Parse tree for b*b-4*a*c

Annotated abstract syntax tree for b*b-4*a*c

- There are four operators (+, -, * and /), with two levels of precedence.
- The grammar imposes a *phrase structure* on expressions. In a * b + c the subexpression a * b is a phrase because it corresponds to a subtree of the derivation tree. This phrase structure gives effect to the precedence of the operators.
- The derivation of a * (b + c) the parentheses indicate a <factor>, so its
 derivation tree would be different.

Backus-Naur Form

Here is an example of a grammar:

The essential features of the BNF formalism are:

- 1. Angle brackets. These signify non-terminal symbols.
- 2. The symbol ::= which is read `is defined as'.
- 3. The symbol | which means 'or'.
- 4. The idea of a production rule.
- 5. A terminal symbol: anything not enclosed in angle brackets.

Ambiguous Grammar Example

Ambiguity

(from the exercises)

Legality and EBNF conversion

(from the exercises)

Syntax Diagrams and Extended BNF (EBNF)

```
term -> factor { ('*' | '/') factor }
factor -> '('exp ') ' | identifier
```


position := initial + rate * 60

Operational Semantics

Assignment Statements

$$E \mid - < exp > => v$$

$$E \mid - < identifer > = < exp > => E[< identifer > |-> v]$$

Axiomatic Semantics

assignment statements (axiom)

$$\{R(e)\}\ x := e\ \{R(x)\}\$$

sequencing program statements (rule of inference)