Bruce Campbell ST-617 Homework 4

Wed Jul 20 13:12:33 2016

```
rm(list = ls())
set.seed(7)
```

Chapter 8

Problem 11

This question uses the Caravan data set.

a)

Create a training set consisting of the first 1,000 observations, and a test set consisting of the remaining observations.

```
library(ISLR)
train = sample(nrow(Caravan), 1000)
DF <- Caravan
DF$PZEILPL <- NULL
DF$AZEILPL <- NULL
# ------We remove two variables causing the warning seen below Warning
# messages: 1: In qbm. fit(x, y, offset = offset, distribution =
\# distribution, w = w, : variable 60: PZEILPL has no variation. 2: In
\# gbm. fit(x, y, offset = offset, distribution = distribution, <math>w = w, :
# variable 81: AZEILPL has no variation.
# qbm requires the classification response to be in {0,1} so we have to
# convert the factor {'No', 'Yes'} to {0,1}
# We were careful to ensure that the 'No' level was mapped to 0.
f <- DF$Purchase
levels(f) <- c("0", "1")
g <- as.numeric(levels(f)[f])</pre>
DF$Purchase <- g
# -----This is NOT the reccomended way to convert a factor!
# DF$Purchase <-as.numeric(DF$Purchase)-1</pre>
DFTrain <- DF[train, ]</pre>
DFTest <- DF[-train, ]</pre>
```

b)

Fit a boosting model to the training set with Purchase as the response and the other variables as predictors. Use 1,000 trees, and a shrinkage value of 0.01. Which predictors

```
library(gbm)
boost.Caravan = gbm(Purchase ~ ., data = DFTrain, distribution = "bernoulli",
    n.trees = 1000, interaction.depth = 4, shrinkage = 0.01)
summary(boost.Caravan)
```

```
rel.inf
                 var
## PPERSAUT PPERSAUT 8.515086304
             PBRAND 7.434812645
## PBRAND
## MOSTYPE
             MOSTYPE 7.384544006
## APERSAUT APERSAUT 4.010615821
## MBERMIDD MBERMIDD 3.621893359
                MSKC 2.792559830
## MSKC
## MOPLHOOG MOPLHOOG 2.779458022
## PWAPART
           PWAPART 2.698927466
## MRELGE
              MRELGE 2.635922765
## MBERARBG MBERARBG 2.512422774
              MGODPR 2.249122143
## MGODPR
## MINK4575 MINK4575 2.200679917
## MFALLEEN MFALLEEN 2.177916290
## MINKGEM
            MINKGEM 2.126173902
## MFWEKIND MFWEKIND 2.031398188
## MOPLMIDD MOPLMIDD 2.011891905
## MAUT1
               MAUT1 1.948179274
## MINK7512 MINK7512 1.936422386
## MOPLLAAG MOPLLAAG 1.895075464
## MINKM30
            MINKM30 1.874659400
## MKOOPKLA MKOOPKLA 1.856635075
## MZPART
             MZPART 1.851024070
## MBERARBO MBERARBO 1.846856906
## MAUTO
              MAUTO 1.826453790
## MAUT2
               MAUT2 1.652015908
## MBERHOOG MBERHOOG 1.630184344
## MHKOOP
              MHKOOP 1.623158838
## MINK3045 MINK3045 1.594416829
## MFGEKIND MFGEKIND 1.559793217
## MZFONDS
           MZFONDS 1.551983323
## PMOTSCO
           PMOTSCO 1.539013050
## MRELOV
             MRELOV 1.536736350
## MGODRK
             MGODRK 1.479249367
## MSKB1
              MSKB1 1.453893896
## MGODGE
              MGODGE 1.330516531
## MSKA
               MSKA 1.226121798
## MHHUUR
              MHHUUR 1.148179288
## MGODOV
              MGODOV 1.047710954
## MSKB2
              MSKB2 1.034107681
## ALEVEN
              ALEVEN 0.948055193
## MRELSA
              MRELSA 0.698661184
## MGEMOMV
             MGEMOMV 0.676911985
## MGEMLEEF MGEMLEEF 0.652508573
## MINK123M MINK123M 0.590105543
```

```
## PBROM
              PBROM 0.556404874
## MSKD
               MSKD 0.527649936
## MBERZELF MBERZELF 0.329071127
             PLEVEN 0.313524496
## PLEVEN
## MBERBOER MBERBOER 0.292742603
             PFIETS 0.289100525
## PFIETS
## MOSHOOFD MOSHOOFD 0.217688196
## MAANTHUI MAANTHUI 0.164503075
## PBYSTAND PBYSTAND 0.089268027
## PTRACTOR PTRACTOR 0.019213628
## PAANHANG PAANHANG 0.008777961
## PWABEDR
           PWABEDR 0.00000000
           PWALAND 0.00000000
## PWALAND
## PBESAUT
           PBESAUT 0.000000000
## PVRAAUT
           PVRAAUT 0.000000000
## PWERKT
            PWERKT 0.00000000
## PPERSONG PPERSONG 0.000000000
## PGEZONG
           PGEZONG 0.000000000
## PWAOREG
           PWAOREG 0.000000000
## PPLEZIER PPLEZIER 0.00000000
## PINBOED
           PINBOED 0.000000000
## AWAPART
           AWAPART 0.000000000
           AWABEDR 0.00000000
## AWABEDR
           AWALAND 0.00000000
## AWALAND
## ABESAUT
           ABESAUT 0.000000000
## AMOTSCO
           AMOTSCO 0.000000000
## AVRAAUT
           AVRAAUT 0.000000000
## AAANHANG AAANHANG O.OOOOOOOO
## ATRACTOR ATRACTOR 0.00000000
## AWERKT
             AWERKT 0.00000000
## ABROM
             ABROM 0.000000000
## APERSONG APERSONG 0.000000000
## AGEZONG
          AGEZONG 0.000000000
## AWAOREG
           AWAOREG 0.00000000
## ABRAND
            ABRAND 0.00000000
## APLEZIER APLEZIER 0.00000000
## AFIETS
            AFIETS 0.000000000
## AINBOED
           AINBOED 0.00000000
## ABYSTAND ABYSTAND 0.00000000
```

summ_gbm <- summary(boost.Caravan)</pre>


```
library(pander)
pander(summ_gbm[1:10, ], caption = "Top 10 Features")
```

Table 1: Top 10 Features

	var	rel.inf
PPERSAUT	PPERSAUT	8.515
PBRAND MOSTYPE	PBRAND MOSTYPE	7.435 7.385
APERSAUT	APERSAUT	4.011
MBERMIDD	MBERMIDD	3.622
MSKC	MSKC	2.793
MOPLHOOG	MOPLHOOG	2.779
PWAPART	PWAPART	2.699
MRELGE	MRELGE	2.636
MBERARBG	MBERARBG	2.512

c)

Use the boosting model to predict the response on the test data. Predict that a person will make a purchase if the estimated probability of purchase is greater than 20 %. Form a confusion matrix. What fraction of the people predicted to make a purchase do in fact make one? How does this compare with the results obtained from applying KNN or logistic regression to this data set?

```
# predictions are on the scale of f(x). For example, for the Bernoulli loss
# the returned value is on the log odds scale If type='response' then gbm
# converts back to the same scale as the outcome
caravan.probs = predict(boost.Caravan, newdata = DFTrain, n.trees = 1000, type = "response")

caravan.pred = rep(0, nrow(DFTest))
caravan.pred[caravan.probs > 0.2] = 1
TB <- table(caravan.pred, DFTest$Purchase)
library(pander)
pander(TB)</pre>
```

	0	1
0	4161	258
1	378	25

```
ACC_Tree = (TB[1] + TB[4])/length(DFTest$Purchase)

Specificity = TB[1]/sum(DFTest$Purchase == 0)

Sensitivity = TB[4]/sum(DFTest$Purchase == 1)
```

The specificity is quite good at 0.9167217 while the sensitivity is quite low at 0.0883392. If we were looking to predict who would purchase a Caravan we need to revisit the data set or try other methods.

