



# Proseminar work:

## Investigation of Ontologies in Software-Engineering-(Meta-)Research

Advisor: Dipl.-Inform. Angelika Kaplan Dmitrii Seletkov | July 16, 2020

SOFTWARE DESIGN AND QUALITY, INSTITUTE FOR PROGRAM STRUCTURES AND DATA ORGANIZATION, KIT DEPARTMENT OF INFORMATICS



### **Outline**



Motivation

Foundations

Ontologies in Computer Science

Meta-Researc

Ontologies in Software-Engineering-Meta-Research

Ontologies for Controlled Experiments on SE

Ontology to support systematic reviews in SE

- Motivation
- Poundations
  - Ontologies in Computer Science
  - Meta-Research
- 3 Ontologies in Software-Engineering-Meta-Research
  - Ontologies for Controlled Experiments on SE
  - Ontology to support systematic reviews in SE
- 4 Conclusion





#### Motivation

Foundations

Ontologies in Computer Science

Meta-Research

Ontologies in Software-Engineering-Meta-Research

Ontologies for Controlled Experiments on SE

Ontology to support systematic reviews in SE

Conclusion

Retrieving and transferring Knowledge: essential part of human being



#### Motivation

Foundations

Ontologies in Computer Science

Meta-Research

Ontologies in Software-Engineering-Meta-Research

Ontologies for Controlled Experiments on SE

Ontology to support systematic reviews in SE

- Retrieving and transferring Knowledge: essential part of human being
- **But**: the most amount of Knowledge is understandable only for humans





#### Motivation

Foundations

Ontologies in Computer Science

Meta-Research

Ontologies in Software-Engineering-Meta-Research

Ontologies for Controlled Experiments on SE

Ontology to support systematic reviews in SE

- Retrieving and transferring Knowledge: essential part of human being
- But: the most amount of Knowledge is understandable only for humans
- Ontologies make Knowledge understandable for computers as well, that provides:
  - Supporting humans in Knowledge transferring process
  - Opportunity to analyze and generate new knowledge automatically by machines



#### Motivation

#### Foundations

Ontologies in Computer Science

Meta-Research

Ontologies in Software-Engineering-Meta-Research

Ontologies for Controlled Experiments on SE Ontology to support

systematic reviews in SE

- Retrieving and transferring Knowledge: essential part of human being
- But: the most amount of Knowledge is understandable only for humans
- Ontologies make Knowledge understandable for computers as well, that provides:
  - Supporting humans in Knowledge transferring process
  - Opportunity to analyze and generate new knowledge automatically by machines
- Useful for Software Engineering
  - Encapsulate the results of thousands Software Engineering experiments
  - Make possible to analyze them and find out the best Software Engineering practice



## **Ontology in Computer Science**



Motivation

Foundations

Ontologies in Computer Science

Meta-Research

Ontologies in Software-Engineering-Meta-Research

Ontologies for Controlled Experiments on SE

Ontology to support systematic reviews in SE



## **Ontology in Computer Science**



Motivation

Foundations

Ontologies in Computer Science

Meta-Research

Ontologies in Software-Engineering-Meta-Research

Ontologies for Controlled Experiments on SE

Ontology to support systematic reviews in SE

Conclusion

### Def. Ontology in Computer Science

- "an explicit specification of a conceptualization" [Gruber 1993]
- Conceptualization: abstract model of some knowledge domain
- Explicit specification: classes, concepts, terms





Motivation

Foundations

Ontologies in Computer Science

Meta-Research

Ontologies in Software-Engineering-Meta-Research

Ontologies for Controlled Experiments on SE

Ontology to support systematic reviews in SE

Conclusion

### Well-known examples

- ER-Diagrams and UML-Diagrams
- Good for understanding and representing of Knowledge, but still made for humans





Motivation

Foundation

Ontologies in Computer Science

Meta-Research

Ontologies in Software-Engineering-Meta-Research

Ontologies for Controlled Experiments on SE

Ontology to support systematic reviews in SE

Conclusion

## Well-known examples

- ER-Diagrams and UML-Diagrams
- Good for understanding and representing of Knowledge, but still made for humans

## Description Logic (DL)

Family of knowledge representation languages





Motivation

Foundations

Ontologies in Computer Science

Meta-Research

Ontologies in Software-Engineering-Meta-Research

Ontologies for Controlled Experiments on SE

Ontology to support systematic reviews in SE

Conclusion

### Well-known examples

- ER-Diagrams and UML-Diagrams
- Good for understanding and representing of Knowledge, but still made for humans

- Family of knowledge representation languages
- Has formal semantics and instruments of logical analysis





Motivation

Foundations

Ontologies in Computer Science

Meta-Research

Ontologies in Software-Engineering-Meta-Research

Ontologies for Controlled Experiments on SE

Ontology to support systematic reviews in SE

Conclusion

### Well-known examples

- ER-Diagrams and UML-Diagrams
- Good for understanding and representing of Knowledge, but still made for humans

- Family of knowledge representation languages
- Has formal semantics and instruments of logical analysis
- Has different dialects and implementations such as OWL





