(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開平10-270171

(43)公開日 平成10年(1998)10月9日

(51) Int.Cl.⁶ H 0 5 B 33/22

. A. 6137 . 1 & 3 .

識別記号

FΙ H 0 5 B 33/22

審査請求 未請求 請求項の数5 OL (全 7 頁)

(21) 出願番号

特節平9-75833

(22) HUM B

平成9年(1997)3月27日

(31) 優先権主張番号 特國平9-12815

(32)優先日 (33)優先権主張国

日本 (JP)

平9 (1997) 1 月27日

(71) 出願人 597011728 城戸 淳二

奈良県北葛城郡広陵町馬見北9-4-3

(71) 出願人 593191350

株式会社アイメス

神奈川県藤沢市桐原町3番地

(72)発明者 城戸 淳二

奈良県北葛城郡広陵町馬見北9-4-3 (72)発明者 水上 時雄

神奈川県藤沢市桐原町3番地 株式会社ア

イメス内

(74)代理人 弁理士 三浦 邦夫

(54) 【発明の名称】 有機エレクトロルミネッセント索子

(57)【要約】

【目的】 有機EL素子において、陰極から有機化合物 層への電子注入におけるエネルギー障壁を低下させ 险 極材料の仕事関数に関わらず低駆動電圧を実現する。 【構成】 陰極電極6に接する有機化合物層をドナー (電子供与性)ドーパントとして機能する金属でドービ ングした金属ドーピング層5とし、陰極から有機化合物 層への電子注入障壁を小さくし、駆動電圧を低下させた 有機E L索子。

6 ———	陰極電極
5	金属ドーピング層
4	発光層
з ——	正孔輸送層
2	陽極透明電極(I T O)
1	透明基板

【特許請求の範囲】

【請求項1】 対向する陽極電極と除極電極の間に、有 機化合物から構成される少なくとも一層の発光層を有す 右有機エレクトロルミネッセント素子において、上記院 極電極との界面に、ドナー(電子供与性)ドーパントと して機能する金属でドーピングした有機化合物層を有す ることを特徴とする有機エレクトロルミネッセント素 子.

【請求項2】 請求項1記載の素子において、上記ドナードーパントが、仕事限数が4.2eV 以下のアルカリ金 既、アルカリ土強を風及び稀土類金属を含む遷移金属の うちから選択された1種以上の金属からなる有機エレク トロルミネッセント業子、

【請求項3】 請求項1または2記載の素子において、 金属ドーピング層中のドナードーパント濃度が、0.1 〜99重量%である有機エレクトロルミネッセント素 子。

【請求項4】 請求項1~3のいずれか1項記載の素子 において、金属ドーピング層の厚さが、10Å~3000Åで ある有機エレクトロルミネッセント業子。

【請求項5】 請求項1~4のいずれか1項記載の素子 において、陰極構成材料の少なくとも一つがアルミニウ ムである有機エレクトロルミネッセント素子。

【発明の詳細な説明】

[0001]

【技術分野】本発明は、平面光源や表示素子に利用され る有機エレクトロルミネッセント素子(以下、有機旺素 子)に関するものである。

[00002]

【従来の技術およびその問題点】発光層が有機化合物か 30 ら構成される有機エレクトロルミネッセント案子(以下、有機L業子)は、低電圧駆動の大面積表示業子を実現するものとして注目されている。Tangらは素子の高効率化のため、キャリア輸送性の異なる有機化合物を積弱し、正孔と電子がそれぞれ陽極、陰極よりパランスよく注入される構造とし、しかも有機層の膜厚を2000人以下とすることで、100 以下の印加電圧で1000cd/㎡ と外部ま分割 1%の実用化に十分な高薄度、高効率を得ることに成功した(Appl. Pitys. Lett., 51, 913 (1987).

)、この高効率条子において、Tangらは基本的に絶縁物とみなされる有機化合物に対して、金属電極から電子を注入する際に問題となるエネルギー障壁を低下させるため、仕事関数の小さい版(マクネシウム)を使用した。その際、Mgは酸化しやすく、不安定であるのと、有機表面への接着性に乏しいので比較的安定で、しかも有機表面に密着性の良いMg(銀)と共蒸着により合金化して用いた。

【0003】凸版印刷株式会社のグループ (第51回応 用物理学会学術講演会、講演予稿集28a-PB-4、p.1040) およびバイオニア株式会社のグループ (第54回応用物 50

理学会学術講演会、講演予報集59~2C~15、p.1127) は、Msより更に仕事関数の小さいは、(リチウム)を用い A1 (アルミニウム)と合金化する事により安定化させ繁 極として用いることにより、Ms合金を用いた案子より低 い駅動電圧と高い発光調度を達成している。また、本発 明者らは有機化合物層上にはを単独で10人程度に極めて 渡く深着し、その上から銀を積層した二層型陰極が低解 動電圧の実現に有効であることを報告している(IEBE T rans。 Electron Devices., 40, 1342 (1993))。

10 【0004】さらに、最近ではMNAX 社のPoi らが、ボ リマー発光層に1.塩をドービングし、駆動電圧を低下す る事に成功している (Science, 269, 1086 (1995))。 これは電圧印加によってボリマー発光層中に分散したは、塩を解離させ、股極と陽極近傍にそれぞれは1イオンと対 イオンを分布させることにより電極近傍のボリマークテ をin situ でドービングするものである。この場合、陰 極近傍のボリマーはドナー(電子供与性)ドーパントで在 するため、陰極からの電子注入陸壁は1ドーピングしな 20 い場合より極めて低くなる (Science, 269, 1086 (199 5))。

【0005】しかしながら、機やはの合金電極において も電極の酸化等による素子等化が起こる上、配線材料と しての機能を考慮しなければなるないので、合金電板で は電極材料選択において制限を受ける。本発明者らの二 層型股板では、し浦の厚みが20人以上では股極として機 能しない (IEDE Trans. Electron Devices. 40, 1342 (1993))。また、Pei らの発光層中に雄を添加して電料 にて解離させるin situ ドービング法では、解離したイ オンの電極近傍までの移動時間が揺進となり、素子応答 速度分替しく遅くなる欠点がある。

[0006]

【発明の目的】本発明は、以上の事情に鑑みてなされたものであり、その目的は陰極から有機化合物個への電子 注入におけるエネルギー障壁を低下させることにより、 陰極材料の仕事関数に関わらず低駆動電圧を実現するこ とを目的とする。本発明の他の目的は、AIの様な従来より 毎監縁材として単独で用いた場合でも、上述の合金を 電極として用いた場合と同様、若しくはそれ以上の特性 を発現しうる業子を提供することである。

[0007]

【発明の概要】本発明は、陰極に接する有機化合物層を ドナー(電子供与性)ドーパントとして機能する金属で ドーピングすると、陰極から有機化合物層への電子往入 障壁が小さくなり、駆動電圧を低下させることができる ことを見い出して完成されたものである。すなわち、本 発明の有機とし来すは、対向する陽極電極と陰極電極の 間に、有機化合物から構成される少なくとも一層の発光 層を有する有機に素子において、陰極電極との発形に ドナードーバントとして機能する金属でドービングした 有機化合物層を金属ドービング圏として有することを特 徴としている。ドナードーバントは、より具体的には、 仕事関数が4.2e* 以下のアルカリ金属、アルカリ土類金 気が4.2e* 以下のアルカリ金属、アルカリ土類金 精成することができる。また、金属ドービング層のドー パント濃度は、0.1~99重量%とすることが好ましく、 金属ドーバント層の厚さは、10人~3000人とすることが 好ましい。

[0008]

【発明の実施形態】図1は、本発明による有機EL素子 の一実施形態を示す模式図である。ガラス基板(透明基 板) 1上には、順に、陽極電極を構成する透明電極2、 正孔輸送性を有する正孔輸送層3、発光層4、金属ドー ピング層5および陰極となる背面電極6を積層してなっ ている。これらの要素(層)のうち、ガラス基板(透明 基板) 1、透明電極2、正孔輸送層3、発光層4、およ び陰極電極6は周知の要素であり、金属ドーピング層5 が本発明で提案した要素(層)である。有機EK素子の具 体的な積層構成としては、この他、陽極/発光層/金属 20 ドーピング層/陰極、陽極/正孔輸送層/発光層/金属 ドーピング層/陰極、陽極/正孔輸送層/発光層/電子 輸送層/金属ドーピング層/陰極、陽極/正孔注入層/ 発光層/金属ドーピング層/陰極、陽極/正孔注入層/ 正孔輸送層/発光層/金属ドーピング層/陰極、陽極/ 正孔注入層/正孔輸送層/発光層/電子輸送層/金属ド ーピング層/陰極。 などが挙げられるが、 本発明による 有機E L妻子は、金属ドーピング回5を除極電極6との 界面に有するものであればいかなる素子構成であっても 良い。

