Example Lab Summary Page for PHSX 216 Lab 1: Measuring Instruments & Error Analysis

PURPOSE: Experimentally determine density of cylinder and compare experimental results to accepted value $\rho_{acc} = 7620 \text{ kg/m}^3$

MEASUREMENTS:

Diameter (ruler) $d_r \pm \delta d_r = \boxed{1} \pm \boxed{2}$ [units]

Diameter (calipers) $d_c \pm \delta d_c = \square \pm \square$ units

Length (ruler) $l_r \pm \delta l_r = \square \pm \square$ [units]

Length (calipers) $l_c \pm \delta l_c = \boxed{1} \pm \boxed{1}$ [units]

Mass (analytic) $m_a \pm \delta m_a = \boxed{1} \pm \boxed{2} \boxed{1}$ [units]

Mass (electronic) $m_e \pm \delta m_e = \boxed{1} \pm \boxed{2} \boxed{2}$ [units]

NOTE: It may be that all your values (represented by in here) are found only in the spreadsheet where you recorded your data and did your calculations, but even so having a complete list of all your measurements and calculations – including the equations – makes taking the post-lab quiz much faster and easier.

CALCULATIONS:

Fractional uncertainties for all measurements

 $(\delta d_r/d_r) = \square$

 $(\delta d_1/d_1) = \boxed{\vdots}$

 $(\delta l_r/l_r) = \square$

 $(\delta l_c/l_c) = \Box$

 $(\delta m_a/m_a) = \square$

 $(\delta m_e/m_e) = \boxed{\Box}$

NOTE: Fractional uncertainties are unitless ratios; make sure both x and δx are in the **same units** when calculating $(x/\delta x)$

Cylinder volume (ruler and calipers)

 $V_r = \boxed{}$ [units]

Eq:

 $V = \pi \left(\frac{d}{2}\right)^2 l$

 $V_c = \square \square$ [units]

Cylinder density (using most precise and least precise measurements)

 $\rho_{mn} \pm \delta \rho_{mn} = \boxed{\Box \pm \Box} \boxed{\Box}$ [units]

Eq's:

 $\rho = \frac{4m}{\pi d^2 l}$

 $\rho_{lp} \pm \delta \rho_{lp} = \boxed{1} \pm \boxed{1}$ [units]

 $\delta \rho = |\rho| \sqrt{\left(\frac{\delta m}{m}\right)^2 + \left(-2\frac{\delta d}{d}\right)^2 + \left(-1\frac{\delta l}{l}\right)^2}$

RESULT ANALYSIS:

- $\rho_{mp} \pm \delta \rho_{mp}$ (DOES / DOES NOT) agree with ρ_{acc} because the accepted value (IS / IS NOT) within the experimental result interval.
- $\rho_{lp} \pm \delta \rho_{lp}$ (DOES / DOES NOT) agree with ρ_{acc} because the accepted value (IS / IS NOT) within the experimental result interval.