

TOPS – Metoda estymacji kierunku przybycia sygnałów szerokopasmowych

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie AGH University of Science and Technology

Zadania algorytmu

Algorytm ma za zadanie obliczyć DOA (direction of arrival). Algorytm przyjmuje na wejściu:

- Sygnał odebrane na każdym z odbiorników ulokowanych w przestrzeni;
- Liczbę źródeł sygnału;
- Pasmo w jakim wysyłany jest sygnał.

Algorytm po swoim wykonaniu podaje kąty pod jakimi źródła ulokowane są względem macierzy mikrofonowej.

Model sygnału

DFT sygnału na m-tym odbiorniku:

$$X_m(\omega_i) = \sum_{l=0}^{L-1} S_l(\omega_i) e^{-j\omega_i t_{mdelay}(\theta_l)} + N_m(\omega_i)$$
 (1)

Równanie (1) w postaci macierzowej (dla wszystkich m):

$$X(\omega_i) = A(\omega_i, \boldsymbol{\theta})S(\omega_i) + N(\omega_i)$$

 $X(\omega_i)$ – macierz Mx1

 $S(\omega_i)$ – macierz Lx1

 $N(\omega_i)$ – macierz Mx1

 $A(\omega_i, \pmb{\theta})$ – macierz sterująca MxL, gdzie poszczególne wyrazy to: $e^{-j\omega_i t_{mdelay}(\theta_l)}$

Macierz autokorelacji

Macierz autokorelacji używana jest we wszystkich algorytmach służących do obliczania DOA

Algorytm wyznaczania macierzy autokorelacji z sygnałów odebranych na mikrofonie:

- Podzielenie sygnałów na bloki
- Obliczenie DFT dla każdego bloku
- •Wybranie z każdego bloku DFT wartości odpowiadającej częstotliwości $\omega_{\rm i}$ utworzenie macierzy $X(\omega_{\rm i})$
- •Obliczenie macierzy autokorelacji zgodnie ze wzorem: $R_i = E[X_i X_i^H]$ R_i – macierz autokorelacji MxM dla i-tej częstotliwości

Podprzestrzenie sygnału i szumu

Macierz autokorelacji R_i powinna mieć L niezerowych wartości własnych. Korespondujące z nimi wektory własne ułożone wertykalnie tworzą podprzestrzeń sygnału F_i – macierz MxL. Pozostałe wektory własne tworzą podprzestrzeń szumu W_i – macierz Mx(M-L).

MUSIC – podstawowy algorytm do obliczania

Algorytm postępowania w wąskopasmowej metodzie MUSIC (dla jednej częstotliwości ω_i):

- Wyznaczenie macierzy autokorelacji R_i
- Wyznaczenie macierzy podprzestrzeni szumu W_i
- Obliczenie odwrotności pseudospektrum, czyli dla każdego hipotetycznego θ (DOA), kwadratu normy z iloczynu $a_i(\theta)W_i^*$, gdzie $a_i(\theta)$ wektor sterujący, czyli kolumna macierzy sterującej $A(\omega_i, \theta)$ odpowiadająca kątowi θ

Gdy θ rzeczywiście jest DOA, norma powinna przyjąć wartość zero. W celu wyznaczenia DOA należy znaleźć argumenty L największych maksimum lokalnych pseudospektrum.

TOPS – Test of Orthogonality of Projected Subspaces

Algorytm postępowania (i – indeksy częstotliwości od i₀ do i_{K-1}):

- Obliczenie macierzy autokorelacji R_i
- Obliczenie macierzy podprzestrzeni szumu W_i
- Obliczenie jednej macierzy podprzestrzeni sygnału F_{i0}
- Obliczenie diagonalnych macierzy MxM transformacji Φ(Δω_i, θ), gdzie:

$$[\Phi(\Delta\omega_i,\theta)]_{(m,m)} = e^{-j\Delta\omega_i t_{mdelay}(\theta)} \text{ oraz } \Delta\omega_i = \omega_i - \omega_{i0}$$

Obliczenie macierzy U:

$$U_i(\theta) = \Phi(\Delta\omega_i, \theta) F_{i0}$$

TOPS – ciąg dalszy algorytmu

Obliczenie L x (K-1)(M-L) macierzy D:

$$D(\theta) = [U_{i1}^H W_{i1} | U_{i2}^H W_{i2} | \dots | U_{i(K-1)}^H W_{i(K-1)}]$$

- gdy θ jest jednym z DOA rząd macierzy D się zmniejsza
- Obliczenie $\sigma_{min}(\theta)$ najmniejszych wartości SVD macierzy $D(\theta)$
- Znalezienie argumentów (θ) największych L maksimum lokalnych $1/\sigma_{min}(\theta)$

Symulacje - założenia

Sygnał – suma 7 sinusów o losowej, zmiennej w czasie fazie, losowej zmiennej w czasie amplitudzie oraz o równomiernie rozłożonych częstotliwościach z zakresu 1000-2000Hz Prędkość rozchodzenia się sygnału – 343m/s (prędkość dźwięku) Ilość bloków – 100, długość jednego bloku do DFT – 256 próbek Częstotliwość próbkowania fs=8000Hz 10 odbiorników ułożonych równomiernie w okrąg o promieniu około 1m $(4.5*\lambda_{\acute{sr}})$

Właściwości pogłosu:

Rozmiary pokoju: 13x13x3[m]

Odbiorniki na środku pokoju na wysokości 1m

Źródła w odległości 6m od środka pokoju na wysokości 1m

Czas pogłosu: 0.4s, tylko odbicia pierwszego rzędu

Długość filtru: 6000

Jedno źródło o DOA = 33°:

Jedno źródło o DOA = 33°:

TOPS przy SNR=0dB

DOA[deg]: [33.]

TOPS przy SNR= -25dB

DOA[deg]: [32.6]

Jedno źródło o DOA = 33°, dodany pogłos

MUSIC przy SNR=0dB TOPS przy SNR=0dB 0.0042 0.40 0.0040 0.35 Pseudospectrum Pseudospectrum 0.0038 0.30 0.0036 0.25 0.0034 0.20 0.0032 250 50 200 300 350 100 150 50 100 150 200 250 300 350 DOA[deg] DOA[deg] DOA[deg]: [33.1] DOA[deg]: [33.2]

Trzy źródła o DOA równych 8°, 33°, 37°

TOPS przy SNR = 10dB

TOPS przy SNR = -10dB

DOA[deg]: [8.1 32.9 37.1]

DOA[deg]: [8. 33.3 37.]

Trzy źródła o DOA równych 8°, 33°, 37°

TOPS przy SNR = -15dB

TOPS przy SNR = -25dB

Trzy źródła o DOA równych 8°, 33°, 37°

MUSIC przy SNR = 10dB

MUSIC przy SNR = -10dB

DOA[deg]: [7.9 33. 37.]

Trzy źródła o DOA równych 8°, 33°, 37°, dodany pogłos

MUSIC przy SNR = 0dB

DOA[deg]: [7.6 37.9 63.8]

TOPS przy SNR = 0dB

DOA[deg]: [8.1 31.2 39.6]

TOPS, MUSIC, z i bez pogłosu - porównanie

TOPS, MUSIC, z i bez pogłosu - porównanie

TOPS, MUSIC, z i bez pogłosu - porównanie

Dziękuję za uwagę

Źródło:

Yeo-Sun Yoon, Lance M. Kaplan, James H. McClellan "TOPS: New DOA Estimator for Wideband Signals"