STOR 635 HW 1

BY AMEER QAQISH

January 14, 2022

1. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a σ -finite measure space, and let $p \in [1, \infty]$. Show that if f, $g \in L^p$, then so is f + g and

$$||f + g||_p \le ||f||_p + ||g||_p$$
.

Show that equality holds for $p \in (1, \infty)$ iff for some nonnegative constants a, b, with at least one being positive, a = b g a.e.

Proof. First we deal with the case $p = \infty$. Suppose $f, g \in L^{\infty}$. By definition, we have $f(x) \leq \|f\|_{\infty}$ for a.e. $x \in \Omega$ and $|g(x)| \leq \|g\|_{\infty}$ for a.e. $x \in \Omega$. Thus for a.e. $x \in \Omega$, we have $|f(x) + g(x)| \leq \|f\|_{\infty} + \|g\|_{\infty}$. Thus $\|f + g\|_{\infty} \leq \|f\|_{\infty} + \|g\|_{\infty}$.

Now we consider the case $p \in [1, \infty)$. Let $f, g \in L^p$ be arbitrary. The cases where one of $||f||_p$ or $||g||_p$ are 0 are trivial, so assume $||f||_p > 0$ and $||g||_p > 0$. We have

$$|f+g|^p \le (2 \max(|f|,|g|))^p$$

= $2^p \max(|f|,|g|)^p$
 $\le 2^p (|f|^p + |g|^p).$

Thus $f+g\in L^p$. Let $f_0=\frac{f}{\|f\|_p}$, $g_0=\frac{g}{\|g\|_p}$. Note by elementary calculus that the map $t\mapsto t^p$ mapping $[0,\infty)$ into $\mathbb R$ is convex, and is strictly convex when p>1. Thus $z\mapsto |z|^p$ is a convex map from $\mathbb C$ to $\mathbb R$, and is strictly convex when p>1. Thus for any $\lambda\in(0,1)$,

$$|\lambda f_0 + (1 - \lambda) g_0|^p \le \lambda |f_0|^p + (1 - \lambda) |g_0|^p. \tag{1}$$

Noting that $||f_0||_p = ||g_0||_p = 1$, integrating both sides gives

$$\|\lambda f_0 + (1 - \lambda) g_0\|_p^p \le \lambda + 1 - \lambda = 1.$$
 (2)

Taking pth roots gives

$$\|\lambda f_0 + (1 - \lambda) g_0\|_p \le 1.$$

Now choosing $\lambda = \frac{\|f\|_p}{\|f\|_p + \|g\|_p} \in (0,1)$ yields

$$\frac{\|f+g\|_p}{\|f\|_p + \|g\|_p} \le 1.$$

Hence

$$||f+g||_p \le ||f||_p + ||g||_p.$$

The conditions for equality are different when p=1 and when p>1, as we now show. Assume $\|f+g\|_p=\|f\|_p+\|g\|_p$. Again, we assume f and g are both nonzero. Assume p>1. Having equality $\|f+g\|_p=\|f\|_p+\|g\|_p$ implies that with $\lambda=\frac{\|f\|_p}{\|f\|_p+\|g\|_p}$, we must have equality in (2) after integrating (1). Hence

$$\int (\lambda |f_0|^p + (1-\lambda) |g_0|^p - |\lambda f_0 + (1-\lambda) g_0|^p) = 0.$$

Since the integrand is nonnegative, it follows that it is 0 (a.e.). Hence we have the (a.e.) equality

$$|\lambda f_0 + (1 - \lambda) g_0|^p = \lambda |f_0|^p + (1 - \lambda) |g_0|^p$$
.

In this case, since $z \mapsto |z|^p$ is strictly convex and $\lambda \in (0,1)$, it follows that $f_0 = g_0$ (a.e.). Hence $f = ||f||_p \frac{g}{||g||_p}$. Conversely, if f, g are both nonzero and f = a g for some a > 0, then

$$||f + g||_p = ||(a+1)g||_p = (a+1)||g||_p = ||ag||_p + ||g||_p = ||f||_p + ||g||_p$$

Now conside the case p=1. By a similar argument as above, we can conclude the equality

$$|f(x) + g(x)| = |f(x)| + |g(x)|$$
 for a.e. $x \in \Omega$.

The above is simply equality in the triangle inequality for complex numbers, which, by the Cauchy-Schwarz inequality in \mathbb{R}^2 , happens if and only if f(x) is a nonnegative multiple of g(x). Thus for a.e. $x \in \Omega$, there exists $\alpha(x) \ge 0$ such that $f(x) = \alpha(x) g(x)$. Thus with

$$a(x) = \begin{cases} \frac{f(x)}{g(x)} & \text{if } g(x) \neq 0 \\ 0 & \text{if } g(x) = 0 \end{cases},$$

we have that a is nonnegative and measurable with f = a g (a.e.). Conversely, if there is a measurable nonnegative function $a: \Omega \to [0, \infty)$ such that f = a g, then

$$\int |f+g| = \int (a+1)|g| = \int a|g| + \int |g| = \int |f| + \int |g|.$$

2. Let $(\Omega, \mathcal{F}, P) = ([0, 1], \mathcal{B}([0, 1]), m)$, where m is the Lebesgue measure on [0, 1]. Let $X_n = a_n \, 1_{[0, 1/n]}$. Give necessary and sufficient conditions on the sequence a_n for $\{X_n\}$ to be uniformly integrable.

