Exercise 1b

Question 1.

Define a relation on a set. What do you mean by the domain and range of a relation? Give an example.

Answer:

Relation: Let A and B be two sets. Then a relation R from set A to set B is a subset of A x B. Thus, R is a relation to A to B \Leftrightarrow R \subseteq A x B.

If R is a relation from a non-void set B and if $(a,b) \in R$, then we write a R b which is read as 'a is related to b by the relation R'. if $(a,b) \notin R$, then we write a R b, and we say that a is not related to b by the relation R.

Domain: Let R be a relation from a set A to a set B. Then the set of all first components or coordinates of the ordered pairs belonging to R is called the domain of R.

Thus, domain of $R = \{a : (a,b) \in R\}$. The domain of $R \subseteq A$.

Range: let R be a relation from a set A to a set B. then the set of all second component or coordinates of the ordered pairs belonging to R is called the range of R.

Example 1: $R = \{(-1, 1), (1, 1), (-2, 4), (2, 4)\}.$

dom (R) = $\{-1, 1, -2, 2\}$ and range (R) = $\{1, 4\}$

Example 2: $R = \{(a, b): a, b \in N \text{ and } a + 3b = 12\}$

dom (R) = $\{3, 6, 9\}$ and range (R) = $\{3, 2, 1\}$

Question 2.

Let A be the set of all triangles in a plane. Show that the relation

 $R = \{(\Delta_1, \Delta_2) : \Delta_1 \sim \Delta_2\}$ is an equivalence relation on A.

Answer:

Let R = $\{(\Delta_1, \Delta_2) : \Delta_1 \sim \Delta_2\}$ be a relation defined on A.

Now,

R is Reflexive if $(\Delta, \Delta) \in R \forall \Delta \in A$

We observe that for each $\Delta \in A$ we have,

 $\Delta \sim \Delta$ since, every triangle is similar to itself.

$$\Rightarrow$$
 $(\Delta, \Delta) \in R \ \forall \ \Delta \in A$

 \Rightarrow R is reflexive.

$\underline{\mathsf{R} \text{ is Symmetric if } (\underline{\Delta}_{\underline{1}}, \underline{\Delta}_{\underline{2}}) \in \mathsf{R} \Rightarrow (\underline{\Delta}_{\underline{2}}, \underline{\Delta}_{\underline{1}}) \in \mathsf{R} \forall \underline{\Delta}_{\underline{1}}, \underline{\Delta}_{\underline{2}} \in \mathsf{A}}$

Let
$$(\Delta_1, \Delta_2) \in R \ \forall \ \Delta_1, \ \Delta_2 \in A$$

$$\Rightarrow \Delta_1 \sim \Delta_2$$

$$\Rightarrow \Delta_2 \sim \Delta_1$$

$$\Rightarrow (\Delta_2, \Delta_1) \in R$$

⇒ R is symmetric

R is Transitive if $(\underline{\Delta}_{\underline{1}}, \underline{\Delta}_{\underline{2}}) \in \mathbb{R}$ and $(\underline{\Delta}_{\underline{2}}, \underline{\Delta}_{\underline{3}}) \in \mathbb{R} \Rightarrow (\underline{\Delta}_{\underline{1}}, \underline{\Delta}_{\underline{3}}) \in \mathbb{R} \forall \underline{\Delta}_{\underline{1}}, \underline{\Delta}_{\underline{2}}, \underline{\Delta}_{\underline{3}} \in A$

Let $(\Delta_1, \, \Delta_2) \in R$ and $((\Delta_2, \, \Delta_3) \in R \, \forall \, \Delta_1, \, \Delta_2, \, \Delta_3 \in A$

$$\Rightarrow \Delta_1 \sim \Delta_2$$
 and $\Delta_2 \sim \Delta_3$

$$\Rightarrow \Delta_1 \sim \Delta_3$$

$$\Rightarrow (\Delta_1, \Delta_3) \in R$$

⇒ R is transitive.

Since R is reflexive, symmetric and transitive, it is an equivalence relation on A.

Question 3.

Show that R is an equivalence relation on Z.

