A Sentiment Analysis of Yelp Reviews

Springboard Data Science Career Track
Capstone Project 1

Introduction

Goals of this Project

- Provide an efficient means of discriminating between positive and negative restaurant reviews.
- Specifically, construct models that reliably classify reviews as positive or negative based on their content.

Motivation for the **Project**

- Yelp is useful for customers, but could be more useful for business owners.
- A proposal for how to add value for business owners: enable business owners to have greater awareness of customer experiences.

Data Acquisition and Wrangling

The Data

- Approximately 6.5 million reviews of a variety of different businesses
- Acquired directly from Yelp

Data Wrangling

- 1. Restricted data to reviews of restaurants
- Isolated key variables for analysis: 'business_id' | 'stars' | 'text'
- Eliminated rows with missing or duplicate values
- 4. Restricted data to reviews in the English language

Storytelling and Inferential Statistics

Star Rating Data

Star Rating Data cont'd

Half of Restaurants Have an Average Star Rating Between 3 and 4

Review Data

Interactions Between Star Rating Data & Review Data

Star Rating	Mean Length
1.0	669
2.0	734
3.0	702
4.0	616
5.0	469

Statistical Analysis

- Question: Are the differences in mean review length between star ratings statistically significant?
- One-way analysis of variance (ANOVA)
- Null Hypothesis: The mean review lengths are the same for each star rating.
- Alternative Hypothesis: At least one of the mean review lengths differs from another.
- Alpha = 0.05
- Results: | F-statistic: 36.22 | p-value ≅ 0 |
- Conclusion: at least one of the mean review lengths differs from another in the population.

Statistical Analysis cont'd

- Question: Which differences in mean review length between star ratings are statistically significant?
- T-tests (using Bonferroni correction to control for familywise error) of the differences in mean review length between six pairs of star ratings: 1&4, 1&5, 2&4, 2&5, 3&4, 3&5
- Conclusions: the differences between each of these pairs is statistically significant (except between 1& 4 stars)

Baseline Modeling

Text Preprocessing and Representation

- Make all words lowercase
- Remove punctuation
- Remove stopwords

Represented with a frequency vectorization (CountVectorizer)

Modeling Variations

- Logistic Regression
- Tuned and tested four variations:

 Version 1 No Stratification in train-test-split L2 Regularization for fitting the model 	 Version 2 No Stratification in train-test-split L1 Regularization for fitting the model
 Version 3 Stratification in train-test-split L2 Regularization for fitting the model 	 Version 4 Stratification in train-test-split L1 Regularization for fitting the model

• Version 4 performed the best

Extended Modeling

Modeling Variations

- Random Forest
- Varied four modeling parameters:
 - Text Representation (used both frequency vectorization–CountVectorizer–and weighted frequency vectorization–TfidfVectorizer)
 - 2. Number of Estimators/Decision Trees (from 50 to 150)
 - 3. Number of Features (all, log2, sqrt)
 - 4. Measure of Node Purity (gini, entropy)

- Best performing variation:
 - 1. Frequency vectorization (CountVectorizer)
 - 2. 100 estimators/decision trees
 - 3. Sqrt number of features
 - 4. Gini index as measure of node purity

Summary of Findings

Model Performance

• Test Data: 300,000 observations (103,656 in negative class, 196,344 in positive class)

Performance Metrics:	Logistic Regression	Random Forest
Accuracy	0.90	0.87
Precision	Positive Class: 0.90 Negative Class: 0.89	Positive Class: 0.85 Negative Class: 0.90
Recall	Positive Class: 0.95 Negative Class: 0.81	Positive Class: 0.96 Negative Class: 0.68
F1-Score	Positive Class: 0.92 Negative Class: 0.84	Positive Class: 0.90 Negative Class: 0.78

• Key Finding: Logistic Regression outperformed Random Forest with respect to almost every performance metric.

Conclusions and Future Work

Future Directions

- Using stemming or lemmatization in the text preprocessing
- Using n-grams (for different values of n) as the features in the vector representation of the text
- Adding additional features to influence classification (e.g. length of review, location of business, demographics of reviewer, etc.)
- Using different values for minimum or maximum document frequency for a word to be included as a feature
- Performing train-test-split before creating vector representation of text
- Using other algorithms for classification (e.g. Naive Bayes, Support Vector Machines, Neural Nets, etc.)
- Develop an ensemble of different models.

Recommendations for Client

Recommendations

- Continue refining the Logistic Regression model developed in this project.
- Explore some of the future directions mentioned previously.