Progess of the Project

Tsung-Min Pai 2023/11/03

Outline

- GNN
 - Over-Sampling
 - Some Observation Dimension, Embedding, Model
 - GraphSMOTE
- Future Work

GNN - Oversampling

Oversampling

- Current Problem:
 - Can't predict the edge in the small graphs consist of single triplet

	precision	recall	f1-score	support
T1003.003_9f73269695e54311dd61dc68940fb3e1	0.0	0.0	0.0	100.0
T1003.003_f049b89533298c2d6cd37a940248b219	0.0	0.0	0.0	100.0
T1007_c6607391-d02c-44b5-9b13-d3492ca58599	0.0	0.0	0.0	100.0
T1016_14a21534-350f-4d83-9dd7-3c56b93a0c17	0.0	0.0	0.0	100.0
T1016_71b3d2945679566b9d94d8cb11df4b70	0.0	0.0	0.0	100.0
T1016_921055f4-5970-4707-909e-62f594234d91	0.0	0.0	0.0	100.0
T1016_a0676fe1-cd52-482e-8dde-349b73f9aa69	0.0	0.0	0.0	100.0

```
Number of support=100: 54

Number of support=100 and f1-score<=0.2: 53

Number of support=100 and f1-score=0: 48

Number of support=200 and f1-score=0: 6

Number of support>200 and f1-score=0: 0
```

Oversampling

- Current Trial: hope to see the result on training dataset
 - At least let the model overfit first(remember the data with single triplet)
 - Use data with **320** times single triplet \rightarrow # of training data = 13657600
 - Larger hidden dimension → more neurons to remember the data

```
Hidden dim = 256
                                                      Hidden dim = 512
Number of single triplet: 53
                                                     Number of single triplet: 53
Number of single triplet and f1-score<=0.2: 0
                                                     Number of single triplet and f1-score<=0.2: 0
Number of single triplet and f1-score<=0.5: 1
                                                     Number of single triplet and f1-score<=0.5: 0
Number of single triplet and f1-score>0.5: 52
                                                     Number of single triplet and f1-score>0.5: 53
                                    0.70
                                         16008233
   accuracy
                                                                                        0.79 16008233
                                                        accuracy
  macro avg
                 0.80
                          0.79
                                    0.79
                                         16008233
                                                                      0.84
                                                                               0.82
                                                       macro avg
                                                                                              16008233
                                    0.70 16008233
weighted avg
                 0.71
                          0.70
                                                    weighted avg
                                                                      0.80
                                                                               0.79
                                                                                        0.79 16008233
```


K-Fold Cross Validation

- Cross-validation should always be done
 before over-sampling the data, just as how feature selection should be implemented.
- Only by resampling the data repeatedly, randomness can be introduced into the dataset to make sure that there won't be an overfitting problem.

Training: accuracy			0.99	12805285
macro avg	0.91	0.90	0.90	12805285
weighted avg	0.98	0.99	0.99	12805285
Testing: accuracy			0.97	310263
macro avg	0.60	0.59	0.59	310263
weighted avg	0.97	0.97	0.97	310263

Thoughts

- Try the ensemble
 - Different GNN
 - Different hidden dimension
 - Different embedding
 - Different model
 - Different type of model → MLP, RNN, GNN...
 - Maybe the different can identify the different single triplet class

Observation on Different Dimension

Observation on Different Dimension

Observation on Different Embedding

Observation on Different Embedding

Observation on Different Model

Observation

- Noticed that T1562.002_94f always got predicted in all the experiments
 - What if MLP and RNN can detect different class?
 - After Euni give me the MLP and RNN model, I'll observe the results of them

- **Hidden Dimension** do have an effect on the result \rightarrow but it's all about from 0 to 0.05
- **Embedding** (transR_50 and tansH_150) seems to have the similar result → try more
- My GCN test sucks → try GAT or other GNN model

GraphSMOTE

GraphSMOTE: Imbalanced Node Classification on Graphs with Graph Neural

Networks

WSDM '21, March 8–12, 2021, Virtual Event, Israel Tianxiang Zhao, Xiang Zhang, Suhang Wang

Synthesized Minority Oversampling Technique (SMOTE)

Future Work

Future Work

• GNN

- Try some other methods to improve the performance of single triplet issue
 - Figure out why the model can detect the T1562.002_94f
 - Try to ensemble if the **MLP** and **RNN** model's result are different
 - Read the GraphSMOTE paper
 - Try some other embeddings?
 - Try some other models?
 - Try some data augmentation methods?
 - ...

