Rappels: les déterminants en dimension 2

Soit $B = (e_1, e_2)$ une base d'un espace vectoriel E. Le déterminant des vecteurs $u = ae_1 + be_2, v = ce_1 + de_2$ dans la base B est le scalaire

$$\det_{B}(u, v) = \begin{vmatrix} a & c \\ b & d \end{vmatrix} \\
= ad - bc.$$

Il s'agit l'unique forme bilinéaire alternée sur E qui vérifie

$$\det_{B}(e_1, e_2) = 1$$

De plus, toute forme bilinéaire alternée f sur E est proportionnelle au $\det_{\mathcal{B}}$:

$$\forall (u, v) \in E^2 , f(u, v) = f(e_1, e_2) \cdot \det_R(u, v).$$

Rappels: les déterminants en dimension 3

Soit $B=(e_1,e_2,e_3)$ une base de l'espace vectoriel. On définit le déterminant des vecteurs $u=\sum_{i=1}^3 a_i e_i$, $v=\sum_{i=1}^3 b_i e_i$, $w=\sum_{i=1}^3 c_i e_i$ dans la base B par

$$\det_{B}(u, v, w) = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}
= a_1b_2c_3 + a_2b_3c_1 + a_3b_1c_2 - a_3b_2c_1 - a_1b_3c_2 - a_2b_1c_3.$$

Il s'agit de l'unique forme tri-linéaire alternée sur l'espace vectoriel E vérifiant

$$\det_B(e_1, e_2, e_3) = 1.$$

Le déterminant det est l'unique forme tri-linéaire alternée sur l'espace vectoriel E vérifiant $\det_B(e_1, e_2, e_3) = 1$

Toute forme tri-linéaire alternée f sur E est proportionnelle à $\det_{R}()$:

$$\forall (u, v, w) \in E^3$$
, $f(u, v, w) = f(e_1, e_2, e_3) \cdot \det_{\mathcal{B}}(u, v, w)$.

De plus,

$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = a_1 \begin{vmatrix} b_2 & c_2 \\ b_3 & c_3 \end{vmatrix} - a_2 \begin{vmatrix} b_1 & c_1 \\ b_3 & c_3 \end{vmatrix} + a_3 \begin{vmatrix} b_1 & c_1 \\ b_2 & c_2 \end{vmatrix}.$$

Il s'agit du développement du déterminant suivant la première colonne. On peut aussi le développer suivant toute autre colonne ou ligne.

Les formes multi-linéaires

Soit E un espace vectoriel sur \mathbb{K} , où $\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$. Soit $p \geq 1$ une entier et notons $E^p = \underbrace{E \times E \times \cdots \times E}$.

Définition:

Une forme p-linéaire sur E est une application

$$f: E^p \to \mathbb{K}$$

 $(u_1, \dots, u_p) \mapsto f(u_1, \dots, u_p)$

linéaire par rapport à chaque vecteur u_i , c-à-d pour tout $i=1,\cdots,p$, et tout vecteurs $u_1,\cdots u_{i-1},u_{i+1},\cdots u_p$ l'application

$$E \rightarrow \mathbb{K}$$

 $\boldsymbol{v} \mapsto f(u_1, \dots u_{i-1}, \boldsymbol{v}, u_{i+1}, \dots u_p)$

est linéaire.

Plus explicitement, pour tout $(v_1, v_2) \in E \times E$ et tout $(\lambda_1, \lambda_2) \in \mathbb{K}^2$ on a :

$$f(u_1, \dots u_{i-1}, \lambda_1 v_1 + \lambda_2 v_2, u_{i+1}, \dots u_p) = \lambda_1 \cdot f(u_1, \dots u_{i-1}, v_1, u_{i+1}, \dots u_p) + \lambda_2 \cdot f(u_1, \dots u_{i-1}, v_2, u_{i+1}, \dots u_p).$$

Plus généralement,

$$f(u_1, \dots u_{i-1}, \sum_{k=1}^N \lambda_k v_k, u_{i+1}, \dots u_p) = \sum_{k=1}^N \lambda_k \cdot f(u_1, \dots u_{i-1}, v_k, u_{i+1}, \dots u_p).$$

Définition

Une forme p-linéaire f sur E est dite alternée si

$$f(u_1,\cdots,u_p)=0$$

dès que la famille (u_1, \dots, u_p) contient deux des vecteurs identiques.

