# PLSC 503 – Spring 2023 Residuals, Model Fit, and Outliers

February 20, 2023

# Discrepancy, Leverage, and Influence



Note: Solid line is the regression fit for Wilma, Fred, and Betty only. Long-dashed line is the regression for Wilma, Fred, Betty, and Barney. Short-dashed (red) line is the regression for Wilma, Fred, Betty and Dino.

# Discrepancy, Leverage, and Influence

Influence = Leverage  $\times$  Discrepancy

#### Leverage

$$\hat{\mathbf{Y}} = \mathbf{X}\hat{\boldsymbol{\beta}} 
= \mathbf{X}[(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}] 
= \mathbf{H}\mathbf{Y}$$

where

$$\mathbf{H} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'.$$

$$h_i = \mathbf{X}_i(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}_i'$$

### Residuals

Variation:

$$\widehat{\mathsf{Var}(\hat{u}_i)} = \hat{\sigma}^2 [1 - \mathbf{X}_i (\mathbf{X}' \mathbf{X})^{-1} \mathbf{X}_i']$$
 (1)

$$\widehat{\mathsf{s.e.}(\hat{u}_i)} = \hat{\sigma}\sqrt{[1-\mathsf{X}_i(\mathsf{X}'\mathsf{X})^{-1}\mathsf{X}_i']}$$

$$= \hat{\sigma}\sqrt{1-h_i}$$
(2)

"Standardized":

$$\tilde{u}_i = \frac{\hat{u}_i}{\hat{\sigma}\sqrt{1 - h_i}} \tag{3}$$

#### Residuals

"Studentized": define

$$\hat{\sigma}_{-i}^{2} = \text{Variance for the } N-1 \text{ observations } \neq i$$

$$= \frac{\hat{\sigma}^{2}(N-K)}{N-K-1} - \frac{\hat{u}_{i}^{2}}{(N-K-1)(1-h_{i})}. \tag{4}$$

Then:

$$\hat{u}_i' = \frac{\hat{u}_i}{\hat{\sigma}_{-i}\sqrt{1 - h_i}} \tag{5}$$

#### Influence

"DFBETA":

$$D_{ki} = \hat{\beta}_k - \hat{\beta}_{k(-i)} \tag{6}$$

"DFBETAS" (the "S" is for "standardized):

$$D_{ki}^* = \frac{D_{ki}}{\widehat{\mathsf{s.e.}}(\widehat{\beta}_{k(-i)})} \tag{7}$$

Cook's D:

$$D_{i} = \frac{\tilde{u}_{i}^{2}}{K} \times \frac{h_{i}}{1 - h_{i}}$$

$$= \frac{h_{i}\hat{u}_{i}^{2}}{K\hat{\sigma}^{2}(1 - h_{i})^{2}}$$
(8)

#### Variance

```
> # No Barney OR Dino...
> summary(lm(Y~X,data=subset(flintstones,name!="Dino" & name!="Barney")))
Residuals:
    2 4 5
0.714 - 2.143 1.429
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 159.286 6.776 23.5 0.027 *
X
             6.786 0.619 11.0 0.058 .
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 2.67 on 1 degrees of freedom
Multiple R-squared: 0.992, Adjusted R-squared: 0.984
F-statistic: 120 on 1 and 1 DF, p-value: 0.0579
```

#### Variance

```
> # No Barney (Dino included...)
> summary(lm(Y~X,data=subset(flintstones,name!="Barney")))
Residuals:
                 3
-8.88e-16 2.63e-01 -2.11e+00 1.84e+00
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 157.368 2.465 63.8 0.00025 ***
X
              6.974
                        0.161 43.3 0.00053 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 1.99 on 2 degrees of freedom
Multiple R-squared: 0.999, Adjusted R-squared: 0.998
F-statistic: 1.87e+03 on 1 and 2 DF, p-value: 0.000534
```

#### A Variance-Based Statistic

"COVRATIO":

$$\mathsf{COVRATIO}_i = \left[ (1 - h_i) \left( \frac{N - K - 1 + \hat{u}_i'^2}{N - K} \right)^K \right]^{-1} \tag{9}$$

