Thermodynamics & Statistical Physics Chapter 3. Phase transition of single-component system

Yuan-Chuan Zou zouyc@hust.edu.cn

School of Physics, Huazhong University of Science and Technology

December 30, 2013

Table of contents

- Phase Transition of Single-Component System
 - 3.1 Criterion of thermal equilibrium
 - 3.2 Basic equations of open system
 - 3.3 Equilibrium of single-component multi-phase system
 - 3.4 Properties of equilibrium of s-c multi-phase system
 - 3.5 Critical point and phase change between gas and liquid
 - 3.7 Classification of the phase transition
 - 3.9 Landau's approximation for the continuous phase transition

How to determine the thermal equilibrium mathematically?

- How to determine the thermal equilibrium mathematically?
- 2nd law of thermodynamics

- How to determine the thermal equilibrium mathematically?
- 2nd law of thermodynamics
 - \rightarrow Entropy never decreases for isolated system.

- How to determine the thermal equilibrium mathematically?
- 2nd law of thermodynamics
 - → Entropy never decreases for isolated system.
 - \rightarrow System is directed in increasing the entropy.

- How to determine the thermal equilibrium mathematically?
- 2nd law of thermodynamics
 - \rightarrow Entropy never decreases for isolated system.
 - \rightarrow System is directed in increasing the entropy.
 - \rightarrow In the thermal equilibrium state, entropy is the maximum.

- How to determine the thermal equilibrium mathematically?
- 2nd law of thermodynamics
 - → Entropy never decreases for isolated system.
 - \rightarrow System is directed in increasing the entropy.
 - \rightarrow In the thermal equilibrium state, entropy is the maximum.
 - \rightarrow The criterion: virtual variation $\Delta S \leqslant 0$

- How to determine the thermal equilibrium mathematically?
- 2nd law of thermodynamics
 - \rightarrow Entropy never decreases for isolated system.
 - \rightarrow System is directed in increasing the entropy.
 - \rightarrow In the thermal equilibrium state, entropy is the maximum.
 - \rightarrow The criterion: virtual variation $\Delta S \leqslant 0$
- $\Delta S = 0$ neutral equilibrium,

- How to determine the thermal equilibrium mathematically?
- 2nd law of thermodynamics
 - \rightarrow Entropy never decreases for isolated system.
 - \rightarrow System is directed in increasing the entropy.
 - \rightarrow In the thermal equilibrium state, entropy is the maximum.
 - \rightarrow The criterion: virtual variation $\Delta S \leqslant 0$
- $\Delta S = 0$ neutral equilibrium, $\Delta S < 0$ stable equilibrium.

$$\Delta S = \sum_{i} \frac{\partial S}{\partial x_i} \delta x_i + \frac{1}{2} \sum_{i,j} \frac{\partial^2 S}{\partial x_i \partial x_j} \delta x_i \delta x_j$$

$$\Delta S = \sum_{i} \frac{\partial S}{\partial x_{i}} \delta x_{i} + \frac{1}{2} \sum_{i,j} \frac{\partial^{2} S}{\partial x_{i} \partial x_{j}} \delta x_{i} \delta x_{j}$$
$$\equiv \delta S + \frac{1}{2} \delta^{2} S$$

• 2nd Taylor expansion of ΔS :

$$\Delta S = \sum_{i} \frac{\partial S}{\partial x_{i}} \delta x_{i} + \frac{1}{2} \sum_{i,j} \frac{\partial^{2} S}{\partial x_{i} \partial x_{j}} \delta x_{i} \delta x_{j}$$
$$\equiv \delta S + \frac{1}{2} \delta^{2} S$$

• $\delta S = 0$, exists extremum;

• 2nd Taylor expansion of ΔS :

$$\Delta S = \sum_{i} \frac{\partial S}{\partial x_{i}} \delta x_{i} + \frac{1}{2} \sum_{i,j} \frac{\partial^{2} S}{\partial x_{i} \partial x_{j}} \delta x_{i} \delta x_{j}$$
$$\equiv \delta S + \frac{1}{2} \delta^{2} S$$

• $\delta S = 0$, exists extremum; $\delta^2 S < 0$, exists maximum,

• 2nd Taylor expansion of ΔS :

$$\Delta S = \sum_{i} \frac{\partial S}{\partial x_{i}} \delta x_{i} + \frac{1}{2} \sum_{i,j} \frac{\partial^{2} S}{\partial x_{i} \partial x_{j}} \delta x_{i} \delta x_{j}$$
$$\equiv \delta S + \frac{1}{2} \delta^{2} S$$

• $\delta S=0$, exists extremum; $\delta^2 S<0$, exists maximum, and if there are several maxima, the biggest one is the stable equilibrium state, and the others are semi-stable state.

• 2nd Taylor expansion of ΔS :

$$\Delta S = \sum_{i} \frac{\partial S}{\partial x_{i}} \delta x_{i} + \frac{1}{2} \sum_{i,j} \frac{\partial^{2} S}{\partial x_{i} \partial x_{j}} \delta x_{i} \delta x_{j}$$
$$\equiv \delta S + \frac{1}{2} \delta^{2} S$$

• $\delta S = 0$, exists extremum;

 $\delta^2 S < 0$, exists maximum, and if there are several maxima, the biggest one is the stable equilibrium state, and the others are semi-stable state.

If $\delta S = 0$ and $\delta^2 S = 0$, higher order is needed.

$$\Delta S = \sum_{i} \frac{\partial S}{\partial x_{i}} \delta x_{i} + \frac{1}{2} \sum_{i,j} \frac{\partial^{2} S}{\partial x_{i} \partial x_{j}} \delta x_{i} \delta x_{j}$$
$$\equiv \delta S + \frac{1}{2} \delta^{2} S$$

- $\delta S=0$, exists extremum; $\delta^2 S<0$, exists maximum, and if there are several maxima, the biggest one is the stable equilibrium state, and the others are semi-stable state. If $\delta S=0$ and $\delta^2 S=0$, higher order is needed.
- Other criterion:

$$\Delta S = \sum_{i} \frac{\partial S}{\partial x_{i}} \delta x_{i} + \frac{1}{2} \sum_{i,j} \frac{\partial^{2} S}{\partial x_{i} \partial x_{j}} \delta x_{i} \delta x_{j}$$
$$\equiv \delta S + \frac{1}{2} \delta^{2} S$$

- $\delta S=0$, exists extremum; $\delta^2 S<0$, exists maximum, and if there are several maxima, the biggest one is the stable equilibrium state, and the others are semi-stable state. If $\delta S=0$ and $\delta^2 S=0$, higher order is needed.
- Other criterion: in isothermal and isochroric process $\Delta F>0$,

$$\Delta S = \sum_{i} \frac{\partial S}{\partial x_{i}} \delta x_{i} + \frac{1}{2} \sum_{i,j} \frac{\partial^{2} S}{\partial x_{i} \partial x_{j}} \delta x_{i} \delta x_{j}$$
$$\equiv \delta S + \frac{1}{2} \delta^{2} S$$

- $\delta S = 0$. exists extremum: $\delta^2 S < 0$, exists maximum, and if there are several maxima, the biggest one is the stable equilibrium state, and the others are semi-stable state. If $\delta S = 0$ and $\delta^2 S = 0$, higher order is needed.
- Other criterion: in isothermal and isochroric process $\Delta F > 0$, in isothermal and isobaric process: $\Delta G > 0, \dots$

Example: Condition for the isolated uniform thermal equilibrium state and the stability criterion.

• The isolated system's small part (T, p), and the other (almost whole) part (T_0, p_0) ,

• The isolated system's small part (T,p), and the other (almost whole) part (T_0,p_0) , a virtual variation $\delta U, \delta V$ and $\delta U_0, \delta V_0$.

- The isolated system's small part (T,p), and the other (almost whole) part (T_0,p_0) , a virtual variation $\delta U, \delta V$ and $\delta U_0, \delta V_0$.
- The whole system does not change (constraint): $\delta U + \delta U_0 = 0$, $\delta V + \delta V_0 = 0$.

- The isolated system's small part (T,p), and the other (almost whole) part (T_0,p_0) , a virtual variation $\delta U, \delta V$ and $\delta U_0, \delta V_0$.
- The whole system does not change (constraint): $\delta U + \delta U_0 = 0$, $\delta V + \delta V_0 = 0$.
- Total change of the entropy: $\Delta \tilde{S} = \Delta S + \Delta S_0$.

- The isolated system's small part (T,p), and the other (almost whole) part (T_0,p_0) , a virtual variation $\delta U, \delta V$ and $\delta U_0, \delta V_0$.
- The whole system does not change (constraint): $\delta U + \delta U_0 = 0$, $\delta V + \delta V_0 = 0$.
- Total change of the entropy: $\Delta \tilde{S} = \Delta S + \Delta S_0$.
- Condition for equilibrium: $\Delta \tilde{S} < 0$, i.e., $\Delta S + \Delta S_0 < 0$, or $\delta \tilde{S} = 0, \delta^2 \tilde{S} < 0$.

• Basic equation: $dS = \frac{dU + pdV}{T}$, then

• Basic equation: $\mathrm{d}S = \frac{\mathrm{d}U + p\mathrm{d}V}{T}$, then $\delta \tilde{S} = \frac{\delta U + p\delta V}{T} + \frac{\delta U_0 + p_0\delta V_0}{T_0}$

• Basic equation: $\mathrm{d}S = \frac{\mathrm{d}U + p\mathrm{d}V}{T}$, then $\delta \tilde{S} = \frac{\delta U + p\delta V}{T} + \frac{\delta U_0 + p_0\delta V_0}{T_0} = \frac{\delta U + p\delta V}{T} + \frac{-\delta U - p_0\delta V}{T_0}$

• Basic equation: $\mathrm{d}S = \frac{\mathrm{d}U + p\mathrm{d}V}{T}$, then $\delta \tilde{S} = \frac{\delta U + p\delta V}{T} + \frac{\delta U_0 + p_0\delta V_0}{T_0} = \frac{\delta U + p\delta V}{T} + \frac{-\delta U - p_0\delta V}{T_0}$ $= \delta U \left(\frac{1}{T} - \frac{1}{T_0}\right) + \delta V \left(\frac{p}{T} - \frac{p_0}{T_0}\right)$

• Basic equation: $\mathrm{d}S = \frac{\mathrm{d}U + p\mathrm{d}V}{T}$, then $\delta \tilde{S} = \frac{\delta U + p\delta V}{T} + \frac{\delta U_0 + p_0\delta V_0}{T_0} = \frac{\delta U + p\delta V}{T} + \frac{-\delta U - p_0\delta V}{T_0} = \delta U \left(\frac{1}{T} - \frac{1}{T_0}\right) + \delta V \left(\frac{p}{T} - \frac{p_0}{T_0}\right) = 0.$

• Basic equation: $dS = \frac{dU + pdV}{T}$, then $\delta \tilde{S} = \frac{\delta U + p\delta V}{T} + \frac{\delta U_0 + p_0 \delta V_0}{T_0} = \frac{\delta U + p\delta V}{T} + \frac{-\delta U - p_0 \delta V}{T_0}$ $= \delta U \left(\frac{1}{T} - \frac{1}{T_0}\right) + \delta V \left(\frac{p}{T} - \frac{p_0}{T_0}\right) = 0.$ • $\therefore \delta U$ and δV are independent, $\therefore T = T_0, p = p_0$.

Yuan-Chuan Zou zouyc@hust.edu.cn (HUS

- Basic equation: $dS = \frac{dU + pdV}{T}$, then $\delta \tilde{S} = \frac{\delta U + p\delta V}{T} + \frac{\delta U_0 + p_0 \delta V_0}{T_0} = \frac{\delta U + p\delta V}{T} + \frac{-\delta U p_0 \delta V}{T_0}$ $= \delta U \left(\frac{1}{T} \frac{1}{T_0} \right) + \delta V \left(\frac{p}{T} \frac{p_0}{T_0} \right) = 0.$ $\therefore \delta U$ and δV are independent, $\therefore T = T_0, p = p_0$.
- Stability criterion: $\delta^2 \tilde{S} < 0$.

