Álgebra/Álgebra II/Álgebra Lineal Clase 14 - Autovalores y autovectores

FAMAF / UNC

4 de mayo de 2021

- Objetivos
- 2 Autovalores y autovectores
 - Definición
 - Ejemplo: la situación ideal
 - Autoespacios
- 3 Cómo calcular autovalores y autovectores
 - El polinomio característico
 - Ejemplo
 - R vs. C

En este archivo definiremos

- autovalor
- autovector
- polinomio característico

Y explicaremos como calcular estas cosas. Retomaremos estos tópicos más adelante en el contexto de transformaciones lineales.

Este archivo se basa en la Sección 2.9 del *Apunte* disponibles en classroom, siguiendo la misma numeración.

- Objetivos
- 2 Autovalores y autovectores
 - Definición
 - Ejemplo: la situación ideal
 - Autoespacios
- 3 Cómo calcular autovalores y autovectores
 - El polinomio característico
 - Ejemplo
 - R vs. C

Definición 2.9.1

Sea $A \in \mathbb{K}^{n \times n}$. Se dice que $\lambda \in \mathbb{K}$ es un autovalor de A si existe $v \in \mathbb{K}^n$ no nulo tal que

$$Av = \lambda v$$
.

En ese caso decimos que v es un autovector asociado a λ .

Ejemplo

1 es un autovalor de Id_n y todo $v\in\mathbb{K}^n$ es un autovector asociado a 1 pues

$$\operatorname{Id}_n v = v = \checkmark \checkmark$$

Observación

El autovalor puede ser 0 pero el autovector nunca puede ser 0

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, V = \begin{pmatrix} 1 \\ -1 \end{pmatrix}, W = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, U = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$$

$$AV = \begin{pmatrix} 0 \\ 0 \end{pmatrix} = D \cdot V \Rightarrow \lambda = 0 \text{ es auta valor}$$

$$AW = \begin{pmatrix} 2 \\ 2 \end{pmatrix} = 2 W \Rightarrow \lambda = 2 \text{ es auto valor}$$

$$AW = \begin{pmatrix} 2 \\ 2 \end{pmatrix} = 2 W \Rightarrow \lambda = 2 \text{ es auto valor}$$

$$AU = \begin{pmatrix} 4 \\ 4 \end{pmatrix} = 2u \Rightarrow \lambda = 7 \text{ os auto valor}$$

