

RNA extraction using the 'home-made' Trizol substitute

Matus Valach

Abstract

A simple protocol for RNA extraction from various types of samples (protists, fungi, bacteria, organelles, subcellular fractions, ribosomes, etc.). Compared to the commercial Trizol® procedure, it makes use of generally available chemicals without the need for columns, thus allowing concurrent extraction of transcripts of all sizes (including RNAs <200 nt). Small circular DNA molecules (up to \sim 9 kbp) will also be efficiently isolated. The procedure is based on a previously published protocol by Rodríguez-Ezpeleta *et al*. (DOI: 10.1007/978-1-60327-136-3 3).

Citation: Matus Valach RNA extraction using the 'home-made' Trizol substitute. protocols.io

dx.doi.org/10.17504/protocols.io.eiebcbe

Published: 23 Feb 2016

Guidelines

- Stored in a glass bottle protected from light (e.g. wrapped in aluminium foil) and kept at 4 °C, the home-made Trizol substitute solution is stable for at least 3 months. Discard if pink or purple coloration indicative of phenol oxidation appears.
- The procedure is scalable. Its yield, as tested with spiked-in radioactively labeled transcripts of 60-900 nt, is 70-90% (in general, increasing with size). The minimal amount of RNA that could be reproducibly extracted was 10 ng (at a concentration of 200 pg/µl).
- Note that RNA extracted using this protocol is usually not DNA-free, so DNase treatment might be necessary. Circular DNA molecules up to ~9 kbp are isolated at high yields.

Materials

- ✓ Isopropanol by Contributed by users
- Glycerol <u>G5516</u> by Contributed by users
 Phenol, Saturated, pH 4.3, Liquid BP1751I by <u>Fisher Scientific</u>
 Guanidine Thiocyanate BP221 by <u>Fisher Scientific</u>
 Ammonium Thiocyanate A709 by <u>Fisher Scientific</u>
- Sodium Acetate, Trihydrate by Contributed by users
- Chloroform by Contributed by users
- ✓ Ethanol by Contributed by users

 Glycogen AM9510 by Thermo Scientific

 Thermo Scie

Protocol

Step 1.

Prepare the components for the home-made Trizol substitute:

Component	Final concentration 100 ml	
Phenol, Saturated (pH 4.3, Liquid)	38 %	38 ml
Guanidine Thiocyanate	0.8 M	11.82 g
Ammonium Thiocyanate	0.4 M	7.61 g
Sodium Acetate pH 5.0 (3M solution)	0.1 M	3.33 ml
Glycerol	5 %	5 ml
Water (ddH₂O)		to 100 ml

Step 2.

Mix the components and stir at room temperature until completely dissolved (30-60 minutes). Do not heat the solution. Store at 4 °C in a glass bottle protected from light.

Step 3.

Add 5 volumes of the home-made Trizol substitute to the sample.

• When working in 1.5 mL tubes, for practical reasons, the minimal and maximal volume of the sample is 30 and 200 µl, respectively.

Step 4.

Vortex vigorously for 10-30 seconds (depending on the viscosity and protein and nucleic acid concentration of the sample).

Step 5.

Incubate at room temperature for 5 minutes.

Step 6.

Add 1 volume of chloroform (relative to the original volume of the sample).

Step 7.

Mix vigorously 10-20 times by inverting the tube.

Do not vortex to avoid breaking DNA.

Step 8.

Incubate at room temperature for 5 minutes.

Step 9.

Spin for 10-15 minutes at >12,000 g and 4 °C (depending on the viscosity and protein and nucleic acid concentration of the sample).

Step 10.

Transfer the upper aqueous phase into a new tube.

• Avoid the white DNA precipitate at the interphase. If the sample volume was 100 μl, the

aqueous phase should be 450 μl.

Step 11.

Add 1.1 volumes of isopropanol (relative to the volume of the aqueous phase).

• If low RNA content is expected in the sample, prior to isopropanol, add >10 μg of glycogen to facilitate precipitating nucleic acids and spotting the pellet. Recommended final concentration of glycogen is 50–150 μg/ml.

Step 12.

Mix well by inverting the tube.

Step 13.

Incubate 30-60 minutes at 4 °C or at room temperature.

Step 14.

Spin for 30-45 minutes at >12,000 g and 4 °C.

Step 15.

Discard the supernatant.

Step 16.

Add 1 volume of 70% (ag.) ethanol (relative to the volume of the aqueous phase).

Step 17.

Mix gently.

• Ensure that the pellet is submerged in the solution and not sticking to the tube wall.

Step 18.

Incubate 10 minutes at room temperature.

Step 19.

Spin for 10 minutes at >12,000 g and 4 °C.

Step 20.

Discard the supernatant.

Step 21.

Let the pellet dry at room temperature, so that no traces of 70% ethanol remain.

 Drying under vacuum is not recommended because of overdrying that makes it harder to dissolve the pellet.

Step 22.

Completely dissolve the pellet in RNase-free water.

Warnings

- Phenol causes heavy skin burns and is toxic in skin contact or vapor inhalation. Manipulate under a fume hood, using gloves.
- Guanidine thiocyanate and ammonium thiocyanate are harmful by inhalation, in skin contact

and if swallowed. Their contact with acids liberates toxic gas. Manipulate under a fume hood, using gloves.

- Chloroform is harmful if swallowed, irritates eyes, respiratory system and skin.
- Isopropanol and ethanol are flammable (liquid and vapor), may cause irritation of respiratory tract, and may cause drowsiness and dizziness.