	Faculty of Science
-	Vrije Universiteit Amsterdam

Coding and cryptography (X_405041) Exam 8-6-2023 (18:45-21:30)

Note

- (1) This exam consists of 8 problems.
- (2) Calculators, notes, books, etc., may not be used.
- (3) Do not hand in scrap, etc., and when handing in $n \ge 1$ sheets, number them $1/n, \ldots, n/n$.
- (4) Justify your answers!
- (5) Throughout this exam, $K = \{0, 1\}$.

Problems

- (1) In this problems we consider linear (n, n-3, 3)-codes in K^n for $n \ge 4$.
 - (a) Show that there is no such code if n > 7.
 - (b) Construct such codes for n=4,5,6 and 7. (Hint: construct suitable check matrices H and explain why they define such codes.)
- (2) Let H be a matrix with as rows all the elements in K^8 of weight 1, 3 and 5.
 - (a) Verify that H satisfies the conditions to be a parity check matrix for a binary linear code C.
 - (b) What is the rate of C?
 - (c) Determine the distance d(C) of C.
 - (d) Compute how many received words for C can be decoded under IMLD where we correct any error of weight at most 1. Do not simplify your answer to a number.
- (3) Let $F = GF(2^3)$ be constructed using the primitive irreducible polynomial $1 + x + x^3$ and let β be the class of x.
 - (a) Find a parity check matrix H (with entries in K) for the cyclic Hamming code C of length 7 with generator polynomial $m_{\beta}(x)$.
 - (b) Decode the received word w = 1010011 for this code.
- (4) Let I(x) modulo $1 + x^{25}$ be the idempotent that contains the term x^{10} and has the smallest possible number of terms.
 - (a) Compute I(x).

Now let C be the smallest cyclic linear code in K^{25} that contains I(x).

- (b) Show that the generator polynomial of C is $g(x) = 1 + x^5$.
- (c) Compute the dimension of C.
- (d) Determine the distance d(C) of C.
- (5) In this problem, you may use without proof which polynomials in K[x] are irreducible for degrees 1, 2 and 3.

NB The two parts of this problem are independent of each other.

- (a) Factorize $f(x) = x^8 + x^3 + x$ into irreducibles in K[x].
- (b) Determine the number of divisors of $1 + x^{48}$ in K[x]. Hint: $48 = 16 \cdot 3$.

Please turn over for problems (6), (7) and (8).

In problems (6) and (7), $GF(2^4)$ is constructed as K[x] modulo $1+x+x^4$ and β is the class of x, so $1 + \beta + \beta^4 = 0$. Moreover, β is primitive, and the table for its powers is:

0000	-	1101	β^7
1000	1	1010	β^8
0100	β	0101	β^9
0010	β^2	1110	β^{10}
0001	β^3	0111	β^{11}
1100	β^4	1111	β^{12}
0110	β^5	1011	β^{13}
0011	β^6	1001	β^{14}

- (6) Let β and $GF(2^4)$ be as in the table, let $\alpha = \beta^5 + \beta^6$, and let $m_{\alpha}(x)$ be the minimal polynomial of α in K[x].
 - (a) Determine the degree of $m_{\alpha}(x)$ in an efficient way.
 - (b) Find $m_{\alpha}(x)$ explicitly.
- (7) Let β and $GF(2^4)$ be as in the table. Let $C\subseteq K^{15}$ be the 2-error correcting BCH code with parity check matrix

$$H = \begin{bmatrix} 1 & 1\\ \beta & \beta^3\\ \beta^2 & \beta^6\\ \vdots & \vdots\\ \beta^{14} & \beta^{42} \end{bmatrix}.$$

If w is a received word, determine if $d(v, w) \leq 2$ for some v in C in two cases:

- (a) w has syndrome $wH = [s_1, s_3] = [0, \beta];$ (b) w has syndrome $wH = [s_1, s_3] = [\beta^{14}, \beta^{11}].$
- (8) (a) Perform the Miller-Rabin probabilistic primality test for n = 137 with a = 2.
 - (b) Which conclusions can be drawn from the result in (a) concerning if n is prime or not?

	Distribution of points														
1a:	4	2a:	2	3a:	7	4a:	4	5a:	7	6a:	4	7a:	8	8a:	4
1b:	5	2b:	4	3b:	4	4b:	3	5b:	4	6b:	6	7b:	8	8b:	2
		2c:	6			4c: 4d:	1								
		2d:	3			4d:	4								
Maximum total = 90															
Exam grade = $1 + \text{Total}/10$															