【0009】有機LL素子では陰極から基本的に絶縁物で ある有機化合物層への電子注入過程は、陰極表面での有 機化合物の還元、すなわちラジカルアニオン状態の形成 である (Phys. Rev. Lett., 14, 229 (1965))。本発明 の紫子においては、予め有機化合物の還元剤となりうる ドナー (電子供与性) ドーパント物質である金属を陰極 に接触する有機化合物層中にドーピングする事により、 **陰極景極からの電子注入に際するエネルギー障壁を低下** させることができる。金属ドーピング層5は、このよう にドナードーパントとして機能する金属をドーピングし た有機化合物層である。金属ドーピング層中には、すで にドーパントにより還元された状態(すなわち電子を受 容し、電子が注入された状態)の分子が存在するので、 電子注入エネルギー障壁が小さく、従来の有機比素子と 比べて駆動電圧を低下できる。しかも陰極には一般に配 線材として用いられている安定なAIのような金属を使用 できる。

【0010】 この場合、ドナードーバントは有機化合物 8- キノリノラト】 頭鉛、ビス (2-メチル-8- キノリノ を還元することのできるLi等のアルカリ金属、晦等のア カトリンス(8-キノリノラト) インジ ルカリ土類金属、稀土類金属を含む避移金属であれば特 50 ウム、トリス (5-メチル-8- キノリノラト) アルミニウ

に限定はない。特に、仕事関数が4.2v 以下の金属が好 歯に使用でき、具体例としては、Na、K、Be、Na、Ca、 Sr、Ba、Y、La、Na、Sa。 Gd、Yb、などが挙げられる。 【0011】金属ドーピング層中のドーパント濃度は特 に限定されないが、0.1~99重量%であることが好 ましい。0.1重量%未満では、ドーパントにより還元 された分子(以下、還元分子)の濃度が低すぎドーピン 夕の効果が小さく、99重量%を超えると、限中の金属 減度が有機分子濃度をはるかた超え。還元分子の濃度が 極端に低下するので、ドーピングの効果も下がる。ま た、この金属ドーピング層の厚めは、特に限定されない が02へ3000人が好ましい。10人未満では、電路料面近 你に存在する還元分子の量が少ないのでドーピングの効 果が小さく、3000人を超えると有機層全体の限厚が厚す を、駆動電圧の上昇を相くない。

【0012】上記金属ドーピング層5の成膜法は、いかなる薄膜形成法であってもよく、たとえば素着法やスパッタ法が使用できる。また、溶液からの弦布で薄膜形成が可能な場合には、スピンコーティング法やディップコーティング法などの溶液からの陰布法が使用できる。この場合、ドーピングされる有機化合物とドーパントを不活性なポリマー中に分散して用いても良い。

【0013】発光層、電子輸送層、金属ドーピング層と して使用できる有機化合物としては、特に限定はない が、p-テルフェニルやクアテルフェニルなどの多環化合 物およびそれらの誘導体、ナフタレン、テトラセン、ピ レン、コロネン、クリセン、アントラセン、ジフェニル アントラセン、ナフタセン、フェナントレンなどの縮合 多環炭化水素化合物及びそれらの誘導体、フェナントロ 30 リン、バソフェナントロリン、フェナントリジン、アク リジン、キノリン、キノキサリン、フェナジンなどの縮 合複素環化合物およびそれらの誘導体や。フルオロセイ ン、ペリレン、フタロペリレン、ナフタロペリレン、ペ リノン、フタロペリノン、ナフタロペリノン、ジフェニ ルブタジエン、テトラフェニルブタジエン、オキサジア ゾール、アルダジン、ピスベンゾキサゾリン、ビススチ リル、ピラジン、シクロペンタジエン、オキシン、アミ ノキノリン、イミン、ジフェニルエチレン、ビニルアン トラセン、ジアミノカルバゾール、ピラン、チオピラ ン、ポリメチン、メロシアニン、キナクリドン、ルブレ ン等およびそれらの誘導体などを挙げることができる。 【0014】また、特開昭63-295695 号公報、特開平8-

