3.3. DISTRIBUCIONES DE PROBABILIDAD DE VARIABLES ALEATORIAS CONTINUAS

	UNIFORME		
3.3.01	Parámetros	A B	
3.3.02	Función de densidad de probabilidad	$f(x; A, B) = \frac{1}{B - A}$ $f(x; A, B) = 0$	$x \in [A, B]$ en otro caso
3.3.03	Función de distribución de probabilidad	$F(x; A, B) = 0$ $F(x; A, B) = \frac{x - A}{B - A}$ $F(x; A, B) = 1$	$x \le A$ $x \in [A, B]$ $x \ge B$
3.3.04	Esperanza	$\frac{A+B}{2}$	
3.3.05	Varianza	$\frac{(B-A)^2}{12}$	
	NORMAL		
3.3.06	Parámetros	$\mu \ \sigma$	
3.3.07	Función de densidad de probabilidad	$f(x; \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} \cdot e^{\frac{-(x-\mu)^2}{2\sigma^2}}$	- ∞ < <i>x</i> <+∞
3.3.08	Función de distribución de probabilidad	$F(x; \mu, \sigma) = \frac{1}{\sigma\sqrt{2\pi}} \cdot \int_{-\infty}^{x} e^{\frac{-(t-\mu)^{2}}{2\sigma^{2}}}$	$\int_{-\infty}^{2\pi} dt - \infty < t < +\infty$
3.3.09	Esperanza	μ	
3.3.10	Varianza	σ^2	
	GAMMA		
3.3.11	Parámetros	$egin{array}{c} lpha \ eta \end{array}$	
3.3.12	Función de densidad de probabilidad	$f(x;\alpha,\beta) = \frac{1}{\beta^{\alpha} \Gamma(\alpha)} \cdot x^{\alpha-1} \cdot$	$e^{-x/\beta}$ $x > 0$

Fórmulas 7 Estadística Técnica

		donde Γ es la función gamma de Euler, $\Gamma(\alpha) = \int_{0}^{+\infty} x^{\alpha-1} e^{-x} dx$ $f(x; \alpha, \beta) = 0 \qquad en otro caso$
3.3.13	Función de distribución de probabilidad	$F(x;\alpha) = \int_{0}^{x} \frac{x^{\alpha-1} \cdot e^{-x}}{\Gamma(\alpha)} dx \qquad x > 0$ $F(x;\alpha,\beta) = F(\frac{x}{\beta};\alpha) \qquad x > 0$ $F(x;\alpha,\beta) = 0 \qquad en otro caso$
3.3.14	Esperanza	$\alpha.\beta$
3.3.15	Varianza	$\alpha.\beta^2$
	EXPONENCIAL	
3.3.16	Parámetro	$\lambda = \frac{1}{oldsymbol{eta}}$
3.3.17	Función de densidad de probabilidad	$f(x; \lambda) = \lambda e^{-\lambda x} = f(x; \beta) = \frac{1}{\beta} \cdot e^{-x/\beta} \qquad x > 0$ $f(x; \lambda) = f(x; \beta) = 0 \qquad \text{en otro caso}$ $donde \frac{1}{\beta} = \lambda > 0$
3.3.18	Función de distribución de probabilidad	$F(x; \lambda) = 1 - e^{-\lambda x} \qquad si x > 0$ $F(x; \lambda) = 0 \qquad si x \le 0$
3.3.19	Esperanza	$\beta = \frac{1}{\lambda}$
3.3.20	Varianza	$\beta^2 = \frac{1}{\lambda^2}$
	JI CUADRADA	
3.3.21	Parámetro	ν
3.3.22	Función de densidad de probabilidad	$f(x;v) = \frac{1}{2^{\nu/2} \Gamma(\nu/2)} \cdot x^{\nu/2-1} \cdot e^{-x/2} \qquad x \ge 0$ $f(x;v) = 0 \qquad en otro caso$ $donde \ v \in Z^{+}$

