→ Grupo 14

!pip install ortools

→ Problema 2: Sudoku

Pretende-se criar uma definição do jogo "Sudoku" generalizado para a dimensão N. Sendo que, o objetivo do Sudoku é preencher uma grelha de N^2*N^2,com inteiros positivos no intervalo 1 até N^2. Considerando, a variável inteira $m_{c,l}$ como a matriz de tamanho $c \times l$, iremos analisar os requisitos deste jogo:

Limitações

• Cada inteiro, no intervalo de 1 até N^2, ocorre só uma vez em cada coluna.

$$\forall_{l < N} \quad \sum_{c < N-1} m_{c,l} - \sum_{c < c < N} m_{c1,l} \neq 0$$

• Cada inteiro, no intervalo de 1 até N^2, ocorre só uma vez em cada linha.

$$\forall_{c < N^2} \quad \sum_{l < N-1} m_{c,l} = 1$$

Cada inteiro, no intervalo de 1 até N^2, ocorre só uma vez em cada secção N * N.
 (Considerando Ca, uma "casa" do sudoku)

$$\forall_{0 < x < l} : l/x, \quad \forall_{0 < y < c} : c/y, \quad Ca_{y,x} - (\forall_{x < x1 < l} : l/x_1, \quad \forall_{y < y1 < c} : c/y_1, \quad Ca_{y_1,x_1}) \neq 0$$

```
def trabalho 1 sudoku():
 n = [3,4,5,6]
 alfa = [0.0, 0.2, 0.4, 0.6]
 print(" N \ Alfa| 0.0 | 0.2 | 0.4 | 0.6 |")
 print("-----
 n tests = 3
 for n_value in n:
   print (" "+ str(n_value) + " | ", end = "")
   for alfa value in alfa:
     time = 0
     # Repetir cada teste, n tests vezes
     for in range(n tests):
      res = benchmark_sudoku_matrix(n_value, alfa_value, False)
      time = time + res
     print(" %.5f | " % (time/n_tests), end = "")
   print("\n-----")
```

```
trabalho 1 sudoku()
    N \ Alfa | 0.0 | 0.2 | 0.4 | 0.6 |
       3 | 0.06180 | 0.02162 | 0.00423 | 0.00240 |
       4 | 0.46834 | 0.12878 | 0.05535 | 0.00778 |
       5 | 2.64160 | 0.54487 | 0.24516 | 0.00938 |
    ______
       6 | 8.14690 | 1.93781 | 3.21002 | 0.02393 |
    _____
# Importar biblioteca
from ortools.sat.python import cp model
import time
def benchmark_sudoku_matrix (n, alfa, print_matrix):
 # Criar a instância do solver
 solver = cp model.CpSolver()
 model = cp model.CpModel()
 region size = n
 matrix size = region_size * region_size
 # Inicializar a matriz
 inital matrix = {}
 init sudoku matrix(model, inital matrix, matrix size, region size, alfa)
 if print_matrix:
   print("Inital Matrix:")
   print sudoku matrix(inital matrix, region size)
 # Definir as variáveis
 matrix = {}
 for i in range(matrix size):
     for j in range(matrix size):
         if (inital matrix[i,j]):
            matrix[i,j] = model.NewConstant(inital matrix[i,j])
            matrix[i,j] = model.NewIntVar(1, matrix_size, 'x[{},{}]'.format(i,j)
 # Definir Constraints
 define constraints(model, matrix, matrix size, region size)
 #Solve
 start = time.time()
 status = solver.Solve(model)
 end = time.time()
 if print matrix:
```

print("Solved Matrix:")

