Fall, 2016 CIS 515

Fundamentals of Linear Algebra and Optimization Jean Gallier

Homework 4

October 27, 2016; Due November 8, 2016, beginning of class

Problem B1 (50 pts). (1) Prove that the dimension of the subspace of 2×2 matrices A, such that the sum of the entries of every row is the same (say c_1) and the sum of entries of every column is the same (say c_2) is 2.

(1) Let's define matrix A as: $\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$ Then, we get: $a_{11} + a_{12} = c_1 = a_{21} + a_{22}$ and $a_{11} + a_{21} = c_2 = a_{12} + a_{22}$. We can rewrite the equations as:

$$a_{11} + a_{12} - a_{21} - a_{22} = 0 (1)$$

$$a_{11} + a_{21} - a_{12} - a_{22} = 0 (2)$$

From part d of the duality theorem (3.14), we know that

$$dim(U) + dim(U^0) = dim(E)$$

dim(E) is n^2 or 4 and dim(U) is 2(n-1) or 2 since there are two linearly independent equations. Then, $dim(U^0)$ is 4-2=2.

(2) Prove that the dimension of the subspace of 2×2 matrices A, such that the sum of the entries of every row is the same (say c_1), the sum of entries of every column is the same (say c_2), and $c_1 = c_2$, is also 2. Prove that every such matrix is of the form

$$\begin{pmatrix} a & b \\ b & a \end{pmatrix},$$

and give a basis for this subspace.

The equations corresponding to the three conditions listed (sum of entries in each row are the same, sum of entries in each column are the same, $c_1 = c_2$) are the following:

$$a_{11} + a_{12} - a_{21} - a_{22} = 0 (3)$$

$$a_{11} + a_{21} - a_{12} - a_{22} = 0 (4)$$

$$a_{12} - a_{21} = 0 (5)$$

$$a_{11} - a_{22} = 0 (6)$$

$$a_{22} - a_{11} = 0 (7)$$

$$a_{21} - a_{12} = 0 (8)$$

It is clear that only the first two equations are linearly independent so dim(U) = 2 and the dimension of the subspace of 2×2 matrices is still 2 as it is in section (1) of this problem.

From equations (5) and (6), we get that every such matrix is of the form $\begin{pmatrix} a & b \\ b & a \end{pmatrix}$ and a basis for the subspace consists of 4 matrices which are $\begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ b & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & a \end{pmatrix}$

(3) Prove that the dimension of the subspace of 3×3 matrices A, such that the sum of the entries of every row is the same (say c_1), the sum of entries of every column is the same (say c_2), and $c_1 = c_2$, is 5. Begin by showing that the above constraints are given by the set of equations

$$\begin{pmatrix} 1 & 1 & 1 & -1 & -1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & -1 & -1 & -1 \\ 1 & -1 & 0 & 1 & -1 & 0 & 1 & -1 & 0 \\ 0 & 1 & -1 & 0 & 1 & -1 & 0 & 1 & -1 \\ 0 & 1 & 1 & -1 & 0 & 0 & -1 & 0 & 0 \end{pmatrix} \begin{pmatrix} a_{11} \\ a_{12} \\ a_{13} \\ a_{21} \\ a_{22} \\ a_{23} \\ a_{31} \\ a_{32} \\ a_{33} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}.$$

Prove that every matrix satisfying the above constraints is of the form

$$\begin{pmatrix} a+b-c & -a+c+e & -b+c+d \\ -a-b+c+d+e & a & b \\ c & d & e \end{pmatrix},$$

with $a, b, c, d, e \in \mathbb{R}$. Find a basis for this subspace. (Use the method to find a basis for the kernel of a matrix).

Using the duality theorem again, we get: $n^2-2(n-1)=9-2(3-1)=5$ as the dimension of the subspace of the matrices A. The set of equations are given as

$$\begin{pmatrix} 1 & 1 & 1 & -1 & -1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & -1 & -1 & -1 \\ 1 & -1 & 0 & 1 & -1 & 0 & 1 & -1 & 0 \\ 0 & 1 & -1 & 0 & 1 & -1 & 0 & 1 & -1 \\ 0 & 1 & 1 & -1 & 0 & 0 & -1 & 0 & 0 \end{pmatrix} \begin{pmatrix} a_{11} \\ a_{12} \\ a_{13} \\ a_{21} \\ a_{22} \\ a_{23} \\ a_{31} \\ a_{32} \\ a_{33} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}.$$

For example, by looking at the equation corresponding to the first row, we have: $a_{11} + a_{12} + a_{13} = c_1$ and $a_{21} + a_{22} + a_{23} = c_1$ so $a_{11} + a_{12} + a_{13} - a_{21} - a_{22} - a_{23} = 0$. The same reasoning applies for all 5 of the equations represented by the matrix. In rref , the matrix becomes:

$$\begin{pmatrix} 1 & 0 & 0 & 0 & -1 & -1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & -1 & 0 & -1 \\ 0 & 0 & 1 & 0 & 0 & 1 & -1 & -1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & -1 & -1 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

which shows 4 linearly independent equations corresponding to the 2(n-1) term in $n^2 - 2(n-1)$.

Problem B2 (10 pts). If A is an $n \times n$ symmetric matrix and B is any $n \times n$ invertible matrix, prove that A is positive definite iff $B^{\top}AB$ is positive definite.

Problem B3 (100 pts). (1) Let A be any invertible 2×2 matrix

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}.$$

Prove that there is an invertible matrix S such that

$$SA = \begin{pmatrix} 1 & 0 \\ 0 & ad - bc \end{pmatrix},$$

where S is the product of at most four elementary matrices of the form $E_{i,j;\beta}$.

Conclude that every matrix A in SL(2) (the group of invertible 2×2 matrices A with det(A) = +1) is the product of at most four elementary matrices of the form $E_{i,j;\beta}$.

For any $a \neq 0, 1$, give an explicit factorization as above for

$$A = \begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix}.$$

What is this decomposition for a = -1?

(2) Recall that a rotation matrix R (a member of the group SO(2)) is a matrix of the form

$$R = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}.$$

Prove that if $\theta \neq k\pi$ (with $k \in \mathbb{Z}$), any rotation matrix can be written as a product

$$R = ULU$$
,

where U is upper triangular and L is lower triangular of the form

$$U = \begin{pmatrix} 1 & u \\ 0 & 1 \end{pmatrix}, \quad L = \begin{pmatrix} 1 & 0 \\ v & 1 \end{pmatrix}.$$

Therefore, every plane rotation (except a flip about the origin when $\theta = \pi$) can be written as the composition of three shear transformations!

(3) Recall that $E_{i,d}$ is the diagonal matrix

$$E_{i,d} = \text{diag}(1, \dots, 1, d, 1, \dots, 1),$$

whose diagonal entries are all +1, except the (i, i)th entry which is equal to d.

Given any $n \times n$ matrix A, for any pair (i, j) of distinct row indices $(1 \le i, j \le n)$, prove that there exist two elementary matrices $E_1(i, j)$ and $E_2(i, j)$ of the form $E_{k,\ell;\beta}$, such that

$$E_{j,-1}E_1(i,j)E_2(i,j)E_1(i,j)A = P(i,j)A,$$

the matrix obtained from the matrix A by permuting row i and row j. Equivalently, we have

$$E_1(i,j)E_2(i,j)E_1(i,j)A = E_{j,-1}P(i,j)A,$$

the matrix obtained from A by permuting row i and row j and multiplying row j by -1.

Prove that for every i = 2, ..., n, there exist four elementary matrices $E_3(i, d), E_4(i, d), E_5(i, d), E_6(i, d)$ of the form $E_{k,\ell;\beta}$, such that

$$E_6(i,d)E_5(i,d)E_4(i,d)E_3(i,d)E_{n,d} = E_{i,d}$$

What happens when d = -1, that is, what kind of simplifications occur?

Prove that all permutation matrices can be written as products of elementary operations of the form $E_{k,\ell;\beta}$ and the operation $E_{n,-1}$.

(4) Prove that for every invertible $n \times n$ matrix A, there is a matrix S such that

$$SA = \begin{pmatrix} I_{n-1} & 0 \\ 0 & d \end{pmatrix} = E_{n,d},$$

with $d = \det(A)$, and where S is a product of elementary matrices of the form $E_{k,\ell;\beta}$.

In particular, every matrix in SL(n) (the group of invertible $n \times n$ matrices A with det(A) = +1) can be written as a product of elementary matrices of the form $E_{k,\ell;\beta}$. Prove that at most n(n+1) - 2 such transformations are needed.

Extra Credit (20 points). Prove that every matrix in SL(n) can be written as a product of at most $(n-1)(\max\{n,3\}+1)$ elementary matrices of the form $E_{k,\ell;\beta}$.

Problem B4 (50 pts). A matrix, A, is called *strictly column diagonally dominant* iff

$$|a_{jj}| > \sum_{i=1, i \neq j}^{n} |a_{ij}|, \text{ for } j = 1, \dots, n$$

Prove that if A is strictly column diagonally dominant, then Gaussian elimination with partial pivoting does not require pivoting, and A is invertible.

Problem B5 (40 pts). Let $(\alpha_1, \ldots, \alpha_{m+1})$ be a sequence of pairwise distinct scalars in \mathbb{R} and let $(\beta_1, \ldots, \beta_{m+1})$ be any sequence of scalars in \mathbb{R} , not necessarily distinct.

(1) Prove that there is a unique polynomial P of degree at most m such that

$$P(\alpha_i) = \beta_i, \quad 1 \le i \le m+1.$$

Hint. Remember Vandermonde!

