Introduction to Harmonic Analysis

Carson James

Contents

No	otation	vii
Pr	reface	1
1	Prelimiaries 1.1 Category Theory	3 3
2	Representation Theory 2.1 Group Representations 2.1.1 Unitary representations 2.1.2 Subrepresentations 2.1.3 Direct Sum of Representations 2.2 Tannaka Duality 2.1.3 Tannaka Duality 2.1.3	5 5 7 9
3	Fourier Analysis on $\mathcal{S}(\mathbb{R}^n)$ 3.1 Schwartz Space	15 15 22 25 29 32 36 45 46
4	Fourier Analysis on \mathbb{R}^n 4.1 Schwartz Space4.2 The Convolution4.3 The Fourier Transform	49 49 50 53
5	Fourier Analysis on LCA Groups 5.1 The Convolution	55 55
6	Fourier Analysis on Banach Spaces	57
7	Fourier Analysis on Banach Spaces	59
A	Summation	61
R	Asymptotic Notation	63

vi CONTENTS

Notation

 $\begin{array}{ll} \mathcal{M}_+(X,\mathcal{A}) & \text{ finite measures on } (X,\mathcal{A}) \\ v & \text{ velocity} \end{array}$

viii Notation

Preface

cc-by-nc-sa

2 Notation

Chapter 1

Prelimiaries

1.1 Category Theory

- Hilb:
 - $\text{ Obj}(\mathbf{Hilb}) := \{H : H \text{ is a Hilbert space}\}\$
 - $\operatorname{Hom}_{\mathbf{Hilb}}(H_1, H_2) := \operatorname{Hom}_{\mathbf{Ban}}(H_1, H_2)$
- Mon

1.1.1 The Unitary Group

Definition 1.1.1.1. Let $H_1, H_2 \in \text{Obj}(\mathbf{Hilb})$. We define the unitary group from H_1 to H_2 , denoted $U(H_1, H_2)$, by

$$U(H_1, H_2) = \{ T \in \text{Iso}_{\mathbf{Hilb}}(H_1, H_2) : T^* = T^{-1} \}$$

We write U(H) in place of U(H,H). We equip $U(H_1,H_2)$ with the strong operator topology.

Exercise 1.1.1.2. Let $H \in \text{Obj}(\mathbf{Hilb})$. Then $\mathcal{T}^s_{U(H)} = \mathcal{T}^w_{U(H)}$. strong weak operator topologies coincide

Exercise 1.1.1.3. Let $H \in \text{Obj}(\text{Hilb})$. Then U(H) is a topological group.

Proof. content...

Chapter 2

Representation Theory

2.1 Group Representations

2.1.1 Unitary representations

Definition 2.1.1.1. Let $G \in \text{Obj}(\mathbf{TopGrp})$, $H \in \text{Obj}(\mathbf{Hilb})$ and $\pi \in \text{Hom}_{\mathbf{TopGrp}}(G, U(H))$. Then (H, π) is said to be a **unitary representation of** G. We define the **dimension of** (H, π) , denoted $\dim(H, \pi)$, by $\dim(H, \pi) := \dim V$.

Definition 2.1.1.2. Let $G \in \text{Obj}(\mathbf{TopGrp})$, (H_{π}, π) , (H_{ρ}, ρ) unitary representations of G and $T \in \text{Hom}_{\mathbf{Hilb}}(H_{\pi}, H_{\rho})$. Then T is said to be (π, ρ) -equivariant if for each $g \in G$, $T \circ \pi(g) = \rho(g) \circ T$, i.e. the following diagram commutes:

$$H_{\pi} \xrightarrow{T} H_{\rho}$$

$$\pi(g) \downarrow \qquad \qquad \downarrow \rho(g)$$

$$H_{\pi} \xrightarrow{T} H_{\rho}$$

Definition 2.1.1.3. Let $G \in \text{Obj}(\mathbf{TopGrp})$. We define $\mathbf{URep}(G)$ by

- Obj($\mathbf{URep}(G)$) = { (H, π) : (H, π) is a unitary representation of G }.
- for $(H_{\pi}, \pi), (H_{\rho}, \rho) \in \text{Obj}(\mathbf{URep}(G)),$

$$\operatorname{Hom}_{\mathbf{URep}(G)}((H_{\pi}, \pi), (H_{\rho}, \rho)) = \{T \in \operatorname{Hom}_{\mathbf{Hilb}}(H_{\pi}, H_{\rho}) : T \text{ is } (\pi, \rho) \text{-equivariant} \}$$

• for $(H_{\pi}, \pi), (H_{\rho}, \rho), (H_{\mu}, \mu) \in \text{Obj}(\mathbf{URep}(G)), T \in \text{Hom}_{\mathbf{URep}(G)}((H_{\pi}, \pi), (H_{\rho}, \rho))$ and $S \in \text{Hom}_{\mathbf{URep}(G)}((H_{\rho}, \rho), (H_{\mu}, \mu)),$

$$S \circ_{\mathbf{URep}(G)} T = S \circ T$$

Exercise 2.1.1.4. Let $G \in \text{Obj}(\mathbf{TopGrp})$. Then $\mathbf{URep}(G)$ is a category.

Proof. FINISH!!! □

Exercise 2.1.1.5. Let $G \in \text{Obj}(\mathbf{TopGrp})$ and $(H_{\pi}, \pi), (H_{\rho}, \rho) \in \text{Obj}(\mathbf{URep}(G))$. Then $\text{Hom}_{\mathbf{URep}(G)}((H_{\pi}, \pi), (H_{\rho}, \rho)) \in \text{Obj}(\mathbf{Vect}_{\mathbb{C}})$.

Proof. Let $S, T \in \text{Hom}_{\mathbf{URep}(G)}((H_{\pi}, \pi), (H_{\rho}, \rho))$ and $\lambda \in \mathbb{C}$. Then for each $g \in G$,

$$(S + \lambda T) \circ \pi(g) = S \circ \pi(g) + \lambda T \circ \pi(g)$$

= $\rho(g) \circ S + \rho(g) \circ (\lambda T)$
= $\rho(g) \circ (S + \lambda T)$.

Hence $S + \lambda T \in \operatorname{Hom}_{\mathbf{URep}(G)}((H_{\pi}, \pi), (H_{\rho}, \rho))$. Since $S, T \in \operatorname{Hom}_{\mathbf{URep}(G)}((H_{\pi}, \pi), (H_{\rho}, \rho))$ and $\lambda \in \mathbb{C}$ is arbitrary, we have that $\operatorname{Hom}_{\mathbf{URep}(G)}((H_{\pi}, \pi), (H_{\rho}, \rho)) \in \operatorname{Obj}(\mathbf{Vect}_{\mathbb{C}})$.

Definition 2.1.1.6. Let $G \in \text{Obj}(\mathbf{TopGrp})$ and $(H_{\pi}, \pi), (H_{\rho}, \rho) \in \mathbf{URep}(G)$. Then (H_{π}, π) is said to be unitarily equivalent to (H_{ρ}, ρ) , denoted $(H_{\pi}, \pi) \equiv (H_{\rho}, \rho)$, if $\text{Hom}_{\mathbf{URep}(G)}((H_{\pi}, \pi), (H_{\rho}, \rho)) \cap U(H_{\pi}, H_{\rho}) \neq \emptyset$.

Note 2.1.1.7. Let $\pi \in \operatorname{Hom}_{\mathbf{TopGrp}}(G, U(H))$. Since U(H) is equipped with the strong operator topology, we have that for each $u \in H$, the map $g \mapsto \pi(g)u$ is continuous.

Definition 2.1.1.8. Let $G \in \text{Obj}(\mathbf{TopGrp})$ and $(H, \pi) \in \text{Obj}(\mathbf{URep}(G))$. We define the **induced group** action of G on H, denoted $\phi_{(H,\pi)} : G \times H \to H$, by

$$\phi_{(H,\pi)}(g,v) = \pi(g)v$$

Note 2.1.1.9. When the context is clear, we write $g \cdot v$ in place of $\phi_{(H,\pi)}(g,v)$.

Exercise 2.1.1.10. Let $G \in \text{Obj}(\mathbf{TopGrp})$ and $(H, \pi) \in \text{Obj}(\mathbf{URep}(G))$. Then

- 1. $\phi_{(H,\pi)}$ is a linear group action.
- 2. G is locally compact implies that $\phi_{(H,\pi)}$ is continuous

Proof.

- 1. Let $g, h \in G$ and $v \in H$.
 - (a) Since $\pi \in \text{Hom}_{\mathbf{TopGrp}}(G, U(H))$,

$$e \cdot v = \pi(e)v$$
$$= id_H v$$
$$= v$$

(b) Since $\pi \in \text{Hom}_{\mathbf{TopGrp}}(G, U(H))$,

$$g \cdot (h \cdot v) = \pi(g)[\pi(h)v]$$
$$= [\pi(g)\pi(h)]v$$
$$= \pi(gh)v$$
$$= (gh) \cdot v$$

Since $g, h \in G$ and $v \in H$ are arbitrary, $\phi_{(H,\pi)}$ is a group action of G on H.

• Let $g \in G$, $\lambda \in \mathbb{C}$ and $v, w \in H$. Then

$$g \cdot (\lambda v + w)$$

$$= \pi(g)(\lambda v + w)$$

$$= \lambda \pi(g)v + \pi(g)w$$

$$= \lambda q \cdot v + q \cdot w$$

Since $g \in G$, $\lambda \in \mathbb{C}$ and $v, w \in H$ are arbitrary, $\phi_{(H,\pi)}$ is a linear action.

2. Suppose that G is locally compact. Let $(g_0, v_0) \in G \times H$ and $\epsilon > 0$. Since G is locally compact, there exists $K \subset G$ such that $g_0 \in \text{Int } K$ and K is compact. Let $v \in H$. Define $f_v : G \to H$ by $f_v(g) = g \cdot v$. Since $\pi : G \to U(H)$ is continuous, f_v is continuous. Thus $||f_v||$ is continuous. Since K is compact, $||f_v||(K)$ is compact. Thus

$$\sup_{g \in K} \|g \cdot v\| = \sup_{g \in K} \|f_v(g)\|$$

$$< \infty$$

Since $v \in H$ is arbitrary, we have that for each $v \in H$, $\sup_{g \in K} \|g \cdot v\| < \infty$. The uniform boundedness principle implies that there exists M > 0 such that $\sup_{g \in K} \|\pi(g)\| \leq M$. Since f_{v_0} is continuous, there

exists $U \subset K$ such that U is open, $g_0 \in U$, and $f_{v_0}(U) \subset B(f_{v_0}(g_0), \epsilon/2)$. Let $(g_1, v_1) \in U \times B(v_0, (2M)^{-1}\epsilon)$. Then

$$\begin{aligned} \|\phi_{(H,\pi)}(g_0,v_0) - \phi_{(H,\pi)}(g_1,v_1)\| &= \|g_0 \cdot v_0 - g_1 \cdot v_1\| \\ &\leq \|g_0 \cdot v_0 - g_1 \cdot v_0\| + \|g_1 \cdot v_0 - g_1 \cdot v_1\| \\ &= \|f_{v_0}(g_0) - f_{v_0}(g_1)\| + \|\pi(g_1)(v_0 - v_1)\| \\ &\leq \|f_{v_0}(g_0) - f_{v_0}(g_1)\| + \|\pi(g_1)\|\|v_0 - v_1\| \\ &\leq \|f_{v_0}(g_0) - f_{v_0}(g_1)\| + M\|v_0 - v_1\| \\ &\leq \frac{\epsilon}{2} + M \frac{\epsilon}{2M} \\ &= \epsilon \end{aligned}$$

Since $\epsilon > 0$ is arbitrary, we have that $\phi_{(H,\pi)}$ is continuous at (g_0, v_0) . Since $(g_0, v_0) \in G \times H$ is arbitrary, we have that $\phi_{(H,\pi)} : G \times H \to H$ is continuous.

2.1.2 Subrepresentations

Definition 2.1.2.1. Let $G \in \text{Obj}(\mathbf{TopGrp})$, $(H, \pi) \in \text{Obj}(\mathbf{URep}(G))$ and $E \subset H$ a closed subspace. Then E is said to be

- nontrivial if $E \neq H, \emptyset$
- (H,π) -invariant if for each $g \in G$, $\pi(g)(E) \subset E$

Exercise 2.1.2.2. Let $G \in \text{Obj}(\mathbf{TopGrp})$, $(H, \pi) \in \text{Obj}(\mathbf{URep}(G))$ and $E \subset H$ a closed subspace. Suppose that E is (H, π) -invariant. Then for each $g, h \in G$,

- 1. $\pi(g)|_E \in \text{Aut}_{\mathbf{Hilb}}(E), \ \pi(g)|_E^{-1} = \pi(g^{-1})|_E \ \text{and} \ \pi(g)(E) = E,$
- 2. $\pi(g)|_E \in U(E)$ and $\pi(g)|_E^* = \pi(g^{-1})|_E$,
- 3. $\pi(gh)|_E = \pi(g)|_E \circ \pi(h)|_E$.

Proof. Let $g, h \in G$.

1. Let $x \in E$. Since E is (H, π) -invariant, we have that $\pi(g)(x) \in E$. Therefore

$$[\pi(g^{-1})|_{E} \circ \pi(g)|_{E}](x) = \pi(g^{-1})|_{E}[\pi(g)|_{E}(x)]$$

$$= \pi(g^{-1})|_{E}[\pi(g)(x)]$$

$$= \pi(g^{-1})[\pi(g)(x)]$$

$$= [\pi(g^{-1}) \circ \pi(g)](x)$$

$$= \pi(g^{-1}g)(x)$$

$$= \pi(e)(x)$$

$$= I(x)$$

$$= I_{E}(x).$$

Similarly, $\pi(g^{-1})(x) \in E$ and $[\pi(g)|_E \circ \pi(g^{-1})|_E](x) = I|_E(x)$. Since $x \in E$ is arbitrary, we have that $\pi(g)|_E \in \operatorname{Aut}_{\mathbf{Hilb}}(E)$ and $\pi(g^{-1})|_E = \pi(g)|_E^{-1}$. Since $\pi(g)|_E \in \operatorname{Aut}_{\mathbf{Hilb}}(E)$, we have that

$$\pi(g)(E) = \pi(g)|_{E}(E)$$
$$= E.$$

2. Let $x, y \in E$. Then

$$\langle \pi(g)|_E x, y \rangle = \langle \pi(g)x, y \rangle$$
$$= \langle x, \pi(g)^* y \rangle$$
$$= \langle x, \pi(g)^*|_E y \rangle$$

Since $x, y \in E$ are arbitrary, we have that $\pi(g)|_E^* = \pi(g)^*|_E$. The previous part then implies that

$$\begin{split} \pi(g)|_E^* &= \pi(g)^*|_E \\ &= \pi(g)^{-1}|_E \\ &= \pi(g^{-1})|_E \\ &= \pi(g)|_E^{-1}. \end{split}$$

Since $\pi(g)|_E^* = \pi(g)|_E^{-1}$, we have that $\pi(g)|_E \in U(E)$.

3. Let $x \in E$. Since E is (H, π) -invariant, we have that $\pi(h)(x) \in E$ and therefore

$$\pi(gh)|_{E}(x) = \pi(gh)(x)$$

$$= [\pi(g) \circ \pi(g)](x)$$

$$= \pi(g)[\pi(h)(x)]$$

$$= \pi(g)|_{E}[\pi(h)(x)]$$

$$= \pi(g)|_{E}[\pi(h)|_{E}(x)]$$

$$= [\pi(g)|_{E} \circ \pi(g)|_{E}](x).$$

Since $x \in E$ is arbitrary, we have that $\pi(gh)|_E = \pi(g)|_E \circ \pi(g)|_E$.

Definition 2.1.2.3. Let $G \in \text{Obj}(\mathbf{TopGrp})$ and $\mathbb{K} \in \text{Obj}(\mathbf{Field})$ and $(H, \pi) \in \text{Obj}(\mathbf{URep}(G))$. Then

- (H, π) is said to be **reducible** if there exists a closed subspace $E \subset H$ such that E is not trivial and E is (H, π) -invariant
- (H,π) is said to be **irreducible** if (H,π) is not reducible.

Definition 2.1.2.4. Let $G \in \text{Obj}(\mathbf{TopGrp})$ and $(H, \pi) \in \text{Obj}(\mathbf{URep}(G))$ and $E \subset H$ a closed subspace. Suppose that E is (H, π) -invariant.

- We define $\pi^E \in \operatorname{Hom}_{\mathbf{TopGrp}}(G, U(E))$ by $\pi^E(g) := \pi(g)|_E$
- We define the **restriction** (H,π) **to** E, denoted $(H,\pi)|_E$, by $(H,\pi)|_E:=(E,\pi^E)$

Exercise 2.1.2.5. Let $G \in \text{Obj}(\mathbf{TopGrp})$ and $(H, \pi) \in \text{Obj}(\mathbf{URep}(G))$ and $E \subset H$ a closed subspace.

- 1. If E is nontrivial, then E^{\perp} is nontrivial.
- 2. If E is (H,π) -invariant, then E^{\perp} is (H,π) -invariant.

Proof.

- 1. Suppose that E is nontrivial. Then $E \neq \{0\}, H$. Then $E^{\perp} \neq \{0\}, H$. Thus E^{\perp} is nontrivial.
- 2. Suppose that E is (H, π) -invariant. Let $g \in G$. Since $\pi(g) \in U(H)$ and $\pi(g)(E) = E$, An exercise in the analysis notes section on Hilbert spaces implies that $\pi(g)(E^{\perp}) = E^{\perp}$. Since $g \in G$ is arbitrary, E^{\perp} is (H, π) -invariant.

Definition 2.1.2.6. Let $G \in \text{Obj}(\mathbf{TopGrp}), (H, \pi) \in \text{Obj}(\mathbf{URep}(G))$ and $u \in H$. We define the **cyclic subspace of** H **generated by** u **under** (H, π) , denoted $\text{cyc}_{(H, \pi)}(u)$, by

$$\operatorname{cyc}_{(H,\pi)}(u) := \operatorname{cl}\operatorname{span}(\phi_{(H,\pi)}(G,u))$$

replace $\phi(G, u)$ with $G \triangleright u$

Note 2.1.2.7. When the context is clear, we write $\operatorname{cyc}(u)$ in place of $\operatorname{cyc}_{(H,\pi)}(u)$.

Exercise 2.1.2.8. Let $G \in \text{Obj}(\mathbf{TopGrp})$, $(H, \pi) \in \text{Obj}(\mathbf{URep}(G))$ and $u \in H$. Then cyc(u) is (H, π) -invariant. this should largely be a result about linear group actions.

Proof. Let $g \in G$. Since G acts linearly and homeomorphically on H,

$$g \cdot \operatorname{cyc}(u) = g \cdot \operatorname{cl} \operatorname{span}(G \cdot u)$$

$$= \operatorname{cl} g \cdot \operatorname{span}(G \cdot u)$$

$$= \operatorname{cl} \operatorname{span}[g \cdot (G \cdot u)]$$

$$= \operatorname{cl} \operatorname{span}(G \cdot u)$$

$$= \operatorname{cyc}(u)$$

Since $g \in G$ is arbitrary, $\operatorname{cyc}(u)$ is G-invariant.

Definition 2.1.2.9. Let $G \in \text{Obj}(\mathbf{TopGrp})$ and $(H, \pi) \in \text{Obj}(\mathbf{URep}(G))$.

- Let $u \in H$. Then u is said to be (H, π) -cyclic if $\operatorname{cyc}(u) = H$.
- Then (H,π) is said to be **cyclic** if there exists $u \in H$ such that u is (H,π) -cyclic.

2.1.3 Direct Sum of Representations

Definition 2.1.3.1. Let $G \in \text{Obj}(\mathbf{TopGrp})$ and $(H_{\alpha}, \pi_{\alpha})_{\alpha \in A} \subset \text{Obj}(\mathbf{URep}(G))$.

• We define $\bigoplus_{\alpha \in A} \pi_{\alpha} \in \operatorname{Hom}_{\mathbf{TopGrp}}(G, U(\bigoplus_{\alpha \in A} H_{\alpha}))$ by

$$\left[\bigoplus_{\alpha\in A}\pi_{\alpha}\right](g) = \bigoplus_{\alpha\in A}\pi_{\alpha}(g)$$

• We define the **direct sum** of $(H_{\alpha}, \pi_{\alpha})_{\alpha \in A}$, denoted $\bigoplus_{\alpha \in A} (H_{\alpha}, \pi_{\alpha})$, by

$$\bigoplus_{\alpha \in A} (H_{\alpha}, \pi_{\alpha}) = \left(\bigoplus_{\alpha \in A} H_{\alpha}, \bigoplus_{\alpha \in A} \pi_{\alpha}\right)$$

Note 2.1.3.2. FINISH!!! the last definition works for internal or external direct sum, just need to define inner or external sum of H_{α} and π_{α} in either case. work out problems of unitary operators in analysis notes, eg, direct product of unitary ops is unitary, internal direct products, etc

Exercise 2.1.3.3. Let $G \in \text{Obj}(\mathbf{TopGrp})$, $(H, \pi) \in \text{Obj}(\mathbf{URep}(G))$ and $E \subset H$ a closed subspace. If E is (H, π) -invariant, then $(H, \pi) = (E \oplus E^{\perp}, \pi^E \oplus \pi^{E^{\perp}})$.