#### For observation i:

- ullet COVRATIO $_i > 1 o increased$  precision of the estimates / smaller standard errors
- COVRATIO $_i < 1 o decreased$  precision of the estimates / larger standard errors

# Example: Federal Judicial Review, 1789-2018

#### Dahl (1957):

- ullet SCOTUS gets "out of step" with the other branches o judicial review
- Older / longer-serving justices will more likely to invalidate legislation

#### Data:

#### > summary(NewDahl)

| Year         | NNulls        | Age          | Tenure       | Unified       |
|--------------|---------------|--------------|--------------|---------------|
| Min. :1789   | Min. :0.000   | Min. :45.5   | Min. : 1.0   | Min. :0.000   |
| 1st Qu.:1846 | 1st Qu.:0.000 | 1st Qu.:60.7 | 1st Qu.:10.0 | 1st Qu.:1.000 |
| Median :1904 | Median :0.000 | Median:63.5  | Median :11.8 | Median :1.000 |
| Mean :1904   | Mean :0.674   | Mean :62.6   | Mean :12.0   | Mean :0.783   |
| 3rd Qu.:1961 | 3rd Qu.:1.000 | 3rd Qu.:66.0 | 3rd Qu.:14.1 | 3rd Qu.:1.000 |
| Max. :2018   | Max. :7.000   | Max. :71.1   | Max. :21.8   | Max. :1.000   |

# Example: Federal Judicial Review, 1789-2018



### Basic Regression...

```
> Fit<-with(NewDahl, lm(NNulls~Age+Tenure+Unified))
> summary(Fit)
Call:
lm(formula = NNulls ~ Age + Tenure + Unified)
Residuals:
  Min
         10 Median 30 Max
-1.308 -0.700 -0.135 0.308 5.693
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -4.6833 1.0026 -4.67 0.0000051 ***
Age
          0.0901 0.0181 4.97 0.0000013 ***
Tenure -0.0201 0.0248 -0.81 0.42
Unified -0.0573 0.1613 -0.36 0.72
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 0.973 on 226 degrees of freedom
  (4 observations deleted due to missingness)
Multiple R-squared: 0.152, Adjusted R-squared: 0.141
F-statistic: 13.6 on 3 and 226 DF, p-value: 0.0000000365
```

# Federal Judicial Review and Mean SCOTUS Age



### Residuals, etc.

#### Generate some statistics:

```
> FitResid<-with(NewDahl, (Fit$model$NNulls - predict(Fit)))
```

- > FitStandard<-rstandard(Fit) # standardized residuals
- > FitStudent<-rstudent(Fit) # studentized residuals
- > FitCooksD<-cooks.distance(Fit) # Cook?s D</pre>
- > FitDFBeta<-dfbeta(Fit) # DFBeta
- > FitDFBetaS<-dfbetas(Fit) # DFBetaS
- > FitCOVRATIO<-covratio(Fit) # COVRATIOs

# Studentized Residuals



#### More About Studentized Residuals

```
> max(FitStudent)
[1] 6.418
> NewDahl$Year1935<-ifelse(NewDahl$Year==1935.1.0)</pre>
> summary(with(NewDahl, lm(NNulls~Age+Tenure+Unified+Year1935)))
Residuals:
  Min
         10 Median
                     30
                           Max
-1.250 -0.652 -0.122 0.302 3.247
Coefficients:
          Estimate Std. Error t value
                                       Pr(>|t|)
(Intercept) -3.9298 0.9313 -4.22 0.00003546916 ***
Age
          Tenure -0.0113 0.0229 -0.50
                                          0.62
Unified -0.1210 0.1490 -0.81
                                          0.42
Year1935 5.8186 0.9066 6.42 0.00000000081 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 0.897 on 225 degrees of freedom
Multiple R-squared: 0.284, Adjusted R-squared: 0.271
F-statistic: 22.3 on 4 and 225 DF, p-value: 1.65e-15
```

