OH
$$R^6$$
 R^3

$$CH-CH-NH-C-A$$

$$R^5$$

$$NHSO_2R^1$$
(IV)

wherein

R¹ is lower alkyl, aryl or arylalkyl;

R² is hydrogen, hydroxy, alkoxy, -CH₂OH, cyano, -C(O)OR⁷, -CO₂H, -CONH₂, tetrazole, -CH₂NH₂ or halogen;

R³ is hydrogen, alkyl, heterocycle or

R⁴ is hydrogen, alkyl or B;

 R^5 , $R^{5'}$, R^8 , $R^{8'}$ and $R^{8''}$ are independently hydrogen, alkoxy, lower alkyl, halogen, -OH, -CN, -(CH₂)_nNR⁶COR⁷, -CON(R⁶)R^{6'}, -CON(R⁶)OR^{6'}, -CO₂R⁶, -SR⁷, -SOR⁷, -SO₂R⁷, -N(R⁶)SO₂R¹, -N(R⁶)R^{6'}, -NR⁶COR⁷, -OCH₂CON(R⁶)R^{6'}, -OCH₂CO₂R⁷ or aryl; or

R⁵ and R⁵ or R⁸ and R⁸ may together with the carbon atoms to which they are attached form an aryl or heterocycle;

R⁶ and R⁶¹ are independently hydrogen or lower alkyl; and

R⁷ is lower alkyl;

R⁹ and R⁹ are independently hydrogen, lower alkyl, alkyl, cycloalkyl, arylalkyl, aryl, heteroaryl; or

R⁹ and R⁹ may together with the nitrogen atom to which they are attached form a heterocycle;

A is a bond, $-(CH_2)_n$ - or -CH(B)-, wherein n is an integer of 1, 2 or 3 and B is -CN, $-CON(R^9)R^{9}$ - or $-CO_2R^7$;

with the proviso that when A is a bond or -(CH₂)_n- and R³ is hydrogen or

unsubstituted alkyl, then R⁴ is B or substituted alkyl;

(b) a compound of formula (V) is represented by the following general formula:

wherein

n is 0 to 5;

m is 0 or 1;

r is 0 to 3;

A is pyridinyl;

R¹ is (1) hydroxy, (2) oxo, (3) halogen, (4) cyano, (5) NR⁸R⁸, (6) SR⁸, (7) trifluoromethyl, (8) C₁-C₁₀ alkyl, (9) OR⁸, (10) SO₂R⁹, (11) OCOR⁹, (12) NR⁸COR⁹, (13) COR⁹, (14) NR⁸SO₂R⁹, (15) NR⁸CO₂R⁸, or (16) C₁-C₁₀ alkyl substituted by hydroxy, halogen, cyano, NR⁸R⁸, SR⁸, trifluoromethyl, OR⁸, C₃-C₈ cycloalkyl, phenyl, NR⁸COR⁹, COR⁹, SO₂R⁹, OCOR⁹, NR⁸SO₂R⁹ or NR⁸CO₂R⁸;

 R^2 and R^3 are independently (1) hydrogen, (2) C_1 - C_{10} alkyl or (3) C_1 - C_{10} alkyl with 1 to 4 substituents selected from hydroxy, C_1 - C_{10} alkoxy, or halogen;

 R^4 and R^5 are independently (1) hydrogen, (2) C_1 - C_{10} alkyl, (3) halogen, (4) NHR⁸, (5) OR⁸, (6) SO₂R⁹ or (7) NHSO₂R⁹;

 R^6 is (1) hydrogen or (2) C_1 - C_{10} alkyl;

 R^7 is Z- $(R^{1a})_n$;

R^{1a} is (1) R¹, (2) C₃-C₈ cycloalkyl, (3) phenyl optionally substituted with up to 4 groups independently selected from R⁸, NR⁸R⁸, OR⁸, SR⁸ or halogen, or (4) 5 or 6-membered heterocycle with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen, optionally substituted with up to four groups independently selected from oxo, R⁸, NR⁸R⁸, OR⁸, SR⁸, or halogen;

Z is (1) phenyl, (2) naphthyl, (3) or a 5 or 6-membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen, (4) a benzene ring fused to a C₃-C₈

cycloalkyl ring, (5) a benzene ring fused to a 5 or 6-membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen, (6) a 5 or 6-membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen fused to a 5 or 6-membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen, or (7) a 5 or 6-membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen fused to a C_3 - C_8 cycloalkyl ring;

R⁸ is (1) hydrogen, (2) C₁-C₁₀alkyl, (3) C₃-C₈ cycloalkyl, (4) Z optionally having 1 to 4 substituents selected from halogen, nitro, oxo, NR¹⁰R¹⁰, C₁-C₁₀ alkyl, C₁-C₁₀ alkoxy, C₁-C₁₀ alkylthio, and C₁-C₁₀ alkyl having 1 to 4 substituents selected from hydroxy, halogen, CO₂H, CO₂-C₁-C₁₀ alkyl, SO₂-C₁-C₁₀ alkyl, C₃-C₈ cycloalkyl, C₁-C₁₀ alkoxy, or Z optionally substituted by from 1 to 3 halogen, C₁-C₁₀ alkyl or C₁-C₁₀ alkoxy, or (5) C₁-C₁₀ alkyl having 1 to 4 substituents selected from hydroxy, halogen, CO₂H, CO₂-C₁-C₁₀ alkyl, SO₂-C₁-C₁₀ alkyl, C₃-C₈ cycloalkyl, C₁-C₁₀ alkoxy, C₁-C₁₀ alkyl, or Z optionally substituted by from 1 to 4 halogen, C₁-C₁₀ alkyl or C₁-C₁₀ alkoxy;

R⁹ is (1) R⁸ or (2) NR⁸R⁸; and

 R^{10} is (1) C_1 - C_{10} alkyl, or (2) two R^{10} groups together with the N to which they are attached forming a 5 or 6-membered ring optionally substituted with C_1 - C_{10} alkyl;

(c) a compound of formula (VI) is:

$$X$$
 $CH-CH_2-NH$
 OR
 OR
 OR

wherein

X is hydrogen, halogen, trifluoromethyl or lower alkyl, and

R is hydrogen; lower alkyl which may have a suitable substituent selected from the group consisting of $cyclo(C_3-C_7)$ alkyl, hydroxy, lower alkoxy, carboxy and lower alkoxycarbonyl; $cyclo(C_3-C_7)$ alkyl or lower alkanoyl;

(d) a compound of formula (VII) is represented by the following general formula:

$$R^{2}$$
 R^{1}
 $CHOH-CH_{2}-NH-C(R^{6})R^{7}-Y-X$
 $O-Z-CO_{2}H$
 (VII)

wherein

R¹ is a hydrogen, fluorine, chlorine or bromine atom or a hydroxyl, hydroxymethyl, methyl, methoxyl, amino, formamido, acetamido, methylsulphonylamido, nitro, benzyloxy, methylsulphonylmethyl, ureido, trifluoromethyl or p-methoxybenzylamino group;

R² is a hydrogen, fluorine, chlorine or bromine atom or a hydroxyl group;

R³ is a hydrogen, chlorine or bromine atom or a hydroxyl group,

R⁴ is a hydrogen atom or a methyl group;

R⁵ is a hydrogen atom or a methyl group;

R⁶ is a hydrogen, fluorine or chlorine atom or a methyl, methoxyl or hydroxy group;

X is an oxygen atom or a bond;

Y is an alkylene group of up to 6 carbon atoms or a bond; and

Z is an alkylene, alkenylene or alkynylene group of up to 10 carbon atoms; and

(e) a compound of formula (VIII) is represented by the following general formula:

$$R^1$$
 R^6
 R^7
 R^8
 R^8
 R^8
 R^8
 R^8

wherein

R is hydrogen or methyl,

R¹ is hydrogen, halogen, hydroxy, benzyloxy, amino or hydroxymethyl,

R² is hydrogen, hydroxymethyl, -NHR³, -SO₂NR⁴R^{4'} or nitro,

R³ is hydrogen, methyl, -SO₂R⁵, formyl or -CONHR⁶',

R⁴ and R⁴ are independently hydrogen, lower alkyl or benzyl,

R⁵ is lower alkyl, benzyl or -NR⁴R⁴,

R⁶ is hydrogen or lower alkyl,

R⁶ is hydrogen or lower alkyl,

R9 is hydrogen, amino, acetylamino or hydroxy, and

X is N, O, S or methylene;

provided that when X is N, O or S,

then R⁹ is hydrogen, either R⁷ or R⁸ is hydrogen, and the other is hydrogen, amino, acetylamino or hydroxy; and

provided that when X is methylene, then both R⁷ and R⁸ are hydrogen.

--17. (Twice amended) A method for the prophylactic and/or the therapeutic treatment of pollakiuria or urinary incontinence comprising administering to a subject in need thereof an effective amount of

[the compound as defined in Claim 10 or a pharmaceutically acceptable salt thereof] a compound, which is a β_3 adrenergic receptor agonist, having a general formula selected from the group consisting of formula (IV), (V), (VI), (VII) and (VIII),

or a salt or prodrug thereof, or for the compound of formula (VII) an ester or amide thereof;

wherein

(a) a compound of formula (IV) is represented by the following general formula: wherein

OH
$$R^6$$
 R^3 $CH-CH-NH-C-A$ R^5 R^5 R^5 (IV)

R¹ is lower alkyl, aryl or arylalkyl;

R² is hydrogen, hydroxy, alkoxy, -CH₂OH, cyano, -C(O)OR⁷, -CO₂H, -CONH₂, tetrazole, -CH₂NH₂ or halogen;

R³ is hydrogen, alkyl, heterocycle or

$$R^{8}$$
 ,

R⁴ is hydrogen, alkyl or B;

 R^5 , R^5 ', R^8 , R^8 ' and R^8 '' are independently hydrogen, alkoxy, lower alkyl, halogen, -OH, -CN, -(CH₂)_nNR⁶COR⁷, -CON(R⁶)R⁶', -CON(R⁶)OR⁶', -CO₂R⁶, -SR⁷, -SOR⁷, -SO₂R⁷, -N(R⁶)SO₂R¹, -N(R⁶)R⁶', -NR⁶COR⁷, -OCH₂CON(R⁶)R⁶', -OCH₂CO₂R⁷ or aryl; or

R⁵ and R⁵ or R⁸ and R⁸ may together with the carbon atoms to which they are attached form an aryl or heterocycle;

R⁶ and R⁶ are independently hydrogen or lower alkyl; and

R⁷ is lower alkyl;

R⁹ and R⁹ are independently hydrogen, lower alkyl, alkyl, cycloalkyl, arylalkyl, aryl, heteroaryl; or

R⁹ and R⁹ may together with the nitrogen atom to which they are attached form a heterocycle;

A is a bond, $-(CH_2)_n$ - or -CH(B)-, wherein n is an integer of 1, 2 or 3 and B is -CN, $-CON(R^9)R^{91}$ - or $-CO_2R^7$;

with the proviso that when A is a bond or $-(CH_2)_n$ - and R^3 is hydrogen or unsubstituted alkyl, then R^4 is B or substituted alkyl;

(b) a compound of formula (V) is represented by the following general formula:

wherein

$$(R^{1})_{n}$$
OH H R²

$$(X)_{m}$$

$$R^{4}$$

$$(X)_{m}$$

$$R^{5}$$

$$R^{6}$$

$$(V)$$

n is 0 to 5;

m is 0 or 1;

r is 0 to 3;

A is pyridinyl;

 R^1 is (1) hydroxy, (2) oxo, (3) halogen, (4) cyano, (5) NR⁸R⁸, (6) SR⁸, (7) trifluoromethyl, (8) C_1 - C_{10} alkyl, (9) OR⁸, (10) SO₂R⁹, (11) OCOR⁹, (12) NR⁸COR⁹, (13) COR⁹, (14) NR⁸SO₂R⁹, (15) NR⁸CO₂R⁸, or (16) C_1 - C_{10} alkyl substituted by hydroxy, halogen, cyano, NR⁸R⁸, SR⁸, trifluoromethyl, OR⁸, C_3 - C_8 cycloalkyl, phenyl, NR⁸COR⁹, COR⁹, SO₂R⁹, OCOR⁹, NR⁸SO₂R⁹ or NR⁸CO₂R⁸;

