01204211 Discrete Mathematics Lecture 9b: Polynomials (1)¹

Jittat Fakcharoenphol

October 17, 2023

¹This section is from Berkeley CS70 lecture notes.

Quick exercise

For any integer $a \neq 1$, $a - 1|a^2 - 1$.

Quick exercise

For any integer $a \neq 1$, $a - 1|a^2 - 1$.

For any integer $a \neq 1$ and $n \geq 1$, $a - 1|a^n - 1$.

Polynomials

A single-variable polynomial is a function p(x) of the form

$$p(x) = a_d x^d + a_{d-1} x^{d-1} + \dots + a_1 x + a_0.$$

We call a_i 's coefficients. Usually, variable x and coefficients a_i 's are real numbers. The degree of a polynomial is the largest exponent of the terms with non-zero coefficients.

Examples

- $x^3 3x + 1$
- x + 10
- ▶ 10
- **>** 0

Applications

► Secret sharing (today)

Applications

- ► Secret sharing
- ► Error-correcting codes (wquar)

Basic facts

Definition

a is a **root** of polynomial f(x) if f(a) = 0.

Properties

=

- \rightarrow **Property 1:** A non-zero polynomial of degree d has at most d roots. *
- **Property 2:** Given d+1 pairs $(x_1,y_1),\ldots,(x_{d+1},y_{d+1})$ with distinct x_i 's, there is a *unique* polynomial p(x) of degree at most d such that $p(x_i)=y_i$ for $1\leq i\leq d+1$.

Lemma 1 ←

If two polynomials f(x) and g(x) of degree at most d that share d+1 points $(x_1,y_1),\ldots,(x_{d+1},y_{d+1})$, where all x_i 's are distinct, i.e., $f(x_i)=g(x_i)=y_i$, then f(x)=g(x).

Proof.

Suppose that $f(x) = a_d x^d + a_{d-1} x^{d-1} + \dots + a_0$ and $g(x) = b_d x^d + b_{d-1} x^{d-1} + \dots + b_0$. Let h(x) = f(x) - g(x), i.e., let $h(x) = c_d x^d + c_{d-1} x^{d-1} + \dots + c_0$, where $c_i = a_i - b_i$. Note that h(x) is also a polynomial of degree (at most) d.

We claim that h(x) has d+1 roots. Note that since $f(x_i)=g(x_i)=y_i$, we have that

$$h(x_i) = f(x_i) - g(x_i) = y_i - y_i = 0,$$

i.e., every x_i is a root of h(x).

From **Property 1**, if h(x) is non-zero it has at most d roots; therefore, h(x) must be zero, i.e., f(x) - g(x) = 0 or f(x) = g(x) as required.

Polynomial interpolation - ideas Un polynomial degree & d & בי או ליבטותף חום Xi + Xj sula (x,, y,) un 4,00) P(x) degree = d ((x,, y,), ... (xan, ydo) F(x)=P(x) $\Delta_{a}(x) = (x-x_{2})(x-x_{3})(x-x_{4})\cdots(x-x_{d+1})$

For
$$d+1$$
 points $(x_1,y_1),(x_2,y_2),\ldots,(x_{d+1},y_{d+1})$ where all x_i 's are distinct, let
$$\Delta_i(x)=\frac{(x-x_1)(x-x_2)\cdots(x-x_{i-1})(x-x_{i+1})\cdots(x-x_{d+1})}{(x_i-x_1)(x_i-x_2)\cdots(x_i-x_{i-1})(x_i-x_{i+1})\cdots(x_i-x_{d+1})}.$$

Note that $\Delta_i(x)$ is a polynomial of degree

$$\Delta_i(x_i) = 1$$

$$\Delta_{i}(x_{i}) = 1$$

$$\Delta_{i}(x_{j}) = 0$$

For
$$d+1$$
 points $(x_1,y_1),(x_2,y_2),\ldots,(x_{d+1},y_{d+1})$ where all x_i 's are distinct, let
$$\Delta_i(x)=\frac{(x-x_1)(x-x_2)\cdots(x-x_{i-1})(x-x_{i+1})\cdots(x-x_{d+1})}{(x_i-x_1)(x_i-x_2)\cdots(x_i-x_{i-1})(x_i-x_{i+1})\cdots(x_i-x_{d+1})}.$$

Note that $\Delta_i(x)$ is a polynomial of degree d. Also we have that

▶ For
$$j \neq i$$
, $\Delta_i(x_j) =$

For d+1 points $(x_1,y_1),(x_2,y_2),\ldots,(x_{d+1},y_{d+1})$ where all x_i 's are distinct, let

$$\Delta_i(x) = \frac{(x - x_1)(x - x_2) \cdots (x - x_{i-1})(x - x_{i+1}) \cdots (x - x_{d+1})}{(x_i - x_1)(x_i - x_2) \cdots (x_i - x_{i-1})(x_i - x_{i+1}) \cdots (x_i - x_{d+1})}.$$

Note that $\Delta_i(x)$ is a polynomial of degree d. Also we have that

- ightharpoonup For $j \neq i$, $\Delta_i(x_j) = 0$, and
- $ightharpoonup \Delta_i(x_i) =$

