1 Выделение базиса из системы векторов

Дано Пусть $v_1, \ldots, v_m \in F^n$ – вектора и $V = \langle v_1, \ldots, v_m \rangle$ – их линейная оболочка.

Задача Среди векторов v_1, \ldots, v_m найти базис пространства V и разложить оставшиеся вектора по этому базису.

Алгоритм

1. Запишем вектора v_1, \ldots, v_m по столбцам в матрицу $A \in \mathrm{M}_{\mathrm{n}\,\mathrm{m}}(F)$. Например, при $n=3, \, m=5$

$$A = \begin{pmatrix} v_{11} & v_{21} & v_{31} & v_{41} & v_{51} \\ v_{12} & v_{22} & v_{32} & v_{42} & v_{52} \\ v_{13} & v_{23} & v_{33} & v_{43} & v_{53} \end{pmatrix}$$

2. Приведем матрицу A элементарными преобразованиями строк к улучшенному ступенчатому виду. Например

$$A' = \begin{pmatrix} 1 & 0 & a_{31} & 0 & a_{51} \\ 0 & 1 & a_{32} & 0 & a_{52} \\ 0 & 0 & 0 & 1 & a_{53} \end{pmatrix}$$

- 3. Пусть k_1, \ldots, k_r номера главных позиций в матрице A'. Тогда вектора v_{k_1}, \ldots, v_{k_r} образуют базис V. Например, в примере выше это вектора v_1, v_2 и v_4 .
- 4. Пусть v_i вектор соответствует неглавной позиции в A'. Тогда в i-ом столбце A' записаны координаты разложения v_i через найденный базис выше. Например, в примере выше $v_3 = a_{31}v_1 + a_{32}v_2$ и $v_5 = a_{51}v_1 + a_{52}v_2 + a_{53}v_4$.

Пример Пусть

$$v_1 = \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix}, v_2 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, v_3 = \begin{pmatrix} 5 \\ 12 \\ 7 \end{pmatrix}, v_4 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, v_5 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} \in F^3$$

Тогда

$$\begin{pmatrix} 1 & 1 & 5 & 1 & -1 \\ 3 & 2 & 12 & 1 & 1 \\ 2 & 1 & 7 & 1 & 0 \end{pmatrix} \mapsto \begin{pmatrix} 1 & 1 & 5 & 1 & -1 \\ 0 & 0 & 0 & -1 & 2 \\ 2 & 1 & 7 & 1 & 0 \end{pmatrix} \mapsto \begin{pmatrix} 1 & 1 & 5 & 1 & -1 \\ 0 & 0 & 0 & -1 & 2 \\ 1 & 0 & 2 & 0 & 1 \end{pmatrix} \mapsto \begin{pmatrix} 1 & 0 & 2 & 0 & 1 \\ 1 & 1 & 5 & 1 & -1 \\ 0 & 0 & 0 & 1 & -2 \end{pmatrix} \mapsto \begin{pmatrix} 1 & 0 & 2 & 0 & 1 \\ 0 & 1 & 3 & 1 & -2 \\ 0 & 0 & 0 & 1 & -2 \end{pmatrix} \mapsto \begin{pmatrix} 1 & 0 & 2 & 0 & 1 \\ 0 & 1 & 3 & 0 & 0 \\ 0 & 0 & 0 & 1 & -2 \end{pmatrix}$$

1

Тогда v_1 , v_2 и v_4 – базис линейной оболочки и $v_3=2v_1+3v_2$ и $v_5=v_1-2v_4$.

2 Нахождение какого-то базиса линейной оболочки

Дано Пусть $v_1, \ldots, v_m \in F^n$ – вектора и $V = \langle v_1, \ldots, v_m \rangle$ – их линейная оболочка.

Задача Найти какой-нибудь базис подпространства V.

Алгоритм

- 1. Уложить все вектора v_i в строки матрицы $A \in \mathrm{M}_{\mathrm{mn}}(F)$.
- 2. Элементарными преобразованиями строк привести матрицу к ступенчатому виду.
- 3. Ненулевые строки полученной матрицы будут искомым базисом.

3 Дополнение линейно независимой системы до базиса всего пространства стандартными векторами

Дано Пусть $v_1, \ldots, v_m \in F^n$ – линейно независимая система векторов, $V = \langle v_1, \ldots, v_m \rangle$ – их линейная оболочка и e_i – стандартные базисные векторы, т.е. на i-ом месте стоит 1, а в остальных 0.

Задача Найти такие вектора $e_{k_1},\dots,e_{k_{n-m}},$ что система $v_1,\dots,v_m,e_{k_1},\dots,e_{k_{n-m}}$ является базисом $F^n.$

Алгоритм

- 1. Уложить вектора v_i в строки матрицы $A \in M_{mn}(F)$.
- 2. Привести матрицу A к ступенчатому виду.
- 3. Пусть k_1, \dots, k_{n-m} номера неглавных столбцов. Тогда $e_1, \dots, e_{k_{n-m}}$ искомое множество.

4 Найти ФСР однородной СЛУ

Дано Система однородных линейных уравнений Ax = 0, где $A \in \mathrm{M}_{\mathrm{mn}}(F)$ и $x \in F^n$.

Задача Найти Φ CP системы Ax = 0.

Алгоритм

1. Привести матрицу A элементарными преобразованиями строк к улучшенному ступенчатому виду. Например

$$A' = \begin{pmatrix} 1 & 0 & a_{31} & 0 & a_{51} \\ 0 & 1 & a_{32} & 0 & a_{52} \\ 0 & 0 & 0 & 1 & a_{53} \end{pmatrix}$$

2. Пусть k_1, \ldots, k_r – позиции свободных переменных. Если положить одну из этих переменных равной 1, а все остальные нулями, то существует единственное решение, которое мы обозначим через u_i (всего r штук). Например, для матрицы A' выше свободные переменные имеют номера 3 и 5. Тогда вектора (записанные в строку)

$$u_1 = \begin{pmatrix} -a_{31} & -a_{32} & 1 & 0 & 0 \end{pmatrix}, u_2 = \begin{pmatrix} -a_{51} & -a_{52} & 0 & -a_{53} & 1 \end{pmatrix}$$

являются ФСР.

5 Задать подпространство базисом, если оно задано матричным уравнением

Дано Пусть $A \in M_{mn}(F)$ и $V \subseteq F^n$ задано в виде $V = \{y \in F^n \mid Ay = 0\}.$

Задача Найти базис подпространства V.

