

Przykład 17.7. Naszą grupą będą obroty i odbicia kwadratu; niech wierzchołki kwadratu będą ponumerowane 1, 2, 3, 4, w kolejności przeciwnej do ruchu wskazówek zegara, 1 w prawym dolnym rogu. Ta grupa ma 8 elementów (identyczność, obrót o 90^{0} , 180^{0} , 270^{0} , symetrie względem przekątnych, symetria pionowa i symetria pozioma) i możemy o niej myśleć jak o podgrupie S_{4} , czyli te elementy to e; (1, 2, 3, 4); (1, 3)(2, 4); (1, 4, 3, 2); (1, 3); (2, 4); (1, 4)(2, 3); (1, 2)(3, 4).

90° (1234)
8 el.

(1,2); (1,2); (1432)
$$\in$$
 warken (wo/prowodromma)

(1,3); (24); (1,1)(3,4); (2,3)(1,4) \in

(1,3)-{e; (1,1,3,4); (1,3)(2,4); (1432)}

= {(1,3)e, (1,2)(3,4); (2,4); (1432)}

Weźmy podgrupę obrotów, ma 4 elementy e ; (1,2,3,4); (1,3)(2,4); (1,4,3,2).

e,
$$(14)(2,3)$$
 \leftarrow 4 wanting

e, $(1,4)(2,3)$

(1,3). \neq , $(1,4)(2,3)$ \neq $=$ $\{(1,3)$. $(1,4,3,2)$ \neq
 $\{e, (1,4)(2,3)\}$. $(1,3)$ $=$ $\{(1,3)$. $(1,234)$ \neq

Weźmy grupę generowaną przez symetrię pionową, ta grupa ma dwa elementy (symetria pionowa (1,4)(2,3) i identyczność e).

17.1. WARSTWY 183

Przykład 17.8. Grupa permutacji na 3 elementach (S_3) . Podgrupa generowana przez cykl (1, 2, 3) ma 3 elementy. Czyli ma dwie warstwy (ta podgrupa: permutacje parzyste i pozostałe elementy: permutacje nieparzyste).

Podgrupa generowana przez cykl (1,2) (innymi słowy: wszystkie permutacje, które trzymają 3 w miejscu). Ma dwa elementy, czyli ma 3 warstwy lewostronne

i 3 prawostronne

$$H = e(1,2,3), (1,3,2)$$

$$\Rightarrow (1,2); (1,3); (2,3)$$

Le, (1,2) 3-3

•
$$(1,2)$$
 $(3)=3$ $(1,2)$ $(3)=3$ $(1,2)$ $(4$

$$(1,3,1)$$
, $(2,3)$ $(1,1)$ $(1,3,1)$ $(2,3)$ $(2,3)$

$$(3) = 12$$
 $(3) = 3$
 $(3) = 3$

Rozdział 18

Homomorfizmy i grupy ilorazowe, podgrupy normalne. 4: 6 -> H

Homomorfizmy 18.1

Definicja 18.1 (Jądro, obraz homomorfizmu). Dla homomorfizmu φ : $G \to H$ jego obraz to $\operatorname{Im} \varphi = \{ \varphi(g) : g \in G \} = \varphi(G)$ zaś jądro to $\ker \varphi = \{ g : \varphi(g) = e \} = \emptyset$ $\varphi^{-1}(e)$.

4(ab)= 4(a)4(b)

Lemat 18.2. Dla homomorfizmu $\varphi: \widehat{G} \to \widehat{H}$ jego jądro i obraz to podgrupy, odpowiednio G oraz H.

Jaki jest związek między podgrupami a homomorfizmami? Miedzy podgrupami a jądrem jakiegoś homomorfizmu?

Definicja 18.3 (Podgrupa normalna). H jest podgrupa normalna G, gdy $\overrightarrow{aH} = Ha$ dla każdego elementu $a \in G$; zapisujemy to jako $H \subseteq G$.

Przykład 18.4. 1. Trywialna podgrupa $\{e\}$ jest zawsze normalna.

