Homework 2 - Grant Jackson

September 6, 2024

```
[1]: import os
     os.chdir('C:\\Users\gmoor\Documents\Economic Analytics 1\Data')
[2]: import numpy as np
     import pandas as pd
     import math
[3]: raw0 = pd.read_csv('College.csv')
[4]: raw0.head()
[4]:
                           Unnamed: 0 Private
                                                 Apps
                                                      Accept Enroll
                                                                        Top10perc \
        Abilene Christian University
                                           Yes
                                                 1660
                                                         1232
                                                                   721
                                                                                23
     1
                   Adelphi University
                                           Yes
                                                2186
                                                         1924
                                                                   512
                                                                                16
     2
                       Adrian College
                                           Yes
                                                1428
                                                         1097
                                                                   336
                                                                               22
                  Agnes Scott College
     3
                                           Yes
                                                  417
                                                          349
                                                                   137
                                                                               60
     4
           Alaska Pacific University
                                           Yes
                                                  193
                                                          146
                                                                    55
                                                                                16
                                                          Room.Board
        Top25perc
                   F.Undergrad P.Undergrad
                                               Outstate
                                                                       Books
                                                                              Personal
     0
               52
                           2885
                                          537
                                                    7440
                                                                 3300
                                                                         450
                                                                                   2200
     1
                29
                           2683
                                         1227
                                                   12280
                                                                 6450
                                                                         750
                                                                                   1500
     2
                50
                           1036
                                           99
                                                   11250
                                                                 3750
                                                                         400
                                                                                   1165
     3
                89
                            510
                                           63
                                                   12960
                                                                 5450
                                                                         450
                                                                                    875
     4
                44
                            249
                                          869
                                                    7560
                                                                         800
                                                                                   1500
                                                                 4120
        PhD
             Terminal
                        S.F.Ratio perc.alumni
                                                  Expend
                                                          Grad.Rate
     0
         70
                    78
                             18.1
                                             12
                                                    7041
                                                                  60
     1
         29
                    30
                             12.2
                                             16
                                                   10527
                                                                  56
                             12.9
     2
         53
                    66
                                             30
                                                   8735
                                                                  54
                                                   19016
         92
                              7.7
                                             37
     3
                    97
                                                                  59
     4
         76
                    72
                             11.9
                                              2
                                                   10922
                                                                  15
[5]: # Convert "private" variable to a dummy using a built-in function
     raw0['Private']=pd.get_dummies(raw0['Private'],drop_first=True,dtype=float)
[6]: raw0.Private
```

```
[6]: 0
             1.0
     1
             1.0
     2
             1.0
     3
             1.0
     4
             1.0
     772
             0.0
     773
             1.0
     774
             1.0
     775
             1.0
     776
             1.0
     Name: Private, Length: 777, dtype: float64
[7]: # Change the column name perc.alumni
     raw0.rename(columns = {'perc.alumni':'palumni'}, inplace = True)
[8]:
     raw0.head()
[8]:
                             Unnamed: 0
                                          Private
                                                           Accept
                                                                    Enroll
                                                                             Top10perc
                                                    Apps
     0
        Abilene Christian University
                                               1.0
                                                    1660
                                                             1232
                                                                       721
                                                                                    23
     1
                    Adelphi University
                                                                       512
                                               1.0
                                                    2186
                                                             1924
                                                                                    16
     2
                        Adrian College
                                               1.0
                                                    1428
                                                             1097
                                                                       336
                                                                                    22
     3
                   Agnes Scott College
                                               1.0
                                                     417
                                                              349
                                                                       137
                                                                                    60
     4
            Alaska Pacific University
                                               1.0
                                                     193
                                                              146
                                                                        55
                                                                                    16
                    F.Undergrad P.Undergrad
        Top25perc
                                                  Outstate
                                                             Room.Board
                                                                          Books
                                                                                  Personal
     0
                52
                             2885
                                            537
                                                      7440
                                                                    3300
                                                                             450
                                                                                       2200
     1
                29
                             2683
                                           1227
                                                     12280
                                                                    6450
                                                                             750
                                                                                       1500
     2
                50
                                                                             400
                             1036
                                             99
                                                     11250
                                                                    3750
                                                                                       1165
     3
                89
                              510
                                             63
                                                     12960
                                                                    5450
                                                                             450
                                                                                        875
     4
                44
                              249
                                            869
                                                      7560
                                                                    4120
                                                                             800
                                                                                       1500
        PhD
              Terminal
                         S.F.Ratio
                                     palumni
                                               Expend
                                                        Grad.Rate
         70
                                                  7041
     0
                     78
                               18.1
                                           12
                                                                60
                                                 10527
     1
         29
                     30
                               12.2
                                           16
                                                                56
     2
         53
                     66
                               12.9
                                           30
                                                  8735
                                                                54
     3
                                7.7
         92
                     97
                                           37
                                                 19016
                                                                59
     4
                     72
                                            2
         76
                               11.9
                                                 10922
                                                                 15
```

0.0.1 Plotting Library: matplotlib.pyplot

- matplotlib.pyplot is a collection of functions for creating static, animated, and interactive visualizations in Python.
 - 1. Introduction: https://matplotlib.org/tutorials/index.html
 - 2. Useful examples and codes: https://matplotlib.org/gallery/index.html
 - 3. Style reference: https://matplotlib.org/3.2.1/gallery/style_sheets/style_sheets_reference.html

```
[9]: # Simple scatter plot
import matplotlib.pyplot as plt

plt.style.use('ggplot')
plt.figure(figsize=(8, 6), dpi=100)
plt.scatter('Top10perc', 'palumni', data=raw0)
plt.xlabel('Top10perc')
plt.ylabel('palumni')
#plt.savefig('scatter.png') # Will save picture of scatter plot into your data_____
folder
plt.show()
```


0.0.2 Running OLS usig "statsmodels"

- statsmodels.formula.api provides an interface for specifying models using formula strings and DataFrames. (API reference: https://www.statsmodels.org/stable/api.html)
- Useful examples and codes: https://www.statsmodels.org/stable/examples/index.html

```
[10]: # Import statsmodels.formula.api
import statsmodels.formula.api as smf
```

```
# Fit a regression model
OLSres = smf.ols('palumni ~ Top10perc + Outstate', data=raw0).fit()
```

[11]: # A summary of the result print(OLSres.summary())

OLS Regression Results

_____ Dep. Variable: R-squared: palumni 0.348 Model: OLS Adj. R-squared: 0.346 Method: Least Squares F-statistic: 206.7 Least Squares F-statistic: 206.7
Wed, 04 Sep 2024 Prob (F-statistic): 1.21e-72 Date: 18:37:44 Log-Likelihood: Time: -2891.5

No. Observations: 777 AIC: 5789. Df Residuals: 774 BIC: 5803.

Df Model: 2

Covariance Type: nonrobust

========	coef	======= std err	======	t P> t	[0.025	0.975]
Intercept	4.2776	1.001	4.2	73 0.000	2.312	6.243
Top10perc	0.1408	0.025	5.7	0.000	0.092	0.189
Outstate	0.0014	0.000	12.9	0.000	0.001	0.002
	======		======			=======
Omnibus:		23	.166 D	Durbin-Watson:		1.950
Prob(Omnibus):		0	.000 J	Jarque-Bera (JB):		24.444
Skew:	!kew: 0.418		.418 P	rob(JB):	4.92e-06	
Kurtosis:		3	.236 C	ond. No.		3.12e+04
=========	=======	========	=======		=========	========

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 3.12e+04. This might indicate that there are strong multicollinearity or other numerical problems.

[12]: # interaction and higer order terms OLSres = smf.ols('palumni ~ np.power(Top10perc,2) + Top10perc:Outstate', data=raw0).fit() print(OLSres.summary())

OLS Regression Results

Dep. Variable: palumni R-squared: 0.326

Model: OLS Adj. R-squared: 0.324

Method: Least Squares F-statistic: 187.3

Date: Wed, 04 Sep 2024 Prob (F-statistic): 4.64e-67

Time: No. Observations: Df Residuals: Df Model: Covariance Type:	18:37:44 777 774 2 nonrobust		og-Likelihood: IC: IC:	-2904.4 5815. 5829.	
=======				D>1+1	[O 005
0.975]	coef	std e	err t	: P> t	[0.025
Intercept 15.967	14.8920	0.5	547 27.203	0.000	13.817
np.power(Top10perc, 2) -0.003	-0.0039	0.0	001 -6.582	0.000	-0.005
Top10perc:Outstate 4.22e-05	3.687e-05	2.74e-	-06 13.476	0.000	3.15e-05
Omnibus:	 22.5	====== 532 Du	======== ırbin-Watson:	======================================	
Prob(Omnibus):	0.000		arque-Bera (JI	23.726	
Skew:			cob(JB):	7.05e-06	
Kurtosis:			ond. No.	6.92e+05	

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 6.92e+05. This might indicate that there are strong multicollinearity or other numerical problems.

OLS predicted values


```
[14]: # Access individual estimate:
# https://www.statsmodels.org/stable/generated/statsmodels.regression.
| Glinear_model.OLSResults.html#statsmodels.regression.linear_model.OLSResults

OLSres.params # parameter estimates
```

[14]: Intercept 14.892000 np.power(Top10perc, 2) -0.003948 Top10perc:Outstate 0.000037

dtype: float64

[15]: ### Making a table for multiple regressions using

→"statsmodels.iolib.summary2"

```
[16]: OLS1 = smf.ols('palumni ~ Top10perc', data=raw0).fit()
OLS2 = smf.ols('palumni ~ Top10perc + Private + Outstate', data=raw0).fit()
OLS3 = smf.ols('palumni ~ Top10perc + Private + Outstate + Personal + Expend', udata=raw0).fit()
```

```
[17]: from statsmodels.iolib.summary2 import summary_col
      info_dict={'BIC' : lambda x: x.bic,
          'No. observations' : lambda x: f"{int(x.nobs)}"}
      # "dictionary" is another way to store data, which use "keys" to index elements \Box
       ⇔(instead of numbers): key-value pair
      # e.g., A = \{"BIC":40\} and then type A["BIC"] to get 40
      \# e.g., A = [40,50,60] and then type A[0] to get 40
      # lambda is a function to define a function, which define a parameter then a_{\sqcup}
       →function: https://www.w3schools.com/python/python_lambda.asp
      results_table = summary_col(results=[OLS1,OLS2,OLS3],
                                   float_format='%0.2f',
                                   stars = True,
                                   model_names=['Model 1',
                                                 'Model 2',
                                                'Model 3'],
                                   # info_dict=info_dict,
                                   regressor_order=['Intercept',
                                                     'Top10perc',
                                                     'Private',
                                                     'Outstate',
                                                     'Personal',
                                                     'Expend'])
      results_table.add_title('OLS Regressions')
      print(results_table)
```

OLS Regressions

_____ Model 1 Model 2 Model 3 13.93*** 3.74*** 7.94*** Intercept (0.73)(0.99) (1.43)Top10perc 0.32*** 0.17*** 0.18*** (0.02)(0.02) (0.03)Private 5.50*** 4.86*** (0.97) (0.98)0.00*** 0.00*** Outstate (0.00) (0.00)Personal -0.00*** (0.00)-0.00 Expend (0.00)R-squared 0.21 0.37 0.39

- 0.0.3 HW2: Pick five combinations of the regressors to explain the percent of alumni. The regressors may include interactions of two variables or squared/cubed variables.
 - 1. Run five regressions with each combination
 - 2. Produce a table summarizing the results of your five regressions as above
- 0.0.4 One of you will present your regression results in the coming python session. Please check/interpret your regression results carefully

```
[18]: # Number 1
      import statsmodels.formula.api as smf
      import pandas as pd
      # Define the 5 different regression models
      # Basic Model, Top10perc and Outstate are regressors
      OLS1 = smf.ols('palumni ~ Top10perc + Outstate', data=raw0).fit()
      # Same as above, but adding Private to the regressors
      OLS2 = smf.ols('palumni ~ Top10perc + Outstate + Private', data=raw0).fit()
      # Same as above, but adding Apps to the regressors
      OLS3 = smf.ols('palumni ~ Top10perc + Outstate + Private + Apps', data=raw0).
       →fit()
      # Introducing an interaction term between Top1Operc and Outstate
      OLS4 = smf.ols('palumni ~ Top10perc + Outstate + Top10perc:Outstate',

data=raw0).fit()
      # Adding Expend to the regressors from Model 2
      OLS5 = smf.ols('palumni ~ Top10perc + Outstate + Private + Expend', data=raw0).
       →fit()
```

```
[19]: # Number 2
from statsmodels.iolib.summary2 import summary_col
info_dict={'BIC' : lambda x: x.bic,
    'No. observations' : lambda x: f"{int(x.nobs)}"}
# Building table with each regression result
results_table = summary_col(results=[OLS1, OLS2, OLS3, OLS4, OLS5],
```

```
float_format='%0.2f',
stars = True,
model_names=['Model 1', 'Model 2', 'Model 3',
'Model 4', 'Model 5'],
regressor_order=['Intercept', 'Top10perc',
'Outstate', 'Private',
'Personal', 'Expend', 'Top10perc:
Outstate'])
results_table.add_title('OLS Regressions for Percent of Alumni')
print(results_table)
```

OLS Regressions for Percent of Alumni

```
_____
               Model 1 Model 2 Model 3 Model 4 Model 5
     _____
               4.28*** 3.74*** 5.23*** 3.99** 3.76***
Intercept
               (1.00) (0.99) (1.02)
                                    (1.90) (0.99)
Top10perc
               0.14*** 0.17*** 0.21*** 0.15** 0.18***
               (0.02) (0.02) (0.03)
                                    (0.06) (0.03)
Outstate
               0.00*** 0.00*** 0.00*** 0.00***
               (0.00)
                      (0.00) (0.00)
                                    (0.00) (0.00)
                      5.50*** 2.77**
Private
                                           5.45***
                      (0.97) (1.12)
                                           (0.98)
Expend
                                           -0.00
                                           (0.00)
Top10perc:Outstate
                                    -0.00
                                    (0.00)
                             -0.00***
Apps
                             (0.00)
                             0.39
R-squared
               0.35
                      0.37
                                    0.35
                                           0.37
R-squared Adj.
               0.35
                      0.37
                             0.39
                                    0.35
                                           0.37
Standard errors in parentheses.
* p<.1, ** p<.05, ***p<.01
```

[]: