MA 101 (Mathematics – I) Integration : Lecture Notes

1 Riemann integral

Integration Class 1

[1.1] DEFINITION A partition or subdivision P of an interval [a, b] is a finite set $\{x_0, x_1, \ldots, x_n\}$ such that $a = x_0 < x_1 < \cdots < x_{n-1} < x_n = b$. The points x_i are called the **nodes** of P. We will write P as $P = \{a = x_0 < x_1 < \cdots < x_n = b\}$.

[1.2] EXAMPLE (i) Trivial partition: $P = \{a = x_0 < x_1 = b\}.$

(ii) $\mathbf{P}_n = \{a = x_0 < x_1 < \dots < x_n = b\}$, where $n \in \mathbb{N}$ and $x_i = a + \frac{i}{n}(b-a)$. \mathbf{P}_n divides [a, b] into n subintervals of equal length.

For this section, f will always mean a function $f:[a,b]\to\mathbb{R}$ that is bounded.

[1.3] DEFINITION For a partition $P = \{a = x_0 < \dots < x_n = b\}$ of [a, b] define

$$m_k = \text{glb}\{f(x) : x \in [x_{k-1}, x_k]\}, M_k = \text{lub}\{f(x) : x \in [x_{k-1}, x_k]\},$$

lower sum of f w.r.t. P: $L(f,P) := \sum_{k=1}^{n} m_k (x_k - x_{k-1}),$ upper sum of f w.r.t. P: $U(f,P) := \sum_{k=1}^{n} M_k (x_k - x_{k-1}).$

[1.4] EXERCISE If $f(x) = x^4 - 4x^3 + 10$ for $x \in [1,4]$ and $P = \{1 < 2 < 3 < 4\}$, calculate U(f,P) and L(f,P). [Fact: f is decreasing in [1,3] and increasing in [3,4].]

[1.5] RESULT Let $m = \text{glb}\{f(x) : x \in [a, b]\}$ and $M = \text{lub}\{f(x) : x \in [a, b]\}$. Then

$$m(b-a) \le L(f,P) \le U(f,P) \le M(b-a).$$

[1.6] DEFINITION

Lower integral of f: $L(f) = \int_a^b f(x)dx := \text{lub}\{L(f, P) : P \text{ is a partition of } [a, b]\}.$

Upper integral of f: $U(f) = \int_a^b f(x)dx := glb\{U(f, P) : P \text{ is a partition of } [a, b]\}.$

[1.7] RESULT $L(f) \leq U(f)$. We will see soon why this is so.

[1.8] DEFINITION The function $f:[a,b] \to \mathbb{R}$ is said to be (Riemann or Darboux) integrable if L(f) = U(f) on [a,b]. The common value is called the integral of f over [a,b] and is denoted by I(f) or $I_a^b(f)$ or $\int_a^b f$ or $\int_a^b f(x)dx$. By $\mathcal{R}[a,b]$ we denote the set of all integrable functions on [a,b].

2 Bhaba Sarma

[1.9] EXAMPLE If $f:[a,b]\to\mathbb{R}$ is a constant function and f(x)=c, then f is integrable and $\int_a^b f=c(b-a)$.

- [1.10] EXERCISE (1) Is the function f(x) = 0 for $0 \le x < 1$ and f(1) = 1, integrable?
- (2) Is the Dirichlet function f:[0,1] defined by f(x)=1, if $x\in\mathbb{Q}$, and 0, otherwise, integrable?
- (3) Is the function f:[0,1] defined by f(x)=x, if $x\in\mathbb{Q}$, and 0, otherwise, integrable?

[Hint. Let $P = \{0 = x_0 < x_1 < \dots < x_n = 1\}$ and $\frac{1}{2} \in [x_{i-1}, x_i]$. Then $U(f, P) \ge \frac{1}{2}(1 - x_{i-1}) \ge 1/4$. However, L(f, P) = 0.]

[1.11] DEFINITION For partitions P and Q of [a, b], Q is called a **refinement** of P, if $P \subseteq Q$.

 \mathbb{Q} : When is \mathbf{P}_m a refinement of \mathbf{P}_n ?

[1.12] RESULT If Q is a refinement of P, then $L(f, P) \leq L(f, Q) \leq U(f, Q) \leq U(f, P)$.

Proof. First, suppose $P = \{a = x_0 < x_1 < \dots < x_n = b\}$ and Q has one more point s (say) than P, with $x_{i-1} < s < x_i < .$ Then

$$m_i^{(1)} := \text{glb}\{f(x) : x \in [x_{i-1}, s]\} \ge m_i,$$

$$m_i^{(2)} := \text{glb}\{f(x) : x \in [s, x_i]\} \ge m_i.$$

Therefore, $L(f,Q) - L(f,P) = (m_i^{(1)} - m_i)(s - x_{i-1}) + (m_i^{(2)} - m_i)(x_{i-1} - s) \ge 0$, i.e., $L(f,P) \le L(f,Q)$. Now, it is clear that if Q is obtained by adding several (a finitely many) points to P, then $L(f,P) \le L(f,Q)$. Similarly, $U(f,Q) \le U(f,P)$.

[1.13] RESULT If P and Q are partitions of [a,b], then $L(f,P) \leq U(f,Q)$. Therefore we have

$$m(b-a) \le L(f) \le U(f) \le M(b-a).$$

Proof. $L(f, P) \le L(f, P \cup Q) \le U(f, P \cup Q) \le U(f, Q)$.

[1.14] RESULT Suppose there is sequence (P_n) of partitions of [a,b] such that $L(f,P_n) \to \alpha$ and $U(f,P_n) \to \alpha$. Then $f \in \mathcal{R}[a,b]$ and $\int_a^b f = \alpha$.

Proof. $L(f) \ge \alpha$ and $U(f) \le \alpha$.

[1.15] EXERCISE

- (1) For f(x) = x on [0,1] calculate $L(f, \mathbf{P}_n)$ and $U(f, \mathbf{P}_n)$, conclude $f \in \mathcal{R}[0,1]$, and find $\int_a^b f$.
- (2) For $f(x) = x^2$ on [0,1] calculate $L(f, \mathbf{P}_n)$ and $U(f, \mathbf{P}_n)$, conclude $f \in \mathcal{R}[0,1]$, and find $\int_a^b f$. [Hint. $L(f, \mathbf{P}_n) = \sum_{i=1}^n \left(\frac{i-1}{n}\right)^2 \frac{1}{n} \to \frac{1}{3}, U(f, \mathbf{P}_n) = \sum_{i=1}^n \left(\frac{i}{n}\right)^2 \frac{1}{n} \to \frac{1}{3}.$]
- [1.16] THEOREM (Riemann condition for Integrability) A bounded function $f : [a, b] \to \mathbb{R}$ is integrable if and only if for each $\epsilon > 0$ there exists a partition P such that $U(f, P) L(f, P) < \epsilon$.

Proof. Exercise.

[1.17] EXAMPLE Take $f(x) = x^3$ on [0, 1]. Let $\epsilon > 0$. Then

$$U(f, \mathbf{P}_n) - L(f, \mathbf{P}_n) = \frac{1}{n} \sum_{i=1}^n \left[\left(\frac{i}{n} \right)^3 - \left(\frac{i-1}{n} \right)^3 \right] = \frac{1}{n} (f(1) - f(0)) = \frac{1}{n} < \epsilon$$

for large n. Thus, $f \in \mathcal{R}([0,1])$.

Q: Suppose f is monotone on [a, b]. Is $f \in \mathcal{R}([a, b])$? Can we use the idea of above example?

[1.18] REMARK Let $f \in \mathcal{R}([a,b])$. Then, for each $n \in \mathbb{N}$, there is a partition P_n such that $U(f,P_n)-L(f,P_n)<\frac{1}{n}$. Since $L(f,P_n)\leq \int_a^b f\leq U(f,P_n)$, we then have

$$\lim_{n \to \infty} L(f, P_n) = \lim_{n \to \infty} U(f, P_n) = \int_a^b f.$$

Thus, if you can get hold of such a sequence of partitions, then you can (possibly) find out the integral taking a limit. However, it does not say how to find such a sequence.

[1.19] DEFINITION For a partition $P = \{a = x_0 < x_1 < \dots < x_n = b\}$ of [a, b] the **mesh** of P is defined to be $||P|| = \max\{x_i - x_{i-1} : 1 \le i \le n\}$, i.e., maximum length of the subintervals P produces.

[1.20] THEOREM (Darboux condition) Let $f:[a,b] \to \mathbb{R}$ be bounded. Then $f \in \mathcal{R}([a,b])$ if and only if for every $\epsilon > 0$, there is $\delta > 0$ such that $U(f,P) - L(f,P) < \epsilon$ whenever $||P|| < \delta$. Proof. Omitted.

- [1.21] REMARK Suppose $f \in \mathcal{R}([a,b])$. Then, $\int_a^b f = \lim_{n \to \infty} L(f, \mathbf{P}_n)$. Similarly, $\int_a^b f = \lim_{n \to \infty} U(f, \mathbf{P}_n)$.
- [1.22] EXERCISE Suppose you know that $\lim_{n\to\infty} U(f, \mathbf{P}_n) = \ell$. Is it true that $f \in \mathcal{R}([a,b])$? [Hint. Take the Dirichlet function on [0,1].]

Integration Class 2

[1.23] EXERCISE Suppose $f : [c, d] \to \mathbb{R}$ be bounded and $m = \text{glb}\{f(x) : x \in [c, d]\}$ and $M = \text{lub}\{f(x) : x \in [c, d]\}$. Show that $M - m = \text{lub}\{|f(x) - f(y)| : x, y \in [c, d]\}$.

[1.24] RESULT (Algebra of integrals) Let $f, g \in \mathcal{R}([a, b])$, and $\alpha \in \mathbb{R}$. Then

- 1. $f + g \in \mathcal{R}([a, b])$ and $\int_a^b (f + g) = \int_a^b f + \int_a^b g$.
- 2. $\alpha f \in \mathcal{R}([a,b])$ and $\int_a^b (\alpha f) = \alpha \int_a^b f$.
- 3. $|f| \in \mathcal{R}([a,b])$. (Converse?)
- 4. $f^2 \in \mathcal{R}([a,b])$.

4 Bhaba Sarma

- 5. $fg \in \mathcal{R}([a,b])$.
- 6. if $0 < m \le f \le M$, then $1/f \in \mathcal{R}([a, b])$.
- 7. $\max\{f, g\}, \min\{f, g\} \in \mathcal{R}([a, b]).$
- 8. If a < c < b, then $f \in \mathcal{R}([a,c]), f \in \mathcal{R}([c,b]), \text{ and } \int_a^c f + \int_c^b f = \int_a^b f$.

Proof.

1. Let $\epsilon > 0$. There are partitions P_1 and P_2 such that $U(f, P_1) - L(f, P_1) < \epsilon/2$ and $U(g, P_2) - L(g, P_2) < \epsilon/2$. Let $P = P_1 \cup P_2$. Then $U(f + g, P) - L(f + g, P) < \epsilon$, since

$$L(f,P) + L(g,P) \le L(f+g,P) \le U(f+g,P) \le U(f,P) + U(g,P).$$

Therefore $f+g \in \mathcal{R}([a,b])$. Now, note that $\int_a^b f + \int_a^b g$ and $\int_a^b (f+g)$ both lie in the interval [L(f,P)+L(g,P),U(f,P)+U(g,P)] which is of length ϵ . Thus, $\left|\left(\int_a^b f + \int_a^b g\right) - \int_a^b (f+g)\right| < \epsilon$. Since ϵ is arbitrary, $\int_a^b (f+g) = \int_a^b f + \int_a^b g$.

- 2. If $\alpha \geq 0$, then glb $\{\alpha f(x) : x \in [x_{i-1}, x_i]\} = \alpha m_i$, and so $L(\alpha f, P) = \alpha L(f, P)$, etc.
- 3. $U(|f|, P) L(|f|, P) \le U(f, P) L(f, P)$. Converse is not true, e.g., f(x) = 1, if $x \in [0, 1] \cap \mathbb{Q}$, and f(x) = -1, if $x \in [0, 1] \cap \mathbb{Q}^c$.
- 4. There is M > 0 such that $|f(x)| \le M$ for $x \in [a, b]$. Then, for $x, y \in [a, b]$ we have $|f(x)^2 f(y)^2| \le 2M|f(x) f(y)|$. For a partition P,

$$U(f^{2}, P) - L(f^{2}, P) = \sum_{i=1}^{n} (x_{i} - x_{i-1}) \operatorname{lub}\{|f(x)^{2} - f(y)^{2}| : x \in [x_{i-1}, x_{i}]\}$$

$$\leq 2M \sum_{i=1}^{n} (x_{i} - x_{i-1}) \operatorname{lub}\{|f(x) - f(y)| : x \in [x_{i-1}, x_{i}]\}$$

$$= 2M(U(f, P) - L(f, P)).$$

- 5. Follows from $|(1/f)(x) (1/f)(y)| \le \frac{1}{m^2} |f(x) f(y)|$.
- 6. Follows from $fg = \frac{1}{2}((f+g)^2 f^2 g^2)$. Use the previous results.
- 7. $\max\{f,g\} = \frac{1}{2}(f+g+|f-g|), \min\{f,g\} = \frac{1}{2}(f+g-|f-g|).$
- 8. Let $\epsilon > 0$. Take Q such that $U(f,Q) L(f,Q) < \epsilon$. Set $P = Q \cup \{c\}, P_1 = P \cap [a,c]$ and $P_2 = P \cap [c,b]$. Then $L(f,P) = L(f,P_1) + L(f,P_2)$ and $U(f,P_1) + U(f,P_2) = U(f,P)$. Thus,

$$\int_{a}^{b} f - \epsilon < L(f, P_1) + L(f, P_2) \le U(f, P_1) + U(f, P_2) < \int_{a}^{b} f + \epsilon.$$

Thus, $U(f, P_1) - L(f, P_1) < 2\epsilon$, yielding $f \in \mathcal{R}([a, c])$. Similarly, $f \in \mathcal{R}([c, b])$. Finally, observe that $\left| \left(\int_a^c f + \int_c^b f \right) - \int_a^b f \right| < \epsilon$.

[1.25] RESULT Suppose $f:[a,b] \to \mathbb{R}$, a < c < b, $f \in \mathcal{R}([a,c])$ and $f \in \mathcal{R}([c,b])$. Then, $f \in \mathcal{R}([a,b])$ and $\int_a^b f = \int_a^c f + \int_c^b f$.

Proof. Exercise.

[1.26] EXAMPLE We have now many functions integrable on [a, b] x, any polynomial, $\sin x$ (as monotone in subintervals), $x \sin x$, etc.

[1.27] RESULT Let $f:[a,b] \to \mathbb{R}$.

- 1. If $f \geq 0$ and $f \in \mathcal{R}([a,b])$, then $\int_a^b f \geq 0$.
- 2. If $f, g \in \mathcal{R}([a, b])$ and $f \leq g$, then $\int_a^b f \leq \int_a^b g$.
- 3. If $f \in \mathcal{R}([a,b])$, then $|\int_a^b f| \le \int_a^b |f|$.

Proof. (1) Follows from the fact that $L(f, P) \ge 0$ for every partition p of [a, b], since $f \ge 0$.

- (2) $f \leq g$ implies $\int_a^b g \int_a^b f = \int_a^b (g f) \geq 0$, by (1).
- (3) Note that $f \in \mathcal{R}([a,b])$ implies $|f| \in \mathcal{R}([a,b])$. [(3) of [1.24]]. Now, $-|f| \leq f \leq |f|$, and therefore by (2),

$$-\int_{a}^{b} |f| = \int_{a}^{b} -|f| \le \int_{a}^{b} f \le \int_{a}^{b} |f|, \text{ i.e. } |\int_{a}^{b} f| \le \int_{a}^{b} |f|.$$

[1.28] DEFINITION Let $S \subseteq \mathbb{R}$. A function $f: S \to \mathbb{R}$ is **uniformly continuous** (on S), if given $\epsilon > 0$, there is $\delta > 0$ such that $x, y \in S, |x - y| < \delta \implies |f(x) - f(y)| < \epsilon$.

- [1.29] RESULT (1) If $f: S \to \mathbb{R}$ is uniformly continuous, then f is continuous.
- (2) A continuous function f on a closed interval is uniformly continuous.

Proof. (1) Follows from the definition.

(2) Suppose f is continuous, but not uniformly continuous on [a, b]. Then, there is $\epsilon > 0$ such that for each $n \in \mathbb{N}$, there are $x_n, y_n \in [a, b]$ such that $|x_n - y_n| < 1/n$ and $|f(x_n) - f(y_n)| \ge \epsilon$. Since (x_n) is bounded, by BWT, (x_n) has convergent subsequence (x_{n_k}) , converging to c, say. Then, $c \in [a, b]$. Further,

$$|y_{n_k} - c| \le |y_{n_k} - x_{n_k}| + |x_{n_k} - c| < \frac{1}{n_k} + |x_{n_k} - c| \to 0,$$

that is, $y_n \to c$. Since f is continuous at c, we have $|f(x_{n_k}) - f(y_{n_k})| \to |c - c| = 0$. However, this cannot happen because $|f(x_{n_k}) - f(y_{n_k})| \ge \epsilon$ for every k. Hence, f must be uniformly continuous.

[1.30] THEOREM If f is continuous on [a,b], then $f \in \mathcal{R}([a,b])$.

Proof. Let $\epsilon > 0$. Then there is $n \in \mathbb{N}$ such that

$$x, y \in [a, b], |x - y| < \frac{1}{n} \implies |f(x) - f(y)| < \frac{\epsilon}{b - a}.$$

Thus, for \mathbf{P}_n , $M_i - m_i = \text{lub}\{|f(x) - f(y)| : x, y \in [x_{i-1}, x_i]\} \leq \frac{\epsilon}{b-a}$. Consequently,

$$U(f, \mathbf{P}_n) - L(f, \mathbf{P}_n) = \sum_{i=1}^n (M_i - m_i)(x_i - x_{i-1}) \le \frac{\epsilon}{b-a} = \epsilon.$$

[1.31] RESULT If $f:[a,b] \to \mathbb{R}$ is bounded and continuous on [a,b) (or on (a,b]), then $f \in \mathcal{R}([a,b])$.

Proof. Assume |f| < M f is continuous on [a, b). Let $\epsilon > 0$. Write $[a, b] = I_1 \cup I_2$, where

$$I_1 = \left[a, b - \frac{\epsilon}{4M}\right], \quad I_2 = \left[b - \frac{\epsilon}{4M}, b\right].$$

Since f is continuous on I_1 , we have $f \in \mathcal{R}(I_1)$. So, there is a partition P_1 of I_1 such that $U(f, P_1) - L(f, P_1) < \epsilon/2$. Moreover, $\text{lub}\{|f(x) - f(y)| : x, y \in I_2\} \le 2M$. Now, $P = P_1 \cup \{b\}$ is a partition of [a, b] and

$$U(f, P) - L(f, P) = (U(f, P_1) - L(f, P_1)) + 2M \cdot \frac{\epsilon}{4M} < \epsilon.$$

Therefore, $f \in \mathcal{R}([a, b])$. Similarly, when f is continuous on (a, b].

 \mathbb{Q} : Suppose $f:[a,b]\to\mathbb{R}$ is bounded and $C=\{x\in[a,b]:f$ is discontinuous at $x\}$.

