Hoja 8: la integral de Riemann

1.- Probar que la función y = [x] es integrable en [0,5] y calcular $\int_0^5 [x] dx$.

2.- Sea f una función continua en [a,b], no negativa, y que cumple $\int_a^b f(x) dx = 0$. Probar que f es cero en todos los puntos.

3.- Dar un ejemplo de una función definida en un intervalo [a, b], no integrable, y tal que f^2 sea integrable.

4.- Sea una función continua en [a, b]. Definimos la media o valor esperado de f sobre [a, b] como

$$E(f) = \frac{1}{b-a} \int_a^b f(x) \, dx.$$

(a) Sean M y m respectivamente el máximo y el mínimo de f sobre [a,b]. Demostrar que $m \le E(f) \le M$. Si f es constante, ¿cuál es su valor esperado?

(b) Usando el teorema de los valores intermedios y el apartado anterior probar el siguiente resultado: Sea f una función continua en [a, b]. Entonces, existe $c \in [a, b]$ tal que

$$\frac{1}{b-a} \int_a^b f(x) \, dx = f(c).$$

(c) Supongamos que f es impar (es decir, f(x) = -f(-x)). Hallar E(f) sobre [-a, a]. Sugerencia: interpretar la integral en términos de áreas.

(d) Evaluar $\int_{-a}^{a} x^7 \operatorname{sen}(x^4) dx$.

5.- Sea

$$f(x) = \begin{cases} x & \text{si } x \in [0, 1], \\ x + 1 & \text{si } x \in (1, 2]. \end{cases}$$

Definimos F con F(0) = 0 y $F(x) = \int_0^x f(t) dt$, si $x \in (0, 2]$. Determinar F de forma explícita y probar que es continua en el intervalo [0, 2], aunque f no lo sea.

6.- Calcular las derivadas de las siguientes funciones:

$$F(x) = \int_0^{x^2} (\sin t^2) \log(1 + t^2) dt, \quad G(x) = \int_{x^2}^1 \cos^2 t^2 dt, \quad H(x) = \int_{-e^x}^{\sin^2 x} \cos(\log(2t^2)) dt.$$

7.- (*) Encontrar una función f definida y continua en $[0,\infty)$ tal que

$$\int_0^{x^2} (1+t) f(t) dt = 6 x^4.$$

8.- Sea $f:[0,4]\longrightarrow \mathbb{R}$,

$$f(x) = \begin{cases} x^2 & \text{si} \quad 0 \le x < 3, \\ x + a & \text{si} \quad 3 \le x \le 4. \end{cases}$$

¿Qué valor debemos dar a a para que exista una función F en [0,4] con F'(x) = f(x)? Encontrar todas las funciones F posibles que cumplan la condición anterior.

9.- Calcular las primitivas siguientes:

(1)
$$\int \frac{\sqrt[5]{x^3} + \sqrt[6]{x}}{\sqrt{x}} dx$$
 (2) $\int \frac{dx}{\sqrt{x+1} + \sqrt{x-1}}$ (3) $\int \frac{e^x + e^{2x}}{e^{3x}} dx$ (4) $\int a^x dx$ (5) $\int (\tan x)^2 dx$ (6) $\int \frac{dx}{x^2 + 4}$ (7) $\int \frac{8x^2 + 6x + 4}{x + 1} dx$ (8) $\int \frac{dx}{\sqrt{2x - x^2}}$

10.- Calcular las primitivas siguientes, usando la fórmula de integración por partes:

(1)
$$\int x^2 e^x dx$$

(1)
$$\int x^2 e^x dx$$
 (2)
$$\int e^{ax} \operatorname{sen}(bx) dx$$
 (3)
$$\int (\ln x)^3 dx$$

$$(3) \int (\ln x)^3 \, dx$$

(4)
$$\int \frac{\ln(\ln x)}{x} \, dx$$

$$(5) \int \cos(\ln x) \, dx$$

(4)
$$\int \frac{\ln(\ln x)}{x} dx$$
 (5)
$$\int \cos(\ln x) dx$$
 (6)
$$\int x(\ln(x))^2 dx$$

