Package 'latChanNet'

October 1, 2019

Type Package

Version 1.0

Title Latent Channel Networks

Date 2019-05-09
Author Clifford Anderson-Bergman
Maintainer Clifford Anderson-Bergman <pre><pre><pre></pre></pre></pre>
Description Analysis of undirected networks via Latent Channel Networks
License GPL (>= 2)
bioViews
Imports Rcpp (>= 1.0.1), RcppParallel (>= 4.4.3)
LinkingTo Rcpp, RcppParallel
SystemRequirements GNU make
RoxygenNote 6.1.99.9001
R topics documented:
latChanNet-package
computeExpConnects
get_auc
get_both_auc
heatmapLCN
makeLatentModel
predict.LatClass
simLCN
unq_nondiag_flat
Index

2 computeExpConnects

latChanNet-package

A short title line describing what the package does

Description

A more detailed description of what the package does. A length of about one to five lines is recommended.

Details

This section should provide a more detailed overview of how to use the package, including the most important functions.

Author(s)

Your Name, email optional.

Maintainer: Your Name <your@email.com>

References

This optional section can contain literature or other references for background information.

See Also

Optional links to other man pages

Examples

```
## Not run:
    ## Optional simple examples of the most important functions
    ## These can be in \dontrun{} and \donttest{} blocks.
## End(Not run)
```

 ${\tt compute} {\tt ExpConnects}$

Compute expected connections for node

Description

Computes the estimated expected connections through each latent channel

Usage

```
computeExpConnects(i, lcn_mod)
```

Arguments

i Index of node lcn_mod LCN model

computeTheta 3

		TI .
COM	nute	Theta

Expected Channel Usage

Description

Compute expected channel usage between two connected nodes.

Usage

```
computeTheta(i, j, lcn_mod)
```

Arguments

i Index of first nodej Index of second node

lcn_mod LCN model

Details

Computes the expected channel usage between two nodes conditional on the two nodes sharing an edge.

get_auc

Get auc for a model from edges/notEdges list

Description

Get auc for a model from edges/notEdges list

Usage

```
get_auc(mod, edges, notEdges)
```

get_both_auc

Get both in sample and out of sample AUC

Description

Get both in sample and out of sample AUC

Usage

```
get_both_auc(mod, out_edges, out_notEdges, in_edges, in_notEdges)
```

4 makeLatentModel

heatmapLCN

Build heatmap from model

Description

Build heatmap from model

Usage

```
heatmapLCN(
  mod,
  grp,
  minGrpSize = NULL,
  prob_cols = c("black", "grey", "blue"),
  greater_col = "red",
  plotChannelNumber = T,
  xlab = " ",
  ylab = " ",
  sortColumns = T,
  name = "",
  ...
)
```

Arguments

mod	LCN or BKN model
grp	Vector of group categories for each node
minGrpSize	Minimum size of group in both. Smaller groups put in "other"
prob_cols	Colors for color gradient of probability range
greater_col	Color for color gradient beyond 1
xlab	X-axis label
ylab	Y-asix label
	Additional arguments passed to ComplexHeatmap::Heatmap
reorderChannels	8
	Should Channels be reorder by dependency on grp?

makeLatentModel

Make Latent Structure model

Description

Make a latent class model. Can be used for predicting unknown edge status and unknown metadata.

makeLatentModel 5

Usage

```
makeLatentModel(
  edgeList,
  nDims,
  model = "LCN",
  missingList = NULL,
  metadata = NULL
)
```

Arguments

edgeList An matrix edgelist. Can be nx2 (both) or nx3 (BKN only)

model Type of model to fit. Options are "LCN" or "BKN"

missingList A nx2 matrix edgelist of edges for which the value is unknown

metadata A data.frame with all factors representing metadata

nDim Number of latent dimensions to use

Details

Fits either a Latent Channels Network (LCN), or the symmetric low-rank Poisson model of Ball, Karrer and Newman (BKN). The model assumes an undirected graph.

If edges are counts, use the BKN model. The data format for each row should (i,j, count), with i,j as integer IDs starting at 1.

If edges are binary, either a BKN or LCN model may be used, although an LCN model is somewhat more appropriate.

LCN model:

Clifford Anderson-Bergman, Phan Nguyen, and Jose Cadena Pico. "Latent Channel Networks", submitted 2019

BKN model:

Brian Ball, Brian Karrer, and Mark EJ Newman. "Efficient and principled method for detecting communities in networks." Physical Review E 84.3 (2011): 036103.

Examples

6 simLCN

predict.LatClass

Predictions from LatClass objects

Description

Predict edge probabilities and categorical metadata

Usage

```
## S3 method for class 'LatClass'
predict(mod, i, j, type = "pairs")
```

Arguments

mod	LatClass model
i	node index
j	Either an node index or metadata colname name
type	Should node pairs or cross of all combinations be predicted

Examples

simLCN

Simulate Latent Channel Network

Description

Simulate Latent Channel Network

Usage

```
simLCN(p_mat)
```

unq_nondiag_flat 7

Arguments

p_mat Matrix of channel usage probabilities

 $unq_nondiag_flat$

Return only unique non-selfloop samples from flat_index

Description

Return only unique non-selfloop samples from flat_index

Usage

```
unq\_nondiag\_flat(flat, \ max\_n)
```

Index

```
*Topic package
latChanNet-package, 2

computeExpConnects, 2
computeTheta, 3

get_auc, 3
get_both_auc, 3

heatmapLCN, 4

latChanNet (latChanNet-package), 2
latChanNet-package, 2

makeLatentModel, 4

predict.LatClass, 6

simLCN, 6

unq_nondiag_flat, 7
```