Encaminamiento en redes conmutadas

Introducción

- La función de encaminamiento de una red de conmutación de paquetes trata de encontrar la ruta de
- mínimo coste a través de la red, estando el parámetro de coste basado en el número de saltos, el
- retardo esperado u otras métricas. Los algoritmos de encaminamiento adaptables se fundamentan
- generalmente en el intercambio de información relativa a las condiciones de tráfico entre los nodos.

Ejemplo

Ruta a: $X \rightarrow Y$

Ruta b: $X \to J \to Y$

Ruta c: $X \to K \to Y$

Ruta d: $X \rightarrow I \rightarrow J \rightarrow Y$

= Central final

= Nodo de conmutación intermedio

(a) Topología

Periodo de tiempo	Primera ruta	Segunda ruta	Tercera ruta	Cuarta y última ruta
Mañana	а	b	С	d
Tarde	а	d	b	С
Noche	а	d	С	b
Fin de semana	а	С	b	d

(b) Tabla de encaminamiento

Criterios de rendimiento

La elección de una ruta se fundamenta generalmente en algún criterio de rendimiento. El más simple consiste en elegir el camino con menor número de saltos a través de la red.

Una generalización del criterio de menor número de saltos lo constituye el encaminamiento de mínimo coste. En este caso se asocia un coste a cada enlace y, para cualesquiera dos estaciones conectadas, se elige aquella ruta a través de la red que implique el coste total mínimo.

Ejemplo

El camino más corto (menor número de saltos) desde el nodo 1 hasta el 6 es 1-3-6 (coste = 5 + 5 = 10), pero el de mínimo coste es 1-4-5-6 (coste = 1 + 1 + 2 = 4).

ESTRATEGIAS DE ENCAMINAMIENTO

Encaminamiento estático

En el encaminamiento estático se configura una única ruta permanente para cada par de nodos origen-destino en la red

Matriz de encaminamiento central

Nodo origen

		200					
	1	_	1	5	2	4	5
	2	2		5	2	4	5
Nodo destino	3	4	3	_	5	3	5
destino	4	4	4	5		4	5
	5	4	4	5	5		5
	6	4	4	5	5	6	_

Tablas de encaminamiento

Tabla del nodo 1

Destino Nodo siguiente

2	2
3	4
4	4
5	4
6	4

Tabla del nodo 2

Destino Nodo siquiente

10	
1	1
3	3
4	4
5	4
6	4
6	4

Tabla del nodo 3

Destino Nodo siguie	
1	5
2	5
4	5
5	5
6	5

Tabla del nodo 4

Destino Nodo siguiente

1	2
2	2
3	5
5	5
6	5

Tabla del nodo 5

Destino Nodo siguiente

	(8) (2) (2) (3) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4
1	4
2	4
3	3
4	4
6	6

Tabla del nodo 6

Destino Nodo siguiente

1	5
2	5
3	5
4	5
5	5