**CS551 Project Presentation** 

## iyibiAgent

Berk Buzcu Mehmet Mert Özgün Cana Su Özden



- 1. Problem Statement and Introduction
- 2. Agent Design and Negotiation Strategy
  - 2.1. Bidding Strategy
    - 2.1.1. Production Strategy
    - 2.1.2. Trading Strategy
  - **Negotiation & Negotiator**
  - 2.3. Acceptance Strategy
  - 2.4. Opponent Modelling & Learning Model
- 3. Evaluation
- 4. Conclusion & Future Work
- 5. References

#### **Problem Statement**

- A novel agent, "iyibiAgent", for 2021 Supply Chain Management League (SCML-Standard)
- Factory manager
- Risk-averse agent, minimize its cost of production, keeps its negotiations at the minimum, JIT manufacturing.
- Use of economic surplus model in each transaction [1].
- Adjusts its price factor according to this adapted economic surplus model.



The Graph of Economic Surplus



- 1. Problem Statement and Introduction
- 2. Agent Design and Negotiation Strategy
  - 2.1. Bidding Strategy
    - 2.1.1. Production Strategy
    - 2.1.2. Trading Strategy
  - 2.2. Negotiation & Negotiator
  - 2.3. Acceptance Strategy
  - 2.4. Opponent Modelling & Learning Model
- 3. Evaluation
- 4. Conclusion & Future Work
- 5. References

### **Production Strategy**

- Inspired by the Just in Time manufacturing philosophy [2]
- Decision is made by finding whether the production of item is feasible until the given deadline. No excess production.
- Only demand is considered while producing an item.
  - DemandDrivenProductionStrategy
    - takes into account the demands during production.
- Production schedule using a prediction module.
- Looking demands for the next day, keeps the volume low.

## **Trading Strategy**

- Divides negotiation into 3 time-frames:
- Elicitation phase
  - o first 20% of total steps / time
- Trading phase
  - o between 20% to 80% of total steps / time
- Post-trading
  - last 20% of the total steps / time



## **Trading Strategy**

#### **Elicitation Phase**

 Tries to increase the market price of the items by accepting bids with high prices



#### **Trading Phase**

- Behaves market neutral
- Healthy price dynamics for its input and output
- Acts according to economic surplus mechanism

#### Post Trading Phase

- Aims to produce with a certain loss
- A loss aversion technique is implemented



#### **Market Analysis**



Figure 2: Number of negotiations at each step



Figure 3: Market volume at each step

## **Trading Strategy**

#### Trading Pricing

 Evolves around catalog price, determined by the progress of the negotiation and the trade prediction

#### Economic Surplus

- Increase/decrease the price with a dynamic ratio determined with ratio of bought/sold count if successful
- Decrease/increase the price by
   5% if the transaction is successful

```
Algorithm 1: Trading pricing mechanism
  Data: contracts array
  Result: buy/sell action
  for contract in contracts do
     progress = current step / total steps;
     if sell contract then
         if unit price is less than max(progress, 0.8) * catalog price then
            cancel transaction;
     else if buy contract then
         if unit price is less than min(progress * 2, 1.2) * catalog price
          then
            cancel transaction;
     else
         continue with the transaction (truncated for brevity)
Algorithm 2: Economic Surplus mechanism
 Data: contracts array
 ... output and input calculations omitted;
 for contract in contracts do
    if seller surplus and sold count then
        increase acceptable output price in ratio with surplus amount;
    else
        decrease acceptable output price by 5%;
    if buyer surplus and bought count then
        decrease acceptable input cost in ratio with surplus amount;
    else
```

increase acceptable input price by 5%;



- 1. Problem Statement and Introduction
- 2. Agent Design and Negotiation Strategy
  - 2.1. Bidding Strategy
    - 2.1.1. Production Strategy
    - 2.1.2. Trading Strategy
  - 2.2. Negotiation & Negotiator
  - 2.3. Acceptance Strategy
  - 2.4. Opponent Modelling & Learning Model
- 3. Evaluation
- 4. Conclusion & Future Work
- 5. References

## **Negotiation & Negotiator**

- A modified version of StepNegotiationController module from NEGMas
- Opponent Model applied version of the NEGMas's AspirationNegotiator is used
- It takes a defined "aspiration" from bidding strategy and can be a simple time based conceder, boulware or simply linear.



