Limite de funcții. Funcții continue

Matematică - anul I

Facultatea de Informatică, UAIC

e-mail: adrian.zalinescu@info.uaic.ro

web: https://profs.info.uaic.ro/~adrian.zalinescu

29 Noiembrie 2021

Cuprins

- Spaţii metrice
 - Şiruri în spații metrice
- 2 Limite de funcții
- § Funcții continue

Distanțe

Dacă $P(x_P, y_P, z_P)$ și $Q(x_Q, y_Q, z_Q)$ sunt două puncte în spațiu, distanța între P și Q (sau lungimea segmentului PQ) este

$$d(P, Q) = \sqrt{(x_P - x_Q)^2 + (y_P - y_Q)^2 + (z_P - z_Q)^2}.$$

A. Zălinescu (lași) Cursul 8 29 Noiembrie 2021

Spații metrice

Distanța între New York și Iași

Definitie

Fie $X \neq \emptyset$. O funcție $d: X \times X \to \mathbb{R}_+$ se numește *distanță* sau *metrică* pe X dacă:

- $(D_1) d(x, y) = 0 \Leftrightarrow x = y, \forall x, y \in X;$
- (D₂) d(x, y) = d(y, x), $\forall x, y \in X$ (simetrie);
- (D₃) $d(x,z) \le d(x,y) + d(y,z)$, $\forall x,y,z \in X$ (inegalitatea triunghiulară).

În acest caz, cuplul (X, d) se numește spațiu metric.

Propoziție

Fie (X, d) un spațiu metric. Atunci:

- i) $d(x_0, x_n) \le d(x_0, x_1) + d(x_1, x_2) + \cdots + d(x_{n-1}, x_n), \forall n \in \mathbb{N}^*, \forall x_0, x_1, \dots, x_n \in X;$
- ii) $|d(x,z)-d(y,z)| \leq d(x,y), \forall x,y,z \in X;$
- iii) $|d(x,y) d(x',y')| \le d(x,y') + d(x',y)$, $\forall x,y,x',y' \in X$ (inegalitatea cuadrilaterală).

În spații liniare, unele distanțe provin din norme.

Definiție

Fie $(V,\|\cdot\|)$ un spațiu normat. Atunci aplicația $\mathrm{d}:V imes V o \mathbb{R}_+$, definită de

$$d(x,y) := ||x - y||, \ x, y \in \mathbb{R}$$

este o metrică, numită *metrica indusă* de norma $\|\cdot\|$.

Exemple

1. Pe \mathbb{R} , aplicația $d: \mathbb{R} \times \mathbb{R} \to \mathbb{R}_+$ definită de

$$d(x,y) := |x - y|, \ x, y \in \mathbb{R}$$

este o distanță, numită distanța canonică pe R.

2. Pe \mathbb{R}^n , metrica indusă de norma euclidiană se numește *metrica euclidiană* pe \mathbb{R}^n și se notează d_2 . Avem

$$d_2(x,y) := \|x - y\|_2 = \sqrt{(x_1 - y_1)^2 + \dots + (x_n - y_n)^2},$$

pentru $x = (x_1, ..., x_n), y = (y_1, ..., y_n) \in \mathbb{R}^n$.

3. Fie, pentru $p \in [1, +\infty)$, aplicația $\|\cdot\|_p : \mathbb{R}^n \to \mathbb{R}_+$ definită de

$$\|\mathbf{x}\|_{p} := \left(\sum_{i=1}^{n} |x_{i}|^{p}\right)^{1/p}, \ \mathbf{x} = (x_{1}, \dots, x_{n}) \in \mathbb{R}^{n}.$$

Atunci $\|\cdot\|_p$ este o normă.

Într-adevăr, proprietatea triunghiulară este echivalentă cu

$$\left(\sum_{i=1}^{n} |x_i + y_i|^p\right)^{1/p} \le \left(\sum_{i=1}^{n} |x_i|^p\right)^{1/p} + \left(\sum_{i=1}^{n} |y_i|^p\right)^{1/p}$$

ce coincide cu inegalitatea lui Minkowski.

Putem de asemenea introduce norma $\|\cdot\|_p$ pe \mathbb{R}^n chiar în cazul $p=+\infty$, prin

$$\|\mathbf{x}\|_{\infty} := \max_{1 \le i \le n} |x_i|, \ \mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n.$$

Metrica indusă pe \mathbb{R}^n de norma $\|\cdot\|_p$ se numește *distanța Minkowski* și se notează d_p .

