## CS221 Fall 2018 Homework [car]

SUNet ID: prabhjot

Name: Prabhjot Singh Rai

By turning in this assignment, I agree by the Stanford honor code and declare that all of this is my own work.

## Problem 1

(a) Step 1: Remove variables that are not ancestors

Step 2: Converting to factor graph

Step 1 and step 2 are shown in diagram below:



Step3: Conditioning on  $D_2 = 0$ 



Condition variable  $D_2$  on value  $D_2 = 0$ , replacing it with a factor  $\operatorname{cond}_{D_2=0}(C_2)$ , we get

$$\begin{array}{ccc} \operatorname{cond}_{D_2=0}(C_2) & C_2 \\ 1 - \eta & 0 \\ \eta & 1 \end{array}$$

## Step4: Eliminate $C_1$



$$elim_{C_1}(C_2) = \sum_{C_1} p(C_1)p(C_2/C_1)$$
$$= 0.5 \sum_{C_1} p(C_2/C_1)$$

This is given from the below table:

elim<sub>C1</sub>(C<sub>2</sub>) 
$$C_2$$
  
 $0.5(1 - \epsilon + \epsilon) = 0.5$  0  
 $0.5(\epsilon + 1 - \epsilon) = 0.5$  1

Therefore, now that we know  $\operatorname{elim}_{C_1}(C_2)$  and  $\operatorname{cond}_{D_2=0}(C_2)$ ,

$$p(C_2/D_2 = 0) = elim_{C_1}(C_2) * cond_{D_2=0}(C_2)$$

$$p(C_2/D_2 = 0)$$
  $C_2$   
 $0.5(1 - \eta)$   $0$   
 $0.5\eta$   $1$ 

Hence, the given query,

$$p(C_2 = 1/D_2 = 0) = \frac{0.5\eta}{0.5\eta + 0.5(1 - \eta)}$$
$$= \eta$$

(b) Step1: Remove variables that are not ancestors

Step2: Converting to factor graph

Step3: Conditioning on  $D_3 = 1$ 

Conditioning on variable  $D_3$ , and replacing it with a factor  $\operatorname{cond}_{D_3=1}(C_3)$ , we get

$$\begin{array}{ll}
\operatorname{cond}_{D_3=1}(C_3) & C_3 \\
\eta & 0 \\
1-\eta & 1
\end{array}$$

Step4: Eliminating  $C_3$ 

Defining function  $elim_{C_3}(C_2)$  in order to eliminate node  $C_3$  as

$$\operatorname{elim}_{C_3}(C_2) = \sum_{C_3} \operatorname{cond}_{D_3=1}(C_3) p(C_3/C_2)$$

The probability distribution  $p(C_3/C_2)$  is given by:

C2 C3 p(C3/C2)  
0 0 
$$1 - \epsilon$$
  
0 1  $\epsilon$   
1 0  $\epsilon$   
1  $1 - \epsilon$ 

The probability distribution  $\operatorname{cond}_{D_3=1}(C_3)$  is defined in Step 3.

Combining both and substituting in equation 1, and doing summation over values of  $C_3$ , we will have probability distribution of  $elim_{C_3}(C_2)$  is given by:

$$C_2 \quad \text{elim}_{C_3}(C_2)$$

$$0 \quad (1 - \epsilon)\eta + \epsilon(1 - \eta)$$

$$1 \quad \epsilon \eta + (1 - \eta)(1 - \epsilon)$$

Step5: Combining all factors of  $C_2$ 

The other distribution which depends on is  $p(D_2 = 1/C_2)$ , which can be conditioned as  $\operatorname{cond}_{D_2=0}(C_2)$ , given by:

$$C_2 \quad \operatorname{cond}_{D_2=0}(C_2)$$

$$0 \quad 1-\eta$$

$$1 \quad \eta$$

Multiplying  $\operatorname{elim}_{C_3}(C_2)$  and  $\operatorname{cond}_{D_2=0}(C_2)$ :

$$C_2 \quad \text{elim}_{C_3}(C_2)$$

$$0 \quad ((1 - \epsilon)\eta + \eta(1 - \epsilon))(1 - \eta)$$

$$1 \quad (\epsilon \eta + (1 - \eta)(1 - \epsilon))\eta$$

Therefore,

$$P(C_2 = 1/D_2 = 0, D_3 = 1) = \frac{(\epsilon \eta + (1 - \eta)(1 - \epsilon))\eta}{(\epsilon \eta + (1 - \eta)(1 - \epsilon))\eta + ((1 - \epsilon)\eta + \epsilon(1 - \eta))(1 - \eta)}$$

(c) i.

$$P(C_2 = 1/D_2 = 0) = 0.2$$
  
 $P(C_2 = 1/D_2 = 0, D_3 = 1) = 0.4157$ 

- ii. Adding second sensor reading increased the probability from 0.2 to 0.4157. Since  $D_3$  is equal to 1, it means we observed the location to be 1 at location 3. This would increase the probability of  $C_3 = 1$  since the emission probability  $p(d_t/c_t)$  favours similar values with higher probability.  $C_3 = 1$  increases the probability of  $C_2 = 1$ , since the transition probability  $p(c_t/c_{t-1})$  favours same location with higher probability.
- iii. Both the probabilities would be same when the sensor reading at  $D_3$  doesn't matter. This won't matter when the transition probabilities  $p(c_t/c_{t-1})$  are equal meaning no matter what is the value of  $c_3$  out of all the possible values, we will get constant transition probability. This would happen when  $\epsilon = 1 \epsilon$ , therefore when  $\epsilon = 0.5$ .

## Problem 2

- (a) (your solution)
- (b) (your solution)