Approfondissement Modélisation Statistique - Projet

Aristote Koen Thomas Chatrefou

Octobre 2019

1 Estimation par maximum de vraisemblance

1. **X** n'étant pas aléatoire, on a $\mathbf{Y} \sim \mathcal{N}(\mathbf{X}\theta, \sigma^2 I_n)$. La vraisemblance est donc donnée, pour $\theta \in \mathbb{R}^d$ par :

$$L_Y(\theta) = \frac{1}{(2\pi\sigma^2)^{n/2}} \exp\left(-\frac{1}{2\sigma^2} (Y - X\theta)^T (Y - X\theta)\right)$$

dont on déduit la log-vraisemblance

$$l(\theta) = -\frac{1}{2\sigma^2} \|Y - X\theta\|^2 + c$$

où $c \in \mathbb{R}$.

$$\nabla l(\theta) = \frac{1}{\sigma^2} X^T (Y - X\theta)$$

donc, comme $det(X^TX) \neq 0$:

$$\nabla l(\hat{\theta}) = 0 \quad \Leftrightarrow \quad \hat{\theta} = (X^T X)^{-1} X^T Y$$

Enfin,

$$D^2 l(\theta) = -\frac{1}{\sigma^2} X^T X$$

est une matrice négative car X^TX est positive au sens où $\forall v \in \mathbb{R}^d, v^TX^TXv \geq 0$. Donc $\hat{\theta}_{\text{MLE}} = (X^TX)^{-1}X^TY$

- 2. Estimer le MLE c'est maximiser $l(\theta)$, c'est-à-dire minimiser $\|Y X\theta\|^2$. Ainsi estimer les MLE est équivalent à estimer le minimiseur de $\theta \mapsto \|Y X\theta\|^2$, donc $\hat{\theta}_{\text{MLE}} = \hat{\theta}_{\text{OLS}}$
 - 3. En supposant X connu :

$$l(\theta) = -\frac{1}{2\sigma^2} \|Y - X\theta\|^2 + c = -\frac{1}{2\sigma^2} \left(\|Y\|^2 + \|X\|^2 - \hat{\theta}_{\text{MLE}}^T X^T X \theta - \theta^T X^T X \hat{\theta}_{\text{MLE}} \right)$$

donc par le théorème de factorisation, le MLE est exhaustif.

Calculons maintenant

$$\mathbb{E}_{\theta} \left[\hat{\theta}_{\text{MLE}} | X \right] = \mathbb{E}_{\theta} \left[(X^T X)^{-1} X^T Y | X \right]$$
$$= (X^T X)^{-1} X^T \mathbb{E}_{\theta} [Y]$$

or $Y|X \sim \mathcal{N}(X\theta, \sigma^2 I_n)$, donc

$$\mathbb{E}_{\theta} \left[\hat{\theta}_{\text{MLE}} | X \right] (X^T X)^{-1} X^T X \theta = \theta$$

Le MLE est donc sans biais.

En écrivant la vraisemblance sous la forme :

$$L_Y(\theta) = \exp\left(-\frac{n}{2}\log(2\pi\sigma^2) - \frac{1}{2\sigma^2}\left(\|Y\|^2 + \|X\theta\|^2 - 2\langle Y|X\theta\rangle\right)\right)$$

Le modèle appartient bien à la famille exponentielle. De plus,

$$\langle Y|X\theta\rangle = \left\langle XX^{-1}X^{T-1}X^TY|X\theta\right\rangle = \left\langle X(X^TX)^{-1}X^TY|X\theta\right\rangle = \left\langle X\hat{\theta}_{\mathrm{MLE}}|X\theta\right\rangle$$

donc

$$L_Y(\theta) = \frac{1}{(2\pi\sigma^2)^{n/2}} \exp\left(-\frac{1}{2\sigma^2} (\|Y\|^2 + \|X\theta\|^2)\right) \exp\left(\frac{1}{\sigma^2} \left\langle X\hat{\theta}_{\text{MLE}} |\theta\right\rangle\right)$$

On en déduit que $X\hat{\theta}_{\text{MLE}}$ est une statistique exhaustive complète et comme on peut vérifier les hypothèses de régularité, $X\hat{\theta}_{\text{MLE}}$ est un estimateur efficace de l'espérance de la loi de Y qui est $X\theta$. Calculons l'information de Fisher :

$$I_n = -\mathbb{E}_{\theta} \left[D^2 l(\theta) \right] = \frac{1}{\sigma^2} X^T X$$

or

$$\operatorname{Var}_{\theta}(\hat{\theta}_{\mathrm{MLE}}) = ((X^T X)^{-1} X^T) \sigma^2 I_n ((X^T X)^{-1} X^T)^T = \sigma^2 (X^T X)^{-1} = I_n^{-1}$$

Donc le MLE est efficace.

