

Escola Tècnica Superior d'Enginyeria de Telecomunicació de Barcelona

UNIVERSITAT POLITÈCNICA DE CATALUNYA

DEPARTAMENT DE TEORIA DEL SENYAL I COMUNICACIONS

MICROONES

11 de Juny de 2007

Data notes provisionals: 25/06

Fi d'al·legacions: 28/06

Data notes revisades: 02/07

Professors: Adolf Comerón, Núria Duffo, Xavier Fàbregas i Francesc Torres.

Informacions addicionals:

Cal realitzar **només tres** dels quatre problemes proposats

Temps: 3 hores. Comenci cada exercici en un full apart.

PROBLEMA 1

En el circuit de la figura, la xarxa de dos accessos s'excita amb un generador senoidal de tensió de pic en circuit obert $V_G=1$ V_p i impedància interna $Z_G=Z_0=50$ Ω . La xarxa de dos accessos presenta la següent matriu de paràmetres de dispersió [S], referida a Zo:

$$[S] = \begin{bmatrix} \alpha \angle \phi & -j\beta \angle \phi \\ -j\beta \angle \phi & \alpha \angle \phi \end{bmatrix}$$
$$\beta = \sqrt{1 - \alpha^2} ,$$
$$\alpha < 1$$

on α i β són reals i positius

- a) Detalleu, de forma raonada, las propietats de la xarxa de dos accessos.
- b) Si φ =60°, determineu la longitud ℓ mínima expressada com una fracció de la longitud d'ona (λ) dels trams de línia de transmissió que hauria d'afegir en els accessos d'entrada y sortida per a que s₁₁ i s₂₂ fossin reals. Escriviu la matriu S resultant.
- c) Calculeu la màxima potència P_{max} (**mW**) que pot lliurar el generador de la figura, així como l'ona de potència normalitzada a_1 ($\sqrt{\mathbf{W}}$) que el generador produiria.
- d) Determineu el valor de α sabent que les pèrdues de retorn (adaptació a l'entrada) de la xarxa quan $Z_L=Z_o$ és de 9.54 dB. Calculeu la potència (\underline{mW}) lliurada a una càrrega Z_L=Z_o, la potència dissipada per la xarxa de 2 accessos y la potència reflectida cap al generador.
- e) En el cas φ=0, deriveu l'equació que relaciona V_q i el fasor de corrent I_L sobre la càrrega quan Z_L=0 en funció de V_g, α i Z₀. En aquesta equació ha d'aparèixer explícitament els símbols V_g, I_Ly α. Determineu el valor I_L en mA.
- f) Calculeu el valor dels paràmetres s₁₁' y s₂₁' referits a Zo d'una xarxa de tres accessos formada quan es
 - connecten en paral·lel l'accés (1) de dues xarxes idèntiques a la de l'enunciat, tal i com s'indica a la figura adjunta (considereu $\varphi=0$).

PROBLEMA 2

L'acoblador direccional sense pèrdues de la figura presenta la següent matriu de paràmetres S referits a Z_0 =50 Ω

La potència disponible del generador és de 10 dBm, en el port 2 s'ha connectat una càrrega Z_L =75 Ω i en el port 4 un detector de potència (adaptat al port).

- a) Indiqueu quins parells són els accessos desacoblats, els acoblats i les vies directes. Si la potència mesurada en el detector és de -15 dBm calculeu $|S_{12}|$, $|S_{13}|$ i $arg(S_{12}S_{13}^{*})$
- b) Determineu l'acoblament C(dB), les pèrdues d'inserció IL(dB) i la potència reflectida en el port 1 P_1^- (dBm)
- c) Quina càrrega s'hauria de connectar en el port 3 per aconseguir que la potència mesurada en el detector sigui P₄=0W.
- d) Si al circuit de l'apartat anterior li substituïm el detector de potència per un generador canònic idèntic al connectat al port 1 quina és la potencia dissipada a la càrrega Z_L (P_2)
- e) Si l'acoblador presentés les següents no idealitats $|S_{jj}| = 0,05, j = 1,2,3,4$ i $|S_{14}| = |S_{23}| = 0,03$ trobeu les pèrdues de retorn , l'aïllament i la directivitat (Nota: considereu que el canvi en els valors de $|S_{12}|$ i $|S_{13}|$ és negligible).

