Priv.-Doz. Dr. S.-J. Kimmerle

WiSe 2021/22

Thursday, 04.11.2021

Exercise 5 (live tutorial): series

Exercise 15

Decide whether the series

$$\sum_{k=1}^{\infty} a_k$$

converges, converges absolutely, or diverges for the following sequences $\{a_k\}_{k\in\mathbb{N}}$:

a)
$$a_k = \frac{1}{k^m}, m > 2$$

b)
$$a_k = \frac{1}{\sqrt{k}}$$

c)
$$a_k = \frac{1}{k!}$$

d)
$$a_k = \frac{x^k}{k!}$$
, for fixed $x \in \mathbb{R}$

e)
$$a_k = \frac{x^k}{k}$$
, for fixed $x \in \mathbb{R}$

f)
$$a_k = \begin{cases} q_1^k & \text{; } k \text{ even,} \\ q_2^k & \text{; otherwise,} \end{cases}$$
 for $0 < q_1 < q_2 < 1$.

Hint: in e) you may use that $\lim_{n\to\infty} \sqrt[n]{n} = 1$.

Solution for exercise 15

a) For m > 2 we have

$$\frac{1}{k^m} < \frac{1}{k^2}$$

and the majorant $\sum_{k=1}^{\infty} \frac{1}{k^2}$ converges absolutely.

By the comparison test $\sum_{k=1}^{\infty} \frac{1}{k^m}$, m > 2 converges absolutely.

- b) We have $\frac{1}{\sqrt{k}} > \frac{1}{k}$ and the minorant $\sum_{k=1}^{\infty} \frac{1}{k^2}$ diverges (definitely to ∞). By the comparison test $\sum_{k=1}^{\infty} \frac{1}{\sqrt{k}}$ diverges (definitely to ∞).
- c) We choose the ratio test:

$$\left| \frac{a_{k+1}}{a_k} \right| = \frac{k!}{(k+1)!} = \frac{1}{k+1} \stackrel{k \to \infty}{\to} 0 < 1.$$

Thus the series converges absolutely.

d) We consider again the ratio test:

$$\left| \frac{a_{k+1}}{a_k} \right| = \left| \frac{x^{k+1}}{x^k} \right| \frac{k!}{(k+1)!} = \frac{|x|}{k+1} \stackrel{k \to \infty}{\to} 0 < 1.$$

This holds for any fixed $x \in \mathbb{R}$. The exponential series converges absolutely.

e) By the root test:

$$\sqrt[k]{\left|\frac{x^k}{k}\right|} = \frac{|x|}{\sqrt[k]{k}} \stackrel{k \to \infty}{\to} |x| \stackrel{!}{<} 1.$$

Thus the series converges for |x| < 1 absolutely and diverges for |x| > 1.

For |x| = 1 we have the "critical" case: for x = 1 we recover the harmonic series that diverges definitively to ∞ ,

for x = -1 this is the alternating harmonic series that converges, but does not converge absolutely.

f) Again by the root test:

$$\sqrt[k]{|a_k|} = \begin{cases} q_1 & \text{; } k \text{ even,} \\ q_2 & \text{; otherwise.} \end{cases}$$

Since $q_1 < 1$ and $q_2 < 1$ the series converges absolutely, though the sequence $\{\sqrt[k]{|a_k|}\}_{k \in \mathbb{N}}$ does not converge. (It has 2 accumulation points, namely q_1 and q_2 .)

Exercise 16

Prove:

Let $\sum_{k=1}^{\infty} a_k$ and $\sum_{k=1}^{\infty} b_k$ are converging series and c a real constant.

Then the series $\sum_{k=1}^{\infty} (a_k + b_k)$ and $\sum_{k=1}^{\infty} c \, a_k$ converge and there holds for the limits:

$$\sum_{k=1}^{\infty} (a_k + b_k) = \sum_{k=1}^{\infty} a_k + \sum_{k=1}^{\infty} b_k,$$

$$\sum_{k=1}^{\infty} (a_k - b_k) = \sum_{k=1}^{\infty} a_k - \sum_{k=1}^{\infty} b_k,$$

$$\sum_{k=1}^{\infty} c a_k + b_k = c \sum_{k=1}^{\infty} a_k.$$

Solution for exercise 16

We use the rules for converging sequences applied to the sequences of partial sums. Moreover, a limit is unique.

Remark: The statement for $\sum_{k=1}^{\infty} c \, a_k$ is also a particular case of the Cauchy product (next Monday in the lecture) of two converging series, but can be proved here directly.