Taken from http://www.yasserm.com/scml/scml2020docs/

- 1. Problem Statement and Introduction
- 2. Agent Design and Negotiation Strategy
  - 2.1. Bidding Strategy
    - 2.1.1. Production Strategy
    - 2.1.2. Trading Strategy
  - 2.2. Negotiation & Negotiator
  - 2.3. Acceptance Strategy
  - 2.4. Opponent Modelling & Learning Model
- 3. Evaluation
- 4. Conclusion & Future Work
- 5. References

### **Acceptance Strategy**

- A modified version of ACnext [3]
  - The condition of accepting when the opponent's last offer is better than the predicted offer of the agent.
- Finds the acceptable price by using economic surplus [1]
  - Linear Utility function takes from economic surplus.
    - Buyers utility function is designed to be >0
    - Sellers utility function is designed to be <0</li>
- Target Quantity and Target Price are altered according to the current negotiation step due to the market analysis

- 1. Problem Statement and Introduction
- 2. Agent Design and Negotiation Strategy
  - 2.1. Bidding Strategy
    - 2.1.1. Production Strategy
    - 2.1.2. Trading Strategy
  - 2.2. Negotiation & Negotiator
  - 2.3. Acceptance Strategy
  - 2.4. Opponent Modelling & Learning Model
- 3. Evaluation
- 4. Conclusion & Future Work
- 5. References

## **Opponent Modelling**

- Keeps track of the past negotiations and analyzes them to label the opponent.
- A simple heuristic is used for prediction.
- All of their bids are taken and then combined to fit a linear curve according to the utilities of our agent's bids.
- The slope of this curve is used in determining the type of the opponent.

# Outline 1 Problem

- 1. Problem Statement and Introduction
- 2. Agent Design and Negotiation Strategy
  - 2.1. Bidding Strategy
    - 2.1.1. Production Strategy
    - 2.1.2. Trading Strategy
  - 2.2. Negotiation & Negotiator
  - 2.3. Acceptance Strategy
  - 2.4. Opponent Modelling & Learning Model
- 3. Evaluation
- 4. Conclusion & Future Work
- 5. References

### **Evaluation of our agent**

Table 1: Statistics for the first 100 tournaments

|             | N   | Mean    | Std. Dev. | Min     | 1st Q.  | Median  | 3rd Q.  | Max     |
|-------------|-----|---------|-----------|---------|---------|---------|---------|---------|
| iyibiAgent  | 100 | -0.0273 | 0.0168    | -0.0757 | -0.0381 | -0.0257 | -0.0757 | 0.0000  |
| SavingAgent | 100 | -0.101  | 0.0515    | -0.357  | -0.132  | -0.097  | -0.357  | -0.015  |
| SteadyMgr   | 100 | -0.0829 | 0.0568    | -0.239  | -0.1194 | -0.0735 | -0.2391 | 0.0000  |
| MMM         | 100 | -0.1107 | 0.0481    | -0.2290 | -0.1445 | -0.1071 | -0.2290 | -0.0055 |

Table 2: Statistics for the second 100 tournaments

|                | N   | Mean    | Std. Dev. | Min     | 1st Q.  | Median  | 3rd Q.  | Max     |
|----------------|-----|---------|-----------|---------|---------|---------|---------|---------|
| iyibiAgent     | 100 | -0.0263 | 0.0165    | -0.0725 | -0.0371 | -0.0259 | -0.0725 | 0.0000  |
| ASMASH         | 100 | -0.1150 | 0.0473    | -0.2617 | -0.141  | -0.1076 | -0.2617 | -0.0074 |
| BARGentCovid19 | 100 | -0.0968 | 0.0462    | -0.2180 | -0.1207 | -0.0927 | -0.2180 | -0.0034 |
| Merchant       | 100 | 0.4797  | 0.6480    | -0.3035 | -0.0825 | 0.3349  | -0.3035 | 3.4132  |

- 1. Problem Statement and Introduction.
- 2. Agent Design and Negotiation Strategy
  - 2.1. Bidding Strategy
    - 2.1.1. Production Strategy
    - 2.1.2. Trading Strategy
  - **Negotiation & Negotiator**
  - 2.3. Acceptance Strategy
  - 2.4. Opponent Modelling & Learning Model
- 3. Evaluation
- 4. Conclusion & Future Work
- 5. References

#### Conclusion

 Our experiments show that iyibiAgent is able to outperform greedy competitors by adopting a more robust model which yields reasonable profits for any negotiation setup.

#### **Future Work**

- Build a better market awareness in our agent.
- Estimate the market phase using a time series model.
- An improvement in opponent modelling is needed.

#### References

- [1] R. Staneld, \A Revision of the Economic Surplus Concept,"
- Review of Radical Political Economics 6, 69, pp. 69{74, 1974.
- [2] JIT retrrieved from https://www.investopedia.com/terms/j/jit.asp
- [3] T. Baarslag, K. V. Hindriks, C. M. Jonker, Acceptance Condi-
- tions in Automated Negotiation, 2011.

## Thank you for listening!