PATENT ABSTRACTS OF JAPAN

(11)Publication number:

08-339630

(43) Date of publication of application: 24.12.1996

(51)Int.CI.

G11B 20/10 HO4N 5/92 7/24 HO4N

(21)Application number: 07-146516

(71)Applicant: MITSUBISHI ELECTRIC CORP

(22)Date of filing:

13.06.1995

(72)Inventor: NANBA TAKAHIRO

KUMANO MAKOTO OKUMA IKUO

ONISHI TAKESHI

(54) MULTICHANNEL SELECTOR. MULTICHANNEL RECORDER. MULTICHANNEL REPRODUCER, MULTICHANNEL RECORDER AND REPRODUCER, DATA COMPRESSOR AND **DATA EXPANDER**

(57)Abstract:

PURPOSE: To obtain a multichannel recorder and reproducer capable of efficiently transmit information by a simple system, simply selecting necessary channel information, and recording and reproducing. CONSTITUTION: Channel information selected by a channel selector 2 is transmitted to a first time base converter 50 via a bus interface 3, time base converted. then added with a time stamp by a time stamp adder 52, and recorded in an HDD 4. At the time of reproducing, the reproduced channel information from the HDD 4 is output to the interface 3 via a second time base converter 53, time base moved via a third time base converter 60, and then the channel information decoded by an MPEG decoder 27 is displayed on a TV monitor 28.

LEGAL STATUS

[Date of request for examination]

01.11.2001

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration

[Date of final disposal for application]

[Patent number]

3740712

[Date of registration]

18.11.2005

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Partial English Translation of

LAID OPEN unexamined

JAPANESE PATENT APPLICATION

Publication No. 08-339630

[0059] to [0065]

[0059] In the bit stream signal of the multi-channel broadcasting shown in Figure 2(a) and Figure 3, after only an information channel to be required is selected by the channel selector 2 shown in Figure 1, the selected information is transferred onto the bus interface 3 (based on, for example, IEEE 1394). In the bus interface 3, transmission with a rate (for example, approximately 50 Mbps) higher than that of the bit stream signal of the multi-channel broadcasting (shown in Figure 2(a)) (for example, approximately 50 Mbps) is performed on a basis of one cycle of 125 µm of the CS signal 31, as shown in Figure 2(b). One packet (188 byte) of the bit stream signal of the multi-channel broadcasting is rate-converted and is transmitted to the Iso region 32 as shown in Figure 2(b).

[0060] Further, in the HDD (hard disk drive) 4 shown in Figure 1, in order to record the bit stream signal of the multi-channel broadcasting from the channel selector 2 via the bus interface 3, a request to output information to the bus interface 3 is issued from the HDD4 to the channel selector 2. According to this request, the channel control information as to information on which program is to be requested to the multi-channel broadcasting from the channel selector 2 is transmitted to the channel selector 2, using, for example, an Async region 33 set in the bus interface 3 in advance. In response to this request, the information is transmitted via the bus interface 3 as described above.

[0061] Further, at this transmission, in addition to the bit stream signal of the multi-channel broadcasting, data indicating to which apparatus information is to be transmitted from the channel selector 2 is added as the header 24 and is output to the bus interface 2. The HDD 4 extracts information sent to the HDD 4 and records the information, by constantly detecting the header 24 added to all information transmitted to the bus interface 3.

[0062] Figure 4 shows a data processing process in which the programs in the bit stream signal of the multi-channel broadcasting are Programs 0 to 2 and the information of Program 0 which has been sent to the HDD 4 is

recorded. Figure 4(a) shows an example of transmission of actual program information (Programs 0 to 2). The information unit of Program 0 (hereinafter referred to as "1 block packet") is $188 \times n$ ($n \ge 1$, n is a natural number) and the information unit of Program 1 is $188 \times m$ (byte, $m \ge 1$, m is a natural number), and the unit of Program 2 is $188 \times k$ (byte, $k \ge 1$, k is a natural number).

[0063] The channel selector 2 selects only a necessary information channel (only Program 0 in the present embodiment) from the bit stream signal from the satellite broadcasting decoder 1 in Figure 4(a), as shown in Figure 4(b) and is sent to the bus interface 3.

[0064] The transmitted channel information from the bus interface 3 is input into the first time axis converter 50 in the signal mode as shown in Figure 4(c). In the signal shown in Figure 4 (c), only Program 0 is extracted by extracting the header in the transmitted channel information from the bus interface 3 and the information on the other programs are neglected. The timer 51 has a reference counter of 24 hours and digital data indicating the time when the information of Program 0 arrives at the first time axis converter 50 is generated as a time stamp of, for example, 4 byte.

[0065] In the HDD4, although when the information on Program 0 is received, information is sent in a packet unit of 188×n as shown in Figure 4(c), the transmission time other than the 1 block packet (the period indicated by a reference number 26b in Figure 4(c)) is a totally meaningless period as information. Hence, when Program 0 is recorded into the HDD4, the time stamp adder 52 adds the time stamp 5 to a signal in which the transmission time 26b is shortened by the first time axis converter 50 including a buffer and the like, and the signal in the state of Figure 4(d) is input into the HDD 4. As described above, by shortening the transmission time other than 1 block packet by the first time axis converter 50 and lowering the data rate of 1 block packet information, the recording rate in the HDD4 can be lowered and the access time in the HDD 4 can be slowed, which enables manufacturing the device cheap. In other words, since compared with the case where data is written in real time in the period 26a, data of the same amount as in the above case may be written in the period of (26a + 26b), the access time can be significantly slowed and accordingly a cheap HDD device can be used. Further, when data is recorded into a tape data device instead of the HDD 4, tape corresponding to the period 26b where there is no information of the program to be recorded is wastefully consumed if the recording rate is in accordance with the period 26a. However, by recording the program

information corresponding to the period 26a in the time period (26a+26b) as described above, problems such as reduction in recording time can be prevented from generating. A cheap tape device with a low recording rate can be used as well as the HDD 4.

(19)日本国特許庁 (JP)

(51) Int.Cl.⁶

(12) 公開特許公報(A)

庁内整理番号

(11)特許出願公開番号

特開平8-339630

技術表示箇所

(43)公開日 平成8年(1996)12月24日

(21)出題番号	4	·阿平7-146516		(71) 出題人	0000060	13		
				審査請求	宋蘭宋	請求項の数15	OL	(全 20 頁)
	7/24				7/13	2	Z	
H 0 4 N	5/92			H04N	5/92	(2	
G11B 2	20/10	301	7736-5D	G11B	20/10	301	A	

 $\mathbf{F}^{\cdot}\mathbf{I}$

(22)出廣日 平成7年(1995)6月13日

識別記号

三菱電機株式会社

東京都千代田区丸の内二丁目2番3号

(72)発明者 難波 隆広

長岡京市馬場図所1番地 三菱電機株式会

社映像システム開発研究所内

(72) 発明者 熊野 眞

長岡京市馬場図所1番地 三菱電機株式会

社映像システム開発研究所内

(72)発明者 大熊 育雄

長岡京市馬場図所1番地 三菱電機株式会

社映像システム開発研究所内

(74)代理人 弁理士 高田 守 (外4名)

最終質に続く

(54)【発明の名称】 マルチチャンネル選択装置、ならびにマルチチャンネル記録装置、マルチチャンネル再生装置お よびマルチチャンネル記録再生装置、ならびにデータ圧縮装置およびデータ伸張装置

(57) 【要約】

【目的】 簡易なシステムによって、情報の伝送が効率 よく行え、必要とするチャンネル情報を簡単に選択でき るとともに、記録再生できるようなマルチチャンネル記 録再生装置を得る。

【構成】 チャンネル選択器2によって選択されたチャ ンネル情報を、バスインターフェイス3を介して第1時 間軸変換器50に伝送して時間軸変換を行った後、タイ ムスタンプ付加器52によってタイムスタンプを付加し てHDD4に記録する。再生時には、HDD4からの再 生チャンネル情報は第2時間軸変換器53を介してバス インターフェイス3に出力し、第3時間軸変換器60で 時間軸移動を行ったのち、MPEGデコーダ27でデコ ードされたチャンネル情報を、TVモニタ28で表示す る。

【特許請求の範囲】

【請求項1】 複数のチャンネルが任意の構造を持つパ ケットデータとして時分割に伝送される伝送路から特定 のチャンネルを選択するチャンネル選択器と、基準時刻 を発生するタイマ装置と、このタイマ装置によって発生 された時刻情報をタイムスタンプとしてデータ化し、前 記チャンネル選択器の出力に付加して出力するタイムス タンプ付加装置を具備したマルチチャンネル選択装置。

