Travaux Pratiques de Biométrie 3

Benoît Simon-Bouhet

2019-03-03

Table des matières

1	Préambule	1			
2	Introduction				
3	Séance 1 : statistiques descriptives et tests d'hypothèses	3			
	3.1 Packages et données	3			
	3.2 Comparaison de la moyenne d'une population à une valeur théorique	4			
	3.3 Comparaison de la moyenne de 2 populations : données appariées	16			
	3.4 Comparaison de la moyenne de 2 populations : données indépendantes	30			
	3.5 Tests bilatéraux et unilatéraux	31			
4	Séance 2 : analyse de variance	31			
5	5 Séance 3 : corrélations et régressions				
6 Séance 4 : applications et corrections					

1 Préambule

Ce livre contient l'ensemble du matériel (contenus, exemples, exercices...) nécessaire à la réalisation des travaux pratiques et TEA de biométrie 3. Ces travaux pratiques ont un seul objectif principal : vous permettre de mettre en œuvre, dans RStudio les méthodes statistiques découvertes en cours magistral et en TD de biométrie 2 (au semestre précédent) et en biométrie 3 depuis début janvier.

Je considère qu'à ce stade, vous devez être à l'aise dans RStudio pour effectuer les tâches suivantes :

- 1. Importer des jeux de données dans RStudio
- 2. Manipuler des tableaux de données avec tidyr pour les mettre dans un format permettant les analyses statistiques et les représentations graphiques
- 3. Faire des graphiques exploratoires avec ggplot2 pour visualiser des données
- 4. Filtrer des lignes, sélectionner des colonnes, trier, créer de nouvelles variables et calculer des résumés des données avec les fonction filter(), select(), arrange(), mutate(), summarise() et group_by() du package dplyr
- 5. Utiliser le pipe %>% afin d'enchaîner plusieurs commandes
- 6. Créer des scripts parlants contenant des commandes et des commentaires utiles

- 7. Spécifier/modifier votre répertoire de travail
- 8. Installer des packages additionnels.

Si vous pensez avoir besoin de rappels sur ces notions, je vous encourrage vivement à consulter le livre en ligne dédié aux travaux pratiques de Biométrie 2 pour vous rafraîchir la mémoire.

L'organisation des TP et TEA de biométrie 3 sera la suivante :

- Séance 1 : 1h30 de TP suivie d'une séance de 1h30 de TEA. Rappels concernant les statistiques descriptives et les visualisations graphiques utiles pour déméler la complexité de certains jeux de données. Comparaisons (paramétriques et non paramétriques) de la moyenne de 2 populations.
- Séance 2 : 1h30 de TP suivie d'une séance de 1h30 de TEA. Comparaisons (paramétriques et non paramétriques) la moyenne de plus de 2 populations : analyse de variance, hypothèses et conditions d'application.
- Séance 3 : 1h30 de TP suivie d'une séance de 1h30 de TEA. Étude de la liaison entre 2 variables.
 Corrélation (paramétrique et non paramétrique) et régression linéaire. Tests d'hypothèses, estimation et conditions d'application.
- Séance 4 : 1h30 de TP. Exercices d'application et corrections en guise de préparation pour l'examen.

2 Introduction

Sur votre disque dur, créez un dossier nommé "Biometrie3" (sans accent, sans espace). Au début de chaque nouvelle séance de TP, vous devrez ensuite effectuer les opérations suivantes :

- 1. Créez, dans votre dossier "Biometrie3", un sous-dossier nommé "TP_1", "TP_2", etc.
- 2. Téléchargez les fichiers utiles disponibles sur l'ENT et placez-les dans le dossier du TP correspondant.
- Lancez RStudio.
- 4. Dans l'onglet "Files" de RStudio, naviguez jusqu'au sous-dossier "TP_X" que vous venez de créer et indiquez à RStudio qu'il s'agit de votre répertoire de travail. Si vous ne savez plus comment faire, consultez la section 2.2.2 du livre en ligne de Biométrie 2. Si votre répertoire de travail a été correctement spécifié, vous devriez constater qu'une commande ressemblant à ceci est apparue dans la console de RStudio :

```
setwd("C:/..../Biometrie3/TP_X")
```

5. Dans la console, tapez :

```
list.files()
```

La liste des fichiers contenus dans votre répertoire de travail (donc le nom des fichiers que vous avez téléchargé sur l'ENT) devrait apparaître dans la console. Si ce n'est pas le cas, recommencez depuis

le début. Vous pouvez également vérifier à tout moment si le répertoire de travail utilisé par RStudio est bien celui que vous pensez en tapant :

getwd()

- 6. Créez un nouveau script dans votre répertoire de travail et sauvegardez-le. Si vous ne savez plus comment faire, consultez la section 2.2.3 du livre en ligne de Biométrie 2.
- 7. Dans l'onglet "History" de RStudio, cliquez sur la commande commençant par setwd() puis cliquez sur le bouton "To source" (une flèche verte dirigée vers la gauche). Cela a pour effet de copier dans votre script la commande permettant de spécifier le répertoire de travail correct. Ainsi, lors de votre prochaine session de travail, vous n'aurez pas besoin de spécifier manuellement quel est votre répertoire de travail comme nous l'avons fait à l'étape 4 ci-dessus : il vous suffira d'ouvrir votre script et d'envoyer cette commande dans la console en pressant les touches ctr1 + Entrée.
- 8. N'oubliez pas de sauvegarder votre script très régulièrement et d'y ajouter autant de commentaires que nécessaire avec le symbole #.

Si vous suivez rigoureusement ces étapes, vous devriez être dans la situation idéale pour commencer à travailler efficacement dans RStudio. Avec un minimum d'habitude, mettre tout ça en place ne devrait pas vous demander plus de 2 ou 3 minutes. À partir de maintenant, toutes vos analyses et commentaires doivent figurer dans vos scripts.

3 Séance 1 : statistiques descriptives et tests d'hypothèses

3.1 Packages et données

Pour chacune des 4 séances de travaux pratiques (et TEA) qui viennent, vous aurez besoin d'utiliser des packages spécifiques et d'importer des données depuis des fichiers externes disponibles sur l'ENT.

