Probability Theory

Daniel Mao

Copyright \bigodot 2021 Daniel Mao All Rights Reserved.

Contents

1	$Th\epsilon$	eory in General	1
	1.1	Probability Models	1
	1.2	Random Variables	2
	1.3	Cumulative Distribution Function	2
	1.4	Marginal Distributions	3
2	Pro	bability Functions	5
	2.1	Probability Function of Events	5
	2.2	Probability Function of Random Variables	7
3	Exp	pectation	9
	3.1	Definition	9
	3.2	Properties of the Expectation Operator	10
	3.3	Variance and Covariance	10
	3.4	Theory in Higher Dimensions	11
	3.5	Moment	12
	3.6	Moment Generating Functions	12
4	Dis	crete Random Variables	15
	4.1	Discrete Uniform Distribution	15
	4.2	Bernoulli Distribution	15
	4.3	Binomial Distribution	16
	4.4	Negative Binomial Distribution	16
	4.5	Geometric Distribution	16
	4.6	Hypergeometric Distribution	16
	4.7	Multinomial Distribution	17
	4.8	Poisson Distribution	18
	4.9	Bivariate Discrete Distributions	20

ii CONTENTS

5	Con	tinuous Random Variables	21			
	5.1	Continuous Uniform Distribution	21			
	5.2	Beta Distribution	21			
	5.3	Exponential Distribution	21			
	5.4	Erlang Distribution	22			
	5.5	Gamma Distribution	22			
	5.6	Normal Distribution	24			
	5.7	Bivariate Normal Distribution	25			
	5.8	Weibull Distribution	25			
	5.9	Chi-squared Distribution	25			
	5.10	t Distribution	26			
		Properties	26			
6	Con	ditional Probability Distributions	27			
	6.1	Conditional Probability of Events	27			
	6.2	Conditional Distribution	28			
	6.3	Conditional Expectations	29			
7	Join	Joint Probability Distributions				
	7.1	Joint Cumulative Distribution Functions	31			
	7.2	Joint Probability Mass Functions	31			
	7.3	Joint Probability Density Functions	31			
	7.4	Joint Expectations	32			
8	Inde	ependence	33			
	8.1	Independence of Events	33			
	8.2	Independent Random Variables	34			
9	Unc	lassified	37			

1

Theory in General

1.1 Probability Models

Random Experiment, two criteria

- outcome is random. i.e., the process can have multiple different outcomes, and before observing we don'w know which one of them will happen.
- the random experiment must be theoretically repeatable.

Definition (Random Experiment). A phenomenon or process that is repeatable, at least in theory.

Definition. A single repetition of the experiment as a trial.

Two types:

- collecting raw data.
- summarizing raw data

Definition (Sample Space). For a random experiment in which all possible outcomes are known, The set of all distinct outcomes for a random experiment, with the property that in a single trial, exactly one of these outcomes occurs, is call the **sample space**, denoted by Ω .

Definition (Event). We define an **event**, denoted by A, to be a subset of the sample space.

Definition (Probability Model). A probability model consists of 3 essential components, a sample space, a collection of event, and a probability function.

Probability Model: describes a random experiment.

1.2 Random Variables

Definition (Random Variables). Let S be a sample space. We define a **random variable**, denoted by X, to be a function from S to \mathbb{R} such that $\forall x \in \mathbb{R}$, the set $\{s \in S : X(s) \leq x\}$ is a valid event.

1.3 Cumulative Distribution Function

Definition (Cumulative Distribution Function). Let X be a random variable. We define the **cumulative distribution function** of X, denoted by F, to be a function from \mathbb{R} to \mathbb{R} given by

$$F(x) = P(X \le x).$$

Definition (Joint Cumulative Distribution Function). Let S be a sample space. Let $X_1, ..., X_n$ be random variables on S. We define the **joint cumulative distribution function** of $X_1, ..., X_n$, denoted by $F(x_1, ..., x_n)$, to be a function given by

$$F(x_1,...,x_n) := P(X_1 \le x_1,...,X_n \le x_n) = P(\bigcap_{i=1}^n \{X_i \le x_i\}),$$

for $x_1,...,x_n \in \mathbb{R}$.

Proposition 1.3.1. Properties of cumulative distribution function. Say F takes n variables $x_1, ..., x_n$.

(1) Non-decreasing.

F is non-decreasing in each of its variables. i.e., $\forall i \in \{1,...,n\}$, we have

$$x_i \le x_i' \implies F(x_1, ..., x_i, ..., x_n) \le F(x_1, ..., x_i', ..., x_n).$$

(2) $\forall i \in \{1, ..., n\}, we have$

$$\lim_{x_i \to -\infty} F(x_1, ..., x_i, ..., x_n) = 0.$$

(3) $\forall i \in \{1, ..., n\}, we have$

$$\lim_{x_i\to +\infty}$$

(4) Right Continuity.

$$\forall a \in \mathbb{R}, \quad \lim_{x \to a^+} F(x) = F(a).$$

(5)
$$\forall a < b, P(a < X \le b) = P(X \le b) - P(X \le a) = F(b) - F(a).$$

(6)
$$\forall a \in \mathbb{R}, \quad P(X < a) = \lim_{x \to a^{+}} F(x) - \lim_{x \to a^{-}} F(x).$$

(7)
$$\forall z \in \mathbb{R}, \quad P(X = a) = jump \ at \ a.$$

Proof.

Proof of (1).

Since $x_1 \le x_2$, $\{X \le x_1\} \subseteq \{X \le x_2\}$. Since $\{X \le x_1\} \subseteq \{X \le x_2\}$, $P(X \le x_1) \le P(X \le x_2)$.

That is, $F(x_1) \leq F(x_2)$.

Proof of (2).

$$\begin{array}{ll} x \to +\infty & \Longrightarrow \; \{X \le x\} \to S. \\ x \to -\infty & \Longrightarrow \; \{X \le x\} \to \emptyset. \end{array}$$

1.4 Marginal Distributions

Definition (Marginal Cumulative Distribution Function). Let S be a sample space. Let $X_1, ..., X_n$ be random variables on S. Let F be the joint cumulative distribution function of $X_1, ..., X_n$. We define the **marginal cumulative distribution function** of X_i , for some $i \in \{1, ..., n\}$, denoted by F_{X_i} , to be a function given by

$$F_{X_i}(x) := \lim_{X_j \to \infty, j \neq i} F(X_1, ..., X_n) = P(X_i \le x).$$

Probability Functions

2.1 Probability Function of Events

Definition (Probability Function). Let Ω be a sample space. We define a **probability** function, denoted by P, to be a function from Ω to \mathbb{R} that satisfies all of the following conditions:

- (1) Non-negativity. $P(A) \ge 0$ for any A.
- (2) $P(\Omega) = 1$.
- (3) Countable Additivity. Let $\{A_i\}_{i\in\mathbb{N}}$ be a countable collection of events. Then if the A_i 's are mutually exclusive, we have

$$P(\bigcup_{i\in\mathbb{N}} A_i) = \sum_{i\in\mathbb{N}} P(A_i).$$

Proposition 2.1.1 (Properties of Probability Functions). Let Ω be a sample space. Let P be a probability function defined on the sample space. Then

- (1) $P(\emptyset) = 0$.
- (2) $A \subseteq B \implies P(A) \le P(B)$.
- (3) $P(A) \in [0,1]$ for any event A.

