

粗糙集简介 (fvg 改)

作者 黄正华

日来 什么是粗糙集 应用举例

粗糙集简介 (fyq 改)

作者 黄正华

武汉大学 数学与统计学院

2020年4月8日

目录

(fyq 改)

作者 黄正华

什么是粗料

- 1 什么是粗糙集
- 2 粗糙集应用举例

③ 参考文献

作者 黄正华

• 几个符号:

U 有限论域, $U = \{x_1, x_2, \dots, x_n\}$.

R 等价关系 (满足自反、对称和传递性).

 $[x]_R$ 等价类, $[x]_R = \{ y \in U \mid (x, y) \in R \}$.

U/R 等价关系 R 划分论域 U, 所得等价类的集合.

作者 黄正华

• 几个符号:

U 有限论域, $U = \{x_1, x_2, \dots, x_n\}$.

R 等价关系 (满足自反、对称和传递性).

 $[x]_R$ 等价类, $[x]_R = \{ y \in U \mid (x, y) \in R \}.$

U/R 等价关系 R 划分论域 U, 所得等价类的集合.

• 问题:

Question

给定 $X \subset U$, 如何用等价类

$$[x_{i_1}]_R$$
, $[x_{i_2}]_R$, \cdots , $[x_{i_k}]_R$

描述表达 X?

粗糙集简介 (fyq 改)

作者 黄正华

应用举例

- 给定论域 U;
- 用一个等价关系将 U 进行划分;
- 给定目标集合 X;
- X 的下近似 $\underline{R}X = \{x \in U \mid [x]_R \subseteq X\}.$
- X 的边界域.

粗糙集简介 (fyq 改)

作者 黄正华

一一·

应用举例

参考文献

- 给定论域 U;
- 用一个等价关系将 U 进行划分;
- 给定目标集合 X;
- X 的下近似 $\underline{R}X = \{x \in U \mid [x]_R \subseteq X\}.$
- X 的边界域.

粗糙集简介 (fyq 改)

作者 黄正华

LL A ENDINA

1下2人定性1位5

参考文献

- 给定论域 *U*;
- 用一个等价关系将 U 进行划分;
- 给定目标集合 X;
- X 的下近似 $\underline{R}X = \{x \in U \mid [x]_R \subseteq X\}.$
- X 的边界域.

粗糙集简介 (fyq 改)

作者 黄正华

日本

什么是粗糙集

6-E-71

- 给定论域 *U*;
- 用一个等价关系将 U 进行划分;
- 给定目标集合 X;
- X 的下近似 $\underline{R}X = \{x \in U \mid [x]_R \subseteq X\}.$
- X 的边界域.

(fyq 改)

作者 黄正华

II & Eavenble

什么是粗糙第

应用举

参考文1

- 给定论域 *U*;
- 用一个等价关系将 U 进行划分;
- 给定目标集合 X;
- X 的下近似 $\underline{R}X = \{x \in U \mid [x]_R \subseteq X\}.$
- X 的边界域.

粗糙集的定义

(tyq 哎) 作者 黄正华

给定 $X \subseteq U$, 要用 U/R 中的元素来描述、表达 X, 不一定能精确地进行. 但常常可以用关于 X 的一对下近似、上近似来界定 X, 这导致粗糙集概念的产生.

立用举例

粗糙集的定义

作者 黄正华

给定 $X \subseteq U$, 要用 U/R 中的元素来描述、表达 X, 不一定能精确地进行. 但常常可以用关于 X 的一对下近似、上近似来界定 X, 这导致粗糙集概念的产生.

定义 (PAWLAK(1982)^[2])

设 R 是论域 U 上的等价关系,对集合 $X\subseteq U$,偶 对 $\left(\underline{R}X,\overline{R}X\right)$ 称为 X 在近似空间 (U,R) 上的一个粗糙近似,其中

$$\underline{R}X = \left\{ x \in U \mid [x]_R \subseteq X \right\},
\overline{R}X = \left\{ x \in U \mid [x]_R \cap X \neq \varnothing \right\}.$$
(1)

RX、RX 分别称为 X 的 R 下近似和 R 上近似.

