Technische Universität Wien

Institut für Automatisierungs- und Regelungstechnik

SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am 02.07.2010

Arbeitszeit: 120 min

Name:							
Vorname(n):							
Matrikelnumme	r:						Note:
	A C 1	-1	2	9	4		1
	Aufgabe	1	2	3	4	$\sum_{\mathbf{t}}$	
	erreichbare Punkte	9	11	10	10	40	
	erreichte Punkte						
${f Bitte}$							
tragen Sie	Name, Vorname und	Matrik	elnumr	ner auf	dem I)eckbla	tt ein,
rechnen Si	ie die Aufgaben auf se	paratei	n Blätte	ern, nic	ht auf	dem A	ngabeblatt,
beginnen S	Sie für eine neue Aufg	abe im	mer au	ch eine	neue S	Seite,	
geben Sie	auf jedem Blatt den N	Vamen	sowie d	lie Mat	rikelnu	mmer a	an,
begründen	a Sie Ihre Antworten a	usführ	lich und	d			
	ie hier an, an welchen ntreten können:	n der fo	olgende	n Tern	nine Sie	e nicht	zur mündlichen
	□ Do., 08.07.1	0			Fr., 09	.07.10	

1. Gegeben ist das in Abbildung 1 dargestellte mechanische Ersatzschaltbild eines Fahrzeuges mit aktiver Radaufhängung. Das Fahrzeug besteht dabei aus nur 2 Massen ("Viertelfahrzeugmodell"), der Aufbaumasse m_A und der Radmasse m_R . Die Radaufhängung zwischen Rad und Aufbau umfasst eine lineare Feder (Federkonstante c_A , entspannte Länge l_A , momentane Federlänge $z_A - z_R$) und eine vorgebbare Stellkraft F. Der zwischen Rad und Straße befindliche Reifen wird mit einer linearen Feder (Federkonstante c_R , entspannte Länge l_R , momentane Federlänge $z_R - z_S$) modelliert. Als Störgröße wirkt die vertikale Straßenhöhe z_S . Die Erdbeschleunigung g ist zu berückichtigen.

Abbildung 1: Schwingungsmodell eines Fahrzeuges.

a) Stellen Sie die Modellgleichungen in der Form

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, u, d), \quad y = g(\mathbf{x}, u, d)$$

auf. Verwenden Sie dabei den Zustandsvektor $\mathbf{x} = [z_R, z_A, v_R, v_A]^T$, die Ausgangsgröße $y = z_A$, die Stellgröße u = F und die Störgröße $d = z_S$.

- b) Berechnen Sie die Ruhelage \mathbf{x}_{RL} des Systems für u=0 und d=0.
- c) Linearisieren Sie das Modell um die im vorherigen Punkt bestimmte Ruhelage 2 P. \mathbf{x}_{RL} und geben Sie es in der Form

$$\Delta \dot{\mathbf{x}} = \mathbf{A} \Delta \mathbf{x} + \mathbf{b}_u \Delta u + \mathbf{b}_d \Delta d$$
$$\Delta y = \mathbf{c}^T \Delta \mathbf{x} + d_u \Delta u + d_d \Delta d$$

an.

- d) Können Sie aufgrund der Elemente aus denen sich das Modell zusammensetzt 1 P. (Massen, Federn) eine Aussage treffen, ob das linearisierte System asymptotisch stabil ist? Eine Rechnung ist hier *nicht* gesucht!
- e) Es soll nun ein einfacher Fahrkomfortregler angegeben werden. Welches Zustandsregelgesetz $\Delta u = h(\Delta \mathbf{x})$ würde eine perfekte Komfortregelung, d.h. $\Delta z_A(t) = \Delta v_A(t) = 0$ zur Folge haben, wenn davon ausgegangen werden kann, dass das Fahrzeug zu Beginn der Regelung in Ruhe ist und während der Fahrt eine beliebige Störung $\Delta z_S(t)$ wirkt?

- 2. Bearbeiten Sie folgende Teilaufgaben:
 - Hinweis: Alle Teilaufgaben (a,b,c) können unabhängig voneinander gelöst werden.
 - a) Für den in Abbildung 2 dargestellten Regelkreis sind folgende Aufgaben zu bearbeiten:

Abbildung 2: Regelkreis.

i. Der Regelkreis wird mit dem P-Regler R(s) = 2 betrieben. Beurteilen Sie 2 P. die BIBO-Stabilität des Regelkreises anhand der Nyquist-Ortskurve des offenen Kreises in Abbildung 3.

Abbildung 3: Nyquist-Ortskurve des offenen Kreises bei R(s) = 2.

