

Lecture 07

The Rasterization Stage

Prepared by Ban Kar Weng (William)

Rasterization Stage

Purpose of Triangle Setup:

- Convert a vertex stream into a sequence of base primitives.
- Compute factors that are constant over the triangle so that triangle traversal can proceed efficiently.

Purpose of Triangle Traversal:

- Generate a fragment for the part of the pixel that overlaps the triangle.
- Perform vertex attribute interpolation.

Rasterization Stage

Triangle rasterization takes **two steps**:

- Find which pixels overlap the triangle
- 2. Define how to set the pixels' data (e.g. colour)

These can be achieved using edge functions and barycentric coordinates.

Edge Functions

Edge Functions | Definition (Part 1)

Defined for each edge of the triangle.

$$e_i(p) = n_i \cdot (p - p_i)$$
$$i = \{0,1,2\}$$

- Input: a 2D pixel coordinate p
- Output: a real number

Edge Functions | Definition (Part 2)

Returns:

- 1. **Positive number** if input is on the right of the edge (i.e. outside triangle)
- 2. **Negative number** if input is on the left of the edge (i.e. inside triangle)
- 3. **Zero** if input is on the edge.

Find All Pixels Within A Triangle

One Simple Algorithm:

- 1. Compute the bounding box that covers vertices v_0 , v_1 , v_2 .
- 2. For each pixel p in the bounding box
 - 1. If $e_i(p) < 0$ for every i in $\{0,1,2\}$
 - p is inside the triangle.

Note: This algorithm shows the basic idea and may not be the actual implementation in GPU.

Barycentric Coordinates

A point p on a triangle is given by the formula:

$$p = w_0 p_0 + w_1 p_1 + w_2 p_2$$

where (w_0, w_1, w_2) are the barycentric coordinates, which must fulfil $w_i \ge 0$ and $w_0 + w_1 + w_2 = 1$

Barycentric coordinates are computed as follows:

$$w_i = \frac{A_i}{A_0 + A_1 + A_2}$$

Where A_i , the area of the subtriangle,

 A_i is the area of the sub-triangle for computing w_i

Let
$$q_0=p_0-p$$
, $q_1=p_1-p$, $q_2=p_2-p$
$$A_0=\frac{1}{2}|q_1\times q_2|$$

$$A_1=\frac{1}{2}|q_2\times q_0|$$

$$A_2=\frac{1}{2}|q_0\times q_1|$$

Barycentric coordinate can be used to interpolate vertex attributes

$$a = w_0 a_0 + w_1 a_1 + w_2 a_2$$

Find All Pixels Within A Triangle + Attribute Interpolation

One Simple Algorithm:

- 1. Compute the bounding box that covers vertices v_0 , v_1 , v_2 .
- 2. Compute the area of the triangle A.
- 3. For each pixel p in the bounding box
 - 1. If $e_i(p) < 0$ for every i in $\{0,1,2\}$
 - 1. p is inside the triangle.
 - 2. Compute A_0 , A_1 , A_2 .
 - 3. Compute the barycentric coordinates w_0, w_1, w_2 .
 - 4. Compute attribute a at point p.

Triangle Setup v.s. Triangle

Traversal

Triangle Setup v.s. Triangle Traversal

One Simple Algorithm:

- 1. Compute the bounding box that covers vertices v_0 , v_1 , v_2 .
- 2. Compute the area of the triangle A.
- 3. For each pixel p in the bounding box
 - 1. If $e_i(p) < 0$ for every i in $\{0,1,2\}$
 - 1. p is inside the triangle.
 - 2. Compute A_0 , A_1 , A_2 .
 - 3. Compute the barycentric coordinates w_0, w_1, w_2 .
 - 4. Compute attribute a at point p.

Triangle Setup

Triangle Traversal

Q & A

Acknowledgement

 This presentation has been designed using resources from <u>PoweredTemplate.com</u>