Part I: Multiple choice. Each problem is worth 5 points.

- 1. The integral $\int \int_R \frac{\sqrt{y}}{x} \ dx \ dy$, where $R = [1, e] \times [1, 4]$ is equal to
 - (a) $\frac{2}{3} \ln 4(e^{3/2} 1)$
 - (b) 2

 - (c) $\frac{14}{3}$ (d) $\frac{2}{3}(e^{-2} 1)$

- 2. Suppose that the integral $\int \int_D f(x,y) dx dy$ is equal to $\int_0^{\pi} \int_2^3 dr d\theta$. Find f(x, y):
 - (a) $f(x,y) = (x^2 + y^2)^{-1/2}$
 - (b) f(x,y) = 1
 - (c) $f(x,y) = x^2 + y^2$
 - (d) $f(x,y) = (x^2 + y^2)^{-1}$

3. Which of the following integrals is NOT equal to the volume under the paraboloid $z=5-x^2-y^2$ and above the xy plane?

(a)
$$\int_{-\sqrt{5}}^{\sqrt{5}} \int_{-\sqrt{5-x^2}}^{\sqrt{5-x^2}} 5 - x^2 - y^2 \, dy \, dx$$

(b)
$$\int_0^{2\pi} \int_0^{\sqrt{5}} \int_0^{5-r^2} r \ dz \ dr \ d\theta$$

(c)
$$\int_0^{2\pi} \int_0^{\sqrt{5}} 5 - r^2 dr d\theta$$

(d)
$$\int_{-\sqrt{5}}^{\sqrt{5}} \int_{-\sqrt{5-y^2}}^{\sqrt{5-y^2}} \int_0^{5-x^2-y^2} dz dx dy$$

- 4. Using the Fundamental Theorem of Line Integrals, calculate the work done by the force field $\mathbf{F} = (y+1,x)$ on a particle moving on a path $\mathbf{c}(t) = \left(\frac{1}{(\ln t)^{3/2}}, (\ln t) + 3\right)$ as t goes from e to e^4 .
 - (a) $-4\frac{7}{8}$
 - (b) integral cannot be evaluated without tables or computer
 - (c) -4
 - (d) $2\frac{7}{8}$

- 5. Given the point (-5,0,2) in Cartesian (rectangular) coordinates, its cylindrical coordinates are
 - (a) $(5, \frac{\pi}{2}, 2)$
 - (b) $(2, \frac{3\pi}{2}, 5)$
 - (c) $(5, \pi, 2)$
 - (d) $(-5, \frac{3\pi}{2}, 2)$

- 6. Classify the following three statements as True (T) or False (F) in the order (1), (2), (3).
 - (1) If C is a circle, and **F** is any vector field, then $\int_C \mathbf{F} \cdot d\mathbf{s} = 0$ is always true.
 - (2) If $\int_C \mathbf{F} \cdot d\mathbf{s} < 0$, then the force field \mathbf{F} is hindering the progress of a particle on path C.
 - (3) If $\mathbf{c}(t)$ is a flow line of \mathbf{F} , then $\int_a^b \mathbf{F}(\mathbf{c}(t)) \cdot \mathbf{c}'(t) \ dt = 0$
 - (a) FFF
 - (b) TTF
 - (c) TFT
 - (d) FTF

- 7. Given the point $(\sqrt{2},0,\sqrt{2})$ in Cartesian (rectangular) coordinates, its spherical coordinates are
 - (a) $(\frac{1}{2}, 0, \pi)$
 - (b) $(2, \frac{\pi}{2}, \frac{\pi}{2})$
 - (c) $(\frac{1}{2}, \frac{\pi}{4}, \pi)$
 - (d) $(2,0,\frac{\pi}{4})$

8. The following integral represents the line integral along the geometric curve $y=-x^2+4x$ from point (4,0) to point (2,4) of vector field \mathbf{F} (note, you are looking specifically at the parametrization of the curve):

(a)
$$\int_0^2 \mathbf{F}(-t, -t^2 - 4t) \cdot (-1, -2t - 4) dt$$

(b)
$$\int_0^2 \mathbf{F}(4-t, -(4-t)^2 + 4(4-t)) \cdot (-1, 4-2t) dt$$

(c)
$$\int_2^4 \mathbf{F}(t, -t^2 + 4t) \cdot (1, -2t + 4) dt$$

(d) None of the above integrals represent the described line integral.

9. Match the integrals with the volume that they represent.

(1)
$$\int_0^{2\pi} \int_0^{\pi} \int_0^1 \rho^2 \sin \phi \ d\rho \ d\phi \ d\theta$$

(2)
$$\int_0^{2\pi} \int_0^4 6r \ dr \ d\theta$$

$$(3) \int_0^2 \int_{\frac{-(y-2)}{2}}^{\frac{-(y-8)}{2}} 3 \ dx \ dy$$

(4)
$$\int_0^{2\pi} \int_0^5 \int_r^5 r \ dz \ dr \ d\theta$$

- (i) volume of a parallelogram box
- (ii) volume of a sphere
- (iii) volume of a cone
- (iv) volume of a cylinder

(a)
$$1 - ii$$
, $2 - iv$, $3 - i$, $4 - iii$

(b)
$$1 - iv$$
, $2 - iii$, $3 - ii$, $4 - i$

(c)
$$1 - iii$$
, $2 - i$, $3 - i$, $4 - iv$

(d)
$$1 - ii$$
, $2 - iii$, $3 - iv$, $4 - i$

10. Consider the integral $\int_1^2 \int_{4x^2}^{16} f(x,y) \ dy \ dx$. Changing the order of integration makes it equal to:

(a)
$$\int_0^{16} \int_4^{\frac{\sqrt{y}}{2}} f(x,y) \ dx \ dy$$

(b)
$$\int_{4}^{16} \int_{\frac{\sqrt{y}}{2}}^{16} f(x,y) \ dx \ dy$$

(c)
$$\int_{4}^{16} \int_{1}^{\frac{\sqrt{y}}{2}} f(x,y) \ dx \ dy$$

(d)
$$\int_{4}^{16} \int_{1}^{4y^2} f(x,y) \ dx \ dy$$

- Part II: You can earn partial credit on the next four problems.
- 11. (12 points) Set up the following integral using the most computationally convenient coordinates (you do not have to solve): $\int \int \int_W \sqrt{x^2 + y^2 + z^2} \ dV$ if W is the portion of the sphere centered at (0,0,0) with radius 4 that is bounded by the planes $x \geq 0$, $y \geq 0$, and $z \geq 0$.

12. (12 points) Evaluate the integral: $\int_0^{\ln 10} \int_{e^x}^{10} \frac{1}{\ln y} \ dy \ dx$

13. (13 points) Set up the integral that represents the volume of the region that lies inside of both the cone $z=10-\sqrt{x^2+y^2}$ and the cylinder $x^2+y^2=4$, and is bounded by the xy plane. Use the most computationally convenient coordinates; you do not have to solve.

14. (13 points) Find the work done by a force field $\mathbf{F} = y^2 \mathbf{i} + (y - x) \mathbf{j}$ on a particle moving around the triangle in the plane given by the line $y = \frac{x}{4}$, and the points (in order of movement) (0,0),(4,1), and (4,0).