基於機器學習模型對台灣加權指數量化交易研究

作者:朱國安

1. 摘要

我們利用 zigzag 指標定義出標籤,使用 23 種技術指標與匯率作為特徵,並利用特徵 工程技術,增加差異程度,幫助樹模型, 能夠更好的判別方向。

2. 前言

金融投資當中有許多因子影響股市,若能 使用機器學習,將能幫助我們從高維度的 資訊當中,找出方向,協助投資決策。

3. 文獻探討

3.1 xgboost

xgboost模型,為梯度提升決策樹(GBDT)中的一種,藉由樹狀結構不斷分支,新的決策樹是根據上一個決策輸出的預測值中,不斷修正,提高模型準確度,該模型可使用於回歸與分類問題當中。

4. 實作流程

機器學習中常應用於回歸、分類、分群當 中,我們決定使用分類方法,分類出多頭 與空頭趨勢,來產生出交易訊號

4.1 定義標籤

我們使用 zigzag 指標,產生標籤,定義出過去加權指數多空頭趨勢。Zigzag 指標會根據未來價格波動而改變,定義 出區間內的最高點與最低點。該指標可定義參數,繪畫出過去幾天內的最高點或最低點,到目前價位的位置,若過程中回檔大於設定%數,則會固定線圖。

4.3 產生特徵

我們使用 ta-lib 套件產生出技術指標,並使用特徵工程技術,增加多空頭時技術指標的差異程度。

使用到的技術指標包含:macd、macdsignal、macdhist、RSI、slowkd、fastkd、sma5、sma5-sma60、收盤價-最大值、willr、ultosc、rocr、apo、sar、vwap5、vwap20、vwap5-vwap20、收盤價-sma5、收盤價-sma20、ForceIndex

並統計加權指數成分股前 100 大中, 5、10、20 日均線多頭排列家數,與空 頭排列家數,與新台幣匯率每日開收高 低資料。

並藉由視覺化篩選特徵值,挑選出差異 程度較大的特徵,以上為篩選過後的結 果。

4.4 模型建立

使用 xgboost 模型, num_round 設定為50, 訓練集與測試集分別為80%、20%

5. 結論

透過交叉驗證 K-Fold 5,準確率約為 0.88,標準差為0.017左右,有良好的 分類能力,能夠準確判定多空方向

	ain-auc-m▲	train-auc-std	st-auc-mea	test-auc-std
	0.911632	0.00485994	0.869489	0.0160803
	0.913698	0.00460641	0.871415	0.0151215
	0.915807	0.0051563	0.873276	0.0161191
	0.917824	0.00469956	0.875737	0.0155123
	0.91958	0.00499671	0.877161	0.0157643
	0.921344	0.0046278	0.878163	0.0163662
	0.923184	0.00407566	0.879495	0.0166944
	0.924906	0.00448778	0.880726	0.0170146
	0.926901	0.0044651	0.882709	0.0171534
	0.928361	0.00411947	0.884195	0.0167293
	0.929776	0.00369108	0.885651	0.0170335
	0.93128	0.00331454	0.887216	0.0175155
	0.93287	0.00377122	0.888676	0.017563
	0.934044	0.00384986	0.88961	0.0174951
	0.9358	0.00397039	0.891384	0.0178059
	0.937171	0.00415922	0.892394	0.0175029
	0.938364	0.00404716	0.893905	0.0172182
	0.939805	0.00376896	0.895097	0.0170946
	0.940712	0.00353456	0.895917	0.0172292
	0.941962	0.0030259	0.897228	0.0171542
	0.943333	0.00289305	0.898281	0.0171116