Answer:

In order to show R is an equivalence relation, we need to show R is Reflexive, Symmetric and Transitive.

Given that, \forall a, b \in Z, R = {(a, b) : (a + b) is even }.

Now,

R is Reflexive if (a,a)∈R∀a∈Z

For any $a \in A$, we have

a+a = 2a, which is even.

$$\Rightarrow$$
 (a,a) \in R

Thus, R is reflexive.

R is Symmetric if $(a,b) \in R \Rightarrow (b,a) \in R \forall a,b \in Z$

$$(a,b) \in R$$

 \Rightarrow a+b is even.

 \Rightarrow b+a is even.

$$\Rightarrow$$
 (b,a) \in R

Thus, R is symmetric.

R is Transitive if $(a,b) \in R$ and $(b,c) \in R \Rightarrow (a,c) \in R \forall a,b,c \in Z$

Let $(a,b) \in R$ and $(b,c) \in R \forall a, b,c \in Z$

$$\Rightarrow$$
 a+b = 2P and b+c = 2Q

Adding both, we get

$$a+c+2b = 2(P+Q)$$

$$\Rightarrow$$
 a+c = 2(P+Q)-2b

⇒ a+c is an even number

$$\Rightarrow$$
 (a, c) \in R

Thus, R is transitive on Z.

Since R is reflexive, symmetric and transitive it is an equivalence relation on Z.

Question 4.

Let $R = \{(a, b) : a, b \in Z \text{ and } (a - b) \text{ is divisible by 5}\}.$

Show that R is an equivalence relation on Z.

Answer:

In order to show R is an equivalence relation, we need to show R is Reflexive, Symmetric and Transitive.

Given that, \forall a, b \in Z, aRb if and only if a – b is divisible by 5.

Now,

R is Reflexive if (a,a)∈R∀a∈Z

aRa \Rightarrow (a-a) is divisible by 5.

 $a-a = 0 = 0 \times 5$ [since 0 is multiple of 5 it is divisible by 5]

 \Rightarrow a-a is divisible by 5

$$\Rightarrow$$
 (a,a) \in R

Thus, R is reflexive on Z.

R is Symmetric if $(a,b) \in R \Rightarrow (b,a) \in R \forall a,b \in Z$

$$(a,b) \in R \Rightarrow (a-b)$$
 is divisible by 5

$$\Rightarrow$$
 (a-b) = 5z for some z \in Z

$$\Rightarrow$$
 -(b-a) = 5z

$$\Rightarrow$$
 b-a = 5(-z) [: z \in Z \Rightarrow -z \in Z]

$$\Rightarrow$$
 (b-a) is divisible by 5

$$\Rightarrow$$
 (b,a) \in R

Thus, R is symmetric on Z.

R is Transitive if $(a,b) \in R$ and $(b,c) \in R \Rightarrow (a,c) \in R \forall a,b,c \in Z$

$$(a,b) \in R \Rightarrow (a-b)$$
 is divisible by 5

$$\Rightarrow$$
 a-b = 5z₁ for some z₁ \in Z

$$(b,c) \in R \Rightarrow (b-c)$$
 is divisible by 5

$$\Rightarrow b\text{-}c = 5z_2 \text{ for some } z_2 \in Z$$

Now,

$$a-b = 5z_1$$
 and $b-c = 5z_2$

$$\Rightarrow$$
 (a-b) + (b-c) = $5z_1 + 5z_2$

$$\Rightarrow$$
 a-c = 5(z₁ + z₂) = 5z₃ where z₁ + z₂ = z₃

$$\Rightarrow \text{a-c} = 5z_3 \ [\because z_1, z_2 \in Z \Rightarrow z_3 \in Z]$$

$$\Rightarrow$$
 (a-c) is divisible by 5.

$$\Rightarrow$$
 (a, c) \in R

Thus, R is transitive on Z.

Since R is reflexive, symmetric and transitive it is an equivalence relation on Z.

Question 5.

Show that the relation R defined on the set A = (1, 2, 3, 4, 5), given by

 $R = \{(a, b) : |a - b| \text{ is even}\}\$ is an equivalence relation.

