Generative Adversarial Networks

Victor Kitov

v.v.kitov@yandex.ru

Table of Contents

- Simple GAN
 - Model
 - Practical recommendations
- Deep convolutional GAN
- Wasserstein GAN

Generative adversarial networks - Victor Kitov Simple GAN Model

- Simple GAN
 - Model
 - Practical recommendations

Density estimation

- Consider i.i.d. sample $x_1, ... x_N, x_i \sim p(x)$.
- We want to sample $\widehat{x}_{N+1}, \widehat{x}_{N+2}, ...$ from similar distribution.
- Statistical approach:
 - May take $q_{\theta}(x) \approx p(x)$ and sample from $q_{\theta}(x)$.
 - hard to estimate in high dimensional space
- Generative adversarial network (GAN):
 - replace hard problem (densitive estimation in high dim. space)
 with easy problem-binary classification
 - train discriminator, discriminating x from \hat{x}
 - fixed discriminator acts as <u>trained loss function</u> for improving generator $\hat{x} = g(z), z \sim p(z)$.

Intuition of adversarial learning

Generative adversarial learning for images:

Analogy for bank and a money counterfeiter (having a spy in the bank).

 they compete, until money counterfeiter learns to make perfect money replicas!

Seminal paper on GAN¹

- Two networks:
 - generator $G(z): Z \to X$
 - outputs generated object x
 - discriminator $D(x): X \rightarrow [0,1]$
 - probability that x is real rather than generated by G.

¹Link to paper.

Seminal paper on GAN¹

- Two networks:
 - generator $G(z): Z \to X$
 - outputs generated object x
 - discriminator $D(x): X \to [0,1]$
 - probability that x is real rather than generated by G.
- Define
 - p(x) true data distribution (from training set)
 - q(x) generated data distribution $x \sim q(x) = G(z), z \sim p(z)$.
 - p(z) standard distribution (Gaussian or other-spherical recommended).

¹Link to paper.

Game

• Probability that x is correctly classified by discriminator:

$$\begin{cases} D(x), & x \text{ is real} \\ 1 - D(x), & x \text{ is fake} \end{cases}$$

Game

Probability that x is correctly classified by discriminator:

$$\begin{cases} D(x), & x \text{ is real} \\ 1 - D(x), & x \text{ is fake} \end{cases}$$

- Log-probability of correct classification by discriminator:
 - given that $p(real) = p(fake) = \frac{1}{2}$

$$V(D,G) = \mathbb{E}_{x \sim p(x)} \left[\log D(x) \right] + \mathbb{E}_{z \sim p(z)} \left[\log \left(1 - D(G(z)) \right) \right]$$

Game

Probability that x is correctly classified by discriminator:

$$\begin{cases} D(x), & x \text{ is real} \\ 1 - D(x), & x \text{ is fake} \end{cases}$$

- Log-probability of correct classification by discriminator:
 - given that $p(real) = p(fake) = \frac{1}{2}$

$$V(D,G) = \mathbb{E}_{x \sim p(x)} \left[\log D(x) \right] + \mathbb{E}_{z \sim p(z)} \left[\log \left(1 - D(G(z)) \right) \right]$$

• D and G play two-player game with minimax function V(G, D):

$$\min_{G} \max_{D} V(D,G)$$

Illustration of incremetal learning

Incremental learning of D and G:

black dotted: p(x) - density of true samples

green: q(x) - density of fake samples blue dashed: D(x) = p(x is true|x)

Losses

D task (for fixed G):

$$\mathbb{E}_{x \sim p(x)} \left[\log D(x) \right] + \mathbb{E}_{z \sim p(z)} \left[\log (1 - D(G(z))) \right] \to \max_{D}$$

G task (for fixed D):

$$\mathbb{E}_{z \sim p(z)}\left[\log(1-D(G(z)))\right] \to \min_{G}$$

Losses

D task (for fixed G):

$$\mathbb{E}_{x \sim p(x)} \left[\log D(x) \right] + \mathbb{E}_{z \sim p(z)} \left[\log (1 - D(G(z))) \right] \to \max_{D}$$

G task (for fixed D):

$$\mathbb{E}_{z \sim p(z)}\left[\log(1-D(G(z)))
ight]
ightarrow \min_{G}$$

- Thus G(z) learns to sample realistic samples from p(x).
- D and G should be trained syncronously.
 - if too much training of D, G will get zero-gradient, no feedback!
 - if too much training of G, it may converge to arg $\max_{x} D(x)$.

