2019年全国硕士研究生招生考试 计算机科学与技术学科联考

计算机学科专业基础综合试题

C. 指令按地址访问,数据都在指令中直接给出

D. 程序执行前,指令和数据需预先存放在存储器中

22	工机头工体和砂排头点 一件四点	54 F								
23.	下列关于线程的描述中,错误的是 A. 内核级线程的调度由操作系统完成									
	A. 内核级线程的调度田探作系统元成 B. 操作系统为每个用户级线程建立一个线程控制块									
	C. 用户级线程间的切换比内核级线程间的切换效率高									
	D. 用户级线程可以在不支持内		-							
24.	下列选项中,可能将进程唤醒的									
,	I.I/O 结束 II.]	III. 当前边	进程的时	间片用完				
	A. 仅 I B.	仅III	C. 仅	ζΙ, II		D. I, II,	III			
25.	下列关于系统调用的叙述中, 」									
	I.在执行系统调用服务程序的过	过程中,CPU处于内核和	<u>\$</u>							
	II.操作系统通过提供系统调用避免用户程序直接访问外设									
	III.不同的操作系统为应用程序									
	IV. 系统调用是操作系统内核为		-			.				
	A. 仅I、IV B.				IV	D. 仅 I、	III、IV			
26.	下列选项中,可用于文件系统管] = (P.M.)	\				
	I.位图 II.索引节点						III IV			
27	A. 仅 I、 II B. 系统采用二级反馈队列调度算深									
21.	就绪队列 Q2 采用短进程优先调		-							
	中的进程;新创建的进程首先过									
	Q1、Q2为空,系统依次创建进和						-			
	则进程P1、P2在系统中的平均]等待时间为								
	A. 25 ms B. 2	20 ms	C. 15	ms		D. 10 ms				
28.	在分段存储管理系统中,用共享	享段表描述所有被共享	的段。	若进程P1	和 P2 共	字段 S,7	下列叙述中,错误			
	的是									
	A. 在物理内存中仅保存一份段									
	B. 段 S 在 P1 和 P2 中应该具有									
	C.P1和P2共享段S在共享段表		穴间							
29	D.P1和P2都不再使用段S时之某系统采用LRU页置换算法和			涅 p 新分西	774个	五框. 讲科	P 访问页号的序			
2).	列为 0, 1, 2, 7, 0, 5, 3, 5,									
	A. 3 B. 4				2122177		(14,12,19,19,19,19,19,19,19,19,19,19,19,19,19,			
30.	下列关于死锁的叙述中, 正确的	的是								
	I. 可以通过剥夺进程资源解除?	死锁								
	II. 死锁的预防方法能确保系统不发生死锁									
	III. 银行家算法可以判断系统是			rn 승규스						
	IV. 当系统出现死锁时,必然有				***	n /= r	III . II.			
21	A. 仅 II、III B.					D. 仪 I、	III、IV			
31.	页目录号(10位) 页				1/1/					
	虚拟地址 2050 1225H对应的页		/ (12 12.	.)						
	A. 081H、101H B. 0		C. 20	1H、101	Н	D . 201Hs	401H			
32.	在下列动态分区分配算法中,最			1111 1011		2,201111	10111			
	A. 首次适应算法 B.			娃适应 算	拿法	D. 循环首	首次适应算法			
33.	OSI 参考模型的第5层(自下而	上)完成的主要功能是								
	A. 差错控制 B.	路由选择	C. 会	:话管理		D. 数据表				
34.	100BaseT快速以太网使用的导									
	A. 双绞线 B.									
35.	对于滑动窗口协议,如果分组员						大是			
	A. 2 B. 3	3	C. 4			D. 5				

36. 假设一个采用 CSMA/CD 协议的 100Mbps 局域网,最小帧长是 128 B,则在一个冲突域内两个站点之间的单向传播延时最多是

A. 2.56 μs

B. 5.12 μs

C. $10.24 \mu s$

D. $20.48 \, \mu s$

37. 若将 101.200.16.0/20 划分为 5 个子网,则可能的最小子网的可分配IP 地址数是

A. 126

B. 254

C. 510

D. 1022

38. 某客户通过一个 TCP 连接向服务器发送数据的部分过程如题38 图所示。客户在 t_0 时刻第一次收到确认序列号ack_seq=100的段,并发送序列号 seq=100的段,但发生丢失。若TCP 支持快速重传,则客户重新发送 seq=100段的时刻是

