Impala Queries:

Queries to create tables in Impala for the Solar(UPV and DPV) and Landcover_solar dataset

- 1. create table upv(latitude string, longitude string, month int, sum double) row format delimited fields terminated by ',' location '/user/cloudera/project/upv/';
- 2. create table dpv(latitude string, longitude string, month int, sum double) row format delimited fields terminated by ',' location '/user/cloudera/project/dpv/';
- 3. create table landsolar(longitude string, latitude string, landcover int) row format delimited fields terminated by ',' location '/user/cloudera/project/landcover_solar/';

Query for Distributed PV (DPV) that can be used for solar power generation in houses and buildings and hence will include landcover like Urban, CropLands and Crop, Natural Veg. Mosaic.

4. select dpv.latitude, dpv.longitude, dpv.month, dpv.sum from dpv, landsolar where CAST(dpv.latitude as double) = CAST(landsolar.latitude as double) and CAST(dpv.longitude as double) = CAST(landsolar.longitude as double) and landsolar.landcover in (12,13,14);

Result of Analytic:

Σ.					
	⊏di+	View	Coarch	Tormino	d Hole
File	Edit	View	Search	Termina	
40.			22.35	4	8770.04000000003
40.			12.05	5	226882.9000000005
41.			11.95	2	66521.10000000001
41.			12.05	9	98258.9999999968
41.			11.95	11	52746.20000000001
41.			11.95	10	76365.49999999994
42.			22.85	10	676.108999999971
42.			1.05	11	12638.60000000003
43.			12.05	3	133.9710000000005
43.			1.15	2	16308.40000000004
44.			23.05	7	12882.78000000003
44.			23.35	10	3004.980000000002
44.			3.05	10	26242.0999999999
44.			1.25	11	21212.70000000001
44.	75	-9:	3.05	11	17864.1999999999
44.			23.05	10	3723.510000000004
44.			3.15	1	17791.10000000006
44.	95		3.15	12	15038.30000000001
44.			3.35	10	30123.79999999997
47.			22.25	3	3937.120000000012
47.			22.35	2	2635.200000000021
47.			22.25	2	2796.68999999999
47.			22.35	1	1412.32999999999
47.			22.35	12	1624.18999999999
47.		-1	22.35	11	1553.329999999991
47.	25	-1	22.45	10	15937.4
47.	35	-1	22.25	11	2424.99999999997
47.			22.25	10	5928.340000000016
48.	15	-1	22.15	2	5004.59000000016
+		-+		+	-+

Fetched 16644 row(s) in 4.06s [quickstart.cloudera:21000] >

Query for Utility-scale PV (UPV) that can be used for Solar power farms, large space is required and hence will iinclude Closed Shrubland, Savannas, Desert, Barren and Grasslands. The query for this is given below:

5. select upv.latitude, upv.longitude, upv.month, upv.sum from upv, landsolar where CAST(upv.latitude as double) = CAST(landsolar.latitude as double) and CAST(upv.longitude as double) = CAST(landsolar.longitude as double) and landsolar.landcover in (6,9,10,16);

Result for the analytic:

_					
>_					
File	Edit	View	Search	Terminal	Help
43	. 25	-1	00.15	6	192749.1999999997
43.	. 25	-1	00.55	j 2	128220.6000000001
43	. 25	-1	01.45	2	15487.90000000004
43	. 25	-1	01.75	10	17672.29999999999
43	. 25	-1	02.05	5	244945.2000000004
43	. 25	-1	02.45	1	55285.40000000000
43	. 25	-1	02.45	12	39444.30000000003
43	. 25	-1	02.65	10	70311.9999999983
43	. 35	-1	02.35	1	15816.1
43	. 35	-1	02.35	12	11953.30000000001
43	. 35	-1	02.45	11	91566.90000000011
43	. 45	-1	02.35	11	26262.9
43	. 45	-1	02.45	10	137940.9
43	. 75	-1	00.05	2	60455.1999999999
43	. 85	-1	01.15	10	52384.80000000003
44.		-1	21.35	5	51618.50000000011
44.		-1	01.15	3	48311.00000000001
45	. 25	-1	04.15	11	80257.5999999999
45	. 35	-1	04.15	10	176517.3
46		-1	20.05	1	98976.30000000005
46		-1	20.05	12	75070.4999999977
46			20.15	11	67593.4999999984
46			20.25	10	70816.7000000013
46	. 85	-1	20.05	11	28541.599999999
46			20.15	10	175182.3000000004
	. 35	_	20.35	1	35758.1999999999
47			20.35	12	27738.19999999999
47			20.25	1	67589.3999999973
47	. 45	-1	20.25	12	49670.1999999985
+		-+		+	++

Fetched 4152 row(s) in 1.60s [quickstart.cloudera:21000] >

Query to determine locations with highest UPV power generation potential (without combining with landcover data)

6. select latitude, longitude, sum(sum) as power from upv group by latitude, longitude order by power DESC limit 10;

Snapshot for the query:

Result of Analytic:

latitude	longitude	power	Location
26.95	-80.85	6239727.6	FL, USA
27.25	-80.65	6030665.4	FL, USA
26.55	-80.45	5954478.9	FL, USA
26.45	-80.25	5935230.4	FL, USA
25.35	-80.45	5903128.9	FL, USA
36.45	-115.95	5601073.7	NV, USA
36.35	-115.95	5564719.8	NV, USA
34.65	-115.15	5464587.3	CA, USA
34.85	-116.75	5429355.3	CA, USA
36.95	-115.15	5158296.7	NV, USA
36.35	-119.95	4895116.1	NV, USA

Query to determine locations with highest UPV power generation potential (without combining with landcover data)

7. select latitude, longitude, sum(sum) as power from upv group by latitude, longitude order by power DESC limit 10;

Snapshot for the query:

Result of analytic:

latitude	longitude	power	Location
33.35	-111.85	2340599	AZ, USA
33.25	-111.85	2331590	AZ, USA
34.25	-118.35	2263532.5	CA, USA
34.05	-118.55	2263496.9	CA, USA
34.15	-118.65	2254228.6	CA, USA
34.25	-118.55	2250810.7	CA, USA
34.05	-118.45	2249373.4	CA, USA
34.15	-118.55	2245489.1	CA, USA
33.55	-112.25	2243462.9	AZ, USA
34.15	-118.35	2233602	CA, USA