Domain Generalization via Model-Agnostic Learning of Semantic Features

Qi Dou Daniel C. Castro Konstantinos Kamnitsas Ben Glocker Biomedical Image Analysis Group, Imperial College London, UK {qi.dou,dc315,kk2412,b.glocker}@imperial.ac.uk

> (NeurIPS 2019) Cite: 141

> > 2021.07.16 임진혁

On Index

- 1. Introduction: What is DG?
- 2. Proposed Method
- 3. Experiment
- 4. Conclusion

1 Introduction: what is Domain Generalization?

Deep Learning's remarkable success

BUT it's based on the assumption that training and test data are sampled from the same distribution

In Real Word Application : this assumption is often violated
(Train/Test => different distribution => Test sampled from Unseen Domain)

Domain shift로 인해 실제 industrial 적용 시에는 performance degradation인 경우가 흔함

1 Introduction: what is Domain Generalization?

Domain shift로 인해 실제 industrial 적용 시에는 performance degradation인 경우가 흔함

- =>Generalization capability to unseen domains is crucial when deploying to real-world conditions.
- => Domain Generalization은 Unseen Domain Performance Degradation를 해결하고자 하는 연구분야
- => Data Distribution이 바뀌는 Domain Drifts에 강건한 모델 학습

Figure 1. Domain adaptation in the true data space: Expectation vs. Reality.

1 Introduction: what is Domain Generalization?

Domain Generalization

- assumes "The existence of domain-variant patterns" in the inputs
- learn domain-invariant feature representation (Generalizable features)
 - (in CV: "capture general semantic features for object recognition"
- train on multi-domain source data for generalizing to new target domain without retraining
- perform well across seen and unseen domains
- information or explicit knowledge about the new domains is not available (real-world applications)

How to learn domain-invariant feature representation (Generalizable features)

which is discriminative for the specific task but insensitive to changes of domain-specific statistics

- regularization of the feature space
 Domain generalization via invariant feature representation (ICML 2013)
- adversarial feature alignment via maximum mean discrepancy
 Domain generalization with adversarial feature learning (CVPR 2018)
- Using episodic learning(Meta Learning)
 - splitting the available source domains into meta-train and meta-test at each iteration (to simulate domain shift)
 - (1) Task error: Learning to generalize: Meta-learning for domain generalization.(aaai 2018)
 - (2) Classifier regularizer: MetaReg: Towards domain generalization using meta-regularization (NIPS2018)
 - (3) Feature Critic Module: Unsupervised domain adaptation with residual transfer networks (NIPS2016)
 - Etc) Episodic Training for Domain Generalization (arXiv 2019)

How to learn domain-invariant feature representation (Generalizable features)

MASF(Model-Agnostic Learning of Semantic Feature)

[1] training a model on multi-domain source

- directly generalize to target domains with unknown statistics(목표)

[2] expose the optimization to domain shift

- gradient-based meta-train and meta-test procedures

[3] two complementary losses

- explicitly regularize the semantic structure of the feature space

[4] a derived soft confusion matrix

- to preserve general knowledge about inter-class relationships

[5] Locally

- domain- independent class-specific
- cohesion and separation of
- sample features with
- a metric-learning component

How to learn domain-invariant feature representation (Generalizable features)

MASF(Model-Agnostic Learning of Semantic Feature)

Figure 1: An overview of the proposed model-agnostic learning of semantic features (MASF): (a) episodic training under simulated domain shift, with gradient flows indicated; (b) global alignment of class relationships; (c) local sample clustering, towards cohesion and separation. F_{ψ} and T_{θ} are the feature extractor and the task net, $F_{\psi'}$ and $T_{\theta'}$ are their updated versions by inner gradient descent on the task loss $\mathcal{L}_{\text{task}}$, the M_{ϕ} is a metric embedding net, and D_k denotes different source domains.

