General topology

The Problems

Autumn 2020

Quotients

Notation. We're going to study an interesting way to construct some topological spaces. Choose an integer $n \ge 3$. We will start with the n-th roots of unity in C:

$$\zeta_n^0, \zeta_n^1, \ldots, \zeta_n^{n-1},$$

where $\zeta_n := \exp(2\pi i/n)$. Let $P \in C$ be the *convex hull* of these points:

$$P := \{a_0 \zeta_n^0 + \dots + a_{n-1} \zeta_n^{n-1} \in \mathbf{C} : (\forall i)((a_i \in \mathbf{R}_{>0}) \land (a_1 + \dots + a_n = 1))\}.$$

This is a (filled) regular n-gon inscribed in the unit circle in C. We will also consider the *interior* ιP , which, recall, is the largest open subset of C that is contained in P.

A *gluing datum* (ϕ, p) consists of an *involution*¹ ϕ on $\{0, ..., n-1\}$ along with a map $a: \{0, ..., n-1\} \rightarrow \{+, -\}$ such that for every i, one has $a(i) = a(\phi(i))$, and if $i = \phi(i)$, then a(i) = +.

As a bit of notation, we'll write ϕ as a product of disjoint transpositions:²

$$(j_1 \ j_2)(j_3 \ j_4)\cdots(j_{k-1} \ j_k),$$

and we'll add the information of the map a by decorating each transposition $(j_{m-1} j_m)$ with a plus or minus, according to whether $a(i_m)$ is + or -. Thus if n = 5, for example,

$$(0\ 3)^{+}(2\ 4)^{-}$$

represents the gluing datum in which $\phi = (0\ 3)(2\ 4)$ and a(0) = a(1) = a(3) = +, and a(2) = a(4) = -.

We'll consider the equivalence relation \sim on P generated by the following requirements:

• For every j such that a(j) = +, and for every $t \in [0, 1]$, we require that

$$t\zeta_n^j + (1-t)\zeta_n^{j+1} \sim t\zeta_n^{\phi(j)} + (1-t)\zeta_n^{\phi(j)+1}$$
.

• For every j such that a(j) = -, and for every $t \in [0, 1]$, we require that

$$t\zeta_n^j + (1-t)\zeta_n^{j+1} \sim (1-t)\zeta_n^{\phi(j)} + t\zeta_n^{\phi(j)+1}$$

We can then form the quotient topological space³

$$\Sigma \coloneqq P/\sim$$
,

which depends on n, ϕ , and a.

³ On the final page of this PDF, we have a drawing of the identifications made by \sim when n = 4 and the gluing datum is $(0\ 2)^{-}(1\ 3)^{+}$.

Let n=3. Describe all the different possibilities for gluing data, and describe all the different topological spaces Σ that result from these choices. You need not justify your answer.

¹ that is, a map ϕ : $\{0, \dots, n-1\} \rightarrow \{0, \dots, n-1\}$ such that $\phi^2 = id$.

Problem 1

 $^{^{2}}$ This is possible because ϕ is an involution!

Problem 2

Let n=4. In the following examples, indicate whether the topological spaces Σ are homeomorphic to a topological space we have already seen.

- $(0.2)^{-}$
- $(0.2)^+$
- $(0\ 2)^{-}(1\ 3)^{-}$
- $(0\ 2)^-(1\ 3)^+$
- $(0\ 2)^+(1\ 3)^+$

Again, you need not justify your answer.

Problem 3

Let n = 2m, and consider the gluing datum given by

$$(0 m)^{-}(1 m+1)^{-}\cdots(m-1 2m-1)^{-}$$
.

What does the resulting topological space Σ look like? Once again, you need not justify your answer.

Notation. Let $n \in N^*$. Recall that P_R^n is the set of 1-dimensional R-linear subspaces of R^{n+1} ; we call these subspaces *(real) lines*. Define a map

$$q: \mathbf{R}^{n+1} \setminus \{0\} \to \mathbf{P}_{\mathbf{R}}^n$$

that carries any $\mathbf{x} = (x_0, \dots, x_n) \in \mathbf{R}^{n+1} \setminus \{0\}$ to the line $[\mathbf{x}] = [x_0, \dots, x_n] \in \mathbf{P}_{\mathbf{R}}^n$ spanned by \mathbf{x} . Endow $\mathbf{P}_{\mathbf{R}}^n$ with the finest topology such that q is continuous.

Equivalently, P_R^n is the quotient space $(R^{n+1} \setminus \{0\})/\sim$, where we declare $x \sim y$ if and only if there exists a nonzero real number λ such that $x = \lambda y$. Let P^n denote the set of 1-dimensional C-linear subspaces of C^{n+1} ; we call these subspaces *complex lines*.⁴ Define a map

$$q: \mathbf{C}^{n+1} \setminus \{0\} \to \mathbf{P}^n$$

that carries any $\mathbf{w} = (w_0, \dots, w_n) \in \mathbf{C}^{n+1} \setminus \{0\}$ to the line $[\mathbf{w}] = [w_0, \dots, w_n] \in \mathbf{P}^n$ spanned by \mathbf{w} . Endow \mathbf{P}^n with the finest topology such that q is continuous.

Equivalently, P^n is the quotient space $(C^{n+1} \setminus \{0\}) / \sim$, where we declare $w \sim z$ if and only if there exists a nonzero complex number λ such that $w = \lambda z$.

Problem 4

Construct a homeomorphism between P_R^2 and the quotient space Σ formed as described above by selecting n=4 and gluing data

$$(0\ 2)^+(1\ 3)^+$$
.

⁴ These subspaces have 1 complex dimension but two real dimensions.

Problem 5

Prove that P^1 and S^2 are homeomorphic.

Problem 6

Prove that P_R^1 and P_R^2 are not homeomorphic.

Problem 7

Find an open subset $U \in \mathbf{P}^n$ such that U is homeomorphic to \mathbf{C}^n and such that the complement $P^n \setminus U$ is homeomorphic to P^{n-1} .

Problem 8

Identify S^{2n+1} with the subspace

$$\{\boldsymbol{w} \in \boldsymbol{C}^{n+1} : \|\boldsymbol{w}\| = 1\} \subset \boldsymbol{C}^{n+1} \setminus \{0\}.$$

Write *h* for the composite map $S^{2n+1} \subset \mathbf{C}^{n+1} \setminus \{0\} \to \mathbf{P}^n$. Prove that *h* is surjective, and identify the fibres $h^{-1}\{x\}$, up to homeomorphism.