Práctico 8

Ejercicios resueltos.

(1) Dar las coordenadas de la matriz $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \in \mathbb{K}^{2 \times 2}$ en la base ordenada

$$\mathcal{B} = \left\{ \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \right\}.$$

Más generalmente, dar las coordenadas de cualquier matriz $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ en la base \mathcal{B} .

Solución:

Es claro que

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = 2 \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + 4 \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} + 1 \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + 3 \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix},$$

luego

$$[A]_{\mathcal{B}} = \begin{bmatrix} 2\\4\\1\\3 \end{bmatrix}.$$

Análogamente,

$$G := \begin{bmatrix} a & b \\ c & d \end{bmatrix} = b \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + d \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} + a \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix},$$

luego

$$[G]_{\mathcal{B}} = \begin{bmatrix} b \\ d \\ a \\ c \end{bmatrix}.$$

(2) Dar las coordenadas del polinomio $p(x) = -1 + 10x + 2x^2 \in \mathbb{K}_3[x]$ en la base ordenada $\mathcal{B} = \{1, 1 + x, 1 + x + x^2\}.$

Solución:

$$[p(x)]_{\mathcal{B}} = (a, b, c) \text{ si y solo si}$$

$$-1 + 10x + 2x^2 = a \cdot 1 + b(1+x) + c(1+x+x^2)$$

$$= a + b + bx + c + cx + cx^2$$

$$= (a + b + c) + (b + c)x + cx^2$$

si y solo si

$$\begin{cases} -1 &= a+b+c \\ 10 &= b+c \\ 2 &= c \end{cases} \Leftrightarrow \begin{cases} a &= -11 \\ b &= 8 \\ c &= 2 \end{cases}$$

Es decir, $[p(x)]_{\mathcal{B}} = (-11, 8, 2)$.

- (3) a) Dar una base ordenada del subespacio $W = \{(x, y, z) \in \mathbb{K}^3 \mid x y + 2z = 0\}.$
 - b) Dar las coordenadas de w = (1, -1, -1) en la base que haya dado en el item anterior.
 - c) Dado $(x, y, z) \in W$, dar las coordenadas de (x, y, z) en la base que haya calculado en el item (a).

Solución:

a) Tenemos que:

$$W = \{(x, y, z) \in \mathbb{K}^3 \mid x = y - 2z\} = \{(y - 2z, y, z) \mid y, z \in \mathbb{K}\}\$$

= \{t(1, 1, 0) + s(-2, 0, 1) \cdot t, s \in \mathbb{K}\} = \langle((1, 1, 0), (-2, 0, 1)\rangle.

Luego $\mathcal{B} = \{(1, 1, 0), (-2, 0, 1)\}$ es una base ordenada de W.

b) Planteamos

$$w = (1, -1, -1) = a(1, 1, 0) + b(-2, 0, 1) = (a - 2b, a, b).$$
 Así, $a = -1$ y $b = -1$. Por lo tanto,
$$[w]_{\mathcal{B}} = (-1, -1).$$

c) Análogamente a lo que hemos hecho en el punto anterior planteamos

$$(x, y, z) = a(1, 1, 0) + b(-2, 0, 1) = (a - 2b, a, b).$$

Luego a = y y b = z. Por lo tanto,

$$[(x, y, z)]_{\mathcal{B}} = (y, z).$$

- (4) Sea \mathcal{C} la base canónica de \mathbb{R}^2 y $\mathcal{B} = \{(1,0), (1,1)\}$ otra base ordenada de \mathbb{R}^2 .
 - a) Encontrar la matriz de cambio de base $P_{\mathcal{C},\mathcal{B}}$ de \mathcal{C} a \mathcal{B} .
 - b) Encontrar la matriz de cambio de base $P_{\mathcal{B},\mathcal{C}}$ de \mathcal{B} a \mathcal{C} .
 - c) ¿Qué relación hay entre $P_{\mathcal{C},\mathcal{B}}$ y $P_{\mathcal{B},\mathcal{C}}$?
 - d) Encontrar $(x, y), (z, w) \in \mathbb{R}^2$ tal que $[(x, y)]_{\mathcal{B}} = (1, 4)$ y $[(z, w)]_{\mathcal{B}} = (1, -1)$.
 - e) Determinar las coordenadas de (2,3), y más generalmente de cualquier (x,y), en la base \mathcal{B} .

