Analysis & Prediction of Efficiency using Machine Learning

Include ML in the introduction part.

Write a comparative study on Machine Learning Algorithms used focusing on their results and loss scores.

Write a comparative study on Deep Learning architectures used focusing on their results and loss scores.

Pre-processing Dataset

- 1. Encoding Morphology (0D, 1D, 3D)
- 2. Encoding Dye using Label Encoder (we get the number of unique items in dye column and assign a numeric value to each of the item present in the dye column)
- 2. Taking all independent variables/inputs on X-axis by dropping efficiency column and assigning the dependent variable/output/prediction value to Y-axis i.e efficiency.
- 4. Spliting X (morphology,dye,Jsc,Voc,FF,Passivation) & Y(efficiency) into x_train,y_train for training and x test, y test for testing. We are taking 10% of the dataset for testing

X_train consists of 147 rows and 6 columns(morphology,dye,Jsc,Voc,FF,Passivation)

Y_train consists of 147 rows and a single column(efficiency)

Xtest consists of 17 rows and 6 columns and Ytest consists of 17 rows and 1 column

- 4*(optional step done) We check for NaN values/ Empty values in the dataset and remove those for final cleaning of the dataset
- 5. From the box plot we see that FF & Voc are very high in value so we need to normalize

6. Distribution:

scatterplot matrix. It shows pairwise relationships between the features in your dataset, with each individual plot displaying the relationship between two variables.

Helps to Identify correlations or patterns between pairs of features.

7. Confusion Matrix:

11. Random Forest Regression:

MAE: 0.2667951612903227 MSE: 0.1432184942741933 RMSE: 0.37844219409864077 R²: 0.9507440402408169

Adjusted R²: 0.9384300503010212

Model: Random Forest Regressor

	efficiency	Predicted Efficiency
0	0.097	0.25535
1	0.377	0.35091
2	0.641	0.61893
3	0.419	0.60038

Metrics:

Mean Absolute Error (MAE): 0.09697250000000007
Mean Squared Error (MSE): 0.01478529997500001

R² Score: 0.6049114515902756

12. XG Boost Regression:

MAE: 0.3984354337376933 MSE: 0.26734340337399987 RMSE: 0.5170526118046401 R²: 0.9080547803186505

Adjusted R²: 0.8850684753983131

Testing with Own Dataset

Model: XGBoost Regressor efficiency Predicted Efficiency 0 0.097 0.097925 1 0.377 0.205905 2 0.641 0.641142 3 0.419 0.492766

Metrics:

Mean Absolute Error (MAE): 0.06148230314254761 Mean Squared Error (MSE): 0.00867899676481803

R² Score: 0.768082335883439

Deep Learning (ANN)

- 1. We have 6 input nodes for our deep learning model (morphology,dye,Jsc,Voc,FF,Passivation) and 1 output node (efficiency)
- 2. There are 3 different architectures that have been used and experimented with.

(A) Fully Connected Network

6 input nodes -> 32 Neuron(relu activation) -> 16 Neuron(relu activation) -> 1 output node

We used adam optimizer for training and MAE loss function, it was trained for 100,1000,2000 epochs respectively. Batch size of 1 was used and validation split was 30%

Dropout was used after hidden layer 1(20%) and same after hidden layer 2.

Metrics printed for test results are MSE, RMSE, MAE, R^2 (find in table 1)

Actual vs Predicted Values

@2000 epoch

Hidden Layer(2 neurons not enough space here to create 32 circles/neurons and the other 16 in 2nd hidden layer) Output

Inprt 6 Nobe January + Rew Jaroport 20% Jaroport 20% Jaroport 20% Jaroport 20%

(B) Wide & Deep Neural Network

6 input nodes -|> deep branch (32 neurons with ReLU activation) -> deep branch(16 neurons+ReLU activation) |-> wide branch (8 neurons with ReLU activation)

We used adam optimizer for training and MAE loss function, it was trained for 100,1000,2000 epochs respectively. Batch size of 1 was used and validation split was 30%

(find in table 1)

Actual vs Predicted Values

@2000 epoch

Concatenate deep(16 neuron)and wide(8 neuron) and connect to output node (1 node)

ResNet

We used adam optimizer for training and MAE loss function, it was trained for 100,1000,2000 epochs respectively. Batch size of 1 was used and validation split was 30%. (find in table 1)