print_sudoku_matrix_solver(solver, matrix, region_size)

```
#if status == cp model.OPTIMAL:
   #print("Solved Matrix:")
   #print sudoku matrix solver(solver, matrix, region size)
 return (end - start)
benchmark sudoku matrix (3, 0.0, True)
    Inital Matrix:
     | 00 00 00 | 00 00 00 | 00 00 00 |
    00 00 00 | 00 00 00 | 00 00 00 |
    00 00 00 | 00 00 00 | 00 00 00 |
    00 00 00 | 00 00 00 | 00 00 00 |
     00 00 00 | 00 00 00 | 00 00 00 |
    00 00 00 | 00 00 00 | 00 00 00 |
    | 00 00 00 | 00 00 00 | 00 00 00 |
     00 00 00 | 00 00 00 | 00 00 00 |
    | 00 00 00 | 00 00 00 | 00 00 00 |
    Solved Matrix:
     01 03 05 | 04 07 06 | 02 09 08 |
     02 06 08 | 05 01 09 | 07 04 03 |
    | 04 07 09 | 02 03 08 | 05 01 06 |
    05 04 02 | 01 06 03 | 08 07 09 |
    07 01 03 | 08 09 02 | 04 06 05 |
     08 09 06 | 07 04 05 | 01 03 02 |
    _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
    06 05 04 | 03 02 01 | 09 08 07 |
    03 02 01 | 09 08 07 | 06 05 04 |
    09 08 07 | 06 05 04 | 03 02 01 |
     . . . . . . . . . . . . . . . . .
    0.09252524375915527
def define constraints (model, matrix, matrix size, region size):
 # Adicionar restrições
 # Declarar que em cada linha, os elementos têm que ser todos diferentes.
 for i in range(matrix size):
     model.AddAllDifferent([matrix[i, j] for j in range(matrix_size)])
 # Declarar que em cada coluna, os elementos têm que ser todos diferentes.
 for j in range(matrix size):
     model.AddAllDifferent([matrix[i, j] for i in range(matrix size)])
 # Declarar que em cada região, os elementos têm que ser todos diferentes.
 for row idx in range(0, matrix size, region size):
      for col idx in range(0, matrix size, region size):
          model.AddAllDifferent([matrix[row idx + i, j] for j in range(col idx, (co
```

```
def init sudoku matrix (model, matrix, matrix size, region size, alfa):
 solver1 = cp model.CpSolver()
 #solver1.parameters.random seed = 10
 model1 = cp model.CpModel()
 matrix1 = \{\}
 for i in range(matrix size):
      for j in range(matrix size):
              matrix1[i, j] = model1.NewIntVar(1, matrix size, 'x[{},{}]'.format(i,
 # Introduzir o random na matriz
 i random = random.randint(0, matrix size - 1)
 j random = random.randint(0, matrix size - 1)
 value random = random.randint(1, matrix size)
 matrix1[i_random,j_random] = model1.NewConstant(value_random)
 define constraints(model1, matrix1, matrix size, region size)
 status1 = solver1.Solve(model1) # Passo 5
 #Escolher a casa para preencher
 fill spots = int(alfa * matrix size * matrix size)
 fill spots array = []
 while fill spots > 0:
   x, y = random.randint(0, matrix size-1), random.randint(0, matrix size-1)
    if (x,y) not in fill spots array:
      fill spots array.append((x,y))
      fill_spots = fill_spots - 1
 for i in range(matrix size):
    for j in range(matrix size):
      if (i,j) in fill spots array:
          matrix[i,j] = solver1.Value(matrix1[i, j])
      else:
          matrix[i,j] = 0
def print sudoku matrix solver (result, matrix, region size):
 matrix size = region size * region size
 track region = region size
 track region2 = region size - 1
 for i in range(int(region size + 1.5 * matrix size)+1):
   print("- ", end="")
 print("")
 for i in range(matrix size):
    for j in range(matrix_size):
      if track region == region size:
        print("| ",end='')
     track region -= 1
      if track_region == 0:
        track region = region size
```

```
value = result.Value(matrix[i,j])
      if value < 10:
        print("0",end="")
      print(value, end=' ')
    print("| \n", end='')
    if track region2 == region size:
      for i in range(int(region_size + 1.5 * matrix_size)+1):
        print("- ", end="")
     print("")
    track region2 -= 1
    if track region2 == 0:
     track region2 = region size
def print sudoku matrix(matrix, region size):
 matrix size = region size * region size
 track region = region size
 track region2 = region size - 1
 for i in range(int(region size + 1.5 * matrix size)+1):
    print("- ", end="")
 print("")
 for i in range(matrix size):
    for j in range(matrix size):
      if track region == region size:
       print("| ",end='')
     track region -= 1
      if track region == 0:
        track region = region size
     value = matrix[i,j]
     if value < 10:
        print("0",end="")
     print(value, end=' ')
    print("| \n", end='')
    if track region2 == region size:
      for i in range(int(region_size + 1.5 * matrix_size)+1):
        print("- ", end="")
     print("")
    track_region2 -= 1
    if track region2 == 0:
     track region2 = region size
```

