

Department of Computer Engineering

Experiment No. 4

Apply Random Forest Algorithm on Adult Census Income

Dataset and analyze the performance of the model

Date of Performance: 14/08/2023

Date of Submission: 21/08/2023

Department of Computer Engineering

Aim: Apply Random Forest Algorithm on Adult Census Income Dataset and analyze the performance of the model.

Objective: Able to perform various feature engineering tasks, apply Random Forest Algorithm on the given dataset and maximize the accuracy, Precision, Recall, F1 score.

Theory:

Random Forest is a popular machine learning algorithm that belongs to the supervised learning technique. It can be used for both Classification and Regression problems in ML. It is based on the concept of ensemble learning, which is a process of combining multiple classifiers to solve a complex problem and to improve the performance of the model.

As the name suggests, "Random Forest is a classifier that contains a number of decision trees on various subsets of the given dataset and takes the average to improve the predictive accuracy of that dataset." Instead of relying on one decision tree, the random forest takes the prediction from each tree and based on the majority votes of predictions, and it predicts the final output.

The greater number of trees in the forest leads to higher accuracy and prevents the problem of overfitting.

The below diagram explains the working of the Random Forest algorithm:

Department of Computer Engineering

Dataset:

Predict whether income exceeds \$50K/yr based on census data. Also known as "Adult" dataset.

Attribute Information:

Listing of attributes:

>50K, <=50K.

age: continuous.

workclass: Private, Self-emp-not-inc, Self-emp-inc, Federal-gov, Local-gov, State-gov, Without-pay, Never-worked.

fnlwgt: continuous.

education: Bachelors, Some-college, 11th, HS-grad, Prof-school, Assoc-acdm, Assoc-voc, 9th, 7th-8th, 12th, Masters, 1st-4th, 10th, Doctorate, 5th-6th, Preschool.

Department of Computer Engineering

education-num: continuous.

marital-status: Married-civ-spouse, Divorced, Never-married, Separated, Widowed, Married-spouse-absent, Married-AF-spouse.

occupation: Tech-support, Craft-repair, Other-service, Sales, Exec-managerial, Prof-specialty, Handlers-cleaners, Machine-op-inspct, Adm-clerical, Farming-fishing, Transport-moving, Priv-house-serv, Protective-serv, Armed-Forces.

relationship: Wife, Own-child, Husband, Not-in-family, Other-relative, Unmarried.

race: White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other, Black.

sex: Female, Male.

capital-gain: continuous.

capital-loss: continuous.

hours-per-week: continuous.

native-country: United-States, Cambodia, England, Puerto-Rico, Canada, Germany, Outlying-US(Guam-USVI-etc), India, Japan, Greece, South, China, Cuba, Iran, Honduras, Philippines, Italy, Poland, Jamaica, Vietnam, Mexico, Portugal, Ireland, France, Dominican-Republic, Laos, Ecuador, Taiwan, Haiti, Columbia, Hungary, Guatemala, Nicaragua, Scotland, Thailand, Yugoslavia, El-Salvador, Trinadad & Tobago, Peru, Hong, Holand-Netherlands.

Code:

Department of Computer Engineering

Conclusion

1. Heat Map Observation:

The correlation heatmap is a valuable tool for uncovering connections between various features within a dataset. When we examine this heatmap, it becomes apparent that there is a noticeable correlation between the "relationship" and "sex" features. This correlation implies that these two features may be related in a way that could lead to multicollinearity issues. In other words, they might provide redundant information to the model, potentially causing problems in the analysis. To address this, it may be advisable to consider removing one of these features to mitigate the potential for multicollinearity and improve the model's stability and interpretability.

2. Performance Metrics:

confusion matrix [[4298 165] [769 801]]											
	precision	recall	f1-score	support							
0	0.85	0.96	0.90	4463							
1	0.83	0.51	0.63	1570							
accuracy			0.85	6033							
macro avg	0.84	0.74	0.77	6033							
weighted avg	0.84	0.85	0.83	6033							

The confusion matrix shows how a model performed on a classification task:

The top-left value (4298) represents the number of true negatives (correctly predicted negative class). The top-right value (165) is the number of false positives (incorrectly predicted positive class). The bottom-left value (769) is the number of false negatives (incorrectly predicted negative class). The bottom-right value (801) is the number of true positives (correctly predicted positive class). The precision (positive predictive value) is 0.83, indicating that 83% of the positive predictions were correct. The recall (true positive rate) is 0.51, meaning that the model only captured 51% of the actual positive cases.

The F1-score is 0.63, which balances precision and recall, providing an overall measure of model performance. The accuracy is 0.85, indicating the proportion of correct predictions out of all predictions made..