Алгоритм

1. Найти Φ CP системы Ay = 0. Векторы Φ CP будут базисом V.

6 Задать подпространство матричным уравнением, если оно задано линейной оболочной

Дано Пусть $v_1, \ldots, v_k \in F^n$ – набор векторов и $V = \langle v_1, \ldots, v_k \rangle$.

Задача Для некоторого m найти матрицу $A \in \mathrm{M}_{\mathrm{m}\,\mathrm{n}}(F)$ такую, что $V = \{y \in F^n \mid Ay = 0\}.$

- 1. Уложить вектора v_i в строки матрицы $B \in M_{k,n}(F)$.
- 2. Найти Φ CP системы Bz = 0.
- 3. Уложить Φ CP в строки матрицы $A \in \mathrm{M}_{\mathrm{m}\,\mathrm{n}}(F)$, где m количество векторов в Φ CP. Матрица A и будет искомой.

7 Найти матрицу замены координат

Дано Векторное пространство $V, e = (e_1, \ldots, e_n)$ и $f = (f_1, \ldots, f_n)$ – два базиса пространства V. Известна матрица перехода от e к f, т.е. $(f_1, \ldots, f_n) = (e_1, \ldots, e_n)A$, где $A \in M_n(F)$. Дан вектор $v = x_1e_1 + \ldots + x_ne_n$.

Задача Найти разложение v по базису f.

Алгоритм

1. Если v=ex, где $x\in F^n$, а также v=fy, где $y\in F^n$, то $y=A^{-1}x$.

8 Найти матрицу линейного отображения при замене базиса

Дано Векторное пространство V с базисами $e=(e_1,\ldots,e_n)$ и $e'=(e'_1,\ldots,e'_n)$, а также векторное пространство U с базисами $f=(f_1,\ldots,f_m)$ и $f'=(f'_1,\ldots,f'_m)$. Известны матрицы перехода $(e'_1,\ldots,e'_n)=(e_1,\ldots,e_n)C$ и $(f'_1,\ldots,f'_m)=(f_1,\ldots,f_m)D$, где $C\in \mathrm{M_n}(F)$ и $D\in \mathrm{M_m}(F)$. Дано линейное отображение $\phi\colon V\to U$ заданное в базисах e и f матрицей $A\in \mathrm{M_n}(F)$, т.е. $\phi e=fA$.

Задача Найти матрицу отображения ϕ в базисах e' и f', то есть такую $A' \in M_{nm}(F)$, что $\phi e' = f'A'$.

Алгоритм

1. $A' = D^{-1}AC$.

9 Определить существует ли линейное отображение заданное на векторах

Дано Векторное пространство V над полем F и набор векторов $v_1, \ldots, v_k \in V$, векторное пространство U и набор векторов $u_1, \ldots, u_k \in U$.

Задача Определить существует ли линейное отображение $\phi: V \to U$ такое, что $\phi(v_i) = u_i$.

Алгоритм

- 1. Среди векторов v_1, \dots, v_k выделить линейно независимые, а остальные разложить по ним.
- 2. Пусть на предыдущем этапе базис получился v_1, \ldots, v_r , а $v_{r+i} = a_{i1}v_1 + \ldots + a_{ir}v_r$.
- 3. Искомое линейное отображение ϕ существует тогда и только тогда, когда выполняются равенства $u_{r+i} = a_{i1}u_1 + \ldots + a_{ir}u_r$.

10 Найти базис образа и ядра линейного отображения

Дано $\phi \colon F^n \to F^m$ задан $x \mapsto Ax$, где $A \in \mathrm{M}_{\mathrm{m}\,\mathrm{n}}(F)$.

Задача Найти базис $\operatorname{Im} \phi \in F^m$ и базис $\ker \phi \in F^n$.

 $^{^{1}\}mathrm{B}$ частности, если все v_{i} оказались линейно независимыми, то линейное отображение ϕ обязательно существует.

- 1. Выделить базис среди столбцов матрицы A. В результате получится базис $\operatorname{Im} \phi$.
- 2. Найти Φ CP системы Ax=0. Полученная Φ CP будет базисом $\ker \phi$.

11 Найти линейное отображение с заданными ядром и образом

Дано Пространства $U \subseteq F^n$ и $W \subseteq F^m$ такие, что $\dim U + \dim W = n$.

Задача Найти матрицу линейного отображения $\varphi \colon F^n \to F^m$ такого, что $U = \ker \varphi$ и $W = \operatorname{Im} \varphi$.

Алгоритм

- 1. Задать подпространство W с помощью базиса. Пусть b_1, \ldots, b_k базис W. Определим матрицу $B = (b_1 | \ldots | b_k)$.
- 2. Задать подпространство U системой с линейно независимыми строками $U = \{ y \in F^n \mid Ay = 0 \}.$
- 3. В силу условия $\dim U + \dim W = n$ матрица A будет иметь столько же строк, сколько столбцов в матрице B. В этом случае искомое линейное отображение задается матрицей BA.

12 Найти сумму подпространств заданных линейными оболочками

Дано Подпространства $V, U \subseteq F^n$ заданные в виде $V = \langle v_1, \dots, v_m \rangle, U = \langle u_1, \dots, u_k \rangle$, где $v_i, u_i \in F^n$.

 $m {f 3}$ адача Найти базис V+U.

Алгоритм

1. Надо найти базис линейной оболочки $\langle v_1, \dots, v_m, u_1, \dots, u_k \rangle$.

13 Найти пересечение подпространств заданных линейными оболочками

Дано Подпространства $V, U \subseteq F^n$ заданные в виде $V = \langle v_1, \dots, v_m \rangle, U = \langle u_1, \dots, u_k \rangle$, где $v_i, u_j \in F^n$.

Задача Найти базис $V \cap U$.

