Temperaturna plošča: serijski algoritem

Rok Grmek, Matej Klemen

3. november 2017

1 Opis problema (in motivacija?)

2 Opis uporabljene metode

2.1 Algoritem

Program ima dva načina delovanja. Če je nastavljena zastavica *TIME_MEASUREMENT*, se bo program za podane argumente izvedel 100-krat in izračunal nekaj uporabnih statistik. Sicer pa se bo program izvedel 1-krat in na koncu vizualiziral porazdelitev temperature na plošči. V nadaljevanju je opisan slednji način izvajanja, delovanje programa pa je predstavljeno tudi z diagramom zaporedje, vidnim na sliki **TODO: ref na sliko**.

Algoritem sprejme 3 argumente: višino plošče, širino plošče in število iteracij (v nadaljevanju označeno s k), ki jih bo algoritem izvedel. Plošči, ki jo določata vnešena višina in širina, algoritem na vseh štirih stranicah doda pas širine 1, ki kasneje služi za nastavljanje robnega pogoja temperature. Novi dimenziji sta torej:

$$vi\check{s}ina = vi\check{s}ina + 2$$
 in $\check{s}irina = \check{s}irina + 2$.

Na začetku se alocirata dve tabeli dimenzij $višina \times širina$ - ena predstavlja trenutno stanje plošče, druga pa stanje plošče v prejšnji iteraciji. Alokaciji sledi inicializacija plošče - trem stranicam (levi, desni, zgornji) algoritem nastavi temperaturo na 100° C, eni (spodnji) pa na 0° C. Vsem ostalim celicam plošče se zaporedno (od zgoraj navzdol, od leve proti desni) dodeli povprečje leve sosednje, zgornje sosednje, povsem desne ter povsem spodnje celice plošče. Eno izmed plošč algoritem izbere kot ploščo trenutnega, drugo pa kot ploščo prejšnjega stanja.

Nato sledi glavna zanka, ki se ponovi k-krat. V vsaki iteraciji gre algoritem skozi "dinamičnečelice plošče (celice, ki niso del katerega izmed robov plošče) in za vsako celico c[i][j] v i-ti vrstici in j-tem stolpcu po naslednji formuli izračuna novo temperaturo:

$$c[i][j] = \frac{c'[i-1][j] + c'[i][j-1] + c'[i][j+1] + c'[i+1][j]}{4},$$

kjer c'[i][j] predstavlja temperaturo celice v i-ti vrstici in j-tem stolpcu v prejšnji iteraciji. Ob vsakem izračunu nove temperature algoritem izračuna še absolutno razliko med trenutno (novo) in prejšnjo temperaturo ter jo v primeru, da je to v trenutni iteraciji največja izračunana

absolutna razlika temperatur, shrani. Ob koncu iteracije algoritem zamenja vlogi plošč - tista, ki je do sedaj predstavljala prejšnje stanje plošče, bo v naslednji iteraciji vsebovala novo stanje plošče in obratno.

Na koncu algoritem izpiše največjo absolutno razliko temperatur in zažene vizualizacijo končnega stanja temperaturne plošče. O vizualizaciji temperaturne plošče pa je več napisano v poglavju 2.2 **Uporabljene knjižnice**.

TODO: slika (diagram zaporedja)

2.2 Uporabljene knjižnice

3 Rezultati

Program je bil testiran na sistemu, katerega specifikacije so navedene v tabeli 1. Da bi k izmerjenemu času čim manj pripomogli stroški režije operacijskega sistema, je bil sistem med testiranjem minimalno obremenjen z drugimi procesi.

Tabela 1: Specifikacije testnega sistema.

	I.t1 C :T 4910II	
Procesor	Intel Core i5-4210U	
Frekvenca procesorja	$1.70 \mathrm{GHz}$	
Število jeder	2	
Maksimalno število niti	4	
Velikost predpomnilnika	3MB	
Pomnilnik	16GB DDR3	
Grafična kartica	NVIDIA GeForce 820M 2GB DDR3 $$	
Operacijski sistem	Ubuntu 16.04	

Pri testiranju sva se omejila na fiksno velikost temperaturne plošče (500×500) in spreminjala zgolj število iteracij. Za vsako izbrano število iteracij sva program 100-krat zagnala in vsakič izmerila čas izvajanja. Iz meritev sva nato izračunala povprečni čas izvajanja in standardno napako meritve, ki predstavlja razpršenost meritev okoli povprečnega časa izvajanja. Rezultati so navedeni tabelarično v tabeli 2 in z grafom, prikazanim na sliki 1.

Tabela 2: Povprečni čas izvajanja in standardna napaka meritev v odvisnosti od števila iteracij.

Število iteracij	Povprečni čas izvajanja [s]	Standardna napaka [s]
500	1,698	0,001
1000	3,400	0,003
2000	6,780	0,003
5000	17,757	0,103
10000	33,972	0,026
20000	67,940	0,024

Slika 1: Graf, ki prikazuje povprečni čas izvajanja programa v odvisnosti od števila iteracij.

Iz rezultatov je vidno, da sta povprečni čas izvajanja in število iteracij približno premo sorazmerna. **TODO**: komentar skladnosti rezultatov s teoretično časovno zahtevnostjo $(O(k \cdot h \cdot w)$, kjer je k število iteracij, h vnešena višina in w vnešena širina)