HW1

3032247297

3)

```
#install.packages(c("dplyr", "ggplot2", "GGally", "broom"))
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
library(ggplot2)
library(GGally)
## Registered S3 method overwritten by 'GGally':
##
    method from
##
     +.gg ggplot2
##
## Attaching package: 'GGally'
## The following object is masked from 'package:dplyr':
##
##
       nasa
library(readxl)
\#install.packages("car")
library(car)
## Loading required package: carData
##
## Attaching package: 'car'
## The following object is masked from 'package:dplyr':
##
##
       recode
```

```
wrangler <- read.csv("C:/Users/Murtz.Kizilbash/Desktop/ieor142/hw1/Wrangler142-Fall2019.csv")
#wrangler</pre>
```

- a)
- b) the linreg equation of my model is $y = -952.18 + 257.86(x) + \epsilon$. Someone should interpret the independent variables as "for every 1 change in this variable, sales changes by the coefficient of the variable".
- ii) I selected the variables based on their p values and statistical significance.
- iii) Yes, the signs of the coefficients make sense because we would expect that if more people are searching for wranglers, then they are more inclined to buy one leading to more sales. As for unemployment, when unemployment goes down, people have more money to spend because they have income, therefore when unemployment goes up, sales should go down. For CPI, if it goes up, then goods become more expensive therefore people are less likely to buy an item such as a Jeep Wrangler.
- iv) The model fits our training data with an r squared value of .79 so it is doing a great job of predicting the training values, this is because we are using the training data to build our model so it should fit to it pretty well.

```
broncos <- read_excel("C:/Users/Murtz.Kizilbash/Desktop/ieor142/hw1/multiTimeline (1).xlsx", skip = 1)
rsq <- function (x, y) cor(x, y)^2
wrangler$fordquery <- broncos$`ford bronco: (United States)`</pre>
wrangler.train <- filter(wrangler, Year >= 2010 & Year <= 2015 )
wrangler.test <- filter(wrangler, Year >= 2016 & Year <= 2019)
wrangler.Indep.Vars <- wrangler[5:8]</pre>
wranglerSales.predict <- lm(WranglerSales ~ Unemployment + WranglerQueries + CPI.All + CPI.Energy, data
#summary(wranglerSales.predict)
#drop cpi energy
wranglerSales.predict1 <- lm(WranglerSales ~ Unemployment + WranglerQueries + CPI.All, data = wrangler.
#summary(wranglerSales.predict1)
#drop cpi.all
wranglerSales.predict2 <-lm(WranglerSales ~ Unemployment + WranglerQueries, data = wrangler.train)
#summary(wranglerSales.predict2)
rsq(predict(wranglerSales.predict1, wrangler.train), wrangler.train$WranglerSales)
## [1] 0.7942801
```

b)

wranglerSales.predict_season <- lm(WranglerSales ~ Unemployment + WranglerQueries + CPI.All + CPI.Energ
summary(wranglerSales.predict_season)</pre>

```
##
## Call:
## lm(formula = WranglerSales ~ Unemployment + WranglerQueries +
       CPI.All + CPI.Energy + MonthFactor, data = wrangler.train)
##
##
##
  Residuals:
##
       Min
                                 3Q
                1Q
                    Median
                                        Max
                    -184.2
                             538.5
##
   -2936.3
           -671.6
                                     8256.9
##
## Coefficients:
##
                         Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                        -69628.03
                                     54007.71
                                              -1.289
                                                       0.20262
## Unemployment
                           845.80
                                      1001.10
                                                0.845
                                                       0.40178
                                                2.849 0.00613 **
## WranglerQueries
                           175.69
                                        61.67
## CPI.All
                           317.32
                                       236.31
                                                1.343
                                                       0.18475
## CPI.Energy
                           -25.28
                                        28.71
                                               -0.880
                                                       0.38240
## MonthFactorAugust
                           -62.76
                                       944.94
                                               -0.066
                                                       0.94728
## MonthFactorDecember
                          -175.82
                                      1060.77
                                               -0.166
                                                       0.86896
## MonthFactorFebruary
                         -1078.14
                                       906.32
                                               -1.190
                                                       0.23923
## MonthFactorJanuary
                         -3262.64
                                       953.93
                                               -3.420
                                                       0.00117 **
## MonthFactorJuly
                          -176.09
                                      1003.11
                                               -0.176
                                                       0.86128
## MonthFactorJune
                           313.29
                                                0.330
                                                       0.74241
                                       948.52
## MonthFactorMarch
                          -173.75
                                       887.58
                                               -0.196
                                                       0.84551
## MonthFactorMay
                                       910.63
                                                2.081
                                                       0.04205 *
                          1894.71
## MonthFactorNovember
                          -1660.69
                                      1008.11
                                               -1.647
                                                       0.10509
## MonthFactorOctober
                          -776.15
                                       986.73
                                               -0.787
                                                       0.43484
## MonthFactorSeptember
                          -945.17
                                       890.99
                                               -1.061
                                                       0.29333
## ---
## Signif. codes:
                  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1535 on 56 degrees of freedom
## Multiple R-squared: 0.8698, Adjusted R-squared: 0.8349
## F-statistic: 24.94 on 15 and 56 DF, p-value: < 2.2e-16
```