Алгоритм

- 1. Найти ФСР системы Dx=0, где $D=(v_1|\dots|v_m|u_1|\dots|u_k)$ и $x=\left(\frac{\alpha}{\beta}\right)$, где $\alpha\in F^m,\ \beta\in F^k.$
- 2. Пусть $\left(\left. \frac{\alpha_1}{\beta_1} \right| \dots \right| \left. \frac{\alpha_s}{\beta_s} \right)$ ФСР. Далее есть две опции (из них вторая опция предпочтительнее!):
 - Множество векторов $R = (v_1 | \dots | v_m)(\alpha_1 | \dots | \alpha_s)$ порождает $V \cap U$. Среди $(\alpha_1 | \dots | \alpha_s)$ можно выкинуть те α_i , для которых $\beta_i = 0.3$
 - Множество векторов $R' = (u_1 | \dots | u_k)(\beta_1 | \dots | \beta_s)$ порождает $V \cap U$. Причем можно рассматривать только ненулевые β_i .
- 3. Выделить базис среди столбцов R. Это и будет базис $V \cap U$.
 - Если векторы u_1, \ldots, u_k были линейно независимы изначально и β_i, \ldots, β_s все ненулевые сегменты Φ CP с прошлого шага, то $(u_1|\ldots|u_k)(\beta_i|\ldots|\beta_s)$ будет базисом $V \cap U$.

 $^{^2}$ В это задаче можно задать подпространства системами, потом найти пересечение в виде системы, потом задать результат базисом. Но есть куда более эффективный способ.

³Если ФСР построен по стандартному базису, то останутся α_i с нулевыми свободными переменными.

14 Найти пересечение подпространств заданных матричным уравнением

Дано Подпространства $V,U\subseteq F^n$ заданные в виде $V=\{y\in F^n\mid Ay=0\},\ U=\{y\in F^n\mid By=0\},$ где $A\in \mathrm{M_{m\,n}}(F)$ и $B\in \mathrm{M_{k\,n}}(F).$

Задача Задать $V \cap U$ в виде $\{y \in F^n \mid Dy = 0\}$ для некоторого $D \in M_{kn}(F)$, где $\mathrm{rk}\, D = k \leqslant n$.

Алгоритм

- 1. Рассмотреть матрицу $D' = \left(\frac{A}{B}\right)$.
- 2. Выделить среди строк D' линейно независимую подсистему. Результат и будет искомая D.

15 Найти пересечение подпространств заданных разными способами

Дано Подпространства $V, U \subseteq F^n$ заданные в виде $V = \langle v_1, \dots, v_m \rangle, U = \{ y \in F^n \mid Ay = 0 \}$, где $A \in \mathcal{M}_{kn}(F)$.

Задача Задать $V \cap U$ системой линейных уравнений.

Алгоритм

- 1. Задать подпространство V системой в виде $\{x \in F^n \mid Dx = 0\}$.
- 2. Тогда $V \cap U$ задается объединенной системой $\left(\frac{B}{D}\right)$.

16 Найти сумму подпространств заданных разными способами

Дано Подпространства $V,U\subseteq F^n$ заданные в виде $V=\langle v_1,\ldots,v_m\rangle, U=\{y\in F^n\mid Ay=0\},$ где $A\in \mathrm{M}_{k\,n}(F).$

Задача Задать V+U в виде $\{x\in F^n\mid Dx=0\}$, где $D\in \mathrm{M_{t\, n}}(F)$ и $t=\mathrm{rk}\,D.^4$

Алгоритм

- 1. Определим матрицу $B=(v_1|\dots|v_m)$ и найдем ФСР для системы $B^tA^tx=0$. Пусть это будет x_1,\dots,x_t .
- 2. Тогда матрица $D' = (x_1 | \dots | x_t)^t A$ задает V + U системой.
- 3. Отобрать среди строк D' линейно независимые и получить D.
 - \bullet Если строки A были линейно независимы, то строки D' уже будут линейно независимыми.

17 Найти сумму подпространств заданных разными способами

Дано Подпространства $V,U\subseteq F^n$ заданные в виде $V=\langle v_1,\ldots,v_m\rangle, U=\{y\in F^n\mid Ay=0\},$ где $A\in \mathrm{M}_{k\,n}(F).$

Задача Задать V + U в виде линейной оболочки.

Алгоритм

- 1. Задать подпространство U с помощью линейной оболочки.
- 2. Объединить линейные оболочки для V и для U.

18 Найти матрицу линейного оператора при замене базиса

Дано Векторное пространство V над полем $F, e = (e_1, \ldots, e_n)$ и $f = (f_1, \ldots, f_n)$ – два базиса пространства V. Известна матрица перехода от e к f, т.е. $(f_1, \ldots, f_n) = (e_1, \ldots, e_n)C$, где $C \in \mathrm{M_n}(F)$. Дано линейное отображение $\phi \colon V \to V$ заданное в базисе e матрицей $A \in \mathrm{M_n}(F)$, т.е. $\phi e = eA$.

 $^{^4}$ Всегда можно задать U линейной оболочкой, потом задать V+U линейной оболочкой, а потом найти представление системой. Я же покажу тут другой подход.

Задача Найти матрицу отображения ϕ в базисе f.

Алгоритм

1. Пусть $\phi f = fB$, где B – искомая матрица. Тогда $B = C^{-1}AC$.

19 Найти проекцию вектора на подпространство вдоль другого подпространства

Дано $F^n = V \oplus U$, где V и U заданы базисами $V = \langle v_1, \dots, v_m \rangle$, $U = \langle u_1, \dots, u_k \rangle$. Пусть $z \in F^n$ раскладывается z = v + u, где $v \in V$ и $u \in U$.

 ${f 3}$ адача ${f H}$ айти v и u.

Алгоритм

- 1. Решить СЛУ Dx=z, где $D=(v_1|\ldots|v_m|u_1|\ldots|u_k)$ и $x=\left(\frac{\alpha}{\beta}\right)$, где $\alpha\in F^m$ и $\beta\in F^k$.
- 2. Тогда $v = (v_1 | \dots | v_m) \alpha$ и $u = (u_1 | \dots | u_k) \beta$.

20 Найти оператор проекции на подпространство вдоль другого подпространства

Дано $F^n=V\oplus U$, где V задано базисом $V=\langle v_1,\ldots,v_m\rangle,\ U=\{y\in F^n\mid Ay=0\},$ где $A\in \mathrm{M_{k\,n}}(F)$ и гк $A=k\leqslant n.$

Задача Найти матрицу отображения $\phi: V \to V$ такого, что $\phi(U) = 0$ и $\phi(v) = v$ для любого $v \in V.$

Алгоритм

- 1. Положим $B = (v_1 | \dots | v_m) \in M_{nm}(F)$.
- 2. Обязательно получится, что m=k и матрица AB невырождена.
- 3. Искомый ϕ имеет матрицу $B(AB)^{-1}A$.

