Exam #3

```
In []: %matplotlib inline
    import warnings
    warnings.filterwarnings('ignore')
    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import statsmodels.api as sm
    from arch import arch_model
    from statsmodels.stats.diagnostic import het_white
    from sklearn.linear_model import LinearRegression, Lasso, Ridge, RidgeCV, Lasso
    pd.set_option('display.max_rows', 500)
    pd.set_option('display.max_columns', 500)
In []: # read data
    returns = pd.read_excel('data/exam_3_data.xlsx', sheet_name='returns')
```

1. OLS

1. IYR regression on IEF

Dep. Variable:	IYR	R-squared:	0.003
Model:	OLS	Adj. R-squared:	-0.003
Method:	Least Squares	F-statistic:	0.5241
Date:	Thu, 07 Jul 2022	Prob (F-statistic):	0.470
Time:	22:35:58	Log-Likelihood:	241.52
No. Observations:	158	AIC:	-479.0
Df Residuals:	156	BIC:	-472.9
Df Model:	1		
Covariance Type:	nonrobust		

		coef	std err	t	P> t	[0.02	5 0.975]
CC	onst	0.0134	0.004	3.156	0.002	0.00	5 0.022
	IEF	-0.1784	0.246	-0.724	0.470	-0.66	5 0.308
		Omnibus:	34.118	Durb	oin-Wats	son:	2.015
Pr	ob(C	mnibus):	0.000	Jarque	-Bera (JB):	170.518
		Skew:	0.606		Prob(JB): 9).39e-38
		Kurtosis:	7.943		Cond.	No.	58.7

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

$$\beta^{IEF} = -0.1784 \backslash \, R^2 = 0.003$$

b) An R^2 of 0.003 means that only 0.3\% of IYR is explained by IEF. This is very low and negligeable.\ Also, for an univariate regression the correlation can be directly derived from the R^2 by taking the square root.\ Hence, we have $corr(IEF, IYR) = \sqrt{0.003} = 0.055$. We can conclude that real estate returns do not seem to be sensitive to bond returns.

2. IYR regression on IEF and SPY

```
In [ ]: X = returns[['IEF', 'SPY']]
        model_2 = sm.OLS(y, sm.add_constant(X)).fit()
        model_2.summary()
```

Dep. Variable:	IYR	R-squared:	0.569
Model:	OLS	Adj. R-squared:	0.564
Method:	Least Squares	F-statistic:	102.4
Date:	Thu, 07 Jul 2022	Prob (F-statistic):	4.46e-29
Time:	22:35:58	Log-Likelihood:	307.80
No. Observations:	158	AIC:	-609.6
Df Residuals:	155	BIC:	-600.4
Df Model:	2		
Covariance Type:	nonrobust		
coef st	d err t P>	t [0.025 0.975]	

				• • •		
const	-0.0017	0.003	-0.583	0.561	-0.008	0.004
IEF	0.6307	0.172	3.664	0.000	0.291	0.971
SPY	1.0281	0.072	14.271	0.000	0.886	1.170
	Omnibus:	72.394	Durl	oin-Wat	son:	1.897

1.897	Durbin-watson:	72.394	Omnibus:
515.901	Jarque-Bera (JB):	0.000	Prob(Omnibus):
9.41e-113	Prob(JB):	1.467	Skew:
62.8	Cond. No.	11.352	Kurtosis:

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

$$eta^{IEF}=0.6307$$
\ $R^2=0.569$

3.a Correlation matrix of IYR, IEF, SPY

3.b Discussion

The value of β^{IEF} in 1. is smaller than the one in 2.\ Also, from the correlation matrix we can see that corr(IYR,SPY) is much bigger than corr(IYR,IEF). This means that most of

the explanation of IYR is carried by SPY.\ Given that IEF has a slight negative correlation with SPY, β^{IEF} in 2. is greater than β^{IEF} in 1. to balance out the high β^{SPY}

4.

Two assumptions on which the classical t-stats depend are:

- 1. There's no multicollinearity among the regressors.
- 2. Errors are independant and normally distributed.

Assumpion 1 is reasonable in this case. A correlation of -0.329 between IEF and SPY is fairly small. Also, the condition number of 62.8 is ok.\ This means that the X^TX matrix of regressors should be safely invertible.

For assumption 2, OLS asymptotically converges towards a normal distribution via the central limit theorem. In the eventuality that there's presence of serial correlation,\ we can safely assume that the law of large numbers will get us out of trouble.