i) The new model has several coefficients that correspond to the increase or decrease in sales at any given month, the new regression equation is as follows:

```
sales = -69628.03 + x(845.80 + 175.69 + 317.32 - 25.28) + month factor(y)
```

One should interpret the coeff of the month factor variables as the increase or decrease in sales during that month. For example if the month is july then we should expect 176 fewer sales.

- ii) The training set r^2 is .8698, the variables that are significant are the monthfactors for July and March, alongside Wrangler Queries.
- iii) I think that including the variable MonthFactor does improve the quality of the model, however I do worry about overfitting since the statistical significance of the months was only true on 2 of the 11 months. Therefore it is hard to believe that there is extreme seasonality with Wranglers, it could just be a slight correlation.

iv) Instead of having the months as factors of one month I would slice them based on a couple of months. In this case Fall, Spring, Summer, Winter. For example I would set the month factor for isWinter to be 1 if the months that the sales we are looking at are November, December, and January. In this way we are looking at actual seasonality instead of just one month, since one month is hardly equivalent to a season. I think this new way would improve the model because we will have less coefficients ultimately in our regression equation.

```
v)
wranglerSales.final <- lm(WranglerSales ~ Unemployment + WranglerQueries + CPI.All + MonthFactor, data
summary(wranglerSales.final)
##
## Call:
## lm(formula = WranglerSales ~ Unemployment + WranglerQueries +
       CPI.All + MonthFactor, data = wrangler.train)
##
##
## Residuals:
##
       Min
                1Q
                    Median
                                3Q
                                        Max
   -3009.7
            -682.2
                    -135.0
                              580.2
                                    8217.5
##
## Coefficients:
##
                          Estimate Std. Error t value Pr(>|t|)
                                                -1.262
## (Intercept)
                        -25567.033
                                     20264.000
                                                        0.21220
## Unemployment
                            72.658
                                       479.716
                                                 0.151
                                                        0.88015
## WranglerQueries
                           189.436
                                        59.548
                                                 3.181
                                                        0.00237 **
## CPI.All
                           122.298
                                        82.147
                                                 1.489
                                                        0.14206
## MonthFactorAugust
                           -62.480
                                       943.075
                                                -0.066
                                                        0.94741
## MonthFactorDecember
                            -7.806
                                      1041.406
                                                -0.007
                                                        0.99405
                         -1064.185
                                       904.396
                                                -1.177
                                                        0.24421
## MonthFactorFebruary
## MonthFactorJanuary
                         -3169.514
                                       946.180
                                                -3.350
                                                        0.00144 **
## MonthFactorJuly
                                                -0.244
                          -243.638
                                       998.192
                                                        0.80805
## MonthFactorJune
                           253.589
                                       944.229
                                                 0.269
                                                        0.78923
                                                        0.84158
## MonthFactorMarch
                          -177.858
                                       885.813
                                                -0.201
## MonthFactorMay
                          1860.758
                                       908.015
                                                 2.049
                                                        0.04505 *
## MonthFactorNovember
                         -1476.834
                                       984.294
                                                -1.500
                                                        0.13903
## MonthFactorOctober
                          -659.896
                                       975.929
                                                -0.676
                                                        0.50167
## MonthFactorSeptember
                          -893.439
                                       887.294
                                                -1.007
                                                        0.31823
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1532 on 57 degrees of freedom
## Multiple R-squared: 0.868, Adjusted R-squared: 0.8356
## F-statistic: 26.78 on 14 and 57 DF, p-value: < 2.2e-16
p = predict(wranglerSales.final, wrangler.test)
test = wrangler.test$WranglerSales
rsq <- function (x, y) cor(x, y)^2
rsq(p, test)
```