Les packages dont vous aurez besoin pour cette séance, et que vous devez donc charger en mémoire, sont les suivants :

```
library(tidyverse)
library(readr)
library(skimr)
```

Si ces commandes (que vous devez taper dans vos scripts avant de les exécuter dans la console de RStudio) renvoient des messages d'erreur, c'est que les packages que vous essayez de charger en mémoire ne sont pas installés sur votre ordinateur. Il vous faudra alors installer les packages manquants avec la fonction :

```
install.packages("nom_du_package")
```

Comme d'habitude, si tout ça est un peu flou pour vous, relisez la section 2.3 du livre de biométrie 2 disponible en ligne.

Vous aurez également besoin des jeux de données suivants :

- Temperature.csv
- Temperature2.csv
- Testosterone.csv
- HornedLizards.csv
- HommesFemmes.txt

3.2 Comparaison de la moyenne d'une population à une valeur théorique

3.2.1 Exploration préalable des données

Avant de se lancer dans les tests d'hypothèses, il est **toujours indispensable** d'examiner les données dont on dispose à l'aide, d'une part de statistiques descriptives numériques, et d'autres part, de graphiques exploratoires. Nous allons voir dans cette section quels indices statistiques il peut être utile de calculer et quelles représentations graphiques il peut être utile de réaliser afin de pouvoir se lancer dans des tests d'hypothèses risquer de grossières erreurs.

3.2.1.1 Importation et examen visuel

Commencez par importer les données contenues dans le fichier Temperature.csv. Pour cela, utilisez l'assistant d'importation de RStudio. Si vous ne savez plus comment faire, consultez la section 5.3 du livre en ligne de Biométrie 2.

Vous stockerez les données dans un objet que vous nommerez Temperature. Après l'importation, taper son nom dans la console de RStudio doit produire le résultat suivant :

Temperature

A tibble: 25 x 2

	individual	${\tt temperature}$
	<dbl></dbl>	<dbl></dbl>
1	1	98.4
2	2	98.6
3	3	97.8
4	4	98.8
5	5	97.9
6	6	99
7	7	98.2
8	8	98.8
9	9	98.8

```
10 10 99 # ... with 15 more rows
```

Ce tableau contient les températures corporelles de 25 adultes en bonne santé choisis au hasard parmi la population américaine. On souhaite examiner la croyance populaire indiquant que la température moyenne d'adultes en bomme santé vaut 37°C.

La première chose à faire quand on travaille avec des données inconnues, c'est d'examiner les données brutes. lci, les données sont importées au format tibble, donc seules les premières lignes sont visibles. Pour visualiser l'ensemble du tableau, utilisez la fonction View():

```
View(Temperature)
```

Cette commande doit ouvrir un nouvel onglet présentant les données dans un tableur simplifié, en lecture seule.

On constate ici 2 choses que nous allons modifier :

- la première colonne, intitulé inidividual, n'est pas véritablement une variable. Cette colonne ne contient qu'un identifiant qui est en fait identique au numéro de ligne. Nous allons donc supprimer cette colonne
- 2. les températures sont exprimées en degrés Fahrenheit, ce qui rend leur lecture difficile pour nous qui sommes habitués à utiliser le système métrique et les degrés Celsius. Nous allons donc convertir les températures en degrés Celsius grâce à la formule suivante :

$$C = \frac{F - 32}{1.8}$$

```
# A tibble: 25 x 1
temperature
<dbl>
1 36.9
2 37.0
3 36.6
4 37.1
5 36.6
6 37.2
```

```
7
           36.8
 8
           37.1
 9
           37.1
10
           37.2
```

... with 15 more rows

Il nous est maintenant possible d'examiner à nouveau les données avec la fonction View(). Avec des valeurs de températures comprises entre 36.3 °C et 37.8 °C, il n'y a visiblement pas de données aberrantes.

C'est toujours la première chose à faire : regarder les données brutes pour repérer : - La nature des variables présentes. - Les variables inutiles qui pourront être supprimées ou négligées. - Les unités des variables utiles, afin de pouvoir les convertir si nécessaire. - Les valeurs manquantes ou aberrantes qui demanderont toujours un soin particulier.

Une fois l'examen préliminaire des données réalisé, on peut passer au calcul des statistiques descriptives.

3.2.1.2 Statistiques descriptives

On s'intéresse ici au calcul de grandeurs statistiques nous apportant des renseignement sur la distribution des valeurs de l'échantillon. Les questions auxquelles on tente de répondre à ce stade sont les suivantes:

- Quelle est la tendance moyenne
- Quelle est la dispersion des données autour de la moyenne

Pour répondre à ces questions, on peut faire appel à de multiples fonctions. J'en évoquerai ici seulement 3 qui permettent d'obtenir la plupart des informations dont nous avons besoin très simplement :

summary(Temp_clean)

```
temperature
Min.
       :36.33
1st Qu.:36.67
Median :37.00
       :36.96
Mean
3rd Qu.:37.22
       :37.78
Max.
```

Comme son nom l'indique, la fonction summary () renvoie un résumé des données :

- les valeurs extrêmes (minimum et maximum)
- les valeurs "centrales" (moyenne et médiane)
- les valeurs des quartiles (premier et troisième quartiles)

Ces valeurs seront presques toutes reprises sur le graphique de type "boîte à moustaches" que nous verrons plus bas.

On constate ici que la moyenne et la médiane sont très proches. La distribution des température doit donc être à peut près symmétrique, avec à peu près autant de valeurs au dessus que de valeurs en dessous de la moyenne.

La seconde fonction utile est la fonction IQR(), comme "Inter Quartile Range" (ou intervalle interquartile). Cette fonction renvoie l'étendue de l'intervalle inter-quartile, c'est à dire la valeur du troisième quartile moins la valeur de premier quartile. Attention, cette fonction a besoin d'un vecteur en guise d'argument, or nos données sont stockées sous forme de tibble. Nous allons donc utiliser la fonction pull() du package dplyr afin de transformer (momentanément) la colonne temperature du tableau Temp_clean en vecteur :

```
Temp_clean %>%
  pull(temperature) %>%
  IQR()
```

[1] 0.555556

On constate ici que l'intervalle inter quartile a une largeur de 0.55 degrés Celsius. Cela signifie que les 50% des températures les plus centrales sont situées dans un intervalle d'environ un demi-degré celsius.