21 Поиск собственных значений и векторов

Дано Матрица $A \in M_n(F)$.

Задача Найти все собственные значения λ_i для A и для каждого λ_i найти базис пространства $V_{\lambda_i} = \{v \in F^n \mid Av = \lambda_i v\}.$

Алгоритм

- 1. Посчитать характеристический многочлен $(-1)^n \chi_A(\lambda) = \det(A \lambda E)$.
- 2. Найти корни многочлена $\chi_A(\lambda)$. Корни $\{\lambda_1, \dots, \lambda_k\}$ будут собственным значениями A.
- 3. Для каждого λ_i найти ФСР системы $(A \lambda_i E)x = 0$. Тогда ФСР будет базисом V_{λ_i} .

Если дополнительно найти с каждым собственным значением λ_i его кратность n_i в характеристическом многочлене, то на последнем шаге размер ФСР для λ_i оценивается так. Собственных векторов будет не меньше чем 1 и не больше, чем n_i .

22 Поиск корневых подпространств

Дано Матрица $A \in M_n(F)$.

 $^{^5}$ Заметим, что если $z \in F^n$ раскладывается z=v+u, где $v \in V$ и $u \in U$, то $\phi(z)=v$.

Задача Найти все собственные значения λ_i для A и для каждого λ_i найти базис пространства $V^{\lambda_i} = \{v \in F^n \mid \exists n \colon (A - \lambda_i E)^n v = 0\}.$

Алгоритм

- 1. Посчитать характеристический многочлен $(-1)^n \chi_A(\lambda) = \det(A \lambda E)$.
- 2. Найти корни многочлена $\chi_A(\lambda)$ с кратностями. Корни $\{\lambda_1, \dots, \lambda_k\}$ будут собственным значениями A. И пусть кратности будут $\{n_1, \dots, n_k\}$.
- 3. Для каждого λ_i найти ФСР системы $(A \lambda_i E)^{n_i} x = 0$. Тогда ФСР будет базисом V^{λ_i} . Обратите внимание, что для каждого λ_i должно получиться ровно n_i векторов.

23 Поиск инвариантных подпространств

Дано Матрица $A \in M_n(F)$.

Задача Найти все подпространства $U \subseteq F^n$ такие, что $AU \subseteq U$.

Алгоритм

1. Для каждого вектора $v \in F^n$ найти главное инвариантное подпространство

$$[v]_A = \langle v, Av, A^2v, \dots, A^mv, \dots \rangle$$

Обратите внимание, что это «творческий шаг» тут нет общего алгоритма, 6 тут придется немного догадаться.

2. Описать все инвариантные подпространства, как конечные суммы главных, а именно любое инвариантное U будет иметь вид $[v_1]_A + \ldots + [v_k]_A$, где v_1, \ldots, v_k пробегает все возможные конечные наборы векторов.

24 Поиск инвариантных подпространств для диагонализуемого оператора

Дано Матрица $A \in M_n(F)$, задающая диагонализуемый оператор.

Задача Найти все подпространства $U \subseteq F^n$ такие, что $AU \subseteq U$.

Алгоритм

- 1. В начале надо найти все собственные значения и собственные подпространства. Пусть $\lambda_1, \dots, \lambda_k$ все собственные значения с кратностями n_1, \dots, n_k . Тогда $F^n = V_{\lambda_1} \oplus \dots \oplus V_{\lambda_k}$.
- 2. Надо выбрать произвольное подпространство $U_i\subseteq V_{\lambda_i}$ (включая нулевое и все V_{λ_i} целиком). Тогда U_1,\dots,U_k будут линейно независимыми и $U=U_1\oplus\dots\oplus U_k$ будут все возможные инвариантные подпространства.

25 Проверка на диагонализуемость

Дано Матрица $A \in \mathrm{M}_{\mathrm{n}}(F)$, задающая линейный оператор $\varphi \colon F^n \to F^n$.

Задача Выяснить существует ли базис, в котором φ задается диагональной матрицей и если задается, то какой именно. На матричном языке: существует ли невырожденная матрица $C \in \mathrm{M}_{\mathrm{n}}(F)$ такая, что $C^{-1}AC$ является диагональной и найти эту диагональную матрицу.

 $^{^6}$ Если говорить правду, то алгоритм то есть, но он такой геморройный и требует знаний, которых пока у нас нет, так что да ну его.

- 1. Найдем характеристический многочлен $\chi(t)$ для φ , он же для A по формуле $(-1)^n \chi(t) = \det(A tE)$.
- 2. Проверим, раскладывается ли $\chi(t)$ на линейные множители над F, то есть представляется ли он в виде $\chi(t) = (t \lambda_1)^{d_1} \dots (t \lambda_k)^{d_k}$. Если не представляется, то φ (или что то же самое A) не диагонализируется
- 3. Если $\chi(t) = (t \lambda_1)^{d_1} \dots (t \lambda_k)^{d_k}$. Найдем для каждого λ_i базис V_{λ_i} как ФСР системы $(A \lambda_i E)x = 0$. Если для хотя бы одного i количество элементов в ФСР меньше соответствующей кратности корня d_i , то φ не диагонализируется.
- 4. Если для каждого i мы получили, что размер ФСР совпадает с кратностью корня, то есть dim $V_{\lambda_i} = d_i$. То φ диагонализируется. В этом случае матрица C состоит из собственных векторов. Если собственные векторы для λ_i есть $\{v_{i1},\ldots,v_{id_i}\}$, то $C=(v_{11}|\ldots|v_{1d_1}|v_{21}|\ldots|v_{2d_2}|\ldots|v_{k1}|\ldots|v_{kd_k})$. При этом в новом базисе будет диагональная матрица $C^{-1}AC=\mathrm{Diag}(\lambda_1,\ldots,\lambda_1,\lambda_2,\ldots,\lambda_2,\ldots,\lambda_k,\ldots,\lambda_k)$, где каждое λ_i встречается d_i раз.

Заметим, что если поле F алгебраически замкнуто, то первый шаг алгоритма выполнен автоматически, а именно, над алгебраически замкнутым полем любой многочлен разлагается на линейные множители. Потому в этом случае вопрос о диагонализируемости – это лишь проверка всех равенств $\dim V_{\lambda_i} = d_i$.

