Algebra 2

Sommersemester 2018 Universität Heidelberg

Dr. Denis Vogel

Letzte Aktualisierung: 2. Mai 2018 Mitschrieb von Jonas Wildberger und Celine Fietz Dies ist eine inoffizielle Version. Es können daher Fehler vorkommen.

Inhaltsverzeichnis

1	Moduln		
	1.1	Grundlagen über Moduln	2
	1.2	Exakte Folgen	10
	1.3	Noethersche und Artinsche Moduln	16
2	Homologische Algebra		
	2.4	Kategorien	23

1 Moduln

In dieser Vorlesung steht die Bezeichnung "Ring" stets für einen (nicht notwendig kommutativen) Ring mit 1. In diesem Kapitel sei R ein Ring.

1.1 Grundlagen über Moduln

Definition 1.1.1. Ein "R-Linksmodul" ist eine abelsche Gruppe (M, +) zusammen mit einer Abbildung $R \times M \to M$, $(a, x) \mapsto ax$ (skalare Multiplikation), sodass für alle $a, b \in R$, $x, y \in M$ gilt:

- $a) \ a(x+y) = ax + ay$
- b) (a+b)x = ax + bx
- $c) \ a(bx) = (ab)x$
- d) 1x = x

Ein "R-Rechtsmodul" ist eine abelsche Gruppe (M,+) zusammen mit einer Abbildung $M \times R \to M$, $(x,a) \mapsto xa$, sodass für alle $a,b \in R$, $x,y \in M$ gilt:

- a') (x+y)a = xa + yb
- $b') \ x(a+b) = xa + xb$
- c') x(ab) = (xa)b
- d') x1 = x

Anmerkung: Es bezeichne R^{op} den zu R entgegengesetzten Ring, d.h. eine Menge R mit derselbern Addition, sowie der Multiplikation $a \cdot_{\mathrm{op}} b := b \cdot a$. Ist M ein R-Rechtsmodul, dann wird M durch ax := xa zu einem R^{op} -Linksmodul, denn es gilt

$$a(bx) = (bx)a = (xb)a = x(ba) = (ba)x = (a \cdot_{\text{op}} b)x$$
 für alle $a, b \in R, x, a \in M$

Analog anders herum. Im Folgenden betrachten wir in der Regel nur R-Linksmoduln, und unter einem R-Modul verstehen wir einen R-Linksmodul

• Forderung a) impliziert, dass für alle $a \in R$ die Abbildung

$$l_a: M \to M, \quad x \mapsto ax$$

zum Ring End(M) aller Gruppenhomomorphismen $M \to M$ gehört.

$$(mit (f+q)(x) := f(x) + q(x), (f \cdot q) := (f \circ q)(x) = f(q(x))$$

für $f,g \in \operatorname{End}(M), x \in M$). Nach b)-d) ist die Abbildung $\varphi: R \to \operatorname{End}(M), a \mapsto l_a$ ein Ringhomomorphismus. Umgekehrt macht jeder Ringhomomorphismus $\varphi: R \to \operatorname{End}(M)$ eine abelsche Gruppe (M,+) zu einem R-Modul via $ax := \varphi(a)(x)$

• Für alle $x \in M$ ist 0x = 0, (-1)x = -x, und für alle $a \in R$ ist a0 = 0

Beispiel 1.1.2: a) Ist K ein Körper, dann sind K-Moduln die K-Vektorräume.

b) Jede abelsche Gruppe G ist ein \mathbb{Z} -Modul via

$$\mathbb{Z} \times G \to G, \quad (n, x) \mapsto nx := \begin{cases} \underbrace{x + \dots x}_{\text{n-mal}} & n > 0 \\ 0 & n = 0 \\ -\underbrace{(x + \dots + x)}_{\text{(-n)-mal}} & n < 0 \end{cases}$$

Für jeden Ring R gibt es genau einen Ringhomomorphismus $\mathbb{Z} \to R$ (analog zur Algebra 1), insbesondere gibt es für jede abelsche Gruppe G genau einen Ringhomomorphismus $\mathbb{Z} \to \operatorname{End}(G)$, d.h. genau eine Struktur als \mathbb{Z} -Modul, sodass die Moduladdition mit der gegebenen Addition auf G überein einstimmt (nämlich obige).

Definition 1.1.3. Seien M, M' R-Moduln, $\varphi : M \to M'$. Dann heißt φ "R-Modulnomomorphismus" (R-linear), wenn für alle $x, y \in M$, $a, b \in R$ gilt:

a)
$$\varphi(x+y) = \varphi(x) + \varphi(y)$$

b)
$$\varphi(ax) = a\varphi(x)$$

 $Hom_R(M, M')$ bezeichne die Menge der R-Modulhomomorphismen von M nach M'.

Anmerkung: $\operatorname{Hom}_R(M,M')$ ist eine abelsche Gruppe bezüglich (f+g)(x):=f(X)+g(x) für $f,g\in\operatorname{Hom}_R(M,M'),\,x\in M$

Beispiel 1.1.4: Sei M ein R-Modul, $\varphi \in \operatorname{Hom}_R(M, M) =: \operatorname{End}_R(M) \subseteq \operatorname{End}_{\mathbb{Z}}(M) = \operatorname{End}(M)$. Den Polynomring R[X] kann man wie über kommutativen Ringen definieren, allerdings ist die Einsetzungsabbildung

$$R[X] \to R, \quad \sum_{i=0}^{n} a_i X^i \mapsto \sum_{i=0}^{n} a_i b^i, \quad \text{für ein } b \in R$$

im Allgemeinen kein Ringhomomorphismus ("X vertauscht mit Elementen aus R, b im Allgemeinen nicht"). Die Abbildung

$$\Psi: R[X] \to \operatorname{End}(M), \quad \sum_{i=0}^n a_i X^i \mapsto \sum_{i=0}^n a_i \varphi^i$$

ist ein Ringhomomorphismus, da φ R-linear ist. Somit wird M zum R[X]-Modul.

Definition 1.1.5. Seien M, M' R-Moduln, $\varphi : M \to M'$ R-linear. φ heißt

"Monomorphismus" $\stackrel{Def}{\Leftrightarrow} \varphi$ ist injektiv (Notation: $M \hookrightarrow M'$)

"Epimorphismus" $\stackrel{Def}{\Leftrightarrow} \varphi$ ist surjektiv (Notation: $M \twoheadrightarrow M'$)

"Isomorphismus" $\stackrel{Def}{\Leftrightarrow} \varphi$ ist bijektiv (Notation: $M \stackrel{\sim}{\to} M'$)

Existiert ein Isomorphismus zwischen M, M', so heißen M, M' "isomorph" (Notation: $M \cong M'$)

Anmerkung: Ist φ ein Isomorphismus, dann ist φ^{-1} ein Isomorphismus.

Bemerkung 1.1.6. Seien M, M' R-Moduln. Dann gilt:

- a) R kommutativ \Rightarrow $Hom_R(M, M')$ ist ein R-Modul via $(a\varphi)(x) := a\varphi(x)$ für $a \in R, \varphi \in Hom_R(M, M'), x \in M$.
- b) $End_R(M) = Hom_R(M, M)$ ist ein Unterring von $End(M) = End_{\mathbb{Z}}(M)$.
- c) Die Abbildung $\Phi: Hom_R(R, M) \to M$, $\varphi \mapsto \varphi(1)$ ist ein Isomorphismus von abelschen Gruppen (hierbei ist R auf natürliche Weise ein R-Linksmodul). Ist R kommutativ, so ist Φ ein Isomorphismus von R-Moduln.
- d) $End_R(R) \cong R^{op}$

Beweis. a) Beachte: Für $a \in R$, $\varphi \in \text{Hom}_R(M, M')$ ist $a\varphi$ wieder R-linear, denn für $a, b \in R$, $x \in M$ ist $(a\varphi)(bx) = a\varphi(bx) = ab\varphi(x) = ba\varphi(x) = b(a\varphi)(x)$

- b) Nachrechnen.
- c) Eine Umkehrabbildung zu Φ ist gegeben durch

$$\Psi: M \to \operatorname{Hom}_R(R, M), \quad m \mapsto (\varphi: R \to M, a \mapsto am)$$

d) Nach Aussage c) haben wir sofort einen Isomorphismus: $\Phi: \operatorname{End}_R(R) \to R$, $\varphi \mapsto \varphi(1)$ von abelschen Gruppen. Es ist

$$\Phi(\varphi\psi) = (\varphi\psi)(1) = \varphi(\psi(1)) = \varphi(\psi(1) \cdot 1) = \psi(1)\varphi(1)
= \varphi(1) \cdot_{\text{op}} \psi(1) = \Phi(\varphi) \cdot_{\text{op}} \Phi(\psi)$$

Definition 1.1.7. Sei M ein R-Modul, $N \subseteq M$. N heißt R-Untermodul von M, wenn gilt:

- $a) \ 0 \in N$
- b) $x + y \in N$ für alle $x, y \in N$
- c) $ax \in N$ für alle $a \in R, x \in N$

Beispiel 1.1.8: a) Betrachte R als R-Linksmodul. Dann sind die Untermodul von R genau die Linksideale in R (analog: Rechtsideale für R als R-Rechtsmodul).

