DRGANIA

Równanie oscylatora harmonicznego

Układ drgający (oscylator) o jednym stopniu swobody - x

Energia całkowita układu (zamkniętego)

Energia potencjalna układu: U = U(x)lub (*szereg potęgowy Maclaurina*): $U(x) = U(0) + U'(0) x + \frac{1}{2} U''(0) x^2 + ...$

Założenia:

-równowaga dla x=0,
$$\Rightarrow$$
 F = 0, \Rightarrow dU/dx = 0, {t.zn. U'(0) = 0}

-energia w równowadze równa zeru, \Rightarrow U(0) = 0

-małe drgania x<<1

$$U(x) = U(0) + U'(0) x + 1/2 U''(0) x^2 + \dots$$

t.zn.
$$U(x) = 1/2\{U''(0) \ x^2\}$$

lub $U(x) = 1/2 \ k \ x^2, \qquad \{k = U''(0)\}$
oraz $F(x) = -gradU = -k \ x$

Równanie ruchu układu

bez tarcia i sił zewnętrznych

$$ma = F$$

$$m (d2x/dt2) = F$$

$$m x'' = -k x$$

z tarciem F_T i zewnętrzną siłą F_Z

gdzie:
$$F_T = -\epsilon v = -\epsilon x'$$
, $F_Z = F(t)$
 $m x'' + k x = F(t) - \epsilon x'$
 $x'' + 2\beta x' + \omega_0^2 x = f(t)$,

lub

gdzie:
$$2\beta = \epsilon/m$$
, $\omega_0^2 = k/m$, $f(t) = F(t)/m$

Rozwiązywanie równań różniczkowych liniowych o stałych współczynnikach

niejednorodne
$$x''+ax'+bx = f(t)$$

jednorodne $x''+ax'+bx = 0$

oznaczenia:

całka (rozwiązanie) szczególna r. niejednorodnego: x(t) całka ogólna r. niejednorodnego: $x(t,C_1,C_2)$, odpowiednie całki równania jednorodnego:

$$x_{i}(t), x_{i}(t,C_{1},C_{2}),$$

Uwaga 1

Rozwiązanie równania różniczkowego II rzędu zawiera dwie dowolne stałe C_1 i C_2

Definicja 1

Pojedyńcze, konkretne rozwiązanie równania różniczkowego (funkcję spełniającą to równanie) nazywamy (całką) rozwiązaniem szczególnym

Definicja 2

Zbiór wszystkich rozwiązań szczególnych równania różniczkowego nazywamy (rozwiązaniem) całką ogólną równania

Twierdzenie 1

Całką **ogólną** równania różniczkowego **jednorodnego** jest dowolna kombinacja liniowa całek **szczególnych** liniowo niezależnych tego równania

$$x_j(t,C_1,C_2) = C_1 x_{j1}(t) + C_2 x_{j2}(t)$$

Twierdzenie 2

Rozwiązaniem **ogólnym** równania różniczkowego **niejednorodnego** jest suma **ogólnego** rozwiązania odpowiedniego równania **jednorodnego** i dowolnego rozwiązania **szczególnego** tego równania (niejednorodnego)

$$x(t,C_1,C_2) = x_i(t,C_1,C_2) + x(t)$$

Oscylator swobodny (bez tłumienia)

Równanie (jednorodne) oscylatora:

$$x'' + \omega_0^2 x = 0$$

dwie całki szczególne liniowo niezależne tego równania:

$$x_1 = \cos \omega_0 t$$
, $x_2 = \sin \omega_0 t$

zatem rozwiązanie ogólne tego równania:

$$x(t) = C_1 \cos \omega_0 t + C_2 \sin \omega_0 t$$

Oscylator swobodny (bez tłumienia)

rozwiązanie ogólne:

$$x(t) = C_1 \cos \omega_0 t + C_2 \sin \omega_0 t,$$

niech $C_1 = \frac{1}{2} x_m \cos \varphi$, $C_2 = \frac{1}{2} x_m \sin \varphi$ $(x_m, \varphi - dowolne)$

$$x(t) = \frac{1}{2} x_{m} \cos \varphi \cos (\omega_{o} t) + \frac{1}{2} x_{m} \sin \varphi \sin (\omega_{o} t),$$

$$|\mathbf{x}(t)| = \mathbf{x}_{m} \cos(\omega_{o} t + \varphi) | (drganie harmoniczne)$$

$$(\omega_{o}t + \phi) =$$
 faza drgań, $\phi =$ faza początkowa $x_{m} =$ amplituda = $największe$ $wychylenie$ z $równowagi$, $\omega_{o} =$ kołowa częstość własna oscylatora