Resultados e Conclusões Finais

Para os diferentes valores de $N \in \{3,4,5,6\}$ e alpha $\in \{0.0,0.2,0.4,0.6\}$, obtivemos as seguintes soluções:

• N=3 e α =0.0:

Inital Matrix:

-					
	00 00	00 00	00 00	00 00	00
ĺ	00 00	00 00	00 00	00 00	00
	00 00	00 00	00 00	00 00	00
-					
	00 00	00 00	00 00	00 00	00
ĺ	00 00	00 00	00 00	00 00	00
	00 00	00 00	00 00	00 00	00
-					
	00 00	00 00	00 00	00 00	00
ĺ	00 00	00 00	00 00	00 00	00
ĺ	00 00	00 00	00 00	00 00	00
_					

Solved Matrix:

-					
	01 03	05 04	07 06	02 09	08
ĺ	02 06	08 05	01 09	07 04	03
	04 07	09 02	03 08	05 01	06
-					
	05 04	02 01	06 03	08 07	09
ĺ	07 01	03 08	09 02	04 06	05
	08 09	06 07	04 05	01 03	02
-					
	06 05	04 03	02 01	09 08	07
ĺ	03 02	01 09	08 07	06 05	04
	09 08	07 06	05 04	03 02	01
_					

0.09568047523498535

• N=4 e α =0.2:

Inital Matrix:

-			-			-			-			
	05 00	00 00		01 00	00 00		00 00	11 00		00 00	15 00	
İ	00 00	00 00	ĺ	00 00	03 00	ĺ	00 00	00 00	ı	00 00	00 00	
İ	00 00	11 00	İ	00 00	15 00	İ	00 00	03 00	İ	00 00	00 00	
İ	13 00	00 16	İ	00 00	11 00	İ	00 00	00 08	İ	01 00	00 00	
_			_			_			_			
	09 00	00 00		06 00	08 00		00 00	00 00		00 00	16 00	
İ	06 00	00 00	İ	00 00	00 00	İ	14 00	00 00	İ	10 09	00 00	
İ	00 00	00 00	İ	00 13	00 15	İ	00 00	00 00	İ	00 00	08 00	
İ	14 00	00 00	İ	00 00	00 00	İ	00 00	00 00	İ	00 00	00 00	
_			-			_			_			
	00 00	00 00		00 00	00 00		00 00	00 00		00 00	13 00	
İ	00 00	00 00	İ	00 00	00 00	İ	00 00	13 00	İ	11 00	00 00	
i	00 00	00 00	İ	15 00	00 00	İ	00 00	01 00	i	00 00	00 00 j	
i	00 00	00 00	İ	11 00	00 00	İ	00 00	00 00	İ	00 04	00 02	
_			_			_			_			
1	00 00	02 00	1	00 00	00 00	1	00 00	10 00	1	16 00	00 00	
i	00 07	06 00	i	00 00	02 00	i	00 00	00 13	i	12 00	10 00	
i	00 11	10 00	İ	00 00	00 13	İ	00 03	00 00	i	00 00	00 00	
i	00 00	00 00	i	12 00	00 00		08 00	06 00	i	00 03	02 00	
_			_			_			_			

Solved Matrix:

05 14 04 03 01 02 09 16 10 13 11 12 06 08 1	5 07
10 09 08 12 13 06 03 04 07 01 05 15 02 14 1	1 16
02 01 11 07 05 08 15 10 06 14 03 16 09 13 0	4 12 İ
13 06 15 16 14 12 11 07 02 04 09 08 01 10 0	5 03 İ
09 02 03 11 06 14 08 12 01 10 15 07 13 05 1	6 04
06 12 13 08 02 01 04 03 14 05 16 11 10 09 0	7 15
01 05 07 04 10 13 16 15 03 09 12 06 14 02 0	8 11
14 10 16 15 07 09 05 11 13 08 04 02 03 01 1	!
03 04 01 02 09 05 07 06 11 12 08 10 15 16 1	2 14
07 08 05 06 03 04 01 02 15 16 13 14 11 12 0	9 10
11 13 09 10 15 16 12 14 05 02 01 04 07 06 0	3 08
15 16 12 14 11 10 13 08 09 06 07 03 05 04 0	1 02
04 03 02 01 08 07 06 05 12 11 10 09 16 15 1	4 13
08 07 06 05 04 03 02 01 16 15 14 13 12 11 1	0 09 İ
	6 05
16 15 14 13 12 11 10 09 08 07 06 05 04 03 0	2 01

