Artificial Intelligence

Lecture 11: Deep Learning I

Xiaojin Gong 2022-05-16

Outline

- Convolutional Neural Networks
- Recurrent Neural Networks
- Autoencoder
- Generative Adversarial Networks

Review: Perceptron

Review: ANN

Review: ANN

$$x$$
 w_1 w_2 \hat{y} $J(W)$

$$\frac{\partial J(\mathbf{W})}{\partial w_2} = \frac{\partial J(\mathbf{W})}{\partial \hat{y}} * \frac{\partial \hat{y}}{\partial w_2}$$

$$\frac{\partial J(\boldsymbol{W})}{\partial w_1} = \frac{\partial J(\boldsymbol{W})}{\partial \hat{y}} * \frac{\partial \hat{y}}{\partial z_1} * \frac{\partial z_1}{\partial w_1}$$

Repeat this for **every weight in the network** using gradients from later layers

Deep Learning

- Machine learning with small data:
 - Overfitting, reducing model complexity
- Machine learning with big data:
 - Underfitting, increasing model complexity

Neural network
Back propagation
Nature

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by backpropagation errors. Nature, 1986.

1986

- Solve general learning problems
- Tied with biological system

But it is given up...

- Hard to train
- Insufficient computational resources
- · Small training sets
- Does not work well

- SVM
- Boosting
- Decision tree
- KNN
- ...

- Flat structures
- Loose tie with biological systems
- Specific methods for specific tasks
 - Hand crafted features (GMM-HMM, SIFT, LBP, HOG)

Kruger et al. TPAMI'13

- Unsupervised & Layer-wised pre-training
- Better designs for modeling and training (normalization, nonlinearity, dropout)
- New development of computer architectures
 - GPU
 - Multi-core computer systems
- Large scale databases

Big Data!

Deep Networks Advance State of Art in Speech

1,400

47.6

52.3

Youtube

Rank	Name	Error rate	Description
1	U. Toronto	0.15315	Deep learning
2	U. Tokyo	0.26172	Hand-crafted
3	U. Oxford	0.26979	features and
4	Xerox/INRIA	0.27058	learning models. Bottleneck.

Object recognition over 1,000,000 images and 1,000 categories (2 GPU)

• Fully connected neural network

LeNet-5

Y. Lecun, et al. Gradient-Based Learning Applied to Document Recognition, Proc. IEEE 86(11): 2278–2324, 1998.

The convolutional operation

• The convolutional operation

1,	1,0	1,	0	0							
0,0	1,	1,0	1	0		1	0	1	4		
0,1	0,	1,	1	1	\otimes	0	1	0			
0	0	1	1	0		1	0	1			
0	1	1	0	0			filter		feat	ure r	nap

• The convolutional operation

1	1,	1,,	0,,1	0							
0	1,0	1,	1,0	0		1	0	1	4	3	
0	0,,1	1,,0	1,,1	1	\otimes	0	1	0			
0	0	1	1	0		1	0	1			
0	1	1	0	0			filter		feat	ture r	nap

The convolutional operation

1	1	1,	0,,0	0,,1							
0	1	1,0	1,	0,0		1	0	1	4	3	4
0	0	1,	1,0	1,	\otimes	0	1	0	17		
0	0	1	1	0		1	0	1			
0	1	1	0	0			filter		feat	ture r	nap

• The convolutional operation

1	1	1	0	0							
0,1	1,0	1,1	1	0	1750	1	0	1	4	3	4
0,0	0,1	1,0	1	1	\otimes	0	1	0	2		
0,,	0,0	1,1	1	0		1	0	1			
0	1	1	0	0			filter		feat	ure r	nap

• The convolutional operation

1	1	1	0	0								
0	1	1	1	0		1	0	1		4	3	4
0	0	1,	1,,	1,	\otimes	0	1	0		2	4	3
0	0	1,0	1,	0.		1	0	1		2	3	4
0	1	1,	0,0	0,,1			filter		,	feat	ture r	nap

N

The convolutional operation

Output size: (N - F) / stride + 1

e.g. N = 7, F = 3:
stride 1 =>
$$(7 - 3)/1 + 1 = 5$$

stride 2 => $(7 - 3)/2 + 1 = 3$
stride 3 => $(7 - 3)/3 + 1 = 2.33$:\

The convolutional layer

In practice: Common to zero pad the border

e.g. input 7x7

3x3 filter, applied with stride 1

pad with 1 pixel border => what is the output?

