Pole Shed App Ver 01 2022

 Job No.:
 165 Webber Road South Head
 Address:
 165 Webber Roa, South Head, New Zealand
 Date:
 08/04/2024

 Latitude:
 -36.574965
 Longitude:
 174.306362
 Elevation:
 82.5 m

General Input

Roof Live Load	0.25 KPa	Roof Dead Load	0.25 KPa	Roof Live Point Load	1.1 Kn
Snow Zone	N0	Ground Snow Load	0 KPa	Roof Snow Load	0 KPa
Earthquake Zone	1	Subsoil Category	D	Exposure Zone	C
Importance Level	1	Ultimate wind & Earthquake ARI	100 Years	Max Height	3 m
Wind Region	NZ1	Terrain Category	2.56	Design Wind Speed	46.32 m/s
Wind Pressure	1.29 KPa	Lee Zone	NO	Ultimate Snow ARI	50 Years
Wind Category	Very High	Earthquake ARI	100		

Note: Wind lateral loads are governing over Earthquake loads, So only wind loads are considered in calculations

Pressure Coefficients and Pressues

Shed Type = Mono Open

For roof Cp, i = 0.7

For roof CP,e from 0 m To 2.70 m Cpe = -0.9 pe = -1.04 KPa pnet = -2.02 KPa

For roof CP,e from 2.70 m To 5.40 m Cpe = -0.5 pe = -0.58 KPa pnet = -1.56 KPa

For wall Windward Cp, i = 0.7 side Wall Cp, i = -0.65

For wall Windward and Leeward $\,$ CP,e $\,$ from 0 m $\,$ To 7.2 m $\,$ Cpe = 0.7 $\,$ pe = 0.66 KPa $\,$ pnet = 1.39 KPa

For side wall CP,e from 0 m To 2.70 m Cpe = pe = -0.61 KPa pnet = 0.12 KPa

Maximum Upward pressure used in roof member Design = 2.02 KPa

Maximum Downward pressure used in roof member Design = 0.82 KPa

Maximum Wall pressure used in Design = 1.39 KPa

Maximum Racking pressure used in Design = 1.39 KPa

Design Summary

Purlin Design

Purlin Spacing = 700 mm Purlin Span = 3450 mm Try Purlin 150x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and does not remain in continuous wet condition after installation)

 $K1~Short~term = 1 \\ K1~Medium~term = 0.8 \\ K1~Long~term = 0.6 \\ K4 = 1 \\ K5 = 1 \\ K8~Downward = 1.00 \\$

K8 Upward =0.96 S1 Downward =9.63 S1 Upward =13.24

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

M1.35D	0.35 Kn-m	Capacity	1.26 Kn-m	Passing Percentage	360.00 %
M1.2D+1.5L 1.2D+Sn 1.2D+WnDn	1.26 Kn-m	Capacity	1.68 Kn-m	Passing Percentage	133.33 %
$M_{0.9D ext{-W}nUp}$	-1.87 Kn-m	Capacity	-2.01 Kn-m	Passing Percentage	107.49 %
V1.35D	0.41 Kn	Capacity	7.24 Kn	Passing Percentage	1765.85 %
V1.2D+1.5L 1.2D+Sn 1.2D+WnDn	1.35 Kn	Capacity	9.65 Kn	Passing Percentage	714.81 %
$V_{0.9D\text{-W}nUp}$	-2.17 Kn	Capacity	-12.06 Kn	Passing Percentage	555.76 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3 considering at least 4 members acting together

k2 for Long Term Loads = 2

Deflection under Dead and Live Load = 7.76 mm
Deflection under Dead and Service Wind = 11.76 mm

Limit by Woolcock et al, 1999 Span/240 = 14.17 mm Limit by Woolcock et al, 1999 Span/100 = 34.00 mm

Reactions

Second page

Maximum downward = 1.35 kn Maximum upward = -2.17 kn

Number of Blocking = 1 if 0 then no blocking required, if 1 then one midspan blocking required

Rafter Design Internal

Internal Rafter Load Width = 3600 mm

Internal Rafter Span = 5850 mm

Try Rafter 2x300x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K1 Medium term = 0.8 K1 Long term = 0.6 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward =1.00 S1 Downward =6.81 S1 Upward =6.81

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

M _{1.35D}	5.20 Kn-m	Capacity	10.08 Kn-m	Passing Percentage	193.85 %
M1.2D+1.5L 1.2D+Sn 1.2D+WnDn	17.25 Kn-m	Capacity	13.44 Kn-m	Passing Percentage	77.91 %
$M_{0.9D ext{-W}nUp}$	-27.64 Kn-m	Capacity	-16.8 Kn-m	Passing Percentage	60.78 %
V1.35D	3.55 Kn	Capacity	28.94 Kn	Passing Percentage	815.21 %
V1.2D+1.5L 1.2D+Sn 1.2D+WnDn	11.79 Kn	Capacity	38.6 Kn	Passing Percentage	327.40 %
$ m V_{0.9D-WnUp}$	-18.90 Kn	Capacity	-48.24 Kn	Passing Percentage	255.24 %

Deflections

Modulus of Elasticity = 5400 MPa NZS3603 Amt 4, Table 2.3

k2 for Long Term Loads = 2

Deflection under Dead and Live Load = 13.5 mm
Deflection under Dead and Service Wind = 22.75 mm

Limit by Woolcock et al, 1999 Span/240 = 25.00 mmLimit by Woolcock et al, 1999 Span/100 = 60.00 mm

Reactions

Maximum downward =11.79 kn Maximum upward = -18.90 kn

Rafter to Pole Connection check

Bolt Size = M16 Number of Bolts = 3

Calculations as per NZS 3603:1993 Amend 2005 clause 4.4

Joint Group for Rafters =J5 Joint Group for Pole = J5

Minimum Bolt edge, end and spacing for Load perpendicular to grains = 80 mm

Factor of Safety = 0.7

For Perpendicular to grain loading

K11 = 14.9 fpj = 12.9 Mpa for Rafter with effective thickness = 100 mm

For Parallel to grain loading

K11 = 2.0 fcj = 36.1 Mpa for Pole with effective thickness = 100 mm

Capacity under short term loads = 43.34 Kn > -18.90 Kn

Intermediate Design Sides

Intermediate Spacing = 3000 mm

Intermediate Span = 2550 mm

Try Intermediate 2x150x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward =1.00 S1 Downward =9.63 S1 Upward =0.51

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

Pole Shed App Ver 01 2022

 $M_{Wind+Snow}$ 1.69 Kn-m Capacity 4.2 Kn-m Passing Percentage 248.52 % $V_{0.9D-WnUp}$ 2.66 Kn Capacity 24.12 Kn Passing Percentage 906.77 %

Deflections

Modulus of Elasticity = 5400 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 15.105 mm

Limit by Woolcock et al, 1999 Span/100 = 25.50 mm

Reactions

Maximum = 2.66 kn

Girt Design Front and Back

Girt's Spacing = 800 mm Girt's Span = 3600 mm

Try Girt 150x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and does not remain in continuous wet condition after installation)

K8 Upward =0.95 S1 Downward =9.63 S1 Upward =13.62

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

 $M_{Wind+Snow}$ 1.80 Kn-m Capacity 1.99 Kn-m Passing Percentage 110.56 % $V_{0.9D\text{-}Wn\text{Up}}$ 2.00 Kn Capacity 12.06 Kn Passing Percentage 603.00 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 25.81 mm

Limit by Woolcock et al, 1999 Span/100 = 36.00 mm

Sag during installation = 10.18 mm

Reactions

Maximum = 2.00 kn

Girt Design Sides

Girt's Spacing = 800 mm Girt's Span = 3000 mm Try Girt 150x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward =0.79 S1 Downward =9.63 S1 Upward =17.59

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

 Mwind+Snow
 1.25 Kn-m
 Capacity
 1.65 Kn-m
 Passing Percentage
 132.00 %

 Vo.9D-WnUp
 1.67 Kn
 Capacity
 12.06 Kn
 Passing Percentage
 722.16 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 12.45 mm Limit by Woolcock et al. 1999 Span/100 = 30.00 mm

Sag during installation =4.91 mm

Reactions

Maximum = 1.67 kn

Middle Pole Design

Geometry

175 SED H5 (Minimum 200 dia. at Floor Level) Dry Use Height 2700 mm

 Area
 27598 mm2
 As
 20698.2421875 mm2

 Ix
 60639381 mm4
 Zx
 646820 mm3

 Iy
 60639381 mm4
 Zx
 646820 mm3

Lateral Restraint 1300 mm c/c

Loads

Total Area over Pole = 10.8 m²

 Dead
 2.70 Kn
 Live
 2.70 Kn

 Wind Down
 8.86 Kn
 Snow
 0.00 Kn

Moment wind 8.42 Kn-m

 Phi
 0.8
 K8
 1.00

 K1 snow
 0.8
 K1 Dead
 0.6

K1wind 1

Material

Peeling Steaming Normal Dry Use fb = 36.3 MPa fs = 2.96 MPa 18 MPa fc = fp = 7.2 MPa ft = 22 MPa E =9257 MPa

Capacities

 PhiNcx Wind
 397.41 Kn
 PhiMnx Wind
 18.78 Kn-m
 PhiVnx Wind
 49.01 Kn

 PhiNcx Dead
 238.44 Kn
 PhiMnx Dead
 11.27 Kn-m
 PhiVnx Dead
 29.41 Kn

Checks

(Mx/PhiMnx)+(N/phiNcx) = 0.48 < 1 OK

 $(Mx/PhiMnx)^2+(N/phiNcx) = 0.24 < 1 \text{ OK}$

Deflection at top under service lateral loads = $17.08 \text{ mm} \le 27.00 \text{ mm}$

Drained Lateral Strength of Middle pile in cohesionless soils Free Head short pile

Assumed Soil Properties

Gamma 18 Kn/m3 Friction angle 30 deg Cohesion 0 Kn/m3

 $K0 = \frac{(1-\sin(30)) / (1+\sin(30))}{Kp = \frac{(1+\sin(30)) / (1-\sin(30))}{(1-\sin(30))}}$

Geometry For Middle Bay Pole

 $\begin{array}{lll} \text{Ds} = & & 0.6 \text{ mm} & & \text{Pile Diameter} \\ \text{L} = & & 1400 \text{ mm} & & \text{Pile embedment length} \end{array}$

f1 = 2250 mm Distance at which the shear force is applied f2 = 0 mm Distance of top soil at rest pressure

Loads

Moment Wind = 8.42 Kn-m Shear Wind = 3.74 Kn

Pile Properties

Safety Factory 0.55

Hu = 6.70 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 9.21 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.92 < 1 OK

End Pole Design

Geometry For End Bay Pole

Geometry

150 SED H5 (Minimum 175 dia. at Floor Level)	Dry Use	Height	2700 mm
Area	20729 mm2	As	15546.6796875 mm2

 Ix
 34210793 mm4
 Zx
 421056 mm3

 Iy
 34210793 mm4
 Zx
 421056 mm3

Lateral Restraint mm c/c

Loads

Total Area over Pole = 10.8 m2

 Dead
 2.70 Kn
 Live
 2.70 Kn

 Wind Down
 8.86 Kn
 Snow
 0.00 Kn

Moment Wind 4.21 Kn-m

 Phi
 0.8
 K8
 0.83

 K1 snow
 0.8
 K1 Dead
 0.6

K1wind 1

Material

Peeling	Steaming	Normal	Dry Use
fb =	36.3 MPa	fs =	2.96 MPa
fc =	18 MPa	fip =	7.2 MPa
ft =	22 MPa	E =	9257 MPa

Capacities

PhiNex Wind	248.61 Kn	PhiMnx Wind	10.18 Kn-m	PhiVnx Wind	36.81 Kn
PhiNcx Dead	149.17 Kn	PhiMnx Dead	6.11 Kn-m	PhiVnx Dead	22.09 Kn

Checks

(Mx/PhiMnx)+(N/phiNcx) = 0.47 < 1 OK

 $(Mx/PhiMnx)^2+(N/phiNcx) = 0.23 < 1 \text{ OK}$

Deflection at top under service lateral loads = 16.78 mm < 29.93 mm

 $\begin{array}{lll} \text{Ds} = & 0.6 \text{ mm} & \text{Pile Diameter} \\ \text{L} = & 1400 \text{ mm} & \text{Pile embedment length} \end{array}$

f1 = 2250 mm Distance at which the shear force is applied f2 = 0 mm Distance of top soil at rest pressure

Loads

Total Area over Pole = 10.8 m²

Pile Properties

Safety Factory 0.55

Hu = 6.70 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 9.21 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = $0.46 \le 1 \text{ OK}$

Pole Shed App Ver 01 2022

Drained Lateral Strength of End pile in cohesionless soils Free Head short pile

Assumed Soil Properties

Gamma 18 Kn/m3 Friction angle 30 deg Cohesion 0 Kn/m3

 $K0 = \frac{(1-\sin(30)) / (1+\sin(30))}{Kp} = \frac{(1+\sin(30)) / (1-\sin(30))}{(1-\sin(30))}$

Geometry For End Bay Pole

Ds = 0.6 mm Pile Diameter

L= 1400 mm Pile embedment length

f1 = 2250 mm Distance at which the shear force is applied f2 = 0 mm Distance of top soil at rest pressure

Loads

 $\label{eq:moment Wind} \begin{tabular}{ll} Moment Wind = & 4.21 \ Kn-m \\ Shear Wind = & 1.87 \ Kn \end{tabular}$

Pile Properties

Safety Factory 0.55

Hu = 6.70 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 9.21 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.46 < 1 OK

Uplift Check

Density of Concrete = 24 Kn/m3

Density of Timber Pole = 5 Kn/m3

Due to cast in place pile, the surface interaction between soil and pile will be rough thus angle of friction between both is taken equal to soil angle of internal friction

Ks (Lateral Earth Pressure Coefficient) for cast into place concrete piles = 1.5

 $Formula \ to \ calculate \ Skin \ Friction = Safecty \ factor \ (0.55) \ x \ Density \ of \ Soil (18) \ x \ Height \ of \ Pile (1400) \ x \ Ks (1.5) \ x \ 0.5 \ x \ tan (30) \ x \ Pi \ x \ Dia \ of \ Pile (0.6) \ x \ Height \ of \ Pile (1400) \ x \ Hei$

Skin Friction = 15.83 Kn

Weight of Pile + Pile Skin Friction = 19.92 Kn

Uplift on one Pile = 19.39 Kn

Uplift is ok