Теория функций комплексной переменной

Н. В. Цилевич *

2 сентября 2016 г.

Содержание

1	Комплексные числа	2
2	Стереографическая проекция и сфера Римана	4
3	Предел и непрерывность	6
4	Дифференцирование функции комплексной переменной	7
5	Элементарные функции комплексной переменной	10

^{*}Конспект подготовлен студентом Яскевичем С. В.

1 Комплексные числа

Вспомним базовые понятия, связанные с комплексными числами.

Комплексное число представляется в виде пары вещественных чисел: $z=(x,y)\in\mathbb{C}$, где $x,y\in\mathbb{R}$. При этом x называется вещественной частью числа z, а y — мнимой частью. Комплексные числа равны тогда и только тогда, когда равны их соответственно вещественные и мнимые части. Также справедливы следующие соотношения:

- 1. $(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$
- 2. $(x_1, y_1) \cdot (x_2, y_2) = (x_1x_2 y_1y_2, x_1y_2 + x_2y_1)$
- 3. $\mathbb{R} \subset \mathbb{C}$, при этом $x \in \mathbb{R} \mapsto (x,0)$ и операции согласованы.

Число i=(0,1) называется мнимой единицей. Легко видеть, что $i^2=-1$. Таким образом, комплексное число можно записать в алгебраической форме: z=(x,y)=z+iy. Числа вида $iy\ (y\in\mathbb{R})$ называеются чисто мнимыми.

Теорема 1.1. $(\mathbb{C}, +, \cdot)$ — поле. Вычитание и деление вводятся как операции, обратные κ сложению и умножению.

Доказательство. Тривиально.

Замечание 1.2. На $\mathbb C$ не задано отношения порядка.

Определим операцию комплексного сопряжения: если $z=x+\mathrm{i} y$, то $\overline{z}=x-\mathrm{i} y$. Свойства сопряжения:

- 1. $\overline{\overline{z}} = z$ (инволюция);
- 2. $\overline{z_1*z_2}=\overline{z_1}*\overline{z_2}$, где *- любая арифметическая операция;
- 3. $z + \overline{z} = 2 \operatorname{Re} z$, $z \overline{z} = 2i \operatorname{Im} z$;
- 4. $z\overline{z} = (\text{Re } z)^2 + (\text{Im } z)^2 \ge 0$;
- 5. $z = \overline{z} \iff z \in \mathbb{R}$.

Геометрическая интерпретация комплексных чисел

Сложение комплексных чисел соответствует сложению их радиус-векторов на комплексной плоскости. Перейдём к полярным координатам: $x = r\cos \phi$, $y = r\sin \phi$. Благодаря этому мы можем записать комплексное число в тригонометрической форме: $z = r(\cos \phi + i \sin \phi)$. r = |z| называется модулем числа z, а ϕ — его аргументом.

Свойства модуля:

- 1. Геометрический смысл: |z| расстояние на комплексной плоскости от 0 до z, отсюда $|z_1-z_2|$ расстояние между точками z_1 и z_2 ;
- 2. $|z| = \sqrt{(\text{Re } z)^2 + (\text{Im } z)^2} = \sqrt{z\overline{z}} \geqslant 0$;
- 3. $|z| = 0 \iff z = 0$;
- 4. $|\operatorname{Re} z|, |\operatorname{Im} z| \leq |z|;$
- 5. Неравенство треугольника: $|z_1 + z_2| \leq |z_1| + |z_2|$;
- 6. $|z_1 z_2| \ge ||z_1| |z_2||$

Заметим, что аргумент определён для любого ненулевого z с точностью до $2\pi k$ ($k \in \mathbb{Z}$). Будем обозначать Arg z множество всех аргументов z, а arg z — значение аргумента из фиксированного интервала длины 2π , например, $[0,2\pi)$.

$$\operatorname{Arg} z = egin{cases} \operatorname{arctg} rac{y}{x} + 2\pi k, k \in \mathbb{Z} - \mathtt{B} \ \operatorname{I} \ \mathtt{u} \ \operatorname{IV} \ \mathtt{к}$$
вадрантах $\operatorname{arctg} rac{y}{x} + (2k+1)\pi, k \in \mathbb{Z} - \mathtt{Bo} \ \operatorname{II} \ \mathtt{u} \ \operatorname{III} \ \mathtt{к}$ вадрантах $z_1 = z_2 \iff |z_1| = |z_2| \ \mathtt{u} \ \operatorname{arg} z_1 - \operatorname{arg} z_2 = 2\pi k \ (k \in \mathbb{Z})$

Показательная форма записи комплексного числа

Введём теперь обозначение: $e^{i\phi} \stackrel{\text{def}}{=} \cos \phi + i \sin \phi$. Тогда $z = re^{i\phi}$ — такая форма называется показательной.

Лемма 1.3. Пусть $z_1=r_1e^{\mathfrak{i}\,\phi_1}$, $z_2=r_2e^{\mathfrak{i}\,\phi_2}$. Тогда $z_1z_2=r_1r_2e^{\mathfrak{i}(\phi_1+\phi_2)}$, $\frac{z_1}{z_2}=\frac{r_1}{r_2}e^{\mathfrak{i}(\phi_1-\phi_2)}$. Доказательство.

$$\begin{split} z_1 z_2 &= r_1 r_2 (\cos \phi_1 + \mathrm{i} \sin \phi_1) (\cos \phi_2 + \mathrm{i} \sin \phi_2) = \\ &= r_1 r_2 (\cos \phi_1 \cos \phi_2 - \sin \phi_1 \sin \phi_2 + \mathrm{i} (\cos \phi_1 \sin \phi_2 + \sin \phi_1 \cos \phi_2)) = \\ &= r_1 r_2 (\cos (\phi_1 + \phi_2) + \mathrm{i} \sin (\phi_1 + \phi_2)) = r_1 r_2 e^{\mathrm{i} (\phi_1 + \phi_2)} \end{split}$$

Для частного — аналогично.

Таким образом, имеем $|z_1z_2| = |z_1||z_2|$, $\operatorname{Arg}(z_1z_2) = \operatorname{Arg} z_1 + \operatorname{Arg} z_2$ (по определению суммы множеств $A + B \stackrel{\text{def}}{=} \{a + b \mid a \in A, b \in B\}$) и $\operatorname{arg}(z_1z_2) = \operatorname{arg} z_1 + \operatorname{arg} z_2 + 2\pi k \ (k \in \mathbb{Z})$.

Геометрический смысл умножения на число $a \in \mathbb{C}$: радиус-вектор растягивается в |a| раз и поворачивается на угол arg a.

Пример 1.4. Умножение на i — поворот на $\frac{\pi}{2}$.

Корень п-й степени из комплексного числа

Воспользуемся показательной формой: $z^n = r^n e^{in\varphi}$.

Определение 1.5. $w=\rho e^{\mathrm{i}\psi}$ — корень n-й степени из $z=\mathrm{r}e^{\mathrm{i}\varphi}\in\mathbb{C}\backslash\{0\}$ тогда и только тогда, когда $w^n=z$.

То есть:

$$\rho^n e^{in\psi} = r e^{i\phi} \iff \begin{cases} \rho^n = r \\ n\psi = \phi + 2\pi k, \; k \in \mathbb{Z} \end{cases} \iff \begin{cases} \rho = \sqrt[n]{r} \\ \psi = \frac{\phi}{n} + \frac{2\pi k}{n} \quad (k = 0, ..., n - 1) \end{cases}$$

Итого, корней n-й степени из z n штук.

2 Стереографическая проекция и сфера Римана

Рассмотрим сферу S с центром в точке $(0,0,\frac{1}{2})$ и радиусом $\frac{1}{2}$. Уравнение этой сферы будет таким:

$$\xi^2 + \eta^2 + \zeta^2 - \zeta = 0$$

Отождествим комплексную плоскость (x,y) с плоскостью (ξ,η) . Рассмотрим лучи, исходящие из полюса N в точки $z\in\mathbb{C}$. Ясно, что точка пересечения луча и сферы единственна. Обозначим её как A(z). Это и будет стереографическая проекция точки z на сферу S, которая называется $c\phi$ ерой Pumana. Таким образом мы установили взаимно-однозначное соответствие между комплексной плоскостью и сферой Pumana без полюса:

$$\mathbb{C} \leftrightarrow S \backslash \{N\}$$

Предложение 2.1. Справедливы соотношения:

$$\xi = \frac{x}{1 + |z|^2}, \quad \eta = \frac{y}{1 + |z|^2}, \quad \zeta = \frac{|z^2|}{1 + |z|^2}$$

$$x = \frac{\xi}{1 - \zeta}, \quad y = \frac{\eta}{1 - \zeta}$$

Доказательство. Построим прямую через точки N=(0,0,1) и z=(x,y,0). Она имеет вид $\{(tx,ty,1-t)\,|\,t\in\mathbb{R}\}$. Подставим координаты точек прямой в уравнение сферы Римана:

$$t^2x^2+t^2y^2+1/-2t+t^2-1/+t=0$$
 $t^2(\underbrace{x^2+y^2}_{|z|^2}+1)=t\implies t=rac{1}{1+|z|^2}$, откуда $\xi=tx=rac{x}{1+|z|^2}$

Далее аналогично.

Предложение 2.2.
$$\operatorname{dist}(A(z_1),A(z_2))=\frac{|z_1-z_2|}{\sqrt{1+|z_1|^2}\cdot\sqrt{1+|z_2|^2}}$$
, $\operatorname{dist}(A(z),N)=\frac{1}{\sqrt{1+|z|^2}}$.

 Δ оказательство. Спроецируем $A(z_1)$, $A(z_2)$ на ось $O\zeta$. Видно, что треугольники \triangle BN $A(z_1)$ и \triangle ON z_1 подобны (здесь $B=(0,0,\zeta_1)$). Поэтому

$$\frac{\mathrm{dist}(\mathsf{N},\mathsf{A}(z_1))}{\mathrm{dist}(\mathsf{N},z_1)} = \underbrace{\frac{\underbrace{\mathrm{dist}(\mathsf{N},\mathsf{B})}}{\mathrm{dist}(\mathsf{N},\mathsf{O})}}_{1} \implies \mathrm{dist}(\mathsf{N},\mathsf{A}(z_1)) = \sqrt{1+|z_1|^2} \cdot \underbrace{\underbrace{(1-\zeta_1)}^{\frac{1}{1+|z_1|^2}}}_{1} = \underbrace{\frac{1}{\sqrt{1+|z_1|^2}}}_{1}$$

Точно также подобны $\triangle NA(z_1)A(z_2)$ и $\triangle Nz_1z_2$, отсюда

$$\frac{\mathrm{dist}(A(z_1),A(z_2))}{\mathrm{dist}(z_1,z_2)} = \frac{\mathrm{dist}(N,A(z_1))}{\mathrm{dist}(N,z_1)} = \frac{1}{\sqrt{1+|z_1|^2}} \cdot \frac{1}{\sqrt{1+|z_2|^2}}$$

Определение 2.3. Обобщённая окружность — это окружность или прямая.