2. Forecasting

1 a)

```
In []: y = returns.IYR.iloc[1:]
X = returns.IYR.shift(1).dropna()

In []: model_3 = sm.OLS(y, sm.add_constant(X)).fit()
model_3.summary()
```

OLS Regression Results

0.011	R-squared:	IYR	Dep. Variable:
0.005	Adj. R-squared:	OLS	Model:
1.733	F-statistic:	Least Squares	Method:
0.190	Prob (F-statistic):	Thu, 07 Jul 2022	Date:
256.15	Log-Likelihood:	22:35:59	Time:
-508.3	AIC:	157	No. Observations:
-502.2	BIC:	155	Df Residuals:
		1	Df Model:

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.02	25	0.975]
const	0.0124	0.004	3.171	0.002	0.00)5	0.020
IYR	-0.0953	0.072	-1.316	0.190	-0.23	88	0.048
	Omnibus:	17.481	Durk	oin-Wat	son:		2.070
Prob(C	Prob(Omnibus):		0.000 Jarque-Bera (JE		JB):	3	33.543
	Skew:	-0.507		Prob(JB):	5.2	0e-08
	Kurtosis:	5.025		Cond.	No.		19.0

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

$$R^2 = 0.011 \backslash \, \beta^{IYR} = -0.0953$$

b) Residuals

```
In [ ]: resiudals = pd.DataFrame(data=model_3.resid, index=X.index, columns=['residuals
    resiudals.plot(title='Residuals', figsize=(20, 10))

Out[ ]: <a href="mailto:AxesSubplot:title={'center':'Residuals'}">AxesSubplot:title={'center':'Residuals'}</a>
```


There seems to be a fair amount of serial correlation

2.

- a) In the case of the multivariate regression the problem that would arise the most is the misspecified signifiance levels and perhaps biased beta estimates in small samples.\ In large samples however, the central limit theorem and law of large numbers gives us confidence that beta should be converge towards its true value.
- b) In the case of autoregression, all the above mentioned problems can arise. Having serial correlation prevents OLS to be consistent. Which is problematic in both small and large sample estimates of beta.

3.

- a) Yes, the estimated beta would change and we would have a nearly perfect r-squared.
- b) The **price** is not a stationary time series. This means that the variance is undefined and this breaks most of the assumptions on which OLS relies.

4. Volatility forecast

```
GARCH = arch model(dbc, vol='Garch', p=1, o=0, q=1, dist='Normal')
        GARCH model = GARCH.fit()
        GARCH_model.params
        Iteration:
                            Func. Count:
                                             6,
                                                   Neg. LLF: 2096374.5848787487
                        1,
                       2,
                                             16,
        Iteration:
                            Func. Count:
                                                   Neg. LLF: 186.1092336503408
        Iteration:
                        3, Func. Count:
                                             24,
                                                   Neg. LLF: -241.9350083830496
        Iteration:
                       4,
                            Func. Count:
                                             30,
                                                   Neg. LLF: -239.9824475159594
                        5, Func. Count:
                                             37,
                                                   Neg. LLF: -242.30981900903456
        Iteration:
                       6,
                                                   Neg. LLF: -228.4572895151698
                           Func. Count:
                                             43,
        Iteration:
                       7,
        Iteration:
                           Func. Count:
                                             49,
                                                   Neg. LLF: -245.04432424194397
        Iteration:
                       8, Func. Count:
                                             54,
                                                   Neg. LLF: -245.0452965095418
                                             59,
        Iteration:
                       9, Func. Count:
                                                   Neg. LLF: -245.0454558065374
                            Func. Count:
                                             64,
        Iteration:
                      10,
                                                   Neg. LLF: -245.0454672822969
                                            68,
        Iteration:
                      11,
                            Func. Count:
                                                   Neg. LLF: -245.0454672825398
        Optimization terminated successfully (Exit mode 0)
                   Current function value: -245.0454672822969
                   Iterations: 11
                   Function evaluations: 68
                   Gradient evaluations: 11
                   0.001878
        mu
Out[]:
                   0.000193
        omega
                   0.111195
        alpha[1]
        beta[1]
                   0.818933
        Name: params, dtype: float64
In []: var_1 = (0.15 * (1 / (12**0.5)))**2
        var[['GARCH']] = None
        var.iloc[0,2:] = (dbc.iloc[:FREQ*2]**2).mean()
        for i in range(1, len(var)):
            var['GARCH'].iloc[i] = GARCH_model.params['omega'] + var['GARCH'].iloc[i-1]
        var = var.dropna()
In []: vol = (var * FREQ)**.5
        vol.plot(figsize=(20, 10))
        plt.title('Volatility Forecasts')
        plt.ylabel('Volatility')
        plt.show()
```



```
In []: vol.loc[['2020-04-30','2022-05-31']]
```