0.25887393951416016

• N=5 e α =0.6:

Inital Matrix:

-		-		-		-			-		-											-		-				
	00 (00	14	18	80	0	70	0 17	21	11		00	19	09	00	16	02	13	00	00	22		00	05	25	03	06	
İ	07 (00	00	04	13	0	0 0	3 25	0.0	00	İ	08	23	06	00	00	18	00	16	12	09	İ	20	00	24	00	14	İ
i	03 (12	06	0.9	0.0	0:	3 0	0 15	12	16	i	18	0.0	0.0	0.0	11	24	0.0	0.7	25	0.0	i	00	13	0.0	0.4	10	i
ŀ	15 (1 18									08					ł	09					ŀ
ŀ					00	_	-	6 00									00						00				_	ŀ
ı	1/ (, 0	12	10	00	2	ŧ U	6 00	00	13	-	02	00	20	15	00	00	03	14	11	00	ı	00	22	18	00	08	ı
-		_									-											-		_		· -		
	06 (6 00					00						20			ļ				00		
	25 ()7	20	24	16	0) 1	3 00	00	80		05	00	00	00	00	23	06	02	00	00		00	11	00	00	12	
	02 (00	00	00	09	1	0 (7 00	25	12		00	21	11	06	22	04	16	17	00	00		23	00	14	00	00	
İ	00 ()4	17	00	10	2:	2 2	1 06	00	19	İ	23	00	80	20	18	00	05	01	24	25	İ	03	09	16	00	15	İ
i	00 2	22	15	11	01	i o	5 0	9 23	20	17	i	24	02	16	00	00	i 00	21	10	03	19	i	13	25	06	00	04	i
_		_							_		_											_		_				
ı	04	11	٥٥	٥٥	17	۱ ٥	n n	0 21	0.0	25	1	٥٥	12	19	0.0	00	06	24	23	07	20	1	00	nn	٥٥	0.0	0.0	ı
ŀ	00 1					-	-	2 16			-		09				13					ł	00					ŀ
ŀ	09 (8 00			-					23						-	00					ŀ
ŀ											-											!						ŀ
ļ	00 (2 13					06				16					!	18					ļ
	00 2	25	00	00	24	0	0	2 19	09	00		00	11	00	00	8 0	0 0	00	21	18	17		00	04	23	06	00	
-		-		-					-		-											-		-		-		
	12 (8(01	23	11	0) 1	7 10	13	00		19	00	00	02	00	03	00	05	04	16		22	00	20	00	00	
	13 (00	10	00	04	1:	2 0	0 0 0	00	00		00	00	07	00	00	15	20	22	23	11		06	00	17	16	19	
	16 ()6	07	25	00	0	9 1	9 05	15	00		00	20	22	00	04	21	18	00	01	02	1	11	00	00	00	13	
İ	00 1	18	00	15	22	0	0 0	0 20	23	04	İ	11	16	00	00	06	00	19	12	13	10	İ	00	07	03	00	00	İ
i	20 1	17	03	02	00	1	3 1	1 00	00	00	i	00	00	12	13	10	00	08	09	00	00	i	05	01	04	24	23	i
_		_							_		_											_		_				
ı	24	15	0.0	16	0.0	1 1	3 0	0 11	0.0	22	1	20	00	23	0.3	02	0.0	07	25	0.0	0.0	1	04	0.0	0.0	0.0	0.0	ı
ŀ	11 (-		-		-	0 00			- 1		00		-				00			i				23		i
ŀ	00	-						0 03								24						ł	02					ŀ
-																												-
1	08 (0 12			-		00				00					-				00		1
	22 (00	25	07	03	0) ()	4 02	00	06		16	00	10	05	00	09	11	13	00	00		00	00	08	14	20	
_		-				-			_		_											-		_				

