Code Documentation

Project Title

Advancing Precision Oncology: A Deep Learning Framework for Predicting Drug Sensitivity

1. Overview of Codebase

This repository implements a modular and interpretable deep learning pipeline for **drug response prediction**, focused on estimating IC50 values using a **hybrid GCN-CNN model** with **cross-attention fusion**. It integrates molecular graph representations of drugs (via SMILES strings) and gene expression profiles of cancer cell lines.

Key Features:

- SMILES \rightarrow Graph conversion using RDKit
- Gene expression preprocessing with Z-score normalisation and outlier handling
- Dataset packaging with PyTorch Geometric
- GCN + CNN architecture with attention fusion
- Training + Hyperparameter tuning + Evaluation
- Web deployment using Gradio interface

2. Code Structure & Functional Highlights

Component	Description
convert_smile_to_graph()	Parses SMILES into RDKit molecular graphs
<pre>encode_atom_features()</pre>	Extracts atomic descriptors: atom type, valency, hybridisation
<pre>preprocess_gene_expression()</pre>	Cleans and Z-score normalises gene expression
prepare_drug_cellline_dataset(Combines molecular graphs and gene vectors	
DrugResponseModel	Hybrid architecture: $GCN + 1D CNN + cross-attention$
<pre>train_and_evaluate_model()</pre>	Trains, validates, and evaluates model with logging
<pre>evaluate_per_drug() save_model_and_results()</pre>	Computes metrics per compound Persists model weights and metrics

Component	Description
<pre>fetch_hyperparam_results()</pre>	Loads and visualises tuning results
<pre>predicting_and_evaluate()</pre>	Runs full evaluation on holdout test set

3. Detailed Pipeline Walkthrough

Step 1: Drug Graph Construction

- convert_smile_to_graph() converts SMILES (e.g., Gefitinib) into RDKit-based molecular graphs.
- encode_atom_features() + one_hot_encode() transform atoms into numerical features for GCN input.

Step 2: Gene Expression Preprocessing

- preprocess_gene_expression() applies log transform, Z-score normalisation.
- detect_outliers_iqr() filters noisy or outlier genes to improve generalisation.

Step 3: Dataset Assembly

- prepare_drug_cellline_dataset() merges drug and gene data into graph + vector formats.
- Uses DrugGeneDataset to format PyTorch Geometric Data objects.
- Batched with get data loaders().

Step 4: Deep Learning Model

- DrugResponseModel: GCN (for drug) + CNN1D (for cell line) + Cross-attention fusion.
- Managed by train_and_evaluate_model() and train() for parameter updates.

Step 5: Hyperparameter Tuning

- Explores optimisers (Adam, RMSprop, RAdam, AdamW), loss functions (MSE, HuberLoss(delta=0.5), SmoothL1Loss), learning rates (1e-4, 5e-4).
- Evaluated using:
 - compute_mse(), compute_rmse()
 - compute_pearson_correlation(), compute_spearman_correlation()
 - compute_r2_score()
- Logged using CSV summaries and fetch_hyperparam_results().

Step 6: Model Saving & Logging

• save_model_and_results() persists weights, logs, and metadata.

Step 7: Final Evaluation

- predicting_and_evaluate() evaluates on hold-out data.
- Metrics + plots:
 - plot_training_and_test_loss()
 - plot_residuals()

Step 8: Per-Drug Analysis

- evaluate_per_drug() groups metrics by drug for bias/imbalance analysis.
- Output: Ranked DataFrame of drug-wise performance.

Step 9: Gradio Deployment

- Lightweight web app allows users to:
 - Select drug + cell line
 - Internally convert inputs
 - Get IC50 predictions with qualitative labels (Strong/Moderate/Weak response)
- Backend calls trained model + preprocessing utilities

4. Evaluation Metrics

Metric	Purpose
MSE / RMSE Pearson / Spearman	Regression accuracy Captures pattern alignment
Correlation R ² Score	Measures variance explanation (used
it score	cautiously due to low IC50 variance)

Diagnostic Plots

- Training vs Test Loss
- Residual Distributions

5. Model Development & Testing

• Extensive hyperparameter tuning was conducted on validation splits.

- Final model tested on unseen drug-cell line pairs using predicting_and_evaluate().
- All runs are reproducible with stored seeds, saved checkpoints, and logs.

6. Gradio Deployment

- app.py: Runs local Gradio server
- Dropdowns for drug and cell line selection
- Outputs: predicted IC50 + qualitative label

To Run Locally:

```
# Clone the repo
git clone https://github.com/tanayab/DrugResponse.git
cd DrugResponse/WebApp/

#(Optional) Create a Python Virtual Environment:
python3 -m venv venv
source venv/bin/activate

# Install dependencies
pip install -r requirements.txt

# Launch the Gradio app
python app.py
```

Summary

This end-to-end pipeline: 1. Converts SMILES into graphs with atom features 2. Preprocesses gene expression with robust normalisation 3. Fuses both modalities using cross-attention in a deep network 4. Trains and evaluates using statistical metrics and visual diagnostics 5. Analyses per-drug performance for interpretability 6. Exposes predictions through a Gradio web interface

The codebase is: - Modular & Reproducible - Highly Commented - Optimised for Biomedical Deep Learning