MACHINE IV/IV B. Tech (2020-EARNING **S2 S**3 S4 S₁ Year: 2020-21 Semester: **S5 S6 S7 S8** ✓ **CSE** Core **Elective Department: Programme: B.Tech Section:** 4B1 & 4B2 Paper Title: **Machine Learning** Paper Code: **EID 403 Credits: Allotted** Hours: Dr. Sireesha Rodda **Course Instructor: Contact details:** 9.00AM -5.00PM 125 ICT Bhavan Room No: Phone No: **Mobile No:** 9848503365 Mail ID: srodda@gitam.edu glearn.gitam.edu **Details of glearn Course Overview** Machine learning is the science of getting computers to act without being explicitly (200 words) programmed. In the past decade, machine learning has given us self-driving cars, practical speech recognition, effective web search, and a vastly improved understanding of the human genome. Machine learning is so pervasive today that you probably use it dozens of times a day without knowing it. The field of machine learning is concerned with the question of how to construct computer programs that automatically improve with experience. In recent years many successful machine learning applications have developed, ranging from data-mining programs that learn to detect fraudulent credit transactions. information-filtering to systems that learn users' reading preferences, to autonomous vehicles that learn to drive on public highways. Machine learning draws on concepts and results from many fields, including statistics, artificial intelligence, philosophy, information theory, biology, cognitive science, computational complexity, and control theory. The best way to learn about machine learning is to view it from all of these perspectives and to understand the problem settings, algorithms,

☆☆

☆

☆

☆

☆

☆

☆

☆

☆ ☆

☆

☆

 $\stackrel{\wedge}{\Rightarrow}$

☆

☆

☆

☆

☆

 $\stackrel{\wedge}{\Rightarrow}$

☆

☆☆

☆

☆

☆

☆

☆

☆

☆

☆

☆

☆

☆

☆

 $\stackrel{\wedge}{\Rightarrow}$

 $\stackrel{\wedge}{\bowtie}$

☆

☆☆

☆

☆

☆

☆

 $\stackrel{\wedge}{\Rightarrow}$

☆

☆

☆

☆

☆

☆

☆

☆

☆

☆

 $\stackrel{\wedge}{\Rightarrow}$

 $\stackrel{\wedge}{\Longrightarrow}$

 $\stackrel{\wedge}{\Longrightarrow}$

 $\stackrel{\wedge}{\Rightarrow}$

 $\stackrel{\wedge}{\Rightarrow}$

☆

☆

☆

☆

 $\stackrel{\wedge}{\Longrightarrow}$

☆

☆

 $\stackrel{\wedge}{\Rightarrow}$

☆

 $\stackrel{\wedge}{\Rightarrow}$

 $\stackrel{\wedge}{\Rightarrow}$

☆

☆

☆

 $\stackrel{\wedge}{\Longrightarrow}$

☆

 $\stackrel{\wedge}{\Rightarrow}$

 $\stackrel{\wedge}{\Rightarrow}$

☆

☆

 $\stackrel{\wedge}{\Rightarrow}$

☆

 $\stackrel{\wedge}{\Rightarrow}$

☆

☆

 $\stackrel{\wedge}{\Rightarrow}$

☆

 $\stackrel{\wedge}{\Rightarrow}$

 $\stackrel{\wedge}{\Longrightarrow}$

 $\stackrel{\wedge}{\Rightarrow}$

 $\stackrel{\wedge}{\Rightarrow}$

 $\stackrel{\wedge}{\cancel{\sim}}$

☆

☆

 $\stackrel{\wedge}{\simeq}$

☆

☆ ☆

☆

☆

☆

☆

 $\stackrel{\wedge}{\Longrightarrow}$

☆

☆☆

☆

☆

☆

 $\stackrel{\wedge}{\Longrightarrow}$

 $\stackrel{\wedge}{\Longrightarrow}$

☆

☆

Department of Computer Science and Engineering

and assumptions that underlie each.

MACHINE IV/IV B. Tech (2020-LEARNING This course introduces basic concepts from statistics, artificial intelligence, information theory, and other disciplines as the need arises. Upon successful completion of the course, students will be able to answer questions such as " How does learning performance vary with the number of training examples presented?" and which learning algorithms are most appropriate for various types of learning tasks?" **Course Objectives** (200 words) 1. To understand concepts of Machine learning - Concept learning and Decision tree learning. To gain an insight into Neural network learning and the study of Genetic algorithms. To have knowledge in Bayesian learning. To explore the concept of Instance-based 4. Learning. 5. To understand the inference and learning algorithms for Hidden Markov Model. **Pre- requisites and co-requisites ARTIFICIAL INTELLIGENCE** 10 Marks **Evaluation Components** Class participation / Assignments/ Quizzes/ Regularity to classes Mid-term 30 Marks examinations (Three mid exams are conducted. out of which better two are considered) Semester-end 60 Marks examination Total 100 Marks **Assessment pattern** Criteria will be elucidated in the class session-1 Presented in the subsequent pages Lesson plan

