Math Problem Set 2

Tim Munday

Section 1 questions

Ex 3.1

(i)

$$\begin{split} \langle x,y\rangle &= \tfrac{1}{4}(||x+y||^2 - ||x-y||^2) \\ &= \tfrac{1}{4}(\langle x+y,x+y\rangle - \langle x-y,x-y\rangle) \end{split}$$

We note we are on a real inner product space so we can write:

$$= \frac{1}{4}(\langle x, x \rangle + \langle y, y \rangle + 2\langle x, y \rangle - \langle x, x \rangle - \langle y, y \rangle + 2\langle x, y \rangle)$$

$$= \frac{1}{4}(4\langle x, y \rangle)$$

$$= \langle x, y \rangle$$

(ii)

$$||x||^2 + ||y||^2 = \frac{1}{2}(||x+y||^2 + ||x-y||^2)$$

Again because we in a real space we can write:

$$= \frac{1}{2}(\langle x, x \rangle + \langle y, y \rangle + 2\langle y, x \rangle + \langle x, x \rangle + \langle y, y \rangle - 2\langle y, x \rangle)$$

$$= \langle x, x \rangle + \langle y, y \rangle$$

$$= ||x||^2 + ||y||^2$$

Ex 3.2

$$\langle x,y\rangle = \tfrac{1}{4}(||x+y||^2 - ||x-y||^2 + i||x-iy||^2 - i||x+iy||^2)$$

Using the proof from above we can write this as:

$$= \mathcal{R}\langle x, y \rangle + \frac{1}{4}i(\langle x - iy, x - iy \rangle - \langle x + iy, x + iy \rangle)$$

$$= \mathcal{R}\langle x, y \rangle + \frac{1}{4}4(\mathcal{I}\langle x, y \rangle)$$

$$= \langle x, y \rangle$$

Ex 3.3

(i)

$$cos(\theta) = \frac{\langle x, y \rangle}{||x|| ||y||}$$

Subbing in we have:

$$= \frac{\int_0^1 x^6 dx}{\sqrt{\int_0^1 x^2 dx} \sqrt{\int_0^1 x^1 0 dx}}$$
$$= \frac{1/7}{\sqrt{1/33}}$$

Therefore the angle is 34.84 degrees.

(ii)

$$cos(\theta) = \frac{\int_0^1 x^6 dx}{\sqrt{\int_0^1 x^4 dx} \sqrt{\int_0^1 x^8 dx}}$$
$$= \frac{1/7}{\sqrt{1/45}}$$

Therefore the angle is 16.6 degrees.

Ex 3.8

(i)

A set is orthonormal if the inner products of the combinations of elements of the set satisfy:

- $\langle x_i, x_j \rangle = 1$ if i = j
- $\langle x_i, x_j \rangle = 0$ if $i \neq j$

Checking the first condition:

Firstly for cos(t), cos(t)

$$\langle cos(t), cos(t) \rangle = \frac{1}{\pi} int_{-\pi}^{\pi} cos(t)^2 dt$$

$$=\frac{1}{\pi}\left[\frac{x}{2}+\frac{\sin(2x)}{4}\right]_{-\pi}^{\pi}$$

$$=\frac{1}{\pi}(\pi)$$

=1

We can also see that this result will hold for $\cos(2t)$, $\cos(2t)$ as well. (The evaluated sin functions in the integral will still be zero).

Now checking $\sin(t)$, $\sin(t)$, and by virtue of the argument above, $\sin(2t)$, $\sin(2t)$ as well.

$$\langle cos(t), cos(t) \rangle = \frac{1}{\pi} int_{-\pi}^{\pi} sin(t)^{2} dt$$

$$= \frac{1}{\pi} [\frac{x}{2} - \frac{1}{4} sin(2x)]_{-\pi}^{\pi}$$

= 1

Now we need to check the cross terms, and verify that their inner product is zero.

$$\langle cos(t), sin(t) \rangle = \frac{1}{\pi} [sin(t)^2]_{-\pi}^{\pi}$$

= 0

And we note that this also holds for the combinations of $\cos(2t)$, $\sin(t)$ and also $\cos(t)$, $\sin(2t)$.

$$\langle cos(t), cos(2t) \rangle = \frac{1}{\pi} \left[\frac{sin(t)}{2} + \frac{sin(3t)}{6} \right]_{-\pi}^{\pi}$$

= 0

$$\langle sin(t), sin(2t) \rangle = \frac{1}{\pi} \left[\frac{sin(t)^3}{1.5} \right]_{-\pi}^{\pi}$$

= 0

Therefore the set is orthonormal.

