

Report No.: EED32H002594 Page 1 of 54

TEST REPORT

Product : cuptime2

Trade mark : moikit

Model/Type reference : C2071

Serial Number : N/A

Report Number : EED32H002594
FCC ID : 2ADHH-1511C2
Date of Issue : Jan. 29, 2016

Test Standards : 47 CFR Part 15 Subpart C (2015)

Test result : PASS

Prepared for:

Shenzhen Moikit Network Technology Co., Ltd. Room 701-703, Building A, Bao'an Internet creative garden, Xingye Road 2005, Xixiang street, Bao'an, Shenzhen

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Approved by:

Report Seal

n (m) F

Reviewed by:

1-1/m - 1

L WO Date:

Jan. 29, 2016

Sheek Luo Lab supervisor

Check No.: 2212880334

Page 2 of 54

2 Version

Version No.	Date	Description	
00	Jan. 29, 2016	Original	
	(C)		

Report No.: EED32H002594 Page 3 of 54

3 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS
Power Spectral Density	47 CFR Part 15, Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
Radiated Spurious Emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

The tested sample(s) and the sample information are provided by the client.

Report No.: EED32H002594 Page 4 of 54

4 Content

1 COVER PAGE				1
2 VERSION				2
3 TEST SUMMAR	Y	••••••	•••••	3
4 CONTENT				4
5.1.1 For Co 5.1.2 For Ra 5.1.3 For Co 5.2 TEST ENVIR	nducted test setupdiated Emissions test setup nducted Emissions test setup.			5 6 6
6.2 GENERAL DI 6.3 PRODUCT SI 6.4 DESCRIPTION 6.5 TEST LOCAT 6.6 TEST FACILI 6.7 DEVIATION FI 6.8 ABNORMALIT 6.9 OTHER INFO 6.10 MEASUREM	ESCRIPTION OF EUT PECIFICATION SUBJECTIVE TO THE NOTE SUPPORT UNITS TION TY TROM STANDARDS TIES FROM STANDARD CONDITION FRMATION REQUESTED BY THE CHENT UNCERTAINTY (95% CONFIDENT)	HIS STANDARD		
Appendix A) Appendix B) Appendix C) Appendix D) Appendix E) Appendix F) Appendix G) Appendix H)	6dB Occupied Bandwidth Conducted Peak Output Pow Band-edge for RF Conducted RF Conducted Spurious Emis Power Spectral Density Antenna Requirement AC Power Line Conducted En Restricted bands around fund	ver		
PHOTOGRAPHS	OF EUT CONSTRUCTIONAL	DETAILS		38

Report No.: EED32H002594 Page 5 of 54

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

Antenna Antenna Tower

AE EUT

Ground Reference Plane

Test Receive Ampilier Controlles

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Figure 3. Above 1GHz

5.1.3 For Conducted Emissions test setup Conducted Emissions setup

5.2 Test Environment

Operating Environment:			
Temperature:	22 °C		
Humidity:	50% RH		
Atmospheric Pressure:	1010mbar		

5.3 Test Condition

Test channel:

Test Mode	Tx/Rx	RF Channel			
rest Mode	TX/RX	Low(L)	Middle(M)	High(H)	
05014	0.4000411 0.400 0.411	Channel 1	Channel 20	Channel40	
GFSK	2402MHz ~2480 MHz	2402MHz	2440MHz	2480MHz	
Transmitting mode:	Keep the EUT transmitted the continuous modulation test signal at the specific channel(s).				

Report No.: EED32H002594 Page 7 of 54

6 General Information

6.1 Client Information

Applicant:	Shenzhen Moikit Network Technology Co., Ltd.
Address of Applicant:	Room 701-703, Building A, Bao'an Internet creative garden, Xingye Road 2005, Xixiang street, Bao'an, Shenzhen
Manufacturer:	Shenzhen Moikit Network Technology Co., Ltd.
Address of Manufacturer: Room 701-703, Building A, Bao'an Internet creative garden, Road 2005, Xixiang street, Bao'an, Shenzhen	
Factory:	Joint Chinese Co., Ltd.
Address of Factory:	Building 6, Huafeng Tech Park, Guangtian Road, Luotian Industrial Area, Songgang Town, Shenzhen, P. R. China

