Taller Inducción Matemática

Jhon Fredy Tavera Bucurú 2025

1. Principio de Inducción Matemática

Desmostrar los siguientes enunciados usando inducción matemática.

1.
$$1^3 + 2^3 + \dots + (n-1)^3 < \frac{n^4}{4} < 1^3 + 2^3 + \dots + n^3$$
.

- 2. $2^{2n+1} 9n^2 + 3n 2$ es divisible por 54.
- 3. Definimos los n'umeros F_n de Fermat mediante la fórmula,

$$F_n = 2^{2^n} + 1 \text{ para } n = 0, 1, \dots$$

Pruebe que para todo $n \ge 1$, $F_0 F_1 \cdots F_{n-1} + 2 = F_n$.

- 4. $\left(\frac{4}{3}\right)^n > n$ para todo entero $n \ge 7$.
- 5. Sea F_n el n-ésimo termino de la secuencia de Fibonacci. Recordemos que se define la secuencia de Fibonacci, así

$$F_0 = 0$$
, $F_1 = 1$ y $F_{n+1} = F_n + F_{n-1}$ si $n \ge 0$.

Demostrar que para todo natural $n \ge 1$ tenemos.

a)
$$F_1 + F_2 + \dots + F_n = F_{n+2} - 1$$

b)
$$F_{n+1} \cdot F_{n-1} - F_n^2 = (-1)^n$$

$$c) \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^n = \begin{pmatrix} F_{n+1} & F_n \\ F_n & F_{n-1} \end{pmatrix}$$

d)
$$\binom{n}{0} + \binom{n-1}{1} + \binom{n-2}{2} + \dots = F_{n+1}$$
. Donde en la suma interpretamos $\binom{m}{k} = 0$ si $k > m$.

1

- 6. Demostrar que
 - a) $n^3 n$ es multiplo de 6 para todo natural n.
 - b) $5^n 1$ es multiplo de 24 para todo número natural n par.
 - c) $2^n + 1$ es múltiplo de 3 para todo número natural n impar.

7. Definimos la secuencia $\{a_n\}$ por $a_1=2$ y para $n\geq 2$ el término a_n es el producto de los anteriores mas uno. Demuestre que

$$\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n} = 1 - \frac{1}{a_1 a_2 \cdots a_n}$$

- 8. Demuestre que $7^{2n} 48n 1$ es divisible por 48^2 para todo valor n.
- 9. Demuestre que para todo natural $n \geq 4$.

$$2^n < n!$$
.

$$2n^3 < 3n^2 + 3n + 1$$
.

10. Dado un entero positivo n, definimos T(n,1) = n y, para todo $k \ge 1$, $T(n,k+1) = n^{T(n,k)}$. Pruebe que existe $c \in \mathbb{N}$ tal que para todo $k \ge 1$, T(2010,k) < T(2,k+c). Determine el menor entero positivo c con esa propiedad.