	n berpusat
	pada m	anu	sia.	

2.3 LANDASAN TEORI PENDUKUNG

Landasan teori adalah konsep dengan rapi pernyataan dan sistematis memiliki variabel dalam penelitian karena landasan teori menjadi landasan yang kuat dalam penelitian yang akan dilakukan.

2.1.1 Spotify

Spotify adalah layanan streaming musik yang menyediakan akses cepat ke lebih dari 8 juta lagu. Streaming dilakukan dengan menggabungkan akses client-server dan protokol peer-to-peer. (Kreitz & Niemelä, 2010) sebagai platform dengan jumlah pengguna yang banyak, memerlukan penelitian tambahan terhadap layanan streaming musik yang disediakan agar dapat memberikan pengalaman pengguna yang lebih baik dan meningkatkan pendapatan dibandingkan platform streaming lainnya melalui data mining. (Zaidah et al., 2021)

Gambar II-1 Spotify

2.1.1.1 Track Name

Track name merupakan judul atau nama lagu track. (Maringka et al., 2021)

2.1.1.2 Album Name

Album name adalah nama album lagu.(SpotifyAB, 2022)

2.1.1.3 *Artist name*

Artist name merupakan nama pencipta dan penyanyi lagu. (Maringka et al., 2021)

2.1.1.4 Duration

Duration adalah durasi lagu dalam hitungan milidetik milisekon.(Maringka et al., 2021)

2.1.1.5 Popularity

Popularity merupakan popularitas trek. Nilainya antara 0 dan 100, dengan 100 menjadi yang paling populer. Popularitas dihitung dengan algoritma dan sebagian besar didasarkan pada jumlah total pemutaran yang dimiliki trek dan seberapa baru pemutaran tersebut. (Stetler, 2022)

2.1.1.6 *Genres*

Genres merupakan daftar genre yang dikaitkan dengan artis.(SpotifyAB, 2022)

2.1.1.7 Danceability

Danceability menggambarkan seberapa cocok trek untuk menari berdasarkan kombinasi elemen musik termasuk tempo, stabilitas ritme, kekuatan ketukan, dan keteraturan keseluruhan. Nilai 0,0 paling tidak dapat menari dan 1,0 paling dapat menari. (Luo, 2018)

2.1.1.8 *Energy*

Energy adalah ukuran dari 0,0 hingga 1,0 dan mewakili ukuran persepsi intensitas dan aktivitas. Biasanya, trek energik terasa cepat, keras, dan berisik. Misalnya, death metal memiliki energi yang tinggi, sementara pendahuluan Bach mendapat skor rendah pada skala. Fitur persepsi yang berkontribusi pada atribut ini termasuk rentang dinamis, kenyaringan yang dirasakan, timbre, tingkat onset, dan entropi umum. (Luo, 2018)

2.1.1.9 *Key*

Key adalah kunci trek tersebut. Integer memetakan ke pitch menggunakan notasi Kelas Pitch standar. Misalnya. 0 = C, 1 = C #/Db, 2 = D, dan seterusnya. (Stetler, 2022)

2.1.1.10 *Loudness*

Loudness adalah kenyaringan keseluruhan trek dalam desibel (dB). Nilai kenyaringan dirata-ratakan di seluruh trek dan berguna untuk membandingkan kenyaringan relatif trek. Kenyaringan adalah kualitas suara yang merupakan korelasi psikologis utama dari kekuatan fisik (amplitudo). Nilai tipikal berkisar antara -60 dan 0 db.(Stetler, 2022)

2.1.1.11 *Mode*

Mode menunjukkan modalitas (mayor atau minor) dari sebuah trek, jenis tangga nada dari mana konten melodinya berasal. Mayor diwakili oleh 1 dan minor adalah 0. (Stetler, 2022)

2.1.1.12 *Speechiness*

Speechiness mendeteksi keberadaan kata-kata yang diucapkan di trek. Semakin eksklusif pidato seperti rekaman (misalnya talk show, buku audio, puisi), semakin mendekati 1,0 nilai atributnya. Nilai di atas 0,66 menggambarkan trek yang mungkin seluruhnya terbuat dari kata-kata yang diucapkan. Nilai antara 0,33 dan 0,66 menggambarkan trek yang mungkin berisi musik dan ucapan, baik dalam bagian atau berlapis,

termasuk kasus seperti musik rap. Nilai di bawah 0,33 kemungkinan besar mewakili musik dan trek non-suara lainnya.(Luo, 2018)

2.1.1.13 *Acousticness*

Acousticness merupakan ukuran kepercayaan dari 0,0 hingga 1,0 apakah trek akustik. 1.0 mewakili kepercayaan diri yang tinggi bahwa trek tersebut akustik.(Luo, 2018)