Proof. Note that $X_n \to 0$ pointwise on (0, 1]. Hence $X_n \to 0$ almost everywhere, and therefore in measure, since $m([0, 1]) = 1 < \infty$. By the theorem proved in class (basically the Vitali convergence theorem), it follows that $\{X_n\}$ is uniformly integrable if and only if $X_n \to 0$ in L^1 . Since $\|X_n\|_1 = \frac{|a_n|}{n}$, this happens if and only if $\lim_{n\to\infty} \frac{|a_n|}{n} = 0$.

3. Let $(\Omega, \mathcal{F}, \mu)$ be a finite measure space. Suppose that \mathcal{H}_1 and \mathcal{H}_2 are classes of real measurable functions on Ω such that \mathcal{H}_2 is uniformly integrable. Suppose that for every $f \in \mathcal{H}_1$, there is a $g \in \mathcal{H}_2$ such that $|f| \leq |g|$. Show that \mathcal{H}_1 is uniformly integrable.

Proof. Let $f \in \mathcal{H}_1$ be arbitrary. Pick $g \in \mathcal{H}_2$ such that $|f| \leq |g|$. Then for any M > 0,

$$\int_{|f|>M} |f| \leq \int_{|f|>M} |g|
\leq \int_{|g|>M} |g|
\leq \sup_{h \in \mathcal{H}_2} \int_{|h|>M} |h|$$

Taking the sup over $f \in \mathcal{H}_1$ yields

$$\sup_{f \in \mathcal{H}_1} \int_{|f| > M} |f| \le \sup_{h \in \mathcal{H}_2} \int_{|h| > M} |h|.$$

Since, by assumption, the right hand side converges to 0 as $M \to \infty$, the proof is complete.

4. Let $(\Omega, \mathcal{F}, \mu)$ be a finite measure space. Suppose that \mathcal{H}_1 and \mathcal{H}_2 are uniformly integrable classes of real measurable functions on Ω . Show that $\mathcal{H}_1 \pm \mathcal{H}_2 = \{f_1 \pm f_2 : f_i \in \mathcal{H}_i, i = 1, 2\}$ is a uniformly integrable family as well.

Solution: We first prove a lemma.

Lemma 1. A family $\mathcal{H} \subset L^1(\Omega, \mu)$ is uniformly integrable if and only if

$$\lim_{a \to \infty} \sup_{f \in \mathcal{H}} \int (|f| - a)^+ d\mu = 0,$$

where $x^+ = \max(x, 0)$.

Proof. (\Longrightarrow) Assume \mathcal{H} is uniformly integrable. Then for any $a \ge 0$, $f \in \mathcal{H}$,

$$\int (|f|-a)^+ \, d\mu = \int_{|f|>a} (|f|-a) \, d\mu \le \int_{|f|>a} |f| \, d\mu.$$

Hence

$$\sup_{f\in\mathcal{H}}\int (|f|-a)^+\,d\mu \leq \sup_{f\in\mathcal{H}}\int_{|f|>a} |f|\,d\mu \to 0 \ \text{ as } a\to\infty.$$

 (\longleftarrow) Assume $\lim_{a\to\infty}\sup_{f\in\mathcal{H}}\int (|f|-a)^+d\mu=0$. Let $\varepsilon>0$. Pick $a\geq 0$ such that

$$\sup_{f \in \mathcal{H}} \int (|f| - a)^+ d\mu \le \varepsilon.$$

For $f \in \mathcal{H}$, we have

$$\int_{|f|>2a} |f| = \int_{|f|>2a} (|f|-a) + \int_{|f|>2a} a$$

$$\leq \int_{|f|>a} (|f|-a)^{+} + \int_{|f|>2a} (|f|-a)$$

$$\leq \int_{|f|>a} (|f|-a)^{+} + \int_{|f|>a} (|f|-a)^{+}$$

$$\leq 2\varepsilon.$$

Now we give the proof for problem 4.

