Kromatično število Kneserjevih grafov

Žan Hafner Petrovski

Fakulteta za matematiko in fiziko Oddelek za matematiko

12. maj 2017

Definicije

Definicija

Graf K(n,k), $n \ge k \ge 1$ in $n,k \in \mathbb{N}$, imenujemo Kneserjev, če je množica vozlišč V(n,k) družina vseh k-elementnih podmnožic množice $\{1,2,\ldots,n\}$. Dve vozlišči sta povezani natanko takrat, ko sta disjunktni.

Definicije

Definicija

Graf K(n,k), $n \ge k \ge 1$ in $n,k \in \mathbb{N}$, imenujemo Kneserjev, če je množica vozlišč V(n,k) družina vseh k-elementnih podmnožic množice $\{1,2,\ldots,n\}$. Dve vozlišči sta povezani natanko takrat, ko sta disjunktni.

Definicija

Preslikavo $c: V \to \{1, \ldots, m\}$, ki slika vozlišča grafa v množico barv, imenujemo barvanje vozlišč grafa. Barvanje vozlišč je pravilno, če sta vsaki dve sosednji vozlišči pobarvani z različnima barvama.

Definicije

Definicija

Graf K(n,k), $n \ge k \ge 1$ in $n,k \in \mathbb{N}$, imenujemo Kneserjev, če je množica vozlišč V(n,k) družina vseh k-elementnih podmnožic množice $\{1,2,\ldots,n\}$. Dve vozlišči sta povezani natanko takrat, ko sta disjunktni.

Definicija

Preslikavo $c: V \to \{1, \ldots, m\}$, ki slika vozlišča grafa v množico barv, imenujemo barvanje vozlišč grafa. Barvanje vozlišč je pravilno, če sta vsaki dve sosednji vozlišči pobarvani z različnima barvama.

Definicija

Najmanjše naravno število m, za katero obstaja pravilno barvanje vozlišč grafa G z m barvami, imenujemo **kromatično število**. Označimo ga s $\chi(G)$.

1 K(n,1) je poln graf za $n \in \mathbb{N}$

Slika: Poln graf K₉

- **1** K(n,1) je poln graf za $n \in \mathbb{N}$
- ② K(2n, n) je enak $\frac{1}{2}\binom{2n}{n}$ kopijam potnega grafa P_2

Slika: Poln graf K₉

- **1** K(n,1) je poln graf za $n \in \mathbb{N}$
- ② K(2n, n) je enak $\frac{1}{2}\binom{2n}{n}$ kopijam potnega grafa P_2
- 3 število vozlišč $|V(n,k)| = \binom{n}{k}$

Slika: Poln graf K₉

- **1** K(n,1) je poln graf za $n \in \mathbb{N}$
- ② K(2n, n) je enak $\frac{1}{2}\binom{2n}{n}$ kopijam potnega grafa P_2
- 3 število vozlišč $|V(n,k)| = \binom{n}{k}$
- K(n, k) je regularen stopnje $\binom{n-k}{k}$

Slika: Poln graf K₉

Zgled

Petersenov graf oziroma K(5,2).

Slika: Primer barvanja s 3 barvami

Slika: Prikaz povezav med disjunktnimi množicami

Kneserjeva domneva

Trditev

Vozlišča Kneserjevega grafa K(2k+d,k) lahko pobarvamo z d+2 barvama.

Kneserjeva domneva

Trditev

Vozlišča Kneserjevega grafa K(2k+d,k) lahko pobarvamo z d+2 barvama.

Izrek (Kneser)

Za kromatično število Kneserjevega grafa velja

$$\chi(K(2k+d,k))=d+2.$$

Kneserjeva domneva

Trditev

Vozlišča Kneserjevega grafa K(2k+d,k) lahko pobarvamo z d+2 barvama.

Izrek (Kneser)

Za kromatično število Kneserjevega grafa velja

$$\chi(K(2k+d,k))=d+2.$$

Izrek (Ekvivalentno)

Če družino k-elementnih podmnožic množice $\{1,2,\ldots,2k+d\}$ razdelimo na d+1 razredov, $V=V_1\sqcup V_2\sqcup\ldots\sqcup V_{d+1}$, potem obstaja i tako, da V_i vsebuje par disjunktnih k-elementnih množic A in B.

Potrebovali bomo:

Izrek (Borsuk-Ulam)

Za vsako zvezno preslikavo $f: S^d \to \mathbb{R}^d$ d-sfere v d-prostor, obstajata antipodni točki x^* in $-x^*$, ki ju f slika v isto točko, torej $f(x^*) = f(-x^*)$.

Potrebovali bomo:

Izrek (Borsuk-Ulam)

Za vsako zvezno preslikavo $f: S^d \to \mathbb{R}^d$ d-sfere v d-prostor, obstajata antipodni točki x^* in $-x^*$, ki ju f slika v isto točko, torej $f(x^*) = f(-x^*)$.

Izrek (Lyusternik-Shnirel'man)

 $\check{C}e$ je d-sfera S^d pokrita z d+1 množicami,

$$S^d = U_1 \cup U_2 \cup \ldots \cup U_d \cup U_{d+1},$$

tako, da je vsaka izmed prvih d množic U_1, U_2, \ldots, U_d bodisi odprta bodisi zaprta, potem ena izmed d+1 množic vsebuje par antipodnih točk x^* in $-x^*$.

Splošna lega točk na sferi

Definicija

Točke iz množice $\{1, 2, ..., 2k + d\}$ so v **splošni legi** na sferi $S^{d+1} \subset \mathbb{R}^{d+2}$, če nobenih d+2 točk iz omenjene množice ne leži na hiperravnini skozi središče sfere.

Slika: Primer za d = 0, postavitev 4 točk sfero S^1