Практичне заняття 12.04.2021, 19.04.2021

Машина Тьюринга

6. Нехай задано алфавіт $\{a,b\}$, λ — порожній символ. Побудувати машину Тьюрінга, яка визначає чи є слово P паліндромом. Відповідь: a (так) або порожнє слово.

	1	2	3	4	5	6	7
a	$2\lambda R$	2aR	$4\lambda L$	4aL	5aR	$7\lambda L$	$7\lambda L$
b	$5\lambda R$	2bR	$7\lambda L$	4bL	5bR	$4\lambda L$	$7\lambda L$
λ	0aS	$3\lambda L$	0aS	$1\lambda R$	$6\lambda L$	0aS	$0\lambda S$

Нехай задано слово *aabbbaa*. Маємо таку початкову конфігурацію:

Заключна конфігурація має вигляд:

7. Нехай задано алфавіт $\{a,b,c,*\}$, λ — порожній символ. Побудувати машину Тьюрінга, яка в слові P кожне входження ab замінює на c.

	q_1	q_2	q_3	q_4	q_5	q_6	q_7	q_8	q_9
a	$q_1 a R$	q_2aL	q_4aR	$q_4 a R$	$q_3 c R$	$q_6 a L$	$q_{17} \lambda R$	q_9aL	$q_9 a L$
b	q_1bR	q_2bL	q_3bR	$q_{\scriptscriptstyle 5}\lambda L$	_	q_6bL	$q_{10}\lambda R$	q_9bL	q_9bL
c	$q_1 c R$	$q_2 c L$	$q_3 c R$	$q_3 c R$	_	$q_6 c L$	$q_{12} \lambda R$	$q_9 c L$	$q_9 c L$
*	_	_	q_6*L	$q_9 \lambda L$	_	$q_{14}\lambda R$	$q_{14}\lambda R$	_	$q_0 \lambda R$
λ	q_2*L	$q_3 * R$	$q_3\lambda R$		_	$q_7 \lambda L$	$q_7 \lambda L$	$q_8\lambda R$	$q_7 \lambda L$

	q_{10}	q_{11}	q_{12}	q_{13}	q_{14}	q_{15}	q_{16}	q_{17}	q_{18}
a	$q_{11}aL$	1	$q_{13} a L$	_	$q_{15} a R$	$q_{15} a R$	$q_{16} a L$	$q_{18} a L$	$q_{18}aL$
b	$q_{11}bL$	_	$q_{13}bL$	_	$q_{15}bR$	$q_{15}bR$	$q_{_{16}}bL$	$q_{_{18}}bL$	$q_{_{18}}bL$
С	$q_{11}cL$	_	$q_{13} c L$	_	$q_{15} cR$	$q_{15} c R$	$q_{16} c L$	$q_{18} cL$	$q_{18} cL$
*	_	_	$q_{13}\lambda L$	_	_	$q_{_{16}}\lambda L$	_		$q_0 \lambda R$
λ	$q_{10}\lambda R$	$q_6 b L$	$q_{12}\lambda R$	$q_6 c L$	$q_{14}\lambda R$	$q_{_{16}}\lambda L$	$q_0 \lambda R$	$q_{17}\lambda R$	$q_6 a L$

Опис алгоритму. Проходимо до кінця заданого слова і ставимо *. Потім повертаємося і ставимо * перед першим символом слова (реалізується станами q_1 і q_2). Замінюємо кожне входження ab на $c\lambda$ (реалізується станами q_3 - q_5).

Стани q_6 - q_{18} зсув символів слова вправо, так щоб не було порожніх символів всередині слова.

8. Побудувати машину Тьюрінга, яка обчислює функцію $f(x,y) = \frac{4-2x}{y^2}$ в алфавіті $\{0,1\}$.

Функція визначена тільки для таких значень аргументів: (0,1), (0,2), (1,1) та $(2,\beta)$, де $\beta \ge 1$. Отже

$$f(x,y) = \frac{4-2x}{y^2} = \begin{cases} x = 0, y = 0, f - \text{HeBu3H.}, \\ x = 0, y = 1, f = 4, \\ x = 0, y \ge 3, f - \text{HeBu3H.}, \\ x = 1, y = 0, f - \text{HeBu3H.}, \\ x = 1, y = 1, f = 2, \\ x = 1, y \ge 2, f - \text{HeBu3H.}, \\ x = 2, y \ge 0, f - \text{HeBu3H.}, \\ x = 2, y \ge 1, f = 0, \\ x \ge 3, \forall y, f - \text{HeBu3H.} \end{cases}$$

Відповідає випадкам невизначеності

Відповідає випадкам визначеності заданої функції

Для перевірки використаємо інший емулятор машини Тьюрінга mturing.exe.

Нормальні алгоритми Маркова

Приклад 1. Нехай задано алфавіт $A = \{0,1,2\}$ і λ — порожній символ. Вважаючи слово P записом числа в трійковій системі числення, отримати остачу від ділення цього числа на 2, тобто отримати слово 1, якщо число непарне, або слово 0, якщо число парне.

Зауваження: в парному трійковому числі має бути парна кількість цифр 1.

Число	Запис в трійковій системі	Остача від ділення на 2	
0	0	0	
1	1	1	
2	2	0	
3	10	1	
4	11	0	
5	12	1	
6	20	0	
7	21	1	
8	22	0	
9	100	1	
10	101	0	
11	102	1	
12	110	0	

- 1) $0 \to \lambda$ Видаляємо всі цифри 0 і 2 (підстановки 1 і 2).
- 2) $2 \rightarrow \lambda$
- 3) $11 \rightarrow \lambda$
- 4) 1 → 1
- 5) $\lambda \rightarrow 0$

Якщо кількість 1 парна, то після виконання підстановки 3 отримаємо порожнє слово, виконаємо підстановку 5 і отримаємо відповідь 0. Якщо кількість 1 непарна, то після виконання підстановки 3 отримаємо одну 1, виконаємо підстановку 4 і отримаємо відповідь 1.

```
Наприклад, P = 110220112120221. Це число 6860320 в десятковій системі
                                   P = 110220112120221
                                   110220112120221
                                   11220112120221
                                   1122112120221
                                   112211212221
                                   11211212221
числення. Слово P'=0.
                                   111111
                                   1111
                                   11
                                   λ
                                   0
                                                                                           - - X
                  Нормальный алгорифм Маркова
                    D 😅 🖫 躡 😃
                   Условие задачи:
                   Считая слово записью числа в троичной системе счисления , получить остаток от деления этого числа на 2, т.е. получить слово 1 , если число нечётно, или слово 0, если число чётно.
                   Рабочая строка 1
                    Система подстановок
                                                         Комментарий
                             Образец
```

0

2

11

1

투

×

3

5

→

→

1.