

About Me?

• Prof in Structural and Multidisciplinary Optimization

About Me?

https://ica.cnrs.fr/en/author/jmorlier/

https://green.simpliflying.com/p/understandingsustainable-aviation

9

Our goal: Give you the basis in

20+hours only!

Evaluated by:

- An Airbus Project
- Personnal work
- Lot of notebooks to start

How to start an optimization that includes ecodesign approach in aerospace?

UPSKILLING your **TEAM**

This lightening session has been prepared especially for SAMI, it should:

- Refresh your Design Optimization (DO) basis with updated contents from MIT, UoM, etc...
- Open your mind to recent researches (including mine)
- Give lots of Tips and Tricks
- Challenge your existing skills in Design Optimization with simple exercises

AU PROGRAMME Python based

lundi 31 mars 2025		
turiar of mars 2025		MORLIER
	09h15 - 12h45	Joseph
		MORLIFR
	14h00 - 16h15	Joseph
mardi 01 avril 2025		
		MORLIER
	09h15 - 12h45	Joseph
		MORLIER
	14h00 - 16h15	Joseph
mercredi 02 avril 2025		
		MORLIER
		Joseph
		MURADÁS
		ODRIOZOLA
	09h15 - 12h45	Daniel
		MAS COLOMER
		JOAN
		MURADÁS
	14h00 - 16h15	ODRIOZOLA Daniel
	141100 - 161115	Darliet
jeudi 03 avril 2025		
Jeuul 03 aviit 2023		MAS COLOMER
		JOAN
		MURADÁS
		ODRIOZOLA
	09h15 - 12h45	

Intro: Sustainable Aviation (Materials) With Both Eyes Open

Design optimization 1: constrained optimization, MOO, Sensibility with examples

Project DO 1 2 3

Topology Optimization with examples	
Material ecoselection, Ashby Diagram and more	

Projet DO 1 2 3	
Wrap up and demo from students	

Intro to MDAO	
Static Aeroelastic problem is a MDAO problem	
Airbus PROJECT by TEAM of 3 (marked*)	

vendredi 04 avril 2025	ORAL MARKED*	
		MORLIER
		Joseph
		MURADÁS
		ODRIOZOLA
	09h15 - 11h30	Daniel

Evaluation? Miniprojet Airbus

Sustainable Aviation (SA)

Sustainable aviation is a multidisciplinary field that seeks solutions to improve the environmental and societal impacts of air transportation. It aims to reduce aviation's contribution to climate change through new practices and radical innovation

https://aero.engin.umich.edu/research/research-areas/sustainable-aviation/

Agenda for today

- 1. Sustainable Aviation (SA) With one eye open / With two eyes open
- 2. Design Optimization (DO)
- 3. Combining SA+DO for my research
- 4. Conclusions

Agenda for today

1. Sustainable Aviation (SA) With one eye open / With two eyes open

- 2. Design Optimization (DO)
- 3. Combining SA+DO for my research
- 4. Conclusions

Efficiency improvements vastly surpassed by exponential growth of RPK

Current situation

- Fuel consumption per passenger per km is comparable to that of a modern car
- The large distances and massive number of passengers cause significant climate impact
- Aviation currently accounts for 2.5% of the global CO₂ emission
- This percentage will rise if we do not act
- Furthermore, non-CO₂ effects (NO_x \rightarrow O₃, contrails) more than double the climate

impact

But what are the effect on aviation?

SM305 20 / 38

Energy-efficient planes are the key

And weight is a determining factor...

"The rate of aircraft weight reduction" = "The rate of fuel weight burned"

Range =
$$Vt_f = V \times \underbrace{\left(\frac{L}{D}\right)}_{\text{propulsion system designer}} \times \underbrace{\ln\left(\frac{W_i}{W_f}\right)}_{\text{propulsion system designer}} \times \underbrace{\ln\left(\frac{W_i}{W_f}\right)}_{\text{structural designer}}$$

Since the endurance/range is defined by *cruise* conditions, the equilibrium steady flight conditions of T=D and L=W

The Breguet Range Equation (BRE)

It makes sense!

The incremental distance dS (Range) covered during cruise https://www.aircraftflightmechanics.com/AircraftPerformance/ ce/RangeandEndurance.html

Ct for:

turbojet - mass of fuel burned per unit of thrust per second turboprop - mass of fuel burned per unit of power per second

(BRE) is named after a French aircraft designer, but was actually derived in the 1920's by J G Coffin

The equation above says:

- Range is inversely proportional to fuel burn ct, which makes sense
- Range is inversely proportional to weight W, which makes sense (combine the two into W^-1/2)
- Range is inversly proportional to density so proportional to altitude (aircraft cruise at altitude)
- We see that the best range is given at the aerodynamic condition (that is, the velocity) corresponding to the maximum value of CL^1/2/ CD
- For equilibrium, lift must equal weight, so for the best CL, this occurs at a single airspeed
- Fuel is burned, so the aircraft gets lighter, so looking at the definition of the lift coefficient:C_L=\frac{2\,W}\rho\,S\,V^2}
- To maintain the best, either the velocity has to reduce or the density has to reduce.

