Описание условия

Построить дерево в соответствии со своим вариантом задания. Вывести его на экран в виде дерева. Реализовать основные операции работы с деревом: обход дерева, включение, исключение и поиск узлов. Сравнить эффективность алгоритмов поиска в зависимости от высоты деревьев и степени их ветвления

Построить частотный словарь (слово – количество повторений) из слов текстового файла в виде дерева двоичного поиска. Вывести его на экран в виде дерева. Осуществить поиск указанного слова в дереве и в файле. Если слова нет, то (по желанию пользователя) добавить его в дерево и, соответственно, в файл. Сравнить время поиска слова в дереве и в файле.

Описание ТЗ

Описание исходных данных и результатов:

Программа получает на вход:

Целое число для выбора ввода меню [0, 12]

Строку для поиска/удаления/добавления в дерево/файл

Вывод результата в консоль:

- 1. дерево прямой обход
- 2. дерево обратный обход
- 3. дерево Фланговый обход
- 4. Результат поиска слова по дереву
- 5. Результат поиска слова по файлу
- 6. Замеры времени
- 7. Содержимое файла
- 8. Меню
- 9. Информационное сообщение
- 10. Сообщение об ошибке (при ее возникновении)

Вывод результата в файл .gv для графического представления дерева

- 1. Результат удаления слова
- 2. Результат результат добавления слова
- 3. Результат сравнения времени поиска слова в дереве

Описание задачи, реализуемой программой

Программа предоставляет работу с частотным словарем в виде дерева двоичного поиска, а именно:

Меню:

- 1. Считать с файла и Вывести дерева двоичного поиска
- 2. Поиск слово в дереве (добавление если слова нет)
- 3. Поиск слово в файле (добавление если слова нет)
- 4. Удаление слова в дереве
- 5. Удаление слова в файле
- 6. Сравнение времени поиска слова в дереве и в файле
- 7. Вывести содержимое файла
- 8. Вывести дерево прямой обход
- 9. Вывести дерево обратный обход
- 10. Вывести дерево Фланговый обход
- 11. Вывести ИНФО

Способ обращения к программе

Запускается через терминал командой ./app.exe [Путь к файлу].txt Обращение к программе происходит путём консольного ввода.

Описание возможных аварийных ситуаций и ошибок пользователя

Аварийные ситуации:

- 1. Неверно введен пункт меню (не целое число или число меньшее 0 или больше 11)
- 2. Ввод пустой строки для поиска/удаления/добавления слова
- 3. В входном файле есть пустая строка
- 4. Поиск или удаление, если дерево не заполнено

Описание внутренних СД

Структура дерева

```
struct tree_node
{
   char *name;
   int count_repeat;

   struct tree_node *left; // min
   struct tree_node *right; //big
};
```

Пример вывода бинарного дерева на экран

Исходный файл с данными:

Вывод бинарного дерева в консоль

Прямой обход по дереву:

```
 \{m \; rep: \; 3\} \; \{f \; rep: \; 1\} \; \{c \; rep: \; 2\} \; \{b \; rep: \; 2\} \; \{i \; rep: \; 2\} \; \{h \; rep: \; 1\} \; \{k \; rep: \; 1\} \; \{s \; rep: \; 1\} \; \{m \; rep: \; 1\} \; \{m
```

```
Обратный обход по дереву: {b rep: 2} {e rep: 1} {c rep: 2} {h rep: 1} {k rep: 1} {i rep: 2} {f rep: 1} {n rep: 1} {r rep: 1} {u rep: 1} {u rep: 1} {y rep: 2} {s rep: 1} {m rep: 3}
```

Фланговый обход по дереву: {b rep: 2} {c rep: 2} {e rep: 1} {f rep: 1} {h rep: 1} {i rep: 2} {k rep: 1} {m rep: 3} {n rep: 1} {p rep: 1} {s rep: 1} {u rep: 1} {w rep: 2} {y rep: 1}

Вывод бинарного дерева в виде .png картинки (graphviz):

Описание алгоритма

Основной алгоритм - добавление узла в дерево и удаление

удаления элемента делится на несколько случаев:

- 1) у узла нет дочерних узлов;
- 2) у узла есть левый дочерних узлов;
- 3) у узла есть правый дочерних узлов;
- 4) у узла есть оба ребёнка.

В 1 случае просто удаляем узел

В случае 2 и 3 заменяем удаляемый узел на его потомка. В случае 4 — ставим на его место самого левого потомка из правого поддерева. те минимальный

Добавление узла в дерево разбивается на три этапа:

- 1. включение узла в пустое дерево
- 2. поиск корня для добавления нового узла
- 3. включение узла в левое или правое поддерево (правое больше левого)

Набор тестов с указанием проверяемого параметра

Позитивные тесты

Ввод	Вывод	Что
p e b k h r	Прямой обход по дереву: {m rep: 1} {f rep: 1} {c rep: 1} {b rep: 1} {e rep: 1} {i rep: 1} {h rep: 1} {k rep: 1} {s rep: 1} {p rep: 1} {n rep: 1} {r rep: 1} {w rep: 1} {u rep: 1} {y rep: 1}	Проверка считывания из файла и заполнение дерево

Ввод	Вывод	Что
m	Слово найдено {m rep: 1}	Проверка поиска слова в дереве
erfer	Слово удачно добавлено в дерево и файл Прямой обход по дереву: {m rep: 1} {f rep: 1} {c rep: 1} {b rep: 1} {e rep: 1} {erfer rep: 1} {i rep: 1} {h rep: 1} {k rep: 1} {s rep: 1} {p rep: 1} {n rep: 1} {r rep: 1} {w rep: 1} {u rep: 1} {y rep: 1}	Проверка поиска слова в дереве не нахождение слова
d	Слово удачно добавлено в дерево и файл Прямой обход по дереву: {d rep: 1}	Проверка поиска по файлу
qweqe	В бинарном дереве нет такого слова	Проверка удаления узла если такого слова нет
m	Для начала заполните дерево	Проверка удаления узла при пустом дереве
m	Данные успешно удалены Прямой обход по дереву:	Проверка удаления узла, когда в дереве только корень
m	Данные успешно удалены Прямой обход по дереву: {n rep: 1} {f rep: 1} {c rep: 1} {b rep: 1} {e rep: 1} {d rep: 1} {i rep: 1} {h rep: 1} {k rep: 1} {s rep: 1} {p rep: 1} {r rep: 1} {w rep: 1} {u rep: 1} {y rep: 1}	Проверка удаления корня
d	Данные успешно удалены Прямой обход по дереву: {m rep: 2} {f rep: 1} {c rep: 1} {e rep: 1} {d rep: 1} {i rep: 1} {h rep: 1} {k rep: 1} {s rep: 1} {p rep: 1} {n rep: 1} {r rep: 1} {w rep: 1} {u rep: 1} {y rep: 1}	Проверка удаления листа

Ввод	Вывод	Что
i	Данные успешно удалены Прямой обход по дереву: {m rep: 2} {f rep: 1} {c rep: 1} {b rep: 1} {e rep: 1} {d rep: 1} {k rep: 1} {h rep: 1} {s rep: 1} {p rep: 1} {n rep: 1} {r rep: 1} {w rep: 1} {u rep: 1} {y rep: 1}	Проверка удаления узла, узла который имеет 2 потомка
k	Данные успешно удалены Прямой обход по дереву: {m rep: 2} {f rep: 1} {c rep: 1} {b rep: 1} {e rep: 1} {d rep: 1} {h rep: 1} {s rep: 1} {p rep: 1} {n rep: 1} {r rep: 1} {w rep: 1} {u rep: 1} {y rep: 1}	Проверка удаления узла, который имеет 1 потомка
ywed файл состоит: m s f i c w p e b k h r n u y	Слово не найдено в файле	Проверка удаления в файле слово, которого нет
У	Введите слово: у Слово успешно удаленно	Проверка удаления в файле последнего слово
m	Введите слово: у Слово успешно удаленно	Проверка удаления в файле первого слово
С	Введите слово: у Слово успешно удаленно	Проверка удаления в файле слово

Негативные тесты

Ввод	Вывод	Что
./app.exe	ОШИБКА не удалось отрыть файл. код ошибки = 1	Проверка входного файла

Ввод	Вывод	Что
./app.exe не сущ. файл	ОШИБКА не удалось отрыть файл. код ошибки = 1	Проверка входного файла
./app.exe data/in.txt	Файл содержит недопустимые поля	Проверка входного файла, в файле присутствует пустая строка
./app.exe data/in.txt	Файл пуст сначала заполните его	Проверка входного файла, файл пуст
пустая строка	ОШИБКА Вы ввели пустую строку, код ошибки = 7	Проверка ввода пустой строки для поиска по дереву
пустая строка	ОШИБКА Вы ввели пустую строку, код ошибки = 7	Проверка ввода пустой строки для поиска по файлу

Оценка эффективности

Tree nodes amount - общее количество узлов в дереве, tree depth - высота дерева

Tree nodes amount	Tree depth	Search in balanced (ms)	Search in file (ms)
5	3	0.000220	0.004220
10	4	0.000260	0.004530
20	5	0.000280	0.004610
40	6	0.000320	0.010190
65	7	0.000300	0.011130
80	7	0.000340	0.011910
130	8	0.000350	0.014070
160	8	0.000330	0.015410
260	9	0.000310	0.020050
320	9	0.000400	0.022850
520	10	0.000330	0.032200
640	10	0.000300	0.036730
1025	11	0.000380	0.059450
1040	11	0.000290	0.060990
1280	11	0.000310	0.068950
2050	12	0.000360	0.110120

Tree nodes amount	Tree depth	Search in balanced (ms)	Search in file (ms)
2080	12	0.000380	0.112560
2560	12	0.000390	0.133640
4100	13	0.000330	0.217770
4160	13	0.000390	0.221340
5120	13	0.000300	0.263500
8200	14	0.000320	0.420860
8320	14	0.000270	0.425360

Left-side и Right-side - деревья у которых узлы расположены по левую или правую сторону соответственно

10 0.000390 0.008590 0.000350 0.008770 20 0.000390 0.009160 0.000440 0.009350 30 0.000440 0.009770 0.000440 0.009590 40 0.000550 0.010010 0.000490 0.010190 50 0.000610 0.010590 0.000620 0.010550 60 0.000520 0.011190 0.000600 0.011070 70 0.000580 0.011600 0.000640 0.011490 80 0.000640 0.011770 0.000660 0.011760 90 0.000760 0.012550 0.000740 0.012820 100 0.000690 0.013110 0.000780 0.013170 110 0.000870 0.013380 0.000900 0.013480 140 0.000940 0.014800 0.001140 0.015420 150 0.001040 0.015550 0.001130 0.015720 170 0.001200 0.016280 0.001180 0.016650 190	Tree nodes amount	Search in left-side tree (ms)	Search in file	Search in right-side tree (ms)	Search in file
30 0.000440 0.009770 0.000440 0.009590 40 0.000550 0.010010 0.000490 0.010190 50 0.000610 0.010590 0.000620 0.010550 60 0.000520 0.011190 0.000600 0.011070 70 0.000580 0.011600 0.000640 0.011490 80 0.000640 0.011770 0.000660 0.011760 90 0.000760 0.012550 0.000740 0.012820 100 0.000690 0.013110 0.000780 0.013170 110 0.000870 0.013380 0.000900 0.013480 140 0.001040 0.014800 0.001140 0.015420 150 0.001040 0.014950 0.001120 0.015420 160 0.001080 0.015550 0.001130 0.01670 180 0.001310 0.016380 0.001350 0.016650	10	0.000390	0.008590	0.000350	0.008770
40 0.000550 0.010010 0.000490 0.010190 50 0.000610 0.010590 0.000620 0.010550 60 0.000520 0.011190 0.000600 0.011070 70 0.000580 0.011600 0.000640 0.011490 80 0.000640 0.011770 0.000660 0.011760 90 0.000760 0.012550 0.000740 0.012820 100 0.000690 0.013110 0.000780 0.013170 110 0.000870 0.013380 0.000900 0.013480 140 0.000940 0.014800 0.001140 0.014700 150 0.001040 0.014950 0.001120 0.015420 160 0.001080 0.015550 0.001130 0.015720 170 0.001200 0.016280 0.001350 0.016650	20	0.000390	0.009160	0.000440	0.009350
50 0.000610 0.010590 0.000620 0.010550 60 0.000520 0.011190 0.000600 0.011070 70 0.000580 0.011600 0.000640 0.011490 80 0.000640 0.011770 0.000660 0.011760 90 0.000760 0.012550 0.000740 0.012820 100 0.000690 0.013110 0.000780 0.013170 110 0.000870 0.013380 0.000900 0.013480 140 0.000940 0.014800 0.001140 0.014700 150 0.001040 0.014950 0.001120 0.015420 160 0.001080 0.015550 0.001130 0.015720 170 0.001200 0.016280 0.001180 0.016650	30	0.000440	0.009770	0.000440	0.009590
60 0.000520 0.011190 0.000600 0.011070 70 0.000580 0.011600 0.000640 0.011490 80 0.000640 0.011770 0.000660 0.011760 90 0.000760 0.012550 0.000740 0.012820 100 0.000690 0.013110 0.000780 0.013170 110 0.000870 0.013380 0.000900 0.013480 140 0.000940 0.014800 0.001140 0.014700 150 0.001040 0.014950 0.001120 0.015420 160 0.001080 0.015550 0.001130 0.015720 170 0.001200 0.016280 0.001180 0.016650	40	0.000550	0.010010	0.000490	0.010190
70 0.000580 0.011600 0.000640 0.011490 80 0.000640 0.011770 0.000660 0.011760 90 0.000760 0.012550 0.000740 0.012820 100 0.000690 0.013110 0.000780 0.013170 110 0.000870 0.013380 0.000900 0.013480 140 0.000940 0.014800 0.001140 0.014700 150 0.001040 0.014950 0.001120 0.015420 160 0.001080 0.015550 0.001130 0.015720 170 0.001200 0.016280 0.001180 0.016650 180 0.001310 0.016380 0.001350 0.016650	50	0.000610	0.010590	0.000620	0.010550
80 0.000640 0.011770 0.000660 0.011760 90 0.000760 0.012550 0.000740 0.012820 100 0.000690 0.013110 0.000780 0.013170 110 0.000870 0.013380 0.000900 0.013480 140 0.000940 0.014800 0.001140 0.014700 150 0.001040 0.014950 0.001120 0.015420 160 0.001080 0.015550 0.001130 0.015720 170 0.001200 0.016280 0.001180 0.016650 180 0.001310 0.016380 0.001350 0.016650	60	0.000520	0.011190	0.000600	0.011070
90 0.000760 0.012550 0.000740 0.012820 100 0.000690 0.013110 0.000780 0.013170 110 0.000870 0.013380 0.000900 0.013480 140 0.000940 0.014800 0.001140 0.014700 150 0.001040 0.014950 0.001120 0.015420 160 0.001080 0.015550 0.001130 0.015720 170 0.001200 0.016280 0.001180 0.016650 180 0.001310 0.016380 0.001350 0.016650	70	0.000580	0.011600	0.000640	0.011490
100 0.000690 0.013110 0.000780 0.013170 110 0.000870 0.013380 0.000900 0.013480 140 0.000940 0.014800 0.001140 0.014700 150 0.001040 0.014950 0.001120 0.015420 160 0.001080 0.015550 0.001130 0.015720 170 0.001200 0.016280 0.001180 0.016170 180 0.001310 0.016380 0.001350 0.016650	80	0.000640	0.011770	0.000660	0.011760
110 0.000870 0.013380 0.000900 0.013480 140 0.000940 0.014800 0.001140 0.014700 150 0.001040 0.014950 0.001120 0.015420 160 0.001080 0.015550 0.001130 0.015720 170 0.001200 0.016280 0.001180 0.016170 180 0.001310 0.016380 0.001350 0.016650	90	0.000760	0.012550	0.000740	0.012820
140 0.000940 0.014800 0.001140 0.014700 150 0.001040 0.014950 0.001120 0.015420 160 0.001080 0.015550 0.001130 0.015720 170 0.001200 0.016280 0.001180 0.016170 180 0.001310 0.016380 0.001350 0.016650	100	0.000690	0.013110	0.000780	0.013170
150 0.001040 0.014950 0.001120 0.015420 160 0.001080 0.015550 0.001130 0.015720 170 0.001200 0.016280 0.001180 0.016170 180 0.001310 0.016380 0.001350 0.016650	110	0.000870	0.013380	0.000900	0.013480
160 0.001080 0.015550 0.001130 0.015720 170 0.001200 0.016280 0.001180 0.016170 180 0.001310 0.016380 0.001350 0.016650	140	0.000940	0.014800	0.001140	0.014700
170 0.001200 0.016280 0.001180 0.016170 180 0.001310 0.016380 0.001350 0.016650	150	0.001040	0.014950	0.001120	0.015420
180 0.001310 0.016380 0.001350 0.016650	160	0.001080	0.015550	0.001130	0.015720
	170	0.001200	0.016280	0.001180	0.016170
190 0.001320 0.017000 0.001420 0.017060	180	0.001310	0.016380	0.001350	0.016650
	190	0.001320	0.017000	0.001420	0.017060