【請求項2】 時刻情報としてタイマ装置の絶対時間、 または相対時間、または前タイムスタンプからの経過時 10 間を用いることを特徴とする請求項1記載のマルチチャ ンネル選択装置。

【請求項3】 任意のタイミングで入力される所定のパ ケット構造を持つトンスポートパケットを記録するマル チチャンネル記録装置であって、基準時間を発生するタ イマ装置と、入力パケットの到着時の前記タイマ装置の 出力値をタイムスタンプとして当該パケットに付加する タイムスタンプ付加装置と、この付加装置の出力パケッ トデータとタイムスタンプの両データを記録するデータ 記録装置とを具備したマルチチャンネル記録装置。

【請求項4】 時刻情報としてタイマ装置の絶対時間、 または相対時間、または全タイムスタンプからの経過時 間を用いることを特徴とする請求項3記載のマルチチャ ンネル記録装置。

【請求項5】 データ再生装置からの出力データよりタ イムスタンプを分離して出力するタイムスタンプ分離装 置と、前記タイムスタンプ分離出力値に応じてパケット 出力タイミングを変更する時間軸変換器とを具備したマ ルチチャンネル再生装置。

【請求項6】 任意のタイミングで入力される所定のパ 30 ケット構造を持つトランスポートパケットを記録、再生 するマルチチャンネル記録再生装置であって、基準時間 を発生するタイマ装置と、記録動作時には入力パケット の到着時の前記タイマ装置の出力値をタイムスタンプと して当該パケットに付加するタイムスタンプ付加装置 と、再生動作時に前記データ記録再生装置からの出力デ ータよりタイムスタンプを分離して出力するタイムスタ ンプ分離装置、および前記タイムスタンプ分離出力値に 応じてパケット出力タイミングを変更する時間軸変換器 とを具備したマルチチャンネル記録再生装置。

【請求項7】 複数のチャンネルが任意の第1のパケッ トデータ構造を持つパケットデータとして時分割に伝送 される伝送路と、特定のチャンネルを選択するチャンネ ル選択器と、基準時間を発生するタイマ装置と、このタ イマ装置によって発生された時刻情報をタイムスタンプ としてデータ化し、前記チャンネル選択器の出力に付加 して第2のパケット構造を持つパケットデータを出力す るタイムスタンプ付加装置と、第2のパケットデータ構 造を持つパケットデータを入力とし、当該パケット上の タイムスタンプ情報に示された所定の時刻に第1のパケ 50

ットデータ形式にして出力を行う時間軸変換器と、この 時間軸変換器の出力と前記伝送路データを選択していず れか一方をチャンネル選択器へ出力する選択器とを具備 したマルチチャンネル選択装置。

【請求項8】 時刻情報としてタイマ装置の絶対時間、 または相対時間、または前タイムスタンプからの経過時 間を用いることを特徴とする請求項7記載のマルチチャ ンネル選択装置。

【請求項9】 任意のタイミングで入力される所定のパ ケット構造を持つトランスポートパケットを記録するマ ルチチャンネル記録装置であって、入力データとしてパ ケットデータの到着時刻を示す第1のタイムスタンプが あらかじめ付加されており、入力パケットの到着時刻情 報を前記第1のタイムスタンプ値から演算して求め、当 該入力パケットに第2のタイムスタンプとして付加する タイムスタンプ付加装置と、この付加装置の出力パケッ トデータと第2のタイムスタンプの両データを記録する データ記録装置とを具備したマルチチャンネル記録装 置。

【請求項10】 第1のタイムスタンプと第2のタイム 20 スタンプをまったく同一としたことを特徴とする請求項 9記載のマルチチャンネル記録装置。

【請求項11】 n (n≥1, nは自然数) チャンネル の情報が前記伝送路送出される際に、番組内容を示す情 報値が予め定められた値と一致するチャンネルを選択し て出力するチャンネル選択器を備えたことを特徴とする 請求項1または請求項2または請求項7または請求項8 に記載のマルチチャンネル選択装置。

【請求項12】 記録再生装置に対する記録データレー トを検出するカウンタと、このカウンタの出力値に応じ て記録する情報のデータレートを制御する記録レート制 御器とを具備したことを特徴とする請求項3または請求 項4または請求項6または請求項9または請求項10に 記載のマルチチャンネル記録装置。

【請求項13】 ディジタル情報をパケットに分割して 伝送するシステムにおいて、n (n≥1, nは自然数) チャンネルの情報が前記伝送路に送出される際に、その 情報のデータレートにしたがって前記パケットを分割す るチャンネル選択器を備えたことを特徴とする請求項1 または請求項2または請求項7または請求項8に記載の マルチチャンネル選択装置。

【請求項14】 ディジタル情報と第1のパケット構造 を持つパケットに分割して伝送する伝送路から、ベース バンド映像および音声データを入力し、時間軸変換を行 って出力する第1の時間軸変換器と、この第1の時間軸 変換器の出力に所定のデータ圧縮処理を行って第2のパ ケットデータとして出力するデータ圧縮器と、このデー タ圧縮器の出力にそのパケットの到着時刻を示すタイム スタンプを付加するタイムスタンプ付加器と、前記パケ ットの到着時刻を計測するタイマ装置と、前記タイムス

タンプ付加器の出力を時間軸変換して前記伝送路に送出する第2の時間軸変換器とを具備したデータ圧縮装置。

【請求項15】 ディジタル情報と第1のパケット構造を持つパケットに分割して伝送する伝送路から、ベースバンド映像および音声データを入力し、時間軸変換を行って出力する第1の時間軸変換器と、この第1の時間軸変換器の出力に所定のデータ伸張処理を行って第2のパケットデータとして出力するデータ伸張器と、このデータ伸張器の出力を時間軸変換して前記伝送路に送出する第2の時間軸変換器とを具備したデータ伸張装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】この発明は、複数チャンネルの音 声および映像機器の情報のうち、必要な情報を選択して 記録再生できるマルチチャンネル記録再生装置に関す る。

[0002]

【従来の技術】図15は特開平7-46522号公報に記載されている従来のマルチチャンネル記録装置を示すプロック図で、170はアンテナ、172は分配器、1 2073はチューナ、174はA/Dコンバータ、175は圧縮回路、176はメモリ、177は読み出し回路、178は変調回路、179は磁気ヘッド、180は磁気テープである。地上波を用いたテレビジョン放送は、各放送局によって映像信号をAM変調して周波数多重によって複数の放送局の番組を伝送している。

【0003】図16はテレビジョン信号の各チャンネル (VHF帯1~12チャンネル) における周波数占有帯 域を示す図で、140は各チャンネルの映像機送波、141は音声機送波である。テレビジョン信号1チャンネル当り、映像搬送波+音声搬送波=約6MHzの帯域を もち、映像搬送波140および音声搬送波141は一定 の周波数間隔(4.5MHz) で配置することによって 映像および音声の分離伝送を可能としている。

【0004】受信側ではアンテナ170によって複数の映像信号の多重波が受信される。この信号を分配器172でチューナ173に分配する。チューナ173は映像信号をリアルタイムで受信する場合には1放送に対し必ず1つ必要とする。各チューナ173で復調された映像信号はA/Dコンバータ174でディジタル信号に変換40される。このディジタル信号は限られた記録容量の磁気テープに効率よく記録するため、圧縮回路175によってデータ圧縮が行われたのち、メモリ176の所定のアドレス番地が示す領域に書き込まれる。

【0005】各チャンネル毎にメモリ176が設けられており、読み出し回路177によって全チャンネルまたは特定チャンネル情報のディジタルデータを読み出すことが可能である。この読み出し回路177の出力は変調回路178によって磁気テープ180上に書き込み可能な信号に変換(変調)された後、磁気ヘッド179によ 50

って磁気テープ180に記録される。

【0006】図17は特開平7-46522号公報に記 載された従来のマルチチャンネル再生装置を示すブロッ ク図で、図15と同一符号はそれぞれ同一または相当部 分を示している。図17において、82は復調回路、8 3はアドレス制御回路、84は伸張回路、85はD/A コンバータ、86はTV入力信号処理回路である。磁気 テープ180に記録されている記録情報は、磁気ヘッド 179によって再生され、再生信号が得られる。再生信 10 号は復調回路82によってディジタルデータ信号に変換 (復調) された後、メモリ176のアドレス制御を行う アドレス制御回路83によって、記録チャンネル毎に存 在するメモリ176上に記憶される。メモリ176から 読み出された各チャンネル毎の再生データは、各メモリ 176年に設けられた伸張回路84によってデータ伸張 が行われる。そして、伸張された映像および音声データ はD/Aコンバータ85によってアナログ信号に変換さ れた後、TV入力信号処理回路86によって複数の情報 から所望のチャンネルの映像および音声信号が選択さ れ、TVモニタ(図示せず。)によりTV番組として表 示される。

