

幾何学1 第3回集合(集合の演算)

野本 慶一郎 明星大学 教育学部 教育学科 2025/04/16

全ての偶数は、一つの整数と1:1に対応していて、重なりもない、

整数 🏻

偶数 22

「整数の個数」=「偶数の個数」と言えるか?

前回の復習

よく使う集合の記号

定義 (教科書, 定義 2.5, p.14.)

二つの命題 p,q に対して、次のように論理演算を定める.

名称	論理記号での表記	日本語での意味
論理和	$p \lor q$	p または q
論理積	$p \wedge q$	p かつ q
否定	$\neg p$	p でない
含意	$p \Longrightarrow q$	p ならば q
同値	$p \Longleftrightarrow q$	$p \Longrightarrow q$ $\not\!\! p$ 00 $q \Longrightarrow p$

- このように, 命題から新たな命題を作る操作を**論理演算**という.
- $\forall, \land, \neg, \Longrightarrow, \Longleftrightarrow$ のような記号を論理演算子という.

論理記号

- ただし, **仮定が偽ならば真**となることに注意.

⇒ に関する真理値表

p	q	$p \Longrightarrow q$
0	\circ	0
\bigcirc	×	×
×	\bigcirc	
×	×	\circ

今日の内容

今日学ぶこと

- 数学では、ほとんどの問題は「集合」を用いて表され、「集合」を用いて研究され、 そして証明されていきます.
- 例えばフェルマーの最終定理は, $X^n + Y^n = Z^n \ (n \ge 3)$ を満たす自然数解 (X,Y,Z) は存在しないことを主張するものですが, 集合を使って書けば

$$\left\{(X,Y,Z)\in\mathbb{N}^3\,\big|\,X^n+Y^n=Z^n\right\}=\varnothing$$

となります.

- 今日の講義では、「集合の包含関係 $A \subset B$ 」や「集合の等式 A = B」の厳密な証明記述力を身につけることを目標とします.
- したがって講義は短めにするので, 演習時間でたくさん証明問題を解いてください.

集合の定義

定義 (教科書, 定義 1.1, p.1)

集合とは「もの」の集まりのことである. また, 集合を構成する「もの」を, その集合の要素または元という.

一般に, a が集合 A の要素であることを以下のように表す.

 $a \in A$ $\exists \lambda A \ni a$.

逆に, a が A の要素でないことを以下のように表す.

 $a \notin A$ $\sharp \lambda$.

余談だが、 $\lceil \epsilon \rfloor$ という記号は要素 (Element) の E の形からきているらしい。

集合の書き方

■ 集合の表し方には, 全列挙 (外延的記法) と, 条件を用いる方法 (内延的記法) がある.

例

集合 A を, 12 の正の約数全体の集合とする. A は以下のように表せる.

- **外延的記法**: $A = \{1, 2, 3, 4, 6, 12\}$.
- 内延的記法: $A = \{x \mid x \text{ は } 12 \text{ の正の約数}\}.$
- 要素の個数が有限であれば全列挙できる. このような集合を**有限集合**という.
- 一方で, 以下のような有限集合でない集合も存在し, それらを無限集合という.

例

集合 B を, 7 の倍数全体の集合とする. B は以下のように表せる.

- 外延的記法: $A = \{..., -14, -7, 0, 7, 14, ...\}$.
- 一 内延的記法: $A = \{n \mid n \text{ は 7 の 倍数}\}.$

内延的記法について

■ 内延的記法は, (全列挙と違い) 人によって若干表記が異なったりする.

例

X を 3 で割ると余りが 1 となる自然数全体の集合とすると、以下のように表せる.

$$X = \{n \mid n \text{ は 3} \text{ で割ると 1 余る}\}$$

$$= \{n \mid n \in \mathbb{N}, n \equiv 1 \text{ mod 3}\}$$

$$= \{n \in \mathbb{N} \mid n \equiv 1 \text{ mod 3}\}$$

$$= \{3n + 1 \mid n \in \mathbb{N}\}$$

もちろん, どの表記を用いても良い.

定義 (教科書, 定義 1.6, p.3)

要素の個数が0である集合を**空集合**といい, \emptyset で表す.

- 集合というと, 一つ以上は要素を含んでいるものを想像しがちである.
- しかし,整数の「0」のように"何もない"ものや状態に名前を付けておくと,後々便利になる.
- 空集合の定義から, **どのような対象** x **に対しても** $x \notin \emptyset$ であることに注意しよう.

例

二乗して負の値になる実数は存在しないので, $\{x \in \mathbb{R} \mid x^2 < 0\} = \emptyset$ である.