2.1.1.14 *Instrumentaness*

Instrumentaness adalah memprediksi apakah trek tidak berisi vokal. Suara "Ooh" dan "aah" diperlakukan sebagai instrumental dalam konteks ini. Rap atau trek kata yang diucapkan jelas "vokal". Semakin dekat nilai instrumental menjadi 1,0, semakin besar kemungkinan trek tersebut tidak berisi konten vokal. Nilai di atas 0,5 dimaksudkan untuk mewakili trek instrumental, tetapi kepercayaan lebih tinggi saat nilainya mendekati 1,0. (Stetler, 2022)

2.1.1.15 *Liveness*

Liveness untuk mendeteksi kehadiran penonton dalam rekaman. Nilai keaktifan yang lebih tinggi menunjukkan peningkatan kemungkinan bahwa trek ditampilkan secara langsung. Nilai di atas 0,8 memberikan kemungkinan yang kuat bahwa trek itu hidup.(Stetler, 2022)

2.1.1.16 *Tempo*

Perkiraan *tempo* keseluruhan trek dalam ketukan per menit (*BPM*). Dalam terminologi musik, *tempo* adalah kecepatan atau kecepatan dari bagian tertentu dan berasal langsung dari durasi ketukan rata-rata.(Luo, 2018)

2.1.1.17 *Valance*

Ukuran dari 0,0 hingga 1,0 yang menggambarkan kepositifan musik yang disampaikan oleh sebuah lagu. trek dengan valensi tinggi terdengar lebih *positif* (misalnya bahagia, ceria, *euforia*), sedangkan trek dengan valensi rendah terdengar lebih negatif (misalnya sedih, tertekan, marah).(Stetler, 2022)

2.1.2 Recommendation System (Sistem Rekomendasi)

Sistem rekomendasi adalah sistem yang digunakan untuk mendapatkan sesuatu yang diinginkan.(Softscients, 2022).

2.1.3 Content-Based Filtering

Metode content-based filtering merupakan rekomendasi berdasarkan kemiripan konten atau item (Girsang, 2017) dan merekomendasikan konten atau item yang mirip tersebut. Sistem rekomendasi pada metode ini menghubungkan item atau konten (Adhikari, 2019) berdasarkan properti trek. Rekomendasi berbasis konten juga mampu merekomendasikan konten atau item baru yang belum pernah dinilai oleh pengguna mana pun sebelumnya karena rekomendasi ini dibuat secara eksklusif berdasarkan fitur-fiturnya, dan bukan berdasarkan peringkat pengguna lain. (Liu & Callvik, 2017) Konten atau item yang digunakan pada proses pengolahan data ini adalah Genres, yaitu mencari kemiripan berdasarkan genre yang ditentukan. Genre index 0 pada data top songs – global sebagai kriteria atau parameter. Genre lagu lainnya akan dihitung jarak cosinus terdekatnya dengan lagu index 0. Setelah ditihung berdasarkan jarak cosinusnya maka lagu-lagu yang muncul akan menjadi lagu-lagu yang akan direkomendasikan.

Gambar II-2 Content-Based Filtering

2.1.3.1 Cosine Distance

Cosine distance adalah ukuran kesamaan antara dua vektor berdasarkan sudut kosinus di antara mereka. Penelitian ini mengusulkan sistem pendeteksi kemiripan genre dengan cara mengelompokkan dan menghitung sudut cosinus antar genre yang diperiksa. (Usino et al., 2019) Cosine distance digunakan untuk melakukan perhitungan kesamaan dari genre. Semakin besar nilai cosinus (maksimal 1) yang dihasilkan oleh genre yang dibandingkan, maka fitur yang dimiliki keduanya semakin mirip sehingga dapat dikelompokkan ke dalam label kelas yang sama. (Zuhraini et al., 2022) Pengukuran jarak dilakukan dengan menggunakan metode jarak cosine distance. Jarak cosine distance didefinisikan dengan rumus seperti berikut: (Wang et al., 2020)

$$d(x,y) = 1 - \frac{x \cdot y}{||x|| ||y||}$$

Dimana:

x, y = nilai rata-rata dari vektor x dan y.

2.4 KAJIAN PENDEKATAN YANG DIUSULKAN

Metode yang digunakan dalam penelitian ini adalah metode *Content-Based Filtering*. Data yang dihimpun berkenaan dengan data 50 lagu teratas-global. Tujuan penelitian ini ialah membuat *framewok* sederhana sebuah sistem rekomendasi yang berfungsi untuk menyarankan sebuah lagu berdasarkan properti trek yang ada.

