Teorema de Caracterización de Pesos A_1

David Cabezas Berrido

Introducción

Vamos a demostrar el teorema de caracterización de los pesos A_1 . Nuestra referencia principal será el libro "Análisis de Fourier" de Javier Duoandikoetxea. Fijemos primero algo de notación.

Trabajaremos en el espacio \mathbb{R}^n . En adelante w denotará un peso, es decir, una función medible, no negativa y localmente integrable en \mathbb{R}^n . Para cada conjunto medible $E \subset \mathbb{R}^n$, notaremos $w(E) = \int_E w dx$, donde la integral es respecto a la medida de Lebesgue en \mathbb{R}^n . La medida de Lebesgue de un conjunto medible E se denota por |E|.

Consideramos el funcional maximal de Hardy-Littlewood M definido por

$$Mf(x) = \sup_{Q \ni x} \frac{1}{|Q|} \int_{Q} |f(y)| dy \tag{1}$$

para cada f localmente integrable en \mathbb{R}^n $(f \in L^1_{loc}(\mathbb{R}^n))$. El supremo de la expresión de arriba es en todos los cubos Q que contienen al punto $x \in \mathbb{R}^n$.

Recordamos que la condición para que un peso w esté en la clase A_1 es

$$\frac{w(Q)}{|Q|} \le Cw(x) \tag{2}$$

para casi todo $x \in Q$ y para todo cubo Q. La constance C no puede depender ni de x ni de Q, se le llama constante A_1 de w.

Demostración del teorema

Primero enunciaremos dos resultados que necesitaremos para la prueba del teorema. El primero es la desigualdad de Kolmogorov.

Lema 1. Si T es un operador (1,1)-débil $y \delta \in [0,1[$, se tiene

$$\int_{E} |Tf|^{\delta} dx \le C(\delta) |E|^{1-\delta} ||f||_{1}^{\delta}$$

para alguna constante $C(\delta)$ dependiente de δ válida para toda f integrable.

Demostración. Partimos de que existe una constante C > 0 tal que

$$|\{x \in \mathbb{R}^n : |Tf(x)| > \lambda\}| \le \frac{C||f||_1}{\lambda}$$

para toda $f \in L_1(\mathbb{R}^n)$.

Tomando $\phi(\lambda) = \lambda^{\delta}$, se tiene por el TFC que

$$\int_{E} |Tf(x)|^{\delta} dx = \int_{E} \phi(|Tf(x)|) dx = \int_{E} \int_{0}^{|Tf(x)|} \phi'(\lambda) d\lambda dx = \delta \int_{E} \int_{0}^{|Tf(x)|} \lambda^{\delta - 1} d\lambda dx.$$

Usando Fubini-Tonelli obtenemos

$$\int_{E} |Tf(x)|^{\delta} dx = \delta \int_{0}^{+\infty} \int_{E'} \lambda^{\delta-1} dx d\lambda = \delta \int_{0}^{+\infty} \lambda^{\delta-1} \int_{E'} dx d\lambda = \delta \int_{0}^{+\infty} \lambda^{\delta-1} |E'| d\lambda,$$

donde $E'=\{x\in E: 0<\lambda<|Tf(x)|\}$. La desigualdad (1,1)-débil nos dice que $|E'|\leq \min\left\{|E|,\frac{C}{\lambda}\|f\|_1\right\}$, luego

$$\begin{split} \int_{E} |Tf(x)|^{\delta} dx &\leq \delta \int_{0}^{+\infty} \lambda^{\delta - 1} \min \left\{ |E|, \frac{C}{\lambda} \|f\|_{1} \right\} d\lambda \\ &= \delta \int_{0}^{C \|f\|_{1}/|E|} \lambda^{\delta - 1} |E| d\lambda + \delta \int_{C \|f\|_{1}/|E|}^{+\infty} C \|f\|_{1} \lambda^{\delta - 2} d\lambda \\ &= |E| \lambda^{\delta} \Big|_{0}^{C \|f\|_{1}/|E|} + \delta C \|f\|_{1} \frac{\lambda^{\delta - 1}}{\delta - 1} \Big|_{C \|f\|_{1}/|E|}^{+\infty} \\ &= |E| C^{\delta} \|f\|_{1}^{\delta} |E|^{-\delta} + \frac{\delta}{1 - \delta} C \|f\|_{1} C^{\delta - 1} \|f\|_{1}^{\delta - 1} |E|^{1 - \delta} \\ &\leq |E|^{1 - \delta} \|f\|_{1}^{\delta} \left(C^{\delta} + \frac{\delta}{1 - \delta} C\right) = |E|^{1 - \delta} \|f\|_{1}^{\delta} C(\delta). \end{split}$$

Sabemos que el operador M es (1,1)-débil, por lo que podremos aplicarle éste resultado. El siguiente es la desigualdad de $H\"{o}lder$ inversa, que ya fue probado durante el curso.

