PROJECT: PRODUCT SALES ANALYSIS

PHASE 3- DEVELOPMENT PHASE 3

PREPROCESSING AND CLEANSING OF DATA

CLEANING OF DATASET:

Cleaning of the dataset includes removing duplicates, handling the missing values, handling outliers, data scaling and normalization, data visualization, data splitting and data balancing if needed.

1.Removing duplicates:

data=data.dropna()

Out[8]:

	Unnamed: 0	Date	Q-P1	Q-P2	Q-P3	Q-P4	S-P1	S-P2	S-P3	S-P4
0	0	13-06-2010	5422	3725	576	907	17187.74	23616.50	3121.92	6466.91
1	1	14-06-2010	7047	779	3578	1574	22338.99	4938.86	19392.76	11222.62
2	2	15-06-2010	1572	2082	595	1145	4983.24	13199.88	3224.90	8163.85
3	3	16-06-2010	5657	2399	3140	1672	17932.69	15209.66	17018.80	11921.36
4	4	17-06-2010	3668	3207	2184	708	11627.56	20332.38	11837.28	5048.04
5	5	18-06-2010	2898	2539	311	1513	9186.66	16097.26	1685.62	10787.69
6	6	19-06-2010	6912	1470	1576	1608	21911.04	9319.80	8541.92	11465.04
7	7	20-06-2010	5209	2550	3415	842	16512.53	16167.00	18509.30	6003.46
8	8	21-06-2010	6322	852	3646	1377	20040.74	5401.68	19761.32	9818.01
9	9	22-06-2010	6865	414	3902	562	21762.05	2624.76	21148.84	4007.06

From IBM Cognos:

≡	■ IBM Cognos Analytics eso * New data module ▼										
	✓ 4 5 € € 2*Prop										
	Data module + ②	⊞ Grid 🕏	⊞ Grid 🐎 Relationships 🗒 Custom tables								
×A	Q Search	8 Row Id	Number	Date	Q-P1	Q-P2	Q-P3	Q-P4			
$\uparrow \downarrow$	New data module	1	0	13-06-2010	5422	3725	576	907			
	☐ Navigation paths +	2	1	14-06-2010	7047	779	3578	1574			
	▼ ⊞ statsfinal.csv ▶ # Row Id	3	2	15-06-2010	1572	2082	595	1145			
	▶ # Number	4	3	16-06-2010	5657	2399	3140	1672			
	▶ ③ Date	5	4	17-06-2010	3668	3207	2184	708			
	□ Q-P1	6	5	18-06-2010	2898	2539	311	1513			
	Q-P2 Q-P3	7	6	19-06-2010	6912	1470	1576	1608			
	□ Q-P3	8	7	20-06-2010	5209	2550	3415	842			
	<u>L</u> S-P1	9	8	21-06-2010	6322	852	3646	1377			
	L S-P2	10	9	22-06-2010	6865	414	3902	562			
	L S-P3	11	10	23-06-2010	1287	3955	2710	1804			
	L S-P4	12	11	24-06-2010	2197	1429	2754	1299			
		13	12	25-06-2010	7910	1622	5574	306			
		(`						····			

2. Handling outliers:

On checking outliers by scatter plot.

For product1:

import seaborn as sns import matplotlib.pyplot as plt

Set some default parameters of matplotlib plt.rcParams['figure.figsize'] = (8, 6) plt.rcParams['figure.dpi'] = 150

Use style froms seaborn. Try to comment the next line and see the difference in graph sns.set()

A regular scatter plot plt.scatter(x=data["Q-P1"], y=data["S-P1"])

Create labels for axises plt.xlabel('no of units') plt.ylabel('revenue')

For product 2: plt.rcParams['figure.figsize'] = (8, 6) plt.rcParams['figure.dpi'] = 150

Use style froms seaborn. Try to comment the next line and see the difference in graph sns.set()

A regular scatter plot plt.scatter(x=data["Q-P2"], y=data["S-P2"])

