UNIVERSIDAD GALILEO

Postgrado en Análisis y Predicción de Datos

Curso: Algoritmos en la Ciencia de Datos Horario: lunes: 18:00 – 21:00

Tutor: PhD. Alberth Alvarado

Edgar Geovany Ocaña Orozco – 24010004 Andrea María Hernández Marroquín – 240110074

Guatemala, 01 de septiembre de 2024

2. SECCIÓN DOCUMENTAL DE EXPERIMENTACIÓN

1.) Función Cuadrática

Step size exacto:

Step size constante:

0.001

Step size variable:

$x_0 = [-1,2,-3]$

Exacto

$x_0 = [-1,2,-3]$

variable

Funcion Cuadratica: $f(x) 1/2x^TQx+c^Tx$

Resolve	er		
Iter	Xn	P_k	P_grad
1.00	0.50 -2.00 0.50	3.00 -8.00 7.00	11.05
2.00	-1.50 0.50 -1.50	-4.00 5.00 -4.00	7.55
3,00	-0.25 -1.50 -0.25	2.50 -4.00 2.50	5.34
4.00	-1.25 -0.25 -1.25	-2.00 2.50 -2.00	3.77
5.00	-0.62 -1.25 -0.62	1.25 -2.00 1.25	2.67
6.00	-1.12 -0.62 -1.12	-1.00 1.25 -1.00	1.89
7.00	-0.81 -1.12 -0.81	0.62 -1.00 0.62	1.33
8.00	-1.06 -0.81 -1.06	-0.50 0.62 -0.50	0.94
9.00	-0.91 -1.06 -0.91	0.31 -0.50 0.31	0.67
10.00	-1.03 -0.91 -1.03	-0.25 0.31 -0.25	0.47
11.00	-0.95 -1.03 -0.95	0.16 -0.25 0.16	0.33
12.00	-1.02 -0.95 -1.02	-0.12 0.16 -0.12	0.24
13.00	-0.98 -1.02 -0.98	0.08 -0.12 0.08	0.17
14.00	-1.01 -0.98 -1.01	-0.06 0.08 -0.06	0.12
15.00	-0.99 -1.01 -0.99	0.04 -0.06 0.04	80.0
16.00	-1.00 -0.99 -1.00	-0.03 0.04 -0.03	0.06
17.00	-0.99 -1.00 -0.99	0.02 -0.03 0.02	0.04
18.00	-1.00 -0.99 -1.00	-0.02 0.02 -0.02	0.03
19.00	-1.00 -1.00 -1.00	0.01 -0.02 0.01	0.02
20.00	-1.00 -1.00 -1.00	-0.01 0.01 -0.01	0.01
21.00	-1.00 -1.00 -1.00	0.00 -0.01 0.00	0.01
22.00	-1.00 -1.00 -1.00	-0.00 0.00 -0.00	0.01
23.00	-1.00 -1.00 -1.00	0.00 -0.00 0.00	0.01
24.00	-1.00 -1.00 -1.00	-0.00 0.00 -0.00	0.00
25.00	-1.00 -1.00 -1.00	0.00 -0.00 0.00	0.00
26.00	-1.00 -1.00 -1.00	-0.00 0.00 -0.00	0.00
27.00	-1.00 -1.00 -1.00	0.00 -0.00 0.00	0.00
28.00	-1.00 -1.00 -1.00	-0.00 0.00 -0.00	0.00
29.00	-1.00 -1.00 -1.00	0.00 -0.00 0.00	0.00
30.00	-1.00 -1.00 -1.00	-0.00 0.00 -0.00	0.00
31.00	-1.00 -1.00 -1.00	0.00 -0.00 0.00	0.00
32.00	-1.00 -1.00 -1.00	-0.00 0.00 -0.00	0.00
33.00	-1.00 -1.00 -1.00	0.00 -0.00 0.00	0.00
34.00	-1.00 -1.00 -1.00	-0.00 0.00 -0.00	0.00
35.00	-1.00 -1.00 -1.00	0.00 -0.00 0.00	0.00
36.00	-1.00 -1.00 -1.00	-0.00 0.00 -0.00	0.00

