第三章 小结

多维随机变量

二维随机变量

离散型-概率分布 边际分布 概率计算 条件分布

分布函数 概率计算 连续型-概率密度 边际密度 概率计算 条件密度

独立性

数字特征: 协方差、相关系数等

离散型-列表归纳连续型-套用公式由F求p

随机变量函数的概率分布

两个随机向量和、商、极值的分布

第四章

随机变量序列的极限分布

- □泊松定理与中心极限定理
- ■概率收敛与大数定律

一、泊松定理与 中心极限定理

用泊松分布近似二项分布

定理 1.设 $\xi \sim B(n, p_n)$, 当 $n \to \infty$ 时, ξ 近似地服从 $P(\lambda)$, 即 $np_n \to \lambda$,

$$C_n^k p_n^{\ k} q_n^{\ n-k} \rightarrow \frac{\lambda^k}{k!} e^{-\lambda},$$

使用条件: n充分大, p_n 很小(< 0.1), 而 np_n 适当(可查表)

用EXCEL计算的结果

k	B(10,0.1)	B(100,0.01)	B(1000,0.001)	B(10000,0.0001)	P(1)
0	0.348678	0. 36603234	0. 367695425	0. 367861046	0.36787944
1	0.38742	0. 36972964	0. 368063488	0. 367897836	0.36787944
2	0. 19371	0. 18486482	0. 184031744	0. 183948918	0. 18393972
3	0.057396	0.06099917	0.061282509	0.061310174	0.06131324
4	0.01116	0. 01494171	0. 015289955	0. 015324478	0.01532831
5	0.001488	0.00289779	0.003048808	0.003063976	0.00306566
6	0.000138	0.00046345	0. 0005061	0.000510458	0.00051094
7	8.75E-06	6. 2863E-05	7. 19381E-05	7. 28862E-05	7. 2992E-05
8	3.65E-07	7. 3817E-06	8. 93826E-06	9. 1053E-06	9. 124E-06
9	9E-09	7. 622E-07	9.86181E-07	1. 01099E-06	1. 0138E-06
10	1E-10	7. 006E-08	9. 78284E-08	1. 01018E-07	1. 0138E-07
11		5. 7901E-09	8.81337E-09	9. 17522E-09	9. 2162E-09
12		4. 3377E-10	7. 27095E-10	7. 63837E-10	7. 6801E-10

例 1.某人进行射击,每次击中的概率为 0.02,独立射击 400 次,试求(1)至少击中两次的概率;(2)击中次数不到两次的概率。

解:设击中的次数 ξ ,则 $\xi \sim B(400,0.02)$

$$p = 0.02 < 0.1$$
 $\lambda = np = 400 \times 0.02 = 8$

所以可用泊松分布近似二项分布,

$$(1) P(\xi \ge 2) = 1 - P(\xi = 0) - P(\xi = 1)$$

$$= 1 - (0.98)^{400} - C_{400}^{1} (0.98)^{399} (0.02)$$

$$\approx 1 - \frac{8^{0}}{0!} e^{-8} - \frac{8^{1}}{1!} e^{-8} = 0.997$$

即: 至少击中两次的概率为0.997。

 $(2) P(\xi < 2) \approx 0.003.$

即: 击中次数不到两次的概率为0.003。

中心极限定理

正态分布为何如此广泛,从而在概率论中占如此重要的地位?

中心极限定理

概率论中,有关论证随机变量累加和的极限分布是正态分布的那 些定理。 设独立同分布的随机变量序列 $\xi_1,\xi_2,\dots,\xi_n,\dots$,期望和方差都存在,即 $E\xi_i = \mu$, $D\xi_i = \sigma^2$, $i = 1,2,\dots,n,\dots$

$$\operatorname{III} E \eta_n = \sum_{i=1}^n E \xi_i = n \mu$$
, $D \eta_n = \sum_{i=1}^n D \xi_i = n \sigma^2 = S_n^2$

标准化
$$S_n = \frac{\eta_n - E\eta_n}{\sqrt{D\eta_n}} = \frac{1}{S_n} \sum_{i=1}^n (\xi_i - \mu)$$

则
$$E\varsigma_n=0, D\varsigma_n=1$$

林德伯格—列维定理(独立同分布中心极限定理)

