Tarea diplomado: Analisis de caso: Mortalidad en MarineFjordland en 2021 " v2

Diplomado en Análisis de datos con R para la Acuicultura.

Carolina San Martin

2022-06-26

Introducción

- En 2021, en la zona MarineFjordLand se cultivaban salmon del atlatico en 150 centros distribuidos en 5 areas de manejo (A, B, C, D y E).
- ▶ De manera repentina comienzan a detectarse mortalidades mayor al 5% diario en distintos centros del area.
- Se intento descubrir el problema o patogeno asociado a la mortalidad sin exito.
- ► La autoridad sanitaria levantó una encuesta a todos los centros del area para determinar causalidad. A partir de esta información se obtiene la base de datos con la que trabajaremos para este proyecto.

Introducción

Análisis exploratorio de datos

I.- Preguntas Iniciales. ¿Cuántas y qué tipo de variables se dispone para el análisis? 8 variables: 1.- Area de manejo (cualitativa nominal), 2.- Compañia (cualitativa nominal), 3.- Tipo de vacuna (cualitativa nominal), 4.- Temperatura promedio (cuantitativo continuo), 5.- Densidad (cuantitativo continuo), 6.- Presencia de Sealice (variable aleatoria discreta con distribucion bernoulli), 7.- Enfermedad branquial (variable aleatoria discreta con distribucion bernoulli), 8.- Calidad de smolt (variable aleatoria discreta con distribucion bernoulli).

Análisis exploratorio de datos

¿Cuales son los tratamientos? Caso 1 (positivo, es decir mortalidad mayor al 5% diario),

Caso 0 (negativo, es decir no se registra mortalidad mayor al 5% diario), variable aleatoria discreta con distribucion bernoulli

¿La base de datos está completa?, ¿tiene errores? Si está completa y no tiene errores

¿Es posible responder las causas de mortalidad con los datos disponibles? Si, es posible.

¿La cantidad de datos y variables permite hacer un análisis estadistico? Si, el número de observaciones y las variables permiten realizar un análisis estadístico.

Comentario Final al analisis exploratorio de datos

La base de datos está limpia, completa, existen variables cualitativas y cuantitativas. La variables cuantitativas no tienen una distribución normal por ende se requiere pruebas no parametricas para un adecuado análisis estadistico.

Propuesta de Hipotesis

La propuesta de la hipotesis se hizo considerando la relación entre las variables Densidad y Caso

Hipotesis 0: La densidad no esta asociada al caso(1) Hipotesis 1: La densidad está asociada al caso (1)

Para evaluar la correlación entre dos variables cuantitativas y no parametricas se utilizará la coeficiente rho de Spearman.

Prueba coeficiente rho dr Spearman

```
cor.test(x=D$Density, y=D$Case, method='spearman')
  Spearman's rank correlation rho
  data: D$Density and D$Case
  S = 376818, p-value = 3.708e-05
  alternative hypothesis: true rho is not equal to 0
  sample estimates:
     rho
 0.330072
Escala Spearman:
Correlación negativa perfecta.....-1
Correlación negativa fuerte moderada débil......-0.5
Correlación positiva perfecta..... + 1
```

Interpretación

En este caso hay correlacion positiva moderada, pero no lineal. Y el P value es menor a 0,5 por lo tanto se acepta la hipotesis alternativa es decir hay correlación entre caso (1) y densidad.

Evaluación de supuestos

1.- Homocedasticidad : no se cumple 2.- Independencia: son independientes 3.- Normalidad: no son normales

Conclusiones

- Se acepta la hipotesis alternativa (hay correlación entre Densidad y Caso), la correlacion es positiva moderada, y muy posiblemente no lineal.
- De acuerdo con AED, la información disponible permite realizar un adecuado análisis estadístico.