【0014】また、特開収63-20505 号公頼、特開平8-225万 号公報、特開平8-81472 号公報、特開平9-9470号 公報、特開平5-9470号 公報、特開平5-9470号 公報、特に金属キレート化オキサノイド化合物では、トリス (8-キノリノラト) アグネシウム、ビス (ベンゲ (f) -8-キノリノラト) 三野魚、ビス (2-メチル-8-キノリノラト) アルミニウム、トリス (8-キノリノラト) インジ

ム、8-キノリノラトリチウム、トリス (5-クロロ-8- キ ノリノラト) ガリウム、ビス (5-クロロ-8- キノリノラ ト)カルシウムなどの8-キノリノラトあるいはその誘導 体を配位子として少なくとも一つ有する金属錯体が好適 に使用される。

【0015】特開平5-202011号公報、特開平7-179394号 公報、特開平7-278124号公報、特開平7-228579号公報に 開示されているオキサジアゾール類、特開平7-157473号 公報に開示されているトリアジン類、特開平6-203963号 公報に開示されているスチルベン誘導体およびジスチリ ルアリーレン誘導体、特開平6-132080号公報や特開平6-88072 号公報に開示されているスチリル誘導体、特開平 6-100857号公報や特別平6-207170号公報に開示されてい るジオレフィン誘導体も発光層、電子輸送層、金属ドー ピング層として好ましい。

【0016】さらに、ベンゾオキサゾール系、ベンゾチ アゾール系、ベンゾイミダゾール系などの蛍光増白剤も 使用でき、例えば、特開昭59-194393 号公報に開示され ているものが挙げられる。その代表例としては、2.5-ビ ス (5,7-ジ-t- ベンチル-2-ベンゾオキサゾリル) -1,3, 20 4- チアゾール、4,4'- ビス (5,7-t-ペンチル-2- ベン ゾオキサゾリル) スチルベン、4,4'- ビス [5,7-ジ-(2-メチル-2- ブチル) -2- ベンゾオキサゾリル] スチ ルベン、2.5-ビス (5.7-ジ-t- ペンチル-2- ベンゾオキ サゾリル) チオフェン、2.5-ビス [5-(α, α- ジメチ ルベンジル)-2-ベンゾオキサゾリル]チオフェン、2.5 -ビス [5,7-ジ- (2-メチル-2- ブチル) -2- ベンゾオ キサゾリル 1-3.4- ジフェニルチオフェン、2.5-ビス (5-メチル-2- ベンゾオキサゾリル) チオフェン 4.4' ビス(2-ベンゾオキサゾリル)ビフェニル、5-メチル 30 -2- {2- 「4- (5-メチル-2- ベンゾオキサゾリル) フェ ニル] ピニル} ベンゾオキサゾール、2- [2-(4-クロロ フェニル) ビニルーナフト (1.2-d)オキサゾールなどの ベンゾオキサゾール系、2.2'-(p-フェニレンジピニレ ン)-ビスベンゾチアゾールなどのベンゾチアゾール系、 2- {2- [4- (2-ベンゾイミダゾリル) フェニル] ビニ ル} ベンゾイミダゾール、2-[2-(4-カルボキシフェニ ル) ビニル] ベンゾイミダゾールなどのベンゾイミダゾ ール系などの蛍光増白剤が挙げられる。

【0017】ジスチリルベンゼン系化合物としては、例 40 えば欧州特許第0373582 号明細書に開始されているもの を用いることができる。その代表例としては、1.4-ビス (2-メチルスチリル) ベンゼン、1.4-ビス (3-メチルス チリル) ベンゼン、1.4-ビス(4-メチルスチリル) ベン ゼン、ジスチリルベンゼン、1,4-ビス(2-エチルスチリ ル) ベンゼン、1,4-ピス(3-エチルスチリル) ベンゼ ン、1.4-ビス(2-メチルスチリル)-2-メチルベンゼ ン、1,4-ビス(2-メチルスチリル)-2- エチルベンゼン などが挙げられる.