Solución:

a) $P_{\mathcal{C},\mathcal{B}} = [\mathrm{Id}]_{\mathcal{CB}}$. Ahora bien,

$$Id(1,0) = (1,0) = 1(1,0) + 0(1,1)$$

$$Id(0,1) = (0,1) = (-1)(1,0) + 1(1,1).$$

Por lo tanto,

$$P_{\mathcal{C},\mathcal{B}} = [\mathrm{Id}]_{\mathcal{CB}} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}.$$

b) $P_{\mathcal{B},\mathcal{C}} = [\mathrm{Id}]_{\mathcal{B}\mathcal{C}}$. Ahora bien,

$$Id(1,0) = (1,0) = 1(1,0) + 0(0,1)$$

$$Id(1,1) = (1,1) = 1(1,0) + 1(0,1).$$

Por lo tanto,

$$P_{\mathcal{B},\mathcal{C}} = [\mathsf{Id}]_{\mathcal{B}\mathcal{C}} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}.$$

c) Como

$$\begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix},$$

entonces $P_{\mathcal{C},\mathcal{B}}$ y $P_{\mathcal{B},\mathcal{C}}$ son una inversa de la otra. Sabemos de las clase teóricas que dicha relación vale en general.

d)

$$[(x,y)]_{\mathcal{B}} = (1,4) \Leftrightarrow (x,y) = 1(1,0) + 4(1,1)$$

 $\Leftrightarrow x = 5 \land y = 4.$

También es posible hacerlo por la matriz de cambio de base:

$$\begin{bmatrix} x \\ y \end{bmatrix} = [(x, y)]_{\mathcal{C}} = P_{\mathcal{B}, \mathcal{C}} [(x, y)]_{\mathcal{B}} = P_{\mathcal{B}, \mathcal{C}} \begin{bmatrix} 1 \\ 4 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 4 \end{bmatrix} = \begin{bmatrix} 5 \\ 4 \end{bmatrix}.$$

Análogamente,

$$[(z, w)]_{\mathcal{B}} = (1, -1)$$
 \Leftrightarrow $(z, w) = 1(1, 0) + (-1)(1, 1)$
 \Leftrightarrow $z = 0$ \land $w = -1$.

También es posible hacerlo por la matriz de cambio de base:

$$\begin{bmatrix} z \\ w \end{bmatrix} = P_{\mathcal{B},\mathcal{C}} \left[(z, w) \right]_{\mathcal{B}} = P_{\mathcal{B},\mathcal{C}} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}.$$

e)

$$[(2,3)]_{\mathcal{B}} = P_{\mathcal{C},\mathcal{B}} [(2,3)]_{\mathcal{C}} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} -1 \\ 3 \end{bmatrix}.$$

El caso general se hace de forma análoga,

$$[(x,y)]_{\mathcal{B}} = P_{\mathcal{C},\mathcal{B}} [(x,y)]_{\mathcal{C}} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x-y \\ y \end{bmatrix}.$$

(5) Sea
$$P = \begin{bmatrix} 1 & 1 & 0 \\ 2 & 1 & 1 \\ 3 & 1 & 0 \end{bmatrix} \in \mathbb{K}^{3\times 3}$$
.

- a) Calcular la inversa de P.
- $\stackrel{b}{)}$ Dar una base ordenada \mathcal{B} de \mathbb{K}^3 tal que P es la matriz de cambio de base de la base canónica \mathcal{C} de \mathbb{K}^3 a la base \mathcal{B} .
- c) Encontrar $(x, y, z) \in \mathbb{K}^3$ tal que su vector de coordenadas con respecto a \mathcal{B} es

$$[(x, y, z)]_{\mathcal{B}} = (2, -1, -1).$$

Solución:

a)

$$\begin{bmatrix} 1 & 1 & 0 & | & 1 & 0 & 0 \\ 2 & 1 & 1 & | & 0 & 1 & 0 \\ 3 & 1 & 0 & | & 0 & 0 & 1 \end{bmatrix} \xrightarrow{F_2 - 2F_1} \begin{bmatrix} 1 & 1 & 0 & | & 1 & 0 & 0 \\ 0 & -1 & 1 & | & -2 & 1 & 0 \\ 0 & -2 & 0 & | & -3 & 0 & 1 \end{bmatrix}$$

$$\xrightarrow{-F_2} \begin{bmatrix} 1 & 1 & 0 & | & 1 & 0 & 0 \\ 0 & 1 & -1 & | & 2 & -1 & 0 \\ 0 & -2 & 0 & | & -3 & 0 & 1 \end{bmatrix} \xrightarrow{F_1 - F_2} \begin{bmatrix} 1 & 0 & 1 & | & -1 & 1 & 0 \\ 0 & 1 & -1 & | & 2 & -1 & 0 \\ 0 & 0 & -2 & | & 1 & -2 & 1 \end{bmatrix}$$