HEIGED Watt= Ha

2. Grupa alternująca A_n jest normalną podgrupą S_n .

3. Grupa obrotów kwadratu jest normalną podgrupa jego symetrii.

4. Wszystkie podgrupy grupy przemiennej są normalne.

5. Centrum każdej grupy jest podgrupą normalną.

6. Podgrupa grupy $S_4: \{e, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)\}$ jest normalna.

7. Każda podgrupa indeksu 2 jest normalna.

8. Współrzędna w produkcie grup jest zawsze normalna.

Lemat 18.5. Następujące warunki są równoważne dla podgrupy H

y alt=Ha a€6

√1. aH = Ha dla każdego elementu a;

2. aH⊆Ha dla każdego elementu a;

3. aH 2 Ha dla każdego elementu a;

 $=4(\underline{aHa^{-1}})=\underline{H}$ dla każdego elementu a;

5. $a\overline{H}a^{-1}$ H dla każdego elementu a;

6. aHa^{-1} $\bigcirc H$ dla każdego elementu a.

Definicja 18.6 (Podgrupa sprzężona). Dla $H \leq G$ podgrupa postaci gHg^{-1} to podgrupa sprzezona do H.

Fakt 18.7. Podgrupy sprzężone są izomorficzne. W ogólności dla $g \in G$ przekształcenie $h \mapsto gxg^{-1}$ jest izomorfizmem grupy z samą sobą (może to być identyczność).

Lemat 18.8. Jeśli $\varphi: G \to H$ jest homomorfizmem, to ker φ jest podgrupą normalna.

N=ker
$$\varphi \in G$$
 wierry

N=ker φ

N=ker φ

N=ker φ

wydarry, ic g N $g^{-1} \in N$
 $= (q | g) (\varphi(N) \varphi(q^{-1}) = \varphi(q) \varphi(q^{-1}) = \varphi(q | g) (q^{-1}) = \varphi(q | g) (q^$

18.2 Działanie na warstwach

a H. 6H = 1 a 6: a FaH, 6 E 6H6 H<6

Popatrzmy na działanie mnożenia podzbiorów grupy w ograniczeniy do warstw (praa H·6 H=(ab)H = (ab)H=(ab)H=(ab)H = ab(H·4) = (ab)H wostronnych) $H \subseteq G$. Wtedy

H&G Falet:

Definicja 18.9 (Grupa ilorazowa). Gdy H jest podgrupa normalna G, to zbiór warstw $H \le G$, czyli G/H, ma strukturę grupy dla działania:

$$aH \cdot bH = abH$$

G/H

Grupe te nazywamy grupą ilorazową.

Lemat 18.10. "Grupa ilorazowa" jest grupą.

- · objestone
- · torne driatanic:

aH.bH & drialanie w potgrupie podsbioron

G hom: G/H

HAG

Naturalny homomorfizm $G \mapsto G/H$. 18.3

Lemat 18.11. Niech $H \triangleleft G$ bedzie podgrupą normalną G. Wtedy naturalny rzut z G na warstwy G, tj. $\pi_H: G \mapsto G/H$, $gdzie \pi_H(a) = aH$, jest homomorfizmem; cowięcej, $H = \ker \pi_H$.

Twierdzenie 18.12. Niech $\varphi: G \to G'$ będzie homomorfizmem. Wtedy istnieje izo $morfizm \ \psi : G/\ker \varphi \to \operatorname{Im} \varphi.$

To pozwala na zdefiniowanie kongruencji dla podgrupy normalnej $H \leq G$:

$$(Zauważmy też, że $aH = Ha \text{ oraz } bH = Hb.)$

$$(Zauważmy też, że $aH = Ha \text{ oraz } bH = Hb.)$

$$(Zauważmy też, że $aH = Ha \text{ oraz } bH = Hb.)$

$$(Zauważmy też, że $aH = Ha \text{ oraz } bH = Hb.)$

$$(Zauważmy też, że $aH = Ha \text{ oraz } bH = Hb.)$$$$$$$$$$$

Definicja 18.13 (Kongruencja w grupie). Relacja $\equiv \subseteq G^2$ na grupie G jest kongruencją, jeśli:

relacja równoważności jest relacją równoważności oraz

zachowuje działania zachowuje działania, tzn. dla każdych $a, a', b, b' \in G$ zachodzi: 6

$$a \equiv b \wedge a' \equiv b' \rightarrow aa' \equiv bb'$$

$$a \equiv b \rightarrow a^{-1} \equiv b^{-1}$$

$$\varphi(a) = \psi(b)$$

$$\varphi(a') = (e(b'))$$

Poprawność definicji kongruencji \equiv_H można policzyć wprost, ale nie trzeba: wynika z tego, że przekształcenie $a \mapsto aH$ jest homomorfizmem. (66) = 66) 6(6)

18.4.1 Konstrukcja \mathbb{Z}_m

Ważny przykład: \mathbb{Z}_n : kongruencja na \mathbb{Z} względem podgrupy "liczby podzielne przez n", zwyczajowo określanej jako $n\mathbb{Z}$. Jako że \mathbb{Z} jest przemienna, to ta podgrupa jest normalna. Czyli mamy podgrupę normalną, konstrukcję \mathbb{Z}_n oraz kongruencję na \mathbb{Z} .

