Project 10 Answer Key and Grading Guide

https://datamine.purdue.edu/seminars/fall2019/stat19000project10.html

General guidelines

Generally we don't want to penalize incorrect answers too heavily. What's important is that the student makes an honest attempt at a solution and provides rationale for their methods. Remember, it's all about the learning.

• Each assignment is worth 10 points

Accepted file formats

To receive full credit, students must use the provided project template.

• If a solution's formatting deviates significantly from that of the template, deduct 0.5 points.

Adding comments to student assignments

Create a text file called grader_notes.txt in each student's project folder. Put any comments or corrections in there.

Project-specific guidelines

For any given problem...

- deduct 0.5 points for missing code (if code is required to solve this problem)
- deduct 0.5 points for missing output (if output is required to solve this problem)
- deduct 0.5 points for missing comments
- deduct 0.5 points for incorrect solutions
- ... for a minimum score of 0 on the individual problem.

Question 1a (2 pts)

Use the UNIX cut or awk tool to extract (only) the dates and transaction amounts from the election data, across all years. Save this data into a file in your home directory.

Solution using cut

```
# Use cat to list the contents of all the election data files.
# Use cut with -d\| to specify a | delimiter and -f14,15 to extract the 14th and
# 15th fields.
# Use > to write the resulting output to a file called project10_1a.txt.
cat /class/datamine/data/election/*.txt | cut -d\| -f14,15 > project10_1a.txt
```

Solution using AWK

```
# Use cat to list the contents of all the election data files.
# Use awk with -F\| to specify a | delimiter.
# BEGIN{} will be empty.
# {} we will print the 14th and 15th fields for each line in the data, with a
# "|" thrown in as a delimiter.
# END will be empty.
# Use > to write the resulting output to a file called project10_1a.txt.
cat /class/datamine/data/election/*.txt |
awk -F\| '{ print $14"|"$15 }' > project10_1a.txt
```

Question 1b (1 pt)

Remove the lines from the file that came from the headers of each election file, i.e., remove the 21 lines of the form: TRANSACTION_DT|TRANSACTION_AMT Save the result into a new file.

```
# Use cat to list the contents of the previously-created project10_1a.txt.
# Use grep with -v to print out only lines that do not contain the string
# "TRANSACTION_DT|TRANSACTION_AMT".
# Use > to write the resulting output to a file called project10_1b.txt
cat project10_1a.txt | grep -v "TRANSACTION_DT|TRANSACTION_AMT" > project10_1b.txt
```

Question 2a (1 pt)

Import into R the resulting file that you prepared from question 1.

```
# Use read.delim() to read in the file created in the previous problem.

transactions = read.delim("./project10 1b.txt", sep="|", header=FALSE, colClasses=c("character", "in
```

Question 2b (2 pts)

Make a new third column of the data frame that has the same data from column 1, but is stored in Date format.

```
# Use as.Date with date format "%m%d%Y" to convert the elements in column 1 to
# date objects.
transactions$V3 = as.Date(transactions$V1, format="%m%d%Y")
```

Question 3a (2 pts)

Plot a table of the number of donations given per day. You might want to cut off some of the first several and last several dates, which are probably erroneous dates.

```
# Use table() to get a the frequencies of donations for each date.
# Use plot() to plot date v. number of donations
plot(table(transactions$V3))
```


Question 3b (2 pts)

```
# Use tapply() to get the total transaction amount for each date.
# Use plot() to plot date v. total transaction amount
plot(tapply(transactions$V2, transactions$V3, sum))
```

