Network Monitoring & Deep Packet Inspection

Wissam Mallouli

wissam.mallouli@gmail.com

Personal Background

- Expertise in
 - Formal methods
 - Protocol design & engineering
 - Monitoring techniques
 - Evaluation and optimization
- Working on several European research projects
- →Still coding from time to time (between us)

Protocol development lifecycle

12/15/2017

Ingénierie des protocoles

- Les différentes étapes du cycle de vie des protocoles
 - Expression des besoins
 - Conception
 - Description Formelle
 - Vérification
 - Implantation
 - Test et validation
 - Déploiement
 - Maintenance

développement

Seminar plan

- Network monitoring
 - Needs for network monitoring
 - Measurements (what, where and how)
 - Limitations (briefly)
- Deep Packet Inspection
 - What is DPI and why it is needed
 - Application classification
 - Traffic attributes extraction
- Security monitoring with DPI
 - Abstract description
 - Challenges
 - Security properties

Need for network monitoring Understand / Plan

- Status, traffic trends, peak time, evolution, etc.
- Aggressive pricing the weekend/night

- 3.5 billion mobile broadband users by 2015
- Traffic increase 30 times (wrt 2010)
- Understanding
 - the drivers of this growth
 - applications/usages
 - → contribute for a successful network planning

Need for network monitoring Diagnose & react

- Typical problem
 - Remote user arrives at regional office and experiences slow or no response from corporate web server
- Where to begin?
 - Where is the problem?
 - What is the problem?
 - What is the solution?
- Without proper network monitoring, these questions are difficult to answer

Need for network monitoring Diagnose & react

- Typical problem
 - Remote user arrives at regional office and experiences slow or no response from corporate web server
- Where to begin?
 - Where is the problem?
 - What is the problem?
 - What is the solution?
- Without proper network monitoring, these questions are difficult to answer

Need for network monitoring Problems might still occur!

The Amazon Web Services Outage (April 2011)

- Elastic Block Store: storage database for Amazon's EC2.
 - EBS clusters (Database nodes)
 - Control Plane Services (accepts user requests and directs them to appropriate EBS clusters)
 - Inter node communication on high bandwidth network and a lower capacity network as a back-up.
- Manual Error with routine Network Upgrade Procedure (traffic directed to the low capacity network)
 - many nodes were isolated.
 - Etc. (for more info follow the link below)
- Tens of sites and businesses impacted for 3 long days

(Source) http://aws.amazon.com/message/65648/

What is network monitoring

- Process of observing or inspecting the network at different points
- With the objective of
 - Drawing operation baselines
 - Produce reports
 - Notify on abnormal operation
 - Provide input to network management

- Can be used to
 - Understand the behavior of the network
 - Detect faults and abnormal operation
 - Network planning & resource optimization
 - Network security (Intrusion & Attack Detection)
 - Performance, quality & SLA monitoring
 - CRM, Marketing
- Sit above traffic measurements
 - Gather traffic measures and performance indicators
 - Analyze and correlate the measures in order to make a diagnosis

Network monitoring: Basics

• Interface for real-time monitoring. • Store collected data in a database for post Monitoring Monitoring analysis (trends, history, reporting ...). Application or application DataBase Gathers, aggregates and correlates collected measures Calculate indicators (QoS parameters, Performance **Analysis Unit** analysis unit KPIs). • This performs the measurements • Collects the required information for Measurement Measurement Measurement Measuremen analysis. Unit Unit Unit t unit • This is where the measurements will be performed. Observation Observation Observation • The more observation points we have, the Observation Point Point Point points more accurate data we get.

12/15/2017

Network monitoring: Basics

Seminar plan

- Network monitoring
 - Needs for network monitoring
 - Measurements (what, where and how)
 - Limitations (briefly)
- Deep Packet Inspection
 - What is DPI and why it is needed
 - Application classification
 - Traffic attributes extraction
- Security monitoring with DPI
 - Abstract description
 - Challenges
 - Security properties

Complexity of network measurements

- Size, complexity and diversity of the networks
 - understand cause-effect relationships is difficult
- Measurement is not an objective!
 - meaningless without careful analysis
 - Analysis depends on the monitoring objective
 - Need to define
 - What, where, how to measure?

Determining What to Measure

- Before any measurements can take place one must determine what to measure
- Definition of metrics is closely related to the monitoring objective
- There are many commonly used network performance metrics
 - CAIDA Metrics Working Group (<u>www.caida.org</u>)
 - IETF's IP Performance Metrics (IPPM) Working Group

Determining What to Measure

- Example: Performance metrics can be classified into
 - Network metrics
 - Latency
 - Throughput
 - Arrival rate
 - Link utilization, bandwidth
 - Loss rate
 - Application metrics
 - Response time
 - Connection setup time
 - availability
 - User quality metrics (depends on the application)
 - Mean opinion score (VoIP)
 - Quality of experience (Video through estimation)

Determining How to Measure

Active measurements

Passive measurements

Determining *How* to Measure

- Active measurements
 - Send test traffic into the network
 - Generate test packets periodically or on-demand
 - Measure performance of test packets or responses
 - Popular tools
 - Ping: RTT and loss
 - Traceroute: path and RTT
 - Problems:
 - Impose extra traffic on network and distort its behavior in the process
 - May impact the behavior of the network (self interfering)

Determining *How* to Measure

- Passive measurements
 - Observing network traffic at the measurement point(s)
 - Packet capture (wireshark)
 - Flow-based measurement tools (routers)
 - SNMP tools (mostly used)
 - Perform analysis for various purposes
- Used to perform various traffic usage/characterization analysis/intrusion detection
- Problems
 - LOTS of data!
 - Privacy issues
 - Performance issues (wire speed packet capture and analysis)

Comparison of active/passive measurements

	Active measurements	Passive measurements
Configuration	Multi-point	Single or multi-point
Data size	Small	Large
Network overhead	Additional traffic	Device overheadNo overhead ifsplitter is used
Purpose	Delay, packet loss, availability	Throughput, traffic patterns, trends, & detection
CPU Requirement	Low to Moderate	High

12/15/2017

Determining Where to Measure

- Single point measurements
 - Provide partial view of the network

12/15/2017

Determining Where to Measure

- End-to-end measurements
 - Provide a view on the performance between the the end points

Determining Where to Measure

- Multi point measurements
 - Provide a view on the performance in the different "monitored" segments of the network

Seminar plan

- Network monitoring
 - Needs for network monitoring
 - Measurements (what, where and how)
 - Limitations (briefly)
- Deep Packet Inspection
 - What is DPI and why it is needed
 - Application classification
 - Traffic attributes extraction
- Security monitoring with DPI
 - Abstract description
 - Challenges
 - Security properties

Limitation of measurements

- For years, monitoring used primarily
 - Global traffic measures provided by Simple Network Monitoring Protocol
 - Traffic data provided by routers (netflow data)
- These information are always of great interest
- However, are they sufficient?

Limitation of measurements

- What if we need to know:
 - Who's using Skype, P2P, VoD, etc.?
 - Most popular applications on the network
 - Proportion of VoIP calls with bad quality
 - Quality of experience for video streaming
- New means for providing accurate traffic measures is required
 - Deep Packet Inspection is a good candidate

Seminar plan

- Network monitoring
 - Needs for network monitoring
 - Measurements (what, where and how)
 - Limitations (briefly)
- Deep Packet Inspection
 - What is DPI and why it is needed
 - Application classification
 - Traffic attributes extraction
- Security monitoring with DPI
 - Abstract description
 - Challenges
 - Security properties

Deep Packet Inspection

What is DPI and why it is needed Application classification

Traffic attributes extraction

What is DPI

- Technology consisting of digging deep into the packet header and payload to "inspect" encapsulated content
 - Content may be spread over many packets

Why to DPI

- Network Visibility
 - Understand how bandwidth is utilized
 - What is the application mix
 - Who is using what, where and when?
- Traffic Management (Application Control)
 - Block undesired traffic (spam, worms, etc.)
 - Prioritize and shape traffic (limit P2P, QoS, QoE)
 - Advanced policy enforcement
 - Zero Facebook, OTT services, per application policy rules
- Network management
 - Advanced billing (abandoning the unlimited data plans)
 - New pricing may appear soon (user defined preferred applications for free, fees applies for the rest of applications)
- Security
 - Understand network attacks
 - Core component in next generation firewalls
- Etc.

