#### Studiengang: Intelligent Systems Design (ISD)



#### Lehrveranstaltung:

## **Mathematik II**

## Rechnen mit komplexen Zahlen Teil 2

#### Lernziele

- ➤ Wiederholung:
- Menge der reellen Zahlen,
- Linearkombination.
- ➤ Menge der komplexen Zahlen.
- ➤ Operationen auf komplexen Zahlen.
- ➤ Konjugiert-komplexe Zahl
- ➤ Darstellungsformen und Umrechnungsformeln.

## Die Grundrechenarten. Praktisches Beispiel

a) Gegeben seien die komplexen Zahlen  $z_1 := -1 - 8i$  und  $z_2 := -2 - 3i$ . Berechnen Sie  $2z_1$ ,  $2z_1 + z_2$ ,  $z_2 - z_1$ ,  $z_1 \cdot z_2$ ,  $z_1^2$  (:=  $z_1 \cdot z_1$ ) und  $z_1 : z_2$ .

b) Berechnen Sie die folgenden Potenzen von i:  $i^2$ ,  $i^3$ ,  $i^4$ ,  $i^5$ ,  $i^6$  und  $i^{27}$ .

## Die Grundrechenarten. Beispiel. Lösung

a)

$$2z_1 = -2 - 16i$$
,  
 $2z_1 + z_2 = -4 - 19i$ ,  
 $z_2 - z_1 = -1 + 5i$ ,  
 $z_1 \cdot z_2 = -22 + 19i$ ,  
 $z_1^2 = -63 + 16i$ ,  
 $z_1 : z_2 = 2 + i$ .

## Die Grundrechenarten. Beispiel. Lösung

b)

$$i^{2} = -1,$$
  
 $i^{3} = i^{2} \cdot i = (-1) \cdot i = -i,$   
 $i^{4} = i^{3} \cdot i = (-i) \cdot i = -i^{2} = -(-1) = 1,$   
 $i^{5} = i,$   
 $i^{6} = -1,$   
 $i^{27} = i^{6 \cdot 4 + 3} = i^{3} = -i.$ 

Bemerkung: Keine Größer-/Kleiner-Beziehung in C.

Anders als in IR gibt es aber keine Größer-/Kleiner-Beziehung in IC. Man kann also zwei komplexe Zahlen nur auf Gleichheit/Ungleichheit untersuchen, nicht aber sinnvoll sagen, welche von beiden die größere ist.

## Bemerkung: Keine positiven oder negativen Zahlen in C.

Außerdem gibt es keine positiven oder negativen komplexen Zahlen.

Es wäre also *falsch* zu sagen, dass +i positiv sei. Ebensowenig ist +i negativ.

Auch —2i ist weder positiv noch negativ!

Bedenken Sie dazu, dass das Produkt zweier positiver oder zweier negativer Zahlen stets positiv ist: Das Produkt von i mit sich selbst ergibt aber -1, also eine negative Zahl!

### Die konjugiert-komplexe Zahl. Definition

Die komplexe Zahl

$$\bar{z} = x + (-y) \cdot i = x - y \cdot i$$

heißt die zu komplexe Zahl.

$$z = x + y \cdot i$$

konjugiert-

Für die konjugiert-komplexe Zahl  $\overline{z}$  ist auch die Abkürzung  $z^*$  gebräuchlich.

## Die konjugiert-komplexe Zahl. Praktisches Beispiel

Ermitteln Sie die konjugiert-komplexe Zahl zu

$$z_1 = -7 - 8i$$

$$z_2 = 4i$$

$$z_3 = -17$$

## Die konjugiert-komplexe Zahl. Lösung

Die zu 
$$z_1 = -7-8i$$
 konjugiert-komplexe Zahl lautet  $\overline{z_1} = -7 + 8i$ .

Für 
$$z_2 = 4i = 0 + 4 \cdot i$$
 gilt  $\overline{z_2} = -4i = -z_2$ .

Für 
$$z_3 = -17 = -17 + 0$$
 i ist  $\overline{z_3} = -17 = z_3$ .

## Die Grundrechenarten. Merkregel. Fortsetzung

Man dividiert, indem man durch Erweitern mit dem konjugiert-Komplexen des Nenners diesen Nenner reell macht.