Enfin, un eautre façon d'obtenir des informations rapidement consiste à utiliser la fonction skim() du package skimr:

```
skim(Temp_clean)
```

```
Skim summary statistics
n obs: 25
n variables: 1

-- Variable type:numeric ----
variable missing complete n mean sd p0 p25 p50 p75
temperature 0 25 25 36.96 0.38 36.33 36.67 37 37.22
p100 hist
37.78
```

(Attention : si vous lisez ce document au format pdf, vous ne pourrez pas visualiser correctement la totalité des résultats produits par cette fonction. Consultez la version html de ce document, ou tapez la commande dans RStudio).

Toute comme summary(), la fonction skim() renvoie les valeurs minimales et maximales, les premiers et troisièmes quartiles ainsi que la moyenne et la médiane. Elle nous indique en outre la valeur de l'écart-type de l'échantillon, ainsi que le nombre d'observation et le nombre de données manquantes. Enfin, elle fournit un histogramme très schématique et sans échelle. Cet histogramme nous permet de nous faire une première idée de la distribution des données.

Outre ces 3 fonctions (summary(), IQR(), et skim()), il est bien sûr possible de calculer toutes ces valeurs manuellement si besoin :

- mean() permet de calculer la moyenne
- median() permet de calculer la médiane
- min() et max() permettent de calculer les valeurs minimales et maximales respectivement
- quantile() permet de calculer les quartiles
- sd() permet de calculer l'écart-type
- var() permet de calculer la variance

Toutes ces fonctions prennent seulement un vecteur en guise d'argument. Il faut donc procéder comme avec IQR() pour les utiliser. Par exemple, pour calculer la variance, on peut taper :

```
Temp_clean %>%
  pull(temperature) %>%
  var()
```

[1] 0.1417901

ou:

var(Temp_clean\$temperature)

[1] 0.1417901

3.2.1.3 Exploration graphique

lci, il s'agit d'examiner la distribution des données. Pour cela, 3 types de graphiques sont généralement utilisés.

1. Les nuages de points ou stripcharts :

```
Temp_clean %>%
  ggplot(aes(x = 1, y = temperature)) +
  geom_point()
```


Dans la mesure ou souvent, plusieurs observations ont la même valeur, il faut tenir compte de l'overplotting. Si vous ne vous rappelez plus de quoi il s'agit, consultez la section 4.3.4 du livre en ligne de Biométrie 2. Globalement, pour visualiser correctement les données, on va jouer soit sur la transparence des points, soit sur l'ajout d'un bruit aléatoire horizontal qui permettra de distinguer plsu facilement les points, m et de repérer les zones où les points sont abondants ou rares :

```
Temp_clean %>%
  ggplot(aes(x = 1, y = temperature)) +
  geom_jitter(height = 0, width = 0.1) +
  xlim(0.5, 1.5)
```


La fonction xlim() permet de spéccifier manuellement les valeurs limites que l'on souhaite pour l'axe des abscisses. lci, cet axe n'a aucune signification particulière puisque nous n'avons qu'une unique série de données (c'est la raison pour laquelle les points sont centrés sur l'abscisse x=1). Nous pouvons donc le masquer comme ceci :

On constate ici que la répartition des points est assez régulière, avec néanmoins une majorité de points entre 36.8 et 37.3 degrés Celsius.

2. L'histogramme:

Si vous ne vous rappelez-plus ce qu'est un histogramme où comment le faire, ou la signification de l'argument bins, relisez la section 4.5 du livre en ligne de Biométrie 2.

Notez ici que la forme de cet histogramme est très proche de celle présenté plus tôt pas la fonction skim(). Cet histogramme nous apprend qu'en dehors d'un "trou" autour de la température 36.75 °C, la distribution des données est proche d'une courbe en cloche. Il y a fort à parier qu'un test de normalité concluerait à la normalité des données de cet échantillon.

3. Les boîtes à moustaches :

```
Temp_clean %>%
  ggplot(aes(y = temperature)) +
  geom_boxplot(notch = TRUE)
```


Comme pour le stripchart présenté plus haut, l'axe des abscisses n'a ici aucun sens. Nous n'avons qu'une unique série de données, l'axe des x est donc inutile et nous pouvons donc le retirer :

On retrouve sur ce graphique tous les éléments obtenus avec la fonction summary() à l'exception de la moyenne. Assurez-vous que vous êtes bien capables d'identifier tous ces éléments sur le graphique. Assurez-vous aussi que la signification de l'encoche (obtenue avec l'argument not ch = TRUE) est bien claire pour vous. Comme toujours, si ce n'est pas le cas, consultez la section dédiée aux boxplots dans le livre en ligne de Biométrie 2.

Pour conclure, ces 3 types de représentations graphiques (nuages de points ou stripchart, histogrammes et boxplots) sont complémentaires. Ces trois types de représentations graphiques permettent de visualiser la distribution d'une variable numérique. Les nuages de points permettent de voir toutes les données

brutes. Les histogrammes résument les données en quelques valeurs : une valeur d'abondance pour chaque classe de taille. Les boxplots résument encore plus les données avec seulement 7 valeurs qui caractérisent la distribution :

Figure 1 – Comparaison de 2 types de représentations graphiques

À chaque nouvelle analyse statistique, il sera donc important de visualiser les données afin de repérer les éventuels problèmes, et afin d'anticiper sur les résultats que fourniront les tests d'hypothèses ultérieurs. Ici, l'examen de ces graphiques nous permet de dire les choses suivantes:

- 1. Il n'y a visiblement pas de données aberrantes
- 2. La distribution des données semble suivre à peu près la loi Normale
- 3. La médiane et son intervalle de confiance à 95% sont centrés sur la valeur 37°C. Un test devrait donc arriver à la conclusion que la température corporelle des adultes n'est pas significativement différente de 37°C. Néanmoins, la largeur de l'intervalle de confiance à 95% est assez grande, ce qui indique une incertitude relativement élevée. Une plus grande quantité de données permettrait certainement d'obtenir plus de précision.

