2K 龙芯派用户手册

入门手册

地址: 北京市海淀区中关村环保科技示范园龙芯产业园2号楼 电话: +86 (10) 62546668 (分机1601/1609/1610/1620/1621/1605) 客户服务邮箱: duanli@loongson.cn/ wangjue@loongson.cn

网址: www.loongson.cn

录 目

目	录	1
一、事	先准备	. 4
1.1、	警告与声明	. 4
1.2、	硬件规格	. 4
1.3、	必备配件	. 5
1.4、	显示接口	. 5
1.5、	2K 龙芯派各接口认知	6
1.6、	2K 龙芯派中各插针接口认知	. 7
1.7、	安全操作建议	13
二、龙	芯派套件硬件安装	14
2.1、	风扇的安装	14
2.2、	散热片的安装	14
2.3、	外壳的安装	14
2.4、	显示屏安装	15
2.5、	SD 卡的使用	15
2.6、	WIFI 天线的安装	16
2.7、	USB 使用	17
2.8、	HDMI 接口	17
2.9、	网口	17
2.10	. 音频	18
2.11	GPIO 与 CAN	18
2.12	按键	19
2.13	- 串□/I2C/SPI	20
2.14	EJTAG 调试	21
2.15	PWM 接口	22
2.16	电源连接	22
三、龙	芯派启动2	23
3.1、	外设安装	23
3.2、	龙芯派上电启动	23

四、	龙芯派	运行判断	23
4.	1、LEC) 指示灯状态解读	23
	4.1.1、	电源指示灯	23
	4.1.2、	复位指示灯	24
4.	2、网	口灯以及发热状态	24
	4.2.1、	网口灯	24
	4.2.2、	正常发热	25
	4.2.3、	不正常发热	25
4.	3、显	示器不显示	25
	4.3.1、	配置问题	25
	4.3.2、	HDMI 转 VGA 不兼容	25
	4.3.3、	质量问题	25
五、	2K 龙芯	芯派软件入门操作	26
5.	1、软件	부系统安装	26
	5.1.1、	安装 centOS 系统	26
	5.1.2、	安装 Loongnix 系统	26
	5.1.3、	安装 SylixOS 实时操作系统	26
5.	2、网丝	8连接	26
	5.2.1、	有线网络连接	26
	5.2.2、	WiFi 网络连接	27
5.	3、在力	论芯派实现第一个程序	27
六、	内核组	异译	28
6.	1、虚排	以机安装 Linux 操作系统	28
	6.1.1、	下载 VMware player 并安装	28
	6.1.2、	下载 Ubuntu 桌面系统	28
	6.1.3、	安装 Ubuntu	28
	6.1.4、	进入终端或者命令行	30
	6.1.5、	建立 root 用户并自动登录	30
	6.1.6、	安装 VMware tools	31
6.	2、安装	专工具链	31
	6.2.1、	安装交叉编译工具	32

6.2.2、	编译和烧写 pmon
6.2.3、	编译和烧写内核32

一、事先准备

1.1、警告与声明

本手册仅供参考,并非万能,难免瑕疵,欢迎指正。

2K 龙芯派为直接接触硬件,使用时请多加小心,若使用不当可能直接导致硬件平台损毁。

1.2、硬件规格

2K 龙芯派资源丰富,采用龙芯最新一代 2 号处理器 2K1000,集成存储、显示、音频、网络等功能,具有高性能,低功耗的特点。该板卡的具体特性如下:

- (1) 采用 2K1000 CPU, 主频 1GHZ:
- (2) 板载 DDR3 内存 2GB, 主频 400Mhz;
- (3) 板载启动 Nor FLASH 32Mb;
- (4) 集成 Micro SD 卡接口,可用于系统安装、存储数据等;
- (5) 集成 2 路 10/100/1000M 自适应网口;
- (6) 集成 1 路 2.4G WIFI 模块;
- (7) 集成 3 路 USB2.0 接口, 2 个标准 USB 接口, 1 个插针接口;
- (8) 集成 HDMI、LCD 显示接口;
- (9)集成 3.5mm 音频输入/输出接口;
- (10) 集成 4 路 PWM 接口:
- (11) 集成 2 路 I2C 接口;
- (12) 集成 1 路 SPI 接口,包含 3 个片选;
- (13) 集成 4 路 TTL 串口;
- (14) 可配最多 30 个输入/输出 GPIO:
- (15) 集成 2 个 CAN2.0 接口:
- (16) 集成 EJTAG 调试接口,可用于程序下载、单步调试等;
- (17) 集成 RTC 功能, 保留外置 RTC 电池接口;
- (18) 集成 CPU 温度检测功能;
- (19) 集成复位按键;

- (20) 集成开机按键;
- (21) 集成 Micro USB 5V/2A 供电接口,该板卡整体功耗<5W;
- (22) 板卡尺寸 96mm*80mm

1.3、必备配件

使用 2K 龙芯派最基本的必备配件为 5V 2A micro USB 电源,兼容至少 4G micro SD 卡;在初次使用时还需要一条 USB 转 TTL 线,用于配置网卡或联网等。

在使用本平台时为保证其安全高效,建议加上外壳、散热片与风扇,达到 良好的保护和散热效果。

若使用本平台进行学习,则需要根据自己的学习需求购买其他的外部设备才能进行学习任务。

1.4、显示接口

本平台提供一路 HDMI 视频输出接口,同时可用于转换为 VGA 或 DVI 接口使用。还提供一路 DVO 接口(也可复用为 LIO)供使用者自由使用。同时还有一路四线电阻屏控制接口,用于触摸屏的使用与开发。

1.5、2K 龙芯派各接口认知

1.6、2K 龙芯派中各插针接口认知

(1) GPIO 与 CAN 总线接口定义

1	LS2K_GPIO2	输入/输出	0V3.3V	
2	LS2K_GPIO3	输入/输出	0V3.3V	
3	LS2K_GPIO44	输入/输出	0V3.3V	
4	LS2K_GPIO54	输入/输出	0V3.3V	
5	LS2K_GPIO45	输入/输出	0V3.3V	
6	LS2K_GPIO55	输入/输出	0V3.3V	
7	LS2K_GPIO46	输入/输出	0V3.3V	
8	LS2K_GPIO56	输入/输出	0V3.3V	
9	LS2K_GPIO47	输入/输出	0V3.3V	
10	LS2K_GPIO57	输入/输出	0V3.3V	
11	LS2K_GPIO48	输入/输出	0V3.3V	
12	LS2K_GPIO58	输入/输出	0V3.3V	
13	LS2K_GPIO49	输入/输出	0V3.3V	
14	LS2K_GPIO59	输入/输出	0V3.3V	
15	LS2K_GPIO50	输入/输出	0V3.3V	
16	LS2K_GPIO60	输入/输出	0V3.3V	
17	LS2K_GPIO51	输入/输出	0V3.3V	
18	LS2K_GPIO61	输入/输出	0V3.3V	
19	LS2K_GPIO52	输入/输出	0V3.3V	
20	LS2K_GPIO62	输入/输出	0V3.3V	
21	LS2K_GPIO53	输入/输出	0V3.3V	
22	LS2K_GPIO63	输入/输出	0V3.3V	
23	GND	数字电源地	与外设共地	
24	GND	XX 1 - GW/20	马// 校//地	
25	P3V3	对外提供 3.3V 电	3.3V 电源,最大输	
26	P3V3	源	出 1A 电流	
27	CANL0	CANO 低	标准 CAN 差分特性	
28	CANL1	CAN1 低		
29	CANH0	CANO 高		
30	CANH1	CAN1 高		

