即日本国特許庁(JP)

⑩ 特 許 出 願 公 告

⑫ 特 許 公 報(B2)

6735—4K

願 昭59(1984)4月24日

昭64-7141

@Int Cl.4 C 22 C B 22 F C 22 C 1/05 1/00 29/02 識別記号 厅内整理番号 G-7511-4K Q-7511-4K 2000公告 昭和64年(1989) 2月7日

発明の数 2 (全7頁)

◎発明の名称 タングステン基焼結材料の製造方法

學出

昭59-82581 ②特 頭

63公 9月 昭60-228634

❸昭60(1985)11月13日

@発 明 杉澤 泰次郎 者

東京都品川区西品川1丁目27番20号 三菱金属株式会社東 京製作所内

埼玉県大宮市佐知川95の2

②発: 明 者 四 垣 癸 明 四発 者 音 村 更 411

東京都品川区西品川1丁目27番20号 三菱金属株式会社東 京製作所內

②田 三菱金属株式会社 庭 人 四代 理 弁理士 富田 和夫 人

東京都千代田区大手町1丁目5番2号

光雄 審 査 官 杳 谷

1

砂特許請求の範囲

タングステン酸化物粉末:100重量部に対し て、元素周期律表の4aおよび5a族金属の炭化物、 窒化物、および炭窒化物、並びに6a族金属の炭 化物、さらにこれらの2種以上の固溶体のうちの 5 1種または2種以上の粉末:15~100重量部を配 合してなる混合粉末を、水素または水素含有雰囲 気中、750~1300℃の範囲内の所定温度で水素還 元して、タングステン基複合粉末を製造し、

ついで、このタングステン基複合粉末より、通 10 に関するものである。 常の条件で、圧粉体をプレス成形し、焼結するこ とを特徴とするタングステン基焼結材料の製造方 法。

タングステン酸化物粉末:100重量部に対し 窒化物、および炭窒化物、並びに6a族金属の炭 化物、さらにこれらの2種以上の固溶体のうちの 1種または2種以上の粉末:15~100重量部と、 酸化マグネシウム、酸化イツトリウム、および酸 末:0.05~ 5 重量部とを配合してなる混合粉末 を、水素または水素含有雰囲気中、750~1300℃ の範囲内の所定温度で水素運元して、タングステ ン基複合粉末を製造し、

2

常の条件で、圧粉体をブレス成形し、焼結するこ とを特徴とするタングステン基焼結材料の製造方 法。

発明の詳細な説明

〔産業上の利用分野〕

この発明は、高硬度および高靱性を有し、特に これらの将性が要求される切削工具や耐摩耗工具 として用いた場合にすぐれた性能を発揮するタン グステン(以下Wで示す)基焼結材料の製造方法

〔従来の技術〕

従来、原料粉末として、W粉末、元素周期律表 の4aおよび5a族金属の炭化物、窒化物、および 炭窒化物、並びに6a族金属の炭化物、さらにこ て、元素周期律表の4aおよび5a族金属の炭化物、 15 れらの 2種以上の固溶体(以下、これら全体を総 称して(M)C・Nで示す)からなる粉末、酸化 マグネシウム、酸化イットリウム、および酸化ア ルミニウム(以下、それぞれMgO、Y2Os、およ びAleOsで示し、かつこれらを総称して金属酸化 化アルミニウムのうちの1種または2種以上の粉 20 物という)からなる粉末を用い、これら原料粉末 を、W粉末:100重量部に対して、(M) C・Nの うちの 1 種または 2 種以上の粉末: 15~100重量 部の割合で配合し、さらに必要に応じて金属酸化 物粉末のうちの1種または2種以上:0.05~5重 ついで、このタングステン基複合粉末より、通 25 量部を配合し、通常の条件で、混合した後、圧粉

体にプレス成形し、焼結することによつてW基焼 結材料を製造する方法が知られている。

〔発明が解決しようとする課題〕

しかし、上記の従来W基焼結材料の製造方法に おいては、十分満足する焼結性を示さないため、 材料の硬さおよび靱性が不十分で、これを切削工 具や耐摩耗工具として用いた場合、十分満足する 性能を発揮しないのが現状である。

