1. Să se calculeze determinantul $D = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 0 & 3 \\ 2 & 4 & 6 \end{bmatrix}$. (6 pct.)

a)
$$D = 0$$
; b) $D = 14$; c) $D = 3$; d) $D = 11$; e) $D = 4$; f) $D = 1$.

Soluție. Aplicând regula lui Sarrus, $\begin{vmatrix} a & b & c \\ d & e & f \\ m & n & p \end{vmatrix} = aep + bfm + dnc - (mec + dbp + nfa)$, obținem $D = 1 \cdot 0 \cdot 6 + 2 \cdot 3 \cdot 2 + 1 \cdot 4 \cdot 3 - (2 \cdot 0 \cdot 3 + 1 \cdot 2 \cdot 6 + 4 \cdot 3 \cdot 1) = 0$, deciD = 0.

Altfel. Se observă că linia a treia a determinantului este dublul celei dintâi, deci determinantul având două linii proporționale, este nul.

Altfel. Se observă că a doua coloană este dubla celei dintâi, deci determinantul având două coloane proporționale, este nul.

Altfel. Se observă că a treia coloană este tripla celei dintâi, deci D = 0.

Altfel. Dezvoltând după o linie sau după o coloană oarecare, calculul se reduce la determinanți de ordinul doi; se obține D = 0.

Altfel. Se fabrică zerouri pe o linie sau pe o coloană a determinantului; se obține fie o linie nulă, fie o coloană nulă, deci D=0.

2. Fie $a,b \in \mathbb{R},\ a < b$ și fie funcția derivabilă $f:(a,b) \to \mathbb{R},$ cu derivata f' funcție continuă. Știind că $f'(x) + (f(x))^2 + 1 \ge 0,\ \forall x \in (a,b)$ și că $\lim_{\substack{x \to a \\ x > a}} f(x) = +\infty,\ \lim_{\substack{x \to b \\ x < b}} f(x) = -\infty,$ decideți care dintre

următoarele afirmații este cea adevărată: (6 pct.)

$$\mathbf{a})\;b-a\in\left[\frac{\pi}{4},\frac{\pi}{2}\right)\!;\;\mathbf{b})\;b-a\in\left[\frac{\pi}{2},\frac{3\pi}{4}\right)\!;\;\mathbf{c})\;b-a\in\left[\frac{\pi}{6},\frac{\pi}{4}\right)\!;\;\mathbf{d})\;b-a\in\left[\frac{3\pi}{4},\pi\right)\!;\;\mathbf{e})\;b-a\in\left[\pi,\infty\right)\!;\;\mathbf{f})\;b-a\in\left(0,\frac{\pi}{6}\right)\!.$$

Soluție. Se observă că inegalitatea din enunț se rescrie

$$f'(x) + (f(x))^2 + 1 \ge 0 \Leftrightarrow \frac{f'}{1+f^2} \ge -1 \Leftrightarrow (x + \operatorname{arctg} f(x))' \ge 0.$$

Notând g(x)=x+ $\operatorname{arctg} f(x)$, avem $g'(x)\geq 0$, deci g crescătoare pe (a,b). Trecând la limită si folosind limitele din enunț, obținem $\lim_{x\searrow -\infty} g(x)=a+\frac{\pi}{2}$ și $\lim_{x\nearrow \infty} g(x)=b-\frac{\pi}{2}$. Din monotonia funcției g, rezultă $a+\frac{\pi}{2}< b-\frac{\pi}{2}$, deci $b-a\geq \pi$. e

3. Fie funcția $f : \mathbb{R} \to \mathbb{R}$, $f(x) = x + e^x$. Să se calculeze f'(0). (6 pct.) a) 0; b) 3; c) -5; d) 4; e) 2; f) -2.

Solutie. Derivând funcția f termen cu termen, obținem $f'(x) = 1 + e^x$, deci f'(0) = 1 + 1 = 2.

- 4. Fie $A = \{|z^n + \frac{1}{z^n}| \mid n \in \mathbb{N}, \ z \in \mathbb{C}, \ z^4 + z^3 + z^2 + z + 1 = 0\}$. Să se determine suma pătratelor elementelor mulțimii A. (6 pct.)
 - a) 7; b) 5; c) 10; d) 9; e) 1; f) 4.

