

Anti-aliasing a vzorkovací metody

© 1996-2016 Josef Pelikán CGG MFF UK Praha

pepca@cgg.mff.cuni.cz
http://cgg.mff.cuni.cz/~pepca/

Rušivé jevy vzniklé zobrazením v pravidelné diskrétní mřížce

Prostorový alias

- zubaté zobrazení šikmých linií
 - při kreslení husté sítě čar vzniká tzv. "Moiré efekt"
- interference rychle se měnícího obrazu s pixelovým rastrem
 - příklad: plot v perspektivní projekci
 - příliš jemná nebo příliš vzdálená pravidelná textura (šachovnice ve velké vzdálenosti)

1 vzorek na pixel

256 vzorků na pixel (jittering)

Časový alias

- projevuje se zejména při animaci pomalého pohybu
- blikání na obvodu pohybujících se objektů
 - v extrémním případě se celé malé objekty objevují a opět mizí
- interference cyklického pohybu se snímkovou frekvencí
 - otáčející se kolo se zdánlivě zastaví nebo se pomalu točí opačným směrem

Realita

Při pozorování lidským okem nebo fotografování alias nevzniká

- objekty menší než rozlišovací schopnost se zobrazují rozmazaně
 - plot ve velké dálce vidíme jako plochu, jejíž barva je směsí barvy planěk a pozadí
- příliš rychlý pohyb způsobuje nejasné (rozmazané)
 vnímání

originál (obrazová funkce)

> vzorkování (výpočet)

rekonstrukční filtr:

rekonstrukce (zobrazení)

Vzorkování a rekonstrukce

- vzorkování nebo výpočet obrazové funkce
 - před vzorkováním by se z obrázku měly odstranit všechny vyšší (nezobrazitelné) frekvence
 - filtr typu <u>dolní propust</u> (průměrování v okénku)
 - při syntéze obrazu se mohou vyšší frekvence zanedbávat přímo (vyhlazování vzorkováním plochy)
- rekonstrukční filtr je dán vlastnostmi výstupního zařízení
 - např. na monitoru se stopy sousedních pixelů překrývají

Obrazová funkce se spojitým definičním oborem a neomezeným spektrem:

f x, y

Vyhlazovací filtr (spojitá funkce s omezeným nosičem):

h(**x**, **y**)

Barva pixelu [i,j]:

$$\mathbf{I}(\mathbf{i},\mathbf{j}) = \int_{-\infty-\infty}^{\infty} \int_{-\infty}^{\infty} \mathbf{f}(\mathbf{x},\mathbf{y}) \cdot \mathbf{h}(\mathbf{x} - \mathbf{i},\mathbf{y} - \mathbf{j}) \, d\mathbf{x} \, d\mathbf{y}$$

Předpokládáme **obdélníkový vyhlazovací filtr** a pixel ve tvaru **jednotkového čtverce**:

$$\mathbf{I}(\mathbf{i},\mathbf{j}) = \int_{\mathbf{j}}^{\mathbf{j}+1} \int_{\mathbf{i}}^{\mathbf{i}+1} \mathbf{f}(\mathbf{x},\mathbf{y}) \, d\mathbf{x} \, d\mathbf{y}$$

(integrální střední hodnota obrazové funkce na ploše daného pixelu)

Výpočet integrálu

- analytický
 - omezené případy (jednoduchá obrazová funkce)
- numerický pomocí vzorkování
 - spočítá se konečný počet vzorků [x_i,y_i]
 - integrál se odhadne sumou

$$I(i,j) = \frac{\sum_{k} f(x_k, y_k) \cdot h(x_k, y_k)}{\sum_{k} h(x_k, y_k)}$$

stochastický výběr vzorků - metoda Monte-Carlo

- předpis: $k \dots [x_k, y_k]$
 - výběr vzorku z dané oblasti:
 nejčastěji tvaru obdélníka, čtverce nebo kruhu v 2D
 - vzorkování ve vyšších dimenzích (řádově do dim=10)
- požadované vlastnosti vzorkovacího algoritmu
 - rovnoměrné pokrytí dané oblasti
 - absolutní pravidelnost je nežádoucí (interference)
 - efektivní výpočet

"uniform sampling"

Neodstraňuje **rušivé interference** (pouze je posunuje do vyšších frekvencí)

Náhodné vzorkování

"random sampling"

N nezávislých náhodných pokusů s rovnoměrným rozložením pravděpodobnosti

Vzorky mohou vytvářet **větší shluky** Velký podíl **šumu** ve výsledku

"roztřesení"

"jittering"

K × K nezávislých náhodných pokusů v K × K shodných subintervalech (pokrývajících původní interval beze zbytku)

Omezení pravděpodobnosti **velkých shluků Rovnoměrnější pokrytí** vzorkovaného intervalu

Částečné "roztřesení"

"semijittering"

K × K nezávislých náhodných pokusů v K × K shodných subintervalech (nepokrývajících původní interval)

Zamezuje vytváření **shluků Dílčí pravidelnost** může být na závadu

"N rooks" "uncorrelated jitter"

Úsporná varianta "roztřesní", v každém řádku i sloupci je právě jeden vzorek. Náhodná permutace diagonály

Zachovává si výhodné vlastnosti "roztřesení" při větší **efektivitě** (zejména ve vyšších dimenzích!)