MASF(Model-Agnostic Learning of Semantic Feature)

Algorithm 1 Model-agnostic learning of semantic features for domain generalization

Input: Source training domains $\mathcal{D} = \{D_k\}_{k=1}^K$; hyperparameters $\alpha, \eta, \gamma, \beta_1, \beta_2 > 0$ Output: Feature extractor F_{ψ} , task network T_{θ} , embedding network M_{ϕ}

- 1: repeat
- 2: Randomly split source domains \mathcal{D} into disjoint meta-train \mathcal{D}_{tr} and meta-test \mathcal{D}_{te}
- 3: $(\psi', \theta') \leftarrow (\psi, \theta) \alpha \nabla_{\psi, \theta} \mathcal{L}_{task}(\mathcal{D}_{tr}; \psi, \theta)$
- 4: Compute global class alignment loss:

$$\mathcal{L}_{\text{global}} \leftarrow \frac{1}{|\mathcal{D}_{\text{tr}}|} \sum_{D_i \in \mathcal{D}_{\text{tr}}} \frac{1}{|\mathcal{D}_{\text{te}}|} \sum_{D_j \in \mathcal{D}_{\text{te}}} \ell_{\text{global}}(D_i, D_j; \psi', \theta')$$
 // Section 3.2

5: Compute local sample clustering loss:

$$\mathcal{L}_{\text{local}}(\mathcal{D}; \psi', \phi) \leftarrow \mathbb{E}_{\mathcal{D}}[\ell_{\text{con}}^{n,m}] \text{ or } \mathbb{E}_{\mathcal{D}}[\ell_{\text{tri}}^{a,p,n}]$$
 // Section 3.3

- 6: $\mathcal{L}_{\text{meta}} \leftarrow \beta_1 \mathcal{L}_{\text{global}} + \beta_2 \mathcal{L}_{\text{local}}$
- 7: $(\psi, \theta) \leftarrow (\psi, \check{\theta}) \eta \nabla_{\psi, \theta} (\mathcal{L}_{\text{task}} + \mathcal{L}_{\text{meta}})$
- 8: $\phi \leftarrow \phi \gamma \nabla_{\phi} \mathcal{L}_{local}$
- 9: **until** convergence

MASF(Model-Agnostic Learning of Semantic Feature)

Algorithm 1 Model-agnostic learning of semantic features for domain generalization

Input: Source training domains $\mathcal{D}=\{D_k\}_{k=1}^K$; hyperparameters $\alpha,\eta,\gamma,\beta_1,\beta_2>0$ Output: Feature extractor F_ψ , task network T_θ , embedding network M_ϕ

- 1: repeat
- 2: Randomly split source domains \mathcal{D} into disjoint meta-train \mathcal{D}_{tr} and meta-test \mathcal{D}_{te}
- 3: $(\psi', \theta') \leftarrow (\psi, \theta) \alpha \nabla_{\psi, \theta} \mathcal{L}_{task}(\mathcal{D}_{tr}; \psi, \theta)$
- 4: Compute global class alignment loss:

$$\mathcal{L}_{\text{global}} \leftarrow \frac{1}{|\mathcal{D}_{\text{tr}}|} \sum_{D_i \in \mathcal{D}_{\text{tr}}} \frac{1}{|\mathcal{D}_{\text{te}}|} \sum_{D_j \in \mathcal{D}_{\text{te}}} \ell_{\text{global}}(D_i, D_j; \psi', \theta')$$
 // Section 3.2

5: Compute local sample clustering loss:

$$\mathcal{L}_{\text{local}}(\mathcal{D}; \psi', \phi) \leftarrow \mathbb{E}_{\mathcal{D}}[\ell_{\text{con}}^{n,m}] \text{ or } \mathbb{E}_{\mathcal{D}}[\ell_{\text{tri}}^{a,p,n}]$$
 // Section 3.3

