[4]

Q.5 i. Explain the need of compensation network in the control system.

ii. Design a lag compensator for a unity feedback system with process 7 transfer function

$$G_p(s) = \frac{K(s+4)}{(s+2)(s+8)(s+12)}$$

Given the following specifications:

Static error constant=100

Phase margin=40⁰

OR iii. A second order system in shown in Figure-4. If a proportional 7 controller of gain K_c is added in the forward path, find its effect on the value of damping ratio, natural frequency and the steady-state error. Comment on the result.

Figure-4

Q.6 i. State the advantage of state space approach.

ii. Define state transition matrix and write its properties. 3

iii. The transfer function of a control system is given by,

$$\frac{Y(s)}{U(s)} = \frac{s+2}{s^3+9s^2+26s+24}$$

Check for controllability.

OR iv. A linear time invariant system is represented by a state model,

$$\dot{X} = \begin{bmatrix} -1 & 1 \\ 0 & -2 \end{bmatrix} X + \begin{bmatrix} 0 \\ 1 \end{bmatrix} r$$

Find out the solution of state model of the system. Given r = u(t).

Total No. of Questions: 6

Total No. of Printed Pages:4

Enrollment No.....

3

5

5

Faculty of Engineering

End Sem (Odd) Examination Dec-2019 EC3CO09 / EI3CO09 Control Systems

Programme: B.Tech. Branch/Specialisation: EC/EI

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d.

- Q.1 i. Block diagrams can be used to represent:
 - (a) Only linear system
 - (b) Only nonlinear systems
 - (c) Both linear and nonlinear systems
 - (d) Time -invariant as well as time -varying systems
 - i. In the signal flow graph of Figure 1, the gain C/R will be

Figure-1

- (a) 11/9
- (b) 22/15
- (c) 44/23
- (d) 24/23
- iii. A transfer function has two zeros at infinity. Then the relation 1 between the numerator degree (N) and the denominator degree (M) of the transfer function is
 - (a) N = M + 2
- (b) N = M 2
- (c) N = M + 1
- (d) N = M 1
- iv. The transfer function of a first order system is $T(s) = \frac{10}{s+5}$. The time 1 constant of the system is.
 - (a) 0.2 s
- (b) 2 s
- (c) 5 s
- (d) 1.15 s
- v. Which one of the following methods can determine the closed loop 1 system resonance frequency operation?
 - (a) Root locus method
- (b) Nyquist method

(c) Bode plot

(d) M and N circle

P.T.O.

- vi. If the gain of the open loop system is doubled, the gain of the 1 system is:
 - (a) Not affected
- (b) Doubled

(c) Halved

(d) One fourth of the original value

1

1

- vii. To achieve the optimum transient response, the indicating **1** instruments are so designed as to
 - (a) Be undamped.
 - (b) Be critically damped.
 - (c) Provide damping which is slightly less than the critical value.
 - (d) Provide damping which is slightly more than the critical value.
- viii. A controller transfer function is given by $\frac{0.1(1+2s)}{1+0.2s}$. What is its 1 nature and parameter?
 - (a) lag compensator, $\beta = 10$ (b) lag compensator, $\beta = 2$
 - (c) lead compensator, $\alpha = 0.2$ (d) lead compensator, $\alpha = 0.1$
- ix. The number of state variables of a system is equal to:
 - (a) The number of integrators present in the system
 - (b) The number of differentiators present in the system
 - (c) The sum of the number of integrators and differentiators present in the system.
 - (d) None of these
- x. The eigenvalues of the state model are the same as the:
 - (a) Open-loop poles
- (b) Closed-loop poles
- (c) Both (a) and (b)
- (d) None of these
- Q.2 i. Write the Mason's gain formula for signal flow graph. Indicate what 4 each term represents.
 - ii. A mass spring dashpot system as shown in Figure-2 is mounted on a cart. The mass of the cart in M_1 . The cart is moved at a constant speed. Obtain the transfer function $Y_2(s)/Y_1(s)$ (where Y_1 is I/P and Y_2 is output)

Figure-2

OR iii. Reduce the block diagram shown in Figure-3 to determine the transfer function C(s)/R(s)

Figure-3

Q.3 i. The characteristic equation of a system is,

$$s^5 + 5s^4 + 3s^3 + 15s^2 + 16s + 20 = 0$$

Comment on the system stability.