〔課題を解決するための手段〕

そこで、本発明者等は、上述のような観点か ら、従来方法によつて製造されたW基焼結材料に 比して、一段と高い硬さと靱性をもつたW基焼結 材料を開発すべく研究を行なつた結果、原料粉末 として、W酸化物粉末と(M)C・N粉末、さら 料粉末を所定の配合組成に配合し、混合した状態 で、水素または水素含有雰囲気中で水素還元し て、W基複合粉末を製造し、このW基複合粉末を 出発原料として用い、通常の条件でW基焼結材料 しており、この結果すぐれた焼結性を示すことか ら、製造されたW基焼結材料は、従来方法によっ て製造されたW基焼結材料に比して、一段とすぐ れた硬さと靱性をもつようになるという知見を得 たのである。

この発明は、上記知見にもとづいてなされたも のであつて、

W酸化物粉末:100重量部に対して、(M) C・ Nのうちの1種または2種以上の粉末:15~100 のうちの 1 種または 2 種以上の粉末: 0.05~5 重 量部を配合してなる混合粉末を、水素または水素 含有雰囲気中、750~1300℃の範囲内の所定温度 で水素還元して、W基複合粉末を製造し、

件、すなわち500~4000kg/cffの圧力でプレス成 形して圧粉体を成形し、還元性雰囲気中、真空 中、あるいは不活性雰囲気中、1400~2000℃の範 囲内の所定温度で、常圧焼結あるいはホツトプレ スし、さらに必要に応じて熱間静水圧プレス 40 (HIP)や熱間塑性加工を施す通常の条件にて、 高硬度および高靱性を有するW基焼結材料を製造 する方法に特徴を有するものである。

つぎに、この発明の方法において製造条件を上

記の通りに限定した理由を説明する。

(a) (M) C・Nの配合量

これらの成分には、材料の硬さを向上させ、も つて耐摩耗性を向上させる作用があるが、その配 合量がW酸化物粉末:100重量部に対して(以下 同じ)、15重量部未満では所望の耐摩耗性を確保 することができず、一方その配合量が100重量部 を越えると靱性が急激に低下するようになること から、その配合量を15~100重量部と定めた。

4

10 (b) 金属酸化物の配合量

これらの金属酸化物は、水素還元処理でも還元 されずに酸化物のままでW基複合粉末中に残り、 焼結時に焼結性を一段と向上させる作用を発揮 し、かつ焼結時にも選元されずに微細な酸化物の に必要に応じて金属酸化物粉末を用い、これら原 15 形でW基焼結材料中に均一に分散した状態で存在 し、耐摩耗性を改善する作用があるので必要に応 じて配合されるが、その配合量が0.05重量部未満 では前配作用に所望の効果が得られず、一方その 配合量が5重量部を越えると材料の靱性が低下す を製造すると、前記W基複合粉末は表面が活性化 20 るようになることから、その配合量を0.05~5重 量部と定めた。

(c) 水素還元温度

水素還元は、密閉した反応容器内で、純粋な水 紊あるいは分解アンモニアガスなどの水素含有ガ 25 スの雰囲気中で、通常、水素ガスの全圧あるいは 分圧を0.5~2気圧とした状態で、0.5~5時間程 度の反応時間を要して行なわれるが、その温度 が、750℃未満ではW酸化物の還元が十分に進ま ず、一方その温度が1300℃を越えると、還元時に 重量部を配合し、さらに必要に応じて金属酸化物 30 発生する水によつて(M) C・N粒子が酸化され る割合が増加するようになるばかりでなく、W粒 子の寸法が増大するようになつて焼結性が低下す るようになることから、その温度を750~1300℃ と定めた。なお、この水素還元によつて、基本的 ついで、このW基複合粉末により、通常の条 *35* にW酸化物粉末は活性化された微細なW粒子とな り、これらのW粒子の間に(M)C・N粒子、さ らに必要に応じて金属酸化物粒子が均一に分散し た組織を有するW基複合粉末が得られるのであ る。

〔実施例〕

つぎに、この発明の方法を実施例により具体的

原料粉末として、いずれも0.1~1.0μmの範囲内 の平均粒径を有する、WOs、WOs、およびW2Os

からなる3種のW酸化物粉末、各種の(M)C・ N粉末、さらにMgO、Y2O2、およびAl2O2から なる3種の金厲酸化物粉末を用意し、これら原料 粉末をそれぞれ第1表に示される配合組成に配合 合粉末を耐熱ポートに入れた状態で反応容器に装 入し、いずれも水素分圧:760torr、温度:1100