(2) EJATG、UART、IIC 以及 SPI 接口定义

引脚	定义	功能	电气特性
1	UARTO_TXD	串口0输出	0V3.3V
2	LS2K_IICO_SCL	I2C0 的时钟输出	0V3.3V
3	UARTO_RXD	串口0输入	0V3.3V
4	LS2K_IIC1_SCL	I2C1 的时钟输出	0V3.3V
5	GND	数字电源地	0V
6	LS2K_IICO_SDA	I2C0 的数据,输入/输出	0V3.3V
7	UART3_TXD	串口3输出	0V3.3V
8	LS2K_IIC1_SDA	I2C1 的数据,输入/输出	0V3.3V
9	UART3_RXD	串口3输入	0V3.3V
10	LS2H_SPI_CSN1	SPI 片选 1,低有效	0V3.3V
11	UART5_RXD	串口 5 的输入	0V3.3V
12	LS2H_SPI_CSN2	SPI 片选 2,低有效	0V3.3V
13	UART5_TXD	串口5的输出	0V3.3V
14	LS2H_SPI_CSN3	SPI 片选 3,低有效	0V3.3V
15	UART4_RXD	串口4的输入	0V3.3V
16	LS2H_SPI_SCK	SPI 的时钟输出	0V3.3V
17	UART4_TXD	串口4的输出	0V3.3V
18	LS2H_SPI_SDI	SPI 的数据输入	0V3.3V
19	GND	数字电源地	0V
20	LS2H_SPI_SDO	SPI 的数据输出	0V3.3V

(3) USB 插针接口定义, USB 是标准差分信号, 可直接连接 USB 设备,

USB_PWR 是 5V 电源。

引脚	定义	功能	电气特性
1	USB0+	USB 差分信号正	标准 USB 差分信
2	USB0-	USB 差分信号负	号
3	GND	数字电源地	0V
4	USB_PWR	USB 设备电源	5V/0.5A

(4) 网络扩展接口与 PWM 输出接口定义。网络信号是标准的差分信号,可用于连接双绞线再连网口,PWM 信号是 3.3V 电平。

引脚	定义	功能	电气特性
1	LAN1_MDIO0+	网口差分信号0正	
2	LAN1_MDIO2+	网口差分信号2正	
3	LAN1_MDIO0-	网口差分信号0负	
4	LAN1_MDIO2-	网口差分信号 2 负	标准网络差分信
5	LAN1_MDIO1+	网口差分信号1正	号
6	LAN1_MDIO3+	网口差分信号3正	
7	LAN1_MDIO1-	网口差分信号1负	
8	LAN1_MDIO3-	网口差分信号3负	
9	LAN1_LED1	网口指示灯输出	3.3V
10	LAN1_LED2	网口指示灯输出	3.3V
11	GND_EARTH_LAN1	机壳地	0V
12	GND	数字电源地	0V
1	PWM0	PWM 输出	0V3.3V
2	PWM2		0V3.3V
3	PWM3		0V3.3V
4	PWM4		0V3.3V
5,6	GND	数字电源地	0V

(5) DVO 输出显示接口。该接口用于连接 LCD 显示屏,采用 FPC 连接器,使用的是下接触方式,具体引脚定义如下: 其中 DVO0--DVO23,分别对应 BGR888。所有信号都是 3.3V 电平

引脚	定义	功能	电气特性
1	P3V3	数字 3.3V 电源,为显示	3.3V/1.5A
2	P3V3	屏提供电源	
3	2K_DVO0	数字输出 B0	
4	2K_DVO	数字输出 B1	
5	2K_DVO	数字输出 B2	
6	2K_DVO	数字输出 B3	0V3.3V
7	2K_DVO	数字输出 B4	003.30
8	2K_DVO	数字输出 B5	
9	2K_DVO	数字输出 B6	
10	2K_DVO	数字输出 B7	
11	GND	数字电源地	0V
12	2K_DVO	数字输出 G0	
13	2K_DVO	数字输出 G1	
14	2K_DVO	数字输出 G2	01/ 2 21/
15	2K_DVO	数字输出 G3	0V3.3V
16	2K_DVO	数字输出 G4	
17	2K_DVO	数字输出 G5	

