Case Study: RNA-seq analysis

What protocol answers my question of interest?

RNA-seq library options

- How do I select the RNAs of interest?
 - Poly-A selection?
 - Ribosomal subtraction (Total RNA)?
 - Size selection? (more rare)
- What sequencing strategy was utilized?
 - Single end sequencing (inexpensive, least informative)
 - Paired end sequencing (expensive but highly informative)

Depth of Sequencing

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3227109/

- How much depth is necessary?
 - Different total transcription levels
 - Different numbers of transcribed genes
 - Different levels of transcriptome complexity
 - Different distributions of expression levels
- What analysis is intended?
 - Gene level summaries needs less depth (~30M)
 - Isoform inference requires much higher depth (100-200M)
 - Detect everything? (> 800M reads)

Replicates are ALWAYS more important than depth.

- Only via BIOLOGICAL replicates can variability in growth conditions, facilities, handling and individuals be managed.
- Statistical power is predominantly via REPLICATION.

https://www.nature.com/articles/nbt.1910

Probability of detecting differential expression in a single test

	Replicates per group		
	3	5	10
Effect si	ze (fold c	hange)	
1.25	17 %	25 %	44 %
1.5	43 %	64 %	91 %
2	87 %	98 %	100 %
Sequenc	ing depth	(million	s of reads)
3	19 %	29 %	52 %
10	33 %	51 %	80 %
15	38 %	57 %	85 %

How do I figure out an analysis pipeline?

Reference Mapping - TOPHAT

INPUT
FASTQ (processed)
Output (4 files)
Insertions (.bed)
Deletions (.bed)
Junctions (.bed)
Accepted Hits (.bam)

TOPHAT provides both identifying and quantifying information

bed files can be downloaded to excel

-sam (Sequence Aligment/Map) or bam (binary compressed version of sam) – can be used to visualize reads using UCSC Genome Browser or Integrative Genomics Viewer

Link to File type descriptions https://genome.ucsc.edu/FAQ/FAQformat.html#format1

How do I run TopHat or HiSAT?

https://ccb.jhu.edu/software/tophat/manual.shtml

http://www.ccb.jhu.edu/software/hisat/manual.shtml

HiSAT is newer (published 2015), uses a different indexing scheme, requires less memory, and is a bit faster than TopHat. Results are comparable.

Assign path variables TOPHAT="/scratch/Users/USERNAME/tophat_out" SCRATCH='/scratch/Users/USERNAME'

Running TopHat

Make tophat output directory in scratch mkdir /scratch/Users/USERNAME/tophat_out/

Get annotation file rsync /Users/dowellde/4521/Hg18/Hg18.chr10.refseq.gtf \$SCRATCH/

Load the tophat2 module and its dependencies module load bowtie/2.2.9 module load samtools/1.3.1 module load tophat/2.1.1

Run my commands, or whatever else IN SCRATCH

map reads with tophat
tophat [options] <bowtie_index> <reads1[,reads2,...]>
tophat2 --b2-fast -p 12 -r 325 --mate-std-dev 150 --microexon-search \
--library-type fr-firststrand --rg-id USERNAME --rg-sample Human \
--no-novel-juncs -o \$TOPHAT -G \$SCRATCH/Hg18.chr10.refseq.gtf \
\$SCRATCH/Bowtie2Indexes/Hg18 \$SCRATCH/RNA_Eli_repA_R1.fastq \
\$SCRATCH/RNA_Eli_repA_R2.fastq

rename tophat file (optional, but helps to document!)
mv \$TOPHAT/accepted hits.bam \$TOPHAT/RNA Eli repA.tophat.accepted hits.bam

get alignment stats samtools flagstat \$TOPHAT/RNA_Eli_repA.tophat.accepted_hits.bam > \$TOPHAT/ RNA_Eli_repA.tophat.accepted_hits.alignment_stats.txt

create an index for accepted_hits.bam samtools index \$TOPHAT/RNA_Eli_repA.tophat.accepted_hits.bam

MOVE MY OUTPUTS BACK TO HOME STORAGE
rsync \$TOPHAT/RNA_Eli_repA.chr10.tophat.accepted_hits.bam \$HOME/
rsync \$TOPHAT/RNA_Eli_repA.chr10.tophat.accepted_hits.bam.bai \$HOME/
rsync \$TOPHAT/RNA_Eli_repA.chr10.tophat.accepted_hits.alignment_stats.txt \$HOME/

Define input, output, and stderr path along with name for input files (the basename: up to '_R*' part of filename).

