Álgebra Linear I - Aula 10

- 1. Dependência e independência linear.
- 2. Bases.
- 3. Coordenadas.
- 4. Bases de \mathbb{R}^3 e produto misto.

Roteiro

1 Dependência e independência linear de vetores

Definição 1 (Dependência linear). Dizemos que os vetores

$$\{u_1,u_2,\ldots u_m\}$$

são linearmente dependentes (l.d.) se existem números reais $\sigma_1, \sigma_2, \dots, \sigma_m$ não todos nulos tais que

$$\sigma_1 u_1 + \sigma_2 u_2 + \dots + \sigma_m u_m = \bar{0}.$$

A definição implica que se os vetores u_1,u_2,\ldots,u_m são l.d. então algum vetor da coleção $\{u_1,u_2,\ldots,u_m\}$ pode ser escrito como combinação linear dos outros. Supondo, por exemplo, que $\sigma_1\neq 0$, temos

$$u_1 = -\frac{\sigma_2}{\sigma_1} u_2 - \dots - \frac{\sigma_m}{\sigma_1} u_m.$$

Portanto, u_1 é combinação linear dos vetores u_2, \ldots, u_m .

Observe que se um vetor, por exemplo o vetor u_1 , é combinação linear dos outros vetores, então a coleção de vetores é linearmente dependente:

$$u_1 = \sigma_2 u_2 + \cdots + \sigma_m u_m.$$

Observe que não sabemos se os coeficientes $\sigma_2, \ldots, \sigma_m$ são diferentes de zero. Mas,

$$u_1 - \sigma_2 u_2 - \dots - \sigma_m u_m = \bar{0}.$$

Como o coeficiente de u_1 é não nulo, os vetores são linearmente dependentes. Observe que qualquer coleção de vetores contendo o vetor nulo é linearmente dependente. Por exemplo, $\{u_1, \bar{0}, u_2\}$, temos

$$\bar{0} = 0 u_1, +(15) \bar{0} + 0 u_2.$$

Exemplo 1. Três vetores coplanares de \mathbb{R}^3 são linearmente dependentes. (Teste do produto misto): faça operações de escalonamento no determinante, o processo de escalonamento fornece a combinação linear dos vetores igual a zero.

Por exemplo, considere os vetores

$$u_1 = (1, 2, 1), \quad u_2 = (2, 3, 1), \quad u_3 = (1, 0, -1).$$

Consideramos o determinante escrevendo no lado o vetor que representa cada linha:

$$\begin{vmatrix}
1 & 2 & 1 & u_1 \\
2 & 3 & 1 & u_2 \\
1 & 0 & -1 & u_3
\end{vmatrix}$$

Cada operação com as linhas corresponde a uma operação com os vetores:

$$\begin{vmatrix}
1 & 2 & 1 & u_1 \\
0 & -1 & -1 & u_2 - 2u_1 \\
0 & -2 & -2 & u_3 - u_1
\end{vmatrix}$$

Trocando sinais nas duas últimas linhas:

$$\begin{vmatrix} 1 & 2 & 1 & u_1 \\ 0 & 1 & 1 & 2u_1 - u_2 \\ 0 & 2 & 2 & u_1 - u_3 \end{vmatrix} .$$

Finalmente,

$$\begin{vmatrix}
1 & 2 & 1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{vmatrix}
\begin{vmatrix}
u_1 \\
2u_1 - u_2 \\
u_1 - u_3 - 2(2u_1 - u_2)
\end{vmatrix}$$

Obtemos assim,

$$\bar{0} = u_1 - u_3 - 2(2u_1 - u_2) = -3u_1 + 2u_2 - u_3.$$

Observamos que dois vetores paralelos de \mathbb{R}^2 são linearmente dependentes.

