

Cloud & Web Anwendungen

Prof. Dr.-Ing. Martin Gaedke

Technische Universität Chemnitz

Fakultät für Informatik

Verteilte und selbstorganisierende Rechnersysteme

Cloud & Web Anwendungen

Prof. Dr.-Ing. Martin Gaedke

Technische Universität Chemnitz

Fakultät für Informatik

Verteilte und selbstorganisierende Rechnersysteme

Lecture Outline

CC-BY-NC: Prof. Dr. Martin Gaedke · Professur VSR · Fakultät für Informatik · TU Chemnitz Part I - Introduction ► Chapter 2: Model & Structure

PART II

Web Engineering

CHAPTER://3

Introduction

WWW's Technical Aspects

- WWW is a distributed System
 - ▶ Based on a Client-Server architecture
 - Supporting the Hypermedia Paradigm
- Server provide access to resources
 - ► E.g. HTML-documents, images, audio, etc.
 - ► Resources may be created dynamically
- Client (User Agent) interprets resources
 - ► Browser present interpretation (Layout, play sound etc.)
 - ➤ Other kinds of User Agents may use the resource in other ways (e.g. robots indexing words)
 - ► Every request implies a new connection (Stateless)

Web 1.0 (beg. 1990): C/S-Model, Form, eBiz

Web 2.0 (beg.2000): Services, Prosumer, ID, P/L

SOA Functionality

- Composition Engine
- Federation, Security
- Transaction, etc.

Configuration/Context

- Components, End Points
- Semantic Web
 - Policy, Permissions, etc.

Model-driven support systems

CC-BY-NC: Prof. Dr. Martin

"Web 3.0": Social, API1st, AI, Emotions, Serverless

Emotional relationships are key

Gamification & other Relationship – oriented part of the application

Social Web – oriented part of the application

User Interface – oriented part of the application UI/UX & Interaction & Navigation & Client-side code & Sensor-code

Browser (several)

Embedded **User Agents**

Mobile Phones and other devices (Tablets)

API-First Principle

several Identity **Systems**

*Location-based Service

SS 2020

Surprisingly, developing Web Applications...

- Still Ad-hoc instead of a disciplined procedure
 - Often Copy-and-Paste Paradigm
 - ► Lack between design-model and implementation-model
 - ► Design-concepts get lost in the underlying implementation-model
- Short lifecycles and trends of a Web Application: Maintenance and Evolution problems → Reuse Problems

→ Web-Crisis (1st mentioned around 1995)

Need for Process

- Domination of the different requirements calls for a systematic approach
- Producing high-quality Products in a cost-effective way
- Goal Product should be
 - ► Maintainable and evolvable
 - ► Reliable
 - **►** Efficient
 - ► Appropriate for User Interface (also wrt Hypermedia)
 - ► Delivered in time with predictable cost

Or simply Software Engineering?

"Fundamental differences [between hypermedia and other disciplines] however, make a pure transposition of techniques both difficult and inadequate. An important part of hypertext design concerns aesthetic and cognitive aspects that software engineering environments do not support."

(Nanard and Nanard, 1995)

Key Knowledge Areas...

...for the production on top of distributed Web-based Systems

Software Engineering

- Process
- Design
- Implementation
- Test
- Operation
- Maintenance

Network Engineering

- Physical Layer
- Internet Layer
- Transport Layer
- Transport Layer

Web Engineering

Others...

Psychology Game theory Tribe research Etc. Hypermedia

- Design & StructureInformation Space
- Navigation
- Visualization
- Usability
- Collaboration

Information Systems

- •Data Design, ER,...
- •RDBMS
- Query Languages
- •Strg.Devices: FS,...