$$\xrightarrow{-F_3/2} \begin{bmatrix} 1 & 0 & 1 & | & -1 & 1 & 0 \\ 0 & 1 & -1 & | & 2 & -1 & 0 \\ 0 & 0 & 1 & | & -\frac{1}{2} & 1 & -\frac{1}{2} \end{bmatrix} \xrightarrow{F_1 - F_3} \begin{bmatrix} 1 & 0 & 0 & | & -\frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 1 & 0 & | & \frac{3}{2} & 0 & -\frac{1}{2} \\ 0 & 0 & 1 & | & -\frac{1}{2} & 1 & -\frac{1}{2} \end{bmatrix}$$

Luego

$$P^{-1} = \frac{1}{2} \begin{bmatrix} -1 & 0 & 1 \\ 3 & 0 & -1 \\ -1 & 2 & -1 \end{bmatrix}.$$

b) Dada una base \mathcal{B} , recordar que la matriz de cambio de base de la base canónica \mathcal{C} a la base \mathcal{B} es la matriz $[\mathrm{Id}]_{\mathcal{CB}}$, que nos piden sea igual a P. Por lo tanto $P = [\mathrm{Id}]_{\mathcal{CB}} = [\mathrm{Id}]_{\mathcal{BC}}^{-1}$, de donde $[\mathrm{Id}]_{\mathcal{BC}} = P^{-1}$, y la matriz $[\mathrm{Id}]_{\mathcal{BC}}$ son los vectores de \mathcal{B} puestos como columnas. Concluyendo, Si $\mathcal{B} = \{v_1, v_2, v_3\}$,

$$\begin{bmatrix} | & | & | \\ v_1 & v_2 & v_3 \\ | & | & | \end{bmatrix} = [Id]_{\mathcal{BC}} = P^{-1} = \frac{1}{2} \begin{bmatrix} -1 & 0 & 1 \\ 3 & 0 & -1 \\ -1 & 2 & -1 \end{bmatrix}.$$

Es decir, $v_1 = \frac{1}{2}(-1, 3, -1), v_2 = (0, 0, 1), v_3 = \frac{1}{2}(1, -1, -1).$

c)

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = [(x, y, z)]_{\mathcal{C}} = [\operatorname{Id}]_{\mathcal{BC}}[(x, y, z)]_{\mathcal{B}} = P^{-1} \begin{bmatrix} 2 \\ -1 \\ -1 \end{bmatrix}$$
$$= \frac{1}{2} \begin{bmatrix} -1 & 0 & 1 \\ 3 & 0 & -1 \\ -1 & 2 & -1 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \\ -1 \end{bmatrix}$$
$$= \frac{1}{2} \begin{bmatrix} -3 \\ 7 \\ -3 \end{bmatrix}.$$

Por lo tanto, $(x, y, z) = \left(-\frac{3}{2}, \frac{7}{2}, -\frac{3}{2}\right)$.

(6) Sea $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ la transformación lineal definida por

$$T(x, y, z) = (x - y, x - z).$$

Sean \mathcal{C} la base canónica de \mathbb{R}^3 y $\mathcal{B}' = \{(1,1), (1,-1)\}$ una base ordenada de \mathbb{R}^2 .

- a) Calcular la matriz $[T]_{\mathcal{CB}'}$, es decir la matriz de T respecto de las bases \mathcal{C} y \mathcal{B}' .
- b) Sea $(x, y, z) \in \mathbb{R}^3$. Dar las coordenadas de T(x, y, z) respecto de la base \mathcal{B}' .

c) Sea $S:\mathbb{R}^2\longrightarrow\mathbb{R}^3$ una transformación lineal tal que su matriz respecto a las bases \mathcal{B}' y \mathcal{C} es

$$[S]_{\mathcal{B}'\mathcal{C}} = \begin{bmatrix} 1 & 2 \\ 1 & -1 \\ 1 & 0 \end{bmatrix}.$$

Calcular la matriz de la composición $T \circ S : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ con respecto a la base \mathcal{B}' .

d) Calcular la matriz de $T \circ S$ respecto a la base $\mathcal B$ del Ejercicio (4) usando las matrices de cambio de base calculadas en ese ejercicio.

