

COE-C2004 - Materials Science and Engineering

Prof. Junhe Lian Wenqi Liu (Primary teaching Assistant) Rongfei Juan (Teaching Assistant)

Connecting the Dots - Steve Jobs' 2005 Stanford Commencement Address (https://www.youtube.com/embed/UF8uR6Z6KLc)

Lecture flow

Thermal properties

Learning Objectives

After studying this chapter you should be able to do the following:

- Define heat capacity and specific heat capacity.
- Note the primary mechanism by which thermal energy is assimilated in solid materials.
- Determine the linear coefficient of thermal expansion given the length alteration that accompanies a specified temperature change.
- Briefly explain the phenomenon of thermal expansion from an atomic perspective using a potential-energy-versus-interatomicseparation plot.
- Define thermal conductivity.
- Note the two principal mechanisms of heat conduction in solids and compare the relative magnitudes of these contributions for each of metals, ceramics, and polymeric materials.

Thermal Properties

Heat Capacity

The ability of a material to absorb heat

 Quantitatively: The energy required to produce a unit rise in temperature for one mole of a material.

heat capacity (J/mol-K) =
$$\frac{dQ}{dT}$$
 energy input (J/mol) temperature change (K)

Two ways to measure heat capacity:

 C_p : Heat capacity at constant pressure. C_v : Heat capacity at constant volume.

$$C_p$$
 usually > C_V

Heat capacity has units of

$$\frac{\mathsf{J}}{\mathsf{mol} \cdot \mathsf{K}} \left(\frac{\mathsf{Btu}}{\mathsf{lb} - \mathsf{mol} \cdot {}^{\circ}\mathsf{F}} \right)$$

Dependence of Heat Capacity on Temperature

- Heat capacity...
 - -- increases with temperature
 - -- for solids it reaches a limiting value of 3R

- From atomic perspective:
 - -- Energy is stored as atomic vibrations.
 - -- As temperature increases, the average energy of atomic vibrations increases.

Atomic Vibrations

Atomic vibrations are in the form of lattice waves or phonons

Fig. 19.1, Callister & Rethwisch 10e. (Adapted from "The Thermal Properties of Materials" by J. Ziman. Copyright © 1967 by Scientific American, Inc. All rights reserved.)

- Normal lattice positions for atoms
- Positions displaced because of vibrations

https://en.wikipedia.org/wiki/Phonon#:~:text=A%2 0phonon%20is%20the%20quantum,a%20normal %20mode%20of%20vibration.

Specific Heat: Comparison

 c_n (J/kg-K)

	Matorial	Ρ,
•	<u>Polymers</u>	at room
	Polypropylene	1925
	Polyethylene	1850
	Polystyrene	1170
	Teflon	1050

 c_p (specific heat): (J/kg-K) C_p (heat capacity): (J/mol-K)

Why is c_p significantly larger for polymers?

Ceramics

Material

Magnesia (MgO)	940
Alumina (Al ₂ O ₃)	775
Glass	840

Metals

increasing $c_{
ho}$

Aluminum	900	
Steel	486	Selected values from Table 19.1,
Tungsten	138	Callister & Rethwisch 10e.
Gold	128	

Thermal Expansion

Materials change size when temperature is changed

https://en.wikipedia.org/wiki/Temperature

Atomic Perspective: Thermal Expansion

- -- increase temperature,
- -- increase in interatomic separation
- -- thermal expansion

Symmetric curve:

- -- increase temperature,
- -- no increase in interatomic separation
- -- no thermal expansion

Fig. 19.3, Callister & Rethwisch 10e. (Adapted from R. M. Rose, L. A. Shepard, and J. Wulff, The Structure and Properties of Materials, Vol. IV, Electronic Properties, John Wiley & Sons, 1966. Reproduced with permission of Robert M. Rose.)