Proof. Since the union of two uniformly integrable families of functions is clearly uniformly integrable, it suffices to show that both $\mathcal{H}_1 + \mathcal{H}_2$ and $\mathcal{H}_1 - \mathcal{H}_2$ are both uniformly integrable. For $f_1 \in \mathcal{H}_1$, $f_2 \in \mathcal{H}_2$, $a_1, a_2 \geq 0$, we have

$$\int (|f_1 + f_2| - (a_1 + a_2))^+ \le \int (|f_1| - a_1 + |f_2| - a_2)^+$$

$$\le \int (|f_1| - a_1)^+ + \int (|f_2| - a_2)^+,$$

where we used the inequality $(x+y)^+ \le x^+ + y^+$, valid for $x, y \in \mathbb{R}$. Pick $a_1, a_2 \ge 0$ such that

$$\sup_{f \in \mathcal{H}_i} \int (|f| - a_i)^+ \le \varepsilon \text{ for } i = 1, 2.$$

Then

$$\sup_{f_1 \in \mathcal{H}_1, f_2 \in \mathcal{H}_2} \int (|f_1 + f_2| - (a_1 + a_2))^+ \le 2 \varepsilon.$$

Thus $\mathcal{H}_1 + \mathcal{H}_2$ is uniformly integrable. Since |-f| = |f|, it follows that $-\mathcal{H}_2$ is uniformly integrable. Thus $\mathcal{H}_1 + (-\mathcal{H}_2) = \mathcal{H}_1 - \mathcal{H}_2$ is uniformly integrable.

- **5.** Prove the generalized dominated convergence theorem: let $\{f_n\}_{n\geq 1}$ be a sequence of measurable functions defined on the measure space $(\Omega, \mathcal{F}, \mu)$, and let $\{g_n\}_{n\geq 1}$ be a sequence of non-negative measurable functions on the same space. Suppose the following hold:
 - $|f_n| \le g_n$ for all $n \ge 1$,
- f_n converges pointwise almost everywhere to f and g_n converges pointwise almost everywhere to g,
 - $\lim_{n\to\infty} \int g_n d\mu = \int g d\mu < \infty$. Then f is in $L^1(\mu)$ and $\lim_{n\to\infty} \int f_n d\mu = \int f d\mu$. Also $f_n \to f$ in L^1 .

Proof. Since $|f_n| \leq |g_n|$, it follows by taking pointwise limits that $|f| \leq g$ a.e. Since $g \in L^1(\mu)$, it follows that $f \in L^1(\mu)$. Since $\lim_{n \to \infty} \int g_n d\mu < \infty$, it follows that $g_n \in L^1(\mu)$ for n large. Hence $f_n \in L^1(\mu)$ for n large. Hence $|f_n - f| \in L^1(\mu)$ for n large. Note that $|f_n - f| \leq g_n + g$. By Fatou's lemma applied to $g_n + g - |f_n - f| \geq 0$,

$$2\int g \leq \liminf_{n \to \infty} \int (g_n + g - |f_n - f|)$$

$$= \liminf_{n \to \infty} \left(\int g + \int g_n - \int |f_n - f| \right)$$

$$= \int g + \int g + \liminf_{n \to \infty} \left(-\int |f_n - f| \right)$$

$$= 2\int g - \limsup_{n \to \infty} \int |f_n - f|.$$

To get the first equality we used linearity of the integral on $L^1(\mu)$, and to get the second equality we used the fact that if (a_n) and (b_n) are sequences of real numbers, then

$$a_n \to a \implies \liminf_{n \to \infty} (a_n + b_n) = a + \liminf_{n \to \infty} b_n,$$

which itself follows from the inequality

$$\liminf_{n\to\infty} a_n + \liminf_{n\to\infty} b_n \le \liminf_{n\to\infty} (a_n + b_n) \le \limsup_{n\to\infty} a_n + \liminf_{n\to\infty} b_n.$$

Thus $\limsup_{n\to\infty} \int |f_n - f| \le 0$, so $f_n \to f$ in $L^1(\mu)$. The fact that $\int f_n d\mu \to \int f d\mu$ follows from the continuity of \int on $L^1(\mu)$:

$$\left| \int f_n - \int f \right| \le \int |f_n - f| \to 0.$$

6. Let $(\Omega, \mathcal{F}, \mu)$ be a σ -finite measure space and let $p \in [1, \infty)$. Show that if $f_n \to f$ in L^p , then $|f_n|^p \to |f|^p$ in L^1 .

Proof. For contradiction, suppose $|f_n|^p$ does not converge to $|f|^p$ in L^1 . Then there exists $\varepsilon > 0$ and a subsequence $(|f_{n_k}|^p)_{k=1}^{\infty}$ such that

$$|||f_{n_k}|^p - |f|^p||_1 \ge \varepsilon \text{ for all } k \ge 1.$$
(3)

Since $f_{n_k} \to f$ in L^p , it follows by Chebyshev's inequality that $f_{n_k} \to f$ (globally) in measure. Hence there is a subsequence $(f_{n_{k_j}})_{j=1}^{\infty}$ such that $f_{n_{k_j}} \to f$ a.e. We have $|f_{n_{k_j}}|^p \to |f|^p$ a.e. and

$$\int |f_{n_{k_j}}|^p = ||f_{n_{k_j}}||_p^p \to ||f||_p^p = \int |f|^p < \infty \text{ as } j \to \infty.$$

Thus we can apply the result of problem 5 to the sequence $(|f_{n_{k_j}}|^p)$ with itself as the dominating sequence to conclude that $|f_{n_{k_j}}|^p \to |f|^p$ in $L^1(\mu)$. But this contradicts (3).