Tema 5

El cálculo relacional

El Cálculo de predicados como elemento de representación de información

- Definición formal: ideas básicas
 - Un lenguaje de Cálculo de Predicados se define para describir un "mundo". Debe tener símbolos y frases.
 - Este lenguaje debe incluir un alfabeto donde haya:
 - Símbolos para describir los objetos del mundo (constantes)
 - Juan, José,Seat,..... Rojo,....etc, GR-150-A....
 - Símbolos para describir funciones que nos dan unos objetos en función de otros:
 - Color, Padre, Madre, Propietario etc...
 - Símbolos para describir variables: x, y, z,
 - Símbolos de predicados que describan relaciones entre objetos:
 - Casados, Conduce, Prefiere.
 - Los predicados describen relaciones binarias, ternarias etc...

El Cálculo de predicados como elemento de representación de información

- El lenguaje además de símbolos tendrá que generar "frases" (fórmulas, expresiones...) por ello debe tener
 - Símbolos de puntuación: (),.;[]
 - Conectores: \wedge , \vee , \neg , \rightarrow
 - Cuantificadores: ∀, ∃

Tema 5 Cálculo relacional y las BD deductivas El Cálculo de predicados como elemento de representación de información

- Definición formal: Un lenguaje de Cálculo de Predicados se define como L=(S, W) donde
 - S es un conjunto de símbolos incluyendo:
 - Constantes
 - Funciones
 - Variables
 - Predicados
 - Símbolos adicionales
 - W un conjunto de frases "correctas" o fórmulas bien formadas (Well formed formulae) o "wff"
 - W se define de forma recursiva:
 - Un átomo a se define cómo:
 - Un símbolo de constante (Jose) ó
 - Un símbolo de variable (x) ó
 - f(a) donde f es un símbolo de función y a un átomo: Padre(José), Color(x)

El Cálculo de predicados como elemento de representación de información

- Una formula atómica se define como p(a₁,a₂,...a_n) donde:
 - p es un símbolo de predicado n-ario
 - $a_1, a_2, \dots a_n$ son átomos
- Toda formula atómica es wff (∈ W)
- Si $f_1, f_2 \in W$ entonces:

•
$$f_1 \lor f_2 \in W$$
 ; $f_1 \land f_2 \in W$; $\neg f_1 \in W$; $f_1 \rightarrow f_2 \in W$

- Si $f_1(x) \in W$ entonces:
 - $\forall x f_1(x) \in W ; \exists x f_1(x) \in W$
- Algunos ejemplos de wffs:
 - casados(Juan,Ana), casados(padre(x),madre(x)),prefiere(Ana,Honda,rojo)
 - conduce(Juan,GR-150-A) \(¬conduce(propietario(GR-150-A),GR-150-A) \
 - $\forall x \text{ coche}(x) \rightarrow \text{prefiere}(\text{propietario}(x), \text{marca}(x), \text{color}(x))$
 - ∃y (persona(y) ∧¬casados(padre(y),madre(y)))
- Toda variable en una wff que no esté cuantificada se denomina variable libre
- En caso contrario se denomina variable ligada

El Cálculo de predicados como elemento de representación de información

Ejemplos:

- casados(Juan,Ana) será cierta si (Juan,Ana)∈ E(casados) donde E(casados) es la extensión del predicado casados (equivale a la instancia de la relación casados)
- prefiere(Ana, Honda, rojo) es cierta si (Ana, Honda, rojo) ∈ E(prefiere)
- conduce(Juan,GR-150-A)∧¬conduce(propietario(GR-150-A), GR-150-A) sera cierta si conduce(Juan, GR-150-A) es cierta y conduce(propietario(GR-150-A),GR-150-A) es falsa
- ∃y (persona(y) ∧¬casados(padre(y),madre(y))) será cierta si podemos encontrar una constante c tal que
 - (persona(c) \(¬casados(padre(c),madre(c)))
- x | casados(padre(x),madre(x)) define un conjunto de IDBIS - DECSAI constantes

Analogías intuitivas entre el calculo de predicados y el modelo relacional

Ideas básicas:

- Un lenguaje de calculo de predicados y un modelo relacional son estructuras formales para describir la realidad: ambas pueden identificarse.
- Una instancia de una base de datos se identificaría entonces con una interpretación de su lenguaje asociado.
- Las reglas de integridad serían wffs y la interpretación debería ser un modelo para ellas.
- Las consultas se generarían mediante wffs con variables libres. Los conjuntos de constantes que las hacen ciertas serán la solución de la consulta.

El calculo relacional orientado a tuplas

Definición de una consulta:

- Consideremos una base de datos con relaciones R(A₁,...A_n), S(B₁,...B_m) etc... y le asociamos un lenguaje de Cálculo de Predicados.
- Supongamos que R_x, R_yS_x, S_y.. etc.. son variables que toman valores en R, S etc.. Son variables tupla.
- Una consulta en C.R. orientado a tuplas (lenguaje QUEL) tiene la forma:

Select $R_x.A_i$, $R_x.A_j$..., $R_y.A_h$, $S_x.B_l$,... Where $wff(R_x,R_y,S_x...)$

- $R_x.A_i$, $R_x.A_j$..., $R_y.A_h,S_x.B_l$,... se denomina "lista objetivo".
- wff(R_x,R_y,S_x...) es una fórmula cuyas variables libres aparecen en la lista objetivo.
- La particularización de la lista objetivo para las tuplas que hacen cierta esta fórmula nos da la solución a la consulta.

