CS 511, Fall 2020, Lecture Slides 20 Extended Example in First-Order Logic

Assaf Kfoury

October 6, 2020

several structures over the domain $\mathbb N$ (assume "pprox" is available)

structures over the	vocabulary/signature	
domain of natural numbers	predicate symbols	function symbols
$\mathcal{N} \stackrel{ ext{def}}{=} (\mathbb{N},0,S)$	$\mathscr{P}=\varnothing$	$\mathscr{F}=\{0,S\}$
$\mathcal{N}_1 \stackrel{ ext{def}}{=} (\mathbb{N},0,S,<)$	$\mathscr{P} = \{<\}$	$\mathscr{F}=\{0,S\}$
$\mathcal{N}_2 \stackrel{ ext{def}}{=} (\mathbb{N},0,S,<,+)$	$\mathscr{P} = \{<\}$	$\mathscr{F}=\{0,S,+\}$
$\mathcal{N}_3 \stackrel{ ext{def}}{=} (\mathbb{N}, 0, S, <, +, \cdot)$	$\mathscr{P} = \{<\}$	$\mathscr{F}=\{0,S,+,\cdot\}$
$\mathcal{N}_4 \stackrel{\mathrm{def}}{=} (\mathbb{N}, 0, S, <, +, \cdot, pr)$ $pr(x) \stackrel{\mathrm{def}}{=} true iff x is prime$	$\mathscr{P} = \{<,pr\}$	$\mathscr{F} = \{0, S, +, \cdot\}$
$\mathcal{N}_5 \stackrel{\text{def}}{=} (\mathbb{N}, 0, S, <, +, \cdot, pr, \uparrow) \\ x \uparrow y \stackrel{\text{def}}{=} x^y$	$\mathscr{P} = \{<,pr\}$	$\mathscr{F} = \{0, S, +, \cdot, \uparrow\}$
$\mathcal{N}_6\stackrel{\mathrm{def}}{=}\cdots$		

Question: Is a new predicate (function) definable from earlier ones?

lacktriangle every number n is definable from 0 and S:

```
1 \stackrel{\text{def}}{=} S(0)
2 \stackrel{\text{def}}{=} S(S(0))
3 \stackrel{\text{def}}{=} S(S(S(0)))
\dots
n \stackrel{\text{def}}{=} \underbrace{S(\dots S(0) \dots)}
```

every number n is definable from 0 and S:

```
1 \stackrel{\text{def}}{=} S(0)
2 \stackrel{\text{def}}{=} S(S(0))
3 \stackrel{\text{def}}{=} S(S(S(0)))
\dots
n \stackrel{\text{def}}{=} \underbrace{S(\cdots S(0) \cdots)}_{n}
```

"S" is definable from "+": for all $m, n \in \mathbb{N}$, we have S(m) = n iff m + 1 = n

every number n is definable from 0 and S:

```
1 \stackrel{\text{def}}{=} S(0)
2 \stackrel{\text{def}}{=} S(S(0))
3 \stackrel{\text{def}}{=} S(S(S(0)))
\dots
n \stackrel{\text{def}}{=} \underbrace{S(\dots S(0) \dots)}_{n}
```

"S" is definable from "+": for all $m, n \in \mathbb{N}$, we have S(m) = n iff m+1=n formally: the sentence $\forall x \forall y \ (S(x) \approx y \leftrightarrow x+1 \approx y)$ is true in \mathcal{N}_2 , which implies the graph of $S^{\mathcal{N}_2}$ is defined by $\varphi_S(x,y) = (x+1 \approx y)$.

every number n is definable from 0 and S:

```
1 \stackrel{\text{def}}{=} S(0)
2 \stackrel{\text{def}}{=} S(S(0))
3 \stackrel{\text{def}}{=} S(S(S(0)))
\dots
n \stackrel{\text{def}}{=} \underbrace{S(\dots S(0) \dots)}_{n}
```

- "S" is definable from "+": for all $m, n \in \mathbb{N}$, we have S(m) = n iff m+1=n formally: the sentence $\forall x \forall y (S(x) \approx y \leftrightarrow x+1 \approx y)$ is true in \mathcal{N}_2 , which implies the graph of $S^{\mathcal{N}_2}$ is defined by $\varphi_S(x,y) = (x+1 \approx y)$.
- ▶ is "+" definable from "S"? perhaps . . .

every number n is definable from 0 and S:

```
1 \stackrel{\text{def}}{=} S(0)
2 \stackrel{\text{def}}{=} S(S(0))
3 \stackrel{\text{def}}{=} S(S(S(0)))
\dots
n \stackrel{\text{def}}{=} \underbrace{S(\dots S(0) \dots)}_{n}
```

- "S" is definable from "+": for all $m,n\in\mathbb{N}$, we have S(m)=n iff m+1=n formally: the sentence $\forall x\forall y\,(\,S(x)\approx y\,\leftrightarrow\,x+1\approx y\,)$ is true in \mathcal{N}_2 , which implies the graph of $S^{\mathcal{N}_2}$ is defined by $\varphi_S(x,y)=(x+1\approx y)$.
- is "+" definable from "S"? perhaps . . . for all $m,n,p\in\mathbb{N}$, we have m+n=p iff $\underline{S(\cdots S(m)\cdots)}=p$

every number n is definable from 0 and S:

```
1 \stackrel{\text{def}}{=} S(0)
2 \stackrel{\text{def}}{=} S(S(0))
3 \stackrel{\text{def}}{=} S(S(S(0)))
\dots
n \stackrel{\text{def}}{=} \underbrace{S(\dots S(0) \dots)}_{n}
```

