

<u>Home</u> Chemistry

Periodic Table

Periodic Table

Part A	Tin
W	hich block of the periodic table contains the element tin?
	\bigcirc s
	p
	\bigcirc d
	\bigcirc f
Part B	Ytterbium
W	hich block of the periodic table contains the element ytterbium?
	○ s
	p
	\bigcirc d
	\bigcirc f
Part C	Lithium
Se	elect the correct statement about lithium.
	Lithium is in period 2 of the periodic table.
	Lithium has two protons in its nucleus.
	Lithium has an atomic number of 2.
	Lithium is in group 2 of the periodic table.

Select the correct statement. Phosphorus and antimony are neither in the same group nor in the same period as each other. Phosphorus and antimony are in the same group as each other. Phosphorus and antimony are both in the same group and in the same period as each other. Phosphorus and antimony are in the same period as each other. Phosphorus and antimony are in the same period as each other. Part E Groups Select the correct general statement. Elements in the same group have the same number of valence electrons, but can have different reactivities and atomic radii. Elements in the same group do not have the same number of valence electrons. Elements in the same group have the same number of valence electrons and therefore have the same atomic radius. Elements in the same group have the same number of valence electrons and are therefore equally reactive.

Created for isaacphysics.org by Andrea Chlebikova

Part D

Phosphorus and antimony

Chemistry

Electron configurations (D1.1)

Electron configurations (D1.1)

Complete the following ground state electron configurations.

Part B N

What is the ground-state electron configuration of N?

Items:

Part C Ne

What is the ground-state electron configuration of Ne?

Items:

Based on question D1.1 from Physical Chemistry book

Chemistry

Electron configurations (D1.4)

Electron configurations (D1.4)

Complete the following ground state electron configurations.

Part A H^- What is the ground-state electron configuration of H^- ? Items: 1s 2s 3s 2p 0 1 2 3

Part B O^{2-}

What is the ground-state electron configuration of O^{2-} ?

Items:

Based on question D1.4 from Physical Chemistry book

Chemistry

Essential Pre-Uni Chemistry D4.2

Essential Pre-Uni Chemistry D4.2

	ISOTOPE	# PROTONS	# NEUTRONS
Part A	Carbon-12		6
Part B	Carbon-13		
Part C	Technetium-99	43	
Part D	Iodine-131		
Part E	Polonium-210		
Part F	Uranium-233		
Part G	Rutherfordium-260		

Complete the table to show the numbers of protons and neutrons in each isotope.

Part A Carbon-12		
Number of protons		
Part B Carbon-13		
Number of protons		
Number of neutrons	5	

Part C	Technetium-99	
Nu	Number of neutrons	
Part D	Iodine-131	
Nu	Number of protons	
Nu	Number of neutrons	
Part E No	Polonium-210 Number of protons	
Nu	Number of neutrons	
Part F No	Uranium-233 Number of protons	
Ni	Number of neutrons	

art u	Rutherfordium-200
Ν	umber of protons
٨	imber of neutrons

Home Ch

Chemistry

Essential Pre-Uni Chemistry D4.1

Essential Pre-Uni Chemistry D4.1

Name the isotopes with the following numbers of protons and neutrons in their nuclei, e.g. 2 protons and 2 neutrons gives the answer helium-4.

Part A	1 proton and 2 neutrons.
1 p	proton and 2 neutrons.
	hydrogen-2
	lithium-3
	hydrogen-3
	helium-3
Part B	5 protons and 6 neutrons.
5 p	protons and 6 neutrons.
	oboron-6
	carbon-11
	beryllium-11
	oboron-11

15	protons and 16 neutrons.
	phosphorus-31
	sulfur-31
	phosphorus-32
	silicon-32
Part D	18 protons and 22 neutrons.
18	protons and 22 neutrons.
	opotassium-40
	argon-22
	argon-40
	chlorine-40
Part E	$27\mathrm{protons}$ and $33\mathrm{neutrons}.$
27	protons and 33 neutrons.
	copper-61
	cobalt-60
	zinc-59
	iron-60

 ${\bf Part \ C} \qquad 15 \ {\bf protons \ and} \ 16 \ {\bf neutrons}.$

35	protons and 44 neutrons.
	bromine-89
	bromine-79
	bromine-69
	selenium-79
Part G	38 protons and 52 neutrons
38	protons and 52 neutrons
	strontium-90
	rubidium-38
	strontium-52
	yttrium-80
Part H	$55~{ m protons}$ and $82~{ m neutrons}.$
55	protons and 82 neutrons.
	caesium-137
	caesium-82
	\bigcirc barium-137
	barium-82

 $35\ \mathrm{protons}$ and $44\ \mathrm{neutrons}$.

