

http://powercyber.ece.iastate.edu

Aditya Ashok, Adam Hahn, Siddharth Sridhar

Dept. of Electrical and Computer Engineering

Iowa State University

Outline

Smart Grid – A Cyber Physical System

Cyber Security & Testbed Research

PowerCyber Testbed Architecture

Security Evaluation Studies

Conclusions

Electric Power Grid: A Cyber-Physical System

Source: http://cnslab.snu.ac.kr/twiki/bin/view/Main/Research

SCADA control network

Cyber Threats to Critical Infrastructures

Threats to Critical Infrastructures

(Power Grid, Oil & natural gas, Water distribution, Transportation, ..)

[General Accounting Office, CIP Reports, 2004 to 2010]; [NSA "Perfect Citizen", 2010]:

Recognizes that critical infrastructures are vulnerable to cyber attacks from numerous sources, including hostile governments, terrorist groups, disgruntled employees, and other malicious intruders.

Unique challenges in Cyber-Physical system security

	The state of the s			
	Information Security	Infrastructure Security	Control Systems Security	
ZEEDS	 Information Protection Message Confidentiality Message Integrity Message Authenticity 	 Infrastructure protection Routers DNS servers Links Internet protocols Service availability 	 Generation control apps. Transmission control apps. Distribution control apps. Real-Time Energy Markets 	
S II & Z O	 Encryption/Decryption Digital signature Message Auth.Codes Public Key Infrastructure 	 Traffic Monitoring Statistical analysis Authentication Protocols Secure Protocols Secure Servers 	 Attack-Resilient Control Algos Model-based Algorithms Anomaly detection Intrusion Tolerance Bad data elimination Risk modeling and mitigation 	

Cyber Attacks: Deter, Prevent, Detect, Mitigate, be Resilient, Attribution

Smart Grid Cyber Security

DoE Smart Grid vision

- Leverage advances in sensing, control, and communication
- Leverage legacy network infrastructures
- Realize emerging applications like AMI, SAS, WAMPAC

Cyber Security compliance and R&D

- NERC CIP
- NISTIR 7628
- DHS Control Systems Security Program
- DoD Cyber Security Research
- DoE National Laboratories
- Academic Research

Testbed design tradeoffs and objectives

Test bed applications

- A1: Risk Modeling and Mitigation studies
 - Vulnerability assessment
 - Impact analysis (Adequacy and stability studies)
- A2: Cyber-Physical System studies
 - Smart attack vector formulation
 - Attack-resilient control algorithms
 - Attack-Defense exercise

- A3: Vendor product testing
 - Protocols, Firewalls, VPN
 - Relays, Control Software, etc.

A1: Risk Modeling and Mitigation

Risk = Threat x Vulnerability x Impacts

- Risk Assessment & Risk Mitigation (GAO CIP Report, 2010)
- Security Investment Analysis

A2: Cyber-Physical System Security

Cyber Security of

Wide-Area Monitoring, Protection and Control

- Man-in-the-middle attacks
- Data integrity attacks
- Denial of service attacks
- •Timing attacks ...

- Frequency control
- Voltage control
- Stability analysis

CPS Security model

Y. Huang, A. A. Cardenas, S. Sastry, "Understanding the Physical and Economic Consequences of Attacks on Control Systems", Elsevier, International Journal of Critical Infrastructure Protection 2009.

Testbed – Related Work

National SCADA test bed (NSTB) @ Idaho National Laboratory

Virtual Control System Environment @ Sandia National Laboratory

Virtual Power System test bed (VPST) @ University of Illinois, Urbana

SCADA Security Testbed @ University College, Dublin, Ireland

PowerCyber Testbed @ Iowa State University

Functional Decomposition

EMS, SAS, RTUs, IEDs

Routing infrastructure, Network protocols, Routers, Firewalls

Power system Simulators (RTDS, Power factory)

Components: Simulated, Emulated, Physical

Physical components

Emulated components

Simulated components

PowerCyber Testbed architecture

Test bed current configuration

Testbed - Security Evaluation

Vulnerability scan

- Port scanning
- Communication Port

Attack tools/actions

- Packet capture
- DNP 3.0 Protocol
- Relay Open/Close request packet

Real-Time Monitoring **Vulnerability Analysis** Impact Analysis Defense measures

Attack-defense studies

- Denial of Sensor measurement (Substation → Control center)
- Denial of Control (Control center → Substation)
- Cyber-Physical Impact Analysis & Countermeasure evaluation

Test bed - Security Evaluation

- Vulnerability assessment
 - Review and verification of cryptographic use including protocols and key management strategies
 - Software availability requirements
 - Robustness against DoS attacks
 - Software security testing and vulnerability enumeration
 - Quantitative risk assessment based on vulnerability analysis
 - Communication network fuzz testing

Impact Analysis: Cyber attack scenario

WSCC 9 bus system

Cyber attack results

Before attack	After attack
Sum of generation= 136+113+69=318 MW	Sum of generation= 90+101+60=251 MW
Sum of loads = 123+89+100= 312 MW	Sum of loads= 142+104= 246 MW
Flow on line 5-7= 47 MW	Flow on line 5-7= 102 MW
Flow on line 6-9= 32 MW	Flow on line 6-9= 60 MW

Key Observations:

- Plot A: Increased voltages at several buses
- Plot B: Some transmission lines overloaded, could lead to further tripping
- Plot C: Generation is re-dispatched, results in uneconomic operation
- Plot D: Loss of load due to an attack

Real-time Simulation results of a cyber attack

7.5

Time (in seconds)

10

12.5

0

2.5

15

-50

0

2.5

7.5

Time (in seconds)

10

12.5

15

Conclusions

http://powercyber.ece.iastate.edu

- National Science Foundation
- Electric Power Research Center, ISU
- Students: Aditya Ashok, Adam Hahn, Siddharth Sridhar, Jie Yan, and several undergrad students
- •Collaborator: Prof. Chen-Ching Liu, Wash. State Univ