Problema: llevar una mochila con objetos que tienen un valor y peso concretos, de forma que el total de pesos no supere la capacidad de la modrila, y el valor total sea máximo.

W = 10

i	peso	volor	0/p	
1	4	40	10	Estructura de la solución:
2	7	42	6	
3	5	45	5	$\bullet \left[1, 0, 1, 1, \ldots \right] \left(\begin{array}{c} S[i] = 1, i \text{ entra} \\ S[i] = 0, i \text{ fuera} \end{array} \right)$
4	3	40 42 45 2	4	

Se pide:

- · Definir la función de estimación f(P).
- · Construir el arbol para el ejemplo dado.

Claves a tener en cuenta:

• Como cada objeto depende de su peso y su valor, resulta más seucillo trabajar con una relación de ambas: $d_i = \frac{volor(i)}{peso(i)}$, cuanto mayor d_i , más prométedor el objeto i.

HEURÍSTICA:

Suponer a la hora de meter cada objeto i, cuál sería el máximo valor a introducir si existiera un objeto que ocupase todo el espacio libre restante en la mochila.

$$f(P) = g(P) + h(P)$$

- g(P): valor acumulado para P.
- h(p): espacio libre · signiente objeto más prometedor.