 R^2 and R^3 are independently (1) hydrogen, (2) C_1 - C_{10} alkyl or (3) C_1 - C_{10} alkyl with 1 to 4 substituents selected from hydroxy, C_1 - C_{10} alkoxy, or halogen;

 R^4 and R^5 are independently (1) hydrogen, (2) C_1 - C_{10} alkyl, (3) halogen, (4) NHR⁸, (5) OR⁸, (6) SO₂R⁹ or (7) NHSO₂R⁹;

 R^6 is (1) hydrogen or (2) C_1 - C_{10} alkyl;

 R^7 is $Z-(R^{1a})_n$;

the state of the s

 R^{1a} is (1) R^{1} , (2) C_{3} - C_{8} cycloalkyl, (3) phenyl optionally substituted with up to 4 groups independently selected from R^{8} , $NR^{8}R^{8}$, OR^{8} , SR^{8} or halogen, or (4) 5 or 6-membered heterocycle with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen, optionally substituted with up to four groups independently selected from oxo, R^{8} , $NR^{8}R^{8}$, OR^{8} , SR^{8} , or halogen;

Z is (1) phenyl, (2) naphthyl, (3) or a 5 or 6-membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen, (4) a benzene ring fused to a C_3 - C_8 cycloalkyl ring, (5) a benzene ring fused to a 5 or 6-membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen, (6) a 5 or 6-membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen fused to a 5 or 6-membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen, or (7) a 5 or 6-membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen fused to a C_3 - C_8 cycloalkyl ring;

 R^8 is (1) hydrogen, (2) C_1 - C_{10} alkyl, (3) C_3 - C_8 cycloalkyl, (4) Z optionally having 1 to 4 substituents selected from halogen, nitro, oxo, $NR^{10}R^{10}$, C_1 - C_{10} alkyl, C_1 - C_{10} alkoxy, C_1 - C_{10} alkylthio, and C_1 - C_{10} alkyl having 1 to 4 substituents selected from hydroxy, halogen, CO_2 -H, CO_2 - C_1 - C_{10} alkyl, SO_2 - C_1 - C_{10} alkyl, C_3 - C_8 cycloalkyl, C_1 - C_{10} alkoxy, or C_1 - C_1 0 alkyl having 1 to 4 substituents selected from hydroxy, halogen, C_1 - C_1 0 alkyl, C_2 - C_1 - C_1 0 alkyl, C_3 - C_8 cycloalkyl, C_1 - C_1 0 alkoxy, C_1 - C_1 0 alkyl, or C_1 - C_1 0 alkyl, or C_1 - C_1 0 alkyl from 1 to 4 halogen, C_1 - C_1 0 alkyl or C_1 - C_1 0 alkoxy;

 R^9 is (1) R^8 or (2) $N\dot{R}^8R^8$; and

 R^{10} is (1) C_1 - C_{10} alkyl, or (2) two R^{10} groups together with the N to which they are attached forming a 5 or 6-membered ring optionally substituted with C_1 - C_{10} alkyl;

(c) a compound of formula (VI) is:

$$X$$
 CH
 CH
 CH
 CH
 CH
 OR
 OR
 (VI)

wherein

X is hydrogen, halogen, trifluoromethyl or lower alkyl, and

R is hydrogen; lower alkyl which may have a suitable substituent selected from the group consisting of $\text{cyclo}(C_3-C_7)$ alkyl, hydroxy, lower alkoxy, carboxy and lower alkoxycarbonyl; $\text{cyclo}(C_3-C_7)$ alkyl or lower alkanoyl;

(d) a compound of formula (VII) is represented by the following general formula:

$$R^{2}$$
 $CHOH-CH_{2}-NH-C(R^{6})R^{7}-Y-X$
 $O-Z-CO_{2}H$
(VII)

wherein

R¹ is a hydrogen, fluorine, chlorine or bromine atom or a hydroxyl, hydroxymethyl, methyl, methoxyl, amino, formamido, acetamido, methylsulphonylamido, nitro, benzyloxy, methylsulphonylmethyl, ureido, trifluoromethyl or p-methoxybenzylamino group;

R² is a hydrogen, fluorine, chlorine or bromine atom or a hydroxyl group;

R³ is a hydrogen, chlorine or bromine atom or a hydroxyl group,

R⁴ is a hydrogen atom or a methyl group;

R⁵ is a hydrogen atom or a methyl group;

R⁶ is a hydrogen, fluorine or chlorine atom or a methyl, methoxyl or hydroxy group;

X is an oxygen atom or a bond;

Y is an alkylene group of up to 6 carbon atoms or a bond; and

Z is an alkylene, alkenylene or alkynylene group of up to 10 carbon atoms; and

(e) a compound of formula (VIII) is represented by the following general formula:

$$R^1$$
 R^6
 R^7
 R^8
 R^8
 R^8
 R^8
 R^8

wherein

R is hydrogen or methyl,

R¹ is hydrogen, halogen, hydroxy, benzyloxy, amino or hydroxymethyl,

R² is hydrogen, hydroxymethyl, -NHR³, -SO₂NR⁴R⁴' or nitro,

R³ is hydrogen, methyl, -SO₂R⁵, formyl or -CONHR⁶,

R⁴ and R⁴ are independently hydrogen, lower alkyl or benzyl,

R⁵ is lower alkyl, benzyl or -NR⁴R⁴,

R⁶ is hydrogen or lower alkyl,

R^{6'} is hydrogen or lower alkyl,

R⁹ is hydrogen, amino, acetylamino or hydroxy, and

X is N, O, S or methylene;

provided that when X is N, O or S,

then R⁹ is hydrogen, either R⁷ or R⁸ is hydrogen, and the other is hydrogen, amino, acetylamino or hydroxy; and

provided that when X is methylene,

then both R⁷ and R⁸ are hydrogen.

18. (Twice amended) A method for the prophylactic and/or the therapeutic treatment of nervous pollakiuria, neurogenic bladder dysfunction, nocturia, unstable bladder, cystospasm, chronic cystitis, chronic prostatitis, overflow incontinence, passive incontinence, reflex incontinence, urge incontinence, urinary stress incontinence comprising administering to a subject in need thereof an effective amount of a compound,

[as defined in Claim 10 or a pharmaceutically acceptable salt thereof]

which is a β_3 adrenergic receptor agonist, having a general formula selected from the group consisting of formula (IV), (V), (VI), (VII) and (VIII),

or a salt or prodrug thereof, or for the compound of formula (VII) an ester or amide thereof;

wherein

(a) a compound of formula (IV) is represented by the following general formula: wherein

OH
$$R^6$$
 R^3 $CH-CH-NH-C-A$ R^5

NHSO₂ R^1
(IV)

R¹ is lower alkyl, aryl or arylalkyl;

R² is hydrogen, hydroxy, alkoxy, -CH₂OH, cyano, -C(O)OR⁷, -CO₂H, -CONH₂, tetrazole, -CH₂NH₂ or halogen;

R³ is hydrogen, alkyl, heterocycle or

R⁴ is hydrogen, alkyl or B;

 R^5 , R^5 ', R^8 , R^8 ' and R^8 '' are independently hydrogen, alkoxy, lower alkyl, halogen, -OH, -CN, -(CH₂)_nNR⁶COR⁷, -CON(R⁶)R⁶', -CON(R⁶)OR⁶', -CO₂R⁶, -SR⁷, -SOR⁷, -SO₂R⁷, -N(R⁶)SO₂R¹, -N(R⁶)R⁶', -NR⁶COR⁷, -OCH₂CON(R⁶)R⁶', -OCH₂CO₂R⁷ or aryl; or

R⁵ and R⁵ or R⁸ and R⁸ may together with the carbon atoms to which they are attached form an aryl or heterocycle;

R⁶ and R⁶ are independently hydrogen or lower alkyl; and

R⁷ is lower alkyl;

R⁹ and R⁹ are independently hydrogen, lower alkyl, alkyl, cycloalkyl, arylalkyl, aryl,

heteroaryl; or

R⁹ and R⁹ may together with the nitrogen atom to which they are attached form a heterocycle;

A is a bond, $-(CH_2)_n$ - or -CH(B)-, wherein n is an integer of 1, 2 or 3 and B is -CN, $-CON(R^9)R^9$ '- or $-CO_2R^7$;

with the proviso that when A is a bond or $-(CH_2)_n$ - and R^3 is hydrogen or unsubstituted alkyl, then R^4 is B or substituted alkyl;

(b) a compound of formula (V) is represented by the following general formula:

wherein

$$(R^{1})_{n} \xrightarrow{OH} \begin{array}{c} H & R^{2} \\ - CHCH_{2}N - C \\ - CHCH_{2}N - C \\ - R^{3} \end{array} = \begin{array}{c} R^{4} \\ - N - SO_{2}(CH_{2})_{r} - R^{7} \\ - R^{6} \end{array}$$

$$(V)$$

n is 0 to 5;

m is 0 or 1;

r is 0 to 3;

A is pyridinyl;

 R^1 is (1) hydroxy, (2) oxo, (3) halogen, (4) cyano, (5) NR^8R^8 , (6) SR^8 , (7) trifluoromethyl, (8) C_1 - C_{10} alkyl, (9) OR^8 , (10) SO_2R^9 , (11) $OCOR^9$, (12) NR^8COR^9 , (13) COR^9 , (14) $NR^8SO_2R^9$, (15) $NR^8CO_2R^8$, or (16) C_1 - C_{10} alkyl substituted by hydroxy, halogen, cyano, NR^8R^8 , SR^8 , trifluoromethyl, OR^8 , C_3 - C_8 cycloalkyl, phenyl, NR^8COR^9 , COR^9 , SO_2R^9 , $OCOR^9$, $NR^8SO_2R^9$ or $NR^8CO_2R^8$;

 R^2 and R^3 are independently (1) hydrogen, (2) C_1 - C_{10} alkyl or (3) C_1 - C_{10} alkyl with 1 to 4 substituents selected from hydroxy, C_1 - C_{10} alkoxy, or halogen;

X is (1)
$$-CH_2CH_2$$
-, (2) $-CH_2$ -, (3) $-CH=CH$ - or (4) $-CH_2O$ -;

 R^4 and R^5 are independently (1) hydrogen, (2) C_1 - C_{10} alkyl, (3) halogen, (4) NHR⁸, (5) OR⁸, (6) SO₂R⁹ or (7) NHSO₂R⁹;

 R^6 is (1) hydrogen or (2) C_1 - C_{10} alkyl;

 R^7 is Z- $(R^{1a})_n$;

R^{1a} is (1) R¹, (2) C₃-C₈ cycloalkyl, (3) phenyl optionally substituted with up to 4

groups independently selected from R⁸, NR⁸R⁸, OR⁸, SR⁸ or halogen, or (4) 5 or 6-membered heterocycle with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen, optionally substituted with up to four groups independently selected from oxo, R⁸, NR⁸R⁸, OR⁸, SR⁸, or halogen;

Z is (1) phenyl, (2) naphthyl, (3) or a 5 or 6-membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen, (4) a benzene ring fused to a C₃-C₈ cycloalkyl ring, (5) a benzene ring fused to a 5 or 6-membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen, (6) a 5 or 6-membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen fused to a 5 or 6-membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen, or (7) a 5 or 6-membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen fused to a C₃-C₈ cycloalkyl ring;