Definicja 1

Okresem T drgania nazywamy taki odstęp czasu t, że:

$$x(t+T) = x(t)$$

Częstotliwość drgań v=1/T (liczba drgań na sekundę)

Wniosek 1

Dla drgań harmonicznych

$$\cos \{\omega_o(t+T) + \varphi\} \equiv \cos \{\omega_o t + \omega_o T + \varphi\} = \cos \{\omega_o t + \varphi\},$$

$$\omega_{o} T = 2\pi$$
,

- \Rightarrow okres drgań własnych $T = 2\pi/\omega_0$
- \Rightarrow częstość własna $\omega_{o} = 2\pi (1/T) = 2\pi v$

$$x(t) = x_{m} \sin (\omega_{o} t + \varphi_{s}) \quad (drganie harmoniczne \\ lub \quad x(t) = x_{m} \cos (\omega_{o} t + \varphi_{s}) \quad (-"-)$$

faza początkowa $\varphi = \pi/2$ (rd)

Parametry ruchu oscylatora

$$x = x_{m} \cos(\omega_{o} t + \phi),$$

$$v = x'(t) = -x_{m} \omega_{o} \sin(\omega_{o} t + \phi) = +x_{m} \omega_{o} \cos(\omega_{o} t + \phi + \pi/2),$$

$$a = x''(t) = -x_{m} \omega_{o}^{2} \cos(\omega_{o} t + \phi) = +x_{m} \omega_{o}^{2} \cos(\omega_{o} t + \phi + \pi),$$

$$\begin{cases} x(t) = x_{m} \cos (\omega_{o} t + \phi) \\ v(t) = -x_{m} \omega_{o} \sin(\omega_{o} t + \phi) \\ |v_{max}| = x_{m} \omega_{o} \end{cases}$$

stałe x_m , ϕ (*rozwiązania szczególnego*) są określone warunkami początkowymi (x i v dla t = 0, tj. x_o i v_o):

$$\begin{cases} x(t=0) = x_o = x_m \cos(\varphi), \\ v(t=0) = v_o = -x_m \omega_o \sin(\varphi), \end{cases}$$

$$\Rightarrow \begin{cases} x_{m} = \sqrt{x_{o}^{2} + (v_{o}^{2}/\omega_{o}^{2})}, \\ tg(\phi) = -v_{o}/(x_{o}/\omega_{o}), \end{cases}$$

Twierdzenie 3

Całkowita energia mechaniczna ruchu (oscylatora) harmonicznego swobodnego jest stała

$$E_{c \text{ osc}} = U(x) + E_{kin} = \text{const},$$

Dowód

Siła F = -kx jest siłą zachowawczą (jednowymiarowe pole centralne)

Wniosek 2

dla v=0
$$(x = x_m)$$
 $\longrightarrow E_{kin} = 0$, $U = U_{max} = 1/2 k x_m^2$
dla x=0 $(v = v_{max})$ $\longrightarrow U(0)=0$, $E_{kin} = (E_{kin})_{max} = 1/2 k x_m^2$

$$\begin{cases} (E_{kin})_{max} = 1/2 & m (v_{max}^{2}) = 1/2 & m (\omega_{o}^{2} x_{m}^{2}) = 1/2 & k x_{m}^{2} \\ \{\omega_{o}^{2} = k/m, & v = x_{m} \omega_{o} \sin(\omega_{o} t + \varphi) \} \end{cases}$$

