ABSTRACT

Mandatory face mask rules are becoming more common in public settings around the world. There are growing scientific evidence supporting the effectiveness of face mask wearing on reducing the spread of the virus. However, we have also seen some backlash on face masks, posing danger to people who are enforcing the rules.

This motivates this work to develop a deep learning model which detects whether a person is wearing a face mask and based on that workout an alerting system. The model can be deployed at local supermarkets or school buildings to control the automatic door, which only opens to people wearing face masks.

TABLE OF CONTENTS

CHAPTER NO.	TOPICS	PAGE NO.
Chapter 1	INTRODUCTION	1
Chapter 2	BLOCK DIAGRAM	
Chapter 2.1	WORKING	
Chapter 2.2	COMPONENTS USED	
Chapter 2.3		3
Chapter 3	HARDWARE DESCRIPTION	
Chapter 3.1	RASPBERRY PI	
Chapter 3.2	USB CAMERA	
Chapter 3.3	MLX 90614	
1	POWER SUPPLY	
Chapter 3.4		
Chapter 3.5	SERVO MOTOR	
Chapter 4	SOFTWARE DESCRIPTION	11
Chapter 4.1	PYTHON IDLE	11
Chapter 4.2	VNC VIEWER	12
Chapter 5	CIRCUIT DIAGRAM	13
Chapter 6	IMPLEMENTARION	14
Chapter 7	FLOW CHART	16
Chapter 8	DATAFLOW LEVEL DIARAM	17
Chapter 8.1	DFD level 0	17
Chapter 8.2	DFD level 1	17
Chapter 8.3	DFD level 2	18
Chapter 9	COST ESTIMATION	19
Chapter 10	ADVANTAGES AND DISADVANTAG	ES20
Chapter 10.1	ADVANTAGES	20
Chapter 10.2	DISADVANTAGES	20
Chapter 11	CONCLUSION AND FUTURE SCOPE.	21
Chapter 11 1	CONCLUSION	71

Chapter 11.2	FUTURE SCOPE	21
Chapter 12	REFERENCE	22
Chapter 13	PROGRAM	23
Chapter 14	APPENDIX	23
Chapter 14.1	POWER SUPPLY BLOCK DIAGRAM	27
Chapter 14.2	5V POWER SUPPLY USING 7805	28
Chapter 14.3	STEP DOWN TRANSFORMER	. 29
Chapter 14.4	BRIDGE RECTIFIER	29
Chapter 14.5	7805 VOLTAGE REGULATOR	30
Chapter 14.6	AC-DC CONVERSION BASICS	31
Chapter 14.7	PRINCIPLE OF WORKING OF TRANSFORMER	32
Chapter 14.7.1	HOW TRANSFORMER WORKS	33
Chapter 14.7.2	RELATION BETWEEN VOLTAGE AND TURNS	33
Chapter 14.7.3	STEP DOWN TRANSFORMER	34
Chapter 14.8	BRIDGE RECTIFIER CONSTRUCTION	34
Chapter 14.8.1	HOW BRIDGE RECTIFIER WORK?	35
Chapter 14.8.2	ADVANTAGES OF BRIDGE RECTIFIERS	37

LIST OF FIGURES

FIGURE NO.	NAME	PAGE NO.
Figure 2.1	BLOCK DIAGRAM	2
J	RASPBERRY PI 3 MODEL B BOARD	
Figure 3.1		
Figure 3.1.1	RASPBERRY PI GPIO HEADERS	6
Figure 3.2	USB CAMERA	7
Figure 3.3	MLX 90614	8
Figure 3.4	POWER SUPPLY	9
Figure 3.5	SERVO MOTOR	9
Figure 3.6	SERVO MOTOR PINOUTS	10
Figure 4.1	PYTHON IDLE	11
Figure 4.2	REAL VNC VIEWER MAIN WINDOW.	12
Figure 5.1	CIRCUIT DIAGRAM	13
Figure 6.1	CIRCUIT SETUP	14
Figure 6.2	TEST 1 WITHOUT MASK	15
Figure 6.3	TEST 2 WITH MASK	15
Figure 8.1	0-LEVEL DFD	17
Figure 8.2	1-LEVEL DFD	17
Figure 8.3	2-LEVEL DFD	18
Figure 14.1	POWER SUPPLY BLOCK DIAGRAM	28
Figure 14.2	FULL BRIDGE RECTIFIER CIRCUIT	28
Figure 14.3	STEP DOWN TRANSFORMER	29
Figure 14.4	BRIDGE RECTIFIER	29
Figure 14.5	7805 VOLTAGE REGULATOR	30
Figure 14.6	AC PLOT	31
Figure 14.6.1	UNFILTERED DC PLOT	31
Figure 14.6.2	FILTERED DC PLOT	32
Figure 14.7	TRANSFORMER	33

Figure 14.7.3	STEP DOWN TRANSFORMER	4
Figure 14.8	BRIDGE RECTIFIER DURING POSITIVE HALF CYCLE3	5
Figure 14.9	BRIDGE RECTIFIER DURING NEGETIVE HALF	
	CYCLE3	6
Figure 14.10	OUTPUT WAVE FORMS OF BRIDGE RECTIFIER3	6