

Autor: Jitka Kreslíková

© 2020

Ústav informačních systémů

Fakulta informačních technologií Vysoké učení technické v Brně

Řízení projektů

[PMBOK®17] {str. 271-306}

- plánování řízení kvality
- zabezpečování kvality
- kontrola kvality
- kvalita softwarových produktů normy

Řízení kvality v rámci projektu popisuje procesy požadované pro zajištění toho, aby projekt uspokojil potřeby, kvůli kterým je realizován. Zahrnuje procesy:

- plánování řízení kvality
 - stanovení, které normy se vztahují na projekt a určování, jak je splnit,
- zabezpečování kvality
 - pravidelné vyhodnocování celkového plnění projektu s cílem poskytnout důvěru, že projekt bude vyhovovat příslušným normám kvality,

- kontrola kvality
 - sledování konkrétních výsledků projektu s cílem určit, jestli odpovídají příslušným normám kvality a určování způsobů odstraňování příčin nevyhovujících výkonů.

- Řízení kvality projektu se musí zabývat kvalitou řízení i kvalitou produktu projektu.
- Nesplnění požadavků kvality v jedné dimenzi může mít závažné negativní následky pro jakoukoli nebo pro všechny zájmové skupiny.

př.: plnění požadavků zákazníka přeorganizováním týmu projektu může mít negativní následky ve formě zvýšené fluktuace zaměstnanců.

př.: plnění cílů časového rozvrhu projektu urychlováním plánovaných kontrol kvality může mít negativní důsledky, pokud bude produkt propuštěn dál s chybami.

př.: odpovědnost vedení - úspěšnost projektu vyžaduje účast všech členů týmu, avšak za zajišťování zdrojů potřebných pro úspěch odpovídá vedení organizace.

1. Plánování řízení kvality

- identifikace požadavků na kvalitu, které normy se vztahují na projekt a produkt. Dokumentace, jak bude prokazován v projektu soulad s požadavky na kvalitu.
 - je jedním z klíčových pomocných procesů při plánování projektu,
 - má se uskutečňovat pravidelně a souběžně s ostatními plánovacími procesy,
 - může vyžadovat úpravu nákladů nebo časového rozvrhu,
 - může požadovat podrobnou analýzu rizik stanoveného problému.

Snímků 56

6

Plánování kvality

Základní zásada moderního řízení kvality:

kvalita se plánuje, ne jenom kontroluje

Snímků 56

7

Plánování řízení kvality

zakládací listina projektu

plán řízení projektu

(plán řízení požadavků, plán řízení rizik, plán zapojení zainteresovaných stran, směrný plán rozsahu)

projektové dokumenty

(protokol předpokladů, dokumentace požadavků, matice sledování požadavků, registr rizik, registr zainteresovaných stran)

faktory podnikového prostředí

procesní aktiva organizace

expertní posudek

sběr dat

(Benchmarking, Brainstorming, pohovory)

datová analýza

(analýza nákladů a přínosů, náklady na kvalitu)

skupinové rozhodovací techniky

(vícekriteriální rozhodování)

Plánování řízení kvality

zobrazování dat

(vývojový diagram, logický datový model, maticový diagram, myšlenkové mapy, postupový diagram, kontrolní diagram)

testování a inspekce

mítinky

Sedm základních nástrojů zlepšování kvality

Plánování řízení kvality

Plánování řízení kvality

plán řízení kvality

metriky kvality

aktualizované související dokumenty

(registr znalostí, matice sledování požadavků, registr rizik, registr zainteresovaných stran)

aktualizovaný plán řízení projektu

(plán řízení rizik, směrný plán rozsahu)

- srovnávání s nejlepšími (Benchmarking)
 - srovnávání s nejlepšími spočívá v porovnávání skutečných nebo plánovaných projektových postupů s postupy jiných projektů s cílem:
 - o najít náměty pro zlepšování.
 - o zajistit standard pro porovnávání výkonů
 - ty jiné projekty mohou být v rámci prováděcí organizace nebo mimo ni a mohou být ve stejné aplikační oblasti nebo v jiné oblasti.

- analýza nákladů a přínosů
 - proces plánování řízení kvality musí zvažovat změny rozboru přínosy versus náklady,
 - hlavním přínosem plnění požadavků na kvalitu je:
 - méně předělávek, což znamená vyšší produktivitu, nižší náklady a lepší uspokojování zájmových skupin,
 - hlavními náklady na plnění požadavků na kvalitu jsou:
 - výdaje spojené s činnostmi řízení kvality projektu.

