Data Preprocessing

Overview

- 1. Data Reduction
 - i. Dimensionality Reduction
 - ii. Numerosity Reduction
 - iii. Data compression

Data Reduction

Data reduction:

 Obtain a reduced representation of the data set that is much smaller in volume but yet produces the same (or almost the same) analytical results

Why data reduction?

- A database/data warehouse may store terabytes of data.
- Complex data analysis may take a very long time to run on the complete data set.

Data Reduction strategies

- Dimensionality reduction: Process of reducing the number of random variables or attributes
 - Wavelet transforms
 - Principal Components Analysis (PCA)
 - Feature subset selection, feature creation
- Data compression:
 - Transformations are applied to obtain a reduced or "compressed" representation of the original data.
 - Lossless: If the original data can be reconstructed from the compressed data without information loss.
 - Lossy: Reconstructing only approximation of the original data

Data Reduction: Parametric vs. Non-Parametric Methods

- Numerosity Reduction: Reduce data volume by choosing alternative, smaller forms of data representation
- Parametric methods (e.g., regression)
 - Assume the data fits some model,
 estimate model parameters, store only
 the parameters, and instead of actual data.
 - Ex.: Regression and Log-linear models

Data Reduction: Parametric vs. Non-Parametric Methods

- Non-parametric methods:
 - Reduced representation of data
 - Do not assume models
 - Major families: histograms, clustering, sampling and data cube aggregration.

Clustering on the Raw Data

Data Reduction 1: Dimensionality Reduction

Curse of dimensionality

- When dimensionality increases, data becomes increasingly sparse
- Density and distance between points, which is critical to clustering, outlier analysis, becomes less meaningful

Dimensionality reduction

- Avoid the curse of dimensionality
- Help eliminate irrelevant features and reduce noise
- Reduce time and space required in data mining
- Allow easier visualization

Wavelet Transform: A Data Compression Technique

- Wavelet Transform
 - Decomposes a signal into different frequency subbands
 - Applicable to n-dimensional signals
- Data are transformed to preserve relative distance between objects at different levels of resolution
- Allow natural clusters to become more distinguishable

Wavelet Transform: A Data Compression Technique

- Let X=(x1,x2,....xn) be a tuple of n-dimensional data vector depicting 'n' measurements made from 'n' database attributes.
- DWT When applied to data vector X, transforms it to numerically different vector X^n of wavelet coefficients
- Wavelet transformed data can be truncated.
- Compressed approximation:
 - Store only a small fraction of the strongest of the wavelet coefficients.
 - Other coefficient are set to zero.

Wavelet Transform: Properties

- The resulting wavelet representation is very sparse.
- Computationally fast since performed in wavelet space.
- This technique works to remove noise without smoothening out main features of the data.
- Given a set of coefficients an approximation of original data can be constructed by applying the inverse of the DWT.
- Wavelet transform technique:
 - Good for sparse or skewed data
 - Data with ordered attributes and multidimensional
- Used in real world applications:
 - Compression of fingerprint images, Computer vision,
 - Analysis of time-series data and data cleaning

Wavelet Transformation

Hierarchical Pyramid Algorithm:

- Length, L, must be an integer power of 2 (padding with 0's, when necessary)
- Each transform applies 2 functions: smoothing (sum or weighted average) and weighted difference (detailed feature).
- Applies to pairs of data.
- The result will contain low-frequency version of smoothed data and the high frequency content.
- Applies two functions recursively, until reaches the desired length

Wavelet Decomposition

- Wavelets: A math tool for space-efficient hierarchical decomposition of functions
- S = [2, 2, 0, 2, 3, 5, 4, 4] can be transformed to $S^{-} = [2 3/4, -1 1/4, 1/2, 0, 0, -1, -1, 0]$
- Compression: many small detail coefficients can be replaced by 0's, and only the significant coefficients are retained

Resolution	Averages	Detail Coefficients
8	[2, 2, 0, 2, 3, 5, 4, 4]	
4	[2,1,4,4]	[0, -1, -1, 0]
2	$[1\frac{1}{2}, 4]$	$[\frac{1}{2}, 0]$
1	$[ilde{2}rac{3}{4}]$	$[-1\frac{1}{4}]$

Principal Component Analysis (PCA)

- Find a projection that captures the largest amount of variation in data.
- The original data are projected onto a much smaller space, resulting in dimensionality reduction.
- The eigenvectors of the covariance matrix is obtained and these eigenvectors define the new space.

Principal Component Analysis

Principal Component Analysis (Steps)

- Given N data vectors from n-dimensions, find k ≤ n orthogonal vectors (principal components) that can be best used to represent data.
- PCA combines the essence of attributes by creating alternate small set of variables.
- Basic procedure for PCA:
 - Normalize input data: Each attribute falls within the same range
 - Compute k orthonormal (unit) vectors, i.e., principal components.
 - Each input data (vector) is a linear combination of the k
 principal component vectors

Principal Component Analysis (Steps)

- The principal components are sorted in order of decreasing "significance" or strength.
- The principal components act as new set of axes for the data providing information about variance.
- The size of the data can be reduced by eliminating the *weak components*, i.e., those with low variance
- Using the strongest principal components, it is possible to reconstruct a good approximation of the original data
- Works for numeric data only (ordered, unordered attributes, sparse and skewed data).