6.2 General Description of EUT

Product Name:	cuptime2		
Model No.(EUT):	C2071	-0-	
Trade mark:	moikit	(41)	
EUT Supports Radios application	Bluetooth V4.0		
Power Supply:	3.7V320mAh		
USB cable:	85cm(Unshielded)	/	
Sample Received Date:	Dec. 18, 2015	((,)
Sample tested Date:	Dec. 18, 2015 to Jan. 29, 2016		

6.3 Product Specification subjective to this standard

Operation F	requency:	2402N	2402MHz~2480MHz				
Bluetooth \	/ersion:	4.0	4.0				6
Modulation	Type:	GFSK					
Number of	Channel:	40					
Sample Ty	pe:	Portab	le production		.)		.)
Test Power	Grade:	N/A (m	nanufacturer d	eclare))	6,)
Test Softwa	are of EUT:	nRFgc	Studio (manu	facturer dec	lare)		
Hardware	Version:	1000 (1000 (manufacturer declare)				
Software \	/ersion:	1000 (1000 (manufacturer declare)				(3
Antenna Ty	pe and Gain::	Type: Gain: (Monopole ante OdBi	enna	(6)		6,
Test Voltag	je:	AC 12	0V/60Hz				
Operation F	requency eac	h of channe	el	_°>		/°>	
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz

5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

6.4 Description of Support Units

The EUT has been tested with associated equipment below.

1) support equipment

Description	Manufacturer	S/N	Certification	Supplied by
Laptop	Lenovo	EB22995690	DOC	СТІ
PC	Lenovo	SS05223608	DOC	CTI
Monitor	Dell	E157FPc	DOC	СТІ
Keyboard	L.Selectron	NA	DOC	СТІ
Mouse	L.Selectron	OP-200	DOC	CTI

2) cable

Cable No.	Description	Manufacturer	Cable Type/Length	Supplied by
1	USB cable	NA	Power line (85m)	Client
2	- 0.75	- 10	400	
3				

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China518101

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted.

6.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1910

Centre Testing International Group Co., Ltd.has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories..

A2LA-Lab Cert. No. 3061.01

Centre Testing International Group Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General

Report No.: EED32H002594 Page 9 of 54

Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 565659

Centre Testing International Group Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 565659.

IC-Registration No.: 7408A

The 3m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408A.

IC-Registration No.: 7408B

The 10m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408B.

NEMKO-Aut. No.: ELA503

Centre Testing International Group Co., Ltd. has been assessed the quality assurance system, the testing facilities, qualifications and testing practices of the relevant parts of the organization. The quality assurance system of the Laboratory has been validated against ISO/IEC 17025 or equivalent. The laboratory also fulfils the conditions described in Nemko Document NLA-10.

VCCI

The Radiation 3 &10 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-4096.

Main Ports Conducted Interference Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: C-4563.

Telecommunication Ports Conducted Disturbance Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: T-2146.

The Radiation 3 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-758

6.7 Deviation from Standards

None.

6.8 Abnormalities from Standard Conditions

None.

6.9 Other Information Requested by the Customer

None.

Report No. : EED32H002594 Page 10 of 54

6.10 Measurement Uncertainty(95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE november de deserver de	0.31dB (30MHz-1GHz)
	RF power, conducted	0.57dB(1GHz-18GHz)
2	Dadiated Spurious emission test	4.5dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.8dB(1GHz-12.75GHz)
4	Conduction emission	3.6dB (9kHz to 150kHz)
4	Conduction emission	3.2dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	2.8%
7	DC power voltages	0.025%

