24 Тихоновський добуток і тихоновська топологія

§24.1 Декартів добуток як множина функцій

Нехай Γ — не обов'язково скінченна індексна множина, кожному елементу γ якої поставлено у відповідність деяку множину X_{γ} .

Означення 24.1. Декартовим добутком множин X_{γ} по $\gamma \in \Gamma$ називається множина $\prod_{\gamma \in \Gamma} X_{\gamma}$, яка складається із усіх таких функцій $x : \Gamma \to \bigcup_{\gamma \in \Gamma} X_{\gamma}$, що $\forall \gamma \in \Gamma$ $x(\gamma) \in X_{\gamma}$.

Зауваження 24.1 — У частковому випадку, коли $\forall \gamma \in \Gamma \ X_{\gamma} = X$, добуток складається з усіх функцій $x : \Gamma \to X$ і називається декартовим степенем X^{Γ} .

Приклад 24.1

Простір Фреше — добуток $\prod_{n\in\mathbb{N}} X_n$, де $X_n = \mathbb{R}$. Отже, простір Фреше є степенем $\mathbb{R}^{\mathbb{N}} = \mathbb{R}^{\aleph_0}$, елементами якого є зліченні послідовності $x = \{x_n\}_{n=1}^{\infty}$ дійсних чисел x_n .

Приклад 24.2

Гільбертів куб — добуток $\prod_{n\in\mathbb{N}} X_n$, де $X_n=I=[0,1]$, тобто це простір I^{\aleph_0} .

Приклад 24.3

Тихоновський куб — добуток $\prod_{\gamma\in\Gamma}X_\gamma$, де # $\Gamma=\nu$, а $X_\gamma=I=[0,1]$, тобто це простір I^ν .

Приклад 24.4

Канторів дисконтинуум ваги ν — добуток $\prod_{\gamma \in \Gamma} X_{\gamma}$, де $\#\Gamma = \nu$, а множини $X_{\gamma} = D = \{0,1\}$ (проста двокрапка), тобто це простір D^{ν} .

§24.2 Проектори, тихоновська топологія і добуток

Означення 24.2. Відображення $P_{\alpha}: \prod_{\gamma \in \Gamma} X_{\gamma} \to X_{\alpha}$, що діє за правилом $P_{\alpha}(x) = x_{\alpha}, \forall \alpha \in \Gamma$, називається координатним проектором.

Означення 24.3. Нехай $X_{\gamma},\ \gamma\in\Gamma$ — топологічні простори. Тихоновською топологією на $\prod_{\gamma\in\Gamma}X_{\gamma}$ називається найслабкіша з топологій, в якій усі координатні проектори $P_{\alpha}(x),\ \alpha\in\Gamma$ є неперервними.

Означення 24.4. Декартів добуток $\prod_{\gamma \in \Gamma} X_{\gamma}$, наділений тихоновською топологією, називається **тихоновським добутком**.

Зауваження 24.2 — Очевидно, що координатні проектори розділяють точки добутку, тому за теорем. 23.2 тихоновський добуток хаусдорфових просторів є віддільним за Хаусдорфом.

Означення 24.5. Нехай K — скінчений набір індексів з Γ . Добуток $A = \prod_{\gamma \in \Gamma} A_{\gamma}$, де $A_{\gamma} = X_{\gamma}$ при $\gamma \notin K$, і $A_{\gamma} \subset X_{\gamma}$ при $\gamma \in K$ і A_{γ} — відкриті множини в топологіях τ_{γ} , називається відкритою циліндричною множиною з основою $\prod_{\gamma \in K} A_{\gamma}$.

Запишемо тихоновську топологію як топологію, що породжена сім'єю відображень. Нехай $x\in\prod_{\gamma\in\Gamma}X_\gamma,\, K\subset\Gamma$ — скінченна множина індексів, $V_\gamma\subset X_\gamma,\, \gamma\in K$ — околи точок x_γ . Введемо позначення

$$U_{K,\{V_{\gamma}\}_{\gamma\in K}}(x) = \left\{\gamma\in\prod_{\gamma\in\Gamma}X_{\gamma}: \gamma_{\alpha}\in V_{\alpha}, \forall\alpha\in K\right\}.$$

Зауваження 24.3 — Множина $U_{K,\{V_\gamma\}_{\gamma\in K}}(x)$ є відкритим циліндричним околом точки x з основою $\prod_{\gamma\in K}V_\gamma$.

Теорема 24.1 (про базу околів точки в тихоновській топології)

Множини $U_{K,\{V_\gamma\}_{\gamma\in K}}(x)$ утворюють у тихоновській топології базу околів точки x.

Вправа 24.1. Перевірте властивості бази.

 \square оведення. . . .

§24.3 Тихоновська топологія і фільтри

Теорема 24.2 (критерій збіжності в тихоновському добутку)

Фільтр \mathfrak{F} на $\prod_{\gamma\in\Gamma}X_{\gamma}$ збігається в тихоновській топології до елемента $x=\{x_{\gamma}\}_{\gamma\in\Gamma}$ тоді і тільки тоді, коли $x_{\gamma}=\lim_{\mathfrak{F}}P_{\gamma},\,\forall\gamma\in\Gamma.$

Доведення. **Необхідність.** Оскільки координатні проектори на $\prod_{\gamma \in \Gamma} X_{\gamma}$ є неперервними і $x = \lim \mathfrak{F}$, то за теорем. 20.3 $\lim_{\mathfrak{F}} P_{\gamma} = P_{\gamma}(x) = x_{\gamma}$.