26 Определить ЖНФ у оператора

Дано Матрица $A \in M_n(F)$, где поле F алгебраически замкнуто.

Задача Определить все собственные значения и размеры клеток в жордановой нормальной форме.

Алгоритм

- 1. Собственные значения совпадают со спектром их ищем, как корни характеристического многочлена $\chi_A(t) = (-1)^n \det(A tE) = 0$. Получаем набор корней и их кратности $(\lambda_1, n_1), \dots, (\lambda_k, n_k)$.
- 2. Для каждого λ_i суммарный размер клеток равен n_i . Потому надо определить количество клеток для всех $k \in [1, n_i]$. Количество клеток считается по формуле

количество клеток размера
$$k=\mathrm{rk}(A-\lambda_i E)^{k+1}+\mathrm{rk}(A-\lambda_i E)^{k-1}-2\,\mathrm{rk}(A-\lambda_i E)^k$$

Обратите внимание, что если вы нашли m клеток размера k, а кратность была n_i , то на оставшиеся клетки уходит $n_i - mk$ мест. Этим можно пользоваться, чтобы не считать все количества клеток подряд.

27 Определение ЖНФ у матриц 2 на 2

Дано Матрица $A \in M_2(F)$, где поле F алгебраически замкнутое.

Найти Жорданова форма может быть одной из

$$\begin{pmatrix} \lambda & \\ & \mu \end{pmatrix}, \quad \begin{pmatrix} \lambda & \\ & \lambda \end{pmatrix}, \quad \begin{pmatrix} \lambda & 1 \\ & \lambda \end{pmatrix}$$

Определить какая форма в нашем случае и определить все числа.

Алгоритм Общая идея в том, чтобы подобрать инварианты, которые достаточно рассчитать для выбора из предоставленных вариантов.

- 1. Найдем характеристический многочлен $\chi_A(t) = \det(A tE)$. И посчитаем его корни. Есть два варианта:
 - (a) два разных корня λ и μ . В этом случае ЖНФ имеет вид

$$\begin{pmatrix} \lambda & \\ & \mu \end{pmatrix}$$

(b) один корень λ кратности 2. В этом случае, если $A = \lambda E$, то ЖНФ имеет вид

$$\begin{pmatrix} \lambda & \\ & \lambda \end{pmatrix}$$

В противном случае ЖНФ имеет вид

$$\begin{pmatrix} \lambda & 1 \\ & \lambda \end{pmatrix}$$

28 Определить Жорданов базис у матриц 2 на 2

Дано Матрица $A \in M_2(F)$, где поле F алгебраически замкнутое.

Задача Зная ЖНФ определить жорданов базис f_1, f_2 .

Алгоритм

1. Пусть ЖНФ имеет вид

$$\begin{pmatrix} \lambda & \\ & \mu \end{pmatrix}$$

В этом случае оператор диагонализум, а значит базис выбирается из собственных векторов. Есть два способа найти их:

- (a) Вектор f_1 находим как ненулевое решение системы $(A-\lambda E)x=0$, а вектор f_2 находим как ненулевое решение системы $(A-\mu E)x=0$.
- (b) Вектор f_1 находим как ненулевой столбец матрицы $A \mu E$, а вектор f_2 находим как ненулевой столбец матрицы $A \lambda E$.
- 2. Пусть ЖНФ имеет вид

$$\begin{pmatrix} \lambda & \\ & \lambda \end{pmatrix}$$

В этом случае подходит любой базис.

3. Пусть ЖНФ имеет вид

$$\begin{pmatrix} \lambda & 1 \\ & \lambda \end{pmatrix}$$

В этом случае жорданов базис образует цепочку

$$\int_{A-\lambda E} f_1$$

$$\int_{A-\lambda E} A - \lambda E$$

В этом случае векторы базиса ищутся так

- (a) Выбираем случайный вектор f_2 . Всегда достаточно выбирать из стандартных базисных векторов.
- (b) Полагаем $f_1 = (A \lambda E) f_2$.
- (c) Если $f_1=0$, то вернуться к выбору вектора f_2 . Если $f_1\neq 0$, то f_1,f_2 искомый базис.

9

29 Определение ЖНФ у матриц 3 на 3

Дано Матрица $A \in M_3(F)$, где поле F алгебраически замкнуто.

Найти Жорданова форма может быть одной из

$$\begin{pmatrix} \lambda & & \\ & \mu & \\ & & \gamma \end{pmatrix}, \quad \begin{pmatrix} \lambda & & \\ & \lambda & \\ & & \mu \end{pmatrix}, \quad \begin{pmatrix} \lambda & 1 & \\ & \lambda & \\ & & \mu \end{pmatrix}, \quad \begin{pmatrix} \lambda & 1 & \\ & \lambda & \\ & & \lambda \end{pmatrix}, \quad \begin{pmatrix} \lambda & 1 & \\ & \lambda & 1 \\ & & \lambda \end{pmatrix}$$

Определить какая форма в нашем случае и определить все числа.

Алгоритм Общая идея в том, чтобы подобрать инварианты, которые достаточно рассчитать для выбора из предоставленных вариантов.

- 1. Найдем характеристический многочлен $\chi_A(t) = -\det(A tE)$ и посчитаем его корни. Возможны следующие варианты:
 - три разных корня λ , μ , γ .
 - \bullet один корень λ кратности 2, один корень μ кратности 1.
 - \bullet один корень λ кратности 3.
- 2. Три разных корня. В этом случае ЖНФ имеет вид

$$\begin{pmatrix} \lambda & & \\ & \mu & \\ & & \gamma \end{pmatrix}$$

3. Два разных корня, λ кратности 2 и μ кратности 1. В этом случае, если $\mathrm{rk}(A-\lambda E)=1,$ то ЖНФ имеет вид

$$\begin{pmatrix} \lambda & & \\ & \lambda & \\ & & \mu \end{pmatrix}$$

В противном случае (то есть, если ${\rm rk}(A-\lambda E)=2)$ ЖНФ имеет вид

$$\begin{pmatrix} \lambda & 1 & \\ & \lambda & \\ & & \mu \end{pmatrix}$$

4. Один корень λ кратности 3. Если $A=\lambda E$, то ЖНФ имеет вид

$$\begin{pmatrix} \lambda & & \\ & \lambda & \\ & & \lambda \end{pmatrix}$$

Если $rk(A - \lambda E) = 1$, то ЖНФ имеет вид

$$\begin{pmatrix} \lambda & 1 & \\ & \lambda & \\ & & \lambda \end{pmatrix}$$

В противном случае (то есть ${\rm rk}(A-\lambda E)=2)$ ЖНФ имеет вид

$$\begin{pmatrix} \lambda & 1 & \\ & \lambda & 1 \\ & & \lambda \end{pmatrix}$$

30 Определить Жорданов базис у матриц 3 на 3

Дано Матрица $A \in M_3(F)$, где поле F алгебраически замкнуто.

