6 SENSING REASONING ACTING LOOP

Robotics is a field of engineering that involves the design and operation of robotic systems. One of the most fundamental principles underlying robotic systems is the S-R-A (sensor-response-actuation) loop. This concept is at the heart of all robotic systems and is essential for understanding the behavior of robots.

The S-R-A loop involves a robot continually sensing its environment, interpreting the data, and then taking some action in response. In other words, the robot is constantly interpreting sensory input and responding with a motor action. It is a continuous cycle of sensing, reasoning, and acting.

The sensing component of the S-R-A loop generally involves the use of sensors such as cameras, ultrasound, or infrared sensors. These sensors detect the robot's surroundings and provide the robot with the data necessary to make decisions. The response component of the loop involves the robot using its artificial intelligence to interpret the data and make decisions. This decision-making process is what gives robots the ability to respond to their environment.

The actuation component of the S-R-A loop is where the robot takes action. This action may involve a physical movement, such as walking, or it may involve activating a motor to perform a task, such as picking up an object.

The S-R-A loop is the basic building block of any robotic system. All robots use this concept as it is essential for a robot to be able to interact with its environment. Without it, robots would not be able to make decisions or take action. This concept is also important for enabling robots to learn, as it allows them to continually increase their knowledge and abilities.

Overall, the S-R-A loop is the cornerstone of robotics. It is essential for robots to be able to interact with their environment and learn from it. Without the S-R-A loop, robots would be unable to take any action or make decisions. It is an integral part of any robotic system.

From the S-R-A loop, lets start at the very beggining of the loop - at reading input signals by emphasizing the importance of received input signal. In other words, it is critical that the system be able to detect and interpret input signals in order to produce the appropriate responses. Once these input signals are received, they must be accurately processed and acted upon. This is the primary task of the S-R-A loop, and is the basis for any successful input processing system.

To read an input signal on an Arduino, you can use one of the digital input pins or one of the analog input pins. Digital input pins can only read two states: high (5 volts) or low (0 volts). They are often used to read switches or buttons, or to detect the presence or absence of a signal.

To read a digital input signal on an Arduino, you can use the digitalRead function, which takes a pin number as an argument and returns either HIGH or LOW. For example, to read the state of digital pin 2, you could use the following code:

dr. David Rihtaršič

```
int pin = 2;
int state = digitalRead(pin);
```

Analog input pins, on the other hand, can read a range of voltage levels, from 0 to 5 volts. They are often used to read sensors that output an analog signal, such as a temperature sensor or a potentiometer.

To read an analog input signal on an Arduino, you can use the analogRead function, which takes a pin number as an argument and returns a value between 0 and 1023, corresponding to the voltage level on the pin. For example, to read the voltage on analog pin 0, you could use the following code:

```
int pin = 0;
int value = analogRead(pin);
```

dr. David Rihtaršič