- 6: $\mathcal{L}_{\text{meta}} \leftarrow \beta_1 \mathcal{L}_{\text{global}} + \beta_2 \mathcal{L}_{\text{local}}$
- 7: $(\psi, \theta) \leftarrow (\psi, \theta) \eta \nabla_{\psi, \theta} (\mathcal{L}_{\text{task}} + \mathcal{L}_{\text{meta}})$
- 8: $\phi \leftarrow \phi \gamma \nabla_{\phi} \mathcal{L}_{loca}$
- 9: until convergence

MASF:

Model is composed of Feature Extractor : X -> Z Task Network: Z -> R^c

- Z: feature space (low dimensional than x)
- C: number of classes in Y

$$F_{\psi}: \mathcal{X}
ightarrow \mathcal{Z},$$

$$T_{ heta}: \mathcal{Z}
ightarrow \mathbb{R}^{C}$$

$$egin{aligned} F_{\psi}: \mathcal{X} &
ightarrow \mathcal{Z}, \ &T_{ heta}: \mathcal{Z} &
ightarrow \mathbb{R}^C \ &p(y \mid \mathbf{x}; \psi, heta) = \hat{\mathbf{y}} = \operatorname{softmax}(T_{ heta}\left(F_{\psi}(\mathbf{x})
ight)) \end{aligned}$$

MASF:

Just optimized for predictions to task (Task Loss)

Just are optimized about task-specific Loss(Loss(task))

$$\psi, \theta$$

$$\ell_{\mathrm{task}} \; (y, \hat{\mathbf{y}}) = -\sum_{c} \mathbf{1}[y=c] \log \hat{y}_{c}$$
 \Rightarrow Of course, it makes the model to be excellent predictor for training domain, and produce highly discriminative features Z

⇒ But it can't prevent the model to be overfitted to source domain & suffering from degradation o unseen test domain

MASF: How to capture general semantic features?

"Episodic training scheme":

To expose the model optimization to distribution mismatch

- ⇒ The model is trained on a sequence of simulated episode with domain shift
- : At each iteration, available domains D are randomly split into sets of meta-train and meta-test domains.
- : be trained to semantically perform well on held-out test domain after being optimized with one or more steps of gradient descent with train domains.

$$(\psi', \theta') = (\psi, \theta) - \alpha \nabla_{\psi, \theta} \mathcal{L}_{\text{task}}(\mathcal{D}_{\text{tr}}; \psi, \theta),$$

MASF: How to capture general semantic features?

Algorithm 1 Model-agnostic learning of semantic features for domain generalization

```
Input: Source training domains \mathcal{D} = \{D_k\}_{k=1}^K; hyperparameters \alpha, \eta, \gamma, \beta_1, \beta_2 > 0
Output: Feature extractor F_{\psi}, task network T_{\theta}, embedding network M_{\phi}
 1: repeat
```

- Randomly split source domains \mathcal{D} into disjoint meta-train \mathcal{D}_{tr} and meta-test \mathcal{D}_{te}
- $(\psi', \theta') \leftarrow (\psi, \theta) \alpha \nabla_{\psi, \theta} \mathcal{L}_{\text{task}}(\mathcal{D}_{\text{tr}}; \psi, \theta)$ 3:
- Compute global class alignment loss:

$$\mathcal{L}_{\text{global}} \leftarrow \frac{1}{|\mathcal{D}_{\text{tr}}|} \sum_{D_i \in \mathcal{D}_{\text{tr}}} \frac{1}{|\mathcal{D}_{\text{te}}|} \sum_{D_j \in \mathcal{D}_{\text{te}}} \ell_{\text{global}}(D_i, D_j; \psi', \theta')$$
 // Section 3.2

Compute local sample clustering loss:

$$\mathcal{L}_{\text{local}}(\mathcal{D}; \psi', \phi) \leftarrow \mathbb{E}_{\mathcal{D}}[\ell_{\text{con}}^{n,m}] \text{ or } \mathbb{E}_{\mathcal{D}}[\ell_{\text{tri}}^{a,p,n}]$$
 // Section 3.3

