- Lecture 1
 - Definition of Machine Learning
 - Tasks, *T*
 - Classification
 - Regression
 - Transcription
 - Machine Translation
 - Synthesis & Sampling
 - ullet Performance Measure, P
 - Experience, *E*
 - Supervised Learning
 - Unsupervised Learning
 - Re-enforcement learning

Lecture 1

Definition of Machine Learning

A Computer Program is said to learn from experience, E, with respect to some class of task, T, and performance, P if it's performance as tasks in T improves, as measured by P with experience E

Tasks, T

Classification

- Construct a function, $f:\mathbb{R}^n o\{1,...,k\}$, s.t. if an object with features $x\in\mathbb{R}^n$ belongs to class , y, then f(x)=y
- Alternatively, Construct a function which given features returns the probability of each class

Regression

- Predict a numerical value given some inputs, i.e. a function: $f:\mathbb{R}^n o \mathbb{R}$
- e.g prediction of car value /£ give milage/ miles

Transcription

Produce Text from unstructured data

- egs.
 - Optical Character Recognition (OCR)
 - Speech recognition

Machine Translation

Translation from a source language to a target language

Synthesis & Sampling

- · Generation of new examples, similar to those in the training data
- Useful in applications where content is expensive to manually produce

Performance Measure, P

- Usually specific to the task, *T* being carried out by the system.
- Accuracy is the proportion of examples for which the model produce the correct output. Equivalent
 to the Error Rate. Often refer to the error rate as "0-1 loss".
- Performance measure must be calculated using unseen data to avoid over-fitting.
- For tasks such as density estimation, 0-1 loss doesn't make sense as a performance measure.

Experience, E

- ML often describes "Nature" as an unknown probability distribution, D over some space e.g. \mathbb{R}^d .
- Our "experience" of nature samples from this distribution:

$$\circ$$
 i.e $(X_1,...,X_n)\sim D$

• The experience is also sometimes called our "Dataset"

Supervised Learning

- The distribution, D is over some set $X \times Y$ where:
 - $\circ~X$ is a set of features (e.g. pictures)
 - $\circ\ Y$ is a set of classes (e.g. cats, dogs)
- A "teacher" gives the algorithm labelled examples
 - $\circ\,$ e.g. a sequence of samples from the distribution which includes elements from both X and Y

$$((x_1,y_1),...,(x_n,y_n)) \sim D$$

• The goal of the algorithm is to predict the class, y, given only the features, x. i.e. to learn/approximate a conditional probability dataset.

Unsupervised Learning

- $\bullet \ \ {\it Probability distribution} \ D \ {\it over set} \ X \\$
- We observe some dataset

$$\circ \ (x_1,...,x_n) \sim D$$

• The goal of the algorithm is to learn something about the distribution.

Re-enforcement learning

- The algorithm interacts with an environment through a sequence of actions
- · each action is rewarded or penalised