 R^8 is (1) hydrogen, (2) C_1 - C_{10} alkyl, (3) C_3 - C_8 cycloalkyl, (4) Z optionally having 1 to 4 substituents selected from halogen, nitro, oxo, $NR^{10}R^{10}$, C_1 - C_{10} alkyl, C_1 - C_{10} alkoxy, C_1 - C_{10} alkylthio, and C_1 - C_{10} alkyl having 1 to 4 substituents selected from hydroxy, halogen, CO_2 -H, CO_2 - C_1 - C_{10} alkyl, SO_2 - C_1 - C_{10} alkyl, C_3 - C_8 cycloalkyl, C_1 - C_{10} alkoxy, or C_1 - C_1 alkyl having 1 to 4 substituents selected from hydroxy, halogen, C_1 - C_1 alkyl, C_2 - C_1 - C_1 alkyl, C_3 - C_8 cycloalkyl, C_1 - C_1 alkoxy, C_1 - C_1 alkyl, or C_1 - C_1 alkyl, or C_1 - C_1 alkyl, or C_1 - C_1 alkyl from 1 to 4 halogen, C_1 - C_1 alkyl or C_1 - C_1 alkoxy;

 R^9 is (1) R^8 or (2) NR^8R^8 ; and

 R^{10} is (1) C_1 - C_{10} alkyl, or (2) two R^{10} groups together with the N to which they are attached forming a 5 or 6-membered ring optionally substituted with C_1 - C_{10} alkyl;

(c) a compound of formula (VI) is:

$$X$$
 CH
 CH
 CH
 CH
 CH
 CH
 OR
 (VI)

wherein

X is hydrogen, halogen, trifluoromethyl or lower alkyl, and

R is hydrogen; lower alkyl which may have a suitable substituent selected from the group consisting of $\text{cyclo}(C_3-C_7)$ alkyl, hydroxy, lower alkoxy, carboxy and lower alkoxycarbonyl; $\text{cyclo}(C_3-C_7)$ alkyl or lower alkanoyl;

(d) a compound of formula (VII) is represented by the following general formula:

$$R^2$$
 $CHOH-CH_2-NH-C(R^6)R^7-Y-X$
 $O-Z-CO_2H$
(VII)

wherein

R¹ is a hydrogen, fluorine, chlorine or bromine atom or a hydroxyl, hydroxymethyl, methyl, methoxyl, amino, formamido, acetamido, methylsulphonylamido, nitro, benzyloxy, methylsulphonylmethyl, ureido, trifluoromethyl or p-methoxybenzylamino group;

R² is a hydrogen, fluorine, chlorine or bromine atom or a hydroxyl group;

R³ is a hydrogen, chlorine or bromine atom or a hydroxyl group,

R⁴ is a hydrogen atom or a methyl group;

R⁵ is a hydrogen atom or a methyl group;

R⁶ is a hydrogen, fluorine or chlorine atom or a methyl, methoxyl or hydroxy group;

X is an oxygen atom or a bond;

Y is an alkylene group of up to 6 carbon atoms or a bond; and

Z is an alkylene, alkenylene or alkynylene group of up to 10 carbon atoms; and

(e) a compound of formula (VIII) is represented by the following general formula:

$$R^1$$
 R^6
 R^7
 R^8
 R^8
 R^8
 R^8
 R^8

wherein

R is hydrogen or methyl,

R¹ is hydrogen, halogen, hydroxy, benzyloxy, amino or hydroxymethyl,

R² is hydrogen, hydroxymethyl, -NHR³, -SO₂NR⁴R⁴ or nitro,

R³ is hydrogen, methyl, -SO₂R⁵, formyl or -CONHR⁶,

R⁴ and R⁴ are independently hydrogen, lower alkyl or benzyl,

R⁵ is lower alkyl, benzyl or -NR⁴R⁴,

R⁶ is hydrogen or lower alkyl,

R^{6'} is hydrogen or lower alkyl,

R9 is hydrogen, amino, acetylamino or hydroxy, and

X is N, O, S or methylene;

provided that when X is N, O or S,

then R⁹ is hydrogen, either R⁷ or R⁸ is hydrogen, and the other is hydrogen, amino, acetylamino or hydroxy; and

provided that when X is methylene, then both R^7 and R^8 are hydrogen.

--19. (Twice amended) A commercial package comprising:

[the compound as defined in Claim 10]

a compound, which is a β_3 adrenergic receptor agonist, having a general formula selected from the group consisting of formula (IV), (V), (VI), (VII) and (VIII),

or a salt or prodrug thereof, or for the compound of formula (VII) an ester or amide thereof;

wherein

(a) a compound of formula (IV) is represented by the following general formula: wherein

OH
$$R^6$$
 R^3 $CH-CH-NH-C-A$ R^5 R^4 R^5 (IV)

R¹ is lower alkyl, aryl or arylalkyl;

R² is hydrogen, hydroxy, alkoxy, -CH₂OH, cyano, -C(O)OR⁷, -CO₂H, -CONH₂,

tetrazole, -CH2NH2 or halogen;

R³ is hydrogen, alkyl, heterocycle or

R⁴ is hydrogen, alkyl or B;

 R^5 , $R^{5'}$, R^8 , $R^{8'}$ and $R^{8''}$ are independently hydrogen, alkoxy, lower alkyl, halogen, -OH, -CN, -(CH₂)_nNR⁶COR⁷, -CON(R⁶)R^{6'}, -CON(R⁶)OR^{6'}, -CO₂R⁶, -SR⁷, -SOR⁷, -SO₂R⁷, -N(R⁶)SO₂R¹, -N(R⁶)R^{6'}, -NR⁶COR⁷, -OCH₂CON(R⁶)R^{6'}, -OCH₂CO₂R⁷ or aryl; or

R⁵ and R⁵ or R⁸ and R⁸ may together with the carbon atoms to which they are attached form an aryl or heterocycle;

R⁶ and R⁶ are independently hydrogen or lower alkyl; and

R⁷ is lower alkyl;

R⁹ and R⁹ are independently hydrogen, lower alkyl, alkyl, cycloalkyl, arylalkyl, aryl, heteroaryl; or

R⁹ and R⁹ may together with the nitrogen atom to which they are attached form a heterocycle;

A is a bond, $-(CH_2)_n$ - or -CH(B)-, wherein n is an integer of 1, 2 or 3 and B is -CN, $-CON(R^9)R^{9}$ - or $-CO_2R^7$;

with the proviso that when A is a bond or $-(CH_2)_n$ - and R^3 is hydrogen or unsubstituted alkyl, then R^4 is B or substituted alkyl;

(b) a compound of formula (V) is represented by the following general formula:

wherein

$$(R^{1})_{n}^{n} \xrightarrow{OH} \begin{array}{c} H & R^{2} \\ - CHCH_{2}N - C \\ - CHCH_{2}N - C \\ - R^{3} \end{array} \times \begin{array}{c} R^{4} \\ - N - SO_{2}(CH_{2})_{r} - R^{7} \\ - R^{6} \end{array}$$

n is 0 to 5;

m is 0 or 1;

r is 0 to 3;

A is pyridinyl;

 R^1 is (1) hydroxy, (2) oxo, (3) halogen, (4) cyano, (5) NR^8R^8 , (6) SR^8 , (7) trifluoromethyl, (8) C_1 - C_{10} alkyl, (9) OR^8 , (10) SO_2R^9 , (11) $OCOR^9$, (12) NR^8COR^9 , (13) COR^9 , (14) $NR^8SO_2R^9$, (15) $NR^8CO_2R^8$, or (16) C_1 - C_{10} alkyl substituted by hydroxy, halogen, cyano, NR^8R^8 , SR^8 , trifluoromethyl, OR^8 , C_3 - C_8 cycloalkyl, phenyl, NR^8COR^9 , COR^9 , SO_2R^9 , $OCOR^9$, $NR^8SO_2R^9$ or $NR^8CO_2R^8$;

 R^2 and R^3 are independently (1) hydrogen, (2) C_1 - C_{10} alkyl or (3) C_1 - C_{10} alkyl with 1 to 4 substituents selected from hydroxy, C_1 - C_{10} alkoxy, or halogen;

R⁴ and R⁵ are independently (1) hydrogen, (2) C₁-C₁₀ alkyl, (3) halogen, (4) NHR⁸, (5) OR⁸, (6) SO₂R⁹ or (7) NHSO₂R⁹;

 R^6 is (1) hydrogen or (2) C_1 - C_{10} alkyl;

 R^7 is Z- $(R^{1a})_n$;

 R^{1a} is (1) R^1 , (2) C_3 - C_8 cycloalkyl, (3) phenyl optionally substituted with up to 4 groups independently selected from R^8 , NR^8R^8 , OR^8 , SR^8 or halogen, or (4) 5 or 6-membered heterocycle with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen, optionally substituted with up to four groups independently selected from oxo, R^8 , NR^8R^8 , OR^8 , SR^8 , or halogen;

Z is (1) phenyl, (2) naphthyl, (3) or a 5 or 6-membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen, (4) a benzene ring fused to a C_3 - C_8 cycloalkyl ring, (5) a benzene ring fused to a 5 or 6-membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen, (6) a 5 or 6-membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen fused to a 5 or 6-membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen, or (7) a 5 or 6-membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen fused to a C_3 - C_8 cycloalkyl ring;

 R^8 is (1) hydrogen, (2) C_1 - C_{10} alkyl, (3) C_3 - C_8 cycloalkyl, (4) Z optionally having 1 to 4 substituents selected from halogen, nitro, oxo, $NR^{10}R^{10}$, C_1 - C_{10} alkyl, C_1 - C_{10} alkoxy, C_1 - C_{10} alkylthio, and C_1 - C_{10} alkyl having 1 to 4 substituents selected from hydroxy, halogen, CO_2 -H, CO_2 - C_1 - C_{10} alkyl, SO_2 - C_1 - C_{10} alkyl, C_3 - C_8 cycloalkyl, C_1 - C_{10} alkoxy, or Z optionally substituted by from 1 to 3 halogen, C_1 - C_{10} alkyl or C_1 - C_{10} alkoxy, or (5) C_1 - C_{10} alkyl having 1

to 4 substituents selected from hydroxy, halogen, CO_2H , $CO_2-C_1-C_{10}$ alkyl, $SO_2-C_1-C_{10}$ alkyl, C_3-C_8 cycloalkyl, C_1-C_{10} alkoxy, C_1-C_{10} alkyl, or Z optionally substituted by from 1 to 4 halogen, C_1-C_{10} alkyl or C_1-C_{10} alkoxy;

R⁹ is (1) R⁸ or (2) NR⁸R⁸; and

 R^{10} is (1) C_1 - C_{10} alkyl, or (2) two R^{10} groups together with the N to which they are attached forming a 5 or 6-membered ring optionally substituted with C_1 - C_{10} alkyl;

(c) a compound of formula (VI) is:

$$X$$
 CH
 CH
 CH
 CH
 CH
 OR
 (VI)

wherein

X is hydrogen, halogen, trifluoromethyl or lower alkyl, and

R is hydrogen; lower alkyl which may have a suitable substituent selected from the group consisting of $\operatorname{cyclo}(C_3-C_7)$ alkyl, hydroxy, lower alkoxy, carboxy and lower alkoxycarbonyl; $\operatorname{cyclo}(C_3-C_7)$ alkyl or lower alkanoyl;

(d) a compound of formula (VII) is represented by the following general formula:

$$R^{2}$$
 $CHOH-CH_{2}-NH-C(R^{6})R^{7}-Y-X$
 $CHOH-CH_{2}-NH-C(R^{6})R^{7}-Y-X$
 $CHOH-CH_{2}-NH-C(R^{6})R^{7}-Y-X$
 $CHOH-CH_{2}-NH-C(R^{6})R^{7}-Y-X$

wherein

R¹ is a hydrogen, fluorine, chlorine or bromine atom or a hydroxyl, hydroxymethyl, methyl, methoxyl, amino, formamido, acetamido, methylsulphonylamido, nitro, benzyloxy, methylsulphonylmethyl, ureido, trifluoromethyl or p-methoxybenzylamino group;

R² is a hydrogen, fluorine, chlorine or bromine atom or a hydroxyl group; R³ is a hydrogen, chlorine or bromine atom or a hydroxyl group, R⁴ is a hydrogen atom or a methyl group;

R⁵ is a hydrogen atom or a methyl group;

R⁶ is a hydrogen, fluorine or chlorine atom or a methyl, methoxyl or hydroxy group;

X is an oxygen atom or a bond;

Y is an alkylene group of up to 6 carbon atoms or a bond; and

Z is an alkylene, alkenylene or alkynylene group of up to 10 carbon atoms; and

(e) a compound of formula (VIII) is represented by the following general formula:

$$R^1$$
 R^6
 R^7
 R^8
 R^8
 R^8
 R^8
 R^8

wherein

R is hydrogen or methyl,

R¹ is hydrogen, halogen, hydroxy, benzyloxy, amino or hydroxymethyl,

R² is hydrogen, hydroxymethyl, -NHR³, -SO₂NR⁴R⁴ or nitro,

R³ is hydrogen, methyl, -SO₂R⁵, formyl or -CONHR⁶,

R⁴ and R⁴ are independently hydrogen, lower alkyl or benzyl,

R⁵ is lower alkyl, benzyl or -NR⁴R⁴',

R⁶ is hydrogen or lower alkyl,

R^{6'} is hydrogen or lower alkyl,

R⁹ is hydrogen, amino, acetylamino or hydroxy, and

X is N, O, S or methylene;

provided that when X is N, O or S,

then R⁹ is hydrogen, either R⁷ or R⁸ is hydrogen, and the other is hydrogen, amino, acetylamino or hydroxy; and

provided that when X is methylene,

then both R⁷ and R⁸ are hydrogen.

and

written matter associated therewith,

wherein the written matter states that the pharmaceutical composition can or should

be used for preventing and/or treating dysuria.