4. D'après une proposition du cours, le risque quadratique est déterminé par :

$$\begin{split} R_X(\hat{\theta}_{\mathrm{MLE}}, \theta) &= \mathrm{Tr} \left(\mathrm{Cov}(\hat{\theta}_{\mathrm{MLE}} | X) \right) \\ &= \mathrm{Tr} \left(\frac{\sigma^2}{n} \left(\frac{1}{n} X^T X \right)^{-1} \right) \\ R_X(\hat{\theta}_{\mathrm{MLE}}, \theta) &= \frac{\sigma^2}{n} \mathrm{Tr} \, \hat{\Sigma}_n^{-1} \end{split}$$

5. On a:

$$\operatorname{Tr} \hat{\Sigma}_n^{-1} = \sum_{i=1}^d \frac{1}{\lambda_i(\hat{\Sigma}_n)} = d \int_{\mathbb{R}} \frac{1}{x} \hat{F}_n(dx)$$

donc

$$R_X(\hat{\theta}_{\text{MLE}}, \theta) = \frac{d\sigma^2}{n} \int_{\mathbb{R}} \frac{1}{x} \hat{F}_n(dx)$$

6. D'après la convergence faible de \hat{F}_n vers F_{γ} , on a :

$$r(\gamma) = \lim_{n \to \infty} \mathbb{E}_{\theta} \left[\frac{d\sigma^{2}}{n} \int_{\mathbb{R}} \frac{1}{x} \hat{F}_{n}(dx) \right]$$

$$= \mathbb{E}_{\theta} \left[\lim_{n \to \infty} \frac{d\sigma^{2}}{n} \int_{\mathbb{R}} \frac{1}{x} \hat{F}_{n}(dx) \right]$$

$$= \mathbb{E}_{\theta} \left[\frac{\gamma \sigma^{2}}{1 - \gamma} \right]$$

$$r(\gamma) = \frac{\gamma \sigma^{2}}{1 - \gamma}$$

- 7. Si $\gamma = 0$, alors $R_X(\hat{\theta}_{\text{MLE}}, \theta) \xrightarrow[n \to \infty]{} 0$ et comme la convergence \mathcal{L}^2 implique la convergence en probabilité, on a $\hat{\theta}_{\text{MLE}}$ consistant.
- 8. On constate que plus n augmente (le nombre d'observations de chaque echantillon), plus le risque quadratique s'aligne avec $\frac{\sigma^2\gamma}{1-\gamma}$. De plus on observe que plus γ est petit c'est à dire que le nombre de paramètres est petit comparé à n et plus le risque est petit.

FIGURE 1 – Risque pour $\hat{\theta}_{\text{MLE}}$ en fonction de γ

9.

$$\begin{split} \mathbb{E}_{\theta} \left[\| \hat{\theta}_{\mathrm{MLE}} \|^{2} \right] &= \mathbb{E}_{\theta} \left[\| \hat{\theta}_{\mathrm{MLE}} - \theta + \theta \|^{2} \right] \\ &= \mathbb{E}_{\theta} \left[\| \hat{\theta}_{\mathrm{MLE}} - \theta \|^{2} \right] + 2 \mathbb{E}_{\theta} \left[\left\langle \hat{\theta}_{\mathrm{MLE}} - \theta | \theta \right\rangle \right] + \| \theta \|^{2} \\ &= \mathbb{E}_{\theta} \left[\| \hat{\theta}_{\mathrm{MLE}} - \theta \|^{2} \right] + 2 \mathbb{E}_{\theta} \left[\left\langle \hat{\theta}_{\mathrm{MLE}} | \theta \right\rangle \right] - 2 \mathbb{E}_{\theta} \left[\left\langle \theta | \theta \right\rangle \right] + \| \theta \|^{2} \\ &= \mathbb{E}_{\theta} \left[\| \hat{\theta}_{\mathrm{MLE}} - \theta \|^{2} \right] + \| \theta \|^{2} \end{split}$$

En passant à la limite :

$$\mathbb{E}_{\theta} \left[\| \hat{\theta}_{\text{MLE}} \|^2 \right] = \frac{\sigma^2 \gamma}{1 - \gamma} + \| \theta \|^2$$

2 Régularisation de Tikhonov

11. Soit $f: \theta \mapsto -\frac{1}{n}l(\theta) + \frac{\lambda}{2\sigma^2} \|\theta\|^2$. Pour tout $\theta \in \mathbb{R}^d$:

$$\begin{split} \nabla f(\theta) &= -\frac{1}{n} \nabla l(\theta) + \frac{\lambda}{\sigma^2} \\ &= -\frac{1}{n} \left(\frac{-X^T X \theta + X^T Y}{\sigma^2} \right) + \frac{\lambda}{\sigma^2} \theta \\ &= \frac{X^T X \theta}{n \sigma^2} + \frac{\lambda \theta}{\sigma^2} - \frac{X^T Y}{n \sigma^2} \end{split}$$

