Generated on 2015-01-08 17:53:10 by gEcon version 0.8.3 (2015-01-08) Model name: rbc

1 CONSUMER

1.1 Optimisation problem

$$\max_{K_t^s, C_t, L_t^s, I_t} U_t = \beta \mathcal{E}_t \left[U_{t+1} \right] + (1 - \eta)^{-1} \left(C_t^{\ \mu} (1 - L_t^s)^{1 - \mu} \right)^{1 - \eta} \tag{1.1}$$

s.t.

$$C_t + I_t = \pi_t + K_{t-1}^{\mathrm{s}} r_t + L_t^{\mathrm{s}} W_t \quad \left(\lambda_t^{\mathrm{CONSUMER}^1}\right) \tag{1.2}$$

$$K_t^{\mathrm{s}} = I_t + K_{t-1}^{\mathrm{s}} (1 - \delta) \quad \left(\lambda_t^{\mathrm{CONSUMER}^2}\right) \tag{1.3}$$

1.2 First order conditions

$$-\lambda_t^{\text{CONSUMER}^2} + \beta \left((1 - \delta) E_t \left[\lambda_{t+1}^{\text{CONSUMER}^2} \right] + E_t \left[\lambda_{t+1}^{\text{CONSUMER}^1} r_{t+1} \right] \right) = 0 \quad (K_t^s)$$
(1.4)

$$-\lambda_t^{\text{CONSUMER}^1} + \mu C_t^{-1+\mu} (1 - L_t^s)^{1-\mu} \left(C_t^{\mu} (1 - L_t^s)^{1-\mu} \right)^{-\eta} = 0 \quad (C_t)$$
 (1.5)

$$\lambda_t^{\text{CONSUMER}^1} W_t + (-1 + \mu) C_t^{\mu} (1 - L_t^s)^{-\mu} \left(C_t^{\mu} (1 - L_t^s)^{1 - \mu} \right)^{-\eta} = 0 \quad (L_t^s)$$
(1.6)

$$-\lambda_t^{\text{CONSUMER}^1} + \lambda_t^{\text{CONSUMER}^2} = 0 \quad (I_t)$$
 (1.7)

2 FIRM

2.1 Optimisation problem

$$\max_{K_t^d, L_t^d, Y_t} \pi_t = Y_t - L_t^d W_t - r_t K_t^d$$
(2.1)

s.t.:

$$Y_t = Z_t K_t^{\mathrm{d}^{\alpha}} L_t^{\mathrm{d}^{1-\alpha}} \quad \left(\lambda_t^{\mathrm{FIRM}^1}\right) \tag{2.2}$$

2.2 First order conditions

$$-r_t + \alpha \lambda_t^{\text{FIRM}^1} Z_t K_t^{d^{-1+\alpha}} L_t^{d^{1-\alpha}} = 0 \quad (K_t^d)$$
(2.3)

$$-W_t + \lambda_t^{\text{FIRM}^1} Z_t (1 - \alpha) K_t^{\text{d}^{\alpha}} L_t^{\text{d}^{-\alpha}} = 0 \quad (L_t^{\text{d}})$$

$$(2.4)$$

$$1 - \lambda_t^{\text{FIRM}^1} = 0 \quad (Y_t) \tag{2.5}$$

2.3 First order conditions after reduction

$$-r_t + \alpha Z_t K_t^{\mathrm{d}^{-1+\alpha}} L_t^{\mathrm{d}^{1-\alpha}} = 0 \quad (K_t^{\mathrm{d}})$$

$$(2.6)$$

$$-W_t + Z_t (1 - \alpha) K_t^{\mathrm{d}^{\alpha}} L_t^{\mathrm{d}^{-\alpha}} = 0 \quad (L_t^{\mathrm{d}})$$