7x7 output!

in general, common to see CONV layers with stride 1, filters of size FxF, and zero-padding with (F-1)/2. (will preserve size spatially)

The convolutional layer

Receptive field

The convolutional layer

The convolutional layer

Examples time:

Input volume: 32x32x3

10 5x5 filters with stride 1, pad 2

Output volume size:

$$(32+2*2-5)/1+1 = 32$$
 spatially, so

32x32x10

The convolutional layer

Examples time:

Input volume: 32x32x3

10 5x5 filters with stride 1, pad 2

Number of parameters in this layer? each filter has 5*5*3 + 1 = 76 params (+1 for bias)

=> 76*10 = **760**

The convolutional layer

Summary. To summarize, the Conv Layer:

- Accepts a volume of size $W_1 imes H_1 imes D_1$
- · Requires four hyperparameters:
 - Number of filters K.
 - their spatial extent F,
 - the stride S.
 - the amount of zero padding P.
- Produces a volume of size $W_2 imes H_2 imes D_2$ where:
 - $W_2 = (W_1 F + 2P)/S + 1$
 - $\circ H_2 = (H_1 F + 2P)/S + 1$ (i.e. width and height are computed equally by symmetry)
 - $D_2 = K$
- With parameter sharing, it introduces $F \cdot F \cdot D_1$ weights per filter, for a total of $(F \cdot F \cdot D_1) \cdot K$ weights and K biases.
- In the output volume, the d-th depth slice (of size $W_2 imes H_2$) is the result of performing a valid convolution of the d-th filter over the input volume with a stride of S, and then offset by d-th bias.

The pooling layer

Single depth slice

1	1	2	4
5	6	7	8
3	2	1	0
1	2	3	4

max pool with 2x2 filters and stride 2

6	8
3	4

- Reduce dimensionality
- Preserve spatial variance
- Operates over each activation map independently

У

The pooling layer

- Accepts a volume of size $W_1 imes H_1 imes D_1$
- · Requires three hyperparameters:
 - their spatial extent F,
 - the stride S,
- Produces a volume of size $W_2 \times H_2 \times D_2$ where:
 - $W_2 = (W_1 F)/S + 1$
 - $H_2 = (H_1 F)/S + 1$
 - $D_2 = D_1$
- Introduces zero parameters since it computes a fixed function of the input
- Note that it is not common to use zero-padding for Pooling layers

• Fully connected layer

Feature visualization of CNN

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

JU

IM ♣GENET Large Scale Visual Recognition Challenge

[Lin CVPR 2011]

Year 2012 SuperVision

[Krizhevsky NIPS 2012]

AlexNet

Year 2015

Image Classification on ImageNet

AlexNet - 8 layers

A. Krizhevsky, H. Sutskever, and G. E. Hinton, ImageNet Classification with Deep Convolutional Neural Networks, NIPS 2012.

AlexNet

Full (simplified) AlexNet architecture:

[227x227x3] INPUT

[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0

[27x27x96] MAX POOL1: 3x3 filters at stride 2

[27x27x96] NORM1: Normalization layer

[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2

[13x13x256] MAX POOL2: 3x3 filters at stride 2

[13x13x256] NORM2: Normalization layer

[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1

[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1

[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1

[6x6x256] MAX POOL3: 3x3 filters at stride 2

[4096] FC6: 4096 neurons

[4096] FC7: 4096 neurons

[1000] FC8: 1000 neurons (class scores)

Details/Retrospectives:

- first use of ReLU
- used Norm layers (not common anymore)
- heavy data augmentation
- dropout 0.5
- batch size 128
- SGD Momentum 0.9
- Learning rate 1e-2, reduced by 10 manually when val accuracy plateaus
- L2 weight decay 5e-4
- 7 CNN ensemble: 18.2% -> 15.4%

VGGNet

		ConvNet C	onfiguration						
A	A-LRN	В	С	D	E				
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight				
layers	layers	layers	layers	layers	layers				
input (224 × 224 RGB image)									
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64				
	LRN	conv3-64	conv3-64	conv3-64	conv3-64				
			pool						
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128				
		conv3-128	conv3-128	conv3-128	conv3-128				
			pool						
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256				
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256				
			conv1-256	conv3-256	conv3-256				
					conv3-256				
			pool						
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
			conv1-512	conv3-512	conv3-512				
					conv3-512				
			pool						
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
			conv1-512	conv3-512	conv3-512				
					conv3-512				
			pool						
			4096						
	FC-4096								
		FC-	1000						
		soft-	-max						

K. Simonyan and A. Zisserman. Very Deep Convolutional Networks for Large-scale Image Recognition, ICLR 2015.

VGG16

```
(not counting biases)
INPUT: [224x224x3] memory: 224*224*3=150K params: 0
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864
POOL2: [112x112x64] memory: 112*112*64=800K params: 0
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,456
POOL2: [56x56x128] memory: 56*56*128=400K params: 0
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
POOL2: [28x28x256] memory: 28*28*256=200K params: 0
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
POOL2: [14x14x512] memory: 14*14*512=100K params: 0
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
POOL2: [7x7x512] memory: 7*7*512=25K params: 0
FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448
FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216
FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000
TOTAL memory: 24M * 4 bytes ~= 93MB / image (only forward! ~*2 for bwd)
TOTAL params: 138M parameters
```

В	C	D	
13 weight	16 weight	16 weight	19
layers	layers	layers	
out (224 × 2	24 RGB image		Г
conv3-64	conv3-64	conv3-64	C
conv3-64	conv3-64	conv3-64	co
max	pool		
conv3-128	conv3-128	conv3-128	co
conv3-128	conv3-128	conv3-128	co
max	pool		
conv3-256	conv3-256	conv3-256	co
conv3-256	conv3-256	conv3-256	co
	conv1-256	conv3-256	co
	DOS-SERVICE SERVICE	to SK OFTALIS SERVICIONAL	co
max	pool		
conv3-512	conv3-512	conv3-512	co
conv3-512	conv3-512	conv3-512	co
	conv1-512	conv3-512	co
			co
max	pool	THE COMPANY OF STREET	
conv3-512	conv3-512	conv3-512	co
conv3-512	conv3-512	conv3-512	co
	conv1-512	conv3-512	co
			co
max	pool		
FC-	4096		
FC-	4096		
FC-	1000		
soft-	-max		

■ GoogleNet – 22 layers

(b) Inception module with dimensionality reduction

C. Szegedy, etal. Going Deeper with Convolutions, CVPR 2015.

■ ResNet – 152 layers

Identity skip connection

K. He, et al. Deep Residual Learning for Image Recognition, CVPR 2016

■ ResNet – 152 layers

Spectrum of Depth

■ ResNet – 152 layers

K. He, et al. Deep Residual Learning for Image Recognition, CVPR 2016

Applications

Applications

NeuralStyle

[A Neural Algorithm of Artistic Style by Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge, 2015] good implementation by Justin in Torch: https://github.com/jcjohnson/neural-style

Depth prediction

Applications

Sequence modeling

To model sequences, we need to:

- I. Handle variable-length sequences
- 2. Track long-term dependencies
- 3. Maintain information about **order**
- 4. Share parameters across the sequence

Sequence modeling

RNN

Apply a **recurrence relation** at every time step to process a sequence:

Note: the same function and set of parameters are used at every time step

RNN

Output Vector

$$\hat{y}_t = \boldsymbol{W_{hy}} h_t$$

Update Hidden State

$$h_t = \tanh(\boldsymbol{W_{hh}} h_{t-1} + \boldsymbol{W_{xh}} x_t)$$

$$\tanh z = \frac{e^z - e^{-z}}{e^z + e^{-z}}$$
Input Vector

RNN

RNN

Re-use the same weight matrices at every time step

- RNN

- RNN

RNN

Computing the gradient wrt h_0 involves many factors of W_{hh} (and repeated f'!)

Many values > 1:

exploding gradients

Gradient clipping to scale big gradients

Largest singular value < 1: vanishing gradients

- Activation function
- 2. Weight initialization
- 3. Network architecture

- RNN

In a standard RNN, repeating modules contain a simple computation node

Long Short Term Memory (LSTM)

LSTM repeating modules contain interacting layers that control information flow

LSTM cells are able to track information throughout many timesteps

LSTM

LSTMs maintain a cell state c_t where it's easy for information to flow

LSTM

Information is added or removed to cell state through structures called gates

Gates optionally let information through, via a sigmoid neural net layer and pointwise multiplication

- LSTM
 - Gate 1: forget irrelevant information

$$f_t = \sigma(\mathbf{W}_i[h_{t-1}, x_t] + b_f)$$

- Use previous cell output and input
- Sigmoid: value 0 and 1 "completely forget" vs. "completely keep"

LSTM

• Gate 2: identify new information to be stored

$$i_t = \sigma(\boldsymbol{W}_{i}[h_{t-1}, x_t] + b_i)$$

$$\tilde{C}_t = \tanh(\boldsymbol{W}_{C}[h_{t-1}, x_t] + b_C)$$

- Sigmoid layer: decide what values to update
- Tanh layer: generate new vector of "candidate values" that could be added to the state

LSTM

• Gate 1+2: update cell state

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

- Apply forget operation to previous internal cell state: f_t * C_{t-1}
- Add new candidate values, scaled by how much we decided to update: $i_t * \tilde{\mathcal{C}}_t$

LSTM

• Gate 3: output filtered version of cell state

$$o_t = \sigma(\mathbf{W}_o[h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh(C_t)$$

- Sigmoid layer: decide what parts of state to output
- Tanh layer: squash values between -1 and 1
- o_t * tanh(C_t): output filtered version of cell state

LSTM - backpropagation

Backpropagation from C_t to C_{t-1} requires only elementwise multiplication! No matrix multiplication \rightarrow avoid vanishing gradient problem.

- LSTM Key concepts:
 - 1. Maintain a separate cell state from what is outputted
- 2. Use gates to control the flow of information
 - Forget gate gets rid of irrelevant information
 - Selectively update cell state
 - Output gate returns a filtered version of the cell state
- 3. Backpropagation from c_t to c_{t-1} doesn't require matrix multiplication: uninterrupted gradient flow

Applications

Speech recognition

Tweet sentiment classification

Machine translation

Applications

'man in black shirt is playing guitar."

"a young boy is holding a baseball bat."

Image captioning

"construction worker in orange safety vest is working on road."

'a cat is sitting on a couch with a remote control."

"two young girls are playing with lego toy."

"a woman holding a teddy bear in front of a mirror."

"boy is doing backflip on wakeboard."

"a horse is standing in the middle of a road."

Applications

Video understanding

Deep Generative Models

- Autoencoder
- Generative Adversarial Networks

Goal: Take as input training samples from some distribution and learn a model that represents that distribution

Density Estimation

Sample Generation

Input samples

Training data $\sim P_{data}(x)$

Generated samples

Generated $\sim P_{model}(x)$

How can we learn $P_{model}(x)$ similar to $P_{data}(x)$?

Autoencoder

Autoencoder

 $\mathcal{L}(x,\hat{x}) = \|x - \hat{x}\|^2$

Loss function doesn't use any labels!!

Variational Autoencoders

Variational autoencoders are a probabilistic twist on autoencoders!

Sample from the mean and standard dev. to compute latent sample

$$\mathcal{L}(\phi, \theta, x) = (\text{reconstruction loss}) + (\text{regularization term})$$

- 1. Compress representation of world to something we can use to learn
- 2. Reconstruction allows for unsupervised learning (no labels!)
- Reparameterization trick to train end-to-end
- 4. Interpret hidden latent variables using perturbation
- 5. Generating new examples

Motivation

Idea: don't explicitly model density, and instead just sample to generate new instances.

Problem: want to sample from complex distribution – can't do this directly!

Solution: sample from something simple (noise), learn a transformation to the training distribution.

GAN

Generative Adversarial Networks (GANs) are a way to make a generative model by having two neural networks compete with each other.

GAN Training

Discriminator tries to identify real data from fakes created by the generator. **Generator** tries to create imitations of data to trick the discriminator.

Train GAN jointly via minimax game:

$$\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log \left(1 - D_{\theta_d} \left(G_{\theta_g}(z) \right) \right) \right]$$

Discriminator wants to maximize objective s.t. D(x) close to 1, D(G(z)) close to 0. Generator wants to minimize objective s.t. D(G(z)) close to 1.

GAN Variants – CycleGAN [CVPR, 2017]

GAN Variants – StarGAN [CVPR, 2018]

Applications

Style transfer

Applications

Synthetic face

Applications

Domain Adaptation [CVPR, 2019]

Readings

- Artificial Intelligence
 - Chapter 18.7