

MAS117: MATHEMATICS II 2/2023 FINAL EXAMINATION

Name	ID	Section	Seat No

Instructors: Dr. Adisak Seesanea

Date and Time: Tuesday, May 7, 2024, 13:30-16:30 (3 hours)

General Instructions:

- This exam paper has 19 pages, including this page. It consists of 7 main problems with a total score of 70 points. One optional bonus problem of 10 points is provided.
- This is a closed-book exam. No calculators allowed.
- You are not allowed to be out of the examination room during the examination. Going to the restroom may result in a score deduction.
- Write your name, student ID, section, and seat number clearly on each exam sheet.
- You are supposed to complete the exam independently. Academic honesty is fundamental in this course.
- The examination paper cannot be taken out of the examination room. A violation will result in a zero score for the examination.
- Your solutions will be carefully graded based on the written methods rather than the final answers. Please make sure that your solutions are logically presented and readable.
- \bullet Your total score will be weighted to 30% of your final grade as indicated in the course syllabus.

PROBLEM	Score
1	
2	
3	
4	
5	
6	
7	
Bonus	
Total	

Problem	1. [10 poi	[nts]						
Let $f(x,y)$	$= x^2 e^{2y}.$							
(1a). Fin	nd ∇f and	$\nabla f(1, \ln 2)$).					
(1b). Fir De	nd a unit ve	$\mathbf{u} \in \mathbb{I}$ e rate of cl	\mathbb{R}^2 in the change of f	lirection in at (1. ln 2)	which f in that di	ncreases mo irection.	st rapidly	at $(1, \ln 2)$
(1b). Fin De	nd a unit ve termine the	ector $\mathbf{u} \in \mathbb{I}$ e rate of cl	\mathbb{R}^2 in the change of f	direction in at $(1, \ln 2)$	which f in that di	irection.	st rapidly	at (1, ln 2)
(1b). Fin De	nd a unit ve termine the	$\begin{array}{c} \text{ector } \mathbf{u} \in \mathbb{I} \\ \text{e rate of cl} \end{array}$	\mathbb{R}^2 in the change of f	lirection in $(1, \ln 2)$	which f in that di	ncreases mo irection.	st rapidly	at (1, ln 2)
(1b). Fin De	nd a unit ve termine the	$\mathbf{v} \in \mathbb{F}$ erate of cl	\mathbb{R}^2 in the change of f	lirection in $(1, \ln 2)$	which f in that di	ncreases mo irection.	st rapidly	at (1, ln 2)
(1b). Fin De	nd a unit ve termine the	ector $\mathbf{u} \in \mathbb{I}$ erate of cl	\mathbb{R}^2 in the change of f	lirection in at $(1, \ln 2)$	which f in that di	ncreases mo irection.	st rapidly	at (1, ln 2)
(1b). Fin De	nd a unit ve termine the	$\begin{array}{c} \text{ector } \mathbf{u} \in \mathbb{I} \\ \text{e rate of cl} \end{array}$	\mathbb{R}^2 in the change of f	lirection in f at $(1, \ln 2)$	which f in in that di	ncreases mo irection.	st rapidly	at (1, ln 2)
(1b). Fin De	nd a unit ve termine the	$\begin{array}{l} \text{ector } \mathbf{u} \in \mathbb{I} \\ \text{e rate of cl} \end{array}$	\mathbb{R}^2 in the change of f	lirection in at $(1, \ln 2)$	which f in in that di	ncreases mo irection.	st rapidly	at (1, ln 2)
(1b). Fin De	nd a unit ve termine the	$\begin{array}{c} \text{ector } \mathbf{u} \in \mathbb{I} \\ \text{e rate of cl} \end{array}$	\mathbb{R}^2 in the change of f	lirection in at $(1, \ln 2)$	which f in in that di	ncreases mo irection.	st rapidly	at (1, ln 2)
(1b). Fin De	nd a unit ve termine the	ector $\mathbf{u} \in \mathbb{I}$ erate of cl	\mathbb{R}^2 in the change of f	lirection in at (1, ln 2)	which f in that di	acreases mo irection.	st rapidly	at (1, ln 2)
(1b). Fin De	nd a unit ve termine the	$\begin{array}{l} \text{ector } \mathbf{u} \in \mathbb{I} \\ \text{e rate of cl} \end{array}$	\mathbb{R}^2 in the change of f	lirection in at $(1, \ln 2)$	which f in in that di	ncreases mo irection.	st rapidly	at (1, ln 2)
(1b). Fin De	nd a unit ve termine the	ector $\mathbf{u} \in \mathbb{I}$ erate of cl	\mathbb{R}^2 in the change of f	lirection in at $(1, \ln 2)$	which f in in that di	acreases mo irection.	st rapidly	at (1, ln 2)
(1b). Fin De	nd a unit ve	ector $\mathbf{u} \in \mathbb{I}$ erate of cl	\mathbb{R}^2 in the change of f	lirection in at $(1, \ln 2)$	which f in in that di	acreases mo irection.	st rapidly	at (1, ln 2)
(1b). Fin De	nd a unit ve	ector $\mathbf{u} \in \mathbb{I}$ erate of cl	\mathbb{R}^2 in the change of f	lirection in at (1, ln 2)	which f in in that di	acreases mo irection.	st rapidly	at (1, ln 2)