wrangler

##		MonthNumeric	MonthFactor	Year	WranglerSales	Unemployment
##	1	1	January	2010	4888	9.8
##	2	2	February	2010	5967	9.8
##	3	3	March	2010	8410	9.9
##	4	4	April	2010	8327	9.9
##	5	5	May	2010	9634	9.6
##	6	6	June	2010	8923	9.4
##	7	7	July	2010	10043	9.4
##	8	8	August	2010	7666	9.5
##	9	9	September	2010	7765	9.5
##	10	10	October	2010	7908	9.4
##	11	11	November		6552	9.8
##	12	12	December	2010	8227	9.3
##	13	1	January	2011	6444	9.1
##	14	2	February		7636	9.0
##	15	3	March	2011	8807	9.0
##	16	4	April	2011	9051	9.1
##	17	5	May	2011	10008	9.0
##	18	6	June	2011	11290	9.1
##	19	7	July	2011	14355	9.0
##	20	8	August	2011	12949	9.0
##	21	9	September	2011	11388	9.0
##	22	10	October	2011	9892	8.8
##	23	11	November	2011	9225	8.6
##	24	12	December	2011	11415	8.5
##	25	1	January	2012	7896	8.3
##	26	2	February		18638	8.3
##	27	3	March	2012	12557	8.2
##	28	4	April	2012	12184	8.2
##		5	May	2012	15454	8.2
##		6	June		14461	8.2
##		7	July		12216	8.2
##		8	August		13293	8.1
##		9	September		12097	7.8
##		10	October		11310	7.8
##		11	November		10337	7.7
##		12	December		11545	7.9
##		1	January		8854	8.0
	38	2	February		10091	7.7
	39	3	March		12901	7.5
##		4	April		13445	7.6
##		5	•	2013	16272	7.5
	42	6		2013	16165	7.5
	43	7	•	2013	14404	7.3
	44	8	August		15825	7.3
	45	9	September		11984	7.2
	46	10	October		11780	7.2
	47	11	November		11753	6.9
	48	12	December		12028	6.7
##	49	1	January	2014	9553	6.6

		_				
##		2	February		10640	6.7
##		3	March		14481	6.7
##		4	April		15389	6.2
##		5	May	2014	19235	6.3
##	54	6		2014	16439	6.1
##	55	7	July	2014	16388	6.2
##	56	8	August	2014	17988	6.2
##	57	9	September	2014	13955	5.9
##	58	10	October	2014	13665	5.7
##	59	11	November	2014	13592	5.8
##	60	12	December	2014	14003	5.6
##	61	1	January	2015	11683	5.7
##	62	2	February		12911	5.5
##	63	3	March		17524	5.4
##	64	4	April		18849	5.4
##	65	5	-	2015	22324	5.5
##	66	6	_	2015	19159	5.3
##	67	7		2015	19320	5.2
	68	8	August		18160	5.1
	69	9	September		17583	5.0
	70	10	October		15751	5.0
	70	11	November			5.0
					13847	
	72	12	December		15591	5.0
	73	1	January		10797	4.9
	74	2	February		13234	4.9
	75	3	March		17710	5.0
	76	4	April		19003	5.0
	77	5	•	2016	19551	4.7
	78	6		2016	20060	4.9
	79	7	=	2016	18741	4.9
	80	8	August		15290	4.9
	81	9	September		14255	4.9
	82	10	October		14469	4.8
	83	11	November		12957	4.6
	84	12	December		15721	4.7
##	85	1	January	2017	11334	4.8
##		2	February		13641	4.7
##	87	3	March	2017	16336	4.5
##	88	4	April	2017	18841	4.4
##	89	5	v	2017	19931	4.3
##	90	6	June	2017	18839	4.3
##	91	7	July	2017	18698	4.3
##	92	8	August	2017	16808	4.4
##	93	9	September	2017	15714	4.2
##	94	10	October	2017	13391	4.1
##	95	11	November	2017	13289	4.1
##	96	12	December	2017	13700	4.1
##	97	1	January	2018	11739	4.1
##	98	2	February		15936	4.1
##	99	3	March		27829	4.1
##	100	4	April		29776	3.9
##	101	5	-	2018	25102	3.8
##	102	6	-	2018	23110	4.0
##	103	7		2018	21308	3.9
	•	·	J			•