Inside DPI

- Group packets belonging to the same session
- Application classification
 - Detect application type (Skype, Bittorrent, etc.) or application family
 - Considered as the core of DPI
- Protocol decoding and attribute extraction
 - Parse the packet structure (this depends on the protocol & application)
 - Get protocol attributes (IP @, port numbers, ...)
 - Get session attributes
 - Events and attributes may involve different packets
 - · Attached file of an email

DPI Drivers

- Bandwidth (market driver)
 - High penetration rate for broadband
 - At home: ADSL2+, VDSL2, FTTx
 - Mobile: 3G+ and 4G
 - Bandwidth per user is ramping up (fixed and mobile)
- Legal Interception (legislation driver)
 - Requirement for service providers
 - DPI is a core component

More

Applications

More

Bandwidth

Market drivers: Applications

Video

• Expected to reach 60% of mobile traffic

• Web video (Youtube, daily motion, video channel) + Telcos (IPTV & VoD)

Social

- Increasing traffic with diverse media contents (embedded video)
- High signalling overhead (short frequent sessions)

BitTorrent

P₂P

- Continue to be highly popular (~ 40-60% BW)
- Use encryption BitTorrent, eMule
- Viable choice for providers (Warner Bros, Spotify)

VolP

- Skype, GoogleTalk, Yahoo!Voice, Facebook?
- Serious competitor for traditional telephony!

Gaming

- Consoles & PC offer "over the network" gaming experience
- Stringent Bandwidth & Latency requirements

Seminar plan

- Network monitoring
 - Needs for network monitoring
 - Measurements (what, where and how)
 - Limitations (briefly)
- Deep Packet Inspection
 - What is DPI and why it is needed
 - Application classification
 - Traffic attributes extraction
- Security monitoring with DPI
 - Abstract description
 - Challenges
 - Security properties

Application classification: the challenge

- High number of applications and protocols
 - Same Application Different Implementations/versions
 - Bittorrent has more than 30 different client implementations
 - IM or VoIP don't use similar protocols
 - Evolving Architectures
 - Client/server, Cashes, P2P, Client's network surroundings: Firewall/NAT, Proxy
 - Various Clients: PC, Smartphone, Gaming Console
 - Symmetric vs. Asymmetric
- Frequent Updates
 - Can vary from every year to every month
 - Typically will affect protocol format
- Use of Encryption (Obfuscation)
 - Primarily designed for counter measuring operator's throttling and monitoring efforts (eMule, Bittorrent)
 - In some cases protect proprietary implementation (Skype)
- Need to differentiate use
 - "Good" (legit streaming, SW updates) vs. "Bad" (pirated file sharing) P2P
- Need to recognize application subtleties for proper actions
 - Example: MSN IM block VoIP & Streaming, allow Chat

Application classification: Techniques

Classification techniques

Port based classification

Pattern matching based classification

Statistical classification

Application classification Evaluation criteria

- Completeness
 - Ratio of the application detection count over the expected detection count
 - Low detection completeness indicates many false negatives.
 - A false negative is the inability to classify a flow of application A as a flow of application A.

- Accuracy
 - Ratio of the correct detections over the detection count
 - Measures how correct the detection technique is
 - It may not be more than 100%.
 - The lack of accuracy leads to false positives
 - A false positive is the classification of application B as being application A.
- Impacted if the classification technique is weak
- Target: reduce false positives and false negatives in order to reach a sufficient enough accuracy

12/15/2017

Analysis by Port Numbers

- Reasoning:
 - Many applications and protocols have assigned port numbers (and widely used)
 - Example: email
 - Incoming POP3: 110 (995 if using SSL)
 - Outgoing SMTP: 25
- The Good It's easy [©] The Bad It's too easy [®]
 - Many applications disguise the traffic using ports usually used by different protocols (80, 25, 110, ...)
 - Firewall and Nat traversal
 - New or unknown protocols
 - Applications that choose a random port number
 - Accuracy ~ 30 70 % (close to 0% for some applications: P2P)

Analysis by Port Numbers

Basic header information (port numbers)

Analysis by Pattern Matching

- Reasoning:
 - Many applications have pure textual identifiers
 - Defined in the application or protocol specification documents (RFCs, 3GPP, ITU)
 - Ex: HTTP request must start with

"Method URI HTTP/1.1"

