Question 1:

```
a) p(Water = warm|Play = yes), p(Water = warm|Play = no)
p(Water = warm|Play = yes) = 2/3
p(Water = warm|Play = no) = 1
```

```
b) p(Play = yes|Water = warm), p(Play = no|Water = warm)p(Play = yes|Water = warm) = 2/3p(Play = no|Water = warm) = 1/3
```

```
c) p(Play = yes|Forecast = same), p(Play = yes|Forecast = change)
p(Play = yes|Forecast = same) = 1
p(Play = yes|Forecast = change) = 1/2
```

```
d) p(Water = warm|Play = yes), p(Water = warm|Play = no) with Laplace smoothing p(Water = warm|Play = yes) = 3/5 p(Water = warm|Play = no) = 2/3
```

Question 2:

- a) Let's consider a counterexample where k_1 (2, 2) = x^2 and k_2 (x, 2) = 22. If we choose a_1 =1 and a_2 =1, the function $k(x,z)=k_1(x,z)-k_2(x,z)=x^2-z^2$ is not positive semi-definite.
 - Therefore, the function $k(x, z) = a_1k_1(x, z) a_2k_2(x, z)$ may not always be a valid kernel function.
- b) Given $A = k(x, z) = e \ x \top z \ \sigma 2$, $B = k(x, z) = e ||x-z||^2 \ 2 \ 2 \sigma 2$. B would be a valid kernel due to the product of two Gaussian functions is also a Gaussian function.
- c) Mercer's theorem disqualifies this kernel due to non-guaranteed symmetry and positive semi-definiteness.