Assignment B11 Roll no. 4234

Title:

Implement Decision Trees on Digital Library Data

1 Problem Statement

Implement Decision Trees on Digital Library Data to mirror more titles(PDF) in the library application, compare it with Navie Bayes Algorithm.

2 Objectives

- To learn decision tree based algorithm for classification.
- To implement the Decision Tree algorithm.
- To show comparative study between Decision tree algorithm and Navie Bayes Algorithm.

3 Theory

3.1 Decision Tree:

- Decision tree learning, used in data mining and machine learning, uses a decision tree as a predictive model which maps observations about an item to conclusions about the item's target value.
- In these tree structures, leaves represent classifications and branches represent conjunctions of features that lead to those classifications.
- In decision analysis, a decision tree can be used to visually and explicitly represent decisions and decision making. In data mining, a decision tree describes data but not decisions; rather the resulting classification tree can be an input for decision making. This page deals with decision trees in data mining.
- Decision tree learning is a common method used in data mining. The goal is to create a model that predicts the value of a target variable based on several input variables.
- Each interior node corresponds to one of the input variables; there are edges to children for each of the possible values of that input variable.
- Each leaf represents a value of the target variable given the values of the input variables represented by the path from the root to the leaf.

- A tree can be "learned" by splitting the source set into subsets based on an attribute value test. This process is repeated on each derived subset in a recursive manner called recursive partitioning. The recursion is completed when the subset at a node all has the same value of the target variable, or when splitting no longer adds value to the predictions.
- In data mining, trees can be described also as the combination of mathematical and computational techniques to aid the description, categorization and generalization of a given set of data.
- Data comes in records of the form:

$$(x, y) = (x1, x2, x3..., xk, y)$$

The dependent variable, Y, is the target variable that we are trying to understand, classify or generalize. The vector x is comprised of the input variables, x1, x2, x3 etc., that are used for that task.

3.2 Types of trees:

In data mining, trees have additional categories:

- Classification tree analysis is when the predicted outcome is the class to which the data belongs.
- Regression tree analysis is when the predicted outcome can be considered a real number (e.g. the price of a house, or a patients length of stay in a hospital).
- Classification And Regression Tree (CART) analysis is used to refer to both of the above procedures, first introduced by Breiman et al.
- CHi-squared Automatic Interaction Detector (CHAID). Performs multi-level splits when computing classification trees.
- A Random Forest classifier uses a number of decision trees, in order to improve the classification rate.
- Boosting Trees can be used for regression-type and classification-type problems

3.3 Algorithm:

Algorithm: Generate_decision_tree. Generate a decision tree from the training tuples of data partition *D*.

Input:

- Data partition, *D*, which is a set of training tuples and their associated class labels;
- attribute_list, the set of candidate attributes;
- Attribute_selection_method, a procedure to determine the splitting criterion that "best" partitions the data tuples into individual classes. This criterion consists of a splitting_attribute and, possibly, either a split point or splitting subset.

Output: A decision tree.

Method:

- (1) create a node N;
- (2) if tuples in D are all of the same class, C then
- (3) return N as a leaf node labeled with the class C;
- (4) if attribute_list is empty then
- (5) return N as a leaf node labeled with the majority class in D; // majority voting
- (6) apply Attribute_selection_method(D, attribute_list) to find the "best" splitting_criterion;
- (7) label node N with splitting_criterion;
- (8) if splitting_attribute is discrete-valued and
 - multiway splits allowed then // not restricted to binary trees
- (9) $attribute_list \leftarrow attribute_list splitting_attribute$; // remove splitting_attribute
- (10) for each outcome j of splitting_criterion
 - // partition the tuples and grow subtrees for each partition

3.4 Input:

The Training Data Set D:

Table Class-labeled training tuples from the *AllElectronics* customer database.

RID	age	income	student	$credit_rating$	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle_aged	medium	no	excellent	yes
13	middle_aged	high	yes	fair	yes
14	senior	medium	no	excellent	no

3.5 Output:

Adecision tree:

3.6 ADVANTAGES:

Amongst other data mining methods, decision trees have various advantages:

- Simple to understand and interpret. People are able to understand decision tree models after a brief explanation.
- Requires little data preparation. Other techniques often require data normalization, dummy variables need to be created and blank values to be removed.
- Able to handle both numerical and categorical data. Other techniques are usually specialized in analyzing datasets that have only one type of variable. Ex: relation rules can be used only with nominal variables while neural networks can be used only with numerical variables.
- Use a white box model. If a given situation is observable in a model the explanation for the condition is easily explained by Boolean logic. An example of a black box model is an artificial neural network since the explanation for the results is difficult to understand.
- Possible to validate a model using statistical tests. That makes it possible to account for the reliability of the model.
- Robust. Performs well even if its assumptions are somewhat violated by the true model from which the data were generated.

4 Mathematical Model:

Let S be the solution perspective of the class such that

S={s, e, i, o, f, DD, NDD, success, failure}

s={Initial state of the class}

e={End state or destructor of the class}

 $i=\{I1\}$ where I1 is the set of inputs.

I1= $\{x-x \in \text{input file }\}$ where input file consist of the records.

o={decision tree, compare naive bayes}

where,

decision tree = display the decision tree according to the input file. compare naive bayes = display the result of comparison between Naive Bayes and decision tree.

F_{me}=set of functions.

 $F_{me} = \{f1, f2, f3, f4\}$

where,

f1 = f1 represents the function to read the input from a file.

f2=f2 represents the function to display the decision tree.

f3= f3 represents the function to show comparative study between Naive Bayes and decision tree.

DD (Deterministic Data) = input file

NDD (Non Deterministic Data) = the decision tree and the comparative study

Sc = Success case.

= the decision tree is constructed.

Fc = Failure Case

= the decision tree may not be constructed.

5 State Diagram:

- $q0 \rightarrow \text{start state.}$ Accept the input file
- $q1 \rightarrow \text{perform decision tree operations on data}$
- $q2 \rightarrow to \ display \ decision \ tree$
- $\mbox{q3} \rightarrow \mbox{to}$ display comparative study between decision tree and Naive Bayes Algorithm.

6 Conclusion

Thus we successfully implemented Decision tree algorithm and have done the comparative study with Naive Bayes Algorithm