COMPLEMENTS OF GEOMETRY - SEMINAR 1

- 1. Prove that the perpendicular bisectors of a triangle are concurrent.
- 2. Prove that the internal bisectors of a triangle are concurrent.
- **3.** Prove the bisector theorem in $\triangle ABC$: If D is the intersection of the bisector of $\angle A$ with (BC), then show that

$$\frac{AB}{AC} = \frac{BD}{CD}.$$

- **4.** In triangle ABC, denote by C' and respectively B' the midpoints of the sides AB and AC. Let G be the intersections of the lines BB' and CC'. Show that BG = 2GB' and CG = 2GC'.
- **5.** Prove that the medians of a triangle are concurrent.
- **6.** Let $\triangle ABC$ be a triangle in which $\angle BAC$ is a right angle and let [AD] with $D \in (BC)$ be an altitude in this triangle. Show that $AB^2 = BD \cdot BC$, $AC^2 = CD \cdot BC$ and $AD^2 = BD \cdot CD$.
- 7. Prove Pytagora's theorem.

For presentation next time

Presentation 1. Let P be a point lying inside the square ABCD. Denote by M, N the feet of the perpendiculars from P to BC and CD, respectively. If $AP \perp MN$, show that either AP = MN, or $AP \perp BD$.

Presentation 2. In $\triangle ABC$, we consider the points $M \in (AB)$ and $N \in (BC)$ such that

$$2 \cdot \frac{CN}{BC} = \frac{AM}{AB}.$$

Let P be a point on AC. Show that the lines MN and NP are perpendicular if and only if PN is the internal angle bisector of the angle $\angle MPC$.

Date: February 27, 2024.