2.5 KARAKTERISTIK DATA YANG DIGUNAKAN

Dataset yang digunakan adalah data yang didapatkan dari mengkonvert data playlist ke dalam bentuk format csv. Adapun karakteristik data yang digunakan sebagai berikut: (Luo, 2018; SpotifyAB, 2022; Stetler, 2022)

Tabel II-2 Karakteristik data yang digunakan

No	Atribut	Tipe Data
1.	Track name	String
2.	Album name	String
3.	Artist name	String
4.	Duration	Int
5.	Popularity	Int
6.	Genres	String
7.	Danceability	Float
8.	Energy	Float
9.	Key	Int
10.	Loudness	Float
11	Mode	Int
12.	Speechiness	Float

13.	Acousticness	Float
14.	Instrumentaness	Float
15	Liveness	Float
16.	Тетро	Float
17.	Valance	Float

BAB 3

METODOLOGI PENELITIAN

3.1 DIAGRAM ALUR METODOLOGI PENELITIAN

Gambar III-1 Metodologi Penelitian

3.2 INDIKATOR CAPAIAN

Berdasarkan diagram alur metode penelitian diatas, terdapat indikator capaian sebagai berikut:

Gambar III-2 Indikator Capaian

No.	Tahapan			Indikator capaian	
1.	Identifikasi dan	\rightarrow	1.	Penentuan Rumusan Masalah.	
	perumusan				
	masalah				
2.	Studi literatur	\rightarrow	2.	Concept Map Sistem Rekomendasi	
				lagu terhadap properti trek yang ada	
				berdasarkan data dan metode	
				Content-Based Filtering.	
3.	Pengumpulan	\rightarrow	3.	Data mentah yang di <i>convert</i> dari	
	data			playlist platform musik spotify.	
3.	Proses Data	\rightarrow	4.	Proses data yang sudah siap untuk	
				pemodelan dengan tahapan analisa,	
				pembersihan, penanganan nilai yang	
				hilang dan transformasi.	
4.	Pemodelan &	\rightarrow	5.	Content-Based Filtering merupakan	
	Pengujian			pemodelan yang digunakan untuk	
				merekomendasi lagu berdasarkan	
				properti trek. Data diuji menggunakan	
				Jupyter Notebook dalam mengolah	
				data menggunakan pemodelan.	
5.	Evaluasi	\rightarrow	6.	Hasil penelitian dan performansi	
				model.	
6.	Diseminasi hasil	\rightarrow	7.	Laporan Tugas Akhir dan <i>draft</i> jurnal	
				Tugas Akhir.	

3.3 TAHAPAN – TAHAPAN METODE PENELITIAN

Berikut adalah tahapan-tahapan metode:

3.1.1 Identifikasi Masalah

Identifikasi masalah merupakan langkah pertama dalam tahapan metode penelitian yang berfungsi untuk mengidentifikasi masalah. Pada tahap ini peneliti melakukan penelitian dengan cara memnukan masalah (*problem*) yang ada, kemudian melakukan indentifikasi sumber permasalahan (*root cause*) sehingga menciptakan permasalahan (*problem statement*) yang menjelaskan permasalahan yang sudah diidentifikasi. Adapun Permasalahan yang terdapat pada penelitian ini adalah bagaimana cara merekomendasikan lagu berdasarkan properti trek.

3.1.2 Studi Literatur

Setelah dilakukan tahap indentifikasi masalah langkah selanjutnya dalam tahapan metode penelitian adalah studi literatur. Pada tahap ini peneliti melakukan pencarian informasi yang relevan dengan masalah yang akan diteliti dan mengkaji beberapa teori dasar yang relevan dengan permsalaha yang akan diteliti kemudian memperdalam pengetahuan peneliti tentang permasalahan yang akan diteliti dan mengkaji hasil-hasil penelitian terdahulu yang berkaitan dengan penelitian yang akan diteliti dan mendapatkan informasi tentang aspek-aspek mana dari suatu permasalahan yang sudah pernah diteliti untuk menghindari agar tidak terjadi *plagiarisme* penelitian.

3.1.3 Pengumpulan data

Pengumpulan data adalah tahap setelah studi literatur. Tujuan pengumpulan data adalah untuk memperoleh data yang akan digunakan dalam penelitian. Peneliti melakukan pengumpulan studi literatur yang

relevansi dan sesuai dengan apa yang dibutuhkan untuk menunjang penelitian untuk dapat melakukan teknik pengumpulan data studi literatur. Maka dari itu data yang digunakan pada penelitian ini adalah data yang di convert dari website https://exportify.net/#playlists kedalam bentuk format csv. Website tersebut berfungsi untuk mengekspor daftar putar spotify menggunakan Web API. Alur dari pengumpulan data dapat dilihat dari flowchart berikut:

Gambar III-3 Flowchart pengumpulan data

Penjelasan *flowchart*, dimulai dengan cara mengunjungi *website Exportify* kemudian akan muncul tampilan awal dari *website*. Klik "*Get Started*", kemudian akan dialihkan ke halaman *login* dan melakukan proses *login*. Setelah masuk *login* selanjutnya akan di tampilkan daftar *spotify* yang sudah ditambahkan kedalam koleksi *playlist* pada spotify. Kemudian *klik export* lalu *playlist* yang berisi lagu yang ingin diambil

datanya akan terekspor menjadi data yang berbetuk *file csv*. kemudian *loqout* setelah selesai melakukan *export* data.

