EXTRACTING ACCURATE SINGULAR VALUES FROM APPROXIMATE SUBSPACES

LORENZO LAZZARINO, HUSSAM AL DAAS, YUJI NAKATSUKASA

Mathematical Institute - University of Oxford

Computational Mathematics Theme - STFC UKRI

DUE GIORNI DI ALGEBRA LINEARE NUMERICA E APPLICAZIONI, 21st January 2025

EXTRACTING ACCURATE SINGULAR VALUES FROM APPROXIMATE SUBSPACES

- PROBLEM SETTING AND CLASSICAL APPROACHES
- 2 GENERALIZED NYSTRÖM
- MATRIX PERTURBATION THEORY RESULT
- 4 APPLICATION TO GN AND COMPARISON

PROBLEM SETTING AND CLASSICAL APPROACHES

$$A = U\Sigma V^*$$

Given \tilde{U} and/or \tilde{V} approximations of the leading singular subspaces of A

$$n \left[egin{array}{c} r + \ell \\ \tilde{V} \end{array}
ight], \quad m \left[egin{array}{c} ilde{U} \end{array}
ight]$$

<u>AIM:</u> Approximate the leading singular values $\{\sigma_i(A)\}_{i=1}^r$

$$A = U\Sigma V^*$$

Given \tilde{U} and/or \tilde{V} approximations of the leading singular subspaces of A

$$n \left[egin{array}{c} r \\ ilde{V} \end{array}
ight], \quad m \left[egin{array}{c} ilde{U} \end{array}
ight]$$

<u>AIM:</u> Approximate the leading singular values $\{\sigma_i(A)\}_{i=1}^r$

$$A = U\Sigma V^*$$

Given \tilde{U} and/or \tilde{V} approximations of the leading singular subspaces of A

$$n \left[egin{array}{c} r \\ ilde{V} \end{array}
ight], \quad m \left[egin{array}{c} ilde{U} \end{array}
ight]$$

<u>AIM:</u> Approximate the leading singular values $\{\sigma_i(A)\}_{i=1}^r$

CLASSICAL APPROACHES > Rayleigh Ritz and (one-sided) SVD approximations

Rayleigh Ritz (RR)

$$\sigma_i(A) \approx \sigma_i(\tilde{U}^*A\tilde{V}) =: \sigma_i(A_{RR,\tilde{V},\tilde{U}})$$

(Dax, 2012) (Saad, 2011) (Xin-guo, 1992)

CLASSICAL APPROACHES > Rayleigh Ritz and (one-sided) SVD approximations

Rayleigh Ritz (RR)

$$\sigma_i(A) \approx \sigma_i(\tilde{U}^* A \tilde{V}) =: \sigma_i(A_{RR,\tilde{V},\tilde{U}})$$

(Dax, 2012) (Saad, 2011) (Xin-guo, 1992)

(one-sided) SVD approximations

$$\sigma_i(A) \approx \sigma_i(A\tilde{V}) =: \sigma_i(A_{SVD,\tilde{V}})$$

GENERALIZED NYSTRÖM APPROXIMATION > Motivational Comparison

Generalized Nyström

$$A \approx A\tilde{V}(\tilde{U}^*A\tilde{V})^{\dagger}\tilde{U}^*A =: A_{GN,\tilde{V},\tilde{U}}$$

•
$$\sigma_i^{SVD} = \sigma_i(A\tilde{V})$$

GENERALIZED NYSTRÖM APPROXIMATION > Motivational Comparison

Generalized Nyström

$$A \approx A\tilde{V}(\tilde{U}^*A\tilde{V})^{\dagger}\,\tilde{U}^*A =: A_{GN,\tilde{V},\tilde{U}}$$

•
$$\sigma_i^{SVD} = \sigma_i(A\tilde{V})$$

$$\sigma_i^{RR} = \sigma_i(\tilde{U}^* A \tilde{V})$$

$$\bullet \ \sigma_i^{GN} = \sigma_i \left(A \tilde{V} (\tilde{U}^* A \tilde{V})^{\dagger} \tilde{U}^* A \right)$$

