1. กราฟไม่มีทิศทาง (undirected graph) มีเวอร์เท็กซ์เริ่มต้น (start vertex) S จงเขียนโปรแกรมเพื่อหาเส้นทาง ที่สั้นที่สุด (shortest path) ในกราฟไปยังเวอร์เท็กซ์ปลายทาง (destination vertex) ตัวอย่างเช่น เส้นทางที่ สั้นที่สุดจากเวอร์เท็กซ์ 3 ไปเวอร์เท็กซ์ 6 มีค่าเท่ากับ 3

ข้อมูลนำเข้า

บรรทัดแรก จำนวนเต็ม n แทนจำนวนเวอร์เท็กซ์ในกราฟ โดยที่ 1 <= n <= 100
บรรทัดถัดไป แต่ละบรรทัด รายการเอจด์ ประกอบไปด้วย p q r s ... 0 โดยที่ p แทนเวอร์เท็กซ์ต้นทาง และ q r s ... แทนรายการเวอร์เท็กซ์ที่มีเอดจ์มาจาก p คั่นด้วยช่องว่าง ตามด้วย 0 สิ้นสุดรายการเอจด์ โดย ที่ p, q, r, s มีค่าระหว่าง 1 ถึง 100

บรรทัดสุดท้าย s d จำนวนเต็มแทนเวอร์เท็กซ์เริ่มต้นและเวอร์เท็กซ์ปลายทาง คั่นด้วยช่องว่าง

ข้อมูลส่งออก

ความยาวของเส้นทางที่สั้นที่สุดจาก s ไป d

ตัวอย่างข้อมูลนำเข้า	ตัวอย่างข้อมูลส่งออก
6	3
1 2 3 0	
2 1 4 0	
3 1 4 0	
4 2 3 5 0	
5 4 6 0	
6 5 0	
3 6	

2. กราฟทิศทาง G ประกอบไปด้วย V เวอร์เท็กซ์ (vertex) และ E เอดจ์ (edge) จงเขียนโปรแกรมเพื่อค้นหาเวอร์ เท็กซ์ที่ไม่สามารถเข้าถึงได้จากเวอร์เท็กซ์เริ่มต้น (start vertex) ตัวอย่างเช่น

หากเริ่มจากเวอร์เท็กซ์ 1 สามารถเข้าถึงเวอร์เท็กซ์ 2 ได้ เนื่องจากมีเอดจ์จาก 1 ไป 2 แต่ไม่สามารถเข้าถึงเวอร์ เท็กซ์ 3 ได้ เช่นเดียวกันหากเริ่มต้นเป็นเวอร์เท็กซ์ 2 จะไม่สามารถเข้าถึงเวอร์เท็กซ์อื่นได้เลยยกเว้นตัวมันเอง

ข้อมูลนำเข้า

บรรทัดแรก จำนวนเต็ม n แทนจำนวนเวอร์เท็กซ์ในกราฟ โดยที่ 1<= n <= 100
บรรทัดถัดไป แต่ละบรรทัด รายการเอจด์ในกราฟ ประกอบไปด้วย p q r s ... 0 โดย p แทนเวอร์เท็กซ์
ต้นทาง และ q r s ... แทนรายการเวอร์เท็กซ์ที่มีเอดจ์มาจาก p คั่นด้วยช่องว่าง ตามด้วย 0 แทน
สิ้นสุดของรายการเอดจ์

บรรทัดสุดท้าย รายการเวอร์เท็กซ์เริ่มต้น k s1 s2 ... sk โดยที่ k แทนด้วยจำนวนเวอร์เท็กซ์เริ่มต้น โดยที่ 1<= k <= 100 และ s1 s2 sk แทนหมายเลขเวอร์เท็กซ์เริ่มต้น

ข้อมูลส่งออก

k บรรทัด แต่ละบรรทัดแทนรายการเวอร์เท็กซ์ที่ไม่สามารถเข้าถึงได้จากเวอร์เท็กซ์เริ่มต้น si เรียงลำดับ ตามหมายเลขเวอร์เท็กซ์จากน้อยไปมาก คั่นด้วยช่องว่าง หากไม่มีคำตอบให้ใส่ 0

