Spectral Analysis Tool

The SpectralAnalyzer class, implemented in C# within the EstuarineCirculationModel namespace, provides a graphical user interface (GUI) for spectral and Empirical Orthogonal Function (EOF)/Proper Orthogonal Decomposition (POD) analysis of estuarine circulation data. It processes time series (e.g., Richardson number, velocity, water level) and spatial-temporal data (e.g., salinity, velocity profiles) to analyze tidal dynamics, turbulence, and mixing events.

Simulation Logic

The class simulates data collection and analysis through a timer-driven loop (UpdateSimulation), with a default interval of 100 ms. The simulation progresses until the specified duration ($T=86400\,\mathrm{s}$, one day) is reached, collecting data at a user-defined sampling rate ($\Delta t=3600\,\mathrm{s}$, one sample per hour). The GUI allows users to:

- Select analysis type: Spectral Analysis or EOF/POD Analysis.
- Choose variables: Richardson number, velocity, water level (for spectral analysis); salinity, velocity profile (for EOF/POD).
- Set plot scale (linear or log-log), window type (Hanning, Hamming, Blackman, Rectangular), and EOF/POD mode (1, 2, or 3).
- · Control simulation via Analyze, Pause, Reset, and Clear buttons.

Data is stored in:

- timeSeriesData: List of scalar values for spectral analysis.
- salinityData: List of 2D arrays [100, 1] for salinity (10x10 grid flattened).
- velocityData: List of 2D arrays [10, 1] for velocity profiles (10 depth levels).
- mixingEvents: List of detected mixing events with time and value.

The simulation logic:

- 1. **Initialization**: Clears data, sets currentTime = 0, and starts the timer (isAnalyzing = true).
- 2. **Data Generation**: At each timestep $(t \leftarrow t + \Delta t)$:
 - For spectral analysis, generates synthetic data for the selected variable (e.g., Richardson number) using GenerateSyntheticData.
 - For EOF/POD, generates salinity (GenerateSyntheticSalinityData) or velocity (GenerateSyntheticVelocityData).
 - Detects mixing events by computing the standard deviation over a window (size 5) and comparing against thresholds (0.2 for Richardson number, 0.03 for velocity, 0.5 for water level).

- 3. **Analysis**: When currentTime reaches duration, the timer stops, and PerformAnalysis triggers either PerformSpectralAnalysis or PerformEOFAnalysis.
- 4. Visualization: Updates two panels:
 - visualizationPanel: Plots power spectral density (PSD) or time series (spectral analysis), or spatial modes (EOF/POD).
 - heatmapPanel: Plots time-frequency heatmap (spectral analysis) or temporal coefficients (EOF/POD).

Physical and Mathematical Models

Synthetic Data Generation

Synthetic data mimics estuarine dynamics with tidal and inertial influences:

• Richardson Number: Models stratification stability:

$$Ri(t) = 0.5 + 0.3 \sin\left(\frac{2\pi t}{T_{\text{tidal}}}\right) + 0.2 \sin\left(\frac{2\pi t}{T_{\text{inertial}}}\right) + \text{noise}$$
 (1)

where $T_{\text{tidal}} = 43200 \, \text{s}$ (12-hour semi-diurnal tide), $T_{\text{inertial}} = 17 \times 3600 \, \text{s}$ (inertial period at 45° latitude), and noise is a random jump (~ 0.5 with 2% probability).

• Velocity: Represents tidal-driven flow:

$$u(t) = 0.1 + 0.05 \sin\left(\frac{2\pi t}{T_{\text{tidal}}}\right) + 0.02 \sin\left(\frac{2\pi t}{T_{\text{tidal}}/2}\right) + \text{noise}$$
 (2)

where noise is random (~ 0.01).

• Water Level: Combines tidal constituents:

$$\eta(t) = 1.0 \sin\left(\frac{2\pi t}{T_{\text{M2}}}\right) + 0.5 \sin\left(\frac{2\pi t}{T_{\text{K1}}}\right) \tag{3}$$

where $T_{M2} = 44712$ s (M2 tide), $T_{K1} = 86148$ s (K1 tide).

• Salinity: Models spatial-temporal variations:

$$S(x,y,t) = \left[30.0 + 2.0\sin\left(\frac{2\pi t}{T_{\text{M2}}}\right)\right] (1.0 - 0.1(x+y)) + \text{noise}$$
 (4)

on a 10x10 grid, with noise (~ 0.5).

• Velocity Profile: Depth-dependent tidal flow:

$$u(z,t) = \left[0.1\sin\left(\frac{2\pi t}{T_{\rm M2}}\right)\right](1.0 - 0.1z) + \text{noise}$$
 (5)

for 10 depth levels, with noise (~ 0.01).

