TASK_2 - PHARMA DATA ANALYSIS

September 30, 2024

1 TASK 2: PHARMA DATA ANALYTICS

2 1. Connect Notebook with MySQL Database

```
[1]: # Import required libraries
     import pandas as pd
     import mysql.connector
[2]: # MySQL database connection details
     host = 'YOUR_HOST_NAME'
     user = 'YOUR_USER_NAME'
     password = 'YOUR_PASSWORD'
[3]: # CSV file path
     csv_file = 'pharma_data.csv' # Replace 'your_file.csv' with your CSV file path
     # Read the first row of the CSV to extract column names
     with open(csv_file, 'r') as file:
         first_line = file.readline().strip() # Read the first line
         column_names = first_line.split(',') # Assuming columns are comma-separated
         file.close()
[4]: # Create MySQL connection
     conn = mysql.connector.connect(host=host, user=user, password=password)
     cursor = conn.cursor()
[5]: # Name of database
     database = str(input("Enter database name: "))
     # Create the database if it doesn't exist
     create_db_query = f"CREATE DATABASE IF NOT EXISTS {database}"
     cursor.execute(create_db_query)
     # Close the connection as the database is created
     conn.close()
```

Enter database name: pharmaanalytics

```
[6]: # Reconnect to the newly created or existing database
      conn = mysql.connector.connect(host=host, user=user, password=password,__
       ⇔database=database)
      cursor = conn.cursor()
 [9]: column_names
 [9]: ['Distributor',
       'Customer Name',
       'City',
       'Country',
       'Latitude',
       'Longitude',
       'Channel',
       'Sub-channel',
       'Product Name',
       'Product Class',
       'Quantity',
       'Price',
       'Sales',
       'Month',
       'Year',
       'Name of Sales Rep',
       'Manager',
       'Sales Team']
[13]: # Ask for table name
      table_name = input("Enter table name: ")
      # Create table with extracted column names
      create_table_query = f"CREATE TABLE IF NOT EXISTS `{table_name}` ({', '.

→join([f'`{col}` TEXT' for col in column_names])})"
      cursor.execute(create_table_query)
     Enter table name: pharma_table
[14]: # Read the CSV file into a pandas DataFrame
      df = pd.read_csv(csv_file)
      df.head()
「14]:
                    Distributor
                                                        Customer Name
                                                                            City \
      O Gottlieb-Cruickshank
                                              Zieme, Doyle and Kunze
                                                                          Lublin
      1 Gottlieb-Cruickshank
                                                            Feest PLC
                                                                        Åšwiecie
                                 Medhurst-Beer Pharmaceutical Limited
      2 Gottlieb-Cruickshank
                                                                          Rybnik
      3 Gottlieb-Cruickshank
                                                Barton Ltd Pharma Plc Czeladź
      4 Gottlieb-Cruickshank
                                                 Keeling LLC Pharmacy
                                                                         Olsztyn
```

```
Country Latitude Longitude
                                      Channel Sub-channel
                                                                      Product Name \
     0 Poland
                 51.2333
                            22.5667
                                     Hospital
                                                   Private
                                                                        Topipizole
     1 Poland
                 53.4167
                            18.4333
                                     Pharmacy
                                                    Retail
                                                                      Choriotrisin
     2 Poland
                 50.0833
                            18.5000
                                     Pharmacy Institution
                                                                         Acantaine
     3 Poland
                 50.3333
                            19.0833
                                     Hospital
                                                   Private
                                                              Lioletine Refliruvax
     4 Poland
                 53.7800
                            20.4942 Pharmacy
                                                    Retail Oxymotroban Fexoformin
           Product Class Quantity
                                    Price
                                            Sales
                                                     Month Year Name of Sales Rep \
       Mood Stabilizers
                               4.0
                                      368 1472.0 January
                                                            2018
                                                                      Mary Gerrard
     0
     1
             Antibiotics
                               7.0
                                      591
                                           4137.0
                                                   January
                                                            2018
                                                                     Jessica Smith
             Antibiotics
                              30.0
                                       66 1980.0
                                                                      Steve Pepple
                                                   January
                                                            2018
     3
             Analgesics
                              6.0
                                      435
                                           2610.0
                                                   January
                                                            2018
                                                                      Mary Gerrard
              Analgesics
                              20.0
                                      458 9160.0 January
                                                            2018
                                                                           Anne Wu
              Manager Sales Team
     0 Britanny Bold
                           Delta
     1 Britanny Bold
                           Delta
          Tracy Banks
                           Bravo
     3 Britanny Bold
                           Delta
     4 Britanny Bold
                           Delta
[15]: # Checking shape of dataset
     df.shape
[15]: (254082, 18)
[16]: # Checking column names
     df.columns
[16]: Index(['Distributor', 'Customer Name', 'City', 'Country', 'Latitude',
             'Longitude', 'Channel', 'Sub-channel', 'Product Name', 'Product Class',
             'Quantity', 'Price', 'Sales', 'Month', 'Year', 'Name of Sales Rep',
             'Manager', 'Sales Team'],
           dtype='object')
[18]: # Insert data into the created table
     for _, row in df.iterrows():
          # Handle NaN values by converting them to None
         row = [None if pd.isna(value) else value for value in row]
          # Prepare and execute the insert query
          insert_query = f"INSERT INTO `{table_name}` ({', '.join([f'`{col}`' for col_

in column_names])}) VALUES ({', '.join(['%s'] * len(column_names))})"
          cursor.execute(insert_query, tuple(row))
      # Commit changes and close the connection
     conn.commit()
```

```
conn.close()
print(f"Table '{table_name}' created and data loaded successfully.")
```