Name ID	Section Seat No
(1c). Find a unit vector $\mathbf{v} \in \mathbb{R}^2$ such that $D_{\mathbf{v}}$	$f(1,\ln 2) = 0.$
(1d). Find an equation for the tangent plane the surface $z = f(x, y)$ at the point (1,	and parametric equations for the normal line to $\ln 2, 4$).

Nar	ne Section Seat No
Probl	em 2. [10 points]
	a function $f(x,y) = 4x - 3x^3 - 2xy^2$.
2a).	Compute first and second order partial derivatives of f .
2b).	Find the critical points of f .

2c).	Employ the exist) of f .	e Second	Derivative	Test to	locate all	local ext	rema and	saddle	points (if

Name	ID	Section	Seat No

Problem 3. [10 points]

Let's say you have a plan to spend the last 24 hours before the MAS117 exam for a comprehensive study on lecture notes and final review problems. Assume the following:

- Without any preparation, you would earn 10 out of 80 points on the exam–probably from the bonus problem.
- Your exam score will increase by x(40-x) points if you study your lecture notes for x hours; and increase by y(36-y) points if you solve the final review problems for y hours.
- Due to exhaustion and panic, you will lose $(x+y)^2$ points.

How many hours should you spend on studying lecture notes and final review problems in order to maximize your exam score? What is the maximum exam score you can obtain?

<u>Hint</u>: Employ the Method of Lagrange's Multiplier to optimize the score function

$$f(x,y) = 10 + x(40 - x) + y(36 - y) - (x + y)^{2}$$

subjects to time constraint g(x, y) = x + y = 24 with $x, y \ge 0$.

6/19

Name]	ID	S	ection	Seat No.	<u></u>

Name ID Section Seat No.

Problem 4. [8 points]

Use a triple integral to find the volume of the solid $\mathcal G$ that is bounded by planes

$$z = 2 - y$$
, $y = 2x$, $x = 0$ and $z = 0$

<u>**Hint**</u>: The projection of G on the xy-plane is the triangular region

$$\mathcal{D} = \{(x, y) \in \mathbb{R}^2 : 0 \le x \le 1 \text{ and } 2x \le y \le 2\}.$$

Name		ID	Section	Seat No
	_			

Name ID Section Seat No
Problem 5. [10 points]
For each $\alpha, \beta \in \mathbb{R}$, define a vector field
$\mathbf{F}(x,y) = (y^3 + \alpha x^2 y + 1)\mathbf{i} + (2x^3 + \beta x y^2 + 2)\mathbf{j}.$
(5a). Find all the values of α and β for which F is conservative.

Nan	me Section Seat No	••
5b).	For those α and β obtained in (5a), find a potential function of F , that is, a funct $\phi = \phi(x,y)$ such that	tion
	$\mathbf{F}= abla \phi.$	

Name ID Section Seat No.

(5c). For those α and β obtained in (5a), use any method to compute the line integral

$$\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}$$

where \mathcal{C} is a part of the spiral described by the vector equation

$$\mathbf{r}(t) = (e^t \cos t) \mathbf{i} + (e^t \sin t) \mathbf{j}$$
 where $0 \le t \le \pi$.

<u>Hint</u>: Appealing to the Fundamental Theorem of Line Integrals might be helpful.