Pro teorii řízení kvality je axiomatické, že přínosy převažují nad náklady.

- zobrazování dat různé diagramy
 - postupový diagram (<u>Cause-Effect Diagrams</u>,
 Fishbone or Ishikawa diagram)
 - postupový diagram je jakýkoliv diagram, který ukazuje, jak spolu souvisí různé prvky systému.
 - o k postupovým diagramům, které se běžně používají při řízení kvality patří:
 - diagramy příčin a účinků, což je analytický nástroj, který poskytuje systematickou metodu zkoumání příčin a jevů, které vytváří nebo přispívají k celkovému efektu.

Diagram příčin a účinků

Diagram příčin a účinků - příklad

- kontrolní diagramy (<u>diagramy pro řízení kvality</u>)
 - kontrolní diagramy jsou grafická zobrazení výsledků procesu v čase,
 - o používají se k určování, zda je proces zvládán, t.j. v normě,
 - proces je možné měnit s cílem dosáhnout jeho zlepšení, avšak neměl by být upravován, pokud probíhá v rámci stanovených mezí,
 - kontrolní diagramy je možné použít ke sledování výstupní proměnné jakéhokoliv typu,
 - nejčastěji se používají ke sledování opakujících se činností typu výrobních dávek.

- o kontrolní diagramy se mohou také použít ke sledování:
 - odchylek termínů a nákladů,
 - objemu a četnosti změn rozsahu prací,
 - chyb v projektové dokumentaci,
 - jiných výsledků řízení.

- analýza trendů
 - zahrnuje použití matematických technik k předpovídání budoucích výsledků na základě minulých,
 - o analýzy trendů se často používají ke sledování:
 - technického plnění kolik chyb nebo vad bylo zjištěno, kolik zůstává neopravených,
 - plnění termínů a nákladů kolik činností v daném období bylo dokončeno s podstatnými odchylkami.

- Paretovy diagramy (<u>Paretova analýza</u>)
 - o Paretův diagam je sloupcový diagram seřazený podle četnosti výskytu určitých událostí, který ukazuje, kolik výsledků bylo vytvořeno podle jednotlivých typů nebo kategorií příčin.
 - Seřazování podle velikosti se používá při provádění nápravných opatření: řídící tým projektu by měl přijmout opatření s cílem nejprve vyřešit problémy, které způsobují největší počet vad.
 - o Paretovy diagramy koncepčně souvisí s Paretovým zákonem, který stanoví, že relativně malý počet příčin obvykle způsobuje velkou většinu problémů nebo vad.

- statistické vzorkování (vzorky kontrol kvality)
 - komplexní postup charakterizující celek pomocí dílčích vzorků,
 - statistická kontrola znamená výběr částí z určitého zájmového celku za účelem kontroly,
 - vhodná statistická kontrola může často snížit náklady na operativní řízení kvality,
 - existují rozsáhlé znalosti v oblasti statistické kontroly,
 - v některých oblastech uplatnění je nutné, aby řídící tým projektu znal řadu technik statistické kontroly a přejímky.

- návrh experimentů
 - zabývá se sběrem dat v situaci, kdy je získávaná informace zatížena nahodilostí
 - pomáhá stanovit, které proměnné mají největší vliv na celkový výsledek

http://www.statsoft.cz/podpora/elektronicka-ucebnice-statistiky/

Výstupy plánování řízení kvality

- plán řízení kvality
 - měl by popisovat, jak bude řídící tým projektu realizovat politiku kvality,
 - v terminologii ISO 9000 by měl systém kvality projektu popisovat:
 - o organizační strukturu,
 - o odpovědnosti,
 - o postupy,
 - procesy a zdroje potřebné pro realizaci řízení kvality.

Pozn.: Plán řízení kvality poskytuje vstup pro celkový plán projektu a musí obsahovat kontrolu kvality, zabezpečování kvality a zlepšování kvality projektu.

Výstupy plánování řízení kvality

- metriky kvality
 - popisují velmi konkrétně sledované oblasti v projektu a jak se mají měřit prostřednictvím procesu kontroly kvality.

př.: nestačí říci, že splnění plánovaných dat časového rozvrhu je měřítkem kvality řízení.

