Sistemas Distribuídos material baseado em slides dos Profs. Avelino Zorzo, Celso Costa, Fernando Dotti e Luiz Gustavo Fernandes e no livro: Distributed Operating Systems - Concepts and Design - Pradeep Sinha

Introdução - Conteúdo - Introducio - Introd

Introdução O que é um sistema distribuído? "Um sistema distribuído é uma coleção de computadores independentes que parecem um sistema único para o usuário [Tanenbaum]. Dois aspectos: Hardware: autonomia Software: sistema único Exemplos: Fábrica com robôs Banco e agências

Introdução Vantagens de S.D. sobre S.C Economia Revogação da *Lei de Grosh*: performance é proporcional ao custo² Válida para *Mainframes*Velocidade 10.000 CPUs x 50MIPS = 500.000 MIPS Uma CPU (??) para isto deve executar 1 instrução a cada 0.002 nanoseg (2 picoseg). (Velocidade da luz 0.6mm em 2 picoseg) Algumas aplicações são naturalmente distribuídas CSCW (Computer Suported Cooperative Work)

Introdução Vantagens de S.D. sobre PCs Compartilhamento de dados Reusabilidade Compartilhamento de periféricos Economia Comunicação Correio eletrônico Flexibilidade Melhor aproveitamento dos recursos

INTRODUÇÃO Histórico

Introdução (histórico) Computadores iniciais: Caros e grandes Anos 50 e 60: Spooling, multiprogramação otimizar utilização da CPU Início dos anos 60: Sistemas Time Sharing Primeiro passo na direção dos Sistemas Distribuídos Incorpora dois conceitos fundamentais: Compartilhamento de recursos Acesso remoto Terminais passam a ter maior capacidade de processamento Tarefas principais/comuns em comp. principal

Introdução (histórico) Evolução do hardware: redução do tamanho, do preço, aumento da velocidade Comunicação: velocidades e distâncias maiores, maior confiabilidade Final dos anos 60 e início dos anos 70: Surgimento das redes Ethernet - Xerox Palo Alto: 73 - LAN ARPANet - DoD: 69 - WAN Final dos anos 60 e início dos anos 70: Unix final dos anos 70: Protocolo TCP/IP Início dos anos 80: Estações de trabalho

Introdução (hardware) Taxonomia de hardware (Flynn 1972) SISD: single instruction single data computadores com um processador SIMD: single instruction multiple data array de processadores (alguns supercomputadores) MISD: multiple instruction single data pouco usual MIMD: multiple instruction multiple data sistemas distribuídos estão nesta categoria, ou um conjunto de computadores independentes, cada um com seu contador de programa, conjunto de instruções e dados

Modelos de Distributed Computing Systems - MIMD/
NORMA (Pradeep)

Processadores

Redes de Minicomputadores

Redes de Estações de Trabalho

Redes de Estações de Trabalho com Estações Servidoras (Modelo Cliente/Servidor)

Pool de Processadores

Cliente/Servidor com um Pool de Processadores

Modelo Rede de Minicomputadores > Extensão do modelo time-sharing > cada minicomputador tem usuários conectados via terminais interativos > rede permite a usuário acessar recursos de outros minicomputadores > ex.: ARPANet

Modelo Cliente/Servidor Podem existir estações sem disco Estações servidoras oferecem os serviços servidor de arquivos servidor de Impressão servidor de Base de Dados Usuário se conecta a uma estação O sistema implementa o acesso remoto (transparente) aos serviços EX.: NFS da Sun Sistemas Distribuídos

Introdução (terminologia) Sistema Operacional programa que controla os recursos de um computador e oferece ao usuário uma interface mais conveniente para o uso do que a máquina Em um Sistema Computacional Distribuído pode-se usar: Sistema Operacional de Rede Sistema Operacional Distribuído Sistema Operacional Distribuído

Introdução (terminologia)

- > Sistema Operacional Distribuído

 - Um SOD parece aos seus usuários como um único sistema operacional, centralizado, mas rodando em diversas CPUs independentes.
 O conceito chave é transparência. O uso de múltiplos processadores deve ser transparente ao usuário.
 Máquinas não são autônomas

 - Tolerância a falhas
 - um DCS com um DOS é dito um Distributed System ou True Distributed System

7