Proof.

Proof of (1):

By the countable additivity, we have

$$P(\emptyset) = P(\emptyset \cup \emptyset) = P(\emptyset) + P(\emptyset).$$

6

Hence

$$P(\emptyset) = 0.$$

Proof of (2).

$$P(B) = P(B \setminus A) + P(A).$$

So

$$P(B) - P(A) = P(B \setminus A) \ge 0.$$

Proof of (3).

$$P(A) \le P(S) = 1.$$

Proposition 2.1.2 (Set Operations). Let Ω be a sample space. Let P be a probability function defined on the sample space. Then

(1)

$$\forall A, B \in \Omega, \quad P(A \cup B) = P(A) + P(B) - P(A \cap B).$$

(2)

$$\forall A, B \in \Omega, \quad P(A \cap \overline{B}) = P(A) - P(A \cap B).$$

(3)

$$\forall A, B \in \Omega, \quad P(\overline{A}) = 1 - P(A).$$

Proof of (3). Note that

$$P(\bar{A}) + P(A) = P(\bar{A} \cup A) = P(\Omega) = 1.$$

So

$$P(\bar{A}) = 1 - P(A).$$

Remark. P(A) = 0 does not imply $A = \emptyset$ in general.

7

2.2 Probability Function of Random Variables

2.2.1 Probability Mass Functions

Definition (Probability Mass Function). Let X be a discrete random variable. We define the **probability mass function** f of X to be a function from \mathbb{R} to [0,1] given by

$$f(x) := \begin{cases} P(X = x), & x \in \text{range}(X) \\ 0, & otherwise \end{cases}.$$

Proposition 2.2.1. Let X be a discrete random variable. Let f be the probability mass function of X. Let S be the support of f.

$$\sum_{x \in \mathcal{S}} f(x) = 1.$$

2.2.2 Probability Density Functions

Definition (Probability Density Function). Let X be a continuous random variable. We define the **probability density function** of X to be a function from \mathbb{R} to \mathbb{R} given by

$$f(x) = \begin{cases} F'(x), & \text{if } F(x) \text{ is differentiable at } x \\ 0, & \text{otherwise} \end{cases}$$

Definition (Support Set). Let X be a continuous random variable. We define the **support** set of X, denoted by A, to be a subset of the reals given by

$$A := \{x \in \mathbb{R} : f(x) > 0$$

where f is the probability density function of X.

Proposition 2.2.2. The probability density of a singleton set is 0.

Proposition 2.2.3. $\forall x \in \mathbb{R}, f(x) \geq 0.$

Proposition 2.2.4.

$$\int_{-\infty}^{+\infty} f(x)dx = 1.$$

Expectation

3.1 Definition

Definition (Expectation of a Discrete Random Variable). Let X be discrete random variable. Let f be the probability mass function of X. Let A be the support of f. Let g be a real-valued function on X. We define the **expectation** of g(X), denoted by $\mathbb{E}[g(X)]$, to be a number given by

$$\mathbb{E}[g(X)] := \sum_{x \in A} g(x) f(x),$$

if the absolute summation $\sum_{x \in A} |g(x)f(x)|$ converges; and we say that the expectation of g(X) does not exist otherwise.

Definition (Expectation of a Continuous Random Variable). Let X be continuous random variable. Let f be the probability density function of X. Let A be the support of f. Let g be a real-valued function on X. We define the **expectation** of g(X), denoted by $\mathbb{E}[g(X)]$, to be a number given by

$$\mathbb{E}[X] := \int_A g(x) f(x) dx,$$

if the absolute integral $\int_A |g(x)f(x)| dx$ converges; and we say that the expectation of g(X) does not exist otherwise.

Definition (Expectation of a Random Vector). Let $X = (X_1, ..., X_n)$ be a random vector. We define the **expectation** of X to be a vector given by

$$\mathbb{E}[X] := \begin{bmatrix} \mathbb{E}[X_i] \\ \vdots \\ \mathbb{E}[X_n] \end{bmatrix}.$$

10 3. EXPECTATION

3.2 Properties of the Expectation Operator

Proposition 3.2.1 (Linearity). Expectation is a linear operator. i.e., Let $X = (X_1, ..., X_n)$ be a random vector. Let $\vec{\lambda} = (\lambda_1, ..., \lambda_n)$ be a constant. Then

$$\mathbb{E}\big[\sum_{i=1}^{n} \lambda_i X_i\big] = \sum_{i=1}^{n} \lambda_i \mathbb{E}[X_i].$$

Or,

$$\mathbb{E}[\vec{\lambda}X] = \vec{\lambda} \cdot \mathbb{E}[X].$$

Proposition 3.2.2. Let X be a random vector. Let $g_1, ..., g_n$ be real-valued functions on X. Let $\lambda_1, ..., \lambda_n$ be constants. Then

$$\mathbb{E}[\sum_{i=1}^{n} \lambda_i g_i(X)] = \sum_{i=1}^{n} \lambda_i \mathbb{E}[g(X)].$$

3.3 Variance and Covariance

Definition (Covariance). Let X and Y be random variables. We define the **covariance** of X and Y, denoted by cov(X,Y), to be the number given by

$$cov(X, Y) := \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])].$$

Definition (Uncorrelated). Let X and Y be two random variables. We say that X and Y are uncorrelated if cov(X,Y) = 0.

Definition (Variance). Let X be a random variable. We define the **variance** of X, denoted by var[X], to be the number given by

$$var(X) := \mathbb{E}[(X - \mathbb{E}[X])^2],$$

or equivalently,

$$var(X) = cov(X, X).$$

Proposition 3.3.1. If X and Y are independent, then cov(X,Y) = 0. i.e. independent random variables are uncorrelated.

Proposition 3.3.2.

$$var[X] = \mathbb{E}[X^2] - (\mathbb{E}[X]^2).$$

Proposition 3.3.3.

$$\operatorname{var}[X] = \mathbb{E}[X(X-1)] + \mathbb{E}[X] - (\mathbb{E}[X])^{2}.$$

Proposition 3.3.4. Let X and Y be two random variables. Then

$$cov(X, Y) = \mathbb{E}[XY] - \mathbb{E}[X] \mathbb{E}[Y].$$

Proof.

$$\begin{aligned} &\operatorname{cov}(X,Y) \\ &= \mathbb{E}\big[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])\big] \\ &= \mathbb{E}\big[XY - \mathbb{E}[X]Y - \mathbb{E}[Y]X + \mathbb{E}[X] \ \mathbb{E}[Y]\big] \\ &= \mathbb{E}[XY] - \mathbb{E}[X] \ \mathbb{E}[Y] - \mathbb{E}[Y] \ \mathbb{E}[X] + \mathbb{E}[X] \ \mathbb{E}[Y] \\ &= \mathbb{E}[XY] - \mathbb{E}[X] \ \mathbb{E}[Y]. \end{aligned}$$

That is,

$$cov(X, Y) = \mathbb{E}[XY] - \mathbb{E}[X] \mathbb{E}[Y].$$

Proposition 3.3.5 (Bilinearity of the Covariance Operator). Let $X = (X_1, ..., X_n)$ be a random vector. Let $Y := \vec{a}X = \sum_{i=1}^n a_i X_i$ and $Z := \vec{b}X = \sum_{i=1}^n b_i X_i$ where \vec{a} and \vec{b} are constant vectors. Then

$$cov \left(\sum_{i=1}^{n} a_i X_i, \sum_{i=1}^{n} b_i X_i \right) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_i b_j cov(X_i, X_j).$$

