Part III Advanced Probability Based on lectures by P. Sousi

Notes taken by Pantelis Tassopoulos Michaelmas 2023

Contents

1	Conditional Expectation	3
	1.1 Basic definitions	. 3
	1.2 Expectation	. 3
	1.3 Conditional expectation with respect to countably generated sigma algebras	. 4
	1.4 General case	. 4
2	Discrete Time Martingales	9
3	Martingale Convergence Theorem	13
4	Doob's inequalities	15

1 Conditional Expectation

Lecture 1 1.1 Basic definitions

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Remember the following definitions

Definition 1.1 (Sigma algebra). \mathcal{F} is a sigma algebra if and only if: $(\mathcal{F} \in \mathcal{P}\Omega)$

- 1. $\Omega \in \mathcal{F}$
- 2. $A \in \mathcal{F} \implies A^c \in \mathcal{F}$
- 3. $(A_n)_{n\in\mathbb{N}}\subseteq\mathcal{F}\implies\bigcup_{n\in\mathbb{N}}A_n\in\mathcal{F}$

Definition 1.2 (Probability measure). \mathbb{P} is a probability measure if

- 1. $\mathbb{P}: \mathcal{F} \to [0,1]$ (i.e. a set function)
- 2. $\mathbb{P}(\Omega) = 1$, and $\mathbb{P}(\emptyset) = 0$
- 3. $(A_n)_{n\in\mathbb{N}}$ pairwise disjoint $\implies \mathbb{P}\left(\bigcup_{n\in\mathbb{N}}A_n\right) = \sum_{n=1}^{\infty}\mathbb{P}(A_n).$

Definition 1.3 (Random Variable). $X : \Omega \to \mathbb{R}$ is a <u>random variable</u> if for all B open in \mathbb{R} , $X^{-1}(B) \in \mathcal{F}$.

Remark. Observe that the sigma algebra $\mathcal{G} = \{B \subseteq \mathbb{R} : X(B) \in \mathcal{F}\} \supseteq \mathcal{O} \implies \mathcal{G} \supseteq \mathcal{B}(\mathbb{R})$, the former being the collection of open sets in \mathbb{R} and the latter the Borel sigma algebra on \mathbb{R} with the usual topology, namely, $\sigma(\mathcal{O})$ (see below for the notation).

Let \mathcal{A} be a collection of subsets of Ω . We define

$$\begin{split} \sigma(\mathcal{A}) &= \text{smallest sigma algebra containing } \mathcal{A} \\ &= \bigcap \{\mathcal{T}: \mathcal{T} \text{ sigma algebra containing } \mathcal{A}\}. \end{split}$$

Definition 1.4 (Borel sigma algebra on \mathbb{R}). Let $\mathcal{O} = \{\text{open sets}\mathbb{R}\}$. Then, the Borel sigma algebra $\mathcal{B}(\mathbb{R}) (:= \mathcal{B})$ is defined as above, namely,

$$\mathcal{B}(\mathbb{R}) \coloneqq \sigma(\mathcal{O}).$$

Let $(X_i)_{i\in I}$ be a family of random variables, then $\sigma(X_i:i\in I)=$ the smallest sigma algebra that makes them all measurable. We also have the characterisation $\sigma(X_i:i\in I)=\sigma(\{\underbrace{\omega\in\Omega:X_i(\omega)\in B\}}_{Y^{-1}(B)},i\in I,B\in\mathcal{B}(\mathbb{R})\}).$

1.2 Expectation

Note we use the following for the indicator function on some event A

$$\mathbf{1}(A)(x) = \mathbf{1}(x \in A) := \begin{cases} 1, & x \in A \\ 0, & x \notin A \end{cases}, \quad A \in \mathcal{F}.$$

We now begin the construction of the expectation of generic random variables.

Positive simple random variables: $X = \sum_{i=1}^{n} \mathbf{1}(A_i), c_i \ge 0, A_i \in \mathcal{F}...$

$$\mathbb{E}[X] := \sum_{i=1}^{n} c_i \mathbb{P}(A_i).$$

Non-negative random variables: $(X \ge 0)$. We proceed by approximation. Namely, let $X_n(\omega) := 2^{-n}[2^{-n} \cdot X(\omega)] \wedge n \uparrow X(\omega), n \to \infty$. Now, by monotone convergence,

$$\mathbb{E}[X] := \uparrow \lim_{n \to \infty} \mathbb{E}[X_n] = \sup \mathbb{E}[X].$$

<u>General random variables:</u> Have the decomposition $X = X^+ - X^-$, where $X^+ = X \vee 0$, $X^- = -X \wedge 0$. If one of $\mathbb{E}[X^+], \mathbb{E}[X^-] < \infty$ then set

$$\mathbb{E}[X] := \mathbb{E}[X^+] - \mathbb{E}[X^-].$$

Definition 1.5. X is called integrable if $\mathbb{E}[|X|] < \infty$.

Definition 1.6. Let $B \in \mathcal{F}$ with $\mathbb{P}(B) > 0$. Then for all $A \in \mathcal{F}$, set

$$\mathbb{P}(A|B) \coloneqq \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$

Now for an integer-valued random variable X, we set:

$$\mathbb{E}[X|B] := \frac{\mathbb{E}[X \cdot \mathbf{1}_B]}{\mathbb{P}(B)}$$

1.3 Conditional expectation with respect to countably generated sigma algebras

Lecture 2 We now extend the definition of the conditional expectation for a countably generated sigma algebra. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. We call the sigma algebra \mathcal{G} countably generated if there exists a colection $(B_n)_{n\in\mathbb{N}}$ of pairwise disjoint events such that $\bigcup_{n\in I} B_n = \Omega$ with (I countable) and $\mathcal{G} = \sigma(B_i : i \in I)$.

Let X be an integrable random variable. We want to define $\mathbb{E}[X|\mathcal{G}]$.

Define $X'(\omega) = \mathbb{E}[X|B_i]$, whenever $w \in B_i$, i.e.

$$X' = \sum_{i \in I} \mathbf{1}(B_i) \cdot \mathbb{E}[X|B_i].$$

We make the convention that $\mathbb{E}[X|B_i] = 0$ if $\mathbb{P}(B_i) = 0$. It is easy to check that X' is \mathcal{G} -measurable. We also have that

$$\mathcal{G} = \left\{ \bigcup_{j \in B_j} B_j : J \subseteq I \right\}$$

and X' satisfies for all $G \in \mathcal{G}: \mathbb{E}[X \cdot \mathbf{1}_G] = \mathbb{E}[X' \cdot \mathbf{1}_G]$ and

$$\mathbb{E}[|X'|] \leq \mathbb{E}\left[\sum_{i \in I} |\mathbb{E}[X|B_i]\mathbf{1}(B_i)\right]$$

$$= \sum_{i \in I} \mathbb{P}(B_i) \cdot |\mathbb{E}[X|B_i]|$$

$$\leq \sum_{i \in I} \mathbb{P}(B_i) \cdot \underbrace{\mathbb{E}[X \cdot \mathbf{1}(B_i)]}_{\mathbb{P}(B_i)}$$

$$= \mathbb{E}[|X|] < \infty.$$

1.4 General case

We say $A \in \mathcal{F}$ happens <u>a.s.</u> if $\mathbb{P}(A) = 1$. <u>Recall</u> (from measure theory and basic functional analysis):

Theorem 1.1 (Monotone Convergence Theorem (MCT)). Let $(X_n)_{n\in\mathbb{N}}$ be such that $X_n \geq 0, X$ be random variables such that $X_n \uparrow X$ as $n \to \infty$. Then, $\mathbb{E}[X_n] \uparrow \mathbb{E}[X]$ as $n \to \infty$.