Задача Зная ЖНФ определить жорданов базис f_1, f_2, f_3 .

1. Пусть ЖНФ имеет вид

$$\begin{pmatrix} \lambda & & \\ & \mu & \\ & & \gamma \end{pmatrix}$$

В этом случае оператор диагонализуем, а значит базис выбирается из собственных векторов. Базис можно найти следующим образом. Вектор f_1 – ненулевое решение системы $(A - \lambda E)x = 0$, вектор f_2 – ненулевое решение системы $(A - \gamma E)x = 0$.

2. Пусть ЖНФ имеет вид

$$\begin{pmatrix} \lambda & & \\ & \lambda & \\ & & \mu \end{pmatrix}$$

В этом случае оператор диагонализуем, а значит базис выбирается из собственных векторов. Базис можно найти одним из двух способов ниже:

- (a) Вектор f_3 берется как решение системы $(A \mu E)x = 0$, векторы f_1, f_2 берутся как ФСР системы $(A \lambda E)x = 0$.
- (b) Вектор f_3 берется как ненулевой столбец матрицы $A \lambda E$, векторы f_1, f_2 берутся, как линейно независимые столбцы матрицы $A \mu E$.

3. Пусть ЖНФ имеет вид

$$\begin{pmatrix} \lambda & & \\ & \lambda & \\ & & \lambda \end{pmatrix}$$

В этом случае в качестве жорданова базиса годится любой базис.

4. Пусть ЖНФ имеет вид

$$\begin{pmatrix} \lambda & 1 & \\ & \lambda & \\ & & \mu \end{pmatrix}$$

В этом случае вектор f_3 находится как решение системы $(A - \mu E)x = 0$. Векторы f_1, f_2 можно найти одним из следующих способов:

- (а) Найдем ФСР системы $(A \lambda E)^2 x = 0$, пусть это будет x_1, x_2 . Тогда в качестве f_2 берем один из векторов x_i , а $f_1 = (A \lambda E)f_2$. В итоге выбираем такое x_i в качестве f_2 , чтобы f_1 был не ноль.
- (b) В качестве вектора f_2 перебираем столбцы матрицы $A \mu E$ до тех пор, пока $f_1 = (A \lambda E)f_2$ не станет ненулевым. Как только f_1 будет не ноль, векторы f_1, f_2 искомые.
- 5. Пусть ЖНФ имеет вид

$$\begin{pmatrix} \lambda & 1 \\ & \lambda & \\ & & \lambda \end{pmatrix}$$

В этом случае жорданов базис имеет конфигурацию

В этом случае базис ищем по следующему алгоритму

(a) Вектор f_2 выбираем случайно из всего пространства F^3 . Всегда достаточно выбирать из стандартных базисных векторов.

11

- (b) Вектор $f_1 = (A \lambda E)f_2$. Если $f_1 = 0$, то возвращаемся к шагу выбора вектора f_2 .
- (c) В случае когда $f_1 \neq 0$ это будет вектор из $\ker(A \lambda E)$, надо дополнить его до базиса ядра. Это можно сделать так: находим ФСР для системы $(A \lambda E)x = 0$ и дополняем f_1 любым вектором из ФСР, который не пропорционален f_1 , это и будет f_3 .
- 6. Пусть ЖНФ имеет вид

$$\begin{pmatrix} \lambda & 1 & \\ & \lambda & 1 \\ & & \lambda \end{pmatrix}$$

В этом случае жорданов базис имеет конфигурацию

$$\begin{array}{c} f_3 \\ \sqrt{A - \lambda E} \\ f_2 \\ \sqrt{A - \lambda E} \\ f_1 \\ \sqrt{A - \lambda E} \\ 0 \end{array}$$

В этом случае базис ищется по следующему алгоритму

- (a) Случайно выбираем f_3 из F^3 . Всегда достаточно выбирать из стандартных базисных векторов.
- (b) Положим $f_2 = (A \lambda E)f_3$ и $f_1 = (A \lambda E)f_2$.
- (c) Если вектор f_1 равен нулю, то возвращаемся к шагу выбора f_3 иначе получили нужный базис.

31 Определение ЖНФ у матриц 4 на 4 с одним собственным значением

Дано Матрица $A \in \mathrm{M}_4(F)$ с единственным собственным значением $\lambda \in F$, где поле F алгебраически замкнуто.

Найти Жорданова форма может быть одной из

$$\begin{pmatrix} \lambda & & & \\ & \lambda & & \\ & & \lambda & \\ & & & \lambda \end{pmatrix}, \quad \begin{pmatrix} \lambda & 1 & & \\ & \lambda & & \\ & & \lambda & \\ & & & \lambda \end{pmatrix}, \quad \begin{pmatrix} \lambda & 1 & & \\ & \lambda & 1 & \\ & & \lambda & 1 \\ & & & \lambda \end{pmatrix}, \quad \begin{pmatrix} \lambda & 1 & & \\ & \lambda & 1 & \\ & & \lambda & 1 \\ & & & \lambda \end{pmatrix}$$

Определить какая форма в нашем случае и определить собственное значение.

Алгоритм Общая идея в том, чтобы подобрать инварианты, которые достаточно рассчитать для выбора из предоставленных вариантов.

- 1. Найдем характеристический многочлен $\chi_A(t) = \det(A tE)$. Нам нужно найти его единственный корень. Так как многочлен имеет вид $(t \lambda)^4$, то можно найти его 3-ю производную и решить $\chi_A(t)^{(3)} = 0$ для нахождения корня. Это работает, если $2 \neq 0$ и $3 \neq 0$ в поле $F.^{7,\,8}$
- 2. Если $A = \lambda E$, то ЖНФ имеет вид

$$\begin{pmatrix} \lambda & & & \\ & \lambda & & \\ & & \lambda & \\ & & & \lambda \end{pmatrix}$$

⁷Действительно, третья производная от $(t-\lambda)^4$ будет $4!(t-\lambda)$. Если 2 и 3 обратимы в F, то можно сократить на 4!.

