en-ch4.5_Naive_Bayes_Classiication

2019년 10월 8일

1 Chapter 4 - THE PRELIMINARIES: A CRASHCOURSE

1.1 4.5 Naive Bayes Classification

```
In [1]: %matplotlib inline
    import d2l
    import math
    from mxnet import nd, gluon
    d2l.use_svg_display()
```

4.5.1 Optical Character Recognition

```
In [6]: images, labels = mnist_train[10:38]
        images.shape, labels.shape
Out[6]: ((28, 28, 28), (28,))
In [7]: # Save to the d2l package.
        def show_images(imgs, num_rows, num_cols, titles=None, scale=1.5):
            """Plot a list of images."""
            figsize = (num_cols * scale, num_rows * scale)
            _, axes = d21.plt.subplots(num_rows, num_cols, figsize=figsize)
            axes = axes.flatten()
            for i, (ax, img) in enumerate(zip(axes, imgs)):
                ax.imshow(img.asnumpy())
                ax.axes.get_xaxis().set_visible(False)
                ax.axes.get_yaxis().set_visible(False)
                if titles:
                    ax.set_title(titles[i])
            return axes
        show_images(images, 2, 9);
```

4.5.2 The Probabilistic Model for Classification If we are able to compute these probabilities, which are $p(y|\mathbf{x})$ for $y = 0, \dots, 9$ in our example, then the classifier will output the prediction y given by the expression:

$$\hat{y} = \operatorname{argmax}_{y} p(y|\mathbf{x})$$

4.5.3 The Naive Bayes Classiler To begin, let's use Bayes Theorem, to express the classifier as

$$\hat{y} = \operatorname{argmax}_{y} \frac{p(\mathbf{x}|y)p(y)}{p(\mathbf{x})}$$

argmax 이므로 $p(\mathbf{x})$ 는 모두 같음. 즉 $p(\mathbf{x}|y)p(y)$ 만 구하고 가장 큰 값을 취하면 됨. 그러므로 $p(\mathbf{x})$ 는 생략 가능

Now, using the chain rule of probability, we can express the term $p(\mathbf{x}|y)$ as

$$p(x_1|y) \cdot p(x_2|x_1, y) \cdot ... \cdot p(x_d|x_1, ..., x_{d-1}y)$$

$$\hat{y} = \operatorname{argmax}_{y} = \prod_{i} p(x_{i}|y)p(y)$$

4.5.4 Training

```
In [8]: X, Y = mnist_train[:] # all training examples

print(X.shape)
print(Y.shape)
print(Y)

n_y = nd.zeros((10))

for y in range(10):
    # print((Y==y).astype(float))
    # 0, 1, 2, 3 ... 9 각 class 의 total
    n_y[y] = (Y==y).sum()

# y 의 total 로 y 의 각 class 를 나눔. 즉 각 y class 별 확률
P_y = n_y / n_y.sum()
P_y

(60000, 28, 28)
(60000,)
[5 0 4 … 5 6 8]
```

```
Out[8]:
       [0.09871667 0.11236667 0.0993
                                     0.10218333 0.09736667 0.09035
        0.09863333 0.10441667 0.09751666 0.09915
       <NDArray 10 @cpu(0)>
In [9]: n_x = nd.zeros((10, 28, 28))
       a = nd.array([[1, 2, 3, 4], [5,6,7,8]])
       b = nd.array([[1, 5, 6, 4], [9,10,11,8]])
       print(a[a==b].sum(axis=0))
       print((Y==y))
       print(X.asnumpy()[2][1])
       for y in range(10):
          \#print(X.asnumpy()[Y==y][1])
          n_x[y] = nd.array(X.asnumpy()[Y==y].sum(axis=0))
           \#print(n_x[y])
       #print(n_x[9])
       # class y 일때 각 픽셀 값들의 확률.
       P_xy = (n_x+1) / (n_y+1).reshape((10,1,1))
       print(P_xy.shape)
       show_images(P_xy, 2, 5);
[[ 6. 8. 10. 12.]
[2. 4. 6. 8.]
[ 2. 4. 6. 8.]
[10. 12. 14. 16.]]
<NDArray 4x4 @cpu(0)>
[False False False False False]
0. 0. 0. 0.]
(10, 28, 28)
```


In []:

[0.0001688 0.000

```
Out[10]:
         [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
         <NDArray 10 @cpu(0)>
In [11]: a = 0.1
        print('underflow:', a**784)
         print('logrithm is normal:', 784*math.log(a))
underflow: 0.0
logrithm is normal: -1805.2267129073316
In [12]: log_P_xy = nd.log(P_xy)
         log_P_xy_neg = nd.log(1-P_xy)
         log_P_y = nd.log(P_y)
         def bayes_pred_stable(x):
             x = x.expand_dims(axis=0) # (28, 28) -> (1, 28, 28)
             p_xy = log_p_xy * x + log_p_xy_neg * (1-x)
             p_xy = p_xy.reshape((10,-1)).sum(axis=1) # p(x/y)
             return p_xy + log_P_y
         py = bayes_pred_stable(image)
        ру
Out[12]:
         [-269.00424 - 301.73447 - 245.21458 - 218.8941 - 193.46907 - 206.10315
          -292.54315 -114.62834 -220.35619 -163.18881]
         <NDArray 10 @cpu(0)>
In [13]: py.argmax(axis=0).asscalar() == label
Out [13]: True
In [14]: def predict(X):
             return [bayes_pred_stable(x).argmax(axis=0).asscalar() for x in X]
         X, y = mnist_test[:18]
         show_images(X, 2, 9, titles=predict(X));
```

