Q1. (a) Let x^+ denote the locations of the blocks with positive polarity, and let x^- denote the location of the blocks with negative polarity. Also, let y_{ij} represent a non-negative decision variable representing the length of the wire connecting terminal blocks x_i^+ and x_j^- . Using the ℓ_2 norm, we define the linear program as follows:

minimize
$$\sum_{i,j} y_{ij}$$
 subject to $y_{ij} \ge ||x_i^+ - x_j^-||_2$ $y_{ij} \ge 0$

i.e.

maximize
$$\sum_{i,j} -y_{ij}$$
 subject to
$$-y_{ij} \le -\|x_i^+ - x_j^-\|_2$$

$$y_{ij} \ge 0$$

(b) Hence, its corresponding dual becomes:

minimize
$$\sum_{i,j} -\|x_i^+ - x_j^-\|_2 z_{ij}$$
 subject to $-z_{ij} \ge -1$

Q2. Let \mathcal{P} denote the following linear program in n variables: $\mathcal{P} = \min\{c^T x \mid Ax \geq b, x \in \mathbb{R}^n\}$. Then, by asymmetric duality, the *primal* \mathcal{P} corresponds to the *dual* $\mathcal{D} = \max\{b^T y \mid A^T y = c, y \geq 0\}$ in m variables. Suppose this *dual* is feasible with maximum value z. Then, the following linear program $\mathcal{G} = \{x \mid Ax \geq b, c^T x \leq z\}$ is feasible only if \mathcal{P} is feasible with value at most z. This follows from the fact that $\min(c^T x) \leq c^T x \leq z$ and the existence of an optimum $\min(c^T x) > z$ in \mathcal{P} violates the second linear constraint of \mathcal{G} ; thereby, making it infeasible.

Now, if we partition the interval [-M, +M] with a neighborhood around z of the form $(z-\varepsilon, z+\varepsilon)$ with $\varepsilon > 0$, then the size of the search space for the optimal value of $\mathcal P$ is precisely M/ε . This is because the interval [-M, +M] has length/measure 2M and a neighborhood of the form $(z-\varepsilon, z+\varepsilon)$ has measure 2ε . So partitioning 2M with 2ε produces precisely M/ε neighborhoods—each of size 2ε —where the optimal value of $\mathcal P$ lands up to an error of $\pm \varepsilon$.

Thus, the tentative solution here is to execute binary search on these M/ε intervals, and check for feasibility on the extremities $z - \varepsilon$ and $z + \varepsilon$ using the **oracle**. In other words, guess z = 0 to be the optimal, then if \mathcal{G} is feasible at $z - \varepsilon$ search left; otherwise, if \mathcal{G} is infeasible at $z + \varepsilon$ search right. If none of the aforementioned conditions evaluate, i.e. \mathcal{G} is infeasible at $z - \varepsilon$ and feasible at $z + \varepsilon$ (meaning that $z - \varepsilon < \min(c^T x) \le z + \varepsilon$) report $z \pm \varepsilon$ as the optimal value of \mathcal{P} .

Since we have an initial problem space of size M/ε , and each time we either search left or right, we're guaranteed to consult the **oracle** at most $O(\log{(M/\varepsilon)})$ times.