

The Physics of Flavor: Half a Billion b Quarks for BaBar

Jeffrey Berryhill
University of California, Santa Barbara
For the BaBar Collaboration

Texas A&M Physics Colloquium November 22, 2004

Quarks and the problem of mass

Standard Model "explanation" of quark mass:

Six quark species with unpredicted masses

Spanning almost six orders of magnitude

Up type	Mass		
(q=+2/3)	(GeV/c^2)		
Up u	10-3		
Charm c	1		
Top t	175		

Down type	Mass	
(q=-1/3)	(GeV/c^2)	
Down d	5 10-3	
Strange s	10-1	
Bottom b	5	

The origin of different fermion generations, masses, flavor violation, and CP violation are all arbitrary parameters of electroweak symmetry breaking.

A comparative physics of the quark flavors directly probes this little-known sector.

Quarks and their Strong Interactions

Quarks cannot be detected in isolation, only as bound states A quark/anti-quark pair forms a bound state (mesons)

Flavor	u,d	S	С	b	t
spin 0 mesons	π^+ (u \overline{d}) π^0 (u \overline{u} -d \overline{d})	K^{+} (u \overline{s}) K_{S}^{0} (d \overline{s} +s \overline{d})	$\mathrm{D^{+}\left(c\overline{d} ight) }$ $\mathrm{D^{0}\left(c\overline{u} ight) }$	B ⁰ (d b) B ⁺ (u b)	none
spin 1 mesons	$\rho^{+}(u\overline{d})$ $\rho^{0}(u\overline{u}-d\overline{d})$ $\omega(u\overline{u}+d\overline{d})$	K*+ (us̄) K*0 (ds̄) φ (ss̄)	D*+ (cd̄) D*0 (cū) J/ψ (cc̄)	Y (bb̄)	none

b quarks are the heaviest flavor with measureable bound states→

B mesons are a natural starting point for studying the other flavors

Quarks and Flavor Violation

Photon, gluon or Z boson: quark flavor conserving interactions

W boson: changes any down type flavor to any up type flavor

The (Cabibbo-Kobayashi-Maskawa) CKM matrix: complex amplitude of each possible transition

Conservation of probability → CKM matrix is unitary

3X3 unitary matrix has (effectively) four degrees of freedom: 3 angles + 1 complex phase

Quarks and Flavor Violation: Mixing

Pairs of down (or pairs of up) type quarks can spontaneously swap flavor for anti-flavor via two flavor-violating exchanges

"Meson Mixing" aka "Flavor oscillation"

Prob(
$$\overline{B}^0 \to B^0$$
) $\approx \exp(-\Gamma t)/2 * (1 - \cos(\Delta m t))$

Similar to neutrino oscillation, except decay term added

Mixing time ~few ps

Quarks and CP Violation

For a particle(s) f with momentum p and helicity λ

C: Charge conjugation operator C $f(p, \lambda) = \overline{f}(p, \lambda)$

P: Parity reversal operator P $f(p, \lambda) = \underline{f}(-p, -\lambda)$

CP $f(p, \lambda) = \overline{f}(-p, -\lambda)$

CP eigenstate: particle = anti-particle (Ex: $q\bar{q}$ mesons)

CP conservation → left-handed particles have the same physics as right-handed anti-particles

Obviously violated for our (baryon-asymmetric) local universe!

In the Standard Model CP violation originates from complex phase in CKM matrix \rightarrow in general, $V_{ij} \neq V_{ij}^*$

Three Paths to CP Violation

CP violation \rightarrow an observable O of particles (f1,f2,...) such that $O(f1,f2,...) \neq O(CP(f1,f2,...)) = O(f1,f2,...)$

1. CP violation in meson mixing

Mixing rate of meson to final state f not the same as

Mixing rate of anti-meson to same final anti-state

In the Standard Model, very small ~10-3

CP violation in K⁰ decays first observed through this path forty years ago!

Three Paths to CP Violation

2. CP violation in meson decay → "Direct CP violation"

Decay rate of meson to final state f not the same as Decay rate of anti-meson to same final anti-state

Recently observed in B⁰ \rightarrow K⁺ π ⁻ at the 10% level!

