Posture Reconstruction

Aayush Gupta - 2017125 Bhavya Srivastava - 2017037 Raghav Gupta - 2017178

Introduction & Related Work

- 1. Predict posture using tags attached to ankles, chest and belt.
- 2. Can be used to check if a person is in danger or not.
- 3. Useful for elderly and handicapped people

Related work:

Paper - Classification of posture reconstruction with univariate time series data type (2018 international conference on SIET). It used kNN.

In this, k=5 based on similarity measurement using euclidean distance.

Accuracy achieved = 99.5%

Dataset and Evaluation

The dataset has 164860 instances, and 8 attributes (including the output class).

Thus, there are 7 features:

- 1) Sequence Name: 5 sequences (01, 02, 03, 04, 05) for 5 people (A, B, C, D, E)
- 2) Tag identificator: To identify different parts of the body
- 3) timestamp (Numeric) all unique
- 4) date, FORMAT = dd.MM.yyyy HH:mm:ss:SSS (Date)
- 5) x coordinate of the tag (Numeric)
- 6) y coordinate of the tag (Numeric)
- 7) z coordinate of the tag (Numeric)

The number of output classes is 11, which are as follows:

Walking, falling, lying down, lying, sitting down, sitting, standing up from lying, on all fours, sitting on the ground, standing up from sitting, standing up from sitting on the ground.

Evaluation metrics:

We are going to use Confusion matrices, ROC curves, F1 score, Accuracy, precision, recall etc. as evaluation metrics.

Analysis and Progress

The challenges faced by us so far are:

- 1) Accounting for the time series nature of the data
- 2) Applying new techniques previously not known

Learning methods chosen and their accuracies:

- 1) Logistic Regression 41%
- 2) Decision Tree 85%
- 3) Random Forest 92%
- 4) Support Vector Machines -
- 5) K-Nearest-Neighbours 99.6%
- 6) MLP 77.19%
- 7) Gradient Boosting Classifier 92.1%

Accuracy for K-NN is 99.6%, which is the higher than all other models, and is comparable to other state-of-the-art-solutions that are much more complex.

Feature Importances

Based on the feature importance we decided to drop the timestamp field from our dataset.

Since the problem is a time series problem, we see that the feature importance for date, which is the time-series factor, is the highest.

PAIRPLOT

Heat Map

Correlation between different features

Sequence Name	1.00	-0.06	-0.67	-0.68	0.04	0.05	-0.02	0.08	- 0.9
tagID	-0.06	1.00	0.04	0.04	-0.07	-0.03	0.47	-0.00	- 0.6
Time stamp	-0.67	0.04	1.00	0.99	-0.08	-0.02	0.01	-0.05	0.0
Date	-0.68	0.04	0.99	1.00	-0.10	-0.02	0.00	-0.06	- 0.3
x coordinate	0.04	-0.07	-0.08	-0.10	1.00	-0.35	0.03	-0.02	- 0.0
y coordinate	0.05	-0.03	-0.02	-0.02	-0.35	1.00	0.03	-0.07	
z coordinate	-0.02	0.47	0.01	0.00	0.03	0.03	1.00	0.21	0.3
activity	0.08	-0.00	-0.05	-0.06	-0.02	-0.07	0.21	1.00	- -0.6
	Sequence Name	tagID	Time stamp	Date	x coordinate	y coordinate	z coordinate	activity	

Performance Metrics for the KNN Classifier

Confusion matrix:

[[57	8	7	0	0	0	0	4	0	0	0	7]	
[8	109	963	6	5	0	0	0	1	6	0	0 0]
[0	5	122	20	5	0	0	0	0	0	0	10]	
[0	4	3	104	46	0	0	0	0	0	0	0]	
[4	0	0	0	539	91	5	0	0	2	0	0]	
[0	0	0	0	7	32	5	0	0	0	0	2]	
[1	0	0	0	0	0	22	73	0	0	1	0]	
[0	16	5 () C) C) () (35	547	0) (12	[]
[0	0	0	0	3	0	0	0	28	30	0	1]	
[0	0	0	0	0	0	4	0	0	57	72	2]	
[5	0	12	2 C) C) 8	3 () 1	.7	2	1 (6592	[[:

KNN Classification Report								
	precision	precision recall		support				
0	0.97	0.97	0.97	596				
1	1.00	1.00	1.00	10998				
2	0.98	0.98	0.98	1240				
3	0.99	0.99	0.99	1053				
4	1.00	1.00	1.00	5402				
5	0.96	0.97	0.97	334				
6	1.00	1.00	1.00	2275				
7	0.99	0.99	0.99	3575				
8	0.99	0.99	0.99	284				
9	1.00	0.99	0.99	578				
10	0.99	0.99	0.99	6637				
accuracy			0.99	32972				
macro avg	0.99	0.99	0.99	32972				
weighted av	g 0.99	0.99	0.99	32972				

Performance Metrics for the Gradient Boosting

		precision	recall	f1-score	support
Confusion matrix:					
[[176 203 0 0 68 0 42 13 0 0 94]	0	0.95	0.81	0.88	596
	1	0.90	0.97	0.94	10998
[6 9 9 3 1 4 7 5 2 7 1 3 6 1 2 3 5 1 0 4 1 1]	2	0.98	0.72	0.83	1240
[0 379 299 32 47 1 2 176 0 0 304]	3	0.98	0.97	0.98	1053
[0 135 1 698 26 0 13 40 0 0 140]	4	0.97	0.98	0.97	5402
	5	0.93	0.92	0.92	334
[3 402 3 14259 3 35 57 1 0 638]	6	0.98	1.00	0.99	2275
[1 22 0 0 71 137 1 7 0 0 95]	7	0.89	0.71	0.79	3575
[1 91 0 0 26 12110 21 0 3 22]	8	0.99	0.99	0.99	284
[8 1105 14 43 129 0 95 1407 0 9 765]	9	0.99	0.98	0.99	578
[0 13 0 0 44 0 0 2 159 0 66]	10	0.88	0.91	0.90	6637
-					
[1 51 0 0 24 0 71 36 0 325 70]	accuracy			0.92	32972
[7 508 6 21 422 4 39 255 2 3 5370]]	macro avg	0.95	0.90	0.92	32972
-	weighted avg	0.92	0.92	0.92	32972