- řídící tým projektu musí rovněž stanovit:
 - zda všechny činnosti musí začít včas nebo pouze včas skončit.
 - zda budou měřeny jednotlivé činnosti nebo pouze některé předměty dodávek a jestliže ano, tak které

Výstupy plánování řízení kvality

- kontrolní seznamy
 - o kontrolní seznam je strukturovaný nástroj, obvykle podle konkrétních oborů nebo činností, používaný pro ověřování, zda je plněn soubor požadovaných kroků,
 - o obvykle jsou vypracovány ve formě příkazů (Proveďte ...!) nebo dotazů (Provedli jste ...?).
 - o řada organizací má normalizované kontrolní seznamy, které zajišťují důslednost v často prováděných činnostech.

Pozn.:V některých oblastech uplatnění jsou kontrolní seznamy často k dispozici u profesních sdružení nebo poskytovatelů komerčních služeb.

Checklists for managers

2. Zabezpečování kvality

- Zabezpečování kvality zahrnuje všechny plánované a systematické činnosti realizované v rámci systému kvality s cílem zajistit důvěru, že projekt bude splňovat příslušné normy kvality,
- mělo by se provádět v průběhu projektu,
- u velkých organizací existuje odbor zabezpečování kvality nebo externí zabezpečování kvality.

Zabezpečování kvality

Nástroje a techniky pro zabezpečování jakosti

- audity kvality
 - audit (prověrka) kvality je strukturované přezkoumání ostatních činností řízení kvality,
 - cílem auditu je také identifikovat získané zkušenosti, které mohou zlepšit provádění daného projektu,
 - audity kvality mohou být plánované nebo namátkové a mohou je provádět řádně vyškolení auditoři organizace nebo registrované agentury pro posuzování kvality.

3. Kontrola kvality

- Kontrola kvality zahrnuje sledování konkrétních výsledků projektu s cílem stanovit, zda odpovídají příslušným normám kvality a určit způsoby odstraňování příčin neuspokojivých výsledků.
- Výsledky projektu zahrnují výsledky produktu, jako např. předměty dodávek a výsledky řízení, např. plnění nákladů a termínů.
- Řídící tým projektu by měl mít znalosti metod statistické kontroly, zejména vzorkování a posuzování statistické pravděpodobnosti, aby mohl lépe posuzovat výstupy kontroly kvality.

Kontrola kvality

- Je nutné rozlišovat mezi:
 - prevencí (zabránění vstupu chyb do procesu) a kontrolou (nepropouštěním chyb k zákazníkovi),
 - kontrolou srovnáváním (výsledek vyhovuje nebo nevyhovuje) a kontrolou měřením (výsledek je hodnocen podle stálého měřítka, které porovnává stupeň shody),
 - zvláštními příčinami (neobvyklé události) a nahodilými příčinami (normální odchylky procesu),
 - tolerancemi (výsledek je přijatelný, pokud je v rozsahu vymezeném tolerancí) a regulačními mezemi (proces je v normě, jestliže výsledek leží mezi regulačními mezemi).

Kontrola kvality

Kontrola kvality

Kontrola **kvality**

kontrolní měření kvality

potvrzené ucelené části dodávek

> informace o výkonech

požadavky na změny

aktualizovaný plán řízení projektu

(plán řízení kvality)

aktualizované související dokumenty

(správa problémů, registr znalostí, registr rizik, dokumenty testů a vyhodnocení)

Nástroje a techniky pro kontrolu kvality

- □ inspekce (kontrola)
 - kontrola zahrnuje měření, zkoumání a testování a další činnosti s cílem určit, zda výsledky odpovídají požadavkům,
 - kontrola může být prováděna na jakékoliv úrovni,
 - kontroly jsou nazývány různě:
 - o přezkoumání,
 - o přezkoumání produktu,
 - o prověrky a prohlídky.

Výstupy kontroly kvality

- požadavky na změny přepracování
 - přepracování je činnost prováděná s cílem uvést vadnou nebo neshodnou položku do souladu s požadavky nebo specifikacemi,
 - přepracování zvláště nepředpokládané je častou příčinou protahování projektů ve většině oblastí uplatnění,
 - tým projektu by měl vyvinout maximální úsilí, aby přepracování minimalizoval.

Technická normalizace

- □ Technické normy jsou dokumentované dohody, které obsahují technické specifikace nebo jiná určující kriteria používaná jako pravidla, směrnice, pokyny nebo definice charakteristik zajišťující, že materiály, výrobky, postupy a služby vyhovují danému účelu.
- Jejich používání je dobrovolné, pokud není stanoveno jinak.