Or,

$$cov(Y, Z) = \vec{a}^T var(Y, Z)\vec{b}.$$

3.4 Theory in Higher Dimensions

Definition (Variance of a Random Vector). Let $X = (X_1, ..., X_n)$ be a random vector. We define the variance of X to be a matrix given by

$$\operatorname{var}(X) := \mathbb{E}[(X - \mathbb{E}[X])(X - \mathbb{E}[X]^T)].$$

Proposition 3.4.1.

$$var(X) = \begin{bmatrix} cov(X_1, X_1) & cov(X_1, X_2) & \dots & cov(X_1, X_n) \\ cov(X_2, X_1) & cov(X_2, X_2) & \dots & cov(X_2, X_n) \\ \vdots & & \vdots & \ddots & \vdots \\ cov(X_n, X_1) & cov(X_n, X_2) & \dots & cov(X_n, X_n) \end{bmatrix}$$

$$= \begin{bmatrix} var(X_1) & cov(X_1, X_2) & \dots & cov(X_1, X_n) \\ cov(X_2, X_1) & var(X_2) & \dots & cov(X_2, X_n) \\ \vdots & & \vdots & \ddots & \vdots \\ cov(X_n, X_1) & cov(X_n, X_2) & \dots & var(X_n) \end{bmatrix}.$$

12 3. EXPECTATION

Proposition 3.4.2. Covariance matrices are symmetric.

Proof.
$$cov(X_i, X_j) = cov(X_j, X_i)$$
.

Proposition 3.4.3. Let X be a random vector. Then var(X) is positive definite. i.e., $\forall a \in \mathbb{R}^n : a^T var(X)a \geq 0$.

3.5 Moment

Definition (Moment). We define the k^{th} moment (about 0) of X for $k \in \mathbb{N}$ to be the number given by

$$\mathbb{E}[X^k]$$
.

Definition (Central Moment). We define the k^{th} central moment of X for $k \in \mathbb{N}$ to be the number given by

$$\mathbb{E}[(X - \mathbb{E}[X])^2].$$

Remark. The first moment is the mean (expectation).

Proposition 3.5.1.

$$var[X] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$$

provided that $\mathbb{E}[X^2]$ exists.

Proof.

$$var[X] = \mathbb{E}[(X - \mathbb{E}[X])^2]$$

$$= \mathbb{E}[X^2 - 2\mathbb{E}[X]X + (\mathbb{E}[X])^2]$$

$$= \mathbb{E}[X^2] - 2\mathbb{E}[X]\mathbb{E}[X] + (\mathbb{E}[X])^2$$

$$= \mathbb{E}[X^2] - (\mathbb{E}[X])^2.$$

3.6 Moment Generating Functions

Definition ((Joint) Moment Generating Function). Let $X_1,...,X_n$ be random variables. We define the (joint) moment generating function of $X_1,...,X_n$, denoted by M, to be a function given by

$$M(t_1,...,t_n) := \mathbb{E}\big[\exp\big\{\sum_{i=1}^n t_i X_i\big\}\big],\,$$

if $\exists h_1, ..., h_n > 0$ such that the RHS is defined on $(-h_1, h_1) \times ... \times (-h_n, h_n)$. The domain of M is the set of all tuples $(t_1, ..., t_n)$ such that the RHS is defined.

Proposition 3.6.1.

$$M(0) = 1.$$

Proposition 3.6.2 (Expansion of the Moment Generating Function). Let X be a random variable. Let Φ_X be the moment generating function of X. Then

$$\Phi_X(t) = \sum_{i=0}^{\infty} \mathbb{E}[X^i] \frac{t^i}{i!}.$$

Proof.

$$\begin{split} \Phi_X(t) &= \mathbb{E}[e^{tX}] = \mathbb{E}[\sum_{i=0}^{\infty} \frac{(tX)^i}{i!}] \\ &= \sum_{i=0}^{\infty} \mathbb{E}[\frac{(tX)^i}{i!}] = \sum_{i=0}^{\infty} \mathbb{E}[X^i] \frac{t^i}{i!}. \end{split}$$

That is,

$$\Phi_X(t) = \sum_{i=0}^{\infty} \mathbb{E}[X^i] \frac{t^i}{i!}.$$

The i^{th} moment of the random variable X is the coefficient of the term $\frac{t^i}{i!}$.

Proposition 3.6.3. Let X be a random variable. Let Φ_X be the moment generating function of X. Given the moment generating function of X, we can extract its n^{th} moment, for $n \in \mathbb{N}$, via

$$\Phi_X^{(n)}(0) = \mathbb{E}[X^n].$$

Proposition 3.6.4 (Linear Transformations). Let X be a random variable. Let M_X be the moment generating function for X on (-h,h) for some h>0. Let $\alpha,\beta\in\mathbb{R}$ and $\alpha\neq 0$. Then the moment generating function $M_{\alpha X+\beta}$ for the random variable $\alpha X+\beta$ is

$$M_{\alpha X + \beta}(t) = e^{\beta t} M_X(\alpha t),$$

defined on $\left(-\frac{h}{|a|}, \frac{h}{|a|}\right)$.

Proposition 3.6.5 (Linear Combinations). Let X_i for i = 1, ..., n be independent random variables. Let M_{x_i} be the moment generating function for X_i , for i = 1, ..., n. Let $a_i \in \mathbb{R}$ for i = 1, ..., n). Define $X := \sum_{i=1}^{n} a_i X_i$. Then the moment generating function M_X for X is

$$M_X(t) = \prod_{i=1}^{n} M_{X_i}(a_i t).$$

Proposition 3.6.6 (Uniqueness Property). Let X and Y be random variables. Let M_X be the moment generating function for X. Let F_X be the cumulative distribution function of X. Let M_Y be the moment generating function for Y. Let F_X be the cumulative distribution function of Y. Then $M_X = M_Y$ if and only if $F_X = F_Y$.

3. EXPECTATION

Discrete Random Variables

Definition (Discrete Random Variable). Let X be a random variable. We say that X is a discrete random variable if the state space of S is countable.

4.1 Discrete Uniform Distribution

Definition (Discrete Uniform Distribution). X is early likely to take on values in the finite set $\{a,..,b\}$, We say that X follows a **discrete uniform distribution**, denoted by $X \sim DU(a,b)$.

4.2 Bernoulli Distribution

Definition (Bernoulli Distribution). If we consider a Bernoulli trial, which is a random trial with probability p of being a "success" and probability 1-p being a "failure", then we say that X follows **Bernoulli distribution**, denoted by $X \sim Bernoulli(p)$.

Proposition 4.2.1 (Probability Density Function of Bernoulli Distribution).

$$f(x) = \begin{cases} P(X = x), & x \in \{0, 1\} \\ 0, & otherwise \end{cases} = \begin{cases} p^x (1 - p)^{1 - x}, & x \in \{0, 1\} \\ 0, & otherwise \end{cases}$$

Proposition 4.2.2 (Expectation of Bernoulli Distribution).

$$\mathbb{E}[X] = \sum_{x \in A} x f(x) = (1)(p) + (0)(1-p) = p.$$

Example 4.2.1. Flipping a coin once.