Théorème

Soit f une forme p-linéaire alternée sur E. Alors, f est antisymétrique, c-à-d pour toute transposition $\tau \in \mathcal{S}_p$, on a:

$$f(u_{\tau(1)}, u_{\tau(2)}, \cdots, u_{\tau(p)}) = -f(u_1, u_2, \cdots, u_p).$$

Formes n-linéaires alternées sur un espace de dimension n

Soit E un espace vectoriel sur \mathbb{K} de dimension n et $B=(e_1,\cdots,e_n)$ une base de E. Soit (u_1,\cdots,u_n) une famille de n vecteurs de E. Ces vecteurs $u_1,\cdots u_p$ s'expriment dans la base B:

$$\forall j = 1, \dots, n, \quad u_j = \lambda_{1j}e_1 + \dots + \lambda_{nj}e_n = \sum_{i=1}^{i=n} \lambda_{i,j}e_i = \sum_{i,j=1}^{i=n} \lambda_{i,j}e_{i,j}.$$

La matrice représentative de $(u_1, \dots u_n)$ dans la base B est donc :

Problèmes:

- 1. Y-a-t-il des formes n-linéaires alternées sur E autre que l'application nulle? et si oui quelles formes ont-elles?
- 2. Y-a-t-il une forme n-linéaires alternée f_0 sur E telle que $f_0(e_1, \dots, e_n) = 1$? Si oui, calculer $f_0(u_1, \dots, u_n)$ en fonctions des scalaires $\lambda_{i,j}$. Dans ce cas, on appellera $f_0(u_1, \dots, u_n)$ le déterminant de (u_1, \dots, u_n) dans la base (e_1, \dots, e_n) et on le notera $\det_B(u_1, \dots, u_n)$.
- 3. Si on note

$$\det_B(u_1, \dots, u_n) = \begin{vmatrix} \lambda_{11} & \cdots & \lambda_{1j} & \cdots & \lambda_{1n} \\ \lambda_{21} & \cdots & \lambda_{2j} & \cdots & \lambda_{2n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \lambda_{n1} & \cdots & \lambda_{nj} & \cdots & \lambda_{nn} \end{vmatrix}$$

Y-a-t-il des développements de cette expression suivant une ligne ou une colonne donnée en une somme de déterminant de type $(n-1) \times (n-1)$?

Dans le reste de ce chapitre nous allons montrer que toutes ces questions ont des réponses positives.

Proposition

Soit E un espace vectoriel de dimension n sur \mathbb{K} , et $B = (e_1, \dots, e_n)$ une base de E. Si f est une forme n-linéaire alternée sur E alors

$$f(u_1, \cdots, u_n) = f(e_1, \cdots, e_n) \left(\sum_{\sigma \in \mathcal{S}_n} \varepsilon(\sigma) \lambda_{\sigma(1)1} \lambda_{\sigma(2)2} \cdots \lambda_{\sigma(n)n} \right)$$

$$où u_j = \sum_{i=1}^{i=n} \lambda_{ij} e_i, \quad \forall j = 1, \cdots, n \text{ des vecteurs de } E.$$

Démonstration:

Comme $u_1 = \sum_{i=1}^{i=n} \lambda_{i1} e_i = \sum_{i_1=1}^{i_1=n} \lambda_{i_11} e_{i_1}$ et par la n-linéarité de f on a

$$f(u_{1}, \dots, u_{n}) = f\left(\sum_{i_{1}=1}^{i_{1}=n} \lambda_{i_{1}1} e_{i_{1}}, u_{2}, \dots, u_{n}\right)$$

$$= \sum_{i_{1}=1}^{i_{1}=n} \lambda_{i_{1}1} f\left(e_{i_{1}}, u_{2}, \dots, u_{n}\right)$$

$$= \sum_{i_{1}=1}^{i_{1}=n} \lambda_{i_{1}1} f\left(e_{i_{1}}, \sum_{i_{2}=1}^{i_{2}=n} \lambda_{i_{2}2} e_{i_{2}}, u_{3}, \dots, u_{n}\right)$$

$$= \sum_{i_{1}=1}^{i_{1}=n} \sum_{i_{2}=1}^{i_{2}=n} \lambda_{i_{1}1} \lambda_{i_{2}2} f\left(e_{i_{1}}, e_{i_{2}}, u_{3}, \dots, u_{n}\right)$$

De proche en proche on obtient :

$$f(u_{1}, \dots, u_{n}) = \sum_{i_{1}=1}^{i_{1}=n} \sum_{i_{2}=1}^{i_{2}=n} \lambda_{i_{1}1} \lambda_{i_{2}2} f\left(e_{i_{1}}, e_{i_{2}}, \sum_{i_{3}=1}^{i_{3}=n} \lambda_{i_{3}3} e_{i_{3}}, \dots, u_{n}\right)$$

$$= \vdots$$

$$= \sum_{i_{1}=1}^{i_{1}=n} \dots \sum_{i_{n}=1}^{n} \lambda_{i_{1}1} \lambda_{i_{2}2} \dots \lambda_{i_{n}n} f(e_{i_{1}}, e_{i_{2}}, \dots, u_{n})$$

$$= \sum_{\sigma \in \mathcal{F}} \lambda_{\sigma(1)1} \lambda_{\sigma(2)2} \dots \lambda_{\sigma(n)n} f(e_{\sigma(1)}, \dots, e_{\sigma(n)}),$$

ici \mathcal{F} désigne l'ensemble de toutes les applications de $\{1,\cdots,n\}$ sur lui même et $\sigma:\{1,\cdots,n\}\to\{1,\cdots,n\}$ définie par $\sigma(k)=i_k$.

Comme f est alternée,

$$f(e_{\sigma(1)}, \cdots, e_{\sigma(n)}) = 0 \iff \sigma$$
 n'est pas injective

Autrement dit,

$$f(e_{\sigma(1)}, \cdots, e_{\sigma(n)}) \neq 0 \iff \sigma \in \mathcal{S}_n$$

Par suite,

$$f(u_1, \dots, u_n) = \sum_{\sigma \in \mathcal{S}_n} \lambda_{\sigma(1)1} \lambda_{\sigma(2)2} \dots \lambda_{\sigma(n)n} f(e_{\sigma(1)}, \dots, e_{\sigma(n)})$$

$$= \sum_{\sigma \in \mathcal{S}_n} \varepsilon(\sigma) \lambda_{\sigma(1)1} \lambda_{\sigma(2)2} \dots \lambda_{\sigma(n)n} f(e_1, \dots, e_n)$$

$$= f(e_1, \dots, e_n) \left(\sum_{\sigma \in \mathcal{S}_n} \varepsilon(\sigma) \lambda_{\sigma(1)1} \lambda_{\sigma(2)2} \dots \lambda_{\sigma(n)n} \right).$$

Théorème

Soit E un espace vectoriel de dimension n sur \mathbb{K} , et $B = (e_1, \dots, e_n)$ une base de E.

1. Il existe une unique forme n-linéaire alternée f_0 sur E telle que

$$f_0(e_1,\cdots,e_n)=1$$

Celle-ci est donnée par

$$f_0(u_1, \cdots, u_n) = \sum_{\sigma \in \mathcal{S}_n} \varepsilon(\sigma) \lambda_{\sigma(1)1} \lambda_{\sigma(2)2} \cdots \lambda_{\sigma(n)n}$$

$$où u_j = \sum_{i=1}^{i=n} \lambda_{i,j} e_i, \quad \forall j = 1, \dots, n \text{ des vecteurs de } E.$$

2. Pour toute forme n-linéaire alternée f sur E il existe $\lambda \in \mathbb{K}$ tel que $f = \lambda \cdot f_0$ avec $\lambda = f(e_1, \dots, e_n)$.

Démonstration :

D'après la proposition précédente si f est une forme n-linéaire alternée sur E alors

$$f(u_1, \dots, u_n) = f(e_1, \dots, e_n) \left(\sum_{\sigma \in \mathcal{S}_n} \varepsilon(\sigma) \lambda_{\sigma(1)1} \lambda_{\sigma(2)2} \dots \lambda_{\sigma(n)n} \right).$$

Si de plus $f(e_1, \dots, e_n) = 1$ alors

$$f(u_1, \cdots, u_n) = \sum_{\sigma \in S_n} \varepsilon(\sigma) \lambda_{\sigma(1)1} \lambda_{\sigma(2)2} \cdots \lambda_{\sigma(n)n}.$$

Ainsi, pour montrer le théorème, il faut et il suffit de montrer que l'application $f_0: E^n \to \mathbb{K}$ donnée par

$$f_0(u_1, \dots, u_n) = \sum_{\sigma \in \mathcal{S}_n} \varepsilon(\sigma) \lambda_{\sigma(1)1} \lambda_{\sigma(2)2} \dots \lambda_{\sigma(n)n}$$

est une forme n-linéaire alternée sur E.

Pour tout $j = 1, \dots, n$, considérons l'application $l_j : E \to \mathbb{K}$ définie par

$$l_j\left(\sum_{i=1}^n \lambda_i e_i\right) = \lambda_j.$$

Il s'agit clairement d'une forme linéaire sur E. De plus,

$$f_0(u_1, \dots, u_n) = \sum_{\sigma \in \mathcal{S}_n} \varepsilon(\sigma) l_{\sigma(1)}(u_1) l_{\sigma(2)}(u_2) \dots l_{\sigma(n)}(u_n).$$

Ainsi à chaque fois que nous fixons tous les u_i sauf un, disons u_{i_0} , on obtient une forme linéaire en u_{i_0} , autrement dit f_0 est n-linéaire.

Montrons que f est alternée. Pour cela, soit τ un transposition. Rappelons que $\tau^{-1} = \tau$. Aussi l'application $\sigma \mapsto \sigma' = \sigma \tau$ est bijective de S_n sur lui même. On a :

$$f_0(u_{\tau(1)}, \dots, u_{\tau(n)}) = \sum_{\sigma \in \mathcal{S}_n} \varepsilon(\sigma) \lambda_{\sigma(1), \tau(1)} \lambda_{\sigma(2), \tau(2)} \dots \lambda_{\sigma(n), \tau(n)}$$

$$= \sum_{\sigma \in \mathcal{S}_n} \varepsilon(\sigma) \lambda_{\sigma\tau(1), 1} \lambda_{\sigma\tau(2), 2} \dots \lambda_{\sigma\tau(n), n}$$

$$= \sum_{\sigma' \in \mathcal{S}_n} \varepsilon(\sigma'\tau) \lambda_{\sigma'(1), 1} \lambda_{\sigma'(2), 2} \dots \lambda_{\sigma'(n), n}$$

$$= -\sum_{\sigma' \in \mathcal{S}_n} \varepsilon(\sigma') \lambda_{\sigma'(1), 1} \lambda_{\sigma'(2), 2} \dots \lambda_{\sigma'(n), n}$$

$$= -\sum_{\sigma \in \mathcal{S}_n} \varepsilon(\sigma) \lambda_{\sigma(1), 1} \lambda_{\sigma(2), 2} \dots \lambda_{\sigma(n), n}$$

$$= -f_0(u_1, \dots, u_n).$$

En résumé:

- 1. L'ensemble des formes n-linéaires alternées sur E est un sous espace vectoriel de dimension 1 de l'espace vectoriel des applications de $E^n \to \mathbb{K}$.
- 2. Si $B = (e_1, \dots, e_n)$ est une base de E alors cette droite vectorielle est engendrée par la forme n-linéaire alternée f_0 .
- 3. De plus, f_0 est l'unique forme n-linéaire alternée sur E vérifiant $f_0(e_1,\cdots,e_n)=1$.

Déterminant d'une famille de vecteurs dans une base

Soit E un espace vectoriel de dimension n sur \mathbb{K} , et $B=(e_1,\cdots,e_n)$ une base de E. Soit f_0 l'unique forme n-linéaire alternée sur E telle que $f_0(e_1,\cdots,e_n)=1$.

Définition

Pour toute famille (u_1, \dots, u_n) de n vecteurs de E, le déterminant de (u_1, \dots, u_n) par rapport à B est le scalaire

$$\det_B(u_1,\cdots,u_n):=f_0(u_1,\cdots,u_n)$$

Plus explicitement, si $u_j = \sum_{i=1}^n \lambda_{ij} e_i$ alors

$$\det_B(u_1, \cdots, u_n) = \sum_{\sigma \in \mathcal{S}_n} \varepsilon(\sigma) \lambda_{\sigma(1)1} \lambda_{\sigma(2)2} \cdots \lambda_{\sigma(n)n}.$$

Notation pratique

Pour mettre en évidence le rôle des coordonnées des vecteurs u_j dans la base B dans le déterminant $det_B(u_1, \dots, u_n)$ il est plus judicieux de le noter

$$det_B(u_1, \dots, u_n) = \begin{vmatrix} \lambda_{11} & \lambda_{12} & \dots & \lambda_{1n} \\ \lambda_{21} & \lambda_{22} & \dots & \lambda_{2n} \\ \dots & \dots & \dots & \dots \\ \lambda_{n1} & \lambda_{n2} & \dots & \lambda_{nn} \end{vmatrix}$$
$$= \sum_{\sigma \in \mathcal{S}_n} \varepsilon(\sigma) \lambda_{\sigma(1)1} \lambda_{\sigma(2)2} \cdots \lambda_{\sigma(n)n}$$

Il s'agit de la somme de tous les produits possibles de n coefficients de la matrice $(\lambda_{ij})_{ij}$ pris dans des lignes distinctes et de colonnes distinctes avec un signe plus ou moins selon la signature de la permutation définie par : $\sigma(i)$ est le numéro de la ligne dans laquelle le coefficient de la *i*ème colonne est pris.