ตัวอย่างข้อมูลนำเข้า	ตัวอย่างข้อมูลส่งออก
3	3
1 2 0	1 3
2 2 0	0
3 1 2 0	
3 1 2 3	

3. กราฟรูปหนึ่ง ประกอบไปด้วย V เวอร์เท็กซ์ และ E เอดจ์ จงตรวจสอบว่ากราฟนี้มีวงวน (cycle) ในกราฟ หรือไม่

ข้อมูลนำเข้า

บรรทัดแรก จำนวนเต็ม n แทนจำนวนเวอร์เท็กซ์ในกราฟ โดยที่ 1 <= n <= 1000 บรรทัดถัดไป แต่ละบรรทัด รายการเอจด์ในกราฟ ประกอบไปด้วย p q r s ... 0 โดยที่ p แทนเวอร์เท็กซ์ ต้นทาง และ q r s ... แทนรายการเวอร์เท็กซ์ที่มีเอดจ์มาจาก p คั่นด้วยช่องว่าง ตามด้วย 0 หมายถึง สิ้นสุดรายการเอจด์ โดยที่ p, q, r, s มีค่าระหว่าง 1 ถึง 1000

ข้อมูลส่งออก

แสดง 1 หากกราฟนี้มีวงวน นอกจากนั้นแสดง 0

ตัวอย่างข้อมูลนำเข้า	ตัวอย่างข้อมูลส่งออก
6	1
1 2 3 0	
2 1 4 0	
3 1 4 0	
4 2 3 5 0	
5 4 6 0	
6 5 0	

4. กราฟทิศทาง (directed graph) ประกอบไปด้วย V เวอร์เท็กซ์ และ E เอดจ์ หากกำหนดเวอร์เท็กซ์เริ่มต้น K และความยาวสูงสุดของเส้นทาง (path) เท่ากับ m เอจด์ จงเขียนโปรแกรมเพื่อหาจำนวนเวอร์เท็กซ์ที่ไม่ สามารถครอบคลุมในกราฟนี้ ตัวอย่างเช่น หากเริ่มต้นจากเวอร์เท็กซ์ 1 และกำหนดให้ความยาวสูงสุด m เท่ากับ 2

จะเห็นได้วาเวอร์เท็กซ์ 6 และเวอร์เท็กซ์ 7 จะไม่สามารถครอบคลุมระยะทางดังกล่าวได้

ข้อมูลนำเข้า

บรรทัดแรก V จำนวนเวอร์เท็กซ์ โดยที่ 1 <= V <= 100 บรรทัดถัดไป แต่ละบรรทัด p q แทนคู่ลำดับของเวอร์เท็กซ์ที่มีเอจด์จาก p ไป q โดยที่ p และ q มีค่า ระหว่าง 1 ถึง 100 จบด้วย 0 0

บรรทัดสุดท้าย k และ m แทนเวอร์เท็กซ์เริ่มต้นและความยาวเอจด์สูงสุด

ข้อมูลส่งออก

จำนวนเวอร์เท็กซ์ที่ไม่ครอบคลุมความยาว m ที่เริ่มต้นจาก k

์ ตัวอย่างข้อมูลนำเข้า	ตัวอย่างข้อมูลส่งออก
7	2
1 2	
1 4	
1 5	
2 3	
2 5	
3 1	
3 6	
3 7	
4 5	
5 4	
6 5	

6 7	
0 0	
1 2	

5. โปรแกรม paint มี feature สำหรับการเติมสีในภาพ โดยเลือกพิกเซลที่ต้องการเติมสีใหม่ จากนั้นโปรแกรมจะ เติมสีใหม่แทนที่สีบัจจุบันของพิกเซลนั้นรวมไปถึงหากพิกเซลรอบข้าง (ซ้าย ขวา บน และล่าง) มีสีเดียวกับ พิกเซลที่เลือก ก็จะถูกแทนที่ด้วยสีใหม่เช่นกัน ตัวอย่างเช่น ภาพซ้ายมือเป็นภาพก่อนเติมสี โดย 'L' และ 'W' แทนสถานะของสี ภาพตรงกลางแสดงผลลัพธ์การเติมสีใหม่ 'G' แทนที่สี 'W' เมื่อผู้ใช้เลือกพิกเซล (2, 4) และ ภาพด้านขวาแสดงผลลัพธ์การเติมสีใหม่ 'G' เมื่อผู้ใช้เลือกพิกเซล (5, 2) จงเขียนโปรแกรมนับจำนวนพิกเซลที่ ถูกเติมสีใหม่จากพิกเซลที่ถูกเลือก