 \mathbf{A} . \mathbf{t}_1

B. t₂

 $\mathbf{C.}\,\mathbf{t}_3$

 \mathbf{D} . \mathbf{t}_4

39. 若主机甲主动发起一个与主机乙的TCP连接,甲、乙选择的初始序列号分别为2018和2046,则第三次握手TCP段的确认序列号是

A. 2018

B. 2019

C. 2046

D. 2047

- 40. 下列关于网络应用模型的叙述中,错误的是
 - A. 在 P2P 模型中,结点之间具有对等关系
 - B. 在客户/服务器(C/S)模型中,客户与客户之间可以直接通信
 - C. 在 C/S 模型中, 主动发起通信的是客户, 被动通信的是服务器
 - D. 在向多用户分发一个文件时,P2P模型通常比C/S模型所需时间短

题 38 图

- 二、综合应用题:41~47小题, 共70分。
- **41.** (13 分)设线性表 L=(a1, a2, a..., an-2, a-1, a。) 采用带头结点的单链表保存, 链表中结点定义如下: typedef struct node {

int data:

struct node* next;

} NODE;

请设计一个空间复杂度为O(1)且时间上尽可能高效的算法,重新排列L中的各结点,得到线性表 $L'=(a_1,a_n,a_2,a_{n-1},a_3,a_{n-2}...)$ 。

要求:

- (1) 给出算法的基本设计思想
- (2) 根据设计思想,采用C或C++语言描述算法,关键之处给出注释。
- (3) 说明你所设计的算法的时间复杂度。
- **42.** (10 分)请设计一个队列,要求满足:①初始时队列为空;②入队时,允许增加队列占用空间;③出队后,出队元素所占用的空间可重复使用,即整个队列所占用的空间只增不减;④人队操作和出队操作的时间复杂度始终保持为O(1)。请回答下列问题:
 - (1) 该队列应该选择链式存储结构,还是顺序存储结构?
 - (2) 画出队列的初始状态,并给出判断队空和队满的条件
 - (3) 画出第一个元素入队后的队列状态。
 - (4) 给出入队操作和出队操作的基本过程。
- **43.** (8分)有 n(n≥3)位哲学家围坐在一张圆桌边,每位哲学家交替地就餐和思考。在圆桌中心有 m(m≥1)个碗,每两位哲学家之间有 1 根筷子。每位哲学家必须取到一个碗和两侧的筷子之后,才能就餐,进餐完毕,将碗和筷子放回原位,并继续思考。为使尽可能多的哲学家同时就餐,且防止出现死锁现象,请使用信号量的 P、V 操作(wait()、signal()操作)描述上述过程中的互斥与同步,并说明所用信号量及初值的含义。
- **44.** (7分)某计算机系统中的磁盘有300个柱面,每个柱面有10个磁道,每个磁道有200个扇区,扇区大小为512B。文件系统的每个簇包含2个扇区。请回答下列问题:
 - (1) 磁盘的容量是多少?
 - (2) 假设磁头在85号柱面上,此时有4个磁盘访问请求,簇号分别为:100260,60005,101660和110560。 若采用最短寻道时间优先(SSTF)调度算法,则系统访问簇的先后次序是什么?
 - (3) 第 100530 簇在磁盘上的物理地址是什么?将簇号转换成磁盘物理地址的过程是由I/O 系统的什么程序完成的?

45. (16 分) 已知 $f(n) = n! = n \times (n-1) \times (n-2) \times ... \times 2 \times 1$,计算 f(n) 的 C 语言函数 fl 的源程序(阴影部分)及其在 32 位计算机 M 上的部分机器级代码如下:

其中,机器级代码行包括行号、虚拟地址、机器指令和汇编指令,计算MM 按字节编址,int 型数据占 32 位。请回答下列问题:

- (1) 计算 f(10) 需要调用函数 f1 多少次? 执行哪条指令会递归调用 f1?
- (2) 上述代码中, 哪条指令是条件转移指令? 哪几条指令一定会使程序跳转执行?
- (3) 根据第16行 call 指令,第17行指令的虚拟地址应是多少?已知第16行 call 指令采用相对寻址方式,该指令中的偏移量应是多少(给出计算过程)?已知第16行 call 指令的后4字节为偏移量,M采用大端还是小端方式?
- (4) f(13)=6 227 020 800 但 f1(13)的返回值为 1 932 053 504, 为什么两者不相等?要使f1(13)能返回正确的结果,应如何修改f1 源程序?
- (5) 第 19 行 imul eax,ecx表示有符号数乘法,乘数为R[eax]和 R[ecx],当乘法器输出的高、低32 位乘积之间满足什么条件时,溢出标志OF=1?要使 CPU 在发生溢出时转异常处理,编译器应在imul 指令后加一条什么指令?
- **46.** (7分)对于题 45, 若计算机 M 的主存地址为 32 位,采用分页存储管理方式,页大小为4KB,则第 1 行 push 指令和第 30 行 ret 指令是否在同一页中(说明理由)?若指令 Cache 有 64 行,采用 4 路组相联映射方式,主存块大小为 64B,则 32 位主存地址中,哪几位表示块内地址?哪儿位表示Cache 组号?哪几位表示标记(tag)信息?读取第 16 行 call 指令时,只可能在指令 Cache 的哪一组中命中(说明理由)?
- 47. (9分)某网络拓扑如题 47 图所示,其中 R 为路由器,主机 H1~H4的 IP 地址配置以及 R 的各接口 IP 地址配置如图中所示。现有若干台以太网交换机(无 VLAN 功能)和路由器两类网络互连设备可供选择。

请回答下列问题:

- (1) 设备 1、设备 2 和设备 3 分别应选择什么类型网络设备?
- (2) 设备 1、设备 2 和设备 3 中,哪几个设备的接口需要配置IP 地址? 并为对应的接口配置正确的IP 地址。
- (3) 为确保主机H1~H4能够访问Internet, R需要提供什么服务?
- (4) 若主机 H3 发送一个目的地址为 192.168.1.127 的 IP 数据报,网络中哪几个主机会接收该数据报?

2019年全国硕士研究生招生考试

计算机科学与技术学科联考

计算机学科专业基础综合试题参考答案

一、单项选择题										
1.B	2.B	3.C	4.A	5.C						
6.A	7.D	8.C	9.B	10.D						
11.B	12.C	13.A	14.D	15.D						
16.D	17.B	18.C	19.B	20.C						
21.A	22.D	23.B	24.C	25.C						
26.B	27.C	28.B	29.C	30.B						
31.A	32.C	33.C	34.A	35.B						
36 B	37 B	38 C	39 D	40 B						

二、综合应用题

41.【答案要点】

(1)算法的基本设计思想:

算法分 3 步完成。第 1 步,采用两个指针交替前行, 找到单链表的中间结点;第 2 步,将单链表的后半段结 点原地逆置;第 3 步,从单链表前后两段中依次各取一 个结点,按要求重排。

(2)算法实现:

```
void change_list( NODE * h )
NODE * p, * q, * r, * s;
   p = q = h;
                              // 寻找中间结点
   while ( q->next ! = NULL )
                               // p走一步
   p = p->next;
     q = q - > next;
     if ( q->next ! = NULL )q = q->next; // q 走两步
   q = p->next;// p 所指结点为中间结点,q 为后半段链表
的首结点
   p->next = NULL;
   while ( q! = NULL )// 将链表后半段逆置
   r = q->next;
     q - > next = p - > next;
      p->next = q;
      q = r_{i}
               // s指向前半段的第一个数据结点,
即插入点
              // q 指向后半段的第一个数据结点
   q = p -> next;
   p->next = NULL;
  while ( q ! = NULL ) // 将链表后半段的结点插入
到指定位置
                 // r 指向后半段的下一个结点
   r = q -> next;
     q->next = s->next; // 将 q 所指结点插入到 s 所指
                   // s指向前半段的下一个插入点
     s = q - > next;
     q = r;
```

(3)算法的时间复杂度:

参考答案的时间复杂度为 O(n)。

42. 【答案要点】

- (1)采用链式存储结构(两段式单向循环链表),队头指针为 front,队尾指针为 rear。
- (2)初始时,创建只有一个空闲结点的两段式单向循环链表,头指针 front 与尾指针 rear 均指向空闲结点。如下图所示。