3.2.2 Le test paramétrique

Le test permettant de comparer la moyenne d'une population à une valeur théorique, fixée par l'utilisateur, est le **test de Student à un échantillon**. Il s'agit d'un test paramétrique très puissant. Comme tous les tests paramétriques, certaines conditions d'application doivent être vérifiées avant de pouvoir l'appliquer.

3.2.2.1 Conditions d'application

Les conditions d'application du test de Student à un échantillon sont les suivantes :

- 1. Les données de l'échantillon sont issues d'un échantillonnage aléatoire au sein de la population générale. Cette condition est partagée par toutes les méthodes que nous verrons dans ces TP. En l'absence d'informations sur la façon dont l'échantillonnage a été réalisé, on considère que cette condition est remplie. Il n'y a pas de moyen statistique de le vérifier, cela fait uniquement référence à la stratégie d'échantillonnage et à la rigueur de la procédure mise en œuvre lors de l'acquisition des données.
- 2. La variable étudiée doit suivre une **distribution Normale** dans la population générale. Nous allons vérifier cette condition d'application avec un test de Normalité de Shapiro-Wilk.

Comme pour tous les tests statistiques que nous allons réaliser lors de ces séances de TP et TEA, nous devons commencer par spécifier les hypothèses nulles et alternatives aoinsi que la valeur du seuil α que nous allons utiliser. Ici, nous utiliserons toujours le seuil $\alpha = 0.05$.

Pour un test de normalité, les hypothèses sont toujours les suivantes : - H₀ : la variable étudiée suit une distribution Normale dans la population générale. - H₁ : la variable étudiée ne suit pas une distribution Normale dans la population générale.

Le test de Shapiro-Wilk se réalise de la façon suivante :

```
Temp_clean %>%
  pull(temperature) %>%
  shapiro.test()
```

Shapiro-Wilk normality test

```
data: . W = 0.97216, p-value = 0.7001
```

W est la statistique du test. Elle permet à RStudio de calculer la p-value du test. Ici, $p > \alpha$. On ne peut donc pas rejeter l'hypothèse nulle de noramlité : on ne peut pas exclure que dans la population générale, la température suive bel et bien une distribution Normale. Les conditions d'application du test de Student sont bien vérifiées.

3.2.2.2 Réalisation du test et interprétation

Puisque les conditions d'application du test de Student à un échantillon sont vérifiées, nous devons maintenant spécifier les hypothèses nulles et alternatives que nous allons utiliser pour réaliser ce test :

- H_0 : dans la population générale, la température corporelle moyenne des adultes en bonne santé vaut 37° C ($\mu = 37$).
- H₁: dans la population générale, la température corporelle moyenne des adultes en bonne santé est différente de 37°C (µ ≠ 37).

On réalise ensuite le test de la façon suivante :

36.95778

```
Temp_clean %>%
  pull(temperature) %>%
  t.test(mu = 37)

One Sample t-test

data:
t = -0.56065, df = 24, p-value = 0.5802
alternative hypothesis: true mean is not equal to 37
95 percent confidence interval:
  36.80235 37.11321
sample estimates:
mean of x
```

Sur la première ligne, R nous confirme que nous avons bien réalisé un test de STudent à un échantillon. La prmière ligne de résutats fournit la valeur du *t* calculé (ici, -0.56), le nombre de degrés de libertés (ici, df = 24), et la *p*-value (ici, 0.58, soit une valeur supérieure à *alpha*). Cette première ligne contient donc tous les résultats du test qu'il conviendrait de rappeler dans un rapport. On devrait ainsi dire :

Au seuil α de 5%, on ne peut pas rejeter l'hypothèse nulle $\mu=37$ (t=-0.56, ddl = 24, p=0.58). Les données observées sont donc compatibles avec l'hypothèse selon laquelle la température corporelle moyenne des adultes en bonne santé vaut 37° C.

C'est de cette manière que vous devriez rapporter les resultats de ce test dans vos comptes-rendus et rapports à partir de maintenant.

Dans les résultats du test, la ligne suivante (alternative hypothesis: ...) ne donne pas la conclusion du test. Il s'agit simplement d'un rappel concernant l'hypothèse alternative qui a été utilisée pour réaliser le test. Ici, l'hypothèse alternative utilisée est une hypothèse bilatérale ($\mu \neq 37$). Nous verrons plus tard comment spécifier des hypothèse alternatives uni-latérales, même si la plupart du temps, mieux vaut s'abstenir de réaliser de tels tests (à moins bien sûr d'avoir une bonne raison de la faire).

Les résultats fournis ensuite concernent non plus le test statistique à proprement parler, mais l'estimation. Ici, la moyenne de l'échantillon est fournie. Il s'agit de la meilleure estimation possible de la moyenne de la population : $\bar{x} = \hat{\mu} = 36.96$. Comme pour toutes les estimations, cette valeur est entachée d'oncertitude liée à la fluctuation d'échantillonnage. L'intervalle de confiance à 95% de cette estimation de moyenne est donc également fourni : [36.80; 37.11]. Autrement dit, cet intervalle contient les valeurs les plus vraissemblables pour la véritable valeur de moyenne dans la population générale. Cela confirme bien que nous n'avons pas prouvé au sens strict que la moyenne de la population vaut 37°C. Nous avons en réalité montré que nous ne pouvions pas exclure que la moyenne de la population gé-

nérale soit de 37°C. Cette valeur est en effet comprise dans l'intervalle de confiance. On ne peut donc pas l'exclure. Mais beaucoup d'autres valeurs figurent aussi dans cet intervalle. Il est donc tout à fait possible que la moyenne soit en réalité différente de 37°C. Pour en être sûr, il faudrait probablement un échantillon de plus grande taille afin de limiter l'incertitude.