【0007】上記従来例では、電波を用いたテレビジョン信号の多チャンネル伝送例を説明したが、ディジタルでしかも比較的近距離な機器間のデータ転送を行う場合は、大電力を必要とする変調波を用いずともケーブルを用いたテレビジョン信号の多チャンネルデータ信号の伝送が可能である。その一例として以下のようなディジタルインターフェイスが検討されている。

【0008】図18は"High Performan ce Serial Bus" (IEEE1394 D RAFT7. 1) (以下、「IEEE1394」とい う。) において提案されているシリアルインターフェイ スを用いた、例えば家庭内使用における映像音声信号の 転送構成を示す図である。図18において、31はサイ クルスタート(以下、「CS」という。)信号、32は Isochronous (以下、「Iso」という。) データ領域、33はAsynchronous (以下、 「Async」という。) 領域、34はVTR、35、 36はTVモニタ、37はレーザーディスク(以下、 「LD」という。)、38はBSチューナ、39はVT R、40はVTR34からTVモニタ35への再生映像 信号のパケットデータ (ap1~ap3)、41はLD 37からTVモニタ36への再生映像信号のパケットデ 一夕(bp1~bp3)、42はBSチューナ38から VTR39への記録用BS映像信号のパケットデータ (cp1~cp3) である。IEEE1394の場合、 Iso領域32のデータ転送は1サイクル中に必ず1回 データ転送を行うことが保証されている反面、Asyn c領域33は不規則(Iso伝送の合間に送られる。) であることから、例えば映像および音声情報はIso領 5 域32を、IEEE1394に準拠して接続されている

機器の制御情報等はAsync領域33を使用できる。 【0009】ディジタル映像および音声信号は、例えば Moving Picture Expert Gro up(以下、「MPEG」という)等の信号圧縮、伸張 技術を用いることによって、低レートのディジタル信号 (~10Mbps程度)によるNTSC放送程度の画質 を実現できる。このMPEG技術を用いることによっ て、比較的低レート(50Mbps程度)のシリアルデ ータバスで多チャンネルデータ伝送を実現できる。な お、実際にはMPEG圧縮された映像および音声データ はMPEGパケットという188バイト単位で伝送され ることから、Isoデータ領域32の各チャンネルデー

タは、パケットデータ(図18中の40~42)で構成

されている。

【0010】いま、VTR34,39、TVモニタ35,36、BSチューナ38は、家庭内で異なった場所に設置されている場合を想定する。各機器はシリアルデータバスを介して接続されており、相互間で情報のやりとり(録画、再生等)を自由に行うことができる。例え20ば、VTR34からの再生映像をTVモニタ35で映像で表示(再生)し、LD37の再生映像をTVモニタ36で表示するとともに、BSチューナからのBS放送番組をVTR34で録画するといった場合の各機器からの出力信号を示すのがパケットデータ(40~42)である。なお、このパケットデータは予め各機器内蔵のMPEGエンコーダ(図示せず)によってパケット化されるものであり、このパケットデータはIEEE1394におけるIso領域に割り当てられる。

【0011】図19は、現在国内外で検討されている放 30 送衛星を用いたマルチチャンネル放送の概念図で、16 0はカメラ装置、161はVTR、162はマイクロホン、163はMPEGエンコーダ、164はマルチプレクサ、165は衛星受信アンテナ、166は選局装置、167はVTR、168はMPEGデコーダ、169はTVモニタ、271は変調回路、272は復調回路、273はシリアルバスインターフェイスである。

【0012】図19において、番組a, b, cはそれぞれカメラ装置160、VTR161、マイクロホン162を複数台使用して制作されている。カメラ装置160 40およびマイクロホン162、またはVTR161からの映像および音声信号は、番組毎にMPEGエンコーダ163によってデータ圧縮処理が施された後、各番組毎のMPEGエンコードデータはマルチプレクサ164に集められる。集まった各番組の映像および音声信号は、マルチプレクサ164により時分割データに変換された後、放送衛星を介して各家庭に送信される。

【0013】各家庭では衛星受信アンテナ165によって受信された情報はそのままVTR167で記録されるか、または選局装置166によって必要とする番組(チ 50

ャンネル)が選択される。選局装置166によって選択された番組はMPEGデコーダ168によってデータ伸張された後、TVモニタ169に映像として表示される

【0014】なお、各家庭では上記衛星受信アンテナ165、VTR167、選局装置166、MPEGデコーダ168、TVモニタ169等の映像音響機器がシリアルバスインターフェイス273を介して複数台接続することが可能であり、この映像音響機器相互における情報10 伝送が可能である。

【0015】現在、米国では、"Direct TV" といった衛星(12GHz帯)を用いたマルチチャンネル放送のサービスが開始されている。"Direct TV"自体はMPEGパケットを用いない、独自のパケット方式を使用しているが、今後MPEGを利用したパケット方式に移行予定であり、マルチチャンネル放送の主流はMPEGパケットを用いたもの(その構成を図19に示す。)となると思われる。

[0016]

【発明が解決しようとする課題】従来のマルチチャンネル記録再生装置は以上のように構成されているので、受信した複数の番組情報の中から必要な番組を記録したい場合でも、送られてくる他のすべての番組を記録しなければならず、記録媒体 (VTRの場合磁気テープ)を無駄に使用しなければならないといった欠点があった。

【0017】また、従来のマルチチャンネル記録再生装置は、記録した複数の番組情報の中から必要な番組を再生したい場合でも、記録した他のすべての番組をバスインターフェイスを用いて伝送しなければならず、シリアルバスインターフェイスを長時間占有することによって、他の機器間の情報伝送を妨げてしまうという欠点があった。

【0018】さらに、従来のマルチチャンネル記録再生装置は、記録再生装置から再生された圧縮データ(例えばMPEGエンコードデータ)に対しては、バスインターフェイスに接続される機器すべてに必ず1つの伸張回路(例えばMPEGデコードデータ)を設けなければならないといった欠点があった。

【0019】この発明は上記のような問題点を解決する ためになされたもので、必要な番組情報を選択した後、 効率よく記録再生することを目的とする。

【0020】また、情報伝送時のパスインターフェイスの伝送効率を高めることを目的とする。

【0021】さらに、1台の伸張装置によって複数機器 のデータ伸張を行うことを目的とする。

[0022]

【課題を解決するための手段】請求項1の発明によるマルチチャンネル選択装置は、時系列的に複数チャンネルの情報が伝送された場合において、任意のチャンネル情報を選択した後、タイムスタンプを付加して出力するチ

ャンネル選択装置を設けたものである。

【0023】請求項2の発明によるマルチチャンネル選択装置は、タイマ装置に対する絶対時間、または相対時間、または前タイムスタンプからの経過時間を用いてタイムスタンプを作成し、任意のチャンネル情報を選択した後、タイムスタンプを付加して出力するチャンネル選択装置を設けたものである。

【0024】請求項3の発明によるマルチチャンネル記録装置は、入力パケットデータに対してタイムスタンプを付加した後記録する記録装置を設けたものである。

【0025】請求項4の発明によるマルチチャンネル記録装置は、タイマ装置に対する絶対時間、または相対時間、または前タイムスタンプからの経過時間を用いてタイムスタンプを作成し、タイムスタンプを付加した後記録する記録装置を設けたものである。

【0026】請求項5の発明によるマルチチャンネル再生装置は、データ再生装置に対し、再生出力データからタイムスタンプデータを分離するタイムスタンプ分離器と、時間軸変換器を設けたものである。

【0027】請求項6の発明によるマルチチャンネル記 20 録再生装置は、入力されたパケットデータに対しタイム スタンプを付加するタイムスタンプ付加装置と、記録、 再生データの時間軸を変換する時間軸変換器を設けたも のである。

【0028】請求項7の発明によるマルチチャンネル選択装置は、複数のチャンネルから構成されるパケットデータから特定のチャンネルを選択するチャンネル選択器と、その出力に対してタイムスタンプを付加するタイムスタンプ付加器と、選択器、および時間軸変換器を設けたものである。

【0029】請求項8の発明によるマルチチャンネル選択装置は、複数のチャンネルから構成されるパケットデータから特定のチャンネルを選択するチャンネル選択器と、その出力に対してタイマ装置に対する絶対時間、または相対時間、または前タイムスタンプからの経過時間をタイムスタンプとして付加するタイムスタンプ付加器と、時間軸変換器を設けたものである。

【0030】請求項9の発明によるマルチチャンネル記録再生装置は、入力した第1のタイムスタンプの付加されたパケットデータから第2のタイムスタンプを演算し 40 て生成したのち付加するタイムスタンプ付加器と、前記入力パケットデータと前記第2タイムスタンプを記録再生装置を設けたものである。