Запишем уравнение обобщённой окружности:

$$A(x^2 + y^2) + Bx + Cy + D = 0$$
, где A, B, C, D $\in \mathbb{R}$, B² + C² > 4AD

Очевидно, что это уравнение является уравнением окружности тогда и только тогда, когда $A \neq 0$. В противном случае это — прямая.

Предложение 2.4. Стереографическая проекция устанавливает биекцию между обобщёнными окружностями в $\mathbb C$ и окружностями на сфере Римана. При этом прямым соответствуют окружности, проходящие через точку $\mathbb N$.

 Δ оказательство. Воспользуемся формулами $x=rac{\xi}{1-\zeta},\,y=rac{\eta}{1-\zeta}$:

$$\frac{A\cdot(\xi^2+\eta^2)}{(1-\zeta)^2}+\frac{B\xi+C\eta}{1-\zeta}+D=0$$

C учётом $\xi^2 + \eta^2 = \zeta(1-\zeta)$ получим

$$\frac{A\zeta}{1-\zeta} + \frac{B\xi + C\eta}{1-\zeta} + D = 0$$

$$(A - D)\zeta + B\xi + C\eta + D = 0$$

Мы получили уравнение плоскости. Значит, образом будет пересечение сферы с плоскостью, то есть окружность. Если мы в полученное уравнение подставим N, то убедимся, что N лежит в этой плоскости, при этом A=0.

Определение 2.5. $\overline{\mathbb{C}}=\mathbb{C}\cup\{\infty\}$ называется расширенной комплексной плоскостью, ∞ — бесконечно удалённая точка.

Дополним определение стереографической проекции: пусть N переходит в ∞ и обратно. Тогда стереографическая проекция устанавливает биекцию между S и $\overline{\mathbb{C}}$, следовательно мы можем считать прямую окружностью, проходящей через ∞ .

Замечание 2.6. Стереографическая проекция конформна, то есть сохраняет углы между кривыми (будет описано далее).

Замечание 2.7. Дробно-линейные отображения в $\mathbb C$ переходят в движения сферы Римана.

3 Предел и непрерывность

Мы отождествили $\mathbb C$ и $\mathbb R^2$, а следовательно ввели понятие сходимости, которое наследует из $\mathbb R^2$ основные свойства.

Определение 3.1. $z_n \to z \iff \forall \varepsilon > 0 \quad \exists N : \forall n > N \quad |z_n - z| < \varepsilon.$

Свойства сходимости:

- 1. Покоординатность: $z_n \to z \iff x_n \to x$, $y_n \to y$ (где $z_n = x_n + \mathrm{i} y_n$, $z = x + \mathrm{i} y$);
- 2. Критерий Коши: z_n сходится, если $\forall \varepsilon > 0 \quad \exists N : \forall m, n > N \quad |z_n z_m| < \varepsilon;$
- 3. Принцип Больцано-Вейерштрасса: множество A ограничено тогда и только тогда, когда существует R такое, что z < R для всех $z \in A$. Если z_n ограничена, то из z_n можно выбрать сходящуюся подпоследовательность;
- 4. $\lim(z_k*z_k')=\lim z_k*\lim z_k'$, где * арифметическая операция.

Расширим понятие сходимости на $\overline{\mathbb{C}}$.

Определение 3.2. $z_n \in \mathbb{C} \to \infty \iff \forall R > 0 \quad \exists N : \forall n > N \quad |z_n| > R.$

Замечание 3.3. Очевидно, что $z_n o \infty \iff |z_n| o \infty \iff \frac{1}{|z_n|} o 0 \iff \frac{1}{z_n} o 0.$

Предложение 3.4. Сходимость в $\overline{\mathbb{C}}$ равносильна сходимости на сфере Римана. В частности, $z_n \to \infty \iff A(z_n) \to N$.

Доказательство. Следует из формул для расстояния:

$$\operatorname{dist}(A(z_n),A(z)) = \frac{|z_n - z|}{\sqrt{1 + |z_n|^2} \cdot \sqrt{1 + |z|^2}} \to 0$$

Отсюда также вытекает, что $\overline{\mathbb{C}}$ — компактно.

Займёмся теперь изучением функций комплексной переменной.

Предел функции комплексной переменной

Определение 3.5. $f(x+iy)=\underbrace{\mathfrak{u}(x,y)}_{\text{Re }f}+i\underbrace{\mathfrak{v}(x,y)}_{\text{Im }f},$ при этом $\mathfrak{u},\mathfrak{v}:\mathbb{R}^2\to\mathbb{R}$

Определение 3.6. Пусть E \subset \mathbb{C} , f : E o \mathbb{C} , z_0 — предельная точка E и $a \in \overline{\mathbb{C}}$.

$$\lim_{z\to z_0} f(z) = \alpha \iff \forall \varepsilon > 0 \quad \exists \delta > 0 : z \in \overset{\circ}{B}_{\delta}(z_0) \cap E \implies f(z) \in B_{\varepsilon}(\alpha)$$

Имеет место и покоординатная сходимость:

$$\lim_{z \to z_0} f(z) = a = \alpha + i\beta \iff \begin{cases} \lim_{(x,y) \to (x_0,y_0)} u(x,y) = \alpha \\ \lim_{(x,y) \to (x_0,y_0)} v(x,y) = \beta \end{cases}$$

Определение 3.7 (по Гейне). $\lim_{z\to z_0} f(z)=a$, если для любой последовательности $z_n\subset E$ такой, что $z_n\to z_0$ выполнено $f(z_n)\to a$.