Solución:

a) Para calcular $[T]_{\mathcal{CB}'}$ podemos calcular $T(e_1)$, $T(e_2)$, $T(e_3)$ y escribirlos en términos de la base \mathcal{B}' . Esto es equivalente a primero calcular como se escribe la base canónica en términos de la base \mathcal{B}' , es decir calcular $[\mathrm{Id}]_{\mathcal{CB}'}$, y luego usar que $[T]_{\mathcal{CB}'} = [\mathrm{Id}]_{\mathcal{CB}'}[T]_{\mathcal{CC}}$ (\mathcal{C} indica también la base canónica de \mathbb{R}^2). Hagámoslo de esta segunda forma.

$$\begin{array}{rcl} T(1,0,0) & = & (1,1) \\ T(0,1,0) & = & (-1,0) \\ T(0,0,1) & = & (0,-1) \end{array} \Rightarrow \qquad [T]_{\mathcal{CC}} = \begin{bmatrix} 1 & -1 & 0 \\ 1 & 0 & -1 \end{bmatrix}.$$

Por otro lado,

$$[\mathrm{Id}]_{\mathcal{CB}'} = [\mathrm{Id}]_{\mathcal{B}'\mathcal{C}}^{-1} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}^{-1}$$

y calculemos esto:

$$\begin{bmatrix} 1 & 1 & | & 1 & 0 \\ 1 & -1 & | & 0 & 1 \end{bmatrix} \xrightarrow{F_2 - F_1} \begin{bmatrix} 1 & 1 & | & 1 & 0 \\ 0 & -2 & | & -1 & 1 \end{bmatrix} \xrightarrow{-F_2/2} \begin{bmatrix} 1 & 1 & | & 1 & 0 \\ 0 & 1 & | & \frac{1}{2} & -\frac{1}{2} \end{bmatrix}$$

$$\xrightarrow{F_1 - F_2} \begin{bmatrix} 1 & 0 & | & \frac{1}{2} & \frac{1}{2} \\ 0 & 1 & | & \frac{1}{2} & -\frac{1}{2} \end{bmatrix}.$$

Luego

$$[\mathsf{Id}]_{\mathcal{CB}'} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{bmatrix}.$$

Finalmente:

$$[T]_{\mathcal{CB}'} = [\operatorname{Id}]_{\mathcal{B}'\mathcal{C}}^{-1}[T]_{\mathcal{CC}} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 & -1 & 0 \\ 1 & 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & -\frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

b) Usamos el resultado que dice que $[T]_{\mathcal{CB}'}[v]_{\mathcal{C}} = [T(v)]_{\mathcal{B}'}$, luego

$$[T(x,y,z)]_{\mathcal{B}'} = [T]_{\mathcal{CB}'} [(x,y,z)]_{\mathcal{C}} = \begin{bmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & -\frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x - \frac{1}{2}y - \frac{1}{2}z \\ -\frac{1}{2}y + \frac{1}{2}z \end{bmatrix}.$$

c)

$$[T \circ S]_{\mathcal{B}'} = [T \circ S]_{\mathcal{B}'\mathcal{B}'} = [T]_{\mathcal{CB}'}[S]_{\mathcal{B}'\mathcal{C}} = \begin{bmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & -\frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 1 & -1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & \frac{5}{2} \\ 0 & \frac{1}{2} \end{bmatrix}.$$

d) Deseamos calcular $[T \circ S]_{BB}$ y usaremos la siguiente fórmula:

$$[T \circ S]_{\mathcal{BB}} = [T]_{\mathcal{CB}}[S]_{\mathcal{BC}} = ([\mathrm{Id}]_{\mathcal{CB}}[T]_{\mathcal{CC}})[S]_{\mathcal{BC}}.$$
 (d1)

De esta fórmula conocemos $[Id]_{\mathcal{CB}}$ (por ejercicio (4)), y $[T]_{\mathcal{CC}}$ (por inciso a)). Faltaría averiguar $[S]_{\mathcal{BC}}$ a partir del único dato que tenemos de S que es $[S]_{\mathcal{BC}}$. Ahora bien,

$$[S]_{\mathcal{BC}} = [S]_{\mathcal{B'C}}[Id]_{\mathcal{BB'}}$$

$$= [S]_{\mathcal{B'C}}[Id]_{\mathcal{CB'}}[Id]_{\mathcal{BC}}$$

$$= \begin{bmatrix} 1 & 2 \\ 1 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \qquad \text{(por hipótesis, inciso } a) \text{ y ej. (4))}$$

$$= \begin{bmatrix} 1 & 2 \\ 1 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{2} & 1 \\ \frac{1}{2} & 0 \end{bmatrix}$$

$$= \begin{bmatrix} \frac{3}{2} & 1 \\ 0 & 1 \\ \frac{1}{2} & 1 \end{bmatrix}.$$

Luego, por (d1),

$$[T \circ S]_{\mathcal{BB}} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 & 0 \\ 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} \frac{3}{2} & 1 \\ 0 & 1 \\ \frac{1}{2} & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{3}{2} & 0 \\ 1 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} \frac{1}{2} & 0 \\ 1 & 0 \end{bmatrix}.$$