3.2.3 L'alternative non paramétrique

Si jamais les conditions d'application du test de Student à un échantillon n'étaient pas remplies, il faudrait alors réaliser son équivalent non paramétrique : le **test de Wilcoxon des rangs signés**. Ce test est moins puissant que son homologue paramétrique. On ne l'effectue donc que lorsque l'on n'a pas le choix :

```
Temp_clean %>%
  pull(temperature) %>%
  wilcox.test(mu = 37, conf.int = TRUE)

Warning in wilcox.test.default(., mu = 37, conf.int = TRUE): cannot
compute exact p-value with ties

Warning in wilcox.test.default(., mu = 37, conf.int = TRUE): cannot
compute exact confidence interval with ties

Wilcoxon signed rank test with continuity correction

data: .

V = 143, p-value = 0.6077
alternative hypothesis: true location is not equal to 37

95 percent confidence interval:
  36.77780 37.11114
sample estimates:
(pseudo)median
  36.94446
```

La syntaxe est identique à celle du test de Student à un échantillon à une exception près : l'ajout de l'argument conf.int = TRUE qui permet d'afficher la (pseudo)médiane de l'échantillon et son intervalle de confiance à 95%.

Les hypothèses nulles et alternatives de ce test sont les mêmes que celles du test de Student à un échantillon. En toute rigueur, on teste l'égalité de la médiane à une valeur théorique, et non l'égalité de la moyenne. Mais dans la pratique, la grande majorité des utilisateurs de ce test font l'amalgame entre moyenne et médiane. Ici, la conclusion correcte devrait être :

Au seuil α de 5%, on ne peut pas rejeter l'hypothèse nulle (test de Wilcoxon des rangs signés, V = 143, p = 0.6077). La médiane de la population ($\widehat{med} = 36.94$) n'est pas

significativement différente de 37°C (IC 95% : [36.78; 37.11]).

Si les données ne suivent pas la loi Normale, la médiane est bien la métrique la plus intéressante puisque c'est elle qui nous renseigne sur la tendance centrale des données.

Enfin, les tests de Wilcoxon renvoient souvent des messages d'avretissement. Il ne s'agit que de ça : des avertissements. Tant que la p-value des tests est éloignée de la valeur seuil α , cela n'a pas d'importance. Quand en revanche la p-value est très proche de α , il faut être très prudent face aux conclusions du test qui peuvent alors être assez "fragiles".

(Notez que pour le test de Student à un échantillon comme pour le test de Wilcoxon des rangs signés, les conclusions sont en accord avec nos observations initiales réalisées à partir du boxplot).

3.2.4 Exercice d'application

Le fichier Temperature2.csv contient les données brutes d'une seconde étude similaire, réalisée à plus grande échelle. Importez ces données et analysez-les afin de vérifier si la température corporelle moyenne des adultes en bonne santé vaut bien 37°C. Comme toujours, avant de vous lancer dans la réalisation des tests statistiques, prenez le temps d'examiner vos données comme nous l'avons décrit dans la section 3.2.1, afin de savoir où vous aller, de repérer les éventuelles données manquantes ou aberrantes.

3.3 Comparaison de la moyenne de 2 populations : données appariées

On s'intéresse ici à la comparaison de 2 séries de données dont les observations sont liées 2 à 2. C'est par exemple le cas lorsque l'on fait subir un tratiement à différents sujets et que l'on souhaite comparer les mesures obtenues avant et après le traitement.

Autrement dit, dans les plans d'expériences appariés, les deux traitements ou modalités sont appliqués à chaque unité d'échantillonnage.

Voici quelques exemples de de situations qui devraient être traitées avec des tests sur données appariées :

- Comparaison de la masse de patients avant et après une hospitalisation.
- Comparaison de la diversité de peuplements de poissons dans des lacs avant et après contamination par des métaux lourds.
- Test des effets d'une crème solaire appliquée sur un bras de chaque volontaire alors que l'autre bras ne reçoit qu'un placébo.
- Test des effets du tabagisme dans un échantillon de fumeurs, dont chaque membre est comparé à un non fumeur choisi pour qu'il lui ressemble le plus possible en terme d'âge, de masse, d'origine éthnique et sociale

 Test des effets que les conditions socio-économiques ont sur les préférences alimentaires en comparant des vrais jumaux élevés dans des familles adoptives séparées qui diffèrent en termes de conditions socio-économiques.

Les 2 derniers exemples montrent que même des individus séparés peuvent constituer une "pare statistique" s'ils partagent un certain nombre de caractéristiques (physiques, environnementales, génétiques, comportementales, etc.) pertinentes pour l'étude.

3.3.1 Exploration préalable des données

lci, nous allons nous intéresser au lien qui pourrait exister entre la production de testostérone et l'immunité chez une espèce d'oiseau vivant en Amérique du Nord, le carouge à épaulettes.

Chez de nombreuses espèces, les mâles ont plus de chances d'attirer des femelles s'ils produisent des niveaux de testostérone élevés. Est-ce que la forte production de testostérone de certains mâle a un coût, notamment en terme d'immuno-compétence? Autrement dit, est-ce que produire beaucoup de testostérone au moment de la reproduction (ce qui fournit un avantage sélectif) se traduit par une immunité plus faible par la suite, et donc une plus forte susceptibilité de contracter des maladies (ce qui constitue donc un désavantage sélectif)?

Pour étudier cette question, une équipe de chercheurs (Hasselquist et al., 1999) a mis en place le dispositif expérimental suivant. Les niveaux de testostérone de 13 carouges à épaulettes mâles ont été artificiellement augmentés par l'implantation chirurgicale d'un microtube perméable contenant de la testostérone. L'immunocompeetence a été mesurée pour chaque oiseau avant et après l'opération chirurgicale. La variable mesurée est la production d'anticorps suite à l'exposition des oiseaux avec un antigène non pathogène mais censé déclencher une réponse immunitaire. Les taux de production d'anticorps sont exprimés en logarithmes de densité optique par minute ($\ln \frac{mOD}{min}$).

3.3.1.1 Importation et examen visuel

Les données se trouvent dans le fichier Testosterone.csv. Importez ces données dans un objet nommé Testo et examinez le tableau obtenu.