Out[]: Expanding Window Rolling Window GARCH

date

2020-04-30	0.174661	0.197237	0.265092
2022-05-31	0.180528	0.211956	0.216245

3. Penalized Regression

```
In []: # split data into train and test
    test_start = 2020
    X_train, y_train = \
        returns.loc[returns.date.dt.year < test_start].drop(columns=['date', 'IYR']
    X_test, y_test = \
        returns.loc[returns.date.dt.year >= test_start].drop(columns=['date', 'IYR']
```

1. Estimated betas for each model

```
In []: results_df ={'model': ['OLS', 'Ridge', 'Lasso']}
    for regressor in X_train.columns:
        results_df[regressor] = [0]*3
    results_df = pd.DataFrame(results_df)
In []: # OLS
model_ols = LinearRegression().fit(X_train, y_train)
```

```
model_ols = LinearRegression().fit(X_train, y_train)
results_df.loc[results_df.model=='OLS', 1:] = model_ols.coef_

# Ridge
model_ridge = Ridge(alpha=0.5).fit(X_train, y_train)
results_df.loc[results_df.model=='Ridge', 1:] = model_ridge.coef_

# Lasso
model_lasso = Lasso(alpha=2e-4).fit(X_train, y_train)
```

```
results_df.loc[results_df.model=='Lasso', 1:] = model_lasso.coef_
display(results_df)
```

	model	SPY	EFA	EEM	PSP	QAI	HYG	DBC	IEF
0	OLS	0.907861	0.052678	0.108224	0.043854	-1.644597	1.090110	-0.218789	0.800986
1	Ridge	0.109550	0.095692	0.114033	0.156768	0.021400	0.100272	-0.026863	0.029078
2	Lasso	0.135772	0.000000	0.051035	0.299599	0.000000	0.429314	-0.057299	0.000000

2. Regressor correlation matrix

In []:	X_tra	nin.corr()							
Out[]:		SPY	EFA	EEM	PSP	QAI	HYG	DBC	IEF
	SPY	1.000000	0.866534	0.770723	0.880032	0.789765	0.723324	0.532333	-0.430732
	EFA	0.866534	1.000000	0.864663	0.903705	0.804057	0.744558	0.584627	-0.362262
	EEM	0.770723	0.864663	1.000000	0.818276	0.788988	0.734362	0.596593	-0.272977
	PSP	0.880032	0.903705	0.818276	1.000000	0.755128	0.811265	0.501326	-0.402218
	QAI	0.789765	0.804057	0.788988	0.755128	1.000000	0.698436	0.565595	-0.100092
	HYG	0.723324	0.744558	0.734362	0.811265	0.698436	1.000000	0.500861	-0.205746
	DBC	0.532333	0.584627	0.596593	0.501326	0.565595	0.500861	1.000000	-0.346769
	IEF	-0.430732	-0.362262	-0.272977	-0.402218	-0.100092	-0.205746	-0.346769	1.000000
	BWX	0.347099	0.553046	0.601506	0.429549	0.601683	0.453230	0.443634	0.264023
	TIP	-0.025633	0.069738	0.188517	0.015117	0.280105	0.129386	0.106506	0.709324

There is presence of multicollinearity among the regressors. This breaks assumption 1 of OLS related to having a full rank matrix and would make it harder for the model to precisely identity β .

3.

Similar to OLS, Ridge uses all the regressors. However, the scale of the regressors in Ridge tend to be smaller than in OLS.\ Ridge is useful when dealing with multicollinearity because by reducing the betas it scales the diagonal of the regressors covariance matrix to break any linear dependence among them.

4.

Lasso, on the other hand, heavily penalizes values that are different from 0. This

encourages "non-relevant" regressors to be zero.\ However, similar to OLS, Lasso will tend to assign high values to the non-zero regressors.\ Lasso is very useful for feature selection as it will tend to nullify regressors that are detrimental to minimizing the loss function.\ This helps greatly in reducing the model variance which is good for out-of-sample performance.

5. out-of-sample estimates

	model	r-squared
0	OLS	0.475652
1	Ridge	0.605911
2	Lasso	0.728237