$Definition\ 1\ (T ext{-}Forward ext{-}Measure).$ Sei $(B_t)_{t\leq T},\, B_t=e^{\int_0^t r_s ds}$ der Bankkonto/Numéraire in einem Finanzmarkt. Wenn $\mathbb Q$ ein risikoneutrales Maß ist, dann ist das Forward measure $\mathbb Q^T$ auf $\mathscr F_T$ definiert durch den Radon-Nikodym-Dichteprozess Z bezüglich $\mathbb Q$, gegeben durch

$$Z_t = \frac{P_t(T)}{P_0(T)B_t} \,.$$

Definition 2 (Zero-Coupon Bond). Der Prozess $(P_t(T))_{t\geq T}$ bezeichne den Preis einer Geldeinheit bei T am Zeitpunkt $t\leq T$. Dieser wird zero-coupon bond (Nullkuponanleihe) genannt.

Aufgabe 2 (12 Punkte). Betrachten Sie das Modell für die Instantaneous Forward Rate

$$f_t(T) = f_0(T) + \int_0^t \alpha_s(T)ds + \int_0^t \sigma_s(T)dW_s$$

mit einem Standard-Q-Wienerprozess W. Hierbei gilt folgende Gleichheit:

$$P_t(T) = \exp\left(-\int_t^T f(t,s)ds\right).$$

Wir fixieren T und S.

1. Zeigen Sie, dass der Dichteprozess von Q^{S} bezüglich Q^{T} gegeben ist durch

$$\frac{P_0(T)}{P_0(S)} \frac{P(S)}{P(T)}$$

Nach Definition 1 gilt

$$\frac{dQ^S}{dQ^T} = \frac{dQ^S}{dQ} \frac{dQ}{dQ^T} = \frac{P(S)}{P_0(S)B_t} \frac{P_0(T)B_t}{P_t(T)} = \frac{P_0(T)}{P_0(S)} \frac{P(S)}{P(T)} \,.$$