```
CS421 HW07
```

Weiyang Pan - pan30

(Teamed with Yifang Zhang – zhang303)

Problem 1.

1. L_1 is a regular language.

Regular Expression: $L_1 = \{0(0^*)1((0v1)^*)\}$

Regular Grammar:

 $S \rightarrow XY$

 $X \rightarrow 0A$

Y -> 1B

 $A \rightarrow 0A \mid \epsilon$

B -> B0 | B1 | ε

2. L₂ is not a regular language.

Prove by pumping lemma:

Let p be the pumping length. let $w = (0^p)(1^p)$, and w belongs to L_2 . By pumping lemma, w = xyz where $|xy| \le p$, |y| > 0, and $x(y^i)z$ should still belongs to L_2 .

Becasue |xy| < p, so y only contains 0s. Thus, $x = (0 \land (p-j))$, $y = (0 \land j)$, $z = (1 \land p)$, j > 0.

When we have $w' = x(y^2)z = (0^(p-j+2j))(1^p) = (0^(p+j))(1^p)$. This w' is clearly not belonging L_2 . Therefore, L_2 is not regular.

3. L_3 is a regular language.

Regular Expression: $L_3 = \{(avb)(((avb)(avb))^*)\}$

Regular Grammar:

 $S \rightarrow AB$

 $B \rightarrow AA \mid \epsilon$

 $A \rightarrow a \mid b$

4. L₄ is a regular language.

Regular Expression: $L_4 = \{(((((a*)c)*)((bvc)*)) \lor (a*))*\}$

Regular Grammar:

 $S \rightarrow CXS \mid AS \mid \epsilon$

 $C \rightarrow aAc \mid \epsilon$

 $A \rightarrow Aa \mid \epsilon$

 $X \rightarrow Xb \mid Xc \mid \varepsilon$

5. L₅ is not a regular language.

Prove by pumping lemma:

Let p be the pumping length. Let $w = a^{(p)}$.

Then w = xyz, where $|xy| \le p$, |y| > 0, and $x(y \land i)z$ should still belongs to L_5 .

Choosing i = 2, then $w' = x(y \land 2)z$,

Because $0 < |y| \le p$, So, $|w'| = p \land 3 + |y| \le p \land 3 + p < (p+1) \land 3$.

Then $p^3 < |w'| < (p+1)^3$. Therefore, w' is not belonging to L₅. L₅ is not regular.