11.- Calcular las primitivas siguientes, usando el cambio de variables adecuado en cada caso:

$$(1) \int e^x \operatorname{sen}(e^x) dx$$

(2)
$$\int \frac{\ln x}{x} dx$$

(1)
$$\int e^x \sec(e^x) dx$$
 (2) $\int \frac{\ln x}{x} dx$ (3) $\int \frac{e^x}{e^{2x} + 2e^x + 1} dx$ (4) $\int \frac{x}{\sqrt{1 - x^4}} dx$ (5) $\int x\sqrt{1 - x^2} dx$ (6) $\int \ln(\cos x) \tan x dx$

$$(4) \int \frac{x}{\sqrt{1-x^4}} \, dx$$

(5)
$$\int x\sqrt{1-x^2}\,dx$$

(6)
$$\int \ln(\cos x) \tan x \, dx$$

12.- Calcular las primitivas siguientes, usando cambios de variable trigonométricos:

$$(1) \int \frac{dx}{\sqrt{1-x^2}}$$

$$(2) \int \frac{dx}{\sqrt{1+x^2}}$$

(1)
$$\int \frac{dx}{\sqrt{1-x^2}}$$
 (2) $\int \frac{dx}{\sqrt{1+x^2}}$ (3) $\int \frac{dx}{x\sqrt{x^2-1}}$

$$(4) \int \sqrt{1-x^2} \, dx$$

(5)
$$\int \sqrt{4+x^2} \, dx$$

(4)
$$\int \sqrt{1-x^2} \, dx$$
 (5) $\int \sqrt{4+x^2} \, dx$ (6) $\int \sqrt{x^2-4} \, dx$

13.- Calcular las primitivas siguientes, mediante descomposición en fracciones simples:

$$(1) \int \frac{2x^2 + 7x - 1}{x^3 + x^2 - x - 1} dx$$

(2)
$$\int \frac{x^3 + x + 2}{x^4 + 2x^2 + 1} \, dx$$

(1)
$$\int \frac{2x^2 + 7x - 1}{x^3 + x^2 - x - 1} dx$$
 (2) $\int \frac{x^3 + x + 2}{x^4 + 2x^2 + 1} dx$ (3) $\int \frac{2x^2 + x + 1}{(x+3)(x-1)^2} dx$

(4)
$$\int \frac{dx}{x^4 + 1}$$

(5)
$$\int \frac{x^3 + 1}{x^2 + x + 1} \, dx$$

14.- Calcular las primitivas siguientes:

(1)
$$\int (6x^2 - 8)^{25} x dx$$
 (2) $\int \frac{dx}{2x^2 + 8}$

$$(2) \int \frac{dx}{2x^2 + 8}$$

(3)
$$\int \frac{3x^2 + 2x - 1}{x + 2} dx$$

$$(4) \int \frac{e^x}{2e^x - 1} \, dx$$

$$(5) \int \frac{\sin x}{\cos x + 8} \, dx$$

$$(6) \int \frac{x^4}{x^2 + 4} \, dx$$

(7)
$$\int x^3 \sqrt{x^2 - 1} \, dx$$
 (8) $\int \frac{x^3}{\sqrt{1 - x^2}} \, dx$

$$(8) \int \frac{x^3}{\sqrt{1-x^2}} \, dx$$

$$(9) \int x^2 \sqrt{1+x} \, dx$$

$$(10) \int \frac{dx}{9x^2 + 6x + 5}$$

$$(11) \int \frac{x^3}{x^3 - 3x + 2} \, dx$$

$$(10) \int \frac{dx}{9x^2 + 6x + 5}$$

$$(11) \int \frac{x^3}{x^3 - 3x + 2} dx$$

$$(12) \int \frac{x}{x^3 - x^2 + 4x - 4} dx$$

(13)
$$\int \frac{e^x + 3e^{-x}}{e^{2x} + 1} dx \qquad (14) \int \frac{dx}{2 + 3\cos x}$$

