Biostatistics and Bioinformatics

Summer 2019

•00000000

Section 1

Introduction

00000000

Many names for gene set analysis:

- ► Pathway analysis
- ► Gene set enrichment analysis
- ► Go-term analysis
- ► Gene list enrichment analysis

- ► SNP/Gene: X_1, X_2, \ldots, X_p
- ightharpoonup Phenotype Y
- ▶ Study the relationship between X_i and Y

Þ

Introduction

00000000

$$Y = \beta_{i0} + \beta_{i1}X_i + Z_1$$

or

$$logit{P(Y=1)} = \beta_{i0} + \beta_{i1}X_i$$

or other GLMs.

- ▶ Obtain the *p*-value P_i corresponding to the significance level of β_{i1} .
- ightharpoonup Threshold p-values.

Typical Results of GWAS Analysis (Single SNP Approach)

SNP	Nearest Gene	CA	European Americans (n _{max} = 24,258)			African Americans (n _{max} = 9,844)			American Indians (n _{max} = 6,157)			Mexican Americans and Hispanics (n _{max} = 2,973)			G
			CAF	β (SE)	P-value	CAF	β (SE)	P-value	CAF	β (SE)	P-value	CAF	β (SE)	P-value	
rs1748195	ANGPTL3	С	0.66	0.03 (0.01)	1.93E-07	0.35	0.01 (0.01)	0.19	0.61	0.16 (0.07)	2.44E-02	0.60	0.04 (0.01)	1.17E-02	N
rs1260326	GCKR	T	0.42	0.05 (0.01)	6.44E-13	0.16	0.05 (0.02)	9.98E-04	0.28	0.15 (0.09)	8.52E-02	0.33	0.06 (0.02)	1.97E-04	N
rs780094	GCKR	A	0.40	0.06 (0.01)	1.69E-32	0.18	0.02 (0.01)	2.91E-02	0.25	0.04 (0.01)	3.23E-03	0.33	0.06 (0.02)	1.13E-03	Υ
rs17145738	MLXIPL	T	0.12	-0.07 (0.01)	5.71E-24	0.09	-0.03 (0.01)	2.53E-02	0.08	-0.07 (0.02)	2.30E-04	0.07	0.09 (0.03)	7.40E-04	Υ
rs328	LPL	C	0.90	0.09 (0.01)	4.16E-30	0.93	0.08 (0.02)	2.62E-08	0.97	0.09 (0.03)	4.83E-03	0.93	0.09 (0.03)	6.31E-04	Υ
rs2197089	LPL	T	0.55	-0.03 (0.01)	4.97E-15	0.78	-0.01 (0.01)	7.45E-02	0.41	-0.05 (0.01)	2.57E-06	0.48	-0.05 (0.01)	4.01E-04	N
rs2954029	TRIB1	Α	0.54	0.05 (0.01)	1.13E-04	0.68	-0.01 (0.02)	0.46	-	-	-	0.62	0.06 (0.02)	9.28E-04	N
rs174547	FADS1	T	0.66	-0.03 (0.01)	3.82E-10	0.91	-0.05 (0.01)	3.73E-04	0.21	-0.06 (0.02)	1.10E-04	0.39	0.05 (0.02)	1.51E-03	Υ
rs28927680	APOA1/C3/A4/ A5gene cluster	С	0.93	-0.12 (0.01)	2.88E-38	0.84	<0.001 (0.01)	0.95	0.83	-0.13 (0.01)	6.33E-19	0.86	-0.08 (0.02)	2.15E-05	N
rs964184	APOA1/C3/A4/ A5gene cluster	G	0.86	-0.14 (0.01)	1.91E-59	0.80	-0.02 (0.01)	4.87E-02	0.78	-0.17 (0.07)	1.43E-02	0.72	-0.14 (0.02)	1.04E-19	Υ
rs3135506	APOA1/C3/A4/ A5gene cluster	c	0.06	0.13 (0.01)	2.59E-33	0.06	0.11 (0.02)	2.06E-10	0.17	0.13 (0.01)	4.28E-20	0.14	0.13 (0.02)	3.08E-08	Υ
rs4775041	LIPC	C	0.29	0.01 (0.01)	3.15E-02	0.14	0.03 (0.01)	4.29E-03	0.21	0.02 (0.01)	5.15E-02	0.18	0.01 (0.02)	0.58	N
rs16996148	CILP2/PBX4/ NCAN	Т	0.08	-0.04 (0.01)	3.91E-05	0.15	<0.001 (0.01)	0.77	0.04	-0.07 (0.03)	8.86E-03	0.06	-0.06 (0.03)	2.69E-02	N
rs7679	PLTP	Т	0.82	-0.02 (0.01)	2.84E-02	0.96	-0.01 (0.02)	0.61	0.94	-2.0E-03 (0.02)	0.93	0.89	-0.03 (0.03)	0.31	N

Coded allele (CA): coded allele frequency (CAF): beta coefficient (IP): standard error (SE): data not available (-1): generalized (G): yes (Y): no (Ni. Generalization is defined here as a significant association (p<0.05) and a similar direction of effect (I) (Compared with European Americans for the same test of association, across all racial/ethnic populations. doi:10.1111/j.iounia.pean.1002.118.0000

Figure: An example from Dumitrescu et al. (2011).

