MATH 611 (DUE 11/13)

HIDENORI SHINOHARA

1. SIMPLICIAL AND SINGULAR HOMOLOGY

Exercise. (Problem 27) Let $f:(X,A)\to (Y,B)$ be a map such that both $f:X\to Y,f:A\to B$ are homotopy equivalences.

- Show that $f_*: H_n(X,A) \to H_n(Y,B)$ is an isomorphism for all n.
- For the case of the inclusion $f:(D^n,S^{n-1})\to (D^n,D^n\setminus\{0\})$, show that f is not a homotopy equivalence of pairs there is no $g:(D^n,D^n\setminus\{0\})\to (D^n,S^{n-1})$ such that fg and gf are homotopic to the identity through maps of pairs.

Proof.

• For each $n \geq 1$, we have an exact sequence $H_n(A) \to H_n(X) \to H_n(X,A) \to H_{n-1}(A) \to H_{n-1}(X)$ and another one with X,A replaced with Y,B. Moreover, they are connected by homomorphisms $f_*: H_n(A) \to H_n(B), f_*: H_n(X) \to H_n(Y), f_*: H_n(X,A) \to H_n(Y,B)$ such that the diagram commutes. (naturality) Since $f: X \to Y$ and $f: A \to B$ are both homotopy equivalences, $f_*: H_n(X) \to H_n(Y), f_*: H_n(A) \to H_n(B)$ are isomorphisms. By the Five lemma, $f_*: H_n(X,A) \to H_n(X,B)$ is an isomorphism.

The exact sequence $H_1(A) \to H_1(X) \to H_1(X,A) \to 0$ can be extended to $H_1(A) \to H_1(X) \to H_1(X,A) \to 0 \to 0$ by appending 0 at the end. Using the same argument as above, $f_*: H_1(X,A) \to H_1(Y,B)$ is an isomorphism.

• Suppose $f:(D^n,S^{n-1})\to (D^n,D^n-\{0\})$ is a homotopy equivalence. Then there exists a $g:(D^n,D^n-\{0\})\to (D^n,S^{n-1})$ such that $f\circ g$ and $g\circ f$ are homotopic to the identity maps in corresponding domains. Since g is continuous, $g(\overline{D^n-\{0\}})=\overline{g(D^n-\{0\})}\subset \overline{S^{n-1}}=S^{n-1}$. Therefore, g maps D^n into S^{n-1} . Since f maps S^{n-1} into D^n , $g\circ f$ maps S^{n-1} into S^{n-1} . We know this is homotopic to the identity map from the problem statement. Similarly, $f\circ g$ maps D^n into D^n and we know this is homotopic to the identity map from the problem statement. Therefore, this implies that D^n and S^{n-1} are homotopy equivalent. However, this is false because D^n is contractible but S^{n-1} is not.

Hence, f cannot be homotopy equivalent.