4F7-STATISTICAL SIGNAL ANALYSIS

Examples Paper

Question 1: Let Z_1, \ldots, Z_N , be independent Gaussian random

4 variables with mean 0 and variance 1. Find the probability

5 density functions that are being approximated by the sample

6 average estimates

7
$$\frac{1}{N} \sum_{j=1}^{N} \frac{1}{\sqrt{2\pi}} \exp\left[-0.5(y - Z_j)^2\right] h(Z_j)$$

8 and

1

2

$$\frac{\sum_{j=1}^{N} \exp\left[-0.5(y-Z_{j})^{2}\right] h(Z_{j})}{\sum_{j=1}^{N} \exp\left[-0.5(y-Z_{j})^{2}\right]}$$

where $h: \mathbb{R} \to \mathbb{R}$ is some function of interest. Which, if any of

these approximations, are unbiased?

Question 2: Let J_1, \ldots, J_N be discrete valued random variables, $J_i \in \{1, \ldots, N\}$, with joint conditional probability mass function

$$\Pr(J_1 = j_1, \dots, J_N = j_N \mid Z_1 = z_1, \dots, Z_N = z_N)$$

$$= \Pr(J_1 = j_1 \mid Z_1 = z_1, \dots, Z_N = z_N) \cdots \Pr(J_N = j_N \mid Z_1 = z_1, \dots, Z_N = z_N).$$

That is, given the values of Z_1, \ldots, Z_N , the random variables

 J_1, \ldots, J_N are independent. Furthermore, let

14
$$\Pr(J_i = j \mid Z_1 = z_1, \dots, Z_N = z_N) = \frac{\exp[-0.5(y - z_j)^2]}{\sum_{i=1}^N \exp[-0.5(y - z_i)^2]}.$$

- 15 (a) The variables J_1, \ldots, J_N are the outputs of a multinomial 16 resampling algorithm. Give the input weighted samples 17 that are being resampled.
- 18 (b) Find $\mathbb{E}\{h(Z_{J_1}) \mid Z_1 = z_1, \dots, Z_N = z_N\}.$
- (c) Find $\mathbb{E}\left\{h(Z_{J_1})\frac{1}{N}\left(\sum_{i=1}^{N}\frac{1}{\sqrt{2\pi}}\exp\left[0.5(y-Z_i)^2\right]\right)\right\}$.
- You may use the following fact about the conditional expectation: for any pair of random variables X and Y and a real valued function g(x, y),

$$\mathbb{E}(g(X,Y)) = \mathbb{E}\left[\mathbb{E}(g(X,Y) \mid Y)\right].$$

Furthermore, if X is discrete valued but Y is continuous then

$$\mathbb{E}\left[\mathbb{E}(g(X,Y)\mid Y)\right] = \int \left(\sum_{x} g(x,y) p_{X\mid Y}(x\mid y)\right) p_{Y}(y) dy.$$

- Let $p(x_0, ..., x_n \mid y_0, ..., y_n)$ be the conditional probability density
- 28 function of a hidden Markov model with state transition probability
- density function $f(x_k, x_{k+1})$ and observation probability density func-
- 30 tion $g(x_k, y_k)$. Assume $X_0 \sim p(x_0)$.
- 31 Let $\pi_n(x_{0:n}) = p(x_{0:n}, y_{0:n})$. Let $X_{0:n}^i \sim q_n(x_0, \dots, x_n)$, $i = 1, \dots, N$,
- 32 be independent samples from a proposal probability density function
- 33 $q_n(x_{0:n})$ and let $w_n^i = \pi_n(X_{0:n}^i)/q_n(X_{0:n}^i)$.

- Question 3: Write down the multinomial resampling algorithm for the weighted samples $\{(X_{0:n}^i, w_n^i)\}_{i=1}^N$.
- Question 4: Let J denote a particle index produced by the multi-
- nomial resampling algorithm. Show that $\mathbb{E}\left\{h_n(X_{0:n}^J)W_n/N\right\} =$
- 38 $\int h_n(x_{0:n})\pi_n(x_{0:n})dx_{0:n} \text{ where } W_n = \sum_{j=1}^N w_n^j.$
- Question 5: Write down the particle filter algorithm when the proposal probability density function $q_n(x_{0:n})$ is

$$q_n(x_{0:n}) = p(x_0)f(x_0, x_1) \cdots f(x_{n-1}, x_n).$$

- Give the particle filter estimate for $p(y_{0:n})$ and $\int h_n(x_{0:n})p_n(x_{0:n}|$
- 43 $y_{0:n}$) $dx_{0:n}$ where $h_n(x_{0:n})$ is a real valued function.
- Question 6: Explain why the particle filter produces an unbiased
- estimate of the integral $\int h_k(x_{0:k})\pi_k(x_{0:k})dx_{0:k}$ for any time k
- and any function $h_k(x_{0:k})$. Hence show that the particle filter's
- estimate of $p(y_{0:n})$ is unbiased.

Consider the following hidden Markov model. Let

$$X_k = aX_{k-1} + \sqrt{b}W_k, \quad k = 0, 1, \dots$$

- 48 where W_k are independent and identically distributed $\mathcal{N}(0,1)$. Let
- 49 $X_{-1}=x_{-1}=0$. The observation process $Y_k, k=0,1,\ldots$ is integer
- valued, $Y_k \in \{0,1,\ldots\}$ and follows a Poisson distribution with rate
- 51 $c \exp(X_k)$,

Pr
$$(Y_k = y \mid X_k = x_k) = \frac{e^{-c \exp(x_k)} (c \exp(x_k))^y}{y!}.$$

- Let the probability mass function for Y_k given $X_k = x_k$ be $g(x_k, y_k)$,
- 54 i.e. $g(x_k, y_k) = \Pr(Y_k = y_k \mid X_k = x_k)$.
- Question 7: Write down log $f(x_{k-1}, x_k)$ and log $g(x_k, y_k)$ and show
- that this hidden Markov model belongs to the exponential fam-
- 57 ily.
- Question 8: Assume constants a and b are known and only c is
- to be learnt from the data record y_0, \ldots, y_n . Write down the
- intermediate function

$$Q_n(c,c') = \int \log p_{c'}(x_{0:n}, y_{0:n}) p_c(x_{0:n} \mid y_{0:n}) dx_{0:n}$$

- of the Expectation-maximisation algorithm.
- Question 9: Find the value c' that maximises $Q_n(c,c')$.
- Question 10: Find the gradient $d \log p_c(y_{0:n})/dc$. Write down
- the gradient ascent algorithm for maximising $\log p_c(y_{0:n})$ and
- explain how a particle filter may be used to implement it.
- 67 S.S. SINGH, DEPARTMENT OF ENGINEERING, UNIVERSITY OF CAMBRIDGE,
- 68 Cambridge, CB1 7AT, UK
- 69 Email address: sss40@cam.ac.uk