3.1.4 Proses Data

Setelah dilakukan pengumpulan data langkah selanjutnya dalam tahap metodologi penelitian adalah proses data. Pada tahap proses data atau pengolahan data dilakukan data *cleaning*. *Cleaning* data adalah prosedur untuk memastikan keakuratan, konsistensi, dan kegunaan data dalam kumpulan data. Prosedurnya adalah mendeteksi kesalahan atau kerusakan pada data dan kemudian memperbaiki atau menghapusnya jika perlu.

3.1.5 Pemodel dan Pengujian

Tahapan selanjutnya yaitu Pemodelan dan Pengujian. Tahap ini ialah tahap menggunakan metode rekomendasi dalam pemodelan dan pengujian data. *Content-Based Filtering* merupakan metode, model atau algoritma yang akan digunakan pada penelitian ini. Pemodelan ada tahap yang dilakukan sebelum pengujian. Dalam pemodelan dipertimbangkan dulu model yang akan dipakai dalam mengelola data. Kemudian langkah selanjutnya setelah pemodelan adalah langkah Pengujian menggunakan model *Content-Based Filtering*.

3.1.6 Hasil Evaluasi

Tahap hasil evaluasi adalah tahap performansi dari pemodelan dan pengujian. Hasil pengujian data akan diimplementasi pada tahap hasil evaluasi.

3.1.7 Diseminasi Hasil

Tahap deseminasi hasil adalah tahap untuk artikel yang diterbitkan dalam laporan penelitian dan *draft* jurnal.

BAB 4

PEMBAHASAN DAN HASIL

4.1 STATE OF THE ART (SOTA)

Penelitian ini dilakukan dengan mengambil data selama 1 minggu terakhir dari *playlist* 50 Lagu Teratas - Global (*50 Top Songs - Global*) sebanyak 50 data lagu. Untuk hasil data mentah atau data yang belum dilakukan proses data yaitu data yang ada pada *spotify*, dapat dilihat sebagai berikut:

Gambar IV-1 Chart Spotify (a)

Gambar IV-2 IV 1 Chart Spotify (b)

Gambar IV-3 IV 1 Chart Spotify (c)

Kemudian data diconvert dalam format file csv.

Gambar IV-4 Data dalam bentuk file csv

Spotify ID,Artist IDs,Track Name,Album Name,Artist Name(s),Release Date,Di 2tTmW7RDtMQtBk7m2rYeSw,"716NhGYqD1jl2wl1Qkgq36,52iwsT98xCoGgiC 4Dvkj6JhhA12EX05fT7y2e,"6KImCVD70vtloJWnq6nGn3","As It Was","Harry's 6Sq7ltF9Qa7SNFBsV5Cogx,"4q3ewBCX7sLwd24euuV69X,37230BxxYs9ksS7Ol 1IHWI5LamUGEuP4ozKQSXZ,"4q3ewBCX7sLwd24euuV69X","Tití Me Pregunto 75FEaRjZTKLhTrFGsfMUXR,"1aSxMhuvixZ8h9dK9jIDwL","Running Up That Hil 5ildQOEKmJuWGl2vRkFdYc,"7ltDVBr6mKbRvohxheJ9h1","DESPECHÁ","DESPE 5Eax0qFko2dh7Rl2lYs3bx,"4q3ewBCX7sLwd24euuV69X","Efecto","Un Verano 6xGruZOHLs39ZbVccQTuPZ,"3MZsBdqDrRTJihTHQrO6Dq","Glimpse of Us","G 3k3NWokhRRkEPhCzPmV8TW,"4q3ewBCX7sLwd24euuV69X,5n9bMYfz9qss2'

Tabel IV-1 Tabel Data

		1		
Track	Album	Artist	Popula	Genres
Name	Name	Name(s)	rity	Genres
Quevedo	Quevedo:		100	argentine hip hop,pop
: Bzrp	Bzrp	Pizarran Ou		
Music	Music	Bizarrap,Qu evedo		venezolano,trap
Sessions,	Sessions,	evedo		argentino,rap
Vol. 52	Vol. 52			canario,trap latino
As It	Harry's	Harry Ctulos	93	рор
Was	House	Harry Styles		
Ме	Un	Bad	99	latin,reggaeton,trap latino
Porto	Verano	Bunny,Chenc		
Bonito	Sin Ti	ho Corleone		
Tití Me	Un		98	latin raggatan tran
Pregunt	Verano	Bad Bunny		latin,reggaeton,trap latino
ó	Sin Ti			latino
Running			95	art pop,art
Up That	Hounds	Vata Buch		rock,baroque
Hill (A	of Love	Kate Bush		pop,new wave
Deal				pop,permanent