☆

☆

☆

☆

☆

☆

☆

☆

 $\stackrel{\wedge}{\Rightarrow}$

☆☆

 $\stackrel{\wedge}{\Rightarrow}$

☆ ☆

☆

 $\stackrel{\wedge}{\bowtie}$

☆

☆☆

☆

☆

☆

☆

 $\stackrel{\wedge}{\Rightarrow}$

☆

☆

☆

☆

☆ ☆

☆☆

☆

☆

☆

☆

☆

 $\stackrel{\wedge}{\Rightarrow}$

☆

☆

☆

☆

☆

☆

☆

☆

☆

 $\stackrel{\wedge}{\Rightarrow}$

☆

☆

☆

 $\stackrel{\wedge}{\Longrightarrow}$

☆ ☆

☆ ☆

 $\stackrel{\wedge}{\Rightarrow}$

☆

☆

☆

☆

☆

☆

 $\stackrel{\wedge}{\Rightarrow}$

☆

☆

☆

☆

 $\stackrel{\wedge}{\Rightarrow}$

☆ ☆

 $\stackrel{\wedge}{\Longrightarrow}$

☆

☆

 $\stackrel{\wedge}{\Rightarrow}$

 $\stackrel{\wedge}{\Rightarrow}$

 $\stackrel{\wedge}{\Rightarrow}$

☆

☆

☆

☆

☆

☆☆

 $\stackrel{\wedge}{\Rightarrow}$

☆

☆

☆

 $\stackrel{\wedge}{\Longrightarrow}$

☆

☆

 $\stackrel{\wedge}{\Rightarrow}$

 $\stackrel{\wedge}{\Rightarrow}$

☆

 $\stackrel{\wedge}{\Longrightarrow}$

☆

 $\stackrel{\wedge}{\Rightarrow}$

☆

☆

☆ ☆

☆

☆

☆ ☆ Department of Computer Science and Engineering

	MACHINE	
IVIIV B. Tech (2020= 21)	LEARNING	Se M
Text Books	 Tom M. Mitchell, Machine Learning, Hill, 2013 Ethem Alpaydin, Introduction to Learning(Adaptive Computation Machine Learning), The MIT President 	Machine and
Reference Books	1.T. Hastie, R. Tibshirani, J.H. Friedman. Elements of Statistical Learning 1/e, Spr 2001 2 M. Narasimha Murthy, Introduction to Recognition and Machine Learning, Work Scientific Publishing Company, 2015	ringer, o Pattern
Course Notes	Course notes uploaded into X-learn of University	of GITAM
Course Outcomes (CO)	Course Outcomes: At the end of the course, the student able to: 1.understand Concept learning and D tree learning and track the working of respective algorithms. 2.investigate Neural network and Gen algorithms and also Genetic programma. 3. illustrate the working of Bayesian lealgorithms through probability values 4. demonstrate knowledge in foundati Instance-based learning approaches. 5. train different Hidden Markov Mode calculating the best fitting model	netic ming. earning ons of
Teaching Methods	BlackBoard lectures, Power point pre Tutorials, Videos (NPTEL) andCase s	