Solved Matrix:

-									-	-											-		-		-		
- 1	01 2	4	14 18	08	07	23	17	21	11		04	19	09	10	16	02	13	15	20	22	1	12	05	25	03	06	
i	07 2	1 :	22 04	13 İ	19	03	25	02	10	i	08	23	06	17	05	İ 18	01	16	12	09	i	20	15	24	11	14	Ĺ
i	0.3 0	2 (06 09	20	08					i					11			07				01					Ĺ
i			11 19		20					i					12			06				09				-	i
H			12 10					04		ł					25							07					l
- 1	1/1		12 10	23	24	00	0 9	04	13	1	02	ΟI	20	13	23	1 19	03	14	11	05	ı	0 /	22	10	21	00	1
-				21		1.		1.4	1.5	7				25	10					10	7		10	~-	^7		
- !			23 12					14		!		13						20			!	17					
			20 24					18		ļ		10				-	-	02				21					
ļ			05 08		10					-					22							23					
	14 0	4 :	17 13	10	22	21	06	11	19		23	07	80	20	18	12	05	01	24	25		03	09	16	02	15	
	18 2	2 :	15 11	01	05	09	23	20	17		24	02	16	12	14	07	21	10	03	19		13	25	06	80	04	
-									-	-											-		_		-		
	04 1	1 :	16 22	17	15	18	21	03	25		10	12	19	14	13	06	24	23	07	20		80	02	09	05	01	
i	05 1	.2 (08 06	07 İ	23	22	16	17	24	İ	15	09	21	18	20	13	02	04	14	01	i	19	03	10	25	11	Ĺ
i	09 0	1 (02 03	18 İ	04	08	07	06	20	i	25	05	17	24	23	22	10	11	19	15	i	16	14	13	12	21	Ĺ
i			19 21		11			-		i					01			08				18					i
i			13 20							i					-	05						15					i
	10 2		15 20		14	02		0,5	01	_			0.5	10		- 03	12	21	10	- '	1	13	04	23	00		1
ī	12 0		01 23	11	- 06	17	10	13	07	ī	10	24	10	n 2	09	03	1/	05	0.4	16	ī	22	21	20	15	25	
ŀ										ł																_	l
ŀ			10 05					08		1					03												l
- !			07 25					15	-	!					04			24				11				_	
ļ			24 15		01										06							14					
	20 1	.7 (03 02	19	18	11	22	16	21		14	15	12	13	10	25	08	09	06	07		05	01	04	24	23	
-									-	-				-						-	-		-		-		
	24 1	.5 (09 16	12	13	14	11	19	22		20	08	23	03	02	10	07	25	05	06		04	17	21	01	18	
	11 2	0 :	18 14	06	21	10	80	24	09		12	17	13	19	07	01	22	03	02	04		25	16	15	23	05	
ĺ	19 1	.0 2	21 01	05	16	20	03	07	23		06	04	25	22	24	14	15	18	17	80	1	02	12	11	13	09	
į	08 1	.3 (04 17	02 İ	25	15	12	05	18	İ	09	14	01	11	21	20	23	19	16	24	İ	10	06	07	22	03	ĺ
i	22 2	3 2	25 07	03 İ	17	04	02	01	06	İ	16	18	10	05	15	09	11	13	21	12	İ	24	19	08	14	20	Ĺ
		_								_											_						1

0.01798844337463379

• N=6 e α =0.8:

Inital Matrix:		
	00 04 00 22 29 00 00 12 20 14 21 35 15 27 08 00 13 07 03 34 33 00 05 00 25 06 02 09 18 11	