Astfel avem

$$d_{\rho}(\mathbf{x},\mathbf{y}) := \left\|\mathbf{x} - \mathbf{y}\right\|_{\rho} = \left\{ \begin{array}{ll} \left(\left|x_{1} - y_{1}\right|^{p} + \dots + \left|x_{n} - y_{n}\right|^{p}\right)^{1/p}, & p \in [1, +\infty); \\ \\ \max\left\{\left|x_{1} - y_{1}\right|, \dots, \left|x_{n} - y_{n}\right|\right\}, & p = +\infty, \end{array} \right.$$

pentru
$$\mathbf{x} = (x_1, \dots, x_n), \ \mathbf{y} = (y_1, \dots, y_n) \in \mathbb{R}^n$$
.

 Metrica d₁ se mai numește câteodată distanța taxi-cab sau metrica Manhattan.

- Metrica d_∞ se mai numeşte distanţa Cebâşev.
- Dacă n = 1: $d_p(x, y) = |x y|$, $\forall x, y \in \mathbb{R}$, $\forall p \in [1, +\infty]$.

4. Aplicația $\tilde{\mathbf{d}}: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}_+$, definită de

$$\tilde{d}(x,y) := \sum_{k=1}^{n} \frac{1}{2^k} \cdot \frac{|x_k - y_k|}{1 + |x_k - y_k|},$$

pentru $\mathbf{x}=(x_1,\ldots,x_n)$, $\mathbf{y}=(y_1,\ldots,y_n)\in\mathbb{R}^n$ este o distanță pe \mathbb{R}^n , dar nu este indusă de o normă, deoarece funcția $\mathbf{x}\mapsto \tilde{\mathbf{d}}(\mathbf{x},0)$ nu are proprietatea de omogenitate.

5. Fie $X \neq \emptyset$. Funcția $d: X \times X \to \mathbb{R}_+$, definită de

$$d(x,y) := \begin{cases} 0, & x = y; \\ 1, & x \neq y, \end{cases}$$

pentru $x, y \in X$, este o metrică pe X, numită metrica discretă pe X.

6. Pe $\overline{\mathbb{R}}$ considerăm metrica d definită de

$$d(x, y) := |arctg x - arctg y|, x, y \in \overline{\mathbb{R}}$$

(am extins funcția arctg la $\overline{\mathbb{R}}$ prin arctg $(-\infty) := -\pi/2$, arctg $(+\infty) := \pi/2$).

Norma uniformă

Definitie

Fie $E \neq \emptyset$ și $\mathscr{B}(E)$ spațiul funcțiilor *mărginite* $f: E \to \mathbb{R}$ (adică, $\mathrm{Im}\, f$ este o mulțime mărginită). Definim $\|\cdot\|_{\mathrm{sup}}: \mathscr{B}(E) \to \mathbb{R}_+$ prin

$$||f||_{\sup} := \sup_{x \in E} |f(x)|.$$

Atunci $\|\cdot\|_{\sup}$ este o normă pe $\mathscr{B}(E)$, numită *norma uniformă* sau *norma supremum*. Metrica indusă de $\|\cdot\|_{\sup}$ se numește *distanța uniformă*, notată d_{\sup} .

Definiție

• Fie $X \neq \emptyset$. Spunem că metricile d și d' pe X sunt *echivalente* dacă există constantele $c_1, c_2 > 0$ astfel încât

$$c_1 d'(x, y) \le d(x, y) \le c_2 d'(x, y), \ \forall x, y \in X.$$

• Fie $(V, +, \cdot)$ un spațiu liniar. Spunem că două norme $\|\cdot\|$ și $\|\cdot\|'$ sunt echivalente dacă există constantele $c_1, c_2 > 0$ astfel încât

$$c_1 \|x\|' \le \|x\| \le c_2 \|x\|'$$
, $\forall x \in V$.

Bine $\hat{\text{in}}$ țeles, dacă două norme pe V sunt echivalente, atunci la fel sunt și metricile induse.

Teoremă

Pe \mathbb{R}^n , toate normele $\|\cdot\|_p$ cu $p \in [1, +\infty]$ sunt echivalente.

