

Localização em Ambiente Indoor Usando a Rede Celular

Grupo/Eixo Temático: 5G-OPEN RAN

Participante: Paulo Francisco da Conceição

Coordenador do Grupo: Flávio Geraldo

Data: 16/05/2024

Sumário

- 1. Introdução
- 2. Parâmetros, Técnicas e Tecnologias Usadas na Localização
- 3. Localização Usando a Rede Celular
- 4. Modelagem do Canal
- 5. Estimação de Parâmetros
- 6. Métodos de Localização
- 7. Conclusões

Introdução

Escopo das Contribuições

Parâmetros de Localização

Técnicas de Localização - Trilateração

Técnicas de Localização - Triangulação

Técnicas de Localização - Fingerprint

Tecnologias de Comunicação

Tecnologias de Comunicação

Tecn.	Descrição Parâmetros Técnicas		Vantagens	Desvant.	Acurácia	
WiFi	Usa os pontos de acesso do ambiente para estimar a loca- lização.	AoA/AoD; ToA; TDoA; RSS;	Triangulação; Fingerprint.	Estrutura de comunicação já existente.	Manutenção da base de dados para Fingerprint.	Ambiente interno: 2 a 3 m
ZigBee	Padrão de comunicação comumente encontrado em equipamentos IoT.	AoA/AoD; ToA; TDoA; RSS.	Triangulação; Trilateração.	Baixo consumo energético;	Infraestrutura extra; Indisponibilidade nos smartphones.	Ambiente interno: 2 a 5 m
UWB	Equipamento que provê sinais com alta largura de banda e alta acurá- cia.	AoA/AoD; ToA; TDoA; RSS.	Triangulação; Trilateração; Fingerprint.	Baixo consumo energé- tico; Alta acurá- cia.	Infraestrutura extra; Alto custo; Indisponibilidade nos smartphones.	Ambiente interno: 0.1 a 0.5 m
Beacons BLE	Pequenos equipamentos Bluetooth de baixo custo e baixo consumo energético.	AoA/AoD; ToA; TDoA; RSS.	Triangulação; Fingerprint.	Facilidade na implantação; Baixo consumo energético.	Requer estru- tura própria; Curto al- cance.	Ambiente interno: 0,8 a 2 m

Tecnologias de Comunicação

Tecn.	Descrição	Descrição Parâmetros Técnicas Vantagens		Vantagens	Desvant.	Acurácia
RFID	Etiquetas que transmitem um ID a um receptor.	RSS.	Trilateração; Triangulação.	Facilidade de implantação.	Requer estru- tura própria; Alto custo dos leitores de etiquetas.	Ambiente interno: 2 a 5 m
LPWAN	Tecnologia que ofe- rece baixo consumo energéc e longo al- cance.	AoA/AoD; TDoA; RSS.	Triangulação; Trilateração; Fingerprint.	Baixo consumo energético; Longo alcance.	Infraestrutura extra; Indisponibilidade nos smartphones.	Ambiente interno e externo: 2.5 a 6 m
GPS / GNSS	Satélites espaciais gerenciados por um centro de controle em terra.	ToA; RSS.	Trilateração.	Infraestrutura pronta; Receptores de baixo custo nos smartphones;	Alto custo para melho- rar acurácia;	Ambiente externo: 10 a 15 m;
			/D: -1 ~	Infraestrutura		A
Rede Celular	Usa os sinais provenientes das redes LTE da telefonia móvel.	AoA/AoD; ToA; TDoA; RSS.	Triangulação; Trilateração; Estimadores, como NLS e MLE.	pronta; Disponível em ambiente interno e externo.	Baixa acurácia em ambiente interno;	Ambiente interno e externo: acima de 2 m

Localização Usando a Rede Celular

Parâmetros – Relações Geométricas LoS **NLoS**

$$\tau_i = \frac{||\mathbf{b}_i - \mathbf{m}||}{c} + n_i,$$

$$\theta_i^{az} = \operatorname{atan}\left(\frac{b_{i,y} - m_y}{b_{i,x} - m_x}\right) + n_i,$$

$$\theta_i^{el} = \frac{\pi}{2} - \operatorname{atan}\left(\frac{b_{i,z} - m_z}{\sqrt{(b_{i,x} - m_x)^2 + (b_{i,y} - m_y)^2}}\right) + n_i, \qquad \theta_i^{el} = \frac{\pi}{2} - \operatorname{atan}\left(\frac{s_{i,z} - m_z}{\sqrt{(s_{i,x} - m_x)^2 + (s_{i,y} - m_y)^2}}\right) + n_i,$$