- Basic equation: $\mathrm{d}S = \frac{\mathrm{d}U + p\mathrm{d}V}{T}$, then $\delta \tilde{S} = \frac{\delta U + p\delta V}{T} + \frac{\delta U_0 + p_0\delta V_0}{T_0} = \frac{\delta U + p\delta V}{T} + \frac{-\delta U p_0\delta V}{T_0}$ $= \delta U \left(\frac{1}{T} \frac{1}{T_0}\right) + \delta V \left(\frac{p}{T} \frac{p_0}{T_0}\right) = 0.$
- : δU and δV are independent, : $T = T_0, p = p_0$.
- Stability criterion: $\delta^2 \tilde{S} < 0$.
- $\delta^2 S = \frac{\partial^2 S}{\partial U^2} (\delta U)^2 + 2 \frac{\partial^2 S}{\partial U \partial V} \delta U \delta V + \frac{\partial^2 S}{\partial V^2} (\delta V)^2$,

- Basic equation: $\mathrm{d}S = \frac{\mathrm{d}U + p\mathrm{d}V}{T}$, then $\delta \tilde{S} = \frac{\delta U + p\delta V}{T} + \frac{\delta U_0 + p_0\delta V_0}{T_0} = \frac{\delta U + p\delta V}{T} + \frac{-\delta U p_0\delta V}{T_0}$ $= \delta U \left(\frac{1}{T} \frac{1}{T_0}\right) + \delta V \left(\frac{p}{T} \frac{p_0}{T_0}\right) = 0.$
- : δU and δV are independent, : $T = T_0, p = p_0$.
- Stability criterion: $\delta^2 \tilde{S} < 0$.
- $\delta^2 S = \frac{\partial^2 S}{\partial U^2} (\delta U)^2 + 2 \frac{\partial^2 S}{\partial U \partial V} \delta U \delta V + \frac{\partial^2 S}{\partial V^2} (\delta V)^2,$ $\delta^2 S_0 = \frac{\partial^2 S_0}{\partial U_0^2} (\delta U_0)^2 + 2 \frac{\partial^2 S_0}{\partial U_0 \partial V_0} \delta U_0 \delta V_0 + \frac{\partial^2 S_0}{\partial V_0^2} (\delta V_0)^2.$

- Basic equation: $\mathrm{d}S = \frac{\mathrm{d}U + p\mathrm{d}V}{T}$, then $\delta \tilde{S} = \frac{\delta U + p\delta V}{T} + \frac{\delta U_0 + p_0\delta V_0}{T_0} = \frac{\delta U + p\delta V}{T} + \frac{-\delta U p_0\delta V}{T_0}$ $= \delta U \left(\frac{1}{T} \frac{1}{T_0}\right) + \delta V \left(\frac{p}{T} \frac{p_0}{T_0}\right) = 0.$
- : δU and δV are independent, : $T = T_0, p = p_0$.
- Stability criterion: $\delta^2 \tilde{S} < 0$.
- $\delta^2 S = \frac{\partial^2 S}{\partial U^2} (\delta U)^2 + 2 \frac{\partial^2 S}{\partial U \partial V} \delta U \delta V + \frac{\partial^2 S}{\partial V^2} (\delta V)^2,$ $\delta^2 S_0 = \frac{\partial^2 S_0}{\partial U_0^2} (\delta U_0)^2 + 2 \frac{\partial^2 S_0}{\partial U_0 \partial V_0} \delta U_0 \delta V_0 + \frac{\partial^2 S_0}{\partial V_0^2} (\delta V_0)^2.$
- The intensive quantities for the two system: $s \sim s_0, u \sim u_0, v \sim v_0$, where S = ns.

- Basic equation: $\mathrm{d}S = \frac{\mathrm{d}U + p\mathrm{d}V}{T}$, then $\delta \tilde{S} = \frac{\delta U + p\delta V}{T} + \frac{\delta U_0 + p_0\delta V_0}{T_0} = \frac{\delta U + p\delta V}{T} + \frac{-\delta U p_0\delta V}{T_0}$ $= \delta U \left(\frac{1}{T} \frac{1}{T_0}\right) + \delta V \left(\frac{p}{T} \frac{p_0}{T_0}\right) = 0.$
- : δU and δV are independent, : $T = T_0, p = p_0$.
- Stability criterion: $\delta^2 \tilde{S} < 0$.
- $\delta^2 S = \frac{\partial^2 S}{\partial U^2} (\delta U)^2 + 2 \frac{\partial^2 S}{\partial U \partial V} \delta U \delta V + \frac{\partial^2 S}{\partial V^2} (\delta V)^2,$ $\delta^2 S_0 = \frac{\partial^2 S_0}{\partial U_0^2} (\delta U_0)^2 + 2 \frac{\partial^2 S_0}{\partial U_0 \partial V_0} \delta U_0 \delta V_0 + \frac{\partial^2 S_0}{\partial V_0^2} (\delta V_0)^2.$
- The intensive quantities for the two system:
 - $s \sim s_0, u \sim u_0, v \sim v_0$, where S = ns.
- $\frac{\partial^2 S}{\partial U^2} = \frac{1}{n} \frac{\partial^2 S}{\partial u^2}$, $(\delta U = -\delta U_0, \ \delta V = -\delta V_0.)$

- Basic equation: $dS = \frac{dU + pdV}{T}$, then $\delta \tilde{S} = \frac{\delta U + p\delta V}{T} + \frac{\delta U_0 + p_0 \delta V_0}{T_0} = \frac{\delta U + p\delta V}{T} + \frac{-\delta U p_0 \delta V}{T_0}$ $= \delta U \left(\frac{1}{T} \frac{1}{T_0}\right) + \delta V \left(\frac{p}{T} \frac{p_0}{T_0}\right) = 0.$
- : δU and δV are independent, : $T = T_0, p = p_0$.
- Stability criterion: $\delta^2 \tilde{S} < 0$.
- $\delta^2 S = \frac{\partial^2 S}{\partial U^2} (\delta U)^2 + 2 \frac{\partial^2 S}{\partial U \partial V} \delta U \delta V + \frac{\partial^2 S}{\partial V^2} (\delta V)^2,$ $\delta^2 S_0 = \frac{\partial^2 S_0}{\partial U_0^2} (\delta U_0)^2 + 2 \frac{\partial^2 S_0}{\partial U_0 \partial V_0} \delta U_0 \delta V_0 + \frac{\partial^2 S_0}{\partial V_0^2} (\delta V_0)^2.$
- The intensive quantities for the two system:
 - $s \sim s_0, u \sim u_0, v \sim v_0$, where S = ns.
- $\frac{\partial^2 S}{\partial U^2} = \frac{1}{n} \frac{\partial^2 s}{\partial u^2}$, $(\delta U = -\delta U_0, \, \delta V = -\delta V_0.)$

•
$$\delta^2 \tilde{S} \simeq \delta^2 S = \frac{\partial^2 S}{\partial U^2} (\delta U)^2 + 2 \frac{\partial^2 S}{\partial U \partial V} \delta U \delta V + \frac{\partial^2 S}{\partial V^2} (\delta V)^2$$
.

•
$$\delta^2 \tilde{S} \simeq \delta^2 S = \frac{\partial^2 S}{\partial U^2} (\delta U)^2 + 2 \frac{\partial^2 S}{\partial U \partial V} \delta U \delta V + \frac{\partial^2 S}{\partial V^2} (\delta V)^2.$$

$$= \left[\frac{\partial}{\partial U} \frac{\partial S}{\partial U} \delta U + \frac{\partial}{\partial V} \frac{\partial S}{\partial U} \delta V \right] \delta U + \left[\frac{\partial}{\partial U} \frac{\partial S}{\partial V} \delta U + \frac{\partial}{\partial V} \frac{\partial S}{\partial V} \delta V \right] \delta V,$$

•
$$\delta^2 \tilde{S} \simeq \delta^2 S = \frac{\partial^2 S}{\partial U^2} (\delta U)^2 + 2 \frac{\partial^2 S}{\partial U \partial V} \delta U \delta V + \frac{\partial^2 S}{\partial V^2} (\delta V)^2.$$

$$= \left[\frac{\partial}{\partial U} \frac{\partial S}{\partial U} \delta U + \frac{\partial}{\partial V} \frac{\partial S}{\partial U} \delta V \right] \delta U + \left[\frac{\partial}{\partial U} \frac{\partial S}{\partial V} \delta U + \frac{\partial}{\partial V} \frac{\partial S}{\partial V} \delta V \right] \delta V,$$

$$\left(dS = \frac{dU + pdV}{T} \Rightarrow \left(\frac{\partial S}{\partial U} \right)_V = \frac{1}{T}, \left(\frac{\partial S}{\partial V} \right)_U = \frac{p}{T}. \right)$$

$$\begin{split} \bullet \ \delta^2 \tilde{S} &\simeq \delta^2 S = \frac{\partial^2 S}{\partial U^2} (\delta U)^2 + 2 \frac{\partial^2 S}{\partial U \partial V} \delta U \delta V + \frac{\partial^2 S}{\partial V^2} (\delta V)^2. \\ &= \left[\frac{\partial}{\partial U} \frac{\partial S}{\partial U} \delta U + \frac{\partial}{\partial V} \frac{\partial S}{\partial U} \delta V \right] \delta U \\ &+ \left[\frac{\partial}{\partial U} \frac{\partial S}{\partial V} \delta U + \frac{\partial}{\partial V} \frac{\partial S}{\partial V} \delta V \right] \delta V, \\ \left(\mathrm{d}S &= \frac{\mathrm{d}U + p \mathrm{d}V}{T} \Rightarrow \left(\frac{\partial S}{\partial U} \right)_V = \frac{1}{T}, \left(\frac{\partial S}{\partial V} \right)_U = \frac{p}{T}. \right) \\ \bullet \ \delta^2 S &= \left[\frac{\partial}{\partial U} \left(\frac{1}{T} \right) \delta U + \frac{\partial}{\partial V} \left(\frac{1}{T} \right) \delta V \right] \delta U \\ &+ \left[\frac{\partial}{\partial U} \left(\frac{p}{T} \right) \delta U + \frac{\partial}{\partial V} \left(\frac{p}{T} \right) \delta V \right] \delta V \end{split}$$

•
$$\delta^2 \tilde{S} \simeq \delta^2 S = \frac{\partial^2 S}{\partial U^2} (\delta U)^2 + 2 \frac{\partial^2 S}{\partial U \partial V} \delta U \delta V + \frac{\partial^2 S}{\partial V^2} (\delta V)^2.$$

$$= \left[\frac{\partial}{\partial U} \frac{\partial S}{\partial U} \delta U + \frac{\partial}{\partial V} \frac{\partial S}{\partial U} \delta V \right] \delta U$$

$$+ \left[\frac{\partial}{\partial U} \frac{\partial S}{\partial V} \delta U + \frac{\partial}{\partial V} \frac{\partial S}{\partial V} \delta V \right] \delta V,$$

$$\left(dS = \frac{dU + pdV}{T} \Rightarrow \left(\frac{\partial S}{\partial U} \right)_V = \frac{1}{T}, \left(\frac{\partial S}{\partial V} \right)_U = \frac{p}{T}. \right)$$
• $\delta^2 S = \left[\frac{\partial}{\partial U} \left(\frac{1}{T} \right) \delta U + \frac{\partial}{\partial V} \left(\frac{1}{T} \right) \delta V \right] \delta U$

$$+ \left[\frac{\partial}{\partial U} \left(\frac{p}{T} \right) \delta U + \frac{\partial}{\partial V} \left(\frac{p}{T} \right) \delta V \right] \delta V$$

$$= \delta \left(\frac{1}{T} \right) \delta U + \delta \left(\frac{p}{T} \right) \delta V.$$

•
$$\delta^2 \tilde{S} \simeq \delta^2 S = \frac{\partial^2 S}{\partial U^2} (\delta U)^2 + 2 \frac{\partial^2 S}{\partial U \partial V} \delta U \delta V + \frac{\partial^2 S}{\partial V^2} (\delta V)^2$$
.

$$= \left[\frac{\partial}{\partial U} \frac{\partial S}{\partial U} \delta U + \frac{\partial}{\partial V} \frac{\partial S}{\partial U} \delta V \right] \delta U + \left[\frac{\partial}{\partial U} \frac{\partial S}{\partial V} \delta U + \frac{\partial}{\partial V} \frac{\partial S}{\partial V} \delta V \right] \delta V,$$

$$\left(dS = \frac{dU + p dV}{T} \Rightarrow \left(\frac{\partial S}{\partial U} \right)_V = \frac{1}{T}, \left(\frac{\partial S}{\partial V} \right)_U = \frac{p}{T}. \right)$$
• $\delta^2 S = \left[\frac{\partial}{\partial U} \left(\frac{1}{T} \right) \delta U + \frac{\partial}{\partial V} \left(\frac{1}{T} \right) \delta V \right] \delta U + \left[\frac{\partial}{\partial U} \left(\frac{p}{T} \right) \delta U + \frac{\partial}{\partial V} \left(\frac{p}{T} \right) \delta V \right] \delta V = \delta \left(\frac{1}{T} \right) \delta U + \delta \left(\frac{p}{T} \right) \delta V.$

• Convert to (T, V):

•
$$\delta^2 \tilde{S} \simeq \delta^2 S = \frac{\partial^2 S}{\partial U^2} (\delta U)^2 + 2 \frac{\partial^2 S}{\partial U \partial V} \delta U \delta V + \frac{\partial^2 S}{\partial V^2} (\delta V)^2$$
.

$$= \left[\frac{\partial}{\partial U} \frac{\partial S}{\partial U} \delta U + \frac{\partial}{\partial V} \frac{\partial S}{\partial U} \delta V \right] \delta U + \left[\frac{\partial}{\partial U} \frac{\partial S}{\partial V} \delta U + \frac{\partial}{\partial V} \frac{\partial S}{\partial V} \delta V \right] \delta V,$$

$$\left(dS = \frac{dU + pdV}{T} \Rightarrow \left(\frac{\partial S}{\partial U} \right)_V = \frac{1}{T}, \left(\frac{\partial S}{\partial V} \right)_U = \frac{p}{T}. \right)$$
• $\delta^2 S = \left[\frac{\partial}{\partial U} \left(\frac{1}{T} \right) \delta U + \frac{\partial}{\partial V} \left(\frac{1}{T} \right) \delta V \right] \delta U + \left[\frac{\partial}{\partial U} \left(\frac{p}{T} \right) \delta U + \frac{\partial}{\partial V} \left(\frac{p}{T} \right) \delta V \right] \delta V = \delta \left(\frac{1}{T} \right) \delta U + \delta \left(\frac{p}{T} \right) \delta V.$

