Dipolar interactions in dense ensembles of Nitrogen-Vacancy centers

Clément Pellet-Mary, Maxime Perdriat, Gabriel Hétet

Nano-optics group

What are NV centers?

Common example : Optically Detected Magnetic Resonance (ODMR)

What are NV centers and why are they everywhere?

- \blacksquare Good optical properties : quantum yield \approx 1, stable in time and temperature
- Good spin properties : $T_1 \approx \text{ms}$ and $T_2^* \sim \mu \text{s}$ at 300 K.
- Optical polarization (up to 90%) and readout (fidelity up to 0.3) of the spin at room temperature
- ightarrow One of the most versatile spin qubit at room temperature

What are NV centers being used for ?

• Quantum memories :

Room-Temperature Quantum Bit Memory Exceeding One Second

P. C. Maurer, ¹⁴ G. Kucsko, ¹⁴ C. Latta, ¹ L. Jiang, ² N. Y. Yao, ¹ S. D. Bennett, ¹ F. Pastawski, ³ D. Hunger, ³ N. Chisholm, ⁴ M. Markham, ⁵ D. J. Twitchen, ⁵ J. I. Cirac, ³ M. D. Lukin ¹†

Intrication :

Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres

B. Hensen^{1,2}, H. Bernien^{1,2}t, A. E. Dréau^{1,2}, A. Reiserer^{1,2}, N. Kalb^{1,2}, M. S. Blok^{1,2}, J. Ruitenberg^{1,2}, R. F. L. Vermeulen^{1,2}, R. N. Schouten^{1,2}, C. Abellan², W. Amaya¹, V. Pruner^{1,4}, M. W. Mitchell^{1,4}, M. Markham⁵, D. J. Twitchen⁵, D. Elkouss¹, S. Wehner¹, T. H. Taminiau^{1,2} & R. Hanson^{1,2}

Magnetomtry with NV centers : big or small

• AFM nano-scale magnetomtry :

Nanoscale imaging magnetometry with diamond spins under ambient conditions

Gopalakrishnan Balasubramanian¹, I. Y. Chan²†, Roman Kolesov¹, Mohannad Al-Hmoud¹, Julia Tisler¹, Chang Shin³, Changdong Kim², Aleksander Wojcik², Philip R. Hemmer², Anke Krueger⁴, Tobias Hanke³, Alfred Leitenstorfer², Rudolf Bratschitsch³, Fedor Jelezko¹ & Jörg Wrachtrup¹

 $\begin{array}{l} {\rm resolution} \sim 30~{\rm nm} \\ {\rm sensitivity} \sim 1~\mu{\rm T}/\sqrt{\rm Hz} \end{array}$

• Diamond magnetic microscopy :

Imaging viscous flow of the Dirac fluid in graphene

Mark J. H. Ku^{1,2,3,4,18}, Tony X. Zhou^{1,4,8}, Qing Li¹, Young J. Shin^{1,5}, Jing K. Shi¹, Claire Burch⁴, Laurel E. Anderson¹, Andrew T. Pierce¹, Yonglong Xie¹, Assaf Hamo¹, Uri Vool^{1,8}, Hulliang Zhang^{1,3}, Fancesco Casola³, Takashi Taniguch¹, Kenji Watanabe¹, Michael M. Fogler⁸, Philip Kim^{1,4}, Amir Yacop^{1,4,2,4} & Ronald L. Halloworth^{1,2,3,12,12,12}

Context of my PhD work : new physics with dense ensemble of NV centers

- To increase the ensemble sensitivity we need to increase the density of NV centers
- Chemists and material scientists have made huge progress to grow NV-rich diamond with little other impurities

- $\bullet~\sim$ ppm density of NV centers
- \bullet Up to 40% of defects are NV centers
- When the defects density reaches a critical point, many body effects start to appear due to dipole-dipole interaction and charge tunneling (3 ppm of NV = 30 kHz dipole coupling between NV neighbors)

Modification of the spin T_1 due to resonant dipole coupling

Conclusion

Acknowledgments : Christine et les autres

Take home messages:

- NV centers are defects in diamond with an optically controllable and readable spin at room temperature
- Many body effects start to manifest with the new NV-rich samples being made

Bonus: Magnetometry in zero magnetic field

Optical properties of NV⁻ centers

NV⁻ center electronic structure

NV center spin sub-levels

