Graphes et Algorithmes – Partie I Introduction et Applications

FISA Informatique 1^{ère} année

2020 - 2021

Introduction et applications – Plan

- Notion de graphe et de réseau
- Historique
- Domaines d'applications
- Exemples de modélisations

Théorie des graphes ?

- Discipline à la frontière entre mathématique et informatique qui étudie les graphes
- Connexion avec plusieurs domaines
 - Recherche opérationnelle
 - Intelligence artificielle
 - Automatique
 - Linguistique
 - Sciences sociales
 - etc.

Graphe?

 De manière informelle, un graphe est un ensemble de points reliés par un ensemble de lignes ou de flèches

Graphe?

 De manière informelle, un graphe est un ensemble de points reliés par un ensemble de lignes ou de flèches

Graphe: orienté ou non

- Graphe orienté
 - 1 ensemble de sommets noté 5
 - 1 ensemble d'arcs noté A
- Graphe non orienté
 - 1 ensemble de sommets noté S
 - 1 ensemble d'arêtes noté A

Graphe orienté

Graphe non orienté

Réseau?

- Réseau = graphe + un ensemble d'informations
- Un réseau est un graphe pondéré

Réseau?

- Réseau = graphe + un ensemble d'informations
- Un réseau est un graphe pondéré
 - Chaque élément $e \in S \cup A$ a des attributs dans E

Dans ce module on traite en priorité des graphes

Bref historique

- 1736, Euler : les ponts de Königsberg
 ... récréations mathématiques ...
 ... chimie, électricité ...
- 1852, De Morgan (Guthrie): quatre couleurs
- 1946, Kuhn, Ford et Fulkerson, Roy, etc.
 ... recherche opérationnelle ...
- Depuis 1960, applications... (informatique)

Article de Leonhard Euler sur les "7 Ponts de Königsberg", 1736

1707 - 1783

Cycles dans un Polyhèdre

Cycles Hamiltoniens dans les graphes platoniques

Arbres dans les Circuits Electriques

Gustav Kirchhoff 1824 – 1887

Enumération des Isomères Chimiques

George Polya 1887 – 1985 —————

4 Couleurs d'une Carte

Francis Guthrie 1831 - 1899

Auguste DeMorgan 1806 – 1871

Quelques domaines d'applications

- Chimie
- Informatique (BDs, compilation, etc.)
- Bio-informatique
- Réseaux de communications
- Sociologie / Web (graphes de liens, moteur de recherche, etc.)
- Imagerie numérique
- Géographie, architecture, linguistique
- etc.

Illustration: réseaux de transport

Métro

Aérien

Routier

Vélo

Illustration: réseaux informatique

Réseau d'entreprise

Internet

Illustration: graphes de liens (I)

Réseau d'amitié

Réseau de collaboration (scientifique)

Illustration: graphes de liens (II)

Réseau d'interaction entre protéines

Exemple de la carte routière

Une portion de carte routière

Exemple de la carte routière

Une portion de carte routière

Si on zoome

Exemple en chimie : modélisation de molécules

Exemple en chimie : modélisation de molécules

Graphes (multigraphes) avec contraintes sur les degrés des sommets selon le type de sommet...

Exemple en sociologie : graphes signés

Sociogrammes + + + + - C - C

Relation aimer / détester entre employés... Configurations équilibrées (A, B) ou non (C)

Exemple en sociologie : graphes signés

Sociogrammes

Relation aimer / détester entre employés... Configurations équilibrées (A, B) ou non (C)

Notions de « clans » (employés, nations, politiciens, etc.) Algorithmes de Découpage, Classification, ...

Un autre exemple : labyrinthe

(a) Labyrinthe

Un autre exemple : labyrinthe

(a) Labyrinthe

(b) Graphe

Un autre exemple : les organigrammes

Des graphes ... pour faire quoi ?

- Pour modéliser / représenter une situation
 - Organigramme, Carte routière, Réseau d'une entreprise, Collaborations, etc.
- Pour modéliser / représenter une solution à un problème
 - Itinéraire sur une carte, Sociogramme, etc.

Des graphes ... pour faire quoi ?

- Pour modéliser / représenter une situation
 - Organigramme, Carte routière, Réseau d'une entreprise, Collaborations, etc.
- Pour modéliser / représenter une solution à un problème
 - Itinéraire sur une carte, Sociogramme, etc.
- Pour résoudre un problème
 - Labyrinthe (→ Rechercher un itinéraire)
 - Planification de tâches
 - Fiabilité d'un réseau
 - etc.

Exemple: problème d'ordonnancement

Sommets = tâches à réaliser

Arcs = relation d'antériorité (pondération : durée de la tâche initiale)

Exemple: problème d'ordonnancement

Sommets = tâches à réaliser

Arcs = relation d'antériorité (pondération : durée de la tâche initiale)

utilisateurs, machines, etc. -----► canaux de communication ------

utilisateurs, machines, etc. -----► canaux de communication ------

-----> sommets
-----> arcs, arêtes

- Cheminement
- Flot

- Cheminement
- Flot
- Fiabilité d'un réseau

ensemble d'arêtes déconnectant le graphe

→ panne des canaux de communication

- Cheminement
- Flot
- Fiabilité d'un réseau

ensemble de sommets déconnectant le graphe

→ panne des sommets « relais »

Exemple: compilation

Représentation d'un programme par un arbre

expression arithmétique

$$3*a+2*(b-4)$$

codage par un arbre

Exemple: compilation

Représentation d'un programme par un arbre

instruction

si (a > 5) alors
$$b \leftarrow b + 1$$

Programme \Rightarrow graphe

(sous-arbres communs)

codage par un arbre

Exemple: automate

Les événements déclenchent des actions (réactions) du système selon l'état dans lequel celui-ci se trouve...

Off { éteindre }

Automate déterministe : pour chaque état, au plus une transition par événement...

Synthèse: quelques exemples d'applications

Objets	Causes des liens	Valeurs associées aux liens	Type de problème concret
Sites géographiques	Routes, rues, lignes ferroviaires,	Distance, durée, coût,	Cheminement
Tâches à effectuer	Précédence	Temps d'attente, d'exécution	Ordonnancement
Nœuds dans un réseau	Communication entre les nœuds	Débit, duré, capacité,	Connexité
Individus / objets à grouper	Incompatibilité	Catégorie associée aux individus / objets	Incompatibilité
Cours / épreuves	Présence d'un groupe identique	Nombre d'inscrits	Incompatibilité
Carrefours, intersections	Circulation d'objets	Capacité maximale	Flot