USB 设备请求和描述符整理

一. 标准 USB 设备请求

请求名	请求号	功能
GetStatus	00Н	读取设备、接口或端点的状态
ClearFeature	01H	清除或禁止设备、接口或端点的某些特性
SetFeature	03Н	设置或使能设备、接口或端点的某些特性
SetAddress	05H	分配设备地址
GetDescriptor	06Н	读取指定描述符
SetDescriptor	07Н	更新已有的描述符或添加新的描述符
GetConfiguration	08Н	读取 USB 设备当前的配置值
SetConfiguration	09Н	为 USB 设备选择一个合适的配置
GetInterface	OAH	读取指定接口的当前可替换设置值
SetInterface	OBH	为指定接口选择一个合适的可替换设置
SynchFrame	ОСН	读取同步端点所指定的帧序号

1. GetStatus 请求

bmRequestType	bRequest	wValue	wIndex	wLength	数据阶段
80H			0000Н		设备状态
81H	00Н	0000Н	接口号	0002Н	接口状态
82H			端点号		端点状态

bmRequestType 为请求属性,每位定义如下(以下每个请求不再重复说明):

D7: 传输方向

O=主机至设备; 1=设备至主机

D6..5: 种类

0=标准; 1=类;

2=厂商; 3=保留

D4..0:接受者

0=设备; 1=接口;

2=端点; 3=其他

4..31 保留

bRequest 指明请求号,GetStatus 的请求号为 00H。

wValue 定义为 0。

wIndex 字段的"接口"和"端点"取值分别对应 USB 接口描述符的 bInterfaceNumber 字段值和端点描述符的 bEndpointAddress 字段值。

wLength 指明返回数据包的长度。

数据阶段:

对于设备状态,返回两个字节中只有 DO 和 D1 位有效。DO 指明 USB 设备当前是否为自供电,O表示总线供电,1表示自供电。D1 指明 USB 设备当前是否支持远程唤醒功能,O表示该功能被禁止,1表示该功能已被使能,缺省值为 O。

对于接口状态,返回两个字节都为0。

对于端点状态,返回两个字节只有 DO 位有效。DO 位指明端点停止特性,1 表示端点已被停止,0 表示端点未被停止。

2. ClearFeature 请求

bmRequestType	bRequest	wValue	wIndex	wLength	数据阶段
00Н			0000Н		
01H	01H	特性选择符	接口号	0000Н	无
02Н			端点号		

bRequest 指明请求号, ClearFeature 的请求号为 01H。

wValue 字段特性选择符如下表:

特性选择符	接收方	值	描述
ENDPOINT_HALT	端点	0	对于端点停止特性
DEVICE_REMOTE_WAKEUP	设备	1	对于 USB 远程唤醒功能
TEST_MODE	设备	2	用于 USB 设备的测试模式

3. SetFeature 请求

bmRequestType	bRequest	wValue	wIndex		wLength	数据阶段
00Н			0000Н	测试选择符		
01Н	03Н	特性选择符	接口号		0000Н	无
02Н			端点号			

bRequest 指明请求号, SetFeature 的请求号为 03H。

当 wValue 字段值为 TEST_MODE 时, wIndex 字段的高位字节指明设备测试选择符的值, 低位必须为 0。当前 USB 支持的测试选择符和其取值如下表:

测试选择符	值	测试选择符	值
Test_J	01H	Test_Packet	04H
Test_K	02H	Test_Force_Enable	05Н
Test_SEO_NAK	03Н		

4. SetAddress 请求

bmRequestType	bRequest	wValue	wIndex	wLength	数据阶段
00Н	05Н	设备地址	0	0	无

bRequest 指明请求号,SetAddress 的请求号为 05H。

wValue 指明新的设备地址,取值范围为0~127,其中0为缺省地址。

5. GetDescriptor 请求

bmRequestType	bRequest	wValue	wIndex	wLength	数据阶段
80H	06Н	类型和索引	0 或语言 ID	描述符长度	描述符

bRequest 指明请求号,GetDescriptor 的请求号为 06H。

wValue 的高位字节指明主机所读取的描述符类型值;低位字节指明描述符的索引值,只对配置描述符和字符串描述符有效,对于其他描述符该字节为0。

wIndex 字段指明字符串描述符的语言 ID,对于其他描述符该字段为 0。

wLength 指明该请求所返回的描述符长度(字节)。如果 wLength 大于实际描述符长度,则返回实际描述符长度数据;如果 wLength 小于实际描述符长度,则返回描述符前 wLength 个字节数据。

