Programming Paradigms

Lecture 3

Slides are from Prof. Chin Wei-Ngan and Prof. Seif Haridi from NUS

Statements, Kernel Language, Abstract Machine

Reminder of last lecture

Kernel language

- % linguistic abstraction
- data types
- wariables and partial values
- w unification

Overview

- Some Oz concepts
- Mattern matching
- Tail recursion
- % Lazy evaluation
- Kernel language
- statements and expressions
- Kernel language semantics
- We use operational semantics
 - Aid programmer in reasoning and understanding
- The model is a sort of an abstract machine, but leaves out details about registers and explicit memory address
 - Aid implementer to do an efficient execution on a real machine

Pattern-Matching on Numbers

```
fun {Fact N}
  case N
  of 0 then 1
  [] N then N*{Fact (N-1)} end
end
```

Pattern Matching on Structures

Compared to Conditional

```
fun {SumList Xs}
   case Xs
   of nil then 0
   [] X|Xr then X + {SumList Xr} end
end
                                    Using only Conditional
fun {SumList Xs}
    if {Label Xs}== 'nil' then 0
    elseif {Label Xs}=='|' andthen {Width Xs}==2
                then Xs.1 +{SumList Xs.2}
    end
end
```

Linear Recursion

```
fun {Fact N}
  case N
  of 0 then 1
  [] N then N * {Fact (N-1)} end
end
```

Accumulating Parameter

```
fun {Fact N } {FactT N 1} end
```

```
fun {FactT N Acc}
    case N
    of 0 then Acc
    [] N then {FactT (N-1) N*Acc} end
end
```

Accumulating Parameter

Accumulating Parameter = Tail Recursion = Loop!

Tail Recursion = Loop

```
fun {FactT N Acc}
   case N
   of 0 then Acc
   [] N then N=N-1
               Acc=N*Acc
                                  jump
               {FactT N Acc}
   end
end
                       Last call = Tail call
```

Lazy Evaluation

Infinite list of numbers!

```
fun lazy {Ints N} N|{Ints N+1} end 

{Ints 2} 

\Rightarrow 2|{Ints 3} 

\Rightarrow 2|(3|{Ints 4}) 

\Rightarrow 2|(3|(4|{Ints 5})) 

\Rightarrow 2|(3|(4|(5|{Ints 6}))) 

\Rightarrow 2|(3|(4|(5|(6|{Ints 7})))) 

::
```

What if we were to compute: {SumList {Ints 2}}?

Taking first N elements of List

```
fun {Take L N}
  if N \le 0 then nil
  else case L of
            nil then nil
        [] X|Xs then X|{Take Xs (N-1)} end end
end
       {Take [a b c d] 2}
       \Rightarrow a|{Take [b c d] 1}
       \Rightarrow a|b|{Take [c d] 0}
       \Rightarrow a|b|nil
       {Take {Ints 2} 2}
```

Eager Evaluation

```
{Take {Ints 2} 2}

⇒ {Take 2|{Ints 3} 2}

⇒ {Take 2|(3|{Ints 4}) 2}

⇒ {Take 2|(3|(4|{Ints 5}))} 2}

⇒ {Take 2|(3|(4|(5|{Ints 6}))) 2}

⇒ {Take 2|(3|(4|(5|(6|{Ints 7})))) 2}

⇒ {Take 2|(3|(4|(5|(6|{Ints 7})))) 2}

∴
```

Lazy Evaluation

Evaluate the lazy argument only as needed

```
{Take {Ints 2} 2}
\Rightarrow \{\text{Take 2} | \{\text{Ints 3}\} 2\}
\Rightarrow 2 | \{\text{Take {Ints 3}} 1\}
\Rightarrow 2 | \{\text{Take 3} | \{\text{Ints 4}\} 1\}
\Rightarrow 2 | \{3 | \{\text{Take {Ints 4}} 0\}\}
\Rightarrow 2 | (3 | \text{nil})
```

terminates despite infinite list

Kernel Concepts

- Single-assignment store
- Environment
- Semantic statement
- Execution state and Computation
- Statements Execution for:
- skip and sequential composition
- wariable declaration
- store manipulation
- conditional