Theorem 1.2 (Dominanted Convergence Theorem (DCT)). Let $(X_n)_{n\in\mathbb{N}}$ be random variables such that $X_n \to X$ a.s. as $n \to \infty$ and $|X_n| \le Y$ a.s. for all $n \in \mathbb{N}$, where Y is integrable, then $\mathbb{E}[X_n] \to \mathbb{E}[X]$, as $n \to \infty$.

Let $1 \leq p < \infty$ and f a measurable function, then set $||f||_p := (\mathbb{E}[||f||^p])^{\frac{1}{p}}$. If $p = \infty$, then set $||f||_{\infty} := \inf\{\lambda : |f| \leq \lambda \text{ a.s.}\}$. Recall for all p, the Lebesgue spaces, $\mathcal{L}^p(\Omega, \mathcal{F}, \mathbb{P}) = \{f : ||f||_p < \infty\}$.

Theorem 1.3. $\mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$ is a Hilbert space, with inner product $\langle u, v \rangle_2 = \mathbb{E}[u \cdot v]$. Furthermore, for any closed subspace \mathcal{H} , if $f \in \mathcal{L}^2$, there exists a unique $g \in \mathcal{H}$ s.t. $||f - g||_{\mathcal{L}^2} = \inf_{h \in \mathcal{H}} ||f - h||_{\mathcal{L}^2}$ and $\langle f - g, h \rangle = 0$, for all $h \in \mathcal{H}$. We say that g is the <u>orthogonal projection</u> of f in \mathcal{H} .

We now construct the conditional expectation in the general case, for any integrably random variable with respect to an arbitrary sigma algebras.

Theorem 1.4 (Conditional Expectation). Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, $\mathcal{G} \subseteq \mathcal{F}$ a sub-sigma algebra, $X \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$. Then there exists an integrable random variable Y satisfying:

- 1. Y is \mathcal{G} -measurable
- 2. for all $G \in \mathcal{G}$, $\mathbb{E}[X \cdot \mathbf{1}(G)] = \mathbb{E}[Y \cdot \mathbf{1}(G)]$.

Moreover, Y unique in the sense that if Y' also satisfies the above 1), 2), then Y = Y' a.s.. We call Y a version of the conditional expectation of X given G. We write $Y = \mathbb{E}[X\mathcal{G}]$ a.s. If $\mathcal{G} = \sigma(Z)$, where Z is a random variable, then we write $\mathbb{E}[Z] = \mathbb{E}[X|\mathcal{G}]$.

Remark. 2) could be replaced by $\mathbb{E}[X \cdot Z] = \mathbb{E}[Y \cdot Z]$ for all Z bounded \mathcal{G} -measurable random variables.

We now state and prove the main theorem of this section:

Proof. (Theorem 1.4) Uniqueness: Let Y, Y' satisfy 1), 2). Let $A = \{Y > Y'\} \in \mathcal{G}$. Then 2)

$$\implies \mathbb{E}[Y \cdot \mathbf{1}(A)] = \mathbb{E}[Y' \cdot \mathbf{1}(A)] = \mathbb{E}[X \cdot \mathbf{1}(A)]$$

$$\implies \mathbb{E}[(Y - Y') \cdot \mathbf{1}(A)] = 0$$

$$\implies \mathbb{P}(A) = \mathbb{P}(Y > Y') = 0$$

$$\implies Y \leqslant Y' \text{ a.s..}$$

We similarly obtain $Y \geqslant Y'$ a.s., hence we deduce that Y = Y' a.s.

Existence: three steps.

- 1. Assume that $X \in \mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$. Observe that $\mathcal{L}^2(\Omega, \mathcal{G}, \mathbb{P})$ is a closed subspace of $\mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$. Hence, Theorem 1.3, we have the decomposition $\mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P}) = \mathcal{L}^2(\Omega, \mathcal{G}, \mathbb{P}) \oplus \mathcal{L}^2(\Omega, \mathcal{G}, \mathbb{P})^{\perp}$. Then, we have the corresponding decomposition X = Y + Z, where $Y \in \mathcal{L}^2(\Omega, \mathcal{G}, \mathbb{P})$ and $Z \in \mathcal{L}^2(\Omega, \mathcal{G}, \mathbb{P})$ respectively. Define $\mathbb{E}[X\mathcal{G}] := Y$, Y is \mathcal{G} -measurable and for all $A \in \mathcal{G}$, $\mathbb{E}[X \cdot \mathbf{1}(A)]\mathbb{E}[Y \cdot \mathbf{1}(A)] = \mathbb{E}[Z \cdot \mathbf{1}(A)]$ since $Z \in \mathcal{L}^2(\Omega, \mathcal{G}, \mathbb{P})^{\perp}$.

 Claim: If $X \geq 0$, a.s. then $Y \geq 0$ a.s. Indeed, let $A = \{Y < 0\} \in \mathcal{G}$. Then observe that $0 \leq \mathbb{E}[X \cdot \mathbf{1}(A)] = \mathbb{E}[Y \cdot \mathbf{1}(A)] \leq 0$. Hence $\mathbb{E}[Y \cdot \mathbf{1}(A)] = 0$ and so $\mathbb{P}(A) = 0$, gibing Y = 0 a.s.
- 2. Assume $X \ge 0$. Define $X_n = X \land n \le n$, meaning X_n is bounded for all $n \in \mathbb{N}$. So $X_n \in \mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$. Let $Y_n = \mathbb{E}[X_n]$ a.s.. $(X_n)_{n \in \mathbb{N}}$ is an increasing sequence. By the claim abose, so is $(Y_n)_{n \in \mathbb{N}}$ a.s. Define $Y = \limsup Y_n$ meaning Y is \mathcal{G} -measurable and $Y = \uparrow \lim_{n \to \infty} Y_n$ a.s. Now, we have that for all $A \in \mathcal{G}$, $\mathbb{E}[X_n \cdot \mathbf{1}(A)] = \mathbb{E}[Y_n \cdot \mathbf{1}(A)]$. Thus, by theorem 1.1 (MCT), $\mathbb{E}[X \cdot \mathbf{1}(A)] = \lim_{n \to \infty} \mathbb{E}[X_n \cdot \mathbf{1}(A)] = \lim_{n \to \infty} \mathbb{E}[Y_n \cdot \mathbf{1}(A)] = \mathbb{E}[Y \cdot \mathbf{1}(A)]$.

3. X general in \mathcal{L}^1 . Decompose as before $X = X^+ - X^-$. Define, $\mathbb{E}[X\mathcal{G}] = \mathbb{E}[X^+|\mathcal{G}] - \mathbb{E}[X^-|\mathcal{G}]$.

Lecture 3

Remark. From the second step of the proof of Theorem 1.4 we see that we can define $\mathbb{E}[X|\mathcal{G}]$ for all $X \ge 0$, not necessarily integrable. It satisfies all conditions 1), 2) except for the integrability one.

Definition 1.7. $\underbrace{\mathcal{G}_1,\mathcal{G}_2,\dots}_{\text{sigma algebras}} \subset \mathcal{F}$. We call them <u>independent</u> if whenever $G_i \in \mathcal{G}_i$ and

$$i_1 < \dots i_k$$
 for some $k \in \mathbb{N}$, then $\mathbb{P}(G_{i_1} \cap \dots \cap G_{i_k}) = \prod_{j=1}^k \mathbb{P}(G_{i_j})$.

Moreover, let X be a random variable and \mathcal{G} a sigma algebra, then they are said to be int if $\sigma(X)$ is independent of \mathcal{G} .

Properties of conditional expectations: Fix $X, y \in \mathcal{L}^1$, $G \in \mathcal{F}$.

