大模型技术及开发

大模型部署

主讲人: 陈小军

时间: 2025.5.xx

解码策略

- ▶解码:基于输入(提示)生成输出的过程
- ▶ 自回归解码:逐词生成下一个词
 - ➤ 目前大模型主要采用Transformer 解码器架构

伪代码: 自回归解码流程

解码策略

> 贪心搜索:每个生成步骤中都选择概率最高的词元

ui = arg maxp u I U<i

○ 贪心搜索的改进

- ▶束搜索: 每步保留前n 个具有最高概率的句子
 - >缓解贪心搜索陷入"局部最优"的问题

在第一步解码过程 中保留了概率最高 的两个单词

束搜索第一步(n=2)

▶ 贪心搜索的改进

- ▶束搜索: 每步保留前 n 个具有最高概率的句子
 - >缓解贪心搜索陷入"局部最优"的问题

束搜索第二步(n=2)

在第二步解码过程 中进一步拓展了两 个概率最高的单词

解码策略

- ▶随机采样:基于概率分布采样得到下一个词元
 - ▶增强结果的多样性

 $U_i \sim P(U \mid u < i)$

I am sleepy. I start a pot of					
coffee	0.681	strong	0.008	soup	0.005
water	0.119	black	0.008		
tea	0.057	hot	0.007	happy	4.3e-6
rice	0.017	oat	0.006	Boh	4.3e-6
chai	0.012	beans	0.006		

基于文本前缀的下一个词概率分布

►温度采样: 调整 softmax 函数的温度系数

$$P(u_j \mid \boldsymbol{u}_{< i}) = \frac{\exp(l_j/t)}{\sum_{j'} \exp(l_{j'}/t)}$$

▶降低温度系数,增加高概率词元可能性,降低低概率词元可能性

- ➤ Top-t 采样: 仅从概率前t 高的词元中采样
 - >直接剔除低概率的词,兼顾生成质量

top-t 采样 (*k*=3)

- ➤ Top-# 采样: 仅从累积概率和为# 的高概率词元中采样
 - >考虑整体概率分布,适应不同场景

top-p 采样 (p=0.8)

- ▶ 重复惩罚:缓解生成重复文本
 - ▶ n-元惩罚
 - ➤ 直接避免生成重复的连续 n 个词元 (通常n ∈ {3,4,5})
 - ▶ 出现惩罚
 - ightharpoonup 词元 t 生成的概率 $P(t) = logit(t) 是否出现(t) \times \alpha$
 - ▶ 频率惩罚
 - ightharpoonup 词元 t 生成的概率 $P(t) = logit(t) 出现次数(t) × <math>\alpha$

- ▶对比解码
 - ▶在大模型和小模型的概率分布差值中采样
- > 大模型会为更重要的单词分配更高的概率
 - ▶借助两者之间的差异发掘重要词汇

李时珍是湖北人,他出生于___

生成"明朝"概率大幅增加

解码与键值缓存

每生成一个词,重 新计算所有查询、 键、值矩阵

新生成词的查询向 量与之前词缓存的 键值计算注意力

▶ 解码与键值缓存

▶基于键值缓存优化的贪心解码算法示意图

```
输入: 模型 M, 输入词序列 u
输出: 输出词序列 y
                                                                              Attention(q, K, V) = softmax(\frac{q}{d}
 1: P, K_{past}, V_{past} = \mathcal{M}(u)
2: \hat{u} = \arg \max P - 全量解码
 3: \boldsymbol{u} \leftarrow \boldsymbol{u} \oplus [\hat{u}]
 4: while \hat{u} 不是结束词且 u 的长度不超过预设长度 do
5: P, k, v = M(\hat{u}, K_{past}, V_{past}) # 利用键值缓存计算新生成词状态
 6: \hat{u} = \arg \max P
      u \leftarrow u \oplus [\hat{u}] 解码加速的两个关键 K_{past}, V_{past} \leftarrow K_{past} \oplus k, V_{past} \oplus v \# 更新键值缓存
                                                                                                                   - 增量解码
     u \leftarrow u \oplus [\hat{u}]
 9: end while
10: \mathbf{y} \leftarrow \mathbf{u}
```


解码效率的定量评估指标

GPU 评估指标

算力:每秒的浮点运算次数,FLOP/s

带宽:每秒的显存读写量,byte/s

计算强度上限: 算力和带宽的比值

模型评估指标

运算量: 所需总浮点运算数, FLOP

访存量: 所需总显存读写量, byte

计算强度: 运算量和访存量的比值

A100 (80G): 算力为312 TFLOP/s, 带宽为2039 GB/s, 计算强度上限 约为142.51 FLOP/byte

解码效率的定量评估指标

> 效率问题分析

- ▶ 带宽瓶颈
 - ➤ 模型计算强度 < GPU 计算强度上限
 - > 运行效率主要受显存读写速度的影响
- ▶计算瓶颈
 - ➤ 模型计算强度 > GPU 计算强度上限
 - ▶运行效率主要受运算速度的影响

