Inesh Chakrabarti

858-925-3059 | inesh33@g.ucla.edu | linkedin.com/in/inesh-chakrabarti | github.com/beesfleas

Education

University of California, Los Angeles

Los Angeles, CA

B.S. Electrical Engineering, M.S. Electrical Engineering

Expected Graduation - June 2027

- Graduate GPA: 4.0 / 4.0, Undergraduate Major GPA: 3.8 / 4.0
- Coursework: Large Scale Data Mining, Convex Optimization, Deep Learning, Software Engineering, Embedded Systems, Computer Architecture, GPU Microarchitectures, Numerical Computing, Stochastic Systems, Communications, Signals and Systems, Probability and Statistics
- Societies: American Nuclear Society (President, Founder), Eta Kappa Nu (Mentorship Chair)

Skills

- **Programming Languages:** C, C++, Python (NUMBA, PySpark, Matplotlib, PyTorch, Pandas, Keras, Tensorflow), Triton, SQL, x64, C#, Java, MATLAB, R, JavaScript
- Tools: Docker, Git, LangGraph, MongoDB, LTSpice, GDB, Unix Shell, CUDA, OpenMP, Joblib, Django, NVIDIA Nsight Compute, Apache Spark, Fuzzing (AFL), CI/CD

Experience

UCLA Lin Yang Research Group

Febuary 2025 - Present

- NoWag: A Unified Framework for Shape Preserving Compression of Large Language Models Lawrence Liu, Inesh Chakrabarti, Yixiao Li, Mengdi Wang, Tuo Zhao, Lin F. Yang Publication accepted to COLM and ICLR SLLM Workshop
- Built dequantization/inference kernels in C (CUDA) for parallelization over multiple GPUs while using 48x less calibration data and maintaining performance against SOTA VQ methods
- Implemented Trellis Quantization and benchmarking in Python for NoWag, a set of shape-preserving pruning and quantization algorithms for LLMs

UCLA Complex Networks Group (Paid Student Researcher)

February 2022 - June 2024

- Implemented High Frequency Oscillation Detector using Variational Autoencoder for neural signals, doubling number of detections with only a 10% increase in false positive
- Constructed a speech to text pipeline that subtitled recall experiments with precise temporal acc.
- Processed and visualized neural spike data using Python and MATLAB to demonstrate correlation between individual neural spikes and character recognition from animation
- Developed a complete pipeline for EEG data analysis with wavelet transform pre-processing to predict human movement using transformer, LSTM, and CNN models.

Projects

Database Benchmarking Tool

 $September\ 2025\ -\ October\ 2025$

- Engineered a **novel benchmarking tool** by translating TPC-DS SQL queries into **PySpark** via Abstract Syntax Tree (AST) manipulation and injecting realistic User-Defined Functions (UDFs).
- Scraped and analyzed public PySpark workflows from GitHub to create a data-driven model of modern data pipelines, guiding the synthesis of UDFs based on metrics like cyclomatic complexity.

Reinforcement Learning Hearts

September 2024 - January 2025

- Created RL agent for Hearts using Counterfactual Regret Minimization and Monte Carlo Tree Search that reaches approximate Nash Equilibrium.
- Enhanced the Hearts project with a Tkinter UI and collaborated in a 3-person team, providing a real-time interface allowing for physical gameplay simulation via computer vision.

Large Scale Data Mining

January 2023 - March 2023

- Experimented with different forms of clustering for text and image data including **Kmeans** and **HDBSCAN** clustering
- Constructed an end to end pipeline for news classification using grid-searching over different vectorization and classification models including BOW, TFIDF, SVM, Naive Bayes, etc. while leveraging **cuML** and **cuDF** for GPU optimization.