Proof. Suppose that E is (H, π) -invariant. A previous exercise implies that E^{\perp} is (H, π) -invariant. Since $H = E \oplus E^{\perp}$. Let $g \in G$ and $u \in H$. Since $H = E \oplus E^{\perp}$, there exists $v \in E$ and $w \in E^{\perp}$ such that u = v + w.

Then

$$\begin{split} \pi(g)(u) &= \pi(g)(v+w) \\ &= \pi(g)(v) + \pi(g)(w) \\ &= \pi(g)|_{E}(v) + \pi(g)|_{E^{\perp}}(w) \\ &= \pi^{E}(g)(v) + \pi^{E^{\perp}}(g)(w) \\ &= [\pi^{E}(g) \oplus \pi^{E^{\perp}}(g)](v+w) \\ &= [\pi^{E} \oplus \pi^{E^{\perp}}](g)(v+w) \\ &= [\pi^{E} \oplus \pi^{E^{\perp}}](g)(u) \end{split}$$

Since $u \in H$ is arbitrary, $\pi(g) = [\pi^E \oplus \pi^{E^{\perp}}](g)$. Since $g \in G$ is arbitrary, $\pi = \pi^E \oplus \pi^{E^{\perp}}$.

Definition 2.1.3.4. Let $G \in \text{Obj}(\mathbf{TopGrp}), (H, \pi) \in \text{Obj}(\mathbf{URep}(G))$ and $\mathcal{E} \subset \mathcal{P}(H)$. Then \mathcal{E} is said to be an (H, π) -orthocyclic system if for each $E, F \in \mathcal{E}$,

- 1. E is a closed subspace of H
- 2. $(H,\pi)|_E$ is cyclic
- 3. if $E \neq F$, then $E \perp F$

Exercise 2.1.3.5. Let $G \in \text{Obj}(\mathbf{TopGrp})$ and $(H, \pi) \in \text{Obj}(\mathbf{URep}(G))$. Then there exists $\mathcal{E} \subset \mathcal{P}(H)$ such that \mathcal{E} is an (H, π) -orthocyclic system and $(H, \pi) = \bigoplus_{E \in \mathcal{E}} (H, \pi)|_E$.

Hint: Zorn's lemma

Proof. Define $\mathcal{P} = \{\mathcal{E} : \mathcal{E} \text{ is an } (H,\pi)\text{-orthocyclic system}\}$. We partially order \mathcal{P} by inclusion. Let $\mathcal{C} \subset \mathcal{P}$ be a chain. Set $\mathcal{E}_0 = \bigcup_{\mathcal{E} \in \mathcal{C}} \mathcal{E}$. Let $E_1, E_2 \in \mathcal{E}_0$. Then there exist $\mathcal{E}_1, \mathcal{E}_2 \in \mathcal{C}$ such that $E_1 \in \mathcal{E}_1$ and $E_2 \in \mathcal{E}_2$. Since \mathcal{C} is a chain, $\mathcal{E}_1 \subset \mathcal{E}_2$ or $\mathcal{E}_2 \subset \mathcal{E}_1$. Suppose that $\mathcal{E}_1 \subset \mathcal{E}_2$. Then $E_1 \in \mathcal{E}_2$. Since \mathcal{E}_2 is an (H,π) -orthocyclic system, we have that E_1 is a closed subspaces of H, $(H,\pi)|_{E_1}$ is cyclic and if $E_1 \neq E_2$, then $E_1 \perp E_2$. Similarly, $\mathcal{E}_2 \subset \mathcal{E}_1$ implies the same conclusion. Since $E_1, E_2 \in \mathcal{E}_0$ are arbitrary, we have that for each

- $E_1, E_2 \in \mathcal{E}_0$
 - 1. E_1 is a closed subspaces of H and E_1 is (H, π) -invariant
 - 2. $(H,\pi)|_{E_1}$ is cyclic
 - 3. if $E_1 \neq E_2$, then $E_1 \perp E_2$

Thus \mathcal{E}_0 is an (H, π) -orthocyclic system. Hence $\mathcal{E}_0 \in \mathcal{P}$. By construction, for each $\mathcal{E} \in \mathcal{C}$, $\mathcal{E} \subset \mathcal{E}_0$. So \mathcal{E}_0 is an upper bound of \mathcal{C} . Since $\mathcal{C} \subset \mathcal{P}$ such that \mathcal{C} is a chain is arbitrary, we have that for each $\mathcal{C} \subset \mathcal{P}$, if \mathcal{C} is a chain, then there exists $\mathcal{E}_0 \in \mathcal{P}$ such that \mathcal{E}_0 is an upper bound of \mathcal{C} . Zorn's lemma implies that there exists $\mathcal{E} \in \mathcal{P}$ such that \mathcal{E} is maximal. Set $E = \bigoplus_{E_0 \in \mathcal{E}} E_0$. For the sake of contradiction, suppose that $H \neq E$. Then

 $E^{\perp} \neq \{0\}$. Thus there exists $u \in E^{\perp}$ such that $u \neq 0$. Therefore $\operatorname{cyc}(u) \neq 0$ and $\operatorname{cyc}(u) \subset E^{\perp}$. Let $E_0 \in \mathcal{E}$. By construction, $E_0 \subset E$. Thus

$$\operatorname{cyc}(u) \subset E^{\perp}$$

 $\subset E_0^{\perp}$

Since $E_0 \in \mathcal{E}$ is arbitrary, we have that for each $E_0 \in \mathcal{E}$, $\operatorname{cyc}(u) \subset E_0^{\perp}$. Set $\mathcal{E}' = \mathcal{E} \cup \{\operatorname{cyc}(u)\}$. Then for each $E, F \in \mathcal{E}'$,

- 1. E is a closed subspaces of H and E is (H, π) -invariant
- 2. $(H,\pi)|_E$ is cyclic

3. if $E \neq F$, then $E \perp F$

Hence $\mathcal{E}' \in \mathcal{P}$. Since $\mathcal{E} \subset \mathcal{E}'$ and \mathcal{E}

Note 2.1.3.6. Let H be a Hilbert space and $E \subset H$ a closed subspace. We denote the orthogonal projection onto E by P_E .

Exercise 2.1.3.7. Let $G \in \text{Obj}(\mathbf{TopGrp}), (H, \pi) \in \text{Obj}(\mathbf{URep}(G))$ and $E \subset H$ a closed subspace. Then E is (H, π) -invariant iff $P_E \in \text{End}_{\mathbf{URep}(G)}((H, \pi))$.

Proof.

• (\Longrightarrow) :

Suppose that E is (H, π) -invariant. Let $g \in G$ and $z \in H$. Then there exists $x \in E$ and $y \in E^{\perp}$ such that z = x + y. Since E is (H, π) invariant, $\pi(g)(x) \in E$. Thus

$$\pi(g) \circ P_E(x) = \pi(g)(x)$$
$$= P_E \circ \pi(g)(x).$$

Since E is (H, π) -invariant, ref previous ex here implies that E^{\perp} is (H, π) -invariant. Therefore $\pi(g)(y) \in E^{\perp}$ and

$$\pi(g) \circ P_E(x) = \pi(g)(0)$$

$$= 0$$

$$= P_E \circ \pi(g)(y).$$

Hence

$$\pi(g) \circ P_E(z) = \pi(g) \circ P_E(x+y)$$

$$= \pi(g) \circ P_E(x) + \pi(g) \circ P_E(y)$$

$$= P_E \circ \pi(g)(x) + P_E \circ \pi(g)(y)$$

$$= P_E \circ \pi(g)(x+y)$$

$$= P_E \circ \pi(g)(z).$$

Since $z \in H$ is arbitrary, we have that $\pi(g) \circ P_E = P_E \circ \pi(g)$. Since $g \in G$ is arbitrary, $P_E \in \operatorname{End}_{\mathbf{URep}(G)}(H, \pi)$.

• (**⇐**):

Conversely, suppose that $P_E \in \operatorname{End}_{\mathbf{URep}(G)}((H,\pi))$. Let $g \in G$ and $x \in E$. Then

$$\pi(g)(x)$$

$$= \pi(g) \circ P_E(x)$$

$$= P_E \circ \pi(g)(x)$$

$$\in E.$$

Since $x \in E$ is arbitrary, $\pi(g)(E) \subset E$. Since $g \in G$ is arbitrary, E is (H, π) -invariant.

2.2 Tannaka Duality

Definition 2.2.0.1. Let $G \in \text{Obj}(\mathbf{TopGrp})$. We define the **forgetful functor from URep**(G) **to Hilb**, denoted $U : \mathbf{URep}(G) \to \mathbf{Hilb}$, by

- $U(H,\pi) = H$, $(H,\pi) \in \text{Obj}(\mathbf{URep}(G))$
- U(T) = T, $T \in \operatorname{Hom}_{\mathbf{URep}(G)}((H_{\pi}, \pi), (H_{\rho}, \rho))$.

Need to find out if quotienting by equivalence of isomorphism makes $\mathbf{URep}(G)$ a small category so that we can talk about the functor category $\mathbf{Hilb}^{\mathbf{URep}(G)}$ containing the forgetful functor as an object.

Definition 2.2.0.2. Let $G \in \text{Obj}(\mathbf{TopGrp})$ and $g \in G$. We define $\hat{g}: U \Rightarrow U$ by

$$\hat{g}_{(H,\pi)} = \pi(g)$$

Exercise 2.2.0.3. Let $G \in \text{Obj}(\mathbf{TopGrp})$ and $g \in G$. Then

- 1. $\hat{g}: U \Rightarrow U$ is a natural transformation.
- 2. $\hat{g} \in \operatorname{Aut}_{\mathbf{Hilb}^{\mathbf{URep}(G)}}(U)$

Proof.

1. (a) Let $(H, \pi) \in \text{Obj}(\mathbf{URep}(G))$. By definition,

$$\hat{g}_{(H,\pi)} = \pi(g)$$

$$\in U(H)$$

$$\subset \operatorname{Aut}_{\mathbf{Hilb}}(U(H,\pi))$$

(b) Let $(H_{\pi}, \pi), (H_{\rho}, \rho) \in \text{Obj}(\mathbf{URep}(G))$ and $T \in \text{Hom}_{\mathbf{URep}(G)}((H_{\pi}, \pi), (H_{\rho}, \rho))$. By definition, $T \in \text{Hom}_{\mathbf{Hilb}}(H_{\pi}, H_{\rho})$ and T is (π, ρ) -equivariant. Therefore

$$\begin{split} U(T) \circ \hat{g}_{(H_\pi,\pi)} &= T \circ \pi(g) \\ &= \rho(g) \circ T \\ &= \hat{g}_{(H_\rho,\rho)} \circ U(T) \end{split}$$

i.e. the following diagram commutes:

$$U(H_{\pi}, \pi) \xrightarrow{\hat{g}_{(H_{\pi}, \pi)}} U(H_{\pi}, \pi) \qquad H_{\pi} \xrightarrow{\pi(g)} H_{\pi}$$

$$U(T) \downarrow \qquad \qquad \downarrow U(T) \qquad = \qquad \downarrow T \qquad \qquad \downarrow T$$

$$U(H_{\rho}, \rho) \xrightarrow{\hat{g}_{(H_{\rho}, \rho)}} U(H_{\rho}, \rho) \qquad H_{\rho} \xrightarrow{\rho(g)} H_{\rho}$$

Thus $\hat{q}: U \Rightarrow U$ is a natural transformation.

2. Set $h = g^{-1}$. Part (1) implies that $\hat{g}, \hat{h} \in \text{End}_{\mathbf{Hilb}U\mathbf{Rep}(G)}(U)$. Let $(H, \pi) \in \text{Obj}(\mathbf{URep}(G))$. Then

$$(\hat{g} \circ \hat{h})_{(H,\pi)} = \hat{g}_{(H,\pi)}$$

The previous part implies that

$$\begin{split} \hat{g} &\in \mathrm{Hom}_{\mathbf{TopVect}^{\mathbf{URep}(G)}_{\mathbb{C}}}\big(U,U\big) \\ &= \mathrm{End}_{\mathbf{TopVect}^{\mathbf{URep}(G)}_{\mathbb{C}}}\big(U\big) \end{split}$$

Definition 2.2.0.4. Let $G \in \operatorname{Obj}(\mathbf{TopGrp})$ and $(H, \pi) \in \operatorname{Obj}(\mathbf{URep}(G))$. We define the (H, π) -projection, denoted $\pi_{(H,\pi)} : \operatorname{End}_{\mathbf{TopVect}^{\mathbf{URep}(G)}_{\mathbb{C}}}(U) \to \operatorname{End}_{\mathbf{TopVect}^{\mathbb{C}}_{\mathbb{C}}}(V)$, by $\pi_{(H,\pi)}(\alpha) = \alpha_{(H,\pi)}$. We define the **topology** of endomorphisms of U, denoted $\mathcal{T}_{\mathcal{E}(U)}$, by

$$\mathcal{T}_{\mathcal{E}(U)} = \tau(\pi_{(H,\pi)} : (H,\pi) \in \mathbf{URep}(G))$$

Definition 2.2.0.5. define addition of endomorphisms of U pointwise

Exercise 2.2.0.6. Let $G \in \mathrm{Obj}(\mathbf{TopGrp})$. Then $(\mathrm{Aut}_{\mathbf{TopVect}^{\mathbf{URep}(G)}_{\mathbb{C}}}(U), \mathcal{T}_{\mathcal{E}(U)})$ is a topological unital algebra.

Proof.

Chapter 3

Fourier Analysis on $\mathcal{S}(\mathbb{R}^n)$

3.1 Schwartz Space

Definition 3.1.0.1. Let $\alpha \in \mathbb{N}_0^n$ and $x, y \in \mathbb{R}^n$. We define

1.
$$\langle x, y \rangle = \sum_{j} x_{j} y_{j}$$

2.
$$|x| = \langle x, x \rangle^{1/2}$$

3.
$$|\alpha| = \alpha_1 + \dots + \alpha_n$$

4.
$$\alpha! = \prod_{j=1}^{n} \alpha_j!$$

$$5. \ x^{\alpha} = x_1^{\alpha_1} \cdots x_n^{\alpha_n}$$

6.
$$\partial^{\alpha} = \partial_1^{\alpha_1} \cdots \partial_n^{\alpha_n}$$

7.
$$\Omega_{\alpha} = \{ (\beta, \gamma) \in \mathbb{N}_0^n \times \mathbb{N}_0^n : \beta + \gamma = \alpha \}$$

Exercise 3.1.0.2. Let $\alpha \in \mathbb{N}_0^n$ and $j \in \{1, \dots, n\}$. Suppose that $\alpha_j > 0$. Set $\eta = \alpha - e_j$. Then

1.
$$\Omega_{\eta} = \{ (\beta - e_i, \gamma) : (\beta, \gamma) \in \Omega_{\alpha} \text{ and } \beta_i > 0 \}$$

2.
$$\Omega_{\eta} = \{(\beta, \gamma - e_j) : (\beta, \gamma) \in \Omega_{\alpha} \text{ and } \gamma_j > 0\}$$

Proof.

1. Set $A = \{(\beta - e_j, \gamma) : (\beta, \gamma) \in \Omega_{\alpha} \text{ and } \beta_j > 0\}$. Let $(\mu, \nu) \in \Omega_{\eta}$. Set $\beta = \mu + e_j$ and $\gamma = \nu$. Then $\beta_j > 0$ and

$$\beta + \gamma = \mu + e_j + \nu$$
$$= \eta + e_j$$
$$= \alpha$$

So $(\beta, \gamma) \in \Omega_{\alpha}$. Hence

$$(\mu, \nu) = (\beta - e_j, \gamma)$$
$$\in A$$

and $\Omega_n \subset A$.

Conversely, let $(\mu, \nu) \in A$. Then there exists $(\beta, \gamma) \in \Omega_{\alpha}$ such that $\beta_j > 0$ and $(\mu, \nu) = (\beta - e_j, \gamma)$. Then

$$\mu + \nu = \beta - e_j + \gamma$$
$$= \alpha - e_j$$
$$= \eta$$

So that $(\mu, \nu) \in \Omega_{\eta}$ and $A \subset \Omega_{\eta}$. Thus $\Omega_{\eta} = A$.

2. Similar to (1).

Exercise 3.1.0.3. Let $f,g\in C^{\infty}(\mathbb{R}^n)$. Then for each $\alpha\in\mathbb{N}_0^n$,

$$\partial^{\alpha}(fg) = \sum_{(\beta,\gamma)\in\Omega_{\alpha}} \frac{\alpha!}{\beta!\gamma!} (\partial^{\beta} f)(\partial^{\gamma} g)$$

Proof. Let $\alpha \in \mathbb{N}_0^n$. The claim is true if $|\alpha| = 0$. Let k > 0. Suppose that $|\alpha| > 0$ and that the claim is true for $|\alpha| = k - 1$ so that for each $\eta \in \mathbb{N}_0^n$, $|\eta| = k - 1$ implies that

$$\partial^{\eta}(fg) = \sum_{(\beta,\gamma)\in\Omega_{\eta}} \frac{\eta!}{\beta!\gamma!} (\partial^{\beta} f)(\partial^{\gamma} g)$$

Since $|\alpha| > 0$, there exists $j \in \{1, ..., n\}$ such that $\alpha_j > 0$. Define $\eta = \alpha - e_j$. Then the previous exercise implies that

$$\begin{split} &\partial^{\alpha}(fg) = \partial_{j} [\partial^{\eta}(fg)] \\ &= \partial_{j} \left[\sum_{(\beta,\gamma) \in \Omega_{\eta}} \frac{\eta!}{\beta!\gamma!} (\partial^{\beta}f)(\partial^{\gamma}g) \right] \\ &= \sum_{(\beta,\gamma) \in \Omega_{\eta}} \frac{\eta!}{\beta!\gamma!} (\partial^{\beta}f)(\partial^{\gamma}g) + \sum_{(\beta,\gamma) \in \Omega_{\eta}} \frac{\eta!}{\beta!\gamma!} (\partial^{\beta}f)(\partial^{\gamma+e_{j}}g) \\ &= \sum_{(\beta,\gamma) \in \Omega_{\alpha}} \frac{\eta!}{(\beta-e_{j})!\gamma!} (\partial^{\beta}f)(\partial^{\gamma}g) + \sum_{(\beta,\gamma) \in \Omega_{\alpha}} \frac{\alpha}{\beta!\gamma!} \frac{\alpha}{\beta!\gamma!} \frac{(\alpha-e_{j})!}{(\partial^{\beta}f)(\partial^{\gamma}g)} \\ &= \sum_{(\beta,\gamma) \in \Omega_{\alpha}} \frac{\alpha!}{\beta!\gamma!} \frac{\beta_{j}}{\alpha_{j}} (\partial^{\beta}f)(\partial^{\gamma}g) + \sum_{(\beta,\gamma) \in \Omega_{\alpha}} \frac{\alpha!}{\beta!\gamma!} \frac{\gamma_{j}}{\alpha_{j}} (\partial^{\beta}f)(\partial^{\gamma}g) \\ &= \sum_{(\beta,\gamma) \in \Omega_{\alpha}} \frac{\alpha!}{\beta!\gamma!} \frac{\beta_{j}}{\alpha_{j}} (\partial^{\beta}f)(\partial^{\gamma}g) + \sum_{(\beta,\gamma) \in \Omega_{\alpha}} \frac{\alpha!}{\beta!\gamma!} \frac{\beta_{j}}{\alpha_{j}} (\partial^{\beta}f)(\partial^{\gamma}g) \\ &= \sum_{(\beta,\gamma) \in \Omega_{\alpha}} \frac{\alpha!}{\beta!\gamma!} \frac{\beta_{j}}{\alpha_{j}} (\partial^{\beta}f)(\partial^{\gamma}g) + \sum_{(\beta,\gamma) \in \Omega_{\alpha}} \frac{\alpha!}{\beta!\gamma!} \frac{\beta_{j}}{\alpha_{j}} (\partial^{\beta}f)(\partial^{\gamma}g) \\ &= \sum_{(\beta,\gamma) \in \Omega_{\alpha}} \frac{\alpha!}{\beta!\gamma!} (\partial^{\beta}f)(\partial^{\gamma}g) + \sum_{(\beta,\gamma) \in \Omega_{\alpha}} \frac{\alpha!}{\beta!\gamma!} \frac{\beta_{j}+\gamma_{j}}{\alpha_{j}} (\partial^{\beta}f)(\partial^{\gamma}g) \\ &+ \sum_{(\beta,\gamma) \in \Omega_{\alpha}} \frac{\alpha!}{\beta!\gamma!} (\partial^{\beta}f)(\partial^{\gamma}g) \\ &= \sum_{(\beta,\gamma) \in \Omega_{\alpha}} \frac{\alpha!}{\beta!\gamma!} (\partial^{\beta}f)(\partial^{\gamma}g) + \sum_{(\beta,\gamma) \in \Omega_{\alpha}} \frac{\alpha!}{\beta!\gamma!} (\partial^{\beta}f)(\partial^{\gamma}g) \\ &= \sum_{(\beta,\gamma) \in \Omega_{\alpha}} \frac{\alpha!}{\beta!\gamma!} (\partial^{\beta}f)(\partial^{\gamma}g) + \sum_{(\beta,\gamma) \in \Omega_{\alpha}} \frac{\alpha!}{\beta!\gamma!} (\partial^{\beta}f)(\partial^{\gamma}g) \\ &= \sum_{(\beta,\gamma) \in \Omega_{\alpha}} \frac{\alpha!}{\beta!\gamma!} (\partial^{\beta}f)(\partial^$$

So the claim is true for $|\alpha| = k$. By induction, the claim is true for each $\alpha \in \mathbb{N}_0^n$.

