Exercício 5

December 6, 2020

1 Exercício PA3-5

Exercício com data de entrega para 7 de dezembro de 2020.

Aluno: Noé de Lima Bezerra

noe_lima@id.uff.br

```
[1]: import numpy as np
  import sympy as sp
  import pandas as pd
  import matplotlib.pyplot as plt
  from IPython.display import display, Math, Image, IFrame
  from sympy.abc import x, y, z
  sp.init_printing(use_latex='mathjax',latex_mode='equation*')
```

[2]: Image("Figuras/PA3-5.png")

[2]:

AVALIAÇÃO 5-PA3 – PRINCÍPIO DOS TRABALHOS VIRTUAIS- EXERCÍCIO 2

A estrutura abaixo é submetida às cargas, variações de temperatura e recalque do apoio A indicados na figura. Todas as barras têm seção retangular de 0,5 m de altura. Calcular o deslocamento horizontal do nó C. $El_c = 10^5 \text{ kN.m}^2$, $\alpha = 10^{-5} \text{ /°C}$. Observação: apresentar de forma detalhada as equações de equilíbrio para o cálculo das reações de apoio e a obtenção dos momentos nos nós E e D.

2 Formulário

2.1 Princípio dos Trabalhos Virtuais

$$\delta = \sum_{i=1}^{n} \int \frac{\bar{M}_i M_i}{EI_i} \mathrm{d}x$$

2.2 Temperatura

2.2.1 Barras Com Seção Transversal Constante

$$\delta = \alpha \cdot \delta t_g \cdot A_{\bar{N}} + \frac{\alpha \cdot \Delta t}{h} A_{\bar{M}}$$

Onde,

- $A_{ar{N}}$ é a área dos diagramas de esforço normal;
- $A_{ar{M}}$ é a área dos diagramas de momento fletor;
- δt_g é a variação média de temperatura;
- Δt é a diferença de temperatura $\Delta t = \delta t_i \delta t_e$ (temperatura interna menos a temperatura externa).

2.2.2 Barras Com Seção Transversal Variável

$$\delta = \alpha \int_{l} \bar{N} \delta t_{g} ds + \alpha \cdot \Delta t \int_{l} \frac{\bar{M}}{h} ds$$

2.3 Recalque

$$\delta = -\sum \bar{R} \cdot \rho$$

2.4 Utilização

Calcular o deslocamento para os esforços no Estado de Deformação, em seguida, calcular o deslocamento em função da Temperatura e, em seguida, o deslocamento em função dos recalques. Por último, devido à linearidade, utilizar a superposição de efeitos e somar os resultados.

Para fins práticos, temos uma tabela com diversas integrais comuns já calculadas e disponíveis para utilização.

[3]: Image("Figuras/tabela integrais.jpg")

[3]:

	M	M _B	M _A M _B	par. 2° grau	par. 29 grau MB	par. 2.º grau M _B	ĬN
	I' MM	-1 I' MMB	$\frac{1}{2}$ I' M $(\overline{M}_A + \overline{M}_B)$	2 1' MM _m	2 1' MM _B	tang, horiz,	$\frac{1}{2}$ I' MM
Me	3 1' M _B M	1 ' MBMB	$\frac{1}{6}$ I' M _B ($\overline{M}_A + 2\overline{M}_B$)	1 1' MBMm	5 1' MBMB	1/4 I' MBMB	1/6 I' (1+α) N
MA	-1 1' MAM	1 I' MAMB	1 1' MA (2MA+MB)	1/ MAMm	1 I' MAMB	1 1' MAMB	1/6 l' (1+β) M
M _A M _B	1 (M _A +M _B) M	$\frac{1}{6}$ I' (M _A +2M _B) $\overline{\text{M}}_{\text{B}}$	1 1' [MA (2MA+MB)+ +MB (2MB+MA)]	1 1' (MA+MB)Mm	1/2 I' (3M _A + + + + + + + + + + + + + + + + + + +	1/2 1' (MA+3MB)MB	1/M [M _A (+ M _B (1+α)]
par. 20 grau Mm	2 1' M _m M	$\frac{1}{3}$ I' M _m \overline{M} _B	$\frac{1}{3}$ I' M _m (\overline{M}_A + \overline{M}_B)	8 1' M _m M̄ _m	7 1' M _m M _B	1 1' M _m M̄ _B	$\frac{1}{3}$ l' $(1+\alpha\beta)$ M,
par. 20 grau MB	2 1' M _B M	5 1' M _B M _B	1/12 I' M _B (3M _A + +5M _B)	7 1' M _B M _m	8 1' MBMB	3 1' M _B M B	1/12 (5 - β × M _B M̄
MA par. 2.º grau	2 1' MA M	1 I' MAMB	1/12 I' MA (5MA + + 3MB)	7 1' MAMm	11 1' MAMB	2 1' MAMB	1/12 1' (5-α-α × M _A M
par. 20 grau MB	1 ' M _B M	1 I' MBMB	1 1' M _B (M _A + + 3M _B)	½ I' M _B M _m	3 I' M _B M _B	1/ MBMB	$\frac{1}{12} \text{ i' } (1+\alpha+\alpha^2$ $\times M_B \overline{M}$
MA par. 20 grau	-1 1' MA M	1 1' MAMB	1 1' M _A (3M _A + + M _B)	½ I' MAMm	2 1' MAMB	1 1' MAMB	$\frac{1}{12} I' (1+\beta+\beta) \times M_A \overline{M}$
tang, horiz,	1 I' MM	$\frac{1}{6}$ I' $(1 + \alpha) \widetilde{M}_{B}M$	$\frac{1}{6} \text{ I' M } \left[(1+\beta) \overline{M}_{A}^{+} + (1+\alpha) \overline{M}_{B} \right]$	$\frac{1}{3}$ I' $(1+\alpha\beta)M\widetilde{M}_{m}$	$\frac{1}{12} \text{ I' } (5 - \beta - \beta^2) \times $ $\times \text{ MMB}$	$\frac{1}{12} I' (1+\alpha+\alpha^2) \times \times M\overline{M}_B$	1 1' MM

3 Solução

$$\int_{0}^{l} \frac{M(x) M_{b}(x)}{EI} dx$$

Para integrar os momentos fletores, as barras seguirão a numeração da figura abaixo:

```
[5]: Image("Figuras/PA3-5-0.png")
```

[5]:

3.1 Estado de Deformação

Vamos utilizar as equações de equilíbrio para obter as reações de apoio. Assim, temos:

$$\sum_{F_x} = 0 : .$$

$$10 \times 3 + H_A + H_B = 0 :$$

$$H_A + H_B = -30 \ kN$$

$$\sum_{F_y} = 0 ::$$

$$-10 \times 10 + V_A + V_B = 0$$
 ::

$$V_A + V_B = 100 \ kN$$

$$\sum_{M_A} = 0 ::$$

$$-10 \times 3 \times \left(3 + \frac{3}{2}\right) - 10 \times 10 \times 3 - H_B \times 2 + V_B \times 6 + 40 = 0 :$$

$$-2H_B + 6V_B = 395 \ kN \cdot m$$

$$\sum_{M_{D+}} = 0 : .$$

$$-10 \times 5 \times \frac{5}{2} + H_B \times 4 + V_B \times 3 = 0 :$$

$$4H_B + 3V_B = 125 \ kN \cdot m$$

Logo,

$$\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & -2 & 6 \\ 0 & 0 & 4 & 3 \end{bmatrix} \begin{bmatrix} H_A \\ V_A \\ H_B \\ V_B \end{bmatrix} = \begin{bmatrix} -30 \\ 100 \\ 395 \\ 125 \end{bmatrix}$$

$$\begin{bmatrix}
-\frac{31}{2} \\
39 \\
-\frac{29}{2}
\end{bmatrix}$$
61

Assim, as reações de apoio são:

- $H_A = -\frac{31}{2} \ kN = -15, 5 \ kN$
- $V_A = 39 \ kN$
- $H_B = -\frac{29}{2} \ kN = 14,5 \ kN$
- $V_B = 61 \ kN$

3.2 Estado de Carregamento

Como estamos interessados no deslocamento horizontal no nó C, vamos inserir uma carga virtual P=1, na direção positiva de x, no nó C.