Testo

A tibble: 13 x 5

blackbird beforeImplant afterImplant logBeforeImplant <dbl> <dbl> <dbl> <dbl> 1 105 85 4.65 1 2 2 50 74 3.91 3 3 136 145 4.91 4 4 90 86 4.5 5 5 122 148 4.8 6 6 132 148 4.88

7	7	131	150	4.88
8	8	119	142	4.78
9	9	145	151	4.98
10	10	130	113	4.87
11	11	116	118	4.75
12	12	110	99	4.7
13	13	138	150	4.93

... with 1 more variable: logAfterImplant <dbl>

Visiblement, il n'y a pas de données manquantes mais certaines variables sont inutiles. En réalité, nous aurons besoin des données sous 2 formats disctincts : un format "large" pour les statistiques descriptives et les tests d'hypothèse, et un format "long" pour les représentations graphiques. Et dans tous les cas, l'identifiant individuel devrait être considéré comme un facteur, et non comme une variable numérique comme c'est le cas actuellement.

Commençons par créer un tableau "large" pour les statistiques descriptives :

```
# A tibble: 13 x 3
  ID
        Before After
   <fct> <dbl> <dbl>
           4.65 4.44
 2 2
           3.91 4.3
           4.91 4.98
3 3
           4.5
 4 4
                 4.45
                 5
5 5
           4.8
 6 6
           4.88
                5
7 7
           4.88 5.01
8 8
           4.78 4.96
9 9
           4.98 5.02
10 10
           4.87
                4.73
11 11
           4.75 4.77
12 12
           4.7
                 4.6
13 13
           4.93 5.01
```

Il nous faut maintenant transformer ce tableau en format "long" pour les représentations graphiques :

```
# A tibble: 26 x 3
   ID
          Traitement
                         D<sub>0</sub>
   <fct> <fct>
                      <dbl>
 1 1
          Before
                       4.65
 2 2
          Before
                       3.91
3 3
          Before
                       4.91
 4 4
          Before
                       4.5
5 5
                       4.8
          Before
                       4.88
6 6
          Before
7 7
          Before
                       4.88
8 8
          Before
                       4.78
9 9
          Before
                       4.98
10 10
          Before
                       4.87
# ... with 16 more rows
```

Si vous ne comprenez pas ces commandes, je vous conseille vivement de reprendre les chapitres 5 et 6 du livre en ligne de Biométrie 2. Dans l'idéal, depuis les TP de biométrie 2, vous devriez être capables de construire de telles séquences de commandes pour aboutir à un tableau rangé ne contenant que les variables utiles, au format long comme au format court (ou large). Mais évidemment, de telles groupes de commandes se construisent étape par étape, et pas d'un seul coup comme les comande précédentes pourraient le laisser croire.

Maintenant que nous disposons de ces 2 tableaux, nous pouvons commencer à décrire nos données.

3.3.1.2 Statistiques descriptives

Pour décrire simplement les données, nous nous en tiendront ici à l'utilisation des fonctions summary() et skim().

Pour la fonction summary(), le plus simple est toujours d'utiliser le tableau au format large :

summary(Testo_large)

```
ID
                 Before
                                  After
1
       :1
            Min.
                    :3.910
                             Min.
                                     :4.30
2
       :1
            1st Qu.:4.700
                             1st Qu.:4.60
            Median :4.800
3
                             Median:4.96
       :1
```

```
4
       :1
            Mean
                    :4.734
                              Mean
                                      :4.79
5
            3rd Qu.:4.880
       :1
                              3rd Qu.:5.00
       :1
            Max.
                    :4.980
                                      :5.02
                              Max.
(Other):7
```

skim(Testo_large)

On constate ici que pour les 2 traitements, les valeurs des différents indices sont très proches entre les 2 séries de données, avec des valeurs de densité optiques (DO) légèrement supérieures après l'opération chirurgicale (sauf pour le premier quartile).

Pour la fonction skim() le plus simple est là aussi d'utiliser le tableau large :

```
Skim summary statistics
n obs: 13
n variables: 3

-- Variable type:factor -----
variable missing complete n n_unique top_counts ordered
ID 0 13 13 13 1: 1, 2: 1, 3: 1, 4: 1 FALSE
```

```
-- Variable type:numeric ----

variable missing complete n mean sd p0 p25 p50 p75 p100

After 0 13 13 4.79 0.26 4.3 4.6 4.96 5 5.02

Before 0 13 13 4.73 0.28 3.91 4.7 4.8 4.88 4.98

hist
```

On arrive toutefois aux mêmes résultats avec le tableau long, à condition de grouper les données par traitement (Variable Traitement) avec group_by() :

```
Testo_long %>%
  group_by(Traitement) %>%
  skim()
```

```
Skim summary statistics
n obs: 26
n variables: 3
group variables: Traitement
-- Variable type:factor -----
Traitement variable missing complete n n_unique
     Before
                  ID
                           0
                                    13 13
                                                13
      After
                  ID
                           0
                                    13 13
                                                13
```

```
top_counts ordered
1: 1, 2: 1, 3: 1, 4: 1
                         FALSE
1: 1, 2: 1, 3: 1, 4: 1
                         FALSE
-- Variable type:numeric ----
Traitement variable missing complete n mean
                                               sd
                                                    p0 p25 p50 p75
                          0
    Before
                 DO
                                  13 13 4.73 0.28 3.91 4.7 4.8 4.88
                          0
                                  13 13 4.79 0.26 4.3 4.6 4.96 5
     After
                 DΩ
p100
         hist
4.98
5.02
```

3.3.1.3 Exploration graphique

lci, c'est le tableau rangé au format long qui sera le plus adapté. Lorsque nous avions une unique série de données, nous avons utilisé 3 types de représentations graphiques pour visualiser les données. Nous allons là aussi réaliser ces 3 graphiques. Toutefois, puisque nous avons maintenant plusieurs séries de données, le format des graphique sera légèrement différent.