$$\phi_i^{az} = \operatorname{atan}\left(\frac{m_y - b_{i,y}}{m_x - b_{i,x}}\right) + n_i,$$

$$\phi_i^{el} = \frac{\pi}{2} - \operatorname{atan}\left(\frac{m_z - b_{i,z}}{\sqrt{(m_x - b_{i,x})^2 + (m_y - b_{i,y})^2}}\right) + n_i.$$

$$\tau_i = \frac{||\mathbf{s}_i - \mathbf{b}|| + ||\mathbf{s}_i - \mathbf{m}||}{c} + n_i,$$

$$\theta_i^{az} = \operatorname{atan}\left(\frac{s_{i,y} - m_y}{s_{i,x} - m_x}\right) + n_i,$$

$$\theta_i^{el} = \frac{\pi}{2} - \operatorname{atan}\left(\frac{s_{i,z} - m_z}{\sqrt{(s_{i,x} - m_x)^2 + (s_{i,y} - m_y)^2}}\right) + n_i,$$

$$\phi_i^{az} = \operatorname{atan}\left(\frac{s_{i,y} - b_y}{s_{i,x} - b_x}\right) + n_i,$$

$$\phi_i^{el} = \frac{\pi}{2} - \operatorname{atan}\left(\frac{m_z - b_{i,z}}{\sqrt{(m_x - b_{i,x})^2 + (m_y - b_{i,y})^2}}\right) + n_i.$$

$$\phi_i^{el} = \frac{\pi}{2} - \operatorname{atan}\left(\frac{s_{i,x} - b_x}{\sqrt{(s_{i,x} - b_x)^2 + (s_{i,y} - b_y)^2}}\right) + n_i.$$

Método de Taylor

Algoritmo 1: Estimador Baseado no Método de Taylor

```
Entrada: Tol, \Sigma, \widehat{\mathbf{m}}, \mathbf{g}, Max, \mathbf{b}, L
        Saída: m
  1 início
                 para o \leftarrow 1 até Max faça
                           para i \leftarrow 1 até L faça
                                    f_i(\widehat{\mathbf{m}}) \leftarrow ||\widehat{\mathbf{x}} - \mathbf{b}_i||
                                  \mathbf{J}_{i,1:3} \leftarrow \left[ \frac{\partial f_i(\widehat{\mathbf{m}})}{\partial \widehat{m}_x}, \frac{\partial f_i(\widehat{\mathbf{m}})}{\partial \widehat{m}_y}, \frac{\partial f_i(\widehat{\mathbf{m}})}{\partial \widehat{m}_z} \right]
                           fim
                           mAnt \leftarrow \widehat{m}
                           \widehat{\mathbf{m}} \leftarrow \widehat{\mathbf{m}} + (\mathbf{J}^T \mathbf{\Sigma}^{-1} \mathbf{J})^{-1} \mathbf{J}^T \mathbf{\Sigma}^{-1} [\mathbf{g} - \mathbf{f}(\widehat{\mathbf{m}})]
                           \varepsilon \leftarrow ||\mathbf{mAnt} - \widehat{\mathbf{m}}||
                           se \varepsilon \ll Tol então
10
                                     Interrompa
11
                           _{\rm fim}
12
                 _{
m fim}
                 retorna \widehat{m}
15 fim
```