	00 30 17 26 24 19 15 06 05 00 16 00 35 11 07 25 12 08 34 31 18 00 22 29 00 23 00 36 00 00 04 02 00 20 00 13	00 04 00 22 29 00 00 14 00 19 13 12 05 26 18 00 24 23 00 36 30 03 15 17 08 02 07 27 06 16 34 11 01 32 35 09	00 12 20 14 21 35 08 24 30 07 32 28 29 04 31 34 06 27 02 26 11 05 01 13 00 00 09 22 18 03 15 16 17 36 25 33	15 27 08 00 13 07 17 00 22 26 00 29 19 00 02 36 00 28 23 00 21 00 25 04 35 00 31 11 34 00 06 05 03 18 00 24	03 34 33 00 05 00 02 23 18 11 09 31 15 14 01 20 21 17 32 24 28 00 06 35 29 12 13 04 25 00 26 08 07 22 19 27	25 06 02 09 18 11 01 33 35 00 34 36 10 03 16 22 32 13 00 07 27 19 14 08 00 17 24 00 15 26 30 23 21 29 31 28
	17 20 01 31 13 33 22 10 35 16 07 00 09 00 04 05 06 00 30 26 23 00 03 27 24 14 00 00 19 34 18 21 12 00 15 36	07 25 32 15 10 21 27 05 33 36 19 02 12 30 00 28 08 34 00 00 04 29 31 00 09 23 35 00 03 18 24 20 14 16 26 22	35 00 04 19 00 34 32 00 00 12 28 26 13 18 23 31 00 00 21 14 24 10 08 00 00 27 07 00 15 00 17 01 29 02 33 00	22 03 11 24 00 05 34 08 23 15 29 06 07 00 20 35 19 27 09 02 17 12 16 01 36 13 26 30 33 00 28 10 32 25 00 31	14 27 26 16 00 29 21 30 24 13 00 18 00 36 00 00 10 15 07 35 25 32 34 20 22 00 08 17 04 12 06 03 11 09 00 19	02 00 00 06 08 23 04 09 17 14 00 25 03 24 26 11 29 21 18 22 00 05 19 00 31 10 28 16 20 32 27 00 00 00 35 34
	02 00 33 15 25 10 00 22 20 13 01 23 05 19 34 30 32 12 03 07 31 24 00 18 36 08 29 00 00 14 26 04 16 11 00 06	13 34 27 00 36 00 10 32 09 31 11 05 17 18 00 04 00 06 00 12 00 23 02 33 26 15 22 07 30 28 29 01 19 35 14 00	12 00 06 00 05 00 14 00 02 29 26 18 03 00 33 00 36 21 30 22 08 11 00 19 04 17 00 01 23 20 34 07 27 32 10 31	31 32 18 00 20 00 00 17 24 00 03 19 27 00 29 23 00 35 26 00 00 04 00 10 12 16 06 13 05 00 30 22 00 02 21 00	00 00 04 00 29 11 25 16 00 30 12 21 31 02 00 01 15 14 27 20 00 00 32 34 18 00 03 00 33 00 24 13 17 28 00 23	23 14 19 03 00 30 00 27 04 08 06 35 26 00 10 28 16 00 13 01 29 36 00 09 11 31 32 24 21 02 15 18 12 33 05 20
	06 00 10 33 20 01 16 27 08 22 18 02 19 03 28 17 23 32 31 34 15 12 29 24 14 36 09 21 26 04 25 00 11 00 30 05	00 31 15 30 12 00 00 00 28 14 01 00 21 08 00 26 00 11 04 19 00 20 09 25 33 00 06 00 00 27 02 00 00 18 16 32	16 19 00 21 24 17 07 00 15 06 11 12 09 25 00 20 27 02 33 23 26 28 00 10 01 30 18 08 00 00 31 29 36 03 00 04		08 00 29 00 27 26 04 09 23 31 00 32 13 06 00 07 18 36 16 11 35 14 00 02 19 28 15 12 20 05 17 01 00 21 24 33	00 00 00 23 00 00 17 34 20 13 10 19 33 00 30 15 24 31 08 21 18 01 07 00 00 11 25 02 00 29 28 26 06 27 09 12
