

Disciplina: [IEC_IAAM_O5_T1_Online] Processamento de Linguagem Natural

Alunos:

Jonas Aguiar Junior Keli Tauana Prass Ruppenthal Leonardo de Jesus Diz Conde

1. Título da Proposta

Análise Automatizada de Indicadores de Ameaça Cibernética Utilizando Técnicas de Processamento de Linguagem Natural

2. Resumo

Este projeto desenvolve um sistema automatizado que integra TheHive, VirusTotal e Processamento de Linguagem Natural (PLN) para analisar indicadores de ameaça (IPs, domínios, hashes) e enriquecer alertas com comentários gerados automaticamente. O código apresentado corresponde à etapa de análise textual via NLP, classificando relatórios do VirusTotal em maliciosos, suspeitos ou benignos com base em técnicas supervisionadas (Machine Learning) e regras heurísticas (palavras-chave), reduzindo a carga manual de analistas de segurança.

3. Introdução e Caracterização do Problema

Em ambientes de Security Operations Center (SOC), analistas enfrentam um volume crescente de alertas, muitos deles envolvendo a verificação de indicadores de comprometimento (IOCs) em ferramentas como VirusTotal. Esse processo é manual, repetitivo e demorado, levando a atrasos na resposta a incidentes. Além disso, a interpretação de relatórios técnicos exige conhecimento especializado, sobrecarregando equipes. A solução proposta automatiza a análise textual desses relatórios, combinando NLP e integração com APIs para acelerar a triagem de ameaças.

4. Proposta de Solução

O sistema segue um fluxo modular:

- I. Recepção no TheHive: Alertas com IOCs são disparados.
- II. **Consulta ao VirusTotal**: A API do VirusTotal obtém relatórios completos sobre os IOCs.
- III. Análise com NLP:
 - A. **Pré-processamento**: Limpeza do texto (tokenização, remoção de stopwords, normalização).

Disciplina: [IEC_IAAM_O5_T1_Online] Processamento de Linguagem Natural

B. Classificação:

- Modelos supervisionados: Pipelines com BoW/TF-IDF + Naive Bayes/SVM.
- Regras heurísticas: Pontuação baseada em palavras-chave (ex: "malware" = +2 pontos).
- C. **Ensemble**: Combina previsões dos modelos e regras para decisão final.
- IV. Geração de Comentários: Explicações automáticas baseadas em estatísticas do relatório (ex: número de AVs que detectaram malícia).
- V. Inserção no TheHive: O comentário é adicionado ao alerta via API.

5. Fontes de Dados

- Relatórios do VirusTotal: JSONs estruturados com campos como last_analysis_results (detalhes de antivírus) e last_analysis_stats (contagem de detecções).
- **Dados de Treino**: Relatórios históricos rotulados manualmente (ex: "malicioso" se ≥5 AVs detectaram ameaça).
- Palavras-Chave: Listas curradas (ex: KEYWORDS_MALICIOUS = {"malware", "phishing"}).

6. Experimentos realizados

Pré-processamento:

 Testou-se a eficácia da limpeza com spaCy e nltk (ex: impacto da remoção de stopwords).

Modelos de ML:

- Compararam-se Bag-of-Words (BoW) + Naive Bayes vs. TF-IDF + SVM Linear.
- Avaliação com métricas (precision, recall, F1-score) via classification report.

Regras Heurísticas:

Validação manual para ajuste de pesos (ex: "malicioso" se score ≥4).

Ensemble:

Disciplina: [IEC_IAAM_O5_T1_Online] Processamento de Linguagem Natural

Verificou-se a acurácia da votação majoritária entre ML e regras.