Three Paths to CP Violation

3. Time dependent asymmetry of meson/anti-meson decay rate to a common final state

If $\overline{B^0}$ and B^0 decay to the same final state f_{CP} , there is interference between amplitude of direct decay \bigcirc and amplitude of mixing \blacksquare followed by decay \bigcirc

In the presence of CP violating phases in these amplitudes, can induce large

time-dependent asymmetry with frequency equal to mixing frequency:

$$A_{f_{CP}} = -C_{f_{CP}} \cos(\Delta mt) + S_{f_{CP}} \sin(\Delta mt)$$

 $C_{f_{CP}} \neq 0$ implies Direct *CP* Violation

CKM Unitarity

Inner product of first and third columns of CKM matrix is zero:

$$V_{ud} V_{ub}^* + V_{cd} V_{cb}^* + V_{td} V_{tb}^* = 0$$

Rescale, rotate and reparameterize to describe a Unitarity Triangle in the complex plane

b Quarks and CKM Unitarity

B decay rates, CP asymmetries measure the entire triangle! <u>Triangle sides:</u>

 $B^+ \rightarrow \rho^0 \ l^- v$ decay rate measures $b \rightarrow u$ transition ($|V_{ub}|$) B^0 mixing rate measures $|V_{td}|$

Angles:

 $B^0 \to \rho^+ \, \rho^-$ time dependent CP asymmetry measures sin 2α $B^0 \to J/\psi \; K_S{}^0$ time dependent CP asymmetry measures sin 2β $B^+ \to D(^*)K^+$ decay rates measure γ

aTm 22 Nov 04

Asymmetric B Factories

Y(4S) meson: bb bound state with mass 10.58 GeV/c²

Just above 2 x mass of B meson \rightarrow decays exclusively to B⁰ \overline{B}^0 (50%) and B⁺ B⁻ (50%)

B factory: intense e+ and e- colliding beams with E_{CM} tuned to the Y(4S) mass

Use e beams with asymmetric energy → time dilation due to relativistic speeds keeps B's alive long enough to measure them (decay length ~0.25mm)

PEP-II at the Stanford Linear Accelerator Center

PEP-II performance

PEP-II top luminosity:

9.2 x 10³³cm⁻²s⁻¹

(more than 3x design goal 3.0×10^{33})

1 day record: 681 pb⁻¹

About 1 Amp of current per beam, injected continuously

Run1-4 data: 1999-2004

On peak

205 fb⁻¹

 $\sigma(e+e-\rightarrow Y(4S)) = 1.1 \text{ nb} \rightarrow 227M \ Y(4S) \text{ events produced}$

454 million b quarks produced!

Also ~108 each of u, d, s, c, and τ

[38/300] USA

California Institute of Technology

UC. Irvine

UC, Los Angeles

UC, Riverside

UC, San Diego

UC. Santa Barbara

UC, Santa Cruz

U of Cincinnati U of Colorado

Colorado State Florida A&M

Harvard

U of Iowa

Iowa State U

LBNL LLNL

U of Louisville

U of Maryland

U of Massachusetts, Amherst

MIT

U of Mississippi

Mount Holyoke College

SUNY, Albany

U of Notre Dame

Ohio State U

U of Oregon

U of Pennsylvania

Prairie View A&M U

Princeton U

SLAC

The BABAR Collaboration

11 Countries

80 Institutions

593 Physicists

U of South Carolina

Stanford U

U of Tennessee U of Texas at Austin

U of Texas at Dallas

Vanderbilt

U of Wisconsin

Yale

[4/20] Canada

U of British Columbia

McGill U

U de Montréal

U of Victoria

China [1/5]

Inst. of High Energy Physics, Beijing

France [5/51]

LAPP, Annecy LAL Orsay

LPNHE des Universités Paris VI et VII Ecole Polytechnique, Laboratoire Leprince-Ringuet CEA, DAPNIA, CE-Saclay

Germany [5/31]

Ruhr U Bochum U Dortmund Technische U Dresden U Heidelberg U Rostock

[12/101] Italy

INFN, Bari INFN Ferrara

Lab. Nazionali di Frascati dell' INFN

INFN, Genova & Univ INFN, Milano & Univ

INFN, Napoli & Univ

INFN, Padova & Univ INFN, Pisa & Univ &

ScuolaNormaleSuperiore

INFN, Perugia & Univ INFN, Roma & Univ "La Sapienza"

INFN. Torino & Univ INFN, Trieste & Univ

The Netherlands [1/5]

NIKHEF, Amsterdam

Norway $\lceil 1/3 \rceil$

U of Bergen

$\lceil 1/11 \rceil$ Russia

Budker Institute. Novosibirsk

Spain [2/2]

IFAE-Barcelona IFIC-Valencia

United Kingdom [10/66]

U of Birmingham

U of Bristol

Brunel U

U of Edinburgh

U of Liverpool

Imperial College

Queen Mary, U of London

U of London, Royal Holloway

U of Manchester

Rutherford Appleton Laboratory

The BaBar detector

Our Friendly Competitors

$B^0 \rightarrow J/\psi K_S^0$ and sin 2β

 J/ψ identified cleanly by decay to a lepton pair; K_s identified cleanly by decay to pion pair. Both particles are CP eigenstates \to both B^0 and $\overline{B^0}$ decay to them

