Theory of Automata and Formal Language Lecture-3

Dharmendra Kumar (Associate Professor) Department of Computer Science and Engineering United College of Engineering and Research, Prayagraj March 31, 2021

Grammar and Language

Examples

Determine the languages generated by the following grammars:-

- 1. $S \to 0S1/0A1$, $A \to 1A/1$
- 2. $S \rightarrow aA$, $A \rightarrow bS$, $S \rightarrow \epsilon$
- 3. $S \rightarrow 0S1/0A/0/1B/1$, $A \rightarrow 0A/0$, $B \rightarrow 1B/1$
- 4. S
 ightarrow 0SBA/01A , AB
 ightarrow BA , 1B
 ightarrow 11 , 1A
 ightarrow 10 , 0A
 ightarrow 00
- 5. $S \to 0S1/0A1$, $A \to 1A0/10$
- 6. $S \rightarrow 0A/1S/0/1$, $A \rightarrow 1A/1S/1$

Grammar and Language

Examples

Construct the grammars which generates the following languages:-

- 1. $L(G) = \{ a^n b a^m \mid m, n \ge 1 \}$
- 2. $L(G) = The set of all palindromes over {a,b}$
- 3. $L(G) = \{ wcw^T ! w \in \{a, b\}^* \}$
- 4. $L(G) = \{ a^n b^n c^i \mid n \ge 1 \text{ and } i \ge 0 \}$
- 5. $L(G) = \{ a^{j}b^{n}c^{n} \mid n \geq 1 \text{ and } j \geq 0 \}$
- 6. $L(G) = \{ a^n b^n c^n ! n \ge 1 \}$

Grammar and Language

Examples

Construct the grammars which generates the following languages:-

- 1. $L(G) = \{ w \in \{a, b\}^* \mid \text{The number of a's in } w \text{ is divisible by } 3 \}$
- 2. $L(G) = \{ w \in \{a, b\}^* \mid w \text{ has an equal number of a's and b's} \}$
- 3. $L(G) = \{ w \in \{a, b\}^* \mid n_a(w) > n_b(w) \}$
- 4. $L(G) = \{ w \in \{a, b\}^* \mid n_a(w) \neq n_b(w) \}$
- 5. $L(G) = \{ 0^m 1^n 0^n 1^m ! m, n \ge 1 \}$
- 6. $L(G) = \{ 0^n 1^{2n} ! n \ge 1 \}$
- 7. $L(G) = \{ 0^n 1^n ! n \ge 1 \} \cup \{ 1^m 0^m ! m \ge 1 \}$
- 8. $L(G) = \{ 0^n 1^m 0^n \mid m, n \ge 1 \} \cup \{ 0^n 1^m 2^m \mid m, n \ge 1 \}$