- 1) Faça o que se pede:
- Dados dois vetores perpendiculares \vec{a} e \vec{b} , tais que $||\vec{a}|| = 5$ e $||\vec{b}|| = 12$, calcule $||\vec{a} \vec{b}||$.
- Determine o vetor \vec{u} de mesma direção e sentido oposto a $\vec{v} = 2\vec{i} \vec{j} + 2\vec{k}$ e que tenha norma igual a 9.
- Num paralelogramo ABCD sabe-se que A = (1,3,-2) e que as diagonais são $\overrightarrow{AC} = (4,2,-3)$ e $\overrightarrow{BD} = (-2,0,1)$. Calcule as coordenadas dos outros três vértices.
- 3) Usando as propriedades de produto vetorial, mostre que $\vec{u} \times \vec{v} = \vec{v} \times \vec{w} = \vec{w} \times \vec{u}$, sabendo que $\vec{u} + \vec{v} + \vec{w} = \vec{0}$.

4) Sejam $\vec{u} = (2,1,-3) e \vec{v} = (1,-2,1)$.

a) Determine um vetor unitário simultaneamente perpendicular a \vec{u} e \vec{v} .

b) Determine um vetor \vec{w} perpendicular a \vec{u} e \vec{v} e tal que $||\vec{w}|| = 5$.

5) Calcule a área do triângulo cujos vértices são A = (3,2,1), B = (0,-2,4), C = (4,1,2).