- "S" is definable from "+": for all $m,n\in\mathbb{N}$, we have S(m)=n iff m+1=n formally: the sentence $\forall x\forall y\,(\,S(x)\approx y\,\leftrightarrow\,x+1\approx y\,)$ is true in \mathcal{N}_2 , which implies the graph of $S^{\mathcal{N}_2}$ is defined by $\varphi_S(x,y)=(x+1\approx y)$.
- is "+" definable from "S"? perhaps . . . for all $m,n,p\in\mathbb{N}$, we have m+n=p iff $\underbrace{S(\cdots S(m)\cdots)}_n=p$ "formally": $\forall x\forall y\forall z$ [$\underbrace{S(\cdots S(x)\cdots)}_y\approx z \leftrightarrow x+y\approx z$] so perhaps $\varphi_+(x,y,z)\stackrel{\mathrm{def}}{=} \underbrace{(S(\cdots S(x)\cdots)}_x\approx z \ldots)$ Not quite!

1. FACT

"+" is **NOT** (first-order) definable from "0" and "S" (difficult!)

1. FACT

"+" is **NOT** (first-order) definable from "0" and "S" (difficult!)

2. FACT

"<" is (first-order) definable from "+" (easy: try it!)

- 1. FACT
 "+" is **NOT** (first-order) definable from "0" and "S" (difficult!)
- 2. FACT "<" is (first-order) definable from "+" (easy: try it!)
- 3. FACT "+" is **NOT** (first-order) definable from "<", "0", and "S" (difficult!)

- 1. FACT
 "+" is **NOT** (first-order) definable from "0" and "S" (difficult!)
- 2. FACT

 "<" is (first-order) definable from "+" (easy: try it!)
- 3. FACT "+" is **NOT** (first-order) definable from "<", "0", and "S" (difficult!)
- 4. FACT"·" is NOT (first-order) definable from "0", "S", and "+"(no need to mention "<") (difficult!)

```
1. FACT
    "+" is NOT (first-order) definable from "0" and "S"
                                                         (difficult!)
2 FACT
    "<" is (first-order) definable from "+" (easy: try it!)
FACT
    "+" is NOT (first-order) definable from "<", "0", and "S"
                                                              (difficult!)
4 FACT
    "·" is NOT (first-order) definable from "0", "S", and "+"
   (no need to mention "<") (difficult!)
5 FACT
```

"+" is (first-order) definable from "<" and ":"

(tricky: try hint below!)

- FACT
 - "+" is **NOT** (first-order) definable from "0" and "S" (difficult!)
- 2. FACT

```
"<" is (first-order) definable from "+" (easy: try it!)
```

- 3. FACT
 - "+" is **NOT** (first-order) definable from "<", "0", and "S" (difficult!)
- 4 FACT

"·" is **NOT** (first-order) definable from "0", "
$$S$$
", and "+" (no need to mention "<") (difficult!)

5. FACT

Hint. Use the following equivalence for all $m,n,p\in\mathbb{N}$ $(p=0)\vee(p=m+n)$ iff $(m\cdot p+1)\cdot(n\cdot p+1)=p^2\cdot(m\cdot n+1)+1$

▶ is "pr" definable from $\{0, S, <, +, \cdot\}$?

first-order definability over $\ensuremath{\mathbb{N}}$

- $\begin{array}{l} \blacktriangleright \quad \text{is "pr" definable from } \{0,S,<,+,\cdot\}? \\ \\ \textbf{YES} \quad \text{pr}(n) \text{ is true iff } \varphi(n) \text{ is true, where } \varphi(x) \text{ is the WFF} \\ \\ \varphi(x) \ \stackrel{\scriptscriptstyle \mathrm{def}}{=} \ \neg(x\approx 1) \ \land \ \forall y \forall z \left[\ (x\approx y\cdot z) \ \rightarrow \ (y\approx 1 \lor z\approx 1) \ \right] \\ \end{array}$
- ▶ is "↑" definable from $\{0, S, <, +, \cdot\}$?

- ▶ is "pr" definable from $\{0,S,<,+,\cdot\}$?

 YES $\operatorname{pr}(n)$ is true iff $\varphi(n)$ is true, where $\varphi(x)$ is the WFF $\varphi(x) \stackrel{\text{def}}{=} \neg(x\approx 1) \ \land \ \forall y \forall z \left[\ (x\approx y\cdot z) \ \to \ (y\approx 1 \lor z\approx 1)\ \right]$
- is " \uparrow " definable from $\{0, S, <, +, \cdot\}$?

 YES $m = n \uparrow p$ iff $\varphi(m, n, p)$ is true, where $\varphi(x, y, z)$ is the WFF . . . (not very difficult: try it!)

(THIS PAGE INTENTIONALLY LEFT BLANK)