De fapt, pentru toți $x \in \mathbb{R}^n$ și $p \in [1, +\infty)$ avem

$$\|\mathbf{x}\|_{\infty} \le \|\mathbf{x}\|_{p} \le n^{1/p} \|\mathbf{x}\|_{\infty}.$$

Şiruri în spații metrice

Fie $X \neq \emptyset$. Un *şir* $(x_n)_{n \in \mathbb{N}}$ în X este o funcție $x : \mathbb{N} \to X$.

Definiție

Fie (X, \mathbf{d}) un spațiu metric și $(x_n)_{n \in \mathbb{N}}$ un șir în X.

- Spunem că $(x_n)_{n\in\mathbb{N}}$ este *mărginit* dacă mulțimea $\{x_n\}_{n\in\mathbb{N}}$ este mărginită.
- Spunem că $(x_n)_{n\in\mathbb{N}}$ este *convergent* dacă există $x\in X$ astfel încât

$$\forall \varepsilon > 0, \ \exists n_{\varepsilon} \in \mathbb{N}, \ \forall n \geq n_{\varepsilon} : d(x_n, x) < \varepsilon.$$

(adică $d(x_n, x) \xrightarrow[n \to \infty]{} 0$). În acest caz, vom nota $\lim_{n \to \infty} x_n = x$, $x_n \xrightarrow{d} x$, $x_n \xrightarrow{X} x$ sau chiar $x_n \to x$; elementul x este numit limita lui $(x_n)_{n \in \mathbb{N}}$.

• Spunem că $(x_n)_{n\in\mathbb{N}}$ este Cauchy sau fundamental dacă

$$\forall \varepsilon > 0, \ \exists n_{\varepsilon} \in \mathbb{N}, \ \forall m, n \geq n_{\varepsilon} : \operatorname{d}(x_m, x_n) < \varepsilon \text{ sau, echivalent,}$$

$$\forall \varepsilon > 0, \ \exists n_{\varepsilon} \in \mathbb{N}, \ \forall n \geq n_{\varepsilon}, \ \forall p \in \mathbb{N}^* : \operatorname{d}(x_{n+n}, x_n) < \varepsilon.$$

A. Zălinescu (lași) Cursul 8 29 Noiembrie 2021

Ca și în cazul șirurilor de numere reale, se poate arăta că limita unui șir într-un spațiu metric space este unică.

Propoziție

Fie (X, d) un spațiu metric și $(x_n)_{n \in \mathbb{N}}$ un șir convergent în X. Atunci $(x_n)_{n \in \mathbb{N}}$ este Cauchy.

- Reciproca acestui rezultat nu este adevărată în general, adică nu orice șir Cauchy într-un spațiu metric arbitrar este convergent.
- De exemplu, X = (0,1) cu distanța uzuală (d(x,y) := |x-y|): șirul $(1/n)_{n \in \mathbb{N}^*}$ este Cauchy, dar nu este convergent.

Şiruri în spații euclidiene

Teoremă

Să considerăm \mathbb{R}^m , $m\geq 1$ înzestrat cu metrica euclidiană d_2 și fie $(\mathsf{x}_n)_{n\in\mathbb{N}}$ un șir în \mathbb{R}^m cu

$$x_n = (x_n^1, x_n^2, \dots, x_n^m), \ \forall n \in \mathbb{N}.$$

- i) Şirul $(x_n)_{n\in\mathbb{N}}$ este mărginit dacă și numai dacă toate șirurile $(x_n^i)_{n\in\mathbb{N}}$, $1\leq i\leq m$, sunt mărginite.
- ii) Şirul $(x_n)_{n\in\mathbb{N}}$ este convergent dacă și numai dacă toate șirurile $(x_n^i)_{n\in\mathbb{N}}$, $1\leq i\leq m$, sunt convergente. În acest caz, dacă $\mathbf{x}:=\lim_{n\to\infty}\mathbf{x}_n$ și $\mathbf{x}^i:=\lim_{n\to\infty}x_n^i$, $1\leq i\leq m$, atunci $\mathbf{x}_n=(x^1,x^2,\ldots,x^m)$.
- iii) Şirul $(x_n)_{n\in\mathbb{N}}$ este Cauchy dacă și numai dacă toate șirurile $(x_n^i)_{n\in\mathbb{N}}$, $1\leq i\leq m$, sunt Cauchy.

A. Zălinescu (lași) Cursul 8 29 Noiembrie 2021

Limite de funcții

Fie (X, d), (Y, d') spații metrice, $\emptyset \neq A \subseteq X$, $f: A \rightarrow Y$ și $x_0 \in A'$.