		I	1
18	2K_DVO	数字输出 G6	
19	2K_DVO	数字输出 G7	
20	GND	数字电源地	0V
21	2K_DVO	数字输出 RO	
22	2K_DVO	数字输出 R1	
23	2K_DVO	数字输出 R2	
24	2K_DVO	数字输出 R3	0V3.3V
25	2K_DVO	数字输出 R4	003.30
26	2K_DVO	数字输出 R5	
27	2K_DVO	数字输出 R6	
28	2K_DVO	数字输出 R7	
29	GND	数字电源地	0V
30	NC		
31	NC		
32	2K_DVO_CLK P	时钟输出	0V3.3V
33	2K_DVO_DE	使能信号输出	0V3.3V
34	2K_DVO_VSY NC	垂直同步信号输出	0V3.3V
35	2K_DVO_HSY NC	水平同步信号输出	0V3.3V
36	NC		
37	LCD_X+	触摸屏X正坐标输入	
38	LCD_X-	触摸屏X负坐标输入	0V3.3V
39	LCD_Y-	触摸屏Y负坐标输入] UV3.3V
40	LCD_Y+	触摸屏 Y+坐标输入	

1.7、安全操作建议

使用过程中,尽量不要直接触摸元器件,特别是芯片,更不要带电触摸。 请不要在大磁场、静电场、高温环境下无保护使用。

在通电之前,确保您所接线路,所做实验外设,不存在短路、电压不稳或偏高等非法操作,请仔细求证后再通电。

若要自行更改线路,请谨慎拆卸元器件,改动线路,接线飞线等。若造成 损坏请自行负责。

二、龙芯派套件硬件安装

2.1、风扇的安装

本板卡的功耗在 3-5W,通常不用安装风扇散热。只有在跑一些测试压力比较大或测试时间较久的情况下,主芯片 2K1000 可能会比较热,此时可以使用 3.3V 供电的风扇进行散热,将风扇的两极连接至 GPIO 与 CAN 总线插针接口的 PIN 24、26(或 23、25),连接时注意风扇的极性不要接反。

2.2、散热片的安装

散热片的安装很简单,在散热片底面贴上导热垫,粘在主芯片龙芯 2K1000 上即可。安装方法如下:

2.3、外壳的安装

外壳安装如下图:分别为顶层、侧面、底层视图,中间螺柱高度约 3cm,内径 2mm

2.4、显示屏安装

本板卡适配的 LCD 是 S70 显示屏(也可以接其他显示屏,接口兼容即可),接口定义详见 1.6-(5),只需按照正确方向把 FPC 软排线连接在 FPC 插座中即可。如下:

2.5、SD 卡的使用

本板卡上自带 SD 卡座,可用于放置 Micro SD 卡,目前最大可支持 32GB 存储,用于存放数据或系统。另外本 SD 卡座是翻盖式的,插卡之前需要从背面把座打开,然后再放入 SD 卡,扣上之后,向内拉一下卡紧即可。如下:

(1) 向外拉一下, 然后打开卡盖

(2) 放入SD卡

(3) 合上卡盖,向内拉一下金属盖卡紧

2.6、WIFI 天线的安装

本板卡上自带 USB 转 WIFI 模块,但默认没有天线,需要用户自行从网上购买 WIFI 天线。天线为 1.2mm 间距公头。使用 WiFi 功能,可以把板卡配置成无线 AP,让多个用户进行连接。WIFI 天线安装如下:

(1) IPX 转 SMA 转接线连接到 WIFI 模块上

(2) 全向天线

(3) 推荐一个 WIFI 天线网址:

IPX 转 SMA 转接线:

https://detail.tmall.com/item.htm?id=532606910622&spm=a1z1r.7974869.0.0.40 901636RbK9n3

全向天线:

https://detail.tmall.com/item.htm?id=553585374909&spm=a1z1r.7974869.0.0.40 901636RbK9n3

2.7、 USB 使用

本板卡上一共有三个 USB2.0 接口,两个是标准的 USB 接口,另外一个插针形式。标准的 USB 接口可以连接键盘、鼠标、U 盘等设备;插针形式的 USB 接口,可灵活连接非标准的 USB 设备。接口定义详见 1.6--(3)