Soluție. Se observă că rădăcinile polinomului $z^4+z^3+z^2+z+1$ sunt cele diferite de 1 ale polinomului $z^5-1=(z-1)(z^4+z^3+z^2+z+1)$, deci $\{\omega_1,\omega_2,\omega_3,\omega_4\}$, unde am notat $\omega_k=\omega^k=\cos\frac{2k\pi}{5}+i\sin\frac{2k\pi}{5}$, unde $k\in\mathbb{Z}$, iar $\omega=\omega_1=\cos\frac{2\pi}{5}+i\sin\frac{2\pi}{5}$. Se poate verifica direct egalitatea $\omega^m=\omega^r$, pentru $m\in\mathbb{Z}$ iar m=5q+r împărțirea cu rest la 5 a numărului întreg m. Au loc relațiile $\frac{1}{\omega_k}=\bar{\omega}_k=\omega_{-k},\,\forall k\in\mathbb{Z}$ și $\omega_m+\frac{1}{\omega_m}=\omega_{-m}+\frac{1}{\omega_{-m}},\,\forall m\in\mathbb{Z}$. Atunci mulțimea A se rescrie succesiv:

$$\begin{split} A &= \{|z^n + \frac{1}{z^n}| \mid n \in \mathbb{N}, \ z \in \mathbb{C}, \ z^4 + z^3 + z^2 + z + 1 = 0\} \\ &= \{|z^n + \frac{1}{z^n}| \mid n \in \mathbb{N}, \ z \in \{\omega_1, \omega_2, \omega_3, \omega_4\}\} = \{|\omega_m + \bar{\omega}_m| \mid m \in \overline{1, 5}\} \\ &= \{|\omega_m + \bar{\omega}_m| \mid m \in \overline{-2, 2}\} = \{|\omega_m + \omega_{-m}| \mid m \in \overline{0, 2}\}. \end{split}$$

Folosind egalitatea $|z|^2 = z\bar{z}$ și consecința formulei Moivre $(\omega_k)^s = \omega_{ks}$, rezultă suma pătratelor elementelor mulțimii A,

$$S = |1+1|^2 + |\omega_1 + \omega_{-1}|^2 + |\omega_2 + \omega_{-2}|^2 = 4 + (\omega_1 + \omega_{-1})\overline{(\omega_1 + \omega_{-1})} + (\omega_2 + \omega_{-2})\overline{(\omega_2 + \omega_{-2})}$$

$$= 4 + (\omega_1 + \omega_4)(\omega_4 + \omega_1) + (\omega_2 + \omega_3)(\omega_3 + \omega_2) = 4 + (\omega_1 + \omega_4)^2 + (\omega_2 + \omega_3)^2$$

$$= 4 + (\omega_2 + 2\omega_5 + \omega_8) + (\omega_4 + 2\omega_5 + \omega_6) = 4 + \omega_2 + 2 \cdot 1 + \omega_3 + \omega_4 + 2 \cdot 1 + \omega_1$$

$$= 7 + (\omega_0 + \omega_1 + \omega_2 + \omega_3 + \omega_4).$$

Dar suma celor cinci rădăcini de ordinul cinci ale unității fiind nulă (din prima relație Viete pentru polinomul $z^5 - 1$), rezultă anularea parantezei, deci S = 7 + 0 = 7. (a)

- 5. Fie matricea $A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$. Să se calculeze determinantul matricei A^2 . (6 pct.)
 - a) 25; b) 16; c) 15; d) 0; e) 9; f) 4.

Soluție. Calculăm $A^2 = A \cdot A = \left(\begin{smallmatrix} 5 & 4 \\ 4 & 5 \end{smallmatrix} \right)$; aplicând formula $\left| \begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right| = ad - bc$, rezultă det $A^2 = 5^2 - 4^2 = 25 - 16 = 9$.

Altfel. Folosim proprietatea că pentru orice matrice pătratică A și orice număr natural $m \ge 1$, avem det $A^m = (\det A)^m$. Cum det $A = 2 \cdot 2 - 1 \cdot 1 = 3$, rezultă det $A^2 = (\det A)^2 = 3^2 = 9$.

- 6. Suma soluțiilor reale ale ecuației $x^3 3x^2 5x = 0$ este: (6 pct.)
 - a) 8; b) -5; c) 6; d) 3; e) 5; f) 7.

Soluţie. Polinomul se rescrie $x^3-3x^2-5x=x(x^2-3x-5)$. Avem deci o primă rădăcină $x_1=0$, soluţie reală a ecuaţiei date. Celelalte două soluţii complexe ale ecuaţiei sunt rădăcinile $x_{2,3}=\frac{3\pm\sqrt{20}}{2}$ ale polinomului de gradul doi x^2-3x-5 , care sunt ambele reale. Deci suma soluţiilor reale ale ecuaţiei date este $x_1+x_2+x_3=0+\frac{3+\sqrt{20}}{2}+\frac{3-\sqrt{20}}{2}=3$. ⓐ Observație. Se verifică uşor că în cazul nostru rădăcinile fiind toate reale, suma obţinută coincide cu cea dată de prima egalitate Viete, $-\frac{-3}{1}=3$. În general însă, prima formulă Viete produce suma rădăcinilor complexe ale polinomului. În cazul în care polinomul de grad trei ar avea doar o rădăcină reală, iar celelalte două complexe conjugate însă, această sumă nu ar produce rezultatul cerut. Din acest motiv este necesar să se determine dacă există şi rădăcini complexe ne-reale (iar în acest caz rădăcinile reale trebuie determinate efectiv), fie dacă toate rădăcinile sunt reale (iar în acest caz prima relaţie Viete produce rezultatul cerut). ⓐ

7. Să se rezolve sistemul de ecuații $\begin{cases} x-y=2\\ x-3y=0 \end{cases}$ în mulțimea numerelor reale. (6 pct.)

a)
$$x = 2$$
, $y = 1$; b) $x = 1$, $y = 3$; c) $x = -3$, $y = 5$; d) $x = 3$, $y = 1$; e) $x = y = 2$; f) $x = 1$, $y = 2$.

Soluție. Scăzând a doua ecuație din prima, rezultă imediat $2y=2 \Leftrightarrow y=1$. Apoi, înlocuind în prima ecuație, obținem $x-1=2 \Leftrightarrow x=3$. Prin urmare avem x=3, y=1.

Altfel. Discriminantul sistemului de 2 ecuații cu 2 necunoscute este $\begin{vmatrix} 1 & -1 \\ 1 & -3 \end{vmatrix} = -2 \neq 0$, deci sistem Cramer compatibil determinat. Aflăm soluția unică a sistemului aplicând regula lui Cramer:

$$x = \frac{\Delta_x}{\Delta} = \frac{1}{\Delta} \begin{vmatrix} 2 & -1 \\ 0 & -3 \end{vmatrix} = 3, \quad y = \frac{\Delta_y}{\Delta} = \frac{1}{\Delta} \begin{vmatrix} 1 & 2 \\ 1 & 0 \end{vmatrix} = 1,$$

deci soluția sistemului este dată de x = 3, y = 1.

- 8. Suma pătratelor soluțiilor ecuației $x^2 + x 2 = 0$ este: (6 pct.)
 - a) 2; b) 4; c) 7; d) 10; e) 5; f) 1.

Soluție. Rezolvând ecuația de gradul doi, obținem soluțiile $x_1 = 1$, $x_2 = -2$, deci $x_1^2 + x_2^2 = 1^2 + (-2)^2 = 5$.

 $Altfel. \ \ \text{Dacă}\ x_{1,2}\ \text{sunt cele două soluții ale ecuații, atunci}\ x_1^2 + x_2^2 = (x_1 + x_2)^2 - 2x_1x_2. \ \ \text{Din relațiile Viete avem însă}\ x_1 + x_2 = -\frac{1}{1} = -1,\ \text{iar}\ x_1x_2 = \frac{-2}{1} = -2,\ \text{deci}\ x_1^2 + x_2^2 = (-1)^2 - 2\cdot (-2) = 5.$

- 9. Mulțimea soluțiilor reale ale ecuației $\sqrt{x+3} x = 1$ este: (6 pct.)
 - a) $\{-1,3\}$; b) $\{-3,0\}$; c) $\{3,4\}$; d) $\{-2,3\}$; e) $\{1\}$; f) \emptyset .

Soluție. Ecuația se rescrie $\sqrt{x+3} = x+1$. Condiția de existentă a radicalului este $x+3 \ge 0$, deci $x \ge -3$. De asemenea membrul drept, fiind egal cu un radical, trebuie să fie nenegativ, deci $x \ge -1$. În concluziile, din condițiile induse de radical, obținem $x \ge -1$. Ridicând ecuația la pătrat, rezultă $x^2 - x - 2 = 0 \Leftrightarrow x \in \{1, -2\}$. Convine doar soluția $x = 1 \ge -1$. @

Altfel. După ridicare la pătrat, ecuația devine $x^2 - x - 2 = 0 \Leftrightarrow x \in \{1, -2\}$. Dar prin înlocuire în ecuația dată, se constată că dintre cele două valori obținute, doar x = 1 satisface ecuația. Deci unica soluție a ecuației este x = 1.

