Quiz 4: October 30, 2018

Left Neighbor:	Right Neighbor:
Name:	Student ID:
Section TA:	

This is a closed book quiz

TABLE 1 Rules of Inference.		
Rule of Inference	Tautology	Name
$ \frac{p}{p \to q} $ $ \therefore \frac{q}{q} $	$[p \land (p \rightarrow q)] \rightarrow q$	Modus ponens
$ \begin{array}{c} \neg q \\ p \to q \\ \therefore \neg p \end{array} $	$[\neg q \land (p \to q)] \to \neg p$	Modus tollens
$p \to q$ $q \to r$ $\therefore p \to r$	$[(p \to q) \land (q \to r)] \to (p \to r)$	Hypothetical syllogism
$ \begin{array}{c} p \lor q \\ \neg p \\ \therefore \overline{q} \end{array} $	$[(p \lor q) \land \neg \ p] \to q$	Disjunctive syllogism
$\therefore \frac{p}{p \vee q}$	$p \to (p \lor q)$	Addition
$\therefore \frac{p \wedge q}{p}$	$(p \wedge q) \rightarrow p$	Simplification
$ \begin{array}{c} p \\ q \\ \therefore \overline{p \wedge q} \end{array} $	$[(p) \land (q)] \to (p \land q)$	Conjunction
$p \lor q$ $\neg p \lor r$ $\therefore \overline{q \lor r}$	$[(p \lor q) \land (\neg p \lor r)] \to (q \lor r)$	Resolution

1. (4 points total) Perform a formal proof (as we learned in class, using the Rules of Inference on the front of this sheet) that if $H_1 = \neg p \lor r$, $H_2 = \neg q \lor r$, and $H_3 = p \lor q$, then $H_1 \land H_2 \land H_3 \to r$

2. **(6 points total)** Perform a formal proof (as we learned in class, using the Rules of Inference on the front of this sheet) that if $H_1 = (d \lor s) \to p$, $H_2 = c \to \neg p$, $H_3 = \neg c \to e$, and $H_4 = \neg e$ then $H_1 \land H_2 \land H_3 \land H_4 \to \neg d$