Análisis Matemático II (95-0703) – Final del 23/05/19

Condición mínima para aprobar: 3 (tres) ítems bien, uno de "T1) o T2)" y dos de "E1), E2), E3) o E4)".

- **T1) Defina** continuidad de una función f en un punto A. Siendo $f(x, y) = \frac{x \operatorname{sen}(y)}{x^2 + y^2}$ para $(x, y) \neq (0, 0)$, **analice** si puede definirse f(0, 0) para que f sea continua en (0, 0).
- **T2) Defina** coordenadas polares. Dado $D = \{(x, y) \in \Re^2 / x^2 + y^2 \le 4 \land |x| \ge y \}$ **exprese** $\iint_D f(x, y) dx dy$ en coordenadas polares (el cambio de variables, incluyendo los correspondientes límites de integración).
- **E1**) Sea Σ el trozo de plano sombreado en la figura. **Calcule** el flujo de \bar{f} a través de Σ orientado según el \bar{n} que se indica, sabiendo que $\bar{f}(x,y,z) = (2y,2x,2z)$.

- **E2)** Calcule el volumen del cuerpo definido por: $z \ge \sqrt{x^2 + y^2}$, $x^2 + y^2 + z^2 \le 2$, $x \ge 0$.
- **E3**) Dada la familia H de curvas de nivel de $f(x, y) = \ln(x + y^2)$ definida en su dominio natural, **halle** una ecuación para la curva de la familia ortogonal a H que pasa por el punto (0,3).
- **E4**) Dado $\bar{f}(x,y) = (y^2 g(x-y), 4xy + g(x-y))$ con $\bar{f} \in C^1(\Re^2)$, **calcule** la circulación de \bar{f} a lo largo de la frontera de la región plana definida por: $x + y \le 2$, $y \ge x$, $x \ge 0$ **indicando** gráficamente con qué orientación a decidido circular.

Análisis Matemático II (95-0703) – Final del 16/07/19

Condición mínima para aprobar: 3 (tres) ítems bien, uno de "T1) o T2)" y dos de "E1), E2), E3) o E4)".

T1) Enuncie el teorema de derivación de la composición de funciones (regla de la cadena). Siendo $h(x,y) = f(\overline{g}(x,y))$ con $\nabla f(2,7) = (3,5)$, si la matriz jacobiana de \overline{g} es $D\overline{g}(x,y)$ según se indica a la derecha y $\overline{g}(1,2) = (2,7)$, calcule el valor de la derivada direccional máxima de h en el punto (1,2) e indique cuál es la dirección en la que se produce dicha derivada máxima.

$$D\overline{g}(x,y) = \begin{pmatrix} 2xy & x^2 \\ y/x & \ln(x) \end{pmatrix}$$

- **T2)** Enuncie el teorema de cambio de variables en integrales dobles. A través del cambio de variables definido por (x,y) = (v-2u,u+v) la región D_{xy} se transforma en la región D_{uv} , calcule el área de D_{uv} sabiendo que área $(D_{xy}) = 15$.
- **E1**) Dado $\bar{f}(x,y,z) = (xy, -y^2, z^2)$, **calcule** la circulación de \bar{f} a lo largo de la curva intersección de las superficies de ecuaciones $z = 9 x^2$ y z = y desde $\bar{A} = (3,0,0)$ hasta $\bar{B} = (0,9,9)$ con $x,y,z \in \Re_0^+$.
- **E2)** Calcule la masa del cuerpo D definido por: $x^2 + y^2 \le 4$, $x 3 \le z \le x + 2$, si su densidad en cada punto es proporcional a la distancia desde el punto al eje z.
- **E3**) Sea $\bar{f}(x,y,z) = (x+g'(x), yg'(x), -2zg(x))$ con $\bar{f} \in C^1(\Re^3)$ y $\bar{f}(0,0,1) = (2,0,0)$. Halle g(x) de manera que el flujo de \bar{f} a través de la superficie frontera de un cuerpo esférico de radio R > 0 resulte numéricamente igual al volumen del cuerpo. **Indique** gráficamente cómo decidió orientar a la superficie.
- **E4)** La superficie de ecuación x^2 $y + y^2$ $z + z^2$ x = 3 tiene plano tangente π_0 en el punto (1,1,1), **calcule** el área del trozo de π_0 cuyos puntos están en el 1º octante.

Análisis Matemático II (95-0703) – Final del 30/07/19

Condición mínima para aprobar: 3 (tres) ítems bien, uno de "T1) o T2)" y dos de "E1), E2), E3) o E4)".

- **T1) Defina** extremos locales (máximo y mínimo) de un campo escalar. Dado $f(x, y) = x^4 + x^2 y^4 + 5$, **analice** si f(0,0) es extremo local, en caso afirmativo **clasifíquelo**.
- **T2) Defina** solución general y solución particular de una ecuación diferencial ordinaria de orden n. Dado el campo vectorial $\bar{f}(x,y,z) = (x+g'(x),\ y\ g(x),\ y^2-z\ x)$ con $\bar{f}(0,1,0) = (1,1,1)$, **halle** g(x) tal que \bar{f} resulte solenoidal.
- **E1)** Calcule el volumen del cuerpo D definido por: $z \le 4 x^2$, $x \ge y^2$, $z \ge 0$.
- **E2**) Sea $\bar{f} \in C^1(\Re^3)$ tal que $\bar{f}(x,y,z) = (x^2 + yg(z), zg(x), xz)$, calcule el flujo de \bar{f} a través de la superficie abierta Σ de ecuación $x^2 + y^2 = 2x$ con $-2 \le z \le 2$. Indique gráficamente cómo orientó a Σ .
- **E3)** Dado $\bar{f}(x, y, z) = (2x, x + z, 2y)$, **calcule** la circulación de \bar{f} a lo largo de la curva intersección de las superficies de ecuaciones $x^2 + y^2 = 16$ y x + z = 4 orientada de manera que (0,1,0) sea su versor tangente en el punto (4,0,0).
- **E4**) Siendo h(x, y) = x f(x, y) con f definida implícitamente por $xz + y + \ln(2x + y + z 4) 3 = 0$, calcule una aproximación lineal de h(1.02, 0.97).

Análisis Matemático II (95-0703) - Final del 24/09/19

- **T1)** Enuncie el teorema de derivación de la composición de funciones (regla de la cadena). Dada $h(x,y) = f(\overline{g}(x,y))$ y suponiendo que se puede aplicar la regla de la cadena, **calcule** $\nabla h(1,2)$ sabiendo que $Df(u,v) = (uv^2 \ u^2 v)$ es la matriz jacobiana de f y que $\overline{g}(x,y) = (2x + y^2, yx^2)$.
- **T2) Defina** función potencial. Dado $\bar{f}(x,y) = (2xy + 2xg'(x^2), x^2)$ con $\bar{f} \in C^1(\Re^2)$, **calcule** la circulación de \bar{f} desde (-2,4) hasta (2,5) usando función potencial.
- E1) Siendo $\bar{f}(x,y,z) = (x\,y,\,z^2\,,\,y\,z)$, calcule la circulación de \bar{f} a lo largo del segmento \overline{AB} desde $\overline{A} = (0,y_0,z_0)$ hasta $\overline{B} = (x_1,0,z_1)$ para el caso en que dicho segmento está incluido en la recta tangente en (1,1,3) a la curva dada por la intersección del paraboloide de ecuación $z = 1 + x^2 + y^2$ con el plano de ecuación x + y = 2.
- **E2)** Calcule el volumen del cuerpo definido por: $x^2 + y^2 \le 2y$, $|z| \le 2y$.
- E3) Dada z = f(x, y) definida implícitamente por la ecuación $xz + yz + \ln(xy + z 5) 12 = 0$, calcule la derivada direccional máxima de f en el punto $\overline{A} = (1, 2)$ e indique en qué dirección se produce dicha derivada.
- **E4)** Sabiendo que $\bar{f} \in C^1(\Re^3)$ con div $\bar{f}(x,y,z) = 2z$ y que es igual a 7π el flujo de \bar{f} a través del disco de ecuación z = 0 con $x^2 + y^2 \le 4$ orientado hacia z^+ , **calcule** el flujo de \bar{f} a través de la superficie abierta de ecuación $z = 4 x^2 y^2$ con $z \ge 0$ también orientada hacia z^+ .

Análisis Matemático II (95-0703) — Finales tomados durante el "Ciclo lectivo 2019" Son 10 (diez) fechas de final, desde el 23/05/19 al 03/03/20 inclusive

Análisis Matemático II (95-0703) - Final del 03/12/19

Condición mínima para aprobar: 3 (tres) ítems bien, uno de "T1) o T2)" y dos de "E1), E2), E3) o E4)".

- **T1)** Enuncie el teorema de la divergencia (Gauss). Dado $\bar{f}(x, y, z) = (3x + z, z 2y, y 4z)$, analice si el flujo de \bar{f} a través de una superficie esférica S de radio 8 con centro en el origen resulta entrante o saliente del cuerpo esférico que tiene a S como frontera.
- **T2) Defina** máximo local de un campo escalar. Dado $f(x, y) = y^3 x^2 3y^2 + 2$ definido en \Re^2 , **analice** si f produce un máximo local en algún punto de su dominio.
- **E1)** Calcule el volumen del cuerpo definido por: $x^2 + y^2 \le z \le 2 \sqrt{x^2 + y^2}$.
- **E2**) Sea $\bar{f}(x,y) = (yg(x), y + g(x))$ con $\bar{f} \in C^1(\Re^2)$ y $\bar{f}(0,0) = (0,2)$. **Determine** g(x) de manera que \bar{f} admita función potencial en \Re^2 y **calcule** la integral de línea de \bar{f} a lo largo de una curva desde $\bar{A} = (0,0)$ hasta $\bar{B} = (1,2)$.
- **E3)** Halle la solución particular de la ecuación diferencial y'' + 4y' = 16x que en el punto $(0, y_0)$ tiene recta tangente de ecuación y = 3x + 3.
- **E4**) Dado el trozo de superficie Σ de ecuación $2z = 3xy^2$ cuya proyección sobre el plano xy es la región D definida por $0 \le y \le 2x$, $0 \le x \le 2$, **calcule** el flujo de \bar{f} a través de Σ orientada hacia z^+ sabiendo que $\bar{f}(x,y,z) = (2x,-y,4z)$.

Análisis Matemático II (95-0703) – Final del 10/12/19

- **T1) Defina** solución general (SG) y solución particular (SP) de una ecuación diferencial de orden n. Sabiendo que y = 2x 1 es una solución particular de y' ay = 4x, donde a es constante, **halle** la solución general.
- **T2) Defina** coordenadas polares. Dada $\int_0^4 dx \int_0^{\sqrt{4x-x^2}} y \, dy$, grafique la región de integración en el plano xy y resuelva la integral usando coordenadas polares.
- **E1)** Calcule la masa del cuerpo D definido por: $3x^2 + 3y^2 2 \le z \le x^2 + y^2$, si su densidad en cada punto es proporcional a la distancia desde el punto al eje z.
- **E2**) Siendo $h(x, y) = f(x^2y, y^3)$ con $f \in C^1(\Re^2)$ y f(2,8) = 7, **calcule** una aproximación lineal de h(1.02, 1.97) conociendo las derivadas direccionales: f'((2,8), (1,0)) = 6 y f'((2,8), (-0.8, 0.6)) = 3.
- **E3**) Dada la superficie abierta Σ de ecuación $x^2 + y^2 + z^2 = 5$ con $z \ge 1$ y el campo vectorial $\bar{f} \in C^1(\mathbb{R}^3)$ tal que $\bar{f}(x,y,z) = (2x + g(yz),3y + xz,5z)$, **calcule** el flujo de a través de Σ orientada hacia z^+ .
- **E4)** Dado $\bar{f}(x, y, z) = (y, z, x)$, **calcule** la circulación de \bar{f} a lo largo de la recta normal en $\bar{A} = (1,1,2)$ a la superficie de ecuación $z = xy + x^2$, circulando desde \bar{A} hasta el punto donde dicha recta interseca al plano xz.

Análisis Matemático II (95-0703) - Final del 17/12/19

Condición mínima para aprobar: 3 (tres) ítems bien, uno de "T1) o T2)" y dos de "E1), E2), E3) o E4)".

- **T1) Defina** derivada direccional. Siendo $f(x,y) = x^3/(x^2 + y^2)$ si $(x,y) \neq (0,0)$ con f(0,0) = 0, calcule la derivada direccional de f en (0,0) en la dirección que forma ángulo de 30° con x^+ y de 60° con y^+ .
- **T2)** Enuncie el teorema del rotor (Stokes). Sabiendo que \bar{f} es irrotacional, calcule su circulación a lo largo de la curva de ecuación $\bar{X}=(0,\cos(t),\sin(t))$ con $0 \le t \le \pi$ desde $\bar{A}=(0,1,0)$ hasta $\bar{B}=(0,-1,0)$, sabiendo que a lo largo del segmento $\bar{A}\bar{B}$ dicha circulación resulta igual a 14π . Suponga que se puede aplicar el teorema.
- **E1)** Calcule el área del trozo de plano tangente a la superficie de ecuación $2x^2 + 2y^2 = 3z + 12$ en (1,1,1), cuyos puntos cumplen con $x^2 + y^2 \le 4$.
- **E2)** Sea $\bar{f}(x,y) = (2xy^2 + y\lambda(x), 2x^2y + \lambda(x))$ con $\bar{f} \in C^1(\Re^2)$. Halle $\lambda(x)$ tal que \bar{f} admita función potencial en \Re^2 con $\bar{f}(0,0) = (0,2)$ y, en ese caso, **calcule** la circulación de \bar{f} a lo largo de una curva desde $\bar{A} = (0,3)$ hasta $\bar{B} = (1,2)$.
- E3) Calcule el volumen del cuerpo D definido por: $x + y + z \le 4$, $z \ge 2$, $y \ge x$ en el 1° octante.
- **E4)** Dada la curva definida por la intersección de la superficie cilíndrica de ecuación $2x^2 + y^2 = 2$ con el plano de ecuación z = x, **calcule** su longitud.

Análisis Matemático II (95-0703) - Final del 11/02/20

- **T1) Defina** punto regular y punto simple de una curva. Dada la curva de ecuación $\vec{X} = (t^2 + 1, t^2 + t, t^2 t + 2)$ con $t \in \Re$, **analice** si $\vec{A} = (2,2,2)$ es un punto regular y simple de la misma.
- **T2)** Enuncie el teorema de Green. Dado $\bar{f}(x,y) = (y+g(x),x^2+x)$ calcule la circulación de \bar{f} a lo largo de la frontera de la región plana definida por: $0 \le y \le 2x x^2$ indicando gráficamente con qué orientación decidió recorre la curva; suponga que se puede aplicar el teorema.
- E1) Calcule el volumen del cuerpo D definido por: $z \ge |y|$, $y + 2z \le 6$, $-2 \le x \le 2$.
- **E2**) Dado $\bar{f}(x,y) = (-3y/(x^2 + y^2), 3x/(x^2 + y^2))$, **analice** si \bar{f} admite función potencial en su dominio natural.
- E3) Siendo $\bar{f}(x,y,z) = (z,z,x-y)$, calcule el flujo de \bar{f} a través de la superficie de ecuación $z = \sqrt{2-x^2-y^2}$ con $z \ge 0$, $y \ge x^2$, orientada hacia z^+ .
- **E4)** Dada $f(x, y) = x^2 y + y^2 + 4xy$ definida en \Re^2 , **analice** si f produce extremo(s) local(es). En caso afirmativo, **clasifíquelo(s)** y **calcule** su(s) valor(es).

Análisis Matemático II (95-0703) – Finales tomados durante el "Ciclo lectivo 2019" Son 10 (diez) fechas de final, desde el 23/05/19 al 03/03/20 inclusive

Análisis Matemático II (95-0703) - Final del 18/02/20

Condición mínima para aprobar: 3 (tres) ítems bien, uno de "T1) o T2)" y dos de "E1), E2), E3) o E4)".

- **T1) Defina** máximo y mínimo local (o relativo). **Analice** si $f(x, y) = 2 + \sqrt{x^2 + y^2}$ definida en \Re^2 produce extremo relativo en algún punto, en caso afirmativo clasifíquelo y calcule su valor.
- **T2) Defina** derivada direccional. Dada $f(x, y) = x^2 y + y^2$, **calcule** la derivada direccional de f en el punto (1,2) en la dirección que forma ángulos iguales con x^+ e y^+ .
- **E1)** Calcule el volumen del cuerpo definido por: $(x-2)^2 + (y-2)^2 \le 4$, $z \ge 0$, $z \le x + y$.
- **E2)** Siendo $\phi(x,y) = 5 + ye^x$ la función potencial del campo \bar{f} en \Re^2 , **calcule** la circulación de \bar{f} desde (0,0) hasta $(\ln(2), y_0)$ a lo largo de la curva de ecuación y = g(x) que es solución particular de la ecuación diferencial y' + y = 4.
- E3) Sea $\bar{f}(x, y, z) = (x \varphi(x z), y z, x y z \varphi(x z))$ con $\bar{f} \in C^1(\Re^3)$. Calcule el flujo de \bar{f} a través de la superficie abierta Σ de ecuación $z = 4 x^2 y^2$ con $z \ge 0$, orientada hacia z^+ .
- **E4)** Calcule el área del trozo de plano de ecuación z = 3 x con $2x^2 + 3y^2 + z^2 \le 9$.

Análisis Matemático II (95-0703) - Final del 03/03/20

- **T1)** Enuncie el teorema de la divergencia. Dado $\bar{f}(x, y, z) = (2xzg(x), z^3 2yzg(x), y^3 xz^2g(x))$ con $\bar{f}(0,1,1) = (0,5,1)$, halle g(x) para que $\oint_{\Sigma} \vec{f} \cdot \vec{n} d\sigma$ resulte nulo; suponga que se puede aplicar el teorema.
- **T2) Defina** conjunto de nivel de un campo escalar. Dado $f(x, y) = \sqrt{x^2 + y^2 2x}$ definido en su dominio natural, **halle** una ecuación y **grafique** el conjunto de nivel 2 de la función.
- **E1)** Sea Σ la superficie de ecuación $x^2 + y^2 + z^2 = 3$ y sea π_0 su plano tangente en el punto (1,1,1) de la misma. Calcule el volumen del cuerpo limitado por Σ y π_0 en el 1° octante.
- **E2)** Sabiendo que la superficie de ecuación $z = f(x, y) \operatorname{con}(x, y) \in \mathbb{R}^2$ tiene plano tangente de ecuación 2x + 3y + 2z = 12 en el punto $(1, 2, z_0)$, **calcule** el valor de las derivas direccionales máxima y mínima de f en (1, 2) e **indique** cuáles son las direcciones para las cuales se producen dichas derivadas.
- E3) Considere la curva Γ de puntos extremos $\overline{A}=(3,1,z_A)$ y $\overline{B}=(x_B,y_B,0)$, dada por la intersección de las superficies de ecuaciones xy+z=2x y z+xy=4x-6. Calcule la circulación de \overline{f} a lo largo de Γ desde \overline{A} hasta \overline{B} , para el caso en que $\overline{f}(x,y,z)=(yz,xy,xz)$.
- **E4)** Sea la familia de curvas tales que, en cada punto, la recta tangente tiene ordenada al origen igual al producto de las coordenadas del punto. **Halle** una ecuación para la curva de dicha familia que pase por el punto (1,2).