Polytech Lyon, MAM 3, 2023-2024

Travaux Tutorés 1 (TT1) en Optimisation Continue

Problème

Partout dans la suite | · | désigne la norme euclidienne et n un nombre dans №.

L'objectif de ce travail est l'étude d'un problème de contrôle optimal d'un système qui évolue à des temps discrets $t_0, t_1, \dots t_n$ avec n assez grand, $t_0 < t_1 < \dots < t_n$.

On suppose que l'état du système au moment t_k est caractérisé par $x_k \in \mathbb{R}$ et que le passage du l'état au moment t_{k+1} peut être contrôlée par un contrôle $u_{k+1} \in \mathbb{R}$. En fait on suppose que le passage de l'état x_k à l'état x_{k+1} est donné par une expression qui dépend de x_k et de u_{k+1} ; nous considérons ici le cas simple où cette expression est linéaire. Nous supposons aussi que l'état initial x_0 est donné. Nous avons alors la loi d'évolution suivante :

$$\begin{cases} x_{k+1} = ax_k + bu_{k+1}, & k \in [[0, n-1]] \\ x_0 \in \mathbb{R} & \text{donn\'e} \end{cases}$$
 (1)

avec $a, b \in \mathbb{R}, b \neq 0$.

Le but du travail est de trouver les contrôles $u_1, u_2, \cdots u_n$ qui minimise une certaine fonction coût

f dépendant des états et des contrôles. On introduit les vecteurs $x = \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix} \in \mathbb{R}^n$ (vecteur état)

et
$$u=\begin{pmatrix} u_1\\u_2\\\dots\\u_n\end{pmatrix}\in\mathbb{R}^n$$
 (vecteur contrôle). On se donne $\alpha>0$ et $d\in\mathbb{R}$ et on définit la fonction $f:\mathbb{R}^n\to\mathbb{R}$ par

$$u \in \mathbb{R}^n \mapsto f(u) = \frac{1}{2} \sum_{k=1}^n u_k^2 + \frac{\alpha}{2} (x_n - d)^2$$

où les vecteurs u et x sont liés par le relation (1).

Remarquons que la fonction f dépend seulement du contrôle u et de l'état final x_n . On cherche alors à minimiser la fonction f, c'est à dire, trouver $u^* \in \mathbb{R}^n$ tel que

$$f(u^*) \le f(u), \quad \forall u \in \mathbb{R}^n.$$

Remarque: Pour tout $u \in \mathbb{R}^n$ donné il existe un unique $x \in \mathbb{R}^n$ satisfaisant (1) (l'élément x_{k+1} est bien définit si on connait x_k et u_{k+1}). Nous notons par x^u le vecteur $x \in \mathbb{R}^n$ obtenu par (1) et qui dépend de u. On peut alors écrire

$$f(u) = \frac{1}{2} ||u||^2 + \frac{\alpha}{2} (x_n^u - d)^2, \quad \forall u \in \mathbb{R}^n.$$

(Un exemple physique d'un tel système est l'évolution de la température dans une chambre; l'état x_k est la température au moment t_k et le contrôle u_{k+1} est la source de chaleur ($u_{k+1} > 0$

correspond au chauffage et $u_{k+1} < 0$ correspond à la climatisation). On suppose pour simplifier qu'on a la loi d'évolution suivante :

$$x_{k+1} - x_k = -\beta x_k + u_{k+1} \quad avec \quad \beta > 0$$

qui s'explique par le fait que le changement de température $x_{k+1} - x_k$ entre les moments t_k et t_{k+1} est due à la source de chaleur (le terme u_{k+1}) et à la perte de chaleur à travers les murs (le terme $-\beta x_k$). On voit facilement que cette loi est de la forme (1) avec $a = 1 - \beta$ et b = 1. Dans la fonction objectif f la partie $\frac{1}{2}\sum_{k=1}^n u_k^2$ représente le coût du chauffage et la partie $\frac{\alpha}{2}(x_n-d)^2$ avec un $\alpha > 0$ grand vient du fait que nous souhaitons que la température x_n au moment final t_n (xn = l'état final) soit "la plus proche que possible" d'une température désirée qui est d donnée; ce terme $\frac{\alpha}{2}(x_n-d)^2$ "pénalise" l'éloignement de x_n par rapport à d.)

Partie I.

Le but de cette partie est de montrer que le fonction f est quadratique et fortement convexe.

Pour tout
$$u\in\mathbb{R}^n$$
 on considère $y=\begin{pmatrix}y_1\\y_2\\\dots\\y_n\end{pmatrix}\in\mathbb{R}^n$ tel que
$$\begin{cases}y_{k+1}=ay_k+bu_{k+1},\qquad k\in[[0,n-1]]\\y_0=0\end{cases}$$

$$\begin{cases} y_{k+1} = ay_k + bu_{k+1}, & k \in [[0, n-1]] \\ y_0 = 0 \end{cases}$$
 (2)

et on notera $y = y^u$.

On introduit aussi
$$w = \begin{pmatrix} w_1 \\ w_2 \\ \dots \\ w_n \end{pmatrix} \in \mathbb{R}^n$$
 donné par

$$\begin{cases} w_{k+1} = aw_k, & k \in [[0, n-1]] \\ w_0 = x_0 \end{cases}$$
 (3)

et on observe que w ne dépend pas de u.

