Facoltà di Ingegneria di Milano-Leonardo

Fisica tecnica a.a. 2018-2019, docenti A. Salioni G. Guedon 17 luglio 2019

Tiblea technea alai 2010 2019, a	accent in sument of official i	
Cognome e nome	Matr	Bonus Quiz 1 2 3
Note: Il tempo a disposizione dell'allievo per la consultati appunti e testi. Lo svolgimento dei pr dovrà essere riportata sul foglio con il testo. LO CHIARO E ORDINATO E I PASSAGGI DEVOLL'allievo, al termine della prova o in caso di rit soluzione degli esercizi. Qualora fosse presente dell'esercizio questo sarà ritenuto non svolto. NB (<u>Tutte le trasformazioni devono essere disegnate in unità del Sistema Internazionale</u>).	roblemi dovrà essere riportato su fog O SVOLGIMENTO DEGLI ESERCIZ NO ESSERE CIRCOSTANZIATI. tiro, è tenuto a consegnare il testo de e solo la soluzione sul foglio di testo e	li allegati e la soluzione I DEVE ESSERE ll'esame e i fogli con la e non lo svolgimento
Esercizio 1. (9 punti) Un ciclo Rankine con ri-surriscaldamento di opera fra 15 MPa e 10 kPa con una temper turbina di bassa pressione pari al 95%. Caratterizzare il ciclo, calcolare il rendim l'uscita della prima turbina e l'ingresso della A parità di T _{max} e di titolo finale, fare u caratterizzando tale ciclo con le sole pressidegli stati termodinamici caratteristici).	nento e definire la pressione la seconda nel caso di un singo monte de la ciclo Rankine co	di ri-surriscaldamento fra lo ri-surriscaldamento.
Stato termodinamico	Entalpia specifica [kJ/kg]	Pressione [kPa]
1- ingresso pompa	1 1 5 5	
2- ingresso generatore di vapore		
3- ingresso prima turbina		
4- uscita prima turbina		
5- ingresso seconda turbina		
6- uscita seconda turbina		
Rendimento:		
Pressioni di esercizio con due ri-surriscalda		
Esercizio 2. (10 punti) Un ciclo ideale ad aria standard (R*=287 J/caratteristici: A (303 K; 1 bar), B (480 K; 5 II ciclo opera fra due sorgenti termiche le 1200 °C. Individuare il tipo di ciclo fra quelli stud calcolarne il rendimento e calcolare trasformazioni. Tipo di ciclo =	bar), C (1000 K; 0.28 m³/kg), c cui temperature risultano, risultati, rappresentare il ciclo in l'irreversibilità complessiv	D (2.08 bar; 0.87 m ³ /kg). spettivamente, di 20 °C e due piani termodinamici,
Esercizio 3. (11 punti) Si abbia una parete verticale di spessore L, sulla faccia di sinistra e scambiante calore (condizioni al contorno del secondo e terzo termico h. Dati:	avente una conducibilità termi con un fluido a temperatura tipo rispettivamente). Sia noto $= 0 ^{\circ}\text{C}$ $k = 0.5 \text{W/mK}$	T_{amb} sulla faccia di destra il coefficiente di scambio $h = 20 \ W/m^2 K$