设独立随机变量 $\xi_1, \xi_2, \dots, \xi_n, \dots$,服从相同分布,且

$$E\xi_i = \mu$$
, $D\xi_i = \sigma^2$, $i = 1, 2, \dots, n, \dots$

则当 $n\to\infty$ 时,有

$$\lim_{n \to \infty} P(\frac{\sum_{i=1}^{n} \xi_i - n\mu}{\sqrt{n\sigma}} \le x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt$$

其中X是任意实数。

意义:

假设被研究的随机变量可以表示为大量独立 随机变量的和,其中每一个别随机变量对于 总和只起微小的作用,则可以认为这个随机 变量实际上是服从正态分布的。

当
$$n$$
充分大时, $\frac{\sum_{i=1}^{n} \xi_{i} - n\mu}{\sqrt{n}\sigma}$ 近似服从 $N(0,1)$

$$\sum_{i=1}^n \xi_i \sim N(n\mu, n\sigma^2)$$

推论: 如果随机变量 $\xi_1, \xi_2, \dots, \xi_n, \dots$ 独立,服从相同分布,且 $E \xi_i = \mu$, $D \xi_i = \sigma^2$, $i = 1, 2, \dots, n, \dots$

则 n 充分大时,有下面的近似公式:

$$P(x_{1} < \frac{\sum_{i=1}^{n} \xi_{i} - n\mu}{\sqrt{n\sigma}} \le x_{2}) \approx \Phi(x_{2}) - \Phi(x_{1})$$

其中, x₁,x₂是任何实数。

例 2 计算机进行加法计算时,把每个加数取为最接近于它的整数来计算。设所有的取整误差是相互独立的随机变量,并且都在区间[-0.5,0.5]上服从均匀分布,求 300 个数相加时误差总和的绝对值小于10 的概率。多少个数相加在一起能使误差总和小于10的概率为0.9?

解:设 ξ_i 表示第 i个加数的取整误差,则 ξ_i 在区间[-0.5,0.5]上服从均匀分布,并且有

$$E\xi_{i} = \frac{-0.5 + 0.5}{2} = 0$$
,即 $\mu = 0$

$$D\xi_{i} = \frac{[0.5 - (-0.5)]^{2}}{12} = \frac{1}{12}, i = 1, 2, \dots, n, \dots, p$$

$$\sigma^{2} = \frac{1}{12}, \text{ 由列维定理的推论:}$$

$$P(|\sum_{i=1}^{n} \xi_{i}| < 10) = P(\frac{|\sum_{i=1}^{n} \xi_{i} - 0|}{\sqrt{300 \times \frac{1}{12}}} < \frac{10 - 0}{\sqrt{300 \times \frac{1}{12}}})$$

$$= P(\frac{|\sum_{i=1}^{n} \xi_{i} - 0|}{\sqrt{300 \times \frac{1}{12}}} < 2)$$

$$= \Phi(2) - \Phi(-2) = 2\Phi(2) - 1$$

$$= 2 \times 0.9772 - 1 = 0.9544$$

答: 300个数相加时误差总和的绝对值小于10的概率为0.9544。

设有
$$n$$
个加数,则 $P\{|\sum_{i=1}^n \xi_i| < 10\} \ge 0.9$

$$P\{|\sum_{i=1}^{n} \xi_i| < 10\} = 2\Phi(\frac{10}{\sqrt{\frac{n}{12}}}) - 1 \ge 0.9$$

$$\Phi(\frac{10}{\sqrt{\frac{n}{12}}}) \ge 0.95,$$
 $\frac{10}{\sqrt{\frac{n}{12}}} \ge 1.645$

$$\frac{10}{\sqrt{\frac{n}{12}}} \ge 1.645$$

$$n \le 443.5$$

所以n = 443即可。

德莫威尔-拉普拉斯定理:设在独立试验序列中,事件 A 在各次试验中发生的概率为 $p(0 ,随机变量 <math>\eta_n$ 表示事件 A 在 n次试验中发生的次数,则有

$$\lim_{n\to\infty} P(\frac{\eta_n - np}{\sqrt{npq}} \le x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-\frac{t^2}{2}} dt$$

其中z是任何实数,p+q=1。

(简称 D-L 定理)

D-L定理的应用

(1)设 $\xi \sim B(n,p)$, 当n充分大时,可认为 $\xi \sim N(np,np(1-p))$

試財,
$$P\{a \le \xi \le b\} \approx \Phi(\frac{b-np}{\sqrt{np(1-p)}}) - \Phi(\frac{a-np}{\sqrt{np(1-p)}})$$

