Die heuristische Funktion h(n)

("Mama, wie weit müssen wir'n noch!?")

Zulässigkeit: *h* unterschätzt die tatsächlichen Kosten *h**: *h*(*n*) ≤ *h**(*n*)

Monotonie: h-Wert von Knoten n zu Nachfolger n' nimmt höchstens um tatsächliche Aktionskosten ab: $h(n) \le c(n,a,n') + h(n')$ (c(n,a,n'): Kosten mit a von n zu n')

Monotonie impliziert Zulässigkeit, aber nicht umgekehrt.

Dominanz: h_2 dominiert h_1 (ist "besser informiert") : $h_2(n) \ge h_1(n)$ für alle n, und beide sind zulässig

Knotenbewertung f(n)=g(n): Werte nur <u>Pfadkosten</u> Knotenbewertung f(n)=h(n): Werte nur Restkostenschätzung Knotenbewertung $f(n)=g(n)\beta h(n)$: Werte beide Anteile

Beispiele für h-Funktionen im Verschiebespiel

h(n) = Zahl falsch liegender Plättchen in n: zulässig (nicht monoton!)Beispiel: h(Startzustand) = 6

Startzustand

$$h(n)$$
 = "Manhattan-Distanz" in n :
(Summe der Schritte je Plättchen)
zulässig (nicht monoton!)
Beispiel: $h(\text{Startzustand}) = 14$
 $(= 4+0+3+3+1+0+2+1)$

Bestensuche (*greedy best-first*)

- ... ein Beispiel für einen *greedy* ("gierigen") Algorithmus
- Geh aus von Suchalgorithmen-Schema Folie 122,
- bewerte Knoten durch f(n)=h(n) (zulässig oder nicht)
- sortiere in Suchfront nach Knotenwerten (billigste vor)
- ende bei zuerst gefundenem Zielknoten
- oximes Zeitbedarf: $O(b^m)$, wenn m Maximaltiefe des Baums
- oximes Speicherbedarf: $O(b^m)$ (da alle Knoten im Speicher)
- Unvollständig (da anfällig für "Sackgassen")
- Nicht optimal (siehe folgendes Beispiel)

Zeit und Speicher praktisch oft besser bei guter h-Funktion!

Worst-Case-Komplexitätsbetrachtungen sind inadäquat für (gute) Heuristikfunktionen!

Beispiel: Bestensuche beim Reiseproblem

Luftlinienentfernungen

nach Bucuresti

Arad	366
Bucharest	0
Craiova	160
Dobreta	242
Eforie	161
Fagaras	176
Giurgiu	77
Hirsova	151
Iasi	226
Lugoj	244
Mehadia	241
Neamt	234
Oradea	380
Pitesti	100
Rimnicu Vilcea	193
Sibiu	253
Timisoara	329
Urziceni	80
Vaslui	199
Zerind	374

HUNG.

Oradea

Pitesti_

Craiova

WALACHIA

Giurgiu

BULGARIA

.Timişoara

SER.

AND

MONT.

MOL

Bacau

Galati

BUCHAREST

Constanta

(s. Wegentfernungen Folie 145)

optimal: 418

(s. Folie 146)

3. Suche als Problemlösungsverfahren 3.2 Heuristische Suche

Der Algorithmus A*

- Geh vor wie bei *uniform-cost*-Suche (Standard-Kostensuche),
- bewerte Knoten durch f(n)=g(n)+h(n), wobei h(n) zulässig
- sortiere bei INSERTALL nach Knotenwerten (billigste vor)
- ende erst, wenn ein Zielknoten expandiert werden müsste
- \otimes Zeitbedarf: $O(b^{(1+\lfloor C*/\vee \rfloor)})$ (A* \approx uniform cost für h(n)=0)
- eta Speicherbedarf: $O(b^{(1+\lfloor C*/V \rfloor)})$ (alle Knoten im Speicher)
- Vollständig (Details folgen)
- Optimal (Details folgen)
- Vollständigkeit & Optimalität schon früh bewiesen (1968)

Nils Nilsson, *1933

Nochmal: worst-case-Betrachtungen inadäquat für (gute) Heuristiken

Beispiel: A* beim Reiseproblem

Optimalität und Vollständigkeit von A*

Ist für alle Knoten n Bewertung f(n)=g(n)+h(n) für zuläss. h, existiert eine Lösung, sind alle Aktionskosten >0 und ist b < 0, so findet A* einen optimalen Lösungsknoten.

Beweisskizze (Widerspruchsbeweis)

Sei C^* Kosten einer optimalen Lösung im Knoten L, d.h. $f(L)=g(L)+h(L)=C^*+0$ Annahme: A* terminiert mit Lösung in $L^+\neq L$, wobei $f(L^+)=C^+>C^*$.

Nach Vorschrift müsste A* alle *fringe*-Knoten mit Kosten $< C^+$ expandiert haben; wenn A* einen Lösungsknoten expandieren müsste, terminiert er. Wegen Zulässigkeit von h: Alle Vorgänger k von L haben Kosten $f(k) \le C^* < C^+$ L und L^+ haben mindestens einen gemeinsamen, voll expandierten Vorgänger. Folglich sind alle Vorgänger von L expandiert, folglich war L in *fringe*.

Da $f(L) < f(L^+)$, terminiert A* mit der Lösung in L.

Qualitatives Verhalten von A*

A* propagiert wachsende "f-Konturen" ab Start, wobei $f_i < f_{i+1}$

- expandiert <u>alle</u> n: f(n)<C*
- exp. <u>einige</u> *n*: *f*(*n*)=*C**
- exp. <u>kein</u> n: f(n)>C*
- A* ist <u>optimal effizient</u>
 unter den optimalen
 Algorithmen, gegeben h

Andererseits

(schlecht bei <u>vielen</u> Zielknoten im Suchraum):

A* macht "Breitensuche durch alle plausiblen Pfade"!

Einfluss der Informiertheit

Ist h_1 informierter als h_2 , so expandiert A^*/h_2 mindestens alle die Knoten im Suchraum, welche A^*/h_1 expandiert

(Hier ohne Beweis)

Iterierte Tiefensuche mit f(n)=g(n)+h(n): IDA*

- Gleiches Vorgehen wie bei Einheitskosten: Beschränkte Tiefensuche mit Schranke erhöht in v-Schritten
- Das v ist hier kleinste vorkommende Operatorkosten (70 im Rumänien-Beispiel)
- Statt Tiefe d(n) verwende f(n)=g(n)+h(n) als Knotenwert
- \odot Zeitbedarf: $O(b^{(1+ \lfloor C^* / V \rfloor)})$ (analog A* und *uniform-cost*)
- \odot Speicherbedarf: $O(b(1+ \lfloor C^*/V \rfloor))$
- ♥ Vollständig (wie A*)
- Optimal (wie A*)
- Oft wird strikte Optimalität aufgegeben für größere Schrittweite w>v: Lösung dann optimal bis auf w-v

A* mit Speicherbegrenzung: SMA*

Simplified Memory-bounded A*

Gegeben feste Speicherkapazität für M Knoten, sodass $b(1+\lfloor C^*/\epsilon \rfloor) << M << b^{(1+\lfloor C^*/\nu \rfloor)}$

- Wenn: M Knoten im Speicher, Lösung nicht gefunden, und (M+1)-ter Knoten wäre zu speichern:
 - wähle den schlechtest bewerteten fringe-Knoten H aus mit Bewertung f(H) (falls mehrere Knoten gleichwertig, nimm zuerst generierten)
 - für den Vorgängerknoten G von H notiere, dass Kosten für Unterbaum Richtung H mindestens f(H)
 - verdränge H aus dem Speicher
- © Vollständig und optimal, falls optimaler Pfad < M Schritte

Zustandsraumsuche vs. Lösungsraumsuche

- Vielfach gibt es im Suchraum nicht nur eine einzige Lösung unter sehr vielen "unfertigen" Zuständen,
- sondern sehr viele Lösungen sehr unterschiedlicher Qualität,
- und einige (typischerweise "schlechte" oder "falsche")
 Lösungen sind sehr einfach (direkt ohne Suche) konstruierbar.
 (Beispiel: Terminfestlegung für ein Gruppentreffen)
- "Dasselbe" Problem kann auf beide Arten darstellbar sein.

