Digital Signal Processing

Class 20 04/03/2025

ENGR 71

- Class Overview
 - Digital Filter Design
 - FIR filters
- Assignments
 - Reading:

Chapter 10: Design of Digital Filters

https://www.mathworks.com/help/signal/ug/fir-filter-design.html

- Problems:

Chapter 7: 7.8, 7.9, 7.11(b), 7.14, 7.18, 7.25

Pick one symmetry property from Table 7.1 and one property from Table 7.2 to prove. (Next class, say which ones.)

Due: Friday, April 4

Project

Projects

- You can work in groups if you wish
- Presentation at time reserved for final exam
 - Friday, May 9, 7:00-10:00 PM
 - Science Center 264
- Submit slides from presentation to Project Dropbox
- Submit written report to Project Dropbox by end of semester (May 15)

- Design of Digital Filters
 - Generally means frequency selective filters

- Design of Digital Filters
 - Finite Impulse Response (FIR)
 - Used when linear-phase required in passband
 - Constant time delay
 - No dispersion as a function of frequency
 - Infinite Impulse Response (IIR)
 - No requirement on linear-phase
 - Better characteristics for fewer parameters
 - Less memory
 - Lower computational complexity

- Why learn about filter design?
 - Tools like Matlab's filterDesigner exist so why spend time learning about different methods?

- Why learn about filter design?
 - Understanding methods ...
 - For better design choices
 - To troubleshoot issues that may arise
 - To optimize for design constraints
 - To avoid "black box" thinking
 - Rounds out EE education
 - Something you are expected to understand

The intellectual satisfaction that comes from understanding how something works

Why can't you have ideal filters?

Condition for causal system: h(t) = 0 for all t < 0.

In the time domain, there is some response from the filter before t = 0, so the ideal filter is non-casual.

Why can't you have idea filters?

- Causality and Its Implications
 - Mathematical criterion for LTI causal system
 - Time domain (continuous systems):

h(t) has finite energy and h(t) = 0 for all t < 0.

- Frequency domain: Paley-Wiener Criterion
 - In the frequency domain, the magnitude of the transfer function can be zero only at a discrete number of frequencies.
 - Mathematical description of Paley-Wiener criterion: For a realizable filter, necessary and sufficient condition for $|H(\Omega)|$ is

$$\int_{-\infty}^{\infty} \frac{\ln |H(\Omega)|}{1 + \Omega^2} d\Omega < \infty$$

- Causality and Its Implications
 - Mathematical criterion for LTI causal system
 - Time domain (Discrete Systems):

h(n) has finite energy and h(n) = 0 for all n < 0.

- Frequency domain: Paley-Wiener Criterion
 - In the frequency domain, the magnitude of the transfer function can be zero only at a discrete number of frequencies.
 - Mathematical description of Paley-Wiener criterion: For a realizable filter, necessary and sufficient condition for $|H(\omega)|$ is

$$\int_{-\pi}^{\pi} \left| \ln |H(\omega)| d\omega < \infty \right|$$

For causal systems the impulse response can be determined from just its even part
 (Or, its odd part plus the value at n=0)

$$h(n) = h_e(n) + h_o(n)$$
 where $h_e(n) = \frac{1}{2} (h(n) + h(-n))$ and $h_o(n) = \frac{1}{2} (h(n) - h(-n))$
Since $h(n) = 0$ for $n < 0$
 $h(n) = 2h_e(n)u(n) - h_e(0)\delta(0)$
and $h(n) = 2h_o(n)u(n) + h(0)\delta(0)$

- Looking at this in the frequency domain:
 - Write the DTFT in terms of its real and imaginary components

$$H(\omega) = H_R(\omega) + jH_I(\omega)$$

Using the DTFT property

$$h_e(n) \leftrightarrow H_R(\omega)$$
 and $h_o(n) \leftrightarrow H_I(\omega)$

- Since h(n) is completely determined by $h_e(n)$, $H(\omega)$ can be found from just $H_R(\omega)$. The same is true for $H_I(\omega)$.
- The real and imaginary parts of the transfer function are interrelated for causal system

- You can get an explicit relationship between the real and imaginary part of the transfer function for causal systems
 - Using: $h(n) = 2h_e(n)u(n) h_e(0)\delta(0)$ $h_e(n) \longleftrightarrow H_R(\omega)$

$$H(\omega) = H_R(\omega) + jH_I(\omega)$$

Use the convolution theorem on the product of $h_e(n)u(n)$:

$$H_{R}(\omega) = \frac{1}{2\pi} \int_{-\pi}^{\pi} H_{R}(\lambda) U(\omega - \lambda) d\lambda$$

Use the DTFT of the unit step.

Combine all this together and you find:

- The Discrete Hilbert transform:

Relating the imaginary part of the transfer function to the real part:

$$H_{I}(\omega) = -\frac{1}{2\pi} \int_{-\pi}^{\pi} H_{R}(\lambda) \cot\left(\frac{\omega - \lambda}{2}\right) d\lambda$$

A similar expression for the real part in terms of the imaginary part:

$$H_{R}(\omega) = h(0) + \frac{1}{2\pi} \int_{-\pi}^{\pi} H_{I}(\lambda) \cot\left(\frac{\omega - \lambda}{2}\right) d\lambda$$

(There is a more complete derivation of this in the book by Oppenheim & Schafer)

 The Hilbert transform is useful in digital communications for things like Single-Sideband modulation

- Summary of the implications of causality
 - Frequency response cannot be zero except at a finite set of points
 - The magnitude of |H(w)| cannot be constant in any finite range of frequencies
 - The transition from passband to stopband cannot be infinitely sharp
 - The imaginary and real parts of the transfer function are interdependent and related by the Hilbert transform
 - The magnitude and phase of the transfer function cannot be chosen arbitrarily

For LTI causal systems:

$$y(n) = -\sum_{k=1}^{N} a_k y(n-k) + \sum_{k=0}^{M-1} b_k x(n-k)$$

$$H(\omega) = \frac{\sum_{k=0}^{M-1} b_k e^{-j\omega k}}{1 + \sum_{k=1}^{N} a_k e^{-j\omega k}}$$

- For all the restrictions due to causality, we know that we cannot make an ideal filter, so the basic problem is:
- Find $\{a_k\}$ and $\{b_k\}$ that give the best approximation to the desired filter specifications.