Definição 2 (Independência linear). Os vetores $\{u_1, u_2, \dots u_m\}$ são linearmente independentes (l.i.) se não são linearmente dependentes, isto é, a única forma de obter o vetor nulo como combinação linear dos vetores $u_1, u_2, \dots u_m$ é tomando todos os coeficientes $\sigma_1, \sigma_2, \dots, \sigma_m$ iguais a zero:

$$\sigma_1 u_1 + \sigma_2 u_2 + \dots + \sigma_m u_m = \bar{0}$$

se, e somente se,

$$\sigma_1 = \sigma_2 = \cdots = \sigma_m = 0.$$

Outra forma de entender a independência linear é a seguinte: nenhum vetor u_i pode ser escrito como combinação linear dos outros (m-1) vetores $u_1, \ldots u_{i-1}, u_{i+1}, \ldots u_m$. Suponhamos que

$$u_i = \sigma_1 u_1 + \dots + \sigma_{i-1} u_{i-1} + \sigma_{i+1} u_{i+1} + \dots + \sigma_m u_m,$$

então,

$$\sigma_1 u_1 + \dots + \sigma_{i-1} u_{i-1} - u_i + \sigma_{i+1} u_{i+1} + \dots + \sigma_m u_m = \bar{0}$$

obtendo uma combinação linear não trivial (no mínimo o coeficiente de u_i é não nulo (!)) dando o vetor nulo.

Propriedade 1.1. Se um vetor v pode se escrever como combinação linear dos vetores u_1, u_2, u_3 de duas formas diferentes, então u_1, u_2, u_3 são linearmente dependentes.

Prova: Suponha que existem números reais x_1, x_2, x_3 e y_1, y_2, y_3 com $(x_1, x_2, x_3) \neq (y_1, y_2, y_3)$ tais que

$$u = x_1 u_1 + x_2 u_2 + x_3 u_3 = y_1 u_1 + y_2 u_2 + y_3 u_3$$
.

Logo,

$$(x_1 - y_1) u_1 + (x_2 - y_2) u_2 + (x_3 - y_3) u_3 = \bar{0}.$$

Como $(x_1 - y_1)$, $(x_2 - y_2)$ e $(x_3 - y_3)$ não são todos nulos, obtemos uma combinação linear de não trivial de u_1 , u_2 e u_3 dando o vetor nulo. Portanto, os vetores u_1 , u_2 e u_3 são l.d..

Exemplo 2. Os vetores

• (1,0,0), (0,1,0) e(0,0,1) são l.i.

- (1,1,1), (1,2,2) e(1,2,3) são l.i.
- Os vetores (1,1,1), (1,1,2) e (2,2,3) não são l.i..
- (1,1,1), (1,1,2), (2,2,3), e(0,0,1) não são l.i.

Temos as seguintes propriedades sobre dependência linear:

Propriedade 1.2.

- Um conjunto de vetores de \mathbb{R}^3 com quatro ou mais vetores é l.d..
- Um conjunto de vetores de \mathbb{R}^2 com três ou mais vetores é l.d..

Prova: Vejamos o caso de \mathbb{R}^2 . Consideremos um conjunto com três vetores $u_1, u_2 \in u_3$.

Se u_1 e u_2 são paralelos, então $u_2 = \sigma u_1$ (por exemplo) e $u_2 - \sigma u_1 = \bar{0}$, logo os vetores são l.d..

Se u_1 e u_2 não são paralelos então geram \mathbb{R}^2 . Logo $u_3 = \sigma u_1 + \beta u_2$, logo $u_3 - \sigma u_1 - \beta u_2 = \bar{0}$ e os vetores são l.d..

Repita este tipo de argumento com quatro vetores de \mathbb{R}^3 .

Exemplos 1. Estude se as afirmações a seguir são verdadeiras ou falsas:

- a) Se $\{v_1, v_2\}$ é um conjunto de vetores linearmente dependente então se verifica $v_1 = \sigma v_2$ e $v_2 = \lambda v_1$ para certos números reais λ e σ .
- b) Se $\{v_1, v_2, v_3\}$ é um conjunto de vetores linearmente independente também o é o conjunto $\{\kappa v_1, \kappa v_2, \kappa v_3\}$ para todo κ não nulo.
- c) Se $\{v_1, v_2, v_3\}$ é um conjunto de vetores linearmente dependente então cada vetor pode ser obtido como combinação linear dos outros dois.
- d) Se $\{v_1, v_2, v_3\}$ é um conjunto de vetores linearmente independente também o é o conjunto $\{\kappa v_1, \lambda v_2, \sigma v_3\}$ para todo κ, λ, σ não nulos.