	21 00 00 10 11 35 08 16 22 18 00 09 13 29 32 23 05 07 20 24 19 03 31 30 27 00 06 02 00 15 33 00 26 34 14 17	22 07 20 00 28 36 23 27 02 12 33 14 00 16 03 10 18 00 15 17 26 00 34 08 00 21 29 09 05 31 19 00 24 25 00 01	00 02 00 18 00 14 00 36 00 35 00 00 27 31 34 15 17 25 28 21 01 33 04 23 10 11 00 26 20 07 05 08 16 13 12 00	32 12 04 34 17 03 13 00 05 29 31 25 20 26 19 33 28 11 14 06 36 22 02 09 16 24 01 00 35 18 21 23 00 27 07 30	10 17 19 34 11 24 30 21 09 35 02 00 12 18 32 27 16 07 00 25 14 03 00 28	06 00 23 30 27 16 21 20 00 26 28 01 00 08 22 12 36 24 29 13 05 35 25 10 32 19 34 00 33 04 09 02 31 18 11 03
	00 09 03 32 00 16 07 00 00 00 28 22 11 18 27 01 02 20 12 00 13 19 00 26 00 15 30 14 35 31 00 25 00 04 34 21	18 33 12 05 04 29 32 09 10 02 27 26 31 00 00 00 21 30 14 28 36 24 25 20 01 03 11 34 17 19 35 13 23 08 07 15	22 00 10 30 00 24 25 34 00 23 31 00 00 03 28 17 00 15 18 00 21 27 02 09 20 00 05 00 29 00 36 06 12 00 19 00	00 31 13 00 36 20 00 04 33 14 08 12 05 00 34 00 32 23 29 30 00 00 15 22 02 11 18 28 00 00 17	11 26 21 15 17 00 20 19 16 18 35 00 33 29 00 00 36 25 34 04 00 00 00 07 13 09 00 30 00 14 00	07 28 01 34 00 27 24 00 00 21 30 17 19 04 08 00 13 14 00 16 11 31 23 06 22 00 09 25 12 18 20 05 03 32 26 33
s	olved Matrix:					
	01 30 17 26 24 19 15 06 05 27 16 03 35 11 07 25 12 08 34 31 18 09 22 29 32 23 21 36 33 28 04 02 14 20 10 13	28 04 31 22 29 10 25 14 21 19 13 12 05 26 18 33 24 23 20 36 30 03 15 17 08 02 07 27 06 16 34 11 01 32 35 09	23 12 20 14 21 35 0 8 24 30 07 32 28 2 9 04 31 34 06 27 0 2 26 11 05 01 13 1 9 10 09 22 18 03 1 5 16 17 36 25 33	15 27 08 32 13 07 17 20 22 26 10 29 19 09 02 36 30 28 23 33 21 16 25 04 35 01 31 11 34 14 06 05 03 18 12 24	02 23 18 11 09 31 15 14 01 20 21 17 32 24 28 10 06 35 29 12 13 04 25 30	01 33 35 04 34 36 10 03 16 22 32 13 12 07 27 19 14 08 05 17 24 20 15 26
	24 14 02 29 19 34 18 21 12 08 15 36	09 23 35 01 03 18 24 20 14 16 26 22	35 09 04 19 30 34 32 20 03 12 28 26 13 18 23 31 16 22 21 14 24 10 08 36 11 27 07 25 15 06 17 01 29 02 33 05	36 13 26 30 33 21 28 10 32 25 04 31	22 05 08 17 04 12 06 03 11 09 23 19	31 10 28 16 20 32 27 30 13 07 35 34
	02 17 33 15 25 10 28 22 20 13 01 23 05 19 34 30 32 12 03 07 31 24 21 18 36 08 29 35 27 14 26 04 16 11 09 06	13 34 27 21 36 24 10 32 09 31 11 05 17 18 08 04 20 06 16 12 25 23 02 33 26 15 22 07 30 28 29 01 19 35 14 03	12 28 06 09 05 16 14 15 02 29 26 18 03 13 33 24 36 21 30 22 08 11 35 19 04 17 25 01 23 20 34 07 27 32 10 31	31 32 18 01 20 08 33 17 24 07 03 19 27 11 29 23 09 35 26 28 15 04 14 10 12 16 06 13 05 34 30 22 25 02 21 36	35 07 04 26 29 11 25 16 36 30 12 21 31 02 22 01 15 14 27 20 06 05 32 34 18 10 03 19 33 09 24 13 17 28 08 23	23 14 19 03 22 30 34 27 04 08 06 35 26 25 10 28 16 07 13 01 29 36 17 09 11 31 32 24 21 02 15 18 12 33 05 20
