INFORMATION RECORDING AND REPRODUCING ...
Ichihara et al.
Greer, Burns & Crain, Ltd. (Patrick Burns)
Ref. No. 1990.65934
Sheet 1 of 21 (312) 360 0080

FIG. 2

INFORMATION RECORDING AND REPRODUCING ... Ichihara et al. Greer, Burns & Crain, Ltd. (Patrick Burns) Ref. No. 1990.65934
Sheet 2 of 21 (312) 360 0080

2/21

INFORMATION RECORDING AND REPRODUCING ...
Ichihara et al.
Greer, Burns & Crain, Ltd. (Patrick Burns
Ref. No. 1990.65934
Sheet 3 of 21 (312) 360 0080

INFORMATION RECORDING AND REPRODUCING ...
Ichihara et al.
Greer, Burns & Crain, Ltd. (Patrick Burn
Ref. No. 1990.65934
Sheet 4 of 21 (312) 360 0080

INFORMATION RECORDING AND REPRODUCING .
Ichihara et al.
Greer, Burns & Crain, Ltd. (Patrick Burnef. No. 1990.65934
Sheet 5 of 21 (312) 360 0080

5/21

INFORMATION RECORDING AND REPRODUCING ... Ichihara et al.
Greer, Burns & Crain, Ltd. (Patrick Burn Ref. No. 1990.65934
Sheet 6 of 21 (312) 360 0080

FIG. 5

$X_{k-1}X_k$	S ₀
00	S ₁
01	S₂
10	S₃
11	S ₄

FIG. 6

INFORMATION RECORDING AND REPRODUCING ...
Ichihara et al.
Greer, Burns & Crain, Ltd. (Patrick Burn
Ref. No. 1990.65934
Sheet 7 of 21 (312) 360 0080

7/21

INFORMATION RECORDING AND REPRODUCING ...
Ichihara et al.
Greer, Burns & Crain, Ltd. (Patrick Burns
Ref. No. 1990.65934
Sheet 8 of 21 (312) 360 0080

FIG. 8

INFORMATION RECORDING AND REPRODUCING ...
Ichthara et al.
Greer, Burns & Crain, Ltd. (Patrick Burns, Ref. No. 1990.65934
Sheet 9 of 21 (312) 360 0080

9/21

FIG. 9

	RECORDIN	RDING SI	IGNAL >	IG SIGNAL x _k ON MEDIUM	IEDIUM		STATE	MEAN VALUE OF WAVEFORM AFTER
X _{k-N}	•••	X _{k-1}	X _{k-1} X _k X _{k+1}	X _{k+1}	•••	X _{k+Q}		EQUALIZATION
0	:	0	0	0	•••	0	° s	(° _w S) p
0	•••	0	0	0	•••	1	S ^m ₁	(S m l)
:	•••	:	•	:	•••	•	••••	
1	•••		1	1	• . •	0	S"2^{[N+Q+1]-2	q(S _m ^{2-[1+0+N]} ,
-	•••	1	1	-	•••	1	S "2^{[N+Q+1}-1	q(S _m ² -[N+0+1]-1)

FIG. 10A

FIG. 10B

FIG. 10C

INFORMATION RECORDING AND REPRODUCING ... Ichihara et al. Greer, Burns & Crain, Ltd. (Patrick Burns) Ref. No. 1990.65934 Sheet 11 of 21 (312) 360 0080

STATE			CORRELATIO	CORRELATION OF NOISES			STANDARD DEVIATION
	$e_{-L}(S^m_{k})$:	e_1 (Sm)	e ₁ (S ^m _k)	i	e _M (S ^m _k)	$\sigma(S^n_k)$
S ^m ₀	(⁰ "S) ^{¬-} e	:	e-1(Sm0)	e ₁ (S ^m ₀)	:	e _M (S ^m ₀)	σ (S ^m ₀)
S ^m ₁	$\theta_{-L}(S_1^m)$:	e ₋₁ (S ^m ₁)	e ₁ (Sm ₁)	i	e _M (S ^m ₁)	σ (S ^m ₁)
		:			:	:	
S" 2^[N+Q+1]-2	$S_{2^{\lceil (N+Q+1]-2}}^{m} = e_{-L}(S_{2^{\lceil (N+Q+1]-2})}^{m}$:	e-1 (Sm 2'[N+Q+1]-2)	e ₁ (S ^m ² (N+Q+1)-2)	:	e _M (S ^m 2 ^{(N+Q+1)−2})	σ (S ^m ₂ (lN+Q+1)-2)
S ^m 2 ² (N+Q+1)-1	$S_{2^{r}[N+Q+1]-1}^{m} = e_{-L}(S_{2^{r}[N+Q+1]-1}^{m})$	÷	$e_{-1}(S_{2^{-[N+Q+1]-1}}^{m})$	e ₁ (S ^m ₂ ² [N+Q+1]-1)	:	e _M (S ^m ₂ ² (N+Q+1)-1)	σ (S ^m ₂ *[N+Q+1]-1)

INFORMATION RECORDING AND REPRODUCING ...
Ichihara et al.
Greer, Burns & Crain, Ltd. (Patrick Burns, Ref. No. 1990.65934
Sheet 12 of 21 (312) 360 0080

12/21

 $S_{k-1} = S_0 \rightarrow PATHS WHICH PASS S_k = S_1$ $S_{k-1} = S_0 \rightarrow PATH OF THE SHORTEST PATH METRIC$ AMONG PATHS WHICH PASS $S_k = S_1$

INFORMATION RECORDING AND REPRODUCING ...
Ichihara et al.
Greer, Burns & Crain, Ltd. (Patrick Burns)
Ref. No. 1990.65934
Sheet 13 of 21 (312) 360 0080

INFORMATION RECORDING AND REPRODUCING Ichihara et al. Greer, Burns & Crain, Ltd. (Patrick Burns) Ref. No. 1990.65934 Sheet 14 of 21 (312) 360 0080

(312) 360 0080

14/21

TOOKS/SE.TOEGOT

INFORMATION RECORDING AND REPRODUCING ...
Ichihara et al.
Greer, Burns & Crain, Ltd. (Patrick Burns Ref. No. 1990.65934
Sheet 15 of 21 (312) 360 0080

15/21

INFORMATION RECORDING AND REPRODUCING ...
Ichihara et al.
Greer, Burns & Crain, Ltd. (Patrick Burns)
Ref. No. 1990.65934
Sheet 16 of 21 (312) 360 0080

16/21

17/21

FIG. 17A

START

DIVIDE INPUT SERIES y_k OF SERIES LENGTH Ns IN MAP INTO SMALL N_{wind} SERIES (WINDOWS) OF SERIES LENGTH $N_u + N_t$

 $N_{wind} = [(N_s - N_t)/N_u]$

<S2

₅S4

< S5

~S6

S7

S8

WINDOW No. i=1

i No(i=N_{wind})

OBTAIN γ k(s) REGARDING k=(i-1)N_u+1~ i(N_u+N_t) BY EQUATION(3) AND STORE IT

INITIALIZE $\alpha_{(i-1)Nu+1}(s)$ BY EQUATION(6), OBTAIN $\alpha_k(s)$ REGARDING $k=(i-1)N_u+1\sim iN_u$ BY EQUATION(4) AND STORE IT

INITIALIZE $\beta_{i(Nu+Nt)}(s)$ BY EQUATION(6) BY SETTING $N=i(N_u+N_t)$, CALCULATE $\beta_k(s)$ IN OPPOSITE ORDER FROM $k=i(N_u+N_t)-1$ TO $k=(i-1)N_u+1$ BY EQUATION(5) AND STORE THE PORTION IN A RANGE FROM $k=iN_u$ TO $k=(i-1)N_u+1$

OBTAIN RELIABILITY INFORMATION $\Lambda(x_k)$ AND $\Lambda_e(x_k)$ REGARDING $k=(i-1)N_u+1\sim iN_u$ BY EQUATIONS(7) AND (8) FROM α,β , AND γ OBTAINED BY PROCESSES 4), 5), AND 6)

$$i=i+1$$

18/21

FIG. 17B

< S9

₅ S10

S11

OBTAIN $\gamma_k(s)$ REGARDING $k=(i-1)N_u+1\sim N_s$ BY EQUATION(3) AND STORE IT

INITIALIZE $\alpha_{(i-1)Nu+1}(s)$ BY EQUATION(6), OBTAIN $\alpha_k(s)$ REGARDING $k=(i-1)N_u+1\sim N_s$ BY EQUATION(4) AND STORE IT

INITIALIZE $\beta_N(s)$ BY EQUATION(6), CALCULATE $\beta_k(s)$ IN OPPOSITE ORDER FROM k=N-1 TO $k=(N_{wind}-1)N_u+1$ BY EQUATION(5) AND STORE IT

OBTAIN RELIABILITY INFORMATION $\Lambda(x_k)$ AND $\Lambda_e(x_k)$ REGARDING $k=(i-1)N_u+1\sim N_s$ BY EQUATIONS(7) AND (8) FROM α,β , AND γ OBTAINED BY PROCESSES 9), 10), AND 11)

END

< S12

INFORMATION RECORDING AND REPRODUCING ... Ichihara et al. Greer, Burns & Crain, Ltd. (Patrick Burns) Ref. No. 1990.65934 Sheet 19 of 21 (312) 360 0080

19/21

FIG. 18

$X_{k-3}X_{k-2}X_{k-1}X_k$	STATE
0000	S ^m ₀
0001	S ^m 1
0010	S ^m ₂
0011	S ^m ₃
0100	S ^m ₄
0101	NOT EXIST
0110	S ^m ₆
0111	S ^m ,
1000	S ^m ₈
1001	S ^m ₉
. 1010	NOT EXIST
1011	S ^m ₁₁
1100	S ^m ₁₂
1101	S ^m ₁₃
1110	S ^m ₁₄
1111	S ^m ₁₅

INFORMATION RECORDING AND REPRODUCING ...
Ichihara et al.
Greer, Burns & Crain, Ltd. (Patrick Burns)
Ref. No. 1990.65934
Sheet 20 of 21 (312) 360 0080

20/21

FIG. 19

INFORMATION RECORDING AND REPRODUCING ... Ichihara et al.
Greer, Burns & Crain, Ltd. (Patrick Burns)
Ref. No. 1990.65934
Sheet 21 of 21 (312) 360 0080

	ATION		(0)	(P)	2)	13)		21/		(,1	(8)	(6)		(=	12)	13) ~	14)	15)
MEAN VALUE OF	EQUALIZATION	d(S")	q(S _m ⁰)	d(Sm³)	d (S ^m ₂)	d(S ₃)	d(S" ₄)	1	(9 _m S)P	d(S ^m ₇)	d(S _m)	d(S ₉)	 	d (Sm ₁₁)	d (Sm ₁₂)	d (Sm ₁₃)	d(Sm ₁₄)	d(Sm ₁₅)
STANDARD	DEVIATION OF NOTSES		σ(S ^m ₀)	σ(S ^m ₁)	σ(S ^m ₂)	σ(S ^m ₃)	σ(S ^m ₄)		σ(S ^m ₆)	σ(S ^m _γ)	σ(S ^m ₈)	0 (Smg)	1	σ(S ^m ₁₁)	$\sigma(S_{12}^m)$	0(Sm13)	$\sigma(S^{m}_{14})$	σ(S ^m ₁₅)
		e _M (S ^m _k)	e _M (S _m)	e _M (S ^m ₁)	e _M (S ^m ₂)	Θ _M (S ^m ₃)	e _M (S ^m ₄)	-	e _M (S ^m ₆)	e _M (S ^m ₇)	e _M (S ^m ₈)	e _M (S ^m ₉)		e _M (Sm11)	e _M (Sm ₁₂)	e _M (S ^m ₁₃)	e _M (S ^m ₁₄)	e _M (S ^m ₁₅)
50	S	:		:		:	:	:	:		•	:	-		•	•	-	
FIG. 20	N OF NOISE	e ₁ (S ^m _k)	$e_1(S_{n_0})$	(S _m)	e ₁ (S ^m ₂)	e ₁ (S ^m ₃)	(⁷ _m S) ¹ 9	1	e ₁ (S ^m ₆)	e ₁ (S ^m ₇)	6 ₁ (S ^m ₈)	θ ₁ (S ^m ₉)	_	e ₁ (Sm 11)	e ₁ (S ^m ₁₂)	$e_1(S^m_{13})$	6 ₁ (S ^m ₁₄)	$e_{1}(S_{m_{15}})$
	CORRELATION OF NOISES	$e_{-1}(S^m_k)$	$e^{-1}(S_m^0)$	6-1 (Sm1)	e-1 (Sm2)	Θ-1 (S _m ³)	6-1 (Sm4)	1	e-1 (Smg)	6-1 (Sm)	e-1 (Sm8)	e ₋₁ (S ^m ₉)	-	6-1 (Sm1)	e-1 (Sm15)	$e_{-1}(S_{13}^m)$	$e_{-1}(S^{m}_{14})$	$e^{-1}(S_m^{12})$
	O			•	•	• • •	• •	•		• •				• • •			•	
		$e_{-L}(S^m_k)$	$e^{-L}(S^m_0)$	$e_{-L}(S^m_1)$	$e_{-L}(S^m_2)$	e _{-L} (S ^m ₃)	$e_{-L}(S^m_4)$	1	(S _m ^e)	e-L (Sm,)	$e^{-L}(S^m_8)$	e-L (S ^m ₉)	I	e-L (Sm11)	e _{-L} (S ^m ₁₂)	e _{-L} (S ^m ₁₃)	e_L (Sm14)	e _{-L} (S ^m ₁₅)
	CTATE	9.7.L	S E O	S _n	S ^m ₂	S E S	S ^m ₄	NOT EXIST	Smg	S ^m ₇	S B	Smg	NOT EXIST	S ^m 11	S"12	S ₁₃	S m 14	S ^m ₁₅