Coefficient of Thermal Expansion: Comparison

Material	α_{ℓ} (10 ⁻⁶ /° C)	
• Polymers	at room T	
Polypropylene	145-180	

increasing $lpha_\ell$

Polypropylene 145-180
Polyethylene 106-198
Polystyrene 90-150
Teflon 126-216

Polymers have larger α_ℓ values because of weak secondary bonds

Metals
Aluminum 23.6
Steel 12
Tungsten 4.5
Gold 14.2

• Q: Why does α_{ℓ} generally decrease with increasing bond energy?

Ceramics

Magnesia (MgO) 13.5 Alumina (Al_2O_3) 7.6 Soda-lime glass 9 Silica (cryst. SiO_2) 0.4

Selected values from Table 19.1, *Callister & Rethwisch 10e.*

Thermal Expansion: Example

Ex: A copper wire 15 m long is cooled from 40 to -9° C. How much change in length will it experience?

• Answer: For Cu $\partial_{\ell} = 16.5 \times 10^{-6} \, (^{\circ}\text{C})^{-1}$

rearranging Equation

$$D\ell = \partial_{\ell} \ell_0 DT = [16.5 \times 10^{-6} (1/^{\circ}C)](15 \text{ m}) [40^{\circ}C - (-9^{\circ}C)]$$

 $D\ell = 0.012 \text{ m} = 12 \text{ mm}$

Thermal Stresses

Occur due to:

- -- restrained thermal expansion/contraction
- temperature gradients that lead to differential dimensional changes

Thermal stress =
$$S$$

= $Ea_{\ell}(T_0 - T_f) = Ea_{\ell}DT$

Thermal Shock Resistance

- Occurs due to: nonuniform heating/cooling
- Ex: Assume top thin layer is rapidly cooled from T_1 to T_2

Tension develops at surface

Critical temperature difference

$$S = -Ea_{\ell}(T_1 - T_2)$$

for fracture (set $\sigma = \sigma_f$)

Temperature difference that can be produced by cooling:

$$\frac{(T_1 - T_2)}{\uparrow} = \frac{\text{quench rate}}{k}$$

 $(T_1 - T_2)_{\text{fracture}} = \frac{S_f}{E \partial_{\ell}}$

set equal

• (quench rate)_{for fracture} = Thermal Shock Resistance (
$$TSR$$
) $\mu \frac{S_f K}{Ea_\ell}$

• Large TSR when $\frac{S_f K}{Ea_f}$ is large

Thermal Conductivity

The ability of a material to transport heat.

Fourier's Law

 Atomic perspective: Atomic vibrations and free electrons in hotter regions transport energy to cooler regions.

Thermal Conductivity: Comparison

Energy Transfer

Material	k (W/m-K)	Mechanism		
• <u>Metals</u>				
Aluminum	247	atomic vibrations and motion of free electrons		
Steel	52			
Tungsten	178			
Gold	315			
 Ceramics 				
Magnesia (MgO)	38			
Alumina (Al_2O_3)	39	atomic vibrations		
Soda-lime glass	1.7			
Silica (cryst. SiO ₂) 1.4			
 Polymers 				
Polypropylene	0.12			
Polyethylene	0.46-0.50	vibration/rotation of		
Polystyrene	0.13	chain molecules		
Teflon	0.25			
Selected values from Table 19.1, Callister & Rethwisch 10e.				

Summary

The thermal properties of materials include:

- Heat capacity:
 - -- energy required to increase a mole of material by a unit T
 - -- energy is stored as atomic vibrations
- Thermal expansion:
 - -- the size of a material changes with a change in temperature
 - -- polymers have the largest values
- Thermal conductivity:
 - -- the ability of a material to transport heat
 - -- metals have the largest values
- Thermal shock resistance:
 - -- the ability of a material to be rapidly cooled and not fracture
 - -- is proportional to $\frac{S_f k}{Ea_f}$

Electrical properties

Learning Objectives

After studying this chapter you should be able to do the following:

- Describe the Ohm's Law.
- Define electrical Resistivity and Conductivity.
- Calculate the sample resistance based on the material property and geometrical properties.
- Compare the electrical conductivities of various materials, such as metals, ceramics, polymers.