(ii)

$$\begin{aligned} ||t||^2 &= \frac{1}{\pi} \int_{-\pi}^{\pi} t^2 dt \\ &= \left[\frac{t^3}{3} \right]_{-\pi}^{\pi} \\ &= \left[\frac{\pi^3}{3} + \frac{\pi^3}{3} \right] \end{aligned}$$

$$=2\frac{\pi^3}{3}$$

Therefore $||t|| = (\frac{2\pi^3}{3})^{0.5}$

(iii)

Because we are dealing with an orthnormal set we can write:

$$Proj_x(cos(3t)) = \Sigma_i \langle S_i, cos3t \rangle s_i$$

$$= \langle cos(t), cos(3t) \rangle cos(t) + \langle cos(2t), cos(3t) \rangle cos(2t) + \langle sin(t), cost(3t) \rangle sin(t) + \langle sin(2t), cos(3t) \rangle sin(2t)$$

After substituting in the integrals we get

=0

i.e. $\cos(3t)$ is orthogonal to all the elements in S, as its projection matrix is a zero matrix.

(iv)

$$Proj_x(t) = \Sigma_i \langle S_i, t \rangle s_i$$

$$= \langle cos(t), t \rangle cos(t) + \langle cos(2t), t \rangle cos(2t) + \langle sin(t), t \rangle sin(t) + \langle sin(2t), t \rangle sin(2t)$$

$$= 0 + 0 + 2\sin(t) - \sin(2t)$$

$$= 2sin(t) - sin(2t)$$

Ex 3.9

We use the fact that we can convert the rotation transformation into a matrix in the standard basis, which we call Q. Then, we know that if $Q^TQ = I$ then the transformation is orthonormal.

$$Q = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$

So

$$QQ^{T} = \begin{bmatrix} \cos(\theta)^{2} + \sin(\theta)^{2} & 0\\ 0 & \cos(\theta)^{2} + \sin(\theta)^{2} \end{bmatrix}$$

$$QQ^T = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right]$$

Ex 3.10

(i)

First we show that if Q is orthonormal then $QQ^H = I$.

If Q is an orthonormal matrix, then it preserves the inner product of two vectors. i.e.

$$\langle m, n \rangle = \langle Qm, Qn \rangle$$

Which we can rewrite as:

$$m^H n = (Qm)^H (Qn)$$

$$m^H n = m^H (Q^H Q) n$$

Therefore, since this has to hold for all m and n:

$$Q^hQ = I$$

Now we can show that if $QQ^H = I$, then Q is orthonormal.

If
$$QQ^H = I$$

Then:

$$\langle Qm, Qn \rangle = (Qm)^H (Qn)$$

= $m^H Q^H Qn$

$$=\langle m,n\rangle$$

(ii)

$$||Qx|| = \sqrt{\langle Qx, Qx \rangle}$$

By the definition of what a orthonrmal matrix is (it preserves the inner product), we can write:

$$=\sqrt{\langle x,x\rangle}$$

$$= ||x||$$

(iii)

If Q is orthonormal we can write:

$$QQ^H = I$$

i.e.
$$Q^{H} = Q^{-1}$$

 Q^H is clearly orthonormal because $(Q^H)^H=Q$, therefore so is Q^{-1} .

(iv)

If Q is orthonormal we know that $G = Q^H Q = I$

For some element of G, we can write that:

$$G_{i,j} = \langle q_i, q_j \rangle$$

Where q_i is the i'th column of Q.

By the definition of orthornomality, we know that:

$$\langle q_i, q_j \rangle = 1 \text{ if } i = j$$

and

$$\langle q_i, q_j \rangle = 0 \text{ if } i \neq j$$

So we can see that when i=j we are on the diagonal of Q, so clearly $\langle q_i, q_j \rangle = 1$ if i=j. And similarly, everywhere else $i \neq j$, and have zero entries, so $\langle q_i, q_j \rangle = 0$ if $i \neq j$.

