

M54/74HC4049 M54/74HC4050

HC4049 HEX BUFFER/CONVERTER (INVERTER) HC4050 HEX BUFFER/CONVERTER

- HIGH SPEED
 - $t_{PD} = 9 \text{ ns (TYP.)} AT V_{CC} = 5 \text{ V}$
- LOW POWER DISSIPATION $I_{CC} = 1 \mu A \text{ (MAX.)} \text{ AT } T_A = 25 \text{ °C}$
- HIGH NOISE IMMUNITY

 VNIH = VNIL = 28 % VCC (MIN.)
- OUTPUT DRIVE CAPABILITY
 15 LSTTL LOADS
- SYMMETRICAL OUTPUT IMPEDANCE | IOH| = IOL = 6 mA (MIN.)
- BALANCED PROPAGATION DELAYS tplh = tphl
- WIDE OPERATING VOLTAGE RANGE V_{CC} (OPR) = 2 V TO 6 V
- PIN AND FUNCTION COMPATIBLE WITH 4049B/4050B

DESCRIPTION

The M54/74HC4049 and the M54/74HC4050 are high speed CMOS HEX BUFFER fabricated in silicon gate C²MOS technology.

They have the same high speed performance of LSTTL combined with true CMOS low power consumption.

The M54/75HC4049 is an inverting buffer, while the M54/74HC4050 is a non-inverting buffer.

The internal circuit is composed of 3 stage or 2stage inverters, which provides high noise immunity and a stable output.

Input protection circuits are different from those of the high speed CMOS IC's.

The VCC side diodes are designed to allow logic-level convertion from high-level voltages (up to 15 V) to low-level voltages.

March 1993 1/11

CIRCUIT SCHEMATIC (Per Gate)

CHIP CARRIER

TRUTH TABLE (HC4049)

INPUT	OUTPUT
nA	nΥ
L	Н
Н	L

TRUTH TABLE (HC4050)

INPUT	OUTPUT
nA	nY
L	L
Н	Н

PIN DESCRIPTION (HC4049)

PIN No	SYMBOL	NAME AND FUNCTION
2, 4, 6, 10, 12, 15	1\overline{Y} to 6\overline{Y}	Data Outputs
3, 5, 7, 9, 11, 14	1A to 6A	Data Inputs
13, 16	NC	Not Connected
8	GND	Ground (0V)
1	Vcc	Positive Supply Voltage

PIN DESCRIPTION (HC4050)

PIN No	SYMBOL	NAME AND FUNCTION
2, 4, 6, 10, 12, 15	1Y to 6Y	Data Outputs
3, 5, 7, 9, 11, 14	1A to 6A	Data Inputs
13, 16	NC	Not Connected
8	GND	Ground (0V)
1	Vcc	Positive Supply Voltage

IEC LOGIC SYMBOLS

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vcc	Supply Voltage	-0.5 to +7	V
VI	DC Input Voltage	-0.5 to V _{CC} + 0.5	V
Vo	DC Output Voltage	-0.5 to V _{CC} + 0.5	V
lıĸ	DC Input Diode Current	± 20	mA
I _{OK}	DC Output Diode Current	± 20	mA
Io	DC Output Source Sink Current Per Output Pin	± 25	mA
Icc or I _{GND}	DC V _{CC} or Ground Current	± 50	mA
P_{D}	Power Dissipation	500 (*)	mW
T _{stg}	Storage Temperature	-65 to +150	°C
TL	Lead Temperature (10 sec)	300	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied. (*) 500 mW: ≡ 65 °C derate to 300 mW by 10mW/°C: 65 °C to 85 °C

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit	
Vcc	Supply Voltage		2 to 6	V
VI	Input Voltage		0 to V _{CC}	V
Vo	Output Voltage	0 to V _{CC}	V	
Тор	Operating Temperature: M54HC Series M74HC Series		-55 to +125 -40 to +85	o° o°
t _r , t _f	Input Rise and Fall Time	V _{CC} = 2 V	0 to 1000	ns
		$V_{CC} = 4.5 \text{ V}$	0 to 500	
		$V_{CC} = 6 V$	0 to 400	

DC SPECIFICATIONS

		Test Conditions		Value								
Symbol	Symbol Parameter		V _{CC}		T _A = 25 °C 54HC and 74HC			1	85 °C HC	ı	125 °C HC	Unit
		(V)			Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
V_{IH}	High Level Input	2.0			1.5			1.5		1.5		
	Voltage	4.5			3.15			3.15		3.15		V
		6.0			4.2			4.2		4.2		
V_{IL}	Low Level Input	2.0					0.5		0.5		0.5	
	Voltage	4.5					1.35		1.35		1.35	V
		6.0					1.8		1.8		1.8	
V_{OH}	High Level	2.0	V _I =		1.9	2.0		1.9		1.9		
	Output Voltage	4.5	V _I	I _O =-20 μA	4.4	4.5		4.4		4.4		
		6.0	or		5.9	6.0		5.9		5.9		V
		4.5	VIL	I _O =-6.0 mA	4.18	4.31		4.13		4.10		
		6.0		I _O =-7.8 mA	5.68	5.8		5.63		5.60		
V_{OL}	Low Level Output	2.0	Vı =			0.0	0.1		0.1		0.1	
	Voltage	4.5	VI – VIH	I _O = 20 μA		0.0	0.1		0.1		0.1	
		6.0	or			0.0	0.1		0.1		0.1	V
		4.5	V _{IL}	I _O = 6.0 mA		0.17	0.26		0.33		0.40	
		6.0		I _O = 7.8 mA		0.18	0.26		0.33		0.40	
Ξ	Input Leakage Current	6.0	l	V _{CC} or GND I _I = 15 V			±0.1 ±0.5		±1 ±5		±1	μΑ
Icc	Quiescent Supply Current	6.0	V _I = '	V _{CC} or GND			1		10		20	μΑ

AC ELECTRICAL CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input $t_r = t_f = 6 \text{ ns}$)

		Te	est Conditions	Value							
Symbol	Parameter	V _{CC}	C _L (pF)		T _A = 25 °C 54HC and 74HC			-40 to 85 °C 74HC		125 °C HC	Unit
		(V)	(pr)	Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
t _{TLH}	Output Transition	2.0			25	60		75		90	
t _{THL}	Time	4.5	50		7	12		15		18	ns
		6.0			6	10		13		15	
t _{PLH}	Propagation	2.0			30	75		95		115	
t _{PHL}	Delay Time	4.5	50		9	15		19		23	ns
		6.0			8	13		16		20	
		2.0			45	100		125		150	
		4.5	150		14	20		25		30	ns
		6.0			12	17		21		26	
C _{IN}	Input Capacitance				5	10		10		10	рF
C _{PD} (*)	Power Dissipation Capacitance				26						pF

 C_{PD} is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. $I_{CC}(opr) = C_{PD} \bullet V_{CC} \bullet f_{IN} + I_{CC}$ (per Gate)

SWITCHING CHARACTERISTICS TEST WAVEFORM

TEST CIRCUIT ICC (Opr.)

Plastic DIP16 (0.25) MECHANICAL DATA

DIM.		mm				
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
a1	0.51			0.020		
В	0.77		1.65	0.030		0.065
b		0.5			0.020	
b1		0.25			0.010	
D			20			0.787
E		8.5			0.335	
е		2.54			0.100	
e3		17.78			0.700	
F			7.1			0.280
I			5.1			0.201
L		3.3			0.130	
Z			1.27			0.050

Ceramic DIP16/1 MECHANICAL DATA

DIM.		mm			inch	
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А			20			0.787
В			7			0.276
D		3.3			0.130	
Е	0.38			0.015		
e3		17.78			0.700	
F	2.29		2.79	0.090		0.110
G	0.4		0.55	0.016		0.022
Н	1.17		1.52	0.046		0.060
L	0.22		0.31	0.009		0.012
М	0.51		1.27	0.020		0.050
N			10.3			0.406
Р	7.8		8.05	0.307		0.317
Q			5.08			0.200

SO16 (Narrow) MECHANICAL DATA

DIM.		mm			inch	
DIIVI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α			1.75			0.068
a1	0.1		0.2	0.004		0.007
a2			1.65			0.064
b	0.35		0.46	0.013		0.018
b1	0.19		0.25	0.007		0.010
С		0.5			0.019	
c1			45°	(typ.)		
D	9.8		10	0.385		0.393
Е	5.8		6.2	0.228		0.244
е		1.27			0.050	
e3		8.89			0.350	
F	3.8		4.0	0.149		0.157
G	4.6		5.3	0.181		0.208
L	0.5		1.27	0.019		0.050
М			0.62			0.024
S			8° (ı	max.)		

PLCC20 MECHANICAL DATA

DIM.		mm				
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	9.78		10.03	0.385		0.395
В	8.89		9.04	0.350		0.356
D	4.2		4.57	0.165		0.180
d1		2.54			0.100	
d2		0.56			0.022	
E	7.37		8.38	0.290		0.330
е		1.27			0.050	
e3		5.08			0.200	
F		0.38			0.015	
G			0.101			0.004
М		1.27			0.050	
M1		1.14			0.045	

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

