the mare occur increasingly important error for marine and air navigation. The major areas of radar application, in no particular order of importance, are briefly described below.

Air Traffic Control (ATC). Radars are employed throughout the world for the purpose of safely controlling air traffic en route and in the vicinity of airports. Aircraft and ground vehicular traffic at large airports are monitored by means of high-resolution radar. Radar has been used with GCA (ground-control approach) systems to guide aircraft to a safe landing in bad weather. In addition, the microwave landing system and the widely used ATC radar-beacon system are based in large part on radar technology.

Aircraft Navigation. The weather-avoidance radar used on aircraft to outline regions of precipitation to the pilot is a classical form of radar. Radar is also used for terrain avoidance and terrain following. Although they may not always be thought of as radars, the radio altimeter (either FM/CW or pulse) and the doppler navigator are also radars. Sometimes ground-mapping radars of moderately high resolution are used for aircraft navigation

purposes.

Ship Safety. Radar is used for enhancing the safety of ship travel by warning of potential collision with other ships, and for detecting navigation buoys, especially in poor visibility. In terms of numbers, this is one of the larger applications of radar, but in terms of physical size and cost it is one of the smallest. It has also proven to be one of the most reliable radar systems. Automatic detection and tracking equipments (also called plot extractors) are commercially available for use with such radars for the purpose of collision avoidance. Shore-based radar of moderately high resolution is also used for the surveillance of harbors as an aid to navigation.

Space. Space vehicles have used radar for rendezvous and docking, and for landing on the moon. Some of the largest ground-based radars are for the detection and tracking of satellites. Satellite-borne radars have also been used for remote sensing as mentioned

below.

Remote Sensing. All radars are remote sensors; however, as this term is used it implies the sensing of geophysical objects, or the "environment." For some time, radar has been used as a remote sensor of the weather. It was also used in the past to probe the moon and the planets (radar astronomy). The ionospheric sounder, an important adjunct for HF (short wave) communications, is a radar. Remote sensing with radar is also concerned with Earth resources, which includes the measurement and mapping of sea conditions, water resources, ice cover, agriculture, forestry conditions, geological formations, and environmental pollution. The platforms for such radars include satellites as well as aircraft.

Law Enforcement. In addition to the wide use of radar to measure the speed of automobile traffic by highway police, radar has also been employed as a means for the detection of

intruders.

Military. Many of the civilian applications of radar are also employed by the military. The traditional role of radar for military application has been for surveillance, navigation, and for the control and guidance of weapons. It represents, by far, the largest use of radar.