Lean Six Sigma Green Belt Certification Course

DIGITAL OPERATIONS

Business Results for Projects

mplilearn. All rights reserved

Learning Objectives

By the end of this lesson, you will be able to:

Define process performance

Scenario

The problem

Primary metric:

Number of coffee orders processed per hour

Scenario

The solution

Secondary metric: Number of defects

DIGITAL

Process Performance

Metrics to Assess the Performance of a Business

Metrics to measure business results for projects are critical to evaluate success.

Metrics to Assess the Performance of a Business

Rolled Throughput Yield (RTY) Defect Per Million Opportunities (DPMO)

Sigma Level

Throughput Yield (TPY)

Defect Per Unit (DPU)

Cost of Quality

Process Capability (Cp)

Defect Per Unit (DFU): Introduction

Defect per unit (DPU) is the average number of defects per unit of a product.

©Simplilearn. All rights reserved.

Example to Calculate DPU

	`

Defects per unit	0	1	2	3	4	5
Units	50	30	15	4	0	1
Number of defects	0 (0*50)	30 (1*30)	30 (2 * 15)	12 (3 * 4)	0 (4*0)	5 (5 * 1)

77

DPU =
$$\frac{0(50) + 1(30) + 2(15) + 3(4) + 5(1)}{50 + 30 + 15 + 4 + 1} = \frac{77}{100} =$$

Throughput Yield: Introduction

Throughput Yield (TPY) is the number of acceptable pieces, at the end of a process, divided by the number of starting pieces, excluding scrap and rework.

Simplilearn. All rights reserved

Throughput Yield: Example to Calculate TPY

•	

Defects per unit	0	1	2	3	5	
Number of defects	0	30	30 (2 * 15)	12 (3 * 4)	5 (5 * 1)	DPU =
Units	50	30	15	4	1	0.77

Rolled Throughput Yield: Introduction

Rolled Throughput Yield (RTY) is the probability of the entire process producing zero defects. It is important as a metric when a process has excessive rework.

Total Defects per Unit (TDPU) is defined for a set of processes.

$$TDPU = - In(RTY)$$

First Pass Yield: Introduction

First Pass Yield (FPY) is the number of products which pass without any rework of the total number of units.

$$RTY = FPY_1 * FPY_2 * FPY_3...FPY_n$$

Calculation of FPY and RTY: Problem

Process	Input parts from the supplier	Input parts that passed inspection	Reworked parts
Process A	100	85	5
Process B	90	80	5
Process C	85	85	0

Calculation of FPY and RTY: Solution

FPY for Process A =
$$\frac{\text{Total number of quality products}}{\text{Total number of units}} = \frac{85}{100} = 0.850 = 85\%$$

FPY for Process B =
$$\frac{\text{Total number of quality products}}{\text{Total number of units}} = \frac{80}{90} = 0.889 = 88.9\%$$

Defects Per Million Opportunities (DPMO): Introduction

Defect per Million Opportunities (DPMO), or Non-Conformities per Million Opportunities (NPMO), is a measure of process performance.

Defects Per Million Opportunities (DPMO): Example

Total number of opportunities = Units * Number of opportunities per unit

$$DPMO = \frac{Total number of defects}{Total number of opportunities} * 10^{6}$$

$$= \frac{10}{35} * 10^6 = 285714 DPMO$$

Sigma Level: Introduction

Sigma Level is a measure of the error rate of the process.

Sigma levels are generally based on DPMO.

4	Α	В	С	D	Е
1					
2	Enter process sigma level, compute PPM				
3	Process Sigma Level ->	6			
4	РРМ	3.4			
5	Percent	0.00034%			
6					
7	Enter percent, compute PPM and process	s sigma level			
8	If the percent is less than 1, you must use the percent sign after the number (e.g., 0.01%)				
9	Percent ->	0.00034%			
10	РРМ	3.4			
11	Process Sigma Level				
12					
13	Enter DPMO, compute process sigma lev	יסר 🕊	714.0	\ _	
14	DPMO ->	280	5714.0	I	
15	Process Sigma Level				
16			2.07		
17			2.07		

Process Capability (Cp)

Process Capability (Cp) and Process Capability Indices (Cpk) is defined as the inherent variability of a characteristic of a process or a product.

Process does not meet specification limits. There are many failures.

Process Capability (Cp): Formula

Key Takeaways

- DPU is the average number of defects per unit of a product.
- TPY is the number of acceptable pieces divided by the number of starting pieces.
- RTY is the probability of the entire process producing zero defects.
- FPY is the number of products which pass without any rework of the total number of units.

Key Takeaways

- DPMO or NPMO is a measure of process performance.
- Sigma Level is a measure of the error rate of the process.
- OQ is the cost incurred by a process because it cannot consistently make a perfect product.
- Cp is defined as the inherent variability of a characteristic of a process or a product.

DIGITAL

Knowledge Check

A process has finished running and produced 5 parts. Each part has three opportunities. The inspector found 2 defects. What is the Defect Per Unit (DPU)?

- A. 0.13
- B. 0.67
- C. 0.6
- D. 0.5

A process has finished running and produced 5 parts. Each part has three opportunities. The inspector found 2 defects. What is the Defect Per Unit (DPU)?

- A. 0.13
- B. 0.67
- C. 0.6
- D. 0.5

The correct answer is A

Total defects/ Total opportunities = 2/(3*5) = 0.13

2

If we want to compare the performance of different processes, which metric should we use?

- A. RTY
- B. DPMO
- C. DPU
- D. FPY

2

If we want to compare the performance of different processes, which metric should we use?

- A. RTY
- B. DPMO
- C. DPU
- D. FPY

The correct answer is **B**

Defects per million opportunities, or DPMO, standardizes the number of defects at the opportunity level and allows comparison of the processes with different complexities.