(7) Sea A la primera matriz del Ejercicio 1 del Práctico 5 y $T_A: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ la transformación lineal dada por $T_A(v) = Av$. Hallar los autovalores de T_A , y para cada uno de ellos, dar una base de autovectores del correspondiente autoespacio. Decidir si T_A es o no diagonalizable. En caso de serlo dar una matriz invertible P tal que $P^{-1}AP$ es diagonal. Repetir esto para cada una de las matrices de dicho ejercicio.

Solución:

Como $[T_A]_C = A$, entonces los autovalores y autovectores de T_A serán los autovalores y autovectores de A (lo mismo vale para todas las matrices del Ejercicio 1 del Práctico 5), así que podremos usar todo lo calculado en el Práctico 5.

- a) Como se vio en el práctico 5, A tiene un solo autovalor, que es 3 y el autoespacio correspondiente tiene como base a $\{(1,1)\}$. Por lo tanto, T_A no es diagonalizable.
- b) Como se vio en el práctico 5, B tiene dos autovalores: 1 con autoespacio con base $\{(3,1)\}$, y -2 con autoespacio con base $\{(0,1)\}$. Por lo tanto, T_B es diagonalizable y la base que "diagonaliza" es $\mathcal{B} = \{(3,1),(0,1)\}$. Es decir,

$$[T_B]_{\mathcal{B}} = \begin{bmatrix} 1 & 0 \\ 0 & -2 \end{bmatrix}.$$

Como $[T_B]_C = B$ y

$$[T_B]_{\mathcal{B}} = [\operatorname{Id}]_{\mathcal{CB}}[T_B]_{\mathcal{C}}[\operatorname{Id}]_{\mathcal{BC}} = [\operatorname{Id}]_{\mathcal{CB}}B[\operatorname{Id}]_{\mathcal{BC}},$$

tenemos que
$$P = [Id]_{\mathcal{BC}} = \begin{bmatrix} 3 & 0 \\ 1 & 1 \end{bmatrix}$$
.

c) Como se vio en el práctico 5, C tiene dos autovalores: 1 con autoespacio con base $\{(0,1,0)\}$, y 2 con autoespacio con base $\{(-1,1,0),(-1,0,1)\}$. Por lo tanto, $T_C: \mathbb{R}^3 \to \mathbb{R}^3$ es diagonalizable y la base que "diagonaliza" es

$$\mathcal{B} = \{(0, 1, 0), (-1, 1, 0), (-1, 0, 1)\}.$$

Es decir,

$$[T_C]_{\mathcal{B}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}.$$

Como $[T_C]_C = C$ y

$$[T_C]_{\mathcal{B}} = [\operatorname{Id}]_{\mathcal{CB}} [T_C]_{\mathcal{C}} [\operatorname{Id}]_{\mathcal{BC}} = [\operatorname{Id}]_{\mathcal{CB}} C [\operatorname{Id}]_{\mathcal{BC}},$$

tenemos que
$$P = [Id]_{\mathcal{BC}} = \begin{bmatrix} 0 & -1 & -1 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
.

- d) En este caso $T_D: \mathbb{R}^3 \to \mathbb{R}^3$ no es diagonalizable pues hay un solo autovalor y la dimensión del autoespacio es 1. El autoespacio tiene base $\{e_3\}$.
- e) En este caso $T_E: \mathbb{R}^2 \to \mathbb{R}^2$ no tiene autovalores reales, y por lo tanto no hay autoespacios y no es diagonalizable.
- f) En este caso la matriz era

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & \sin \theta \\ 0 & -\sin \theta & \cos \theta \end{bmatrix}, 0 \le \theta < 2\pi,$$

y se dividía en 3 casos:

Caso 1. Si $\theta=0$, entonces la matriz es Id, por lo tanto hay un único autovalor (el 1) y el autoespacio correspondiente es todo \mathbb{R}^3 , en consecuencia cualquier base es base del autoespacio (por ejemplo, la canónica). Obviamente es diagonalizable, pues ya es diagonal y $P=\operatorname{Id}$.