Time-dependent CP violation has amplitude sin 2β and frequency Δm

$$A_{CP}(J/\psi K_s;t) = \sin 2\beta \sin \Delta m_d t$$

Works for several other $b \rightarrow c\bar{c}s$ decays as well; results can be combined

Time-Dependent CP Violation: Experimental technique

Compute CP violating asymmetry $A(\Delta t) = N(\bar{f}; \Delta t) - N(f; \Delta t) N(\bar{f}; \Delta t) + N(f; \Delta t)$

sin 2β fit results

Raw asymmetry $A(\Delta t) \approx (1 - 2w) \sin 2\beta \sin \Delta m \Delta t$

Signal yield, background yield, sin 2β , flavor tagging, Δt resolution function all from simultaneous maximum likelihood fit to signal+control samples

 $\sin 2\beta = 0.722 \pm 0.040 \text{ (stat)} \pm 0.023 \text{ (sys)}$

Consistency checks

aTm 22 Nov 04

Jeffrey Berryhill (UCSB)

CKM Unitarity Triangle: Experimental Constraints

CKM Unitarity Triangle: Experimental Constraints

CKM Unitarity Triangle: Experimental Constraints

Remarkable validation of the CKM mechanism for both flavor violation and CP violation!

aTm 22 Nov 04 Jeffrey Berryhill (UCSB) 27

A Third Path to Flavor Violation

1. Tree diagram decay: down \rightarrow up

2. Box diagram: neutral meson mixing

3. Penguin diagram: down-type changes to down-type via emission & reabsorption of W; top-quark couplings V_{td} , V_{ts} dominate

SM penguins are suppressed; new physics can compete directly!

$B^0 \rightarrow \phi \ K_S^0$ and $\sin 2\beta$

Decay dominated by a single "gluonic penguin" Feynman diagram: $b \rightarrow s\bar{s}s$

φ identified cleanly by decay to a kaon pair;
 K_S identified cleanly by decay to pion pair.
 Both particles are CP eigenstates

Decay rate 100X smaller than $J/\psi K_S \rightarrow$ small signal, large background

114 ± 12 $B^0 \rightarrow \phi \ K_S$ events out of ½ billion b quarks produced!

Time-dependent CP violating asymmetry A can be measured in the same way as J/ ψ K_S

Same combination of CKM complex phases as $J/\psi K_S \rightarrow$ same relation between A and sin 2β

$B^0 \rightarrow \phi \ K^0$ and sin 2 β : Fit Result

$$\sin 2\beta = S(\phi K^0) = +0.50 \pm 0.25 \pm 0.07$$
 vs. $S(\psi K^0) = +0.72 \pm 0.04 \pm 0.02$

Consistent with tree decays, about 1 σ low

Trees(green) vs. Penguins(yellow): BaBar Data

Trees(green) vs. Penguins(yellow): World Average

Trees(green) vs. Penguins(yellow): World Average

New Physics Scenarios

- •New physics at the electroweak scale generically introduces new large flavor-violating or CP-violating couplings to quarks
- →Existing flavor physics measurements severely limit types of new physics!
- The great number of possible new couplings can give rise to many different combinations of effects

Ex: Right handed (b \rightarrow s) squark mixing in gluino penguins could introduce a new phase in b \rightarrow s \overline{s} s penguins without affecting B mixing nor b \rightarrow c \overline{c} s nor b \rightarrow s γ

Future and Follow-up Measurements

- Both B factories hope to collect 4-5 X more data over the next 4-5 years
 Significance of the penguin problem could double and unambiguously falsify the Standard Model!
- •Improved measurements of rates and asymmetries in other penguin decays (b \rightarrow s γ , b \rightarrow d γ , b \rightarrow s l l, B \rightarrow ϕ K*,)
- •Fermilab Tevatron can measure B_s , Λ_b decays
- •LHCb, BTeV: scheduled to produce billions of B's in pp collisions
- Super B Factory: 50X version of B factories

Summary

- •The physics of quark flavor, as seen through the b quark, is a rich area of study with wide-ranging implications
- The Standard Model CKM theory of flavor and CP violation holds up well for tree-level processes

•Penguin processes, which are especially sensitive to new physics, could prove to be the lever which cracks the Standard Model wide open

Direct CP Violation: BaBar Data

Direct CP violation consistent with 0 for all modes

Direct CP Violation: World Average

$b \rightarrow s \gamma$ Asymmetries: Summary

- •BaBar measurements on 82 fb⁻¹
- $K^*\gamma$, $K_2^*\gamma$ preliminary; $X_s\gamma$ published
- •CP asymmetries consistent with SM (0.4%) at the ~5% level
- •K* γ isospin asymmetry Δ_{0-} consistent with $C_7 < 0$
- Statistics limited up to ~1 ab⁻¹