Exercise 3.1.0.4. Let $\xi \in \mathbb{R}^n$. Define $f \in \mathbb{C}^{\infty}(\mathbb{R}^n)$ by $f(x) = e^{-i\langle \xi, x \rangle}$. Then for each $\alpha \in \mathbb{N}_0^n$, $\partial^{\alpha} f = (-i\xi)^{\alpha} f$

Proof. Let $\alpha \in \mathbb{N}_0^n$. The claim is true for $|\alpha| = 0$. Let k > 0. Suppose that the claim is true for $|\alpha| \le k - 1$ so that for each $\beta \in \mathbb{N}_0$, $|\beta| \le k - 1$ implies that $\partial^{\beta} f = (-i\xi)^{\beta} f$. Suppose that $|\alpha| = k$. Since k > 0, there exists $j \in \{1, \ldots, n\}$ such that $\alpha_j > 0$. Then

$$\partial^{\alpha} f = \partial_{j} (\partial^{\alpha - e_{j}} f)$$

$$= \partial_{j} ((-i\xi)^{\alpha - e_{j}} f)$$

$$= (-i\xi)^{\alpha - e_{j}} \partial_{j} f$$

$$= (-i\xi)^{\alpha - e_{j}} i\xi_{j}$$

$$= (-i\xi)^{\alpha} f$$

So the claim is true for $|\alpha| = k$. By induction, the claim is true for each $\alpha \in \mathbb{N}_0^n$.

Definition 3.1.0.5. Let $f \in C^{\infty}(\mathbb{R})$, $\alpha \in \mathbb{N}_0^n$ and $N \in \mathbb{N}_0$. We define $\|\cdot\|_{\alpha,N} : C^{\infty}(\mathbb{R}^n,\mathbb{C}) \to [0,\infty]$ by

$$||f||_{\alpha,N} = \sup_{x \in \mathbb{R}} \left[(1+|x|)^N |\partial^{\alpha} f(x)| \right]$$

We define **Schwartz space** on \mathbb{R}^n , denoted $\mathcal{S}(\mathbb{R}^n)$, by

$$\mathcal{S}(\mathbb{R}^n) = \{ f \in C^{\infty}(\mathbb{R}^n) : \text{ for each } \alpha \in \mathbb{N}_0^n \text{ and } N \in \mathbb{N}_0, \, \|f\|_{\alpha,N} < \infty \}$$

Exercise 3.1.0.6. For each $p \in [1, \infty)$ and $x \in \mathbb{R}^n$,

$$(1+|x|)^p \ge (1/2)(1+|x|^p)$$

Proof. Let $p \in [1, \infty)$ and $x \in \mathbb{R}^n$. Suppose that $p \in \mathbb{Q}$. Then there exist $m, n \in \mathbb{N}$ such that $m \geq n$ and p = m/n. The binomial theorem implies that

$$(1+|x|)^{m} = \sum_{j=0}^{m} {m \choose j} |x|^{m-j}$$
$$> 1+|x|^{m}$$

Jensen's inequality implies that

$$(1+|x|)^p = [(1+|x|)^m]^{1/n}$$

$$\geq (1+|x|^m)^{1/n}$$

$$\geq (1/2)^{\frac{n-1}{n}}(1+|x|^p)$$

$$\geq (1/2)(1+|x|^p)$$

Suppose that $p \notin \mathbb{Q}$. Choose a sequence $(p_j)_{j \in \mathbb{N}} \subset [1, \infty) \cap \mathbb{Q}$ such that $p_j \to p$. By continuity,

$$(1+|x|)^p = \lim_{j \to \infty} (1+|x|)^{p_j}$$

$$\geq \lim_{j \to \infty} (1/2)(1+|x|^{p_j})$$

$$= (1/2)(1+|x|^p)$$

Exercise 3.1.0.7. Let $f \in \mathcal{S}(\mathbb{R}^n)$. Then f is Lipschitz.

Proof.

1. Set $M = \max\{\|f\|_{e_j,0} : j \in \{1,\ldots,n\}\}$. By definition, for each $j \in \{1,\cdots,n\}$ and $x \in \mathbb{R}^n$,

$$|\partial_j f(x)| \le ||f||_{e_j,0}$$

$$\le M$$

Let $x, h \in \mathbb{R}^n$. Jensen's inequality implies that

$$|Df(x)(h)| = \left| \sum_{j=1}^{n} \partial_{j} f(x) h_{j} \right|$$

$$\leq \sum_{j=1}^{n} |\partial_{j} f(x)| |h_{j}|$$

$$\leq M \sum_{j=1}^{n} |h_{j}|$$

$$\leq \sqrt{n} M|h|$$

Since $h \in \mathbb{R}^n$ is arbitrary, $||Df(x)|| \leq \sqrt{n}M$. Since $x \in \mathbb{R}^n$ is arbitrary, Df is bounded. Hence f is Lipschitz.

Exercise 3.1.0.8. We have that $\mathcal{S}(\mathbb{R}^n)$ is a vector space and for each $\alpha \in \mathbb{N}_0^n$ and $N \in \mathbb{N}_0$, $\|\cdot\|_{\alpha,N} : \mathcal{S}(\mathbb{R}^n) \to [0,\infty)$ is a seminorm on $\mathcal{S}(\mathbb{R}^n)$.

Proof. Let $f, g \in \mathcal{S}(\mathbb{R}^n)$ and $\lambda \in \mathbb{C}$.

1.

$$\|\lambda f\|_{\alpha,N} = \sup_{x \in \mathbb{R}} \left[(1+|x|)^N |\partial^{\alpha} [\lambda f](x)| \right]$$

$$= \sup_{x \in \mathbb{R}} \left[(1+|x|)^N |\lambda \partial^{\alpha} f(x)| \right]$$

$$= \sup_{x \in \mathbb{R}} \left[|\lambda| (1+|x|)^N |\partial^{\alpha} f(x)| \right]$$

$$= |\lambda| \sup_{x \in \mathbb{R}} \left[(1+|x|)^N |\partial^{\alpha} f(x)| \right]$$

$$= |\lambda| \|f\|_{\alpha,N}$$

Thus $\lambda f \in \mathcal{S}(\mathbb{R}^n)$ and $\|\lambda f\|_{\alpha,N} = |\lambda| \|f\|_{\alpha,N}$.

2.

$$\begin{split} \|f+g\|_{\alpha,N} &= \sup_{x \in \mathbb{R}} \left[(1+|x|)^N |\partial^{\alpha}[f+g](x)| \right] \\ &= \sup_{x \in \mathbb{R}} \left[(1+|x|)^N |[\partial^{\alpha}f+\partial^{\alpha}g](x)| \right] \\ &\leq \sup_{x \in \mathbb{R}} \left[(1+|x|)^N |\partial^{\alpha}f(x)| + (1+|x|)^N |\partial^{\alpha}g(x)| \right] \\ &\leq \sup_{x \in \mathbb{R}} \left[(1+|x|)^N |\partial^{\alpha}f(x)| \right] + \sup_{x \in \mathbb{R}} \left[(1+|x|)^N |\partial^{\alpha}g(x)| \right] \\ &= \|f\|_{\alpha,N} + \|g\|_{\alpha,N} \end{split}$$

Hence $f + g \in \mathcal{S}(\mathbb{R}^n)$ and $||f + g||_{\alpha, N} \le ||f||_{\alpha, N} + ||g||_{\alpha, N}$.

So $\mathcal{S}(\mathbb{R}^n)$ is a vector space and $\|\cdot\|_{\alpha,N}$ is a seminorm on $\mathcal{S}(\mathbb{R}^n)$.

Exercise 3.1.0.9. We have that $\mathcal{S}(\mathbb{R}^n)$ is a algebra under pointwise multiplication and for each $\alpha \in \mathbb{N}_0^n$ and $N \in \mathbb{N}_0$,

$$||fg||_{\alpha,N} \le \sum_{\beta=0}^{\alpha} ||f||_{\beta,N} ||g||_{\alpha-\beta,0}$$

Hint: $\partial^{\alpha}(fg)=\sum\limits_{(\beta,\gamma)\in\Omega_{\alpha}}\frac{\alpha!}{\beta!\gamma!}(\partial^{\beta}f)(\partial^{\gamma}g)$

Proof. Let $f, g \in \mathcal{S}(\mathbb{R}^n)$ and $\alpha \in \mathbb{N}_0^n$ and $N \in \mathbb{N}_0$. Then

$$\begin{split} \|fg\|_{\alpha,N} &= \sup_{x \in \mathbb{R}} \left[(1+|x|)^N |\partial^\alpha (fg)(x)| \right] \\ &= \sup_{x \in \mathbb{R}} \left[(1+|x|)^N \bigg| \sum_{(\beta,\gamma) \in \Omega_\alpha} \frac{\alpha!}{\beta!\gamma!} \partial^\beta f(x) \partial^\gamma g(x) \bigg| \right] \\ &\leq \sup_{x \in \mathbb{R}} \left[(1+|x|)^N \bigg(\sum_{(\beta,\gamma) \in \Omega_\alpha} \frac{\alpha!}{\beta!\gamma!} |\partial^\beta f(x)| |\partial^\gamma g(x)| \bigg) \right] \\ &= \sup_{x \in \mathbb{R}} \left[\sum_{(\beta,\gamma) \in \Omega_\alpha} \frac{\alpha!}{\beta!\gamma!} (1+|x|)^N |\partial^\beta f(x)| |\partial^\gamma g(x)| \right] \\ &\leq \sum_{(\beta,\gamma) \in \Omega_\alpha} \frac{\alpha!}{\beta!\gamma!} \sup_{x \in \mathbb{R}} \left[(1+|x|)^N |\partial^\beta f(x)| |\partial^\gamma g(x)| \right] \\ &\leq \sum_{(\beta,\gamma) \in \Omega_\alpha} \frac{\alpha!}{\beta!\gamma!} \sup_{x \in \mathbb{R}} \left[(1+|x|)^N |\partial^\beta f(x)| \right] \sup_{x \in \mathbb{R}} \left[|\partial^\gamma g(x)| \right] \\ &= \sum_{(\beta,\gamma) \in \Omega_\alpha} \frac{\alpha!}{\beta!\gamma!} \|f\|_{\beta,N} \|g\|_{\gamma,0} \\ &< \infty \end{split}$$

So $fg \in \mathcal{S}(\mathbb{R}^n)$.

Definition 3.1.0.10. Set $\mathcal{P} = \{ \| \cdot \|_{\alpha,N} : \alpha \in \mathbb{N}_0^n, N \in \mathbb{N}_0 \}$. Then \mathcal{P} is a countable family of seminorms on $\mathcal{S}(\mathbb{R}^n)$. We equip $\mathcal{S}(\mathbb{R}^n)$ with the topology \mathcal{T} induced by the family of projections

$$\pi_{\|\cdot\|_{\alpha,N}}: \mathcal{S}(\mathbb{R}^n) \to \mathcal{S}(\mathbb{R}^n)/\ker \|\cdot\|_{\alpha,N}$$

i.e. $\mathcal{T} = \tau_{\mathcal{S}(\mathbb{R}^n)}((\pi_p)_{p \in \mathcal{P}}).$

Explicitly, for a net $(f_{\gamma})_{\gamma \in \Gamma} \subset \mathcal{S}(\mathbb{R}^n)$ and $f \in \mathcal{S}(\mathbb{R}^n)$, $f_{\gamma} \to f$ iff for each $\alpha \in \mathbb{N}_0^n$ and $N \in \mathbb{N}_0$, $||f_{\gamma} - f||_{\alpha, N} \to 0$.

Hence $(\mathcal{S}(\mathbb{R}^n), \mathcal{T})$ is a locally convex space. Since \mathcal{P} is countable, we may write $\mathcal{P} = (p_j)_{j \in \mathbb{N}}$ and thus $(\mathcal{S}(\mathbb{R}^n), \mathcal{T})$ is metrizable with metric

$$d_{\mathcal{S}(\mathbb{R}^n)}(f,g) = \sum_{j \in \mathbb{N}} 2^{-j} \frac{p_j(f-g)}{1 + p_j(f-g)}$$

Exercise 3.1.0.11. Let $f \in \mathcal{S}(\mathbb{R}^n)$. For each $p \in [1, \infty]$, $f \in L^p(\mathbb{R}^n)$

Proof. Let $p \in [1, \infty]$. Suppose that $p < \infty$. The previous exercise implies that for each $x \in \mathbb{R}$,

$$(1+|x|)^{2p} \ge (1/2)(1+|x|^{2p})$$

By definition, there exists $C \geq 0$ such that for each $x \in \mathbb{R}$,

$$|f(x)| \le C(1+|x|)^{-2}$$

Then for each $x \in \mathbb{R}$,

$$|f(x)|^p \le C^p (1+|x|)^{-2p}$$

 $\le 2C^p (1+|x|^{2p})^{-1}$

Define $g: \mathbb{R}^n \to [0, \infty)$ defined by $g(x) = 2C^p(1 + |x|^{2p})^{-1}$. Since $g \in L^1(m)$ and $|f|^p \leq g$, we have that $f \in L^p(\mathbb{R}^n)$. If $p = \infty$, then by definition,

$$||f||_{\infty} = ||f||_{0,0}$$
< \infty

So $f \in L^p(\mathbb{R}^n)$.

Exercise 3.1.0.12. For each $p \in [1, \infty)$, the inclusion $\iota : \mathcal{S}(\mathbb{R}^n) \to L^p(\mathbb{R}^n)$ is continuous.

Proof. Let $(f_j)_{j\in\mathbb{N}}\subset\mathcal{S}(\mathbb{R}^n)$ and $f\in\mathcal{S}(\mathbb{R}^n)$. Suppose that $f_j\to f$. Then for each $\alpha\in\mathbb{N}_0^n$ and $N\in\mathbb{N}_0$, $||f_j-f||_{\alpha,N}\to 0$. By definition, for each $x\in\mathbb{R}$,

$$|f_j(x) - f(x)| \le ||f_j - f||_{0,2} (1 + |x|)^{-2}$$

Therefore, for each $x \in \mathbb{R}$,

$$||f_{j} - f||_{p}^{p} = \int_{\mathbb{R}^{n}} |f_{j} - f|^{p} dm$$

$$\leq \int_{\mathbb{R}^{n}} ||f_{j} - f||_{0,2}^{p} (1 + |x|)^{-2p} dm(x)$$

$$\leq ||f_{j} - f||_{0,2}^{p} \int_{\mathbb{R}^{n}} 2(1 + |x|^{2p})^{-1} dm(x)$$

$$= ||f_{j} - f||_{0,2}^{p} \int_{\mathbb{R}^{n}} 2(1 + |x|^{-2p})^{-1} dm(x)$$

$$\to 0$$

Hence $f_i \xrightarrow{L^p} f$ and $\iota : \mathcal{S}(\mathbb{R}^n) \to L^p(\mathbb{R}^n)$ is continuous.

Exercise 3.1.0.13. For each $\alpha \in \mathbb{N}_0^n$, $\partial^{\alpha} : \mathcal{S}(\mathbb{R}^n) \to C^{\infty}(\mathbb{R}^n)$ is linear.

Proof. Let $\alpha \in \mathbb{N}_0^n$. The claim is true for $|\alpha| = 0$ and $|\alpha| = 1$. Let k > 1. Suppose that the claim is true for $|\alpha| = k - 1$ so that for each $\beta \in \mathbb{N}_0^n$, $|\beta| = k - 1$ implies that $\partial^\beta : \mathcal{S}(\mathbb{R}^n) \to C^\infty$ is linear. Suppose that $|\alpha| = k$. Let $f, g \in \mathcal{S}(\mathbb{R}^n)$ and $\lambda \in \mathbb{C}$. Since k > 0, there exists $j \in \{1, \ldots, n\}$ such that $\alpha_j > 0$. Then

$$\begin{split} \partial^{\alpha}(f + \lambda g) &= \partial_{j}(\partial^{\alpha - e_{j}}[f + \lambda g]) \\ &= \partial_{j}(\partial^{\alpha - e_{j}}f + \lambda \partial^{\alpha - e_{j}}g) \\ &= \partial_{j}(\partial^{\alpha - e_{j}}f) + \lambda \partial_{j}(\partial^{\alpha - e_{j}}g) \\ &= \partial^{\alpha}f + \lambda \partial^{\alpha}g \end{split}$$

Since $f, g \in \mathcal{S}(\mathbb{R}^n)$ and $\lambda \in \mathbb{C}$ are arbitrary, we have that ∂^{α} is linear. So the claim is true for $|\alpha| = k$. By induction, the claim is true for each $\alpha \in \mathbb{N}_0^n$.

Exercise 3.1.0.14. Let $f \in \mathcal{S}(\mathbb{R}^n)$ and $\alpha \in \mathbb{N}_0^n$. Then $\partial^{\alpha} f \in \mathcal{S}(\mathbb{R}^n)$ and for each $\beta \in \mathbb{N}_0^n$ and $N \in \mathbb{N}_0$,

$$\|\partial^{\alpha} f\|_{\beta,N} \le \|f\|_{\alpha+\beta,N}$$

3.1. SCHWARTZ SPACE 21

Proof. Let $f \in \mathcal{S}(\mathbb{R}^n)$, $\beta \in \mathbb{N}_0^n$ and $N \in \mathbb{N}_0$. By definition,

$$\|\partial^{\alpha} f\|_{\beta,N} = \sup_{x \in \mathbb{R}} \left[(1 + |x|)^{N} |\partial^{\beta} (\partial^{\alpha} f)(x)| \right]$$
$$= \sup_{x \in \mathbb{R}} \left[(1 + |x|)^{N} |\partial^{\alpha+\beta} f(x)| \right]$$
$$= \|f\|_{\alpha+\beta,N}$$
$$< \infty$$

So $\partial^{\alpha} f \in \mathcal{S}(\mathbb{R}^n)$.

Exercise 3.1.0.15. Let $f \in \mathcal{S}(\mathbb{R}^n)$. Then for each $\alpha \in \mathbb{N}_0^n$ and $N \in \mathbb{N}_0$,

$$||f||_{\alpha,N} = ||\partial^{\alpha} f||_{0,N}$$

Proof. Clear by preceding exercise.

Exercise 3.1.0.16. Let $\alpha \in \mathbb{N}_0^n$. Then $\partial^{\alpha} : \mathcal{S}(\mathbb{R}^n) \to \mathcal{S}(\mathbb{R}^n)$ is continuous.

Proof. Let $(f_k)_{k\in\mathbb{N}}\subset\mathcal{S}(\mathbb{R}^n)$. Suppose that $f_k\to 0$. Then for each $\alpha,N\in\mathbb{N}_0,\ \|f_k\|_{\alpha,N}\to 0$. Let $\beta\in\mathbb{N}_0^n$ and $N\in\mathbb{N}$. Then

$$\|\partial^{\alpha} f_k\|_{\beta,N} \le \|f_k\|_{\alpha+\beta,N}$$
$$\to 0$$

Since $\beta \in \mathbb{N}_0^n$ and $N \in \mathbb{N}_0$ are arbitrary, $\partial^{\alpha} f_k \to 0$. Thus ∂^{α} is continuous at 0. Since ∂^{α} is linear, ∂^{α} is continuous.

