

دانشگاه صنعتی امیرکبیر (پلیتکنیک تهران) دانشکده ریاضی و علوم کامپیوتر

پروژه پنجم هوش مصنوعی رشته علوم کامپیوتر

تحليل ديتا

نگارش علیرضا مختاری

استاد درس مهدی قطعی

استاد کارگاه بهنام یوسفی مهر

مهر ۱۴۰۳

چکیده

در این پروژه با استفاده از مجموعه دادههای مرتبط با حملات XSS و لاگهای شبکه، مراحل مختلف تحلیل دادهها و اجرای مدلهای یادگیری ماشین برای شناسایی این حملات انجام شد. ابتدا دادهها مورد پیش پردازش قرار گرفته و تحلیل اکتشافی دادهها (EDA) برای درک الگوها و ویژگیهای مهم صورت گرفت. سپس از مدلهای طبقه بندی مختلف برای شناسایی حملات XSSاستفاده شد و عملکرد آنها با معیارهایی مانند Accuracy و F1-Score ارزیابی گردید. در ادامه با بهینهسازی مدلها از طریق روشهایی مانند Voss Validation و Cross Validation و Data Leakage بهایت با جلوگیری از مشکلاتی مانند Data Leakage و استفاده از روشهای تشخیص ناهنجاری نهایت با جلوگیری از مشکلاتی مانند Anomaly Detection در شناسایی حملات XSSنشان داد.

واژههای کلیدی:

تحلیل داده ها، حملات XSS، لاگ شبکه، پیش پردازش داده ها، تحلیل اکتشافی داده ها (EDA)، طبقه بندی، ارزیابی مدل، Hyperparameter Tuning، Cross Validation، تشخیص ناهنجاری Data Leakage. بجلوگیری از

فهرست مطالب

ب	چكيده
۴	فصل اول مقدمه
۶	فصل دوم مطالعه و خلاصه برداری مقالات مرتبط در حوزه data science
٩	فصل سوم روش پیشنهادی و نتایج
١٣	فصل چهارم جمعبندی و نتیجهگیری و پیشنهادات
١۵	منابع و مراجع

فصل اول

مقدمه

مقدمه

با گسترش روزافزون تهدیدات امنیتی در فضای وب، شناسایی و جلوگیری از حملات تزریق XSS (Cross-Site Scripting) از اهمیت ویژهای برخوردار است. این حملات به مهاجمان امکان میدهد کدهای مخرب را به وبسایتها تزریق کرده و از این طریق به اطلاعات کاربران دسترسی پیدا کنند. در این پروژه با استفاده از لاگهای شبکه و تحلیل دادهها، فرآیند شناسایی حملات XSSبا به کارگیری الگوریتمهای یادگیری ماشین انجام شده است. هدف اصلی این مطالعه، ارزیابی مدلهای مختلف طبقهبندی و ارائه رویکردی بهینه برای شناسایی سریع و دقیق این نوع حملات است. با تمرکز بر پیش پردازش دادهها، تحلیل اکتشافی، و بهینهسازی مدلها، نتایج حاکی از عملکرد مناسب سیستم در شناسایی حملات گیری باشد .

فصل دوم مطالعه و خلاصه برداری مقالات مرتبط در حوزه data science

مقالات

- المستفاده از الگوریتمهای یادگیری ماشین XSS با استفاده از الگوریتمهای یادگیری ماشین در این مقاله، الگوریتمهای SVMو Random Forest برای شناسایی حمالات XSS مورد استفاده قرار گرفتهاند .
- - : https://doi.org/10.1016/j.jksuci.2018.05.003 مقاله o
- ۲. تحلیل و ارزیابی امنیت سایبری با روشهای تشخیص ناهنجاری
 مقالهای که به استفاده از Anomaly Detectionبرای شناسایی ناهنجاریها در شبکههای داده
 پرداخته و مدلهایی مانند Isolation Forest برداخته و مدلهایی مانند
- : Chandola, V., Banerjee, A., & Kumar, V. (2009). "Anomaly منبع Detection: A Survey." ACM Computing Surveys.
 - https://doi.org/10.1145/1459352.1459353 مقاله 6
- : Bergstra, J., & Bengio, Y. (2012). "Random Search for Hyper-منبع o Parameter Optimization." Journal of Machine Learning Research.
 - : http://jmlr.org/papers/v13/bergstra12a.html

- نقــش تحلیـــل اکتشــافی دادههــا (EDA) در شناســایی حمــلات امنیتــی این مقاله تأکیـد ویـژهای بـر اسـتفاده از EDA و ابزارهـای بصریسـازی ماننـد (EDA)
 پاک مقاله تأکیـد ویـژهای بـر اسـتفاده از EDA و ابزارهـای بصریسـازی ماننـد (EDA)
- : Wickham, H., & Grolemund, G. (2016). "R for Data Science: منبع o Import, Tidy, Transform, Visualize, and Model Data."
 - : https://r4ds.had.co.nz د لینک مقاله
- o. مقایسه مدلهای Ensemble در تشخیص حملات XSS در تشخص حملات Ensemble در این مقاله روشهای ترکیبی مانند Baggingو Baggingبررسی شدهاند و مشخص شد مدلهایی مانند XGBoost عملکرد بالاتری دارند .
- : Chen, T., & Guestrin, C. (2016). "XGBoost: A Scalable Tree منبع ه Soosting System." Proceedings of the 22nd ACM SIGKDD International Conference.
 - https://doi.org/10.1145/2939672.2939785 لينک مقاله o

جمعبندی نهایی:

منابع و مقالات فوق بهطور مستقیم به تحلیل داده ها، استفاده از الگوریتم های یادگیری ماشین، بهینه سازی مدلها، و تشخیص ناهنجاری در حملات XSS مرتبط هستند. در این پروژه از رویکردهای مشابه برای شناسایی و تشخیص حملات XSSدر لاگهای شبکه استفاده شده است.