- Easy to search for
 - Very easy if in a specific location within a packet
- Uniqueness not always guaranteed
 - Risk to have false positives!
- Pattern may involve different packets
 - Track the connection state and signature matching

Analysis by Pattern Matching

12/15/2017

Analysis by Pattern Matching

12/15/2017

Behavior and statistical analysis

- Many protocols have statistical and behavioral "signatures" that are not related to the data contents:
 - Packet size
 - Inter-arrival delay
 - Specific exchange that can be assimilated to a state machine
- The detection requires a number of packets
- Example
 - Very close inter-arrival delays with low deviation from the average (VoIP)
- Extremely effective analysis when application uses encryption or obfuscation
 - Or simply when access to the payload is not possible
 - Classification in the dark

Behavior and statistical analysis

Skype (Old Version) connection setup

44

Packet classification: an expensive operation

- High memory and processing requirements
 - Will increase with the number of supported protocols and applications
- Requires dedicated high capability hardware
 - Multi-core technology
 - Line rate packet capture capabilities

How it can be optimized???

Packet Classification: Optimization perspectives (1)

- Observation: traffic flows with the same server IP@ and port number will most probably have the same application type
- Idea:
 - Cache server identifiers (IP@ and port number) along with the application class/type
- Work mostly for client/server based applications
 - P2P traffic still needs to be classified
 - Overall gain though
- Preliminary evaluation shows a global gain of $30 \sim 60 \%$ (vary with the application mix)
 - Looks very promising
 - Results to be confirmed on large scale evaluation

Packet Classification: Optimization perspectives (2)

- Observation: If a user is currently using an application, he will most probably use it again in the very near future
 - − Take yourself as examples ☺
- Idea:
 - Prioritize the classification by checking first the protocols and applications the user has recently used
 - Require to maintain a cache per user (few items 5-10)
- Why not to combine both ideas
 - Cache of server identifiers and application types
 - Per user cache of recently used applications

Seminar plan

- Network monitoring
 - Needs for network monitoring
 - Measurements (what, where and how)
 - Limitations (briefly)
- Deep Packet Inspection
 - What is DPI and why it is needed
 - Application classification
 - Traffic attributes extraction
- Security monitoring with DPI
 - Abstract description
 - Challenges
 - Security properties

From classification to attributes and events extraction

- Application classification is a first step towards accurate traffic information extraction
 - How can we get the HTTP method (Get, Post, etc.) if we don't know the type of the traffic
 - When the application type is known decoding becomes "easy"
- What are traffic attributes?
 - Protocol field derived from the packet data: IP@, attachment size, encoding type, etc.
 - Flow parameter: packet mean size, inter-arrival delay, packets lost, reordered, etc.
 - The application class can be considered as a traffic attribute

Attribute extraction with DPI

- With the extraction capability, DPI can provide input for other mechanisms as:
 - Security analysis
 - User quality analysis
- Imagine the network as a database and DPI as an engine to extract data from this database!

Network as a Database

Network as a Database

 Select user_id, perceived_quality Where (application = Video AND protocol = RTP)

 Select flow_id Where (application = email AND attachment is executable)

Seminar plan

- Network monitoring
 - Needs for network monitoring
 - Measurements (what, where and how)
 - Limitations (briefly)
- Deep Packet Inspection
 - What is DPI and why it is needed
 - Application classification
 - Traffic attributes extraction
- Security monitoring with DPI
 - Abstract description
 - Challenges
 - Security properties

Security Monitoring with DPI

Abstract description

Challenges

Security properties

The HBGary Hack

- HBGary experts in computer security
 - computer forensics and malware analysis tools to enable the detection, isolation, and analysis of worms, viruses, and trojans
 - implementing intrusion detection systems and secure networking
 - performs vulnerability assessment and penetration testing of systems and software
 - rootkit.com is a respected resource for discussion and analysis of rootkits
- CEO Aaron Barr wanted to unmask Anonymous
 - Those responsible for co-ordinating the group's actions, including the denialof-service attacks that hit MasterCard, Visa, and others late last year
- Anonymous response
 - HBGary's servers were broken into, its e-mails pillaged and published to the world, its data destroyed, and its website defaced. As an added bonus, a second site owned and operated by Greg Hoglund, owner of HBGary, was taken offline and the user registration database published