Motivation

Foundations

Ontologies in Computer Science

Meta-Research

Ontologies in Software-Engineering-Meta-Research

Ontologies for Controlled Experiments on SE

Ontology to support systematic reviews in SE

Conclusion

### Well-known examples

- ER-Diagrams and UML-Diagrams
- Good for understanding and representing of Knowledge, but still made for humans

- Family of knowledge representation languages
- Has formal semantics and instruments of logical analysis
- Has different dialects and implementations such as OWL
- OWL: Ontology Web Language, current standard and XML-based





Motivation

Foundations

Ontologies in Computer Science

Meta-Research

Ontologies in Software-Engineering-Meta-Research

Ontologies for Controlled Experiments on SE

Ontology to support systematic reviews in SE

Conclusion

### Well-known examples

- ER-Diagrams and UML-Diagrams
- Good for understanding and representing of Knowledge, but still made for humans

- Family of knowledge representation languages
- Has formal semantics and instruments of logical analysis
- Has different dialects and implementations such as OWL
- OWL: Ontology Web Language, current standard and XML-based



## **Description Logic**



Motivation

Ontologies in Computer Science

Software-Engineering-Meta-Research

Ontologies for Controlled Experiments on SE

Ontology to support systematic reviews in SE

# The main feature: **separation** between **Terminology** and **Assertions** Knowledge Base (KB) **TBox** (terminological box, schema) Man = Human □ Male Interface HappyFather ≡ Man □ ∃hasChild

ABox (assertion box, data)

iohn: Man (john, mary): hasChild

Figure: Architecture of DL [Konev 2010]

Inference





Motivation

Foundations

Ontologies in Computer Science

#### Meta-Research

Ontologies in Software-Engineering-Meta-Research

Ontologies for Controlled Experiments on SE

Ontology to support systematic reviews in SE





Motivation

Foundations

Ontologies in Computer Science

Meta-Research

Ontologies in Software-Engineering-Meta-Research

Ontologies for Controlled Experiments on SE Ontology to support systematic reviews in SE

Conclusion

### Motivation

Research practices suffer from lack of systematization and inefficiency





Motivation

Foundations

Ontologies in Computer Science

#### Meta-Research

Ontologies in
Software-EngineeringMeta-Research
Ontologies for Controlled

Ontologies for Controlled Experiments on SE

Ontology to support systematic reviews in SE

Conclusion

### Motivation

- Research practices suffer from lack of systematization and inefficiency
- Problems with data sharing, replications of experiments and their ownership





Motivation

Foundations

Ontologies in Computer Science

Meta-Research

Ontologies in Software-Engineering-Meta-Research

Ontologies for Controlled Experiments on SE

Ontology to support systematic reviews in SE

Conclusion

### Motivation

- Research practices suffer from lack of systematization and inefficiency
- Problems with data sharing, replications of experiments and their ownership
- Urgent need of the science for the evaluation of diverse researches to improve the existing research practices and create the new ones





Motivation

Foundations

Ontologies in Computer Science

Meta-Research

Ontologies in Software-Engineering-Meta-Research

Ontologies for Controlled Experiments on SE

Ontology to support systematic reviews in SE

Conclusion

### Motivation

- Research practices suffer from lack of systematization and inefficiency
- Problems with data sharing, replications of experiments and their ownership
- Urgent need of the science for the evaluation of diverse researches to improve the existing research practices and create the new ones

### Def. Meta-Research

The use of scientific methodology to study science itself





Motivation

Foundation

Ontologies in Compute Science

#### Meta-Research

Ontologies in
Software-EngineeringMeta-Research
Ontologies for Controlled
Experiments on SE
Ontology to support
systematic reviews in SE

Conclusion

- Methods: practices for performing research (e.g. study design, methods, statistics).
- Reporting: publications of standards and study registrations (e.g. study registration, information to patients, public and policy-makers)
- Reproducibility: methods for verifying research (e.g. sharing data and methods, replicability)
- Evaluation: approvements for scientific quality (e.g. pre- and post-publication peer reviews, research funding criteria).
- Incentives: rewards and penalties for research (e.g. promotion criteria, penalties in research evaluation).





Motivation

Science

#### Meta-Research

Software-Engineering-Meta-Research Experiments on SE Ontology to support systematic reviews in SE

- **Methods**: practices for performing research (e.g. study design, methods, statistics).
- **Reporting**: publications of standards and study registrations (e.g. study registration, information to patients, public and policy-makers)





Motivation

Science

Meta-Research

Software-Engineering-Meta-Research

Experiments on SE

Ontology to support systematic reviews in SE

- **Methods**: practices for performing research (e.g. study design, methods, statistics).
- **Reporting**: publications of standards and study registrations (e.g. study registration, information to patients, public and policy-makers)
- Reproducibility: methods for verifying research (e.g. sharing data and methods, replicability)



Motivation

Foundations

Ontologies in Compute Science

Meta-Research

Ontologies in Software-Engineering-Meta-Research

Ontologies for Controlle Experiments on SE

Ontology to support systematic reviews in SE

Conclusion

- Methods: practices for performing research (e.g. study design, methods, statistics).
- Reporting: publications of standards and study registrations (e.g. study registration, information to patients, public and policy-makers)
- Reproducibility: methods for verifying research (e.g. sharing data and methods, replicability)
- **Evaluation**: approvements for scientific quality (**e.g.** pre- and post-publication peer reviews, research funding criteria).
- Incentives: rewards and penalties for research (e.g. promotion criteria penalties in research evaluation).