【0031】請求項10の発明によるマルチチャンネル 記録再生装置は、入力した第1のタイムスタンプの付加 されたパケットデータから第1のタイムスタンプをその まま第2のタイムスタンプとして付加するタイムスタン プ付加器と、前記入力パケットデータと前記第2タイム スタンプを記録再生する記録再生装置を設けたものであ る。 【0032】請求項11の発明によるマルチチャンネル 選択装置は、番組内容を示す情報値が予め定められた値 と一致するチャンネルを選択し、出力するチャンネル選 択器を設けたものである。

8

【0033】請求項12の発明によるマルチチャンネル 記録装置は、記録装置に対する記録データレートを検出 するカウンタと、このカウンタの出力値に応じて、記録 する情報のデータレートを制御する記録レート制御器と を設けたものである。

10 【0034】請求項13の発明によるマルチチャンネル 選択装置は、n(n≥1, nは自然数)チャンネルの情 報が前記伝送路に送出される際に、その情報のデータレ ートにしたがって前記パケットを分割するチャンネル選 択器を設けたものである。

【0035】請求項14の発明によるデータ圧縮装置は、第1の時間軸変換器とデータ圧縮器、タイムスタンプ付加器および第2の時間軸変換器とを設けたものである。

【0036】請求項15の発明によるデータ伸張装置は、第1の時間軸変換器とデータ伸張器、タイムスタンプ付加器および第2の時間軸変換器とを設けたものである。

[0037]

【作用】請求項1の発明によれば、複数チャンネルの中から任意の番組に対してタイムスタンプを付加して選択 出力する。

【0038】請求項2の発明によれば、複数チャンネルの中から任意の番組に対してタイマ装置に対する絶対時間、または相対時間、または前タイムスタンプからの経30 過時間をタイムスタンプとして付加したのち選択出力する。

【0039】請求項3の発明によれば、トランスポートパケットに対し、タイムスタンプを付加して記録する。

【0040】請求項4の発明によれば、タイマ装置に対する絶対時間、相対時間および前タイムスタンプからの 経過時間をタイムスタンプとして付加したトランスポートパケットを記録する。

【0041】請求項5の発明によれば、再生データより タイムスタンプを分離した後、時間軸変換を行う。

【0042】請求項6の発明によれば、トランスポートパケットに対し、タイムスタンプを付加して記録、再生を行う。

【0043】請求項7の発明によれば、タイムスタンプ 情報に示された時刻に出力する時間軸変換器の出力と伝 送路データを選択してチャンネル選択器に出力する。

【0044】請求項8の発明によれば、タイマ装置に対する絶対時間、相対時間および前タイムスタンプからの経過時間から構成されるタイムスタンプ情報に示された時刻に出力する時間軸変換器の出力と伝送路データを選50 択してチャンネル選択器に出力する。

20

q

【0045】請求項9の発明によれば、入力パケットデータに対し、第2のタイムスタンプを付加して記録する。

【0046】請求項10の発明によれば、入力パケットデータに対し、第1のタイムスタンプと同一の第2のタイムスタンプを付加して記録する。

【0047】請求項11の発明によれば、必要とする番組を選択記録する。

【0048】請求項12の発明によれば、記録するデータのデータレートに応じて記録レートを可変する。

【0049】請求項13の発明によれば、伝送するデータのレートに応じて1パケットを分割、伝送する。

【0050】請求項14の発明によれば、伝送路より入力したパケットデータに対してデータ圧縮処理を行い、 圧縮データを伝送路に出力する。

【0051】請求項15の発明によれば、伝送路より入力したパケットデータに対してデータ伸張処理を行い、伸張データを伝送路に出力する。

[0052]

【実施例】

実施例1.以下、この発明の実施例1を図1、図2、図3をもとに説明する。図1において、1は衛星放送デコーダ、2はチャンネル選択器、3はバスインターフェイス、4はハードディスクドライブ(以下、「HDD」という。)、20は受信アンテナ、27はMPEGデコーダ、28はTVモニタ、50は第1時間軸変換器、51はタイマ装置、52はタイムスタンプ付加器、53は第2時間軸変換器、60は第3時間軸変換器、100はチャンネル選択装置、101は記録再生装置である。また、図2は実施例1の伝送データを示す図で、5はタイ30ムスタンプ、24はヘッダ、32はIso領域、33はAsync領域である。

【0053】次に、動作について説明する。図1は複数 チャンネルの番組が伝送される衛星放送を、ある特定の番組を選択して記録するための回路構成を示す。放送衛星 (図示せず) から送られてきた複数チャンネルの番組 の映像信号は、衛星を介して伝送するために変調をかけて送信される。この信号は衛星放送デコーダ1によって復調され、図2(a)に示されるような1パケット188byteを単位としたビットストリーム信号に変換さ 40れる。図2(a)に示すビットストリーム信号におけるパケット構成を図3に示す。

【0054】図3において、6はProgram As sociation Table (以下、「PAT」という。)、7はPacket Identificat ion (以下、「PID」という。)、8はProgram Map Table (以下、「PMT」という)、9はAdaptation Field (以下、「APF」という。)、10はPeak Rate F lag (以下、「PRF」という。)、11はAudi 50 ット11、videoパケット12が連続して伝送され

oパケット、12はVideoパケット、21はNetwork Information Table (以下、「NIT」という。)、22はConditional Access Table (以下、「CAT」という。)である。

10

【0055】マルチチャンネル放送はMPEG2のトランスポートストリーム(以下、「TS」という。)と呼ばれる188byteのパケット単位のデータストリームで構成されている。このTSを構成する各パケットには、パケット独自の識別情報としてPID(13ビット)が割り当ててあり、これによりパケットの情報内容を識別、または検索することが可能である。例えば図3のPAT6にはPID= "03"といった固有の数値が割り当てられていることからPIDのみを検出することによって、必要とするパケットのみを選択抽出することも可能である。

【0056】複数チャンネルプログラムの開始を示す情 報は、PAT6というパケットに記載されている。例え ば図3(a)に示すように、PAT6にはプログラムN o. と、そのプログラムに対応するPMT8の持つPI Dの値との関係を示す情報が書き込まれている。このP AT6に続いてNIT21、CAT22といった各種情 報の記載されたパケットが続く。これらのパケットに続 き、PMT8 (PMT-0~PMT-2) といった各プ ログラム毎の情報内容(例えばVideo, Audi o、Data等のジャンル区分)とPIDの関係を示す パケットがある。例えば図3(b)に示すように、pr ogram0のうち、AudioデータはPID= "2 F"、VideoデータはPID= "35" といったよ うな情報が書き込まれている。図3 (c) はprogr am1におけるPMT8 (PMT-1) の内容を示して おり、前記PMT-0と同様に情報が書き込まれてい

【0057】前記PMT8は、各programに対応 して必ず1パケット存在し、伝送されたプログラム数の PMT8が連続して配置される。そして、これに続くA PF9 (APF-0) には、各プログラムの実際の情報 (Audio、Video等のデータパケット)をMP EG2デコードする時に必要な情報が書き込まれてい る。この中には、各プログラム毎にMPEG2エンコー ド時におけるピークレートを示すPRF10が含まれて おり、このPRF10を検出することによって、送られ てきたプログラムの最大データレートが検出できる。 【0058】APF9 (APF-0) の後にはaudi oパケット11、videoパケット12が各プログラ ム毎に必要なパケット数連続して配置される。このpr ogram0の情報をすべて伝送した後、図3(d)の ようにprogram1のAPF9 (APF-1) が伝 送され、以下、programO同様、audioパケ

る。

【0059】図2(a) および図3にて示したマルチチ ャンネル放送のビットストリーム信号は、図1で示すチ ャンネル選択器2によって、必要となる情報チャンネル のみが選択された後、その選択情報はバスインターフェ イス3(例えばIEEE1394に準拠したもの。)上 に転送される。このバスインターフェイス3において は、図2(b)で示されるように、CS信号31による 1サイクル125μsを基準とし、マルチチャンネル放 送のビットストリーム信号(図2 (a)) より高レート 10 (例えば50Mbps程度) 伝送が行われる。マルチチ ャンネル放送のビットストリーム信号の1パケット(1 88byte) は図2(b) のように Iso 領域32に レート変換された形で伝送される。

【0060】なお、図1に示すHDD4においては、バ スインターフェイス3を介して、チャンネル選択器2か らのマルチチャンネル放送のビットストリーム信号を記 録するために、予めHDD4からチャンネル選択器2に 対してバスインターフェイス3へ情報を出力するように 要求している。この要求は、HDD4側において、チャ 20 ンネル選択器2からのマルチチャンネル放送に対して、 何プログラム目の情報を要求するかといったチャンネル 制御情報を、予め、例えばバスインターフェイス3で設 定されているAsync領域33等を使ってチャンネル 選択器2に伝送する。この要求に答えて上記説明のよう にバスインターフェイス3を介して情報が伝送されてく る。

