Introduction to Modern Cryptography Summary

WS20/21

Valentin Knappich

January 26, 2021

Contents

1	Symmetric encryption			2
	1.1	Scenario 1		2
		1.1.1	Cryptosystems	2
		1.1.2	Vernam system	2
		1.1.3	Perfect Secrecy	2
	1.2	Scenar	rio 2	3
		1.2.1	Vernam in Scenario 2	3
		1.2.2	Substitution Cryptosystem	3
		1.2.3	l-Block Cipher	4
		1.2.4	Substitution-Permutation Cryptosystem (SPCS)	4
		1.2.5	Algorithmic Security of Block Ciphers	5
		1.2.6	PRP/PRF Switching Lemma	5
	1.3	Scenar	rio 3	5
		1.3.1	Symmetric Encryption Scheme	5
		1.3.2	Encryption Schemes from Stream Ciphers	6
		1.3.3	Encryption Schemes from Block Ciphers	6
		1.3.4	CPA-Security	7
		125	CCA Sequeity	Q

1 Symmetric encryption

Kerkhoffs Principle: The security of a system should only depend on whether the actual key is secret, not on the system itself. The whole system is assumed to be public. No "Security by obscurity".

1.1 Scenario 1

One message with constant length

1.1.1 Cryptosystems

A cryptosystem is a tuple S = (X, K, Y, e, d) with

- X: set of plaintexts
- K: finite set of keys
- Y: set of ciphertexts
- e: encryption function
- d: decryption function

Perfect correctness: $d(e(x,k),k) \forall x \in X, k \in K$

No unnecessary ciphertexts: $Y = \{e(x, k) | x \in X, k \in K\}$

1.1.2 Vernam system

The Vernam cryptosystem of length l is defined as $(\{0,1\}^l,\{0,1\}^l,\{0,1\}^l,e,d)$ where

$$e(x,k) = x \oplus k$$
 and $d(y,k) = y \oplus k$.

A vernam system of length l > 0 provides perfect secrecy for every uniform P_K . It is the perfect system for Scenario 1.

1.1.3 Perfect Secrecy

A cryptosystem with key distribution $\mathcal{V} = \mathcal{S}[P_k]$ provides perfect secrecy if for all plaintext distributions P_X , the probability of every plaintext remains the same, i.e.:

$$P(x) = P(x|y) \quad \forall x \in X, y \in Y, P(y) > 0$$

Example Proof:

We need to show the criteria above for all plaintext distributions P_X . Therefore we use variable probabilities for the plaintexts $P_X(a) = p$, $P_X(b) = 1 - p$ (for 2 plaintexts, else $p_1, ..., p_n$).

Theorem:

Let S = (X, K, Y, e, d) be a cryptosystem providing perfect secrecy, then it holds $|K| \ge |Y| \ge |X|$.

Shannons Theorem:

Let $\mathcal{V} = \mathcal{S}[P_k]$ be a cryptosystem with key distribution P_K and |K| = |Y| = |X|. The system provides perfect secrecy if and only if

- 1. P_K is a uniform distribution
- 2. $\forall x \in X, y \in Y \exists k \in K$ with e(x, k) = y (There must be a key for every plaintext/ciphertext pair)

1.2 Scenario 2

Multiple messages with constant length, no repetition

1.2.1 Vernam in Scenario 2

Vernam is not a secure cryptosystem anymore, since from 2 ciphertexts, Eve can learn non-trivial information about the plaintexts:

$$y_0 \oplus y_1 = x_0 \oplus k \oplus x_1 \oplus k = x_0 \oplus x_1$$

Also with 1 plaintext-ciphertext pair (CPA), the key can be calculated as $k = x \oplus y$.

1.2.2 Substitution Cryptosystem

Let X be a non-empty finite set. A substitution cryptosystem over X is a tuple (X, P_X, X, e, d) where P_X is the set of all permutations of X.

$$e(x,\pi) = \pi(x)$$
 $d(y,\pi) = \pi^{-1}(y)$ $\forall x, y \in X, \pi \in P_X$

Substitution cryptosystems provide "perfect security" in scenario 2, BUT they are impractical because the substitution table (π) has a size of $2^l * l$.

Therefore, we need a weaker security definition that takes into account, that attackers are resource bound.

