高運®科技 GEMMOP®

GT30L24M1Z 标准点阵汉字库芯片

一产品规格书一

V1.1 2015-5

版本修订记录

版本号	修改内容	日期	备注
V 1.0I_A	规格书制定	2013-04	
V 1.0I_B	规格书格式修改	2015-05	6

目 录

1 概述	4
1.1 芯片特点	4
1.2 芯片内容	5
1.3 字型样张	6
1.3.1 汉字字符	6
1.3.2 其它点阵字符	6
2 操作指令	8
2.1 Instruction Parameter(指令参数)	8
2.2 Read Data Bytes(一般读取)	8
2.3 Read Data Bytes at Higher Speed(快速读取点阵数据)	9
3 引脚描述与电路连接	10
3.1 引脚配置	10
3.2 引脚描述	
3.3 HOST CPU 主机接口与 SPI 接口电路示意图	
4 电气特性	13
4.1 绝对最大额定值	13
4.2 DC 特性	
4.3 AC 特性	13
5 封装尺寸	
6 字库排置(横置横排)	16
6.1 点阵排列格式	16
6.2 15X16 点汉字排列格式	16
6.3 16 点阵不等宽 ASCII 方头(Arial)字符排列格式	16
7 点阵数据验证(客户参考用)	
8 附录	19
8.1 GB18030 标准字库 1 区和 5 区(字符区)	19
8.2 字符(126 字符)	23

1 概述

GT30L24M1Z是一款内含24x24点阵的汉字库芯片,支持GB18030国标汉字(含有国家信标委合法授权)及ASCII字符。排列格式为竖置竖排。用户通过字符内码,利用本手册提供的方法计算出该字符点阵在芯片中的地址,可从该地址连续读出字符点阵信息。

1.1 芯片特点

- 数据总线: SPI 串行总线接口
- 点阵排列方式:字节横置横排
- 时钟频率: 120MHz(max.)@3.3V
- 工作电压: 2.7V~3.6V
- 电流:

工作电流: 12mA 待机电流: 5uA

- 工作温度: -40°C~85°C
- 封装: SOP8-B
- 字符集:

GB18030

● 字号: 24x24 点阵

1.2 芯片内容

字符集	字库	字号	字符数	字体	排列方式
	ASCII	12x24	96	标准	Z-竖置竖排
ASCII	ASCII	24 点阵不等宽	96	Arial(方头)	Z-竖置竖排
字符集	ASCII	24 点阵不等宽	96	Times new Roman(白正)	Z-竖置竖排
CP.	GB18030 汉字	24x24	27533	宋体	Z-竖置竖排
GB 字符集	GB18030 字符	24x24	1038	宋体	Z-竖置竖排
	国标扩展字符	12x24	126	宋体	Z-竖置竖排

1.3 字型样张

1.3.1 汉字字符

1.3.2 其它点阵字符

24 点阵不等宽 ASCII 白正(Times new Roman)

24 点阵不等宽 ASCII 方头 (Arial)

2操作指令

2.1 Instruction Parameter(指令参数)

Instruction	Description	Instructi Code(One-		Address Bytes	Dummy Bytes	Data Bytes
READ	Read Data Bytes	0000 0011	03 h	3		1 to ∞
FAST_READ	Read Data Bytes at Higher Speed	0000 1011	0B h	3	1	1 to ∞

所有对本芯片 SPI 接口的操作只有 2 个,那就是 Read Data Bytes (READ "一般读取")和 Read Data Bytes at Higher Speed (FAST_READ "快速读取点阵数据")。.