$$U = 2u \Rightarrow \lambda = 7 \text{ os auto valor}$$

$$U = 2u \Rightarrow \lambda = 7 \text{ os auto valor}$$

$$U = 2u \Rightarrow \lambda = 7 \text{ os auto valor}$$

$$U = 2u \Rightarrow \lambda = 7 \text{ os auto valor}$$

$$U = 2u \Rightarrow \lambda = 7 \text{ os auto valor}$$

$$U = 2u \Rightarrow \lambda = 7 \text{ os auto valor}$$

$$U = 2u \Rightarrow \lambda = 7 \text{ os auto valor}$$

$$U = 2u \Rightarrow \lambda = 7 \text{ os auto valor}$$

$$U = 2u \Rightarrow \lambda = 7 \text{ os auto valor}$$

$$U = 2u \Rightarrow \lambda = 7 \text{ os auto valor}$$

$$U = 2u \Rightarrow \lambda = 7 \text{ os auto valor}$$

$$U = 2u \Rightarrow \lambda = 7 \text{ os auto valor}$$

$$U = 2u \Rightarrow \lambda = 7 \text{ os auto valor}$$

$$U = 2u \Rightarrow \lambda = 7 \text{ os auto valor}$$

$$U = 2u \Rightarrow \lambda = 7 \text{ os auto valor}$$

$$U = 2u \Rightarrow \lambda = 7 \text{ os auto valor}$$

$$U = 2u \Rightarrow \lambda = 7 \text{ os auto valor}$$

$$U = 2u \Rightarrow \lambda = 7 \text{ os auto valor}$$

$$U = 2u \Rightarrow \lambda = 7 \text{ os auto valor}$$

$$U = 2u \Rightarrow \lambda = 7 \text{ os auto valor}$$

$$U = 2u \Rightarrow \lambda = 7 \text{ os auto valor}$$

$$U = 2u \Rightarrow \lambda = 7 \text{ os auto valor}$$

$$U = 2u \Rightarrow \lambda = 7 \text{ os auto valor}$$

$$U = 2u \Rightarrow \lambda = 7 \text{ os auto valor}$$

$$U = 2u \Rightarrow \lambda = 7 \text{ os auto valor}$$

$$U = 2u \Rightarrow \lambda = 7 \text{ os auto valor}$$

$$U = 2u \Rightarrow \lambda = 7 \text{ os auto valor}$$

$$U = 2u \Rightarrow \lambda = 7 \text{ os auto valor}$$

$$U = 2u \Rightarrow \lambda = 7 \text{ os auto valor}$$

$$U = 2u \Rightarrow \lambda = 7 \text{ os auto valor}$$

$$U = 2u \Rightarrow \lambda = 7 \text{ os auto valor}$$

$$U = 2u \Rightarrow \lambda = 7 \text{ os auto valor}$$

$$U = 2u \Rightarrow \lambda = 7 \text{ os auto valor}$$

$$U = 2u \Rightarrow \lambda = 7 \text{ os auto valor}$$

$$U = 2u \Rightarrow \lambda = 7 \text{ os auto valor}$$

$$U = 2u \Rightarrow \lambda = 7 \text{ os auto valor}$$

Definición 2.9.1

Sea $A \in \mathbb{K}^{n \times n}$. Se dice que $\lambda \in \mathbb{K}$ es un autovalor de A si existe $v \in \mathbb{K}^n$ no nulo tal que

$$Av = \lambda v$$
.

En ese caso decimos que v es un autovector asociado a λ .

Observación 2.9.2

La existencia de autovalores depende del cuerpo sobre el que estamos trabajando. Por ejemplo $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ no tiene autovalores si la pensamos como una matriz de $\mathbb{R}^{n\times n}$. Pero si tiene autovalores si la pensamos como matriz de $\mathbb{C}^{n\times n}$.

Pueden ver la demostración de estas afirmaciones en el apunte. Luego profundizaremos en esta cuestión.

Observación

En classroom pueden encontrar el artículo de divulgación "El Álgebra lineal detrás de los buscadores de internet" que trata sobre el algoritmo de búsqueda de Google que utiliza autovalores y autovectores.

- Objetivos
- 2 Autovalores y autovectores
 - Definición
 - Ejemplo: la situación ideal
 - Autoespacios
- 3 Cómo calcular autovalores y autovectores
 - El polinomio característico
 - Ejemplo
 - R vs. C

Definición 2.9.2

Dado $i \in \{1,...,n\}$, se denota e_i al vector de \mathbb{K}^n cuyas coordenadas son todas ceros excepto la coordenada i que es un 1

$$\underbrace{e_i} = \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix}$$

El conjunto $\{e_1, ..., e_n\}$ se llama base canónica de \mathbb{K}^n .

Ejemplo

En
$$\mathbb{K}^3$$
 los vectores son $e_1=\begin{pmatrix}1\\0\\0\end{pmatrix}$, $e_2=\begin{pmatrix}0\\1\\0\end{pmatrix}$, $e_3=\begin{pmatrix}0\\0\\1\end{pmatrix}$

Ejemplo: Matriz diagonal

Sea $D \in \mathbb{K}^{n \times n}$ una matriz diagonal con entradas λ_1 , λ_2 , ..., λ_n . Entonces e_i es un autovector con autovalor $\lambda_i \ \forall i \in \{1,...,n\}$

Demostración: Recordar que la multiplicación De_i se corresponde con multiplicar cada fila de e_i por el elemento correspondiente de la digonal. Como las filas (en este caso entradas) de e_i son todas nulas excepto un 1 en la entrada i resulta que $De_i = \lambda e_i$,

$$De_{i} = \begin{pmatrix} \lambda_{1} & \lambda_{2} & \lambda_{3} \\ \lambda_{1} & \lambda_{2} & \lambda_{3} \\ \lambda_{1} & \lambda_{2} & \lambda_{3} \end{pmatrix} = \lambda e_{i}$$

- Objetivos
- 2 Autovalores y autovectores
 - Definición
 - Ejemplo: la situación ideal
 - Autoespacios
- 3 Cómo calcular autovalores y autovectores
 - El polinomio característico
 - Ejemplo
 - R vs. C

Observación

Puede haber varios autovectores con el mismo autovalor.