- Convert to (T, V):
- $\delta U = \left(\frac{\partial U}{\partial T}\right)_V \delta T + \left(\frac{\partial U}{\partial V}\right)_T \delta V$

$$\begin{split} \bullet \ \delta^2 \tilde{S} &\simeq \delta^2 S = \frac{\partial^2 S}{\partial U^2} (\delta U)^2 + 2 \frac{\partial^2 S}{\partial U \partial V} \delta U \delta V + \frac{\partial^2 S}{\partial V^2} (\delta V)^2. \\ &= \left[\frac{\partial}{\partial U} \frac{\partial S}{\partial U} \delta U + \frac{\partial}{\partial V} \frac{\partial S}{\partial U} \delta V \right] \delta U \\ &+ \left[\frac{\partial}{\partial U} \frac{\partial S}{\partial V} \delta U + \frac{\partial}{\partial V} \frac{\partial S}{\partial V} \delta V \right] \delta V, \\ \left(\mathrm{d} S &= \frac{\mathrm{d} U + p \mathrm{d} V}{T} \Rightarrow \left(\frac{\partial S}{\partial U} \right)_V = \frac{1}{T}, \left(\frac{\partial S}{\partial V} \right)_U = \frac{p}{T}. \right) \\ \bullet \ \delta^2 S &= \left[\frac{\partial}{\partial U} \left(\frac{1}{T} \right) \delta U + \frac{\partial}{\partial V} \left(\frac{1}{T} \right) \delta V \right] \delta U \\ &+ \left[\frac{\partial}{\partial U} \left(\frac{p}{T} \right) \delta U + \frac{\partial}{\partial V} \left(\frac{p}{T} \right) \delta V \right] \delta V \\ &= \delta \left(\frac{1}{T} \right) \delta U + \delta \left(\frac{p}{T} \right) \delta V. \end{split}$$

- Convert to (T, V):
- $\delta U = \left(\frac{\partial U}{\partial T}\right)_V \delta T + \left(\frac{\partial U}{\partial V}\right)_T \delta V$ $= C_V \delta T + \left[T \left(\frac{\partial p}{\partial T} \right)_{TV} - p \right] \delta V.$

$$\delta^{2}S = \delta\left(\frac{1}{T}\right)\delta U + \delta\left(\frac{p}{T}\right)\delta V,$$

$$\delta U = C_{V}\delta T + \left[T\left(\frac{\partial p}{\partial T}\right)_{V} - p\right]\delta V$$

•
$$\delta \frac{1}{T} = \left(\frac{\partial}{\partial T} \frac{1}{T}\right)_V \delta T + \left(\frac{\partial}{\partial V} \frac{1}{T}\right)_T \delta V$$

$$\delta^{2}S = \delta\left(\frac{1}{T}\right)\delta U + \delta\left(\frac{p}{T}\right)\delta V,$$

$$\delta U = C_{V}\delta T + \left[T\left(\frac{\partial p}{\partial T}\right)_{V} - p\right]\delta V$$

•
$$\delta \frac{1}{T} = \left(\frac{\partial}{\partial T} \frac{1}{T}\right)_V \delta T + \left(\frac{\partial}{\partial V} \frac{1}{T}\right)_T \delta V = -\frac{1}{T^2} \delta T$$
.

$$\delta^2 S = \delta \left(\frac{1}{T}\right) \delta U + \delta \left(\frac{p}{T}\right) \delta V,$$

$$\delta U = C_V \delta T + \left[T \left(\frac{\partial p}{\partial T} \right)_V - p \right] \delta V$$

•
$$\delta \frac{1}{T} = \left(\frac{\partial}{\partial T} \frac{1}{T}\right)_V \delta T + \left(\frac{\partial}{\partial V} \frac{1}{T}\right)_T \delta V = -\frac{1}{T^2} \delta T.$$

•
$$\delta \frac{p}{T} = \left(\frac{\partial}{\partial T} \frac{p}{T}\right)_V \delta T + \left(\frac{\partial}{\partial V} \frac{p}{T}\right)_T \delta V$$

$$\delta^{2}S = \delta\left(\frac{1}{T}\right)\delta U + \delta\left(\frac{p}{T}\right)\delta V,$$

$$\delta U = C_{V}\delta T + \left[T\left(\frac{\partial p}{\partial T}\right)_{V} - p\right]\delta V$$

$$\delta^{2}S = \delta\left(\frac{1}{T}\right)\delta U + \delta\left(\frac{p}{T}\right)\delta V,$$

$$\delta U = C_{V}\delta T + \left[T\left(\frac{\partial p}{\partial T}\right)_{V} - p\right]\delta V$$

$$\begin{split} \bullet \ \delta \frac{1}{T} &= \left(\frac{\partial}{\partial T} \frac{1}{T} \right)_{V} \delta T + \left(\frac{\partial}{\partial V} \frac{1}{T} \right)_{T} \delta V = -\frac{1}{T^{2}} \delta T. \\ \bullet \ \delta \frac{p}{T} &= \left(\frac{\partial}{\partial T} \frac{p}{T} \right)_{V} \delta T + \left(\frac{\partial}{\partial V} \frac{p}{T} \right)_{T} \delta V \\ &= \left[p \left(\frac{\partial}{\partial T} \frac{1}{T} \right)_{V} + \frac{1}{T} \left(\frac{\partial p}{\partial T} \right)_{V} \right] \delta T \\ &+ \left[p \left(\frac{\partial}{\partial V} \frac{1}{T} \right)_{T} + \frac{1}{T} \left(\frac{\partial p}{\partial V} \right)_{T} \right] \delta V \\ &= \left[-\frac{p}{T^{2}} + \frac{1}{T} \left(\frac{\partial p}{\partial T} \right)_{V} \right] \delta T + \frac{1}{T} \left(\frac{\partial p}{\partial V} \right)_{T} \delta V \end{split}$$

$$\delta^2 S = \delta\left(\frac{1}{T}\right)\delta U + \delta\left(\frac{p}{T}\right)\delta V,$$

$$\delta U = C_V \delta T + \left[T \left(\frac{\partial p}{\partial T} \right)_V - p \right] \delta V$$

•
$$\delta \frac{1}{T} = \left(\frac{\partial}{\partial T} \frac{1}{T}\right)_V \delta T + \left(\frac{\partial}{\partial V} \frac{1}{T}\right)_T \delta V = -\frac{1}{T^2} \delta T$$
.

•
$$\delta \frac{p}{T} = \left(\frac{\partial}{\partial T} \frac{p}{T}\right)_{V} \delta T + \left(\frac{\partial}{\partial V} \frac{p}{T}\right)_{T} \delta V$$

$$= \left[p \left(\frac{\partial}{\partial T} \frac{1}{T}\right)_{V} + \frac{1}{T} \left(\frac{\partial p}{\partial T}\right)_{V}\right] \delta T$$

$$+ \left[p \left(\frac{\partial}{\partial V} \frac{1}{T}\right)_{T} + \frac{1}{T} \left(\frac{\partial p}{\partial V}\right)_{T}\right] \delta V$$

$$= \left[-\frac{p}{T^{2}} + \frac{1}{T} \left(\frac{\partial p}{\partial T}\right)_{V}\right] \delta T + \frac{1}{T} \left(\frac{\partial p}{\partial V}\right)_{T} \delta V$$

$$= \frac{1}{T^{2}} \left[T \left(\frac{\partial p}{\partial T}\right)_{V} - p\right] \delta T + \frac{1}{T} \left(\frac{\partial p}{\partial V}\right)_{T} \delta V.$$

Yuan-Chuan Zou zouyc@hust.edu.cn (HUS The

•
$$\delta^2 \tilde{S} \simeq \delta^2 S = -\frac{1}{T^2} \delta T \left\{ C_V \delta T + \left[T \left(\frac{\partial p}{\partial T} \right)_V - p \right] \delta V \right\} + \left\{ \frac{1}{T^2} \left[T \left(\frac{\partial p}{\partial T} \right)_V - p \right] \delta T + \frac{1}{T} \left(\frac{\partial p}{\partial V} \right)_T \delta V \right\} \delta V$$

•
$$\delta^2 \tilde{S} \simeq \delta^2 S = -\frac{1}{T^2} \delta T \left\{ C_V \delta T + \left[T \left(\frac{\partial p}{\partial T} \right)_V - p \right] \delta V \right\}$$

+ $\left\{ \frac{1}{T^2} \left[T \left(\frac{\partial p}{\partial T} \right)_V - p \right] \delta T + \frac{1}{T} \left(\frac{\partial p}{\partial V} \right)_T \delta V \right\} \delta V$
= $-\frac{C_V}{T^2} (\delta T)^2 + \frac{1}{T} \left(\frac{\partial p}{\partial V} \right)_T (\delta V)^2$

•
$$\delta^2 \tilde{S} \simeq \delta^2 S = -\frac{1}{T^2} \delta T \left\{ C_V \delta T + \left[T \left(\frac{\partial p}{\partial T} \right)_V - p \right] \delta V \right\}$$

+ $\left\{ \frac{1}{T^2} \left[T \left(\frac{\partial p}{\partial T} \right)_V - p \right] \delta T + \frac{1}{T} \left(\frac{\partial p}{\partial V} \right)_T \delta V \right\} \delta V$
= $-\frac{C_V}{T^2} (\delta T)^2 + \frac{1}{T} \left(\frac{\partial p}{\partial V} \right)_T (\delta V)^2 < 0.$

•
$$\delta^2 \tilde{S} \simeq \delta^2 S = -\frac{1}{T^2} \delta T \left\{ C_V \delta T + \left[T \left(\frac{\partial p}{\partial T} \right)_V - p \right] \delta V \right\}$$

+ $\left\{ \frac{1}{T^2} \left[T \left(\frac{\partial p}{\partial T} \right)_V - p \right] \delta T + \frac{1}{T} \left(\frac{\partial p}{\partial V} \right)_T \delta V \right\} \delta V$
= $-\frac{C_V}{T^2} (\delta T)^2 + \frac{1}{T} \left(\frac{\partial p}{\partial V} \right)_T (\delta V)^2 < 0.$

• δT and δV is independent, and $(\delta T)^2 > 0$, $(\delta V)^2 > 0$.

•
$$\delta^2 \tilde{S} \simeq \delta^2 S = -\frac{1}{T^2} \delta T \left\{ C_V \delta T + \left[T \left(\frac{\partial p}{\partial T} \right)_V - p \right] \delta V \right\}$$

+ $\left\{ \frac{1}{T^2} \left[T \left(\frac{\partial p}{\partial T} \right)_V - p \right] \delta T + \frac{1}{T} \left(\frac{\partial p}{\partial V} \right)_T \delta V \right\} \delta V$
= $-\frac{C_V}{T^2} (\delta T)^2 + \frac{1}{T} \left(\frac{\partial p}{\partial V} \right)_T (\delta V)^2 < 0.$

- δT and δV is independent, and $(\delta T)^2 > 0$, $(\delta V)^2 > 0$.
- $C_V > 0, \left(\frac{\partial p}{\partial V}\right)_T < 0.$

•
$$\delta^2 \tilde{S} \simeq \delta^2 S = -\frac{1}{T^2} \delta T \left\{ C_V \delta T + \left[T \left(\frac{\partial p}{\partial T} \right)_V - p \right] \delta V \right\}$$

+ $\left\{ \frac{1}{T^2} \left[T \left(\frac{\partial p}{\partial T} \right)_V - p \right] \delta T + \frac{1}{T} \left(\frac{\partial p}{\partial V} \right)_T \delta V \right\} \delta V$
= $-\frac{C_V}{T^2} (\delta T)^2 + \frac{1}{T} \left(\frac{\partial p}{\partial V} \right)_T (\delta V)^2 < 0.$

- δT and δV is independent, and $(\delta T)^2>0$, $(\delta V)^2>0$.
- $C_V > 0, \left(\frac{\partial p}{\partial V}\right)_T < 0.$
- Meaning of $C_V > 0$: suppose $T \gtrsim T_0$, small part loses heat, as $C_V > 0$, temperature decreases, system goes back to the equilibrium.

- $\delta^2 \tilde{S} \simeq \delta^2 S = -\frac{1}{T^2} \delta T \left\{ C_V \delta T + \left[T \left(\frac{\partial p}{\partial T} \right)_V p \right] \delta V \right\}$ $+ \left\{ \frac{1}{T^2} \left[T \left(\frac{\partial p}{\partial T} \right)_V - p \right] \delta T + \frac{1}{T} \left(\frac{\partial p}{\partial V} \right)_T \delta V \right\} \delta V$ $=-\frac{C_V}{T^2}(\delta T)^2 + \frac{1}{T}\left(\frac{\partial p}{\partial V}\right)_T(\delta V)^2 < 0.$
- δT and δV is independent, and $(\delta T)^2>0$, $(\delta V)^2>0$.
- $C_V > 0, \left(\frac{\partial p}{\partial V}\right)_T < 0.$
- Meaning of $C_V > 0$: suppose $T \ge T_0$, small part loses heat, as $C_V > 0$, temperature decreases, system goes back to the equilibrium.
- $\left(\frac{\partial p}{\partial V}\right)_{\scriptscriptstyle T} < 0$: imaging the small part shrinks, $\Delta V < 0$, as $(\frac{\partial p}{\partial V})_T < 0$, $\Delta p > 0$, $p > p_0$, small part expands.

