Projet Labo

Gabriel MELKA

Equipe FemptoNanoOptics

Introduction

FemptoNanoOptics:

- échelle spatiale nano : 10-9 m
- échelle de temps femto 10-15 s

nanodisques d'or au TEM,

Propriétés électroniques, thermiques, vibrationnelles

Deux techniques:

- Spatial Modulation Spectroscopy (SMS)
- Pompe Sonde

Plan:

- 1. Présentation du dispositif
- 2. Etude de la photodiode
- 3. Différentes Cartes SMS
- 4. Comparaison avec la théorie
- 5. Mesures Complémentaires
- 6. Pompe sonde et conclusion

1. Explication générale

Optiques:

- doubleur de fréquence
- hacheur
- télescope
- densités optiques
- polariseur/analyseur

schéma du dispositif

2. Etude de la photodiode à avalanche

Etude en puissance et spectralement

2. Etude de la photodiode à avalanche

b) Réponse en fréquence grâce à un hacheur optique

On constate que f_c>50kHz

3. Cartes SMS

- technique d'imagerie pour localiser des nanoparticules
- signaux faibles ⇒ modulation d'une quantité
- démodulation ⇒ utilisation d'une détection synchrone

hypothèse : particule ponctuelle $\sigma_{\text{ext}} \text{ la surface efficace d'extinction}$

$$P_{\pi} = P_{-}\sigma_{xt} I(x,y)$$
or
$$\frac{dT}{T} = \frac{\sigma_{xxt} I(x,y)}{P_{t}} \sim 10^{5}$$
la transmission
MorMalisée

3. Cartes SMS

$$\begin{split} P_t = & P_i - \sigma_{ext} I(x_0; y_0 + \delta_y \sin(2\pi f t)) \\ \approx & P_i - \sigma_{ext} I(x_0; y_0) - \sigma_{ext} \left. \frac{\partial I}{\partial y} \right|_{(x_0, y_0)} \delta_y \sin(2\pi f t) - \frac{1}{2} \sigma_{ext} \left. \frac{\partial^2 I}{\partial y^2} \right|_{(x_0, y_0)} \delta_y^2 \left[\frac{1 - \cos(2\pi (2f) t)}{2} \right] \\ = & \text{TF} \frac{\partial^2 I}{\partial y^2} \left[\frac{\partial^2 I}{\partial y^2} \right] \\ = & \text{TF} \frac{\partial^2 I}{\partial y^2} \left[\frac{\partial^2 I}{\partial y^2} \right] \end{split}$$

la particule est au maximum pour la 2F

4. Comparaison avec la théorie

On cherche à relier la tension de modulation à l'amplitude de déplacement de la platine : $\delta=\delta(V)=\eta V$

d = distance à la mi-hauteure selon l'axe y

Théorie

$$\frac{dT}{T}\Big|_{2F}(d,8) = \sigma_{ext} \times \frac{4\ln(2)}{d^2} \exp(-Ax^2) I(Ax^2)$$
axec $A = 2\ln(2)$

$$\Rightarrow$$
 d= 0.33 μ m

x = Q/Q

4) Comparaison avec la théorie

$$x_{max}$$
=1,05 ; V_{max} =0.5 V
d=0.33 ; δ_{max} = 0.345 µm

d'où
$$\eta_{eff}$$
 = 0.69
 $\mu m/V_{eff}$
 $\eta^{statique}$ = 0.97 $\mu m/V$

$$\sigma_{\rm ext}(\lambda = 410 \text{ nm}) = 2.4 \times 10^4 \text{ nm}^2$$

5) Mesures complémentaires

influence de la longueur d'onde sur le signal

le nanodisque absorbe surtout vers 600 nm

influence de la polarisation sur le signal

la particule est circulaire

6) Vers le pompe sonde/ Conclusion

Utilité SMS pour pompe sonde :

- localiser la nanoparticule
- calibrer la pompe et la sonde dans les 3 directions de l'espace

ligne à retard : permet de faire varier le temps entre la pompe et la sonde

signal de la photodiode : permet d'accéder aux processus physiques dans le nanodisque

schéma pompe-sonde