

CÁLCULO NUMÉRICO

Conjunto de métodos utilizados para resolver problemas matemáticos de forma exata ou aproximada através de procedimentos computacionais.

ERROS NA RESOLUÇÃO

São fortemente influenciados pela precisão.

☐ Têm relação com a representação numérica (nós manipulamos os números na base decimal, os computadores, na base binária).

☐ Observando que pode ocorrer: máquinas com precisão diferente, ainda que com o mesmo software.

TIPOS DE ERROS DE PRECISÃO

Arredondamento: relacionados com as limitações na forma de representar um número.

Truncamento: relacionado a um procedimento finito para um processo matemático infinito.

De máquina: relacionado à capacidade de memória da máquina.

ERROS NA REPRESENTAÇÃO

Na representação de um número, pode ser impossível escrever todos os dígitos que o representam de forma exata. No caso de uma máquina, que tem memória finita, esta representação depende da base, e é preciso definir a quantidade máxima de espaço para escrever os dígitos correspondentes à representação desse número.

Por exemplo: na base decimal, o número racional $\frac{29189}{33300}$ corresponde à seguinte dízima

periódica 0,87654654654654, com período 654 (sequência de dígitos que se repete infinitamente) e antiperíodo 87. Temos, portanto uma limitação física para escrever toda a dízima (espaço e tempo). Esta é uma limitação humana e também de um computador (memória finita).

Logo, será preciso representar só uma quantidade finita da sequência de dígitos que compõem a dízima, o que poderá ser feito "truncando" o número, apresentando-o, assim, de forma aproximada.

O fato de a memória de uma máquina ser finita traz também a necessidade de "arredondamento" para um número composto por uma sequência finita e "muito grande" de dígitos ou mesmo a substituição do número por um "número de máquina".

ERROS DE ARREDONDAMENTO

Arredondar um número na casa (dígito) d_i significa desconsiderar as casas d_{i+j} , j=1,2,3,..., de tal forma que:

 $\succ d_i$ seja a última casa se $d_{i+1} < 5$;

 $\gt d_i + 1$ seja a última casa se $d_{i+1} \ge 5$.

ERROS DE TRUNCAMENTO

São erros que ocorrem em processos que, em princípio, são infinitos, como, por exemplo, nas séries (séries numéricas, séries de funções).

Obviamente, o dígito 3 é infinitamente repetido na representação do número racional acima. É preciso, então, nos restringir a um número finito de repetições disso. Isto significa nos satisfazer com uma soma finita, ou seja, considerar um número finito de parcelas da série acima.

ERROS DE TRUNCAMENTO

Outro exemplo:

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} \dots + \frac{x^k}{k!} + \dots = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

Em particular:

$$e = 2 + \frac{1}{2!} + \frac{1}{3!} \dots + \frac{1}{k!} + \dots = \sum_{n=0}^{\infty} \frac{1}{n!}$$

Portanto, para obter uma representação finita do número irracional (e transcendente) e, devemos usar um número finito de parcelas da série acima (truncar a série).

ERROS DE MÁQUINA

Os computadores têm memória finita. Portanto, eles só podem representar uma quantidade finita de números. A representação desses números, na base binária, segue um sistema chamado de "sistema de ponto flutuante" que preestabelece quais e quantos números podem ser representados na máquina.

ERROS DE MÁQUINA

- \square No intervalo dos positivos, há uma maior concentração de números da máquina próximos de x_1 . No intervalo dos negativos, há uma maior concentração de números da máquina próximos de $-x_1$.
- \square Quando uma operação numérica na máquina resulta em um número maior que x_2 ou menor que $-x_2$, ocorre o chamado overflow.
- \square Quando uma operação numérica na máquina resulta em um número não nulo entre $-x_1$ e x_1 , ocorre o chamado underflow.
- Quando uma operação numérica na máquina resulta em um úmero no intervalo $[x_1, x_2]$ ou no intervalo $[-x_2, -x_1]$, mas que não é nenhum dos finitos números da máquina, então esse número é substituído pelo número da máquina mais próximo. Isto leva a um "erro de máquina".

INEVITABILIDADE DOS ERROS

- ☐ Diante do que foi exposto, deve-se ter consciência de que os erros são, praticamente, inevitáveis e vão se acumulando durante o processo de solução numérica de um problema.
- É preciso, portanto, minimizar a influência de cada um dos tipos de erros, o que exige, quase sempre, um bom conhecimento analítico matemático.
- ☐ É essencial avaliar tais erros. Para tal, eles são quantificados através de medidas bem definidas, sendo as duas principais o ERRO ABSOLUTO e o ERRO RELATIVO.

AVALIANDO ERROS

Ao longo do nosso curso, usaremos duas medidas de avaliação do erro entre o valor exato \bar{x} de uma solução de um dado problema e o valor aproximado \tilde{x} desta solução, obtido por algum método numérico:

- \square Erro absoluto: $|\bar{x} \tilde{x}|$;
- \Box Erro relativo: $\frac{|\bar{x}-\tilde{x}|}{|\bar{x}|}$.
- \Box O erro absoluto dá uma resultado com a unidade de medida da variável x, enquanto o erro relativo não depende da unidade de medida (é adimensional), dando uma medida percentual do erro

Considere, por exemplo que a variável x do problema seja medida em metros. Suponha que a solução exata do problema seja $\bar{x}=152~m$ e que, ao aplicar um método numérico para resolver o problema de forma aproximada, seja obtida a solução aproximada $\tilde{x}=157~m$.

Erro absoluto:
$$|\bar{x} - \tilde{x}| = 5 m$$
; Erro relativo: $\frac{|\bar{x} - \tilde{x}|}{|\bar{x}|} = \frac{|152 - 157|}{|152|} = 0.032894 \approx 3.3 \%$

PROBLEMAS A SEREM TRABALHADOS EM MAT 271

o longo do nosso curso, apresentaremos métodos numéricos para resolvei o seguintes problemas:
Equações não-lineares de uma única variável;
Aproximações de funções por interpolação polinomial;
Sistemas de equações lineares;
Integração definida;
Problemas de Valor Inicial