Определение 3.8. Пусть $E \subset \mathbb{C}$, $f: E \to \mathbb{C}$, z_0 — неизолированная точка множества E. Функция f называется непрерывной в точке z_0 , если $\lim_{z \to z_0} f(z) = f(z_0)$; непрерывной на множестве E, если f непрерывна в каждой точке этого множества.

Отметим важные свойства непрерывности:

- 1. Функция f непрерывна тогда и только тогда, когда Ref и Imf непрерывны по совокупности переменных;
- 2. Композиция непрерывных функций непрерывна;
- 3. Если функция непрерывна на компакте, то она на нём ограничена, а её модуль достигает на этом компакте своих наибольшего и наименьшего значений.
- 4. Если G область (т. е. открытое связное множество), $f: G \to D$ и f непрерывная биекция, то D тоже область и f^{-1} непрерывно.

4 Дифференцирование функции комплексной переменной

Определение 4.1. Пусть $f: G \to \mathbb{C}$, G — область, $z_0 \in G$. Функция называется дифференцируемой в точке z_0 , если существует предел $\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$, который называется производной функции f в точке z_0 и обозначается $f'(z_0)$.

Введём обозначение: $z-z_0=\Delta z$, $f(z)-f(z_0)=\Delta f$ и заметим, что если $\phi=\alpha+\mathrm{i}\beta=\mathrm{o}(\Delta z)$, то это же самое, что α , $\beta=\mathrm{o}(\sqrt{\Delta x^2+\Delta y^2})$.

Рассмотрим простейшие свойства дифференцируемых функций:

- 1. Определение через дифференциал: функция f дифференцируема в точке z_0 тогда и только тогда, когда существет точка $A \in \mathbb{C}$ такая, что $\Delta f = A \cdot \Delta z + o(\Delta z)$. При этом $A = f'(z_0)$;
- 2. Если f дифференцируема в точке, то она непрерывна в этой точке;
- 3. Сумма и произведение дифференцируемых функций дифференцируемы;
- 4. Композиция: пусть $f: G \to D$, $g: D \to \mathbb{C}$, G и D области, $z_0 \in G$, $w_0 = f(z_0)$ и h(z) = g(f(z)). Если f дифференцируема в точке z_0 , g дифференцируема в точке w_0 , то h дифференцируема в точке z_0 и $h'(z_0) = g'(w_0) \cdot f'(z_0)$.

Теорема 4.2. Пусть $f = u + iv : G \to \mathbb{C}$, G - oбласть, $z_0 = (x_0, y_0) \in G$. f дифференцируема в точке z_0 тогда u только тогда, когда u u v дифференцируемы как функции из \mathbb{R}^2 в \mathbb{R} u, кроме того, выполнены условия Коши-Римана:

$$\frac{\partial u}{\partial x}(x_0,y_0) = \frac{\partial v}{\partial y}(x_0,y_0), \quad \frac{\partial u}{\partial y}(x_0,y_0) = -\frac{\partial v}{\partial x}(x_0,y_0)$$

Доказательство. Дифференцируемость f в точке z_0 равносильна существованию $A=a+ib\in\mathbb{C}$ такого, что $\Delta f=A\Delta z+\phi$, где $\phi=o(\Delta z)$. Пусть $\phi=\alpha+i\beta$. Тогда это будет равносильно $\Delta u+i\Delta v=(a+ib)(\Delta x+i\Delta y)+\alpha+i\beta$, причём α , $\beta=o(\sqrt{\Delta x^2+\Delta y^2})$, что, в свою очередь, равносильно выполнению условий

$$\begin{cases} \Delta u = a\Delta x - b\Delta y + \alpha \\ \Delta v = a\Delta y + b\Delta x + \beta \end{cases}$$

То есть u и v дифференцируемы в точке (x_0, y_0) . Легко видеть, что

$$\frac{\partial u}{\partial x}(x_0,y_0) = \alpha = \frac{\partial v}{\partial y}(x_0,y_0), \quad -\frac{\partial u}{\partial y}(x_0,y_0) = b = \frac{\partial v}{\partial x}(x_0,y_0).$$

Замечание 4.3. Производную функции f можно теперь выразить так:

$$\begin{split} f'(z_0) &= \frac{\partial u}{\partial x}(x_0, y_0) + i \frac{\partial v}{\partial x}(x_0, y_0) = \frac{\partial v}{\partial y}(x_0, y_0) + i \frac{\partial v}{\partial x}(x_0, y_0) = \\ &= \frac{\partial u}{\partial x}(x_0, y_0) - i \frac{\partial u}{\partial y}(x_0, y_0) = \frac{\partial v}{\partial y}(x_0, y_0) - i \frac{\partial u}{\partial y}(x_0, y_0) \end{split}$$

Определение 4.4. Функция называется голоморфной в точке, если она дифференцируема в некоторой окрестности этой точки. Функция называется голоморфной в области, если она дифференцируема в любой точке этой области.

