Math 140B: Homework 3

Merrick Qiu

Rudin 1

Let P be a partition on [a, b]. If $x_0 \in [x_{i-1}, x_i]$ then $m_i = 0$ and $M_i = 1$ and $m_i = M_i = 0$ for all other intervals. Since Δx_i can be chosen to be arbitrarily small and α is continuous at x_0 ,

$$\int_{a}^{b} f(x) d\alpha = \sup L(P, f, \alpha) = \sup 0 = 0$$

$$\int_{a}^{b} f(x) d\alpha = \inf U(P, f, \alpha) = \inf \alpha(x_i) - \alpha(x_{i-1}) = 0$$

Thus $f \in \mathcal{R}(\alpha)$ and $\int_a^b f(x) d\alpha = 0$.

Rudin 2

Suppose $f(x_0) \neq 0$ for some x_0 . Since f is continuous at x_0 , there exists $\delta > 0$ such that

$$|x - x_0| < \delta \implies |f(x) - f(x_0)| < \frac{f(x_0)}{2}.$$

Since f is continuous, nonnegative, and bounded, it is Riemann integrable. Since all $x \in B_{\delta}(x_0)$ is positive,

$$\int_{a}^{b} f(x) dx \ge \int_{\max(a, x - \delta)}^{\min(b, x + \delta)} f(x) dx > 0$$

Rudin 4

Since the rationals and the irrationals are both dense in the reals, $M_i = 1$ and $m_i = 0$ for all intervals for all partitions. Thus every lower Riemann sum equals 0 and every upper Riemann sum equals b - a, so $f \notin \mathcal{R}$.

Rudin 5

The rational indicator function from problem 4 is a counterexample. It is not Riemann integrable but its square is just the constant function. However the integrability of f^3 does imply the integrability of f by theorem 6.11.

Rudin 6

Cover P with open intervals (u_j, v_j) where each interval has length $\alpha(v_j) - \alpha(u_j) < \epsilon$. If we remove these open intervals from [0,1] we get another compact set K, which f is uniformly continuous on, meaning $|s-t| < \delta \implies |f(s) - f(t)| < \epsilon$. If we form a partition where each u_j, v_j occurs in P, no point of any segument (u_j, v_j) occurs in P, and each $x_{i-1} \neq u_j$ has $\Delta x_i < \delta$ then

$$U(P, f, \alpha) - L(P, f, \alpha) \le [\alpha(b) - \alpha(b)]\epsilon + 2M\epsilon$$

where $m \leq f(x) \leq M$ as bounds. Thus since ϵ was arbitrary we have that $f \in \mathcal{R}$ on [0,1].

Rudin 7

Let $\epsilon > 0$ and $M = \sup |f(x)|$. Let P be a partition that contains c when $0 < c \le \frac{\epsilon}{4M}$ and the difference between the upper and lower Riemann sums is $< \frac{\epsilon}{4}$. Then the upper and lower Riemann sums on [c,1] using the points of P inside that intervals are also $< \frac{\epsilon}{4}$. Finally note that the value of the upper and lower Riemann sums in [0,c] are also $< \frac{\epsilon}{4}$. Thus it must be that

$$\left| \int_0^1 f(x) \, dx - \int_c^1 f(x) \, dx \right| < \epsilon$$

The function $f(x) = (-1)^n (n+1)$ for $\frac{1}{n+1} < x \le \frac{1}{n}$ has a limit

$$\int_{c}^{1} f(x) dx = (-1)^{N} (N+1) \left(\frac{1}{N} - c\right) + \sum_{k=1}^{N-1} \frac{(-1)^{k}}{k}$$

where $\frac{1}{N+1} < c \le \frac{1}{N}$. However this limit does not exist for |f| since

$$\int_{c}^{1} |f(x)| dx = (N+1)(\frac{1}{N} - c) + \sum_{k=1}^{N-1} \frac{1}{k}$$

Rudin 8

Note that for a partition of [0, n] with the points $0, 1, 2, \dots, n$, If the sum does not converge, then the integral does not converge since

$$\sum_{n=1}^{n} f(n) = L(f, P) \le \int_{0}^{n} f(x) dx$$

Likewise if the integral does not converge then the sum does not converge since

$$\int_{0}^{n} f(x) \, dx \le U(f, P) = \sum_{n=0}^{n} f(n)$$

Rudin 11

Define

$$P(\lambda) = \int_a^b (\lambda u(x) + v(x))^2 d\alpha = \lambda^2 \int_a^b u^2(x) d\alpha + 2\lambda \int_a^b u(x)v(x) d\alpha + \int_a^b v^2(x) d\alpha \ge 0$$

This implies a negative determinant so

$$\left(2\int_{a}^{b} u(x)v(x) d\alpha\right)^{2} - 4\int_{a}^{b} u^{2}(x) d\alpha \int_{a}^{b} v^{2}(x) d\alpha \le 0$$

$$\implies 4\left(\int_{a}^{b} u(x)v(x) d\alpha\right)^{2} \le 4\int_{a}^{b} u^{2}(x) d\alpha \int_{a}^{b} v^{2}(x) d\alpha$$

$$\implies \int_{a}^{b} u(x)v(x) d\alpha \le \left(\int_{a}^{b} u^{2}(x) d\alpha\right)^{\frac{1}{2}} \left(\int_{a}^{b} v^{2}(x) d\alpha\right)^{\frac{1}{2}}$$

$$\implies \int_{a}^{b} |u(x)||v(x)| d\alpha \le ||u||_{2}||v||_{2}$$

Expanding out the definition yields

$$||f - h||_{2}^{2} = \int_{a}^{b} |f - h|^{2} d\alpha$$

$$= \int_{a}^{b} |(f - g) + (g - h)|^{2} d\alpha$$

$$= \int_{a}^{b} |f - g|^{2} d\alpha + \int_{a}^{b} |f - g||g - h| d\alpha + \int_{a}^{b} |g - h|^{2} d\alpha$$

$$\leq ||f - g||_{2}^{2} + 2||f - g||_{2}||g - h||_{2} + ||g - h||_{2}^{2}$$

$$= (||f - g||_{2} + ||g - h||_{2})^{2}$$

Rudin 12

Define for a partition $P = \{x_0, \dots, x_n\}$

$$g(t) = \frac{x_i - t}{\Delta x_i} f(x_{i-1}) + \frac{t - x_{i-1}}{\Delta x_i} f(x_i)$$

Since g is continuous, and |f - g| is bounded by $M_i - m_i$. We can choose a partition such that the upper riemann sum of f is bounded by $\frac{\epsilon^2}{2M}$ where M is the max of |f(x)|, which implies that

$$\sum (M_i - m_i)^2 [\alpha(x_i) - \alpha(x_{i-1})] < \epsilon^2$$

so $||g - f||_2 < \epsilon$.