Problem 2.2

Determine the inverse Fourier transform of the frequency function G(f) defined by the amplitude and phase spectra shown in Fig. 2.5.

Solution

$$\begin{split} g(t) &= \int_{-W}^{0} e^{j\pi/2} \cdot e^{j2\pi ft} df + \int_{0}^{W} e^{-j\pi/2} e^{j2\pi ft} df \\ &= \left[\frac{1}{j2\pi t} e^{j\left(\frac{\pi}{2} + 2\pi ft\right)} \right]_{f=-W}^{0} + \left[\frac{1}{j2\pi t} e^{j\left(-\frac{\pi}{2} + 2\pi ft\right)} \right]_{f=0}^{W} \\ &= \frac{1}{j2\pi t} \left(e^{j\left(\frac{\pi}{2} - 2\pi Wt\right)} - e^{j\pi/2} \right) + \frac{1}{j2\pi t} \left(e^{-j\pi/2} - e^{j\left(-\frac{\pi}{2} - j2\pi Wt\right)} \right) \\ &= \frac{1}{j2\pi t} (e^{-j\pi/2} - e^{j\pi/2}) + \frac{1}{j2\pi t} e^{-j2\pi Wt} (e^{j\pi/2} - e^{-j\pi/2}) \\ &= -\frac{1}{\pi t} + \frac{1}{\pi t} e^{-j2\pi Wt} = \frac{1}{\pi t} (e^{-j2\pi Wt} - 1) \end{split}$$

Note: If we let $W \to \infty$, $G(f) \to j \operatorname{sgn}(t)$, the inverse of which $-\frac{1}{\pi t}$. This result agrees with the limiting value of the solution for $W = \infty$.