Algorithm

for number of training iterations do

for k steps do

- Sample minibatch of m noise samples $\{z^{(1)}, \dots, z^{(m)}\}$ from noise prior $p_q(z)$.
- Sample minibatch of m examples $\{x^{(1)},\ldots,x^{(m)}\}$ from data generating distribution $p_{\text{data}}(x)$.
- Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[\log D\left(\boldsymbol{x}^{(i)}\right) + \log\left(1 - D\left(G\left(\boldsymbol{z}^{(i)}\right)\right)\right) \right].$$

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \dots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Update the generator by descending its stochastic gradient:

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^m \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)}\right) \right) \right).$$

end for

The gradient-based updates can use any standard gradient-based learning rule. We used momentum in our experiments.

Model

Generated images

Model

Interpolation in latent space

Linear interpolation of objects in latent space:

Optimal D^* given fixed G

Suppose D is flexible enough to take arbitrary values.

Theorem: For fixed *G* optimal discriminator is:

$$D^*(x|G) = \frac{p(x)}{p(x) + q(x)}$$

Optimal D^* given fixed G

Suppose D is flexible enough to take arbitrary values.

Theorem: For fixed *G* optimal discriminator is:

$$D^*(x|G) = \frac{p(x)}{p(x) + q(x)}$$

Proof:

$$V(G, D) = \int_{x} p(x) \log(D(x)) dx + \int_{z} p(g(z)) \log(1 - D(g(z))) dz =$$

$$= \int_{x} p(x) \log(D(x)) dx + q(x) \log(1 - D(x)) dx$$

Applying for $\forall x \in X$ arg $\max_{d \in \mathbb{R}} \{ p \log(d) + q \log(1-d) \} = \frac{p}{p+q}$ for any $p, q \in \mathbb{R}$ obtain

$$\arg\max_{D} V(G, D) = \frac{p(x)}{p(x) + q(x)}$$

Optimal G^*

Theorem: given optimal D^* , optimal G^* should yield q(x) = p(x).

Optimal G^*

Theorem: given optimal D^* , optimal G^* should yield q(x) = p(x). **Proof:**

Let G^* correspond to $q^*(x) = p(x)$. Then

$$V(G^*, D^*(G)) =$$

$$= \int_{X} p(x) \log \frac{p(x)}{p(x) + q^*(x)} dx + \int_{X} q(x) \log \frac{q(x)}{p(x) + q^*(x)} dx$$

$$= \int_{X} p(x) \log \frac{1}{2} dx + \int_{X} q(x) \log \frac{1}{2} dx = 2 \log \frac{1}{2} = -2 \log 2$$

Optimal G^* given D^*

$$\begin{split} V(G^*, D^*(G)) &= \min_G V(G, D^*(G)), \text{ because} \\ V(G, D^*) - V(G^*, D^*) \\ &= \int_x p(x) \log \frac{p(x)}{p(x) + q(x)} dx + \int_x q(x) \log \frac{q(x)}{p(x) + q(x)} dx \\ &+ \int_x p(x) \log 2 dx + \int_x q(x) \log 2 dx \\ &= \int_x p(x) \log \frac{p(x)}{\frac{p(x) + q(x)}{2}} dx + \int_x q(x) \log \frac{q(x)}{\frac{p(x) + q(x)}{2}} dx \\ &= \mathit{KL}\left(p(x)||\frac{p(x) + q(x)}{2}\right) + \mathit{KL}\left(q(x)||\frac{p(x) + q(x)}{2}\right) \geq 0 \end{split}$$

- Simple GAN
 - Model
 - Practical recommendations

Finding unstable saddle-point

D task (for fixed G):

$$\mathbb{E}_{x \sim p(x)} \left[\log D(x) \right] + \mathbb{E}_{z \sim p(z)} \left[\log (1 - D(G(z))) \right] \to \max_{D}$$

G task (for fixed D):

$$\mathbb{E}_{z \sim p(z)}\left[\log(1-D(G(z)))
ight]
ightarrow \min_{G}$$

Finding saddle-point $\min_G \max_D V(D, G)$ is very unstable.

requires a lot of fine-tuning, see link to recommendations.