## Rechenregel für konjugiert-komplexe Zahlen

Mit  $z = x + y \cdot i$  und  $\bar{z} = x - y \cdot i$  gilt für konjugiertkomplexe Zahlen die folgende Rechenregel:

$$z \cdot \bar{z} = x^2 + y^2$$
 ist stets reell und nicht negativ.

## Rechenregel für konjugiert-komplexe Zahlen

Dies kann man durch einfaches Nachrechnen zeigen:

$$z \cdot \overline{z} = (x + iy) \cdot (x - iy)$$

$$= x \cdot x + x \cdot (-iy) + iy \cdot x + iy \cdot (-iy)$$

$$= x^2 - ixy + ixy - i^2y^2$$

$$= x^2 + y^2.$$

# Rechenregel für konjugiert-komplexe Zahlen. Praktisches Beispiel

a) Gegeben sei die komplexe Zahl  $z_0 = 1 - 2i$ . Geben Sie an bzw. berechnen Sie: Re  $(z_0)$ , Im  $(z_0)$ ,  $\overline{z_0}$ , Re  $(1/z_0)$ , Im  $(i \cdot \overline{z_0})$ ,  $\overline{\text{Im } (z_0)}$ ,  $\overline{i \cdot \text{Re } (z_0)}$ .

b) Bestimmen Sie alle komplexen Zahlen  $z = x + i \cdot y$  mit Im  $(2\overline{z} + z) = 1$ .

## Rechenregel für konjugiert-komplexe Zahlen. Lösung

a)

Re 
$$(z_0) = 1$$
,  
Im  $(z_0) = -2$ ,  
 $\overline{z_0} = 1 + 2i$ ,  
Re  $(1/z_0) = 1/5$ ,  
Im  $(i \cdot \overline{z_0}) = 1$ ,  
 $\overline{Im}(z_0) = -2$ ,  
 $i \cdot \text{Re}(z_0) = -i$ .

## Rechenregel für konjugiert-komplexe Zahlen. Lösung

b) Alle komplexen Zahlen  $z = x + i \cdot y$  mit Imaginärteil y = -1.

## Rechenregel für konjugiert-komplexe Zahlen

Mit  $z = x + y \cdot i$  und  $\bar{z} = x - y \cdot i$  gilt:

- a) Genau für reelle z ist  $z = \bar{z}$ .
- b) Das Bilden der konjugiert-komplexen Zahl ist mit allen vier Grundrechenarten vertauschbar:

$$\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2} \qquad \overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}$$

$$\overline{z_1 - z_2} = \overline{z_1} - \overline{z_2} \qquad \overline{\left(\frac{z_1}{z_2}\right)} = \frac{\overline{z_1}}{\overline{z_2}}$$

(Division nur im Falle von  $z_2 \neq 0$ )

# Rechenregel für konjugiert-komplexe Zahlen. Praktisches Beispiel

Beweisen Sie: 
$$\overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}$$
.

## Rechenregel für konjugiert-komplexe Zahlen. Lösung

$$\overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}$$

Mit 
$$z_1 = x_1 + iy_1$$
 und  $z_2 = x_2 + iy_2$  ist:

$$\overline{z_1 \cdot z_2} = \overline{(x_1 + iy_1) \cdot (x_2 + iy_2)}$$

$$= \overline{(x_1x_2 - y_1y_2) + i(x_1y_2 + x_2y_1)}$$

$$= (x_1x_2 - y_1y_2) - i(x_1y_2 + x_2y_1).$$

### Umgekehrt gilt:

$$\overline{z_1} \cdot \overline{z_2} = (x_1 - iy_1) \cdot (x_2 - iy_2)$$
  
=  $(x_1x_2 - y_1y_2) - i(x_1y_2 + x_2y_1).$ 

### Komplexe Zahlen Die Gauß'sche Zahlenebene

Jeder komplexen Zahl  $x + i \cdot y$  entspricht genau ein Vektor  $\binom{x}{v}$  bzw. genau ein Punkt (x, y) der Ebene und umgekehrt.