Table of contents

- Phase Transition of Single-Component System
 - 3.1 Criterion of thermal equilibrium
 - 3.2 Basic equations of open system
 - 3.3 Equilibrium of single-component multi-phase system
 - 3.4 Properties of equilibrium of s-c multi-phase system
 - 3.5 Critical point and phase change between gas and liquid
 - 3.7 Classification of the phase transition
 - 3.9 Landau's approximation for the continuous phase transition

• Single-component system: one chemical component,

- Single-component system: one chemical component, with several phases
 - \rightarrow single-component multi-phase system.

- Single-component system: one chemical component, with several phases
 - \rightarrow single-component multi-phase system.
- For each phase, there is a set of parameters (p, V, T...).

- Single-component system: one chemical component, with several phases
 - \rightarrow single-component multi-phase system.
- For each phase, there is a set of parameters (p, V, T...).
- Major difference: amount of substance is not conserved for one phase.

- Single-component system: one chemical component, with several phases
 - \rightarrow single-component multi-phase system.
- For each phase, there is a set of parameters (p, V, T...).
- Major difference: amount of substance is not conserved for one phase.
- Chemical parameter n should be introduced.

- Single-component system: one chemical component, with several phases
 - \rightarrow single-component multi-phase system.
- For each phase, there is a set of parameters (p, V, T...).
- Major difference: amount of substance is not conserved for one phase.
- Chemical parameter n should be introduced.
- Define chemical potential: $u = \frac{G}{2} - G - u - Ts + \frac{1}{2}$

- Single-component system: one chemical component, with several phases
 - \rightarrow single-component multi-phase system.
- For each phase, there is a set of parameters (p, V, T...).
- Major difference: amount of substance is not conserved for one phase.
- Chemical parameter n should be introduced.
- Define chemical potential:

$$\mu \equiv \frac{G}{n} = G_m = u - Ts + pv.$$

• $d\mu = V_m dp - S_m dT$ or v dp - s dT.

• The internal energy U = nu, and du = Tds - pdv.

- The internal energy U = nu, and du = Tds pdv.
- dU = d(nu) = n(Tds pdv) + udn

- The internal energy U = nu, and du = Tds pdv.
- dU = d(nu) = n(Tds pdv) + udn= $n(Tds - pdv) + (\mu + Ts - pv)dn$

- The internal energy U = nu, and du = Tds pdv.
- dU = d(nu) = n(Tds pdv) + udn= $n(Tds - pdv) + (\mu + Ts - pv)dn$ = $T[d(ns) - sdn] - p[d(nv) - vdn] + (\mu + Ts - pv)dn$

- The internal energy U = nu, and du = Tds pdv.
- dU = d(nu) = n(Tds pdv) + udn= $n(Tds - pdv) + (\mu + Ts - pv)dn$ = $T[d(ns) - sdn] - p[d(nv) - vdn] + (\mu + Ts - pv)dn$ = $TdS - Tsdn - pdV + pvdn + \mu dn + Tsdn - pvdn$

- The internal energy U = nu, and du = Tds pdv.
- dU = d(nu) = n(Tds pdv) + udn $= n(Tds - pdv) + (\mu + Ts - pv)dn$ $= T[d(ns) - sdn] - p[d(nv) - vdn] + (\mu + Ts - pv)dn$ $= TdS - Tsdn - pdV + pvdn + \mu dn + Tsdn - pvdn$ $= TdS - pdV + \mu dn$.

- The internal energy U = nu, and du = Tds pdv.
- dU = d(nu) = n(Tds pdv) + udn $= n(Tds pdv) + (\mu + Ts pv)dn$ $= T[d(ns) sdn] p[d(nv) vdn] + (\mu + Ts pv)dn$ $= TdS Tsdn pdV + pvdn + \mu dn + Tsdn pvdn$ $= TdS pdV + \mu dn.$
- Similarly, $dH = TdS + Vdp + \mu dn$,

- The internal energy U = nu, and du = Tds pdv.
- dU = d(nu) = n(Tds pdv) + udn $= n(Tds pdv) + (\mu + Ts pv)dn$ $= T[d(ns) sdn] p[d(nv) vdn] + (\mu + Ts pv)dn$ $= TdS Tsdn pdV + pvdn + \mu dn + Tsdn pvdn$ $= TdS pdV + \mu dn.$
- Similarly, $dH = TdS + Vdp + \mu dn$, $dF = -SdT pdV + \mu dn$,

- The internal energy U = nu, and du = Tds pdv.
- dU = d(nu) = n(Tds pdv) + udn $= n(Tds - pdv) + (\mu + Ts - pv)dn$ $= T[d(ns) - sdn] - p[d(nv) - vdn] + (\mu + Ts - pv)dn$ $= TdS - Tsdn - pdV + pvdn + \mu dn + Tsdn - pvdn$ $= TdS - pdV + \mu dn.$
- Similarly, $dH = TdS + Vdp + \mu dn$, $dF = -SdT - pdV + \mu dn$. $dG = -SdT + Vdp + \mu dn$.

12 / 31

- The internal energy U = nu, and du = Tds pdv.
- dU = d(nu) = n(Tds pdv) + udn $= n(Tds pdv) + (\mu + Ts pv)dn$ $= T[d(ns) sdn] p[d(nv) vdn] + (\mu + Ts pv)dn$ $= TdS Tsdn pdV + pvdn + \mu dn + Tsdn pvdn$ $= TdS pdV + \mu dn.$
- Similarly, $\mathrm{d}H=T\mathrm{d}S+V\mathrm{d}p+\mu\mathrm{d}n$, $\mathrm{d}F=-S\mathrm{d}T-p\mathrm{d}V+\mu\mathrm{d}n$, $\mathrm{d}G=-S\mathrm{d}T+V\mathrm{d}p+\mu\mathrm{d}n$.
- Define a new function, grand thermodynamic potential $J \equiv F \mu n$

- The internal energy U = nu, and du = Tds pdv.
- dU = d(nu) = n(Tds pdv) + udn $= n(Tds pdv) + (\mu + Ts pv)dn$ $= T[d(ns) sdn] p[d(nv) vdn] + (\mu + Ts pv)dn$ $= TdS Tsdn pdV + pvdn + \mu dn + Tsdn pvdn$ $= TdS pdV + \mu dn.$
- Similarly, $\mathrm{d}H=T\mathrm{d}S+V\mathrm{d}p+\mu\mathrm{d}n$, $\mathrm{d}F=-S\mathrm{d}T-p\mathrm{d}V+\mu\mathrm{d}n$, $\mathrm{d}G=-S\mathrm{d}T+V\mathrm{d}p+\mu\mathrm{d}n$.
- Define a new function, grand thermodynamic potential $J \equiv F \mu n = F G = -pV$.

- The internal energy U = nu, and du = Tds pdv.
- dU = d(nu) = n(Tds pdv) + udn $= n(Tds pdv) + (\mu + Ts pv)dn$ $= T[d(ns) sdn] p[d(nv) vdn] + (\mu + Ts pv)dn$ $= TdS Tsdn pdV + pvdn + \mu dn + Tsdn pvdn$ $= TdS pdV + \mu dn.$
- Similarly, $dH = TdS + Vdp + \mu dn$, $dF = -SdT pdV + \mu dn$, $dG = -SdT + Vdp + \mu dn$.
- Define a new function, grand thermodynamic potential $J \equiv F \mu n = F G = -pV$.
- $dJ = -SdT pdV nd\mu$.

Table of contents

Phase Transition of Single-Component System

- 3.1 Criterion of thermal equilibrium
- 3.2 Basic equations of open system
- 3.3 Equilibrium of single-component multi-phase system
- 3.4 Properties of equilibrium of s-c multi-phase system
- 3.5 Critical point and phase change between gas and liquid
- 3.7 Classification of the phase transition
- 3.9 Landau's approximation for the continuous phase transition

§3.3 Equilibrium of single-component multi-phase system

• Considering isolated two-phase system, α, β .

- Considering isolated two-phase system, α, β .
- State parameter $(U^{\alpha}, V^{\alpha}, n^{\alpha}, T^{\alpha})$, $(U^{\beta}, V^{\beta}, n^{\beta}, T^{\beta})$

- Considering isolated two-phase system, α, β .
- \bullet State parameter $(U^{\alpha},V^{\alpha},n^{\alpha},T^{\alpha})$, $(U^{\beta},V^{\beta},n^{\beta},T^{\beta})$
- Constraints:

$$\begin{cases} U^{\alpha} + U^{\beta} = \text{Const.} \\ V^{\alpha} + V^{\beta} = \text{Const.} \\ n^{\alpha} + n^{\beta} = \text{Const.} \end{cases}$$

- Considering isolated two-phase system, α, β .
- \bullet State parameter $(U^{\alpha},V^{\alpha},n^{\alpha},T^{\alpha})$, $(U^{\beta},V^{\beta},n^{\beta},T^{\beta})$
- Constraints:

$$\begin{cases} U^{\alpha} + U^{\beta} = \text{Const.} \\ V^{\alpha} + V^{\beta} = \text{Const.} \end{cases} \Rightarrow \begin{cases} \delta U^{\alpha} + \delta U^{\beta} = 0 \\ \delta V^{\alpha} + \delta V^{\beta} = 0 \\ \delta n^{\alpha} + \delta n^{\beta} = 0 \end{cases}.$$

- Considering isolated two-phase system, α, β .
- State parameter $(U^{\alpha}, V^{\alpha}, n^{\alpha}, T^{\alpha}), (U^{\beta}, V^{\beta}, n^{\beta}, T^{\beta})$
- Constraints:

Constraints:
$$\begin{cases} U^{\alpha} + U^{\beta} = \text{Const.} \\ V^{\alpha} + V^{\beta} = \text{Const.} \end{cases} \Rightarrow \begin{cases} \delta U^{\alpha} + \delta U^{\beta} = 0 \\ \delta V^{\alpha} + \delta V^{\beta} = 0 \end{cases} .$$
$$n^{\alpha} + n^{\beta} = \text{Const.} \end{cases} \Rightarrow \begin{cases} \delta U^{\alpha} + \delta U^{\beta} = 0 \\ \delta n^{\alpha} + \delta n^{\beta} = 0 \end{cases} .$$

$$\bullet \ \delta S^{\alpha} = \tfrac{\delta U^{\alpha} + p^{\alpha} \delta V^{\alpha} - \mu^{\alpha} \delta n^{\alpha}}{T^{\alpha}}, \ \delta S^{\beta} = \tfrac{\delta U^{\beta} + p^{\beta} \delta V^{\beta} - \mu^{\beta} \delta n^{\beta}}{T^{\beta}}.$$

- Considering isolated two-phase system, α, β .
- State parameter $(U^{\alpha}, V^{\alpha}, n^{\alpha}, T^{\alpha})$, $(U^{\beta}, V^{\beta}, n^{\beta}, T^{\beta})$
- Constraints:

$$\begin{cases} U^{\alpha} + U^{\beta} = \text{Const.} \\ V^{\alpha} + V^{\beta} = \text{Const.} \end{cases} \Rightarrow \begin{cases} \delta U^{\alpha} + \delta U^{\beta} = 0 \\ \delta V^{\alpha} + \delta V^{\beta} = 0 \\ \delta n^{\alpha} + \delta n^{\beta} = 0 \end{cases}.$$

- $\bullet \ \delta S^\alpha = \tfrac{\delta U^\alpha + p^\alpha \delta V^\alpha \mu^\alpha \delta n^\alpha}{T^\alpha} \text{, } \delta S^\beta = \tfrac{\delta U^\beta + p^\beta \delta V^\beta \mu^\beta \delta n^\beta}{T^\beta}.$
- $\delta S = \delta S^{\alpha} + \delta S^{\beta} =$ $\delta U^{\alpha} \left(\frac{1}{T^{\alpha}} \frac{1}{T^{\beta}} \right) + \delta V^{\alpha} \left(\frac{p^{\alpha}}{T^{\alpha}} \frac{p^{\beta}}{T^{\beta}} \right) \delta n^{\alpha} \left(\frac{\mu^{\alpha}}{T^{\alpha}} \frac{\mu^{\beta}}{T^{\beta}} \right)$

- Considering isolated two-phase system, α, β .
- State parameter $(U^{lpha},V^{lpha},n^{lpha},T^{lpha})$, $(U^{eta},V^{eta},n^{eta},T^{eta})$
- Constraints:

$$\begin{cases} U^{\alpha} + U^{\beta} = \text{Const.} \\ V^{\alpha} + V^{\beta} = \text{Const.} \end{cases} \Rightarrow \begin{cases} \delta U^{\alpha} + \delta U^{\beta} = 0 \\ \delta V^{\alpha} + \delta V^{\beta} = 0 \\ \delta n^{\alpha} + \delta n^{\beta} = 0 \end{cases}.$$