部分集合

定義 (教科書, 定義 1.7, p.4)

二つの集合 A, B について

全ての A の要素 x に対して, x は B の要素 ($\forall x \in A, x \in B$)

が成り立つとき, $A \subset B$ または $B \supset A$ と書く.

- 非常に基本的な定義であるが、集合の 包含関係や等式を示すためには必ずこ の定義通りに証明をする。
- 包含関係に関する問題を手を動かして たくさん解くことで,必ず身につけて ほしい定義である.

部分集合でない

- 集合 A が集合 B の部分集合**でない** とき, $A \not\subset B$ と書く.
- \blacksquare これは, A の要素であるが B の要素でないものが存在するとき, すなわち

 $\exists x \in A \text{ s.t. } x \in B$

が成り立つことである.

定義 (教科書, 定義 1.10, p.5)

集合 *A*, *B* に対して

 $A \subset B$ かつ $B \subset A$

が成り立つとき, A = B と書く.

つまり A = B というのは

 $\forall x \in A, x \in B$ かつ $\forall x \in B, x \in A$

が成り立つことである.

「等式 A=B を示せ」という問題は, 必ず $A\subset B$ と $B\subset A$ を示すようにしましょう.

■ 慣れてきた人ほど、集合の等式証明で

$$A = B = C = \dots = X = Y = Z$$

と等式変形をしがちです.この計算でよい場合ももちろんありますが,それで間違ってしまっては元も子もありません.

例えば等式

$$\{2x + 3y \mid x, y \in \mathbb{Z}\} = \mathbb{Z}$$

は等式変形で示すことは難しいと思います.

定義 (教科書, 定義 1.14, p.7)

集合 A, B について

$$A \cup B = \{x \mid x \in A$$
 または $x \in B\}$, $A \cap B = \{x \mid x \in A$ かつ $x \in B\}$

と定める. 集合 $A \cup B$ を A と B の和集合, 集合 $A \cap B$ を A と B の共通部分という.

定義 (教科書, 定義 1.18, p.9)

集合 U を考える. このとき部分集合 $A \subset U$ の (U における) 補集合とは

$$A^c = \{ x \in U \mid x \notin A \}$$

のことである.

- つまり $A \subset U$ の補集合とは, U の要素の内, A に属していないもの全体の集合である.
- このようなUを全体集合と言う.

余談だが、 $\lceil c \rfloor$ は補うという意味の complement からきている.

部分集合の例

問題

A を 12 の約数全体の集合, B を 36 の正の約数全体の集合とする. このとき $A \subset B$ であることを示せ.

(証明)

定義より

$$A = \{1, 2, 3, 4, 6, 12\}, \quad B = \{1, 2, 3, 4, 6, 9, 12, 18, 36\}$$

であり、明らかにAの全ての元はBに属している。したがって $A \subset B$ である。

 \blacksquare 次のページにように,集合 A, B を全列挙しなくても証明することができる.

全列挙しない場合の証明

問題

A を 12 の約数全体の集合, B を 36 の正の約数全体の集合とする. このとき $A \subset B$ であることを示せ.

(証明)

任意に $n \in A$ を取る. このとき A の定義より n は正の 12 の約数である. したがって n は 36 の正の約数でもある. よって $n \in B$ である. 以上より $A \subset B$ が成り立つ.

■ 赤色で書かれている箇所は必ず書くようにしてください。

問題

A, B, C を集合とする. $A \subset C$ かつ $B \subset C$ ならば $A \cup B \subset C$ であることを示せ.

(解答例)

任意に $x \in A \cup B$ を取る. このとき $x \in A$ または $x \in B$ である.

(i) $x \in A$ のとき

 $A \subset C$ より $x \in C$ である.

(ii) $x \in B$ のとき

 $B \subset C$ より $x \in C$ である.

いずれの場合も $x \in C$ である. したがって $A \cup B \subset C$ が成り立つ.

問題

(分配法則) A,B,C を集合とする. $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ であることを示せ.

(解答例)

まず「 $A \cup (B \cap C) \subset (A \cup B) \cap (A \cup C)$ 」を示す.

任意に $x \in A \cup (B \cap C)$ を取る. このとき $x \in A$ または $x \in B \cap C$ である.

(i) $x \in A$ のとき

 $A \subset A \cup B$ より $x \in A \cup B$ である. 同様にして $x \in A \cup C$ である.

したがって $x \in (A \cup B) \cap (A \cup C)$ である.

(ii) $x \in B \cap C$ のとき…(中略)

次に「 $A \cup (B \cap C) \supset (A \cup B) \cap (A \cup C)$ 」を示す....(中略)

演習の時間