GENERALIZED NYSTRÖM

$$\sigma_i(A) \approx \sigma_i \left(A \tilde{V} (\tilde{U}^* A \tilde{V})^{\dagger} \tilde{U}^* A \right) =: \sigma_i^{GN}$$

$$\sigma_i(A) \approx \sigma_i \left(A \tilde{V} (\tilde{U}^* A \tilde{V})^{\dagger} \tilde{U}^* A \right) =: \sigma_i^{GN}$$

$$\sigma_i(A) \approx \sigma_i \left(A \tilde{V} (\tilde{U}^* A \tilde{V})^{\dagger} \tilde{U}^* A \right) =: \sigma_i^{GN}$$

$$\sigma_i($$
 R_L $\tilde{U}^*A\tilde{V}$ R_R^*

$$\sigma_i(A) \approx \sigma_i \left(A \tilde{V} (\tilde{U}^* A \tilde{V})^{\dagger} \tilde{U}^* A \right) =: \sigma_i^{GN}$$

$$\sigma_i($$
 R_L R_p^{\dagger} Q_p^* R_R^*

GN and Orthogonal Transformations

Consider T_1 and T_2 orthogonal matrices, then

$$T_1^*(M_{GN,\tilde{V},\tilde{U}})T_2 = (T_1^*MT_2)_{GN,T_2^*\tilde{V},T_1^*\tilde{U}}$$

For any orthonormal \tilde{V} and \tilde{U} , we can:

- **1.** Define $Q_1 = \begin{bmatrix} \tilde{U} & \tilde{U}_{\perp} \end{bmatrix}$ $Q_2 = \begin{bmatrix} \tilde{V} & \tilde{V}_{\perp} \end{bmatrix}$;
- **2.** Consider the transformed matrix: $Q_1^*AQ_2$;
- 3. Consider the transformed GN approximation:

$$Q_1^*A_{GN,\tilde{V},\tilde{U}}Q_2 = (Q_1^*AQ_2)_{GN,Q_2^*\tilde{V},Q_1^*\tilde{U}} = (Q_1^*AQ_2)_{GN,{r_0 \brack 0},{r_{r+\ell} \brack 0}}.$$

GN and Orthogonal Transformations

Consider T_1 and T_2 orthogonal matrices, then

$$T_1^*(M_{GN,\tilde{V},\tilde{U}})T_2 = (T_1^*MT_2)_{GN,T_2^*\tilde{V},T_1^*\tilde{U}}$$

For any orthonormal \tilde{V} and \tilde{U} , we can:

- **1.** Define $Q_1 = \begin{bmatrix} \tilde{U} & \tilde{U}_{\perp} \end{bmatrix}$ $Q_2 = \begin{bmatrix} \tilde{V} & \tilde{V}_{\perp} \end{bmatrix}$;
- **2.** Consider the transformed matrix: $Q_1^*AQ_2$;
- 3. Consider the transformed GN approximation:

$$Q_1^*A_{GN,\tilde{V},\tilde{U}}Q_2 = (Q_1^*AQ_2)_{GN,Q_2^*\tilde{V},Q_1^*\tilde{U}} = (Q_1^*AQ_2)_{GN,\left[{r_r\atop 0}\right],\left[{r_r+\ell\atop 0}\right]}.$$

$$\rightarrow \quad |\sigma_i(A) - \sigma_i(A_{GN,\tilde{V},\tilde{U}})| = |\sigma_i(Q_1^*AQ_2) - \sigma_i((Q_1^*AQ_2)_{GN,\begin{bmatrix} I_r \\ 0 \end{bmatrix},\begin{bmatrix} I_{r+\ell} \\ 0 \end{bmatrix})|$$

