Worked Trample 10 CPE38	of PA29 Instaults & Rahul Bhadani
1) what is the magnitude of the following signal	
ylt= 3+2sin(2	by +8 cos (30t)
at foquency 10 unit	. 2
y 49 = X 0 + 2 \(\in \cos \)	KS2+) + duSin (KS2+)
Fundamental time p	rowind of Sin (20t) 521 = 20
	$T_{(}=\frac{2\pi}{20}=\frac{11}{10}$
L.C.M. & (a, c)	0 cos (30 t) $T_2 = \frac{2\pi}{30} = \frac{17}{15}$ $2 = \frac{30}{15}$
$= \operatorname{Lcm}(a, c)$ $= \operatorname{Lcm}(a, c)$ $= \operatorname{Lcm}(a, c)$ $= \operatorname{Lcm}(a, c)$	
GCD = Greatest common din	If T_0 and T_0 is T_0 as $T_0 \times 2 = T_0$ is or
GCD 7 10, 15 is	II 7/3 = TT 15 7/3 = TT
Division of 15, = 1, 3, 5	D) 5 is is greatest in both taken tyches.
SO 1.C.M & IT	7 TT 1'S JT 5
So	D= 2T-27 x5=10
Now, looking a	t 1 = 3+251h (20+) + 8(cos 30+)
	ve see that none I the compinent
120010	has SZ=10 itude of the Fourier sonies at
mence, the magn	Those of the formal soules at

2=10 is 2000.

whatis for magnitude of the Fourier Seven at Bequency 30?

Composing 21t1= 3+ 2sin(20t) + 8cos(30t)

with 7(t)= Xo +2 \$ (Ch cos(K20t)

k=1 + dhesin(k2t))

2dk = 8 when $k \Omega_0 = 30$

Hence dr = 4

thus for magnitude 15 9.

According to parseval's theorem, $\int_{-\infty}^{+\infty} t^{2} t t^{2} dt = \int_{-\infty}^{\infty} |\chi(\Omega)|^{2} d\Omega$ $+\infty$

 $= \int_{\mathbb{R}^{+\infty}} \left| \int_{\mathbb{R}^{+\infty}} |X(\mathcal{Q})|^2 d\mathcal{Q} \right|$

 $\frac{1}{2\pi^2} \left[\frac{1}{2\pi^2} \left[-2 \right]^2 \right]^2$

 $=\frac{1}{11} \frac{52}{3} \frac{12}{0}$

