Prediction

Chittaranjan Pradhan

Overfitting & Underfitting

Prediction Regression

Correlation Coefficient

Linear Regression

Performance

Evaluation of

Regression

Data Mining and Data Warehousing 10

Prediction

Chittaranjan Pradhan School of Computer Engineering, KIIT University

- An underfitting model has poor performance on the training data and will result in unreliable predictions
- · Underfitting occurs due to high bias and low variance
- Techniques to reduce Underfitting
 - Increase model complexity

it is known as underfitting

- Increase the number of features in the dataset
- Reduce noise in the data
- · Increase the duration of training the data

Prediction

Chittaranjan Pradhan

verfitting &

Prediction

Regression

Correlation Coefficient

Linear Regression

Overfitting

- When a model performs very well for training data, but has poor performance with test data, it is known as overfitting
- Here, the machine learning model learns the details and noise in the training data such that it negatively affects the performance of the model on test data
- Overfitting can happen due to low bias and high variance
- Techniques to reduce Overfitting
 - Using K-fold cross-validationReduce model complexity
 - Training model with sufficient data
 - Remove unnecessary or irrelevant features
 - Early stopping during the training phase
- Overfitting is the result of using an excessively complicated model while underfitting is the result of using an excessively simple model or using few training samples
- A model that is underfit will have high training and high testing error while an overfit model will have extremely low training error but a high testing error

verfitting &

Prediction

Regression

Regression

Correlation Coefficient

Linear Regression

Performance

Evaluation of

- Both problems deal with the mapping of the input data to output data but in a different way
- Prediction and classification both are the supervised learning methods, where prediction is trained to predict real number outputs and classification is trained to identify/predict to which category the new values fall into
- Example (classification): Before starting of your 7th sem project, you want to predict whether it is accepted or rejected in final project defense
- Example (Prediction): Before starting 7th sem, if you want to predict how much score you want to obtain, here you use a prediction model by consulting previously obtained marks

Overfitting & Underfitting

Regression

Correlation Coefficient

Linear Regression

- Regression analysis can be used to model the relationship between one or more independent (or predictor) variables and a dependent (or response) variable
- The predictor variables are the attributes of interest describing the tuple. Generally, the values of the predictor variables are known
- The response variable is what we want to predict
- Types of Regression
 - Linear Regression: A linear function of single independent variable x (Ex: y = a + b.x)
 - Multiple Linear Regression: A linear function of multiple independent variable x1, x2, x3,... (Ex:
 y = a + b1.x1 + b2.x2 + b3.x3...)
 - **Polynomial Regression**: A polynomial function of independent variable x (Ex: $y = a + b1.x + b2.x^2 + b3.x^3...$)
 - Non-Linear Regression: A non linear function with one or more parameters (Ex: y = a.e^{b.x})

Overfitting & Underfitting Prediction

Pogrossion

Correlation Coefficient

Linear Regression

Correlation Coefficient

- Correlation is a measure of the extent to which two variables are related
- Positive correlation: is a relationship between two variables in which both variables move in same direction.
 Ex: Height and Weight
- Negative correlation: is a relationship between two variables in which an increase in one variable is associated with a decrease in the other. Ex: Climbing mountain and getting colder
- Zero correlation: exists when there is no relationship between two variables. Ex: amount of tea taken and intelligence level
- Correlation can be expressed visually through scatterplot.
 It indicates the strength and direction of the correlation between the co-variables
- Correlation ranges between -1 and +1

Overfitting & Underfitting

Prediction

Regression

Linear Regression

Performance

Evaluation of Regression

Correlation Coefficient...

Correlation Coefficient...

The correlation coefficient is calculated as

$$r = \frac{n\sum XY - \sum X\sum Y}{\sqrt{(n\sum X^2 - (\sum X)^2) \cdot (n\sum Y^2 - (\sum Y)^2)}}$$

where, n-> number of data points or observations $\sum XY$ -> sum of the product of x-value and y-value for each point in the data set

 $\sum X$ -> sum of the x-values in the data set

 $\sum Y$ -> sum of the y-values in the data set

 $\sum X^2$ ->sum of the squares of the x-values in the data set $\sum Y^2$ ->sum of the squares of the y-values in the data set

Company	Sales in 1000s (Y)	Number of agents in 100s (X)
А	25	8
В	35	12
С	29	11
D	24	5
E	38	14
F	12	3
G	18	6
Н	27	8
I	17	4
J	30	9

n	=	10			

 $\Sigma X = 80 \& \Sigma Y = 255$

 $\Sigma XY = 2289$ $\Sigma X^2 = 756 \& \Sigma Y^2 = 7097$

 $(\Sigma X)^2 = 6400 \& (\Sigma Y)^2 = 65025$

r = 0.95

Overfitting & Underfitting

Prediction

Regression

Linear Regression Performance

Evaluation of Regression

Linear Regression

- Linear Regression is a supervised machine learning algorithm. It tries to find the best linear relationship that describes the given data
- Linear regression model represents the linear relationship between a dependent variable and independent variable(s) via a sloped straight line

