

ITGM

Теория формальных языков — это не только написание парсеров

Семён Григорьев

JetBrains Research, лаборатория языковых инструментов Санкт-Петербургский государственный университет

17.03.2018

Поиск путей в графах

- Анализ графов
 - Запросы к графовым базам данных
 - Анализ сетей (социальных, интернет и т.д.)
- Статический анализ программ
 - Анализ алиасов
 - Taint analysis
 - Анализ типов
 - Статический анализ динамически формируемого кода
- •

Теория формальных языков

- Алфавит множество символов $(\Sigma, N, ...)$
- Язык множество "слов"
- ullet Язык L над алфавитом Σ : $L(\Sigma) = \{w | w \in \Sigma^*\}$
- Классы языков
 - Регулярные: регулярные выражения ("академические"), конечные автоматы
 - Контекстно-свободные
- У разных классов разная выразительная сила
 - ► Язык "правильных" скобочных последовательностей является контекстно-свободным, но не является регулврным

Регулярные языки

Регулярные языки

- ⇔ регулярные выражения
- ⇔ конечные автоматы

Конечный автомат $M = (\Sigma, Q, P, S, F)$

- Σ алфавит
- Q множество состояний
- ullet $P\subseteq Q imes \Sigma imes Q$ правила перехода из одного состояния в другое
- ullet $S\subseteq Q$ стартовые состояния
- ullet $F\subseteq Q$ финальные состояния

Конечные автоматы

- $m{\circ}$ $p=v_0 \xrightarrow{l_0} v_1 \xrightarrow{l_1} \cdots v_{n-1} \xrightarrow{l_{n-1}} v_n$ путь из стартового состояния в конечное
- $w(p) = w(v_0 \xrightarrow{l_0} v_1 \xrightarrow{l_1} \cdots v_{n-1} \xrightarrow{l_{n-1}} v_n) = l_0 l_1 \cdots l_{n-1}$
- $L(M) = \{w(p)|p$ путь из стартового состояния M в конечное $\}$
- $L(M) = \{aaa; bb; aaabb; aaabbaaabbbb, \dots \}$

Контекстно-свободные языки

Контекстно-свободная грамматика $\mathbb{G}=(\Sigma,N,P,S)$

- Σ терминальный алфавит
- N нетерминальный алфавит
- Р правила вывода
- ullet $S \in \mathcal{N}$ стартовый нетерминал

Контекстно свободная граммтика для языка $L = \{a^n b^n; n \geq 1\}$ с явным выделением "середины"

0:
$$S \rightarrow a S b$$

1: $S \rightarrow Middle$
2: $Middle \rightarrow a b$

Грамматика как правила переписывания:

- $S \xrightarrow{1} Middle \xrightarrow{2} ab$
- $S \xrightarrow{0} a S b \xrightarrow{0} aa S bb \xrightarrow{1} aa Middle bb \xrightarrow{2} aaabbb$

Поиск путей с контекстно-свободными ограничениями

- ullet $\mathbb{G}=(\Sigma, N, P)$ контекстно-свободная грамматика
- ullet G=(V,E,L) ориентированный граф, $E\subseteq V imes L imes V$, $L\subseteq \Sigma$
- ullet $p=v_0 \stackrel{l_0}{
 ightarrow} v_1 \stackrel{l_1}{
 ightarrow} \cdots v_{n-1} \stackrel{l_{n-1}}{
 ightarrow} v_n$ путь в графе G
- $w(p) = w(v_0 \xrightarrow{l_0} v_1 \xrightarrow{l_1} \cdots v_{n-1} \xrightarrow{l_{n-1}} v_n) = l_0 l_1 \cdots l_{n-1}$
- $R = \{p \mid \exists N_i \in N(w(p) \in L(\mathbb{G}, N_i))\}$
 - Стартовый нетерминал можно зафиксировать заранее
 - ▶ Проблема: множество R может быть бесконечным

Пример

Входной граф

Запрос — грамматика G для языка $L = \{a^nb^n; n \geq 1\}$ с явным выделением середины пути

$$0: S \rightarrow a S b$$

$$1: \ S \rightarrow \textit{Middle}$$

$$2: Middle \rightarrow ab$$

Ответ — бесконечное множество путей

•
$$p_1 = 0 \xrightarrow{a} 1 \xrightarrow{a} 2 \xrightarrow{a} 0 \xrightarrow{b} 3 \xrightarrow{b} 0 \xrightarrow{b} 3$$

•
$$p_2 = 0 \xrightarrow{a} 1 \xrightarrow{a} 2 \xrightarrow{a} 0 \xrightarrow{a} 1 \xrightarrow{a} 2 \xrightarrow{a} 0 \xrightarrow{b} 3 \xrightarrow{b} 0 \xrightarrow{b} 3 \xrightarrow{b} 0 \xrightarrow{b} 3 \xrightarrow{b} 0$$

Структурное представление результата запроса

Результат (SPPF)

Дерево вывода пути p_1

Дерево вывода пути p_2

Пример: извлечение путей

(2, Middle, 3)

(2, a, 0)

(0, b, 3)

Путь: $0 \xrightarrow{a} 1 \xrightarrow{a} 2 \xrightarrow{a} 0 \xrightarrow{b} 3 \xrightarrow{b} 0 \xrightarrow{b} 3$

<----Путь - крона дерева

Почему это работает

Замкнутость КС языков относительно пересечения с регуляными

Регулярный язык

 $0: S \rightarrow a S b$

 $1: \ S \rightarrow \textit{Middle}$

2: $Middle \rightarrow a b$

Контекстно-свободный язык

Почему это работает

Замкнутость КС языков относительно пересечения с регуляными

 $0:\ S\to a\ S\ b$

 $1: S \rightarrow Middle$

2: $Middle \rightarrow ab$

Регулярный язык

Контекстно-свободный язык

$$(0, S, 3) \rightarrow (0, a, 1) (1, S, 0) (0, b, 3)$$

$$(1, S, 0) \rightarrow (1, a, 2) (2, S, 3) (3, b, 0)$$

$$(2, S, 3) \rightarrow (2, a, 0) (0, S, 0) (0, b, 3)$$

$$(2, S, 3) \rightarrow (2, Middle, 3)$$

$$(0, S, 0) \rightarrow (0, a, 1) (1, S, 3) (3, b, 0)$$

$$(1, S, 3) \rightarrow (1, a, 2) (2, S, 0) (0, b, 3)$$

$$(2, S, 0) \rightarrow (2, a, 0) (0, S, 3) (3, b, 0)$$

$$(0, Middle, 3) \rightarrow (2, a, 0) (0, b, 3)$$

Примеры применения

- Графовые базы данных и семантические сети
 - Same-generation query (и модификации), similarity query (и модификации)
 - ► Sevon P., Eronen L. "Subgraph queries by context-free grammars." 2008
 - ► Zhang X. et al. "Context-free path queries on RDF graphs." 2016
 - ► Hellings J. "Conjunctive context-free path queries." 2014
- Статический анализ кода
 - Thomas Reps et al. "Precise interprocedural dataflow analysis via graph reachability." 1995
 - Qirun Zhang et al. "Efficient subcubic alias analysis for C." 2014
 - Dacong Yan et al. "Demand-driven context-sensitive alias analysis for Java." 2011
 - ► Jakob Rehof and Manuel Fahndrich. "Type-base flow analysis: from polymorphic subtyping to CFL-reachability." 2001

Факты

- В данной области существуют открытые проблемы
 - lacktriangle Например, существует ли алгоритм со сложностью $O(|V|^{3-arepsilon}), arepsilon > 0$
- В данной области применимы решения из "классического" синтаксического анализа
 - Алгоритмы: CYK, (Generalized) LL, (Generalized) LR, Эрли, ...
 - ▶ Техники: комбинаторы, генераторы парсеров, ...
 - Оптимизации: использование GPGPU, специальные структуры данных (сжатое представление леса разбора, структурированный в виде графа стек), ...
- Из-за существенно бОльших объёмов данных требуются специальные оптимизации (распределённые вычисления, параллельные вычисления, ...)

Обобщённый LL для выполнения КС запросов к графам

- Основа обобщённый LL (Generalized GLL, GLL)
 - ► Scott E., Johnstone A. "GLL parsing"
- Поддерживает произвольные контекстно-свободные граммтики (неоднозначные, леворекурсивные)
- Строит сжатое представление леса разбора (Sharep Packed Parse Forest, SPPF) конечное представление бесконечного ответа
- Semyon Grigorev and Anastasiya Ragozina. "Context-free path querying with structural representation of result." 2017
- Реализован на F#:
 https://github.com/YaccConstructor/YaccConstructor

Свойства алгоритма

Пусть на входе граф M = (V, E, L), тогда

- Пространственная сложность предложенного алгоритма $O(|V|^3 + |E|)$
- Временная сложность предложенного алгоритма

$$O\left(|V|^3 * \max_{v \in V} (deg^+(v))\right)$$

ullet Результирующий SPPF имеет размер $O(|V'|^3+|E'|)$, где M'=(V',E',L') — подграф M, содержащий только искомые пути

Экспериментальное исследование: запросы

- $0: \mathbf{S} \to subClassOf^{-1} \mathbf{S} subClassOf$
- 1: $\mathbf{S} \rightarrow type^{-1} \mathbf{S} type$
- 2 : $S \rightarrow subClassOf^{-1} subClassOf$
- $3: \mathbf{S} \to type^{-1} type$

Грамматика для запроса Query 1

- $0: \mathbf{S} \to \mathbf{B} \ subClassOf$
- $1: \mathbf{S} \rightarrow \mathit{subClassOf}$
- 2: $\mathbf{B} \to subClassOf^{-1} \mathbf{B} subClassOf$
- 3: $\mathbf{B} \to subClassOf^{-1} subClassOf$

Грамматика для запроса Query 2

Экспериментальное исследование: результаты

Ontology	#edg	Qı	Query 2			
		time	time		time	
		CYK ¹ (ms)	(ms)	#result	(ms)	#result
skos	252	1044	10	810	1	1
generations	273	6091	19	2164	1	0
travel	277	13971	24	2499	1	63
univ-bench	293	20981	25	2540	11	81
people-pets	640	82081	89	9472	3	37
atom-primitive	425	515285	255	15454	66	122
biomedical-						
measure-primitive	459	420604	261	15156	45	2871
pizza	1980	3233587	697	56195	29	1262
wine	1839	4075319	819	66572	8	133

¹Zhang, et al. "Context-free path queries on RDF graphs."

Использование GPGPU для выполнения КС запросов к графам

- Отправная точка синтаксический анализ линейного входа через перемножение матриц
 - Valiant L. "General context-free recognition in less than cubic time."
 1974
- Основан на матричных опреациях позволяет использовать GPGPU
 - ▶ Можно использовать разреженное представление и готовые библиотеки для работы с ним
- Применим для других классов грамматик (например, конъюнктивных)
- Rustam Azimov, Semyon Grigorev. "Context-Free Path Querying by Matrix Multiplication." 2017
- Реализован на F#:
 https://github.com/YaccConstructor/YaccConstructor

Свойства алгоритма

Пусть на входе граф M=(V,E,L) и грамматика $\mathbb{G}=(N,\Sigma,P)$, тогда

- Пространственная сложность предложенного алгоритма $O(|N||V|^2)$
- Временная сложность предложенного алгоритма $O(|V|^2|N|^3(BMM(|V|)+BMU(|V|)))$
 - ▶ BMM(n) время, необходимое для умножения сложения булевых матриц $n \times n$
 - ▶ BMU(n) время, необходимое для поэлементного сложения булевых матриц $n \times n$

Экспериментальное исследование: результаты

Ontology	#edg	Qu GLL time (ms)	uery 1 GPGPU time (ms)	Qu GLL time (ms)	uery 2 GPGPU time (ms)
skos	252	10	12	1	1
generations	273	19	13	1	0
travel	277	24	30	1	10
univ-bench	293	25	15	11	9
people-pets	640	89	32	3	6
atom-primitive	425	255	22	66	2
biomedical- measure-primitive	459	261	20	45	24
pizza	1980	697	24	29	23
wine	1839	819	54	8	6
g_1	11840	1926	82	167	38
g_2	19600	6246	185	46	21
g 3	20832	7014	127	393	40

Направления

- Разработка эффективных "практичных" алгоритмов и реализация библиотек
 - Интеграция с существующими языками запросов к графам
 - Интеграция с существующими интефейсами к граф-структурированным данным
- Формулировка прикладных задач в терминах КС запросов к графам
 - ▶ Сравнение с "классическими" решениями

Контакты

- Почта: semen.grigorev@jetbrains.com
- GitHub-сообщество YaccConstructor: https://github.com/YaccConstructor