		_	_			
	104	8	August		20168	3.8
	105	9	September		15983	3.7
	106	10	October		13318	3.8
	107	11	November		15963	3.7
##	108	12	December		19800	3.9
##	109	1	January	2019	13024	4.0
##	110	2	February	2019	15001	3.8
##	111	3	March	2019	21963	3.8
##	112	4	April	2019	22422	3.6
##	113	5	May	2019	24530	3.6
##	114	6	June	2019	20055	3.7
##		WranglerQueries	CPI.All (CPI.Energy	fordquery	
##	1	30	217.488	212.807	19	
##	2	33	3 217.281	209.624	20	
##	3	34	217.353	209.326	20	
##	4	35	217.403	209.219	19	
##	5	36	217.290	206.631	16	
##	6	38	217.199	203.764	18	
##	7	38	3 217.605	206.877	23	
##	8	38	3 217.923	208.770	16	
##	9	34	218.275	209.832	17	
##	10		219.035	216.710	17	
##	11		219.590	219.496	16	
##			220.472	227.130	17	
##	13		221.187	229.258	21	
##			221.898	232.068	19	
##			223.046	240.079	18	
##			224.093	247.977	20	
##			3 224.806	250.744	18	
##			224.806	245.534	17	
##			225.395	246.187	18	
##			226.106	246.880	20	
##			226.597	248.550	18	
##			3 226.750	246.655	17	
##			227.169	247.640	18	
##			2 227.223	243.353	18	
##			5 227.842	244.876	21	
##			228.329	248.898	20	
##			3 228.807	249.742	20	
##			229.187	249.677	18	
##			3 228.713	241.806	19	
##			3 228.524	235.897	19	
##			228.590	233.568	18	
##			229.918	244.987	19	
##			231.015	252.987	19	
##			3 231.638	256.017	17	
##			3 231.030	248.819	17	
##			3 231.249	244.708	16	
##			5 231.221	244.708	17	
##			231.079	255.696	19	
##			3 232.282	246.595	20	
##			3 232.202	240.393	20	
##						
			231.893	240.468	18	
##	42	62	232.445	242.711	20	

##	43	63	232.900	242.986	19
##	44	59	233.456	244.833	20
##	45	53	233.544	242.745	18
##	46	48	233.669	241.954	18
##	47	48	234.100	242.718	18
##	48	48	234.719	245.733	31
##	49	53	235.288	250.340	38
##	50	58	235.547	249.925	30
##	51	61	236.028	249.961	28
##	52	63	236.468	249.864	49
##	53	68	236.918	249.213	29
##	54	70	237.231	249.714	29
##	55	73	237.498	248.744	30
##	56	68	237.460	245.699	57
##	57	61	237.477	241.610	39
##	58	57	237.430	237.061	46
##	59	55	236.983	229.016	60
##	60	53	236.252	218.536	45
##			234.718	199.471	46
##			235.236	202.079	39
##			236.005	206.148	38
##			236.156	202.898	33
##			236.974	209.120	30
##			237.684	212.476	29
##			238.053	212.324	31
##			238.028	208.870	34
##			237.506	197.324	31
	70		237.781	196.014	27
	71		238.016	194.365	27
	72		237.817	190.299	28
	73		237.833	186.122	33
	74		237.469	176.407	49
	75		238.038	181.074	39
	76		238.827	185.405	31
	77		239.464	188.401	31
	78		240.167	193.068	37
	79		240.157	190.089	32
			240.130		
## ##	81		240.002	189.795 191.772	29 31
##	82		241.691		
##	83			195.824	100
			242.029 242.772	195.519	40
##	84			200.266	42
##	85		243.780	206.048	72
##	86		243.961	203.170	43
##	87		243.749	201.526	41
##	88		244.051	202.399	38
##	89		243.962	198.596	37
##	90		244.182	198.265	37
##	91		244.390	197.349	53
##	92		245.297	202.338	39
	93		246.418	211.137	34
	94		246.587	207.771	37
##	95		247.332	213.134	31
##	96	81	247.901	214.055	33

```
## 97
                     77 248.884
                                     217.542
                                                      41
                     83 249.369
                                                      38
## 98
                                     218.955
                     85 249.498
## 99
                                     215.801
                                                      48
                     89 249.956
                                     217.690
## 100
                                                      51
## 101
                     96 250.646
                                     220.967
                                                      40
## 102
                     96 251.134
                                     222.361
                                                      44
                                     222.269
## 103
                     100 251.597
                                                      49
## 104
                     92 251.879
                                     223.341
                                                      47
## 105
                     83 252.010
                                     221.077
                                                      42
## 106
                     76 252.794
                                     225.612
                                                      43
## 107
                     76 252.760
                                     219.295
                                                      45
                     76 252.723
## 108
                                     213.565
                                                      52
## 109
                     77 252.673
                                     206.842
                                                      58
                     82 253.113
## 110
                                     207.755
                                                      53
                     86 254.148
                                     214.963
## 111
                                                      55
## 112
                     89 254.958
                                     221.286
                                                      51
## 113
                     89 255.155
                                     219.937
                                                      51
## 114
                     96 255.305
                                     214.847
                                                      52
```