Vimos esto en el ejemplo con Id y en el caso de la diagonal si tiene entradas iguales sucede lo mismo.

Más aún el conjunto de todos los autovectores con un mismo autovalor es invariante por la suma y la multiplicación por escalares.

En particular los múltiplos de un autovector es un autovector.

Definición 2.9.3

Sea $A\in\mathbb{K}^{n\times n}$ y $\lambda\in\mathbb{K}$ un autovalor de A. El autoespacio asociado a λ es

$$V_{\lambda} = \{ v \in \mathbb{K}^n \mid Av = \lambda v \}.$$

Es decir, V_{λ} es el conjunto formado por todos los autovectores asociados a λ y el vector nulo.

Observación

Incluimos el vector nulo porque, por definición, no es autovector

El siguiente teorema dice que un autoespacio es invariante por la suma y la multiplicación por escalares.

Teorema 2.9.4

Si v y w pertenecen al autoespacio de A asociado a λ , entonces v+tw también pertenece al autoespacio de A asociado a λ

Demostración:
$$\frac{HB}{B}$$
 AV = $\frac{1}{2}$ $\frac{1}{2}$ AW = $\frac{1}{2}$ $\frac{1}{2}$

El siguiente teorema dice que dos autovectores con autovalores distintos son distintos. UN ktolector No tieve Dos

Proposición 2.9.5

Sea $A\in\mathbb{K}^{n\times n}$ y $v,w\in\mathbb{K}^n$ con autovalores λ y μ . Si $\lambda\neq\mu$, entonces $v\neq w$.

Demostración: $O = A(V - \omega) = AV -$

- Objetivos
- 2 Autovalores y autovectores
 - Definición
 - Ejemplo: la situación ideal
 - Autoespacios
- 3 Cómo calcular autovalores y autovectores
 - El polinomio característico
 - Ejemplo
 - R vs. C

Problema

Hallar los autovalores de $A \in \mathbb{K}^{n \times n}$. Para cada autovalor, describir paramétricamente el autoespacio asociado.

det (A-X) donde

Kes ond

in Experita

En conclusión, hemos demostrado el siguiente resultado.

Proposición 2.9.6

Sea $A\in\mathbb{K}^{n\times n}$. Entonces $\lambda\in\mathbb{K}$ es un autovalor de A y $v\in\mathbb{K}^n$ es un autovector asociado a λ si y sólo si

$$\bullet (\det(A - \lambda \operatorname{Id}) = 0) \mathsf{y}$$

• v es solución del sistema homogéneo $(A - \lambda \operatorname{Id})X = 0$.

Para tener un control de los autovalores se introduce...

Definición 2.9.7

Sea $A \in \mathbb{K}^{n \times n}$. El polinomio característico de A es

$$\chi_A(x) = \det(A - x \operatorname{Id})$$

Proposición 2.9.8

Sea $A \in \mathbb{K}^{n \times n}$. Entonces $\lambda \in \mathbb{K}$ es un autovalor de A si y sólo si es λ es raíz del polinomio característico de A.

$$A = Jd = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \sim s \text{ out } \left(A - XJd \right) =$$

$$= \det \begin{pmatrix} 1 & 0 & 0 \\ 0 & 10 \\ 0 & 0 & 1 \end{pmatrix} \sim s \det \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} =$$

$$= \det \begin{pmatrix} 1 & 0 & 0 \\ 0 & 10 \\ 0 & 0 & 1 \end{pmatrix} \sim s \det \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} =$$

$$= \det \begin{pmatrix} 1 & 0 & 0 \\ 0 & 10 \\ 0 & 0 & 1 \end{pmatrix} \sim s \det \begin{pmatrix} 1 & 0 & 0 \\ 0 & 10 \\ 0 & 0 & 1 \end{pmatrix} =$$

