

SME0803 Visualização e Exploração de Dados

Medidas de concentração e desigualdade

Prof. Cibele Russo

cibele@icmc.usp.br

Baseado em

Murteira, B. J. F., Análise Exploratória de Dados. McGraw-Hill, Lisboa, 1993. Notas de aula de Análise Exploratória de Dados. Mário de Castro, ICMC-USP, 2010.

Como medir a desigualdade de renda?

Bairros de Paraisópolis e Morumbi, em São Paulo SP.

Fonte: https://portal.fgv.br/noticias/

desigualdade-renda-brasil-bate-recorde-aponta-levanta

A concentração dos dados está relacionada à variabilidade ou dispersão dos valores observados de uma determinada variável.

A concentração dos dados está relacionada à variabilidade ou dispersão dos valores observados de uma determinada variável.

Sejam $x_1, ..., x_n$ os valores de uma variável na amostra. Estamos interessados em saber se $T = x_1 + ... + x_n$ tem maior contribuição de poucas observações ou se todas as observações contribuem de forma similar na soma T.

Exemplo 1

Variável: renda de pessoas em uma amostra.

Valores: $x_1, ..., x_n$. Renda total: $T = x_1 + ... + x_n$.

Considere duas situações

- **a** A renda total pode estar igualmente repartida entre as n pessoas, cada uma com renda: $T/n (= \bar{x})$.
- A renda total pode ser de uma única pessoa:

$$x_1 = T, x_2 = x_3 = \dots = x_n = 0.$$

Exemplo 1

Variável: renda de pessoas em uma amostra.

Valores: $x_1, ..., x_n$. Renda total: $T = x_1 + ... + x_n$.

Considere duas situações

- ② A renda total pode estar igualmente repartida entre as n pessoas, cada uma com renda: $T/n (= \bar{x})$.
- A renda total pode ser de uma única pessoa:

$$x_1 = T, x_2 = x_3 = \dots = x_n = 0.$$

Estas duas situações são extremas.

Em (a), temos a mínima concentração de renda.

Em (b): temos a concentração máxima de renda.

É mais comum encontrarmos situações intermediárias.

Exemplo 2. Variável: altura de pessoas.

Valores: $x_1, ..., x_n$.

Altura total: $T = x_1 + ... + x_n$.

Nesse caso,

 $x_1 = T, x_2 = x_3 = ... = x_n = 0$ não faz sentido.

A curva de Lorenz

Valores ordenados: $x_{(1)} \le x_{(2)} \le ... \le x_{(n)}$.

Total:
$$T = x_{(1)} + x_{(2)} + ... + x_{(n)}$$
.

Proporção acumulada de posições até a i-ésima posição ($p_0 = 0$) :

$$p_i = i/n$$
:

$$p_1 = 1/n, p_2 = 2/n, ..., p_{n-1} = (n-1)/n = 1 - 1/n, p_n = n/n = 1.$$

Proporção acumulada de valores até a i-ésima posição ($q_0 = 0$) :

$$q_i = (x_{(1)} + x_{(2)} + ... + x_{(i)})/T.$$

$$(q_n = T/T = 1).$$

A curva de Lorenz

Obs. Se
$$x_i \ge 0$$
, então $p_i \ge q_i$, $i = 1, ..., n$.

O gráfico formado pela união dos pontos

$$(0,0),(p_1,q_1),(p_2,q_2),...,(p_n,q_n)$$
 é chamado de **curva de Lorenz** $(p_n=q_n=1).$

O segmento de reta unindo (0,0) e (1,1) também é incluído.

Exemplo

Dados ordenados: 1, 1, 2, 6, 30 (n = 5, T = 40 e média = T/n = 8).

i	$X_{(i)}$	p _i	q_i
1	1	1/5 = 0,2	1/40 = 0,025
2	1	2/5 = 0,4	(1+1)/40 = 0.05
3	2	3/5 = 0.6	(1+1+2)/40 = 0,1
4	6	4/5 = 0.8	(1+1+2+6)/40 = 0.25
5	30	5/5 = 1	(1+1+2+6+30)/40 = 1

Exemplo - Curva de Lorenz

Curva de Lorenz para os dados 1, 1, 2, 6, 30

Exemplo - Curva de Lorenz

Curva de Lorenz para os dados 1, 1, 2, 6, 300

Exemplo - Curva de Lorenz

Curva de Lorenz para os dados 1, 1, 2, 2, 2

Área de desigualdade

Área compreendida entre ob e a curva de Lorenz: área de desigualdade (D).

Área de desigualdade

Considere as situações:

- $x_{(1)} = x_{(2)} = ... = x_{(n)} = T/n$: proporções de posições = proporções acumuladas de valores $(q_i = p_i, i = 1, ..., n)$. \Longrightarrow curva de Lorenz = segmento ob (**linha da igualdade perfeita**).
- x₍₁₎ = x₍₂₎ = ... = x_(n-1) = 0 e x(n) = T: ⇒ curva de Lorenz é formada pelos pontos (0,0), (1 1/n,0) e (1,1) : curva da desigualdade perfeita. Quando n → ∞: curva da desigualdade perfeita coincide com ocb.