Part F

90	protons and 142 neutrons.
	actinium-232
	thorium-232
	thorium-142
	actinium-90
Part J	$95\ \mathrm{protons}$ and $146\ \mathrm{neutrons}.$
95	protons and 146 neutrons.
	americium-95
	americium-241
	plutonium-241
	curium-241

 ${\bf Part \, I} \hspace{.5cm} 90 \ {\bf protons \, and} \ 142 \ {\bf neutrons}.$

Chemistry

Essential Pre-Uni Chemistry D1.7

Essential Pre-Uni Chemistry D1.7

Give the chemical symbols for the atoms with the following ground state electron configurations:

Part A $[Ne] 3s^1$

[Ne] $3s^1$

Part B $[Ar] 3d^5 4s^2$

 $[Ar] \ 3d^5 \, 4s^2$

 ${\color{red}\textbf{Part C}} \quad \ 1s^2 \, 2s^2 \, 2p^6 \, 3s^2 \, 3p^6 \, 3d^8 \, 4s^2 \\$

 $1s^2\,2s^2\,2p^6\,3s^2\,3p^6\,3d^8\,4s^2$

 $\textbf{Part D} \hspace{0.5cm} \left[Ar \right] 3d^{10} \, 4s^2$

 $[{\rm Ar}]\, 3d^{10}\, 4s^2$

 $\textbf{Part E} \hspace{0.5cm} 1s^2 \, 2s^2 \, 2p^6 \, 3s^2 \, 3p^6 \, 3d^{10} \, 4s^2 \, 4p^6 \, 4d^{10} \, 4f^{14} \, 5s^2 \, 5p^6 \, 5d^{10} \, 6s^2 \, 6p^5 \\$

 $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 4d^{10} 4f^{14} 5s^2 5p^6 5d^{10} 6s^2 6p^5$

Chemistry

Essential Pre-Uni Chemistry D4.3

Essential Pre-Uni Chemistry D4.3

	SYMBOL	# PROTONS	# NEUTRONS	# ELECTRONS
Part A	$^{23}_{11}\mathrm{Na}$		12	
Part B	$^{40}_{19}{ m K}$			
Part C	$^{25}_{12}{ m Mg}^{2+}$	12		
Part D	$^{81}_{35}{ m Br}^-$			
Part E	$^{58}_{26}{ m Fe}^{3+}$			
Part F	$^{18}_{8}{ m O}^{2-}$			
Part G	²⁰⁶ ₈₂ ?			82
Part H	²³⁹ ?			93

Complete the table by filling any blank cell and any missing symbol indicated by a '?'.

Part A	$^{23}_{11}\mathrm{Na}$		
Nu	ımber of protons		
Nu	ımber of electrons		

Part B $^{40}_{19}\mathrm{K}$		
Number of protons		
Number of neutrons		
Number of electrons		
Part C $^{25}_{12}\mathrm{Mg}^{2+}$		
Number of neutrons		
Number of electrons		
Part D $^{81}_{35}\mathrm{Br}^-$		
Number of protons		
Number of neutrons		
Number of electrons		

Part E $^{58}_{26}\mathrm{Fe}^{3+}$
Number of protons
Number of neutrons
Number of electrons
Part F ${}^{18}_{8}\mathrm{O}^{2-}$
Number of protons
Number of neutrons
Number of electrons
Part G 206 ?
What is the element symbol corresponding to the question mark?
Number of protons
Number of neutrons

What is the element symbol corresponding to the question mark?
Number of protons
Number of neutrons

Part H

Home Chemistry

Essential Pre-Uni Chemistry D1.8

Essential Pre-Uni Chemistry D1.8

An ion of nickel is found to have the ground state electron configuration $1s^2 2s^2 2p^6 3s^2 3p^6 3d^7$ in the gas phase.

Give the numerical charge on the ion as an integer. Remember to include the appropriate sign in your answer (as $\pm N$ and not $N\pm$).

Chemistry

Electron Configuration

Electron Configuration

A species Z has the following electron configuration:

Figure 1: Electron configuration of Z

What could Z be?

1	2	3
Cl^+ ion	S atom	Ar^{2-} ion

1 only is possible

2 only is possible

3 only is possible

1 and 2 only are possible

1 and 3 only are possible

2 and 3 only are possible

1, 2 and 3 are possible

None are possible

Adapted with permission from UCLES, A Level Chemistry, November 1996, Paper 4, Question 31