XAI eXplainable Artificial Intelligence IA explicable

Cours 3 - mardi 3 octobre 2023

Marie-Jeanne Lesot Christophe Marsala Jean-Noël Vittaut Gauvain Bourgne

LIP6, Sorbonne Université

Au programme du jour

- 1. Un petit rab sur les opérateurs d'agrégation
- 2. Diversité des exemples contre-factuels
- 3. Le fameux LIME

Rappel: 4 familles principales

- Opérateurs conjonctifs
 - valeur élevée ssi u et v ont des valeurs élevées
 - exemples : $\min(u, v)$, $u \cdot v$, $\max(u + v 1, 0)$
- Opérateurs disjonctifs
 - valeur élevée ssi u ou v ont des valeurs élevées
 - exemples : $\max(u, v)$, $u + v u \cdot v$, $\min(u + v, 1)$
- Operateurs de compromis : famille très riche et expressive
 - autorisent la compensation
 - exemples : moyenne arithmétique (pondérée), OWA
- Opérateurs à attitude variable
 - conjonctifs, disjonctifs ou de compromis suivant les valeurs à agréger
 - exemple : intégrales de Gödel

Opérateurs de compromis

- Moyenne arithmétique pondérée : $Agg(x_1,\cdots,x_n)=\sum_{i=1}^n w_i x_i$
- Approche ordinale : Ordered Weighted Average, OWA
 - les poids dépendent de l'ordre, non des attributs
 - σ permutation telle que $x_{\sigma(1)} \leq x_{\sigma(2)} \leq \cdots \leq x_{\sigma(n)}$
 - $OWA_w(x_1, \dots x_n) = \sum_{i=1}^n w_i x_{\sigma(i)}$
- Encore plus expressifs : intégrales de Choquet
 - les poids dépendent de l'ordre et des attributs

Encore plus expressifs

- Intégrales de Choquet
 - les poids dépendent de l'ordre et des attributs
 - σ permutation telle que $x_{\sigma(1)} \leq x_{\sigma(2)} \leq \cdots \leq x_{\sigma(n)}$

-
$$A_{\sigma(i)} = {\sigma(i), \ldots, \sigma(n)}$$

- Capacité : $\mu:2^{\{1,\dots,n\}} \to [0,1]$
 - croissante + conditions aux limites
 - poids de tout sous-ensemble de critères

Définition générale

$$C_{\mu}(x) = \sum_{i=1}^{n} \left(\mu(A_{\sigma(i)}) - \mu(A_{\sigma(i+1)}) \right) x_{\sigma(i)}$$

Intégrales de Choquet

$$C_{\mu}(x) = \sum_{i=1}^{n} (\mu(A_{\sigma(i)}) - \mu(A_{\sigma(i+1)})) x_{\sigma(i)}$$

Intégrales de Choquet

• Cas à 3 attributs

OWA et intégrales de Choquet

Notations

- σ permutation telle que $x_{\sigma(1)} \leq x_{\sigma(2)} \leq \cdots \leq x_{\sigma(n)}$
- $A_{\sigma(i)} = {\sigma(i), \ldots, \sigma(n)}$

$$OWA_w(x) = \sum_{i=1}^n w_i x_{\sigma(i)}$$

$$C_{\mu}(x) = \sum_{i=1}^n \left(\mu(A_{\sigma(i)}) - \mu(A_{\sigma(i+1)})\right) x_{\sigma(i)}$$

- Exercice :
 - à quelles conditions sur μ une intégrale de Choquet est-elle un OWA ?
 - réponse : $\mu(E)$ dépend seulement de |E|

OWA et intégrales de Choquet

Au programme du jour

- 1. Un petit rab sur les opérateurs d'agrégation
- 2. Diversité des exemples contre-factuels
- 3. Le fameux LIME

Exemples contre-factuels divers

- De la multiplicité...
 - ne pas choisir un des exemples
 - mais en générer plusieurs
- ... à la diversité
 - les multiples exemples ne doivent pas être redondants
 - mais différer les uns des autres

