$BB[\alpha]$ tree — definition

- Let size(v) be the number of nodes in the subtree of v.
- A node v is of bounded balance α if $\operatorname{size}(v.\operatorname{left}) \geq \lfloor \alpha \cdot \operatorname{size}(v) \rfloor$ and $\operatorname{size}(v.\operatorname{right}) \geq \lfloor \alpha \cdot \operatorname{size}(v) \rfloor$
- A BB[lpha] tree (lpha < 0.5) is a binary search tree such that every node v is of bounded balance lpha
- The height of a BB[α] tree with n nodes is at most $\log_{1/(1-\alpha)} n$.

Insertion

• To insert an element to a BB[α] tree, insert it as a new leaf. Let v be the highest node that is not of bounded balance α . If v exists, replace the subtree of v by a balanced tree containing the same elements.

• The time complexity is $\Theta(\log n + \text{size}(v))$, which is $\Theta(n)$ in the worst case.

Insertion

• To insert an element to a BB[α] tree, insert it as a new leaf. Let v be the highest node that is not of bounded balance α . If v exists, replace the subtree of v by a balanced tree containing the same elements.

• The time complexity is $\Theta(\log n + \text{size}(v))$, which is $\Theta(n)$ in the worst case.

Insertion

• To insert an element to a BB[α] tree, insert it as a new leaf. Let v be the highest node that is not of bounded balance α . If v exists, replace the subtree of v by a balanced tree containing the same elements.

• The time complexity is $\Theta(\log n + \text{size}(v))$, which is $\Theta(n)$ in the worst case.

• The actual cost of an insert operation is $\operatorname{depth}(u) + \operatorname{size}(w)$, where u is the new leaf, and w is the node whose subtree was replaced $(\operatorname{depth}(u))$ is the depth after the first stage).

Claim

The amortized cost of insert is $\left(1 + \frac{1}{1-2\alpha}\right) \log_{1/(1-\alpha)} n + O(1)$.

- Let $\Delta_{\nu} = |\text{size}(\nu.\text{left}) \text{size}(\nu.\text{right})|$.
- We keep the following invariant: Every node ν with $\Delta_{\nu} \geq 2$ stores $\frac{1}{1-2\alpha}\Delta_{\nu}$ dollars.
- For the first stage of an insert operation, we use at most $\log_{1/(1-\alpha)} n$ charged dollars to pay for the cost $\operatorname{depth}(u)$. We also put $\frac{1}{1-2\alpha}$ dollars in each node v whose Δ_v value increased. This uses at most $\frac{1}{1-2\alpha}\log_{1/(1-\alpha)} n$ charged dollars.

The figure below shows the Δ_{ν} values. Each node with $\Delta_{\nu} \geq 2$ stores $3\Delta_{\nu}$ dollars.

The figure below shows the Δ_{ν} values. Each node with $\Delta_{\nu} \geq 2$ stores $3\Delta_{\nu}$ dollars.

After the insertion, we need to add 3 dollars to the root and to the left child of the root.

- To pay for the second stage of an insert operation, we use the dollars stored in w if $\operatorname{size}(w) \geq 1/(1-2\alpha)$ (if $\operatorname{size}(w) < 1/(1-2\alpha)$ we use the charged dollars).
- Since w is not of bounded balance α after the first stage, either

$$size(w.left) \le \lfloor \alpha \cdot size(w) \rfloor - 1 \le \alpha \cdot size(w) - 1$$
$$size(w.right) \ge size(w) - (\alpha \cdot size(w) - 1) - 1$$

or vice versa.

Thus,

$$\Delta_w \ge (1 - 2\alpha) \cdot \operatorname{size}(w) + 1 \ge 2$$

so w contains at least $size(w) - \frac{1}{1-2\alpha} = size(w) - O(1)$ dollars.

