Byczko Maciej Maziec Michał Pomarański Maciej	Prowadzący: dr inż. Ewa Frączek	Numer ćwiczenia 6
Grupa nr. C	Temat ćwiczenia: Drgania i Fale	Ocena:
Tydzień parzysty Godzina 11:15-13:00	Data wykonania: 1 kwietnia 2020	

Zadania do zrobienia 1

1.1 Zadanie 1

Polecenie 1.1.1

Zad.3(P) Ile wynosi stosunek energii kinetycznej do potencjalnej ciała wykonującego drgania harmoniczne kosinusoidalne dla chwili czasu $t=\frac{T}{6}$, jeżeli faza początkowa wynosi zero?

Ile będzie wynosił ten sam stosunek energii dla drgania harmonicznego sinusoidalnego?

1.1.2 Rozwiązanie

Wzory:

Wzory:

$$E_k(t) = \frac{1}{2}mv^2(t) \Leftrightarrow E_k(t) = \frac{1}{2}m[x_0\omega_0\sin(\omega_0t + \phi)]^2$$

$$E_p(t) = \frac{1}{2}kx^2(t) \Leftrightarrow E_p(t) = \frac{1}{2}k[x_0\cos(\omega_0t + \phi)]^2$$
Obliczenia:

$$\frac{E_k(t)}{E_p(t)} = \frac{\frac{1}{2}m[x_0\omega_0\sin(\omega_0t)]^2}{\frac{1}{2}k[x_0\cos(\omega_0t)]^2}$$

$$\frac{E_k(t)}{E_p(t)} = \frac{mx_0^2\omega_0^2[\sin(\frac{2\pi}{T}*\frac{T}{6}]^2}{kx_0^2[\cos(\frac{2\pi}{T}*\frac{T}{6}]^2}$$

$$\frac{E_k(t)}{E_p(t)} = \frac{m\omega_0^2[\sin(\frac{\pi}{3})]^2}{k[\cos(\frac{\pi}{3})]^2}$$

$$\frac{E_k(t)}{E_p(t)} = \frac{k}{k}*[\tan(\frac{\pi}{3})]^2 = 3$$

Dla drgania harmonicznego sinusoidalnego stosunek będzie wynosił $\frac{\sqrt{3}}{3}$ ponieważ:

$$\frac{E_k(t)}{E_p(t)} = \frac{k}{k} * \left[\cot\left(\frac{\pi}{3}\right)\right]^2 = \frac{1}{3}$$

1.2 Zadanie 2

1.2.1 Polecenie

Zad.9. Wartości amplitud wymuszonych drgań harmonicznych są równe dla dwóch częstości siły wymuszającej: ω_1 =400 $\frac{rad}{s}$ oraz ω_2 =600 $\frac{rad}{s}$. Wyznacz częstość ω_{rez} , dla której amplituda drgań wymuszonych osiągnie maksymalną wartość.

1.3 Rozwiązanie

Wzory:

Mechaniczne drgania wymuszone:
$$F(t) = F_0 \cos(\omega t)$$

$$\frac{d^2x(t)}{dt^2} + 2\beta \frac{dx(t)}{dt} + \omega_0^2 x = f_0 \cos(\omega t)$$
 Współczynnik tłumienia: $2\beta = \frac{b}{m}$ Częstość oscylatora nietłumionego: $omega_0^2 = \frac{k}{m}$ Częstość rezonansowa: $\omega_r = \sqrt{\omega_0^2 - 2\beta^2}$ Amplituda wymuszona: $A(\omega) = \frac{F_0}{m\sqrt{(\omega_0^2 - \omega^2)^2 + 4\beta^2\omega^2}}$ Amplituda rezonansowa: $A_r = \frac{f_0}{2\beta(\omega_0^2 - \beta^2)}$ Obliczenia:
$$A(\omega) = \frac{F_0}{m\sqrt{(\omega_0^2 - \omega^2)^2 + 4\beta^2\omega^2}}$$

$$\omega_r = \sqrt{\omega_0^2 - 2\beta^2} \ A(\omega_1) = A(\omega_2)$$

$$(\omega_0^2 - \omega_1^2)^2 + 4\beta^2\omega_1^2 = (\omega_0^2 - \omega_2^2)^2 + 4\beta^2\omega_2^2$$

$$\omega_{r} = \sqrt{\omega_{0}^{2} - 2\beta^{2}} A(\omega_{1}) = A(\omega_{2})$$

$$(\omega_{0}^{2} - \omega_{1}^{2})^{2} + 4\beta^{2}\omega_{1}^{2} = (\omega_{0}^{2} - \omega_{2}^{2})^{2} + 4\beta^{2}\omega_{2}^{2}$$

$$\omega_{0}^{2} - 2\omega_{0}^{2}\omega_{1}^{2} + \omega_{1}^{4} + 4\beta^{2}\omega_{1}^{2} = \omega_{0}^{2} - 2\omega_{0}^{2}\omega_{2}^{2} + \omega_{2}^{4} + 4\beta^{2}\omega_{2}^{2}$$

$$\omega_{1}^{4} - 2\omega_{1}^{2}(\omega_{0}^{2} - 2\beta^{2}) = \omega_{2}^{4} - 2\omega_{2}^{2}(\omega_{0}^{2} - 2\beta^{2})$$

$$\omega_{1}^{4} - 2\omega_{1}^{2}\omega_{r}^{2} = \omega_{2}^{4} - 2\omega_{2}^{2}\omega_{r}^{2}$$

$$Wyznaczenie \ \omega_{r}:$$

$$-2\omega_{1}^{2}\omega_{r}^{2} + 2\omega_{2}^{2}\omega_{r}^{2} = \omega_{2}^{4} - \omega_{1}^{4}$$

$$\omega_{r}^{2}(2\omega_{2}^{2} - 2\omega_{1}^{2}) = (\omega_{2}^{2} - \omega_{1}^{2})(\omega_{2}^{2} + \omega_{1}^{2})$$

$$\omega_{r} = \sqrt{\frac{(\omega_{2}^{2} - \omega_{1}^{2})(\omega_{2}^{2} + \omega_{1}^{2})}{2(\omega_{2}^{2} - \omega_{1}^{2})}}$$

$$\omega_{r} = \sqrt{\frac{600^{2} + 400^{2}}{2}} = 510 \frac{rad}{s}$$

2 Wymyślone zadanie z fali kulistej

2.1 Polecenie

2.2 Rozwiązanie

Wzory:

Natężenie fali:
$$I = \frac{P_{zr}}{4\Pi r^2}$$

Prawo odwrotnych kwadratów: $\frac{I_1}{I_2} = \frac{r_2^2}{r_1^2}$
$$I = \frac{1}{2}\rho v\omega^2 s_m^2$$

$$\Phi(r,t) = \frac{s_0}{r}\sin(kr - \omega t)$$
 Interferencja kostruktywna: $L_2 - L_1 = m\lambda$ Interferencja destruktywna: $L_2 - L_1 = (m + \frac{1}{2})\lambda$ $m \in \mathbb{N}$