Dla oscylatora **harmonicznego swobodnego** słuszne są zarazem następujące związki (w dowolnej chwili):

$$U(t) = 1/2 k x^2(t) = 1/2 k x_m^2 cos^2(\omega_0 t + \varphi),$$

$$E_{kin}(t) = 1/2 \text{ m } v^2(t) = 1/2 \text{ m } \omega_o^2 x_m^2 \sin^2(\omega_o t + \varphi),$$

$$E_c(t) = U(t) + E_{kin}(t) = 1/2 k x_m^2 = 1/2 (m \omega_o^2) x_m^2 = const$$

$$(m\omega_o^2 = k)$$

Oscylator tłumiony (bez wymuszenia)

$$x'' + 2\beta x' + \omega^2 x = 0$$

przewidywane rozwiązanie: $x(t) = \exp(\lambda t)$

$$x' = \lambda \exp(\lambda t), \quad x'' = \lambda^2 \exp(\lambda t).$$

$$r$$
. charakterystyczne: $\lambda^2+2\beta \lambda+\omega_0=0$

$$\lambda_1 = -\beta + \sqrt{\beta^2 - \omega_0^2}, \quad \lambda_2 = -\beta - \sqrt{\beta^2 - \omega_0^2}$$

lub
$$\lambda_1 = -\beta + \sqrt{-\omega^2}$$
, $\lambda_2 = -\beta - \sqrt{-\omega^2}$

gdzie
$$\omega^2 = (\omega_0^2 - \beta^2) > 0$$
 dla $\beta < \omega_0$ uwaga: $\omega \neq \omega_0$

$$\alpha$$
 $\lambda = -\beta - i \alpha$

$$\lambda_1 = -\beta + j \omega, \qquad \lambda_2 = -\beta - j \omega,$$

zatem

$$x_1 = \exp[(-\beta + j\omega)t],$$
 $x_2 = \exp[(-\beta - j\omega)t],$
 $x(t, C_1, C_2) = C_1 \exp[(-\beta + j\omega)t] + C_2 \exp[(-\beta - j\omega)t],$

$$x(t, C_1, C_2) = rzeczywiste \longrightarrow x=x^*$$

$$x = C_1 \exp[(-\beta + j\omega)t] + C_2 \exp[(-\beta - j\omega)t],$$

$$x^* = C_1^* \exp[(-\beta + j\omega)t] + C_2^* \exp[(-\beta - j\omega)t],$$

$$C_1 \exp[(-\beta + j\omega)t] + C_2 \exp[(-\beta - j\omega)t] =$$

$$= C_1^* \exp[(-\beta - j\omega)t] + C_2^* \exp[(-\beta + j\omega)t] / \exp(-\beta)$$

$$C_1 \exp[(+j\omega)t] + C_2 \exp[(-j\omega)t] +$$
- $C_1^* \exp[(-j\omega)t] - C_2^* \exp[(+j\omega)t] = 0$
 $\longrightarrow C_1 = C_2^*, C_2 = C_1^*,$
 $C_1 = (x_m/2) \exp(j\alpha), C_2 = (x_m/2) \exp(-j\alpha),$

$$x = (x_m/2) \exp(-\beta t) \{ \exp[j(\omega t + \alpha)] + \exp[-j(\omega t + \alpha)] \},$$
lub
$$x = x_m \exp(-\beta t) \cos(\omega t + \varphi),$$

$$x(t) = x_{m} \exp(-\beta t) \cos(\omega t + \phi),$$

$$\omega = \sqrt{\omega_{o}^{2} - \beta^{2}},$$

częstość drgań tłumionych $\omega < \omega_o$,

lub

$$T = 2\pi/\omega = 2\pi/\sqrt{\omega_o^2 - \beta^2}, \qquad T > T_o$$

$$x(t) / x(t+T) = \exp(\beta T),$$

Dyskusja równania oscylatora harmonicznego
tłumionego
$$x(t) = x_m \exp(-\beta t) \cos(\omega t + \phi)$$

dekrement tłumienia
$$\lambda=\ln \left[x(t) / x(t+T)\right]=\beta T$$
, dobroć oscylatora $Q=\pi/\lambda$, $Q=\pi/\beta T$