- 1. $\mathbb{E}[\mathbb{E}[X\mathcal{G}]] = \mathbb{E}[X]$ (take $A = \Omega$)
- 2. If X is \mathcal{G} -measurable, then $\mathbb{E}[X\mathcal{G}] = X$ a.s.
- 3. If X is independent of \mathcal{G} , then $\mathbb{E}[X\mathcal{G}] = \mathbb{E}[X]$
- 4. If $X \ge 0$ a.s., then $\mathbb{E}[X\mathcal{G}] \ge 0$ a.s.
- 5. For $\alpha, \beta \in \mathbb{R}$ $\mathbb{E}[\alpha X + \beta Y | \mathcal{G}] = \alpha \mathbb{E}[X] + \beta \mathbb{E}[Y]$
- 6. $\mathbb{E}[X|\mathcal{G}] \leq \mathbb{E}[|X||\mathcal{G}]$ a.s.

Below we provid:we expensions of useful measure theoretic results for the expectation to their corresponding conditional counetparts. First recall:

Lemma 1.1 (Fatou's Lemma). Let $X_n \ge 0$ for all $n \in \mathbb{N}$. Then

$$\mathbb{E}[\liminf_n X_n] \leqslant \liminf_n \mathbb{E}[X_n] \quad \text{a.s}$$

Theorem 1.5 (Jensen's Inequality). If X is integrable and $\phi : \mathbb{R} \to \mathbb{R}$ is a convex function, then

$$\phi(\mathbb{E}[X]) \leq \mathbb{E}[\phi(X)]$$
 a.s.

Now the results themselves:

Theorem 1.6 (Conditional Monotone Convergence theorem (MCT)). Let $\mathcal{G} \subset \mathcal{F}$ be sigma algebras, $X_n \geq 0$ a.a. and $X_n \uparrow X$, as $n \to \infty$ a.s. Then

$$\mathbb{E}[X_n|\mathcal{G}] \uparrow \mathbb{E}[X|\mathcal{G}]$$
 a.s.

Proof. Theorem 1.6 Set $Y_n = \mathbb{E}[X_n \mathcal{G}]$ a.s. Observe that Y_n is a.s. increasing. Set $Y = \limsup_n Y_n$. Y_n is \mathcal{G} -measurable, hence, so is Y (as a lim sup of \mathcal{G} -measurable random variables) is also \mathcal{G} -measurable. Also, $Y = \lim_{n \to \infty} Y_n$ a.s.

Need to show: $\mathbb{E}[Y \cdot \mathbf{1}(A)]\mathbb{E}[X \cdot \mathbf{1}(A)]$ for all $A \in \mathcal{G}$. Indeed,

$$\mathbb{E}[Y \cdot \mathbf{1}(A)] = \mathbb{E}[\lim_{n \to \infty} Y_n \cdot \mathbf{1}(A)] \stackrel{\text{MCT}}{=} \lim_{n \to \infty} \mathbb{E}[Y_n \cdot \mathbf{1}(A)]$$
$$= \lim_{n \to \infty} \mathbb{E}[X_n \cdot \mathbf{1}(A)] = \mathbb{E}[X \cdot \mathbf{1}(A)].$$

П

Proof. Theorem 1.1 $\liminf_n X_n = \lim_{n \to \infty} \left(\inf_{k \ge n} X_k \right)$, the limit of an increasing sequence. By Theorem 1.1, we have

$$\lim_{n\to\infty} \mathbb{E}[\inf_{k\geqslant n} X_n | \mathcal{G}] = \mathbb{E}[\liminf_n X_n | \mathcal{G}]$$

and

$$\mathbb{E}[\inf_{k \ge n} X_k | \mathcal{G}] \stackrel{\text{a.s.}}{\leqslant} \inf_{k \ge n} \mathbb{E}[X_k | \mathcal{G}]^1$$

which gives the result

$$\mathbb{E}[\liminf_{n} X_n] \leq \liminf_{n} \mathbb{E}[X_n]$$
 a.s.

Theorem 1.7 (Conditional Dominated Convergence Theorem). SUppose $X_n \to X$ a.s. $n \to \infty$ and $|X_n| \le Y$ a.s. for all $n \in \mathbb{N}$ with Y integrable. Then $\mathbb{E}[X_n \mathcal{G}] \to \mathbb{E}[X \mathcal{G}]$ a.s. as $n \to \infty$.

Proof. From $-Y \leq X_n \leq Y$, we have $X_n + Y \geq 0$ for all $n \in \mathbb{N}$ and $Y - X_n \geq 0$ a.s. By Theorem 1.1,

$$\begin{split} \mathbb{E}[X+Y\mathcal{G}] &= \mathbb{E}[\liminf_n (X_n+Y)|\mathcal{G}] \\ &\leqslant \liminf_n \mathbb{E}[X_n+Y|\mathcal{G}] = \liminf_n \mathbb{E}[X_n\mathcal{G}] + \mathbb{E}[X] \end{split}$$

Thus,

$$\mathbb{E}[|X - Y||\mathcal{G}] = \mathbb{E}[Y - \liminf_{n} X_{n}|\mathcal{G}]$$

$$\leq \mathbb{E}[Y] + \liminf_{n} \mathbb{E}[X_{n}|\mathcal{G}]$$

Hence,

$$\limsup_{n} \mathbb{E}[X_n | \mathcal{G}] \leqslant \mathbb{E}[X | \mathcal{G}]$$

and

$$\liminf_{n} \mathbb{E}[X_n | \mathcal{G}] \geqslant \mathbb{E}[X | \mathcal{G}]$$

a.s., concluding the proof.

Theorem 1.8 (Conditional Jensen). Let $X \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$, $\phi : \mathbb{R} \to \mathbb{R}$ be a convex function s.t. $\phi(X)$ is integrable or $\phi(X) \ge 0$

$$\phi(\mathbb{E}[X|\mathcal{G}]) \leq \mathbb{E}[\phi(X)|\mathcal{G}]$$
 a.s.

Proof. Claim: (true for any convex function, no proof given) $\phi(x) = \sup_{i \in \mathbb{N}} (a_i x + b_i), a_i b_i \in \mathbb{R}$. Thus,

$$\mathbb{E}[\phi(X)|\mathcal{G}] \geqslant a_i \mathbb{E}[X|\mathcal{G}] + b_i$$
 for all $i \in \mathbb{N}$.

Taking the supremum gives ²

$$\mathbb{E}[\phi(X)|\mathcal{G}] \geqslant \sup_{i \in \mathbb{N}} (a_i \mathbb{E}[X|\mathcal{G}] + b_i)$$

= $\phi(\mathbb{E}[X|\mathcal{G}])$ a.s.

Corollary 1.8.1. For all $1 \leq p < \infty ||\mathbb{E}[X|\mathcal{G}]||_p \leq ||X||_p$.

Proof. Apply conditional Jensen.

¹can take the infinum due to countability that preserves a.s.

²can take the supremum due to countability which again preserves a.s.

Proposition 1.1 (Tower Property). Let X be integrable and $\mathcal{H} \subseteq \mathcal{G}$ sigma algebras. Then

$$\mathbb{E}[\mathbb{E}[X|\mathcal{G}]|\mathcal{H}] = \mathbb{E}[X|\mathcal{H}]$$
 a.s.

Proof. (a) $\mathbb{E}[X|\mathcal{H}]$ is \mathcal{H} -measurable.

(b) For all $A \in \mathcal{H}$ NTS:

$$\mathbb{E}[\mathbb{E}[X|\mathcal{G}] \cdot \mathbf{1}(A)] = \mathbb{E}[\mathbb{E}[X|\mathcal{H}] \cdot \mathbf{1}(A)]$$

Indeed, both terms above are equal to $\mathbb{E}[X \cdot \mathbf{1}(A)]$ since $A \in \mathcal{G} \subseteq \mathcal{H}$.

