Лабораторная работа № 1. Простые модели компьютерной сети

Имитационное моделирование

Королёв Иван Андреевич

Содержание

1	Цел	ıь работы	5
2	Задание		
		Шаблон сценария для NS-2	6
		и одного соединения	6
	2.3	Пример с усложнённой топологией сети	6
		Пример с кольцевой топологией сети	7
		с кольцевой топологией сети:	7
3	Teo	ретическое введение	9
4	Выполнение лабораторной работы		11
		Задание 1. Создание шаблона сценария для NS-2	11
		двух узлов и одного соединения	13
	4.3	Задание 3. Пример с усложнённой топологией сети	16
	4.4	Задание 4. Пример с кольцевой топологией сети	18
	4.5	Упражнение для самостоятельной реализации	20
5	Выв	воды	26
Список литературы			27

Список иллюстраций

4.1	Создание директории mip для лабораторнои работы	11
4.2	Шаблон NS-2	12
4.3	out.nam	13
4.4	Скопировали шаблон сценария NS-2 в файл example1	14
4.5	Шаблон NS-2	15
4.6	out.nam	16
4.7	Усложнённая топология сети	17
4.8	out.nam	17
4.9	out.nam	18
4.10	Кольцевая топология сети	19
4.11	out.nam	19
4.12	dout.nam	20
4.13	out.nam	21
4.14	out.nam	22
4.15	out.nam	23
4.16	out.nam	24
417	out nam	25

Список таблиц

1 Цель работы

Приобретение навыков моделирования сетей передачи данных с помощью средства имитационного моделирования NS-2, а также анализ полученных результатов моделирования.

2 Задание

2.1 Шаблон сценария для NS-2

2.2 Простой пример описания топологии сети, состоящей из двухузлов и одного соединения

Постановка задачи. Требуется смоделировать сеть передачи данных, состоящую из двух узлов, соединённых дуплексной линией связи с полосой пропускания 2 Мб/с и задержкой 10 мс, очередью с обслуживанием типа DropTail. От одного узла к другому по протоколу UDP осуществляется передача пакетов, размером 500 байт, с постоянной скоростью 200 пакетов в секунду.

2.3 Пример с усложнённой топологией сети

Постановка задачи. Описание моделируемой сети: * сеть состоит из 4 узлов (n0, n1, n2, n3); * между узлами n0 и n2, n1 и n2 установлено дуплексное соединение с пропускной способностью 2 Мбит/с и задержкой 10 мс; * между узлами n2 и n3 установлено дуплексное соединение с пропускной способностью 1,7 Мбит/с и задержкой 20 мс; * каждый узел использует очередь с дисциплиной DropTail для накопления пакетов, максимальный размер которой составляет 10; * TCP-источник на узле n0 подключается к TCP-приёмнику на узле n3 (по-умолчанию, максимальный размер пакета, который TCP-агент может генерировать, равняет-

ся 1КВуte) * ТСР-приёмник генерирует и отправляет АСК пакеты отправителю и откидывает полученные пакеты; * UDP-агент, который подсоединён к узлу n1, подключён к null-агенту на узле n3 (null-агент просто откидывает пакеты); * генераторы трафика ftp и cbr прикреплены к TCP и UDP агентам соответственно; * генератор cbr генерирует пакеты размером 1 Кбайт со скоростью 1 Мбит/с; * работа cbr начинается в 0,1 секунду и прекращается в 4,5 секунды, а ftp начинает работать в 1,0 секунду и прекращает в 4,0 секунды.

2.4 Пример с кольцевой топологией сети

Постановка задачи. Требуется построить модель передачи данных по сети с кольцевой топологией и динамической маршрутизацией пакетов: * сеть состоит из 7 узлов, соединённых в кольцо; * данные передаются от узла n(0) к узлу n(3) по кратчайшему пути; * с 1 по 2 секунду модельного времени происходит разрыв соединения между узлами n(1) и n(2); * при разрыве соединения маршрут передачи данных должен измениться на резервный.

2.5 Упражнение Внесите следующие изменения в реализацию примера с кольцевой топологией сети:

- передача данных должна осуществляться от узла n(0) до узла n(5) по кратчайшему пути в течение 5 секунд модельного времени;
- передача данных должна идти по протоколу TCP (тип Newreno), на принимающей стороне используется TCPSink-объект типа DelAck; поверх TCP работает протокол FTP с 0,5 до 4,5 секунд модельного времени;
- с 1 по 2 секунду модельного времени происходит разрыв соединения между узлами n(0) и n(1);
- при разрыве соединения маршрут передачи данных должен измениться на резервный, после восстановления соединения пакеты снова должны пойти

по кратчайшему пути.

3 Теоретическое введение

Network Simulator (NS-2) — один из программных симуляторов моделирования процессов в компьютерных сетях. NS-2 позволяет описать топологию сети, конфигурацию источников и приёмников трафика, параметры соединений (полосу пропускания, задержку, вероятность потерь пакетов и т.д.) и множество других параметров моделируемой системы. Данные о динамике трафика, состоянии соединений и объектов сети, а также информация о работе протоколов фиксируются в генерируемом trace-файле.