- ii. Der Regelkreis wird nun mit dem Regler $R(s) = \frac{s-1}{s+1}$ betrieben. Verifizieren Sie, dass die Führungsübertragungsfunktion, deren Zähler und Nenner teilerfremd sind, BIBO-stabil ist. Trotzdem wird dieser Regelkreis in der Praxis nicht funktionieren. Welches Stabilitätskriterium wurde verletzt? Geben Sie eine instabile Übertragungsfunktion des Regelkreises an.
- iii. Der Regelkreis wird nun mit dem PI-Regler $R(s)=\frac{V(1+sT)}{s}$ betrieben. 2 P.| Berechnen Sie für die Parameterwerte V=1 und T=1 die Führungssprungantwort des geschlossenen Kreises.
- iv. Der Regelkreis wird nun erneut mit dem Regler $R(s) = \frac{V(1+sT)}{s}$ betrieben. 2 P. Welchen Bedingungen müssen die Parameter V und T genügen, damit die Führungsübertragungsfunktion BIBO-stabil ist? Die Bedingungen müssen nicht weiter vereinfacht werden.
- b) Welche Bedingungen muss ein LTI System der Form

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{b}u$$
$$y = \mathbf{c}^T \mathbf{x} + du$$

erfüllen, damit man von der BIBO-Stabilität der zugehörigen Übertragungsfunktion G(s) auf die asymptotische Stabilität des Systems schließen kann.

c) Wann nennt man eine Übertragungsfunktion phasenminimal?

 $1,5 \, P.$

1,5 P.

3. Gegeben ist das dynamische System

$$\dot{\mathbf{x}} = \begin{bmatrix} 0 & -2 \\ -1 & -1 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$
$$y = \begin{bmatrix} -1 & 1 \end{bmatrix} \mathbf{x}.$$

Hinweis: Mit Ausnahme der Teilaufgaben c) und d) können alle unabhängig voneinander gelöst werden.

a) Überprüfen Sie, ob das System vollständig erreichbar ist, und stellen Sie den 1,5 P.| erreichbaren Unterraum in der nachfolgenden Grafik dar (z.B. mit Hilfe von Basisvektoren).

Abbildung 4: Erreichbarer Unterraum.

b) Überprüfen Sie, ob das System vollständig beobachtbar ist, und stellen Sie im 2 P. Falle der nicht vollständigen Beobachtbarkeit den nicht beobachtbaren Unterraum in der nachfolgenden Grafik dar (z. B. mit Hilfe von Basisvektoren).

Hinweis: Der nicht beobachtbare Unterraum wird durch die zum Eigenwert 0 gehörigen Eigenvektoren der Beobachtbarkeitsmatrix aufgespannt.

Abbildung 5: Nicht beobachtbarer Unterraum.

c) Zeitkontinuierlicher Regelkreis

2 P.

- Bestimmen Sie die Streckenübertragungsfunktion G(s). Dabei sollen Zählerund Nennerpolynom teilerfremd sein.
- Wie in Abbildung 6.a) gezeigt, soll das System mit einem zeitkontinuierlichen P-Regler stabilisiert werden. In welchem Wertebereich muss die Reglerverstärkung P liegen, um die BIBO-Stabilität des geschlossenen Kreises sicherzustellen?

Abbildung 6: Regelkreise, a) zeitkontinuierlich, b) zeitdiskret.

d) Zeitdiskreter Regelkreis

 $2,5 \, P.$

- Bestimmen Sie die Übertragungsfunktion G(z) für eine Abtastzeit $T_a = 1$.
- Wie in Abbildung 6.b) gezeigt, soll das System mit einem zeitdiskreten P-Regler stabilisiert werden. In welchem Wertebereich muss die Reglerverstärkung P liegen, um die BIBO-Stabilität des geschlossenen Kreises sicherzustellen? Warum ist dieser Wertebereich kleiner, gleich oder größer als der in Aufgabe c) für den zeitkontinuierlichen Regler berechnete?
- e) Bestimmen Sie das zum gegebenen System (ungeregelte Strecke) gehörige Ab- 2 P. tastsystem (Abtastzeit $T_a=1$) in Zustandsraumdarstellung.

4. Gegeben ist ein autonomes zeitkontinuierliches LTI System der Ordnung 2. Bei einem Anfangszustand

$$\mathbf{x}(0) = \mathbf{x}_0 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

ergibt sich das Ausgangssignal

$$y(t) = \mathbf{c}^T \mathbf{x}(t) = \cos(t) + 2\sin(t).$$

Hingegen ergibt sich bei einem Anfangszustand

$$\mathbf{x}(0) = \mathbf{x}_0 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

das Ausgangssignal

$$y(t) = \mathbf{c}^T \mathbf{x}(t) = \sin(t) - 2\cos(t).$$

- a) Bestimmen Sie \mathbf{c}^T . 2 P.|
- b) Geben Sie das System in Zustandsraumdarstellung an. 8 P.| **Hinweis:** Die Aufgabenstellung kann sowohl im Zeit- als auch im Frequenzbereich gelöst werden.