- $\bullet \ \delta S^\alpha = \tfrac{\delta U^\alpha + p^\alpha \delta V^\alpha \mu^\alpha \delta n^\alpha}{T^\alpha} \text{, } \delta S^\beta = \tfrac{\delta U^\beta + p^\beta \delta V^\beta \mu^\beta \delta n^\beta}{T^\beta}.$
- $\delta S = \delta S^{\alpha} + \delta S^{\beta} =$ $\delta U^{\alpha} \left(\frac{1}{T^{\alpha}} \frac{1}{T^{\beta}} \right) + \delta V^{\alpha} \left(\frac{p^{\alpha}}{T^{\alpha}} \frac{p^{\beta}}{T^{\beta}} \right) \delta n^{\alpha} \left(\frac{\mu^{\alpha}}{T^{\alpha}} \frac{\mu^{\beta}}{T^{\beta}} \right) = 0.$

- Considering isolated two-phase system, α, β .
- State parameter $(U^{\alpha}, V^{\alpha}, n^{\alpha}, T^{\alpha})$, $(U^{\beta}, V^{\beta}, n^{\beta}, T^{\beta})$
- Constraints:

$$\begin{cases} U^{\alpha} + U^{\beta} = \text{Const.} \\ V^{\alpha} + V^{\beta} = \text{Const.} \end{cases} \Rightarrow \begin{cases} \delta U^{\alpha} + \delta U^{\beta} = 0 \\ \delta V^{\alpha} + \delta V^{\beta} = 0 \\ \delta n^{\alpha} + \delta n^{\beta} = 0 \end{cases}.$$

- $\bullet \ \delta S^\alpha = \tfrac{\delta U^\alpha + p^\alpha \delta V^\alpha \mu^\alpha \delta n^\alpha}{T^\alpha} \text{, } \delta S^\beta = \tfrac{\delta U^\beta + p^\beta \delta V^\beta \mu^\beta \delta n^\beta}{T^\beta}.$
- $\delta S = \delta S^{\alpha} + \delta S^{\beta} =$ $\delta U^{\alpha} \left(\frac{1}{T^{\alpha}} \frac{1}{T^{\beta}} \right) + \delta V^{\alpha} \left(\frac{p^{\alpha}}{T^{\alpha}} \frac{p^{\beta}}{T^{\beta}} \right) \delta n^{\alpha} \left(\frac{\mu^{\alpha}}{T^{\alpha}} \frac{\mu^{\beta}}{T^{\beta}} \right) = 0.$
- Equilibrium condition: $T^{\alpha}=T^{\beta}$ (thermodynamics), $p^{\alpha}=p^{\beta}$ (mechanics), $\mu^{\alpha}=\mu^{\beta}$ (phase).

$$\delta S = \delta U^{\alpha} \left(\frac{1}{T^{\alpha}} - \frac{1}{T^{\beta}} \right) + \delta V^{\alpha} \left(\frac{p^{\alpha}}{T^{\alpha}} - \frac{p^{\beta}}{T^{\beta}} \right) - \delta n^{\alpha} \left(\frac{\mu^{\alpha}}{T^{\alpha}} - \frac{\mu^{\beta}}{T^{\beta}} \right) = 0.$$

 If the equilibrium condition is not satisfied, system proceeds in the direction of increasing the entropy.

$$\delta S = \delta U^{\alpha} \left(\frac{1}{T^{\alpha}} - \frac{1}{T^{\beta}} \right) + \delta V^{\alpha} \left(\frac{p^{\alpha}}{T^{\alpha}} - \frac{p^{\beta}}{T^{\beta}} \right) - \delta n^{\alpha} \left(\frac{\mu^{\alpha}}{T^{\alpha}} - \frac{\mu^{\beta}}{T^{\beta}} \right) = 0.$$

- If the equilibrium condition is not satisfied, system proceeds in the direction of increasing the entropy.
- $1^{\circ} T^{\alpha} \neq T^{\beta}$, direction: $\delta U^{\alpha}(\frac{1}{T^{\alpha}} \frac{1}{T^{\beta}}) > 0$. If $T^{\alpha} > T^{\beta}$, direction: $\delta U^{\alpha} < 0$. Energy $\alpha \to \beta$, from high T to low T.

$$\delta S = \delta U^{\alpha} \left(\frac{1}{T^{\alpha}} - \frac{1}{T^{\beta}} \right) + \delta V^{\alpha} \left(\frac{p^{\alpha}}{T^{\alpha}} - \frac{p^{\beta}}{T^{\beta}} \right) - \delta n^{\alpha} \left(\frac{\mu^{\alpha}}{T^{\alpha}} - \frac{\mu^{\beta}}{T^{\beta}} \right) = 0.$$

- If the equilibrium condition is not satisfied, system proceeds in the direction of increasing the entropy.
- 1° $T^{\alpha} \neq T^{\beta}$, direction: $\delta U^{\alpha}(\frac{1}{T^{\alpha}} \frac{1}{T^{\beta}}) > 0$. If $T^{\alpha} > T^{\beta}$, direction: $\delta U^{\alpha} < 0$. Energy $\alpha \to \beta$, from high T to low T.
- 2° If $p^{\alpha} > p^{\beta}$ $(T^{\alpha} = T^{\beta})$, direction: $\delta V^{\alpha} \frac{p^{\alpha} p^{\beta}}{T} > 0$, i.e., $\delta V^{\alpha} > 0$, phase α (high pressure) expands.

$$\delta S = \delta U^{\alpha} (\frac{1}{T^{\alpha}} - \frac{1}{T^{\beta}}) + \delta V^{\alpha} (\frac{p^{\alpha}}{T^{\alpha}} - \frac{p^{\beta}}{T^{\beta}}) - \delta n^{\alpha} (\frac{\mu^{\alpha}}{T^{\alpha}} - \frac{\mu^{\beta}}{T^{\beta}}) = 0.$$

- If the equilibrium condition is not satisfied, system proceeds in the direction of increasing the entropy.
- 1° $T^{\alpha} \neq T^{\beta}$, direction: $\delta U^{\alpha}(\frac{1}{T^{\alpha}} \frac{1}{T^{\beta}}) > 0$. If $T^{\alpha} > T^{\beta}$, direction: $\delta U^{\alpha} < 0$. Energy $\alpha \to \beta$, from high T to low T.
- 2° If $p^{\alpha} > p^{\beta}$ $(T^{\alpha} = T^{\beta})$, direction: $\delta V^{\alpha} \frac{p^{\alpha} p^{\beta}}{T} > 0$, i.e., $\delta V^{\alpha} > 0$, phase α (high pressure) expands.
- 3° If $\mu^{\alpha} > \mu^{\beta}$ $(T^{\alpha} = T^{\beta})$, direction: $-\delta n^{\alpha} \frac{\mu^{\alpha} \mu^{\beta}}{T}$, i.e., $\delta n^{\alpha} < 0$, matter changes phase from α (high μ , chemical potential) to β .

Table of contents

Phase Transition of Single-Component System

- 3.1 Criterion of thermal equilibrium
- 3.2 Basic equations of open system
- 3.3 Equilibrium of single-component multi-phase system
- 3.4 Properties of equilibrium of s-c multi-phase system
- 3.5 Critical point and phase change between gas and liquid
- 3.7 Classification of the phase transition
- 3.9 Landau's approximation for the continuous phase transition

§3.4 Properties of equilibrium of single-component multi-phase system – Phase diagram of water

§3.4 Properties of equilibrium of single-component multi-phase system – Phase diagram of water

$$T^{lpha}=T^{eta}=T^{\gamma}=T$$
 ,

$$T^{lpha}=T^{eta}=T^{\gamma}=T$$
 , $p^{lpha}=p^{eta}=p^{\gamma}=p$,

$$T^{\alpha}=T^{\beta}=T^{\gamma}=T$$
, $p^{\alpha}=p^{\beta}=p^{\gamma}=p$, $\mu^{\alpha}(T,p)=\mu^{\beta}(T,p)=\mu^{\gamma}(T,p)$ (Triple point).

For three phases coexistence:

$$T^{\alpha}=T^{\beta}=T^{\gamma}=T$$
, $p^{\alpha}=p^{\beta}=p^{\gamma}=p$, $\mu^{\alpha}(T,p)=\mu^{\beta}(T,p)=\mu^{\gamma}(T,p)$ (Triple point).

• For two phases coexistence curve:

For three phases coexistence:

$$\begin{split} T^{\alpha} &= T^{\beta} = T^{\gamma} = T,\\ p^{\alpha} &= p^{\beta} = p^{\gamma} = p,\\ \mu^{\alpha}(T,p) &= \mu^{\beta}(T,p) = \mu^{\gamma}(T,p)\\ \text{(Triple point)}. \end{split}$$

• For two phases coexistence curve:

$$\begin{split} T^\alpha &= T^\beta = T^\gamma = T,\\ p^\alpha &= p^\beta = p^\gamma = p,\\ \mu^\alpha(T,p) &= \mu^\beta(T,p) = \mu^\gamma(T,p) \\ \text{(Triple point)}. \end{split}$$

$$\bullet$$
 $\mu^{\alpha}(T,p)=\mu^{\beta}(T,p)$,

$$\begin{split} T^\alpha &= T^\beta = T^\gamma = T,\\ p^\alpha &= p^\beta = p^\gamma = p,\\ \mu^\alpha(T,p) &= \mu^\beta(T,p) = \mu^\gamma(T,p) \\ \text{(Triple point)}. \end{split}$$

•
$$\mu^{\alpha}(T, p) = \mu^{\beta}(T, p),$$

 $\Rightarrow d\mu^{\alpha} = d\mu^{\beta}.$

For three phases coexistence:

$$\begin{split} T^{\alpha} &= T^{\beta} = T^{\gamma} = T,\\ p^{\alpha} &= p^{\beta} = p^{\gamma} = p,\\ \mu^{\alpha}(T,p) &= \mu^{\beta}(T,p) = \mu^{\gamma}(T,p)\\ \text{(Triple point)}. \end{split}$$

- For two phases coexistence curve:
 - $\mu^{\alpha}(T, p) = \mu^{\beta}(T, p)$, $\Rightarrow d\mu^{\alpha} = d\mu^{\beta}$.
- : $d\mu = \frac{V}{n}dp \frac{S}{n}dT = V_m dp S_m dT$,

• For three phases coexistence:

$$T^{\alpha}=T^{\beta}=T^{\gamma}=T$$
, $p^{\alpha}=p^{\beta}=p^{\gamma}=p$, $\mu^{\alpha}(T,p)=\mu^{\beta}(T,p)=\mu^{\gamma}(T,p)$ (Triple point).

- For two phases coexistence curve:
 - $\mu^{\alpha}(T, p) = \mu^{\beta}(T, p)$, $\Rightarrow d\mu^{\alpha} = d\mu^{\beta}$.
 - : $d\mu = \frac{V}{n}dp \frac{S}{n}dT = V_m dp S_m dT$,
- $\bullet :: V_m^{\alpha} \mathrm{d}p S_m^{\alpha} \mathrm{d}T = V_m^{\beta} \mathrm{d}p S_m^{\beta} \mathrm{d}T$

• For three phases coexistence:

$$T^{\alpha}=T^{\beta}=T^{\gamma}=T$$
, $p^{\alpha}=p^{\beta}=p^{\gamma}=p$, $\mu^{\alpha}(T,p)=\mu^{\beta}(T,p)=\mu^{\gamma}(T,p)$ (Triple point).

- For two phases coexistence curve:
 - $\mu^{\alpha}(T, p) = \mu^{\beta}(T, p)$, $\Rightarrow d\mu^{\alpha} = d\mu^{\beta}$.
 - : $d\mu = \frac{V}{n}dp \frac{S}{n}dT = V_m dp S_m dT$,
- $\cdot : V_m^{\alpha} dp S_m^{\alpha} dT = V_m^{\beta} dp S_m^{\beta} dT \Rightarrow \frac{dp}{dT} = \frac{S_m^{\beta} S_m^{\alpha}}{V_m^{\beta} V_m^{\alpha}}.$

$$\frac{\mathrm{d}p}{\mathrm{d}T} = \frac{S_m^{\beta} - S_m^{\alpha}}{V_m^{\beta} - V_m^{\alpha}}$$

$$\frac{\mathrm{d}p}{\mathrm{d}T} = \frac{S_m^\beta - S_m^\alpha}{V_m^\beta - V_m^\alpha}$$

During the phase transition (notice, reversible),

$$\frac{\mathrm{d}p}{\mathrm{d}T} = \frac{S_m^\beta - S_m^\alpha}{V_m^\beta - V_m^\alpha}$$

• During the phase transition (notice, reversible),

$$\mathrm{d}S = \mathrm{d}Q/T \Rightarrow \Delta Q = T\Delta S.$$

$$\frac{\mathrm{d}p}{\mathrm{d}T} = \frac{S_m^\beta - S_m^\alpha}{V_m^\beta - V_m^\alpha}$$

- During the phase transition (notice, reversible), $dS = dQ/T \Rightarrow \Delta Q = T\Delta S.$
- Define L: Latent heat of phase change of 1 mol matter, then $L = T(S_m^{\beta} S_m^{\alpha})$.

$$\frac{\mathrm{d}p}{\mathrm{d}T} = \frac{S_m^\beta - S_m^\alpha}{V_m^\beta - V_m^\alpha}$$

- During the phase transition (notice, reversible), $\mathrm{d}S = \mathrm{d}Q/T \Rightarrow \Delta Q = T\Delta S.$
- Define L: Latent heat of phase change of 1 mol matter, then $L = T(S_m^{\beta} - S_m^{\alpha})$.
- $\therefore \frac{\mathrm{d}p}{\mathrm{d}T} = \frac{L}{T(V_{\rho}^{\beta} V^{\alpha})}$ called Clapeyron's equation.

$$\frac{\mathrm{d}p}{\mathrm{d}T} = \frac{S_m^\beta - S_m^\alpha}{V_m^\beta - V_m^\alpha}$$

- During the phase transition (notice, reversible), $dS = dQ/T \Rightarrow \Delta Q = T\Delta S.$
- Define L: Latent heat of phase change of 1 mol matter, then $L = T(S_m^{\beta} S_m^{\alpha})$.
- $\therefore \frac{\mathrm{d}p}{\mathrm{d}T} = \frac{L}{T(V_m^{\beta} V_m^{\alpha})}$ called Clapeyron's equation.
- The slope of phase-boundary curve is available in theory then (phase-boundary curve comes from experiment).