Table 'pharma_table' created and data loaded successfully.

3 2. Excess Database Information as per your Requirement

```
[21]: # Pass the query through this function ant get your results
      from IPython.display import display
      def execute_query(query):
          # MySQL database connection details
          host = 'YOUR_HOST_NAME'
          user = 'YOUR_USER_NAME'
          password = 'YOUR_PASSWORD'
          database = 'pharmaanalytics' # Replace with your database name
          # Connect to MySQL
          conn = mysql.connector.connect(host=host, user=user, password=password,__
       →database=database)
          # Create a cursor
          cursor = conn.cursor()
          try:
              # Execute the query
              cursor.execute(query)
              # Fetch all results
              results = cursor.fetchall()
              # Display results in a table format
              if results:
                  header = [desc[0] for desc in cursor.description]
                  data = list(results)
                  df = pd.DataFrame(data, columns=header)
                  display(df)
              else:
                  print("No results found.")
          except mysql.connector.Error as error:
              print(f"Error: {error.msg}")
          finally:
```

```
# Close the cursor and connection
cursor.close()
conn.close()
```

3.1 1. Retrieve all columns for all records in the dataset.

```
[22]: # Define the query
query = "SELECT * FROM pharma_table;"
# Call the function with the query
execute_query(query)
```

	Dis	tributor				Cus	stomer Name	e \
0	Gottlieb-Cruic	Zieme, Doyle and Kunze						
1	Gottlieb-Cruic		Feest PLC					
2	Gottlieb-Cruic	M€	edhurst-Bee	r Pharmace	eutic	al Limited	i	
3	Gottlieb-Cruic	kshank			Barton	Ltd	Pharma Plo	3
4	Gottlieb-Cruic	kshank			Keeli	ng LL	.C Pharmacy	J
•••		•••					•••	
254077	Bashirian-Ka	ssulke	Koch, Bo	orer and Ha	genes Pha	rmace	utical Ltd	i
254078	Bashirian-Ka	ssulke		Han	e Ltd Pha	rmace	utical Ltd	i
254079	Bashirian-Ka	ssulke			Harris-0	Conro	y Pharmacy	J
254080	Bashirian-Ka	ssulke			Balistre	eri G	roup Pharm	n
254081	Bashirian-Ka	ssulke		Heathc	ote, Kova	cek a	nd Parker	
	a.	~ .			a	~ .	, ,	,
•	City	•		Longitude	Channel	Sub	-channel	\
0	Lublin	Poland		22.5667	-		Private	
1	Åšwiecie	Poland		18.4333	Pharmacy	_	Retail	
2	Rybnik	Poland		18.5	Pharmacy	Ins	titution	
3	Czeladź	Poland		19.0833	Hospital		Private	
4	Olsztyn	Poland	53.78	20.4942	Pharmacy		Retail	
 254077	 Lauf		49.5103	 11.2772	 Waanital		Dwinsto	
	Aichach	Germany	49.5103	11.2772	Hospital		Private	
254078 254079	Wilhelmshaven	Germany		8.1333	Hospital		Private Retail	
2540 <i>19</i> 254080		Germany		9.0	Pharmacy	Co		
	Böblingen Hof	Germany			Hospital	GO	vernment	
254081	пот	Germany	50.3167	11.9167	Pharmacy		Retail	
	Prod	luct Name	Produ	ıct Class Q	uantity Pr	rice	Sales	\
0	Topipizole			abilizers	4.0	368	1472.0	
1	Choriotrisin		Antibiotics		7.0	591	4137.0	
2	Acantaine		Antibiotics		30.0	66	1980.0	
3	Lioletine Re	ioletine Refliruvax		Analgesics		435	2610.0	
4	Oxymotroban Fexoformin			nalgesics	20.0	458	9160.0	
•••	•	•••			•••			
254077	Pe	ntastrin	Ant	Antibiotics		497	456743.0	
254078	Abranatal Lys	oprosate	Ant	Antiseptics		681	294192.0	
254079	Adideine		Mood Sta	abilizers	320.0	678	216960.0	