INPATH='<PATH_TO_TRIMMED_FASTQ_DIRECTORY>'

OUTPATH='<PATH_TO_DIRECTORY_WHERE_SAM_AND_BAM_FILES_ARE_TO_BE_WRITTEN>' ERRPATH=\${OUTPATH}'stderr/'

INPUTFILE='<BASENAME OF INPUT FILES>'

Running HiSAT

Make directories you will be writing to mkdir \${OUTPATH} mkdir \${ERRPATH}

Define genome index directory (include index file prefix, up to the .#.ht2 suffix)
GENOMEIDX='/scratch/Users/USERNAME/HISAT2_indexes/rn6/genome_rn6'
printf "\nYou are using genome index: \${GENOMEIDX}\n"

Load modules MODULES=('samtools/1.3.1' 'hisat2/2.1.0')

Define read1, read2, sam, and err file names for paired reads

PAIR_R1=\${INPATH}\${INPUTFILE}'_R1.paired.trim.fq.gz'

PAIR_R2=\${INPATH}\${INPUTFILE}'_R2.paired.trim.fq.gz'

PAIR_SAM=\${OUTPATH}\${INPUTFILE}'.paired.trim.sam'

PAIR SAMERR=\${ERRPATH}\${INPUTFILE}'.paired.trim.sam.stderr'

RUN HISAT ON PAIRED READ FASTO

hisat2 -p 32 -x $\{GENOMEIDX\}$ -1 $\{PAIR_R1\}$ -2 $\{PAIR_R2\}$ -S $\{PAIR_SAM\}$ 2> $\{PAIR_SAM\}$ 3- $\{PAIR_SAM\}$ 4- $\{PAIR_SAM\}$ 4

Define read1, read2, sam, and err file names for unpaired reads

UNPAIR R1=\${INPATH}\${INPUTFILE}' R1.unpaired.trim.fq.gz'

UNPAIR R2=\${INPATH}\${INPUTFILE}' R2.unpaired.trim.fq.gz'

UNPAIR_SAM=\${OUTPATH}\${INPUTFILE}'.unpaired.trim.sam'

UNPAIR SAMERR=\${ERRPATH}\${INPUTFILE}'.unpaired.trim.sam.stderr'

RUN HISAT2 ON UNPAIRED READ FASTQ

hisat2 -p 32 -x $\{GENOMEIDX\}$ -U $\{UNPAIR_R1\}$, $\{UNPAIR_R2\}$ -S $\{UNPAIR_SAM\}$ 2> $\{UNPAIR_SAMERR\}$

Expression quantification

- Count data
 - Summarized mapped reads to CDS, gene or exon

Expression quantification

The number of reads is roughly proportional to

- the length of the gene
- the total number of reads in the library

Question:

Gene A: 200 Gene B: 300

Expression of Gene A < Expression of Gene B?

How do I quantify expression from RNA-seq?

RPKM: Reads per Kb million (Mortazavi et al. Nature Methods 2008) FPKM: Fragments per Kb million

Longer and more highly expressed transcripts are more likely be represented among RNA-seq reads

RPKM normalizes by transcript length and the total number of reads captured and mapped in the experiment

Sequencing depth can alter RPKM values

bedtools/2.25.0

How do I calculate RPKM/FPKM?

BedTools: http://bedtools.readthedocs.io/en/latest/index.html

coverageBed

http://bedtools.readthedocs.io/en/latest/content/tools/coverage.html

BedTools has a large number of useful programs for genomic arithmetic. **VERY useful.**

But for quantifying coverage, it is limited by needing "regions" (i.e. it isn't aware of gene structure – YOU have to describe it).

HTseq

http://htseq.readthedocs.io/en/master/count.html

Specialized tool for specifically counting coverage over annotated genes. Can handle exon/intron structure (provided in a gff or gtf file) and function "correctly".

