"Um pixel por vez"

TEC498 - MI - Projeto de Circuitos Digitais

Tutor: Marcos Paz

Curso de Engenharia da Computação Universidade Estadual de Feira de Santana (UEFS)

Componentes

- Alisson Vila verde
- Allen Hichard
- Cássio Santos
- Daniel Andrade
- Deivison Queiros
- Flávio Monteiro
- Henderson Chalegre
- Marcus Jose
- Nilson Augusto
- Patricia Carmona
- Solenir Figuerêdo
- Victor Rios

Introdução

Problema

Fundamentação teórica

FPGA- Arranjo de Portas Programáveis em Campo

Resistores

Cor	1º algarismo	2º algarismo	Fator Multiplicador	Tolerância
Preto	*	0	x 1	-
Marrom	1	1	x 10	土 1%
Vermelho	2	2	x 10 ²	± 2%
Laranja	3	3	x 10 ³	_
Amarelo	4	4	x 10 ⁴	_
Verde	5	5	x 10 ⁵	_
Azul	6	6	x 10 ⁶	_
Violeta	7	7	-	-
Cinza	8	. 8	-	_
Branco	9	9	-	
Ouro	-		x 10 ⁻¹	± 5%
Prata			x 10 ⁻²	± 10%

Fonte: CAPUANO, Francisco G. (Francisco Gabriel); MARINO, Maria Aparecida Mendes. Laboratorio de eletricidade e eletronica. 19. ed. rev

Resistores Pull Down

Fonte: http://www.resistorguide.com/pull-up-resistor_pull-down-resistor/ Acesso em 29 de Março de 2015.

Lei de OHM

Em que: V - Tensão Aplicada (V) R - Resistência Elétrica (Ω)

I - Intensidade de Corrente (A)

V = R . I

Diodo

Fonte:<http://pt.wikipedia. org/wiki/Diodo_semicondutor/> Acesso em: 29 de Marco de 2015.a

Matricial Bidimensional

Fonte:<http://www.soldafria.com. br/matriz-de-leds-azul-anodo-hs-757bbp-1797.html/> Acesso em: 29 de março de 2015.

Sistema de Numeração

• [...] o sistema de numeração tradicional que aprendemos na escola e usar todos os dias em negócio é chamado um sistema numérico posicional. Num tal sistema, um número está representado por uma sequência de dígitos, onde cada posição do dígito tem um peso associado. O valor de um número é uma soma ponderada dos dígitos, por exemplo: 1734 = 1·1000 + 7·100 + 3·10 + 4·1". (WAKERLY, 2001, p.26)

Chave DIP

Fonte: http://en.wikipedia.org/wiki/DIP_switch

Tabelas-verdade

Α	В	С	D	X
0	0	0	0	
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
0 0 0 0 0 0 0 1 1 1 1	0 0 0 1 1 1 0 0 0	0	0	0
1		0 0 1 1 0 0 1 1 0 0 1 1	0 1 0 1 0 1 0 1 0 1 0 1 0 1	0 0 1 1 0 0 1 0 0 1 0 0 1
1	1	1	0	0
1	1	1	1	1

Fonte: TOCCI, Ronald J.; WIDMER, Neal S. Sistemas digitais: principios e aplicacoes. 11. ed. São Paulo, SP Pearson Prentice Hall, 2011. xx, 819 p. ISBN 978857605922

Método do Mapa de Karnaugh

Passo 1	Construa o mapa K e coloque 1s nos quadrados
	que correspondem aos 1s na tabela-verdade. Co-
	loque 0s nos outros quadrados.
Passo 2	Examine o mapa para detectar 1s adjacentes e agru-
1 11350 2	pe aqueles 1s que <i>não</i> são adjacentes a quaisquer
	outros 1s. Estes são denominados 1s isolados.
Passo 3	Em seguida, procure por aqueles 1s que são adja-
	centes a somente um outro 1. Agrupe <i>todo</i> par que
	contém tal 1.
Passo 4	Agrupe qualquer octeto, mesmo que ele contenha
	alguns 1s que já tenham sido combinados.
Passo 5	Agrupe qualquer quarteto que contém um ou mais
1 4330 9	1s que ainda não tenham sido combinados,
	certificando-se de usar o número mínimo de agru-
	pamentos.
Passo 6	Agrupe quaisquer pares necessários para incluir
	quaisquer 1s que ainda não tenham sido combi-
	nados, certificando-se de usar o número mínimo
	de agrupamentos.
Passo 7	Forme a soma OR de todos os termos gerados por
Fasso /	
	cada agrupamento.

Operação OR

Fonte: TOCCI, Ronald J.; WIDMER, Neal S. Sistemas digitais: principios e aplicacoes. 11. ed. São Paulo, SP: Pearson Prentice Hall, 2011. xx, 819 p.

