Solved selected problems of General Relativity - Thomas A. Moore

Franco Zacco

Chapter 3 - Four Vectors

Solution. BOX 3.1 Let us compute the A'^t and A'^x components of $A' \cdot B'$ using the Lorentz transformations as follows

$$\begin{aligned} -A'^{t}B'^{t} + A'^{x}B'^{x} &= -(\gamma A^{t} - \gamma \beta A^{x})(\gamma B^{t} - \gamma \beta B^{x}) \\ &+ (\gamma A^{x} - \gamma \beta A^{t})(\gamma B^{x} - \gamma \beta B^{t}) \\ &= (\gamma^{2}\beta A^{x}B^{t} - \gamma^{2}\beta^{2}A^{x}B^{x} - \gamma^{2}A^{t}B^{t} + \gamma^{2}\beta A^{t}B^{x}) \\ &+ (\gamma^{2}A^{x}B^{x} - \gamma^{2}\beta B^{t}A^{x} - \gamma^{2}\beta A^{t}B^{x} + \gamma^{2}\beta^{2}A^{t}B^{t}) \\ &= \gamma^{2}A^{x}B^{x}(1 - \beta^{2}) - \gamma^{2}A^{t}B^{t}(1 - \beta^{2}) \\ &= -A^{t}B^{t} + A^{x}B^{x} \end{aligned}$$

Also, we have that $A'^yB'^y + A'^zB'^z = A^yB^y + A^zB^z$ therefore

$$-A'^{t}B'^{t} + A'^{x}B'^{x} + A'^{y}B'^{y} + A'^{z}B'^{z} = -A^{t}B^{t} + A^{x}B^{x} + A^{y}B^{y} + A^{z}B^{z}$$

Solution. **BOX 3.2** We know that

$$d\mathbf{s} \cdot d\mathbf{s} = ds^2 = -dt^2 + dx^2 + dy^2 + dz^2$$

and that $d\tau = \sqrt{dt^2 - dx^2 - dy^2 - dz^2}$ so let us compute $\boldsymbol{u} \cdot \boldsymbol{u}$ as follows

$$\mathbf{u} \cdot \mathbf{u} = \frac{ds^2}{d\tau^2}$$

$$= \frac{-dt^2 + dx^2 + dy^2 + dz^2}{d\tau^2}$$

$$= \frac{-(dt^2 - dx^2 - dy^2 - dz^2)}{dt^2 - dx^2 - dy^2 - dz^2}$$

$$= -1$$

Solution. **BOX 3.5** We want to verify equation 3.44. We know that

$$p_p^2 + 2\mathbf{p}_p \mathbf{p}_{\gamma} = -m_p^2 - 2m_p m_{\pi} - m_{\pi}^2$$

 $2\mathbf{p}_p \mathbf{p}_{\gamma} = -2m_p m_{\pi} - m_{\pi}^2$

Where we used that $p_p^2=-m_p^2$ and that $p_\gamma^2=-m_\gamma^2=0$. Since we are considering an approximation of $p_{px}\approx E$ we get that

$$m{p}_p = egin{bmatrix} E_p \ E_p \ 0 \ 0 \end{bmatrix} \quad m{p}_\gamma = egin{bmatrix} E \ -E \ 0 \ 0 \end{bmatrix}$$

Then

$$-2(E_p E + E_p E) = -2m_p m_{\pi} - m_{\pi}^2$$

$$4E_p E = 2m_p m_{\pi} + m_{\pi}^2$$

$$E_p = \frac{m_{\pi} (2m_p + m_{\pi})}{4E}$$

Finally, we know that $m_p = 938~MeV,~m_\pi = 135~MeV$ and $E = 6.4 \times 10^{-4}~eV$ hence E_p is

$$E_p = \frac{135 \times 10^6 \ eV (2(938 \times 10^6 \ eV) + 135 \times 10^6 \ eV)}{4(6.4 \times 10^{-4} \ eV)}$$

$$E_p = 1.06 \times 10^{20} \ eV$$

Solution. P3.1

- **a.** We know that $u^x = dx/d\tau$ hence $u^x = \sinh(g\tau)$.
- **b.** We know that

$$\mathbf{u} \cdot \mathbf{u} = -(u^t)^2 + (u^x)^2 = -1$$

Hence

$$-(u^{t})^{2} + \sinh^{2}(g\tau) = -1$$
$$u^{t} = \sqrt{1 + \sinh^{2}(g\tau)}$$
$$u^{t} = \cosh(g\tau)$$

c. Given that we know u^t and u^x we can compute $v = v_x$ as

$$v = u^x/u^t = \tanh(g\tau)$$

and since tanh is asymptotic to 1 then v cannot be greater than 1.

d. We know that $dt/d\tau = u^t = \cosh(g\tau)$ then

$$\int dt = \int \cosh(g\tau) d\tau$$
$$t = \frac{\sinh(g\tau)}{g} + C$$
$$gt = \sinh(g\tau)$$

Where we used that t = 0 when $\tau = 0$ and hence C = 0.