20. (Twice amended) An article of manufacture comprising:

a packaging material and

the compound [as defined in Claim 10],

a compound, which is a β_3 adrenergic receptor agonist, having a general formula selected from the group consisting of formula (IV), (V), (VI), (VII) and (VIII),

or a salt or prodrug thereof, or for the compound of formula (VII) an ester or amide thereof;

wherein

(a) a compound of formula (IV) is represented by the following general formula: wherein

OH
$$R^6$$
 R^3 $CH-CH-NH-C-A$ R^5

NHSO₂ R^1
(IV)

R¹ is lower alkyl, aryl or arylalkyl;

R² is hydrogen, hydroxy, alkoxy, -CH₂OH, cyano, -C(O)OR⁷, -CO₂H, -CONH₂, tetrazole, -CH₂NH₂ or halogen;

R³ is hydrogen, alkyl, heterocycle or

R4 is hydrogen, alkyl or B;

 R^5 , $R^{5'}$, R^8 , $R^{8'}$ and $R^{8''}$ are independently hydrogen, alkoxy, lower alkyl, halogen, -OH, -CN, -(CH₂)_nNR⁶COR⁷, -CON(R⁶)R^{6'}, -CON(R⁶)OR^{6'}, -CO₂R⁶, -SR⁷, -SOR⁷, -SO₂R⁷, -N(R⁶)SO₂R¹, -N(R⁶)R^{6'}, -NR⁶COR⁷, -OCH₂CON(R⁶)R^{6'}, -OCH₂CO₂R⁷ or aryl; or

R⁵ and R⁵ or R⁸ and R⁸ may together with the carbon atoms to which they are attached form an aryl or heterocycle;

R⁶ and R⁶ are independently hydrogen or lower alkyl; and

R⁷ is lower alkyl;

R⁹ and R⁹ are independently hydrogen, lower alkyl, alkyl, cycloalkyl, arylalkyl, aryl, heteroaryl; or

R⁹ and R⁹ may together with the nitrogen atom to which they are attached form a heterocycle;

A is a bond, $-(CH_2)_n$ - or -CH(B)-, wherein n is an integer of 1, 2 or 3 and B is -CN, $-CON(R^9)R^{9}$ - or $-CO_2R^7$;

with the proviso that when A is a bond or $-(CH_2)_n$ - and R^3 is hydrogen or unsubstituted alkyl, then R^4 is B or substituted alkyl;

(b) a compound of formula (V) is represented by the following general formula:

wherein

n is 0 to 5;

m is 0 or 1;

r is 0 to 3;

A is pyridinyl;

R¹ is (1) hydroxy, (2) oxo, (3) halogen, (4) cyano, (5) NR⁸R⁸, (6) SR⁸, (7) trifluoromethyl, (8) C₁-C₁₀ alkyl, (9) OR⁸, (10) SO₂R⁹, (11) OCOR⁹, (12) NR⁸COR⁹, (13) COR⁹, (14) NR⁸SO₂R⁹, (15) NR⁸CO₂R⁸, or (16) C₁-C₁₀ alkyl substituted by hydroxy, halogen, cyano, NR⁸R⁸, SR⁸, trifluoromethyl, OR⁸, C₃-C₈ cycloalkyl, phenyl, NR⁸COR⁹, COR⁹, SO₂R⁹, OCOR⁹, NR⁸SO₂R⁹ or NR⁸CO₂R⁸;

 R^2 and R^3 are independently (1) hydrogen, (2) C_1 - C_{10} alkyl or (3) C_1 - C_{10} alkyl with 1 to 4 substituents selected from hydroxy, C_1 - C_{10} alkoxy, or halogen;

 R^4 and R^5 are independently (1) hydrogen, (2) C_1 - C_{10} alkyl, (3) halogen, (4) NHR⁸, (5) OR⁸, (6) SO₂R⁹ or (7) NHSO₂R⁹;

 R^6 is (1) hydrogen or (2) C_1 - C_{10} alkyl; R^7 is Z- $(R^{1a})_n$;

 R^{1a} is (1) R^{1} , (2) C_{3} - C_{8} cycloalkyl, (3) phenyl optionally substituted with up to 4 groups independently selected from R^{8} , $NR^{8}R^{8}$, OR^{8} , SR^{8} or halogen, or (4) 5 or 6-membered heterocycle with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen, optionally substituted with up to four groups independently selected from oxo, R^{8} , $NR^{8}R^{8}$, OR^{8} , SR^{8} , or halogen;

Z is (1) phenyl, (2) naphthyl, (3) or a 5 or 6-membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen, (4) a benzene ring fused to a C_3 - C_8 cycloalkyl ring, (5) a benzene ring fused to a 5 or 6-membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen, (6) a 5 or 6-membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen fused to a 5 or 6-membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen, or (7) a 5 or 6-membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen fused to a C_3 - C_8 cycloalkyl ring;

 R^8 is (1) hydrogen, (2) C_1 - C_{10} alkyl, (3) C_3 - C_8 cycloalkyl, (4) Z optionally having 1 to 4 substituents selected from halogen, nitro, oxo, $NR^{10}R^{10}$, C_1 - C_{10} alkyl, C_1 - C_{10} alkoxy, C_1 - C_{10} alkylthio, and C_1 - C_{10} alkyl having 1 to 4 substituents selected from hydroxy, halogen, CO_2 H, CO_2 - C_1 - C_{10} alkyl, SO_2 - C_1 - C_{10} alkyl, C_3 - C_8 cycloalkyl, C_1 - C_{10} alkoxy, or Z optionally substituted by from 1 to 3 halogen, C_1 - C_{10} alkyl or C_1 - C_{10} alkoxy, or (5) C_1 - C_{10} alkyl having 1 to 4 substituents selected from hydroxy, halogen, CO_2 H, CO_2 - C_1 - C_{10} alkyl, SO_2 - C_1 - C_{10} alkyl, C_3 - C_8 cycloalkyl, C_1 - C_{10} alkoxy, C_1 - C_{10} alkyl, or Z optionally substituted by from 1 to 4 halogen, C_1 - C_{10} alkyl or C_1 - C_{10} alkoxy;

R⁹ is (1) R⁸ or (2) NR⁸R⁸; and

 R^{10} is (1) C_1 - C_{10} alkyl, or (2) two R^{10} groups together with the N to which they are attached forming a 5 or 6-membered ring optionally substituted with C_1 - C_{10} alkyl;

(c) a compound of formula (VI) is:

$$X$$
 $CH-CH_2-NH$
 OR
 OR
 OR

wherein

X is hydrogen, halogen, trifluoromethyl or lower alkyl, and

R is hydrogen; lower alkyl which may have a suitable substituent selected from the group consisting of $cyclo(C_3-C_7)$ alkyl, hydroxy, lower alkoxy, carboxy and lower alkoxycarbonyl; $cyclo(C_3-C_7)$ alkyl or lower alkanoyl;

(d) a compound of formula (VII) is represented by the following general formula:

$$R^{2}$$
 $CHOH-CH_{2}-NH-C(R^{6})R^{7}-Y-X$
 $O-Z-CO_{2}H$
(VII)

wherein

R¹ is a hydrogen, fluorine, chlorine or bromine atom or a hydroxyl, hydroxymethyl, methyl, methoxyl, amino, formamido, acetamido, methylsulphonylamido, nitro, benzyloxy, methylsulphonylmethyl, ureido, trifluoromethyl or p-methoxybenzylamino group;

R² is a hydrogen, fluorine, chlorine or bromine atom or a hydroxyl group;

R³ is a hydrogen, chlorine or bromine atom or a hydroxyl group,

R⁴ is a hydrogen atom or a methyl group;

R⁵ is a hydrogen atom or a methyl group;

R⁶ is a hydrogen, fluorine or chlorine atom or a methyl, methoxyl or hydroxy group;

X is an oxygen atom or a bond;

Y is an alkylene group of up to 6 carbon atoms or a bond; and

Z is an alkylene, alkenylene or alkynylene group of up to 10 carbon atoms; and

(e) a compound of formula (VIII) is represented by the following general formula:

$$R^1$$
 R^6
 R^7
 R^8
 R^8
 R^8
 R^8
 R^8

wherein

R is hydrogen or methyl,

R¹ is hydrogen, halogen, hydroxy, benzyloxy, amino or hydroxymethyl,

R² is hydrogen, hydroxymethyl, -NHR³, -SO₂NR⁴R^{4'} or nitro,

R³ is hydrogen, methyl, -SO₂R⁵, formyl or -CONHR⁶',

R⁴ and R⁴ are independently hydrogen, lower alkyl or benzyl,

R⁵ is lower alkyl, benzyl or -NR⁴R⁴',

R⁶ is hydrogen or lower alkyl,

R⁶ is hydrogen or lower alkyl,

R⁹ is hydrogen, amino, acetylamino or hydroxy, and

X is N, O, S or methylene;

provided that when X is N, O or S,

then R⁹ is hydrogen, either R⁷ or R⁸ is hydrogen, and the other is hydrogen, amino, acetylamino or hydroxy; and

provided that when X is methylene,

then both R7 and R8 are hydrogen

wherein said packaging material comprises a label or a written material which indicates that [the compound defined in Claim 10] said compound can or should be used for preventing and/or treating dysuria.--

REMARKS

A Notice of Allowance has been received in the above-identified application, but the issue fee has not, as yet, been paid.

Minor editorial errors have been corrected in Claim 10. Specifically, in the definition of compound (a) substituent R¹, the spelling of the term "arylalkyl" has been corrected; in the definition of compound (b), substituent R¹ at (16) the term "C1-C₁₀" has replaced by "C₁-C₁₀" and for X at (2) the term -CH₂- corrected to --CH₂-CH₂- (see the specification, page 34, line 16).

The amendments to dependent Claims 17-20 are lengthy, however, these claims have merely been redrafted in independent form by replacing "as defined by Claim 10" with the actual description of the compounds described by Claim 10. Accordingly, the Applicants do not believe that any new matter has been introduced.

In view of the nature of the errors no new search is required.

A check in the amount of \$252.00 is attached to cover fees for converting dependent Claims 17-20 to independent claims. Please charge any additional fees for the papers being

filed herewith and for which no check is enclosed herewith, or credit any overpayment to deposit Account 15-0030.

Information Disclosure Statement

The Applicants respectfully request that the Examiner acknowledge consideration of the documents cited on the Information Disclosure Statement (IDS) filed February 14, 2002. For the convenience of the Examiner a copy of Form 1449 from this IDS is attached to this response.

Foreign Priority

The Applicants respectfully request that the Examiner provide written acknowledgement that foreign priority documents Australia, PP2826, filed April 6, 1998 and Australia PP5058, filed August 4, 1998 have been received in U.S. Application 09/646,878. Applicants also request that the Examiner correct the indication that a claim for domestic priority under 35 U.S.C. 119(e) (to a provisional application) had been made.