1.2.3 I-Block Cipher

Let $l: \mathbb{N} \to \mathbb{N}$ be a polynomial. An l-block cipher B is a cryptosystem of the form

$$\left(\{0,1\}_{\eta\in\mathbb{N}}^{l(\eta)},\;Gen(1^{\eta}),\;\{0,1\}_{\eta\in\mathbb{N}}^{l(\eta)},\;E,\;D\right)\;\text{or simplified:}\;\left(\{0,1\}^{l},\;Gen(1^{\eta}),\;\{0,1\}^{l},\;E,\;D\right)$$

1.2.4 Substitution-Permutation Cryptosystem (SPCS)

Notation:

- plaintexts are split into m words with length n with l = m * n, $x^{(i)}$ denotes the i'th word
- $[r] = \{0, 1, ..., r 1\}$
- $\beta \in \mathcal{P}_{[l]}$, then $x^{\beta}(i) = x(\beta(i))$

General Principle: Over r rounds, (round) key additions, word substitutions and bit permutations are applied, including an initial step that just applies key addition and shortened last round without bit permutation.

$$E(x:\{0,1\}^{mn}, k:\{0,1\}^s):\{0,1\}^{mn}$$

- 1. initial white step (round key addition) $u = x \oplus K(k, 0)$
- 2. r-1 regular rounds for i=1 to r-1 do
 - a. word substitutions for j=0 to m-1 do

 $v^{(j)} = S(u^{(j)})$

- b. bit permutation $w = v^{\beta}$
- c. round key addition $u = w \oplus K(k, i)$
- 3. shortened last round (without bit permutation) for j=0 to m-1 do

for
$$j=0$$
 to $m-1$ do $v^{(j)}=S(u^{(j)})$ $y=v\oplus K(k,r);$ return y

Known Attacks:

- Brute Force Attack
- Linear Cryptanalysis
- Differential Cryptanalysis

Linear Cryptanalysis:

- Relies on a set T of plaintext-ciphertext pairs
- Instead of brute forcing the whole key, get small parts of the key at a time

• TODO

AES (Advanced encryption standard): basically SPCS with modifications

1.2.5 Algorithmic Security of Block Ciphers

We consider a block cipher secure if it is almost as good as a substitution cryptosystem w.r.t. resourcebound adversaries. Therefore an adversary U has to be able to distinguish BCS and SCS. Formally, we use the BCS for b = 1 (real world) and the SCS for b=0 (random world) in the security game.

The winning probability is $Pr[\mathbb{E}(1^n) = 1]$. Since a random guesser already has a probability of 0.5, the advantage is introduced to normalize.

$$\mathbb{S}(1^{\eta}): \{0,1\}$$
1. Choose real world or random world.
$$b \overset{\$}{\leftarrow} \{0,1\}$$
 if $b=1$ then
$$k \overset{\$}{\leftarrow} \operatorname{Gen}(1^{\eta}) \text{ and } F=E(\cdot,k)$$
 else
$$F \overset{\$}{\leftarrow} \mathcal{P}_{\{0,1\}^{l(\eta)}}$$
2. Guess phase.
$$b' \overset{\$}{\leftarrow} U(1^{\eta},F)$$

$$Adv_{U,B}(\eta) = 2 * \left(Pr[\mathbb{E}_U^B(1^{\eta}) = 1] - \frac{1}{2} \right) \in [-1, 1] \qquad suc_{U,B}(\eta) = Pr[\mathbb{S}_U^B \langle b = 1 \rangle (1^{\eta}) = 1]$$
$$Adv_{U,B}(\eta) = suc_{U,B}(\eta) - fail_{U,B}(\eta) \qquad \qquad fail_{U,B}(\eta) = Pr[\mathbb{S}_U^B \langle b = 0 \rangle (1^{\eta}) = 1]$$

$$suc_{U,B}(\eta) = Pr[\mathbb{S}_{U}^{B}\langle b=1\rangle(1^{\eta}) = 1]$$
$$fail_{U,B}(\eta) = Pr[\mathbb{S}_{U}^{B}\langle b=0\rangle(1^{\eta}) = 1]$$

3. Output. return b'.

1.2.6 PRP/PRF Switching Lemma

Since substitution cryptosystems cannot be distinguished from (secure) l-Block cryptosystems, we can see l-Block cryptosystems as pseudo-random permutations (PRP). Anyway, for proving purposes, it can be easier to see them as pseudo-random functions. The PRP/PRF Switching Lemma says, that we can use them interchangeably, since the difference of advantages is negligible:

Let B be an l-block cipher and U be an l-distinguisher with runtime bound $q(\eta)$ where q is a positive polynomial and $\eta \in \mathbb{N}$. Then the following holds true:

$$|Adv_{U,B}^{PRP}(\eta) - Adv_{U,B}^{PRF}(\eta)| \le \frac{q(\eta)^2}{2^{l(\eta)+1}}$$

1.3 Scenario 3

Arbitrary messages with any length (possibly with repetition)

1.3.1 Symmetric Encryption Scheme

A symmetric encryption scheme is a tuple $S = (Gen(^{\eta}), E, D)$ with

- security parameter η
- ppt key generation algorithm $Gen(1^{\eta})$
- ppt encryption algorithm $E(x : \{0,1\}^*, k : K) : \{0,1\}^*$
- dpt decryption algorithm $D(y : \{0, 1\}^*, k : K) : \{0, 1\}^*$

• and D(E(x,k),k) = x

E cannot be deterministic, because else we wouldn't be able to send the same message multiple times, i.e. the same plaintext encrypted under the same key should result in a different ciphertext (with a high probability).