254080		Feru	prazole Mo	ood Stabi	lizers	565.0	115	64975.0
254081		Feru	prazole Mo	ood Stabi	lizers	1080.0	115	124200.0
	Month	Year	Name of Sa	ales Rep		Manager	Sales	Team
0	January	2018	Mary	Gerrard	Brita	nny Bold		Delta
1	January	2018	Jessi	ca Smith	Brita	nny Bold		Delta
2	January	2018	Steve	e Pepple	Tra	cy Banks		Bravo
3	January	2018	Mary	Gerrard	Brita	nny Bold		Delta
4	January	2018		Anne Wu	Brita	nny Bold		Delta
•••	•••		•••		•••	•••		
254077	December	2020	Thompson (Crawford	James	Goodwill		Alfa
254078	December	2020		Anne Wu	Brita	nny Bold		Delta
254079	December	2020	Abigail '	Thompson	Tra	cy Banks		Bravo
254080	December	2020	Stel:	la Given	Alisha	Cordwell	Ch	arlie
254081	December	2020		Alan Ray	James	Goodwill		Alfa

[254082 rows x 18 columns]

0

3.2 2. How many unique countries are represented in the dataset?

```
[26]: # Define the query
query = "SELECT COUNT(DISTINCT country) AS Unique_Countries FROM pharma_table;"
# Call the function with the query
execute_query(query)
Unique_Countries
```

3.3 3. Select the names of all the customers on the 'Retail' channel.

```
[27]: # Define the query

query = "SELECT `Customer Name` AS Customers_Retail FROM pharma_table WHERE

$\times` \text{Sub-channel} \times 'Retail';"

# Call the function with the query

execute_query(query)
```

```
Customers_Retail
                                   Feest PLC
0
1
                         Keeling LLC Pharmacy
2
               Blick, Pacocha and Schowalter
3
                        Leuschke PLC Pharmacy
      McClure, Zemlak and Dibbert Pharma Plc
4
                                  Paucek PLC
68346
                       Walsh-Brown Pharma Plc
68347
68348 Schinner, Gaylord and Treutel Pharmacy
68349
                       Harris-Conroy Pharmacy
68350
               Heathcote, Kovacek and Parker
```

```
[68351 rows x 1 columns]
```

3.4 4. Find the total quantity sold for the 'Antibiotics' product class.

```
[28]: # Define the query
query = "SELECT SUM(Quantity) AS Total_Quantity FROM pharma_table WHERE

→ `Product Class` = 'Antibiotics';"

# Call the function with the query
execute_query(query)
```

```
Total_Quantity
0 4.154322e+06
```

3.5 5. List all the distinct months present in the dataset.

```
[29]: # Define the query
query = "SELECT DISTINCT Month FROM pharma_table;"
# Call the function with the query
execute_query(query)
```

```
Month
0
      January
     February
1
2
        March
3
        April
4
          May
5
         June
6
         July
7
       August
    September
8
      October
9
     November
10
11
     December
```

3.6 6. Calculate the total sales for each year.

```
[30]: # Define the query
query = "SELECT Year, SUM(Sales) AS Total_Sales FROM pharma_table GROUP BY 1;"
# Call the function with the query
execute_query(query)
```

```
Year Total_Sales
0 2018 3.506897e+09
1 2017 2.701481e+09
2 2019 2.930937e+09
3 2020 2.659672e+09
```

3.7 7. Find the customer with the highest sales value.

```
[31]: # Define the query
query = "SELECT `Customer Name`, SUM(Sales) AS Total_Sales FROM pharma_table

GROUP BY 1 ORDER BY 2 DESC LIMIT 1;"

# Call the function with the query
execute_query(query)
```

```
Customer Name Total_Sales
O Mraz-Kutch Pharma Plc 93561780.0
```