2.8、HDMI 接口

本板卡上集成一个 Micro HDMI 接口,可用于传输音视频信息,支持 1080P HDMI 显示器。把 HDMI 显示器连接在该接口上,即可实现显示。

2.9、网口

本板卡上集成两个自适应 10/100/1000M 网络接口,一个是标准的 RJ45 接

口,直接连接网线即可;一个是插针定义的网口,详见 1.6--(4)定义,需要把接口转换,变成标准接口。

插针定义的网口使用转接板可以变成标准 RJ45 网口,如下:

2.10、音频

本板卡上集成音频输入\输出功能,可用于 3.5mm 耳机进行录音及放音。参 考 1.5 节,正确连接耳机后即可使用。

2.11、GPIO 与 CAN

本板卡上默认有 22 个 GPIO, 但 PWM 接口也可以复用成 GPIO 功能,这样的话,可以有 26 个 GPIO。目前的 GPIO 可以作为输入或输出,但输入暂时还不支持中断,只能通过轮询的方式查看。

CAN 为标准的差分信号,可用于连接外部的 CAN 设备。在没有 CAN 设备的情况下,可以把 CANO 和 CAN1 进行互联(CANOH--CAN1H,CANOL--CAN1L)进行测试。

该接口使用的是 1.0mm 间距的排针,如想使用 2.54mm 间距的插针连接外设,可以使用转接板进行转换,如下:

扩展板的插针引脚定义如下:

2.12、按键

板卡有两个按键,分别是复位和开/关机键,位置详见 1.5 节。下面对这两个按键进行简单说明

复位键:程序启动后,无论何时按下该按键,程序都会重新启动。

开/关机:插上 Micro USB 电源后,系统运行部分电源还没有上电,板卡处于关机状态,程序不会启动。短按一下该按键,所有电源将会生成,接着程序

才可以正常启动,完成开机。启动到系统或命令行下后,再长按该按键(大于 4S 后松开),板卡会进行关机状态。

2.13、串口/I2C/SPI

该接口提供了多个低速总线接口,可供用户连接多种外设。

串口:引出了 4 个两线串口,分别是 UARTO、UART3、UART4、UART5。这些串口都是 LVTTL 电平(3.3V),不可以直接跟 232 的串口线相连,若想与 232 的串口线连接,需进行 LVTTL to 232 电平转换。默认 UARTO 用于程序打印及查看调试信息,使用一个 USB 转 LVTTL 串口线即可在串口终端上进行查看,串口终端设置如下:

UART3--5 可以用来扩展其他外设。

I2C: 板上有两个 I2C 总线,分别是 I2C0 和 I2C1。I2C1 上挂载了 ZT2083 芯片(I2C 地址: 1001000x)和 Sil9022ACNU(I2C 地址: 01110010)两个芯片。而 I2C0 上目前板卡上没有挂载其他芯片。但由于 I2C 总线的特性

SPI:板上共有 4 个 SPI 片选信号,SDI、SDO、SCK 信号共用,LS2H_SPI_CSNO 用来连接启动 BIOS,对外没有引出。LS2H_SPI_CSN1--3 引出到了插针上,可用于扩展其他 SPI 外设。

该接口使用的是 1.27mm 间距的排针,如想使用 2.54mm 间距的排针进行连接外设,可以使用转接板进行转换,如下:

转接板的引脚定义如下,把外设与对应引脚相连即可:

2.14、EJTAG 调试

板卡上有引出 EJTAG 调试接口,该接口可以用于程序(PMON、内核)的烧写、单步调试等。EJTAG 接口只支持龙芯的 EJTAG 仿真器,其他不支持。龙芯官方 EJTAG 仿真器的连接口是 2.54mm 间距的 2x7 双排针,板上该接口是 2.0mm 间距,需要进行接口转换,可以使用转接板,如下:

转接板的引脚定义如下,把 EJTAG 仿真器 1 脚和转接板 1 脚对应相连即可:

2.15、PWM 接口

该板卡集成了 4 路 PWM 信号,可以输出不通频率和脉宽的 PWM 信号,用于控制外部设备。如需驱动电机等设备,则增加驱动芯片,从而增强驱动能力。另外该 PWM 也可以配置成 GPIO 来控制外设。以下扩展板用于把 PWM 当做 GPIO 来点亮 LED,连接如下:

2.16、电源连接

该接口使用 Micro USB 接口电源,输出功率不低于 5V/2A, 把适配器电源插在 Micro USB 接口处即可,此时 3.3V 电源指示灯会点亮,连接如下:

三、龙芯派启动

3.1、外设安装

启动前先装好 SD 卡、风扇、USB 设备、网线、视频线等外设,最后再将电源线插入龙芯派的 5V micro USB 接口上,进行通电操作。

注:在连接外设是应注意不要做出将其接错、接反等错误操作,以免对龙芯派平台造成不可逆的损坏,上电前务必仔细检查个外设的连接无误。

3.2、龙芯派上电启动

在确保所有外设连接无误后再通电,启动龙芯派,启动中注意观察 LED 指示灯的状态,若出现异常及时断电检查。正常启动的界面如下:

四、龙芯派运行判断

4.1、 LED 指示灯状态解读

4.1.1、电源指示灯

正常通电的情况下,电源指示灯常亮,若此灯熄灭或闪烁则表明电源供给不正常,请检查电源供给电路的异常情况。

4.1.2、复位指示灯

此灯点亮表明系统处于复位状态。正常情况下系统正常启动后此灯处于熄灭状态,在未对复位按键操作的情况下,若此灯常亮或闪缩,则表明系统处于不正常复位状态,这样会导致系统无法正常启动,此时应检查复位电路和电源供给电路是否存在什么异常。

4.2、 网口灯以及发热状态

4.2.1、网口灯

默认情况下,当黄、绿两网口灯同时亮起表明无网络连接;绿灯常亮、黄灯闪烁表明 10M 网络链接且在使用状态;绿灯常亮、黄灯熄灭表明 10M 网络接入且无活动;两灯闪烁表明现在的状态为 100M 接入且处于使用状态;两灯熄灭表明 100M 网络接入且无活动;绿灯闪烁且黄灯常亮表示现在有 1000M 网络链接并处于使用状态,绿灯熄灭黄灯常亮表明 1000M 网络链接正常但无数据活动。

在没有网线连接的情况下,如果板卡已经上电启动,默认 RJ45 网口的两个指示灯都会点亮,如下:

4.2.2、正常发热

电子设备都会发热,手指可承受温度均属正常。

4.2.3、不正常发热

通电后若有芯片温度极高,手指放到上面 1 秒都无法承受,这表明此芯片或者电源芯片极有可能被烧毁,需检查电路是否存在短路等情况,若确认为芯片烧毁则需及时更换。

4.3、显示器不显示

- 4.3.1、配置问题
- 4.3.2、HDMI 转 VGA 不兼容
- 4.3.3、质量问题

HDMI 线、VGA 线、DVI 线质量问题

五、2K 龙芯派软件入门操作

5.1、软件系统安装

5.1.1、安装 centOS 系统

1. 镜像下载地址

http://www.loongnix.org/dev/ftp/os/CentOS6.4/

2. 安装系统

在主机(宿主机)上,执行

Mount -o loop CentOS6.4-mips64-Pad-2HV3-20160510.iso /mnt

拷贝 boot 目录下的系统压缩到 U 盘,把系统解压到 SD 上

3. 修改系统配置

解压完成后需要修改部分系统文件

- (1) /etc/X11/xorg.conf 中 Driver 内容改为 fbdev
- (2) boot 目录修改,添加 boot.cfg 文件

编译内核拷贝到 boot 目录下。

5.1.2、安装 Loongnix 系统

可按龙芯开源社区官方网站(http://www.loongnix.org/index.php/Loongnix) 给出的安装方式安装。

5.1.3、安装 SylixOS 实时操作系统

SylixOS 是国内一款内核自主化率达到 100% 的开源大型实时操作系统;支持ARM、MIPS、PowerPC、x86、DSP 等处理器架构;硬实时内核,调度算法先进高效,性能强劲;符合 IEEE、ISO、IEC、GJB7714-2012 相关操作系统编程接口规范,方便应用移植。详细信息可由<u>翼辉信息技术有限公司官网(http://www.acoinfo.com)</u>了解。

