Colophon An annotatable worksheet for this presentation is available as Worksheet 3. • The source code for this page is <u>elementary_signals/index.md</u>. • You can view the notes for this presentation as a webpage (HTML). • This page is downloadable as a PDF file. Consider the network shown in below where the switch is closed at time t = T and all components are ideal. Express the output voltage $V_{ m out}$ as a function of the unit step function, and sketch the appropriate waveform. **Solution** Before the switch is closed at t < T:

 $V_{\rm out}=0.$ After the switch is closed for t > T: $V_{\rm out} = V_s$.

We imagine that the voltage jumps instantaneously from 0 to V_s volts at t=T seconds as shown below.

Elementary Signals

The preparatory reading for this section is Chapter 1 of {cite} karris which

• presents the sampling and sifting properties of the delta function and

• introduces the unit step, unit ramp and dirac delta functions

• begins with a discussion of the elementary signals that may be applied to electrical circuits

• concludes with examples of how other useful signals can be synthesised from these elementary signals.

We call this type of signal a step function. **The Unit Step Function**

In [12]: plot_heaviside ans =0.5000

In [11]: imatlab_export_fig('print-svg') % Static svg figures.

In Matlab, we use the heaviside function (named after Oliver Heaviside).

In Matlab

File plot_heaviside.m

heaviside(0)

ezplot(heaviside(t),[-1,1])

syms t

0.4

0.2

1.5

In [13]:

heaviside(t) 8.0

Note that, so that it can be plotted, Matlab defines the *heaviside function* slightly differently from the mathematically ideal unit step: heaviside(t) = $\begin{cases} 0 & t < 0 \\ 1/2 & t = 0 \\ 1 & t > 0 \end{cases}$ **Simple Signal Operations Amplitude Scaling** Sketch $Au_0(t)$ and $-Au_0(t)$ syms t; u0(t) = heaviside(t); % rename heaviside function for ease of use A = 2; % so signal can be plotted ezplot(A*u0(t),[-1,1]),grid,title('Amplitude scaling \$\$Au_0(t)\$\$','interpreter','latex') Amplitude scaling $Au_0(t)$

In [14]: ezplot(-A*u0(t),[-1,1]),grid,title('Amplitude scaling and mirroring \$\$-Au_0(t)\$\$','interpreter','latex')

Time reversal $Au_0(-t)$

-0.2

Note that the signal is scaled in the y direction.

about the y axis.

0.2

The sign on the function argument -t causes the whole signal to be reversed in time. Note that another way of looking at this is that the signal is mirrored **Time Delay and Advance** Sketch $u_0(t-T)$ and $u_0(t+T)$ In [16]: T = 1; % again to make the signal plottable. ezplot(u0(t - T),[-1,2]),grid,title('Time delay \$\$u_0(t - T)\$\$','interpreter','latex') Time delay $u_0(t-T)$ 8.0 0.6 0.2

0.5

Time advance $u_0(t+T)$

This is a *time delay* ... note for $u_0(t-T)$ the step change occurs T seconds **later** than it does for $u_0(t)$.

In [17]: ezplot(u0(t + T),[-2,1]),grid,title('Time advance \$\$u_0(t + T)\$\$','interpreter','latex')

1.5

2

-1

0.8

0.6

where au is a dummy variable.

and if $v_c(t) = 0$ for t < 0 we have

In [18]: C = 1; is = 1;

vc(t)=(is/C)*t*u0(t);

2.5

The unit ramp function is defined as

Details are given in equations 1.26—1.29 in Karris.

The Dirac Delta Function

SO

and

Note

-0.5

In the circuit shown above i_s is a constant current source and the switch is closed at time t = 0.

Since the switch closes at t=0, we can express the current $i_c(t)$ as

So, the voltage across the capacitor can be represented as

that limits the definition of the signal to the causal range $0 \le t < \infty$.

ezplot(vc(t),[-1,4]),grid,title('A ramp function')

To sketch the wave form, let's arbitrarily let C and i_s be one and then plot with MATLAB.