说明: 当 p 值接近 0或 1时,用 Poisson (泊松)分布近似较精 确。

例3.某厂有400台同类机器,每台机器 发生故障的概率都是 0.02,假设各台机器工作是 相互独立的,试分别用 二项 分布、近似的泊松分布 和近似的正态分布计算 最多有2 台机器发生故障的概率 。 解: 设发生故障的机器 台数 ξ ,则 $\xi \sim B(n,p), n = 400, p = 0.02$

(1)二项分布(精确)

$$P\{0 \le \xi \le 2\} = P\{\xi = 0\} + P\{\xi = 1\} + P\{\xi = 2\} \approx 0.0131$$

(2)泊松分布 (近似)
$$\lambda = np = 400 \times 0.02 = 8$$
 $P\{0 \le \xi \le 2\} \approx P\{\xi = 0\} + P\{\xi = 1\} + P\{\xi = 2\} \approx 0.0137$

(3)正态分布 (近似)
$$np = 8, \sqrt{np(1-p)} = 2.8$$

$$P\{0 \le \xi \le 2\} \approx \Phi(\frac{2-8}{2.8}) - \Phi(\frac{0-8}{2.8}) \approx \Phi(-2.14) - \Phi(-2.86) \approx 0.0141$$

(2) 近似计算用频率估计概率是的误差

$$P\{|\frac{\mu_n}{n} - p| \le \varepsilon\} \Rightarrow P\{|\frac{\mu_n - np}{\sqrt{np(1-p)}}| \le \varepsilon \sqrt{\frac{n}{p(1-p)}}\}$$

$$\approx \Phi(\varepsilon \sqrt{\frac{n}{p(1-p)}}) - \Phi(-\varepsilon \sqrt{\frac{n}{p(1-p)}})$$

$$= 2\Phi(\varepsilon \sqrt{\frac{n}{p(1-p)}}) - 1$$

$$P\{|\frac{\mu_n}{n} - p| > \varepsilon\} \approx 2(1 - \Phi(\varepsilon \sqrt{\frac{n}{p(1-p)}}))$$

解决三类问题

(1)已知
$$\varepsilon$$
, n , p , 求 $P\{|\frac{\mu_n}{n}-p|\leq \varepsilon\}=2\Phi\ (\varepsilon\sqrt{\frac{n}{p(1-p)}})-1$

$$(2)$$
已知 $P\{|\frac{\mu_n}{n}-p|\leq \varepsilon\}, \ \varepsilon, \ p, \ 求 n$

$$(3)$$
已知 $P\{|\frac{\mu_n}{n}-p|\leq \varepsilon\}, n, 求 \varepsilon$

$$a$$
.已知 p b .未知 p ,利用 $p(1-p) \leq \frac{1}{4}$.

例 4:设一批种子的良种率为 $\frac{1}{6}$,在其中任选 600 粒,求这 600 粒种子中良种所占的比例与 $\frac{1}{6}$ 之差的绝对值不超过 0.02 的概率。a)用切比雪夫不等式估计;b)用中心极限定理计算。

解:用 ξ 表示 600 粒种子中良种的粒数,则 $\xi \sim b(n,p)$,

$$n = 600$$
 , $p = \frac{1}{6}$, 故问题所求的概率为 $P\{|\frac{\xi}{600} - \frac{1}{6}| \le 0.02\}$ 。

$$E\xi = np = 600 \times \frac{1}{6} = 100$$
, $D\xi = npq = 600 \times \frac{1}{6} \times (1 - \frac{1}{6}) = \frac{250}{3}$,

用切比雪夫不等式进行估计

$$P\{|\frac{\xi}{600} - \frac{1}{6}| \le 0.02\} \ge 1 - \frac{D(\frac{\xi}{600})}{0.02^2} = 1 - \frac{(\frac{1}{600})^2 \times \frac{250}{3}}{0.02^2} = 0.4213$$

用中心极限定理计算:

利用公式
$$P\{|\frac{\mu_n}{n}-p|<\varepsilon\}\cong\beta=2\Phi(\varepsilon\sqrt{\frac{n}{p(1-p)}})-1$$
,

