We claim that q is adjacent to p in C_k . Indeed, conditions C1 and C3 hold trivially. To verify C2, consider a curve $e \in S_2$ touching d at a point in the arc of d from q to q'. This touching point (as the whole arc of d from q to q') lies inside T_i . However, e must intersect b, so it must leave T_i . It touches a, so it must leave through either b_i or c'_i . Here c'_i has fewer than $2\alpha^2 k$ points in X, by our choice of i, while b_i contains fewer than $\alpha^2 k$ points in X, since Case 2 does not hold. Hence, e has fewer than $3\alpha^2 k$ points where it can leave T_i , and there are at most $3\alpha^2 k$ possible choices for the curve e. This means that condition C2 is satisfied and q is adjacent to p in C_k .

By our choice of i, we can select the curve d in at least k/α different ways, each giving rise to a different edge in C_k incident to p. The total weight of these edges is α . This completes the analysis of the last case, showing that the total weight of all edges in A_k , A'_k , A''_k , B_k and C_k incident to p is at least α .

Summing over all l possible values of k and over all n^2 touching points in T, we conclude that the total weight of G is at least $\alpha \lceil \log n \rceil n^2$. Comparing this lower bound with the upper bound proved in the preceding subsection and substituting $\alpha = \sqrt{\log n / \log \log n}$, Theorem 7 follows.

References

- [ANJPPSS04] P. K. Agarwal, E. Nevo, J. Pach, R. Pinchasi, M. Sharir, and S. Smorodinsky, Lenses in arrangements of pseudocircles and their applications, *J. ACM* **51** (2004), 139–186.
- [AgS05] P. K. Agarwal and M. Sharir, Pseudo-line arrangements: duality, algorithms, and applications, SIAM J. Comput. **34** (2005), no. 3, 526–552.
- [ArS02] B. Aronov and M. Sharir, Cutting circles into pseudo-segments and improved bounds for incidences, *Discrete Comput. Geom.* **28** (2002), no. 4, 475–490.
- [BMP05] P. Brass, W. Moser, and J. Pach, Research Problems in Discrete Geometry, Springer-Verlag, New York, 2005.
- [Ch1] T. M. Chan, On levels in arrangements of curves, Discrete Comput. Geom. 29 (2003), 375–393. (Also in Proc. 41th IEEE Sympos. Found. Comput. Sci. (FOCS), 2000, pp. 219–227.)
- [Ch2] T. M. Chan, On levels in arrangements of curves, II: a simple inequality and its consequence, Discrete Comput. Geom. 34 (2005), 11–24. (Also in Proc. 44th IEEE Sympos. Found. Comput. Sci. (FOCS), 2003, pp. 544–550.)
- [Ch3] T. M. Chan, On levels in arrangements of curves, III: further improvements, *Proc. 24th ACM Symposium on Computational Geometry (SoCG)*, 2008, pp. 85–93.
- [Ed87] H. Edelsbrunner, Algorithms in Combinatorial Geometry. EATCS Monographs on Theoretical Computer Science, 10, Springer-Verlag, Berlin, 1987.
- [Er46] P. Erdős, On sets of distances of n points, Amer. Math. Monthly 53 (1946), 248–250.
- [FFPP10] J. Fox, F. Frati, J. Pach, and R. Pinchasi, Crossings between curves with many tangencies, in: WALCOM: Algorithms and Computation, Lecture Notes in Comput. Sci. 5942.