3.8 8. Get the names of all employees who are Sales Reps and are managed by 'James Goodwill'.

```
[33]: # Define the query
query = "SELECT DISTINCT `Name of Sales Rep` AS Employee_Names FROM

→ pharma_table WHERE Manager = 'James Goodwill';"

# Call the function with the query
execute_query(query)

Employee Names
```

```
0 Thompson Crawford
1 Erica Jones
2 Alan Ray
```

3.9 9. Retrieve the top 5 cities with the highest sales.

```
[34]: # Define the query
query = "SELECT City, SUM(Sales) AS Highest_Sales FROM pharma_table GROUP BY 1

→ORDER BY 2 DESC LIMIT 5;"

# Call the function with the query
execute_query(query)
```

```
City Highest_Sales
0 Butzbach 93561780.0
1 Baesweiler 64890501.0
2 Cuxhaven 56006680.0
3 Friedberg 52183634.6
4 Altenburg 50885320.0
```

3.10 10. Calculate the average price of products in each sub-channel.

```
[36]: # Define the query
query = "SELECT `Sub-channel`, AVG(Price) AS Average_Price FROM pharma_table

GROUP BY 1 ORDER BY 2 DESC;"

# Call the function with the query
execute_query(query)
```

```
Sub-channel Average_Price
0 Government 413.149440
1 Retail 412.807040
2 Institution 411.954398
3 Private 410.718371
```

3.11 11. Join the 'Employees' table with the 'Sales' table to get the name of the Sales Rep and the corresponding sales records.

```
[38]: # Define the query
query = "SELECT `Name of Sales Rep`, SUM(Sales) AS Sales_Record FROM

→ pharma_table GROUP BY 1 ORDER BY 2 DESC;"

# Call the function with the query
execute_query(query)
```

```
Name of Sales Rep
                      Sales_Record
0
           Jimmy Grey 9.859700e+08
    Abigail Thompson 9.810570e+08
1
2
        Sheila Stones 9.582039e+08
3
        Daniel Gates 9.506586e+08
4
             Anne Wu 9.201683e+08
5
       Morris Garcia 9.011955e+08
6
        Stella Given 8.883409e+08
7
        Jessica Smith 8.816984e+08
        Steve Pepple 8.754500e+08
8
9
        Mary Gerrard 8.752708e+08
         Erica Jones 8.713722e+08
10
11
    Thompson Crawford 8.669649e+08
            Alan Ray 8.426372e+08
12
```

3.12 12. Retrieve all sales made by employees from 'Rendsburg' in the year 2018.

```
[39]: # Define the query
query = "SELECT `Name of Sales Rep`, SUM(Sales) AS Total_Sales, `YEAR` FROM

→ pharma_table WHERE City = 'Rendsburg' AND `Year` = 2018 GROUP BY 1 ORDER BY

→ 2 DESC;"

# Call the function with the query
execute_query(query)
```

```
Name of Sales Rep
                      Total_Sales
                                   YEAR
0
        Jessica Smith
                         5059318.0
                                    2018
1
        Sheila Stones
                         1581159.0
                                   2018
2
          Erica Jones
                          980046.0 2018
3
       Morris Garcia
                          405500.0
                                   2018
4
              Anne Wu
                          383869.0
                                    2018
5
             Alan Ray
                          366832.0
                                    2018
6
           Jimmy Grey
                          253399.0
                                   2018
```

```
7
        Stella Given
                         226347.0 2018
8
   Thompson Crawford
                          81915.0 2018
        Mary Gerrard
9
                          74042.0 2018
10
    Abigail Thompson
                          65022.0 2018
        Daniel Gates
                           49801.0 2018
11
12
        Steve Pepple
                            1377.0 2018
```

3.13 13. Calculate the total sales for each product class, for each month, and order the results by year, month, and product class.

```
[40]: # Define the query
query = "SELECT `Product Class`, `Month`, `Year`, SUM(Sales) AS Total_Sales

→FROM pharma_table GROUP BY 1, 2, 3 ORDER BY `Year`, `Month`, `Product Class`;

→"

# Call the function with the query
execute_query(query)
```

	Product Class	Month	Year	Total_Sales
0	Analgesics	April	2017	32223716.0
1	Antibiotics	April	2017	40029226.0
2	Antimalarial	April	2017	17789675.0
3	Antipiretics	April	2017	22868812.0
4	Antiseptics	April	2017	42712211.0
	•••			•••
283	Antibiotics	September	2020	34985330.0
284	Antimalarial	September	2020	19328987.0
285	Antipiretics	September	2020	30939171.0
286	Antiseptics	September	2020	62348015.0
287	Mood Stabilizers	September	2020	43643444.0