Далее будем обозначать множество всех функций, голоморфных в области G, как H(G).

Пример 4.5.

$$f(z) = u + iv = \overline{z} = x - iy$$

$$u(x, y) = x, \quad v(x, y) = -y, \quad u'_x = 1, v'_u = -1$$

Видно, что условия Коши-Римана не выполнены — функция нигде не дифференцируема.

Попробуйте в качестве упражнения доказать, что $f(z) = |z|^2$ дифференцируема, но не голоморфна в точке 0.

Предложение 4.6 (Условия Коши-Римана в тригонометрической форме). Пусть $f(z)=u(r,\phi)+i\nu(r,\phi)$. Тогда $\frac{\partial u}{\partial \phi}=-r\frac{\partial v}{\partial r}$, $\frac{\partial v}{\partial \phi}=r\frac{\partial u}{\partial r}$

Пусть
$$f(z)=u(r,\phi)+i\nu(r,\phi)$$
. Тогда $rac{\partial u}{\partial \phi}=-rrac{\partial v}{\partial r}$, $rac{\partial v}{\partial \phi}=rrac{\partial u}{\partial r}$

Доказательство. $x = r \cos \varphi$, $y = r \sin \varphi$.

$$u_{\omega}' = u_{x}' \cdot x_{\omega}' + u_{u}' \cdot y_{\omega}' = -u_{x}' \cdot r \sin \varphi + u_{u}' \cdot r \cos \varphi = r \cdot (-v_{u}' \sin \varphi - v_{x}' \cos \varphi)$$

С учётом $v_r'=v_x'\cdot x_r'+v_u'\cdot y_r'=v_x'\cdot\cos\phi+v_u'\sin\phi$ получим:

$$r\cdot (-\nu_y'\sin\phi-\nu_x'\cos\phi)=-r\nu_r'$$

Аналогично и для $\frac{\partial \nu}{\partial \phi} = r \frac{\partial u}{\partial r}.$

Пример 4.7.

$$\begin{split} f(z) &= z^n = r^n e^{i\phi n} = r^n (\cos n\phi + i \sin n\phi) \\ u &= r^n \cos n\phi, \quad \nu = r^n \sin n\phi \\ u_\phi' &= -nr^n \sin n\phi, \quad \nu_r' = nr^{n-1} \sin n\phi, \quad u_\phi' = -r\nu_r'. \end{split}$$

Определение 4.8. Функция f называется регулярной в точке, если она голоморфна в этой точке и f' непрерывна в некоторой окрестности этой точки.

Теорема 4.9 (об обратной функции). Пусть функция f регулярна в точке z_0 и $f'(z_0) \neq 0$. Tогда существует окрестность точки z_0 , в которой f обратима, причём f^{-1} в соответствующей окрестности точки $w_0=\mathsf{f}(z_0)$ дифференцируема и $(\mathsf{f}^{-1})'(w_0)=$ $\frac{1}{f'(z_0)}$.

 Δ оказательство. Мы хотим применить вещественную теорему об обратной функции, рассматривая f как $\mathbb{R}^2 \to \mathbb{R}^2$. Для этого нам нужна гладкость, которая есть по условию теоремы, и ненулевой якобиан.

$$\begin{vmatrix} \mathbf{u}_{\mathsf{x}}' & \mathbf{u}_{\mathsf{y}}' \\ \mathbf{v}_{\mathsf{x}}' & \mathbf{v}_{\mathsf{y}}' \end{vmatrix} = \mathbf{u}_{\mathsf{x}}' \mathbf{v}_{\mathsf{y}}' - \mathbf{v}_{\mathsf{x}}' \mathbf{u}_{\mathsf{y}}'$$

По условию Коши-Римана, это равно:

$$(\mathfrak{u}_x')^2 + (\mathfrak{v}_x')^2 = |f'(z_0)|^2 \neq 0$$
 — по условию.

По вещественной теореме об обратной функции существует окрестность точки z_0 , в которой f обратима и f⁻¹ в соответствующей окрестности точки w_0 непрерывна. Так как f и f⁻¹ непрерывны, то $\Delta z \to 0 \iff \Delta w \to 0$.

$$(f^{-1})'(w_0) = \lim_{\Delta w \to 0} \frac{\Delta f^{-1}}{\Delta w} = \lim_{\Delta w \to 0} \frac{\Delta z}{\Delta f} = \lim_{\Delta z \to 0} \frac{\Delta z}{\Delta f} = \frac{1}{\lim_{\Delta z \to 0} \frac{\Delta f}{\Delta z}} = \frac{1}{f'(z_0)}$$

Примеры 4.10. • $f(z) = z^n$ — регулярна в \mathbb{C} , $f'(z) = nz^{n-1}$;

- многочлены регулярны в C;
- $f(z) = \frac{1}{z}$ регулярна в $\mathbb{C}\setminus\{0\}$, $f'(z) = -\frac{1}{z^2}$;
- ullet дробно-линейная функция $rac{az+b}{cz+d}$ регулярна в $\mathbb{C}ackslash\{-rac{d}{c}\}.$

Геометрический смысл аргумента производной

Определение 4.11. Гладкая кривая в \mathbb{C} — это кривая, у которой существует параметризация $\gamma(t)$, являющаяся простым гладким путём: $\gamma'(t) \neq 0 \ \forall t \in [a,b]$.

