ŽILINSKÁ UNIVERZITA V ŽILINE

FAKULTA RIADENIA A INFORMATIKY

Projektovanie sietí 1

MPLS - Hub & Spoke

Obsah

1. Zadanie	3
2. Fyzická topológia	3
3. Adresný plán	4
4. Konfigurácia Hub & Spoke VPN	5
4.1 Vytvorenie subrozhraní medzi R1 a R5	5
4.2 Vytvorenie VRF	6
4.3 Vykonanie zmien v BGP	7
5. Kontrola konektivity a overenie správnej konfigurácie	9

1.Zadanie

Cieľom cvičenia bolo nakonfigurovať Hub & Spoke VPN.

2. Fyzická topológia

3.cv - Hub and Spoke VPN

3. Adresný plán

ROUTER	INTERFACE	ADRESA	MASKA
	e2/0	10.0.12.1	255.255.255.0
R1	e2/1.15	192.168.15.1	255.255.255.0
V.T	e2/1.51	192.168.51.1	255.255.255.0
	Loopback0	10.255.255.1	255.255.255
	e2/0	10.0.12.2	255.255.255.0
R2	e2/1.23	10.0.23.2	255.255.255.0
NZ	e2/1.24	10.0.24.2	255.255.255.0
	Loopback0	10.255.255.2	255.255.255
	e2/0	192.168.38.3	255.255.255.0
	e2/1.23	10.0.23.3	255.255.255.0
R3	e2/1.34	10.0.34.3	255.255.255.0
	S1/0	10.0.39.3	255.255.255.0
	Loopback0	10.255.255.3	255.255.255
	e2/0	10.0.49.4	255.255.255.0
	e2/1.24	10.0.24.4	255.255.255.0
R4	e2/1.34	10.0.34.4	255.255.255.0
	S1/0	192.168.104.4	255.255.255.0
	Loopback0	10.255.255.4	255.255.255
	e2/1.15	192.168.15.5	255.255.255.0
R5	e2/1.51	192.168.51.5	255.255.255.0
N ₂	Loopback0	10.255.255.5	255.255.255
	Loopback10	172.23.5.5	255.255.255.0
	e2/0	192.168.38.8	255.255.255.0
R8	e2/1	192.168.89.8	255.255.255.0
No	Loopback0	10.255.255.8	255.255.255
	Loopback10	172.21.8.8	255.255.255.0
	e2/0	10.0.49.9	255.255.255.0
R9	e2/1	192.168.89.9	255.255.255.0
N3	S1/0	10.0.39.9	255.255.255.0
	Loopback0	10.255.255.9	255.255.255
	S1/0	192.168.104.10	255.255.255.0
R10	Loopback0	10.255.255.10	255.255.255
	Loopback10	172.22.10.10	255.255.255.0

4. Konfigurácia Hub & Spoke VPN

Cieľom cvičenia bolo zmeniť konfiguráciu z predošlého cvičenia (č.2 – L3VPN) tak, aby smerovač R1 bol hubom pre ostatné PE smerovače, a smerovač R5 hubom pre zákaznícke CE smerovače.

4.1 Vytvorenie subrozhraní medzi R1 a R5

Prvý problém sa vyskytol medzi smerovačmi R1 a R5, kde sa nachádza len jedna fyzická linka (e2/1). Na tomto uzle bolo potrebné vytvoriť dve VRF, čo pri takomto rozložení nebolo možné. Preto bolo nutné rozdeliť fyzické rozhranie na subrozhrania a následne na nich vytvoriť dve samostatné VRF.

R1:

interface Ethernet2/1.15

encapsulation dot1Q 15

ip address 192.168.15.1 255.255.255.0

interface Ethernet2/1.51

encapsulation dot1Q 51

ip address 192.168.51.1 255.255.255.0

R5:

interface Ethernet2/1.15

encapsulation dot1Q 15

ip address 192.168.15.5 255.255.255.0

interface Ethernet2/1.51

encapsulation dot1Q 51

ip address 192.168.51.5 255.255.255.0

4.2 Vytvorenie VRF

Po vytvorení subrozhraní medzi R1 a R5 sme mohli pristúpiť k tvorbe samotných VRF. Tie bolo nutné nakonfigurovať na všetkých PE smerovačoch, pričom bolo potrebné rozlišovať aké route-target (RT) sa budú importovať, resp. exportovať. Naše rozhodnutie je popísané v nasledujúcom obrázku.

Smerom od SPOKE k HUB sme exportovali RT 110:1001, a následne si tento RT HUB importoval. Po prechode cez R5 sa RT na smerovači R1 exportoval s hodnotou 110:1000, ktorý si importovali SPOKE smerovače. Konfigurácia RT sa vykonávala vo vnútri VRF, a na smerovači R1 bolo nutné vytvoriť dve VRF, jednu v smere UP, druhú v smere DOWN.

~		,	
R3, R4, R9:	 _	_	
ip vrf z1_SPOKE			
route-target export 110:1001			
route-target import 110:1000			
R1:			
ip vrf z1_DOWN			
route-target import 110:1001			
ip vrf z1_UP			
route-target export 110:1000			

Vytvorené VRF bolo ešte potrebné priradiť všetkým rozhraniam, ktoré smerovali k daným zákazníkom.

R1:

interface Ethernet2/1.15

ip vrf forwarding z1 DOWN

interface Ethernet2/1.51

ip vrf forwarding z1 UP

R3:

interface Ethernet2/0

ip vrf forwarding z1 SPOKE

R4:

interface Serial1/0

ip vrf forwarding z1 SPOKE

R9:

interface Ethernet2/1

ip vrf forwarding z1 SPOKE

4.3 Vykonanie zmien v BGP

Ďalším krokom bolo upraviť BGP vzťahy medzi PE a CE smerovačmi, keďže nám vznikli nové VRF. Na strane PE smerovačov bolo nutné nadviazať susedstvá s CE smerovačmi v rámci novovytvorených VRF.