[288 rows x 4 columns]

3.14 14. Find the top 3 sales reps with the highest sales in 2019.

```
[41]: # Define the query
query = "SELECT `Name of Sales Rep` AS Top_3_Sales_Rep, SUM(Sales) AS

→Total_Sales FROM pharma_table WHERE year = 2019 GROUP BY 1 ORDER BY 2 DESC

→LIMIT 3;"

# Call the function with the query
execute_query(query)
```

```
Top_3_Sales_Rep Total_Sales
0 Jimmy Grey 3.105511e+08
1 Sheila Stones 2.669244e+08
2 Daniel Gates 2.453639e+08
```

3.15 15. Calculate the monthly total sales for each sub-channel, and then calculate the average monthly sales for each sub-channel over the years.

```
[42]: # Define the query
query = "SELECT `Sub-channel`, `Month`, `Year`, SUM(Sales) AS Total_Sales,

△AVG(SUM(Sales)) OVER (PARTITION BY `Sub-channel`, `Month`) AS Average_Sales

△FROM pharma_table GROUP BY 1,2,3 ORDER BY 3,2;"

# Call the function with the query
execute_query(query)
```

	Sub-channel	Month	Year	Total_Sales	Average_Sales
0	Government	April	2017	45892380.0	59112240.75
1	Private	April	2017	43680022.0	38498738.50
2	Retail	April	2017	49076812.0	53068274.50
3	Institution	April	2017	50151370.0	49329388.45
4	Institution	August	2017	57379276.0	58881548.75
	•••			•••	•••
187	Government	October	2020	46367808.0	56208502.00
188	Institution	September	2020	58791970.0	65737833.75
189	Retail	September	2020	67426858.0	75422382.75
190	Private	September	2020	50514794.0	55488251.75
191	Government	September	2020	58376813.0	60848428.00

[192 rows x 5 columns]

3.16 16. Create a summary report that includes the total sales, average price, and total quantity sold for each product class.

```
[43]: # Define the query
query = "SELECT `Product Class`, SUM(Sales) AS Total_Sales, AVG(Price) AS

→Average_Price, SUM(Quantity) AS Total_Quantity FROM pharma_table GROUP BY 1;"

# Call the function with the query
execute_query(query)
```

```
Product Class
                     Total_Sales Average_Price Total_Quantity
  Mood Stabilizers 2.058910e+09
                                     400.493353
                                                   5.169781e+06
0
1
       Antibiotics 1.750277e+09
                                                   4.154322e+06
                                     419.671057
2
        Analgesics 2.371515e+09
                                     432.571071
                                                   5.553144e+06
       Antiseptics 2.237525e+09
                                                   5.499913e+06
3
                                     412.396699
       Antipiretics 1.883306e+09
4
                                     469.047680
                                                   4.052544e+06
5
       Antimalarial 1.497455e+09
                                     337.667208
                                                   4.249075e+06
```

3.17 17. Find the top 5 customers with the highest sales for each year.

```
[44]: # Define the query
```

```
query = "WITH Top_Customers AS (SELECT `Customer Name`, Sales, `Year`, \( \) \( \top_DENSE_RANK() \) OVER(PARTITION BY year ORDER BY Sales DESC) AS Top_5_Customers \( \top_FROM \) pharma_table) SELECT * FROM Top_Customers WHERE Top_5_Customers <= 5;"

# Call the function with the query

execute_query(query)
```

