高周波アナログ集積回路工学 レポート

濱崎 直紀

(学籍番号:28G19096)

令和2年1月14日

$$K = \frac{1 - |S_{11}|^2 - |S_{22}|^2 + |\Delta|^2}{2|S_{12}S_{21}|}$$

$$|\Delta| = |S_{11}S_{22} - S_{12}S_{21}|$$

よって、それぞれに値を代入して $K=0.878,\, |\Delta|=0.447$ となる.

- \bigcirc $|S_{11}S_{22} S_{12}S_{21}|$
- ③ 0.878
- (4) 0.447
- 2) 入力側において Γ_s の安定円の中心を C_s , 半径を r_s とすると

$$C_s = \frac{(S_{11} - S_{22}^* \Delta)^*}{|S_{11}|^2 - |\Delta|^2}$$
$$= -9.12 + j7.49$$
$$= 11.8 \angle 140.6^\circ$$

$$r_s = \frac{|S_{12}S_{21}|}{||S_{11}|^2 - |\Delta|^2|}$$

となる.次に出力側において Γ_L の安定円の中心を C_L , 半径を r_L とすると

$$C_s = \frac{(S_{22} - S_{11}^* \Delta)^*}{|S_{22}|^2 - |\Delta|^2}$$
$$= 0.874 - j2.80$$
$$= 2.93 \angle -72.7^{\circ}$$

$$r_s = \frac{|S_{12}S_{21}|}{||S_{22}|^2 - |\Delta|^2|}$$
= 3.77

となる.

また

$$|S_{11}| = 0.496 < 1$$

 $|S_{22}| = 0.256 < 1$

より, $|S_{11}|$, $|S_{22}|$ がともに 1 より小さいことから,原点を含む領域が安定となる. Γ_S , Γ_L の領域をそれぞれ図 2, 図 3 (レポート末尾に記載) に示す.

- (5) 11.8
- (6) 140.6

- 7 10.9
- (8) 2.93
- 9 -72.7
- $\bigcirc 3.77$
- ① 含む
- $(2) |S_{11}|$
- $(3) |S_{22}|$
- 3) 有能電力の定利得円について、安定円の中心を C_a 、半径を r_a とする. $G_A=13{
 m db}=10^{\frac{13}{10}}~{
 m L}$ り

$$g_a = \frac{G_A}{|S_{21}|^2}$$
$$= 1.32$$

$$\begin{split} C_a &= \frac{g_a (S_{11} - \Delta S_{22}^*)^*}{1 + g_a (|S_{11}|^2 - |\Delta|^2)} \\ &= -0.525 + j0.431 \\ &= 0.680 \angle 140.6^\circ \end{split}$$

$$r_a = \frac{\sqrt{1 - 2Kg_a|S_{12}S_{21}| + g_a^2|S_{12}S_{21}|^2}}{|1 + g_a(|S_11|^2 - |\Delta|^2)|}$$

= 0.493

となる.

また、この円は有能電力利得が Γ_s の関数であるため、図 2 に描ける.

- (14) 0.680
- (15) 140.6
- **(6)** 0.493
- (17) 2

4)

$$N = \frac{F - F_{\min}}{4r_n} |1 + \Gamma_{opt}|^2 = 0.153$$

$$C_F = \frac{\Gamma_{opt}}{N+1} \\ = 0.115 + j0.382 \\ = 0.399 \angle 73.3^{\circ}$$

$$r_F = \frac{1}{N+1} \sqrt{N^2 + N(1 - |\Gamma_{opt}|^2)}$$

= 0.330

この円は雑音指数が Γ_s の関数であるため、図 2 に描ける.

- (18) 0.399
- 19 73.3
- 20 0.330
- **21** 2
- 5) 入力規格化インピーダンスは

$$z = \frac{1 + \Gamma_s}{1 - \Gamma_s}$$
$$= 0.606 + j0.584$$

となり,信号源インピーダンスは

$$Z_s = Z_0 z$$
$$= 30.3 + j29.2$$

となる.

- 22 30.3
- **23** 29.2
- 6) 図 4 に示す整合回路を Smith V4.0 を用いて設計すると, $C_1=1.6 {
 m pF},\, L_1=1.4 {
 m nH}$ となる.
 - **24** 1.6
 - **25** 1.4

7)

$$\begin{split} \Gamma_{out} &= S_{22} + \frac{S_{12}S_{21}\Gamma_s}{1 - S_{11}\Gamma_s} \\ &= -0.179 - j0.324 \\ &= 0.370 \angle - 118.9^{\circ} \end{split}$$

また,

$$VSWR_{out} = \frac{1 + |\Gamma_{OMN}|}{1 - |\Gamma_{OMN}|} = 2$$

よって

$$|\Gamma_{OMN}| = \frac{1}{3}$$

ゆえに

$$C_{VO} = \frac{\Gamma_{out}^* (1 - |\Gamma_{OMN}|^2)}{1 - |\Gamma_{OMN}\Gamma_{out}|^2}$$

$$= -0.161 + j0.292$$

$$= 0.334 \angle 118.9^\circ$$

$$R_{VO} = \frac{|\Gamma_{OMN}|(1 - |\Gamma_{out}|^2)}{1 - |\Gamma_{OMN}\Gamma_{out}|^2}$$
$$= 0.292$$

また、出力・定VSWR円は Γ_L の関数より図3に描ける.

- **26** 0.370
- **27** -118.9
- **28** 0.334
- **29** 118.9
- **30** 0.292
- 31) 3

8)

$$\Gamma_{in} = S_{11} + \frac{S_{12}S_{21}\Gamma_L}{1 - S_{22}\Gamma_L}$$

$$|\Gamma_{IMN}| = |\frac{\Gamma_{in} - \Gamma_s^*}{1 - \Gamma_s \Gamma_{in}}|$$

$$VSWR_{in} = \frac{1 + |\Gamma_{IMN}|}{1 - |\Gamma_{IMN}|}$$

なので、各 θ に対するそれぞれの値は表1のようになる.

θ	0°	90°	180°	270°
Γ_L	0.131 + j0.292	-0.161 + j0.584	-0.454 + j0.292	-0.161 - j0.0001
Γ_{in}	-0.484 - j0.336	-0.620 - j0.560	-0.390 - j0.656	-0.298 - j0.463
$ \Gamma_{IMN} $	0.467	0.736	0.549	0.263
$VSWR_{in}$	2.75	6.56	3.44	1.71

表 1 各 θ における VSWR

よって $VSWR_{in}$ が最も小さくなるのは $\theta=270^\circ$ のときである.

32 270

9) 規格化負荷インピーダンスは

$$z_{L} = \frac{1 + \Gamma_{L}}{1 - \Gamma_{L}}$$
$$= 0.722 - j0.0002$$

よって

$$Z_L = Z_0 z_L = 36.1 - j0.011$$

ゆえに、図 5 示す整合回路を Smith V4.0 を用いて設計すると、 $C_2=0.397 \mathrm{pF},\, L_2=0.713 \mathrm{nH}$ となる.

- **33** 0.397
- **34** 0.713
- 10) 回路構成は図6のようになった.

図 6

NORMALIZED IMPEDANCE AND ADMITTANCE COORDINATES

