Partie entière

1. Définitions

a) Partie entière d'un réel : soit x un réel.

La partie entière (par défaut) de x, notée E(x) ou |x|, est le plus grand entier relatif inférieur à x

b) Caractérisation:

 $\lfloor x \rfloor$ est donc caractérisé par

$$[x] \leqslant x < [x] + 1 \quad \text{et} \quad [x] \in \mathbb{Z}^{1}$$

$$[x - 1 < |x| \le x \quad \text{et} \quad |x| \in \mathbb{Z}^{1}]$$

ou encore

Méthode: pour calculer la partie entière d'un réel x, on l'encadre entre deux entiers consécutifs:

$$n \leqslant x < n+1$$
: alors $\lfloor x \rfloor = n$

 $\begin{array}{ll} \textit{Exemples}: & \left\lfloor \sqrt{2} \right\rfloor = 1, \operatorname{car} 1 < \sqrt{2} < 2 \\ & \left\lfloor -\pi \right\rfloor = -4, \operatorname{car} -4 < -\pi < -3 \end{array} \ \ \text{(Attention!)}$

c) <u>Partie décimale</u>: le nombre D(x) = x - E(x) est appelé partie décimale de x. On a $0 \le D(x) < 1$

Partie entière par excès : la partie entière par excès de x, notée $\lceil x \rceil$, est le plus petit entier supérieur à x.

On a pour tout $x \in \mathbb{R} \backslash \mathbb{Z}, \ \lceil x \rceil = \lfloor x \rfloor + 1$, et pour $x \in \mathbb{Z}, \ \lceil x \rceil = \lfloor x \rfloor$

2. Propriétés

 $\forall x \in \mathbb{R}, \ \forall k \in \mathbb{Z}, \ |x+k| = |x| + k$

Remarque: la fonction D est 1 périodique. Quelle est sa courbe?

b) Courbe de $E: \mathbb{R} \to \mathbb{R}$: $\forall k \in \mathbb{Z}$, E est constante sur $[k, k+1]: \forall x \in [k, k+1]$, E(x) = k

On a $\lim_{k+} E = k$, $\lim_{k-} E = k-1$ et $E\left(k\right) = k$, donc E n'est pas continue sur \mathbb{Z} . Elle l'est sur $\mathbb{R}\setminus\mathbb{Z}$.

c) Monotonie: E est croissante, et on a donc

$$x \leqslant y \Longrightarrow E(x) \leqslant E(y)$$

Plus précisément, on a, si $x \in \mathbb{R}$ et $n \in \mathbb{N}$:

$$n \le E(x) \iff n \le x$$
 et $E(x) < n \iff x < n$

 $\boxed{n \leqslant E(x) \Longleftrightarrow n \leqslant x} \quad \text{et} \quad \boxed{E(x) < n \Longleftrightarrow x < n}$ Remarque : si p et q sont entiers, on a $\boxed{p < q} \Longleftrightarrow p \leqslant q - 1$

[|]x| est le plus grand minorant entier de x donc $\lfloor x \rfloor + 1$ n'est pas minorant de x