Table of contents

- Phase Transition of Single-Component System
 - 3.1 Criterion of thermal equilibrium
 - 3.2 Basic equations of open system
 - 3.3 Equilibrium of single-component multi-phase system
 - 3.4 Properties of equilibrium of s-c multi-phase system
 - 3.5 Critical point and phase change between gas and liquid
 - 3.7 Classification of the phase transition
 - 3.9 Landau's approximation for the continuous phase transition

 There exists a critical point between gas and liquid.
 Beyond that point, gas and liquid have no difference.

- There exists a critical point between gas and liquid.
 Beyond that point, gas and liquid have no difference.
- A critical point for solid and liquid?

- There exists a critical point between gas and liquid.
 Beyond that point, gas and liquid have no difference.
- A critical point for solid and liquid?
- A critical point for solid and gas?

- There exists a critical point between gas and liquid.
 Beyond that point, gas and liquid have no difference.
- A critical point for solid and liquid?
- A critical point for solid and gas?
- P-V diagram for liquid and gas:

- There exists a critical point between gas and liquid. Beyond that point, gas and liquid have no difference.
- A critical point for solid and liquid?
- A critical point for solid and gas?
- P-V diagram for liquid and gas:

- There exists a critical point between gas and liquid.
 Beyond that point, gas and liquid have no difference.
- A critical point for solid and liquid?
- A critical point for solid and gas?
- P-V diagram for liquid and gas: o

Stability condition: $\left(\frac{\partial p}{\partial V_m}\right)_T = 0$, $\left(\frac{\partial^2 p}{\partial V_m^2}\right)_T = 0$, $\left(\frac{\partial^3 p}{\partial V_m^3}\right)_T < 0$.

Provement of
$$\left(\frac{\partial p}{\partial V_m}\right)_T = 0$$
, $\left(\frac{\partial^2 p}{\partial V_m^2}\right)_T = 0$, $\left(\frac{\partial^3 p}{\partial V_m^3}\right)_T < 0$.

 Consider two-phase coexistence, but very close to the critical point.

Provement of
$$\left(\frac{\partial p}{\partial V_m}\right)_T = 0$$
, $\left(\frac{\partial^2 p}{\partial V_m^2}\right)_T = 0$, $\left(\frac{\partial^3 p}{\partial V_m^3}\right)_T < 0$.

- Consider two-phase coexistence, but very close to the critical point.
- Volume of liquid V_m , gas $V_m + \delta V_m$ (close to each other).

Provement of
$$\left(\frac{\partial p}{\partial V_m}\right)_T = 0$$
, $\left(\frac{\partial^2 p}{\partial V_m^2}\right)_T = 0$, $\left(\frac{\partial^3 p}{\partial V_m^3}\right)_T < 0$.

- Consider two-phase coexistence, but very close to the critical point.
- Volume of liquid V_m , gas $V_m + \delta V_m$ (close to each other).
- Pressure: $p(V_m + \delta V_m, T) = p(V_m, T)$,

Provement of
$$\left(\frac{\partial p}{\partial V_m}\right)_T = 0, \left(\frac{\partial^2 p}{\partial V_m^2}\right)_T = 0, \left(\frac{\partial^3 p}{\partial V_m^3}\right)_T < 0.$$

- Consider two-phase coexistence, but very close to the critical point.
- Volume of liquid V_m , gas $V_m + \delta V_m$ (close to each other).
- Pressure: $p(V_m + \delta V_m, T) = p(V_m, T)$, while $p(V_m + \delta V_m, T) = p(V_m, T) + \left(\frac{\partial p}{\partial V_m}\right)_T \delta V_m + \frac{1}{2} \left(\frac{\partial^2 p}{\partial V_m^2}\right)_T (\delta V_m)^2$,

Provement of
$$\left(\frac{\partial p}{\partial V_m}\right)_T = 0$$
, $\left(\frac{\partial^2 p}{\partial V_m^2}\right)_T = 0$, $\left(\frac{\partial^3 p}{\partial V_m^3}\right)_T < 0$.

- Consider two-phase coexistence, but very close to the critical point.
- Volume of liquid V_m , gas $V_m + \delta V_m$ (close to each other).
- Pressure: $p(V_m + \delta V_m, T) = p(V_m, T)$, while $p(V_m + \delta V_m, T) = p(V_m, T) + \left(\frac{\partial p}{\partial V_m}\right)_T \delta V_m + \frac{1}{2} \left(\frac{\partial^2 p}{\partial V_m^2}\right)_T (\delta V_m)^2$,
- $\Rightarrow \left(\frac{\partial p}{\partial V_m}\right)_T + \frac{1}{2} \left(\frac{\partial^2 p}{\partial V_m^2}\right)_T \delta V_m = 0.$

Provement of
$$\left(\frac{\partial p}{\partial V_m}\right)_T = 0$$
, $\left(\frac{\partial^2 p}{\partial V_m^2}\right)_T = 0$, $\left(\frac{\partial^3 p}{\partial V_m^3}\right)_T < 0$.

- Consider two-phase coexistence, but very close to the critical point.
- Volume of liquid V_m , gas $V_m + \delta V_m$ (close to each other).
- Pressure: $p(V_m + \delta V_m, T) = p(V_m, T)$, while $p(V_m + \delta V_m, T) = p(V_m, T) + \left(\frac{\partial p}{\partial V_m}\right)_T \delta V_m + \frac{1}{2} \left(\frac{\partial^2 p}{\partial V_m^2}\right)_T (\delta V_m)^2$,
- $\Rightarrow \left(\frac{\partial p}{\partial V_m}\right)_T + \frac{1}{2} \left(\frac{\partial^2 p}{\partial V_m^2}\right)_T \delta V_m = 0.$
- When $T \to T_c$, $\delta V_m \to 0$,

Provement of $\left(\frac{\partial p}{\partial V_m}\right)_T = 0$, $\left(\frac{\partial^2 p}{\partial V_m^2}\right)_T = 0$, $\left(\frac{\partial^3 p}{\partial V_m^3}\right)_T < 0$.

- Consider two-phase coexistence, but very close to the critical point.
- Volume of liquid V_m , gas $V_m + \delta V_m$ (close to each other).
- Pressure: $p(V_m + \delta V_m, T) = p(V_m, T)$, while $p(V_m + \delta V_m, T) = p(V_m, T) + \left(\frac{\partial p}{\partial V_m}\right)_T \delta V_m + \frac{1}{2} \left(\frac{\partial^2 p}{\partial V_m^2}\right)_T (\delta V_m)^2$,
- $\Rightarrow \left(\frac{\partial p}{\partial V_m}\right)_T + \frac{1}{2} \left(\frac{\partial^2 p}{\partial V_m^2}\right)_T \delta V_m = 0.$
- When $T \to T_c$, $\delta V_m \to 0$, \therefore in the critical point: $\left(\frac{\partial p}{\partial V_m}\right)_{\scriptscriptstyle T} = 0$.

Provement of
$$\left(\frac{\partial p}{\partial V_m}\right)_T = 0$$
, $\left(\frac{\partial^2 p}{\partial V_m^2}\right)_T = 0$, $\left(\frac{\partial^3 p}{\partial V_m^3}\right)_T < 0$.

•
$$\Delta S_m = \delta S_m + \frac{1}{2} \delta^2 S_m + \frac{1}{3!} \delta^3 S_m + \frac{1}{4!} \delta^4 S_m + \dots$$

Provement of
$$\left(\frac{\partial p}{\partial V_m}\right)_T=0$$
, $\left(\frac{\partial^2 p}{\partial V_m^2}\right)_T=0$, $\left(\frac{\partial^3 p}{\partial V_m^3}\right)_T<0$.

• $\Delta S_m = \delta S_m + \frac{1}{2} \delta^2 S_m + \frac{1}{3!} \delta^3 S_m + \frac{1}{4!} \delta^4 S_m + \dots$ where $\delta^2 S_m = -\frac{C_{V,m}}{T^2} (\delta T)^2 + \frac{1}{T} \left(\frac{\partial p}{\partial V_m} \right)_T (\delta V_m)^2$ (3.1.13);

24 / 31

Provement of
$$\left(\frac{\partial p}{\partial V_m}\right)_T = 0$$
, $\left(\frac{\partial^2 p}{\partial V_m^2}\right)_T = 0$, $\left(\frac{\partial^3 p}{\partial V_m^3}\right)_T < 0$.

• $\Delta S_m = \delta S_m + \frac{1}{2} \delta^2 S_m + \frac{1}{3!} \delta^3 S_m + \frac{1}{4!} \delta^4 S_m + \dots$ where $\delta^2 S_m = -\frac{C_{V,m}}{T^2} (\delta T)^2 + \frac{1}{T} \left(\frac{\partial p}{\partial V_m} \right)_T (\delta V_m)^2$ (3.1.13);for phase coexistence, $\delta T=0$, and also $\left(\frac{\partial p}{\partial V_m}\right)_T=0$,

Provement of
$$\left(\frac{\partial p}{\partial V_m}\right)_T=0$$
, $\left(\frac{\partial^2 p}{\partial V_m^2}\right)_T=0$, $\left(\frac{\partial^3 p}{\partial V_m^3}\right)_T<0$.

• $\Delta S_m = \delta S_m + \frac{1}{2} \delta^2 S_m + \frac{1}{3!} \delta^3 S_m + \frac{1}{4!} \delta^4 S_m + \dots$ where $\delta^2 S_m = -\frac{C_{V,m}}{T^2} (\delta T)^2 + \frac{1}{T} \left(\frac{\partial p}{\partial V_m} \right)_T (\delta V_m)^2$ (3.1.13);for phase coexistence, $\delta T=0$, and also $\left(\frac{\partial p}{\partial V_m}\right)_T=0$, $\Rightarrow \delta^2 S_m = 0.$

Provement of
$$\left(\frac{\partial p}{\partial V_m}\right)_T=0, \left(\frac{\partial^2 p}{\partial V_m^2}\right)_T=0, \left(\frac{\partial^3 p}{\partial V_m^3}\right)_T<0.$$

• $\Delta S_m = \delta S_m + \frac{1}{2} \delta^2 S_m + \frac{1}{3!} \delta^3 S_m + \frac{1}{4!} \delta^4 S_m + \dots$ where $\delta^2 S_m = -\frac{C_{V,m}}{T^2} (\delta T)^2 + \frac{1}{T} \left(\frac{\partial p}{\partial V_m} \right)_T (\delta V_m)^2$ (3.1.13);for phase coexistence, $\delta T=0$, and also $\left(\frac{\partial p}{\partial V_m}\right)_T=0$, $\Rightarrow \delta^2 S_m = 0.$

• To get stability, one needs $\delta^3 S_m < 0$. or $\delta^4 S_m < 0$ if $\delta^3 S_m = 0$. or ...

24 / 31

Provement of
$$\left(\frac{\partial p}{\partial V_m}\right)_T=0, \left(\frac{\partial^2 p}{\partial V_m^2}\right)_T=0, \left(\frac{\partial^3 p}{\partial V_m^3}\right)_T<0.$$

- $\Delta S_m = \delta S_m + \frac{1}{2}\delta^2 S_m + \frac{1}{3!}\delta^3 S_m + \frac{1}{4!}\delta^4 S_m + ...,$ where $\delta^2 S_m = -\frac{C_{V,m}}{T^2}(\delta T)^2 + \frac{1}{T}\left(\frac{\partial p}{\partial V_m}\right)_T(\delta V_m)^2$ (3.1.13); for phase coexistence, $\delta T = 0$, and also $\left(\frac{\partial p}{\partial V_m}\right)_T = 0$, $\Rightarrow \delta^2 S_m = 0$.
- To get stability, one needs $\delta^3 S_m < 0$, or $\delta^4 S_m < 0$ if $\delta^3 S_m = 0$, or ...
- $\delta^3 S_m = \delta(\delta^2 S_m)$

Provement of
$$\left(\frac{\partial p}{\partial V_m}\right)_T = 0$$
, $\left(\frac{\partial^2 p}{\partial V_m^2}\right)_T = 0$, $\left(\frac{\partial^3 p}{\partial V_m^3}\right)_T < 0$.