Electrical Conduction

Ohm's Law:
 voltage drop (volts = J/C)
 C = Coulomb
 V = IR
 resistance (Ohms)
 current (amps = C/s)

Resistivity, ρ:

-- a material property that is independent of sample size and

geometry

cross-sectional area of current flow current flow path length

Conductivity, σ

$$S = \frac{1}{r}$$

Electrical Properties

Which will have the greater resistance?

- Analogous to flow of water in a pipe
- Resistance depends on sample geometry and size.

Definitions

Further definitions

$$J = \sigma \mathscr{E}$$

 $J = \sigma \mathcal{E}$ <= another way to state Ohm's law

$$J \equiv \text{current density}$$

$$J \equiv \text{current density} = \frac{\text{current}}{\text{surface area}} = \frac{I}{A}$$
 like a flux

 \mathscr{E} = electric field potential = V/ℓ

$$J = \sigma(V/\ell)$$
Electron flux conductivity voltage gradient

Conductivity: Comparison

• Room temperature values $(Ohm-m)^{-1} = (\Omega - m)^{-1}$

METALS

conductors

Silver

6.8 x 10 ⁷

Copper

Iron

 6.0×10^{7}

1.0 x 10 [′]

CERAMICS

Soda-lime glass

Concrete

Aluminum oxide

<10-13

SEMICONDUCTORS

Silicon

 4×10^{-4}

Germanium

GaAs

 2×10^{0}

POLYMERS

Polystyrene

Polyethylene

10⁻¹⁵-10⁻¹⁷

insulators

semiconductors

Selected values from Tables 18.1, 18.3, and 18.4, Callister & Rethwisch 10e.

Summary

- □ Electrical *conductivity* and *resistivity* are:
 - -- material parameters
 - -- geometry independent
- Conductors, semiconductors, and insulators...
 - -- differ in range of conductivity values
 - -- differ in availability of electron excitation states

Overall Picture

Total Materials Cycle

Components Of "Green Design"

 Reduce – redesign the product to use less material

example: PET bottles with thinner walls

Christopher Steer/iStockphoto

 Reuse – fabricate the product of a material that can reused

example: refillable bottles and shipping containers

 Recycle – reprocess the material into a new product example: convert PET bottles to carpet fibers

Recycling Materials

- Proper product design facilitates recycling
- Advantages to recycling
 - reduced pollution emissions
 - reduced landfill deposits

Kemter/iStockphoto

- Recycling Issues
 - Product must be disassembled or shredded to recover materials
 - Collection and transportation costs are significant factors in recycling economics

Recycling of Metals

- Aluminum is the most commonly recycled metal
- Compared to refining raw ore, reprocessing metals
 - is more energy efficient
 - produces less waste (pollution)
- Difficult to recycle metals that are susceptible to Corrosion
- Toxic metals (e.g., Cd and Hg):
 - must be handled as hazardous waste
 - are difficult to reprocess
 - should not be added to landfills

Lya Cattel/iStockphoto

Recycling of Glass

- Glasses are the most common commercial ceramics
- Little economic incentive to recycle glass
 - raw materials inexpensive
 - relatively dense expensive to transport
 - must be sorted by
 - color clear, amber, green, brown
 - type plate vs. container
 - composition soda-lime, leaded, borosilicate

Johnny Greig/iStockphoto

Dale Reardon iStockphoto

Announcements

In-depth reading (**Ch. 19**) and further reading (**Ch. 18**, 20, 21)

Assignment: Open; DL: 18:00 Sunday, 12.12.2021 (No late submission)

Solution to Assignment: Open on Sunday, 12.12.2021

Case studies: Open; DL: 18:00 Sunday, 19.12.2021

Final exercise: 10:15 – 12:00 Thursday

Exam: **09:00 – 13:00 Tuesday, 14.12.2021**

Online MyCourses

Two parts: written (70%) and oral (30%) exam

More details will be given on Thursday's exercise

Questions?