Trabajo Práctico N° 5.3: Morfismos.

Ejercicio 1.

Analizar si las siguientes funciones son homomorfismos entre las estructuras algebraicas indicadas y, en caso afirmativo, hallar núcleo e imagen:

(a) $f: G \to F$ dada por $f(x) = 2^x$ y siendo los grupos $G = (\mathbb{R}, +)$ los reales con la suma usual, $F = (\mathbb{R}_0, *)$ los reales sin el 0 con el producto usual.

<u>Condición de homomorfismo:</u> f es un homomorfismo si se cumple que, para todo x, y \in G, f (x + y)= f (x) f (y). En particular, f (x + y)= $2^{x+y}=2^x2^y=f$ (x) f (y), por lo que f es un homomorfismo.

<u>Núcleo</u>: El núcleo de f está dado por los elementos de G que se mapean al neutro de F, el cual es 1, ya que, para cualquier $a \in F$, a * 1= a. En particular, $f(x)=1 \iff 2^x=1 \iff x=0$ y, entonces, $Nu(f)=\{0\}$.

<u>Imagen:</u> La imagen de f está formada por todos los valores que puede tomar f (x) cuando x recorre G. En particular, $Im(f) = \mathbb{R}_+ = \{y \in \mathbb{R}: y > 0\}.$

(b) $f: G \longrightarrow F$ dada porf(x) = -x y siendo los grupos $G = (\mathbb{Z}, *)$ los enteros con la operación a*b = a + b + ab, $F = (\mathbb{Z}, \circ)$ los enteros con la operación $a \circ b = a + b - ab$.

Condición de homomorfismo: f es un homomorfismo si se cumple que, para todo $x, y \in G$, $f(x * y) = f(x) \circ f(y)$. En particular, $f(x * y) = f(x + y + xy) = -(x + y + xy) = -x - y - xy \iff f(x) \circ f(y) = (-x) \circ (-y) = -x - y - (-x) (-y) = -x - y - xy$, por lo que f es un homomorfismo.

<u>Núcleo:</u> El núcleo de f está dado por los elementos de G que se mapean al neutro de F, el cual es 0, ya que, para cualquier $a \in F$, $a \cdot 0 = a + 0 - a * 0 = a + 0 - 0 = a$. En particular, f $(x) = 0 \Leftrightarrow -x = 0 \Leftrightarrow x = \frac{0}{-1} \Leftrightarrow x = 0$ y, entonces, $Nu(f) = \{0\}$.

<u>Imagen:</u> La imagen de f está formada por todos los valores que puede tomar f(x) cuando x recorre G. En particular, $Im(f) = \mathbb{Z}$.

(c) $f: (P(A), \cup) \rightarrow (P(A), \cap)$ dada por $f(X) = X^c$ (siendo A cualquier conjunto, P(A) indica el conjunto de partes de $A y X^c$ el complemento de un conjunto).

Condición de homomorfismo: f es un homomorfismo si se cumple que, para todo $X, Y \in (P(A), \cup), f(X \cup Y) = f(X) \cap f(Y)$. En particular, $f(X \cup Y) = (X \cup Y)^c = X^c \cap Y^c = f(X) \cap f(Y)$, por lo que f es un homomorfismo.

Juan Menduiña

<u>Núcleo:</u> El núcleo de f está dado por los conjuntos de (P (A), U) que se mapean al neutro de F, el cual es A, ya que, para cualquier $Y \in (P(A), \cap), Y \cap A = Y$. En particular, $f(X) = A \Leftrightarrow X^c = A \Leftrightarrow X = A^c$ y, entonces, $Nu(f) = \{A^c\}$.

<u>Imagen</u>: La imagen de f está formada por todos los conjuntos que puede tomar f(X) cuando X recorre (P(A), U). En particular, Im(f) = P(A).

Ejercicio 2.

Sea $f: G \to H$ un homomorfismo de grupos. Demostrar que el núcleo y la imagen de f son subgrupos de G y H, respectivamente.

El núcleo de f, denotado por Nu(f), se define como:

 $\text{Nu}(f) = \{x \in G: f(x) = e_H\}, \text{ donde } e_H \text{ es el elemento neutro de H.}$ $\text{Nu}(f) \subset G.$

<u>Cerradura:</u> Para cada x, y \in Nu(f), xy \in Nu(f). En particular, f (xy)= f (x) f (y) (por f homomorfismo)= $e_H e_H = e_H$, por lo que xy \in Nu(f).

Elemento neutro: El elemento neutro de f en G también existe en Nu(f). En particular, $e_G \in \text{Nu}(f)$, ya que f $(e_G) = e_H$.

<u>Inversos:</u> Un elemento $x \in Nu(f)$ tiene inverso si existe $x^{-1} \in Nu(f)$ tal que $xx^{-1} = x^{-1}x = e_G$. En particular, para $x \in Nu(f)$, su inverso en G es x^{-1} y, entonces, $f(x^{-1}) = [f(x)]^{-1}$ (por f homomorfismo)= $e_H^{-1} = e_H$, por lo que existe inverso para todo $x \in Nu(f)$, ya que $x^{-1} \in Nu(f)$.

Por lo tanto, queda demostrado que el núcleo de f es un subgrupo de G, ya que satisface cerradura, elemento neutro e inversos.

La imagen de f, denotada por Im(f), se define como:

$$Im(f) = \{ y \in H: \exists x \in G, f(x) = y \}.$$
$$Im(f) \subset H.$$

<u>Cerradura:</u> Para cada a, $b \in Im(f)$, $ab \in Im(f)$. En particular, ab = f(x) f(y) = f(xy) (por f homomorfismo), con $xy \in G$ (por (G, *) grupo), por lo que $ab \in Im(f)$.

Elemento neutro: El elemento neutro de f en H también existe en Im(f). En particular, $e_H \in \text{Im}(f)$, ya que $e_H = f(e_G)$.

<u>Inversos:</u> Un elemento $a \in Im(f)$ tiene inverso si existe $a^{-1} \in Im(f)$ tal que $aa^{-1} = a^{-1}a = e_H$. En particular, para $a \in Im(f)$, su inverso en H es $a^{-1} = [f(x)]^{-1} = f(x^{-1})$ (por f homomorfismo), con $x^{-1} \in G$ (por (G, *) grupo), por lo que existe inverso para todo $a \in Im(f)$, ya que $a^{-1} \in Im(f)$.

Por lo tanto, queda demostrado que la imagen de f es un subgrupo de H, ya que satisface cerradura, elemento neutro e inversos.

Ejercicio 3.

Sea (G, *) un grupo. Demostrar que la función $f: G \to G$ definida por $f(a) = a^2$ es un homomorfismo si y sólo si G es abeliano (recordar un ejercicio de grupos abelianos del TP5.1).

Si f (a)= a^2 es un homomorfismo, entonces, para todo a, b \in G, f (ab)= f (a) f (b), lo que implica que $(ab)^2 = a^2b^2 \Leftrightarrow$ abab= aabb \Leftrightarrow ba= ab. Por lo tanto, G es abeliano.

Si (G, *) es abeliano, entonces, para cada a, $b \in G$, ab = ba. En particular, $f(ab) = (ab)^2 = abab = aabb (por <math>(G, *)$ abeliano) = $a^2b^2 = f(a) f(b)$, por lo que f(ab) = f(a) f(b). Por lo tanto, $f(a) = a^2$ es un homomorfismo.

Por lo tanto, queda demostrado que la función $f: G \to G$ definida por $f(a) = a^2$ es un homomorfismo si y sólo si G es abeliano.

Ejercicio 4.

Si H_1 , H_2 son dos subgrupos de un grupo conmutativo G, probar que la aplicación f: H_1 x $H_2 \longrightarrow G$ dada por f (a, b)= ab es un morfismo de grupos.

La aplicación f es un morfismo de grupos si se cumple que, para todo $(a_1, b_1), (a_2, b_2) \in H_1 \times H_2$, f $((a_1, b_1) (a_2, b_2)) = f (a_1, b_1) f (a_2, b_2)$. En particular, f $((a_1, b_1) (a_2, b_2)) = f (a_1a_2, b_1b_2) = a_1a_2b_1b_2 = a_1b_1a_2b_2$ (por (G, *) conmutativo) = f $(a_1, b_1) f (a_2, b_2)$, por lo que f es un morfismo de grupos.

Por lo tanto, queda demostrado que la aplicación f: $H_1 \times H_2 \longrightarrow G$ dada por f (a, b)= ab es un morfismo de grupos.

Ejercicio 5.

Si $f: G_1 \to G_2$ es un morfismo de grupos, entonces, es monomorfismo si y sólo si $Nu(f) = \{e_1\}$.

Sea f: $G_1 \rightarrow G_2$ un morfismo de grupos, donde G_1 y G_2 son grupos, y e_1 y e_2 son los elementos neutros de G_1 y G_2 , respectivamente.

Se quiere probar que f es un monomorfismo si y sólo si $Nu(f) = \{e_1\}$.

Si f es un monomorfismo, entonces, f es inyectiva, lo que implica que, si f (a)= f (b), entonces, a= b. En particular, si f (a)= e_2 (por definición de núcleo) y f (e_1) = e_2 (por preservación del neutro de los morfismos), entonces, a= e_1 . Por lo tanto, Nu(f)= $\{e_1\}$.

Si Nu(f)= $\{e_1\}$ y, suponiendo que f (a)= f (b) para algunos a, b $\in G_1$, entonces, f (a)= f (b) \iff f (a) $[f(b)]^{-1}$ = f (b) $[f(b)]^{-1}$ (post-multiplicando por $[f(b)]^{-1}$) \iff f (a) $[f(b)]^{-1}$ = e_2 (por $(G_2, *)$ grupo) \iff f (a) f (b^{-1}) = e_2 (por f morfismo) \iff f (ab^{-1}) = e_2 (por f morfismo), lo que implica que $ab^{-1} \in \text{Nu}(f)$, por lo que $ab^{-1} = e_1$ (por hipótesis) \iff $ab^{-1}b$ = e_1b (post-multiplicando por b) \iff ae_1 = b (por $(G_1, *)$ grupo) \iff a= b (por $(G_1, *)$ grupo) y, entonces, f es inyectiva. Por lo tanto, f es un monomorfismo.

Por lo tanto, queda demostrado que, si f: $G_1 \rightarrow G_2$ es un morfismo de grupos, entonces, es monomorfismo si y sólo si Nu(f)= $\{e_1\}$.

Ejercicio 6.

Sea (G, *) un grupo. Demostrar que la función $f: G \to G$ definida por $f(a) = a^{-1}$ es un isomorfismo si y sólo si G es abeliano.

Si f (a)= a^{-1} es un isomorfismo, entonces, para todo a, b ∈ G, f (ab)= f (a) f (b), lo que implica que $(ab)^{-1} = a^{-1}b^{-1} \Leftrightarrow (ab)^{-1} = (ba)^{-1} \Leftrightarrow$ ab= ba. Por lo tanto, G es abeliano.

Si (G, *) es abeliano, entonces, para cada a, $b \in G$, ab = ba. Por un lado, se considera f $(ab) = (ab)^{-1} = (ba)^{-1}$ (por (G, *) abeliano) = $a^{-1}b^{-1} = f(a)$ f (b), por lo que f (ab) = f(a) f (b) y, entonces, f $(a) = a^{-1}$ es un homomorfismo. Por otro lado, si f (a) = f(b), entonces, $a^{-1} = b^{-1} \Leftrightarrow a = b$, por lo que f es inyectiva; y, para todo $b \in G$ (codominio), existe $a \in G$ (dominio) tal que f (a) = b (en particular, $a^{-1} = b \Leftrightarrow a = b^{-1} \in G$ (dominio)), por lo que f es sobreyectiva. Por lo tanto, f $(a) = a^{-1}$ es un isomorfismo, ya que es un homomorfismo biyectivo.

Por lo tanto, queda demostrado que la función f: $G \to G$ definida por f (a)= a^{-1} es un isomorfismo si y sólo si G es abeliano.

Ejercicio 7.

Sea R una relación de congruencia sobre un semigrupo (S, *) y (S/R, *) el semigrupo cociente correspondiente. Demostrar que la función $f_R: S \longrightarrow S/R$ definida por f_R $(a)=\bar{a}$ es un homomorfismo.

La función f_R es un homomorfismo si se cumple que, para todo a, b \in S, f_R (ab)= f_R (a) f_R (b). En particular, f_R (ab)= \overline{ab} = \overline{ab} (por R relación de congruencia)= f_R (a) f_R (b), por lo que f_R es un homomorfismo.

Por lo tanto, queda demostrado que la función $f_R \colon S \to S/R$ definida por f_R (a)= \bar{a} es un homomorfismo.

Ejercicio 8.

Sea z un número complejo. ¿Cuándo será un isomorfismo de grupos la aplicación f: $\mathbb{C} \to \mathbb{C}$, siendo \mathbb{C} el conjunto de los números complejos, dada por f(x) = zx?

Condición de homomorfismo: f es un homomorfismo si se cumple que, para todo $x, y \in \mathbb{C}$, f (x + y) = f(x) + f(y). En particular, f (x + y) = z(x + y) = zx + zy = f(x) f (y), por lo que f es un homomorfismo.

<u>Inyectividad:</u> f es inyectiva si f (x)= f (y) implica x= y. En particular, f (x)= f (y) \Leftrightarrow zx= zy \Leftrightarrow x= y, por lo que f es inyectiva.

<u>Sobreyectividad:</u> f es sobreyectiva si, para todo $y \in \mathbb{C}$ (codominio), existe $x \in \mathbb{C}$ (dominio) tal que f (x)= y. En particular, $zx=y \iff x=\frac{y}{z} \in \mathbb{C}$ (dominio), si $z\neq 0$, por lo que f es sobreyectiva si y sólo si $z\neq 0$.

Por lo tanto, dado z un número complejo, la aplicación $f: \mathbb{C} \to \mathbb{C}$, siendo \mathbb{C} el conjunto de los números complejos, dada por f(x)=zx, será un isomorfismo de grupos (con la operación +) cuando $z\neq 0$.

Ejercicio 9.

Probar que hay un isomorfismo entre el grupo de las matrices $2x^2$ con la suma habitual de matrices y el grupo de cuaternas reales \mathbb{R}^4 con la suma usual.

Se define la aplicación f: $M_2(\mathbb{R}) \to \mathbb{R}^4$ que mapea una matriz de 2x2 a una cuaterna de números reales, tomando los elementos de la matriz. Es decir, para una matriz $A \in M_2(\mathbb{R})$ dada por $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$, se define f $(A) = (a_{11}, a_{12}, a_{21}, a_{22}) \in \mathbb{R}^4$.

Inyectividad: f es inyectiva si f (A)= f (B) implica A= B. En particular, para $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}, B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} \in M_2$ (\mathbb{R}), con cualesquiera $a_{ij}, b_{ij} \in \mathbb{R}$, i, j= 1, 2, f (A)= f (B) \iff f ($\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$)= f ($\begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$) \iff ($a_{11}, a_{12}, a_{21}, a_{22}$)= ($a_{11}, a_{12}, a_{21}, a_{22}$)= ($a_{11}, a_{12}, a_{21}, a_{22}$) \iff A= B, por lo que f es inyectiva.

Sobreyectividad: f es sobreyectiva si, para todo $(a_{11}, a_{12}, a_{21}, a_{22}) \in \mathbb{R}^4$ (codominio), existe $A \in M_2$ (\mathbb{R}) (dominio) tal que f (A)= $(a_{11}, a_{12}, a_{21}, a_{22})$. En particular, A= $\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \in M_2$ (\mathbb{R}) (dominio), con cualesquiera $a_{ij} \in \mathbb{R}$, i, j= 1, 2, por lo que f es sobreyectiva.

Por lo tanto, queda demostrado que hay un isomorfismo entre el grupo de las matrices $2x^2$ con la suma habitual de matrices y el grupo de cuaternas reales \mathbb{R}^4 con la suma usual.

Ejercicio 10.

Probar que todo grupo cíclico de orden m es isomorfo a $(\mathbb{Z}_m, +)$.

Sea G un grupo cíclico de orden m con generador $g \in G$, es decir:

G= $\langle g \rangle$ = $\{g^x: x \in \mathbb{Z}, 0 \le x < m\}$ = $\{e, g, g^2, \dots, g^{m-1}\}$, con g^m = e, donde e es el elemento neutro de G.

Sea $(\mathbb{Z}_m, +)$ el grupo formado por los enteros $\{0, 1, 2, ..., m-1\}$ con la operación + módulo m.

Se define la función $\varphi: G \to \mathbb{Z}_m$ como:

 $\varphi(g^k) = k \mod m$, para k = 0, 1, ..., m-1.

Condición de homomorfismo: φ es un homomorfismo si se cumple que, para todo g^x , $g^y \in G$, $\varphi(g^x g^y) = \varphi(g^x) + \varphi(g^y)$. En particular, $\varphi(g^x g^y) = \varphi(g^{x+y}) = (x+y) \mod m = x \mod m + y \mod m = \varphi(g^x) + \varphi(g^y)$, por lo que φ es un homomorfismo.

<u>Inyectividad:</u> φ es inyectiva si φ (g^x)= φ (g^y) implica g^x = g^y . En particular, φ (g^x)= φ (g^y) \Leftrightarrow x mod m= y mod m \Leftrightarrow x mod m - y mod m= 0 \Leftrightarrow (x - y) mod m= 0 \Leftrightarrow x= y \Leftrightarrow g^x = g^y , por lo que φ es inyectiva.

<u>Sobreyectividad:</u> φ es sobreyectiva si, para todo $k \in \mathbb{Z}_m$ (codominio), existe $g^k \in G$ (dominio) tal que φ (g^k)= k mod m. En particular, φ (g^k)= k mod m (por definición de φ), con $g^k \in G$ (dominio), por lo que φ es sobreyectiva.

Por lo tanto, queda demostrado que todo grupo cíclico de orden m es isomorfo a $(\mathbb{Z}_m, +)$.