#### LPHYS2114 Non-linear Dynamics

#### Série 8 – Superstable fixed points, basins of attraction and conjugation

- 1. Newton-Raphson Method. Show that the fixed points of the map of the Newton-Rhapson method are superstable.
- **2.** Basins of attraction. Given a function f on  $\mathbb{R}$ . The basin of attraction, of a fixed point p of the map, is defined by the collection of points x which converge towards p. The following theorem can help with finding a basin of attraction of p:

**Theorem 1.** Given a continuous f on  $\mathbb{R}$  and a < b < c.

- (i) If f(b) = b and x < f(x) < b for all  $x \in [a, b[$  then  $\lim_{n \to \infty} f^n(a) = b$ .
- (ii) If f(b) = b and b < f(x) < x for all  $x \in ]b, c]$  then  $\lim_{n \to \infty} f^n(c) = b$ .

The first part of this exercise consists in demonstrating this theorem. The second part uses the theorem for finding the basins of attraction of attracting fixed points.

#### Demonstrating the theorem

We will only demonstrate section (i). (The demonstration of part (ii) follows in a similar manner.)

- (a) Given  $x_0 = a$  and  $x_{n+1} = f(x_n)$ ,  $n \ge 0$ . Show that  $(x_n)_{n=0}^{\infty}$  is a strictly increasing series. Show that it converges.
- (b) Given that  $p = \lim_{n \to \infty} x_n$ . Justify that  $a \leq p \leq b$ . Deduce that p = b.

## Applications

- (c) Given  $f(x) = \frac{4}{\pi} \arctan x$ . Show that f has fixed points  $p = 0, \pm 1$ . Show that p = 0 is a source and  $p = \pm 1$  are the attractors. Show that the basin of attraction of  $p = \pm 1$  are  $\{x \in \mathbb{R} : \pm x > 0\}$ .
- (d) Given f(x) = ax(1-x). Show that for 1 < a < 2 the basin of attraction of the fixed point p = 1 1/a is the open interval ]0,1[.
- **3.** Conjugation. In this exercise we consider the maps that can be linked by conjugation.

### Example

- (a) Show that the logistic map  $x_{n+1} = ax_n(1 x_n)$  can be transformed into the map  $y_{n+1} = y_n^2 + c$  by a linear change of variables  $y_n = \alpha x_n + \beta$  with  $\alpha, \beta$  which are to be determined.
- (b) Show that we can write the relation between the maps in the form

$$C \circ f = g \circ C \tag{1}$$

where  $C(x) = \alpha x + \beta$ ,  $g(x) = x^2 + c$  et f(x) = ax(1-x).

# Properties of corresponding maps

More generally, two functions f, g linked by a homeomorphism C according to (1) are called (topological) conjugates. The properties of the dynamics of the maps can be linked. Here we consider the relations between their periodic points.

- (c) Show that  $f^k$  and  $g^k$  are conjugates by C for all integers  $k \ge 1$ .
- (d) Show that p is a k-periodic point of f iff C(p) is a k-periodic point of g.
- (e) Show that if f, g, C are differentiable and if  $C'(p) \neq 0$  then

$$(g^k)'(C(p)) = (f^k)'(p).$$
 (2)

# Application: Logistic map with a=4

In this part we consider the logistic map g(x) = ax(1-x) with a=4 and The tent map

$$f(x) = \begin{cases} 2x, & 0 \le x \le 1/2, \\ 2(1-x) & 1/2 \le x \le 1, \end{cases}$$
 (3)

on the interval [0,1]. The graphs of the functions f,g are shown in Figure 1.

- (f) Show that f and g are conjugates by  $C(x) = \frac{1}{2}(1 \cos \pi x)$ .
- (g) Show that the periodic orbits of g are repulsive. Hint: Start with k=1 and k=2, and then generalise.



FIGURE 1 – Logistic map a = 4 (left) and the tent map (right).