

Claims

1. Method for producing pharmaceutical dosage forms or precursors thereof by means of extrusion,

characterized in that, the dosage form has a matrix in which the active agent is essentially contained and whose essential properties are determined by the extrusion process and which comprises a polysaccharide and/or a derivative thereof and/or a complex thereof and/or any mixture of the aforementioned substances with other substances and/or saccharides and/or derivatives thereof as an essential constituent, and at least one pharmaceutically effective substance.

2. Method according to claim 1,

characterized in that, the release of the active agent of the dosage form is regulated by the addition of adjuvants and/or by variation of the extrusion process parameters, such as temperature, geometry of dies and/or the extrusion speed.

SAB ~~3.~~ 3. Method according to claim 1 or claim 2,

characterized in that, the matrix is amorphous or partially amorphous.

SAB ~~4.~~ 4. Method according to any one of the preceding claims,

characterized in that, the polysaccharide is starch or a derivative thereof.

SAB ~~5.~~ 5. Method according to any one of the preceding claims,

characterized in that, the matrix is water-soluble.

SAB ~~6.~~ 6. Method according to any one of the preceding claims,

characterized in that, the matrix is a controlled release matrix.

7. Method according to any one of the preceding claims,
characterized in that, the release of the active agent of the dosage form substantially follows the lapidus function.

8. Method according to any one of the preceding claims,
characterized in that, the release of the active agent of the dosage form may be adjusted over 24 hours or more.

9. Method according to any one of the preceding claims,
characterized in that, at least one pharmaceutically effective substance is present in dissolved, solid or liquid form within the matrix.

10. Pharmaceutical dosage form, comprising a matrix in which the active agent is essentially contained and whose essential properties are determined by the extrusion process and which comprises a polysaccharide and/or a derivative thereof and/or a complex thereof and/or any mixture of the aforementioned substances with other substances and/or saccharides and/or derivatives thereof as the essential constituent of the matrix, and at least one pharmaceutically effective substance.

11. Dosage form according to claim 10,
characterized in that, the release of the active substance is regulated by the addition of adjuvants and/or by variation of the extrusion process parameters, such as temperature, geometry of dies and/or the extrusion speed.

12. Dosage form according to claim 10 or claim 11,
characterized in that, the matrix is amorphous or partially amorphous.

*SUB
H21*

13. Dosage form according to any one of claims 10 to 12,
characterized in that, the polysaccharide is starch or a derivative thereof.

14. Dosage form according to any one of claims 10 to 13,
characterized in that, the matrix is water-insoluble.

15. Dosage form according to any one of claims 10 to 14,
characterized in that, the matrix is a controlled release matrix.

*A2
cont*

16. Dosage form according to any one of claims 10 to 15,
characterized in that, the release of the active agent substantially follows the lapidus function.

17. Dosage form according to any one of claims 10 to 16,
characterized in that, the release of the active agent is adjusted over a period of up to 24 hours or longer.

18. Dosage form according to any one of claims 10 to 17,
characterized in that, at least one pharmaceutically effective substance is present in dissolved, solid or liquid form within the matrix.

19. Use of a dosage form according to claim 10 to 18 for producing granulates for tabletting and filling capsules, for further processing using injection molding techniques, as an adjuvant for direct tabletting and/or for producing mono-block pharmaceutical dosage forms.