- ▶矩阵乘法的运算量
 - ➤矩阵A ∈ R n×m 和矩阵B ∈ R m×p 相乘所需的运算量为2nmp
- > 矩阵乘法的访存量
 - ➤矩阵A ∈ R n×m 和矩阵B ∈ R m×p 相乘所需的访存量为O(nm + mp + np)
- ▶矩阵乘法的计算强度
 - ightrightarrow运算量比访存量为 $O(\frac{1}{\frac{1}{n} + \frac{1}{m} + \frac{1}{p}})$

- ➤ 张量X ∈ R B×T×H与矩阵B ∈ R H×H 相乘
 - ▶运算量: 2BTH²
 - ➤ 访存量: O (BTH + H²)
 - ▶ 计算强度: $O(\frac{1}{\frac{1}{H} + \frac{1}{BT}})$
- ightharpoons注意力计算 softmax $\left(\frac{QK^{\mathsf{T}}}{D}\right)$ V , Q, K, $V \in \mathbb{R}$ B×T×N×D
 - ▶运算量:两次矩阵乘法各2BT2ND, softmax运算和√D放缩共4BT2N
 - ➤访存量: 两次矩阵乘法O(BTND + BT2N), 其他运算O(BT2N)
 - ▶ 计算强度: $O(\frac{1+\frac{1}{D}}{\frac{1}{D}+\frac{1}{T}})$

- ▶全量解码阶段的计算强度(推导见教材)
 - >线性变换强度约为2730.7
 - >公式1468
 - 多头注意力强度约为114.7
 - >公式③
 - ▶其余操作强度约为1
 - >公式2579

A100 (80G) 的计算强度上限为142.5 全量解码是**计算瓶颈**的

计算公式	计算强度
	$O\left(\frac{1}{\frac{1}{2}+\frac{1}{2}}\right)$
@Q,K = RoPE(Q,K)	O(1)
$\odot \boldsymbol{O} = \operatorname{Attn}(\boldsymbol{Q}, \boldsymbol{K}, \boldsymbol{V})$	$O\left(\frac{1+\frac{1}{D}}{\frac{1}{D}+\frac{1}{T}}\right)$
	$O\left(\frac{1}{\frac{1}{H} + \frac{1}{BT}}\right)$
	$O\left(\frac{1}{1+\frac{1}{BT}}\right)$
	$O\left(\frac{1}{\frac{1}{H} + \frac{1}{H'} + \frac{1}{BT}}\right)$
	O(1)
	$O\left(\frac{1}{\frac{1}{H} + \frac{1}{H'} + \frac{1}{BT}}\right)$
	$O\left(\frac{1}{1+\frac{1}{RT}}\right)$

B = 8 T = 1024 H = 4096 D = 128

- ▶增量解码阶段的计算强度(推导见教材)
 - ▶将全量解码公式(注意力除外)中T变为1
 - >线性变换的计算强度约为8.0
 - ▶公式①579
 - 多头注意力的计算强度约为 1.0
 - >公式④

A100 (80G) 的计算强度上限为142.5 增量解码是带宽瓶颈 ("内存墙"问题)

计算公式	计算强度
	$O\left(\frac{1}{\frac{1}{H}+\frac{1}{R}}\right)$
@ q, k = RoPE(q, k)	O(1)
3 $ K, V = Cache(k, v) $	=
$\textcircled{4} o = \operatorname{Attn}(q, K, V)$	$O\left(\frac{1+\frac{1}{D}}{1+\frac{1}{D}+\frac{1}{T}}\right)$
	$O\left(\frac{1}{\frac{1}{H} + \frac{1}{B}}\right)$
	$O\left(\frac{1}{1+\frac{1}{B}}\right)$
	$O\left(\frac{1}{\frac{1}{H} + \frac{1}{H'} + \frac{1}{B}}\right)$
\otimes $d = Swish(g) \cdot u$	0(1)
$ x = dW^D$	$O\left(\frac{1}{\frac{1}{H} + \frac{1}{H'} + \frac{1}{B}}\right)$
	$O\left(\frac{1}{1+\frac{1}{B}}\right)$

$$B = 8$$
 $T = 1024$ $H = 4096$ $D = 128$

系统级优化

- ➤ FlashAttention
 - ightharpoonup 改进注意力计算 softmax $\left(\frac{QK^{\mathsf{T}}}{D}\right)$ V
 - >通过矩阵分块和算子融合,减少中间结果读写,减少访存量

将QKV 分块计算, 在SRAM 中直接计 算得到最终结果

▶ 系统级优化

- >传统批次推理:一个批次全部推理完成才进行下一个
- ▶批次管理优化:将每个请求进行分割,提升实际运行批次
 - ▶连续批处理
 - > 分割为一个全量解码和若干个单步增量解码
 - > 启发式选择部分请求全量解码或单步增量解码
 - ▶动态分割
 - > 将全量解码进一步拆分
 - > 同时进行全量解码和增量解码

