

Computer Architecture

Hossein Asadi
Department of Computer Engineering
Sharif University of Technology
asadi@sharif.edu

Today's Topics

- Adders
 - Ripple carry
 - Carry select adder
 - Carry-look-ahead adder
- Multipliers
 - Combinational multiplier
 - Sequential multiplier
 - Booth multiplier

Copyright Notice

- · Parts (text & figures) of this lecture adopted from:
 - Computer Organization & Design, The Hardware/Software Interface, 3rd Edition, by D. Patterson and J. Hennessey, MK publishing, 2005.
 - "Intro to Computer Architecture" handouts, by Prof. Hoe, CMU, Spring 2009.
 - "Computer Architecture & Engineering" handouts, by Prof. Kubiatowicz, UC Berkeley, Spring 2004.
 - "Intro to Computer Architecture" handouts, by Prof. Hoe, UWisc, Spring 2021.
 - "Computer Arch I" handouts, by Prof. Garzarán, UIUC, Spring 2009.
 - "Intro to Computer Organization" handouts, by Prof. Mahlke & Prof. Narayanasamy, Winter 2008.

Lecture 4

Unsigned Binary Addition

2's Complement Addition

2's Complement Subtraction

- Subtraction
 - Similar to adding negative number

Analysis of an "n-bit" Ripple-Carry (RC) Adder

- Size/Complexity
 - n * SizeOf(Full Adder)
 - -O(n)
- Critical Path Delay
 - n * DelayOf(Full Adder)
 - n * 2 * gate delay
 - -O(n)

High-Performance Adders

- · Question:
 - Any adder running faster than RC adder?
 - · How to reduce carry propagation delay?
- · Answer:
 - Compute intermediate carry signal
 - E.g., compute C1, C2, and C3 in parallel

Carry-Select Adder (CSA)

- · Delay
 - $-8*D_{FA}+D_{mux}$
- · Cost
 - 24*F

Sharif University of Technology, Spring 2021

Multi-Stage CSA

- · Delay
 - $-4*D_{FA}+3*D_{mux}$
- · Cost
 - 28*FA + 3*Mux

10

Multi-Stage CSA (cont.)

- K-Stage n-bit CSA
- · Delay
 - $(n/k)*D_{FA} + (k-1)*D_{mux}$
- · Cost
 - $N^{(2k-1)/k}FA + (k-1)Mux$

Carry Generate & Propagate

- If a.b = 1 \rightarrow Cout = 1 regardless of C_{in}
 - Carry generate
- If a xor $b = 1 \rightarrow C_{out} = C_{in}$
 - Carry propagate
- · We define
 - $Gi = a_i.b_i$ (Generate)
 - $Pi = a_i \times or b_i$ (Propagate)
 - $\rightarrow C_{i+1} = G_i + P_i.C_i$

Carry Look-Ahead Adder

- C1 = G0 + P0.C0
- C2 = G1 + P1.C1 = G1 + P1.(G0+P0.C0)
 - = G1 + P1.G0 + P1.P0.C0
- C3 = G2 + P2.G1 + P2.P1.G0 + P2.P1.P0.C0
- C4 = G3 + P3.G2 + P3.P2.G1 + P3.P2.P1.G0 + P3.P2.P1.P0.C0

Carry Look-Ahead Adder (cont.)

- Delay Complexity
 - O(log n)
- Size Complexity
 - $O(n^2)$
- Manageable for Small n's
- · Can be used in Two-Level CLA Adders
 - 16-bit adder using 4-bit CLA modules

Carry Look-Ahead Adder (cont.)

- · Dg: Delay of a Single Gate
- At each Stage
 - Dg for generating all Pi and Gi
 - 2*Dg for generating all Ci (2-level gate)
 - 2*Dg for generating all Si (2-level gate)
- Total Delay: 5*Dg (independent of n)
 - Issue?
 - D(gate with fainin=32) >> D(gate w fainin=2)
 - [Copyright I. Kormen, umass, spring'08]

Carry Look-Ahead Adder (cont.)

- n Stages Divided into Groups
 - Separate CLA in each group
 - Group interconnected by RC
- Example: Group Size =4
 - Dg for generating all Pi and Gi
 - 2*Dg to propagate carry through a group
 - (n/4)*2*Dg to propagate carry using RC
 - 2*Dg to generate Si
 - Total: $[2(n/4)+3]Dg = [n/2+3]*Dg \rightarrow$
 - 75% reduction compared to full RC Lecture 4 Sharif University of Technology, Spring 2021

Multiplier

- Combinational Multiplier
 - Also called array multiplier
- Shift-Add Multiplier
- Booth Mulitplier

Combinational Multiplier

Shift-Add Multiplier

Booth's Algorithm

• Example $2 \times 6 = 0010 \times 0110$:

```
0010
x 0110
+ 0000 shift (0 in multiplier)
+ 0010 add (1 in multiplier)
+ 0010 add (1 in multiplier)
+ 0000 shift (0 in multiplier)
00001100
```

ALU with add or subtract gets same result in more than one way:

$$6 = -2 + 8$$

$$0110 = -00010 + 01000 = 11110 + 01000$$

For example

	0010
X	0110
	0000 shift (0 in multiplier)
_	0010 sub (first 1 in multply)
	0000 shift (mid string of 1s)
+	0010 add (prior step had last 1)
	00001100

Booth's Algorithm (cont.)

