dummy_display_second

October 2, 2024

Parameter	Value
Initial Token A	1,000,000 units (1 million)
Initial Token B	1,000,000 units (1 million)
Fee Rate	<pre>np.round(np.arange(min_fee_rate, max_fee_rate,</pre>
	min_fee_rate), 4) Example: [0.0005, 0.001, 0.0015,, 0.02] (total
	40 values)
Sigma (Volatility)	np.round(np.arange(0.001, 0.021, 0.001), 3) Example:
	[0.001, 0.002,, 0.02] (total 20 values)
Time Interval (dt)	1/3600 seconds (1 second interval)
Simulation Length	50,000 steps
Market Spread	0.01
Drift Rate	0.0001
Start Price (Token	50,000
A, B)	
Iterations per	300 (for each combination of sigma and fee rate)
Combination	

0.0.1 Plan:

- I. Demonstrate the overall relationship between sigmas and fee collected in AMM.
- II. Explore the Max Mean fee rate for each sigma.
- III. Examine the pattern between sigma and Max Mean fee rate.

```
[7]: import matplotlib.pyplot as plt import seaborn as sns

# Set up the plot
```

```
plt.figure(figsize=(12, 8))

# Draw the boxplot
sns.boxplot(x='sigma', y='fee', data=results)

# Set the labels and title
plt.xlabel('Sigma')
plt.ylabel('Fee')
plt.title('Distribution of Fees for Different Sigma Values')

# Show the plot
plt.show()
```



```
[8]: import matplotlib.pyplot as plt
import seaborn as sns

unique_sigma = results['sigma'].unique()

# Define the number of rows and columns for the subplots grid
num_rows = 5
num_cols = 4
```

```
# Create subplots
fig, axes = plt.subplots(num_rows, num_cols, figsize=(20, 15))
axes = axes.flatten() # Flatten the axes for easy iteration
# Loop through each sigma value and create a subplot
for i, sigma in enumerate(unique_sigma):
   df = results[results['sigma'] == sigma].copy() # Ensure a copy to avoid_
 ⇔warnings
   # Calculate the fee_rate with the highest mean fee
   max_fee_rate = df.groupby('fee_rate')['fee'].mean().idxmax()
   # Plot the fee vs fee_rate
    sns.lineplot(x='fee_rate', y='fee', data=df, ax=axes[i],__
 ⇔label=f'sigma={sigma}')
   # Add a red dashed line to indicate the fee_rate with the highest mean fee
   axes[i].axvline(x=max_fee_rate, color='red', linestyle='--', label=f'Max_
 →Mean Fee Rate: {max_fee_rate:.4f}')
    # Set labels and title
   axes[i].set_xlabel('fee_rate')
   axes[i].set_ylabel('fee')
   # make x tick labels more readable rotate 45 degrees
   axes[i].tick_params(axis='x', rotation=45)
   axes[i].set_title(f'sigma={sigma}')
   axes[i].legend()
# Remove any unused subplots
for j in range(i + 1, len(axes)):
   fig.delaxes(axes[j])
plt.tight_layout()
plt.show()
```


0.0.2 Statistics Analysis

1. Confidence Metric Calculation:

- Perform pairwise ANOVA between the max mean fee rate and all other fee rates.
- The **confidence metric** is calculated as:

Confidence Metric =
$$\frac{1}{\sum p\text{-values from pairwise comparisons}}$$

• This metric quantifies how confidently the max mean fee rate differs from other fee rates.

2. ANOVA p-value Heatmap:

- Use a **heatmap** to visualize the p-values from ANOVA for all fee rates for each sigma.
- Each subplot in the grid represents the pairwise p-values for a different sigma value, providing insight into how fee rates compare statistically.

3. Pairwise T-Test Heatmap:

- Perform **pairwise t-tests** between all fee rates for each sigma.
- Generate a **heatmap** for each sigma to display the p-values from the t-tests, indicating the significance of differences between fee rates.