- 1. Is $f \in \mathcal{R}([a,b])$, if $C = \{c\}$ where $c \in (a,b)$? A: Yes. Use [1.31] and [1.25].
- 2. Is $f \in \mathcal{R}([a,b])$, if C is finite? A: Yes. Use part (1) and [1.25].
- 3. Is $f \in \mathcal{R}([a,b])$, if $C = \{c_n : n \in \mathbb{N}\}$ where $c_n \to c \in [a,b]$? A: Yes. Use the idea of the proof of [1.31] and part (2).
- 4. Is $f \in \mathcal{R}([a,b])$, if C infinite? A: No. Take Dirichlet function.
- 5. Is $f \in \mathcal{R}([a,b])$, if C infinite having finitely many limit points? A: Yes. Use the idea of the proof of [1.31] and part (2).

[1.32] Example

- 1. Let $f(x) = \sin \frac{1}{x}$ if $x \neq 0$, and f(0) = 1. Then, $f \in \mathcal{R}([0,1])$.
- 2. Let f(x) = 0 if $x \in (0, 1]$, and f(0) = c. Then, $f \in \mathcal{R}([0, 1])$. Further, $\int_0^1 f = \lim_{n \to \infty} L(f, \mathbf{P}_n) = 0$.

[1.33] COROLLARY Let $c_1, \ldots, c_k \in [a, b]$, and $f : [a, b] \to \mathbb{R}$ be such that f(x) = 0 for $x \notin \{c_1, \ldots, c_n\}$. Then $f \in \mathcal{R}([a, b])$ and $\int_a^b f = 0$.

Proof. Exercise.

[1.34] RESULT Let $f \in \mathcal{R}([a,b])$ and $g:[a,b] \to \mathbb{R}$ be such $g(x) \neq f(x)$ for only finitely many points $x \in [a,b]$. Then $g \in \mathcal{R}([a,b])$ and $\int_a^b g = \int_a^b f$.

Proof. Apply [1.33] to f - g.

Q: Can you improve the above result?

[1.35] EXAMPLE The Thomae's function is integrable: $f:[0,1]\to\mathbb{R}$ where

$$f(x) = \begin{cases} 1/q, & \text{if } x = p/q \in \mathbb{Q}, \gcd(p, q) = 1\\ 0, & \text{otherwise.} \end{cases}$$

Let $\epsilon > 0$. Since for any partition P, we have L(f, P) = 0, it is enough to find a partition P such that $U(f, P) < \epsilon$. Now, there are only finitely many points $0, c_1, \ldots, c_k, 1$ (in increasing order) in [0, 1] where f takes value $> \epsilon/2$. Choose $\delta < \frac{\epsilon}{4(k+1)}$ so that we get a partition

$$P = \{0 < \delta < c_1 - \delta < c_1 + \delta < \dots < 1 - \delta < 1\}$$

of [a, b]. Then the contribution of $[0, \delta]$ and $[1 - \delta, 1]$ to U(f, P) is $\delta + \delta = 2\delta$. The total contribution of the intervals $[c_i - \delta, c_i + \delta]$ is $\leq k \cdot 2\delta$. The contribution of the rest of the intervals is less than $\epsilon/2$, since the total length of these intervals is less than 1 and $f(x) \leq \epsilon/2$ for x in these intervals. Hence,

$$U(f, P) < 2\delta + 2k\delta + \epsilon/2 = 2(k+1)\delta + \epsilon/2 < \epsilon.$$

This shows, $f \in \mathcal{R}([0,1])$. Further, $\int_a^b f = \lim L(f, \mathbf{P}_n) = 0$.

[1.36] EXAMPLE Composition of integrable functions need not be integrable. Take f as Thomae's function on [0,1] and $g:[0,1] \to \mathbb{R}$ defined by g(0)=0 and g(x)=1, elsewhere. Then $g \circ f$ is the Dirichlet function!

To be continued.