EXAMEN DE FIN D'ÉTUDES SECONDAIRES 2018

BRANCHE	SECTION	ÉPREUVE ÉCRITE
Mathématiques I	D	Durée de l'épreuve : 1h45
		Date de l'épreuve : 07/06/2018

Question 1 12 points

Soit
$$P(z) = 2z^3 - (1+7i)z^2 + (2i-8)z + 4i$$
.

Résoudre dans \mathbb{C} l'équation P(z) = 0 sachant que P admet une racine imaginaire pure.

Question 2 18 points (8+5+5)

Les trois questions de cet exercice sont indépendantes.

- 1) Ecrire le nombre complexe $Z = \frac{(3+3i)^{10}}{(3\sqrt{3}-3i)^8}$ sous forme trigonométrique puis sous forme algébrique.
- 2) Résoudre dans $\mathbb C$ l'équation suivante et préciser l'ensemble des solutions :

$$(1-i)\overline{z} = (2+i)z + 3$$

3) Calculer et donner sous forme trigonométrique les racines cubiques du nombre complexe

$$w = \frac{-16\sqrt{2}}{2-2i}.$$

Question 3 16 points

Résoudre, discuter et interpréter géométriquement suivant les valeurs du paramètre réel m le

système suivant :
$$(S)$$

$$\begin{cases} x-2y+mz=1\\ x-my+2z=1\\ 2x+my+mz=1 \end{cases} \quad (m \in \mathbb{R})$$

Question 4 14 points (2+4+3+5)

Dans un repère orthonormé de l'espace, on considère les points A(-2;1;4), B(-1;0;2), le vecteur $\vec{n}(3;-2;1)$ et la droite d définie par $d = \begin{cases} 2x+y-z=4 \\ y-z=1 \end{cases}$.

- 1) Déterminer une équation cartésienne du plan π_1 passant par le point A et de vecteur normal \vec{n} .
- 2) Déterminer un système d'équations paramétriques du plan π_2 parallèle au plan π_1 passant par le point B et caractériser le plan π_2 par la donnée d'un point et de deux vecteurs directeurs non colinéaires.
- 3) Déterminer un système d'équations paramétriques de la droite d et caractériser la droite d par la donnée d'un point et d'un vecteur directeur.
- 4) Etudier l'intersection de la droite d et du plan π_1 .