Respectfully submitted,

OBLON, SPIVAK, McCLELLAND,

MAIER & NEUSTADT, P.C.

Norman F. Oblon Attorney of Record

Registration No.: 24,618

Thomas M. Cunningham Registration No.: 45,394

FAX NO.: (703) 413-2220

PHONE NO.: (703) 413-3000

NFO:TMC:krs

I:\atty\Tmc\2003-06\219501-Amend312.wpd

DOCKET NO.: 219501US0CONT

SERIAL NO.: 10/074,020

MARKED UP COPY OF AMENDMENT

--10. (Twice amended) A method for the prophylactic and/or therapeutic treatment of dysuria that comprises:

administering to a human being or an animal an effective amount of a compound, which is a β_3 adrenergic receptor agonist, having a general formula selected from the group consisting of formula (IV), (V), (VI), (VII) and (VIII),

or a salt or prodrug thereof, or for the compound of formula (VII) an ester or amide thereof;

wherein

(a) a compound of formula (IV) is represented by the following general formula: wherein

OH
$$R^6$$
 R^3 $CH-CH-NH-C-A$ R^5 R^5 R^5 R^5 R^5 R^5

R¹ is lower alkyl, aryl or [arylakyl] arylalkyl;

R² is hydrogen, hydroxy, alkoxy, -CH₂OH, cyano, -C(O)OR⁷, -CO₂H, -CONH₂, tetrazole, -CH₂NH₂ or halogen;

R³ is hydrogen, alkyl, heterocycle or

R⁴ is hydrogen, alkyl or B;

 $R^5, R^{5\prime}, R^8, R^{8\prime} \text{ and } R^{8\prime\prime} \text{ are independently hydrogen, alkoxy, lower alkyl, halogen,} \\ -OH, -CN, -(CH_2)_nNR^6COR^7, -CON(R^6)R^{6\prime}, -CON(R^6)OR^{6\prime}, -CO_2R^6, -SR^7, -SOR^7, -SO_2R^7,$

 $-N(R^6)SO_2R^1$, $-N(R^6)R^{61}$, $-NR^6COR^7$, $-OCH_2CON(R^6)R^{61}$, $-OCH_2CO_2R^7$ or aryl; or

R⁵ and R⁵ or R⁸ and R⁸ may together with the carbon atoms to which they are attached form an aryl or heterocycle;

R⁶ and R⁶ are independently hydrogen or lower alkyl; and

R⁷ is lower alkyl;

R⁹ and R⁹ are independently hydrogen, lower alkyl, alkyl, cycloalkyl, arylalkyl, aryl, heteroaryl; or

R⁹ and R⁹ may together with the nitrogen atom to which they are attached form a heterocycle;

A is a bond, $-(CH_2)_n$ - or -CH(B)-, wherein n is an integer of 1, 2 or 3 and B is -CN, $-CON(R^9)R^{91}$ - or $-CO_2R^7$;

with the proviso that when A is a bond or $-(CH_2)_n$ - and R^3 is hydrogen or unsubstituted alkyl, then R^4 is B or substituted alkyl;

(b) a compound of formula (V) is represented by the following general formula:

wherein

n is 0 to 5;

m is 0 or 1;

r is 0 to 3;

A is pyridinyl;

 R^1 is (1) hydroxy, (2) oxo, (3) halogen, (4) cyano, (5) NR^8R^8 , (6) SR^8 , (7) trifluoromethyl, (8) C_1 - C_{10} alkyl, (9) OR^8 , (10) SO_2R^9 , (11) $OCOR^9$, (12) NR^8COR^9 , (13) COR^9 , (14) $NR^8SO_2R^9$, (15) $NR^8CO_2R^8$, or (16) $[C_1$ -C10] $\underline{C_1}$ - $\underline{C_{10}}$ alkyl substituted by hydroxy, halogen, cyano, NR^8R^8 , SR^8 , trifluoromethyl, OR^8 , C_3 - C_8 cycloalkyl, phenyl, NR^8COR^9 , COR^9 , SO_2R^9 , $OCOR^9$, $NR^8SO_2R^9$ or $NR^8CO_2R^8$;

 R^2 and R^3 are independently (1) hydrogen, (2) C_1 - C_{10} alkyl or (3) C_1 - C_{10} alkyl with 1 to 4 substituents selected from hydroxy, C_1 - C_{10} alkoxy, or halogen;

X is (1) -CH₂-, (2) -CH₂- $\frac{\text{CH}_{2}}{\text{CH}_{2}}$, (3) -CH=CH- or (4) -CH₂O-;

 R^4 and R^5 are independently (1) hydrogen, (2) C_1 - C_{10} alkyl, (3) halogen, (4) NHR⁸, (5) OR⁸, (6) SO₂R⁹ or (7) NHSO₂R⁹;

 R^6 is (1) hydrogen or (2) C_1 - C_{10} alkyl;

 R^7 is $Z-(R^{1a})_n$;

R^{1a} is (1) R¹, (2) C₃-C₈ cycloalkyl, (3) phenyl optionally substituted with up to 4 groups independently selected from R⁸, NR⁸R⁸, OR⁸, SR⁸ or halogen, or (4) 5 or 6-membered heterocycle with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen, optionally substituted with up to four groups independently selected from oxo, R⁸, NR⁸R⁸, OR⁸, SR⁸, or halogen;

Z is (1) phenyl, (2) naphthyl, (3) or a 5 or 6-membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen, (4) a benzene ring fused to a C₃-C₈ cycloalkyl ring, (5) a benzene ring fused to a 5 or 6-membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen, (6) a 5 or 6-membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen fused to a 5 or 6-membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen, or (7) a 5 or 6-membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen fused to a C₃-C₈ cycloalkyl ring;

 R^8 is (1) hydrogen, (2) C_1 - C_{10} alkyl, (3) C_3 - C_8 cycloalkyl, (4) Z optionally having 1 to 4 substituents selected from halogen, nitro, oxo, $NR^{10}R^{10}$, C_1 - C_{10} alkyl, C_1 - C_{10} alkoxy, C_1 - C_{10} alkylthio, and C_1 - C_{10} alkyl having 1 to 4 substituents selected from hydroxy, halogen, CO_2 -H, CO_2 - C_1 - C_{10} alkyl, SO_2 - C_1 - C_{10} alkyl, C_3 - C_8 cycloalkyl, C_1 - C_{10} alkoxy, or Z optionally substituted by from 1 to 3 halogen, C_1 - C_{10} alkyl or C_1 - C_{10} alkoxy, or (5) C_1 - C_{10} alkyl having 1 to 4 substituents selected from hydroxy, halogen, CO_2 H, CO_2 - C_1 - C_{10} alkyl, SO_2 - C_1 - C_{10} alkyl, C_3 - C_8 cycloalkyl, C_1 - C_{10} alkoxy, C_1 - C_{10} alkyl, or Z optionally substituted by from 1 to 4 halogen, C_1 - C_{10} alkyl or C_1 - C_{10} alkoxy;

 R^9 is (1) R^8 or (2) NR^8R^8 ; and

 R^{10} is (1) C_1 - C_{10} alkyl, or (2) two R^{10} groups together with the N to which they are attached forming a 5 or 6-membered ring optionally substituted with C_1 - C_{10} alkyl;

(c) a compound of formula (VI) is:

$$X \xrightarrow{OH} CH - CH_2 - NH - OR$$
 (VI)

wherein

X is hydrogen, halogen, trifluoromethyl or lower alkyl, and

R is hydrogen; lower alkyl which may have a suitable substituent selected from the group consisting of $\text{cyclo}(C_3\text{-}C_7)$ alkyl, hydroxy, lower alkoxy, carboxy and lower alkoxycarbonyl; $\text{cyclo}(C_3\text{-}C_7)$ alkyl or lower alkanoyl;

(d) a compound of formula (VII) is represented by the following general formula:

$$R^{2}$$
 $CHOH-CH_{2}-NH-C(R^{6})R^{7}-Y-X$
 $CHOH-CH_{2}-NH-C(R^{6})R^{7}-Y-X$
 $CHOH-CH_{2}-NH-C(R^{6})R^{7}-Y-X$
 $CHOH-CH_{2}-NH-C(R^{6})R^{7}-Y-X$

wherein

R¹ is a hydrogen, fluorine, chlorine or bromine atom or a hydroxyl, hydroxymethyl, methyl, methoxyl, amino, formamido, acetamido, methylsulphonylamido, nitro, benzyloxy, methylsulphonylmethyl, ureido, trifluoromethyl or p-methoxybenzylamino group;

R² is a hydrogen, fluorine, chlorine or bromine atom or a hydroxyl group;

R³ is a hydrogen, chlorine or bromine atom or a hydroxyl group,

R⁴ is a hydrogen atom or a methyl group;

R⁵ is a hydrogen atom or a methyl group;

R⁶ is a hydrogen, fluorine or chlorine atom or a methyl, methoxyl or hydroxy group;

X is an oxygen atom or a bond;

Y is an alkylene group of up to 6 carbon atoms or a bond; and

Z is an alkylene, alkenylene or alkynylene group of up to 10 carbon atoms; and

(e) a compound of formula (VIII) is represented by the following general formula:

$$R^1$$
 R^6
 R^7
 R^8
 R^8
 R^8
 R^8
 R^8

wherein

R is hydrogen or methyl,

R¹ is hydrogen, halogen, hydroxy, benzyloxy, amino or hydroxymethyl,

R² is hydrogen, hydroxymethyl, -NHR³, -SO₂NR⁴R⁴ or nitro,

R³ is hydrogen, methyl, -SO₂R⁵, formyl or -CONHR⁶,

R⁴ and R⁴ are independently hydrogen, lower alkyl or benzyl,

R⁵ is lower alkyl, benzyl or -NR⁴R⁴,

R⁶ is hydrogen or lower alkyl,

R^{6'} is hydrogen or lower alkyl,

R⁹ is hydrogen, amino, acetylamino or hydroxy, and

X is N, O, S or methylene;

provided that when X is N, O or S,

then R⁹ is hydrogen, either R⁷ or R⁸ is hydrogen, and the other is hydrogen, amino, acetylamino or hydroxy; and

provided that when X is methylene,

then both R⁷ and R⁸ are hydrogen.