Answer:

In order to show R is an equivalence relation we need to show R is Reflexive, Symmetric and Transitive.

Given that, \forall a, b \in A, R = {(a, b) : |a - b| is even}.

Now,

R is Reflexive if (a,a)∈R∀a∈A

For any $a \in A$, we have

|a-a| = 0, which is even.

$$\Rightarrow$$
 (a,a) \in R

Thus, R is reflexive.

R is Symmetric if $(a,b) \in R \Rightarrow (b,a) \in R \forall a,b \in A$

$$(a,b) \in R$$

- \Rightarrow |a-b| is even.
- \Rightarrow |b-a| is even.

$$\Rightarrow$$
 (b,a) \in R

Thus, R is symmetric.

R is Transitive if $(a,b) \in R$ and $(b,c) \in R \Rightarrow (a,c) \in R \forall a,b,c \in A$

Let $(a,b) \in R$ and $(b,c) \in R \ \forall \ a,\ b,c \in A$

 \Rightarrow |a - b| is even and |b - c| is even

 \Rightarrow (a and b both are even or both odd) and (b and c both are even or both odd)

Now two cases arise:

Case 1: when b is even

Let $(a,b) \in R$ and $(b,c) \in R$

 \Rightarrow |a - b| is even and |b - c| is even

 \Rightarrow a is even and c is even [: b is even]

 \Rightarrow |a - c| is even [: difference of any two even natural numbers is even]

 \Rightarrow (a, c) \in R

Case 2: when b is odd

Let $(a,b) \in R$ and $(b,c) \in R$

 \Rightarrow |a - b| is even and |b - c| is even

 \Rightarrow a is odd and c is odd [\cdot : b is odd]

 \Rightarrow |a - c| is even [: difference of any two odd

natural numbers is even]

 $\Rightarrow (a,\,c) \in R$

Thus, R is transitive on Z.

Since R is reflexive, symmetric and transitive it is an equivalence relation on Z.

Question 6.

Show that the relation R on N × N, defined by

(a, b) R (c, d)
$$\Leftrightarrow$$
 a + d = b + c

is an equivalent relation.

Answer:

In order to show R is an equivalence relation we need to show R is Reflexive, Symmetric and Transitive.

Given that, R be the relation in N \times N defined by (a, b) R (c, d) if a + d = b + c for (a, b), (c, d) in N \times N.

R is Reflexive if (a, b) R (a, b) for (a, b) in N ×N

Let (a,b) R (a,b)

 \Rightarrow a+b = b+a

which is true since addition is commutative on N.

 \Rightarrow R is reflexive.

R is Symmetric if (a,b) R $(c,d) \Rightarrow (c,d)$ R (a,b) for (a,b), (c,d) in N \times N

Let (a,b) R (c,d)

- \Rightarrow a+d = b+c
- \Rightarrow b+c = a+d
- \Rightarrow c+b = d+a [since addition is commutative on N]
- \Rightarrow (c,d) R (a,b)

⇒ R is symmetric.

R is Transitive if (a,b) R (c,d) and (c,d) R (e,f) \Rightarrow (a,b) R (e,f) for (a, b), (c, d), (e,f) in N \times N

Let (a,b) R (c,d) and (c,d) R (e,f)

$$\Rightarrow$$
 a+d = b+c and c+f = d+e

$$\Rightarrow$$
 (a+d) - (d+e) = (b+c) - (c+f)

$$\Rightarrow$$
 a-e= b-f

$$\Rightarrow$$
 a+f = b+e

$$\Rightarrow$$
 (a,b) R (e,f)

 \Rightarrow R is transitive.

Hence, R is an equivalence relation.

Question 7.

Let S be the set of all real numbers and let

$$R = \{(a, b) : a, b \in S \text{ and } a = \pm b\}.$$

Show that R is an equivalence relation on S.

Answer:

In order to show R is an equivalence relation we need to show R is Reflexive, Symmetric and Transitive.