EXFORD sthematical

$$\tilde{V} := \begin{bmatrix} r & r + \ell & r + \ell & r & n - r \\ r + \ell & I_{r+\ell} & r + \ell & r + \ell & A_{11} & A_{12} \\ - & - & - & - & - & - \\ 0 & - & - & - & - & - & - \\ 0 & - & - & - & - & - & - \\ 0 & - & - & - & - & - & - \\ 0 & - & - & - & - & - & - \\ 0 & - & - & - & - & - & - \\ 0 & - & - & - & - & - & - \\ 0 & - & - & - & - & - & - \\ 0 & - & - & - & - & - \\ 0 & - & - & - & - & - \\ 0 & - & - & - & - & - \\ 0 & - & - & - & - & - \\ 0 & - & - & - & - & - \\ 0 & - & - & - \\ 0 & - & - \\ 0$$

$$A_{GN,\tilde{V},\tilde{U}} = A\tilde{V} (\tilde{U}^*A\tilde{V})^{\dagger} \tilde{U}^*A$$

$$\tilde{V} := \prod_{n-r}^{r} \begin{bmatrix} I_r \\ -1 \\ 0 \end{bmatrix}, \quad \tilde{U} := \prod_{m-(r+\ell)}^{r+\ell} \begin{bmatrix} I_{r+\ell} \\ -1 \\ 0 \end{bmatrix}, \quad A := \prod_{m-(r+\ell)}^{r+\ell} \begin{bmatrix} I_r \\ A_{11} \\ -1 \\ -1 \end{bmatrix} \quad A_{22}$$

$$A_{GN,\tilde{V},\tilde{U}} = \left[egin{array}{c} A_{11} \\ - \\ A_{21} \end{array}
ight] (\tilde{U}^*A\tilde{V})^\dagger \, \tilde{U}^*A$$

$$A_{GN,\tilde{V},\tilde{U}} = \left[egin{array}{c} A_{11} \\ - \\ A_{21} \end{array} \right] (\tilde{U}^*A\tilde{V})^{\dagger} \left[A_{11} \mid A_{12} \end{array} \right]$$

$$\tilde{V} := \begin{bmatrix} r & r + \ell & r + \ell \\ I_r \\ - \\ 0 \end{bmatrix}, \quad \tilde{U} := m - (r + \ell) \begin{bmatrix} r + \ell & r + \ell \\ I_{r+\ell} \\ - \\ 0 \end{bmatrix}, \quad A := m - (r + \ell) \begin{bmatrix} r & n - r \\ A_{11} & | A_{12} \\ - & - & - \\ | & | \\ A_{21} & | A_{22} \\ | & | \\$$

$$A_{GN,\tilde{V},\tilde{U}} = \left[egin{array}{c} A_{11} \\ - \\ A_{21} \end{array}
ight] (A_{11})^{\dagger} \left[A_{11} \mid A_{12} \end{array}
ight]$$

$$\tilde{V} := \begin{pmatrix} r & r + \ell \\ I_{r+\ell} & I_{r+\ell} & - & - & - & - \\ I_{r} & I$$

$$MM^{\dagger}M = M$$

$$A_{GN,\tilde{V},\tilde{U}} = \begin{bmatrix} A_{11} \\ - \\ A_{21} \end{bmatrix} (A_{11})^{\dagger} \begin{bmatrix} A_{11} \mid A_{12} \end{bmatrix} = \begin{bmatrix} A_{11}A_{11}^{\dagger}A_{11} & | & A_{11}A_{11}^{\dagger}A_{12} \\ - - - - - & - & - - - - - \\ & | & | & \\ A_{21}A_{11}^{\dagger}A_{11} & | & A_{21}A_{11}^{\dagger}A_{12} \end{bmatrix}$$

M has linearly independent columns $\implies M^{\dagger}M = M^{-1}M = M$

$$\tilde{V} := \prod_{n-r}^{r} \begin{bmatrix} r & r+\ell & r+\ell & r+\ell & r+\ell & A_{11} & A_{12} & A_{12} & A_{13} & A_{14} & A_{15} & A_{15$$

$$A_{GN,\tilde{V},\tilde{U}} = \begin{bmatrix} A_{11} \\ - \\ A_{21} \end{bmatrix} (A_{11})^{\dagger} \begin{bmatrix} A_{11} \mid A_{12} \end{bmatrix} = \begin{bmatrix} A_{11} & | & A_{11}A_{11}^{\dagger}A_{12} \\ ----- & - & ---- \\ & & | & & | \\ A_{21}A_{11}^{\dagger}A_{11} & | & & A_{21}A_{11}^{\dagger}A_{12} \end{bmatrix}$$

