## Отчёт

Фактически это просто выжимка из ноутбуков, я опишу вкратце, что я делал, зачем, и чего достиг, за подробностями отсылаю к тетрадкам в репозитории или на кеггле. А ещё при переводе в pdf ломаются некоторые выводы, поэтому я заменил их картинками в некоторых случаях

### Данные

С самими данными я не делал ничего. Для русского я этого не люблю делать вообще никогда, для английского я допустил, что это может улучшить качество, проделал, не улучшило, всё записано в метриках ниже. К тому же почти вся предобработка, что мне нужна уже возможна, благодаря TfidfVectorizer

Данные сами по себе довольно чистые, датасет полностью сбалансирован, это очень приятно.



check\_imbalance(df\_train, "target")



Исходя из этого, за оптимизируемую метрику я брал ассuracy, а также немного смотрел на ROC-AUC. Если бы был дисбаланс, пришлось бы подумать ещё

## Модели

Я пробовал и классические модели, и нейросети, можно почитать в соответствующих ноутбуках. В любом случае меня интересовали модели, которые

- 1) работают достаточно быстро, но это на самом деле почти все, если текст всего один
- 2) сравнительно быстро обучаются, потому что в любом случае будет оптимизация, не хочется сидеть над ней вечно 3) предсказывают вероятности, это фиксится калибровкой, конечно, но она вредит пунктам (1) и (2) 4) мало весит, по этому

критерию отлетают почти все нейросети, что грустно 5) хорошо интерпретируются, но это худо-бедно можно сделать для всех моделей, у меня была задумка делать это только для входного текста, а не анализ вообще всех признаков

По всем этим критериям идеально подходит логистическая регрессия, хотя я пробовал и прочие методы, конечно, примерные метрики внизу

```
In [ ]: metrics_df = pd.DataFrame(metrics)
metrics_df[metrics_df.dataset == "val"].sort_values("accuracy", ascending=False)
```

| [24]: |    | model                 | dataset | inference_time  | accuracy | nrecision | recall   | f1       | roc_auc  | auc_pr   |
|-------|----|-----------------------|---------|-----------------|----------|-----------|----------|----------|----------|----------|
| [27]. |    | illodei               | uataset | illierence_time | accuracy | precision | recan    | - "      | TOC_auc  | auc_pi   |
|       | 16 | bigram_svm            | val     | 1.950951        | 0.8938   | 0.8938    | 0.893896 | 0.893794 | 0.000000 | 0.000000 |
|       | 6  | unigram_proba_svc     | val     | 49.397370       | 0.8884   | 0.8884    | 0.888481 | 0.888394 | 0.956223 | 0.954352 |
|       | 4  | unigram_svm           | val     | 0.841167        | 0.8874   | 0.8874    | 0.887494 | 0.887393 | 0.000000 | 0.000000 |
|       | 2  | unigram_logreg        | val     | 0.920446        | 0.8862   | 0.8862    | 0.886252 | 0.886196 | 0.952450 | 0.951335 |
|       | 14 | bigram_logreg         | val     | 1.960605        | 0.8828   | 0.8828    | 0.882825 | 0.882798 | 0.948548 | 0.948153 |
|       | 10 | unigram_catboost      | val     | 0.972381        | 0.8620   | 0.8620    | 0.862317 | 0.861970 | 0.938907 | 0.938059 |
|       | 12 | bigram_nb             | val     | 2.144800        | 0.8562   | 0.8562    | 0.864579 | 0.855369 | 0.945955 | 0.941801 |
|       | 8  | unigram_random_forest | val     | 1.283854        | 0.8454   | 0.8454    | 0.845429 | 0.845397 | 0.923196 | 0.915395 |
|       | 18 | bigram_random_forest  | val     | 3.625016        | 0.8450   | 0.8450    | 0.845458 | 0.844949 | 0.922659 | 0.914399 |
|       | 0  | unigram_nb            | val     | 0.849646        | 0.8404   | 0.8404    | 0.843894 | 0.839994 | 0.926143 | 0.914936 |

