What is claimed is:

1. A technique for measuring intersubband electroluminescence spontaneous
emission from a unipolar quantum cascade laser device, the technique comprising the
steps of:

- a) forming a unipolar quantum cascade laser device, comprising a ridge waveguide structure including a longitudinally disposed active region and a pair of laser facets at the entrance and exit of said ridge waveguide;
 - b) longitudinally cleaving said laser device along the ridge waveguide structure;
 - c) forming highly reflective coatings on said pair of laser facets;
- d) energizing said QC laser device with an input current to initiate lasing emission along or in the direction of the ridge; and
- e) measuring the intersubband electroluminescence spontaneous emission from the longitudinal portion of the active region exposed by the cleaving process of step b).
- 2. The technique of claim 1 wherein in performing step e), the measuring step includes spatial filtering the emission to separate scattered laser emission from ISB-EL spontaneous emission.
- 3. The technique of claim 1 wherein in performing step e), the measuring step includes performing a polarization analysis of the measured emission to distinguish laser emission along the cavity from TM polarized ISB-EL spontaneaous emission through the long-side cleave.
- 4. The technique of claim 1 wherein in performing step b), the longitudinal cleaving is performed through the approximate center of the ridge waveguide structure.
- 5. The technique of claim 1 wherein in performing step c) the laser facets are coated with a layer of SiO₂, covered by a layer of Ti/Au.

1

2

3

4

5

6

7

8

9

10

1 2

3

4

1

2

1

2

	1	6. The technique of claim 1 wherein in performing step d), the QC laser is biased
	2	below threshold and the spontaneous emission is measured.
	1	7. The technique of claim 1 wherein in performing step d), the QC laser is biased
	2	above threshold and the spontaneous emission is measured.
	1	8. A unipolar quantum cascade laser device comprising
	2	an active region formed as a ridge waveguide structure on a top major surface of a
	3	semiconductor substrate;
	4	an insulating layer disposed to cover the extent of said active region;
15%	5	a bottom metal contact layer disposed to overlay a bottom major surface of said
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6	semiconductor substrate; and
Total Service	7	a pair of laser facets formed as the terminations of said ridge waveguide structure,
	8	said facets formed to be orthogonal to the extent of said ridge waveguide structure such
than then they said then their their their	9	that upon the application of a bias current between said top and bottom metal contact
, 1	U	layers, laser emission will be created in a longitudinal direction along said ridge
1	1	waveguide structure and exit at said pair of laser facets (only if not coated)
1	2	CHARACTERIZED IN THAT
1	3	the unipolar quantum cascade laser structure is formed to include a longitudinal
1.1		cleave through the ridge waveguide structure so as to expose the active region and a
1	5	longitudinal face of said semiconductor substrate and waveguide, and the laser facets
1	6	include a highly reflective surface coating, such that intersubband electroluminescence
1	7	(ISB-EL) will exit from the exposed active and region.
	1	9. The device of claim 8 wherein the insulator layer comprises a layer of SiN.
	1	10. The device of claim 8 wherein the top and bottom metal contact layers
2	2	comprise Ti/Pt/Au.

- 1 11. The device of claim 8 wherein the laser facet coatings include an inner layer
- 2 of SiO₂ and an outer layer of Ti/Au and Ge/Au/Ag/Au respectively.