Problem of smart discriminator

Problem:

- On early iterations G generates poor fakes.
- It becomes very easy for *D* to discriminate.
- So $D(G(z)) \approx 0 \Rightarrow \nabla_{\theta_G} \log(1 D(G(z)) \approx 0$ \Rightarrow no training in G.

Problem of smart discriminator: solutions

Improve G from another criterion:

$$\mathbb{E}_{z \sim p(z)}\left[\log(D(G(z)))\right] \to \max_G$$

- G is still tuned to fool the discriminator: $\uparrow D(G(z))$
- $\log(\cdot)$ exponentially amplifies small changes in D(G(z)) near zero.
- G gets non-degenerate feedback.
- D, G game stops being game with zero-sum.

Problem of smart discriminator: solutions

- occasionally flip labels when training D
- or use soft labels (1->uniform[0.7, 1.2], 0->uniform[0, 0.3])
- or add noise to input of $D(\cdot)$

Intuition:

 discriminator solves classification in more noisy setting and its predictions become smoother, so ≈0

More recommendations

- Track failures early:
 - D loss goes to 0: failure mode
 - check norms of gradients: they should not be high
- If you have object labels, use them by training combined discriminator-classifier
 - weight sharing helps!

Mode collapse

- We proved that $\arg\max_G V(G, D^*(G)) = G^*$, yielding $q^*(x) = p(x)$
- Finding $D^*(G)$ for every change in G is impractical
- Practical task: improve G for fixed D: arg $\max_G V(G, D)$
 - Can give mode collapse: $G(z) \equiv const \equiv arg \max_{x} D(x)$
- Solutions to mode collapse
 - add stochasticity to G:
 - add Gaussian noise to inner layers (Zhao et. al. EBGAN).
 - add dropout in both train and test phase
 - add penalty for too close $G(z_1)$, $G(z_2)$, ... $G(z_K)$ where z_1 , ... z_K are mini-batch initializations.

Possible initializations

- May initialize G with right half of VAE.
- May initialize first layers of D with classification net (e.g. VGG).

Table of Contents

- Simple GAN
- Deep convolutional GAN
- Wasserstein GAN

Deep convolutional GAN (DCGAN)²

Generates photorealistic 64x64 images (bedrooms in this case).

²https://arxiv.org/pdf/1511.06434.pdf

Latent space arithmetics

Generator

Uses fully-convolutional generator:

Architecture guidelines for stable DCGANs

- Replace any pooling layers with fractional-strided convolutions in *G* and strided convolutions in *D*.
- 2 Use LeakyReLU activation in the discriminator for all layers.
- 3 Use batchnorm in both the generator and the discriminator.
- Remove fully connected hidden layers for deeper architectures.
- Use ReLU activation in generator for all layers except for the output, which uses Tanh.

Intuition: 1 and 2 allow better propagation of gradients.

Table of Contents

- Simple GAN
- 2 Deep convolutional GAN
- Wasserstein GAN

Proposed approachArticle about Wasserstein GAN

Proposed approach for generator:

- **1** $z \sim p(z)$ (e.g. $\sim \mathcal{N}(0, I)$)
- 2 $x = g_{\theta}(z)$, so $x \sim q_{\theta}(x)$ [distribution of generator]

We want $p(x) \approx q_{\theta}(x)$, so we require $\rho(p(x), q_{\theta}(x)) \to \min_{\theta}$.

• $\rho(\cdot, \cdot)$ is distance between probability distributions

By using Earth mover distance we get non-trivial distances even when domains of p(x) and q(x) don't intersect!

Popular distances

Let $x \in \mathcal{X}$ and define Σ -all measurable subsets of \mathcal{X} .

Total Variation (TV):

$$\delta(p,q) = \sup_{A \in \Sigma} |p(A) - q(A)|$$

• Kullback-Leibler (KL) divergence:

$$KL(p||q) = \int p(x) \ln \left(\frac{p(x)}{q(x)}\right) dx$$

- asymmetric
- infinite if exist regions where q(x) = 0 and $p(x) \neq 0$.

Popular distances

• Jensen-Shannon (JS) divergence:

$$JS(p,q) = KL(p||a) + KL(q||a)$$

where
$$a(x) := (p(x) + q(x))/2$$
.

• Earth-Mover (EM) distance or Wasserstein-1:

$$W(p, q) = \inf_{\gamma \in H(p, q)} \mathbb{E}_{(x, y) \sim \gamma} \left[\|x - y\| \right]$$

where $\Pi(p,q)$ is a set of all densities $\in \mathbb{R}^{2D}$, having

- p marginal distribution along 1 : D dimensions
- q marginal distribution along D+1:2D dimensions.

Example

Setup-consider 2D r.v. belonging to 1D manifold:

- $z \sim U[0, 1]$
- p:=distribution of $(0, z) \in \mathbb{R}^2$.
- q_{θ} :=distribution of $(\theta, z) \in \mathbb{R}^2$ for some $\theta \in \mathbb{R}$.

Distance values $\rho(p, q_{\theta})$:

$$W(p,q_{ heta}) = | heta|$$
 $\delta(p,q_{ heta}) = egin{cases} 1, & heta
eq 0 \ 0, & heta = 0 \end{cases}$ $ext{KL}(p||q_{ heta}) = ext{KL}(q_{ heta}||p) = egin{cases} +\infty, & heta
eq 0 \ 0, & heta = 0 \end{cases}$ $ext{JS}(p,q_{ heta}) = egin{cases} \ln 2, & heta
eq 0 \ 0, & heta = 0 \end{cases}$

If sequence $\theta_t \to 0$ then $\rho(p_r, p_{\theta_t})_{4\overline{2}} \to 0$ only according to

Theory

- W is the weakest distance among δ , KL, JS.
 - i.e. convergence $p_t(\cdot) \to p(\cdot)$ for δ , KL, JS implies $p_t(\cdot) \to p(\cdot)$ for W
- $W(p_t, p) \to 0 \Longleftrightarrow p_t(\cdot) \overset{\mathcal{D}}{\to} p(\cdot)$ (convergence by distribution).
- if $g_{\theta}(z)$ continuous in $\theta \Longrightarrow W(p_r, p_{\theta})$ continuous in θ .
- if $g_{\theta}(z)$ multi-layer perceptron with smooth Lipshitz activations oe ReLU, then
 - $W(p, q_{\theta})$ continuous w.r.t. θ everywhere.
 - $W(p, q_{\theta})$ differentiable w.r.t. θ almost everywhere.

Kantorovich-Rubinstein duality

• f(x) is K-Lipshitz if $\forall x, x' \in dom(f)$:

$$f(x) - f(x') \le K \|x - x'\|$$

 Intuitively K-Lipshitz means at any point x variation of $f(x + \Delta x)$ stays withing conus.

Wasserstein distance can be estimated with Kantorovich-Rubinstein duality:

$$W(p, q_{\theta}) = \sup_{\|f\|_{I} \le 1} \mathbb{E}_{x \sim p} \left[f(x) \right] - \mathbb{E}_{x \sim q_{\theta}} \left[f(x) \right]$$

where supremum is taken w.r.t all 1-Lipshitz functions.

- if f(x) is taken among K-Lipshitz functions, duality will estimate $K \cdot W(p, q_{\theta})$.
- since we want $W(p, q_{\theta}) \to \min$, multiplier K is not important.

