OVERVIEW

- Molecular theory of gases: Ideal gas equation
- Mixtures of ideal gases, humidity
- Heat capacities of ideal gas; Dulong and Petit law
- Equipartition of energy

Molecular theory of gases

For N molecules of gas confined to a volume V, concentration n=N/V. The typical distance between molecules $\ell\sim n^{-1/3}$ For air at standard conditions $n\sim 3\times 10^{25}\,\mathrm{m}^{-3}$, hence $\ell\sim 30\,\mathrm{\AA}$

For gases at around room temperature and around atmospheric pressure

$$\ell \gg r_o$$

And neglecting the interactions is a good first approximation.

KINETIC-MOLECULAR MODEL OF AN IDEAL GAS

ASSUMPTIONS OF THE MODEL:

- $\textbf{ A container with volume } V \text{ contains } N \gg 1 \text{ identical } \\ \text{molecules with mass } m$
- Molecules act as point particles (i.e.: their size is much much smaller than the typical distance between them)
- Molecules do not interact with each other
- Molecules are in constant motion and occasionally collide with the container walls
- Each collision is perfectly elastic

For simplicity, we also assume that the container walls are infinitely massive

IDEAL GAS PRESSURE

Consider a molecule colliding with the wall:

$$dP_{\scriptscriptstyle X} = mv_{\scriptscriptstyle X} - (-mv_{\scriptscriptstyle X})$$

The force

$$F = \frac{dP_x}{dt} \times (\# \text{ of collisions})$$

Q: What is the number of molecules colliding with the wall during time *dt*?

IDEAL GAS PRESSURE II

For simplicity assume that all the molecules have the same velocity (this is wrong, and we'll undo this assumption in a minute)

To collide with the wall during time dt, a molecule must be no further from the wall than $v_x dt$ — it must be within an imaginary cylinder of the volume $Av_x dt$.

The number of collisions per area A during time dt is then

$$(Av_xdt)rac{N}{V} imesrac{1}{2}$$

left- and right-movers

IDEAL GAS PRESSURE III

Overall, the force is:

$$F = \frac{2mv_x}{dt} \times Av_x dt \frac{N}{V} \frac{1}{2} = mv_x^2 \frac{N}{V} \times A$$

and the pressure

$$p = F/A = mv_x^2 \frac{N}{V}$$

Can now undo the assumption that all molecules have the same velocity:

$$v_x^2 N = \underbrace{v_{x;1}^2 + v_{x;2}^2 + \dots + v_{x;N}^2}_{N \text{ terms}} = N \langle v_x^2 \rangle$$

Where $\langle v_x^2 \rangle \equiv \frac{1}{N} \left(v_{x;1}^2 + v_{x;2}^2 + \dots + v_{x;N}^2 \right)$ is the average value of the v_x^2 .

THE THE TER E 990

IDEAL GAS PRESSURE IV

Since x-, y-, and z- directions are equivalent (effects due to gravity can be neglected)

$$\langle v_x^2 \rangle = \langle v_y^2 \rangle = \langle v_z^2 \rangle$$

and

$$\langle v^2 \rangle = \langle v_x^2 + v_y^2 + v_z^2 \rangle = 3 \langle v_x^2 \rangle$$

and finally

$$pV = \frac{1}{3}m\langle v^2\rangle N$$

$$= \frac{2}{3}\underbrace{\frac{m\langle v^2\rangle}{2}}N$$
 average kinetic energy of a molecule

IDEAL GAS PRESSURE V

$$pV = \frac{2}{3} \frac{m\langle v^2 \rangle}{2} N$$

compare to the ideal gas equation $(\nu = N/N_A)$

$$pV = \nu RT = \frac{N}{N_A}RT$$

Temperature is the measure of the average kinetic energy of the molecules of a gas

$$\frac{m\langle v^2\rangle}{2} = \frac{3}{2}k_BT$$

Here

$$k_B = R/N_A = 1.38 \times 10^{-23} \, J/K$$

is the so-called Boltzmann constant

EQUATIONS OF STATE: A MIXTURE OF IDEAL GASES

- Humid air: the mixture of air and water vapor
- the air itself is approximately 78% N_2 , 21% O_2 , and the rest (Ar, CO_2 etc) total <1%.

For a mixture of ideal gases a, b, ..., the partial pressure of a component is defined as the pressure the component would have had if the other components were not present:

$$p_aV = \nu_aRT$$
, $p_bV = \nu_bRT$, etc

So that the net pressure is the sum of the *partial pressures*: $p = p_a + p_b + \dots$, and

$$\underbrace{\left(p_a + p_b + \dots\right)}_{\text{net pressure } p} V = \underbrace{\left(\nu_a + \nu_b + \dots\right)}_{\text{net number of moles } \nu} RT$$

HUMIDITY

news.bbc.co.uk/weather forecasts:

What exactly is humidity?

HUMIDITY (relative HUMIDITY, TO BE PRECISE)

Saturated vapor: a vapor phase of a substance when in equilibrium with the liquid (or solid) phase of the substance.