I. Confidence Metric

[50]: from statsmodels.formula.api import ols import statsmodels.api as sm

```
confidence_scores = []
def calculate_confidence(tukey_summary, max_fee_rate):
    confidence_sum = 0
    for result in tukey_summary.summary().data[1:]:
        fee_rate_1, fee_rate_2, p_value = result[0], result[1], result[4]
        if max_fee_rate in [fee_rate_1, fee_rate_2]:
             confidence_sum += p_value
    # Higher confidence means lower p-values
    return 1 / confidence_sum if confidence_sum > 0 else 0
for sigma in unique_sigma:
    df_sigma = results[results['sigma'] == sigma].copy()
    max_fee_rate = df_sigma.groupby('fee_rate')['fee'].mean().idxmax()
    # Perform ANOVA
    model = ols('fee ~ C(fee_rate)', data=df_sigma).fit()
    anova_table = sm.stats.anova_lm(model, typ=2)
    # Perform Tukey's HSD for pairwise comparison
    tukey = pairwise_tukeyhsd(endog=df_sigma['fee'],__
  ⇒groups=df_sigma['fee_rate'], alpha=0.05)
    confidence scores append(calculate_confidence(tukey, max_fee_rate))
# Plot the confidence scores
plt.figure(figsize=(12, 8))
plt.plot(unique_sigma, confidence_scores, marker='o')
plt.xlabel('Sigma')
plt.ylabel('Confidence Metric')
plt.title('Confidence Metric for Different Sigma Values')
plt.show()
/home/shiftpub/miniconda3/envs/amm-env/lib/python3.9/site-
packages/scipy/integrate/_quadpack_py.py:1272: IntegrationWarning: The integral
is probably divergent, or slowly convergent.
  quad r = quad(f, low, high, args=args, full output=self.full output,
/home/shiftpub/miniconda3/envs/amm-env/lib/python3.9/site-
packages/scipy/integrate/_quadpack_py.py:1272: IntegrationWarning: The integral
```

from statsmodels.stats.multicomp import pairwise_tukeyhsd

packages/scipy/integrate/_quadpack_py.py:1272: IntegrationWarning: The integral

quad_r = quad(f, low, high, args=args, full_output=self.full_output,

/home/shiftpub/miniconda3/envs/amm-env/lib/python3.9/site-

is probably divergent, or slowly convergent.

is probably divergent, or slowly convergent.

quad_r = quad(f, low, high, args=args, full_output=self.full_output, /home/shiftpub/miniconda3/envs/amm-env/lib/python3.9/site-packages/scipy/integrate/_quadpack_py.py:1272: IntegrationWarning: The integral is probably divergent, or slowly convergent.

quad_r = quad(f, low, high, args=args, full_output=self.full_output,

II. ANOVA p-value Heatmap

```
[46]: import numpy as np
  import seaborn as sns
  import matplotlib.pyplot as plt
  from statsmodels.formula.api import ols
  from statsmodels.stats.multicomp import pairwise_tukeyhsd

# Unique sigma values
  unique_sigma = results['sigma'].unique()

# Define the number of rows and columns for the subplots grid
  num_rows = 5
  num_cols = 4

# Create subplots
  fig, axes = plt.subplots(num_rows, num_cols, figsize=(20, 15))
```

```
axes = axes.flatten() # Flatten the axes for easy iteration
# Loop through each sigma value and create a heatmap subplot for each
for i, sigma in enumerate(unique_sigma):
   df = results[results['sigma'] == sigma].copy() # Filter the dataframe for_
 ⇔the current sigma
   # Perform ANOVA
   model = ols('fee ~ C(fee_rate)', data=df).fit()
   # Perform Tukey's HSD for pairwise comparison
   tukey = pairwise_tukeyhsd(endog=df['fee'], groups=df['fee_rate'], alpha=0.
 →05)
   # Extract unique fee rates
   fee_rates = sorted(df['fee_rate'].unique())
   # Create an empty matrix to store p-values
   p_value_matrix = np.ones((len(fee_rates), len(fee_rates))) # Initialize_
 ⇔with ones
   # Fill the matrix with p-values from Tukey's HSD
   for row in tukey.summary().data[1:]:
       group1, group2, meandiff, p_adj, lower, upper, reject = row
       idx1 = fee rates.index(float(group1))
       idx2 = fee_rates.index(float(group2))
       p_value_matrix[idx1, idx2] = p_adj
       p_value_matrix[idx2, idx1] = p_adj # Fill symmetrically
   # Mask the lower triangle (including the diagonal)
   mask = np.triu(np.ones_like(p_value_matrix, dtype=bool))
   # Plot the heatmap in the current subplot
   sns.heatmap(p_value_matrix, xticklabels=fee_rates, yticklabels=fee_rates,_u
 # Set title for each subplot
   axes[i].set_title(f'sigma={sigma}')
# Remove any unused subplots
for j in range(i + 1, len(axes)):
   fig.delaxes(axes[j])
# Adjust layout
plt.tight_layout()
plt.show()
```

/home/shiftpub/miniconda3/envs/amm-env/lib/python3.9/sitepackages/scipy/integrate/_quadpack_py.py:1272: IntegrationWarning: The integral is probably divergent, or slowly convergent.