XFORD athematical

$$\tilde{V} := \begin{bmatrix} r & r + \ell & r + \ell & r + \ell & r - r \\ r + \ell & l_{r+\ell} & - & - & - & - \\ r & l_{r+\ell} & - & - & - & - & - \\ r & l_{r+\ell} & - & - & - & - & - \\ r & l_{r+\ell} & - & - & - & - & - \\ r & l_{r+\ell} & - & - & - & - & - \\ r & l_{r+\ell} & - & l_{r+\ell} & - & - & - \\ r & l_{r+\ell} & - & l_{r+\ell} & - & - & - \\ r & l_{r+\ell} & - & l_{r+\ell} & - & - \\ r & l_{r+\ell} & - & l_{r+\ell} & - & - \\ r & l_{r+\ell} & - & l_{r+\ell} & - & - \\ r & l_{r+\ell} & - & l_{r+\ell} & - & - \\ r & l_{r+\ell} & - & l_{r+\ell} & - \\ r &$$

$$A_{GN,\tilde{V},\tilde{U}} = A - \begin{bmatrix} 0 & | & A_{12} - A_{11}A_{11}^{\dagger}A_{12} \\ ----- & - & ---- \\ | & | & | \\ 0 & | & A_{22} - A_{21}A_{11}^{\dagger}A_{12} \end{bmatrix} =: A - E_{GN}$$

No-oversample (
$$\ell=0$$
) $\rightarrow A_{12}-A_{11}A_{11}^{\dagger}A_{12}=0$, but change of block sizes!

$$A_{GN,\tilde{V},\tilde{U}} = A - \begin{bmatrix} 0 & | & 0 \\ ----- & - & ----- \\ | & | & \\ 0 & | & A_{22} - A_{21}A_{11}^{\dagger}A_{12} \end{bmatrix} =: A - E_{GN}$$

Weyl's Theorem

For any matrix M we have that

$$|\sigma_i(M) - \sigma_i(M+E)| \leq ||E||_2$$

Cor. 7.3.5 (Horn, Johnson, 2012)

Cor. I.4.31 (Stewart, 1998)

Weyl's Theorem

For any matrix M we have that

$$|\sigma_i(M) - \sigma_i(M+E)| \leq ||E||_2$$

Cor. 7.3.5 (Horn, Johnson, 2012) Cor. 1.4.31 (Stewart, 1998)

$$|\sigma_i(A) - \sigma_i(A_{GN,\tilde{V},\tilde{U}})|$$

Weyl's Theorem

For any matrix M we have that

$$|\sigma_i(M) - \sigma_i(M+E)| \leq ||E||_2$$

Cor. 7.3.5 (Horn, Johnson, 2012) Cor. I.4.31 (Stewart, 1998)

$$|\sigma_i(A) - \sigma_i(A_{GN,\tilde{V},\tilde{U}})| \le ||E_{GN}||_2$$

MATRIX PERTURBATION THEORY RESULT

RESULT ON SYMMETRIC MATRICES

Consider the $n \times n$ symmetric matrices

$$H := \begin{bmatrix} H_{11} & H_{21}^* \\ H_{21} & H_{22} \end{bmatrix}, \quad \hat{H} := H + \begin{bmatrix} E_{11} & E_{21}^* \\ E_{21} & E_{22} \end{bmatrix} =: H + E.$$

Theorem 3.2 (Nakatsukasa, 2012)

RESULT ON SYMMETRIC MATRICES

Consider the $n \times n$ symmetric matrices

$$H:=\begin{bmatrix} H_{11} & H_{21}^* \\ H_{21} & H_{22} \end{bmatrix}, \quad \hat{H}:=H+\begin{bmatrix} E_{11} & E_{21}^* \\ E_{21} & E_{22} \end{bmatrix}=:H+E.$$

Theorem 3.2 (Nakatsukasa, 2012)

Define

$$\tau_i = \left(\frac{\|H_{21}\|_2 + \|E_{21}\|_2}{\min_j |\lambda_i(H) - \lambda_j(H_{22})| - 2\|E\|_2}\right).$$

Then, for each i, if $\tau_i > 0$, then

$$|\lambda_i(H) - \lambda_i(\hat{H})| \le ||E_{11}||_2 + 2||E_{21}||_2\tau_i + ||E_{22}||_2\tau_i^2,$$

