

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Software Engineering II Wintersemester 2014/2015

Requirements and Design Documentation

Praktikums-Gruppe: 2.3

Name	Vorname	Matrikel-Nr.	E-Mail
Kirstein	Katja	2125137	katja.kirstein@haw-hamburg.de
Kowalka	Anne-Lena	2081899	anne-lena.kowalka@haw-hamburg.de
Triebe	Marian	2124897	marian.triebe@haw-hamburg.de
Winter	Eugen	2081992	eugen.winter@haw-hamburg.de

2. Dezember 2014*

*Dokument-Version: 0.9

Versionsverlauf

Version	Autor	Datum	Anmerkungen
0.1	Thomas Lehmann	17.09.2014	Überarbeitung des Templates
0.2	Anne-Lena Kowalka	07.10.2014	Use Cases samt Diagramm,
			Requirements und Arbeitspakete
			hinzugefügt
0.3	Eugen Winter	16.10.2014	Abnahmetests hinzugefügt
0.4	Eugen Winter	02.11.2014	RDD als LATEX-Dokument erstellt
0.5	Anne-Lena Kowalka	05.11.2014	Diverse Updates, Softwarearchitektur
			konkretisiert in Komponenten-
			Diagramm, Testprotokoll hinzugefügt
0.6	Eugen Winter	11.11.2014	Umlaute in .tex-Datei geändert und
			Formatierungen an den Tabellen
			vorgenommen.
0.7	Eugen Winter	13.11.2014	Interrupt Implementierung und
			Automaten Diagramme hinzugefügt.
0.8	Alle Team-Mitglieder	27.11.2014	Implementierungen von Dispatcher,
			Automaten und Timer hinzugefügt.
			Unit-/Komponenten-Tests für HAL,
			IRQ, Dispatcher und Timer
			hinzugefügt.
0.5	Anne-Lena Kowalka	05.11.2014	Diverse Updates, Softwarearchitektur
			konkretisiert in Komponenten-
			Diagramm, Testprotokoll hinzugefügt
0.6	Eugen Winter	11.11.2014	Umlaute in .tex-Datei geändert und
			Formatierungen an den Tabellen
			vorgenommen.
0.7	Eugen Winter	13.11.2014	Interrupt Implementierung und
	111 55 15 15 15		Automaten Diagramme hinzugefügt.
0.8	Alle Team-Mitglieder	27.11.2014	Implementierungen von Dispatcher,
			Automaten und Timer hinzugefügt.
			Unit-/Komponenten-Tests für HAL,
			IRQ, Dispatcher und Timer
0.0	T 1577 :	00.10.001.1	hinzugefügt.
0.9	Eugen Winter	02.12.2014	Timer-Werte und Öffnungsdauer der
			Weiche in den Nicht-funktionalen
			Anforderungen angepasst und separate
			Seite für den Versionsverlauf im RDD
			erstellt.

Inhaltsverzeichnis

1	Mot	ivation	3
2	Tea	m-Organisation	3
	2.1	Verantwortlichkeiten	3
	2.2	Absprachen	3
3	Proi	iektplan	4
	3.1	PSP/Zeitplan/Tracking	4
	3.2	Repository-Konzept	4
	3.3	Qualitätssicherung	4
4	Ran	dbedingungen	5
•	4.1	Entwicklungsumgebung	5
	4.2	Werkzeuge	5
	4.3	Programmier-Sprachen	5
5	Dog	uirements und Use Cases	5
J	5.1	Stakeholder	5
	$5.1 \\ 5.2$	Anforderungen	
	0.2	5.2.1 Funktionale Anforderungen	6
		5.2.2 Nicht-funktionale Anforderungen	10
	5.3	Use Cases	13
	0.0	5.3.1 UC1	13
		5.3.2 UC2	14
		5.3.3 UC3	15
		5.3.4 UC4	16
		5.3.5 UC5	17
		5.3.6 UC6	17
		5.3.7 UC7	18
		5.3.8 UC8	19
	5.4	Use-Case-Diagramm	20
	5.5	Systemanalyse	21
6	Des	ign	22
_	6.1	System-Architektur	22
	0	6.1.1 Automat für Band 1	23
		6.1.2 Automat für Band 2	$\frac{-3}{24}$
		6.1.3 Automat für Fehlerbehebung	25
	6.2	Datenmodell	25
	6.3	Verhaltensmodell	25
7	lmp	lementierung	26
	-	Algorithmen	26

	7.2	Patterns	i i
	7.3	Mapping Rules	$\ddot{0}$
	7.4	Interrupt Implementierung	$\hat{\mathbf{j}}$
	7.5	Dispatcher Implementierung	7
	7.6	Automaten Implementierung	7
	7.7	Timer Implementierung	
8	Test	en 27	7
	8.1	Unit-Test/Komponenten-Test	7
		8.1.1 HAL	3
		8.1.2 IRQ	3
		8.1.3 Dispatcher	3
		8.1.4 Timer	3
	8.2	Integrations-Test/System-Test	3
	8.3	Regressions-Test	3
	8.4	Abnahme-Test	9
	8.5	Testplan	9
	8.6	Testprotokolle und Auswertungen	9
9	Less	ons Learned 30	0
10	Glos	sar 31	1
11	Abk	ürzungen 31	1
12	Anh	änge 31	1
		Coding Style: Google C++	2
		12.1.1 General Rules	2
		12.1.2 Naming	3
		12.1.3 Headers	
		12.1.4 Realing Statements 3/	

1 Motivation

Es gilt, eine Werkstück-Sortieranlage zu programmieren. Die Anlage besteht aus zwei Förderbändern, die durch eine serielle Schnittstelle miteinander verbunden sind und jeweils durch einen eigenen GEME-Rechner angesteuert werden. Es gibt drei Werkstücke unterschiedlicher Art (flach, mit Bohrung und Metall, mit Bohrung ohne Metall). Am Ende von Band 2 sollen nur normal hohe Werkstücke mit Bohrung nach oben ankommen, wobei sich Werkstücke mit bzw. ohne Metall abwechseln.

