Quick Fungal DNA extraction from colonies on plates

Johannes Debler

Abstract

Adapted from Chi, M. H., Park, S. Y., & Lee, Y. H. (2009).

Colony PCR on fungal colonies grown on plates does not work as well as it does for bacteria (it usually doesn't work at all). DNA therefore needs to be extracted first. As this DNA will only be used as a PCR template to check for presence / absence of individual genes I am not too concerend about high molecular weight or purity.

This protocol is quick and can be used to process several samples at the same time.

Citation: Johannes Debler Quick Fungal DNA extraction from colonies on plates. protocols.io

dx.doi.org/10.17504/protocols.io.snzedf6

Published: 16 Aug 2018

Protocol

Make stock solutions

Step 1.

1M TrisHCl pH 8.0	100 ml
12.14 g	Tris base or Trizma base
up to 100 ml	deionised H ₂ O
Adjust pH	concentrated HCI

2M KCI (Potassium chloride) 200 ml

15.11 g	KCl (Potassium chloride)
up to 200 ml	deionised H ₂ O

500 mM NaEDTA	100 ml
18.6 g	EDTA disodium salt dihydrate
up to 100 ml	deionised H ₂ O

Make Extraction Buffer

Step 2.

Extraction Buffer	100 ml
2M KCI	50 ml
1M Tris-HCl pH 8.0	10 ml
500 mM NaEDTA	2 ml
deionised H ₂ O	up to 100 ml

Preparation

Step 3.

Per sample prepare 2 x 1.5 ml Eppendorf tubes. Label them with sample number and add:

Tube 1: 500 ul Extraction Buffer + 1 stainless steel bead

Tube 2: 300 ul Isopropanol

Harvest fungal material

Step 4.

With a **sterile toothpick or pipette tip** remove a fungal colony or a piece of mycelia of about 3-5 mm x 3-5 mm in size from a plate and put it into **Tube 1** (containing the Extraction Buffer and steel bead).

Homogenise fungal material

Step 5.

Homogenise samples for **5 min at 1500 rpm** in the MiniG 1600.

Equipment brand:

SPEX

SKU:

SP 1600

Specifications:

MiniG 1600 Automated Tissue Homogenizer and Cell Lyser

Pellet Cell Debris

Step 6.

minia.jpa

Pellet cell debris by centrifugation at 17.000 x g for 5 min.

DNA Precipitation

Step 7.

- Transfer supernatant to Tube 2 (Containing 300 ul Isopropanol)
- Vortex for 5 10 seconds
- Pellet DNA by centrifugation for 5 min at 17.000 x g

Wash DNA

Step 8.

- Discard supernatant
- Add 800 ul 70% Ethanol
- Vortex mix sample, make sure pellet comes loose from bottom of the tube
- Pellet DNA by centrifugation for 5 min at 17.000 x g

Dissolve DNA

Step 9.

- Discard supernatant
- Remove as much of the ethanol as possible by drawing drops out with a pipette tip
- Let leftover ethanol evaporate for 5-10 min
- Dissolve pellet in 50 ul H₂O or 1x TE buffer
- Measure DNA concentration (e.g. Nanodrop)
- store DNA at -20°C