Glossary

MCKINLEY XIE

August 24, 2021

This is intended to be a list of basic definitions for common things in math. This will likely be updated as the year goes on, the most recent version will be at https://MckinleyX.github.io/files/glossary.pdf.

If you think something should be added to the list, or I've made an error, contact me!

Discord: faefeyfa#4843

Email: mckinleyxie@gmail.com

§1 Common symbols

Here's a list of some of the more common symbols you'll see:

 \forall — for all

 \exists — there exists

 \in — is an element of

 \therefore — because

 \therefore — therefore

 \mathbb{Z} — the set of all integers

 \mathbb{Z}^+ — the set of all positive integers

 \mathbb{Z}^* — the set of all nonnegative integers

 \mathbb{R} — the set of all real numbers

 $a \mid b - a$ divides b

 \square — Used to denote the end of a proof. There are a *lot* of ways to do this, but this is what I use.

 $QED - see \square$

 \implies — implies. $p \implies q$ if q is true whenever p is true. (Note that if p is false q is not necessarily false.)

§2 Less common symbols

Here are some symbols that are less common:

 \mathbb{N} — the set of all natural numbers – be careful around this since not everyone agrees whether 0 is included. In IB it is.

 \mathbb{Q} — the set of all rational numbers

 \mathbb{C} — the set of all complex numbers

 $\binom{n}{r}$ — n choose r

 \iff — if and only if, commonly abbreviated as "iff". $p \iff q$ means that both $p \implies q$ and $q \implies p$.

§3 Sample proof

By request, here's a sample proof of a problem:

Problem. Prove that $\frac{a+b}{2} \ge \sqrt{ab}$ for $a, b \ge 0$.

Proof. Let $x = \sqrt{a}$ and $y = \sqrt{b}$.

Note that

$$(x-y)^2 \ge 0$$

Now, after a bit of manipulation,

$$x^{2} - 2xy + y^{2} \ge 0$$
$$x^{2} + y^{2} \ge 2xy$$
$$\frac{x^{2} + y^{2}}{2} \ge xy$$

Finally, substituting in, we have

$$\frac{a+b}{2} \ge \sqrt{ab}$$

And we are done.