Ch 8 : Fonction logarithme décimal

I. <u>Définition et sens de variation</u>

1) Définition:

Soit la fonction f définie sur \mathbb{R} par $f(x)=10^x$.

L'équation $10^x = b$, avec b > 0, admet une unique solution dans \mathbb{R} . Cette solution se note $\log b$.

<u>Définition</u>: On appelle **logarithme décimal** d'un réel strictement positif b, l'unique solution de l'équation $10^x = b$. On la note $\log b$.

La fonction logarithme décimal, notée \log , est la fonction définie sur $[0;+\infty[$ par :

$$x \longmapsto \log(x)$$

Remarques:

• $10^x = b \Leftrightarrow x = \log b$

Exemples:
$$10^5 = 100\,000 \Leftrightarrow 5 = \log(100\,000)$$
 et $10^{-2} = 0.01 \Leftrightarrow -2 = \log(0.01)$
 $5.3 = \log(t) \Leftrightarrow t = 10^{5.3}$

• Pour tout nombre réel x, $log(10^x) = x$

Exemples:
$$\log(10^5) = 5$$
 et $\log 10^{-2} = -2$

Cas particuliers:

- $\log(1) = 0$
- log (10)= 1
- Pour tout entier relatif n, log (10^n) = n

2) Représentation graphique et sens de variation :

<u>Propriété</u> : La fonction logarithme décimal est strictement croissante sur $]0;+\infty[$.

Ainsi $a \le b \Leftrightarrow \log(a) \le \log(b)$

Remarque : on peut appliquer le log dans une inégalité entre deux nombres strictement positifs sans modifier le sens de l'inégalité.

3) <u>Signe</u>:

×	0	1		+ ∞
log(x)	-	0	+	

II. Propriétés algébriques

Théorème: Pour tous nombres réels strictement positifs a et b,

$$log(ab) = log(a) + log(b)$$

Exemple: $log(200) = log(2 \times 100) = log(2) + log(100) = log(2) + log(100) = log(2) + log(2)$

<u>Propriétés</u> : a et b sont deux réels strictement positifs et n esdt un entier relatif

- $\log(a^n) = n\log(a)$
- $\log(\frac{1}{a}) = -\log(a)$
- $\log(\frac{a}{b}) = \log(a) \log(b)$

 $\underline{Propriété}$: Soit a un nombre réel strictement positif. Pour tout nombre réel x:

$$log(a^x) = xlog(a)$$

Exemples:

$$\log (3^5) = 5\log(3)$$
 $\log (\frac{1}{4}) = -\log(4)$ $\log (\frac{7}{9}) = \log(7) - \log(9)$

$$\log \left(\frac{3^2}{2^3} \right) = \log(3^2) - \log(2^3) = 2\log(3) - 3\log(2)$$

Simplifier les expressions suivantes :

$$A = \log(2 - \sqrt{2}) + \log(2 + \sqrt{2})$$

$$B=2\log 3+\log 2-4\log 3$$

$$C = \log 10^3 - \log \frac{1}{5}$$

$$A = \log(2 - \sqrt{2}) + \log(2 + \sqrt{2})$$
$$= \log((2 - \sqrt{2}) \times (2 + \sqrt{2}))$$

$$=\log(4-2)=\ln 2$$

$$B=2\log 3+\log 2-4\log 3$$

$$= \log 3^2 + \log 2 - \log (3^4)$$

$$= \log(3^2 \times 2) - \log(3^4)$$

$$= \log \frac{3^2 \times 2}{3^4}$$

$$=\log\frac{2}{9}$$

$$C = \log 10^3 + \log \frac{1}{5}$$

$$=\log 10^3 - \log 5$$

$$=3 \log 10 - \log 5$$

$$=3\times1-\log5$$

$$=3-\log 5$$

Pour a > 0 et b > 0:

$$log(a) + log(b) = log(ab)$$

Pour a > 0 et n entier naturel :

Pour a > 0 et b > 0:

$$\log(\frac{a}{b}) = \log(a) - \log(b)$$

Pour b > 0:

$$\log(\frac{1}{a}) = -\log(a)$$

III. Équations du type $a^x = b$ ou $x^a = b$ et inéquations du type $a^x < b$ ou $x^a < b$

Propriétés: Soit x et y deux réels strictement positifs

$$\log(x) = \log(y) \Leftrightarrow x = y$$

$$\log(x) < \log(y) \Leftrightarrow x < y$$

Exemples:

Résoudre l'équation $2^x = 100$

$$2^{x} = 100 \Leftrightarrow \log(2^{x}) = \log(100) \Leftrightarrow x \log(2) = \log(10^{2}) = 2$$

Ainsi
$$x = \frac{2}{\log(2)}$$

Résoudre l'inéquation $5^x < 0,0001$

$$5^{x} < 0.0001 \Leftrightarrow \log(5^{x}) < \log(10^{-4}) \Leftrightarrow x \log(5) < -4$$

Ainsi $x < \frac{-4}{\log(5)}$ (on divise par log(5) qui est positif donc le sens de l'inégalité est conservé)

Rappel:

- Lorsqu'on multiplie ou divise les deux membres d'une inégalité par un nombre strictement positif, on conserve le sens de l'inégalité.
- Lorsqu'on multiplie ou divise les deux membres d'une inégalité par un nombre strictement négatif, on renverse le sens de l'inégalité.

Applications:

- 1) Résoudre dans ℝ l'équation : 6^x=2
- 2) Résoudre dans $]0;+\infty[$ l'équation : $x^5 < 3$

1)
$$6^{x}=2$$

 $\log 6^{x}=\log 2$
 $x \log 6=\log 2$
 $x = \frac{\log 2}{\log 6}$

2)
$$x^5 < 3$$

 $\log(x^5) < \log 3$
 $\log x < \log 3$
 $\log x < \frac{1}{5} \log 3$
 $\log x < \log 3^{\frac{1}{5}}$
 $x < 3^{\frac{1}{5}}$ L'ensemble solution est $0:3^{\frac{1}{5}}$.
(Remarque: $3^{\frac{1}{5}}$ se lit "racine cinquième de 3" et peut se noter $\sqrt[5]{3}$.)