Motivation

Ontologies in Computer Science

Meta-Research

Software-Engineering-Meta-Research

Experiments on SE

systematic reviews in SE

- **Methods**: practices for performing research (e.g. study design, methods, statistics).
- **Reporting**: publications of standards and study registrations (e.g. study registration, information to patients, public and policy-makers)
- **Reproducibility:** methods for verifying research (e.g. sharing data and methods, replicability)
- **Evaluation**: approvements for scientific quality (e.g. pre- and post-publication peer reviews, research funding criteria).
- **Incentives**: rewards and penalties for research (e.g. promotion criteria, penalties in research evaluation).

## **Ontologies in Software-Engineering-Meta-Research**



Motivation

Foundations

Ontologies in Computer Science

Meta-Research

Ontologies in Software-Engineering-Meta-Research

Ontologies for Controlled Experiments on SE

Ontology to support systematic reviews in SE



## **Ontologies in Software-Engineering-Meta-Research**



Motivation

#### Foundations

Ontologies in Computer Science

Meta-Researc

#### Ontologies in Software-Engineering-Meta-Research

Ontologies for Controlled Experiments on SE

Ontology to support systematic reviews in SE



Figure: Classification of empirical studies [Garcia et al. 2008]





Motivation

Foundation

Ontologies in Computer Science

Meta-Researc

Ontologies in Software-Engineering-Meta-Research

Ontologies for Controlled Experiments on SE

Ontology to support systematic reviews in SE

Conclusion

### Problem

Sharing of knowledge among research groups





Motivation

Foundation

Ontologies in Computer Science

Meta-Researc

Ontologies in Software-Engineering-Meta-Research

Ontologies for Controlled Experiments on SE

Ontology to support systematic reviews in SE

Conclusion

### Problem

- Sharing of knowledge among research groups
- Requires replication of Controlled Experiments using Lab Packages





Motivation

Foundation

Ontologies in Computer Science

Meta-Research

Ontologies in Software-Engineering-Meta-Research

Ontologies for Controlled Experiments on SE

Ontology to support systematic reviews in SE

Conclusion

### Problem

- Sharing of knowledge among research groups
- Requires replication of Controlled Experiments using Lab Packages
- Lab Packages suffer from lack of standardization





Motivation

Foundations

Ontologies in Computer Science

Meta-Research

Ontologies in Software-Engineering-Meta-Research

Ontologies for Controlled Experiments on SE

Ontology to support systematic reviews in SE

Conclusion

#### Problem

- Sharing of knowledge among research groups
- Requires replication of Controlled Experiments using Lab Packages
- Lab Packages suffer from lack of standardization

### Objectives

 Present an Ontology for experimental studies for knowledge transfer, assisting in designing, conducting and evaluating controlled experiments.





Motivation

Foundation

Ontologies in Computer Science

Meta-Research

Ontologies in Software-Engineering-Meta-Research

Ontologies for Controlled Experiments on SE

Ontology to support systematic reviews in SE

Conclusion

#### Problem

- Sharing of knowledge among research groups
- Requires replication of Controlled Experiments using Lab Packages
- Lab Packages suffer from lack of standardization

### **Objectives**

- Present an Ontology for experimental studies for knowledge transfer, assisting in designing, conducting and evaluating controlled experiments.
- Validate the ontology, whilst instantiating it to a controlled experiment.





Motivation

Foundations

Ontologies in Computer Science

Meta-Researc

Ontologies in Software-Engineering-Meta-Research

Ontologies for Controlled Experiments on SE

Ontology to support systematic reviews in SE

Conclusion



Figure: Controlled Experiments phases [Scatalon, Garcia, and Correia 2011]





#### Motivation

#### Foundation:

Ontologies in Compute Science

Meta-Research

Ontologies in Software-Engineering Meta-Research

#### Ontologies for Controlled Experiments on SE

Ontology to support systematic reviews in SE

Conclusion

## Suggested Ontology (main concepts)

- Lab Package from Original Experiment is used for Replication and generation of a new Lab Package.
- Experimenter Profile: negative lack of experience, positive high experience
- Original Experiment and Replication evaluated regarding to Validity



Figure: Ontology for Controlled Experiments [Garcia et al. 2008]





#### Motivation

#### Foundations

Ontologies in Compute Science

Meta-Research

Ontologies in Software-Engineering Meta-Research

#### Ontologies for Controlled Experiments on SE

Ontology to support systematic reviews in SE

Conclusion

## Suggested Ontology (main concepts)

- Lab Package from Original Experiment is used for Replication and generation of a new Lab Package.
- Experimenter Profile: negative lack of experience, positive high experience
- Original Experiment and Replication evaluated regarding to Validity



Figure: Ontology for Controlled Experiments [Garcia et al. 2008]





Motivation

Foundation

Ontologies in Compute Science

Meta-Research

Ontologies in Software-Engineering-Meta-Research

Ontologies for Controlled Experiments on SE

Ontology to support systematic reviews in SE

Conclusion

## Suggested Ontology (main concepts)

- Lab Package from Original Experiment is used for Replication and generation of a new Lab Package.
- Experimenter Profile: negative lack of experience, positive high experience
- Original Experiment and Replication evaluated regarding to Validity