7 Equipment List

	RF test system						
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
Signal Generator	Keysight	E8257D	MY53401106	04-14-2015	04-13-2016		
Communication test set	Agilent	N4010A	MY47230124	04-02-2015	04-01-2016		
Spectrum Analyzer	Keysight	N9010A	MY54510339	04-01-2015	03-31-2016		
Attenuator	HuaXiang	SHX370	15040701	04-01-2015	03-31-2016		
Signal Generator	Keysight	N5182B	MY53051549	03-31-2015	03-30-2016		
High-pass filter(3- 18GHz)	Sinoscite	FL3CX03WG18 NM12-0398-002		01-13-2015	01-12-2016		
High-pass filter(3- 18GHz)	Sinoscite	FL3CX03WG18 NM12-0398-002		01-12-2016	01-11-2017		
High-pass filter(5- 18GHz)	MICRO- TRONICS	SPA-F-63029-4		01-13-2015	01-12-2016		
High-pass filter(5- 18GHz)	MICRO- TRONICS	SPA-F-63029-4		01-12-2016	01-11-2017		
band rejection filter (GSM900)	Sinoscite	FL5CX01CA09C L12-0395-001		01-13-2015	01-12-2016		
band rejection filter (GSM900)	Sinoscite	FL5CX01CA09C L12-0395-001	(0)	01-12-2016	01-11-2017		
band rejection filter (GSM850)	Sinoscite	FL5CX01CA08C L12-0393-001		01-13-2015	01-12-2016		
band rejection filter (GSM850)	Sinoscite	FL5CX01CA08C L12-0393-001		01-12-2016	01-11-2017		
band rejection filter (GSM1800)	Sinoscite	FL5CX02CA04C L12-0396-002		01-13-2015	01-12-2016		
band rejection filter (GSM1800)	Sinoscite	FL5CX02CA04C L12-0396-002	(3)	01-12-2016	01-11-2017		
band rejection filter (GSM1900)	Sinoscite	FL5CX02CA03C L12-0394-001	(6)	01-13-2015	01-12-2016		
band rejection filter (GSM1900)	Sinoscite	FL5CX02CA03C L12-0394-001		01-12-2016	01-11-2017		
DC Power	Keysight	E3642A	MY54436035	03-31-2015	03-30-2016		
PC-1	Lenovo	R4960d		04-01-2015	03-31-2016		
BT&WI-FI Automatic control	R&S	OSPB157	101374	04-01-2015	03-31-2016		
RF control unit	JS Tonscend	JS0806-2	2015860006	04-01-2015	03-31-2016		
BT&WI-FI Automatic test software	JS Tonscend	JSTS1120-2		04-01-2015	03-31-2016		

Page 12 of 54

	21	M Semi/full-anecho	nic Chambor		
	3		Serial	Cal. date	Cal. Due date
Equipment	Manufacturer	Mode No.	Number	(mm-dd-yyyy)	(mm-dd-yyyy)
3M Chamber	TDK	SAC-3		06-02-2013	06-01-2016
TRILOG Broadband Antenna	schwarzbeck	VULB9163	9163-617	07-31-2015	07-29-2016
Microwave Preamplifier	Agilent	8449B	3008A02425	02-05-2015	02-04-2016
Horn Antenna	ETS-LINDGREN	3117	00057410	06-30-2015	06-28-2018
Loop Antenna	ETS	6502	00071730	07-30-2015	07-28-2017
Spectrum Analyzer	R&S	FSP40	100416	06-30-2015	06-28-2018
Receiver	R&S	ESCI	100435	06-30-2015	06-28-2018
Multi device Controller	maturo	NCD/070/10711112	() - 1	01-13-2015	01-12-2016
Multi device Controller	maturo	NCD/070/10711112	W _/	01-12-2016	01-11-2017
LISN	schwarzbeck	NNBM8125	81251547	06-30-2015	06-28-2016
LISN	schwarzbeck	NNBM8125	81251548	06-30-2015	06-28-2016
Signal Generator	Agilent	E4438C	MY45095744	04-19-2015	04-18-2016
Signal Generator	Keysight	E8257D	MY53401106	04-14-2015	04-13-2016
Temperature/ Humidity Indicator	TAYLOR	1451	1905	07- 08-2015	07-06-2016
Communication test set	Agilent	E5515C	GB47050533	04-27-2015	04-26-2016
Cable line	Fulai(7M)	SF106	5219/6A	01-13-2015	01-12-2016
Cable line	Fulai(7M)	SF106	5219/6A	01-12-2016	01-11-2017
Cable line	Fulai(6M)	SF106	5220/6A	01-13-2015	01-12-2016
Cable line	Fulai(6M)	SF106	5220/6A	01-12-2016	01-11-2017
Cable line	Fulai(3M)	SF106	5216/6A	01-13-2015	01-12-2016
Cable line	Fulai(3M)	SF106	5216/6A	01-12-2016	01-11-2017
Cable line	Fulai(3M)	SF106	5217/6A	01-13-2015	01-12-2016
Cable line	Fulai(3M)	SF106	5217/6A	01-12-2016	01-11-2017
Communication test set	R&S	CMW500	152394	04-19-2015	04-18-2016
High-pass filter(3- 18GHz)	Sinoscite	FL3CX03WG18NM 12-0398-002		01-13-2015	01-12-2016
High-pass filter(3- 18GHz)	Sinoscite	FL3CX03WG18NM 12-0398-002	(C(1))	01-12-2016	01-11-2017
High-pass filter(5- 18GHz)	MICRO- TRONICS	SPA-F-63029-4		01-13-2015	01-12-2016
High-pass filter(5- 18GHz)	MICRO- TRONICS	SPA-F-63029-4		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX01CA09CL1 2-0395-001		01-13-2015	01-12-2016
band rejection filter	Sinoscite	FL5CX01CA09CL1 2-0395-001		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX01CA08CL1 2-0393-001		01-13-2015	01-12-2016
band rejection filter	Sinoscite	FL5CX01CA08CL1 2-0393-001		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX02CA04CL1 2-0396-002	6.7	01-13-2015	01-12-2016
band rejection filter	Sinoscite	FL5CX02CA04CL1 2-0396-002		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX02CA03CL1 2-0394-001		01-13-2015	01-12-2016
band rejection filter	Sinoscite	FL5CX02CA03CL1 2-0394-001		01-12-2016	01-11-2017