Caso 2. Si $\theta=\pi$. En este caso la matriz también es diagonal, con dos autovalores 1 y -1, el primero con base $\{e_1\}$ y el segundo con base $\{e_2,e_3\}$. De nuevo, $P=\operatorname{Id}$.

Caso 3. Si $\theta \neq 0$, π . En este caso hay un solo autovalor 1 y su autoespacio es de dimensión 1, con base $\{e_1\}$. Por lo tanto $T_{F_{\theta}}: \mathbb{R}^3 \to \mathbb{R}^3$ no es diagonalizable.

(8) Repetir el ejercicio anterior para cada matriz del Ejercicio 1 del Práctico 5 pero ahora considerando a la transformación como una transformación lineal entre los \mathbb{C} -espacios vectoriales \mathbb{C}^n .

Solución:

Los únicos casos que hay que estudiar son e) y f), caso $\theta \neq 0$, π , pues son las únicas situaciones donde el polinomio característico tiene algunas raíces complejas, no reales. En todos los demás casos, los autovalores son reales y por lo tanto son los mismos que en caso complejo. También, las bases de los autoespacios y el P son los mismos.

e) Como se vio en el ejercicio (2) del práctico 5, $T_E: \mathbb{C}^2 \to \mathbb{C}^2$ tiene autovalores 1+i, 1-i, con $V_{1+i}=\langle (2+i,1)\rangle_{\mathbb{C}}$ y $V_{1-i}=\langle (2-i,1)\rangle_{\mathbb{C}}$. Por lo tanto, la transformación es diagonalizable, más aún, la base $\mathcal{B}=\{(2+i,1),(2-i,1)\}$

diagonaliza T_E , es decir

$$[T_E]_{\mathcal{B}} = \begin{bmatrix} 1+i & 0 \\ 0 & 1-i \end{bmatrix}.$$

Como en el ejercicio anterior, basta considerar

$$P = [\operatorname{Id}]_{\mathcal{BC}} = \begin{bmatrix} 2+i & 2-i \\ 1 & 1 \end{bmatrix}.$$

f) Caso $\theta \neq 0, \pi$. En el práctico 5, ejercicio (2), calculamos que en este caso los autovalores son 1, $\cos \theta + i \sin \theta$, $\cos \theta - i \sin \theta$, con

$$V_1 = \langle (1,0,0) \rangle_{\mathbb{C}}, \qquad V_{\cos\theta + i \sin\theta} = \langle (0,-i,1) \rangle_{\mathbb{C}}, \qquad V_{\cos\theta - i \sin\theta} = \langle (0,i,1) \rangle_{\mathbb{C}}.$$

Luego, $\mathcal{B} = \{(1,0,0), (0,-i,1), (0,i,1)\}$ es una base que diagonaliza $T_{F_{\theta}}$. Es decir

$$[T_{F_{\theta}}]_{\mathcal{B}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta + i \sin \theta & 0 \\ 0 & 0 & \cos \theta - i \sin \theta \end{bmatrix}.$$

Y consideramos

$$P = [Id]_{\mathcal{BC}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -i & i \\ 0 & 1 & 1 \end{bmatrix}.$$

- (9) Sea V un \mathbb{K} -espacio vectorial, y $T:V\longrightarrow V$ una transformación lineal tal que $v\in V$ es un autovector de autovalor λ . Probar las siguientes afirmaciones.
 - *a*) Si $\lambda = 0$, entonces $v \in Nu(T)$.
 - *b*) Si $\lambda \neq 0$, entonces $v \in \text{Im}(T)$.
 - c) Si $T^2 = 0$, entonces T Id es un isomorfismo.

Solución:

- a) $T(v) = \lambda v = 0v = 0$. luego $v \in Nu(T)$.
- b) $v = \frac{1}{\lambda} \lambda v = \frac{1}{\lambda} T(v) = T(\frac{1}{\lambda} v)$. Por lo tanto, $v \in \text{Im}(T)$.
- c) $(T Id)(T + Id) = T^2 Id = -Id$. Por lo tanto, (T Id)(-T Id) = Id y en consecuencia -T Id es la inversa de T Id. Ahora bien, un operador lineal tiene inversa si y solo si es un isomorfismo.
- (10) Sea V un \mathbb{K} -espacio vectorial de dimensión 3, y $T:V\longrightarrow V$ una transformación lineal. Supongamos que existe $v\in V$ tal que $T^3(v)=0$ pero $T^2(v)\neq 0$.
 - a) Probar que $\mathcal{B} = \{v, T(v), T^2(v)\}$ es una base de V.
 - b) Calcular la matriz de T respecto de la base \mathcal{B} .
 - c) Calcular los autovalores de T y sus correspondientes autoespacios. Decidir si T es diagonalizable.