Resposta: As afirmações (a) e (c) são falsas. Para a afirmação (a) considere os vetores (1,1) e (0,0), por exemplo. Para a afirmação (c) considere $v_1 = (1,1,1), v_2 = (2,2,2), v_3 = (1,0,1)$. Claramente, o vetor v_3 não pode ser escrito como combinação linear de v_1 e v_2 .

A afirmação (b) é verdadeira: considere uma combinação linear os vetores $\kappa v_1, \kappa v_2, \kappa v_3$, que seja o vetor nulo:

$$\sigma_1 \kappa v_1 + \sigma_2 \kappa v_2 + \sigma_3 \kappa v_3 = \bar{0}.$$

Ou seja

$$\kappa \left(\sigma_1 v_1 + \sigma_2 v_2 + \sigma_3 v_3\right) = \bar{0}.$$

Como $\kappa \neq 0$, temos

$$\sigma_1 v_1 + \sigma_2 v_2 + \sigma_3 v_3 = \bar{0}.$$

E como v_1, v_2 e v_3 são l.i., $\sigma_1 = \sigma_2 = \sigma_3 = 0$, logo os vetores são l.i..

Finalmente, a afirmação (d) também é verdadeira, e a prova segue como o caso anterior. Complete os detalhes.

2 Bases

Definição 3 (Base). Considere um subespaço vetorial \mathbb{W} e um conjunto de vetores u_1, u_2, \ldots, u_m de \mathbb{W} . Dizemos que

$$\beta = \{u_1, u_2, \dots, u_m\}$$

 \acute{e} uma base de \mathbb{W} se

- os vetores de β geram \mathbb{W} , isto \acute{e} , todo vetor $v \in \mathbb{W}$ pode ser escrito da forma $v = \sigma_1 u_1 + \sigma_2 u_2 + \cdots + \sigma_m u_m$ (ou seja, todo vetor de \acute{e} combinação linear dos vetores da base β).
- os vetores de β são linearmente independentes.

Por exemplo, os vetores

$$\beta = \{(1, 1, 1), (1, 2, 2), (1, 3, 3), (1, 2, 1), (2, 1, 1)\}$$

geram \mathbb{R}^3 , é suficiente verificar se os vetores (1,1,1),(1,2,2),(1,2,1) não são coplanares

$$\left| \begin{array}{ccc|c} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 1 \end{array} \right| = \left| \begin{array}{ccc|c} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 0 & 1 & 0 \end{array} \right| = -1.$$

Porém aqueles vetores não formam uma base pois não são linearmente independentes (um conjunto de mais de três vetores de \mathbb{R}^3 não é linearmente independente).

Observe que é possível, obter uma base de \mathbb{R}^3 a partir da coleção β , eliminando alguns vetores. Por exemplo,

$$\beta' = \{(1, 1, 1), (1, 2, 2), (1, 2, 1)\}$$

é uma base de \mathbb{R}^3 . Já vimos que são linearmente independentes, e três vetores linearmente independentes geram \mathbb{R}^3 .

Observamos que se acrescentamos qualquer vetor a β' , os vetores geram \mathbb{R}^3 , porém não serão linearmente independentes (justifique!), portanto, não formam uma base.

Observe também que se a família de vetores $\beta = \{u_1, u_2, \dots, u_m\}$ é uma base de \mathbb{W} então, se eliminamos qualquer vetor u_i da base β , o novo conjunto não é gerador de \mathbb{W} . É suficiente observar que o vetor $u_i \in \mathbb{W}$ não pode ser escrito como combinação linear dos vetores restantes: caso fosse escrito os vetores de β não seriam linearmente independentes, e portanto não formariam uma base. Complete os detalhes.

Propriedade 2.1. As seguintes propriedades sobre bases se verificam:

- Uma base de \mathbb{R}^2 sempre tem dois vetores.
- Uma base de \mathbb{R}^3 sempre tem três vetores.
- Uma base de um plano de \mathbb{R}^3 (contendo a origem) sempre tem dois vetores de \mathbb{R}^3 .
- Uma base de uma reta de \mathbb{R}^3 ou \mathbb{R}^2 (contendo a origem) sempre tem um vetor $de\mathbb{R}^3$ ou de \mathbb{R}^2 .
- Dois vetores linearmente independentes de \mathbb{R}^2 formam uma base de \mathbb{R}^2 .
- Três vetores linearmente independentes de \mathbb{R}^3 formam uma base de \mathbb{R}^3 .
- Dois vetores linearmente independentes de um plano π de \mathbb{R}^3 contendo a origem formam uma base de π .

