МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н. Г. ЧЕРНЫШЕВСКОГО»

ЛАБОРАТОРНАЯ РАБОТА №5 ПО ПРЕДМЕТУ «МАШИННО-ЗАВИСИМЫЕ ЯЗЫКИ ПРОГРАММИРОВАНИЯ»

студента 2 курса 251 группы			
направления 09.03.04 — Программная инженерия			
факультета КНиИТ			
Ланкина Ивана Сергеевича			
Проверила			

Т. С. Бибичева

1 Задание

Вариант 3. Изображение показано на рисунке 5.6. и состоит из 10 строк символов начиная с символа D (ASCII 44h) и далее по алфавиту с разными атрибутами начиная с 05h и далее плюс один. В каждой строке по 10 символов, начальная позиция вывода 10:20. Надо выполнить задание, используя прямую работу с видеопамятью (см. пример 5.2)

2 Алгоритм

1. Определяем текущий видеорежим и текущую активную страницу Сохраняем в стеке

Ставим стандартный цветной текстовый режим и первую страницу

2. Запускаем процедуру, в которой происходит следующее:

Помещаем в стек все регистры общего назначения

Помещаем символ D в регистр AL

Помещаем значение атрибута в регистр AL

Устанавливаем начальное смещение и значение СХ

Начинаем вывод всего текста построчно, увеличивая СХ по 1 до 10

В этом цикле делаем цикл для вывода строки посимвольно, помещая АL

в 1й байт, АН - во 2й байт и смещаясь к след позиции

После каждой строки переходим к след. символу и атрибуту

Если мы не дошли до последней 10й строки переходим в начало цикла

Иначе восстанавливаем все регистры общего назначения и выходим из

процедуры

3. Устанавливаем режим ожидания нажатия клавиши После нажатия восстанавливаем начальный видеорежим Завершаем программу

3 Текст программы

```
.model small
 1
 2
   .stack 100h
 3
   .186
 4
 5
 6
   .code
 7
 8 start:
 9 mov AX, @data
                                     ;который сначала загрузим в АХ,
10 mov DS, AX
                                       ;и переложим в DS
11 mov AX, 0b900h
                                   ;Используя сегментный регистр ES,
12 mov ES, AX
                                   ;организовать запись данных в видеопамять
13 mov AH, OFh
                                 ; определяем текущий видеорежим и текущую активную
    → страницу
14 int 10h
15 push AX
                                                    ;сохраняем в стеке
16 mov AH, 00h
                                        ;Запрос на установку видеорежима
17 mov AL, 03
                                        ;Стандартный цветной текстовый режим
18 int 10h
19 mov AH, 05h
                                                ;Выбор функции для вывода страницы
20 mov AL, 01h
                                                ;Страница 1
21 int 10h
                                                ;Вызвать обработчик прерывания
22 call B10DISPLAY
23 mov AH, 10h
                                                ;ожидание нажатия клавиши
24 int 16h
25 pop AX
26 mov AH, 00h
                                                ;восстанавливаем видеорежим
27 int 10h
28
29 mov ax, 4C00h
30
   int 21h
31
32
33
   B10DISPLAY proc
                                            ;начало процедуры - Обработка области
    \hookrightarrow вывода и вывод
34
            pusha
                                                                   ;помещаем в стек
            → все регистры общего назначения
35
            mov AL, 44h
                                                                 ;помещаем символ D
                в регистр AL
```

36	mov AH, 05h	;помещаем значение
	\hookrightarrow атрибута в регистр AL	
37	mov DI, 1640	;начальное смещение
38	mov CX, 0	;инциализируем СХ
	\hookrightarrow значением 0	
39	pr:	;цикл для вывода всего
40	push CX	;сохраняем
	\hookrightarrow значение СХ в стеке	
41	mov CX, 10	;меняем на число
	<i>⇔ символов в строке</i>	
42	str_out: ;μuκ	гл для вывода строки
43	mov ES:word ptr[DI], AX	;AL поместить в 1й байт, АН
	→ поместить во 2й байт	
44	add DI, 2	;переход к след.
	<i>⊶ позиции в строке</i>	
45	loop str_out	;пока СХ не 0 переход к
	$ ightarrow$ началу ци κ ла и уменьшить СХ на 1	
46	add DI, 140	;сдвиг до начала
	\hookrightarrow cred cmpo κu	
47	inc AL	; увеличиваем
	⇔ символ до след.	
48	inc AH	; увеличиваем
	\hookrightarrow ampubym do cned.	
49	pop CX	; восстанавливаем
	\hookrightarrow СХ (номер строки)	
50	inc CX	;увеличиваем на
51	cmp CX, 10	;если это не 10я
	→ строка (сравниваем СХ с 10)	
52	jne pr	;переходим в
	начало цикла	
53	popa	; восстанавливаем
	⇔ все регистры общего назначения	
54	ret	;возврат из
	<i>⊶ подпрограммы в точку вызова</i>	-
55		ц процедуры
56	-	· - -
57	end start	

4 Пример работы

Рисунок 1 – Пример работы программы

5 Контрольные вопросы

1. Каков адрес области видеоданных для режимов 00h - 06h — B800h, монохромного текстового режима — B000h;

- 2. 4 страницы, разрешение 720*400, число цветов 16
- 3. 00110101

11110010

4. Бит 7 (BL) устанавливает атрибут мерцания (может быть заблокирован).

Биты 6 – 4 определяют цвет фона символа.

Бит 3 (I) устанавливает для символа нормальную (0) или повышенную (1) яркость.

Биты 2 – 0 определяют составляющие цвета символа.

5. 10 желтых сердечек (03h) на синем фоне:

mov AH, 09h ;Запросить вывод

mov AL, 03h ;Выводимый символ

mov BH, 0

mov BL, 1Eh; устанавливаем цвет фона и символов

mov CX, 10;10 символов

int 10h

10 белых звездочек (2Ah) на красном фоне

mov AH, 09h ;Запросить вывод

mov AL, 2Ah ;Выводимый символ

mov BH, 0

mov BL, 47h ;устанавливаем цвет фона и символов

тоу СХ, 10;10 символов

int 10h