【0061】また、この伝送時、マルチチャンネル放送 のビットストリーム信号に加えて、図2(b)に示すよ うにチャンネル選択器2からどの機器に対して情報を伝 30 送するかを示す内容のデータをヘッダ24として付加し てから、バスインターフェイス3に出力している。HD D4ではバスインターフェイス3で伝送されているすべ ての情報に付加されているヘッダ24を常時検知するこ とにより、自分宛の情報であることが検出された場合に はバスインターフェイス3からこの情報を抜き取って記 録処理を行う。

【0062】図4は、例えばマルチチャンネル放送のビ ットストリーム信号中のプログラムをprogramの ~2とし、HDD4が受け取ったprogram0の情 40 報を記録するデータ処理過程を示す図である。図4

(a) は実際のprogram情報(program0 ~program2)の伝送例を示している。なおここ では、program0の情報単位(以下、「1ブロッ クパケット」という)を188×n (n≥1、nは自然 数)、program1の情報単位を188×m(バイ ト) (m≥1、mは自然数)、program2の情報 単位を188×k (バイト) (k≥1、kは自然数) で 定義している。

【0063】図4(a)における衛星放送デコーダ1か 50 とによる。この問題を回避するために各パケット(18

12

らのビットストリーム信号に対して、チャンネル選択器 2は、図4(b)にしめすように必要な情報チャンネル (本実施例ではprogram0のみ) のみを選択し て、バスインターフェイス3に送出する。

【0064】バスインターフェイス3からの伝送チャン ネル情報は、図4 (c)に示すような信号形態で、第1 時間軸変換器50に入力される。ここで、図4(c)に 示す信号では、前述のようにバスインターフェイス3か らの伝送チャンネル情報中のヘッダを検出することによ りprogramOのみが抜き出されており、それ以外 のprogram情報については無視される。タイマ装 置51は24時間の基準カウンタを有しており、pro gramOの情報が第一時間軸変換器50に到着した時 刻を表すデジタルデータを例えば4(byte)のタイ ムスタンプとして生成する。

【0065】HDD4でのprogram0情報受信時 は、図4(c)に示すように188×nパケット単位で 情報が送られてくるが、1ブロックパケット以外の伝送 時間(図4(c)の26bで示す期間)は、情報として は何等意味を持たない時間である。よって、progr am0をHDD4記録する場合、バッファ等で構成され る第1時間軸変換器50によってこの伝送時間26bを 縮めた信号に、タイムスタンプ付加器52において上記 タイムスタンプ5を付加し、図4(d)の状態の信号が HDD4に入力される。このように、第1時間軸変換器 50により1ブロックパケット以外の伝送時間を縮め、 1ブロックパケット情報のデータレートを下げることに よって、HDD4における記録レートを下げることがで き、HDD4のアクセス時間を遅くでき装置を安価に作 成することが可能となる。すなわち、26aの期間リア ルタイムでデータを書き込む場合に比べて、(26a+ 26b) の期間で同量のデータを書き込めばよいので、 アクセス時間をはるかに遅くすることが可能となり、こ れにより安価なHDD装置を使用できるものである。ま た、HDD4の代わりに例えばテープデータ装置へ記録 を行う場合には、記録速度を26aの期間に合わせる と、記録すべきprogram情報が存在しない26b 期間分の無駄なテープ消費につながるが、上述のように (26a+26b) の時間で26aの期間のprogr a m情報を記録することにより、全体として記録時間の 減少等不具合が発生するのを回避できる。無論HDD4 同様、記録レートの低い安価なテープ装置が使えるとい うことはいうまでもない。

【0066】なお、記録レートの変化およびブロックパ ケットの時間軸移動は、再生時のMPEGデコード処理 に重大な影響を与える。これは、MPEGデータのデコ ードの際には、パケットの到着時刻そのものが必要にな るが、この時間軸変換(時間軸移動)によって、記録、 再生過程でパケット到着時刻の関係が崩されてしまうこ

8 b y t e) に対し、基準時間、例えばタイマ装置51 に対する絶対時間を示すタイムスタンプ5を付加するこ とによって、MPEG2本来の持つタイムスタンプ(各 ブロックパケット内に設定されている。)に対し、補正 をかけることが可能となる。すなわち、デコード時にこ のタイムスタンプデータを参照して各パケット毎の本来 の到着時刻に合わせて再生すればよい。

【0067】次に、時間軸変換の際の変換レートは以下 のようにして決定する。HDD4での記録時、図4

(d) におけるprogram情報からPRF10を検 10 出することにより、program0のMPEG2エン コード時のピークデータレートを検出し、この値に応じ たHDDの記録レートを設定する。例えば、PRF= "10"の場合、ピークデータレートが10Mbpsで あることを表しており、この値からHDD4への最適記 録レートを設定する。本実施例では、例えばPRF= "6"、すなわちピークレート6Mbpsである場合を 想定しているので、図4(d)に示す状態のHDD4記 録時のデータレートを6Mbpsに設定している。

【0068】このことは、記録装置としてテープ装置を 20 使用する場合には特に重要であり、テープ走行速度が最 低どのくらいであれば記録が完全に行えるかを示すもの である。必要以上に記録レートを上げると無駄にテープ を消費し、結果として記録時間が短くなってしまう一 方、下げすぎると記録しきれないデータが生じてしま う。したがって、必要最低限のデータ記録が可能となる テープ走行速度を選ぶことで、最も合理的な記録が実現 できる。

【0069】なお、上記説明では、タイムスタンプの付 加を、チャンネル情報が第1時間軸変換器50に到着し 30 た時刻を基準に設定したが、この時刻はHDD4に記録 する前であればどの段階で行ってもよい。例えば、詳細 は後述するが、図7のように、タイマ装置51およびタ イムスタンプ付加器52によって、チャンネル選択器2 でのチャンネル情報選択直後の時刻を基準に、タイムス タンプを付加した後、バスインターフェイス3に出力し てもよい。この場合はバスインターフェイス3に対し て、例えば4byteのタイムスタンプを付加して、1 パケット=188+4=192byte単位で伝送すれ ばよい。

【0070】また、タイムスタンプ情報としては、タイ マ装置51の示す絶対時間そのものを用いても、また、 特定の時点からの相対時間を用いても、また、前パケッ ト到着時点からの時間間隔値を用いてもよく、いずれの 場合でも再生時パケット到着時刻を容易に復元するでき ることはいうまでもない。

【0071】なお、以上の説明ではタイムスタンプ値の 1例として4バイトを確保しているが、これは1MH z 精度で1時間のカウントが可能となるようにしたもので あり、通常の使用には十分である。しかし、タイムスタ 50

ンプのデータ長は特に4byteに限る必要はなく、精 度が粗くてもよい場合はタイムスタンプ値のバイト数を 減らし、また精度が不足する場合には増やせばよく、い ずれも本実施例と同等の効果を奏することはいうまでも ない。

14

【0072】以上、HDD4~program0の情報 を記録する場合について説明したが、HDD4からの再 生処理は次のようになる。HDD4から再生されたpr ogram情報は図5 (a), (b) に示すようなプロ ックパケット構成を持ったビットストリームを構成す る。HDD4からのこのビットストリーム信号は図1に 示す第2時間軸変換器53によってレート変換等の時間 軸移動(変換)が行われるとともに、バスインターフェ イス3を介して第3時間軸変換器60に対して伝送する ために、1ブロックパケットのprogram0の情報 を1サイクル(125 µ s)に対し、例えば1パケット (188+4 (タイムスタンプ) = 192byte) 単 位で伝送する(出力する)。

【0073】第3時間軸変換器60では、このシリアル インターフェイス3を介して、図5(d)のようなプロ ックパケットを受信し、この信号に対し時間軸変換を行 うことによって、図5 (e) のようなMPEG2パケッ ト信号に変換する。なお、この受信したパケット(19 2 byte)に対し、記録時付加した4 byteのタイ ムスタンプ5により、記録時に生じたHDD4へのパケ ットの到着時刻のずれを補正した後、MPEG2フォー マットで規定される各ブロックパケット内に含まれるタ イムスタンプを利用してMPEG2のデコードを行うこ とによって、programOの情報を映像および音声 信号として再生できる。MPEG2デコーダの出力(p rogram0の映像および音声信号)は、TVモニタ 28によって映像および音声情報として再生できる。

【0074】なお、上記説明では、programO情 報を記録再生するためにハードディスクドライブ(HD D) を用いて説明したが、これに限定するものではな く、例えばDDS (ディジタル データ ストレージ) や、D8といったコンピュータのバックアップ用記録再 生装置等、記録再生することが可能な媒体であればどの ようなものを利用してもよいことはいうまでもない。

