Supplementary Material for "Statistical Inference for Incomplete Ranking Data: The Case of Rank-Dependent Coarsening"

1 Proofs of Theoretical Results in Section 7

Definition 1. Let $\hat{\pi}_N$ denote the ranking produced as a prediction by a ranking method on the basis of N observed (pairwise) preferences. The method is consistent if $\mathbf{p}(\hat{\pi}_N = \pi^*) \to 1$ for $N \to \infty$.

Definition 2. Consider a complete ranking $\pi \in \mathbb{S}_K$, and let us consider two indices $i \neq j$. We define the (i,j)-swap ranking, $\pi_{i,j} : [K] \to [K]$, as follows: $\pi_{i,j}(k) = \pi(k)$, $\forall k \in [K] \setminus \{i,j\}$, $\pi_{i,j}(i) = \pi(j)$ and $\pi_{i,j}(j) = \pi(i)$.

Lemma 3. (Lemma 2 in the paper) Let us consider a probability measure \mathbf{p}_{θ} over \mathbb{S}_{K} . Consider $q_{i,j} = \sum_{\pi \in E(a_{i} \succ a_{j})} \mathbf{p}_{\theta}(\pi) \lambda_{\pi(i),\pi(j)}$, $\forall i \neq j$. (The model (8) in the paper, without assuming that the marginal distribution is necessarily PL). Then:

$$\mathbf{p}_{\theta}(\pi) \geq \mathbf{p}_{\theta}(\pi_{i,j}), \ \forall \pi \in E(a_i \succ a_j) \Rightarrow q_{i,j} > q_{j,i}.$$

Proof. We easily observe that:

$$q_{i,j} = \sum_{\pi \in E(a_i \succ a_j)} \boldsymbol{p}_{\theta}(\pi) \lambda_{\pi(i),\pi(j)}$$

$$q_{j,i} = \sum_{\pi \in E(a_j \succ a_i)} \boldsymbol{p}_{\theta}(\pi) \lambda_{\pi(j),\pi(i)}$$

Furthermore, let us notice that the set $E(a_j \succ a_i)$ coincides with $\{\pi_{i,j} : \pi \in E(a_i \succ a_j)\}$ and that $\lambda_{\pi_{i,j}(i),\pi_{i,j}(j)} = \lambda_{\pi(j),\pi(i)}$ for every $\pi \in E(a_i \succ a_j)$. Therefore, we can write:

$$q_{j,i} = \sum_{\pi \in E(a_i \succ a_j)} \boldsymbol{p}_{\theta}(\pi_{i,j}) \lambda_{\pi(i),\pi(j)}.$$

By hypothesis, the following inequalities hold:

$$\boldsymbol{p}_{\theta}(\pi) \geq \boldsymbol{p}_{\theta}(\pi_{i,j}), \forall \pi \in E(a_i \succ a_j),$$

and therefore we deduce that $q_{i,j} > q_{j,i}$.

Lemma 4. Consider the PL model with $\theta_i > 0$ for all $i \in [K]$, and let $\lambda = \{\lambda_{u,v} | 1 \le u < v \le K\}$ be any (pairwise) coarsening such that $\lambda_{u,v}$ is the probability to select positions u and v. Then, $q_{i,j} > 0$ for all $i, j \in [K]$, $i \ne j$. Thus, each preference $a_i \succ a_j$ has a positive probability to be observed.

Proof. Take any $\lambda_{u,v} > 0$ and fix $i, j \in [K]$, $i \neq j$. According to the PL model, if $\theta_k > 0$ for all $k \in [K]$, $pl_{\theta}(\pi) > 0$ for all $\pi \in \mathbb{S}_K$. Thus, there is a probability p > 0 that $\pi(i) = u$ and $\pi(j) = v$. Consequently, $q_{i,j} \geq p\lambda_{u,v} > 0$.