Figure: Ontology for Controlled Experiments [Garcia et al. 2008]





Motivation

Foundations

Ontologies in Computer Science

Meta-Research

Ontologies in Software-Engineering-Meta-Research

Ontologies for Controlled Experiments on SE

Ontology to support systematic reviews in SE

Conclusion

#### Evaluation

- Experiments [Basili and Selby 1987] encapsulated in Lab Package
- Comparing 3 testing techniques
- 32 Subjects in 3 groups with 3 testing techniques for 3 types software





Motivation

Foundation

Ontologies in Computer Science

Meta-Research

Ontologies in Software-Engineering-Meta-Research

Ontologies for Controlled Experiments on SE

Ontology to support systematic reviews in SE

Conclusion

#### Evaluation

- Experiments [Basili and Selby 1987] encapsulated in Lab Package
- Comparing 3 testing techniques
- 32 Subjects in 3 groups with 3 testing techniques for 3 types software

### Results

 After instanciation of experiment into the ontology observe the missing values on the predicate





Motivation

Foundations

Ontologies in Computer Science

Meta-Researc

Ontologies in Software-Engineering-Meta-Research

Ontologies for Controlled Experiments on SE

Ontology to support systematic reviews in SE

Conclusion

#### Evaluation

- Experiments [Basili and Selby 1987] encapsulated in Lab Package
- Comparing 3 testing techniques
- 32 Subjects in 3 groups with 3 testing techniques for 3 types software

### Results

- After instanciation of experiment into the ontology observe the missing values on the predicate
- After look into experiment: indeed





Motivation

Ontologies in Computer Science

Software-Engineering-Meta-Research

Ontologies for Controlled Experiments on SE

systematic reviews in SE

#### **Evaluation**

- Experiments [Basili and Selby 1987] encapsulated in Lab Package
- Comparing 3 testing techniques
- 32 Subjects in 3 groups with 3 testing techniques for 3 types software

### Results

- After instanciation of experiment into the ontology observe the missing values on the predicate
- After look into experiment: indeed
- Ontology: mechanism to improve the obtained data set from the Lab Package





Motivation

Foundations

Ontologies in Computer Science

Meta-Research

Software-Engineering-Meta-Research

Ontologies for Controlled Experiments on SE

Ontology to support systematic reviews in SE





Motivation

Foundations

Ontologies in Computer Science

Meta-Research

Ontologies in Software-Engineering-Meta-Research

Ontologies for Controlled Experiments on SE

Ontology to support systematic reviews in SE

Conclusion

# Evidence-based Software Engineering [Kitchenham, Dyba, and Jorgensen 2004]

Originates from Evidence-based Medicine





Motivation

Foundations

Ontologies in Computer Science

Meta-Research

Ontologies in Software-Engineering-Meta-Research

Ontologies for Controlled Experiments on SE

Ontology to support systematic reviews in SE

Conclusion

# Evidence-based Software Engineering [Kitchenham, Dyba, and Jorgensen 2004]

- Originates from Evidence-based Medicine
- Purpose: determine what SE practice works, when, where and which tools and standards needed





Motivation

Foundations

Ontologies in Computer Science

Meta-Research

Ontologies in Software-Engineering-Meta-Research

Ontologies for Controlled Experiments on SE

Ontology to support systematic reviews in SE

Conclusion

# Evidence-based Software Engineering [Kitchenham, Dyba, and Jorgensen 2004]

- Originates from Evidence-based Medicine
- Purpose: determine what SE practice works, when, where and which tools and standards needed
- The main instrument: Systematic Reviews (SRs)





Motivation

Ontologies in Computer Science

Meta-Research

Software-Engineering-Meta-Research

Ontologies for Controlled Experiments on SE

Ontology to support systematic reviews in SE

## **Problem**

Major challenge to strengthen the foundations of SE: produce knowledge that can be based on scientific methodology





Motivation

Ontologies in Computer Science

Meta-Research

Software-Engineering-Meta-Research

Ontologies for Controlled Experiments on SE

Ontology to support systematic reviews in SE

## **Problem**

Major challenge to strengthen the foundations of SE: produce knowledge that can be based on scientific methodology

## **Objectives**

Present a template designed to support systematic reviews in SE





Motivation

Foundation

Ontologies in Computer Science

Meta-Research

Ontologies in Software-Engineering Meta-Research

Ontologies for Controlled Experiments on SE

Ontology to support systematic reviews in SE

Conclusion

## Problem

Major challenge to strengthen the foundations of SE: produce knowledge that can be based on scientific methodology

## Objectives

- Present a template designed to support systematic reviews in SE
- Introduce development of ontologies to describe knowledge regarding such experimental studies





#### Motivation

#### Foundation

Ontologies in Computer Science

Meta-Researc

Ontologies in Software-Engineering-Meta-Research

Ontologies for Controlled Experiments on SE

Ontology to support systematic reviews in SE

Conclusion

## Systematic Review conduction process

- Planning: research objectives and SR protocol
- Execution: identify, select and evaluate primary studies
- Result Analysis: extract and synthesize data from the the articles



Figure: Systematic Review conduction process [Almeida Biolchini et al. 2007]