$$(2.7)$$

3 EQUILIBRIUM

3.1 Identities

$$K_t^{\mathbf{d}} = K_{t-1}^{\mathbf{s}} \tag{3.1}$$

$$L_t^{\rm d} = L_t^{\rm s} \tag{3.2}$$

4 EXOG

2

4.1 Identities

$$Z_t = e^{\epsilon_t^{\mathrm{Z}} + \phi \log Z_{t-1}} \tag{4.1}$$

5 Equilibrium relationships (after reduction)

$$-r_t + \alpha Z_t K_{t-1}^{s}^{-1+\alpha} L_t^{s^{1-\alpha}} = 0 (5.1)$$

$$-W_t + Z_t (1 - \alpha) K_{t-1}^s {}^{\alpha} L_t^{s-\alpha} = 0$$
 (5.2)

$$-Y_t + Z_t K_{t-1}^s {}^{\alpha} L_t^{s1-\alpha} = 0 (5.3)$$

$$Z_t - e^{\epsilon_t^2 + \phi \log Z_{t-1}} = 0 \tag{5.4}$$

$$\beta \left(\mu \mathcal{E}_{t} \left[r_{t+1}C_{t+1}^{-1+\mu} \left(1 - L_{t+1}^{s}\right)^{1-\mu} \left(C_{t+1}^{\mu} \left(1 - L_{t+1}^{s}\right)^{1-\mu}\right)^{-\eta}\right] + \mu \left(1 - \delta\right) \mathcal{E}_{t} \left[C_{t+1}^{-1+\mu} \left(1 - L_{t+1}^{s}\right)^{1-\mu} \left(C_{t+1}^{\mu} \left(1 - L_{t+1}^{s}\right)^{1-\mu}\right)^{-\eta}\right]\right) - \mu C_{t}^{-1+\mu} \left(1 - L_{t}^{s}\right)^{1-\mu} \left(C_{t}^{\mu} \left(1 - L_{t}^{s}\right)^{1-\mu}\right)^{-\eta}\right]$$

$$(5.5)$$

$$(-1+\mu)C_t^{\mu}(1-L_t^s)^{-\mu}\left(C_t^{\mu}(1-L_t^s)^{1-\mu}\right)^{-\eta} + \mu W_t C_t^{-1+\mu}(1-L_t^s)^{1-\mu}\left(C_t^{\mu}(1-L_t^s)^{1-\mu}\right)^{-\eta} = 0$$
(5.6)

$$-C_t - I_t + Y_t = 0 (5.7)$$

$$I_t - K_t^{s} + K_{t-1}^{s} (1 - \delta) = 0 (5.8)$$

$$U_t - \beta \mathcal{E}_t \left[U_{t+1} \right] - (1 - \eta)^{-1} \left(C_t^{\mu} (1 - L_t^{s})^{1 - \mu} \right)^{1 - \eta} = 0$$
 (5.9)

6 Steady state relationships (after reduction)

$$-r_{\rm ss} + \alpha Z_{\rm ss} K_{\rm ss}^{\rm s}^{-1+\alpha} L_{\rm ss}^{\rm s}^{1-\alpha} = 0 \tag{6.1}$$

$$-W_{\rm ss} + Z_{\rm ss} (1 - \alpha) K_{\rm ss}^{\rm s} {}^{\alpha} L_{\rm ss}^{\rm s} {}^{-\alpha} = 0$$
 (6.2)

$$-Y_{\rm ss} + Z_{\rm ss} K_{\rm ss}^{\rm s \alpha} L_{\rm ss}^{\rm s 1-\alpha} = 0 \tag{6.3}$$

$$Z_{\rm ss} - e^{\phi \log Z_{\rm ss}} = 0 \tag{6.4}$$

$$\beta \left(\mu r_{\rm ss} C_{\rm ss}^{-1+\mu} (1 - L_{\rm ss}^{\rm s})^{1-\mu} \left(C_{\rm ss}^{\mu} (1 - L_{\rm ss}^{\rm s})^{1-\mu}\right)^{-\eta} + \mu (1 - \delta) C_{\rm ss}^{-1+\mu} (1 - L_{\rm ss}^{\rm s})^{1-\mu} \left(C_{\rm ss}^{\mu} (1 - L_{\rm ss}^{\rm s})^{1-\mu}\right)^{-\eta}\right) - \mu C_{\rm ss}^{-1+\mu} (1 - L_{\rm ss}^{\rm s})^{1-\mu} \left(C_{\rm ss}^{\mu} (1 - L_{\rm ss}^{\rm s})^{1-\mu}\right)^{-\eta} = 0$$

$$(6.5)$$

$$(-1+\mu)C_{ss}^{\mu}(1-L_{ss}^{s})^{-\mu}\left(C_{ss}^{\mu}(1-L_{ss}^{s})^{1-\mu}\right)^{-\eta} + \mu W_{ss}C_{ss}^{-1+\mu}(1-L_{ss}^{s})^{1-\mu}\left(C_{ss}^{\mu}(1-L_{ss}^{s})^{1-\mu}\right)^{-\eta} = 0$$

$$(6.6)$$

$$-C_{\rm ss} - I_{\rm ss} + Y_{\rm ss} = 0 ag{6.7}$$

$$I_{\rm ss} - K_{\rm ss}^{\rm s} + K_{\rm ss}^{\rm s} (1 - \delta) = 0$$
 (6.8)

$$U_{\rm ss} - \beta U_{\rm ss} - (1 - \eta)^{-1} \left(C_{\rm ss}^{\ \mu} (1 - L_{\rm ss}^{\rm s})^{1 - \mu} \right)^{1 - \eta} = 0 \tag{6.9}$$

7 Calibrating equations

$$-0.36Y_{\rm ss} + r_{\rm ss}K_{\rm ss}^{\rm s} = 0 (7.1)$$

8 Parameter settings

$$\beta = 0.99 \tag{8.1}$$

$$\delta = 0.025 \tag{8.2}$$

$$\eta = 2 \tag{8.3}$$

$$\mu = 0.3 \tag{8.4}$$

$$\phi = 0.95 \tag{8.5}$$

4

9 Steady-state values

	Steady-state values
r	0.0351
C	0.7422
I	0.2559
K^{s}	10.2368
L^{s}	0.2695
U	-136.2372
W	2.3706
Y	0.9981
Z	1
W	2.3706

10 The solution of the perturbation

10.1 P

$$\begin{array}{ccc} K_{t-1}^{\mathrm{s}} & Z_{t-1} \\ K^{\mathrm{s}} & 0.9631 & 0.0962 \\ Z & 0 & 0.95 \end{array})$$

10.2 Q

$$\begin{array}{c}
\epsilon^{Z} \\
K^{s} \\
Z
\end{array}
\left(\begin{array}{c}
0.1012 \\
1
\end{array}\right)$$

10.3 R

$$\begin{array}{cccc} K_{t-1}^{\mathrm{s}} & Z_{t-1} \\ r & -0.7559 & 1.3521 \\ C & 0.4919 & 0.4921 \\ I & -0.4745 & 3.8461 \\ L^{\mathrm{s}} & -0.181 & 0.6282 \\ U & -0.0418 & -0.0644 \\ W & 0.4252 & 0.7238 \\ Y & 0.2441 & 1.3521 \\ \end{array}$$

10.4 S

$$\begin{array}{c} \epsilon^{\rm Z} \\ r \\ C \\ I \\ I \\ L^{\rm s} \\ U \\ W \\ Y \end{array} \left(\begin{array}{c} 1.4232 \\ 0.518 \\ 4.0485 \\ 0.6613 \\ -0.0678 \\ 0.7619 \\ 1.4232 \end{array} \right)$$

11 Statistics of the model

11.1 Moments

	Steady-state value	Std. dev.	Variance	Loglinear
r	0.0351	0.1893	0.0358	Y
C	0.7422	0.0711	0.0051	Y
I	0.2559	0.5284	0.2792	Y
K^{s}	10.2368	0.0469	0.0022	Y
$L^{\rm s}$	0.2695	0.0867	0.0075	Y
U	-136.2372	0.009	0.0001	Y
\overline{W}	2.3706	0.1011	0.0102	Y
Y	0.9981	0.1857	0.0345	Y
Z	1	0.1303	0.017	Y