Localização Usando a Rede Celular - Los **(erise**

Localização Usando a Rede Celular – Los **(erise**

Localização Usando a Rede Celular

Parâmetros	Condição de Propagação	Quantidade de BSs	Configuração da Antena	Técnica	Dimensão da Localização	Esforço Com- putacional	Acurácia Estimada	Aplicações Potenciais
ToA	LoS	>2	Qualquer	Trilateração	2D	Baixo	Baixa	Ambiente urbanos e rurais: Navegação veicular
AoD/AoA	LoS	>1	Unidimensional	l Triangulação	2D	Baixo	Baixa	Ambientes externos e in- ternos: Navegação veicular; Marketing
AoD/AoA	LoS	>1	Bidimensional	Triangulação	3D	Médio	Baixa	Ambientes externos e in- ternos: Navegação veicular; Marketing
ToA+AoD/Ao	A LoS	>0	Unidimensional	Relação Geo- métrica	2D	Baixo	Média	Agricultura inteligente; Navegação em ambientes externos
ToA+AoD/Ao	A LoS	>0	Bidimensional	Relação Geo- métrica	3D	Médio	Média	Agricultura inteligente; Navegação em ambientes internos
AoD+AoA	LoS/NLoS	>1	Unidimensional MIMO	métrica	2D	Médio	Média	Navegação de pedestres em ambientes externos; veícu- los autônomos
AoD+AoA	LoS/NLoS	>1	Bidimensional MIMO	Otimização / Relação Geo- métrica	3D	Alto	Média	Navegação de pedestres em ambientes internos, como edifícios
ToA+AoD+Ao	oA LoS/NLoS	>0	Unidimensional MIMO	métrica	2D	Médio	Alta	Aplicações de alta acurácia onde a altura não é impor- tante
ToA+AoD+Ao	oA LoS/NLoS	>0	Bidimensional MIMO	Otimização / Relação Geo- métrica	3D	Alto	Alta	Ambientes industriais com- plexos; Veículos autôno- mos

Localização em Rede 5G

Estágio 1

Modelagens

- 1. Sinal Transmitido
- 2. Canal
- 3. Sinal Recebido

Estágio 2

Estimação de Parâmetros

 DCS-SOMP Adaptativo

Estágio 3

Estimação da Localização

- Condição LoS
- Condição NLoS

Localização em Rede 5G – Modelagem do **(erise** Canal

1) Definição do **Ambiente**

- 2) Definição do Arranjo de antenas
- 3) A Frequência da portadora (mmWave)

Amb.	Ι.Ο	InF					
Carac.	InO	InF-SL	InF-DL	InF-SH	InF-DH	InF-HH	
Descrição	escrição Escritório		Muitos obstáculos BS baixa	Poucos obstáculos BS alta	Muitos obstáculos BS alta	BS alta UE alto	
Tamanho (m ²)	≤ 6000	$20 \le m^2 \le 160000$					
h_{amb} (m)	3	≤ 25	≤ 15	≤ 25	≤ 15	≤ 25	
h_{obs} (m)	N/A		$h_{obs} \le$	$10 \text{ (m)} \text{ e } h_{ob}$	$l_{obs} \le l_{obs}$		
h_{BS} (m) 3		$\leq h_{obs}$ $> h_{obs}$					
h_{UE} (m)	1		< <i>1</i>	h_{obs}		$> h_{obs}$	
d_{OBS} (%)	N/A	< 40	≥ 40	< 40	≥ 40	N/A	
Condição	LoS/NLoS	LoS/NLoS	LoS/NLoS	LoS/NLoS	LoS/NLoS	LoS	

Localização em Rede 5G – Modelagem do **(erise**) **Canal**

- 1) Definição do Ambiente
- 2) Definição do Arranjo de antenas
- 3) A Frequência da portadora (mmWave)

Planar – URA

Localização em Rede 5G - Modelagem do **(erise** Canal

- 1) Definição do Ambiente
- 2) Definição do Arranjo de antenas
- 3) A Frequência da portadora (mmWave)

- 1. Aumenta a resolução Temporal
- 2. Aumenta a Esparsidade da resposta do canal
- 3. Favorece a estimação de ToA/AoA
- 4. Diminui a quantidade de múltiplas reflexões
- 5. Está alinhado com o modelo de propagação de salto único

Localização em Rede 5G - Modelagem do **Erise** Canal

Modelo do Canal (MIMO 3GPP) : $\mathbf{H}[n] = \mathbf{A}_r[n]\mathbf{\Gamma}[n]\mathbf{A}_t^H[n]$

Vetor resposta: $A_r^{URA} = [1, e^{j1[\Theta]+1[\Theta]}, \dots, e^{j(N_x-1)[\Theta]+(N_y-1)[\Theta]}]^T$

$$\Theta = \frac{2\pi}{\lambda} d_x sin(\theta^{el}) cos(\theta^{az}) \ e \ \Theta = \frac{2\pi}{\lambda} d_y sin(\theta^{el}) cos(\theta^{az})$$

$$\Gamma[n] = \sqrt{N_t N_r} \times \operatorname{diag} \left\{ \frac{h_0}{\sqrt{\rho_0}} e^{\frac{-j2\pi n \tau_0}{NT_s}}, \dots, \frac{h_{L-1}}{\sqrt{\rho_{L-1}}} e^{\frac{-j2\pi n \tau_{L-1}}{NT_s}} \right\}$$

Resposta do Canal

Localização em Rede 5G – Modelagem do **(erise** Canal

Modelo da transmissão:

$$\mathbf{w}[n] = \mathbf{F}[n]\mathbf{x}^T[n]$$

Modelo do sinal Recebido:

$$\mathbf{y}[n] = \mathbf{H}[n]\mathbf{w}[n] + \mathbf{n}[n]$$

Localização em Rede 5G – Estimação de CETI Parâmetros

Preparação: Vetorização do sinal Matriz de busca

DCS-SOMP

Correlação Máxima entre o sinal e a matriz de busca

Ortogonalização e cálculo do resíduo

Localização em Rede 5G – Estimação de Parâmetros

DCS-SOMP Adaptativo

Preparação: Vetorização do sinal Matriz de busca

Correlação Máxima entre o sinal e a matriz de busca

Ortogonalização e cálculo do resíduo

Localização em Rede 5G – Estimação de **Crise**

Parâmetros

$$\boldsymbol{\omega}^{(0)}[n] = (\mathbf{U}_t^{(0)} \mathbf{w}[n])^T \otimes \mathbf{U}_r^{(0)}$$

$$\boldsymbol{\omega}^{(0)}[n] = (\mathbf{U}_t^{(0)} \mathbf{w}[n])^T \otimes \mathbf{U}_r^{(0)} \qquad I_{\phi}^l = \frac{\tilde{h}_l}{q_{az}q_{el}}, \quad \iota_l^{az} = \left\lfloor \frac{I_{\phi}^l}{q_{az}} \right\rfloor, \quad \iota_l^{el} = I_{\phi}^l \bmod q_{el},$$

$$\tilde{h}_l = \underset{m=1,\dots,(q_{az}q_{el})^2}{\operatorname{argmax}} \sum_{n=1}^{N} \frac{|\boldsymbol{\omega}_m^{\mathrm{H}}[n] \mathbf{R}_l[n]|}{\|\boldsymbol{\omega}_m[n]\|_2}$$

$$\phi_l^{az} = \tilde{\phi}_{\iota_l^{az}}^{(0)}, \quad \phi_l^{el} = \dot{\phi}_{\iota_l^{el}}^{(0)}.$$

$$I_{\theta}^{l} = \tilde{h}_{l} - I_{\phi}^{l} q_{az} q_{el}, \quad \gamma_{l}^{az} = \left| \frac{I_{\theta}^{l}}{q_{az}} \right|, \quad \gamma_{l}^{el} = I_{\theta}^{l} \mod q_{el},$$

$$\check{\phi}_{\text{início}}^{az} = \begin{cases}
\check{\phi}_{\iota_{l}^{az}-1}^{(k-1)}, \text{ se } \iota_{l}^{az} > 1 \\
0, \text{ se } \iota_{l}^{az} = 1
\end{cases} \text{ e } \check{\phi}_{\text{fim}}^{az} = \begin{cases}
\check{\phi}_{\iota_{l}^{az}+1}^{(k-1)}, \text{ se } \iota_{l}^{az} < q_{az} \\
q_{az}, \text{ se } \iota_{l}^{az} = q_{az}
\end{cases}$$

Localização em Rede 5G – Estimação de Parâmetros

Localização em Rede 5G – Estimação de Parâmetros

Localização em Rede 5G – Estimação de Parâmetros – Beamforming Adaptativo

Localização em Rede 5G – Estimação de Parâmetros – Beamforming Adaptativo

Localização em Rede 5G – Estimação de Parâmetros – Beamforming Adaptativo

Localização em Rede 5G

Estágio 1

Modelagens

- 1. Sinal Transmitido
- 2. Canal
- 3. Sinal Recebido

Estágio 2

Estimação de Parâmetros

 DCS-SOMP Adaptativo

Estágio 3

Estimação da Localização

- Condição LoS
- Condição NLoS

Localização em Rede 5G

Localização em Rede 5G Etapa 1: detecção de LoS

Localização em Rede 5G Etapa 2: Método LoS

$$\widehat{\mathbf{m}} = \mathbf{b} + d \begin{bmatrix} sin(\phi_0^{el})cos(\phi_0^{az}) \\ sin(\phi_0^{el})sin(\phi_0^{az}) \\ cos(\phi_0^{el}) \end{bmatrix}.$$