Proposition 1.2. Let $X \in \mathcal{L}^1$, $\mathcal{G} \subseteq \mathcal{F}$, Y bounded \mathcal{G} -measurable. Then

$$\mathbb{E}[X \cdot Y | \mathcal{G}] = Y \cdot \mathbb{E}[X | \mathcal{G}].$$

Proof. (a) RHS is clearly \mathcal{G} —measurable.

(b) For all $A \in \mathcal{G}$:

$$\mathbb{E}[X \cdot Y \cdot \mathbf{1}(A)] = \mathbb{E}[Y \cdot \mathbb{E}[X\mathcal{G}] \cdot \mathbf{1}(A)]$$

$$\mathbb{E}[X \cdot (Y \cdot \mathbf{1}(A))] = \mathbb{E}[\mathbb{E}[X|\mathcal{G}] \cdot Y \cdot \mathbf{1}(A)] = RHS.$$

 \mathcal{G} -meas. and bounded

(Also observe that by a monotone class argument, we have for any integrable function $f: \Omega \to \mathbb{R}$, $\mathbb{E}[X \cdot f] = \mathbb{E}[\mathbb{E}[X|\mathcal{G}] \cdot f]$)

Lecture 4 We are building towards the Theorem

Theorem 1.9. $X \in \mathcal{L}^1, \mathcal{G}, \mathcal{H} \subseteq \mathcal{F}$. Assume $\sigma(\mathcal{G}, \mathcal{H}) \perp \mathcal{H}$, Then

$$\mathbb{E}[X|\sigma(\mathcal{G},\mathcal{H})] = \mathbb{E}[X|\mathcal{G}]$$
 a.s.

We begin with a definition

Definition 1.8. Let \mathcal{A} be a collection of sts. It is called a $\underline{\pi$ -system if for all $A, B \in \mathcal{A}$, we also have $A \cap B \in \mathcal{A}$.

Theorem 1.10 (Uniquenes of extension). Let (E,ξ) be a measurable space and let \mathcal{A} be a π -system generating the sigma algebra ξ . Let μ,ν be two measures on (E,ξ) with $\mu(E) = \nu(E) < \infty$. If $\mu = \nu$ on \mathcal{A} , then $\mu = \nu$ on ξ .

Proof. (Theorem 1.9) NTS: for all $F \in \sigma(\mathcal{G}, \mathcal{H})$

$$\mathbb{E}[X \cdot \mathbf{1}_F] = \mathbb{E}[\mathbb{E}[X|\mathcal{G}] \cdot \mathbf{1}_F]$$

Now, set $\mathcal{A} = \{A \cap B : A \in \mathcal{G}, B \in \mathcal{H}\}$. It is easy to check that \mathcal{A} is a π -system generating $\sigma(\mathcal{G}, \mathcal{H})$. If $F = A \cap B$ for some $A \in \mathcal{G}$ and $B \in \mathcal{H}$, Then

$$\begin{split} \mathbb{E}[X \cdot \mathbf{1}(A \cap B)] &= \mathbb{E}[X \cdot \mathbf{1}(A) \cdot \mathbf{1}(B)] \\ &= \mathbb{E}[X \cdot \mathbf{1}(A)] \cdot \mathbb{E}[\mathbf{1}(B)] \overset{H \perp \sigma(\mathcal{G}, \mathcal{H})}{=} \mathbb{E}[\mathbb{E}[X | \mathcal{G}] \cdot \mathbf{1}(A \cap B)]. \end{split}$$

Now assume $X \ge 0$; in the general case, decompose $X = X^+ - X^-$ and apply same argument to both X^{\pm} . Define the measures $\mu(F) = \mathbb{E}[X \cdot \mathbf{1}(F)]$ and $\nu(F) = \mathbb{E}[X \cdot \mathbf{1}(F)]$ for all $F \in \sigma(\mathcal{G}, \mathcal{H})$. Observe that $\mu(\Omega) = \nu(\Omega) = \mathbb{E}[X] < \infty$ and we have shown that $\mu = \nu$ on \mathcal{A} . Thus, $\mu = \nu$ on $\sigma(\mathcal{G}, \mathcal{H})$ which finally implies the result

$$\mathbb{E}[X|\sigma(\mathcal{G},\mathcal{H})] = \mathbb{E}[X|\mathcal{G}]$$
 a.s.

Examples:

Definition 1.9 (Gaussian). $(X_1, X_2, \dots, X_n) \in \mathbb{R}^n$ has the Gaussian distribution if and only if for all scalars $a_1, a_2, \dots, a_n \in \mathbb{R}$, $a_1X_1 + \dots + a_nX_n$ has the Gaussian distribution in \mathbb{R} .

A stochastic process (more on that later) $(X_t)_{t\geq 0}$ is a <u>Gaussian process</u> if for all $t_1 < t_2 < \cdots t_n$ the vector $(X_{t_1}, X_{t_2}, \cdots, X_{t_n})$ is Gaussian.

Let (X, Y) be a Gaussian vector in \mathbb{R}^2 . We compute $\mathbb{E}[X|Y]$.

Let $X' = \mathbb{E}[X|Y]$. Looking for f a Borel measurable function s.t. $\mathbb{E}[X|Y] = f(Y)$ a.s. Let f(y) = ay + b for some $a, b \in \mathbb{R}$ to be determined. Now, X' = aY + b, $\mathbb{E}[X'] = \mathbb{E}[X] = a\mathbb{E}[Y] + b$ and $\mathbb{E}[X' \cdot Y] = \mathbb{E}[X \cdot Y] \implies \mathbb{E}[(X - X') \cdot Y] = 0$. Thus $\text{Cov}(X - X', Y) = 0 \implies \text{Cov}(X, Y) = a^2 \text{Var}(Y)$.

<u>Need to check:</u> that for all Z bounded $\sigma(Y)$ -measurable, $\mathbb{E}[(X-X')\cdot Z]=0$. Indeed, observe that (X-X',Y) is a Gaussian vector and since $\text{Cov}(X-X',Y)=0 \implies X-X'\perp Y \implies (X-X')\perp Z$.

2. Let (X,Y) be a random vector with density in \mathbb{R}^2 with joint density function $f_{X,Y}$: $\mathbb{R}^2 \to \mathbb{R}$. Let $h: \mathbb{R} \to \mathbb{R}$ be a Borel function such that h(X) is integrable. We now compute $\mathbb{E}[h(X)|Y]$.

We have for all g bounded σY —measurable functions.

$$\int_{\mathbb{R}^2} h(x)g(y)f_{X,Y}(x,y) \, dx \, dy = \mathbb{E}[h(X)g(Y)]$$
$$= \mathbb{E}[\mathbb{E}[h(X)|Y]g(Y)] = \mathbb{E}[\phi(Y)g(Y)]$$
$$= \int_{\mathbb{R}^2} \phi(y)g(y)f_{Y(y)} \, dy$$

where $f_Y(y) = \int_{\mathbb{R}} f_{X,Y}(x,y) dx$ and $\phi : \mathbb{R} \to \mathbb{R}$ is some Borel measurable function. Hence,

$$\phi(y) = \begin{cases} \int_{\mathbb{R}} h(x) \frac{f_{X,Y}(x,y)}{f_Y(y)} \, \mathrm{d}dx, & f_Y(y) > 0\\ 0, & \text{otherwise} \end{cases}$$

can be seen to work. Thus, we obtain

$$\mathbb{E}[h(X)|Y] = \phi(Y)$$
 a.s.

2 Discrete Time Martingales

Definition 2.1 (Filtration). Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a pobability space. A <u>filtration</u> is a sequences of increasing sigma sub-algebras of \mathcal{F} , $(\mathcal{F}_n)_{n\in\mathbb{N}}$, $\mathcal{F}_n\subseteq\mathcal{F}_{n+1}$ for all $n\in\mathbb{N}$. We call $(\Omega, \mathcal{F}, (\mathcal{F}_n)_{n\in\mathbb{N}})$ a filtered probability space.