with				wave,piano
				rock,singer-
God)				_
				songwriter
DESPEC	DESPECH	ROSALÍA	93	r&b en espanol
HÁ	Á			
	Un			latin,reggaeton,trap
Efecto	Verano	Bad Bunny	96	latino
	Sin Ti			latino
Glimpse	Glimpse		0-	
of Us	of Us	Joji	97	viral pop
-	-			latin,reggaeton,trap
	Un	Bad		latino,cumbia,latin
Ojitos	Verano	Bunny,Bomb	96	alternative,pop
Lindos	Sin Ti	a Estéreo	30	electronico,tropical
	31111	d Estereo		alternativo
Dad	Comini			unternativo
Bad	Gemini	Steve Lacy	85	afrofuturism
Habit	Rights			
Moscow	Un			latin,reggaeton,trap
Mule	Verano	Bad Bunny	95	latino
with	Sin Ti			racino
	Dreamlan			aguzo.
Heat	d (+	Glass	00	gauze
Waves	Bonus	Animals	90	pop,indietronica,shive
	Levels)			r pop
				colombian
				pop,latin,latin
La	La	Manuel	92	pop,reggaeton,regga
Bachata	Bachata	Turizo		eton colombiano,trap
				latino
PROVEN	PROVENZ			latin,reggaeton,regga
		KAROL G	94	eton colombiano
ZA	Α			eton colombiano

Bad Decision s (with BTS & Snoop Dogg)	Bad Decisions (with BTS & Snoop Dogg)	benny blanco,BTS,S noop Dogg	88	electropop,pop,pop rap,k-pop,k-pop boy group,g funk,gangster rap,hip hop,rap,west coast rap
I Ain't Worried	I Ain't Worried (Music from The Motion Picture Top Gun: Maverick)	OneRepublic	93	dance pop,piano rock,pop,pop rock
Left and Right (Feat. Jung Kook of BTS)	Left and Right (Feat. Jung Kook of BTS)	Charlie Puth,Jung Kook,BTS	94	dance pop,pop,viral pop,k-pop,k-pop boy group
Doja	Doja	Central Cee	91	drill brasileiro
BREAK MY SOUL	RENAISSA NCE	Beyoncé	82	dance pop,pop,r&b
About Damn Time	Special	Lizzo	80	dance pop,escape room,minnesota hip hop,pop,trap queen
STAYING ALIVE (feat.	STAYING ALIVE (feat.	DJ Khaled,Drak e,Lil Baby	85	dance pop,hip hop,miami hip hop,pop,pop rap,rap,southern hip

Dualia 8	Dualia 9			ban turn armadian bia
Drake &	Drake &			hop,trap,canadian hip
Lil Baby)	Lil Baby)			hop,canadian
				pop,toronto rap,atl
				hip hop,atl trap
STAY	F*CK	The Kid		australian hin
(with	LOVE 3:		0.0	australian hip
Justin	OVER	LAROI, Justin	86	hop,canadian
Bieber)	YOU	Bieber		рор,рор
	Un	Bad		latin regarden tran
Tarot	Verano	Bunny,Jhay	93	latin,reggaeton,trap
	Sin Ti	Cortez		latino
				glam rock,mellow
				gold,piano rock,dance
Cold		-1.		pop,pop,uk
Heart -	The	Elton John,Dua Lipa,PNAU	84	pop,alternative
PNAU	Lockdown			dance,aussietronica,a
Remix	Sessions			ustralian
				dance,australian
				electropop
				colombian pop,dance
	To.	Chalira Day		
Te	Te	Shakira,Rau	93	pop,latin,latin
Felicito	Felicito	w Alejandro		pop,pop,puerto rican
				pop,trap latino
SNAP	SNAP	Rosa Linn	72	
	PACK			
Late	Harry's			
Night	House	Harry Styles	93	рор
Talking	riouse			
	Un	Bad		latin,reggaeton,trap
Party	Verano	Bunny,Rauw	93	latino,puerto rican
	Sin Ti	Alejandro		рор
	<u>i</u>	l l		

I Like You (A Happier Song) (with Doja Cat)	Twelve Carat Toothach e	Post Malone,Doja Cat	91	dfw rap,melodic rap,rap,dance pop,pop
Bam Bam (feat. Ed Sheeran)	Familia	Camila Cabello,Ed Sheeran	84	dance pop,pop,post- teen pop,uk pop
Jimmy Cooks (feat. 21 Savage)	Honestly, Nevermin d	Drake,21 Savage	92	canadian hip hop,canadian pop,hip hop,rap,toronto rap,atl hip hop,trap
Under The Influenc e	Indigo (Extended)	Chris Brown	88	dance pop,pop,pop rap,r&b
Sunroof	Sunroof	Nicky Youre,dazy	91	
Sweater Weather	I Love You.	The Neighbourh ood	90	modern alternative rock,modern rock,pop,shimmer pop
Blinding Lights	After Hours	The Weeknd	90	canadian contemporary r&b,canadian pop,pop