℃、時間:60分の条件で水素還元処理を行なうこ とによつて、同じく第1表に示される平均粒径お よび組成を有するW基複合粉末を製造し、ついで このW基複合粉末を1500kg/cdの圧力で圧粉体に し、ライカイ機で1時間乾式混合した後、この混 5 成形し、この圧粉体を、10⁻²torrの真空中、1600 ~1800℃の範囲内の所定温度に 1 時間保持の条件 にて焼結することにより本発明

6

配合組成(重量部) W基復行	M	W基復	W基復	W基複包	基複合粉末	W基制	W基焼結材料中の分散相	M	W基旒結材料	
別 公路化物 (N)C-N 物 粒径	金属酸化 平均 物 数 数 数 数 数 数 数 数 数 数 数 数 数 数 数 数 数 数	计技术			松	平松的安全	構成成分	世	抗折力	朝僧聞聞
			(mm)		(東重)	(mm)		(HRA)	(kg/zd)	(舟)
1 10.:100 Tich:30 - 1.4 73%1-27	- 1.4 73%F	T3%II-	T3%II-		27%Ticn	2.2	(Ti, W)CN	87,6	168	35
2 W20s:100 TaC:15 - 1.3 7096W-13	TaC: 15 - 1.3 70%	70%	70%		13%Tac-17%Tin	2.0	(Ti, Ta, W)CN	88.3	160	9
3 WG.: 100 TiC: 30 - 1.5 73%W-279	- 1.5 73%	73%11-	73%11-		27%Tic	2,4	(Ti,¶)C	87.4	791	31
4 NO.: 50, (Ti,Ta)CN: 25, - 1.1 72%N-239	- 1.1 72%F-	72%₹-	72%₹-		23%(Ti,Ta)CN-5%ZrC	1,8	(Ti, Ta, Zr, W)CN	0,88	991	%
5 WO3: 100 HFC: 5, WC: 20, - 1.1 74%-498	- 1.1 74%	74%1-	74%1-		498HC-48VC-188FC	1.8	(Hf, V, W)C	8.78	1 91	88
6 NOs: 100 NosC: 5, TaN: - 1.0 73%N-14% 10, ZrCN: 15 - 1.0 4%NosC	- 1.0 73%F-	73%F 4%No ₂ (73%F 4%No ₂ (73%1-14% 4%102C	14%2rcn-9%Tan-	1.7	(Zr, Ta, No, #)CN	88,1	121	88
7 Wo. : 40, VC: 5, Cr. C. : 72%W—5%1 W. 0s. : 60 15, NbN: 10	- 1.5 72%F-	72%II- 14%Cr	72%II- 14%Cr	72%1—5%1 14%Cr3C	-5%VC-9%NBN-	2,3	(V, 陆, Cr, F)CN	88.2	156	क्ष
8 WO3: 100 ZrCN: 5, HfN: 5,	- 1.6 67% - 25%(T	67%(T	67%(T	67%7-4%7 25%(Ti,¶)	-4%ZrCN-4%HfN- i, 17)C	2,5	(Ti,Zr,Hf,¶)CN	88.7	150	æ
9 FO: 100 ZrCN: 20 - 1.1 80%F-20%	- 1.1 80%F	-₩%08	-₩%08	80%11-20%	-20%Zrcn	1,9	(Zr, ♥)ON	86.7	160	R
10 N205:100 NBC:20, NN:5, - 1.2 7087-179 Tach:10 Tach:10	NBC: 20, VN: 5, - 1.2 70% - 1.2 9% Tack	70%F 9%TaC	70%F 9%TaC	70%7-17% 9%TaCN	-17%Nbc-4%VN-	2.0	(V,Nb, Ta, #)CN	2.88	158	37
11 WG.: 100 TiC: 30, ZrN:5 A12G.:5 1.2 67% - 25%	Al20.:5 1.2 67% -	1.2 67%P-	67%II- 4%A1 ₂ (67%¶-25% 4%Al203	.25%TiC-4%ZrN-	1.8	(Ti,Zr,₩)CN+ A1203	89.0	165	£
12 WO3: 100 (Hf, Nb, No)C: 30 Y2O3: 4 1.2 708/W-269	Y ₂ O ₃ :4 1.2 70% 1.8 1.2 3% Y ₂ O	4 1.2 70% -	3%%	70%W-269 3%Y ₂ O ₃ -1	-26%(Hf, Nb, Mo)C- 13-1980	2,2	(Hf, Nb, Mo, W)C+ Y₂O₃	88.5	160	88