(v)

We can find a counterexample to show that not all matrices with determinant equal to 1 are orthonormal.

$$D = \left[\begin{array}{cc} 2 & 0 \\ 0 & 0.5 \end{array} \right]$$

We can see that:

$$det(D) = 1$$

But if we test for orthonormality:

$$DS^H = \left[\begin{array}{cc} 4 & 0 \\ 0 & 0.25 \end{array} \right] \neq I$$

vi

Checking if the product of the two matrices is an orthonormal matrix:

$$(Q_1Q_2)(Q_1Q_2)^H = Q_1Q_2Q_2^HQ_1^H$$

Then using the fact that Q_1 and Q_2 are orthonormal we can write:

$$Q_1 Q_2 Q_2^H Q_1^H = Q_1 Q_1^H = I$$

So the product of the matrices is orthonormal.

— Credit to Alberto for the following questions who helped me a lot —

Exercise 11

Fix $N \in \mathbb{N}$, N > 0, and suppose $\{x_i\}_{i=1}^N$ is a set of linearly dependent vectors in V. Also, suppose, without loss of generality, that for 2 < k < N, $\{x_i\}_{i=1}^{k-1}$ is a linearly independent set and $\{x_i\}_{i=1}^k$ is a linearly dependent set. Then $\{q_i\}_{i=1}^{k-1}$ (as they are defined in the book) is also a linearly independent set. However, since $x_k \in \text{span}(\{x_i\}_{i=1}^{k-1})$, we have that $q_k = 0$. Therefore the Gram-Schmidt orthonormalization process brakes down.

Exercise 16

- (i) Let $A \in \mathbb{M}_{mxn}$ where $\operatorname{rank}(A) = n \leq m$. Then there exist orthonormal $Q \in \mathbb{M}_{mxm}$ and upper triangular $R \in \mathbb{M}_{mxn}$ such that A = QR. Since $\tilde{Q} = -Q$ is still orthonormal $(-Q(-Q)^H = -Q(-Q^H) = QQ^H = I$ and similarly one shows $(-Q)^H(-Q) = I$) and $\tilde{R} = -R$ is still upper triangular, $A = QR = \tilde{Q}\tilde{R}$. Therefore QR-decomposition is not unique.
- (ii) Suppose now that A is invertible and can be decomposed into two different QR decompositions: QR and $\tilde{Q}\tilde{R}$, where the diagonal entries of R and \tilde{R} are strictly positive. Then both R and \tilde{R} are invertible and we conclude that $\tilde{R}^{-1}R = Q^H\tilde{Q}$. Since R and \tilde{R} are upper triangular, so is the LHS of the previous equation. On the other hand, since Q and \tilde{Q} are orthonormal, so is the RHS. Therefore $\tilde{R}^{-1}R = I$ and, by unicity of the inverse, we conclude that $R = \tilde{R}$, and so $Q = \tilde{Q}$.

Exercise 17

Take a reduced QR-decomposition $A = \hat{Q}\hat{R}$, where $\hat{Q} \in \mathbb{M}_{mxn}$ is orthonormal and $\hat{R} \in \mathbb{M}_{nxn}$ is upper triangular. Since A has full column rank, \hat{R} has full rank and is therefore nonsingular. Then,

$$A^{H}Ax = A^{H}b \implies (\hat{Q}\hat{R})^{H}\hat{Q}\hat{R}x = (\hat{Q}\hat{R})^{H}b \implies \hat{R}^{H}\hat{Q}^{H}\hat{Q}\hat{R}x = \hat{R}^{H}\hat{Q}^{H}b,$$

and premultiplying both LHS and RHS of the last equation by \hat{R}^{-1} gives $\hat{R}x = \hat{Q}^Hb$.

Exercise 23

Let $x, y \in V$. If $||x|| \ge ||y||$, then

$$|||x|| - ||y||| = ||x|| - ||y|| \le ||x - y|| + ||y|| - ||y|| = ||x - y||.$$

On the other hand, if $||x|| \leq ||y||$, then

$$|||x|| - ||y||| = ||y|| - ||x|| \le ||y - x|| + ||x|| - ||x|| = ||y - x|| = ||x - y||,$$

and the result follows.