一个决策表的例子

粗糙集简介 (fyq 改)

作者 黄正华

(a) 医疗信息决策表

论域	条件属性			决策属性		
病人	头痛	肌肉痛	体温	流感		
e_1	是是	是	正常	否		
e_2	是	是	高	是		
e_3	是否否否否	是	很高	是否否		
e_4	否	是否	正常	否		
e_5	否	否	高	否		
e_6	否	是 否	很高	是		
e_7			高	是		
e_8	否	是	很高	否		

一个决策表的例子

作者 黄正华

(a) 医疗信息决策表

() =/3 [3 7 7 7					
论域	:	决策属性			
病人	头痛	肌肉痛	体温	流感	
e_1	是	是	正常	否	
e_2	是	是	高	是	
e_3	是	是	很高	是	
e_4	否否	是	正常	是 否 否 是	
e_5	否	否	高	否	
e_6	否	是	很高		
e_7	否	否	高	是	
e_8	否	是	很高	否	

(b) 数字化表达的决策表

() .				
U		C		D
	a	b	c	d
1	1	1	1	0
2	1	1	2	1
3	1	1	3	1
4	0	1	1	0
5	0	0	2	0
6	0	1	3	1
7	0	0	2	1
8	0	1	3	0

决策表条件属性的区分矩阵

作者 黄正华

决策表的区分矩阵如下表所示 (由于对称性只给出了其下三角部分).

	1	2	3	4	5	6	7	8
1								
2	c							
3	c	c						
4	a	a, c	a					
5	a, b, c	a, b	a, b, c	b, c				
6	a, c	a, c	a, c	c	b, c			
7	a, b, c	a, b	a, b, c	b, c		b, c		
8	a, c	a, c	a, c	c	b, c		b, c	

容易得到条件属性约简为 {a, c}.

作者 黄正华

条件属性的约简

通过属性约简, 决策表简化为如下的形式:

表: 约简的决策表

C		D	
\overline{a}	c	d	
1	1	0	
1	2	1	
1	3	1	
0	1	0	
0	2	0	
0	3	1	
0	2	1	
0	3	0	
	a 1 1 1 0 0 0 0	a c 1 1 1 2 1 3 0 1 0 2 0 3 0 2	

由表知, $D/\{d\} = \{\{1,4,5,8\}, \{2,3,6,7\}\};$ $U/\{a,c\} = \{\{1\}, \{2\}, \{3\}, \{4\}, \{5,7\}, \{6,8\}\}.$

决策规则

作者 黄正华

记 $D_0 = \{1, 4, 5, 8\}, D_1 = \{2, 3, 6, 7\}, 则 <u>R</u><math>D_0 = \{1, 4\},$ <u>R</u> $D_1 = \{2, 3\}.$ 进而得到确定的决策规则:

$$r_1:(a, 1) \wedge (c, 1) \longmapsto (d, 0);$$
 (2)

$$r_2: (a, 0) \land (c, 1) \longmapsto (d, 0); \tag{3}$$

$$r_3:(a, 1) \wedge (c, 3) \longmapsto (d, 1); \tag{4}$$

$$r_4:(a, 1) \wedge (c, 2) \longmapsto (d, 1).$$
 (5)

决策规则

作者 黄正华

记 $D_0 = \{1, 4, 5, 8\}, D_1 = \{2, 3, 6, 7\}, 则 RD_0 = \{1, 4\},$ $RD_1 = \{2, 3\}.$ 进而得到确定的决策规则:

$$r_1:(a,1)\wedge(c,1)\longmapsto(d,0);$$
 (2)

$$r_2: (a, 0) \land (c, 1) \longmapsto (d, 0); \tag{3}$$

$$r_3:(a, 1) \wedge (c, 3) \longmapsto (d, 1);$$
 (4)

$$r_4:(a, 1) \wedge (c, 2) \longmapsto (d, 1). \tag{5}$$

这样就从无序庞杂的信息中得到为人们提供参考的决策规则:

作者 黄正华

张文修, 吴伟志, 梁吉业, 李德玉.

粗糙集理论与方法.

科学出版社, 北京, 2001.

Z. Pawlak.

Rough sets.

International Journal of Computer Information Science, 5:341–356, 1982

W. Ziarko.

Variable precision rough set model.

Journal of Computer and System Sciences, 46:39–59, 1993.

J. D. Katzberg and W. Ziarko.

Variable precision extension of rough sets.

Fundamenta Informaticae, 27:155–168, 1996.

粗糙集简介 (fyg 改)

作者 黄正华

什么是粗糙的

参考又開

Thank you!

AUTHOR: HUANG Zheng-hua

Address: School of Mathematics & Statistics

Wuhan University

Wuhan, 430072, China

EMAIL: huangzh@whu.edu.cn