증강현실

(2023. 10. 11.)

이 종 원 (jwlee@sejong.ac.kr)

AR Tracking

AR Requires Tracking and Registration

✓ Registration

- Positioning virtual object wrt real world
- Fixing virtual object on real object when view is fixed

√ Calibration

- Offline measurements
- Measure camera relative to HMD

✓ Tracking

- Continually locating the user's viewpoint when view moving
- Position (x, y, z), Orientation(r, p, y)

Tracking Requirements

- ✓ Augmented reality information display
 - World stabilized
 - Body stabilized
 - Head stabilized

Coordinate Systems

Spatial Registration

- ✓ Define relative position of each elements of a scene
- ✓ Elements: User, user's eye, environment (e.g., table, room,
 - building), objects, etc.
- ✓Initially: calibration
- √3D/6D tracking

Wcs: World coordinate system Hcs: Head coordinate system Ecs: Eye coordinate system

Registration Problem

- √ Virtual and real content must stay properly aligned
- ✓If not aligned properly
 - Break the illusion that the two coexist
 - Prevent acceptance of many serious applications

t = 0 seconds

t = 0.5 second

Source of Registration Errors

- ✓ Static errors
- ✓ Dynamic errors

Static Errors

- ✓ Optical distortions (in HMD)
- ✓ Mechanical misalignments
- ✓ Tracker errors
- ✓Incorrect viewing parameters
 - Field of View
 - Center of projection
 - Interpupillary distance
 - ...

Reducing Static Errors

- ✓ Distortion compensation
 - For lens or display distortions
- ✓ Manual adjustments
 - Have user manually align AR and VR content
- √ View-based or direct measurements
 - Have user measure eye position
- √ Camera calibration (video AR)
 - Measuring camera properties

View Based Calibration (Azuma 94)

Dynamic Errors

- ✓ System delays (largest source of error)
 - The time difference between the measurement and generating images
 - The delays exist because each component in the AR system requires some time to do its job
 - End-to-end system delays cause registration errors only when motion occurs

Dynamic Errors

$$✓$$
Total delay = 50 + 2 + 33 + 17 = 102ms

• 1ms delay = 1/3mm = 33mm registration error

Reducing Dynamic Errors (1)

- ✓ Reduce system lag
 - Faster components/system modules
- ✓ Reduce apparent lag
 - Image deflection
 - Image warping

Reducing Dynamic Errors (2)

- ✓ Match video + graphics input streams (video AR)
 - Delay video of real world to match system lag
 - User doesn't notice
- ✓Predictive tracking
 - Inertial sensors helpful

Azuma/Bishop 1994

Predictive Tracking

√Can predict up to 80ms in future (Holloway)

Predictive Tracking (Azuma 94)

Tracking Technologies

✓ Active

- Mechanical, magnetic, ultrasonic
- GPS, Wi-Fi, cell location

✓ Passive

- Inertial sensors (compass, accelerometer, gyro)
- Computer vision: marker based, natural feature tracking

√Hybrid tracking

Combined sensors (e.g., vision + inertial)

Tracking Types

Mechanical Tracker

✓Idea: mechanical arms with joint sensors

√++: high accuracy, haptic feedback

✓--: cumbersome, expensive

Microscribe

Magnetic Tracker

✓Idea: Coil generates current when moved in magnetic field.

Measuring current gives position and orientation relative to magnetic source

√++: 6DOF, robust

Flock of Birds (Ascension)

✓--: Wired, sensible to metal, noisy, expensive

Electromagnetic Tracking

https://youtu.be/kVz_kzb-6n8?si=wLtldFggNRXLeQPo (2018, 0:20 ~)

Electromagnetic Tracking

https://youtu.be/rN5-NDzZduE?si=7b4KsWcFobnJakyi (2020, 0:43)

Inertial Tracker

- ✓ Idea: Measuring linear and angular orientation rates (accelerometer/gyroscope)
- √++: No transmitter, cheap, small, high frequency, wireless
- ✓--: Drifts over time, hysteresis effect, only 3DOF

IS300 (Intersense)

3D Motion Capture with Inertial Sensors

https://youtu.be/KqKa2Gc7lh8?si=xj6V15JvdLxlghJl (2018, 13:50)

What is IMU?

https://youtu.be/fG-JQlzQxWQ?si=RMcfpf1qr1yhsXOZ (2021, 8:08)

Ultrasonic Tracker

- ✓Idea: Time of Flight or phase-Coherence Sound Waves
- √++: Small, cheap
- √--: 3DOF, line of sight, low resolution, affected by environmental conditions (pressure, temperature)

Global Positioning System (GPS)

- ✓ Created by US in 1978: Currently 29 satellites
- ✓ Satellites send position + time
- √GPS receiver positioning
 - 4 satellites need to be visible
 - Differential time of arrival
 - Triangulation
- ✓ Accuracy
 - 5-30m+, blocked by weather, buildings etc.

Mobile Sensors

✓Inertial compass

- Earth's magnetic field
- Measures absolute orientation

✓ Accelerometers

- Measures acceleration about axis
- Used for tilt, relative rotation
- Can drift over time

