

Reference based defect detection using foveated and classical NL-means

Professor: Boracchi Giacomo

Student: Bertarini Andrea

Introduction

- Two images:
 - Ref: image without defect
 - Src: Image with a possible defect, it is the image the algorithm has to check
- Reconstruction of pixels in the src as a weighted average of pixel in the ref exploiting two patch similarity measure
 - Windowed-distance from NL-means
 - Foveated-distance from foveation and foveated-NLM
- Many fields of application
 - Define error rate in a product
 - Helps in parameters tuning
 - Discriminate good/bad products
- Our solution is build upon the method proposed by M. Zontak for anomaly detection in silicon wafer
 - In practice it may works in multiple cases
 - It does not need image registration

NL-means

Compute the value of a pixel as a weighted sum of other pixels

$$v(s) = \frac{1}{\sum w(s,s')} * \sum_{s' \in Ns} w(s,s') * v(s')$$

W(s,s') represent the weight betwen pixel s ans s', ← the more they are distant the more the weight is low

Search neighborhood, limit the used pixel to a small area due to computational cost, without loosing in performance

NL-means

Foveation

- Based on a peculiarity of Human Visual System (HVS)
- Maximal acuity in the middle of the retina called fovea or fixation point
- Acuity decrease toward the perifery, implies an increase of blur
- Improve the reconstruction quality for high level of noise

Graph representing the density of cells in the retina

Foveated image of Lena at two different fixation point

Foveated Patch Distance

Replace windowed-distance with foveated-distance

$$w(s,s') = e^{\frac{||z_s^{Fov} - z_{s'}^{Fov}||_2^2}{h^2}}$$

Foveated Patch Distance - How F works

- Scale Space Layer: convolve the image with a set of kernels, to get a stack of progressively blurred images
- Imagine F as cone, make its vertex overlapping with the fixation point on the less blurred image in the stack, the patch is composed by pixels intersecting the cone

Reference Based Defect Detection

- Proposed by M. Zontak
- Reconstruct pixel in the src using the ref, then detect anomalous region
- The algorithm is composed by two main procedure:
 - Reconstruction
 - Defect Detection

Reference Based Defect Detection - Reconstruction

- Based on NL-means
- Compute weight using windowed-distance

Reference Based Defect Detection - Detection

- Based on the weights
- If the sum of the weight in the search window of a pixel is 0 then the pixel cannot be reconstructed

$$S_w(s) = \sum_{s' \in Ns} w(s, s')$$

- s_w will never reach 0
- A small value is used as a threshold

$$S_w(s) \le \epsilon$$

Our implementation

- Based on the method propose by M. Zontak
- Two implementation for the reconstruction phase
- Added a post-processing phase

Our Implmentation - Reconstruction

- Two implementation for the reconstruction phase:
 - NL-impl: use the windowed-distance
 - Foveation-impl: foveation and foveated-distance may help improving the performance

The weights can be computed either with foveated-distance or with windowed-distance.

Our Implmentation - Detection

Detection is based on

$$Anomaly(s) = ||z_s - \hat{z}_s||_2^2$$

- Patch-wise difference between the original and the reconstructed src
- Anomaly is just an intermediate result, which is used in the postprocessing phase

Our Implementation - Post processing

Threshold anomaly

$$temp(s) = Anomaly(s) \ge \zeta$$

- Majority Voting
- Considering an area as big as the patch around pixel s
- A(s) = # anomalous pixels in the area
- N(s) = # not anomalous pixels in the area

$$final(s) = 0 \leftrightarrow A(s) < N(s)$$

 $final(s) = 1 \leftrightarrow A(s)N(s)$

Experiments

- Train test composed by 26 images, with manually inserted anomaly
- Study performance
- Find threshold
- Relation AUC-PSNR
- Apply our two proposed method
- Repeate the process for different noise with different sigma :
 - 10, 20, 30, 50, 70: are the values of sigma used

Experiments: Performance

Sigma Value	10	20	30	50	70	Average
AUC - NL	0.9871	0.9453	0.8210	0.5359	0.4894	0,75574
AUC - fov	0.9907	0.9494	0.8163	0.5559	0.4978	0,76264

Experiments: Find threshold

- From the train set take the intermediate results Anomaly(s)
- From Anomaly(s) remove value coresponding to anomalous pixels
- The threshoold is found as the 99 percentile of the remaining value
- The threshold is sigma dependent

Experiments: AUC-PSNR

 The idea is: High PSNR means high AUC, the better an image will be reconstructed, the better will be the detection

Experiments: AUC-PSNR

 For both method an high value of PSNR correspond to a low value of sigma

Src image

Ref Image

Result of Test1

Src image

Ref Image

Result of Test2

Fov

NI

σ=10

σ=20

σ=30

σ=50

σ=70

Result of Test3

Conclusion

- Performance:
 - Good for both method for the lower value of sigma
 - Higher value (50 and 70) of sigma have an $AUC \le 0.5$
- AUC-PSNR relation is not so clear, however high AUC implies high PSNR
- There are some problem on the threshold (look at test2)
- Increasing the search window may increase the performance, but also increase the computational time
- Image registration is not needed, unless the images are rotated

Conclusion - improvement

- Reduce time complexity or GPU implementation
- Resort to a rotational invariant form
- Modify threshold selection or post-processing

Conclusion - plus

fov

Changing the search window dimension may help in the detection.

NL

Search window 51x51 101x101