【0075】さらに、上記説明では、衛星放送を利用し たマルチチャンネル放送の伝送を一例としてあげたが、 衛星放送に限る必要はなく、地上波、CATV(ケーブ ルTV)、または他の伝送手段からのマルチチャンネル 放送に対しても同様な構成で実現できることはいうまで もない。

【0076】また、上記説明では、PRF10をAPF 9内に設けたが、記録時program毎に設定できれ ばAPF内に設ける必要はなく、他の領域に書き込んで もよい。

【0077】さらに上記説明では、HDD4の記録レー

トをピークレートを示すPRF10により決定していた が、ピークレートに限定するものではなく、平均データ レート等を用いて記録レートを決定してもよい。

【0078】また、上記説明では、HDD4の記録レー トをピークレートを示すPRF10により決定していた が、例えばMPEG2エンコード時、ピークレート情報 が得られなかった場合においても、HDD4で受信され るprogramOのパケット数をカウントすることに よって、平均のMPEG2エンコード時の平均データレ ートが算出できることから、この値からHDD4の記録 10 データレートを設定することも可能である。この様子を 図6に示す。

【0079】図6は上記記録データレートを、例えばH DD4と同様の記録装置であるVTRにより、記録デー タレートとテープ走行速度を設定して記録する場合の構 成を示したブロック図である。なお、図6(a)におい て、前記従来例、または実施例1と同一符号はそれぞれ 同一または相当部分を示している。

【0080】図6 (a) において、70はVTR、71 はパケットカウンタ、72は記録レート制御器である。 バスインターフェイス3からのパケットデータは、前記 実施例1と同様に、第1時間軸変換器50によって時間 軸移動、およびデータレート変換が行われる。一方、入 力されたパケットデータは、パケットカウンタ71にて 単位時間当たりのパケット数がカウントされる。このパ ケット数のカウント値は入力パケットデータの転送レー トの基準となるものであり、このカウント値にもとづい て第1時間軸変換器50ではデータレート変換が行われ る。第1時間軸変換器50の出力はタイムスタンプ付加 器52によって、これも実施例1と同様にタイムスタン 30 プを付加した後、VTR70によりテープ(図示せ ず。)に記録される。

【0081】また、記録レート制御器72は、パケット カウンタ71からのパケット数のカウント値により必要 な記録データレートを算出し、それにもとづいてVTR 70のテープ走行速度を制御する。ここで、図6(b) は、テープ走行速度に対する入力データ記録レートと記 録時間の関係を示す図であり、テープスピードの関係を speed3>speed2>speed1とすると、 テープスピードが遅くなるにつれて、データレートは低 40 下するが、記録時間は増加するという関係がある。

【0082】実施例2.前記実施例1においては、パケ ットの到着時刻を示すタイムスタンプ5を記録再生装置 101において付加したが、選択装置100側で行うこ とも可能である。本実施例2の構成を図7に示す。図7 において、前記従来例、または実施例1と同一符号はそ れぞれ同一または相当部分を示している。

【0083】いま、チャンネル選択装置100から記録 再生装置101~データ送出する際、実施例1ではリア ルタイムでの送出が可能である場合を想定していたが、

現実にはそのようにならない場合が多々ある。すなわ ち、チャンネル選択装置100よりデータ送信を行いた い時に、バスインターフェイス3が他の装置(図示せ ず)により専有されている場合、または記録再生装置1 01自体が受信可能でない場合等があり得るためであ る。このような状況が生じると、実施例1においても予 め説明しておいたように、記録再生装置101へのパケ ット到着には時間的な揺らぎ(ずれ)が生じてしまうた め、正確な到着時刻を知ることができない。したがっ て、バスインターフェイス3上にデータを送出する前

に、すなわち、チャンネル選択装置100にて到着時刻 を示すタイムスタンプを付加しておれば、この問題を回 避できることになる。

【0084】記録再生装置101側では、すでに各パケ ット毎にタイムスタンプが付加されているためタイマ装 置51は不要であり、そのタイムスタンプをタイムスタ ンプ判別器57により判別し、記録再生装置101に適 合したタイムスタンプ形式へ変換する操作のみを行えば よいことになる。無論、入力タイムスタンプをそのまま 記録してもよい。

【0085】なお、ここで時間軸変換器について説明を 付け加えておく。時間軸変換器は入力データレートと出 カデータレートを変換するものであり、例えばFIFO (First In First Out) メモリを用 い、書き込みおよび読み出し速度をそれぞれ入力データ レートおよび出力データレートに応じて決めるようにし て構成される。無論、他の形式のメモり等を用いてデー タの書き込みの速度と、読み出しの速度を異なった速度 で行うようにしてもよい。

【0086】実施例3.以下、この発明の実施例3を図 8、図9をもとに説明する。図8は実施例3の回路構成 を示すブロック図、図9はデータ伝送過程を示す図であ る。図8、図9において、前記従来例、または実施例 1,2と同一符号はそれぞれ同一または相当部分を示し ている。なお、図9 (a) は実施例1の図4 (a) と同 様のマルチチャンネル衛星放送のビットストリームであ

【0087】図8において、衛星放送デコーダ1から出 力されたマルチチャンネルビットストリーム信号は、チ ャンネル選択器2によって、例えばprogram0と program1 (2チャンネル)を選択したとする。 チャンネル選択器2からの2チャンネルprogram 信号は図9(b)のように、バスインターフェイス3上 の各サイクルに1パケット単位で伝送される。HDD4 側ではこの2チャンネルprogramの伝送をチャン ネル選択器2に対して、例えばバスインターフェイス3 のAsync領域33を用いて予め要求しており、第1 時間軸変換器50では図9(c)のようなデータを受信 する。そして、この受信データに対し実施例1と同様

50 に、時間軸移動を行う。一方、タイムスタンプ付加器5

2は再生時のMPEG2方式によるデコードを考慮し て、タイマ装置51からの時間情報にもとづいてタイム スタンプ5の生成を行い、第1時間軸変換器50の出力 に対し、タイムスタンプを付加を行う。そして、実施例 1で説明した1チャンネルprogram記録と同様に して2チャンネル記録を行う。

【0088】ここで、2 program (2番組) 記録 の場合、program0とprogram1の開始時 間と終了時間が同じであれはHDD4の記録レートを一 定にしておけばよいが、一方のprogramの終了時 10 刻が他方のprogramのそれより早かった場合(例 えば放送時間が同じ野球中継とドラマ番組を同時に記録 する場合において、野球中継が予定終了時刻より早く終 了した場合)は、一方の番組が終了した後、HDD4の 記録レートを2program記録時の例えば1/2に 落として当該番組の終了時刻まで記録を続ける。

【0089】なお、上記説明では一方のprogram が終了した後、他方の記録が終了するまで記録レートを 1/2に落とすものとして説明したが、この記録レート は1/2に限定するものではなく、一方のprogra mが終了した時点でのHDD4の残りの記録可能容量に 応じて、他方のprogramの記録レートを決定して もよい。

【0090】再生時、HDD4からの再生データは実施 例1と同様に、バスインターフェイス3に送出される。 本実施例の場合、バスインターフェイス3上には2チャ ンネル情報が送出されることになるが、例えば2チャン ネル情報が両者とも、映像および音声データである場 合、再生情報をTVモニタ28で出力することになる が、バスインターフェイス3上には2チャンネルの情報 30 が送出されているので、第2チャンネル選択器54によ って1チャンネルを選択する必要がある。これによって 選択された情報は第3時間軸変換器60で時間軸変換、 再生レート変換を行った後、MPEGデコーダ27によ ってTVモニタ28で視聴可能な映像および音声情報に 変換される。

【0091】なお、第2チャンネル選択器54と第3時 間軸変換器60についての処理順序はこの例に限るもの ではなく、入れ替わっても本実施例と同様の効果を奏す ることは明白である。図8中のチャンネル選択装置の構 40 成を簡素化した構成例を図10に示す。

【0092】図10は図8中のチャンネル選択器2およ び第2チャンネル選択器54を1つのチャンネル選択器 2で兼用させた場合を示し、衛星放送受信時と記録再生 装置からの出力を再生する場合とをスイッチ130にて 切り替えて使用するものである。本構成により、図8の 同機器に比べ、チャンネル選択器を減らすことが可能 で、先の例と同一の機能を持った装置を非常に安価にて 作成することが可能である。

て説明する。図4におけるAFP9には、実施例1で説 明したように各programごとの情報(ピークレー ト、または番組情報等)を設定できる。例えば、番組情 報として図11のように4ビット(0~15)の番組カ テゴリビット26を設定する。番組カテゴリビット26

