

ETC4500/ETC5450 Advanced R programming

Week 7: Reactive programming with targets and renv

Outline

- 1 Reactive programming
- 2 Caching
- 3 targets
- 4 Reproducible environments

Outline

- 1 Reactive programming
- 2 Caching
- 3 targets
- 4 Reproducible environments

Regular (imperative) programming

Consider how code is usually evaluated...

```
a <- 1
b <- 2
x <- a + b
x
```

What is x?

```
a <- -1
x
```

What is x now?

Regular (imperative) programming

Predictable programming

All programming we've seen so far evaluates code in sequential order, line by line.

Since \times was not re-evaluated, its value stays the same even when its inputs have changed.

.

Within a reactive programming paradigm, objects *react* to changes in their inputs and automatically update their value!

Within a reactive programming paradigm, objects *react* to changes in their inputs and automatically update their value!

Disclaimer

Reactive programming is a broad and diverse paradigm, we'll focus only on the basic concepts and how they apply in shiny applications.

We can implement reactivity with functions & environments.

```
library(rlang)
react <- function(e) new_function(alist(), expr(eval(!!enexpr(e))))</pre>
```

We'll learn how this function works later (metaprogramming).

Reactive programming is also smarter about 'invalidation', results are **cached and reused** if the inputs aren't changed.

How does reactive programming differ?

```
a <- 1
b <- 2
y <- react(a + b)
y()</pre>
```

What is y?

```
a <- -1
y()
```

What is y now?

Reactive programming can be disorienting!

Reactive objects *invalidate* whenever their inputs change, and so its value will be recalculated and stay up-to-date.

9

Your turn!

```
y \leftarrow react(a + b)
```

When was a + b evaluated?

How does this differ from ordinary (imperative) code?

Imperative and declarative programming

Imperative programming

- Specific commands are carried out immediately.
- Usually direct and exact instructions.
- e.g. read in data from this file.

Declarative programming

- Specific commands are carried out when needed.
- Expresses higher order goals / constraints.
- e.g. make sure this dataset is up to date every time I see it.

Use cases for reactive programming

Use-less cases

This paradigm is rarely needed or used in R for data analysis.

Useful cases

Reactive programming is useful for developing user applications (including web apps!).

In R, the shiny package uses reactive programming for writing app interactivity.

Outline

- 1 Reactive programming
- 2 Caching
- 3 targets
- 4 Reproducible environments

Caching: using rds

```
if (file.exists("results.rds")) {
  res <- readRDS("results.rds")
} else {
  res <- compute_it() # a time-consuming function
    saveRDS(res, "results.rds")
}</pre>
```

Caching: using rds

```
if (file.exists("results.rds")) {
  res <- readRDS("results.rds")
} else {
  res <- compute_it() # a time-consuming function
    saveRDS(res, "results.rds")
}</pre>
```

Equivalently...

```
res <- xfun::cache_rds(
  compute_it(), # a time-consuming function
  file = "results.rds"
)</pre>
```

Caching: using rds

```
compute <- function(...) {</pre>
    xfun::cache_rds(rnorm(6), file = "results.rds", ...)
compute()
[1] 0.0362 -1.7975 -1.3049 0.1851 -1.5538 -0.3621
compute()
[1] 0.0362 -1.7975 -1.3049 0.1851 -1.5538 -0.3621
compute(rerun = TRUE)
[1] -0.8680 0.6201 0.7142 0.0124 -0.0108 -1.4697
compute()
[1] -0.8680 0.6201 0.7142 0.0124 -0.0108 -1.4697
```

Caching downloads

You often want to prevent downloads of the same data multiple times.

```
download_data <- function(url) {</pre>
  dest folder <- tempdir()</pre>
  sanitized_url <- stringr::str_replace_all(url, "/", "_")</pre>
  dest_file <- file.path(dest_folder, paste0(sanitized_url, ".rds"))</pre>
  if (file.exists(dest_file)) {
    data <- readRDS(dest file)</pre>
  } else {
    data <- read_tsv(url, show_col_types = FALSE)</pre>
    saveRDS(data, dest file)
  data
bulldozers <- download data("https://robihvndman.com/data/Bulldozers.csv")</pre>
```

Caching: memoise

library(memoise)

Caching stores results of computations so they can be reused.

```
sq <- function(x) {</pre>
  print("Computing square of 'x'")
  x**2
memo sq <- memoise(sq)</pre>
memo sa(2)
[1] "Computing square of 'x'"
[1] 4
memo_sq(2)
[1] 4
```

Caching: Rmarkdown

```
'``{r import-data, cache=TRUE}
d <- read.csv('my-precious.csv')

'``{r analysis, dependson='import-data', cache=TRUE}
summary(d)
'``</pre>
```

- Requires explicit dependencies or changes not detected.
- Changes to functions or packages not detected.
- Good practice to frequently clear cache to avoid problems.
- targets is a better solution

Caching: Quarto

```
···{r}
#| label: import-data
  cache: true
d <- read.csv('my-precious.csv')</pre>
· · · {r}
#| label: analysis
#| dependson: import-data
  cache: true
summary(d)
```

- Same problems as Rmarkdown
- targets is a better solution

Outline

- 1 Reactive programming
- 2 Caching
- 3 targets
- 4 Reproducible environments

targets: reproducible computation at scale

- Supports a clean, modular, function-oriented programming style.
- Learns how your pipeline fits together.
- Runs only the necessary computation.
- Abstracts files as R objects.
- Similar to Makefiles, but with R functions.

Interconnected tasks

Interconnected tasks

Interconnected tasks

Dilemma: short runtimes or reproducible results?