Create labels for axises plt.xlabel('no of units') plt.ylabel('revenue')

For product 3: plt.rcParams['figure.figsize'] = (8, 6) plt.rcParams['figure.dpi'] = 150

Use style froms seaborn. Try to comment the next line and see the difference in graph sns.set()

A regular scatter plot plt.scatter(x=data["Q-P3"], y=data["S-P3"])

Create labels for axises plt.xlabel('no of units') plt.ylabel('revenue')

For product 4: plt.rcParams['figure.figsize'] = (8, 6) plt.rcParams['figure.dpi'] = 150

Use style froms seaborn. Try to comment the next line and see the difference in graph sns.set()

A regular scatter plot plt.scatter(x=data["Q-P4"], y=data["S-P4"])

Create labels for axises plt.xlabel('no of units') plt.ylabel('revenue')

SUMMARY OF OUR CLEANSED DATA:

data.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4600 entries, 0 to 4599
Data columns (total 10 columns):
                Non-Null Count Dtype
    Unnamed: 0 4600 non-null
0
                                   int64
    Date 4600 non-null
                                   object
2
    Q-P1
                 4600 non-null
                                  int64
              4600 non-null
4600 non-null
4600 non-null
4600 non-null
3
    Q-P2
                                  int64
4
    Q-P3
                                  int64
    Q-P4
5
                                 int64
    S-P1
                                 float64
                4600 non-null
                                 float64
7
    S-P2
           4600 non-null
4600 non-null
                                 float64
float64
8
    S-P3
    S-P4
dtypes: float64(4), int64(5), object(1)
memory usage: 359.5+ KB
```

data.describe()

Accuracy of dataset performed by IBM cognos: Q-P1

Details

S-P1 predicts **Q-P1** with a strength of 96%.

Details

S-P1 predicts Q-P1 with a strength of 96%

Details

Chart Insights were not computed because this visualization is based on clipped data. Consider applying a filter to reduce the number of records, and to prevent the data from being clipped, before creating the visualization.

Chart Insights were not computed because this visualization is based on clipped data. Consider applying a filter to reduce the number of records, and to prevent the data from being clipped, before creating the visualization.

Details

The overall number of results for ${\bf S-P4}$ is over 4500.

The overall number of results for **S-P2** is over 4500.

The overall number of results for **Q-P1** is over 4500.

Details

The total number of results for **Q-P1**, across all **numbers**, is 14.

Over all ${\bf numbers},$ the average of ${\bf Q\text{-}P1}$ is nearly eight thousand.

The total number of results for **S-P4**, across all **numbers**, is 14.

Across all **numbers**, the average of **S-P4** is over

Q-P1 ranges from 7979, when **Number** is 2250, to 7998, when **Number** is 3105.

S-P4 ranges from nearly two thousand, when **Number** is 4412, to over twelve thousand, when **Number** is 2250.

Details

The overall number of results for **Q-P3** is over 4500.

The overall number of results for **Q-P1** is over 4500.

The overall number of results for **Q-P4** is over 4500.

Details

Q-P1 ranges from 7979, when **Number** is 2250, to 7998, when **Number** is 3105.

S-P2 ranges from almost 2500, when **Number** is 584, to almost 25 thousand, when **Number** is 3105.

The total number of results for **S-P2**, across all **numbers**, is 14.

Over all **numbers**, the average of **S-P2** is nearly fifteen thousand.

The total number of results for **Q-P1**, across all **numbers**, is 14.

Over all ${\bf numbers},$ the average of ${\bf Q\text{-}P1}$ is nearly eight thousand.

OVERALL SUMMARY IN IBM COGNOS:

Q-P2

Q-P3

Q-P4

CONCLUSION:

In conclusion, cleaning and preprocessing a dataset are essential steps in the data analysis and machine learning process. These steps help ensure that your data is accurate, consistent, and ready for analysis or modeling. Clean, well-preprocessed data is the foundation for meaningful and actionable insights