

REPASO DE PROBABILIDAD Y ESTADÍSTICA I

ALAN REYES-FIGUEROA
ELEMENTS OF MACHINE LEARNING

(AULA 02) 12.ENERO.2023

Construcción. Punto de partida: un experimento

- Resultado del experimento es $\omega \in \Omega \leadsto$ espacio muestral.
- Interés en ciertos eventos A $\sim \sigma$ -álgebra
- Una probabilidad $\mathbb P$ es una función sobre ciertos eventos $\mathbb P$: $\mathsf A \mapsto \mathbb R$.

Ejemplo 1

Experimento: lanzar un dado.

$$\Omega = \{1, 2, 3, 4, 5, 6\} = [1..6]$$

Algunos eventos

Representación	Evento
$A_1 = \{2, 4, 6\}$	obtener un número par
$A_2 = \{3\}$	obtener 3
$A_3 = \{1, 2, 4, 5\}$	obtener un número no múltiplo de 3

Ejemplo 2

Experimento: lanzar dos dados.

$$\Omega = \{(1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,1), \dots, (5,6), (6,6)\}$$

Probablemente aquí sea más simple representarlo como

$$\Omega = \{(a,b) : a,b \in [1..6]\} = [1..6] \times [1..6]$$

Algunos eventos

Representación	Evento
$A_1 = \{(1,6), (2,5), (3,4), \dots, (6,1)\}$	que los dados sumen 7
$A_2 = \{(1,3), (3,1), \ldots, (6,3), (3,6)\}$	que aparezca al menos un 3

Otros espacios asociados: $\Omega_1 = [1..6]$, ¿Cuál es el mínimo de los dos dados?

Otros ejemplos (para pensar)

Especificar un espacio muestral para los siguientes experimentos:

a) Lanzar una moneda.

¿Cuál es la distribución de probabilidad para el número de "caras"?

Otros ejemplos (para pensar)

Especificar un espacio muestral para los siguientes experimentos:

- a) Lanzar una moneda.
 ¿Cuál es la distribución de probabilidad para el número de "caras"?
- b) Lanzar una moneda n veces. (Hacer para n = 2, 3, 4) ¿Cuál es la distribución de probabilidad para el número de "caras"?

Otros ejemplos (para pensar)

Especificar un espacio muestral para los siguientes experimentos:

- a) Lanzar una moneda.
 ¿Cuál es la distribución de probabilidad para el número de "caras"?
- b) Lanzar una moneda n veces. (Hacer para n=2,3,4) ¿Cuál es la distribución de probabilidad para el número de "caras"?
- c) Lanzar una moneda hasta que aparezca "cara". ¿Cuál es la distribución de probabilidad para el número de lanzamientos?

Otros ejemplos (para pensar)

Especificar un espacio muestral para los siguientes experimentos:

- a) Lanzar una moneda.
 ¿Cuál es la distribución de probabilidad para el número de "caras"?
- b) Lanzar una moneda n veces. (Hacer para n=2,3,4) ¿Cuál es la distribución de probabilidad para el número de "caras"?
- c) Lanzar una moneda hasta que aparezca "cara". ¿Cuál es la distribución de probabilidad para el número de lanzamientos?

Definición

Una función $\mathbb{P}:\mathcal{F}\to[0,1]$ es una **medida de probabilidad** si satisface

- $\mathbb{P}(\emptyset) = 0$,
- $\mathbb{P}(\Omega) = 1$,
- para cualquier colección enumerable de eventos exclusivos $E_i \in \mathcal{F}$, vale

$$\mathbb{P}\Big(\bigcup E_i\Big) = \sum \mathbb{P}(E_i)$$
 (enumerablemente aditiva).

Propiedads

Propiedades de una probabilidad (introducidos por Kolmogorov en 1933).

Propiedades

- 1. $\mathbb{P}(E) \geq 0$, $\forall E \in \mathcal{F}$ (no-negativa).
- 2. $\mathbb{P}(E)$ es siempre finita, y $\mathbb{P}(\Omega) = 1$ (unitariedad).
- 3. Cualquier colección enumerable y mutuamente excluyente de eventos $E_i \in \mathcal{F}$, satisface

$$\mathbb{P}\Big(\bigcup_{i=1}^{\infty}E_i\Big)=\sum_{i=1}^{\infty}\mathbb{P}(E_i), \qquad (\sigma\text{-aditiva}).$$

Consecuencias

Propiedades

Si \mathbb{P} es una medida de probabilidad sobre Ω , entonces

- 1. (Monotonicidad) Si $A \subseteq B$ son eventos, entonces $\mathbb{P}(A) \leq \mathbb{P}(B)$.
- 2. (Conjunto vacío) $\mathbb{P}(\emptyset) = 0$.
- 3. (Complemento) $\mathbb{P}(A^c) = 1 \mathbb{P}(A)$, para todo evento $A \in \mathcal{F}$.
- 4. (Cotas para \mathbb{P}) Para todo evento E, $0 \leq \mathbb{P}(E) \leq 1$.
- 5. $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B)$.

Caso finito

Sea $\Omega = \{\omega_1, \omega_2, \dots, \omega_k\}$.

<u>Distribución de conteo o distribución uniforme</u>: Corresponde a elegir un elemento al azar.

Para cada $A \subseteq \Omega$, se tiene

$$\mathbb{P}(A) = |A|/|\Omega| = |A|/k.$$

En particular, $\sin A_i = \{\omega_i\}$, entonces

$$\mathbb{P}(\omega_i) = \mathbb{P}(\{\omega_i\}) = 1/k.$$

Caso general: Suponga que
$$\mathbb{P}(\omega_i) = \mathbb{P}(\{\omega_i\}) = p_i$$
, para $i = 1, 2, ..., k$. Entonces $\mathbb{P}(\Delta) = \sum p_i$

$$\mathbb{P}(A) = \sum_{i \in A} p_i$$

Referencias

• Lefebvre. Basic Probability Theory with Applications. Springer.