$$(14) \int \frac{dx}{2 + 3\cos x}$$

$$(15) \int \frac{dx}{(x^2 - 1)^2}$$

$$(16) \int \frac{x}{(x^2 - 1)^2} \, dx$$

$$(17) \int \frac{dx}{(x^2+2)^2}$$

$$(18) \int \frac{x^5 + 2x + 1}{x^4 + 2x^2 + 1} \, dx$$

$$(19) \int \frac{dx}{(x-1)^2 (x^2+3)} \qquad (20) \int \frac{x}{1+x^4} dx \qquad (21) \int \frac{dx}{\sqrt[3]{x}+\sqrt{x}}$$

$$(22) \int \frac{dx}{(1+x^2)^{\frac{3}{2}}} \qquad (23) \int \frac{dx}{\sin^2 x \cos x} \qquad (24) \int \frac{dx}{\cos x}$$

$$(25) \int \frac{dx}{\cos^3 x} \qquad (26) \int \log x dx \qquad (27) \int x \log x dx$$

$$(20) \int \frac{x}{1+x^4} \, dx$$

$$(21) \int \frac{dx}{\sqrt[3]{x} + \sqrt{x}}$$

$$(22) \int \frac{dx}{(1+x^2)^{\frac{3}{2}}}$$

$$(23) \int \frac{dx}{\sin^2 x \, \cos x}$$

$$(24) \int \frac{dx}{\cos x}$$

$$(25) \int \frac{dx}{\cos^3 x}$$

$$(26) \int \log x \, dx$$

$$(27) \int x \log x \, dx$$

$$(28) \int x^2 \sin x \, dx$$

(29)
$$\int x^3 e^{-2x} dx$$

$$(30) \int \cos(2x) e^{3x} dx$$

$$(31) \int \sin^4 x \, \cos^6 x \, dx$$

$$(32) \int \sin^3 x \, \cos^6 x \, dx$$

$$(28) \int x^{2} \sin x \, dx \qquad (29) \int x^{3} e^{-2x} \, dx \qquad (30) \int \cos(2x) e^{3x} \, dx$$

$$(31) \int \sin^{4} x \cos^{6} x \, dx \qquad (32) \int \sin^{3} x \cos^{6} x \, dx \qquad (33) \int \sin(2x) \cos(5x) \, dx$$

(34)
$$\int \arctan x \, dx$$

$$(35) \int \left(\frac{\arcsin x}{1-x^2}\right)^{\frac{1}{2}} dx \qquad (36) \int x^2 \, \arccos x \, dx$$

(36)
$$\int x^2 \arccos x \, dx$$

- (a) Hallar $\int \tan x \, dx$, $\int \tan^2 x \, dx$. Expresar $\int \tan^n x \, dx$ en términos de $\int \tan^{n-2} x \, dx$. Como aplicación dar una fórmula para $\int \tan^8 x \, dx$ y para $\int \tan^7 x \, dx$.
- (b) Hallar $\int \sec^2 x \, dx$, $\int \sec^3 x \, dx$. Expresar $\int \sec^n x \, dx$ en términos de $\int \sec^{n-2} x \, dx$. Como aplicación dar una fórmula para $\int \sec^6 x \, dx$ y para $\int \sec^7 x \, dx$.

16.- (*) Calcular los siguientes límites expresándolos como límites de sumas de Riemann:

$$\lim_{n \to \infty} \frac{1^r + 2^r + \dots + n^r}{n^{r+1}}, \quad r > 0; \qquad \lim_{n \to \infty} \left(\frac{1}{\sqrt{n^2}} + \frac{1}{\sqrt{n(n+1)}} + \dots + \frac{1}{\sqrt{n(n+n)}} \right).$$

$$\lim_{n \to \infty} \sum_{k=1}^n \frac{1}{2n+k}, \qquad \qquad \lim_{n \to \infty} \sum_{k=1}^n \frac{(n-k)k}{n^3}.$$

17.- Estudiar la convergencia de las siguientes integrales impropias y en caso afirmativo calcular su valor:

$$(1) \int_0^\infty e^{-\sqrt{x}} dx \qquad (2) \int_2^\infty \frac{x}{x^2 - x - 2} dx \qquad (3) \int_0^1 \log x dx \qquad (4) \int_1^\infty \frac{x}{1 + x^4} dx$$