Definiție

Spunem că un element $\ell \in Y$ este *limita* lui f în x_0 dacă

$$\forall \varepsilon > 0, \ \exists \delta > 0, \forall x \in A : 0 < d(x, x_0) < \delta \Rightarrow d'(f(x), \ell) < \varepsilon.$$

În acest caz, scriem $\lim_{x \to x_0} f(x) = \ell$ or $f(x) \stackrel{x \to x_0}{\longrightarrow} \ell$.

- Ca și în cazul limitelor de șiruri, putem arăta că limita unei funcții într-un punct, dacă există, este unică.
- Spunem că funcția f are limită în punctul x_0 dacă există $\ell \in Y$ astfel încât $\lim_{x \to \infty} f(x) = \ell$.

În cazul particular în care $(X,\|\cdot\|)$ și $(Y,\|\cdot\|')$ sunt spații normate, avem:

Propoziție

Fie $\emptyset \neq A \subseteq X$ și $f: A \to Y$. Un element $\ell \in Y$ este limita lui f într-un punct $x_0 \in A'$ dacă și numai dacă

$$\forall \varepsilon > 0, \ \exists \delta > 0, \ \forall x \in A : 0 < \|x - x_0\| < \delta \Rightarrow \|f(x) - \ell\|' < \varepsilon.$$

Caracterizare cu șiruri

Fie (X, d), (Y, d') spații metrice, $\emptyset \neq A \subseteq X$ și $f : A \rightarrow Y$.

Teoremă

Un element $\ell \in Y$ este limita lui f într-un punct $x_0 \in A'$ dacă și numai dacă pentru orice șir $(x_n)_{n \in \mathbb{N}^*} \subseteq A \setminus \{x_0\}$ astfel încât $\lim_{n \to \infty} x_n = x_0$, avem $\lim_{n \to \infty} f(x_n) = \ell$.

Observatii.

- 1. Dacă dorim să arătăm că $\lim_{x \to x_0} f(x) \neq \ell$, este de ajuns să găsim un șir $(x_n)_{n \in \mathbb{N}^*} \subseteq A \setminus \{x_0\}$ ce converge la x_0 astfel încât $f(x_n)$ nu converge la ℓ .
- **2.** Dacă, mai mult, dorim să arătăm că $\lim_{x \to x_0} f(x)$ nu există, este de ajuns să găsim două șiruri $(x_n)_{n \in \mathbb{N}^*}$ și $(x_n')_{n \in \mathbb{N}^*}$ în $A \setminus \{x_0\}$ astfel încât

$$\lim_{n\to\infty}x_n=\lim_{n\to\infty}x_n'=x_0,\ \lim_{n\to\infty}f(x_n)=\ell\ \text{si}\ \lim_{n\to\infty}f(x_n')=\ell',\ \text{cu}\ \ell\neq\ell'.$$

Exemplu

Fie funcția $f: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}$ definită de

$$f(x,y) := \frac{xy}{x^2 + y^2}, \ (x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}.$$

Atunci $(0,0) \in A'$, unde $A := \mathbb{R}^2 \setminus \{(0,0)\}$. Dacă luăm un şir $(x_n,y_n)_{n \in \mathbb{N}^*} \subseteq \mathbb{R}^2 \setminus \{(0,0)\}$, $x_n := \frac{1}{n}$, $y_n := \frac{1}{n}$, $n \in \mathbb{N}^*$, avem $(x_n,y_n) \xrightarrow{n \to \infty} (0,0)$ și

$$f(x_n, y_n) = \frac{1}{2} \stackrel{n \to \infty}{\longrightarrow} \frac{1}{2}.$$

Pe de altă parte, dacă luăm șirul $(x'_n, y'_n)_{n \in \mathbb{N}^*} \subseteq \mathbb{R}^2 \setminus \{(0, 0)\}$ definit de $x'_n := \frac{1}{n}$, $y'_n := \frac{1}{n^2}$, $n \in \mathbb{N}^*$, avem $(x'_n, y'_n) \stackrel{n \to \infty}{\longrightarrow} (0, 0)$ și

$$f(x'_n, y'_n) = \frac{\frac{1}{n^3}}{\frac{1}{n^2} + \frac{1}{n^4}} = \frac{n}{n^2 + 1} \stackrel{n \to \infty}{\longrightarrow} 0.$$

Concluzia este că f nu are limită în punctul (0,0).