Exemple

Soit $E = \mathbb{R}^2$ et $B = (e_1, e_2)$ la base canonique de E. Rappelons que S_2 contient deux éléments seulement, à savoir l'identité et la transposition (12). Ainsi, si $u = \lambda_{11}e_1 + \lambda_{21}e_2$ et $v = \lambda_{12}e_1 + \lambda_{22}e_2$ alors

$$\det_{B}(u, v) = \begin{vmatrix} \lambda_{11} & \lambda_{12} \\ \lambda_{21} & \lambda_{22} \end{vmatrix}$$
$$= \lambda_{11}\lambda_{22} - \lambda_{21}\lambda_{12}.$$

On retrouve la définition que nous avons eu au début de ce chapitre :

$$\left| \begin{array}{cc} a & c \\ b & d \end{array} \right| = ad - bc.$$

Proposition

- 1. Le $det_B(u_1, \dots, u_n)$ est linéaire en chaque u_i .
- 2. $det_B(u_1, \dots, u_n)$ change seulement de signe si on permute deux vecteurs u_i et u_j .
- 3. $det_B(u_1, \dots, u_n) = 0$ chaque fois que deux vecteurs $u_i = u_j$ avec $i \neq j$.
- 4. $det_B(u_1, \dots, u_n)$ ne change pas si on ajoute à un vecteur u_i une combinaison linéaire des autres $u_j, j \neq i$.
- 5. $det_B(u_1, \dots, u_n) = 0$ si et seulement si (u_1, \dots, u_n) est une famille liée.
- 6. $det_B(e_1, \dots, e_n) = 1$.
- 7. $Si \ u_j = \sum_{i=1}^{j=n} \lambda_{i,j} e_i \ alors$

$$det_B(u_1, \cdots, u_n) = \sum_{\sigma \in \mathcal{S}_n} \varepsilon(\sigma) \lambda_{\sigma(1)1} \lambda_{\sigma(2), 2} \cdots \lambda_{\sigma(n), n}.$$

Démonstration:

Seule l'assertion 5. nécessite une preuve. L'implication

$$(u_1, \dots, u_n)$$
 liée $\Longrightarrow \det_B(u_1, \dots, u_n) = 0$

est une propriété générale des formes multilinéaires alternées.

Pour la réciproque supposons que $B' = (u_1, \dots, u_n)$ est libre. Alors B' est en fait une base de E. Ainsi

$$\det_{B'}(u_1,\cdots,u_n)=1.$$

Or $\det_{B'}$ et \det_B sont proportionnelles. Par suite, il existe un scalaire λ tel que

$$1 = \det_{B'}(u_1, \cdots, u_n) = \lambda \cdot \det_B(u_1, \cdots, u_n).$$

Finalement, $\det_B(u_1, \cdots, u_n) \neq 0$

Corollaire

Soit (u_1, \dots, u_n) une famille de n vecteurs de E. Les assertions suivantes sont équivalentes :

- 1. (u_1, \dots, u_n) est libre,
- 2. (u_1, \dots, u_n) est génératrice,
- 3. (u_1, \dots, u_n) est une base de E,
- 4. $det_B(u_1, \cdots, u_n) \neq 0$.

Exemple

Les polynômes

$$P_1 = 1, P_2 = 1 + 2X$$
 et $P_3 = 1 + 3X - 5X^2$

forment une base de $\mathbb{R}_2[X]$. En effet, notons $B=(1,X,X^2)$ la base canonique de $\mathbb{R}_2[X]$. On a

$$\det_{B}(P_{1}, P_{2}, P_{3}) = \begin{vmatrix} 1 & 1 & 1 \\ 0 & 2 & 3 \\ 0 & 0 & -5 \end{vmatrix} = -10 \neq 0.$$

Formule de changement de bases

Théorème

Soit $B_1 = (e_1, \dots, e_n), B_2 = (e'_1, \dots, e'_n)$ deux bases de l'espace vectoriel E. Pour tout $(u_1, \dots, u_n) \in E^n$, on a:

$$det_{B_2}(u_1,\cdots,u_n)=det_{B_2}(e_1,\cdots,e_n)\cdot det_{B_1}(u_1,\cdots,u_n).$$

À retenir comme une formule de la chaine

$$det_{B_2}(\cdot) = det_{B_2}(B_1) \cdot det_{B_1}(\cdot).$$

Démonstration:

On sait que \det_{B_1} est l'unique forme n-linéaire alternée sur E telle que $\det_{B_1}(e_1, \dots, e_n) = 1$. De plus, toute autre forme n-linéaire alternée sur E lui est proportionnelle. En particulier, il existe $\lambda \in \mathbb{K}$ tel que

$$\forall (u_1, \dots, u_n) \in E^n, \quad \det_{B_2}(u_1, \dots, u_n) = \lambda \cdot \det_{B_1}(u_1, \dots, u_n).$$

En prenant $(u_1, \dots, u_n) = (e_1, \dots, e_n)$ on trouve

$$\det_{B_2}(e_1,\cdots,e_n)=\lambda\cdot\det_{B_1}(e_1,\cdots,e_n)=\lambda.$$

Finalement, pour tout $(u_1, \dots, u_n) \in E^n$, on a:

$$\det_{B_2}(u_1,\cdots,u_n)=\det_{B_2}(e_1,\cdots,e_n)\cdot\det_{B_1}(u_1,\cdots,u_n).$$

Déterminant d'une matrice carré

Soit A une matrice carrée à n lignes et n colonnes à coefficients dans \mathbb{K} donnée par

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$

Les vecteurs colonnes de A donnés par

$$c_j = \begin{pmatrix} a_{1j} \\ a_{2j} \\ \dots \\ a_{nj} \end{pmatrix}$$

sont considérés ici comme des vecteurs de \mathbb{K}^n exprimés dans la base canonique B de \mathbb{K}^n .

Définition

Le déterminant de A est le scalaire

$$\det(A) := \det_B(c_1, \dots, c_n) = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$
$$= \sum_{\sigma \in \mathcal{S}_n} \varepsilon(\sigma) a_{\sigma(1)1} a_{\sigma(2),2} \cdots a_{\sigma(n),n}.$$

Exemple

Supposons que n=2. Alors le groupe S_2 contient exactement deux permutations qui sont $\sigma_1=\mathrm{id}$ et la transposition $\sigma_2=\tau=(1,2)$.

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = \varepsilon(\sigma_1)a_{\sigma_1(1)1}a_{\sigma_1(2)2} + \varepsilon(\sigma_2)a_{\sigma_2(1)1}a_{\sigma_2(2)2}$$
$$= a_{11}a_{22} - a_{21}a_{12}.$$

Exemple

Supposons que n=3. Le groupe S_3 contient six permutations qui sont $\sigma_1=\mathrm{id}$, trois transpositions $\tau_1=(1,2), \tau_2=(1,3), \tau_3=(2,3)$ et deux cycles de longueurs 3 donnés par $c_1=(123)$ et $c_2=(132)$.

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = \varepsilon(\sigma_1)a_{11}a_{22}a_{33} + \varepsilon(c_1)a_{21}a_{32}a_{1,3} + \varepsilon(c_2)a_{31}a_{12}a_{23}$$

$$+\varepsilon(\tau_1)a_{21}a_{12}a_{33} + \varepsilon(\tau_2)a_{31}a_{22}a_{13} + \varepsilon(\tau_3)a_{11}a_{32}a_{23}$$

$$= a_{11}a_{22}a_{33} + a_{21}a_{32}a_{1,3} + a_{31}a_{12}a_{23} -$$

$$(a_{21}a_{12}a_{33} + a_{31}a_{22}a_{13} + a_{11}a_{32}a_{23}).$$

On voit que la formule est déjà suffisamment compliquée pour n=3. Cependant, on a vue qu'en re-arrangeant les termes de cette somme on peut trouver une formule plus pratique développant ce déterminant suivant une ligne ou une colonne.

Exemple

Le déterminant d'une matrice diagonale est le produit de ses coefficients diagonaux.

En effet, soit A une matrice diagonale, c'est à dire que $a_{ij} = 0$ pour tout $i \neq j$ et $a_{ii} = d_i$. Alors

$$\det(A) = \begin{vmatrix} d_1 & 0 & \cdots & \cdots & 0 \\ 0 & d_2 & 0 & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & d_{n-1} & 0 \\ 0 & \cdots & \cdots & 0 & d_n \end{vmatrix}
= \det_B(d_1e_1, \cdots, d_ne_n)
= d_1d_2 \cdots d_n \cdot \det_B(e_1, \cdots, e_n)
= d_1d_2 \cdots d_n.$$

Exemple

Le déterminant d'une matrice triangulaire est le produit de ses coefficients diagonaux.

