# Introducción a la Computación (Matemática)

Primer Cuatrimestre de 2019

Complejidad Algorítmica

#### Mapa de la materia

- ▶ Programas simples en C++. ✓
- ► Especificación de problemas. ✓
- ► Correctitud de algoritmos. ✓
- ► Lenguaje de alto nivel: Python.
- Complejidad algorítmica: búsqueda y ordenamiento.
- Recursión algorítmica; dividir y conquistar.
- ▶ Tipos abstractos de datos: uso e implementación.
- ► Backtracking. (¿Heurísticas?)

#### Tiempo de ejecución

El tiempo de ejecución de un programa se mide en función del tamaño de la entrada.

► Ejemplo: longitud de la lista de entrada.

**Notación:** T(n): tiempo de ejecución de un programa con una entrada de tamaño n.

- ► Unidad: cantidad de instrucciones.
- ▶ Ejemplo:  $T(n) = c \cdot n^2$ , donde c es una constante.

#### Tiempo de ejecución

Podemos considerar tres casos del tiempo de ejecución:

- peor caso: tiempo máximo de ejecución para alguna entrada;
- mejor caso: tiempo mínimo de ejecución para alguna entrada;
- ► caso promedio: tiempo de ejecución para la entrada promedio.

Vamos a ver sólo el peor caso: T(n) es una cota superior del tiempo de ejecución para entradas arbitrarias de tamaño n.

## Cálculo del tiempo de ejecución

**Instrucciones minimales:** lectura/escritura de una variable o de una posición en un arreglo, consulta de la longitud de un arreglo, operaciones simples de tipos básicos.  $T_{S}(n) = 1$ 

► Ej: 
$$T_{x \leftarrow 2*y+1}(n) = T_y + T_* + T_+ + T_- = 1+1+1+1=4$$

Secuencialización: 
$$T_{S_1;S_2}(n) = T_{S_1}(n) + T_{S_2}(n)$$

► Ej: 
$$T_{x \leftarrow y+1; y \leftarrow 0}(n) = T_{x \leftarrow y+1}(n) + T_{y \leftarrow 0}(n) = 3+1=4$$

Condicional: 
$$T_{if(B) S_1 \text{ else } S_2}(n) = T_B(n) + máx(T_{S_1}(n), T_{S_2}(n))$$

Ciclo: 
$$T_{\text{while (B) }S}(n) = T_{B_0}(n) + \sum_{\eta \in \text{iteraciones}} (T_{S_{\eta}}(n) + T_{B_{\eta}}(n))$$

## Ejemplo: Problema de Búsqueda

```
Encabezado: Buscar : x \in \mathbb{Z} \times A \in \mathbb{Z}[] \rightarrow est \hat{a} \in \mathbb{B} \times pos \in \mathbb{Z}
Precondición: \{A = A_0 \land x = x_0\}
Poscondición: \{(est \acute{a} = true \land 0 \le pos < |A_0| \land A_0[pos] = x_0) \lor \}
                      (est \acute{a} = false \land (\forall i)(0 < i < |A_0| \Rightarrow A_0[i] \neq x_0))
est \acute{a} \leftarrow false (1)
pos \leftarrow -1 (1)
i \leftarrow 0 (1)
while (i < |A|) { (3)
        if (A[i] = x) { (4)
           est\acute{a} \leftarrow true (1)
           pos \leftarrow i (2)
        i \leftarrow i + 1 (3)
(while: i = 0, 1, ..., |A| - 1 \rightsquigarrow |A| iteraciones)
T(|A|) = 1 + 1 + 1 + 3 + \sum_{0 \le i \le |A|} (4 + 1 + 2 + 3 + 3)
           = 6 + \sum_{0 \le i \le |A|} 13 = 6 + 13 |A|
```

### Orden del tiempo de ejecución

**Definición:** Decimos que  $T(n) \in O(f(n))$  si existen constantes enteras positivas c y  $n_0$  tales que para  $n \ge n_0$ ,  $T(n) \le c \cdot f(n)$ .