- b) Ist M ein R-Modul, dann sind $\{0\}$ (meist als 0 geschrieben) und $M \subseteq M$ die trivialen Untermoduln. Ist $(M_i)_{i \in I}$ eine Familie von Untermoduln von M, dann ist $\bigcap_{i \in I} M_i \subseteq M$ ein Untermodul, sowie $\sum_{i \in I} M_i = \{\sum_{i \in I} x_i | x_i \in M_i, x_i = 0 \text{ für fast alle } i \in I\}$
- c) Sind M, M' R-Moduln, $\varphi \in \operatorname{Hom}_R(M, M')$, $N \subseteq M$ ein Untermodul, $N' \subseteq M'$ ein Untermodul, dann sind $\varphi(N) \subseteq M'$ und $\varphi^{-1}(N') \subseteq M$ Untermoduln.

im
$$\varphi := \varphi(M)$$
 heißt das "Bild" von φ ker $\varphi := \varphi^{-1}(\{0\})$ heißt der "Kern" von φ

Es gilt: φ ist injektiv $\Leftrightarrow \ker \varphi = 0$ und φ surjektiv $\Leftrightarrow \operatorname{im} \varphi = M'$

Bemerkung + Definition 1.1.9. Sei M ein R-Modul, $N \subseteq M$ ein Untermodul. Dann ist die Faktorgruppe M/N via a(x+N)=ax+N, $a\in R$, $x\in M$ ein R-Modul, der "Faktormodul" von M nach N. Die kanonische Abbildung $\pi:M\to M/N$, $m\mapsto m+N$ ist ein Modulepimorphismus mit $\ker \pi=N$.

Beispiel 1.1.10: Sei $I \subseteq R$ ein Linksideal, M ein R-Modul. Dann ist

$$IM := \left\{ \sum_{i=1}^{n} a_i x_i | n \in \mathbb{N}, \, a_i \in I, \, x_i \in M \right\} \subseteq M$$

ein Untermodul von M. Ist I ein zweiseitiges Ideal, dann ist R/I ein Ring (beachte: Die Zweiseitigkeit von I geht ein bei der Wohldefiniertheit der Multiplikation

$$R/_I \times R/_I \longrightarrow R/_I$$
, $(a+I,b+I) \mapsto ab+I$

 $^{M}/_{IM}$ ist ein $^{R}/_{I}$ -Modul vermöge

$$(a+I)(x+M) := ax + IM, \quad a \in R, x \in M$$

Die nächsten Sätze zeigt man wie für Gruppen (K-VR,...)

Satz 1.1.11. Seien M, M' R-Moduln, $N \subseteq M$ ein Untermodul, $\pi : M \to M/N$ die kanonische Projektion, $\varphi : M \to M'$ R-Modulhomomorphismus. Dann sind äquivalent:

- i) $N \subseteq ker\varphi$
- ii) Es ex. genau ein Modulhomomorphismus $\overline{\varphi}: M/_N \to M'$ mit $\overline{\varphi} \circ \pi = \varphi$:

Satz 1.1.12 (Homomorphiesatz). Seien M, M' R-Moduln, $\varphi: M \to M'$ ein R-Modulhomomorphismus. Dann existiert ein R-Modulisomorphismus $\overline{\varphi}: M/\ker \varphi \xrightarrow{\sim} im \varphi mit \overline{\varphi}(x + \ker \varphi) = \varphi(x)$ für alle $x \in M$.

Satz 1.1.13. (Isomorphiesätze) Sein M ein R-Modul, $N_1, N_2 \subseteq M$ Untermoduln. Dann gilt:

a) Die Abbildung

$$N_1/N_1 \cap N_2 \xrightarrow{\sim} (N_1 + N_2)/N_2 \qquad x + N_1 \cap N_2 \mapsto x + N_2$$

ist ein Isomorphismus.

b) Ist $N_2 \subseteq N_1$, so ist

$$M/N_2/M/N_1 \xrightarrow{\sim} M/N_1 \qquad (x+N_2) + N_1/N_2 \mapsto x+N_1$$

ein Isomorphismus.

Satz 1.1.14. Sei M ein R-Modul, $N \subseteq M$ ein Untermodul, $\pi: M \to M/N$ die kanonische Projektion. Dann gibt es eine Bijektion

$$\{ \begin{array}{cccc} \{ \mathit{Untermoduln} \ \mathit{M}' \mathit{von} \ \mathit{Mmit} \ \mathit{N} \subseteq \mathit{M}' \} & \longrightarrow & \{ \mathit{Untermoduln} \ \mathit{von} \ \mathit{M}/_{\mathit{N}} \} \\ & & \mathit{M}' & \mapsto & \pi(\mathit{M}') \\ & & \pi^{-1}(\mathit{L}) & \longleftrightarrow & \mathit{L} \end{array}$$

die inklusionserhaltend ist.

Bemerkung + Definition 1.1.15. Sei $(M_i)_{i\in I}$ eine Familie von R-Moduln. Dann gilt: $\prod_{i\in I} M_i$ ist ein R-Modul mit komponentenweiser Addition und skalarer Multiplikation und heißt das "direkte Produkt" der M_i . Die Projektionsabbildungen p_j : $\prod_{i\in I} M_i \to M_j$ mit $(m_i)_{i\in I} \mapsto m_j$ sind R-Modulhomomorphismen.

Satz 1.1.16 (Universelle Eingenschaft des Produkts). Sei $(M_i)_{i \in I}$ eine Familie von R-Moduln. Dann gilt: Für jeden R-Modul M ist die Abbildung

$$Hom_R(M, \prod_{i \in I} M_i) \to \prod_{i \in I} Hom_R(M, M_i) \qquad \varphi \mapsto (p_i \circ \varphi)_{i \in I}$$

eine Bijektion, d.h. für jede Familie $(\varphi_i)_{i\in I}$ von R-Modulhomomorphismen $\varphi_i: M \to M_i$ ex. genau ein R-Modulhomomorphismus $\varphi: M \to \prod_{i\in I} M_i$ mit $p_i \circ \varphi = \varphi_i$ für alle $i \in I$ (nämlich der durch $\varphi(x) := ((\varphi_i(x))_{i\in I})$

Definition 1.1.17. Sei $(M_i)_{i \in I}$ eine Familie von R-Moduln. Der Untermodul

$$\bigoplus_{i \in I} M_i := \{ (m_i)_{i \in I} \in \prod_{i \in I} M_i \mid fast \ alle \ m_i = 0 \} \subseteq \prod_{i \in I} M_i$$

 $hei\beta t$ die "direkte Summe" der M_i . Die Inklusionsabbildungen

$$q_j: M_j \to \bigoplus_{i \in I} M_i, \quad x \mapsto (x_i)_{i \in I} \quad mit \quad x_i = \begin{cases} x & i = j \\ 0 & sonst. \end{cases}$$

 $sind\ R$ -Modulhomomorphismen.

Anmerkung: Ist I endlich, dann ist $\bigoplus_{i \in I} M_i = \prod_{i \in I} M_i$.

Satz 1.1.18 (Universelle Eingenschaft der Summe). Sei $(M_i)_{i \in I}$ eine Familie von R-Moduln. Dann gilt: Für jeden R-Modul M ist die Abbildung

$$Hom_R(\bigoplus_{i\in I} M_i, M) \to \prod_{i\in I} Hom_R(M_i, M) \quad mit \quad \psi \mapsto (\psi \circ q_i)_{i\in I}$$

eine Bijektion, d.h. für jede Familie $(\psi_i)_{i\in I}$ von R-Modulhomomorphismen ψ_i : $M_i \to M$ ex. genau ein R-Modulhomomorphismus $\psi: \bigoplus_{i\in I} M_i \to M$ mit $\psi \circ q_i = \psi_i$ für alle $i \in I$ (nämlich der durch $\psi((m_i)_{i\in I}) := \sum_{i\in I} \psi_i(m_i)$ definierte).

Anmerkung: Sei I eine Indexmenge, M ein R-Modul. Dann ist:

$$M^I := \prod_{i \in I} M, \qquad \quad M^{(I)} := \bigoplus_{i \in I} M, \qquad \quad M^r := M^{\{1, \dots, r\}} = M^{(\{1, \dots, r\})}$$

Bemerkung 1.1.19. Sei M ein R-Modul, $(M_i)_{i\in I}$ eine Familie von Untermoduln von M. Dann erhalten wir (aus der Universellen Eigenschaft von \bigoplus mit $\psi_i: M_i \hookrightarrow M$ Inklusionsabbildung) einen R-Modulhomomorphismus

$$\psi: \bigoplus_{i \in I} M_i \to M, \quad (m_i)_{i \in I} \mapsto \sum_{i \in I} m_i \quad mit \quad im \ \psi = \sum_{i \in I} M_i$$

Ist ψ injekitv, so heißt die Summe $\sum_{i \in I} M_i$ "direkt", und wir schreiben auch $\bigoplus_{i \in I} M_i$ für $\sum_{i \in I} M_i$.

Anmerkung: In der Situation von 1.19 gilt:

- $\sum_{i \in I} M_i$ direkt $\iff \sum_{i \in J} M_i$ direkt für alle Teilmengen $J \subseteq I$
- $M_1 + M_2 = M_1 \bigoplus M_2 \iff M_1 \cap M_2 = 0$

Definition 1.1.20. Sei M ein R-Modul und sei $x \in M$. Die Abbildung $f_x : R \to M$, $a \mapsto ax$ ist ein R-Modulhomomorphismus, das Linksideal

$$ann_R(x) := \ker f_x = \{ a \in R \mid ax = 0 \}$$

heißt der "Annulator" von x. Das Bild im $f_x = Rx = \{ax \mid a \in R\}$ heißt der von x erzeugte Untermodul von M. Allgemeiner heißt für eine Teilmenge $X \subseteq M$

$$RX := \langle X \rangle_R := \sum_{x \in X} Rx = im(R^{(X)} \to M) = \bigcap_{\substack{X \subseteq N \subseteq M \\ N \, Untermodul \, mit \, X \subseteq N}} N$$

Der von X erzeugte Untermodul von M.

Definition 1.1.21. Sei M ein R-Modul, $(x_i)_{i \in I}$ Familie von Elementen aus M, $\psi: R^{(I)} \to M, (a_i)_{i \in I} \mapsto \sum_{i \in I} a_i x_i.$ $(x_i)_{i \in I}$ hei βt

"Erzeugendensystem" von M mit $R \stackrel{Def}{\Leftrightarrow} \psi$ surjektiv $\iff M$ stimmt mit dem von $(x_i)_{i \in I}$ erzeugten Untermodul überein

"linear abhängig" $\iff \psi$ injektiv

"Basis" von M über $R \iff \psi$ bijektiv

M heißt

"endlich erzeugt" \iff M besitzt ein endliches Erzeugendensystem

"frei" \iff M besitzt eine Basis

Anmerkung:

- Ist R = K ein Körper, so sind alle K-Moduln frei (LA1)
- Im allgemeinen ist dies jedoch falsch: $\mathbb{Z}/_{2\mathbb{Z}}$ ist eine abelsche Gruppe (= \mathbb{Z} Modul), die nicht frei als \mathbb{Z} -Modul ist.
- Jeder R-Modul M ist Faktormodul eines freien R-Moduls, denn:

$$R^{(M)} \to M, (a_x)_{x \in M} \mapsto \sum_{x \in M} a_x x$$
 ist surjektiv.

• Basen eines freien R-Moduls können unterschiedliche Länge haben.

Satz 1.1.22. Sei A ein kommutativer Ring, $A \neq 0$, $n_1, n_2 \in N$. Dann gilt:

$$A^{n_1} \simeq A^{n_2} \Longleftrightarrow n_1 = n_2$$

Beweis. Vorüberlegung: nach Algebra 1, 4.18 ex in A ein maximales Ideal J. Sei $n \in \mathbb{N}$. Dann ist A^n/JA^n ein A/J-Modul (vgl Beispiel 1.10) und A/J ist ein Körper. Die Abbildung $A^n/JA^n \to (A/J)^n, (x_1,...,x_n) + JA^n \mapsto (x_1+J,...,x_n+J)$ ist ein Isomorphismus von A/J-Moduln, d.h. $A^n/JA^n \simeq (A/J)^n$ ist ein n-dimensionaler A/J-Vektorraum. Aus $A^{n_1} \simeq A^{n_2}$ folgt $A^{n_1}/JA^{n_1} \simeq A^{n_2}/JA^{n_2}$, also A/J-Vektorraum.

Definition 1.1.23. Sei A ein kommutativer Ring, M ein freier A-Modul mit endlicher Basis. Die Kardinalität dieser Basis heißt der "Rang"von M (unabhängig von der Wahl einer endlichen Basis nach 1.22)

1.2 Exakte Folgen

Definition 1.2.1. Eine "'exakte Folge (exakte Sequenz) "' von R-Moduln ist eine Familie $(f_i)_{i \in I}$ von R-Modulhomomorphismen $f_i : M_i \to M_{i+1}$ für ein (endliches oder unendliches) Intervall $I \in \mathbb{Z}$, sodass:

$$im f_i = \ker f_{i+1}$$
 für alle $i \in Imit i + 1 \in I$

gilt.

Schreibweise: ... $\longrightarrow M_{i-1} \xrightarrow{f_{i-1}} M_i \xrightarrow{f_i} M_{i+1} \longrightarrow ...$ Eine exakte Folge der Form:

$$0 \longrightarrow M' \stackrel{f}{\longrightarrow} M \stackrel{g}{\longrightarrow} M'' \longrightarrow 0 \quad (*)$$

heißt eine "kurze exakte Folge" (hierbei sind die äußeren Abbildungen die Nullabbildungen). Die Exaktheit von (*) bedeutet explizit:

- f injektiv
- q surjektiv
- $im f = \ker q$.

Anmerkung:

- Seien M, N R-Moduln und $f: M \to N$ ein R-Modulhomomorphismus. Falls f injektiv, dann ist $0 \longrightarrow M \xrightarrow{f} N \xrightarrow{g} N/_{\text{im } f} \longrightarrow 0$ exakt. falls f surjektiv, so ist $0 \longrightarrow \ker f \longrightarrow M \xrightarrow{f} N \longrightarrow 0$ exakt.
- Ist $0 \longrightarrow M' \xrightarrow{f} M \xrightarrow{g} M'' \longrightarrow 0$ eine exakte Folge von R-Moduln, und setzen wir $N := \ker g$, so induziert g einen Isomorphismus $\overline{g} : M/N \xrightarrow{\sim} M''$, und f beschränkt sich zu einem Isomorphismus $f : M' \xrightarrow{\sim} N$. (d.h.

$$0 \longrightarrow M' \xrightarrow{f} M \xrightarrow{g} M'' \longrightarrow 0$$

$$\downarrow^{f} \qquad \qquad \uparrow^{\sim}$$

$$0 \longrightarrow N \xrightarrow{e} M \xrightarrow{f} M/_{N} \longrightarrow 0$$

ist ein kommutatives Diagramm mit exakten Zeilen.)

• Ist $0 \longrightarrow M_i \longrightarrow M_i' \longrightarrow M_i'' \longrightarrow 0$, $i \in I$ eine Familie exakter Folgen von R-Moduln, dann sind auch die Folgen

$$\prod_{i \in I} M_i' \longrightarrow \prod_{i \in I} M_i \longrightarrow \prod_{i \in I} M_i''$$

sowie

$$\bigoplus_{i \in I} M_i' \longrightarrow \bigoplus_{i \in I} M_i \longrightarrow \bigoplus_{i \in I} M_i''$$

(mit der komponentenweisen Abbildungen) exakt.

Satz 1.2.2. Sei $0 \longrightarrow M' \xrightarrow{f} M \xrightarrow{g} M'' \longrightarrow 0$ eine kurze exakte Sequenz von R-Moduln. Dann sind äquivalent:

- i) Es gibt ein Untermodul $N' \subseteq M$ mit $M = \ker g \oplus N'$
- ii) Es gibt einen R-Moduolhomomorphismus $s: M'' \to M$ mit $g \circ s = id_{M''}$
- iii) Es existiert ein R-Modulhomomorphismus $t: M \to M'$ mit $t \circ f = id_{M'}$

Ist eine dieser äquivalenten Bedingungen erfüllt, sagt man, das die kurze exakte Sequenz "spaltet". In diesem Fall gilt: $M \cong M' \oplus M''$. Der Homomorphismus s heißt ein "Schnitt" von g.

Beweis. $i)\Rightarrow ii)$ Sei $N'\subseteq M$ ein Untermodul mit $M=\ker g\oplus N'$. Dann ist $N'\cap\ker g=0$. Dann ist $g\big|_{N'}:N'\to M''$ injektiv. Außerdem gilt: M''=g(M)=g(N'), also ist $G\big|_{N'}:N'\stackrel{\sim}{\longrightarrow} M''$ ein Isomorphismus. Setze $s:M''\to N'\hookrightarrow M$. Dann ist s ein R-Modulhomomorphismus mit $g\circ s=\operatorname{id}_{M''}$. Außerdem ist $M=\ker g\oplus N'=\ker g\oplus \operatorname{im} s=\operatorname{im} f\oplus \operatorname{im} s=f(M')\oplus s(M'')\stackrel{\cong}{\underset{f,s\,\operatorname{inj}}{\cong}}M'\oplus M''$

 $ii) \Rightarrow iii)$ Sei $s: M'' \to M$ ein Modulhomomorphismus mit $g \circ s = \mathrm{id}_{M''}$. Sei $h: f(M') \to M'$ invers zu $f|^{f(M)}: M' \xrightarrow{\sim} f(M')$. Für $m \in M$ ist

$$g \circ (\mathrm{id}_M - s \circ g))(m) = g(m) - g \circ (s \circ g)(m) = g(m) - ((\underbrace{g \circ s}_{=\mathrm{id}_{M''}}) \circ g)(m) = 0$$

Also ist $(\mathrm{id}_M - s \circ g)(m) \in \ker g = \mathrm{im} \ f$. Wir setzen $t: M \xrightarrow{\mathrm{id}_M - s \circ g} f(M') \xrightarrow{h} M'$, welcher ein R-Modulhomomorphisus ist mit

$$t \circ f = h \circ (\mathrm{id}_M - s \circ g) \circ f = \underbrace{h \circ \mathrm{id}_M \circ f}_{=\mathrm{id}_{M'}} - h \circ s \circ \underbrace{g \circ f}_{=0} = \mathrm{id}_{M'}$$

 $iii) \Rightarrow i)$ Setze $t: M \to M'$ ein Modulhomomorphismus mit $t \circ f = \mathrm{id}_{M'}$. Setze $N' := \ker t$. Für $m \in M$ ist $m = \mathrm{id}_{M}(m) = \underbrace{(\mathrm{id}_{M} - f \circ t)(m)}_{\in \ker t} + \underbrace{(f \circ t)(m)}_{\in \mathrm{im} f}$, also ist

 $M=N'+\mathrm{im}\ f.$ Sei außerdem $m\in N'\cap\mathrm{im}\ f.$ Dann existiert ein $m'\in M'$ mit m=f(m'), somit ist

$$0 = t(m) = (t \circ f)(m') = \mathrm{id}_{M'}(m') = m'$$

also auch m=0. Damit ist $M=N'\oplus \mathrm{im}\ f$.

Satz 1.2.3. Sei $0 \longrightarrow M' \xrightarrow{f} M \xrightarrow{g} M'' \longrightarrow 0$ eine exakte Sequenz von R-Moduln, M'' ein freier R-Modul. Dan spaltet die obige Folge.

Beweis. Sei also $(v_i)_{i\in I}$ eine Basis von M''. Wähle für alle $i\in I$ ein $m_i\in M$ mit $g(m_i)=v_i$ (beachte: g ist surjektiv). Sei $s:M''=\bigoplus_{i\in I}Rv_i\to M$ der durch die Vorgabe $s(v_i)=m_i$ induzierte Modulhomomorphismus (existiert nach der UE von \bigoplus). Es ist

$$(g \circ s)(v_i) = g(m_i) = v_i, \quad \forall i \in I$$

Also ist $g \circ s = \mathrm{id}_{M''}$

Folgerung 1.2.4. Sei $0 \longrightarrow M' \longrightarrow M \longrightarrow M'' \longrightarrow 0$ eine kurze exakte Sequenz von R-Moduln, M', M'' freie R-Moduln. Dann ist auch M frei.

Beweis. Nach Voraussetzung ist $M'\cong R^{(I)},\,M''\cong R^{(J)}.$ Nach 1.2.3 spaltet die Folge, also ist

$$M \cong M' \oplus M'' \cong R^{(I)} \oplus R^{(J)} \cong R^{(I \dot{\cup} J)}$$

und damit auch frei.

Anmerkung: Ist R kommutativ, und haben M, M' endliche Basen, dann zeigt der Beweis:

$$rang(M) = rang(M') + rang(M'')$$

Bemerkung 1.2.5. Sei $0 \longrightarrow M' \xrightarrow{f} M \xrightarrow{g} M'' \longrightarrow 0$ ein kurze exakte Sequenz von R-Moduln. Dann gilt:

- a) Ist M endlich erzeugt, dann ist M" endlich erzeugt.
- b) Sind M', M" endlich erzeugt, dann ist M endlich erzeugt.

Beweis. a) Ist M endlich erzeugt, dann existiert ein $n \in \mathbb{N}$ und ein Epimorphismus $\varphi: R^n \to M$. Dann ist $g \circ \varphi: R^n \to M''$ ebenfalls ein Epimorphismus, also ist M'' endlich erzeugt.

b) Sei (x_1, \ldots, x_r) ein Erzeugendensystem von M', (y_1, \ldots, y_s) ein Erzeugendensystem von M''. Da g surjektiv, exitieren $z_1, \ldots, z_s \in M$ mit $g(z_i) = y_i$ für $i = 1, \ldots, s$.

Behauptung: $f(x_1), \ldots, f(x_r), z_1, \ldots, z_s$ ist ein Erzeugendensystem von M, denn sei $m \in M$. Dann exsitieren $a_1, \ldots, a_s \in R$ mit $g(m) = \sum_{i=1}^s a_i y_i = \sum_{i=1}^s a_i g(z_i) = g(\sum_{i=1}^s a_i z_i)$. Damit ist $m - \sum_{i=1}^s a_i z_i \in \ker g = \operatorname{im} f$. Also existiert ein $v \in M'$, etwa $v = \sum_{i=1}^r b_i x_i$ mit $f(v) = m - \sum_{i=1}^s a_i z_i$. Also ist

$$m = f(v) + \sum_{i=1}^{s} a_i z_i = \sum_{i=1}^{r} b_i f(x_i) + \sum_{i=1}^{s} a_i z_i$$

Anmerkung: Aus M endlich erzeugt, folgt im Allgemeinen nicht, dass M' endlich erzeugt ist.

Beispiel 1.2.6: Sei K ein Körper, $R = K[X_1, X_2, \ldots]$. Dann ist R als R-Modul offensichtlich endlich erzeugt (von 1). Setze $I := \{f \in R \mid \text{konstanter Term von } f \text{ ist } = 0\}$. Dann ist I ein Ideal in R, aber I ist nicht endlich erzeugt als R-Modul, denn angenommen ex existieren $f_1, \ldots, f_r \in I$ mit $I = \sum_{i=1}^r Rf_i$. Dann existiert ein $n \in \mathbb{N}$, sodass $f_1, \ldots, f_r \in K[X_1, \ldots, X_n] \subseteq R$.

Problem: $X_{n+1} \notin I$, denn andernfalls wäre $X^{n+1} = a_1 f_1 + \ldots + a_r f_r$ mit $a_1, \ldots, a_r \in R$ und setze $X_1 = \ldots = X_n = 0$, $X_{n+1} = 1$, also 1 = 0 Widerspruch!

Bemerkung 1.2.7. Seien M_1, \ldots, M_r R-Moduln. Dann sind äquivalent:

- i) $M = \bigoplus_{i=1}^r M_i$ ist endlich erzeugt.
- ii) M_1, \ldots, M_r sind endlich erzeugt.

Beweis. Es genügt, die Behaptung für r=2 zu zeigen (Rest induktiv). Wir haben kurze exakte Folgen

$$0 \longrightarrow M_1 \stackrel{f}{\longrightarrow} M_1 \oplus M_2 \stackrel{g}{\longrightarrow} M_2 \longrightarrow 0$$

und

$$0 \longrightarrow M_2 \stackrel{f}{\longrightarrow} M_1 \oplus M_2 \stackrel{g}{\longrightarrow} M_1 \longrightarrow 0$$

Damit folgt die Behauptung aus 2.5

Anmerkung: Ist $M = \bigoplus_{i \in I} M_I$ mit $|I| = \infty$, $M_i \neq 0$ für alle $i \in I$, dann ist M nicht endlich erzeugt, dann für $x_1, \ldots, x_s \in M$ existiert ein $J \subsetneq I$ mit $x_1, \ldots, x_s \in \bigoplus_{j \in J} M_j$, also $\sum_{i=1}^s R_i \subseteq \bigoplus_{j \in J} M_j \subsetneq \bigoplus_{i \in I} M_i$

Bemerkung 1.2.8 (Fünferlemma). Ist ein kommutatives Diagramm von R-Modulhomomorphism mit exakten Zeilen

gegeben und φ_1 surjektiv, φ_2, φ_4 Isomorphismen, φ_5 injektiv. Dann ist φ_3 ein Isomorphismus.

Beweis. Diagrammjagd (Übungen).

Anmerkung: Wir meist in der Situation $M_1 = N_1 = M_5 = N_5$ angewandt.

Bemerkung 1.2.9 (Schlangenlemma). Sei folgendes kommutatives Diagramm von R Modulhomomorphismen mit exakten Zeilen gegeben:

$$0 \longrightarrow N' \xrightarrow{f'} M \xrightarrow{f} M'' \longrightarrow 0$$

$$\downarrow^{\varphi'} \qquad \downarrow^{\varphi} \qquad \downarrow^{\varphi''}$$

$$\downarrow^{\varphi''} \qquad \downarrow^{\varphi''}$$

Dann existiert eine exakte Sequenz von R-Moduln

$$\ker \varphi' \longrightarrow \ker \varphi \xrightarrow{f} \ker \varphi'' \xrightarrow{\delta} \operatorname{coker} \varphi' \longrightarrow \operatorname{coker} \varphi \longrightarrow \operatorname{coker} \varphi''$$

wobei δ die sogenannte Übergangabbildung ist (Konstruktion siehe Beweis) und f', f, g', g induziert sind. Ist f' injektiv, dann ist auch $\ker \varphi' \longrightarrow \ker \varphi$ injektiv. Ist g surjektiv, dann auch $\operatorname{coker} \varphi \longrightarrow \operatorname{coker} \varphi''$

Beweis. Betrachte

Konstruktion von δ : Sei $m'' \in \ker \varphi'' \subseteq M''$. Da f surjektiv, existiert ein $m \in M$ mit m'' = f(m). Setze $n := \varphi(m)$. Dann ist $g(n) = g(\varphi(m)) = \varphi''(f(m)) = \varphi''(m'') = 0$. Dann ist $n \in \ker g = \operatorname{im} g'$. Also existiert ein $n' \in N'$ mit g'(n') = n (n' ist eindeutig bestimmt wegen g' injektiv.) Setze $\delta(m'') := n' + \operatorname{im} \varphi'$

Wohldefiniertheit von δ : Sei $\tilde{m} \in M$ mit $m'' = f(\tilde{m})$. Dann ist $(\tilde{m}) = f(m)$, also $\tilde{m} - m \in \ker f = \operatorname{im} f'$. Damit existiert ein $m' \in M'$ mit $\tilde{m} - m = f'(m')$. Also ist

$$\tilde{n} := \varphi(\tilde{m}) = \varphi(m + f'(m')) = \underbrace{\varphi(m)}_{=n} + \varphi(f'(m')) = g'(n') + g'(\varphi'(m')) = g'(\underbrace{n' + \varphi'(m')}_{:=\tilde{n}'})$$

Damit ist $\tilde{n}' + \text{im } \varphi' = n' + \text{im } \varphi'$, Rest ist Übungsaufgabe.

1.3 Noethersche und Artinsche Moduln

Definition 1.3.1. Sei M ein R-Modul. M heißt "noethersch" $\stackrel{Def}{\Leftrightarrow}$ jeder Untermodul von M ist endlich erzeugt.

Anmerkung: M noetersch $\Rightarrow M$ ist endlich erzeugt.

Beispiel 1.3.2: Sei K ein Körper, V ein K-VR. Dann gilt: V noethersch $\Leftrightarrow V$ ist endlich dimensional

Satz 1.3.3. Sei M ein R-Modul. Dann sind äquivalent:

- i) M ist noethersch
- ii) Jede aufsteigende Kette $M_0 \subseteq M_1 \subseteq M_2 \subseteq ...$ von Untermoduln wird stationär, d.h. es existiert ein $n \in \mathbb{N}_0$, sodass $M_i = M_n$ für alle $i \geq n$.
- iii) Jede nichtleere Menge von Untermoduln von M enthält ein maximales Element.

Man sagt in diesem Fall auch: die Untermoduln von M erfüllen die "aufsteigende Kettenbedigung".

Beweis. $i) \Rightarrow ii$) Sei $M_0 \subseteq M_1 \subseteq M_2 \subseteq \ldots$ eine Kette von Untermoduln von M. Setze $N := \bigcup_{i \in \mathbb{N}_0} M_i \subseteq M$. N ist Untermodul von M (beachte: $a,b \in N \Rightarrow \text{Es}$ existieren $i,j \in \mathbb{N}_0$ mit $a \in M_i$, $b \in M_j$, o.E. gilt: $i \leq j \Rightarrow M_i \subseteq M_j$, $a,b \in M_j \Rightarrow a+b \in M_j \subseteq N$). Da M noethersch, ist N endlich erzeugt, d.h. es existiert ein endliches Erzeugendensystem $x_1, \ldots x_r$ von N. Für jedes $i \in \{1, \ldots r\}$ exsistieren $j_i \in \mathbb{N}_0$ mit $x_i \in M_{j_i}$. Setze $n := \max\{j_i \mid i = 1, \ldots r\} \Rightarrow x_1, \ldots, x_r \in M_n \Rightarrow N \subseteq M_n \subseteq N \Rightarrow N = M_n \Rightarrow \text{für alle } i \geq n \text{ ist } M_i = M_n$.

- $ii) \Rightarrow iii)$ Sei \mathcal{X} eine nichtleere Menge von Untermoduln von M, die kein maximales Element hat. Insbesondere existiert zu jedem $M' \in \mathcal{X}$ ein $M'' \in \mathcal{X}$ mit $M' \subsetneq M''$. \Rightarrow Es existiert eine Kette von Untermoduln $M_0 \subsetneq M_1 \subsetneq M_2 \subsetneq \ldots$ von M, die nicht stationär wird.
- $iii) \Rightarrow i)$ Sei $N \subseteq M$ ei Untermodul. Setze

$$\mathcal{X} := \{M' \subseteq M \text{Untermodul} \mid M' \text{endlich erzeugt}, M' \subseteq N\}$$

Wegen $0 \in \mathcal{X}$ ist $\mathcal{X} \neq \emptyset \stackrel{(iii)}{\Rightarrow}$ Es existiert ein maximales Element \tilde{M} in \mathcal{X} . Behauptung: $\tilde{M} = N$, denn: Sei $x \in N \Rightarrow Rx + \tilde{M} \in \mathcal{X}$ und $\tilde{M} \subseteq Rx + \tilde{M} \stackrel{\tilde{M}max}{\Rightarrow}$.

Behauptung: M = N, denn: Sei $x \in N \Rightarrow Rx + M \in \mathcal{X}$ und $M \subseteq Rx + M \stackrel{Mmax}{\Rightarrow} Rx + \tilde{M} = \tilde{M} \Rightarrow x \in \tilde{M}$.

Bemerkung 1.3.4. Sei $0 \longrightarrow M' \longrightarrow M \longrightarrow M'' \longrightarrow 0$ ein kurze exakte Sequenz von R-Moduln. Dann sind äquivalent:

- i) M ist noethersch
- ii) M' und M" sind noethersch

Beweis. Es genügt den Fall der Folge $0 \longrightarrow N \longrightarrow M \xrightarrow{\pi} M/_{N} \longrightarrow 0$ für einen Untermodul $N \subseteq M$ zu betrachten. (Vgl. Anmerkung nach 2.1)

- $(i) \Rightarrow ii)$ Sei $N' \subseteq N$ Untermodul $\Rightarrow N'$ Untermodul von $M \stackrel{M \text{noet.}}{\Longrightarrow} N'$ endlich erzeugt. Sei $N'' \subseteq M/N$ Untermodul. Also ist $\pi^{-1}(N'') \to N''$ ein Epimorphismus und damit N'' endlich erzeugt nach 2.5 (a).
- $(ii) \Rightarrow i)$ Seien $N, \frac{M}{N}$ noethersch, und sei $M' \subseteq M$ Untermodul. Wir erhalten eine kurze exakte Sequenz von R-Moduln

$$0 \longrightarrow M' \cap N \longrightarrow M' \longrightarrow M'/_{M' \cap N} \longrightarrow 0$$

wobei $M' \cap N$ endlich erzeugt, da N noethersch. Außerdem ist

$$M'/M' \cap N \simeq (M'+N)/N \subseteq M/N$$

endlich erzeugt, da $^{M\!/}_{N}$ noethersch. $\Rightarrow M'$ ist endlich erzeugt nach 2.5

Bemerkung 1.3.5. $M_1, ..., M_r$ R-Moduln. Dann sind äquivalent:

- i) $\bigoplus_{i=1}^r M_i$ noethersch
- ii) $M_1, ..., M_r$ noethersch.

Beweis. Analog zum Beweis von 2.7 unter Verwendung von 3.4

Definition 1.3.6. R heißt "linksnoethersch" (bzw. "rechtsnoethersch"), wenn R als Links-(bzw. Rechts-) Modul über sich selbst noethersch ist. R heißt "noethersch", wenn R links-und rechtsnoethersch ist.

Anmerkung: Es gibt Ringe, die rechtsnoethersch, aber nicht linksnoethersch sind (und umgekehrt)

- Beispiel 1.3.7: a) Ist R ein Schiefkörper (Divisionsring) (d.h. $R \setminus \{0\}$ ist eine Gruppe bzgl. "."), dann ist R noethersch, denn wegen Ra = R = aR für alle $a \in R \setminus \{0\}$ sind die einzigen Linksideale (Rechtsideale) in R durch 0, Rgegeben, diese sind endlich erzeugt.
 - b) Sei K ein Körper, $R = K[X_1, X_2, ...]$ ist nicht noethersch nach Beispiel 2.6.

Bemerkung 1.3.8. Sei R ein linksnoetherscher Ring, M ein endlich erzeugtes R-Modul. Dann ist M noethersch.

Beweis. Wegen M endlich erzeugt, existiert ein Epimorphismus $R^n \to M$ für geeignetes n. Nach Vorraussetzung ist R als R-Modul noethersch $\stackrel{3.5}{\Rightarrow} R^n$ noetherscher R-Modul $\stackrel{3.4}{\Rightarrow} M$ noethersch.

Bemerkung 1.3.9. Sei R linksnoetherscher Ring, $I \subseteq R$ zweiseitiges Ideal. Dann ist R/I linksnoethersch.

Beweis.Es ist zu zeigen: $R\!/_I$ ist noethersch als $R\!/_I$ -Modul. Vorüberlegungen:

1. Für $N \subseteq R/I$ gilt:

$$N \text{ ist } R/_I\text{-Modul von } R/_I \Leftrightarrow N \text{ ist } R - \text{Untermodul von } R/_I$$
(bezüglich $\overline{a} \cdot \overline{x} := \overline{ax}$) (bezüglich $a \cdot \overline{x} := \overline{ax}$)

2. Für jeden R_I -Untermodul N von R_I gilt:

N ist endlich erzeugt über $R/I \Leftrightarrow N$ ist endlich erzeugt über R

Nach den Vorüberlegungen genügt es zu zeigen, dass R/I noethersch ist als R-Modul. Dies folgt aus 3.8, denn R/I ist endlich erzeugt als R-Modul (erzeugt von $\overline{1}$). \square

Anmerkung: Unterringe noetherscher Ringe sind im Allgemeinen nicht noethersch (siehe Übungsaufgaben)

Bemerkung 1.3.10. Seien M, N R-Moduln mit $M \cong M \oplus N, N \neq 0$. Dann ist M nicht noethersch.

Beweis. Setze

$$\mathcal{X} := \{ N' \subseteq M \text{Untermodul} \mid \exists M' \subseteq M, \text{ sd. } M = M' \oplus N' \text{ und } M' \cong M \}$$

Offenbar ist $0 \in \mathcal{X}$, denn $M = M \oplus 0$, also $\mathcal{X} \neq \emptyset$.

Angenommen M ist noethersch. Dann enthält \mathcal{X} ein maximales Element N', also existiert ein $M' \subseteq M$ mit $M = M' \oplus N'$ und $M' \cong M$. Nach Voraussetzung existiert ein $\varphi : M \bigoplus N \stackrel{\sim}{\longrightarrow} M \stackrel{\sim}{\longrightarrow} M'$. Also ist

$$M' = \varphi(M) \oplus \varphi(N) \Rightarrow M = M' \oplus N' = \underbrace{\varphi(M)}_{=:M''} \oplus \underbrace{\varphi(N) \oplus N'}_{=:N''}$$

Es ist $M \cong \varphi(M) = M''$, somit $N'' \in \mathcal{X}$. Außerdem ist $\varphi(N) \neq 0$ wegen $N \neq 0$ und φ injektiv. Damit folgt $N' \subsetneq N''$ im Widerspruch zur Maximalität von N'.

Satz 1.3.11. Sei R linksnoetherscher Ring, $R \neq 0$, $n_1, n_2 \in N$. Dann gilt: $R^{n_1} \simeq R^{n_2} \Rightarrow n_1 = n_2$.

Beweis. ohne Einschränkung gelte $n_1 \ge n_2 \Rightarrow R^{n_2} \simeq R^{n_1} \simeq R^{n_2} \simeq R^{n_1-n_2}$. Wegen R^{n_2} noethersch, folgt mit 3.10 : $R^{n_1-n_2} = 0$, also $n_1 = n_2$

Anmerkung:

- Obiger Satz zeigt, dass der Bergiff des Ranges freier Moduln auch für endlich erzeugte, freie Modlun über linksnoetherschen Ringen wohldefiniert ist.
- \bullet Jeder Körper ist linksnoethersch \Rightarrow So erhält man einen neuen Beweis für Ergebnis aus LA1

Satz 1.3.12 (Hilbertscher Basissatz). Sei R ein linksnoetherscher Ring. Dann ist R[X] linksnoethersch.

Beweis. Sei $I \subseteq R$ ein Linksideal. Es ist zu zeigen, dass I als R[X]-Modul endlich erzeugt ist.

1. Für $n \in \mathbb{N}$ setze $I_n := \{ f \in I \mid \deg f \leq n \}$, was offenbar ein R-Modul ist. Wir betrachten die R-lineare Abbildung

$$b_n: I_n \longrightarrow R, \quad \sum_{i=0}^n a_i X^i \mapsto a_n$$

also ist $B_n:=b_n(I_n)\subseteq R$ ein Linksideal. Für $f\in I_n$ ist $Xf\in I_{n+1}$, also $b_n(f)=b_{n+1}(Xf)\in B_{n+1}=b_{n+1}(I_{n+1})$, woraus wir eine Kette von Linksidealen $B_1\subseteq B_2\subseteq \ldots$ erhalten, welche, da R linksnoethersch ist, stationär ist, also existiert ein $n\in \mathbb{N}$ mit $B_m=B_n$ für alle $m\geq n$.

- 2. Behauptung: $I = R[X]I_n$, denn:
 - " \supseteq " klar, wegen $I_n \subseteq I$, wobei I ein Linksideal ist.
 - "

 "

 "

 "

 Es ist $I = \bigcup_{m \in \mathbb{N}} I_m$, d.h. es genügt zu zeigen, dass $I_m \subseteq R[X]I_n$ für alle $m \in \mathbb{N}$, was wir per Induktion nach m zeigen. $m \leq n$: klar. m > n: Sei $f \in I_m$. Dann ist $b_m(f) \in B_m = B_n = b_n(I_n)$, also existiert

m > n: Sei $f \in I_m$. Dann ist $b_m(f) \in B_m = B_n = b_n(I_n)$, also existient ein Polynom $f_1 \in I_n$ mit $b_m(f) = b_n(f_1) = b_m(X^{m-n}f_1)$. Also ist $f - X^{m-n}f_1 \in I_{m-1} \subseteq R[X]I_n$. Wegen $X^{m-n}f_1 \in R[X]I_n$, folgt $f \in R[X]I_n$

3. I_n ist endlich erzeugt als R-Modul, denn: $I_n \subseteq \sum_{i=0}^n RX^i$, und $\sum_{i=0}^n RX^i$ ist ein endlich erzeugter R-Modul, also insbesondere noethersch nach 3.8, weshalb I_n als Untermodul endlich erzeugt ist, d.h. es existieren $g_1, \ldots, g_r \in I_n$ mit $I_n = \sum_{i=1}^r Rg_i$, also

$$I \stackrel{2.}{=} R[X]I_n = \sum_{i=1}^r R[X]g_i$$

d.h. I ist endlich erzeugt als R[X]-Modul.

Folgerung 1.3.13. a) Ist R ein linksnoetherscher Ring, dann ist $R[X_1, \ldots, X_n]$ linksnoethersch

b) Sind A, B kommutative Ring, $\varphi: A \to B$ ein Ringhomomorphismus, sodass B von $\varphi(A)$ und einer endlichen Menge $\{x_1, \ldots, x_r\} \subseteq B$ als Ring erzeugt wird. Dann gilt: A ist nothersch \Rightarrow B noethersch.

Beweis. a) aus 3.12 per Induktion

b) Nach Voraussetzung existiert ein surjektiver Ringhomomorphismus

$$\psi: A[X_1, \dots, X_r] \twoheadrightarrow B, \quad X_i \mapsto x_i, \quad \text{und} \quad \psi|_A = \varphi$$

Ist A noethersch, dann ist $A[X_1, \ldots, X_r]$ nothersch nach a) und nach 3.9 ist B noethersch.

Definition 1.3.14. Sei M ein R-Modul. M heißt "artinsch" $\stackrel{Def}{\Leftrightarrow}$ für jede absteigende Kette $M_1 \supseteq M_2 \supseteq \ldots$ von Untermoduln von M gibt es ein $n \in \mathbb{N}$ mit $M_i = M_n$ für alle $i \geq n$ ("absteigende Kettenbedingung").

Definition 1.3.15. R heißt "linksartinsch" (bzw. "rechtsartinsch") $\overset{Def}{\Leftrightarrow} R$ ist als Links- bzw. Rechtsmodul über sich selber artinsch. R heißt "artinsch" $\overset{Def}{\Leftrightarrow} R$ ist links-und rechtsartinsch.

Beispiel 1.3.16: a) Jeder endliche Ring ist artinsch (und noethersch).

- b) \mathbb{Z} ist kein artinscher Ring, denn $\mathbb{Z} \supseteq 2\mathbb{Z} \supseteq 4\mathbb{Z} \supseteq 8\mathbb{Z} \supseteq \dots$
- c) Sei M ein endliches Monoid, K ein Körper, R = K[M] sei der Monoidring (vgl. Algebra 1-Übungen). Dann ist R linksartinsch, denn: K[M] ist ein endlichdimensionaler K-Vektorraum, jeder K[M]-Untermodul von K[M] ist ein K-Untervektorraum von K[M], also ist jede absteigende Kette von Untermoduln eine absteigende Kette von Untervektorräumen, die stationär ist. Ebenso ist K[M] rechtsartinsch, K[M] also artinsch.

Bemerkung 1.3.17. Sei $0 \longrightarrow M' \longrightarrow M \longrightarrow M'' \longrightarrow 0$ eine exakte Folge vn R-Moduln. Dann sind äquivalent:

- i) M ist artinsch.
- ii) M', M'' ist artinsch.

Beweis. Es genügt, den Fall $0 \longrightarrow N \longrightarrow M \longrightarrow M/N \longrightarrow 0$ zu betrachten.

 $i) \Rightarrow ii)$ Sei M artinsch. Sei $N_1 \supseteq N_2 \supseteq \ldots$ eine Kette von Untermoduln von N. Dann ist N_i ein Untermodul von M für alle $i \in \mathbb{N}$ und, da M artinsch ist, existiert ein $n \in \mathbb{N}$ mit $N_i = N_n$ für alle $i \ge n$, weshalb N artinsch ist. Sei $N_1' \supseteq N_2' \supseteq \ldots$ eine Kette von Untermoduln von M/N. Dann ist $\pi^{-1}(N_1') \supseteq \pi^{-1}(N_2') \supseteq \ldots$ eine Kette von Untermoduln von M, welche, wegen M artinsch, stationär wird. Es ist $N_n' = \pi(\pi^{-1}(N_n')) = \pi(\pi^{-1}(N_i')) = N_i$ für alle $i \ge n$, also ist M/N artinsch.

 $ii) \Rightarrow i)$ Seien $N, \frac{M}{N}$ artinsch. Sei $M_1 \supseteq M_2 \supseteq \dots$ eine absteigende Kette von Untermoduln von M. Dann ist $M_1 \cap N \supseteq M_2 \cap N \supseteq \dots$ eine absteigende Kette von Untermoduln von N. Damit ist

$$(M_1+N)/N \supseteq (M_2+N)/N \supseteq \dots$$

eine absteigende Kette von Untermoduln von M/N, also existiert ein $n \in \mathbb{N}$ mit $M_i \cap N = M_n \cap N$ und $M_i + N/N = M_n + N/N$ für alle $i \geq n$, also ist $M_i + N = M_n + N$ für alle $i \geq n$,

Behauptung: $M_i = M_n$ für alle $i \ge n$, denn sei $i \ge n$ fest.

"⊆" klar

"
$$\text{Sei } x \in M_n. \text{ Dann existieen } x' \in M, y \in N \text{ mit } x = x' + y \text{ (wegen } M_i + N = M_n + N), \text{ also } y = \underbrace{x}_{\in M_n} - \underbrace{x'}_{\in M_i \subseteq M_n} \in M_n \cap N = M_i \cap N \Rightarrow x = \underbrace{x'}_{\in M_i} + \underbrace{y}_{\in M_i} \in M_i$$

Folgerung 1.3.18. Seien M_1, \ldots, M_n R-Moduln. Dann sind äquivalent:

- i) $\bigoplus_{i=1}^n M_i$ ist artinsch
- ii) M_1, \ldots, M_n sind artinsch.

Folgerung 1.3.19. Sei R linksartinsch, M ein endlich erzeugter R-Modul. Dann ist M artinsch.

Definition 1.3.20. Sei M ein R-Modul. Dann heißt M "endlich koerzeugt" $\stackrel{Def}{\Leftrightarrow}$ für jede Familie $(M_i)_{i\in I}$ von Untermoduln von M mit $\bigcap_{i\in I} M_i = 0$ existiert eine endliche Teilmenge $J\subseteq I$ mit $\bigcap_{i\in J} M_j = 0$

Anmerkung:

- Sei $N \subseteq N$ ein Untermodul. Dann ist M/N endlich koerzeugt \Leftrightarrow Für jede Familie $(M_i)_{i \in I}$ von Untermoduln von M mit $\bigcap_{i \in I} M_i = N$ existiert eine endliche Teilmenge $J \subseteq U$ mit $\bigcap_{i \in J} M_i = N$.
- N ist endlich erzeugt \Leftrightarrow Für jede Familie $(M_i)_{i\in I}$ von Untermoduln von M mit $\sum_{i\in I} M_I = N$ existiert eine endliche Teilmenge $J\subseteq I$ mit $\sum_{i\in J} M_i = N$.

Satz 1.3.21. Sei M ein R-Modul. Dann sind äquivalent:

- a) M ist artinsch
- b) Jede nichtleere Menge von Untermoduln enthält ein minimales Element
- c) Jeder Faktormodul von M ist endlich koerzeugt.

Beweis. $i) \Rightarrow ii$) Sei \mathcal{X} eine nichtleere Menge von Untermoduln von M, die kein minimales Element besitzt. Insbesondere existiert zu jedem $M' \in \mathcal{X}$ ein $M'' \in \mathcal{X}$ mit $M'' \subsetneq M'$, also existiert eine Kette von Untermoduln $M_1 \supsetneq M_2 \supsetneq \ldots$, die nicht stationär wird.

 $ii) \Rightarrow iii)$ Sei $N \subseteq M$ eine Untermodul, $(M_i)_{i \in I}$ eine Familie von Untermoduln von M mit $\bigcap_{i \in I} M_i = N$. Setze $\mathcal{X} := \{\bigcap_{j \in J} M_j \mid J \subseteq I \text{ endlich}\} \stackrel{(ii)}{\Rightarrow} \mathcal{X}$ enthält ein minimales Element $N_1 = \bigcap_{j \in J} M_j$ für eine endliche Teilmenge $J \subseteq I$. Behauptung: $N_1 = N$, denn

"⊇" klar

"

"
"
"
"
Angenommen $N_1 \supseteq N$. Dann existiert ein $x \in N_1$ mit $x \notin N$. Da $N = \bigcap_{i \in I} M_i$ existiert ein $i \in I$ mit $x \notin M_i \Rightarrow x \notin \bigcap_{j \in J \cup \{i\}} M_j =: N_2$. Somit ist $N_2 \in \mathcal{X}$, $N_2 \subsetneq N_1$ im Widerspruch zur Minimalität von N_1 .

Somit $N_1 = N$, also ist M/N endlich koerzeugt. $iii) \Rightarrow i$) Sei $M_1 \supseteq M_2 \supseteq \ldots$ eine absteigende Kette von Untermoduln von M. Setze $N := \bigcap_{i \in \mathbb{N}} M_i$. M/N ist endlich koerzeugt, weshalb eine endliche Teilmenge $J \in I$ existiert mit $N = \bigcap_{j \in J} M_j$. Setze $n := \max J$, dann ist $N = M_n$, also ist $M_i = M_n$ für alle $i \ge n$.

2 Homologische Algebra

In diesem Kapitel sei R stets ein Ring

2.4 Kategorien

Definition 2.4.1. Eine Kategorie C besteht aus

- einer Klasse $Ob(\mathcal{C})$ von "Objekten" einer Menge $Mor_{\mathcal{C}}(A, B)$ von "Morphismen" für alle $A, B \in Ob(\mathcal{C})$
- einer Verknüpfung : $Mor_{\mathcal{C}}(B,C) \times Mor_{\mathcal{C}}(A,B) \rightarrow Mor_{\mathcal{C}}(A,C)$ für alle $A,B,C \in Ob(\mathcal{C})$

wobei folgende Axiome gelten:

- $(K1)\ Mor_{\mathcal{C}}(A,B) \cap Mor_{\mathcal{C}}(A',B') = \emptyset, falls\ A \neq A'\ oder\ B \neq B'$
- (K2) Für alle $A, B, C, D \in Ob(\mathcal{C}), f \in Mor_{\mathcal{C}}(A, B), g \in Mor_{\mathcal{C}}(B, C), h \in Mor_{\mathcal{C}}(C, D)$ gilt:

$$h \circ (g \circ f) = (h \circ g) \circ f$$
 (Assoziativität)

(K3) für jedes $A \in Ob(\mathcal{C})$ existiert ein Morphismus $id_A \in Mor_{\mathcal{C}}(A, A)$, sodass für alle $B \in Ob(\mathcal{C})$, $f \in Mor_{\mathcal{C}}(A, B)$, $g \in Mor_{\mathcal{C}}(B, A)$ gilt:

$$f \circ id_A = f$$
, $id_A \circ g = g$

.

Anmerkung:

- Man sagt "Klasse" statt Menge, um Paradoxien, wie "die Menge aller Mengenßu vermeiden.
- Trotzdem schreiben wir $A \in \text{Ob}(\mathcal{C})$ um zu sagen dass A zu $\text{Ob}(\mathcal{C})$ gehört (und werden $\text{Ob}(\mathcal{C})$ im Folgenden wie eine Menge behandeln).
- In den folgenden Abschnitten werden wir mengentheoretische Probleme ignorieren und häufig von Mengen sprechen auch wenn es sich nur um Klassen handelt.
- Für $f \in \operatorname{Mor}_{\mathcal{C}}(A, B)$ schreiben wir auch $f : A \to B$. A heißt "Quelle" und B heißt "Ziel" von f; wegen (K1) sind diese eindeutig bestimmt.
- für $A \in \text{Ob}(\mathcal{C})$ ist id_A eindeutig bestimmt (analoges Argument wie bei Monoiden: $id_A = id'_A \circ id_A = id'_A)$

Beispiel 2.4.2: • Mengen: Kategorie der Mengen mit Abbildungen von Mengen als Morphismen

- Ringe: Kategorie der Ringe mit Ringhomomorphismen als Morphismen
- \bullet $R\text{-}\mathrm{Mod}$: Kategorie der $R\text{-}(\mathrm{Links})\text{-}\mathrm{Moduln}$ mit $R\text{-}\mathrm{Modulhomomorphismen}$ als Morphismen
- Top: Kategorie der topologischen Räume mit stetigen Abbildungen als Morphismen
- $Ob(\mathcal{C}) = \{*\}, Mor_{\mathcal{C}}(*, *) := M$, wobei M Monoid, $\circ = Verkn \ddot{u}pfung in M$.

Definition 2.4.3. Sei C eine Kategorie. Die zu C "duale Kategorie" C^{op} " ist die Kategorie mit:

- $Ob(\mathcal{C}^{op}) = Ob(\mathcal{C}), \ Mor_{\mathcal{C}^{op}}(A, B) := Mor_{\mathcal{C}}(B, A) \ f\"{u}r \ A, B \in Ob(\mathcal{C}^{op}) = Ob(\mathcal{C})$
- $\circ_{op}: Mor_{\mathcal{C}^{op}}(A, B) \times Mor_{\mathcal{C}^{op}}(B, C) \rightarrow Mor_{\mathcal{C}^{op}}(A, C) \ mit \ (f, g) \mapsto f \circ g \ f\ddot{u}r$ $A, B, C \in Ob(\mathcal{C})$

Anmerkung:

- Anschaulich: Übergang von \mathcal{C} zu $\mathcal{C}^{op} \, \widehat{=} \, P$ feile umdrehen
- $(\mathcal{C}^{op})^{op} = \mathcal{C}$

Definition 2.4.4. Seien C, D Kategorien. Ein "(kovarianter) Funktor" $F : C \to D$ besteht aus einer Abbildung

$$Ob(\mathcal{C}) \to Ob(\mathcal{D}), \quad A \mapsto FA$$

und Abbildungen:

$$Mor_{\mathcal{C}}(A,B) \to Mor_{\mathcal{D}}(FA,FB), \quad f \mapsto F(f)$$

für alle $A, B \in Ob(\mathcal{C})$, sodass gilt:

- $(F1)\ F(g\circ f)=F(g)\circ F(f)\ f\"{u}r\ alle\ f\in Mor_{\mathcal{C}}(A,B), g\in Mor_{\mathcal{C}}(B,C),\ A,B,C\in Ob(\mathcal{C})$
- (F2) $F(id_A) = id_{FA}$ für alle $A \in Ob(\mathcal{C})$.