RESULT ON SYMMETRIC MATRICES

Consider the $n \times n$ symmetric matrices

$$H:=\begin{bmatrix} H_{11} & H_{21}^* \\ H_{21} & H_{22} \end{bmatrix}, \quad \hat{H}:=H+\begin{bmatrix} E_{11} & E_{21}^* \\ E_{21} & E_{22} \end{bmatrix}=:H+E.$$

Define

$$\tau_i = \left(\frac{\|H_{21}\|_2 + \|E_{21}\|_2}{\min_j |\lambda_i(H) - \lambda_j(H_{22})| - 2\|E\|_2}\right).$$

Then, for each i, if $\tau_i > 0$, then

$$|\lambda_i(H) - \lambda_i(\hat{H})| \le ||E_{11}||_2 + 2||E_{21}||_2\tau_i + ||E_{22}||_2\tau_i^2,$$

- $au_i < 1$ necessary to be better than Weyl
- If $||E_{11}||_2 \ll ||E||_2$ and λ_i is far from the spectrum of H_{22} then $\tau_i \ll 1$
- ▶ If $E_{11} = E_{21} = 0$ and H_{21} is small, then λ_i is particularly insensitive to the perturbation E_{22} \rightarrow bound proportional to $\|E_{22}\|_2 \|H_{21}\|_2^2$

FROM THE SYMMETRIC TO THE GENERAL RESULT

General case

1

Transform to symmetric

Obtain necessary structure

Apply symmetric Result

Transform back

General Result

Generalize (Nakatsukasa, 2012) to the 2×2 block matrix:

$$G:=egin{bmatrix} G_1 & B \ C & G_2 \end{bmatrix},$$

and its perturbation:

$$\hat{G} := G + \begin{bmatrix} F_{11} & F_{12} \\ F_{21} & F_{22} \end{bmatrix} =: G + F.$$

Strategy: Use a technique in (Li, Li, 2005)

FROM THE SYMMETRIC TO THE GENERAL RESULT

General case

Transform to symmetric

Obtain necessary structure

Apply symmetric Result

Transform back

General Result

Thm. 7.3.3 (Horn, Johnson, 2012) Thm. I.4.2 (Stewart, Sun. 1990)

Jordan-Wielandt (JW) Theorem

Let $\{\sigma_i(M)\}_{i=1}^n$ be the singular values of a matrix $M\in\mathbb{C}^{m\times n}$, with $m\geq n$. Then, the symmetric matrix

$$\begin{bmatrix} 0 & M \\ M^* & 0 \end{bmatrix} \tag{1}$$

has eigenvalues $\pm \sigma_1(M), \ldots, \pm \sigma_n(M)$ and m-n zeros eigenvalues.

General case

Transform to symmetric

Obtain necessary structure

Apply symmetric Result

Transform back

General Result

Thm. 7.3.3 (Horn, Johnson, 2012) Thm. I.4.2 (Stewart, Sun. 1990)

Jordan-Wielandt (JW) Theorem

Let $\{\sigma_i(M)\}_{i=1}^n$ be the singular values of a matrix $M\in\mathbb{C}^{m\times n}$, with $m\geq n$. Then, the symmetric matrix

$$\begin{bmatrix} 0 & M \\ M^* & 0 \end{bmatrix} \tag{1}$$

has eigenvalues $\pm \sigma_1(M), \ldots, \pm \sigma_n(M)$ and m-n zeros eigenvalues.

$$G
ightarrow G_{JW} := \left[egin{array}{c|ccc} 0 & | & G \ - & - & - \ G^* & | & 0 \end{array}
ight] = \left[egin{array}{c|ccc} 0 & 0 & | & G_1 & B \ 0 & 0 & | & C & G_2 \ - & - & - & - & - \ G_1^* & C^* & | & 0 & 0 \ B^* & G_2^* & | & 0 & 0 \end{array}
ight]$$

Obtain a matrix similar to G_{JW} suitable for (Nakatsukasa, 2012) and with blocks reasonably related to the blocks of G

General case

Transform to symmetric

Obtain necessary structure

Apply symmetric Result

Transform back

Obtain a matrix similar to G_{JW} suitable for (Nakatsukasa, 2012) and with blocks reasonably related to the blocks of G