Performance rof. Dr. Martin Gaedke · Professur VSR · Fakultät für Informatik · TU Chemnitz

Part II - Web Engineering ► Chapter 3: The Need for Process

35

Web Engineering

Web Engineering – is the application of systematic, disciplined, and quantifiable approaches to the design, production, deployment, operation, maintenance and evolution of Web-based software products. [Gaedke, 2000]

Evolution of "WebE"

- Web Engineering is a young discipline
- Early 1995/1996 notion of Web Page Design and Web Site Development
 - ► Development suffers from ad hoc processes
 - ► Déjà-vu experience of software development in the sixties (cf. Software Engineering, Software Crisis Workshop 1968)
- 1998 Workshop Web Engineering at the 7th World Wide Web Conference, Brisbane
- Further activities at conferences and workshops
 - ► WWW, ICWE, HICSS, ICSE, WEBIST etc.
- Journal of Web Engineering (JWE), Rinton Press
 - ► http://www.rintonpress.com/journals/jwe

Literature

- Thomas A. Powell, Web Site Engineering, Prentice Hall PTR
- David Lowe and Wendy Hall, Hypermedia and the Web an Engineering Approach, John Wiley & Sons
- San Murugesan, Web Engineering, Sigweb Newsletter Vol. 8, No. 3, Oct. 1999, pp. 28-32
- San Murugesan und Yogesh Deshpande, Web Engineering: Managing Diversity and Complexity of Web Application Development. LNCS 2016, Springer
- SELFHTML, cf. Lecture Web Site
- Gerti Kappel, Birgit Pröll, Siegfried Reich, Werner Retschitzegger (Hrsg.):
 Web Engineering Systematische Entwicklung von Web-Anwendungen.
 dpunkt.verlag
- Martin Gaedke: Komponententechnik für Entwicklung und Evolution im World Wide Web, Shaker Verlag, 2000, ISBN 3-8265-8059-1

Further information available at Lecture Web Site

CHAPTER://4

People, Projects, and Chaos

Where it starts...

- ...Understanding the problem (wrt "Accomplishing a business need")
- What is the problem domain?
 - ▶ Defining the problem asking questions
 - ► Which requirements exist?
 - ▶ Does Evolution play a major role?
- The problem:
 - ► What does the customer need vs. What does the customer want

Project Failure Rates

This chart depicts the outcome of the 30,000 application projects in large, medium, and small cross-industry U.S. companies tested by The Standish Group since 1994.

Source: The Standish Group International, Extreme Chaos, The Standish Group International, Inc., 2000

http://www.standishgroup.com/

Further Numbers:

2004: Failed: 18%, Challenged: 53%, Succeeded: 29%

Later Chaos Report 2009: Failed: 32%, Challenged: 44%, Succeeded: 24%

Project Failure Rates (2)

This chart depicts the outcome of the 30,000 application projects in large, medium, and small cross-industry U.S. companies tested by The Standish Group since 1994.

Source: The Standish Group International, Extreme Chaos, The Standish Group International, Inc., 2000

http://www.standishgroup.com/

Range of Complexity

Following "Web Site Engineering: Beyond Web Page Design", by Th. Powell et al.

ocument Centered

Collector Site

Application Centered

Strategies – towards a solution

- Analyze existing solutions
 - ➤ Outsource
 - ► Find & Buy
- Develop new solution
 - ▶ From the scratch
 - ▶ Development with Reuse of existing parts
- Desired Solution vs. Product Complexity vs. Time vs. Costs

CHAOS Top Success Factors (oldie but goldie)

- What makes a project successful? Success factors identified in 2000.
- Cf. Standish Group Web Site

Success Factor (2000)	Factor
Executive Management (No. 2 in 2003)	18
User Involvement (No. 1 in 2003)	16
Experienced Project Manager	14
Clear Business Objectives	12
Minimizing Scope	10
Requirements Process	8
Standard Software Infrastructure	6
Formal Methodology	6
Reliable Estimates	5
Skilled Staff	5