7. Resultados alcançados

*** bow_nb ***				
1900 000 000 000 000 000	precision	recall	f1-score	support
benigno	0.93	1.00	0.97	14
malicioso	0.67	1.00	0.80	2
suspeito	1.00	0.50	0.67	4
accuracy			0.90	20
macro avg	0.87	0.83	0.81	20
weighted avg	0.92	0.90	0.89	20
*** tfidf_svc ***				
CIIIII_5VC	precision	nocall	f1-score	support
	precision	Tecati	11 30016	suppor c
benigno	0.82	1.00	0.90	14
malicioso	0.50	0.50	0.50	2
suspeito	1.00	0.25	0.40	4
accuracy			0.80	20
macro avg	0.77	0.58	0.60	20
weighted avg	0.83	0.80	0.76	20

```
Indicador suspecto com @ alertas. IP 202.133.82.244, ASN 'Cambo TechnologyISP Co.,Ltd' (HH). Monitoramento continuo é recomendado.

□ benigno, 66-249-64-69-379-378. *** > BENIGNO
Indicador benigno com 63 detecções liapas. IP 13.70.0.0, ASN 'MICROSOFT-CORP-MSN-AS-BLOCK' (HK). Sem sinais de risco atuais.
□ malicioso, 66-46-219-773.38. *** tx - ** AMALICIOSO
Indicador benigno com 62 detecções liapas. IP 13.70.0.0, ASN 'MICROSOFT-CORP-MSN-AS-BLOCK' (HK). Sem sinais de risco atuais.
□ malicioso, 66-46-219-773.38. *** tx - ** AMALICIOSO
Indicador classificado como malicioso com 11 detecções confirmadas. O IP 64.62.197.238 pertence ao ASN 'HURRICANE' (US), com reputação -2. Tags: . Recomenda do bloqueio e investigação.
□ suspeito.103-241-67-157.txt -> SUSPEITO
Indicador suspeito com 2 alertas. IP 183.241.67.157, ASN 'KAMATERA' (ES). Monitoramento contínuo é recomendado.
□ benigno.13-66-90.txt -> BENIGNO
Indicador benigno com 60 detecções limpas. IP 13.66.0.0, ASN 'MICROSOFT-CORP-MSN-AS-BLOCK' (US). Sem sinais de risco atuais.
□ benigno.213-772-90.txt -> BENIGNO
Indicador benigno com 60 detecções limpas. IP 12.773.00, ASN 'MICROSOFT-CORP-MSN-AS-BLOCK' (US). Sem sinais de risco atuais.
□ benigno.213-773-90.txt -> BENIGNO
Indicador benigno com 60 detecções limpas. IP 13.773.00, ASN 'MICROSOFT-CORP-MSN-AS-BLOCK' (US). Sem sinais de risco atuais.
□ benigno.213-773-90.txt -> BENIGNO
Indicador benigno com 60 detecções limpas. IP 13.775.0.0, ASN 'MICROSOFT-CORP-MSN-AS-BLOCK' (US). Sem sinais de risco atuais.
□ benigno.213-76-90.txt -> BENIGNO
Indicador benigno com 60 detecções limpas. IP 13.775.0.0, ASN 'MICROSOFT-CORP-MSN-AS-BLOCK' (HK). Sem sinais de risco atuais.
□ benigno.213-775-90.txt -> BENIGNO
Indicador benigno com 60 detecções limpas. IP 13.775.0.0, ASN 'MICROSOFT-CORP-MSN-AS-BLOCK' (HK). Sem sinais de risco atuais.
□ benigno.213-775-90.txt -> BENIGNO
Indicador benigno com 60 detecções limpas. IP 13.75.0.0, ASN 'MICROSOFT-CORP-MSN-AS-BLOCK' (HK). Sem sinais de risco atuais.
□ benigno.213-773-90.txt -> BENIGNO
Indica
```


Disciplina: [IEC_IAAM_O5_T1_Online] Processamento de Linguagem Natural

8. Conclusões e trabalhos futuros

A solução reduz significativamente o tempo de triagem de IOCs ao automatizar a análise textual com NLP, garantindo **consistência** e **rastreabilidade** (via comentários no TheHive). A abordagem híbrida (ML + regras) melhora a robustez, especialmente para casos limítrofes. No entanto, ainda há muito a ser melhorado, visto que quando comparado ao desempenho de um LLM neste cenário, os resultados são bastante completos. Aqui, o link do repositório onde se encontra o projeto: https://github.com/jonasaguiarj/thehive-pln-alert-classifier.git

Trabalhos Futuros:

Expansão do Dataset: Incorporar mais relatórios rotulados para refinar os modelos.

Integração em Tempo Real: Acionar o pipeline automaticamente via webhooks do TheHive.

Análise Multimodal: Combinar NLP com metadados (ex: reputação de IP) para maior precisão.

Feedback de Analistas: Usar classificações manuais para ajuste contínuo (active learning).

9. Referências

Jurafsky, D., & Martin, J. H. (2024). Speech and Language Processing (3rd ed.). Pearson.

Bird, S., Klein, E., & Loper, E. (2009). Natural Language Processing with Python (1st ed.). O'Reilly.

ROCHA, R. SOAR Automation for CSIRT Teams. LinkedIn, 2024. Disponível em: https://www.linkedin.com/posts/romrocha_soar-automation-csirt-activity-7224103678 842986497-XfBA/. Acesso em: 28 abril. 2024.