Definitions and Theorems

Lance Remigio

October 13, 2024

Operations on \mathbb{C}

Let $z, w \in \mathbb{C}$ and set $z = \alpha_1 + i\beta_1$ and $w = \alpha_2 + i\beta_2$ for any $\alpha_1, \alpha_2, \beta_1, \beta_2 \in \mathbb{R}$. We define the two operations, addition + and multiplication \cdot , in the following way:

• Addition:

$$z + w = (\alpha_1 + i\beta_1) + (\alpha_2 + i\beta_2)$$

= $(\alpha_1 + \alpha_2) + i(\beta_1 + \beta_2)$.

• Multiplication:

$$z \cdot w = (\alpha_1 + i\beta_1) \cdot (\alpha_2 + i\beta_2)$$

= $(\alpha_1 \alpha_2 - \beta_1 \beta_2) + i(\alpha_1 \beta_2 + \beta_1 \alpha_2).$

Click here for the definition

Constructing a Solution for $x^2 + 1 = 0$

Define i = (0, 1) as our imaginary number in \mathbb{C} and let $i^2 = (-1, 0)$.

Click here for the definition

Let $z = \alpha + i\beta$ for $\alpha, \beta \in \mathbb{R}$. Then

$$\Re(z) = \alpha \text{ and } \Im(z) = \beta,$$

are the **real and imaginary of** z, respectively. If $\Im(z) = 0$, z is a real number, and if $\Re(z) = 0$, then we call z **purely imaginary**.

Click here for the definition

Complex Conjugate

Let $z = \alpha + i\beta$ be a complex number. Its complex conjugate is defined as $\overline{z} = \alpha - i\beta$.

Click here for the definition

Modulus of Complex Number

Let $z \in \mathbb{C}$. We define the **modulus** $|z| = \sqrt{z\overline{z}}$.

Metric Space

For $z, w \in \mathbb{C}$, we call \mathbb{C} a metric space if there exists a function $d : \mathbb{C} \times \mathbb{C} \to \mathbb{R}$ that satisfies the following properties:

- (i) For any $z, w \in \mathbb{C}$, we have $d(z, w) \geq 0$.
- (ii) For any $z, w \in \mathbb{C}$, d(z, w) = 0 if and only if z = w.
- (ii) For any $z, w \in \mathbb{C}$, we have d(z, w) = d(w, z).
- (iii) For any $z, w, u \in \mathbb{C}$, we have

$$d(z, w) \le d(z, u) + d(u, w).$$

Click here for the definition

Polar Representation of Complex Numbers

Let $(\alpha, \beta) \in \mathbb{R}^2$. The polar representation of (α, β) is

$$(\alpha, \beta) = \gamma(\cos\varphi, \sin\varphi)$$

with $\tan \varphi = \frac{\beta}{\alpha}$. Note that if $\psi = 2\pi + \varphi$, then

$$(\alpha, \beta) = \gamma(\cos \psi, \sin \psi)$$

where γ is uniquely defined and φ is defined up to the addition of a multiple of 2π .

Click here for the definition

Argument and Principle Argument

Let $z \in \mathbb{C}^+$ and $z = \gamma(\cos \varphi + i \sin \varphi)$ be a polar representation of z. Then φ is called **an argument of** z. If $-\pi < \varphi \le \pi$, then φ is called **the principal argument of** z and it is denoted by $\operatorname{Arg}(z)$. Click here for the definition

Convergence of Sequences

Let $\{z_n\}_{n=1}^{\infty}$ be a sequence in \mathbb{C} . We say that $\{z_n\}$ converges to $z \in \mathbb{C}$ if for all $\varepsilon > 0$, we can find $N_{\varepsilon} \in \mathbb{N}$ such that

$$|z_n - z| < \varepsilon$$

for all $n \geq N_{\varepsilon}$.

Click here for the definition

Convergence of Series

Let $\{z_n\}_{n=1}^{\infty}$ be a sequence in \mathbb{C} . Define

$$s_k = \sum_{k=1}^n z_k = z_1 + \dots + z_n$$

where (s_n) is called the **sequence of partial sums** of $\{z_n\}$. If $s_n \to s$, then we say that the series $\sum_{n=1}^{\infty} z_n$ converges and write $\sum_{n=1}^{\infty} z_n = s$.

Click here for the definition

Absolute Convergence of Infinite Series

Let (z_n) be a sequence of complex numbers. We say that the series $\sum_{n=1}^{\infty} z_n$ converges absolutely if the series of real numbers

$$\sum_{n=1}^{\infty} |z_n|$$

converges.

Complex Version of Exponential Function

For $z \in \mathbb{C}$, we define

$$\exp(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!}$$

Click here for the definition

Sine and Cosine Series

We define $\sin z$ as

$$\sin z = \sum_{n=0}^{\infty} (-1)^{2n+1} \frac{z^{2n+1}}{(2n+1)!}$$

and $\cos z$ as

$$\cos z = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!}.$$

Click here for the definition

Principal Value of Complex Logarithm

Given $z \in \mathbb{C}^{\bullet}$, the unique $w \in S$ is called the principal value of the logarithm of z and we write w = Log(z).

Click here for the definition

Principal Branch

The function Log z is called the principal branch of the logarithm.

Click here for the definition

Open Ball

Consider the usual metric d(z, w) = |z - w| in \mathbb{C} . Let $\varepsilon > 0$ and $a \in \mathbb{C}$. By an **open ball** centered at a, and radius $\varepsilon > 0$, we mean the set

$$B(a,\varepsilon) = \{ z \in \mathbb{C} : d(z,a) < \varepsilon \}.$$

Click here for the definition

Open Sets

Let $D \subseteq \mathbb{C}$. We say D is **open** if for each $a \in D$, we can find $\varepsilon > 0$ such that $B(a, \varepsilon) \subseteq D$. Click here for the definition

Interior Points

Let $D \subseteq \mathbb{C}$ and $a \in D$. We say that a is an **interior point** of D if we can find $\varepsilon > 0$ such that $B(a, \varepsilon) \subseteq D$.

Click here for the definition

Closed Sets

We say $A \subseteq \mathbb{C}$ **closed** if its complement

$$\mathbb{C} \setminus A = \{ z \in \mathbb{C} : z \notin A \}$$

is open.

Boundary Points

Let $D \subseteq \mathbb{C}$. We say $a \in \mathbb{C}$ is a **boundary point** of D if for all $\varepsilon > 0$, $B(a, \varepsilon) \cap D \neq \emptyset$ and $B(a, \varepsilon) \cap (\mathbb{C} \setminus D) \neq \emptyset$; that is, $B(a, \varepsilon)$ intersects D and $\mathbb{C} \setminus D$ non-trivially.

Click here for the definition

Accumulation Points

Let $D \subseteq \mathbb{C}$. We say $a \in \mathbb{C}$ is an **accumulation point** of D if for any $\varepsilon > 0$,

$$B(a,\varepsilon)\cap (D\setminus \{a\})\neq \emptyset.$$

Click here for the definition

Closure

Let $D \subseteq \mathbb{C}$. We denote the **closure of** D by **D** and define \overline{D} as

$$\overline{D} = D \cup \{x \in D : \forall \varepsilon > 0 \ B(x, \varepsilon) \cap D \neq \emptyset\}.$$

Click here for the definition

Bounded

We say $D \subseteq \mathbb{C}$ is **bounded** if there exists R > 0 such that $D \subseteq \overline{B}(0, R)$; that is, $|z| \leq R$ for all $z \in D$; that is, $D \subseteq \overline{B}(0, R)$.

Click here for the definition

Complex Powers

We define $z^w = \exp(w \log z)$. Note that

$$\log z = \operatorname{Log} z + 2\pi i k$$

= $\ln |z| + i(\operatorname{Arg}(z) + 2\pi k), \ k \in \mathbb{Z}$

is a multi-valued function.

Click here for the definition

Functional Limit

Let $D \subseteq \mathbb{C}$ and $f: D \to \mathbb{C}$ be a function. Let a be an accumulation point of D. Let $\ell \in \mathbb{C}$. We say that ℓ is **the limit of** f(z) as z approaches to a if for all $\varepsilon > 0$, there is $\delta > 0$ such that for all $z \in D$ with $0 < |z - a| < \delta$, we have

$$|f(z) - \ell| < \varepsilon;$$

that is, $z \in D \cap (B(a, \delta) \setminus \{a\})$ implies $f(z) \in B(\ell, \varepsilon)$.

Click here for the definition

Limits at Infinity

(i) Let $f: D \to \mathbb{C}$ be a function and $a \in \mathbb{C}$ be an accumulation point of D. Then we say $\lim_{z \to a} f(z) = \infty$ if for all M > 0, there exists $\delta > 0$ such that

$$z \in D \cap (B(a, \delta) \setminus \{a\})$$

implies $|f(z)| \geq M$; that is, f is unbounded as z approaches to a.

(ii) Let f be a complex function defined on the complement of a ball in \mathbb{C} . We say $\lim_{z\to\infty} f(z) = \ell$ if for all $\varepsilon > 0$, there exists R > 0 such that |z| > R implies

$$|f(z) - \ell| < \varepsilon$$
.

Complex Continuity

Let $D \subseteq \mathbb{C}$ and $f: D \to \mathbb{C}$ be a function. We say f is **continuous at** $a \in D$ if for all $\varepsilon > 0$, there exists $\delta > 0$ such that for all $z \in B(a, \delta) \cap D$, we have $f(z) \in B(f(a), \varepsilon)$.

Click here for the definition

Complex Differentiability

Let $f: D \to \mathbb{C}$ be a function, and $a \in D$ such that a is an accumulation point of $D \setminus \{a\}$. We say that f is **complex differentiable at** a if the limit

$$\lim_{z \to a} \frac{f(z) - f(a)}{z - a} \text{ exists.}$$