2.2 Read Data Bytes (一般读取)

Read Data Bytes 需要用指令码来执行每一次操作。READ 指令的时序如下(图):

- 首先把片选信号(CS#)变为低,紧跟着的是 1 个字节的命令字(03 h)和 3 个字节的地址和通过串行数据输入引脚(SI)移位输入,每一位在串行时钟(SCLK)上升沿被锁存。
- 然后该地址的字节数据通过串行数据输出引脚(SO)移位输出,每一位在串行时钟(SCLK)下降沿被移出。
- 读取字节数据后,则把片选信号(CS#)变为高,结束本次操作。 如果片选信号(CS#)继续保持为底,则下一个地址的字节数据继续通过串行数据输出引脚 (SO)移位输出。

图: Read Data Bytes (READ) Instruction Sequence and Data-out sequence:

2.3 Read Data Bytes at Higher Speed (快速读取点阵数据)

Read Data Bytes at Higher Speed 需要用指令码来执行操作。READ_FAST 指令的时序如下(图):

- 首先把片选信号(CS#)变为低,紧跟着的是 1 个字节的命令字(0B h)和 3 个字节的地址以及一个字节 Dummy Byte 通过串行数据输入引脚(SI)移位输入,每一位在串行时钟(SCLK)上升沿被锁存。
- 然后该地址的字节数据通过串行数据输出引脚(SO)移位输出,每一位在串行时钟(SCLK)下降沿被移出。
- 如果片选信号(CS#)继续保持为底,则下一个地址的字节数据继续通过串行数据输出引脚(SO)移位输出。例:读取一个 15x16 点阵汉字需要 32Byte,则连续 32 个字节读取后结束一个汉字的点阵数据读取操作。

如果不需要继续读取数据,则把片选信号(CS#)变为高,结束本次操作。

图: Read Data Bytes at Higher Speed (READ_FAST) Instruction Sequence and Data-out sequence:

3 引脚描述与电路连接

3.1 引脚配置

SOP8-B

SOP8-B

NO.	名称	I/O	描述
1	CS#	I	片选输入(Chip enable input)
2	SO	0	串行数据输出 (Serial data output)
3	NC		悬空
4	GND		地(Ground)
5	SI	- 1	串行数据输入 (Serial data input)
6	SCLK	- 1	串行时钟输入(Serial clock input)
7	HOLD#	I	总线挂起(Hold, to pause the device without)
8	VCC		电源(+ 3.3V Power Supply)

3.2 引脚描述

串行数据输出(SO): 该信号用来把数据从芯片串行输出,数据在时钟的下降沿移出。

串行数据输入(SI):该信号用来把数据从串行输入芯片,数据在时钟的上升沿移入。

串行时钟输入(SCLK):数据在时钟上升沿移入,在下降沿移出。

片选输入(CS#): 所有串行数据传输开始于CS#下降沿, CS#在传输期间必须保持为低电平, 在两条指令之间保持为高电平。

总线挂起输入(HOLD#):

该信号用于片选信号有效期间暂停数据传输,在总线挂起期间,串行数据输出信号处于高阻态,芯片不对串行数据输入信号和串行时钟信号进行响应。

当HOLD#信号变为低并且串行时钟信号(SCLK)处于低电平时,进入总线挂起状态。 当HOLD#信号变为高并时串行时钟信号(SCLK)处于低电平时,结束总线挂起状态。

3.3 HOST CPU 主机接口与 SPI 接口电路示意图

SPI 与主机接口电路连接可以参考下图(#HOLD 管脚建议接 2K 电阻 3.3V 拉高)。

HOST CPU 主机 SPI 接口电路示意图

4 电气特性

4.1 绝对最大额定值

Symbol	Parameter	Min.	Max.	Unit	Condition
T _{OP}	Operating Temperature	-40	85	$^{\circ}\!\mathbb{C}$	
T _{STG}	Storage Temperature	-65	150	$^{\circ}$ C	
VCC	Supply Voltage	-0.3	3.6	V	
V _{IN}	Input Voltage	-0.3	VCC+0.3	V	
GND	Power Ground	-0.3	-0.3	V	