\

	Customer Name	Sales	Year
0	Casper, Hyatt and Jakubowski Pharmaceutical Ltd	99990.0	2017
1	Konopelski-Blick	99981.0	2017
2	Kozey-Emmerich Pharmacy	99936.0	2017
3	Jacobs-Jones Pharma Plc	999000.0	2017
4	Waelchi LLC Pharmaceutical Limited	9990.0	2017
5	VonRueden-Adams Pharmaceutical Limited	9999.0	2018
6	Paucek PLC Pharm	99936.0	2018
7	Purdy Ltd Pharmaceutical Limited	99936.0	2018
8	Feest-Kshlerin Pharmaceutical Ltd	99900.0	2018
9	Armstrong Inc Pharma Plc	9990.0	2018
10	McKenzie-Zemlak Pharma Plc	9990.0	2018
11	Fahey-Flatley	9990.0	2018
12	Cremin-Zemlak Pharma Plc	99840.0	2018
13	Yundt-Crona Pharm	99840.0	2018
14	Funk, Ratke and Heaney Pharmacy	99840.0	2018
15	Crist LLC Pharma Plc	9999.0	2019
16	Turner Ltd Pharmacy	9996000.0	2019
17	Koch-Osinski Pharmacy	99900.0	2019
18	Rohan and Sons Pharma Plc	998400.0	2019
19	Leuschke, Waters and Schowalter Pharma Plc	998400.0	2019
20	Pfannerstill, Upton and Balistreri Pharm	99840.0	2019
21	Balistreri-Watsica Pharma Plc	99840.0	2019
22	Hirthe, Williamson and Macejkovic	99840.0	2019
23	Casper, Hyatt and Jakubowski Pharmaceutical Ltd	99840.0	2019
24	Reinger, Kihn and Goyette Pharma Plc	99840.0	2019
25	Reilly Ltd Pharma Plc	9996.0	2020
26	Prohaska, Bogisich and Gutkowski Pharmaceutica	999360.0 2	020
27	Wehner-Stehr Pharm	99905.0	2020
28	Fritsch LLC Pharm	9990.0	2020
29	Bayer LLC	9990.0	2020
30	Reinger Group Pharma Plc	9990.0	2020
31	Crist Inc Pharma Plc	99840.0	2020
32	Crona PLC Pharmacy	99840.0	2020
33	Reynolds, Jast and Mante Pharm	99840.0	2020
_	Top_5_Customers		
0	1		
1	2		
2	3		
3	4		

```
4
                       5
5
                       1
6
                       2
7
                       2
8
                       3
9
                        4
10
                        4
11
                        4
12
                       5
                       5
13
14
                       5
15
                        1
                        2
16
                        3
17
                        4
18
19
                        4
20
                       5
                       5
21
22
                       5
23
                       5
                       5
24
25
                        1
                       2
26
27
                        3
28
                        4
29
                        4
                        4
30
                        5
31
32
                       5
33
                        5
```

3.18 18. Calculate the year-over-year growth in sales for each country.

```
[45]: # Define the query
query = "SELECT Country, `Year`, SUM(Sales) AS Total_Sales, LAG(SUM(Sales), 1, ...

$\times 0$) OVER(PARTITION BY Country ORDER BY year) AS Previous_Year_Sales, ...
$\times \text{SUM(Sales)} - \text{LAG(SUM(Sales)}, 1, 0) OVER(PARTITION BY Country ORDER BY year) ...

$\times \text{AS Year_Over_Year_Growth FROM pharma_table GROUP BY 1,2 ORDER BY 2,1;"} # Call the function with the query execute_query(query)
```

```
Total_Sales Previous_Year_Sales Year_Over_Year_Growth
  Country Year
0 Germany 2017 2.701481e+09
                                     0.000000e+00
                                                            2.701481e+09
1 Germany 2018 2.826018e+09
                                     2.701481e+09
                                                            1.245368e+08
2
   Poland 2018 6.808798e+08
                                     0.000000e+00
                                                            6.808798e+08
3 Germany 2019 2.930937e+09
                                     2.826018e+09
                                                            1.049196e+08
                                                           -2.712647e+08
4 Germany 2020 2.659672e+09
                                     2.930937e+09
```

3.19 19. List the months with the lowest sales for each year.

```
[46]: # Define the query
query = "WITH Lowest_Sales AS (SELECT `Month`, `Year`, SUM(Sales) AS<sub>□</sub>

→Total_Sales, DENSE_RANK() OVER(PARTITION BY year ORDER BY SUM(Sales) ASC) AS<sub>□</sub>

→Ranks FROM pharma_table GROUP BY 1,2) SELECT * FROM Lowest_Sales WHERE Ranks<sub>□</sub>

→= 1;"

# Call the function with the query
execute_query(query)
```

```
Month Year Total_Sales Ranks
0 January 2017 151872184.0 1
1 December 2018 214882167.0 1
2 January 2019 97664076.0 1
3 April 2020 135409908.0 1
```

3.20 20. Calculate the total sales for each sub-channel in each country, and then find the country with the highest total sales for each sub-channel.

```
Sub-channel Country Total_Sales Ranks
O Government Germany 2.920913e+09 1
1 Institution Germany 2.719605e+09 1
2 Private Germany 2.315302e+09 1
3 Retail Germany 3.162287e+09 1
```