Let $X = (X_n)_{n \in \mathbb{N}}$ be a sequence of random variables/a stochastic process. Then it induces $(\mathcal{F}_n^X)_{n \in \mathbb{N}}$, where $\mathcal{F}_n^X := \sigma(X_{:k \le n})$ for all $n \in \mathbb{N}$: the canonical filtration associated to X. We call X adapted to a filtration $(\mathcal{F}_n)_{n \in \mathbb{N}}$ if X is \mathcal{F}_n —measurable for all $n \in \mathbb{N}$. X is called integrable if X_n is integrable for all $n \in \mathbb{N}$.

Definition 2.2 (Martingale discrete time). Let $(\Omega, \mathcal{F}, (\mathcal{F}_n)_{n \in \mathbb{N}}, \mathbb{P})$ be a filtered probability space. Let $X = (X_n)_{n \in \mathbb{N}}$ be an integrabl and adapted process.

• X is called a martingale if $\mathbb{E}[X_n|\mathcal{F}_m] = X_m$ a.s. for all $n \ge m$.

- X is called a super-martingale if $\mathbb{E}[X_n|\mathcal{F}_m] \leq X_m$ a.s. for all $n \geq m$.
- X is called a sub-martingale if $\mathbb{E}[X_n|\mathcal{F}_m] \geqslant X_m$ a.s. for all $n \geqslant m$.

Remark. If X is a (super/sub)martingale with respect to $(\mathcal{F}_n)_{n\in\mathbb{N}}$, then it is also a martingale with respect to $(\mathcal{F}_n^X)_{n\in\mathbb{N}}$. To see this, one has to use the tower property 1.1: $\mathcal{F}_n^X\subseteq\mathcal{F}_n$ for all $n\in\mathbb{N}$ implies $\mathbb{E}[X_n|\mathcal{F}_m^X]=\mathbb{E}[\mathbb{E}[X_n|\mathcal{F}_m]|\mathcal{F}_m^X]$ (since $\mathbb{E}[X_n|\mathcal{F}_m]$ a.s.).

Examples:

- 1. Let $(\xi_i)_{i\in\mathbb{N}}$ be iid. s.t. $\mathbb{E}[\xi_i] = 0$ for all $i \in \mathbb{N}$ and define $X = (X_n)_{n\in\mathbb{N}}$ by $X_n = \xi_1 + \dots + \xi_n$ for all $n \in \mathbb{N}$, $X_0 = 0$. X is a martingales with respect to $(\mathcal{F}_n^{\xi})_{n\in\mathbb{N}}$.
- 2. Let $(\xi_i)_{i\in\mathbb{N}}$ be iid. s.t. $\mathbb{E}[\xi_i] = 1$ for all $i \in \mathbb{N}$ and define $X = (X_n)_{n\in\mathbb{N}}$ by $X_n = \prod_{i=1}^n \xi_i$ for all $n \in \mathbb{N}$, $X_0 = 1$. X is again a martingales with respect to $(\mathcal{F}_n^{\xi})_{n\in\mathbb{N}}$.

Lecture 5 Let $(\Omega, \mathcal{F}, (\mathcal{F}_n)_{n \in \mathbb{N}}, \mathbb{P})$ be a filtered probability space.

Definition 2.3 (Stopping time discrete time). A stopping time T is a random variable $T: \Omega \to \mathbb{Z}_+ \cup \{\infty\}$ s.t. $\{T \leq n\} \in \mathcal{F}_n$ for all $n \in \mathbb{N}$. Equivalently, if $\{f = n\} \in \mathcal{F}_n$ for all $n \in \mathbb{N}$ since

$$\{T=n\} = \underbrace{\{T \leqslant n\}}_{\mathcal{F}_n} \setminus \underbrace{\{T \leqslant n-1\}}_{\mathcal{F}_{n-1} \subset \mathcal{F}_n} \in \mathcal{F}_n.$$

and

$$\{T \leq n\} = \bigcup_{k=1}^{n} \{T = k\} \in \mathcal{F}_k \subset \mathcal{F}_n.$$

Examples:

- 1. Constant time are trivially stopping times.
- 2. Let $X = (X_n)_{n \in \mathbb{N}}$ be a stochastic process taking values in \mathbb{R} and $A \in \mathcal{B}(\mathbb{R})$ (X adapted). Define

$$T_A = \{ n \geqslant 0 : X_{n \in A} \}.$$

Then $\{T_A \leq n\} = \bigcup_{k=0}^n \{X_{k \in A}\} \in \mathcal{F}_n$ for all $n \in \mathbb{N}$ (with convention $\inf \emptyset = \infty$).

3. $L_A = \sup\{n \ge 0 : X_{n \in A}\}$ is <u>NOT</u> a stopping time.

<u>Properties:</u> $S, T, (T_n)_{n \in \mathbb{N}}$ stopping times. Then $S \wedge T, S \vee T$, $\inf_n T_n, \sup_n T_n$, $\liminf_n T_n$, $\lim_n \sup_n T_n$ are also stopping times.

Definition 2.4 (Stopping time sigma algerbra). It T is a stopping time, define

$$\mathcal{F}_T = \{ A \in \mathcal{F} : A \cap \{ T \leqslant t \} \in \mathcal{F}_t \}$$

Let $(X_n)_{n\geqslant 0}$ be a process. Write $X_T(\omega)=X_{T(\omega)}(\omega)$ for $\omega\in\Omega$ whenever $T(\omega)<\infty$. Define the stopped process: $X_t^T:=X_{T\wedge t}$.

Proposition 2.1. Let S and T be stopping times, and let X be an adapted process, then:

- 1. If $S \leq T$, then $\mathcal{F}_S \subseteq \mathcal{F}_T$.
- 2. X_T is \mathcal{F}_T -measurable.
- 3. X^T is adapted.

4. If X is integrable, then the stopped process is integrable.

Proof. 1. Immediate from definition.

2. Let $A \in \mathcal{B}(\mathbb{R})$. Need to show:

$${X_T \mathbf{1}(T < \infty)} \cap {T \le t} \in A$$
, for all $t \ge 0$.

Indeed, we have that

$$\{X_T \mathbf{1}(T < \infty)\} = \bigcup_{s=0}^t \underbrace{\{X_s \in A\}}_{\mathcal{F}_s \subset \mathcal{F}_t} \cap \underbrace{\{T = s\}}_{\mathcal{F}_s} \in \mathcal{F}_t.$$

3. $X_t^T = X_{T \wedge t}$, this being $\mathcal{F}_{T \wedge t}$ —measurable $\subseteq \mathcal{F}_t$ —measurable by 1), so we conclude it is \mathcal{F}_t —measurable.

4.

$$\mathbb{E}[|X_t^T|] = \mathbb{E}[|X_{T \wedge t}|]$$

$$= \sum_{s=0}^{t-1} \mathbb{E}[|X_s| \cdot \mathbf{1}(T=s)] + \mathbb{E}[|X_t| \cdot \mathbf{1}(T \ge t)]$$

$$\leqslant \sum_{s=0}^{t} \mathbb{E}[|X_s|] \underbrace{<\infty}_{X_t \text{ is integrable}}.$$

We now state and prove a fundamental theorem in Martingale theory:

Theorem 2.1 (Optional Stopping Theorem discrete time). Let $(X_n$ be a martingale.

1. If T is a stopping time, then the stopped process X^T is also a martingale. In particular for all $t \ge 0$:

$$\mathbb{E}[X_{T\wedge t}] = \mathbb{E}[X_0].$$

2. It $S \leq T$ are bounded stopping times, then

$$\mathbb{E}[X_T|\mathcal{F}_S] = X_T$$
, a.s.

and hence $\mathbb{E}[X_T]\mathbb{E}[X_S]$.

