Faculté Polydisciplinaire de Khouribga Année Universitaire 2020/2021 SMIA (S1)

Examen d'algèbre 1 Durée : 1h30 Documents non autorisés

Ex. 1 — Écrire la contraposée et la négation des implications suivantes :

- (i) Si $x \ge 0$ alors f(x) < 0;
- (ii) Si ab = 0 alors a = 0 ou b = 0.

Ex. 2 — Soient X et Y deux ensembles.

1) Soient $f: X \to Y$ et $g: Y \to X$ deux applications. Montrer que X et Y peuvent s'écrire comme réunions disjointes :

$$X = X_1 \cup X_2, \quad Y = Y_1 \cup Y_2,$$

avec $f(X_1) = Y_1$ et $g(Y_2) = X_2$ (Considérer l'application

$$\mathscr{P}(X) \to \mathscr{P}(X), \quad A \mapsto X - g[Y - f(A)]$$

et utiliser le résultat admis (voir TD) 1).

2) En déduire que, s'il existe une injetion de X dans Y et une injection de Y dans X alors il existe une bijection de X sur Y (Théorème de Bernstein-Schröder).

^{1.} Soit E un ensemble. Toute application croissante f de $\mathscr{P}(E)$ dans $\mathscr{P}(E)$ (c'est-à-dire que $X \subset Y$ entraı̂ne $f(X) \subset f(Y)$), possède un point fixe (c'est-à-dire, il existe $X_0 \in \mathscr{P}(E)$ tel que $f(X_0) = X_0$).