Chapter 28

Software Re-engineering

Software re-engineering

 Reorganising and modifying existing software systems to make them more maintainable

Objectives

- To explain why software re-engineering is a costeffective option for system evolution
- To describe the activities involved in the software re-engineering process
- To distinguish between software and data reengineering and to explain the problems of data re-engineering

Topics covered

- Source code translation
- Reverse engineering
- Program structure improvement
- Program modularisation
- Data re-engineering

System re-engineering

- Re-structuring or re-writing part or all of a legacy system without changing its functionality
- Applicable where some but not all sub-systems of a larger system require frequent maintenance
- Re-engineering involves adding effort to make them easier to maintain. The system may be restructured and re-documented

When to re-engineer

- When system changes are mostly confined to part of the system then re-engineer that part
- When hardware or software support becomes obsolete
- When tools to support re-structuring are available

Re-engineering advantages

Reduced risk

 There is a high risk in new software development. There may be development problems, staffing problems and specification problems

Reduced cost

 The cost of re-engineering is often significantly less than the costs of developing new software

Business process re-engineering

- Concerned with re-designing business processes to make them more responsive and more efficient
- Often reliant on the introduction of new computer systems to support the revised processes
- May force software re-engineering as the legacy systems are designed to support existing processes

Forward engineering and re-engineering

The re-engineering process

Re-engineering cost factors

- The quality of the software to be re-engineered
- The tool support available for re-engineering
- The extent of the data conversion which is required
- The availability of expert staff for re-engineering

Re-engineering approaches

Automated program restructuring

Program and data restructuring

Automated source code conversion

Automated restructuring with manual changes

Restructuring plus architectural changes

Increased cost

Source code translation

- Involves converting the code from one language (or language version) to another e.g. FORTRAN to C
- May be necessary because of:
 - Hardware platform update
 - Staff skill shortages
 - Organisational policy changes
- Only realistic if an automatic translator is available

The program translation process

Reverse engineering

- Analysing software with a view to understanding its design and specification
- May be part of a re-engineering process but may also be used to re-specify a system for reimplementation
- Builds a program data base and generates information from this
- Program understanding tools (browsers, crossreference generators, etc.) may be used in this process

The reverse engineering process

Reverse engineering

- Reverse engineering often precedes reengineering but is sometimes worthwhile in its own right
 - The design and specification of a system may be reverse engineered so that they can be an input to the requirements specification process for the system's replacement
 - The design and specification may be reverse engineered to support program maintenance

Program structure improvement

- Maintenance tends to corrupt the structure of a program. It becomes harder and harder to understand
- The program may be automatically restructured to remove unconditional branches
- Conditions may be simplified to make them more readable

Automatic program restructuring

Restructuring problems

- Problems with re-structuring are:
 - Loss of comments
 - Loss of documentation
 - Heavy computational demands
- Restructuring doesn't help with poor modularisation where related components are dispersed throughout the code
- The understandability of data-driven programs may not be improved by re-structuring

Program modularisation

- The process of re-organising a program so that related program parts are collected together in a single module
- Usually a manual process that is carried out by program inspection and re-organisation

Module types

Data abstractions

Abstract data types where datastructures and associated operations are grouped

Hardware modules

All functions required to interface with a hardware unit

Functional modules

Modules containing functions that carry out closely related tasks

Process support modules

Modules where the functions support a business process or process fragment

Recovering data abstractions

- Many legacy systems use shared tables and global data to save memory space
- Causes problems because changes have a wide impact in the system
- Shared global data may be converted to objects or ADTs
 - Analyse common data areas to identify logical abstractions
 - Create an ADT or object for these abstractions
 - Use a browser to find all data references and replace with reference to the data abstraction

Data abstraction recovery

- Analyse common data areas to identify logical abstractions
- Create an abstract data type or object class for each of these abstractions
- Provide functions to access and update each field of the data abstraction
- Use a program browser to find calls to these data abstractions and replace these with the new defined functions

Data re-engineering

- Involves analysing and reorganising the data structures (and sometimes the data values) in a program
- May be part of the process of migrating from a file-based system to a DBMS-based system or changing from one DBMS to another
- Objective is to create a managed data environment

Approaches to data re-engineering

Approach	Description
Data cleanup	The data records and values are analysed to improve their quality.
	Duplicates are removed, redundant information is deleted and a consistent
	format applied to all records. This should not normally require any
	associated program changes.
Data extension	In this case, the data and associated programs are re-engineered to remove
	limits on the data processing. This may require changes to programs to
	increase field lengths, modify upper limits on the tables, etc. The data itself
	may then have to be rewritten and cleaned up to reflect the program
	changes.
Data migration	In this case, data is moved into the control of a modern database
	management system. The data may be stored in separate files or may be
	managed by an older type of DBMS.

Data problems

- End-users want data on their desktop machines rather than in a file system. They need to be able to download this data from a DBMS
- Systems may have to process much more data than was originally intended by their designers
- Redundant data may be stored in different formats in different places in the system

Data problems

- Data naming problems
 - Names may be hard to understand. The same data may have different names in different programs
- Field length problems
 - The same item may be assigned different lengths in different programs
- Record organisation problems
 - Records representing the same entity may be organised differently in different programs
- Hard-coded literals
- No data dictionary

Data conversion

- Data re-engineering may involve changing the data structure organisation without changing the data values
- Data value conversion is very expensive.
 Special-purpose programs have to be written to carry out the conversion

The data re-engineering process

Key points

- The objective of re-engineering is to improve the system structure to make it easier to understand and maintain
- The re-engineering process involves source code translation, reverse engineering, program structure improvement, program modularisation and data re-engineering
- Source code translation is the automatic conversion of of program in one language to another

Key points

- Reverse engineering is the process of deriving the system design and specification from its source code
- Program structure improvement replaces unstructured control constructs with while loops and simple conditionals
- Program modularisation involves reorganisation to group related items
- Data re-engineering may be necessary because of inconsistent data management