- 6: $\mathcal{L}_{\text{meta}} \leftarrow \beta_1 \mathcal{L}_{\text{global}} + \beta_2 \mathcal{L}_{\text{local}}$
- 7: $(\psi, \theta) \leftarrow (\psi, \theta) \eta \nabla_{\psi, \theta} (\mathcal{L}_{\text{task}} + \mathcal{L}_{\text{meta}})$
- 8: $\phi \leftarrow \phi \gamma \nabla_{\phi} \mathcal{L}_{local}$
- 9: **until** convergence

MASF: How to capture general semantic features?

```
Algorithm 1 Model-agnostic learning of semantic features for domain generalization
Input: Source training domains \mathcal{D} = \{D_k\}_{k=1}^K; hyperparameters \alpha, \eta, \gamma, \beta_1, \beta_2 > 0
Output: Feature extractor F_{\psi}, task network T_{\theta}, embedding network M_{\phi}
  1: repeat
            Randomly split source domains \mathcal{D} into disjoint meta-train \mathcal{D}_{tr} and meta-test \mathcal{D}_{te}
            (\psi', \theta') \leftarrow (\psi, \theta) - \alpha \nabla_{\psi, \theta} \mathcal{L}_{\text{task}}(\mathcal{D}_{\text{tr}}; \psi, \theta)
          Compute global class alignment loss:
            \mathcal{L}_{\text{global}} \leftarrow \frac{1}{|\mathcal{D}_{\text{tr}}|} \sum_{D_i \in \mathcal{D}_{\text{tr}}} \frac{1}{|\mathcal{D}_{\text{te}}|} \sum_{D_j \in \mathcal{D}_{\text{te}}} \ell_{\text{global}}(D_i, D_j; \psi', \theta')
                                                                                                                                                                       // Section 3.2
            Compute local sample clustering loss:
            \mathcal{L}_{\text{local}}(\mathcal{D}; \psi', \phi) \leftarrow \mathbb{E}_{\mathcal{D}}[\ell_{\text{con}}^{n,m}] \text{ or } \mathbb{E}_{\mathcal{D}}[\ell_{\text{tri}}^{a,p,n}]
                                                                                                                                                                       // Section 3.3
           \mathcal{L}_{\text{meta}} \leftarrow \beta_1 \mathcal{L}_{\text{global}} + \beta_2 \mathcal{L}_{\text{local}}
            (\psi, \theta) \leftarrow (\psi, \check{\theta}) - \eta \nabla_{\psi, \theta} (\mathcal{L}_{\text{task}} + \mathcal{L}_{\text{meta}})
            \phi \leftarrow \phi - \gamma \nabla_{\phi} \mathcal{L}_{local}
  9: until convergence
```

To make the objective function quantifying these properties(Learning general semantic features), Design Loss(meta) and this LOSS is computed based on the updated parameters (Loss(task))

: Semantic Meta Objective Loss(meta) composed of Loss(global) and Loss(local) with weighting coefficients

MASF: How to capture general semantic features?

Semantic Meta Objective Loss(meta)

Enforce the feature space to encode "semantically relevant" properties

- inter-class relationship from different domains
- Features should be cluster by class labels regardless of domains

Loss(global)

- Transferable knowledge (class relationships information preserved from unseen domain feature space)

Loss(local)

Robust semantic features
 (locally cluster(class) regardless of the domain)
 (class boundary information with respect to samples) (class-specific cohesion and separation)

Semantic Meta Objective Loss(meta)

Loss(global)