The HBGary Hack

	Attack Method	Attacked System	Vulnerability	Lost Assets
1	SQL Injection	CMS on HBGary Federal's website, hbgaryfederal.com	CMS with missing validity check of SQL Parameters	usernames, e-mail @ & password hashes
2	Password cracking using rainbow tables	Password hashes from 1	Hashes without salt, weak passwords	clear text passwords
3	Unauthorized use of passwords from 2	E-mail, Twitter accounts, and LinkedIn accounts of HBGarry officials	Password double use	Email accounts of HBGary officials
4	Unauthorized use of passwords from 2	Machine running support.hbgary.com	Password double use	Non-superuser account of HBGary official
5	Privilege escalation	Machine running support.hbgary.com	Privilege escalation vulnerability, system not up to date	Full access to HBGary's system, gigabytes of backups and research data
6	Social engineering	Machine running rootkit.com		Integrity of rootkit.com

12/15/2017

The HBGary Hack: Where can security monitoring help?

	Attack Method	Attacked System	Vulnerability	Lost Assets				
1	SQL Injection	CMS on HBGary Federal's website, hbgaryfederal.com	CMS with missing validity check of SQL Parameters	usernames, e-mail @ & password hashes				
2	Daccword cracking	Daccward hachae from 1	Hachac without calt	cloar toxt passwords				
	SQL injection: In top ten most known vulnerabilities (Top ten vulnerabilities are responsible for 60% of software bugs!) Multi-lines security system: Is it possible to detect security attacks (SQL injection in this case) by inspecting the data encoded in inbound traffic?							
				data				
6	Social engineering	Machine running rootkit.com		Integrity of rootkit.com				
12/1	12/15/2017							

12/15/2017

Security monitoring with DPI: Abstract description

The concept:

- Detect the occurrence of events on the network
 - Input provided by DPI
 - Event can be: packet arrival, HTTP POST request, etc.
- Inspect and analyze the succession of events to detect properties
 - Property: Succession of events that are linked with "time" and "logical" constraints
 - If we detect event "A", then we MUST detect event "B" before 10 seconds

• The idea:

Monitor the network looking for the occurrence of properties.

Security monitoring using DPI: Abstract description

- Example: SQL injection
 - www.abcd.com/page?name=Select * Where 1
 - The events events:
 - HTTP GET request
 - URL parameter contains SQL statement
 - The property
 - It is not allowed to have a URL parameter containing SQL statement in an HTTP GET request
 - If the property is detected on the network then most probably there is an attack attempt!
- Nice Theory! But very challenging

Security monitoring using DPI

Challenges

- The number of events that can occur on a network is huge!
 - Solution: Use DPI for the events extraction
 - Group events/attributes by application and add new ones when needed
- The expressivity of the properties (need to combine time and logical constraints)
- Complex analysis and processing especially in high bandwidth links
 - Optimization techniques, multi-core implementations, smart traffic filtering

Properties Expressivity

Considering security monitoring, properties can be used to express:

- A Security rule describes the expected behavior of the application or protocol under-test.
 - The non-respect of the Security property indicates an abnormal behavior.
 - Set of properties specifying constraints on the message exchange
 - i.e. the access to a specific service must always be preceded by an authentication phase
- An Attack describes a malicious behavior whether it is an attack model, a vulnerability or a misbehavior.
 - The respect of the Security property indicates the detection of an abnormal behavior that might indicate the occurrence of an attack.
 - Set of properties referring to a vulnerability or to an attack
 - A big number of requests from the same user in a limited period can be considered as a behavioral attack

Properties Expressivity

- A security property is composed of 2 parts:
 - A Context
 - A condition to verify
- The "Context" and "condition" of a property are composed of:
 - Simple events
 - Conditions on attributes (IP @ equal to 1.2.3.4)
 - Complex events linked by
 - Logical operators (AND/OR/NOT)
 - Chronological operator (AFTER/BEFORE)

Properties Expressivity

- A security property is composed of 2 parts:
 - A Context
 - A condition to verify

If an HTTP Response is received (this is the context)

Then an HTTP request should have been received **before** (condition to verify)

Security monitoring with DPI

12/15/2017

THANK YOU

Wissam Mallouli wissam.mallouli@montimage.com

- shawez@jnu.ac.in
- Lucie.poggi@agroparistech.fr
- Mohamed-reda.belbahri@espci.fr
- mariabargues1@gmail.com