Motivation

Foundations

Ontologies in Computer Science

Meta-Research

Ontologies in Software-Engineering Meta-Research

Ontologies for Controlled Experiments on SE

Ontology to support systematic reviews in SE

Conclusion

## Systematic Review conduction process

- Planning: research objectives and SR protocol
- Execution: identify, select and evaluate primary studies
- Result Analysis: extract and synthesize data from the the articles



Figure: Systematic Review conduction process [Almeida Biolchini et al. 2007]





Motivation

Foundation

Ontologies in Compute Science

Meta-Researc

Ontologies in Software-Engineering-Meta-Research

Ontologies for Controlled Experiments on SE

Ontology to support systematic reviews in SE

Conclusion

## Systematic Review conduction process

- Planning: research objectives and SR protocol
- Execution: identify, select and evaluate primary studies
- Result Analysis: extract and synthesize data from the the articles



Figure: Systematic Review conduction process [Almeida Biolchini et al. 2007]



## Systematic Review

Motivation

Science

Software-Engineering-Meta-Research

Ontology to support systematic reviews in SE

- 1. Question Formularization
  - 1.1. Ouestion Focus
  - 1.2. Question Quality and Amplitude
    - Problem

    - Ouestion.
    - Keywords and Synonyms
    - Intervention
    - Control Effect
    - Outcome Measure
  - Population
    - Application - Experimental Design
- 2 Sources Selection
  - 2.1. Sources Selection Criteria Definition
  - 2.2. Studies Languages
  - 2.3. Sources Identification - Sources Search Methods
  - Search String
  - Sources List
  - 2.4 Sources Selection after Evaluation
  - 2.5. References Checking
- 3. Studies Selection
  - 3.1. Studies Definition
    - Studies Inclusion and Exclusion Criteria Definition
    - Studies Types Definition
  - 3.2. Procedures for Studies Selection

- 3.3. Selection Execution
  - Initial Studies Selection
  - Studies Quality Evaluation
- Selection Review 4. Information Extraction
  - 4.1. Information Inclusion and Exclusion Criteria Definition
  - 4.2. Data Extraction Forms
  - 4.3. Extraction Execution
    - Objective Results Extraction i) Study Identification
      - ii) Study Methodology
      - iii)Study Results iv) Study Problems
    - Subjective Results Extraction i) Information through Authors
    - ii) General Impressions and Abstractions
  - 4.4. Resolution of divergences among reviewers
- 5. Results Summarization 5.1. Results Statistical Calculus
  - 5.2. Results Presentation in Tables
  - 5.3. Sensitivity Analysis
  - 5.4. Plotting 5.5 Final Comments
    - Number of Studies
    - Search, Selection and Extraction Bias Publication Bias
    - Inter-Reviewers Variation.
    - Results Application - Recommendations

Figure: Systematic Review protocol template [Almeida Biolchini et al. 2007]



## Systematic Review

Motivation

Science

Software-Engineering-Meta-Research

Ontology to support systematic reviews in SE

- 1. Question Formularization 1.1. Ouestion Focus

  - 1.2. Question Quality and Amplitude
    - Problem
    - Ouestion. Keywords and Synonyms
    - Intervention Control
    - Effect Outcome Measure
    - Population
    - Application - Experimental Design
- 2 Sources Selection
- 2.1. Sources Selection Criteria Definition
- 2.2. Studies Languages
- 2.3. Sources Identification - Sources Search Methods
  - Search String
  - Sources List
- 2.4 Sources Selection after Evaluation
- 2.5. References Checking
- 3. Studies Selection
  - 3.1. Studies Definition
    - Studies Inclusion and Exclusion Criteria Definition
    - Studies Types Definition

  - 3.2. Procedures for Studies Selection

- 3.3. Selection Execution
  - Initial Studies Selection
  - Studies Quality Evaluation
- Selection Review 4. Information Extraction
  - 4.1. Information Inclusion and Exclusion Criteria Definition
  - 4.2. Data Extraction Forms
  - 4.3. Extraction Execution
    - Objective Results Extraction i) Study Identification
      - ii) Study Methodology iii)Study Results
    - iv) Study Problems Subjective Results Extraction
    - i) Information through Authors
  - ii) General Impressions and Abstractions 4.4. Resolution of divergences among reviewers
- 5. Results Summarization
  - 5.1. Results Statistical Calculus
  - 5.2. Results Presentation in Tables
  - 5.3. Sensitivity Analysis
  - 5.4. Plotting 5.5 Final Comments
    - Number of Studies
      - Search, Selection and Extraction Bias Publication Bias
    - Inter-Reviewers Variation.
    - Results Application
    - Recommendations

Figure: Systematic Review protocol template [Almeida Biolchini et al. 2007]





Motivation

Ontologies in Computer Science

Meta-Research

Ontologies for Controlled Experiments on SE

Ontology to support systematic reviews in SE

- Based on SR protocol template





Motivation

Foundations

Ontologies in Computer Science

Meta-Researc

Ontologies in Software-Engineering-Meta-Research

Ontologies for Controlled Experiments on SE

Ontology to support systematic reviews in SE

Conclusion

- Based on SR protocol template
- Level-structured
- Both taxonomic is a and meronymic has relations
- Level 0: Experimental Method, Primary Research and Research Synthesis
- Next: only Primary Research
- But: similar for Experimental Method and Research Synthesis