We have to use a holistic approach

All knobs we may turn are interconnected

Reduce *Emission* by

- Replace fossil fuels
- Introduce extremely fuel-efficient aircraft (high L/D, low mass)
- Using energy efficient and cleaner propulsion systems
- Optimizing cruise altitude/speed (also for non-CO₂ effects!)
- Alternative/intermodality transport

An important figure: the weight!

Weights of commonly known Aircrafts:

Туре	MTOW [kg]	MLW [tonnes]
Airbus A380-800	575,000	394
Boeing 747-8F	447,700	346.091

One can argue that

Aviation is an energy problem

All is energy

- Linked to this evolution is the concerning growth of both pollutant and noise emissions with prejudicial consequences for the well-being of both humans and ecosystems, even though technological improvements have allowed for reductions of these emissions.
- These technological improvements, mainly in the propulsive system, have allowed for reductions up to 80% and 75% in terms of fuel burn and noise emissions, respectively, when compared to the early commercial aviation days.

F. Yin and A.G. Rao, "A review of gas turbine with inter-stage turbine", *Progress in Aerospace Sciences*, Vol. 121, 100695, 2020, https://doi.org/10.1016/j.paerosci.2020.100695

Energy is all

- According to Lee et al. (2021), aviation industry is responsible for only 3.5% of the anthropogenic climate changes with non-CO2 related emissions, namely contrails, presenting a similar impact to the CO2 related ones. Despite this value being smaller than other means of transportation, the energy required to transport a person in the same distance is larger.
- Thus, pressing this industry to find energy and cost efficient solutions.

Transportation Vehicles	MJ/(PAX.km)
Buses	0.15 - 0.49
Electric and Hybrid Cars	0.31 - 0.45
High Speed Trains	0.35 - 0.64
Diesel Cars	0.65 - 1.05
Petrol Cars	0.79 - 1.6
Aircraft	1.11 - 1.62

JD.S. Lee, et al., "The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018", Atmospheric Environment, Vol. 244, 117834, 2021, https://doi.org/10.1016/j.atmosenv.2020.117834

J.-H. Zheng, et al., "A universal mass-based index defining energy efficiency of different modes of passenger transport", International Journal of Lightweight Materials and Manufacture, Vol. 4, No. 4, pp. 423-433, 2021, https://doi.org/10.1016/j.ijlmm.2021.06.004

Environnemental Footprint

Breakdown of energy into that associated with each life phase

Green aviation

Embodied energy

$$E_e = \frac{\sum \text{Estimated energy required for primary production}}{\text{Mass of primary material production}}$$

CO2 emission

$$E_c = \frac{\sum \text{Mass of CO2 arising from production}}{\text{Mass of material produced}}$$

Different products ... different impacts

Electrification example (from automotive)

Energy $\propto CO_2$ footprint

Future Sustainable Air vehicule

Breakdown of energy into that associated with each life phase

Hydrogène, SAF, Electric/Hybrid Propulsion...

Overview

New Techs interdependency

SM305

An important figure

Massive Demand in Energy and Materials

Materials and Energy ressources are linked and limited...

#Structural materials used in a massive way -> huge environmental impact

#The essential technologies for the transition, in particular green energy, will translate into considerable demand for metals that have become strategic.

#In anticipation of 2050, the total tonnage of concrete, steel, aluminum etc... necessary for the development of these energies will be 2 to 8 times the world production of 2010. !!!

Critical materials + geostrategic problem ightarrow cost of materials will increase... delay ...

Quiz

What are these coloured boxes?

45 SM305

Quiz

- One system is older than the other!
- The elements in an early aircraft engine and a gas turbine of today mapped onto the periodic table.

Critical materials are colored red, other materials used in the product are in darker yellow.

Petit Quiz 3/3

Metals and energy transition

https://ig.ft.com/climate-game/

Agenda for today

1. Sustainable Aviation (SA) with one eye open / With two eyes open

- 2. Design Optimization (DO)
- 3. Combining SA+DO for my research
- 4. Conclusions

10 Take away informations

https://www.carbone4.com/en/analysis-faq-aviation-climate

The wheel of metals

The energy transition will require a lot of metals, whether in quantity (tons) or in number of different metals. The balance between supply and demand will be delicate because demand is expected to increase rapidly in the coming years. An interesting and often under-popularized point is that most metals are co-products or by-products: they are not mined for themselves. For example, 98% of cobalt is a by-product of copper and nickel mining (https://lnkd.in/d-8ZFh_m). Gallium is a by-product of aluminum or zinc mining. A recent report from the International Institute for Sustainable Development discusses this point in detail and what it implies for the production of critical metals for the transition. It contains this representation (taken from an article published in 2015) allowing to visualize the production of metals. Source: https://lnkd.in/dGf9Hbdd

FIGURE 3. The metal wheel or metal companionality

Why is it important? Because rapidly increasing the production of co-products mechanically increases the production of the host metal - the demand for which is not necessarily on the same dynamic. Conversely, developing projects for a co- or by-product is theoretically possible, but the question of economic viability arises.

Source: Nassar et al., 2015

Environnemental Metrics

Energy consumption

Carbon footprint Water consumption

Waste generation

Water consumption

Carbon footprint Water consumption

Water consumption

Water consumption

In aeronautics: 4 materials

Titane

CFRP

Steel

Can you comment that?

Aluminium?

- https://www.visualcapitalist.com/aluminum-the-metal-extraordinaire/
- https://elements.visualcapitalist.com/how-is-aluminum-made/
- https://alucycle.world-aluminium.org/public-access/#global
- https://www.youtube.com/watch?v=6cUz7xCRk_E
- https://www.youtube.com/watch?v=BXHPNgww5Q8

With both eyes open in Aircraft Manufacturing

HTTPS://TINYURL.COM/CO2AEROSPACE

https://microlearning.groupe-isae.fr/nugget/environmentalimpact-of-the-aerospace-manufacturingsector/view/4530ea46-9f08-4230-8f5ffd1570ccc69f#nugget_top

With both eyes open in Product design — what else can we do??

With both eyes open in Product design

— what else can we do??

5 principles of lightweight design

- 1. Support multiple loads together
 - 2. Don't over-specify the loads
- 3. Align loads with members to avoid bending
 - 4. Optimise the cross-section for bending
 - 5. Choose the best material

Barriers Opportunities Loads before use Other supports

Asymmetric risks Rewrite standards

Manufacturing New processes

SM305

With both eyes open in Product design — what else can we do??

Inspiration from civil engineering

Developing algorithms to allow designers to reuse material from a structure in new

designs: DESIGN FOR ZERO

With both eyes open in Product design — what else can we do??

WFG Act - Well-being of Future Generations

Finland, Iceland,
Scotland, Wales and
New Zealand are all
members of the
Wellbeing Economy
Governments
partnership.
The coalition, which is
expected to expand in
the coming months,
aims to transform
economies around the
world to deliver shared
well-being for people and
the planet by 2040.

With both eyes open in Product design — what else can we do??

Figure 17.4—The relationship between GDP and happiness

If not material efficiency, then demand reduction?

- → Consume Less
- → Reuse, Repair, Recycle

https://www.uselessgroup.org

The income method measures GDP by adding together: The Gross Profit of companies and the Self-Employed, plus the wages of employees (Compensation of Employees).plus all Taxes on Products like VAT.

Fly less!

Fly less! And use Ecodesign

Definition of Ecodesign

- Through an intelligent utilization of the available resources, Ecodesign aims at a product and process design that ensures maximum benefit for all actors involved as well as consumer satisfaction, while causing only minimum environmental impacts.— United Nations Industrial Development Organization
- An ecodesign approach involves the organization that extracts materials as well as manufacturing. All the people and structures involved along the rest of a product's lifecycle, such as retailers or consumers, are also included. And all the processes along a product's value-chain are covered too.

Ecodesign – A Simple Definition

- Ecodesign is both a principle and an approach.
- It consists of integrating environmental protection criteria over a service or a <u>product's lifecycle</u>.
- The main goal of ecodesign is to anticipate and minimize negative environmental impacts (including manufacturing, operations and disposal).
- Simultaneously, eco design also keeps a product's quality level according to its ideal usage.
- The principles of eco design where formally published in 2002 and they can be found in <u>ISO/TR14062</u>.

The Ecodesign Approach

- Ecodesign is part of a global approach called "multi-step" and "multi-criteria". This approach supports a product's entire lifecycle in a <u>circular economy perspective</u> by saving and recycling at maximum natural resources. It has to do with considering specific criteria in different **Successive stages**:
- 1. Raw material extraction and supply
- 2. Manufacturing
- 3. Product distribution
- 4. Consumer use
- 5. End of life (recovery and recycling)

A global Approach

Main metrics (The limits to Growth)

- Consumption of raw materials
- Energy consumption
- Releases in the natural environment and other pollutions
- Climatic impacts
- Impacts on biodiversity

World Dynamics 1971, Jay W. Forrester

The Limits to Growth

1972, Donnella H. Meadows, Dennis L. Meadows, Jorgen Rangers, William W. Behrens III

Dynamics of Growth in a Finite World,

1974, Dennis L. Meadows, William W. Behrens III, Donnella H. Meadows, Roger F. Naill, Jorgen Rangers, Erich K. O. Zahn

Can you conclude?

SM305 81

For climate impacts:= Y axis is CO2 emission

• Example : all GHG emissions are transformed into an equivalent CO2 emission.

https://en.wikipedia.org/wiki/Carbon_footprint

Possible to compute your own footprint: https://www.footprintcalculator.org/home/en

SM305

CO2 footprint versus LCA

- Focusses only on climate change, considered to be most urgent threat
- Enables to have only one indicator := easier for optimization

Some books

Cambridge

JEAN-BAPTISTE VAUJOUR ÉLISE RETAILLEAU • LUCAS GIGLI ALEXANDRE DENIS • LUC-OLIVIER BRIAND

DUNOD