

What is Golem

01 _____

A network of computing resources that can either be used by a requestor or provided to other participants by a provider.

02

A decentralised marketplace based on Ethereum tokens

golem NETWORK

golem

NETWORK

golem

NETWORK

golem

NETWORK

Pricing work

Fixed Price

safe for requestors, big risk for workers when job size unknown

Time & Materials

safe for workers, overcharge risk for requestors, especially for remote work

PRICING WORK

Time & Materials

03 _____

How to bid on tasks with unknown size?

Fair to both sides if they are honest

Workers need to include risk premium in their price.

Time & Materials

Fair to both sides if they are honest

Requestor still has the option not to pay at all

Pay as You Use

Existing model

- So far Golem used FP contracts
- General computations are hard to estimate

Pay as You Use

- A new T&M billing model for Golem
- Providers charge for resource usage (e.g. CPU time)
- Enables new use cases e.g. WASM computing

The main challenge of T&M

- What if a provider inflates resource usage?
- Budget limit provides partial protection
- Ensure sustainability of the economy in the long term
- Eliminate cheaters from the market
- Focus on long-term cost rather than single transactions
- How to detect & prevent fraud?

Fraud detection & prevention

- Quest for information: what is the job worth?
- A priori information sources:
 - human input
 - algorithmic estimation
- A posteriori comparisons
 - punishing worst workers
 - comparable tasks (task farming)
 - cross-checking (redundancy)

Comparing and choosing offers

Providers offer prices per resource unit. To compare offers, requestors rate provider efficiency

Usage factor
R = resources needed to compute a reference task.

Offers compared according to R * price

Comparable tasks

- Multiple jobs with the same complexity
- Great source of information
- Use cases: task farming (e.g. mathematical or molecular modelling)
- Adjust usage factors to the weighted geometric mean

Cross-checking (redundancy)

- The same task executed by 2 or more providers
- Context: result validation by cross-checking (redundancy)
- Honest providers should report similar effective usage
- Otherwise penalize provider with excessive usage

Simulations

Number of computed tasks

Revenue

97,8

10 honest vs 2 dishonest

10 honest vs 3 dishonest

Coming Next: Game-theoretic approaches

- **01** Provider submits the price and hash of the results
- **02** Requestor decides if it wants the results for this price
- **03** Requestor still needs to decide whether the price is fair

Conclusions and future work

01 _____

We want Golem to be a good fit for general computation not only technically, but also economically

03 _____

We plan to introduce it on mainnet along with WASM use-case

)2 ———

We propose a simple, yet efficient Pay as You Use solution

04 _____

We keep improving our solution

Thank you

SUBSTANTIAL KNOWLEDGE: Łukasz Gleń, Jakub Konka

DESIGN: Natalia Mroszczyk

GOLEM.NETWORK

Usage Factor adjustment

Providers with nominal usage factors R₁,...,R_n report usages u₁...u_n. Let

$$R = G(R_1, \dots, R_n)$$

$$u = G(u_1, \dots, u_n)$$

be their geometric averages.

Nominal and actual factors relative to the mean

$$v_i = u_i/u$$

$$\rho_i = R_i/R$$

Should be equal if R and u are accurate

Usage Factor adjustment

We move the R-factors of the providers towards the actual usage

$$R_i' = R_i \left(\frac{v_i}{\rho_i}\right)^q$$

Updated relative usage factors are the weighted geometric mean

$$\rho_i' = R_i'/R = \upsilon_i^q \rho_i^{1-q}$$