Vamos utilizar as mesmas equações de equilíbrio do Estado de Deformação para obter as reações de apoio.

$$\sum_{F_x} = 0 ::$$

$$1 + H_A + H_B = 0 :$$

$$H_A + H_B = -1$$

$$\sum_{F_y} = 0 ::$$

$$V_A + V_B = 0$$

$$\sum_{M_A} = 0 : .$$

$$-1 \times 3 - H_B \times 2 + V_B \times 6 = 0$$
:

$$-2H_B + 6V_B = 3$$

$$\sum_{M_{D^{+}}} = 0 ::$$

$$4H_B + 3V_B = 0$$

Logo,

$$\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & -2 & 6 \\ 0 & 0 & 4 & 3 \end{bmatrix} \begin{bmatrix} H_A \\ V_A \\ H_B \\ V_B \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \\ 3 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} -\frac{7}{10} \\ -\frac{2}{10} \\ -\frac{3}{10} \\ \frac{2}{5} \end{bmatrix}$$

Assim, as reações de apoio são:

```
• H_A = -\frac{7}{10} = -0.7
```

•
$$V_A = -\frac{2}{5} = -0.4$$

•
$$H_B = -\frac{3}{10} = -0.3$$

•
$$V_B = \frac{2}{5} = 0,4$$

3.3 Barra 1

```
[8]: t = np.arange(0.0, 3.0, 0.01)
     s1 = 10*(t**2)/2
     s2 = 45*t/3
     s3 = (10/2)*(t**2 - 3*t)
     s4 = t
     fig, axs = plt.subplots(4, 1, sharex=True)
     # Remove horizontal space between axes
     fig.subplots_adjust(hspace=0)
     fig.suptitle('Diagrama de Momento Fletor - Trecho 1')
     # Plot each graph, and manually set the y tick values
     axs[0].plot(t, s1)
     axs[0].set_yticks(np.arange(0., 46.0, 10))
     axs[0].set_ylim(0, 46)
     axs[0].set_ylabel('Deformação\n$kN\cdot m$')
     axs[1].plot(t, s2)
     axs[1].set_yticks(np.arange(0., 46.0, 10))
     axs[1].set_ylim(0, 46)
     axs[1].set_ylabel('Linear\n$kN\cdot m$')
     axs[2].plot(t, s3)
     axs[2].set_yticks(np.arange(-12., 1., 3))
     axs[2].set_ylim(-12, 1)
     axs[2].set_ylabel('Quadrático\n$kN\cdot m$')
     axs[3].plot(t, s4)
     axs[3].set_yticks(np.arange(0., 4.0, 1))
     axs[3].set_ylim(0, 4)
     axs[3].set_ylabel('Carregamento\nAdimensional')
     axs[3].set_xlabel('Distância ($m$)')
     plt.show()
```

```
<>:18: DeprecationWarning: invalid escape sequence \c
<>:23: DeprecationWarning: invalid escape sequence \c
```

```
<>:28: DeprecationWarning: invalid escape sequence \c
<>:18: DeprecationWarning: invalid escape sequence \c
<>:23: DeprecationWarning: invalid escape sequence \c
<>:28: DeprecationWarning: invalid escape sequence \c
<ipython-input-8-89e0935ca60b>:18: DeprecationWarning: invalid escape sequence
\c
    axs[0].set_ylabel('Deformação\n$kN\cdot m$')
<ipython-input-8-89e0935ca60b>:23: DeprecationWarning: invalid escape sequence
\c
    axs[1].set_ylabel('Linear\n$kN\cdot m$')
<ipython-input-8-89e0935ca60b>:28: DeprecationWarning: invalid escape sequence
\c
    axs[2].set_ylabel('Quadrático\n$kN\cdot m$')
```

Diagrama de Momento Fletor - Trecho 1

Temos, portanto, duas componentes a integrar separadamente e somar por superposição. Uma componente linear, e outra quadrática.

Temos as seguintes equações:

3.3.1 Linear

$$\frac{1}{3}l'M_B\bar{M}_B$$

3.3.2 Parábola

$$\frac{1}{3}l'M_m\bar{M}_B$$

Onde $l'=lrac{J_C}{J}=rac{l}{EI}$

$$\frac{168.75}{EI}$$

3.4 Barra 2

```
[10]: t = np.arange(0.0, 2.0, 0.01)
      s1 = 45 + 10*(t**2)/2
      s2 = (65-45)*t/2 + 45
      s3 = (10/2)*(t**2 - 2*t)
      s4 = 0*t+3
      fig, axs = plt.subplots(4, 1, sharex=True)
      # Remove horizontal space between axes
      fig.subplots_adjust(hspace=0)
      fig.suptitle('Diagrama de Momento Fletor - Trecho 2')
      # Plot each graph, and manually set the y tick values
      axs[0].plot(t, s1)
      axs[0].set_yticks(np.arange(0., 66.0, 10))
      axs[0].set_ylim(0, 66)
      axs[0].set_ylabel('Deformação\n$kN\cdot m$')
      axs[1].plot(t, s2)
      axs[1].set_yticks(np.arange(0., 66.0, 10))
      axs[1].set_ylim(0, 66)
      axs[1].set_ylabel('Linear\n$kN\cdot m$')
      axs[2].plot(t, s3)
      axs[2].set_yticks(np.arange(-5., 1., 1))
      axs[2].set_ylim(-5, 1)
      axs[2].set_ylabel('Quadrático\n$kN\cdot m$')
      axs[3].plot(t, s4)
      axs[3].set_yticks(np.arange(0., 4.0, 1))
      axs[3].set_ylim(0, 4)
      axs[3].set_ylabel('Carregamento\nAdimensional')
      axs[3].set_xlabel('Distância ($m$)')
```

```
<>:18: DeprecationWarning: invalid escape sequence \c
<>:23: DeprecationWarning: invalid escape sequence \c
<>:28: DeprecationWarning: invalid escape sequence \c
<>:18: DeprecationWarning: invalid escape sequence \c
<>:23: DeprecationWarning: invalid escape sequence \c
<>:23: DeprecationWarning: invalid escape sequence \c
<>:28: DeprecationWarning: invalid escape sequence \c
<ipython-input-10-7179bbc18474>:18: DeprecationWarning: invalid escape sequence
\c
    axs[0].set_ylabel('Deformação\n$kN\cdot m$')
<ipython-input-10-7179bbc18474>:23: DeprecationWarning: invalid escape sequence
\c
    axs[1].set_ylabel('Linear\n$kN\cdot m$')
<ipython-input-10-7179bbc18474>:28: DeprecationWarning: invalid escape sequence
\c
    axs[2].set_ylabel('Quadrático\n$kN\cdot m$')
```

plt.show()

Diagrama de Momento Fletor - Trecho 2

Neste caso, a figura é composta, como no anterior, mas não mais por um triângulo, mas sim por um trapézio. Assim, para esta configuração, temos:

3.4.1 Linear

$$\frac{1}{2}l'\left(M_A+M_B\right)\bar{M}$$

3.4.2 Parábola

$$\frac{2}{3}l'M_m\bar{M}$$

```
[11]: delta_2 = (2/EI)*(((45 + 65)/2)*3 + (2/3)*(-10*(2**2)/8)*3) display(delta_2)
```

 $\frac{310.0}{EI}$

3.5 Barra 3

```
[12]: t = np.arange(0.0, 6.0, 0.01)
      s1 = -15.5*t
      s2 = -0.7*t
      fig, axs = plt.subplots(2, 1, sharex=True)
      # Remove horizontal space between axes
      fig.subplots_adjust(hspace=0)
      fig.suptitle('Diagrama de Momento Fletor - Trecho 3')
      # Plot each graph, and manually set the y tick values
      axs[0].plot(t, s1)
      axs[0].set_yticks(np.arange(-95., 0., 10))
      axs[0].set_ylim(-95, 0)
      axs[0].set_ylabel('Deformação\n$kN\cdot m$')
      axs[1].plot(t, s2)
      axs[1].set_yticks(np.arange(-5., 0., 1))
      axs[1].set_ylim(-5, 0)
      axs[1].set_ylabel('Carregamento\nAdimensional')
      axs[1].set_xlabel('Distância ($m$)')
      plt.show()
```

```
<>:16: DeprecationWarning: invalid escape sequence \c
<>:16: DeprecationWarning: invalid escape sequence \c
<ipython-input-12-57526c8f0323>:16: DeprecationWarning: invalid escape sequence \c
    axs[0].set_ylabel('Deformação\n$kN\cdot m$')
```

Diagrama de Momento Fletor - Trecho 3

Este trecho apresenta apenas área triangular, em ambos os estados, sendo as duas no mesmo sentido. Assim, a equação para este caso fica:

$$\frac{1}{3}l'M_B\bar{M}_B$$

$$\frac{781.2}{EI}$$

3.6 Barra 4

```
# Remove horizontal space between axes
fig.subplots_adjust(hspace=0)
fig.suptitle('Diagrama de Momento Fletor - Trecho 4')
# Plot each graph, and manually set the y tick values
axs[0].plot(t, s1)
axs[0].set_yticks(np.arange(-50., 0., 20))
axs[0].set ylim(-50, 0)
axs[0].set_ylabel('Deformação\n$kN\cdot m$')
axs[1].plot(t, s2)
axs[1].set_yticks(np.arange(-50., 0., 20))
axs[1].set_ylim(-50, 0)
axs[1].set_ylabel('Linear\n$kN\cdot m$')
axs[2].plot(t, s3)
axs[2].set_yticks(np.arange(-15., 1., 5))
axs[2].set_ylim(-15, 1)
axs[2].set_ylabel('Quadrático\n$kN\cdot m$')
axs[3].plot(t, s4)
axs[3].set_yticks(np.arange(-2., 0., 1))
axs[3].set ylim(-2, 0)
axs[3].set_ylabel('Carregamento\nAdimensional')
axs[3].set xlabel('Distância ($m$)')
plt.show()
<>:18: DeprecationWarning: invalid escape sequence \c
<>:23: DeprecationWarning: invalid escape sequence \c
<>:28: DeprecationWarning: invalid escape sequence \c
<>:18: DeprecationWarning: invalid escape sequence \c
<>:23: DeprecationWarning: invalid escape sequence \c
<>:28: DeprecationWarning: invalid escape sequence \c
<ipython-input-14-bb7ad519dece>:18: DeprecationWarning: invalid escape sequence
  axs[0].set_ylabel('Deformação\n$kN\cdot m$')
<ipython-input-14-bb7ad519dece>:23: DeprecationWarning: invalid escape sequence
  axs[1].set_ylabel('Linear\n$kN\cdot m$')
<ipython-input-14-bb7ad519dece>:28: DeprecationWarning: invalid escape sequence
  axs[2].set_ylabel('Quadrático\n$kN\cdot m$')
```

Diagrama de Momento Fletor - Trecho 4

Este caso, a figura é semelhante à Barra 2, porém com um triângulo no estado de carregamento. Assim, para esta configuração, temos:

3.6.1 Linear

$$\frac{1}{6}l'\bar{M}_A\left(2M_A+M_B\right)$$

3.6.2 Parábola

$$\frac{1}{3}l'\bar{M}_A M_m$$

$$\frac{71.1}{EI}$$

3.7 Barra 5

```
[16]: t = np.arange(0.0, 3.0, 0.01)
      s1 = (10*5-39)*t + 10*(t**2)/2
      s2 = (78/3)*t
      s3 = (10/2)*(t**2 - 3*t)
      s4 = 0.4*t
      fig, axs = plt.subplots(4, 1, sharex=True)
      # Remove horizontal space between axes
      fig.subplots_adjust(hspace=0)
      fig.suptitle('Diagrama de Momento Fletor - Trecho 5')
      # Plot each graph, and manually set the y tick values
      axs[0].plot(t, s1)
      axs[0].set_yticks(np.arange(0., 80., 20))
      axs[0].set_ylim(0, 80)
      axs[0].set_ylabel('Deformação\n$kN\cdot m$')
      axs[1].plot(t, s2)
      axs[1].set_yticks(np.arange(0., 80., 20))
      axs[1].set_ylim(0, 80)
      axs[1].set_ylabel('Linear\n$kN\cdot m$')
      axs[2].plot(t, s3)
      axs[2].set_yticks(np.arange(-15., 1., 5))
      axs[2].set_ylim(-15, 1)
      axs[2].set_ylabel('Quadrático\n$kN\cdot m$')
      axs[3].plot(t, s4)
      axs[3].set_yticks(np.arange(0., 2., 1))
      axs[3].set_ylim(0, 2)
      axs[3].set_ylabel('Carregamento\nAdimensional')
      axs[3].set_xlabel('Distância ($m$)')
      plt.show()
     <>:18: DeprecationWarning: invalid escape sequence \c
     <>:23: DeprecationWarning: invalid escape sequence \c
     <>:28: DeprecationWarning: invalid escape sequence \c
     <>:18: DeprecationWarning: invalid escape sequence \c
     <>:23: DeprecationWarning: invalid escape sequence \c
     <>:28: DeprecationWarning: invalid escape sequence \c
     <ipython-input-16-9dd3be6a69a2>:18: DeprecationWarning: invalid escape sequence
     \c
       axs[0].set_ylabel('Deformação\n$kN\cdot m$')
```

<ipython-input-16-9dd3be6a69a2>:23: DeprecationWarning: invalid escape sequence
\c
 axs[1].set_ylabel('Linear\n\$kN\cdot m\$')
<ipython-input-16-9dd3be6a69a2>:28: DeprecationWarning: invalid escape sequence
\c
 axs[2].set_ylabel('Quadrático\n\$kN\cdot m\$')

