§ 17 Das Integral im Komplexen

In diesem Paragraphen sei $\emptyset \neq X \in \mathfrak{B}_d, f: X \to \mathbb{C}$ eine Funktion, u := Re(f), v := Im(f), also: $u, v: X \to \mathbb{R}, f = u + iv$.

Wir versehen $\mathbb C$ mit der σ -Algebra $\mathfrak B_2$ (wir identifizieren $\mathbb C$ mit $\mathbb R^2$).

Definition

f heißt (Borel-)**messbar**, genau dann wenn gilt: f ist \mathfrak{B}_d - \mathfrak{B}_2 -messbar.

Aus 3.2 folgt: f ist messbar genau dann, wenn u und v messbar sind.

Definition

Sei f messbar. f heißt **integrierbar** (ib.) genau dann, wenn u und v integrierbar sind. In diesem Fall setze

 $\int_X f \, dx := \int_X u \, dx + i \int_X v \, dx \quad (\in \mathbb{C})$

Es gilt: $|u|, |v| \le |f| \le |u| + |v|$ auf X. Hieraus und aus 4.9 folgt: f ist integrierbar genau dann, wenn |f| integrierbar ist.

Definition

$$\mathfrak{L}^p(X,\mathbb{C}):=\{f:X\to\mathbb{C}|f\text{ ist messbar und }\int_X|f|^p~\mathrm{d}x<\infty\}$$

(Achtung: mit den Betragsstrichen in ob. Integral ist der komplexe Betrag gemeint!)

$$\mathcal{N} := \{ f : X \to \mathbb{C} | f \text{ ist messbar und } f = 0 \text{ f.ü.} \}$$

 $\mathfrak{L}^p(X,\mathbb{C})$ ist ein komplexer Vektorraum (siehe 17.1) und \mathcal{N} ist ein Untervektorraum von $\mathfrak{L}^p(X,\mathbb{C})$.

$$L^p(X,\mathbb{C}) := \mathfrak{L}^p(X,\mathbb{C})/\mathcal{N}$$

Definition

Für $f, g \in L^2(X, \mathbb{C})$ setze

$$(f|g) := \int_X f(x)\overline{g(x)} \, \mathrm{d}x$$

sowie

$$f \perp g :\iff (f|g) = 0$$
 (f und g sind **orthogonal**).

 $(\bar{z}$ bezeichne hierbei die komplex Konjugierte von z, vgl. Lineare Algebra).

Klar:

(1) $L^p(X,\mathbb{C})$ ist mit $||f||_p := (\int_X |f|^p dx)^{\frac{1}{p}}$ ein komplexer normierter Raum (NR).

(2) (f|g) definiert ein Skalarprodukt auf $L^2(X,\mathbb{C})$. Es ist

$$(f|g) = \overline{(g|f)},$$

$$(f|f) = \int_X f(x)\overline{f(x)} \, dx = \int_X |f(x)|^2 \, dx = ||f||_2^2, \text{ also:}$$

$$||f||_2 = \sqrt{(f|f)} \quad (f, g \in L^2(X, \mathbb{C}))$$

(Beachte: es ist $z \cdot \overline{z} = |z|^2$ für $z \in \mathbb{C}$).

Inoffizielle Anmerkung: Dieses Skalarprodukt ist auf \mathbb{C} nur linear in der ersten Komponente! Wenn man einen \mathbb{C} -Skalar aus der zweiten Komponente rausziehen möchte, muss man diesen komplex konjugieren:

$$\alpha \in \mathbb{C}: \quad (f|\alpha g) = \overline{\alpha}(f|g)$$

$$(\alpha f|g) = \alpha(f|g)$$

Satz 17.1

- (1) Seien $f,g\colon X\to \mathbb{C}$ integrierbar und $\alpha,\beta\in\mathbb{C}.$ Dann gelten:
 - (i) $\alpha f + \beta g$ ist integrierbar und

$$\int_X (\alpha f + \beta g) \, dx = \alpha \int_X f \, dx + \beta \int_X g \, dx$$

- (ii) $\operatorname{Re}\left(\int_X f \, dx\right) = \int_X \operatorname{Re}(f) \, dx$ und $\operatorname{Im}\left(\int_X f \, dx\right) = \int_X \operatorname{Im}(f) \, dx$
- (iii) \overline{f} ist integrierbar und

$$\int_X \overline{f} \, dx = \overline{\int_X f \, dx}$$

- (2) Die Sätze 16.1 bis 16.3 und das Beispiel 16.6 gelten in $L^p(X,\mathbb{C})$.
- (3) $L^p(X,\mathbb{C})$ ist ein komplexer Banachraum, $L^2(X,\mathbb{C})$ ist ein komplexer Hilbertraum.

