Experiment - 5

Pressure distribution over a circular cylinder

Arka Pramanick, AE21B007 Department of Aerospace Engineering IIT Madras

> Instructor: Professor Dr. R. Sriram

> > 14 March, 2023

1. Aim:

- Analysing pressure distribution and flow behaviour through a circular cylinder.
- Comparison of Theoretical and Experimental Coefficient of pressure at different points on circular cylinder.

2. Apparatus:

Required apparatus for performing this experiment are:

- Manometer
- C15-10 Armfield tunnel
- Pitot-static Probe
- Fan

Figure 1: C15-10 Armfield

3. Theory:

Considering a circular cylinder immersed in a uniform flow, the streamlines are shown as:

Figure 2: Streamlines of a flow through a circular Cylinder

At stagnation point $(P = P_0)$, no lifting flow or drag exists. Here velocity becomes maximum and pressure becomes minimum. The pressure exerted by the fluid on the on the front half of the cylinder is higher than pressure exerted on rear half. If the difference of this pressure is multiplied by projected area Drag Force is obtained. Unequal pressure distribution is observed across the cylindrical surface.

For flow around a circular cylinder can be considered as a uniform flow with a doublet. Therefore,

$$W(z) = U_{\infty}Z + \frac{K}{Z}$$

Stream function(Ψ) = $U_{\infty} r sin\theta - \frac{K sin\theta}{r}$ Velocity potential (ϕ) = $U_{\infty} r cos\theta + \frac{K cos\theta}{r}$

Velocity components are given by,

$$V_r = \frac{1}{r} \frac{\delta \psi}{\delta \theta} = \cos \theta (U_{\infty} - \frac{K}{r^2})$$

$$V_{\theta} = -\frac{\delta\psi}{\delta r} = -\sin\theta(U_{\infty} + \frac{K}{r^2})$$

Velocity components on the surface of cylinder (r = a) are:

$$V_{rs} = 0, V_{\theta s} = -2U_{\infty} sin\theta$$

For
$$\theta = 0^{\circ}$$
 and 180° , $V_{rs} = V_{\theta s} = 0$

These are the points denoting stagnation point. The velocity decreases from a value of $2U_{\infty}$ at $\theta = 90^{\circ}$ to U_{∞} on moving away in a normal direction.

Applying Bernoulli equation,

$$P_{\infty} + \frac{\rho U_{\infty}^2}{2} = P_s + \frac{\rho V_{\theta_s}^2}{2}$$

Substituting for $V_{\theta s} = -2U_{\infty} sin\theta$

$$C_p = \frac{P_s - P_{\infty}}{q_{\infty}}$$

$$C_p = 1 - 4\sin^2\theta$$

In the graph of C_p vs θ it is observed in region to the right of the centreline separation of flow is observed as viscous force dominates here.

Due to pressure difference flowing fluid exerts \mathbf{Drag} . Skin friction between the fluid and the cylinder causes drag force. Coefficient of Drag (C_d) is calculated by :

$$C_d = \frac{D/l}{(1/2)\rho v^2 S}$$

$$S = 2\pi R$$

4. Procedure:

- 1. In wind tunnel test section is set.
- 2. Pitot-static probe is connected to manometer.
- 3. Fan speed is fixed.
- 4. Required readings are taken.

5. Observation:

5.1 For Velocity = 10.2 m/s:

Table 1: Theoretical and Experimental C_p at different points on the surface of a cylinder for velocity 10.2 m/s

Points	Angle(in degrees)	Gauge Pressure(in mm of water)	Theoretical C_p	Experimental C_p
P_1	0	0.3	1	-0.044
P_2	20	2.6	0.532	-0.379
P_3	40	9.9	-0.653	-1.442
P_4	60	14.4	-2	-2.098
P_5	80	13.7	-2.879	-1.996
P_6	100	13.2	-2.879	-1.923
P_7	120	13.5	-2	-1.967
P_8	140	12.0	-0.653	-1.748
P_9	160	14	0.532	-2.040
P_{10}	180	0.3	1	-0.044

