Applied ML

Hierarchical Classification & Open Problems in Applied ML

09-07-2024 @ LMU

Outline

- Hierarchical Classification
 - Metrics
 - Approaches

- Some open problems in applied ML
 - Learning on partially labelled trees
 - Classifying sets

A short primer: Multi-class vs. multi-label classification

Multi-class

Classify an instance as **one of** a fixed set of classes.

- Categorical losses
- Classification metrics

Multi-label

Classify an instance as **any of** a fixed set of classes

- Binary losses per class
- Multi-label metrics

Hierarchical classification

Hierarchical Classification in Biology

Hierarchical Classification

- Labels follow a taxonomy:
 - 'Coarse' labels in higher levels of the tree
 - 'Fine-grained' labels at the leaf nodes
- Predictions can be done at any level of the tree.
- Real problems often have 1000s of labels and few examples per label.
- Errors are not equally important:
 - Confusing a 'dog' and a 'wolf' can be less bad than confusing 'cat' and 'car'.

Notation

Our goal is to learn a classifier f(x): $X \rightarrow Y$ that classifies individual samples $x \in X$ into labels $y \in Y$.

In a hierarchical setting, denote with Y the set of all nodes. In addition, we denote with $Y^* \subset Y$ the set of all leaf nodes.

- Each node y can have parent pa(y) and child nodes ch(y).
- Denote with A(y) the set of all ancestors of y and y {y, pa(y), pa(pa(y)), ...}

We are now looking for an inducer *I*, that produces **f** given a set of training data pairs (**x**,**y**).

Metrics for hierarchical

classification

Metrics for Hierarchical Classification

Use **multi-class** performance metrics and classify leaf nodes **Y***.

- Allows using widely understood metrics:
 Accuracy, F1, AUC, ...
- Only classify leaf nodes
- Disregards tree structure

Use **multi-label** performance metrics on flattened tree

'flatten' the entire tree, encode as {'animal', 'lion'}

Hornung, 2023: Evaluating machine learning models in non-standard settings: An overview and new findings https://arxiv.org/pdf/2310.15108

Silla, C.N., Freitas, A.A. A survey of hierarchical classification across different application domains. *Data Min Knowl Disc* **22**, 31–72 (2011). https://doi.org/10.1007/s10618-010-0175-9

Cost-sensitive learning

Cost-sensitive metrics

- Define costs C_{ij} for miss-classifying y_i as y_i.
- Could encode loss for predicting parent node instead of leaf node.
- Requires good judgement as to the real 'cost' of miss-classifications.

ŷ	1	2	3	4	5
1	0	1	1	1	1
2	1	0	1	1	1
3	3	1	0	2	1
4	1	1	1	0	1
5	1	2	1	1	0

Metrics for Hierarchical Classification

Hierarchical metrics encode the tree structure:

Measure overlap between predicted and actual path.

Hierarchical Recall, Precision, F1 (micro)

re: mean($|A(y) \cap A(\hat{y})| / |A(y)|$)

pr. mean($|A(y) \cap A(\hat{y})| / |A(\hat{y})|$)

F1: 2 * re * pr / (re + pr)

recall =
$$2/3$$

prec = $2/4$
f1 = ~ 0.57

Hornung, 2023: Evaluating machine learning models in non-standard settings: An overview and new findings https://arxiv.org/pdf/2310.15108

Silla, C.N., Freitas, A.A. A survey of hierarchical classification across different application domains. *Data Min Knowl Disc* **22**, 31–72 (2011). https://doi.org/10.1007/s10618-010-0175-9

Hierarchical classification

approaches

Flat classification

- Ignore tree structure
- Predict only leaf nodes

This converts the problem to a standard multiclass-classification problem:

Problems:

- Are all errors equally bad?
- What happens when we do not have labels until every leaf?

C.N. Silla & A.A. Freitas, *A survey of hierarchical classification across different application domains* (2011)

Classifier Cascades I

Split into several 'local' tasks at each level, train a classifier at each node.

Example:

Fit a binary classifier at each node. If $P(y_k) > thr_k$: Assign y_k .

Problem:

- Smaller dataset with increasing depth.
- Complex models and prediction logic.
- Need to set 'k' thresholds
- Can yield predictions that violate tree structure

Classifier Cascades II

Split into several 'local' tasks.

Train a classifier at each 'level'.

- Train a multiclass classifier at each level of the tree.
- Train a multiclass model for each parent node.

Problem:

- Can produce predictions inconsistent with tree structure.
- Per level approach is not well defined if the tree is 'uneven'.

Learning to abstain

If the model is not sure between elements in the leaf nodes, stop predicting and return parent node.

if P(y) < thr : assign pa(y)

Problem:

 How to calibrate the decision wrt. the global model?

Deep Learning

Hierarchical neural networks tackle the problem via a softmax prediction at each layer of the tree.

- Extract a representation via NN (FFN, CNN, RNN, ...)
 Predict softmax for each layer in the tree
- Enforce consistency via added 'consistency loss' in each layer k:

$$L(\theta) = \sum_{k} Cross Entropy_{k} + \sum_{k} Consistency_{k}$$

• Consistency_k: $I(\hat{y}_{k-1} = pa(\hat{y}_k)) * I(y_k = \hat{y}_k)$

Software for Hierarchical Learning

- R
 - hierclass: Algorithms and metrics for hierarchical classification based on mlr3. https://github.com/RomanHornung/hierclass
 - **tabnet**: The tabnet package seems to include options for hierarchical classification.

Python

- hiclass: Scikit-learn compatible wrapper for hierarchical classification https://github.com/scikit-learn-contrib/hiclass
- sklearn-hierarchical-classification: Another scikit-learn wrapper https://github.com/globality-corp/sklearn-hierarchical-classification

Open Problems in Applied ML

Open Problem: Classification on partially labelled trees

- Consider settings where we have ground truth labels at different specificity.
- Lack of specificity might e.g. stem from availability of required measurements.
- Losses need to reflect what's possible to predict.

There might be a MSc thesis in that direction!

Dataset 1

Dataset 2

Open Problem: Classifying sets

Example: Flow cytometry:

 Patient blood/bone marrow is split into 3-10 tubes.

 For each tube, we record ~5e4 measurements (cells) of ~10 variables Variables

Events

Goal: Predict a label for each event

Patient sample

Example: Flow cytometry contd.

- 'Context' is important: Label is understood in context / based on geometry relative to other cells.
- Labels are only assigned if sufficient similar cells exist (= cells form a population)
- Instead of classifying a single sample, we need to classify an entire dataset.

Takeaways

- A common sentiment in applied ML is 'xgboost' is all you need
 - This holds only in limited contexts
 - In practices often 'oversimplify' problems so they fit the tools they know.

XGBoost Attention Is All You Need

 Measuring the correct thing is one of the most important skills in ML: Metrics need to encode the real structure of the problem so they provide us with relevant information.