Hammersley

- + výborná diskrepance
- + deterministické
- + velmi rychlý výpočet
- nelze zahušťovat
- špatné spektrum

Na podobném principu je založena i Haltonova sekvence..

Deterministické sekvence

- na podobném principu jsou založeny:
 - Halton, Hammersley, Larcher-Pillichshammer
- pro prvočíslo b nechť je kladné přirozené číslo n vyjádřeno pomocí b-ární reprezentace:

$$n = \sum_{k=0}^{L-1} d_k(n)b^k$$

pak je definováno číslo v intervalu [0,1):

$$g_b(n) = \sum_{k=0}^{L-1} d_k(n)b^{-k-1}$$

Halton, Hammersley

slavná Haltonova sekvence (např. b₁=2, b₂=3):

$$x(n) = [g_{b_1}(n), g_{b_2}(n)]$$

• Hammersley sekvence (např. b=2):

$$x(n) = \left[\frac{n}{N}, g_b(n)\right]$$

• Larcher-Pillichshammer sekvence používá uvnitř funkce g, (n) operaci XOR místo sčítání..

Poissonovo diskové vzorkování

"Poisson disk sampling"

N náhodných pokusů splňujících podmínku: $|[x_k,y_k] - [x_l,y_l]| > d$ pro danou konstantu d

Zamezuje vytváření **shluků**, napodobuje rozložení **světločivných buněk** na sítnici savců Obtížná **efektivní implementace**!

Implementace

- kandidáty počítám pomocí pseudonáhodného generátoru
 - má-li kandidát moc blízko k nějakému již přijatému vzorku, odmítnu ho
 - se zvětšujícím se počtem vzorků se snižuje efektivita
- problematická volba konstanty d
 - maximální počet umístitelných vzorků závisí na d
- obtížně se provádí zjemňování
 - přidávání dalších vzorků k již dříve spočítaným

(algoritmus "nejlepšího kandidáta")

- generuje **postupně se zahušťující** Poissonovskou posloupnost vzorků
 - odpadají problémy s volbou d
 - snadné zjemňování
- algoritmus je časově náročný
 - soubor vzorků lze spočítat předem do tabulky
 - pro odstranění podobnosti (závislosti) vzorků v sousedních oblastech se soubor vždy náhodně otočí a posune

Algoritmus D. Mitchella

- první vzorek vyberu náhodně
- výběr (k+1). vzorku:
 - vygeneruji k· q nezávislých kandidátů (q udává kvalitu souboru)
 - vyberu vzorek nejvzdálenější od k předchůdců (metrika nemusí být uniformní - vážené vzorkování)
- při větším q dostávám kvalitnější posloupnost vzorků
 - v náročných aplikacích se volí q > 10

Inkrementální ukázka

Počet vzorků: 10, 40, 160,

10, 40, 160, 640, 2560

K = 10

Adaptivní zjemňování

- vzorkování podle lokální důležitosti (vážené vzorkování) nebo zajímavosti
 - některé oblasti pokrývaného intervalu mají větší váhu
 - oblasti s větší variací vzorkované funkce je nutné pokrýt hustěji
- "důležitost" nebo "zajímavost" nemusím znát dopředu
 - algoritmus se musí přizpůsobovat dosaženým výsledkům (adaptabilita)

Modifikace statických algoritmů

první fáze vzorkování:

- výpočet několika málo testovacích vzorků (1-5)
- výpočet zjemňovací kriteriální funkce

další zjemňovací fáze:

- vzorkování se lokálně zjemňuje tam, kde je třeba (podle kriteriální funkce)
- je výhodné, když můžeme používat všech dosud vygenerovaných vzorků (inkrementalita)

téměř každý algoritmus lze takto upravit

Zjemňovací kriteria

- funkční hodnoty (rozdíl, rozptyl, gradient)
 - rozdíl v barvě sousedních vzorků, ..
- čísla zobrazených těles
 - větší priorita
 - textury s opakujícími se vzory: <u>signatury</u>
- stromy výpočtu (rekurzivní sledování paprsku)
 - topologické porovnání celých stromů nebo jen několika horních pater
 - identifikátor stromu rekurzivní konstrukce pomocí hašovací funkce

Příklad adaptivního zjemňování

1 spp

adaptivní

1/2 spp

mapa převzorkování

Rekurzivní zjemňování (Whitted)

Na zjemněné oblasti se rekurzivně aplikuje stejný postup (až do požadovaného stupně dělení)

- I. fáze
- II. fáze
- III. fáze

Celkem 5+5+9 = **19 vzorků** (z celkového počtu **41**)

$$\frac{1}{2}E + \frac{1}{8}[A + B + C + D]$$

V každém již dále neděleném čtverci se plocha rozdělí mezi dva protější vzorky

Konec

- A. Glassner: An Introduction to Ray Tracing, Academic Press, London 1989, 161-171
- ► A. Glassner: *Principles of Digital Image*Synthesis, Morgan Kaufmann, 1995, 299-540
- J. Pelikán: Náhodné rozmisťování bodů v rovině, CSGG 2014, prezentace i článek na WWW