Question number	Scheme	Marks
2	$\alpha + \beta = \frac{5}{3}, \ \alpha\beta = \frac{4}{3}$	B1
	$\alpha + \frac{1}{2\beta} + \beta + \frac{1}{2\alpha} = \alpha + \beta + \frac{\alpha + \beta}{2\alpha\beta}, = \frac{5}{3} + \frac{\frac{5}{3}}{\frac{8}{2}} = \frac{55}{24}$	M1,A1
	$\left(\alpha + \frac{1}{2\beta}\right)\left(\beta + \frac{1}{2\alpha}\right) = \alpha\beta + \frac{1}{2} + \frac{1}{2} + \frac{1}{4\alpha\beta}, = \frac{4}{3} + 1 + \frac{3}{16} = \frac{121}{48}$	M1,A1
	$x^2 - \frac{55}{24}x + \frac{121}{48} (=0)$	M1
	$48x^2 - 110x + 121 = 0$	A1 [7]
Total 7 marks		
Notes		
B1	For both correct values of the sum and product.	
M1	For the correct algebra for the SUM. They must reach	
	$\alpha + \beta + \frac{(\alpha + \beta)}{2\alpha\beta}$ or $\left[\alpha + \beta + \frac{2(\alpha + \beta)}{4\alpha\beta}\right]$	
	or $\frac{2\alpha\beta(\alpha+\beta)+(\alpha+\beta)}{2\alpha\beta}$ or $\frac{(\alpha+\beta)(2\alpha\beta+1)}{2\alpha\beta}$	
	Their correct expression for the sum must be such as to substitute $\alpha + \beta$ and directly in.	nd $lphaeta$
	Substitute in their values for $\alpha + \beta$ and $\alpha\beta$.	
A1	$Sum = \frac{55}{24}$	
M1	For the correct algebra for the PRODUCT.	
	They must reach $\alpha\beta + \frac{1}{2} + \frac{1}{2} + \frac{1}{4\alpha\beta}$ or $\frac{(2\alpha\beta + 1)^2}{4\alpha\beta}$	
	Their correct expression for the product must be such as to substitute $\alpha\beta$ d	lirectly in
	Substitute in their values for $\alpha\beta$.	
A1	$Product = \frac{121}{48}$	
M1	Use their SUM and PRODUCT correctly in a quadratic equation.	
	$x^2 + (-\text{their sum})x + (\text{their product}) (=0)$	
A1	$48x^2 - 110x + 121 = 0$ oe for example $96x^2 - 220x + 242 = 0$	
	Must be integer values only.	