Let a pipeline tool do the work

- Save time while ensuring computational reproducibility.
- Automatically skip tasks that are already up to date.

Typical project structure

no_targets.R

```
library(tidyverse)
library(fable)
source("R/functions.R")
my_data <- read_csv("data/my_data.csv")
my_model <- model_function(my_data)</pre>
```

Typical project structure

no_targets.R

```
library(tidyverse)
library(fable)
source("R/functions.R")
my_data <- read_csv("data/my_data.csv")
my_model <- model_function(my_data)</pre>
```

_targets.R

```
library(targets)
tar_option_set(packages = c("tidyverse", "fable"))
tar_source() # source all files in R folder
list(
   tar_target(my_file, "data/my_data.csv", format = "file"),
   tar_target(my_data, read_csv(my_file)),
   tar_target(my_model, model_function(my_data))
)
```

Generate _targets.R in working directory

library(targets)
tar_script()

Activity

- Set up a project using targets: tar_script()
- Add targets to generate a plot from the mtcars dataset, and fit a linear regression model.
- Make the project using tar_make()
- Visualize the pipeline using tar_visnetwork()

Useful targets commands

- tar_make() to run the pipeline.
- tar_make(starts_with("fig")) to run only targets starting with "fig".
- tar_read(object) to read a target.
- tar_load(object) to load a target.
- tar_load_everything() to load all targets.
- tar_manifest() to list all targets
- tar_visnetwork() to visualize the pipeline.
- tar_destroy() to remove all targets.
- tar_outdated() to list outdated targets.

Debugging

Errored targets to return NULL so pipeline continues.

```
tar_option_set(error = "null")
```

Debugging

Errored targets to return NULL so pipeline continues.

```
tar_option_set(error = "null")
```

See error messages for all targets.

```
tar_meta(fields = error, complete_only = TRUE)
```

Debugging

Errored targets to return NULL so pipeline continues.

```
tar_option_set(error = "null")
```

See error messages for all targets.

```
tar_meta(fields = error, complete_only = TRUE)
```

See warning messages for all targets.

```
tar_meta(fields = warnings, complete_only = TRUE)
```

Debugging

- Try loading all available targets: tar_load_everything().
 Then run the command of the errored target in the console.
- Pause the pipeline with browser()
- Use the debug option: tar_option_set(debug =
 "target_name")
- Save the workspaces:
 - tar_option_set(workspace_on_error = TRUE)
 - tar_workspaces()
 - tar_workspace(target_name)

Random numbers

- Each target runs with its own seed based on its name and the global seed from tar_option_set(seed = ???)
- So running only some targets, or running them in a different order, will not change the results.

Folder structure

```
.git/
.Rprofile
.Renviron
renv/
index.Rmd
_targets/
_targets.R
_targets.yaml
R/
  functions_data.R
  functions_analysis.R
  functions_visualization.R
data/
- input_data.csv
```

_targets.R with quarto

```
library(targets)
library(tarchetypes)
tar_source() # source all files in R folder
tar_option_set(packages = c("tidyverse", "fable"))
list(
   tar_target(my_file, "data/my_data.csv", format = "file"),
   tar_target(my_data, read_csv(my_file)),
   tar_target(my_model, model_function(my_data))
   tar_quarto(report, "file.qmd", extra_files = "references.bib")
)
```

- 1 Load tarchetypes package for quarto support.
- 2 Add a quarto target.

Replace quarto chunks with tar_read() or tar_load().

Chunk options

Chunk with regular R code

```
#| label: fig-chunklabel
#| fig-caption: My figure
mtcars |>
   ggplot(aes(x = mpg, y = wt)) +
   geom_point()
```

Chunk options

Chunk with regular R code

```
#| label: fig-chunklabel
#| fig-caption: My figure
mtcars |>
   ggplot(aes(x = mpg, y = wt)) +
   geom_point()
```

Chunk with targets

```
#| label: fig-chunklabel
#| fig-caption: My figure
tar_read(my_plot)
```

Exercise

Add a quarto document to your targets project that includes the plot and the output from the linear regression model.

Outline

- 1 Reactive programming
- 2 Caching
- 3 targets
- 4 Reproducible environments

Reproducible environments

- To ensure that your code runs the same way on different machines and at different times, you need the computing environment to be the same.
 - Operating system
 - 2 System components
 - 3 R version
 - 4 R packages
- Solutions for 1–4: Docker, Singularity, containerit, rang
- Solutions for 4: packrat, checkpoint, renv

Reproducible environments

- Creates project-specific R environments.
- Uses a package cache so you are not repeatedly installing the same packages in multiple projects.
- Does not ensure R itself, system dependencies or the OS are the same.
- Not a replacement for Docker or Apptainer.

Reproducible environments

- Can use packages from CRAN, Bioconductor, GitHub, Gitlab, Bitbucket, etc.
- renv::init() to initialize a new project.
- renv::snapshot() to save state of
 project to renv.lock.
- renv::restore() to restore project
 as saved in renv.lock.

renv package

renv package

- renv::install() can install from CRAN, Bioconductor, GitHub, Gitlab, Bitbucket, etc.
- renv uses a package cache so you are not repeatedly installing the same packages in multiple projects.
- renv::update() gets latest versions of all dependencies from wherever they were installed from.
- renv::deactivate(clean = TRUE) will remove the renv environment.

Activity

Add renv to your targets project.

Example paper

JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY

Hvndman RJ. Rostami-Tabar B (2024) Forecasting interrupted time series, Journal of the Operational Research Society, in press.

bahmanrostamitabar/ forecasting_interrupted_time_series