R1:

rotuer bgp 110

address-family ipv4 vrf z1_DOWN

neighbor 192.168.15.5 remote-as 65001

neighbor 192.168.15.5 activate

address-family ipv4 vrf z1 UP

neighbor 192.168.51.5 remote-as 65001

neighbor 192.168.51.5 activate

R3:

router bgp 110

address-family ipv4 vrf z1_SPOKE

neighbor 192.168.38.8 remote-as 65001

neighbor 192.168.38.8 activate

R4:

router bgp 110

address-family ipv4 vrf z1 SPOKE

neighbor 192.168.104.10 remote-as 65001

neighbor 192.168.104.10 activate

R5:

router bgp 65001

neighbor 192.168.15.1 remote-as 110

neighbor 192.168.51.1 remote-as 110

address-family ipv4 unicast

neighbor 192.168.15.1 activate

neighbor 192.168.51.1 activate

```
R9:
router bgp 110
address-family ipv4 vrf z1_SPOKE
neighbor 192.168.89.8 remote-as 65001
neighbor 192.168.89.8 activate
```

Na smerovači R1 sme však museli pridať niekoľko ďalších príkazov aby sme zabezpečili bezproblémovú prevádzku. V prvom rade bolo potrebné na linke v smere k R5 nastaviť as-override aby smerovač R5 nezahadzoval prevádzku smerovanú z AS 65001 pri prechode do rovnakého AS.

```
R1:
router bgp 110
address-family ipv4 vrf z1_DOWN
neighbor 192.168.15.5 as-override
```

V opačnom smere zas bolo potrebné nakonfigurovať a následne začať šíriť *default-route*, aby sa CE smerovače vedeli dostať na R5, ktorý bol HUB.

```
R1:
ip route vrf z1_UP 0.0.0.0 0.0.0 192.168.51.5

router bgp 110
address-family ipv4 vrf z1_UP
redistribute static
default-information originate
```

Overíme, či sa nám default-route zobrazila na smerovačoch R8 a R10.

3R8	3#sh ip bgp ipv4 u	nicast			
	Network	Next Hop	Metric	LocPrf	Weight Path
*	0.0.0.0	192.168.89.9			0 110 ?
*>		192.168.38.3			0 110 ?
*>	10.255.255.8/32	0.0.0.0	0		32768 i
*>	172.21.8.0/24	0.0.0.0	0		32768 i
3R1	LO#sh ip bgp ipv4	unicast			
	Network	Next Hop	Metri	c LocPrf	Weight Path
*>	0.0.0.0	192.168.104.4			0 110 ?
*>	10.255.255.10/3	2 0.0.0.0	()	32768 i
*>	172.22.10.0/24	0.0.0.0	(0	32768 i

5. Kontrola konektivity a overenie správnej konfigurácie

Kontrolu konektivity medzi dvoma SPOKE smerovačmi môžeme overiť pomocou príkazu ping. Keďže v rámci BGP ohlasujeme oba Loopbacky R8 aj R10, môžeme ping otestovať z akéhokoľvek rozhrania z týchto dvoch.

```
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 172.21.8.8, timeout is 2 seconds:
Packet sent with a source address of 172.22.10.10

!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 152/198/248 ms

3R8#ping 10.255.255.10 source lo0

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 10.255.255.10, timeout is 2 seconds:
Packet sent with a source address of 10.255.255.8

!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 148/184/244 ms
```

Overenie správnej konfigurácie vykonáme pomocou príkazu traceroute, a budeme sledovať cestu z R8 na R10. Ak je všetko správne nakonfigurované, potom by mala byť prevádzka smerovaná cez R5 (HUB).

```
3R8#traceroute 172.22.10.10 source lo10
Tracing the route to 172.22.10.10
VRF info: (vrf in name/id, vrf out name/id)
1 192.168.38.3 [AS 110] 28 msec 60 msec 24 msec
2 10.0.23.2 [AS 110] [MPLS: Labels 16/21 Exp 0] 88 msec 136 msec 104 msec
3 192.168.51.1 [AS 110] [MPLS: Label 21 Exp 0] 228 msec 128 msec 76 msec
4 192.168.51.5 [AS 110] 132 msec 84 msec 72 msec
5 192.168.15.1 [AS 110] 132 msec 84 msec 92 msec
6 * * *
7 192.168.104.4 [AS 110] [MPLS: Label 25 Exp 0] 204 msec 180 msec 180 msec
8 192.168.104.10 [AS 110] 220 msec * 168 msec
3R10#traceroute 10.255.255.8 source lo10
Tracing the route to 10.255.255.8
VRF info: (vrf in name/id, vrf out name/id)
1 192.168.104.4 [AS 110] 24 msec 24 msec 32 msec
2 10.0.24.2 [AS 110] [MPLS: Labels 16/21 Exp 0] 104 msec 80 msec 64 msec
  192.168.51.1 [AS 110] [MPLS: Label 21 Exp 0] 80 msec 84 msec
4 192.168.51.5 [AS 110] 80 msec 116 msec 168 msec
5 192.168.15.1 [AS 110] 72 msec 96 msec 56 msec
 10.0.12.2 [AS 110] [MPLS: Labels 17/23 Exp 0] 152 msec *
7 192.168.38.3 [AS 110] [MPLS: Label 23 Exp 0] 140 msec 148 msec 156 msec
8 192.168.38.8 [AS 110] 168 msec * 180 msec
```