Ordre de grandeur du champ magnétique

A quelle distance d'un fil parcouru par un courant de 1 A, son champ magnétique est-il plus faible que le champ magnétique terrestre?

Ancienne définition de l'ampère avant 2019

Calculer le courant qui doit traverser deux fils infinis parallèles distant de 1 m et traversé par la même intensité I, pour que la force d'attraction entre eux soit de $F=2.10^{-7}$ N. Indice : utiliser la loi de Laplace.

Champ crée par une bobine torique

Une bobine torique est constituée de N spires jointives régulièrement enroulées sur un tore d'axe (Oz) et parcourues par la même intensité i. On suppose que $N \gg 1$. Un tore est engendré par la rotation d'un cercle autour d'un axe de révolution. Le tore considéré a une section circulaire de rayon R_1 , et le centre de sa section se trouve a une distance R_2 de l'axe de révolution du tore.

— Déterminer en tout point de l'espace le champ magnétostatique crée par la bobine.

Champ crée dans un câble coaxial

On peut modéliser un câble coaxial comme deux cylindre concentrique infini de rayon R_1 et R_2 . Ces deux cylindres sont parcourus par le même courant dans la direction donné par l'axe de révolution du cylindre mais de sens opposé +I et -I. Le cylindre intérieur est considéré comme un conducteur plein parcouru par une densité de courant uniforme. Le cylindre extérieur a une épaisseur finie e très petite devant son rayon, et est aussi parcouru par une densité de courant uniforme.

— Déterminer en tout point de l'espace le champ magnétostatique crée par le câble coaxial.