Chenkai Weng

+1-224-307-3331 | ckweng@u.northwestern.edu | carlweng.github.io

Research Interests

My research interest lies in cryptography, with a focus on secure multi-party computation and zero-knowledge proofs. I have participated in projects related to the security of garbled circuits protocol, efficient generation of correlated oblivious transfer, private data analysis in healthcare systems and scalable interactive zero-knowledge proofs.

EDUCATION

Northwestern University

Evanston, IL

PhD in Computer Science; Advisor: Xiao Wang

Sept. 2019 - present

Xidian University

Xi'an, China

BSc in Information Security

Sept. 2015 - June 2019

EXPERIENCE

Research Intern

Remote

Microsoft Research

May. 2021 - Jul. 2021

• Design and Develop secure multi-party computation and differential privacy applications for online conversion measurement.

Research Assistant Evanston, IL

Northwestern University

Sept. 2020 - May. 2021

- Interactive zero-knowledge protocols for arbitrary boolean/arithmetic circuits and polynomials.
- Correlated oblivious transfer based on vector oblivious linear evaluation.
- Concrete security of the garbled circuit protocol.
- Implementation and evaluation of MPC/ZK applications.

Teaching Assistant

Evanston, IL

Northwestern University

Sept. 2020 - Dec. 2020

• Introduction to Cryptography

Security Engineering Intern

Beijing, China

Alibaba Group

July 2018 - Jan. 2019

- Survey on secure multi-party computation techniques.
- Implementation of threshold encryption and digital signature schemes based on MPC.
- Implementation of private set intersection protocol and order-preserving encryption schemes.

Publications

1. Constant-Overhead Zero-Knowledge for RAM Programs

Nicholas Franzese, Jonathan Katz, Steve Lu, Rafail Ostrovsky, Xiao Wang, Chenkai Weng ACM Conference on Computer and Communications Security (CCS), 2021

2. Efficient Conversions for Zero-Knowledge Proofs with Applications to Machine Learning

Chenkai Weng, Kang Yang, Xiang Xie, Jonathan Katz, Xiao Wang USENIX Security Symposium, 2021

3. Efficient and Affordable Zero-Knowledge Proofs for Circuits and Polynomials over Any Field

Kang Yang, Pratik Sarkar, Chenkai Weng, Xiao Wang ACM Conference on Computer and Communications Security (CCS), 2021

4. Fast, Scalable, and Communication-Efficient Zero-Knowledge Proofs for Boolean and Arithmetic Circuits

Chenkai Weng, Kang Yang, Jonathan Katz, Xiao Wang

IEEE Symposium on Security and Privacy (Oakland), 2021

5. Developing High Performance Secure Multi-Party Computation Protocols in Healthcare: A Case Study of Patient Risk Stratification

Xiao Dong, David Randolph, Chenkai Weng, Abel Kho, Jennie Rogers, Xiao Wang AMIA Informatics Summit, 2021

6. Ferret: Fast Extension for coRRElated oT with small communication

Kang Yang, Chenkai Weng, Xiao Lan, Jiang Zhang, Xiao Wang ACM Conference on Computer and Communications Security (CCS), 2020

7. Better Concrete Security for Half-Gates Garbling (in the Multi-Instance Setting)

Chun Guo, Jonathan Katz, Xiao Wang, Chenkai Weng, Yu Yu International Cryptology Conference (CRYPTO), 2020

Talks

- Aug. 2021 "Efficient Conversions for Zero-Knowledge Proofs with Applications to Machine Learning", USENIX Security Symposium, 2021.
- 2. May. 2021 "Wolverine: Fast, Scalable, and Communication-Efficient Zero-Knowledge Proofs for Boolean and Arithmetic Circuits", IEEE Security & privacy (Oakland), 2021.
- 3. Mar. 2021 "Fast, Scalable, and Communication-Efficient Zero-Knowledge Proofs", Security and privacy seminar at Duke University.
- Nov. 2020 "Ferret: Fast Extension for coRRElated oT with small communication", ACM Conference on Computer and Communications Security (CCS), 2020.
- 5. Aug. 2020 "Better Concrete Security for Half-Gates Garbling (in the Multi-Instance Setting)", International Cryptology Conference (CRYPTO), 2020.

Software

EMP library

- 1. [EMP-TOOL] Float-point circuits, utility functions
- 2. [EMP-OT] Correlated-OT based on VOLE (The Ferret protocol)
- 3. [EMP-ZK] Implementation of interactive zero-knowledge proof protocols. For the circuit model, it supports boolean and arithmetic circuits, and their conversions. It also supports proving degree-2 polynomial satisfiabilies.