2K 龙芯派 SylixOS 系统具有两种启动方式,一种是使用 SylixOS 龙芯派安装工具制作 SD 卡启动盘,另一种是通过网络动态加载系统镜像启动。<u>详见《翼辉</u> SylixOS 操作系统使用手册》

- 1. 通过翼辉信息官网 http://www.acoinfo.com/html/experience.php 申请龙芯 翼辉集成开发套件,申请页面中的附加信息栏填写 "龙芯派开发",开发 套件下载链接将会发送到申请时预留的邮箱。
- 2. 深入学习 SylixOS 操作系统应用开发、图形显示开发及设备驱动开发,请参考集成开发套件安装路径下 doc 文件夹下的《RealEvo-IDE 快速入门》、《RealEvo-IDE 使用手册》、《SylixOS 应用开发手册》、《RealEvo-Simulator 使用手册》、《RealEvo-QtSylixOS 使用手册》、《SylixOS 设备驱动程序开发》文档。

5.2、网络连接

5.2.1、有线网络连接

系统已经启用 dhclient 服务,如果用户有 dhcp 服务器,可自动获得 IP。也

可以配置固定 IP.

5.2.2、WiFi 网络连接

模块支持 AP 功能,模块支持 AP 功能,配置完成后可用设备链接访问网络。配置步骤:

1. 插入无线驱动模块

Insmod mt7601Uap.ko

2. 配置无线网卡

Ifconfig ra0 192.168.100.1

Iptabels -t nat -A POSTROUTING -J

dhcpd

5.3、在龙芯派实现第一个程序

以数码管为例,数码管驱动已在内核中实现。

a) 采用交叉开发方式,编译命令为:

mipsel-linux-gcc -static -o test test.c

编译完成把编译好的 test 拷贝到板卡上,执行后可看到数码管不停的变化。

b) 可以直接在板卡上编译

```
gcc -o test test.c
```

源码如下:

#include <sys/types.h>

#include <sys/stat.h>

#include <stdio.h>

#include <fcntl.h>

//num: 0:data,1:off 2:data 3:off......

static char num[]={0x9,1,2,3,4,5,6,7};

main()

{

int fd;

// fd=open("/dev/my74hc595", O_RDWR, S_IRUSR|S_IWUSR); //可读写方式打开设备文件

fd=open("/dev/my74hc595-0", O_RDWR); //可读写方式打开设备文件

if(fd!=-1)

{

// read(fd, &num, sizeof(int)); //读取设备变量

// printf("The my74hc595 is %d\n", num);

// printf("Please input the num written to my74hc595\n");

// scanf("%d", &num);

write(fd, &num, 8); //写设备变量

```
// read(fd, &num, sizeof(int)); //再次读取刚才写的值
// printf("The my74hc595 is %d\n", num);

close(fd); //关闭设备文件
}
else
{
 printf("Device open failure\n");
 perror("open my74hc595");
}
```

六、内核编译

6.1、虚拟机安装 Linux 操作系统

6.1.1、下载 VMware player 并安装

在 VMware player 的官网下载并安装:

https://www.vmware.com/cn.html

6.1.2、下载 Ubuntu 桌面系统

到以下网址选择合适的版本:

http://www.ubuntu.com/download/desktop

6.1.3、安装 Ubuntu

新建虚拟机,导入 ubuntu 桌面系统光盘映象。

自定义硬件中进行设置,设置好后,点击完成。

显示器中将加速 3D 去掉。

网络适配器中网络连接选用桥接模式。

配置适配器中,如果有两个网卡,则都勾选上。选择"不更新"。

开始自动安装。

6.1.4、进入终端或者命令行

打开 ubuntu 终端,有三种方法:

1) 桌面虚拟终端

在菜单中找,也可以直接运行 gnome-terminal 或 xterm 等。

2) 按制台终端

取消 gdm 服务,或同时按 Ctrl+Alt+F2。恢复桌面系统: Ctrl+Alt+F7。

3) 远程登录

在物理机中运行相应工具,远程登录。

6.1.5、建立 root 用户并自动登录

1) 建立 root 用户

sundm@ubuntu:/\$ sudo passwd root
[sudo] password for sundm: #输入当前用户密码
Enter new UNIX password: #输入 root 密码
Retype new UNIX password: #确认 root 密码
passwd: password updated successfully
sundm@ubuntu:/\$ su #切换至 root 用户
Password:
root@ubuntu:/# #命令进入 root 用户了

2) 设置 root 用户自动登录,并添加代码:

gedit /usr/share/lightdm/lightdm.conf.d/50-ubuntu.conf [SeatDefaults]
autologin-guest=false #不允许 guest 登录
autologin-user=root user-session=ubuntu
greeter-show-manual-login=true#手工输入登陆系统的用户名和密码

在刚修改完 root 权限自动登录后,发现开机出现以下提示:

Error found when loading /root/.profile
stdin:is not a tty

需要修改 profile 文件。

打开文件后找到"mesg n",将其更改为"tty -s && mesg n"。

gedit /root/.profile

6.1.6、安装 VMware tools

VMware Tools 是 VMware 虚拟机中自带的一种增强工具,只有在 VMware 虚拟机中安装好了 VMware Tools,才能实现主机与虚拟机之间的文件共享,实现文件在虚拟机之间的复制粘贴;并可以根据自身需要自由切换显示屏幕的尺寸。

安装 vmware tools 使用 linux.iso 映像文件。打开 Vmware Tools,选中某个虚拟机,点击虚拟机设置。该步骤相当于把光盘插入光驱中。

运行虚拟机,选择 Player,在可移动设备中选择 CD/DVD,点击连接。

弹出显示光盘内容的界面,后将 解压到/opt/下。

依次执行以下指令,安装 vmware tools,安装过程中选择默认设置,一路按回车。

```
#进入 opt 文件夹
cd /opt
# 解压文件
tar zxvf VMwareTools-9.6.2-1688356.tar.gz
# 进行安装
cd vmware-tools-distrib/
./vmware-install.pl
#最后重启系统便完成了 Vmware Tools 安装
reboot
```

在终端输入 vm, 然后按 2 次 tab 键(自动补齐),看系统有没有把 vmwaretools 的命令补齐,如果补齐了,则安装成功。

6.2、安装工具链

6.2.1、安装交叉编译工具

编译准备:

1. 工具链

内核工具链:

ftp://ftp.loongnix.org/embed/ls2k/linux-3.10.0-el7.tar.gz pmon 工具链:

ftp://ftp.loongnix.org/embed/ls3a/toolchain/gcc-4.4-gnu.tar.gz

2. 安装 makedepand

aptitude install xutils-dev 或者 sudo cp makedepand /usr/bin

3. 安装 pmoncfg

sudo cp pmoncfg /usr/bin

- 6.2.2、编译和烧写 pmon
 - 1. cd zloader.ls2k
 - 2. 执行编译脚本里的命令即可,命令如下:

#!/bin/bash

export PATH=/opt/gcc-4.4-gnu/bin/:\$PATH

make cfg all tgt=rom CROSS_COMPILE=mipsel-linux- DEBUG=-g

提醒事项:

1. 如未对 Targets/LS2K/conf/ls2k 配置文件进行更改,可以执行下面命令进行编译:

make tgt=rom CROSS_COMPILE=mipsel-linux- DEBUG=-g

- 2. 编译最终在 zloader.ls2k 目录下生成二进制 gzrom.bin 即为 pmon bin 文件,烧写此文件即可.
 - 3. 关于 pmon 代码部分,可以自行百度 pmon 讲解.
- 6.2.3、编译和烧写内核
 - 1,编译内核

拷贝配置文件:

cp arch/mips/configs/loongson2k_defconfig .config

在内核下执行

./mymake menuconfig

可以对内核进行相应配置

编译:

./mymake vmlinux