MAT157 Problem Set 9

Nicolas

December 9, 2021

1. $\frac{d^2 \sin^3(x^4)}{dx^2} = 6x^2 \sin(x^4)(4x^4 + 3\sin(2x^4) + 12x^4 + 12x^4\cos(2x^4))$

2. $\frac{d}{dx} \left(\frac{1}{1 + \sin^2(x)} \right)^3 = -3(1 + \sin^2(x))^{-4} (2\sin(x)\cos(x))$

2.

Proof.

Consider the derivative of f(x) at a=2. We will use the limit definition.

$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

$$= \lim_{h \to 0} \frac{f(2+h)}{h}$$

$$= \lim_{h \to 0} \frac{|(2+h)^2 - 4| - |2^2 - 4|}{h}$$

$$= \lim_{h \to 0} \frac{|4 + 4h + h^2 - 4| - |0|}{h}$$

$$= \lim_{h \to 0} \frac{|4h + h^2|}{h}$$

$$= \lim_{h \to 0} \frac{|h||4 + h|}{h}$$

However, if h>0 than, $\lim_{h\to 0}\frac{|h||4+h|}{h}=4$, but if h<0 then $\lim_{h\to 0}\frac{|h||4+h|}{h}=-4$ Because the left and right side limit are not equal, the limit does not exist.

3.

Proof.
$$g'(y) = \frac{1}{f'(g(y))}$$

$$g''(y)$$

$$g''(y) = \frac{d}{dy} \frac{1}{f'(g(y))}$$

$$= -\frac{1}{(f'(g(y)))^2} \frac{d}{dy} f'(g(y))$$

$$= -\frac{1}{(f'(g(y)))^2} f''(g(y)) \frac{d}{dy} g(y)$$

$$= -\frac{1}{(f'(g(y)))^2} f''(g(y)) g'(y)$$

$$= -\frac{1}{(f'(x))^2} f''(x) \frac{1}{f'(x)}$$

$$= -\frac{f''(x)}{(f'(x))^3}$$

g'''(y)

$$g'''(y) = \frac{d}{dy} \frac{-f''(g(y))}{(f'(g(y)))^3}$$

$$= \frac{-f'''(g(y))g'(y)}{(f'(g(y)))^3} + 3\frac{f''(g(y))}{(f'(g(y)))^4} f''(g(y))g'(y)$$

$$= \frac{-f'''(x)}{(f'(x))^4} + 3\frac{(f''(x))^2}{(f'(x))^5}$$

g''''(y)

$$g''''(y) = \frac{d}{dy} \left(\frac{-f'''(g(y))}{(f'(g(y)))^4} + 3 \frac{(f''(g(y)))^2}{(f'(g(y)))^5} \right)$$

$$= \frac{d}{dy} \frac{-f'''(g(y))}{(f'(g(y)))^4} + 3 \frac{d}{dy} \frac{(f''(g(y)))^2}{(f'(g(y)))^5}$$

$$= \frac{-f''''(g(y))g'(y)}{(f'(g(y)))^5} + 4 \frac{f''(g(y))}{(f'(g(y)))^5} f''(g(y))g'(y)$$

$$+ 6 \frac{f''(g(y))f'''(g(y))g'(y)}{(f'(g(y)))^5} - 5 \frac{(f''(g(y)))^2}{(f'(g(y))^6} f''(g(y))g'(y)$$

$$= \frac{-f''''(x)}{(f'(x))^6} + 4 \frac{(f''(x))^2}{(f'(x))^6} f''(x) + 6 \frac{f''(x)f'''(x)}{(f'(x))^6} - 5 \frac{(f''(x))^3}{(f'(x))^7}$$

4.

Proof.