2 Team-Organisation

2.1 Verantwortlichkeiten

Entscheidungen werden gemeinsam im Team gefällt. Ansprechpartner gesamtes Team: Eugen Winter

Github-Verwaltung: Marian Triebe Protokollführerin: Anne-Lena Kowalka RDD-Führerin: Anne-Lena Kowalka

Implementierung: Katja Kirstein, Anne-Lena Kowalka, Marian Triebe, Eugen Winter

Testen: Katja Kirstein, Anne-Lena Kowalka, Marian Triebe, Eugen Winter

2.2 Absprachen

Termin für Meetings: Freitags 14:00 (Stand: 26.9.2014)

Weitere Termine: Nach Absprache

3 Projektplan

3.1 PSP/Zeitplan/Tracking

Verwendetes Vorgangsmodell: V-Modell

Festgestellte Arbeitspakete mit ihrer zugehörigen Dauer (Stand: 7.10.2014):

Arbeitspaket	Dauer
Requirements feststellen	5h insgesamt
Use Cases feststellen	5h insgesamt
RDD bearbeiten	2h/Woche
Git-Repository-Verwaltung	1h/Woche
Codequalität sicherstellen	1h/Woche
Schnittstellenansteuerung/Interface	3h insgesamt
Projektplanung mit GanttProject/MS Project	3h insgesamt
Regressions-Tests	8h insgesamt
Protokollführung	1h/Woche
Meetings abhalten	1.5h/Woche
Moderation der Meetings/Agenda erstellen	30 Min/Meeting bzw. Woche
UML-Diagramme erstellen	8h insgesamt
HAL bzw. Ports ansteuern (Tasten, Lichter, serielle	20h insgesamt
Schnittstelle, Sensorik)	
Tests	16h insgesamt
Fehlerbehandlung/-korrektur	30h insgesamt

3.2 Repository-Konzept

Coding Style: Google C++ Style Guide, konkrete Beschreibung im Anhang Branching Strategie: Auf dem master Branch befindet sich nur der aktuelle Milestone. Aktuelle Entwicklungen finden auf dem develop Branch statt.

Es gibt die Möglichkeit Feature-Branches auf Basis des develop Branches zu erstellen.

3.3 Qualitätssicherung

Durch Testen nach jeder Phase, bzw. Unit-Tests, soll die Qualität sichergestellt werden.

4 Randbedingungen

4.1 Entwicklungsumgebung

Momentics IDE für QNX, Doxygen

4.2 Werkzeuge

Betriebssystem: QNX und QNX-VM mit SEAP Simulation

Hardware: GEME Embedded Controller

4.3 Programmier-Sprachen

C++ (nur STL)

5 Requirements und Use Cases

5.1 Stakeholder

- Entwickler
- Tester
- Kunde
- Betreuer
- \bullet Personal

5.2 Anforderungen

5.2.1 Funktionale Anforderungen

ID	Titel	Bereich	Beschreibung
FR-001	Typen von Werkstücken	Werkstück	Es gibt 3 Typen von Werkstücken:Zu flach, mit Bohrung, sowie mit und ohne Metalleinsatz.
FR-002	Anzahl der Sortierbänder	Anlage	Für die Werkstück-Sortieranlage stehen 2 Sortierbänder zur Verfügung.
FR-003.1	Ziel der Werkstück- Sortieranlage	Anlage	Am Ende von Band 2 sollen die Werkstücke im Wechsel mit und ohne Metalleinsatz ankommen.
FR-003.2	Ziel der Werkstück- Sortieranlage	Anlage	Am Ende von Band 2 sollen die einzelnen Werkstücke mit der Bohrung nach oben liegend ankommen.
FR-004	Zuführung eines Werkstücks in die Werkstück-Sortieranlage	Anlage	Das Werkstück wird vom Personal an den Anfang von Band 1 in den Bereich der Lichtschranke gelegt.
FR-005	Entnahme eines Werkstücks aus der Werkstück-Sortieranlage	Anlage	Nach dem erfolgreichen Durchlaufen der Sortieranlage, wird das Werkstück am Ende von Band 2 vom Personal entnommen.
FR-006.1	Erkennen und Aussortieren von zu flachen Werkstücken	Sensorik	Zu flache Werkstücke werden auf Band 1 mit Hilfe der Höhenmessung erkannt.
FR-006.2	Erkennen und Aussortieren von zu flachen Werkstücken	Anlage	Nach der Erkennung werden zu flache Werkstücke auf Band 1 mit Hilfe der Weiche aussortiert.
FR-007.1	Erkennen und Ausrichten verkehrt liegender Werkstücke	Sensorik	Mit Hilfe der Höhenmessung erkennt Band 1, ob ein Werkstück mit der Bohrung nach oben oder unten auf das Band gelegt wurde.
FR-007.2	Erkennen und Ausrichten verkehrt liegender Werkstücke	Anlage	Das verkehrt liegende Werkstück mit der Bohrung nach unten wird an das Ende von Band 1 befördert und die Anlage hält an.
FR-007.3	Erkennen und Ausrichten verkehrt liegender Werkstücke	Anzeige	Die gelbe Signalleuchte der Ampelanlage von Band 1 signalisiert mit einem Blinken dem Personal, dass ein Wenden des Werkstücks notwendig ist.