1. Données brutes sous forme de nuage de point (ou de stripchart) :

```
Testo_long %>%
  ggplot(aes(x = Traitement, y = D0)) +
  geom_point()
```


Comme toujours, on peut réaliser un stripchart pour limiter les problèmes d'over-plotting (qui sont ici quasi-inexistants).

```
Testo_long %>%
  ggplot(aes(x = Traitement, y = D0)) +
  geom_jitter(height = 0, width = 0.25)
```


2. Histogrammes

Nous allons faire un histogramme pour chaque série de données en utilisant des facettes :

```
Testo_long %>%
  ggplot(aes(x = D0)) +
  geom_histogram(bins = 10, color = grey(0.8))+
  facet_wrap(~Traitement, ncol = 1)
```


3. Boxplots

```
Testo_long %>%
  ggplot(aes(x = Traitement, y = D0)) +
  geom_boxplot(notch = TRUE)
```

notch went outside hinges. Try setting notch=FALSE.

lci, l'intervalle de confiance à 95% de la médiane pour la série "After" est tellement large que son extrémité supérieure dépasse la valeur du troisième quartile, la valeur maximale observée, et la limite supérieure de l'axe des ordonnées. Il vaut donc mieux ne pas faire figurer les encoches pour avoir un graphique plus présentable :

```
Testo_long %>%
  ggplot(aes(x = Traitement, y = D0)) +
  geom_boxplot()
```


À première vue, ces 3 représentations graphiques semblent montrer que la seconde série de données (après l'opération chirurgicale) présente des valeurs légèrement plus élevées que la première (avant l'opération). Toutefois, il semble que la dispersion des données soit aussi plus importante après l'opération qu'avant, sauf pour un individu outlier qui présente une immuno-compétence très faible avant l'opération.

Toutes ces représentations graphiques sont certes utiles, mais elles masquent un élément crucial : ce sont les mêmes individus qui sont étudiés avant et après l'opération. Il s'agit de données appariées! Pour avoir une bonne vision de ce qui se passe, il nous faut faire apparaître ce lien entre les 2 séries de données :

```
Testo_long %>%
  ggplot(aes(x = Traitement, y = DO, group = ID, color = ID)) +
```

```
geom_line() +
geom_point(alpha = 0.7)
```


Ce graphique nous donne une image très différente de la réalité des données. On constate ici que l'immuno-compétence de certains individus augmente, alors que pour d'autres, elle diminue.

Une façon d'estimer si les changements d'immuno-compétence sont majoritairement orientés dans un sens ou non est de calculer l'intervalle de confiance à 95% de la différence d'immuno-compétence entre avant et après l'opération.

3.3.2 Le test paramétrique

Le test paramétrique permettant de comparer la moyenne sur des séries appariées est là encore un test de Student : le **test de Student sur données appariées** (original...). En réalité, ce test de Student n'est pas un test de comparaison de moyennes à proprement parler. La procédure est en réalité la suivante :

- Pour chaque individu, calculer la différence d'immuno-compétence entre les deux temps de l'expérience (DO après - DO avant)
- 2. Puisque nous avons 13 individus, nous aurons 13 valeurs de différences. La moyenne de cette différence sera comparée à la valeur théorique 0. Autrement dit, si les 2 séries ont même moyenne, le moyenne des différences doit être nulle. Sinon, la moyenne des différence doit être différente de zéro.

3.3.2.1 Conditions d'application

Les conditions d'application de ce test paramétrique sont presque les mêmes que pour le test de Student à un échantillon :

 Les individus sur lesquels portent la comparaison doivent être issus d'un échantillonnage aléatoire. Comme toujours, en l'absence d'indication contraire, on considère que cette condition est vérifiée. 2. Les différences par paires entre les 2 modalités du traitement doivent suivre une distribution normale. Ce n'est donc pas les données brutes de chaque série qui doivent suivre une loi normale, mais bien la différence "après" - "avant" calculée pour chaque individu. Commençons donc pas calculer ces différences :

```
Testo_large <- Testo_large %>%
  mutate(Diff = After - Before)

Testo_large
```

```
# A tibble: 13 x 4
  ID
        Before After
                        Diff
  <fct> <dbl> <dbl>
                       <dbl>
          4.65 4.44 -0.210
1 1
2 2
          3.91 4.3
                      0.390
3 3
          4.91 4.98 0.07
          4.5
                4.45 -0.0500
4 4
                      0.2
5 5
          4.8
                5
6 6
          4.88 5
                      0.12
          4.88 5.01 0.130
7 7
8 8
          4.78 4.96 0.180
9 9
          4.98
                5.02 0.0400
10 10
          4.87 4.73 -0.140
          4.75 4.77 0.0200
11 11
12 12
          4.7
                4.6 -0.1
          4.93 5.01 0.08
13 13
```

Il nous faut donc tester la normalité de la nouvelle variable Diff. Commençons par en faire un graphique :

```
Testo_large %>%
  ggplot(aes(x = Diff)) +
  geom_histogram(bins = 10, color = grey(0.8))
```


Compte tenu du faible nombre d'individus, la forme de l'histogramme n'est pas si éloignée que ça d'une courbe en cloche (notez que ce n'était pas du tout le cas pour les données brutes de chaque série de départ qui ont toutes les deux des distribution non Normales). On le vérifie avec un test de normalité de Shapiro-Wilk:

- H₀ : la différence d'immuno-compétence des individus suit une distribution normale
- H₁: la différence d'immuno-compétence des individus ne suit pas une distribution normale

```
Testo_large %>%
 pull(Diff) %>%
 shapiro.test()
```

Shapiro-Wilk normality test

```
data: . W = 0.97949, p-value = 0.977
```

Au seuil $\alpha=0.05$, on ne peut pas rejeter l'hypothèse nulle de normalité pour la différence d'immuno-compétence entre après et avant l'intervention chirurgicale (test de Shapiro-Wilk, W=0.98, p=0.977).

Les conditions d'application du test paramétrique sont donc réunies.