传统批次推理

批次管理优化

- ▶推测解码
 - ▶ 先用小且高效的模型自回归地生成3~5个词元
 - > 再由大模型对这个片段进行一次验证,进行拒绝与修改
 - >不会降低大模型解码质量,一般带来两倍左右加速

- > 级联解码
 - >引入一系列模型,按照效率从高到低排序
 - ▶依次让模型生成答案,由二分类器判断
 - ▶如果结果可靠则不需要后续生成

通过优先让相对较小模型进行解码,减少更大模型的调用开销

- ▶非(半)自回归解码
 - ▶ 非自回归解码: 基于输入一次性生成所有词元
 - ▶半自回归解码:组内非自回归生成,组间自回归生成

- ▶非(半)自回归解码
 - >非自回归解码:基于输入一次性生成
 - ▶半自回归解码:组内非自回归,组间自回归
- ➤ Medusa
 - ► 额外训练两个预测头分别预测第二个词 和第三个词
 - >结合推测解码,加速原始大模型生成
 - ▶不影响生成质量,推理加速2.2倍

▶早退机制

- > 不需要所有层计算,满足条件跳过后续层计算
- >每层得到输出概率分布,计算分布的熵值;如果熵值较低,则提前退出

▶早退机制

- > 不需要所有层计算,满足条件跳过后续层计算
- >每层得到输出概率分布, 计算分布的熵值
- > 如果熵值较低,则提前退出
- ➤混合深度方法 (借鉴MoE)
 - ▶每层根据路由网络判定是否进行该层计算
 - ▶ 可以平衡时间开销,最多减少50% 计算开销

▶ 量化基础知识

▶量化: 将映射浮点数到整数的过程

$$XQ = R(X/S) - Z$$

▶反量化: 从量化值中恢复原始值

$$\widetilde{X} = S \bullet (xq + Z)$$

 \rightarrow 量化误差:原始值X和恢复值 \tilde{X} 之间的数值差异

$$\Delta = \left\| \boldsymbol{X} - \widetilde{\boldsymbol{X}} \right\|_{2}^{2}$$

R: 取整函数

S: 放缩因子

Z: 零点因子

量化的目标是最小化量化误差

▶ 量化基础知识

- ▶对称量化和非对称量化
 - ➤ 根据零点因子Z 是否为零

▶量化粒度的选择

张量量化:一个矩阵

定义一组量化参数

1	2	S_{W}
-1	0	
0	-2	
-1	2	
W	F16	

通道量化:一个矩阵对列维度 设置特定的量化参数

量化基础知识

▶ 非对称量化方法计算示例

$$X = 1.2, 2.4, 3.6, 11.2, 12.4, 13.6$$

$$S \cdot 127 + Z = 13.6$$

$$S \cdot -128 + Z = 1.2$$

$$\Rightarrow$$
 S = 0.0486, Z = -152

$$X_q = [-127, -103, -78], [78,103,127]$$

结果: [[1.22, 2.38, 3.60], [11.18, 12.40, 13.58]]

确定输入范围 ∈ [1.2, 13.6]

量化到整数范围 [-128,127] 两个边界值映射

计算量化参数 S 和 Z

计算量化后结果 Xq

计算反量化后结果

▶ 训练后量化方法

- ➤ 权重量化 (w 是原始权重)
 - ▶ 最小化重构损失 (w_q 是量化后权重)
 arg min | Xw Xw_q | ½
 - ➤ GPTQ: 将权重矩阵按照列维度分组,逐组量化

- 3/4 比特量化与16比特对比
- 模型越大, 表现越接近

训练后量化方法

- ▶权重和激活值量化
 - >模型达到一定规模,某些维度会出现异常激活值

▶混合精度分解:将异常值(16比特)和正常值(8比特)分开计算

正常值使用8 比特量化

异常值使用16 比特计算

▶ 模型蒸馏

- > 模型蒸馏
 - ▶将复杂模型的知识迁移到简单模型上
- ▶基于反馈的知识蒸馏
 - ▶使用教师模型的输出概率分布作为学生模型的"软标签"

让学生模型的输出 与教师模型接近

▶ 模型蒸馏

- > 模型蒸馏
 - ▶将复杂模型的知识迁移到简单模型上
- >基于特征的知识蒸馏
 - 使用教师模型中间层的输出特征作为监督信息训练学生模型 $\mathcal{L}(f_t(x), f_s(x)) = \mathcal{L}_F(\Phi(f_t(x)), \Phi(f_s(x)))$

Φ(.)用于转换输出维度

相较于输出层,中间层能提供更丰富的信息

谢谢大家 Вује : 202X.X