Nar	ne Section Seat No
Probl	em 6. [12 points]
(6a).	State Green's theorem, including all hypotheses.
(6b).	Consider the vector field
(00).	F(x,y) = $(\sin^3 x \cos x + e^x x^{55} + \pi y) \mathbf{i} + ((\pi + 1)x - 2^y y^{99}) \mathbf{j}$.
	Find $\operatorname{curl}_z \mathbf{F}$, the 2-dimensional curl of F . Determine whether \mathbf{F} is conservative on \mathbb{R}^2 .

Name ID Section Seat No.

(6c). Let F be the vector filed defined in (6b). Use any method to evaluate the line integral

$$\int_{\mathcal{C}_1} \mathbf{F} \cdot d\mathbf{r}$$

where C_1 is a non-closed curve consists of line segments from A(0,0) to B(2,2), B(2,2) to C(2,4), and C(2,4) to D(0,6), as shown below.

<u>Hint</u>: Draw the line segment C_2 from D(0,6) to A(0,0). Applying Green's Theorem for the closed curve $\tilde{C} = C_1 \cup C_2$ yields

$$\int_{\mathcal{C}_1} \mathbf{F} \cdot d\mathbf{r} + \int_{\mathcal{C}_2} \mathbf{F} \cdot d\mathbf{r} = \oint_{\tilde{\mathcal{C}}} \mathbf{F} \cdot d\mathbf{r} = \iint_{\mathcal{D}} \operatorname{curl}_z \mathbf{F} \, dA,$$

where \mathcal{D} is the trapezoidal region enclosed by $\tilde{\mathcal{C}}$.

Name	ID	Section	Seat No

Name							
Problem 7. [10 points]							
curved lamina is an idealized object that is thin enough to be viewed as a surface in 3-space et us consider a curved lamina σ which is a part of an elliptic paraboloid $z=16-x^2-y^2$							
between the planes $z = 7$ and $z = 12$. Denoted by \mathcal{R} the projection of σ on the xy -plane.							
(7a). Sketch the curved lamina σ and its projection \mathcal{R} .							

Name ID Section Seat No.

(7b). Suppose σ has density (mass per unit area)

$$f(x, y, z) = \frac{x^2}{16 - z}.$$

Compute the mass of this lamina by using a surface integral.

<u>Hint</u>: Given z = g(x, y), one has

$$\iint\limits_{\sigma} f(x,y,z) \ dS = \iint\limits_{\mathcal{R}} f(x,y,g(x,y)) \sqrt{z_x^2 + z_y^2 + 1} \ dA.$$

Converting the double integral into polar coordinates might be helpful. Also, recall that $\cos^2\theta = \frac{1}{2}(1+\cos 2\theta)$.

Name	 ID	Section	Seat No

Bonus Problem. [10 points]

Determine whether the statement is true or false. Circle your answer for each statement. No justification is required.

(8a). The directional derivative of f(x,y) at (x_0,y_0) in the direction of $\mathbf{u}=\langle 0,e^2-1\rangle$ coincides with the partial derivative $f_y(x_0,y_0)$.

True False

(8b). If f(x,y) is continuous on the ring

$$\mathcal{R} = \{(x, y) \in \mathbb{R}^2 : \pi \le x^2 + y^2 \le 2\pi\},\$$

then f must have both global maximum and minimum on \mathcal{R} .

True False

(8c). For any continuous functions g = g(x, y), one has $\int_0^1 \int_0^x g(x, y) \, dy dx = \int_0^x \int_0^1 g(x, y) \, dx dy$.

True False

(8d). If \mathcal{C} is a smooth curve in \mathbb{R}^2 and f(x,y) is a continuous function defined on \mathcal{C} , then

$$\int_{\mathcal{C}} f(x,y) ds = -\int_{-\mathcal{C}} f(x,y) ds.$$

True False

(8e). Given a vector filed $\mathbf{F}(x,y) = f(x,y)\mathbf{i} + g(x,y)\mathbf{j}$ whose components f and g have continuous first derivatives on region $\mathcal{D} = \{(x,y) \in \mathbb{R}^2 : (x,y) \neq (0,0)\}$. If $f_y = g_x$ on \mathcal{D} , then \mathbf{F} must be conservative on \mathcal{D} .

True False

Hint:

