Notes

Week 3

Module 2 Week 3B

Hypothesis Testing I

Hypothesis testing with one sample

- E.g.:
 - The average temperature in Maryland in July is 88 degrees.
 - A new Honda Accord gets 38 miles per gallon.
 - o 64% of all college students graduate in four years.
 - A new lawyer makes an average of \$100,000 per year.
 - o 70% of all U.S. households have internet access
- These types of claims can be assessed statistically using a sample of data to determine if there is sufficient evidence to support them by doing a Hypothesis Test
- First, we will cover hypothesis tests about a *single mean or a single proportion*.
- There is a straightforward approach to hypothesis testing, however, remember that we are using a random sample of data, and therefore, we can make errors.
- The approach:
 - 1. Set up two conflicting hypotheses (Always about the Population Parameter of interest, not the Sample Statistic!)
 - **Null hypothesis** (H_0): statement of no difference or no effect
 - H_0 will always have = or \leq or \geq (NK: it is most accurate for the Null to only have an "=" sign)
 - lacktriangle Alternative hypothesis (H_a): contradicts H_a
 - H_a will always have \neq or > or <
 - Two-Tailed Test: H_a has \neq
 - lacktriangle Two-Tailed Test: H_a has > or <
 - 2. Collect a random sample of data
 - 3. Determine the correct distribution to use for the test
 - Tests about population means and proportions use a test statistic that follows a normal distribution or a Student's t-distribution.
 - Recall:
 - For one sample means:

- If population SD is *known*: $\bar{X} \sim N(\text{mean} = \mu, \text{SD} = \frac{\sigma}{\sqrt{n}})$
- lacksquare If population SD is *unknown*: $ar{X} \sim t_{df}$
- lacksquare For one sample estimated proportion <math>p': $p' \sim N(ext{mean} = p, ext{SD} = \sqrt{rac{pq}{n}})$, where $p = \mathbb{P}(ext{"success"})$
- 4. Analyze/assess the data to determine which hypothesis is supported
 - Determine which hypothesis is supported with the sample
- 5. Reject or fail to reject hypothesis
 - lacktriangle Think of the statement in H_0 as an assumption
 - We collect a sample of data to determine if it supports the assumption.
 - If the *sample* has properties that are very unlikely given the assumption, there is a good chance that H_0 is incorrect, and therefore, it is rejected.
 - The sampling distribution used for a hypothesis test is the sampling distribution under the assumption that H_0 is true.
 - We will use a *p-value* to make our decision (reject or fail to reject H_0).
 - A **p-value** is the probability, under the assumption that H_0 is true,that another random sample would produce results as extreme or more extreme as the results obtained in the given sample. (I.e. The $\mathbb P$ that the results would as adverse or more adverse to the assumption in the *Null Hypothesis*)
 - lacktriangle Rule: reject Ho if p-value < lpha
 - Ideally, want to re-perform the test with new random samples.
 - E.g. p-value = 0.12
 - The probability of getting results as adverse to H_0 as the ones obtained in the sample used is 0.12.
 - A *large* p-value supports H_0 (i.e. it is likely we would get this result again from another random sample if H_0 is true.)
 - A *small* p-value does not support H_0 (i.e. it is NOT likely we would get this result again from another random sample if H_0 is true.)
- Assumptions for Hypothesis Tests:
 - For one sample mean (i.e. *t-test* assumptions):
 - Random sample assumed
 - lacktriangleright Variable of interest X is approximately Normally Distributed
 - But: if n is large enough, t-test works even if X is not Normally Distributed
 - s used to approximate σ
 - For one sample proportion:
 - Random sample assumed
 - Variable of interest has a Binomial Distribution

- np > 5 AND nq > 5 to use normal approximation
- Errors can be made when conducting a hypothesis test:
 - **Type I error**: H_0 is rejected when it is true
 - $\mathbb{P}(\text{type I error}) = \text{level of significance} = \alpha$
 - The standard lpha is 0.05 but is arbitrary and context-specific
 - **Type II error**: H_0 is not rejected when it is false
 - $\mathbb{P}(\text{type II error}) = \beta$
 - Power = $\mathbb{P}(\text{"reject the } H_0 \text{ when the } H_0 \text{ is false"}) = 1-\beta$
 - Increasing sample size can increase *Power*.
 - The two types of errors are inversely related; more of one is less of the other and vice-versa.(
 - \circ Which error is more important is context-specific; e.g. if life-and-death of whether H_0 : drug has no effect and H_a : drug saves lives, Type I error can be more acceptable than Type II error.
 - o If sample size is *large*, it is easier to reject H_0 , so a *smaller* level of significance $= \alpha$ should be specified and vice-versa
- E.g. The average annual salary of a new lawyer is 100,000
 - H_0 : $\mu = 100,000$
 - H_a : $\mu \neq 100,000$
 - Suppose we collect a random sample of 36 new lawyers and calculate a sample mean of \$105,000
 - and a sample standard deviation of 12,000.
 - This is a test about a mean and the population *standard deviation* is *unknown*, therefore, the appropriate distribution is the *t-distribution with 35 degrees of freedom*.
 - o If H_0 is true (i.e. $\mu=100,000$), how many standard deviations is our sample result (i.e. $ar{X}=105,000$) from the population mean?
 - (Because test about a Mean AND have to estimate the SD) Test-statistic (t-stat)

$$=rac{ar{X}-\mu}{s/\sqrt{n}}=rac{105000-100000}{12000/\sqrt{36}}=rac{5000}{2000}=2.5$$

- \circ P-value =0.017 <-area to the right of 2.5 (=0.086) + area to the left of -2.5 (=0.086), because we have a *Two-Tailed Test*. Interpretation: it is very *unlikely* we would observe this difference if the *Null Hypothesis* were true =>
- \circ Rule: reject Ho if p-value $< \alpha$
- $\circ~0.017 < 0.05$ => reject H_0 (but would *not* reject if lpha = 0.01)
- E.g. 70% of U.S. households have internet access
 - $H_0: p = 0.70$
 - H_a : $p \neq 0.70$
 - Suppose we collect a random sample of 81 households and calculate a sample proportion of 0.66.
 - This is a test about a proportion, therefore, the appropriate distribution is the *normal distribution*.

 $\circ~$ If H_0 is true (i.e. p=0.70), how many standard deviations is our sample result (i.e. $\emph{p\prime}=0.66$

from the population mean?

- Test-statistic (z-stat) = $\frac{p'-p}{\sqrt{pq/n}} = \frac{0.66-0.70}{\sqrt{0.70*0.30/81}} = \frac{-0.04}{0.051} = -0.784$
- $\circ~$ p-value =0.43 = Area to the left of -0.784 + Area to the right of 0.784
- \circ Rule: reject H_0 if p-value < lpha
- $\circ~~0.43>0.05$ => fail to reject H_0