000000000

Typical Results of GWAS Analysis (Single SNP Approach)

Figure: An example from Gibson (2010).

- ► An analysis to investigate the relationship between a disease phenotype and a set of genes on the basis of shared biological or functional properties.
- ► Gene set: a set of genes

000000000

- ► Genes involved in a pathway
- ► Genes corresponding to a Gene Ontology term
- Genes mentioned in a paper to have certain similarities

000000000

GOAL OF GSA

Goal: give one number to measure the significance of a gene set as a whole.

- ► Are many genes in the pathway differentially expressed (up-regulated/down-regulated)?
- ▶ What is the probability of observing these changes just by chance?

000000000

Single SNP approach: List top 20-50 most-significant SNPs and their neighboring genes.

GSA approach: List the pathways that have genes in the pathway have consistent trend to affect the phenotype.

000000000

WHY GSA?

Single SNP approach: List top 20-50 most-significant SNPs and their neighboring genes.

► Assumption 1: Single gene work solely to largely increase the disease susceptibility

GSA approach: List the pathways that have genes in the pathway have consistent trend to affect the phenotype.

► Assumption 1: Multiple Genes in the same pathway work together to confer disease susceptibility.

000000000

Single SNP approach: List top 20-50 most-significant SNPs and their neighboring genes.

- ► Assumption 1: Single gene work solely to largely increase the disease susceptibility
- ► Assumption 2: The most associated gene is the best candidate for therapeutic intervention.

GSA approach: List the pathways that have genes in the pathway have consistent trend to affect the phenotype.

- ► Assumption 1: Multiple Genes in the same pathway work together to confer disease susceptibility.
- ► Assumption 2: Targeting susceptibility pathways have clinical implications for finding additional drug targets.

WHY GSA?

- ► Interpretation of genome-wide results
- ► Gene-sets are (typically) fewer than all the genes and have more descriptive names
- ▶ Difficult to manage a long list of significant genes
- ► Integrates external information into the analysis
- ▶ Less prone to false-positives on the gene-level
- ► Top genes might not be the interesting ones, several coordinated smaller changes
- ▶ Detect patterns that would be difficult to discern simply by manually going through, e.g., the list of differentially expressed genes

Section 2

Statistical Issues

are associated with the phenotype.

► Self-contained analysis: None of those genes in the gene set

► Competitive analysis: None of those genes in the gene set are associated with the phenotype.

Figure: Schematic of the two-tier structures of GSA Leeuw et al. (2016).

Underlying Mechanism

Leeuw et al., 2016

Self-contained Tests Inflate Type I Error

Section 3

Method: Gen-Gen/GSEA

- ► Gen-Gen: Kai Wang, Mingyao Li, and Maja Bucan (Dec. 2007). "Pathway-based approaches for analysis of genomewide association studies". In: Am J Hum Genet 81.6, pp. 1278–83. DOI: 10.1086/522374
- ► GSEA: Aravind Subramanian et al. (Oct. 2005). "Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles". In: Proc Natl Acad Sci U S A 102.43, pp. 15545–50. DOI: 10.1073/pnas.0506580102

Microarray Data

SINGLE NUCLEOTIDE POLYMORPHISM DATA

SUMMARIZE SNP ASSOCIATION ON ONE GENE

- ▶ Map SNP V_i to gene j (\mathcal{G}_j) if the SNP is located within the gene or if the gene is the closest gene to the SNP.
- ightharpoonup In total N genes.
- ▶ When one SNP is located within shared regions of two overlapping genes, the SNP is mapped to both genes.
- ▶ For each gene, assign the highest statistic value among all SNPs mapped to the gene as the statistic value of the gene, $r_j = \max_{v_i \in \mathcal{G}_j} t_i$.

ENRICHMENT SCORE

- ▶ A given gene set S, $Card(S) = N_H$.
- ightharpoonup Calculate association chi-square statistics $r_j, j = 1, \ldots, N$.
- ▶ The larger the r_j is, the more associated gene O_j with the phenotype.
- ► Rank the association statistics from the largest to the smallest, denoted by

$$r_{(1)} \ge r_{(2)} \ge \ldots \ge r_{(N)}$$
.