Criteriul majorării

Ca și în cazul limitelor de șiruri, următorul criteriu se aplică pentru limitele de funcții. Fie (X, d), (Y, d') spații metrice, $\emptyset \neq A \subseteq X$, $f: A \rightarrow Y$ și $x_0 \in A'$.

Propoziție

Fie $g:A \to \mathbb{R}_+$ și $\ell \in Y$. Dacă

- $\lim_{x\to x_0} g(x) = 0,$

atunci $\lim_{x \to x_0} f(x) = \ell$.

$$(X,d)$$
: spațiu metric, $(Y,\|\cdot\|)$: spațiu normat, $\emptyset \neq A \subseteq X$, $x_0 \in A'$, $f:X \to Y$.

Teoremă

- i) Dacă $\lim_{x \to x_0} f(x) = \ell$, atunci $\lim_{x \to x_0} \|f(x)\| = \|\ell\|$.
- ii) Dacă $\lim_{x \to x_0} \|f(x)\| = 0$, atunci $\lim_{x \to x_0} f(x) = 0_Y$.

Teoremă

Fie în plus $g: X \to Y$ și $\varphi: X \to \mathbb{R}$.

i) Dacă $\lim_{x \to x_0} f(x) = \ell_1 \in Y$ și $\lim_{x \to x_0} g(x) = \ell_2 \in Y$, atunci

$$\lim_{x \to x_0} (\alpha f + \beta g)(x) = \alpha \ell_1 + \beta \ell_2, \ \forall \alpha, \beta \in \mathbb{R}.$$

ii) Dacă $\lim_{x \to x_0} f(x) = \ell \in Y$ și $\lim_{x \to x_0} \varphi(x) = \alpha \in \mathbb{R}$, atunci

$$\lim_{x \to x_0} \varphi(x) f(x) = \alpha \ell.$$

În cazul spațiilor euclidiene, limitele funcțiilor se pot determina pe componente: Fie $\emptyset \neq A \subseteq \mathbb{R}^n$, $f:A \to \mathbb{R}^m$ și $\mathsf{x}_0 \in A'$, iar f_k , $1 \leq k \leq m$ cele m componente ale funcției f.

Teoremă

Limita $\lim_{\mathbf{x} \to \mathbf{x}_0} f(\mathbf{x}) = \boldsymbol{\ell} \in \mathbb{R}^m$ există dacă și numai dacă pentru orice $k = \overline{1,m}$ există limita $\lim_{\mathbf{x} \to \mathbf{x}_0} f_k(\mathbf{x}) = \ell_k \in \mathbb{R}$.

În acest caz, $\ell=(\ell_1,\ldots,\ell_m)$.

Următorul rezultat arată cum să calculăm limitele funcțiilor compuse:

Teoremă

Fie (X, d), (Y, d'), (Z, d'') spații metrice, $\emptyset \neq A \subseteq X$, $\emptyset \neq B \subseteq Y$, $f: A \rightarrow B$, $g: B \rightarrow Z$ si $x_0 \in A'$, $y_0 \in B'$. Dacă

- $\lim_{x\to x_0} f(x) = y_0;$
- $\lim_{y\to y_0}g(y)=\ell\in Z;$
- $\exists \delta > 0, \ \forall x \in A \setminus \{x_0\} : d(x, x_0) < \delta \implies f(x) \neq y_0,$ tunci, $\lim_{x \to 0} \sigma(f(x)) = \ell$

atunci $\lim_{x \to x_0} g(f(x)) = \ell$.

Limite iterate

O greșeală des întâlnită atunci când calculăm limite de funcții de mai multe variabile este să *iterăm* limita.

Fie $f: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}$ definită de

$$f(x,y) := \frac{x^2y^2}{x^2y^2 + (x-y)^2}.$$

Fixând un $y \in \mathbb{R}^*$, avem

$$\lim_{x\to 0} f(x,y) = 0.$$

Lăsând acum y să tindă la 0, obținem limita iterată

$$\lim_{y\to 0}\lim_{x\to 0}f(x,y)=0.$$

Prin simetrie, deducem cealaltă limită iterată

$$\lim_{x\to 0}\lim_{y\to 0}f(x,y)=0.$$

Totuși, f nu are o limită în (0,0), deoarece $f(\frac{1}{n},\frac{1}{n})=1 \xrightarrow{n\to\infty} 1$ și $f(\frac{1}{n},0)=0 \xrightarrow{n\to\infty} 0$.