Current	Bit to						
Bit	Right	Explanation	Example	Op			
1	0	Begins run of 1s	000111 <u>10</u> 00	sub			
1	1	Middle of run of 1s	00011 <u>11</u> 000	none			
0	1	End of run of 1s	00 <u>01</u> 111000	add			
0	0	Middle of run of Os	0 <u>00</u> 1111000	none			

- Originally developed for Speed
 - When shift was faster than add

Booth Encoding: Example

1	0	0	1	1	1	1	0	1	0
-1	0	1	0	0	0	-1	1	-1	0

Booth's Algorithm: Example

- Example
 - multiply (-5) x 2
- Let's use 5-bit 2's complement:

A: -5 is 11011 (multiplier)

B: 2 is 00010 (multiplicand)

Beginning Product

Multiplier is:

11011

 Add 5 leading zeros to multiplier to get beginning product:

00000 11011

Step 1 for each pass

- Use LSB (least significant bit) and previous
 LSB to determine arithmetic action
 - If it is FIRST pass, use $\mathbf{0}$ as previous LSB
- Possible arithmetic actions:
 - 00 → no arithmetic operation
 - 01 → add multiplicand to left half of product
 - -10 → subtract multiplicand from left half of product
 - -11 → no arithmetic operation

Step 2 for Each Pass

 Perform an arithmetic right shift (ASR) on entire product

· Note:

 For X-bit operands, Booth's algorithm requires X passes

Example

- Let's continue with our example of multiplying
 (-5) x 2
- Remember:
 - -5 is 11011 (multiplier)
 - -2 is 00010 (multiplicand)
- And we added 5 leading zeros to multiplier to get beginning product:

00000 11011

Example

Initial Product and previous LSB

00000 11011 0

(Note: Since this is first pass, we use 0 for previous LSB)

Pass 1, Step 1: Examine last 2 bits

00000 11011 0

Last two bits are 10, so we need to:

subtract multiplicand from left half of product

Example: Pass 1 (cont.)

• Pass 1, Step 1: Arithmetic action

(1) 00000 (left half of product)

-00010 (mulitplicand)

11110 (uses a phantom borrow)

Place result into left half of product
 11110 11011 0

Example: Pass 1 (cont.)

- Pass 1, Step 2: ASR (arithmetic shift right)
 - -Before ASR

11110 11011 0

-After ASR

11111 01101 1

(left-most bit was 1, so a 1 was shifted in on the left)

Example: Pass 2

Current Product and previous LSB

11111 01101 1

· Pass 2, Step 1: Examine last 2 bits

11111 01101 1

Last two bits are 11, so we do NOT need to perform an arithmetic action --

just proceed to step 2.

Example: Pass 2 (cont.)

- Pass 2, Step 2: ASR (arithmetic shift right)
 - -Before ASR

11111 01101 1

-After ASR

11111 10110 1

(left-most bit was 1, so a 1 was shifted in on left)

Example: Pass 3

Current Product and previous LSB

11111 10110 1

Pass 3, Step 1: Examine last 2 bits

11111 10110 1

Last two bits are 01, so we need to:

add multiplicand to left half of product

Example: Pass 3 (cont.)

Pass 3, Step 1: Arithmetic action

```
(1) 1111 (left half of product)
+00010 (mulitplicand)
00001 (drop the leftmost carry)
```

Place result into left half of product
 00001 10110 1

Example: Pass 3 (cont.)

- Pass 3, Step 2: ASR (arithmetic shift right)
 - -Before ASR

00001 10110 1

-After ASR

00000 11011 0

(left-most bit was 0, so a 0 was shifted in on left)

Example: Pass 4

Current Product and previous LSB

00000 11011 0

Pass 4, Step 1: Examine last 2 bits

00000 11011 0

Last two bits are 10, so we need to:

subtract multiplicand from left half of product

Example: Pass 4 (cont.)

• Pass 4, Step 1: Arithmetic action

(1) 00000 (left half of product)

-00010 (mulitplicand)

11110 (uses a phantom borrow)

Place result into left half of product
 11110 11011 0

Example: Pass 4 (cont.)

- Pass 4, Step 2: ASR (arithmetic shift right)
 - -Before ASR

11110 11011 0

-After ASR

11111 01101 1

(left-most bit was 1, so a 1 was shifted in on left)

Example: Pass 5

Current Product and previous LSB

11111 01101 1

· Pass 5, Step 1: Examine last 2 bits

11111 01101 1

The last two bits are 11, so we do NOT need to perform an arithmetic action --

just proceed to step 2.

Example: Pass 5 (cont.)

- Pass 5, Step 2: ASR (arithmetic shift right)
 - -Before ASR

11111 01101 1

-After ASR

11111 10110 1

(left-most bit was 1, so a 1 was shifted in on left)

Final Product

• We have completed 5 passes on 5-bit operands, so we are done.

 Dropping the previous LSB, resulting final product is:

11111 10110

Verification

- To confirm we have correct answer, convert the 2's complement final product back to decimal
- Final product: 11111 10110
- Decimal value: -10
 which is CORRECT product of:

 $(-5) \times 2$

Backup

