

Analyse des Pleurs du Nourrisson pour Apprendre les Situations d'Inconfort

Massinissa Hamidi

le 19 septembre 2017

Université Paris Diderot LIPN-UMR 7030 Université Paris 13

Sujet de stage

Analyse des pleurs du nourrisson pour apprendre les situations d'inconfort.

- Lieu: Laboratoire d'Informatique de Paris Nord
- Encadrant: Aomar Osmani

Problématique et motivations

- Coliques du nourrisson touchent près de 35M de nouveaux-nés;
- Les pleurs liés à l'inconfort ne requiert pas l'intervention des parents;
- Propagation des applications de l'intelligence ambiante;
- Progrès immense dans le domaine de la reconnaissance vocale.

Revue de la littérature

- Catégorisation des raisons du pleur par (Fairbanks, 1942);
- Formation d'équipes de recherche très actives (Golub and Corwin, 1982);
- Détection des troubles sévères de l'audition (Orozco-Garcia and Reyes-Garcia, 2003);
- Applications mobiles (Chang et al., 2016);
- Assistants personnels à destination des enfants (Gillette, 2017).

Approche proposée

- Analyse des vocalisations précèdant le pleur (Irwin, 1948; Dunstan, 2009);
- Guidée par une architecture à base d'objets connectés.

Approche proposée

- Analyse des vocalisations précèdant le pleur (Irwin, 1948; Dunstan, 2009);
- Guidée par une architecture à base d'objets connectés.

Pipeline de traitement du signal

Extraction des caractéristiques

- Temporelles: intensité, zero-crossing rate, etc.
- **Spectrales:** spectral spread, spectral contrast, etc.
- Cepstrales: MFCCs, LPCCs, etc.
- Prosodiques: fréquence fondamentale, patterns de variation, etc.

Dataset

- Expérimentation très difficile, nécessitant un protocole lourd;
- Requiert un personel qualifié pour sa mise en oeuvre;
- Effectuée souvent dans un cadre hospitalier.

type du pleur	Phoneme	Nombre	Nombre
	d'encodage	d'enregist rements	d'examples
Eructation	Eh	59	1001
Flatulence	Eairh	19	2303
Inconfort	Heh	12	776
Faim	Neh	131	15331
Fatigue	Owh	67	3656

 Annotation faite sur la base de la technique acoustique proposée par (Dunstan, 2009);

Apprentissage

Neighborhood bias

- Forte corrélation entre les fenêtres adjacentes
- k-fold CV avec meta-segment partitionning (Hammerla and Plötz, 2015)

La problématique des jeux de données déséquilibrés

- Degré de déséquilibre de 3.4% pour la classe d'intérêt;
- Cas souvent rencontré dans les applications réelles;
- Subtilité souvent omise lors du calcule de la f-measure;
- Mise en évidence dans (Forman and Scholz, 2010).

Résultats de l'apprentissage

Classifier	Accuracy (%)	Precision (%)	Recall (%)	F-measure (%)
SVM	81.11	91.46	37.33	52.98
Bagged Trees	94.43	93.89	72.00	81.45
Boosted Trees	83.55	41.66	82.93	55.26
Decision Tree	86.52	61.98	39.07	47.95
kNN	97.78	91.37	36.27	51.91
Subspace kNN	92.23	81.67	70.40	75.54

 Table 1: Performance des différents classifieurs en utilisant la validation croisée régulière.

Résultats de l'apprentissage

Figure 1: Performance des différents classifieurs en utilisant la validation croisée en conjonction avec la technique de partitionnement de (Hammerla and Plötz, 2015).

Perspectives et travail futur

- Caractéristiques basées sur l'hypothèse de non-stationarité du signal;
- Segment-wise based classification (DTW) (Salvador and Chan, 2007);
- End-to-end neural network pipeline (Hochreiter and Schmidhuber, 1997);
- Boucle de retroaction et validation sur des données réelles.

En résumé

- Revue de la littérature étendue dans différents domaines;
- Proposition d'une toute nouvelle approche pour la détection des situations d'inconfort;
- Développement et évaluation d'une pipeline de traitement du signal;
- Application de différentes techniques d'apprentissage;
- Publication des résultats dans ICTAI 2017.

References I

References

- Chang, Chuan-Yu et al. (2016). "DAG-SVM based infant cry classification system using sequential forward floating feature selection". In:

 Multidimensional Systems and Signal Processing, pp. 1–16.
 - Dunstan, Priscilla (2009). Child Sense: From Birth to Age 5, how to Use the 5 Senses to Make Sleeping, Eating, Dressing, and Other Everyday Activities Easier While Strengthening Your Bond with Your Child.

 Bantam.
- Fairbanks, Grant (1942). "An acoustical study of the pitch of infant hunger wails". In: *Child Development*, pp. 227–232.

References II

- Forman, George and Martin Scholz (2010). "Apples-to-apples in cross-validation studies: pitfalls in classifier performance measurement". In: ACM SIGKDD Explorations Newsletter 12.1, pp. 49–57.
 - Gillette, Felix (2017). Baby's First Virtual Assistant. https://www.bloomberg.com/news/articles/2017-01-03/baby-s-first-virtual-assistant.
- Golub, Howard L and Michael J Corwin (1982). "Infant cry: a clue to diagnosis". In: *Pediatrics* 69.2, pp. 197–201.
- Hammerla, Nils Y and Thomas Plötz (2015). "Let's (not) stick together: pairwise similarity biases cross-validation in activity recognition". In: Proceedings of the 2015 ACM international joint conference on pervasive and ubiquitous computing. ACM, pp. 1041–1051.
- Hochreiter, Sepp and Jürgen Schmidhuber (1997). "Long short-term memory". In: Neural computation 9.8, pp. 1735–1780.

References III

Irwin, Orvis C (1948). "Infant speech: development of vowel sounds.". In: Journal of Speech & Hearing Disorders.

Orozco-Garcia, José and Carlos Reyes-Garcia (2003). "A study on the recognition of patterns of infant cry for the identification of deafness in just born babies with neural networks". In: *Progress in Pattern Recognition, Speech and Image Analysis*, pp. 342–349.

Salvador, Stan and Philip Chan (2007). "Toward accurate dynamic time warping in linear time and space". In: *Intelligent Data Analysis* 11.5, pp. 561–580.