Skilled Team – aka the Product Team

- You need a great team to develop great Web-applications/products
 - ► "Great" is a difficult term, if you do not know what you are looking for...
 - ➤ "Candidate Attributes" include: Expertise, commitment, attitude, behavior, team skills, thirst for knowledge usually candidates are great or perfect in all areas...
 - ➤ Your team composition must handle this
- Impact of bad choices
 - ➤ One poor candidate → "one bad apple can ruin the brunch" → do not hire / usually can be handled
 - ► Worse: longer period of bad staffing → low performance, bad detail and quality, late products

Thoughts about Budget, People, Time

- Small Teams! These numbers are still a good rule of thumb today (you can also call it Pizza team, if this sounds better)
 - ► CHAOS: Best success rates
 - ► 1999: time < 6 month, people < 6 and budget < 750.000 US\$
 - ► 2001: time < 4 month, people < 4 and budget < 500.000 US\$
 - ► Otherwise try to scale!
- Furthermore:Minimize Scope, Open communication, and focus on using Standards
- And go agile....

Waterfall vs Agile project management style

What's next?

- Agile from project to company
- Culture eats strategy
- DevOps
- And many more trends and developments...

► Homework

☐ Continuous Delivery: Reliable Software Releases
Through Build, Test, and Deployment Automation
(Addison-Wesley Signature Series)
by Jez Humble and David Farley

CHAPTER://5

Project Management

Introduction

- What is Project Management all about?
- Project Management Institute Body of Knowledge, provides over 35 years of experience
 - ▶ Project management is the application of knowledge, skills and techniques to execute projects effectively and efficiently. It's a strategic competency for organizations, enabling them to tie project results to business goals — and thus, better compete in their markets.
 - ► PM Knowledge Areas and required skills: Integration, Scope, Time, Cost, Quality, HR, Communications, Risk and Procurement Management
 - ► Cf. PMI's PMBOK http://www.pmibok.com and Standish Group

Problems with Project Management

- Unrealistic Schedules
 - ► May yield to artificial documents
- Avoid cost of iteration/going back a stage
 - ► Rewriting documents by bad solutions
- Seriously reviewing and approving takes time
 - ► Next stage may start before document approved
- Deliverables not suitable for reuse-oriented models
 - ► Documents are likely to constrain reuse
- People skills
 - ► delegation, negotiation
 - eading vs. Managing

PRJ-Language: WBS & Program

- Work Breakdown Statement (WBS)
 - ► Categorized list of tasks
 - ► With an estimate of resources required
- Program
 - ➤ A group of projects managed in a coordinated way to obtain beneftis not available from managing them individually
 - **►** Examples
 - ☐ E.g. Program: PRJ Design, PRJ Construction
 - □ E.g. Program: PRJ Version 1, PRJ Version 2

Some Activities to start with...

- Activities to start with in the Initial Phase
- Prepare for Product Life Cycle Management
- Projected Organization and Personnel Management
- Establish open communication in the team
- Advocate for customer vs. Advocate for team vs. ...
- Interim Milestone (IM) of Initial Phase:

► Core Team Organized

A little PM Toolkit

- General Project Management Tools
 - ► GANTT charts
 - ▶ Deliverables
 - ▶ Milestones
 - ► Many more, e.g. PERT diagrams
- Dedicated tools
 - ► Risk management
 - ► Prediction knowledge bases
 - ► Requirement tools
- Few (if any) project management research dedicated to Web Application production
 - ► Requires experience
- Process Models
 - ▶ Deliverable-oriented process models

PM-Tool: Gantt Chart

- Gantt Chart Preferred visual reporting device used for conveying a project's schedule.
 - Graphically displays the work breakdown, total duration needed to complete tasks, as well as %completion
 - ▶ Does not display level of effort, and is not an effective planning tool on its own
 - ► May be integrated with other spreadsheet-type reporting devices that convey additional information related to project planning

PM-Tool: Gantt Chart 2

SS 2020

PM-Tool: Deliverables

- Requirements Analysis:
 - Feasibility study
- Requirements Definition:
 - ► Req. specification
- Design:
 - Design specification
- Implementation:
 - ► Web Application code
- Testing:
 - ▶ Test result report
- Delivery:
 - ► Acceptance test / final system
- Operation:
 - ► Usage report, feedback

