

Automotive Manufacturing Automation

A - Team

BOKKA HARISH
CHAVAN RUTURAJ
DESHMUKH JAYENDRA
PATEL KUSH
PATIL MANSI
SHARMA SANYAM
VAIRAGADE AAYUSHIE
VITTAL BHARATH

Project Management Spring '24

PURPOSE

Enhancing the production process by leveraging industry 4.0 for improving accuracy, reducing material wastage & optimizing production cycle through automated solutions in the Welding, Painting, Tyre & windshield assembly area allowing a decrease In operational cost and enhancing overall competitiveness

- · Automating the welding area with 6 robots
- 6 Motoman MA1400 robots will be controlled by Motoman DX100 controller
- Goal is to achieve reduction in asymmetric weld lines & spot marks to achieve stronger & superior welds
- Controller operated by YEC1000 software

BODYSHOP WORKSTATION

Visual Representation of Bodyshop Workstation

- Painting the entire vehicle body without human intervention
- 6 FANUC P-250iB/15 robots will be controlled by FANUC R-30iB controller
- Focusing on overcoming the color mismatch and sagging defect due to human error
- Spray paint nozzle and mixing chamber on robots shall be used to maintain superior finish
- The robot's base is attached to a railing that allows the robot to translate along the length of the car covering all panels that are to be painted
- Robots will utilize FANUC's comprehensive software suite and KAREL programming language
- ROBOGUIDE will be used to create programs for simulation in 3D environment

WINDSHIELD & TIRE INSTALLATION WORKSTATION

Visual Representation of Tire Assembly Workstation

- 2 robotic arms mounted in structural beams for windshield installation
- 2 robots erected on the ground to attach tires
- Robotic arms for Windshield- FANUC R-2000iA/165F
- Robots for Tire- FANUC R-2000iC/210R
- Issues like uneven sealant application and lengthy tire installation are solved by automating assembly area for windshield and tire
- Controller for FANUC R-2000iA/165F- FANUC R-30iB
- Controller for FANUC R-2000iC/210R- FANUC R-30iB
- Operations supervised by dedicated robotics engineers

PROJECT ROADMAP

FINANCIAL PLAN

Assumptions: Our Company generates an annual revenue of **\$63M** with an average net profit rate of **5%**.

Growing from 5% to 8.5% in 7 Years via Automation

Savings in direct costs (operational) after automation

Direct	Old Operating Spend		New Operating Spend		%Savings
Labor	\$	10,000,000	\$	8,500,000.0	15%
Material Cost	\$	20,000,000	\$	19,600,000	1 2%
Energy Usage	\$	2,000,000	\$	2,600,000.0	" -30%
Procurement & Logistics	\$	4,000,000	\$	4,000,000	
Consumables	\$	1,600,000	\$	1,760,000	" -10%
Maintenance & Repairs	\$	2,000,000	\$	2,200,000.0	1 9%
Inspection & Testing	\$	1,200,000	\$	960,000.0	1 20%
			Total Savings		1 2%