Exemplos 2.

• $\mathcal{E} = \{\mathbf{i} = (1,0), \mathbf{j} = (0,1)\}$ é uma base de \mathbb{R}^2 , a chamada base canônica.

- $\mathcal{E} = \{\mathbf{i} = (1,0,0), \mathbf{j} = (0,1,0), \mathbf{k} = (0,0,1)\}$ é uma base de \mathbb{R}^3 , a chamada base canônica.
- $\beta_1 = \{(1,1),(1,2)\}, \ \beta_2 = \{(3,1),(1,4)\} \ e \ \beta_3 = \{(1,0),(1,1)\}, \ s\tilde{ao}$ bases $de \mathbb{R}^2$.
- $\beta_1 = \{(1,1,1), (1,2,3), (1,0,1)\}, \beta_2 = \{(2,1,2), (1,4,1), (3,5,0)\} \ e \beta_3 = \{(1,0,0), (1,1,0), (1,1,1)\}, \ s\~{ao} \ bases \ de \mathbb{R}^3.$
- Os vetores (1,0,1) e (1,-1,-1) formam uma base do plano de equação cartesiana $\pi: x + 2y z = 0$.

Exercício 1. Suponha que $\gamma = \{u_1, u_2, u_3\}$ é uma base de \mathbb{R}^3 . Estude se $\beta = \{u_1, u_2, u_1 + u_2 + u_3\}$ também é uma base de \mathbb{R}^3 .

Resposta: Pela propriedade acima (três vetores l.i. de \mathbb{R}^3 formam uma base) é suficiente ver que os vetores são linearmente independentes. Escreva

$$x_1 u_1 + x_2 u_2 + x_3 (u_1 + u_2 + u_3) = \bar{0},$$

isto é,

$$(x_1 + x_3) u_1 + (x_2 + x_3) u_2 + x_3 u_3 = \bar{0}.$$

Como os vetores u_1, u_2 e u_3 são l.i., todos os coeficiente de uma combinação linear dando o vetor zero devem ser necessariamente nulos,

$$x_1 + x_3 = 0 = x_2 + x_3 = x_3.$$

Portanto, resolvendo os sistema, $x_1 = x_2 = x_3 = 0$. Assim, os vetores são l.i. e formam uma base de \mathbb{R}^3 .

3 Coordenadas em uma base β

Definição 4 (Coordenadas). Considere uma base $\beta = \{u_1, u_2, u_3\}$ de \mathbb{R}^3 . As coordenadas do vetor v na base β , denotada $(v)_{\beta}$, são $(v)_{\beta} = (x_1, x_2, x_3)$, onde

$$v = x_1 u_1 + x_2 u_2 + x_3 u_3$$
.

Observe que as coordenadas de v na base $\gamma = \{u_2, u_3, u_1\}$ são $(v)_{\gamma} = (x_2, x_3, x_1)$.

Idênticos comentários valem para bases em \mathbb{R}^2 .

Observamos que as coordenadas de um vetor v em uma base β são <u>únicas</u>: se houvesse mais possibilidades de coordenadas teríamos o seguinte. Suponhamos que as coordenadas de v na base β sejam simultaneamente (x_1, x_2, x_3) e (y_1, y_2, y_3) . Então,

$$v = x_1 u_1 + x_2 u_2 + x_3 u_3 = y_1 u_1 + y_2 u_2 + y_3 u_3$$

Portanto,

$$(x_1 - y_1) u_1 + (x_2 - y_2) u_2 + (x_3 - y_3) u_3 = \bar{0}.$$

Como os vetores u_1, u_2, u_3 são linearmente independentes, temos

$$x_1 - y_1 = 0 = x_2 - y_2 = x_3 - y_3.$$

Logo

$$x_1 = y_1, \quad x_2 = y_2, \quad x_3 = y_3.$$

4 Bases de \mathbb{R}^3 e produto misto

Propriedade 4.1. Considere três vetores $u, v \in w de \mathbb{R}^3$. Se $u \cdot (v \times w) \neq 0$ então os vetores são l.i.. Portanto, formam uma base de \mathbb{R}^3 . O recíproco é verdadeiro (complete os detalhes). Portanto, três vetores de \mathbb{R}^3 formam uma base se, e somente se $u \cdot (v \times w) \neq \overline{0}$.