--17. (Twice amended) A method for the prophylactic and/or the therapeutic treatment of pollakiuria or urinary incontinence comprising administering to a subject in need thereof an effective amount of

[the compound as defined in Claim 10 or a pharmaceutically acceptable salt thereof]

a compound, which is a β₃ adrenergic receptor agonist, having a general formula

selected from the group consisting of formula (IV), (V), (VI), (VII) and (VIII),

or a salt or prodrug thereof, or for the compound of formula (VII) an ester or amide

thereof:

wherein

(a) a compound of formula (IV) is represented by the following general formula: wherein

OH
$$R^6$$
 R^3 $CH-CH-NH-C-A$ R^5 R^5 R^5 R^5 R^5

R¹ is lower alkyl, aryl or arylalkyl;

R² is hydrogen, hydroxy, alkoxy, -CH₂OH, cyano, -C(O)OR⁷, -CO₂H, -CONH₂, tetrazole, -CH₂NH₂ or halogen;

R³ is hydrogen, alkyl, heterocycle or

R⁴ is hydrogen, alkyl or B;

 R^5 , R^5 , R^8 , R^{8} and R^{8} are independently hydrogen, alkoxy, lower alkyl, halogen, -OH, -CN, -(CH₂)_nNR⁶COR⁷, -CON(R⁶)R⁶, -CON(R⁶)OR⁶, -CO₂R⁶, -SR⁷, -SOR⁷, -SO₂R⁷, -N(R⁶)SO₂R¹, -N(R⁶)R⁶, -NR⁶COR⁷, -OCH₂CON(R⁶)R⁶, -OCH₂CO₂R⁷ or aryl; or

R⁵ and R⁵ or R⁸ and R⁸ may together with the carbon atoms to which they are attached form an aryl or heterocycle;

R⁶ and R⁶ are independently hydrogen or lower alkyl; and

 R^7 is lower alkyl;

R⁹ and R⁹ are independently hydrogen, lower alkyl, alkyl, cycloalkyl, arylalkyl, aryl, heteroaryl; or

R⁹ and R⁹ may together with the nitrogen atom to which they are attached form a heterocycle;

A is a bond, -(CH₂)_n- or -CH(B)-, wherein n is an integer of 1, 2 or 3 and

B is -CN, -CON(R^9) R^9 '- or -CO₂ R^7 ;

with the proviso that when A is a bond or $-(CH_2)_n$ - and R³ is hydrogen or unsubstituted alkyl, then R⁴ is B or substituted alkyl;

(b) a compound of formula (V) is represented by the following general formula:

wherein

n is 0 to 5;

m is 0 or 1;

r is 0 to 3;

A is pyridinyl;

R¹ is (1) hydroxy, (2) oxo, (3) halogen, (4) cyano, (5) NR⁸R⁸, (6) SR⁸, (7) trifluoromethyl, (8) C₁-C₁₀ alkyl, (9) OR⁸, (10) SO₂R⁹, (11) OCOR⁹, (12) NR⁸COR⁹, (13) COR⁹, (14) NR⁸SO₂R⁹, (15) NR⁸CO₂R⁸, or (16) C₁-C₁₀ alkyl substituted by hydroxy, halogen, cyano, NR⁸R⁸, SR⁸, trifluoromethyl, OR⁸, C₃-C₈ cycloalkyl, phenyl, NR⁸COR⁹, COR⁹, SO₂R⁹, OCOR⁹, NR⁸SO₂R⁹ or NR⁸CO₂R⁸;

 R^2 and R^3 are independently (1) hydrogen, (2) C_1 - C_{10} alkyl or (3) C_1 - C_{10} alkyl with 1 to 4 substituents selected from hydroxy, C_1 - C_{10} alkoxy, or halogen;

X is (1) $-CH_2$ -, (2) $-CH_2$ - $-CH_2$ -, (3) -CH=-CH- or (4) $-CH_2$ O-;

 R^4 and R^5 are independently (1) hydrogen, (2) C_1 - C_{10} alkyl, (3) halogen, (4) NHR⁸, (5) OR^8 , (6) SO_2R^9 or (7) NHSO₂R⁹;

 R^6 is (1) hydrogen or (2) C_1 - C_{10} alkyl;

 R^7 is Z- $(R^{1a})_n$;

 R^{1a} is (1) R^{1} , (2) C_{3} - C_{8} cycloalkyl, (3) phenyl optionally substituted with up to 4 groups independently selected from R^{8} , $NR^{8}R^{8}$, OR^{8} , SR^{8} or halogen, or (4) 5 or 6-membered heterocycle with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen, optionally substituted with up to four groups independently selected from oxo, R^{8} , $NR^{8}R^{8}$, OR^{8} , SR^{8} , or halogen;

Z is (1) phenyl, (2) naphthyl, (3) or a 5 or 6-membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen, (4) a benzene ring fused to a C_3 - C_8 cycloalkyl ring, (5) a benzene ring fused to a 5 or 6-membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen, (6) a 5 or 6-membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen fused to a 5 or 6-membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen, or (7) a 5 or 6-membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen fused to a C_3 - C_8 cycloalkyl ring;

R⁸ is (1) hydrogen, (2) C_1 - C_{10} alkyl, (3) C_3 - C_8 cycloalkyl, (4) Z optionally having 1 to 4 substituents selected from halogen, nitro, oxo, NR¹⁰R¹⁰, C_1 - C_{10} alkyl, C_1 - C_{10} alkoxy, C_1 - C_{10} alkyl having 1 to 4 substituents selected from hydroxy, halogen, CO_2 H, CO_2 - C_1 - C_{10} alkyl, SO_2 - C_1 - C_{10} alkyl, C_3 - C_8 cycloalkyl, C_1 - C_{10} alkoxy, or C_1 optionally substituted by from 1 to 3 halogen, C_1 - C_1 0 alkyl or C_1 - C_1 0 alkyl, C_2 - C_1 - C_1 0 alkyl, C_3 - C_8 cycloalkyl, C_1 - C_1 0 alkyl, C_2 - C_1 - C_1 0 alkyl, C_3 - C_8 cycloalkyl, C_1 - C_1 0 alkyl, C_3 - C_8 cycloalkyl, C_1 - C_1 0 alkyl, or C_1 - C_1 0 alkyl, or C_1 - C_1 0 alkyl from 1 to 4 halogen, C_1 - C_1 0 alkyl or C_1 - C_1 0 alkoxy;

R⁹ is (1) R⁸ or (2) NR⁸R⁸; and

 R^{10} is (1) C_1 - C_{10} alkyl, or (2) two R^{10} groups together with the N to which they are attached forming a 5 or 6-membered ring optionally substituted with C_1 - C_{10} alkyl;

(c) a compound of formula (VI) is:

$$X$$
 CH
 CH
 CH
 CH
 CH
 OR
 (VI)

wherein

X is hydrogen, halogen, trifluoromethyl or lower alkyl, and

R is hydrogen; lower alkyl which may have a suitable substituent selected from the group consisting of $\text{cyclo}(C_3-C_7)$ alkyl, hydroxy, lower alkoxy, carboxy and lower alkoxycarbonyl; $\text{cyclo}(C_3-C_7)$ alkyl or lower alkanoyl;

(d) a compound of formula (VII) is represented by the following general formula:

$$R^{2}$$
 R^{6}
 $CHOH-CH_{2}-NH-C(R^{6})R^{7}-Y-X$
 $O-Z-CO_{2}H$
 (VII)

wherein

R¹ is a hydrogen, fluorine, chlorine or bromine atom or a hydroxyl, hydroxymethyl, methyl, methoxyl, amino, formamido, acetamido, methylsulphonylamido, nitro, benzyloxy, methylsulphonylmethyl, ureido, trifluoromethyl or p-methoxybenzylamino group;

R² is a hydrogen, fluorine, chlorine or bromine atom or a hydroxyl group;

R³ is a hydrogen, chlorine or bromine atom or a hydroxyl group,

 R^4 is a hydrogen atom or a methyl group;

R⁵ is a hydrogen atom or a methyl group;

R⁶ is a hydrogen, fluorine or chlorine atom or a methyl, methoxyl or hydroxy group;

X is an oxygen atom or a bond;

Y is an alkylene group of up to 6 carbon atoms or a bond; and

Z is an alkylene, alkenylene or alkynylene group of up to 10 carbon atoms; and (e) a compound of formula (VIII) is represented by the following general formula:

$$R^{1} \xrightarrow{QR} H \xrightarrow{N} Q \xrightarrow{X} X \xrightarrow{R^{9}} (VIII)$$

wherein

R is hydrogen or methyl,

R¹ is hydrogen, halogen, hydroxy, benzyloxy, amino or hydroxymethyl,

R² is hydrogen, hydroxymethyl, -NHR³, -SO₂NR⁴R⁴ or nitro,

R³ is hydrogen, methyl, -SO₂R⁵, formyl or -CONHR⁶,

R⁴ and R⁴ are independently hydrogen, lower alkyl or benzyl,

R⁵ is lower alkyl, benzyl or -NR⁴R⁴'.

R⁶ is hydrogen or lower alkyl,

R^{6'} is hydrogen or lower alkyl.

R9 is hydrogen, amino, acetylamino or hydroxy, and

X is N, O, S or methylene;

provided that when X is N, O or S,

then R⁹ is hydrogen, either R⁷ or R⁸ is hydrogen, and the other is hydrogen, amino, acetylamino or hydroxy; and

provided that when X is methylene,

then both R⁷ and R⁸ are hydrogen.

18. (Twice amended) A method for the prophylactic and/or the therapeutic treatment of nervous pollakiuria, neurogenic bladder dysfunction, nocturia, unstable bladder, cystospasm, chronic cystitis, chronic prostatitis, overflow incontinence, passive incontinence, reflex incontinence, urge incontinence, urinary stress incontinence comprising administering to a subject in need thereof an effective amount of a compound,

[as defined in Claim 10 or a pharmaceutically acceptable salt thereof]

which is a β_3 adrenergic receptor agonist, having a general formula selected from the group consisting of formula (IV), (V), (VI), (VII) and (VIII),

or a salt or prodrug thereof, or for the compound of formula (VII) an ester or amide thereof;

wherein

(a) a compound of formula (IV) is represented by the following general formula: wherein

OH
$$R^6$$
 R^3 $CH-CH-NH-C-A$ R^5 R^5 R^5 (IV)

R1 is lower alkyl, aryl or arylalkyl;

R² is hydrogen, hydroxy, alkoxy, -CH₂OH, cyano, -C(O)OR⁷, -CO₂H, -CONH₂,

tetrazole, -CH₂NH₂ or halogen;

R³ is hydrogen, alkyl, heterocycle or

R⁴ is hydrogen, alkyl or B;

 R^5 , R^5 , R^8 , R^8 and R^8 are independently hydrogen, alkoxy, lower alkyl, halogen, -OH, -CN, -(CH₂)_nNR⁶COR⁷, -CON(R⁶)R⁶, -CON(R⁶)OR⁶, -CO₂R⁶, -SR⁷, -SOR⁷, -SO₂R⁷, -N(R⁶)SO₂R¹, -N(R⁶)R⁶, -NR⁶COR⁷, -OCH₂CON(R⁶)R⁶, -OCH₂CO₂R⁷ or aryl; or

R⁵ and R⁵ or R⁸ and R⁸ may together with the carbon atoms to which they are attached form an aryl or heterocycle;

R⁶ and R⁶ are independently hydrogen or lower alkyl; and

R⁷ is lower alkyl;

R⁹ and R⁹ are independently hydrogen, lower alkyl, alkyl, cycloalkyl, arylalkyl, aryl, heteroaryl; or

R⁹ and R⁹' may together with the nitrogen atom to which they are attached form a heterocycle;

A is a bond, $-(CH_2)_n$ or -CH(B), wherein n is an integer of 1, 2 or 3 and B is -CN, $-CON(R^9)R^{91}$ or $-CO_7R^7$;

with the proviso that when A is a bond or $-(CH_2)_n$ and R^3 is hydrogen or unsubstituted alkyl, then R^4 is B or substituted alkyl;

(b) a compound of formula (V) is represented by the following general formula:

wherein

$$(R^{1})_{n}$$

$$OH \quad H \quad R^{2}$$

$$CHCH_{2}N - C \quad (X)_{m}$$

$$R^{3}$$

$$R^{5}$$

$$R^{6}$$

$$(V)$$

n is 0 to 5;

m is 0 or 1;

r is 0 to 3;

A is pyridinyl;

R¹ is (1) hydroxy, (2) oxo, (3) halogen, (4) cyano, (5) NR⁸R⁸, (6) SR⁸, (7) trifluoromethyl, (8) C_1 - C_{10} alkyl, (9) OR⁸, (10) SO₂R⁹, (11) OCOR⁹, (12) NR⁸COR⁹, (13) COR⁹, (14) NR⁸SO₂R⁹, (15) NR⁸CO₂R⁸, or (16) C_1 - C_{10} alkyl substituted by hydroxy, halogen, cyano, NR⁸R⁸, SR⁸, trifluoromethyl, OR⁸, C_3 - C_8 cycloalkyl, phenyl, NR⁸COR⁹, COR⁹, SO₂R⁹, OCOR⁹, NR⁸SO₂R⁹ or NR⁸CO₂R⁸;

 R^2 and R^3 are independently (1) hydrogen, (2) C_1 - C_{10} alkyl or (3) C_1 - C_{10} alkyl with 1 to 4 substituents selected from hydroxy, C_1 - C_{10} alkoxy, or halogen;

X is (1) $-CH_2CH_2$ -, (2) $-CH_2$ -, (3) -CH=CH- or (4) $-CH_2O$ -;

 R^4 and R^5 are independently (1) hydrogen, (2) C_1 - C_{10} alkyl, (3) halogen, (4) NHR⁸, (5) OR⁸, (6) SO₂R⁹ or (7) NHSO₂R⁹;