ID	Titel	Bereich	Beschreibung
FR-007.4	Erkennen und Ausrichten verkehrt liegender Werkstücke	Sensorik	Ein Timer wird beim Eintreten in den wartenden Zustand gestartet und räumt dem Personal zum Wenden des Werkstücks eine vordefinierte Zeitspanne ein.
FR-007.5	Erkennen und Ausrichten verkehrt liegender Werkstücke	Personal	Das Personal wendet das Werkstück von Hand mit der Bohrung nach oben, quittiert den Hinweis und startet die Anlage wieder.
FR-007.6	Erkennen und Ausrichten verkehrt liegender Werkstücke	Fehler	Es kommt zu einer Fehlermeldung, wenn das Werkstück nicht innerhalb der vordefinierten Zeitspanne wieder zurück auf das Ende von Band 1 gelegt worden ist.
FR-008.1	Erkennen und Aussortieren verkehrt liegender Werkstücke	Sensorik	Mit Hilfe der Höhenmessung erkennt Band 2, ob ein Werkstück mit der Bohrung nach unten auf dem Band liegt.
FR-008.2	Erkennen und Aussortieren verkehrt liegender Werkstücke	Anlage	Nach Erkennung eines verkehrt liegenden Werkstücks auf Band 2, wird dieses mit Hilfe der Weiche aussortiert.
FR-009.1	Einhalten der korrekten Reihenfolge der Werkstücke	Sensorik	Mit Hilfe des Metallsensors auf Band 2 wird erkannt, ob hintereinander zwei gleichartige Werkstücke (mit/ohne Metalleinsatz) befördert worden sind.
FR-009.2	Einhalten der korrekten Reihenfolge der Werkstücke	Anlage	Nach Erkennung der falschen Reihenfolge wird das betroffene Werkstück an den Anfang von Band 2 befördert.
FR-009.3	Einhalten der korrekten Reihenfolge der Werkstücke	Anzeige	Die gelbe Signalleuchte der Ampelanlage von Band 2 signalisiert mit einem Blinken dem Personal, dass ein Entfernen des Werkstücks notwendig ist.
FR-009.4	Einhalten der korrekten Reihenfolge der Werkstücke	Personal	Das Personal entfernt das betroffene Werkstück von Hand, quittiert den Hinweis und startet die Anlage erneut.
FR-010	Hinzufügen von Werkstücken auf Anfang von Band 1	Anlage	Es dürfen, sobald der Anfang mit der Lichtschranke von Band 1 frei ist, weitere Werkstücke auf den Anfang von Band 1 gelegt werden.

ID	Titel	Bereich	Beschreibung
FR-011	Anzahl der Werkstücke auf Band 1	Anlage	Es dürfen sich mehrere Werkstücke zeitgleich auf Band 1 befinden.
FR-012.1	Übergabe von Werkstücken von Band 1 an Band 2	Anlage	Die Werkstücke von Band 1 werden einzeln an Band 2 übergeben, wenn dieses frei ist.
FR-012.2	Übergabe von Werkstücken von Band 1 an Band 2	Anlage	Es darf sich nur ein Werkstück zeitgleich auf Band 2 befinden.
FR-013	Identifizieren eines Werkstücks	Werkstück	Jedes Werkstück bekommt intern nach der Vermessung auf Band 1 eindeutige Werkstück-Eigenschaften zugewiesen.
FR-014	Zusammensetzung der Werkstück-Eigenschaften	Anlage	Die Werkstück-Eigenschaften beinhalten: ID aus fortlaufender Zahl, Typ des Werkstücks (zu flach, mit Metalleinsatz, ohne Metalleinsatz, Bohrung nach oben, Bohrung nach unten) und den Höhenmesswerten von Band 1 und Band 2.
FR-015	Ausgeben der Werkstück-Eigenschaften	Anlage	Wenn ein Werkstück das Ende von Band 2 erreicht hat, werden die ID, der Typ und die Höhenmesswerte von Band 1 und Band 2 auf der Konsole ausgegeben.
FR-016	Ampelanlage	Anzeige	Die Werkstück-Sortieranlage besitzt an beiden Bändern jeweils eine Ampelanlage, mit der sich der Betriebszustand des jeweiligen Bandes und der gesamten Anlage abbilden lässt.
FR-017	Grüne Signalleuchte	Anzeige	Die grüne Signalleuchte der jeweiligen Ampelanlage signalisiert den fehlerfreien Betrieb.
FR-018.1	Gelbe Signalleuchte	Anzeige	Die gelbe Signalleuchte von Band 1 signalisiert einen Hinweis an das Personal das Werkstück von Hand mit der Bohrung nach oben zu drehen.
FR-018.2	Gelbe Signalleuchte	Anzeige	Die gelbe Signalleuchte von Band 2 signalisiert einen Hinweis an das Personal das Werkstück vom Ende des Bandes zu entfernen.

ID	Titel	Bereich	Beschreibung
FR-019.1	Rote Signalleuchte	Anzeige	Die Anlage besitzt eine rote Signalleuchte um zu signalisieren, dass ein Fehler aufgetreten ist: Rutsche voll; zu lange Laufzeit; zu kurze Laufzeit.
FR-019.2	Rote Signalleuchte	Anzeige	Ein nicht quittierter Fehler lässt die rote Signalleuchte schnell blinken (1Hz).
FR-019.3	Rote Signalleuchte	Anzeige	Die Quittierung eines Fehlers ändert das Blinken der roten Signalleuchte in ein Dauerlicht.
FR-019.4	Rote Signalleuchte	Anzeige	Ein Fehler, der verschwunden ist oder sich von selbst gelöst hat, lässt die rote Signalleuchte langsam blinken (0.5Hz).
FR-019.5	Rote Signalleuchte	Anzeige	Solange keine Fehler aufgetreten sind, ist die rote Signalleuchte erloschen.
FR-020	Ruhezustand	Anlage	Befinden sich keine Werkstücke auf den Bändern, sollen diese angehalten werden.
FR-021	Verschwinden von Werkstücken	Fehler	Bei zu langen Laufzeiten zwischen den Lichtschranken liegt ein Verschwinden des Werkstücks vor. Es wird eine Fehlermeldung ausgegeben und die Anlage stoppt.
FR-022	Hinzufügen von Werkstücken mitten auf dem Band	Fehler	Bei zu kurzen Laufzeiten zwischen den Lichtschranken wurde ein Werkstück mitten auf das Band gelegt. Es wird eine Fehlermeldung ausgegeben und die Anlage stoppt.
FR-023	Rutsche voll	Fehler	Bei zu vielen Werkstücken in der Rutsche für die Aussortierung fehlerhafter Werkstücke wird eine Fehlermeldung ausgegeben und die Anlage gestoppt.
FR-024.1	Ansteuerung der Weiche	Weiche	Die Weiche ist im geschlossenen Zustand stromlos und führt Strom, wenn sie geöffnet ist.
FR-024.2	Ansteuerung der Weiche	Gefahr	Eine dauerhaft geöffnete Weiche muss aufgrund von Überhitzung des Motors vermieden werden!
FR-025	Not-Aus der Anlage	Gefahr	Die Anlage darf erst nach einem Reset und einem erneuten Starten durch den Start-Taster wieder in Betrieb gehen und nicht bereits nach der Behebung des Fehlers!