Page 13 of 54

	Co	nducted distu	ırbance Test		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Receiver	R&S	ESCI	100435	06-30-2015	06-28-2016
Receiver	R&S	ESCI	100009	06-30-2015	06-28-2016
Temperature/ Humidity Indicator	Belida	TT-512	101	07-09-2015	07-07-2016
Communication test set	Agilent	E5515C	GB47050533	04-27-2015	04-26-2016
Communication test set	R&S	CMW500	152394	04-19-2015	04-18-2016
LISN	R&S	ENV216	100098	06-30-2015	06-28-2016
LISN	schwarzbeck	NNLK8121	8121-529	06-30-2015	06-28-2016
Voltage Probe	R&S	ESH2-Z3	100042	07-09-2014	07-08-2017
Current Probe	R&S	EZ17	100106	07-09-2014	07-08-2017
ISN	TESEQ GmbH	ISN T800	30297	01-29-2015	01-27-2017

Report No.: EED32H002594 Page 14 of 54

8 Radio Technical Requirements Specification

Reference documents for testing:

20.0.0	one accuments for tooth	9.
No.	Identity	Document Title
1	FCC Part15C (2015)	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	K ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)

Appendix A) 6dB Occupied Bandwidth

Test Result

Mode	Channel	6dB Bandwidth [MHz]	99% OBW[MHz]	Verdict	Remark
BLE	LCH	0.7015	1.0659	PASS	
BLE	MCH	0.6831	1.0586	PASS	Peak
BLE	нсн	0.6942	1.0583	PASS	detector

Test Graphs

Page 16 of 54

Appendix B) Conducted Peak Output Power

Test Result

Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	-4.012	PASS
BLE	MCH	-4.278	PASS
BLE	HCH	-6.288	PASS

Test Graphs

Page 18 of 54

Report No.: EED32H002594 Page 19 of 54

Appendix C) Band-edge for RF Conducted Emissions

Result Table

Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
BLE	LCH	-4.170	-52.579	-24.17	PASS
BLE	HCH	-7.837	-39.978	-27.84	PASS

Test Graphs

Appendix D) RF Conducted Spurious Emissions

Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	-5.622	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	MCH	-5.754	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	НСН	-6.711	<limit< td=""><td>PASS</td></limit<>	PASS

Test Graphs

Report No. : EED32H002594 Page 21 of 54

Page 22 of 54

Appendix E) Power Spectral Density

Result Table

Mode	Channel	PSD [dBm]	Verdict
BLE	LCH	-17.493	PASS
BLE	MCH	-20.274	PASS
BLE	НСН	-21.459	PASS

Test Graphs

Page 24 of 54

Appendix F) Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna car be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentiona radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0dBi.