MACHINE

 $\stackrel{\wedge}{\sim}$

 $\stackrel{\wedge}{\boxtimes}$

☆ ☆

☆

 $\stackrel{\wedge}{\sim}$

☆☆

 $\stackrel{\wedge}{\sim}$

☆

☆☆

 $\stackrel{\wedge}{\sim}$

 $\stackrel{\wedge}{\Longrightarrow}$

☆

 $\stackrel{\wedge}{\Rightarrow}$

 $\stackrel{\wedge}{\sim}$

☆

☆☆

 $\stackrel{\wedge}{\sim}$

 $\stackrel{\wedge}{\boxtimes}$

 $\stackrel{\wedge}{\Longrightarrow}$

 $\stackrel{\wedge}{\sim}$

 $\stackrel{\wedge}{\Longrightarrow}$

 $\stackrel{\wedge}{\sim}$

☆☆

 $\stackrel{\wedge}{\Longrightarrow}$

 $\stackrel{\wedge}{\bowtie}$

☆ ☆

 $\stackrel{\wedge}{\sim}$

 $\stackrel{\wedge}{\Longrightarrow}$

 $\stackrel{\wedge}{\Rightarrow}$

☆☆

 $\stackrel{\wedge}{\sim}$

☆

 $\stackrel{\wedge}{\boxtimes}$

 $\stackrel{\wedge}{\Rightarrow}$

 $\stackrel{\wedge}{\Longrightarrow}$

 $\frac{\wedge}{\wedge}$

 $\stackrel{\wedge}{\Longrightarrow}$

☆☆

 $\stackrel{\wedge}{\Rightarrow}$

 $\stackrel{\wedge}{\Longrightarrow}$

 $\stackrel{\wedge}{\sim}$

 $\stackrel{\wedge}{\sim}$

 $\stackrel{\wedge}{\Longrightarrow}$

 $\stackrel{\wedge}{\boxtimes}$

☆

☆☆

☆

☆ ☆

☆

☆

☆

☆

☆

☆ ☆

 $\stackrel{\wedge}{\bowtie}$

☆

 $\stackrel{\wedge}{\simeq}$

☆ ☆

☆

☆ ☆

☆

☆

☆

☆

☆

 $\stackrel{\wedge}{\bowtie}$

☆

☆

☆

☆☆

 $\stackrel{\wedge}{\simeq}$

☆

☆

 $\stackrel{\wedge}{\boxtimes}$

☆☆

☆

☆ ☆

☆

☆

☆

☆

☆

☆ ☆

☆

☆

 $\stackrel{\wedge}{\simeq}$

☆☆

CO - Mapping			Programme Outcomes											
Subje	Subject	Course	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PO1	РО
ct	Name	Outcom	1	2	3	4	5	6	7	8	9	10	1	12
Code		es												
EID	Machin	CO 1	4				3				5			2
403	e	CO 2	4			5			3		5			2
	Learni	CO3		2			3		1		1		2	
	ng	CO 4			3		4	2					1	
		CO 5		2			5	3		1	1			

Department of Computer Science and Engineering

☆

☆☆

☆

☆

☆

☆

☆ ☆

☆

☆

 $\stackrel{\wedge}{\bowtie}$

☆

☆

☆

 $\stackrel{\wedge}{\Longrightarrow}$

☆☆

 $\stackrel{\wedge}{\Rightarrow}$

☆

☆

 $\stackrel{\wedge}{\simeq}$

☆

☆

☆

☆ ☆

☆

☆

☆

 $\stackrel{\wedge}{\bowtie}$

 $\stackrel{\wedge}{\Longrightarrow}$

☆

☆

☆

☆

☆

☆

☆

☆ ☆

☆

☆

☆

 $\stackrel{\wedge}{\Longrightarrow}$

 $\stackrel{\wedge}{\Longrightarrow}$

 $\stackrel{\wedge}{\sim}$

 $\stackrel{\wedge}{\sim}$

☆☆

☆

☆☆

☆☆

☆☆

☆

 $\stackrel{\wedge}{\Rightarrow}$

 $\stackrel{\wedge}{\Rightarrow}$

 $\stackrel{\wedge}{\square}$

☆☆

☆

☆

☆

 $\stackrel{\wedge}{\Longrightarrow}$

 $\stackrel{\wedge}{\Longrightarrow}$

 $\stackrel{\wedge}{\boxtimes}$

 $\stackrel{\wedge}{\Longrightarrow}$

 $\frac{1}{2}$

 $\frac{\wedge}{\wedge}$

☆☆

 $\stackrel{\wedge}{\sim}$

 $\stackrel{\wedge}{\Rightarrow}$

 $\stackrel{\wedge}{\Rightarrow}$

☆☆

☆☆

 $\stackrel{\wedge}{\Rightarrow}$

☆☆

 $\stackrel{\wedge}{\Longrightarrow}$

 $\stackrel{\wedge}{\Longrightarrow}$

☆☆

 $\frac{\wedge}{\wedge}$

 $\stackrel{\wedge}{\Longrightarrow}$

☆☆

 $\stackrel{\wedge}{\Rightarrow}$

☆

☆

 $\stackrel{\wedge}{\sim}$

☆☆

IV/IV B. Tech (2020-

LESSON PLAN

S No	Day	Description of the topic to be covered	Methodolgy Adopted (Black Board/PPT/Practice in Lab,etc)	
1	Day 1	MODULE – 1 Introduction: Learning Problems, perspectives and Issues	Black Board	
2	Day 2	Learning Problems, perspectives and Issues	Black Board	
3	Day 3	Concept Learning	Black Board	
4	Day 4	Version Spaces and Candidate Elimination	Black Board	
5	Day 5	Version Spaces and Candidate Elimination	Black Board	
6	Day 6	Version Spaces and Candidate Elimination	Black Board	
7	Day 7	Inductive Bias	Black Board	
8	Day 8	Decision Tree Learning, Algorithm	Black Board	
9	Day 9	Hypothesis Space Search	Black Board	
10	Day 10	Discussion on the overall Module I	Interaction with students	
	To	otal hours for MODULE - 1	10	
11	Day 11	MODULE -2 Neural Networks and Genetic Algorithms: Neural Network Representation, problems	Black Board	
12	Day 12	Perceptrons	Black Board	
13	Day 13	Perceptrons	Black Board	

