CS251: Homework #1

Due on October 8, 2019 at 2:00pm $Steven\ Libby\ Section\ A$

Austen Nelson

Problem 1

Define variables, and write the following sentences as logical statements.

Part One

Sentence: If it's not cloudy, then it's not raining.

Variables:

- A It is cloudy.
- B It is raining.

Statement: $\neg A \rightarrow \neg B$

Part Two

Sentence: If we won the big game, then either we scored more points, or the other team didn't show up. Variables:

- A We won the big game.
- B We scored more points.
- C The other team showed up.

Statement: $A \to (B \lor \neg C)$

Part Three

Sentence: This is a sentence.

Variables:

• A — This is a sentence.

Statement: A

Part Four

Sentence: If you don't study for tests, then you won't pass the class.

Variables:

- A You study for tests.
- B You pass the class.

Statement: $\neg A \rightarrow \neg B$

Part Five

Sentence: A graph is planer if it contains neither a minor of $K_{3,3}$ nor K_5 .

Variables:

- A A graph contains a minor of $K_{3,3}$.
- B A graph contains a minor of K_5 .
- C A graph is planer.

Statement: $(\neg A \land \neg B) \to C$

Problem 2

Draw truth tables for the following formulas.

 $a \oplus b$

a	b	$a \oplus b$
1	1	0
1	0	1
0	1	1
0	0	0

 $\neg(\neg a)$

a	$\neg(\neg a)$
1	1
0	0

 $\neg b \to \neg a$

a	b	$\neg a \rightarrow \neg b$
1	1	1
1	0	1
0	1	0
0	0	1

 $\neg a \wedge \neg b$

a	b	$\neg a \wedge \neg b$
1	1	0
1	0	0
0	1	0
0	0	1

 $a \leftrightarrow (b \leftrightarrow c)$

a	b	c	$a \leftrightarrow (b \leftrightarrow c)$
1	1	1	1
1	1	0	0
1	0	1	0
1	0	0	1
0	1	1	0
0	1	0	1
0	0	1	1
0	0	0	0

 $(a \lor c) \land (b \lor c)$

a	b	c	$(a \lor c) \land (b \lor c)$
1	1	1	1
1	1	0	1
1	0	1	1
1	0	0	0
0	1	1	1
0	1	0	0
0	0	1	1
0	0	0	0

Problem 3

Reduce the following to the shortest form. Determine if it's satisfiable, a tautology, or neither.

Part One

 $(a \land \neg b) \lor \neg (\neg a \lor b)$: satisfiable

$(a \land \neg b) \lor \neg (\neg a \lor b)$	
$(a \land \neg b) \lor (a \land \neg b)$	DM_{\lor}
$a \wedge \neg b$	$Item_{\wedge}$
$\neg\neg(a \land \neg b)$	$\neg \neg$
$\neg(\neg a \lor b)$	DM_{\wedge}
$\neg(a \to b)$	Imp

Part Two

 $a \wedge b \equiv \neg(\neg a \wedge \neg b)$: satisfiable

$a \wedge b \equiv \neg(\neg a \wedge \neg b)$	
$((a \land b) \to \neg(\neg a \land \neg b)) \land (\neg(\neg a \land \neg b) \to (a \land b))$	$Def \equiv$
$((a \land b) \to (a \lor b)) \land (\neg(\neg a \land \neg b) \to (a \land b))$	DM_{\wedge}
$(\neg(a \land b) \lor (a \lor b)) \land (\neg(\neg a \land \neg b) \to (a \land b))$	Imp
$((\neg a \vee \neg b) \vee (a \vee b)) \wedge (\neg (\neg a \wedge \neg b) \rightarrow (a \wedge b))$	DM_{\wedge}
$(\neg a \lor a \lor \neg b \lor b) \land (\neg (\neg a \land \neg b) \to (a \land b))$	Com_{\vee}
$(T \vee T) \wedge (\neg(\neg a \wedge \neg b) \to (a \wedge b))$	LEM*2
$\neg(\neg a \land \neg b) \to (a \land b)$	Id_{\wedge}
$\neg\neg(\neg a \land \neg b) \lor (a \land b)$	Imp
$(\neg a \wedge \neg b) \vee (a \wedge b)$	$\neg\neg$
$((\neg a \land \neg b) \lor a) \land ((\neg a \land \neg b) \lor b)$	Dis_{\vee}
$(a \vee (\neg a \wedge \neg b)) \wedge (b \vee (\neg a \wedge \neg b))$	$Com_{\vee}*2$
$((a \vee \neg a) \wedge (a \vee \neg b)) \wedge (b \vee (\neg a \wedge \neg b))$	Dis_{\vee}
$(T \wedge (a \vee \neg b)) \wedge (b \vee (\neg a \wedge \neg b))$	LEM
$(a \vee \neg b) \wedge (b \vee (\neg a \wedge \neg b))$	Id_{\wedge}
$(\neg b \lor a) \land (b \lor (\neg a \land \neg b))$	Com_{\vee}
$(b \to a) \land (b \lor (\neg a \land \neg b))$	Imp
$(b \to a) \land ((b \lor \neg a) \land (b \lor \neg b))$	Dis_{\lor}
$(b \to a) \land (b \lor \neg a) \land T$	LEM
$(b \to a) \land (b \lor \neg a)$	Id_{\wedge}
$(b \to a) \land (\neg a \lor b)$	Com_{\vee}
$(b \to a) \land (a \to b)$	Imp
$a \equiv b$	$Def \equiv$

