

NURTURE_(UNACADEMY) P-1_Akshay SIR (9-8-2020)

SCQ (1)

- 1. Calculate relative rate of effusion of O₂ to CH₄ through a container containing O₂ and CH₂ in 3:2 mass ratio. [Ideal gas (E)]
- (B) $\frac{3}{4\sqrt{2}}$ (C) $\frac{3}{2\sqrt{2}}$
- (D) $\frac{2\sqrt{2}}{3}$

Ans.

Sol.
$$\frac{r_{O_2}}{r_{CH_4}} = \frac{n_{O_2}}{n_{CH_4}} \times \sqrt{\frac{M_{CH_4}}{M_{O_2}}}$$
$$= \frac{3}{2} \times \frac{16}{32} \times \sqrt{\frac{16}{32}} = \frac{3}{4\sqrt{2}}$$

MCQ (3Q)

[Ideal gas (M)]

With reference to above graph, which of the following is/are incorrect.

(A) $P_A = P_B = P_C$

(B) Pressure first increases then decreases

 $(C) P_C > P_A$

(D) $P_B < P_A$

Ans. (A,B,C)

- **3.** A volume of 10 mL of a mixture of H₂ and O₂ is exploded. If the final volume becomes 1 mL, the composition of original mixture may be [Concentration terms (M)]
 - (A) $7mL H_2$, $3 mL O_2$

(B) $6mL H_2$, $4mL O_2$

(C) $5mL H_2$, $5mL O_2$

(D) $3mL H_2$, $7mL O_2$

Ans. (A,B)

Sol.
$$2H_2 + O_2 \longrightarrow 2H_2O$$

Limiting reagent may be H₂ or O₂

4. A quantity of 12g of magnesium is burnt completely in air ($O_2 = 20\%$ and $N_2 = 80\%$, by volume). Which of the following is/are correct statement(s) regarding this combustion?

[MOLE CONCEPT (M)]

- (A) A minimum of 36g air is needed if all Mg is converted into MgO only.
- (B) A minimum of 40g air is needed if all Mg is converted into MgO only.
- (C) A minimum of 4.67g air is needed if all Mg is converted into Mg₃N₂ only.
- (D) A minimum of 6g air is needed if all Mg is converted into Mg₃N₂ only.

Ans.

Sol. (A)
$$Mg + \frac{1}{2}O_2 \longrightarrow MgO$$

$$\frac{1}{2}$$
 mole $\frac{1}{4} \times 32 = 8g$

$$\therefore$$
 Mass of air needed = $8 + 1 \times 28 = 36$ g

(C)
$$3Mg + N_2 \longrightarrow Mg_3N_2$$

$$\frac{1}{2}$$
 mole $\frac{1}{6}$ mole

$$\therefore \text{ Mass of air needed} = \frac{1}{6} \times 28 + \frac{1}{24} \times 32 = 6g$$

INTEGER (2Q)

5. At 300, two gasses are filled in two equal sized containers as given. [Ideal gas (Tough)]

What will be the pressure of A(g) (in mm of Hg).

Ans. (820.00)

Sol.
$$P_A + P_B + 100$$

$$P_B = P_{atm} - 40$$

$$P_B=720$$

6. A quantity of 50 g of water is saturated with HCl gas to get 75 mL of solution containing 40 % HCl by mass. What is the density of solution (in gm/mL) formed: [Concentration terms (M)]

Ans. (1.11)

Sol.
$$(75 \times d) \times \frac{60}{100} = 50 \Rightarrow d = 1.11 \text{ g/mL}$$