- $\Delta S_m = \delta S_m + \frac{1}{2}\delta^2 S_m + \frac{1}{3!}\delta^3 S_m + \frac{1}{4!}\delta^4 S_m + ...,$ where $\delta^2 S_m = -\frac{C_{V,m}}{T^2}(\delta T)^2 + \frac{1}{T}\left(\frac{\partial p}{\partial V_m}\right)_T(\delta V_m)^2$ (3.1.13); for phase coexistence, $\delta T = 0$, and also $\left(\frac{\partial p}{\partial V_m}\right)_T = 0$, $\Rightarrow \delta^2 S_m = 0$.
- To get stability, one needs $\delta^3 S_m < 0$, or $\delta^4 S_m < 0$ if $\delta^3 S_m = 0$, or ...
- $\delta^3 S_m = \delta(\delta^2 S_m) = \frac{\partial}{\partial T} (\delta^2 S_m) \delta T + \frac{\partial}{\partial V_m} (\delta^2 S_m) \delta V_m$

Provement of
$$\left(\frac{\partial p}{\partial V_m}\right)_T = 0$$
, $\left(\frac{\partial^2 p}{\partial V_m^2}\right)_T = 0$, $\left(\frac{\partial^3 p}{\partial V_m^3}\right)_T < 0$.

- $\Delta S_m = \delta S_m + \frac{1}{2}\delta^2 S_m + \frac{1}{3!}\delta^3 S_m + \frac{1}{4!}\delta^4 S_m + ...,$ where $\delta^2 S_m = -\frac{C_{V,m}}{T^2}(\delta T)^2 + \frac{1}{T}\left(\frac{\partial p}{\partial V_m}\right)_T(\delta V_m)^2$ (3.1.13); for phase coexistence, $\delta T = 0$, and also $\left(\frac{\partial p}{\partial V_m}\right)_T = 0$, $\Rightarrow \delta^2 S_m = 0$.
- To get stability, one needs $\delta^3 S_m < 0$, or $\delta^4 S_m < 0$ if $\delta^3 S_m = 0$, or ...
- $\delta^3 S_m = \delta(\delta^2 S_m) = \frac{\partial}{\partial T} (\delta^2 S_m) \delta T + \frac{\partial}{\partial V_m} (\delta^2 S_m) \delta V_m$ = $\frac{\partial}{\partial V_m} (\delta^2 S_m) \delta V_m$

Provement of
$$\left(\frac{\partial p}{\partial V_m}\right)_T = 0$$
, $\left(\frac{\partial^2 p}{\partial V_m^2}\right)_T = 0$, $\left(\frac{\partial^3 p}{\partial V_m^3}\right)_T < 0$.

- $\Delta S_m = \delta S_m + \frac{1}{2}\delta^2 S_m + \frac{1}{3!}\delta^3 S_m + \frac{1}{4!}\delta^4 S_m + ...,$ where $\delta^2 S_m = -\frac{C_{V,m}}{T^2}(\delta T)^2 + \frac{1}{T}\left(\frac{\partial p}{\partial V_m}\right)_T(\delta V_m)^2$ (3.1.13); for phase coexistence, $\delta T = 0$, and also $\left(\frac{\partial p}{\partial V_m}\right)_T = 0$, $\Rightarrow \delta^2 S_m = 0$.
- To get stability, one needs $\delta^3 S_m < 0$, or $\delta^4 S_m < 0$ if $\delta^3 S_m = 0$, or ...
- $\delta^3 S_m = \delta(\delta^2 S_m) = \frac{\partial}{\partial T} (\delta^2 S_m) \delta T + \frac{\partial}{\partial V_m} (\delta^2 S_m) \delta V_m$ $= \frac{\partial}{\partial V_m} (\delta^2 S_m) \delta V_m = \frac{\partial}{\partial V_m} (\frac{1}{T} \left(\frac{\partial p}{\partial V_m}\right)_T (\delta V_m)^2) \delta V_m$

Provement of $\left(\frac{\partial p}{\partial V_m}\right)_T = 0, \left(\frac{\partial^2 p}{\partial V_m^2}\right)_T = 0, \left(\frac{\partial^3 p}{\partial V_m^3}\right)_T < 0.$

• $\Delta S_m = \delta S_m + \frac{1}{2} \delta^2 S_m + \frac{1}{3!} \delta^3 S_m + \frac{1}{4!} \delta^4 S_m + \dots$ where $\delta^2 S_m = -\frac{C_{V,m}}{T^2} (\delta T)^2 + \frac{1}{T} \left(\frac{\partial p}{\partial V_m} \right)_T (\delta V_m)^2$ (3.1.13);for phase coexistence, $\delta T=0$, and also $\left(\frac{\partial p}{\partial V_m}\right)_{T}=0$, $\Rightarrow \delta^2 S_m = 0$.

- To get stability, one needs $\delta^3 S_m < 0$, or $\delta^4 S_m < 0$ if $\delta^3 S_m = 0$, or ...
- $\delta^3 S_m = \delta(\delta^2 S_m) = \frac{\partial}{\partial T} (\delta^2 S_m) \delta T + \frac{\partial}{\partial V_m} (\delta^2 S_m) \delta V_m$ $= \frac{\partial}{\partial V_m} (\delta^2 S_m) \delta V_m = \frac{\partial}{\partial V_m} \left(\frac{1}{T} \left(\frac{\partial p}{\partial V_m} \right)_T (\delta V_m)^2 \right) \delta V_m$ $=\frac{1}{T}\left(\frac{\partial^2 p}{\partial V_m^2}\right)_T(\delta V_m)^3.$

Provement of
$$\left(\frac{\partial p}{\partial V_m}\right)_T = 0$$
, $\left(\frac{\partial^2 p}{\partial V_m^2}\right)_T = 0$, $\left(\frac{\partial^3 p}{\partial V_m^3}\right)_T < 0$.

$$\delta^3 S_m = \frac{1}{T} \left(\frac{\partial^2 p}{\partial V_m^2} \right)_T (\delta V_m)^3$$

• If $\left(\frac{\partial^2 p}{\partial V_m^2}\right)_T \neq 0$, it means the stability is determined by the virtual variation $\delta V_m>0$ or <0, which is unreasonable.

Provement of
$$\left(\frac{\partial p}{\partial V_m}\right)_T = 0$$
, $\left(\frac{\partial^2 p}{\partial V_m^2}\right)_T = 0$, $\left(\frac{\partial^3 p}{\partial V_m^3}\right)_T < 0$.
$$\delta^3 S_m = \frac{1}{T} \left(\frac{\partial^2 p}{\partial V_m^2}\right)_T (\delta V_m)^3$$

• If $\left(\frac{\partial^2 p}{\partial V_m^2}\right)_T \neq 0$, it means the stability is determined by the virtual variation $\delta V_m>0$ or <0, which is unreasonable. Therefore, $\left(\frac{\partial^2 p}{\partial V_m^2}\right)_T = 0$.

Yuan-Chuan Zou zouyc@hust.edu.cn (HUS

3.5 Critical point and phase change between gas and liquid

Provement of
$$\left(\frac{\partial p}{\partial V_m}\right)_T = 0$$
, $\left(\frac{\partial^2 p}{\partial V_m^2}\right)_T = 0$, $\left(\frac{\partial^3 p}{\partial V_m^3}\right)_T < 0$.

$$\delta^3 S_m = \frac{1}{T} \left(\frac{\partial^2 p}{\partial V_m^2} \right)_T (\delta V_m)^3$$

• If $\left(\frac{\partial^2 p}{\partial V_m^2}\right)_T \neq 0$, it means the stability is determined by the virtual variation $\delta V_m > 0$ or < 0, which is unreasonable. Therefore, $\left(\frac{\partial^2 p}{\partial V_m^2}\right)_T = 0$.

• I.e.,
$$\delta^3 S_m = 0$$
.

Provement of
$$\left(\frac{\partial p}{\partial V_m}\right)_T = 0$$
, $\left(\frac{\partial^2 p}{\partial V_m^2}\right)_T = 0$, $\left(\frac{\partial^3 p}{\partial V_m^3}\right)_T < 0$.
$$\delta^3 S_m = \frac{1}{T} \left(\frac{\partial^2 p}{\partial V_m^2}\right)_T (\delta V_m)^3$$

- If $\left(\frac{\partial^2 p}{\partial V_m^2}\right)_T \neq 0$, it means the stability is determined by the virtual variation $\delta V_m > 0$ or < 0, which is unreasonable. Therefore, $\left(\frac{\partial^2 p}{\partial V_m^2}\right)_T = 0$.
- I.e., $\delta^3 S_m = 0$.
- $\bullet \ \delta^4 S_m = \delta(\delta^3 S_m)$

3.5 Critical point and phase change between gas and liquid

Provement of
$$\left(\frac{\partial p}{\partial V_m}\right)_T = 0$$
, $\left(\frac{\partial^2 p}{\partial V_m^2}\right)_T = 0$, $\left(\frac{\partial^3 p}{\partial V_m^3}\right)_T < 0$.

$$\delta^3 S_m = \frac{1}{T} \left(\frac{\partial^2 p}{\partial V_m^2} \right)_T (\delta V_m)^3$$

• If $\left(\frac{\partial^2 p}{\partial V_m^2}\right)_{\mathcal{T}} \neq 0$, it means the stability is determined by the virtual variation $\delta V_m > 0$ or < 0, which is unreasonable. Therefore, $\left(\frac{\partial^2 p}{\partial V_m^2}\right)_{\scriptscriptstyle T}=0.$

• I.e., $\delta^3 S_m = 0$.

• $\delta^4 S_m = \delta(\delta^3 S_m) = \frac{1}{T} \left(\frac{\partial^3 p}{\partial V_m^3} \right)_T (\delta V_m)^4$

3.5 Critical point and phase change between gas and liquid

Provement of
$$\left(\frac{\partial p}{\partial V_m}\right)_T = 0$$
, $\left(\frac{\partial^2 p}{\partial V_m^2}\right)_T = 0$, $\left(\frac{\partial^3 p}{\partial V_m^3}\right)_T < 0$.
$$\delta^3 S_m = \frac{1}{T} \left(\frac{\partial^2 p}{\partial V_m^2}\right)_T (\delta V_m)^3$$

- If $\left(\frac{\partial^2 p}{\partial V_m^2}\right)_{\mathcal{T}} \neq 0$, it means the stability is determined by the virtual variation $\delta V_m>0$ or <0, which is unreasonable. Therefore, $\left(\frac{\partial^2 p}{\partial V_m^2}\right)_{\scriptscriptstyle T}=0.$
- I.e., $\delta^3 S_m = 0$.
- $\delta^4 S_m = \delta(\delta^3 S_m) = \frac{1}{T} \left(\frac{\partial^3 p}{\partial V_m^3} \right)_T (\delta V_m)^4 < 0$ (required),

Provement of
$$\left(\frac{\partial p}{\partial V_m}\right)_T = 0$$
, $\left(\frac{\partial^2 p}{\partial V_m^2}\right)_T = 0$, $\left(\frac{\partial^3 p}{\partial V_m^3}\right)_T < 0$.
$$\delta^3 S_m = \frac{1}{T} \left(\frac{\partial^2 p}{\partial V_m^2}\right)_T (\delta V_m)^3$$

• If $\left(\frac{\partial^2 p}{\partial V_m^2}\right)_T \neq 0$, it means the stability is determined by the virtual variation $\delta V_m>0$ or <0, which is unreasonable.

Therefore,
$$\left(\frac{\partial^2 p}{\partial V_m^2}\right)_T=0.$$

- I.e., $\delta^3 S_m = 0$.
- $\delta^4 S_m = \delta(\delta^3 S_m) = \frac{1}{T} \left(\frac{\partial^3 p}{\partial V_m^3} \right)_T (\delta V_m)^4 < 0$ (required),
- $\bullet :: \left(\frac{\partial^3 p}{\partial V_m^3}\right)_T < 0.$

Table of contents

Phase Transition of Single-Component System

- 3.1 Criterion of thermal equilibrium
- 3.2 Basic equations of open system
- 3.3 Equilibrium of single-component multi-phase system
- 3.4 Properties of equilibrium of s-c multi-phase system
- 3.5 Critical point and phase change between gas and liquid
- 3.7 Classification of the phase transition
- 3.9 Landau's approximation for the continuous phase transition

 Properties of normal phase transition: latent heat $L = T(S_m^{\beta} - S_m^{\alpha})$ (entropy jump), volume jump.

- Properties of normal phase transition: latent heat $L = T(S_m^{\beta} S_m^{\alpha})$ (entropy jump), volume jump.
- $d\mu = -S_m dT + V_m dp$

- Properties of normal phase transition: latent heat $L = T(S_m^{\beta} S_m^{\alpha})$ (entropy jump), volume jump.
- $d\mu = -S_m dT + V_m dp$ $\Rightarrow S_m = -\left(\frac{\partial \mu}{\partial T}\right)_p, V_m = \left(\frac{\partial \mu}{\partial p}\right)_T.$

- Properties of normal phase transition: latent heat $L = T(S_m^{\beta} S_m^{\alpha})$ (entropy jump), volume jump.
- $d\mu = -S_m dT + V_m dp$ $\Rightarrow S_m = -\left(\frac{\partial \mu}{\partial T}\right)_p, V_m = \left(\frac{\partial \mu}{\partial p}\right)_T.$

1st order of phase transition: 1st order of partial differential of μ not continuous.