- Ia) On se propose de montrer que l'application $u \in \mathbb{R}^n \mapsto y^u \in \mathbb{R}^n$ est linéaire. Pour cela on considère $\gamma, \delta \in \mathbb{R}, \ u, v \in \mathbb{R}^n$ arbitraires et on cherche à montrer l'égalité $y^{\gamma u + \delta v} = \gamma y^u + \delta y^v$.
 - · Ia1) Ecrire les relations de récurrence satisfaites par les composantes de $y^{\gamma u + \delta v}$, y^u et y^v .
- Ia2) Montrer que les composantes de $y^{\gamma u + \delta v}$ et de $\gamma y^u + \delta y^v$ satisfont la même relation de récurrence avec la même donnée initiale.
 - Ia3) En déduire le résultat attendu.

On sait alors qu'il existe une matrice carrée $M \in \mathcal{M}_n(\mathbb{R})$ telle que $y^u = Mu$, $\forall u \in \mathbb{R}^n$.

Ib) Montrer l'égalité

$$x^u = y^u + w$$

et en déduire qu'on a

$$x_n^u = Su + w_n \tag{4}$$

où $S \in \mathcal{M}_{1,n}(\mathbb{R})$ est la dernière ligne de la matrice M.

Ic) Montrer que $f \in C^{\infty}(\mathbb{R}^n)$ et que f est une fonction fortement convexe.

Id) En déduire l'existence et l'unicité d'un point de minimum u^* de f sur \mathbb{R}^n .

Partie II.

En général le calcul de la matrice M est difficile et on indique dans la suite un procédé efficace pour calculer ∇f sans avoir à calculer M. Il faut donc calculer $\frac{\partial f}{\partial u_j}(u)$ pour tous $u \in \mathbb{R}^n$ et $j \in [[1,n]]$.

IIa) Montrer qu'on a

$$\frac{\partial f}{\partial u_j}(u) = u_j + \alpha (x_n^u - d) \frac{\partial}{\partial u_j} x_n^u.$$

IIb) En utilisant (4) et le fait que la j - ème colonne de M est y^{e_j} (où e_j est le j - ème élément de la base canonique en \mathbb{R}^n) montrer qu'on a

$$\frac{\partial f}{\partial u_j}(u) = u_j + \alpha (x_n^u - d) z_n^{(j)} \tag{5}$$

où
$$z^{(j)} \in \mathbb{R}^n$$
, $z^{(j)} = \begin{pmatrix} z_1^{(j)} \\ z_2^{(j)} \\ \dots \\ z_n^{(j)} \end{pmatrix}$ avec

$$z_{k+1}^{(j)} = az_k^{(j)} + b(e_j)_{k+1}, \quad k \in [[0, n-1]]$$
(6)

et

$$z_0^{(j)} = 0. (7)$$

Nous voulons obtenir une expression plus simple pour $\frac{\partial f}{\partial u_j}(u)$ donc pour $\nabla f(u)$.

Pour cela considérons $p = \begin{pmatrix} p_1 \\ p_2 \\ \dots \\ p_n \end{pmatrix} \in \mathbb{R}^n$ arbitraire. On multiplie (6) par p_{k+1} et on fait la somme

en k.

IIc) Montrer que nous avons

$$\sum_{k=1}^{n} z_{k}^{(j)} p_{k} = a \sum_{k=1}^{n-1} z_{k}^{(j)} p_{k+1} + b p_{j}$$

et en déduire

$$z_n^{(j)}p_n = \sum_{k=1}^{n-1} z_k^{(j)} (ap_{k+1} - p_k) + bp_j.$$
 (8)

IId) On choisit p tel que ses composantes satisfont la relation de récurrence rétrograde :

$$\begin{cases} p_k = ap_{k+1}, & k = n-1, n-2, \dots 1 \\ p_n = \alpha(x_n^u - d). \end{cases}$$
 (9)

En utilisant (5) et (8) montrer que

$$\frac{\partial f}{\partial u_j}(u) = u_j + bp_j, \quad \forall \ j \in [[1, n]]$$

c'est à dire

$$\nabla f(u) = u + bp$$

Le vecteur p s'appelle variable adjointe et le système (9) s'appelle système adjoint.

Partie III.

IIIa) Montrer que le point de minimum u^* de f satisfait le système d'optimalité suivant : il existe $x^*, p^* \in \mathbb{R}^n$ tels que

$$x_{k+1}^* = ax_k^* + bu_{k+1}^*, \quad k = 0, 1, \dots n - 1$$

$$x_0^* = x_0$$

$$p_k^* = ap_{k+1}^*, \quad k = n - 1, n - 2, \dots 1$$
(10)
(11)

$$x_0^* = x_0 \tag{11}$$

$$p_k^* = ap_{k+1}^*, \quad k = n-1, n-2, \dots 1$$
 (12)

$$p_n^* = \alpha(x_n^* - d) \tag{13}$$

$$u^* + bp^* = 0 \tag{14}$$

(ce système s'appelle Principe de minimum de Pontryagin en version discrète).

IIIb) Résoudre le système d'optimalité (10) - (14) pour trouver la solution u^* . Indication: à l'aide de (14) exprimer u* en fonction de p* et le remplacer en (10). De (12) et (13) exprimer p en fonction de x_n^* et remplacer en (10).