Chapter 3 Summary (part 1)

Correct Format for Proofs

Theorem Clearly state the thing you're planning to prove Steplay-step, in order, line-by-line, Carefully explain your reasoning. end with your conclusion.

Kinds of Proofs (part 1)

PROOF OF EXISTENCE

Theorem 3 x s.t. x is blah. Proof You only need to find one example that works!

PROOF BY EXHAUSTION

Theorem blah is true for this list of things. Proof Go through the list of things one by one, and show that blah is true for each.

DIRECT PROOF

Theorem $\forall x$, $P(x) \Rightarrow Q(x)$.

Proof . clearly and carefully state P(x) istrue. · step-by-step, use algebra, arthmetic or other reasoning to get to: · Q(x) is true.

□.

\$ does not use n, m, k, etc... for integers mean zero! use x, y, z, etc... for real numbers

Things you get to assume in Chapter 3

- 1) The sum, difference, and product of hiegers is always an Meger. (But not true for quotients!)
 2) The product of non-zero numbers is non-zero.
- 3 n is even $\iff \exists k \in \mathbb{Z} \text{ s.t. } n = 2k$
- n is odd => Ike Z s.t. n=2k+1
- 5 n is prime $\Leftrightarrow \forall r, s \in \mathbb{Z}^+$, if $n = r \cdot s$, then r = 1 or s = 1
- 6 what are the first few primes? 2,3,5,7,11, 13, 17,19, 23, 29,31,37,41, ...
- or is rational \iff $\exists a,b \in \mathbb{Z} \text{ s.t. } r = \frac{a}{b} \text{ and } b \neq 0.$

Divisibility

n is divisible by d iff n=d·k for some integer k.

Notation d'n "d divides evenly into n"

"d divides n"

"d is a factor of n'

dn ↔ ∃KEZ s.t. n=K·d

Disproof

Theorem Y blah, blah is true

Disproof Find a counter example. Only need to find one example where the theorem is not true.