Pascal's Triangle and the binomial theorem

Pascal's Triangle

We proved that $\binom{n}{k}$ counts the number of subsets with k elements that can be found in a set with n elements.

We know that

We set $\binom{n}{k} = 0$ if k > n (there are no subsets with k elements in a set with n elements if k > n.)

In the inductive proof that $\binom{n}{k}$ counts subsets, we proved that

" t K < C

This relation defines "Pascal's Triangle".

1 (0)

$$n=2$$
 (3)1, 2 (1)

 $1 = (3)1$, $3(3)$ (2)

 $1 = (3)1$, $3(3)$ (1)

 $1 = (3)1$, $3(3)$ (2)

 $1 = (3)1$, $3(3)$ (2)

 $1 = (3)1$, $3(3)$ (3)

 $1 = (3)1$, $3(3)$ (4)

 $1 = (3)1$, $3(3)1$

1

Binomial Theorem

Theorem:

$$\underbrace{(x+y)^n}_{i=0} = \sum_{i=0}^n \binom{n}{i} x^i y^{n-i}$$

Proof: By induction.

$$(x+y)^{2} = x^{2} + 2xy + y^{2}$$

$$(x+y)^{3} = x^{2} + 3xy + 2xy^{2} + y^{3}$$

$$(x+y)^{3} = x^{2} + 3xy + 2xy^{2} + y^{3}$$

$$(x+y)^{3} = x^{2} + 3xy + 2xy^{2} + y^{3}$$

$$(x+y)^{3} = x^{2} + 3xy + 2xy^{2} + y^{3}$$

$$(x+y)^{3} = x^{2} + 3xy + 2xy^{2} + y^{3}$$

$$(x+y)^{3} = x^{2} + 3xy^{2} + y^{2}$$

$$(x+y)^{3} = x^{2} + x^{2} + x^{2} + y^{2}$$

$$(x+y)^{3} = x^{2} + x^{2} + x^{2} + y^{2}$$

$$(x+y)^{3} = x^{2} + x^{2} + x^{2} + x^{2} + y^{2}$$

$$(x+y)^{3} = x^{2} + x^{2$$

$$(x+y)^{3} = x^{3} + 3x^{2}y + 3xy^{2} + 8y$$

$$(x+y)(x+y)^{3} = x^{4} + 3x^{3}y + 3x^{2}y^{2} + xy^{3}$$

$$(x+y)(x+y)^{3} = x^{4} + 3x^{3}y + 3x^{2}y^{2} + xy^{3}$$

$$(x+y)(x+y)^{3} = x^{4} + 3x^{3}y + 3x^{2}y^{2} + xy^{3}$$

$$(x+y)(x+y)^{3} = x^{4} + 3x^{3}y + 3x^{2}y^{2} + xy^{3}$$

$$(x+y)^{3} = x^{4} + 3x^{3}y + 6x^{2}y^{2} + xy^{3}$$

$$(x+y)^{3} = x^{4} + 3x^{3}y + 6x^{2}y^{2} + xy^{3}$$

$$(x+y)^{3} = x^{4} + 3x^{3}y + 6x^{2}y^{2} + xy^{3}$$

$$(x+y)^{3} = x^{4} + 3x^{3}y + 3x^{2}y^{2} + xy^{3}$$

$$(x+y)^{3} = x^{4} + 3x^{2}y + 3xy^{2} + xy^{3}$$

$$(x+y)^{3} = x^{4} + 3x^{2}y + 3xy^{2} + xy^{3}$$

$$(x+y)^{3} = x^{4} + 3x^{2}y + 6x^{2}y^{2} + xy^{3}$$

$$(x+y)^{3} = x^{4} + 3x^{2}y + 6x^{2}y^{2} + xy^{3}$$

$$(x+y)^{3} = x^{4} + 3x^{2}y + 6x^{2}y^{2} + xy^{3}$$

$$(x+y)^{3} = x^{4} + 3x^{2}y + 6x^{2}y^{2} + xy^{3}$$

$$(x+y)^{3} = x^{4} + 3x^{2}y + 6x^{2}y^{2} + xy^{3}$$

$$(x+y)^{3} = x^{4} + 3x^{2}y + 6x^{2}y^{2} + xy^{3}$$

$$(x+y)^{3} = x^{4} + 3x^{2}y + 6x^{2}y^{2} + xy^{3}$$

$$(x+y)^{3} = x^{4} + 3x^{2}y + 6x^{2}y^{2} + xy^{3}$$

$$(x+y)^{3} = x^{4} + 3x^{2}y + 6x^{2}y^{2} + xy^{3}$$

$$(x+y)^{3} = x^{4} + x^{3}y + 6x^{2}y^{2} + xy^{3}$$

$$(x+y)^{3} = x^{4} + 3x^{2}y + 6x^{2}y^{2} + xy^{3}$$

$$(x+y)^{3} = x^{4} + 3x^{2}y + 6x^{2}y^{2} + xy^{3}$$

$$(x+y)^{3} = x^{4} + 3x^{2}y + 3x^{2}y + xy^{3}$$

$$(x+y)^{4} = x^{4} + x^{3}y + 6x^{2}y^{2} + xy^{3}$$

$$(x+y)^{4} = x^{4} + x^{4}y + xy^{4} + xy^{4}$$

$$(x+y)^{4} = x^{4} + x^{4}y + xy^{4} + xy^{4}$$

$$(x+y)^{4} = x^{4} + x^{4}y + xy^{4} + xy^{4}$$

$$(x+y)^{4} = x^{4} + x^{4}y + xy^{4} + xy^{4}$$

$$(x+y)^{4} = x^{4} + x^{4}y + xy^{4} + xy^{4}$$

$$(x+y)^{4} = x^{4} + x^{4}y + xy^{4} + xy^{4}$$

$$(x+y)^{4} = x^{4} + x^{4}y + xy^{4} + xy^{4} + xy^{4}$$

$$(x+y)^{4} = x^{4} + x^{4}y + xy^{4} + xy^{4} + xy^{4}$$

$$(x+y)^{4} = x^{4} + x^{4}y + xy^{4} + x$$