Department of Computer Science and Engineering

MACHINE IV/IV B. Tech (2020-LEARNING Multilayer Networks and the Day 14 Black Board 14 BackPropagation algorithm **Advanced Topics** Black Board 15 Day 15 Genetic Algorithms Black Board 16 Day 16 Hypothesis Space Search 17 Black Board Day 17 Genetic Programming Black Board 18 Day 18 19 Day 19 Models of Evaluation and Learning Black Board Discussion on the overall module II Interaction with students 20 Day 20 Black Board 21 Day 21 **MODULE – 3 Bayesian and** Computational Learning: W Bayes Theorem, Concept learning Maximum Likelihood Black Board 22 Day 22 23 Minimum Description Length Principle Black Board Day 23 24 Day 24 Bayes Optimal Classifier, Gibbs Black Board Algorithm Naïve Bayes Classifier Black Board 25 Day 25 **Bayesian Belief Networks** Black Board 26 Day 26 EM algorithm Black Board 27 Day 27 **Probably Learning** Black Board 28 Day 28 29 Day 29 Sample complexity for finite Hypothesis Black Board Spaces Sample Complexity for infinite Interaction with students 30 Day 30 Hypothesis spaces

☆

☆

☆

☆

☆

☆ ☆

☆

☆

☆

☆

☆

 $\stackrel{\wedge}{\Rightarrow}$

☆

 $\stackrel{\wedge}{\Rightarrow}$

☆

☆

☆

☆

☆

☆☆

☆

 $\stackrel{\wedge}{\Rightarrow}$

☆

☆

☆

☆

☆

☆

☆

☆ ☆

☆

☆

☆

☆

☆

☆

☆ ☆

☆

☆

☆☆

☆

☆

☆ ☆

☆

☆ ☆

☆

☆

☆

☆

☆

 $\stackrel{\wedge}{\Rightarrow}$

☆☆

 $\stackrel{\wedge}{\Rightarrow}$

 $\stackrel{\wedge}{\Rightarrow}$

 $\stackrel{\wedge}{\Rightarrow}$

☆

☆

 $\stackrel{\wedge}{\Rightarrow}$

☆

 $\stackrel{\wedge}{\Rightarrow}$

☆☆

☆

☆

☆ ☆

☆

 $\overset{\wedge}{\Rightarrow}$

 $\stackrel{\wedge}{\Rightarrow}$

☆ ☆

☆

 $\stackrel{\wedge}{\Rightarrow}$

☆

 $\stackrel{\wedge}{\Rightarrow}$

☆

☆

☆

☆

☆

☆

☆

 $\stackrel{\wedge}{\Rightarrow}$

☆

☆

 $\stackrel{\wedge}{\Rightarrow}$

☆

☆ ☆

☆

☆

 $\stackrel{\wedge}{\Rightarrow}$

☆

 $\stackrel{\wedge}{\Longrightarrow}$

 $\stackrel{\wedge}{\Rightarrow}$

☆

☆

 $\stackrel{\wedge}{\Rightarrow}$

 $\stackrel{\wedge}{\Longrightarrow}$

☆

 $\stackrel{\wedge}{\Rightarrow}$

 $\stackrel{\wedge}{\Rightarrow}$

☆

 $\stackrel{\wedge}{\Longrightarrow}$

☆ ☆ Department of Computer Science and Engineering

MACHINE IV/IV B. Tech (2020-**LEARNING** Mistake Bound Model of learning Day 31 Black Board 31 Discussion on the overall module III Black Board 32 Day 32 **MODULE - 4 Instance Based** Day 33 Black Board 33 **Learning:** k-nearest neighbor Learning Black Board 34 Day 34 35 Day 35 k-nearest neighbor Learning Black Board Day 36 Locally weighted regression Black Board 36 **Radial Basis Functions** Black Board 37 Day 37 Black Board 38 Day 38 Case Based Reasoning Case Based Reasoning Black Board 39 Day 39 40 Day 40 Discussion on the overall module IV Interaction with students Day 41 **MODULE - 5 Hidden Markov** Black Board 41 Models: Introduction, Discrete Markov **Processes** Hidden Markov Models Black Board 42 Day 42 Three Basic Problems of HMMs 43 Day 43 Black Board 44 Day 44 **Evaluation Problem** Black Board 45 Day 45 **Evaluation Problem** Black Board Finding the state sequence Black Board 46 Day 46 47 Day 47 **Learning Model Parameters** Black Board