Practical estimation of Wasserstein distance

- We may estimate Wassterstein distance with parametrized family of K-Lipshitz functions $\{f_w\}_{w \in W}$.
- f_w is taken as multi-layer perceptron with typical activations and constrained weights $W \in [-0.01, 0.01]^{\#weights}$ (to ensure K-Lipshitz property)
- For such function family:
- \bullet max_{$w \in W$} $\mathbb{E}_{x \sim p} [f_w(x)] \mathbb{E}_{z \sim p(z)} [f_w(g_\theta(x))]$ maximum is achieved.

Algorithm

Algorithm 1 WGAN, our proposed algorithm. All experiments in the paper used the default values $\alpha = 0.00005$, c = 0.01, m = 64, $n_{\text{critic}} = 5$.

Require: : α , the learning rate. c, the clipping parameter. m, the batch size. n_{critic} , the number of iterations of the critic per generator iteration.

Require: : w_0 , initial critic parameters. θ_0 , initial generator's parameters.

```
1: while \theta has not converged do
            for t = 0, ..., n_{\text{critic}} do
 2:
                  Sample \{x^{(i)}\}_{i=1}^m \sim \mathbb{P}_r a batch from the real data.
 3:
                  Sample \{z^{(i)}\}_{i=1}^m \sim p(z) a batch of prior samples.
 4:
                 g_w \leftarrow \nabla_w \left[ \frac{1}{m} \sum_{i=1}^m f_w(x^{(i)}) - \frac{1}{m} \sum_{i=1}^m f_w(g_\theta(z^{(i)})) \right]
 5:
                 w \leftarrow w + \alpha \cdot \text{RMSProp}(w, q_w)
 6:
                 w \leftarrow \text{clip}(w, -c, c)
 7:
            end for
 8:
           Sample \{z^{(i)}\}_{i=1}^m \sim p(z) a batch of prior samples.
 9:
           g_{\theta} \leftarrow -\nabla_{\theta} \frac{1}{m} \sum_{i=1}^{m} f_{w}(g_{\theta}(z^{(i)}))
10:
            \theta \leftarrow \theta - \alpha \cdot \text{RMSProp}(\theta, q_{\theta})
11:
12: end while
```

Wasserstein GAN

For distinct p(x) and q(x) and tunded D usual GAN can't train $(\nabla D(G(z)) \approx 0)$, but WGAN can.

Benefits

Benefits of WGAN:

- Objective convergence criterion $W(p, q_{\theta})$
 - in usual GAN generator and discriminator optimize different functions
- For distinct p(x) and q(x) and tunded D usual GAN can't train $(\nabla D(G(z)) \approx 0)$, but WGAN can.
- No mode collapse because $W(p, \delta(x \arg \max_{u} p(u)) > W(p, p)$
- More stable convergence&results for different architectures of generator/discriminator.

Wasserstein GAN with gradient penalty³

Another way to enforce Lipshitz property:

- remove weights clipping
- add regularizer $\lambda (\|\nabla_x f(x)\|_2 1)^2$ in optimization.
 - because Lipshitz property of order 1: $\|\nabla_{\mathbf{x}}f(\mathbf{x})\|_2 \leq 1$

³Gulrajani et al. 2017

DCGAN vs. WGAN vs. WGAN-GP

Gives better quality for variable model design:

DCGAN	WGAN (clipping)	WGAN-GP
Baseline (G: DCGAN, D: DCGAN)		
G: No BN and a constant number of filters, D: DCGAN		
G: 4-layer 512-dim ReLU MLP, D: DCGAN		
No normalization in either G or D		
Gated multiplicative nonlinearities everywhere in G and D		
	L LINE	
anh nonlinearities everywhere in G and D		
		P P
101-layer ResNet G and D		

Conclusion

- GAN method to generate new realistic samples based on $x_1, ... x_N$.
- Original approach suffers from:
 - smart discriminator $=> \approx 0$ gradients for G
 - flip labels, use soft labels, WassersteinGAN
 - mode collapse in G
 - use Gaussian noise, dropout in G
 - use WassersteinGAN (brings closer whole distributions)
- DCGAN GAN designed for images generation.
 - fully convolutional G
 - in D to propagate $\neq 0$ gradients:
 - max-pooling -> strided conv
 - ReLU->LeakyReLU.