MATH230: Tutorial Nine

Proofs-as-Programs: Minimal Logic in L∃∀N

Key ideas

• Learn L $\exists \forall N$ syntax.

- Write explicit proof-terms in L $\exists \forall N$.
- Compare syntax across languages.

Relevant lectures:

Relevant reading: Theorem Proving in L∃∀N 4

Hand in exercises: 1

Sue Friday @ 5pm to the tutor, or to lecturer.

Discussion Questions

1. In a previous tutorial we wrote a proof-term witnessing the sequent

$$P \to Q \vdash P \to (P \land Q)$$

Translate this proof-term into the syntax for L $\exists \forall N$ 4.

2. Write a proof-term in L $\exists \forall N$ 4 to prove the following sequent

$$P \vdash \neg \neg P$$

3. Write a proof-term in L $\exists \forall N$ 4 to prove the following sequent

$$(P \wedge Q) \vee R \vdash (P \vee R) \wedge (Q \vee R)$$

Tutorial Exercises

1. Throughout the course we have introduced rules of inference in logic, type constructors and destructors in the typed λ -calculus, and now we are to see how they are implemented in L $\exists \forall N$. As you write proof-terms for the sequents in Exercise 2 enter the missing components in the following table:

PL	λ	L∃∀N 4
$\wedge I$		
$\wedge E_r$		
$\wedge E_l$		
ightarrow I	λ_{-} :	$\lambda_{-}: _=>$
$\rightarrow E$		
$\vee I_r$		
$ee I_l$		
$\vee E$		

Table 1: Syntax of logic, λ -calculus, and L $\exists \forall N$ 4

- 2. For each of the sequents below, write proof-terms in L $\exists \forall N$ 4. You have seen these proofs before, so it is a translating into L $\exists \forall N$ exercise, rather than proving anything new.
 - (a) $P \rightarrow Q, \neg Q \vdash \neg P$
 - (b) $(P \wedge Q) \rightarrow R + P \rightarrow (Q \rightarrow R)$
 - (c) $\neg P \lor \neg Q \vdash \neg (P \land Q)$
 - (d) $\neg (P \lor Q) \dashv \vdash \neg P \land \neg Q$
 - (e) $P \to Q$, $Q \to R \vdash P \to R$
 - (f) $P \vee Q$, $P \to R$, $Q \to S \vdash R \vee S$
 - (g) $P \to R$, $Q \to S$, $\neg R \lor \neg S \vdash \neg P \lor \neg Q$
 - (h) P, $\neg P \vdash \neg Q$
 - (i) $P \rightarrow Q$, $P \rightarrow \neg Q \vdash \neg P$
- 3. For each of the sequents below write proof-terms in L∃∀N. These exercises have not appeared in earlier tutorials. You could prove these by-hand first and then translate that into L∃∀N. Or you could write the proof straight into L∃∀N. Either way, they each have proofs in minimal logic.
 - (a) $P \vdash \neg \neg P$
 - (b) $\neg\neg\neg P \vdash \neg P$
 - (c) $\vdash \neg \neg (P \lor \neg P)$