PROBLEMA 3

La figura mostra l'esquema d'un filtre de línies acoblades realitzat en strip-line sobre un substrat amb $\varepsilon_r = 2.17$.

- a) Raoneu quin és l'ordre del filtre.
- b) Si la freqüència central és $f_0 = 10 \; GHz$, determineu l.
- c) Sabent que la pèrdua d'inserció per al prototipus passa-baix d'un filtre amb resposta de Butterworth amb ampla de banda definit convencionalment a 3~dB és $L'(\omega') = 10\log\left[1 + \left(\omega'/\omega_{_{_{\! 1}}}'\right)^{2^n}\right]$, on n és l'ordre del filtre , determineu l'ample de banda a 3

dB del filtre si es vol que l'atenuació a $9\,GHz$ sigui de $10\,dB$. Nota: $\frac{\omega'}{\omega_{\rm l}'} = \frac{1}{W} \left(\frac{f}{f_0} - \frac{f_0}{f} \right)$.

d) Determineu Z_{0e} i Z_{0a} per a les seccions de línies acoblades si la impedància de

$$\text{referència \'es } Z_0 = 50 \ \Omega \ . \ \ \text{Nota:} \quad \overline{J}_{01} = \sqrt{\frac{\pi W}{2 \, \omega_l^{\, \prime} g_1}} \ , \quad \overline{J}_{ii+1} = \frac{\pi W}{2 \, \omega_l^{\, \prime} \sqrt{g_i g_{i+1}}} \ , \quad \overline{J}_{nn+1} = \sqrt{\frac{\pi W}{2 \, \omega_l^{\, \prime} g_n g_{n+1}}}$$

$$\overline{Z}_{0e} = \sqrt{1 + \overline{J}^{\,2}} + \overline{J}$$
 .

e) Determineu els valors aproximats de w/b i s/b, on b és el gruix del substrat, a partir de la gràfica adjunta. (indiqueu com hi arribeu sobre un esquema de la gràfica en el full que entregueu).

Valors dels elements del prototipus passa- baix per a filtres de Butterworth amb ample de banda definit a $3\ dB$					
$g_0 = 1$, $\omega_1' = 1$					
Ordre	g_1	g_2	g_3	g_4	g_5
1	2.000	1.000			
2	1.414	1.414	1.000		
3	1.000	2.000	1.000	1.000	
4	0.7654	1.848	1.848	0.7654	1.000

PROBLEMA 4

Un transistor FET de GaAs presenta els següents paràmetres S: $(Z_0=50)$ a 4 GHz i per a un cert punt de polarització:

$$[S] = \begin{bmatrix} 0.69 \angle -162^{\circ} & 0.102 \angle 7^{\circ} \\ 4.762 \angle 62^{\circ} & 0.23 \angle -156^{\circ} \end{bmatrix}$$

El valor de Γ_{Sopt} que dona mínim soroll, Fmin=0.3dB, és Γ_{Sopt} =0.59 \angle 102°.

A la Carta de Smith adjunta es presenten els cercles de Guany constant a l'entrada (amb un decrement d'1 dB d'un al següent) i Factor de Soroll constant (amb un increment de 0.2dB d'un cercle al següent).

- a) Calculeu el Guany màxim unilateral
- b) Raonar quins són els cercles de G_S constant i quins els de F constant i establir sobre la Carta de Smith la zona on el factor de soroll $F \le 0.5 dB$ i a la vegada el guany a la entrada $G_S \ge -0.2 dB$
- c) De totes les solucions del apartat b) per a Γ_{S} , escolliu la que presenti soroll mínim i que a la vegada es pugui sintetitzar amb una xarxa com la de la figura.

- d) Trobeu el valor de Γ_L que proporcioni màxim G_L amb l'aproximació unilateral.
- e) Trobar el valor del Guany unilateral i del Factor de Soroll, aproximadament.
- f) Calculeu les longituds I_1 i I_2 (en mm) que sintetitzen Γ_L (preneu ϵ_{ref} =4).

$$G_{T} = \frac{\left(1 - \left|\Gamma_{S}\right|^{2}\right) \left|S_{21}\right|^{2} \left(1 - \left|\Gamma_{L}\right|^{2}\right)}{\left|\left(1 - S_{11}\Gamma_{S}\right) \left(1 - S_{22}\Gamma_{L}\right) - S_{12}S_{21}\Gamma_{S}\Gamma_{L}\right|^{2}}$$