- · Linear regression are of two types:
 - Simple Linear Regression: Dependent variable depends only on a single independent variable
 - Multiple Linear Regression: Dependent variable depends on more than one independent variables

Overfitting & Underfitting Prediction

Regression

Correlation Coefficient

Linear Regression

Performance
Evaluation of

Regression

Correlation Coefficient

Linear Regression

Performance Evaluation of Regression

Fit the data with the **best line** which "goes through" the points

Fit data with the **best hyper plane** which "goes through" the points

Linear Regression...

Datapoints

dependent Variable

Linear Regression cont...

A linear regression line has an equation of the form Y = bX + a + e,

where X: explanatory variable

Y: is the dependent variable.

b: regression coefficient or slope of the line

a: is the intercept

Line of regression

independent Variables

Overfitting & Underfitting

Prediction Regression

Correlation Coefficient

Linear Regression

The random error in the following linear equation of line:

$$\hat{Y}_i$$
 is predicted values of Y_i .

The calculation of b and a is as follows:

$$b = \frac{n\Sigma XY - \Sigma X\Sigma Y}{n\Sigma X^2 - (\Sigma X)^2} \qquad a = \frac{\Sigma Y}{n} - b \frac{\Sigma X}{n}$$

If b > 0, then x(predictor) and y(target) have a positive relationship. That is increase in x will increase y.

If b < 0, then x(predictor) and y(target) have a negative relationship. That is increase in x will decrease v.

Prediction

Chittaranian Pradhan

Overfitting & Underfitting

Prediction

Regression Correlation Coefficient

Linear Regression

Linear Regression...

Company	Sales in 1000s (Y)	Number of agents in 100s (X)	n = 10
А	25	8	
В	35	12	$\sum X = 80 \& \sum Y = 255$
С	29	11	$\Sigma XY = 2289$
D	24	5	$\sum X^2 = 756 \& \sum Y^2 = 7097$
E	38	14	
F	12	3	$(\sum X)^2 = 6400 \& (\sum Y)^2 =$
G	18	6	
Н	27	8	
1	17	4	
J	30	9	

$$b = \frac{n\Sigma XY - \Sigma X\Sigma Y}{n\Sigma X^2 - (\Sigma X)^2} = \frac{10 \times 2289 - (80 \times 255)}{[10 \times 756 - (80)^2]} = 2.1466;$$

$$a = \frac{\Sigma Y}{n} - b \frac{\Sigma X}{n} = \frac{255}{10} - 2.1466 \frac{80}{10} = 8.3272$$

The linear regression will thus be Predicted Y = 2.1466 X + 8.3272

The above equation can be used to predict the volume of sales for an insurance company given its agent number. Thus if a company has 1000 agents (10 hundreds) the predicted value of sales will be around?

Overfitting & Underfitting

Prediction Regression

Correlation Coefficient

Linear Regression

Performance Evaluation of Regression

 $(\Sigma Y)^2 = 65025$

Overfitting & Underfitting

Mean Square Error (MSE)

MSE is defined as mean or average of the square of the difference between actual and estimated values.

Mathematically, it is represented as:

$$MSE = \frac{\sum_{j=1}^{N} (observation(j) - prediction(j))^2}{N}$$

Root Mean Square Error (RMSE)

It is just the square root of the mean square error. Mathematically, it is represented as:

$$RMSE = \sqrt{\frac{\sum_{j=1}^{N} (observation(j) - prediction(j))^2}{N}}$$

Mean Absolute Percentage Error (MAPE)

The formula to calculate MAPE is as follows:

$$MAPE = (100/n) * \sum_{i=1}^{n} \frac{|X'(t) - X(t)|}{X(t)}$$
 where X'(t)-> predicted data value and X(t)-> actual data value

MAPE is easy to interpret and easy to explain. The lower the value for MAPE, the better a model is able to predict values

Prediction
Regression

Correlation Coefficient Linear Regression

verfitting &
nderfitting

Prediction Regression

Correlation Coefficient

Linear Regression

Performance Evaluation of Regression

Month	1	2	3	4	5	6	7	8	9	10	11	12
Actual Value	42	45	49	55	57	60	62	58	54	50	44	40
Predicted Value	44	46	48	50	55	60	64	60	53	48	42	38
Error	-2	-1	1	5	2	0	-2	-2	1	2	2	2
Squared Error	4	1	1	25	4	0	4	4	1	4	4	4

Sum of Square Error=56 So, MSE = 56/12 = 4.6667

$$RMSE = SQRT(4.6667) = 2.2$$

MAPE = 3.64%