Take input using 6nodes and pass one output 32 neuron and other one as a skip connection to 16 neurons, after the 32 forward it to 16 and then concatenate this 16 with the first input 16th neurons and pass to output node

@2000 epoch

RESULTS

ANN Model	Epoch	R ²	MSE	MAE	RMSE
	100	0.95568	0.175146	0.35551	0.41850
FCN	1000	0.97389	0.130427	0.29442	0.36128
	2000	0.97465	0.126727	0.30979	0.35598
	100	0.98507	0.05898	0.14066	0.24287
WDN	1000	0.98975	0.05124	0.15960	0.22637
	2000	0.97742	0.11288	0.22695	0.33598
	100	0.98412	0.06273	0.18436	0.25047
RNN	1000	0.98748	0.06255	0.17968	0.25010
	2000	0.98070	0.09648	0.21878	0.31062

100 epoch

Wide and deep

Mean Squared Error (MSE): 0.0003164497629508092

R² Score: 0.9915439201301132

Actual vs Predicted Values:

Actual: 0.097, Predicted: 0.08108794689178467 Actual: 0.377, Predicted: 0.38698825240135193 Actual: 0.641, Predicted: 0.6572178602218628 Actual: 0.419, Predicted: 0.3935084044933319

ResNet

Mean Squared Error (MSE): 0.0005447617742089143

R2 Score: 0.9854430320003497

Actual vs Predicted Values:

Actual: 0.097, Predicted: 0.11939069628715515 Actual: 0.377, Predicted: 0.34834563732147217 Actual: 0.641, Predicted: 0.6173132061958313 Actual: 0.419, Predicted: 0.4361920654773712

FCN

Mean Squared Error (MSE): 0.031974862083077746

R2 Score: 0.1455768995309603

Actual vs Predicted Values:

Actual: 0.097, Predicted: 0.42393428087234497 Actual: 0.377, Predicted: 0.4858217239379883 Actual: 0.641, Predicted: 0.6878960132598877 Actual: 0.419, Predicted: 0.5024986267089844

1000 epoch

Wide and Deep

Mean Squared Error (MSE): 0.0021335593660452654

R² Score: 0.9429876381066259

Actual vs Predicted Values:

Actual: 0.097, Predicted: 0.04678267240524292 Actual: 0.377, Predicted: 0.3225633502006531 Actual: 0.641, Predicted: 0.6507893800735474 Actual: 0.419, Predicted: 0.3646559417247772

ResNet

Mean Squared Error (MSE): 0.0035707233949141765

R² Score: 0.9045841528237722

Actual vs Predicted Values:

Actual: 0.097, Predicted: 0.14516222476959229 Actual: 0.377, Predicted: 0.36071228981018066 Actual: 0.641, Predicted: 0.6442612409591675 Actual: 0.419, Predicted: 0.31089186668395996

FCN

Mean Squared Error (MSE): 0.24828565984249865

R² Score: -5.634618242713288

Actual vs Predicted Values:

Actual: 0.097, Predicted: 0.7092263698577881 Actual: 0.377, Predicted: 0.8568938970565796 Actual: 0.641, Predicted: 1.1071228981018066 Actual: 0.419, Predicted: 0.8322224617004395

2000 epoch

Wide and Deep

Mean Squared Error (MSE): 0.0004987977

R2 Score: 0.986671

Actual vs Predicted Values:

Actual: 0.097, Predicted: 0.111105 Actual: 0.377, Predicted: 0.381355 Actual: 0.641, Predicted: 0.666370 Actual: 0.419, Predicted: 0.45266

ResNet

Mean Squared Error (MSE): 0.000098338231

R² Score: 0.997372207 Actual vs Predicted Values:

Actual: 0.097, Predicted: 0.107581 Actual: 0.377, Predicted: 0.38455 Actual: 0.641, Predicted: 0.643644 Actual: 0.419, Predicted: 0.4337

FCN

Mean Squared Error (MSE): 0.0444087

R2 Score: -0.18667

Actual vs Predicted Values:

Actual: 0.097, Predicted: 0.403018 Actual: 0.377, Predicted: 0.51551008 Actual: 0.641, Predicted: 0.761286 Actual: 0.419, Predicted: 0.6433515