第四章(非线性方程(组)解法)习题

- 1、请给出计算 \sqrt{a} 的一种三阶收敛的迭代函数。
- 2、设 $\phi(x)$ 是二阶可微函数, $\phi(\alpha) = \alpha$ 且 $\phi'(\alpha) \neq 1$, 证明对迭代格式 $x_{k+1} = \phi(x_k)$ 经过 Steffensen 加速后的方法至少具有二阶收敛速度.
- 3、用下列方法求 $f(x) = x^3 3x 1 = 0$ 在 $x_0 = 2$ 附近的根. (精确解为 $x^* = 1.87938524 \cdots$, 要求至少要有四位有效数字)
 - (1) Newton 迭代法, $x_0 = 2$;
 - (2) 弦截法, $x_0 = 2$, $x_1 = 1.9$;
 - (3) 抛物线方法, $x_0 = 1$, $x_1 = 3$, $x_2 = 2$.
- 4、用 Newton 法和求重根迭代法计算方程 $f(x) \equiv (\frac{x}{2} \sin x)^2 = 0$ 的近似根,取 $x_0 = \frac{\pi}{2}$. 要求至少要有 5 位有效数字.
- 5、特征值问题 $Ax = \lambda x$ (这里 $A \in \mathbb{R}^{n \times n}$)等价于解方程组 f(z) = 0 ,这里 $f: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n \times \mathbb{R}$ 定义为

$$f: \left(\begin{array}{c} x \\ \lambda \end{array}\right) \mapsto \left(\begin{array}{c} Ax - \lambda x \\ x^T x - 1 \end{array}\right)$$

请写出解以上方程组 f(z) = 0 的牛顿迭代法。