

Description

The VSM40P04 uses advanced trench technology and design to provide excellent RDS(ON) with low gate charge .This device is well suited for high current load applications.

General Features

- V_{DS} =-40V, I_{D} =-40A $R_{DS(ON)}$ <14m Ω @ V_{GS} =-10V
- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation

Application

- Power switching application
- Hard switched and high frequency circuits
- Uninterruptible power supply

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM40P04-T3	VSM40P04	TO-263	-	-	-

Absolute Maximum Ratings (T_C=25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	-40	V	
Gate-Source Voltage	V _G s	±20	V	
Drain Current-Continuous	I _D	-40	А	
Drain Current-Continuous(T _C =100 °C)	I _D (100℃)	-25	А	
Pulsed Drain Current	I _{DM}	-50	А	
Maximum Power Dissipation	P _D	80	W	
Derating factor		0.53	W/℃	
Single pulse avalanche energy (Note 5)	E _{AS}	544	mJ	
Operating Junction and Storage Temperature Range	T_{J} , T_{STG}	-55 To 175	$^{\circ}$	

Shenzhen VSEEI Semiconductor Co., Ltd

Thermal Characteristic

Thermal Resistance, Junction-to-Case (Note 2)	R _{0JC}	1.88	°C/W]
---	------------------	------	------	---

Electrical Characteristics (T_C=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics			•			
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =-250μA	-40	-	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =-40V,V _{GS} =0V	-	-	-1	μA
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)			•			•
Gate Threshold Voltage	V _{GS(th)}	V _{DS} =V _{GS} ,I _D =-250μA	-1.5	-1.9	-3.0	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =-10V, I _D =-12A	-	10	14	mΩ
Forward Transconductance	g FS	V _{DS} =-5V,I _D =-12A	34	-	-	S
Dynamic Characteristics (Note4)			•			•
Input Capacitance	C _{lss}	\/ 00\/\/ 0\/	-	2960	-	PF
Output Capacitance	Coss	V_{DS} =-20V, V_{GS} =0V, F=1.0MHz	-	370	-	PF
Reverse Transfer Capacitance	C _{rss}	F=1.UIVIHZ	-	310	-	PF
Switching Characteristics (Note 4)			•			•
Turn-on Delay Time	t _{d(on)}		-	10	-	nS
Turn-on Rise Time	t _r	V _{DD} =-20V,I _D =-20A	-	18	-	nS
Turn-Off Delay Time	t _{d(off)}	V_{GS} =-10 V , R_{G} =3 Ω	-	38	-	nS
Turn-Off Fall Time	t _f		-	24	-	nS
Total Gate Charge	Qg	V 00 L 40A	-	72		nC
Gate-Source Charge	Q _{gs}	V_{DS} =-20, I_{D} =-12A, V_{GS} =-10V	-	14		nC
Gate-Drain Charge	Q_{gd}	V _{GS} 10V	-	15		nC
Drain-Source Diode Characteristics			•			•
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =-20A	-		-1.2	V
Diode Forward Current (Note 2)	Is		-	-	-40	Α
Reverse Recovery Time	t _{rr}	TJ = 25°C, IF =- 20A	-	40		nS
Reverse Recovery Charge	Qrr	di/dt = -100A/µs ^(Note3)	-	42		nC
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)				

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- **2.** Surface Mounted on FR4 Board, $t \le 10$ sec.
- 3. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.
- **4.** Guaranteed by design, not subject to production
- **5.** E_{AS} condition: Tj=25 $^{\circ}$ C,V_{DD}=-20V,V_G=-10V,L=1mH,Rg=25 Ω ,I_{AS}=33A

Test Circuit

1) E_{AS} Test Circuit

2) Gate Charge Test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Rdson-Junction Temperature

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds 100 Ip- Drain Current (A) 10 $R_{DS(ON)}$ limited T_{J(Max)}=175°C 10ms T_C=25°C DC 10 100

Vds Drain-Source Voltage (V) **Figure 8 Safe Operation Area**

Figure 9 BV_{DSS} vs Junction Temperature 40 Ip- Drain Current (A) 30 20 10 0 100 0 25 50 75 125 150 175 T_J-Junction Temperature(°C)

Figure 10 ID Current Derating vs Junction **Temperature**

Square Wave Pluse Duration(sec)

Figure 11 Normalized Maximum Transient Thermal Impedance