6. SetDescriptor 请求

bmRequestType	bRequest	wValue	wIndex	wLength	数据阶段
00Н	07Н	类型和索引	0 或语言 ID	描述符长度	描述符

bRequest 指明请求号, SetDescriptor 的请求号为 07H。

wValue 的高位字节指明主机所读取的描述符类型值;低位字节指明描述符的索引值,只对配置描述符和字符串描述符有效,对于其他描述符该字节为0。

wIndex 字段指明字符串描述符的语言 ID,对于其他描述符该字段为 0。

wLength 指明该请求向 USB 设备发送的字节数。

7. GetConfiguration 请求

bmRequestType	bRequest	wValue	wIndex	wLength	数据阶段
H08	08H	0	0	1	配置值

bRequest 指明请求号,GetConfiguration 的请求号为 O8H。

在 USB 设备处于地址状态时, GetConfiguration 请求返回值为 0; 在 USB 设备处于配置状态时, GetConfiguration 请求返回当前配置描述符中 bConfigurationValue 字段的值; 在 USB 设备处于缺省状态时, GetConfiguration 请求无效。

8. SetConfiguration 请求

bmRequestType	bRequest	wValue	wIndex	wLength	数据阶段
00Н	09Н	配置值	0	0	无

bRequest 指明请求号, SetConfiguration 的请求号为 09H。

wValue 的低位字节指明 USB 设备的配置值,须与某一配置描述符中的 bConfigurationValue 字段值相匹配,也可以为 0。

9. GetInterface 请求

bmRequestType	bRequest	wValue	wIndex	wLength	数据阶段
81H	OAH	0	接口	1	可替换设置值

bRequest 指明请求号, GetInterface 的请求号为 OAH。

数据阶段设备向主机返回 1 字节的可替换设置值,即接口描述符中的 bAlternateSetting 字段的值。

A. SetInterface 请求

bmRequestType	bRequest	wValue	wIndex	wLength	数据阶段
01H	0BH	可替换设置值	接口	0	无

bRequest 指明请求号, SetInterface 的请求号为 OBH。

B. SynchFrame 请求

bmRequestType	bRequest	wValue	wIndex	wLength	数据阶段
82H	ОСН	0	端点	2	帧号

bRequest 指明请求号, SynchFrame 的请求号为 OCH。

数据阶段设备向主机返回2个字节的帧号数据。

二. USB 描述符

类型	描述符	描述符值
	设备描述符	01H
	配置描述符	02Н
	字符串描述符	03Н
标准描述符	接口描述符	04Н
	端点描述符	05H
	设备限定描述符	06Н
	其它速率配置描述符	07Н
类描述符	集线器类描述符	29Н
天细处的	人机接口类描述符	21H
	人机接口类描述符	21H
HID 相关描述符	报告描述符	22Н
	实体描述符	23Н
厂商自定义描述符		FFH

1. 设备描述符

地址偏移量	字段名	长度(字节)	说明
0	bLength	1	描述符长度 (字节): 12H
1	bDescriptorType	1	描述符类型:设备=01H
2	bcdUSB	2	USB 规范版本号 (BCD 码)
4	bDeviceClass	1	类代码
5	bDeviceSubClass	1	子类代码
6	bDeviceProtocol	1	协议代码
7	bMaxPacketSize0	1	端点 0 支持最大数据包长度
8	idVender	2	供应商 ID
10	idProduct	2	产品 ID
12	bcdDevice	2	设备版本号 (BCD 码)
14	iManufacturer	1	供应商字符串描述符索引值
15	iProduct	1	产品字符串描述符索引值
16	iSerialNumber	1	设备序列号字符串描述符索引值
17	bNumConfigurations	1	所支持的配置数

bDeviceClass 指明 USB 设备所属的设备类,bDeviceSubClass 和 bDeviceProtocol 字段会根据 bDeviceClass 字段的不同而不同。bDeviceClass 字段代码可查下表:

设备的类别(bDeviceClass)				
值	说明			
00Н	由接口描述符提供类的值			
02Н	通信类			
09Н	集线器类			
DCH	用于诊断用途的设备类			
ЕОН	无限通信设备类			
FFH	厂商定义的设备类			

2. 设备限定描述符

设备限定描述符只适用于高速USB设备,高速USB设备既需采用高速传输又需采用全速传输, 所以设备限定描述符用以指出另一传输速率下该设备的总体信息。

地址偏移量	字段名	长度 (字节)	说明
0	bLength	1	描述符长度 (字节): 0AH
1	bDescriptorType	1	描述符类型:设备限定=06H
2	bcdUSB	2	USB 规范版本号 (BCD 码)
4	bDeviceClass	1	类代码
5	bDeviceSubClass	1	子类代码
6	bDeviceProtocol	1	协议代码
7	bMaxPacketSize0	1	端点 0 支持最大数据包长度
8	bNumConfigurations	1	另一速率所支持的配置数
10	bReserved	1	保留,必须置0

3. 配置描述符

地址偏移量	字段名	长度 (字节)	说明
0	bLength	1	描述符长度 (字节): 09H
1	bDescriptorType	1	描述符类型:配置=02H
2	wTotalLength	2	配置信息的总长度
4	bNumInterfaces	1	所支持的接口数
5	bConfigurationValue	1	配置值
6	iConfiguration	1	配置字符串描述符索引值
7	bmAttributes	1	配置特性
8	bMaxPower	1	所需的最大总线电流(2mA)

bmAttributes 字段的信息如下:

D7: 保留(置1)

D6: 总线供电为 1, 自给电源为 0

D5: 支持远程唤醒为 1, 不支持远程唤醒为 0

D4..0: 保留(置0)

4. 其它速率配置描述符

其它速率配置描述符只适用于高速 USB 设备,高速 USB 设备既需采用高速传输又需采用全速传输,所以设备限定描述符用以指出另一传输速率下该设备的配置信息。主机只有在成功读取高速 USB 设备的设备限定描述符后,才会进一步发出读取其它速率配置描述符请求。

地址偏移量	字段名	长度(字节)	说明
0	bLength	1	描述符长度 (字节): 09H
1	bDescriptorType	1	描述符类型: 其它速率配置=07H
2	wTotalLength	2	配置信息的总长度
4	bNumInterfaces	1	所支持的接口数
5	bConfigurationValue	1	配置值
6	iConfiguration	1	配置字符串描述符索引值
7	bmAttributes	1	配置特性
8	bMaxPower	1	所需的最大总线电流 (2mA)

5. 接口描述符

地址偏移量	字段名	长度(字节)	说明
0	bLength	1	描述符长度(字节): 09H
1	bDescriptorType	1	描述符类型:接口=04H
2	bInterfaceNumber	1	接口号
3	bAlternateSetting	1	可替换设置值
4	bNumEndpoints	1	所使用端点数(不包括端点0)
5	bInterfaceClass	1	类代码
6	bInterfaceSubClass	1	子类代码
7	bInterfaceProtocol	1	协议代码
8	iInterface	1	接口字符串描述符的索引值

bInterfaceClass 指明接口所属的设备类,bInterfaceSubClass 和 bInterfaceProtocol 字 段会根据 bInterfaceClass 字段的不同而不同。bInterfaceClass 字段代码可查下表:

接口的	接口的类别(bInterfaceClass)			
值	类别			
01H	音频类			
02Н	CDC 控制类			
03H	人机接口类 (HID)			
05H	物理类			
06H	图像类			
07Н	打印机类			
08Н	大数据存储类			
09Н	集线器类			
OAH	CDC 数据类			
OBH	智能卡类			
ODH	安全类			
DCH	诊断设备类			
ЕОН	无线控制器类			
FEH	特定应用类(包括红外的桥接器等)			
FFH	厂商定义的设备			

