

EC/EE/CS & IT/IN

Digital Electronics

combinational

MULTIPLEXER

LECTURE NO. 4

Chandan Jha Sir (CJ Sir)

बिना संघर्ष कोई महान नहीं होता बिना कुछ किये जय जय कार नहीं होता जब तक नहीं पड़ती हथोड़े की चोट तब तक कोई पत्थर भी लोगों के लिए भगवान नहीं होता

ABOUT ME

- Cleared Gate Multiple times with double Digit Rank (AIR 23, AIR 26)
- Qualified ISRO Exam
- Mentored More then 1 Lakhs+ Students (Offline & Online)
- More then 250+ Motivational Seminar in various Engineering College including NITs & Some of IITs

DON'T CARE CONDITION

Combination of inputs on which the output may or may not depends are called don't care condition.

Ex. 9. Find the minimized Boolean expression for the function given as $f(A, B, C) = \sum m(0, 2, 3, 4) + \sum d(1, 6, 7)$

Ex. 10. Find the minimized Boolean expression for the function given as $f(A, B, C, D) = \sum m (0, 2, 4, 6, 7, 8, 10, 11, 12, 14, 15) + \sum d(1,3)$

Ex. 11 Find the minimized Boolean expression for the function given as $f(A, B, C, D) = \sum m(0,3,6,7,9,14) + \sum d(1,4,5,11,13,15)$

Question Roduct of Sum

$f(A_1B_1C) = TIM(0,2,3,4,6,7) \rightarrow Pos.$ = Zm(1,5)

- standard cononical f(A,B,C,D) = ABC-1+ABCD + ABCA

$$f(n_1B,C,D) = \overline{A}\overline{B}\overline{C}(\overline{D}+D) + \overline{A}\overline{B}C(\overline{D}+D)$$

$$= \Sigma m(0,1,2,3,13,15)$$

A BC	7BC	01	BC	30 10
O Ā	1	7		
A 1			ä	B

$$f(A_1B_1C_1D) = \overline{ABC}\overline{C} \cdot 1 + \overline{ABC}U + ABCD$$

$$+ ABC\overline{ABC}$$

3 Variable

Implicants, Prime Implicants, Essential Prime Implicants

Ex
$$f(A,B,C) = \overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}C + \overline{A}BC + AB\overline{C} + ABC$$

Ex

Ex

= ACD+ABC+ABC+ACD + RTI				
BYC	00	O1	11	7 (D) 10
A 6 00		J		
AB 01		1		1
AB 11	1			
AB 10			1	

A.c	CO	7 C D	CD	CD	10
AB	00	I	11		
AB	01		UT	in	
AB	11				D
AB	10				1

Designing of Combinational Circuit

- Step 1. Find the number of inputs & output
- Step 2. Write the truth table.
- Step 3. Write the logical Expression.
- Step 4. Minimize the logical Expression.
- Step 5. Hardware Implementation.

MULTIPLEXER

Ex. 1. Design a 2 x 1 MUX?

Pw

Step 2. Truth table.

So	Υ
0	Io.
1	T,

Step 3. Logical expression

Step 4. Minimization

Step 5. Hardware implementation

MUX - AND- OR Logic

De-MUX - AND Logic

Step-1. Number of input & outputs

S1	So	Υ
0	0	70
0	1	1
1	0	72
1	1	3

Step 3. Logical expression

Step 4. Minimization

Step 5. Hardware implementation

TYPE -1 Designing of higher order MUX by using lower order MUX

Ex. 2. 2x1 MUX ---
$$\frac{3}{2} + \frac{4}{2} + \frac{2}{2}$$
 8x1 MUX $\frac{8}{4} + \frac{2}{2} + 1 = 7$

Ex. 3.
$$2x1 \text{ MUX} \xrightarrow{\frac{16}{2} + \frac{8}{2} + \frac{4}{2} + \frac{2}{2}} \rightarrow 16x1 \text{ MUX}$$

$$8 + 4 + 2 + 1 = 15$$

$$2x1 \text{ MUX} \xrightarrow{2^{h} - 1} 2^{h} x1 \text{ MUX}$$

Ex. 3.
$$\frac{16}{4} + \frac{4}{4}$$

 $\frac{16}{4} + \frac{4}{4}$
 $\frac{16}{4} + \frac{4}{4}$
 $\frac{1}{4} + \frac{1}{4} = \frac{1}{2}$

Ex. 5.
$$4 \times 1 \text{ MUX} \longrightarrow 64 \times 1 \text{ MUX}$$

$$|6+4+|=2|$$

TYPE -2 MUX AS A UNIVERSAL LOGIC

Not Gate

AND GATE

OR GATE

4. NAND GATE

5. NOR GATE

XOR GATE

AOB = AB+ AB

XNOR GATE

Type-3 Minimization

$$f(A,B,C) = \overline{ABC} + \overline{AB1} + \overline{AB\cdot0} + \overline{ABC}$$

$$= \overline{ABC} + \overline{AB} + \overline{ABC} + \overline{ABC}$$

$$= \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$$

$$= \overline{ZM(0,2,3,7)}$$

$$AC + BC$$

$$AC + BC$$

ABC

Type-4 Cascading of MUX

