Theoretische Physik I - Übungsblatt 1

M. Böhl, A. Kanz, R. Müller, M. Nietschmann

1 Kurven und Flächen im \mathbb{R}^3

Es sind $\vec{x}, \vec{r} \in \mathbb{R}^3$.

- a) $|\vec{x}| = 1$ beschreibt die Einheitssphäre des \mathbb{R}^3 .
- b) $|\vec{x} \vec{x}_0| = R$ mit festem R > 0 sowie $\vec{x}_0 \in \mathbb{R}^3$ beschreibt eine Sphäre des Radius R mit Mittelpunkt \vec{x}_0 .
- c) Die Gleichung $\vec{x} \cdot \vec{e} = 0$ mit festem $\vec{e} \in \mathbb{R}^3$ wird von allen Vektoren des orthogonalen Komplementes des Erzeugnisses von \vec{e} erfüllt, d.h. $\vec{x} \in \text{span}\{\vec{e}\}^{\perp}$. Das sind alle Vektoren des \mathbb{R}^3 , falls \vec{e} der Nullvektor ist, andernfalls liegen alle diese Vektoren in einer Hyperebene, in diesem (dreidimensionalen) Falle ist dies eine Ebene durch den Koordinatenursprung mit \vec{e} als Normalenvektor.
- d) Die Gleichung $\vec{r} \cdot \vec{k} = |\vec{k}|, \vec{k} \in \mathbb{R}^3$, wird von allen $\vec{r} \in \vec{k} + \operatorname{span}\{\vec{k}\}^{\perp}$, d.h. einer Ebene durch \vec{k} orthogonal zu \vec{k} , falls \vec{k} vom Nullvektor verschieden ist, bzw. der gesamte \mathbb{R}^3 , falls $\vec{k} = (0,0,0)$, erfüllt.
- e) Es seien $\vec{a}, \vec{b} \in \mathbb{R}^3$. Falls $\vec{a} = (0,0,0)$, so wird $\vec{x} \times \vec{a} = \vec{b} \times \vec{a}$ von jedem $\vec{x} \in \mathbb{R}^3$ erfüllt; falls $\vec{b} = (0,0,0) \neq \vec{a}$, nur von $\vec{x} = (0,0,0)$. Sind \vec{a}, \vec{b} vom Nullvektor verschieden, so wird die Gleichung von allen \vec{x} in einem Halbkreis mit Radius $|\vec{b}|$ in der von \vec{a} und \vec{b} aufgespannten Ebene durch den Ursprung erfüllt, wobei dieser in " \vec{b} -Richtung von \vec{a} ausgerichtet sei".
- f) Parametrisiert wird eine um einen verzerrten Kreiszylinder gewundene Spirale. Dieser verzerrte Zylinder hat $\{(0, \pm 1, t) \mid t \in \mathbb{R}\}$ als Schnittmenge mit der y-z-Ebene (zwei parallele Geraden) und $\{(\pm Ct, 0, t) \mid t \in \mathbb{R}\}$ als Schnittmenge mit der x-z-Ebene (zwei sich schneidende Geraden).
- g) Hier wird eine obere Halbsphäre mit Radius R parametrisiert.

2 Gradient in krummlinigen Koordinaten

- a) $\nabla V_P(r,\vartheta) = \left(-\frac{1}{r^2},0\right)$ falls $r \neq 0$. Für r=0 ist V_P nicht differenzierbar.
- b) $\nabla V_D(r,\vartheta) = \left(-2\frac{\cos\vartheta}{r^3}, -\frac{\sin\vartheta}{r^2}\right) = -r^{-3}(2\cos\vartheta, r\sin\vartheta)$ falls $r \neq 0$. Für r = 0 ist V_D nicht differenzierbar.

- (a) Gradientenfeld ∇V_P und Höhenlinien
- (b) Gradientenfeld ∇V_D und Höhenlinien

3 Divergenz

a) div
$$\vec{F}$$
 = div $\begin{pmatrix} Kxyz \\ Kxyz \\ Kxyz \end{pmatrix}$ = $K(yz + xz + xy)$.

b) Wegen
$$\vec{\omega} = \begin{pmatrix} 0 \\ 0 \\ \omega \end{pmatrix}$$
, $\omega \in \mathbb{R}$, ist in Zylinderkoordinaten $\vec{v}(\vec{r}) = \vec{v}(r, \varphi, z) = \begin{pmatrix} 0 \\ 0 \\ \omega \end{pmatrix} \times \vec{r} = \begin{pmatrix} -\omega \varphi \\ \omega r \\ 0 \end{pmatrix}$, also div $\vec{v} = \frac{1}{r}(-\omega \varphi) + 0 = -\frac{\omega \varphi}{r}$.

c) div
$$\vec{v}(x, y, z)$$
 = div $\sqrt{x^2 + y^2 + z^2} \vec{a} = \frac{x + y + z}{\sqrt{x^2 + y^2 + z^2}} \vec{a} = \frac{x + y + z}{r} \vec{a}$.

- d) Nach Graßmann: $\vec{a} \times (\vec{b} \times \vec{r}) = (\vec{a} \cdot \vec{r})\vec{b} (\vec{a} \cdot \vec{b})\vec{r}$. Also div $\vec{v} = \vec{a} \cdot \vec{b} (\vec{a} \cdot \vec{b})$ div $\vec{r} = -2(\vec{a} \cdot \vec{b})$.
- e) Es gilt

$$\vec{E}(\vec{r}) = -Kr^n\hat{r} = -Kr^{n-1}\vec{r} = -K(x^2 + y^2 + z^2)^{\frac{n-1}{2}}\vec{r}.$$

Damit folgt

$$\frac{d}{dx}E_x = -K\left(\left(x^2 + y^2 + z^2\right)^{\frac{n-1}{2}} + 2x^2 \frac{n-1}{2}\left(x^2 + y^2 + z^2\right)^{\frac{n-3}{2}}\right) = -K(r^{n-1} + (n-1)x^2r^{n-3})$$

und man erhält analoge Ergebnisse für die Ableitungen von \vec{E} nach y und z. Also

$$\operatorname{div} \vec{E} = -K \left(3r^{n-1} + (n-1)(x^2 + y^2 + z^2)r^{n-3} \right)$$
$$= -K \left(3r^{n-1} + (n-1)r^{n-1} \right)$$
$$= -(n+2)Kr^{n-1}.$$