Sujet TD: Arithmétique

Dominique Michelucci, Université de Dijon

1 PGCD et Fibonacci dans la même galère

- 1. Combien y a t-il d'appels récursifs, ou d'étapes lors du calcul du PGCD de F_{n-1} et F_n , où F_n est la suite de Fibonacci : $F_0 = 0$, $F_1 = 1$, $F_n = F_{n-1} + F_{n-2}$ pour $n \ge 2$.
- 2. Soit ϕ et ϕ' les 2 racines de $X^2 = X + 1$, ϕ est la plus grande. Calculer ϕ et ϕ' . ϕ est appelé le nombre d'or. Prouvez que $F_n = a\phi^n + b\phi'^n$ pour 2 constantes a, b que vous calculerez (par exemple en considérant F_0 et F_1); ensuite procédez par récurrence.
 - 3. Montrez que $F_n \in O(\phi^n)$.
- 4. Vous admettrez que le PGCD de 2 nombres successifs dans la suite de Fibonacci est le pire des cas. Quelle est la complexité du nombre d'étapes du calcul du PGCD de $a,b \leq N$. Vous devez trouver qu'il y a $O(\log_{\phi}N) = O(\log_{2}N) = O(\log_{\phi}N)$, car tous ces log sont proportionnels.

2 2 méthodes pour calculer l'inverse de $t \mod P$

Soit t un entier donné modulo P. On veut trouver x tel que $tx = 1 \mod P$. On dit que x est l'inverse de t, et on le note parfois t^{-1} ou 1/t (modulo P).

Si P est premier, alors d'après le petit théorème de Fermat, pour tout t non nul, $t^{P-1}=1$ mod P, donc $t\times t^{P-2}=t^{P-1}=1$, donc t^{P-2} est l'inverse de t

Une autre méthode utilise l'algoritme étendu d'Euclide sur t et P: il donne u, v tel que tu + Pv = g où g est le PGCD de t et P. Si P est premier, et t réduit modulo P, alors u est l'inverse de t: il suffit de considérer tu + Pv = 1 modulo P, ce qui donne : tu + 0 = 1.

Note: Ceci est cohérent avec le fait que si (u, v, g) est une solution d'Euclide(a, b), (ie au + bv = g = gcd(a, b)), alors (u + b, v - a, g) est aussi solution, et donc $u + \lambda b, v - \lambda a, g$) aussi pour $\lambda \in \mathbb{Z}$.

Si g est différent de 1, cela signifie que P n'est pas premier.

3 Racine carrée mod un nombre premier P>2

3.1 Critère d'Euler

Critère d'Euler : a est un carré modulo P (on dit : un résidu quadratique) ssi $a^{\frac{P-1}{2}}=1$ modulo P.

Remarquez que, comme x et -x = P - x ont même carré, la moitié des nombres $1, 2, \dots P - 1$ sont des carrés, et l'autre moitié des non carrés.

Preuve du critère d'Euler : par le petit théorème de Fermat, $x^{p-1}-1=(x^{\frac{P-1}{2}}-1)(x^{\frac{P-1}{2}}+1)$ considéré modulo P a p-1 racines : $1,2,\ldots p-1$. Les carrés modulo P sont forcément racines de la partie $(x^{\frac{P-1}{2}}-1)$ puisque

$$(x^2)^{\frac{P-1}{2}} - 1 = x^{P-1} - 1$$

est égal à 0, par le thm de Fermat.

3.2 P = 3 modulo 4

Si P=3 modulo 4 (et premier), et si a est un carré (ce qu'on peut décider par le critère d'Euler...), alors une des deux racines carrées de a est

$$x = a^{\frac{P+1}{4}} \operatorname{car} : x^2 = a^{\frac{P+1}{2}} = a^{\frac{P-1}{2}} a^{\frac{2}{2}} = 1 \times a = a$$

3.3 $P = 1 \mod 4$. Méthode de Zassenhauss-Cantor

Si P=1 modulo 4, il n'y a pas de formule, mais l'algorithme probabiliste suivant (qui fonctionne aussi pour P=3 modulo 4 : yapasde raison...). Soit a un résidu quadratique dont on cherche la racine carrée. Soit x cette racine carrée, inconnue. On considère une valeur aléatoire t dans $1,2,\ldots P-1$, et on calcule $(x+t)^{\frac{P-1}{2}}$; ça vaut ± 1 d'après le petit théorème de Fermat (ou, en utilisant le critère d'Euler, +1 pour un résidu quadratique, -1 pour un non résidu quadratique). Pour calculer $(x+t)^{\frac{P-1}{2}}$, on réduit en remplaçant x^2 par a (puisque par définition $x^2=a$), et les calculs sont bien sûr réduits modulo P. On trouve donc u,v tels que $(x+t)^{\frac{P-1}{2}}=u+vx$. Si v est différent de 0, on résout : $u+vx=\pm 1$, et on trouve $x=(1-u)v^{-1}$. Attention, $(x+t)^{\frac{P-1}{2}}=\pm 1$... sauf quand t=-x, voir plus bas. Il faut donc toujours vérifier que $x^2=a$ mod P, pour détecter cette erreur!

Exemple : P = 13, a = 10.

Avec t=5, on trouve $(x+5)^{\frac{P-1}{2}}=0+2x$. Résoudre $2x=1 \mod 13$ donne x=1/2=7, ce qui est correct : $7^2=10$. Résoudre $2x=-1=12 \mod 13$ donne x=6, qui est bien l'autre racine carrée de 10. Remarquer que $6+7=0 \mod 13$.

Avec t=6, on obtient $(x+6)^{\frac{P-1}{2}}=7+12x$, qui vaut ± 1 . Pour $\pm 1:7+12x=1 \Rightarrow x=(1-7)/12=6 \mod 13$ et en effet $\pm 6^2=a=10$. Pour $\pm 7+12x=-1=12 \Rightarrow x=(12-7)/12=8$ mais $\pm 8^2=12 \neq a$. Problème! C'est dû au fait que cette valeur de $\pm 1^2$ est l'opposé de la racine carrée $\pm 1^2$ donc on a calculé $\pm 1^2$ cas sur $\pm 1^2$ et $\pm 1^2$ et

L'essai avec t=1 échoue car $(1+x)^{\frac{P-1}{2}}=12+0x$, qui ne nous apprend

Etudiez le cas P=13. Calculer la table des $x\in 1,2\dots 12$, et les x^2 mod 13. Calculez la racine carrée de 10 avec d'autres valeurs de t.

Bien sûr, il faut utiliser la méthode rapide pour calculer la puissance $(x+t)^{\frac{P-1}{2}}$.

4 Test probabiliste de primalité

Si P est premier, alors pour tout a non nul modulo P, $a^{\frac{P-1}{2}}=\pm 1$. Tester des valeurs aléatoires de a donne un test probabiliste de primalité de P.