Лекция №2 Технологии и методы проектирования вычислительных модулей

Жизненный цикл вычислительных модулей в составе электронной аппаратуры

Бычков Игнат Николаевич

МИРЭА / МФТИ кафедра «Информатики и вычислительной техники» Москва 2024 г.

Проработка начальных решений для модуля на прототипах

- проверки соответствия моделей
- А- тесты проверки архитектуры (AVS)
- Б автономные и направленные тесты устройств
- C тесты через JTAG с использованием встроенных анализаторов
- Д анализ/расчеты временных характеристик, мощности, напряжений и т.д.
- E тесты и анализ данных от встроенного диагностического оборудования (датчиков температур, напряжений в кристалле и токов потребления стенда и т.д.)

- модули с функциональностью ядра
- 🔲 модули с функциональностью подсистемы памяти
- 🔷 модули с функциональностью подсистемы ввода-вывода

Документы для разработки модулей (пример)

Baikal-S overview for PCB developers

Table of contents

В	Baikal-S overview for PCB developers1					
1	Char	ge History	2			
2	Baika	al-S package overview	4			
	2.1	General description				
	2.2	Package landmap overview	5			
	2.3	Package outline	5			
2.4		Substrate outline	6			
	2.5	Land pad outline	6			
3	Baika	al-S socket	7			
	3.1	Socket overview	7			
	3.1.1					
	3.2	Socket, ILM and backplate drawings	7			
	3.3	Socket Customer Application	9			
	3.3.1	Required Mount Location	9			
	3.3.2	Necessary Thermocouple Location	. 10			
	3.3.3					
	3.3.4					
4	Baika	al-S power and ground domains				
	4.1	Baikal-S PG domains				
	4.2	Baikal-S on package components	. 13			
5	Baika	al-S - Board Requirements - External Components				
	5.1	PCIE				
	5.2	DDR				
	5.3	VDD and VDDIO				
	5.4	SMBus pulling up				
6		al-S power up sequence				
7	Baika	al-S PCIE reference clock connection				
	7.1	Functional block diagram PCle x16				
	7.2	PCIE PHY reference clock				
8	Volta	ge settings for digital IOs	. 20			

Figure 6 Baikal-S socket footprint

Стандарты на этапах жизненного цикла (неполный список)

ГОСТ 2.001-2013 ЕСКД. Общие положения;

ГОСТ 2.004-88 ЕСКД. Общие требования к выполнению конструкторских и технологических документов на печатающих и графических устройствах вывода ЭВМ;

ГОСТ 2.051-2013 ЕСКД. Электронные документы. Общие положения;

ГОСТ 2.102-2013 ЕСКД. Виды и комплектность конструкторских документов

ГОСТ 2.111-2013 ЕСКД. Нормоконтроль;

ГОСТ 2.501-2013 ЕСКД. Правила учета и хранения;

ГОСТ 2.503-2013 ЕСКД. Правила внесения изменений;

ГОСТ 2.511-2011 ЕСКД. Правила передачи электронных конструкторских документов. Общие положения;

ГОСТ 2.512-2011 ЕСКД. Правила выполнения пакета данных для передачи электронных конструкторских документов. Общие положения;

ГОСТ 3.1116-2011 ЕСТД. Нормоконтроль;

ГОСТ 12.1.004-91 ССБТ. Пожарная безопасность. Общие требования

ГОСТ 19.004-80 ЕСПД. Термины и определения

ГОСТ 19.101-77 ЕСПД. Виды программ и программных документов;

ГОСТ 19.103-77 ЕСПД. Обозначение программ и программных документов;

ГОСТ 19.104-78 ЕСПД. Основные надписи;

ГОСТ 19.105-78 ЕСПД. Общие требования к программным документам;

ГОСТ 19.106-78 ЕСПД. Требования к программным документам, выполненным печатным способом;

ГОСТ 19.601-78 ЕСПД. Общие правила дублирования, учета и хранения;

ГОСТ 19.601-78 ЕСПД. Общие правила дублирования, учета и хранения;

ГОСТ 19.603-78 ЕСПД. Общие правила внесения изменений;

ГОСТ 19.604-78 ЕСПД. Правила внесения изменений в программные документы, выполненные печатным способом

ГОСТ 19.701-90 ЕСПД. Схемы алгоритмов, программ, данных и систем. Обозначения условные и правила выполнения

ГОСТ 28388-89, действующий. Системы обработки информации. Документы на магнитных носителях данных. Порядок выполнения и обращения;

ГОСТ Р 2.903-96, ЕСКД. Правила поставки документации.

ГОСТ Р 7.0.8-2013 СИБИД. Делопроизводство и архивное дело. Термины и определения;

ГОСТ РВ 2.902-2005 ЕСК Д. Порядок проверки, согласования и утверждения конструкторской документации;

PB 20.39.309-98 КСОТТ. Аппаратура, приборы, устройства и оборудование военного назначения. Конструктивнотехнические требования

ГОСТ РВ 20.57.301 Комплексная система контроля качества. Аппаратура, приборы, устройства и оборудование военного назначения. Общие технические требования. Методы контроля и испытаний. Требования к качеству изготовления ЭД;

ГОСТ РВ 0015-002-2012 СРПП ВТ. Системы менеджмента качества. Общие требования,

ГОСТ ISO 9001-2011. Системы менеджмента качества. Требования;

Стандарт по выполнения опытно конструкторских работ (пример)

ГОСТ РВ 15.203-2001 Настоящий стандарт распространяется на опытно-конструкторские работы и составные части ОКР по созданию (модернизации) систем, комплексов, образцов военной техники и их составных частей (далее в тексте — изделия ВТ и составные части изделий ВТ), выполняемые в интересах обороноспособности и безопасности Российской Федерации в соответствии с действующим законодательством.