3.3.2.2 Réalisation du test et interprétation

Le test de Student sur données appariées peut se faire de 3 façons distinctes. Les 3 méthodes fournissent exactement les mêmes résultats. Quelle que soit la méthode utilisée, les hypothèses nulles et alternatives sont toujours les mêmes :

- H₀: Le changement moyen de production d'anticorps après la pose chirurgicale de l'implant de testostérone est nul (μ_{Diff} = 0).
- H_1 : Le changement moyen de production d'anticorps après la pose chirurgicale de l'implant de testostérone n'est pas nul ($\mu_{Diff} \neq 0$).

```
# Méthode nº1 : avec une formule et le tableau au format long
t.test(DO ~ Traitement, data = Testo_long, paired = TRUE)
```

Paired t-test

```
data: D0 by Traitement
t = -1.2714, df = 12, p-value = 0.2277
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
   -0.15238464   0.04007695
sample estimates:
mean of the differences
        -0.05615385
```

Plusieurs remarques concernant cette première syntaxe :

- on utilise le symbole ~ pour indiquer une formule. On cherche à regarder l'effet du Traitement sur la DO qui traduit l'immuno-compétence. Le ~ soit se lire "en fonction de".
- 2. Avec la synatxe utilisant les formules, on doit spécifier l'argument data = Testo_long pour indiquer à RStudio que les variables DO et Traitement sont des colonnes de ce tableau.
- Enfin, il est important d'indiquer paired = TRUE puisque nous réalisons un test de Student sur données appariées. Si on ne mets pas cet argument, on réalise un test de Student sur échantillons indépendants.

lci, voilà la conclusion de ce test :

Le test de Student sur données appariées ne permet pas de montrer de changement d'immuno-compétence suite à l'intégration de l'implant chirurgical de testostérone. On ne peut pas rejeter l'hypothèse nulle au seuil $\alpha=0.05$ (t=-1.27, ddl=12, p=0.223). La moyenne des différences de densités optiques observées entre avant et après l'intervention chirurgicale vaut -0.056 (intervalle de confiance à 95% de cette différence : [-0.152; 0.040])

Donc visiblement, une forte production de testostérone n'est pas significativement associée à une baisse de l'immuno-compétence.

```
# Méthode n°2 : avec les 2 séries de données et le tableau au format large t.test(Testo_large$Before, Testo_large$After, paired = TRUE)
```

Paired t-test

```
data: Testo_large$Before and Testo_large$After
t = -1.2714, df = 12, p-value = 0.2277
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
   -0.15238464   0.04007695
sample estimates:
mean of the differences
   -0.05615385
```

Cette deuxième syntaxe est différente de la première puisque nous n'utilisons plus le format formule. Ici, on indique le nom des 2 colonnes du tableau Testo_large qui contiennent les 2 séries de données. Puisque nous n'utilisons plus de formule, l'argument data = ... n'existe plus. C'est pourquoi il nous faut taper spécifiquement Testo_large\$Before et Testo_large\$After, et non pas simplement le nom des colonnes. En revanche, comme pour le test précédent, il est indispensable d'indiquer paired = TRUE pour faire un test de Student sur données appariées.

Les résultats fournis et leur ointerprétation sont identiques à ceux de la syntaxe précédente.

```
# Méthode nº3 : avec la variable Diff, mu = 0, et le tableau au format large t.test(Testo_large$Diff, mu = 0)
```

```
One Sample t-test
```

```
data: Testo_large$Diff
t = 1.2714, df = 12, p-value = 0.2277
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
   -0.04007695   0.15238464
sample estimates:
   mean of x
0.05615385
```

Enfin, comme expliqué plus haut, le test de Student sur données appariées est strictement équivalent à un test de Student à un échantillon pour lequel on compare la moyenne des différences individuelles à 0. Là encore, les résultats produits et leur interprétation sont identiques aux deux tests précédents. La seule différence concerne les signes puisque les deux premiers tests regardaient la différence "Before - After" alors que ce troisième test regarde la différence "After - Before" (que nous avons calculée manuellement).

À vous donc de choisir la syntaxe qui vous paraît la plus parlante ou celle que vous avez le plus de facilité à retenir.

3.3.3 Le test non paramétrique

V = 30, p-value = 0.3054

-0.145 0.040 sample estimates:

95 percent confidence interval:

Comme pour le test de Student à un échantillon, lorsque les conditions d'application du test de Student sur données appariées ne sont pas vérifiées (c'est à dire lorsque la différence de moyenne entre les deux séries ne suit pas une loi Normale), il faut utiliser un test non paramétrique équivalent.

Il s'agit là encore du **test de Wilcoxon des rangs signés** qui s'intéresse aux médianes. Les hypothèses nulles et alternatives sont les suivantes :

- H₀: Le changement médian de production d'anticorps après la pose chirurgicale de l'implant de testostérone est nul (med_{Diff} = 0).
- H₁: Le changement médian de production d'anticorps après la pose chirurgicale de l'implant de testostérone n'est pas nul (med_{Diff} ≠ 0).

Comme pour le test de Student, 3 syntaxes sont possibles et strictement équivalentes. Il est important de ne pas oublier l'argument paired = TRUE pour les 2 premières syntaxes afin de s'assurer que l'on réalise bien un test sur données appariées. Enfin, l'argument conf.int = TRUE doit être ajouté pour les 3 syntaxes afin que la (pseudo-) médiane et son intervalle de confiance à 95% soient calculés et affichés.

alternative hypothesis: true location shift is not equal to 0

Le test de Wilcoxon des rangs signés n'a pas permis de montrer de changement d'immunocompétence suite à l'intégration de l'implant chirurgical de testostérone. On ne peut pas rejeter l'hypothèse nulle au seuil $\alpha=0.05$ ($V=61,\,p=0.305$). La médiane des différences de densités optiques observées entre après et avant l'intervention chirurgicale vaut 0.055 (intervalle de confiance à 95% de cette différence : [-0.040; 0.145]).

3.3.4 Exercice d'application

3.4 Comparaison de la moyenne de 2 populations : données indépendantes

3.4.1 Le test paramétrique

3.4.1.1 Conditions d'application

- 3.4.2 Le test non paramétrique
- 3.5 Tests bilatéraux et unilatéraux
- 3.5.1 Le test paramétrique
- 3.5.2 Le test non paramétrique
- 4 Séance 2 : analyse de variance
- 5 Séance 3 : corrélations et régressions
- 6 Séance 4 : applications et corrections

Références

Hasselquist, D., Marsh, J. A., Sherman, P. W., and Wingfield, J. C. (1999). Is avian humoral immuno-competence suppressed by testosterone? *Behavioral Ecology and Sociobiology*, 45(3):167–175.