- Inspired by Knowledge Distillation
- Class Ambiguities: form of per-class soft label
- [The class feature of each domain] is mean feature vectors so it represent current 'concept' of each class

$$\bar{\mathbf{z}}_{c}^{(k)} = \frac{1}{N_{k}^{(c)}} \sum_{n:y_{n}^{(k)} = c} F_{\psi'}(\mathbf{x}_{n}^{(k)}) \approx \mathbb{E}_{D_{k}}[F_{\psi'}(\mathbf{x}) \mid y = c],$$

$$\mathbf{s}_c^{(k)} = \operatorname{softmax}(T_{\theta'}(\bar{\mathbf{z}}_c^{(k)})/\tau).$$

- This form of class relationship information represent "inter-class relationships" of particular domain
- And we want this information same between train domain and test domain

Semantic Meta Objective Loss(meta)

Loss(global)

$$\bar{\mathbf{z}}_{c}^{(k)} = \frac{1}{N_{k}^{(c)}} \sum_{n:y_{n}^{(k)} = c} F_{\psi'}(\mathbf{x}_{n}^{(k)}) \approx \mathbb{E}_{D_{k}}[F_{\psi'}(\mathbf{x}) \mid y = c],$$

$$\mathbf{s}_c^{(k)} = \operatorname{softmax}(T_{\theta'}(\bar{\mathbf{z}}_c^{(k)})/\tau).$$

we want this information same between train domain and test domain

minimising their symmetrized Kullback-Leibler (KL) divergence, averaged over all C classes:

$$\ell_{\text{global}}(D_{\boldsymbol{i}}, D_{\boldsymbol{j}}; \psi', \theta') = \frac{1}{C} \sum_{c=1}^{C} \frac{1}{2} [D_{\text{KL}}(\mathbf{s}_{c}^{(\boldsymbol{i})} \parallel \mathbf{s}_{c}^{(\boldsymbol{j})}) + D_{\text{KL}}(\mathbf{s}_{c}^{(\boldsymbol{j})} \parallel \mathbf{s}_{c}^{(\boldsymbol{j})})],$$

Semantic Meta Objective Loss(meta)

Loss(local)

- Robust semantic features for class-specific clusters reducing their overlap (For the problem of ambiguous decision boundaries): complementary to global structure
- + still be sensitive to unseen domain shift
- => samples in same class lie close to each other and away form different class

between feature vectors (rather than between raw inputs):

$$d_{\phi}(\mathbf{z}_n, \mathbf{z}_m) = \|\mathbf{e}_n - \mathbf{e}_m\|_2 = \|M_{\phi}(\mathbf{z}_n) - M_{\phi}(\mathbf{z}_m)\|_2 \cdot \mathbf{e} = M_{\phi}(\mathbf{z})$$

- Use regularization but not to Loss(task) or Loss(global) worry for hurting performance about domain shift
- Use Metric-Learning to extracted features **Z** with embedding network **M**
- Sample pairs randomly drawn from all source domains

Semantic Meta Objective Loss(meta)

Loss(local)

between feature vectors (rather than between raw inputs):

$$d_{\phi}(\mathbf{z}_{n}, \mathbf{z}_{m}) = \|\mathbf{e}_{n} - \mathbf{e}_{m}\|_{2} = \|M_{\phi}(\mathbf{z}_{n}) - M_{\phi}(\mathbf{z}_{m})\|_{2}. \quad \mathbf{e} = M_{\phi}(\mathbf{z})$$

- Use Metric-Learning to extracted features **Z** with embedding network **M**
- Sample pairs randomly drawn from all source domains

Contrastive Loss

In case of mild domain shift
$$\ell_{\text{con}}^{\mathbf{n},\mathbf{m}} = \begin{cases} d_{\phi}(\mathbf{z_n},\mathbf{z_m})^2 \,, & \text{if } y_{\mathbf{n}} = y_{\mathbf{m}} \\ (\max\{0,\,\xi - d_{\phi}(\mathbf{z_n},\mathbf{z_m})\})^2 \,, & \text{if } y_n \neq y_m \end{cases}.$$