11.2 Correlation matrix

	r	C	I	K^{s}	$L^{\rm s}$	U	W	Y	Z
r	1	0.8683	0.9893	0.0841	0.9959	-0.9182	0.926	0.9689	0.9823
C	0.8683	1	0.9313	0.5674	0.9095	-0.9938	0.9913	0.964	0.9458
I	0.9893	0.9313	1	0.2285	0.9984	-0.9661	0.9711	0.9946	0.9991
K^{s}	0.0841	0.5674	0.2285	1	0.1737	-0.472	0.4541	0.3282	0.2693
L^{s}	0.9959	0.9095	0.9984	0.1737	1	-0.9502	0.9563	0.9873	0.9952
U	-0.9182	-0.9938	-0.9661	-0.472	-0.9502	1	-0.9998	-0.9877	-0.9761
W	0.926	0.9913	0.9711	0.4541	0.9563	-0.9998	1	0.9906	0.9803
Y	0.9689	0.964	0.9946	0.3282	0.9873	-0.9877	0.9906	1	0.9981
Z	0.9823	0.9458	0.9991	0.2693	0.9952	-0.9761	0.9803	0.9981	1

11.3 Autocorrelations

	t-1	t-2	t-3	t-4
r	0.7098	0.4657	0.2647	0.1034
C	0.7596	0.5446	0.3568	0.1964
I	0.7109	0.4674	0.2668	0.1055
K^{s}	0.9597	0.8621	0.7271	0.5709
$L^{\rm s}$	0.7092	0.4647	0.2636	0.1023
U	0.7389	0.5118	0.3185	0.1578
W	0.7356	0.5066	0.3125	0.1517
Y	0.7183	0.4791	0.2803	0.1192
Z	0.7133	0.4711	0.2711	0.1098

12 Statistics of the model

12.1 Moments relative to moments of the reference variable

	Steady-state value relative to Y	Std. dev. relative to Y	Variance relative to Y	Loglinear
r	0.0352	1.0193	1.0389	Y
C	0.7436	0.3827	0.1465	Y
I	0.2564	2.8453	8.0959	Y
K^{s}	10.2561	0.2526	0.0638	Y
L^{s}	0.27	0.4669	0.218	Y
U	-136.4937	0.0486	0.0024	Y
\overline{W}	2.3751	0.5441	0.2961	Y
Y	1	1	1	Y
Z	1.0019	0.7018	0.4926	Y

12.2 Correlations with the reference variable

	Y_{t-4}	Y_{t-3}	Y_{t-2}	Y_{t-1}	Y_t	Y_{t+1}	Y_{t+2}	Y_{t+3}	Y_{t+4}
r	0.2344	0.3779	0.5477	0.7447	0.9689	0.6234	0.343	0.1215	-0.0479
C	-0.0128	0.1562	0.3722	0.64	0.964	0.7703	0.5919	0.4314	0.2902
I	0.1684	0.3233	0.5115	0.7348	0.9946	0.684	0.4257	0.2159	0.0501
K^{s}	-0.4149	-0.3135	-0.1616	0.0493	0.3282	0.5125	0.6196	0.6649	0.6624
L^{s}	0.1941	0.3451	0.5267	0.7405	0.9873	0.6625	0.3951	0.1802	0.0127
U	-0.0425	-0.2097	-0.4203	-0.6785	-0.9877	-0.7553	-0.5498	-0.3718	-0.221
W	0.0524	0.2191	0.4285	0.6846	0.9906	0.7516	0.5414	0.3605	0.2082
Y	0.1192	0.2803	0.4791	0.7183	1	0.7183	0.4791	0.2803	0.1192
Z	0.1486	0.3063	0.499	0.7291	0.9981	0.6988	0.448	0.2424	0.0783

13 Impulse response functions

13.1 Shock ϵ^{Z}

Figure 1: Impulse response function for $\epsilon^{\mathbf{Z}}$ shock

Figure 2: Impulse response function for $\epsilon^{\mathbf{Z}}$ shock