Low-Resource Speech Recognition with Self-Supervised Learning

Niket Agrawal M23CSA520

Ritesh Lamba M23CSA544

m23csa520@iitj.ac.in

m23csa544@iitj.ac.in

Department of Computer Science and Engineering Indian Institute of Technology Jodhpur

Abstract

In this project, we explore the application of self-supervised learning (SSL) techniques for automatic speech recognition (ASR) on low-resource languages. We fine-tune pre-trained Wav2Vec 2.0 Base model on the Common Voice and FLEURS datasets to evaluate their effectiveness. To Consider the Low-Resource we have chosen the Hindi language. The results show promising improvements even with limited labeled data.

1. Introduction

Automatic Speech Recognition (ASR) has made significant strides with deep learning and large datasets. However, many low-resource languages lack the extensive labeled data required to train accurate ASR systems. This project aims to bridge that gap using self-supervised learning.

2. Problem with Existing Work

Traditional ASR systems depend heavily on large volumes of annotated data. This poses challenges for underrepresented languages. Recent advances in SSL have shown that models pre-trained on large corpora can be fine-tuned with minimal data to achieve competitive performance.

3. Datasets Used

 Common Voice: A multilingual dataset by Mozilla containing speech and text for various languages. We have selected Hindi Language from this.

- Common Voice Statistics:

- * Common Voice Train:
 - · Number of samples: 4361
 - · Total audio duration: 5.13 hours
- * Common Voice Test:
 - · Number of samples: 2894
 - · Total audio duration: 3.98 hours
- FLEURS: A dataset from Google Research for

speech translation and recognition across many languages. We have selected Hindi Language from this.

- FLEURS Statistics:

* FLEURS Train:

· Number of samples: 2120

· Total audio duration: 6.66 hours

* FLEURS Test:

· Number of samples: 418

· Total audio duration: 1.34 hours

4. Proposed Methodology

- Pre-train or download pre-trained Wav2Vec 2.0 Base model.
- Fine-tune them on small subsets of Common Voice and FLEURS.
- Evaluate performance using WER and CER.
- Explore parameter-efficient fine-tuning with LoRA (Low-Rank Adaptation).

Figure 1. Architecture Diagram for Low-Resource Speech Recognition

5. Results and Analysis

Epoch	Training Loss	Validation Loss
1	49.358000	45.748737
2	46.265700	44.660824
3	41.694000	36.602455
4	35.074400	33.637962
5	33.500400	34.316624

Table 1: Training and Validation Losses for Common Voice (CTC)

Epoch	Training Loss	Validation Loss
1	243.403500	No log
2	215.935700	No log
3	218.902400	No log
4	202.214300	No log
5	202.214300	No log

Table 2: Training/Validation Losses for Common Voice with LoRA

Model	WER (%)	CER (%)
Pre-trained	1.00	2.10
Fine-tuned (CTC)	1.00	1.00
Fine-tuned (LoRA)	1.00	1.00

Table 3: WER/CER for Common Voice

Epoch	Training Loss	Validation Loss
1	155.258200	inf
2	121.870200	inf
3	153.371800	inf
4	132.120300	inf
5	133.651400	inf

Table 4: Training and Validation Losses for FLEURS (CTC)

Epoch	Training Loss	Validation Loss
1	635.931600	No log
2	450.088600	No log
3	493.498700	No log
4	464.380300	No log
5	450.088600	No log

Table 5: Training/Validation Losses for FLEURS with LoRA

Model	WER (%)	CER (%)
Pre-trained	1.00	1.06
Fine-tuned (CTC)	1.00	1.00
Fine-tuned (LoRA)	1.00	1.00

Table 6: WER/CER for FLEURS

Reference: कुछ जमुजों में जबिस केंद्रण होता है निवास मातव यह है कि जमों पोर्ट या बिना किसी झात्में से टूटने की प्रवृत्ति होती है "hypothesis: medicialedelotemenosphenoscophe

Figure 2. Prediction on Pretrained Model

```
Reference: वाराणसी हिंसा: पुलिस की भूमिका संदिग्ध, वायरल हुई तस्वीरें typothesis:

Reference: box office का नया हीरो बना हॉरर, 'लेला मजनू', 'पलटन' पीछे typothesis:

Reference: opinion: विराट कोहली के लिए बेहतरीन मौका typothesis:

Reference: छेड़छाड़ का विरोध कर रहे छात्रों को पुलिस ने पीटा और जेल में डाला typothesis:

Reference: तुम्हारे बहुत सारे दुशमन हैं। typothesis:
```

Figure 3. Prediction on Fine tuned Model

6. Challenges

Throughout the project, we encountered several technical and practical challenges:

- Hardware Limitations: Training large selfsupervised model Wav2Vec 2.0 Base required significant compute resources. Fine-tuning was slow on limited GPU/Colab environments.
- Dataset Size and Preprocessing: The Common Voice and FLEURS datasets are large and multilingual. Managing language-specific subsets and consistent audio preprocessing required careful scripting.
- **Memory Issues:** Memory errors occurred during tokenization and model loading, especially while applying LoRA with limited VRAM.
- Model Evaluation: Handling different dataset formats (sentence vs transcription columns) and computing consistent WER/CER metrics took additional debugging effort.

• LoRA Integration: Integrating LoRA with Hugging Face models was non-trivial and required careful module targeting and gradient checkpointing setup.

7. Conclusion

Self-supervised models like Wav2Vec 2.0 and XLS-R significantly reduce the need for large labeled datasets in low-resource ASR tasks. Fine-tuning with a few epochs already yields promising results, showing SSL's effectiveness in real-world applications.

8. Project Repository

The complete codebase, models, and poster are available at:

https://github.com/M23CSA520/ SpeechUnderstanding_Project/tree/ main

9. Future Work

- Expand to more low-resource languages.
- Integrate language modeling and decoding for better accuracy.
- Explore semi-supervised or unsupervised adaptation
- Evaluate parameter-efficient methods like LoRA.

10. References

- A. Baevski, Y. Zhou, A. Mohamed, and M. Auli, "wav2vec 2.0: A framework for self-supervised learning of speech representations," NeurIPS, 2020.
- Conneau et al., "XLS-R: Self-supervised crosslingual speech representation learning at scale," arXiv preprint arXiv:2111.09296, 2021.
- Mozilla Common Voice: https://commonvoice.mozilla.org/
- FLEURS Dataset: https://huggingface.co/datasets/google/fleurs