## Komplexe Zahlen Die Gauß'sche Zahlenebene

### **Bemerkung**

In der Technik spricht man anstelle von Ortsvektoren häufig von Zeigern auf komplexe Zahlen.

## Die Gauß'sche Zahlenebene. Praktisches Beispiel

Nennen und zeichnen Sie auf der Gauß'schen Zahlenebene den Punkt, der der folgenden komplexen Zahl entspricht:

$$z = -3 + 4i$$
$$z = i$$
$$z = 0$$

## Komplexe Zahlen Die Gauß'sche Zahlenebene. Lösung

Der komplexen Zahl z = -3 + 4i entspricht der Punkt (-3,4); z = 1 entspricht der Punkt (1,0); z = i entspricht der Punkt (0,1); z = 0 entspricht der Punkt (0,0), der Ursprung des Koordinatensystems.

# Komplexe Zahlen Die Gauß'sche Zahlenebene. Lösung. Fortsetzung



## Komplexe Zahlen Die Gauß'sche Zahlenebene. Bemerkung

Genau für reelle Zahlen z gilt Im z = 0; sie werden durch die Punkte der reellen Achse dargestellt. Rein-imaginäre Zahlen (Re z = 0) werden durch die Punkte der imaginären Achse veranschaulicht.

## Komplexe Zahlen Die Gauß'sche Zahlenebene. Praktisches Beispiel

Finden Sie den zur konjugiert-komplexen Zahl gehörigen Ortsvektor, wenn der zur  $z = x + i \cdot y$  gehörige Vektor gegeben ist.

## Komplexe Zahlen Die Gauß'sche Zahlenebene. Lösung



### Die Gauß'sche Zahlenebene. Bemerkung

Punkte in der Gauß'schen Zahlenebene und folglich die komplexen Zahlen kann man nicht linear anordnen (keine Größer-/Kleiner-Beziehung!).

### Rechenoperation in $\mathbb{R} \times \mathbb{R}$

Wenn wir  $z = x + i \cdot y = (x, y)$ 

setzen und Addition und Multiplikation umschreiben, so erhalten wir für die Rechenoperationen + und · auf  $\mathbb{R} \times \mathbb{R} = \{(x,y) | x,y \in \mathbb{R}\}$  die folgende Darstellung:

$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2),$$

$$(x_1, y_1) \cdot (x_2, y_2) = (x_1x_2 - y_1y_2, x_1y_2 + x_2y_1).$$

### Rechenoperation in $\mathbb{R} \times \mathbb{R}$

Die erste der beiden obigen Gleichungen besagt, dass die Addition komplexer Zahlen wie die Addition von Vektoren in der Ebene (Kräfteparallelogramm!) vorgenommen wird.

#### Polarkoordinaten

Die Lage eines Punktes der Ebene lässt sich durch seinen Abstand r ("Radius") vom Koordinatenursprung und, wenn r > 0, durch den Winkel  $\varphi$  des Ortsvektors mit der positiven x-Achse ("Polarwinkel") kennzeichnen.

(Im Fall r = 0, am Koordinatenursprung also, lässt sich  $\varphi$  nicht definieren.)

### Polarkoordinaten



#### Winkel

Winkel werden meist in *Bogenmaß* angegeben. Das bekannte Gradmaß  $\widehat{\varphi}$  (Einheit: Grad) und das Bogenmaß  $\varphi$  (Einheit: Radiant) hängen dabei wie folgt zusammen:

$$\frac{\widehat{\varphi}}{360^{\circ}} = \frac{\varphi}{2\pi}$$

#### Winkel

Da der Winkel nur bis auf Vielfache von  $2\pi$  (bzw. 360°) bestimmt ist, legt man willkürlich ein Intervall fest, in dem der Winkel angeben wird, z.B.

$$-\pi < \varphi \le +\pi$$

## Umrechnungsformeln

Die Umrechnungsformeln zwischen kartesischen Koordinaten und Polarkoordinaten lauten:

$$x=r\cdot\cos\varphi\quad\text{ und }\quad y=r\cdot\sin\varphi$$
 sowie 
$$r=\sqrt{x^2+y^2}\quad\text{ und }\quad \varphi=\pm\arccos\left(\frac{x}{r}\right).$$

(Vorzeichen von  $\varphi$  je nachdem ob  $y \ge 0$  oder y < 0.)