Consider that the $\operatorname{Max} f([a,b]) > 0$. Thus, by EVT, then there exists an $x \in [a,b]$ such that $f(x) = \operatorname{Max} f([a,b])$. However, $x \neq a$ and $x \neq b$ because $f(a) = f(b) = 0 < \operatorname{Max} f([a,b])$. Because the maximum of $f|_{[a,b]}$ is not on the boundary, and $f|_{[a,b]}$ is differentiable, then f'(x) = 0. Thus, $x^2 f''(x) = (x^2 + 1) \operatorname{Max} f([a,b])$. Thus, let $\omega := f''(x) > 0$. Thus

 $\forall \epsilon > 0, \exists \delta_1 > 0, \forall y \in [a, b] : 0 < |y - x| < \delta_1 \implies \left| \frac{f'(y) - f'(x)}{y - x} - \omega \right| < \epsilon.$ Therefore, for every $y \in (x, x + \delta_1), f'(y) > 0$. Let $\gamma := f'(y) > 0$. Then

 $\forall \epsilon > 0, \exists \delta_2 > 0, \forall z \in [a,b]: 0 < |z-x| < \delta_2 \implies |\frac{f(z)-f(x)}{z-x} - \gamma| < \epsilon.$ Therefore, for every $z \in (x,x+\delta_2), f(z) > \operatorname{Max} f([a,b]),$ a contradiction. Thus, the $\operatorname{Max} f([a,b])$ cannot be greater than 0.

Consider the $\operatorname{Min} f([a,b]) < 0$. Thus, by EVT; then there exists an $x \in [a,b]$ such that $f(x) = \operatorname{Min} f([a,b])$. Similarly to the other case f'(x) = 0. Thus, f''(x) < 0, meaning that f'(y) < 0 for any $y \in (x, x + \delta_1)$. Therefore, for every $z \in (x, x + \delta_2)$, $f(z) < \operatorname{Min} f([a,b])$, a contradiction. Thus, the $\operatorname{Min} f([a,b])$ cannot be less than 0.

If the $\operatorname{Max} f([a,b])$ cannot be greater than 0 and the $\operatorname{Min} f([a,b])$ cannot be less than 0. $f(x) = 0, \ \forall x \in [a,b]$.

5. a)

Proof.

By assumption, we can say that $\forall y \in J, \forall \varepsilon' > 0, \exists \delta > 0, \forall x \in J : 0 < |x-y| < \delta \implies |\frac{f(x)-f(y)}{x-y} - f'(y)| < \varepsilon'.$ Thus, through the triangle inequality, $|\frac{f(x)-f(y)}{x-y}| - |f'(y)| < \varepsilon'.$ From, this we get that $|\frac{f(x)-f(y)}{x-y}| < \varepsilon' + |f'(y)|.$ If we choose $M := \varepsilon' + \sup |f'(J)|$, this implies that |f(x)-f(y)| < M|x-y|. But because x,y and ε' were arbitrary, this holds for all $x,y \in J$ and $\varepsilon' > 0.$

Now let $\varepsilon > 0$ and choose $M' := \varepsilon + \sup |f'(J)|$ and $\delta := \frac{\varepsilon}{M}$. Thus, for every $x,y \in J$, if $0 < |x-y| < \delta$ then $|f(x) - f(y)| < M'|x-y| < M'\delta = \epsilon$ as desired.

b)

Proof.

The function $f:(0,\infty),\ f(x)=\sqrt{x}$ is uniformly continuous because $\forall \varepsilon>0$ let $\delta:=\varepsilon^2$. Thus, $\forall x,y\in(0,\infty):0<|x-y|<\delta$ then, $|\sqrt{x}-\sqrt{y}|^2\leq |\sqrt{x}-\sqrt{y}||\sqrt{x}+\sqrt{y}|=|x-y|<\varepsilon^2$. Thus, $|\sqrt{x}-\sqrt{y}|<\varepsilon$ as desired.

However, $f'(x) = \frac{1}{\sqrt{x}}$ which is not bounded on the interval $(0, \infty)$. Thus, we have found a example.