Орбіти

Євгенія Кочубінська

Київський національний університет імені Тараса Шевченка

9 листопада 2022

FACULTY OF MECHANICS AND MATHEMATICS

Орбіта групи

Нехай група G діє на множині M.

Введемо на М відношення ~:

$$a \sim b \stackrel{def}{\Longleftrightarrow} \exists g \in G : a^g = b.$$

$$a^e = a \Rightarrow a \sim a$$
 $a^g = b \Rightarrow b^{g^{-1}} = a$: $a \sim b \Rightarrow b \sim a$ $a^g = b, b^h = c \Rightarrow a^{gh} = c$: $a \sim b, b \sim c \Rightarrow a \sim c$ $a^e = a \Rightarrow a \sim a$ $a^g = b \Rightarrow b^{g^{-1}} = a$: $a \sim b \Rightarrow b \sim a$ $a^g = b, b^h = c \Rightarrow a^{gh} = c$: $a \sim b, b \sim c \Rightarrow a \sim c$ $a^g = b, b^h = c \Rightarrow a^{gh} = c$: $a \sim b, b \sim c \Rightarrow a \sim c$

Означення

Класи цього відношення еквівалентності називається орбітами групи.

Орбіти групи

Нехай $\mathfrak{O}_1, \mathfrak{O}_2, \ldots$ — орбіти групи G, що діє на множині M.

Тоді

$$M = \bigsqcup_{i \in I} \mathcal{O}_i.$$

Орбіти групи: приклади

- **О** S_n має одну орбіту на $\{1, 2, ..., n\}$, а саме $O = \{1, 2, ..., n\}$.
- Орбіти дії спряженням класи спряженості.
- O_4 діє на множині вершин ①, ②, ③, ④. Орбітою цієї дії є множина $O = \{0, 2, 3, 4\}$.

Орбіти групи: приклади

• Нехай $G = \{e, a, b, c\}$ — нециклічна група порядку 4, що діє на множині $M = \{1, 2, 3, 4\}$.

Задамо дію (G, M) різними способами:

$$\emptyset = \{1, 2, 3, 4\}.$$

$$\bigcirc \varphi(e) = \varepsilon$$
, $\varphi(a) = (12)$, $\varphi(b) = (34)$, $\varphi(c) = (12)(34)$. Орбітами цієї дії є множини

$$\mathcal{O}_1 = \{1, 2\}, \quad \mathcal{O}_2 = \{3, 4\}.$$

Транзитивна дія

Дія (G, M) називається *транзитивною*, якщо вона має одну орбіту, тобто

для довільних $m_1, m_2 \in M$ існує такий $g \in G$, що $m_2 = m_1^g$.

Дія (G,M) називається *інтранзитивною*, якщо вона має більше однієї орбіти. Дія (G,M) називається k-транзитивною, якщо для довільних двох наборів m_1,\ldots,m_k та m'_1,\ldots,m'_k існує такий елемент $g\in G$, що

$$m_1^g = m_1', m_2^g = m_2', \dots, m_k^g = m_k'.$$

Приклад

- \bigcirc Група S_n є транзитивною.
- **2** Група $S_n \in n$ -транзитивною.
- **③** Група \mathcal{A}_n є (*n* − 2)-транзитивною, але не (*n* − 1)-транзитивною.

Орбіта точки

Орбітою точки $m \in M$ називається множина

$$\mathcal{O}(m) = \left\{ m^g \mid g \in G \right\}.$$

Приклад

$$G = S_5, m = 1$$
:

Орбіти точки

Твердження

Нехай (G, M). Тоді для довільного α ∈ Θ : Θ = $\Theta(\alpha)$.

Доведення.

Нехай $b \in \mathcal{O}$, $b \neq a$. Тоді

$$\exists g \in G: a^g = b \Rightarrow \mathcal{O} \subseteq \mathcal{O}(a).$$

Якщо $b \in \mathcal{O}(a)$, то $\exists g \in G: b = a^g$. Тому

$$a \sim b$$
 ta $b \in \emptyset \Rightarrow \emptyset(a) \subseteq \emptyset$. \square

Наслідок

Якщо (G, M), то для довільних $a, b \in M$:

$$a \sim b \Leftrightarrow \mathcal{O}(a) = \mathcal{O}(b).$$

Приклад

Нехай

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 5 & 1 & 3 & 6 \end{pmatrix} = (124)(35).$$

Знайдемо орбіти дії групи $G = \langle \sigma \rangle = \{ \varepsilon, (124)(35), (142), (35), (124), (142)(35) \}$:

$$\mathcal{O}_1 = \mathcal{O}(1) = \{1, 2, 4\};$$

$$\mathcal{O}_2 = \mathcal{O}(3) = \{3, 5\};$$

$$O_3 = O(6) = \{6\}.$$

Питання

- 🚺 Скільки орбіт має група G на множині M?
- Яка довжина кожної орбіти, тобто з якої кількості елементів вони складаються?