Ferrari	Ferrari	James Hype,Miggy Dela Rosa	90	deep groove house,edm,house,pop dance,tropical house,uk dance
Ghost	Justice	Justin Bieber	89	canadian pop,pop
La Corrient e	Un Verano Sin Ti	Bad Bunny,Tony Dize	91	latin,reggaeton,trap latino,latin hip hop
One Kiss (with Dua Lipa)	One Kiss (with Dua Lipa)	Calvin Harris,Dua Lipa	90	dance pop,edm,electro house,house,pop,pro gressive house,uk dance,uk pop
Vegas (From the Original Motion Picture Soundtr ack ELVIS)	Vegas (From the Original Motion Picture Soundtra ck ELVIS)	Doja Cat	90	dance pop,pop
Die for You	Starboy	The Weeknd	84	canadian contemporary r&b,canadian pop,pop
Until I Found You	Until I Found You	Stephen Sanchez	91	gen z singer- songwriter

MIDDLE OF THE NIGHT	MIDDLE OF THE NIGHT	Elley Duhé	91	alt z,pop
First Class	Come Home the Kids Miss You	Jack Harlow	82	deep underground hip hop,kentucky hip hop,rap
Another Love	Long Way Down	Tom Odell	55	chill pop,pop
Una Noche en Medellín	Una Noche en Medellín	Cris Mj	91	mambo chileno,urbano chileno
Kesariya (From Brahmas tra)	Kesariya (From Brahmast ra)	Pritam,Arijit Singh,Amita bh Bhattachary a	87	desi pop,filmi,indian instrumental,modern bollywood
Después de la Playa	Un Verano Sin Ti	Bad Bunny	91	latin,reggaeton,trap latino
Dandelio ns	Safe Haven	Ruth B.	90	alt z,canadian contemporary r&b,canadian pop,pop
Shivers	=	Ed Sheeran	89	pop,uk pop

Proses selanjutnya dalam penelitian ini adalah proses pemodelan dan pengujian data. Penelitian ini menggunakan *content-based filtering* dalam pemodelannya. Langkah-langkah dalam pemodelan menggunakan *content-based filtering*.

a) Import Library

```
In [1]: import pandas as pd
import numpy as np
import sklearn
import nitk
from sklearn.metrics.pairwise import cosine_distances
from sklearn.feature extraction.text import CountVectorizer
from nltk.tokenize import word_tokenize
```

Gambar IV-5 Import Library

b) Menampilkan 5 dataset teratas.

Gambar IV-6 Menampilkan data

c) Cleaning Data

Cleaning data adalah prosedur untuk memastikan keakuratan, konsistensi, dan kegunaan data dalam kumpulan data. Prosedurnya adalah mendeteksi kesalahan atau kerusakan pada data dan kemudian memperbaiki atau menghapusnya jika perlu. Berikut adalah proses data yang telah dilakukan cleaning data:

Drop tabel

Drop tabel yang befungsi untuk menghilangkan tabel yang tidak digunakan atau diperlukan dalam proses penelitian. Terdapat beberapa data yang tidak diperlukan dalam penelitian ini, dan di lakukan drop tabel. Dapat dilihat sebagai berikut:

Gambar IV-7 Drop tabel

Cek Data

Mengecek apakah data tersebut memiliki *missing value* atau tidak. Setelah dilakukan pengecekan data terdapat 2 data yang memiliki *missing value*:

Gambar IV-8 Missing Value

Lalu dilakukan proses mengisi nilai *NA/NaN (Not a Number)* menjadi 0.

Gambar IV-9 Mengisi nilai NA/NaN

Kemudian menghapus atau menghilangkan semua entri dengan nilai *NaN* atau 0 seperti berikut:

```
In [8]: of = df.dropna(axis = 0)
df.shape
Out[8]: (48, 19)
```

Gambar IV-10 Menghilangkan nilai NaN atau 0

d) Pemodelan sistem rekomendasi berdasarkan konten.

Pada pemodelan menggunakan *content-based filtering* memiliki beberapa tahap dalam menampilkan rekomendasi berdasarkan konten. Dapat dilihat sebagai berikut:

Encode Data

Pada tahap ini *genres* di *encode* dengan cara mengkonversi *teks* menjadi *vector* menggunakan *CountVectorizer* dengan konten yang digunakan dalam merekomendasikan yaitu kemiripan konten index 0 pada properti trek *genres*. Dengan langkah sebagai berikut:

Gambar IV-11 Encode data

Mencari similarity.