NS-2 является объектно-ориентированным программным обеспечением. Его ядро реализовано на языке C++. В качестве интерпретатора используется язык скриптов (сценариев) OTcl (Object oriented Tool Command Language). NS-2 полностью поддерживает иерархию классов C++ и подобную иерархию классов интерпретатора OTcl. Обе иерархии обладают идентичной структурой, т.е. существует однозначное соответствие между классом одной иерархии и таким же классом другой. Объединение для совместного функционирования C++ и OTcl производится при помощи TclCl (Classes Tcl). В случае, если необходимо реализовать какую-либо специфическую функцию, не реализованную в NS-2 на уровне ядра, для этого используется код на C++

Процесс создания модели сети для NS-2 состоит из нескольких этапов: 1. создание нового объекта класса Simulator, в котором содержатся методы, необходимые для дальнейшего описания модели (например, методы new и delete используются для создания и уничтожения объектов соответственно); 2. описание топологии моделируемой сети с помощью трёх основных функциональных блоков: узлов

(nodes), соединений (links) и агентов (agents); 3. задание различных действий, характеризующих работу сети.

4 Выполнение лабораторной работы

4.1 Задание 1. Создание шаблона сценария для NS-2

Создал директорию mip/lab-ns для выполнения лабораторной работы. Первый файл shablon.tcl будет содержать шаблон сценария для NS-2 (рис. 4.1).

Рис. 4.1: Создание директории тір для лабораторной работы

Написанные код шаблона сценария для NS-2 (рис. 4.2).

Рис. 4.2: Шаблон NS-2

Визуальное отображение работающей программы nam. В данном этапе никакого визуального отображения нет, т.к. нет прописанных протоколов передачи данных, агента для генерации и приёма трафика и at-событий. (рис. 4.3).

Рис. 4.3: out.nam

4.2 Задание 2. Простой пример описания топологии сети, состоящей из двух узлов и одного соединения

Скопировали написанный в предыдущем задании шаблон NS-2 в файл example1.tcl. На основе данного шаблона будем моделировать сеть передачи данных. (рис. 4.4).

Рис. 4.4: Скопировали шаблон сценария NS-2 в файл example1

Реализация модели. Добавил 2 узла, соединил узлы дуплексным соединением с полосой пропускания 2 Мб/с и задержкой 10 мс, очередью с обслуживанием типа DropTail. Написал агента для приёма и генерации трафика. Добавил at-события. (рис. 4.5).

```
## Paper | Pa
```

Рис. 4.5: Шаблон NS-2

Результат добавления описания топологии сети. Видим, что через 0.5 секунд из узла 0 данные поступают к узлу 1. Поступление остановится через 4.5 секунды. (рис. 4.6).

Рис. 4.6: out.nam

4.3 Задание 3. Пример с усложнённой топологией сети

Скопировали написанный в предыдущем задании шаблон NS-2 в файл example2.tcl. На основе данного шаблона добавил описание моделируемой сети из 4 узлов. (рис. 4.7).

Рис. 4.7: Усложнённая топология сети

На данных изображениях отображена визуальная работа усложнённой топологии сети. На рисунке 9 видим, что от узла 0 к узлу 2, от узла 1 к узлу 2 передаётся трафик, а от узла 2 передается трафик к узлу 3. Соединение 2 и 3 имеется полосу 1Мб, а от каждого узла передается по 200 пакетов. Соответственно, пакеты должны теряться. Так же, мы видим, как накапливается очередь. У нас наложены ограничения на размер очереди, поэтому она сбрасывается при её достижении. (рис. 4.8), (рис. 4.9)

Рис. 4.8: out.nam

Рис. 4.9: out.nam

4.4 Задание 4. Пример с кольцевой топологией сети

Скопировали написанный в предыдущем задании шаблон NS-2 в файл example3.tcl. На основе данного шаблона добавил описание моделируемой сети из 7 узлов. (рис. 4.10).

```
"Themospheric Times: Bod, Deposed Capasas

of critical and animals, plants (plants) plants (pl
```

Рис. 4.10: Кольцевая топология сети

В at-событии прописано событие на разрыва соединения между узлами n(1) и n(2) на время в одну секунду. Во время разрыва пакеты не доходят до узла 3. (рис. 4.11)

Рис. 4.11: out.nam

Чтобы пакеты доходили до конечного узла при разрыве, необходимо в начала программы, а после команды создания объекта Simulator добавить \$ns rtproto DV (рис. 4.12)

Рис. 4.12: out.nam

4.5 Упражнение для самостоятельной реализации.

Все пункты упражнения выполнены. Результаты представлены в скриншотах. Передача пакетов идет по кратчайшему пути от узла 0 к узлу 5. При разрыве соединения между узлами 0 и 1, строится другой путь до узла 5. Когда разрыв прекращается, передача пакетов дальше идет по кратчайшему. (рис. 4.13), (рис. 4.14), (рис. 4.15), (рис. 4.16)

Рис. 4.13: out.nam

Рис. 4.14: out.nam

Рис. 4.15: out.nam

Рис. 4.16: out.nam

Код реализации. (рис. 4.17)

Рис. 4.17: out.nam

5 Выводы

Приобрел навыки моделирования сетей передачи данных с помощью средства имитационного моделирования NS-2.

Список литературы