Overview of a Syst Systems Program (CS1

Dr. Arka P. Maz

Outline

- Revisit C Compilation
- Tour of a Computer System
- Running a C program
 - Cache Memory
- Storage Hierarchy
- 3 Operating System Concepts

Revisit C Compilation

A very simple C program:

```
#include<stdio.h>
void main() {
   printf("Hello World \n");
}
```

We stored the program in hello.c

> STEP 1:

STEP 2:

> STEP 3

STEP 4:

Tour of a Computer System

Running a C program

```
Compile:
```

\$ gcc −o hello hello.c

Run

\$./hello Hello World

()

Running a C program (contd.)

Reading ./hello

Running a C program (contd.)

| Loading the executable |

Running a C program (contd.)

Writing output "String"

Storage Hierarchy

Cache Memory

Cache Memory (contd.)

Intel Core i7

Cache Memory (contd.)

```
Cache: L1
```

As fast as the Registers

```
Cache: L2
```

5-10 times faster than main memory

```
Cache: L3
```

About 2-times faster

All types are implemented using SRAM

Operating System Concepts

- A software layer that abstracts away the messy details hardware into a useful, portable, powerful interface
- Modules:
- ≪File–system, virtual memory management, network stack, protect scheduler
- ca Each of these "subsystems" is a major system of its own!
- Design and implementation has many engineering tra
- e.g., speed vs. portability, maintainability, simplicity etc.

Operating System Concepts


```
Single-Tasking
```

- Multi-Tasking
- Multi-User / Time-Shared
- Real-Time
- Distributed
- **Embedded**

- Process: Program in Execution
- Processes are independent programs running concurr
 - within the operating system

to see what processes are running on a UNIX system, **ps** command

Operating System

Process States

Process States (advanced)

Layered view

Abstraction view

Ē

Creation Process

```
pid=fork(
if (pid =
ChildP
                                                                 else
Parent
                                                                                                           void ChildP
                                                                                                                                                               void Parent
                 main()
                                                                              ParentProcess();
                                     pid=fork();
if (pid == 0)
ChildProcess();
                   3456
                                                                                                                                                                void ParentProcess()
                                                                                                            void ChildProcess()
                   pid =
Parent
                 main()
```

Context Switching

Threads

Overlays

Virtual Memo

Diagram showing virtual memory that is larger than main memory

Files:

- Files are FILES
- Folders are FILES
- Devices are also FILES

Operating System - Tasks

- Memory management
- Device management
- Processor management
- I/O programs
- File systems
- Searching / sorting
- Scheduler
- Libraries

Other System Software

- | Compiler-compiler
- Cross compiler
- **Cross assembler**
- **Emulator**
- **Preprocessor**
- Macro-processor
- MASM, NASM, TASM, VAX

Programming Considerations

- Development and Production environments
- Making Software Portable
- Software over Internet
- Programs as Components
- Quick-and-Dirty Programming
- Dynamic/Flexible/Adaptive Software

Take Away

- **Soncurrency**
- Multiple simultaneous activities
- | Parallelism
- Concurrency to make systems run faster

Hardware Threads:

Thread-level Concurrency

- Uni-processor
- Multi-processor

Hyper-threading

- PC, other registers Simultaneous multithreading
 - Multiple:
 - ALU, FPU Single:

Instruction-level Concurrency:

- Previous Systems:
- 1 instruction takes 3-4 Machine Cycles
- Superscalar
- System that can execute more than ONE instructions per Cycle

GOOGLE CLASSROOM

- You may have received the request, accept it
- All the materials and submissions will be done throug
- In cse you haven't received the request, pl. inform the coordinator