ОТЧЕТ о выполненной лабораторной работе № 2 «Решение систем линейных алгебраических уравнений»

(Образец для примера - вы можете делать по-другому, как считаете нужным, но постарайтесь отразить в отчете то, что поняли задание и сделали правильные выводы)

Задание 1.Исследование погрешность решения СЛАУ прямыми методами. **Цель задания**: убедиться в том, что решения двух систем с хорошо и плохо обусловленными матрицами коэффициентов по-разному реагируют на возмущение правой части системы - на точность решения влияют *два фактора*: число обусловленности матрицы и эквивалентые возмущения. Содержание отчета:

- 1. Условие вашего варианта
- 2. Скрин программы с:
 - вводом матрицы, представлением ее в табличном виде,
 - решением систем функцией LinearSolve,
 - вычислением обратной матрицы функцией Inverse,
 - числа обусловленности,
 - норм векторов погрешностей (абсолютной и относительной) самостоятельно и функцией **Norm**,
 - норм векторов невязки функцией **Norm**.
- 3. Таблица результатов расчетов:

cond(A)	«возмуще	Норма вектора	Норма вектора	Норма вектора
	ние»,	абс. ошибки	отн. ошибки	невязки
	%	$\left\ \Delta X \right\ = \left\ X^* - X \right\ $	$\left\ \frac{\left\ \Delta X \right\ _1}{\left\ X \right\ _1} \right\ $	$r = AX^* - B$
	_			
Хорошо обусл.	Без возмущ.			
	0.01%			
	0.1%			
	1%			
Плохо обусл.	Без возмущ.			
	0.01%			
	0.1%			
	1%			

4. Выводы (пишите сами)

Задание 2. Решение системы с трехдиагональной матрицей коэффициентов методом прогонки.

Цель задания: Изучение метода прогонки и операторов Mathematica для организации циклов и итераций.

Содержание отчета:

1. Условие вашего варианта

2. Скрин программы с вычисленными прогоночными коэффициентами, решениями системы методом прогонки и с помощью встроенной функции LinearSolve для сравнения результатов.

Задание 3. Изучение итерационных методов решения СЛАУ - метода Якоби, метода Зейделя.

Цель задания: убедиться в том, что методы Якоби и Зейделя сходятся к решению системы и им требуется разное число итераций для достижения требуемой точности (сравнение скорости сходимости); обратить внимание на зависимость число итераций и достигнутой реальной точности решения от способа завершения итерационного процесса (см. на уменьшение нормы невязки).

Содержание отчета:

1. Условие вашего варианта

Скрин программы с решением 2 методами (для *окончания итерационного процесса* использовалась величина стабилизации т.е. условие

$$\frac{\left\|x^{(k+1)} - x^{(k)}\right\|}{\max\left\{\left\|x^{(k)}\right\|, \left\|x^{(k+1)}\right\|\right\}} \le \varepsilon.$$

- 2. Для каждого метода выведены:
 - итерации на каждом шаге(желательно, но не обязательно),
 - количество итераций, потребовавшееся для достижения точности,
 - решение, полученное на последнем шаге,
 - точное решение системы (последовательные числа, начиная с номера вашего варианта, или же можете проверить при помощи LinearSolve),
 - норма абсолютной погрешности полученного решения,
 - норма относительной погрешности,
 - норма невязки на последней итерации.
- 3. Таблица результатов расчетов:

Порядок системы	Количество итераций т	норма вектора абсолютной погрешности $\ x^{(m)} - x^{(movu)}\ $	Норма вектора отн. погрешности $\frac{\left\ x^{(m)}-x^{(mov_H)}\right\ }{\left\ x^{(mov_H)}\right\ }$	Норма вектора невязки $\frac{\left\ Ax^{(m)} - b\right\ }{\left\ Ax^{(0)} - b\right\ }$
М. Якоби				
n=10				
n=20				
М. Зейделя				
n=10				
n=20				

4. Выводы (пишите сами)