Pautes de correcció LOGSE: Química

SÈRIE 3

- 1. Àcid sulfúric: H_2SO_4 ; Hidròxid de sodi: NaOH: massa molar = 40 g·mol⁻¹.
 - a) 2 NaOH + $H_2SO_4 \rightarrow Na_2SO_4 + 2 H_2O$

[0,5 punts]

b) Per factors de conversió: 2,112 g NaOH ⇒ 70,4% NaOH

[0,5 punts]

- c) La mostra de sosa càustica (3 g) es mesura amb una **balança** i es posa en un **erlenmeyer**; s'hi afegeix aigua suficient per **dissoldre-la**, i unes gotes de **solució indicadora** (fenolftaleïna, etc.). La dissolució de H₂SO₄ es posa en una **bureta** i es va afegint a l'erlenmeyer, remenant contínuament, fins observar el **viratge** de l'indicador. S'anota el volum total afegit.
- 2. Àcid clorhídric: HCl, massa molar = 36,5 g·mol⁻¹;

a) 4 HCl + MnO₂ \rightarrow Cl₂ + MnCl₂ + 2 H₂O

[0,5 punts]

b) Aplicant l'equació dels gasos ideals en les condicions de l'enunciat:

10 L $Cl_2 = 0,405 \text{ mol}$

[0,5 punts]

Per factors de conversió: 171,35 mL dissolució HCI

[0,5 punts]

c) B: corrosiu (es tracta d'un àcid, que ataca la pell i molts materials)

[0,5 punts]

- 3. Acetat de sodi: NaCH₃COO (massa molar = 82 g·mol⁻¹)
 - a) $HNO_3 \rightarrow H^+ + NO_3^-$

 $[H^{+}] = 0.01 \implies pH = 2$

[0,5 punts]

- b) Afegim una sal que té hidròlisi bàsica (l'àcid acètic és feble) per tant, el **pH serà més gran** que en la dissolució anterior que només contenia HNO₃
- c) La quantitat afegida d'acetat és estequiomètricament equivalent a l'àcid nítric que hi havia abans. Podem suposar que tenim una dissolució 0,01 M d'àcid acètic i resoldre l'equilibri corresponent: [acetat] = $[H^+] = x$

$$K_a = \frac{x^2}{(0.01 - x)} \Rightarrow x = 4.2 \cdot 10^{-4} \,\text{mol} \cdot \text{L}^{-1}$$
 [1 punt]

Pàgina 2 de 4

Pautes de correcció LOGSE: Química

OPCIÓ A

4.

- a) $AgNO_3 + NaCI \rightarrow AgCI \downarrow + Na NO_3$ [0,5 punts]
- b) Volum total = 1 L + 0.0018 L = 1.0018 L

$$K_{ps} = \left[\text{Ag}^{+} \right] \left[\text{Cl}^{-} \right] = \frac{1 \cdot 10^{-4} \text{ mol}}{1,0018 \text{ L}} \cdot \frac{1,8 \cdot 10^{-3} \text{ L} \cdot 0,001 \text{ mol} \cdot \text{L}^{-1}}{1,0018 \text{ L}} = \mathbf{1,8 \cdot 10^{-10}}$$
 [1 punt]

c) El precipitat de clorur de plata es redissoldrà per complexació:

$$AgCI + 2 NH_3 \rightarrow Ag(NH_3)_2^+ + CI^-$$
 [0,5 punts]

5.

- a) $KCIO_3 \rightarrow KCI + 3/2 O_2$ (o bé 2 $KCIO_3 \rightarrow 2 KCI + 3 O_2$)
- b) $\Delta H^{\circ} = \Delta H^{\circ}(KCI) \Delta H^{\circ}(KCIO_{3}) = -437 (-398) = -39 \text{ kJ·mol}^{-1} \Rightarrow \text{reacció exotèrmica}$ [0,5 punts]
- c) La reacció transforma un sòlid en un altre sòlid més un gas; s'incrementa el "desordre" i, per tant, l'entropia: Δ**S > 0** [0,5 punts]
- d) $\Delta G^{\circ} = \Delta H^{\circ} T\Delta S^{\circ}$ Si $\Delta H^{\circ} < 0$ i $\Delta S^{\circ} > 0$, $\Rightarrow \Delta G^{\circ} < 0$, i la reacció és espontània [0,5 punts]

OPCIÓ B

4.

