```
function [xopt, fopt, exitflag, output] = optimize_spring()
   % -----Starting point and bounds-----
   %var= d D n hf %design variables
   x0 = [0.01, 0.01, 1, 1]; %starting point
   ub = [0.2, 1, 50, 10]; %upper bound
   lb = [0.01, 0.01, 1, 1.0]; %lower bound
   % -----Linear constraints-----
   A = [];
   b = [];
   Aeq = [];
   beq = [];
   % ------Objective and Non-linear Constraints------
   function [f, c, ceq] = objcon(x)
       %design variables
       d = x(1); % height (in)
       D = x(2); % diameter (in)
       n = x(3); % number of coils (treating as continuous for this example)
       hf = x(4); % free height (in)
       % Constants
       G = 12e6; % psi
       Se = 45000; % psi
       w = 0.18;
       Sf = 1.5;
       Q= 150000; % psi
       % Analysis variables
       h0 = 1.0; % preload height
       delta0 = 0.4;
       % Output variables
       hdef = h0-delta0;
       k = (G*d^4)/(8*D^3*n);
       K = (4*D-d)/(4*(D-d))+0.62*d/D;
       F_h0 = k*(hf-h0); %Fmin
       F_hdef = k*(hf-hdef); %Fmax
       tauh0 = (8*F_h0*D)/(pi*d^3)*K; %taumin
       tauhdef = (8*F_hdef*D)/(pi*d^3)*K; %taumax
       taumean = (tauhdef+tauh0)/2;
       tauavg = (tauhdef-tauh0)/2;
       hs = n*d;
       Fhs = k*(hf-hs);
       tauhs = (8*Fhs*D)/(pi*d^3)*K;
       Sy = 0.44*Q/(d^w);
```

```
%inequality constraints (c<=0)</pre>
   c(1) = (tauhs - Sy)/1e4; %scaled
   c(2) = (tauavg - (Se/Sf))/1e4; %scaled
   c(3) = (tauavg+taumean)-(Sy/Sf);
   c(4) = (D/d)-16;
   c(5) = 4-(D/d);
   c(6) = (D+d) - 0.75;
   c(7) = hs - (hdef-0.05);
   %equality constraints (ceq=0)
   ceq = [];
end
% -----Call fmincon-----
options = optimoptions(@fmincon,'display','iter-detailed','Diagnostics','on');
[xopt, fopt, exitflag, output] = fmincon(@obj, x0, A, b, Aeq, beq, lb, ub, @co
xopt %design variables at the minimum
fopt %objective function value at the minumum fopt = f(xopt)
[f,c,ceq] = objcon(xopt);
%contour_plot(xopt(3),xopt(4));
% -----Separate obj/con (do not change)-------
function [f] = obj(x)
   [f, \sim, \sim] = objcon(x);
end
function [c, ceq] = con(x)
    [\sim, c, ceq] = objcon(x);
end
   Your initial point x0 is not between bounds lb and ub; FMINCON
   shifted x0 to strictly satisfy the bounds.
      Diagnostic Information
   Number of variables: 4
   Functions
   Objective:
                                        optimize_spring/obj
   Gradient:
                                        finite-differencing
   Hessian:
                                        finite-differencing (or Quasi-Newton
   Nonlinear constraints:
                                        optimize_spring/con
```

%objective function

end

 $f = -F_h0; %maximize F_h0$

Nonlinear constraints gradient: finite-differencing

Constraints

Number of nonlinear inequality constraints: 7 Number of nonlinear equality constraints: 0

Number of linear inequality constraints:

Number of linear equality constraints:

Number of lower bound constraints:

Number of upper bound constraints:

Algorithm selected interior-point

					
End diagnostic information					
				First-order	Norm of
Iter	F-count	f(x)	Feasibility	optimality	step
0	5	-6.567827e+02	1.565e+06	1.137e+05	
1	10	-6.867149e+02	1.092e+06	5.648e+04	3.049e-01
2	15	-6.540337e+02	8.646e+05	4.126e+04	6.016e-01
3	20	-6.320025e+02	8.486e+05	4.112e+04	9.827e-03
4	25	-2.251413e+02	5.436e+05	4.034e+04	7.968e-02
5	30	-2.230312e+02	5.420e+05	4.038e+04	1.070e-03
6	35	-2.230193e+02	5.420e+05	4.038e+04	4.212e-06
7	40	-3.623346e+00	1.304e+05	5.711e+04	1.756e+00
8	45	-1.438662e-01	5.094e+00	6.205e+04	3.743e-01
9	50	-1.426911e-01	5.100e+00	6.604e+02	1.643e-03
10	55	-9.617007e-02	4.607e+00	1.132e+03	9.210e-02
11	60	-9.595835e-02	4.580e+00	1.139e+03	7.258e-03
12	65	-9.856008e-04	2.522e+00	1.122e+03	3.697e-01
13	70	-4.961714e-06	2.498e+00	1.127e+03	9.421e-04
14	75	-2.483553e-08	2.492e+00	1.128e+03	1.008e-03
15	80	-4.194285e-06	4.402e-01	1.150e+03	4.307e-01
16	85	-9.380372e-06	1.427e-02	1.266e+03	8.500e-02
17	90	-2.052171e-04	0.000e+00	3.108e+02	3.189e-03
18	95	-3.953216e-02	0.000e+00	1.706e+02	3.686e-02
19	100	-3.265267e-02	0.000e+00	1.689e+02	9.883e-03
20	106	-5.194312e-02	0.000e+00	1.588e+02	7.885e-02
21	112	-9.213069e-02	0.000e+00	1.499e+02	1.040e-01
22	118	-3.540567e-01	0.000e+00	1.101e+02	4.663e-01
23	134	-4.882138e-01	0.000e+00	1.092e+01	1.365e-01
24	139	-1.866662e+00	0.000e+00	7.207e+01	9.719e-01
25	144	-2.483754e+00	0.000e+00	5.984e+01	3.296e-01
26	149	-2.645003e+00	0.000e+00	7.161e+01	9.487e-02
27	154	-3.450745e+00	0.000e+00	1.256e+02	4.791e-01
28	159	-5.797646e+00	0.000e+00	2.481e+02	1.100e+00
29	168	-5.626449e+00	0.000e+00	6.095e+00	8.902e-02
30	173	-5.682070e+00	0.000e+00	8.647e+00	2.334e-02
				First-order	Norm of
	F-count	f(x)	Feasibility	optimality	step
31	178	-6.082542e+00	0.000e+00	2.616e+01	1.651e-01

```
32
       183
             -6.238794e+00
                              0.000e+00
                                            3.281e+01
                                                         7.749e-02
33
       188
             -6.296937e+00
                              1.395e-04
                                            3.525e+01
                                                         2.907e-02
34
       193
             -6.286596e+00
                              0.000e+00
                                            3.207e+01
                                                         3.230e-03
35
       198
             -6.285148e+00
                              0.000e+00
                                            3.199e+01
                                                         5.182e-04
36
       203
             -6.285085e+00
                              0.000e+00
                                            3.198e+01
                                                         5.185e-05
37
       208
             -6.285205e+00
                              0.000e+00
                                            3.199e+01
                                                         2.188e-04
                                            3.202e+01
38
       213
             -6.285815e+00
                              0.000e+00
                                                         1.093e-03
39
             -6.288832e+00
                              0.000e+00
       218
                                           3.218e+01
                                                         5.454e-03
40
       223
             -6.303067e+00
                              0.000e+00
                                            3.294e+01
                                                         2.701e-02
                                            2.971e+01
41
       228
             -6.353881e+00
                              0.000e+00
                                                         1.290e-01
             -6.390078e+00
                              0.000e+00
                                            2.715e+01
                                                         2.158e-01
42
       234
43
       239
             -6.431686e+00
                              0.000e+00
                                            2.531e+01
                                                         1.168e-01
44
       244
             -6.442943e+00
                              0.000e+00
                                            3.170e+00
                                                         2.135e-03
45
       249
             -6.442101e+00
                              0.000e+00
                                            1.102e-01
                                                         1.071e-03
46
       254
             -6.454019e+00
                              0.000e+00
                                            3.061e-01
                                                         4.145e-03
47
       259
             -6.454101e+00
                              0.000e+00
                                            7.386e-02
                                                         7.731e-05
48
       264
             -6.454101e+00
                              0.000e+00
                                            9.172e-03
                                                         3.033e-04
49
       269
             -6.454101e+00
                              0.000e+00
                                            8.009e-06
                                                         1.134e-04
```

Optimization completed: The relative first-order optimality measure, 2.247 is less than options. TolFun = 1.000000e-06, and the relative maximum const violation, 0.000000e+00, is less than options. TolCon = 1.0000000e-06.

Options

TolFun =

TolCon =

1e-06 (defau

1e-06 (defau

```
relative first-order optimality = 2.25e-08
relative max(constraint violation) = 0.00e+00
xopt =
    0.0724
              0.6776
                        7.5928
                                  1.3691
fopt =
   -6.4541
c =
   -3.0700
   -1.1647
   -0.0420
   -6.6461
   -5.3539
   -0.0000
   -0.0000
ans =
    0.0724
              0.6776
                        7.5928
                                  1.3691
```

Optimization Metric

