

Profa. Michele Fúlvia Angelo

PGCA 028 – Tópicos Especiais em Tecnologia Computacional I – Introdução à Programação de Computadores Aula 1

Universidade Estadual de Feira de Santana

Sumário

- Etapas da criação de um programa
- Formas de representação de um algoritmo, com foco em Fluxograma e Pseudocódigo

Um Programa de Computador

- Um programa nada mais é do que uma sequência de instruções que possui significado para o computador.
- O nosso foco será entender como criar um programa.

Criação de um Programa

- Uma etapa da criação do programa é a descrição do Algoritmo, ou seja, dos passos a serem realizados.
- Um algoritmo pode ser escrito de três formas:
 - Descrição Narrativa
 - Fluxograma
 - Pseudocódigo

Descrição Narrativa

- Escrever aquilo que se quer fazer, assim como em uma receita de bolo:
 - Passo 1 Receber os dois números que serão multiplicados
 - Passo 2 Multiplicar os números
 - Passo 3 Mostrar o resultado obtido na multiplicação

Fluxograma

 São diagramas que representam graficamente o algoritmo, enfatizando os passos individuais e o fluxo da execução.

Fluxograma

Pseudocódigo

 Escrever (em português) o programa utilizando algumas regras:

ALGORITMO
DECLARE N1, N2, M NUMÉRICO
ESCREVA "Digite dois números"
LEIA N1, N2
M N1 * N2
ESCREVA "Multiplicação = ", M
FIM_ALGORITMO.

- 1) Os diagramas de blocos devem ser feitos e quebrados em vários níveis;
- 2) Os primeiros devem conter apenas as idéias gerais, deixando para as etapas posteriores os detalhamentos necessários;
- 3) Sempre que possível deve ser feito de cima para baixo e da esquerda para a direita;
- 4) Transcrever o diagrama de bloco em pseudocódigo.

Exemplo:

Uma escola qualquer, onde o cálculo da média é realizado por quatro notas bimestrais que determinam a aprovação ou reprovação dos seus alunos.

Obs.:Considerar que o valor da média deve ser maior ou igual a 7 para que haja aprovação.

 A primeira etapa se inicia e termina com um terminador e existe apenas um processamento que indica a idéia geral do problema:

 O segundo detalhamento está no que se refere a entrada e saída dos dados do problema:

- A terceira etapa consiste em trabalhar o termo "determinar a aprovação".
- Para ser possível determinar algo é necessário estabelecer uma condição.
- Esta condição decide sobre o resultado da aprovação.

 Esta terceira etapa deve ser aperfeiçoada para trabalhar com variáveis:

 A quarta fase consiste em escrever o diagrama de bloco na forma de pseudocódigo.

```
Programa média
Var

Resultado : caractere

n1,n2,n3,n4,soma,media : real
Inicio

Leia(n1,n2,n3,n4)

Soma<-n1+n2+n3+n4

Media <-soma/4

Se (media >=7) então

Resultado <-"APROVADO"

Senão

Resultado<- "REPROVADO"

Fim_se
Escreva(Resultado)

fim
```

Formalizações: Estrutura de um Pseudocódigo

```
Programa média - Cabeçalho do programa
Var
      Resultado: caractere
                                          Área de declarações
      n1,n2,n3,n4,soma,media: real
Inicio
      Leia(n1,n2,n3,n4)
      Soma<-n1+n2+n3+n4
      Media <-soma/4
      Se (media >=7) então
            Resultado <-"APROVADO"
                                          Corpo do programa
      Senão
            Resultado<- "REPROVADO"
      Fim_se
      Escreva(Resultado)
fim
```

Formalizações: O que são Variáveis?

Em programação, variáveis são regiões da memória do computador previamente identificadas, que têm por finalidade armazenar informações (dados) de um programa temporariamente.

Formalizações: Nomes de Variáveis

- O nome de uma variável é utilizado para sua identificação e posterior uso dentro de um programa.
 Sendo assim, é necessário estabelecer algumas regras de utilização:
 - Poderão ser atribuídos com um ou mais caracteres;
 - O primeiro caractere sempre deverá ser uma letra;
 - Não poderá possuir espaços em branco;
 - Não poderá ser uma instrução de programa;
 - Não poderão ser utilizados outros caracteres a não ser letras e números.
 - Obs.: o caracter "_" Underline é considerado como uma letra.

Formalizações: Tipos de Dados

- Definem a natureza do dado, as operações que podem ser realizadas com o dado, e o espaço a ser ocupado na memória:
 - **Tipo Inteiro:** dado numérico positivo ou negativo, excluindose qualquer fracionário. Ex.: 2,0,-57;
 - **Tipo Real:** dado numérico positivo, negativo e números fracionários. Ex.: 35,0,-56,1.2,-45.897
 - Tipo Caracter: sequencia contendo letras, números e símbolos especiais. Uma sequencia de caractere deve ser indicada entre aspas(""). Ex.: "PROGRAMAÇÃO","Rua Alfa"," ","98".
 - Tipo Lógico ou Booleano: dado com valor verdadeiro ou falso. Ex.: Falso, Verdadeiro.

Formalizações: Constantes

- Tem-se como definição de constante tudo aquilo que é fixo ou estável.
- O valor de uma constante não se altera após sua definição.
- Por exemplo, o valor 1.23 da fórmula a seguir pode ser uma constante:

RESULTADO<-ENTRADA*1.23

Formalizações: Operadores Aritméticos

Operador	Operação	Prioridade Matemática
**	Exponenciação	1
-	Inversão de sinal	1
*	Multiplicação	2
1	Divisão	2
+	Soma	3
-	Subtração	3

Formalizações: Operadores Relacionais

Operador	Operação
<	Menor
>	Maior
<=	Menor ou Igual
>=	Maior ou Igual
==	Igual
!=	Diferente

Formalizações: Operadores Lógicos

Operador	Operação	Prioridade
!	NOT	1
Е	AND	2
OU	OR	3

Formalizações: Operadores Lógicos

Operador E		
verdadeiro	verdadeiro	verdadeiro
verdadeiro	falso	falso
falso	verdadeiro	falso
falso	falso	falso

Operador OU		
verdadeiro	verdadeiro	verdadeiro
verdadeiro	falso	verdadeiro
falso	verdadeiro	verdadeiro
falso	falso	falso

Operador!	
verdadeiro	falso
falso	verdadeiro

Formalizações: Operadores de Atribuição e Comentário

 Operador de Atribuição: usado para atribuir um valor a uma variável.

<-

 Operador de Comentário: usado para inserir explicações sobre o código escrito.

// : Comentário de linha

/* */ : Comentário de bloco

Formalizações: Precedência entre os Operadores

Ordem em que os operadores são avaliados:

Maior Precedência	
NOT, -(inversão)	
*,/	
+, -	
Operadores relacionais	
E	
OU	
<-	
Menor Precedência	

Formalizações: Entrada e Saída de Dados

Entrada de dados

LEIA(variável)

Saída de dados

ESCREVA(mensagem e/ou variável)

Problema 1: Área de um Retângulo

 Dadas a base e a altura de um retângulo, calcule e mostre na tela a área desta figura.

Problema 1: Área de um Retângulo

Problema 1: Área de um Retângulo

```
var
    B, H: inteiro
    A: inteiro
início
    leia B, H
    A <- B * H
    escreva A
fim</pre>
```

Dúvidas?

