RULES of INFERENCE and EQUIVALENCE

An **argument** is a sequence of propositions or sentences written as:

The argument is said to be \mathbf{valid} provided that if all the premises are true, then Q must also be true.

PROPOSITIONAL RULES OF INFERENCE

	Name	Rule	Tautological Form
1.	Addition	<u>P</u>	$P \to (P \vee Q)$
2.	Simplification	$\frac{P \wedge Q}{\therefore P}$	$(P \land Q) {\to} P$
3.	Conjunction	$\begin{array}{c} P \\ \underline{Q} \\ \therefore \ P \wedge Q \end{array}$	
4.	Modus Ponens	$\begin{array}{c} P \to Q \\ \underline{P} \\ \therefore \ Q \end{array}$	$[(P \to Q) \land P] \to Q$
5.	Modus Tollens	$\begin{array}{l} P \to Q \\ \underline{\sim} Q \\ \therefore \sim P \end{array}$	$[(P \to Q) \land \neg Q] \to \neg P$
6.	Disjunctive Syllogism	$\begin{array}{c} P \lor Q \\ \underline{\sim} P \\ \therefore Q \end{array}$	$[(P \lor Q) \land \sim P] \to Q$
7.	Hypothetical Syllogism	$\begin{array}{l} P \rightarrow Q \\ \underline{Q \rightarrow R} \\ \therefore \ P \rightarrow R \end{array}$	$\begin{aligned} & [(P \to Q) \land (Q \to R)] \\ & \to (P \to R) \end{aligned}$
8.	Constructive Dilemma	$\begin{array}{l} P \rightarrow Q \\ R \rightarrow S \\ \underline{P \vee R} \\ \therefore \ Q \vee S \end{array}$	$\begin{split} & [(P \rightarrow Q) \land (R \rightarrow S) \land (P \lor R)] \\ \rightarrow & (Q \lor S) \end{split}$
9.	Destructive Dilemma	$P \rightarrow Q$ $R \rightarrow S$ $\sim Q \vee \sim S$ $\therefore \sim P \vee \sim R$	$\begin{split} & [(P \rightarrow Q) \land (R \rightarrow S) \land (\sim Q \lor \sim S)] \\ & \rightarrow (\sim P \lor \sim R) \end{split}$

THE FUNDAMENTAL RULES OF LOGIC (LAWS of EQUIVALENCE or TAUTOLOGICAL BICONDITIONALS)

	Name	Fundamental Rule
1.	Reflexivity	$P \leftrightarrow P$
2.	Double Negation	\sim (\sim P) \leftrightarrow P
3.	Commutativity	$ \begin{array}{l} (P \wedge Q) \leftrightarrow (Q \wedge P) \\ (P \vee Q) \leftrightarrow (Q \vee P) \\ (P \leftrightarrow Q) \leftrightarrow (Q \leftrightarrow P) \end{array} $
4.	Associativity	$\begin{split} & [(P \land Q) \land R] \leftrightarrow [P \land (Q \land R)] \\ & [(P \lor Q) \lor R] \leftrightarrow [P \lor (Q \lor R)] \\ & [(P \leftrightarrow Q) \leftrightarrow R] \leftrightarrow [P \leftrightarrow (Q \leftrightarrow R)] \end{split}$
5.	Distributivity	$ [P \land (Q \lor R)] \leftrightarrow [(P \land Q) \lor (P \land R)] $ $ [P \lor (Q \land R)] \leftrightarrow [(P \lor Q) \land (P \lor R)] $
6.	Idempotency	$ \begin{array}{c} (P \wedge P) \leftrightarrow P \\ (P \vee P) \leftrightarrow P \end{array} $
7.	Identity	$ (P \wedge T) \leftrightarrow P $ $ (P \vee F) \leftrightarrow P $
8.	Inverse	$ (P \land \sim P) \leftrightarrow F $ $ (P \lor \sim P) \leftrightarrow T $
9.	Dominance	$ (P \wedge F) \leftrightarrow F $ $ (P \vee T) \leftrightarrow T $
10.	Absorption	$[P \land (P \lor Q)] \leftrightarrow P$ $[P \lor (P \land Q)] \leftrightarrow P$
11.	De Morgan's Laws	$ \begin{array}{l} \sim (P \land Q) \leftrightarrow (\sim P \lor \sim Q) \\ \sim (P \lor Q) \leftrightarrow (\sim P \land \sim Q) \end{array} $
12.	Contrapositive	$(P \to Q) \leftrightarrow (\sim Q \to \sim P)$
13.	Material Implication	$(P \to Q) \leftrightarrow (\sim\!P \vee Q)$
14.	Material Equivalence	$ \begin{array}{l} (P \leftrightarrow Q) \leftrightarrow [(P \to Q) \land (Q \to P)] \\ (P \leftrightarrow Q) \leftrightarrow [(P \land Q) \lor (\sim P \land \sim Q)] \end{array} $
15.	Exportation	$[(P \land Q) \to R] \leftrightarrow [P \to (Q \to R)]$

file: cs56:\handouts\Logic_PropRules.doc mcsp 11-Nov-96/Revised 25-Nov-05