Report No.: EED32H002594 Page 26 of 54

Appendix G) AC Power Line Conducted Emission

Test Procedure: Test frequency range :150KHz-30MHz

- 1) The mains terminal disturbance voltage test was conducted in a shielded room.
- 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50\Omega/50\mu\text{H} + 5\Omega$ linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
- 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,
- 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.
- 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

Fraguency range (MHz)	Limit (c	lΒμV)
Frequency range (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

^{*} The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

NOTE: The lower limit is applicable at the transition frequency

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Page 27 of 54

Live line:

	No.	Reading_Level b. Freq. (dBuV)			Correct Factor	Measurement (dBuV)			Limit Mar (dBuV) (d		rgin IB)				
		MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
	1	0.1580	42.63	41.54	40.71	9.80	52.43	51.34	50.51	65.56	55.56	-14.22	-5.05	Р	
3	2	0.2180	41.32	38.70	33.25	9.80	51.12	48.50	43.05	62.89	52.89	-14.39	-9.84	Р	
	3	0.6540	28.15	26.57	24.92	9.90	38.05	36.47	34.82	56.00	46.00	-19.53	-11.18	Р	
_	4	1.0940	29.68	29.05	27.36	10.00	39.68	39.05	37.36	56.00	46.00	-16.95	-8.64	Р	
	5	1.5300	29.06	27.75	26.25	10.00	39.06	37.75	36.25	56.00	46.00	-18.25	-9.75	Р	
	6	18.0020	33.43	31.53	31.72	10.34	43.77	41.87	42.06	60.00	50.00	-18.13	-7.94	Р	

Page 28 of 54

Notes:

6

18.0020 33.01 31.32

1. The following Quasi-Peak and Average measurements were performed on the EUT:

43.35

41.66

41.83

60.00

50.00

-18.34

-8.17

Ρ

10.34

2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

31.49

Report No. : EED32H002594 Page 29 of 54

Appendix H) Restricted bands around fundamental frequency (Radiated)

Radiated)		(0,)			3')	
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
		Peak	1MHz	3MHz	Peak	13
	Above 1GHz	Peak	1MHz	10Hz	Average	((()
Test Procedure:	Below 1GHz test procedu	re as below:				
	a. The EUT was placed or at a 3 meter semi-anech determine the position of the EUT was set 3 met was mounted on the top of the antenna height is well determine the maximum polarizations of the antendal determine the maximum polarizations of the antendal was tuned table was turned from 0 e. The test-receiver system Bandwidth with Maximum f. Place a marker at the efrequency to show complands. Save the spectro for lowest and highest of the process of the semi-antendal for the sector of the semi-anech determine the position of the antendal for the semi-anech determine the position of the antendal for the semi-anech determine the position of the antendal for the semi-anech determine the position of the antendal for the semi-anech determine the position of the antendal for the semi-anech determine the position of the antendal for the antendal for the semi-anech determine the position of the antendal for the antendal for the semi-anech determine the position of the antendal for the antendal for the semi-anech determine the position of the antendal for the antendal for the semi-anech determine the position of the antendal for the antendal for the antendal for the semi-anech determine the position of the antendal for the antendal for the semi-anech determine the position of the antendal for the semi-anech determine the position of the semi-anech determine the semi-anech determi	n the top of a ronoic camber. The highest raters away from o of a variable-haried from one nature of the firm are set to ission, the EUT to heights from degrees to 360 m was set to Perm Hold Mode. In the restrict of the re	ne table was adiation. the interfer neight ante meter to found the read of the	ence-receinna tower. Four meters In. Both hor Ineasurement Inged to its Inged to it	above the grain above the grain and vent. worst case and the rotate maximum reard Specified the transmit in the restri	to, which ound to ertical and then able ading.
	g. Different between above to fully Anechoic Chamle 18GHz the distance is 1. h. Test the EUT in the low i. The radiation measuren Transmitting mode, and j. Repeat above procedur	re as below: e is the test site per change form meter and tab west channel, nents are perfo	n table 0.8 e is 1.5 me the Highes rmed in X, kis position	metre to 1 tre). t channel Y, Z axis p ing which i	.5 metre(Aboositioning for t is worse car	ove
Limit:	Frequency	Limit (dBµV			mark	
	30MHz-88MHz	40.0			eak Value	
	88MHz-216MHz	43.9		•	eak Value	
	216MHz-960MHz	46.0		-	eak Value	
	960MHz-1GHz	54.0	- ()	*	eak Value	
	300IVII 12- 101 12	54.0	100	-	ge Value	
	Above 1GHz	74.0			Value	
		14.		I can	value	
					(P)	

Report No.: EED32H002594 Page 30 of 54

Test plot as follows:

Worse case	e mode:	GFSK	GFSK										
Frequency (MHz)	Read Level (dBµV)	Level (dBµV/m)	Antenna Factor (dB/m)	Cable Loss (dB)	Premap Factor (dB)	Limit (dBµV/m)	Over Limit (dB)	Antenna Polaxis	Remark	Test channel			
2390.00	50.80	50.40	32.53	4.28	37.21	74	-23.60	Н	PK	Lowest			
2390.00	31.49	31.09	32.53	4.28	37.21	54	-22.91	Н	AV	Lowest			
2390.00	45.53	45.13	32.53	4.28	37.21	74	-28.87	V	PK	Lowest			
2390.00	31.44	31.04	32.53	4.28	37.21	54	-22.96	V	AV	Lowest			
2483.50	47.38	47.41	32.71	4.51	37.19	74	-26.59	Н	PK	Highest			
2483.50	46.23	46.26	32.71	4.51	37.19	74	-27.74	V	PK	Highest			

Note:

- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
- Final Test Level =Receiver Reading Correct Factor
 Correct Factor = Preamplifier Factor Antenna Factor-Cable Factor

Report No.: EED32H002594 Page 31 of 54

Appendix I) Radiated Spurious Emissions

Receiver Setup:

100	100	N' /		10.5
Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
Above 1GHz	Peak	1MHz	3MHz	Peak
ADOVE TGHZ	Peak	1MHz	10Hz	Average

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 metre to 1.5 metre(Above 18GHz the distance is 1 meter and table is 1.5 metre).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

:		:1
	m	IT

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	/°5	300
0.490MHz-1.705MHz	24000/F(kHz)	-		30
1.705MHz-30MHz	30	-		30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Report No. : EED32H002594 Page 32 of 54

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

		Ant	Cable	Read		Limit	0ver		
	Freq	Factor	Loss	Level	Level	Line	Limit	Pol/Phase	Remark
	MHz	dB/m	dВ	dBuV	dBuV/m	dBuV/m	dB		
1	55.027	14.42	1.42	18.83	34.67	40.00	-5.33	Horizontal	
2	107.888	12.54	1.57	21.20	35.31	43.50	-8.19	Horizontal	
3	191.074	11.30	2.11	19.87	33.28	43.50	-10.22	Horizontal	
4	339.589	14.55	2.65	21.81	39.01	46.00	-6.99	Horizontal	
5	420.580	16.64	2.88	20.07	39.59	46.00	-6.41	Horizontal	
6 p	597.223	18.79	3.49	18.54	40.82	46.00	-5.18	Horizontal	

Frequency (MHz)

Page 33 of 54

		Ant	cabie	read		LIMIC	over			
	Freq	Factor	Loss	Level	Level	Line	Limit	Pol/Phase	Remark	
-	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	——dB		-	_
1 рр	51.301	14.92	1.40	20.95	37.27	40.00	-2.73	Vertical		
2	96.099	12.44	1.58	19.14	33.16	43.50	-10.34	Vertical		
3	168.414	10.46	1.83	20.20	32.49	43.50	-11.01	Vertical		
4	263.819	12.72	2.36	21.83	36.91	46.00	-9.09	Vertical		
5	403.250	16.35	2.81	18.20	37.36	46.00	-8.64	Vertical		
6	510.044	18 44	3 15	18 98	40 57	46 99	-5 43	Vertical		

Transmitter Emission above 1GHz

a.ioiiiitt	o.	,	abovo i c			1 70 7		1 . 7%	7.1				
Test me	· · Facior		GFSK		Tes	t Frequency:		2402MHz					
Frequency (MHz)			Preamp Gain (dB)		able s (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Antenna Polaxis			
1326.513	30.52	11.	38.25	2.	.66	49.82	44.75	74	-29.25	Н			
1663.803	31.17	9	37.72	2.	.97	45.64	42.06	74	-31.94	©H∕			
4086.459	33.02		36.89	5.	.40	44.40	45.93	74	-28.07	Н			
4804.000	34.69		36.82	5.	.11	45.33	48.31	74	-25.69	Н			
7206.000	36.42		37.46	6.	.66	43.46	49.08	74	-24.92	Н			
9608.000	37.88		37.82	7.	.73	43.00	50.79	74	-23.21	Н			
1280.072	30.41		38.33	2.	.61	46.26	40.95	74	-33.05	V			
1668.044	31.18		37.72	2.	.98	46.06	42.50	74	-31.50	V			
4804.000	34.69	6	36.82	5.	.11	45.20	48.18	74	-25.82	V			
5747.586	35.71	3	36.72	6.	.87	44.40	50.26	74	-23.74	(3 V)			
7206.000	36.42		37.46	6.	.66	42.54	48.16	74	-25.84	V			
9608.000	37.88		37.82	7.	.73	43.20	50.99	74	-23.01	V			

