AU: 2022-2023	Nom & Prénom:	
L2-S3 : Dép. GE (EI)	CIN:	
DC Modélisation des Systèmes	Classe :	E12
17/11/22 (14:00→15:00)	Salle :	
Enseignant : A. Mhamdi	Durée :	1h

Institut Supérieur des Études Technologiques de Bizerte ____

Ce document comporte 8 pages numérotées de 1/8 à 8/8. Dès qu'il vous est remis, assurez-vous qu'il est complet. Les 3 exercices sont indépendants et peuvent être traités dans l'ordre qui vous convient.

Les règles suivantes s'appliquent :

Ne rien écrire dans ce tableau.

- L'usage de tout matériel électronique, sauf calculatrice, est strictement interdit.
- **O Toute trace** de recherche, même incomplète, sera prise en compte dans l'évaluation.
- **Si l'espace** est insuffisant, veuillez continuer au verso ou annexer une feuille supplémentaire.

Exercice	Barème	Note
1	6	
2	7	
3	7	
Total	20	

Exercice Nº1

25mn | (6 points)

Proposez une représentation d'état possible pour chacune des descriptions suivantes :

(a) (2 points)

$$y^{(3)}(t) + 2y^{(1)}(t) + y(t) = -2u(t)$$
 (1)

L'équation différentielle est d'ordre 3. Il en résulte les trois variables d'état suivantes :

$$\begin{cases} x_1 = y & \Longrightarrow & \dot{x}_1 = y^{(1)} = x_2 \\ x_2 = y^{(1)} & \Longrightarrow & \dot{x}_2 = y^{(2)} = x_3 \\ x_3 = y^{(2)} & \Longrightarrow & \dot{x}_3 = y^{(3)} = -x_1 - 2x_2 - 2u \end{cases}$$

***-----**

L'équation d'état est donnée alors par :

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -2 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ -2 \end{bmatrix} u(t)$$
 (2)

$$y(t) = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$
 (3)

(b) (2 points)

$$3y^{(2)}(t) = -3u(t) (4)$$

L'équation différentielle est de second ordre. On en déduit les variables d'état suivantes :

$$\begin{cases} x_1 = y & \implies \dot{x}_1 = y^{(1)} = x_2 \\ x_2 = y^{(1)} & \implies \dot{x}_2 = y^{(2)} = -u \end{cases}$$

L'équation d'état sera donnée alors par :

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ -1 \end{bmatrix} u(t)$$
 (5)

$$y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \tag{6}$$

(c) (2 points)

$$y^{(2)}(t) + y(t) = u^{(1)}(t) - u(t)$$
 (7)

***-----**

L'équation différentielle est de second ordre. On propose les variables d'état suivantes :

$$\begin{cases} x_1 = y & \implies \dot{x}_1 = y^{(1)} = x_2 + u \\ x_2 = y^{(1)} - u & \implies \dot{x}_2 = y^{(2)} - u^{(1)} = -x_1 - u \end{cases}$$

L'équation d'état sera donnée alors par :

$$\begin{bmatrix} \dot{\mathbf{x}}_1 \\ \dot{\mathbf{x}}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ & & \\ -1 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} + \begin{bmatrix} 1 \\ & \\ -1 \end{bmatrix} u(t)$$
 (8)

$$y(t) = \begin{bmatrix} 1 & 0 \\ x_2 \end{bmatrix}$$
 (9)

Exercice Nº2

20mn | (7 points)

On considère l'exemple d'un ressort à comportement non-linéaire. Il est régi par l'équation différentielle suivante :

$$m\ddot{z} = F + k_1 z + k_2 z^3 \tag{10}$$

*-----

- Entrée u(t) = F
- Sortie y(t) = z(t)
- États $\begin{cases} x_1(t) = z(t) \\ x_2(t) = \dot{z}(t) \end{cases}$
- (a) (2 points) Ecrire $\dot{x}_1 = \mathcal{F}_1(x_1, x_2, u)$

(b) (2 points) Écrire $\dot{x}_2 = \mathcal{F}_2(x_1, x_2, u)$

(c) (3 points) Proposer une équation d'état qui permet de linéariser Eq. (10) autour

Institut Supérieur des Études Technologiques de Bizerte				
AU : 2022-2023 L2-S3 : Dép. GE (EI)	Nom & Prénom : CIN :			
DC Modélisation des Systèmes	Classe :	El2		
17/11/22 (14:00→15:00)	Salle :			
Enseignant : A. Mhamdi	Durée :	1h		
~				
du point de fonctionnement défin	i par $\overline{x} = 0 \& \overline{u} = 0$)		
Exercice Nº3		🖁 15mn (7 points)		
En utilisant la méthode de Strejc-Dav	oust on se propose (· · · · /		
\mathcal{H}_2 , d'entrée u et de sortie y dont la ré	• •			
(a) (1 point) Déterminez le gain statio	•	'		
Le Gain statique est mesuré dire	ectement par la valeu	r finale de la sortie :		
K	$=\frac{y_{\infty}}{u_{\infty}}=5$			
(b) (2 points) À partir du graphe, déte	erminez les deux cons	stantes T_a et T_b .		
On trace la tangente au point d'	inflexion I et on mes	ure :		

17/11/22 Exercice Nº3 Page 5/8

 $T_a = 0.27 \text{ sec et } T_b = 1.76 \text{ sec}$

*-----

(c) (1 point) En déduire l'ordre du système..

Le ratio $\frac{T_a}{T_b}=0.15$. D'après le tableau, un ordre n=2 semble convenir.

(d) (1 point) Évaluez la valeur de la constante de temps.

La constante de temps T est évaluée à partir de $\frac{T_b}{T}_{|Table}=2.72$ du tableau. Cela donne T=0.65 sec.

(e) (1 point) En déduire la valeur du retard τ .

Nous avons $T_a=0.27$ sec et $\frac{T_a}{T_{|fable}}=0.28$. La constante T=0.65 sec, nous pouvons en déduire le retard $\tau=0.27-0.18=0.09$ sec.

(f) (1 point) Donnez l'expression du modèle identifié.

$$\mathcal{H}_1(s) = \frac{5e^{-0.09s}}{(1+0.65s)^2}$$

AU: 2022-2023

DC | Modélisation des Systèmes

L2-S3 : Dép. GE (EI) 17/11/22 (14:00→15:00) Enseignant : A. Mhamdi

Durée : 1h

$$H(s) = \frac{Ke^{-\tau s}}{(1+Ts)^n}$$

$$H(s) = \frac{Ke^{-\tau s}}{1 + Ts}$$

$$H(s) = \frac{Ke^{-\tau s}}{s(1+Ts)^n}$$

STREJC-DAVOUST

$$H(s) = \frac{K\omega_n^2 e^{-\tau s}}{\omega_n^2 + 2\zeta \omega_n s + s^2}$$

OSCILLATOIRE

.----

$$T = \frac{2\pi}{\omega_n \sqrt{\frac{1}{T} - \zeta^2}}$$

3
$$\tau = t_1 - \frac{r}{2}$$

STREJC-DAVOUST

- $2 \quad \frac{T_b}{T}\Big|_{Table} \to T$
- $3 \quad \tau = T_a \frac{T_a}{T}_{|_{Table}} 7$

	- Hable		
n	$\frac{T_a}{T}$	$\frac{T_b}{T}$	$\frac{T_a}{T_b}$
1	0	1	0
2	0.28	2.72	0.10
3	0.80	3.70	0.22
4	1.42	4.46	0.32
5	2.10	5.12	0.41
6	2.81	5.70	0.49

Broïda

1

Si *n* est entier

- $T = \frac{A'A}{n}$

Si *n* n'est pas entier

On détermine le nouveau rapport $\frac{AB}{AC}$ qui correspond à la partie entière de n. Puis, on déplace $\Delta_2//\Delta_1$ vers Δ_1 afin de garantir ce rapport.

② τ correspond au déplacement.

$$T = \frac{A'A - \tau}{n}$$

BOUCLE FERMÉE

u(t)	Classe du système		
	Classe 0	Classe 1	Classe > 2
$\Gamma(t)$	$\varepsilon_p = \frac{E_0}{1 + G_r G_p}$	$\varepsilon_p = 0$	$\varepsilon_p = 0$
r(t)	$arepsilon_{v}=+\infty$	$\varepsilon_{V} = \frac{a}{G_{r} G_{p}}$	$\varepsilon_v = 0$

$$|G_{rc}H(j\omega_{osc})| = 1 \text{ et } /G_{rc}H(j\omega_{osc}) = -\pi$$

$$H(s) = \frac{Ke^{-\tau s}}{1+Ts}$$

①
$$K = G_p$$

$$T = \frac{T_{osc}}{2\pi} \sqrt{(G_{rc}G_{\rho})^2 - 1}$$

K où G_p : Gain statique/dynamique

 G_r : Gain du régulateur

T: Constante de temps

 τ : Retard du procédé

n : Ordre du système

 $\star u(t)$: Entrée

 \star y(t): Sortie

 \star $\Gamma(t)$: Échelon

 \star r(t): Rampe