En effet, soit A une matrice triangulaire supérieure, c'est à dire que $a_{ij}=0$ pour tout i>j (respecti-

vement i < j). Alors

$$\det(A) = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & a_{n-1n-1} & a_{n-1n} \\ 0 & \cdots & \cdots & 0 & a_{nn} \end{vmatrix}$$

$$= \det_B(a_{11}e_1, c_2, \cdots, c_n)$$

$$= a_{11}\det_B(e_1, a_{12}e_1 + a_{22}e_2, \cdots, c_n)$$

$$= a_{11}a_{22}\det_B(e_1, e_2, \cdots, c_n)$$

$$= a_{11}a_{22}\cdots a_{nn} \cdot \det_B(e_1, \cdots, e_n)$$

$$= a_{11}a_{22}\cdots a_{nn}.$$

Le cas d'une matrice triangulaire inférieure est similaire.

Proposition

- 1. Le det(A) est linéaire en chaque colonne.
- 2. Le det(A) change seulement de signe si on permute deux colonnes c_i et c_j avec $i \neq j$.
- 3. det(A) = 0 chaque fois que deux colonnes $c_i = c_j$ avec $i \neq j$
- 4. det(A) ne change pas si on ajoute à une colonne c_i une combinaison linéaire des autres c_j , $j \neq i$.
- 5. det(A) = 0 si et seulement si une colonne est combinaison linéaire des autres colonnes.

Démonstration : Ces assertions sont des conséquences immédiates de la définition de det(A) comme une forme n-linéaire alternée de ses vecteurs colonnes.

Théorème

Le det(A) ne change pas quand on change les colonnes par les lignes, autrement dit

$$det(A) = det({}^{t}A)$$

où ^tA est la matrice transposée de A.

Démonstration : Notons que si ${}^tA = (b_{ij})_{1 \le i,j \le n}$ alors $b_{ij} = a_{ji}$. Ainsi

$$\det({}^{t}A) = \sum_{\sigma \in S_{n}} \varepsilon(\sigma) b_{\sigma(1)1} b_{\sigma(2)2} \cdots b_{\sigma(n)n}$$
$$= \sum_{\sigma \in S_{n}} \varepsilon(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \cdots a_{n\sigma(n)}$$

Maintenant en posant $j = \sigma(i)$ on obtient que

$$a_{1\sigma(1)}a_{2\sigma(2)}\cdots a_{n\sigma(n)} = a_{\sigma^{-1}(1)1}a_{\sigma^{-1}(2)2}\cdots a_{\sigma^{-1}(n)n}$$

Il vient que

$$\det({}^{t}A) = \sum_{\sigma \in \mathcal{S}_n} \varepsilon(\sigma) a_{\sigma^{-1}(1)1} a_{\sigma^{-1}(2)2} \cdots a_{\sigma^{-1}(n)n}.$$

Or l'application $\sigma \mapsto \sigma^{-1}$ est une bijection de \mathcal{S}_n et $\varepsilon(\sigma^{-1}) = \varepsilon(\sigma)$. Ainsi

$$\det({}^{t}A) = \sum_{\sigma \in \mathcal{S}_{n}} \varepsilon(\sigma^{-1}) a_{\sigma^{-1}(1)1} a_{\sigma^{-1}(2)2} \cdots a_{\sigma^{-1}(n)n}$$

$$= \sum_{\sigma \in \mathcal{S}_{n}} \varepsilon(\sigma) a_{\sigma(1)1} a_{\sigma(2)2} \cdots a_{\sigma(n)n}$$

$$= \det(A).$$

Une conséquence notable de ce résultat est qu'en passant à la matrice transposée la proposition précédente devient :

Corollaire

- 1. Le det(A) est linéaire en chaque ligne.
- 2. Le det(A) change seulement de signe si on permute deux lignes.
- 3. det(A) = 0 chaque fois que deux lignes distinctes aient les même coefficients.
- 4. det(A) ne change pas si on ajoute à une ligne une combinaison linéaire des autres lignes.
- 5. det(A) = 0 si et seulement si une ligne est combinaison linéaire des autres lignes.

Exemples

On a

$$\begin{vmatrix} 1 & -1 & 3 \\ 2 & 1 & 2 \\ -1 & 1 & 2 \end{vmatrix} \stackrel{=}{\underset{l_2 \cap l_2 - 2l_1}{=}} \begin{vmatrix} 1 & -1 & 3 \\ 0 & 3 & -4 \\ -1 & 1 & 2 \end{vmatrix}$$

$$\stackrel{=}{\underset{l_3 \cap l_3 + l_1}{=}} \begin{vmatrix} 1 & -1 & 3 \\ 0 & 3 & -4 \\ 0 & 0 & 5 \end{vmatrix} = 15$$

où $l_2
ightharpoonup l_2 - 2l_1$ veut dire que l'on a soustrait $2l_1$ à l_2 , et il en est de même pour les autres.