⁸Можно воспользоваться любым другим приемлемым способом по поиску корня многочлена.

3. Если $\operatorname{rk}(A - \lambda E) = 1$, то ЖНФ имеет вид

$$\begin{pmatrix} \lambda & 1 & & \\ & \lambda & & \\ & & \lambda & \\ & & & \lambda \end{pmatrix}$$

4. Если $\operatorname{rk}(A-\lambda E)=3,$ то ЖНФ имеет вид

$$\begin{pmatrix} \lambda & 1 & & \\ & \lambda & 1 & \\ & & \lambda & 1 \\ & & & \lambda \end{pmatrix}$$

5. Если $\operatorname{rk}(A-\lambda E)=2$, то надо посмотреть на $(A-\lambda E)^2$. Если $(A-\lambda E)^2=0$, то ЖНФ имеет вид

$$\begin{pmatrix} \lambda & 1 & & \\ & \lambda & & \\ & & \lambda & 1 \\ & & & \lambda \end{pmatrix}$$

иначе (если $(A-\lambda E)^2 \neq 0$) ЖНФ имеет вид

$$\begin{pmatrix} \lambda & 1 & & \\ & \lambda & 1 & \\ & & \lambda & \\ & & & \lambda \end{pmatrix}$$

32 Определить Жорданов базис у матриц 4 на 4 с единственным собственным значением

Дано Матрица $A \in M_4(F)$ с единственным собственным значением λ , где поле F алгебраически замкнутое.

Задача Зная ЖНФ определить жорданов базис f_1, f_2, f_3, f_4 .

Алгоритм

1. Пусть ЖНФ имеет вид

$$\begin{pmatrix} \lambda & & & \\ & \lambda & & \\ & & \lambda & \\ & & & \lambda \end{pmatrix}$$

В этом случае любой базис годится в качестве жорданова.

2. Пусть ЖНФ имеет вид

$$\begin{pmatrix} \lambda & 1 & & \\ & \lambda & & \\ & & \lambda & \\ & & & \lambda \end{pmatrix}$$

В этом случае конфигурация жорданова базиса будет следующая

$$f_{2}$$

$$\sqrt{A-\lambda E}$$

$$f_{1}$$

$$\sqrt{A-\lambda E}$$

$$\int_{A-\lambda E}$$

$$\int_{A-\lambda E}$$

$$\int_{A-\lambda E}$$

$$0$$

В этом случае базис находится по следующему алгоритму

- (a) Вектор f_2 выбираем случайно из F^4 . Всегда достаточно выбирать из стандартных базисных векторов.
- (b) Положим $f_1 = (A \lambda E)f_2$. Если вектор $f_1 = 0$, то вернемся к шагу выбора вектора f_2 .
- (c) Вектор f_1 будет лежать в $\ker(A \lambda E)$ теперь его надо дополнить до базиса ядра двумя векторами. Это можно сделать так: находим ФСР системы $(A \lambda E)x = 0$ и из трех векторов выберем два f_3, f_4 , которые будут линейно независимы с f_1 .
- 3. Пусть ЖНФ имеет вид

$$\begin{pmatrix} \lambda & 1 & & \\ & \lambda & 1 & \\ & & \lambda & \\ & & & \lambda \end{pmatrix}$$

В этом случае конфигурация жорданова базиса будет следующая

В этом случае базис находится по следующему алгоритму

- (a) Вектор f_3 выбираем случайно в F^4 . Всегда достаточно выбирать из стандартных базисных векторов.
- (b) Положим $f_2 = (A \lambda E)f_3$ и $f_1 = (A \lambda E)f_2$. Если $f_1 = 0$, то вернуться к шагу выбора вектора f_3 .
- (c) Вектор f_1 лежит в $\ker(A \lambda E)$, его надо дополнить одним вектором f_4 до базиса ядра. Это можно сделать следующим образом. Найдем ФСР системы $(A \lambda E)x = 0$ и дополним вектор f_1 одним вектором из ФСР, чтобы полученная пара была линейно независима.
- 4. Пусть ЖНФ имеет вид

$$\begin{pmatrix} \lambda & 1 & & \\ & \lambda & 1 & \\ & & \lambda & 1 \\ & & & \lambda \end{pmatrix}$$

В этом случае конфигурация жорданова базиса будет следующая

В этом случае базис находится по следующему алгоритму

- (a) Вектор f_4 выбираем случайно из F^4 . Всегда достаточно выбирать из стандартных базисных векторов.
- (b) Положим $f_3 = (A \lambda E)f_4$, $f_2 = (A \lambda E)f_3$, $f_1 = (A \lambda E)f_2$. Если $f_1 = 0$, то вернуться к шагу перевыбора f_4 иначе получился искомый базис.

5. Пусть ЖНФ имеет вид

$$\begin{pmatrix} \lambda & 1 & & \\ & \lambda & & \\ & & \lambda & 1 \\ & & & \lambda \end{pmatrix}$$

В этом случае конфигурация жорданова базиса будет следующая

$$\begin{array}{ccc} f_2 & & f_4 \\ \overline{\downarrow}_{A-\lambda E} & & \overline{\downarrow}_{A-\lambda E} \\ f_1 & & f_3 \\ \overline{\downarrow}_{A-\lambda E} & & \overline{\downarrow}_{A-\lambda E} \\ 0 & & 0 \end{array}$$

В этом случае базис можно найти по следующему алгоритму.

- (a) Выбираем вектор f_2 случайно в F^4 . Всегда достаточно выбирать из стандартных базисных векторов.
- (b) Положим $f_1 = (A \lambda E)f_2$. Если $f_1 = 0$, то вернуться к шагу выбора f_2 .
- (c) Выбираем вектор f_4 случайно в F^4 . Всегда достаточно выбирать из стандартных базисных векторов.
- (d) Положим $f_3 = (A \lambda E)f_4$. Если векторы f_1, f_3 линейно зависимы, вернуться к шагу выбора f_4 . Иначе получили искомый базис.