Coefficients:

##

The training set r^2 is .7943, the test set data has an r^2 of .63. Based on the r squared value of our model, I do not think it will provide much to Jeep, considering that the r squared value is very low. Maybe a linear model is not a great fit for this dataset and I think that we can increase the r squared value if we were to have a less granulated coefficient array for the season, instead of it being one month it should be a collection of months that represent a season.

d) I would maybe look at the search queries for a competing model to the jeep wrangler, one that I looked at was the ford bronco. I would suspect that queries for the bronco are inversely correlated with sales of the jeep, rationale being that if more people are looking up information on the bronco and are interested in buying the bronco, that means less individuals are interested in competing brands or models, in this case the Jeep Wrangler.

```
wranglerSales.bronco <- lm(WranglerSales ~ Unemployment + WranglerQueries + CPI.All + MonthFactor + for
z = predict(wranglerSales.bronco, wrangler.test)
rsq(z,test)
## [1] 0.6419495
summary(wranglerSales.bronco)
##
## Call:
  lm(formula = WranglerSales ~ Unemployment + WranglerQueries +
##
       CPI.All + MonthFactor + fordquery, data = wrangler.train)
##
  Residuals:
##
##
       Min
                1Q
                    Median
                                 3Q
                                        Max
   -3025.9
            -692.2
                     -95.6
                              591.0
                                     8228.0
##
##
```

Estimate Std. Error t value Pr(>|t|)

```
## (Intercept)
                         -27578.393
                                     21540.812
                                                 -1.280
                                                         0.20572
## Unemployment
                            166.623
                                       579.460
                                                  0.288
                                                         0.77475
## WranglerQueries
                            194.629
                                        62.570
                                                  3.111
                                                         0.00294 **
## CPI.All
                                        83.637
                                                  1.503
                                                         0.13834
                            125.746
## MonthFactorAugust
                            -95.256
                                       957.221
                                                 -0.100
                                                         0.92109
## MonthFactorDecember
                                                  0.064
                             69.808
                                      1082.455
                                                         0.94881
## MonthFactorFebruary
                          -1033.651
                                       917.612
                                                 -1.126
                                                         0.26478
## MonthFactorJanuary
                          -3149.789
                                       956.204
                                                 -3.294
                                                         0.00172 **
## MonthFactorJuly
                           -248.636
                                      1006.430
                                                 -0.247
                                                         0.80577
## MonthFactorJune
                            268.853
                                       953.298
                                                  0.282
                                                         0.77896
## MonthFactorMarch
                           -154.426
                                       896.537
                                                 -0.172
                                                         0.86386
## MonthFactorMay
                                                         0.04493 *
                           1885.607
                                       919.263
                                                  2.051
                                                 -1.403
## MonthFactorNovember
                          -1418.875
                                      1011.623
                                                         0.16626
## MonthFactorOctober
                           -584.155
                                      1016.934
                                                 -0.574
                                                         0.56798
## MonthFactorSeptember
                                                 -0.941
                                                         0.35067
                           -852.139
                                       905.426
## fordquery
                              8.465
                                        28.757
                                                  0.294
                                                         0.76957
##
## Signif. codes:
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1545 on 56 degrees of freedom
## Multiple R-squared: 0.8682, Adjusted R-squared: 0.8329
## F-statistic: 24.6 on 15 and 56 DF, p-value: < 2.2e-16
```

The resulting r squared value is .6419, which means it has increased and has thus added some predictive value. Looking at the table however, there is a very high p value associated with the ford query, indicating it is not as significant of a variable as we may think. I think that ultimately because there are so many other options other than ford bronco for a substitute, this does not help our model, if we were to replace this with queries for any other competing model to the wrangler it might make it more accurate.