3.2 Position and Momentum Operators

Definition 3.2.0.1. Let $j \in \{1, ..., n\}$. We define the j-th position operator, denoted $X_j : \mathcal{S}(\mathbb{R}^n) \to C^{\infty}(\mathbb{R}^n)$ by

$$X_i f(x) = x_i f(x)$$

Exercise 3.2.0.2. Let $j \in \{1, ..., n\}$. Then $X_j : \mathcal{S}(\mathbb{R}^n) \to C^{\infty}(\mathbb{R}^n)$ is linear.

Proof. Let $f, g \in \mathcal{S}(\mathbb{R}^n)$ and $\lambda \in \mathbb{C}$. Then for each $x \in \mathbb{R}^n$, we have that

$$X_{j}(f + \lambda g)(x) = x_{j}(f(x) + \lambda g(x))$$
$$= x_{j}f(x) + \lambda x_{j}g(x)$$
$$= (X_{j}f + \lambda X_{j}g)(x)$$

Since $x \in \mathbb{R}^n$ is arbitrary, we have that $X_j(f + \lambda g) = X_j f + \lambda X_j g$. Since $f, g \in \mathcal{S}(\mathbb{R}^n)$ and $\lambda \in \mathbb{C}$ are arbitrary, we have that X_j is linear.

Exercise 3.2.0.3. For each $j \in \{1, ..., n\}$ and $\alpha \in \mathbb{N}_0^n$,

$$\partial^{\alpha} X_{j} = \begin{cases} X_{j} \partial^{\alpha} & \alpha_{j} = 0 \\ X_{j} \partial^{\alpha} + \alpha_{j} \partial^{\alpha - e_{j}} & \alpha_{j} > 0 \end{cases}$$

Proof. Let $j \in \{1, ..., n\}$, $\alpha \in \mathbb{N}_0^n$ and $f \in \mathcal{S}(\mathbb{R}^n)$. The claim is true if $\alpha_j = 0$ or $\alpha_j = 1$. Let k > 1. Suppose that the claim is true for $\alpha_j = k - 1$ so that $\partial_j^{k-1}(X_j f) = X_j(\partial_j^{k-1} f) + (k-1)\partial_j^{k-2} f$. Suppose that $\alpha_j = k$. Then

$$\begin{split} (\partial_j^k X_j)f &= \partial_j^k (X_j f) \\ &= \partial_j (\partial_j^{k-1} [X_j f]) \\ &= \partial_j (X_j [\partial_j^{k-1} f] + (k-1) \partial_j^{k-2}) \\ &= \partial_j (X_j [\partial_j^{k-1} f]) + (k-1) \partial_j (\partial_j^{k-2} f) \\ &= (X_j [\partial_j^k f] + \partial_j^{k-1} f) + (k-1) \partial_j^{k-1} f \\ &= X_j (\partial_j^k f) + k \partial_j^{k-1} f \\ &= (X_j \partial_j^k + k \partial_j^{k-1}) f \end{split}$$

which implies that

$$\begin{split} (\partial^{\alpha}X_{j})f &= \partial^{\alpha}(X_{j}f) \\ &= \partial^{\alpha-ke_{j}}(\partial_{j}^{k}[X_{j}f]) \\ &= \partial^{\alpha-ke_{j}}(X_{j}[\partial_{j}^{k}f] + k\partial_{j}^{k-1}f) \\ &= X_{j}(\partial^{\alpha-ke_{j}}[\partial_{j}^{k}f]) + k\partial^{\alpha-ke_{j}}(\partial_{j}^{k-1}f) \\ &= X_{j}(\partial^{\alpha}f) + \alpha_{j}\partial^{\alpha-e_{j}}f \\ &= (X_{j}\partial^{\alpha} + \alpha_{j}\partial^{\alpha-e_{j}})f \end{split}$$

So the claim is true for $\alpha_j = k$. By induction, the claim is true for each $\alpha \in \mathbb{N}_0^n$.

Exercise 3.2.0.4. Let $f \in \mathcal{S}(\mathbb{R}^n)$ and $j \in \{1, ..., n\}$. Then $X_j f \in \mathcal{S}(\mathbb{R}^n)$ and for each $\alpha \in \mathbb{N}_0^n$ and $N \in \mathbb{N}_0$,

$$||X_j f||_{\alpha, N} \le \begin{cases} ||f||_{\alpha, N+1} & \alpha_j = 0\\ ||f||_{\alpha, N+1} + \alpha_j ||f||_{\alpha - e_j, N} & \alpha_j > 0 \end{cases}$$

Proof. Let $\alpha \in \mathbb{N}_0^n$ and $N \in \mathbb{N}_0$. If $\alpha_i = 0$, then the previous exercise implies that

$$||X_{j}f||_{\alpha,N} = \sup_{x \in \mathbb{R}} \left[(1+|x|)^{N} |\partial^{\alpha}(X_{j}f)(x)| \right]$$

$$= \sup_{x \in \mathbb{R}} \left[(1+|x|)^{N} |x_{j}\partial^{\alpha}f(x)| \right]$$

$$\leq \sup_{x \in \mathbb{R}} \left[(1+|x|)^{N+1} |\partial^{\alpha}f(x)| \right]$$

$$= ||f||_{\alpha,N+1}$$

$$< \infty$$

If $\alpha_j > 0$, then the previous exercise implies that

$$||X_{j}f||_{\alpha,N} = \sup_{x \in \mathbb{R}} \left[(1+|x|)^{N} |\partial^{\alpha}(X_{j}f)(x)| \right]$$

$$= \sup_{x \in \mathbb{R}} \left[(1+|x|)^{N} |x_{j}\partial^{\alpha}f(x) + \alpha_{j}\partial^{\alpha-e_{j}}f(x)| \right]$$

$$\leq \sup_{x \in \mathbb{R}} \left[(1+|x|)^{N+1} |\partial^{\alpha}f(x)| \right] + \alpha_{j} \sup_{x \in \mathbb{R}} \left[(1+|x|)^{N} |\partial^{\alpha-e_{j}}f(x)| \right]$$

$$= ||f||_{\alpha,N+1} + \alpha_{j} ||f||_{\alpha-e_{j},N}$$

$$< \infty$$

Since $\alpha, N \in \mathbb{N}_0$ are arbitrary, $X_i f \in \mathcal{S}(\mathbb{R}^n)$.

Exercise 3.2.0.5. Let $j \in \{1, ..., n\}$. Then $X_j : \mathcal{S}(\mathbb{R}^n) \to \mathcal{S}(\mathbb{R}^n)$ is continuous.

Proof. Let $(f_k)_{k\in\mathbb{N}}\subset\mathcal{S}(\mathbb{R}^n)$. Suppose that $f_k\to 0$. Then for each $\alpha,N\in\mathbb{N}_0$, $\|f_k\|_{\alpha,N}\to 0$. Let $\alpha\in\mathbb{N}_0^n$ and $N\in\mathbb{N}$. If $\alpha_j=0$, then

$$||X_j f_k||_{\alpha, N} \le ||f_k||_{\alpha, N+1}$$
$$\to 0$$

If $\alpha_j > 0$, then

$$||X_j f_k||_{\alpha,N} \le ||f_k||_{\alpha,N+1} + \alpha_j ||f_k||_{\alpha - e_j,N}$$

 $\to 0$

Since $\alpha \in \mathbb{N}_0^n$ and $N \in \mathbb{N}_0$ are arbitrary, $X_j f_k \to 0$. Thus X_j is continuous at 0. Since X_j is linear, X_j is continuous.

Exercise 3.2.0.6. Let $j, k \in \{1, ..., n\}$. Then $X_j X_k = X_k X_j$.

Proof. Let $f \in \mathcal{S}(\mathbb{R}^n)$. Then

$$([X_j X_k]f)(x) = (X_j [X_k f])(x)$$

$$= x_j (X_k f)(x)$$

$$= x_j x_k f(x)$$

$$= x_k x_j f(x)$$

$$= x_k (X_j f)(x)$$

$$= (X_k [X_j f])(x)$$

$$= ([X_k X_j f])(x)$$

Since $f \in \mathcal{S}(\mathbb{R}^n)$ and $x \in \mathbb{R}^n$ are arbitrary, $X_j X_k = X_k X_j$.

Definition 3.2.0.7. Let $\alpha \in \mathbb{N}_0^n$. We define $X^{\alpha} : \mathcal{S}(\mathbb{R}^n) \to \mathcal{S}(\mathbb{R}^n)$ by $X^{\alpha} = X_1^{\alpha_1} \cdots X_n^{\alpha_n}$

Definition 3.2.0.8. Let $j \in \{1, ..., n\}$. We define the j-th momentum operator, denoted $P_j : \mathcal{S}(\mathbb{R}^n) \to C^{\infty}(\mathbb{R}^n)$ by

$$P_i = -i\partial_i$$

Exercise 3.2.0.9. Let $j \in \{1, ..., n\}$. Then $P_j : \mathcal{S}(\mathbb{R}^n) \to C^{\infty}(\mathbb{R}^n)$ is linear.

Proof. Clear since $\partial_i : \mathcal{S}(\mathbb{R}^n) \to C^{\infty}(\mathbb{R}^n)$ is linear.

Exercise 3.2.0.10. Let $f \in \mathcal{S}(\mathbb{R}^n)$ and $j \in \{1, ..., n\}$. Then $P_j f \in \mathcal{S}(\mathbb{R}^n)$ and for each $\alpha \in \mathbb{N}_0^n$ and $N \in \mathbb{N}_0$,

$$||P_i f||_{\alpha,N} \leq ||f||_{\alpha+e_i,N}$$

Proof. Clear since $\partial_j f \in \mathcal{S}(\mathbb{R}^n)$ and $\|\partial_j f\|_{\alpha,N} \leq \|f\|_{\alpha+e_j,N}$.

Exercise 3.2.0.11. Let $j \in \{1, ..., n\}$. Then $P_j : \mathcal{S}(\mathbb{R}^n) \to \mathcal{S}(\mathbb{R}^n)$ is continuous.

Proof. Clear cince $\partial_i : \mathcal{S}(\mathbb{R}^n) \to \mathcal{S}(\mathbb{R}^n)$ is continuous.

Exercise 3.2.0.12. Let $j, k \in \{1, ..., n\}$. Then $P_j P_k = P_k P_j$.

Proof. Clear since $\partial_i \partial_k = \partial_k \partial_i$.

Definition 3.2.0.13. Let $\alpha \in \mathbb{N}_0^n$. We define $P^{\alpha} : \mathcal{S}(\mathbb{R}^n) \to \mathcal{S}(\mathbb{R}^n)$ by $P^{\alpha} = P_1^{\alpha_1} \cdots P_n^{\alpha_n}$

Exercise 3.2.0.14. Let $j, k \in \{1, ..., n\}$. Then $[X_j, P_k] = i\delta_{j,k}$.

Proof. A previous exercise implies that $\partial_k X_j = X_j \partial_k + \delta_{j,k} I$. Therefore

$$\begin{split} [X_j,P_k] &= X_j P_k - P_k X_j \\ &= -i(X_j \partial_k - \partial_k X_j) \\ &= -i(X_j \partial_k - [X_j \partial_k + \delta_{j,k} I]) \\ &= -i\delta_{j,k} I \end{split}$$

3.3 Translation and Rotation Operators

Definition 3.3.0.1. Let $y \in \mathbb{R}^n$. We define the **translation by** y **operator**, denoted $\tau_y : \mathcal{S}(\mathbb{R}^n) \to \mathbb{C}^{\infty}(\mathbb{R}^n)$, by $\tau_y f(x) = f(x - y)$.

Exercise 3.3.0.2. Let $y \in \mathbb{R}^n$. Then $\tau_y : \mathcal{S}(\mathbb{R}^n) \to \mathbb{C}^{\infty}(\mathbb{R}^n)$ is linear.

Proof. Let $f, g \in \mathcal{S}(\mathbb{R}^n)$ and $\lambda \in \mathbb{C}$. Then for each $x \in \mathbb{R}^n$, we have that

$$\tau_y(f + \lambda g)(x) = (f + \lambda g)(x - y)$$
$$= f(x - y) + \lambda g(x - y)$$
$$= \tau_y f(x) + \lambda \tau_y g(x)$$

Since $x \in \mathbb{R}^n$ is arbitrary, we have that $\tau_y(f + \lambda g) = \tau_y f + \lambda \tau_y g$. Since $f, g \in \mathcal{S}(\mathbb{R}^n)$ are arbitrary, τ_y is linear.

Exercise 3.3.0.3. Let $\alpha \in \mathbb{N}_0$. Then for each $y \in \mathbb{R}^n$,

$$\partial^{\alpha} \tau_{u} = \tau_{u} \partial^{\alpha}$$

Proof. Let $y \in \mathbb{R}^n$. The claim is true if $|\alpha| = 0$. Let $k \ge 1$. Suppose that the claim is true for $|\alpha| \le k - 1$ so that for each $\beta \in \mathbb{N}_0^n$, $|\beta| \le k - 1$ implies that

$$\partial^{\beta} \tau_y = \tau_y \partial^{\beta}$$

Suppose that $|\alpha| = k$. Since k > 0, there exists $j \in \{1, ..., n\}$ such that $\alpha_j > 0$. Let $f \in \mathcal{S}(\mathbb{R}^n)$. Define $g : \mathbb{R}^n \to \mathbb{R}^n$ and $g_k : \mathbb{R}^n \to \mathbb{R}$ by g(x) = x - y and $g_k = \pi_k \circ g$. Then the chain rule implies that

$$(\partial^{\alpha} \tau_{y}) f = \partial^{\alpha} (\tau_{y} f)$$

$$= \partial_{j} (\partial^{\alpha - e_{j}} [\tau_{y} f])$$

$$= \partial_{j} (\tau_{y} [\partial^{\alpha - e_{j}} f])$$

$$= \partial_{j} ([\partial^{\alpha - e_{j}} f] \circ g)$$

$$= \sum_{k=1}^{n} [\partial_{k} (\partial^{\alpha - e_{j}} f) \circ g] \partial_{j} g_{k}$$

$$= \partial_{j} (\partial^{\alpha - e_{j}} f) \circ g$$

$$= (\partial^{\alpha} f) \circ g$$

$$= \tau_{y} (\partial^{\alpha} f)$$

$$= (\tau_{y} \partial^{\alpha}) f$$

Since $f \in \mathcal{S}(\mathbb{R}^n)$ is arbitrary, $\partial^{\alpha} \tau_y = \tau_y \partial^{\alpha}$. Hence the claim is true for $|\alpha| = k$. By induction, the claim is true for each $\alpha \in \mathbb{N}_0^n$.

Exercise 3.3.0.4. Let $y \in \mathbb{R}$. Then for each $x \in \mathbb{R}^n$, $(1 + |x|) \le (1 + |y|)(1 + |x - y|)$.

Proof. Let $x \in \mathbb{R}$. Then

$$(1+|y|)(1+|x-y|) = 1 + (|x-y|+|y|) + |y||x-y|$$

$$\geq 1 + |x| + |y||x-y|$$

$$\geq 1 + |x|$$

Exercise 3.3.0.5. Let $f \in \mathcal{S}(\mathbb{R}^n)$ and $y \in \mathbb{R}^n$. Then $\tau_y f \in \mathcal{S}(\mathbb{R}^n)$ and for each $\alpha \in \mathbb{N}_0^n$ and $N \in \mathbb{N}_0$,

$$\|\tau_y f\|_{\alpha,N} \le (1+|y|)^N \|f\|_{\alpha,N}$$

Proof. Let $\alpha \in \mathbb{N}_0^n$ and $N \in \mathbb{N}_0$. Then

$$\begin{aligned} \|\tau_y f\|_{\alpha,N} &= \sup_{x \in \mathbb{R}} \left[(1+|x|)^N |\partial^\alpha \tau_y f(x)| \right] \\ &= \sup_{x \in \mathbb{R}} \left[(1+|x|)^N |\tau_y \partial^\alpha f(x)| \right] \\ &= \sup_{x \in \mathbb{R}} \left[(1+|x|)^N |\partial^\alpha f(x-y)| \right] \\ &\leq \sup_{x \in \mathbb{R}} \left[(1+|y|)^N (1+|x-y|)^N |\partial^\alpha f(x-y)| \right] \\ &= (1+|y|)^N \sup_{x \in \mathbb{R}} \left[(1+|x-y|)^N |\partial^\alpha f(x-y)| \right] \\ &= (1+|y|)^N \sup_{x \in \mathbb{R}} \left[(1+|x|)^N |\partial^\alpha f(x)| \right] \\ &= (1+|y|)^N \|f\|_{\alpha,N} \\ &< \infty \end{aligned}$$

Since $\alpha \in \mathbb{N}_0^n$ and $N \in \mathbb{N}_0$ are arbitrary, $\tau_y f \in \mathcal{S}(\mathbb{R}^n)$.

Exercise 3.3.0.6. Let $y \in \mathbb{R}^n$. Then $\tau_y : \mathcal{S}(\mathbb{R}^n) \to \mathcal{S}(\mathbb{R}^n)$ is continuous.

Proof. Let $(f_k)_{k\in\mathbb{N}}\subset\mathcal{S}(\mathbb{R}^n)$. Suppose that $f_k\to 0$. Then for each $\alpha,N\in\mathcal{N}_0$, $||f_k||_{\alpha,N}\to 0$. Let $\alpha,N\in\mathcal{N}_0$. Then

$$\|\tau_y f_k\|_{\alpha,N} \le (1+|y|)^N \|f_k\|_{\alpha,N}$$

 $\to 0$

Since $\alpha, N \in \mathbb{N}_0$ are arbitrary, $\tau_y f_k \to 0$. So τ_y is continuous at 0. Since τ_y is linear, τ_y is continuous.

Definition 3.3.0.7. Let $f \in \mathcal{S}(\mathbb{R}^n)$. Define $\tau f : \mathbb{R}^n \to \mathcal{S}(\mathbb{R}^n)$ by $\tau f(y) = \tau_y f$.

Exercise 3.3.0.8. Let $f \in \mathcal{S}(\mathbb{R}^n)$. Then $\tau f : \mathbb{R}^n \to \mathcal{S}(\mathbb{R}^n)$ is continuous.

Proof. content...

Definition 3.3.0.9. Let $\xi \in \mathbb{R}^n$. We define the **rotation by** ξ **operator**, denoted $\rho_{\xi} : \mathcal{S}(\mathbb{R}^n) \to C^{\infty}(\mathbb{R}^n)$, by $\rho_{\xi} f(x) = e^{-i\langle \xi, x \rangle} f(x)$.

Exercise 3.3.0.10. Let $\xi \in \mathbb{R}^n$. Then $\rho_{\xi} : \mathcal{S}(\mathbb{R}^n) \to C^{\infty}(\mathbb{R}^n)$ is linear.

Proof. Let $f, g \in \mathcal{S}(\mathbb{R}^n)$ and $\lambda \in \mathbb{C}$. Then for each $x \in \mathbb{R}^n$, we have that

$$\rho_{\xi}(f + \lambda g)(x) = e^{-i\langle \xi, x \rangle} (f + \lambda g)(x)$$

$$= e^{-i\langle \xi, x \rangle} f(x) + \lambda e^{-i\langle \xi, x \rangle} g(x)$$

$$= \rho_{\xi} f(x) + \lambda \rho_{\xi} g(x)$$

Since $x \in \mathbb{R}^n$ is arbitrary, we have that $\rho_{\xi}(f + \lambda g) = \rho_{\xi}f + \lambda \rho_{\xi}g$. Since $f, g \in \mathcal{S}(\mathbb{R}^n)$ are arbitrary, ρ_{ξ} is linear.