Spectral Analysis

Spectral analysis uses Welch's method to estimate the power spectral density (PSD):

- 1. **Segmentation**: Divides the time series into overlapping segments (length $N=2^{\lfloor \log_2 \min(256, \lceil \operatorname{data} \rceil) \rfloor}$, overlap N/2).
- 2. Windowing: Applies a window function:
 - Hanning: $w(n) = 0.5 \left(1 \cos\left(\frac{2\pi n}{N-1}\right)\right)$
 - Hamming: $w(n) = 0.54 0.46 \cos\left(\frac{2\pi n}{N-1}\right)$
 - Blackman: $w(n)=0.42-0.5\cos\left(\frac{2\pi n}{N-1}\right)+0.08\cos\left(\frac{4\pi n}{N-1}\right)$
 - Rectangular: w(n) = 1.0

Window power: $P_w = \frac{1}{N} \sum_{n=0}^{N-1} w(n)^2$.

3. **FFT**: Computes the Fast Fourier Transform (FFT) for each segment using the Cooley-Tukey algorithm:

$$X(k) = \sum_{n=0}^{N-1} x(n)w(n)e^{-i\frac{2\pi kn}{N}}, \quad k = 0, \dots, \frac{N}{2}$$
 (6)

4. **PSD**: Calculates power spectrum:

$$PSD(k) = \frac{1}{N_s P_w \Delta t} \sum_{\text{segments}} |X(k)|^2$$
 (7)

where N_s is the number of segments, and frequencies are $f_k = \frac{k}{N\Delta t}$.

5. **Short-Time Fourier Transform (STFT)**: Computes time-frequency heatmap:

$$STFT(k,s) = \left| \sum_{n=0}^{N-1} x(n + s(N - \text{overlap})) w(n) e^{-i\frac{2\pi kn}{N}} \right|^2 \frac{1}{P_w \Delta t}$$
 (8)

for segment s.

6. **Turbulence Detection**: Checks for a -5/3 spectral slope in the log-log PSD (first 10 frequencies, $f > 10^{-4}$ Hz):

slope =
$$\frac{\sum (\log f_i - \log f)(\log PSD_i - \log PSD)}{\sum (\log f_i - \log f)^2}$$
 (9)

Turbulence is detected if $|slope + \frac{5}{3}| < 0.5$.

7. **Tidal Constituents**: Identifies M2 ($f_{M2}=\frac{1}{44712}\,\text{Hz}$) and K1 ($f_{K1}=\frac{1}{86148}\,\text{Hz}$) frequencies within $2\Delta f=\frac{2}{N\Delta t}$.

EOF/POD Analysis

EOF/POD decomposes spatial-temporal data into orthogonal modes:

1. **Data Matrix**: For salinity $(100 \times T)$ or velocity $(10 \times T)$, where T is the number of time steps. Mean subtraction per spatial point:

$$X(s,t) \leftarrow X(s,t) - \frac{1}{T} \sum_{t=1}^{T} X(s,t)$$
 (10)

- 2. **Singular Value Decomposition (SVD)**: Approximated via power iteration for the top 3 modes:
 - Initialize random vector \mathbf{v} , normalize: $\mathbf{v} \leftarrow \frac{\mathbf{v}}{\|\mathbf{v}\|}$.
 - Iterate (20 times):

$$\mathbf{u} = X\mathbf{v}, \quad \mathbf{u} \leftarrow \frac{\mathbf{u}}{\|\mathbf{u}\|} \tag{11}$$

$$\mathbf{v} \leftarrow X^T \mathbf{u}, \quad \mathbf{v} \leftarrow \frac{\mathbf{v}}{\|\mathbf{v}\|}$$
 (12)

- Compute singular value: $\sigma = ||X\mathbf{v}||$, spatial mode: $\mathbf{u} = \frac{X\mathbf{v}}{\sigma}$, temporal coefficients: \mathbf{v} .
- Deflate: $X \leftarrow X \sigma \mathbf{u} \mathbf{v}^T$.
- 3. **Explained Variance**: For singular values σ_i :

$$Variance_i = \frac{\sigma_i^2}{\sum \sigma_i^2} \times 100\%$$
 (13)

Mixing Events

Mixing events are detected by computing the standard deviation over a window of 5 samples:

$$\sigma = \sqrt{\frac{1}{5} \sum_{i=1}^{5} (x_i - \bar{x})^2}$$
 (14)

A mixing event is flagged if σ exceeds the threshold (0.2 for Richardson number, 0.03 for velocity, 0.5 for water level).

Visualization

- Spectral Analysis:
 - visualizationPanel: Plots PSD (linear or log-log) or time series with mixing events (red dots). M2 and K1 frequencies are marked.
 - heatmapPanel: Displays STFT heatmap, with power scaled as log₁₀(STFT) (log-log) or linear, using red-blue color gradient.

• EOF/POD Analysis:

- visualizationPanel: For salinity, plots spatial mode on a 10x10 grid (red-blue gradient); for velocity, plots mode vs. depth.
- heatmapPanel: Plots temporal coefficients vs. time.