Exercise 24

- (i) Since $|f(t)| \ge 0$ for every t, so is $\int_a^b |f(t)| dt$. In addition, if f = 0, then $\int_a^b |f(t)| dt = 0$. On the other hand, if $\int_a^b |f(t)| dt = 0$ and $|f(t)| \ge 0$, it must be that |f(t)| = 0 for all t, implying that f = 0. Now take a constant $c \in \mathbb{F}$, then $\int_a^b |cf(t)| dt = \int_a^b |c| |f(t)| dt = |c| \int_a^b |f(t)| dt$, since c does not depend on t. Finally, take $g \in C([a,b];\mathbb{F})$. Since $|f(t)+g(t)| \le |f(t)| + |g(t)|$ for all t and the integral is a linear operator, we have that $\int_a^b |f(t)| dt \le \int_a^b |f(t)| dt + \int_a^b |g(t)| dt$.
- (ii) Since $|f(t)|^2 \ge 0$ for every t, so is $\int_a^b |f(t)|^2 dt$ and its square root. In addition, if f=0, then $|f(t)|^2=0$ for all t and $\sqrt{\int_a^b |f(t)|^2 dt}=0$. On the other hand, if $\sqrt{\int_a^b |f(t)|^2 dt}=0$, then $\int_a^b |f(t)|^2 dt=0$ and since $|f(t)|^2 \ge 0$ for all t, it must be that $|f(t)|^2=0$ for all t, implying that f=0. Now take a constant $c \in \mathbb{F}$, then $\sqrt{\int_a^b |cf(t)|^2 dt} = \sqrt{\int_a^b |c|^2 |f(t)|^2 dt} = |c| \sqrt{\int_a^b |f(t)|^2 dt}$, since c does not depend on t. Finally, take $g \in C([a,b];\mathbb{F})$. Since $|f(t)+g(t)| \le |f(t)|+|g(t)|$ for all $t, x \mapsto x^2$ and $x \mapsto \sqrt{x}$ are monotonically increasing for nonnegative x and the integral is a linear operator, we have that $\sqrt{\int_a^b |f(t)+g(t)|^2 dt} \le \sqrt{\int_a^b |f(t)|^2 dt} + \int_a^b |g(t)|^2 dt \le ||f||_{L^2} + ||g||_{L^2}$.
- (iii) Since $|f(x)| \geq 0$ for all x, so is the $\sup_{x \in [a,b]} |f(x)|$. In addition, if f = 0, then $\sup_{x \in [a,b]} |f(x)|$ is also zero. On the other hand, since $|f(x)| \geq 0$ for all x, $0 \leq \sup_{x \in [a,b]} |f(x)| = 0$ implies that we must have f = 0. Now take a constant $c \in \mathbb{F}$, then $\sup_{x \in [a,b]} |cf(x)| = \sup_{x \in [a,b]} |c||f(x)| = |c| \sup_{x \in [a,b]} |f(x)|$. Finally, take $g \in C([a,b];\mathbb{F})$. Since $|f(x)+g(x)| \leq |f(x)|+|g(x)|$ for all x, we have that $\sup_{x \in [a,b]} |f(x)+g(x)| \leq \sup_{x \in [a,b]} |f(x)|+|g(x)|$ $\leq \sup_{x \in [a,b]} |f(x)|+|g(x)|$.

Exercise 26

We show that topological equivalence is an equivalence relation. Let $||\cdot||_r$ be a norm on X for $r \in \{a, b, c\}$. Clearly $||\cdot||_r$ is in topologically equivalent with itself, just pick any $0 < m \le 1$ and any $M \ge 1$ to show this. Also, suppose that $||\cdot||_a$ is topologically equivalent to $||\cdot||_b$ with constants $0 < m \le M$. Then, $||\cdot||_b$ is topologically equivalent to $||\cdot||_a$ with constants $0 < 1/M' \le 1/m'$. Finally, if $||\cdot||_a$ is topologically equivalent to $||\cdot||_b$ with constants $0 < m \le M$ and so is $||\cdot||_b$ with $||\cdot||_c$ with constants $0 < m' \le M'$, then $||\cdot||_a$ is topologically equivalent to $||\cdot||_b$ with constants $0 < mm' \le MM'$.

