

系统化产品设计与开发

第十五讲 稳健设计

成 晔 清华大学工业工程系

福特汽车公司:后座安全带

■ 影响后果的相关 因素

- 碰撞发生的方式与程度
- 车辆的设计
- 座椅和安全带的 性能
- 其它条件

后座安全带的结构

什么是稳健设计?

- 稳健的产品(或过程)
 - 即使在非理想的情况下,也能按预期设想执行

- ■产品制造过程中的偏差
- 使用情况的可能变化范围
-

- 稳健设计 (Robust design)
 - 提升产品的性能,并同时将 噪声因素的影响降至最低

■ 稳健设定点

- 设计参数值优化组合
- 当使用条件和制造偏差在一定范围内波动时, 产品仍能实现期望的性能

影 响产品 性能的 因 素

- 两个因素A与B,影响 安全带的某项性能
- f_A与f_B的效果是累加效应
- $(A1 + B2) \approx (A2 + B1)$

- B1 比 B2 灵敏度低
 - (A2 + B1) 组合, 更为稳健

试验设计 (Design of Experiments, DOE)

- 田口玄一提出, 1950~1960, 日本
- 改善产品及其 制造工艺质量 水平的方法

应用DOE的稳健设计流程

- 识别控制因素、噪声因素和性能指标
- 构造目标函数
- 制定试验计划
- 开展试验
- 进行分析
- 选择并确认因素设定点
- · 反思并重复

识别控制因素、噪声因素和性能指标

控制

因素

■ 产品制造与使用操作中可指定的参数

● 通常对每个因素,在2~3个离散水平上 开展试验

噪声

因素

■制造偏差

■ 材料性质变动

■ 各种用户场景、工作 条件

■ 产品老化,滥用误用

后座安全带

- 织带拉伸刚度
- 织带摩擦系数

■ 座椅的形状

■ 座椅的面料

性能

■ 1~2个关键产品规格

指标

■ 寻找控制因素设定值

■ 碰撞发生时,乘客背部 或臀部向前滑移的距离

后座安全带参数图

控制因素

- 织带拉伸刚度
- 织带摩擦系数
- 限力器设定值
- 上部固定点刚度
- 锁扣拉索刚度
- 前排座椅靠垫
- 锁舌摩擦系数
- 安装点几何位置分布

乘客束缚过程

噪声因素

- 后座的形状
- 座椅面料类型
- 碰撞的严重程度
- 零部件磨损
- 乘客的位置
- 安全带在人体上 的位置

性能指标

- 碰撞峰值时的乘客 背部后仰角度
- 臀部滑移距离
- 臀部扭转角度
- 膝盖前移距离
- 乘客的体型
- 乘客服装面料的类型
- 织带制造的偏差
- 锁扣制造的偏差

构造目标函数 (1/2)

最大化

- "数值越大越好"
 - 例:安全带打滑之前的最大 负加速度
- ■目标函数

$$\max \ \eta = \mu \text{ or } \eta = \mu^2$$

- μ : 试验观测值的平均值
 - ◆ 给定测试条件下

最小化

- "数值越小越好"
 - 例: 负加速度峰值时的乘客背部后仰角度
- ■目标函数

min
$$\eta = \mu$$
 or $\eta = \sigma^2$

$$\max \ \eta = \frac{1}{\mu} \text{ or } \eta = \frac{1}{\sigma^2}$$

- σ^2 : 试验观测值的方差
 - ◆ 给定测试条件下

构造目标函数 (2/2)

目标值

- "越接近目标值越好"
 - 例:束缚动作之前的 安全带松弛量
- 目标函数

$$\max \ \eta = \frac{1}{\left(\mu - t\right)^2}$$

• t: 目标值 (Target)