Exercício 2. Determine uma base de \mathbb{R}^3 formada por dois vetores paralelos ao plano x - y - z = 0 e outro ortogonal a estes vetores.

Resposta:
$$\{(1,1,0),(1,0,1),(1,-1,-1)\}.$$

Exemplo 3. Considere vetores não nulos u e v de \mathbb{R}^3 tais que

$$(u+v)\cdot(u+v) = (u-v)\cdot(u-v).$$

 $Ent \tilde{a}o$

$$\beta = \{u \times v, u, v\}$$

é uma base de \mathbb{R}^3 formada por vetores ortogonais.

Resposta: Da condição $(u+v)\cdot(u+v)=(u-v)\cdot(u-v)$ obteremos que $u\cdot v=0$. Temos

$$(u+v)\cdot(u+v) = u\cdot u + u\cdot v + v\cdot u + v\cdot v = u\cdot u + 2(u\cdot v) + v\cdot v,$$

е

$$(u-v)\cdot(u-v) = u\cdot u - u\cdot v - v\cdot u + v\cdot v = u\cdot u - 2(u\cdot v) + v\cdot v.$$

Igualando estas equações obtemos

$$u \cdot u + 2(u \cdot v) + v \cdot v = u \cdot u - 2(u \cdot v) + v \cdot v.$$

Isto é,

$$4(u \cdot v) = 0, \quad u \cdot v = 0.$$

Logo os vetores u e v são ortogonais (e portanto, l.i.). Claramente $u \times v$ é ortogonal a u e v. Logo os vetores de β são ortogonais. Logo somente falta ver que estes vetores são l.i..

Também sabemos o produto misto de $u \times v$, u e v é não nulo:

$$(u \times v) \cdot (u \times v) = |u \times v|^2 = (|u||v|sen(\pi/2))^2 \neq 0.$$

Logo os vetores não são coplanares. Logo são l.i.. O argumento termina observando que três vetores l.i. formam uma base de \mathbb{R}^3 .

Exemplo 4. Considere uma base $\beta = \{u_1, u_2, u_3\}$ de \mathbb{R}^3 . Veja que

$$\gamma = \{u_1, u_2, u_1 + u_2 + u_3\}$$

também é uma base de \mathbb{R}^3 . Finalmente, sabendo que as coordenadas de v na base β são $(v)_{\beta} = (x_1, x_2, x_3)$, determine as coordenadas de $(v)_{\gamma} = (y_1, y_2, y_3)$ de v na base γ .

Resposta: Para ver que γ é uma base é suficiente observar que

$$(u_1 + u_2 + u_3) \cdot (u_1 \times u_2) = u_1 \cdot (u_1 \times u_2) + u_2 \cdot (u_1 \times u_2) + u_3 \cdot (u_1 \times u_2) = u_3 \cdot (u_1 \times u_2) = u_1 \cdot (u_2 \times u_3) \neq 0.$$

Onde a última afirmação decorre da independência linear dos vetores u_1, u_2 e u_3 . (Justifique cuidadosamente todas as passagens do raciocínio anterior).

Para o cálculo das coordenadas, sabemos que

$$v = y_1 u_1 + y_2 u_2 + y_3 (u_1 + u_2 + u_3) = (y_1 + y_3) u_1 + (y_2 + y_3) u_2 + y_3 u_3.$$

Logo, da unicidade das coordenadas na base β ,

$$x_1 = y_1 + y_3$$
, $x_2 = y_2 + y_3$, e $x_3 = y_3$.

Logo

$$y_1 = x_1 - x_3$$
, $y_2 = x_2 - x_3$, $y_3 = x_3$.

Completamos assim a resposta.