General case

Transform to symmetric

Obtain necessary structure

Apply symmetric Result

Transform back

Obtain a matrix similar to G_{JW} suitable for (Nakatsukasa, 2012) and with blocks reasonably related to the blocks of G

General case

Transform to symmetric

Obtain necessary structure

Apply symmetric Result

Transform back

Obtain a matrix similar to G_{JW} suitable for (Nakatsukasa, 2012) and with blocks reasonably related to the blocks of G

General case

Transform to symmetric

Obtain necessary structure

Apply symmetric Result

Transform back

Obtain a matrix similar to G_{JW} suitable for (Nakatsukasa, 2012) and with blocks reasonably related to the blocks of G

General case

1

Transform to symmetric

Obtain necessary structure

Apply symmetric Result

Transform back

$$egin{bmatrix} 0 & G_1 & | & 0 & B \ G_1^* & 0 & | & C^* & 0 \ - & - & - & - & - \ 0 & C & | & 0 & G_2 \ B^* & 0 & | & G_2^* & 0 \ \end{bmatrix} =: G_p$$

Note:
$$\lambda_i(G_p) = \lambda_i(G_{JW}) \stackrel{JW}{=} \pm \sigma_i(G)$$

General case

Transform to symmetric

Obtain necessary structure

Apply symmetric Result

Transform back

General Result

Obtain a matrix similar to G_{JW} suitable for (Nakatsukasa, 2012) and with blocks reasonably related to the blocks of G

$$G_{p} = \begin{bmatrix} 0 & G_{1} & | & 0 & B \\ G_{1}^{*} & 0 & | & C^{*} & 0 \\ - & - & - & - & - \\ 0 & C & | & 0 & G_{2} \\ B^{*} & 0 & | & G_{2}^{*} & 0 \end{bmatrix}$$

$$\hat{G}_{p} = G_{p} + \begin{bmatrix} 0 & F_{11} & | & 0 & F_{12} \\ F_{11}^{*} & 0 & | & F_{21}^{*} & 0 \\ - & - & - & - & - \\ 0 & F_{21} & | & 0 & F_{22} \\ F_{2}^{*} & 0 & | & F_{2}^{*} & 0 \end{bmatrix} =: G_{p} + F_{p}.$$

General case

Transform to symmetric

Define

Obtain necessary structure

Apply symmetric Result

Transform back

General Result

$$\tau_i = \left(\frac{\left\|\begin{bmatrix}0 & C\\B^* & 0\end{bmatrix}\right\|_2 + \left\|\begin{bmatrix}0 & F_{21}\\F_{12}^* & 0\end{bmatrix}\right\|_2}{\min_j |\lambda_i - \lambda_j \left(\begin{bmatrix}0 & G_2\\G_2^* & 0\end{bmatrix}\right)| - 2 \left\|F_p\right\|_2}\right).$$

Then, for each i, if $\tau_i > 0$:

$$|\lambda_i(G_p) - \lambda_i(\hat{G}_p)| \le \left\| \begin{bmatrix} 0 & F_{11} \\ F_{11}^* & 0 \end{bmatrix} \right\|_2 + 2 \left\| \begin{bmatrix} 0 & F_{21} \\ F_{12}^* & 0 \end{bmatrix} \right\|_2 \tau_i + \left\| \begin{bmatrix} 0 & F_{22} \\ F_{22}^* & 0 \end{bmatrix} \right\|_2 \tau_i^2,$$

ÖXFÖRD Mathematica

FROM THE SYMMETRIC TO THE GENERAL RESULT

General case

Transform to symmetric

Obtain necessary structure

Apply symmetric Result

Transform back

General Result

$$\| \begin{bmatrix} 0 & M_1 \\ M_2 & 0 \end{bmatrix} \|_2 = \max\{ \| M_1 \|_2, \| M_2 \|_2 \};$$

▶ Jordan-Wielandt theorem

$$\implies |\lambda_i(G_p) - \lambda_i(\hat{G}_p)| = |\sigma_i(G) - \sigma_i(\hat{G})|,$$

for
$$i = 1, ..., n$$
;

• By Jordan-Wielandt theorem and by construction of F_p :

$$||F_p||_2 = ||F||_2$$

FROM THE SYMMETRIC TO THE GENERAL RESULT > Generalization of (Nakatsukasa, 2012)

General case

Transform to symmetric

Obtain necessary structure

Apply symmetric Result

Transform back

General Result

Theorem 4.1 (L.,Al Daas, Nakatsukasa,2024)

Consider the matrices

$$G:=\begin{bmatrix}G_1 & B\\ C & G_2\end{bmatrix}, \quad \hat{G}:=G+\begin{bmatrix}F_{11} & F_{12}\\ F_{21} & F_{22}\end{bmatrix}=:G+F,$$

and define

$$\tau_{i} = \left(\frac{\max\{\|B\|_{2}, \|C\|_{2}\} + \max\{\|F_{12}\|_{2}, \|F_{21}\|_{2}\}}{\min_{j} |\sigma_{i}(G) - \sigma_{j}\left(G_{2}\right)| - 2\|F\|_{2}}\right).$$

Then, for each i, if $\tau_i > 0$, then

$$|\sigma_i(G) - \sigma_i(\hat{G})| \le ||F_{11}||_2 + 2 \max\{||F_{12}||_2, ||F_{21}||_2\}\tau_i + ||F_{22}||_2\tau_i^2,$$

FROM THE SYMMETRIC TO THE GENERAL RESULT > Generalization of (Nakatsukasa, 2012)

General case

Theorem 4.1 (L.,Al Daas, Nakatsukasa,2024)

Transform to symmetric

Obtain necessary structure

Apply symmetric Result

Transform back

General Result

Consider the matrices

$$G:=\begin{bmatrix}G_1 & B\\ C & G_2\end{bmatrix},\quad \hat{G}:=G+\begin{bmatrix}F_{11} & F_{12}\\ F_{21} & F_{22}\end{bmatrix}=:G+F,$$

and define

$$\tau_i = \left(\frac{\max\{\|B\|_2, \|C\|_2\} + \max\{\|F_{12}\|_2, \|F_{21}\|_2\}}{\min_j |\sigma_i(G) - \sigma_j\left(G_2\right)| - 2\|F\|_2}\right).$$

Then, for each i, if $\tau_i > 0$, then

$$|\sigma_i(G) - \sigma_i(\hat{G})| \leq \|F_{11}\|_2 + 2\max\{\|F_{12}\|_2, \|F_{21}\|_2\}\tau_i + \|F_{22}\|_2\tau_i^2,$$

• Generalization to Block Tridiagonal: A Singular Value is insensitive to blockwise perturbation if it is well-separated from the spectrum of the diagonal blocks near the perturbed blocks.

APPLICATION TO GN AND COMPARISON

Δ

OXFORD Mathematical

BOUND ON GN APPROXIMATION ERROR > Derivation

- $A, \tilde{V}, \tilde{U} \rightarrow A_{GN} = A\tilde{V}(\tilde{U}^*A\tilde{V})^{\dagger}\tilde{U}^*A$
- Define

$$\bar{A} = [\tilde{U} \ \tilde{U}_{\perp}]^* A [\tilde{V} \ \tilde{V}_{\perp}], \quad \bar{A}_{GN} = \left([\tilde{U} \ \tilde{U}_{\perp}]^* A [\tilde{V} \ \tilde{V}_{\perp}] \right)_{GN, \begin{bmatrix} I_r \\ 0 \end{bmatrix}, \begin{bmatrix} I_r \\ 0 \end{bmatrix}}$$

$$\implies \bar{A}_{GN} = \bar{A} - \begin{bmatrix} 0 & 0 \\ 0 & \bar{A}_{22} - \bar{A}_{21}\bar{A}_{11}^{\dagger}\bar{A}_{12} \end{bmatrix} =: \bar{A} - E_{GN}$$