Beispiel 17.2

Sei $X = [0, 2\pi]$. Für $k \in \mathbb{Z}$ und $t \in \mathbb{R}$ setzen wir

$$e_k(t) := e^{ikt} = \cos(kt) + i\sin(kt)$$
 und $b_k := \frac{1}{\sqrt{2\pi}}e_k$

Dann gilt: $b_k, e_k \in L^2([0, 2\pi], \mathbb{C})$ und

$$\int_0^{2\pi} e_0(t) \, dt = 2\pi$$

Für $k \in \mathbb{Z}$ und $k \neq 0$ ist

$$\int_0^{2\pi} e_k(t) dt = \frac{1}{ik} e^{ikt} \Big|_0^{2\pi} = \frac{1}{ik} \left(e^{2\pi ki} - 1 \right) = 0$$

Damit ist

$$(b_k \mid b_l) = \int_0^{2\pi} b_k \overline{b_l} \, dt = \frac{1}{2\pi} \int_0^{2\pi} e^{ikt} e^{-ilt} \, dt = \frac{1}{2\pi} \int_0^{2\pi} e^{i(k-l)t} \, dt = \begin{cases} 1, \text{ falls } k = l \\ 0, \text{ falls } k \neq l \end{cases}$$

Insbesondere ist $||b_k||_2 = 1$. Das heißt $\{b_k \mid k \in \mathbb{Z}\}$ ist ein **Orthonormalsystem** in $L^2([0, 2\pi], \mathbb{C})$. Zur Übung: $\{b_k \mid k \in \mathbb{Z}\}$ ist linear unabhängig in $L^2([0, 2\pi], \mathbb{C})$.

Definition

Sei $(\alpha_k)_{k\in\mathbb{Z}}$ eine Folge in \mathbb{C} und $(f_k)_{k\in\mathbb{Z}}$ eine Folge in $L^2(X,\mathbb{C})$.

(1) Für $n \in \mathbb{N}_0$ setze

$$s_n := \sum_{k=-n}^n \alpha_k = \sum_{|k| \le n} \alpha_k = \alpha_{-n} + \alpha_{-(n-1)} + \dots + \alpha_0 + \alpha_1 + \dots + \alpha_n$$

Existiert $\lim_{n\to\infty} s_n$ in \mathbb{C} , so schreiben wir $\sum_{k\in\mathbb{Z}} \alpha_k := \lim_{n\to\infty} s_n$

(2) Für $n \in \mathbb{N}_0$ setze

$$\sigma_n := \sum_{k=-n}^n f_k = \sum_{|k| \le n} f_k$$

Gilt für ein $f\in L^2(X,\mathbb{C})$: $\|f-\sigma_n\|_2\stackrel{n\to\infty}{\longrightarrow} 0$, so schreiben wir

$$f \stackrel{\|\cdot\|_2}{=} \sum_{k \in \mathbb{Z}} f_k \quad \left(= \lim_{n \to \infty} \sigma_n \text{ im Sinne der } L^2\text{-Norm} \right)$$

Definition

Sei $\{b_k \mid k \in \mathbb{Z}\}$ wie in 17.2. $\{b_k \mid k \in \mathbb{Z}\}$ heißt eine **Orthonormalbasis (ONB)** von $L^2([0, 2\pi], \mathbb{C})$ genau dann, wenn es zu jedem $f \in L^2([0, 2\pi], \mathbb{C})$ eine Folge

$$(c_k)_{k\in\mathbb{Z}} = (c_k(f))_{k\in\mathbb{Z}}$$

gibt, mit

$$(*) f \stackrel{\|\cdot\|_2}{=} \sum_{k \in \mathbb{Z}} c_k b_k$$

Frage: Ist $\{b_k \mid k \in \mathbb{Z}\}$ eine ONB von $L^2([0, 2\pi], \mathbb{C})$?

Antwort: Ja! In 18.5 werden wir sehen, dass (*) gilt mit $c_k = (f \mid b_k)$.