Hướng dẫn bài tập Vi tích phân 2 Tuần 10

Ngày 12 tháng 8 năm 2024

Phương trình vi phân tuyến tính cấp 2

Khái niêm

Phương trình vi phân tuyến tính cấp 2 thuần nhất với hệ số hằng là phương trình có dạng

$$ay'' + by' + cy = 0 ag{1}$$

trong đó a,b,c là các hằng số thực.

Phương trình đặc trưng của phương trình vi phân (1) được định nghĩa là phương trình cấp hai sau

$$ar^2 + br + c = 0 (2)$$

Phương trình vi phân tuyến tính cấp 2

Cách giải PTVP tuyến tính thuần nhất

• Nếu phương trình đặc trưng (2) có nghiệm kép r thì phương trình thuần nhất (1) có nghiệm tổng quát là

$$y_c = (c_1 + c_2 x)e^{rx}$$

• Nếu phương trình đặc trưng (2) có hai nghiệm thực phân biệt r_1 và r_2 thì nghiệm tổng quát của (1) là

$$y_c = c_1 e^{r_1 x} + c_2 e^{r_2 x}$$

• Nếu phương trình đặc trưng (2) có hai nghiệm phức liên hợp $r_1=\alpha+\beta i$ và $r_2=\alpha-\beta i$ thì nghiệm tổng quát của (1) là

$$y_c = (c_1 \cos \beta x + c_2 \sin \beta x) e^{\alpha x}$$

Phương trình tuyến tính không thuần nhất với hệ số hằng có dạng

$$ay'' + by' + cy = f(x)$$
 (3)

trong đó a,b,c là các hằng số và f là một hàm liên tục. Phương trình thuần nhất ứng với (3)

$$ay'' + by' + cy = 0 \tag{4}$$

Định lý

Nếu y_c là nghiệm tổng quát của phương trình thuần nhất (4) và y_p là một nghiệm riêng của phương trình không thuần nhất (3), thì (3) có nghiệm tổng quát là

$$y(x) = y_p(x) + y_c(x) \tag{5}$$

Sau đây là cách tìm một nghiệm riêng y_p cho phương trình không thuần nhất (3).

• Xét phương trình $y'' + py' + qy = e^{\alpha x} P_n(x)$, với $P_n(x)$ là đa thức bậc n.

B1. Giải
$$y'' + by' + cy = 0$$
, $\Longrightarrow y_c$. B2.

- • Nếu α là nghiệm đơn của PTĐT \Longrightarrow nghiệm riêng $y_p = x e^{\alpha x} Q_n(x)$
- Nếu α là nghiệm kép của PTDT \Longrightarrow nghiệm riêng $y_p=x^2e^{\alpha x}Q_n(x)$ $Q_n(x)$ là đa thức bậc n tổng quát.

• Xét phương trình $y'' + py' + qy = e^{\alpha x} (P_n(x) \cos \beta x + Q_m(x) \sin \beta x).$

Đặt $s = \max\{n, m\}$.

B1. Giải y'' + by' + cy = 0, $\Longrightarrow y_c$.

B2.

ullet Nếu $lpha \pm eta i$ không là nghiệm của PTĐT \Longrightarrow nghiệm riêng

$$y_p = e^{\alpha x} (R_s(x) \cos \beta x + T_s(x) \sin \beta x)$$

ullet Nếu $lpha \pm eta i$ là nghiệm của PTĐT \Longrightarrow nghiệm riêng

$$y_p = xe^{\alpha x} \left(R_s(x) \cos \beta x + T_s(x) \sin \beta x \right)$$

 $R_s(x), T_s(x)$ là các đa thức bậc s cần tìm.

Bài tập

Bài 1. Giải bài toán giá trị đầu

a).
$$y'' - 6y' + 8y = 0$$
, $y(0) = 2$, $y'(0) = 2$.

b).
$$y'' + 4y = 0$$
, $y(\pi) = 5$, $y'(\pi) = -4$.

c).
$$4y'' - 4y' + y = 0$$
, $y(0) = 1$, $y'(0) = -1.5$.

Bài 2. Giải bài toán giá trị biên

a).
$$y'' + 2y' = 0$$
, $y(0) = 1$, $y(1) = 2$.

b).
$$4y'' + y = 0$$
, $y(0) = 3$, $y(\pi) = -4$.

c).
$$y'' + 4y' + 13y = 0$$
, $y(0) = 2$, $y(\pi/2) = 1$.

Bài tập

Bài 3. Giải phương trình vi phân hoặc bài toán giá trị đầu.

a).
$$y'' - 2y' - 3y = \cos 2x$$

b).
$$y'' - y = x^3 - x$$

c).
$$y'' + 2y' + y = xe^{-x}$$
, $y(0) = 2$, $y'(0) = 1$

d).
$$y'' + 4y = x$$
, $y(0) = 1$, $y'(0) = 0$.

e).
$$y'' + y = e^x + x^3$$
, $y(0) = 2$, $y'(0) = 0$