	1	2	3	4	5	6
1	L	L	W	W	L	W
2	L	L	W	W	L	L
3	W	L	L	W	W	W
4	W	W	L	W	L	L
5	W	W	L	W	L	W
6	W	L	L	W	W	W

	1	2	3	4	5	6
1	L	L	G	G	L	W
2	L	L	G	G	L	L
3	W	L	L	G	G	G
4	W	W	L	G	L	L
5	W	W	L	G	L	G
6	W	L	L	G	G	G

ก่อนเติมสี่

เลือกพิกเซล (2, 4)

เลือกพิกเซล (5, 2)

ข้อมูลนำเข้า

บรรทัดที่ 1 N M แทนความกว้างและความสูงของภาพ โดยที่ 1 <= N, M <= 99

N บรรทัดถัดไป แทนรายการพิกเซลของแถวที่ i โดยรับเป็นข้อความ (string) ความยาว M อักขระ แต่ละ อักขระแทนด้วยค่าสี 'L' และ 'W' โดยที่ 1 <= i <= N

บรรทัดสุดท้าย X Y จำนวนเต็มแทนตำแหน่แถว X และคอลัมน์ Y ที่ผู้ใช้เลือก คั่นด้วยช่องว่าง โดยที่ 1 <=

ข้อมูลส่งออก

จำนวนพิกเซลที่ถูกเติมสีทั้งหมดจากตำแหน่ง (X, Y)

ตัวอย่างข้อมูลนำเข้า	ตัวอย่างข้อมูลส่งออก
6 6	13
LLWWLW	
LLWWLL	
WLLWWW	
WWLWLL	
MMTMTM	
WLLWWW	
2 4	

6. จังหวัด X แบ่งออกเป็น N เขต จังหวัดมีนโยบายสร้างโรงพยาบาล 1 แห่ง โดยมีเงื่อนไขว่าโรงพยาบาลแห่งนี้ จะต้องทำให้ประชาชนทุกเขตเดินทางมายังโรงพยาบาลด้วยระยะเวลาน้อยที่สุด กำหนดให้การเดินทางข้าม เขตใช้เวลา 1 ชั่วโมงเท่ากันหมด ตัวอย่างเช่น กราฟด้านซ้ายแสดงเขตและการเดินทางข้ามระหว่างเขต กราฟ ตรงกลางแสดงการเลือกตั้งโรงพยาบาลเขต 1 ซึ่งจะทำให้ประชาชนในเขต 4 ใช้เวลา 2 ชั่วโมงในการเดินทาง และกราฟด้านขวาแสดงการเลือกตั้งโรงพยาบาลในเขต 3 ซึ่งจะทำให้ทุกเขตที่เหลือเดินทางน้อยที่สุดโดยใช้ เวลาเท่ากัน 1 ชั่วโมง

จงเขียนโปรแกรมที่มีประสิทธิภาพเพื่อค้นหาเขตที่ตั้งโรงพยาบาล

ข้อมูลนำเข้า

บรรทัดแรก จำนวนเต็ม N M แทนจำนวนเขต จำนวนจำนวนถนนเชื่อมระหว่างเขต โดย 1 <= V <= 100 1 <= M <= 500

M บรรทัดถัดไป แต่ละบรรทัดแสดงรายการถนนเชื่อมระหว่างเขต x และ y คั่นด้วยช่องว่าง โดยที่ x, y >= 1 และ x <> y

ข้อมูลส่งออก

จำนวนเต็มแทนเขตซึ่งจัดตั้งโรงพยาบาลแห่งใหม่ หากมีหลายเขตให้แสดงหมายเลขเขตที่น้อยสุด

ตัวอย่างข้อมูลนำเข้า	ตัวอย่างข้อมูลส่งออก	
4 4	3	
1 2		
1 3		
2 3		
3 4		