

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058, India (Autonomous College Affiliated to University of Mumbai)

End Semester Examination-December 2022

Max. Marks: - 100

Class: S.E. (EXTC A & B Division)

Course Code: - MA201

Name of the Course: Linear Algebra

Duration: 3 Hours Semester: III

Branch :- EXTC

Instructions:

1) All Questions are Compulsory.

2) Assume suitable data if necessary.

Q No.		Max. Marks	CO
Q.1	a) Construct an orthonormal basis of R ³ by applying Gram Schmidt	8	4
	process where $u_1 = (1, 1, 1)$, $u_2 = (0, 1, 1)$, $u_3 = (0, 0, 1)$.		
	b) Show that the set of real numbers (x, y) with operation	7	4
	$i) (x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$ and $k(x,y) = (2kx, 2ky)$		
	ii) $(x_1, y_1 z_1) + (x_2, y_2 z_2) = (z_1 + z_2, y_1 + y_2, x_1 + x_2)$ and		
	$k(x, y, z) = (kx, ky, kz)$ are not vector spaces in R^2 and R^3		
	c) For what value of λ , the following vectors are linearly dependent?	6	4
	$(\lambda, -\frac{1}{2}, -\frac{1}{2})$, $(-\frac{1}{2}, \lambda, -\frac{1}{2})$, $(-\frac{1}{2}, -\frac{1}{2}, \lambda)$.		
	d) Determine whether the following vectors span P_2 . (P_2 means vector space consisting of all polynomials of second order.) $P_1 = 1 - x + 2x^2, P_2 = 5 - x + 4x^2 P_3 = -2 - 2x + 2x^2$ OR	5	4
	d) Verify whether (1, 2), (3, 6) are linearly independent when placed		
	with initial points at the origin by analytical and geometrical method.		
	e) Find the basis for the column space of A = $\begin{bmatrix} 1 & 2 & -1 & 4 \\ -2 & 1 & 7 & 2 \\ -1 & -4 & -1 & 3 \\ 3 & 3 & 7 & 1 \end{bmatrix}$	4	4

			1
Q.2	a) Solve the following system of differential equation $y' = \begin{bmatrix} 1 & 1 \\ 4 & -2 \end{bmatrix}$ y	8	6
	using diagonalisation with initial conditions $y_1(0) = 1$ and $y_2(0) = 6$.		
	b) If $A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$, show that for every integer $n \ge 3$,	8	6
	$A^{n} = A^{n-2} + A^{2} - I$. Hence find A^{50}		
	OR		
	b) Find the Eigen values and Eigen vectors of A^3 where $A = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{bmatrix}$ Is A derogatory matrix?		
	c) Find the Singular Value Decomposition of the matrix $A = \begin{bmatrix} 2 & 3 \\ 0 & 2 \end{bmatrix}$	8	6
	d) Prove that Eigen values of an orthogonal matrix are 1 or -1.	4	6
Q.3	a) Apply Gauss Jacobi Method to solve the following equations	8	2
	5x + y + z = 10		
	2x + 4y = 12		
	x - y + 5z = -1 upto 5 iterations.		
	OR		
	a) Solve the following system of linear equations using Gauss		
	Elimination Method:		
	x + 2y + 3z + 4w = 30		
	2x + 3y + 6z + 5w = 46		
	3x + 4y + 8z - 6w = 9		
	4x - y - z + 2w = 7		
	b) Show that the matrix $A = \begin{bmatrix} 8 & -8 & -2 \\ 4 & -3 & -2 \\ 3 & -4 & 1 \end{bmatrix}$ is diagonalisable. Find the	8	5
	diagonal matrix and the transforming matrix.		
	c) Fit a curve of the form $y = a + b x + c x^2$ for the following data	5	4
	using Least square Method.		
	X : -2 -1 0 1 2		
	Y : 15 1 1 3 19		

Q.4	a) Using a suitable 2 x 2 matrix, Encode and decode the message	7	3
	VERY * GOOD		
Q.5	a) Reduce the following matrix to Row Echelon form and find its rank $A = \begin{bmatrix} 1 & 2 & 3 & -1 \\ -2 & -1 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & -1 \end{bmatrix}$	6	1
	b) If x_1, x_2, x_3 , x_4 are the number of vehicles travelling through each road per hour. Find x_1, x_2, x_3 , x_4 from the traffic diagram given below:	8	1
	300 A B 500 1200 X1 800		2
	X4 X2		
	1300 X3 1400 700 D C 400		

******** All the Best *******