Procedure Declarations

Kernel language

$$\langle X \rangle = \text{proc} \{ \$ \langle y_1 \rangle ... \langle y_n \rangle \} \langle s \rangle \text{ end}$$

is a legal statement

- binds (x) to procedure value
- declares (introduces a procedure)
- Familiar syntactic variant

proc
$$\{\langle X \rangle \langle y_1 \rangle ... \langle y_n \rangle\} \langle S \rangle$$
 end

introduces (declares) the procedure (x)

A procedure declaration is a value, whereas a procedure application is a statement!

What Is a Procedure?

- It is a value of the procedure type.
 - Java: methods with void as return type

- But how to return a result (as parameter) anyway?
 - Idea: use an unbound variable
 - Why: we can supply its value after we have computed it!

Operations on Procedures

- Three basic operations:
 - Defining them (with proc statement)
 - Calling them (with { } notation)
 - Testing if a value is a procedure
 - {IsProcedure P} returns true if P is a procedure, and false otherwise

Towards Computation Model

- Step One: Make the language small
- Transform the language of function on partial values to a small kernel language
- Kernel language

% procedures

% records

% local declarations

no functions

no tuple syntax

no list syntax

no nested calls

no nested constructions

From Function to Procedure

```
fun {Sum Xs}
  case Xs
  of nil then 0
  [] X|Xr then X+{Sum Xr}
  end
```

end

Introduce an output parameter for procedure

```
proc {SumP Xs N}
  case Xs
  of nil then N=0
  [] X|Xr then N=X+{Sum Xr}
  end
end
```

Why we need local statements?

```
proc {SumP Xs N}
  case Xs
  of nil then N=0
  [] X|Xr then
    local M in {SumP Xr M} N=X+M end
  end
end
```

- Local declaration of variables supported.
- Needed to allow kernel language to be based entirely on procedures

How N was actually transmitted?

- Having the call {sumP [1 2 3] c}, the identifier xs is bound to [1 2 3] and c is unbound.
- At the callee of SumP, whenever N is being bound, so will be c.
- This way of passing parameters is called call by reference.
- Procedures output are passed as references to unbound variables, which are bound inside the procedure.

Local Declarations

local X in ... end

Introduces the variable identifier x

wisible between in and end

called scope of the variable/declaration

Creates a new store variable

Links environment identifier to store variable

Abbreviations for Declarations

- Kernel language
- yightarrow just one variable introduced at a time
 yightarrow just of yightarrow just one variable introduced at a time
 yightarrow just one variable introduced at a time
 yightarrow just one variable introduced at a time
 yightarrow just one variable introduced at yightarrow just one variable introduced at yightarrow just one yightar
- m no assignment when first declared
- Oz language syntax supports:
- several variables at a time
- wariables can be also assigned (initialized) when introduced

Transforming Declarations Multiple Variables

Transforming away Declarations' Initialization

```
\begin{array}{c|c} \textbf{local} \\ & \texttt{X=}\langle expression \rangle \\ \textbf{in} \\ & \langle statement \rangle \\ \textbf{end} \end{array} \qquad \begin{array}{c} \textbf{local X in} \\ & \texttt{X=}\langle expression \rangle \\ & \langle statement \rangle \\ \textbf{end} \end{array}
```

Transforming Expressions

- Replace function calls by procedure calls
- Use local declaration for intermediate values
- Order of replacements:
 - left to right
 - innermost first
 - it is different for record construction: outermost first
 - Left associativity: 1+2+3 means ((1+2)+3)
 - Right associativity: a|b|X means (a|(b|X)), so build the first '|', then the second '|'

Function Call to Procedure Call

$$X = \{ F \mid Y \}$$

Replacing Nested Calls

Replacing Nested Calls

```
local U2 in
local U1 in
{G X U1}
{P {F {G X} Y} Z}
end
{P U2 Z}
```

Replacing Conditionals

```
local B in

if X>Y then

if B then

else

...

else

end

end

end
```