Diagrama de Momento Fletor - Trecho 5

Nesta configuração, temos as seguintes equações, semelhantes à Barra 1:

3.7.1 Linear

$$\frac{1}{3}l'M_B\bar{M}_B$$

3.7.2 Parábola

$$\frac{1}{3}l'M_m\bar{M}_B$$

$$\frac{107.1}{EI}$$

3.8 Barra 6

```
[18]: t = np.arange(0.0, 4.0, 0.01)
      s1 = -14.5*t
      s2 = -0.3*t
      fig, axs = plt.subplots(2, 1, sharex=True)
      # Remove horizontal space between axes
      fig.subplots_adjust(hspace=0)
      fig.suptitle('Diagrama de Momento Fletor - Trecho 6')
      # Plot each graph, and manually set the y tick values
      axs[0].plot(t, s1)
      axs[0].set_yticks(np.arange(-60., 0., 10))
      axs[0].set_ylim(-60, 0)
      axs[0].set_ylabel('Deformação\n$kN\cdot m$')
      axs[1].plot(t, s2)
      axs[1].set_yticks(np.arange(-2., 0., 1))
      axs[1].set_ylim(-2, 0)
      axs[1].set_ylabel('Carregamento\nAdimensional')
      axs[1].set_xlabel('Distância ($m$)')
      plt.show()
```

```
<>:16: DeprecationWarning: invalid escape sequence \c
<>:16: DeprecationWarning: invalid escape sequence \c
<ipython-input-18-82bdccdd8a06>:16: DeprecationWarning: invalid escape sequence \c
    axs[0].set_ylabel('Deformação\n$kN\cdot m$')
```

Diagrama de Momento Fletor - Trecho 6

Esta configuração é semelhante à da Barra 3. Assim, temos:

$$\frac{1}{3}l'M_B\bar{M}_B$$

$$\frac{92.8}{EI}$$

3.9 Barra 7

```
[20]: t = np.arange(0.0, 2.0, 0.01)
s1 = 20 - 10*t + 5*(t**2 - 2*t)
s2 = 0*t

fig, axs = plt.subplots(2, 1, sharex=True)
# Remove horizontal space between axes
fig.subplots_adjust(hspace=0)
fig.suptitle('Diagrama de Momento Fletor - Trecho 7')
```

```
# Plot each graph, and manually set the y tick values
axs[0].plot(t, s1)
axs[0].set_yticks(np.arange(0., 25., 10))
axs[0].set_ylim(0, 25)
axs[0].set_ylabel('Deformação\n$kN\cdot m$')

axs[1].plot(t, s2)
axs[1].set_yticks(np.arange(-1., 1., 0.5))
axs[1].set_ylim(-1, 1)
axs[1].set_ylabel('Carregamento\nAdimensional')
axs[1].set_xlabel('Distância ($m$)')

plt.show()
```

<>:16: DeprecationWarning: invalid escape sequence \c
<>:16: DeprecationWarning: invalid escape sequence \c
<ipython-input-20-20159fb9951f>:16: DeprecationWarning: invalid escape sequence \c
 axs[0].set_ylabel('Deformação\n\$kN\cdot m\$')

Diagrama de Momento Fletor - Trecho 7

Neste caso, o momento no estado de carregamento é nulo e, portanto, a integral

também é nula.

3.10 Somatório das Integrais

0.0153095m

Assim, devido apenas ao efeito das cargas, temos:

$$\delta_{xC} = 15,31 \ mm$$

3.11 Efeito da Temperatura

$$\delta = \alpha \cdot \delta t_g \cdot A_{\bar{N}} + \frac{\alpha \cdot \Delta t}{h} A_{\bar{M}}$$

OBS: Para o cálculo do A_M , serão considerados apenas os momentos das barras 3 a 6, já que as demais estão sob a mesma temperatura em ambos os lados ($\Delta T=0$).

0.00492m

Assim, temos:

$$\delta_{xT} = 4,92 \ mm$$

3.12 Efeito do Recalque

$$\delta = -\sum \bar{R} \cdot \rho$$

[24]: delta_R = 0.4*0.015*m display(delta_R)

0.006m

Portanto:

$$\delta_{xR} = 6 \ mm$$

3.13 Deslocamento Total

[25]: delta = delta_C + delta_T + delta_R
display(delta)

0.0262295m

Portanto,

 $\delta_x = 26, 23 \ mm$