aglaia norza

Linguaggi di Programmazione

appunti delle lezioni

libro del corso: non usato, integrati con le dispense del professor Cenciarelli

Contents

1	Algebre induttive		
	1.1	I numeri naturali	3
	1.2	Algebre, algebre induttive	4
	1.3	Espressioni	7

1. Algebre induttive

1.1. I numeri naturali

def. 1: Assiomi di Peano

L'insieme № dei numeri naturali si può definire mediante i cinque **assiomi di Peano**:

- 1. $0 \in \mathbb{N}$
- 2. $n \in \mathbb{N} \implies \mathsf{succ}(n) \in \mathbb{N}$
- 3. $\not\exists n \in \mathbb{N} \mid 0 = \mathsf{succ}(n)$
- 4. $\forall n, m \operatorname{succ}(n) = \operatorname{succ}(m) \implies n = m$ (iniettività)
- 5. $\forall S\subseteq \mathbb{N}\ (0\in S\land (n\in S\implies \mathrm{succ}(n)\in S)\implies S=\mathbb{N})$ (assioma di induzione)

assioma di induzione

L'assioma di induzione è necessario per evitare di equiparare ai numeri naturali insiemi che, essenzialmente, contengono una struttura come quella di \mathbb{N} , e un "qualcosa in più". (Se all'interno dell'insieme A che stiamo considerando esiste un altro sottoinsieme proprio che rispetta gli altri assiomi, A non rispetterà il quinto assioma di Peano).

In più, il quinto assioma di Peano ci fornisce essenzialmente una definizione insiemistica di induzione.

def. 2: Principio di Induzione

L'induzione può essere definita, basandosi sulle "proprietà" invece che sull' insiemistica, come segue:

$$\forall P \quad \frac{P(0), \quad P(n) \implies P(n+1)}{\forall n \ P(n)}$$

(la notazione equivale a $P(0) \wedge (P(n) \implies P(n+1)) \implies \forall n P(n)$)

Possiamo dimostrare che il quinto assioma di Peano è equivalente al principio di induzione (in quanto i concetti di "proprietà" e "sottoinsieme" sono equivalenti).

Infatti, ad ogni proprietà corrisponde un sottoinsieme i cui elementi sono

esattamente quelli che soddisfano tale proprietà

Prendiamo quindi $S = \{n \in \mathbb{N} \mid P(n) \text{ è vera}\}.$

In questo modo, dire P(0) equivale a dire $0 \in S$, e dire $P(n) \implies P(n+1)$ equivale a dire $n \in S \implies n+1 \in S$. E, allo stesso modo, dire $\forall n P(n)$ equivale a dire $\forall n, n \in S$, ovvero $S = \mathbb{N}$.

def. 3: Numeri di von Neumann

Un altro modo di descrivere i numeri naturali viene dal matematico **John von Neumann**, che definisce i numeri naturali ("numeri di von Neumann", \mathcal{N}) in questo modo:

- $0_{\mathcal{N}} = \emptyset$ (ovvero $\{\}$)
- $1_{\mathcal{N}} = \{0_{\mathcal{N}}\}$ (ovvero $\{\{\}\}$)
- $2_{\mathcal{N}} = \{0_{\mathcal{N}}, 1_{\mathcal{N}}\}\ (\text{ovvero} \{\{\}, \{\{\}\}\}\})$
- ...

I numeri di von Neumann rispettano gli assiomi di peano! (dalle dispense)

dim!

1.2. Algebre, algebre induttive

nota: insieme unità e funzione nullaria

Ci è utile definire l'**insieme unità** $\mathbb{1} = \{*\}$. $\mathbb{1}$ è un insieme formato da un solo elemento (non ci interessa quale).

Un altro concetto che ci servirà è quello di **funzione costante** o **nullaria**. Una funzione nullaria f è tale che:

$$f: \mathbb{1} \to A \mid f() = a \quad a \in A$$

(chiaramente, essa è sempre iniettiva).

nota

Una funzione nullaria su un insieme A può essere vista come un elemento di A (un qualsiasi insieme A è isomorfo a all'insieme di funzioni $\mathbb{1} \to A$ (l'insieme di funzioni $\mathbb{1} \to A$ ha la stessa cardinalità di A), il che ci permette di **trattare gli elementi di un insieme come funzioni**.

def. 4: Algebra

Una **algebra** è una tupla (A, Γ) , dove:

- A è l'insieme di riferimento ("carrier" o "insieme sottostante")
- $\Gamma = \{\gamma_1, \gamma_2, \dots, \gamma_i\}$, è l'insieme di funzioni chiamate "operazioni fondamentali" o "costruttori" dell'algebra

la segnatura dei costruttori è: $\gamma_i: A^{\alpha_i} \times K_i \to A$.

nota

Tra le algebre, consideriamo anche le algebre eterogenee, che prendono argomenti da insiemi diversi da A.

def. 5: Chiusura di un insieme rispetto ad un'operazione

Sia $f: A^n \times K \to A$ un'operazione su A con parametri esterni $K = (K_1 \times \cdots \times K_m)$. Un insieme $S \subseteq A$ si dice **chiuso** rispetto ad f quando:

$$a_1, \ldots, a_n \in S \implies f(a_1, \ldots, a_n, k_1, \ldots, k_n) \in S$$

def. 6: Algebra induttiva

Un'algebra A, Γ si dice **induttiva** quando:

- 1. tutte le $\gamma_i \in \Gamma$ sono iniettive
- 2. $\forall i, j \mid i \neq j$, $\text{Im}(\gamma_i) \cap \text{Im}(\gamma_j) = \emptyset$, ovvero tutte le γ_i hanno immagini disgiunte
- 3. $\forall S \subseteq A$, se S è chiuso rispetto a tutte le γ_i , allora S = A (ovvero il principio di induzione è rispettato)

terza condizione

La terza condizione pone quindi che A sia la più piccola sotto-algebra di se stessa (ovvero non abbia sotto-algebre diverse da se stessa).

nota

Le tre condizioni garantiscono quindi che:

- ci sia solo un modo per costruire ogni elemento dell'algebra (i, ii)
- non ci siano "elementi inutili" (iii)

Vediamo come possiamo costruire \mathbb{N} come algebra induttiva.

La definizione di algebra induttiva non considera il concetto di "elemento", quindi,

per il primo assioma di Peano, usiamo una funzione costante 0, con segnatura:

$$1 \times \mathbb{N} : x \to 0$$

Abbiamo quindi una tupla (\mathbb{N} , {succ, \mathbb{O} }).

Per dimostrare che questa tupla sia un'algebra induttiva, dobbiamo ora verificare le tre condizioni:

- 1. tutte le γ_i sono induttive:
 - 0 è necessariamente induttiva
 - succ è induttiva per il secondo assioma di Peano
- 2. tutti i costruttori hanno immagini disgiunte:
 - grazie al terzo assioma di Peano ($\not\exists n\in\mathbb{N}\mid 0=\mathsf{succ}(n)$), sappiamo che succ e $\mathbb O$ hanno immagini disgiunte
- 3. principio di induzione:
 - è verificato dal quinto assioma di Peano ($0 \in S$ corrisponde alla chiusura rispetto a 0 e $n \in \mathbb{N} \implies \operatorname{succ}(n) \in \mathbb{N}$ corrisponde alla chiusura rispetto a succ)

liste finite come algebra induttiva

Dato un insieme A, indichiamo con A-list l'insieme delle liste finite di elementi di A.

La tupla (A - list, empty, cons) è un'algebra induttiva, dove:

- empty: $\mathbb{1} \to A list$ è la funzione costante che restituisce la **lista vuota** "<> ".
- cons: $A \times A list \to A list$: cons(3, < 5, 7 >) = < 3, 5, 7 > è la funzione che **costruisce una lista** aggiungendo un elemento in testa

Il fatto che si tratti di un'algebra induttiva è piuttosto evidente, in quanto i due costruttori hanno immagini chiaramente disgiunte, sono entrambi chiusi per A-list, e c'è un unico modo per costruire ogni lista.

liste infinite

Le liste infinite non possono essere un'algebra induttiva, in quanto contengono una sotto-algebra induttiva (quella delle liste finite).

alberi binari come algebre induttive

trees

i booleani come algebra non induttiva

Consideriamo l'algebra (B, not) , dove $B = \{0, 1\}$ e not: $B \to B : b \to \neg b$.

Notiamo che not è sicuramente iniettiva, e che, poiché è l'unico costruttore, anche la seconda caratteristica delle algebre induttive è rispettata.

Notiamo però che l'algebra non rispetta il terzo requisito. Se consideriamo infatti $\emptyset \subseteq B$, notiamo che not è chiusa rispetto ad esso.

Infatti, l'implicazione $x \in \emptyset \implies \mathsf{not}(x) \in \emptyset$ risulta vera per falsificazione della premessa (non esistono elementi in \emptyset).

 $(\emptyset, \mathsf{not})$ è quindi una sotto-algebra induttiva di B, che però è diversa da essa. L'implicazione della terza condizione $(x \in \emptyset) \implies \mathsf{not}(x) \in \emptyset$ $\implies \emptyset = B$ è falsa, e (B, not) non è quindi un'algebra induttiva.

1.3. Espressioni

Definiamo un **linguaggio** L come insieme di stringhe.

Per descrivere la sintassi di linguaggi formali (la grammatica), usiamo la BNF (Backus-Naur Form), con questa sintassi:

Esempio: prendiamo come esempio questa grammatica:

$$M, N ::= 5 \mid 7 \mid M + N \mid M * N$$

Le espressioni che seguono questa grammatica, sono del tipo:

- "5" o "7"
- un'espressione M+N o M*N, in cui M e N rispettano a loro volta la grammatica

Introduciamo una funzione $eval: L \to \mathbb{N}$, che valuta le espressioni del linguaggio:

- eval(5) = 5
- eval(7) = 7
- eval(M + N) = eval(M) + eval(N)
- eval(M * N) = eval(M) * eval(N)

Possiamo notare subito che (L,eval) non è un'algebra induttiva. Infatti, una stringa come "5+7*5" potrebbe essere stata generata in due modi diversi: (5+7)*5 e 5+(7*5).

Possiamo però stipulare che sia induttiva. Ci basta infatti considerare +, *, 5 e 7 come costruttori dell'algebra. In questo modo, (5+7)*5 risulta essere un oggetto diverso da 5+(7*5). È quindi possibile dimostrare che (L,5,7,+,*) è un'algebra induttiva.