33 Найти матрицу билинейной формы при замене базиса

Дано Векторные пространства V и U над полем F. Пусть $e=(e_1,\ldots,e_n)$ и $e'=(e'_1,\ldots,e'_n)$ – базисы пространства V, а $f=(f_1,\ldots,f_m)$ и $f'=(f'_1,\ldots,f'_m)$ – базисы пространства U. Кроме того, известны матрицы перехода от e к e' и от f к f', т.е. $(e'_1,\ldots,e'_n)=(e_1,\ldots,e_n)C$ и $(f'_1,\ldots,f'_m)=(f_1,\ldots,f_m)D$, где $C\in \mathrm{M_n}(F)$ и $D\in \mathrm{M_m}(F)$ две обратимые матрицы. Дана билинейная форма $\beta\colon V\times U\to F$ заданная в базисах e и f матрицей $B\in \mathrm{M_n}(F)$, т.е. $b_{ij}=\beta(e_i,f_j)$.

Задача Найти матрицу билинейной формы β в базисах e' и f'.

Алгоритм

1. Пусть в базисах e' и f' мы имеем $\beta(x,y)=x^tB'y$, где B' – искомая матрица. Тогда $B'=C^tBD$.

34 Найти правое ортогональное дополнение к подпространству

Дано Дана билинейная форма $\beta \colon F^n \times F^m \to F$ по правилу $\beta(x,y) = x^t B y$, где $B \in \mathrm{M}_{\mathrm{n}\,\mathrm{m}}(F)$ и подпространство $V \subseteq F^n$, заданное образующими $V = \langle v_1, \dots, v_k \rangle$.

Задача Найти $V^{\perp} = \{ y \in F^m \mid \beta(V, y) = 0 \}.$

Алгоритм

- 1. Составить вектора v_i в столбцы матрицы $D = (v_1 | \dots | v_k) \in \mathrm{M}_{\mathrm{n}\,\mathrm{k}}(F)$.
- 2. Найти ФСР СЛУ $D^t B y = 0$. Данная ФСР дает базис V^\perp .

35 Найти левое ортогональное дополнение к подпространству

Дано Дана билинейная форма $\beta \colon F^n \times F^m \to F$ по правилу $\beta(x,y) = x^t B y$, где $B \in \mathrm{M}_{\mathrm{n}\,\mathrm{m}}(F)$ и подпространство $V \subseteq F^m$, заданное образующими $V = \langle v_1, \dots, v_k \rangle$.

Задача Найти $^{\perp}V = \{x \in F^n \mid \beta(x, V) = 0\}.$

- 1. Составить вектора v_i в столбцы матрицы $D \in \mathcal{M}_{nk}(F)$.
- 2. Найти ФСР СЛУ $D^t B^t x = 0$. Данная ФСР дает базис $^{\perp}V$.

36 Симметричный Гаусс

Дано Симметричная билинейная форма $\beta \colon F^n \times F^n \to F$ по правилу $(x,y) \mapsto x^t B y$, где $B \in \mathrm{M}_n(F)$ – симметричная матрица и при этом $2 \neq 0$ в поле F.

Задача Диагоналзовать β , то есть найти матрицу перехода к новому базису C такую, чтобы $B' = C^t B C$ была диагональная, и посчитать саму матрицу B'.

Алгоритм

- 1. Чтобы найти матрицу B' будем приводить ее к диагональному виду симметричными элементарными преобразованиями, то есть допускаются следующие преобразования:
 - Прибавить i-ю строку умноженную на λ к j-ой строке и сразу же прибавление i-го столбца умноженного на λ к j-ому столбцу.
 - \bullet Поменять местами i-ю и j-ю строку и тут же поменять местами i-ый и j-ый столбец.
 - Умножить i-ю строку на ненулевое λ и тут же умножить i-ый столбец на то же самое λ .

Получившаяся диагональная матрица будет искомая B'.

2. Если при этом надо восстановить матрицу C, то рассматриваем (B|E) и делаем симметричные элементарные преобразования над ней в том смысле, что преобразования над строками выполняются над всей матрицей, а преобразования над столбцами только над часть, где лежит B. Тогда матрица приведется к виду $(B'|C^t)$.

37 Метод Якоби

Дано Симметричная билинейная форма $\beta \colon V \times V \to F$, базис e_1, \dots, e_n пространства V, такой, что $\det \beta|_{\langle e_1, \dots, e_k \rangle} \neq 0$.

Задача Найти базис e_1',\dots,e_n' такой, что $e_i'-e_i\in\langle e_1,\dots,e_{i-1}\rangle=\langle e_1',\dots,e_{i-1}'\rangle$ такой, что $\beta(e_i',e_j')=0$ при $i\neq j$.

Алгоритм

- 1. В начале положим $e'_1 = e_1$.
- 2. Пусть мы нашли вектора e_1', \dots, e_{i-1}' . Тогда положим вектор e_i' в виде

$$e'_i = e_i - \frac{\beta(e_i, e'_1)}{\beta(e'_1, e'_1)} e'_1 - \dots - \frac{\beta(e_i, e'_{i-1})}{\beta(e'_{i-1}, e'_{i-1})} e'_{i-1}$$

38 Алгоритм диагонализации на основе метода Якоби

Дано Симметрическая матрица $B \in M_n(F)$.

Задача Проверить, что все ее угловые подматрицы B_k невырождены и если это так, то найти их значения, а также найти верхнетреугольную матрицу с единицами на диагонали $C \in \mathcal{M}_n(F)$ и диагональную матрицу $D \in \mathcal{M}_n(F)$ такие, что $B = C^t DC$.

 $^{^9}$ В силу условия $\det eta|_{\langle e_1,\dots,e_k \rangle} \neq 0$ выражения вида $eta(e_k',e_k')$ будут всегда отличны от нуля.

- 1. Начнем приводить матрицу B к верхнетреугольному виду элементарными преобразованиями первого типа, когда нам разрешено прибавлять строку с коэффициентом только к более низкой строке. Возможны два исхода:
 - На каком-то этапе получили, что на диагонали на k-ом месте стоит 0, а под диагональю есть ненулевой элемент. Это значит, что $\Delta_k=0$. Условие на матрицу не выполнено.
 - \bullet Мы привели матрицу B к верхнетреугольной матрице U. Переходим к следующему шагу.
- 2. Восстановим все необходимые данные по матрице U следующим образом:
 - (a) D диагональ матрицы U.
 - (b) $C = D^{-1}U$.
 - (c) Δ_k произведение первых k элементов диагонали матрицы D.