Lemma 5. (Lemma 3 in the paper) Assume the model (8) and let $\theta_i > 0$ for all $i \in [K]$, $\theta_i \neq \theta_j$ for $i \neq j$. The coarsening (7) is order-preserving for PL in the sense that $p_{i,j} > 1/2$ if and only if $q'_{i,j} > 1/2$, where $q'_{i,j} = q_{i,j}/(q_{i,j} + q_{j,i})$.

Proof. First, note that, according to the previous lemma, $q_{i,j} > 0$ for all $i, j \in [K]$, $i \neq j$, so all $q'_{i,j}$ are well defined.

• Let us first prove the "only if" part. According to Lemma 3, it only remains to prove that any Plackett-Luce distribution pl_{θ} satisfies the following implication:

$$p_{i,j} > p_{j,i} \Rightarrow \boldsymbol{pl}_{\theta}(\pi) \geq \boldsymbol{pl}_{\theta}(\pi_{i,j}), \ \forall \, \pi \in E(a_i \succ a_j).$$

Let us first notice that $p_{i,j} > p_{j,i}$ if and only if $\theta_i > \theta_j$. Let us take an arbitrary ranking $\pi \in E(a_i \succ a_j)$. We can write:

$$\begin{aligned} \boldsymbol{pl}_{\theta}(\pi) &= C_{i,j} \cdot \frac{\theta_{\pi^{-1}(\pi(i))}}{\sum_{s=\pi(i)}^{\pi(K)} \theta_{\pi^{-1}(s)}} \cdot \frac{\theta_{\pi^{-1}(\pi(j))}}{\sum_{s=\pi(j)}^{\pi(K)} \theta_{\pi^{-1}(s)}} \\ \boldsymbol{pl}_{\theta}(\pi_{i,j}) &= C_{i,j} \cdot \frac{\theta_{\pi_{i,j}^{-1}(\pi_{i,j}(i))}}{\sum_{s=\pi_{i,j}(i)}^{\pi_{i,j}(K)} \theta_{\pi_{i,j}^{-1}(s)}} \cdot \frac{\theta_{\pi_{i,j}^{-1}(\pi_{i,j}(j))}}{\sum_{s=\pi_{i,j}(j)}^{\pi_{i,j}(K)} \theta_{\pi_{i,j}^{-1}(s)}}, \end{aligned}$$

where

$$C_{i,j} = \prod_{r \notin \{\pi(i),\pi(j)\}} \frac{\theta_{\pi^{-1}(r)}}{\theta_{\pi^{-1}(r)} + \theta_{\pi^{-1}(r+1)} + \dots + \theta_{\pi^{-1}(K)}}$$
$$= \prod_{r \notin \{\pi_{i,j}(i),\pi_{i,j}(j)\}} \frac{\theta_{\pi_{i,j}^{-1}(r)} + \theta_{\pi_{i,j}^{-1}(r+1)} + \dots + \theta_{\pi_{i,j}^{-1}(K)}}{\theta_{\pi_{i,j}^{-1}(r)} + \theta_{\pi_{i,j}^{-1}(r+1)} + \dots + \theta_{\pi_{i,j}^{-1}(K)}}.$$

According to the relation between π and $\pi_{i,j}$, we can easily check the following equality:

$$\sum_{s=\pi(i)}^{\pi(K)} \theta_{\pi^{-1}(s)} = \sum_{s=\pi_{i,j}(j)}^{\pi_{i,j}(K)} \theta_{\pi_{i,j}^{-1}(s)}$$

(In fact, both θ_i and θ_j appear in both sums). Furthermore, we observe that:

$$\sum_{s=\pi(j)}^{\pi(K)} \theta_{\pi^{-1}(s)} - \sum_{s=\pi_{i,j}(i)}^{\pi_{i,j}(K)} \theta_{\pi_{i,j}^{-1}(s)} = \theta_j - \theta_i,$$

and therefore

$$\sum_{s=\pi(j)}^{\pi(K)} \theta_{\pi^{-1}(s)} < \sum_{s=\pi_{i,j}(i)}^{\pi_{i,j}(K)} \theta_{\pi_{i,j}^{-1}(s)}.$$

We deduce that $\boldsymbol{pl}_{\theta}(\pi) > \boldsymbol{pl}_{\theta}(\pi_{i,j})$.

• Let us now prove the "if" part. Suppose that $q'_{i,j} > 1/2$. Therefore, according to the "only if part", $p_{i,j}$ must be greater than or equal to 1/2 (as otherwise, we would get $q'_{i,j} < 1/2$). Now, according to the hypotheses, all the components of the parameter θ are different from each other, and therefore $p_{i,j} \neq 1/2$, so we deduce that it must be strictly greater than 1/2.

Lemma 6. (Lemma 4 in the paper) Assume the model (8), $\theta_i \neq \theta_j$ for $i \neq j$, and $\theta_i > 0$ for all $i \in [K]$. Let us take an arbitrarily small $\epsilon^* > 0$. There exists $N_0 \in \mathbb{N}$ such that $\theta_i > \theta_j$ if and only if $\hat{p}_{i,j} > 1/2$ for all $i, j \in [K]$, with probability at least $1 - \epsilon^*$, after having observed at least N_0 preferences.

Proof. Take an arbitrary pair (i, j), and let us consider the sequence $(\hat{p}_{i,j}^{(n)})_{n \in \mathbb{N}}$, where $\hat{p}_{i,j}^{(n)} = \frac{c_{i,j}^{(n)}}{c_{i,j}^{(n)} + c_{j,i}^{(n)}}$, and $c_{i,j}^{(n)}$ denotes the number of times the pair $a_i \succ a_j$ is observed in the sample. According to the Strong Law of Large Numbers, the sequence

$$\hat{p}_{i,j}^{(n)} = \frac{c_{i,j}^{(n)}/n}{c_{i,j}(n)/n + c_{j,i}(n)/n}$$

converges in probability to $q'_{i,j} = \frac{q_{i,j}}{q_{i,j}+q_{j,i}}$. This means that, for any pair of arbitrary $\epsilon > 0$ and $\delta > 0$, there exists $N_{\delta,\epsilon,i,j} \in \mathbb{N}$ such that $|\hat{p}^{(n)}_{i,j} - q'_{i,j}| < \delta$, with probability greater than $1 - \epsilon$, for every $n \geq N_{\delta,\epsilon,i,j}$. Now, $\theta_i < \theta_j$ if and only if $p_{i,j} > 0.5$, which is equivalent to saying that $q'_{i,j} = q_{i,j}/(q_{i,j}+q_{j,i}) > 1/2$, according to Lemma 5. Let us now take $\delta = \min_{i,j} |q'_{i,j} - 1/2|/2$, $\epsilon = \epsilon^*/K(K-1)$, and $N_0 = \max_{i,j} N_{\delta,\epsilon,i,j}$. Then, thanks to the union bound, with probability at least $1 - \epsilon^*$, we can assure for every $n \geq N_0$ that $\hat{p}^{(n)}_{i,j} > 0.5$ if and only if $q'_{i,j} > 1/2$ for every pair (i,j).

Theorem 7. (Theorem 5 in the paper) Copeland ranking is consistent.

Proof. It is a direct consequence of Lemma 6.

Theorem 8. (Theorem 6 in the paper) FAS, FAS(R), and FAS(B) are consistent.

Proof. Let us separately consider the three cases.

• FAS(R). Let us first notice that $\hat{p}_{i,j} + \hat{p}_{j,i} = 1$ and therefore,

$$\arg\min_{\pi \in \mathbb{S}_k} \left(\sum_{(i,j): \pi(i) < \pi(j)} \hat{p}_{j,i} \right) = \arg\max_{\pi \in \mathbb{S}_k} \left(\sum_{(i,j): \pi(i) < \pi(j)} \hat{p}_{i,j} \right).$$