- Properties of normal phase transition: latent heat $L=T(S_m^\beta-S_m^\alpha)$ (entropy jump), volume jump.
- $\mathrm{d}\mu = -S_m \mathrm{d}T + V_m \mathrm{d}p$ $\Rightarrow S_m = -\left(\frac{\partial \mu}{\partial T}\right)_p, V_m = \left(\frac{\partial \mu}{\partial p}\right)_T.$ 1st order of phase transition: 1st order of partial differential of μ not continuous.
- 2nd order: $c_p = T \left(\frac{\partial s}{\partial T} \right)_p = -T \frac{\partial^2 \mu}{\partial T^2}$,

- Properties of normal phase transition: latent heat $L = T(S_m^{\beta} S_m^{\alpha})$ (entropy jump), volume jump.
- $\mathrm{d}\mu = -S_m \mathrm{d}T + V_m \mathrm{d}p$ $\Rightarrow S_m = -\left(\frac{\partial \mu}{\partial T}\right)_p, V_m = \left(\frac{\partial \mu}{\partial p}\right)_T.$ 1st order of phase transition: 1st order of partial differential of μ not continuous.
- 2nd order: $c_p = T \left(\frac{\partial s}{\partial T} \right)_p = -T \frac{\partial^2 \mu}{\partial T^2}$, $\alpha = \frac{1}{v} \left(\frac{\partial v}{\partial T} \right)_p = \frac{1}{v} \frac{\partial^2 \mu}{\partial T \partial p}$,

- Properties of normal phase transition: latent heat $L=T(S_m^\beta-S_m^\alpha)$ (entropy jump), volume jump.
- $\mathrm{d}\mu = -S_m \mathrm{d}T + V_m \mathrm{d}p$ $\Rightarrow S_m = -\left(\frac{\partial \mu}{\partial T}\right)_p, V_m = \left(\frac{\partial \mu}{\partial p}\right)_T.$ 1st order of phase transition: 1st order of partial

differential of μ not continuous.

• 2nd order: $c_p = T \left(\frac{\partial s}{\partial T} \right)_p = -T \frac{\partial^2 \mu}{\partial T^2}$, $\alpha = \frac{1}{v} \left(\frac{\partial v}{\partial T} \right)_p = \frac{1}{v} \frac{\partial^2 \mu}{\partial T \partial p}$, $\kappa_T = -\frac{1}{v} \left(\frac{\partial v}{\partial p} \right)_T = -\frac{1}{v} \frac{\partial^2 \mu}{\partial p^2}$

- Properties of normal phase transition: latent heat $L=T(S_m^\beta-S_m^\alpha)$ (entropy jump), volume jump.
- $\mathrm{d}\mu = -S_m \mathrm{d}T + V_m \mathrm{d}p$ $\Rightarrow S_m = -\left(\frac{\partial \mu}{\partial T}\right)_p, V_m = \left(\frac{\partial \mu}{\partial p}\right)_T.$ 1st order of phase transition: 1st order of partial differential of μ not continuous.
- 2nd order: $c_p = T \left(\frac{\partial s}{\partial T} \right)_p = -T \frac{\partial^2 \mu}{\partial T^2}$, $\alpha = \frac{1}{v} \left(\frac{\partial v}{\partial T} \right)_p = \frac{1}{v} \frac{\partial^2 \mu}{\partial T \partial p}$, $\kappa_T = -\frac{1}{v} \left(\frac{\partial v}{\partial p} \right)_T = -\frac{1}{v} \frac{\partial^2 \mu}{\partial p^2}$ not continuous.

- Properties of normal phase transition: latent heat $L=T(S_m^\beta-S_m^\alpha)$ (entropy jump), volume jump.
- $\mathrm{d}\mu = -S_m \mathrm{d}T + V_m \mathrm{d}p$ $\Rightarrow S_m = -\left(\frac{\partial \mu}{\partial T}\right)_p, V_m = \left(\frac{\partial \mu}{\partial p}\right)_T.$ 1st order of phase transition: 1st order of partial differential of μ not continuous.
- 2nd order: $c_p = T \left(\frac{\partial s}{\partial T} \right)_p = -T \frac{\partial^2 \mu}{\partial T^2}$, $\alpha = \frac{1}{v} \left(\frac{\partial v}{\partial T} \right)_p = \frac{1}{v} \frac{\partial^2 \mu}{\partial T \partial p}$, $\kappa_T = -\frac{1}{v} \left(\frac{\partial v}{\partial p} \right)_T = -\frac{1}{v} \frac{\partial^2 \mu}{\partial p^2}$ not continuous.
- 3rd order, 4th order ...

- Properties of normal phase transition: latent heat $L = T(S_m^{\beta} S_m^{\alpha})$ (entropy jump), volume jump.
- $\mathrm{d}\mu = -S_m \mathrm{d}T + V_m \mathrm{d}p$ $\Rightarrow S_m = -\left(\frac{\partial \mu}{\partial T}\right)_p, V_m = \left(\frac{\partial \mu}{\partial p}\right)_T.$ 1st order of phase transition: 1st order of partial

differential of μ not continuous.

- 2nd order: $c_p = T \left(\frac{\partial s}{\partial T} \right)_p = -T \frac{\partial^2 \mu}{\partial T^2}$, $\alpha = \frac{1}{v} \left(\frac{\partial v}{\partial T} \right)_p = \frac{1}{v} \frac{\partial^2 \mu}{\partial T \partial p}$, $\kappa_T = -\frac{1}{v} \left(\frac{\partial v}{\partial p} \right)_T = -\frac{1}{v} \frac{\partial^2 \mu}{\partial p^2}$ not continuous.
- 3rd order, 4th order ...
- Non-1st order continuous phase transition.

Table of contents

- Phase Transition of Single-Component System
 - 3.1 Criterion of thermal equilibrium
 - 3.2 Basic equations of open system
 - 3.3 Equilibrium of single-component multi-phase system
 - 3.4 Properties of equilibrium of s-c multi-phase system
 - 3.5 Critical point and phase change between gas and liquid
 - 3.7 Classification of the phase transition
 - 3.9 Landau's approximation for the continuous phase transition

ullet Ferromagnetic \leftrightarrow paramagnetic

- Ferromagnetic ↔ paramagnetic
- ullet Introduce order parameter: M for the spontaneous magnetization.

- Ferromagnetic ↔ paramagnetic
- ullet Introduce order parameter: M for the spontaneous magnetization.
- Expand free energy F near T_c :

- ullet Ferromagnetic \leftrightarrow paramagnetic
- ullet Introduce order parameter: M for the spontaneous magnetization.

• Expand free energy F near T_c :

$$F(T,M) = F_0(T) + \frac{1}{2}a(T)M^2 + \frac{1}{4}b(T)M^4 + \dots$$

- ullet Ferromagnetic \leftrightarrow paramagnetic
- ullet Introduce order parameter: M for the spontaneous magnetization.

• Expand free energy F near T_c : $F(T,M) = F_0(T) + \frac{1}{2}a(T)M^2 + \frac{1}{4}b(T)M^4 + \dots$ odd order of M does not exist as F(M) = F(-M).

- Ferromagnetic → paramagnetic
- Introduce order parameter: M for the spontaneous magnetization.

- Expand free energy F near T_c : $F(T, M) = F_0(T) + \frac{1}{2}a(T)M^2 + \frac{1}{4}b(T)M^4 + \dots$ odd order of M does not exist as F(M) = F(-M).
 - For isothermal and isochoric process, criterion for stable equilibrium: $\delta F = 0$, $\delta^2 F > 0$: $\frac{\partial F}{\partial M} = M(a + bM^2) = 0$, $\frac{\partial^2 F}{\partial M^2} = a + 3bM^2 > 0.$

•
$$\frac{\partial F}{\partial M} = M(a + bM^2) = 0$$
 (1), $\frac{\partial^2 F}{\partial M^2} = a + 3bM^2 > 0$ (2)

•
$$\frac{\partial F}{\partial M} = M(a + bM^2) = 0$$
 (1), $\frac{\partial^2 F}{\partial M^2} = a + 3bM^2 > 0$ (2)

• (1) $\to M = 0$, or $M = \pm \sqrt{-a/b}$.

•
$$\frac{\partial F}{\partial M} = M(a + bM^2) = 0$$
 (1), $\frac{\partial^2 F}{\partial M^2} = a + 3bM^2 > 0$ (2)

- (1) $\to M = 0$, or $M = \pm \sqrt{-a/b}$.
- From the figure, $T \to T_c^-$, $M \to 0$, i.e., $\sqrt{-a/b} \to 0$, $\therefore a(T \to T_c^-) \to 0.$

- $\frac{\partial F}{\partial M} = M(a + bM^2) = 0$ (1), $\frac{\partial^2 F}{\partial M^2} = a + 3bM^2 > 0$ (2)
- (1) $\to M = 0$, or $M = \pm \sqrt{-a/b}$.
- From the figure, $T \to T_c^-$, $M \to 0$, i.e., $\sqrt{-a/b} \to 0$, $\therefore a(T \to T_c^-) \to 0.$ Simply define $a = a_0 \frac{T - T_c}{T_c}$, b = Const.

- $\frac{\partial F}{\partial M} = M(a + bM^2) = 0$ (1), $\frac{\partial^2 F}{\partial M^2} = a + 3bM^2 > 0$ (2)
- (1) $\to M = 0$, or $M = \pm \sqrt{-a/b}$.
- From the figure, $T \to T_c^-$, $M \to 0$, i.e., $\sqrt{-a/b} \to 0$, $\therefore a(T \to T_c^-) \to 0.$ Simply define $a = a_0 \frac{T - T_c}{T_c}$, b = Const.
- Put $M = \pm \sqrt{-a/b}$ into (2), $\therefore a < 0$ ($T < T_c$),

- $\frac{\partial F}{\partial M} = M(a + bM^2) = 0$ (1), $\frac{\partial^2 F}{\partial M^2} = a + 3bM^2 > 0$ (2)
- (1) $\to M = 0$, or $M = \pm \sqrt{-a/b}$.
- From the figure, $T \to T_c^-$, $M \to 0$, i.e., $\sqrt{-a/b} \to 0$, $\therefore a(T \to T_c^-) \to 0$. Simply define $a = a_0 \frac{T T_c}{T_c}$, b = Const.
- Put $M = \pm \sqrt{-a/b}$ into (2), $\therefore a < 0$ ($T < T_c$), $\Rightarrow b > 0$

- $\frac{\partial F}{\partial M} = M(a + bM^2) = 0$ (1), $\frac{\partial^2 F}{\partial M^2} = a + 3bM^2 > 0$ (2)
- (1) $\to M = 0$, or $M = \pm \sqrt{-a/b}$.
- From the figure, $T \to T_c^-$, $M \to 0$, i.e., $\sqrt{-a/b} \to 0$, $\therefore a(T \to T_c^-) \to 0$. Simply define $a = a_0 \frac{T T_c}{T_c}$, b = Const.
- Put $M = \pm \sqrt{-a/b}$ into (2), $\therefore a < 0$ ($T < T_c$), $\Rightarrow b > 0$.
 - For $T > T_c$, a > 0.

- $\frac{\partial F}{\partial M} = M(a + bM^2) = 0$ (1), $\frac{\partial^2 F}{\partial M^2} = a + 3bM^2 > 0$ (2)
- (1) $\to M = 0$, or $M = \pm \sqrt{-a/b}$.
- From the figure, $T \to T_c^-$, $M \to 0$, i.e., $\sqrt{-a/b} \to 0$, $\therefore a(T \to T_c^-) \to 0.$ Simply define $a = a_0 \frac{T - T_c}{T_c}$, b = Const.
- Put $M = \pm \sqrt{-a/b}$ into (2), : a < 0 ($T < T_c$),

 $\Rightarrow b > 0$. For $T > T_c$, a > 0.

• $T < T_c$, a < 0, from (2), $M = \pm \sqrt{-a/b}$ is the stable solution.

- $\frac{\partial F}{\partial M} = M(a + bM^2) = 0$ (1), $\frac{\partial^2 F}{\partial M^2} = a + 3bM^2 > 0$ (2)
- (1) $\to M = 0$, or $M = \pm \sqrt{-a/b}$.
- From the figure, $T \to T_c^-$, $M \to 0$, i.e., $\sqrt{-a/b} \to 0$, $\therefore a(T \to T_c^-) \to 0.$ Simply define $a = a_0 \frac{T - T_c}{T_c}$, b = Const.
- Put $M = \pm \sqrt{-a/b}$ into (2), : a < 0 ($T < T_c$), $\Rightarrow b > 0$.

For $T > T_c$, a > 0.

• $T < T_c$, a < 0, from (2), $M = \pm \sqrt{-a/b}$ is the stable solution.

 $T > T_c$, a > 0, from (2), M = 0 is the stable solution.

Table of contents

- Phase Transition of Single-Component System
 - 3.1 Criterion of thermal equilibrium
 - 3.2 Basic equations of open system
 - 3.3 Equilibrium of single-component multi-phase system
 - 3.4 Properties of equilibrium of s-c multi-phase system
 - 3.5 Critical point and phase change between gas and liquid
 - 3.7 Classification of the phase transition
 - 3.9 Landau's approximation for the continuous phase transition