Operação AND

Fonte: TOCCI, Ronald J.; WIDMER, Neal S. Sistemas digitais: principios aplicacoes. 11. ed. São Paulo, SP: Pearson Prentice Hall, 2011. xx, 819 p. ISBN 978857605922

Operação NOT

Fonte: TOCCI, Ronald J.; WIDMER, Neal S. Sistemas digitais: principios e aplicacoes. 11. ed. São Paulo, SP: Pearson Prentice Hall, 2011. xx, 819 p. ISBN 978857605922

EDA- Automação de projeto eletrônico

Desenvolvimento

Funcionamento do Circuito

Fonte: MI de circuitos digitais

Tabela verdade para colunas

							Saída		
Entrada					Α	В	С	D	Е
Α	1	0	1	0	1	0	0	0	0
В	1	0	1	1	0	1	0	0	0
С	1	1	0	0	0	0	1	0	0
D	1	1	0	1	0	0	0	1	0
Е	1	1	1	0	0	0	0	0	1

Equações a partir da tabela verdade para colunas

```
A: E1 E2' E3 E4';
```

B: E1 E2' E3 E4;

C: E1 E2 E3' E4';

D: E1 E2 E3' E4;

E: E1 E2 E3' E4;

Tabela verdade para linhas

					Saída						
Entrada					0	1	2	3	4	5	6
0	0	0	0	0	0	1	1	1	1	1	1
1	0	0	0	1	1	0	1	1	1	1	1
2	0	0	1	0	1	1	0	1	1	1	1
3	0	0	1	1	1	1	1	0	1	1	1
4	0	1	0	0	1	1	1	1	0	1	1
5	0	1	0	1	1	1	1	1	1	0	1
6	0	1	1	0	1	1	1	1	1	1	0

Equações a partir da tabela verdade para linhas

```
0: E1' E2' E3' E4';
```

```
1: E1' E2' E3' E4;
```

Circuito Lógico completo

Decodificadores de colunas

Decodificadores de linhas

Cálculo de Resistência e Proteção do Circuito

```
V = VR + VD Onde: VR = Tensão no resistor 5 = VR + VD VD = Tensão no diodo 5 = R.I + 1,8 R = \underbrace{5 - 1,8}_{I} ao diodo R = \underbrace{5 - 1,8}_{10mA} R = \underbrace{0,32 \text{ K}\Omega}
```

Montagem do circuito na Protoboard e Ergonomia

Testes

Testes no ambiente Quartus II

Testes no ambiente Quartus II

Linha	O	Entrada	0000	Saída	0111111
Linha	1	Entrada	0001	Saída	1011111
Linha	2	Entrada	0010	Saída	1101111
Linha	3	Entrada	* 0011	Saída	1110111
Linha	4	Entrada	0100	Saída	1111011
Linha	5	Entrada	0101	Saída	1111101
Linha	6	Entrada	0110	Saída	1111110

Coluna	A	Entrada	1010	Saída	10000
Coluna	\mathbf{B}	Entrada	1011	Saída	01000
Coluna	\mathbf{C}	Entrada	1100	Saída	00100
Coluna	\mathbf{D}	Entrada	1101	Saída	00010
Coluna	\mathbf{E}	Entrada	1110	Saída	00001

Testes realizados de forma manual

Conclusão

Referências

- BDTI Focus Report: FPGAs for DSP, Second Edition, BDTI Benchmarking, 2006
- CAPUANO, Francisco G. (Francisco Gabriel); MARINO, Maria Aparecida Mendes. **Laboratorio de eletricidade e eletronica.** 19. ed. rev. ref Sao Paulo: Livros Erica, 2002. 309p ISBN 857194016-9
- DE ALENCAR FILHO, Edgard. Iniciação à lógica matemática. NBL Editora, 1986
- Duarte, R. e Sill, F. "Quartus II Desenvolvimento de Projetos via Esquemático", disponível via url http://www.cpdee.ufmg.br/~frank/lectures/SPP/SPP-Tutorial_quartus2_v1-1.pdf acessado em janeiro 2012.
- FPGAs accelerate time to market for industrial designs, M. Thompson, EE Times 7/2/2004 http://www.us.design-reuse.com/articles/8190/fpgas-accelerate-time-to-market-for-industrial-designs.html
- Menezes, M. Sato, L. Midorikawa, E. "Tutorial para Criar e Simular Circuitos Digitais no Altera Quartus(R) II versão 9.1", disponível em: http://www.pcs.usp.br/~labdig/material/GuiaResumido-Quartus_II_91_corrigida.pdf acessado em janeiro 2012
- R. Duarte and F. Sill, "Quartus ii desenvolvimento de projetos via esquemático," 2012.
- Sistemas digitais : principios e aplicacoes / Ronald J. Tocci, Neal S. Widmer; revisao tecnica Renato Giacomini; traducao: Jorge Ritter
- The Field-Programmable Gate Array (FPGA): Expanding Its Boundaries, InStat Market Research, April 2006
- WAKERLY, John F. Digital design: principles and practices. 3rd ed Upper Saddle River, N.J: Prentice Hall, c2001. 949p