Касательный вектор к кривой γ в точке $z_0=\gamma(t_0)$ есть $\gamma'(t_0)$, и он не зависит от параметризации. Вспомним также, что угол между гладкими кривыми в точке их пересечения есть угол между их касательными в этой точке.

Пусть функция f голоморфна в области G, $z_0=\gamma(t_0)\in G$, $\gamma:[a,b]\to \mathbb C$ — гладкая кривая, проходящая через точку z_0 , $\Gamma(t)=f(\gamma(t))$ — образ кривой γ . Касательный вектор к Γ в точке $w_0=f(z_0)$ есть $\Gamma'(t_0)$.

$$\Gamma'(t_0) = f'(z_0) \cdot \gamma'(t_0) \implies \operatorname{Arg} \Gamma'(t_0) = \operatorname{arg} f'(z_0) + \operatorname{Arg} \gamma'(t_0)$$

И можно увидеть геометрический смысл аргумента производной: $\arg f'(z_0)$ — это угол, на который поворачивается касательная к любой кривой в точке z_0 под действием f.

Понятие конформности

Определение 4.12. Отображение f называется конформным в точке z_0 , если оно сохраняет углы между кривыми в z_0 (с учётом направления). f называется конформным в области G, если оно конформно во всех точках области G и однолистно (взаимно однозначно).

Примеры 4.13. • если f голоморфна в точке z_0 и $f'(z_0) \neq 0$, то f конформно в z_0 .

• $f(z)=z^2$. $f'(z)=2z \implies f$ конформно в любой точке $z\neq 0$. Допустим, $z_0=i$. $\arg f'(z_0)=\frac{\pi}{2}$.

При $z_0=0$ конформности нет — углы между кривыми, проходящими через 0, не сохраняются:

Видим, что угол межу прямыми составлял $\beta-\alpha$, а после действия функции f стал $2(\beta-\alpha)$.

5 Элементарные функции комплексной переменной

Изучим свойства некоторых важных функций.

Целая степенная функция $f(z)=z^n$, $n\in\mathbb{N}$

При n=1 функция f(z)=z регулярна на всей комплексной плоскости и конформна. При $n\geqslant 2$ f регулярна в $\mathbb C$, а её производная $f'(z)=nz^{n-1}$.

$$z_1^n = z_2^n \iff r_1^n e^{\mathrm{i} n \phi_1} = r_2^n e^{\mathrm{i} n \phi_2} \iff \begin{cases} r_1 = r_2 \\ \phi_1 - \phi_2 = \frac{2\pi k}{n}, & k \in \mathbb{Z} \end{cases} (*)$$

Это означает, что f взаимно однозначно в области G тогда и только тогда, когда G не содержит пар точек, удовлетворяющих условию (*). Пример такой области:

$$G_k = \left\{ \frac{2\pi k}{n} < \arg z < \frac{2\pi (k+1)}{n} \right\}$$

f конформно отображает G_k на $\mathbb{C}\backslash\mathbb{R}_+$:

Чтобы продолжить изучение элементарных функций, нам нужно сделать отступление и ввести понятие о непрерывных ветвях и точках ветвления.

Точки ветвления многозначной функции

Определение 5.1. Пусть f — многозначная функция. Говорят, что в области G выделена непрерывная ветвь f, если любой точке из этой области сопоставлено одно значение f(z) так, что полученная однозначная функция непрерывна.

Аналогично определяется и непрерывная ветвь вдоль пути.

Замечание 5.2. Ни существование, ни единственность непрерывной ветви не гарантируются.

Определение 5.3. z_0 называется точкой ветвления функции f, если в любой окрестности этой точки при обходе её по любому замкнутому пути любая непрерывная ветвь f вдоль этого пути получает ненулевое приращение.

Чтобы в G существовала непрерывная ветвь f, необходимо, чтобы G не содержала путей, обходящих точку ветвления.

Пример 5.4. $f(z)={\rm Arg}\,z.$ 0 — единственная конечная точка ветвления функции f. Непрерывная ветвь Arg существует в области, если в этой области нельзя обойти точку 0. Например, $\mathbb{C}\backslash\mathbb{R}_+$.

Функция $\sqrt[n]{z}$, $n \in \mathbb{N}$, $n \geqslant 2$

Эта функция определена в области $\mathbb{C}\setminus\{0\}$ и является \mathfrak{n} -значной.

$$\sqrt[n]{z} = \sqrt[n]{|z|} \cdot e^{\frac{i \operatorname{Arg} z}{n}}$$

Непрерывные ветви корня существуют там же, где и непрерывные ветви Arg — в областях, где нельзя обойти 0. В каждой такой области существует п непрерывных ветвей:

$$(\sqrt[n]{z})_k = \sqrt[n]{|z|} \cdot e^{\frac{i\arg z}{n} + \frac{2\pi k i}{n}}, \quad k = 0, ..., n-1$$

К каждой ветви применима теорема об обратной функции:

$$w = (\sqrt[n]{z})_k, \quad z = w^n$$
$$(\sqrt[n]{z})'_k = \frac{1}{z'} = \frac{1}{nw^{n-1}} = \frac{1}{n}z^{\frac{1}{n}-1}$$

Отображение f конформно в любой точке $z \neq 0$. В качестве области с непрерывной ветвью можно взять $\mathbb{C} \setminus \mathbb{R}_+$:

Далее главной ветвью корня будем называть главную ветвь Arg.

