

Nyongesa F.W., PhD.

e-mail: fnyongesa@uonbi.ac.ke

Lecture Hrs: Mon 2 – 4 pm

Thur 12 - 1pm

Course Objectives

- Explain the Laws of thermodynamics & their significance
- Apply laws of thermodynamics to solve problems relating to energy conversion processes

2/15/2021 10:47 AM

Course Outline

Lecture 1: Thermodynamic concepts

& Zeroth Law

Lecture 2: 1ST Law of Thermodynamics

Lecture 3: 2ND Law

Lecture 4: Entropy & 2ND Law, 3rd Law

Lecture 5: Thermodynamic Potentials &

Maxwell's Equations

Lecture 6: Phase Changes & Equilibria

Prerequisites

- SPH 203
- Calculus & ODE

2/15/2021 10:47 AM

INTRODUCTION

Before industrial revolution, "machinery" were powered by animals

- By 19th cent, a new science was born THERMODYNAMICS

- Thermo ⇒ Energy transfer in form of heat
- Dynamics ⇒ Motion in form of mechanical work
- Thermodynamics = science that govern energy conversions processes (heat → work and vice versa)

SPH 302 Nyongesa F. W., Ph.D

- Energy conversions processes are governed by 4 Laws (of Nature)
- Zeroth Law
 Gives condition for heat exchange between bodies in contact

Gives relationship between Heat input (dQ) into system, gain in internal energy (dU) and work output (dW)

dQ = dU + dW

2/15/2021 10:47 AM

"No animal works continously without eating or wearing out"

2/1E/2021 10:47 AM

Third Law:

- Explains behaviour of systems as T → absolute zero (0K).
 - NB Systems become orderly as T → 0. E.g, water → ice, where ice is more orderly (hence less dense) compared to water.

Lecture **1**

Thermodynamic Concepts & Zeroth Law

- ✓ Ideal Gas Laws
- Zeroth Law

■ Explain ideal gas Laws

Explain Zeroth Law and its significance

2/15/2021 10:47 AM

SPH 302 Nyongesa F. W., Ph.D

- Energy conversion processes are studied using a thermodynamic system
- System Part of material universe that can be isolated completely from the rest for investigation

SYSTEM + SURROUNDING = UNIVERSE

sorrounding

boundary

2/15/2021 10:47 AM

31

- Surrounding The rest of the universe in the neighbourhood of the system.
- To a thermodynamic system two 'things' may be added/removed:
 - > energy (in the form of heat &/or work)
 - > matter

2/15/2021 10:47 AM

3 types

(a) Open systems: Allows exchange of both heat and matter through the boundary. E.g. digestive system.

2/15/2021 10:47 AM

SPH 302

33

• E.g. refrigerator

2/15/2021 10:47 AM

SPH 302 Nyongesa F. W., Ph.D

(c) Isolated System: No heat or matter exchange occurs with surrounding. The walls are Adiabatic (Adiathermal)

• E.g. Vacuum flask.

...

k6853935 www.fotosearch.com

SPH 30:

35

- Thermodynamic Variables:- Are parameters that describe behavior or state of system i.e., P, T, V & composition (μ)
- Extensive variable: Dependent on mass/size of the substance present in the system e.g., internal energy U.
- Intensive variable:- independent on size of system

2/15/2021 10:47 AM

SPH 302 Nyongesa F. W., Ph.D

- Heat:- Transfer of thermal energy between systems by virtue of a temp difference
- Work:-Transfer of mechanical energy
- Both Heat & Work = ways of transferring energy

"Bodies contain internal energy (U) and not heat"

2/15/2021 10:47 AM

SPH 302 Nyongesa F. W., Ph.D

37

Thermodynamic equilibrium: - State where system experiences thermal, mechanical and chemical equilibrium S.T. P, V, T & μ are const in time.

2/15/2021 10:47 AM

SPH 302 Nyongesa F. W., Ph.D

- Working substance: Fluid enclosed in the system that either receives or transfers energy to the surrounding in the form of heat or work.
- In Thermodynamics, we use the ideal gas as the working substance. WHY?

SPH 302 Nyongesa F. W., Ph.D

Lecture Evaluation

- Explain the following
 - Open & Closed system
 - Adiabatic & Diathermal Wall
 - Extensive & Intensive variables
 - Heat and work
 - Thermodynamic Equilibrium

2/1E/2021 10:47 AM

SPH 303

41

Behavior of Ideal gases

An ideal gas is an abstraction (i.e., theoretical gas) that obeys **Ideal gas laws** (Eqn of state).

- Assumptions
 - (i) It is composed of randomly moving point particles that only interact through elastic collisions.
 - (ii) The particles occupy negligible volume compared to the bulk volume of the gas

2/15/2021 10:47 AM

SPH 302

43

- In Thermodynamics, we use the concept of the ideal gas because:
 - It satisfactorily models behaviour of real gases under classical mechanics
 - it obeys Simple Gas Laws.
- Real gases (N₂, O₂, H₂ and fluids) fail to obey the ideal gas model because:
 - Gas molecules occupy finite volume and liquefy at low T and at high P
 - ∃ intermolecular attractions and collisions are not elastic

2/15/2021 10:47 AM

- Consider an ideal gas enclosed in a container with movable piston
- Behavior of ideal gas depends on T, P and
 V and obey the gas laws:

2/15/2021 10:47 AM

(a) Boyle's law:

For const T, Compressing a gas, increases P

Real Gases

- Real gases (N₂, O₂, H₂ etc and fluids) behave like ideal gas only at high temps and low pressures where there is less intermolecular attractions.
- At low temps or higher pressures, real gases condense to liquid and fail to obey the ideal gas model.

2/15/2021 10:47 AM

SPH 30. Nyongesa F. W., Ph.I

51

Eqn of state of real gas is given by

$$\left(P + \frac{a}{v^2}\right)(V - nb) = nRT$$

2/15/2021 10:47 AM

SPH 302 Nyongesa F. W., Ph.D

- Explain an ideal gas
- Why do we use ideal gas in the study of thermodynamics
- Explain conditions under which real gases approach the ideal gas behaviour

SPH 30

53

Zeroth law of Thermodynamics

- Naturally, a hot object looses heat to attain thermal equilibrium with surrounding
- Zeroth Law Gives condition for heat exchange between bodies in contact

2/15/2021 10:47 AM

Nyonge

ityong

Significance of Zeroth Law

- Defines condition for thermal equilibrium between bodies
- Introduces concept of temperature and how it is determined – Through thermal equilibrium
 - ⇒Temperature = measure of degree of hotness

2/15/2021 10:47 AM

SPH 302 Nyongesa F. W., Ph.D

Laws of Nature	Laws of Thermodynamics
1. We eat when	Zeroth Law: Heat flows
hungry	from hot to Cold

5

- State Equation of State
- 2. State Zeroth Law and its significance

2/15/2021 10:47 AM

SPH 302 Nyongesa F. W., Ph.D