# **Sports and statistics**

# Lecture 7: Statistics in basketball

#### Goals

- i) Overview of basketball stats
- ii) Possession based metrics

#### **Tools**

- i) Bivariate tools: scatter plots, r
- ii) Efficiency & rate statistics
- iii) Heat maps
- iv) Logistic regression

#### **Overview**

- 1 Possession based metrics
  - -What's wrong with counting stats?
- 2 Shifts in strategy
  - -Increased use of 3-pointer
- 3 Next steps

### Overview & (a few) names to know



- Dean Oliver
- Wayne Winston
- John Hollinger
- Roland Beech

#### **Possession Based Metrics**

"A starting point for analyzing basketball statistics"

-Kubatko, Oliver, Pelton, Rosenbaum

-How to define a possession? For game i,

$$Poss_i = FGA_i + 0.44*FTA_i - OREB_i + TO_i$$

- -More complicated formulas exist: above example shows correlation coefficient of 0.97 with actual possessions
- -Average # in a game?

# Why possessions

#### 1 – Team-level talent adjustments

-Which is better? A 10-point win in a 100 or 150 possession game?

#### 2 – Player level adjustments

-Easier to score 30 points in a 100 or 150 possession game?

#### 3 – Rates > Counting metrics

-Examples in other sports

# Offensive/Defensive ratings

- (5) Offensive Rating  $(ORtg_t) = PTS_t/POSS_t \times 100$
- (6) Defensive Rating  $(DRtg_t) = PTS_o/POSS_o \times 100$

#### -Reflect both efficiency and pace

#### 2015-2016 Hollinger Team Statistics

Season: 2015-2016 Regular Season \$

| Hollinger Stats - Offensive Efficiency |               |       |            |           |      |      |      |         |            |         |         |
|----------------------------------------|---------------|-------|------------|-----------|------|------|------|---------|------------|---------|---------|
| RK                                     | TEAM          | PACE  | <u>AST</u> | <u>TO</u> | ORR  | DRR  | REBR | EFF FG% | <u>TS%</u> | OFF EFF | DEF EFF |
| 1                                      | Golden State  | 102.4 | 20.5       | 13.6      | 24.0 | 76.0 | 51.4 | 55.9    | 59.0       | 112.1   | 100.4   |
| 2                                      | Oklahoma City | 99.5  | 16.7       | 13.9      | 30.5 | 75.8 | 54.3 | 52.2    | 56.4       | 109.6   | 102.9   |
| 3                                      | San Antonio   | 96.4  | 19.2       | 12.7      | 23.0 | 79.8 | 52.6 | 53.2    | 56.8       | 108.7   | 95.5    |
| 4                                      | Cleveland     | 95.4  | 17.3       | 12.7      | 25.3 | 78.6 | 52.1 | 51.8    | 55.2       | 107.1   | 101.2   |
|                                        | Toronto       | 95.4  | 14.9       | 12.5      | 24.4 | 77.6 | 51.4 | 50.4    | 55.4       | 107.1   | 102.9   |
| 6                                      | LA Clippers   | 98.5  | 17.3       | 12.1      | 20.7 | 74.9 | 48.0 | 52.0    | 55.3       | 106.2   | 100.3   |
| 7                                      | Portland      | 97.7  | 16.1       | 13.3      | 26.0 | 76.5 | 51.2 | 51.0    | 54.3       | 105.3   | 104.9   |
| 8                                      | Dallas        | 96.5  | 17.0       | 11.9      | 20.3 | 75.9 | 48.2 | 50.0    | 54.3       | 104.5   | 104.0   |
| 9                                      | Houston       | 100.0 | 16.2       | 14.5      | 24.7 | 73.3 | 48.7 | 51.0    | 55.0       | 104.2   | 106.1   |
| 10                                     | Boston        | 101.3 | 17.8       | 12.2      | 25.1 | 74.6 | 49.4 | 49.0    | 53.1       | 103.9   | 100.2   |
|                                        | Minnesota     | 97.4  | 17.3       | 13.9      | 24.9 | 75.8 | 50.5 | 49.2    | 54.6       | 103.9   | 107.0   |

# Player-specific rate statistics

Field goal percentage (FG%) does not account for three pointers or free throws, so two common alternatives have been developed: effective field goal percentage (eFG%) and true shooting percentage (TS%). These can be measured at the individual or team level.

- (10) FG% = FGM/FGA.
- (11)  $eFG\% = (FGM + 0.5 \times 3PM)/FGA$ .
- (12)  $TS\% = (PTS/2)/(FGA + 0.44 \times FTA)^{16}$ 
  - eFG% and TS% reflect varying shot values (1, 2, 3):
    - Similarities? Differences?
  - Similar rate statistics for rebounds

#### **Extensions**

#### "Four Factors"

- eFG%
- Turnovers per possession
- Offensive rebounding percentage
- Free throw rate (FTM/FGA)

#### "Plus-minus"

- Points (or rating) when player on the court Points (rating) when off the court
- Often adjusted for game or teammates
- Real plus-minus (Deadspin article)

#### **Extensions: shot charts**



#### **Extensions**

# BallR: Interactive NBA Shot Charts with R and Shiny

Make your own shot charts for any NBA player dating back to 1996, code is open-source on GitHub



http://toddwschneider.com/posts/ballr-interactive-nba-shot-charts-with-r-and-shiny/

#### State of current metrics

Using metrics on previous slides, consider what's important as far as:

1 – Importance to winning

2 – Player-specific contributions (less team dependent)

3 – Repeatability

# Adjustments: by shot time



https://www.washingtonpost.com/news/fancy-stats/wp/2015/08/28/ty-lawson-will-help-rockets-rely-less-on-james-harden/

# Adjustments: by shot quality



http://nyloncalculus.com/2015/09/28/introducing-kobe-a-measure-of-shot-quality/

# Adjustments: by era



http://basketballnumbers.com/2010/07/19/measuring-the-quality-of-basketball-in-the-nba-part2-adjusting-for-pace/

# The three pointer



http://grantland.com/the-triangle/is-it-time-to-move-the-nba-3-point-line-back/

# The three pointer



http://grantland.com/the-triangle/is-it-time-to-move-the-nba-3-point-line-back/

#### The future



https://github.com/dcervone/EPVDemo/blob/master/EPV demo.pdf