Tree nodes amount	Search in left-side tree (ms)	Search in file	Search in right-side tree (ms)	Search in file
200	0.001480	0.017480	0.001390	0.017180
210	0.001440	0.018070	0.001620	0.017750
220	0.001520	0.018240	0.001490	0.018520
230	0.001510	0.018610	0.001590	0.018740
240	0.001640	0.019320	0.001640	0.019050
250	0.001680	0.019670	0.001660	0.019430
260	0.001630	0.020400	0.001700	0.019970
270	0.001710	0.020410	0.001620	0.020870
280	0.001700	0.020810	0.001820	0.021900
290	0.001840	0.021730	0.001860	0.021780
300	0.001850	0.022040	0.001890	0.022110
310	0.001950	0.022290	0.002060	0.022480
320	0.002060	0.022860	0.002260	0.023160
330	0.002260	0.023250	0.002330	0.023180
340	0.002310	0.023850	0.002170	0.023780
350	0.002220	0.024380	0.002250	0.025010
360	0.002300	0.024540	0.002310	0.023970
370	0.002280	0.025170	0.002390	0.025150
410	0.002560	0.026980	0.002630	0.027410
420	0.002770	0.028190	0.002720	0.027460
430	0.002950	0.027620	0.002690	0.027480
440	0.002710	0.028200	0.002600	0.028440
450	0.002760	0.029550	0.002660	0.028880
460	0.002790	0.029260	0.002740	0.028860
470	0.002800	0.029810	0.002890	0.029840
480	0.002850	0.030300	0.002930	0.030280
490	0.003040	0.030610	0.003170	0.030330
			· · · · · · · · · · · · · · · · · · ·	 -