3.3.23	Función de distribución de probabilidad	$F(x;v) = \frac{\int_{0}^{x/2} x^{v/2-1} \cdot e^{-t} dt}{\Gamma(v/2)}$ $F(x;v) = 0$ $x \ge 0$ $en otro caso$
3.3.24	Esperanza	ν
3.3.25	Varianza	2 v
	WEIBULL	
3.3.26	Parámetros	$\begin{array}{c} \alpha \\ \beta \end{array}$
3.3.27	Función de densidad de probabilidad	$f(x;\alpha,\beta) = \frac{\alpha}{\beta^{\alpha}} \cdot x^{\alpha-1} \cdot e^{-(x/\beta)^{\alpha}} \qquad x \ge 0$ $f(x;\alpha,\beta) = 0 \qquad en \text{ otro caso}$
3.3.28	Función de distribución de probabilidad	$F(x; \alpha, \beta) = 1 - e^{-(x/\beta)^{\alpha}} \qquad x \ge 0$ $F(x; \alpha, \beta) = 0 \qquad en \ otro \ caso$
3.3.29	Esperanza	$\beta \Gamma \left(1 + \frac{1}{\alpha}\right)$
3.3.30	Varianza	$\beta^{2} \cdot \left\{ \Gamma \left(1 + \frac{2}{\alpha} \right) - \left[\Gamma \left(1 + \frac{1}{\alpha} \right) \right]^{2} \right\}$
	LOG-NORMAL	
3.3.31	Parámetros	μ σ
3.3.32	Función de densidad de probabilidad	$f(x; \mu, \sigma) = \frac{1}{\sigma \cdot x \cdot \sqrt{2\pi}} \cdot e^{-[\ln(x) - \mu]^2 / (2\sigma^2)} \qquad x \ge 0$ $f(x; \mu, \sigma) = 0 \qquad en \text{ otro caso}$
3.3.33	Función de distribución de probabilidad	$F(x; \mu, \sigma) = P(\ln(X) \le \ln(x)) = P(Z \le (\ln(x) - \mu)/\sigma) \qquad x \ge 0$ $F(x; \mu, \sigma) = 0 \qquad en \text{ otro caso}$
3.3.34	Esperanza	$e^{\mu+\sigma^2/2}$
3.3.35	Varianza	$e^{2\mu+\sigma^2}(e^{\sigma^2}-1)$

Fórmulas 9 Estadística Técnica

	ВЕТА	
3.3.36	Parámetros	$egin{array}{c} lpha \ eta \ A \ B \end{array}$
3.3.37	Función de densidad de probabilidad	$f(x;\alpha,\beta,A,B) = \frac{1}{B-A} \cdot \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha).\Gamma(\beta)} \cdot \left(\frac{x-A}{B-A}\right)^{\alpha-1} \cdot \left(\frac{B-x}{B-A}\right)^{\beta-1}$ $para x \in [A, B]$ $f(x; \alpha, \beta, A, B) = 0 en \text{ otro caso}$
3.3.38	Esperanza	$A+(B-A).\frac{\alpha}{\alpha+\beta}$
3.3.39	Varianza	$\frac{(B-A)^2 \alpha \beta}{(\alpha+\beta)^2 (\alpha+\beta+1)}$
	t-STUDENT	
3.3.40	Parámetro	ν
3.3.41	Función de densidad de probabilidad	$f(x;v) = \frac{1}{v\sqrt{\pi}} \cdot \frac{\Gamma\left(\frac{v+1}{2}\right)}{\Gamma\left(\frac{v}{2}\right)} \cdot \left(1 + \frac{x^2}{v}\right)^{\frac{v+1}{n}}$ $-\infty < x < +\infty$ $donde \ v > 0$
3.3.42	Función de distribución de probabilidad	$F(x;v) = \frac{1}{2} \left(1 + Betareg\left(\frac{v}{x^2 + v}, \frac{v}{2}, \frac{1}{2}\right) \cdot sign(x) \right) - \infty < x < +\infty$ $donde \ v > 0 y \ Betareg(z, a, b) = \frac{\int_{0}^{z} t^{a-1} (1-t)^{b-1} dt}{\int_{0}^{z} t^{a-1} (1-t)^{b-1} dt}$
3.3.43	Esperanza	v para v > 1
3.3.44	Varianza	$\frac{v}{v-2} \qquad para \ v > 2$

	F de FISHER- SNEDECOR	
3.3.45	Parámetros	$\begin{array}{c c} v_1 \\ v_2 \end{array}$
3.3.46	Función de densidad de probabilidad	$f(x; v_1, v_2) = \frac{\Gamma\left(\frac{v_1 + v_2}{2}\right) \cdot v_1^{\frac{v_1}{2}} \cdot v_2^{\frac{v_2}{2}}}{\Gamma\left(\frac{v_1}{2}\right) \Gamma\left(\frac{v_2}{2}\right)} \cdot \frac{v_1 - 2}{\left(v_2 + v_1 \cdot x\right)^{\frac{v_1 + v_2}{2}}} \qquad x > 0$ $f(x; v_1, v_2) = 0 \qquad en \text{ otro caso}$
3.3.47	Esperanza	$\frac{v_2}{v_2 - 2} \qquad para \ v_2 > 2$
3.3.48	Varianza	$\frac{v_2^2(2v_2+2v_1-4)}{v_1(v_2-2)^2(v_2-4)} para \ v_2 > 4$