Исходные данные:

Частота f .

Выходная мощность $P_{\scriptscriptstyle \mathrm{BMX}}$.

Действующее значение входного напряжения $U_{\scriptscriptstyle \mathrm{BX}}$.

Выходное напряжение $U_{\scriptscriptstyle \mathrm{BMX}}$.

Допустимая величина коэффициента пульсаций $\,K_{_{\! \Pi}}^{}$.

Выбор сердечника

Параметры основных материалов магнитопроводов:

материал	B_{0} , Тл	f , Гц
феррит	0,3	010 ⁶
альсифер	1,0	020×10 ³
Ш-образные пластины 0,5 мм	1,5	50100
Ш-образные пластины 0,2 мм	1,5	100200
Лента 0,1 мм	1,5	2001000
Лента 0,05 мм	1,5	10004000

Ш-образные сердечники:

$$H = 0.86L$$

 $b = 0.25L$ $h = 2.5b$
 $y = b$ $y_1 = 1...2y$

Площадь окна $S_{\text{ок}} = bh$

Площадь сечения сердечника $S_{\mathrm{c}} = y_{\mathrm{l}} y$

Допустимым является выбор размера L из ряда: 20 мм, 24 мм, 32 мм, 40 мм, 48 мм, 64 мм, 80 мм, 100 мм, 128 мм,160 мм.

Марку Ш-образного сердечника принято обозначать как Ш $y \times y_{_{\! 1}}$, значения y и $y_{_{\! 1}}$ приводятся в мм.

Кольцевые сердечники:

$$d = 0,625D$$

 $h = 0,25...0,5D$

Площадь окна
$$S_{\text{ок}} = \pi d^2/4$$

Площадь сечения сердечника
$$S_{\rm c} = \frac{D-d}{2} \, h \label{eq:Sc}$$

Допустимым является выбор размера D из ряда: 16 мм, 20 мм, 26 мм, 32 мм, 40 мм,50 мм, 64 мм, 80 мм, 100 мм, 128 мм.

Марку кольцевого сердечника принято обозначать как К $D \times d \times h$, значения $D,\ d$ и h приводятся в мм.

Размеры сердечника трансформатора определяют его габаритную мощность, то есть максимальную мощность, рассеиваемую на нагрузке, которую можно оценить по формуле:

$$P_{\Gamma AB}[Bm] = \frac{S_{\text{ok}}[cM^{2}] \times S_{\text{c}}[cM^{2}] \times B_{0}[Tn] \times f[\Gamma u]}{80} \approx \frac{\left(S_{\text{c}}[cM^{2}]\right)^{2} \times B_{0}[Tn] \times f[\Gamma u]}{80},$$

$$(1)$$

где $S_{\rm ok}$ — площадь окна, $S_{\rm c}$ — площадь сечения сердечника, $B_{\rm 0}$ — индукция насыщения материала сердечника, f — рабочая частота.

Порядок расчёта трансформатора:

1. По заданной выходной мощности определить габаритную мощность трансформатора:

$$P_{\Gamma AB} = 1,2P_{\scriptscriptstyle
m BBIX}$$

2. На основе габаритной мощности и рабочей частоты трансформатора, используя формулу (1), выбрать сердечник трансформатора.

3. Рассчитать амплитуду напряжения $U_{\scriptscriptstyle 1}$, возникающего на одном витке обмотки трансформатора, по формуле

$$U_1 = 2\pi f S_c B_0 \,, \tag{2}$$

где f — рабочая частота, $S_{\rm c}$ — площадь сечения сердечника трансформатора, $B_{\rm o}$ — индукция насыщения материала сердечника.

4. Рассчитать необходимое число витков вторичной обмотки трансформатора по формуле:

$$N_2 = \frac{U_{\text{вых}}}{U_1},\tag{3}$$

где $U_{\scriptscriptstyle \mathrm{Bыx}}$ — выходное напряжение, $U_{\scriptscriptstyle 1}$ — амплитуда напряжения, возникающего на одном витке обмотки, определённое по формуле (2). При выборе числа витков $N_{\scriptscriptstyle 2}$ следует иметь в виду, что оно должно быть целым (при округлении значения, полученного в (3) следует использовать округление в большую сторону), и, желательно, не меньшим 5.

5. Рассчитать необходимое число витков первичной обмотки трансформатора по формуле:

$$N_1 = \frac{U_{\text{BX}}\sqrt{2}}{U_{\text{BDJX}}}N_2, \tag{4}$$

где $U_{\scriptscriptstyle \mathrm{BMX}}$ — выходное напряжение, $U_{\scriptscriptstyle \mathrm{BX}}$ — действующее входное напряжение, N_2 — число витков вторичной обмотки, определённое по формуле (3). При выборе числа витков N_1 следует иметь в виду, что оно должно быть целым (при округлении значения, полученного в (3) следует использовать правила округления), и, желательно, не меньшим 5.