- 10. Să se rezolve ecuația $2^{x+1} = 16$. (6 pct.)
 - a) x = 3; b) x = -1; c) x = 4; d) x = 2; e) $x = \frac{1}{2}$; f) x = 6.

Soluţie. Logaritmând egalitatea în baza 2, obţinem $x+1 = \log_2 16 \Leftrightarrow x+1 = \log_2 2^4 \Leftrightarrow x+1 = 4 \Leftrightarrow x=3$, deci x=3. (a)

- 11. Să se rezolve inecuația 7x + 2 > 5x + 4. (6 pct.)
 - a) $x \in (1, \infty)$; b) $x \in (-4, -3)$; c) $x \in (-3, 0)$; d) $x \in \emptyset$; e) $x \in (-\infty, -4)$; f) $x \in (0, 1)$.

Solutie. Ecuatia se rescrie $2x > 2 \Leftrightarrow x > 1$, deci $x \in (1, \infty)$. (a)

- 12. Să se determine $x \in \mathbb{R}$ astfel încât numerele 2, 4, x (în această ordine) să fie în progresie geometrică. (6 pct.)
 - a) x = 8; b) x = 5; c) x = 9; d) x = 11; e) x = 14; f) x = 18.

Soluție. Condiția de progresie geometrică a trei termeni este ca termenul din mijloc sa fie media geometrică a celorlalți doi termeni, deci $4 = \sqrt{2 \cdot x} \Leftrightarrow 2x = 16 \Leftrightarrow x = 8$. (a)

Altfel. Dacă notăm cu a=2 primul termen al progresiei și cu q rația acesteia, obținem $4=a\cdot q$, deci $q=\frac{4}{a}=2$ și deci $x=a\cdot q^2=2\cdot 2^2=8$.

13. Fie polinomul $f = 1 + \sum_{k=0}^{100} \frac{(-1)^{k+1}}{(k+1)!} X(X-1) \dots (X-k)$. Dacă S este suma rădăcinilor reale ale lui f, iar

T este suma rădăcinilor reale ale lui f', atunci S-T este egal cu: (6 pct.)

a) 50; b) 52; c) 55; d) 51; e) 54; f) 53.

Soluție. Pentru $m \in \overline{1,101}$ fixat, notăm $T_k(m) = \frac{(-1)^{k+1}}{(k+1)!} m(m-1) \cdot \ldots \cdot (m-k)$. Atunci

$$f(m) = 1 + \sum_{k=0}^{100} \frac{(-1)^{k+1}}{(k+1)!} m(m-1) \cdot \dots \cdot (m-k) = 1 + \sum_{k=0}^{100} T_k(m).$$

Se observă că pentru $k \in \overline{m+1,101}$, avem $T_k(m)=0$, iar pentru $k \in \overline{1,m}$, avem $T_k(m)=(-1)^{k+1}C_m^{k+1}$. Deci pentru $m \in \overline{1,101}$, rezultă

$$f(m) = 1 + \sum_{m=1}^{m} (-1)^q C_m^q = C_m^0 - C_m^1 + C_m^2 - C_m^3 + \dots + (-1)^{100} C_{100}^{100} = (1-1)^{100} = 0.$$

Prin urmare valorile $\{1, \ldots, 101\}$ sunt 101 rădăcini reale distincte ale polinomului f de grad 101. Deci P având gradul 101, acestea sunt toate rădăcinile polinomului, care va fi de forma

$$P(x) = a \cdot (x-1)(x-2) \cdot \dots \cdot (x-101).$$

Este evident că suma rădăcinilor reale ale acestuia este $1+2+\ldots+101=\frac{101\cdot 102}{2}=5151.$