Exercise 3.3.0.11. Let $\xi \in \mathbb{R}^n$. Then for each $\alpha \in \mathbb{N}_0^n$,

$$\partial^{\alpha} \rho_{\xi} = \rho_{\xi} \sum_{(\beta, \gamma) \in \Omega_{\alpha}} \frac{\alpha!}{\beta! \gamma!} (-i\xi)^{\beta} \partial^{\gamma}$$

Proof. Let $\alpha \in \mathbb{N}_0^n$ and $f \in \mathcal{S}(\mathbb{R}^n)$. Define $g \in C^{\infty}(\mathbb{R}^n)$ by $g(x) = e^{-i\langle \xi, x \rangle}$. A previous exercise implies that

$$\begin{split} (\partial^{\alpha}\rho_{\xi})f &= \partial^{\alpha}(\rho_{\xi}f) \\ &= \partial^{\alpha}(gf) \\ &= \sum_{(\beta,\gamma)\in\Omega_{\alpha}} \frac{\alpha!}{\beta!\gamma!} (\partial^{\beta}g)(\partial^{\gamma}f) \\ &= \sum_{(\beta,\gamma)\in\Omega_{\alpha}} \frac{\alpha!}{\beta!\gamma!} ((-i\xi)^{\beta}g)(\partial^{\gamma}f) \\ &= \sum_{(\beta,\gamma)\in\Omega_{\alpha}} \frac{\alpha!}{\beta!\gamma!} (-i\xi)^{\beta}\rho_{\xi}(\partial^{\gamma}f) \\ &= \rho_{\xi} \bigg(\sum_{(\beta,\gamma)\in\Omega_{\alpha}} \frac{\alpha!}{\beta!\gamma!} (-i\xi)^{\beta}\partial^{\gamma}f \bigg) \\ &= \bigg(\rho_{\xi} \sum_{(\beta,\gamma)\in\Omega_{\alpha}} \frac{\alpha!}{\beta!\gamma!} (-i\xi)^{\beta}\partial^{\gamma} \bigg) f \end{split}$$

Since $f \in \mathcal{S}(\mathbb{R}^n)$ is arbitrary,

$$\partial^{\alpha} \rho_{\xi} = \rho_{\xi} \sum_{(\beta, \gamma) \in \Omega_{\alpha}} \frac{\alpha!}{\beta! \gamma!} (-i\xi)^{\beta} \partial^{\gamma}$$

Exercise 3.3.0.12. Let $f \in \mathcal{S}(\mathbb{R}^n)$ and $\xi \in \mathbb{R}^n$. Then $\rho_{\xi} f \in \mathcal{S}(\mathbb{R}^n)$ and for each $\alpha \in \mathbb{N}_0^n$ and $N \in \mathbb{N}_0$,

$$\|\rho_{\xi}f\|_{\alpha,N} \le \sum_{(\beta,\gamma)\in\Omega_{\alpha}} \frac{\alpha!}{\beta!\gamma!} |\xi^{\beta}| \|f\|_{\gamma,N}$$

Proof. Let $\alpha \in \mathbb{N}_0^n$, $N \in \mathbb{N}_0$ and $x \in \mathbb{R}^n$. Then

$$(1+|x|)^{N}|\partial^{\alpha}(\rho_{\xi}f)(x)| = (1+|x|)^{N} \left| \rho_{\xi} \left(\sum_{(\beta,\gamma)\in\Omega_{\alpha}} \frac{\alpha!}{\beta!\gamma!} (-i\xi)^{\beta} \partial^{\gamma} f \right)(x) \right|$$

$$= (1+|x|)^{N} \left| e^{-i\langle \xi, x \rangle} \sum_{(\beta,\gamma)\in\Omega_{\alpha}} \frac{\alpha!}{\beta!\gamma!} (-i\xi)^{\beta} \partial^{\gamma} f(x) \right|$$

$$\leq (1+|x|)^{N} \sum_{(\beta,\gamma)\in\Omega_{\alpha}} \frac{\alpha!}{\beta!\gamma!} |\xi^{\beta}| |\partial^{\gamma} f(x)|$$

$$= \sum_{(\beta,\gamma)\in\Omega_{\alpha}} \frac{\alpha!}{\beta!\gamma!} |\xi^{\beta}| |(1+|x|)^{N} \partial^{\gamma} f(x)|$$

$$\leq \sum_{(\beta,\gamma)\in\Omega_{\alpha}} \frac{\alpha!}{\beta!\gamma!} |\xi^{\beta}| ||f||_{\gamma,N}$$

Since $x \in \mathbb{R}^n$ is arbitrary, we have that

$$\|\rho_{\xi}f\|_{\alpha,N} = \sup_{x \in \mathbb{R}} \left[(1+|x|)^{N} |\partial^{\alpha}(\rho_{\xi}f)(x)| \right]$$

$$\leq \sum_{(\beta,\gamma) \in \Omega_{\alpha}} \frac{\alpha!}{\beta!\gamma!} |\xi^{\beta}| \|f\|_{\gamma,N}$$

$$< \infty$$

Since $\alpha \in \mathbb{N}_0^n$ and $N \in \mathbb{N}_0$ are arbitrary, $\rho_{\xi} f \in \mathcal{S}(\mathbb{R}^n)$.

Exercise 3.3.0.13. Let $\xi \in \mathbb{R}^n$. Then $\rho_{\xi} : \mathcal{S}(\mathbb{R}^n) \to \mathcal{S}(\mathbb{R}^n)$ is continuous.

Proof. Let $(f_k)_{k\in\mathbb{N}}\subset\mathcal{S}(\mathbb{R}^n)$. Suppose that $f_k\to 0$. Then for each $\alpha,N\in\mathcal{N}_0$, $\|f_k\|_{\alpha,N}\to 0$. Let $\alpha,N\in\mathcal{N}_0$. Then

$$\|\rho_{\xi} f_k\|_{\alpha,N} \leq \sum_{(\beta,\gamma)\in\Omega_{\alpha}} \frac{\alpha!}{\beta!\gamma!} |\xi^{\beta}| \|f_k\|_{\gamma,N}$$

$$\to 0$$

Since $\alpha, N \in \mathbb{N}_0$ are arbitrary, $\rho_{\xi} f_k \to 0$. So ρ_{ξ} is continuous at 0. Since ρ_{ξ} is linear, ρ_{ξ} is continuous. \square

3.4 Dilation and Concentration Operators

Definition 3.4.0.1. Let $\xi \in \mathbb{R}^n$. We define the **dilation by** t **operator**, denoted $\gamma_t : \mathcal{S}(\mathbb{R}^n) \to C^{\infty}(\mathbb{R}^n)$, by $\gamma_t f(x) = f(tx)$.

Exercise 3.4.0.2. Let $t \neq 0$. Then $\gamma_t : \mathcal{S}(\mathbb{R}^n) \to C^{\infty}(\mathbb{R}^n)$ is linear.

Proof. Let $f, g \in \mathcal{S}(\mathbb{R}^n)$ and $\lambda \in \mathbb{C}$. Then for each $x \in \mathbb{R}^n$, we have that

$$\gamma_t(f + \lambda g)(x) = (f + \lambda g)(tx)$$

$$= f(tx) + \lambda g(tx)$$

$$= \gamma_t f(x) + \lambda \gamma_t g(x)$$

Since $x \in \mathbb{R}^n$ is arbitrary, we have that $\gamma_t(f + \lambda g) = \gamma_t f + \lambda \gamma_t g$. Since $f, g \in \mathcal{S}(\mathbb{R}^n)$ are arbitrary, γ_t is linear.

Exercise 3.4.0.3. Let $t \neq 0$. Then for each $\alpha \in \mathbb{N}_0^n$,

$$\partial^{\alpha} \gamma_t = t^{|\alpha|} \gamma_t \partial^{\alpha}$$

Proof. Let $\alpha \in \mathbb{N}_0^n$ and $f \in \mathcal{S}(\mathbb{R}^n)$. The chain rule implies that the claim is true if $|\alpha| = 0$ or $|\alpha| = 1$. Let k > 1. Suppose the claim is true for $|\alpha| = k - 1$ so that for each $\beta \in \mathbb{N}_0$, $|\beta| = k - 1$ implies that $\partial^{\beta}(\gamma_t f) = t^{|\beta|} \gamma_t(\partial^{\beta} f)$. Suppose that $|\alpha| = k$. Since k > 0, there exists $j \in \{1, \ldots, n\}$ such that $\alpha_j > 0$. The chain rule implies that

$$(\partial^{\alpha} \gamma_{t}) f = \partial^{\alpha} (\gamma_{t} f)$$

$$= \partial_{j} (\partial^{\alpha - e_{j}} [\gamma_{t} f])$$

$$= \partial_{j} (t^{|\alpha - e_{j}|} \gamma_{t} [\partial^{\alpha - e_{j}} f])$$

$$= t^{|\alpha - e_{j}|} \partial_{j} (\gamma_{t} [\partial^{\alpha - e_{j}} f])$$

$$= t^{|\alpha - e_{j}|} t \gamma_{t} (\partial_{j} [\partial^{\alpha - e_{j}} f])$$

$$= t^{|\alpha|} \gamma_{t} (\partial^{\alpha} f)$$

$$= (t^{|\alpha|} \gamma_{t} \partial^{\alpha} f)$$

Since $f \in \mathcal{S}(\mathbb{R}^n)$ is arbitrary, $\partial^{\alpha} \gamma_t = t^{|\alpha|} \gamma_t \partial^{\alpha}$. So the claim is true for $|\alpha| = k$. By induction the claim is true for each $\alpha \in \mathbb{N}_0^n$.

Exercise 3.4.0.4. Let $y \in \mathbb{R}$ and $t \neq 0$. Then there exists C > 0 such that for each $x \in \mathbb{R}^n$, $1 + |x| \leq C(1 + |tx|)^2$.

Proof. Choose $C = \max(1/(2|t|), 1)$. Let $x \in \mathbb{R}^n$. Then

$$\begin{split} C(1+|tx|)^2 - (1+|x|) &= C + 2C|tx| + C|tx|^2 - 1 - |x| \\ &= C + (2C|t|-1)|x| + C|tx|^2 - 1 \\ &= (C-1) + (2C|t|-1)|x| + C|tx|^2 \\ &\geq 0 \end{split}$$

So $1 + |x| \le C(1 + |tx|)^2$.

Exercise 3.4.0.5. Let $f \in \mathcal{S}(\mathbb{R}^n)$ and $t \neq 0$. Then $\gamma_t f \in \mathcal{S}(\mathbb{R}^n)$ and there exists C > 0 such that for each $\alpha \in \mathbb{N}_0^n$ and $N \in \mathbb{N}_0$,

$$\|\gamma_t f\|_{\alpha,N} \le |t|^{|\alpha|} C^N \|f\|_{\alpha,2N}$$

Proof. The previous exercise implies that there exists C > 0 such that for each $x \in \mathbb{R}^n$, $1 + |x| \le C(1 + |tx|)^2$. Let $\alpha \in \mathbb{N}_0^n$, $N \in \mathbb{N}_0$ and $x \in \mathbb{R}^n$. Then

$$(1+|x|)^{N}|\partial^{\alpha}(\gamma_{t}f)(x)| = (1+|x|)^{N}|t^{|\alpha|}(\gamma_{t}\partial^{\alpha}f)(x)|$$

$$\leq C(1+|tx|)^{2N}|t|^{|\alpha|}|(\gamma_{t}\partial^{\alpha}f)(x)|$$

$$= C(1+|tx|)^{2N}|t|^{|\alpha|}|\partial^{\alpha}f(tx)|$$

$$\leq C|t|^{|\alpha|}||f||_{\alpha,2N}$$

Since $x \in \mathbb{R}^n$ is arbitrary, we have that

$$\|\gamma_t f\|_{\alpha,N} = \sup_{x \in \mathbb{R}} \left[(1 + |x|)^N |\partial^{\alpha} (\gamma_t f)(x)| \right]$$

$$\leq Ct^{|\alpha|} \|f\|_{\alpha,2N}$$

$$< \infty$$

Since $\alpha \in \mathbb{N}_0^n$ and $N \in \mathbb{N}_0$ are arbitrary, $\gamma_t f \in \mathcal{S}(\mathbb{R}^n)$.

Exercise 3.4.0.6. Let $t \neq 0$. Then $\gamma_t : \mathcal{S}(\mathbb{R}^n) \to \mathcal{S}(\mathbb{R}^n)$ is continuous.

Proof. Let $(f_k)_{k\in\mathbb{N}}\subset\mathcal{S}(\mathbb{R}^n)$. Suppose that $f_k\to 0$. Then for each $\alpha,N\in\mathcal{N}_0, \|f_k\|_{\alpha,N}\to 0$. The previous exercise implies that there exists C>0 such that for each $\alpha\in\mathbb{N}_0^n$ and $N\in\mathbb{N}_0$,

$$\|\gamma_t f\|_{\alpha,N} \le |t|^{|\alpha|} C^N \|f\|_{\alpha,2N}$$

Let $\alpha, N \in \mathcal{N}_0$. Then

$$\|\gamma_t f_k\|_{\alpha,N} \le C|t|^{|\alpha|} \|f\|_{\alpha,2N}$$

\$\to 0\$

Since $\alpha, N \in \mathbb{N}_0$ are arbitrary, $\gamma_t f_k \to 0$. So γ_t is continuous at 0. Since γ_t is linear, ρ_{ξ} is continuous.

Definition 3.4.0.7. Let $\xi \in \mathbb{R}^n$. We define the **concentration by** t **operator**, denoted $\kappa_t : \mathcal{S}(\mathbb{R}^n) \to C^{\infty}(\mathbb{R}^n)$, by $\kappa_t f(x) = t^{-1} \gamma_{t-1} f$.

Exercise 3.4.0.8. Let $t \neq 0$. Then $\kappa_t : \mathcal{S}(\mathbb{R}^n) \to C^{\infty}(\mathbb{R}^n)$ is linear.

Proof. Clear since $\gamma_t : \mathcal{S}(\mathbb{R}^n) \to C^{\infty}(\mathbb{R}^n)$ is linear.

Exercise 3.4.0.9. Let $t \neq 0$. Then for each $\alpha \in \mathbb{N}_0^n$,

$$\partial^{\alpha} \kappa_t = t^{-|\alpha|} \kappa_t \partial^{\alpha}$$

Proof. Let $\alpha \in \mathbb{N}_0^n$. Then

$$\begin{split} \partial^{\alpha} \kappa_t &= \partial^{\alpha} t^{-1} \gamma_{t^{-1}} \\ &= t^{-1} \partial^{\alpha} \gamma_{t^{-1}} \\ &= t^{-1} (t^{-1})^{|\alpha|} \gamma_{t^{-1}} \partial^{\alpha} \\ &= t^{-|\alpha|} \kappa_t \partial^{\alpha} \end{split}$$

Exercise 3.4.0.10. Let $f \in \mathcal{S}(\mathbb{R}^n)$ and $t \neq 0$. Then $\kappa_t f \in \mathcal{S}(\mathbb{R}^n)$ and there exists C > 0 such that for each $\alpha \in \mathbb{N}_0^n$ and $N \in \mathbb{N}_0$,

$$\|\kappa_t f\|_{\alpha,N} \le |t|^{-(|\alpha|+1)} C^N \|f\|_{\alpha,2N}$$

Proof. A previous exercise implies that there exists C > 0 such that for each $\alpha \in \mathbb{N}_0^n$ and $N \in \mathbb{N}_0$,

$$\|\gamma_t f\|_{\alpha,N} \le |t|^{|\alpha|} C^N \|f\|_{\alpha,2N}$$

Let $\alpha \in \mathbb{N}_0^n$ and $N \in \mathbb{N}_0$. Then

$$\|\kappa_{t}f\|_{\alpha,N} = \|t^{-1}\gamma_{t^{-1}}f\|_{\alpha,N}$$

$$= |t^{-1}|\|\gamma_{t^{-1}}f\|_{\alpha,N}$$

$$\leq |t^{-1}||t^{-1}|^{|\alpha|}C^{N}\|f\|_{\alpha,2N}$$

$$= |t|^{-(|\alpha|+1)}C^{N}\|f\|_{\alpha,2N}$$

$$< \infty$$

Since $\alpha \in \mathbb{N}_0^n$ and $N \in \mathbb{N}_0$ are arbitrary, $\kappa_t f \in \mathcal{S}(\mathbb{R}^n)$.

Exercise 3.4.0.11. Let $t \neq 0$. Then $\kappa_t : \mathcal{S}(\mathbb{R}^n) \to \mathcal{S}(\mathbb{R}^n)$ is continuous.

Proof. Since $\gamma_{t^{-1}}: \mathcal{S}(\mathbb{R}^n) \to \mathcal{S}(\mathbb{R}^n)$ is continuous, $\kappa_t = t^{-1}\gamma_{t^{-1}}$ is continuous.

Exercise 3.4.0.12. Let $t \neq 0$ and $f \in \mathcal{S}(\mathbb{R}^n)$. Then

$$\int_{\mathbb{R}} \kappa_t f \, dm = \int_{\mathbb{R}} f \, dm$$

Proof. We have that

$$\int_{\mathbb{R}} \kappa_t f \, dm = \int_{\mathbb{R}} t^{-1} \gamma_{t-1} f \, dm$$
$$= \int_{\mathbb{R}} t^{-1} f(t^{-1} y) \, dm(y)$$
$$= \int_{\mathbb{R}} f(z) \, dm(z)$$

3.5 The Convolution on $\mathcal{S}(\mathbb{R}^n)$

Definition 3.5.0.1. Let $f, g \in \mathcal{S}(\mathbb{R}^n)$. We define the **convolution of** f **and** g, denoted $f * g : \mathbb{R}^n \to \mathbb{C}$ by

$$f * g(x) = \int_{\mathbb{R}^n} \tau_y f(x) g(y) \, dm(y)$$

Exercise 3.5.0.2. Let $f, g \in \mathcal{S}(\mathbb{R}^n)$. Then $f * g \in C^{\infty}(\mathbb{R}^n)$ and for each $\alpha \in \mathbb{N}_0^n$

$$\partial^{\alpha}(f * g) = (\partial^{\alpha} f) * g$$

Hint: exchange integration and differentiation

Proof. Let $\alpha \in \mathbb{N}_0^n$. We proceed by induction on $|\alpha|$.

• Suppose that $|\alpha| = 0$. Then $\alpha = 0$. Define $h_0 \in C^{\infty}(\mathbb{R}^n \times \mathbb{R}^n)$ by $h(x,y) = \tau_y f(x)g(y)$. We observe that for each $x, y \in \mathbb{R}^n$,

$$|h(x,y)| = |\tau_y f(x)||g(y)|$$

$$\leq ||\tau_y f||_{0,0}|g(y)|$$

$$\leq ||f||_{0,0}|g(y)|$$

Since $||f||_{0,0}|g| \in L^1(\mathbb{R}^n)$ and for each $y \in \mathbb{R}^n$, $h(x,y) \to h(x_0,y)$ as $x \to x_0$, we have that

$$f * g = \int_{\mathbb{R}^n} \tau_y f(\cdot) g(y) \, dm(y)$$
$$= \int_{\mathbb{R}^n} h(\cdot, y) \, dm(y)$$

is continuous. Therefore, $f * g \in C(\mathbb{R}^n)$ and $\partial^{\alpha}(f * g) = (\partial^{\alpha} f) * g$.

• Let k>0. Suppose that for each $\beta\in\mathbb{N}_0^n$, $|\beta|=k-1$ implies that $f*g\in C^{|\beta|}(\mathbb{R}^n)$ and

$$\partial^{\beta}(f * g) = (\partial^{\beta} f) * g$$

Suppose that $|\alpha| = k$. Then there exists $j \in \{1, ..., n\}$ such that $\alpha_j > 0$. Define $h \in C^{\infty}(\mathbb{R}^n \times \mathbb{R}^n)$ by $h(x, y) = \tau_y[\partial_x^{\alpha - e_j} f](x)g(y)$. By hypothesis,

$$\begin{split} [\partial^{\alpha - e_j}(f * g)](x) &= [(\partial^{\alpha - e_j} f) * g](x) \\ &= \int_{\mathbb{R}^n} \tau_y [\partial_x^{\alpha - e_j} f](x) g(y) \, dm(y) \\ &= \int_{\mathbb{R}^n} h(x, y) \, dm(y) \end{split}$$

We observe that for each $x, y \in \mathbb{R}^n$,

$$\begin{split} \partial_x^{e_j} h(x,y) &= \partial_x^{e_j} [\tau_y(\partial_x^{\alpha - e_j} f)](x) g(y) \\ &= \partial_x^{\alpha} [\tau_y f](x) g(y) \end{split}$$

which implies that

$$\begin{aligned} |\partial_x^{e_j} h(x, y)| &= |\partial_x^{\alpha} [\tau_y f](x) g(y)| \\ &\leq \|\tau_y f\|_{\alpha, 0} |g(y)| \\ &\leq \|f\|_{\alpha, 0} |g(y)| \end{aligned}$$

Since $g \in L^1(\mathbb{R}^n)$, $\partial^{e_j}[\partial^{\alpha-e_j}(f*g)]$ exists and we may exchange the order of integration and differentiation to obtain that

$$\begin{split} [\partial_x^\alpha(f*g)](x) &= \partial_x^{e_j} [\partial_x^{\alpha - e_j}(f*g)](x) \\ &= \partial_x^{e_j} \int_{\mathbb{R}^n} h(x,y) \, dm(y) \\ &= \int_{\mathbb{R}^n} \partial_x^{e_j} h(x,y) \, dm(y) \\ &= \int_{\mathbb{R}^n} \partial_x^{e_j} [\tau_y(\partial_x^{\alpha - e_j} f)](x) g(y) \, dm(y) \\ &= \int_{\mathbb{R}^n} \tau_y [\partial_x^\alpha f](x) g(y) \, dm(y) \\ &= [(\partial_x^\alpha f) * g](x) \end{split}$$

So $f * g \in C^{|\alpha|}(\mathbb{R}^n)$ and $\partial^{\alpha}(f * g) = (\partial^{\alpha}f) * g$.

