README.md 2025-04-16

Dokumentation: Blutdruckanalyse-Skript

Übersicht

Dieses Skript analysiert und visualisiert Blutdruck- und Pulsmessdaten aus einer CSV-Datei. Es erstellt Diagramme, berechnet Mittelwerte, generiert eine formatierte Tabelle und speichert die Ergebnisse in verschiedenen Dateiformaten (PDF, PNG, HTML). Zusätzlich werden die generierten Dateien automatisch im Browser geöffnet.

Funktionen

1. Datenvorbereitung

- Eingabedatei: puls_data.csv
- Die Spalten Datum und Uhrzeit werden kombiniert und in ein datetime-Objekt umgewandelt, um Zeitreihenanalysen zu ermöglichen.
- Ein separater DataFrame (table_df) wird für die tabellarische Darstellung erstellt.

2. Visualisierung

Zeitreihendiagramm

- Darstellung: Systolischer und diastolischer Blutdruck sowie Puls über die Zeit.
- Hervorhebungen:
 - Referenzlinien bei 80, 90, 120 und 140 mmHg.
 - Farbige Bereiche für normale Werte (80–90 mmHg und 120–140 mmHg).

Histogramme

- Darstellung: Verteilung der systolischen, diastolischen Werte und des Pulses.
- Hervorhebungen:
 - o Vertikale Linien und Textbeschriftungen für Mittelwerte.
 - Referenzlinien f
 ür normale Wertebereiche.

3. Tabellarische Darstellung

- **Formatierung:** Kritische Werte werden farblich hervorgehoben:
 - Systolisch ≥ 140 mmHg.
 - o Diastolisch ≥ 90 mmHg.
- Speicherung: Tabelle wird als HTML-Datei gespeichert.

4. PDF-Generierung

- Diagramme: Zeitreihen- und Histogramm-Diagramme werden als PDF und PNG gespeichert.
- Tabelle: HTML-Tabelle wird mit benutzerdefiniertem CSS in ein PDF-Dokument umgewandelt:
 - o Querformat.
 - o Drei Spalten.

README.md 2025-04-16

o Angepasste Schriftgröße.

5. Automatisches Öffnen der Dateien

• Die generierten Dateien (HTML, PDF, PNG) werden automatisch im Safari-Browser geöffnet.

Abhängigkeiten

- Python-Version: 3.x
- Benötigte Bibliotheken:
 - pandas
 - matplotlib
 - numpy
 - weasyprint

Installation der Bibliotheken

pip install pandas matplotlib numpy weasyprint