18

"7"をコンサート、"8~15"をその他、といった ように設定する。第1チャンネル選択器2によってチャ ンネル選択を行う場合、各programのAPF9を 検知し、この中に付加されている番組カテゴリビット2 6を検出する。

の"0"をドラマ、"1"をスポーツ、・・・・、

【0094】番組選択方法として、マルチチャンネル放 送の中から特定の番組ジャンルのみ(例えば映画のみ) を記録する方法としては、上記番組カテゴリビット26 が "2" を示すprogramのみを選択し記録すれば よい。この実現方法としては、例えばカテゴリビットを 抜き出す回路と、同回路により抜き出されたカテゴリビ ットと希望するカテゴリ値とが等しいかどうかを判別す る回路とを設け、判定結果が一致していれば該当PAT を出力し、そうでなければ出力を阻止するように構成に すればよく、技術的に難点なく容易に実現可能である。 第1チャンネル選択器2によって選択された映画番組の programは、実施例1、または実施例2と同様の 方法によって記録再生が可能である。

【0095】実施例5.以下、この発明の実施例5につ いて説明する。図12(a)は理想的なMPEGパケッ トの伝送状態、図12(b)はそれに対するバスインタ ーフェイス3上の伝送状態、図12(c)はMPEGパ ケットの発生が不規則な場合の伝送状態、図12(d) はそれに対するバスインターフェイス3上の伝送状態、 図12(e)は図12(c)における1パケットを4分 割して伝送した場合のバスインターフェイス3上の伝送 状態を示す。

【0096】複数チャンネルの番組の伝送方法について は、実施例1で説明したとおり、図1の衛星放送デコー ダ1で受信されるビットストリーム信号は、複数チャン ネル分のMPEGパケット信号が混在している。理想的 なビットストリーム信号は、図12(a)の様に各パケ ットが規則正しく伝送されている。このようなビットス トリーム信号をバスインターフェイス3に伝送したのが 図12(b)であり、バスインターフェイス3上で効率 よく伝送されている。

【0097】しかし、実際このビットストリーム信号上 のMPEGパケットの伝送形態は、図12(c)の様に その特性上時間軸に対して規則的にパケットが伝送され ているわけではなく、MPEG処理を行う画像および音 声情報の内容によって、パケットの集中する時間帯と、 分散する時間帯が不規則に存在する。この状態のままで バスインターフェイス3上に伝送したのが図12(d)

【0093】実施例4.以下、この発明実施例4につい 50 である。この信号からわかるように、図12(c)の信

号をそのままバスインターフェイス3に伝送してしまう と、MPEGパケットの存在しない時間帯にはバスイン ターフェイス3上には何も伝送する情報がなくなってし まう。

【0098】ところで、バス使用に関しては、常に安定 してデータ転送を行うことができる様に、予め帯域予約 という手続きを取っておく。例えば図12(b)の状態 ではパスインターフェイス3の基本サイクル (125μ s) 毎に188バイトのデータを一回送信することが保 障される。

【0099】ただ、この際に必要以上のの帯域を予約す ると、バス全体で無駄が生じる。例えば図12(b)の 何も伝送していないサイクルがそれである。 バス全体の 容量分の帯域予約がなされている際には、他に使用した い装置があったとしても使用できないということになる (空きサイクルがあったとしても)。

【0100】このように、バス容量を他の機器を含めて 皆で効率よく分け合い、使用することは大変重要なこと である。したがって、データ伝送には必要最小限の帯域 予約ですませるべきであり、こうすることで多数の装置 20 がバス共有を図れることになる。このためには、例えば 図12(e)に示した様に、1パケットを4分割にして 各バスサイクル毎に順に伝送することを行えばよい。バ スインターフェイス3上に伝送する前にチャンネル選択 器2によってMPEGの1パケットを4分割して、1/ 4パケットずつバスサイクル (125 μs) 毎に順次伝 送する。このようにすれば、バスインターフェイス3の 帯域予約は、パケット毎に伝送する際と比べて1/4で 済み、バスリソースの有効活用に大きく貢献することが 可能となる。

【0101】図12(e)は、図12(c)の1パケッ トを4分割した後、バスインターフェイス3上に伝送し たものである。この処理は、バスインターフェイス3上 に伝送する前、すなわちチャンネル選択器2によってM PEG1パケットデータを4分割、すなわち1/4パケ ットごとにデータを選択する。

【0102】なお、上記説明では、1パケットを4分割 する場合を説明したが、分割数についてはビットストリ ーム上のMPEGパケットの伝送状態(パケットの疎 密) によって決定する。この基準としては、実施例1で 40 説明した平均データレート(単位時間当たりのパケット 伝送数)、またはピークレートを示すPRF10を基準 にして最適分割数を決定する。

【0103】実施例6.以下、この発明の実施例6を図 13について説明する。図13において、前記従来例、 または各実施例と同一符号はそれぞれ同一または相当部 分を示している。図13において、56は伸張回路、6 1は第4時間軸変換器、68は第5時間軸変換器、10 2は伸張装置である。衛星アンテナ20より受信した複

れ、複数チャンネル情報を持つビットストリーム信号に 変換される。この信号から必要とするチャンネル情報を チャンネル選択器2によって選択した後、パスインター フェイス3に送出する。チャンネル選択器2は、まず、 第4時間軸変換器61に選択したチャンネル情報 a を伝 送する。第4時間軸変換器61ではバスインターフェイ ス3から元のチャンネル情報のデータレートに変換し、 時間軸移動を行う。第4時間軸変換器61の出力は通常 のMPEGパケット信号であることから、伸張回路56 (例えばMPEG2デコーダ)によってベースパンドの デジタル映像および音声信号に変換される。

20

【0104】伸張回路56からは、ベースパンド信号に 戻されたデジタル映像および音声信号が、第5時間軸変 換器68を介しバスインターフェイス3に送出される。 この送出されたベースバンドのデジタル映像および音声 信号bは、第1時間軸変換器50で時間軸移動およびデ ータレート変換を行った後、HDD4に記録される。記 録されたベースバンドのデジタル映像および音声信号 は、実施例1と同様に、第2時間軸変換器53、パスイ ンターフェイス3、第3時間軸変換器60を介してTV モニタ28で視聴できる。

【0105】さらに、バスインターフェイス3に送出さ れたベースバンドのデジタル映像および音声信号(非圧 縮の映像および音声データ) cは、第3時間軸変換器6 0で直接受信され、時間軸移動およびデータレート変換 を行った後、TVモニタ28で視聴できる。

【0106】このように構成することで、例えば図13 のシステムにMPEG2のビデオディスク装置やVTR 装置をバスインターフェイス3に直に接続が可能とな る。すなわち、これら機器自体にMPEG2デコーダを 持たせる必要がなくなり、結果として個々のMPEG2 信号再生装置およびテレビ装置を安価に製造することが 可能となる。

【0107】バスインターフェイス3上に、MPEG2 ストリーム入力およびベースバンド出力機器を有したデ コーダを1つだけ準備すれば、他の機器で有効に活用が 可能である。バスインターフェイス3の容量としては、 例えば、IEEE1394を用いれば400Mbpsの データ伝送容量が容易に実現できるため、ベースバンド 1系統(現行テレビ信号なら約170Mbps) 専有さ れていても、残りの伝送容量を利用してMPEG2デー 夕(10Mbps)を伝送することにより、23系統伝 送が可能である(すべてベースバンド伝送の場合は2系 統しか伝送できない。)。ここで、図13中の伸張装置 102内の伸張回路56自体は、例えば日経エレクトロ ニクス1995. 5. 8号165~174頁にも記載さ れるように、すでに実現化されており、例えばこのよう な伸張回路を本装置へも用いることができる。むしろM PEG2のようにすでに実用化され、広く利用されてい 数チャンネル情報は衛星放送デコーダ1によって復調さ 50 る方式を用いれば、量産効果等で安価に装置が制作可能

であるばかりでなく、接続する機器も数多くあるため汎 用性に富むなど利点が非常に多いという効果がある。

【0108】このように、図13に示す伸張装置102をバスインターフェイスに接続される各装置に対し共通に用いれば、バスインターフェイスの伝送容量を有効に利用できるとともに、個々の装置に個別に伸張回路を設ける必要がないのでのコストを低く抑えることが可能であり、システム構築を容易に行うことが可能となる。

【0109】なお、実施例6では伸張装置102として MPEG2を用いた場合について説明したが、これに限 10 るものではなく、他の方法を用いてもまったく同様の効果を奏することは明白である。

【0110】また、実施例6では伸張装置102について説明を行ったが、圧縮装置に関しても同様にバスインターフェイス3上に1つ存在すればよいことになる。

【0111】すなわち、非圧縮映像(ベースバンド映像)を例えばMPEG2に圧縮する際に、MPEG2記録を行う個々の装置(例えばVTR等)にそれぞれ圧縮装置を内蔵する必要がなく、左記の例と同様に個々の装置を非常に安価にて製造が可能である。

【0112】図14は上記圧縮装置および伸張装置の構成を示す図である。圧縮装置103の構成自体は図13の伸張装置102内の伸張回路56を圧縮回路81に置き換え、タイマ装置51およびタイムスタンプ付加装置52を設けることで実現が可能である。なお、69は第6時間軸変換器、80は第7時間軸変換器である。圧縮装置自体は、例えば日経エレクトロニクス1995.