PM-Tool: Milestones

- **Milestones** Significant event in the project, usually completion of a major deliverable
 - ► Important checkpoints or interim goals for a project to be met at a given *date*
 - Used to catch scheduling problems early
 - Name by noun-verb form, e.g. "report due", "prototype complete"
 - Milestone "Rules of thumb"
 - Too many milestones are useless
 - Focus on hard-results (Not: 80% of Site finished)

Risks & Potential Sources

- Potential sources:
 - ► People e.g. Customer, Team
 - ► Process e.g. Schedule, Requirements, Design
 - ► Technology e.g. Availability, Security
 - ► Environmental e.g. Legal, Business
- Risk Management is a recurring process throughout the whole project
 - ► There is no excuse for not doing it...

Risk Management Process

- Risk Any event that could potentially have a negative impact on the project
 - ► Remember: Risk is not a problem as refers to the future!
 - ► Evaluate: Quality analysis (prioritize effect on project objective) & Quantity analysis (probability and estimating implications)

Risk Assessment (simplified)

Risk	Probability (1-7)	Impact (1-7)	Total Risk (P x I)
Lead Developer leaves team	2	9	12
Regulation §1-3	2	7	14
WS not available	4	5	20

Organization Structure

Will not be covered by this lecture

Some notes:

- Few (if any) Web Engineering Research
- Cf. standard Software Engineering literature
- Regarding evolution of content
 - Workflows respectively process models for publishing content and people involved
 - ► Cf. Content Management Systems literature
- Cf. E.g. www.holacracy.org

Costs Estimation

Will not be covered by this lecture

Some notes:

- Few Web Engineering Research
- Cf. standard Software Engineering literature
- Issues to look at
 - ► Costs for Marketing (search engines, advertising)
 - ➤ Return on investment (ROI) have to be considered, e.g. advertisements, integration of other Web Applications (Marketplaces, Web Application Production Lines)
 - ► Computer & Network costs
 - ► Political influences

CHAPTER://6

Web Software Process Models

Goals of Web Engineering

- Develop (high quality) Web Applications
 - **►** Effective
 - **►** Efficient
 - ► Achieve desired application
 - ▶ in a Predictable Way
- Maintain and Evolve
 - ► Plan for change (Solution may change the problem!!!)
- ...using systematic, disciplined and quantifiable Approaches: Process Models

Production Process

- "Idea" during "software crisis"
 - ► Apply methods to software development
 - ▶ Describe the process of software development with Process Model
- "Visible" development process
 - ► Important for Project Management
- Lessons learned in Software Engineering:
 - ► Process is complex and variable
 - ► Detailed process Models still research
- Different Processes appropriate for different classes of problems
- Lessons Learnt: Applying a process adds "6% success factor"

Process Model

- Applying a process model to a Web Engineering specific problem
- Focus on systematic, disciplined and quantifiable development and evolution

PM

Process Models and WebE

- Code-and-fix model (ad hoc development)
- Classical style
 - ► The Waterfall model
 - ► Prototyping model
 - ▶ V-Model
 - Evolutionary Development model
 - ▶ Spiral model
 - Rational Unified Process model
 - ► MSFv₃ Process model
- Agile style
 - ► Agile Processes
 - ▶ Reuse-Oriented Approaches
 - WebComposition Process model
 - ► Agile Processes, XP, Scrum
- And many, many more...