- 3. It there exists an integrable random variable Y such that $|X_n \leq Y|$ for all $n \geq 0$ and T is finite, then $\mathbb{E}[X_T] = \mathbb{E}[X_0]$.
- 4. If there exists $M \ge 0$ such that $|X_{n+1} X_n| \le M$ for all $n \in \mathbb{N}$ and T is a stopping time with $\mathbb{E}[T] < \infty$, then $\mathbb{E}[X_T] = \mathbb{E}[X_0]$.

Proof. 1. NTS: for all $t \ge 0$, $\mathbb{E}[X_{T \wedge t} | \mathcal{F}_{t-1}] = X_{T \wedge t}$ a.s. Indeed,

$$\mathbb{E}[X_{T \wedge t} | \mathcal{F}_{t-1}] = \sum_{s=0}^{t-1} \mathbb{E}[X_s \cdot \mathbf{1}(T=s) | \mathcal{F}_{t-1}] \mathbb{E}[X-t] \cdot \mathbf{1}(T \ge t) | \mathcal{F}_{t-1}]$$

$$= \sum_{s=0}^{t-1} \mathbf{1}(T=s) \cdot X_s + X_{t-1} \cdot \mathbf{1}(T \ge t) \quad \text{a.s.}$$

$$= \sum_{s=0}^{t-2} \mathbf{1}(T=s) \cdot X_s + X_{t-1} \cdot \mathbf{1}(T \ge t-1) \quad \text{a.s.}$$

$$= X_{T \wedge t-1} \quad \text{a.s.}$$

2. $S \leq T \leq n, n \in \mathbb{N}$ fixed. Let $A \in \mathcal{F}_S$. NTS: $\mathbb{E}[X_T \cdot \mathbf{1}(A)] = [X_s \cdot \mathbf{1}(A)]$. We compute

$$X_T - X_S = (X_T - X_{T-1}) + \dots + (X_{S+1} - X_S)$$
$$= \sum_{k=0}^{n-1} (X_{k+1} - X_k) \cdot \mathbf{1}(S \leqslant k < T).$$

Thus,

$$\mathbb{E}[X_T \cdot \mathbf{1}(A)] \stackrel{(A \in \mathcal{F}_S)}{=} \mathbb{E}[X_S \cdot \mathbf{1}(A)] + \sum_{k=0}^{n-1} \mathbb{E}[(X_{k+1} - X_k) \cdot \mathbf{1}(S \leqslant k < T) \cdot \mathbf{1}(A)]$$

Have, $A \cap \{S \leq k\} \in \mathcal{F}_k$ and $A \cap \{T > k\} \in \mathcal{F}_k$. Thus, $\mathbf{1}(S \leq k < T) \cdot \mathbf{1}(A)$ is \mathcal{F}_k —measurable. Using $\mathbb{E}[X_{k+1}|\mathcal{F}_k] = X_k$ a.s. we deduce that

$$\mathbb{E}[(X_{k+1} - X_k) \cdot \mathbf{1}(S \leqslant k < T] \cdot \mathbf{1}(A)] = \mathbb{E}[\mathbb{E}[(X_{k+1} - X_k) | \mathcal{F}_k] \cdot \mathbf{1}(S \leqslant k < T] \cdot \mathbf{1}(A)]$$

$$= 0$$

Thus, $\mathbb{E}[X_T|\mathcal{F}_S] = X_S$ a.s.

3. By the Optional Stopping Theorem applied to $(X_{T \wedge n})_{n \geq 0}$, we have

$$\mathbb{E}[X_{T \wedge n}] = \mathbb{E}[X_0]$$
 for all $n \ge 0$.

Now, T being finite a.s. implies that $X_T = \lim_{n \to \infty} X_{T \wedge n}$ a.s. By assumption, have $|X_{T \wedge n}| \leq Y$ a.s. for all $n \in \mathbb{N}$ and so can apply DCT to conclude.

4. Observe that for all $n \ge 1$

$$X_{T \wedge n} - X_0 = \sum_{k=0}^{n-1} (X_k - X_0) \cdot \mathbf{1}(T = k) + (X_n - X_0)\mathbf{1}(T \ge n)$$

Hence, we have the bound (using that $|X_{k+1} - X_k| \leq M$ a.s. for all $k \geq 0$)

$$|X_{T \wedge n} - X_0| \leq M \sum_{k=0}^{n-1} k \mathbf{1}(T = k) + n \mathbf{1}(T \ge n)$$

$$\leq \mathbb{E}[T] < \infty \quad \text{a.s.}$$

Now, $\mathbb{E}[T] < \infty$ gives $T < \infty$ a.s. and so can deduce as before that $X_T = \lim_{n \to \infty} X_{T \wedge n}$ and use the DCT to conclude the argument.

Corollary 2.1.1. Let X be a positive superartingale, T a stopping time such that $T < \infty$ a.s., then

$$\mathbb{E}[X_T] \leqslant \mathbb{E}[X_0].$$

Proof. Use Fatou 1.1:
$$\mathbb{E}[\liminf_{t \uparrow \infty} X_{T \land t}] \leqslant \liminf_{t \uparrow \infty} \mathbb{E}[X_{T \land t}] \leqslant \mathbb{E}[X_0].$$

Simple random walk on \mathbb{Z}

Let $(\xi_i)_{i\geqslant 0}$ be iid Bernoulli random variables with success probability 1/2. Define the process $(X_n)_{n\geqslant 0}$ by setting $X_n=\xi_1+\cdots+\xi_n$ for all $n\geqslant 1$ and $X_0=0$. Furthermore, let $T=\inf\{n\geqslant 0: X_n=1\}$. Using the analysis below, we will see that $\mathbb{P}(T<\infty)=1$. The Optional Stopping Theorem gives $\mathbb{E}[X_{T\wedge t}]=0$ for all $t\geqslant 0$. Yet, $1=\mathbb{E}[X)_T\neq 0$. We thus see that the condition $\mathbb{E}[T]<\infty$ in 4) is necessary, since $\mathbb{E}[T]=\infty$.

Figure 1: Illustration of simple random walk (first step) on \mathbb{Z} .

Lecture 6

We consider again the example of the simple random walk 2 $(X_n)_{n\in\mathbb{N}}$ and define the stopping times

$$T_c = \inf n \geqslant 0 : X_{n=c}, \quad c \in \mathbb{Z}$$

Set $T = T_{-a} \wedge T_b$ for $ab \in \mathbb{Z}$. We now ask what is $\mathbb{P}(T_{-a} \wedge T_b)$?

To answer this, note first that $X_n^T = X_{T \wedge n}$ is a martingale by the Optional Stopping Theorem and we also have the bounded differences $|X_{n+1} - X_n| \leq 1$ for all $n \geq 1$.

Claim: $\mathbb{E}[T] < \infty$.

To show this, we will stochastically dominate T be a geometric random variable, which automatically has a finite expectation and then conclude using the non-negativity of T. Now we have that for the sequence $\xi_1, \xi_2, \dots, \xi_{a+b}$ the probability that they all are either +1 or -1 is $2 \cdot 2^{-(a+b)}$ by independence, call this event A_1 . The same is true for the shifted sequence $\xi_{k(a+b)+1} \cdots \xi_{(k+1)(a+b)}$ for all $k \in \mathbb{N}$, where we call the corresponding event A_k .

Thus, we can bound T by the the random variable

$$Z(\omega) = \inf\{n \ge 0 : \omega \in A_n\}$$

which has the distribution $Z \sim Geom(2 \cdot 2^{-(a+b)})$. Thus, $\mathbb{E}[T] < \mathbb{E}[Z] \le (a+b) \cdot 2^{a+b-1} < \infty$. Thus, we conclude by the OST that $\mathbb{E}[X_T] = \mathbb{E}[X_0] = 0$. Hence, $-a\mathbb{P}(T_a < T_b) + b\mathbb{P}(T_b < T_{-a}) = 0$ and so a quick computation yields that $\mathbb{P}(T_{-a} < T_b) = \frac{b}{a+b}$.