Diversité des critères

- Différentes pondérations de la moyenne pondérée (Dandl et al., 2020)
 - \leftrightarrow différentes positions sur le front de Pareto

Diversité des attributs/actions

Définition explicite de sous-espaces distincts

(Carreira et al., 21; Rodriguez et al., 21)

- puis identification d'exemples contre-factuels dans chacun
- ex : partition donnée par l'utilisateur de certains attributs
- Distance deux à deux entre les exemples contre-factuels
 - modification du problème d'optimisation

$$\{e_1^*, \dots, e_k^*\} = \arg\min_{\{e_1, \dots, e_k\} \subset \mathcal{E}} \left(agg\left(\sum_{i=1}^k c_x(e_i), \varphi(div(\{e_1, \dots, e_k\})\right)\right)$$

$$div: \text{ varier les positions} \to l_2$$
 ou les attributs utilisés $\to l_0$

- génération itérative

(Singh Hada and Carreira, 21; Russell, 19)

- Diversité des actions
 - différence d'interprétation : en terme de "recours algorithmique"
 - p. ex. diversité des directions de modifications

- Génération directe ou itérative
 - optimisation ou exploration simultanée dans plusieurs directions
 - contrainte d'éloignement des générations antérieures
- Diversité explicite vs implicite
 - inclusion dans la fonction de coût : mécanisme dédié pour la génération d'explications diverses
 - non-déterminisme comme source de diversité

(Mahajan et al., 19; Sharma et al, 20)

- Nombre d'exemples contre-factuels renvoyés
 - au choix de l'utilisateur
 - limité par la méthode elle-même (Becker et al. 21 ; Guidotti et al, 19)

Au programme du jour

- 1. Un petit rab sur les opérateurs d'agrégation
- 2. Diversité des exemples contre-factuels
- 3. Le fameux LIME: Local Interpretable Model-agnostic Explanations

"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro, Sameer Singh, Carlos Guestrin
Proc. of the 22nd ACM SIGKDD Int. Conf.
on Knowledge Discovery and Data mining,

KDD 2016

LIME : caractéristiques

- Même objectif que les exemples contre-factuels
 - approche **post-hoc** : étant donné un modèle $f: \mathcal{X} \to \mathcal{Y}$
 - approche locale : étant donné une instance $x \in \mathcal{X}$

 \Longrightarrow expliquer la prédiction f(x)

- Autre famille d'explications : à la fois
 - approche par substitution : surrogate model
 - score d'importance d'attribut locale : local feature importance

Approches par substitution

$$e(x) = \arg\min_{g \in \mathcal{G}} (L(f, g, \pi_x) + \Omega(g))$$

- Entrées : $f: \mathcal{X} \to \mathcal{Y}$ modèle à expliquer, x instance considérée
- \mathcal{G} : famille de modèles de substitution = surrogate models
 - contrainte : modèles interprétables
 - ex. : régression linéaire, arbres de décision de profondeur limitée, ...
- L : mesure de fidélité
 - g doit être fidèle à f
 - π_x : voisinage autour de x utilisé pour l'interprétation
- Ω : mesure de complexité
 - g doit être simple
 - ex: profondeur des arbres/ parcimonie des coefficients de régression

Cas de LIME

- f: modèle de classification probabiliste ou de régression
- $\mathcal{G} = \left\{ g(x) = \sum_{i=1}^d w_i x_i \right\}$: fonctions linéaires
 - explication : vecteur des w_i
 - interprétés comme scores d'importance locale
- L : moindres carrés sur $\mathcal{Z} = (z_p, f(z_p))_{p=1..m}$

$$-L(f,g,\pi_x) = \sum_{p=1}^{m} \pi_x(z_p)(f(z_p) - g(z_p))^2$$

- $\Omega(g) = \sum_{i=1}^u w_i^2$: norme L2 des poids w_i
 - favoriser les poids faibles
- + étape de construction d'attributs interprétables

Cas de LIME : illustration

(Ribeiro et al, 2016)

(Molnar, 2021)

•
$$\mathcal{X} = \{x_1, x_2\} \subset \mathbb{R}^2$$

- *f*: random forest
 - en foncé, classe négative
 - en clair, classe positive

(Molnar, 2020)