3. Comparison with Decision Tree Algorithm:

Result obtain using decision tree were:

Department of Computer Engineering

confusio [[4310 [713		rix		
		precision	recall	f1-score
	0	0.86	0.95	0.90
	1	0.76	0.52	0.62
accı	uracy			0.84
	o avg	0.81	0.73	0.76
weighted	d avg	0.83	0.84	0.83

Random Forest exhibits a marginally better performance compared to the Decision Tree algorithm in this specific scenario. It provides higher precision and a slightly higher F1-Score while maintaining a similar recall rate. Random Forest is often preferred in practice because it combines multiple decision trees to reduce overfitting and improve overall predictive accuracy, making it a robust choice for various classification tasks.

Importing lib

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

Load the dataset

```
df = pd.read_csv('adult.csv')
df.head(10)
```

	age	workclass	fnlwgt	education	education.num	marital.status	occupation	relationship	race	
0	90	?	77053	HS-grad	9	Widowed	?	Not-in-family	White	F
1	82	Private	132870	HS-grad	9	Widowed	Exec- managerial	Not-in-family	White	F
2	66	?	186061	Some- college	10	Widowed	?	Unmarried	Black	F
3	54	Private	140359	7th-8th	4	Divorced	Machine- op-inspct	Unmarried	White	F
4	41	Private	264663	Some- college	10	Separated	Prof- specialty	Own-child	White	F
5	34	Private	216864	HS-grad	9	Divorced	Other- service	Unmarried	White	F
6	38	Private	150601	10th	6	Separated	Adm- clerical	Unmarried	White	

Understanding Dataset

```
print ("Total Rows : " ,df.shape[0])
dataset_row = df.shape[0]
print ("Total Columns : " ,df.shape[1])
print ("\nFeatures : \n" ,df.columns.tolist())
print ("\nMissing values : ", df.isnull().sum().values.sum())
print ("\nUnique values : \n",df.nunique())
     Total Rows : 32561
     Total Columns : 15
     Features :
     ['age', 'workclass', 'fnlwgt', 'education', 'education.num', 'marital.status', 'occupation', 'relationship', 'race', 'sex', 'capital.g
    Missing values : 0
    Unique values :
                           73
     age
     workclass
                           9
     fnlwgt
                       21648
     education
                          16
     education.num
                          16
    marital.status
     occupation
                          15
     relationship
                          6
     race
                           2
    sex
     capital.gain
                         119
     capital.loss
                          92
     hours.per.week
                          94
    native.country
                          42
     income
     dtype: int64
    4
```

df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 32561 entries, 0 to 32560
Data columns (total 15 columns):
```

#	Column	Non-Null Count	Dtype
0	age	32561 non-null	int64
1	workclass	32561 non-null	object
2	fnlwgt	32561 non-null	int64
3	education	32561 non-null	object
4	education.num	32561 non-null	int64
5	marital.status	32561 non-null	object
6	occupation	32561 non-null	object
7	relationship	32561 non-null	object
8	race	32561 non-null	object
9	sex	32561 non-null	object
10	capital.gain	32561 non-null	int64
11	capital.loss	32561 non-null	int64
12	hours.per.week	32561 non-null	int64
13	native.country	32561 non-null	object
14	income	32561 non-null	object
d+vn	oc: in+61(6) ob	ioct(0)	

dtypes: int64(6), object(9)
memory usage: 3.7+ MB

df.describe()

	age	fnlwgt	education.num	capital.gain	capital.loss	hours.per.week
count	32561.000000	3.256100e+04	32561.000000	32561.000000	32561.000000	32561.000000
mean	38.581647	1.897784e+05	10.080679	1077.648844	87.303830	40.437456
std	13.640433	1.055500e+05	2.572720	7385.292085	402.960219	12.347429
min	17.000000	1.228500e+04	1.000000	0.000000	0.000000	1.000000
25%	28.000000	1.178270e+05	9.000000	0.000000	0.000000	40.000000
50%	37.000000	1.783560e+05	10.000000	0.000000	0.000000	40.000000
75%	48.000000	2.370510e+05	12.000000	0.000000	0.000000	45.000000
max	90.000000	1.484705e+06	16.000000	99999.000000	4356.000000	99.000000

Missing Values

```
df_missing = (df=='?').sum()
print(df_missing)
```

age workclass fnlwgt 0 education 0 education.num marital.status 0 occupation 1843 relationship 0 race 0 sex capital.gain 0 capital.loss 0 hours.per.week 0 native.country 583 income 0 dtype: int64

 $percent_missing = (df == '?').sum() * 100/len(df) percent_missing$

```
#droping row having missing values from dataset
df = df[df['workclass'] !='?']
df = df[df['occupation'] !='?']
df = df[df['native.country'] !='?']
df.head()
```