队空的判定条件: front—rear。

队满的判定条件: front—rear->next。

(3)插入第一个元素后的队列状态:

(4)操作的基本过程:

43. 【答案要点】

//信号量

semaphore bowl,//用于协调哲学家对碗的使用 semaphore chopsticks[n]; //用于协调哲学家对筷子的使 用

for (int i=0; i; i++)

chopsticks[i].value=1;/设置两个哲学家之间筷子的数量

bowl.value=min (n-1, m); //bowl.value≤n-1, 确保不死锁

CoBegin

while (True) { //哲学家 思考;

//哲学家 i 的程序

P(bowl); //取碗

P(chopsticks[i]); //取左边筷子

P(chopsticks[(i+l)MOD n]); //取右边筷子就餐;

V (chopsticks[i]);

V (chopsticks[(i+1) MOD n]);

V (bowl);
}
CoEnd

44.【答案要点】

- (1)磁盘容量=(300×10×200×512/1024)KB=3×10⁵KB
 - (2)依次访问的簇是 100 260、101 660、110 560、60 005。
- (3)第 100 530 簇在磁盘上的物理地址由其所在的柱面号、磁头号、扇区号构成

其所在的柱面号为 | 100530/(10×200/2) ⊨100。

100530%(10×200/2)=530, 磁头号为[530/(200/2)]=5。 扇区号为(530×2)%200=60。

将簇号转换成磁盘物理地址的过程由磁盘驱动程序完 成。

45.【答案要点】

- (1) 计算 f(10) 需要调用函数 f1 共 10 次执行第 16 行 call 指令会递归调用 f1 。
- (2)第 12 行 jle 指令是条件转移指令。第 16 行 call 指令、第 20 行 jmp 指令、第 30 行 ret 指令一定会使程序跳转执行。
- (3)第 16 行 call 指令的下一条指令的地址为 0040 1025H+5=0040 102AH, 故第 17 行指令的虚拟地址是 0040 102AH。call 指令采用相对寻址方式,即目标地址 = (PC)+偏移量,call 指令的目标地址为 0040 1000H,所以偏移量 = 目标地址 (PC)=00401000H-0040 102AH=FFFF FFD6H。根据第 16 行 call 指令的偏移量字段为 D6 FF FF FF 可确定 M 采用小端方式。
- (4) 因为 f(13) = 6 227 020 800,大于 32 位 int 型数据可表示的最大值,因而 f1(13) 的返回值是一个发生了溢出的结果。

为使 f1 (13) 能返可正确结果,可将函数 f1 的返回值类型改为 double (或 long long 或 long double 或 float)。

(5) 若乘积的高 33 位为非全 0 或非全 1,则 OF=1 编译器应该在 imul 指令后加一条"溢出自陷指令",使得 CPU 自动查询溢出标志 OF,当 OF=1 时调出"溢出异常处理程序"。

46.【答案要点】

第1行指令和第30行指令的代码在同一页。

因为页大小为 4KB, 所以虚拟地址的高 20 位为虚拟页号。第 1 行指令和第 30 行指令的虚拟地址高 20 位都是00401H, 因此两条指令在同一页中。

Cache 组数为 64/4=16, 因此, 主存地址划分中, 低 6 位为块内地址、中间 4 位为组号(组索引)、高 22 位为标记。

读取第 16 行 call 指令时,只可能在指令 Cache 第 0 组中命中。

因为页大小为 4KB, 所以虚拟地址和物理地址的最低 12 位完全相同, 因而 call 指令虚拟地址 0040 1025H 中的 025H=0000 0010 0101B=00 0000 100101B 为物理地址的低 12 位,故对应 Cache 组号为 0。

47.【答案要点】

- (1)设备 1: 路由器,设备 2: 以太网交换机,设备 3: 以太网交换机(2)设备 1 的接口需要配置 IP 地址;设备 1 的 IF1、IF2 和 IF3 接口的 IP 地址分别是: 192.168.1.254、192.168.1.1 和 192.168.1.65。
 - (3)R 需要提供 NAT 服务
 - (4)主机 H4 会接收该数据报。