(2) Let $L_i(X)$ be the polynomial of degree m given by

$$L_{i}(X) = \frac{(X - \alpha_{1}) \cdots (X - \alpha_{i-1})(X - \alpha_{i+1}) \cdots (X - \alpha_{m+1})}{(\alpha_{i} - \alpha_{1}) \cdots (\alpha_{i} - \alpha_{i-1})(\alpha_{i} - \alpha_{i+1}) \cdots (\alpha_{i} - \alpha_{m+1})}, \quad 1 \le i \le m + 1.$$

The polynomials $L_i(X)$ are known as Lagrange polynomial interpolants. Prove that

$$L_i(\alpha_j) = \delta_{ij} \quad 1 \le i, j \le m+1.$$

Prove that

$$P(X) = \beta_1 L_1(X) + \dots + \beta_{m+1} L_{m+1}(X)$$

is the unique polynomial of degree at most m such that

$$P(\alpha_i) = \beta_i, \quad 1 \le i \le m+1.$$

(3) Prove that $L_1(X), \ldots, L_{m+1}(X)$ are lineary independent, and that they form a basis of all polynomials of degree at most m.

How is 1 (the constant polynomial 1) expressed over the basis $(L_1(X), \ldots, L_{m+1}(X))$?

Give the expression of every polynomial P(X) of degree at most m over the basis $(L_1(X), \ldots, L_{m+1}(X))$.

(4) Prove that the dual basis $(L_1^*, \ldots, L_{m+1}^*)$ of the basis $(L_1(X), \ldots, L_{m+1}(X))$ consists of the linear forms L_i^* given by

$$L_i^*(P) = P(\alpha_i),$$

for every polynomial P of degree at most m; this is simply evaluation at α_i .

Problem B6 (60 pts). (a) Find a lower triangular matrix E such that

$$E\begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0 \\ 1 & 3 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 2 & 1 \end{pmatrix}.$$

(b) What is the effect of the product (on the left) with

$$E_{4,3;-1}E_{3,2;-1}E_{4,3;-1}E_{2,1;-1}E_{3,2;-1}E_{4,3;-1}$$

on the matrix

$$Pa_3 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0 \\ 1 & 3 & 3 & 1 \end{pmatrix}.$$

- (c) Find the inverse of the matrix Pa_3 .
- (d) Consider the $(n+1) \times (n+1)$ Pascal matrix Pa_n whose ith row is given by the binomial coefficients

$$\binom{i-1}{j-1}$$
,

with $1 \le i \le n+1$, $1 \le j \le n+1$, and with the usual convention that

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix} = 1, \quad \begin{pmatrix} i \\ j \end{pmatrix} = 0 \quad \text{if} \quad j > i.$$

The matrix Pa_3 is shown in question (c) and Pa_4 is shown below:

$$Pa_4 = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 2 & 1 & 0 & 0 \\ 1 & 3 & 3 & 1 & 0 \\ 1 & 4 & 6 & 4 & 1 \end{pmatrix}.$$

Find n elementary matrices $E_{i_k,j_k;\beta_k}$ such that

$$E_{i_n,j_n;\beta_n}\cdots E_{i_1,j_1;\beta_1}Pa_n = \begin{pmatrix} 1 & 0 \\ 0 & Pa_{n-1} \end{pmatrix}.$$

Use the above to prove that the inverse of Pa_n is the lower triangular matrix whose *i*th row is given by the signed binomial coefficients

$$(-1)^{i+j-2} \binom{i-1}{j-1},$$

with $1 \le i \le n+1$, $1 \le j \le n+1$. For example,

$$Pa_4^{-1} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 & 0 \\ 1 & -2 & 1 & 0 & 0 \\ -1 & 3 & -3 & 1 & 0 \\ 1 & -4 & 6 & -4 & 1 \end{pmatrix}.$$

Hint. Given any $n \times n$ matrix A, multiplying A by the elementary matrix $E_{i,j;\beta}$ on the right yields the matrix $AE_{i,j;\beta}$ in which β times the *i*th column is added to the *j*th column.

Problem B7 (30 pts). Given any two subspaces V_1, V_2 of a finite-dimensional vector space E, prove that

$$(V_1 + V_2)^0 = V_1^0 \cap V_2^0$$
$$(V_1 \cap V_2)^0 = V_1^0 + V_2^0.$$

Beware that in the second equation, V_1 and V_2 are subspaces of E, not E^* .

Hint. To prove the second equation, prove the inclusions $V_1^0 + V_2^0 \subseteq (V_1 \cap V_2)^0$ and $(V_1 \cap V_2)^0 \subseteq V_1^0 + V_2^0$. Proving the second inclusion is a little tricky. First, prove that we can pick a subspace W_1 of V_1 and a subspace W_2 of V_2 such that

- 1. V_1 is the direct sum $V_1 = (V_1 \cap V_2) \oplus W_1$.
- 2. V_2 is the direct sum $V_2 = (V_1 \cap V_2) \oplus W_2$.
- 3. $V_1 + V_2$ is the direct sum $V_1 + V_2 = (V_1 \cap V_2) \oplus W_1 \oplus W_2$.

TOTAL: 340 + 20 points.