HỌC VIỆN CÔNG NGHỆ BƯU CHÍNH VIỄN THÔNG

KHOA: CÔNG NGHỆ THÔNG TIN I BÔ MÔN: KHOA HOC MÁY TÍNH

ĐỀ THI KẾT THÚC HỌC PHẦN

(Hình thức thi viết)

Học phần: Toán rời rạc 2 (Học kỳ 2 năm học 2021-2022)

Lóp: D20CN, D20AT Thời gian thi: 90 phút

Đề số: 3

Câu 1 (1 điểm)

Cho đồ thị vô hướng $G = \langle V, E \rangle$ gồm 10 đỉnh được biểu diễn dưới dạng danh sách kề như sau:

$Ke(1) = \{2, 10\}$	$Ke(6) = \{3, 4, 5\}$
$Ke(2) = \{1, 3, 5, 7\}$	$Ke(7) = \{2, 5, 8\}$
$Ke(3) = \{2, 4, 6\}$	$Ke(8) = \{5, 7, 9\}$
$Ke(4) = \{3, 5, 6\}$	$Ke(9) = \{8, 10\}$
$Ke(5) = \{2, 4, 6, 7, 8, 10\}$	$Ke(10) = \{1, 5, 9\}$

- a) Tìm bậc của mỗi đỉnh trên đồ thị.
- b) Biểu diễn đồ thị G dưới dạng ma trận liên thuộc

Câu 2 (2 điểm)

- a) Viết hàm có tên **BFS**(int u) bằng C/C++ sử dụng hàng đợi thực hiện thuật toán tìm kiếm theo chiều rộng bắt đầu từ đỉnh u trên đồ thị $G = \langle V, E \rangle$ được biểu diễn dưới dạng ma trận kề a[][].
- b) Sử dụng thuật toán tìm kiếm theo chiều rộng BFS vừa trình bày, duyệt toàn bộ đỉnh trụ trên đồ thị G cho trong Câu 1? (Không cần ghi chi tiết các kết quả thực hiện thuật toán BFS, chỉ cần ghi kết quả duyệt BFS để tìm các đỉnh trụ)

Câu 3 (2 điểm)

Cho đồ thị vô hướng $G = \langle V, E \rangle$ gồm 10 đỉnh được biểu diễn dưới dạng ma trận kề như sau:

	1	2	3	4	5	6	7	8	9	10
1	0	1	1	0	1	0	0	0	1	1
2	1	0	1	0	1	0	0	0	0	1
3	1	1	0	1	1	0	0	0	0	0
4	0	0	1	0	1	1	0	0	1	0
5	1	1	1	1	0	1	1	0	0	0
6	0	0	0	1	1	0	1	0	1	0
7	0	0	0	0	1	1	0	1	0	1
8	0	0	0	0	0	0	1	0	0	1
9	1	0	0	1	0	1	0	0	0	1
10	1	1	0	0	0	0	1	1	1	0

a) Trình bày điều kiện cần và đủ để một đồ thị vô hướng là nửa Euler. Áp dụng chứng minh đồ thị vô hướng G đã cho ở trên là nửa Euler.

b) Áp dụng thuật toán tìm đường đi Euler trên đồ thị, tìm đường đi Euler trên đồ thị G đã cho. Chỉ rõ kết quả của mỗi bước thực hiện thuật toán.

Câu 4 (2 điểm)

Cho đồ thị vô hướng $G = \langle V, E \rangle$ gồm 10 đỉnh được biểu diễn dưới dạng ma trận trọng số như sau:

	1	2	3	4	5	6	7	8	9	10
1	0	18	11	8	8	11	8	8	8	8
2	18	0	11	10	8	8	8	8	8	8
3	11	11	0	10	8	8	8	8	8	8
4	8	10	10	0	10	11	7	8	8	8
5	8	8	8	10	0	12	7	3	8	8
6	11	8	8	11	12	0	3	3	2	8
7	8	8	8	7	7	3	0	3	2	1
8	8	8	8	8	3	3	3	0	2	1
9	8	8	8	8	8	2	2	2	0	1
10	8	8	8	8	8	8	1	1	1	0

- a) Trình bày thuật toán Kruskal tìm cây khung nhỏ nhất của đồ thị vô hướng, liên thông, có trọng số.
- b) Áp dụng thuật toán Kruskal vừa trình bày, chỉ ra độ dài cây và các cạnh của cây khung nhỏ nhất của đồ thị G đã cho. Chỉ rõ kết quả tại mỗi bước thực hiện thuật toán.

Câu 5 (3 điểm)

Cho đồ thị có hướng G = <V, E> như hình dưới, trọng số được ghi bên cạnh mỗi cung.

- a) Viết hàm có tên là **BELLMAN**(int u) bằng C/C++ mô tả thuật toán Bellman-Ford tìm khoảng cách d[v] và đường đi ngắn nhất từ đỉnh u đến các đỉnh v của đồ thị $G = \langle V, E \rangle$ được biểu diễn dưới dạng ma trận trọng số a[][].
- b) Áp dụng thuật toán Bellman-Ford chỉ ra khoảng cách và đường đi ngắn nhất từ đỉnh số 4 đến các đỉnh của đồ thị G đã cho trong hình.

Ghi chú: Sinh viên không được tham khảo tài liệu.