Solución:

a) Vamos a probar que $\{v, T(v), T^2(v)\}$ es LI. Sea

$$0 = \alpha v + \beta T(v) + \gamma T^{2}(v), \tag{01}$$

entonces, aplicando T a la ecuación anterior, obtenemos

$$0 = \alpha T(v) + \beta T^{2}(v) + \gamma T^{3}(v) = \alpha T(v) + \beta T^{2}(v). \tag{02}$$

Finalmente, aplicando T a esta última ecuación obtenemos:

$$0 = \alpha T^{2}(v) + \beta T^{3}(v) = \alpha T^{2}(v). \tag{03}$$

Como $T^2(v) \neq 0$ y $\alpha T^2(v) = 0$, tenemos que $\alpha = 0$. Por (02), obtenemos entonces que $\beta T^2(v) = 0$ y por lo tanto $\beta = 0$. Ahora tenemos $\alpha = \beta = 0$ y entonces por ecuación (01), obtenemos que $\gamma T^2(v) = 0$, lo cual implica que $\gamma = 0$. Concluimos entonces que $\gamma = 0$ y por lo tanto $\gamma = 0$ y por lo tanto $\gamma = 0$ y est. Al ser tres vectores LI en un espacio de dimensión 3, resulta que $\gamma = 0$ y est. Al ser tres vectores LI en un espacio de dimensión 3, resulta que $\gamma = 0$ y est.

b) Veamos como se escriben los vectores resultantes de aplicar T a la base $\mathcal{B} = \{v, T(v), T^2(v)\}$. Es decir $T(v), T^2(v), T^3(v)$:

$$T(v) = 0 \cdot v + 1 \cdot T(v) + 0 \cdot T^{2}(v) T^{2}(v) = 0 \cdot v + 0 \cdot T(v) + 1 \cdot T^{2}(v) T^{3}(v) = 0 = 0 \cdot v + 0 \cdot T(v) + 0 \cdot T^{2}(v).$$

Luego

$$[T]_{\mathcal{B}} = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}.$$

c) Calculemos el polinomio característico de T:

$$\chi_T(x) = \det([T]_{\mathcal{B}} - x \operatorname{Id}) = \det\begin{bmatrix} -x & 0 & 0 \\ 1 & -x & 0 \\ 0 & 1 & -x \end{bmatrix} = -x^3.$$

Luego las raíces del polinomio característico son 0, y por lo tanto el único autovalor es 0. Los autovectores de autovalor 0 son los vectores soluciones de la ecuación

$$\begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix},$$

es decir $x_1 = 0$ y $x_2 = 0$, por lo tanto $V_0 = \langle (0, 0, 1) \rangle$. Hay un único autoespacio y es de dimensión 1. Por lo tanto T no es diagonalizable.

- (11) Definir en cada caso una transformación lineal $T: \mathbb{R}^3 \to \mathbb{R}^3$ que satisfaga las condiciones requeridas. ¿Es posible definir más de una transformación lineal?
 - a) $(1,0,0) \in Nu(T)$
 - b) $(1,0,0) \in Im(T)$
 - c) $\{(1,0,0),(1,2,1)\}\subseteq Nu(T)$ y $(1,0,0)\in Im(T)$

Solución:

- a) T=0 cumple con lo pedido. Para encontrar otras transformaciones lineales que cumplan con lo pedido, completemos $\{e_1=(1,0,0)\}$ a una base de \mathbb{R}^3 , por ejemplo a la base canónica $\{e_1,e_2,e_3\}$, y luego definimos: $T(e_1)=0$, $T(e_2)=e_2$, $T(e_3)=e_3$. Podríamos haber elegido en la imagen cualesquiera otros vectores. Por el teorema 4.1.1 del apunte 2020, podemos extender linealmente T a una transformación lineal de \mathbb{R}^3 a \mathbb{R}^3 . De esta forma podemos obtener infinitas transformaciones lineales que satisfacen la consigna del ejercicio.
- b) Consideremos e_1 , e_2 , e_3 y definamos $T(e_1) = e_1$, $T(e_2) = 0$ y $T(e_3) = 0$, luego, por teorema 4.1.1, extendemos a $T : \mathbb{R}^3 \to \mathbb{R}^3$ y esta T cumple con lo se pide en el ejercicio. Obviamente hay infinitas posibilidades para elegir $T(e_i)$ y por lo tanto infinitas posibles T.