いるジスチリルピラジン誘導体も発光層、電子輸送層、 金属ドーピング層として用いることができる。その代表 例としては、2.5-ビス(4-メチルスチリル)ピラジン、 2,5-ビス(4-エチルスチリル)ピラジン、2,5-ビス「2-(1-ナフチル) ビニル] ピラジン、2.5-ビス (4-メトキ シスチリル) ピラジン、2.5-ビス「2-(4-ビフェニル) ビニル] ピラジン、2.5-ビス [2-(1-ピレニル) ビニ ル] ピラジンなどが挙げられる。

【0019】その他、欧州特許第388768号明細書や特開 平3-231970号公報に開示されているジメチリディン誘導 体を発光層、電子輸送層、金属ドーピング層の材料とし て用いることもできる。その代表例としては、1.4-フェ ニレンジメチリディン、4,4'- フェニレンジメチリディ ン、2.5-キシリレンジメチリディン、2.6-ナフチレンジ メチリディン、1.4-ピフェニレンジメチリディン、1.4p-テレフェニレンジメチリディン、9.10- アントラセン ジイルジメチリディン、4.4'- (2.2- ジ-t- ブチルフェ ニルビニル) ビフェニル、4.4'-(2.2-ジフェニルビニ ル) ビフェニル、など、及びこれらの誘導体や、特開平 6-49079 号公報、特開平6-293778号公報に開示されてい るシラナミン誘導体、特開平6-279322号公報、特開平6-279323号公報に開示されている多官能スチリル化合物。 特闘平6-107648号公報や特闘平6-92947 号公報に関示さ れているオキサジアゾール誘導体、特開平6-206865号公 報に開示されているアントラセン化合物 特開平6-1451 46号公報に開示されているオキシネイト誘導体、特開平 4-96990 号公報に開示されているテトラフェニルブタジ エン化合物、特開平3-296595号公報に開示されている有 機三官能化合物、さらには、特開平2-191694号公報に開 示されているクマリン誘導体、特開平2-196885号公報に 開示されているペリレン誘導体、特開平2-255789号に開 示されているナフタレン誘導体、特開平2-289676号及び 特開平2-88689 号公報に開示されているフタロペリノン 誘導体、特開平2-250292号公報に開示されているスチリ ルアミン誘導体などが挙げられる。さらに、従来有機EL 素子の作製に使用されている公知のものを適宜用いるこ とができる。

【0020】正孔注入層、正孔輸送層、正孔輸送性発光 層として使用されるアリールアミン化合物類としては、 特に限定はないが、特開平6-25659 号公報、特開平6-203963号公報、特開平6-215874号公報、 特關平7-145116号公報。特關平7-224012号公報。特圍平 7-157473号公報、特開平8-48656 号公報、特開平7-1262 26号公報, 特開平7-188130号公報, 特開平8-40995 号公 報, 特開平8-409% 号公報, 特開平8-40997 号公報, 特 開平7-126225号公報、特開平7-101911号公報、特開平7-97355 号公報に開示されているアリールアミン化合物類 が好ましく、例えば、N,N,N',N'-テトラフェニル-4,4'-ジアミノフェニル、N.N'- ジフェニル-N.N'-ジ (3-メチ 【0018】また、特開平2-252793号公報に開示されて 50 ルフェニル)-4.4'-ジアミノビフェニル、2.2-ビス (4-