## Umrechnungsformeln. Alternative

Man könnte hier auch die Beziehung  $\tan \varphi = y/x$  verwenden, müsste aber bei der Umkehrfunktion  $\arctan(y/x)$  vier Fallunterscheidungen, je nach Quadrant, in dem (x; y) liegt, durchführen.

## Umrechnungsformeln. Aufgabe

a) Ermitteln Sie die Polarkoordinaten aus den kartesischen Koordinaten x = -3 und y = 4 der komplexen Zahl z = -3 + 4i.

b) Ermitteln Sie die kartesischen Koordinaten aus den Polarkoordinaten r=4 und  $\varphi=-\pi/6$  der komplexen Zahl z.

## Umrechnungsformeln. Kontrollieren Sie Ihre Lösung:

a) Aus den kartesischen Koordinaten x=-3 und y=4 der komplexen Zahl z=-3+4i ergeben sich die Polarkoordinaten  $r=\sqrt{(-3)^2+4^2}=\sqrt{25}=5$  und  $\varphi=+\arccos(-3/5)\approx 2.214$  (bzw.  $\widehat{\varphi}\approx 126.87^\circ$ ).

## Umrechnungsformeln. Lösung. Fortsetzung

b) Aus den Polarkoordinaten r=4 und  $\phi=-\pi/6$   $(\widehat{\varphi}=-30^\circ)$  erhält man die kartesischen Koordinaten  $x=4\cdot\cos(-\pi/6)=4\cdot1/2\sqrt{3}=2\sqrt{3}$  und  $y=4\cdot\sin(-\pi/6)=4\cdot(-1/2)=-2$  der komplexen Zahl  $z=2\sqrt{3}-2i$ .

## Umrechnungsformeln. Aufgabe

a) Geben Sie die Polarkoordinaten r und  $\varphi$  der folgenden komplexen Zahlen an:  $z_1 = 7$ ,  $z_2 = 4i$ ,  $z_3 = -6$ ,  $z_4 = -3i$ ,  $z_5 = 1 - i$ .

b) Berechnen Sie die kartesischen Koordinaten der komplexen Zahl  $z_6$  mit den Polarkoordinaten  $r=2, \varphi=\pi/3$ .

## Umrechnungsformeln. Kontrollieren Sie Ihre Lösung:

a)

$$r_1 = 7, \quad \varphi_1 = 0;$$
  
 $r_2 = 4, \quad \varphi_2 = \pi/2;$   
 $r_3 = 6, \quad \varphi_3 = \pi;$   
 $r_4 = 3, \quad \varphi_4 = -\pi/2;$   
 $r_5 = \sqrt{2}, \quad \varphi_5 = -\pi/4.$ 

b) 
$$x_6 = 1$$
,  $y_6 = \sqrt{3}$ .

### Betrag einer komplexen Zahl

Anstelle vom Radius und Polarwinkel bei Polarkoordinaten wird im Zusammenhang mit komplexen Zahlen meist vom (Absolut-) Betrag und vom Argument (oder Arcus oder Phase oder Winkel) einer komplexen Zahl gesprochen:

#### **Definition**

Unter dem Betrag einer komplexen Zahl z = x + iy versteht man

$$|z| = |x + i \cdot y| = \sqrt{x^2 + y^2} = \sqrt{z \cdot z}$$

## Betrag einer komplexen Zahl. Aufgabe

Ermitteln Sie den Betrag der komplexen Zahl z = -3 + 4i

# Betrag einer komplexen Zahl. Kontrollieren Sie Ihre Lösung:

Der Betrag der komplexen Zahl z = -3 + 4i ist gleich 5 und das Argument von z ist ungefähr 2.214.

### Zusammenfassung

- ➤ Wiederholung:
- Menge der reellen Zahlen,
- Lineare Kombination.
- ➤ Menge der komplexen Zahlen.
- ➤ Operationen auf komplexen Zahlen.
- ➤ Konjugiert-komplexe Zahl.
- > Darstellungsformen und Umrechnungsformeln.