SE Research Seminar 1

Task 5: Zusammenfassung

Richard Fussenegger, BSc

Motivation

- Front-End Performance
- Welche Herausforderungen gibt es?
- Welche Lösungen gibt es?
- Leitfaden erstellen
- Best Practices eruieren

Task 2 : Papers

- Kaum wissenschaftliche Arbeiten
- Trotzdem sehr viel Forschung
 - Google, Yahoo, Mozilla, Microsoft, ...
- Wissen liegt vor in RFCs, Wikis, Blogs, ...
- Großes Themengebiet

Task 2: Nachbesprechung

- Konzentration auf ein Teilgebiet
- Auswahl fällt auf Bilder
- Komplex zu optimieren
- Kommt auf jeder Website vor
- Kompression & Optimierung

Task 3: Test-Set

- Test-Set generieren & evaluieren
- Konsolenprogramm in PHP
- Top 100 Websites untersucht (Alexa)
- Bilder automatisch komprimiert & optimiert und Ergebnisse ausgewertet

Task 3: Nachbesprechung

- Qualitätsverlust?
- Möglichkeit diesen zu untersuchen?
- Structural Similarity (SSIM)
- Kaum Tools vorhanden

Task 4: SSIM

- Tool zur Berechnung der SSIM
- Ergebnis enttäuschend:
 - PHP falsche Sprache f
 ür den Job
 - viel zu langsam bei vielen Bildern
 - SSIM nur wenig aussagekräftig
 - nur Graustufenbilder

Task 4: Nachbesprechung

- Einfachere Lösung möglich?
- Alternative Algorithmen?

Structural Similarity (SSIM)

- Methode zur Messung der Ähnlichkeit zweier Bilder
- "Perfektes" Bild als Ausgangsbasis
- Verbesserung von PSNR & MSE um dem menschlichen Sehen Rechnung zu tragen

SSIM: Annahme

- Messung von Änderungen in Strukturinformationen
- Pixel besitzen starke Interdependenz
 - im Besonderen wenn nahe beieinander
- Abhängigkeiten beinhalten Objektstruktur

SSIM: Formel

SSIM
$$(x, y) = \frac{(2\mu_x \mu_y + c_1)(2\sigma_{xy} + c_2)}{(\mu_x^2 + \mu_y^2 + c_1)(\sigma_x^2 + \sigma_y^2 + c_2)}$$

- Messung zwischen zwei Fenstern x und y von gleicher, quadratischer Größe
- Fenster kann verschoben werden

SSIM: Variablen

- μ Mittelwert eines Fensters
 - mu=filter2(window,img,'valid');
- \bullet σ Varianz der Fenster
 - sigma=filter2(window,img1.*img2,'valid')-(mu1.*mu1);
- σ_{xy} Kovarianz der Fenster
 - sigma12=filter2(window,img1.*img2,'valid')-(mu1.*mu2);

SSIM: Konstanten

- c Stabilisatoren der Division
 c=(K*L)^2;
- L Dynamikumfang
- *K* Konstanten
 - K1=0.01; K2=0.03;

SSIM: Ergebnis

- Dezimalwert zwischen –1 und 1
- 1 bedeutet identisch
- Fenstergröße bei den Autoren 11×11
 - It. Wikipedia ist 8×8 typisch
- Lediglich Luminanz wird berechnet

DANKE