ジ-p- トリルアミノフェニル) プロパン、N.N.N'.N'-デ トラ-p- トリル-4,4'-ジアミノビフェニル、ビス (4-ジ '-p- トリルアミノフェニル) フェニルメタン N.N'- ジ フェニル-N.N'-ジ (4-メトキシフェニル) -4.4'-ジアミ ノビフェニル、N.N.N'.N'-テトラフェニル-4.4'-ジアミ ノジフェニルエーテル、4,4'- ビス (ジフェニルアミ ノ) クオードリフェニル、4-N.N-ジフェニルアミノ-(2-ジフェニルビニル) ベンゼン、3-メトキシ-4'-N,N-ジフェニルアミノスチルベンゼン、N-フェニルカルバゾ ール、1.1-ビス (4- ジ-p- トリアミノフェニル) - シ 10 クロヘキサン、1.1-ビス(4-ジ-p-トリアミノフェニ ル)-4- フェニルシクロヘキサン、ビス(4-ジメチルア ミノ-2- メチルフェニル) - フェニルメタン、N.N.N-ト リ (p-トリル) アミン、4- (ジ-p- トリルアミノ) -4'-[4 (ジ-p- トリルアミノ) スチリル] スチルベン、N. N.N'.N'-テトラ-p- トリル-4.4'-ジアミノ- ビフェニ ル、N.N.N',N'-テトラフェニル-4.4'-ジアミノ- ビフェ ニルN-フェニルカルバゾール、4.4'- ビス [N-(1-ナフ チル)-N- フェニル- アミノ] ビフェニル、4,4''-ビス [N-(1-ナフチル)-N-フェニル-アミノ]p-ターフェ 20 ニル、4,4'- ビス [N-(2-ナフチル) -N- フェニル- ア ミノ] ビフェニル、4,4'- ビス [N-(3-アセナフテニ ル) -N- フェニル- アミノ] ピフェニル、1.5-ビス 「N-(1-ナフチル) -N- フェニル- アミノ] ナフタレン、4. 4'- ビス [N- (9-アントリル) -N- フェニル- アミノ] ビフェニル、4.4''-ビス「N-(1-アントリル)-N-フェ ニルー アミノ] p-ターフェニル、4.4'- ビス [N-(2-フ ェナントリル)-N- フェニル- アミノ] ピフェニル、4. 4'- ビス [N-(8-フルオランテニル) -N- フェニル- ア ミノ] ビフェニル、4.4'-ビス [N- (2-ピレニル) -N-フェニル- アミノ] ピフェニル、4,4'- ピス [N-(2-ペ リレニル)-N- フェニル- アミノ] ビフェニル、4,4'-ビス [N-(1-コロネニル) -N-フェニル-アミノ] ビフ ェニル、2,6-ビス (ジ-p- トリルアミノ) ナフタレン、 2,6-ピス [ジー (1-ナフチル) アミノ] ナフタレン、2, 6-ビス [N- (1-ナフチル) -N- (2-ナフチル) アミノ] ナフタレン、4.4''-ビス [N.N-ジ (2-ナフチル) アミ ノ] ターフェニル、4.4'- ビス (N-フェニル-N- 「4-(1-ナフチル) フェニル] アミノ} ビフェニル、4.4'-ビス [N-フェニル-N- (2-ピレニル) - アミノ] ビフェ ニル、2.6-ビス「N.N-ジ (2-ナフチル) アミノ] フルオ

【0021】さらに、正孔注入層、正孔輸送層、正孔輸 送性発光層として、上述の有機化合物をポリマー中に分 散したものや、ボリマー化したものも使用できる。ボリ パラフェニレンビニレンやその誘導体などのいわゆるπ 共役ポリマー、ポリ (N-ビニルカルバゾール) に代表さ 50

レン、4.4''- ビス(N.N-ジ-p- トリルアミノ)ターフ

ェニル、ビス(N-1-ナフチル)(N-2-ナフチル)アミン

などがある。さらに、従来有機匹素子の作製に使用され

ている公知のものを適宜用いることができる

れるホール輸送性非共役ポリマー、ポリシラン類のシグ マ共役ポリマーも用いることができる。

【0022】ITO 電極上に形成する正孔注入層として は、特に限定はないが、銅フタロシアニンなどの金属フ タロシアニン類および無金属フタロシアニン類、カーボ ン膜、ポリアニリンなどの導電性ポリマーが好適に使用 できる。さらに、前述のアリールアミン類に酸化剤とし てルイス酸を作用させ、ラジカルカチオンを形成させて 正孔注入層として用いることもできる。

【0023】陰極電極には、空気中で安定に使用できる 金属であれば限定はないが、特に配線電極として一般に 広く使用されているアルミニウムが好ましい。

【0024】 [実施例] 以下に実施例を挙げて本発明を 説明するが、本発明はこれにより限定されるものではな い。なお、有機化合物および金属の蒸着には、真空機工 社製VPC-400 真空蒸着機を使用し、スピンコーティング にはミカサ社製III-D3 スピンコーターを使用した。膜厚 の測定はスローン社製DekTak3ST 触針式段差計を用い た。素子の特性評価には、菊水PBX 40-2.5直流電源、岩 通VOAC-7510 マルチメーター、トプコンBM-8輝度計を使 用した。素子のITO を陽極、Alを陰極として直流電圧を 1V/2秒の割合でステップ状に印加し、電圧 F昇 1秒 後の輝度および電流値を測定した。また、ELスペクトル は浜松ホトニクスPMA-10オプチカルマルチチャンネルア ナライザーを使用して定電流駆動し測定した。 【0025】実施例1

図1の積層構成の有機癿素子に本発明を適用したもので ある。ガラス基板1上に、陽極透明電極2として、シー ト抵抗15Ω/□のITO (インジウム- スズ酸化物、旭硝 30 子社製電子ビーム蒸着品)がコートされている。その上 に正孔輸送性を有する下記式1:

で表されるαNPD を10-6 torr下で、3 A/秒の蒸着速度 で400 人の厚さに成膜し、正孔輸送層3を形成した。 【0026】次に、前記正孔輸送層3の上に、発光層4 として緑色発光を有する下記式2: 【化2】

で表されるトリス (8- キノリノラト) アルミニウム錯 休層(以下「Alg」という)4を正孔輸送層3と同じ条件 10 で300 人の厚さに真空蒸着して形成した。次に、前記発 光層4の上に金属ドーピング層5として、Alg とLiをLi が1.5 重量%となるように各々の蒸着速度を調整して40 0 A成膜した。最後に、前記金属ドーピング層5の上に 陰極となる背面電極6としてAIを蒸着速度15A/秒で10 00 A 蒸着した。発光領域は縦0.5cm 、横0.5cm の正方形 状とした。前記の有機以業子において、陽極電極である ITO と降極電極であるAI6との間に、直流電圧を印加 し、発光層Alg4からの緑色発光の輝度を測定した。図 2、図3中の丸プロットは輝度-電圧特性、輝度-電流 20 密度特性を示すもので、最高39000cd/m2の高輝度を12V において示した。このときの電流密度は800 mA/cm2であ った。また、1000cd/m2 の態度は8Vで得られた。 【0027】比較例1

実施例1と同じく、ITO 上にまず正元輸送層としてαWD を400 人の厚さに成膜し、その上に、発光層としてAI 々を正有輸送層とし同じ条件で600 人の厚さに真空窯着して形成した。そして、AIq の上から陰極としてAIを2000 人蒸着した。図2、図3の三角プロットはこの窓子の輝度。電圧特性、輝度・電流密度特性を示すものであり、15V で最高高700cd/m² の輝度しか与えなかった。また、1000cd/m² の輝度とから、13Vを印加する必要があった。この実験が原効性と下げるのに金属ドービング関5が有効であることがあかる。

【0028】比較例2

実施例1と同条件で、ITU 上にまず正孔輸送層としてα NPD を400 人の厚さに成脱し、その上に、Ala とLiをLi が1.5 重量光となるように300 人の厚さに真空蒸着して形成し、その上からAla を早継で300 人流落した。その スース Ala の上から陰極としてAlを 1000人蒸落した。この 40 紫子は25Vで最高 Bcd/ピ の測度しか与えなかった。この結果はJiでドーピングしたAla 層が、陰極近傍たあることが高頻度化に必要下可欠であることを示している。さらに、素子からの発光スペクトルはAla 本来のスペクトルよりプロードになり、質光性が低下していた。これは、Ala が1ドーピングとより遺伝され、Ala のエネルギー単位が変化したことを示唆している。このことはLi ドーピングしたAla 原の葉外、可視吸収スペクトルの変化からも確認した。

【0029】比較例3

実施例1と同じく、ITO 上にまず正孔輸送層としてαIP D を400 人の厚さに製限し、その上に、発光層としてAI マ を正有能送層と同じ条件で600 人の厚さに真空蒸着して形成した。そして、AI q の上から除極として施とAgを 重量比で10:1となるよう1500人素着した。この素子は13 Vで最高17000cd/a²の輝度を与えた。また、1000cd/a² の 病療度を得るのに、9.5 V日加する必要があった。実施例1の金属ドービング層を有する表子では8 Vであるので、合金陰極より金属ドービング層を打いた素子の方が駆動電圧が低く、最高調度も高いことがわかった。

10

【0030】実施例2

1TO 上に、正孔輸送層3としてαNPD を400 Å、発光層 4としてAlq を300 Å真空蒸着した後、下記式3: 【化3】

で示されるパソフェナントロリンとならは金盛属ドーピング 開きたとしては満度が2重量%となるよう300 人の厚みに 共業者した。その上から、陰極電極らしして、Alを1000 人業着し素子を作襲した。この業子は印加電圧12Vで最 高朝度28000cd/m²と電流密度20m/cm²を与え、実施例 1と同じく、低い駆動電圧で高額度を与えた。 【0031】比較例5

170 上に、正孔輸送燈としてαNPD を400 A、発光燈としてAIQ を300 人真空蒸着した後、バソフェナントロリンのみを300 人素着した。その上から、陰極電極として AIを1000人業者し業子を作製した。この素子は印加電圧15Vで電流密度270mA/cm²、最高輝度9500cd/m²しか与えず、実施例4におけるバソフェナントロリン燈へのしiドーピングが、駆動電圧の低下に有効であることがわかる。