• By induction, for each $\alpha \in \mathbb{N}_0$, $f * g \in C^{|\alpha|}(\mathbb{R}^n)$ and $\partial^{\alpha}(f * g) = (\partial^{\alpha} f) * g$.

Since for each $\alpha \in \mathbb{N}_0^n$, $f * g \in C^{|\alpha|}(\mathbb{R}^n)$, we have that $f * g \in C^{\infty}(\mathbb{R}^n)$.

Exercise 3.5.0.3. Let $f, g \in \mathcal{S}(\mathbb{R}^n)$, then $f * g \in \mathcal{S}(\mathbb{R}^n)$ and there exists C > 0 such that for each $\alpha \in \mathbb{N}_0^n$ and $N \in \mathbb{N}_0$,

$$||f * g||_{\alpha,N} \le C||f||_{\alpha,N}||g||_{0,N+2}$$

Proof. Set

$$C = \int_{\mathbb{R}} \frac{1}{(1+|y|)^2} \, dm(y)$$

Let $\alpha \in \mathbb{N}_0^n$, $N \in \mathbb{N}_0$ and $x \in \mathbb{R}$. Then

$$(1+|x|)^{N}|\partial^{\alpha}(f*g)(x)| = (1+|x|)^{N}|(\partial^{\alpha}f)*g(x)|$$

$$= (1+|x|)^{N}\left|\int_{\mathbb{R}} \tau_{y}[\partial_{x}^{\alpha}f](x)g(y) \, dm(y)\right|$$

$$= \left|\int_{\mathbb{R}} (1+|x|)^{N} \partial_{x}^{\alpha}[\tau_{y}f](x)g(y) \, dm(y)\right|$$

$$\leq \int_{\mathbb{R}} (1+|x|)^{N}|\partial_{x}^{\alpha}[\tau_{y}f](x)||g(y)| \, dm(y)$$

$$\leq \int_{\mathbb{R}} ||\tau_{y}f||_{\alpha,N}|g(y)| \, dm(y)$$

$$\leq \int_{\mathbb{R}} (1+|y|)^{N}||f||_{\alpha,N}|g(y)| \, dm(y)$$

$$= ||f||_{\alpha,N} \int_{\mathbb{R}} (1+|y|)^{N+2}|g(y)|(1+|y|)^{-2} \, dm(y)$$

$$\leq ||f||_{\alpha,N} \int_{\mathbb{R}} ||g||_{0,N+2} (1+|y|)^{-2} \, dm(y)$$

$$= ||f||_{\alpha,N}||g||_{0,N+2} \int_{\mathbb{R}} (1+|y|)^{-2} \, dm(y)$$

$$= C||f||_{\alpha,N}||g||_{0,N+2}$$

Since $x \in \mathbb{R}$ is arbitrary, we have that

$$||f * g||_{\alpha,N} = \sup_{x \in \mathbb{R}} \left[(1 + |x|)^N |\partial^{\alpha} (f * g)(x)| \right]$$

$$\leq C||f||_{\alpha,N} ||g||_{0,N+2}$$

$$< \infty$$

Since $\alpha \in \mathbb{N}_0^n$ and $N \in \mathbb{N}_0$ are arbitrary, we have that $f * g \in \mathcal{S}(\mathbb{R}^n)$.

Exercise 3.5.0.4. The convolution $*: \mathcal{S}(\mathbb{R}^n) \times \mathcal{S}(\mathbb{R}^n) \to \mathcal{S}(\mathbb{R}^n)$ is bilinear.

Proof. Let $f, g, h \in \mathcal{S}(\mathbb{R}^n)$, $\lambda \in \mathbb{C}$ and $x \in \mathbb{R}^n$. Since $\tau_y : \mathcal{S}(\mathbb{R}^n) \to \mathcal{S}(\mathbb{R}^n)$ is linear, we have that

$$[(f+\lambda g)*h](x) = \int_{\mathbb{R}^n} \tau_y [f+\lambda g](x)h(y) dm(y)$$

$$= \int_{\mathbb{R}^n} \left(\tau_y [f](x) + \lambda \tau_y [g](x)\right) h(y) dm(y)$$

$$= \int_{\mathbb{R}^n} \tau_y [f](x)h(y) dm(y) + \lambda \int_{\mathbb{R}^n} \tau_y [g](x)h(y) dm(y)$$

$$= [f*h](x) + [\lambda g*h](x)$$

Since $x \in \mathbb{R}^n$ is arbitrary, $(f + \lambda g) * h = f * h + \lambda g * h$. Similarly, $f * (g + \lambda h) = f * g + \lambda f * h$.

Exercise 3.5.0.5. The convolution $*: \mathcal{S}(\mathbb{R}^n) \times \mathcal{S}(\mathbb{R}^n) \to \mathcal{S}(\mathbb{R}^n)$ is commutative.

Proof. Let $f, g \in \mathcal{S}(\mathbb{R}^n)$ and $x \in \mathbb{R}^n$. Then

$$f * g(x) = \int_{\mathbb{R}} f(x - y)g(y) dm(y)$$
$$= \int_{\mathbb{R}} f(z)g(x - z) dm(z)$$
$$= \int_{\mathbb{R}} g(x - z)f(z) dm(z)$$
$$= g * f(x)$$

Since $x \in \mathbb{R}^n$ is arbitrary, f * g = g * f.

Exercise 3.5.0.6. The convolution $*: \mathcal{S}(\mathbb{R}^n) \times \mathcal{S}(\mathbb{R}^n) \to \mathcal{S}(\mathbb{R}^n)$ is continuous.

Proof. Let $(f_n, g_n)_{n \in \mathbb{N}} \subset \mathcal{S}(\mathbb{R}^n) \times \mathcal{S}(\mathbb{R}^n)$ and $(f, g) \in \mathcal{S}(\mathbb{R}^n) \times \mathcal{S}(\mathbb{R}^n)$. Suppose that $(f_n, g_n) \to (f, g)$. Then $f_n \to f$ and $g_n \to g$. Hence for each $\alpha \in \mathbb{N}_0^n$ and $N \in \mathbb{N}_0$, $||f_n - f||_{\alpha, N} \to 0$ and $||g_n - g||_{\alpha, N} \to 0$. In particular

$$\left| \|g_n\|_{0,N+2} - \|g\|_{0,N+2} \right| \le \|g_n - g\|_{0,N+2}$$

So that $(\|g_n\|_{0,N+2})_{n\in\mathbb{N}}$ is bounded. Let $\alpha\in\mathbb{N}_0^n$ and $N\in\mathbb{N}_0$. Define C>0 as in the previous exercise. Then

$$||f_n * g_n - f * g||_{\alpha,N} = ||f_n * g_n - f * g_n + f * g_n - f * g||_{\alpha,N}$$

$$\leq ||(f_n - f) * g_n||_{\alpha,N} + ||f_*(g_n - g)||_{\alpha,N}$$

$$\leq C||f_n - f||_{\alpha,N}||g_n||_{0,N+2} + C||f||_{\alpha,N}||g_n - g||_{0,N+2}$$

$$\Rightarrow 0$$

Since $\alpha \in \mathbb{N}_0^n$ and $N \in \mathbb{N}_0$ are arbitrary, $f_n * g_n \to f * g$. Thus $*: \mathcal{S}(\mathbb{R}^n) \times \mathcal{S}(\mathbb{R}^n) \to \mathcal{S}(\mathbb{R}^n)$ is continuous. \square

Exercise 3.5.0.7. Let $f, g \in \mathcal{S}(\mathbb{R}^n)$. Then $||f * g||_1 \le ||f||_1 ||g||_1$.

Proof. Tonelli's theorem implies that

$$||f * g||_{1} = \int_{\mathbb{R}} |f * g(x)| dm(x)$$

$$= \int_{\mathbb{R}} \left| \int_{\mathbb{R}} f(x - y)g(y) dm(y) \right| dm(x)$$

$$\leq \int_{\mathbb{R}} \left[\int_{\mathbb{R}} |f(x - y)g(y)| dm(y) \right] dm(x)$$

$$= \int_{\mathbb{R}} \left[\int_{\mathbb{R}} |f(x - y)g(y)| dm(x) \right] dm(y)$$

$$= \int_{\mathbb{R}} \left[\int_{\mathbb{R}} |f(x - y)| dm(x) \right] |g(y)| dm(y)$$

$$= ||f||_{1} \int_{\mathbb{R}} |g(y)| dm(y)$$

$$= ||f||_{1} ||g||_{1}$$

Definition 3.5.0.8. We define the **bump functions** on \mathbb{R} , denoted $C_c^{\infty}(\mathbb{R})$, by

$$C_c^{\infty}(\mathbb{R}) = C_c(\mathbb{R}) \cap C^{\infty}(\mathbb{R})$$

Exercise 3.5.0.9. Let $f \in C_c^{\infty}(\mathbb{R})$. Then $f \in \mathcal{S}(\mathbb{R}^n)$.

Proof. Let $\alpha, N \in \mathbb{N}^0$. Define $g: \mathbb{R}^n \to \mathbb{C}$ by

$$g(x) = (1 + |x|)^N |\partial^{\alpha} f(x)|$$

Then g is continuous. Since $\operatorname{supp}(\partial^{\alpha} f) \subset \operatorname{supp}(f)$, we have that $g \in C_c(\mathbb{R})$ and

$$\sup_{x \in \mathbb{R}} \left[(1 + |x|)^N |\partial^{\alpha} f| \right] = \sup_{x \in \mathbb{R}} g(x)$$
$$= ||g||$$
$$< \infty$$

Exercise 3.5.0.10. Define $f: \mathbb{R}^n \to \mathbb{R}$ by $f(x) = e^{-x^2}$. Then $f \in \mathcal{S}(\mathbb{R}^n)$.

Proof. meh...

Exercise 3.5.0.11. Define $f: \mathbb{R}^n \to \mathbb{R}$ by

$$f(x) = \begin{cases} e^{-\frac{1}{1-x^2}} & x \in (-1,1) \\ 0 & x \notin (-1,1) \end{cases}$$

Then $f \in \mathcal{S}(\mathbb{R}^n)$.

Proof. meh...

Exercise 3.5.0.12. Let $a, b \in \mathbb{R}$. Suppose that a < b. Then for each $\epsilon > 0$, there exists $f \in \mathcal{S}(\mathbb{R}^n)$ such that $\chi_{[a,b]} \leq f \leq \chi_{[a-\epsilon,b+\epsilon]}$.

Proof. Set
$$f(x) =$$

Exercise 3.5.0.13. Let $f \in \mathcal{S}(\mathbb{R}^n)$. Define

3.6 The Fourier Transform on $\mathcal{S}(\mathbb{R}^n)$

Exercise 3.6.0.1. Let $\phi: \mathbb{R} \to S^1$ be a measurable homomorphism.

1. Then $\phi \in L^1_{loc}(\mathbb{R})$ and there exists a > 0 such that

$$\int_{(0,a]} \phi dm \neq 0$$

2. Define

$$c = \left[\int_{(0,a]} \phi dm \right]^{-1}$$

Then For each $x \in \mathbb{R}$,

$$\phi(x) = c \int_{(x,x+a]} \phi dm$$

- 3. $\phi \in C^{\infty}(\mathbb{R})$ and $\phi' = c(\phi(a) 1)\phi$
- 4. Define $b = c(\phi(a) 1)$ and $g \in C^{\infty}(\mathbb{R})$ by $g(x) = e^{-bx}\phi(x)$. Then g is constant and there exists $\xi \in \mathbb{R}$ such that for each $x \in \mathbb{R}$, $\phi(x) = e^{2\pi i \xi x}$.

Proof.

1. Let $K \subset \mathbb{R}$ be compact. Then

$$\int_{K} |\phi| dm = m(K) < \infty$$

So $\phi \in L^1_{loc}(\mathbb{R})$. For the sake of contradiction, suppose that for each a > 0,

$$\int_{(0,a]} \phi dm = 0$$

Then the FTC implies that $\phi = 0$ a.e. on $[0, \infty)$, which is a contradiction. So there exists a > 0 such that

$$\int_{(0,a]} \phi dm \neq 0$$

2. For $x \in \mathbb{R}$,

$$\phi(x) = c \int_{(0,a]} \phi(x)\phi(t)dm(t)$$
$$= c \int_{(0,a]} \phi(x+t)dm(t)$$
$$= c \int_{(x,x+a]} \phi dm$$

3. Part (2) and the FTC imply that ϕ is continuous. Let $d \in \mathbb{R}$. Define $f_d \in C((d, \infty))$ by

$$f_d(x) = \int_{(d,x]} \phi dm$$

Since ϕ is continuous, the FTC implies that f_d is differentiable and for each x > d $f'_d(x) = \phi(x)$. Part (2) implies that for each x > d,

$$\phi(x) = c \int_{(x,x+a]} \phi dm$$
$$= c(f_d(x+a) - f_d(x))$$

So for each x > d, ϕ is differentiable at x and

$$\phi'(x) = c(\phi(x+a) - \phi(x))$$
$$= c(\phi(a) - 1)\phi(x)$$

Since $d \in \mathbb{R}$ is arbitrary, ϕ is differentiable and $\phi' = c(\phi(a) - 1)\phi$. This implies that $\phi \in C^{\infty}(\mathbb{R})$.

4. Let $x \in \mathbb{R}$. Then

$$g'(x) = e^{-bx}\phi'(x) - be^{-bx}\phi(x)$$
$$= be^{-bx}\phi(x) - be^{-bx}\phi(x)$$
$$= 0$$

So g'=0 and g is constant. Hence there exists $k\in\mathbb{R}$ such that for each $x\in\mathbb{R}$, $\phi(x)=ke^{bx}$. Since $\phi(0)=1,\ k=1$. Since $|\phi|=1$, there exists $\xi\in\mathbb{R}$ such that $b=2\pi i\xi$.

Note 3.6.0.2. To summarize, for each measurable homomorphism $\phi : \mathbb{R} \to S^1$, there exists $\xi \in \mathbb{R}$ such such that for each $x \in \mathbb{R}$, $\phi(x) = e^{2\pi i \xi x}$.

Exercise 3.6.0.3. Let $\phi: \mathbb{R}^n \to S^1$ be a measurable homomorphism. Then there exists $\xi \in \mathbb{R}^n$ such such that for each $x \in \mathbb{R}$, $\phi(x) = e^{2\pi i \langle \xi, x \rangle}$.

Definition 3.6.0.4. Let $f \in \mathcal{S}(\mathbb{R}^n)$. We define the **Fourier transform of** f, denoted $\hat{f}: \mathbb{R}^n \to \mathbb{C}$, by

$$\hat{f}(\xi) = \int_{\mathbb{R}} \rho_{\xi} f \, dm$$

Exercise 3.6.0.5. Let $f \in \mathcal{S}(\mathbb{R}^n)$. Then $\hat{f} \in C_b(\mathbb{R}^n)$.

Proof. Since $f \in \mathcal{S}(\mathbb{R}^n)$, $f \in L^1(\mathbb{R}^n)$. Then for each $\xi \in \mathbb{R}$,

$$|\hat{f}(\xi)| = \left| \int_{\mathbb{R}} \rho_{\xi} f \, dm \right|$$

$$\leq \int_{\mathbb{R}} |\rho_{\xi} f| \, dm$$

$$= \int_{\mathbb{R}} |e^{-i\langle \xi, x \rangle} f(x)| \, dm(x)$$

$$= \int_{\mathbb{R}} |f(x)| \, dm(x)$$

$$= ||f||_{1}$$

So f is bounded. Let $(\xi_n)_{n\in\mathbb{N}}\subset\mathbb{R}$ and $\xi\in\mathbb{R}$. Suppose that $\xi_n\to\xi$. Define $(\phi_n)_{n\in\mathbb{N}}\subset L^1(\mathbb{R}^n)$ and $\phi\in L^1(\mathbb{R}^n)$ by $\phi_n(x)=\rho_{\xi_n}f(x)$ and $\phi(x)=\rho_{\xi}f(x)$. Then $\phi_n\xrightarrow{\mathrm{p.w.}}\phi$ and for each $n\in\mathbb{N}$,

$$|\phi_n| = |f|$$
$$\in L^1(\mathbb{R}^n)$$

The dominated convergence theorem implies that

$$\hat{f}(\xi_n) = \int_{\mathbb{R}} \phi_n \, dm$$

$$\to \int_{\mathbb{R}} \phi \, dm$$

$$= \hat{f}(\xi)$$

So \hat{f} is continuous. Hence $\hat{f} \in C_b(\mathbb{R})$.

Definition 3.6.0.6. We define the Fourier transform on $\mathcal{S}(\mathbb{R}^n)$, denoted $\mathcal{F}: \mathcal{S}(\mathbb{R}^n) \to C_b(\mathbb{R}^n)$, by

$$\mathcal{F}(f) = \hat{f}$$

Exercise 3.6.0.7. We have that $\mathcal{F}: \mathcal{S}(\mathbb{R}^n) \to C_b(\mathbb{R}^n)$ is linear.

Proof. Let $f, g \in \mathcal{S}(\mathbb{R}^n)$, $\lambda \in \mathbb{C}$ and $\xi \in \mathbb{R}^n$. Since $\rho_{\xi} : \mathcal{S}(\mathbb{R}^n) \to \mathcal{S}(\mathbb{R}^n)$ is linear, we have that

$$\mathcal{F}(f + \lambda g)(\xi) = \int_{\mathbb{R}} \rho_{\xi}(f + \lambda g) dm$$

$$= \int_{\mathbb{R}} \rho_{\xi} f + \lambda \rho_{\xi} g dm$$

$$= \int_{\mathbb{R}} \rho_{\xi} f dm + \lambda \int_{\mathbb{R}} \rho_{\xi} g dm$$

$$= \mathcal{F}(f)(\xi) + \lambda \mathcal{F}(g)(\xi)$$

Exercise 3.6.0.8. Let $f \in \mathcal{S}(\mathbb{R}^n)$ and $\alpha \in \mathbb{N}_0^n$. Then

- 1. $\mathcal{F}(X^{\alpha}f) = (-1)^{|\alpha|}P^{\alpha}\mathcal{F}(f)$
- 2. $\mathcal{F}(P^{\alpha}f) = X^{\alpha}\mathcal{F}(f)$

Proof.

1. Let $\alpha \in \mathbb{N}_0^n$. The claim is true if $|\alpha| = 0$. Let k > 0. Suppose that the claim is true for $|\alpha| = k - 1$ so that for each $\beta \in \mathbb{N}_0^n$, $|\beta| = k - 1$ implies that $\mathcal{F}(X^{\beta}f) = (-1)^{|\beta|}P^{\beta}\mathcal{F}(f)$. Suppose that $|\alpha| = k$. Since k > 0, there exists $j \in \{1, \ldots, n\}$ such that $\alpha_j > 0$. Define $\phi : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ by $\phi(\xi, x) = \rho_{\xi}X^{\alpha - e_j}f(x)$. Then for each $\xi, x \in \mathbb{R}$,

$$\partial_{\xi}^{e_j} \phi(\xi, x) = -ix^{e_j} \phi(x)$$
$$= -i\rho_{\xi} X^{\alpha} f(x)$$

Hence for each $x, \xi \in \mathbb{R}^n$,

$$|\partial_{\xi}^{e_j} \phi(\xi, x)| = |-i\rho_{\xi} X^{\alpha} f(x)|$$
$$= |X^{\alpha} f(x)|$$

Since $X^{\alpha}f \in \mathcal{S}(\mathbb{R}^n) \subset L^1$, we may exchange the order of integration and differentiation to obtain that

$$\mathcal{F}(X^{\alpha}f)(\xi) = \int_{\mathbb{R}} \rho_{\xi} X^{\alpha} f(x) dm(x)$$

$$= \int_{\mathbb{R}^{n}} i \partial_{\xi}^{e_{j}} \phi(\xi, x) dm(x)$$

$$= i \partial^{e_{j}} \int_{\mathbb{R}} e^{-i\xi x} x^{\alpha - e_{j}} f(x) dm(x)$$

$$= -P^{e_{j}} \mathcal{F}(X^{\alpha - e_{j}} f)(\xi)$$

$$= -P^{e_{j}} \left[(-1)^{|\alpha| - 1} P^{\alpha - e_{j}} \mathcal{F}(f) \right](\xi)$$

$$= (-1)^{|\alpha|} P^{\alpha} \mathcal{F}(f)(\xi)$$

So the claim is true for α . By induction, the claim is true for each $\alpha \in \mathbb{N}_0^n$.