6. Определить ток вторичной обмотки трансформатора:

$$I_2 = \frac{P_{\text{BMX}}}{U_{\text{RMX}}},\tag{5}$$

где $U_{\scriptscriptstyle \mathrm{BMX}}$ – выходное напряжение, $P_{\scriptscriptstyle \mathrm{BMX}}$ – выходная мощность.

7. Исходя из максимально допустимой плотности тока в медном проводе $j\left[A/\mathit{MM}^2\right] = 2$, оценить диаметр провода первичной и вторичной обмоток по формуле:

$$D_{1,2}[MM] = \sqrt{\frac{4I_{1,2}[A]}{\pi j}}.$$
 (6)

8. Исходя из величины коэффициента заполнения окна $K_3 = 0.5$, оценить необходимую площадь окна сердечника трансформатора по формуле:

$$S_{\text{ok(rpe6.)}} = \frac{1}{K_3} \left[N_1 \left(\frac{\pi D_1^2}{4} \right) + N_2 \left(\frac{\pi D_2^2}{4} \right) \right]. \tag{7}$$

Сравнить величины $S_{
m ok(trpe6.)}$ и $S_{
m ok}$ выбранного сердечника. При необходимости пересмотреть выбор сердечника трансформатора и добиться выполнения условия $S_{
m ok} \ge S_{
m ok(trpe6.)}$.

Порядок расчёта выпрямителя:

Выпрямители, собранные по мостовой схеме, чаще всего используют ёмкостные фильтры, в которых конденсатор необходимой ёмкости подключается параллельно нагрузке.

Для расчёта выпрямителя необходимо использовать следующие соотношения:

- 1. Максимальное обратное напряжение диодов должно составлять не менее $U_{\text{обр.max}} = \frac{U_{\text{вых}}}{2}$.
- 2. Максимальный прямой ток диодов должен составлять не менее $I_{\text{пр.max}} = I_{\text{вых}} = \frac{P_{\text{вых}}}{U_{\text{вых}}}.$
- 3. Максимальная мощность, рассеиваемая диодами, должна составлять не менее $P_{\max} = \frac{I_{\text{вых}} \times 0.7B}{2}$.
- 4. Верхнее значение рабочей частоты диодов должно быть не менее частоты $f_{\max} = 2f$, где f частота входного переменного напряжения.
- 5. Ёмкость фильтрующего конденсатора необходимо рассчитать по формуле:

$$C \approx \frac{1}{4 fRK_{-}},\tag{8}$$

где f — частота входного переменного напряжения, R — сопротивление нагрузки, $R = \frac{U_{\scriptscriptstyle \rm BMX}}{I_{\scriptscriptstyle \rm BMX}} = \frac{U_{\scriptscriptstyle \rm BMX}^2}{P_{\scriptscriptstyle \rm BMX}}$, $K_{\scriptscriptstyle \rm II}$ — допустимая величина коэффициента пульсаций выходного напряжения.

6. Максимальное рабочее напряжение фильтрующего конденсатора должно составлять не менее $U_{\mathrm{pa6.}} = 1{,}5U_{\mathrm{вых}}$.

Результаты расчёта необходимо представить в следующем виде:

1. Задание:

f , Гц	$P_{\scriptscriptstyle m BMX}$, Вт	$U_{\scriptscriptstyle m\scriptscriptstyle BX}$, B	$U_{\scriptscriptstyle m BMX}$, B	$K_{_{\Pi}}$,%

2. Параметры трансформатора:

2. Параметры грансформатора.		
Материал сердечника (сталь, феррит, альси-		
фер, марку материала можно не указывать)		
Тип сердечника (марка)		
Число витков первичной обмотки $N_{_1}$		
Диаметр провода первичной обмотки $d_{\scriptscriptstyle 1}$, мм		
Число витков вторичной обмотки N_2		
Диаметр провода вторичной обмотки $d_{\scriptscriptstyle 2}$, мм		
Требуемое окно сердечника, мм²		
Желательно (+12 балла)		
Марка провода первичной обмотки		
Марка провода вторичной обмотки		

3. Параметры выпрямителя:

э. параметры выпримители.		
Максимальное обратное		
напряжение диодов $U_{ m ofp.max}$, В		
1		
Максимальный прямой ток диодов $I_{ m np.max}$, А		
Максимальная мощность диодов $P_{ m max}$, Вт		
Верхнее значение рабочей частоты диодов $f_{ m max}$, Гц		
Сопротивление нагрузки R , Ом		
Ёмкость фильтрующего конденсатора C , мкФ		
Максимальное рабочее напряжение		
i ·		
конденсатора $U_{ m pa6.}$, В		
Желательно (+12 балла)		
Марка диодов выпрямителя		
Марка конденсатора		