Wintersemester 2020/2021

13. Übung zur Vorlesung

Logik für Informatiker

GRUPPENÜBUNGEN:

(G 1)

Sei $\Omega = \{a/0, b/0.f/1, g/1, h/2\}$ eine Menge von Funktionssymbolen, X eine Menge von Variablen und $v, x, y, z \in X$. Gegeben sind die folgenden 10 Unifikationsprobleme über Ω und X:

- a) $\{x \stackrel{?}{=} b\}$
- b) $\{a \stackrel{?}{=} x\}$
- c) $\{a \stackrel{?}{=} b\}$
- $d) \ \{y \stackrel{?}{=} f(x)\}$
- e) $\{x \stackrel{?}{=} f(x)\}$
- f) $\{f(x) \stackrel{?}{=} f(y)\}$
- g) $\{f(x) \stackrel{?}{=} g(y)\}$
- h) $\{h(x,y) \stackrel{?}{=} h(a,b)\}$
- i) $\{x \stackrel{?}{=} f(z), y \stackrel{?}{=} f(a), x \stackrel{?}{=} y\}$
- j) $\{h(x, f(y)) \stackrel{?}{=} z, z \stackrel{?}{=} h(f(y), v)\}$
- a) Wenden Sie den Martelli-Montanari Algorithmus auf die gegebenen Probleme an.
- b) Verwenden Sie die Ergebnisse aus dem vorherigen Aufgabenteil um eine begründete Aussage über das (Nicht-)Vorhandensein eines Unifikators zu machen. Gibt es einen Unifikator für ein Problem, so geben Sie ihn explizit an.

(G 2)

Sei $\Sigma = (\Omega, \Pi)$ eine Signatur, wobei $\Omega = \{f/1, g/2\}$ und $\Pi = \{p/1\}$. Ferner sei X eine Menge von Variablen und $v, w, x, y, z \in X$. Gegeben sind die folgenden 3 Unifikationsprobleme über Σ und X:

- a) $\{g(v, f(v)) \stackrel{?}{=} w, p(w) \stackrel{?}{=} p(x), x \stackrel{?}{=} g(f(y), v)\}$
- b) $\{g(v,v) \stackrel{?}{=} w, p(w) \stackrel{?}{=} p(x), x \stackrel{?}{=} f(y)\}$
- c) $\{g(v, f(y)) \stackrel{?}{=} w, p(w) \stackrel{?}{=} p(x), x \stackrel{?}{=} g(f(y), z)\}$
- a) Wenden Sie den Martelli-Montanari Algorithmus auf die gegebenen Probleme an.

b) Verwenden Sie die Ergebnisse aus dem vorherigen Aufgabenteil um eine begründete Aussage über das (Nicht-)Vorhandensein eines Unifikators zu machen. Gibt es einen Unifikator für ein Problem, so geben Sie ihn explizit an.

(G 3)

Sei $\Sigma = (\Omega, \Pi)$ eine Signatur, wobei $\Omega = \{a/0, b/0, f/1, g/2\}$ und $\Pi = \{p/1\}$. Ferner sei X eine Menge von Variablen und $t, v, w, x, y, z \in X$. Gegeben sind die folgenden 3 Unifikationsprobleme über Σ und X:

- a) $\{p(g(f(x), f(a))) \stackrel{?}{=} p(g(f(b), f(x)))\}$
- b) $\{p(g(x, f(x))) \stackrel{?}{=} p(g(y, y))\}$
- c) $\{t \stackrel{?}{=} b, x \stackrel{?}{=} f(t), v \stackrel{?}{=} f(x), f(v) \stackrel{?}{=} y, w \stackrel{?}{=} f(x), f(w) \stackrel{?}{=} z\}$
- a) Wenden Sie den Martelli-Montanari Algorithmus auf die gegebenen Probleme an.
- b) Verwenden Sie die Ergebnisse aus dem vorherigen Aufgabenteil um eine begründete Aussage über das (Nicht-)Vorhandensein eines Unifikators zu machen. Gibt es einen Unifikator für ein Problem, so geben Sie ihn explizit an.

(G 4)

Sei $\Sigma = (\Omega, \Pi)$ eine Signatur, wobei $\Omega = \{a/0, b/0, c/0\}$ und $\Pi = \{p/3, q/3\}$. Ferner sei X eine Menge von Variablen und $x, y, z \in X$. Gegeben sei die folgende Klauselmenge über Σ und X:

 $N = \{\{p(b,x,y), \neg q(y,b,z)\}, \{\neg p(x,c,a), q(a,x,z)\}, \{q(x,b,y), q(a,z,y)\}\}$ Verwenden Sie den Resolutionskalkül, um zu begründen, dass N unerfüllbar ist. Geben Sie dabei explizit alle Unifikatoren, Umbenennungen und Faktoren an. Führen Sie keine Vereinfachungen an der gegebenen Klauselmenge durch.

(G 5)

Sei $\Sigma = (\Omega, \Pi)$ eine Signatur, wobei $\Omega = \{a/0, b/0, c/0\}$ und $\Pi = \{p/3, q/3\}$. Ferner sei X eine Menge von Variablen und $x, y, z \in X$. Gegeben sei die folgende Formel über Σ und X:

$$F = \exists x \exists y \exists z ((q(b,z,x)) \lor (\neg q(a,z,x) \land \neg q(x,z,y)) \lor (q(x,z,x) \land \neg p(b,x,c)) \lor (\neg q(y,z,x) \land q(x,z,x) \land p(y,a,c)).$$

Verwenden Sie den Resolutionskalkül, um zu zeigen, dass F allgemeingültig ist. Geben Sie dabei explizit alle Unifikatoren, Umbenennungen und Faktoren an. Führen Sie keine Vereinfachungen an den gegebenen Formeln durch.

(G 6)

Sei $\Sigma = (\Omega, \Pi)$ eine Signatur, wobei $\Omega = \{a/0, b/0, c/0, d/0\}$ und $\Pi = \{p/2, q/2\}$. Ferner sei X eine Menge von Variablen und $x, y \in X$. Gegeben seien die folgenden Formeln über Σ und X: $F = p(d, b) \wedge p(c, a) \wedge (\forall x (\neg p(d, x) \vee q(a, x))) \wedge (\forall x \forall y (\neg p(c, x) \vee \neg p(d, y) \vee \neg p(b, y) \vee \neg q(x, y)))$ und $G = \neg p(b, b)$.

Verwenden Sie den Resolutionskalkül, um zu begründen, dass $F \models G$. Geben Sie dabei explizit alle Unifikatoren, Umbenennungen und Faktoren an. Führen Sie keine Vereinfachungen an der gegebenen Klauselmenge durch.