(5)
$$\int_{2}^{\infty} \frac{dx}{x \log^{2} x}$$
 (6) $\int_{-\infty}^{\infty} \frac{x}{4 + x^{2}} dx$ (7) $\int_{0}^{1} \frac{dx}{\sqrt{x (1 - x)}}$ (8) $\int_{-1}^{1} \frac{dx}{\sqrt{1 - x^{2}}}$

 ${\bf 18.-}$ Estudiar la convergencia de las siguientes integrales impropias:

$$(1) \int_{1}^{\infty} e^{-x} x^{\alpha} dx, \quad \alpha \in \mathbb{R}$$

$$(2) \int_{0}^{\infty} \frac{dx}{2x + (x^{3} + 1)^{\frac{1}{2}}}$$

$$(3) \int_{0}^{\infty} \frac{x}{(1 + x^{4})^{\frac{1}{2}}} dx$$

$$(4) \int_{0}^{\frac{1}{2}} \frac{dx}{(-\log x)^{\alpha} x}, \quad \alpha \in \mathbb{R}$$

$$(5) \int_{-\infty}^{\infty} \frac{x}{\cosh x} dx$$

$$(6) \int_{-\infty}^{\infty} e^{-x^{2}} dx$$

19.- (*)

(a) Usar la fórmula de integración por partes para demostrar la fórmula de reducción

$$\int x^{\alpha} e^{\beta x} dx = \frac{1}{\beta} x^{\alpha} e^{\beta x} - \frac{\alpha}{\beta} \int x^{\alpha - 1} e^{\beta x} dx, \quad para \quad \alpha > 0, \quad \beta \neq 0.$$

(b) La función Γ se define para x>0 como $\Gamma(x)=\int_0^\infty t^{x-1}\,e^{-t}\,dt$. Demostrar que se tiene $\Gamma(x+1)=x\,\Gamma(x)$. Deducir entonces que $\Gamma(n+1)=n!$.

20.-

- (a) Hallar el área limitada entre las gráficas de $f(x) = 8 x^2$, $g(x) = x^2$
- (b) Hallar el área limitada entre las gráficas de $f(x) = 1/(x^2 + 1)$, $g(x) = \frac{1}{2}|x|$.
- (c) Calcular el área comprendida entre las curvas $y=x\,e^{-x},\,y=x^2\,e^{-x}$ para valores de $x\geq 1.$
- (d) Hallar el área limitada por la curva $y = \left(\frac{1-x}{1+x}\right)^{\frac{1}{2}}$, su asíntota vertical y los ejes de coordenadas.
- **21.-** Sea $F(x) = \int_0^x e^{-t^2} dt$, y sea G su función inversa. Hallar G'(0).
- **22.-** (*) Sean f, g continuas, con $f \ge 0$ y g creciente. Demostrar que existe $c \in [a, b]$ tal que

$$\int_a^b f(t)g(t)dt = g(a)\int_a^c f(t)dt + g(b)\int_a^b f(t)dt.$$

3

23.- (*) Calcular

$$\int_{-\pi}^{\pi} \frac{\cos^2 x + \sin x + x - 4}{\cos x + 2} dx$$

24.

a) Sea f una función decreciente. Demostrar

$$f(2) + \dots + f(n) \le \int_1^n f(x)dx \le f(1) + f(2) + f(3) + \dots + f(n-1).$$

b) Aplicar la fórmula anterior con $f(x) = \log x$ para demostrar que

$$\frac{n^n}{e^{n-1}} < n! < \frac{(n+1)^{n+1}}{e^n} < \frac{(n+1)^{n+1}}{e^{n-1}}$$

c) Usar el apartado anterior para demostrar

$$\lim_{n\to\infty}\frac{(n!)^{1/n}}{n}=\frac{1}{e}.$$

25.- Describir la convergencia de la serie

$$\sum_{n=1}^{\infty} \frac{a^n \, n!}{n^n} \,,$$

según los valores de a > 0.