- Attracting samples of the same class and replling samples of different class

Triplet Loss

- In case of extreme domain shift $\ell_{ ext{tri}}^{a,p,n} = \max\{0, d_{\phi}(\mathbf{z}_a, \mathbf{z}_p)^2 d_{\phi}(\mathbf{z}_a, \mathbf{z}_n)^2 + \xi\}$.
- Given 'anchor' a, 'positive' p, 'negative' n to make samples from same closer than different

Semantic Meta Objective Loss(meta)

Enforce the feature space to encode "semantically relevant" properties

inter-class relationship from different domains

Features should be cluster by class labels regardless of domains

```
Algorithm 1 Model-agnostic learning of semantic features for domain generalization

Input: Source training domains \mathcal{D} = \{D_k\}_{k=1}^K; hyperparameters \alpha, \eta, \gamma, \beta_1, \beta_2 > 0

Output: Feature extractor F_{\psi}, task network T_{\theta}, embedding network M_{\phi}

1: repeat

2: Randomly split source domains \mathcal{D} into disjoint meta-train \mathcal{D}_{\text{tr}} and meta-test \mathcal{D}_{\text{te}}

3: (\psi', \theta') \leftarrow [\psi, \theta] - \alpha \nabla_{\psi, \theta} \mathcal{L}_{\text{task}}(\mathcal{D}_{\text{tr}}; \psi, \theta)

4: Compute global class alignment loss:
\mathcal{L}_{\text{global}} \leftarrow \frac{1}{|\mathcal{D}_{\text{tr}}|} \sum_{D_i \in \mathcal{D}_{\text{tr}}} \frac{1}{|\mathcal{D}_{\text{te}}|} \sum_{D_j \in \mathcal{D}_{\text{te}}} \ell_{\text{global}}(D_i, D_j; \psi', \theta')

5: Compute local sample clustering loss:
\mathcal{L}_{\text{local}}(\mathcal{D}; \psi', \phi) \leftarrow \mathbb{E}_{\mathcal{D}}[\ell_{\text{con}}^{n,m}] \text{ or } \mathbb{E}_{\mathcal{D}}[\ell_{\text{tri}}^{n,p,n}]

6: \mathcal{L}_{\text{meta}} \leftarrow \beta_1 \mathcal{L}_{\text{global}} + \beta_2 \mathcal{L}_{\text{local}}

7: (\psi, \theta) \leftarrow [\psi, \theta] - \eta \nabla_{\psi, \theta} (\mathcal{L}_{\text{task}} + \mathcal{L}_{\text{meta}})

8: \phi \vdash \phi - \gamma \nabla_{\phi} \mathcal{L}_{\text{local}}

9: until convergence
```

Semantic Meta Objective Loss(meta) composed of Loss(global) and Loss(local) with weighting coefficients

Figure 1: An overview of the proposed model-agnostic learning of semantic features (MASF): (a) episodic training under simulated domain shift, with gradient flows indicated; (b) global alignment of class relationships; (c) local sample clustering, towards cohesion and separation. F_{ψ} and T_{θ} are the feature extractor and the task net, $F_{\psi'}$ and $T_{\theta'}$ are their updated versions by inner gradient descent on the task loss $\mathcal{L}_{\text{task}}$, the M_{ϕ} is a metric embedding net, and D_k denotes different source domains.

- Leave-one-domain-out cross-validation
- 3 Independent run and average it
- (1) VLCS Dataset
- (2) PACS Dataset
- (3) Tissue Segmentation in Multi-site Brain MRI

(1) VLCS Dataset

- The classic domain generalization benchmark for image classification
- Includes images from four datasets
- The multi-class object recognition task includes **five classes**: bird, car, chair, dog and person
- Randomly dividing each domain into 70% training and 30% test

Table 1: Domain generalization results on VLCS dataset with object recognition accuracy (%).