Now, for an arbitrary $\pi \in \mathbb{S}_k$, the following equality holds:

$$\sum_{(i,j):\pi(i)<\pi(j)} \hat{p}_{j,i} = \sum_{i< j} r_{i,j}^{\pi},$$

where $r_{i,j}^{\pi}$ is defined as follows for every i < j:

$$r_{i,j}^{\pi} = \begin{cases} \hat{p}_{i,j} & \text{if } \pi(i) < \pi(j) \\ \hat{p}_{j,i} & \text{otherwise.} \end{cases}$$

Furthermore, according to Lemmas 5 and 6, for an arbitrarily small $\epsilon^* > 0$, there exists $N_0 \in \mathbb{N}$ such that $\theta_i > \theta_j$, or equivalently, $q_{i,j} > q_{i,j}$, if and only if $\hat{p}_{i,j} > 1/2$, for every pair (i,j) and every $n \geq N_0$, with probability greater than or equal to $1 - \epsilon^*$. Let us now consider the function $f : \mathbb{S}_K \to \mathbb{R}$: $f(\pi) = \sum_{(i,j):\pi(i) < \pi(j)} s_{i,j}^{\pi}$, where

$$s_{i,j}^{\pi} = \begin{cases} q_{i,j} & \text{if } \pi(i) < \pi(j) \\ q_{j,i} & \text{otherwise.} \end{cases}$$

The argument of the maximum of this function is $\pi^* = \arg \operatorname{sort}\{\theta_1, \dots, \theta_k\}$. Consequently, the solution to FAS, after having observed at least N_0 preferences, coincides with $\arg \operatorname{sort}\{\theta_1, \dots, \theta_k\}$ with probability at least $1 - \epsilon^*$.

- FAS. The proof is analogous to the previous case. (Let us notice that $c_{i,j} > c_{j,i}$ if and only if $\hat{p}_{i,j} > 1/2$).
- FAS(B). First of all, let us take into account that $\mathbb{I}(\hat{p}_{j,i} > 1/2) + \mathbb{I}(\hat{p}_{i,j} > 1/2) = 1$, for every (i, j) and therefore the FAS(B) ranking is $\hat{\pi}$ satisfying:

$$\hat{\pi} = \arg \max_{\pi \in \mathbb{S}_K} \sum_{(i,j): \pi(i) < \pi(j)} \mathbb{I}(\hat{p}_{i,j} > 1/2)$$

$$= \arg \max_{\pi \in \mathbb{S}_K} \#\{(i,j): \pi(i) < \pi(j) \text{ and } \hat{p}_{i,j} > 1/2\}.$$

Now, let us take an arbitrarily small $\epsilon^* > 0$. According to Lemma 6, there exists N_0 such that $\hat{p}_{i,j} > 1/2$ if and only if $\theta_i > \theta_j$, for every pair (i,j) and for all $n \geq N_0$ with probability at least $1 - \epsilon^*$. Therefore, with probability at least $1 - \epsilon^*$ and for a sufficiently large sample, we can equivalently write that the solution to the FAS(B) algorithm is $\hat{\pi}$ satisfying:

$$\begin{split} \hat{\pi} &= \arg\max_{\pi \in \mathbb{S}_K} \sum_{(i,j): \, \pi(i) < \pi(j)} \mathbb{I}(\hat{p}_{i,j} > 1/2) \\ &= \arg\max_{\pi \in \mathbb{S}_K} \, \#\{(i,j): \, \pi(i) < \pi(j) \text{ and } \theta_i > \theta_j\}. \end{split}$$

Clearly, the solution to this problem is $\pi^* = \arg \operatorname{sort}\{\theta_1, \dots, \theta_k\}$ (the mode of the underlying PL distribution).

2 Experimental Results

Figure 1: Simulation results of algorithms for coarsened rankings when full rankings are generated according to PL (with K=3) and coarsening is degenerate ($\lambda_{i,j}=1$ for some $1 \le i < j \le K$). Full breaking (extraction of all pairwise preferences) is shown as a baseline. X-axis shows the sample size. Y-axis is the Kendall distance averaged over 500 runs.

Figure 2: Simulation results of algorithms for coarsened rankings when full rankings are generated according to PL (with K=4) and coarsening is degenerate ($\lambda_{i,j}=1$ for some $1 \leq i < j \leq K$). Full breaking (extraction of all pairwise preferences) is shown as a baseline. X-axis shows the sample size. Y-axis is the Kendall distance averaged over 500 runs.

Figure 3: Simulation results of algorithms for coarsened rankings when full rankings are generated according to PL (with K=5) and coarsening is degenerate ($\lambda_{i,j}=1$ for some $1 \le i < j \le K$). Full breaking (extraction of all pairwise preferences) is shown as a baseline. X-axis shows the sample size. Y-axis is the Kendall distance averaged over 500 runs.

Figure 4: Simulation results of algorithms for coarsened rankings when full rankings are generated according to PL (with K=7) and coarsening is degenerate ($\lambda_{i,j}=1$ for some $1 \le i < j \le K$). Full breaking (extraction of all pairwise preferences) is shown as a baseline. X-axis shows the sample size. Y-axis is the Kendall distance averaged over 500 runs.

Figure 5: Performance of algorithms averaged over all coarsening positions (i, j) when rankings are generated according to PL. Each plot from left to right corresponds to the number of items $K \in \{3, 4, 5, 7\}$, respectively. X-axis is the sample size. Y-axis shows the Kendall distance.

Figure 6: Simulation results of algorithms for coarsened rankings when full rankings are generated according to Mallows (with K=3 and dispersion $\phi=0.1$), and coarsening is degenerate ($\lambda_{i,j}=1$ for some $1\leq i< j\leq K$). Full breaking (extraction of all pairwise preferences) is shown as a baseline. X-axis shows the sample size. Y-axis is the Kendall distance averaged over 500 runs.

Figure 7: Simulation results of algorithms for coarsened rankings when full rankings are generated according to Mallows (with K=4 and dispersion $\phi=0.1$), and coarsening is degenerate ($\lambda_{i,j}=1$ for some $1 \leq i < j \leq K$). Full breaking (extraction of all pairwise preferences) is shown as a baseline. X-axis shows the sample size. Y-axis is the Kendall distance averaged over 500 runs.

Figure 8: Simulation results of algorithms for coarsened rankings when full rankings are generated according to Mallows (with K=5 and dispersion $\phi=0.1$), and coarsening is degenerate ($\lambda_{i,j}=1$ for some $1 \le i < j \le K$). Full breaking (extraction of all pairwise preferences) is shown as a baseline. X-axis shows the sample size. Y-axis is the Kendall distance averaged over 500 runs.

Figure 9: Simulation results of algorithms for coarsened rankings when full rankings are generated according to Mallows (with K=7 and dispersion $\phi=0.1$), and coarsening is degenerate ($\lambda_{i,j}=1$ for some $1 \le i < j \le K$). Full breaking (extraction of all pairwise preferences) is shown as a baseline. X-axis shows the sample size. Y-axis is the Kendall distance averaged over 500 runs.

Figure 10: Performance of algorithms averaged over all coarsening positions (i, j) when rankings are generated according to Mallows with dispersion $\phi = 0.1$. Each plot from left to right corresponds to the number of items $K \in \{3, 4, 5, 7\}$, respectively. X-axis is the sample size. Y-axis shows the Kendall distance.

Figure 11: Simulation results of algorithms for coarsened rankings when full rankings are generated according to Mallows (with K=4 and dispersion $\phi=0.5$), and coarsening is degenerate ($\lambda_{i,j}=1$ for some $1 \leq i < j \leq K$). Full breaking (extraction of all pairwise preferences) is shown as a baseline. X-axis shows the sample size. Y-axis is the Kendall distance averaged over 500 runs.

Figure 12: Simulation results of algorithms for coarsened rankings when full rankings are generated according to Mallows (with K=5 and dispersion $\phi=0.5$), and coarsening is degenerate ($\lambda_{i,j}=1$ for some $1 \leq i < j \leq K$). Full breaking (extraction of all pairwise preferences) is shown as a baseline. X-axis shows the sample size. Y-axis is the Kendall distance averaged over 500 runs.