Below we try a logistic regression and LDA on the top predictors

```
glm.fit = glm(Purchase ~ PPERSAUT + PBRAND + MOSTYPE + APERSAUT + MBERMIDD +
    PWAPART + MSKC, data = DFTrain, family = binomial)
summary(glm.fit)
```

```
##
## Call:
## glm(formula = Purchase ~ PPERSAUT + PBRAND + MOSTYPE + APERSAUT +
##
       MBERMIDD + PWAPART + MSKC, family = binomial, data = DFTrain)
##
## Deviance Residuals:
##
       Min
                 1Q
                     Median
                                           Max
## -1.0023 -0.3938 -0.2332 -0.1465
                                        3.1898
##
## Coefficients:
              Estimate Std. Error z value Pr(>|z|)
                           0.57170 -7.865 3.7e-15 ***
## (Intercept) -4.49621
                                     1.932 0.05342 .
## PPERSAUT
                0.19534
                           0.10113
## PBRAND
                           0.08640
                                    2.692 0.00711 **
                0.23259
## MOSTYPE
              -0.03282
                           0.01167 -2.811 0.00493 **
```

```
## APERSAUT
               0.61853
                          0.37373
                                   1.655 0.09792 .
## MBERMIDD
              0.06000
                          0.07190 0.834 0.40400
                          0.16314 1.611 0.10726
## PWAPART
               0.26275
               0.06025
                          0.07588
                                  0.794 0.42719
## MSKC
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 481.02 on 999 degrees of freedom
## Residual deviance: 404.98 on 992 degrees of freedom
## AIC: 420.98
##
## Number of Fisher Scoring iterations: 7
glm.probs = predict(glm.fit, DFTest, type = "response")
glm.pred = rep(0, nrow(DFTest))
glm.pred[glm.probs > 0.5] = 1
TB <- table(glm.pred, DFTest$Purchase)</pre>
pander(TB, caption = "Logistic Regression")
```

Table 3: Logistic Regression

	0	1
0	4534	283
1	5	0

```
ACC_Tree = (TB[1] + TB[4])/length(DFTest$Purchase)

Specificity = TB[1]/sum(DFTest$Purchase == 0)

Sensitivity = TB[4]/sum(DFTest$Purchase == 1)
```

The sensitivity using logistic with the regression is 0.

e) Repeat (d) using LDA.

```
##
## Group means:
    PPERSAUT
               PBRAND MOSTYPE APERSAUT MBERMIDD
## 0 2.980749 1.762567 24.89305 0.5614973 2.746524 0.7561497 3.791444
## 1 5.215385 2.923077 19.16923 1.0461538 3.061538 1.3692308 3.507692
##
## Coefficients of linear discriminants:
##
                    LD1
## PPERSAUT 0.01019238
## PBRAND
            0.21498877
## MOSTYPE -0.03144078
## APERSAUT 1.11311576
## MBERMIDD 0.03629933
## PWAPART
            0.26577271
## MSKC
             0.03147300
lda.pred = predict(lda.fit, DFTest)
names(lda.pred)
## [1] "class"
                   "posterior" "x"
lda.class = lda.pred$class
TB <- table(lda.class, DFTest$Purchase)</pre>
pander(TB, caption = "LDA")
```

Table 4: LDA

	0	1
0	4501	275
1	38	8

```
ACC_Tree = (TB[1] + TB[4])/length(DFTest$Purchase)

Specificity = TB[1]/sum(DFTest$Purchase == 0)

Sensitivity = TB[4]/sum(DFTest$Purchase == 1)
```

LDA does a little better than Logistic regression, but we see the boosted tree classifier performs the best of the models we've considered.