	06 13 10 33 20 01 16 27 08 22 18 02 19 03 28 17 23 32 31 34 15 12 29 24 14 36 09 21 26 04 25 35 11 07 30 05	03 31 15 30 12 07 36 29 28 14 01 35 21 08 34 26 22 11 04 19 05 20 09 25 33 24 06 17 23 27 02 10 13 18 16 32	16 19 35 21 24 17 07 05 15 06 11 12 09 25 14 20 27 02 33 23 26 28 13 10 01 30 18 08 34 32 31 29 36 03 22 04	18 34 09 28 11 02 24 25 30 21 26 33 04 29 12 05 01 16 03 36 27 17 06 32 10 07 35 31 22 13 08 19 14 20 23 15	08 22 29 25 27 26 04 09 23 31 03 32 13 06 10 07 18 36 16 11 35 14 30 02 19 28 15 12 20 05 17 01 34 21 24 33	36 32 14 23 04 05 17 34 20 13 10 19 33 35 30 15 24 31 08 21 18 01 07 22 16 11 25 02 03 29 28 26 06 27 09 12
	21 01 25 10 11 35 08 16 22 18 04 09 13 29 32 23 05 07 20 24 19 03 31 30 27 12 06 02 36 15 33 28 26 34 14 17	22 07 20 13 28 36 23 27 02 12 33 14 06 16 03 10 18 04 15 17 26 11 34 08 30 21 29 09 05 31 19 35 24 25 32 01	24 02 19 18 09 14 06 36 32 35 03 30 27 31 34 15 17 25 28 21 01 33 04 23 10 11 22 26 20 07 05 08 16 13 12 29	32 12 04 34 17 03 13 15 05 29 31 25 20 26 19 33 28 11 14 06 36 22 02 09 16 24 01 08 35 18 21 23 10 27 07 30	05 33 31 29 26 08 10 17 19 34 11 24 30 21 09 35 02 01 12 18 32 27 16 07 23 25 14 03 13 28 36 15 20 06 22 04	06 15 23 30 27 16 21 20 07 26 28 01 14 08 22 12 36 24 29 13 05 35 25 10 32 19 34 17 33 04 09 02 31 18 11 03
	23 09 03 32 08 16 07 05 36 06 28 22 11 18 27 01 02 20 12 33 13 19 17 26 10 15 30 14 35 31 29 25 24 04 34 21	18 33 12 05 04 29 32 09 10 02 27 26 31 22 16 06 21 30 14 28 36 24 25 20 01 03 11 34 17 19 35 13 23 08 07 15	22 35 10 30 14 24 25 34 13 23 31 11 26 03 28 17 07 15 18 32 21 27 02 09 20 33 05 04 29 08 36 06 12 16 19 01	25 31 13 19 36 20 01 04 33 14 08 12 05 35 34 09 32 23 29 30 07 03 15 22 02 21 16 06 24 26	11 26 21 15 17 06 20 19 16 18 35 03 33 29 12 24 36 25 34 04 05 08 01 10 28 32 27 23 07 13 09 31 30 02 14 22	07 28 01 34 02 27 24 29 15 21 30 17 19 04 08 10 13 14 35 16 11 31 23 06 22 36 09 25 12 18 20 05 03 32 26 33
_						

Observando a tabela abaixo, temos que à medida que o alpha aumenta, ou seja, à medida que diminui as casas do sudoku que o utilizador tem de preencher, diminui o tempo necessário para gerar o mesmo. Já à medida que o N aumenta, se observarmos para o valor do alpha mais baixo (0.0), ou seja, para o valor que significa que só existem casas brancas no sudoku que vamos gerar, deparamos que aumenta também o tempo de gerar o sudoku, pelo que a função que o gera é exponencial.

N \ Alfa	0.0	I	0.2	I	0.4	I	0.6	I
3	0.06076	I	0.02192	Ī	0.00843	I	0.00295	I
4	0.47593	I	0.13101	I	0.05242	I	0.00608	I
5	2.68906	I	0.55139	Ī	0.22028	I	0.01081	Ī
6	8.21655	Ī	2.00852	Ī	1.47335	Ī	0.02182	Ī
								_