Thanks!!

Appendix

Experiment 3

Experiment 3:

- Consider the neighbor benign nodes
- Edge classification
- Given a graph → label the triplets with the benign or the specific AP

Bar Chart of hidden dimension = 256:

• Current Trial: Duplicate the data with single triplets → 20, 40, 80, 320 times

20 times	Number of Number of Number of	<pre>support=100: 5 support=100 an support=100 an support=200 an support>200 an</pre>	d f1-score<=0 d f1-score=0: d f1-score=0:	21 10	53		0.597445		0.594684	0.97156 310263.00000 310263.00000
40 times	Number of Number of Number of	support=100: 50 support=100 and support=100 and support=200 and support>200 and	d f1-score<=0: d f1-score=0: d f1-score=0:	14 10	53		0.602542		0.594387	0.971318 310263.000000 310263.000000
80 times	Number of Number of Number of	support=100: 50 support=100 and support=200 and support>200 an	d f1-score<=0: d f1-score=0: d f1-score=0:	18 10		accuracy macro avg weighted avg		0.598077	0.594237	0.971463 310263.000000 310263.000000

Experiment 3 - Model

- Concept from the DGL official website:
 - 1. Let the dgl graph's edge data have the attribute: edata["label"]
 - 2. Use **GraphSAGE** model to get the new **node embedding**
 - 3. Use **MLP** model to get the **score** of the edge
 - 4. Concatenate these two models
 - 5. Train the final model

```
g.ndata['feat'] = th.tensor(data["node_feat"])
g.edata['feat'] = th.tensor(data["edge_attr"])
g.edata['label'] = th.tensor(data["labels"])
```

```
def model_fn(batched_g, model, criterion, device, count=1, which_type='train'):
    """Forward a batch through the model."""
    batched_g = batched_g.to(device)
    labels = batched_g.edata['label'].to(device)

logits = model(batched_g, batched_g.ndata['feat'].float())
    loss = criterion(logits, labels)

output = torch.softmax(logits, dim=1)
    preds = output.argmax(1)

accuracy = torch.mean((preds == labels).float())
```

Experiment 3 - Model

```
class GraphSAGE(nn.Module):
    def __init__(self, in_dim, hidden_dim, out_dim):
        super(GraphSAGE, self).__init__()
        self.layer1 = dglnn.SAGEConv(in_dim, hidden_dim, 'pool')
        self.layer2 = dglnn.SAGEConv(hidden_dim, out_dim, 'pool')

def forward(self, g, inputs):
    h = self.layer1(g, inputs)
    h = torch.relu(h)
    h = self.layer2(g, h)
    return h
```

```
class MLPPredictor(nn.Module):
    def __init__(self, out_feats, out_classes):
        super().__init__()
        self.W = nn.Linear(out_feats*2, out_classes)

def apply_edges(self, edges):
        h_u = edges.src['h']
        h_v = edges.dst['h']
        score = self.W(torch.cat([h_u, h_v], 1))
        return {'score': score}

def forward(self, graph, h):
    with graph.local_scope():
        graph.ndata['h'] = h
        graph.apply_edges(self.apply_edges)
        return graph.edata['score']
```

```
class Model(nn.Module):
    def __init__(self, in_features, hidden_features, out_features, num_classes):
        super().__init__()
        self.sage = GraphSAGE(in_features, hidden_features, out_features)
        self.pred = MLPPredictor(out_features, num_classes)

def forward(self, g, node_feat, return_logits=False):
    h = self.sage(g, node_feat)
    logits = self.pred(g, h)

return logits
```