Part Three

 $a \wedge b \equiv \neg(\neg a \vee \neg b)$: tautology

$$\begin{array}{lll} a \wedge b \equiv \neg (\neg a \vee \neg b) \\ ((a \wedge b) \rightarrow \neg (\neg a \vee \neg b)) \wedge (\neg (\neg a \vee \neg b) \rightarrow (a \wedge b)) & Def \equiv \\ (\neg (a \wedge b) \vee \neg (\neg a \vee \neg b)) \wedge (\neg (\neg a \vee \neg b) \rightarrow (a \wedge b)) & Imp \\ ((\neg a \vee \neg b) \vee \neg (\neg a \vee \neg b)) \wedge (\neg (\neg a \vee \neg b) \rightarrow (a \wedge b)) & DM_{\wedge} \\ ((\neg a \vee \neg b) \vee (a \wedge b)) \wedge (\neg (\neg a \vee \neg b) \rightarrow (a \wedge b)) & DM_{\vee} \\ (((\neg a \vee \neg b) \vee a) \wedge ((\neg a \vee \neg b) \vee b)) \wedge (\neg (\neg a \vee \neg b) \rightarrow (a \wedge b)) & Dis_{\vee} \\ (((\neg a \vee a \vee \neg b) \wedge (\neg a \vee \neg b \vee b)) \wedge (\neg (\neg a \vee \neg b) \rightarrow (a \wedge b)) & Com_{\vee} \\ ((T \vee \neg b) \wedge (\neg a \vee T)) \wedge (\neg (\neg a \vee \neg b) \rightarrow (a \wedge b)) & LEM * 2 \\ T \wedge T \wedge (\neg (\neg a \vee \neg b) \rightarrow (a \wedge b)) & Id_{\wedge} \\ (a \wedge b) \rightarrow (a \wedge b) & DM_{\vee} \\ T & Def \rightarrow \end{array}$$

Part Four

 $a \wedge (b \vee c) \rightarrow a \wedge (b \wedge c)$: satisfiable

On the left hand side of the implication we have $a \wedge E$, where E is some expression. Because false always implies true, and when a is false $a \wedge E = F$ $(Anul_{\wedge})$, the expression $a \wedge (b \vee c) \rightarrow a \wedge (b \wedge c)$ will always be true when a is false. Using this knowledge we can reduce the expression to $\neg a \vee (T \wedge (b \vee c) \rightarrow T \wedge (b \wedge c))$.

$\neg a \lor (T \land (b \lor c) \to T \land (b \land c))$	
$\neg a \lor (b \lor c \to b \land c)$	$Id_{\wedge}*2$
$\neg a \lor (\neg (b \lor c) \lor (b \land c))$	Imp
$\neg a \lor ((\neg b \land \neg c) \lor (b \land c))$	DM_{\lor}
$\neg a \lor (((\neg b \land \neg c) \lor b) \land ((\neg b \land \neg c) \lor c))$	Dis_{\vee}
$\neg a \lor ((b \lor (\neg b \land \neg c)) \land (c \lor (\neg b \land \neg c)))$	$Com_{\vee}*2$
$\neg a \lor (((b \lor \neg b) \land (b \lor \neg c)) \land ((c \lor \neg b) \land (c \lor \neg c)))$	$Dis_{\vee}*2$
$\neg a \lor ((T \land (b \lor \neg c)) \land ((c \lor \neg b) \land T))$	LEM*2
$\neg a \lor ((b \lor \neg c) \land (c \lor \neg b))$	$Id_{\wedge}*2$
$\neg a \lor ((\neg c \lor b) \land (\neg b \lor c))$	$Com_{\vee}*2$
$\neg a \lor ((c \to b) \land (b \to c))$	Imp*2
$\neg a \lor (b \equiv c)$	$Def \equiv$

Problem 4

Draw the following abstract syntax trees:

