Fredholm and elliptic boundary conditions for general-order elliptic differential operators on compact manifolds

Lashi Bandara (with Magnus Goffeng - Lund, Hemanth Saratchandran - Adelaide)

Department of Mathematics Brunel University London

30 May 2022

arXiv:2104.01919

The setting

 \mathcal{M} smooth manifold with smooth measure μ .

$$(\mathcal{E},h^{\mathcal{E}}) o \mathcal{M}$$
 and $(\mathcal{F},h^{\mathcal{F}}) o \mathcal{M}$ Hermitian bundles.

$$D: C^{\infty}(\mathcal{M}; \mathcal{E}) \to C^{\infty}(\mathcal{M}; \mathcal{F})$$
 order $m \geq 1$ differential operator.

D elliptic
$$\iff$$
 $\sigma_D(x,\xi): \mathcal{E}_x \to \mathcal{F}_x$ invertible for $0 \neq \xi \in T_x^*\mathcal{M}$.

Formal adjoint
$$D^{\dagger}: C^{\infty}(\mathcal{M}; \mathcal{F}) \to C^{\infty}(\mathcal{M}; \mathcal{E})$$
, i.e.,

$$\langle \mathrm{D}u, v \rangle_{\mathrm{L}^2(\mathcal{F}; \mathrm{h}^{\mathcal{F}}, \mu)} = \langle u, \mathrm{D}^{\dagger}v \rangle_{\mathrm{L}^2(\mathcal{E}; \mathrm{h}^{\mathcal{E}}, \mu)}$$

$$\forall u \in C_c^{\infty}(\mathring{\mathcal{M}}; \mathcal{E}), \ v \in C_c^{\infty}(\mathring{\mathcal{M}}; \mathcal{F}).$$

Define:

$$D_{\max} := ((D^\dagger)|_{C^\infty_c(\mathring{\mathcal{M}};\mathcal{F})})^* \qquad \text{and} \qquad D_{\min} := \overline{D|_{C^\infty_c(\mathring{\mathcal{M}};\mathcal{F})}}.$$

I.e.

$$\operatorname{dom}(\mathbf{D}_{\max}) := \left\{ u \in \mathbf{L}^2(\mathcal{E}; \mathbf{h}^{\mathcal{E}}, \mu) : \\ \exists C_u \quad |\langle u, \mathbf{D}^{\dagger} v \rangle| \leq C_u \|v\|_{\mathbf{L}^2(\mathcal{F}; \mathbf{h}^{\mathcal{F}}, \mu)} \quad \forall v \in \mathbf{C}_c^{\infty}(\mathring{\mathcal{M}}; \mathcal{E}) \right\}.$$

Goal: Understand all (not necessarily closed) extensions Dext

$$D_{\min} \subset D_{\text{ext}} \subset D_{\max}$$
.

Equivalently, understand all subspaces of

$$dom(D_{max})/dom(D_{min})$$
.

More precisely:

- (i) a Banach space $\check{\mathbf{H}}(\mathbf{D})$;
- (ii) map $\gamma: dom(D_{max}) \to \check{H}(D)$ bounded surjection satisfying

$$\ker \gamma = \operatorname{dom}(D_{\min}).$$

Open mapping theorem:

$$\gamma: \frac{\mathrm{dom}(D_{\mathrm{max}})}{\mathrm{dom}(D_{\mathrm{min}})} \to \check{H}(D)$$

Banach space isomorphism.

Examples

(i) $(\mathcal{M}, \mathbf{g})$ complete Riemannian, $\mathcal{E} = \mathcal{F}$, $\mathbf{D} = \mathbf{D}^{\dagger}$ first-order (symmetric). Assume: $\exists C < \infty \quad |\sigma_{\mathbf{D}}(x, \xi)|_{\mathbf{op}} \leq C|\xi|$. Then, for all $k \in \mathbb{N}_+$, $\mathrm{dom}((\mathbf{D}^k)_{\mathrm{max}}) = \mathrm{dom}((\mathbf{D}^k)_{\mathrm{min}})$. I.e.,

