배이상검출AI시스템

RAICE圣

Presented by: 조영수,최용우,권석모,윤왕규

Group Members

Env. Alpaco I Rice

조영수

Team Leader

최용우

Team Member

권석모

Team Member

PROCESS

 01
 --- 02
 --- 03
 --- 04

 주제 선정
 데이터 전처리
 모델 학습

- 벼 이상 검출 AI 시스템
- Augmentation한옥이미지크롤링

Stable Diffusion
 with LoRA
 MCLP로 위치
 선정

• Test 및시연

AI agriculture Trend

Content

Service Flow

Introduction

Goal

Datasets & Pre-processing

Model

Result

Conclusion & Future Work

SERVICE FILOW

Introduction

효률적인 관리

농부의 주관적인 경험에 의한 농사에서 작물의 생육 시기별 관리와 병충해/자연 재해로로 인한 생육이상 (벼의 경우 도복, 결주, 도열병, 생육부진)을 작물의 주기적인 상태 이미지 분석을통한 과학적인 관리를 하여 최상의 품질과 최대 소출을 거둘 수 있도록 한다

자동화

분석한 이미지 데이터와 기타 농사에 필요한 데이터를 바탕으로 농기계를 운용시 작물의 상태에 따라, 비료, 잡초제거,물주기 등 농기계가 이에 따라 작업 함으로써, 부족한 농촌인력 대체와 노지의 주요 핵심 작물에 대한 농업자동화를 위한 정밀농업 농기계의 자율주행 인공지능 기능을 수행 하도록 한다.

농업 정밀

저조도 환경

벼 생식 이상

농업 정밀 데이터

출처: https://www.aihub.or.kr/aihubdata/data/
view.do?currMenu=115&topMenu=100&aihubDataSe=realm&dataSetSn=526

저조도 환경 데이터셋

출처: https://www.aihub.or.kr/aihubdata/data/view.do?currMenu=115&topMenu=100&aihubDataSe=realm&dataSetSn=526

벼 생육이상 데이터

출처:

https://www.aihub.or.kr/aihubdata/data/view.do?currMenu=115&topMenu=100&aihubDataSe=realm&da

Data Augmentation

:실제 환경과 비슷하게 만들어줄 수 있는 기법 (Albumentation)

Augmentation 종류	설명	적용한 이유		
Horizontal Flip	● Horizontal 방향으로 flip ● Horizontal Flip의 확률을 조절	• 수평 방향으로 찍은 데이터도 추가할 수 있도록 적용 함		
Color Jitter	• 밝기, 대비, 채도, 색상 조절 • 밝기,대비,채도 [0,1] 색상 [-0.5, 0.5]	• 저조도 환경을 고려하기 위해서 이미지 증강		
Blur	• Blur를 적용 • Gaussian blur, motion blur 사용	• 영상의 움직이 있을 경우와 사물을 멀리서 찍혔을 경 우 고려하기 위해 사용함		
Rain	• Rain 효과 적용 • Random으로 비슷한 상황 만듦	• 악천후 데이터 수집을 대체하기 위해 이미지 증강 사 용함		

Pre-Processing

: 다분광 이미지

- 근적외선, 적외성 파장 영역까지 기록한 이미지
 - o 세분화된 대역의 스펙트럼 정보를 얻어
 - 특정 대상이나 물질을 더 쉽게 식별하는 것이 가능
 - 특히 농업에는 분광 이미지를 사용함
- 벼 생육 식별 데이터
 - RedEdge
 - 식물의 스트레스를 먼저 포착할 수 있는 중요한 적색 경계 지역
 - NIR (Near-infrared spectometer)
 - 근적외선 영역의 빛을 이용하여 유기화합물의 정성,정량에 적용
 - o Red, Green, Blue, NIR(적외선), RedEdge로 구성
 - Blue와 Red는 차이가 없음
 - Green, NIR, RedEdge로 merge한 데이터 적용

출처: https://m.blog.naver.com/airsens17/221376923266

Model

- : SegFormer
- 간단하고 효율적이고 간편한 모델
 - Multi-scale feature
 - 계층적 구조의 transformer encoder
 - Positional encoding 제외하여 다양한 테스트에 적용가능
 - o MLP로만 이루어진 MLP decoder
 - Global attention과 encoder에서 받은 feature 결합하여 표현

Encoder	Params		ADE20K		Cityscapes		COCO-Stuff	
Model Size	Encoder	Decoder	Flops ↓	mIoU(SS/MS)↑	Flops ↓	mIoU(SS/MS)↑	Flops ↓	mIoU(SS) ↑
MiT-B0	3.4	0.4	8.4	37.4 / 38.0	125.5	76.2 / 78.1	8.4	35.6
MiT-B1	13.1	0.6	15.9	42.2 / 43.1	243.7	78.5 / 80.0	15.9	40.2
MiT-B2	24.2	3.3	62.4	46.5 / 47.5	717.1	81.0 / 82.2	62.4	44.6
MiT-B3	44.0	3.3	79.0	49.4 / 50.0	962.9	81.7 / 83.3	79.0	45.5
MiT-B4	60.8	3.3	95.7	50.3 / 51.1	1240.6	82.3 / 83.9	95.7	46.5
MiT-B5	81.4	3.3	183.3	51.0 / 51.8	1460.4	82.4 / 84.0	111.6	46.7

출처:https://arxiv.org/abs/2105.15203

: 벼 생육 이상 데이터

Mean IOU

Validation

: 벼 생육 이상 데이터

Origina

Predic

Ground

: 정밀농업 데이터

Mean IOU

Validation

: 정밀농업 데이터

: 정밀농업+저조도+악천후

Conclusion

벼 생육 이상 검출 AI 시스템

- Segformer를 이용한 벼 이상 검출 segmentation 시스템 개 발
 - 드론을 통해 벼 이상 영역 검출
 - 벼 생육이상 데이터 학습
 - 트랙터를 통해 자율주행 및 수확
 - 정밀 농업 데이터 + 저조도 환경 데이터 학습

Limitation

- 모델 복잡도
 - o 실제 자율중행에 적용하기 위해서 inference 속도 개선 필 요
- Real-world에 적용 한계
 - o Domain range가 다르기 때문에 원하는 segmentation 불가

Future work

트렉터와 드론 통신

- 드론와 트랙터의 통신
 - 효과적이고 효율적인 다양한 작물 수확 및 수분 조절

Real-time segmetation 모델 개발

- Efficient attention을 Hydra attention으로 대체
 - o Real-time에서 적용 가능한 서비스 구현

