Clayton W. Seitz, PhD

cwseitz@iu.edu cwseitz.github.io

PERSONAL STATEMENT

I maintain a diverse background and specialize in the development and application of machine learning models in microscopy. Recently, I have developed deep generative models as well as analytical probabilistic methods for modeling imaging datasets. These models have been applied to fluorescence microscopy to fuel biological discovery.

EDUCATION

Doctor of Philosopy, Physics

Purdue University

Thesis: Advancing super-resolution microscopy for quantitative in-vivo imaging of chromatin nanodomains

Master of Science, Biophysics

University of Chicago

Thesis: Stable cell assembly formation in excitatory-inhibitory neural networks

Bachelor of Science, Physics, Magna Cum Laude

Indiana University
Minor: Mathematics

Bachelor of Science, Informatics, Magna Cum Laude

Luddy School of Informatics, Computing, and Engineering, Indiana University

Concentration: Mathematics

EXPERIENCE

Graduate Researcher

2022-Present

- Indiana University, Indianapolis, IN
 - Designed diffusion models/score-based generative models and general computer vision techniques (object detection, segmentation, etc.) in PyTorch for modeling image datasets in super-resolution fluorescence microscopy
 - Developed general probabilistic models for high-dimensional imaging datasets and associated Bayesian methods for statistical inference tasks
 - Developed novel microscopy systems for super-resolution imaging of living cells
 - Investigated the impact of point mutations of epigenetic proteins on the structure of nucleosome nanodomains and complement experimental data with molecular dynamics simulations

Graduate Researcher

2020-2022

University of Chicago, Chicago, IL

- Performed Monte Carlo simulations of spiking neural networks to relate neural network architecture to spiking dynamics
- Utilized fluorescence microscopy to measure temporal dynamics of calcium concentration in MIN6 cells

Research Assistant

2019-2020

Indiana University, Indianapolis, IN

• Developed a scientific package in Python for high-throughput object detection and tracking

• Managed the package lifecycle and user training throughout the laboratory

AWARDS

NIH Graduate Training Fellowship University of Chicago, Chicago, IL 2020

Travel Award and Lightning Talk Invitation Physical Sciences in Oncology - Minneapolis, MN 2019

Hudson and Holland Scholarship for Diversity and Inclusion

2013-2017

Indiana University, Bloomington, IN

Founders Scholar

2013-2017

Indiana University, Bloomington, IN

Cigital Scholarship

2016-2017

Indiana University, Bloomington, IN

PUBLICATIONS Clayton Seitz and Jing Liu. Quantum enhanced localization microscopy with a single photon avalanche diode array. In Review. 2024

> Clayton Seitz[†], Donghong Fu[†], Mengyuan Liu, Hailan Ma, and Jing Liu. BRD4 phosphorylation regulates the structure of chromatin nanodomains. In Review. 2024

> Clayton Seitz and Jing Liu. Uncertainty-aware localization microscopy by variational diffusion. In Review. 2024

> Maelle Locatelli[†], Josh Lawrimore[†], Hua Lin[†], Sarvath Sanaullah, Clayton Seitz, Dave Segall, Paul Kefer, Salvador Moreno Naike, Benton Lietz, Rebecca Anderson, Julia Holmes, Chongli Yuan, George Holzwarth, Bloom Kerry, Jing Liu, Keith D Bonin, Pierre-Alexandre Vidi. DNA damage reduces heterogeneity and coherence of chromatin motions. PNAS 12 July 2022; 119 (29): 1-11

> Mengdi Zhang, Clayton Seitz, Garrick Chang, Fadil Iqbal, Hua Lin, and Jing Liu A guide for single-particle chromatin tracking in live cell nuclei. Cell Biology International 15 January 2022; 46 (5): 683-700

> Wenting Wu, Farooq Syed, Edward Simpson, Chih-Chun Lee, Jing Liu, Garrick Chang, Chuanpeng Dong, Clayton Seitz, Decio L. Eizirik, Raghavendra G. Mirmira, Yunlong Liu, Carmella Evans-Molina; Impact of Proinflammatory Cytokines on Alternative Splicing Patterns in Human Islets. Diabetes 25 October 2021; 71 (1): 116 - 127

> Clayton Seitz, Hailan Ma, and Jing Liu. Cytokine-induced transcriptional memory is evident in the kinetics of transcriptional bursts. Biophysical Society Annual Conference 2022

> Clayton Seitz, Hua Lin, Keith Bonin, Pierre-Alexandre Vidi, and Jing Liu. Quantifuing the spatiotemporal dynamics of dUTP labeled chromatin during the DNA damage response. Biophysical Society Annual Conference 2020

TECHNICAL SKILLS

Linux, Bash, Python, R, PyTorch, C/C++, SQL, LaTeX, Git, Docker, SLURM