13. When a force F acts on a body of mass m, the acceleration produced in the body is a. If three equal forces $F_1 = F_2 = F_3 = F$ act on the same body as shown in figure.

produced in the body is
$$a$$
. If three equal forces $F_1 = F_2 = F_3 = F$ act on the same body as shown in figure. The acceleration produced is F_2

(a) $(\sqrt{2} - 1) a$ (b) $(\sqrt{2} + 1) a$ (c) $\sqrt{2} a$ (d) a

14. Three forces acting on a body are shown in the figure. To have the resultant force only along the *y*-direction, the magnitude of the minimum additional force needed is

- (a) 0.5 N (b) 1.5 N (d) $\sqrt{3}$ N
- **15.** A ball of mass 1 kg hangs in equilibrium from two strings OA and OB as shown in figure. What are the tensions in strings *OA* and *OB*? (Take, $q = 10 \text{ ms}^{-2}$)

- (a) 5 N, 5 N (b) $5\sqrt{3}$ N, $5\sqrt{3}$ N
- (c) $5 \text{ N}, 5\sqrt{3} \text{ N}$
- (d) $5\sqrt{3}$ N, 5N