Specifications for physically realizable filters:

Finite Impulse Response (FIR) Filters

$$y(n) = b_0 x(n) + b_1 x(n-1) + \dots + b_{M-1} (x - M + 1)$$
$$= \sum_{k=0}^{M-1} b_k x(n-k)$$

or in terms of impulse response:

$$y(n) = \sum_{k=0}^{M-1} h(k)x(n-k)$$
 (b_k 's are $h(k)$'s)

or in terms of transfer function:

$$H(z) = \sum_{k=0}^{M-1} h(k)z^{-k}$$

Linear phase FIR filters

If $h(n) = \pm h(M - 1 - n)$ the phase will be linear

- Proof on board

- Linear phase FIR filters
 - Book approaches this in a different way finding the z-transform for cases where length of the filter (M) is even or odd
 - Result:

$$H(z) = \sum_{k=0}^{M-1} h(k)z^{-k} \quad \text{for } h(n) = \pm h(M - 1 - n)$$

$$H(z) = z^{-(M-1)/2} \left\{ h\left(\frac{M-1}{2}\right) + \sum_{n=0}^{(M-1)/3} h(n) \left[z^{(M-1-2n)/2} \pm z^{-(M-1-2n)/2} \right] \right\}, M \text{ odd}$$

$$=z^{-(M-1)/2}\left\{\sum_{n=0}^{(M/2)-1}h(n)\left[z^{(M-1-2n)/2}\pm z^{-(M-1-2n)/2}\right]\right\}, M \text{ even}$$

Linear phase FIR filters

Substituing z^{-1} for z

$$H(z^{-1}) = \sum_{k=0}^{M-1} h(k)z^k$$
 for $h(n) = \pm h(M-1-n)$

and multipling both sides of equations by $z^{-(M-1)}$ result is

$$z^{-(M-1)}H(z^{-1}) = \pm H(z)$$

Linear phase FIR filters

Roots of polynomial H(z) are identical to roots of $H(z^{-1})$

so roots occur in reciprocal pairs.

Furthermore, if h(n) is real, roots occur in complex conjugate pairs.

If
$$z_1$$
 is a root, so is $1/z_1$, z_1^* , and $1/z_1^*$

 This makes for an interesting requirement for location of zeros for linear phase FIR filters

Linear phase FIR filters

- Looking at frequency response ($z = e^{j\omega}$)

For
$$h(n) = h(M - 1 - n)$$
: $H(\omega) = H_r(\omega)e^{-j\omega(M-1)/2}$

Where $H_r(\omega)$ is real function of ω :

$$H_r(\omega) = h\left(\frac{M-1}{2}\right) + 2\sum_{n=0}^{(M-3)/2} h(n)\cos\left[\omega\left(\frac{M-1}{2}-n\right)\right], \quad M \text{ odd}$$

$$H_r(\omega) = 2\sum_{n=0}^{(M/2)-1} h(n)\cos\left[\omega\left(\frac{M-1}{2}-n\right)\right], \quad M \text{ even}$$

Phase for M both even and odd is

$$\Theta(\omega) = \begin{cases} -\omega \left(\frac{M-1}{2}\right), & \text{if } H_r(\omega) > 0 \\ -\omega \left(\frac{M-1}{2}\right) + \pi, & \text{if } H_r(\omega) < 0 \end{cases}$$

For h(n) = -h(M-1-n) (anti-symmetric case) center point is at n = (M-1)/2 so $h\left(\frac{M-1}{2}\right) = 0$

$$H(\omega) = H_r(\omega)e^{-j[-\omega(M-1)/2+\pi/2]}$$

$$H_r(\omega) = 2 \sum_{n=0}^{(M-3)/2} h(n) \sin \left[\omega \left(\frac{M-1}{2} - n \right) \right], \quad M \text{ odd}$$

$$H_r(\omega) = 2\sum_{n=0}^{(M/2)-1} h(n) \sin \left[\omega \left(\frac{M-1}{2} - n\right)\right], \quad M \text{ even}$$

Phase for M both even and odd is

$$\Theta(\omega) = \begin{cases} \frac{\pi}{2} - \omega \left(\frac{M-1}{2} \right), & \text{if } H_r(\omega) > 0 \\ \frac{3\pi}{2} - \omega \left(\frac{M-1}{2} \right) + \pi, & \text{if } H_r(\omega) < 0 \end{cases}$$

Linear-Phase FIR Filter Design

- Methods
 - Windowing impulse response
 - Specify desired response

$$H_d(\omega) = \sum_{n=0}^{\infty} h_d(n) e^{-j\omega n}$$

$$h_d(n) = \int_{-\pi}^{\pi} H_d(\omega) e^{-j\omega n} d\omega$$

- Cannot have an infinite impulse response, so window the $h_d(n)$
- If you just truncate the series at some value of n, that is like a rectangular window
- We will discuss different types of windowing functions

Linear-Phase FIR Filter Design

Methods

- Frequency sampling methods
 - Specify desired response at set of equally spaced frequencies
 - Solve for h(n) from the specified response
- Optimal Equiripple linear-phase FIR filters
 - Enable more precise control of pass and stop-band critical frequencies