Given that, \forall a, b \in S, R = {(a, b) : a = \pm b}

Now,

R is Reflexive if (a,a)∈R∀a∈S

For any $a \in S$, we have

$$a = \pm a$$

$$\Rightarrow$$
 (a,a) \in R

Thus, R is reflexive.

R is Symmetric if $(a,b) \in R \Rightarrow (b,a) \in R \forall a,b \in S$

$$\Rightarrow$$
 a = \pm b

$$\Rightarrow$$
 b = \pm a

$$\Rightarrow$$
 (b,a) \in R

Thus, R is symmetric.

R is Transitive if $(a,b) \in R$ and $(b,c) \in R \Rightarrow (a,c) \in R \forall a,b,c \in S$

Let $(a,b) \in R$ and $(b,c) \in R \forall a, b,c \in S$

$$\Rightarrow$$
 a = \pm b and b = \pm c

$$\Rightarrow$$
 a = \pm c

$$\Rightarrow$$
 (a, c) \in R

Thus, R is transitive.

Hence, R is an equivalence relation.

Question 8.

Let S be the set of all points in a plane and let R be a relation in S defined by $R = \{(A, B) : d(A, B) < 2 \text{ units}\}$, where d(A, B) is the distance between the points A and B.

Show that R is reflexive and symmetric but not transitive.

Answer:

Given that, \forall A, B \in S, R = {(A, B) : d(A, B) < 2 units}.

Now,

R is Reflexive if $(A,A) \in R \forall A \in S$

For any $A \in S$, we have

d(A,A) = 0, which is less than 2 units

$$\Rightarrow$$
 (A,A) \in R

Thus, R is reflexive.

R is Symmetric if $(A, B) \in R \Rightarrow (B, A) \in R \forall A, B \in S$

 $(A, B) \in R$

 \Rightarrow d(A, B) < 2 units

 \Rightarrow d(B, A) < 2 units

 \Rightarrow (B,A) \in R

Thus, R is symmetric.

R is Transitive if $(A, B) \in R$ and $(B,C) \in R \Rightarrow (A,C) \in R \forall A,B,C \in S$

Consider points A(0,0),B(1.5,0) and C(3.2,0).

d(A,B)=1.5 units < 2 units and d(B,C)=1.7 units < 2 units

d(A,C)= 3.2 ≮ 2

 \Rightarrow (A, B) \in R and (B,C) \in R \Rightarrow (A,C) \notin R

Thus, R is not transitive.

Thus, R is reflexive, symmetric but not transitive.

Question 9.

Let S be the set of all real numbers. Show that the relation $R = \{(a, b) : a^2 + b^2 = 1\}$ is symmetric but neither reflexive nor transitive.

Answer:

Given that, \forall a, b \in S, R = {(a, b) : $a^2 + b^2 = 1$ }

Now,

R is Reflexive if (a,a)∈R∀a∈S

For any $a \in S$, we have

$$a^2+a^2=2 a^2 \neq 1$$

$$\Rightarrow$$
 (a,a) \notin R

Thus, R is not reflexive.

R is Symmetric if $(a,b) \in R \Rightarrow (b,a) \in R \forall a,b \in S$

$$(a,b) \in R$$

$$\Rightarrow$$
 a² + b² = 1

$$\Rightarrow$$
 b² + a² = 1

$$\Rightarrow$$
 (b,a) \in R

Thus, R is symmetric.

R is Transitive if $(a,b) \in R$ and $(b,c) \in R \Rightarrow (a,c) \in R \forall a,b,c \in S$

Let (a,b) $\in R$ and (b,c) $\in R \ \forall \ a, \ b,c \in S$

$$\Rightarrow$$
 a² + b² = 1 and b² + c² = 1

Adding both, we get

$$a^2 + c^2 + 2b^2 = 2$$

$$\Rightarrow a^2 + c^2 = 2 - 2b^2 \neq 1$$

Thus, R is not transitive.

Thus, R is symmetric but neither reflexive nor transitive.

Question 10.

Let
$$R = \{(a, b) : a = b^2\}$$
 for all $a, b \in N$.

Show that R satisfies none of reflexivity, symmetry and transitivity.