Take $x \in \mathbb{R}^n$ Notice that

$$\sum_{i=1}^{n} |x_i|^2 \le \left(\sum_{i=1}^{n} |x_i|^2 + 2\sum_{i \ne j} |x_i| |x_j|\right) = \left(\sum_{i=1}^{n} |x_i|\right)^2$$

and that

$$\sum_{i=1}^{n} |x_i| \cdot 1 \le \left(\sum_{i=1}^{n} |x_i|^2\right)^{1/2} \left(\sum_{i=1}^{n} 1^2\right)^{1/2} = \sqrt{n} \left(\sum_{i=1}^{n} |x_i|^2\right)^{1/2}$$

prove that $||x||_2 \le ||x||_1 \le \sqrt{n}||x||_2$.

Also notice that

$$\max_{i} |x_{i}| = \left(\max_{i} |x_{i}|^{2}\right)^{1/2} \le \left(\sum_{i=1}^{n} |x_{i}|^{2}\right)^{1/2} =$$

and

$$\sum_{i=1}^{n} |x_i|^2 \le n \cdot \max_i |x_i|^2$$

prove that $||x||_{\infty} \le ||x||_2 \le \sqrt{n}||x||_{\infty}$.

Exercise 28

(i) Notice that (applying the results of the previous exercise)

$$\sup_{x \neq 0} \frac{||Ax||_1}{||x||_1} \leq \sup_{x \neq 0} \frac{||Ax||_1}{||x||_2} \leq \sqrt{n} \sup_{x \neq 0} \frac{||Ax||_2}{||x||_2},$$

and

$$\sup_{x \neq 0} \frac{||Ax||_1}{||x||_1} \ge \sup_{x \neq 0} \frac{||Ax||_2}{||x||_1} \ge \frac{1}{\sqrt{n}} \sup_{x \neq 0} \frac{||Ax||_2}{||x||_2}$$

imply that $\frac{1}{\sqrt{n}}||A||_2 \le ||A||_1 \le ||A||_2$.

(ii) Notice that

$$\sup_{x \neq 0} \frac{||Ax||_2}{||x||_2} \le \sup_{x \neq 0} \frac{\sqrt{n}||Ax||_{\infty}}{||x||_{\infty}},$$

and

$$\sup_{x\neq 0}\frac{||Ax||_2}{||x||_2}\geq \sup_{x\neq 0}\frac{||Ax||_\infty}{\sqrt{n}||x||_\infty}.$$

Exercise 29

Take an arbitrary $x \neq 0$ and suppose $||\cdot||$ is an inner product induced norm. Since

$$||Qx|| = (\langle Qx, Qx \rangle)^{1/2} = (\langle Q^HQx, x \rangle)^{1/2} = (\langle x, x \rangle)^{1/2} = ||x||,$$

then

$$||Q|| = \sup_{x \neq 0} \frac{||Qx||}{||x||} = 1.$$

Now let $R_x : \mathbb{M}_n(\mathbb{F}) \to \mathbb{F}^n, A \mapsto Ax$ for every $x \in \mathbb{F}^n$. Notice that

$$||R_x|| = \sup_{A \neq 0} \frac{||Ax||}{||A||} = \sup_{A \neq 0} \frac{||Ax||||x||}{||A||||x||} \le \sup_{A \neq 0} \left(\frac{||Ax||||x||}{||Ax||}\right) = ||x||.$$

Exercise 30

Take arbitrary matrices $A, B \in \mathbb{M}_n(\mathbb{F})$. First, $||A||_S = ||SAS^{-1}|| \ge 0$ for any A because $||\cdot||$ is a norm on $\mathbb{M}_n(\mathbb{F})$ and $SAS^{-1} \in \mathbb{M}_n(\mathbb{F})$. In addition, $||0||_S = ||S0S^{-1}|| = ||0|| = 0$ and if $0 = ||A||_S = ||SAS^{-1}||$, then $SAS^{-1} = 0$ which implies A = 0. Second, take $a \in \mathbb{F}$, then

$$||aA||_S = ||SaAS^{-1}|| = ||aSAS^{-1}|| = |a|||SAS^{-1}|| = |a|||A||_S.$$

Finally, let $B \in \mathbb{M}_n(\mathbb{F})$ and notice that

$$||A + B||_S = ||S(A + B)S^{-1}|| = ||SAS^{-1} + SBS^{-1}|| \le ||SAS^{-1}|| + ||SBS^{-1}|| = ||A||_S + ||B||_S.$$

Therefore $||\cdot||_S$ is a norm on $\mathbb{M}_n(\mathbb{F})$. To show that it is a matrix norm, notice that

$$||AB||_S = ||SABS^{-1}|| = ||SAS^{-1}ABS^{-1}|| \le ||SAS^{-1}|| ||SBS^{-1}||,$$

and so $||AB||_S \le ||A||_S ||B||_S$.