ID	Titel	Bereich	Beschreibung
FR-026	Bandlaufgeschwindigkeit bei Höhenmessung	Sensorik	Bei der Höhenmessung auf Band 1 und Band 2 werden die Werkstücke im langsamen Modus des Bandes befördert.
FR-027	Start-Taster	Taster	Die Anlage besitzt einen Start-Taster samt zugehöriger Leuchte zum Einschalten der Anlage.
FR-028	Stop-Taster	Taster	Die Anlage besitzt einen Stop-Taster samt zugehöriger Leuchte zum Ausschalten der Anlage.
FR-029.1	Reset-Taster	Taster	Die Anlage besitzt einen Reset-Taster samt zugehöriger Leuchte zur Quittierung von Fehlern im Betrieb der Anlage.
FR-029.2	Reset-Taster	Taster	Jeder Fehler muss zuerst quittiert werden. Erst dann kann der Betrieb durch das Betätigen des Ein-Tasters wieder aufgenommen werden.
FR-030.1	E-Stopp-Taster	Taster	Die Anlage besitzt einen E-Stopp-Taster samt zugehöriger Leuchte zur Schnellabschaltung und Stilllegung der gesamten Werkstück-Sortieranlage.
FR-030.2	E-Stopp-Taster	Taster	Der E-Stopp-Taster ist LOW-aktiv.

5.2.2 Nicht-funktionale Anforderungen

ID	Titel	Bereich	Beschreibung
NFR-001	Timer für das Wenden eines Werkstücks am Ende von Band 1	Sensorik	Nachdem erkannt wird, dass ein Werkstück mit der Bohrung nach unten auf Band 1 liegt, wird es in die Lichtschranke am Ende von Band 1 gefahren und es läuft ein Timer für 60 Sekunden. In dieser Zeit muss das Werkstück vom Personal gewendet werden, ansonsten wird eine Fehlermeldung ausgelöst.

ID	Titel	Bereich	Beschreibung
NFR-002	Timer für das Entfer- nen eines Werkstücks in falscher Reihenfolge am Anfang von Band 2	Sensorik	Nachdem das korrekt sortierte Werkstück in falscher Reihenfolge auf Band 2 erkannt wurde, fährt es in die Lichtschranke am Anfang von Band 2 zurück und es läuft ein Timer für 15 Sekunden. In dieser Zeit muss das Werkstück vom Personal entfernt werden, ansonsten wird eine Fehlermeldung ausgelöst.
NFR-003	Timer für das Entfernen eines korrekt sortierten Werkstücks am Ende von Band 2	Sensorik	Nachdem das korrekt sortierte Werkstück das Ende der Licht- schranke von Band 2 erreicht hat, läuft ein Timer für 15 Sekunden. In dieser Zeit muss das Werkstück vom Personal entfernt werden, ansonsten wird eine Fehlermeldung ausgelöst.
NFR-004.1	Timer für die Beförderung eines Werkstücks durch die Werkstück-Sortieran- lage	Sensorik	Ein korrektes Werkstück durchläuft die einzelnen Bänder der Werkstück- Sortieranlage jeweils innerhalb eines Intervalls von 4-5 Sekunden.
NFR-004.2	Timer für die Beförderung eines Werkstücks durch die Werkstück-Sortieran- lage	Sensorik	Eine Laufzeitmessung durch die Lichtschranken von weniger als 4- 5 Sekunden bedeutet, dass ein wei- teres Werkstück unter Fremdeinwir- kung auf das Band gelegt worden ist. Das Band wird angehalten und es wird eine Fehlermeldung ausgelöst.
NFR-004.3	Timer für die Beförderung eines Werkstücks durch die Werkstück-Sortieran- lage	Sensorik	Eine Laufzeitmessung durch die Lichtschranken von mehr als 4-5 Se- kunden bedeutet, dass ein Werk- stück unter Fremdeinwirkung vom Band entfernt worden ist. Das Band wird angehalten und es wird eine Fehlermeldung ausgelöst.
NFR-005	Timer für das Hinzufügen neuer Werkstücke auf Band 1	Sensorik	Nachdem ein Werkstück in die Lichtschranke am Anfang von Band 1 gelegt worden ist und das Band läuft, startet ein Timer für 3 Sekunden. In dieser Zeit darf kein neues Werkstück in die Lichtschranke am Anfang von Band 1 gelegt werden, da sonst ein reibungsloser Betrieb nicht mehr garantiert ist. Ansonsten wird eine Fehlermeldung ausgelöst.
NFR-006.1	Toleranz für die Höhe eines Werkstücks	Sensorik	Die Toleranz für die Höhe eines zu flachen Werkstücks liegt bei 10-15 Millimetern.

ID	Titel	Bereich	Beschreibung
NFR-006.2	Toleranz für die Höhe eines Werkstücks	Sensorik	Die Toleranz für die Höhe eines Werkstücks mit Bohrung nach oben liegt bei 20-30 Millimetern.
NFR-006.3	Toleranz für die Höhe eines Werkstücks	Sensorik	Die Toleranz für die Höhe eines Werkstücks mit Bohrung nach un- ten liegt bei 25-30 Millimetern.
NFR-007	Öffnungsdauer der Weiche	Sensorik	Für das Durchlassen gültiger Werkstücke wird die Weiche geöffnet, nachdem ein gültiges Werkstück den Sensor für den Weichen-Bereich durchbrochen hat und wieder geschlossen, sobald das gültige Werkstück den Sensor des Weichen-Bereichs wieder verlassen hat.

5.3 Use Cases

5.3.1 UC1

Titel: Akzeptiertes Werkstück

Akteur: Personal

Ziel: Werkstück kommt am Ende von Band 2 an

Auslöser: Ein Werkstück wird in die Lichtschranke am Anfang von Band 1 gelegt. B[0]=0

Vorbedingung:

1. Laufband 1 befindet sich im Betriebszustand

2. Die Lichtschranke am Anfang von Band 1 ist frei. B[0]=1

Nachbedingung:

• Keine

Erfolgsszenario:

- 1. Dem Werkstück wird eine ID vergeben
- 2. Die Höhe des Werkstückes wird durch den Höhenmesser ermittelt. B[1]=0
- 3. Die Höhe des Werkstücks ist im Toleranzbereich. B[1]=1
- 4. Die Weiche des ersten Bandes wird geöffnet und das Werkstück durchgelassen. B[2]=0 und B[5]=1
- 5. Die Weiche wird geschlossen. B[5]=0
- 6. Das Werkstück kommt auf Band 2, wenn dieses frei ist
- 7. Der Typ des Werkstücks wird festgelegt. Das Werkstück mit Bohrung nach oben und mit Metalleinsatz, bzw. ohne Metalleinsatz wird im Wechsel akzeptiert. (Metall-Kunststoff oder Kunststoff-Metall)
- 8. Die Weiche wird geöffnet und das Werkstück durchgelassen. B[2]=0 und B[5]=1
- 9. Die Weiche wird geschlossen. B[5]=0
- 10. Das Werkstück erreicht die Lichtschranke am Ende von Band 2. B[7]=0
- 11. Laufband 2 bleibt stehen
- 12. Das Werkstück wird vom Personal entfernt. B[7]=1

Fehlerszenario:

- 1. Das Werkstück liegt nicht im Toleranzbereich der Höhe und wird aussortiert.
- 2. Die Kommunikation zwischen beiden Laufbändern funktioniert nicht.
- 3. Die Reihenfolge der Werkstücke ist falsch.
- 4. Werkstücke werden mitten im Betrieb hinzugefügt oder weggenommen.

5.3.2 UC2

Titel: Nicht akzeptiertes Werkstück (zu flach)

Akteur:

Ziel: Werkstücke die zu flach sind, werden von Band 1 aussortiert

Auslöser: Höhenmesser ermittelt die Höhe des Werkstücks. B[2]

Vorbedingung:

- 1. Laufband 1 befindet sich im Betriebszustand
- 2. Eingelegtes Werkstück ist zu flach

Nachbedingung:

• Aussortiertes Werkstück liegt in der Rutsche

Erfolgsszenario:

- 1. Die Höhe des Werkstückes wird durch den Höhenmesser ermittelt. B[1]=0
- 2. Das Werkstück ist zu flach. B[2]=1
- 3. Die Weiche bleibt im geschlossenen Zustand. B[5]=0
- 4. Das Werkstück wird aussortiert

Fehlerszenario:

- 1. Rutsche ist voll
- 2. Werkstück bleibt in der Lichtschranke hängen

5.3.3 UC3

Titel: Nicht akzeptiertes Werkstück auf Band 1 (Bohrung nach unten)

Akteur: Personal

Ziel: Werkstück am Ende von Band 1 wird mit der Bohrung nach oben umgedreht

Auslöser: Höhenmesser ermittelt die Höhe des Werkstücks. B[2]

Vorbedingung:

1. Laufband 1 befindet sich im Betriebszustand

2. Es befindet sich ein Werkstück auf Band 1

Nachbedingung:

• Ein Werkstück befindet sich am Laufbandende

Erfolgsszenario:

1. Die Höhe des Werkstückes wird durch den Höhenmesser ermittelt. B[1]=0

- 2. Ein Werkstück mit Bohrung nach unten wird erkannt
- 3. Die Weiche wird geöffnet und das Werkstück durchgelassen. B[2]=0 und B[5]=1
- 4. Das Werkstück wird am Ende von Band 1 von der Lichtschranke registriert
- 5. Das Laufband bleibt stehen und die gelbe Signalleuchte blinkt. A[6]=1
- 6. Das Personal dreht das Werkstück per Hand mit der Bohrung nach oben um

5.3.4 UC4

Titel: Rutsche voll
Akteur: Personal

Ziel: Rutsche wieder frei. B[6]=1

Auslöser: Sensorik erkennt, dass die Rutsche voll ist. B[6]=0

Vorbedingung:

1. Laufband befindet sich im Betriebszustand

2. Die Rutsche ist voll

Nachbedingung:

1. Die Rutsche ist wieder frei für mindestens ein Werkstück

2. Das Laufband befindet sich im Betriebszustand. B[6]=1 und A[5]=1

Erfolgsszenario:

- 1. Laufband bleibt stehen. Rote Signalleuchte blinkt schnell (1Hz) \rightarrow anstehend unquittiert. A[7]=1
- 2. Das Personal drückt den Reset-Taster \to LED Resettaste leuchtet nicht mehr. C[1]=0
- 3. Rote Signalleuchte leuchtet (Dauerlicht) \rightarrow anstehend quittiert. A[7]=1
- 4. Das Personal leert die Rutsche. B[6]=1
- 5. Das Personal bestätigt die Leerung der Rutsche durch Drücken des Start-Tasters
- 6. Anlage läuft wieder \to Rote Signalleuchte erlischt, grüne Signalleuchte leuchtet. A[7]=0 und A[5]=1

Fehlerszenario:

- 1. Das Personal leert die Rutsche, aber quittiert den Fehler nicht
- 2. Der Start-Taster wird nicht nach Leerung der Rutsche gedrückt
- 3. Der Fehler wird quittiert und die Anlage gestartet, ohne dass die Rutsche geleert wurde

5.3.5 UC5

Titel: Verschwinden von Werkstücken

Akteur: Personal

Ziel: Das Fehlen des erfassten Werkstückes wird durch die Anlage signalisiert Auslöser: Das Programm meldet zu lange Laufzeiten zwischen Lichtschranken

Vorbedingung:

1. Laufband befindet sich im Betriebszustand

2. Ein Werkstück wird vom Band entfernt

Nachbedingung:

• Laufband läuft wieder (nur die grüne Signalleuchte leuchtet). A[5]=1

Erfolgsszenario:

1. Laufband bleibt stehen. Rote Signalleuchte blinkt schnell (1 Hz) \rightarrow anstehend unquittiert. A[7]=1

2. Das Personal drückt den Reset-Taster \to LED Resettaste leuchtet nicht mehr. C[1]=0

3. Rote Signalleuchte leuchtet nicht mehr.

4. Das Personal betätigt den Start-Taster.

5. Anlage läuft wieder \rightarrow Grüne Signalleuchte leuchtet. A[7]=0 und A[5]=1

5.3.6 UC6

Titel: Hinzufügen von Werkstücken mitten auf dem Band

Akteur: Personal

Ziel: Das nicht erfasste Werkstück wird entfernt

Auslöser: Das Programm meldet zu kurze Laufzeiten zwischen Lichtschranken

Vorbedingung:

1. Laufband befindet sich im Betriebszustand

2. Ein Werkstück wird mittendrin auf das Band gelegt

Nachbedingung:

• Laufband läuft wieder (nur die grüne Signalleuchte leuchtet). A[5]=1

Erfolgsszenario:

- 1. Laufband bleibt stehen. Rote Lampe blinkt schnell (1 Hz) \rightarrow anstehend unquittiert. A[7]=1
- 2. Personal drückt den Reset-Taster \rightarrow LED Resettaste leuchtet nicht mehr. C[1]=0
- 3. Rote Lampe leuchtet (Dauerlicht) \rightarrow anstehend quittiert. A[7]=1
- 4. Das Personal entfernt das Werkstück
- 5. Das Personal bestätigt das Entfernen des Werkstücks durch Drücken des Start-Tasters
- 6. Anlage läuft wieder \to Rote Signalleuchte erlischt, grüne Signalleuchte leuchtet. A[7]=0 und A[5]=1

Fehlerszenario:

- 1. Personal entfernt das Werkstück nicht
- 2. Personal entfernt das falsche Werkstück

5.3.7 UC7

Titel: Zurücksetzen des Laufbands

Akteur: Personal

Ziel: Laufband in Ursprungszustand versetzen

Auslöser: Das Personal betätigt den Reset-Taster. C[6]=1

Vorbedingung:

• Laufband befindet sich im Betriebszustand

Nachbedingung:

• Auf der Anlage befindet sich kein Werkstück

Erfolgsszenario:

- 1. Das Laufband bleibt stehen
- 2. Das Personal entnimmt alle Werkstücke von der Anlage
- 3. Das Personal betätigt erneut die Reset-Taste. C[6]=0
- 4. Laufband ist Betriebsbereit \rightarrow Grüne Signalleuchte leuchtet. A[5]=1

5.3.8 UC8

Titel: Starten der Anlage nach Schnellabschaltung

Akteur: Personal

Ziel: Die gesamte Anlage ist wieder Betriebsbereit

Auslöser: E-Stopp-Taster wird gedrückt. C[7]=0

Vorbedingung:

• Anlage ist angeschaltet

Nachbedingung:

• Laufband ist Betriebsbereit. A[5]=1

Erfolgsszenario:

- 1. Die ganze Anlage (Band 1 und Band 2) steht still
- 2. Alle Ampeln sind aus
- 3. Alle Weichen sind geschlossen
- 4. Das Personal drückt den Start-Taster
- 5. Die Anlage läuft wieder

5.4 Use-Case-Diagramm

5.5 Systemanalyse

Das System wird über ein C++-Programm gesteuert, welches auf einem, bzw. zwei (bei Nutzung von zwei Förderbändern) GEME-Rechnern läuft. Die Aktorik und Sensorik werden über 3 Ports angesteuert, wobei die Sensoren die Werte mittels Interrupts dem System mitteilen.

Die Kommunikation der beiden Förderbänder läuft über eine serielle Schnittstelle. Es werden hier z.B. die Messergebnisse von Band 1 an Band 2 übergeben, damit, wenn ein Puk das Ende von Band 2 erreicht, seine zugehörigen Daten ausgegeben werden können.

Was muss man über das technische System (aus Sicht der zu entwickelnden Software) wissen? Wie sieht die Struktur aus? Wie der Systemkontext? Welche Schnittstellen betrachten Sie?

6 Design

Anmerkung: Die Implementierung MUSS mit Ihrem Design-Modell korrespondieren. Daher ist ein wohlüberlegtes Design wichtig.

6.1 System-Architektur

Das System verfügt über folgende Module: HAL zum Ansteuern/Auslesen der Aktorik und Sensorik, Seriellen Bus zur Ansteuerung der seriellen Schnittstelle, FSM zur Anlagensteuerung und util für die Thread-Sicherheit (mutex, condvar und lockguard) bzw. für das Logging. Des weiteren gibt es zugehörige Unit-Tests. siehe Komponenten-Diagramm

Erstellung der System-Architektur. Geben Sie eine kurze Beschreibung Ihrer Architektur mit den dazugehörenden Komponenten und Schnittstellen. Spezifikation der Architektur und Definition der System-Schnittstellen in einem UML Komponenten-Diagramm.

6.1.1 Automat für Band 1

6.1.2 Automat für Band 2

6.1.3 Automat für Fehlerbehebung

6.2 Datenmodell

siehe Klassendiagramm

Bestimmung des Datenmodells mit Hilfe von UML Klassendiagrammen unter Beachtung der Designprinzipien. Kurze textuelle Beschreibung des Datenmodells und deren wichtigsten Klassen und Methoden.

6.3 Verhaltensmodell

siehe Automatendiagramm

Spezifikation der wichtigsten System-Szenarien anhand von Verhaltensdiagrammen. Sie können für die Spezifikation der Prozess-Lenkung entweder Petri-Netze oder hierarchische Automaten nehmen.

7 Implementierung

Anmerkung: Wichtige Implementierungsdetails sollen hier erklärt werden. Code-Beispiele (snippets) können hier aufgelistet werden, um der Erklärung zu dienen. Anmerkung: Bitte KEINE ganze Programme hierhin kopieren!

7.1 Algorithmen

Wichtige Algorithmen, die Sie hier benutzt haben.

7.2 Patterns

Scoped Locking, DCLP, Singelton, Delegator, Factory, Dispatcher- / Reactor-Pattern und GoF-State-Pattern nach Pareigis.

7.3 Mapping Rules

Wichtige Mapping Rules, die Sie benutzt haben, z.B. um aus Ihrem Design entsprechenden Code zu erstellen.

7.4 Interrupt Implementierung

Die ISR soll eine Pulse Message generieren. Diese landet im Pulse Message Channel, der vom Dispatcher abgehört wird. Der Code in der Pulse Message spezifiziert die Quelle des Ereignisses. Als zusätzlicher Integer wird das geänderte Bit angehängt. Dabei wird Port A um 8 Bits nach Links geschoben. Port B wird per Veroderung angehängt. Als Vergleich dienen die Port Werte vor dem Interrupt. Um nun das geänderte Bit zu erkennen, werden aktueller Wert und alter Wert per Exklusiv-Oder verknüpft.

7.5 Dispatcher Implementierung

Die Implementierung des Dispatchers verteilt Events (Eingangsereignisse) an angemeldete Zustände. Als Quellen für Eingangssignale dienen ISR, Timer, Serielle Schnittstelle. Intern werden die Signale nur an den ersten Zustand einer Fifo weitergereicht. Für jeden anmeldbaren Zustand gibt es eine eigene Fifo. Als Fifo Container wurde die std::queue benutzt. Jede Queue geht über Pointer-to-Memberfunctions. Im System exsistiert ein Pulse Message Channel, die Eingangssignal Quellen schreiben Pulse Messages in den Channel. Der Dispatcher implementiert einen eigenen Thread der diese Pulse Messages aus dem Channel liest und die passende Pointer-to-Memberfunctions aufruft.

7.6 Automaten Implementierung

Die Automaten werden nach dem GoF-State-Pattern nach Pareigis umgesetzt. Die Transition findet durch den Placement-New Operator statt. Die Kontext-Klasse *token* dient der Abbildung eines Pucks. In ihr werden die Eigenschaften des Pucks und dessen Zustand gespeichert.

Die Zustände des Automaten werden durch die Klasse *state* repräsentiert. Sie leitet sich von der Klasse *events* ab, die die Transitionen in Form von *pure virtual* Funktionen vorgibt.

Jeder Subzustand von *state* meldet sich für ein Event beim Dispatcher an und implementiert die Transition für diesen.

Der Start- und Endzustand eines jeden Tokens ist anonymous token.

Der Dispatcher führt eine Queue über die Anzahl der maximal auf einem Laufband befindlichen Tokens, die mit dem Zustand anonymous_token vorinitialisiert werden.

7.7 Timer Implementierung

Die QNX eigenen Timer-Funktionen werden in timer_wrapper gewrapped, um von dem imer_handler verwaltet zu werden. Bei diesem timer_handler können Timer mit einer Zeitspanne registriert werden. Die registrierten Timer können pausiert, fortgesetzt, addiert, subtrahiert und gestoppt werden.

8 Testen

Machen Sie sich Gedanken über Unit-Test, Komponenten-Test, Integrationtest, Systemtest, Regressions-Test und Abnahmetest.

8.1 Unit-Test/Komponenten-Test

Es gibt Testfälle für die einzelnen Komponenten. Für die Unit Test steht eine Testumgebung zur Verfügung. Jeder Unit Test muss unser Unit Test Interface implementieren, damit diese automatisiert ausgeführt werden können.

8.1.1 HAL

Im Unit Test für die HAL werden 2 verschiedene Stubs verwendet. Die Hardware wird dafür nicht verwendet, da die Stubs das verhalten der Hardware emulieren. Alle Funktionen der HAL werden bei dem Test einmal durchlaufen und es wird geprüft ob die Funktionen die erwarteten Rückgabewerte liefern.

8.1.2 IRQ

Der automatisierte IRQ/ISR Test öffnet einmal die Weiche. Dabei wird die Lichtschranke der Weiche unterbrochen, das generiert eine Pulse Message. Diese muss im Channel liegen.

8.1.3 Dispatcher

Für den Dispatcher gibt es verschiedene Unit Test. Zum einen wird getestet ob das Mapping vom Event enum zum internen Dispatched Event enum passt. Außerdem wird geprüft ob in dem Funktionsadressen Array die korrekten Adressen liegen. Ein Test prüft ob der Dispatcher die Events sequenziell verteilt. Dazu gibt es eine FSM die nur aus einem Zustand besteht, jedoch für jede Eingabe eine Transition auf sich selbst hat. Bei der Transition wird geprüft ob das erhaltene Eingangssignal das erwartete Eingangssignal ist. Die FSM wird zwei mal durchlaufen. Einmal wird der Dispatcher Thread umfahren indem die Events direkt aufgerufen werden. Das zweite mal schreibt Pulse Messages in den Channel die vom Dispatcher verteilt werden.

8.1.4 Timer

Bei dem Timer werden die Grundfunktionalitäten getestet. Zum Testen der Registrierungsfunktion wird ein Timer gestartet und auf die Pulse Message gewartet. Um die Funktionen add, sub, pause und continue zu testen, wird jedoch ein weiterer Timer registriert. Dieser zusätzliche Timer sendet eine andere Message beim Ablaufen, dadurch wird verhindert, dass kein Interrupt geworfen wird.

8.2 Integrations-Test/System-Test

Test Szenarien mit beiden Laufbändern.

8.3 Regressions-Test

Welche Szenarien müssen immer wieder abgetestet werden? Automatisieren Sie Ihre Tests nach Möglichkeit

Mögliche Regressions-Tests für serielle Schnittstelle:

1. Korrektes Telegramm wird übertragen (Länge, Korrektheit)

- 2. Fehlerhaftes Telegramm wird übertragen:
 - a) Ungültige Header-ID
 - b) Ungültige Länge (EOF kommt zu früh oder zu spät)
 - c) Fehlerhafter Header
 - d) Fehlerhafter Inhalt
- 3. Synchronisierung
- 4. Höhensensor emulieren
- 5. Metallsensor emulieren

8.4 Abnahme-Test

Zum Abnahmetest werden alle Requirements und Use Cases durchgegangen. Anschließend werden die Regressions-Tests und der Normalbetrieb der Anlage vorgeführt.

8.5 Testplan

Zeitpunkte für die jeweiligen Teststufen in Ihrer Projektplanung setzen. Dazu können Sie die Meilensteine zu Hilfe nehmen.

8.6 Testprotokolle und Auswertungen

04.11.2014: Testen der HAL, insbesondere der Sensorik

Nachdem die korrekte Ansteuerung der Aktorik und die serielle Schnittstelle mit dem zweiten Milestone abgenommen wurde, wurde die Sensorik getestet. Es wurde beobachtet, dass der Höhensensor (korrekte) Messwerte liefert. Weiterhin wurde beobachtet, dass das Programm sich aufhängt, sobald ein Messwert geliefert bzw. ein Interrupt von der Sensorik ausgelöst wurde. Dies benötigt weitere Bearbeitung.

06.11.2014: Der Interrupt für die Sensorik funktioniert.

Hier fügen Sie die Test Protokolle bei, auch wenn Fehler bereits beseitigt worden sind, ist es schön zu wissen, welche Fehler einst aufgetaucht sind. Eventuelle Anmerkung zur Fehlerbehandlung kann für weitere Entwicklungen hilfreich sein.

Das letzte Testprotokoll ist das Abnahmeprotokoll, das bei der abschließenden Vorführung erstellt wird. Es enthält eine Auflistung der erfolgreich vorgeführten Funktionen des Systems sowie eine Mängelliste mit Erklärungen der Ursachen der Fehlfunktionen und Vorschlägen zur Abhilfe

9 Lessons Learned

Was lief gut, was lief schlecht in diesem Projekt (technisch und organisatorisch)?

Was haben Sie gelernt?

Weitere Anregungen und Erkenntnisse durch das Projekt.

10 Glossar

Eindeutige Begriffserklärungen.

11 Abkürzungen

WS = Werkstück

Listen Sie alle Abkürzungen auf, die Sie in diesem Dokument benutzt haben.

12 Anhänge

- 1. Alle Modell-Dateien (VisualParadigm, Petri-Netze, etc.)
- 2. Sourcecode und Code-Dokumentationen (z.B. Doxygen)
- 3. Test-Protokolle
- 4. Meeting-Protokolle
- 5. Projektstruktur
- 6. etc.

Auflistung aller Artefakten dieses Projekts.

12.1 Coding Style: Google C++

12.1.1 General Rules

- Use 2 spaces per indentation level.
- The maximum number of characters per line is 80.
- Never use tabs.
- Vertical whitespaces separate functions and are not used inside functions: use comments to document logical blocks.
- Header filenames end in .hpp, implementation files end in cpp.
- Never declare more than one variable per line.
- Ampersand & binds to the type, e.g., const std::string& arg.
- Namespaces do not increase the indentation level.
- Access modifiers, e.g. *public*, are indented one space.
- Use the order *public*, *protected*, and then *private*.
- Use typename only when referring to dependent names.
- Keywords are always followed by a whitespace: if (...), template <...>, while (...), etc.
- Always use {} for bodies of control structures such as if or while, even for bodies consiting only of a single statement.
- Opening braces belong to the same line:

```
if (my_condition) {
   my_fun();
} else {
   my_other_fun();
}
```

• Use standard order for readability: C standard libraries, C++ standard libraries, other libraries, your headers:

```
#include <sys/types.h>
#include <vector>
#include "some/other/library.hpp"
#include "myclass.hpp"
```

- When declaring a function, the order of parameters is: outputs, then inputs. This follows the parameter order from the STL.
- Never use C-style casts.

12.1.2 **Naming**

- Class names, constants, and function names are all-lowercase with underscores.
- Types and variables should be nouns, while functions performing an action should be "command" verbs. Classes used to implement metaprogramming functions also should use verbs, e.g., remove_const.
- Member variables use the prefix m_{\perp} .
- ullet Thread-local variables use the prefix t.
- ullet Static, non-const variables are declared in the anonymous namespace and use the prefix s_{\perp} .
- Template parameter names use CamelCase.
- Getter and setter use the name of the member without the m_{-} prefix:

```
class some_fun {
  public:
    // ...
  int value() const {
    return m_value;
  }
  void value(int new_value) {
    m_value = new_value;
  }
  private:
  int m_value;
};
```

12.1.3 Headers

- ullet Each .cpp file has an associated .hpp file. Exceptions to this rule are unit tests and main.cpp files.
- All header files should use #define guards to prevent multiple inclusion.
- Do not #include when a forward declaration suffices.
- Use *inline* for small functions (rule of thumb: 10 lines or less).

12.1.4 Breaking Statements

• Break constructor initializers after the comma, use four spaces for indentation, and place each initializer on its own line (unless you don't need to break at all):

```
my_class::my_class()
    : my_base_class(some_function()),
        m_greeting("Hello there! This is my_class!"),
        m_some_bool_flag(false) {
    // ok
}
other_class::other_class() : m_name("tommy"), m_buddy("michael") {
    // ok
}
```

• Break function arguments after the comma for both declaration and invocation:

• Break before tenary operators and before binary operators:

```
if (today_is_a_sunny_day()
    && it_is_not_too_hot_to_go_swimming()) {
    // ...
}
```