Рубежный контроль №1

Тема: Технологии разведочного анализа и обработки данных

Зубарева А. М. ИУ5-65Б Вариант 7

Загрузка необходимых библиотек:

```
Ввод [1]:
import pandas as pd
import seaborn as sns
from sklearn import preprocessing
Ввод [31]:
data = pd.read csv('./datasets/Admission Predict.csv')
Ввод [32]:
data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 400 entries, 0 to 399
Data columns (total 10 columns):
    Column
                      Non-Null Count Dtype
    _____
                      _____
 0
    Serial No.
                     400 non-null
                                     int64
    GRE Score
                     400 non-null
                                     int64
 1
                      400 non-null
    TOEFL Score
 2
                                     int64
 3
  University Rating 400 non-null int64
                       400 non-null float64
 4
    SOP
                       400 non-null float64
 5
    LOR
 6
   CGPA
                      400 non-null float64
 7
  Research
                      400 non-null
                                     int64
   Chance of Admit 400 non-null
 8
                                     float64
                       400 non-null
                                     float64
    target
dtypes: float64(5), int64(5)
memory usage: 31.4 KB
Ввод [33]:
data.shape
Out[33]:
(400, 10)
(строк, колонок)
```

Ввод [34]:

data.head()

Out[34]:

	Serial No.	GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Research	Chance of Admit	target
0	1	337	118	4	4.5	4.5	9.65	1	0.92	0.92
1	2	324	107	4	4.0	4.5	8.87	1	0.76	0.76
2	3	316	104	3	3.0	3.5	8.00	1	0.72	0.72
3	4	322	110	3	3.5	2.5	8.67	1	0.80	0.80
4	5	314	103	2	2.0	3.0	8.21	0	0.65	0.65

Ввод []:

Hac интересует значение Chance of Admit для построения нашей модели

Ввод [35]:

data.dtypes

Out[35]:

Serial No.	int64			
GRE Score	int64			
TOEFL Score	int64			
University Rating	int64			
SOP	float64			
LOR	float64			
CGPA	float64			
Research	int64			
Chance of Admit	float64			
target	float64			
dtype: object				

Все значения числовые

Проверим наличие пропусков

Ввод [36]:

```
data.isnull().sum()
```

Out[36]:

Serial No. 0 GRE Score 0 TOEFL Score 0 University Rating 0 0 SOP 0 LOR 0 CGPA Research 0 Chance of Admit 0 target dtype: int64

Здесь видно, что пропусков в данных нет ни в одном столбце

Ввод [37]:

```
data['Chance of Admit '].value_counts()
0.97
0.88
         4
0.95
         4
         3
0.53
0.48
         3
0.44
         3
         3
0.42
0.83
         3
0.38
         2
         2
0.34
0.36
         2
         2
0.45
0.50
         2
0.43
         1
0.51
         1
0.55
         1
         1
0.60
0.39
Name: Chance of Admit , dtype: int64
```

Ввод [38]:

sns.pairplot(data)

Out[38]:

<seaborn.axisgrid.PairGrid at 0x7fdb7a0269a0>

Ввод [39]:

data.corr()

Out[39]:

	Serial No.	GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Research
Serial No.	1.000000	-0.097526	-0.147932	-0.169948	-0.166932	-0.088221	-0.045608	-0.063138
GRE Score	-0.097526	1.000000	0.835977	0.668976	0.612831	0.557555	0.833060	0.580391
TOEFL Score	-0.147932	0.835977	1.000000	0.695590	0.657981	0.567721	0.828417	0.489858
University Rating	-0.169948	0.668976	0.695590	1.000000	0.734523	0.660123	0.746479	0.447783
SOP	-0.166932	0.612831	0.657981	0.734523	1.000000	0.729593	0.718144	0.444029
LOR	-0.088221	0.557555	0.567721	0.660123	0.729593	1.000000	0.670211	0.396859
CGPA	-0.045608	0.833060	0.828417	0.746479	0.718144	0.670211	1.000000	0.521654
Research	-0.063138	0.580391	0.489858	0.447783	0.444029	0.396859	0.521654	1.000000
Chance of Admit	0.042336	0.802610	0.791594	0.711250	0.675732	0.669889	0.873289	0.553202
target	0.042336	0.802610	0.791594	0.711250	0.675732	0.669889	0.873289	0.553202

Построим heatmap для лучшего визуального представления всех корреляций

Ввод [40]:

```
cmap = sns.cm.rocket_r
ax = sns.heatmap(data.corr(), cmap=cmap)
```


Наиболее интересно для построения модели как коррелируют все поля с Chance of admit. \

Видим, что у нас наиболее влиятельные – поля CGPA, GRE Score и TOEFL Score. Соответственно, они должны вносить наибольший вклад в итоговую модель

До построения модели необходимо нормализировать поля, так как все они числовые, и находятся порой в разных диапазонах (GRE score имеет значения порядка 300, а CGPA - порядка 10)

Ввод [21]:

```
normalized_data = preprocessing.normalize(data)
```

Ввод [42]:

```
normalized_data = preprocessing.normalize(data.loc[:, data.columns!='Chance of Admit
target = data['Chance of Admit ']
```