Expressions to Statements

```
X = if B then if B then X = ... else X = ... end X = ... end
```

Functions to Procedures: Length (0)

```
fun {Length Xs}
  case Xs
  of nil then 0
  [] X|Xr then 1+{Length Xr}
  end
end
```

Functions to Procedures: Length (1)

```
proc {Length Xs N}
  N=case Xs
    of nil then 0
  [] X|Xr then 1+{Length Xr}
    end
end
```

Make it a procedure

Functions to Procedures: Length (2)

```
proc {Length Xs N}
  case Xs
  of nil then N=0
  [] X|Xr then N=1+{Length Xr}
  end
end
```

Expressions to statements

Functions to Procedures: Length (3)

```
proc {Length Xs N}
  case Xs
  of nil then N=0
  [] X|Xr then
      local U in
      {Length Xr U}
      N=1+U
      end
  end
end
```

Replace function call by its corresponding proc call.

Functions to Procedures: Length (4)

```
proc {Length Xs N}
   case Xs
   of nil then N=0
   [] X|Xr then
      local U in
          {Length Xr U}
          {Number.'+' 1 U N}
      end
   end
end
```

Replace operation (+, dot-access, <, >, ...): procedure!

Kernel Language Statement Syntax

(s) denotes a statement

```
\begin{tabular}{lll} $\langle s \rangle &::=skip \\ & | \langle x \rangle = \langle y \rangle \\ & | \langle x \rangle = \langle v \rangle \\ & | \langle s_1 \rangle \langle s_2 \rangle \\ & | local \langle x \rangle in \langle s_1 \rangle end \\ & | if \langle x \rangle then \langle s_1 \rangle else \langle s_2 \rangle end \\ & | \{\langle x \rangle \langle y_1 \rangle \dots \langle y_n \rangle \} \\ & | case \langle x \rangle of \langle pattern \rangle then \langle s_1 \rangle else \langle s_2 \rangle end \\ \end{tabular}
```

empty statement
variable-variable binding
variable-value binding
sequential composition
declaration
conditional
procedure application
pattern matching

⟨V⟩ ::= ...

value expression

⟨pattern⟩ ::= ..

Abstract Machine

- Environment maps variable identifiers to store entities
- Semantic statement is a pair of:
- statement
- ment of the second of the s
- Execution state is a pair of:
- stack of semantic statements
- single assignment store
- Computation is a sequence of execution states
- An abstract machine performs a computation

Single Assignment Store

- Single assignment store σ
 - set of store variables
 - partitioned into
 - sets of variables that are equivalent but unbound
 - variables bound to a value (number, record or procedure)
- Example store $\{x_1, x_2 = x_3, x_4 = a | x_2\}$
 - $\square X_1$ unbound
 - x_2, x_3 equal and unbound
 - x_4 bound to partial value x_2

Environment

- Environment
 - \Box maps variable identifiers to entities in store σ
 - \square written as set of pairs $X \rightarrow X$
 - identifier X
 - store variable x
- Example of environment: { X → x, Y → y }
 - maps identifier X to store variable x
 - maps identifier Y to store variable y

Environment and Store

- Given: environment E, store σ
- Looking up value for identifier X:
 - \Box find store variable in environment using E(X)
 - \Box take value from σ for E(X)
- Example:

$$\sigma = \{x_1, x_2 = x_3, x_4 = a | x_2\}$$
 $E = \{X \rightarrow x_1, Y \rightarrow x_4\}$

- \Box E(X) = x_1 where no information in σ on x_1
- \Box E(Y) = x_4 where σ binds x_4 to a| x_2

Calculating with Environments

- Program execution looks up values
 - assume store σ
 - given identifier (x)
 - \Box E($\langle x \rangle$) is the value of $\langle x \rangle$ in store σ
- Program execution modifies environments
 - for example: declaration
 - add mappings for new identifiers
 - overwrite existing mappings
 - restrict mappings on sets of identifiers

Environment Adjunction

Given: Environment E

then
$$E + \{\langle \mathbf{x} \rangle_1 \rightarrow \mathbf{x}_1, \dots, \langle \mathbf{x} \rangle_n \rightarrow \mathbf{x}_n\}$$

is a new environment E' with mappings added:

- always take store entity from new mappings
- might overwrite (or shadow) old mappings

Environment Projection

Given: Environment E

$$E \mid \{\langle \mathbf{x} \rangle_1, ..., \langle \mathbf{x} \rangle_n\}$$

is a new environment E' where only mappings for $\{\langle x \rangle_1, ..., \langle x \rangle_n\}$ are retained from E

Adjunction Example

$$E_0 = \{\langle Y \rangle \rightarrow 1 \}$$

- $E_1 = E_0 + \{\langle X \rangle \rightarrow 2 \}$
 - □ corresponds to $\{\langle X \rangle \rightarrow 2, \langle Y \rangle \rightarrow 1 \}$
 - $\Box E_1(\langle X \rangle) = 2$
- $E_2 = E_1 + \{\langle X \rangle \rightarrow 3 \}$
 - \square corresponds to $\{\langle X \rangle \rightarrow 3, \langle Y \rangle \rightarrow 1 \}$
 - $\Box E_2(\langle X \rangle) = 3$

Why Adjunction?

Semantic Statements

Semantic statement

- $(\langle s \rangle, E)$
- pair of (statement, environment)
- To actually execute statement:
 - environment to map identifiers
 - modified with execution of each statement
 - each statement has its own environment
 - store to find values
 - all statements modify same store
 - single store

Stacks of Statements

- Execution maintains stack of semantic statements $ST = [(\langle s \rangle_1, E_1), ..., (\langle s \rangle_n, E_n)]$
 - \square always topmost statement ($\langle s \rangle_1, E_1$) executes first
 - <s> is statement
 - E denotes the environment mapping
 - rest of stack: remaining work to be done
- Also called: semantic stack

Execution State

Execution state

- (**ST**, σ)
- pair of (semantic stack, store)
- Computation

$$(ST_1, \sigma_1) \Rightarrow (ST_2, \sigma_2) \Rightarrow (ST_3, \sigma_3) \Rightarrow \dots$$

sequence of execution states

Program Execution

Initial execution state

$$([(\langle s \rangle, \varnothing)], \varnothing)$$

- empty store
- □ stack with semantic statement $[(\langle s \rangle, \emptyset)]$
 - single statement (s), empty environment Ø
- At each execution step
 - pop topmost element of semantic stack
 - execute according to statement
- If semantic stack is empty, then execution stops

Semantic Stack States

Semantic stack can be in following states

terminated stack is empty

" runnable can do execution step

suspended stack not empty, no execution

step possible

Statements

" non-suspending can always execute

suspending need values from store

dataflow behavior

Summary up to now

- Single assignment store
- Environments
 - adjunction, projection
- Semantic statements
- Semantic stacks
- Execution state

- σ
- Ε
- $E + \{...\} E |_{\{...\}}$
- $(\langle s \rangle, E)$
- $[(\langle s \rangle, E) \dots]$
- (ST, σ)
- Computation = sequence of execution states
- Program execution
 - runnable, terminated, suspended
- Statements
 - suspending, non-suspending

Statement Execution

- Simple statements
- skip and sequential composition
- wariable declaration
- store manipulation
- % Conditional (if statement)
- Computing with procedures (next lecture)
- " lexical scoping
- % closures
- procedures as values
- m procedure call

Simple Statements

(s) denotes a statement

⟨V⟩ ::= ...

empty statement
variable-variable binding
variable-value binding
sequential composition
declaration
conditional

value expression (no procedures here)

Executing skip

- Execution of semantic statement (skip, E)
- Do nothing
 - means: continue with next statement
 - non-suspending statement

Executing skip

- No effect on store σ
- Non-suspending statement

Executing skip

Remember: topmost statement is always popped!