$$\operatorname{dom}((D^k)_{\max})/\operatorname{dom}((D^k)_{\min}) = 0.$$

(ii) $(\mathcal{N}, \mathbf{g})$ "manifold" with conic singularity at $x \in \mathcal{N}$. I.e., in "polar coordinates" near x, we have $\mathbf{g} = dr^2 + r^2\mathbf{g}_{\mathcal{P}}$, for $(\mathcal{P}, \mathbf{g}_{\mathcal{P}})$ (n-1)-dim Riemannian manifold. Set $\mathcal{M} = \mathcal{N} \setminus \{x\}$, $\mathcal{E} = \mathcal{F} \to \mathcal{M}$ Clifford bundle, D Dirac operator on \mathcal{E} . Then,

$$\dim\left(\frac{\operatorname{dom}(D_{\max})}{\operatorname{dom}(D_{\min})}\right)<\infty.$$

The situation of boundary

Suppose \mathcal{M} has a smooth boundary $\partial \mathcal{M}$.

Let \vec{T} inward pointing vectorfield, and au associated inward pointing co-vectorfield.

Consider
$$\gamma: C_c^{\infty}(\mathcal{M}; \mathcal{E}) \to \bigoplus_{j=0}^{m-1} C_c^{\infty}(\partial \mathcal{M}; \mathcal{E})$$

$$\gamma(u) = \left(\left. u \right|_{\partial \mathcal{M}}, \left. (\partial_{\vec{T}} u) \right|_{\partial \mathcal{M}}, \ldots, \left. (\partial_{\vec{T}}^{m-1} u) \right|_{\partial \mathcal{M}} \right).$$

Want:

- \blacktriangleright extend γ to act on all of $dom(D_{max})$, $ker \gamma = dom(D_{min})$,
- $\blacktriangleright \check{\mathrm{H}}(\mathrm{D}) := \gamma \operatorname{dom}(\mathrm{D}_{\max}).$

Now suppose \mathcal{M} is compact.

Classic result (Seeley '66, Lions-Magenes '63 (Eng '72)): $\gamma: C^{\infty}(\mathcal{M}; \mathcal{E}) \to \bigoplus_{i=0}^{m-1} C^{\infty}(\partial \mathcal{M}; \mathcal{E})$ extends to a bounded mapping

$$\gamma: \operatorname{dom}(D_{\max}) \to \bigoplus_{j=0}^{m-1} H^{-\frac{1}{2}-j}(\partial \mathcal{M}; \mathcal{E})$$

- $\check{\mathrm{H}}(\mathrm{D}) := \mathrm{ran}\,\gamma \text{ dense in } \bigoplus_{j=0}^{m-1} \mathrm{H}^{-\frac{1}{2}-\mathrm{j}}(\partial\mathcal{M};\mathcal{E}),$
- $\blacktriangleright \ker \gamma = H_0^m(\mathcal{M}; \mathcal{E}) = dom(D_{min}).$

 $\text{Topologise } \check{\mathrm{H}}(\mathrm{D}) \text{ such that } \gamma : \underline{\mathrm{dom}(\mathrm{D}_{\mathrm{max}})} / \underline{\mathrm{dom}(\mathrm{D}_{\mathrm{min}})} \rightarrowtail \check{\mathrm{H}}(\mathrm{D}).$

Goal: describe topology of $\check{H}(D)$ in terms of data on $\partial \mathcal{M}$.

Boundary conditions

► Generalised boundary condition: $B \subset \check{\mathrm{H}}(\mathrm{D})$ subspace. D_B extension satisfying $\mathrm{D}_{\min} \subset \mathrm{D}_B \subset \mathrm{D}_{\max}$ with $\mathrm{dom}(\mathrm{D}_B) = \{u \in \mathrm{dom}(\mathrm{D}_{\max}) : \gamma u \in B)\}$.

