QM Variational Examples Feb10

Variational Principle

$$E_{\phi} = rac{\langle \phi | H | \phi
angle}{\langle \phi | \phi
angle}$$

Example 1

$$H=rac{p^2}{2m}+V(x)$$

let V(x) to be infinite square well situated at x=a, x=-aWe find a trial $\phi(x)$. Our trial function is better if it satisfy:

- 1. Symmetric
- 2. No nodes
- 3. Vanished at $x=\pm a$

Try using trial function

$$\phi(x)=N(x-a)(x+a) \ {
m for} \ x\leq a$$
 , $\phi(x)=0 \ {
m for} \ x>a$ $\langle \phi|\phi
angle =\int \mid \phi(x)\mid^2 \ dx=1 \implies {
m fixes} \ N$ $\langle \phi|H|\phi
angle =\int rac{\hbar^2}{2m} |rac{d\phi}{dx}|^2 + V(x)\mid \phi(x)\mid^2 \ dx$ Compute $E_\phi=rac{\alpha\hbar^2}{ma^2}$ (find $lpha$) Find the exact $E_0=lpha_0rac{\hbar^2}{ma^2}$

Example 2: Helium Atom

$$H = -rac{m{\hbar}^2}{2m}\Delta_1 - rac{2e^2}{r_1} - rac{m{\hbar}^2}{2m}\Delta_2 - rac{2e^2}{r_2} + rac{e^2}{r_{12}}$$

A digression on spin, statistics and symmetrization of identical particles in QM

In d=3 space +1 time dimension, all identical particles come in two types:

Fermions	Bosons
Half integer spins	integer spins
Electrons	Photons, Gluons

Fermions	Bosons
Fermi-Dirac Statistics	Bose_Einstein Statistics
Symmetric under exchange	Anti-Symmetric under exchange

Note:

 $ec{R}_i=(r_im_{s_i})$ where r_i is position, m_{s_i} is the spin quantum number S_z if needed Any wave function for N identical bosons:

$$\Psi_B(ec{R_1}ec{R_2}\ldotsec{R_i}\ldotsec{R_i}\ldotsec{R_N})=\Psi_B(ec{R_1}ec{R_2}\ldotsec{R_i}\ldotsec{R_i}\ldotsec{R_N})$$

Which is Symmetric under particle exchange.

Any wave function for N identical fermions:

$$\Psi_B(ec{R_1}ec{R_2}\ldotsec{R_i}\ldotsec{R_j}\ldotsec{R_N}) = -\Psi_B(ec{R_1}ec{R_2}\ldotsec{R_j}\ldotsec{R_i}\ldotsec{R_N})$$

Which is **Anti-Symmetric** under particle exchange, and this anti-symmetry causes the **Pauli exclusion principle**.

Back to our Helium Problem

$$H = H_1 + H_2 + H_{12}$$

As a first step ignore H_{12}

We can try using Hydrogen ground state wave function $\psi_{100}(\vec{r_1})\psi_{100}(\vec{r_2})$. However, this breaks our symmetry. So we have to change our spin state in combination with our wave function

$$\Psi=\psi_{100}(ec{r_1})\psi_{100}(ec{r_2})(rac{\ket{\uparrow\downarrow\downarrow}-\ket{\downarrow\uparrow}}{\sqrt{2}})$$

where

$$\psi_{100}(ec{r}) = \left(rac{Z^3}{\pi a_0^3}
ight)^{1/2} e^{-Zr/a_0}$$

This implies

$$\Psi(ec{r_1}ec{r_2}) = rac{Z^3}{\pi a_0^3} e^{-Z(r_1+r_2)/a_0}$$

Using Variational Method

$$\langle\Psi|(H_1+H_2)|\Psi
angle=2\left(-rac{m(Ze^2)^2}{2\hbar^2}
ight)pprox-108.8 \mathrm{eV}$$

Where the measured data is $E=-78.6\mathrm{eV}$

- Note our variational method is **not** larger because we didn't account for H_{12} .
- Note, we can introduce a variational parameter. The variation parameter we can change is Z. This is because an electron will create a partial shielding for the other electron.