Exercise 37

Since $V := \mathbb{R}[x;2]$ is isomorphic to \mathbb{R}^3 , we can represent an arbitrary element $p \in V$, $p = ax^2 + bx + c$, as a vector on \mathbb{R}^3 , p = (a, b, c). Then we need to find a vector q = (a', b', c') such that p'q = 2a + b = p'(1) = L[p]. Thus, q = (2, 1, 0).

Exercise 38

Let $p = ax^2 + vx + c$ be an arbitrary element of $V = \mathbb{F}[x; 2]$. Since we can represent $p = (a, b, c)^T$, and $p' = D(p) = (0, 2a, b)^T$, we that the matrix representation of D is

$$D = \begin{bmatrix} 0 & 0 & 0 \\ 2 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix},$$

and the hermitian is just the transpose

$$D = \begin{bmatrix} 0 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}.$$

Exercise 39

(i) By definition of adjoint and linearity of inner products,

$$<(S+T)^*w, v>_V = < w, (S+T)v>_W =$$

 $< w, Sv + Tv>_W = < w, Sv>_W + < w, Tv>_W =$
 $< S^*w, v>_V + < T^*w, v>_V = < S^*w + T^*w, v>_V.$

Then $(S+T)^* = S^* + T^*$. Also,

$$<(\alpha T)^*w, v>_V=< w, (\alpha T)v>_W=$$

 $< w, \alpha Tv>_W= \alpha < w, Tv>=$
 $\alpha < T^*w, v>=< \bar{\alpha}T^*w, v>,$

thus $(\alpha T)^* = \bar{\alpha} T$.

(ii) By the definition of adjoint of S and the properties of inner products we have that

$$< w, Sv>_W = < S^*w, v>_V = \overline{< v, S^*w>_V} = \overline{< S^{**}v, w>_W} = < w, S^{**}v>_W$$

for all $v \in V$ and $w \in W$. Therefore S = S * *.

(iii) By the definition of adjoint we have

$$<(ST)^*v', v>_V = < v', (ST)v>_V = < v', S(Tv)>_V = < S^*v', Tv>_V = < T*S*v', v>_V,$$

thereby proving that $(ST)^* = T^*S^*$.

(iv) Using (iii) we have $T^*(T^*)^{-1} = (TT^{-1})^* = I^* = I$.

Exercise 40

(i) Let $B, C \in \mathbb{M}_n(\mathbb{F})$. By definition of Frobenious inner product

$$\langle B, AC \rangle_F = \text{tr}(B^H AC) = \text{tr}((A^H B)^H C) = \langle A^H B, C \rangle_F.$$

(ii) By definition of Frobenious norm and the properties of the trace we have

$$< A_2, A_3 A_1>_F = \operatorname{tr}(A_2^H A_3 A_1) = \operatorname{tr}(A_1 A_2^H A_3) = \operatorname{tr}((A_2 A_1^H)^H A_3) = < A_2 A_1^H, A_3>_F = < A_2 A_1^*, A_$$

(iii) Given $B, C \in \mathbb{M}_n(\mathbb{F})$, we have $\langle B, AC - CA \rangle = \langle B, AC \rangle - \langle B, CA \rangle$. Applying (ii) to the second term we get $\langle B, CA \rangle = \langle BA^*, C \rangle$. On the other hand,

$$\langle B, AC \rangle = \operatorname{tr}(B^H AC) = \operatorname{tr}((A^H B)^H C) = \langle A^H B, C \rangle = \langle A^* B, C \rangle.$$

Putting all together we obtain that $T_A^* = T_{A^*}$.

Exercise 44

Suppose there exists an $x \in \mathbb{F}^n$ such that Ax = b. Then, for every $y \in \mathcal{N}(A^H)$,

$$< y, b> = < y, Ax > = < A^{H}y, x > = < 0, x > = 0.$$

Now suppose that there exists a $y \in \mathcal{N}(A^H)$ such that $\langle y, b \rangle \neq 0$. Then $b \notin \mathcal{N}(A^H)^{\perp} = \mathcal{R}(A)$. Therefore for no $x \in \mathbb{F}^n$, Ax = b.