2. Let $\alpha \in \mathbb{N}_0^n$. The claim is true if $|\alpha| = 0$. Let k > 0. Suppose that the claim is true for $|\alpha| = k - 1$ so that for each $\beta \in \mathbb{N}_0^n$, $|\beta| = k - 1$ implies that $\mathcal{F}(P^{\beta}f) = X^{\beta}\mathcal{F}(f)$. Suppose that $|\alpha| = k$. Since k > 0, there exists $j \in \{1, \ldots, n\}$ such that $\alpha_j > 0$. Then integration by parts yields

$$\mathcal{F}(P^{\alpha}f)(\xi) = \int_{\mathbb{R}} e^{-i\langle \xi, x \rangle} [-i\partial_x P^{\alpha - e_j} f(x)] \, dm(x)$$

$$= -\int_{\mathbb{R}} -i\xi^{e_j} e^{-i\langle \xi, x \rangle} [-iP^{\alpha - e_j} f(x)] \, dm(x)$$

$$= \xi^{e_j} \int_{\mathbb{R}} e^{-i\langle \xi, x \rangle} P^{\alpha - e_j} f(x) \, dm(x)$$

$$= X^{e_j} \mathcal{F}(P^{\alpha - e_j} f)(\xi)$$

$$= X^{e_j} \left[X^{\alpha - e_j} \mathcal{F}(f) \right] (\xi)$$

$$= X^{\alpha} \mathcal{F}(f)(\xi)$$

So the claim is true for α . By induction, the claim is true for each $\alpha \in \mathbb{N}_0^n$.

Exercise 3.6.0.9. There exists C > 0 such that for each $f \in \mathcal{S}(\mathbb{R}^n)$, $\|\hat{f}\|_{0,0} \leq C\|f\|_{0,2}$.

Hint: Set

$$C = \int_{\mathbb{R}} \frac{1}{(1+|x|)^2} \, dm(x)$$

Proof. Set

$$C = \int_{\mathbb{R}} \frac{1}{(1+|x|)^2} \, dm(x)$$

Let $f \in \mathcal{S}(\mathbb{R}^n)$. Let $\xi \in \mathbb{R}$. Then

$$|\hat{f}(\xi)| = \left| \int_{\mathbb{R}} \rho_{\xi} f(x) \, dm(x) \right|$$

$$\leq \int_{\mathbb{R}} |f(x)| \, dm(x)$$

$$= \int_{\mathbb{R}} \frac{(1+|x|)^{2} |f(x)|}{(1+|x|)^{2}} \, dm(x)$$

$$\leq ||f||_{0,2} \int_{\mathbb{R}} \frac{1}{(1+|x|)^{2}} \, dm(x)$$

$$= C||f||_{0,2}$$

Since $\xi \in \mathbb{R}$ is arbitrary, $\|\hat{f}\|_{0,0} \leq C \|f\|_{0,2}$.

Exercise 3.6.0.10. Let $a, b \in \mathbb{R}$ and $N \in \mathbb{N}_0$. Then $(a+b)^N \leq 2^{N-1}(a^N+b^N)$.

Hint: Jensen's inequality

Proof. Jensen's inequality implies that

$$2^{-N}(a+b)^N = \left(\frac{a}{2} + \frac{b}{2}\right)^N$$
$$\leq \left(\frac{a^N}{2} + \frac{b^N}{2}\right)$$
$$= 2^{-1}(a^N + b^N)$$

So
$$(a+b)^N \le 2^{N-1}(a^N + b^N)$$
.

Exercise 3.6.0.11. Let $f \in \mathcal{S}(\mathbb{R}^n)$. Then $\mathcal{F}(f) \in \mathcal{S}(\mathbb{R}^n)$ and there exists C > 0 such that for each $\alpha \in \mathbb{N}_0^n$ and $N \in \mathbb{N}_0$,

$$\|\mathcal{F}(f)\|_{\alpha,N} \le C2^{N-1} \|X^{\alpha}f\|_{0,2} + C2^{N-1} \|P^N X^{\alpha}f\|_{0,2}$$

Proof. Let $f \in \mathcal{S}(\mathbb{R}^n)$ and $\alpha \in \mathbb{N}_0^n$ and $N \in \mathbb{N}_0$. Then the previous exercise implies that for each $\xi \in \mathbb{R}$,

$$\xi^{N} \partial^{\alpha} \mathcal{F}(f)(\xi) = (-i)^{N} X^{N} P^{\alpha} \mathcal{F}(f)(\xi)$$
$$= i^{N} X^{N} \mathcal{F}(X^{\alpha} f)(\xi)$$
$$= i^{N} \mathcal{F}(P^{N} X^{\alpha} f)(\xi)$$

Set

$$C = \int_{\mathbb{R}} \frac{1}{(1+|x|)^2} \, dm(x)$$

as in the previous exercise. Since $\mathcal{F}(X^{\alpha}f)$, $\mathcal{F}(P^{N}X^{\alpha}f) \in C_{b}(\mathbb{R})$, we have that

$$\begin{split} \|\mathcal{F}(f)\|_{\alpha,N} &= \sup_{\xi \in \mathbb{R}} \left[(1 + |\xi|)^N |\partial^{\alpha} \mathcal{F}(f)(\xi)| \right] \\ &\leq \sup_{\xi \in \mathbb{R}} \left[2^{N-1} (1 + |\xi|^N) |\partial^{\alpha} \mathcal{F}(f)(\xi)| \right] \\ &= \sup_{\xi \in \mathbb{R}} \left[|2^{N-1} \partial^{\alpha} \mathcal{F}(f)(\xi)| + |2^{N-1} \xi^N \partial^{\alpha} \mathcal{F}(f)(\xi)| \right] \\ &= \sup_{\xi \in \mathbb{R}} \left[|\mathcal{F}(2^{N-1} X^{\alpha} f)(\xi)| + |\mathcal{F}(2^{N-1} P^N X^{\alpha} f)(\xi)| \right] \\ &\leq \|\mathcal{F}(2^{N-1} X^{\alpha} f)\|_{0,0} + \|\mathcal{F}(2^{N-1} P^N X^{\alpha} f)\|_{0,0} \\ &\leq C 2^{N-1} \|X^{\alpha} f\|_{0,2} + C 2^{N-1} \|P^N X^{\alpha} f\|_{0,2} \\ &\leq \infty \end{split}$$

Since $\alpha, N \in \mathbb{N}_0$ are arbitrary, $\mathcal{F}(f) \in \mathcal{S}(\mathbb{R}^n)$.

Exercise 3.6.0.12. We have that $\mathcal{F}: \mathcal{S}(\mathbb{R}^n) \to \mathcal{S}(\mathbb{R}^n)$ is continuous.

Proof. Let $(f_n)_{n\in\mathbb{N}}\subset\mathcal{S}(\mathbb{R}^n)$. Suppose that $f_n\to 0$. Since $X,P:\mathcal{S}(\mathbb{R}^n)\to\mathcal{S}(\mathbb{R}^n)$ are continuous, $X^{\alpha}f_n\to 0$ and $P^NX^{\alpha}f_n\to 0$. Therefore, $\|X^{\alpha}f_n\|_{0,2}\to 0$ and $\|P^NX^{\alpha}f_n\|_{0,2}\to 0$. The previous exercise implies there exists C>0 such that for each $\alpha\in\mathbb{N}_0^n$ and $N\in\mathbb{N}_0$,

$$\|\mathcal{F}(f_n)\|_{\alpha,N} \le C2^{N-1} \|X^{\alpha} f_n\|_{0,2} + C2^{N-1} \|P^N X^{\alpha} f_n\|_{0,2}$$

\$\to 0\$

Hence $\mathcal{F}(f_n) \to 0$ and \mathcal{F} is continuous at 0. Since \mathcal{F} is linear, $\mathcal{F}: \mathcal{S}(\mathbb{R}^n) \to \mathcal{S}(\mathbb{R}^n)$ is continuous.

Exercise 3.6.0.13. Let $f \in \mathcal{S}(\mathbb{R}^n)$. Then

- 1. for each $y \in \mathbb{R}$, $\mathcal{F}(\tau_u f) = \rho_u \mathcal{F}(f)$
- 2. for each $\eta \in \mathbb{R}$, $\mathcal{F}(\rho_n f) = \tau_{-n} \mathcal{F}(f)$
- 3. $\mathcal{F}(\gamma_t f) = \kappa_t \mathcal{F}(f)$

Proof.

1. Let $y, \xi \in \mathbb{R}$. Then

$$\mathcal{F}(\tau_y f)(\xi) = \int_{\mathbb{R}} e^{-i\xi x} f(x - y) \, dm(x)$$

$$= \int_{\mathbb{R}} e^{-i\xi(z+y)} f(z) \, dm(z)$$

$$= e^{-i\xi y} \int_{\mathbb{R}} e^{-i\xi z} f(z) \, dm(z)$$

$$= e^{-i\xi y} \mathcal{F}(f)(\xi)$$

$$= \rho_y \mathcal{F}(f)(\xi)$$

2. Let $\eta, \xi \in \mathbb{R}$. Then

$$\mathcal{F}(\rho_{\eta}f)(\xi) = \int_{\mathbb{R}} e^{-i\xi x} e^{-i\eta x} f(x) \, dm(x)$$
$$= \int_{\mathbb{R}} e^{-i(\xi+\eta)x} f(x) \, dm(x)$$
$$= \mathcal{F}(f)(\xi+\eta)$$
$$= \tau_{-\eta} \mathcal{F}(f)(\xi)$$

3. Let $\xi \in \mathbb{R}$. Then

$$\mathcal{F}(\gamma_t f)(\xi) = \int_{\mathbb{R}} e^{-i\xi x} f(tx) \, dm(x)$$
$$= \int_{\mathbb{R}} e^{-i\xi t^{-1} z} f(z) t^{-1} \, dm(z)$$
$$= t^{-1} \mathcal{F}(f)(t^{-1} \xi)$$
$$= t^{-1} \gamma_{t-1} \mathcal{F}(f)(\xi)$$

Exercise 3.6.0.14. Let $f, g \in \mathcal{S}(\mathbb{R}^n)$. Then $\mathcal{F}(f * g) = \mathcal{F}(f)\mathcal{F}(g)$.

Proof. Let $\xi \in \mathbb{R}$. Tonelli's theorem implies that

$$\begin{split} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} |e^{-i\xi x} f(x-y) g(y)| \, dm(y) \right] dm(x) &= \int_{\mathbb{R}} \left[\int_{\mathbb{R}} |f(x-y) g(y)| \, dm(y) \right] dm(x) \\ &= \int_{\mathbb{R}} \left[\int_{\mathbb{R}} |f(x-y) g(y)| \, dm(x) \right] dm(y) \\ &= \int_{\mathbb{R}} \left[\int_{\mathbb{R}} |f(x-y)| \, dm(x) \right] |g(y)| \, dm(y) \\ &= \|f\|_1 \int_{\mathbb{R}} |g(y)| \, dm(y) \\ &= \|f\|_1 \|g\|_1 \end{split}$$

So we may apply Fubini's theorem and change the order of integration to obtain that

$$\mathcal{F}(f * g)(\xi) = \int_{\mathbb{R}} e^{-i\xi x} (f * g)(x) \, dm(x)$$

$$= \int_{\mathbb{R}} \left[\int_{\mathbb{R}} e^{-i\xi x} f(x - y) g(y) \, dm(y) \right] dm(x)$$

$$= \int_{\mathbb{R}} \left[\int_{\mathbb{R}} e^{-i\xi x} f(x - y) g(y) \, dm(x) \right] dm(y)$$

$$= \int_{\mathbb{R}} \left[\int_{\mathbb{R}} e^{-i\xi x} f(x - y) \, dm(x) \right] g(y) \, dm(y)$$

$$= \int_{\mathbb{R}} [\mathcal{F}(\tau_y f)(\xi)] g(y) \, dm(y)$$

$$= \int_{\mathbb{R}} [e^{-i\xi y} \mathcal{F}(f)(\xi)] g(y) \, dm(y)$$

$$= \mathcal{F}(f)(\xi) \int_{\mathbb{R}} e^{-i\xi y} g(y) \, dm(y)$$

$$= \mathcal{F}(f)(\xi) \mathcal{F}(g)(\xi)$$

Since $\xi \in \mathbb{R}$ is arbitrary, $\mathcal{F}(f * g) = \mathcal{F}(f)\mathcal{F}(g)$

Exercise 3.6.0.15. Let $f, g \in \mathcal{S}(\mathbb{R}^n)$. Then

$$\int_{\mathbb{R}} \hat{f}g \, dm = \int_{\mathbb{R}} f \hat{g} \, dm$$

Proof. Tonelli's theorem implies that

$$\int_{\mathbb{R}} \left[\int_{\mathbb{R}} |e^{-i\xi x} f(x) g(\xi)| \, dm(x) \right] dm(\xi) = \int_{\mathbb{R}} \left[\int_{\mathbb{R}} |f(x)| \, dm(x) \right] |g(\xi)| \, dm(\xi)$$

$$= \|f\|_1 \int_{\mathbb{R}} |g(\xi)| \, dm(\xi)$$

$$= \|f\|_1 \|g\|_1$$

So we may apply Fubini's theorem and switch the order of integration to obtain that

$$\begin{split} \int_{\mathbb{R}} \hat{f}g \, dm &= \int_{\mathbb{R}} \left[\int_{\mathbb{R}} e^{-i\xi x} f(x) \, dm(x) \right] g(\xi) \, dm(\xi) \\ &= \int_{\mathbb{R}} \left[\int_{\mathbb{R}} e^{-i\xi x} f(x) g(\xi) \, dm(x) \right] dm(\xi) \\ &= \int_{\mathbb{R}} \left[\int_{\mathbb{R}} e^{-i\xi x} f(x) g(\xi) \, dm(\xi) \right] dm(x) \\ &= \int_{\mathbb{R}} f(x) \left[\int_{\mathbb{R}} e^{-i\xi x} g(\xi) \, dm(\xi) \right] dm(x) \\ &= \int_{\mathbb{R}} f(x) \hat{g}(x) \, dm(x) \\ &= \int_{\mathbb{R}} f \hat{g} \, dm \end{split}$$

Exercise 3.6.0.16. Define $f \in \mathcal{S}(\mathbb{R}^n)$ by $f(x) = e^{-x^2/2}$. Then $\mathcal{F}(f) = \sqrt{2\pi}f$.

Proof. Note that for each $\xi \in \mathbb{R}$,

$$\mathcal{F}(Df)(\xi) = \int_{\mathbb{R}} e^{-i\xi x} ix e^{-x^2/2} dm(x)$$
$$= -\int_{\mathbb{R}} \partial_{\xi} \left[e^{-i\xi x} e^{-x^2/2} \right] dm(x)$$
$$= -\partial_{\xi} \mathcal{F}(f)(\xi)$$

A previous exercise implies that $\mathcal{F}(Df) = X\mathcal{F}(f)$. So for each $\xi \in \mathbb{R}$, $\partial_{\xi} \hat{f}(\xi) = -\xi \hat{f}(\xi)$. Define $g \in \mathbb{C}^{\infty}(\mathbb{R})$ by $g(\xi) = e^{\xi^2/2}$. Then

$$\partial_{\xi}(\hat{f}g) = (\partial_{\xi}\hat{f})g + \hat{f}(\partial_{\xi}g)$$
$$= 0$$

So there exists $C \in \mathbb{R}$ such that $\hat{f}g = C$. Hence for each $\xi \in \mathbb{R}$,

$$\hat{f}(\xi) = Ce^{-\xi^2/2}$$
$$= Cf(\xi)$$

Therefore,

$$C = Cf(0)$$

$$= \hat{f}(0)$$

$$= \int_{\mathbb{R}} e^{-x^2/2} dm(x)$$

$$= \sqrt{2\pi}$$

So $\hat{f} = \sqrt{2\pi}f$.

Exercise 3.6.0.17. Let $f \in \mathcal{S}(\mathbb{R}^n)$. Define $g : \mathbb{R}^n \to L^1$ by $g(x) = \tau_x f$. Then g is continuous. **Hint:** approximate by functions in $C_c(\mathbb{R})$.

Proof. Suppose that $f \in C_c(\mathbb{R})$. Then

Definition 3.6.0.18. Let $f \in \mathcal{S}(\mathbb{R}^n)$ and $t \neq 0$. We define $f_t \in \mathcal{S}(\mathbb{R}^n)$ by $f_t = t^{-1}\gamma_{t-1}f$.

Exercise 3.6.0.19. Let $\phi \in \mathcal{S}(\mathbb{R}^n)$ and $t \neq 0$. Then

$$\int_{\mathbb{R}} \phi_t \, dm = \int_{\mathbb{R}} \phi \, dm$$

Proof. We have that

$$\int_{\mathbb{R}} \phi_t \, dm = \int_{\mathbb{R}} t^{-1} \phi(t^{-1}x) \, dm(x)$$
$$= \int_{\mathbb{R}} \phi(z) \, dm(z)$$
$$= \int_{\mathbb{R}} \phi \, dm$$

Exercise 3.6.0.20. Let $\phi \in \mathcal{S}(\mathbb{R}^n)$. Set

$$\alpha = \int_{\mathbb{R}} \phi \, dm$$

Then for each $f \in \mathcal{S}(\mathbb{R}^n)$, $f * \phi_{1/n} \xrightarrow{L^1} \alpha f$. **Hint:** for each $t \neq 0$ and $x \in \mathbb{R}$,

$$f * \phi_t(x) - \alpha f(x) = \int_{\mathbb{R}} [\tau_{tz} f(x) - f(x)] \phi(z) \, dm(z)$$

Proof. Let $t \neq 0$ and $x \in \mathbb{R}$. The previous exercise implies that

$$f * \phi_{t}(x) - \alpha f(x) = \int_{\mathbb{R}} f(x - y)\phi_{t}(y) dm(y) - \int_{\mathbb{R}} \phi(y) dm(y) f(x)$$

$$= \int_{\mathbb{R}} f(x - y)\phi_{t}(y) dm(y) - \int_{\mathbb{R}} \phi_{t}(y) dm(y) f(x)$$

$$= \int_{\mathbb{R}} f(x - y)\phi_{t}(y) - f(x)\phi_{t}(y) dm(y)$$

$$= \int_{\mathbb{R}} [f(x - y) - f(x)]\phi_{t}(y) dm(y)$$

$$= \int_{\mathbb{R}} [f(x - y) - f(x)]t^{-1}\phi(t^{-1}y) dm(y)$$

$$= \int_{\mathbb{R}} [f(x - tz) - f(x)]\phi(z) dm(z)$$

$$= \int_{\mathbb{R}} [\tau_{tz}f(x) - f(x)]\phi(z) dm(z)$$

Tonelli's theorem implies that

$$||f * \phi_t - \alpha f||_1 = \int_{\mathbb{R}} |f * \phi_t(x) - \alpha f(x)| \, dm(x)$$

$$\leq \int_{\mathbb{R}} \left[\int_{\mathbb{R}} |\tau_{tz} f(x) - f(x)| |\phi(z)| \, dm(z) \right] dm(x)$$

$$= \int_{\mathbb{R}} \left[\int_{\mathbb{R}} |\tau_{tz} f(x) - f(x)| |\phi(z)| \, dm(x) \right] dm(z)$$

$$= \int_{\mathbb{R}} ||\tau_{tz} f - f||_1 |\phi(z)| \, dm(z)$$

For $n \in \mathbb{N}$, define $g_n \in \mathcal{S}(\mathbb{R}^n)$ by $g_n(z) = \|\tau_{n^{-1}z}f(x) - f(x)\|_1\phi(z)$. Then $g_n \xrightarrow{\text{p.w.}} 0$ and $|g_n| \le 2||f||_1|\phi|$ $\in L^1(\mathbb{R}^n)$

The dominated convergence theorem implies that

Definition 3.6.0.21. content...

3.7 Tempered Distributions

3.8 The Fourier Transform on $\mathcal{M}(\mathbb{R})$

Note 3.8.0.1. Recall that

$$\mathcal{M}(\mathbb{R}) = \{ \mu : \mathcal{B}(\mathbb{R}) \to \mathbb{C} : \mu \text{ is a complex measure} \}$$

Definition 3.8.0.2. Let $\mu \in \mathcal{M}(\mathbb{R})$. We define the **Fourier transform of** μ , denoted $\hat{\mu} : \mathbb{R} \to \mathbb{C}$, by

$$\hat{\mu}(\xi) = \int_{\mathbb{R}} e^{-i\xi x} \, d\mu(x)$$

Exercise 3.8.0.3. Let $\mu \in \mathcal{M}(\mathbb{R})$. Then Then $\hat{\mu} : \mathbb{R} \to \mathbb{C}$ is bounded.