#### "Bubble Plot"



#### **DFBETAS**



#### **COVRATIO Plot**



# Sensitivity Analyses: Omitting Outliers

- > out1<-c(1935) # one outlier
- > LD2<-NewDahl[!(NewDahl\$Year %in% out1).]
- > out2<-c(1935,1968,1997,2000) # four outliers
- > LD3<-NewDahl[!(NewDahl\$Year %in% out2).]
- > Fit2<-lm(NNulls~Age+Tenure+Unified,data=LD2)
- > Fit3<-lm(NNulls~Age+Tenure+Unified,data=LD3)

|                         | Dependent variable:        |                            |                         |  |  |
|-------------------------|----------------------------|----------------------------|-------------------------|--|--|
|                         | NNulls                     |                            |                         |  |  |
|                         | (1)                        | (2)                        | (3)                     |  |  |
| Age                     | 0.090***                   | 0.077***                   | 0.079***                |  |  |
|                         | (0.018)                    | (0.017)                    | (0.015)                 |  |  |
| Tenure                  | -0.020                     | -0.011                     | -0.019                  |  |  |
|                         | (0.025)                    | (0.023)                    | (0.021)                 |  |  |
| Unified                 | -0.057                     | -0.121                     | -0.010                  |  |  |
|                         | (0.161)                    | (0.149)                    | (0.139)                 |  |  |
| Constant                | -4.683***                  | -3.930***                  | -4.130***               |  |  |
|                         | (1.003)                    | (0.931)                    | (0.855)                 |  |  |
| Observations            | 230                        | 229                        | 226                     |  |  |
| $R^2$                   | 0.152                      | 0.148                      | 0.158                   |  |  |
| Adjusted R <sup>2</sup> | 0.141                      | 0.137                      | 0.147                   |  |  |
| Residual Std. Error     | 0.973 (df = 226)           | 0.897 (df = 225)           | 0.822 (df = 222)        |  |  |
| F Statistic             | 13.550 * * * (df = 3; 226) | 13.030 * * * (df = 3; 225) | 13.930*** (df = 3; 222) |  |  |

Note: \*p<0.1; \*\*p<0.05; \*\*\*p<0.01

# Thinking About Diagnostics



Observational Data Complex Data Structure Informative Missingness Complex / Uncertain Causality Experimental Data Simple Data Structure No / Uninformative Missingness Simple / Clear Causality

# One Approach

Pena, E.A. and E.H. Slate. 2006. "Global Validation of Linear Model Assumptions." *J. American Statistical Association* 101(473):341-354.

#### Tests for:

- Normality in  $\hat{u}$ s (via skewness & kurtosis tests)
- "Link function" (linearity / additivity)
- Constant variance and uncorrelatedness in ûs ("heteroskedasticity" test)

#### In Action

```
> Fit<-with(NewDahl, lm(NNulls~Age+Tenure+Unified))
> library(gvlma)
> Nope <- gvlma(Fit)
> display.gvlmatests(Nope)
ASSESSMENT OF THE LINEAR MODEL ASSUMPTIONS
USING THE GLOBAL TEST ON 4 DEGREES-OF-FREEDOM:
Level of Significance = 0.05
Call:
 gvlma(x = Fit)
                   Value p-value
                                                     Decision
Global Stat
                   454.87 0.00e+00 Assumptions NOT satisfied!
                   122.09 0.00e+00 Assumptions NOT satisfied!
Skewness
Kurtosis
                   283.21 0.00e+00 Assumptions NOT satisfied!
Link Function
                     5.35 2.07e-02 Assumptions NOT satisfied!
Heteroscedasticity 44.23 2.92e-11 Assumptions NOT satisfied!
```

# Another Approach: plot(fit)



# #1: Residuals vs. Fitted Values



# #2: Q-Q Plot of $\hat{u}$ s



## "Scale-Location" Plot



### Cook's D



# Residuals vs. Leverage



# Cook's D vs. Leverage

