Aprendizaje Automático, introducción

Inteligencia Artificial e Ingeniería del Conocimiento

Constantino Antonio García Martínez

Universidad San Pablo Ceu

Aprendizaje automático (Machine Learning, ML), un nuevo paradigma

3+1 ramas del ML

- Aprendizaje supervisado (Supervised L): Dado un conjunto de ejemplos, consiste en aprender a mapear datos de entrada a etiquetas conocids (también llamadas anotaciones).
- Aprendizaje no supervisado (Unsupervised L): Consiste en encontrar transformaciones interesantes de los datos de entrada sin la ayuda de objetivos, generalmente para agrupar los datos.
- Aprendizaje por refuerzo (Reinforcement L): Un agente recibe información sobre su entorno y aprende a elegir acciones que maximizarán alguna recompensa.
- Aprendizaje auto-supervisado (Self-supervised L): es aprendizaje supervisado sin etiquetas anotadas por humanos.

Aprendizaje Supervisado Vs. No Supervisado

ML Supervisado

Tipos de ML Supervisado

Los algoritmos de ML supervisado se pueden dividir en diferentes tipos según la salida y.

- Clasificación
 - Binaria.
 - Multiclase.
- Regresión.
- Predicción estructurada.

Δ

Clasificación

- Detección de fraude: transacción con tarjeta de crédito → fraude o no fraude
- ullet Comentarios tóxicos: comentario en línea o tóxico o no tóxico
- ullet Bosón de Higgs: mediciones del evento o evento de decaimiento o fondo

Extensión: clasificación multiclase: $y \in \{1, ..., K\}$

5

Regresión

- ullet Mapeo de pobreza: imagen satelital o renta media
- ullet Vivienda: información sobre casa o precio
- $\bullet\,$ Tiempos de llegada: destino, clima, tiempo \to hora de llegada

Predicción estructurada

- ullet Traducción automática: frase en inglés o frase en japonés
- ullet Descripción de imágenes: imagen o frase que describe la imagen
- ullet Segmentación de imágenes: imagen o segmentación

de regresión

Conceptos básicos de ML: un ejemplo

Un problema de regresión

- Dado un conjunto de puntos $\mathbf{x} = \{x_1, x_2, ..., x_n\}$, intentemos aprender cómo predecir $\mathbf{y} = \{y_1, y_2, ..., y_n\}$.
- x se denominan características o predictores. y es la variable objetivo.
- Llamamos $\{x, y\}$ los datos de entrenamiento.

Para ello debemos:

Receta ML (I)

- 1. Elegir un modelo. clasificacion o regresion
- 2. Elegir cómo medir el rendimiento.
- 3. Entrenar el modelo para intentar maximizar el rendimiento.
- 4. Medir el rendimiento real.

- 1. Usemos un modelo de regresión lineal simple: $y(\mathbf{w}, x) = w_0 + w_1 \cdot x$,
- Y usemos el Error Cuadrático Medio (MSE) como función de error o función de pérdida:

$$E(\mathbf{w}) = \sum_{i=1}^{n} (y(\mathbf{w}, x_i) - y_i)^2$$

3. **Entrenaremos** el modelo para aprender **w** de modo que minimicen el MSE en los datos de entrenamiento.

Code Example: Scikit-learn y Regresión Lineal

Intentemos mejorar los resultados...

Receta ML (II)

1. Preprocesar datos e ingeniería de características.

manipular la entrada, x, para que sea mas preciso

- 2. Elegir un modelo.
- 3. ...

Para 1 + 2 usaremos regresión lineal polinómica:

$$y(\mathbf{w}, x) = w_0 + w_1 \cdot x + w_2 \cdot x^2 + ... = \sum_{i=1}^{M} w_i x^i$$

Code Example: Ingeniería de Características

Code Exercise: Comparando modelos...

La necesidad de datos de entrenamiento y prueba

¡Medir el rendimiento en los datos de entrenamiento es incorrecto! Necesitamos los llamados **datos de prueba**.

La figura también es interesante ya que muestra la tensión entre la **complejidad del modelo** y los tres "regímenes": **underfitting** (ajuste insuficiente), ajuste correcto y **overfitting** (sobreajuste).

Receta ML (III)

- 1. Preprocesar datos e ingeniería de características.
- 2. Elegir un modelo.
- 3. Dividir datos en conjuntos de entrenamiento y prueba.
- Entrenar el modelo en el conjunto de entrenamiento para intentar maximizar el rendimiento.
- 5. Medir el rendimiento real en el conjunto de prueba.

Usar mismos datos para cosas distintas no es buena idea

Code Example: División entrenamiento-prueba

El procedimiento anterior se puede mejorar... En realidad hay **fuga de datos** en nuestro procedimiento. Estamos usando datos de prueba para dos propósitos diferentes: seleccionar los **hiperparámetros** del mejor modelo y medir el

rendimiento.

hyperparametros: grado polinomio Elegir mejor y usar ese IRL

Receta ML (IV)

- 1. Preprocesar datos e ingeniería de características.
- 2. Elegir un modelo.
- 3. Dividir datos en conjunto de entrenamiento, conjunto de validación (para comparación de modelos o selección de hiperparámetros), y conjuntos de prueba.
- 4. Para cada configuración de hiperparámetros/modelo...
 - Entrenar el modelo en el conjunto de entrenamiento para intentar maximizar el rendimiento.
 - Medir rendimiento en el conjunto de validación.
- Seleccionar la mejor configuración de hiperparámetros/modelo basada en las métricas del conjunto de validación.
- 6. Medir el rendimiento de todo el procedimiento en el conjunto de prueba.

Nuevo problema: estamos usando los datos para comparar modelos y para medir el rendimiento

Generalmente no usar mismos datos para dos cosas diferentes

Code Example: Procedimiento completo con división entrenamientovalidación-prueba

Regularización

Queremos usar modelos complejos, pero combatir el sobreajuste. Inspeccionar los coeficientes de diferentes modelos produce una idea:

		M = 0	M = 1	M = 6	M = 9
	w_0^{\star}	0.19	0.82	0.31	0.35
coeficientes	w_1^{\star}		-1.27	7.99	232.37
	w_2^{\star}			-25.43	-5321.83
	w_3^{\star}			17.37	48568.31
	w_4^{\star}				-231639.30
	w_5^*				640042.26
	w_6^{\star}				-1061800.52
	w_7^{\star}				1042400.18
	w_8^{\star}				-557682.99
	w_9^{\star}				125201.43
	3	1			

mucha magnitud

ajustan sus coeficientes con numeros demasiado grandes

penalizar estos numeros grandes

Regularizacion

¡Vamos a penalizar los pesos grandes! Esto se llama término de regularización

$$E(\mathbf{w}) = \sum_{i=1}^{n} (y(\mathbf{w}, x_i) - y_i)^2 + \underbrace{\lambda \cdot ||\mathbf{w}||^2}_{penalizacin}$$

Esto se llama Regresión Ridge.

Durante el entreanamiento se pone un termino que penaliza estos numeros grandes

Cuanto mas grande la magnitud, mas grande la penalizacion

Code Exercise: Pipeline

Code Exercise: Coeficientes del modelo de regresión

Code Exercise: Regresión Ridge

Resumen

IDEAS A RECORDAR

- ¡No midas el rendimiento en el conjunto de entrenamiento! Debes usar un conjunto de prueba.
- Si quieres ajustar hiperparámetros/comparar modelos también necesitarás un conjunto de validación.
- El underfitting (ajuste insuficiente) y el overfitting (sobreajuste) son dos problemas comunes.
- La regularización es útil para combatir el sobreajuste.