☆☆

☆☆

 $\stackrel{\wedge}{\Rightarrow}$

☆

☆

 $\stackrel{\wedge}{\Rightarrow}$

☆

 $\stackrel{\wedge}{\Rightarrow}$

☆

☆

☆

☆

☆ ☆

 $\stackrel{\wedge}{\Rightarrow}$

 $\stackrel{\wedge}{\Rightarrow}$

 $\stackrel{\wedge}{\Rightarrow}$

☆ ☆

☆

 $\stackrel{\wedge}{\Rightarrow}$

☆

 $\stackrel{\wedge}{\Rightarrow}$

☆

☆

☆

☆

☆

<u>⊹</u>

 $\stackrel{\wedge}{\Rightarrow}$

 $\stackrel{\wedge}{\Rightarrow}$

☆

 $\stackrel{\wedge}{\Rightarrow}$

☆

☆

☆

☆

☆

 $\stackrel{\wedge}{\Rightarrow}$

☆

 $\stackrel{\wedge}{\Rightarrow}$

 $\stackrel{\wedge}{\Rightarrow}$

☆

☆

 $\stackrel{\wedge}{\Rightarrow}$

 $\stackrel{\wedge}{\Rightarrow}$

 $\stackrel{\wedge}{\Rightarrow}$

☆

 $\stackrel{\wedge}{\Rightarrow}$

☆

 $\stackrel{\wedge}{\Longrightarrow}$

☆

☆

☆

☆

☆

☆

☆ ☆

☆

☆

☆

☆

 $\stackrel{\wedge}{\Rightarrow}$

☆

☆

 $\stackrel{\wedge}{\Rightarrow}$

☆

☆

☆

☆

☆

☆☆

☆

 $\stackrel{\wedge}{\Rightarrow}$

☆ ☆

☆

☆

☆

☆

☆

☆ ☆

☆

☆

☆

☆

☆

☆

☆ ☆

☆

☆

☆☆

☆

☆

☆

☆

☆

☆

☆

☆

☆

☆

☆

☆

Department of Computer Science and Engineering

		MACHINE		V00
<i>1</i> /V	MV B.Tech (2 21)	LEARNING		Se M
48	Day 48	Learning Model Parameters and Continuous Observations	Black Board	
49	Day 49	HMM with input and model selection in HMM	Black Board	
50	Day 50	Discussion on the overall module V	Interaction with students	

