Homework 9

Problem 1. What is the expected number of trees with k vertices in $G \in \mathcal{G}(n, p)$?

Solution. By *Cayley's formula* and the linearity of expectation, it is $\binom{n}{k} k^{k-2} p^{k-1}$

Problem 2. Show that, for constant $p \in (0,1)$, almost no graph in G(n,p) has a separating complete subgraph.

Solution. This is an application of the 'almost always true of property $P_{i,j}$ '.

Detail:

- Separating subgraph: Given G = (V, E), and some $X \subseteq V \cup E$, we call X a separating subgraph if there exists two vertices $u, v \in V(G X)$ such that u, v are in the some component of G, while u, v lie in two disconnected components of G X (i.e., X separates u and v).
- **Separating complete subgraph**: If the above subgraph *X* is also a complete graph.

Now consider a graph G = (V, E) with property $\mathcal{P}_{2,1}$. We claim that a graph with property $\mathcal{P}_{2,1}$ has the following property: For any pair of vertices $u, v \in G$, there exists a pair of vertices w_1, w_2 such that

$$(w_1, u) \in E, (w_1, v) \in E$$

 $(w_2, u) \in E, (w_2, v) \in E$
 $(w_1, w_2) \notin E.$

To prove the claim: consider vertices u, v and an arbitrary vertex x. By property $\mathcal{P}_{2,1}$, there exists a vertex w_1 which is neighbor to u and v, but not to x. Now using property $\mathcal{P}_{2,1}$ again (with x replaced by w_1) it follows that there exists a vertex w_2 which is neighbor to u and v, but not to w_1 . Thus the claim holds.

Finally, consider a complete subgraph $H \subset G$ and two arbitrary vertices u and v in G - V(H). By the claim above, there are two non-adjacent vertices w_1 and w_2 in G which are both neighbors of both u and v. Since H is complete, it follows that w_1 and w_2 cannot both belong to H, therefore remove H will not separate u and v. In another word, H does not separate G. The statement now follows since almost all graphs in G(n, p) have property $\mathcal{P}_{2,1}$ for any constant $p \in (0, 1)$.

Problem 3. Show that if almost all $G \in \mathcal{G}(n, p)$ have a graph property \mathcal{P}_1 and almost all $G \in \mathcal{G}(n, p)$ have a graph property \mathcal{P}_2 , then almost all $G \in \mathcal{G}(n, p)$ have both properties.

Solution. The portion of the graphs have both properties equals 1 minus the portion of the graphs which does not have property \mathcal{P}_1 or \mathcal{P}_2 . However the portion of the graph does not have property \mathcal{P}_1 or \mathcal{P}_2 is bounded by the sum of the portion of the graphs does not have property \mathcal{P}_1 and the portion of the graphs does not have property \mathcal{P}_2 , which both tend to 0 as n approaches ∞ . The claim in the question then follows.

Problem 4. Consider G(n, p) with $p = \frac{1}{3n}$.

1. Use the second moment method to show that with high probability there exists a simple path of length 10.

Solution. [Use the second moment method]

$$I_{\ell} = \begin{cases} 1 & \ell \text{ is a length } 10 \text{ simple path} \\ 0 & \text{otherwise} \end{cases}$$

X is the number of simple path, then $X = \sum_{\ell} I_{\ell}$.

The expectation would be $E(X) = \frac{1}{2}(n)_{11} \times p^{10}$. Thus

$$(E(X))^2 = \frac{1}{4} [(n)_{11}]^2 \times p^{20}$$
 (**)

(Note (\star) is about $\Theta(n^2)$.)

Then to calculate $E(X^2)$.

$$E(X^2) = E\left[\left(\sum_{\ell} I_{\ell}\right)^2\right] = E\left[\sum_{\ell} I_{\ell} \sum_{\ell'} I_{\ell'}\right] = \sum_{\ell \ell'} E(I_{\ell}I_{\ell'}) \tag{\Delta}$$

 ℓ and ℓ' will be independent to each other unless they have common vertices or edges. We use $k = |\ell \cap \ell'|$ to stand for the number of common edges between ℓ and ℓ' , and $s = |\ell \cap \ell'|$ to stand for the number of common vertices used by ℓ and ℓ' . Obviously $(0 \le k \le 10) \land (0 \le s \le 11) \land (k \ge 1 \to s \ge k+1)$.

 (Δ) can be divided into the following subcases:

1.
$$k = 0$$

(a)
$$s = 0$$
: $\sum_{\ell,\ell'} E(I_{\ell}I_{\ell'}) = \frac{1}{8}(n)_{22} \times p^{20} \le (E(X))^2$;

- (b) $1 \le s \le 11$: for each s, $\sum_{\ell,\ell'} E(I_{\ell}I_{\ell'}) = c \cdot (n)_{22-s} \times (p)^{20} = \mathbf{o}((E(X))^2)$, where c is a constant number.
- 2. $1 \le k \le 10 \ (2 \le s \le 11)$

The general formula of each of these cases (constant many) would be

$$\sum_{\ell,\ell'} E(I_{\ell}I_{\ell'}) = d \cdot (n)_{22-s} \times p^{20-k}$$

$$\leq d \cdot (n)_{22-s} \times p^{20-(s-1)}$$

$$= d \cdot (n)_{22-s} \times p^{21-s}$$

$$= \mathbf{o}((E(X))^2)$$

Combining the above results we get that $Var(X) = E(X^2) - (E(X))^2 = \mathbf{o}((E(X))^2)$.

Problem 5. (Optional)

- 1. Prove that the threshold for the existence of cycles in $\mathcal{G}(n,p)$ is $p=\frac{1}{n}$.
- 2. Search the World Wide Web to find some real world graphs in machine readable form or data bases that could automatically be converted to graphs.
 - (a) Plot the degree distribution of each graph.
 - (b) Compute the average degree of each graph.
 - (c) Count the number of connected components of each size in each graph.
 - (d) Describe what you find.
- 3. Create a simulation (an animation) to show the evolution of the $\mathcal{G}(n,p)$ (Erdös-Rényi) random graph as its density p is gradually increased. Observe the phase transitions for trees of increasing orders, followed by the emergence of the giant component, etc.

Problem 6. (Optional)

Prove that 'the disappearance of isolated vertices in $\mathbf{G}(n,p)$ ' has a sharp threshold of $\frac{\ln n}{n}$.

Solution. John's book, Theorem 8.6. - -+