Министерство науки и высшего образования Российской **Ф**едерации

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

Лабораторная работа № 2 по дисциплине «Моделирование»

Тема Марковские процессы

Студент Пермякова Е. Д.

Группа ИУ7-72Б

Преподаватели Рудаков И. В.

Теоретическая часть

Марковский процесс – случайный процесс, протекающий в некоторой системе, в котором для каждого момента времени вероятность любого состояния системы в будущем зависит только от состояния системы в настоящем и не зависит от того, когда и каким образом система пришла в это состояние

Для Марковского процесса используются уравнения Колмогорова:

$$F = (P'(t), P(t), \lambda) = 0 \tag{1}$$

где P(t) – вероятность нахождения в состоянии для сложной системы, λ – коэффициенты, показывающие, с какой интенсивностью система переходит из одного состояния в другое.

Результат работы программы

На рисунке 1-?? приведен результат работы программы.

Выход				
Матрица интенсивности				
	Размер:		4	
	1	2	3	4
1		2	0.0	0.0
2	0		3	1
3	1	0.0		0.5
4	0.0	3	0.0	
Вычислить				
Результат				
Предельная вероятность			Время стабилизации	
0.214			2.252	
0.214			2.162	
0.429			2.332	
	0.14	3	1.987	

Рисунок 1 – Результат работы программы для четырех узлов в системе

Рисунок 2 – График вероятностей состояний как функции времени для четырех узлов в системе

Заключение

В ходе выполнения работы была разработана программа для численного решения системы уравнений Колмогорова и анализа марковских случайных процессов.