Beispiel: n-Damen-Problem

- Zustandsraumsuche startet mit leerem nxn-Brett; findet Folge von n Aktionen "Setze_Dame(i,y)", bis n Damen unbedroht auf dem Brett
- Lösungsraumsuche startet mit <u>beliebiger</u> Verteilung von *n* Damen in *n* Spalten; verbessert aktuelle
 Verteilung, bis frei von Bedrohung

 Lokale Suche

Lokale Suche I: Bergsteigen (hill climbing)

```
function HILL-CLIMBING(problem) returns a state that is a local maximum
  inputs: problem, a problem
                                                        Knoten sind hier
  local variables: current, a node
                                                        Lösungen
                    neighbor a node
                                                        unterschiedlicher
   current \leftarrow Make-Node(Initial-State[problem])
                                                        Qualität
  loop do
       neighbor ← a highest-valued successor of current
       if VALUE[neighbor < VALUE[current] then return STATE[current]
       current \leftarrow neighbor
                                  In der Basisversion
  end
                                  ist hier ≤ gemeint!
```

- Nachfolger entstehen durch lokale Veränderung der Lösung
- Die Bewertung muss Fehler in der Lösung "bestrafen"

Beispiel n-Damen-Problem

- Nachfolger durch Verziehen einer Dame in ihrer Spalte
- Bewertung zählt Damenpaare D, die sich (direkt oder verdeckt) bedrohen:

VALUE(node) = 1/(1+|D|)

Probleme auf dem Weg zu globalem Optimum

Bergsteigen findet im Allgemeinen kein globales Optimum!

→ g.Opt. oder I.Opt. oder Schulter oder Plateau

Eigenschaften des Bergsteig-Algorithmus

Seien L die Zustände im Lösungsraum, V_L die in L vorkommenden Bewertungen, N die Maximalzahl von Nachbarn.

- Speicherbedarf: O(1) (nur aktueller Knoten im Speicher)
 → lokales Suchverfahren
- \odot Zeitbedarf: $O(N|V_L|)$ bei $|V_L| < \infty$ (sonst Terminierung unsicher)
- Nicht optimal / vollständig

Laufzeit ist praktisch meist sehr kurz

Wege aus dem lokalen Optimum

- Akzeptiere notfalls gleichguten Nachfolger
 - → Bewältigt Schulter; Gefahr von Endlosschleife

Unterschiedliche Varianten von stochastischem Verhalten

- Random restart: Löse das Problem mehrfach mit zufällig gewähltem Startwert, nimm das beste Ergebnis
- Random Walk: Wähle zufällig einen der Nachfolger (merke global den bisher besten; gib den zurück bei externem Abbruch)
- Simulated annealing: Akzeptiere Verschlechterung abhängig von ihrem Betrag und von der Laufzeit des Algorithmus (s.u.)
- Genetische Algorithmen: Erzeuge Knoten stochastisch durch gewichtete Variation & Kombination vorhandener Knoten (s.u.)

Laufzeitabhängige Verschlechterungstoleranz

Im Prinzip Bergsteigen entsprechend VALUE-Änderung ΔE , aber:

- Akzeptiere auch <u>negatives</u> ∆E (Verschlechterung), aber umso seltener, je größer es ist
- Akzeptiere Verschlechterungen umso seltener,
 je höher die Laufzeit (Anzahl Durchläufe) t der Prozedur

Akzeptanzkriterium für <u>negatives</u> ΔE im Prinzip:

$$e^{t\Delta E}$$
 > random[0,1]

oder analog: akzeptiere Verschlechterung mit W'keit e^{t∆E}

Statt *t* verwende *s(t)* (monoton wachsend), um Einfluss von Laufzeit vs. Betrag d. Verschlechterung zu gewichten (*cooling schedule*)

Simulated Annealing

anneal = ausglühen, härten, vergüten

```
function SIMULATED-ANNEALING(problem, schedule) returns a solution state
   inputs: problem, a problem
             schedule, a mapping from time to "temperature"
   local variables: current, a node
                       next, a node
                        T, a "temperature" controlling prob. of downward steps
   current \leftarrow Make-Node(Initial-State[problem])
   for t \leftarrow 1 to \infty do
        T \leftarrow schedule[t]
                                                                     schedule[t]≈1/t
        if T = 0 then return current
                                                                     stochastisches
        next ← a randomly selected successor of current
                                                                         Verhalten
        \Delta E \leftarrow \text{VALUE}[next] - \text{VALUE}[current]
        if \Delta E > 0 then current \leftarrow next
        else current \leftarrow next only with probability e^{\Delta - E/T}
```

Eigenschaften des Simulated Annealing

- Speicherbedarf: O(1) (nur aktueller Knoten im Speicher)
 → lokales Suchverfahren
- Zeitbedarf: abhängig vom cooling schedule (praktisch: Zeit- oder Qualitäts-Schranke)
- Asymptotisch optimal in Abhängigkeit vom cooling schedule (nichttrivialer Beweis!)
- Asymptotisch vollständig in Abh. vom cooling schedule
 - Theoretisch hängt alles an einem guten cooling schedule
 - Praktisch ist das Verfahren robust