CS 241 Lecture 14

Graham Cooper

June 22nd, 2015

Top-Down Parsing

$$S \implies \alpha_1 \implies \dots \implies \alpha_n \implies w$$

Invariant: Consumed input + reverse(stack contents) = α_i

Example:

 $S \to AyB$

 $A \to ab$

 $A \to cd$

 $\mathrm{B} \to \mathrm{z}$

 $\mathrm{B} \to \mathrm{wx}$

For simplicity, we use augumented grammars for parsing, ie. invent two new symbols \vdash , \dashv , new start symbol S'

- 1. S' $\rightarrow \vdash S \dashv$
- 2. $S \rightarrow AyB$
- 3. $A \rightarrow ab$
- 4. $A \rightarrow cd$
- 5. B $\rightarrow z$
- 6. $B \rightarrow wx$

Stack	Read Input	Unread Input	Action
S'	ϵ	$\vdash abywx \dashv$	Pop S'; push \dashv , S, \vdash
$\dashv S \vdash$	ϵ	$\vdash abywx \dashv$	Match ⊢
$\dashv S$	⊢	abywx∃	Pop S; Push B,y,A
$\dashv ByA$	⊢ ⊢	$abywx \dashv$	PopA; push b,a
$\dashv Byba$	⊢ ⊢	$abywx\dashv$	Match a
⊢ Byb	$\vdash a$	bywx⊣	Match b
\dashv By	$\vdash ab$	$ywx\dashv$	Match y
$\dashv B$	$\vdash aby$	$_{\mathrm{WX}}\dashv$	Pop B; push x,w
\dashv xw	$\vdash aby$	$_{\mathrm{WX}}\dashv$	Match w
\dashv $_{\rm X}$	⊢abyw	$_{\mathrm{X}}\dashv$	Match x
\dashv	⊢abywx	\dashv	Match ⊢
	⊢abywx⊣	ϵ	Accept

When top of stack (TOS) is a terminal pop and match against input.

When TOS is a non-terminal A, popA and push α^R (α reversed), where A $\rightarrow \alpha$ is a grammar rule.

Accept when stack and input are both empty

<u>BUT</u> what if there is >1 production with A on the LHS? How can we know which one to pick?

- Brute force (try all compinations until one works)
- Our solution: Use the next symbol of input (look ahead) to help decide (predictor table)

Construct a predictor table!

- Given a non-terminal on the stack and input symbol, tell us which production to use.
 - 1. S' $\rightarrow \vdash S \dashv$
 - 2. $S \rightarrow AyB$
 - 3. $A \rightarrow ab$
 - 4. $A \rightarrow cd$

5.
$$B \rightarrow z$$

6.
$$B \rightarrow wx$$

Empty cell = parse error

Descriptive: "Parse error at row,col: expecting one of "chars for which curren top of stack has entries

What if $A \to ad$, then you would have multiple states in a single table column

What if a cell contains more than one entry?

THIS DOESN'T WORK...

A grammar is called LL(1) if each cell of the predictor table has at most one entry. IF we have this situation then this table will work.

LL(1) = left-to-right scan of input leftmost derivations produced 1 symbol of look ahead.

That was way to long to be just LL...

Automaticall computing the predictor table

Predict(A, a) gives you the rules that apply when A is on the stack and a is the next input character

 $\operatorname{Predict}(\mathbf{A},\,\mathbf{a}) = \{\mathbf{A} \to \beta \mid a \in \operatorname{First}(\beta) \ \}$

First(β) - $\beta \in V^*$ - set of characters that can be the first letter of a derivation starting from β

 $First(\beta) = \{ a \mid \beta \implies *a\gamma \}$

```
So Predict(A, a) = \{A \to \beta \mid \beta \implies *a\gamma \}
So really:
Predict(A,a) = \{A \to \beta \mid a \in First(\beta) \} \cup \{A \to \beta \mid Nullable(\beta), a \in Follow(A) \}
Nullable(\beta) = true if and only if \beta \implies *\epsilon
Follow(A) = \{b \mid S' \implies *\alpha Ab\beta \}
- Terminal symbols that can come immediately after A in a derivation starting from S'
```

Computing Nullable

```
initialize Nullable[A] = false for all A
repeat:
-- For each rule B -> B1 ... Bk
-- -- if k = 0 or Nullable[Bi] for all i
-- -- Nullable[B] <- True
until nothing changes</pre>
```

Computing First

```
initialize First[A] = {} for all A
repeat
-- for each rule B -> B1...Bk
-- -- for i = 1 ... k
-- -- if Bi is a terminal a
-- -- -- First[B] += {a}
-- -- -- break
-- -- else
-- -- -- First[B] += First[Bi]
-- -- -- if not Nullable[Bi] break;
until nothing changes
```

Computing First*(β)

- first set for a string of symbols

```
First*(Y1...,Yn)
-- result <- empty
-- for i = 1 ... n
-- -- if Yi not in Sigma (ie non-terminal)
-- -- result += First[Yi]
-- -- if not Nullable[Yi] break;
-- -- else (terminal)
-- -- result += {Yi}
-- -- break
-- return result</pre>
```

Computing Follow

```
initialize Follow[A] = {} for all A != S'
repeat
-- for each rule B -> B1 ... Bn
-- -- for i = 1....n-1
-- -- if Bi is in N
-- -- -- Follow[Bi] += First*(Bi+1 ... Bn)
-- -- -- if all Bi+1 ... Bn are nullable (includes i = n)
-- -- -- Follow[Bi] += Follow[B]
until nothing changes
```