

Modelowanie ryzyka kredytowego

Implementacja modeli finansowych w R

Stanisław Ochotny UBS, Credit Risk Methodology

Metodologia ryzyka kredytowego

Im lepsza ocena kredytowa, tym mniej zdarzeń niespłacalności

Wewnętrzna metodologia ryzyka kredytowego:

- używa czynników ryzyka właściwych dla ryzyka kredytowego:
 - czynniki ilościowe (wskaźniki finansowe, itp.)
 - czynniki jakościowe (przewagi konkurencyjna)
- łączy je odpowiednio w ocenę kredytową:
 - np. jako kombinację liniową
- maksymalizuje moc dyskryminacyjną:
 - porządkuje klientów od najmniej do najbardziej wiarygodnych kredytowo
- przypisuje każdemu klientowi prawdopodobieństwo niespłacalności.

1

Jak mierzyć moc dyskryminacyjną

Kiedy jakaś wartość staje się symptomem?

Moc dyskryminacyjna:

Jak mierzyć moc dyskryminacyjną

Cumulative Accuracy Profile

Sortujemy dłużników od najgorszych do najlepszych według oceny kredytowej a_R – pole między krzywą wyznaczoną przez model i linią modelu losowego a_P – pole między linią modelu idealnego i linią modelu losowego AR (accuracy ratio) = a_R / a_P

Jak łączyć zmienne w ocenę kredytową

Która kombinacja zmiennych pozwala na najlepszą ocenę ryzyka?

Uogólnione modele liniowe:

$$\mathrm{E}(\mathbf{Y}) = oldsymbol{\mu} = g^{-1}(\mathbf{X}oldsymbol{eta})$$

- liniowy predyktor Xβ,
- funkcja łącząca g.

Przy modelowaniu zdarzeń zakładamy:

- Y=1 gdy zdarzenie wystąpiło
- Y=0 gdy zdarzenie nie wystąpiło.

Pytania:

Jaka jest interpretacja E(Y)?

Jakie własności musi spełniać funkcja g dla modeli ryzyka kredytowego?

Implementacja modeli

Która kombinacja zmiennych pozwala na najlepszą ocenę ryzyka?

Funkcje łączące:

funkcja logistyczna (logit):

$$g(p) = \ln \left(rac{p}{1-p}
ight)$$

dystrybuanta rozkładu normalnego (probit):

$$g(p) = \Phi^{-1}(p)$$

Składnia w języku R:

Predykcja z modelu:

```
data[,"score"] <- predict( model , data )
data[,"pd"] <- predict( model , data , type = "response" )</pre>
```


Literatura

- Basel Committee on Banking Supervision
 Studies on the Validation of Internal Rating Systems
 Working Paper No. 14, Revised version, May 2005
- Tomasz Górecki
 Podstawy statystyki z przykładami w R Wydawnictwo BTC, 2011

Informacje kontaktowe

Stanisław Ochotny, PRM

Email: stanislaw.ochotny@ubs.com

Credit Risk Methodology UBS Business Solutions Center Poland KBP Z1 | Krakowska 280 | 32-080 Zabierzów www.ubs.com