4.3 Binomial Distribution

Definition (Binomial Distribution). Let $X_i \sim Bernoulli(p)$ for $i \in \{1, ..., n\}$. Define a random variable X by $X = \sum_{i=1}^{n} X_i$. We say that the random variable X follows a binomial distribution, denoted by $X \sim Binomial(n, p)$. Then X records the number of "success" trails.

Proposition 4.3.1 (Probability Density Function of Binomial Distribution).

$$f(x) = P(X = x) = \binom{n}{x} p^x (1-p)^{1-x}.$$

Proposition 4.3.2 (Expectation of Binomial Distribution).

$$\mathbb{E}[X] = \mathbb{E}[\sum_{i=1}^{n} X_i] = \sum_{i=1}^{n} \mathbb{E}[X_i] = \sum_{i=1}^{n} p = np.$$

4.4 Negative Binomial Distribution

Definition (Negative Binomial Distribution). If X denotes the number of Bernoulli trials required to observe $k \in \mathbb{N}$ successes, We say that the random variable X follows a **negative** binomial distribution, denoted by $X \sim NB(k, p)$.

X := # of 0 outcomes before the $r^{\text{th}}outcomeof1inrepeatedBernoulli(p)experiments <math>X \sim NegBin(r, p)$.

$$P(X = x) = {\binom{x+r-1}{x}} (1-p)^x p^{r-1} p.$$

$$X = \sum_{i=1}^{r} X_i$$

$$X_i \sim Geo(p)$$
.

4.5 Geometric Distribution

Definition (Geometric Distribution). X denotes the number of Bernoulli trials required to observe the first success. i.e., $X \sim NB(1,p)$. We say that the random variable X follows a geometric distribution, denoted by $X \sim Geo(p)$.

4.6 Hypergeometric Distribution

Definition (Hypergeometric Distribution). X denotes the number of success objects in n draws without replacement from a finite population of size N containing exactly r success objects. We say that X follows a **hypergeometric distribution**, denoted by $X \sim HG(N,r,n)$.

Proposition 4.6.1 (Probability Function of Hypergeometric Distribution). For $x = \max\{0, n-N+r\}, ..., \min\{n, r\},$

$$p(x) = \frac{\binom{r}{x} \binom{N-r}{n-x}}{\binom{N}{n}}.$$

4.7 Multinomial Distribution

Let $X_1, ..., X_k$ be random variables. Let $p_1, ..., p_k$ be probabilities such that $\sum_{i=1}^k p_i = 1$. Let n be the number of trials.

$$(X_1,...,X_n) \sim Multinomial(n,p_1,...,p_k).$$

Joint Probability Mass Function

$$f(x_1, ..., x_k) = \begin{cases} \frac{n!}{x_1! ... x_k!} p_1^{x_1} ... p_k^{x_k}, & \text{if } x_i = 0, 1, ... \text{ and } \sum_{i=1}^k x_i = n \\ 0, & \text{otherwise.} \end{cases}$$

Joint Moment Generating Function

$$M(t_1, ..., t_n) = \mathbb{E}\left[\exp\left\{\sum_{i=1}^{k} t_i X_i\right\}\right] = \left(\sum_{i=1}^{k} p_i e^{t_i}\right)^n$$

for any $(t_1,...,t_k) \in \mathbb{R}^k$, where \mathbb{E} denotes the expectation operator and exp denotes the exponential function.

Marginal Distribution

- $X_i \sim Binomial(n, p_i)$.
- $\mathbb{E}[X_i] = np_i$.
- $\operatorname{var}[X_i] = np_i(1 p_i).$

$$\begin{aligned} M_{X_i}(t_i) &= M(0, ..., 0, t_i, 0, ..., 0) \\ &= \left(p_i e^{t_i} + \sum_{j \neq i} p_j \right)^n \\ &= \left(p_i e^{t_i} + (1 - p_i) \right)^n. \end{aligned}$$

Conditional Distribution

Proposition 4.7.1.

$$X_i \mid X_j = x_j \sim Binomial\left(n - x_j, \frac{p_i}{1 - p_i}\right)$$

for $i \neq j$.

Proposition 4.7.2.

$$X_i \mid X_i + X_j = t \sim Binomial\left(t, \frac{p_i}{p_i + p_j}\right).$$

Other Properties

Proposition 4.7.3. Let $T := X_i + X_j$. Then $T \sim Binomial(n, p_i + p_j)$.

Proof. Idea: use MGF.

Proposition 4.7.4. $cov(X_i, X_j) = -np_i p_j$.

Proof.

$$\begin{aligned} & \operatorname{cov}(X_{i}, X_{j}) \\ &= \frac{1}{2} \big[2 \operatorname{cov}(X_{i}, X_{j}) \big] \\ &= \frac{1}{2} \big[\operatorname{cov}(X_{i}, X_{i}) + \operatorname{cov}(X_{i}, X_{j}) + \operatorname{cov}(X_{j}, X_{i}) + \operatorname{cov}(X_{j}, X_{j}) - \operatorname{cov}(X_{i}, X_{i}) - \operatorname{cov}(X_{j}, X_{j}) \big] \\ &= \frac{1}{2} \big[\operatorname{cov}(X_{i} + X_{j}, X_{i} + X_{j}) - \operatorname{cov}(X_{i}, X_{i}) - \operatorname{cov}(X_{j}, X_{j}) \big] \\ &= \frac{1}{2} \big[\operatorname{var}(X_{i} + X_{j}) - \operatorname{var}(X_{i}) - \operatorname{var}(X_{j}) \big] \\ &= \frac{1}{2} \big[n(p_{i} + p_{j})(1 - p_{i} - p_{j}) - np_{i}(1 - p_{i}) - np_{j}(1 - p_{j}) \big] \\ &= \frac{1}{2} \big[- 2np_{i}p_{j} \big] \\ &= - np_{i}p_{j}. \end{aligned}$$

4.8 Poisson Distribution

Definition (Poisson Distribution). Let $X \sim Poisson(\lambda)$ for $\lambda \in \mathbb{R}_{++}$. Then the probability mass function of X is

$$f(k) = \frac{e^{-\lambda} \lambda^k}{k!}$$

with support $k \in \mathbb{N}_0$.

Remark. Note that if we force λ to be equal to 0, we get

$$p(x) = \frac{e^{-0}0^x}{x!} = \begin{cases} 1, & \text{if } x = 0\\ 0, & \text{otherwise.} \end{cases}$$

Proposition 4.8.1 (Moment Generating Function). The moment generating function of a $Poisson(\lambda)$ distributed random variable is

$$M(t) = e^{\lambda(e^t - 1)} \text{ for } t \in \mathbb{R}.$$

Proof.

$$M(t) = \mathbb{E}[e^{tX}]$$

$$= \sum_{x=0}^{\infty} e^{tx} f(x)$$

$$= e^{-\lambda} \sum_{x=0}^{\infty} \frac{\lambda^x e^{tx}}{x!}$$

$$= e^{-\lambda} \sum_{x=0}^{\infty} \frac{(\lambda e^t)^x}{x!}$$

$$= e^{\lambda(e^t - 1)},$$

for any $t \in \mathbb{R}$.