$$= \det \begin{pmatrix} 1 & 0 & 0 \\ 0 & 10 \\ 0 & 0 & 1 \end{pmatrix} \sim s \det \begin{pmatrix} 1 & 0 & 0 \\ 0 & 10 \\ 0 & 0 & 1 \end{pmatrix} =$$

$$= \det \begin{pmatrix} 1 & 0 & 0 \\ 0 & 10 \\ 0 & 0 & 1 \end{pmatrix} \sim s \det \begin{pmatrix} 1 & 0 & 0 \\ 0 & 10 \\ 0 & 0 & 1 \end{pmatrix} =$$

$$= \det \begin{pmatrix} 1 & 0 & 0 \\ 0 & 10 \\ 0 & 1 \end{pmatrix} \sim s \det \begin{pmatrix} 1 & 0 & 0 \\ 0 & 10 \\ 0 & 1 \end{pmatrix} =$$

$$= \det \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix} \sim s \det \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix} =$$

$$= \det \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix} \sim s \det \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix} =$$

$$= \det \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix} =$$

$$= \det \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix} =$$

$$= \det \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix} =$$

$$= \det \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix} =$$

$$= \det \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix} =$$

$$= \det \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix} =$$

$$= \det \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix} =$$

$$= \det \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix} =$$

$$= \det \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix} =$$

$$= \det \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix} =$$

$$= \det \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix} =$$

$$= \det \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix} =$$

$$= \det \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix} =$$

$$= \det \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix} =$$

$$= \det \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix} =$$

$$= \det \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix} =$$

$$= \det \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix} =$$

$$= \det \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix} =$$

$$= \det \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix} =$$

$$= \det \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix} =$$

$$= \det \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix} =$$

$$= \det \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix} =$$

$$= \det \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix} =$$

$$= \det \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix} =$$

$$= \det \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix} =$$

$$= \det \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix} =$$

$$= \det \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix} =$$

$$= \det \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix} =$$

$$= \det \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix} =$$

$$= \det \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix} =$$

$$= \det \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix} =$$

$$= \det \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix} =$$

$$= \det \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix} =$$

$$= \det \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix} =$$

$$= \det \begin{pmatrix}$$

El polinomio característico de Id_n es

$$\chi_{\mathrm{Id}_n}(x) = (1-x)^n$$

$$A = \begin{pmatrix} 1 & 4 \\ 1 & 1 \end{pmatrix} \longrightarrow \chi(x) = dt \begin{pmatrix} A - x J_{0} \end{pmatrix}$$

$$= dt \begin{pmatrix} 1 - x & 1 \\ 1 & (-x) \end{pmatrix}$$

$$\chi(x) = (1 - x)^{2} - 1$$

$$= \chi^{2} - 2x + 1 - 1 = \chi^{2} - 2x$$

$$\chi(x) = \chi(2 - x)$$

$$\chi(x) = \chi(2 - x)$$

$$\chi(x) = \chi(3 - x)$$

$$\chi(x) = \chi($$

$$A = \begin{pmatrix} ab \\ cd \end{pmatrix}$$

$$\chi(x) = dit(A - xI)$$

$$= \begin{pmatrix} a-x \\ c & A-x \end{pmatrix}$$

$$= (a-x)(A-x) - bc$$

Propiedades

Sea $A \in \mathbb{K}^{n \times n}$. Entonces

- El polinomio característico es un polinomio de grado n.
- $oldsymbol{Q}$ A tiene a lo sumo n autovalores.

Observaciones

 Algunos libros definen el polinomio característico de la matriz A como $\tilde{\chi}_A(x) = \det(x \operatorname{Id}_n - A)$. En el Ejercicio 5 del Práctico 5 verán que ambas definiciones sirven para encontrar autovalores de A. El polinomio $\tilde{\chi}_A(x)$ tiene la particularidad de ser mónico, o sea que el coeficiente del término x^n es 1.

Conclusión

Problema

Hallar los autovalores de $A \in \mathbb{K}^{n \times n}$. Para cada autovalor, describir paramétricamente el autoespacio asociado.