Localização em Rede 5G Etapa 2: Método NLoS

Localização em Rede 5G Etapa 2: Método NLoS

Localização em Rede 5G Etapa 3: Método NLoS

Método de Gauss-Newton para cada SC

$$\varrho = \begin{bmatrix}
\varrho_{1,1} & \varrho_{1,2} & \cdots & \varrho_{1,K} \\
\varrho_{2,1} & \varrho_{2,2} & \cdots & \varrho_{2,K} \\
\varrho_{3,1} & \varrho_{3,2} & \cdots & \varrho_{3,K} \\
\varrho_{4,1} & \varrho_{4,2} & \cdots & \varrho_{4,K} \\
\varrho_{5,1} & \varrho_{5,2} & \cdots & \varrho_{5,K} \\
\varrho_{6,1} & \varrho_{6,2} & \cdots & \varrho_{6,K}
\end{bmatrix}$$

Localização do UE

Localização dos SCs

Ambiente	InO-SH		
Tamanho (m)	$20 \times 10 \times 6 \ (C \times L \times A)$		
Posição da BS	$\mathbf{b} = [-8, \ 0, 5]^T$		
Posição do UE	$\mathbf{m} = [7, 10, 1]^T$		
Posições dos SCs	$\mathbf{s}_1 = [-10, 4, 3]^T$ $\mathbf{s}_2 = [-10, 8, 4]^T$ $\mathbf{s}_3 = [10, 8, 3]^T$ $\mathbf{s}_4 = [10, 4, 4]^T$		

Método	RMSE (m)	Acurácia – 95 % (m)	Tempo de execução (s)
Método LoS	0,54	0,91	0,10
Proposta 1	1,15	2,95	0,19
Proposta 2	0,95	1,58	0,94
Shikur e Weber (2014)	12,14	14,96	0,50
Wymeersch (2018)	14,37	15,10	8,97
Wei, Palleit e Weber (2011)	5,63	13,17	0,22

Tabela 5.2 – Requerimentos de acurácia para ambientes internos estabelecidos pela 3GPP.

Nível de Serviço	Acurácia Horizontal 95% (m)	Acurácia Vertical 95% (m)
1	10	3
2	3	3
3	1	2
4	1	2
5	0,3	2
6	0,3	2
7	0,2	0,2

Fonte: Dados obtidos de 3GPP (2023)

Tabela 5.3 – Dados finais do *IndoorLoc*.

Métrica	Valor Obtido
RMSE (m)	0,7384
Acurácia Total para 95% (m)	1,4855
Acurácia Horizontal para 95% (m)	1,3588
Acurácia Vertical para 95% (m)	0,7702

Publicações

an Open Access Journal by MDPI

Adaptive DCS-SOMP for Localization Parameter Estimation in 5G Networks

Paulo Francisco da Conceição; Flávio Geraldo Coelho Rocha

Sensors 2023, Volume 23, Issue 22, 9073

Submetido

 CONCEIÇÃO, P. F.; LEMOS, R. P.; ROCHA, F. G. C. A Joint Channel Modeling, Parameter Estimation, and Geometry-Based Indoor Localization for 5G Systems. Em: Transactions on Emerging Telecommunications Technologies (ETT) – Wiley.

Atividade Práticas no Cerise

- 1) Extração de CSI usando as placas disponíveis
 - Extração de CSI usando as placas WiFi
- 2) Localização e detecção de pose usando CSI
 - Testes com métodos de aprendizagem de máquina com dataSets prontos e com extrações reais
 - Desenvolvimento de algoritmo próprio

Conclusões

- Importância da Localização
- O processo de localização deve:
 - Modelagem do canal e sinal recebido
 - Estimação dos Parâmetros de Localização
 - Localizar a MS
- Os métodos propostos atendem as especificações da FCC e 3GPP
- Pesquisas futuras:
 - Estudo de Beamforming e Arranjo de Antenas
 - Experimento em ambiente real usando USRP
 - Reconfigurable Intelligent Surfaces (RIS)

Localização em Ambiente Indoor Usando a Rede Celular

Grupo/Eixo Temático: 5G-OPEN RAN

Participante: Paulo Francisco da Conceição (pfrancisco43@gmail.com)

Obrigado!

Data: 27/03/2024