190 ROZDZIAŁ 18. HOMOMORFIZMY I GRUPY ILORAZOWE, PODGRUPY NORMALNE.								
(Z, t) premierra								
(Z, t) premierra Z D n Z = Worby pollriebre pres re								
	7/1.7							
	2/1/2	- 1 a. 7 + i 1	n-1 ielo,, n-13					
	word	twa 1 2 g	(A),, M-L)					
	Zn,+n)	i + mi	P+ i +nZ					
	=	(149)	m (2					
	— m							

Rozdział 19

Pierścienie, ciała, arytmetyka modularna

19.1 Pierścienie

Z, vidomienson

Definicja 19.1 (Pierścień). Pierścień, oznaczany zwykle przez R, to zbiór z dwoma działaniami $+,\cdot$, spełniającymi warunki:

- (R, \cdot) jest półgrupą (niekoniecznie przemienną)
- (R, +) jest grupą przemienną

Ponadto zachodzi rozdzielność mnożenia względem dodawania

• a(b+c) = ab + ac, (b+c)a = ba + ca

Pierścień jest z jednością, jeśli ma element neutralny dla mnożenia. Pierścień jest przemienny, jeśli ab=ba (czyli półgrupa ze względu na mnożenie jest półgrupą przemienną).

Dalej będziemy się zajmować w zasadzie tylko i wyłącznie pierścieniami przemiennymi z jednością.

Definicja 19.2. Ciało $\mathbb F$ to pierścień przemienny z jednościa, w którym $(\mathbb F,\cdot)$ jest grupą, tzn. każdy element ma element odwrotny, oraz elementy neutralne dodawania i mnożenia są różne $(,0 \neq 1)$.

Przykład 19.3. • liczby całkowite \mathbb{Z}

- macierze o współczynnikach z dowolnego ciała (pierścień nieprzemienny!)
- \mathbb{Z}_m : liczby modulo m z dodawaniem i mnożeniem
- R[x] wielomiany o współczynnikach z R piersuen
- R[[x]] szeregi formalne o współczynnikach z R.

Twierdzenie 19.4. \mathbb{Z}_m jest ciałem \iff m jest pierwsze.

Dowód pokażemy w dalszej części rozdziału.

19.2 Arytmetyka modularna \mathbb{Z}_m

Definicja 19.5 (Liczenie modulo, \mathbb{Z}_m). a przystaje do b modulo m gdy m|(a-Oznaczenie:

$$a \equiv_m b$$
.

Reszta z dzielenia przez m:

$$a \mod m = b \iff a \equiv_m b \land b \in \{0, 1, \dots, m-1\}$$
.

spezieto liczymy tylko reszty z dzielenia itp. dla liczb de latnich.

Lemat 19.6. Dla dowolnego $m \in \mathbb{Z}_+$ relacja \equiv_m jest kongruencją ze względu na mnożenie i dodawanie, tzn.:

$$a \equiv_m b \wedge a' \equiv_m b' \Rightarrow aa' \equiv_m bb'$$

$$a \equiv_m b \wedge a' \equiv_m b' \Rightarrow a + a' \equiv_m b + b'$$

$$b' \Rightarrow a + a' \equiv_m b + b'$$

Wniosek 19.7. Przekształcanie $n \mapsto n \bmod m$ jest homomorfizmem pierścieni \mathbb{Z} i \mathbb{Z}_m .