5.8号165~174頁に記載されるように既に実用 化されており、例えばこのような圧縮装置を本装置へも 用いることができる。また、MPEG2のようにすでに 30 実用化され、広く利用されている方式を用いれば、量産 効果等で安価に装置が制作可能であるばかりでなく、接 続する機器も数多くあるため汎用性に富むなど利点が非 常に多いという効果がある。

[0113]

【発明の効果】この発明は以上で説明したように構成されているので、以下に示すような効果を奏する。

【0114】請求項1の発明によれば、複数チャンネルの情報の中から必要とする情報のみを選択した後、記録再生装置に記録することから、複数チャンネルのその他の不必要な情報を記録する必要がない。この結果、記録媒体の有効な活用が行えるとともに、バスインターフェイスに不必要な情報を伝送することがないことから、バスインターフェイスに接続される他の機器間の情報伝送を妨げる影響を減らすことができ、すなわちバスインターフェイスの伝送効率を高めることができる。さらにバス伝送の際にデータ伝送時間の揺らぎを生じる場合でも、タイムスタンプにより、実用が可能となり、様々なバスに接続が可能である効果がある。また、複数チャンネルの情報の中から必要とするジャンルの番組情報のみ50

を選択記録できることから、必要とする情報の検索時間 を大幅に短縮できる。

【0115】請求項2の発明によれば、請求項1の発明の効果に加えて、タイムスタンプデータとして最も効率のよい形態を具体的に採用が可能で、ハードウエア規模の縮小や、装置の低価格化、接続相手機器の選択範囲を広くとれる効果がある。

【0116】請求項3の発明によればタイムスタンプの 記録機能を持つことで、入力タイミングが等間隔でない データの記録を時間的に平均化して均等レート記録が実 現できるため、ピーク速度記録に合わせて高価な装置を 用いる必要がなく、安価に制作が可能となり、ひいては 記録時間の長時間化を図ることが可能となる効果があ ス

【0117】請求項4の発明によれば、請求項3の発明に加えて、タイムスタンプデータとして最も効率のよい 形態を具体的に採用が可能で、ハードウエア規模の縮小 や、装置の低価格化、接続相手機器の選択範囲を広くと れる効果がある。

20 【0118】請求項5の発明によれば、タイムスタンプが付加されたデータを再生する際に、タイムスタンプ値に応じて再生データ出力タイミングを入力時のそれと同一にすることで、再生を記録時の信号状態とまったく同一にできる他機器との完全な互換が図れる効果がある。

【0119】請求項6の発明によれば、請求項3の発明と請求項4の発明の効果を合わせ持つばかりでなく、同機器を同一機としたことで、単独での記録再生が可能となる等の相乗効果がある。また等筆すべきは、記録再生媒体へのインターフェイス回路等、数多くの回路、部品が兼用可能となることで、記録と再生を分離した装置に比べ、全体によればるかに安価な装置の制作が可能になる効果がある。

【0120】請求項7の発明によれば、請求項1の発明の効果に加えて、複数チャンネルで記録再生機器殿接続の際にもチャンネル選択器を兼用して用いる構成としたことから、装置が安価に制作できるばかりでなく、選択器の切り換え1つの動作で、オンエア放送と再生信号とを簡単に切り替えられることが可能となる効果がある。

【0121】請求項8の発明によれば、請求項7の発明の効果に加えて、タイムスタンプデータとして最も効率のよい形態を具体的に採用が可能で、ハードウエア規模の縮小や、装置の低価格化、接続相手機器の選択範囲を広くとれる効果がある。

【0122】請求項9の発明によれば、請求項3の発明および請求項4の発明に加え、同発明に比してタイマ装置が不要になることで、非常に安価な装置の提供が可能となる効果がある最適なタイムスタンプ形式を用いることができる効果がある。

【0123】請求項10の発明によれば、請求項9の発明において入力タイムスタンプをそのまま記録に用いる

ため、タイムスタンプ作成が不要となり、より安価な装 置の提供が可能となる効果がある。

【0124】請求項11の発明によれば、請求項1の発明の効果に加えて関連番組を簡単に選択が可能となる効果がある。

【0125】請求項12の発明によれば、複数チャンネルの情報を同時に記録する場合において、それぞれのチャンネル情報の終了時間に関わらず希望する情報すべて記録することができる。また、記録装置の記録レートを記録する情報のデータレートから自動的に設定すること 10ができることから、記録レートを決定するための複雑な処理を簡略化でき、記録装置に対する効率のよい記録が行える。

【0126】請求項13の発明によれば、伝送するパケット情報の伝送形態(ピークデータレート、または平均データレート)に応じて、1パケットを最適分割数で伝送することができることから、他の機器間の伝送に与える影響を少なくするとともに、バスインターフェイスの伝送効率を高めることができる。

【0127】請求項14の発明によれば、1つのバスイ 20 ロック図である。 ンターフェイスに接続する複数の機器に対しても圧縮装 【図16】 テレ 置が1つあればよいことから、各機器の大幅なコストダ 帯1~12チャン ウンを計ることができる。 図である。

【0128】請求項15の発明によれば、1つのバスインターフェイスに接続する複数の機器に対しても伸張装置が1つあればよいことから、各機器の大幅なコストダウンを計ることができる。

【図面の簡単な説明】

【図1】 この発明の実施例1の構成を示すブロック図である。

【図2】 実施例1における伝送データを示す図である。

【図3】 実施例1における衛星ビットストリームの詳細を示す図である。

【図4】 実施例1における記録時のデータ処理過程を 示す図である。

【図5】 実施例1における再生時のデータ処理過程を示す図である。

【図6】 実施例1におけるVTRに対して記録データ

【図11】

番組内容	カテゴリ ビット	番組内容	カテゴリ ビット	
ドラマ	0	観劇	5	
スポーツ	1	パラエティ	6	
映 画	2	コンサート	7	
ニュース	3	その他	8~15	
アニメ・マンガ	4			

レートとテープ走行速度を設定して記録する場合の構成 を示したブロック図である。

【図7】 この発明の実施例2の構成を示すブロック図である。

【図8】 この発明の実施例3の構成を示すブロック図である。

【図9】 実施例3におけるデータ伝送過程を示す図である。

【図10】 実施例3における他の構成例を示すブロッ) ク図である。

【図11】 この発明の実施例4における番組カテゴリビットを示す図である。

【図12】 この発明の実施例5におけるデータ伝送過程を示す図である。

【図13】 この発明の実施例6の構成を示すブロック 図である。

【図14】 この発明の実施例6の構成を示すブロック 図である。

【図15】 従来のマルチチャンネル記録装置を示すブロック図である。

【図16】 テレビジョン信号の各チャンネル(VHF 帯 $1\sim12$ チャンネル)における周波数占有帯域を示す図である。

【図17】 従来のマルチチャンネル再生装置を示すブロック図である。

【図18】 シリアルインターフェイスを用いた映像音 声信号の転送構成を示す図である。

【図19】 マルチチャンネル放送の概念図である。 【符号の説明】

30 2 第1チャンネル選択器、3 バスインターフェイス、4 HDD、5 タイムスタンプ、27 MPEGデコーダ、50 第1時間軸変換器、51 タイマ装置、52 タイムスタンプ付加器、53 第2時間軸変換器、54 第2チャンネル選択器、56 伸張回路、60 第3時間軸変換器、61 第4時間軸変換器、68 第5時間軸変換器、69 第6時間軸変換器、80 第7時間軸変換器、81 圧縮回路、100 チャンネル選択装置、101 記録再生装置、102 伸張装置、103 圧縮装置、130 スイッチ。

【図16】

【図6】

(b)

テープ定行速度	入力データレート	記録時間
speed 3	10 Mbps	30分
speed 2	5 Mbps	1 時間
speed 1	2.5Mbps	2時間

VTR

speed 3> speed 2> speed 1

【図2】

【図4】

【図5】

【図9】

【図10】

【図12】

【図18】

【図19】

フロントページの続き

(72) 発明者 大西 健

長岡京市馬場図所1番地 三菱電機株式会 社映像システム開発研究所内