In this Lecture

Multi-Robot Systems

Lecture 3: Motion Control

Mr. Liangyawei Kuang |kuang@connect.ust.hk |www.deadsecond.com

- · How to control?
- · How to model?
- Kinematics
- Trajectory tracking
- Open loop and close loop

Multi-Robot Systems - Lecture 3: Motion Control

Control Architectures

Actuators

- Different purposes
- ► Locomotion: e.g., wheeled, legged, slip stick
- ► Other motion: e.g., manipulation
- Other types of actuation: e.g, heating, sound emission Examples of electrical-to-mechanical actuators:
- ► DC motors, stepper motors, servos, loudspeakers.
- Control input example:

A driver can steer and accelerate (or decelerate), so there are 2 control inputs.

- Uncertainty /disturbances /noise:
- Examples: wheel slip, slack in mechanism, cheap circuitry with imperfections, environmental factors (wind, friction, etc.).

An example of wheeled robot

Multi-Robot Systems – Lecture 3: Motion Control

Degrees of Freedom (DOF)

- Most actuators control a single degree of freedom (DOF)
 a motor shaft controls one rotational DOF
- ▶ a sliding part on a plotter controls one translational DOF
- Every robot has a specific number of DOF
- If there is an actuator for every DOF, then all DOF are controllable

Holonomic Motion

- Degree of mobility: DOM (differentiable DOF)

 - Number of DOF that can be directly accessed by the actuators
 A robot in the plane has at most 3 DOMs (position and heading)
- Holonomic motion:
- Holonomic robot: When the number of DOF is equal to robot's DOM
 Non-holonomic robot: When the number of DOF is greater than robot's DOM
 When a robot's DOM it is larger than is DOF, the robot has 'redundant' actuation

Differential-Drive Robot

Differential-drive robots can actuate left and right wheels (independently).

- DOF = 3, but DOM = 2: differential-drive robots are non-holonomic.
- Are these robots holonomic: Trains? Cars? Quadrotors?
- Impact of non-holonomicity: motion constraints affect motion planning.

Wheeled Robots

• 5 basic types of 3-wheel configurations:

Omni-steer DOM = 3

An example

https://www.youtube.com/watch?v= tmiu1wpp E

Kinematics

- · Forward kinematics:
- Given the control parameters (e.g., wheel velocities), and the time of movement t, find the pose (x, y, θ) reached by the robots.
- Given the final desired pose (x, y, θ), find the control parameters to move the robot there at a given time t.

Forward Kinematics

- Differential equations describe robot motion
- How does robot state change over time as a function of control inputs?

BIRNEAS THE HONG KIDNE UNIVESSITY OF SOID AND SCHNOODS?

A Second-Order Model

- When a first-order model (kinematics) is not enough...
 Differential equations for modeling the dynamics of a quadrotor

Forward Kinematics (body frame)

Actuators of differential-drive:

Forward Kinematics (world frame)

- Given known control inputs, how does the robot move w.r.t. a global coordinate system?

 • Use a rotation matrix:
- - ${\scriptstyle\blacktriangleright}$ From body to world frames, the axes rotate by θ

Inverse Kinematics

- We would like to control the robot motion in the world frame:
- We invert the previous equations to fifind control inputs:

- yielding
- under the **constraint** (remember than our robot is non-holonomic):
- and finally

Inverse Kinematics

· We would like to control the robot to reach a goal pose:

· Ideally (if the robot would be holonomic), we would set:

· However, we need to satisfy the non-holonomic constraint:

Example of Trajectory Generation

- \bullet To satisfy our constraint, we need to be creative. There are various ways of solving this (e.g., differential flatness).
- Cubic Bézier curves, for example, would satisfy our differential drive constraint
- Ensure that robot waypoints lie on a feasible trajectory.
- We set:

Feedback Linearization

Leverage linear control of a holonomic point P to control a nonholonomic robot

idea: formulate control inputs

was a function of Xp & yp

Multi-Robot Systems - Lecture 3: Motion Control

#28 N B X W THE HONG KEING UNVESTIT OF SOE! AND TO INCODE? Multi-Robot Systems – Lecture 3: Motion Control

Feedback Linearization

Feedback linearization:

· Isolated control inputs:

 $U = x_{p}^{2} \cos\theta + y_{p}^{2} \sin\theta$ $U = e^{-1} (-x_{p}^{2} \sin\theta + y_{p}^{2} \cos\theta)$

Feedback Linearization

• Trajectory tracking:

desired trajectory x perror to desired point x p = (x A - x p) K + x Aof desired point x Aconstant number

i) NOT stationary

Multi-Robot Systems – Lecture 3: Motion Control

Multi-Robot Systems – Lecture 3: Motion Control

Trajectory Tracking

- · Trajectory tracking:
 - 1. Pre-compute a smooth trajectory
 - 2. Follow trajectory (in open-loop or closed-loop)
- Challenges:
 - ► Feasibility of trajectory given motion constraints
 - Adaptation of trajectory in dynamical environments
 - ► Must guarantee smoothness of resulting trajectories (kinematic / dynamic feasibility):

E.g., continuity of 1st derivative for 1st order control!

Open-Loop and Closed-Loop

- Once we have a trajectory that enables the robot to reach its goal, we need to follow that trajectory.
- There are two ways of doing this:
 - ► Open-loop control:

Robot follows path blindly by applying the pre-computed control inputs

► Closed-loop control:

Robot can follow path for a small duration, then observe if anything changed in the world, recompute a new adapted path (repeatedly)

Perception-Action Loop

· Basic building block of autonomy

open-loop closed-loop

Open Loop

- · Example: trajectory tracking
- In open-loop, the robot executes predefined control inputs.

Close Loop: a PID example

https://www.youtube.com/watch?v=wkfEZmsQqiA

Open-Loop vs Closed-Loop

- Closed-loop is much more robust to external perturbation:
- \blacktriangleright Noisy sensors: wrong estimate of the goal position, wrong estimate of the robot position.
 - ► Noisy actuation: robot does not move precisely.
 - Unforeseen events
 - ► Dynamic obstacles
- Open-loop is only useful when feedback is not possible:
 - ► Sensors cannot operate in certain circumstances
 - ► Limited bandwidth
 - ► Limited computational resources

Multi-Robot Systems - Lecture 3: Motion Control

Multi-Robot Systems – Lecture 3: Motion Control