Pada tahap ini kita menggunakan cosine distance dalam mencari kesamaan atau kemiripan konten dengan cara

menghitung jarak *cosinus* yaitu ukuran kesamaan antara dua vektor berdasarkan sudut kosinus di antara konten. (Usino et al., 2019) Kemudian mengembalikan nilai index bilangan bulat yang akan mengurutkan indeks. Dari hasil mengurutkan tersebut maka didapat hasil rekomendasi berdasarkan *index* 0 yaitu 5 lagu teratas yang mirip dengan konten yang sama dengan *index* 0 dan dapat dilihat sebagai berikut:

Gambar IV-12 Mencari similarity

Pemodelan Content-Based Filtering

Tahap pemodelan *content-based filtering* adalah pemodel sistem rekomendasi berdasarkan *content-based filtering*. Pada pemodelan ini kita dapat menentukan konten atau item yang ingin kita rekomendasikan berdasarkan *index* yang ingin digunakan. standar rekomendati yang digunakan ialah *index* 0, kemudian akan menampilkan rekomendasi lagu berdasarkan

genre yang mirip dengan index 0. Dapat dilihat sebagai berikut:

Gambar IV-13 Pemodelan Content-based filtering

4.2 HASIL

Berikut tabel lagu yang di rekomendasikan berdasarkan properti trek menggunakan *content-based filtering*.

Tabel IV-2 Hasil

Content-Based Filtering
Quevedo: Bzrp Music Sessions, Vol. 52
STAYING ALIVE (feat. Drake & Lil Baby)
Bam Bam (feat. Ed Sheeran)
About Damn Time

Bad Decisions (with BTS & Snoop Dogg)

Ferrari

BAB 5

KESIMPULAN DAN SARAN

5.1 KESIMPULAN

Berdasarkan hasil proses penelitian diatas, maka dapat diambil kesimpulan pada penelitian ini sebagai berikut:

- a) 50 lagu tertas global (50 top songs global) dianalisa dengan cara melakukan cleaning data seperti: penyuntingan (editing), perumusan, pengujian data. Sistem rekomendasi digunakan dalam metode. Content-Based Filtering digunakan sebagai pemodelan dalam merekomendasikan lagu berdasarkan parameter dari properti trek serta menggunakan Jupyter Notebook untuk menampilkan hasil rekomendasi lagu berdasarkan properti trek.
- b) Berdasarkan properti trek 'genre' terdapat 5 lagu teratas yang direkomendasikan menggunakan metode Content-Based Filtering yaitu STAYING ALIVE (feat. Drake & Lil Baby), Bam Bam (feat. Ed Sheeran), About Damn Time, Bad Decisions (with BTS & Snoop Dogg), dan Ferrari.

5.2 SARAN

Adapun saran untuk penelitian ini adalah hasil dari penelitian ini dapat menjadi bahan untuk penelitian selanjutnya yang lebih baik lagi adanya.

DAFTAR PUSTAKA

- Adhikari, S. (2019, February 28). Building a Movie Recommendation Engine in Python using Scikit-Learn. https://medium.com/@sumanadhikari/building-a-movie-recommendation-engine-using-scikit-learn-8dbb11c5aa4b
- Fawzan, M. D., Setianingsih, C., & Nugrahaeni, R. A. (2021). Sistem Rekomendasi Lagu Metode Collaborative Filtering Berbasis Website Music Recomendation Sysytem Using Collaborative Filtering Filtering Website-Based. *E-Proceeding of Engineering*, 8, 12200–12206.
- Fitriani, S. A. (n.d.). Analisis Klaster Atribut Musik pada Global Top 50 dengan Data Spotify dengan Menggunakan Algoritma K-Means.
- Girsang, A. S. (2017, November 17). *Sistem rekomendasi- Content Based*. https://mti.binus.ac.id/2020/11/17/sistem-rekomendasi-content-based/
- K, R. C., & C, S. K. (2022). Switching Hybrid Model for Personalized Recommendations by Combining Users Demographic Information. *Journal of Theoretical and Applied Information Technology*, 15(3). www.jatit.org
- Kabiru, U., & Muhammad, A. (2021). Improving Personalized Questionnaire With Redundancy Reduction for Addressing Cold User Problem. FUDMA JOURNAL OF SCIENCES, 5(1), 457–466. https://doi.org/10.33003/fjs-2021-0501-590
- Kreitz, G., & Niemelä, F. (2010). Spotify Large Scale, Low Latency, P2PMusic-on-Demand Streaming. *IEEE Communications Society Subject Matter Experts for Publication in the IEEE P2P 2010*.