		Lace	配合組成(重量部)			W基複合粉末	W基線	W基焼結材料中の分散相	M	W基焼結材料	
Drá	麗	WEAR	n°J(n)	金属酸化物	计节的	報	平均次	海市市公	関	抗力	2年 三
1		WERILD	N V V	1 2		(重量で)	(加爾)	THE PACKED.	(HRA)	(kg/m²)	(大)
	13	NO.: 30 NO.: 70	(Ti, Ta, No)N:30	Y204:3	1.2	70%N-26%(Ti, Ta, No)N-4%Y203	1,8	(Ti, Ta, No, F)N+ Y ₂ O ₃	9.8	138	14
	14	W20s:100	Mo2C:30	1g0:2	1.2	68%1-26%102C-4%VCN-2%160	2.0	(V, No, T)CN	æ æ	159	88
	15	N20s:40 NOs:60	Tich: 20, NGCN: 10, Zrc: 5	Y203:5	1.3	67%#-17%Ticn-8%Nbcn-4%Zrc-4%Yr03	2,1	(Ti, Zr, Nb, W)CN+ Y2O3	6	161	€
	16	WO3: 100	Hfc: 5, Gr.Cz: 20	A1203:1	1.4	72%1-5%HfC-18%Cr3,C3-	2,5	(Hf, Cr, W)C+A120,	æ 8.	163	₽
	17	W205:100	Tin: 25 Hen: 15	160:1 Y20::4	1.6	64%W-20%TiN-12%HfN- 1%k0-3%Y203	2,5	(Ti, Hf, W)N+Y20,	88. E.	160	33
	∞_	₹03 : 100	Ticn: 30	Y203:2 A1203:3	1.1	69%1—26%TiCN—2%1203— 3%A1203	1.7	(Ti, W) CN+Y203+ A1203	& &	166	\$
	13	No.: 50	Mo.C:25 HFGN:15	1480:1 Al203:1	1.3	64%F-20%No.C-12%HfON-15/LEO-3%Al.G.	2.1	(Hf, Mo, F)CN+ Al, 0,	88.2	133	88
	83	70, : 100	(Ti, Zr, V, Cr)	VgO: 1	1.3	66%F-23%(Ti,Zr,V,Cr)CN-	66	(Ti, Zr, V, Cr, W).	<i>5</i>	<u></u>	8
		3	CN:35	Alz0.:3	•	1%kg0-2%%03-2%A1203	1	ON+Y203+A1203	3	3	3

