Customer Personality Analysis

Mario Avolio Rocco Gianni Rapisarda

Università Milano Bicocca - Dipartimento di Informatica Sistemistica e Comunicazione

22 gennaio 2022

Analisi del Dominio e Obiettivi

- Analisi dettagliata dei clienti
- Aiutare un'attività commerciale a comprendere meglio i propri compratori
- Rendere più semplice la modifica e la scelta dei propri prodotti, in relazione alle esigenze richieste dagli acquirenti
- Diverse personalità e comportamenti che gli acquirenti assumono durante il ruolo di potenziali clienti aziendali
 - Le aziende non possono adottare lo stesso approccio per ogni tipologia di plausibile compratore

Descrizione dei Dati

- Informazioni Personali
 - Grado educativo
 - Reddito
 - Numero di figli
 - Età
- 2 Prodotti e Spese
 - Spesa totale, negli ultimi due anni, di un prodotto di determinato genere.
- 3 Promozioni e offerte
 - Offerte accettate delle diverse campagne presenti.
- Luoghi e acquisti
 - Numero di compere effettuate in un determinato luogo o in un determinato modo.

Prime Analisi: Income

	variable	n_miss	pct_miss
1	Income	24	1.07
2	ID	0	0.00
3	Year_Birth	0	0.00
4	Education	0	0.00
5	Marital_Status	0	0.00
6	Kidhome	0	0.00
7	Teenhome	0	0.00
8			

Tabella: Output funzione *miss_var_summary(dataSet)*

Prime Analisi: Z CostContact e Z Revenue

Figura: BoxPlot Z CostContact

Figura: BoxPlot Z_Revenue

DataPreprocessing

- Refactor del dataset
- 2 Risoluzione dei valori mancanti nella variabile income
- 3 Splitting del dataset in trainingSet e testSet
- Feature Scaling

Algoritmi

Refactor del Dataset

- 1 Incorporamento dei dati ridondanti
- 2 Conversione degli elementi in factor
- 3 Creazione di nuove variabili riassuntive
 - Age
 - Total Spent
 - Total_Campains
 - Total Childs
- 4 Rimozione delle variabili superflue
 - Z Revenue
 - Z CostContact
 - ID
 - Dt_customers

EDA

Introduzione

Figura: Grafico a torta di Age

Figura: Grafico a torta di Marital_Status

Figura: Grafico a torta di Income

EDA: Age, Education e Marital Status

Figura: Istogramma di Age

Figura: Grafico a barre di Education

Figura: Grafico a barre di Marital_Status

EDA: Istogrammi delle variabili Amount

EDA: Istogrammi delle variabili Amount

EDA: Total Childs, MntProducts e Campaign

Figura: Grafico a barre di Total_Childs

Figura: Grafico a barre del totale speso per ogni tipo di prodotto

Figura: Grafico a barre del totale di istanze che hanno accettato la campagna i-esima

PCA: Varianza spiegata da ogni dimensione

Figura: Varianza spiegata da ogni Dimensione

	eig.	v.p.	c.v.p.
Dim.1	7.00	41.15	41.15
Dim.2	1.75	10.31	51.46
Dim.3	1.14	6.69	58.15
Dim.4	1.08	6.34	64.49
Dim.5	1.00	5.86	70.34

Tabella: Output funzione get_eigenvalue(pca)

Introduzione

Figura: Varianza spiegata dalle variabili per la prima dimensione

Total_Spent

Algoritmi

- **MntMeatProducts**
- NumCatalogPurchases
- **MntWines**
- Income

Introduzione

• Supervisionato: Decision Tree

Analisi

• Non Supervisionato: K-Means

Conclusioni

Decision Tree

Figura: Decision Tree dataset della PCA

Positive Class: 1

Accuracy: 0.8348 **Recall:** 0.3478

Precision: 0.1194 **F-Measure:** 0.1777

Decision Tree: Riduzione Overfitting

Introduzione

Positive Class: 1

Accuracy: 0.8147 **Recall:** 0.1492

Precision: 0.2777 F-Measure: 0.1941

Figura: Prune Decision Tree cp = 0.13

Valutazione del modello: Decision Tree

Introduzione

Figura: Curva ROC

	Prediction		
	_	0	1
Reference	0	1488	37
neletetice	1	200	67

Accuracy: 0.8677 **Recall:** 0.6442

Precision: 0.2509 F-Measure: 0.3611

K-Means: Elbow Method

Analisi

00000000000

Figura: Elbow Method effettuato manualmente

Figura: Elbow Method effettuato automaticamente dal metodo fviz nbclust

K-Means: Silhouette

Introduzione

Figura: Silhouette effettuata automaticamente dal metodo fviz_nbclust

Sia Elbow Method che Silhouette mostrano un numero di clusters ottimo pari a due.

Introduzione

Figura: Partizionamento in clusters dei dati

Algoritmi

000000000000

Figura: Dissimilarity matrix

Figura: BoxPlot della variabile Wines in relazione al numero di cluster

- Spesa maggiore di vini per i customers all'interno del primo cluster
- La maggior parte dei clienti all'interno del secondo cluster non ha acquistato vini negli ultimi due anni

Algoritmi

000000000000

K-Means: Analisi Income

Figura: BoxPlot della variabile income in relazione al numero di cluster

- Gli elementi del primo raggruppamento godono di un reddito medio maggiore rispetto ai secondi
- La maggior parte degli elementi nel secondo cluster possiedono un il reddito inferiore alla media.

K-Means: Analisi Total spent

Introduzione

Figura: BoxPlot della variabile Total_spent in relazione al numero di cluster

 I compratori del secondo cluster generalmente spendono molto meno denaro rispetto a quelli del primo.

K-Means: Analisi NumCatalogPurchases

Introduzione

Figura: BoxPlot della variabile NumCatalogPurchases in relazione al numero di cluster

 I clienti del secondo cluster effettuano compere sul catalogo generalmente in quantità minore rispetto a quelli del primo.

Algoritmi 00000000000

 I clienti del secondo cluster acquistano mediamente 5 prodotti dal catalogo.

Introduzione

K-Means: Analisi MntMeatProducts

Figura: BoxPlot della variabile MntMeatProducts in relazione al numero di cluster

- Correlazione con Total_spent
- Gli acquirenti del secondo raggruppamento tendano a spendere generalmente di meno rispetto a quelli del primo

Conclusioni

- Decision Tree
 - la riduzione dell'overfitting comporta:
 - incremento di Precision e F-measure
 - decremento di Accuracy e Recall
 - meno efficiente rispetto K-Means
- 2 K-Means
 - Una buona suddivisione dei dati riportati può avvenire mediante l'utilizzo di due cluster.
 - Il secondo cluster presenta clienti con un reddito generalmente al di sotto della media e sicuramente minore rispetto alla maggior parte dei compratori facenti parte della prima divisione.
 - Riduzione delle spese totali da parte degli elementi all'interno del secondo gruppo.

Thank you for your attention!

