Absorption Analysis

Absorption phenomenon

```
# 新建站点信息
New Station ID : 3461
New station appear time: 2017-05-18 12:15:
# 温度 [before, after]
temperature[4.58354135064, 11.8816189938]
# 临近站点的demand变化 [before, after], 最后一项是与新建station的距离
nearStation id :309, workday[300.538461538, 281.5], holiday[286.5, 278.0],
151.42 m
nearStation id :152, workday[251.076923077, 216.8], holiday[174.5, 164.5],
178.86 m
nearStation id :319, workday[240.384615385, 287.9], holiday[198.0, 218.5],
227.37 m
```

```
# 新建站点信息
New Station ID: 3249
New station appear time: 2016-04-05 18:47:58
# 温度 [before, after]
temperature[-2.29718230487, -2.58800067035]
# 临近站点的demand变化 [before, after], 最后一项是与新建station的距离
nearStation id:437, workday[53.0, 57.4166666667], holiday[44.8, 55.0],
211.58 m
```

```
# 新建站点信息
New Station ID: 3469
New station appear time: 2017-06-08 15:03:17
# 温度 [before, after]
temperature[8.21299317513, 13.8245949074]
# 临近站点的demand变化 [before, after], 最后一项是与新建station的距离
nearStation id:3116, workday[108.33, 111.15], holiday[143.5, 127.0],
170.68 m
```

```
# 新建站点信息
New Station ID : 3436
New station appear time: 2016-09-30 17:01:38
# 温度 [before, after]
temperature[12.612604338, 5.21078793825]
# 临近站点的demand变化 [before, after], 最后一项是与新建station的距离
nearStation id :248, workday[115.9, 118.7], holiday[66.1666666667, 47.5],
206.55 m
nearStation id :328, workday[242.67, 183.14], holiday[161.5, 182.25],
306.19 m
```

```
# 新建站点信息
New Station ID: 3474
New station appear time: 2017-06-29 16:44:35
# 温度 [before, after]
temperature[12.0737418301, 17.4493122202]
# 临近站点的demand变化 [before, after], 最后一项是与新建station的距离
nearStation id:128, workday[566.75, 537.75], holiday[449.0, 409.0], 227.07
m
```

新建站点的选择方法: 人工选择

其他发现:一些距离新建站点很近的旧站点,没有in / out记录,应该是旧站点被新站点取代了,这个因素需要考虑吗?

Weather Factor

Data Source: NOAA

download link: https://www.ncei.noaa.gov/orders/cdo/1135040.csv

All the days with abnormal weathre are removed.

Overall, the bad weather days account for 42.9% in 4 years (2013 - 2017).

Holiday and Workday

Holiday include: Saturday, Sunday and public holidays.

The public holidays includes: (Data Source: https://publicholidays.us/new-york/)

Date	Day	Holiday
1 Jan	Sun	New Year's Day
2 Jan	Mon	New Year Holiday
16 Jan	Mon	Martin Luther King Jr. Birthday
12 Feb	Sun	<u>Lincoln's Birthday</u>
13 Feb	Mon	<u>Lincoln's Birthday Holiday</u>
20 Feb	Mon	<u>President's Day</u>
29 May	Mon	<u>Memorial Day</u>
4 Jul	Tue	<u>Independence Day</u>
4 Sep	Mon	<u>Labor Day</u>
9 Oct	Mon	<u>Columbus Day</u>
10 Nov	Fri	<u>Veterans Day Holiday</u>
11 Nov	Sat	<u>Veterans Day</u>
23 Nov	Thu	Thanksgiving Day
25 Dec	Mon	<u>Christmas Day</u>

Method to find S* and near-Stations (未实践)

time threshold : T = 30 days

distance threshold: D = 150m (for absorption), 5000m (for stimulation)

For a station A, get the near stations set A_NN (within 150m of A)

Rule 1: The stations in A_NN are all built at least one month earlier than A

Rule 2: After A was built, no station is built within 150m + 5000m of A. (+5000m is to ensure the near stations are not influenced by stimulation)

Method to find satisfied new station and effected station list(未实践)

上图为骑行距离的统计图,可以用t分布做一下假设检验,来寻找距离的阈值,假设置信区间是 [150米, 6000米],那就认为两个车站如果在150米以内,就存在竞争关系,就在这个距离阈值内寻找 Absorption的现象。

在[150米, 6000米]距离之间的stations寻找stimulation的现象