OXFORD Mathematical

BOUND ON GN APPROXIMATION ERROR > Derivation

- $A, \tilde{V}, \tilde{U} \rightarrow A_{GN} = A\tilde{V}(\tilde{U}^*A\tilde{V})^{\dagger}\tilde{U}^*A$
- Define

$$\bar{A} = [\tilde{U} \ \tilde{U}_{\perp}]^* A [\tilde{V} \ \tilde{V}_{\perp}], \quad \bar{A}_{GN} = \left([\tilde{U} \ \tilde{U}_{\perp}]^* A [\tilde{V} \ \tilde{V}_{\perp}] \right)_{GN, \begin{bmatrix} I_r \\ 0 \end{bmatrix}, \begin{bmatrix} I_r \\ 0 \end{bmatrix}}$$

Corollary 5.1 (L., Al Daas, Nakatsukasa, 2024)

$$\implies \bar{A}_{\text{GN}} = \bar{A} - \begin{bmatrix} 0 & 0 \\ 0 & \bar{A}_{22} - \bar{A}_{21}\bar{A}_{11}^{\dagger}\bar{A}_{12} \end{bmatrix} =: \bar{A} - E_{\text{GN}}$$

Define

$$\tau_i = \frac{\max\{\|\bar{A}_{12}\|_2, \|\bar{A}_{21}\|_2\}}{\min_j |\sigma_i(\bar{A}) - \sigma_j\left(\bar{A}_{22}\right)| - 2 \|E_{GN}\|_2}.$$

Then, for each i, if $\tau_i > 0$

$$|\sigma_i(A) - \sigma_i(A_{GN})| = |\sigma_i(\bar{A}) - \sigma_i(\bar{A}_{GN})| \le \left\| \bar{A}_{22} - \bar{A}_{21} \bar{A}_{11}^{\dagger} \bar{A}_{12} \right\|_2 au_i^2$$

• $au_i < 1$ necessary to be better than Weyl. If $\sigma_i(\bar{A})$ is far from the spectrum of \bar{A}_{22} then $au_i \ll 1$

- $\ell = 0$
- $A \in \mathbb{R}^{1000 \times 1000}$
- U_{ex} , V_{ex} Haar Matrices
- $\sigma_i(A)$ exponentially decaying

•
$$[\tilde{V}, \sim] = \operatorname{qr}(A^*\Omega, 0)$$

•
$$[\tilde{U}, \sim] = \operatorname{qr}(A\Omega, 0)$$

- $\tilde{V} \in \mathbb{R}^{1000 \times 200}$
- $\tilde{U} \in \mathbb{R}^{1000 \times 200}$
- Compute pseudoinverses by QR factorization

$$\sigma_i(A_{GN,\tilde{V},\tilde{U}}) = \sigma_i(A\tilde{V}(\tilde{U}^*A\tilde{V})^{\dagger}\tilde{U}^*A)$$

•
$$A \in \mathbb{R}^{1000 \times 1000}$$

- Uex, Vex Haar Matrices
- $\sigma_i(A)$ exponentially decaying

•
$$[\tilde{V}, \sim] = \operatorname{qr}(A^*\Omega, 0)$$

•
$$[\tilde{U}, \sim] = \operatorname{qr}(A\Omega, 0)$$

- $\tilde{V} \in \mathbb{R}^{1000 \times 200}$
- $\tilde{U} \in \mathbb{R}^{1000 \times 200}$
- Compute pseudoinverses by QR factorization

$$\sigma_i(A_{GN,\tilde{V},\tilde{U}}) = \sigma_i(A\tilde{V}(\tilde{U}^*A\tilde{V})^{\dagger}\tilde{U}^*A)$$

•
$$\sigma_i^{SVD} = \sigma_i(A\tilde{V})$$

$$\quad \bullet \ \sigma_i^{RR} = \sigma_i(\tilde{U}^* A \tilde{V})$$

$$\bullet \ \sigma_i^{GN} = \sigma_i \left(A \tilde{V} (\tilde{U}^* A \tilde{V})^{\dagger} \tilde{U}^* A \right)$$

$$\bullet \ \sigma_i^{SVD} = \sigma_i(A\tilde{V})$$

$$\quad \bullet \ \sigma_i^{RR} = \sigma_i(\tilde{U}^* A \tilde{V})$$

THANK YOU!

EXTRACTING ACCURATE SINGULAR VALUES FROM APPROXIMATE SUBSPACES

LORENZO LAZZARINO, HUSSAM AL DAAS, YUJI NAKATSUKASA