信噪比

- "对噪声的响应越低 越好"
 - 例: 负加速度峰值时乘客背部后仰角
- ■目标函数

$$\max \ \eta = 10 \log \left(\frac{\mu^2}{\sigma^2} \right)$$

减少方差比改变均值更困难

福特后座安全带

- 开发团队建议两个 目标函数:
 - 峰值时的背部后仰角平均值最小化
 - 峰值时背部后仰角的 范围最小化
 - ◆ 两种待测噪声条件下,后仰角最大最小值之差

第三步:制定试验计划

- ■如何在一系列 试验中,改变 各因素的水平, 探索系统的行 为?
 - 控制因素的数值
 - 某些噪声因素的 数值

试验设计

- 全因素试验
 - 每种因素各个水平的 所有组合

- 部分因素试验
 - 各因数各水平的部分 组合

- ■正交试验
 - 最小的部分因素试验 计划

- 单因素实验
 - 每次试验,只改变一 个因素的水平

全因素试验计划

- 除了考察每个因素对产品 性能的基本影响,还要识 别所有的多因素交互影响
- 适用的情况
 - 因素与水平的个数较少
 - 试验成本很低
- k 个因素,每因素 n 个水平
 - 需要试验次数: n^k
 - ▶ k < 4 或 5, 尚可行

全因素矩阵

						A	1				A2								
				В	1			В	2			В	1		B2				
			C1		C2		C1		C2		C1		C2		C1		C2		
			D1	D2	D1	D2	D1	D2	D1	D2	D1	D2	D1	D2	D1	D2	D1	D2	
	F	G1	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	
E	1	G2	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	
1	F	G1	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	
	2	G2	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	
	F	G1	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	
Е	1	G2	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	
2	F	G1	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	
	2	G2	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	

部 素 试 验

■ 牺牲了分析所有交互影响的能力

- 某些交互影响与其它交互影响混淆
- 仍要保持平衡
 - 在任一给定因素及水平上的试验次数, 与每个其它因素、在每个水平进行的 试验次数要相等

						A	1				A2								
1	1/2			B1			B2					B1				B2			
. ,				C1		C2		C1		C2		C1		2	C1		C2		
		D1	D2																
Г	E4	G1	X			X		X	X			X	X		X			X	
	F1	G2		X	X		X			X	X			X		X	X		
E1	E2	G1		X	X		X			X	X			X		X	X		
	F2	G2	X			X		X	X			X	X		X			X	
Г	E4	G1		X	X		X			X	X			X		X	X		
_	F1	G2	X			X		X	X			X	X		X			X	
E2		G1	X			X		X	X			X	X		X			X	
	F2	G2		X	X		X			Х	X			Х		X	X		

			A 1									A2								
1//		B1				B2				B1				B2						
ш	1/4		C1		C2		C1		C2		C1		C2		C1		C2			
			D1	D2	D1	D2	D1	D2	D1	D2	D1	D2	D1	D2	D1	D2	D1	D2		
	F1	G1	X			X		X	X			X	X		X			X		
E1		G2																		
= '	F2	G1																		
	Г	G2	X			X		X	X			X	X		X			X		
	F1	G1																		
E2	Ľ'	G2		X	X		X			X	X			X		X	X			
E2	F2	G1		X	X		X			X	X			X		X	X			
	F2	G2																		

正交试验计划

■最小的部分因素试验计划

- 旨在识别每个因素的主要影响
 - > 尽管与许多其它交互影响混淆在一起
- 由于效率高,被广泛使用
- 根据行数命名: L4, L8, L9, L27

福特后座安全带

- 开发团队选择使用L8正交阵列
- 一种快速有效的试验方法
 - 7个因素,每因素2个水平

L8正交阵列 (1/16部分因素计划)

A1											A2								
			B1				B2					В	1		B2				
			C1		C2		C1		C2		C1		C2		C1		C2		
			D1	D2	D1	D2	D1	D2	D1	D2	D1	D2	D1	D2	D1	D2	D1	D2	
	F	G1	X																
E	1	G2														X			
1	F	G1												X					
	2	G2							X										
	F	G1								X									
E	1	G2											X						
2	F	G1													X				
	2	G2		X															

单因素试验计划

- 是一种不平衡的试验计划
 - 基准试验: 所有因素取水平1
 - 其余试验:只有一个因素取水平2,其它因素都取水平1
- 进行多因素影响空间探索时,是一种低效率方法
- 在多因素交互影响显著的系统 中,可用于细节的参数优化

单因素计划

			A 1									A2								
			B1			B2				B1				B2						
				C1		C2		C1		C2		C1		2	C1		C	2		
			D1	D2	D1	D2	D1	D2	D1	D2	D1	D2	D1	D2	D1	D2	D1	D2		
	F	G1	X	X	X		X				X									
Е	1	G2	X																	
1	F	G1	X																	
	2	G2																		
	F	G1	X																	
Е	1	G2																		
2	F	G1																		
	2	G2																		