In the early beginning: Code-and-fix Model

- Oldest Model and still in use
 - Works "pretty well" for small projects in the early beginning
 - Test phases usually very long and unpredictable
 - Susceptible to Spaghetti-Code & -Linking
- User requirements often neglected
- Fixing bugs expensive
- Unsuitable for team work
- Unsuitable for most Web projects

The Waterfall Model

Prototyping Model

Prototyping Model II

- Prototype only responsible for defining system requirement
- Suitable if system requirements can not described completely in the beginning
- Applicable for reuse approaches
- Open Process Model use of any process model
- Further Issues
 - ► Good for motivation of team
 - ► Increases trust of customer

Evolutionary Development

Spiral Model (Risk-Driven)

Spiral Model Template

Project, Date,		
Objectives	Improve O1 and O2	
Constraints	Within t, costs,	
Alternatives	Buy A1	
Risks	Integration of X	
Risk resolution	Develop Prototype, Product Survey	
Results	Prototype works, flexible with A3	
Plans	Develop Product and integrate A3	
Commitment	Fund further 6 month	

Rational Unified Process®

Technical Perspective

RUP

- ▶ Unified Software **Development Process**
- ► Jacobson, Booch und Rumbaugh

Source: Philippe Kruchten,

A Rational Development Process, Crosstalk, 9(7), July 1996

Management Perspective

- Development Life Cycle
 - ► Inception:
 - □ vision
 - business case
 - □ scope of the project
 - ► Elaboration: Planning
 - ▶ Construction
 - ► Transition: Deliver, Training
- Evolution
 - Life of software after initial development cycle

Source: Philippe Kruchten, A Rational Development Process, Crosstalk, 9(7), July 1996

Technical Perspective

- Iteration Activities
 - ▶ Planning
 - ► Analysis
 - ▶ Design
 - ▶ Implementation
 - ▶ Testing
- Iteration is intellectual activity – not a stage for certain task

Source: Philippe Kruchten, A Rational Development Process, Crosstalk, 9(7), July 1996

Key MSF Components (MSF v₃)

Models

Process Model

Disciplines

ProjectManagement
Discipline

RiskManagement
Discipline

Readiness
Management
Discipline

Source http://www.microsoft.com/technet/itsolutions/techguide/msf/default.mspx

MSF & Typical Team Approach

Scaling MSF Team-Model

- You can combine some roles to teams as small as 3 people
 - ▶ Do not combine some (like Product and Program Manager, or anything with Developer)
- You can scale the teams by using two general methods
- Functional Teams
 - ► Many people for one role
- Feature Teams
 - ► Sub-teams for each feature

MSF Process Model (MSF v₃)

Design Process Overview (MSF v3)

More on Process Models

- OPEN Process
 - ► OPEN Consortium
 - ► Contract-oriented stages
 - ► Coordination with other processes
- Web Engineering Process Models
 - ► Hot research topic no standards yet
 - ► In most cases: derived from Spiral and focus on object oriented/based design models
- Many others are available in most cases modifications of the Process Models presented here

Planning: The Cost of Traditional BRUF

"Successful" Projects Still Have Significant Waste

Source: Jim Johnson of the Standish Group, Keynote Speech XP

We focus on Complex Problems

Idea: Agile Processes

- Reaction to the "bureaucratic" process models
 - ► Lightweight methodologies (now agile methodologies)
 - ► Try to answer Too much process vs. no process
- Apply an iterative and evolutionary approach to development
- Examples
 - ► Reuse-oriented approaches, e.g. WebComposition
 - **►** Scrum
 - ► Kanban

Reuse-Oriented Approaches

- Web Engineering in context of Reuse
- Product is assembly from reusable components
 - ► Idea: All needed Components exist
- These Approaches focus on being agile in the context of:
 - ▶ Producer Reuse
 - **▶** Consumer Reuse

Model for Producer Reuse

- Develop (Components) for Reuse
- Domain Engineering
 - ► Process Model for Production of Domain Components
- Process Model
 - ▶ Domain Analysis
 - ► Develop Components
 - ▶ Deploy Components in Reuse-Repository
 - ► Make them available via Registries

Model for Consumer Reuse

- Develop with Reuse (of Components)
- Orthogonal Process Model
- Process Model
 - ▶ Accessing
 - **►** Understanding
 - ► Adapting