 R^6 is (1) hydrogen or (2) C_1 - C_{10} alkyl;

 R^7 is $Z-(R^{1a})_n$:

 R^{1a} is (1) R^{1} , (2) C_{3} - C_{8} cycloalkyl, (3) phenyl optionally substituted with up to 4 groups independently selected from R^{8} , $NR^{8}R^{8}$, OR^{8} , SR^{8} or halogen, or (4) 5 or 6-membered heterocycle with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen, optionally substituted with up to four groups independently selected from oxo, R^{8} , $NR^{8}R^{8}$, OR^{8} , SR^{8} , or halogen;

Z is (1) phenyl, (2) naphthyl, (3) or a 5 or 6-membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen, (4) a benzene ring fused to a C_3 - C_8 cycloalkyl ring, (5) a benzene ring fused to a 5 or 6-membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen, (6) a 5 or 6-membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen fused to a 5 or 6-membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen, or (7) a 5 or 6-membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen fused to a C_3 - C_8 cycloalkyl ring;

R⁸ is (1) hydrogen, (2) C_1 - C_{10} alkyl, (3) C_3 - C_8 cycloalkyl, (4) Z optionally having 1 to 4 substituents selected from halogen, nitro, oxo, NR¹⁰R¹⁰, C_1 - C_{10} alkyl, C_1 - C_{10} alkoxy, C_1 - C_{10} alkyl having 1 to 4 substituents selected from hydroxy, halogen, CO_2 H, CO_2 - C_1 - C_{10} alkyl, SO_2 - C_1 - C_{10} alkyl, C_3 - C_8 cycloalkyl, C_1 - C_{10} alkoxy, or C_1 optionally substituted by from 1 to 3 halogen, C_1 - C_{10} alkyl or C_1 - C_{10} alkoxy, or (5) C_1 - C_{10} alkyl having 1

to 4 substituents selected from hydroxy, halogen, CO_2H , $CO_2-C_1-C_{10}$ alkyl, $SO_2-C_1-C_{10}$ alkyl, C_3-C_8 cycloalkyl, C_1-C_{10} alkoxy, C_1-C_{10} alkyl, or Z optionally substituted by from 1 to 4 halogen, C_1-C_{10} alkyl or C_1-C_{10} alkoxy;

R⁹ is (1) R⁸ or (2) NR⁸R⁸; and

 R^{10} is (1) C_1 - C_{10} alkyl, or (2) two R^{10} groups together with the N to which they are attached forming a 5 or 6-membered ring optionally substituted with C_1 - C_{10} alkyl;

(c) a compound of formula (VI) is:

$$X$$
 $CH-CH_2-NH$
 OR
 OR
 OR

wherein

X is hydrogen, halogen, trifluoromethyl or lower alkyl, and

R is hydrogen; lower alkyl which may have a suitable substituent selected from the group consisting of $\text{cyclo}(C_3-C_7)$ alkyl, hydroxy, lower alkoxy, carboxy and lower alkoxycarbonyl; $\text{cyclo}(C_3-C_7)$ alkyl or lower alkanoyl;

(d) a compound of formula (VII) is represented by the following general formula:

$$R^2$$
 R^6
CHOH-CH₂-NH-C(R^6) R^7 -Y-X
 O -Z-CO₂H

wherein

R¹ is a hydrogen, fluorine, chlorine or bromine atom or a hydroxyl, hydroxymethyl, methyl, methoxyl, amino, formamido, acetamido, methylsulphonylamido, nitro, benzyloxy, methylsulphonylmethyl, ureido, trifluoromethyl or p-methoxybenzylamino group;

 R^2 is a hydrogen, fluorine, chlorine or bromine atom or a hydroxyl group; R^3 is a hydrogen, chlorine or bromine atom or a hydroxyl group, R⁴ is a hydrogen atom or a methyl group;

R⁵ is a hydrogen atom or a methyl group;

R⁶ is a hydrogen, fluorine or chlorine atom or a methyl, methoxyl or hydroxy group;

X is an oxygen atom or a bond;

Y is an alkylene group of up to 6 carbon atoms or a bond; and

Z is an alkylene, alkenylene or alkynylene group of up to 10 carbon atoms; and (e) a compound of formula (VIII) is represented by the following general formula:

$$R^1$$
 R^6
 R^7
 R^8
 R^8
 R^8
 R^8
 R^8

wherein

R is hydrogen or methyl,

R¹ is hydrogen, halogen, hydroxy, benzyloxy, amino or hydroxymethyl,

R² is hydrogen, hydroxymethyl, -NHR³, -SO₂NR⁴R⁴ or nitro,

R³ is hydrogen, methyl, -SO₂R⁵, formyl or -CONHR⁶,

R⁴ and R⁴ are independently hydrogen, lower alkyl or benzyl,

R⁵ is lower alkyl, benzyl or -NR⁴R⁴,

R⁶ is hydrogen or lower alkyl,

R^{6'} is hydrogen or lower alkyl,

R⁹ is hydrogen, amino, acetylamino or hydroxy, and

X is N, O, S or methylene;

provided that when X is N, O or S,

then R⁹ is hydrogen, either R⁷ or R⁸ is hydrogen, and the other is hydrogen, amino,

acetylamino or hydroxy; and

provided that when X is methylene,

then both R⁷ and R⁸ are hydrogen.

--19. (Twice amended) A commercial package comprising:

[the compound as defined in Claim 10]

a compound, which is a β_3 adrenergic receptor agonist, having a general formula selected from the group consisting of formula (IV), (V), (VI), (VII) and (VIII),

or a salt or prodrug thereof, or for the compound of formula (VII) an ester or amide thereof;

wherein

(a) a compound of formula (IV) is represented by the following general formula: wherein

OH
$$R^6$$
 R^3 $CH-CH-NH-C-A$ R^5

NHSO₂ R^1
(IV)

R¹ is lower alkyl, aryl or arylalkyl;

R² is hydrogen, hydroxy, alkoxy, -CH₂OH, cyano, -C(O)OR⁷, -CO₂H, -CONH₂, tetrazole, -CH₂NH₂ or halogen;

R³ is hydrogen, alkyl, heterocycle or

R⁴ is hydrogen, alkyl or B;

 R^5 , R^5 , R^8 , R^8 and R^8 are independently hydrogen, alkoxy, lower alkyl, halogen, -OH, -CN, -(CH₂)_nNR⁶COR⁷, -CON(R⁶)R⁶, -CON(R⁶)OR⁶, -CO₂R⁶, -SR⁷, -SOR⁷, -SO₂R⁷, -N(R⁶)SO₂R¹, -N(R⁶)R⁶, -NR⁶COR⁷, -OCH₂CON(R⁶)R⁶, -OCH₂CO₂R⁷ or aryl; or

R⁵ and R⁵ or R⁸ and R⁸ may together with the carbon atoms to which they are attached form an aryl or heterocycle;

R⁶ and R⁶ are independently hydrogen or lower alkyl; and

 R^7 is lower alkyl;

R⁹ and R⁹ are independently hydrogen, lower alkyl, alkyl, cycloalkyl, arylalkyl, aryl, heteroaryl; or

R⁹ and R⁹ may together with the nitrogen atom to which they are attached form a heterocycle;

A is a bond, $-(CH_2)_n$ - or -CH(B)-, wherein n is an integer of 1, 2 or 3 and B is -CN, $-CON(R^9)R^{91}$ - or $-CO_2R^7$;

with the proviso that when A is a bond or $-(CH_2)_n$ and R^3 is hydrogen or unsubstituted alkyl, then R^4 is B or substituted alkyl;

(b) a compound of formula (V) is represented by the following general formula:

wherein

n is 0 to 5;

m is 0 or 1;

r is 0 to 3;

A is pyridinyl;

R¹ is (1) hydroxy, (2) oxo, (3) halogen, (4) cyano, (5) NR 8 R 8 , (6) SR 8 , (7) trifluoromethyl, (8) C₁-C₁₀ alkyl, (9) OR 8 , (10) SO₂R 9 , (11) OCOR 9 , (12) NR 8 COR 9 , (13) COR 9 , (14) NR 8 SO₂R 9 , (15) NR 8 CO₂R 8 , or (16) C₁-C₁₀ alkyl substituted by hydroxy, halogen, cyano, NR 8 R 8 , SR 8 , trifluoromethyl, OR 8 , C₃-C₈ cycloalkyl, phenyl, NR 8 COR 9 , COR 9 , SO₂R 9 , OCOR 9 , NR 8 SO₂R 9 or NR 8 CO₂R 8 ;

 R^2 and R^3 are independently (1) hydrogen, (2) C_1 - C_{10} alkyl or (3) C_1 - C_{10} alkyl with 1 to 4 substituents selected from hydroxy, C_1 - C_{10} alkoxy, or halogen;

<u>X is (1) -CH₂-, (2) -CH₂-CH₂-, (3) -CH=CH- or (4) -CH₂O-;</u>

 R^4 and R^5 are independently (1) hydrogen, (2) C_1 - C_{10} alkyl, (3) halogen, (4) NHR⁸, (5) OR⁸, (6) SO₂R⁹ or (7) NHSO₂R⁹;

 R^6 is (1) hydrogen or (2) C_1 - C_{10} alkyl;

 R^7 is $Z-(R^{1a})_n$:

 R^{1a} is (1) R^{1} , (2) C_{3} - C_{8} cycloalkyl, (3) phenyl optionally substituted with up to 4 groups independently selected from R^{8} , $NR^{8}R^{8}$, OR^{8} , SR^{8} or halogen, or (4) 5 or 6-membered

heterocycle with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen, optionally substituted with up to four groups independently selected from oxo, R⁸, NR⁸R⁸, OR⁸, SR⁸, or halogen;

Z is (1) phenyl, (2) naphthyl, (3) or a 5 or 6-membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen, (4) a benzene ring fused to a C₃-C₈ cycloalkyl ring, (5) a benzene ring fused to a 5 or 6-membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen, (6) a 5 or 6-membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen fused to a 5 or 6-membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen, or (7) a 5 or 6-membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen fused to a C₃-C₈ cycloalkyl ring;

R⁸ is (1) hydrogen, (2) C_1 - C_{10} alkyl, (3) C_3 - C_8 cycloalkyl, (4) Z optionally having 1 to 4 substituents selected from halogen, nitro, oxo, NR¹⁰R¹⁰, C_1 - C_{10} alkyl, C_1 - C_{10} alkoxy, C_1 - C_{10} alkyl having 1 to 4 substituents selected from hydroxy, halogen, CO_2 -H, CO_2 - C_1 - C_{10} alkyl, SO_2 - C_1 - C_{10} alkyl, C_3 - C_8 cycloalkyl, C_1 - C_{10} alkoxy, or C_1 - C_1 alkyl having 1 to 4 substituted by from 1 to 3 halogen, C_1 - C_1 alkyl or C_1 - C_1 alkyl or C_1 - C_1 alkyl, C_2 - C_1 - C_1 alkyl, C_3 - C_4 cycloalkyl, C_1 - C_1 alkyl, C_3 - C_4 cycloalkyl, C_1 - C_1 alkyl, C_3 - C_4 cycloalkyl, C_1 - C_1 alkyl, or C_1 - C_1 alkyl, or C_1 - C_1 alkyl or C_1 - C_1 alkoxy;

R⁹ is (1) R⁸ or (2) NR⁸R⁸; and

 R^{10} is (1) C_1 - C_{10} alkyl, or (2) two R^{10} groups together with the N to which they are attached forming a 5 or 6-membered ring optionally substituted with C_1 - C_{10} alkyl;

(c) a compound of formula (VI) is:

$$X \xrightarrow{OH} CH - CH_2 - NH \longrightarrow OR$$
 (VI)

wherein

X is hydrogen, halogen, trifluoromethyl or lower alkyl, and

R is hydrogen; lower alkyl which may have a suitable substituent selected from the

group consisting of cyclo(C_3 - C_7)alkyl, hydroxy, lower alkoxy, carboxy and lower alkoxycarbonyl; cyclo(C_3 - C_7)alkyl or lower alkanoyl;