6. 端点描述符

地址偏移量	字段名	长度 (字节)	说明
0	bLength	1	描述符长度 (字节): 07H
1	bDescriptorType	1	描述符类型:端点=05H
2	bEndpointAddress	1	端点号及传输方向
			D30 : 端点号
			D64: 保留, 为零
			D7=0: 输出端点(主机到设备)
			D7=1: 输入端点(设备到主机)
3	bmAttributes	1	端点特性
			D 10 :传送类型
			00=控制传送

			01=同步传送
			10=批传送
			11=中断传送
			所有其它的位都保留。
4	wMaxPacketSize	2	端点支持的最大数据包长度
6	bInterval	1	端点数据传输的访问间隔

7. 字符串描述符

地址偏移量	字段名	长度(字节)	说明
0	bLength	1	描述符长度 (字节): N+2
1	bDescriptorType	1	描述符类型:字符串=03H
2	bString	N	UNICODE 编码的字符串

8. 人机接口类描述符

地址偏移量	字段名	长度(字节)	说明
0	bLength	1	描述符长度 (字节): 0CH
1	bDescriptorType	1	描述符类型:人机接口类=21H
2	bcdHID	2	HID 规范版本号(BCD 码)
4	bCountryCode	1	硬件目的国家的识别码(BCD码)
5	bNumDescritors	1	支持附属描述符目录
6	bDescriptorType	1	HID 相关描述符类型
			21H: HID 描述符
			22H: 报告描述符
			23H: 实体描述符
7	wDescriptorLength	2	报告描述符总长度
9	bDescriptorType	1	用于识别描述符类型的常量,使用在
			有一个以上描述符的设备
10	wDescriptorLength	2	描述符总长度,使用在有一个以上描
			述符的设备

bCountryCode 硬件目的国家识别码如下表:

HID 硬件目的国家识别码			
识别码(十进制)	国家和地区	识别码(十进制)	国家和地区
00	不支持	18	Netherlands/Dutch
01	Arabic	19	Norwegian
02	Belgian	20	Persian (Farsi)
03	Canadian-Bilingual	21	Poland
04	Canadian-French	22	Portuguese
05	Czech Republic	23	Russia
06	Danish	24	Slovakia
07	Finnish	25	Spanish
08	French	26	Swedish
09	German	27	Swiss/French
10	Greek	28	Swiss/German

11	Hebrew	29	Switzerland
12	Hungary	30	Taiwan
13	International (ISO)	31	Turkish-Q
14	Italian	32	UK
15	Japan (Katakana)	33	US
16	Korean	34	Yugoslavia
17	Latin American	35	Turkish-F
		36~255	Reserved

9. 报告描述符

HID 设备的报告描述符比较复杂也比较难理解。

报告描述符的语法不同于 USB 标准描述符,它是以项目(items)方式排列而成,无一定的长度。HID 的报告描述符已经不是简简单单的描述某个值对应某个固定意义了,它已经能够组合出很多种情况,并且需要 PC 上的 HID 驱动程序提供 parser 解释器来对描述的设备情形进行重新解释,进而组合生成出本 HID 硬件设备独特的数据流格式,所以我觉得可以把它理解为"报告描述符脚本语言"更为贴切。我们使用"报告描述符"专用脚本语言,让用户来自己定义他们的 HID 设备都有什么数据、以及这些数据各个位(bit)都有什么意义。

有关报告描述符的详细信息可参考 USB HID 协议, USB 协会提供了一个 HID 描述符编辑工具称作 HID Descriptor Tool,用它可方便生成我们的报告描述符。

A. 实体描述符

实体描述符被用来描述设备的行为特性。实体描述符是可选的描述符,HID 设备可以根据其本体的设备特性选择是否包含实体描述符。

地址偏移量	字段名	长度(字节)	说明
0	bDesignator	1	用来指定本体的哪一部分影响项目
1	bFlags	1	位指定标志
			位 0~4: Effort
			位5~7: Qualifier

对于实体描述符只需了解到这里就可以了,有兴趣可以在以下网址得到更具体信息: http://www.baiheee.com/Documents/090522/090522165226.htm

USB 设备请求和描述符整理到这里全部结束