Cryptographie symétrique: César, Vigénere, réseaux de Feistel

Cours de sécurité: DUT S4

2013-2014

1 Chiffrement de César

1.1 Cryptographie

- 1. Observez puis compilez le programme cesar.cpp, qui implémente l'algorithme de chiffrement/déchiffrement de César vu en cours
 - Entrée: un fichier et le décalage (une lettre minuscule: $'a' = 0 \dots 'z' = 25$)
 - Sortie: le fichier chiffré
 - Notes:
 - On ne prendra en compte (jusqu'à la fin de ce tp) que les fichiers contenant uniquement des lettres minuscules (pas d'accents, pas d'espace, pas de ponctuation). Pourquoi ?
 - On pose $'a' = 0 \dots 'z' = 25$
- 2. Testez-le sur des fichiers de votre crû, chiffrez puis déchiffrez.
- 3. Si un programme a été chiffré avec la clé 'e', quelle est la clé de déchiffrement ?
- 4. Que remarquez vous pour un chiffrement/déchiffrement avec pour clé 'n' (i.e un décalage de 13) ?

1.2 Cryptanalyse

On se propose maintenant de casser le chiffrement de césar via une attaque de type texte chiffré connu.

- 1. Comment faire?
- 2. Créez un programme freq.cpp qui calcule la fréquence d'apparition des lettres d'un fichier texte (vous pourrez vous aider du squelette lecture_fichier.cpp)
- 3. Retrouvez le texte clair à partir du fichier chiffré cesar1_chiffre.txt
 - La fréquence des lettres de l'alphabet est donné en annexe

2 Vigenere

2.1 Cryptographie

- 1. Observez puis compilez le programme vigenere.cpp qui implémente le chiffrement de vigenere vu en cours.
 - Entrée: un fichier et la clé (un mot de lettres minuscules)
 - Sortie: le fichier chiffré
 - Notes:
 - On pose les même conditions que pour le chiffrement de Cesar
- 2. Testez-le sur des fichiers de votre crû. Chiffrez, puis déchiffrez.
- 3. A quel autre algorithme est-il équivalent pour une longueur de clé de 1 ?

2.2 Cryptanalyse

On se propose maintenant de casser le chiffrement de vigenere via une attaque de type texte chiffré connu.

- 1. Déterminez la longueur de la clé:
 - Via un programme ic qui va implémenter l'attaque par calcul de l'indice de coïncidence
- 2. Créez un programme decoup :
 - Entrées: un fichier f, un entier len
 - Sorties: len fichiers $f_0 \dots f_{len-1}$ tels que f_i contient toutes les lettres de f dont la position dans le texte modulo len est égale à i (découpage en "colonnes" vu en cours).
- 3. Retrouvez le texte clair à partir du fichier chiffré vigenere1_chiffre.txt
- 4. Notes:
 - L'indice de coïncidence d'un texte français est d'environ 0.08
- 5. Cassez le chiffrement du fichier vigenere2_chiffre.txt et retrouvez le texte en clair
 - Attention, celui-là est en anglais
- 6. Essayez d'automatiser la découverte de la clé le plus possible

3 Réseaux de Feistel

- 1. Implémentez le réseau de Feistel suivant:
 - Longueur de bloc de 64bits
 - Longueur de la clé de 32 bits
 - 12 rondes
 - La fonction f est laissée à votre choix (elle doit être inversible!)

- \bullet Le générateur de clé g est également laissé à votre choix
 - Si vous n'avez pas d'idée, vous pouvez prendre $k_i = k + i * x$ où x est un entier quelconque
- 2. Testez le chiffrement et le déchiffrement sur des fichiers de votre crû
- 3. Observez:
 - La confusion du chiffrement
 - $\bullet\,$ La diffusion du chiffrement

4 Annexe

Lettre	Fréquence %	Lettre	Fréquence %
Α	9.42	N	7.15
В	1.02	0	5.14
С	2.64	P	2.86
D	3.39	Q	1.06
E	15.87	R	6.46
F	0.95	S	7.90
G	1.04	Т	7.26
Н	0.77	U	6.24
I	8.41	V	2.15
J	0.89	W	0.00
K	0.00	X	0.30
L	5.34	Υ	0.24
M	3.24	Z	0.32

Figure 1: Fréquence d'apparition des lettres de l'alphabet dans un texte français