Data Mining TP11 - Support Vector Machine

Rémi MUSSARD - Thomas ROBERT

Partie 2.1

Q1. Dataset

Construction du jeu de données

```
\begin{array}{l} {\scriptstyle 1} \ n = 100; \\ {\scriptstyle 2} \ & X1 = randn\,(n,\ 2)\,; \\ {\scriptstyle 4} \ & X2 = randn\,(n,\ 2) \,+\, ones\,(n,\ 2)\,*2; \\ {\scriptstyle 5} \ & S = \begin{bmatrix} 1 & 0.5\,; & 0.5 & 4 \end{bmatrix}; \\ {\scriptstyle 6} \ & X = [X1; \ X2] * S^{\, \,}(1/2)\,; \\ {\scriptstyle 7} \ & y = \left[ \ ones\,(n,1)\,; \, -ones\,(n,1) \,\right]; \\ {\scriptstyle 8} \ & \text{figure}\,; \\ {\scriptstyle 9} \ & \text{figure}\,; \\ {\scriptstyle 10} \ & \text{plot}\,(X(y==-1,1)\,, \ X(y==-1,2)\,,\,'\text{or}\,')\,; \\ {\scriptstyle 11} \ & \text{hold} \ & \text{on} \\ {\scriptstyle 12} \ & \text{plot}\,(X(y==1,1)\,, \ X(y==1,\ 2)\,,\,'\text{ob}\,')\,; \\ \end{array}
```


Q2. Dual

Implémentation du problème de minimisation SVN dual sous CVX

 $_{1} C = 1000;$

```
_{3} K = X*X';
_{4} Y = diag(y);
5 H = Y*K*Y;
q = ones(2*n, 1);
  cvx_begin
        variable a(2*n)
10
       maximize(sum(a) - (1/2)*a'*H*a)
11
12
        subject to
13
14
            a>=0;
15
            C\!*\! q\!\!> =\!\! a\; ;
16
            a' * y = = 0;
17
19 cvx_end
_{21} w = (a'*Y*X)'
   w =
      -1.0586
      -0.5623
```

Q3. Frontiere

On peut obtenir b en trouvant la frontière de décision grâce aux points supports et en trouvant donc directement b.

On peut également implémenter directement le problème primal sous CVX comme ci-dessous qui donne directement b.

```
cvx_begin
       variable w(2)
       variable b(1)
       variable ksi(2*n)
       minimize(1/2 * w'*w + C * sum(ksi))
       subject to
           y .* (X * w + b) >= 1 - ksi;
           ksi >= 0;
11
12
13 \text{ cvx\_end}
14
15 W
16 b
  w =
     -1.0586
      -0.5623
  b =
       2.4638
```

Q3. Isocontours

```
 \begin{array}{l} {}_{1}\ \%\ Isocontour\ pour\ f(x)=0\\ \\ {}_{2}\ xFront=[min(X(:,1))\ ;\ max(X(:,1))];\\ {}_{4}\ yFront0=(-b-w(1)*xFront)/w(2);\\ {}_{5}\ plot(xFront,\ yFront0,\ '-g',\ 'LineWidth',2);\\ \\ {}_{6}\ \\ {}_{7}\ \%\ Isocontour\ pour\ f(x)=1\\ \\ {}_{9}\ yFront1=(1-b-w(1)*xFront)/w(2);\\ {}_{10}\ plot(xFront,\ yFront1,\ '-c');\\ \\ {}_{12}\ \%\ Isocontour\ pour\ f(x)=-1\\ \\ {}_{13}\ \\ {}_{14}\ yFrontm1=(-1-b-w(1)*xFront)/w(2);\\ \\ {}_{15}\ plot(xFront,\ yFrontm1,\ '-c');\\ \\ \end{array}
```

Q5. Points supports

```
support = single(y.*(X*w + b));
plot(X(support==1,1), X(support==1, 2), '*k');
legend('Cl 1', 'Cl 2', 'Frontier', 'margin', 'margin', 'support vectors')
```


Remarque

Avec cette méthode on se rend compte qu'il y a des erreurs de classification. Lorsqu'on a une donnée censé appartenir à une classe C1, avec la fonction monsvmval, on voit que cette donnée est affectée à la classe C2, car elle

se trouve du mauvais côté de la frontière de décision.

Création des fonctions monsvmclass.m et monsvmval.m

Voir les fichiers monsymclass.m et monsymval.m

Vérification des fonctions sur les données initiales

```
[w, b, alpha] = monsvmclass(X, y, C);
   w = w';
   yReconst = monsvmval(X, w, b);
   figure();
   \operatorname{plot}(X(\operatorname{yReconst} == -1,1), X(\operatorname{yReconst} == -1,2), \operatorname{or});
   \begin{array}{l} \textbf{plot}\left(X(\,yReconst\,{=}{=}1,1)\,,\;\,X(\,yReconst\,{=}{=}1,\;\,2)\,,\,\text{`ob'}\right); \end{array}
   title ('Résultat de classification de monsymclass');
11 % Isocontour pour f(x) = 0
  xFront = [min(X(:,1)) ; max(X(:,1))];
  yFront0 = (-b-w(1)*xFront)/w(2);
   plot(xFront, yFront0, '-g');
  % Isocontour pour f(x) = 1
18
   yFront1 = (1 -b-w(1)*xFront)/w(2);
   plot(xFront, yFront1, '-b');
21
  \% Isocontour pour f(x) = -1
22
23
  yFrontm1 = (-1 -b-w(1)*xFront)/w(2);
plot(xFront, yFrontm1, '-b');
```


Partie 2.2

```
1 clc
2 clear all
```

Q2. chiffres moyens

Q3. Discrimination des 1 et des 8

```
X = [x(y==1, :); x(y==8, :)];
_{2} Y = [y(y==1); y(y==8)];
3 Y(Y == 8) = -1;
[n, m] = size(X);
7 C = 0.001;
9 cvx_begin
       variable w(m)
10
      variable b(1)
11
12
      variable ksi(n)
14
      minimize(1/2 * w'*w + C * sum(ksi))
15
      subject to
16
17
           Y .* (X * w + b) >= 1 - ksi;
18
           ksi >= 0;
19
20
21 cvx\_end
23 yReconst = monsvmval(X, w, b);
24 nbErreurs = sum(Y ~= yReconst)
```

```
25
      (nbErreurs > 0)
26
       Yerr = yReconst (Y ~= yReconst);
27
       Yerr(Yerr = -1) = 8;
28
       Xerr = X(Y \sim yReconst, :);
29
30
       for k=1:min(4,size(Xerr,1))
31
            subplot (2,2,k);
32
            imagesc(reshape(Xerr(k,:),16,16)');
33
            title ([ 'Classé ' int2str(Yerr(k))]);
34
       \quad \text{end} \quad
35
зе end
1 nbErreurs =
        4
```


Q5. Conclusion

Il n'y a quasiment aucune erreur. On obtient une erreur uniquement a partir de C < 0.001.