**Ejemplo:**  $T(n) = 3n^3 + 2n^2$ .

 $T(n) \in O(n^3)$ , dado que si tomamos  $n_0 = 1$  y c = 5, vale que para  $n \ge 1$ ,  $T(n) \le 5 \cdot n^3$ .

#### Ejemplo: Problema de búsqueda

$$T(|A|) = 6 + 13 |A| \in O(|A|)$$
 (orden lineal)

Por eso se lo conoce como algoritmo de búsqueda lineal.

### Complejidad temporal

#### Propiedades de O:

► Regla de la suma:

Si 
$$f_1 \in O(g)$$
 y  $f_2 \in O(h) \Rightarrow f_1 + f_2 \in O(\max(g,h))$ .

- ▶ Ej:  $f_1 \in O(n^2)$  y  $f_2 \in O(n)$ , luego  $f_1 + f_2 \in O(n^2)$ .
- ▶ Ej:  $f_1 \in O(1)$  y  $f_2 \in O(1)$ , luego  $f_1 + f_2 \in O(1)$ .
- ► Regla del producto:

Si 
$$f_1 \in O(g)$$
 y  $f_2 \in O(h) \Rightarrow f_1 \cdot f_2 \in O(g \cdot h)$ .

- ▶ Ej:  $f_1 \in O(n^2)$  y  $f_2 \in O(n)$ , luego  $f_1 \cdot f_2 \in O(n^3)$ .
- ▶ Ej:  $f_1 \in O(n)$  y  $f_2 \in O(1)$ , luego  $f_1 \cdot f_2 \in O(n)$ .

#### Cálculo de órdenes de complejidad

**Instrucciones minimales:** lectura/escritura de una variable o de una posición en un arreglo, longitud de un arreglo, operaciones simples de tipos básicos. Orden constante: O(1).

**Secuencialización:** Si  $S_1$  y  $S_2$  tienen O(f) y O(g), resp., entonces  $S_1$ ;  $S_2$  tiene  $O(f) + O(g) = O(\max(f,g))$ .

**Condicional:** Si B,  $S_1$  y  $S_2$  tienen O(f), O(g) y O(h), if (B)  $S_1$  else  $S_2$  tiene  $O(f) + O(\max(g, h)) = O(\max(f, g, h))$ .

**Ciclo:** Si B y S tienen O(f) y O(g), y se ejecutan O(h) veces, entonces while (B) S tiene  $O(f+g) \cdot O(h) = O((f+g) \cdot h)$ .

#### Problema de búsqueda

```
Encabezado: Buscar : x \in \mathbb{Z} \times A \in \mathbb{Z}[] \rightarrow est \hat{a} \in \mathbb{B} \times pos \in \mathbb{Z}
Precondición: \{A = A_0 \land x = x_0\}
Poscondición: \{(est \acute{a} = true \land 0 < pos < |A_0| \land A_0[pos] = x_0) \lor
                    (est \acute{a} = false \land (\forall i)(0 < i < |A_0| \Rightarrow A_0[i] \neq x_0))
est \acute{a} \leftarrow false \quad O(1)
                                            ¿Cuál es el orden de complejidad?
pos \leftarrow -1 O(1)
                                            T(|A|) \in O(|A|) Búsqueda lineal
i \leftarrow 0 O(1)
while (i < |A|) \{ O(1) \}
                                                    ¿Y si agregamos "∧ ¬está"
       if (A[j] = x) { O(1)
                                                            a la guarda del while?
           est\acute{a} \leftarrow true \quad O(1)
                                                       En este algoritmo, cortar antes
          pos \leftarrow i \quad O(1)
                                                  la ejecución puede ahorrar tiempo,
                                                                     pero no cambia el
                                                               orden en el peor caso.
       i \leftarrow i + 1 O(1)
\} while: O(|A|) iteraciones
¿Cuán eficientes son estos algoritmos si A está ordenado?
```

Veamos un algoritmo de búsqueda para listas ordenadas.