- Liao, M., Sundar, S. S., & Walther, J. B. (2022, April 29). User Trust in Recommendation Systems: A comparison of Content-Based, Collaborative and Demographic Filtering. *Conference on Human Factors in Computing Systems Proceedings*. https://doi.org/10.1145/3491102.3501936
- Liu, A., & Callvik, J. (2017). Using Demographic Information to Reduce the New User Problem in Recommender Systems. In *DEGREE PROJECT TECHNOLOGY*.
- Luo, K. (2018). Machine Learning Approach for Genre Prediction on Spotify Top Ranking Songs.
- Maringka, R., Khoirunnita, A., Maringka, R., & Utami, E. (2021). Analisa Perkembangan Musik Pada Spotify Menggunakan Structured Query Language (SQL) Analysis Of The Evolution Of Music On Spotify Using Structured Query Language (SQL). *Cogito Smart Journal* 1, 7(1).
- Muslimin M. (n.d.). Perkembanfan Teknologi dalam Industri Media.
- Narke, L., & Nasreen, A. (2020). A Comprehensive Review of Approaches and Challenges of a Recommendation System. *International Journal of Research in Engineering, Science and Management*, 3(4), 381–384. www.ijresm.com
- Noviani, D., Pratiwi, R., Silvianadewi, S., Alexandri, M. B., & Hakim, M. A. (2020). Pengaruh Streaming Musik Terhadap Industri Musik di Indonesia. In *Jurnal Bisnis STRATEGI* (Vol. 29, Issue 1).
- Pereira, N., & Varma, S. L. (2019). Financial planning recommendation system using content-based collaborative and demographic filtering. *Advances in Intelligent Systems and Computing*, *669*, 141–151. https://doi.org/10.1007/978-981-10-8968-8 12

- Roy, S., Sharma Professor, M., & Kumar Singh, S. (2019). Movie Recommendation System Using Semi-Supervised Learning. *Global Conference for Advancement in Technology (GCAT)*, 1–5.
- Sharma, D., Choudhury, T., Kumar Dewangan, B., Bhattacharya, A., & Dutta, S. (2021). *A Recommendation System for Customizable Items* (Vol. 1). http://www.springer.com/series/11156
- Softscients. (2022, April 5). Cara Kerja Recommender Systems Continue reading at Cara Kerja Recommender Systems | Softscients. https://softscients.com/2021/02/06/cara-kerja-recommender-systems/#Apa itu Recommender Systems
- SpotifyAB. (2022). *Discover Spotify's FeaturesDiscover Spotify's Features*. https://developer.spotify.com/documentation/web-api/reference/#/operations/get-audio-analysis
- Stetler, R. (2022). Exploring Music Genres: A Study of Optimal Differentiation by Feature Feature. *Honors Projects*, 1–25. https://scholarworks.bgsu.edu/honorsprojects
- Toradmalle, D., Journal, I., Singh, T., Ladda, A., Shah, M., Davda, R., & Motekar, H. (2021). Recommendation System Using Hybrid Filtering. *International Research Journal of Engineering and Technology*. www.irjet.net
- Usino, W., Satria Prabuwono, A., Hamed Allehaibi, K. S., Bramantoro, A., & Amaldi, W. (2019a). Document Similarity Detection using K-Means and Cosine Distance. In *IJACSA*) *International Journal of Advanced Computer Science and Applications* (Vol. 10, Issue 2). www.ijacsa.thesai.org
- Usino, W., Satria Prabuwono, A., Hamed Allehaibi, K. S., Bramantoro, A., & Amaldi, W. (2019b). Document Similarity Detection using K-Means

- and Cosine Distance. In *IJACSA*) *International Journal of Advanced Computer Science and Applications* (Vol. 10, Issue 2). www.ijacsa.thesai.org
- Wang, L.-D., Wang, X.-C., & Liu, K.-W. (2020). An Improved Multiobjective Shark Smell Optimization Algorithm for Automatic Train Operation Based on Angle Cosine and Fusion Distance. *Journal of Computers*, 31(4), 141–156. https://doi.org/10.3966/199115992020083104011
- Zaidah, A. R., Septiarani, C. I., Nisa, S., Yusuf, A., & Wahyudi, N. (2021). Komparasi Algoritma K-Means, K-Medoid, Agglomeartive Clustering Terhadap Genre Spotify. 7(1). https://ejournal.fikom-unasman.ac.id
- Zuhraini, M., Gede, I., Suta Wijaya, P., & Bimantoro, F. (2022). *Temu Kembali Citra Menggunakan Metode Local Binary Pattern Rotation Invariant (Lbprot) dan Cosine Distance Similarity ARTICLE INFO ABSTRACT*. 9(1), 1–10. https://dielektrika.unram.ac.id

SISTEMI REKOMENIDASI

LAGU TERRITAS - GLOBAL BERDASARKAN PROPERTI TREK MENGGUNAKAN METODE CONTENT-BASED FILTERING

2022