Proposition 4.8.2 (Mean and Variance). The mean and variance of a $Poisson(\lambda)$ distributed random variable are

$$\begin{cases} \mathbb{E}[X = \lambda \ and \\ \text{var}[X] = \lambda. \end{cases}$$

Proof.

$$\mathbb{E}[X]] = M'(0) = \lambda.$$

$$\operatorname{var}[X] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$$

$$= M''(0) - (M'(0))^2$$

$$= (\lambda^2 + \lambda) - \lambda^2 = \lambda.$$

Proposition 4.8.3. When n is large and p is small, Poisson(np) can be used bo approximate Binomial(n, p).

Proof.

$$\begin{split} \lim_{n \to \infty} P(X = x) &= \lim_{n \to \infty} \binom{n}{x} p^x (1 - p)^{n - x} \\ &= \lim_{n \to \infty} \frac{n(n - 1) ... (n - x + 1)}{x!} (\frac{\lambda}{n})^x (1 - \frac{\lambda}{n})^{n - x} \\ &= \lim_{n \to \infty} \frac{n}{n} \frac{n - 1}{n} ... \frac{n - x + 1}{n} \frac{\lambda^x}{x!} \frac{(1 - \frac{\lambda}{n})^n}{(1 - \frac{\lambda}{n})^x} \\ &= 1 \cdot ... \cdot 1 \cdot \frac{\lambda^x}{x!} \cdot \frac{e^{-\lambda}}{1} \\ &= \frac{e^{-\lambda} \lambda^x}{x!}. \end{split}$$

4.9 Bivariate Discrete Distributions

Definition (Bivariate Discrete Random Variables). Let S be a sample space. We define a pair of **bivariate discrete random variables** on S, to be a pair (X,Y) of random variables on S such that there exists some subset A of \mathbb{R}^2 such that $P((X,Y) \in A) = 1$.

Definition (Joint Support). Let S be a sample space. Let (X,Y) be a pair of bivariate discrete random variables. We define the **joint support** of (X,Y), denoted by A, to be a set given by

$$A := \{(x, y) \in \mathbb{R}^2 : f(x, y) > 0\}.$$

Continuous Random Variables

Definition (Continuous Random Variable). Let F be the cumulative distribution function of X.

- (1) F is continuous on \mathbb{R} .
- (2) F is differentiable almost everywhere on \mathbb{R} .

5.1 Continuous Uniform Distribution

5.2 Beta Distribution

5.3 Exponential Distribution

Definition (Exponential Distribution). Let $X \sim Exponential(\lambda)$. Then X has probability density function

$$f(x) = \lambda e^{-\lambda x}$$

with support $x \in \mathbb{R}_+$.

Proposition 5.3.1 (Mean and Variance). Then mean and variance of a Exponential(λ) distributed random variable are

$$\begin{cases} \mathbb{E}[X] = \frac{1}{\lambda} \ and \\ \text{var}[X] = \frac{1}{\lambda^2}. \end{cases}$$

5.4 Erlang Distribution

Proposition 5.4.1 (Probability Density Function). For x > 0,

$$f(x) = \frac{\lambda^n x^{n-1} e^{-\lambda x}}{(n-1)!}.$$

Proposition 5.4.2. $Erlang(1, \lambda) = Exponential(\lambda)$.

5.5 Gamma Distribution

Probability Density Function

$$f(x) = \begin{cases} \frac{x^{\alpha - 1}e^{-x/\beta}}{\Gamma(\alpha)\beta^{\alpha}}, & x > 0\\ 0, & x \le 0, \end{cases}$$

for $\alpha, \beta \geq 0$.

$$X \sim Gamma(\alpha, \beta)$$

Verification of the properties

$$\int_{-\infty}^{+\infty} f(x)dx$$

$$= \int_{0}^{\infty} \frac{x^{\alpha-1}e^{-x/\beta}}{\Gamma(\alpha)\beta^{\alpha}} dx$$

$$= \int_{0}^{\infty} \frac{(x/\beta)^{\alpha-1}\beta^{\alpha-1}e^{-(x/\beta)}}{\Gamma(\alpha)\beta^{\alpha}} \beta d(x/\beta)$$

$$= \int_{0}^{\infty} \frac{1}{\Gamma(\alpha)} (x/\beta)^{\alpha-1}e^{-(x/\beta)} d(x/\beta)$$

$$= \frac{1}{\Gamma(\alpha)} \int_{0}^{\infty} y^{\alpha-1}e^{-y} dy$$

$$= \frac{1}{\Gamma(\alpha)} \Gamma(\alpha)$$

$$= 1.$$

23

Moment

$$\mathbb{E}[X^{p}]$$

$$= \int_{-\infty}^{+\infty} x^{p} f(x) dx$$

$$= \int_{0}^{\infty} x^{p} \frac{x^{\alpha - 1} e^{-x/\beta}}{\Gamma(\alpha)\beta^{\alpha}} dx$$

$$= \int_{0}^{\infty} \frac{x^{p+\alpha - 1} e^{-x/\beta}}{\Gamma(\alpha)\beta^{\alpha}} dx$$

$$= \int_{0}^{\infty} \frac{\beta^{p+\alpha - 1} (x/\beta)^{p+\alpha - 1} e^{-(x/\beta)}}{\Gamma(\alpha)\beta^{\alpha}} \beta d(x/\beta)$$

$$= \frac{\beta^{p}}{\Gamma(\alpha)} \int_{0}^{\infty} (x/\beta)^{p+\alpha - 1} e^{-(x/\beta)} d(x/\beta)$$

$$= \frac{\beta^{p} \Gamma(\alpha + p)}{\Gamma(\alpha)}.$$

Moment Generating Function

$$\begin{split} \mathbb{E}[e^{tX}] &= \int_0^\infty e^{tx} \frac{x^{\alpha-1}e^{-x/\beta}}{\Gamma(\alpha)\beta^\alpha} dx \\ &= \frac{1}{\Gamma(\alpha)\beta^\alpha} \int_0^\infty x^{\alpha-1}e^{-x(\frac{1}{\beta}-t)} dx \\ &= \frac{1}{\Gamma(\alpha)} (\frac{1}{1-t\beta})^\alpha \int_0^\infty [(\frac{1-t\beta}{\beta})x]^{\alpha-1}e^{-(\frac{1-t\beta}{\beta})x} d[(\frac{1-t\beta}{\beta})x] \\ &= \frac{1}{\Gamma(\alpha)} (\frac{1}{1-t\beta})^\alpha \int_0^\infty y^{\alpha-1}e^{-y} dy. \\ &= \frac{1}{\Gamma(\alpha)} (\frac{1}{1-t\beta})^\alpha \Gamma(\alpha) \\ &= (\frac{1}{1-t\beta})^\alpha \end{split}$$

This integral exists when $t < \frac{1}{\beta}$. So

$$M(t) = \left(\frac{1}{1 - \beta t}\right)^{\alpha},$$

if $t < \frac{1}{\beta}$.