1.3.2 Encryption Schemes from Stream Ciphers

Idea: Vernam is safe if we use every key just once. So using the key as seed of a random number generator, that generates a stream of random numbers, enables the usage of the vernam system for arbitrarily long messages.

1.3.2.1 Number generator

A number generator (NG) is a dpt algorithm of the Form $G:(s:\{0,1\}^{\eta}):\{0,1\}^{p(\eta)}$ where p is the expansion factor.

1.3.2.2 PRNG-Distinguisher

TODO

1.3.3 Encryption Schemes from Block Ciphers

1.3.3.1 ECB Mode

Idea: Split the message in blocks of constant length and encrypt each block under the given key using the underlying block cipher.

$$\mathcal{S} = \mathsf{ECB-B} = (\mathsf{Gen}_{\mathcal{B}}(1^{\eta}), E_{\mathcal{S}}, D_{\mathcal{S}}).$$

$$E_{\mathcal{S}}(x:\{0,1\}^{l(\eta)+}, k:K_{\mathcal{B}}):\{0,1\}^*:$$

$$1. \text{ Split } x \text{ into several blocks of length } l(\eta):$$

$$x =: x_0||\cdots||x_{n-1}, n \in \mathbb{N}, x_i \in \{0,1\}^{l(\eta)}$$

$$2. \ y_i = E_{\mathcal{B}}(x_i, k) \quad \forall i \in \{0, \dots, n-1\}$$

$$3. \ \mathbf{return} \ y := y_0||\dots||y_{n-1}$$

Security: It's not secure, since the ciphertext carries non-trivial information about the plaintext: for $y = y_0||y_1$, then $y_0 = y_1$ if $x_0 = x_1$.

1.3.3.2 CBC Mode

Idea: Add and initialization vector v that is **xor**'ed with the plaintext before encrypting. That v is part of the key.

Problem: Still deterministic, so every plaintext can be sent just once.

1.3.3.3 R-CBC Mode

Idea: To solve the issues of CBC-Mode, R-CBC moves the initialization vector v out of the key and generates a random one while decryption. The vector is appended as first block of the ciphertext to enable decryption.

Security: Its secure if the underlying block cipher is secure.

1.3.3.4 R-CTR Mode

Idea: Alternative to R-CBC. Generate a random number r (comparable to v of R-CBC), encrypt this random number under the key and xor it with the plaintext. The counter is increased by 1 for each block. The counter r is appended as first block of y to enable decryption.

Security: Its secure if the underlying block cipher is secure.

1.3.4 CPA-Security

CPA: Chosen-Plaintext-Attack

Game: Adversary A consists of finder AF and guesser AG. The finder chooses 2 plaintexts z_0, z_1 . One of them is encrypted. The guesser has to determine which of them is the corresponding plaintext.

Advantage, success and failure are defined as for block ciphers.

 $\mathbb{E}(1^{\eta}):\{0,1\}$

1. Choose cipher.

$$k \stackrel{\$}{\leftarrow} \operatorname{Gen}(1^{\eta}); H = E(\cdot, k)$$

2. Find phase.

$$(z_0, z_1) \stackrel{\$}{\leftarrow} AF(1^{\eta}, H)$$

3. Selection.

$$b \stackrel{\$}{\leftarrow} \{0,1\}; \ y \stackrel{\$}{\leftarrow} H(z_b)$$

4. Guess phase.

$$b' \stackrel{\$}{\leftarrow} AG(1^{\eta}, H, y)$$

- 5. Evaluation.
 - if b' = b, return 1, otherwise 0.

1.3.5 CCA-Security

 \mathbf{CCA} : Chosen-Ciphertext-Attack

Game: In addition to the encryption oracle H from the CPA-game, the adversary also gets a decryption oracle H^{-1} .

Advantage, success and failure are defined as for block ciphers.

 $\mathbb{E}(1^{\eta}):\{0,1\}$

1. Choose cipher.

$$k \overset{\$}{\leftarrow} \mathrm{Gen}(1^{\eta}); \ H = E(\cdot, k)$$
 2. Find phase.

1. The phase:
$$(z_0, z_1) \stackrel{\$}{\leftarrow} AF(1^{\eta}, H)$$
2. Selection. $b \stackrel{\$}{\leftarrow} \{0, 1\}; \ y \stackrel{\$}{\leftarrow} H(z_b)$
4. Guess phase.

$$b \stackrel{\$}{\leftarrow} \{0,1\}; \ y \stackrel{\$}{\leftarrow} H(z_b)$$

$$b' \overset{\$}{\leftarrow} AG(1^{\eta}, H, y)$$
5. Evaluation.

if b' = b, return 1, otherwise 0.