Настоящий стандарт устанавливает:

- группы ОКР;
- этапы ОКР;
- требования к выполнению ОКР (СЧ ОКР);
- порядок выполнения, приемки этапов ОКР (СЧ ОКР) и ОКР (СЧ ОКР) в целом и реализации их результатов;
- функции основных участников опытно-конструкторских работ и их взаимоотношения;
- основной состав документов, разрабатываемых в процессе выполнения ОКР (СЧ ОКР), и общие правила их оформления.

Положения настоящего стандарта подлежат применению расположенными на территории Российской Федерации организациями, предприятиями и другими субъектами хозяйственной деятельности независимо от форм собственности и подчинения, а также федеральными органами исполнительной власти Российской Федерации, участвующими в выполнении ОКР (СЧ ОКР) в соответствии с действующим законодательством.

По согласованию с заказчиком BT при необходимости могут разрабатываться и применяться нормативные документы, конкретизирующие положения настоящего стандарта, распространяющиеся на отдельные виды BT с учетом их специфики.

Интенсивность модуля в зависимости от времени

- 1) от 0 до t_1 время приработки (1-1,5%) всего времени испытаний;
- $\lambda(t)$ 2) от t_1 до t_2 время нормальной работы; 3) от t_2 до ∞ время старения.

На практике приработку делают в рамках испытаний в рамках ОКР (предварительных, приемочных (государственных), межведомственных, типовых) или при постановке на производство

(периодических, квалификационных, приемо-сдаточных).

Документация на модуль

Архив технической документации высокотехнологичного предприятия содержит накопленные знания для разработки и производства, а также документацию на изделия продукции. Для введения электронного документооборота архивной информации необходима автоматизированная система управления (далее система управления).

Особенностью системы управления технической документацией является решение на основе инвариантной модели данных, в которой объекты изделий и их документация связаны определенными отношениями:

$$S(A_{\mathcal{U}}) = \{A_{\mathcal{U}}, A_{\mathcal{I}}, R\}$$

где $A_{\it H}$ - объекты изделий, $A_{\it P\!\!/\!\!\!/}$ — совокупность ревизий документов эксплуатационной документации, характеризующей качественные и количественные свойства изделий, R — множество взаимосвязей объектов изделий, включая иерархическую подчиненность, функциональные, проектные и другие взаимосвязи. Целесообразно определить объекты изделий $A_{\it H}=A_{\it K\!\!\!/\!\!\!/}\cup A_{\it T\!\!\!\!/\!\!\!/}\cup S$, где $A_{\it K\!\!\!\!/\!\!\!/}$ — ревизии конструкторской документации изделий, $A_{\it T\!\!\!\!/\!\!\!/}$ — ревизии программной документации изделий, $A_{\it T\!\!\!\!/\!\!\!/}$ — ревизии гехнологической документации изделий, S-множество статусов, характеризующих этапы разработки или серийную применимость объектов изделий.

Структура документации на модуль

Структуру рабочей конструкторской и программной документации на изделие в рассматриваемой АС можно представить следующим образом:

$$S_{PKII}(A_{II}) = \{A_{K} \cup S_{K}, S_{II}, A^{II} \ni_{II}, A^{K} \ni_{II}, R_{A}^{I}, R_{A}^{I}, R_{A}^{I}\}$$

Затраты проработки документации и подготовки производства

Множество взаимосвязей R_A^1 , R_A^2 и R_A^3 при использовании автоматизированной системы во многом характеризуют управление информацией для объектов изделий при их конструкторской, программной и технологической проработке. Эффективное управление информацией позволяет снизить затраты проработки изделий. Затраты проработки документации и технической подготовки производства изделия можно представить следующим образом:

$$T = c \cdot S^{K} + t \cdot \sum_{m=1}^{z} \left(S_{m}^{M} + S_{m}^{O} \right),$$

где c — коэффициент управления информацией при конструкторской, программной и вспомогательной проработке изделия, t — коэффициент управления информацией при технологической проработке изделия, m — этап маршрутной технологии изготовления, S^K , S^M , S^O — сложность вспомогательной, программной, конструкторской, маршрутной проработки и разработки технологического оснащения. Коэффициенты t и c вышеприведенной формулы во многом определяются метаданными в автоматизированной системе управления для оперативной постановки изделия на производство.

Уровни представления документации

Структура архива документации (пример)

Структура документации данных и метаданных проекта (пример)

Уровни метаданных и примеры каталогов для их учета.

Тип / уровень	Наименование	Примеры каталогов метаданных
1 / Традиционные	Данные административные, технические описательные, хранения и использования	.svn, ntd_work, izm
2 / Результаты основной деятельности	Данные проектной, производственной и интеллектуальной деятельности	niokr, rid, product, vxod, <u>ishod</u>
3 / Результаты сопутствующей деятельности	Данные экономической и инновационной деятельности	economy, contracts, science_s

2024

Структура документации данных и методанных проекта (пример)

Уровни метаданных и примеры каталогов для их учета.

Тип / уровень	Наименование	Примеры каталогов метаданных
1 / Традиционные	Данные административные, технические описательные, хранения и использования	.svn, ntd_work, izm
2 / Результаты основной деятельности	Данные проектной, производственной и интеллектуальной деятельности	niokr, rid, product, vxod, <u>ishod</u>
3 / Результаты сопутствующей деятельности	Данные экономической и инновационной деятельности	economy, contracts, science_s

Стр. 13 / 14 2024

Спасибо за внимание!