Instituce pro normalizaci

ISO Mezinárodní organizace pro normalizaci (International Organization for Standardization) se sídlem v Ženevě, založena v roce 1947.

<u>Úřad pro technickou normalizaci, metrologii a státní zkušebnictví</u> - ÚNMZ <u>Od 1.1.2018</u> přechází všechny činnosti související s tvorbou, vydáváním a distribucí technických norem na <u>Českou agenturu pro</u> standardizaci (ČAS).

<u>České technické normy</u>, <u>internetová prodejna</u> <u>Seznam českých národních norem</u>

Česká společnost pro technickou normalizaci

Kvalita softwarových produktů - normy

Řada ISO/IEC 14598 Softwarové inženýrství - Hodnocení produktů

- □ 14598 1 Všeobecný přehled (není platná)
- □ 14598 2 Plánování a management (není platná)
- □ 14598 3 Postup pro projektanty (není platná)
- □ 14598 4 Postup pro akvizitéry (obstaravatele)
- □ <u>14598 5</u> Postup pro (nezávislého) hodnotitele
- □ <u>14598 6</u> Dokumentace vyhodnocovacích modulů.

<u>Software engineering – normy, schema</u>

Kvalita softwarových produktů - přehled

- První část modelu specifikuje šest charakteristik kvality, které jsou rozděleny na subcharakteristiky.
- Charakteristiky, subcharakteristiky:
 - 1. Funkčnost (Functionality)
 - o Vhodnost
 - o Přesnost
 - o Interoperabilita
 - Bezpečnost dat
 - Soulad funkčnosti

Charakteristiky, subcharakteristiky:

- 2. Bezporuchovost (Reliability)
 - o Zralost
 - Odolnost proti vadám
 - Obnovitelnost
 - Soulad bezporuchovosti

Snímků 56

Charakteristiky, subcharakteristiky:

- 3. Použitelnost (Usability)
 - o Srozumitelnost
 - Zvládnutelnost
 - Provozovatelnost
 - O Atraktivnost
 - Soulad použitelnosti

Snímků 56

Charakteristiky, subcharakteristiky:

- 4. Účinnost (Efficiency)
 - Chování v čase
 - o Využití zdrojů
 - Soulad účinnosti

Charakteristiky, subcharakteristiky:

- 5. Udržovatelnost (Maintainability)
 - Analyzovatelnost
 - Změnitelnost
 - o Stabilita
 - Soulad udržovatelnosti

Charakteristiky, subcharakteristiky:

- 6. Přenositelnost (Portability)
 - o Adaptabilita
 - o Instalovatelnost
 - o Koexistence
 - Nahraditelnost
 - Soulad přenositelnosti

1. Funkčnost (Functionality)

Způsobilost softwarového produktu poskytovat funkce, které uspokojují stanovené a předpokládané potřeby, pokud je software používán za specifikovaných podmínek

Vhodnost

 Způsobilost softwarového produktu poskytovat vhodnou množinu funkcí pro specifikované úlohy a uživatelské cíle.

Přesnost

 Způsobilost softwarového produktu poskytovat správné nebo odsouhlasené výsledky nebo účinky s nezbytným stupněm přesnosti.

Funkčnost (Functionality)

Interoperabilita (schopnost spolupráce)

 Způsobilost softwarového produktu být v interakci s jedním nebo několika specifikovanými systémy.

Bezpečnost dat

O Způsobilost softwarového produktu chránit informace a data tak, aby je neautorizované osoby nebo systémy nemohly číst nebo modifikovat a autorizovaným osobám nebo systémům nebyl k nim odmítnut přístup.

Soulad funkčnosti

 Způsobilost softwarového produktu dodržovat normy, konvence nebo pravidla v zákonech a podobných předpisech vztahující se k funkčnosti.

2. Bezporuchovost (Reliability)

Způsobilost softwarového produktu udržovat specifikovanou úroveň výkonu, pokud je používán za specifikovaných podmínek.

Zralost

 Způsobilost softwarového produktu vyhnout se poruchám jako výsledku vad v softwaru.

Odolnost proti vadám

 Způsobilost softwarového produktu udržovat specifikovanou úroveň výkonu v případech vad v softwaru nebo při porušení specifikovaného rozhraní.