Source	Target	D-MTAE [12]	CIDDG [30]	CCSA [34]	DBADG [25]	MMD-AAE [28]	MLDG [26]	Epi-FCR [27]	JiGen [3]	DeepAll (Baseline)	MASF (Ours)
L,C,S	V	63.90	64.38	67.10	69.99	67.70	67.7	67.1	70.62	68.67±0.09	69.14±0.19
V,C,S	L	60.13	63.06	62.10	63.49	62.60	61.3	64.3	60.90	63.10 ± 0.11	64.90 ± 0.08
V,L,S	C	89.05	88.83	92.30	93.63	94.40	94.4	94.1	96.93	92.86 ± 0.13	94.78 ± 0.16
V,L,C	S	61.33	62.10	59.10	61.32	64.40	65.9	65.9	64.30	64.11 ± 0.17	67.64 ± 0.12
Avei	rage	68.60	69.59	70.15	72.11	72.28	72.3	72.9	73.19	72.19	74.11

- Baseline: merging all source domains and training

(2) PACS Dataset

- Recent benchmark with more severe distribution shift between domains
- Four domains: art painting, cartoon, photo, sketch,
- Seven classes: dog, elephant, giraffe, guitar, house, horse, person
- leave-one-domain-out cross-validation
- adopt an AlexNet pre-trained on ImageNet
- The multi-class object recognition task includes **five classes**: bird, car, chair, dog and person

Table 2: Domain generalization results on PACS dataset with recognition accuracy (%) using AlexNet.

Source Target	D-MTAE	CIDDG	DBADG	MLDG	Epi-FCR	MetaReg	JiGen		MASF
	[12]	[30]	[25]	[26]	[27]	[1]	[3]	(Baseline)	(Ours)
C,P,S Art paintin	g 60.27	62.70	62.86	66.23	64.7	69.82	67.63	67.60 ± 0.21	70.35 ± 0.33
A,P,S Cartoon	58.65	69.73	66.97	66.88	72.3	70.35	71.71	68.87 ± 0.22	72.46 ± 0.19
A,C,S Photo	91.12	78.65	89.50	88.00	86.1	91.07	89.00	89.20±0.24	90.68 ± 0.12
A,C,P Sketch	47.68	64.45	57.51	58.96	65.0	59.26	65.18	61.13 ± 0.30	67.33 ± 0.12
Average	64.48	68.88	69.21	70.01	72.0	72.62	73.38	71.70	75.21

(2) PACS Dataset

Table 2: Domain generalization results on PACS dataset with recognition accuracy (%) using AlexNet.

Source Target	D-MTAE [12]	CIDDG [30]	DBADG [25]	MLDG [26]	Epi-FCR [27]	MetaReg [1]	JiGen [3]	DeepAll (Baseline)	MASF (Ours)
C,P,S Art painting A,P,S Cartoon A,C,S Photo	60.27 58.65 91.12	62.70 69.73 78.65	62.86 66.97 89.50	66.23 66.88 88.00	64.7 72.3 86.1	70.35	71.71	67.60±0.21 68.87±0.22 89.20±0.24	72.46 ± 0.19
A,C,P Sketch	47.68	64.45	57.51	58.96	65.0	59.26	65.18	61.13 ± 0.30	67.33 ± 0.12
Average	64.48	68.88	69.21	70.01	72.0	72.62	73.38	71.70	75.21

- [1, 26, 27] exposing the training procedure to domain shift benefits model generalization to unseen domains.
- MASF considers the semantic structure
- regarding both global class alignment and local sample clustering
- Across all domains, MASF increases average accuracy by 3.51% over the baseline
- Note when the unseen domain is sketch
 which has a distinct style and requires more general knowledge about semantic concepts

(2) PACS Dataset: Ablation study

For what?

- to investigate 2 key points
 - 1) the contribution of each component to our method's performance
 - 2) how the semantic feature space is influenced by our proposed meta losses

How?

- test all possible combinations of including the key component
 - 1) episodic meta-learning simulating domain shift
 - 2) global class alignment loss
 - 3) local sample clustering loss.

