Kallil de A. Bezerra: 20180154987

DCA0216.0 - SISTEMAS DE CONTROLE Avaliação - Unidade 2

Brasil

Novembro de 2020

Kallil de A. Bezerra: 20180154987

DCA0216.0 - SISTEMAS DE CONTROLE Avaliação - Unidade 2

Modelo canônico de Relatório Técnico e/ou Científico em conformidade com as normas ABNT apresentado à comunidade de usuários LATEX.

Universidade Federal do Rio Grande do Norte – UFRN Departamento de Engenharia da Computação e Automação – DCA

> Brasil Novembro de 2020

Resumo

O controlador Proporcional-Integral-Derivativo (PID) é o mais usado na indústria e tem

sido utilizado há bastante tempo no controle industrial. A adoção dele se dá pelo seu

desempenho confiável mesmo em condições adversas, além disso também apresenta uma

certa facilidade de implementação.

Ele é composto por três coeficientes, que podem ser alterados para se obter a resposta

ideal. Neste relatório será elaborado um controlador para indústria química, apresentando

overshoot de 20% e tempo de estabilização de 600 segundos, ou 10 minutos.

Palavras-chaves: Sistema de Controle. PID. Sistemas Dinâmicos.

Lista de ilustrações

Figura 2.1 – Comportamento do sistema	10
---------------------------------------	----

Lista de tabelas

Tabela 1.1 – Valores do controlador PI		7
--	--	---

Sumário

	Introdução
l	EMBASAMENTO TEÓRICO
2	DESENVOLVIMENTO 8
2.1	Projetando o controlador PI 8
2.2	Simulação do controlador
	REFERÊNCIAS

Introdução

O controle automático tem desempenhado um papel vital no avanço da engenharia e da ciência. Além da sua importância em sistemas de veículos espaciais, sistemas robóticos, e semelhantes, o controle automático tornou-se uma importante parte da fabricação moderna e dos processos industriais. É possível citar o controle numérico de ferramentas e máquinas nas indústrias de manufatura, no projeto de sistemas de piloto automático em operações aeroespaciais e no projeto de carros e caminhões na indústria automobilística. O controle também é essencial no controle de pressão, temperatura, umidade e viscosidade nos processos industriais (OGATA, 2001).

1 Embasamento teórico

Em reações exotérmicas irreversíveis, reagentes de modo adiabático levam a altas temperaturas, portanto, para que haja um controle dessa temperatura, o calor gerado deve ser removido por resfriamento. Assumiremos que os reagentes estão perfeitamente misturados, e apenas uma única ação exotérmica irreversível de primeira ordem ocorre. Portanto, a variável a ser controlada é a temperatura do reator, T, e a variável manipulada é a temperatura de resfriamento, T_R . O sistema em questão é não-linear e é definido pelas seguintes equações de estado:

$$\dot{C}_A = C_A + D_a(1 - C_A)exp\left(T/\left(\frac{(1+T)}{\gamma}\right)\right) - (C_f - 1)$$
(1.1)

$$\dot{T} = T + B \cdot D_a (1 - C_A) exp\left(T / \left(\frac{(1+T)}{\gamma}\right)\right) - \beta (T_R - T)$$
(1.2)

Aqui temos C_A , que é a concentração do produto no reator, dado em $\frac{gmol}{L}$, T é a temperatura do reator, variável controlada, dada em Kelvin, T_R é a temperatura do resfriamento, variável manipulada, dada em Kelvin também, e C_f é a concentração da alimentação do equipamento, dada em $\frac{gmol}{L}$. Valores típicos dessas variáveis são dados na tabela 1.1:

Constante	Valor
γ	20
D_a	0.072
В	8
β	0.3
C_f	1

Tabela 1.1 – Valores do controlador PI

Para o ponto de equilíbrio, usando $T_R=0$, T=4.705K, $C_A=0.76456~\frac{gmol}{L}$, o sistema corresponde ao seguinte modelo linearizado:

$$G(s) = \frac{0.005001s + 0.0003501}{s^2 + 0.02668s + 0.0004545}$$
(1.3)

2 Desenvolvimento

2.1 Projetando o controlador Pl

É pedido que seja projetado um controlador PID, ou PI, para o sistema proposto, aplicando-o ao modelo não-linear. Devem ser considerador como critérios para o projeto um sobressinal máximo de 20% e um tempo de estabilização de 10 minutos, o controlador também deve ser discretizado para uma amostragem de 0.1 minutos, ou 6 segundos.

Podemos começar analisando o critério de *overshoot* e tempo de estabilização, que será convertido em segundos. Serão usadas as seguintes fórmulas:

$$\xi = \frac{\ln(overshoot)}{\sqrt{\pi^2 + \ln^2 overshoot}}$$
 (2.1)

Ε

$$t_s(5\%) = \frac{3}{\xi \omega_n} \tag{2.2}$$

Agora, aplicando as especificações de desempenho temos:

$$\xi = \frac{\ln(0,2)}{\sqrt{\pi^2 + \ln(0,2)}}$$

resultando em:

$$\xi = 0,45594$$

Agora, usando o requisito do tempo temos:

$$t_s(5\%) \le 10$$
$$10 = \frac{3}{\xi \omega_n}$$
$$\xi \omega_n = 0, 3$$

portanto,

$$\omega_n = 0,65776$$

Agora, precisamos encontrar o ω_d .

$$\omega_d = \omega \sqrt{1 - \xi^2}$$
$$\omega_d = 0,5853$$

Assim, temos os polos de malha fechada, que são:

$$s_{1,2} = -0.3 \pm 05853i$$

Com os valores de ω_d , ω e ξ em mãos, podemos descobrir os ângulos, dessa forma obtemos: $\theta_1=178,8846^\circ$ e $\theta_2=181,1153^\circ$. Também encontramos $\phi_1=0,1,1963^\circ$ e ϕ_2 será calculado, para que o z seja encontrado. Com o zero faltando encontrado, temos z=7,4693.

Com isso, construímos o seguinte controlador PI:

$$G_c(s) = \frac{(s+z)^2}{s}$$

$$G_c(s) = \frac{s^2 + 14,94s + 55,79}{s}$$

Então, temos $k_p = 14,93$ e $k_i = 55,79$.

Na discretização foi usado o método forward, encontrando a seguinte forma:

$$G(z) = \frac{10z^2 - 5,07z + 0,649}{(z-1)}$$

Ao fim do relatório estão as anotações originais feitas para resolver a atividade proposta.

2.2 Simulação do controlador

O projeto proposto deve ser simulado no Matlab, os gráficos serão apresentados a seguir, com o sinal de saída e controle, aplicando o degrau unitário. A simulação não conseguiu atender aos requisitos impostos, demorando 697 segundos para acomodar, mas respeitou os 20% de sobressinal.

Figura 2.1 – Comportamento do sistema

Referências

OGATA, K. Modern Control Engineering. [S.I.]: Prentice Hall, 2001. Citado na página 6.