PET/CT Image Denoising and Segmentation based on a Multi Observation and Multi Scale Markov Tree Model

Medical Sensors Project Presentation

Yeman Hagos Minh Vu

University of Bourgogne

January 6, 2017

- Introduction
- 2 Registration
- 3 Denoising
- 4 Segmentation
- Sesult and Discussion
- 6 Conclusion

- Introduction
- 2 Registration
- 3 Denoising
- 4 Segmentation
- Besult and Discussion
- Conclusion

Introduction Why PET/CT

PET	CT
- High contrast - For oncology	- High spatial resolution - For anatomy
Fuse PET/CT data to provide high quality anatomical correlations with radionuclide	

Introduction Why PET/CT

CT

PET

Fused Image

Fuse PET/CT data to provide high quality anatomical correlations with radionuclide

Introduction

Flowchart

- Introduction
- 2 Registration
- Oenoising
- 4 Segmentation
- Besult and Discussion
- Conclusion

Registration PET/CT

PET/CT are acquired:

- With patient in different positions
- With different pixel sizes
- With different array sizes

- Introduction
- 2 Registration
- 3 Denoising
- 4 Segmentation
- Besult and Discussion
- Conclusion

Wavelet Denoising

What is Wavelet

A wavelet is a wave-like oscillation with an amplitude that begins at zero, increases, and then decreases back to zero .

Wavelet Denoising

Wavelet Transform and Decomposition

Wavelet transform performs a correlation analysis, therefore the output is expected to be maximal when the input signal most resembles the mother wavelet

Three-level filter bank

Wavelet Coeeficient Arrangement

Wavelet Denoising

Flowchart

Optimal for isotropic structures

Contourlet Denoising

Contourlet Transform

Contourlets form a multiresolution directional to separate smooth regions with smooth boundaries.

Figure: Contourlet Transform

Contourlet Denoising

Flowchart

Optimal for directional information

Wavelet-Contourlet Denoising

- Introduction
- 2 Registration
- 3 Denoising
- 4 Segmentation
- 6 Result and Discussion
- 6 Conclusion

What is Segmentation?

Segmentation is the process of splitting an observed image into its homogeneous regions

- Extract features from the input image
- Define the set of **labels** for each pixel/features
- Hidden Markov Model

What is Hidden Markov Model?

A Hidden Markov Model (HMM) is a statistical model in which the system being modeled is assumed to be a Markov process.

- Observed and Hidden States
- Hidden Markov Model:Segmentation

Figure: Hidden Markov model

What is Hidden Markov Model?

A Hidden Markov Model (HMM) is a statistical model in which the system being modeled is assumed to be a Markov process.

- Observed and Hidden States
- Hidden Markov Model:Segmentation

Figure: Hidden Markov model in Image Segmentation

HMT based Segmentation

- Given an image Y $M \times N$ lattice Ω , indexed by a pair (i,j) so that $\Omega = (i,j); 1 \le i \le M$ and $1 \le j \le N$
- Labeling X same size as Y
- The relationship between gray scale values and labels: Bayesian Likelihood function.
- According to the MAP criterion '

$$X^* = \underset{X}{\operatorname{argmax}} \{ P(Y \mid X, \Theta) P(X) \} \tag{1}$$

Where $\Theta = \{\theta_I | I \in L\}$ is the parameter set

HMT based Segmentation

- Given an image Y $M \times N$ lattice Ω , indexed by a pair (i,j) so that $\Omega = (i,j); 1 \le i \le Mand1 \le j \le N$
- Labeling X same size as Y
- The relationship between gray scale values and labels: Bayesian Likelihood function.
- According to the MAP criterion '

$$X^* = \underset{X}{\operatorname{argmax}} \{ P(Y \mid X, \Theta) P(X) \}$$
 (1)

Where $\Theta = \{\theta_I | I \in L\}$ is the parameter set

HMT based Segmentation: Model Parameters

Gaussian distribution function with parameters $\theta_I = (\mu_I, \sigma_I)$:

$$G(z;\theta_I) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp(-\frac{(z-\mu_I)^2}{2\sigma^2})$$
 (2)

Expectation Maximization(EM): Iterative Process

Estimation Step: Labels know, estimate parameters

$$\mu_{I}^{(t+1)} = \frac{\sum_{i} P^{(t)}(I \mid y_{i})y_{i}}{\sum_{i} P^{(t)}(I \mid y_{i})}$$

$$(\sigma_{I}^{(t+1)})^{2} = \frac{\sum_{i} P^{(t)}(I \mid y_{i})(y_{i} - \mu_{I}^{t+1})^{2}}{\sum_{i} P^{(t)}(I \mid y_{i})}$$
(3)

- Maximization Step
 - Knowing parameters assign labels: Optimization problem

$$X_i^{(k+1)} = \underset{l \in L}{\operatorname{argmin}} \{ U(y_i \mid l) + \sum_{j \in N_i} V_c(l, x_j^k)) \}$$
 (4)

Expectation Maximization(EM): Iterative Process

Estimation Step: Labels know, estimate parameters

$$\mu_{l}^{(t+1)} = \frac{\sum_{i} P^{(t)}(l \mid y_{i})y_{i}}{\sum_{i} P^{(t)}(l \mid y_{i})}$$

$$(\sigma_{l}^{(t+1)})^{2} = \frac{\sum_{i} P^{(t)}(l \mid y_{i})(y_{i} - \mu_{l}^{t+1})^{2}}{\sum_{i} P^{(t)}(l \mid y_{i})}$$
(3)

- Maximization Step
 - Knowing parameters assign labels: Optimization problem

$$X_{i}^{(k+1)} = \underset{l \in L}{\operatorname{argmin}} \{ U(y_{i} \mid l) + \sum_{j \in N_{i}} V_{c}(l, x_{j}^{k})) \}$$
 (4)

Where U(x) is prior energy function and $V_c(X)$ is the clique potential and C is the set of all possible cliques

- Introduction
- 2 Registration
- 3 Denoising
- 4 Segmentation
- 6 Result and Discussion
- 6 Conclusion

Result and Discussion

Graphical User Interface

Figure: Wavelet-Countroulet denoised image. PET Image

Result and Discussion

PET Denoising

Figure: Wavelet denoised image.

Figure: Countroulet denoised image. PET Image

Figure: Wavelet-Countroulet denoised image

Result and Discussion

Segmentation Result

Figure: Segmented CT and Pet Images

- Introduction
- 2 Registration
- 3 Denoising
- 4 Segmentation
- 6 Result and Discussion
- 6 Conclusion

Conclusion

- Wavelet and Contourlet transforms based denoising
- HMT based Image Segmentation
- Future Work
 - Extending our algorithm to PET-MRI
 - Enhancing the segmentation algorithm

Conclusion

- Wavelet and Contourlet transforms based denoising
- HMT based Image Segmentation
- Future Work
 - Extending our algorithm to PET-MRI
 - Enhancing the segmentation algorithm

Thank you for listening