Test mo	ode:	GFSK		Test	Frequency:	2440MHz					
Frequency (MHz)	Antenna Factor (dB/m)	Preamp Gain (dB)	Cable Loss (c	_	Read Level (dBµV)	Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Antenna Polaxis		
1326.513	30.52	38.25	2.66	1	49.61	44.54	74	-29.46	Н		
1663.803	31.17	37.72	2.97	6	48.73	45.15	74	-28.85	♥ H		
4880.000	34.85	36.81	5.08		45.30	48.42	74	-25.58	Н		
6001.768	35.90	36.70	7.43		43.91	50.54	74	-23.46	Н		
7320.000	36.43	37.43	6.77	•	43.24	49.01	74	-24.99	Н		
9760.000	38.05	37.85	7.60		43.02	50.82	74	-23.18	Н		
1491.300	30.85	37.98	2.82	:	46.35	42.04	74	-31.96	V		
1759.638	31.33	37.60	3.05		45.85	42.63	74	-31.37	V		
4880.000	34.85	36.81	5.08	-02	43.06	46.18	74	-27.82	V		
6203.700	36.01	36.87	7.22	6	44.27	50.63	74	-23.37	V		
7320.000	36.43	37.43	6.77	6	43.92	49.69	74	-24.31	V		
9760.000	38.05	37.85	7.60		43.10	50.90	74	-23.10	V		

Page 35 of 54

			10.									
Test m	ode:	GFSK		Tes	t Frequency:		2480MHz					
Frequency (MHz)	Antenn Factor (dB/m)	Preamp		able s (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Antenna Polaxis			
1333.284	30.53	38.24	2	.66	50.14	45.09	74	-28.91	Н			
1663.803	31.17	37.72	2	.97	53.43	49.85	74	-24.15	Н			
4960.000	35.02	36.80	5	.05	45.18	48.45	74	-25.55	Н			
5986.509	35.89	36.70	7	.40	44.32	50.91	74	-23.09	Н			
7440.000	36.45	37.41	6	.88	43.98	49.90	74	-24.10	Н			
9920.000	38.22	37.88	7	.47	42.29	50.10	74	-23.90	Н			
1293.173	30.44	38.31	2	.62	47.00	41.75	74	-32.25	V			
1663.803	31.17	37.72	2	.97	45.85	42.27	74	-31.73	V			
4096.875	33.05	36.89	5	.40	43.45	45.01	74	-28.99	V			
4960.000	35.02	36.80	5	.05	42.84	46.11	74	-27.89	V			
7440.000	36.45	37.41	6	.88	43.09	49.01	74	-24.99	V			
9920.000	38.22	37.88	7	.47	42.36	50.17	74	-23.83	V			

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

- 2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3) The test was performed with peak detector

Report No.: EED32H002594 Page 36 of 54

PHOTOGRAPHS OF TEST SETUP

Test mode No.: C2071

Radiated spurious emission Test Setup-1(Below 1GHz)

Radiated spurious emission Test Setup-2(Above 1GHz)

Page 37 of 54

Report No.: EED32H002594 Page 38 of 54

PHOTOGRAPHS OF EUT Constructional Details

Test mode No.: C2071

View of product-1

View of product-3

Report No.: EED32H002594

CTI

10

View of product-6

11 12 13 14 15 16 17 18 19

20

Report No.: EED32H002594

20

CTI

View of product-9

View of product-10

11 12 13 14 15 16 17 18 19 21 22 23 24 25 26 27

Report No. : EED32H002594 Page 43 of 54

View of product-11

View of product-12

Report No. : EED32H002594 Page 44 of 54

View of product-14

View of product-15

View of product-16

View of product-18

View of product-20

View of product-21

View of product-22

Page 49 of 54

View of product-23

View of product-24

View of product-25

View of product-26

View of product-27

Report No.: EED32H002594

View of product-29

View of product-30

Page 53 of 54

View of product-31

Report No.: EED32H002594 Page 54 of 54

View of product-33

View of product-34

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com