ii. For the second order system described by the transfer function, 7 determine the frequencies of un-damped and damped oscillations, maximum overshoot, peak time, rise time. Settling time and the final value due to a unit step input.

$$\frac{C(s)}{R(s)} = \frac{144}{s^2 + 9.6s + 144}$$

OR iii. Sketch the root locus of a system with open-loop transfer function

$$G(s)H(s) = \frac{K}{(s+3)^3}$$

- Q.4 Attempt any two:
 - i. Plot the Polar plot for the following transfer function

$$G(s) = \frac{15}{(s+1)(s+3)(s+6)}$$

ii. A feedback system has the open loop transfer function

$$G(s)H(s) = \frac{K(s+2)}{(s+1)(s-1)}; \qquad K > 0$$

Using Nyquist criterion, investigate the stability of the system.

iii. Draw the log magnitude asymptotic plot for the transfer function,

$$G(s)H(s) = \frac{1000s}{(s+10)(s+100)}$$

Find the gain crossover frequencies, and the frequencies at3-dB attenuation.

P.T.O.

3

7

5

5

5

Marking Scheme EC3CO09 / EI3CO09 Control Systems

ECSCOUS / EISCOUS CONTROL Systems							
Q.1	i.	Block diagrams can be used to represent:		1			
		(c) Both linear and nonlinear systems					
	ii.	In the signal flow graph of Figure 1, the gain C/R w (c) 44/23	ill be	1			
	iii.	A transfer function has two zeros at infinity. The between the numerator degree (N) and the denomination of the transfer function is (b) $N = M - 2$		1			
	iv.	The transfer function of a first order system is $T(s)$ constant of the system is.	$=\frac{10}{s+5}$. The time	1			
	v.	(a) 0.2 s Which one of the following methods can determine the closed loop system resonance frequency operation? (d) M and N circle					
	vi.	If the gain of the open loop system is doubled, the gain of the system is:					
	vii.	To achieve the optimum transient response, the indicating instruments are so designed as to					
	viii.	(c) Provide damping which is slightly less than the critical value. A controller transfer function is given by $\frac{0.1(1+2s)}{1+0.2s}$. What is its nature and parameter?					
	ix.	(d) lead compensator, $\alpha = 0.1$ The number of state variables of a system is equal to:					
	IA.	(a) The number of integrators present in the system		1			
	х.	The eigenvalues of the state model are the same as the:		1			
	(b) Closed-loop poles						
Q.2	i.	Mason's gain formula	2 marks 2 marks	4			
	ii.	Indicate what each term represents. Equations	3 marks	6			
	11.	Final transfer function $Y_2(s)/Y_1(s)$	3 marks	Ū			
OR	iii.	Determine the transfer function C(s)/R(s) Stepwise marking		6			
Q.3	i.	RH Array	2 marks	3			
		Comment on the system stability	1 mark				
	ii.	Frequencies of un-damped and damped oscillations	2 marks	7			
		Maximum overshoot	1 mark				
		Peak time	1 mark				

		Rise time Settling time	1 mark 1 mark			
OD	:::	Final value due to a unit step input. 1 mark				
OR	iii.	•	tch the root locus of a system with open-loop transfer function 1 mark			
		P, z plot σA	1 mark			
		Centroide	1 mark			
		Ø	1 mark			
		RH	2 marks			
		Plot	1 mark			
		Flot	I IIIai K			
Q.4		Attempt any two:				
	i.	G(jw)	1 mark	5		
		M L	2 marks			
		Plot	2 marks			
	ii.	Nyquist criterion	2 marks	5		
		Investigation	2 marks			
		Stability of the system	1 mark			
	iii.	Calculation	3 marks	5		
		Plot for the transfer function	2 marks			
Q.5	i.	Need of compensation network in the control system.		3		
	ii.	Bode Plot	3 marks	7		
		Phase margin	1 mark			
		Compensator design	2 marks			
		Final Answer	1 mark			
OR	iii.	Effect of controller gain K _c on the value of		7		
		Damping ratio	2 marks			
		Natural frequency	2 marks			
		Steady-state error	2 marks			
		Comment on the result	1 mark			
Q.6	i.	Advantage of state space approach.		2		
	ii.	Definition of state transition matrix	1 mark	3		
		Properties	2 marks			
	iii.	State Space	3 marks	5		
		Controllability	2 marks			
OR	iv.	STM	3 marks	5		
		Final equation	2 marks			
