STAT 5010: Advanced Statistical Inference

Lecturer: Tony Sit Lecture #1
Scribe: XU Weiwei 07 September 2020

Different disciplines:

- Networks, images, recordings, ...
- Economics, Finance, ...
- Biology (Genetic), medical, earth science,

Question Concerned:

- Modelling How to build a mathematical/statistical model that captures the *uncertainty* in our data?
- Methodology tools that allows us to deduce these statistical conclusions.
- Analysis: Optimal inference
 - e.g. Mode: sample mean, sample median.
 - * Finite sample optionality
 - 1. Given observations $(x_1, x_2, ..., x_n)$.
 - 2. Asymptotic properties $(n \to \infty)$.

1 Decision Theory (Wald, 1939)

Random element X takes values in a sample space χ . X can also be a vector (or matrix).

$$(X_1, X_2, ..., X_n)$$
 ^{$i.i.d$} $\underset{\sim}{i}$ f (distribution)

I • A statistical model is a family of distribution \mathbb{P} indexed by a parameter θ , we denote

$$\mathbb{P} = \{ P_{\theta} : \Theta \in \Omega \} \,,$$

where θ is the parameter, $\Omega \in \mathbb{R}^k$ is the parameter space and P_{θ} is a distribution.

• We assume that the data X come from some $P_{\theta} \in \mathbb{P}$ but the true value of θ is unknown.

Example 1 Observe a sequence of coin flips $x_1, x_2, ..., x_n \in \{0, 1\}$. The objective is to estimate the probability of heads given the observations. (with 1 denotes a head). One can write

$$\mathbb{P} = \left\{ Bernoulli(\theta) : \theta \in [0, 1] \triangleq \Omega \right\}$$

$$P_{\theta}(X_i = 1) = \theta.$$

Estimating Procedure:

$$\begin{array}{c} \text{Estimator} \stackrel{\text{Observations}}{\longrightarrow} \text{Estimates} \\ + \text{Testing} \end{array} \right\} \rightarrow \text{Inference}$$

II A Decision Procedure

 δ (estimator) is a map from χ to the decision space \mathbb{D} .

Example: Take $\mathbb{P} = \{\text{Bernoulli}(\theta)\}$ as shown above, we may be interested in estimating θ or testing θ based on:

(a) Estimating θ

The decision space is $\mathbb{D} = [0, 1]$ and the decision procedure might be

$$\delta(X) = \frac{1}{n} \sum_{i=1}^{n} X_i = \bar{X}_n.$$

(b) Hypothesis Testing

Accepting/rejecting the hypothesis that $\theta = 0.5$; The corresponding decision space is $\mathbb{D} = \{\text{accept}, \text{reject}\}\$, one possible decision procedure is

$$\delta(X) =$$
 "Reject if $\bar{X}_n > 0.5$ " and accept otherwise.

(c) A loss function is a mapping $L: \Omega \times \mathbb{D} \to \mathbb{R}^+$, $L(\theta, d)$ represents the penalty for making the decision d when θ is in fact the true parameter for the distribution generating the data.

Example 2: [Squared-error Loss] For estimating θ with decision $d \in \mathbb{R} = \mathbb{D}$, a common loss function is the squared-error loss: $L(\theta, d) = (\theta - d)^2$.

Risk Function:

Average loss incurred
$$\rightarrow R(\theta, \delta) = E_{\theta}(L(\theta, \delta(X)))$$

Admissiability:

 δ is inadmissible if there exists δ' such that $R(\theta, \delta') \leq R(\theta, \delta)$ for all θ and $R(\theta', \delta') < R(\theta', \delta)$ for some θ' .

2