☆ ☆

☆ ☆

☆

☆

 $\stackrel{\wedge}{\bowtie}$

☆

 $\stackrel{\wedge}{\boxtimes}$

☆☆

 $\stackrel{\wedge}{\boxtimes}$

☆☆

☆

☆

 $\stackrel{\wedge}{\not\sim}$

☆

☆

 $\stackrel{\wedge}{\bowtie}$

☆

☆☆

 $\stackrel{\wedge}{\simeq}$

☆

☆

 $\stackrel{\wedge}{\simeq}$

☆

 $\stackrel{\wedge}{\bowtie}$

 $\stackrel{\wedge}{\simeq}$

☆☆

 $\stackrel{\wedge}{\boxtimes}$

☆

 $\stackrel{\wedge}{\simeq}$

☆

☆

 $\stackrel{\wedge}{\simeq}$

☆

☆

☆☆

 $\stackrel{\wedge}{\simeq}$

☆

 $\stackrel{\cdot}{\not\sim}$

☆

☆

 $\stackrel{\wedge}{\sim}$

☆☆

4

☆☆

 $\stackrel{\wedge}{\boxtimes}$

 $\stackrel{\wedge}{\Longrightarrow}$

 $\stackrel{\wedge}{\Rightarrow}$

☆☆

 $\stackrel{\wedge}{\sim}$

☆

 $\stackrel{\wedge}{\boxtimes}$

 $\stackrel{\wedge}{\Longrightarrow}$

 $\stackrel{\wedge}{\sim}$

☆☆

 $\stackrel{\wedge}{\bowtie}$

 $\stackrel{\wedge}{\Longrightarrow}$

 $\stackrel{\wedge}{\sim}$

☆

 $\stackrel{\wedge}{\boxtimes}$

 $\stackrel{\wedge}{\bowtie}$

 $\stackrel{\wedge}{\Longrightarrow}$

 $\stackrel{\wedge}{\boxtimes}$

 $\stackrel{\wedge}{\sim}$

 $\stackrel{\wedge}{\Rightarrow}$

 $\stackrel{\wedge}{\sim}$

☆☆

 $\stackrel{\wedge}{\Rightarrow}$

 $\stackrel{\wedge}{\simeq}$

 $\stackrel{\wedge}{\sim}$

 $\stackrel{\wedge}{\Rightarrow}$

 $\stackrel{\wedge}{\Rightarrow}$

 $\stackrel{\wedge}{\Longrightarrow}$

 $\frac{\wedge}{\wedge}$

☆

☆☆

 $\stackrel{\wedge}{\boxtimes}$

 $\stackrel{\wedge}{\Longrightarrow}$

 $\stackrel{\wedge}{\boxtimes}$

 $\stackrel{\wedge}{\cancel{\sim}}$

 $\stackrel{\wedge}{\simeq}$

 $\stackrel{\wedge}{\Longrightarrow}$

Syllabus

 $\stackrel{\wedge}{\Rightarrow}$

 $\stackrel{\wedge}{\Rightarrow}$

☆

☆

 $\stackrel{\wedge}{\Rightarrow}$

☆

☆

 $\stackrel{\wedge}{\Rightarrow}$

☆

 $\stackrel{\wedge}{\Rightarrow}$

☆

 $\stackrel{\wedge}{\Longrightarrow}$

 $\stackrel{\wedge}{\Rightarrow}$

☆

☆

 $\stackrel{\wedge}{\Rightarrow}$

 $\stackrel{\wedge}{\Rightarrow}$

 $\stackrel{\wedge}{\Rightarrow}$

☆

 $\stackrel{\wedge}{\Rightarrow}$

 $\stackrel{\wedge}{\Rightarrow}$

☆

 $\stackrel{\wedge}{\Rightarrow}$

☆

☆☆

☆

☆

☆

☆

 $\stackrel{\wedge}{\Rightarrow}$

☆

☆

 $\stackrel{\wedge}{\square}$

 $\stackrel{\wedge}{\Rightarrow}$

☆

 $\stackrel{\wedge}{\Rightarrow}$

 $\stackrel{\wedge}{\boxtimes}$

 $\stackrel{\wedge}{\Rightarrow}$

☆☆

☆

☆

 $\stackrel{\wedge}{\Longrightarrow}$

 $\frac{1}{2}$

 $\stackrel{\wedge}{\Rightarrow}$

 $\stackrel{\wedge}{\Rightarrow}$

 $\stackrel{\wedge}{\Rightarrow}$

☆

 $\stackrel{\wedge}{\Rightarrow}$

 $\stackrel{\wedge}{\Rightarrow}$

☆

Module I 10 hours

Introduction: Learning problems, perspectives and issues, concept learning, version spaces and candidate eliminations, inductive bias, decision treelearning, representation, algorithm, heuristic space search.

☆

☆

☆

☆

☆ ☆

☆

☆

☆

☆

 $\stackrel{\wedge}{\Rightarrow}$

☆

☆

 $\stackrel{\wedge}{\Rightarrow}$

☆

☆

☆

☆

☆

☆☆

☆

☆

☆

☆

☆

☆

☆

☆

☆

☆ ☆

☆

☆

☆

☆

☆

☆

☆

☆

☆

☆☆

☆ ☆

☆

☆

☆

☆

 $\stackrel{\wedge}{\Rightarrow}$

☆

☆

☆

☆

☆

Module II 10 hours

Neural Networks And Genetic Algorithms: Neural network representation, problems, perceptrons, multilayer networks and back propagation algorithms, advanced topics, Genetic algorithms, hypothesis space search, genetic programming, models of evaluation and learning.

Module III 12 hours

Bayesian and Computational Learning: Bayes theorem, concept learning, maximum likelihood, minimum description length principle, Bayes optimal classifier, Gibbs Algorithm, Naïve Bayes Classifier, Bayesian belief network, EM algorithm, probability learning, sample complexity, finite and infinite hypothesis spaces, mistake bound model.

Module IV 10 hours

Instance Based Learning: K-Nearest neighbour learning, locally weighted regression, radial basis functions, case based learning.

Module V 10 hours

Hidden Markov Models: Introduction, discrete Markov processes, hidden Markov models, three basic problems of HMMs evaluation problem, finding the state sequence, learning model parameters, continuous observations, the HMM with input, model selection in HMM.

