# Introductory Astronomy

Week 2: Newton's Universe

Clip 3: Newton!!



### Motion

- State of motion is velocity  $\vec{v}$  speed and direction in  $\stackrel{m}{-}$
- Rate of change of  $\vec{v}$  is acceleration  $\vec{a}$  in  $\frac{\mathrm{m/s}}{\mathrm{s}} = \frac{\mathrm{m}}{\mathrm{s}^2}$
- Acceleration can be speeding, slowing, or turning and is directed in direction of change



# Circular motion

• We found that  $\vec{a}$  directed to center and of constant magnitude. If radius is R and speed v what is magnitude of a?



## Mechanics

- Acceleration due to a force applied by another object:  $\vec{F} = m\vec{a}$
- m is a property of object mass in kg•  $\vec{F}$  is measured in  $N=\frac{kg m}{r^2}$
- When object A applies a force  $\vec{F}$  to B, then B applies a force $-\vec{F}$  to A



# Weight and Mass

- Weight of an object is the force gravity applies to it
- We know objects fall with acceleration  $g=9.82\,rac{\mathrm{m}}{\mathrm{s}^2}$  so force of gravity is F=mg
- g is property of Earth
- My mass is 59 kg. My weight on Earth is



#### **Conservation Laws**

- Mathematical theorems follow from Newton
- Momentum  $\vec{p} = m \vec{v}$  then  $\vec{F}$  is rate of change of  $\vec{p}$
- So if A and B act on each other,  $\vec{p}_A + \vec{p}_B$  does not change they exchange momentum but can't create or destroy it. Momentum conserved



### **More Conservation**

- With a little more math, see that a circular version angular momentum L=mvR is also conserved
- This will be incredibly important to us things in space spin



# Energy

- If gravity is the only force acting on an object, can show that total energy is constant  $E = \frac{mv^2}{2} + mgh$
- In general, other forces act. Find that this introduces more kinds of energy: sound, light, heat, chemical, electric, nuclear, etc. but total is conserved
- Units of energy:  $J = \frac{\text{kg m}^2}{\text{s}^2}$



# This is Everything

- $ullet ec{F} = m ec{a}$  . The rest is details
- If we can figure out forces this is a way to predict from where things are today where they will be in future (or were in past):





# **Credits**

- Circular Motion animation: <u>Mathematica</u>
- Demonstration videos: Duke Media Services