Proof. Let $\xi \in \mathbb{R}$.

$$|\hat{\mu}(\xi)| = \left| \int_{\mathbb{R}} e^{-i\xi x} d\mu(x) \right|$$

$$\leq \int_{\mathbb{R}} |e^{-i\xi x}| d|\mu|(x)$$

$$= |\mu|(\mathbb{R})$$

So $\hat{\mu}$ is bounded.

Exercise 3.8.0.4. Let $\mu \in \mathcal{M}(\mathbb{R})$. Then $\hat{\mu} \in C_b(\mathbb{R})$.

Proof. Let $(\xi_n)_{n\in\mathbb{N}}\subset\mathbb{R}$ and $\xi\in\mathbb{R}$. Define $(f_n)_{n\in\mathbb{N}}\subset L^1(\mu)$ and $f\in L^1(\mu)$ by $f_n(x)=e^{-i\xi_nx}$ and $f(x)=e^{-i\xi x}$. Suppose that $\xi_n\to\xi$. Then $f_n\xrightarrow{\text{p.w.}}f$ and for each $n\in N$ and $x\in\mathbb{R}$,

$$|f_n(x)| = |e^{-i\xi_n x}|$$

$$= 1$$

$$\in L^1(|\mu|)$$

The dominated convergence theorem implies that

$$|\hat{\mu}(\xi_n) - \hat{\mu}(\xi)| = \left| \int_{\mathbb{R}} e^{-i\xi_n x} d\mu(x) - \int_{\mathbb{R}} e^{-i\xi x} d\mu(x) \right|$$

$$= \left| \int_{\mathbb{R}} e^{-i\xi_n x} - e^{-i\xi x} d\mu(x) \right|$$

$$\leq \int_{\mathbb{R}} |e^{-i\xi_n x} - e^{-i\xi x}| d|\mu|(x)$$

$$\to 0$$

So $\hat{\mu}: \mathbb{R} \to \mathbb{C}$ is continuous. Hence $\hat{\mu} \in C_b(\mathbb{R})$.

Definition 3.8.0.5. Let X be a real normed vector space. We define $\mathcal{F}: \mathcal{M}(\mathbb{R}) \to C_b(\mathbb{R})$ by

$$\mathcal{F}(\mu) = \hat{\mu}$$

Exercise 3.8.0.6. Let X be a real normed vector space. Then $\mathcal{F}: \mathcal{M}(\mathbb{R}) \to C_b(\mathbb{R})$ is linear.

Proof. Let $\mu, \nu \in \mathcal{M}(\mathbb{R})$ and $\xi \in \mathbb{R}$. Then

$$\mathcal{F}[\mu + \nu](\xi) = \int_{\mathbb{R}} e^{-i\xi x} d[\mu + \nu](x)$$
$$= \int_{\mathbb{R}} e^{-i\xi x} d\mu(x) + \int_{\mathbb{R}} e^{-i\xi x} d\nu(x)$$
$$= \mathcal{F}[\mu](\xi) + \mathcal{F}[\nu](\xi)$$

Since $\xi \in \mathbb{R}$ is arbitrary, $\mathcal{F}(\mu + \nu) = \mathcal{F}(\mu) + \mathcal{F}(\nu)$ and \mathcal{F} is linear.

Exercise 3.8.0.7. Let X be a real normed vector space. If X is separable, then \mathcal{F} is injective.

Proof. Suppose that X is separable. Let $\mu \in \mathcal{M}(X)$. Suppose that $\mu \in \ker \mathcal{F}$. Then $\hat{\mu} = 0$ and for each $\phi \in X^*$,

$$\begin{split} 0 &= \hat{\mu}(\phi) \\ &= \int_X e^{-i\phi(x)} \, d\mu(x) \\ &= \int_{\mathbb{R}} e^{-ix} \, d[\phi_* \mu](x) \end{split}$$

Exercise 3.8.0.8. Let X be a real normed vector space. Then $\mathcal{F} \in L(\mathcal{M}(X), C_b(X^*))$ and $\|\mathcal{F}\| \leq 1$.

Proof. For $\mu \in \mathcal{M}(X)$ and $\phi \in X^*$, we have that

$$\begin{split} |\mathcal{F}[\mu](\phi)| &= \left| \int_X e^{-i\phi(x)} \, d\mu(x) \right| \\ &\leq \int_X |e^{-i\phi(x)}| \, d|\mu|(x) \\ &= |\mu|(X) \\ &= \|\mu\| \end{split}$$

Hence

$$\|\mathcal{F}(\mu)\| = \sup_{\phi \in X^*} |\mathcal{F}[\mu](\phi)|$$
$$\leq \|\mu\|$$

which implies that $\mathcal{F} \in L(\mathcal{M}(X), C_b(X^*))$ and $\|\mathcal{F}\| \leq 1$.

Fourier Analysis on \mathbb{R}^n

4.1 Schwartz Space

Definition 4.1.0.1. Let $\alpha \in \mathbb{N}_0^n$ and $x, y \in \mathbb{R}^n$. We define

1.
$$\langle x, y \rangle = \sum_j x_j y_j$$

2.
$$|x| = \langle x, x \rangle^{1/2}$$

3.
$$|\alpha| = \alpha_1 + \cdots + \alpha_n$$

$$4. \ x^{\alpha} = x_1^{\alpha_1} \cdots x_n^{\alpha_n}$$

5.
$$\partial^{\alpha} = \partial_{x_1}^{\alpha_1} \cdots \partial_{x_n}^{\alpha_n}$$

Definition 4.1.0.2. Let $f \in C^{\infty}(\mathbb{R}^n), \alpha \in \mathbb{N}_0^n$ and $N \in \mathbb{N}_0$. We define

$$||f||_{\alpha,N} = \sup_{x \in \mathbb{R}^n} (1 + |x|)^N |\partial^{\alpha} f(x)|$$

We define Schwartz space, denoted $\mathcal{S}(\mathbb{R}^n)$, by

$$\mathcal{S}(\mathbb{R}^n) = \{ f \in C^{\infty}(\mathbb{R}^n) : \text{ for each } \alpha \in \mathbb{N}_0^n, \, N \in \mathbb{N}_0, \, \|f\|_{\alpha,N} < \infty \}$$

Exercise 4.1.0.3. For each $f \in \mathcal{S}(\mathbb{R}^n)$ and $\alpha \in \mathbb{N}_0^n$, $\partial^{\alpha} f \in L^1(\mathbb{R}^n)$.

Proof. Let $f \in \mathcal{S}(\mathbb{R}^n)$, $\alpha \in \mathbb{N}_0^n$. Then there exists $C \geq 0$ such that for each $x \in \mathbb{R}^n$,

$$|\partial^{\alpha} f(x)| \le C(1+|x|^2)^{-1}$$

Define $g:\mathbb{R}^n\to [0,\infty)$ defined by $g(x)=(1+|x|^2)^{-1}$. Then $g\in L^1(\mathbb{R}^n)$ which implies that $\partial^\alpha f\in L^1(\mathbb{R}^n)$.

Definition 4.1.0.4.

4.2 The Convolution

Definition 4.2.0.1. Let $f, g \in L^0(\mathbb{R}^n)$. If for a.e. $x \in \mathbb{R}^n$,

$$\int_{\mathbb{R}^n} |f(x-y)g(y)| dm(y) < \infty$$

we define the **convolution of** f with g, denoted $f * g : \mathbb{R}^n \to \mathbb{C}$, by

$$f * g(x) = \int_{\mathbb{R}^n} f(x - y)g(y)dm(y)$$

Exercise 4.2.0.2. Let $f, g \in L^1(\mathbb{R}^n)$. Then $f * g \in L^1(\mathbb{R}^n)$ and $||f * g||_1 \le ||f||_1 ||g||_1$.

Proof. Define $h \in L^0(\mathbb{R}^n \times \mathbb{R}^n)$ by h(x,y) = f(x-y)g(y). Tonelli's theorem implies that,

$$\begin{split} \int_{\mathbb{R}^n \times \mathbb{R}^n} |h| dm^2 &= \int_{\mathbb{R}^n} \left[\int_{\mathbb{R}^n} |f(x-y)g(y)| dm(y) \right] dm(x) \\ &= \int_{\mathbb{R}^n} |g(y)| \left[\int_{\mathbb{R}^n} |f(x-y)| dm(y) \right] dm(x) \\ &= \|f\|_1 \int_{\mathbb{R}^n} |g(y)| dm(x) \\ &= \|f\|_1 \|g\|_1 \\ &< \infty \end{split}$$

Then $h \in L^1(\mathbb{R}^n \times \mathbb{R}^n)$. Fubini's theorem implies that $f * g \in L^1(\mathbb{R}^n)$. Clearly

$$||f * g||_1 \le \int_{\mathbb{R}^n \times \mathbb{R}^n} |h| dm^2$$
$$\le ||f||_1 ||g||_1$$

Exercise 4.2.0.3. Let $f, g, h \in L^1(\mathbb{R}^n)$. Then (f * g) * h = f * (g * h). **Hint:** use the substitution $z \mapsto z - y$

Proof. Let $x \in \mathbb{R}^n$. Then using the substitution $z \mapsto z - y$ and Fubini's theorem, we obtain

$$(f * g) * h(x) = \int f * g(x - y)h(y)dm(y)$$

$$= \int \left[\int f(x - y - z)g(z)dm(z) \right] h(y)dm(y)$$

$$= \int \left[\int f(x - z)g(z - y)dm(z) \right] h(y)dm(y)$$

$$= \int \left[\int f(x - z)g(z - y)h(y)dm(z) \right] dm(y)$$

$$= \int \left[\int f(x - z)g(z - y)h(y)dm(y) \right] dm(z)$$

$$= \int f(x - z) \left[\int g(z - y)h(y)dm(y) \right] dm(z)$$

$$= \int f(x - z)g * h(z)dm(z)$$

$$= f * (g * h)(z)$$

So (f * g) * h = f * (g * h).

Exercise 4.2.0.4. Let $f, g \in L^1(\mathbb{R}^n)$. Then f * g = g * f.

Proof. Let $x \in \mathbb{R}^n$. Using the transformation $y \mapsto x - y$, we obtain that

$$f * g(x) = \int f(x - y)g(y)dm(y)$$
$$= \int f(y)g(x - y)dm(y)$$
$$= \int g(x - y)f(y)dm(y)$$
$$= g * f(x)$$

So
$$f * g = g * f$$
.

Note 4.2.0.5. To summarize, $(L^1(\mathbb{R}^n), *)$ is a commutative Banach algebra.

Exercise 4.2.0.6. Young's Inequality:

Let $p \in [1, \infty], f \in L^1$ and $g \in L^p$. Then $f * g \in L^p$ and $||f * g||_p \le ||f||_1 ||g||_p$.

Proof. Define $K \in L^0(\mathbb{R}^n \times \mathbb{R}^n)$ by K(x,y) = f(x-y). Since for each $x,y \in \mathbb{R}^n$,

$$\int |K(x,y)|dm(x) = \int |K(x,y)|dm(y)$$
$$= ||f||_{\mathcal{P}}$$

an exercise in section 5.1 of [4] implies that $f * g \in L^p$ and $||f * g||_p \le ||f||_1 ||g||_p$.

Exercise 4.2.0.7. Let $p, q \in [1, \infty]$ be conjugate, $f \in L^p(\mathbb{R}^n)$ and $g \in L^q(\mathbb{R}^n)$. Then

- 1. for each $x \in \mathbb{R}^n$, f * g(x) exists.
- 2. $||f * g||_u \le ||f||_p ||g||_q$

3.

Proof. 1. Let $x \in \mathbb{R}^n$. Holder's inequality implies that

$$\int_{\mathbb{D}^n} |f(x - y)g(y)| dm(y) \le ||f||_p ||g||_q$$

Then f * g(x) exists.

2. Let $x \in \mathbb{R}^n$. Then in part (1) we showed that

$$|f * g(x)| = \left| \int_{\mathbb{R}^n} f(x - y)g(y)dm(y) \right|$$

$$\leq \int_{\mathbb{R}^n} |f(x - y)g(y)|dm(y)$$

$$\leq ||f||_p ||g||_q$$

Since $x \in \mathbb{R}^n$ is arbitrary, $||f * g||_u \le ||f||_p ||g||_q$.

3.

Exercise 4.2.0.8. Let $f \in L^1(\mathbb{R}^n)$, $k \in \mathbb{N}$ and $g \in C^k(\mathbb{R}^n)$. Suppose that for each $\alpha \in \mathbb{N}_0^n$, $|\alpha| \leq k$ implies that $\partial^{\alpha} g \in L^{\infty}$. Then for each $\alpha \in \mathbb{N}_0^n$, $|\alpha| \leq k$ implies that $f * g \in C^k$ and

$$\partial^{\alpha}(f*a) = f*\partial^{\alpha}a$$

Proof. Let $\alpha \in \mathbb{N}_0^n$. Suppose that $|\alpha| = 1$. Define $h \in L^0(\mathbb{R}^n \times \mathbb{R}^n)$ by h(x,y) = g(x-y)f(y). Young's inequality implies that for a.e. $x \in \mathbb{R}^n$, $h(x,\cdot) \in L^1(\mathbb{R}^n)$. For each $y \in \mathbb{R}^n$, $\partial^{\alpha}h(\cdot,y) = \partial^{\alpha}g(\cdot -y)f(y)$ and for each $x,y \in \mathbb{R}^n$, $|\partial^{\alpha}h(x,y)| \leq ||\partial^{\alpha}g||_{\infty}|f(y)| \in L^1(\mathbb{R}^n)$. An exercise in section 3.3 of [4] implies that for a.e. $x \in \mathbb{R}^n$, $\partial^{\alpha}(g * f)(x)$ exists and

$$\begin{split} \partial^{\alpha}(f*g)(x) &= \partial^{\alpha}(g*f)(x) \\ &= \partial^{\alpha} \int_{\mathbb{R}^{n}} h(x,y) dm(y) \\ &= \int_{\mathbb{R}^{n}} \partial^{\alpha} g(x-y) f(y) dm(y) \\ &= (\partial^{\alpha} g) * f(x) \\ &= f*(\partial^{\alpha} g)(x) \end{split}$$

Now proceed by induction on $|\alpha|$.

4.3 The Fourier Transform

Definition 4.3.0.1.

Exercise 4.3.0.2. Let $\phi: \mathbb{R} \to S^1$ be a measurable homomorphism.

1. Then $\phi \in L^1_{loc}(\mathbb{R})$ and there exists a > 0 such that

$$\int_{(0,a]} \phi dm \neq 0$$

2. Define

$$c = \left[\int_{(0,a]} \phi dm \right]^{-1}$$

Then For each $x \in \mathbb{R}$,

$$\phi(x) = c \int_{(x,x+a]} \phi dm$$

- 3. $\phi \in C^{\infty}(\mathbb{R})$ and $\phi' = c(\phi(a) 1)\phi$
- 4. Define $b = c(\phi(a) 1)$ and $g \in C^{\infty}(\mathbb{R})$ by $g(x) = e^{-bx}\phi(x)$. Then g is constant and there exists $\xi \in \mathbb{R}$ such that for each $x \in \mathbb{R}$, $\phi(x) = e^{2\pi i \xi x}$.

Proof.

1. Let $K \subset \mathbb{R}$ be compact. Then

$$\int_{K} |\phi| dm = m(K) < \infty$$

So $\phi \in L^1_{loc}(\mathbb{R})$. For the sake of contradiction, suppose that for each a > 0,

$$\int_{(0,a]} \phi dm = 0$$

Then the FTC implies that $\phi = 0$ a.e. on $[0, \infty)$, which is a contradiction. So there exists a > 0 such that

$$\int_{(0,a]} \phi dm \neq 0$$

2. For $x \in \mathbb{R}$,

$$\phi(x) = c \int_{(0,a]} \phi(x)\phi(t)dm(t)$$
$$= c \int_{(0,a]} \phi(x+t)dm(t)$$
$$= c \int_{(x,x+a]} \phi dm$$

3. Part (2) and the FTC imply that ϕ is continuous. Let $d \in \mathbb{R}$. Define $f_d \in C((d, \infty))$ by

$$f_d(x) = \int_{(d,x]} \phi dm$$

Since ϕ is continuous, the FTC implies that f_d is differentiable and for each x > d $f'_d(x) = \phi(x)$. Part (2) implies that for each x > d,

$$\phi(x) = c \int_{(x,x+a]} \phi dm$$
$$= c(f_d(x+a) - f_d(x))$$

So for each x > d, ϕ is differentiable at x and

$$\phi'(x) = c(\phi(x+a) - \phi(x))$$
$$= c(\phi(a) - 1)\phi(x)$$

Since $d \in \mathbb{R}$ is arbitrary, ϕ is differentiable and $\phi' = c(\phi(a) - 1)\phi$. This implies that $\phi \in C^{\infty}(\mathbb{R})$.

4. Let $x \in \mathbb{R}$. Then

$$g'(x) = e^{-bx}\phi'(x) - be^{-bx}\phi(x)$$
$$= be^{-bx}\phi(x) - be^{-bx}\phi(x)$$
$$= 0$$

So g'=0 and g is constant. Hence there exists $k \in \mathbb{R}$ such that for each $x \in \mathbb{R}$, $\phi(x)=ke^{bx}$. Since $\phi(0)=1,\ k=1$. Since $|\phi|=1$, there exists $\xi \in \mathbb{R}$ such that $b=2\pi i \xi$.

Note 4.3.0.3. To summarize, for each measurable homomorphism $\phi : \mathbb{R} \to S^1$, there exists $\xi \in \mathbb{R}$ such such that for each $x \in \mathbb{R}$, $\phi(x) = e^{2\pi i \xi x}$.

Exercise 4.3.0.4. Let $\phi: \mathbb{R}^n \to S^1$ be a measurable homomorphism. Then there exists $\xi \in \mathbb{R}^n$ such that for each $x \in \mathbb{R}^n$, $\phi(x) = e^{2\pi i \langle \xi, x \rangle}$.

Proof. When done in the category of measurable groups, an exercise in the section on direct products of groups of [?] implies that there exist measurable homomorphism $(\phi_j)_{j=1}^n \subset (S^1)^{\mathbb{R}}$ such that $\phi = \bigotimes_{j=1}^n \phi_j$. The previous exercise implies that there exist $\xi \in \mathbb{R}^n$ such that for each $x \in \mathbb{R}^n$, $\phi_j(x_j) = e^{2\pi i \xi_j x_j}$. Then for each $x \in \mathbb{R}^n$,

$$\phi(x) = \prod_{j=1}^{n} \phi_j(x_j)$$

$$= \prod_{j=1}^{n} e^{2\pi i \xi_j x_j}$$

$$= e^{2\pi i \sum_{j=1}^{n} \xi_j x_j}$$

$$= e^{2\pi i \langle \xi, x \rangle}$$

Definition 4.3.0.5. Let $f \in L^1(\mathbb{R}^n)$. We define the **Fourier transform of** f, denoted $\hat{f} : \mathbb{R}^n \to \mathbb{C}$ by

$$\hat{f}(\xi) = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} f(x) e^{-2\pi i \langle \xi, x \rangle} dm(x)$$

Fourier Analysis on LCA Groups

5.1 The Convolution

Note 5.1.0.1. For the remainder of the section, we fix a locally compact abelian group G and a Haar measure μ on G.

Definition 5.1.0.2. Let $f, g \in L^1(\mu)$. We define the **convolution of** f **with** g, denoted $f * g : G \to \mathbb{C}$, by

$$f * g(x) = \int_{X} f(x - y)g(y)d\mu(y)$$

Exercise 5.1.0.3. Let $f, g \in L^1(\mu)$. Then $f * g \in L^1(\mu)$.

Proof. By Tonelli's theorem,

$$\begin{split} \int_X |f*g| d\mu &\leq \int_X \bigg[\int_X |f(x-y)g(y)| d\mu(y) \bigg] d\mu(x) \\ &= \int_X |g(y)| \bigg[\int_X |f(x-y)| d\mu(y) \bigg] d\mu(x) \\ &= \|f\|_1 \int_X |g(y)| d\mu(x) \\ &= \|f\|_1 \|g\|_1 \\ &< \infty \end{split}$$

Fourier Analysis on Banach Spaces

Fourier Analysis on Banach Spaces

Appendix A

Summation

Appendix B

Asymptotic Notation

Bibliography

- [1] Introduction to Algebra
- [2] Introduction to Analysis
- [3] Introduction to Fourier Analysis
- [4] Introduction to Measure and Integration