Beispiel 2.4.5: a) Vergiss-Funktoren, zum Beispiel: R-Mod \to Mengen, R-Mod $\to \mathbb{Z}$ -Mod, ...

b) Sei \mathcal{C} eine Kategorie \Rightarrow Jedes Objekt $X \in \text{Ob}(\mathcal{C})$ induziert einen Funktor

$$Mor_{\mathcal{C}}(X, -): \mathcal{C} \to \text{Mengen}, \quad A \mapsto Mor_{\mathcal{C}}(X, A)$$

Für $f \in Mor_{\mathcal{C}}(A, B)$ ist hierbei $f_*^X := Mor_{\mathcal{C}}(X, -)(f)$ gegeben durch

$$f_*^X: Mor_{\mathcal{C}}(X,A) \to Mor_{\mathcal{C}}(X,B), \quad g \mapsto f \circ g$$

$$X \xrightarrow{g} A$$

$$\downarrow_{f_*^X(g)} \downarrow_{B}$$

c) Sei $M \in R\text{-Mod} \Rightarrow Hom_R(M, -) : R\text{-Mod} \rightarrow \mathbb{Z}\text{-Mod}, N \mapsto Hom_R(M, N)$ ist ein Funktor.

Definition 2.4.6. Seien C, D Kategorien. Ein "(kontavarianter) Funktor" F von C nach D ist ein Funktor $F: C^{op} \to D$, das heißt besteht aus einer Abbildung

$$Ob(\mathcal{C}) \to Ob(\mathcal{D}), \quad A \mapsto FA$$

und Abbildungen:

$$Mor_{\mathcal{C}}(A, B) \to Mor_{\mathcal{D}}(FB, FA), \quad f \mapsto F(f)$$

für alle $A, B \in Ob(\mathcal{C})$, sodass gilt:

- (F1') $F(g \circ f) = F(f) \circ F(g)$ für alle $f \in Mor_{\mathcal{C}}(A, B), g \in Mor_{\mathcal{C}}(B, C), A, B, C \in Ob\mathcal{C}$
- (F2') $F(id_A) = id_{FA}$ für alle $A \in Ob(\mathcal{C})$.

Beispiel 2.4.7: a) Sei \mathcal{C} eine Kategorie \Rightarrow Jedes Objekt $Y \in \text{Ob}(\mathcal{C})$ induziert einen kontravarianten Funktor

$$Mor_{\mathcal{C}}(-,Y): \mathcal{C} \to \text{Mengen}, \quad A \mapsto Mor_{\mathcal{C}}(A,Y)$$

Für $f \in Mor_{\mathcal{C}}(A, B)$ ist hierbei $f_Y^* := Mor_{\mathcal{C}}(-, Y)(f)$ gegeben durch

b) Sei $N \in R\text{-Mod} \Rightarrow Hom_R(-, N) : R\text{-Mod} \rightarrow \mathbb{Z}\text{-Mod}, M \mapsto Hom_R(M, N)$ ist ein kontavarianter Funktor.

Anmerkung:

- Sind $F: \mathcal{C} \to \mathcal{D}, G: \mathcal{D} \to \mathcal{E}$ Funktoren, so ist auf naheliegende Weise der Funktor $G \circ F: \mathcal{C} \to \mathcal{E}$
- Unter Funktoren werden kommutative Diagramme auf kommutative Diagramme abgebildet.

Definition 2.4.8. Seien C, D Kategorien. "Das Produkt" $C \times D$ ist diejenige Kategorie mit $Ob(C \times D) = Ob(C) \times Ob(D)$ und $Mor_{C \times D}((A_1, B_1), (A_2, B_2)) = Mor_{C}(A_1, A_2) \times Mor_{D}(B_1, B_2)$ und "komponentenweisen \circ ".

Definition 2.4.9. Seien C, D, \mathcal{E} Kategorien. Ein "Bifunktor" F "von C kreuz D nach \mathcal{E} " ist ein Funktor $F: C \times D \to \mathcal{E}$

Beispiel 2.4.10: a) \bigoplus : R-Mod $\times R$ -Mod, $(M, N) \to M \bigoplus N$ ist ein Bifunktor

b) Sei \mathcal{C} eine Kategorie $\Rightarrow \mathcal{C}^{op} \times \mathcal{C} \rightarrow \text{Mengen}, (M, N) \mapsto Mor_{\mathcal{C}}(M, N)$ ist ein Bifunktor.

Definition 2.4.11. Sei C eine Kategorie, $A, B \in Ob(C), f : A \to B$ f heißt

"Monomorphismus" $\stackrel{Def}{\Leftrightarrow}$ Für alle $C \in Ob(\mathcal{C})$, $g_1, g_2 : C \to A$ gilt: $f \circ g_1 = f \circ g_2 \Rightarrow g_1 = g_2 \Leftrightarrow$ Für alle $C \in Ob(\mathcal{C})$ ist $f_*^C : Mor_{\mathcal{C}}(C, A) \to Mor_{\mathcal{C}}(C, B)$ injektiv.

"Epimorphismus" \Leftrightarrow Für alle $C \in ObC$, $g_1, g_2 : B \to C$ gilt: $g_1 \circ f = g_2 \circ f \Rightarrow g_1 = g_2 \Leftrightarrow F$ ür alle $C \in ObC$ is $f_C^* : Mor_C(B, C) \to Mor_C(A, C)$ injektiv.

"Isomorphismus" $\stackrel{\text{Def}}{\Leftrightarrow}$ Es existiert ein $g:b\to A$ mit $f\circ g=id_B$ und $g\circ f=id_A$.

Anmerkung: In der Situation von 4.11 gilt:

- f Monomorphismus in $\mathcal{C} \Leftrightarrow f$ Epimorphismus in \mathcal{C}^{op} .
- f Isomorphismus in $\mathcal{C} \Leftrightarrow f$ ist Isomorphismus in \mathcal{C}^{op} .
- Ist f ein Isomorphismus und $g: B \to A$ mit $f \circ g = id_B$ und $g \circ f = id_A$, dann ist g ein eindeutig bestimmt (und wird mit f^{-1} bezeichnet). Denn: $g_1, g_2: B \to A$ mit dieser Eigenschaft $Rag_1 = g_1 \circ id_B = g_1 \circ (f \circ g_2) = (g_1 \circ f) \circ g_2 = id_A \circ g_2 = g_2$.
- In Mengen ist f Monomorphismus $\Leftrightarrow f$ injektv, f Epimorphismus Lraf surjektiv, f Isomorphismus $\Leftrightarrow f$ bijektiv. Im Allgemeinen ist dies für Kategorien, in denen die Morphismen Abbildungen sind, jedoch falsch (vgl. Bsp. 4.13)

Bemerkung 2.4.12. Sei C eine Kategorie, $A, B \in Ob(C)$, $f : A \to B$ ein Isomorphismus. Dann ist f ein Monomorphismus und Ein Epimorphismus.

Beweis. Seien $C \in \text{Ob}(\mathcal{C}), g_1, g_2 : C \to A \text{ mit } f \circ g_1 = f \circ g_2 \Rightarrow f^{-1} \circ (f \circ g_1) = f^{-1} \circ (f \circ g_2) \Rightarrow (f^{-1} \circ f) \circ g_1 = (f^{-1} \circ f) \circ g_2 \Rightarrow g_1 = g_2 \Rightarrow f \text{ Monomorphimus.}$ Analog wird gezeigt dass f ein Epimorphimus.

Anmerkung: Die Umkehrung von 4.12 ist im Allgemeinen falsch, siehe nächstes Beispiel.

- **Beispiel 2.4.13:** a) Sei C = Top die Kategorie der Topologischen Räume mit stetigen Abbildungen. Wir betrachten $id : (\mathbb{R}, \text{diskrete Topologie}) \to (\mathbb{R}, \text{Standardtopologie})$. Diese ist eine stetige Abbildung, ein Monomorphismus sowie ein Epimorphismus, jedoch kein Isomorphismus (Nicht hömöomorph, da kein stetiges Inverses)
 - b) Sei $\mathcal{C} = Ringe, f : \mathbb{Z} \to \mathbb{Q}$ Inklusion. f ist ein Monomorphismus und ein Epimorphimus (Achtung, denn: Für $g_1, g_2 : \mathbb{Q} \to R$ Ringhomomorphismus ist ein Ring R mit $g_1 \circ f = g_2 \circ f$, das heißt $g_1|_{\mathbb{Z}} = g_2|_{\mathbb{Z}}$ folgt $g_1 = g_2$ wegen der Universellen Eigenschaft von \mathbb{Q} als Quotientenkörper von \mathbb{Z}), aber kein Isomorphismus. Insbesondere ist ein Epimorphismus in \mathcal{C} im obigen Sinne ("kategorieller Epimorphismus") nicht dasselbe wie ein surjektiver Ringhomomorphismus.