Exercise 45

Let $A \in \operatorname{Sym}_n(\mathbb{R})$ and $B \in \operatorname{Skew}_n(\mathbb{R})$. Then

$$\langle B, A \rangle = \text{Tr}(B^T A) = \text{Tr}(AB^T) = \text{Tr}(A^T (-B)) = -\langle A, B \rangle.$$

We conclude that $\langle A, B \rangle = 0$ and $\operatorname{Skew}_n(\mathbb{R}) \subset \operatorname{Sym}_n(\mathbb{R})^{\perp}$. Now suppose $B \in \operatorname{Sym}_n(\mathbb{R})^{\perp}$. As for any other matrix, $B + B^T \in \operatorname{Sym}_n(\mathbb{R})$. For every $A \in \operatorname{Sym}_n(\mathbb{R})$ we have

$$< B + B^T, A > = < B, A > + < B^T, A > = \text{Tr}(BA) = \text{Tr}(BA^T)$$

 $\text{Tr}(A^TB) = \text{Tr}((A^TB)^T) = \text{Tr}(B^TA) = < B, A > = 0.$

Since this holds for every A, we can pick $A = B + B^T$. However $\langle A, A \rangle = 0$ if and only if A = 0, therefore $B = -B^T$ and $\operatorname{Sym}_n(\mathbb{R})^{\perp} \subset \operatorname{Skew}_n(\mathbb{R})$. Hence $\operatorname{Sym}_n(\mathbb{R})^{\perp} = \operatorname{Skew}_n(\mathbb{R})$.

Exercise 46

- (i) if $x \in \mathcal{N}(A^H A)$, $0 = (A^H A)x = A^H (Ax)$ and $Ax \in \mathcal{N}(A^H)$. Also, Ax is in the range of A by definition.
- (ii) Suppose $x \in \mathcal{N}(A)$. Then Ax = 0. Premultiplying by A^H both sides of the equation we obtain $A^H Ax = A^H 0 = 0$ and so $x \in \mathcal{N}(A^H A)$. On the other hand, suppose $x \in \mathcal{N}(A^H A)$. Then $||Ax|| = x^H A^H Ax = x^H 0 = 0$, so that Ax = 0 and $x \in \mathcal{N}(A)$
- (iii) By the rank-nullity theorem we have $n = \text{Rank}(A) + \text{Dim}\mathcal{N}(A)$ and $n = \text{Rank}(A^H A) + \text{Dim}\mathcal{N}(A^H A)$. Then by (ii) it follows that $\text{Rank}(A) = \text{Rank}(A^H A)$.
- (iv) By (iii) and the assumption on A we have that $n = \text{Rank}(A) = \text{Rank}(A^H A)$. Since $A^H A \in \mathbb{M}_n$, it is nonsingular.

Exercise 47

(i) Notice that

$$P^2 = (A(A^HA)^{-1}A^H)(A(A^HA)^{-1}A^H) = A(A^HA)^{-1}A^HA(A^HA)^{-1}A^H = A(A^HA)^{-1}A^H = P.$$

(ii) Notice that

$$P^{H} = (A(A^{H}A)^{-1}A^{H})^{H} = (A^{H})^{H}(A^{H}A)^{-H}A^{H} = A(A^{H}A)^{-1}A^{H} = P.$$

(iii) A has rank n, therefore P has at most rank n. Take y in the range of A. Then there exists an $x \in \mathbb{F}^n$ such that y = Ax. Then

$$Py = A(A^{H}A)A^{H}y = A(A^{H}A)^{-1}A^{H}Ax = Ax = y$$

shows that y is also in the range of P. Therefore $Rank(P) \ge Rank(A)$ and so P has rank p

Exercise 48

(i) Let $A, B \in \mathbb{M}_n(\mathbb{R})$ and $x \in \mathbb{R}$. Then

$$P(A+xB) = \frac{(A+xB) + (A+xB)^T}{2} = \frac{A+A^T + x(B+B^T)}{2} = P(A) + xP(B).$$

Thus P is a linear transformation.