For
$$d+1$$
 points $(x_1,y_1),(x_2,y_2),\ldots,(x_{d+1},y_{d+1})$ where all x_i 's are distinct, let
$$\Delta_i(x)=\frac{(x-x_1)(x-x_2)\cdots(x-x_{i-1})(x-x_{i+1})\cdots(x-x_{d+1})}{(x_i-x_1)(x_i-x_2)\cdots(x_i-x_{i-1})(x_i-x_{i+1})\cdots(x_i-x_{d+1})}.$$

Note that $\Delta_i(x)$ is a polynomial of degree d. Also we have that

- ightharpoonup For $i \neq i$, $\Delta_i(x_i) = 0$, and
- $\Delta_i(x_i) = 1.$

$$P(x) = Y_1 \Delta_1(x) + Y_2 \cdot \Delta_2(x) + Y_3 \Delta_3(x) + \cdots + Y_{d+1} \Delta_{d+1}(x)$$

For
$$d+1$$
 points $(x_1,y_1),(x_2,y_2),\ldots,(x_{d+1},y_{d+1})$ where all x_i 's are distinct, let
$$\Delta_i(x)=\frac{(x-x_1)(x-x_2)\cdots(x-x_{i-1})(x-x_{i+1})\cdots(x-x_{d+1})}{(x_i-x_1)(x_i-x_2)\cdots(x_i-x_{i-1})(x_i-x_{i+1})\cdots(x_i-x_{d+1})}.$$

Note that $\Delta_i(x)$ is a polynomial of degree d. Also we have that

- ightharpoonup For $i \neq i$, $\Delta_i(x_i) = 0$, and
- $\Delta_i(x_i) = 1.$

We can use $\Delta_i(x)$ to construct a degree-d polynomial

$$p(x) = y_1 \cdot \Delta_1(x) + y_2 \cdot \Delta_2(x) + \cdots + y_{d+1} \cdot \Delta_{d+1}(x).$$

What can you say about $p(x_i)$?

Property 2 🗶

Given d+1 pairs $(x_1,y_1),\ldots,(x_{d+1},y_{d+1})$ with distinct x_i 's, there is a <u>unique</u> polynomial p(x) of degree at most d such that $p(x_i)=y_i$ for $1\leq i\leq d+1$.

Proof of Property 2.

- Using Lagrange interpolation, we know that there exists a polynomial p(x) of degree d such that $p(x_i) = y_i$ for all $1 \le i \le d+1$.
- For uniqueness, assume that there exists another polynomial g(x) of degree d also satisfying the condition. Since p(x) and g(x) agrees on more than d points, p(x) and g(x) must be equal from Lemma 1.

Examples - evaluation

Suppose that we work over GF(m) where $m=\underline{11}$. Let $p(x)=\underline{4\cdot x^2+5\cdot x+3}$. We have

nave		
x	p(x)	$p(x) \bmod m$
0	3	3
1	12	1
2	29	7
3	54	10
4	87	10
5	128	7
6	177	1
7	234	3
8	299	2
9	372	9
10	453	2
11	542	3

Let m=11. Suppose that p(x) is a polynomial over GF(m) of degree 2 passing through (7, 4, 10), and (7, 3). Find p(x).

$$\Delta_1(x) = \frac{(x-4)(x-7)}{(2-4)(2-7)} =$$

Let m=11. Suppose that p(x) is a polynomial over GF(m) of degree 2 passing through (2,7),(4,10), and (7,3). Find p(x). Let

Let m=11. Suppose that p(x) is a polynomial over GF(m) of degree 2 passing through (2,7),(4,10), and (7,3). Find p(x). Let

Let m=11. Suppose that p(x) is a polynomial over GF(m) of degree 2 passing through (2,7),(4,10), and (7,3). Find p(x). Let

Let m=11. Suppose that p(x) is a polynomial over GF(m) of degree 2 passing through (2,7),(4,10), and (7,3). Find p(x).

Thus,

Let

$$p(x) = 7\Delta_1(x) + 10\Delta_2(x) + 3\Delta_3(x)$$

$$= (70x^2 + 35) + (90x^2 + 70x + 50) + (9x^2 + 12x + 6)$$

$$= 4x^2 + 5x + 3$$

Secret sharing scheme - settings

Secret sharing scheme - settings

There are
$$n$$
 people, a secret s , and an integer k .

We want to "distribute" the secret in such a way that any set of k-1 people cannot know anything about s, but any set of k people can reconstruct s.

$$P(0) = S$$

$$P(x) = a_{k-1}x^{k-1} + a_{$$

Secret sharing scheme

Secret sharing scheme

K ALL HE VECTORER Secret S

- Pick m to be larger than n and s. (Much larger than s, i.e., m >>> s.)
 Pick a random polynomial of degree k-1 such that P(0)=s.
- ▶ Give P(i) to person i, for 1 < i < n.
- Correctness: for any set of k people.

Secret sharing scheme

- ightharpoonup Pick m to be larger than n and s. (Much larger than s, i.e., m >>> s.)
- ▶ Pick a random polynomial of degree k-1 such that P(0) = s.
- ▶ Give P(i) to person i, for $1 \le i \le n$.
- Correctness: for any set of k people,
- Correctness: for any set of k-1 people, how many possible candidate secrets compatible with the information these people have?