L8 正交阵 列 试 验 设计

因素	说明
Α	织带拉伸刚度: 在拉伸试验机上测量得到弹性变形
В	织带摩擦 :摩擦系数,与编织物和 涂层性质有关
С	限力器设定值: 达到一定受力程度时,允许可控地释放安全带
D	上部固定点刚度 :上部固定点(D 形环)安装处的弹性变形
E	锁扣拉索刚度 :将带扣与车体相连的拉索之弹性变形
F	前排座椅靠背: 后座乘客膝部可能 顶到的前座靠背, 其轮廓、硬度
G	锁舌摩擦: 织带在扣舌承载环上滑 动时的摩擦系数

正交试验计划

	Α	В	С	D	Е	F	G	N-	N+
1	1	1	1	1	1	1	1		
2	1	1	1	2	2	2	2		
3	1	2	2	1	1	2	2		
4	1	2	2	2	2	1	1		
5	2	1	2	1	2	1	2		
6	2	1	2	2	1	2	1		
7	2	2	1	1	2	2	1		
8	2	2	1	2	1	1	2		

测试噪声因素

- 在正交阵列中分配额外 的列
 - 将噪音视为另一个因素
 - 分析噪声因素的影响
- 使用外部阵列
 - 对于主阵列中的每一行, 测试噪声因素的数种组 合
 - > 每行对应于数次试验

- 每一行试验重复多次
 - 试验过程中,让噪声自然、不受控地进行变化
 - 测度性能波动方差
- 以复合噪声进行试验
 - 创建数种代表性或极端 性的噪声条件
 - > 每行对应于数次试验
 - 测度性能波动方差

福特后座安全带

- 使用3种噪声因 素的2种组合
 - 最好情况
 - 最差情况
- 按L8试验计划,
 进行16次试验

第四步: 开展试验

- 在各种设定 条件下,对 产品进行测 试
- 随机地决定 进行试验的 次序
- 确保系统性 趋势与试验 的结果,不 产生关联

	Α	В	С	D	Е	F	G	N-	N+	均值	极差
1	1	1	1	1	1	1	1	0.3403	0.2915	0.3159	0.0488
2	1	1	1	2	2	2	2	0.4608	0.3984	0.4296	0.0624
3	1	2	2	1	1	2	2	0.3682	0.3627	0.3655	0.0055
4	1	2	2	2	2	1	1	0.2961	0.2647	0.2804	0.0314
5	2	1	2	1	2	1	2	0.4450	0.4398	0.4424	0.0052
6	2	1	2	2	1	2	1	0.3517	0.3538	0.3528	0.0021
7	2	2	1	1	2	2	1	0.3758	0.3580	0.3669	0.0178
8	2	2	1	2	1	1	2	0.4504	0.4076	0.4290	0.0428

第五步: 进行分析 (1/2)

■ 计算目标函数,分析均值,评估各因素对产品性能的影响

第五步: 进行分析 (2/2)

■ 分析极差,评估各因素对产品性能变动范围的影响

第七步: 反思并重复

■ 进一步的优化,可能需要再进 行几轮试验

- 折中选择的设定点,需要重新 考虑
- 探究某些因素之间的相互影响
- 对参数设定点,进行精细调整
- 研究其它噪声因素、控制因素

■ 我们是否开展了正确的试验?

■ 我们获得了可接受的结果吗?

■ 结果能否更好些?

■ 我们是否应该重复这一过程,以 实现性能和稳健性的进一步改进?

本讲小结

- 稳健的产品:即使在有噪声影响的情况 下,也能正常运行、操作
- 噪声:不受控制的变化
- 试验设计 (DOE)
- 正交阵列提供了有效的方法,探索每个 因素的主要影响
- 使用目标函数,计算性能的均值和方差
- 选择稳健的参数设定点

稳健设计七步法

- 识别控制因素、噪声因素 和性能指标
- 2. 构造目标函数
- 3. 制定试验计划
- 4. 开展试验
- 5. 进行分析
- 6. 选择并确认因素设定点
- 7. 反思并重复