注意到 μ_n 对应于此处的 ξ , $\varepsilon = 0.02$, 故

$$P\{|\frac{\xi}{600} - \frac{1}{6}| < 0.02\} = 2\Phi(0.02 \times \sqrt{\frac{600}{\frac{1}{6}(1 - \frac{1}{6})}}) - 1 = 2\Phi(1.3145) - 1$$

$$= 2 \times 0.9057 - 1 = 0.8114$$

- 例 5 某工厂有 200 台同类型的机器,每台机器工作时需要的电功率为 Q 千瓦。由于工艺等原因,每台机器的实际工作时间只占全部工作时间的 75%,各台机器是否工作是相互独立的。
 - 求: (1)任一时刻有 144 至 160 台机器正在工作的概率;
 - (2)需要供应多少电功率可以保证所有机器正常工作的概率不小于 0.99?

解:已知n = 200, p = 0.75, q = 0.25所以有 np = 150, npq = 37.5

(1)设 7 表示任一时刻正在工作的机器的台数,则

$$P(144 \le \eta \le 160) \approx \Phi(\frac{160 - 150}{\sqrt{37.5}}) - \Phi(\frac{144 - 150}{\sqrt{37.5}})$$

$$= \Phi(1.63) - \Phi(-0.98) = \Phi(1.63) - [1 - \Phi(0.98)]$$
$$= 0.9484 - [1 - 0.8365] = 0.7849$$

所以,任一时刻有 **144** 至 **160** 台机器正在工作的概率为 0.7849。

- "保证所有机器能正常工作"
- ="所供电功率能使所有能够工作的机器都可以工作"
 - (2)设任一时刻正在工作的机器的台数不超过 m,

则按题意有
$$P(0 \le \eta \le m) \ge 0.99$$

由 **D-L** 定理:
$$\Phi(\frac{m-150}{\sqrt{37.5}}) - \Phi(\frac{-150}{\sqrt{37.5}}) \ge 0.99$$

因为
$$\Phi(\frac{-150}{\sqrt{37.5}}) = \Phi(-24.5) \approx 0$$

则
$$\Phi(\frac{m-150}{\sqrt{37.5}}) \ge 0.99$$
,而 $\Phi(2.33) = 0.9901$

所以
$$\frac{m-150}{\sqrt{37.5}} \ge 2.33$$
 ,

由此得: *m* ≥ 164.3

即m=165

所以,需要供应165 Q 千瓦的电功率可以保证 所有机器正常工作的概率不小于 0.99。 例 1: 某民意调查公司受委托调查电视节目收视率 p ,调查公司将所有调查对象中收看此节目的频率 $\frac{\mu_n}{n}$ 作为 p 的估计值,现在要以 90%把握保证"估计值与收视率 p 之间的差异不大于 5%",问至少要调查多少对象?

分析: 由近似估计式 $P\{\left|\frac{\mu_n}{n}-p\right| \geq \varepsilon\} \approx 2\Phi(\varepsilon\sqrt{\frac{n}{pq}})-1 \triangleq \beta$ 即四个参数 $(n, p, \varepsilon, \beta)$ 间的等式关系,当知道了其中 3 个参数后利用等式求出余下的另一个参数值. 如果少掉的参数 p 可以用 $pq \leq \frac{1}{4}$ 的办法予以处理。。

解: 这是个知道 ε , β 欲求n 的问题,

设被调查对象数为
$$n$$
,则 $P\{\left|\frac{\mu_n}{n}-p\right| \le \varepsilon\} \approx 2\Phi(\varepsilon\sqrt{\frac{n}{pq}})-1=\beta$

 $\psi \varepsilon = 0.05$, $\beta \ge 0.90$.

查正态分布表,由 $\Phi(x)$ 的单调性以及 $\Phi(1.645) = \frac{1+0.90}{2} = 0.95$,

得到

$$0.05\sqrt{\frac{n}{pq}} \ge 1.645$$

从中解出 $n \ge pq(\frac{1.645}{0.05})^2 = 1082.41pq$ 。

利用 $pq \le \frac{1}{4} = 0.25$,故 $n \ge 0.25 \times 1082.41 = 270.6$ 。

概率收敛

问题: 频率 $\frac{\mu_n}{n}$ 的极限是否为概率 P?