Lots of options to specify what "correctly" means in YOUR case.

Count-based methods (R packages)

- 1. DESeq -- based on negative binomial distribution
- 2. edgeR -- use an overdispersed Poisson model
- 3. baySeq -- use an empirical Bayes approach
- 4. TSPM -- use a two-stage poisson model

R/3.3.0

How do I run DEseq?

http://bioconductor.org/packages/release/bioc/html/DESeq.html

Like many bioinformatics programs, it's in R.

However, you can run R programs on the cluster by using "scripts" of R code ...

R CMD BATCH --no-save --no-restore Hah2011bidirectional_hits_intervals_092015.bed.count.bed.vehicleE2_40m.R

So now I have to learn R too???!

- No ... and Yes.
 - For this class, you are fine to just do Cuffdiff and forgo learning R. That said, DEseq is a far better statistical model, particularly in the case of replicates.
 - In next few weeks, we'll play with R a little on the cluster and see some examples of running DEseq.

Isoform inference

• Cufflinks expects TopHat output

http://cole-trapnell-lab.github.io/cufflinks/manual/

StringTie expects HiSAT output

http://ccb.jhu.edu/software/stringtie/index.shtml?t=manual

Estimating Transcript Abundance - Cufflinks INPUT .bam file (Accepted Hits, e.g. from TopHat) Reference (.gtf) Refseq, Ensembl, etc Output (tabular form, excel) FPKM quantifiable

Cufflinks & Cuffdiff

Nature Protocols 7, 562-578 (2012)

PROTOCOL

Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks

Cole Trapnell^{1,2}, Adam Roberts³, Loyal Goff^{1,2,4}, Geo Pertea^{1,6}, Daehwan Kim^{1,5}, David R Kelley^{1,2}, Harold Pimentel³, Steven I. Salzberg^{1,6}, John L Rinn^{1,2} & Lior Pachter^{1,6,6}

How do I run Cufflinks?

Assign path variables SCRATCH='/scratch/Users/USERNAME' TOPHAT='/scratch/Users/USERNAME/tophat_out'

Load modules module load cufflinks/2.2.1

Run my commands, or whatever else IN SCRATCH
cufflinks [options] <aligned_reads.(sam/bam)> where BAM/SAM is sorted by position
cufflinks -p 12 -b \$SCRATCH/Hg18.fa -u --library-type fr-firststrand \
-m 325 -s 150 -G \$SCRATCH/Hg18.refseq.gtf --no-faux-reads \
--no-update-check -o \$TOPHAT/ \$TOPHAT/accepted_hits.bam

MOVE MY OUTPUTS BACK TO HOME STORAGE
rsync \$TOPHAT/transcripts.gtf \$HOME/RNA_Eli_repA.cufflinks.transcripts.gtf
rsync \$TOPHAT/isoforms.fpkm_tracking \$HOME/
RNA_Eli_repA.cufflinks.isoforms.fpkm_tracking
rsync \$TOPHAT/genes.fpkm_tracking \$HOME/RNA_Eli_repA.cufflinks.genes.fpkm_tracking

Differential Gene Expression Analysis

CuffDiff: If you have two samples, cuffdiff tests, for each transcript whether there is evidence that the concentration of this transcript is not the same in the two samples

DESeq/EdgeR: If you have two different experimental conditions, with replicates for each condition, DESeq tests whether, for a given gene, the change in the expression strength between the two conditions is large as compared to the variation within each group.

You will get different answers with different tests

Differential Gene Expression Analysis

RPKM

- -Can calculate Fold change
- -Input sequence reads must be similar
- -replicates not needed
- -provides NO statistical test for differential gene expression
- -useful for Cluster based classification of genes and other metrics/graphing

CuffDiff (part of Cufflinks package)

- -Input .bam file
- -Can set statistical threshold (p<0.05 or whatever)
- -replicates encouraged but not needed
- -Input sequence reads can be somewhat dissimilar
- -can provide differential splicing and promoter usage

DESeq (Technically an R program)

- -Input .bam file
- -Can set statistical threshold
- -Input sequence reads can be somewhat dissimilar
- -Must have replicates

