## Intervals, Transformations, and Slope Solution (version 153)

1. The function f is graphed below.



Indicate the following intervals using interval notation. Remember, you can use  $\cup$  between two intervals to indicate the union. Except for range, all intervals will indicate x values; this is standard.

| Feature    | Where                   |
|------------|-------------------------|
| Positive   | $(-4, -3) \cup (-1, 1)$ |
| Negative   | $(-3,-1) \cup (1,9)$    |
| Increasing | $(-2,0) \cup (5,9)$     |
| Decreasing | $(-4, -2) \cup (0, 5)$  |
| Domain     | (-4,9)                  |
| Range      | (-8,2)                  |

## Intervals, Transformations, and Slope Solution (version 153)

2. In the four graphs below, y = f(x) is graphed as a dotted line. With a solid line, please graph the transformations indicated by the equations below.









3. Let function g be defined by the table below. Use the formula  $\frac{g(x_2)-g(x_1)}{x_2-x_1}$  to find the average rate of change between  $x_1=33$  and  $x_2=89$ . Express your answer as a reduced fraction.

| $\overline{x}$ | g(x) |
|----------------|------|
| 31             | 89   |
| 33             | 31   |
| 89             | 95   |
| 95             | 33   |

$$\frac{g(89) - g(33)}{89 - 33} = \frac{95 - 31}{89 - 33} = \frac{64}{56}$$

The greatest common factor of 64 and 56 is 8. Divide numerator and denominator by the greatest common factor.

$$AROC = \frac{8}{7}$$

2