- ▶ Boundary condition: $B \subset \check{\mathrm{H}}(D)$ closed subspace. D_B closed operator.
- ▶ $D_{\min} \subset D_{ext} \subset D_{\max}$ (non-closed) closed extension $\iff B_{ext} := \{ \gamma u : u \in dom(D_{ext}) \}$ (generalised) boundary condition with $D_{B_{ext}} = D_{ext}$.
- ▶ Adjoint condition: $D_B^* = D_{B^*}^{\dagger}$ where

$$B^* := \left\{ v \in \check{\mathrm{H}}(\mathrm{D}^\dagger) : \quad \langle u, v \rangle_{\check{\mathrm{H}}(\mathrm{D}) \times \check{\mathrm{H}}(\mathrm{D}^\dagger)} = 0 \quad \forall u \in B \right\}.$$

where $\langle u, v \rangle_{\check{\mathrm{H}}(\mathrm{D}) \times \check{\mathrm{H}}(\mathrm{D}^{\dagger})} = \langle \mathrm{D}_{\mathrm{max}} u, v \rangle - \langle u, \mathrm{D}_{\mathrm{max}}^{\dagger} v \rangle$ induced pairing.

- ▶ Fredholm boundary condition: B boundary condition such that D_B is a Fredholm operator.
- ightharpoonup Semi-elliptically regular boundary condition: $dom(D_B) \subset H^m(\mathcal{M}; \mathcal{E}) \iff$

$$B \subset \mathbb{H}^{\mathbf{m},\mathbf{m}-\frac{1}{2}}(\partial \mathcal{M};\mathcal{E}) := \bigoplus_{j=0}^{m-1} \mathbf{H}^{\mathbf{m}-\frac{1}{2}-j}(\partial \mathcal{M};\mathcal{E}).$$

ightharpoonup Elliptically regular boundary condition: D_B and D_B^* semi-elliptically regular I.e.

$$dom(D_B) \subset H^m(\mathcal{M}; \mathcal{E})$$
 and $dom(D_B^*) \subset H^m(\mathcal{M}; \mathcal{F})$.

Note: B Elliptically regular $\implies B$ Fredholm.

Seeley and Calderón projectors

Cauchy data space: $C_D := \gamma \ker(D_{\max})$. Define:

$$\mathbb{H}^{m,s}(\partial \mathcal{M}; \mathcal{E}) := \bigoplus_{j=0}^{m-1} \mathbb{H}^{s-j}(\partial \mathcal{M}; \mathcal{E}).$$

There exists a classical pseudo-differential projector \mathcal{P}_{CD} of order zero such that

$$\mathcal{C}_{\mathrm{D}} = \mathcal{P}_{\mathcal{C}\mathrm{D}} \mathbb{H}^{\mathrm{m},-\frac{1}{2}}(\partial \mathcal{M};\mathcal{E}),$$

and

$$\check{H}(D) = (1-\mathcal{P}_{\mathcal{C}D})\mathbb{H}^{m,m-\frac{1}{2}}(\partial\mathcal{M};\mathcal{E}) \bigoplus \mathcal{P}_{\mathcal{C}D}\mathbb{H}^{m,-\frac{1}{2}}(\partial\mathcal{M};\mathcal{E}).$$

$$\text{First-order: } \check{H}(D) = (1 - \mathcal{P}_{\mathcal{C}D})H^{\frac{1}{2}}(\partial \mathcal{M}; \mathcal{E}) \bigoplus \mathcal{P}_{\mathcal{C}D}H^{-\frac{1}{2}}(\partial \mathcal{M}; \mathcal{E}).$$

Induced pairing $\langle u, v \rangle_{\check{\mathrm{H}}(\mathrm{D}) \times \check{\mathrm{H}}(\mathrm{D}^{\dagger})}$ described in terms of this description.

Towards Fredholmness - closed range

Theorem. Suppose B generalised boundary condition for D elliptic differential operator of order $m \geq 1$. Then, the following hold:

- (i) $\ker(D_B)$ is finite-dimensional $\iff B \cap C_D$ is finite-dimensional.
- (ii) $\operatorname{ran}(D_B) = \operatorname{ran}(D_{B+\mathcal{C}_D})$ and it is closed $\iff B+\mathcal{C}_D$ is a boundary condition. I.e. $B+\mathcal{C}_D$ is closed in $\check{\mathbf{H}}(D)$.
- (iii) $\operatorname{ran}(D_B)$ has finite algebraic codimension $\iff B + \mathcal{C}_D$ has finite algebraic codimension in $\check{\mathrm{H}}(D) \iff \operatorname{ran}(D_B)$ is closed and $\operatorname{ran}(D_B)^{\perp}$ is finite-dimensional.

