```
In [1]: import pandas as pd
   import numpy as np
   from sklearn.preprocessing import StandardScaler
   from sklearn.linear_model import LogisticRegression,LinearRegression
   from sklearn.model_selection import train_test_split
   from numpy import cov
```

In [2]: from sklearn.ensemble import RandomForestClassifier
 import matplotlib.pyplot as plt
 from sklearn.model_selection import GridSearchCV
 from sklearn.tree import plot_tree

```
In [3]: df=pd.read_csv("C6_bmi.csv")
df
```

Out[3]:

	Gender	Height	Weight	Index
0	Male	174	96	4
1	Male	189	87	2
2	Female	185	110	4
3	Female	195	104	3
4	Male	149	61	3
495	Female	150	153	5
496	Female	184	121	4
497	Female	141	136	5
498	Male	150	95	5
499	Male	173	131	5

500 rows × 4 columns

In [4]: df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 500 entries, 0 to 499
Data columns (total 4 columns):
    Column Non-Null Count Dtype
            -----
    Gender 500 non-null
                           object
    Height 500 non-null
                           int64
1
 2
    Weight 500 non-null
                           int64
3
    Index
            500 non-null
                           int64
dtypes: int64(3), object(1)
memory usage: 15.8+ KB
```

```
In [5]: y=df["Gender"]
         x=df.drop(["Gender"],axis=1)
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [6]: # lr=LogisticRegression()
         # lr.fit(x_train,y_train)
In [7]: # lr.predict(x_test)
In [8]: # lr.score(x_test,y_test)
In [9]: rfc=RandomForestClassifier()
         rfc.fit(x_train,y_train)
Out[9]: RandomForestClassifier()
In [10]: parameter={'max_depth':[1,2,3,4,5],
                   "min_samples_leaf":[5,10,15,20,25],
                   "n_estimators":[10,20,30,40,50]}
In [11]: grid search = GridSearchCV(estimator=rfc,param grid=parameter,cv=2,scoring="accurac")
         grid_search.fit(x_train,y_train)
Out[11]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                      param_grid={'max_depth': [1, 2, 3, 4, 5],
                                   'min samples leaf': [5, 10, 15, 20, 25],
                                   'n_estimators': [10, 20, 30, 40, 50]},
                      scoring='accuracy')
In [12]: grid_search.best_score_
Out[12]: 0.5685714285714285
In [13]: rfc_best=grid_search.best_estimator_
```

Index <= 4.5 gini = 0.5 samples = 220 value = [170, 180] class = No

gini = 0.497 samples = 130 value = [112, 96] class = Yes gini = 0.483 samples = 90 value = [58, 84] class = No

In [15]: df1=pd.read_csv("c7_used_cars.csv")
 df1

Out[15]:

	Unnamed: 0	model	year	price	transmission	mileage	fuelType	tax	mpg	engineSize	Make
0	0	T-Roc	2019	25000	Automatic	13904	Diesel	145	49.6	2.0	VW
1	1	T-Roc	2019	26883	Automatic	4562	Diesel	145	49.6	2.0	VW
2	2	T-Roc	2019	20000	Manual	7414	Diesel	145	50.4	2.0	VW
3	3	T-Roc	2019	33492	Automatic	4825	Petrol	145	32.5	2.0	VW
4	4	T-Roc	2019	22900	Semi-Auto	6500	Petrol	150	39.8	1.5	VW
99182	10663	A3	2020	16999	Manual	4018	Petrol	145	49.6	1.0	Audi
99183	10664	A3	2020	16999	Manual	1978	Petrol	150	49.6	1.0	Audi
99184	10665	A3	2020	17199	Manual	609	Petrol	150	49.6	1.0	Audi
99185	10666	Q3	2017	19499	Automatic	8646	Petrol	150	47.9	1.4	Audi
99186	10667	Q3	2016	15999	Manual	11855	Petrol	150	47.9	1.4	Audi

99187 rows × 11 columns

```
In [16]: df2=df1.drop(["transmission","Make","model","Unnamed: 0"],axis=1)
df2
```

Out[16]:

	year	price	mileage	fuelType	tax	mpg	engineSize
0	2019	25000	13904	Diesel	145	49.6	2.0
1	2019	26883	4562	Diesel	145	49.6	2.0
2	2019	20000	7414	Diesel	145	50.4	2.0
3	2019	33492	4825	Petrol	145	32.5	2.0
4	2019	22900	6500	Petrol	150	39.8	1.5
99182	2020	16999	4018	Petrol	145	49.6	1.0
99183	2020	16999	1978	Petrol	150	49.6	1.0
99184	2020	17199	609	Petrol	150	49.6	1.0
99185	2017	19499	8646	Petrol	150	47.9	1.4
99186	2016	15999	11855	Petrol	150	47.9	1.4

99187 rows × 7 columns

```
In [17]: df2.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 99187 entries, 0 to 99186
Data columns (total 7 columns):
```

```
#
    Column
               Non-Null Count Dtype
               -----
               99187 non-null int64
0
    year
    price
               99187 non-null int64
1
    mileage
               99187 non-null int64
3
    fuelType
               99187 non-null object
4
               99187 non-null int64
    tax
               99187 non-null float64
5
    mpg
    engineSize 99187 non-null float64
dtypes: float64(2), int64(4), object(1)
```

memory usage: 5.3+ MB

```
In [18]: df2["fuelType"].value_counts()
```

```
Out[18]: Petrol 54928
Diesel 40928
Hybrid 3078
Other 247
Electric 6
```

Name: fuelType, dtype: int64

```
In [19]: f={"fuelType":{"Petrol":1,"Diesel":2,"Hybrid":3,"Other":4,"Electric":5}}
df2=df2.replace(f)
```

```
In [20]: df2
```

Out[20]:

		year	price	mileage	fuelType	tax	mpg	engineSize
	0	2019	25000	13904	2	145	49.6	2.0
	1	2019	26883	4562	2	145	49.6	2.0
	2	2019	20000	7414	2	145	50.4	2.0
	3	2019	33492	4825	1	145	32.5	2.0
	4	2019	22900	6500	1	150	39.8	1.5
9918	82	2020	16999	4018	1	145	49.6	1.0
9918	83	2020	16999	1978	1	150	49.6	1.0
9918	84	2020	17199	609	1	150	49.6	1.0
991	85	2017	19499	8646	1	150	47.9	1.4
9918	86	2016	15999	11855	1	150	47.9	1.4

99187 rows × 7 columns

```
In [21]: y=df2["fuelType"]
    x=df2.drop(["fuelType"],axis=1)
    x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

```
In [22]: # lr=LogisticRegression(max_iter=10000)
# lr.fit(x_train,y_train)
```

```
In [23]: # val=[[2019,25000,16545,145,44.6,1],[2018,68748,1235,108,38,2]]
# tr.predict(val)
```

```
In [24]: # lr.score(x_test,y_test)
```

```
In [25]: rfc=RandomForestClassifier()
    rfc.fit(x_train,y_train)
```

Out[25]: RandomForestClassifier()

```
In [26]: grid_search = GridSearchCV(estimator=rfc,param_grid=parameter,cv=2,scoring="accuracgerid_search.fit(x_train,y_train)
```

```
In [27]: grid_search.best_score_
```

Out[27]: 0.9188535215324788

```
In [28]: rfc_best=grid_search.best_estimator_
In [29]: class_name=["Petrol","Diesel","Hybrid","Other","Electric"]
In [30]: plt.figure(figsize=(80,40))
         plot_tree(rfc_best.estimators_[5],class_names=class_name,filled=True)
         10, 34, 0]\nclass = Hybrid')]
```

In [31]:	df3=pd.read_csv("C8_loan-train.csv")
	<pre>df4=pd.read_csv("C8_loan-test.csv")</pre>
	df3

Out[31]:

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	Coapplicant
0	LP001002	Male	No	0	Graduate	No	5849	
1	LP001003	Male	Yes	1	Graduate	No	4583	
2	LP001005	Male	Yes	0	Graduate	Yes	3000	
3	LP001006	Male	Yes	0	Not Graduate	No	2583	
4	LP001008	Male	No	0	Graduate	No	6000	
609	LP002978	Female	No	0	Graduate	No	2900	
610	LP002979	Male	Yes	3+	Graduate	No	4106	
611	LP002983	Male	Yes	1	Graduate	No	8072	
612	LP002984	Male	Yes	2	Graduate	No	7583	
613	LP002990	Female	No	0	Graduate	Yes	4583	
614 r	614 rows × 13 columns							

In [32]: df3["Loan_Status"]=df3["Loan_Status"].replace("Y",1,regex=True)
 df3["Loan_Status"]=df3["Loan_Status"].replace("N",0,regex=True)
 df3

Out[32]:

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	Coapplicant
0	LP001002	Male	No	0	Graduate	No	5849	_
1	LP001003	Male	Yes	1	Graduate	No	4583	
2	LP001005	Male	Yes	0	Graduate	Yes	3000	
3	LP001006	Male	Yes	0	Not Graduate	No	2583	
4	LP001008	Male	No	0	Graduate	No	6000	
609	LP002978	Female	No	0	Graduate	No	2900	
610	LP002979	Male	Yes	3+	Graduate	No	4106	
611	LP002983	Male	Yes	1	Graduate	No	8072	
612	LP002984	Male	Yes	2	Graduate	No	7583	
613	LP002990	Female	No	0	Graduate	Yes	4583	

614 rows × 13 columns

In [33]: df3_tr=df3.drop(["Dependents","Married","Loan_ID","Education","Gender","Property_Ard
df3_tr

Out[33]:

	Self_Employed	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_His
0	No	5849	0.0	NaN	360.0	
1	No	4583	1508.0	128.0	360.0	
2	Yes	3000	0.0	66.0	360.0	
3	No	2583	2358.0	120.0	360.0	
4	No	6000	0.0	141.0	360.0	
609	No	2900	0.0	71.0	360.0	
610	No	4106	0.0	40.0	180.0	
611	No	8072	240.0	253.0	360.0	
612	No	7583	0.0	187.0	360.0	
613	Yes	4583	0.0	133.0	360.0	

614 rows × 6 columns

In [34]: df_tr=df3_tr.dropna()

```
In [35]: df_tr.info()
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 504 entries, 1 to 613
         Data columns (total 6 columns):
                                 Non-Null Count
              Column
                                                 Dtype
              _ _ _ _ _
                                  _____
                                                 ____
          0
              Self Employed
                                  504 non-null
                                                  object
          1
              ApplicantIncome
                                  504 non-null
                                                  int64
              CoapplicantIncome 504 non-null
                                                  float64
                                  504 non-null
                                                  float64
          3
              LoanAmount
          4
              Loan_Amount_Term
                                 504 non-null
                                                  float64
              Credit History
                                  504 non-null
                                                  float64
         dtypes: float64(4), int64(1), object(1)
         memory usage: 27.6+ KB
In [36]: g1={"Self_Employed":{'Yes':1,'No':0}}
         df_tr=df_tr.replace(g1).astype(int)
In [37]: df_tr.info()
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 504 entries, 1 to 613
         Data columns (total 6 columns):
          #
              Column
                                 Non-Null Count
                                                 Dtype
         ---
          0
              Self Employed
                                  504 non-null
                                                  int32
              ApplicantIncome
                                  504 non-null
                                                  int32
              CoapplicantIncome 504 non-null
          2
                                                  int32
              LoanAmount
                                  504 non-null
                                                  int32
              Loan Amount Term
                                  504 non-null
                                                  int32
              Credit_History
          5
                                 504 non-null
                                                  int32
         dtypes: int32(6)
         memory usage: 15.8 KB
In [38]: y=df tr["Self Employed"]
         x=df tr.drop(["Self Employed"],axis=1)
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
         # f=StandardScaler().fit_transform(x)
         # lr.fit(f,y)
         # df4_te=df4.drop(["Education","Loan_ID","Gender","Married","Dependents","Property_
In [39]:
In [40]: # df4_te=df4_te.dropna()
In [41]: # df4 te.info()
In [42]: |df_tr["Self_Employed"].value_counts()
Out[42]: 0
              434
               70
         1
         Name: Self Employed, dtype: int64
```

```
# lr.predict(df4_te)
In [43]:
In [44]: # lr.predict_proba(df4_te)
In [45]: parameter={'max_depth':[1,2,3,4,5],
                    "min_samples_leaf":[5,10,15,20,25],
                    "n estimators":[10,20,30,40,50]}
In [46]: |rfc=RandomForestClassifier()
         rfc.fit(x_train,y_train)
Out[46]: RandomForestClassifier()
In [47]: grid_search = GridSearchCV(estimator=rfc,param_grid=parameter,cv=2,scoring="accurac")
         grid_search.fit(x_train,y_train)
Out[47]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                       param_grid={'max_depth': [1, 2, 3, 4, 5],
                                   'min_samples_leaf': [5, 10, 15, 20, 25],
                                   'n estimators': [10, 20, 30, 40, 50]},
                       scoring='accuracy')
In [48]: grid_search.best_score_
Out[48]: 0.8579545454545454
```

In [49]: plt.figure(figsize=(80,40))
 plot_tree(rfc_best.estimators_[5],class_names=['Yes','No',"Yes"],filled=True)

```
Out[49]: [Text(2352.9, 1993.2, 'X[4] <= 60.75\ngini = 0.523\nsamples = 44023\nvalue = [3830]</pre>
                 6, 28762, 2186, 174, 2]\nclass = Yes'),
                  Text(1190.4, 1630.8000000000000, 'X[1] <= 14684.5\ngini = 0.45\nsamples = 31185\n
                 value = [32812, 16024, 340, 77, 0]\nclass = Yes'),
                  Text(595.2, 1268.4, 'X[0] \le 2015.5 \cdot ini = 0.246 \cdot insamples = 13775 \cdot invalue = [1871]
                 7, 3109, 1, 20, 0]\nclass = Yes'),
                  Text(297.6, 906.0, 'X[3] <= 70.0\ngini = 0.445\nsamples = 3980\nvalue = [4178, 20
                 95, 0, 1, 0]\nclass = Yes'),
                  Text(148.8, 543.59999999999, 'X[5] <= 1.55\ngini = 0.112\nsamples = 1012\nvalue
                 = [1486, 94, 0, 0, 0]\nclass = Yes'),
                  Text(74.4, 181.199999999999, 'gini = 0.007\nsamples = 952\nvalue = [1486, 5, 0,
                 0, 0]\nclass = Yes'),
                  Text(223.2000000000000, 181.19999999999, 'gini = 0.0\nsamples = 60\nvalue =
                 [0, 89, 0, 0, 0] \setminus nclass = No'),
                  Text(446.40000000000003, 543.59999999999, 'X[1] <= 9170.5\ngini = 0.489\nsample
                 s = 2968\nvalue = [2692, 2001, 0, 1, 0]\nclass = Yes'),
                  Text(372.0, 181.199999999999, 'gini = 0.387\nsamples = 1824\nvalue = [2127, 75]
                 5, 0, 1, 0]\nclass = Yes'),
                  Text(520.800000000001, 181.1999999999982, 'gini = 0.429\nsamples = 1144\nvalue
                 = [565, 1246, 0, 0, 0]\nclass = No'),
                  Text(892.800000000001, 906.0, 'X[2] <= 32791.0 \ngini = 0.124 \nsamples = 9795 \nva
                 lue = [14539, 1014, 1, 19, 0]\nclass = Yes'),
                  Text(744.0, 543.599999999999, 'X[5] <= 1.9\ngini = 0.074\nsamples = 8464\nvalue
                 = [12917, 500, 1, 17, 0]\nclass = Yes'),
                  Text(669.6, 181.199999999999, 'gini = 0.046\nsamples = 8311\nvalue = [12869, 29
                 1, 1, 17, 0]\nclass = Yes'),
                  Text(818.4000000000001, 181.1999999999982, 'gini = 0.304\nsamples = 153\nvalue =
                 [48, 209, 0, 0, 0]\nclass = No'),
                  Text(1041.6000000000001, 543.59999999999, 'X[1] <= 11499.5 \neq 0.367 \neq 0.3
                 es = 1331\nvalue = [1622, 514, 0, 2, 0]\nclass = Yes'),
                  Text(967.2, 181.199999999999, 'gini = 0.116\nsamples = 849\nvalue = [1254, 83,
                 0, 0, 0]\nclass = Yes'),
                  Text(1116.0, 181.199999999999, 'gini = 0.499\nsamples = 482\nvalue = [368, 431,
                 0, 2, 0]\nclass = No'),
                  Text(1785.600000000001, 1268.4, X[5] <= 1.55  ngini = 0.513\nsamples = 17410\nva
                 lue = [14095, 12915, 339, 57, 0]\nclass = Yes'),
                  Text(1488.0, 906.0, 'X[4] <= 52.8\ngini = 0.111\nsamples = 5193\nvalue = [7716, 4
                 13, 55, 11, 0]\nclass = Yes'),
                  Text(1339.2, 543.59999999999, 'X[5] <= 0.5\ngini = 0.051\nsamples = 3818\nvalue
                 = [5845, 90, 55, 11, 0]\nclass = Yes'),
                  Text(1264.800000000000, 181.199999999999, 'gini = 0.444\nsamples = 33\nvalue =
                 [42, 21, 0, 0, 0] \setminus (100)
                  Text(1413.600000000001, 181.199999999999, 'gini = 0.045\nsamples = 3785\nvalue
                 = [5803, 69, 55, 11, 0]\nclass = Yes'),
                  Text(1636.80000000000002, 543.599999999999, 'X[5] <= 1.45\ngini = 0.251\nsamples
                 = 1375\nvalue = [1871, 323, 0, 0, 0]\nclass = Yes'),
                  Text(1562.4, 181.199999999999, 'gini = 0.009\nsamples = 970\nvalue = [1527, 7,
                 0, 0, 0]\nclass = Yes'),
                  Text(1711.2, 181.199999999999, 'gini = 0.499\nsamples = 405\nvalue = [344, 316,
                 0, 0, 0]\nclass = Yes'),
                  Text(2083.2000000000003, 906.0, 'X[3] <= 142.5\ngini = 0.466\nsamples = 12217\nva
                 lue = [6379, 12502, 284, 46, 0] \setminus nclass = No'),
                  Text(1934.4, 543.59999999999, 'X[5] <= 2.4\ngini = 0.383\nsamples = 1026\nvalue
                 = [148, 1258, 225, 7, 0]\nclass = No'),
                  Text(1860.000000000000, 181.1999999999982, 'gini = 0.273\nsamples = 911\nvalue
                 = [148, 1240, 72, 7, 0]\nclass = No'),
                  Text(2008.800000000000, 181.1999999999982, 'gini = 0.188\nsamples = 115\nvalue
                 = [0, 18, 153, 0, 0]\nclass = Yes'),
                  Text(2232.0, 543.599999999999, 'X[3] <= 327.5\ngini = 0.465\nsamples = 11191\nva
                 lue = [6231, 11244, 59, 39, 0] \setminus nclass = No'),
```

```
Text(2157.600000000004, 181.1999999999982, 'gini = 0.463\nsamples = 11131\nvalu
e = [6138, 11234, 59, 39, 0] \setminus nclass = No'),
  Text(2306.4, 181.199999999999, 'gini = 0.175\nsamples = 60\nvalue = [93, 10, 0,
0, 0]\nclass = Yes'),
  Text(3515.4, 1630.8000000000002, X[4] \le 69.8  ngini = 0.519\nsamples = 12838\nva
lue = [5494, 12738, 1846, 97, 2]\nclass = No'),
   Text(2976.0, 1268.4, 'X[1] <= 12599.5\ngini = 0.486\nsamples = 9185\nvalue = [545]
8, 8802, 141, 45, 1]\nclass = No'),
   Text(2678.4, 906.0, 'X[2] <= 37016.0\ngini = 0.462\nsamples = 5107\nvalue = [520
4, 2823, 10, 35, 0]\nclass = Yes'),
  Text(2529.6000000000004, 543.599999999999, 'X[5] <= 1.45\ngini = 0.295\nsamples
= 3469\nvalue = [4525, 949, 3, 29, 0]\nclass = Yes'),
  Text(2455.200000000003, 181.19999999999, 'gini = 0.018\nsamples = 2856\nvalue
= [4525, 12, 0, 29, 0]\nclass = Yes'),
   Text(2604.0, 181.199999999999, 'gini = 0.006\nsamples = 613\nvalue = [0, 937,
3, 0, 0]\nclass = No'),
   Text(2827.2000000000003, 543.59999999999, 'X[3] <= 5.0 \neq 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.3
1638\nvalue = [679, 1874, 7, 6, 0]\nclass = No'),
  Text(2752.8, 181.199999999999, 'gini = 0.257\nsamples = 237\nvalue = [310, 48,
3, 3, 0\nclass = Yes'),
  Text(2901.600000000004, 181.19999999999, 'gini = 0.284\nsamples = 1401\nvalue
= [369, 1826, 4, 3, 0]\nclass = No'),
   Text(3273.600000000004, 906.0, 'X[1] <= 13501.0\ngini = 0.118\nsamples = 4078\nv
alue = [254, 5979, 131, 10, 1]\nclass = No'),
  Text(3124.8, 543.59999999999, 'X[5] <= 1.45\ngini = 0.347\nsamples = 518\nvalue
= [171, 647, 9, 1, 0]\nclass = No'),
  Text(3050.4, 181.199999999999, 'gini = 0.023\nsamples = 108\nvalue = [171, 1,
0, 1, 0]\nclass = Yes'),
  Text(3199.200000000003, 181.1999999999982, 'gini = 0.027\nsamples = 410\nvalue
= [0, 646, 9, 0, 0] \setminus nclass = No'),
  Text(3422.4, 543.599999999999, 'X[5] <= 1.45\ngini = 0.075\nsamples = 3560\nvalu
e = [83, 5332, 122, 9, 1]\nclass = No'),
  Text(3348.000000000005, 181.19999999999, 'gini = 0.256\nsamples = 62\nvalue =
[79, 14, 0, 0, 0] \setminus (135) = (135)
  Text(3496.8, 181.199999999999, 'gini = 0.049\nsamples = 3498\nvalue = [4, 5318,
122, 9, 1]\nclass = No'),
   Text(4054.8, 1268.4, 'X[4] <= 91.2\ngini = 0.439\nsamples = 3653\nvalue = [36, 39
36, 1705, 52, 1]\nclass = No'),
  Text(3868.8, 906.0, 'X[4] <= 75.35\ngini = 0.379\nsamples = 3350\nvalue = [34, 39
35, 1268, 8, 0]\nclass = No'),
   Text(3720.00000000000005, 543.59999999999, 'X[1] <= 18993.0 \ngini = 0.264 \nsampl
es = 2160\nvalue = [30, 2848, 489, 2, 0]\nclass = No'),
  Text(3645.600000000004, 181.19999999999, 'gini = 0.174\nsamples = 1773\nvalue
= [27, 2502, 234, 2, 0]\nclass = No'),
  Text(3794.4, 181.199999999999, 'gini = 0.494\nsamples = 387\nvalue = [3, 346, 2
55, 0, 0]\nclass = No'),
  Text(4017.6000000000004, 543.59999999999, 'X[1] <= 11400.5 \neq 0.492 \Rightarrow 0.4
es = 1190\nvalue = [4, 1087, 779, 6, 0]\nclass = No'),
  Text(3943.200000000003, 181.1999999999982, 'gini = 0.221\nsamples = 637\nvalue
= [3, 888, 125, 0, 0]\nclass = No'),
  Text(4092.000000000005, 181.199999999982, 'gini = 0.368\nsamples = 553\nvalue
= [1, 199, 654, 6, 0]\nclass = Yes'),
  Text(4240.8, 906.0, X[5] <= 1.2 = 0.18 = 303 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 2
44, 1]\nclass = Yes'),
  [2, 0, 27, 5, 1] \setminus class = Yes'),
  Text(4315.200000000001, 543.599999999999, 'X[2] <= 23497.0 \cdot min = 0.162 \cdot msample
s = 277 \setminus value = [0, 1, 410, 39, 0] \setminus class = Yes'),
   Text(4240.8, 181.199999999999, 'gini = 0.048\nsamples = 129\nvalue = [0, 0, 20
0, 5, 0]\nclass = Yes'),
```

Text(4389.6, 181.1999999999999, 'gini = 0.246\nsamples = 148\nvalue = [0, 1, 21
0, 34, 0]\nclass = Yes')]

In [50]: df5=pd.read_csv("C9_Data.csv")
df5

Out[50]:

	row_id	user_id	timestamp	gate_id
0	0	18	2022-07-29 09:08:54	7
1	1	18	2022-07-29 09:09:54	9
2	2	18	2022-07-29 09:09:54	9
3	3	18	2022-07-29 09:10:06	5
4	4	18	2022-07-29 09:10:08	5
37513	37513	6	2022-12-31 20:38:56	11
37514	37514	6	2022-12-31 20:39:22	6
37515	37515	6	2022-12-31 20:39:23	6
37516	37516	6	2022-12-31 20:39:31	9
37517	37517	6	2022-12-31 20:39:31	9

37518 rows × 4 columns

```
In [51]:
         df5=df5.drop(["timestamp"],axis=1)
         df5.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 37518 entries, 0 to 37517
         Data columns (total 3 columns):
              Column
                       Non-Null Count Dtype
          0
              row id
                       37518 non-null int64
              user id 37518 non-null int64
          1
          2
              gate_id 37518 non-null int64
         dtypes: int64(3)
         memory usage: 879.5 KB
In [52]: y=df5["user id"]
         x=df5.drop(["user_id"],axis=1)
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [53]: # lr=LogisticRegression(max_iter=10000)
         # li=LinearRegression()
         # lr.fit(x_train,y_train)
         # li.fit(x train,y train)
In [54]: # lr.predict(x test)
In [55]: # li.predict(x_test)
In [56]: # lr.score(x_test,y_test)
In [57]: # li.score(x_test,y_test)
In [58]: |# cov(lr.predict(x_test),li.predict(x_test))
In [59]: rfc=RandomForestClassifier()
         rfc.fit(x_train,y_train)
Out[59]: RandomForestClassifier()
In [60]:
         grid search = GridSearchCV(estimator=rfc,param grid=parameter,cv=2,scoring="accurac")
         grid_search.fit(x_train,y_train)
         C:\ProgramData\Anaconda3\lib\site-packages\sklearn\model_selection\_split.py:666:
         UserWarning: The least populated class in y has only 1 members, which is less than
         n_splits=2.
           warnings.warn(("The least populated class in y has only %d"
Out[60]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                      param grid={'max depth': [1, 2, 3, 4, 5],
                                   'min_samples_leaf': [5, 10, 15, 20, 25],
                                   'n_estimators': [10, 20, 30, 40, 50]},
                      scoring='accuracy')
```

In [61]: grid_search.best_score_

Out[61]: 0.1067702383672226

In [62]: plt.figure(figsize=(80,40))
 plot_tree(rfc_best.estimators_[5],class_names=['Yes','No','Yes'],filled=True)

```
Out[62]: [Text(2352.9, 1993.2, 'X[4] <= 60.75\ngini = 0.523\nsamples = 44023\nvalue = [3830]</pre>
                 6, 28762, 2186, 174, 2]\nclass = Yes'),
                  Text(1190.4, 1630.8000000000000, 'X[1] <= 14684.5\ngini = 0.45\nsamples = 31185\n
                 value = [32812, 16024, 340, 77, 0]\nclass = Yes'),
                  Text(595.2, 1268.4, 'X[0] \le 2015.5 \cdot ini = 0.246 \cdot insamples = 13775 \cdot invalue = [1871]
                 7, 3109, 1, 20, 0]\nclass = Yes'),
                  Text(297.6, 906.0, 'X[3] <= 70.0\ngini = 0.445\nsamples = 3980\nvalue = [4178, 20
                 95, 0, 1, 0]\nclass = Yes'),
                  Text(148.8, 543.59999999999, 'X[5] <= 1.55\ngini = 0.112\nsamples = 1012\nvalue
                 = [1486, 94, 0, 0, 0]\nclass = Yes'),
                  Text(74.4, 181.199999999999, 'gini = 0.007\nsamples = 952\nvalue = [1486, 5, 0,
                 0, 0]\nclass = Yes'),
                  Text(223.2000000000000, 181.19999999999, 'gini = 0.0\nsamples = 60\nvalue =
                 [0, 89, 0, 0, 0] \setminus nclass = No'),
                  Text(446.40000000000003, 543.59999999999, 'X[1] <= 9170.5\ngini = 0.489\nsample
                 s = 2968\nvalue = [2692, 2001, 0, 1, 0]\nclass = Yes'),
                  Text(372.0, 181.199999999999, 'gini = 0.387\nsamples = 1824\nvalue = [2127, 75]
                 5, 0, 1, 0]\nclass = Yes'),
                  Text(520.800000000001, 181.1999999999982, 'gini = 0.429\nsamples = 1144\nvalue
                 = [565, 1246, 0, 0, 0]\nclass = No'),
                  Text(892.800000000001, 906.0, 'X[2] <= 32791.0 \ngini = 0.124 \nsamples = 9795 \nva
                 lue = [14539, 1014, 1, 19, 0]\nclass = Yes'),
                  Text(744.0, 543.599999999999, 'X[5] <= 1.9\ngini = 0.074\nsamples = 8464\nvalue
                 = [12917, 500, 1, 17, 0]\nclass = Yes'),
                  Text(669.6, 181.199999999999, 'gini = 0.046\nsamples = 8311\nvalue = [12869, 29
                 1, 1, 17, 0]\nclass = Yes'),
                  Text(818.4000000000001, 181.1999999999982, 'gini = 0.304\nsamples = 153\nvalue =
                 [48, 209, 0, 0, 0]\nclass = No'),
                  Text(1041.6000000000001, 543.59999999999, 'X[1] <= 11499.5 \neq 0.367 \neq 0.3
                 es = 1331\nvalue = [1622, 514, 0, 2, 0]\nclass = Yes'),
                  Text(967.2, 181.199999999999, 'gini = 0.116\nsamples = 849\nvalue = [1254, 83,
                 0, 0, 0]\nclass = Yes'),
                  Text(1116.0, 181.199999999999, 'gini = 0.499\nsamples = 482\nvalue = [368, 431,
                 0, 2, 0]\nclass = No'),
                  Text(1785.600000000001, 1268.4, X[5] <= 1.55  ngini = 0.513\nsamples = 17410\nva
                 lue = [14095, 12915, 339, 57, 0]\nclass = Yes'),
                  Text(1488.0, 906.0, 'X[4] <= 52.8\ngini = 0.111\nsamples = 5193\nvalue = [7716, 4
                 13, 55, 11, 0]\nclass = Yes'),
                  Text(1339.2, 543.59999999999, 'X[5] <= 0.5\ngini = 0.051\nsamples = 3818\nvalue
                 = [5845, 90, 55, 11, 0]\nclass = Yes'),
                  Text(1264.800000000000, 181.199999999999, 'gini = 0.444\nsamples = 33\nvalue =
                 [42, 21, 0, 0, 0] \setminus (100)
                  Text(1413.600000000001, 181.199999999999, 'gini = 0.045\nsamples = 3785\nvalue
                 = [5803, 69, 55, 11, 0]\nclass = Yes'),
                  Text(1636.80000000000002, 543.599999999999, 'X[5] <= 1.45\ngini = 0.251\nsamples
                 = 1375\nvalue = [1871, 323, 0, 0, 0]\nclass = Yes'),
                  Text(1562.4, 181.199999999999, 'gini = 0.009\nsamples = 970\nvalue = [1527, 7,
                 0, 0, 0]\nclass = Yes'),
                  Text(1711.2, 181.199999999999, 'gini = 0.499\nsamples = 405\nvalue = [344, 316,
                 0, 0, 0]\nclass = Yes'),
                  Text(2083.2000000000003, 906.0, 'X[3] <= 142.5\ngini = 0.466\nsamples = 12217\nva
                 lue = [6379, 12502, 284, 46, 0] \setminus nclass = No'),
                  Text(1934.4, 543.59999999999, 'X[5] <= 2.4\ngini = 0.383\nsamples = 1026\nvalue
                 = [148, 1258, 225, 7, 0]\nclass = No'),
                  Text(1860.000000000000, 181.1999999999982, 'gini = 0.273\nsamples = 911\nvalue
                 = [148, 1240, 72, 7, 0]\nclass = No'),
                  Text(2008.800000000000, 181.1999999999982, 'gini = 0.188\nsamples = 115\nvalue
                 = [0, 18, 153, 0, 0]\nclass = Yes'),
                  Text(2232.0, 543.599999999999, 'X[3] <= 327.5\ngini = 0.465\nsamples = 11191\nva
                 lue = [6231, 11244, 59, 39, 0] \setminus nclass = No'),
```

```
Text(2157.600000000004, 181.1999999999982, 'gini = 0.463\nsamples = 11131\nvalu
e = [6138, 11234, 59, 39, 0] \setminus nclass = No'),
  Text(2306.4, 181.199999999999, 'gini = 0.175\nsamples = 60\nvalue = [93, 10, 0,
0, 0]\nclass = Yes'),
  Text(3515.4, 1630.8000000000002, X[4] <= 69.8 \ngini = 0.519\nsamples = 12838\nva
lue = [5494, 12738, 1846, 97, 2]\nclass = No'),
   Text(2976.0, 1268.4, 'X[1] <= 12599.5\ngini = 0.486\nsamples = 9185\nvalue = [545]
8, 8802, 141, 45, 1]\nclass = No'),
   Text(2678.4, 906.0, 'X[2] <= 37016.0\ngini = 0.462\nsamples = 5107\nvalue = [520
4, 2823, 10, 35, 0]\nclass = Yes'),
  Text(2529.6000000000004, 543.599999999999, 'X[5] <= 1.45\ngini = 0.295\nsamples
= 3469\nvalue = [4525, 949, 3, 29, 0]\nclass = Yes'),
  Text(2455.200000000003, 181.19999999999, 'gini = 0.018\nsamples = 2856\nvalue
= [4525, 12, 0, 29, 0]\nclass = Yes'),
   Text(2604.0, 181.199999999999, 'gini = 0.006\nsamples = 613\nvalue = [0, 937,
3, 0, 0]\nclass = No'),
   Text(2827.2000000000003, 543.59999999999, 'X[3] <= 5.0 \neq 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.397 = 0.3
1638\nvalue = [679, 1874, 7, 6, 0]\nclass = No'),
  Text(2752.8, 181.199999999999, 'gini = 0.257\nsamples = 237\nvalue = [310, 48,
3, 3, 0\nclass = Yes'),
  Text(2901.600000000004, 181.19999999999, 'gini = 0.284\nsamples = 1401\nvalue
= [369, 1826, 4, 3, 0]\nclass = No'),
   Text(3273.600000000004, 906.0, 'X[1] <= 13501.0\ngini = 0.118\nsamples = 4078\nv
alue = [254, 5979, 131, 10, 1]\nclass = No'),
  Text(3124.8, 543.59999999999, 'X[5] <= 1.45\ngini = 0.347\nsamples = 518\nvalue
= [171, 647, 9, 1, 0]\nclass = No'),
  Text(3050.4, 181.199999999999, 'gini = 0.023\nsamples = 108\nvalue = [171, 1,
0, 1, 0]\nclass = Yes'),
  Text(3199.200000000003, 181.1999999999982, 'gini = 0.027\nsamples = 410\nvalue
= [0, 646, 9, 0, 0] \setminus nclass = No'),
  Text(3422.4, 543.599999999999, 'X[5] <= 1.45\ngini = 0.075\nsamples = 3560\nvalu
e = [83, 5332, 122, 9, 1]\nclass = No'),
  Text(3348.000000000005, 181.19999999999, 'gini = 0.256\nsamples = 62\nvalue =
[79, 14, 0, 0, 0] \setminus (135) = (135)
  Text(3496.8, 181.199999999999, 'gini = 0.049\nsamples = 3498\nvalue = [4, 5318,
122, 9, 1]\nclass = No'),
   Text(4054.8, 1268.4, 'X[4] <= 91.2\ngini = 0.439\nsamples = 3653\nvalue = [36, 39
36, 1705, 52, 1]\nclass = No'),
  Text(3868.8, 906.0, 'X[4] <= 75.35\ngini = 0.379\nsamples = 3350\nvalue = [34, 39
35, 1268, 8, 0]\nclass = No'),
   Text(3720.00000000000005, 543.59999999999, 'X[1] <= 18993.0 \ngini = 0.264 \nsampl
es = 2160\nvalue = [30, 2848, 489, 2, 0]\nclass = No'),
  Text(3645.600000000004, 181.19999999999, 'gini = 0.174\nsamples = 1773\nvalue
= [27, 2502, 234, 2, 0]\nclass = No'),
  Text(3794.4, 181.199999999999, 'gini = 0.494\nsamples = 387\nvalue = [3, 346, 2
55, 0, 0]\nclass = No'),
  Text(4017.6000000000004, 543.59999999999, 'X[1] <= 11400.5 \neq 0.492 \Rightarrow 0.4
es = 1190\nvalue = [4, 1087, 779, 6, 0]\nclass = No'),
  Text(3943.200000000003, 181.1999999999982, 'gini = 0.221\nsamples = 637\nvalue
= [3, 888, 125, 0, 0]\nclass = No'),
  Text(4092.000000000005, 181.199999999982, 'gini = 0.368\nsamples = 553\nvalue
= [1, 199, 654, 6, 0]\nclass = Yes'),
  Text(4240.8, 906.0, X[5] <= 1.2 = 0.18 = 303 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 20.18 = 2
44, 1]\nclass = Yes'),
  [2, 0, 27, 5, 1] \setminus class = Yes'),
  Text(4315.200000000001, 543.599999999999, 'X[2] <= 23497.0 \cdot min = 0.162 \cdot msample
s = 277 \setminus value = [0, 1, 410, 39, 0] \setminus class = Yes'),
   0, 5, 0]\nclass = Yes'),
```

Text(4389.6, 181.19999999999999, 'gini = 0.246\nsamples = 148\nvalue = [0, 1, 21
0, 34, 0]\nclass = Yes')]

In []:	
In []:	