概率收敛定义:设 $\{\xi_n\}$ 为一随机变量序列, ξ 为一随机变量,若对任意的 $\varepsilon > 0$,成立

$$\lim_{n\to\infty} P\{\left|\xi_n - \xi\right| < \varepsilon\} = 1 \tag{*}$$

则称 $\{\xi_n\}$ 按概率收敛于 ξ ,记作 $\xi_n \xrightarrow{P} \xi$ 。

(*) 式等价于
$$\lim_{n\to\infty} P\{|\xi_n - \xi| \ge \varepsilon\} = 0$$

注意:概率收敛这一极限概念,与我们在高等数学中所的极限不同,在定义时要兼顾随机变量的"取值"与"概率"两个特性,又要强调例外情况为小概率这一事实。

伯努利大数定律: 设 μ_n 为n 重伯努利试验中事件A发生的次数,p为每次试验中A发生的概率,则对任意

$$\varepsilon > 0$$
,成立
$$\lim_{n \to \infty} P\{ \left| \frac{\mu_n}{n} - p \right| < \varepsilon \} = 1$$

$$\exists \prod \frac{\mu_n}{n} \xrightarrow{P} p \circ$$

意义: 频率的稳定性: 当试验在不变的条件下重复进行很多次时, 随机事件的<u>频率在它们的概率附近摆动</u>。它是"概率论"的理论基础.

注意: 伯努利大数定律仅指出极限,而二项分布的中心极限定理不仅指出了极限,而且指出了极限附近的情况

定理1 马尔可夫大数定律

若随机变量序列 ξ_1 , ξ_2 ,…, ξ_n ,…, 其方差存在,且满足 $\frac{1}{n^2}D$ $(\sum_{i=1}^n \xi_i) \to 0$ $(n \to \infty)$,则对任意的 $\varepsilon > 0$, 有 $\lim_{n \to \infty} P\{|\frac{1}{n}\sum_{i=1}^n \xi_i - \frac{1}{n}\sum_{i=1}^n E\xi_i| < \varepsilon\} = 1$ 。

定理2 切比雪夫大数定律

有
$$\lim_{n\to\infty} P\{|\frac{1}{n}\sum_{i=1}^n \xi_i - \frac{1}{n}\sum_{i=1}^n E\xi_i|<\varepsilon\} = 1.$$

定理3 辛钦大数定律

设 ξ_1 , ξ_2 ,…, ξ_n ,…,是满足相互独立同分<u>布</u>的随机变量序列,且具有有限 的数学期望 $E\xi_i = \mu(i=1,2,\cdots)$,则对任意的 $\varepsilon > 0$,

有
$$\lim_{n\to\infty} P\{|\frac{1}{n}\sum_{i=1}^n \xi_i - \mu| < \varepsilon\} = 1$$
。

定理4 泊松大数定理

如在一个独立试验序列 中,事件 A 在第 k 次试验中发生的概率为 p_k ,以 μ_n 记在前 n 次试验中事件 A 发生的次数,则对任意的 $\varepsilon > 0$,有

$$\lim_{n\to\infty} P\{|\frac{\mu_n}{n} - \frac{p_1 + p_2 + \cdots + p_n}{n}| < \varepsilon\} = 1_{\circ}$$

用泊松分布近似二项分布

设 $X \sim B(n,p)$, 当 $n \to \infty$ 时, X 近似地服从 $P(\lambda)$, 其中 $\lambda = np$. 即

$$C_n^m p^m q^{n-m} \approx \frac{\lambda^m}{m!} e^{-\lambda},$$

中心极限定理

设独立随机变量 $\xi_1, \xi_2, \dots, \xi_n, \dots$,服从相同分布,且

$$E\xi_i = \mu D\xi_i = \sigma^2$$
, $i = 1, 2, \dots, n, \dots$,

$$\lim_{n \to \infty} P\left(\frac{\sum_{i=1}^{n} \xi_i - n\mu}{\sqrt{n\sigma}} \le x\right) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt$$

德莫威尔-拉普拉斯定理:设在独立试验序列中,事件 A 在各次试验中发生的概率为 $p(0 ,随 机变量 <math>\eta_n$ 表示事件 A 在n次试验中发生的次数,则有

$$\lim_{n\to\infty} P(\frac{\eta_n - np}{\sqrt{npq}} \le x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-\frac{t^2}{2}} dt$$

其中z是任何实数,p+q=1。