Answer:

We have, $R = \{(a, b) : a = b^2\}$ relation defined on N.

Now,

We observe that, any element $a \in N$ cannot be equal to its square except 1.

$$\Rightarrow$$
 (a,a) \notin R \forall a \in N

For e.g. (2,2)
$$\notin R : 2 \neq 2^2$$

 \Rightarrow R is not reflexive.

Let
$$(a,b) \in R \ \forall \ a,\ b \in N$$

$$\Rightarrow$$
 a = b^2

But b cannot be equal to square of a if a is equal to square of b.

For e.g., we observe that $(4,2) \in R$ i.e $4 = 2^2$ but $2 \neq 4^2 \Rightarrow (2,4) \notin R$

⇒ R is not symmetric

Let $(a,b) \in R$ and $(b,c) \in R \ \forall \ a,\ b,c \in N$

$$\Rightarrow$$
 a = b² and b = c²

$$\Rightarrow a \neq c^2$$

$$\Rightarrow$$
 (a,c) \notin R

For e.g., we observe that

$$(16,4) \in R \Rightarrow 16 = 4^2 \text{ and } (4,2) \in R \Rightarrow 4 = 2^2$$

But $16 \neq 2^2$

⇒ R is not transitive.

Thus, R is neither reflexive nor symmetric nor transitive.

Question 11.

Show that the relation $R = \{(a, b) : a > b\}$ on N is transitive but neither reflexive nor symmetric.

Answer:

We have, $R = \{(a, b) : a > b\}$ relation defined on N.

Now,

We observe that, any element $a \in N$ cannot be greater than itself.

$$\Rightarrow$$
 (a,a) \notin R \forall a \in N

 \Rightarrow R is not reflexive.

Let $(a,b) \in R \ \forall \ a,\ b \in N$

⇒ a is greater than b

But b cannot be greater than a if a is greater than b.

For e.g., we observe that $(5,2) \in R$ i.e 5 > 2 but $2 \not> 5 \Rightarrow (2,5) \notin R$

⇒ R is not symmetric

Let $(a,b) \in R$ and $(b,c) \in R \forall a, b,c \in N$

 \Rightarrow a > b and b > c

 \Rightarrow a > c

 \Rightarrow (a,c) \in R

For e.g., we observe that

$$(5,4) \in R \Rightarrow 5 > 4 \text{ and } (4,3) \in R \Rightarrow 4 > 3$$

And we know that 5 > 3: $(5,3) \in R$

⇒ R is transitive.

Thus, R is transitive but not reflexive not symmetric.

Question 12.

Let
$$A = \{1, 2, 3\}$$
 and $R = \{(1, 1), (2, 2), (3, 3), (1, 2), (2, 3)\}.$

Show that R is reflexive but neither symmetric nor transitive.

Answer:

Given that, $A = \{1, 2, 3\}$ and $R = \{1, 1\}$, (2, 2), (3, 3), (1, 2), $(2, 3)\}$.

Now,

R is reflexive : $(1,1),(2,2),(3,3) \in R$

R is not symmetric $: (1,2),(2,3) \in R$ but $(2,1),(3,2) \notin R$

R is not transitive $:: (1,2) \in R$ and $(2,3) \in R \Rightarrow (1,3) \notin R$

Thus, R is reflexive but neither symmetric nor transitive.

Question 13.

Let A = (1, 2, 3, 4) and $R = \{(1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (1, 3), (3, 2)\}$. Show that R is reflexive and transitive but not symmetric.

Answer:

Given that, $A = \{1, 2, 3\}$ and $R = \{1, 1\}$, (2, 2), (3, 3), (4, 4), (1, 2), (1, 3), (3, 2).

Now,

R is reflexive $(1,1),(2,2),(3,3),(4,4) \in \mathbb{R}$

R is not symmetric $(1,2),(1,3),(3,2) \in \mathbb{R}$ but $(2,1),(3,1),(2,3) \notin \mathbb{R}$

R is transitive : (1,3) \in R and (3,2) \in R \Rightarrow (1,2) \in R

Thus, R is reflexive and transitive but not symmetric.