Machines thermiques

Table des matières

T	Cla	ssification des machines thermiques
	1.1	Définition
	1.2	Classification des machines thermiques
2	Bila	ans énergétique et entropique
	2.1	Bilan énergétique
	2.2	Bilan entropique
	2.3	Machine monotherme
3	Ma	chine ditherme
	3.1	Définition
	3.2	Principe d'une machine ditherme
	3.3	Cycle de Carnot
	3.4	Diagramme de Raveau
	3.5	Efficacité ou rendement d'une machine thermique
		3.5.1 Définition
		3.5.2 Moteur de Carnot
		3.5.3 Moteur ditherme
		3.5.4 Récepteur thermique
4	Mo	teur à explosion
		Système réel
		Modélisation du système : cycle Beau de Rochas
		Rendement

On appelle machine tout système qui permet de réaliser une conversion d'énergie .

1 Classification des machines thermiques

1.1 Définition

Définition : Une machine thermique est un dispositif dans lequel un fluide qualifie d'agent thermique subit une transformation cyclique .

1.2 Classification des machines thermiques

On peut distinguer deux types de machines thermiques :

► Moteur thermique

machine thermique qui fournit du travail au milieu extérieur (W < 0) en recevant de la chaleur au cours d'un cycle (Q > 0)

► Récepteur thermique

machine thermique qui reçoit du travail du milieu extérieur (W>0) en fournissant de la chaleur (Q<0) au milieu extérieur au cours d'un cycle

- •les machines thermiques permettent de produire :
 - du froid : réfrigérateurs
 - du chaud : pompes à chaleur
 - du travail : moteur thermique

2 Bilans énergétique et entropique

Considèrons une machine thermique échangeant algébriquement un travail total W avec l'extérieur, et des énergies thermiques Q_i avec les diverses sources de chaleurs à T_i .

2.1 Bilan énergétique

 1^{er} principe : $\Delta E = E_F - E_I = 0$ car pour une transformation cyclique $E_F = E_I$ $\Delta E = 0 = W + \sum_i Q_i$

$$W + \sum_{i} Q_i = 0$$

2.2 Bilan entropique

 $\Delta S = 0$ car $S_F = S_I$: transformation cyclique

 $\Delta S = 0 = S^e + S^c$ avec

• $S^c \geqslant 0$: l'entropie de création

• $S^e = \sum_i \frac{Q_i}{T_i}$: entropie d'échange avec les sources de chaleur

Donc $S^e \leq 0$ car $S^c \geq 0$

$$\sum_{i} \frac{Q_i}{T_i} \leqslant 0$$

c'est l'inégalité de Clausius

2.3 Machine monotherme

Définition : Une machine monotherme est une machine qui fonctionne avec une seule source de chaleur , d'énergie thermique Q_0 et de température T_0

- ▶ inégalité de Clausius : $\frac{Q_0}{T_0} \leq 0$ donc $\boxed{Q_0 \leq 0}$
- ▶ 1^{er} principe : $\Delta U = 0 = W + Q_0 \Rightarrow W = -Q_0$ donc $W \ge 0$

Conclusion

- un moteur monotherme (W < 0) n'existe pas
- un cycle monotherme réversible est caractérisé par W=Q=0
- \bullet Remarque : le 2^d principe exclut les moteurs monothermes mais pas les récepteurs monothermes .
- radiateur électrique : récepteur monotherme ,il reçoit un travail d'origine électrique (W>0) et fournit un transfert thermique (Q<0) .

3 Machine ditherme

3.1 Définition

Définition: Une machine thermique fonctionne entre deux sources thermiques

- \blacktriangleright une source chaude de température T_1
- \blacktriangleright une source froide de température T_2

- 1^{er} principe : $W + Q_1 + Q_2 = 0$
- 2^d principe : $\frac{Q_1}{T_1} + \frac{Q_2}{T_2} \leqslant 0$

3.2 Principe d'une machine ditherme

Principe de Carnot : Pour qu'un système décrive un cycle moteur,il doit nécessairement échanger de l'énergie thermique avec au moins deux sources à des températures différentes,en prélevant de l'énergie thermique à la source chaude et en restituant une partie à la source froide .

• Pour qu'un système décrivant un cycle récepteur, il doit nécessairement échanger de l'énergie thermique avec au moins deux sources à des températures différentes : elle prélève de la chaleur à une source froide et reçoit du travail du milieu extérieur et fournit de la chaleur à une source chaude .

3.3 Cycle de Carnot

Définition : C'est un cycle réversible décrit par une machine ditherme . Il est constitué de deux isothermes, de températures égales à celles des sources, et de deux portions adiabatiques séparent les deux isothermes .

3.4 Diagramme de Raveau

Définition: Il s'agit d'un diagramme $Q_1 = f(Q_2)$ ou $Q_c = f(Q_f)$ avec:

- $ightharpoonup Q_1$: énergie thermique échangée entre la machine et la source chaude au cours d'un cycle
- $ightharpoonup Q_2$: énergie thermique échangée entre la machine et la source froide au cours d'un cycle
- ▶ 1^{er} principe : $W + Q_1 + Q_2 = 0$
- $2^d \text{principe} : \frac{Q_1}{T_1} + \frac{Q_2}{T_2} \leqslant 0$
- ▶ $\frac{Q_1}{T_1} + \frac{Q_2}{T_2} = 0$ pour les transformations réversibles
- ▶ Chaque machine est représenté par un point qui doit nécessairement être sous la droite $Q_1 = -\frac{T_1}{T_2}Q_2$ (car $\frac{Q_1}{T_1} + \frac{Q_2}{T_2} \leq 0$)
- ▶ moteur : $W < 0 \Rightarrow Q_1 + Q_2 > 0$ point au dessus de la droite $Q_1 = -Q_2$
- ▶ Récepteur : $W > 0 \Rightarrow Q_1 + Q_2 < 0$ point au dessous de la droite $Q_1 = -Q_2$
- le moteur prend une quantité de chaleur du source chaude $(Q_1 > 0)$ puis cède une quantité de chaleur à la source froide, et transforme une autre quantité au travail.

3.5 Efficacité ou rendement d'une machine thermique

3.5.1 Définition

Définition : L'efficacité d'une machine ditherme est le rapport des deux transferts d'énergie, celui qui est utile, sur celui qui est dépensé pour le faire fonctionner .

• Remarque

Pour un moteur ditherme l'efficacité est remplacée par le rendement η .

3.5.2 Moteur de Carnot

Définition : Le moteur de Carnot est un moteur idéal décrivant le cycle de Carnot (deux portions isothermes séparées par deux isentropiques) . Il s'agit d'un moteur ditherme fonctionnant de manière réversible .

▶ le moteur fonctionne entre deux sources : une source chaude (Q_c, T_c) et une source froide (Q_f, T_f) donc le rendement est :

$$\eta_{Carnot} = -\frac{W}{Q_c}$$

▶ 1^{er} principe : $W + Q_f + Q_c = 0$ donc

$$W = -(Q_c + Q_f)$$

▶ 2^d principe : $\frac{Q_c}{T_c} + \frac{Q_f}{T_f} = 0$ donc

$$\frac{Q_f}{Q_c} = -\frac{T_f}{T_c}$$

$$\eta_{Carnot} = \frac{Q_c + Q_f}{Q_c} = 1 + \frac{Q_f}{Q_c} = 1 - \frac{T_f}{T_c}$$

$$\eta_{Carnot} = 1 - \frac{T_f}{T_c}$$

3.5.3 Moteur ditherme

- Pour les moteurs dithermes : $W < 0, Q_c > 0, Q_f < 0$
- les moteurs dithermes ne sont pas nécessairement réversibles
- 1^{er} principe: $W + Q_c + Q_f = 0$ donc $W = -(Q_c + Q_f)$
- 2^d principe: $\frac{Q_c}{T_c} + \frac{Q_f}{T_f} \leqslant 0$ donc $\frac{Q_f}{Q_c} \leqslant -\frac{T_f}{T_c}$
- $\eta = -\frac{W}{Q_c} = 1 + \frac{Q_f}{Q_c} \leqslant \eta_{max} = 1 \frac{T_f}{T_c}$ donc

$$\eta \leqslant \eta_{max} = \eta_{Carnot}$$

Récepteur thermique

- ▶ Machine frigorifique $W > 0, Q_c < 0, Q_f > 0$
 - Le transfert thermique utile dans le cas d'un réfrigérateur est Q_f
 - L'éfficacité $e_F = \frac{Q_f}{W}$
 - 1^{er} principe: $W + Q_f + Q_c = 0$ donc $Q_f = -(Q_c + W)$
 - 2^d principe: $\frac{Q_c}{T_c} + \frac{Q_f}{T_f} + S^c = 0$ donc $\frac{Q_c}{Q_f} = -\frac{T_c}{T_f} \frac{T_c}{Q_f}S^c$
 - $\bullet \ \frac{1}{e_F} = \frac{W}{Q_f} = -1 \frac{Q_c}{Q_f} \Rightarrow e_F = \frac{1}{-1 + \frac{T_c}{T_f} + \frac{T_c}{Q_f} S^c}$ $e_F < e_{Fmax} = \frac{T_f}{T_c - T_f}$

 e_{Fmax} : efficacité d'un réfrigérateur réversible

- ▶ Pompe à chaleur $W > 0, Q_c < 0, Q_f > 0$
 - Le transfert thermique utile dans le cas d'une pompe à chaleur est Q_c
 - l'éfficacité $e_P = -\frac{Q_c}{W}$
 - 1^{er} principe: $W + Q_f + Q_c = 0$ donc $Q_c = -(Q_f + W)$
 - 2^d principe: $\frac{Q_c}{T_c} + \frac{Q_f}{T_f} + S^c = 0$ donc $\frac{Q_f}{Q_c} = -\frac{T_f}{T_c} \frac{T_f}{Q_c}S^c$
 - 2 princip. $T_c T_f$ $\frac{1}{e_p} = -\frac{W}{Q_c} = 1 + \frac{Q_f}{Q_c} \Rightarrow e_p = \frac{1}{1 \frac{T_f}{T_c} \frac{T_f}{Q_c}S^c}$ T_c

 $e_p < e_{pmax} = \frac{T_c}{T_c - T_s}$

 e_{pmax} : efficacité d'une pompe à chaleur réversible

Théorème de Carnot: Toutes les machines dithermes réversibles ont même efficacité maximale qui ne dépend que des températures des sources.

4 Moteur à explosion

4.1 Système réel

On s'interesse au cycle à quatre temps d'un moteur d'automobile à combution interne : l'énergie thermique provient d'un combustuble qui brûle au sein du moteur .

Le moteur est composé d'un ou plusieurs cylindres . Chaque cylindre comprend un piston mobile lié à un système bielle-manivelle afin de transformer le mouvement alternatif de translation du piston en mouvement de rotation . Le cylindre comporte deux soupapes, l'une d'admission (aspiration du mélange air-carburant) et l'autre d'échappement (mélange aprés le cycle) . le diagramme de Watt réel est donnés par la figure suivante.

- ▶ 1^{er} temps : admission AB par la soupape d'admission
- \blacktriangleright 2^d temps : Compression BC par le retour du piston de V_{max} à V_{min} ,les deux soupapes étant fermées
- ▶ 3^e temps : combustion CD lorsqu'une étincelle éléctrique provoque l'explosion instantanée du mélange (le volume ne varie que trés peu,la pression par contre devient maximale). Puis détente DE des gaz de combustion jusqu'à V_{max} .
- ▶ 4^e temps : échappement EA ou la pression chute à cause de l'ouverture du cylindre vers l'atmosphère et ou les gaz sont refoulés et se refroidissent.

4.2 Modélisation du système : cycle Beau de Rochas

Hypothèses

- Le fluide initial (air-carburant) ou final (air-gaz de combustion) est assimilé à un gaz parfait, de quantité constantes (n mol)
- Le fluide ne subit aucune évolution cchimique
- L'énergie thermique fourni au fluide provient d'une source chaude fictive extérieure lors d'une isochore CD
- On suppose que le retour EA passe par B et les étapes AB et BA se compensent

- On assimile la compression BC et la détente DE à des isentropiques (transformation adiabatique, frottements négligeables). Donc le noveau diagramme correspond au cycle Beau de Rochas : deux isochores et deux isentropiques
- ► Représentation graphique

▶ Il s'agit bien d'un moteur ditherme évoluant entre la source chaude fictive et l'atmoshère .

4.3 Rendement

On définit le taux de compression par

$$\alpha = \frac{V_{max}}{V_{min}}$$

- ▶ 1^{er} principe: W + Q = 0 avec $Q = Q_{CD} + Q_{DE} + Q_{EB} + Q_{BC}$
- ▶ DE et BC sont is entropiques donc : $Q_{DE} = Q_{BC} = 0$ donc

$$W + Q_{CD} + Q_{EB} = 0$$

avec $Q_{CD} > 0$ et $Q_{EB} < 0$

▶ CD : transformation isochore : $dV = 0 \Rightarrow W_{CD} = 0$

$$Q_{CD} = \Delta U_{CD} = nC_{V,m}(T_D - T_C)$$

▶ EB : transformation isochore : $dV = 0 \Rightarrow W_{EB} = 0$

$$Q_{EB} = nC_{V,m}(T_B - T_E)$$

$$\eta = 1 - \frac{T_E - T_B}{T_D - T_C}$$

▶ BC et DE sont isentropiques

$$T_B.V_{max}^{\gamma-1} = T_C.V_{min}^{\gamma-1} \text{ et } T_D.V_{min}^{\gamma-1} = T_E.V_{max}^{\gamma-1}$$

$$\frac{T_E}{T_D} = \frac{1}{\alpha^{\gamma-1}} = \frac{T_B}{T_C} \Rightarrow \frac{T_E - T_B}{T_D - T_C} = \frac{1}{\alpha^{\gamma-1}} = \alpha^{1-\gamma}$$

$$\boxed{\eta = 1 - \alpha^{\gamma - 1}}$$

• Exemple : pour un taux de compression $\alpha=7, \gamma=1, 4(l'air)$ on trouve n=0,55. C'est une valeur limite jamais atteinte : valeur expérimentale plus faible à cause des pertes par frottement et le transfert thermique au niveau des parois .