(d) a compound of formula (VII) is represented by the following general formula:

$$R^2$$
 R^6
CHOH-CH₂-NH-C(R⁶)R⁷-Y-X
 $O-Z-CO_2H$
(VII)

wherein

R¹ is a hydrogen, fluorine, chlorine or bromine atom or a hydroxyl, hydroxymethyl, methyl, methoxyl, amino, formamido, acetamido, methylsulphonylamido, nitro, benzyloxy, methylsulphonylmethyl, ureido, trifluoromethyl or p-methoxybenzylamino group;

R² is a hydrogen, fluorine, chlorine or bromine atom or a hydroxyl group;

R³ is a hydrogen, chlorine or bromine atom or a hydroxyl group,

R⁴ is a hydrogen atom or a methyl group;

R⁵ is a hydrogen atom or a methyl group;

R⁶ is a hydrogen, fluorine or chlorine atom or a methyl, methoxyl or hydroxy group;

X is an oxygen atom or a bond;

Y is an alkylene group of up to 6 carbon atoms or a bond; and

Z is an alkylene, alkenylene or alkynylene group of up to 10 carbon atoms; and (e) a compound of formula (VIII) is represented by the following general formula:

$$R^{1}$$
 R^{6}
 R^{7}
 R^{8}
 R^{8}
 R^{8}
 R^{8}
 R^{8}

wherein

R is hydrogen or methyl,

R1 is hydrogen, halogen, hydroxy, benzyloxy, amino or hydroxymethyl,

R² is hydrogen, hydroxymethyl, -NHR³, -SO₂NR⁴R⁴ or nitro,

R³ is hydrogen, methyl, -SO₂R⁵, formyl or -CONHR⁶,

R⁴ and R⁴ are independently hydrogen, lower alkyl or benzyl,

R⁵ is lower alkyl, benzyl or -NR⁴R⁴,

R⁶ is hydrogen or lower alkyl,

R^{6'} is hydrogen or lower alkyl,

R9 is hydrogen, amino, acetylamino or hydroxy, and

X is N, O, S or methylene;

provided that when X is N, O or S,

then R⁹ is hydrogen, either R⁷ or R⁸ is hydrogen, and the other is hydrogen, amino,

acetylamino or hydroxy; and

provided that when X is methylene,

then both R⁷ and R⁸ are hydrogen.

and

written matter associated therewith,

wherein the written matter states that the pharmaceutical composition can or should be used for preventing and/or treating dysuria.

20. (Twice amended) An article of manufacture comprising:

a packaging material and

the compound [as defined in Claim 10],

a compound, which is a β_3 adrenergic receptor agonist, having a general formula selected from the group consisting of formula (IV), (V), (VI), (VII) and (VIII),

or a salt or prodrug thereof, or for the compound of formula (VII) an ester or amide thereof;

wherein

(a) a compound of formula (IV) is represented by the following general formula: wherein

OH
$$R^6$$
 R^3 $CH-CH-NH-C-A$ R^5

$$R^2$$

$$NHSO_2R^1$$
(IV)

R¹ is lower alkyl, aryl or arylalkyl;

R² is hydrogen, hydroxy, alkoxy, -CH₂OH, cyano, -C(O)OR⁷, -CO₂H, -CONH₂, tetrazole, -CH₂NH₂ or halogen;

R³ is hydrogen, alkyl, heterocycle or

R⁴ is hydrogen, alkyl or B;

 R^5 , R^8 , R^{81} and R^{811} are independently hydrogen, alkoxy, lower alkyl, halogen, -OH, -CN, -(CH₂)_nNR⁶COR⁷, -CON(R⁶)R⁶¹, -CON(R⁶)OR⁶¹, -CO₂R⁶, -SR⁷, -SOR⁷, -SO₂R⁷, -N(R⁶)SO₂R¹, -N(R⁶)R⁶¹, -NR⁶COR⁷, -OCH₂CON(R⁶)R⁶¹, -OCH₂CO₂R⁷ or aryl; or

R⁵ and R⁵ or R⁸ and R⁸ may together with the carbon atoms to which they are attached form an aryl or heterocycle;

R⁶ and R⁶ are independently hydrogen or lower alkyl; and

 \mathbb{R}^7 is lower alkyl;

R⁹ and R⁹ are independently hydrogen, lower alkyl, alkyl, cycloalkyl, arylalkyl, aryl, heteroaryl; or

R⁹ and R⁹' may together with the nitrogen atom to which they are attached form a heterocycle;

A is a bond, $-(CH_2)_n$ - or -CH(B)-, wherein n is an integer of 1, 2 or 3 and B is -CN, $-CON(R^9)R^{9}$ - or $-CO_2R^7$;

with the proviso that when A is a bond or $-(CH_2)_n$ and R^3 is hydrogen or unsubstituted alkyl, then R^4 is B or substituted alkyl;

(b) a compound of formula (V) is represented by the following general formula:

wherein

$$(R^{1})_{n}$$

$$OH \quad H \quad R^{2}$$

$$CHCH_{2}N - C \quad (X)_{m}$$

$$R^{3}$$

$$R^{5}$$

$$R^{6}$$

$$(V)$$

n is 0 to 5;

m is 0 or 1;

r is 0 to 3;

A is pyridinyl;

R¹ is (1) hydroxy, (2) oxo, (3) halogen, (4) cyano, (5) NR 8 R 8 , (6) SR 8 , (7) trifluoromethyl, (8) C_1 - C_{10} alkyl, (9) OR 8 , (10) SO₂R 9 , (11) OCOR 9 , (12) NR 8 COR 9 , (13) COR 9 , (14) NR 8 SO₂R 9 , (15) NR 8 CO₂R 8 , or (16) C_1 - C_{10} alkyl substituted by hydroxy, halogen, cyano, NR 8 R 8 , SR 8 , trifluoromethyl, OR 8 , C_3 - C_8 cycloalkyl, phenyl, NR 8 COR 9 , COR 9 , SO₂R 9 , OCOR 9 , NR 8 SO₂R 9 or NR 8 CO₂R 8 ;

 R^2 and R^3 are independently (1) hydrogen, (2) C_1 - C_{10} alkyl or (3) C_1 - C_{10} alkyl with 1 to 4 substituents selected from hydroxy, C_1 - C_{10} alkoxy, or halogen;

X is (1) - CH_2 -, (2) - CH_2 - CH_2 -, (3) -CH=CH- or (4) - CH_2O -;

 R^4 and R^5 are independently (1) hydrogen, (2) C_1 - C_{10} alkyl, (3) halogen, (4) NHR⁸, (5) OR⁸, (6) SO₂R⁹ or (7) NHSO₂R⁹;

 R^6 is (1) hydrogen or (2) C_1 - C_{10} alkyl;

 R^7 is $Z-(R^{1a})_n$:

 R^{1a} is (1) R^1 , (2) C_3 - C_8 cycloalkyl, (3) phenyl optionally substituted with up to 4 groups independently selected from R^8 , NR^8R^8 , OR^8 , SR^8 or halogen, or (4) 5 or 6-membered heterocycle with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen, optionally substituted with up to four groups independently selected from oxo, R^8 , NR^8R^8 , OR^8 , SR^8 , or halogen;

Z is (1) phenyl, (2) naphthyl, (3) or a 5 or 6-membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen, (4) a benzene ring fused to a C_3 - C_8 cycloalkyl ring, (5) a benzene ring fused to a 5 or 6-membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen, (6) a 5 or 6-membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen fused to a 5 or 6-membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen, or (7) a 5 or 6-membered heterocyclic ring with from 1 to 4 heteroatoms selected from oxygen, sulfur or nitrogen fused to a C_3 - C_8 cycloalkyl ring;

R⁸ is (1) hydrogen, (2) C_1 - C_{10} alkyl, (3) C_3 - C_8 cycloalkyl, (4) Z optionally having 1 to 4 substituents selected from halogen, nitro, oxo, NR¹⁰R¹⁰, C_1 - C_{10} alkyl, C_1 - C_{10} alkoxy, C_1 - C_{10} alkyl having 1 to 4 substituents selected from hydroxy, halogen, CO_2H , CO_2 - C_1 - C_{10} alkyl, SO_2 - C_1 - C_{10} alkyl, C_3 - C_8 cycloalkyl, C_1 - C_{10} alkoxy, or Z optionally

substituted by from 1 to 3 halogen, C_1 - C_{10} alkyl or C_1 - C_{10} alkoxy, or (5) C_1 - C_{10} alkyl having 1 to 4 substituents selected from hydroxy, halogen, CO_2H , CO_2 - C_1 - C_{10} alkyl, SO_2 - C_1 - C_{10} alkyl, C_3 - C_8 cycloalkyl, C_1 - C_{10} alkoxy, C_1 - C_{10} alkyl, or Z optionally substituted by from 1 to 4 halogen, C_1 - C_{10} alkyl or C_1 - C_{10} alkoxy;

R⁹ is (1) R⁸ or (2) NR⁸R⁸; and

 R^{10} is (1) C_1 - C_{10} alkyl, or (2) two R^{10} groups together with the N to which they are attached forming a 5 or 6-membered ring optionally substituted with C_1 - C_{10} alkyl;

(c) a compound of formula (VI) is:

$$X$$
 CH
 CH
 CH
 CH
 CH
 OR
 (VI)

wherein

X is hydrogen, halogen, trifluoromethyl or lower alkyl, and

R is hydrogen; lower alkyl which may have a suitable substituent selected from the group consisting of $\text{cyclo}(C_3-C_7)$ alkyl, hydroxy, lower alkoxy, carboxy and lower alkoxycarbonyl; $\text{cyclo}(C_3-C_7)$ alkyl or lower alkanoyl;

(d) a compound of formula (VII) is represented by the following general formula:

$$R^{2}$$
 R^{1}
 $CHOH-CH_{2}-NH-C(R^{6})R^{7}-Y-X$
 $O-Z-CO_{2}H$
(VII)

wherein

R¹ is a hydrogen, fluorine, chlorine or bromine atom or a hydroxyl, hydroxymethyl, methyl, methoxyl, amino, formamido, acetamido, methylsulphonylamido, nitro, benzyloxy, methylsulphonylmethyl, ureido, trifluoromethyl or p-methoxybenzylamino group;

R² is a hydrogen, fluorine, chlorine or bromine atom or a hydroxyl group;

R³ is a hydrogen, chlorine or bromine atom or a hydroxyl group,

 R^4 is a hydrogen atom or a methyl group;

R⁵ is a hydrogen atom or a methyl group;

R⁶ is a hydrogen, fluorine or chlorine atom or a methyl, methoxyl or hydroxy group;

X is an oxygen atom or a bond;

Y is an alkylene group of up to 6 carbon atoms or a bond; and

Z is an alkylene, alkenylene or alkynylene group of up to 10 carbon atoms; and (e) a compound of formula (VIII) is represented by the following general formula:

$$R^1$$
 R^6
 R^7
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8

wherein

R is hydrogen or methyl,

R1 is hydrogen, halogen, hydroxy, benzyloxy, amino or hydroxymethyl,

R² is hydrogen, hydroxymethyl, -NHR³, -SO₂NR⁴R^{4'} or nitro,

R³ is hydrogen, methyl, -SO₂R⁵, formyl or -CONHR⁶,

R⁴ and R⁴ are independently hydrogen, lower alkyl or benzyl,

R⁵ is lower alkyl, benzyl or -NR⁴R⁴,

R⁶ is hydrogen or lower alkyl,

R^{6'} is hydrogen or lower alkyl,

R9 is hydrogen, amino, acetylamino or hydroxy, and

X is N, O, S or methylene;

provided that when X is N, O or S,

then R⁹ is hydrogen, either R⁷ or R⁸ is hydrogen, and the other is hydrogen, amino, acetylamino or hydroxy; and

provided that when X is methylene.

then both R⁷ and R⁸ are hydrogen

wherein said packaging material comprises a label or a written material which indicates that [the compound defined in Claim 10] said compound can or should be used for

preventing and/or treating dysuria.--