Figure 3: Variation of theoretical and experimental C_p with Angles

5.2 For Velocity = 8.1 m/s:

Table 2: Theoretical and Experimental C_p at different points on the surface of a cylinder for velocity 8.1 m/s

Points	Angle(in degrees)	Gauge Pressure(in mm of water)	Theoretical C_p	Experimental C_p
P_1	0	0.3	1	-0.069
P_2	20	1.9	0.532	-0.439
P_3	40	4.4	-0.653	-1.017
P_4	60	8.3	-2	-1.918
P_5	80	8.2	-2.879	-1.895
P_6	100	8	-2.879	-1.848
P_7	120	8.1	-2	-1.871
P_8	140	7.3	-0.653	-1.687
P_9	160	8.2	0.532	-1.895
P_{10}	180	4.4	1	-1.017

Figure 4: Variation of theoretical and experimental C_p with Angles

5.3 For Velocity = 14.3 m/s

Table 3: Theoretical and Experimental C_p at different points on the surface of a cylinder for velocity 14.3 m/s

Points	Angle(in degrees)	Gauge Pressure(in mm of water)	Theoretical C_p	Experimental C_p
P_1	0	0.6	1	-0.044
P_2	20	5	0.532	-0.371
P_3	40	12.9	-0.653	-0.956
P_4	60	20.3	-2	-1.505
P_5	80	19.5	-2.879	-1.446
P_6	100	19.1	-2.879	-1.416
P_7	120	19.4	-2	-1.438
P_8	140	17.3	-0.653	-1.282
P_9	160	20.1	-0.532	-1.490
P_{10}	180	0.3	1	-0.022

Figure 5: Variation of theoretical and experimental C_p with Angles

Drag vs Velocity:

Table 4: Variation of Drag with Velocity

Sl No.	Velocity	$\text{Drag}(\theta = 0^{\circ} \text{ to } \theta = 180^{\circ})$	Coeff of $Drag(C_d)$
1	8.1	0.54	0.135
2	10.2	1.24	0.196
3	12	1.82	0.207
4	14.3	2.63	0.211
5	16	3.43	0.220
6	18	4.25	0.215

Figure 6: Variation of theoretical and experimental C_p with Angles

6. Calculations:

6.1 Calculation of Coefficient of Pressure:

Coefficient of Pressure:

$$C_p = \frac{P - P_{\infty}}{\frac{\rho v^2}{2}} = 1 - 4\sin^2\theta$$

For velocity 10.2 m/s,

Gauge pressure at $0^{\circ} = -0.3$ mm of water $= 2.94 = P-P_{\infty}$ Experimental $C_p = \frac{P-P_{\infty}}{\frac{\rho v^2}{2}} = \frac{-0.3 \times 9.8}{(1/2) \times 1.293 \times 10.2^2} = -0.044$

Theoretical $C_p = 1 - 4 sin^2 \theta = 1$ (Putting $\theta = 0^{\circ}$)

6.2 Calculation of coefficient of Drag:

Drag:

$$D/l = \sum_{i=1}^{10} (P - P_{\infty}) r(\cos \theta_i) \Delta \theta_i$$

For velocity 10.2 m/s,

$$D = 1.24N$$

Coefficient of Drag:

$$C_d = \frac{D/l}{(1/2)\rho v^2 S} = \frac{1.24}{(1/2) \times 1.293 \times 10.2^2 (2\pi \times 15 \times 10^{-3})} = 0.196$$

7. Sources of Error:

- Error due to instrumental defect.
- Error may occur in taking readings before flow becomes steady.
- Error due to environmental effect like temperature, pressure change.
- Error in measurement due to presence of zero error in parameters.

8. Conclusion:

- Theoretical separation point is found just before 120° ($\approx 110^{\circ}$) but experimentally it is found between $140^{\circ} and 160^{\circ}$.
- Experimental variation of C_p deflects a litle from the pretical variation of C_p with angles.
- Drag first increases then remains almost constant on increasing flow velocity.