

OpenClassRooms

Data Scientist

P8 Deploy a model in the cloud

Pictures used for educational purpose only

Benoît DELORME 13 janvier 2022

Sommaire

III. Image processing with Spark

IV. Conclusion

I. Introduction		
II. Big Data environment		

I. Introduction

1) The project

Prototype of **mobile application** that enables to take a picture of a fruit and get information on it.

→ Final goal: provide with a specific treatment for each fruit species through intelligent culling robots.

I. Introduction

2) The dataset

I. Introduction

3) Problematic

- → Currently 24 fruits in the database
- → Up to **650 photos per fruit**, in order to anticipate the different points of view of future images.

Problem: the database will grow with new fruits

→ risk of outgrowing regarding the **computing power** of a **single** computer.

 \rightarrow The future important data volume implies to scale up and use the **cloud** as well as **distributed computing**.

2) Data storage

0	ocr-taille-fixe	EU (Paris) eu-west-3	Objects can be public
0	ocr-taille-variable	EU (Paris) eu-west-3	Objects can be public
0	ocr-taille-variable-backup	EU (Paris) eu-west-3	Bucket and objects not public

3) Implementation of instance EC2 Choose an instance EC2 Debian RedHat Amazon Linux Create the instance and its Instance ID private key cle_aws_11 Create a public key PuttyGen Create a AWS user account Root user IAM user unrestricted access restricted access Elastic IP Create an ElasticIP address 13.36.189.182 Connect to the instance and its command line

5) Spark

Programme Spark	Execute Spark instructions		
RDD Graph	Spark Transformations and actions	Operations done by Charle	
DAGScheduler	Distribute computations according Hadoop MapReduce scheme	Operations done by Spark	
Master	Shares computations between workers		
Workers	Execute computations		

[→] In the frame of this project, master and workers are hosted on the same server, i.e. the EC2 instance.

6) Libraries PySpark used

[→] Computations can be distributed with **methods of the PySpark library**, or **decorated** functions.

2) Spark script configuration

→ A Spark script needs additional settings in comparison to an usual python script.

SparkSession

- → entry point of all functionnality of Spark
- → encompasses all types of *contexts* : Spark, Hive, SQL, ...

```
# Spark session
spark = (SparkSession
.builder.master('local[*]')
.appName('p8_ocr')
.config('spark.hadoop.fs.s3a.access.key', ACCESS_KEY_ID)
.config('spark.hadoop.fs.s3a.secret.key', SECRET_ACCESS_KEY)
.config('spark.hadoop.fs.s3a.impl', 'org.apache.hadoop.fs.s3a.S3AFileSystem')
.config('com.amazonaws.services.s3.enableV4', 'true')
.config('spark.hadoop.fs.s3a.endpoint', 's3.' + REGION +'.amazonaws.com')
.getOrCreate())
```

SparkContext

→ connexion to a master-workers cluster

```
# Spark context and log level
spark_context = spark.sparkContext
spark_context.setLogLevel('WARN')
```

boto3

- → "Python Software Development Kit" designed to configure and manage AWS services.
- → helps to configure the connexion to S3

3) Raw table

fruit	jpeg	image
apple_6	r0_0.jpeg	≈ 400 x 400 pixels RGB
apple_6	r0_2.jpeg	
apple_braeburn_1	r0_0.jpeg	
apple_braeburn_1	r0_2.jpeg	

→ **Goal**: extract a table that can be used by an algorithm

4.1) Image processing steps

4.2) Image processing steps

 $[\]rightarrow$ How many components for the reduced matrix ?

5) PCA dimension reduction

→ Weights of components vary with the number of images:

→ These graphs vary with the randomness of the random.choices method

→ Server utilization for 2400 images:

→ As we increase the number of images processed, the 80% seem to converge to 150 principal components.

IV. Conclusion

1) Summary and outlooks

Dataset

- Ready for analysis in its current form.
- Growth is expected, so there is a need for cloud support (distributed computing)
- Majority of apple species (15 on 24 fruits): risk of bias.

BigData environnement

- Information exchanges take place between users, EC2 instance and S3 buckets.
- Instance RAM is important to be able to use Spark without trouble.
- Version compatibility is determining

Image processing with Spark

- Few images: need for a transfer learning with ResNet50 of Keras
- Distributed computations are done through PySpark own methods or decorated functions.
- PCA dimension reduction seems to be optimal with 150 components.

Outlooks

- Do parallelization of computations on a real EMR cluster.
- Diversify the fruits
- Consider other cloud solutions: Azure, Google Cloud, OVHCloud, ...
- Capture the images in equal proportions according to the rotation axes.
- Feature augmentation

IV. Conclusion

2) Recommandations for scaling

Quality criteria of a cloud tool

- 1. Simple scaling
- 2. Simple maintenance
- 3. Simple data exploitation

AWS 5 pillars

- 1. Operational excellence
- 2. Security
- 3. Reliability
- 4. Performance efficiency
- 5. Cost optimization

End of the presentation

Thank you for your attention