Esercizio 1. Let $p(x) \subseteq L(A)$, with $|x| < \omega$. Prove that if $p(\mathcal{U})$ is infinite then it has cardinality κ . Show that this may not be true for all $p(x) \subseteq L(\mathcal{U})$.

Esercizio 2. Let $\varphi(x, y) \in L(\mathcal{U})$. Prove that the following are equivalent

- 1. there is a sequence $\langle a_i:i\in\omega\rangle$ such that $\varphi(\mathcal{U},a_i)\subset\varphi(\mathcal{U},a_{i+1})$ for every $i<\omega;$
- 2. there is a sequence $\langle a_i : i \in \omega \rangle$ such that $\varphi(\mathcal{U}, a_{i+1}) \subset \varphi(\mathcal{U}, a_i)$ for every $i < \omega$.

Esercizio 3. Suppose $|L| \le \omega$ and let M be an infinite structure. Then for every non-principal ultrafilter F on ω the structure M^{ω}/F is a ω_1 -saturated elementary superstructure of M.

Suggerimento: si espanda il suggerimento sulle dispense.

Esercizio 1. Let $a \in \mathcal{U}$ be such that $\mathcal{O}(a/A) = \{a\}$. Prove that there is a formula $\varphi(x) \in L(A)$ such that $\varphi(a) \land \exists^{-1} x \varphi(x)$.

Suggerimento: si ricordi che $\mathcal{O}(a/A) = p(\mathcal{U})$ per $p(x) = \operatorname{tp}(a/A)$.

Esercizio 2. Let $\varphi(x) \subseteq L(\mathcal{U})$ be such that $\{f[\varphi(\mathcal{U})] : f \in \operatorname{Aut}(\mathcal{U}/A)\}$ contains exactly 2 elements. Prove $\varphi(\mathcal{U})$ is definable over *any* model M containing A.

Esercizio 3. Let $p(x) \subseteq L(A)$, with $|x| < \omega$. Prove that if $p(\mathcal{U})$ is infinite then it has cardinality κ . Show that this may not be true if x is an infinite tuple.

Suggerimento: è sufficiente ci sia un insieme definibile con esattamente due elementi.

Esercizio 1. Let $p(x) \subseteq L$ be such that $p(\mathcal{U})$ contains just one element. Prove that there is a formula $\varphi(x)$, a conjunctions of formulas in p(x), such that $p(\mathcal{U}) = \varphi(\mathcal{U})$.

Esercizio 2. Let $p(x) \subseteq L(A)$ be such that $\neg p(x) \leftrightarrow q(x)$ for some $q(x) \subseteq L(B)$. Prove that p(x) is equivalent to some conjunction of formulas in p(x).

Esercizio 3. Let $\varphi(x, y) \in L(\mathcal{U})$. Prove that the following are equivalent

- 1. there is a sequence $\langle a_i:i\in\omega\rangle$ such that $\varphi(\mathcal{U},a_i)\subset\varphi(\mathcal{U},a_{i+1})$ for every $i<\omega;$
- 2. there is a sequence $\langle a_i : i \in \omega \rangle$ such that $\varphi(\mathcal{U}, a_{i+1}) \subset \varphi(\mathcal{U}, a_i)$ for every $i < \omega$.

Esercizio 1. Let M and N be elementarily homogeneous structures of the same cardinality λ . Suppose that $M \models \exists x \, p(x) \Leftrightarrow N \models \exists x \, p(x)$ for every $p(x) \subseteq L$ such that $|x| < \lambda$. Prove that the two structures are isomorphic.

Suggerimento: vedi dimostrazione di $universale + homogeneo \Rightarrow ricco$

Esercizio 2. Let $\varphi(x;z) \in L$. Prove that if the set $\{\varphi(a;\mathcal{U}): a \in \mathcal{U}^{|x|}\}$ is infinite then it has cardinality κ . Does the claim remains true with a type $p(x;z) \subseteq L$ for $\varphi(x;z)$?

Suggerimento: potrebbe esserci un controesempio in $\mathcal{U} \equiv \mathbb{N}$ nel linguaggio degli ordini.

Esercizio 3. Let $\varphi(x) \subseteq L(\mathcal{U})$ be such that $\{f[\varphi(\mathcal{U})] : f \in \operatorname{Aut}(\mathcal{U}/A)\}$ contains exactly 2 elements. Prove $\varphi(\mathcal{U})$ is definable over *any* model M containing A.