CS & IT

ENGINERING

Algorithms

Analysis of Algorithms

Lecture No.- 66 07

Recap of Previous Lecture

Topic

Topic

Topic

Joseph Po

Properties of Asymptotic Notation

Problem Solving

5 Imp Questions

Topics to be Covered

Problem Solving with ASN

Topic

Framework for Analysing Non-Recursive algorithm

iscopla

Propertor of Asymptotic Noblina

frog=sift) * Discoeta Properties of Asymptotic Notations. Rogliaire Symmetric Transitive Transpose Symmetry

Symmodry

If
$$n = O(n^2)$$

Then $n^2 = O(n) \rightarrow 0$

Then $q = O(f)$

Then $q = O(f)$

$$\begin{cases} a \leq b \\ b \leq c \end{cases} \Rightarrow a \leq c$$

Franspose Symmetry:

Real nos a,b a,bAsymptotic Notation. f(n) = O(g(n))then $g(n) = \Omega(f(n))$?

The gib be two real numbers

8 fig be two the functions of n.

Asymptotic Nobelians
$$\Rightarrow$$
 Real numbers:

(1) if $f(n) = O(g(n)) \Rightarrow$ $a \le b$

(2) if $f(n) = O(g(n)) \Rightarrow$ $a > b$

(3) if $f(n) = O(g(n)) \Rightarrow$ $a > b$

(4) if $f(n) = O(g(n)) \Rightarrow$ $a > b$

(5) if $f(n) = O(g(n)) \Rightarrow$ $a > b$

Topic: Asymptotic Comparisons

$$f(n), g(n)$$
: are functions
$$f(n) = O(g(n))$$
 $f(n) = O(g(n))$
 $f(n) = O(g(n))$

- B) only b is True 326% X

A) only a is Town - 13.31X c) both ab b are True - 56% X
both a & b are False - 57 speed > Accuracy Accentracy > speed

given
$$f(n) = O(g(n))$$
 $f \leq C \times g$
eg 1: $f(n) = n$
Chuk o) $(f(n))^2 = n^2$
 $f(n) = n$
 $f(n) = n$

$$\frac{1}{2} \int_{0}^{\infty} |y_{0}|^{2} dy = \int_{0}^{\infty}$$

Given
$$F(n) = O(g(n))$$

$$eg(i) = f(n) = n$$
 $g(n) = n^2$

$$f(n) = n$$

$$g(n) = 10$$

$$g(n) = 10$$

Is
$$\delta_v = O(\delta_{v_s})$$

$$\frac{eq^{2}}{f=0(q)} = 0$$

$$f(n) =$$

Gate 2022

#Q. Which one of the following statements is True for all positive functions f(n)?

B
$$f(n)^2 = O(f(n)^2)$$

$$f(n^2) = \Omega(f(n^1)) \longrightarrow \text{ Follows}$$

$$f(n^2) = O(f(n^2))$$

$$f(n) = n^3$$

$$f(u_5) = (U_5)_3 = \overline{U}_6$$

$$(a^{m})^{2} = (a^{n})^{2}$$

$$= a^{m\times 1}$$

$$= (h^{3})^{2}$$

$$= h^{3\times 2}$$

$$= h^{6}$$

$$= h^{6}$$

B)
$$f(n) = n$$
 $(f(n))^2$
 $f(n^2) = n^2$ $(f(n))^2$?

$$U_{5} = O(U_{5})$$
 $J_{5} = U_{5}$

$$(U_{5}) = O(U_{5})$$
 $J_{5} = U_{5}$

$$(U_{5}) = O(U_{5})$$
 $J_{5} = U_{5}$

Con2:
$$f(n) = \log(n)$$

 $f(n^2) : \log(n^2)$
 $(f(n))^2 = (\log n)^2$
 $\log(n^2)$ $(\log n)^2$
 $2 \times \log(n)$ $(\log n) \times \log(n)$
 $2 \times \log(n)$ $f(n^2) = O(f(n)^2)$
Hence $f(n) = \mathcal{L}(f(n)^2)$
 $f(n^2) = O(f(n)^2)$

PYO

given

#Q. Which of the following is TRUE.

1.
$$f(n)$$
 is $O(g(n))$

- 3. g(n) is O(h(n))
- 4. h(n) is O(g(n))

$$f(n) + h(n)$$
 is $O(g(n) + h(n))$

f(n) is $O(h(n)) \longrightarrow \boxed{00}$

B h(n) ≠0

$$h(n) \neq O(f(n))$$

2 < 3 = 3 = 1 long i

$$f(n).g(n) \neq O(g(n).h(n))$$

- Fals

given

Short
$$f(n) = O(g(n))$$

Short $f(n) = O(g(n))$

Check A)
$$f(n) = O(h(n))$$
?
 $f \leq h(n)$

Chech B
$$h(n) \neq O(f(n))$$

$$h(n) \neq f(n)$$

$$h(n) \neq f(n)$$

$$h(n) \Rightarrow f(n)$$

$$f = (g = h)$$
 $f = (f < h)$
 $Sdn = Chook D$
 $f(n) \neq g(n) \neq O(g(n) \neq h(n))$

 $f(n)*g(n) \neq O(g(n)*h(n))$ $f \times g = g \times h$ $f \times g = g \times h$ $f \times g = g \times h$ $f \times h \to f \to h \to f \to h$

[MCQ]

#Q.
$$f(n) = 2^n$$
; $g(n) = n^n$

nzno

$$f(n) = O(g(n)) \longrightarrow In$$

$$f(n) = \Omega(g(n)) \longrightarrow 127.$$

F>9X

$$f(n) = \theta(g(n))$$

None of these

Solution:
$$f(n)=2^n$$
 $g(n)=n$
 $\log_2(2^n)$
 $\log_2(n^n)$
 $g(n)=n$
 $g(n)=n$

(V. Tmp)

The small oh is Big oh But

Every big oh may or may not be small oh.

Dut Every big Ornega may or may not be small omega.

gimn acb = asbv

But asb -> asb?

Not necessary.

eg 252 -> 262x

#Q.
$$f(n) = n.2^n$$
; $g(n) = 4^n$

$$f(n) = O(g(n))$$

$$f(n) = \theta(g(n))$$

$$f(n) = \Omega(g(n))$$

$$f(n) = n \times 2^n$$
 $g(n) = 4^n$

Taker log2() both sides

$$\frac{1}{2} \frac{1}{2} \frac{1}$$

[MCQ]

#Q. Let w(n) and A(n) represent respectively, the worst case and average

case running time of an algorithm with input size of n, Which is always TRUE? $B(n) \leq A(n) \leq \omega(n)$ gennal A < W (sometimes) A>, W - Sometimes A(n) = o(w(n)) $A(n) = \Omega(w(n))$ TBigoh (equal of (Sometimes True) $A(n) = \theta(w(n)) \rightarrow A = W$ A(n) = O(w(n)) $A(n) = \omega(w(n))$

2 mins Summary

Topic

Problem Solving with ASN

Topic

Framework for Analysing Recursive algorithm — Next lec

THANK - YOU

Telegram Link: https://t.me/AdityaSir PW