Достатність. Покажемо, що будь-який окіл V точки x належить фільтру \mathfrak{F} . З огляду на те, що $\forall A \in \mathfrak{F}$ $A \subset B \subset X \implies B \in \mathfrak{F}$, достатньо розглянути відкритий циліндричний окіл точки x, який міститься в V. Отже, розглянемо відкритий циліндричний окіл $U = \prod_{\gamma \in \Gamma} V_{\gamma}$ точки x з основою $\prod_{\gamma \in K} V_{\gamma}$, тобто $U_{K,\{V_{\gamma}\}_{\gamma \in K}}(x)$.

Оскільки $\forall \gamma_0 \in K$ множина V_{γ_0} є околом точки x_{γ_0} в просторі X_{γ_0} і $\lim_{\mathfrak{F}} P_{\gamma_0} = x_{\gamma_0}$, то існує множина $A \in \mathfrak{F}$ така, що $P_{\gamma_0}(A) \subset V_{\gamma_0}$, отже, $A \subset P_{\gamma_0}^{-1}(V_{\gamma_0})$, тому $P_{\gamma_0}^{-1}(V_{\gamma_0}) \in \mathfrak{F}$. Таким чином, $\forall \gamma \in K$ $P_{\gamma}^{-1}(V_{\gamma}) \in \mathfrak{F}$. Оскільки множина K є скінченою, то $\bigcap_{\gamma \in K} P_{\gamma}^{-1}(V - \gamma) \in \mathfrak{F}$.

Оскільки

$$\bigcap_{\gamma \in K} P_{\gamma}^{-1}(V_{\gamma}) \subset U_{K,\{V_{\gamma}\}_{\gamma \in K}}(x),$$

а $U_{K,\{V_\gamma\}_{\gamma\in K}}(x)$ утворюють в $\prod_{\gamma\in\Gamma}X_\gamma$ базу околів точки x (теорем. 24.1), то

$$\bigcap_{\gamma \in K} P_{\gamma}^{-1}(V_{\gamma}) \subset U, \quad \forall U \in \Omega_x.$$

Тому, за четвертою аксіомою фільтра $U \in \mathfrak{F}$.

Зауваження 24.4 — Із теорем. 24.1 випливає, що послідовність $x_n = \{x_{n,\gamma}\}_{\gamma \in \Gamma}$ точок добутку $\prod_{\gamma \in \Gamma} X_{\gamma}$ топологічних просторів збігається до точки x тоді і лише тоді, коли для кожного $\gamma_0 \in \Gamma$ послідовність $\{x_{\gamma_0,n}\}$ збігається в просторі X_{γ_0} до точки x_{γ_0} .

Інакше кажучи, збіжність в тихоновській топології є покоординатною.

Теорема 24.3 (теорема Тихонова про добуток компактів)

Тихоновський добуток $\prod_{\gamma \in \Gamma} X_{\gamma}$ будь-якої сім'ї непорожніх топологічних просторів $X_{\gamma}, \gamma \in \Gamma$ є компактним тоді і лише тоді, коли усі X_{γ} є компактними.

Доведення. **Необхідність.** Нехай $X_{\gamma}, \gamma \in \Gamma$ — довільна сім'я непорожніх просторів і їх тихоновський добуток $\prod_{\gamma \in \Gamma} X_{\gamma}$ є компактним. Оскільки кожна множина $X_{\gamma}, \gamma \in \Gamma$ є образом компактного простору $\prod_{\gamma \in \Gamma} X_{\gamma}$, отриманим за допомогою неперервного відображення $P_{\gamma}: X \to X_{\gamma}$, то простори $X_{\gamma}, \gamma \in \Gamma$ є компактними (неперервний образ компактного простору є компактним простором).

Достатність. За критерієм компактності в термінах фільтрів, для того щоб простір був компактним, необхідно і достатньо, щоб кожний ультрафільтр на X збігався. Нехай $\mathfrak A$ — ультрафільтр на $\prod_{\gamma\in\Gamma} X_{\gamma}$. Оскільки $X_{\gamma},\ \gamma\in\Gamma$ — компактні топологічні простори, то за критерієм компактності в термінах фільтрів $\forall \gamma\in\Gamma\ \exists y_{\gamma}=\lim_{\mathfrak A} P_{\gamma}$. Оскільки P_{γ} — неперервні відображення, то за теорем. 24.2 $y=\{y_{\gamma}\}_{\gamma\in\Gamma}=\lim_{\mathfrak A} \mathfrak A$. \square

§24.4 Література

- [1] **Кадец В. М.** Курс функционального анализа / В. М. Кадец Х.: ХНУ им. В. Н. Каразина, 2006. (стр. 492–495).
- [2] **Александрян Р. А.**, Общая топология / Р. А. Александрян, Э. А. Мирзаханян М.: Высшая школа, 1979 (стр. 120–126, 230–234).