- a) Un recipient amb dissolució de AgNO₃ i un elèctrode de Ag. Un altre recipient amb dissolució de Zn(NO₃)₂ i un elèctrode de Zn. S'uneixen les dissolucions mitjançant un pont salí (o qualsevol unió líquida) i els elèctrodes amb un circuit metàl·lic extern.[0,5 punts]
- b) Ànode: $Zn \rightarrow Zn^{2^+} + 2e^-$ Càtode: $Ag^+ + 1e^- \rightarrow Ag$ [0,5 punts]
- c) f.e.m. = $E^{\circ}(Ag^{+}/Ag) E^{\circ}(Zn^{2+}/Zn) = 0.80 (-0.76) = 1.56 \text{ V}$ [0.5 punts]
- d) Per factors de conversió, **6,54 g Zn** [0,5 punts]

5.

- a) $PV = nRT = \frac{m}{M}RT \Rightarrow M = \frac{mRT}{PV} = 88.5 \text{ g·mol}^{-1}$ [0,7 punts]
- b) $C_xH_yO_2$ Per combustió dóna x CO_2 + y/2 H_2O .

De les dades de l'enunciat, $x = y/2 \implies y = 2x \implies C_xH_{2x}O_2$

Massa molecular: $14 \times + 32 = 88,6 \implies x \approx 4$ [0,7 punts]

c) $CH_3CH_2CH_2COOH$ (àcid butanoic)

CH₃COOCH₂CH₃ (acetat d'etil) [0,6 punts]

Pautes de correcció LOGSE: Química

SÈRIE 2

- 1. Àcid sulfúric: H₂SO₄ massa molar = 98 g·mol⁻¹.
 - a) Per factors de conversió: 5,88 ≈ 5,9 mL

[0,5 punts]

- b) Es mesuren els 5,9 cm³ d'àcid amb una **pipeta graduada** (o fins i tot amb una bureta); s'introdueixen en un **matràs aforat** de 100 mL i s'afegeix aigua destil·lada (o desionitzada) fins al senyal (**s'enrasa**), agitant per homogeneïtzar la dissolució.
- c) És un producte corrosiu, cal evitar tot contacte amb la pell, els ulls i els teixits. Es recomanable treballar amb guants. No s'ha d'afegir mai aigua a un recipient que contingui àcid sulfúric concentrat. [0,5 punts]
- 2. Etanol: CH₃CH₂OH Etè (o etilè): C₂H₄
 - a) (I) $CH_3CH_2OH + 3O_2 \rightarrow 2CO_2 + 3H_2O$

[0,3 punts]

(II) $C_2H_4 + 3 O_2 \rightarrow 2 CO_2 + 2 H_2O$

[0,3 punts]

- b) Restant les equacions: (II) (I) \Rightarrow C₂H₄ + H₂O \rightarrow CH₃CH₂OH
 - $\Delta H^{\circ} = \Delta H^{\circ}_{(II)} \Delta H^{\circ}_{(I)} = -1411 (-1367) = -44 \text{ kJ·mol}^{-1}$

[0,6 punts]

c) $\Delta S^{o} = S^{o}(\text{etanol}) - S^{o}(\text{ete}) - S^{o}(\text{aigua}) = -128,71 \text{ J} \cdot \text{K}^{-1} \text{mol}^{-1}$

 $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ} = \dots = -4.6 \text{ kJ·mol}^{-1} \Rightarrow \text{la reacció és espontània}$

[0,8 punts]

- 3. Carbonat de calci: CaCO₃ (massa molar = 100 g·mol⁻¹)
 - a) $CaCO_3 + 2 HCI \rightarrow CaCI_2 + CO_2 + H_2O$

[0,5 punts]

- b) N'hi ha 0,021 mol de $CaCO_3$ i 0,25 mol de HCl. Per tant, el reactiu limitant és el $CaCO_3$, i l'excés d'HCl és: $0,25-2\cdot0,021=0,208$ mol [0,5 punts]
- c) Aplicant l'equació dels gasos ideals a 0,021 mol: V(CO₂) = 0,513 L