```
age workclass fnlwgt education education.num marital.status occupation relationship race
df_missing = (df=='?').sum()
print(df_missing)
    age
    workclass
                      0
    fnlwgt
                      0
    education
    education.num
                      0
    marital.status
    occupation
                      0
    relationship
    race
    capital.gain
    capital.loss
                      0
    hours.per.week
                      0
    native.country
                      0
    income
    dtype: int64
print ("Total Rows after droping rows : " ,df.shape[0])
print("Numbers of rows drop: ", dataset_row -df.shape[0])
    Total Rows after droping rows : 30162
    Numbers of rows drop: 2399
Data Preparation
from sklearn import preprocessing
```

df_categorical = df.select_dtypes(include=['object'])
df_categorical.head()

	workclass	education	marital.status	occupation	relationship	race	sex	native.country	incom
1 Private		HS-grad	Widowed	Exec-	Not-in-family	\\/hito	Female	United-States	<=50
		9		managerial	NOI-III-Iailiiiy	vviile	i emale	Officed-Otates	<=30
3	Private	7th-8th	Divorced	Machine- op-inspct	Unmarried	White	Female	United-States	<=50
4	Private	Some- college	Separated	Prof- specialty	Own-child	White	Female	United-States	<=50
				Other-					

```
le = preprocessing.LabelEncoder()
df_categorical = df_categorical.apply(le.fit_transform)
df_categorical.head()
```

	workclass	education	marital.status	occupation	relationship	race	sex	native.country	income
1	2	11	6	3	1	4	0	38	0
3	2	5	0	6	4	4	0	38	0
4	2	15	5	9	3	4	0	38	0
5	2	11	0	7	4	4	0	38	0
6	2	0	5	0	4	4	1	38	0

```
df = df.drop(df_categorical.columns,axis=1)
df = pd.concat([df,df_categorical],axis=1)
df['income'] = df['income'].astype('category')
df.head()
```

		age	fnlwgt	education.num	capital.gain	capital.loss	hours.per.week	workclass	education	marita
	1	82	132870	9	0	4356	18	2	11	
	3	54	140359	4	0	3900	40	2	5	
	4	41	264663	10	0	3900	40	2	15	
df.in	fo()								

<class 'pandas.core.frame.DataFrame'> Int64Index: 30162 entries, 1 to 32560 $\,$ Data columns (total 15 columns):

#	Column	Non-Null Count	Dtype
0	age	30162 non-null	int64
1	fnlwgt	30162 non-null	int64
2	education.num	30162 non-null	int64
3	capital.gain	30162 non-null	int64
4	capital.loss	30162 non-null	int64
5	hours.per.week	30162 non-null	int64
6	workclass	30162 non-null	int64
7	education	30162 non-null	int64
8	marital.status	30162 non-null	int64
9	occupation	30162 non-null	int64
10	relationship	30162 non-null	int64
11	race	30162 non-null	int64
12	sex	30162 non-null	int64
13	native.country	30162 non-null	int64
14	income	30162 non-null	category
dtype	es: category(1),	int64(14)	
memoi	ry usage: 3.5 MB		

Visualization

```
sns.heatmap(df.corr(), cmap = 'RdGy')
```

<ipython-input-249-b22fcbbd6ef9>:1: FutureWarning: The default value of numeric_only in DataFrame.corr sns.heatmap(df.corr(), cmap = 'RdGy') <Axes: >

Spliting dataset

from sklearn.model_selection import train_test_split

```
X = df.drop('income',axis=1)
X = X.drop('sex',axis=1)
y = df['income']
```

X.head() age fnlwgt education.num capital.gain capital.loss hours.per.week workclass education marita 9 0 2 82 132870 4356 18 11 2 3 140359 4 0 3900 40 5 54 10 0 3900 2 15 41 264663 40 9 34 216864 0 3770 45 2 11 3770 38 150601 40 2 0 y.head() 3 0 4 0 5 0 6 0 Name: income, dtype: category Categories (2, int64): [0, 1] X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.20) Appling RandomForest Algo from sklearn.ensemble import RandomForestClassifier dt_default = RandomForestClassifier(max_depth=5) ${\tt dt_default.fit(X_train,y_train)}$ ₽ RandomForestClassifier RandomForestClassifier(max_depth=5) from sklearn.metrics import classification_report,confusion_matrix,accuracy_score y_pred_default = dt_default.predict(X_test) print("confusion matrix\n",confusion_matrix(y_test,y_pred_default)) print(classification_report(y_test,y_pred_default)) confusion matrix

```
[[4298 165]
 [ 769 801]]
             precision
                         recall f1-score
                                           support
          0
                  0.85
                           0.96
                                     0.90
                                               4463
                  0.83
                           0.51
                                     0.63
                                               1570
                                     0.85
                                               6033
   accuracy
   macro avg
                  0.84
                           9.74
                                     0.77
                                               6033
weighted avg
                  0.84
                           0.85
                                     0.83
                                               6033
```

print("accuracy score: ",accuracy_score(y_test,y_pred_default))

accuracy score: 0.84518481684070