МИНОБРНАУКИ РОССИИ ФГБОУ ВО «СГУ ИМЕНИ Н. Г. ЧЕРНЫШЕВСКОГО»

УНИВЕРСАЛЬНЫЕ АЛГЕБРЫ И АЛГЕБРА ОТНОШЕНИЙ

ЛАБОРАТОРНАЯ РАБОТА

студента 3 курса 331 группы направления 10.05.01 — Компьютерная безопасность
факультета КНиИТ
Токарева Никиты Сергеевича
Проверил

аспирант

В. Н. Кутин

1 Постановка задачи

Цель работы – изучение основных понятий универсальной алгебры и операций над бинарными отношениями.

Порядок выполнения работы:

- 1. Рассмотреть понятие алгебраической операции и классификацию свойств операций. Разработать алгоритмы проверки свойств операций: ассоциативность, коммутативность, идемпотентность, обратимость, дистрибутивность.
- 2. Рассмотреть основные операции над бинарными отношениями. Разработать алгоритмы выполнения операции над бинарными отношениями.
- 3. Рассмотреть основные операции над матрицами. Разработать алгоритмы выполнения операций над матрицами.

2 Теоретические сведения по рассмотренным темам с их обоснованием

2.1 Понятие алгебраической операции

Отображение $f:A^n\to A$ называется алгебраической n-арной операцией или просто **алгебраической операцией** на множестве A. При этом n называется порядком или арностью алгебраической операции f.

Далее для бинарной операции f по возможности будем использовать мультипликативную запись с помощью символа «·», т.е.вместо f(x,y) писать $x \cdot y$. При необходимости для бинарной операции f используется также аддитивная запись с помощью символа «+», т.е. вместо f(x,y) записывается x+y.

2.2 Классификация свойств операций

Бинарная операция · на множестве А называется:

1. ассоциативной, если $\forall x,y,z\in A$ выполняется равенство

$$x \cdot (y \cdot z) = (x \cdot y) \cdot z;$$

2. коммутативной, если $\forall x,y \in A$ выполняется равенство

$$x \cdot y = y \cdot x$$
;

3. идемпотентной, если $\forall x \in A$ выполняется равенство

$$x \cdot x = x$$
;

- 4. обратимой, если $\forall x,y \in A$, если уравнения $x \cdot a = y$ и $b \cdot x = y$ имеют решение, причем единственное;
- 5. дистрибутивной относительно операции +, если для любых $x,y,z\in A$ выполняются равенства

$$x \cdot (y+z) = (x \cdot y) + (x \cdot z),$$

$$(y+z) \cdot x = (y \cdot x) + (z \cdot x);$$

2.3 Основные операции над бинарными отношениями

- 1. Теоретико-множественные операции (\cup,\cap,\neg)
- 2. Обращение бинарных отношений: обратным для бинарного отношения $\rho \subset A \times B$ называется бинарное отношение $\rho^{-1} \subset B \times A$, определяющееся по формуле:

$$\rho^{-1} = \{ (b, a) : (a, b) \in \rho \}.$$

3. Композиция бинарных отношений: композицией бинарных отношений $\rho \subset A \times B$ и $\sigma \subset B \times C$ называется бинарное отношение $\rho \sigma \subset A \times C$, определяющееся по формуле:

$$\rho\sigma = \{(a,c): (a,b) \in \rho \text{ и } (b,c) \in \sigma \text{ для некоторого } b \in B\}.$$

2.4 Основные операции над матрицами

1. Сложение и вычитание матриц.

Суммой A+B матриц $A_{m\times n}=(a_{ij})$ и $B_{m\times n}=(b_{ij})$ называется матрица $C_{m\times n}=(c_{ij})$, где $c_{ij}=a_{ij}+b_{ij}$ для всех $i=\overline{1,m}$ и $j=\overline{1,n}$.

Разностью A-B матриц $A_{m\times n}=(a_{ij})$ и $B_{m\times n}=(b_{ij})$ называется матрица $C_{m\times n}=(c_{ij})$, где $c_{ij}=a_{ij}-b_{ij}$ для всех $i=\overline{1,m}$ и $j=\overline{1,n}$.

2. Умножение матрицы на число.

Произведением матрицы $A_{m\times n}=(a_{ij})$ на число α называется матрица $C_{m\times n}=(c_{ij})$, где $c_{ij}=\alpha a_{ij}$ для всех $i=\overline{1,m}$ и $j=\overline{1,n}$.

3. Произведение двух матриц.

Произведением матриц $A_{m\times n}=(a_{ij})$ на матрицу $B_{m\times n}=(b_{ij})$ называется матрица $C_{m\times n}=(c_{ij})$, где $c_{ij}=\sum\limits_{p=1}^n a_{ip}b_{pj}$ для всех $i=\overline{1,m}$ и $j=\overline{1,n}$.

4. Транспонирование матрицы.

Транспонированной по отношению к матрице $A_{m\times n}=(a_{ij})$ называется матрица $A_{n\times m}^T=(a_{ij}^T)$ для элементов которой $a_{ij}^T=a_{ji}$.

5. Обращение матрицы.

Обращение матрицы $A_{m\times n}$ - получение матрицы A^{-1} , обратной к исходной матрице A. Обратная матрица A^{-1} — такая, при умножении которой на исходную матрицу A получается единичная матрица E. Это такая матрица, которая удовлетворяет равенству

$$AA^{-1} = A^{-1}A = E$$

- 3 Результаты работы
- 3.1 Коды программ, реализующей рассмотренные алгоритмы
- 3.2 Результаты тестирования программ

ЗАКЛЮЧЕНИЕ

В результате лабораторной работы были рассмотрены теоретические сведения об отношении эквивалентности, разобраны определения фактор-множества, отношения порядка и диаграммы Хассе, контекста и концепта. Опираясь на изложенную выше теорию, были разработаны алгоритмы построения эквивалентного замыкания бинарного отношения и системы представителей фактормножества, алгоритмы вычисления минимальных (максимальных) и наименьших (наибольших) элементов и построения диаграммы Хассе, а также алгоритмы построения решетки концептов. Была произведена оценка сложности каждого из построенных алгоритмов. Была реализована программа, написанная на языке Python.