- Feature selection (i.e., attribute subset selection):
 - Select a minimum set of features such that the probability distribution of the data classes is as close as possible to the original distribution obtained using all attributes
 - Best and worst attributes are determined using statistical significance or information gain measure

Heuristic search:

- Methods are greedy in nature
- Make a locally optimal choice that will lead to globally optimal solution
- Best and worst attributes determined by statistical significance (information gain measure)

Heuristic methods (due to exponential # of choices):

- Step-wise forward selection
- Step-wise backward elimination
- Combining forward selection and backward elimination
- Decision-tree induction

Step-wise forward selection:

- Starts with empty set of attributes.
- The best of the attributes is determined and added
- At each iteration the best of the remaining is added.

Step-wise backward elimination:

- Repeatedly eliminate the worst feature from the original in each iteration
- Best combined feature selection and elimination
- Decision tree induction:
 - Use feature elimination and backtracking

Decision tree induction:

- Constructs flowchart like structure
- Internal node denotes a test on an attribute
- Branch corresponds to an outcome of the test
- External leaf corresponds to class predicition.
- Attributes that don't appear in the tree are irrelevant.

Forward selection	Backward elimination	Decision tree induction
Initial attribute set: $\{A_1, A_2, A_3, A_4, A_5, A_6\}$ Initial reduced set: $\{\}$ => $\{A_1\}$ => $\{A_1, A_4\}$ => Reduced attribute set: $\{A_1, A_4, A_6\}$	Initial attribute set: $\{A_1, A_2, A_3, A_4, A_5, A_6\}$ => $\{A_1, A_3, A_4, A_5, A_6\}$ => $\{A_1, A_4, A_5, A_6\}$ => Reduced attribute set: $\{A_1, A_4, A_6\}$	Initial attribute set: $\{A_1, A_2, A_3, A_4, A_5, A_6\}$ A_4 ? A_4 ? A_4 ? A_4 ? A_6 ?
		$\{A_1, A_4, A_6\}$

Figure 2.15. Greedy (heuristic) methods for attribute subset selection

Parametric Data Reduction: Regression Analysis

Regression analysis: A collective name for techniques with modeling and analysis of numerical data consisting of values of a dependent variable (also called response variable or measurement) and of one or more independent variables (also known as explanatory variables or predictors)

(including forecasting of time-series data), inference, hypothesis testing, and modeling of causal elationships

Parametric Data Reduction: Regression Analysis

- The parameters are estimated so as to give a "best fit" of the data
- Most commonly the best fit is evaluated by using the least squares method, but other criteria have also been used

Linear and Nonlinear Regression

- <u>Linear regression</u>: Y = w X + b Data modeled to fit a straight line
 - Often uses the least-square method to fit the line
 - X and Y are numeric database attributes
 - Two regression coefficients, w and b,
 specify the line and are to be estimated
 by using the least squares criterion.
 - The coefficients minimizes the error between the actual line and estimated line

Linear and Nonlinear Regression

Nonlinear regression:

- Data are modeled by a function which is a nonlinear combination of the model parameters and depends on one or more independent variables
- The data are fitted by a method of successive approximations

Histogram Analysis

- Uses binning for data approximation
- Partition the data distribution of A into disjoint subsets referred as buckets
- Partitioning rules:
 - Equal-width: equal bucket range (width of \$10 for price)
 - Equal-frequency (or equal-depth) Each bucket contains the same of contiguous data samples

Clustering

- Partition data set into clusters so that the object within cluster are "similar" and "dissimilar" to objects in other clusters
- Store cluster representation (e.g., centroid and diameter) only
- Can be very effective if data is clustered but not if data is "smeared"
- Can have hierarchical clustering and be stored in multi-dimensional index tree structures

Sampling

- Sampling: obtaining a small sample s to represent the whole data set N
- Allow a mining algorithm to run in complexity that is potentially sub-linear to the size of the data
- Key principle: Choose a representative subset of the data
 - Simple random sampling may have very poor performance in the presence of skew
 - Develop adaptive sampling methods, e.g., stratified sampling:
- Note: Sampling may not reduce database I/Os (page at a time)

Types of Sampling

Simple random sampling

 There is an equal probability of selecting any particular item

Sampling without replacement

 Once an object is selected, it is removed from the population

Sampling with replacement

A selected object is not removed from the population

Stratified sampling:

- Partition the data set, and draw samples from each partition (proportionally, i.e., approximately the same percentage of the data)
- Used in conjunction with skewed data

Sampling: With or without Replacement

Types of Sampling

Cluster Sample:

- Tuples in data set D are grouped into disjoint "clusters" M.
- Obtained s clusters where s<M

Stratified sampling:

- Divide D into mutually disjoint parts called strata.
- Draw stratified samples from each partition (proportionally, i.e., approximately the same percentage of the data)
- Used in conjunction with skewed data

Sampling: Cluster or Stratified Sampling

The stratified samples should in proportion to strata

Data Cube Aggregation

The lowest level of a data cube (base cuboid)

The aggregated data for an individual entity of interest

 E.g., a customer in a phone calling data warehouse

A cube at the highest level of abstraction is the (apex cuboid)

- Multiple levels of aggregation in data cubes
 - Each higher abstraction level further reduces the resulting data size

Data Cube Aggregation

- Reference appropriate levels
 - Use the smallest representation which is enough to solve the task
- Queries regarding aggregated information should be answered using data cube, when possible
- Concept hierarchies may exist for each attribute allows analysis of data at multiple abstraction levels.

Data Compression

String compression

- There are extensive theories and well-tuned algorithms
- Typically lossless, but only limited manipulation is possible without expansion

Audio/video compression

- Typically lossy compression, with progressive refinement
- Sometimes small fragments of signal can be reconstructed without reconstructing the whole

Lossy vs. lossless

compression

Data Compression

- Time sequence is not audio
 - Typically short and vary slowly with time
- Data reduction and dimensionality reduction may also be considered as forms of data compression