Mean

From moment:

$$\mathbb{E}[X] = \mathbb{E}[X^p]|_{p=1} = \frac{\beta\Gamma(\alpha+1)}{\Gamma(\alpha)} = \alpha\beta.$$

From moment generating function:

$$\mathbb{E}[X] = M'(0) = \frac{d[(\frac{1}{1-\beta t})^{\alpha}]}{dt} \bigg|_{t=0} = (\alpha \beta (1-\beta t)^{-\alpha-1}) \bigg|_{t=0} = \alpha \beta.$$

Variance

$$\mathbb{E}[X^2] = \mathbb{E}[X^p]\big|_{p=1} = \frac{\beta^2\Gamma(\alpha+2)}{\Gamma(\alpha)} = \beta^2\alpha(\alpha+1).$$

$$Var[X] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2 = \beta^2\alpha(\alpha+1) - (\beta\alpha)^2 = \alpha\beta^2.$$

5.6 Normal Distribution

Probability Density Function

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right],$$

for $\mu \in \mathbb{R}, \sigma^2 > 0$.

$$X \sim Normal(\mu, \sigma^2)$$

Verification of the properties

$$\int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right] dx$$

$$= \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\left(\frac{(x-\mu)^2}{2\sigma^2}\right)\right] \sigma \frac{1}{\sqrt{2}} \left(\frac{(x-\mu)^2}{2\sigma^2}\right)^{\frac{1}{2}-1} d\left[\frac{(x-\mu)^2}{2\sigma^2}\right]$$

$$= \int_{-\infty}^{+\infty} \frac{1}{2\sqrt{\pi}} e^{-y} y^{\frac{1}{2}-1} dy$$

$$= \frac{1}{\sqrt{\pi}} \int_{0}^{\infty} y^{\frac{1}{2}-1} e^{-y} dy$$

$$= \frac{1}{\sqrt{\pi}} \Gamma(\frac{1}{2})$$

$$= \frac{1}{\sqrt{\pi}} \sqrt{\pi}$$

Moment Generating Function Say $X \sim N(\mu, \sigma^2)$. So $X = \sigma Z + \mu$ for some $Z \sim N(0, 1)$. Then

$$M_Z(t) = \mathbb{E}[e^{tZ}]$$

$$= \int_{-\infty}^{+\infty} e^{tx} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx$$

$$= e^{t^2/2} \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} \exp\{-\frac{(x-t)^2}{2}\} dx$$

$$= e^{t^2/2} \cdot 1$$

$$= e^{t^2/2}.$$

So

$$M_X(t) = e^{\mu t} M_Z(\sigma t) = e^{\mu t} e^{\sigma^2 t^2/2} = e^{\mu t + \frac{\sigma^2 t^2}{2}}.$$

5.7 Bivariate Normal Distribution

Let $\boldsymbol{X}=(X_1,...,X_n)$ be a random vector. Let $\boldsymbol{\mu}$ be a vector of expectations. Let Σ be a matrix of covariates.

$$X \sim MVN(\boldsymbol{\mu}, \Sigma).$$

5.8 Weibull Distribution

Probability Density Function:

$$f(x) = \begin{cases} \frac{\beta}{\theta^{\beta}} x^{\beta - 1} e^{-(\frac{x}{\theta})^{\beta}}, & x > 0\\ 0, & x \le 0 \end{cases}$$

for $\alpha, \beta > 0$.

$$X \sim Weibull(\theta, \beta)$$

Verification of the properties:

$$\begin{split} &\int_{-\infty}^{+\infty} f(x) dx \\ &= \int_{0}^{\infty} \frac{\beta}{\theta^{\beta}} x^{\beta - 1} e^{-\left(\frac{x}{\theta}\right)^{\beta}} dx \\ &= \int_{0}^{\infty} \frac{\beta}{\theta^{\beta}} \theta^{\beta - 1} [\left(\frac{x}{\theta}\right)^{\beta}]^{\frac{\beta - 1}{\beta}} e^{-\left(\frac{x}{\theta}\right)^{\beta}} \frac{\theta}{\beta} [\left(\frac{x}{\theta}\right)^{\beta}]^{\frac{1}{\beta} - 1} d[\left(\frac{x}{\theta}\right)^{\beta}] \\ &= \int_{0}^{\infty} e^{-\left(\frac{x}{\theta}\right)^{\beta}} d[\left(\frac{x}{\theta}\right)^{\beta}] \\ &= \int_{0}^{\infty} e^{-y} dy \\ &= 1. \end{split}$$

5.9 Chi-squared Distribution

Definition

$$\chi_{(k)}^2 = \sum_{i=1}^k Z_i^2$$

where $Z_1, ..., Z_k \stackrel{iid}{\sim} N(0, 1)$.

Proposition 5.9.1. If $Z \sim G(0,1)$, then $Z^2 \sim \chi^2(1)$.

Proposition 5.9.2. Let $W_1, ..., W_n$ be independent variables such that $W_i \sim \chi^2(k_i)$ for each $i \in \{1, ..., n\}$. Define $S := \sum_{i=1}^n W_i$. then

$$S \sim \chi^2 \Big(\sum_{i=1}^n k_i \Big).$$

Probability Density Function

$$f(x,k) = \frac{1}{2^{k/2}\Gamma(k/2)} x^{k/2-1} e^{-x/2}.$$

Moment Generating Function

$$M_{\chi^2_{(k)}}(t) = (1-2t)^{-k/2}.$$

Mean and Variance

Let $X \sim \chi^2(k)$. Then

$$E(X) = k$$
$$Var(X) = 2k.$$

5.10 t Distribution

Definition

Let $X \sim N(0,1)$ and $Y \sim \chi^2_{(n)}$ be independent. Then

$$\frac{X}{\sqrt{\frac{Y}{n}}} \sim t_{(n)}.$$

5.11 Properties

Proposition 5.11.1 (Probability Integral Transformation). Let X be a continuous random variable. Let F be the cumulative distribution function of X. Let Y be a random variable given by Y = F(X). Then Y has a Uniform(0,1) distribution.

Proof. For $y \in (0,1)$,

$$G(y) = P(Y \le y)$$

$$= P(F(X) \le y)$$

$$= P(X \le F^{-1}(y))$$

$$= F(F^{-1}(y))$$

$$= y.$$

Conditional Probability Distributions

6.1 Conditional Probability of Events

Definition (Conditional Probability). Let Ω be a sample space. Let P be a probability function defined on the sample space. Let A and B be two events in the sample space. We define the **conditional probability** of event A given event B occurs, denoted by $P(A \mid B)$, to be the number given by

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)},$$

provided that $P(B) \neq 0$.

Proposition 6.1.1 (Multiplication Rule). Let Ω be a sample space. Let P be a probability function defined on the sample space. Then

$$P(A \cap B) = P(A \mid B) \cdot P(B),$$

provided that $P(B) \neq 0$.

Let $\{A_i\}_{i=1}^{i=n}$ be a sequence of events. Then

$$P(\bigcap_{i=1}^{n} i = nA_i) = \prod_{i=1}^{i=n} P(A_i | \bigcap_{j=0}^{j=i-1} A_j)$$

where A_0 is defined to be Ω .