3 Martingale Convergence Theorem

Theorem 3.1 (Almost sure martingale convergence theorem). Let X be a supermartingale bounded in \mathcal{L}^1 , i.e. satisfying $\sup_n \mathbb{E}[|X_n|] < \infty$. Then, there exists $X_\infty \in \mathcal{L}^1(\mathcal{F}_\infty), \mathcal{F}_\infty = \sigma(\mathcal{F}_n : n \geqslant 0)$ such that $X_n \stackrel{n \to \infty}{\longrightarrow} X_\infty$, a.s.

Before we embark on the proof of this theorem, we need so me supporting results. First we have a result from analysis and we set up some notation. Let $x - (x_{nn \in \mathbb{N}})$ be a real sequence and let a < b be reals. We proceed to define the number of upcrossings of the sequence before time $n \in \mathbb{N}$. We construct recursively the sequence of times:

$$\begin{array}{ll} T_0(x) & = 0 \\ S_{k+1}(x) & = \inf\{n \geqslant T_k(x) : x_n \leqslant a\} \\ T_{k+1}(x) & = \inf\{n \geqslant S_{k+1}(x) : x_n \geqslant b\} \end{array}$$

and

$$N_n([a,b],X) = \sup\{k \geqslant 0 : T_k(x) \leqslant n\}$$

Observe that as $n \to \infty$, $N_n([a, b], x) \uparrow N([a, b], x) = \sup\{kgeq0 : T_k(x) < \infty\}$ (see figure 2 for an illustration).

Lemma 3.1. Let $X = (X_n)$ be a real sequence. Then X converges in $\overline{\mathbb{R}} = \mathbb{R} \cup \{\pm \infty\}$ if and on ly if for all a < b, $a, b \in \mathbb{Q}$, $N([a, b], X) < \infty$.

Proof. \Longrightarrow : Suppose x converges, if a < b such that $N([a,b],x) = \infty$, then $\liminf_n x_n \le a < b \le \limsup_n x_n$, a contradiction.

 $\stackrel{n}{\underline{\longleftarrow}}$: if not, then $\liminf_n x_n < \limsup_n x_n$ which implies that there exists a < b in \mathbb{Q} with $\liminf_n x_n < a < b < \limsup_n x_n$, and hence $N([a, n], x) = \infty$, a contradiction.

Now we state it Doob's upcrossing Inequality

Lemma 3.2 (Doob's upcrossing inequality). Let X be a supermartingale, then for all $n \in \mathbb{N}$:

$$(b-a)\cdot \mathbb{E}[N_n([a,b],X)] \leq \mathbb{E}[(X_n-a)^-]$$

Proof. It is not hard to check that the sequences of times in 3 are stopping times. Now we have:

$$\sum_{k=1}^{n} (X_{T_k \wedge n} - X_{S_k \wedge n})$$

$$= \sum_{k=1}^{N_n} (X_{T_k} - X_{S_k}) + (X_n - X_{S_{N_n+1}}) \mathbf{1}(S_{N_n+1} \leq n)$$

$$\geqslant N_n \cdot (b-a)$$

Since $T_{k \wedge n} \geqslant S_{k \wedge n}$, the OST gives $\mathbb{E}[X_{T_k \wedge n}] \leqslant \mathbb{E}[X_{S_k \wedge n}]$. Note:

$$\underbrace{X_n - X_{S_{N_n}+1}}_{\geqslant (X_n - a) \land 0 = -(X_n - a)^-} \mathbf{1}(S_{N_n+1} \leqslant n).$$

Thus, taking expectations on both sides gives:

$$0 \geqslant (b-a) \cdot \mathbb{E}[N_n] - \mathbb{E}[(X_n - a)^-].$$

thus concluding the proof.

Figure 2: Illustration of upcrossings for the process $(X_n)_{n\in\mathbb{N}}$.

Now we proceed to the proof of the martingale convergence theorem:

Proof. (Theorem 3.1) Fix a < b, in \mathbb{Q} . Have

$$\mathbb{E}[N_{n([a,b],X)}] \leq (b-a)^{-} \underbrace{\mathbb{E}[(X_{n}-a)^{-}]}_{\leq \mathbb{E}[|X_{n}|+a]}$$
$$\leq (b-a)^{-} \underbrace{\left(\sup_{n\geq 0} \underbrace{\mathbb{E}[|X_{n}|]}_{<\infty} + a\right)}_{\leq \infty}$$

Also have $N_n([a,b],X) \uparrow N([a,b],X)$ as $n \to \infty$. By monotone convergence: $\mathbb{E}[N([a,b],X)] < \infty$. Set

$$\Omega_0 = \bigcap_{a < ba, b, \in \mathbb{Q}} \{ N([a, b], X) < \infty \} \in \mathcal{F}_{\infty}$$

and $\mathbb{P}(\Omega_0) = 1$. On Ω_0 , X converges. set

$$X_{\infty} = \begin{cases} \lim_{n \to \infty} X_n & \text{on } \Omega_0 \\ 0, & \text{on } \Omega \setminus \Omega_0. \end{cases}$$

So, X_{∞} is \mathcal{F}_{∞} -measurable, $X_n \stackrel{n \to \infty}{\longrightarrow} X_{\infty}$ a.s. and

$$\mathbb{E}[|X_{\infty}|] = \mathbb{E}[\liminf_{n} |X_{n}|] \leqslant \liminf_{\mathbb{E}[X_{n}]} < \infty.$$

Corollary 3.1.1. Let B be a upermaartingale. Then, X converges a.s.

Proof. $\mathbb{E}[|X_n|] = \mathbb{E}[X_n] \leq \mathbb{E}[X_0]$. Apply the martingale convergence theorem to conclude.

Lecture 7

4 Doob's inequalities

Theorem 4.1 (Doob's maximal inequality). Let X be a non-negative submartingale and set $X_n^* = \sup_{0 \le k \le n} X_k$. Then for all $\lambda \ge 0$,

$$\begin{array}{ll} \lambda \cdot \mathbb{P}(X_n^* \geqslant \lambda) & \leqslant \mathbb{E}[X_n \cdot \mathbf{1}(X_n^* \geqslant \lambda)] \\ & \leqslant \mathbb{E}[X_n]. \end{array}$$

Proof. Let $T = \inf\{k \ge 0 : X_k \ge \lambda\}$ (it is a stopping time). Then $\{X_n^* \ge \lambda\} = \{T \le n\}$. Also have that $X_{T \wedge n}$ is a submartingale by the OST. Then $\mathbb{E}[X_{T \wedge n}] \le \mathbb{E}[X_n]$. Now,

$$\mathbb{E}[X_{T \wedge n}] = \mathbb{E}[X_T \cdot \mathbf{1}(T \leq n)] + \mathbb{E}[X_n \cdot \mathbf{1}(T > n)] \geq \lambda \cdot \mathbb{P}(T \leq n) + \mathbb{E}[X_n \cdot \mathbf{1}(T > n)] \Longrightarrow \lambda \cdot \mathbb{P}(T \leq n) \leq \mathbb{E}\left[X_n \cdot \mathbf{1}(\underbrace{T \leq n}_{=\{X_n^* \geq \lambda\}})\right] \leq \mathbb{E}[X_n]$$

