

# From TrashCan to UNO: Deriving an Underwater Image Dataset To Get a More Consistent and Balanced Version

• •

Cyril Barrelet<sup>1</sup>, Marc Chaumont<sup>1, 3</sup>, Gérard Subsol<sup>1</sup>, Vincent Creuze<sup>1</sup>, Marc Gouttefarde<sup>2</sup>

<sup>1</sup>Research team ICAR, LIRMM, Univ Montpellier, CNRS, Montpellier, France <sup>2</sup>Research team DEXTER, LIRMM, Univ Montpellier, CNRS, Montpellier, France <sup>3</sup>Univ Nîmes, France











# Context



- Remove macro-litter from the seabed
  - Underwater macro-litter localization
  - Underwater macro-litter database





# Available underwater macro-litter databases

### DeepSeaWaste dataset



Aluminium can

- 544 images + labels
- 76 classes

### TrashCan dataset



- 7,212 images + 8634 labels
- 16-22 classes (8 litter categories)

# Deep learning issues

- TrashCan construction bias
  - 7,212 frames extracted from 312 sequences
- Class unbalance
- Annotations quality
  - Incorrect annotations
  - Missing annotations
  - Poor localization
- Metadata overlay

















# Contributions

- **New** Underwater Non-natural Object dataset: UNO
- Methodology to compare networks using a **well-balanced** k-fold
- **Comparison** of TrashCan and UNO using YOLOv5
- Covariate shift test using underwater images from AQUALOC

## **UNO** construction

- Label redefinition
  - Non-natural objects (one class)
- Automatic text removal
- Manual relocalization and adding
- Nonsignificant images removal









Original TrashCan



Derived UNO

# A methodology to obtain a **well-balanced** k-fold



# A methodology to obtain a **well-balanced** k-fold

Bin packing problem



$$f^* = arg \displaystyle \min_{f \in \{1..5\}^{279}} (\sigma_F + \ \sigma_{BB})$$

| Fold | Videos | Frames | BBs    |  |
|------|--------|--------|--------|--|
| 1    | 63     | 1180   | 2159   |  |
| 2    | 64     | 1182   | 2137   |  |
| 3    | 49     | 1185   | 2152   |  |
| 4    | 44     | 1179   | 2163   |  |
| 5    | 57     | 1176   | 2162   |  |
| Mean | 55.4   | 1189.2 | 2154.6 |  |
| Std  | 7.81   | 3.00   | 9.60   |  |
|      |        |        |        |  |

# Experiments and results

### Model and hyperparameters

- YOLOv5m pre-trained on ImageNet
- SGD optimizer
- OneCycle scheduler
- Initial learning rate: 0.0032
- Final learning rate: 0.000384
- Warmup: 20%
- Batch size: 28
- 5 trainings of 300 epochs each

### Augmentations

- Color transformation
- Rotations
- Translations
- Scaling
- Shearing
- Flip-UP and Flip-LR
- Mosaic
- Mixup

| Training set | Evaluation set | Split    | F1-score   | mAP@.50        |
|--------------|----------------|----------|------------|----------------|
| TrashCan     | TrashCan       | Random   | 79.7       | 80.8           |
| TrashCan     | TrashCan       | K-folded | 58.4 ± 4.2 | 56.6 ± 6.3     |
| UNO          | UNO            | K-folded | 67.3 ± 1.5 | $68.8 \pm 1.2$ |

## Domain shift evaluation



### Domain shift:

Change in the data distribution between an algorithm's training dataset, and a dataset it encounters when deployed.



# Domain shift evaluation

| Training set | Evaluation set | Split    | F1-score       | mAP@.50        |
|--------------|----------------|----------|----------------|----------------|
| TrashCan     | TrashCan       | Random   | 79.7           | 80.8           |
| TrashCan     | TrashCan       | K-folded | 58.4 ± 4.2     | 56.6 ± 6.3     |
| UNO          | UNO            | K-folded | $67.3 \pm 1.5$ | $68.8 \pm 1.2$ |

• Evaluation set: 150 annotated images from AQUALOC dataset

| Training set | Evaluation set | Split    | F1-score   | mAP@.50    |
|--------------|----------------|----------|------------|------------|
| TrashCan     | AQUALOC        | K-folded | 55.7 ± 1.6 | 52.5 ± 1.9 |
| UNO          | AQUALOC        | K-folded | 55.6 ± 4.5 | 55.2 ± 4.7 |

# Perspectives and conclusion

- Extend the methodology to multi-class
- Work on different adaptation domain scenarios

AQUALOC video



AQUALOC video





# From TrashCan to UNO: Deriving an Underwater Image Dataset To Get a More Consistent and Balanced Version

•••

Cyril Barrelet<sup>1</sup>, Marc Chaumont<sup>1, 3</sup>, Gérard Subsol<sup>1</sup>, Vincent Creuze<sup>1</sup>, Marc Gouttefarde<sup>2</sup>

<sup>1</sup>Research team ICAR, LIRMM, Univ Montpellier, CNRS, Montpellier, France <sup>2</sup>Research team DEXTER, LIRMM, Univ Montpellier, CNRS, Montpellier, France <sup>3</sup>Univ Nîmes, France