Bezporuchovost (Reliability)

Obnovitelnost

 Způsobilost softwarového produktu znovu zajistit specifikovanou úroveň výkonu a obnovit data přímo postižená v případě poruchy.

Soulad bezporuchovosti

 Způsobilost softwarového produktu dodržovat normy, konvence nebo pravidla vztahující se k bezporuchovosti.

3. Použitelnost (Usability)

Způsobilost softwarového produktu být srozumitelný, zvládnutelný, používaný a atraktivní pro uživatele, pokud je používán za specifikovaných podmínek.

Srozumitelnost

O Způsobilost softwarového produktu umožnit uživateli porozumět, zda je software vhodný a jak může být použit pro konkrétní úlohy a podmínky používání.

Zvládnutelnost

 Způsobilost softwarového produktu umožnit uživateli naučit se jej používat.

Použitelnost (Usability)

Provozovatelnost

 Způsobilost softwarového produktu umožnit uživateli provozovat produkt a řídit jeho provozování.

Atraktivnost

 Způsobilost softwarového produktu být pro uživatele přitažlivý.

Soulad použitelnosti

 Způsobilost softwarového produktu dodržovat normy, konvence, pokyny pro styl nebo pravidla vztahující se k použitelnosti.

4. Účinnost (Efficiency)

Způsobilost softwarového produktu poskytovat vhodný výkon s ohledem na množství použitých zdrojů, a za stanovených podmínek.

Chování v čase

O Způsobilost softwarového produktu poskytovat vhodné časy odezvy, časy zpracování a poměry průchodnosti, pokud software vykonává svou funkci za stanovených podmínek.

Využití zdrojů

 Způsobilost softwarového produktu používat vhodné množství a typy zdrojů, pokud software vykonává svou funkci za stanovených podmínek.

Účinnost (Efficiency)

Soulad účinnosti

 Způsobilost softwarového produktu dodržovat normy nebo konvence vztahující se k účinnosti.

5. Udržovatelnost (Maintainability)

Způsobilost softwarového produktu být modifikován. Modifikace mohou zahrnovat nápravy, zlepšování nebo adaptace softwaru na změny v prostředí, v požadavcích a ve specifikacích funkcí.

Analyzovatelnost

Způsobilost softwarového produktu být diagnostikován kvůli nedostatkům nebo příčinám poruch v softwaru nebo pro identifikaci částí, které mají být modifikovány.

Změnitelnost

 Způsobilost softwarového produktu umožnit, aby byla specifikovaná modifikace implementována.

Udržovatelnost (Maintainability)

Stabilita

 Způsobilost softwarového produktu vyhnout se neočekávaným účinkům modifikací softwaru.

Testovatelnost

 Způsobilost softwarového produktu umožnit, aby byl modifikovaný software validován.

Soulad udržovatelnosti

 Způsobilost softwarového produktu dodržovat normy nebo konvence vztahující se k udržovatelnosti.

6. Přenositelnost (Portability)

Způsobilost softwarového produktu být přenesen z jednoho prostředí do jiného prostředí (organizační, hardwarové, softwarové).

Adaptabilita

O Způsobilost softwarového produktu být adaptován do rozdílných specifikovaných prostředí bez použití jiných činností nebo prostředků než těch, které jsou pro tento účel uvažovaným softwarem poskytovány.

Instalovatelnost

 Způsobilost softwarového produktu být instalován ve specifikovaném prostředí.

Přenositelnost (Portability)

Koexistence

 Způsobilost softwarového produktu koexistovat s jiným nezávislým softwarem ve společném prostředí sdílejícím společné zdroje.

Nahraditelnost

 Způsobilost softwarového produktu být používán místo jiného specifikovaného softwarového produktu pro stejný účel ve stejném prostředí.

Soulad přenositelnosti

 Způsobilost softwarového produktu dodržovat normy nebo konvence vztahující se k přenositelnosti.

Navrhovaná architektura norem SQUARE

Od 1.9.2017

25030 Požadavky na kvalitu

Model kvality dat

25012

25010

25040 Přehled procesu

hodnocení jakosti 25041

Postup projektanta 25042

Postup akvizitéra 25043

Postup hodnotitele

25000

Obecný přehled, terminologie a příručka 25001

Plánování a řízení

25060

Formát použitelnosti

25020

Referenční model metrik

a příručka

Snímků 56 54

Normy z oblasti bezpečnosti informací

Série norem ISO 27 000

Řízení kvality v rámci projektu