To ważne o tyle, że wykonując działania $\mod m$ możemy dowolnie przełączać się 6(6)= 6(6)= a a a między \mathbb{Z} i \mathbb{Z}_m .

pewno nie wszystkie: umiemy powiedzieć, że w Z są conajmniej 3 różne elementy, ale to nie jest prawda w \mathbb{Z}_3 . Okazuje się, że prawa się przenoszą, jeśli nie używają

negacji. $(x+x)y=(2\cdot x)\cdot 3$ 4.3 $(x+x)y=(2\cdot x)\cdot 3$ 4.3 $(x+x)y=(2\cdot x)\cdot 3$ 4.3 $(x+x)y=(2\cdot x)\cdot 3$ Definicja 19.8 (Formula pozytywna). Niech $(x+x)y=(2\cdot x)\cdot 3$ będą wyrażaniami zbudowanymi z nawiasów, zmiennych x_1, x_2, \ldots, x_n , elementów z A oraz działań $+, \cdot$. Wtedy formuła ψ składająca się spójników \wedge, \vee oraz równości $t_1 = t_2$, gdzie t_1, t_2 są jak wyżej, nazywamy formuła pozytywną. (xx+3+ x2)=x3

Lemat 19.9. Niech ψ będzie formuła pozytywną, zaś $\varphi: A \stackrel{\smile}{\mapsto} B$ będzie homomorfizmem na pierścień B.

Jeśli

$$Q_1x_1Q_2x_2\dots Q_nx_n\psi(x_1,x_2,\dots,x_n)$$

zachodzi w A, to w B zachodzi:

$$Q_1x_1Q_2x_2\dots Q_nx_n\psi'(x_1,x_2,\dots,x_n)'$$
 $zachodzi:$
 $Q_1x_1Q_2x_2\dots Q_nx_n\psi'(x_1,x_2,\dots,x_n)$, $\varphi(z)$

 $gdzie \psi'$ jest uzyskane $z \psi$ przez zamianę stałych c w wyrażeniach przez $\varphi(c)$ zaś Q_i jest kwantyfikatorem (uniwersalnym lub egzystencjalnym).

Dowód to indukcja po strukturze. Podstawa indukcji wynika z tego, że to homomorfim i nie ma negacji.

e ma negacji.
$$\forall \exists a + a + a = 2 \cdot 6$$
 $\exists a, b, c \quad a \neq b \land b \neq c \land c \neq a \quad 6 = 2a$

Wniosek 19.10. W \mathbb{Z}_m zachodzą wszystkie prawa, o których myślimy.

19.3 Algorytm Euklidesa

P-prevesto

Wracamy do naszego ulubionego ciała: \mathbb{Z}_p . Kiedyś już powiedzieliśmy, że jest tam element odwrotny. A co w \mathbb{Z}_m ? Jest? Nie ma? Dla którego jest, czy można efektywnie wyznaczyć?

Konstrukcyjna metoda używała będzie algorytmu Euklidesa. Opiera się on na obserwacji, że $\operatorname{nwd}(a,b) = \operatorname{nwd}(a-b,b)$ oraz $\operatorname{nwd}(0,b) = \operatorname{nwd}(b,0) = b$. Można to przyspieszyć, poprzez $\text{nwd}(a, b) = \text{nwd}(a \mod b, b)$.

< < p drichust

Definicja 19.11. Liczba $0 \neq k \in \mathbb{N}$ jest największym wspólnym dzielnikiem $a, b \in \mathbb{Z}$, jeśli k|a, k|b i dla każdego ℓ zachodzi $\ell|a, \ell|b \implies \ell|k$.

Oznaczenie: nwd(a, b).

Uwaga. nwd jest największy w sensie porządku częściowego zdefiniowanego przez podzielność.

abeth 1604

1. Jeśli k|a i k|b to k'|(a+b) i k|(a-b). Lemat 19.12.

$$a = a'k$$

 $b = b'k$
 $(a + b) = (a' + b')k$
 $(a - b) = (a' - b')k$
 $(a \mod b)$.
 $a_{i} b > 0$

2. $Je\acute{s}li\ k|a\ i\ k|b\ to\ k|(a\ \mathrm{mod}\ b)$.

a = (6) t 6 6 6 = a mod 6 41 (6t6)

3. $Je\acute{s}li\ k|(a \bmod b)\ i\ k|\overline{b}\ to\ k|a.)$

Wniosek 19.13. Algorytm Euklidesa zwraca największy wspólny dzielnik.

Lemat 19.14. Algorytm Euklidesa (w wersji z modulo) działa w czasie wielomianowym (od długości zapisu liczb). To ograniczenie jest ścisłe.

Dowód pozostawiamy jako zadanie.

Lemat 19.15. W czasie algorytmu Euklidesa możemy przechowywane liczby reprezentować jako kombinacje liniowe (o współczynnikach całkowitych) a oraz b.