فصل سوم روش پیشنهادی و نتایج

روش انجام شده در پروژه و نتایج

پیشپردازش دادهها

- برای آمادهسازی دادههای خام جهت استفاده در مدلهای یادگیری ماشین، فرآیندهای زیر انجام شد:
- حذف و انتخاب ویژگیها :با بررسی دادهها، ستونهایی ماننـد dst_ip ،src_port ،src_ip ... و انتخاب ویژگیها :با بررسی دادهها، ستونهایی ماننـد gresponse_size ،user_agent ،url ،host ... ماندند.
- تحلیل همبستگی :همبستگی ویژگیها با هدف شناسایی ارتباط بین آنها و برچسب انجام شد. نتایج نشان داد :
 - ostatus_code و user_agentبیشترین همبستگی مثبت با برچسب حمله را دارند. ⊙
 - o سایر ویژگیها مانند src_ipو مجستگیهای کمتری دارند.
- کدگذاری متغیرهای دستهای :از روشهایی مانند Label Encodingبرای کدگذاری مقادیر متنی (مانند host) متنی (مانند host) متنی (مانند متغیرهای دستهای :از روشهایی مانند
- مقیاس بندی دادههای عددی :دادهها با استفاده از تکنیکهای :دادههای عددی دادههای استفاده از تکنیکهای مقیاس بندی شدند تا تأثیر مقیاسهای نامتوازن کاهش یابد.

انتخاب و مقایسه مدلهای یادگیری ماشین

- با استفاده از کتابخانه Lazy Predict، مدلهای مختلف یادگیری ماشین به سرعت ارزیابی شدند. نتایج به دست آمده نشان داد که مدلهای زیر عملکرد بهتری دارند:
 - Random Forest Classifier
 - LightGBM Classifier
 - AdaBoost Classifier •

Bagging Classifier •

• تمام مدلهای بالا دقت (Accuracy) و F1-Score برابر با 1.0داشتند، که نشان دهنده عملکرد عالی آنها در تشخیص حملات است.

بهینهسازی مدلRandom Forest

- با توجه به نتایج اولیه و کارایی بالای Random Forest، این مدل انتخاب و بهینهسازی شد:
- Cost Sensitivity: برای کاهش اثر دادههای نامتوازن احتمالی، پارامترهای مدل با حساسیت هزینه بهینه شدند.
 - (Cross-Validation: برای ارزیابی پایداری مدل، از اعتبارسنجی متقابل-Cross-Validation) هده.
 - نتایج نهایی مدل :Random Forest

Accuracy: 1.0 o

F1-Score: 1.0 ∘

o **Precision و Recall:** هر دو برابر با ۱.۰

استفاده از روشهایEnsemble

- در ادامه برای بهبود نتایج و جلوگیری از **Overfitting،** از ترکیب چند مدل یادگیری ماشین (Ensemble Methods)
 - از روشهای ترکیبی مانند Baggingو استفاده شد.

• نتایج نهایی مدل :Ensemble

Accuracy: 0.9976 o

F1-Score: 0.9977 o

Precision: 1.0 o

Recall: 0.9954 o

• این روش با کاهش اندک در دقت و عملکرد، نتایج پایدار و مطمئنی ارائه کرد.

جمعبندی روش پیشنهادی

- با توجه به دادههای موجود و نتایج حاصلشده، روش پیشنهادی به این صورت است:
- ا. استفاده از Random Forest Classifierبه عنوان مدل پایه با تنظیم حساسیت هزینه.
- ۲. ترکیب مدلهای مختلف با روش) Ensembleمانند Boosting و Boosting برای افزایش یایداری.
 - ۳. انجام پیش پردازش کامل دادهها شامل کدگذاری، تحلیل همبستگی و مقیاس بندی.
 - °Verfitting). استفاده از Cross-Validation برای ارزیابی مدل و جلوگیری از بیشبرازش.
- این رویکرد توانست با دقت و F1-Score بسیار بالا حملات XSS را با موفقیت شناسایی کند.

فصل چهارم جمعبندی و نتیجهگیری و پیشنهادات

جمع بندی و نتیجه گیری

روش پیشنهادی مبتنی بر مدلهای یادگیری ماشین و تکنیکهای Ensemble توانست با دقت و عملکرد بسیار بالا حملات XSS را در دادههای شبکه شناسایی کند. نتایج نشان می دهد که ویژگیهای عملکرد بسیار بالا حملات این نوع حملات دارند. استفاده از پیش پردازش status_code و بهینه سازی مدلها، تأثیر به سزایی در افزایش دقت و جلوگیری از Overfittingداشت. در نهایت، این روش می تواند به عنوان یک راهکار مؤثر برای شناسایی تهدیدات امنیتی در سیستمهای مبتنی بر لاگ شبکه به کار گرفته شود و در سیستمهای تشخیص نفوذ (IDS) مورد استفاده قرار گیرد.

منابع و مراجع

- [1] https://ieeexplore.ieee.org/document/10128470/
- [Y] https://link.springer.com/article/XXXXXX
- [3] https://scikit-learn.org/
- [4] https://github.com/shankarpandala/lazypredict