Self Supervised Visual Feature Learning with Deep Neural Nets

Rajesh Shreedhar Bhat Data Scientist @Walmart Labs, Bengaluru

Agenda

- Different machine learning paradigms.
 - Supervised, Un-supervised, Sem-supervised, Transfer Learning, Self-Supervised
 Learning
- Why self-supervised learning?
- Terminologies in Self-Supervised Learning tasks.
- Pre-text tasks.
 - RotNet.
 - Selfie(will cover BERT and later discuss about Selfie), etc ...

Different machine learning paradigms

Training data + associated labels (x, y)

Training data (x) without labels

Semi-supervised learning

Small labelled set(x, y) + large unlabeled set (x)

Reinforcement Learning

Training an agent using reward system.

ImageNet Challenge Story ...

- 1000 categories, ~1000 samples for each category.
- Strong supervision

Transfer Learning

Traditional ML

- Isolated, single task learning:
 - Knowledge is not retained or accumulated. Learning is performed w.o. considering past learned knowledge in other tasks

vs Transfer Learning

- Learning of a new tasks relies on the previous learned tasks:
 - Learning process can be faster, more accurate and/or need less training data

Transfer Learning ...

- Aim to start your neural network training with a pre-trained model, and fine tune it.
- Don't start with random weights, because you're starting with a model that doesn't know how to do anything at all!!
- With pre-training, you can use 1000x less data than starting from scratch.
- What if there are no pre-trained models in a particular domain ??
 - Should we start training the model from scratch?
- Amount of improvement from an ImageNet pretrained model when applied to medical imaging is not that great.
- We need something which works better but doesn't need a huge amount of data for training. **The secret is "self-supervised learning".**

Self-Supervised Learning

Self-supervised Learning

Train a model using labels that are naturally part of the input data, rather than requiring separate external labels(human annotated)

Why self-supervised learning?

Cost involved in generating new labelled dataset for every new task.

Some domains are supervision starved e.g. medical data.

- Availability of vast number of unlabelled images/videos.
 - Facebook: millions of images uploaded per day.
 - ~300 hours of video are uploaded to YouTube every minute.

SSL: Terminologies

- In self-supervised learning the task that we use for pre-training is known as the "pretext task".
 - Example: Auto-encoders, Compression is the pretext task.

- The tasks that we then use for fine tuning are known as the **"downstream** tasks".
 - Classification, Object detection, Image Segmentation.

SSL in Computer Vision

Commonly used pretext tasks in

RotNet, ICLR 2018

- Images rotated by random multiples of 90 degrees.
- The core intuition of RotNet authors is that if someone is not aware of the concepts of the objects depicted in the images, he/she cannot recognize the rotation that was applied to them.

RotNet ...

RotNet Results on standard datasets

	. 89 15	1001 C	200 W	2000 101	
Method	Conv1	Conv2	Conv3	Conv4	Conv5
ImageNet labels	19.3	36.3	44.2	48.3	50.5
Random	11.6	17.1	16.9	16.3	14.1
Random rescaled Krähenbühl et al. (2015)	17.5	23.0	24.5	23.2	20.6
Context (Doersch et al., 2015)	16.2	23.3	30.2	31.7	29.6
Context Encoders (Pathak et al., 2016b)	14.1	20.7	21.0	19.8	15.5
Colorization (Zhang et al., 2016a)	12.5	24.5	30.4	31.5	30.3
Jigsaw Puzzles (Noroozi & Favaro, 2016)	18.2	28.8	34.0	33.9	27.1
BIGAN (Donahue et al., 2016)	17.7	24.5	31.0	29.9	28.0
Split-Brain (Zhang et al., 2016b)	17.7	29.3	35.4	35.2	32.8
Counting (Noroozi et al., 2017)	18.0	30.6	34.3	32.5	25.7
(Ours) RotNet	18.8	31.7	38.7	38.2	36.5

Selfie: **Self**-supervised pre-training for Image **E**mbedding

Transformers

Encoder -Decoder Network

Encoder building blocks

Self Attention

Translate: "The animal didn't cross the street because it was too tired".

What does "it" in the above sentence refer to? Animal or Street?

Self Attention in detail

Self-Attention: output

Matrix Calculation of Self-Attention

Multi-head attention

 Model ability to focus on different positions.

 Input embeddings/ vectors from lower encoders/decoders into a different representation subspace.

Multi-head attention ...

Interpreting - Multi Head Attention

 As we encode the word "it", one attention head is focusing most on "the animal", while another is focusing on "tired".

In a sense, the model's
 representation of the word "it"
 bakes in some of the
 representation of both "animal"
 and "tired".

Positional Embeddings

- So far, order of the words in the input sequence is missing.
- Positional embeddings:
 vectors which follow a
 specific pattern that the
 model learns, which helps
 it determine the position of
 each word, or the distance
 between different words in
 the sequence.

Transformer Architecture

The decoder attends on the encoder's output and its own input (self-attention) to predict the next word.

BERT: Bidirectional Encoder Representations from Transformers

BERT: Masked language model

Selfie, GoogleBrain 2019

- Selfie generalizes the concept of masked language modeling of BERT (Devlin et al., 2019) to continuous data, such as images.
- Given masked-out patches in an input image, Selfie method learns to select the correct patch, among other "distractor" patches sampled from the same image, to fill in the masked location.

• To perform this task successfully, the network needs to understand the global content of the full image, as well as the local content of each individual patch and their relative relationship.

Selfie: Model Architecture

u, houtput(1), houtput(2), ..., houtput(n) = TransformerLayers(uo, h1, h2, .., hn)

```
https://www.fast.ai/2020/01/13/self_supervised/
```

Other common pretext tasks in CV:

Choosing a pretext task ??

PPT: https://github.com/rajesh-bhat/self-supervised-visual-representation-learning

Questions?

rsbhat@asu.edu

https://www.linkedin.com/in/rajeshshreedhar