HW2

Yiqao Li

September 16, 2017

Problem 9

```
cat("P{X<=10} =", pgamma(10, shape = 2.5, scale = 5))
## P{X<=10} = 0.450584
cat("P{X>5} =", pgamma(5, shape = 2.5, scale = 5, lower.tail = FALSE))
## P{X>5} = 0.849145
cat("P{|X-8|<3} =", pgamma(11, shape = 2.5, scale = 5) - pgamma(5, shape = 2.5, scale = 5))
## P{|X-8|<3} = 0.3557715
cat("Quantile z for P{X<z} = .1 is", qgamma(0.1, shape = 2.5, scale = 5))
## Quantile z for P{X<z} = .1 is 4.02577</pre>
```

Problem 10

CDF of B(20,1/3) and Hypergeometric(k=20,n=40,N=120)

Problem 11

CDF of B(40,0.3) and N(12,2.9)

Although these two distributions are close, for each integer value of X, probability of binomial distribution is always larger than that of normal distribution.

Problem 12

```
sample10 <- rnorm(10)
sample20 <- rnorm(20)
sample40 <- rnorm(40)
sample100 <- rnorm(100)
sample1000 <- rnorm(1000)
qqnorm(sample10, main = "Normal Q-Q Plot of sample of size 10 from Standard Normal")</pre>
```

Normal Q-Q Plot of sample of size 10 from Standard Normal

qqnorm(sample20, main = "Normal Q-Q Plot of sample of size 20 from Standard Normal")

Normal Q-Q Plot of sample of size 20 from Standard Normal

Normal Q-Q Plot of sample of size 40 from Standard Normal

qqnorm(sample100, main = "Normal Q-Q Plot of sample of size 100 from Standard Normal")

Normal Q-Q Plot of sample of size 100 from Standard Normal

Normal Q-Q Plot of sample of size 1000 from Standard Normal

When sample size gets larger, QQ plot is closer to a straight line. Quantiles not in [-1,1] are the main deviations from being a straight line.

Problem 13

```
sampleB20 <- rbinom(20, size = 40, prob = 0.3)
sampleB1000 <- rbinom(1000, size = 40, prob = 0.3)
qqnorm(sampleB20, main = "Normal Q-Q Plot of sample of size 20 from Binomial Distribution")</pre>
```

Normal Q-Q Plot of sample of size 20 from Binomial Distribution

qqnorm(sampleB1000, main = "Normal Q-Q Plot of sample of size 1000 from Binomial Distribution")

Normal Q-Q Plot of sample of size 1000 from Binomial Distribution

Different from a straight line, this QQplot is a staircase plot because binomial distribution is discrete.

Problem 14

```
cat("The probability that a standard normally distributed variable is larger than 3 is",
   pnorm(3, lower.tail = FALSE))
## The probability that a standard normally distributed variable is larger than 3 is 0.001349898
 (b)
cat("The probability that a normally distributed variable with mean 35 and standard
   deviation 6 is larger than 42 is", pnorm(42, mean = 35, sd = 6, lower.tail = FALSE))
## The probability that a normally distributed variable with mean 35 and standard
       deviation 6 is larger than 42 is 0.1216725
##
 (c)
cat("The probability of getting 10 out of 10 successes in a binomial distribution with
    probability 0.8 is", dbinom(10, size = 10, prob = 0.8))
## The probability of getting 10 out of 10 successes in a binomial distribution with
      probability 0.8 is 0.1073742
##
 (d)
cat("The probability of X < 0.9 when X has the standard uniform distribution is", punif(0.9))
## The probability of X < 0.9 when X has the standard uniform distribution is 0.9
 (e)
cat("The probability of X > 6.5 in a Chi-Squared distribution with 2 degrees of freedom is",
   pchisq(6.5, df = 2, lower.tail = FALSE))
## The probability of X > 6.5 in a Chi-Squared distribution with 2 degrees of freedom is 0.03877421
```

Problem 15

3 choices of continuous distributions: Standard Cauchy, Log-normal (Lognormal(0,1)), Student's t (with 1 degree of freedom)

Q-Q plot U(0,1) vs. F[Cauchy(0,1)]

Q-Q plot U(0,1) vs. F[Lognormal(0,1)]

Q-Q plot U(0,1) vs. F(t1)

From QQplots above, CDF of random variable follows Standard Uniform Distribution. Assume that $X \sim exp(\lambda)$, prove that $U = F(x) \sim U(0,1)$, where F is cumulative distribution function of X.

$$F(X) = 1 - e^{-\lambda X}$$

$$F_U(u) = P\{U \le u\} = P\{F(X) \le u\}$$

$$= P\{1 - e^{-\lambda X} \le u\}$$

$$= P\{X \le -\frac{\log(1 - u)}{\lambda}\}$$

$$= 1 - e^{-\lambda[-\frac{\log(1 - u)}{\lambda}]}$$

$$= u$$

$$f_U(u) = F'_U(u) = 1$$

Therefore, U has a standard uniform distribution.

Problem 16

Take
$$\lambda = 1$$
 and $\alpha = \frac{1}{2}$
y <- rexp(1000) + rexp(1000)
Y <- y^(1/2)
qqnorm(Y, ylim = c(mean(Y) - sd(Y), mean(Y) + sd(Y)))

Normal Q-Q Plot

