PROJET 7 – « IMPLÉMENTEZ UN MODÈLE DE SCORING »

Soutenance de projet – parcours Data Scientist 31 Mars 2020

Sommaire

 Rappel de la problématique et présentation du jeu de données

II. Explication de l'approche de modélisation

III. Présentation du dashboard métier

I - PROBLÉMATIQUE

Rappel de la problématique Présentation du jeu de données

Appliquer un scoring crédit aux client

- Contexte : « Prêt à Dépenser» : société de crédits à la consommation
- Objectifs:
 - développer un modèle de scoring de la probabilité de défaut de paiement du client (avec pas ou peu d'historique de prêt)
 - Développer un dashboard interactif pour assurer une transparence sur les décisions d'octroi de crédit

Jeu de données

- 7 sources de données (relatives aux clients et à la société : précédentes demandes de crédit, balance de crédit, cash, etc.)
- Base de données principale :
 - 307 000 clients
 - 121 features : âge, sexe, emploi, logement, revenus, informations relatives au crédit, etc.
 - Labels cible : défaut de crédit / pas de défaut de crédit

Feature engineering

- Utilisation d'un notebook issu de Kaggle
- Processus:
 - One hot encoding
 - Détection des outliers / anomalies
 - Création de features métier :
 - Ratio du montant du crédit ramené au revenu
 - Ratio des annuités raménées au revenu
 - Durée du crédit
 - Pourcentage de temps employé (relatif à l'âge du client)
 - Imputation des valeurs manquantes
- Obtention d'un jeu de données de 244 features

Un jeu de données déséquilibré

- 91 % des clients réguliers
- 9 % des clients avec des défauts de paiement

- Modèle Naif : classe sans défaut pour tous les cas : accuracy élevée
- Surreprésentation de la classe majoritaire dans la prédiction

Comment réduire les conséquences de se déséquilibre?

- Collecter plus de données sur la classe minoritaire
- Under-sampling (réduire le nombre d'individus de la classe majoritaire)
- Dupliquer des individus sous représentés
- Choix d'une métrique de performance adaptée
- Création d'invididus « synthétiques »
- Pondération des observations dans le training

II – EXPLICATION DE L'APPROCHE DE MODÉLISATION

Métrique de performance Méthodologie Modèle retenu

Quel scoring adapté au problème métier?

Problématique :

- Les clients à risque font perdre de l'argent à la société
- La société ne doit pas se priver des potentiels clients qui ne présentent pas de risque
- ▶ ► Optimum à déterminer

Postulats:

- Les clients à risque non identifiés représentent une dépense effective importante pour la société (frais de recouvrement, sommes non recouvrées)
- Les clients peu risqués identifiés à tort comme risqués font perdre à la société un chiffre d'affaire potentiel (coût d'opportunité)

Fonction de scoring

- Transposition du problème
 - Limiter le nombre de faux négatifs
 - Limiter dans une moindre mesure le nombre de faux positifs

	prédit en défaut	prédit sans défaut
réel en défaut	vrais positifs	faux négatifs
réel sans défaut	faux positifs	vrai négatifs

- Equilibre à trouver entre Précision et Recall
 - Précision = TP /(TP + FP)
 - Recall = TP / (TP+FN)
- F Beta Score : permet d'identifier un compromis entre les 2 métriques

$$F_{\beta} = (1 + \beta^2) \cdot \frac{precision \cdot recall}{\beta^2 \cdot precision + recall}$$

- Beta : importance relative du recall par rapport à la précision
- Hypothèses de dépense de recouvrement vs coût d'opportunité aboutissent à Beta = 2,75
- F beta score compris entre 0 et 1 : 1 étant le classifieur parfait

Méthodologie

Entraînement sur training réduit avec Même processus cross validation sur jeu complet avec optimisation Choix du meilleur des modèle Entraînement du hyperparamètres Objectif: modèle choisi sur meilleur F Beta Score obtenu en jeu training Optimisation Objectif: hyperparamètres cross validation sélectionner la pour chaque bonne approche modèle pour le déséquilibre

- Algorithmes :
 - Random Forest Classifier
 - XGBoost Classifier
 - MLP Classifier
 - Stacking (XGBoost)

- Approches du déséquilibre:
 - Sample Weights
 - Smote

Comparaison des modèles après cross validation

- Meilleur modèle : Stacking Sample Weights (XGBoost)
 - Fß = 0.522
 - AUC = 0.704

III – PRÉSENTATION DU DASHBOARD

Outils utilisés

Solution	Description
Flask web development, one drop at a time	API permettant d'appeler la prédiction à partir de l'ID du client 127.0.0.1:5000/credit/413394 proba: 1 0.456686794757843
Streamlit.	Tableau de bord : Front
GitLab	Versioning
LIME	Explicabilité de la prédiction

Tableau de bord interactif

Dashboard Scoring Credit

Prédictions de scoring client et comparaison à l'ensemble des clients

Veuillez saisir l'identifiant d'un client:

Exemples d'id de clients en défaut : 286843, 377262, 140008, 196653, 134980

Exemples d'id de clients en règle : 392539, 211534, 240962, 296857, 146786

Commencer la démonstration

Voir la vidéo

CONCLUSION

Aller plus loin

Un modèle plus performant

- Une métrique d'évaluation basée sur des hypothèses métier confirmées
- Feature engineering plus poussé

Améliorer le dashboard

- Explicabilité plus précise (notamment avec variables du one hot encoding)
- Graphes interactifs
- Faire évoluer les scoring extérieur en même temps que les features sont modifiées

MERCI DE VOTRE ATTENTION