Skutki tłumienia

- 1. ogólne
 - >zmniejszanie amplitudy drgań
 - >wydłużenie okresu drgań
 - >dysypacja energii

Uwaga: Całkowita energia mechaniczna E_c oscylatora harmonicznego tłumionego nie jest zachowana wskutek siły tłumiącej (oporu)

2. dla małego tłumienia,
$$\beta << \omega_o$$
, $\omega = \sqrt{\omega_o^2 - \beta^2}$, $\omega = \omega_o$. $\omega = \sqrt{\omega_o^2 - \beta^2}$, $\omega = \omega_o$.

$$\{(x_m)_{t} \div \exp(-\beta t) \text{ oraz } E_c \div x_m^2\}$$

$$E_c \cong E_o \exp(-2\beta t)$$
,

$$dE_c/dt = (-2\beta) E_o \exp(-2\beta t) = (-2\beta)E_c$$

 $dt \rightarrow T, dE_c \rightarrow \Delta E_c$

$$\Delta E_c / T \cong (-2\beta)E_c$$

$$\Delta E_c / E_c \cong (-2\beta T) = (-2\lambda) = (-2\pi/Q)$$

$$\frac{E_c}{-\Delta E_{cT}} = \frac{Q}{2\pi}$$

3. dla $\beta = \omega_0$ $\omega \to 0$, $T \to \infty$, $(\omega = \sqrt{\omega_0^2 - \beta^2})$, ruch przestaje być okresowy (\Rightarrow r. aperiodyczny gasnący); ta wielkość β nazywa się **tłumieniem krytycznym**

4. dla $\beta > \omega_0$ ruch jest aperiodyczny gasnący tym wolniej, im większa wartość β :

$$x = C_1 \exp\{[-\beta + \sqrt{(\beta^2 - \omega_0^2)}] t\} + C_2 \exp\{[-\beta - \sqrt{(\beta^2 - \omega_0^2)}] t\},$$

a) okresowy gasnący, b) aperiodyczny krytyczny, c) aperiodyczny

Oscylator wymuszony z tłumieniem

$$x'' + 2\beta x' + \omega_0^2 x = f(t),$$

$$2\beta = \epsilon/m, \ \omega_0^2 = k/m, \ f(t) = F(t)/m$$

Niech

$$f(t) = f_0 \cos \omega' t$$

Ogólne rozwiązanie równania jednorodnego

$$x(t) = x_{mj} \exp(-\beta t) \cos(\omega t + \alpha), \quad \omega = \sqrt{\omega_o^2 - \beta^2},$$

Przewidywane rozwiązanie szczególne r-nia niejednorodnego

$$x(t) = x_{mn} \cos(\omega' t - \varphi),$$

$$uwaga: \omega_o \neq \omega \neq \omega'$$

z obliczeń dostaje się

$$x_{mn} = f_o / \sqrt{(\omega_o^2 - \omega'^2)^2 + 4\beta^2 \omega'^2},$$

$$tg \varphi = 2\beta\omega' / (\omega_o^2 - \omega'^2)$$

Zatem ogólne rozwiązanie równania jednorodnego

$$x(t) = x_{mi} \exp(-\beta t) \cos(\omega t + \alpha) + x_{mn} \cos(\omega t - \phi),$$

Graficzne rozwiązanie równania oscylatora

$$x'' + 2\beta x' + \omega_o^2 x = f(t)$$
 dla $f(t) = f_o \cos \omega' t$

Przewidywane rozwiązanie: $x(t) = x_m \cos(\omega' t - \phi)$,

Wiec x'(t) =
$$-x_m \omega' \sin(\omega' t - \varphi) = +x_m \omega' \cos(\omega' t - \varphi + \pi/2)$$
,
x''(t) = $-x_m \omega'^2 \cos(\omega' t - \varphi) = +x_m \omega'^2 \cos(\omega' t - \varphi + \pi)$,

$$x_m \omega^{2} \cos(\omega t - \varphi + \pi) + 2\beta x_m \omega \cos(\omega t - \varphi + \pi/2) +$$

$$+ \omega_0^2 x_m \cos(\omega' t - \varphi) = f_0 \cos(\omega' t)$$

$$x_m = \frac{f_o}{\sqrt{(\omega_o^2 - \omega'^2)^2 + 4\beta^2 \omega'^2}}$$

$$\begin{array}{c|c}
2\beta x_{m} \omega'^{2} & f_{o} \\
\hline
x_{m} \omega'^{2} & \phi & \omega_{o}^{2} x_{m} \\
\hline
(\omega_{o}^{2} x_{m} - \omega'^{2} x_{m})
\end{array}$$

$$tg\varphi = \frac{2\beta\omega'}{(\omega_o^2 - \omega'^2)}$$

$$x(t) = x_{mj} \exp(-\beta t) \cos(\omega t + \alpha) + x_{mn} \cos(\omega' t - \phi),$$

$$x_{m} = \frac{f_{o}}{\sqrt{(\omega_{o}^{2} - \omega'^{2})^{2} + 4\beta^{2}\omega'^{2}}}$$

dla $t \rightarrow \infty$, $x(t) \rightarrow x_m \cos(\omega' t - \phi)$, \Rightarrow rozwiązanie ustalone

Dyskusja rozwiązania dla oscylatora tłumionego z wymuszeniem

- 1. oscylator drga z częstotliwością siły wymuszającej (ω')
- 2. amplituda drgań wymuszonych x_m jest proporcjonalna do amplitudy siły wymuszenia f_o
- 3. amplituda drgań wymuszonych x_m zależy od częstotliwości siły wymuszającej (ω ') \Rightarrow rezonans

Rezonans

częstotliwość rezonansowa
$$\omega'_{rez}$$
: $x_m(\omega'_{rez}) = max$

$$\implies$$
 dla $\omega = \omega'_{rez}$ d[$x_m(\omega')$] /d $\omega' = 0$

$$\begin{aligned} d[x_m(\omega')] / d\omega' &= 0 \\ d[f_o / \sqrt{(\omega_o^2 - \omega'^2)^2 + 4\beta^2 \omega'^2}] / d\omega' &= 0 \end{aligned}$$

$$-4 (\omega_{o}^{2} - \omega'^{2}) \omega + 8\beta^{2} \omega' = 0$$

$$\omega'_{1} = 0,$$

$$\omega'_{2} = +\sqrt{(\omega_{o}^{2} - 2\beta^{2})}$$

$$\omega'_{3} = -\sqrt{(\omega_{o}^{2} - 2\beta^{2})}$$

Ostatecznie

$$\omega_{rez} = +\sqrt{(\omega_o^2 - 2\beta^2)}$$

wtedy

$$x_{m-rez} = \frac{f_o}{2\beta\sqrt{(\omega_o^2 - \beta^2)}}$$

$$x_{m} = \frac{f_{o}}{\sqrt{(\omega_{o}^{2} - \omega^{2})^{2} + 4\beta^{2}\omega^{2}}}$$

$$\omega_{\text{rez}} = +\sqrt{(\omega_0^2 - 2\beta^2)}$$

$$x_{m-rez} = \frac{f_o}{2\beta\sqrt{(\omega_o^2 - \beta^2)}}$$

Dyskusja wyniku

- 1. przy braku tłumienia $\beta=0$, $x_m \to \infty$
- 2. dla słabego tłumienia, $\beta << \omega_0$

$$x_{rez} \cong f_o/[2\beta \omega_o]; \quad \omega_{rez} \cong \omega_o$$

 $x_{rez}/x_o \cong \omega_o/2 \ \beta = 2\pi/\beta T_o = \pi/\lambda = Q \quad (x_o = F_o/k = f_o/\omega_o^2)$

- 3. dla silnego tłumienia , $\sqrt{2} \beta > \omega_o$ $\omega_{rez} = Im[\sqrt{(\omega_o^2 2\beta^2)}]$ rezonans znika
- 4. drgania wymuszone są opóźnione w fazie w stosunku do siły wymuszającej f_o : $0 \le φ \le π$ ($tg φ = 2βω'/(ω_o^2 ω'^2)$; jeśli β maleje, to rezonans staje się wyraźniejszy $\Rightarrow selektywność$

Wahadło matematyczne

$$N=I_{\varepsilon}$$
,

$$N=$$
 - $mgl sin \varphi$, $I=ml^2$

$$ml^2 \phi$$
" = -mgl sin ϕ

$$\phi$$
'' + (g/l) sin ϕ =0,
male drgania: sin $\phi \cong \phi$, $g/l = \omega_o^2$
 ϕ '' + $\omega_o^2 \phi$ =0,

$$\varphi = \varphi_0 \cos (\omega_0 t + \alpha), \quad \omega_0 = 2\pi / T, \quad T = 2\pi \sqrt{1/g}$$

dokładnie

$$T = 2\pi \sqrt{1/g} \left[1 + (\frac{1}{2})^2 \sin^2 \varphi_0 + (\frac{1}{2})^4 \right)^2 \sin^4 \varphi_0 + \dots$$

Wahadło fizyczne

$$N=I\epsilon$$

$$N=-mgl sin \phi$$

$$\epsilon=\phi''$$

$$-mgl sin \phi=I \phi''$$

$$\phi''=-(mgl/I) sin \phi$$

$$mgl/I=\omega_o^2, male drgania,$$

$$\phi''+\omega_o^2 \phi=0,$$

$$T=2\pi / \omega_o=2\pi \sqrt{I/mgl}$$

$$I/ml = l_{zr} (dl. zredukowana), \implies T = 2\pi \sqrt{l_{zr}/g}$$

Drgania złożone

Drgania prostopadłe

$$x(t) = a \cos \omega t$$
,

$$y(t) = b \cos (\omega t + \varphi),$$

równanie toru na Oxy w postaci parametrycznej

tor (postać zwykła)

$$x^2/a^2 + y^2/b^2 - (2xy/ab)\cos\varphi = \sin^2\varphi \quad elipsa$$

Przypadki szczególne $x^2/a^2 + y^2/b^2 - (2xy/ab)\cos\varphi = \sin^2\varphi$

1.
$$r\acute{o}znica\ faz\ \varphi=0\ (\pm n\pi)$$

 $x^2/a^2 \pm y^2/b^2 = 0 \implies y = \pm (b/a)\ x \implies prosta$

2.
$$r \dot{o} \dot{z} n i c a f a z \phi = \pm \pi/2$$

 $x^2/a^2 + y^2/b^2 = 1 \implies elipsa \ wg \ Oxy$

3.
$$r \acute{o} z nica faz \phi = \pm \pi/2$$
, $oraz$ $a = b$, $x^2 + y^2 = a^2 \implies okrag$

4.
$$\omega_{x} \neq \omega_{v} \implies figury Lissajou$$

Drgania równoległe - dudnienia

$$x_1 = a_1 \cos(\omega_1 t + \varphi_1), \qquad x_2 = a_2 \cos(\omega_2 t + \varphi_2),$$

$$a) \quad \omega_1 = \omega_2 = \omega$$

$$x_1 + x_2 = a_3 \cos(\omega t + \varphi_3),$$

b)
$$\omega_1 \neq \omega_2$$
, $\Delta \omega = (\omega_1 - \omega_2) << \omega_1, \omega_2$, $a_1 = a_2 = a$, $\phi_1 = \phi_2 = 0$
 $x_1 = a \cos(\omega t)$, $x_2 = a \cos[(\omega + \Delta \omega) t]$,

$$x_1 + x_2 = 2a \cos[(\Delta \omega/2) t] \cos(\omega t)$$
amplituda = | [2a \cos[(\Delta \omega/2)t] |; \czetazetstość pulsacji amplitudy (dudnień)
$$\Rightarrow \qquad (\Delta \omega) = 2 (\Delta \omega/2) = (\Delta \omega) = (\omega_1 - \omega_2)$$