آروين آذرمينا

96105542

تمرین سوم درس معماری کامپیوتر

سوال 1.

سوال 2.

از آنجا که در دستور Load بیشترین زمان مصرف می شود ، باید در آن در نظر گیریم:

1(I-mem) + 1(Add) + 4(Mux) + 2(Regs) + 1(D-mem) + 1(Sign-extend) + 1(ALU-ctrl) = 200 + 70 + 80 + 90 + 180 + 250 + 15 + 30 = 915

حال اگر دستور D-mem را 10% كاهش دهيم ، مقدار speed-up مىشود:

915/(915 – 10% * 250) = 915/890 = 1.028 => 2.8% improvement

سوال 3.

الف

RegWrite	RegDst	Branch	MemRead	MemtoReg	MemWrite	ALUSrc
0	х	1	0	х	0	0
						,

.

RegWrite	RegDst	Branch	MemRead	MemtoReg	MemWrite	ALUSrc
1	1	0	0	0	0	0

سوال 4.

از آنجا که Immediate در bne و bne یکسان است ، لزومی ندارد چیزی بابت آن به مدار اضافه کرد. حال باید تشخیص داد که دو مقدار براربراند یا خیر ، که این را میتوان با not خروجی صفر ALU فهمید ، و این مقدار را باید با مقدار سیگنال جدید BranchNot اند کرد و با اند داخل شکل Or کرد و به ورودی MUX داد. بقیه مقدار های سیگنالهای کنترلی ، مانند Beq اند.

سوال 5.

برای اینکار ، میتوانیم مقدار خروجی PC را به MUX بعد DataMemory متصل کرد و سیگنال کنترلی MemtoReg را دو بیتی کرد. پس مقدار سیگنال های کنترلی خواهند بود:

RegDst	ALUSrc	MemtoR	RegWrit	MemRea	MemWri	Branch	ALUOp1	ALUOp0
		eg	е	d	te			
0	Χ	10	1	0	0	Χ	0	0

سوال 6.