The pressure at which vapor saturates — saturated vapor pressure or just vapor pressure — depends on the temperature.

$$\label{eq:Humidity} \textit{Humidity} = \frac{\text{partial pressure of water vapor in the air}}{\text{saturated vapor pressure}}$$

When humidity = 100%, the air saturates [cf fog]

Dew point: (saturated) vapor pressure, $p_s(T)$, decreases as the temperature decreases. Cool the wet air: humidity increases until it reaches 100%. Cool the air further down \Rightarrow vapor condenses [until its pressure equals $p_s(T)$ again].

Internal energy of a (monoatomic) ideal gas

Q: What is the average kinetic energy of a mole of an ideal gas? A: For a single molecule,

$$\frac{m\langle v^2\rangle}{2} = \frac{3}{2}k_BT \qquad \text{(a single molecule)}$$

Multiplying both sides by N_A , and noticing that $N_A m = \mu$ (the molar mass), and that $R = k_B N_A$, we obtain

$$\frac{\mu \langle v^2 \rangle}{2} = \frac{3}{2}RT \qquad \text{(a mole of (monoatomic) ideal gas)}$$

To be precise, we only considered *monoatomic* gases: we only took into account translational motion of molecules.

INTERNAL ENERGY OF A (MONOATOMIC) IDEAL GAS

Recall that the *internal energy* U is defined as

$$U = \text{average kinetic energy of molecules} \\ + \text{potential energy of their interactions} \qquad \left(=0 \quad \text{for ideal gas}\right) \\ = \frac{3}{2} \nu RT$$

for ν moles of monoatomic ideal gas.

From the first law of thermodynamics: $U = \nu c_V T$ where c_V is the molar isochoric heat capacity, and $c_p = c_V + R$

$$c_V = \frac{3}{2}R$$
 $c_p = \frac{5}{2}R$ (monoatomic ideal gas)

HEAT CAPACITIES OF GASES

We have predicted:

$$c_V = \frac{3}{2}R = 1.5 \times 8.314 \,\mathrm{J/mol\,K} = 12.47 \,\mathrm{J/mol\,K}$$

Experimentally (at standard conditions):

Monoatomic	Gas	c_V , J/mol K	c_V/R
	He	12.47	1.5
	Ar	12.47	1.5
Diatomic	H ₂	20.42	2.46
	N_2	20.76	2.50
	O_2	20.85	2.51
	CO	20.85	2.51
Polyatomic	CO_2	28.46	3.42
	SO_2	31.39	3.78
	H_2S	25.95	3.12

The number of degrees of freedom

$$c_V = \frac{3}{2}R$$

The factor of 3 comes the fact that our space is three-dimensional:

$$\langle v_x^2 \rangle = \langle v_y^2 \rangle = \langle v_z^2 \rangle$$

Degrees of freedom:

The number of *degrees of freedom* (of an object) is the number of independent variables we need to describe its motion.

A diatomic molecule has two independent rotation axes \Rightarrow it has 3+2=5 degrees of freedom.

A polyatomic molecule generally has *three* independent axes (our space is three-dimensional!)

EQUIPARTITION OF ENERGY

In thermal equilibrium, the average energy per degree of freedom is

$$\frac{1}{2}k_BT$$
 (per molecule) $\frac{1}{2}RT$ (per mole)

monoatomic molecules:
$$f=3 \quad c_V=\frac{3}{2}R$$
 diatomic molecules:
$$f=3+2 \quad c_V=\frac{5}{2}R$$
 polyatomic molecules:
$$f=3+3 \quad c_V=\frac{6}{2}R$$
 (unless the molecule is linear)

HEAT CAPACITIES OF IDEAL GASES II

Experimentally (at standard conditions):

	Gas	c_V/R (expt) c_V/R (predicted)
Monoatomic	He	1.50	1.50
	Ar	1.50	1.50
Diatomic	H_2	2.46	2.50
	N_2	2.50	2.50
	O_2	2.51	2.50
	CO	2.51	2.50
Polyatomic	CO ₂	3.42	3.0
	SO_2	3.78	3.0
	H_2S	3.12	3.0

Agreement with experiment is better, but there's still something else!

Vibrational degrees of freedom

Vibrational degrees of freedom:

Atoms in a molecule can oscillate around their equilibrium positions. A better model of a chemical bond is a spring connecting two atoms

There are two vibrational degrees of freedom per bond

Two equivalent explanations:

- both atoms oscillate
- a spring has kinetic and potential energies

HEAT CAPACITIES OF GASES II

Experimental values of c_V for molecular hydrogen, H_2 :

Vibrational motion "freezes out" below certain temperatures (and so does rotational motion). This is a quantum mechanical effect.

HEAT CAPACITIES OF CRYSTALLINE SOLIDS

Consider a monoelemental solid.

A simplest model of a solid consists of balls connected by springs. Each spring has two degrees of freedom (or, each atom has kinetic and potential energy), hence equipartition of energy predicts for *N* atoms

$$U = 3k_BT \times N$$

Thus, the molar heat capacity

 $c_V = 3R$ independently of the material

This is known as a Dulong and Petit law.

HEAT CAPACITIES OF CRYSTALLINE SOLIDS II

Dulong and Petit law holds well for high enough temperatures.

To explain the low-temperature behaviour, one again needs quantum mechanics. (and in the low-T regime different materials behave differently)