Table 3: Ablation study on key components of our method with the PACS dataset (accuracy, %).

Episodic	$\mathcal{L}_{ ext{global}}$	$\mathcal{L}_{ ext{local}}$	Art	Cartoon	Photo	Sketch	Average
-	-	-	67.60±0.21	$68.87{\pm}0.22$	89.20 ± 0.24	61.13 ± 0.30	71.70
√	-	-	69.19±0.10	70.66±0.37	90.36±0.18	59.89±0.26	72.52
-	✓	-	69.43 ± 0.29	70.22 ± 0.21	90.64 ± 0.15	60.11 ± 0.17	72.60
-	-	✓	69.50 ± 0.15	70.25 ± 0.13	90.12 ± 0.12	63.02 ± 0.12	73.22
-	✓	✓	69.48 ± 0.20	71.15 ± 0.16	90.16 ± 0.15	64.73 ± 0.34	73.88
✓	✓	-	69.94 ± 0.15	72.16 ± 0.28	90.10 ± 0.12	63.54 ± 0.13	73.93
✓	-	✓	69.50 ± 0.20	71.44 ± 0.34	90.16 ± 0.15	64.97 ± 0.28	74.02
✓	✓	✓	70.35±0.33	72.46±0.19	90.68±0.12	67.33±0.12	75.21

(2) PACS Dataset: t-SNE visualization

- to analyze the feature space learned with our proposed model and the DeepAll baseline

Figure 2: The t-SNE visualization of extracted features from F_{ψ} , using our proposed (a-b) MASF and the (c-d) DeepAll model on PACS dataset. In (a) and (c), the different colors indicate different classes; correspondingly in (b) and (d), the different colors indicate different domains.

(2) PACS Dataset: t-SNE visualization

(a) vs (c)
Different color => Different class

- MASF model yields a better separation of classes
- note that the sketch domain is further apart from art painting and cartoon

Deeper architectures

Table 4: PACS results with deep residual network architectures (accuracy, %).

Source	Target	ResN	Vet-18	ResNet-50		
	800	DeepAll	MASF (ours)	DeepAll	MASF (ours)	
C,P,S A,P,S A,C,S A,C,P	Art-painting Cartoon Photo Sketch	77.38 ± 0.15 75.65 ± 0.11 94.25 ± 0.09 69.64 ± 0.25	80.29 ± 0.18 77.17 ± 0.08 94.99 ± 0.09 71.69 ± 0.22	81.41 ± 0.16 78.61 ± 0.17 94.83 ± 0.06 69.69 ± 0.11	82.89 ± 0.16 80.49 ± 0.21 95.01 ± 0.10 72.29 ± 0.15	

- This suggests our proposed algorithm is also beneficial for domain generalization with **deeper** feature extractors.

(3) Tissue Segmentation in Multi-site Brain MRI

Figure 4: Different brain MRI datasets with example images and intensity histograms.

Table 5: Evaluation of brain tissue segmentation (Dice coefficient, %) in different settings: *columns 1–4:* train model on single source domain, test on all domains; *columns 5–6:* train on three source domains, test on remaining domain.

Train Test	Set-A	Set-B	Set-C	Set-D	DeepAll	MASF
Set-A	90.62	88.91	88.81	85.03	89.09	89.82
Set-B	85.03	94.22	81.38	88.31	90.41	91.71
Set-C	93.14	92.80	95.40	88.68	94.30	94.50
Set-D	76.32	88.39	73.50	94.29	88.62	89.51

- Real-world medical imaging task of brain tissue segmentation (MRI)
- Data was acquired from four clinical centers (denoted as Set-A/B/C/D).
- Domain shift occurs due to differences in scanners
- Randomly split each domain to 80% for training and 20% for testing in experimental settings.

4 Conclusion

- domain generalization
- by incorporating global and local constraints
- for learning semantic feature spaces.

캄사...