Pe de altă parte, înlocuind x = 0 atât în expresia din enunț a lui P, cât și în expresia de mai sus a acestuia, rezultă P(0) = 1, respectiv

$$P(0) = a \cdot (-1) \cdot (-2) \cdot \dots \cdot (-101) = a \cdot (-1)^{101} \cdot 101! = -a \cdot 101!$$

deci avem egalitatea $1=-a\cdot 101!$, din care obținem $a=-\frac{1}{101!}$. Prin urmare, polinomul admite scrierea echivalentă:

$$P(x) = -\frac{1}{101!}(x-1) \cdot (x-2) \cdot \dots \cdot (x-101).$$

Derivând expresia de mai sus a polinomului P, obținem

$$P'(x) = -\frac{1}{101!} \sum_{k=1}^{101} (x-1) \cdot \dots \cdot (\widehat{x-k}) \cdot \dots \cdot (x-101),$$

un polinom de grad 100. Folosind consecința teoremei lui Rolle, derivata P' are cel puțin 100 de rădăcini distincte aflate în intervalele consecutive $(1,2),(2,3),\ldots,(100,101)$ determinate de rădăcinile lui P. Gradul lui P fiind 100, rezultă că acestea sunt exact rădăcinile, toate reale, ale lui P'. Pentru a afla suma T a rădăcinilor reale ale derivatei, folosim prima egalitate Viete. Examinând expresia lui P' de mai sus, rezultă coeficientul monomului de grad maxim x^{100} al lui P',

$$C_{x^{100}} = -\frac{1}{101!} \cdot 101 = -\frac{1}{100!}.$$

Pe de altă parte, coeficientul monomului x^{99} din P' este

$$\begin{split} C_{x^{99}} &= -\frac{1}{101!} \cdot \sum_{k=1}^{101} \sum_{s \in \overline{1,101} \backslash \{k\}} (-s) = -\frac{1}{101!} \cdot \sum_{k=1}^{101} [-(1+2+\ldots+\hat{k}+\ldots+101)] \\ &= -\frac{1}{101!} \cdot \sum_{k=1}^{101} \{-[(1+2+\ldots+101)-k]\} \ = -\frac{1}{101!} \cdot \sum_{k=1}^{101} \left[-\left(\frac{101 \cdot 102}{2}-k\right)\right] \\ &= -\frac{1}{101!} \cdot \sum_{k=1}^{101} (k-5151) = -\frac{1}{101!} \cdot (5151-101 \cdot 5151) = 5151 \cdot \frac{1}{101 \cdot 99!}. \end{split}$$

Atunci suma rădăcinilor reale (care coincide cu suma rădăcinilor complexe în acest caz) este, conform primei relații Viete:

$$T = -\frac{C_{x^{99}}}{C_{x^{100}}} = -\frac{5151}{101 \cdot 99!} \cdot \frac{100!}{1} = \frac{5151}{101} \cdot 100 = 5100.$$

Deci S - T = 5151 - 5100 = 51.

14. Fie funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = |x|e^{-x}$. Fie *n* numărul punctelor de extrem local și *m* numărul punctelor de inflexiune ale funcției f. Care dintre următoarele afirmații este cea adevărată? (6 pct.)

a)
$$n + m = 4$$
; b) $n - m = 2$; c) $3n - 2m = 4$; d) $n + 2m = 5$; e) $3n + 2m = 5$; f) $n - 2m = 1$.

Soluție. Explicitând modulul și derivând, se obține:

$$f(x) = \begin{cases} -xe^{-x}, & x \le 0 \\ xe^{-x}, & x > 0 \end{cases}, \quad f'(x) = \begin{cases} e^{-x}(x-1), & x < 0 \\ e^{-x}(1-x), & x > 0 \end{cases}, \quad f''(x) = \begin{cases} e^{-x}(2-x), & x < 0 \\ e^{-x}(x-2), & x > 0 \end{cases}.$$

Se obțin succesiv rezultatele: $f'_s(0) = -1 < 0$, $f'_d(0) = 1 > 0$, deci x = 0 punct unghiular, de minim. De asemenea, f'(1) = 0, $f''(1) = -\frac{1}{e} < 0$, punct de extrem cu f concavă, deci punct de maxim. Deoarece dintre punctele de derivabilitate $\mathbb{R}\setminus\{1\}$ ale lui f, avem $f''(x) = 0 \Leftrightarrow x = 2$, rezultă un singur punct de inflexiune, în x = 2. În concluzie, n = 2 și m = 1, deci singura egalitate validă dintre variante este 3n - 2m = 4. ©

15. Să se rezolve ecuația $\log_3(x-1)=2$. (6 pct.)

a)
$$x = 14$$
; b) $x = 11$; c) $x = 7$; d) $x = 8$; e) $x = 10$; f) $x = 3$.

Soluție. Condiția de existență a logaritmului conduce la $x-1>0 \Leftrightarrow x>1$. Aplicând ecuației funcția exponențilă de bază 3, obținem $x-1=3^2 \Leftrightarrow x=10$, care satisface condiția x>1. (e)