Pe de altă parte, o funcție f poate să aibă o limită într-un punct, dar nu limite iterate.

Fie $A:=\left\{(x,y)\in\mathbb{R}^2\mid xy\neq 0\right\}$ și $f:A\to\mathbb{R}$ definită de

$$f(x,y) := (x+y)\sin\frac{1}{x}\cdot\sin\frac{1}{y}.$$

Atunci $|f(x,y)| \le g(x,y) := |x| + |y|$. Decarece $\lim_{(x,y) \to (0,0)} g(x,y) = 0$, avem

 $\lim_{(x,y)\to(0,0)} f(x,y) = 0.$

Dacă încercăm să calculăm $\lim_{x \to 0} f(x,y)$ pentru un $y \in \mathbb{R}^*$, obținem

 $\lim_{\substack{x\to 0\\ \hat{\mathbf{n}} = \mathbf{0}}} x \sin\frac{1}{x} = 0 \text{ (decarece } \left|x\sin\frac{1}{x}\right| \leq |x|, \ \forall x \in \mathbb{R}^*\text{), dar } x \mapsto \sin\frac{1}{x} \text{ nu are limită } \hat{\mathbf{n}} = \mathbf{0}.$

$$f(x,y) = \left(x\sin\frac{1}{x}\right)\sin\frac{1}{y} + \left(\sin\frac{1}{x}\right)\left(y\sin\frac{1}{y}\right),$$

f(x,y) nu are limită pentru $x \to 0$ dacă $\sin \frac{1}{y} \neq 0$, adică $y \neq \frac{1}{k\pi}$, $k \in \mathbb{Z}^*$. Este clar acum că problema existenței limitei iterate $\lim_{y \to 0} \lim_{x \to 0} f(x,y)$ are un răspuns negativ.

Limite direcționale

Fie $\emptyset \neq A \subseteq \mathbb{R}^n$, $f: A \to \mathbb{R}^m$ și $x_0 \in \mathbb{R}^n$.

Definiție

• Spunem că o funcție f are limită în x_0 în direcția $u \in \mathbb{R}^n$ există limita

$$\ell_{\mathsf{u}} := \lim_{t \searrow 0} f(\mathsf{x}_0 + t\mathsf{u}).$$

Pentru acest lucru trebuie ca u să fie o direcție admisibilă, adică

$$0 \in \left\{t \ge 0 \mid \mathsf{x}_0 + t\mathsf{u} \in A\right\}'$$

(există $t_n \searrow 0$ astfel încât $x_0 + t_n u \in A$, $\forall n \in \mathbb{N}$).

• Spunem că f are (a k-a) limită parțială în x_0 dacă f are limită în x_0 în direcția e_k , pentru $k \in \{1, \ldots, n\}$, unde $e_k = (0, \ldots, 0, 1, 0, \ldots, 0)$.

A. Zălinescu (lași) Cursul 8 29 Noiembrie 2021

Existența unei limite globale implică existența limitelor direcționale:

Fie
$$\emptyset \neq A \subseteq \mathbb{R}^n$$
, $f: A \to \mathbb{R}^m$ și $x_0 \in A'$.

Propoziție

Să presupunem că există $\lim_{\mathsf{x}\to\mathsf{x}_0}f(\mathsf{x})=\boldsymbol\ell\in\mathbb{R}^m$. Dacă $\mathsf{u}\in\mathbb{R}^n\smallsetminus\{\mathsf{0}_{\mathbb{R}^n}\}$ este o direcție admisibilă, atunci există limita lui f în x_0 în direcția u și este egală cu $\boldsymbol\ell$.

- reciproca acestui rezultat nu este adevărată;
- de fapt, chiar dacă limitele în toate direcțiile există și sunt egale, s-ar putea ca o limită globală să nu existe:

Exemplu. Fie
$$f: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}$$
 definită de $f(x,y) := \frac{xy^2}{x^2 + y^4}$.

Fie (u, v) o direcție în $\mathbb{R}^2 \setminus \{(0, 0)\}$. Atunci, pentru t > 0,

$$f((0,0)+t(u,v))=f(tu,tv)=\frac{t^3uv^2}{t^2(u^2+t^2v^4)}=\frac{tuv^2}{u^2+t^2v^4}.$$

Deoarece $\lim_{t\searrow 0} f\left((0,0)+t(u,v)\right)=0$, adică limita lui f în (0,0) în direcția (u,v) există și este egală cu 0. Totuși, f nu are limită globală în (0,0) deoarece $f\left(\frac{1}{n^2},\frac{1}{n}\right)=\frac{1}{2}\stackrel{n\to\infty}{\longrightarrow}\frac{1}{2}\neq 0$.

Limite la stânga și la dreapta

Când f este o funcție de o variabilă, vom vorbi de limitele la *stânga* și la *dreapta*. Fie $A \subseteq \mathbb{R}$ o mulțime nevidă.

Definiție

- Spunem că $x_0 \in \mathbb{R}$ este un *punct de acumulare la stânga* a lui A dacă x este punct de acumulare pentru mulțimea $A \cap (-\infty, x_0)$.
- Spunem că $x_0 \in \mathbb{R}$ este un *punct de acumulare la dreapta* a lui A dacă x este punct de acumulare pentru mulțimea $A \cap (x_0, +\infty)$.

Fie $f: A \to \mathbb{R}^m$ o funcție.

- Dacă x_0 este un punct de acumulare la stânga a lui A, spunem că f are limită la stânga în x_0 dacă există limita lui f în x_0 în direcția -1. În acest caz, vom nota această limită cu $\lim_{x \to \infty} f(x)$, $f(x_0 0)$ sau $f(x_0^-)$.
- Dacă x_0 este un punct de acumulare la dreapta a lui A, spunem că f are limită la dreapta în x_0 dacă există limita lui f în x_0 în direcția 1. În acest caz, vom nota această limită cu $\lim_{x \to 0} f(x)$, $f(x_0 + 0)$ sau $f(x_0^+)$.

Fie $f:A\to\mathbb{R}^m$, x_0 : punct de acumulare atât la stânga, cât și la dreapta a lui A.

Propoziție

Limita $\lim_{x \to x_0} f(x)$ există dacă și numai dacă ambele limite $\lim_{x \nearrow x_0} f(x)$ și $\lim_{x \searrow x_0} f(x)$ există și sunt egale. În acest caz, $\lim_{x \to x_0} f(x) = \lim_{x \nearrow x_0} f(x) = \lim_{x \searrow x_0} f(x)$.

Limite uzuale

$$\begin{split} &\lim_{t\to 0} (1+t)^{1/t} = \mathbf{e}; &\lim_{t\to \pm \infty} (1+\frac{1}{t})^t = \mathbf{e}; \\ &\lim_{t\to 0} \frac{\log_a (1+t)}{t} = \frac{1}{\ln a} \ (a>0, \ a\neq 1); &\lim_{t\to 0} \frac{\ln (1+t)}{t} = 1; \\ &\lim_{t\to 0} \frac{a^t-1}{t} = \ln a \ (a>0); &\lim_{t\to 0} \frac{\mathbf{e}^t-1}{t} = 1; \\ &\lim_{t\to 0} \frac{(1+t)^r-1}{t} = r \ (r\in \mathbb{R}); \\ &\lim_{t\to 0} \frac{\sin t}{t} = 1; &\lim_{t\to 0} \frac{\operatorname{arctg} t}{t} = 1; \\ &\lim_{t\to 0} \frac{\operatorname{arctg} t}{t} = 1. \end{split}$$

Funcții continue

Fie (X, d), (Y, d') spații metrice, $\emptyset \neq A \subseteq X$ și $f : A \rightarrow Y$.

Definiție

• Spunem că f este continuă într-un punct $x_0 \in A$ dacă

$$\forall \varepsilon > 0, \ \exists \delta > 0, \ \forall x \in A : d(x, x_0) < \delta \Rightarrow d'(f(x), f(x_0)) < \varepsilon.$$

- Spunem că f este discontinuă într-un punct x₀ ∈ A dacă f nu este continuă în x₀; în acest caz, spunem de asemenea că x₀ este un punct de discontinuitate a lui f.
- Spunem că f este continuă dacă f este continuă în x_0 , pentru orice $x_0 \in A$.

Caracterizări

Relația cu limitele: f este continuă în $x_0 \in A$ dacă și numai dacă:

- fie x_0 este un punct de acumulare a lui A și $\lim_{x \to x_0} f(x) = f(x_0)$;
- fie x_0 este un punct izolat.

