

Course Specialist Test 1 Year 12

Student name:		
Task type:	Response/Investigation	
Reading time for this test: 5 mins		
Working time allowed for this task: 40 mins		
Number of questions:	7	
Materials required:	No cals allowed!!	
Standard items:	Pens (blue/black preferred), pencils (including coloured), sharpener, correction fluid/tape, eraser, ruler, highlighters	
Special items:	Drawing instruments, templates, NO notes allowed!	
Marks available:	41 marks	
Task weighting:	13%	
Formula sheet provided: no, but formulae stated on page 2		
Note: All part questions worth more than 2 marks require working to obtain full marks.		

Useful formulae

Complex numbers

Cartesian form			
z = a + bi	$\overline{z} = a - bi$		
Mod $(z) = z = \sqrt{a^2 + b^2} = r$	$\operatorname{Arg}(z) = \theta$, $\tan \theta = \frac{b}{a}$, $-\pi < \theta \le \pi$		
$ z_1 z_2 = z_1 z_2 $	$\left \frac{z_1}{z_2}\right = \frac{ z_1 }{ z_2 }$		
$arg(z_1 z_2) = arg(z_1) + arg(z_2)$	$\arg\left(\frac{z_1}{z_2}\right) = \arg(z_1) - \arg(z_2)$		
$z\overline{z} = z ^2$	$z^{-1} = \frac{1}{z} = \frac{\overline{z}}{ z ^2}$		
$\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$	$\overline{z_1}\overline{z_2} = \overline{z_1}\overline{z_2}$		
Polar form			
$z = a + bi = r(\cos \theta + i \sin \theta) = r \operatorname{cis} \theta$	$\overline{z} = r \operatorname{cis} (-\theta)$		
$z_1 z_2 = r_1 r_2 cis \left(\theta_1 + \theta_2\right)$	$\frac{z_1}{z_2} = \frac{r_1}{r_2} \operatorname{cis} (\theta_1 - \theta_2)$		
$cis(\theta_1 + \theta_2) = cis \ \theta_1 \ cis \ \theta_2$	$cis(-\theta) = \frac{1}{cis\theta}$		
De Moivre's theorem			
$z^n = z ^n cis(n\theta)$	$(cis \theta)^n = \cos n\theta + i \sin n\theta$		
$z^{rac{1}{q}} = r^{rac{1}{q}} \left(\cos rac{ heta + 2\pi k}{q} + i \sin rac{ heta + 2\pi k}{q} ight), ext{ for } k ext{ an integer}$			

$$(x-\alpha)(x-\beta) = x^2 - (\alpha + \beta)x + \alpha\beta$$

$$ax^{2} + bx + c = 0$$
$$x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

No cals allowed!!

Q1 (2, 2, 2 & 2 = 8 marks)

If z = 5 - 4i and w = 2 + 3i determine the following:

- a) *ZW*
- b) $\frac{1}{w}$
- c) $\frac{\overline{Z}}{W}$
- d) $z^2 \overline{w}$

Q2 (2 & 3 = 5 marks)

a) Determine the complex roots of $3z^2 + z + 2 = 0$.

b) Use the quadratic equation to prove that if a quadratic equation with real coefficients has any non-real roots then it must have two complex roots and they must be conjugates of each other.

Q3 (4 marks)

Determine all possible real number pairs
$$a \& b$$
 such that $\frac{37 + 9i}{5 + ai} = b - i$

Q4 (2, 2, 2 & 2 = 8 marks)

Consider the complex number $z = \sqrt{3} + i$.

Plot the following on the axes above. a) $\ ^{Z}$

- b) iz
- c) $(1+i)_Z$

$$\frac{z}{(1+i)}$$

Q5 (5 marks)

Consider the polynomial $f(z) = az^4 + bz^3 + cz^2 + dz + e$ where a, b, c, d & e are real numbers.

Given that f(2+i) = 0 = f(5-2i)

and
$$f(0) = -290$$

Determine the values of a,b,c,d & e. (Note: answers without working will receive zero marks)

Q6 (2, 1, 2 & 2 = 7 marks)

Consider the locus of complex numbers z that satisfy $\left|z-\sqrt{3}+i\right|=2$. a) Sketch the locus on the axes below.

b) State the maximum value of $\frac{|z|}{|z|}$

c) State the minimum value of Arg(z) such that Arg(z) > Minimum.

d) State the maximum value of Arg(z) such that Arg(z) < Maximum.

Q7 (4 marks)

Consider the roots of the equation $z^n = a$ with z being a complex variable with a as a complex constant and a being an integer a > 3. A root is defined to be in the first quadrant if the Argument lies

$$0 < Arg(z) < \frac{\pi}{2}.$$

Determine **all** the allowable values of n such that there will be **exactly** 3 roots in the first quadrant and

the smallest argument of these 3 roots will be $\frac{10}{10}$.

(Note: answers without working will receive zero marks)

Working out space