Quanto mais a curva de Lorenz estiver afastada de ob, maior o grau de desigualdade.

Curva da desigualdade perfeita: odb.

Como a área do triângulo ocb = 1/2, temos que $0 \le D < 1/2$.

Valor máximo de D (desigualdade perfeita):

$$D_{max}=\frac{1}{2}\left(1-\frac{1}{n}\right).$$

 $D_{max}
ightarrow 1/2$ quando $n
ightarrow \infty (d
ightarrow c)$.

 $max D_{max} = 1/2.$

Proposto por C. Gini em 1914.

Índice de Gini

$$G = D/maxD_{max} = D/(1/2) = 2D.$$

Propriedades

- 0 < G < 1
- 0 < G < 1 1/n.
- Igualdade perfeita: G = 0.
- Desigualdade perfeita: $G = 1 1/n \ (\rightarrow 1 \ \text{quando} \ n \rightarrow \infty)$

Valores ordenados: $x_{(1)} \leq ... \leq x_{(n)}$.

Como calcular G?

$$G = 1 - \frac{1}{n} \sum_{i=1}^{n} (q_i + q_{i-1})^{-1}$$

sendo que $q_0 = 0$ e

$$q_i = \frac{1}{T} \sum_{i=1}^i x_{(i)}$$

Obs. (a) Diferentes curvas de Lorenz podem gerar o mesmo valor de G.

(b) G mede apenas desigualdade. Por exemplo, diferentes países podem ter valores de G semelhantes e diferentes níveis de riqueza.

O índice de Gini é indicador de desigualdade de renda que varia de 0 a 1, sendo 0 em uma situação na qual toda a população possuísse uma renda equivalente, e 1 se apenas uma pessoa detivesse toda a riqueza do país.

```
Fonte: https://www.br.undp.org/content/dam/brazil/docs/RelatoriosDesenvolvimento/PressReleases/undp-br-rdh_desig-2006.pdf.
```

```
https://www.br.undp.org/content/brazil/pt/home/
presscenter/articles/2018/
brasil-mantem-tendencia-de-avanco-no-desenvolvimento-
html
```


Cartograma do índice de Gini em países do mundo. Fonte:

https://www.reddit.com/r/dataisbeautiful/comments/f8f938/oc_gini_coefficient_by_country_2020_year/

Gráfico de linhas do índice de Gini de 2012 a 2019.

Fonte: https://portal.fgv.br/noticias/

 $\tt desigualdade-renda-brasil-bate-recorde-aponta-levantare and the sigual data and th$

Diferença média. Medida de dispersão dada por

$$\bar{d} = \frac{1}{n^2} \sum_{i=1}^n \sum_{j=1}^n |x_i - x_j|$$

Diferenças (n = 5):

	<i>x</i> ₁	, X ₂	<i>x</i> ₃	<i>x</i> ₄	<i>X</i> ₅
<i>x</i> ₁	$x_1-x_1=0$	$x_1 - x_2$	$x_1 - x_3$	$X_1 - X_4$	$x_1 - x_5$
<i>X</i> ₂	$x_2 - x_1$	$x_2-x_2=0$	$x_2 - x_3$	$x_2 - x_4$	$x_2 - x_5$
<i>X</i> 3	$X_3 - X_1$	$x_3 - x_2$	$x_3-x_3=0$	$x_3 - x_4$	$x_3 - x_5$
<i>X</i> ₄	$x_4 - x_1$	$x_4 - x_2$	$x_4 - x_3$	$x_4-x_4=0$	$x_4 - x_5$
<i>X</i> ₅	$x_5 - x_1$	$x_5 - x_2$	$x_5 - x_3$	$x_5 - x_4$	$x_5-x_5=0$

Pode ser provado que $G = \frac{\bar{d}}{2\bar{x}}$

G é uma medida de dispersão relativa.

Discrepância máxima

Medida associada à curva de Lorenz.

Valor máximo da diferença entre a proporção acumulada de posições e a proporção acumulada de valores:

$$L_{max} = max(p_i - q_i), i = 1, ..., n.$$

Discrepância máxima

Declividade da curva:

$$B_i = rac{q_i - q_{i-1}}{p_i - p_{i-1}} = rac{x_{(i)}}{ar{x}}, i = 1, \dots, n$$

$$x_{(i)} \leq \bar{x} \implies B_i \leq 1$$

$$x_{(i)} > \bar{x} \implies B_i > 1$$

Encontrar j tal que

$$X_{(1)} \leq X_{(2)} \leq \ldots \leq X_{(j)} \leq \bar{X} \leq X_{(j+1)} \leq \ldots X_{(n)}$$

$$L_{max} = p_i - q_i$$
.

Pode ser provado que $L_{max} = \frac{d_m}{2\bar{x}}, d_m = \frac{1}{n} \sum_{i=1}^{n} |x_i - \bar{x}|$: desvio médio

 L_{max} é uma medida de dispersão relativa.

