|      |      | 0.   |
|------|------|------|
| Cala | ) wa | Chic |
| COL  | 4000 | w    |

## Select the one response that best answers each question.

1) A refrigerator has a coefficient of performance equal to 4.2. How much work must be done by the refrigerator in order to remove 250 J of heat from the interior?

A) 120 J

B) 250 J

(C) 60 J V

Two point charges,  $Q_1 = -1.0 \,\mu\text{C}$  and  $Q_2 = +4.0 \,\mu\text{C}$ , are placed as shown in the figure. ( $k = 8.99 \times 10^9 \,\text{N} \cdot \text{m}^2/\text{C}^2$ ) The y-component of the electric field at the origin (shown as the point "O") is closest to \_\_\_\_\_



A)  $3.8 \times 10^3$  N/C.

B)  $6.0 \times 10^3$  N/C.

 $\bigcirc$  -6.0 × 10<sup>3</sup> N/C.  $\bigcirc$ 

D)  $-3.8 \times 10^3$  N/C.



[30 101 ] CO(57,71) C

-[ Klar/] SM(17,71) 5

3) An insulated container is filled with a mix of 400 g of water at 20.0°C and 60 g of ice at 0.00°C. Assuming Carld have negligible heat is exchanged with the container what is the transfer of the container what is the container when it is the container what is the container when it is the container negligible heat is exchanged with the container, what is the temperature of the mixture when it reaches thermal equilibrium?  $L_{fH2O} = 334 \times 10^{3} \text{ J/kg}$ ,  $c_{water} = 4190 \text{ J/kg} \cdot \text{K}$ ,  $c_{ice} = 2100 \text{ J/kg} \cdot \text{K}$ 

A) 0.0°C

B) 6.0°C

C) 5.0°C

D)7.0°C V

E) 4.0°C

4) Is it possible to transfer heat from a cold reservoir to a hot reservoir?

A) No; this is forbidden by the second law of thermodynamics.

B) Yes, but work will have to be done.

C) Yes; this will happen naturally.

D) Theoretically yes, but it hasn't been accomplished yet.

SEE Diagrams & typ of Femula sheet

NET heat exchange = 0 WATER +Mily + Milw (Tf-0)

+m, Cu (Te-20) = 0

=> 0.06(334×103)+ 0.06(4190)Te -0.4(4190)20+0.4(4190)Te=

1927.4 Tc = 13480 Te=6.99 °C

C-1



| $H = \frac{A}{Q}$ | 2) A heat conducting rod<br>that is 0.90 m long. Bot<br>end are maintained at               | 1.40 m long, is made of the sections have cross-sectemperatures of 40°C and is 385 W/m·K. The rate at                                                                                                          | an aluminum section<br>ctional areas of 0.000-<br>d 280°C, respectively    | 40 m <sup>2</sup> . The aluminu<br>. The thermal condu | m end and the copper<br>ctivity of aluminum is                                     |      |
|-------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------------|------|
|                   | (A) 20 W. V                                                                                 | B) 28 W.                                                                                                                                                                                                       | C) 18 W.                                                                   | D) 25 W.                                               | E) 23 W.                                                                           |      |
| 5 13              | charge of $-25 \times 10^{-9}$                                                              | oce contains a uniform, contains a uniform, contains is placed at the cric field at the point (x=1)                                                                                                            | origin of a coordinate                                                     | system in this region                                  | on of space. What is the                                                           | 125  |
|                   | A) Theoretically yes B) Yes, but work wi C) Yes; this will hap                              |                                                                                                                                                                                                                | aplished yet.                                                              |                                                        | = 7.52                                                                             |      |
| From Notes 15     | An athlete doing push-<br>energy of the athlete? I<br>sign indicates an increa<br>A) 225 kJ | -ups performs 650 kJ of v<br>Note: In the answers, a nease in internal energy.  B) 1075 kJ                                                                                                                     | vork and loses 425 k)<br>egative sign indicate:<br>(650+425)<br>C) -225 kJ | of heat. What is the sa decrease in intern             | nal energy. A positive                                                             |      |
| 16<br>(Q          | $L_{f H2O} = 334 \times 10^{3} \text{ J/k}$                                                 | wired to change one gram $E_{\rm reg}$ , $E_{\rm v}$ $E_{\rm reg}$ | $J/kg$ , $c_{water} = 4190$<br>(loo-o) + ML                                | $J/kg \cdot K$ , $c_{ice} = 2100$                      | (001-W                                                                             |      |
| 17                | -5 coulombs is placed a force experienced by the                                            |                                                                                                                                                                                                                | ate system in this reg<br>e origin? The electric                           | ion of space. What i<br>field units are SI.            | is the magnitude of the $\frac{1}{2}$                                              | ~    |
| 18                | A) 8.6 N  S) A small glass bead has of the bead? ( $k = 8.99 \times 10^{-2}$                | been charged to 8.0 nC. V<br>$10^9 \text{ N} \cdot \text{m}^2/\text{C}^2)$                                                                                                                                     | C) 60 N What is the magnitud                                               |                                                        | D) $10 \text{ N}$<br>= $\sqrt{27^2+35^2}$ = $\sqrt{3}$<br>1 2.0 cm from the center | N-10 |
|                   | -                                                                                           | B) 3.6 × 10 <sup>3</sup> N/C                                                                                                                                                                                   |                                                                            |                                                        | D) $1.4 \times 10^{-3} \text{ N/C}$                                                |      |
|                   | ) LU                                                                                        | Klgs = 8994                                                                                                                                                                                                    | 0.02/2                                                                     | - 1.798                                                | ×10 Z                                                                              |      |



8.)  $H = \frac{\text{KADT}}{2} = \frac{0.003(1.2)(20)}{2*10^{-3}} = 36 \text{ watts (index second)}$ Often =  $4[7]4.10^{2}] = 1336000 \text{ joles}$ icety

Melt

Time to melt =  $\frac{1336000}{3678ec} = 37111.7 \text{ sec} + \frac{1 \text{hr}}{3600 \text{ sec}}$ = 10.3 hours Ans

4

.