- Point jaune : instance d'intérêt x
- Construction de $\mathcal{Z} = \{(z_p, f(z_p))\}$
 - génération autour de la moyenne des données
 - selon une distribution normale

(Molnar, 2020)

- Calcul des poids $\pi_x(z_p)$
 - selon la distance à x

(Molnar, 2020)

- Apprentissage du modèle de substitution q
 - droite en blanc : frontière de décision de g p(class = 1) = 0.5

Présentation des résultats

(Ribeiro et al, 2016)

Discussion sur l'échantillonnage

- Caractéristique
 - global, centré autour du centre des données
 - attribut par attribut
- Avantages
 - plus de chance de tirer des exemples de l'autre classe
- Inconvénients
 - besoin de connaissances sur les données
 - composante globale de l'explication
- Mitigé
 - réalisme des données générées ?

Discussion sur la définition du voisinage

- Dans l'implémentation de lime
 - après normalisation des données

$$\pi_x(z) = \exp\left(-\frac{\|x-z\|^2}{2\sigma^2}\right)$$
 avec $\sigma = 0.75\sqrt{d}$

• Effet du choix de σ

(Molnar, 2021)

Cas des données textuelles

- Procédure de génération des données \mathcal{Z} différente
 - suppression aléatoire de mots du texte d'intérêt
 - représentation binaire : 1 si mot conservé, 0 si supprimé
- Calcul de la prédiction : $prob = P_f(class = 1)$
- ullet Calcul du poids de l'exemple généré π_z

$$weight = 1 - \frac{\text{\# mots supprimés}}{\text{\# mots initialement}}$$

Exemple : détection de spam

Donnée d'intérêt x

texte	class
For Christmas Song visit my channel! ;)	1

• Variations z_p

For	Christmas	Song	visit	my	channel!	;)	P_f	weight
1	0	1	1	0	0	1	0.17	0.57
0	1	1	1	1	0	1	0.17	0.71
1	0	0	1	1	1	1	0.99	0.71
1	0	1	1	1	1	1	0.99	0.86
0	1	1	1	0	0	1	0.17	0.57

ullet Apprentissage d'un modèle linéaire g pour prédire P_f

Exemple : détection de spam

Donnée d'intérêt x

texte	class
For Christmas Song visit my channel! ;)	1

Poids des caractéristiques

label_prob	feature	feature_weight
0.9939024	channel!	6.180747
0.9939024	For	0.000000
0.9939024	;)	0.000000

⇒ Le mot "channel!" indique une forte probabilité de spam

Cas des images

- Procédure de génération des données \mathcal{Z} différente
 - des perturbations au niveau des pixels seraient insuffisantes
 - de nombreux pixels contribuent à la prédiction d'une classe
- Principe
 - segmentation de l'image en régions de couleurs similaires : superpixels
 - "allumer et éteindre" les superpixels
- Explication directement sur l'image
 - en rouge : les régions qui font baisser la probabilité de la classe
 - en vert : celles qui la font augmenter

Exemple

- Modèle : Google's Inception V3 neural network
- à gauche : donnée d'intérêt
- au ilieu : classe prédite : "Bagel" (proba. 77%)
- à droite : classe prédite : "Strawberry" (proba. 4%)

Autre exemple célèbre

(Ribeiro et al, 2016)

• Reconnaissance d'images de loup vs chien husky

(a) Husky classified as wolf

(b) Explanation

Figure 11: Raw data and explanation of a bad model's prediction in the "Husky vs Wolf" task.

⇒ détection de biais dans les données d'apprentissage

En guise de conclusion : éléments de discussion sur LIME

Avantages

- post-hoc : même si on change le modèle de prédiction, on peut utiliser le même modèle local interprétable pour l'explication
- par construction les explications sont sélectives et elles peuvent être contrastives
- LIME s'applique aux données tabulaires, aux textes et aux images

Inconvénients

- définition du voisinage
- échantillonnage : effets des corrélations entre attributs ?
- instabilité des explications