- c) Completemos $\{(1,0,0),(1,2,1)\}$ a una base de \mathbb{R}^3 , por ejemplo $\mathcal{B}=\{(1,0,0),(1,2,1),(0,1,0)\}$ y definamos T(1,0,0)=(0,0,0), T(1,2,1)=(0,0,0), T(0,1,0)=(1,0,0). Luego, por teorema 4.1.1, extendemos a $T:\mathbb{R}^3\to\mathbb{R}^3$ y esta T cumple con lo se pide en el ejercicio. Evidentemente, hay otros valores posibles de T(0,1,0) que también cumplen que $(1,0,0)\in \mathrm{Im}(T)$. Por ejemplo, $T(0,1,0)=(2,0,0)\Rightarrow T(0,\frac{1}{2},0)=(1,0,0)$.
- (12) Decidir si las siguientes afirmaciones son verdaderas o falsas. Justificar.
 - a) Existe una transformación lineal $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ tal que $\{(1,0,1),(0,1,0)\}$ es una base de Nu(T) y $\{(1,0,-1),(0,1,0)\}$ es una base de la Im(T).
 - b) Existe una transformación lineal $T : \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ tal que $\{(1,0,1)\}$ es una base de Nu(T) y $\{(1,0,-1),(0,1,0)\}$ es una base de la Im(T).
 - c) Existe una transformación lineal $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ tal que $\langle (1,2,3), (2,1,-1) \rangle$ es el autoespacio asociado a 0 y $\langle (3,1,1), (1,1,3) \rangle$ es el autoespacio asociado a 5.
 - d) Existe una transformación lineal $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ tal que $\langle (1, 2, 3) \rangle$ es el autoespacio asociado a 0 y $\langle (3, 1, 1) \rangle$ es el autoespacio asociado a 5.

Solución:

a) Falso. Si existiera tal transformación lineal tendríamos,

$$\dim \text{Nu}(T) + \dim \text{Im}(T) = 2 + 2 = 4 > 3 = \dim \mathbb{R}^3$$
.

Lo cual, por el teorema de la dimensión, es absurdo.

b) Verdadero. Extendamos $\{(1,0,1)\}$ a una base de \mathbb{R}^3 , por ejemplo

$$\mathcal{B} = \{(1, 0, 1), (1, 0, 0), (0, 1, 0)\}$$

y definamos

$$T(1,0,1) = (0,0,0), \qquad T(1,0,0) = (1,0,-1), \qquad T(0,1,0) = (0,1,0).$$

Extendemos por linealidad a $T:\mathbb{R}^3\to\mathbb{R}^3$ y obtenemos la transformación lineal deseada.

c) Falso. Es claro que $\{(1,2,3),(2,1,-1)\}$ es una base del autoespacio V_0 y $\{(3,1,1),(1,1,3)\}$ es una base del autoespacio V_5 . Supongamos que exista tal T. Por un resultado visto en la teórica, sabemos que

$$\dim(V_0 + V_5) = \dim V_0 + \dim V_5 - \dim(V_0 \cap V_5). \tag{*}$$

Ahora bien, $V_0 + V_5 \subset \mathbb{R}^3$, por lo tanto $3 \ge \dim(V_0 + V_5)$. Por otro lado, $V_0 \cap V_5 = 0$, pues no puede haber un vector no nulo con dos autovalores diferentes. Todo esto implica que, por la ecuación (*),

$$3 \ge \dim(V_0 + V_5) = \dim V_0 + \dim V_5 - 0 = 4.$$

Lo cual es absurdo! y el absurdo vino de suponer que existe una $T: \mathbb{R}^3 \to \mathbb{R}^3$ con autoespacios V_0 , V_5 , cada uno con dimensión 2.

d) Verdadero. Como (1, 2, 3) y (3, 1, 1) son LI, podemos extender $\{(1, 2, 3), (3, 1, 1)\}$ a una base de \mathbb{R}^3 , por ejemplo $\{(1, 2, 3), (3, 1, 1), (0, 0, 1)\}$. Después definimos

$$T(1,2,3) = (0,0,0),$$
 $T(3,1,1) = 5(3,1,1),$ $T(0,0,1) = (0,0,1)$

y extendemos por linealidad.