Lahendused

Kaarel Kivisalu

9. september 2020

1 Staatika

1. $\alpha > \arctan \mu$

2. $\varphi = \arctan 2\mu$

 $\label{lem:https://www.teaduskool.ut.ee/sites/default/files/teaduskool/ainevoistlused/fyslah_2006_lahendused.pdf, $V7$$

3. $\mu = s/2h$

4. F = mg/2

https://physoly.tech/static/files/KaldaMech-121.pdf, pr. 3

5. a) $F=mg\mu/\sqrt{\mu^2+1}$ b) $F=mg\sin(\arctan\mu-\alpha)$ https://physoly.tech/static/files/KaldaMech-121.pdf, pr. 4

6. $\mu \leq \sqrt{2} - 1$

http://efo.fyysika.ee/yl/piirkondG/efo04v2kkl.pdf

7.

8. $a = sg/(h + b/\mu)$

http://efo.fyysika.ee/yl/loppvoorG/efo14v3kkl.pdf

9. $F = (m_1 + m_2)(\mu_1 + \mu_2)g$

http://efo.fyysika.ee/yl/piirkondG/efo14v2kkl.pdf

10. $\arctan \frac{r\mu}{(r+l)\sqrt{\mu^2+1}}$

https://physoly.tech/static/files/KaldaMech-121.pdf, pr. 1

11. $\mu > 1$, $F_{min} = \frac{mg}{2} \sqrt{\frac{\mu^2 + 1}{\mu^2 - 1}}$

https://dejanphysics.files.wordpress.com/2016/10/gnadig_1.pdf

12. $R = \frac{L}{2} \sin^2(\frac{\alpha}{2}) \tan(\frac{\alpha}{2}), \ \alpha < \pi/2$

http://efo.fyysika.ee/yl/loppvoorG/efo17v3kkl.pdf

13. a) Kera on kiirem, $\gamma = \sqrt{15/14} - 1$ b) $\alpha_0 = \arctan(3\mu)$

https://www.ioc.ee/~kalda/ipho/es/es2013_sol.pdf

14. $F_{min} = mg/\sqrt{\mu^2 + 1}$

c) $\alpha_m = \arctan(\frac{1}{2}\mu)$

https://www.ioc.ee/~kalda/ipho/es/es2010_sol.pdf

15 v/2

http://efo.fyysika.ee/yl/loppvoorG/efo98v3kkl.pdf

16. $\alpha = \arctan \sqrt{2}$

http://efo.fyysika.ee/yl/loppvoorG/efo15v3kkl.pdf

2 Dünaamika

1. Kiirused on samad, alumine kuulike jõuab enne

2. a) $v_1=P/()\mu mg$ b) $v_2=P/[mg(\mu+0,01)]$ https://www.teaduskool.ut.ee/sites/default/files/teaduskool/ainevoistlused/fyslah_2014_noorem_lahendused.pdf

3.

4. https://web.phys.ntu.edu.tw/semi/ceos/general.files/Proofs%20of%20moments%20of%20inertia%20equations.htm

5.

6.

7. https://proofwiki.org/wiki/Huygens-Steiner_Theorem

8. $h = L\sqrt{M/3m}$

9. mg/(2M+m)

10. $m < M \cos 2\alpha$

11. $\frac{mg\sin\alpha}{M+2m(1-cos\alpha)} = \frac{mg\sin\alpha}{M+4m\sin^2\frac{\alpha}{2}}$

12. $g \frac{(m_1 \sin \alpha_1 - m_2 \sin \alpha_2)(m_1 \cos \alpha_1 + m_2 \cos \alpha_2)}{(m_1 + m_2 + M)(m_1 + m_2) - (m_1 \cos \alpha_1 + m_2 \cos \alpha_2)}$

13. $\cos \alpha \ge \frac{1}{3}(2 + v^2/gR)$

14. q/9

15. a) $\omega_2=\omega$ b) $\omega=5v\cos\alpha/2R$ c) $\mu\geq\cot\alpha$ https://www.ioc.ee/~kalda/ipho/es/e-s-2015-sol.pdf

16. $d = l\sqrt{5/2}$

http://eupho2018.mipt.ru/pdf/eupho18-th-solution.pdf

3 Kinemaatika

1. $v_v=(s-l)/2t,\,v_p=(s-v_vt)/t$ http://efo.fyysika.ee/yl/piirkondPK/efo15v2pkl.pdf

2. 4 km

http://efo.fyysika.ee/yl/piirkondPK/efo14v2pkl.pdf

3.

1

- 4 Matemaatika
- 5 Tuletised, diferentsiaalid ja integraalid füüsikas
- 6 Elektriahelad
- 7 Termodünaamika
- 8 Elektromagnetism

1.
$$F = (1 + 2\sqrt{2})q^2/(8\pi\varepsilon_0 L^2)$$

- **2.** 15:30
- **3.** a) kq/r^2 b) $\lambda/(2\pi\varepsilon_0 r)$ c) $\sigma/(2\varepsilon_0)$ d) $\rho r/(3\varepsilon_0)$, kui r < R, muidu $\rho R^3/(2\varepsilon_0 e r^2)$
- 4. $E = \sigma/\varepsilon_0$ plaaatidevahelises ruumis, mujal E = 0
- **5.** $d\sqrt{2\rho e/(\varepsilon_0 m)}$
- /-
- **6.** $\varphi_0 N^{2/3}$
- 7.
- •

8.

- 9.
- **10.** $\mu_0 I/(2\pi r)$
- 11. $\frac{1}{2}\mu_0 R^2 I/(R^2 + x^2)^{3/2}$