Solución

- Calcular el polinomio característico $\chi_A(x)$.
- ② Los autovalores de A son las min raíces del polinomio característico $\chi_A(x)$.
- **③** Para cada autovalor λ , el autoespacio correspondiente es el conjunto de soluciones del sistema $(A \lambda \operatorname{Id})X = 0$.

Observación

En el Práctico 5 podrán observar las distintas situaciones que podemos encontrar respecto a autovalores y autoespacios.

- Objetivos
- 2 Autovalores y autovectores
 - Definición
 - Ejemplo: la situación ideal
 - Autoespacios
- 3 Cómo calcular autovalores y autovectores
 - El polinomio característico
 - Ejemplo
 - R vs. C

Problema

Hallar los autovalores de $A=\begin{pmatrix}0&1\\1&0\end{pmatrix}$. Para cada autovalor, describir paramétricamente el autoespacio asociado.

Respuesta

Los autovalores de A son 1 y -1.

El autoespacio asociado a 1 es

$$V_1 = \left\{ (x, x) \in \mathbb{K}^2 \mid x \in \mathbb{K} \right\}$$

El autoespacio asociado a -1 es

$$V_{-1} = \left\{ (-x, x) \in \mathbb{K}^2 \mid x \in \mathbb{K} \right\}$$

Demostración

1)
$$Y_A(x) = Att(A - xI_A)$$

$$= dt(-x | 1)$$

$$(x - x)$$

$$Y_A(x) = X^2 - 1 = (x-1)(x+n)$$
2) Los autovalores & A Son:
$$1 - 1$$

Demostración

Demostración

El autoes pacio d'soc d'
$$\lambda = -1$$

Es el cary & Sol dul 85t

$$\int (A - \lambda) J(A) = 0$$

$$\int (E) \begin{cases} x + y = 0 \\ x + y = 0 \end{cases}$$

$$\int (E) \begin{cases} x - x \\ x + y = 0 \end{cases}$$

$$\int (A - (-1)J(A) = 0$$

1 Objetivos
$$\begin{pmatrix} D \\ D \end{pmatrix} \begin{pmatrix} X \\ X \end{pmatrix} = \begin{pmatrix} X \\ X \end{pmatrix}$$
2 Autovalores y autovectores

- Autovalores y autovectores
 - Definición
 - Ejemplo: la situación ide
 - Autoespacios
- Cómo calcular autovalores y autovectores
 - El polinomio característico
 - Ejemplo
 - ullet R vs. ${\mathbb C}$

Consideremos la matriz

$$A = \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right)$$

Su polinomio característico es

$$\chi_A(x) = x^2 + 1.$$

Este polinomio no tiene raíces reales pero si complejas: $i\ {
m y}\ -i$

Conclusión 1

Si consideramos $A \in \mathbb{R}^{2 \times 2}$ entonces A no tiene autovalores.

Conclusión 2

Si consideramos $A \in \mathbb{C}^{2 \times 2}$ entonces i y -i son autovalores de A.

A modo de ejemplo calculemos el autoespacio asociado al autovalor i (con -i es similar) para la matriz

$$A = \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right).$$

Este es el conjunto de soluciones del sistema homogéneo

$$(A - i \operatorname{Id})X = 0$$

Aplicando el Método de Gauss...

$$\left(\begin{array}{cc} -i & -1 \\ 1 & -i \end{array}\right) \quad \stackrel{F_2-iF_1}{\longrightarrow} \left(\begin{array}{cc} -i & -1 \\ 0 & 0 \end{array}\right) \quad \stackrel{iF_1}{\longrightarrow} \left(\begin{array}{cc} 1 & -i \\ 0 & 0 \end{array}\right)$$

Entonces

$$(A - i\operatorname{Id})X = 0 \Longleftrightarrow \begin{pmatrix} 1 & -i \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 - ix_2 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\Rightarrow V_i = \operatorname{Sol}((A - i\operatorname{Id})X = 0) = \left\{ (ix_2, x_2) \in \mathbb{C}^2 \mid x_2 \in \mathbb{C} \right\}$$