Examples

(i) $B := \mathbb{H}^{m,m-\frac{1}{2}}(\partial \mathcal{M}; \mathcal{E}) = \bigoplus_{j=0}^{m-1} \mathbb{H}^{m-\frac{1}{2}-j}(\partial \mathcal{M}; \mathcal{E}).$ Easy to check: $\operatorname{dom}(\mathbb{D}_B) = \mathbb{H}^m(\mathcal{M}; \mathcal{E}).$ B dense subspace of $\check{\mathbb{H}}(\mathbb{D}) \implies \mathbb{D}_B$ is not closed.

$$\begin{split} B + \mathcal{C}_D \\ &= \mathbb{H}^{m,m-\frac{1}{2}}(\partial \mathcal{M}; \mathcal{E}) + (1 - \mathcal{P}_{\mathcal{C}_D})\mathbb{H}^{m,m-\frac{1}{2}}(\partial \mathcal{M}; \mathcal{E}) \bigoplus \mathcal{P}_{\mathcal{C}_D}\mathbb{H}^{m,-\frac{1}{2}}(\partial \mathcal{M}; \mathcal{E}) \\ &= \check{H}(D) \end{split}$$

- $\implies \operatorname{ran}(D_B) = \operatorname{ran}(D_{\max}) \text{ closed}.$
- (ii) B semi-elliptically regular BC $\iff B \subset \bigoplus_{j=0}^{m-1} \mathrm{H}^{\mathrm{m}-\frac{1}{2}-\mathrm{j}}(\partial \mathcal{M}; \mathcal{E}).$ Then $\mathrm{ran}(\mathrm{D}_B)$ is closed. $\mathrm{ran}(\mathrm{D}_B) = \mathrm{ran}(\mathrm{D}_{B+\mathcal{C}_\mathrm{D}})$
 - $\implies B + C_{\rm D}$ boundary condition.

Characterising Fredholmness

X Banach space, A, B closed subspaces of X.

(A,B) is a Fredholm pair in X if:

- ightharpoonup A + B is closed;
- X/(A+B) is finite dimensional.

$$\operatorname{ind}(A, B) := \dim(A \cap B) - \dim\left(X_{(A+B)}\right).$$

Theorem. D_B is a Fredholm operator \iff (B, \mathcal{C}_D) is a Fredholm pair in $\check{\mathbf{H}}(D)$.

$$B^* \cap \check{\mathrm{H}}(\mathrm{D}^{\dagger}) \cong \check{\mathrm{H}}(\mathrm{D})_{(B + \mathcal{C}_{\mathrm{D}})}$$

$$\operatorname{ind}(D_B) = \operatorname{ind}(B, \mathcal{C}_D) + \dim \ker(D_{\min}) - \dim \ker(D_{\min}^{\dagger}).$$

Elliptic regularity

Theorem. $P: \mathbb{H}^{m,m-\frac{1}{2}}(\partial \mathcal{M}; \mathcal{E}) \to \mathbb{H}^{m,m-\frac{1}{2}}(\partial \mathcal{M}; \mathcal{E})$ bounded projection satisfying:

- (i) $\mathcal{P}_{CD} (1 P)$ Fredholm on $\mathbb{H}^{m,m-\frac{1}{2}}(\partial \mathcal{M}; \mathcal{E})$;
- (ii) $\mathcal{P}_{\mathcal{C}D} (1-P)$ extends by continuity to $\mathbb{H}^{m,-\frac{1}{2}}(\partial \mathcal{M};\mathcal{E})$ and this extension is Fredholm on $\mathbb{H}^{m,-\frac{1}{2}}(\partial \mathcal{M};\mathcal{E})$.