Text Book(s)

- 1. Tom M. Mitchell, Machine Learning, McGraw Hill, 2013.
- 2. Ethem Alpaydin, Introduction to Machine Learning (Adaptive Computation and Machine Learning), The MIT Press, 2004

References

- 1. T. Hastie, R. Tibshirani, J. H. Friedman, The Elements of Statistical Learning, 1/e, Springer, 2001.
- 2. M Narasimha Murty, Introduction to Pattern Recognition and Machine Learning, World Scientific Publishing Company, 2015

Appendix: Page Number References From different Text Books

Department of Computer Science and Engineering

 $\stackrel{\wedge}{\sim}$

 $\stackrel{\wedge}{\sim}$

☆ ☆

☆

☆

 $\stackrel{\wedge}{\Rightarrow}$

☆☆

 $\stackrel{\wedge}{\Rightarrow}$

☆☆

☆

 $\stackrel{\wedge}{\Rightarrow}$

 $\stackrel{\wedge}{\square}$

☆☆

☆

☆

☆

 $\stackrel{\wedge}{\Longrightarrow}$

 $\stackrel{\wedge}{\boxtimes}$

☆

☆

 $\stackrel{\wedge}{\Longrightarrow}$

☆

 $\stackrel{\wedge}{\bowtie}$

 $\stackrel{\wedge}{\Rightarrow}$

 $\stackrel{\wedge}{\Rightarrow}$

☆☆

☆☆

☆

☆☆

☆

☆

☆

☆

 $\stackrel{\wedge}{\Longrightarrow}$

☆☆

 $\stackrel{\wedge}{\Rightarrow}$

☆

☆

 $\stackrel{\wedge}{\Longrightarrow}$

 $\stackrel{\wedge}{\Longrightarrow}$

 $\stackrel{\wedge}{\boxtimes}$

IV/IV B. Tech (2020-

☆

☆☆

☆

☆

☆

☆

☆ ☆

☆

☆ ☆

 $\stackrel{\wedge}{\bowtie}$

☆

☆

☆ ☆

 $\stackrel{\wedge}{\Longrightarrow}$

☆☆

☆

☆

☆

☆

☆

☆

☆

☆ ☆

☆

☆

☆

☆ ☆

 $\stackrel{\wedge}{\Longrightarrow}$

☆ ☆

☆

☆☆

☆ ☆

☆

☆☆

☆

☆ ☆

☆

☆

 $\stackrel{\wedge}{\simeq}$

☆

☆

S No	Description of the topic	Reference page No.s from Tom M. Mitchell	Reference page No.s from Ethem Alpaydin
1.	MODULE – 1 Introduction: Learning Problems, perspectives and Issues	1-15	
2.	Learning Problems, perspectives and Issues	1-15	
3.	Concept Learning	20-26	
4.	Version Spaces and Candidate Elimination	29-36	
5.	Version Spaces and Candidate Elimination	29-36	
6.	Version Spaces and Candidate Elimination	29-36	-
7.	Inductive Bias	39-45	-
8.	Decision Tree Learning, Algorithm	52-60	-
9.	Hypothesis Space Search	60-62	
10	MODULE -2 Neural Networks and Genetic Algorithms: Neural Network Representation, problems	81-86	
1:	Perceptrons	86-95	
12	Perceptrons	86-95	
1.	Multilayer Networks and the BackPropagation algorithm	95-103	
14	Advanced Topics	104-112	
1:	Genetic Algorithms	249-256	
10	Hypothesis Space Search	259-262	

