Logic exercises 2: Propositional logic semantics, translation and validity

This sheet includes questions on propositional logic semantics, translation into and from propositional logic and validity in propositional logic.

Questions marked (**TUT**) will be covered during the tutorial session (Thursday 23/11) and not during PMT sessions.

Please submit your solutions for questions marked (**PMT**) **only** electronically in scientia by Monday 27th Nov. 2023, 7pm GMT.

- 1. Give a truth-table definition of the ternary Boolean connective if ϕ then ψ else ρ in the following two cases.
 - (a) inclusive: if ϕ then ψ (and don't care about ρ) else ρ (and don't care about ψ)
 - (b) exclusive: if ϕ then ψ (but not ρ) else ρ (but not ψ)

	ϕ	ψ	ρ	if ϕ then ψ else $ ho$
ĺ				

- 2. Similar to the Sheffer stroke connective ↑, which represents "not both" (nand), we can define the connective ↓ representing 'neither ... nor ...' (nor).
 - (a) Write down the truth table for \downarrow .
 - (b) Find a formula in propositional logic that defines \downarrow using only the connectives $\{\neg, \lor\}$.
 - (c) Give two distinct examples of truth-functional, binary connectives, other than \land , \lor , \rightarrow , \leftrightarrow , \uparrow and \downarrow . Denote these as \bowtie and \smile .
 - (d) Let \bowtie and \backsim denote the two connectives defined in 2c. Give the truth value of the followings formulas for $v(p) = \mathsf{ff}, \ v(s) = \mathsf{ff}$ and $v(r) = \mathsf{tt}$.

i.
$$((s \to p) \bowtie (s \to r))$$

- ii. $((s \to p) \smile (s \to r))$
- 3. The set $\{\land, \lor, \neg\}$ is functionally complete. Using truth tables, show that each of the following sets are also functionally complete.
 - (a) **PMT:** $\{\lor, \neg\}$

- (b) **TUT:** $\{\rightarrow, \bot\}$
- 4. Consider the following English sentence.

'Sarah believes that the earth is flat'

Is the connective 'Sarah believes that' truth functional? Justify your answer.

- 5. Consider the objects, elenor, cleopatra, mary and theodora, placed on a 4×4 grid, and the following atomic formulas about these objects where x, y can be replaced with elenor, cleopatra, mary or theodora.
 - 'x attacks y' means x and y share the same row or the same column, or diagonal.
 - 'x next-to y' means x and y are in adjacent cells (not diagonally).
 - 'x right-of y' means x is in a column to the right of the column of y'
 - 'x below y' means x is in a row below the row of y.
 - (a) For the queens placed in the grid below, which of the following expressions evaluates to true and why?
 - (i) 'theodora attacks cleopatra' ∧ ('mary attacks eleanor' → 'mary attacks theodora')
 - (ii) 'cleopatra attacks cleopatra' ↔ 'cleopatra attacks eleanor'
 - (iii) ¬'eleanor next-to cleopatra' → 'eleanor attacks theodora'
 - (iv) (¬'eleanor below mary' \vee ¬'theodora next-to mary') \rightarrow 'cleopatra attacks theodora'
 - (v) ($\neg\neg$ 'cleopatra right-of cleopatra' \rightarrow 'eleanor attacks theodora') \leftrightarrow ('mary below theodora' \wedge 'mary attacks theodora')

theodora			
	cleopatra		
		eleanor	mary

- (b) Place the 4 queens in the grid so that all formulas in 5a are true. Justify your answers.
- (c) Place the 4 queens in the grid so that all formulas in 5a are false. Justify your answer by explaining why each formula is false.
- 6. Translate the following sentences into logic. First decide on the atoms to use (e.g., p to represent 'Jess bought ice-cream'), and then get the sentence structure correct. Provide your interpretation where alternative translations arise.
 - (a) Ahmed and Nik are both artists.

- (b) Beckham is a footballer who is English.
- (c) Alice is a serious contender.
- (d) If neither Sangita nor Rowan are available, then I'm not going.
- (e) Adam sells stamps and either antiques or lamps.
- (f) There's no annual fee provided that you pay with a credit card.
- (g) In the case where I make it back by 2 p.m., I will bring the shopping only if it does not rain.
- (h) I'm going to make him an offer he can't refuse.
- (i) **PMT:**Who let the dogs out?
- (j) **PMT:**A late application is accepted only if the class quota increases.
- (k) PMT:Unless you pay now, I can't guarantee a ticket
- 7. Show that the following arguments are valid using truth tables:
 - (a) $p \to \neg q, q \models \neg p$
 - (b) **PMT:** $\models p \land q \leftrightarrow \neg(\neg p \lor \neg q)$
 - (c) $p \leftrightarrow \neg q \models \neg (p \leftrightarrow q)$