麦

2

紙

			配合超	(重量部)		W基焼結材料中の分散相		W基焼結材料	茲
煙	1	M	$N \cdot J(N)$	全国畅小伽	平均	* * * * * * * * * * * * * * * * * * *	原か	抗折力	均削
		=	NI O (III)	고도 #작면도 L172		ž Ž	(HRA)	(阿/國)	(少)
	1	W:100	Tion: 37	-	3,2	(Ti, F)CN	æ 1.	130	2
	2	W: 100	TaC: 16, Tin: 24	_	3,0	(Ti, Ta, W)CN	88.6	114	P
	3	W:100	TiC:37		3.5	(Ti, ¶)C	85 0.	115	က
	4	W: 100	(Ti, Ta)CN: 32, ZrC: 7	1	2.7	(Ti, Ta, Zr, W)CN	88.3	118	9
	5	W:100	HFC:6, NC:24, VC:6		2.8	(Hf, V, W)C	86.1	110	ಣ
	9	W: 100	No.C: 5, TaN: 12, ZrCN: 19	ı	2,5	(Zr, Ta, 16, 17)CN	86.2	108	2
<u></u> #	7	W:100	VC: 7, Cr. C.: 19, NEN: 13		3,3	(V, Nb, Cr, F)CN	88	108	-
₹	∞	W:100	Zrcn: 6, Hfn: 6, (Ti, 11)C:37	Ī	3,6	(Ti,Zr,Hf,Y)QN	87.0	8	-
	6	W:100	Z-CN: 25		2.7	(Zr, F)CN	85.1	105	-
Ħ	19	W:100	NG: 24, W:6, Tach: 13		3,1	(V, Nb, Ta, II)CN	86.5	908	2
(11	W: 100	TiC:37, ZrN:6	A1203:6	2,5	(Ti,Zr, #)CN+A12Os	86.9	116	-
	23	W:100	(Hf, Nb, No)C:37	Y203: 4, 1\g0:1	2,8	(Hf,Nb,Mo)C+Y ₂ O ₃	88.5	110	വ
世	₹	W: 100	(Ti, Ta, 140)N, 37	Y203:4	2.5	(Ti, Ta, Mo, W)N+Y2O3	986.6	107	2
3	7.	W:100	No.C:39, VCN, 6	Mg0:3	2,7	(V, Mo, W)CN	86.7	801	4
	15	W:100	Ticn: 25, 16cn: 12, 2rc: 6	Y.0,:6	2.8	(Ti,Zr,Nb,W)CN+Y2O3	8	110	4
	16	W:100	HC: 7, Gr.C: 25	Al ₂ O ₃ :1.5	3,4	(Hf,Cr, ₩)C+Al ₂ O ₃	86.3 S.3	115	4
	17	W:100	Tin:31, Hfn:19	160:1, Y.O.:5	3,4	(Ti, Hf, W)N+Y2O3	87.2	111	ധ
	<u>\$</u>	W: 100	Tign: 38	Y203 : 3, Al203 : 4	2.4	(Ti, W)CN+Y2O3 +A12O3	86.6	120	-
	13	W:100	Mo ₂ C: 31, HfQN: 19	1g0:2, Al20,:1	2.8	(Hf, Mo, W)CN+A12O3	87.0	105	က
	8	W:100	(Ti, Zr, V, Cr)CN: 44	MgO:1, Y20,:2, Al20,:3	3.0	(Ti, Zr, V, Cr, ₩)QN+Y2O3+Al2O3	86.7	114	ည

— 136 —

法 1 ~20を実施し、それぞれ平面寸法: 12.7mm□ ×厚さ:4.8mmの寸法をもつたW基焼結材料を製 進した。

この結果得られたW基焼結材料は、いずれもほ とんど空孔が存在せず、緻密で、W母相中に第1 5 切込み : 3 mm、 表に示される平均粒径、組成および割合(重量 %)の分散相が均一に分布した組織をもつもので あつた。

また、比較の目的で、いずれも0.6~1.2µmの平 均粒径を有するW粉末、各種の(M) C・N粉 10 〔発明の効果〕 末、さらにMgO粉末、Y2O3粉末、およびAl2O3 粉末を用意し、これら原料粉末を、それぞれ第2 表に示される配合組成に配合し、ボールミルにて 72時間湿式混合し、乾燥した後、上記の本発明法 度を1800~1900℃とする以外は同じく同一の条件 で焼結することによつて従来法1~20を行ない、 W母相中に第2表に示される平均粒径、組成、お よび割合(重量%)の分散相が分布した組織を有 するW基焼結材料を製造した。

ついで、この結果得られた各種のW基焼結材料 について、ロツクウエル硬さ(Aスケール)を測 定すると共に、靱性を評価する目的で抗折力を測 定した。

また、これらのW基焼結材料より切削チップを 25

切り出し、

被削材 : SNCM-8(硬さ: H₂240) の丸棒、

14

切削速度:100m/min、

送り : 1.5 mm / rev.

の条件で鋼の連続高送り切削試験を行ない、切刃 の逃げ面摩耗幅が0.5㎜に至るまでの切削時間を 測定した。これらの測定結果をそれぞれ第1表お よび第2表に示した。

第1表および第2表に示される結果から、本発 明法 1~20で製造されたW基焼結材料は、出発原 料としてのW基複合粉末が著しく活性化した表面 を有し、すぐれた焼結性を示すことから、硬さお におけると同一の条件で圧粉体に成形し、かつ温 15 よび靱性とも従来法1~20で製造されたW基焼結 材料に比してすぐれ、かつすぐれた耐摩耗性を示 すことが明らかである。

> 上述のように、この発明の方法によれば、従来 法によって製造されるW基焼結材料に比して、高 20 硬度および高靭性を有するW基焼結材料を製造す ることができ、したがつてこれを切削工具や、軸 受および線引きダイスなどの耐摩耗工具として使 用した場合にすぐれた性能を長期に亘つて発揮す るのである。