Problema 2 x0 = (0; 0)T y un step-size de _k = 0.05 para todo k

 $x_0 = (0.2)$

UNIVERSIDAD

 $x_0 = (134,235)$

alpha_k = 0.001

$x_0 = (0,0)$

975.00	0.45 0.31	-21.17 19.92	29.07
976.00	0.55 0.20	20.09 -21.20	29.20
977.00	0.44 0.30	-21.04 20.01	29.03
978.00	0.54 0.20	19.59 -20.85	28.61
979.00	0.44 0.29	-19.95 19.28	27.74
980.00	0.53 0.19	18.41 -19.59	26.89
981.00	0.44 0.28	-18.21 17.94	25.56
982.00	0.53 0.20	16.83 -17.76	24.47
983.00	0.45 0.28	-16,22 16,30	23.00
984.00	0.52 0.20	15.15 -15.76	21.86
985.00	0.45 0.27	-14.30 14.64	20.47
986.00	0.52 0.20	13.59 -13.88	19.42
987.00	0.45 0.27	-12.63 13.14	18.23
988.00	0.52 0.21	12.25 -12.28	17.34
989.00	0.46 0.27	-11.28 11.88	16.39
990.00	0.52 0.21	11.18 -11.00	15.68
991.00	0.46 0.27	-10.25 10.89	14.96
992.00	0.52 0.22	10.38 -10.04	14.44
993.00	0.47 0.27	-9.52 10.17	13.93
994.00	0.52 0.22	9.84 -9.37	13.59
995.00	0.47 0.27	-9.06 9.69	13.27
996.00	0.52 0.22	9.52 -8.97	13.08
997.00	0.48 0.27	-8.85 9.44	12.94
998.00	0.52 0.23	9.42 -8.80	12,89
999.00	0.48 0.27	-8.87 9.40	12.92
1000.00	0.53 0.23	9.53 -8.87	13.02

alpha_k = 0.001

$x_0 = (0,0)$

975.00	0.45 0.31	-21.17 19.92	29.07
976.00	0.55 0.20	20.09 -21.20	29.20
977.00	0.44 0.30	-21.04 20.01	29.03
978.00	0.54 0.20	19.59 -20.85	28.61
979.00	0.44 0.29	-19.95 19.28	27.74
980.00	0.53 0.19	18.41 -19.59	26.89
981.00	0.44 0.28	-18.21 17.94	25.56
982.00	0.53 0.20	16.83 -17.76	24.47
983.00	0.45 0.28	-16.22 16.30	23.00
984.00	0.52 0.20	15.15 -15.76	21.86
985.00	0.45 0.27	-14.30 14.64	20.47
986.00	0.52 0.20	13.59 -13.88	19.42
987.00	0.45 0.27	-12.63 13.14	18.23
988.00	0.52 0.21	12.25 -12.28	17.34
989.00	0.46 0.27	-11.28 11.88	16.39
990.00	0.52 0.21	11.18 -11.00	15.68
991.00	0.46 0.27	-10.25 10.89	14.96
992.00	0.52 0.22	10.38 -10.04	14.44
993.00	0.47 0.27	-9.52 10.17	13.93
994.00	0.52 0.22	9.84 -9.37	13.59
995.00	0.47 0.27	-9.06 9.69	13.27
996.00	0.52 0.22	9.52 -8.97	13.08
997.00	0.48 0.27	-8.85 9.44	12.94
998.00	0.52 0.23	9.42 -8.80	12.89
999.00	0.48 0.27	-8.87 9.40	12.92
1000.00	0.53 0.23	9.53 -8.87	13.02

3. SECCIÓN DOCUMENTAL DE CONCLUSIONES

- 1) ¿Que sucede con el algoritmo para las distintas elecciones de alpha_k? Con los con un valor de 0.5 el algoritmo tiende a tener un descenso de gradiente bastante rapido, y con un valor de 0.001, el descenso de gradiente lo hace de forma lineal
- 2) ¿Afecta la elección del punto inicial x_0 el comportamiento del algoritmo? No, los cambios en x_0 no afectan significativamente el comportamiento del algoritmo
- 3) ¿Qué característica particular tiene esta función? Los valores con un valor de Alpha = 0.05 tienden a infinito rápidamente