Motivation

Ontologies in Computer Science

Meta-Research

Ontologies for Controlled Experiments on SE

Ontology to support systematic reviews in SE

- Based on SR protocol template
- Level-structured
- Both taxonomic *is a* and meronymic *has* relations





Motivation

Foundations

Ontologies in Computer Science

Meta-Researc

Ontologies in Software-Engineering-Meta-Research

Ontologies for Controlled Experiments on SE

Ontology to support systematic reviews in SE

Conclusion

- Based on SR protocol template
- Level-structured
- Both taxonomic *is a* and meronymic *has* relations
- Level 0: Experimental Method, Primary Research and Research Synthesis
- Next: only Primary Research
- But: similar for Experimental Method and Research Synthesis





Motivation

Ontologies in Computer Science

Software-Engineering-Meta-Research

Ontologies for Controlled Experiments on SE

Ontology to support systematic reviews in SE

- Based on SR protocol template
- Level-structured
- Both taxonomic is a and meronymic has relations
- Level 0: Experimental Method, Primary Research and Research Synthesis
- Next: only Primary Research





Motivation

Foundations

Ontologies in Computer Science

Meta-Research

Ontologies in Software-Engineering-Meta-Research

Ontologies for Controlled Experiments on SE

Ontology to support systematic reviews in SE

Conclusion

- Based on SR protocol template
- Level-structured
- Both taxonomic is a and meronymic has relations
- Level 0: Experimental Method, Primary Research and Research Synthesis
- Next: only Primary Research
- But: similar for Experimental Method and Research Synthesis





Motivation

Foundations

Ontologies in Computer Science

Meta-Research

Ontologies in Software-Engineering-Meta-Research

Ontologies for Controlled Experiments on SE

Ontology to support systematic reviews in SE

Conclusion

Primary Study Element





Motivation

Foundations

Ontologies in Computer Science

Software-Engineering-Meta-Research

Ontologies for Controlled Experiments on SE

Ontology to support systematic reviews in SE





Motivation

Foundations

Ontologies in Computer Science

Meta-Researc

Ontologies in Software-Engineering-Meta-Research

Ontologies for Controlled Experiments on SE

Ontology to support systematic reviews in SE





Motivation

Foundations

Ontologies in Computer Science

Meta-Researc

Ontologies in Software-Engineering-Meta-Research

Ontologies for Controlled Experiments on SE

Ontology to support systematic reviews in SE







Motivation

Foundations

Ontologies in Computer Science

Meta-Researc

Ontologies in Software-Engineering-Meta-Research

Ontologies for Controlled Experiments on SE

Ontology to support systematic reviews in SE







Motivation

Foundations

Ontologies in Computer Science

Meta-Research

Ontologies in Software-Engineering-Meta-Research

Ontologies for Controlled Experiments on SE

Ontology to support systematic reviews in SE



Figure: Primary Research ontology [Almeida Biolchini et al. 2007]





Motivation

Ontologies in Computer Science

Software-Engineering-Meta-Research

Ontologies for Controlled Experiments on SE

Ontology to support systematic reviews in SE

## Result

Observe: the ontology results in directly linked with Systematic review protocol template object.





Motivation

Foundations

Ontologies in Computer Science

Meta-Research

Ontologies in Software-Engineering-Meta-Research

Ontologies for Controlled Experiments on SE

Ontology to support systematic reviews in SE

Conclusion

#### Result

- Observe: the ontology results in directly linked with Systematic review protocol template object.
- Here only the small part. The full ontology conceptualizes on all roles in SR template





Motivation

Foundation

Ontologies in Computer Science

Meta-Research

Ontologies in Software-Engineering-Meta-Research

Ontologies for Controlled Experiments on SE

Ontology to support systematic reviews in SE

Conclusion

#### Result

- Observe: the ontology results in directly linked with Systematic review protocol template object.
- Here only the small part. The full ontology conceptualizes on all roles in SR template
- Powerful, comprehensive and covers all SR needs



Karlsruhe Institute of Technology

Motivation

Foundation

Ontologies in Computer Science

Meta-Researc

Ontologies in Software-Engineering-Meta-Research

Ontologies for Controlled Experiments on SE

Ontology to support systematic reviews in SE

Conclusion

## **Similarities**

- Adoption of ontologies: best for accumulate knowledge and formalize it
- Not a silver bullet: but, still enough for fulfilling a lot of objectives
- In Development: towards a comprehensive ontologies for all purposes



Motivation Foundation

Ontologies in Computer Science

Meta-Research

Ontologies in Software-Engineering-Meta-Research

Ontologies for Controlled Experiments on SE

Ontology to support systematic reviews in SE

Conclusion

## **Similarities**

- Adoption of ontologies: best for accumulate knowledge and formalize it
- Not a silver bullet: but, still enough for fulfilling a lot of objectives
- In Development: towards a comprehensive ontologies for all purposes

- Ontology for supporting systematic reviews [Almeida Biolchini et al. 2007] belongs to Methods
- Ontology for Controlled Experiments [Garcia et al. 2008] belongs to Reproducibility
- Used different ontology languages → barriers for applying them and making as standard