Executing Sequential Composition

Semantic statement is

$$(\langle s \rangle_1 \langle s \rangle_2, E)$$

- Push in following order
 - $\Box \langle s \rangle_2$ executes after
 - $\square \langle s \rangle_1$ executes next
- Statement is non-suspending

Sequential Composition

- Decompose statement sequences
 - environment is given to both statements

Executing local

Semantic statement is

(local
$$\langle X \rangle$$
 in $\langle S \rangle$ end, E)

- Execute as follows:
 - create new variable y in store
 - □ create new environment $E' = E + \{\langle x \rangle \rightarrow y\}$
 - □ push (⟨s⟩, E')
- Statement is non-suspending

Executing local

$$\frac{\langle s \rangle \text{ end, } E\rangle}{ST} + \sigma \Rightarrow \frac{\langle s \rangle, E'\rangle}{ST} + \frac{y}{\sigma}$$

■ With
$$E' = E + \{\langle x \rangle \rightarrow y\}$$

Variable-Variable Equality

Semantic statement is

$$(\langle x \rangle = \langle y \rangle, E)$$

- Execute as follows
 - \Box bind $E(\langle x \rangle)$ and $E(\langle y \rangle)$ in store
- Statement is non-suspending

Executing Variable-Variable Equality

$$\frac{(\langle x \rangle = \langle y \rangle, E)}{ST} + \sigma \rightarrow ST + \sigma'$$

• σ ' is obtained from σ by binding $E(\langle x \rangle)$ and $E(\langle y \rangle)$ in store

Variable-Value Equality

Semantic statement is

$$(\langle \mathsf{X} \rangle = \langle \mathsf{V} \rangle, E)$$

where (v) is a number or a record (procedures will be discussed later)

- Execute as follows
 - create a variable y in store and let y refers to value (v)
 - any identifier $\langle z \rangle$ from $\langle v \rangle$ is replaced by $E(\langle z \rangle)$
 - □ bind $E(\langle x \rangle)$ and y in store
- Statement is non-suspending

Executing Variable-Value Equality

- y refers to value (v)
- Store σ is modified into σ' such that:
 - any identifier $\langle z \rangle$ from $\langle v \rangle$ is replaced by $E(\langle z \rangle)$
 - \Box bind $E(\langle x \rangle)$ and y in store σ

Suspending Statements

- All statements so far can always execute
 - non-suspending (or immediate)
- Conditional?
 - \square requires condition $\langle x \rangle$ to be bound variable
 - □ activation condition: ⟨x⟩ is bound (determined)

Executing if

Semantic statement is

(if
$$\langle X \rangle$$
 then $\langle S \rangle_1$ else $\langle S \rangle_2$ end, E)

- If the activation condition "bound((x))" is true
 - □ if $E(\langle x \rangle)$ bound to true push $\langle s \rangle_1$
 - \square if $E(\langle x \rangle)$ bound to false push $\langle s \rangle_2$
 - otherwise, raise error
- Otherwise, suspend the if statement...

Executing if

- If the activation condition "bound(\(\lambda x \rangle)\)" is true
 - \Box if $E(\langle x \rangle)$ bound to true

Executing if

- If the activation condition "bound(\(\lambda x \rangle\))" is true
 - \Box if E(x)) bound to false

An Example

```
local X in
  local B in
  B=true
  if B then X=1 else skip end
  end
end
```

We can reason that x will be bound to 1

Example: Initial State

Start with empty store and empty environment

Example: local

- Create new store variable x
- Continue with new environment

Example: local

```
([(B=true

if B then X=1 else skip end

,

\{B \rightarrow b, X \rightarrow x\})],

\{b,x\})
```

- Create new store variable b
- Continue with new environment

Example: Sequential Composition

```
([(B=true, \{B \rightarrow b, X \rightarrow x\}),
(if B then X=1
else skip end, \{B \rightarrow b, X \rightarrow x\})],
\{b,x\})
```

- Decompose to two statements
- Stack has now two semantic statements

Example: Variable-Value Assignment

```
([(if B then X=1 else skip end, \{B \rightarrow b, X \rightarrow X\})], \{b=\text{true}, X\})
```

- Environment maps B to b
- Bind b to true

Example: if

```
([(x=1, {B \rightarrow b, x \rightarrow x})], {b=true, x})
```

- Environment maps B to b
- Bind b to true
- Because the activation condition "bound((x))" is true, continue with then branch of if statement

