

IIC1253 — Matemáticas Discretas — 1' 2016

TAREA 4

Publicación: Viernes 22 de Abril.

Entrega: Viernes 29 de Abril hasta las 10:15 horas.

Indicaciones

■ Debe entregar una solución para cada pregunta (sin importar si esta en blanco).

■ Cada solución debe estar escrita en L⁴TEX. No se aceptarán tareas escritas a mano ni en otro sistema de composición de texto.

• Responda cada pregunta en una hoja separada y ponga su nombre en cada hoja de respuesta.

• Si usa más de una hoja para una misma pregunta corchetelas.

• Junte las respuestas a preguntas distintas usando un clip (no un corchete).

■ Debe entregar una copia escrita durante la ayudantía asignada y una copia digital por el buzón del curso, ambas antes de la fecha/hora de entrega.

■ Se penalizará con 1 punto en la nota final de la tarea por cada regla que no se cumpla.

■ La tarea es individual.

Pregunta 1

Sea A un conjunto finito. Una relación $R \subseteq A \times A$ se dice que es un rectangulo si existen conjuntos $B, C \subseteq A$ tal que $R = B \times C$.

1. Demuestre que R es un rectangulo si, y solo si, para todo $a_1, b_1, a_2, b_2 \in A$ se cumple que:

si
$$(a_1, b_1) \in R$$
 y $(a_2, b_2) \in R$, entonces $(a_1, b_2) \in R$.

2. Un rectangulo R se dice simple si $R = B \times B$ para algún $B \subseteq A$. Demuestre que si R es una relación de equivalencia, entonces para algún $n \in \mathbb{N}$ existen rectangulos simples $R_1, \ldots, R_n \subseteq A \times A$ tal que:

$$R = \bigcup_{i=1}^{n} R_i$$

¿es la otra dirección cierta? Demuestrelo o de un contra-ejemplo.

Pregunta 2

Para esta pregunta fije un $n \in \mathbb{N}$. Para el alfabeto de bits $\{0,1\}$ se define $\{0,1\}^n$ como el conjunto de todas las palabras de bits de largo n y $\{0,1\}^+$ como el conjunto de todas las palabras de bits de largo mayor o igual a 1. El largo de una palabra $u \in \{0,1\}^+$ la denotaremos como |u|. Para una letra $a \in \{0,1\}$ denotaremos como a^i la palabra que tiene la letra a repetida i-veces, o sea, $a^i = \underbrace{aa \dots a}$.

Considere una función $f:\{0,1\}^n \times \{0,1\}^n \to \{0,1\}$. Se dice que un par de funciones (g_L,g_B) con:

$$g_L: \{0,1\}^n \to \{0,1\}^+ \quad \text{y} \quad g_B: \{0,1\}^+ \times \{0,1\}^n \to \{0,1\}$$

es un protocolo para f si se cumple que $f(u,v) = g_B(g_L(u),v)$ para todo $u,v \in \{0,1\}^n$. Denotaremos por $\mathcal{P}(f)$ el conjunto de todos los protocolos para f.

La interpretación de g_L y g_B es la siguiente. Suponga que Lisa y Bart desean calcular la función f(u, v) pero Lisa tiene la palabra u y Bart tiene la palabra v (obviamente Lisa no conoce la palabra v ni Bart la palabra v). Para calcular f(u, v), Lisa convierte su palabra v0 en v1 en v2 g_L(v3 puede tener cualquier largo mayor o igual a 1) y le envía v3 a Bart, el cual puede calcular la función f(u, v) calculando $g_B(u', v)$.

Un posible protocolo para cualquier función f es considerar las funciones $g_L(u) = u$ y $g_B(u, v) = f(u, v)$. En este caso, Lisa le esta "enviando" toda la palabra u a Bart. La pregunta interesante es pensar cuando Lisa puede enviarle menos de n bits a Bart para calcular la función f en el peor caso. Por ejemplo, considere la función f^{ones} tal que $f^{\text{ones}}(u, v) = 1$ si $u = v = 1^n$ y $f^{\text{ones}}(u, v) = 0$ en otro caso (en otras palabras, $f^{\text{ones}}(u, v) = 1$ si ambas palabras contienen solo 1's al mismo tiempo). En este caso, un posible protocolo para que Lisa y Bart calculen la función f^{ones} son las funciones $(g_L^{\text{ones}}, g_B^{\text{ones}})$ tal que:

- $g_L^{\mathbf{ones}}(u) = 1$ si $u = 1^n$ y $g_L^{\mathbf{ones}}(u) = 0$ en otro caso.
- $g_B^{\mathbf{ones}}(u,v) = 1 \text{ si } u = 1, v = 1^n \quad \text{y} \quad g_B^{\mathbf{ones}}(u,v) = 0 \text{ en otro caso.}$

Notese que en este caso Lisa solo le tiene que enviar un solo bit a Bart (en el peor caso) para calcular la función $f^{\mathbf{ones}}$ en vez de enviarle toda su palabra.

La discusión anterior motiva la definición de complejidad C(f) de una función f como:

$$\mathcal{C}(f) := \min_{(g_L, g_B) \in \mathcal{P}(f)} \left\{ \max_{u \in \{0,1\}^n} |g_L(u)| \right\}$$

En otras palabras, la complejidad C(f) es la máxima cantidad de bits que necesita enviar Lisa a Bart en el mejor protocolo para f. Note que la complejidad C(f) siempre satisface que $1 \le C(f) \le n$. Por ejemplo, en el caso de f^{ones} tenemos que $C(f^{\text{ones}}) = 1$.

1. Para una palabra $w \in \{0,1\}^n$, suponga que $w = a_1 \dots a_n$ con $a_i \in \{0,1\}$ para todo $i \le n$. Definimos w^{\downarrow} como la menor posición $i \le n$ tal que $a_i = 1$ y $a_j = 0$ para todo j < i. Por ejemplo, $(0001010)^{\downarrow} = 4$ ya que el cuarto bit de la palabra 0001010 es el primer bit igual a 1. Si $w = 0^n$, entonces definimos $w^{\downarrow} = n + 1$.

Considere la función $f^{\downarrow}: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}$ tal que:

$$f^{\downarrow}(u,v) = 1$$
 si, y solo si, $u^{\downarrow} \leq v^{\downarrow}$

Demuestre que $C(f^{\downarrow}) \leq \log_2(n+1) + 1$. (Hint: recuerda la codificación de números binarios)

2. Considere la función $f^=: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}$ tal que:

$$f^{=}(u,v)=1$$
 si, y solo si, $u=v$

Demuestre que $C(f^{=}) \geq n$. En otras palabras, el mejor protocolo para la función $f^{=}$ es que Lisa le envíe toda su palabra a Bart.

Evaluación y puntajes de la tarea

Cada **item** de cada pregunta se evaluará con un puntaje de:

- 0 (respuesta incorrecta),
- 3 (con errores menores),
- 4 (correcta).

Todas las preguntas tienen la misma ponderación en la nota final.