Experiment 3 - Result

Format of the edge labels:

• Label 65 is benign

```
labels of Test: tensor([155, 65, 155, 155], device='cuda:0') torch.Size([5]) predicted of Test: tensor([155, 65, 155, 155, 155], device='cuda:0') torch.Size([5]) labels of Test: tensor([61, 61, 61], device='cuda:0') torch.Size([3]) predicted of Test: tensor([61, 61, 61], device='cuda:0') torch.Size([3])
```

• Classification report:

transR_50:					secureBERT_50:				
4a0dc2e1f5d1a 167175e8a019a c3579e9e3737b 43d838e0791ca benign	0.00 1.00 1.00 1.00 1.00	0.00 1.00 1.00 1.00 1.00	0.00 1.00 1.00 1.00 1.00	100 800 6200 600 134563	714a0dc2e1f5d1a fb167175e8a019a 2ac3579e9e3737b 0243d838e0791ca benign	0.00 0.98 0.97 0.91 0.99	0.00 1.00 0.98 0.83 1.00	0.00 0.99 0.98 0.87 0.99	100 800 6200 600 134563
accuracy macro avg weighted avg	0.60	0.61 0.97	0.97 0.60 0.97	310263 310263 310263	accuracy macro avg weighted avg	0.52	0.48 0.92	0.92 0.49 0.91	310263 310263 310263

- Macro average is similar to previous experiments → won't be affected by benign
- Weighted average is very high since the # of the benign is high(unbalanced) and predictable
- TransX family performs better than secureBERT

Experiment 3 – Noise

- Current Trial 1:
 - Add the noise to the node feature

```
def collate(samples):
   data list = samples
   batched graphs = []
   for data in data list:
       g = dgl.graph((th.tensor(data["edge index"][0]), th.tensor(data["edge index"][1])), num nodes=data["num nodes"]
       node feat = th.tensor(data["node feat"])
       noise = th.normal(mean=0, std=0.01, size=node feat.shape, device=node feat.device)
       node feat += noise
       g.ndata['feat'] = node feat
       g.edata['feat'] = th.tensor(data["edge attr"])
       g.edata['label'] = th.tensor(data["labels"]) # Add edge labels to graph
       batched graphs.append(g)
                                                       Number of support=100: 54
                                                       Number of support=100 and f1-score<=0.2: 53
   return dgl.batch(batched graphs)
                                                       Number of support=100 and f1-score=0: 46
                                                       Number of support=200 and f1-score=0: 4
                                                       Number of support>200 and f1-score=0: 0
```

Experiment 3 – K-fold validation

k-fold cross-validation(k 折交叉驗證)是一種在機器學習中常用的模型評估方法,尤其在有限的數據集上評估模型性能時非常有效。其主要優點包括:

- 1. **更可靠的性能估計**:通過將數據集分成 k 個子集,每次使用其中一個子集作為測試集,其餘 k-1 個子集作為訓練集,然後重複此過程 k 次,每次選擇不同的子集作為測試集,可以使得模型評估的結果更加穩定和可靠。
- 2. **充分利用數據**:每個數據點都被用作 k-1 次的訓練和 1 次的測試,這意味著每個數據點都被充分利用,這在數據量不大時尤其重要。
- 3. **減少偏差**:由於模型需要在 k 個不同的訓練集上訓練,然後在 k 個不同的測試集上測試,這有助於降低模型在特定數據集上的性能估計偏差。
- 4. **更好的泛化性能評估**:通過對不同的訓練集和測試集進行訓練和測試,可以幫助評估模型對 未見數據的泛化能力。
- 5. **減少過擬合風險**: k-fold cross-validation 有助於識別模型是否對特定的訓練數據集過度擬合,因為它必須在多個不同的訓練集上表現良好。

然而,k-fold cross-validation 也有其局限性,例如計算成本較高(尤其是 k 較大和模型訓練時間較長時),並且結果可能依賴於 k 的選擇以及數據分割的方式。這些都是在使用此方法時需要考慮的因素。