Example: Variable-Value Assignment

```
([],
{b=true, X=1})
```

- Environment maps x to x
- Binds x to 1
- Computation terminates as stack is empty

Summary up to now

Semantic statement execute by

```
popping itself always
```

creating environment local

manipulating store
local, =

pushing new statements local, if

sequential composition

- Semantic statement can suspend
 - activation condition (if statement)
 - read store

Semantic statement is

```
\begin{array}{l} (\mathtt{case}\,\langle \mathtt{X}\rangle \\ \mathtt{of}\,\langle \mathsf{lit}\rangle (\langle \mathtt{feat}\rangle_1 : \langle \mathtt{y}\rangle_1 \, \dots \, \langle \mathtt{feat}\rangle_n : \langle \mathtt{y}\rangle_n) \, \mathtt{then}\, \langle \mathtt{s}\rangle_1 \\ \mathtt{else}\, \langle \mathtt{s}\rangle_2 \, \mathtt{end}, \, E) \end{array}
```

- It is a suspending statement
- Activation condition is: "bound(\(\lambda x\rangle\)"
- If activation condition is false, then suspend!

Semantic statement is

```
(case \langle x \rangle of \langle \text{lit} \rangle (\langle \text{feat} \rangle_1 : \langle y \rangle_1 ... \langle \text{feat} \rangle_n : \langle y \rangle_n) then \langle s \rangle_1 else \langle s \rangle_2 end, E)
```

- If $E(\langle x \rangle)$ matches the pattern, that is,
 - □ label of $E(\langle x \rangle)$ is $\langle lit \rangle$ and
 - □ its arity is $[\langle \text{feat} \rangle_1 ... \langle \text{feat} \rangle_n]$), then push

$$(\langle s \rangle_1, E + \{\langle y \rangle_1 \rightarrow E(\langle x \rangle). \langle feat \rangle_1, \dots, \{\langle y \rangle_n \rightarrow E(\langle x \rangle). \langle feat \rangle_n\})$$

Semantic statement is

```
(case \langle x \rangle of \langle \text{lit} \rangle (\langle \text{feat} \rangle_1 : \langle y \rangle_1 ... \langle \text{feat} \rangle_n : \langle y \rangle_n) then \langle s \rangle_1 else \langle s \rangle_2 end, E)
```

If E(\langle x\rangle) does not match pattern, push (\langle s\rangle_2, E)

Semantic statement is

```
(case \langle x \rangle of \langle lit \rangle (\langle feat \rangle_1 : \langle y \rangle_1 ... \langle feat \rangle_n : \langle y \rangle_n) then \langle s \rangle_1 else \langle s \rangle_2 end, E)
```

- It does not introduce new variables in the store
- Identifiers ⟨y⟩₁ ... ⟨y⟩n are visible only in ⟨s⟩₁

Executing case

- If the activation condition "bound(\(\lambda x \rangle)\)" is true
 - \Box if $E(\langle x \rangle)$ matches the pattern

Executing case

- If the activation condition "bound(\(\lambda x \rangle)\)" is true
 - \Box if $E(\langle x \rangle)$ does not match the pattern

Example: case Statement

- We declared X, Y, X1, X2 as local identifiers and X=f(v3 v4), X1=a and X2=b
- What is the value of Y after executing case?

Example: case Statement

```
([(Y = g(X2 X1),

{X \rightarrowv1, Y \rightarrowv2, X1 \rightarrowv3, X2 \rightarrowv4})

],

{v1=f(v3 v4), v2, v3=a, v4=b}
```

- The activation condition "bound((x))" is true
- Remember that X1=a, X2=b

Example: case Statement

```
([],
{v1=f(v3 v4),
v2=g(v4 v3),v3=a,v4=b}
```

Remember Y refers to v2, so

```
Y = g(b a)
```

Summary

- Kernel language
 - linguistic abstraction
 - data types
 - variables and partial values
 - statements and expressions
- Computing with procedures (next lecture)
 - lexical scoping
 - closures
 - procedures as values
 - procedure call