Lemat 19.16. $Dla\ a,b\in\mathbb{Z}_{+}\ istniej \ x,y\in\mathbb{Z}\ takie\ \dot{z}e$

$$\frac{1}{2} \operatorname{nwd}(a,b) = xa + yb, \qquad |x| \leq b$$

Dokładnie jedna z tych liczb jest dodatnia i jedna niedodatnia. Dodatkowo, liczby te można wybrać tak, że |x| < b, |y| < a. Jeśli $\operatorname{nwd}(a,b) = 1$ to są dokładnie dwa takie wyrażenia (w jednym x jest dodatnie a w drugim ujemne).

Proty dowód pozostawiamy jako ćwiczenie.

Lemat 19.17.	W pierścieniu \mathbb{Z}_m	element a m	na element od	$wrotny \iff$	nwd(a, m) =
1.					

|xa+ym=1| |xa+ym=1| |xa=1-ym|/modm |xa=m1| |xa-ym=1| |x-m| |x-m| |x-m| |x-m| |x-m|< nwd (a, m)=1 x,y x a + y m = 1

a mo el. oar => mwd (a.m)=1

mud (a, m)>1 => a mie ma el. olasto

6 ab=m1

3 402 ab = 1+km bla => lab 1 m => 1 lum L>1

1114

Uwaga. Zauważmy, że Lemat 19.17 w szczególności daje dowód Twierdzenia 19.4.

Zm -> vato (=> pn - pierure

· m - pierwre

2 m

a e 2 m

(1,..., m-13)

nwd(a, m) = 1

o a e m

nwd(a, m) = 1

o a e m

nwd(a, m) = 1

n ne ma drichillow

19.4 Elementy odwracalne

2 m

R

Definicja 19.18 (elementy odwracalne). Element a pierścienia R nazywamy odwracalnym, jeśli istnieje $b \in R$ takie że ab = 1.

Zbiór elementów odwracalnych pierścienia R oznaczamy jako R^* .

Twierdzenie 19.19. Dla dowolnego pierścienia R z jednością zbiór elementów odwracalnych $\nearrow jest grupą na mnożenie.$ (R_{\cdot}) (R^{+}, \cdot)

Uwaga. \mathbb{Z}_m^* nie ma struktury pierścienia, w szczególności nie jest ciałem!

Twierdzenie 19.20. Dla ciała skończonego \mathbb{F} grupa \mathbb{F}^* jest cykliczna.

To twierdzenie jest dość trudne, Rozdział 22 zawiera dowód w przypadku $\mathbb{F} = \mathbb{Z}_n$.

Definicja 19.21 (Symbol Eulera). $\varphi(m)$ to liczba liczb względnie pierwszych z m(p(m)= Zm

mniejszych od m.

ejszych ou m.

Z + 16 d.

at Zm the barryl. 7 m a 12 mil = 1

RXR:

Wniosek 19.22 (Twierdzenie Eulera). Niech a względnie pierwsze. Wtedy

 $a^{(e(m))} = a^{(a mod m)}(e^{(m)})$ $\frac{1}{2} + \frac{1}{2}$

Mogélnienie m.tw. Fernsk: \mathbb{Z}_p^* mvd(a, p_p)=1 ap=1 mod ppierusre)

Chińskie twierdzenie o resztach 19.5

Definicja 19.23 (Produkt pierścieni.). Produkt pierścieni definiujemy standardowo: dla pierścienie R, R' ich produkt $R \times R'$ ma jako zbiór iloczyn kartezjański zbiorów R, R' a działania są po współrzędnych.

Lemat 19.24. Proste własności:

- $R \times R$ i $R' \times R$ są izomorficzne
- produkt kartezjański jest łączny (z dokładnością do izomorfizmu): $R_1 \times (R_2 \times R_3)$ R1 +R2+R3 $i(R_1 \times R_2) \times R_3$ sq izomorficzne

• Jeśli R_1 jest izomorficzne z R'_1 a R_2 z R'_2 , to $R_1 \times R_1$ jest izomorficzne z $R'_1 \times R'_2$.

Twierdzenie 19.25 (Chińskie Twierdzenie o resztach). $Jeśli m_1, m_2, \ldots, m_k$ są parami względnie pierwsze, to naturalny homomorfizm z $\mathbb{Z}_{m_1m_2\cdots m_k}$ w $\prod_{i=1}^k \mathbb{Z}_{m_i}$, gdzie na i-tej współrzędej bierzemy modulo \mathbb{Z}_{m_i} , jest izomorfizmem.

Z₆ - Z₁ Z₆ - Z₁ + Z₃

Z₃

2,3,5,7,11.13 720,000