Theorem 4.2 (Doob's \mathcal{L}^1 inequality). Lte p > 1 and let X be a martingale or a nonnegative submartingale. Set $X_n^* = \sup_{0 < k < n} |X_k|$. Then

$$\left\|X_n^8\right\|_p \leqslant \frac{p}{p-1} \left\|X_n\right\|_p.$$

Proof. By Jensen, it is enough to prove 4.2 for a non-negative submartingale. Now, observe that

$$= b$$

$$(y \wedge k)^{p} = \int_{k}^{0} px^{p-1} \mathbf{1}(\mathbf{y} \geq \mathbf{x}) \, dx = \mathbb{E}\left[\int_{0}^{k} \left[x^{p-1} \mathbf{1}(X_{n}^{8}) \, dx\right]\right]$$

$$\stackrel{\text{Fubini}}{=} \int_{0}^{k} px^{p-1} \underline{\mathbb{P}(X_{n}^{*} \geq x)}_{\leq \frac{1}{x}} \mathbb{E}\left[X_{n} \cdot \mathbf{1}(X_{n}^{*} \geq x)\right] \, dx$$

$$\leq \mathbb{E}\left[\int_{0}^{k} px^{p-2} \cdot \mathbf{1}(X_{n}^{*} \geq x) \, dx \cdot X_{n}\right]$$

$$= \mathbb{E}\left[\frac{p}{p-1}(X_{n}^{*} \wedge k)^{p-1} \cdot X_{n}\right]$$

$$\stackrel{\text{H\"{o}lder}}{\leq} \frac{p}{p-1} \cdot \|X_{n}\|_{p} \cdot \|X_{n}^{*} \wedge k\|_{p}^{p-1}.$$

So we proved $\|X_n^* \wedge k\|_p^p \leqslant \frac{p}{p-1} \|X_n\|_p \cdot \|X_n^* \wedge k\|_p^{p-1}$, which implies $\|X_n^* \wedge k\|_p \leqslant \frac{p}{p-1} \cdot \|X_n\|_p$. Now take $k \to \infty$ and use monotone convergence to conclude the argument.

Theorem 4.3 (\mathcal{L}^p -convergence theorem). Let X be a martingale and 1 , then the following are equivalent:

- 1. X is bounded in \mathcal{L}^{\checkmark} , i.e. $\sup_{n\geq 0} ||X_n||_p < \infty$.
- 2. X converges 'underlinealmost surely and in \mathcal{L}^p to a limit $X_{\infty} \in \mathcal{L}^p$.

3. There exists $Z \in \mathcal{L}^p$ s.t. $X_n = \mathbb{E}[Z|\mathcal{F}_n]$ a.s.

Proof. 1) \Longrightarrow 2): X bounded in \mathcal{L}^p implies X is bounded in \mathcal{L}^1 . So there exists X_{∞} such that $X_n \stackrel{n \to \infty}{\longrightarrow} X_{\infty}$ <u>a.s.</u>

Also, $\mathbb{E}[|X_{\infty}|^p] = \mathbb{E}\left[\liminf_n |X_n|^p\right] \stackrel{\text{Fatou}}{\leqslant} \liminf_{\mathbb{E}[|X_n|^p]} < \infty$. Thus, $X_{\infty} \in \mathcal{L}^p$.

Now, let $X_n^* = \sup_{0 \le k \le n} |X_k|, X_\infty^* = \sup_{k \in \mathbb{N}} |X_k|$. Thus,

$$|X_n - X_{\infty}| \leq 2X_{\infty}^*$$

for all $n \in \mathbb{N}$. Thus, it is enough to show by DCT that $X_{\infty}^* \in \mathcal{L}^p$. By Doob's \mathcal{L}^p -inequality, $\|X_n^*\|_p = \frac{p}{p-1} \cdot \sup_{n \in \mathbb{N}} \|X_n\|_p < \infty$ By MCT $(X_n^* \uparrow X_{\infty}^*)$: $\|X_{\infty}^*\|_p \leqslant \frac{p}{p-1} \sup_{n \in \mathbb{N}} \|X_n\|_p < \infty$ Thus, $X_{\infty}^* \in \mathcal{L}^p$.

 $2) \Longrightarrow 3$: $X_n \stackrel{n \to \infty}{\longrightarrow} X_\infty$ a.s. and in \mathcal{L}^p . Set $Z = X_\infty$. Need to show: $X_n = \mathbb{E}[X_\infty | \mathcal{F}_n]$ for all

$$\|X_{n} - \mathbb{E}\left[X_{oo}|\mathcal{F}_{n}\right]\|_{p} \quad \stackrel{m \geq n}{=} \|\mathbb{E}\left[X_{m} - X_{\infty}|\mathcal{F}_{n}\right]\|_{p}$$

$$\stackrel{\text{contraction (Jensen)}}{\leq} \|X_{m} - X_{\infty}\|_{p} \to 0, \quad m \to \infty.$$

 $3) \Longrightarrow 1$: By conditional Jensen, we can conclude. \square

Definition 4.1. A martingale of the form $X_n = \mathbb{E}[Z|\mathcal{F}_n], Z \in \mathcal{L}^p$ is called a martingale closed in \mathcal{L}^p .

Corollary 4.3.1. Let $Z \in \mathcal{L}^p$, $X_n = \mathbb{E}[Z|\mathcal{F}_n]$ a.s. Then $X_n \xrightarrow{n \to \infty} \mathbb{E}[Z|\mathcal{F}_\infty]$ a.s. and in \mathcal{L}^p where $F_\infty = \sigma(X_n, n \ge 0)$.

Proof. By theorem 4.3, we have $X_n \stackrel{n \to \infty}{X}_{\infty}$ a.s. and in \mathcal{L}^p . Now, we need to show:

$$X_{\infty} = \mathbb{E}\left[Z|\mathcal{F}_{\infty}\right]$$
 a.s.

Now, we have that X_{∞} is \mathcal{F}_{∞} -measurable (being the pointwise limit of $X_n, n \geq 0$) and for all $A \in \mathcal{F}_{\infty}$, $\mathbb{E}\left[Z \cdot \mathbf{1}(A)\right] = \mathbb{E}\left[X_{\infty} \cdot \mathbf{1}(A)\right]$. Fix $A \in \bigcup_{n \geq 0} \mathcal{F}_n$, a π -system generating \mathcal{F}_{∞} . There exists $N \in \mathbb{N}$ such that $A \in \mathcal{F}_N$. Let $n \geq N$, now

$$\mathbb{E}\left[Z\cdot\mathbf{1}(A)\right] = \mathbb{E}\left[X_n\cdot\mathbf{1}(A)\right] \stackrel{n\to\infty}{\longrightarrow} \mathbb{E}\left[X_\infty\cdot\mathbf{1}(A)\right].$$

Definition 4.2 (Uniform integrability). A collection of variables $(X_i)_{i \in I}$ is called uniformly integrable (UI) if

$$\sup_{i \in I} \mathbb{E}\left[|X_i| \cdot \mathbf{1}(|X_i| > M)\right] \stackrel{M \to \infty}{\longrightarrow} 0.$$

Equivalently, $(X_i)_{i\in I}$ is UI if (X_i) is bounded in \mathcal{L}^1 and for all $\epsilon > 0$, there exists $\delta > 0$ such that for all $A \in \mathcal{F}$ with $\mathbb{P}(A) < \delta$,

$$\sup_{i \in I} \mathbb{E}\left[|X_i| \cdot \mathbf{1}(A_i)\right] < \epsilon.$$

label = () A UI family is bounded in \mathcal{L}^1 .

lbbel = () If a family (X_i) is bounded in \mathcal{L}^p , p > 1, then it is also UI.

Lemma 4.1. Let $(X_n)_{n\in\mathbb{N}}$, X be in \mathcal{L}^1 and $X_n \xrightarrow{n\to\infty} X$ a.s. Then $X_n \xrightarrow{n\to\infty}$ in \mathcal{L}^1 if and only if $(X_n)_{n\in\mathbb{N}}$ is UI.