Lema 2. Si $w \in A_p$ con $1 . Existe <math>\varepsilon > 0$ dependiente sólo de p y de la constante A_p de w tal que

$$\left(\frac{1}{|Q|}\int_{Q}w^{1+\varepsilon}\right)^{\frac{1}{1+\varepsilon}} \leq \frac{C}{|Q|}\int_{Q}w,$$

donde la constante C es válida para todo cubo Q.

Ya estamos en condiciones de demostrar el teorema de caracterización de pesos A_1 .

Teorema 3. Sea $f \in L^1_{loc}(\mathbb{R}^n)$ tal que $Mf(x) < \infty$ casi por doquier en \mathbb{R}^n . Si $\delta \in [0, 1[$, $w(x) = (Mf(x))^{\delta}$ es un peso A_1 con constante A_1 dependiente del δ pero no de f.

Reciprocamente, si $w \in A_1$ existen $f \in L^1_{loc}(\mathbb{R}^n)$, $k \in L^{\infty}(\mathbb{R}^n)$ con $k^{-1} \in L^{\infty}(\mathbb{R}^n)$ $y \in [0, 1[$ tales que $w = k(Mf)^{\delta}$.

2

Demostración. Para la primera parte, debemos probar que para todo cubo Q y para casi todo $x \in Q$ se tiene la condición A_1 :

$$\frac{1}{|Q|} \int_{Q} (Mf)^{\delta} \le C(Mf(x))^{\delta}$$

con C independientemente de Q y de f. Fijados Q y f, sea \overline{Q} el cubo con el mismo centro y el doble de lado. De esta forma se tiene $|\overline{Q}| = 2^n |Q|$. Podemos escribir $f = f_1 + f_2$ con $f_1 = f \cdot \chi_{\overline{Q}}$ y $f_2 = f - f_1$. Tenemos

$$Mf(x) = \sup_{Q \ni x} \frac{1}{|Q|} \int_{Q} |f_{1}(y) + f_{2}(y)| dy \le \sup_{Q \ni x} \left(\frac{1}{|Q|} \int_{Q} |f_{1}(y)| dy + \frac{1}{|Q|} \int_{Q} |f_{2}(y)| dy \right)$$

$$\le \sup_{Q \ni x} \frac{1}{|Q|} \int_{Q} |f_{1}(y)| dy + \sup_{Q \ni x} \frac{1}{|Q|} \int_{Q} |f_{2}(y)| dy = Mf_{1}(x) + Mf_{2}(x)$$

para casi todo $x \in \mathbb{R}^n$. Por tanto, si $\delta \in [0, 1[, Mf(x)^{\delta} \leq Mf_1(x)^{\delta} + Mf_2(x)^{\delta}]$ pct (para casi todo) x.

Trabajemos primero con $f_1 \in L^1(\mathbb{R}^n)$. Usando el Lema 1, puesto que M es (1,1)-débil y no negativo, obtenemos

$$\frac{1}{|Q|} \int_{Q} (Mf_{1})^{\delta} \leq \frac{1}{|Q|} C(\delta) |Q|^{1-\delta} ||f_{1}||_{1}^{\delta} = C(\delta) \left(\frac{\int_{\overline{Q}} |f|}{|Q|} \right)^{\delta} = C(\delta) \left(\frac{\int_{\overline{Q}} |f|}{|\overline{Q}|/2^{n}} \right)^{\delta} \\
\leq C(\delta) 2^{\delta n} \left(\sup_{Q \ni x} \frac{1}{|Q|} \int_{Q} |f| \right)^{\delta} \leq C(\delta) 2^{n} M f(x)^{\delta}$$
(3)

pet $x \in \overline{Q}$, en particular, pet $x \in Q$. En el segundo paso hemos usado que $f_1 = f \cdot \chi_{\overline{Q}}$.

Por otra parte, para cada $y \in Q$ satisfaciendo $Mf_2(y) > 0$ habrá algún cubo $R \ni y$ tal que $\int_R |f_2| > 0$. Como $f_2|_{\overline{Q}} \equiv 0$, el cubo R no puede quedar contenido en \overline{Q} . Además, tiene que contener a y, por lo que el lado del cubo R deberá ser mayor que la mitad del lado de Q. Por tanto, existirá una constante $c_n > 0$ dependiente sólo de la dimensión del espacio tal que al dilatar el cubo R por esa constante manteniendo su centro se obtiene un cubo R' tal que $Q \subset R'$ y $|R'| = c_n^n |R|$. Se tiene entonces

$$\frac{1}{|R|} \int_{R} |f_2| \le \frac{c_n^n}{|R'|} \int_{R'} |f| \le c_n^n M f(x) \quad \forall x \in Q,$$

y tomando supremo en $R \ni y$ obtenemos $Mf_2(y) \le c_n^n Mf(x)$ para cada $x, y \in Q$. Esto nos permite acotar la integral

$$\frac{1}{|Q|} \int_{Q} M f_2(y)^{\delta} dy \le \frac{1}{|Q|} \int_{Q} c_n^n M f(x)^{\delta} dy = c_n^n M f(x)^{\delta}$$

$$\tag{4}$$

pct $x \in Q$.

Combinando (3) y (4) con la desigualdad que probamos al principio nos queda la condición deseada con $C = C(\delta)2^n + c_n^n$:

$$\frac{1}{|Q|} \int_{Q} (Mf)^{\delta} \leq \frac{1}{|Q|} \int_{Q} (Mf_{1})^{\delta} + \frac{1}{|Q|} \int_{Q} (Mf_{2})^{\delta} \leq C(\delta) 2^{n} M f(x)^{\delta} + c_{n}^{n} M f(x)^{\delta}
= (C(\delta) 2^{n} + c_{n}^{n}) M f(x)^{\delta} = C M f(x)^{\delta}$$

para casi todo $x \in Q$. La arbitrarierdad de Q nos dice que $Mf(x)^{\delta} \in A_1$ como queríamos.

Ahora probaremos la implicación recíproca. Supongamos que $w \in A_1$, entonces $w \in A_p$ para todo $p \ge 1$. Podemos usar el Lema 2 para obtener $C, \varepsilon > 0$ satisfaciendo

$$\left(\frac{1}{|Q|} \int_{Q} w^{1+\varepsilon}\right)^{\frac{1}{1+\varepsilon}} \le \frac{C}{|Q|} \int_{Q} w = \frac{Cw(Q)}{|Q|} \le C'w(x)$$

pet $x \in Q$ y para todo cubo Q. Para la última desigualdad hemos usado la condición (2). La constante C'>0 no depende ni de x ni de Q. Fijando $x \in \mathbb{R}^n$ y tomando supremos obtenemos

$$M(w^{1+\varepsilon})(x)^{\frac{1}{1+\varepsilon}} \le C'w(x)$$

casi por doquier en \mathbb{R}^n . Si llamamos $f=w^{1+\varepsilon}\in L^1_{\mathrm{loc}}$ y $\delta=\frac{1}{1+\varepsilon}\in]0,1[$, esto se lee como

$$Mf(x)^{\delta} \le C'w(x)$$
 pct $x \in \mathbb{R}^n$.

Además, aplicando el teorema de diferenciación de Lebesgue obtenemos que pct $x \in \mathbb{R}^n$,

$$w^{1+\varepsilon}(x) = \lim_{r \to 0} \frac{1}{|Q(x,r)|} \int_{Q(x,r)} w \le M w^{1+\varepsilon}(x) = M f(x),$$

donde Q(x,r) denota el cubo en \mathbb{R}^n de centro x y radio r: $\{y \in \mathbb{R}^n : \|x-y\|_{\infty} < r\}$. La desigualdad es clara por la definición de M, que es el supremo de la misma expresión pero en los cubos que contienen a x. Elevando ambos miembros a $\delta = (1+\varepsilon)^{-1}$ obtenemos $w(x) \leq Mf(x)^{\delta}$ pct $x \in \mathbb{R}^n$.

Definiendo $k(x) = \frac{w(x)}{Mf(x)^{\delta}}$, se tiene $0 < C'^{-1} \le k(x) \le 1$ casi por doquier en \mathbb{R}^n . Por tanto, $k, 1/k \in L^{\infty}(\mathbb{R}^n)$ y $w = k(Mf)^{\delta}$.

Referencias

[1] J. Duoandikoetxea: Análisis de Fourier. Universidad Autónoma de Madrid, 1995.