El calculo relacional orientado a tuplas

Ejemplo:

- Modelo relacional
 - S(S#,nombres,ciudad,status)
 - P(P#,tipop,peso,color,ciudad)
 - J(J#,nombre,ciudad,director,presupuesto)
 - SPJ(S#,P#,J#,cantidad,fecha)

Lenguaje

- Constantes: s₁,s₂,..., p₁,p₂..., Madrid,...., 24, 25 ,..., etc.....
- Variables:
 - Range S_x , S_y ... in S_v , Range P_x , P_y , ... in P_v
- Funciones: S#, nombres,....P#,......

Consultas

- Select $S_x.S\#, S_x.nombres, S_x.ciudad$ where $S_x.status=25$
- Select $S_x.S\#, S_x$.nombres where $\exists SPJ_y(SPJ_y.s\#=S_x.S\#\land SPJ_y.p\#=`p_1'\land SPJ_y.cantidad>=200)$

Trabajadores (<u>id_trabajador</u>, nombre, trf_hr, tipo_de_oficio, id_supv)
Edificios (<u>id_edificio</u>, dir_edificio, tipo, nivel_calidad, categoria)
Asignaciones (<u>id_trabajador</u>, <u>id_edificio</u>, <u>fecha_inicio</u>, num_dias)
Oficios (<u>tipo_de_oficio</u>, prima, horas_por_sem)

Encontrar los datos de aquellos trabajadores que son electricistas:

RANGE Tx IN Trabajadores SELECT Tx.* WHERE Tx.tipo_de_oficio='Electricista'

$$\sigma_{\ tipo_de_oficio='Electricista'}\ TRABAJADORES$$

Encontrar el nombre de aquellos trabajadores que son electricistas:

RANGE Tx IN Trabajadores
SELECT Tx.nombre
WHERE Tx.tipo_de_oficio='Electricista'

 $\Pi_{nombre}(\sigma_{tipo_de_oficio='Electricista'} \ TRABAJADORES)$

Encontrar el número de horas semanales que trabaja cada trabajador:

RANGE Tx IN Trabajadores

RANGE Ox IN Oficios

SELECT Tx.nombre, Ox.horas_por_sem

WHERE Tx.tipo_de_oficio=Ox.tipo_de_oficio

 $\Pi_{nombre, horas_por_sem} \text{ (TRABAJADORES|X|OFICIOS)}$

Encontrar los nombres de trabajadores que han trabajado tanto en el edificio 312 como en el edificio 460:

```
RANGE Tx IN Trabajadores
RANGE Ax, Ay IN Asignaciones
SELECT Tx.nombre
WHERE (\existsAx,Ay ((Ax.id_trabajador=Tx.id_trabajador) \land (Ay.id_trabajador=Tx.id_trabajador) \land (Ax.id_edificio=312) \land (Ay.id_edificio=460 ))
\Pi_{nombre} (TRABAJADORES|X| ((\Pi_{id\_trabajador} \sigma_{id\_edificio=312} ASIGNACIONES) \cap (\Pi_{id\_trabajador} \sigma_{id\_edificio=460} ASIGNACIONES))
```


Encontrar los nombres de trabajadores que han trabajado o en el edificio 312 o en el edificio 460:

```
RANGE Tx IN Trabajadores

RANGE Ax IN Asignaciones

SELECT Tx.nombre

WHERE \existsAx ((Ax.id_trabajador=Tx.id_trabajador) \land ((Ax.id_edificio=312) \lor (Ax.id_edificio=460)))
```

 $\Pi_{nombre}(TRABAJADORES|X|\sigma_{id_edificio=312\ \lor\ id_edificio=460}\\ ASIGNACIONES)$

Encontrar el nombre de aquellos trabajadores que no han trabajado en el edificio 312:

```
RANGE Tx IN Trabajadores

RANGE Ax IN Asignaciones

SELECT Tx.nombre

WHERE ¬(∃Ax ((Ax.id_trabajador=Tx.id_trabajador) ∧
  (Ax.id_edificio=312)))
```

 Π_{nombre} (TRABAJADORES |X| ($\Pi_{\text{id_trabajador}}$ TRABAJADORES - $\Pi_{\text{id_trabajador}}$ ($\sigma_{\text{id_edificio=312}}$ ASIGNACIONES)))

Encontrar parejas de trabajadores que tengan el mismo oficio:

```
RANGE Tx, Ty IN Trabajadores

SELECT Tx.nombre, Ty.nombre

WHERE (Tx.tipo_de_oficio=Ty.tipo_de_oficio) ^
Tx.nombre<Ty.nombre)}
```

```
\begin{aligned} &\text{A:=} \ \Pi_{\text{nombre, tipo\_de\_oficio}} \ &\text{TRABAJADORES} \\ &\text{B:=} \ \Pi_{\text{nombre, tipo\_de\_oficio}} \ &\text{TRABAJADORES} \\ &\Pi_{\text{A.nombre, B.nombre}} \left(\sigma_{\text{A.tipo\_de\_oficio}=\text{B.tipo\_de\_oficio}} \land \text{A.nombre} < \text{B.nombre} \right. \\ &\left(\text{AXB}\right)\right) \end{aligned}
```


Encontrar aquellos edificios en los que han trabajado todos los trabajadores de la empresa:

```
RANGE Tx IN Trabajadores

RANGE Ex IN Edificios

RANGE Ax IN Asignaciones

SELECT Ex.*

WHERE ∀Tx (∃Ax ((Ax.id_trabajador=Tx.id_trabajador) ∧ (Ax.id_edificio=Ex.id_edificio)))

(Π<sub>id_edificio, id_trabajador</sub> ASIGNACIONES)

÷

(Π<sub>id_trabajador</sub> TRABAJADORES)
```