► Calculate a weighted Kolmogrov-Smirnov like running sum statistic

$$\mathrm{ES}(\mathcal{S}) = \max_{1 \leq j \leq N} \left\{ \sum_{j^* \in \mathcal{S}, \ j^* \leq j} \frac{|r_{(j^*)}|^p}{N_R} - \sum_{j^* \notin \mathcal{S}, \ j^* \leq j} \frac{1}{N - N_H} \right\},$$

where $N_R = \sum_{j^* \in S} |r_{(j^*)}|^p$.

Enrichment Score

Weighted Kolmogrov-Smirnov like running sum statistic

$$\mathrm{ES}(\mathcal{S}) = \max_{1 \leq j \leq N} \left\{ \sum_{j^* \in \mathcal{S}, \ j^* \leq j} \frac{|r_{(j^*)}|^p}{N_R} - \sum_{j^* \notin \mathcal{S}, \ j^* \leq j} \frac{1}{N - N_H} \right\},$$

where $N_R = \sum_{i^* \in S} |r_{(i^*)}|^p$.

- \triangleright p is a parameter that gives higher weight to genes with extreme statistics.
- ightharpoonup Common choice p=1.
- \triangleright p=0 leads to regular KS statistic, usually not as powerful as p=1.

NORMALIZED ENRICHMENT SCORE

- ▶ The enrichment score ES(S) relies on the maximum statistic, so that a larger gene set S tends to produce larger ES(S).
- ► Two-step normalization procedure:
 - 1. Permute the phenotype label of all samples
 - 2. During each permutation π , repeat the calculation of the enrichment score $ES(S, \pi)$.
- ► Then

$$NES(S) = \frac{ES(S) - mean\{ES(S, \pi)\}}{sd\{ES(S, \pi)\}}$$

- ► The NES adjusts for different sizes of genes.
- ► THE NES preserves correlations between SNPs on the same gene.

Type I Error Rate

 H_l : Gene set S_l is not associated with the phenotype, $l = 1, \ldots, m$.

	Claim significant	Claim non-significant	Total
True nulls	N_{00}	N_{01}	m_0
False nulls	N_{10}	N_{11}	m_1
Total	R	m-R	m

- ► FDR = $E(N_{00}/(R \vee 1))$.
- ► FWER = $P(N_{00} \ge 1)$.

Control for

- ▶ NES*: the normalized enrichment score in the observed data
- $\widehat{\text{FDR}} = \frac{\% \text{ of all } (\mathcal{S}, \pi) \text{ with } \text{NES}(\mathcal{S}, \pi) \geq \text{NES}^*}{\% \text{ of observed } \mathcal{S} \text{ with } \text{NES}(\mathcal{S}) \geq \text{NES}^*}.$
- ► Rationale
 - ► FDR = $E\{N_{00}/(R \vee 1)\}$.
 - ▶ N_{00}/m : Estimated by % of all (S, π) with NES $(S, \pi) \geq$ NES*.
 - ▶ R/m: Estimated by % of observed S with NES(S) ≥ NES*.
- ► Larger NES* corresponds to smaller FDR.
- ▶ If $\widehat{FDR} < \alpha$, claim the corresponding gene set significant.

CONTROL FWER

- ► NES*: the normalized enrichment score in the observed data
- ▶ $\widehat{\text{FWER}} = \%$ of all π with the highest $NES(S, \pi) \ge NES^*$.
- ► Rationale:
 - FWER = $P(N_{00} \ge 1) = E\{I(N_{00} \ge 1)\}.$
 - ▶ Each permutation π can be viewed as a realization of the event. If the highest NES(\mathcal{S}, π) ≥ NES*, then there is a false rejection.
- ► Larger NES* corresponds to smaller FWER.
- ▶ If $\widehat{\text{FWER}} \leq \alpha$, claim the corresponding gene set significant.

Section 4

Method: GAGE

GAGE

- ▶ Weijun Luo et al. (May 2009). "GAGE: generally applicable gene set enrichment for pathway analysis". In: BMC Bioinformatics 10, p. 161. DOI: 10.1186/1471-2105-10-161
- ► Gene expression data: RNA-Seg or Microarrary

Setting

- ▶ Gene: $i \in \{1, ..., N\}$
- ightharpoonup Condition/Phenotype: $s \in 0, 1$
 - ▶ Paired (1-on-1): e.g., one condition vs. another condition:
 - ightharpoonup Unpaired (grp-on-grp): e.q., one phenotype vs. another phenotype:
- ► Subject:
 - ightharpoonup Paired: $k \in \{1, \ldots, K\}$
 - ▶ Unpaired: $k \in \{1, ..., K_1\}$ for cases and $k \in \{1, ..., K_0\}$ for controls.
- Gene expression:

 $G_{s,k,i} = \begin{cases} \text{Transcription level of gene } i \\ \text{Read counts of gene } i/\text{Total counts} \end{cases}$ Microarray RNA-Seq

Method: GAGE

000000000

log₂ FOLD CHANGE

- Compare the gene expressions between two conditions or two phenotypes
 - ▶ Paired (1-on-1): $X_{k,i} = G_{1,k,i}/G_{0,k,i}$
 - ▶ Unpaired (grp-on-grp): $X_i = \bar{G}_{1,i}/\bar{G}_{0,i}$
 - ► Efficient but not recommended (1-on-grp): $X_{k,i} = G_{1,k,i}/\bar{G}_{0,i}$

- ightharpoonup Gene set of interest S
- ▶ mean fold change: $m = \mathsf{mean}_{i \in \mathcal{S}}(X_i)$ (gene set) vs. $M = \mathsf{mean}_{i \in \{1, \dots, N\}}(X_i)$ (all genes)
- ▶ standard deviation folde change: $s = \mathsf{sd}_{i \in \mathcal{S}}(X_i)$ (gene set) vs. $S = \mathsf{sd}_{i \in \{1,...,N\}}(X_i)$ (all genes)
- ightharpoonup number of genes: n (gene set) vs. N (all genes)
- ► T-statistic:

$$T = (m - M)/\sqrt{s^2/n + S^2/\mathbf{n}}$$

Remark:

- ► This is a two sample t-test between the interesting gene set containing n genes and a virtual random set of the same size derived from the background.
- ▶ Subscript k is left out for simplicity. We will discuss 1-on-1 setting (with subscript k) later.

 \triangleright Degree of freedom of T under the null

$$df = (n-1)\frac{s^2 + S^2}{s^4 + S^4}.$$

- \triangleright *P*-value:
 - ► Two sided: pathway set (genes may be het erogeneously regulated in either direction)
 - ▶ One sided: experimental set (genes are regulated in the same direction)
- ► Alternative choice of T: rank-based test (Wilcoxon Mann-Whitney test)

000000000

SUMMARIZING P-VALUES

Recall that for 1-on-1 (paired) setting, the P-value for gene set \mathcal{S} and subject k is $P_k(\mathcal{S})$.

$$X(\mathcal{S}) = \sum_{k} \log P_k(\mathcal{S}).$$

Under the null, $P_k(\mathcal{S})$ independently follows Unif (0,1), and then X(S) follows Gamma(K, 1).

Controlling fdr

If multiple gene sets are of interest, multiple testing methods are applied to control FDR.

- ► fdrtool: Korbinian Strimmer (July 2008). "A unified approach to false discovery rate estimation". In: BMC Bioinformatics 9, p. 303. DOI: 10.1186/1471-2105-9-303
- ▶ Benjamini and Hochberg (BH) procedure: Y. Benjamini and Y. Hochberg (1995). "Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing". In: Journal of the Royal Statistical Society.

 Series B (Methodological) 57.1, pp. 289–300. ISSN: 00359246

Section 5

References

Dumitrescu, Logan et al. (June 2011). "Genetic determinants of lipid traits in diverse populations from the population architecture using genomics and epidemiology (PAGE) study". In: *PLoS Genet* 7.6, e1002138. DOI: 10.1371/journal.pgen.1002138.

Gibson, Greg (July 2010). "Hints of hidden heritability in GWAS". In: *Nat Genet* 42.7, pp. 558–60. DOI: 10.1038/ng0710-558.

Leeuw, Christiaan A. de et al. (June 2016). "The statistical properties of gene-set analysis". In: Nature Reviews Genetics 17.6, pp. 353–364. ISSN: 1471-0064. DOI: 10.1038/nrg.2016.29.

- Luo, Weijun et al. (May 2009). "GAGE: generally applicable gene set enrichment for pathway analysis". In: *BMC*Bioinformatics 10, p. 161. DOI: 10.1186/1471-2105-10-161.
- Strimmer, Korbinian (July 2008). "A unified approach to false discovery rate estimation". In: *BMC Bioinformatics* 9, p. 303.
- Subramanian, Aravind et al. (Oct. 2005). "Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles". In: *Proc Natl Acad Sci U S A* 102.43, pp. 15545–50. DOI: 10.1073/pnas.0506580102.
- Wang, Kai, Mingyao Li, and Maja Bucan (Dec. 2007). "Pathway-based approaches for analysis of genomewide association studies". In: Am J Hum Genet 81.6, pp. 1278–83.