A ramp function

When the current through the capacitor $i_c(t) = i_s$ is a constant and the voltage across the capacitor is

 $v_c(t) = \frac{1}{C} \int_{-\infty}^t i_c(\tau) \ d\tau$

 $i_c(t) = i_s u_0(t)$

 $v_c(t) = \frac{i_s}{C} \int_{-\infty}^t u_0(\tau) \ d\tau = \frac{i_s}{C} \int_{-\infty}^0 0 \ d\tau + \frac{i_s}{C} \int_0^t 1 \ d\tau$

 $v_C(t) = \frac{i_s}{C} t u_0(t)$

Note that in this as in other examples throughout these notes, and in published tables of transforms, the inclusion of $u_0(t)$ in $v_c(t)$ acts as a "gating function"

This type of signal is called a **ramp function**. Note that it is the *integral* of the step function (the resistor-capacitor circuit implements a simple integrator circuit).

 $u_1(t) = \int_0^t u_0(\tau) d\tau$

 $u_1(t) = \begin{cases} 0 & t < 0 \\ t & t \ge 0 \end{cases}$

 $u_0(t) = \frac{d}{dt}u_1(t)$

 $u_{n-1} = \frac{1}{n} \frac{d}{dt} u_n(t)$

1.5 0.5

Higher order functions of t can be generated by the repeated integration of the unit step function.

For future reference, you should determine $u_2(t)$, $u_3(t)$ and $u_n(t)$ for yourself and make a note of the general rule:

In the circuit shown above, the switch is closed at time t = 0 and $i_L(t) = 0$ for t < 0. Express the inductor current $i_L(t)$ in terms of the unit step function and hence derive an expression for $v_L(t)$. **Solution** $v_L(t) = L \frac{di_L}{dt}$ Because the switch closes instantaneously at t = 0 $i_L(t) = i_s u_0(t)$ Thus $v_L(t) = i_s L \frac{d}{dt} u_0(t).$ To solve this problem we need to invent a function that represents the derivative of the unit step function. This function is called $\delta(t)$ or the *dirac delta* function (named after Paul_Dirac). The delta function The unit impulse or the delta function, denoted as $\delta(t)$, is the derivative of the unit step. This function is tricky because $u_0(t)$ is discontinuous at t=0 but it must have the properties $\int \delta(\tau)d\tau = u_0(t)$ and $\delta(t) = 0 \ \forall \ t \neq 0.$ Sketch of the delta function

MATLAB Confirmation

vL(t) = is * L * diff(u0(t))

Note that we can't plot dirac(t) in MATLAB with ezplot.

The sampling property of the delta function states that

You should also work through the proof for yourself.

the nth-order delta function is defined as the nth derivative of $u_0(t)$, that is

Higher Order Delta Fuctions

Important properties of the delta function

In [19]: syms is L;

vL(t) =

L*is*dirac(t)

Sampling Property

or, when a = 0,

Sifting Property

 $f(t)\delta(t) = f(0)\delta(t)$ Multiplication of any function f(t) by the delta function $\delta(t)$ results in sampling the function at the time instants for which the delta function is not zero. The study of descrete-time (sampled) systems is based on this property. You should work through the proof for youself. The sifting property of the delta function states that $\int_{-\infty}^{\infty} f(t)\delta(t-\alpha)dt = f(\alpha)$

That is, if multiply any function f(t) by $\delta(t-\alpha)$, and integrate from $-\infty$ to $+\infty$, we will get the value of f(t) evaluated at $t=\alpha$.

 $f(t)\delta(t-a) = f(a)\delta(t-a)$

The function $\delta'(t)$ is called the *doublet*, $\delta''(t)$ is called the *triplet* and so on. By a procedure similar to the derivation of the sampling property we can show that $f(t)\delta'(t-a) = f(a)\delta'(t-a) - f'(t)\delta(t-a)$ Also, derivation of the sifting property can be extended to show that $\int_{-\infty}^{\infty} f(t)\delta^n(t-\alpha)dt = (-1)^n \frac{d^n}{dt^n} [f(t)]\Big|_{t=\alpha}$ **Summary**

 $\delta^n(t) = \frac{d^n}{dt^n} [u_0(t)]$

References See Bibliography

In this chapter we have looked at some elementary signals and the theoretical circuits that can be used to generate them. **Takeaways** • You should note that the unit step is the *heaviside function* $u_0(t)$. • Many useful signals can be synthesized by use of the unit step as a "gating function" in combination with other signals • That unit ramp function $u_1(t)$ is the integral of the step function. • The *Dirac delta* function $\delta(t)$ is the derivative of the unit step function. We sometimes refer to it as the *unit impulse function*. • The delta function has sampling and sifting properties that will be useful in the development of time convolution and sampling theory.

Examples We will do some of these in class. See Worksheet 3. Homework These are for you to do later for further practice. See Homework 1.