Exemples

Soit a, b, c des scalaires. On a

$$\begin{vmatrix} 1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2} \end{vmatrix} = \begin{vmatrix} 1 & a & a^{2} \\ 0 & b - a & (b - a)(b + a) \\ 0 & c - a & (c - a)(c + a) \end{vmatrix} \qquad (l_{2} \curvearrowright l_{2} - l_{1} \text{ et } l_{3} \curvearrowright l_{3} - l_{1})$$

$$= (b - a)(c - a) \begin{vmatrix} 1 & a & a^{2} \\ 0 & 1 & b + a \\ 0 & 1 & c + a \end{vmatrix}$$

$$= (b - a)(c - a) \begin{vmatrix} 1 & a & a^{2} \\ 0 & 1 & b + a \\ 0 & 0 & c - b \end{vmatrix} \qquad (l_{3} \curvearrowright l_{3} - l_{2})$$

$$= (b - a)(c - a)(c - b).$$

Déterminant d'un endomorphisme

Soit E un espace vectoriel de dimension n sur \mathbb{K} , et φ un endomorphisme de E. Soit $B=(e_1,\cdots,e_n)$ une base de E.

Théorème

Il existe un unique scalaire $\lambda \in \mathbb{K}$ tel que pour toute base B de E on a :

$$\forall (u_1, \dots, u_n) \in E^n, det_B(\varphi(u_1), \dots, \varphi(u_n)) = \lambda \cdot det_B(u_1, \dots, u_n).$$

De plus,

$$\lambda = det_B(\varphi(e_1), \cdots, \varphi(e_n))$$

et, malgré les apparences, $det_B(\varphi(e_1), \cdots, \varphi(e_n))$ est indépendant du choix de la base B.

Démonstration:

Puisque φ est linéaire et que $\det_B(\cdot)$ est multilinéaire alternée, l'application

$$f: E^n \to \mathbb{K}$$

 $(u_1, \dots, u_n) \mapsto \det_B(\varphi(u_1), \dots, \varphi(u_n)).$

est une forme multilinéaire alternée sur E. Elle est donc proportionnelle à $\det_B(\cdot)$. Par suite, il existe un unique scalaire λ tel que

$$\forall (u_1, \dots, u_n) \in E^n, \det_B(\varphi(u_1), \dots, \varphi(u_n)) = \lambda \cdot \det_B(u_1, \dots, u_n).$$

En prenant $(u_1, \dots, u_n) = (e_1, \dots, e_n)$ on trouve que

$$\det_B(\varphi(e_1), \cdots, \varphi(e_n)) = \lambda \cdot \det_B(e_1, \cdots, e_n) = \lambda.$$

Finalement, pour tout $(u_1, \dots, u_n) \in E^n$, on a:

$$\det_B(\varphi(u_1),\cdots,\varphi(u_n)) = \det_B(\varphi(e_1),\cdots,\varphi(e_n)) \cdot \det_B(u_1,\cdots,u_n).$$

Maintenant soit $B'=(e'_1,\cdots,e'_n)$ une nouvelle base de E. Alors

$$\det_{B'}(\varphi(u_1), \cdots, \varphi(u_n)) = \det_{B'}(e_1, \cdots, e_n) \cdot \det_B(\varphi(u_1), \cdots, \varphi(u_n))$$

$$= \det_{B'}(e_1, \cdots, e_n) \cdot \det_B(\varphi(e_1), \cdots, \varphi(e_n)) \cdot \det_B(u_1, \cdots, u_n)$$

$$= \det_B(\varphi(e_1), \cdots, \varphi(e_n)) \cdot \underbrace{\det_{B'}(e_1, \cdots, e_n) \cdot \det_B(u_1, \cdots, u_n)}_{\det_{B'}(u_1, \cdots, u_n)}$$

$$= \det_B(\varphi(e_1), \cdots, \varphi(e_n)) \cdot \det_{B'}(u_1, \cdots, u_n)$$

Par suite le nombre

$$\det_{B'}(\varphi(e'_1), \cdots, \varphi(e'_n)) = \det_B(\varphi(e_1), \cdots, \varphi(e_n)).$$