Then,

$$B_P = (1 - P)\mathbb{H}^{m,m - \frac{1}{2}}(\partial \mathcal{M}; \mathcal{E})$$

defines an elliptically regular boundary condition.

In particular, $(1 - \mathcal{P}_{\mathcal{C}})\mathbb{H}^{m,m-\frac{1}{2}}(\partial \mathcal{M}; \mathcal{E})$ elliptically regular boundary condition.

Note: This does not imply P acts bounded only $\check{\mathrm{H}}(\mathrm{D})$.

Example - Dirichlet Laplacian

$$\begin{split} &\nabla: \mathrm{C}^{\infty}(\mathcal{E}) \to \mathrm{C}^{\infty}(\mathrm{T}^{*}\mathcal{M} \otimes \mathcal{E}), \ \Delta:= \nabla^{\dagger}\nabla: \mathrm{C}^{\infty}(\mathcal{E}) \to \mathrm{C}^{\infty}(\mathcal{E}), \ \text{and} \ m=2:} \\ &\mathbb{H}^{\mathrm{m,m}-\frac{1}{2}}(\partial\mathcal{M};\mathcal{E}) = \mathbb{H}^{2,2-1/2}(\partial\mathcal{M};\mathcal{E}) = \oplus_{j=0}^{1} \mathrm{H}^{\frac{3}{2}-\mathrm{j}}(\partial\mathcal{M};\mathcal{E}) = \mathrm{H}^{\frac{3}{2}}(\partial\mathcal{M};\mathcal{E}) \oplus \mathrm{H}^{\frac{1}{2}}(\partial\mathcal{M};\mathcal{E}) \\ &\mathbb{H}^{\mathrm{m,-\frac{1}{2}}}(\partial\mathcal{M};\mathcal{E}) = \mathbb{H}^{2,-\frac{1}{2}}(\partial\mathcal{M};\mathcal{E}) = \mathrm{H}^{-\frac{1}{2}}(\partial\mathcal{M};\mathcal{E}) \oplus \mathrm{H}^{-\frac{3}{2}}(\partial\mathcal{M};\mathcal{E}). \end{split}$$

Boundary trace: $\gamma(u) = (u|_{\partial \mathcal{M}}, \partial_{\vec{T}} u|_{\partial \mathcal{M}}).$

Dirichlet Laplacian: $\operatorname{dom}(\Delta_{\operatorname{Dir}}) := \{ u \in \operatorname{dom}(\Delta_{\operatorname{max}}) : u|_{\partial \mathcal{M}} = 0 \}$.

Dirichlet BC:

$$B_{\text{Dir}} := \left\{ u|_{\partial \mathcal{M}} : u|_{\partial \mathcal{M}} = 0 \right\}.$$

Elliptic regularity of boundary condition is not obvious.

Projector defining BC (i.e., $B_{\rm Dir} = {\rm ran}(1 - P_{\rm Dir})$):

$$P_{\text{Dir}} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}.$$

Principal symbol of $\mathcal{P}_{\mathcal{C}}$:

$$\sigma_0(\mathcal{P}_{\mathcal{C}})(x,\xi) = \begin{pmatrix} \mathrm{Id}_{\mathcal{E}} & |\xi|^{-1}\mathrm{Id}_{\mathcal{E}} \\ |\xi|^{-1}\mathrm{Id}_{\mathcal{E}} & \mathrm{Id}_{\mathcal{E}} \end{pmatrix}.$$

Then,

$$\sigma_0(\mathcal{P}_{\mathcal{C}} - (1 - P_{\mathrm{Dir}})) = \begin{pmatrix} \mathrm{Id}_{\mathcal{E}} & |\xi|^{-1} \mathrm{Id}_{\mathcal{E}} \\ |\xi|^{-1} \mathrm{Id}_{\mathcal{E}} & -\mathrm{Id}_{\mathcal{E}} \end{pmatrix},$$

bounded on both $\mathbb{H}^{2,\frac{3}{2}}(\partial\mathcal{M};\mathcal{E})$ and $\mathbb{H}^{2,-\frac{1}{2}}(\partial\mathcal{M};\mathcal{E})$. Theorem gives Δ_{Dir} is elliptically regular. In fact,

$$dom(\Delta_{Dir}) = H^2(\mathcal{M}; \mathcal{E}) \cap H^1_0(\mathcal{M}; \mathcal{E}).$$

