128
Section 5.5. Gram-Schmidt orthogonalization
t1 t 1 5 13 1 1
Take two vectors in R3 X. X2
$\begin{pmatrix} \ell & \ell & \chi_1 = 1 \\ 0 & \chi_2 = 1 \\ 0 & \chi_2 = 1 \end{pmatrix}$
they span a plane in 123 (dim 2)
God find an orthonomed basis fu, 4,7 of the same plane so that spanfu, = span {x, }
Span { 4, } = span { X, }
span $\langle u_1, u_2 \rangle = Span \langle x_1, x_2 \rangle$
First take $y_1 = \frac{\chi_1}{\ \chi_1\ }$ since $\ y_2\ = \frac{1}{\ \chi_1\ }$ (i.e., normalize χ_1 .) Then take
then toke
 W2 = X2 - < X2, M17 U1 (and then noneolize W2)
Since (W2, U1) = LX2, U1) - LX2, U1) (U, U1) = 0
∠ h, h, > = 11 y, 11 ≥
N W2 h

$$||X_1|| = \sqrt{1^2 + 1^2} = \sqrt{2}$$

$$u_1 = \frac{1}{\sqrt{2}} \left| \frac{1}{0} \right|$$

For the example
$$||X_1|| = \sqrt{1^2 + 1^2} = \sqrt{2}$$

 $|X_1| = \sqrt{1^2 + 1^2} = \sqrt{2}$
 $|X_2| = \sqrt{1^2 + 1^2} = \sqrt{2}$
 $|X_2| = \sqrt{1^2 + 1^2} = \sqrt{2}$
 $|X_2| = \sqrt{1^2 + 1^2} = \sqrt{2}$

W2 = X, - < X2, 4, > u,

check. (W2, U,7 = 0

$$||w_2|| = \sqrt{0 + 0 + 2^2} = 2$$
 $|v_2| = \frac{1}{2} |v_2| = 0$

	More generallez.	(130)
	let {x, 12, - xn} be a basis of a	N
	n-dimensional subspace S of V (with an	
	then, we can obtain an orthonormal by hu, 42 4n7 of S	•
	+	
9	such that span 4 n, uz,, un 7 = jpan 4x, k=0,, n	^?,~;^ \k
	with the Gram-Schmidt purcess:	,
	$V_1 = \frac{\chi_{\overline{L}}}{\chi_{\overline{L}}}$	
	For 12:1,, h-1	
	$W_{KH} = X_{KH} - \sum_{i=1}^{K} \langle X_{KH}, a_i \rangle u_i$	
	Matt = 2 Dunt	
	Clearly 114:11=1 i=1,	
	Clearly span \x, - x = span {x,, x, x,	

(131)
What about orthogonality. By induction. We saw (W2, 4,7 = 0) => (M2, 4,7 = 0)
By induction.
We saw . (W2, 4,7 = 0
\Rightarrow $\langle 4_2, 4_1 \rangle = 0$
Asome (mj, no) = 0 j+i, j=1,-,k
We want to show Lunn, uj 7 =0 j=1k
It suffices to sohow (Wnn, n;>=0
Comparte le
Compute $\langle w_{k+1}, u_j \rangle = \langle x_{k+1}, u_j \rangle - \sum_{i=1}^{k} \langle x_{k+1}, u_i \rangle \langle x_i, y_j \rangle$
since $\langle u_i, u_j \rangle = 0$ $j \neq i$ we are left with
ve are left with
LWKG, 4;> - (Xny, 4;> - (Xny, 4;7 < u;, 4;7
again $\langle u_i, y_i \rangle = y_i ^2 = 1$
again $(u_j, u_j) = u_j ^2 = 1$ so $(w_{n,j}, u_j) = 0$ i.e. $w_{n,j} \perp u_j = 1,, k$
9.ld

Example $X_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ $X_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ $X_3 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ We obtained already with 12-10 $(x_3, y_1) = \frac{1}{5}$ $(x_3, y_2) = 1$ W3 = X3 - < X3, 4, 7 4, -(X3, 42) 42 $= 0 - \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} = \frac{1}{2}$ $\| W_3 \| = \sqrt{\frac{1}{4} + \frac{1}{4}} = \sqrt{\frac{1}{2}}$ $U_3 = \sqrt{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \sqrt{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{2} = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{2} = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{2}$ M3 = 1 | 1 | check. (M3, M,7 = 10) | (M3, M,7) = 10 L43,4,7=0 Let us rephrease the question: Given an nxn motrix A, find Q nxn such that its columns are orthonormal (ie. QTQ=I, ie. Q orthogonal mostrix) such that span | 9, 92. - 9x = span | 2, 2, -. and where Q= [q, q2. -qn], A=[a, az - an]

Same an sever: Gram-Schmidt. But now observe that A = Q.R. where R is upper triangular.

With positive diagonals $a_1 = q_1 \cdot ||a_1||$ $(q_1 = q_1/||a_1||)$ Q= (a2,9,) 91 + 110/2/192 W2 = 11 W2 11 92 = Q2 - (92,9)9, $R_{ij} = \langle a_j, q_i \rangle$ i < j Rii = II Will In example R₁₁= 11×11= VZ R₁₂= <+2, 4,7 = Z/V2 R22= 11W211 = 2 R13 = < x3, 4,> = 1/2 R23 = (x3, N27 = 1) \(\sqrt{V2} \rightarrow \sqrt{V2} \rightarrow \sqrt{V2} $R_{33} = ||w_3|| = 1/\sqrt{2}$ R = 0 2 1

.

Example

$$A = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}$$
 $A = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}$
 $A = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}$
 $A = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}$
 $A = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}$
 $A = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}$
 $A = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}$
 $A = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}$
 $A = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}$
 $A = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}$
 $A = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}$
 $A = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}$
 $A = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}$
 $A = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}$
 $A = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}$
 $A = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}$
 $A = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}$
 $A = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}$
 $A = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}$
 $A = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}$
 $A = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}$
 $A = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}$
 $A = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}$
 $A = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}$
 $A = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}$
 $A = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}$
 $A = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}$
 $A = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}$
 $A = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}$
 $A = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}$
 $A = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}$
 $A = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}$
 $A = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}$
 $A = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}$
 $A = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}$
 $A = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}$
 $A = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}$
 $A = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}$
 $A = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}$
 $A = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}$
 $A = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}$
 $A = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}$
 $A = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}$
 $A = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}$
 $A = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}$
 $A = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}$
 $A = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}$
 $A = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}$
 $A = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}$
 $A = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}$
 $A = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}$
 $A = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}$
 $A = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}$
 $A = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}$
 $A = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}$
 $A = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}$
 $A = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}$
 $A = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}$
 $A = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}$
 $A = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}$
 $A = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}$
 $A = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}$
 $A = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}$
 $A = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}$
 $A = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}$
 $A = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}$
 $A = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}$
 $A = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}$
 $A = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}$
 $A = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}$
 $A = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}$
 $A = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}$
 $A = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}$
 $A = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}$
 $A = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}$
 $A = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}$
 $A = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}$
 $A = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}$
 $A = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}$
 $A = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}$
 $A = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}$
 $A = \begin{vmatrix} 1 &$