Continuitatea într-un punct poate fi caracterizată de asemenea cu șiruri. Fie (X, d), (Y, d') spații metrice, $\emptyset \neq A \subseteq X$, $f : A \rightarrow Y$ și $x_0 \in A$.

Teoremă

f este continuă în x_0 dacă și numai dacă pentru orice șir $(x_n)_{n\in\mathbb{N}^*}\subseteq A$ astfel încât $\lim_{n\to\infty}x_n=x_0$, avem $\lim_{n\to\infty}f(x_n)=f(x_0)$.

Fie (X, d), (Y, d') spații metrice, $\emptyset \neq A \subseteq X$, $x_0 \in A'$ și $f : A \rightarrow Y$.

Definiție

Dacă $\lim_{x \to x_0} f(x) = \ell \in Y$, atunci funcția $ilde{f}: A \cup \{x_0\} o Y$ definită de

$$\tilde{f}(x) := \begin{cases} f(x), & x \in A \setminus \{x_0\}; \\ \ell, & x = x_0 \end{cases}$$

este continuă în x_0 și se numește extensia prin continuitate a lui f în x_0 .

Operații cu funcții continue

Fie (X, d), (Y, d'), (Z, d'') spații metrice, $\emptyset \neq A \subseteq X$, $\emptyset \neq B \subseteq Y$ și $f: A \rightarrow B$, $g: B \rightarrow Z$.

Teoremă

- i) Dacă f este continuă într-un punct $x_0 \in A$ și g este continuă în $y_0 := f(x_0)$, atunci $g \circ f$ este continuă în x_0 .
- ii) Dacă f și g sunt continue, atunci $g \circ f$ este continuă.

Fie (X, d) un spațiu metric, $(Y, \|\cdot\|)$ un spațiu normat, $\emptyset \neq A \subseteq X$ și $x_0 \in A$.

Teoremă

- i) Dacă funcțiile $f, g: X \to Y$ sunt continue în x_0 , atunci $\alpha f + \beta g$ este continuă în x_0 .
- ii) Dacă funcțiile $f:X\to Y$ și $\varphi:X\to\mathbb{R}$ sunt continue în x_0 , atunci $\varphi\cdot f$ este continuă în x_0 .

A. Zălinescu (lași) Cursul 8 29 Noiembrie 2021

Funcții continue între spații euclidiene

Teoremă

Fie $A\subseteq\mathbb{R}^n$ o submulțime nevidă, $f:A\to\mathbb{R}^m$ și $\mathbf{x}\in A$. Atunci f este continuă în \mathbf{x} dacă și numai dacă f_k este continuă în \mathbf{x} pentru orice k.

Propoziție

Dacă $T: \mathbb{R}^n \to \mathbb{R}^m$ este o aplicație liniară, atunci T este continuă.

Fie $\emptyset \neq A \subseteq \mathbb{R}$ și $f: A \to \mathbb{R}^m$.

Definiție

Spunem că f este continuă la stânga (continuă la dreapta) în $x_0 \in A$ dacă $f|_{A\cap(-\infty,x_0]} (f|_{A\cap[x_0,+\infty)})$ este continuă în x_0 .

Propoziție

Fie $x_0 \in A$. Atunci f este continuă în x_0 dacă și numai dacă f este continuă și la stânga și la dreapta în x_0 .

- C. Canuto, A. Tabacco, Mathematical Analysis II (2nd ed.), Springer International Publishing, Switzerland, 2015.
- C. Drăguşin, O. Olteanu, M. Gavrilă, Analiză matematică, Editura Matrix Rom, Bucureşti, 2006.
- S. R. Ghorpade, B. V. Limaye, A Course in Multivariable Calculus and Analysis, Undergraduate Texts in Mathematics, Springer Science, 2010.
- R. Heath-Brown, *Analysis II. Continuity and Differentiability*, Hilary Term, 2016.
- R. Luca-Tudorache, Analiză matematică. Calcul diferențial, Editura Tehnopress, Iași, 2005.
- E. Popescu, Analiză matematică. Calcul diferențial, Editura Matrix Rom, București, 2006.
- M. Postolache, Analiză matematică (teorie și aplicații), Editura "Fair Partners", București, 2011.
- V. Postolică, *Eficiență prin matematică aplicată. Analiză matematică*, Editura Matrix Rom, București, 2006.
- 🦫 A. Precupanu, *Bazele analizei matematice*, Editura Polirom, Iași, 1998.