Data Science II (P8106)

Yifei Sun

Assistant Professor

Department of Biostatistics Mailman School of Public Health Columbia University

Spring 2024

Class meeting time and place
 Tuesday and Thursday, 4:00 - 5:20 PM
 Rosenfield 8th Fl Auditorium
 3/19 VEC 201
 3/21 VP&S Amp 1
 2/20 No class

Instructor office hours: Monday, 4 - 5pm, zoom

► Teaching Assistants

Yijin Wang yw4005

Ryan Wei rw2844

Bin Yang by2303

Runze Cui rc3521

► TA office hours: TBD

Wed & Fri 12-1pm

- Evaluation based on
 - ► Homework (30%)
 - ► Mid-term project (30%)
 - Final project (30%)
 - Class participation (10%)
- Course materials are available at Canvas
- References
 - "An Introduction to Statistical Learning" (ISL) by James et al.
 - "Applied Predictive Modeling" (APM) by Kuhn and Johnson
 - "Elements of Statistical Learning" (ESL) by Hastie et al.
 - "Tidy Modeling with R" (TMR) by Kuhn and Silge

- ► We assume that you know/have taken
 - Calculus and Linear Algebra
 - Derivative and integral
 - ► Inner product
 - Lagrange multiplier
 - Matrix, eigenvalue decomposition/singular value decomposition
 - Data Science I
 - Biostatistical Methods I
 - Introductory level probability and statistics
- R Markdown is required for homework
- Other courses
 - More mathematical details: P9120 "Topics in Statistical Learning and Data Mining"
 - Non-biostatistical students: P8451 "Introduction to Machine Learning for Epidemiology and Public Health"

What is Data Science?

- ▶ Data science encompasses a set of principles, algorithms and processes for extracting useful patterns from data
- Many of the elements of data science have been developed in related fields such as machine learning and data mining
- Data science is broader in scope
 - Data wrangling and databases ~
 - Data visualization
 - Statistics and Probability
 - Machine learning DS II
 - Domain expertise
 - ► Ethics and regulation
- Machine learning is a fundamental ingredient in the training of a modern data scientist

Outline of the course

- ► In DSII, we will cover
 - Regression
 - Classification
 - Clustering, Dimension reduction
 - And their implementations in R
- ▶ 70% method/algorithm + 30% implementation

Programming in DSII

- Every tool has its shelf life
- Different dialects/syntaxes in R
 - ▶ base R (e.g., \$, [[]], ...) stable
 - Add-on packages: tidyverse (readability), data.table (fast), ...
- ▶ R packages for machine learning (e.g., glmnet, ranger, ...)
- Meta-engine (caret, parsnip)

tidymodels

Supervised Learning

- Predictor measurements X (inputs/regressors/covariates/features/independent variables)
- Outcome measurement Y (dependent variable/response/target)
 - ightharpoonup Y is quantitative regression
 - Y takes values in a finite and unordered set classification
- ightharpoonup Training data: $(x_1, y_1), \ldots, (x_n, y_n)$
- Objectives:
 - Understand which inputs affect the outcome, and how
 - Accurately predict unseen cases (χο, (μ))
 - Assess the quality of our predictions and inferences

Unsupervised Learning

- ightharpoonup No outcome Y
- Objectives:
 - Find groups of samples that behave similarly
 - Find features that behave similarly

PCA

- Find linear combinations of features with the most variation
- Can be used as a pre-processing step for supervised learning

Example n = 60

Identify the numbers in a handwritten zip code

Real world applications: medical science

- ► Supervised learning Y∈ ∫0,1}

 - ▶ Predict disease outcome or risk score $\gamma(\gamma=1)$
- Unsupervised learning
 - Identify disease subtypes
- "Machine Learning in Medicine."

Circulation. 132(20):1920-1930. Feature Outcome A|B|C|D|E|F|G| MΙ No MI **Patient**

Notation

- ightharpoonup Quantitative response Y
- ▶ p different predictors, $X = (X_1, X_2, \dots, X_p)$.
- Now we write our model as

$$Y = f(X) + \epsilon$$

lacktriangleright f represents the systematic information

$$E[2|X] = 0$$

- lacktriangleright is a zero-mean error term and independent of X
- ightharpoonup Statistical learning refers to approaches for estimating f

Why estimate f?

- ► Information: To extract some information about how the response variables are associated with the input variables.
 - \blacktriangleright Understand which components of X are important in explaining Y
 - ▶ Understand how each component X_i of X affects Y
- Prediction
 - lacksquare Make predictions of Y at new points X=x

The regression function

ightharpoonup What is a good prediction of Y at any point X=x?

$$f(x) = E[Y|X = x]$$

The regression function
$$f(x)$$
 $F(Y-C)^2$ $C = FY$

- ▶ f(x) = E(Y|X = x) is the *optimal* predictor of Y with regard to the **mean-squared prediction error** i.e., f(x) = E(Y|X = x) is the function that minimized $E[(Y g(X))^2|X = x]$ over all functions g at all points X = x
- ullet $\epsilon = Y f(x)$ is the *irreducible* error i.e., even if we knew f(x), we would still make error in prediction, since at each X = x there is typically a distribution of possible Y values
- ightharpoonup How do we estimate f?

Parametric models

The linear model is an important example of a parametric model:

$$f_L(x) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p$$

- A linear model is specified in terms of p+1 parameters $\widehat{\beta}_0, \widehat{\beta}_1, \dots, \widehat{\beta}_p$ $\widehat{f}_L(x)$
- We estimate the parameters by fitting the model to training data
- Although it is almost never correct, a linear model often serves as a good and interpretable approximation to the unknown true function f(X)

Nonparametric methods

- Ê[Y|X=0] (Ê[Y|X=1])
- ightharpoonup No explicit assumptions of the functional form of f
- ightharpoonup Typically we have few if any data points with X=x exactly
- ► Relax the definition and let

$$\widehat{f}(x) = \underline{Ave(Y|X \in \mathcal{N}(x))}$$

where \mathcal{N} is some *neighborhood* of x

- lacktriangle Advantage: Can be used to fit a wider range of possible shapes for f
- Disadvantage: A large number of observations is needed

Simulated example

- $f(x) = \sin(2\pi x)$ is the green curve
- ▶ Blue points are simulated from the model $Y = f(X) + \epsilon$
- Red curves are polynomial functions of orders M fitted to the data $f_{A}(x) = g_0 + g_1x + g_2x^2 + \cdots + g_Mx^M$

Overfitting

- ► A low degree of freedom leads to underfitting
- With an extremely high degree of flexibility, the model does its best to account for every single data point
- Cannot generalize well to new data

Assessing model accuracy

Suppose we fit a model $\widehat{f}(x)$ to the **training** data $\operatorname{Tr} = \{(x_i, y_i), i = 1, \dots, n\}$

lacktriangle Compute the average squared prediction error over ${
m Tr}$

$$MSE_{Ti} = Ave_{i \in Tr}[y_i) - \widehat{f(x_i)}]^2$$

- ightharpoonup Can we use $\mathrm{MSE}_{\mathrm{Tr}}$?
- Instead, we should, if possible, compute it using fresh **test** data $Te = \{(x_i^{\text{tot}}, y_i^{\text{tot}}), i = 1, ..., m\}$:

$$MSE_{Te} = Ave_{i \in Te}[y_i^* - \widehat{f}(x_i^*)]^2$$

Example I on training and test MSE

- Left: Black curve is truth Smoothing splines
- ightharpoonup Right: Red curve on right is MSE_{Te} , grey curve is MSE_{Tr}
- Orange, blue and green curves/squares correspond to fits of different flexibility

[ISL] Figure 2.9

Example II on training and test MSE

The truth is smoother, so the smoother fit and linear model do well

[ISL] Figure 2.10

A question for you

- High/low
- A model that underfits the data will have $\frac{high}{gh}$ training error and $\frac{high}{gh}$ testing error
- A model that overfits the data will have $\frac{100}{100}$ training error and $\frac{100}{100}$ testing error