【0032】実施例3

170 上に、正和輸送層3としてαFIP を400 人、発光層4としてAIQ を600 人真空蒸着した後、AIQ と地を金属ドーピング層5として地が93重量%となるように20人のPみに共蒸着した。その上から、陰極電極6としてAIを1000人蒸着1-素子を作製した。この素子は最高鍵度2800 cd/a²、電流密度920m/cm²を与え、実施例1と同じく高興度を与えた。

【0033】実施例4

ITO 上に1000人のボリバラフェニレンビニレン (PPV) をBurroughesらの方法 (Nature, 347, 539 (1990)) に より発光層4として成限した。分千量20万のボリスチレ ンとジフェニルアントラセンを重発比で2:1となるよ うテトラヒドロフランに溶解させた後、ジフェニルアン 50 トラセンに対し、2重量%のLiを分散し、撹拌し、ジフ 11 ェニルアントラセンと反応させた。そのテトラヒドロフ ラン溶液を用いPPY 上にアントラセン/Liを含有するポ リスチレン膜を窒素祭Ⅲ気中でスピンコーティングし、 50人の金属ドーピング層うとした。その上から、陰極電

50人の金属ドーピング層 5 とした。その上から、除極電 極6 としてNIを1000人業着し業子を作製した。この業子 からはPPV 層からの黄緑色発光が観測され、最高輝度42 00cd/m²を示した。

【0034】比較例6

実施例7と同様の方法で1TO 上に1000人のPPV を成膜した後、Alを1000人業者し業子を作製した。この業子から 10 APPV 層からの責後を発光が観想された。 最高減度40 Ocd/m²しか示さなかった。これより実施例7における金 既ドーピング層が駆動電圧の低下に効果的であることが わかる、

[0035]

【発明の効果】以上の如く、本発明の有機以案子はドナー(電子供与性)ドーパント金属を有機化合物層にドーピング日を除極電極との界面に設け

12 ることによって、駆動電圧が低く、高効率、高輝度発光 素子の作製を可能にした。したがって、本発明の有機に 業子は、実用性が高く、表示素子や光源としての有効利 用を期待できる。

【図面の簡単な説明】

【図1】本発明の有機癿素子の積層構造例を示す模式断 面図である。

【図2】本発明の有機癿素子と比較例の輝度 - 電圧特性 を示すグラフ図である。

【図3】本発明の有機旺素子と比較例の輝度-電流密度 特性を示すグラフ図である。

【符号の説明】 1 透明基板

- 2 陽極透明電極
- 3 下孔輸送層
- 4 発光層
- 5 金属ドーピング層
- 6 降極電極

CLIPPEDIMAGE= JP410270171A

PAT-NO: JP410270171A

DOCUMENT-IDENTIFIER: JP 10270171 A

TITLE: ORGANIC ELECTROLUMINESCENT ELEMENT

PUBN-DATE: October 9, 1998

INVENTOR-INFORMATION:

NAME KIDO, JUNJI

MIZUKAMI, TOKIO

ASSIGNEE-INFORMATION:

NAME KIDO JUNJI KK AIMESU COUNTRY N/A N/A

APPL-NO: JP09075833 APPL-DATE: March 27, 1997

INT-CL (IPC): H05B033/22

ABSTRACT:

PROBLEM TO BE SOLVED: To provide a low driving voltage and highly efficient high luminance light emission organic EL element by providing a light emission layer made of an organic compound between opposing positive and negative electrodes and further providing an organic compound layer doped with donor dopant metal in the boundary of the negative electrode.

SOLUTION: A positive transparent electrode 2 and a negative electrode 6 which are made of ITO or the like are arranged opposite to each other on a transparent substrate 1 made of glass or the like, a hole transport layer 3 and a light emission layer 4 made of an organic compound are provided therebetween, the metallic doping layer 5 doped with metal functioning as a donor dopant is formed in a boundary with the negative electrode 6, and thereby a highly efficient organic EL element is provided. For the donor dopant, alkaline metal of Li or the like having a work function of 4.2 eV or lower, alkaline earth metal of MG or the like or transition metal such as rare earth metal is preferably used, its concentration is preferably set to 0.1 to 99 wt.%, and a metal doping layer thickness is preferably set to 10 to 3000 & angst;. Thus, the energy barrier of electron injection from the negative electrode is reduced and low voltage driving is performed.

COPYRIGHT: (C)1998,JPO