Tree nodes amount	Search in left-side tree (ms)	Search in file	Search in right-side tree (ms)	Search in file
500	0.003550	0.030860	0.003220	0.030820
510	0.003340	0.031680	0.003420	0.031310
520	0.003200	0.032030	0.003430	0.031870
530	0.003390	0.032930	0.003120	0.032720
540	0.003400	0.032700	0.003240	0.033220
550	0.003370	0.033330	0.003350	0.033100
560	0.003560	0.032800	0.003680	0.033050
570	0.003850	0.034460	0.003540	0.034030
580	0.003550	0.035350	0.003380	0.035040
590	0.003630	0.035210	0.003680	0.035040
600	0.003650	0.035590	0.003580	0.035460
610	0.003580	0.036060	0.003620	0.036010
620	0.004050	0.036340	0.004170	0.036660
630	0.004230	0.036880	0.004010	0.036780
640	0.003740	0.037230	0.004060	0.036910
650	0.003800	0.037780	0.004130	0.037500
660	0.004090	0.038560	0.003850	0.038530
670	0.004030	0.039180	0.004120	0.039010
680	0.004420	0.038820	0.004230	0.038500
690	0.004260	0.043010	0.003980	0.043160
700	0.004210	0.045660	0.004240	0.044400
710	0.004190	0.044090	0.004250	0.044080
720	0.004290	0.044250	0.004660	0.044560
730	0.004670	0.045780	0.004530	0.045780
740	0.004600	0.046310	0.004300	0.046520
750	0.004450	0.045940	0.004440	0.046020
760	0.004380	0.046410	0.004650	0.046230

Tree nodes amount	Search in left-side tree (ms)	Search in file	Search in right-side tree (ms)	Search in file
770	0.004650	0.048530	0.005000	0.047830
780	0.005100	0.047600	0.005260	0.047070
790	0.004940	0.047910	0.004760	0.048200
800	0.004710	0.049030	0.004650	0.049750
810	0.005600	0.048540	0.005160	0.048090
820	0.005160	0.048850	0.005000	0.049020
830	0.005250	0.050360	0.004820	0.050780
840	0.005160	0.049970	0.005020	0.049490
850	0.005040	0.050500	0.005210	0.050480
860	0.005080	0.052170	0.005370	0.052110
870	0.005500	0.051990	0.005380	0.051330
880	0.005240	0.051540	0.005300	0.051720
890	0.005410	0.053950	0.005910	0.053570
900	0.005530	0.054200	0.005770	0.053630
910	0.005760	0.053370	0.005390	0.053500
920	0.005420	0.053820	0.005500	0.054300
930	0.005730	0.055590	0.005510	0.055120
940	0.005810	0.054240	0.005990	0.054310
950	0.006100	0.054750	0.005740	0.054550
960	0.005910	0.056490	0.005590	0.055920
970	0.005700	0.055720	0.006230	0.055210
980	0.006260	0.056500	0.005820	0.056250
990	0.006090	0.058110	0.006040	0.057130
1000	0.006180	0.057180	0.006250	0.056940

Выводы по проделанной работе

В лучшем случае сложность поиска в дереве может оказаться O(log2(N)) (в случае, если дерево идеально сбалансированно), а в худшем O(N)

Мы можем заметить, что время поиска слов из файла растет линейно с увеличением количества элементов, это согласуется с теорией. Также мы видим, что поиск в хорошо сбалансированном дереве быстрее поиска в дереве, вырожденном в списке, особенно при больших размерностях, что также согласуется с теорией.

Но файл с различными словами занимает меньше памяти, так как в нем хранится только слова, в отличие от дерева где еще хранятся указатели (left/right) и количество повторений слова. Конечно если повторений будет много, то дерево займет меньше места.

Стоит заметить что все тесты проведены для не повторяющихся слов, если будут значительные повторы слов, то скорость поиска по дереву будет еще больше

Ответы на вопросы

1. Что такое дерево?

Дерево — структура данных (рекурсивная), используемая для представления иерархических связей

- 2. Как выделяется память под представление деревьев? Память выделяется как для связанного списка, то есть под каждый узел отдельно.
- 3. Какие бывают типы деревьев?

N-арное дерево, сбалансированное дерево, бинарное дерево, бинарное дерево поиска, дерево AVL, красно-чёрное дерево

4. Какие стандартные операции возможны над деревьями?

Поиск по дереву, обход дерева, добавление элемента в дерево, удаление элемента из дерева

6. Что такое дерево двоичного поиска?

Двоичное дерево поиска (ДДП) — двоичное дерево В нем для каждого узла выполняется условие, что правый потомок больше или равен родителю, а левый потомок строго меньше родителя (или наоборот)