Экспоненциальная функция

Определение 5.5. Пусть z = x + iy. Тогда $e^z = e^x(\cos y + i\sin y)$.

Предложение 5.6. Свойства экспоненциальной функции:

- 1. Комплексная экспоненциальная функция есть продолжение вещественной;
- 2. $f(z) = e^z$ регулярна в \mathbb{C} , $f'(z) = e^z$;
- 3. $e^z \neq 0 \ \forall z \in \mathbb{C}$:
- 4. f конформна в любой точке комплексной плоскости;
- 5. $e^{z_1+z_2}=e^{z_1}\cdot e^{z_2}$;
- 6. Формула Эйлера: $e^{i\phi} = \cos \phi + i \sin \phi$;
- 7. Функция f $2\pi i$ -периодична: $e^{z+2\pi i} = e^z$;
- 8. $e^{z_1} = e^{z_2} \iff z_1 z_2 = 2\pi ki$, $k \in \mathbb{Z}$. То есть f взаимно однозначна в области G, если G не содержит точек z_1 , z_2 таких, что $z_1 z_2 = 2\pi ki$;
- 9. $|e^z| = e^x$, Arg $e^z = y + 2\pi k$, $k \in \mathbb{Z}$.

Доказательство. Мы не будем доказывать все перечисленные свойства, так как большинство из них очевидны. Докажем свойства 2 и 5.

Для доказательства свойства 2 нужно проверить дифференцируемость вещественной и мнимой части, а также условия Коши-Римана. Пусть f=u+iv. $u=e^x\cos y$, $v=e^x\sin y$ — эти функции дифференцируемы в \mathbb{R}^2 . $u_x'=e^x\cos y=v'y$, $u_y'=-e^x\sin y=-v_x'$. Условия Коши-Римана выполнены.

$$f'(z) = u'_x + iv'_x = e^x \cos y + ie^x \sin y = e^z$$

Свойство 5 доказывается простейшими преобразованиями:

$$\begin{split} e^{z_1} \cdot e^{z_2} &= e^{x_1} (\cos y_1 + i \sin y_1) \cdot e^{x_2} (\cos y_2 + i \sin y_2) = \\ &= e^{x_1} e^{x_2} (\cos y_1 \cos y_2 - \sin y_1 \sin y_2 + i (\cos y_1 \sin y_2 + \sin y_1 \cos y_2)) = \\ &= e^{x_1 + x_2} (\cos (y_1 + y_2) + i \sin (y_1 + y_2)) = e^{z_1 + z_2} \end{split}$$

Пример 5.7. $G = \{0 < \text{Im } z < 2\pi\}$

Логарифмическая функция

Определение 5.8. Пусть $z \neq 0$. w называется логарифмом z, если $e^w = z$.

Если $w=u+i\nu$, то $e^w=e^{u+i\nu}=z$ равносильно $e^u=|z|$, $\nu={\rm Arg}\,z$, то есть $u=\ln|z|$. Итого, для всех $z\neq 0$ существует бесконечно много логарифмов. Обозначим за ${\rm Ln}\,z$ множество всех логарифмов числа z:

$$\operatorname{Ln} z = \{ \ln |z| + i \arg z + 2\pi k i \mid k \in \mathbb{Z} \}$$

Тогда $\ln z = \ln |z| + \mathrm{i} \arg z$ будет главным значением логарифма. Итак, Ln — многозначная функция на $\mathbb{C}\backslash\{0\}$ с точкой ветвления 0.

Предложение 5.9. Свойства логарифмической функции:

- 1. $\operatorname{Ln}(z_1 \cdot z_2) = \operatorname{Ln} z_1 + \operatorname{Ln} z_2$:
- 2. В области, в которой существует непрерывная ветвъ логарифма, ветвей бесконечно много и они отличаются на $2\pi ki$. Каждая ветвъ естъ обратная к экспоненциальной функция.
- Доказательство. 1. Доказываем два включения. Пусть $w \in \operatorname{Ln} z_1 + \operatorname{Ln} z_2$. Тогда w представимо в виде суммы $w_1 + w_2$, где $w_1 \in \operatorname{Ln} z_1$, $w_2 \in \operatorname{Ln} z_2$. Отсюда $e^w = e^{w_1} \cdot e^{w_2} = z_1 z_2$, поэтому $w \in \operatorname{Ln}(z_1 z_2)$. Обратно, пусть теперь $w \in \operatorname{Ln}(z_1 z_2)$. Тогда $e^w = z_1 z_2$. Возьмём $w_1 = \ln z_1$, $w_2 = w w_1$. Получим, что $e^{w_1} = z_1$, $e^{w_2} = e^{w w_1} = \frac{e^w}{e^{w_1}} = \frac{z_1 z_2}{z_1} = z_2$, поэтому $w_2 \in \operatorname{Ln} z_2$. Таким образом, $w = w_1 + w_2$, $w_1 \in \operatorname{Ln} z_1$, $w_2 \in \operatorname{Ln} z_2$, отсюда $w \in \operatorname{Ln} z_1 + \operatorname{Ln} z_2$.
 - 2. Пусть $(\ln z)_k = \ln |z| + \mathrm{i} \arg z + 2\pi k\mathrm{i}, \ k \in \mathbb{Z}.$

$$(\ln z)_{k}' = \frac{1}{(e^{w})'} = \frac{1}{e^{w}} = \frac{1}{z}$$

Функция Жуковского

Определение 5.10. $\mathrm{f}(z)=rac{1}{2}(z+rac{1}{z})$, где $z\in\mathbb{C}ackslash\{0\}$, называется функцией Жуковского.

Функция Жуковского регулярна на области определения, $f'(z)=\frac{1}{2}(1-\frac{1}{z^2}).$ Она также конформна во всех точках кроме 0 и $\pm 1.$

$$egin{aligned} f(z_1) &= f(z_2) \iff z_1 + rac{1}{z_1} = z_2 \mathbf{1} + rac{1}{z_2} \iff (z_1 - z_2) + rac{z_2 - z_1}{z_1 z_2} = \mathbf{0} \iff \\ &\iff (z_1 - z_2) (1 - rac{1}{z_1 z_2}) = \mathbf{0} \iff z_1 = z_2 \ ext{либо} \ z_1 z_2 = \mathbf{1}. \end{aligned}$$

Таким образом, f взаимно однозначно в любой области, не содержащей пар точек $z_1z_2=1$. Например, $G=\{0<|z|<1\}$ или $G=\{|z|>1\}$.

Теперь воспользуемся показательной формой комплексного числа и применим к ней функцию Жуковского:

$$z = re^{i\varphi}, \quad f(z) = \frac{1}{2}(re^{i\varphi} + \frac{1}{r}e^{-i\varphi}) = \frac{1}{2}(r + \frac{1}{r})\cos\varphi + i\frac{1}{2}(r - \frac{1}{r})\sin\varphi$$

Видно, что окружность с центром в 0 и радиусом r_0 , где $0 < r_0 < 1$, переходит в эллипс, обходимый в отрицательном направлении:

$$w = a\cos\varphi + ib\sin\varphi, \quad a = \frac{1}{2}(r_0 + \frac{1}{r_0}), \quad b = -\frac{1}{2}(\frac{1}{r_0} - r_0)$$

Найдём фокусы эллипса. Для эллипса, заданного уравнением $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ они равны $\pm \sqrt{a^2 - b^2}$. Легко проверить, что фокусы равны ± 1 .

При $r_0 \to 0$ эллипс уходит на бесконечность, при $r_0 \to 1$ — «схлопывается» в отрезок [-1,1], проходимый дважды в противоположных направлениях. Значит, функция Жуковского конформно отображает $G=\{0<|z|<1\}$ на $\mathbb{C}\backslash[-1,1]$.

 Λ уч {arg $z = \varphi_0$ }, 0 < r < 1 переходит в кривую:

$$w = a \frac{1}{2} (r + \frac{1}{r}) - \frac{1}{2} ib(\frac{1}{r} - r), \quad a = \cos \varphi_0, \quad b = \sin \varphi_0$$

Кривая, задаваемая уравнением $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ ($a \neq 0$, $b \neq 0$), — это гипербола, вернее, в данном случае, половина одной ветви гиперболы, лежащая в нужном квадранте. Фокусы гиперболы равны $\pm \sqrt{a^2 + b^2} = \pm 1$

Рассмотрим случаи, когда a=0 или b=0:

- при $\varphi_0 = 0$ образом будет луч $(1, \infty)$;
- при $\phi_0 = \frac{\pi}{2}$ образ луч $(0, -i\infty)$;
- при $\phi_0 = \pi \text{луч } (-\infty, -1);$
- при $\phi_0 = \frac{3\pi}{2}$ луч $(0, i\infty).$

Функция, обратная к функции Жуковского

Исследуем функцию $z=w+\sqrt{(w-1)(w+1)}$. Это двузначная функция.

$$\operatorname{Arg} \sqrt{(w-1)(w+1)} = \frac{1}{2}(\operatorname{Arg}(w-1) + \operatorname{Arg}(w+1))$$

$$\Delta_{\gamma} \arg \sqrt{(w-1)(w+1)} = \frac{1}{2} (\Delta_{\gamma} \arg(w-1) + \Delta_{\gamma} \arg(w+1))$$

Здесь Δ_{γ} arg означает приращение аргумента при обходе вдоль кривой γ . Узнаем, где существует непрерывная ветвь функции, обратной к функции Жуковского:

- ullet если γ не обходит ни -1, ни 1, то Δ_{γ} arg $\sqrt{(w-1)(w+1)}=0$ хорошо;
- ullet если γ обходит 1, но не обходит -1, то Δ_γ arg $\sqrt{(w-1)(w+1)}=\pi$ плохо;
- ullet если γ обходит -1, но не обходит 1, то Δ_{γ} arg $\sqrt{(w-1)(w+1)}=\pi$ плохо;
- ullet если γ обходит и 1, и -1, то Δ_{γ} arg $\sqrt{(w-1)(w+1)}=2\pi$ хорошо.

Таким образом, непрерывная ветвь существует в областях, в которых нельзя обойти ровно одну точки из ± 1 . Например, $\mathbb{C}\setminus [-1,1]$.

Тригонометрические функции

Определение 5.11.
$$\sin z=rac{e^{\mathrm{i}z}-e^{-\mathrm{i}z}}{2\mathrm{i}}$$
, $\cos z=rac{e^{\mathrm{i}z}+e^{-\mathrm{i}z}}{2}$, $\mathrm{tg}\,z=rac{\sin z}{\cos z}$, $\mathrm{ctg}\,z=rac{\cos z}{\sin z}$.