e. From the previous part we have that $g\tau = \sinh^{-1}(gt)$ hence

$$u^x = \sinh(\sinh^{-1}(gt)) = gt$$

Also, we get that

$$u^{t} = \cosh(\sinh^{-1}(gt))$$
$$= \sqrt{1 + (gt)^{2}}$$

And finally that

$$v = \tanh(\sinh^{-1}(gt))$$
$$= \frac{\sinh(\sinh^{-1}(gt))}{\cosh(\sinh^{-1}(gt))}$$
$$= \frac{gt}{\sqrt{1 + (gt)^2}}$$

Solution. P3.2

a. We know that $u^t = 1/\sqrt{1-v^2}$ so

$$u^{t} = \frac{1}{\sqrt{1 - v^{2}}}$$

$$= \frac{1}{\sqrt{1 - (1 - 1/(gt + 1)^{2})}}$$

$$= \frac{1}{\sqrt{\frac{1}{(gt + 1)^{2}}}}$$

$$= gt + 1$$

b. We know that $dt/d\tau = u^t = gt + 1$ then

$$\int_0^t \frac{dt}{gt+1} = \int_0^\tau d\tau$$
$$\frac{\log(gt+1)}{g} - 0 = \tau - 0$$
$$\log(gt+1) = g\tau$$

 \mathbf{c} . Using the equations we got in part \mathbf{a} and \mathbf{b} we get that

$$\log(u^t) = \log(gt + 1)$$
$$\log(u^t) = g\tau$$
$$u^t = e^{g\tau}$$

d. We know that $u^x = u^t v$ so we have that

$$u^{x} = (gt+1)\sqrt{1 - \frac{1}{(gt+1)^{2}}}$$
$$= (gt+1)\sqrt{\frac{(gt+1)^{2} - 1}{(gt+1)^{2}}}$$
$$= \sqrt{(gt+1)^{2} - 1}$$

Also we know that $gt + 1 = e^{g\tau}$ so we can write

$$u^x = \sqrt{e^{2g\tau} - 1}$$

e. We know that $u^x = dx/d\tau$ so we can integrate u^x to obtain $x(\tau)$ as follows

$$\int_0^{x(\tau)} dx = \int_0^{\tau} \sqrt{e^{2g\tau} - 1} d\tau$$

$$x(\tau) - 0 = \frac{\sqrt{e^{2g\tau} - 1} - \arctan(\sqrt{e^{2g\tau} - 1})}{g} - 0$$

$$x(\tau) = \frac{\sqrt{e^{2g\tau} - 1} - \arctan(\sqrt{e^{2g\tau} - 1})}{g}$$

Finally, we know that $u^t = dt/d\tau$ so we can integrate u^t to obtain $t(\tau)$ as follows

$$\int_0^{t(\tau)} dt = \int_0^{\tau} e^{g\tau} d\tau$$
$$t(\tau) - 0 = \frac{e^{g\tau}}{g} - \frac{1}{g}$$
$$t(\tau) = \frac{e^{g\tau} - 1}{g}$$

Solution. P3.7

a. In the source frame we have that $p^t = E$ and that $p^x = Ev_x = E$ since $v_x = 1, v_y = 0, v_z = 0$ so using the Lorentz transformations we get that

$$p'^{t} = \gamma E - \gamma v E$$

$$E' = E \frac{(1 - v)}{\sqrt{1 - v^2}}$$

$$E' = E \frac{(1 - v)\sqrt{1 - v}}{\sqrt{(1 + v)}\sqrt{(1 - v)^2}}$$

$$E' = \frac{h}{\lambda_0} \frac{\sqrt{1 - v}}{\sqrt{1 + v}}$$

Where we also used that $p'^t = E'$. Hence the wavelength λ' in the source frame is given by

$$\frac{h}{\lambda'} = \frac{h}{\lambda_0} \frac{\sqrt{1-v}}{\sqrt{1+v}}$$
$$\lambda' = \lambda_0 \frac{\sqrt{1+v}}{\sqrt{1-v}}$$

b. Let now u_{obs} be the velocity of the observer seen from the source frame then we have that $u_{obs}^t = \gamma$, $u_{obs}^x = \gamma v$ and $u_{obs}^y = u_{obs}^z = 0$. Also, let p be the 4-momentum of the photon in the source frame where $p^t = E$ and that $p^x = Ev_x = E$ since $v_x = 1$ and $v_y = v_z = 0$.

On the other hand, we know that $E_{obs} = -pu_{obs}$ so

$$E_{obs} = -(-p^t u_{obs}^t + p^x u_{obs}^x + p^y u_{obs}^y + p^z u_{obs}^z)$$

$$E_{obs} = -(-E\gamma + E\gamma v + 0 + 0)$$

$$E_{obs} = E\gamma(1 - v)$$

We have the same equation we got in part ${\bf a}$ so we can follow the same steps to show that

$$E_{obs} = \frac{h}{\lambda_0} \frac{\sqrt{1-v}}{\sqrt{1+v}}$$
$$\lambda_{obs} = \lambda_0 \frac{\sqrt{1+v}}{\sqrt{1-v}}$$