(ii) Now notice that

$$P^{2}(A) = \frac{\frac{A+A^{T}}{2} + \frac{A^{T}+A}{2}}{2} = \frac{\frac{2A+2A^{T}}{2}}{2} = \frac{2A+2A^{T}}{2} = P(A).$$

(iii) By definition of adjoint we have $\langle P^*(A), B \rangle = \langle A, P(B) \rangle$. Then, notice that

$$< A, P(B) > = < A, (B + B^T)/2 > = < A, B/2 > + < A, B^T/2 > =$$

 $\operatorname{Tr}(A^TB/2) + \operatorname{Tr}(A^TB^T/2) = \operatorname{Tr}(A^T/2B) + \operatorname{Tr}(BA/2) =$
 $\operatorname{Tr}(A^T/2B) + \operatorname{Tr}(A/2B) = < (A + A^T)/2, B > = < P(A), B > .$

Thus $P = P^*$.

- (iv) Suppose $A \in \mathcal{N}(P)$. Then $0 = P(A) = (A + A^T)/2$ implies $A^T = -A$, thus $\mathcal{N}(P) \subset \text{Skew}(\mathbb{R})$. Now suppose $A \in \text{Skew}(\mathbb{R})$. Then $A^T = -A$ and so $P(A) = (A + A^T)/2 = 0$. Thus $\text{Skew}(\mathbb{R}) \subset \mathcal{N}(P)$.
- (v) Let $A \in \mathbb{M}_n(\mathbb{R})$. Then $P(A) = (A + A^T)/2 = (A^T + A)/2 = P(A)^T$ and so $\mathcal{R}(P) = \operatorname{Sym}(\mathbb{R})$. Now let $A = \operatorname{Sym}(\mathbb{R})$. Thus $A = A^T$ and $P(A) = (A + A^T)/2 = (A + A)/2 = A$ and so $A \in \mathcal{R}(P)$. This shows that $\mathcal{R}(P) = \operatorname{Sym}(\mathbb{R})$.
- (vi) Notice that

$$\begin{split} ||A-P(A)||_F^2 &= < A - P(A), A - P(A) > = < A - \frac{A + A^T}{2}, A - \frac{A + A^T}{2} > = \\ &< \frac{A - A^T}{2}, \frac{A - A^T}{2} > = \operatorname{Tr}\left(\left(\frac{A - A^T}{2}\right)^T \frac{A - A^T}{2}\right) = \\ &\operatorname{Tr}\left(\frac{A^T - A}{2} \frac{A - A^T}{2}\right) = \operatorname{Tr}\left(\frac{A^T A - A^2 - (A^T)^2 + AA^T}{4}\right) = \\ &\operatorname{Tr}\left(\frac{A^T A - A^2 - A^2 + A^T A}{4}\right) = \operatorname{Tr}\left(\frac{A^T A - A^2}{2}\right) = \frac{\operatorname{Tr}(A^T A) - \operatorname{Tr}(A^2)}{2}. \end{split}$$

Therefore $||A - P(A)||_F = \sqrt{\frac{\text{Tr}(A^T A) - \text{Tr}(A^2)}{2}}$

Exercise 50

We want to estimate $y^2 = 1/s + rx^2/s$ via OLS. We rewrite the model in the form Ax = b where $b_i = y_i^2$, $A_i = (1 \ x_i)$ and $x = (\beta_1 \ \beta_2)^T$ where $\beta_1 = 1/s$ and $\beta_2 = r/s$. Then the normal equations are $A^H A \hat{x} = A^H b$, where

$$A^H A \hat{x} = \begin{bmatrix} \sum_i 1 & \sum_i x_i^2 \\ \sum_i x_i^2 & \sum_i x_i^4 \end{bmatrix} \begin{bmatrix} \hat{\beta}_1 \\ \hat{\beta}_2 \end{bmatrix} = \begin{bmatrix} n \hat{\beta}_1 - \hat{\beta}_2 \sum_i x_i^2 \\ \hat{\beta}_1 \sum_i x_i^2 - \hat{\beta}_2 \sum_i x_i^4 \end{bmatrix}$$

and

$$A^H b = \begin{bmatrix} \sum_i y_i^2 \\ \sum_i x_i^2 y_i^2 \end{bmatrix}.$$