Лабораторная работа №3

Моделирование стохастических процессов

Кадров Виктор Максимович

Содержание

1	Цель работы	
2	Задание	5
3	Выполнение лабораторной работы	6
	3.1 Реализация модели М/М/1	6
	3.2 Построить график поведения длины очереди	9
4	Выводы	11
Сг	писок литературы	12

Список иллюстраций

3.1	Полученные характеристики системы	8
3.2	Скрипт для построения графика поведения длины очереди	9
3.3	Изменение прав доступа файла graph_plot. И запуск скрипта	9
3.4	График поведения длины очереди	10

1 Цель работы

Смоделировать систему массового обслуживания и построить график поведения длины очереди[1].

2 Задание

- 1. Реализовать модель системы массового обслуживания M/M/1 и рассчитать характеристики модели.
- 2. Построить график поведения длины очереди.

3 Выполнение лабораторной работы

3.1 Реализация модели М/М/1.

М|М|1 — однолинейная СМО с накопителем бесконечной ёмкости. Поступающий поток заявок — пуассоновский с интенсивностью λ. Времена обслуживания заявок — независимые в совокупности случайные величины, распределённые по экспоненциальному закону с параметром μ. Рассмотрим реализацию данной модели с параметрами системы: lambda = 30.0 mu = 33.0.

```
set ns [new Simulator]

# открытие на запись файла out.tr для регистрации событий set tf [open out.tr w]

$ns trace-all $tf

# задаём значения параметров системы set lambda 30.0

set mu 33.0

# размер очереди для М|М|1 (для М|М|1|R: set qsize R) set qsize 100000

# устанавливаем длительность эксперимента set duration 1000.0

# задаём узлы и соединяем их симплексным соединением

# с полосой пропускания 100 Кб/с и задержкой 0 мс,

# очередью с обслуживанием типа DropTail set n1 [$ns node]
```

```
set n2 [$ns node]
```

```
set link [$ns simplex-link $n1 $n2 100kb 0ms DropTail]
# наложение ограничения на размер очереди:
$ns queue-limit $n1 $n2 $qsize
# задаём распределения интервалов времени
# поступления пакетов и размера пакетов
set InterArrivalTime [new RandomVariable/Exponential]
$InterArrivalTime set avg_ [expr 1/$lambda]
set pktSize [new RandomVariable/Exponential]
$pktSize set avg_ [expr 100000.0/(8*$mu)]
# задаём агент UDP и присоединяем его к источнику,
# задаём размер пакета
set src [new Agent/UDP]
$src set packetSize_ 100000
$ns attach-agent $n1 $src
# задаём агент-приёмник и присоединяем его
set sink [new Agent/Null]
$ns attach-agent $n2 $sink
$ns connect $src $sink
# мониторинг очереди
set qmon [$ns monitor-queue $n1 $n2 [open qm.out w] 0.1]
$link queue-sample-timeout
# процедура finish закрывает файлы трассировки
proc finish {} {
  global ns tf
  $ns flush-trace
  close $tf
  exit 0
```

```
}
# процедура случайного генерирования пакетов
proc sendpacket {} {
  global ns src InterArrivalTime pktSize
  set time [$ns now]
  $ns at [expr $time +[$InterArrivalTime value]] "sendpacket"
  set bytes [expr round ([$pktSize value])]
  $src send $bytes
}
# планировщик событий
$ns at 0.0001 "sendpacket"
$ns at $duration "finish"
# расчет загрузки системы и вероятности потери пакетов
set rho [expr $lambda/$mu]
set ploss [expr (1-$rho)*pow($rho,$qsize)/(1-pow($rho,($qsize+1)))]
puts "Теоретическая вероятность потери = $ploss"
set aveq [expr $rho**srho/(1-$rho)]
puts "Теоретическая средняя длина очереди = $aveq"
# запуск модели
$ns run
 После запуска модели, были получены данные характеристики системы. (рис.
3.1)
```

```
openmodelica@openmodelica-VirtualBox:~/lab3$ ns lab3.tcl
Теоретическая вероятность потери = 0.0
Теоретическая средняя длина очереди = 9.0909090909090864
openmodelica@openmodelica-VirtualBox:~/lab3$ 

☐
```

Рис. 3.1: Полученные характеристики системы

3.2 Построить график поведения длины очереди.

В каталоге с проектом создадим отдельный файл, например, graph_plot. Откроем его на редактирование и добавим следующий код, обращая внимание на синтаксис GNUplot. (рис. 3.2)

Рис. 3.2: Скрипт для построения графика поведения длины очереди

Сделаем файл исполняемым. После компиляции файла с проектом, запустим скрипт в созданном файле graph_plot, который создаст файл qm.pdf с результатами моделирования.

Изменение прав доступа файла graph plot. И запуск скрипта. (рис. 3.3)

```
openmodelica@openmodelica-VirtualBox:~/lab3$ touch graph_plot
openmodelica@openmodelica-VirtualBox:~/lab3$ nano graph_plot
openmodelica@openmodelica-VirtualBox:~/lab3$ chmod +x graph_plot
openmodelica@openmodelica-VirtualBox:~/lab3$ ./graph_plot
openmodelica@openmodelica-VirtualBox:~/lab3$ ls
```

Рис. 3.3: Изменение прав доступа файла graph plot. И запуск скрипта

Результаты моделирования. График поведения длины очереди. (рис. 3.4)

Рис. 3.4: График поведения длины очереди

4 Выводы

Мы смоделировали систему массового обслуживания и построили график поведения длины очереди.

Список литературы

1. Королькова А.В., Кулябов Д.С. Лабораторная работа 3. Моделирование стохастических процессов [Электронный ресурс].