Department of Computer Science and Engineering

 $\stackrel{\wedge}{\sim}$

 $\stackrel{\wedge}{\sim}$

☆ ☆

☆

☆

 $\stackrel{\wedge}{\Rightarrow}$

☆☆

 $\stackrel{\wedge}{\Rightarrow}$

☆☆

 $\stackrel{\wedge}{\sim}$

 $\stackrel{\wedge}{\Rightarrow}$

 $\stackrel{\wedge}{\square}$

☆☆

☆

☆

 $\stackrel{\wedge}{\Longrightarrow}$

☆

 $\stackrel{\wedge}{\Longrightarrow}$

 $\stackrel{\wedge}{\Longrightarrow}$

☆

☆

☆

 $\frac{\wedge}{\wedge}$

☆☆

 $\stackrel{\wedge}{\bowtie}$

 $\stackrel{\wedge}{\Rightarrow}$

 $\stackrel{\wedge}{\Rightarrow}$

☆☆

☆☆

 $\stackrel{\wedge}{\Rightarrow}$

☆☆

☆

 $\stackrel{\wedge}{\Longrightarrow}$

 $\stackrel{\wedge}{\Rightarrow}$

☆

☆

 $\stackrel{\wedge}{\Longrightarrow}$

☆☆

 $\stackrel{\wedge}{\Rightarrow}$

☆

☆

 $\stackrel{\wedge}{\Longrightarrow}$

 $\stackrel{\wedge}{\Longrightarrow}$

 $\stackrel{\wedge}{\boxtimes}$

IV/IV B. Tech (2020-

☆

☆☆

☆

☆

☆

☆

☆ ☆

☆

☆ ☆

 $\stackrel{\wedge}{\bowtie}$

☆

☆

☆ ☆

 $\stackrel{\wedge}{\Longrightarrow}$

☆ ☆

☆

☆

☆

☆

 $\stackrel{\wedge}{\simeq}$

☆

☆

☆

☆ ☆

☆

☆

☆

☆ ☆

 $\stackrel{\wedge}{\Longrightarrow}$

☆ ☆

☆

 $\stackrel{\wedge}{\Rightarrow}$

 $\stackrel{\wedge}{\bowtie}$

 $\stackrel{\wedge}{\Longrightarrow}$

☆ ☆

☆☆

☆

☆ ☆

☆

☆

☆

☆

 $\stackrel{\wedge}{\Longrightarrow}$

1'	Genetic Programming	262-266	
18	Models of Evaluation and Learning	266-268	
1!	MODULE – 3 Bayesian and Computational Learning: Bayes Theorem, Concept learning	154-162	
20	Maximum Likelihood	164-171	
2:	Minimum Description Length Principle	171-174	
2:	Bayes Optimal Classifier, Gibbs Algorithm	174-176	
2.	Naïve Bayes Classifier	177-180	
24	Bayesian Belief Networks	184-191 ERVE	
2:	EM algorithm	191-196	
20	Probably Learning	201-207	
2'	Sample complexity for finite Hypothesis Spaces	207-214	
28	Sample Complexity for infinite Hypothesis spaces	214-220	
29	Mistake Bound Model of learning	220-225	
30	MODULE – 4 Instance Based Learning:	230-231	
3:	k-nearest neighbor Learning	231-236	
32	k-nearest neighbor Learning	231-236	
3.	Locally weighted regression	236-238	
34	Radial Basis Functions	238-240	
	·		

Department of Computer Science and Engineering

 $\stackrel{\wedge}{\sim}$

 $\stackrel{\wedge}{\sim}$

☆☆

<u>☆</u>

☆

 $\stackrel{\wedge}{\Rightarrow}$

 $\stackrel{\wedge}{\Rightarrow}$

☆

 $\stackrel{\wedge}{\Rightarrow}$

☆☆

 $\stackrel{\wedge}{\boxtimes}$

 $\stackrel{\wedge}{\Rightarrow}$

 $\stackrel{\wedge}{\square}$

☆☆

☆

☆

 $\stackrel{\wedge}{\Longrightarrow}$

 $\stackrel{\wedge}{\Rightarrow}$

 $\stackrel{\wedge}{\Longrightarrow}$

 $\stackrel{\wedge}{\boxtimes}$

 $\stackrel{\wedge}{\boxtimes}$

 $\stackrel{\wedge}{\Longrightarrow}$

 $\stackrel{\wedge}{\Longrightarrow}$

☆

 $\stackrel{\wedge}{\boxtimes}$

☆☆

 $\stackrel{\wedge}{\sim}$

 $\stackrel{\wedge}{\Rightarrow}$

☆

 $\stackrel{\wedge}{\Longrightarrow}$

 $\stackrel{\wedge}{\Longrightarrow}$

☆☆

 $\stackrel{\wedge}{\Rightarrow}$

 $\stackrel{\wedge}{\sim}$

☆ ☆

☆

☆

☆

 $\stackrel{\wedge}{\Longrightarrow}$

☆☆

 $\stackrel{\wedge}{\Rightarrow}$

☆ ☆

 $\stackrel{\wedge}{\sim}$

 $\stackrel{\wedge}{\Longrightarrow}$

 $\stackrel{\wedge}{\boxtimes}$

IV/IV B. Tech (2020-

☆

☆☆

☆

☆

☆☆

☆

☆

☆

 $\stackrel{\wedge}{\simeq}$

☆☆

 $\stackrel{\wedge}{\bowtie}$

☆

☆

☆ ☆

 $\stackrel{\wedge}{\Longrightarrow}$

☆☆

☆

☆

☆

☆

☆

☆

☆

☆

☆

☆ ☆

☆

☆

☆

☆

 $\stackrel{\wedge}{\bowtie}$

 $\stackrel{\wedge}{\Longrightarrow}$

☆ ☆

☆

☆☆

☆ ☆

☆

☆☆

☆

☆☆

☆

 $\stackrel{\wedge}{\simeq}$

☆ ☆

3: Case Based Reasoning	240-244	
3 Case Based Reasoning	240-244	
3' MODULE - 5 Hidden Markov Models: Introduction, Discrete Markov Processes		305-306
3 Hidden Markov Models		309-311
3! Three Basic Problems of HMMs		311
4 Evaluation Problem		311-315
4 Evaluation Problem		311-315
4. Finding the state sequence	IVE ERVE	315-317
4. Learning Model Parameters		317-319
4 Learning Model Parameters and Continuous Observations	IV _m *	319-321
4 HMM with input and model selection in HMM		321-323