Similarities



Motivation

Foundation

Ontologies in Computer Science

Meta-Research

Ontologies in Software-Engineering-Meta-Research

Ontologies for Controlled Experiments on SE

Ontology to support systematic reviews in SE

Conclusion

- Adoption of ontologies: best for accumulate knowledge and formalize it
- Not a silver bullet: but, still enough for fulfilling a lot of objectives
- In Development: towards a comprehensive ontologies for all purposes

- Ontology for supporting systematic reviews [Almeida Biolchini et al. 2007] belongs to Methods
- Ontology for Controlled Experiments [Garcia et al. 2008] belongs to Reproducibility
- Used different ontology languages → barriers for applying them and making as standard



Similarities

- Adoption of ontologies: best for accumulate knowledge and formalize it
  - Not a silver bullet: but, still enough for fulfilling a lot of objectives
  - In Development: towards a comprehensive ontologies for all purposes

Motivation

Foundations

Ontologies in Computer Science

Meta-Research

Ontologies in Software-Engineering Meta-Research

Ontologies for Controlled Experiments on SE

Ontology to support systematic reviews in SE

Conclusion

- Ontology for supporting systematic reviews [Almeida Biolchini et al. 2007] belongs to Methods
- Ontology for Controlled Experiments [Garcia et al. 2008] belongs to Reproducibility
- Used different ontology languages → barriers for applying them and making as standard



Motivation

Ontologies in Computer Science

Meta-Research

Ontologies for Controlled Experiments on SE

Ontology to support systematic reviews in SE

## **Similarities**

- Adoption of ontologies: best for accumulate knowledge and formalize it
- Not a silver bullet: **but**, still enough for fulfilling a lot of objectives
- In Development: towards a comprehensive ontologies for all purposes

- Ontology for supporting systematic reviews [Almeida Biolchini et al. 2007] belongs to Methods
- Ontology for Controlled Experiments [Garcia et al. 2008] belongs to Reproducibility



# Comparison

Karlsruhe

Motivation

Foundation

Ontologies in Computer Science

Meta-Research

Ontologies in Software-Engineering-Meta-Research

Ontologies for Controlled Experiments on SE

Ontology to support systematic reviews in SE

Conclusion

#### **Similarities**

- Adoption of ontologies: best for accumulate knowledge and formalize it
- Not a silver bullet: but, still enough for fulfilling a lot of objectives
- In Development: towards a comprehensive ontologies for all purposes

#### **Differences**

- Ontology for supporting systematic reviews [Almeida Biolchini et al. 2007] belongs to Methods
- Ontology for Controlled Experiments [Garcia et al. 2008] belongs to Reproducibility
- Used different ontology languages → barriers for applying them and making as standard





Motivation

Foundations

Ontologies in Computer Science

Meta-Research

Ontologies in

Software-Engineering-Meta-Research

Ontologies for Controlled Experiments on SE

Ontology to support systematic reviews in SE

Conclusion



Motivation

Foundation

Ontologies in Computer Science

Meta-Research

Ontologies in Software-Engineering-Meta-Research

Ontologies for Controlled Experiments on SE

Ontology to support systematic reviews in SE

Conclusion

# Ontologies



- The best tool for interchanging of pure information independent on languages, definitions and other syntactic barriers
- Effectively reuse and standardize of the obtained knowledge
- Contemporary ontologies based on strictly defined in mathematical logic ontology languages

Motivation

Foundation

Ontologies in Computer Science

Meta-Researc

Ontologies in Software-Engineering-Meta-Research

Ontologies for Controlled Experiments on SE

Ontology to support systematic reviews in SE

Conclusion

### **Ontologies**



- The best tool for interchanging of pure information independent on languages, definitions and other syntactic barriers
- Effectively reuse and standardize of the obtained knowledge
- Contemporary ontologies based on strictly defined in mathematical logic ontology languages

- Research on research
- How researches should be conducted, what practices effective and in what fields
- Diversity of meta-research research: Methods, Reporting, Reproducibility, Evaluation, Incentives.



Motivation

Foundation

Ontologies in Computer Science

Meta-Research

Ontologies in Software-Engineering-Meta-Research

Ontologies for Controlled Experiments on SE

Ontology to support systematic reviews in SE

Conclusion

### Ontologies



- The best tool for interchanging of pure information independent on languages, definitions and other syntactic barriers
- Effectively reuse and standardize of the obtained knowledge
- Contemporary ontologies based on strictly defined in mathematical logic ontology languages

- Research on research
- How researches should be conducted, what practices effective and in what fields
- Diversity of meta-research research: Methods, Reporting, Reproducibility, Evaluation, Incentives.



Motivation

Foundation

Ontologies in Computer Science

Meta-Research

Ontologies in Software-Engineering-Meta-Research

Ontologies for Controlled Experiments on SE

Ontology to support systematic reviews in SE

Conclusion

### Ontologies



- The best tool for interchanging of pure information independent on languages, definitions and other syntactic barriers
- Effectively reuse and standardize of the obtained knowledge
- Contemporary ontologies based on strictly defined in mathematical logic ontology languages

- Research on research
- How researches should be conducted, what practices effective and in what fields
- Diversity of meta-research research: Methods, Reporting, Reproducibility, Evaluation, Incentives.



Motivation

Foundation

Ontologies in Computer Science

Meta-Research

Ontologies in Software-Engineering-Meta-Research

Ontologies for Controlled Experiments on SE

Ontology to support systematic reviews in SE

Conclusion

#### Ontologies



- The best tool for interchanging of pure information independent on languages, definitions and other syntactic barriers
- Effectively reuse and standardize of the obtained knowledge
- Contemporary ontologies based on strictly defined in mathematical logic ontology languages

- Research on research
- How researches should be conducted, what practices effective and in what fields
- Diversity of meta-research research: Methods, Reporting, Reproducibility, Evaluation, Incentives.



Motivation

Foundation

Ontologies in Computer Science

Meta-Research

Ontologies in Software-Engineering-Meta-Research

Ontologies for Controlled Experiments on SE

Ontology to support systematic reviews in SE

Conclusion

### Ontologies



- The best tool for interchanging of pure information independent on languages, definitions and other syntactic barriers
- Effectively reuse and standardize of the obtained knowledge
- Contemporary ontologies based on strictly defined in mathematical logic ontology languages

- Research on research
- How researches should be conducted, what practices effective and in what fields
- Diversity of meta-research research: Methods, Reporting, Reproducibility, Evaluation, Incentives.





Motivation

Foundation

Ontologies in Computer Science

Meta-Research

Ontologies in Software-Engineering-Meta-Research

Ontologies for Controlled Experiments on SE

Ontology to support systematic reviews in SE

Conclusion

- Support determining the best SE practices using SRs in secondary studies
- Useful for packaging of controlled experiments in primary studies
- Detection of inconsistencies in SE experiments
- No current standard
- Merging problem in future





Motivation

Foundation

Ontologies in Computer Science

Meta-Research

Ontologies in Software-Engineering-Meta-Research

Ontologies for Controlled Experiments on SE

Ontology to support systematic reviews in SE

Conclusion

- Support determining the best SE practices using SRs in secondary studies
- Useful for packaging of controlled experiments in primary studies
- Detection of inconsistencies in SE experiments
- No current standard
- Merging problem in future





Motivation

Foundation

Ontologies in Computer Science

Meta-Research

Ontologies in Software-Engineering-Meta-Research

Ontologies for Controlled Experiments on SE

Ontology to support systematic reviews in SE

Conclusion

- Support determining the best SE practices using SRs in secondary studies
- Useful for packaging of controlled experiments in primary studies
- Detection of inconsistencies in SE experiments
- No current standard
- Merging problem in future





Motivation

Foundation

Ontologies in Computer Science

Meta-Research

Ontologies in Software-Engineering Meta-Research

Ontologies for Controlled Experiments on SE

Ontology to support systematic reviews in SE

Conclusion

- Support determining the best SE practices using SRs in secondary studies
- Useful for packaging of controlled experiments in primary studies
- Detection of inconsistencies in SE experiments
- No current standard
- Merging problem in future





Motivation

Foundation

Ontologies in Computer Science

Meta-Researc

Ontologies in Software-Engineering-Meta-Research

Ontologies for Controlled Experiments on SE

Ontology to support systematic reviews in SE

Conclusion

- Support determining the best SE practices using SRs in secondary studies
- Useful for packaging of controlled experiments in primary studies
- Detection of inconsistencies in SE experiments
- No current standard
- Merging problem in future



### References I

References

- Jorge Calmon de Almeida Biolchini et al. "Scientific research ontology to support systematic review in software engineering". In: Adv. Eng. Informatics 21.2 (2007), pp. 133-151.
- V. R. Basili and R. W. Selby. "Comparing the Effectiveness of Software Testing Strategies". In: SE-13 (1987), pp. 1278–1296. ISSN: 0098-5589. DOI: 10.1109/tse.1987.232881.
- Rogério Eduardo Garcia et al. "An Ontology for Controlled Experiments on Software Engineering". In: Proceedings of the Twentieth International Conference on Software Engineering & Knowledge Engineering (SEKE'2008), San Francisco, CA, USA, July 1-3, 2008. Knowledge Systems Institute Graduate School, 2008, pp. 685–690.
- Thomas R. Gruber. "A Translation Approach to Portable Ontology Specifications". In: *Knowledge Acquisition* 5.2 (1993), pp. 199–220.

# References II

References

- John P. A. Ioannidis et al. "Meta-research: Evaluation and Improvement of Research Methods and Practices". In: 13 (2015), e1002264.
- Barbara A. Kitchenham, Tore Dyba, and Magne Jorgensen. "Evidence-Based Software Engineering". In: 26th International Conference on Software Engineering (ICSE '04). Edinburgh, Scotland, May 2004, pp. 273–281.
- Boris Konev. Lecture notes of course Ontology and knowledge representation. 2010. URL: https://www.lektorium.tv/speaker/2680.
- Lilian Passos Scatalon, Rogério Eduardo Garcia, and Ronaldo Celso Messias Correia. "Packaging Controlled Experiments Using an Evolutionary Approach Based on Ontology(S)". In: Proceedings of the 23rd International Conference on Software Engineering & Knowledge Engineering (SEKE'2011), Eden Roc Renaissance, Miami Beach, USA, July 7-9, 2011. Knowledge Systems Institute Graduate School, 2011, pp. 408–413.