Proof. Since $P(A \mid B)$ is defined to be $\frac{P(A \cap B)}{P(B)}$, we get

$$P(A \cap B) = P(A \mid B) \cdot P(B).$$

Proposition 6.1.2 (Law of Total Probability). Let Ω be a sample space. Let P be a probability function defined on the sample space. Let A be an event in Ω . Let $\{B_i\}_{i\in\mathbb{N}}$ be a countable collection of events in Ω . Suppose that $\bigcup_{i\in\mathbb{N}} B_i = \Omega$ and that $\forall i, j \in \mathbb{N}$, we have $B_i \cap B_j = \emptyset$. Then

$$P(A) = \sum_{i \in \mathbb{N}} P(A \mid B_i) P(B_i).$$

Proof.

$$\begin{split} P(A) &= P(A \cap \Omega) \\ &= P(A \cap \bigcup_{i \in \mathbb{N}} B_i) \\ &= P(\bigcup_{i \in \mathbb{N}} A \cap B_i), \text{ by the distributivity property} \\ &= \sum_{i \in \mathbb{N}} P(A \cap B_i), \text{ since mutually exclusive} \\ &= \sum_{i \in \mathbb{N}} P(A \mid B_i) P(B_i). \text{ by th multiplication rule} \end{split}$$

That is,

$$P(A) = \sum_{i \in \mathbb{N}} P(A \mid B_i) P(B_i).$$

Think of this as distributing the event A over all B_i 's. Then the probability P(A) is a weighted sum of the conditional probabilities of event A where the weights are the corresponding probabilities of the given events B_i .

Proposition 6.1.3 (Bayes' Formula).

$$\forall j \in \mathbb{N}, \quad P(B_j \mid A) = \frac{P(A \mid B_j)P(B_j)}{\sum_{i \in \mathbb{N}} P(A \mid B_j)P(B_j)}.$$

Proof.

$$P(B_j \mid A) = \frac{P(B_j \cap A)}{P(A)} = \frac{P(B_j \cap A)}{\sum_{i \in \mathbb{N}} P(A \mid B_j) P(B_j)}.$$

6.2 Conditional Distribution

Definition (Conditional Probability Mass/Density Function). Let X and Y be discrete/continuous random variables. Let f be the joint probability mass/density function of X and Y. We define the **conditional probability mass/density function** of X given Y = y, denoted by $f_X(\cdot \mid y)$, to be a function given by

$$f_X(x \mid y) = \frac{f(x,y)}{f_Y(y)} = \frac{P(X = x, Y = y)}{P(Y = y)} = P(X = x \mid Y = y)$$

where f_Y is the marginal probability mass/density function of Y, provided that $f_Y(y) \neq 0$.

Proposition 6.2.1. Let X and Y be discrete/continuous random variables. Let f_X and f_Y be the marginal probability mass/density functions of X and Y, respectively. Let $f_X(\cdot \mid y)$ and $f_Y(\cdot \mid x)$ be the conditional probability mass/density functions of X and Y, respectively. Let A_X and A_Y be the marginal support of X and Y, respectively. Then X and Y are independent if and only if

$$f_X(\cdot \mid y) = f_X \text{ and } f_Y(\cdot \mid x) = f_Y.$$

Proof. X and Y are independent if and only if $f(x,y) = f_X(x)f_Y(y)$.

6.3 Conditional Expectations

Definition (Conditional Expectation). Let X and Y be random variables. Let g be a function on X. We define the **conditional expectation** of g(X) given Y = y to be a number given by

$$E[g(X) \mid Y = y] = \begin{cases} \sum_{all \ x} g(x) f_X(x \mid y), & if \ X \ is \ discrete \\ \int_{-\infty}^{+\infty} g(x) f_X(x \mid y) dx, & if \ X \ is \ continuous. \end{cases}$$

if
$$\sum_{all\ x} \big| g(x) f_X(x \mid y) \big| \neq +\infty$$
 or $\int_{-\infty}^{+\infty} \big| g(x) f_X(x \mid y) \big| dx \neq +\infty$.

Definition (Conditional Mean). Let X and Y be random variables. Let g be a function on X. We define the **conditional mean** of X given Y = y to be the number $E[X \mid Y = y]$.

Definition (Conditional Variance). Let X and Y be random variables. Let g be a function on X. We define the **conditional variance** of X given Y = y, denoted by $Var[X \mid Y = y]$, to be the number given by

$$\mathbb{E}\big[(X - \mathbb{E}[X \mid Y = y])^2 \mid Y = y\big].$$

Proposition 6.3.1 (Substitution Rule).

$$E[h(X,Y) \mid Y = y] = E[h(X,y) \mid Y = y].$$

Theorem 1 (Law of Total Expectation).

$$E\left[E\big[g(X)\mid Y\big]\right] = E[g(X)].$$

Proof.

$$E\left[E\left[g(X)\mid Y\right]\right]$$

$$=E\left[\int_{-\infty}^{+\infty}g(x)f_X(x\mid Y)dx\right]$$

$$=\int_{-\infty}^{+\infty}\left[\int_{-\infty}^{+\infty}g(x)f_X(x\mid y)dx\right]f_Y(y)dy$$

$$=\int_{-\infty}^{+\infty}\left[\int_{-\infty}^{+\infty}g(x)f_X(x\mid y)f_Y(y)dx\right]dy$$

$$=\int_{-\infty}^{+\infty}\left[\int_{-\infty}^{+\infty}g(x)f(x,y)dx\right]dy$$

$$=\int_{-\infty}^{+\infty}\left[\int_{-\infty}^{+\infty}g(x)f(x,y)dy\right]dx$$

$$=\int_{-\infty}^{+\infty}g(x)\left[\int_{-\infty}^{+\infty}f(x,y)dy\right]dx$$

$$=\int_{-\infty}^{+\infty}g(x)f_X(x)dx$$

$$=E[g(X)].$$

Proposition 6.3.2 (Law of Total Variance).

$$\operatorname{var}[Y] = E \big[\operatorname{var}[Y \mid X] \big] + \operatorname{var} \big[E[Y \mid X] \big].$$

Joint Probability Distributions

7.1 Joint Cumulative Distribution Functions

Definition (Joint Cumulative Distribution Function). Let X and Y be random variables. We define the **joint cumulative distribution function** F of X and Y to be a function from \mathbb{R}^2 to [0,1] given by

$$F(x,y) := P(X \le x, Y \le y).$$

7.2 Joint Probability Mass Functions

Definition (Joint Probability Mass Function). Let X and Y be two discrete random variables. We define the **joint probability mass function** f of X and Y to be a function from range(X) × range(Y) to [0,1] given by

$$f(x,y) := P(X = x, Y = y).$$

Proposition 7.2.1. Let S be a sample space. Let $X_1, ..., X_n$ be random variables on S. Let f be the joint probability mass function of $X_1, ..., X_n$. Let f_i be the marginal probability mass function of X_i , for some $i \in \{1, ..., n\}$. Then

$$f_i(x) = \sum_{X_i = x} f(X_1, ..., X_n).$$

7.3 Joint Probability Density Functions

Definition (Joint Probability Density Functions). Let X and Y be continuous random variables. Let F be the joint cumulative distribution function of X and Y. We define the

joint probability density function f of X and Y to be a function from range(X) \times range(Y) to [0,1] given by

 $f(x,y) = \frac{\partial^2 F(x,y)}{\partial x \partial y}.$

7.4 Joint Expectations

Definition (Joint Expectation of Discrete Random Variables). Let X be discrete random vector. Let f be the joint probability mass function of X. Let A be the joint support of X. Let g be a real-valued function on X. We define the **joint expectation** of g(X), denoted by $\mathbb{E}[g(X)]$, to be a number given by

$$\mathbb{E}[g(X)] = \sum_{\vec{x} \in A} g(x) f(x),$$

if $\sum_{\vec{x} \in A} |g(x)f(x)| < +\infty$; and we say that the expectation of X does not exist otherwise.