CKM Constraints

CKM matrix constraint

Ali et al. hep-ph/0405075

II. hep-ph/0405075 form factors
$$\zeta^2$$
= 0.85 ± 0.10 correction ΔR = 0.1 ± 0.1 $\frac{\overline{\mathcal{B}}[B \to (\rho/\omega)\gamma]}{\mathcal{B}(B \to K^*\gamma)} = \left|\frac{V_{td}}{V_{ts}}\right|^2 \left(\frac{1-m_\rho^2/M_B^2}{1-m_{K^*}^2/M_B^2}\right)^3 \zeta^2[1+\Delta R]$

SU(3) breaking of

Penguins are starting to provide meaningful CKM constraint

Reduction of theory errors necessary to be competitive with B_d,B_s mixing

weak annhilation

 $(\zeta^2, \Delta R) = (0.75, 0.00)$ $(\zeta^2, \Delta R) = (0.85, 0.10)$

ργ 95% C.L. BaBar allowed region (inside the blue arc)

Direct CP Asymmetry: b \rightarrow s γ and $B \rightarrow K^* \gamma$

< 1% in the SM, could receive ~10% contributions from new EW physics Either inclusive or exclusive decays could reveal new physics

B or K charge tags the flavor of the b quark with ~1-2% asymmetry systematic

Asymmetries also measured precisely in exclusive K*γ decays:

B → K*γ
$$A_{CP} = -0.013 \pm 0.036 \pm 0.010$$
submitted to PRL, hep-ex/0407003
$$\Delta_{0-} = \frac{\Gamma(\overline{K}^{*0}\gamma) - \Gamma(K^{*-}\gamma)}{\Gamma(\overline{K}^{*0}\gamma) + \Gamma(K^{*-}\gamma)} = 0.050 \pm 0.045 \pm 0.028 \pm 0.024$$

preliminary

Time-Dependent CP Asymmetry in $B \rightarrow K^* \gamma$ (113 fb⁻¹)

As in $B^0 \rightarrow J/\psi$ K_S , interference between mixed and non-mixed decay to same final state required for CPV.

In the SM, mixed decay to $K^*\gamma$ requires wrong photon helicity, thus CPV is suppressed:

In SM:
$$C = -A_{CP} \approx -1\%$$
 $S \approx 2(m_s/m_b)\sin 2\beta \approx 4\%$

Measuring Δt of K*(\rightarrow K_S π^0) γ events requires novel beam-constrained vertexing techinque:

Time-Dependent CP Asymmetry in $B \rightarrow K^* \gamma$ (113 fb⁻¹)

Likelihood fit of three components $(q\bar{q}, B\bar{B}, K^*\gamma)$ to 5D data $(m_{ES}, \Delta E, Fisher, m_{K^*}, \Delta t)$

 $K^*\gamma$ signal = 105 ± 14 events

$$S = +0.25 \pm 0.63 \pm 0.14$$

$$C = -0.57 \pm 0.32 \pm 0.09$$

submitted to PRL, hep-ex/0405082

Consistent with SM

For C fixed to 0, $S = 0.25 \pm 0.65 \pm 0.14$

First ever measurement of time-dependent CP asymmetries in radiative penguins!

Flavor tagging

CP asymmetry is between $B^0 \to f$ and $\overline{B^0} \to f$ Must tag flavor at $\Delta t = 0$ (when we know flavor of two Bs is opposite). Use decay products of *other* (tag) B.

Leptons: Cleanest tag. Correct >95%

Kaons: Second best. Correct 80-90%

Full tagging algorithm combines all in neural network

Four categories based on particle content and NN output.

Tagging performance

$$\sum_{i} \epsilon_{i} (1 - 2\omega_{i})^{2}$$

= 28%

Kinematic variables at the Y(4S)

Variables for signal/BG discrimination

$$m_{es} = \sqrt{E_{\mathrm{beam}}^{*2} - \sum \vec{p_i^*}_i^2}$$

$$\Delta E = E_B^* - E_{\mathrm{beam}}^*$$

 $\sigma_{mes} \approx 3 \text{ MeV}$

 $\sigma \Delta E \approx 15 \text{ MeV}$

$$J/\psi$$
 Ks $(\pi^{+}\pi^{-})$
 $m_{es} > 5.27$ GeV
 $N_{tag} = 974$
Purity 97%

Measurement of ∆t

- J/ $\Psi \rightarrow l^+l^-$ dominates in determination of CP vertex.
- Tracks not from CP B combined to form tag vertex.
 - Tracks with large χ^2 iteratively removed.
 - Long-lived particles (K_s, Λ) explicitly reconstructed.
 - Photon conversions ($\gamma \rightarrow e^+e^-$) removed.
- Vertex incorporates constraint from average beam position.
- Efficiency for CP sample 97 % (95% after $|\Delta t|$ < 20 ps, $\sigma_{\Delta t}$ < 2.5 ps)