Back to the topology of $\check{H}(D)$

 $P: \mathbb{H}^{m,-\frac{1}{2}}(\partial \mathcal{M};\mathcal{E}) \to \mathbb{H}^{m,-\frac{1}{2}}(\partial \mathcal{M};\mathcal{E})$ projection, restricts to a projection on $\mathbb{H}^{m,m-\frac{1}{2}}(\partial \mathcal{M};\mathcal{E})$ is boundary decomposing if:

$$||u||_{\check{\mathbf{H}}(\mathbf{D})} \simeq ||(1-P)u||_{\mathbb{H}^{\mathbf{m},\mathbf{m}-\frac{1}{2}}(\partial\mathcal{M};\mathcal{E})} + ||Pu||_{\mathbb{H}^{\mathbf{m},-\frac{1}{2}}(\partial\mathcal{M};\mathcal{E})}.$$

Theorem. $P: \mathbb{H}^{m,m-\frac{1}{2}}(\partial \mathcal{M}; \mathcal{E}) \to \mathbb{H}^{m,m-\frac{1}{2}}(\partial \mathcal{M}; \mathcal{E})$ bounded projection satisfying:

- (i) $\mathcal{P}_{CD} (1 P)$ Fredholm on $\mathbb{H}^{m,m-\frac{1}{2}}(\partial \mathcal{M}; \mathcal{E})$;
- (i) $\mathcal{P}_{\mathcal{C}D} (1 P)$ extends by continuity to $\check{H}(D)$ and $\mathbb{H}^{m, -\frac{1}{2}}(\partial \mathcal{M}; \mathcal{E})$ and this extension is Fredholm on $\check{H}(D)$.

Then, *P* is boundary decomposing.

The first-order case

Adapted boundary operator A on $\partial \mathcal{M}$:

$$\sigma_{\mathbf{A}}(x,\xi) = \sigma_{\mathbf{D}}(x,\tau(x))^{-1} \circ \sigma_{\mathbf{D}}(x,\xi).$$

Elliptic differential operator of order 1, can be chosen ω -bisectorial $\exists \omega < \pi/2$.

The spaces, m=1

$$\mathbb{H}^{1,s}(\partial\mathcal{M};\mathcal{E})=\bigoplus_{j=0}^{m-1}H^{s-j}(\partial\mathcal{M};\mathcal{E})=H^s(\partial\mathcal{M};\mathcal{E}).$$

We have $\chi^+(A)$ is boundary decomposing, i.e.,

$$||u||_{\check{\mathrm{H}}(\mathrm{D})} \simeq ||\chi^{-}(\mathrm{A})u||_{\mathrm{H}^{\frac{1}{2}}(\partial\mathcal{M};\mathcal{E})} + ||\chi^{+}(\mathrm{A})u||_{\mathrm{H}^{\frac{1}{2}}(\partial\mathcal{M};\mathcal{E})}.$$

$$B := \chi^{-}(A)H^{\frac{1}{2}}(\partial \mathcal{M}; \mathcal{E})$$
 - Atiyah-Patodi-Singer boundary condition for A.

I.e.,

$$D_{\chi^-(A)H^{\frac{1}{2}}(\partial\mathcal{M};\mathcal{E})}$$

elliptically regular and hence Fredholm.

In particular $\dim \ker D_{\chi^-(A)H^{\frac{1}{2}}(\partial\mathcal{M};\mathcal{E})}<\infty.$

What about "anti-APS" $B' := \chi^+(A)H^{-\frac{1}{2}}(\partial \mathcal{M}; \mathcal{E})$?

Have $(1 - \mathcal{P}_{CD})H^{\frac{1}{2}}(\partial \mathcal{M}; \mathcal{E})$ and $\chi^{-}(A)H^{\frac{1}{2}}(\partial \mathcal{M}; \mathcal{E})$ are elliptic boundary conditions.