Всё это было сделано при помощи Tfidf, w2v я не уважаю, и в предобученном виде, и в виде fasttext'a, но его я тоже попробовал, через усреднение всех векторов слов, вышло хуже

```
In [ ]: metrics_df = pd.DataFrame(metrics)
    metrics_df[metrics_df.dataset == "val"].sort_values("accuracy", ascending=False)
```

| 54]: |   | model             | dataset | inference_time | accuracy | precision | recall   | f1       | roc_auc  | auc_pr   |
|------|---|-------------------|---------|----------------|----------|-----------|----------|----------|----------|----------|
|      | 4 | w2v_svm           | val     | 0.007047       | 0.8230   | 0.8230    | 0.823023 | 0.822997 | 0.000000 | 0.000000 |
|      | 2 | w2v_logreg        | val     | 0.009725       | 0.8172   | 0.8172    | 0.817201 | 0.817200 | 0.895014 | 0.890229 |
|      | 8 | w2v_catboost      | val     | 0.073740       | 0.8024   | 0.8024    | 0.802485 | 0.802386 | 0.886508 | 0.882440 |
|      | 6 | w2v_random_forest | val     | 0.147221       | 0.7752   | 0.7752    | 0.775285 | 0.775183 | 0.855443 | 0.849151 |
|      | 0 | w2v_nb            | val     | 0.060080       | 0.6926   | 0.6926    | 0.694173 | 0.691976 | 0.771788 | 0.743388 |

Из нейросетей я пробовал LSTM, и ещё некоторые архитектуры, сразу же их дообучил, внизу статистика с самым главным. Жирным модели, которые я планировал использовать на сайте, но использовал только логрег:

Не все из них замерялись на тесте, особенно касается нейросетей, но данные действительно отлично сбалансированы, метрики почти совпадают. Впрочем, даже

базовых моделей хватает, чтобы побить скор, указанный в статье, которую прилагали к заданию

#### Тюнинг

Для нейросеток я пытался подбирать число выходных слоёв и коэффициент дропаута, но положительного эффекта не было. Помог разве что автоматический подбор лёрнинг рейта. В любом случае мне кажется, что их иожно дообучить ещё лучше

Для логрега я использовал оптуну на кросс-валидации со всеми мыслимыми параметрами, в том числе и для Tfidf, ниже лучшие параметры

```
logreg_study.best_value, logreg_study.best_params
In [33]:
Out[33]: (0.90672,
           {'penalty': '12',
            'C': 13.991882149161302,
            'tol': 2.3655997265491263e-06,
            'fit_intercept': True,
            'max_iter': 32,
            'l2_solver': 'saga',
            'use_idf': True,
            'analyzer': 'word',
            'stop_words': None,
            'lowercase': True,
            'min df': 5,
            'token_pattern': '\\S+',
            'ngram_range': 2})
```

Пороги я тоже отбирал, но смысла в этом мало, выборка, опять же, сбалансирована. Ниже сравнение регрессии с дефолтными параметрами и оптимизированной

```
In [20]:
         print("Default")
         print(f"Accuracy: {accuracy_score(proba > 0.5, y_test)}")
         print(f"ROC-AUC: {roc_auc_score(y_test, proba)}\n")
         print("Optimized")
         print(f"Accuracy: {accuracy_score(optimized_proba > 0.5, y_test)}")
         print("Optimized with chosen threshold")
         print(f"Accuracy: {accuracy_score(optimized_proba > np.mean(best_t), y_test)}")
         print(f"ROC-AUC: {roc auc score(y test, optimized proba)}")
         Default
         Accuracy: 0.883
         ROC-AUC: 0.9523968319999999
         Optimized
         Accuracy: 0.90488
         Optimized with chosen threshold
         Accuracy: 0.90512
         ROC-AUC: 0.9655946304
         И конечно, поскольку нам нужны вероятности, на это я тоже посмотрел на
```

калибровочных кривых

#### Calibration curves, n\_bins=25



Calibration curves, n\_bins=25



Как видно, оптимизация очень даже имела смысл. Выиграли и по аккураси, и по вероятностям. Логрег в этом отношении даже лучше, чем XLNet, судя по графику

# Интерпретация модели

Это я сделал только для логистической регрессии, потому что к этому моменту уже отчался использовать нейросети. Там их достаточно легко достать через веса самой регрессии. У меня была мысль вместе с предсказанием показывать, как модель к нему пришла. Я встроил это на самом сайте, лучше там смотреть, там и график интерактивный, хотя мне кажется, что из-за него всё так лагает

В ноутбуках интерфейс тоже есть, можно на него посмотреть

```
In [ ]: text = "It's funny, it's bright and uplifting, and I think has a lot to say about to
    print(ml_infer(text))
    print(rating_estimate(text))
    compute_message_feature_importance(text, rating_estimate(text)[0])
```

Ну и посмотрим на какой-нибудь относительно сложный текст

(9, 'positive')



Получается вроде бы довольно неплохо, ниже оригинальный отзыв



It's funny, it's bright and uplifting, and I think has a lot to say about the modern world – both in terms of feminism and gender equality. Ryan Gosling really goes all-out.

July 27, 2023 | Rating: 4/5 | Full Review...



Victoria Luxford
BBC.com

В целом это всё, но в репозитории есть ещё полезные ссылки, а в двух тетрадках подробно описан почти каждый шаг