#### Búsqueda binaria

¿Cuál es el comportamiento detrás de este algoritmo?

Si la lista está ordenada, entonces en cada paso puedo partir la lista en:

- a) la mitad que puede contener el elemento; y
- b) la mitad que no puede contenerlo.

Indefectiblemente, se llega a un punto en que la lista ya no puede ser dividida (tiene un solo elemento) y, o bien el elemento es el buscado o no.

```
Encabezado: Buscar : x \in \mathbb{Z} \times A \in \mathbb{Z}[] \rightarrow est \acute{a} \in \mathbb{B} \times pos \in \mathbb{Z}
Precondición: \{A = A_0 \land x = x_0 \land A_0 \}
                        (\forall i)(0 \le i \le |A| - 1 \Rightarrow A[i] \le A[i + 1])
Poscondición: \{(est \acute{a} = true \land 0 \le pos < |A_0| \land A_0[pos] = x_0) \lor \}
                      (est \acute{a} = false \land (\forall i)(0 \le i < |A_0| \Rightarrow A_0[i] \ne x_0))\}
(est \acute{a}, pos) \leftarrow (false, -1)
(izq, der) \leftarrow (0, |A| - 1)
while (izq < der) {
         med \leftarrow (izq + der) \text{ div } 2
        if (A[med] < x) {
           izq \leftarrow med + 1
        } else {
                                                 ¿Cuál es el orden de complejidad?
           der \leftarrow med
                                                                       T(|A|) \in O(\log |A|)
                                                                          orden logarítmico
if (x = A[izq]) {
  (est \acute{a}, pos) \leftarrow (true, izq)
```

### Búsqueda binaria

Para ver que el orden es logarítmico, basta observar que la función variante fv = der - izq decrece aproximadamente a la mitad en cada iteración:

Sea fv = der - izq al comienzo de una iteración. Al final de la misma, pueden ocurrir dos cosas:

• 
$$\mathit{fv'} = \mathit{der} - \lfloor \frac{\mathit{izq} + \mathit{der}}{2} \rfloor - 1 \approx \lfloor \frac{\mathit{fv}}{2} \rfloor$$

• 
$$fv' = \lfloor \frac{izq + der}{2} \rfloor - izq \approx \lfloor \frac{fv}{2} \rfloor$$

En ambos casos, fv termina valiendo aproximadamente la mitad que al principio de la iteración.

Como el ciclo termina cuando  $fv \le 0$ , el cuerpo del ciclo se ejecuta  $O(\log_2 |A|)$  veces.  $\square$ 

Obs.: La base del log es irrelevante para el orden de T.

### Búsqueda lineal vs. binaria



¿Cuán importante es la diferencia entre  $O(\log n)$  y O(n)?

Depende de nuestro contexto...

- ¿Cuál es el tamaño del listado en el cual haremos la búsqueda? (FCEyN vs. ANSES)
- ¿Cuánto cuesta cada consulta individual? (Lectura en memoria vs. consulta por Internet)
- ¿Cuántas veces vamos a necesitar hacer esta búsqueda? (una vez por mes vs. millones de veces por día)

## ¿Cuál programa usamos?

#### **Objetivos contrapuestos**

Para resolver un problema, queremos un programa...

- 1. que sea fácil de programar (que escribirlo nos demande poco tiempo, que sea simple y fácil de entender);
- que consuma pocos recursos: tiempo y espacio (memoria, disco rígido).

En general priorizamos un objetivo sobre el otro:

- para programas que correrán pocas veces, priorizamos el objetivo 1;
- para programas que correrán muchas veces, priorizamos el objetivo 2.

### Repaso de la clase de hoy

- ► Tiempo de ejecución, medido en cantidad de operaciones.
- ▶ Peor caso, mejor caso y caso promedio.
- ► Cálculo del tiempo de ejecución.
- Orden del tiempo de ejecución.
- Algoritmos de búsqueda.

#### Próximos temas

► Algoritmos de ordenamiento.