[0,5 punts]

d) $[CaCl_2] = 0.42 \text{ mol} \cdot L^{-1}$ $[HCl] = 4.16 \text{ mol} \cdot L^{-1}$

[0,5 punts]

Pàgina 4 de 4

Pautes de correcció LOGSE: Química

OPCIÓ A

4.

a) A: $1s^22s^22p^63s^23p^4$ B: $1s^22s^22p^63s^23p^64s^1$

[0,5 punts]

- b) B és un àtom alcalí, fàcilment ionitzable, per tant, la seva energia de ionització serà més baixa que la de l'àtom A [0,5 punts]
- c) A pot convertir-se en A²⁻ guanyant dos electrons. Així, el compost que es formaria seria BA₂ [0,5 punts]
- d) $E = \frac{hc}{\lambda} = \frac{6.62 \cdot 10^{-34} \,\mathrm{J \cdot s \cdot 3 \cdot 10^8 \,m \cdot s^{-1}}}{2856 \,\mathrm{\mathring{A}} \cdot} \cdot \frac{1 \,\mathrm{kJ}}{1000 \,\mathrm{J}} \cdot \frac{6.022 \cdot 10^{23}}{1 \,\mathrm{mol}} \cdot \frac{1 \,\mathrm{\mathring{A}}}{1 \cdot 10^{-10} \,\mathrm{m}} = 418.75 \,\mathrm{kJ \cdot mol^{-1}} \quad [0.5 \,\mathrm{punts}]$

5.

- e) La dissociació d'un àcid fort és total, mentre que la d'un àcid feble és parcial, hi ha un equilibri entre la forma no dissociada i la dissociada. [0,5 punts]
- f) Hidròlisi: Si l'anió (catió) d'una sal prové d'un àcid (base) feble, l'equilibri de dissociació de l'àcid (base) implica una disminució de la concentració de H⁺ (OH⁻) i, per tant, una disminució (augment) del pH; la dissolució serà bàsica (àcida) [0,5 punts]
- g) H₂SO₄ < HCl < CH₃COOH < NH₃ < NaOH

(justificat per la concentració de protons, caràcter àcid o bàsic, fort o feble)

[0,5 punts]

h) NH₄Cl < NaCl = KNO₃ < NaCH₃COO (justificat per l'existència o no d'hidròlisi àcida o bàsica)

[0,5 punts]

OPCIÓ B

- 4. Clorur de coure(II): CuCl₂
 - a) El dipòsit vermellós correspon a Cu metàl·lic que apareix per reducció del Cu^{2+} al càtode: $Cu^{2+} + 2e^- \rightarrow Cu$.

El despreniment gasós té lloc a l'ànode. Es pot acceptar qualsevol d'aquestes possibilitats:

$$2 \text{ Cl}^{-} \rightarrow \text{ Cl}_2 + 2 \text{ e}^{-}$$

$$2 H_2O \rightarrow O_2 + 4 H^+ + 4 e^- (0 4 OH^- \rightarrow O_2 + 2H_2O + 4 e^-)$$

[1 punt]

b) Per factors de conversió: es dipositen 2,96 g de Cu

[1 punt]

5.
$$K_c = \frac{[SO_3][NO]}{[SO_2][NO_2]} = \frac{n(SO_3)n(NO)}{n(SO_2)n(NO_2)} = 3$$

- a) $\frac{0.8 \cdot 0.8}{0.4 \cdot 0.4} = 4 > K_c \Rightarrow$ **no està en equilibri**: es desplaçarà cap a l'esquerra [0,5 punts]
- b) $\frac{(0.8-x)^2}{(0.4+x)^2} = 3 \Rightarrow x^2 + 2x 0.08 = 0 \Rightarrow x = 0.04$

$$n(SO_2) = n(NO_2) =$$
0,44 mol $n(SO_3) = n(NO) =$ **0,76 mol**

[1 punt]

c) No es modifica, en no haver increment de nombre de mols en la reacció

[0,5 punts]