By construction:
$$\dim \ker \left(D_{\mathcal{P}_{CD}H^{-\frac{1}{2}}(\partial \mathcal{M};\mathcal{E})}\right) = \dim \ker(D_{\max}) = \infty.$$

Is
$$\dim \ker \left(D_{\chi^+(A)H^{-\frac{1}{2}}(\partial \mathcal{M};\mathcal{E})} \right) = \infty$$
?

- \blacktriangleright Principal symbol of $\mathcal{P}_{\mathcal{C}}$ is the same as principal symbol of $\chi^+(A)$.
- $\triangleright \mathcal{P}_{\mathcal{C}} \chi^+(A)$ is an operator of order -1.
- $\triangleright \mathcal{P}_{\mathcal{C}} (1 \chi^{+}(A)) = \mathcal{P}_{\mathcal{C}} \chi^{-}(A)$ elliptic.
 - **Warning:** This does not imply $\mathcal{P}_{\mathcal{C}} \chi^+(A)$ is compact!

Concrete counterexample

$$\mathcal{M} = \mathbb{D} = \left\{ x \in \mathbb{R}^2 : |x|_{\mathbb{R}^2} \le 1 \right\}$$
 unit disc. Boundary $\partial \mathcal{M} = \partial \mathbb{D} = S^1$.

$$\mathcal{E} = \mathcal{F} = \mathcal{M} \times \mathbb{C}^2$$
.

In polar coordinates (r, θ) :

$$D_0 := \begin{pmatrix} 0 & \partial_r + \frac{\imath}{r} \partial_\theta \\ -\partial_r + \frac{\imath}{r} \partial_\theta & 0 \end{pmatrix} = \sigma(\partial_r + A + R_{00}),$$

$$\sigma = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \quad \text{and} \quad A = \begin{pmatrix} -\imath \partial_\theta & 0 \\ 0 & \imath \partial_\theta \end{pmatrix}.$$

For $\alpha \in C_c^{\infty}(0,1]$, $\alpha(1) = 0$,

$$D_{\alpha} := \sigma(\partial_r + A + (R_{00} - i\alpha(r)\sigma\partial_{\theta}Id)) = \begin{pmatrix} i\alpha(r)\partial_{\theta} & \partial_r + \frac{i}{r}\partial_{\theta} \\ -\partial_r + \frac{i}{r}\partial_{\theta} & i\alpha(r)\partial_{\theta} \end{pmatrix}.$$

$$u \in \chi^{+}(A)H^{-\frac{1}{2}}(\partial \mathcal{M}; \mathcal{E}) \cap \mathcal{C}_{D} \iff \begin{cases} \chi^{+}(A)u = u \\ \mathcal{P}_{\mathcal{C}_{D}}u = u \end{cases}$$

$$\iff \begin{cases} \chi^{+}(A)u = u \\ (\chi^{+}(A) - \mathcal{P}_{\mathcal{C}_{D}})u = 0 \end{cases}$$

$$\iff \begin{cases} \chi^{+}(A)u = u \\ \chi^{+}(A)u = u \\ \mathcal{L}u = 0 \end{cases}$$

$$\mathcal{L} := \chi^+(A) - \mathcal{P}_{\mathcal{C}D} - \sigma \frac{\alpha'(1)}{4} (1 + \Delta)^{-\frac{1}{2}} \chi^-(A) \in \Psi DO(-1).$$

Symbol:

$$\sigma_{-1}(\mathcal{L},\xi) = \frac{\alpha'(1)}{4} \begin{pmatrix} 0 & \frac{1}{|\xi|} \\ -\frac{1}{\varepsilon} & 0 \end{pmatrix}.$$

Choose $\alpha \in C_c^{\infty}(0,1]$ such that $\alpha'(1) \neq 0 \implies \sigma_{-1}(\mathcal{L},\xi)$ invertible for $\xi \neq 0 \implies \ker \mathcal{L} < \infty \iff \dim \left(\chi^+(A)H^{-\frac{1}{2}}(\partial \mathcal{M};\mathcal{E}) \cap \mathcal{C}_D\right) < \infty.$