Ainsi:

$$\nabla f(\theta) = 0 \iff \left(\frac{X^T X + n\lambda Id}{n\sigma^2}\right)\theta = \frac{X^T Y}{n\sigma^2}$$

 $(X^TX + n\lambda Id)$ est inversible car elle est définie positive par translation de son spectre. En effet, $\lambda > 0$ et X^TX est définie positive donc :

$$\theta = \left(X^T X + n\lambda Id\right)^{-1} X^T Y$$

De plus, la Hessienne $D^2f(\theta)=\left(\frac{X^TX+n\lambda Id}{n\sigma^2}\right)$ est donc elle aussi définie positive pour les mêmes raisons et donc f admet un unique minimum global :

$$\hat{\theta}_{\lambda} = \left(X^T X + n\lambda Id \right)^{-1} X^T Y$$

12. On a:

$$\mathbb{E}\left[\hat{\theta}_{\lambda}|X\right] = \mathbb{E}\left[\left(X^{T}X + n\lambda Id\right)^{-1}X^{T}Y|X\right]$$

$$= \left(X^{T}X + +n\lambda Id\right)^{-1}X^{T}\mathbb{E}\left[Y|X\right]$$

$$= \left(X^{T}X + +n\lambda Id\right)^{-1}X^{T}X\theta$$

$$= \left(n\hat{\Sigma}_{n} + n\lambda Id\right)^{-1}n\hat{\Sigma}_{n}\theta$$

$$= \left(\hat{\Sigma}_{n} + \lambda Id\right)^{-1}\hat{\Sigma}_{n}\theta$$

Calculons maintenant la matrice de covariance :

$$\operatorname{Cov}_{\theta}(\hat{\theta}_{\lambda}|X) = \left(X^{T}X + n\lambda I_{d}\right)^{-1} X^{T} \sigma^{2} I_{n} \left(\left(X^{T}X + n\lambda I_{d}\right)^{-1} X^{T}\right)^{T}$$
$$= \frac{\sigma^{2}}{n} (\hat{\Sigma}_{n} + \lambda I_{d})^{-1} \hat{\Sigma}_{n} \left(\hat{\Sigma}_{n} + \lambda I_{d}\right)^{-1}$$

car $\hat{\Sigma}_n + \lambda I_d$ est symétrique. Donc

Tr
$$\left(\operatorname{Cov}_{\theta}(\hat{\theta}_{\lambda}|X)\right) = \frac{d\sigma^2}{n} \int_{\mathbb{R}} \frac{x}{(x+\lambda)^2} \hat{F}_n(dx)$$

Comme $\lambda > 0$ et x > 0 presque sûrement, $\frac{1}{x} \ge \frac{x}{(x+\lambda)^2}$ et donc

$$R_X(\hat{\theta}_{\mathrm{MLE}}, \theta) \ge \mathrm{Tr}\left(\mathrm{Cov}_{\theta}(\hat{\theta}_{\lambda}|X)\right)$$

Posons $\bar{\theta} := \mathbb{E}_{\theta} \left[\hat{\theta}_{\lambda} | X \right]$. Alors

$$\bar{\theta} = \left(X^T X + n\lambda I_d\right)^{-1} X^T X \theta$$

soit

$$\bar{\theta} = \left(\hat{\Sigma}_n + \lambda I_d\right)^{-1} \hat{\Sigma}_n \theta$$

donc $\hat{\theta}_{\lambda}$ est biaisé.

FIGURE 2 – Estimation des propriétés de l'estimateur régularisé

13. Sur la Figure 2 sont tracés respectivement de gauche à droite les estimateurs du biais, de la variance et du risque.

Plus on pénalise avec une valeur élevée de λ et plus on augmente le biais mais en réduisant considérablement la variance de l'estimateur.

14. Le risque pour $\hat{\theta}_{\lambda}$ est représenté sur la Figure 3. On observe une augmentation linéaire du risque en fonction de gamma ce qui limite l'explosion de la

FIGURE 3 – Simulation avec $\hat{\theta}_{\lambda}$

variance.

15. Non, si gamma tend vers 1 il est plus intéressant de choisir un estimateur obtenu par régu-

larisation de Tikhonov afin d'avoir un estimateur avec	une variance réduite. M	Iais si gamma est petit
alors il vaut mieux garder un estimateur non biaisé.		