 $\label{eq:quad_r} $$ = \operatorname{quad}(f, low, high, args=args, full_output=self.full_output, \/\end{args} $$ / home/shiftpub/miniconda3/envs/amm-env/lib/python3.9/site-$

packages/scipy/integrate/_quadpack_py.py:1272: IntegrationWarning: The integral is probably divergent, or slowly convergent.

quad_r = quad(f, low, high, args=args, full_output=self.full_output,
/home/shiftpub/miniconda3/envs/amm-env/lib/python3.9/site-

packages/scipy/integrate/_quadpack_py.py:1272: IntegrationWarning: The integral is probably divergent, or slowly convergent.

quad_r = quad(f, low, high, args=args, full_output=self.full_output,
/home/shiftpub/miniconda3/envs/amm-env/lib/python3.9/sitepackages/scipy/integrate/_quadpack_py.py:1272: IntegrationWarning: The integral
is probably divergent, or slowly convergent.

quad_r = quad(f, low, high, args=args, full_output=self.full_output,

III. Pairwise T-Test Heatmap

[51]: import numpy as np import seaborn as sns

```
import matplotlib.pyplot as plt
from scipy.stats import ttest_ind
# Unique sigma values
unique_sigma = results['sigma'].unique()
# Define the number of rows and columns for the subplots grid
num rows = 5
num_cols = 4
# Create subplots
fig, axes = plt.subplots(num_rows, num_cols, figsize=(20, 15))
axes = axes.flatten() # Flatten the axes for easy iteration
# Loop through each sigma value and create a heatmap subplot for each
for i, sigma in enumerate(unique_sigma):
   df = results[results['sigma'] == sigma].copy() # Filter the dataframe for
 ⇔the current sigma
    # Extract unique fee rates
   fee rates = sorted(df['fee rate'].unique())
   # Create an empty matrix to store p-values
   p_value_matrix = np.ones((len(fee_rates), len(fee_rates))) # Initialize_
 ⇔with ones
    # Perform pairwise t-tests for each pair of fee rates
   for idx1, fee_rate_1 in enumerate(fee_rates):
        for idx2, fee_rate_2 in enumerate(fee_rates):
            if idx1 != idx2:
                # Extract the fees for the two fee rates
                fees_1 = df[df['fee_rate'] == fee_rate_1]['fee']
                fees_2 = df[df['fee_rate'] == fee_rate_2]['fee']
                # Perform t-test
                t_stat, p_value = ttest_ind(fees_1, fees_2, equal_var=False)
 →Assume unequal variances
                # Store the p-value in the matrix
                p_value_matrix[idx1, idx2] = p_value
    # Mask the lower triangle (including the diagonal)
   mask = np.triu(np.ones_like(p_value_matrix, dtype=bool))
   # Plot the heatmap in the current subplot
   sns.heatmap(p_value_matrix, xticklabels=fee_rates, yticklabels=fee_rates,__

cmap='coolwarm', annot=False, mask=mask, ax=axes[i])
```

```
# Set title for each subplot
axes[i].set_title(f'sigma={sigma}')

# Remove any unused subplots
for j in range(i + 1, len(axes)):
    fig.delaxes(axes[j])

# Adjust layout
plt.tight_layout()
plt.show()
```


0.0.3 Linear Regression : Max Mean fee rate VS. Sigma

```
[12]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score
```

```
# List to store sigma and corresponding fee_rate with highest mean fee
sigma_values = []
max_fee_rates = []
# Loop through each sigma
for sigma in unique sigma:
   df = results[results['sigma'] == sigma].copy() # Filter the dataframe for_
 ⇔current sigma
   # Calculate the fee_rate with the highest mean fee for this sigma
   max_fee_rate = df.groupby('fee_rate')['fee'].mean().idxmax()
   # Store the sigma and the corresponding max fee_rate
   sigma_values.append(sigma)
   max_fee_rates.append(max_fee_rate)
# Prepare the data (assuming you already have sigma_values and max_fee_rates_u
 ⇔lists)
plot_data = pd.DataFrame({'sigma': sigma_values, 'max_fee_rate': max_fee_rates})
# Features and target
X = plot_data[['sigma']] # Independent variable
y = plot_data['max_fee_rate'] # Dependent variable
# Initialize and fit the linear model
linear model = LinearRegression()
linear_model.fit(X, y)
# Make predictions
y_pred_linear = linear_model.predict(X)
# Plot the original data
plt.figure(figsize=(12, 8))
sns.scatterplot(x='sigma', y='max_fee_rate', data=plot_data, label='Original_

→Data')
# Plot Linear Regression line
plt.plot(plot_data['sigma'], y_pred_linear, label='Linear Regression', u

¬color='red')
# Set labels and title
plt.xlabel('Sigma')
plt.ylabel('Fee Rate with Highest Mean Fee')
plt.title('Linear Regression: Fee Rate vs Sigma')
plt.legend()
```

```
# Show the plot
plt.show()

# Print performance metrics
print("Linear Regression R^2:", r2_score(y, y_pred_linear))
print("Linear Regression Coefficients:", linear_model.coef_)
print("Linear Regression Intercept:", linear_model.intercept_)
```


Linear Regression R^2: 0.9244377778351344 Linear Regression Coefficients: [0.72556391]

Linear Regression Intercept: -0.00031842105263157894

[]: