Лабораторная работа 4.2.3. Интерферометр Релея.

Радькин Кирилл, Б01-005 12.02.22

Цель работы: ознакомление с устройством и принципом действия интерферометра Релея и с его применением для измерения показателей преломления газов.

В работе используются: технический интерферометр ИТР-1, светофильтр, баллон с углекислым газом, сильфон, манометр, краны.

Экспериментальная установка:

Рис. 1. Принципиальная схема установки для наблюдения дифракции

Рис. 2. Устройство интерферометра Релея. а) вид сверху; б) вид сбоку

Интерферометр Релея — прибор для измерения разности показателей преломления — основан на явлении дифракции света на двух параллельных щелях. Схема прибора представлена на рис. 4 в вертикальной и горизонтальной проекциях. Лампа накаливания Π с помощью конденсора K ярко освещает узкую входную щель S, расположенную в фокусе объектива O_1 . Коллиматор, состоящий из щели S и объектива O_1 , посылает параллельный пучок на диафрагму D с двумя вертикальными щелями. Свет, дифрагируя на двойной щели, проходит кювету L, состоящую из двух одинаковых стеклянных камер, в которые вводятся исследуемые газы (в нашей установке — CO_2 или воздух). Кювета занимает только верхнюю часть пространства между объективами O_1 и O_2 .

Ход работы:

- 1. Включим осветитель интерферометра в сеть и убедимся, что в поле зрения окуляра видны две системы интерференционных полос.
- 2. Уравняем давление в обеих камерах кюветы: первую соединим с атмосферой, открыв краны K1 и K2, а вторую (с открытым концом) продуем с помощью груши Γ , чтобы удалить из неё остатки углекислого газа.
- 3. Уравняв давление в камерах, подождем 2–3 минуты, пока выровняются температуры. Установим начало отсчёта, совместив с помощью компенсатора обе системы полос.
- 4. Прокалибруем компенсатор в единицах λ , выделив узкий интервал длин волн с помощью светофильтра. Для этого наденем на оправу окуляра красный светофильт и, последовательно совмещая первую, вторую и т. д. подвижные полосы с нулевой неподвижной, запишем соответствующие отсчёты по вертикальной шкале и барабану компенсатора.

z, MM.										
0.80	1.40	1.72	2.05	2.41	2.73	3.03	3.37			
3.69	4.03	4.36	4.66	4.98	5.30	5.64	5.94			

- 5. Запишем длину кюветы l=10 см, длина волны $\lambda=6700$ Å, полоса пропускания светофильтра 6200-7200 Å.
- 6. Убедимся, что давление воздуха в обеих камерах кюветы атмосферное. Установим сильфон в среднее положение и отсоедините первую камеру от атмосферы, перекрыв кран K1.
- 7. Изменяя давление с помощью сильфона и совмещая нулевые полосы, снимем зависимость показаний компенсатора z от перепада давлений ΔP .

ΔP , MM. B. CT	1000	900	800	700	600	500	400	300	200	100	0
z, MM.	4.07	3.92	3.74	3.65	3.54	3.45	3.23	3.14	3.00	2.86	2.76
ΔP , MM. B. CT	-100	-200	-300	-400	-500	-600	-700	-800	-900	-10	000
z, MM.	2.55	2.46	2.36	2.19	1.99	1.86	1.72	1.53	1.29	1.0	03

- 8. Соединим первую камеру кюветы с атмосферой, открыв кран K1, и отключим манометр, закрыв кран K2. Заполним углекислым газом камеру с открытым концом. Для этого 3–4 раза плавно, чтобы избежать резкого изменения температуры газа при расширении, переведем кран K0 из положения 1 в положение 2.
- 9. Снимем зависимость равновесного положения компенсатора от времени, раз в минуту совмещая нулевые полосы, и оценим время установления равновесия.

t, мин.	0	1	2	3	4	5	6	7	8	9	10
z, MM.	9.90	8.86	7.89	7.50	6.58	6.00	5.42	5.07	4.81	4.45	4.30

Повторим измерения, стараясь заполнять кювету как можно более плавно.

t, мин.	0	1	2	3	4	5	
z, MM.	9.99	8.73	7.78	7.37	6.82	6.25	

10. Определим температуру $T=22.2~C^\circ$ и давление $P=100.2~\mathrm{k\Pi a}$ по показаниям лабораторного термометра и барометра.

11. Построим калибровочный график в координатах x=m (номер совмещённой полосы), y=z (отсчёт по компенсатору).

Рис. 3. Калибровочный график

12. Построим график в координатах $x=\Delta P$ (от +1000 до -1000 мм в. ст.), $y=\Delta n$. Величину Δn рассчитаем по формуле $\Delta n=\frac{\Delta}{l}=m\frac{\lambda}{l}$ с помощью калибровочного графика.

По углу наклона рассчитаем среднюю поляризуемость молекулы воздуха, используя формулу $\Delta n = \frac{2\pi\alpha}{kT}P$, а затем — показатель преломления воздуха в условиях опыта по формуле $n-1=2\pi\alpha\frac{P}{kT}$.

Рис. 4. ΔP от Δn

$$\alpha = (1.68 \pm 0.22) \cdot 10^{-30} \mathrm{m}^3$$

$$n=1.00026\pm0.00004$$

Пересчитаем показатель преломления по формуле

$$\frac{n_0 - 1}{n - 1} = \frac{T}{T_0} \frac{P_0}{P}$$

к нормальным условиям:

$$n^0 = 1.00033 \pm 0.00004$$

13. Рассчитаем показатель преломления для углекислого газа в условиях опыта по формуле

$$n=n_{ ext{возд}}+rac{\Delta}{l}$$

взяв показатель преломления воздуха, рассчитанный по результатам эксперимента.

$$n_{CO_2} = 1.00040 \pm 0.00004$$

Пересчитаем n_{CO_2} к нормальным условиям:

$$n^0_{CO_2} = 1.00051 \pm 0.00005$$

14. Оценим интервал Δn , доступный для измерений, исходя из возможностей компенсатора: минимальная величина Δn , доступная для измерений, определяется точностью компенсатора, максимальная — диапазоном его работы.

Интервал, доступный для измерений: от 1.00037 до 1.03