Definition (Joint Expectation of Continuous Random Variables). Let X be a d dimensional continuous random vector. Let f be the joint probability density function of X. Let g be a function on X. We define the **joint expectation** of g(X) to be a number given by

$$\mathbb{E}[g(X)] = \int_{\mathbb{R}^d} g(x) f(x) dx,$$

if $\int_{\mathbb{R}^d} |g(x)f(x)| dx < +\infty$; and we say that the expectation of X does not exist otherwise.

Independence

8.1 Independence of Events

8.1.1 Definitions

Definition (Independent Events). Let Ω be a sample space. Let P be a probability function defined on the sample space. Let A and B be two events in Ω . We say that A and B are independent if $P(A \cap B) = P(A)P(B)$.

Definition (Independent Events). Let A and B be two events with positive probabilities. We say that A and B are **independent** if both $P(A \mid B) = P(A)$ and $P(B \mid A) = P(B)$.

Proposition 8.1.1. The two definitions of independence are equivalent.

Proof.

For one direction, assume that $P(A \cap B) = P(A)P(B)$.

Since $P(A \cap B) = P(A)P(B)$ and $P(B)P(A \mid B) = P(A \cap B)$, $P(A)P(B) = P(A \mid B)P(B)$.

Since $P(B) \neq 0$ and $P(A)P(B) = P(A \mid B)P(B)$, $P(A \mid B) = P(A)$.

Since $P(A \cap B) = P(A)P(B)$ and $P(A)P(B \mid A) = P(A \cap B)$, $P(A)P(B) = P(B \mid A)P(A)$.

Since $P(A) \neq 0$ and $P(A)P(B) = P(B \mid A)P(A)$, $P(B \mid A) = P(B)$.

For the reverse direction, assume that $P(A \mid B) = P(A)$ and $P(B \mid A) = P(B)$.

Since $P(A \mid B) = \frac{P(A \cap B)}{P(B)}$ and $P(A \mid B) = P(A)$, $P(A)P(B) = P(A \cap B)$.

Definition (Pairwise Independent). Let $A = \{A_i\}_{i=1}^n$ be a finite collection of events where $n \in \mathbb{N}$. We say that the events in \mathbb{A} are **pairwise independent** if any pair of events are independent. i.e., $\forall i, j \in \{1, ..., n\}$, we have $P(A_i \cap A_j) = P(A_i)P(A_j)$.

Definition (Mutually Independent). Let $A = \{A_i\}_{i=1}^n$ be a finite collection of events where $n \in \mathbb{N}$. We say that the events in \mathbb{A} are mutually independent if any event

34 8. INDEPENDENCE

is independent of the intersection of any other events. i.e., $\forall I \subseteq \{1,...,n\}$, we have $P(\bigcap_{i \in I} A_i) = \prod_{i \in I} P(A_i)$.

8.1.2 Properties

Proposition 8.1.2 (Self-Independence). An event A is independent of itself if and only if P(A) = 0 or P(A) = 1.

Proof.

$$P(A) = P(A \cap A) = P(A)P(A) \iff P(A) \in \{0, 1\}.$$

Proposition 8.1.3. A zero-probability event is independent of any any other event.

Proof. Let Ω be a sample space. Let P be a probability function defined on the sample space. Let A and B be two events in Ω . Suppose that P(A) = 0. Since $A \cap B \subseteq A$, we get $P(A \cap B) \leq P(A)$. Note that $P(A \cap B) \geq 0$ and that P(A) = 0. So $P(A \cap B) = 0$. So $P(A \cap B) = P(A)P(B)$. So A and B are independent.

8.2 Independent Random Variables

8.2.1 Definitions

Definition (Independence 1). Let X and Y be two random variables. We say that X and Y are independent if

$$\forall A, B \subseteq \mathbb{R}, \quad P(X \in A, Y \in B) = P(X \in A)P(Y \in B).$$

Definition (Independence 2). Let X and Y be two random variables. Let f be the joint probability function of X and Y. Let f_X be the marginal probability function of X. Let f_Y be the marginal probability function of Y. We say that X and Y are **independent** if

$$f = f_X f_Y$$
.

i.e., *if*

$$\forall (x,y) \in \mathcal{S}_X \times \mathcal{S}_Y, \quad f(x,y) = f_X(x)f_Y(y).$$

where S_X is the support of X and S_Y is the support of Y.

Definition (Independence 3). Let X and Y be two random variables. Let F be the joint cumulative distribution function of X and Y. Let F_X be the marginal cumulative distribution function of X. Let F_Y be the marginal cumulative distribution function of Y. We say that X and Y are **independent** if

$$F = F_X F_Y$$
.

Definition (Independence 4). Let X and Y be two random variables. Let M be the joint moment generating function of X and Y. Let M_X be the marginal moment generating function of X. Let M_Y be the marginal moment generating function of Y. We say that X and Y are **independent** if

$$M = M_X M_Y$$
.

Proposition 8.2.1. The 4 definitions of independence are equivalent.

8.2.2 Properties

Proposition 8.2.2. If X and Y are independent random variables and g and h are functions, then g(X) and h(Y) are independent.

Proposition 8.2.3. Let X and Y be random variables. Let g be a function on X. Then if X and Y are independent, we have

$$\mathbb{E}\big[g(X)\mid Y=y\big] = \mathbb{E}[g(X)].$$

In particular, $E[X \mid Y = y] = E[X]$ and $var[X \mid Y = y] = var[X]$.

8.2.3 Factorization

Theorem 2 (Factorization Theorem of Independence). Let X and Y be two random variables. Let f be the joint probability function of X and Y. Let A_X be the support of X. Let A_Y be the support of Y. Then X and Y are independent if and only if there exist functions $g: A_X \to \mathbb{R}$ and $h: A_Y \to \mathbb{R}$ such that f = gh. i.e., $\forall (x, y) \in A_X \times A_Y$, f(x, y) = g(x)h(y).

Corollary. If A is not rectangular, then X and Y cannot be independent.

Proof. If A is not rectangular, then $\exists x \in A_X, y \in A_Y$ such that $(x,y) \notin A$. So $f(x,y) = 0 < f_X(x)f_Y(y)$.

8.2.4 Expectations of Independent Random Variables

Proposition 8.2.4. Let $X_1,...,X_n$ be independent random variables. Let g_i be a function on X_i , for each $i \in \{1,...,n\}$. Then

$$\mathbb{E}\big[\prod_{i=1}^n g_i(X_i)\big] = \prod_{i=1}^n \mathbb{E}[g_i(X_i)].$$

36 8. INDEPENDENCE

Unclassified

Theorem 3. Let X and Y be continuous random variables. Let f be a joint probability density function of X and Y. Let S be an injective transformation given by

$$S(x,y) = (u,v) = (h_1(x,y), h_2(x,y)).$$

Let T denote the inverse transformation of S.

$$T(u,v) = (x,y) = (w_1(u,v), w_2(u,v)).$$

Let g denote the joint probability density function of U and V. Then

$$g(u,v) = f(w_1(u,v), w_2(u,v)) \left| \frac{\partial(x,y)}{\partial(u,v)} \right|.$$