4.2 DC 特性

Symbol	Parameter	Min.	Max.	Unit	Condition
I _{DD}	VCC Supply Current(active)		12	mA	
I _{SB}	VCC Standby Current		5	uA	
V _{IL}	Input LOW Voltage	-0.3	0.2VCC	V	
V _{IH}	Input HIGH Voltage	0.7VCC	VCC+0.4	V	
V _{OL}	Output LOW Voltage		0.4 (I _{OL} =1.6mA)	V	VCC=2.7~3.6V
V _{OH}	Output HIGH Voltage	VCC-0.2 (I _{OH} =100uA)		V	VCC=2.7~3.0V
I _{LI}	Input Leakage Current	0	2	uA	
I _{LO}	Output Leakage Current	0	2	uA	

Note: I_{IL} : Input LOW Current, I_{IH} : Input HIGH Current, I_{OL} : Output LOW Current, I_{OH} : Output HIGH Current,

4.3 AC 特性

Symbol	Alt.	Parameter	Min.	Max.	Unit
Fc	Fc	Clock Frequency	D.C.	120	MHz
tCH	tCLH	Clock High Time	4		ns
tCL	tCLL	Clock Low Time	4		ns
tCLCH		Clock Rise Time(peak to peak)	0.2		V/ns
tCHCL		Clock Fall Time (peak to peak)	0.2		V/ns
tSLCH	tCSS	CS# Active Setup Time (relative to SCLK)	5		ns
tCHSL		CS# Not Active Hold Time (relative to SCLK)	5		ns
tDVCH	tDSU	Data In Setup Time	2		ns
tCHDX	tDH	Data In Hold Time	2		ns
t CHSH		CS# Active Hold Time (relative to SCLK)	5		ns
t SHCH		CS# Not Active Setup Time (relative to SCLK)	5		ns
t SHSL	tCSH	CS# Deselect Time	20		ns
t SHQZ	tDIS	Output Disable Time		6	ns
t CLQV	tV	Clock Low to Output Valid		6.5	ns

t CLQX	tHO	Output Hold Time	0		ns
t HLCH		HOLD# Setup Time (relative to SCLK)	5		ns
t CHHH		HOLD# Hold Time (relative to SCLK)	5		ns
t HHCH		HOLD Setup Time (relative to SCLK)	5		ns
t CHHL		HOLD Hold Time (relative to SCLK)	5		ns
t HHQX	tLZ	HOLD to Output Low-Z		6	ns
t HLQZ	tHZ	HOLD# to Output High-Z		6	ns

5 封装尺寸

单位:mm

Dimensions

Syn	nbol	Α	A1	A2	b	С	D	Е	E1	0	L	L1	S	•
Unit														
Mm	Min.	•	0.05	1.70	0.36	0.19	5.13	7.70	5.18		0.50	1.21	0.62	0
	Norm.	•	0.15	1.80	0.41	0.20	5.23	7.90	5.28	1.27	0.65	1.31	0.74	5
	Max.	2.16	0.25	1.91	0.51	0.25	5.33	8.10	5.38		0.80	1.41	0.88	8
inch	Min.	ı	0.002	0.067	0.014	0.007	0.202	0.303	0.204		0.020	0.048	0.024	0
	Norm.	ı	0.006	0.071	0.016	0.008	0.206	0.311	0.208	0.050	0.026	0.052	0.029	5
	Max.	0.085	0.010	0.075	0.020	0.010	0.210	0.319	0.212		0.031	0.056	0.035	8

6字库排置 (横置横排)

6.1 点阵排列格式

每个汉字在芯片中是以汉字点阵字模的形式存储的,每个点用一个二进制位表示,存 1 的点,当显示时可以在屏幕上显示亮点,存 0 的点,则在屏幕上不显示。点阵排列格式为横置横排:即一个字节的高位表示左面的点,低位表示右面的点,排满一行的点后再排下一行。这样把点阵信息用来直接在显示器上按上述规则显示,则将出现对应的汉字。

6.2 15X16 点汉字排列格式

15X16 点汉字的信息需要 32 个字节(BYTE 0 – BYTE 31)来表示。该 15X16 点汉字的点阵数据是横置横排的,其具体排列结构如下图:

6.3 16 点阵不等宽 ASCII 方头(Arial)字符排列格式

16 点阵不等宽字符的信息需要 34 个字节(BYTE 0 - BYTE33)来表示。

■ 存储格式

由于字符是不等宽的,因此在存储格式中 BYTE0~ BYTE1 存放点阵宽度数据,BYTE2-33 存放 横置横排点阵数据。具体格式见下图:

■ 存储结构

不等宽字符的点阵存储宽度是以BYTE为单位取整的,根据不同字符宽度会出现相应的空白区。根BYTE0~BYTE1所存放点阵的实际宽度数据,可以对还原下一个字的显示或排版留作参考。

16

例如: ASCII 方头字符 B

0-33BYTE 的点阵数据是: 00 0C 00 00 00 00 00 7F 80 7F C0 60 C0 60 C0 60 C0 7F 80

7F C0 60 E0 60 60 60 60 7F C0 7F 80 00 00

其中:

BYTE0~ BYTE1: 00 0C 为 ASCII 方头字符 B 的点阵宽度数据,即: 12 位宽度。字符后面有 4 位空白区,可以在排版下一个字时考虑到这一点,将下一个字的起始位置前移。(见下图)

BYTE2-33: 00 00 00 00 00 00 7F 80 7F C0 60 C0 60 C0 60 C0 7F 80 7F C0 60 E0 60 60 60 60 7F C0 7F 80 00 00 为 ASCII 方头字符 B 的点阵数据。

7点阵数据验证(客户参考用)

客户将芯片内 "A"的数据调出与以下进行对比。若一致,表示 SPI 驱动正常工作;若不一致,请重新编写驱动。

排置: Y(竖置横排)点阵大小 8X16

字母"A"

点阵数据: 00 E0 9C 82 9C E0 00 00 0F 00 00 00 00 00 0F 00

排置:W(横置横排)点阵大小 8X16

字母"A"

点阵数据: 00 10 28 28 28 44 44 7C 82 82 82 82 00 00 00 00

8 附录

8.1 GB18030 标准字库 1 区和 5 区(字符区)

GB18030 标准点阵字符 1 区和 5 区分别对应码位的 A1A1~A996 共计 1038 个字符;

GB18030 1区

GB18030 1区

GB18030 1区

GB18030 5区

8.2 字符(126 字符)

扩展字符区的内码组成为 AAA1~ABC0 共计 126 个字符。

扩展字符区

AA	0	1	2	3	4	5	6	7	8	9	Α	В	C	D	E	F
Α		!	"	#	¥	%	&	•	()	*	+	,	_		
В	0	1	2	3	4	5	6	[7	8	9] :	;	<	=	>	?
C	0	A	В	\mathbb{C}	D	E	F	G	H][I]	J	K	L	M	N	0
D	P	Q	R	S	T	U	V	W	X][Y	Z				^	
E	1	a	b	[c	d	e	f	g	h][i	j	k		m	n	0
F	p	q	r	S	t	u	v	W	X	у	Z	{		}		

AB	0	1	2	3	4	5	6	7	8	9	Α	В	C	D	E	F
Α		ā	ά	ă	à	ē	é	ě	è	Ĩ	ĺ	Ĭ	ì	ō	Ó	Ŏ
В	ò	ū	ú	ŭ	ù	Īū	ű	ŭ	ù	ü	ê	a	m	ń	ň	ì
С	g															
D																
E																
F																

上海 OFFICE

地址:上海徐汇区宜山路 1388 号民润大厦 2号楼 2层

电话: 021-54451588 54451000 54452288

传真: 021-54451589-810 E-mail:Sales@genitop.com

深圳 OFFICE

地址:深圳市福田区车公庙泰然四路 204 栋东座 708-709 室

电话: 0755-83453881 83453855

传真: 0755-83453855-8004