Why "ecological forecasting"?

Amy Hurford Memorial University

Population biology, deterministic dynamical systems, mechanistic models

Mathematical

Modeling Infectious Diseases

Dietz 2017. Ecological forecasting. Ch 2.

$$\frac{dN(t)}{dt} = rN(t)\left(1 - \frac{N(t)}{K}\right) \qquad N_{t+1} = N_t + rN_t\left(1 - \frac{N_t}{K}\right)$$

$$N_{t+1} = N_t + rN_t \left(1 - \frac{N_t}{K}\right)$$

- r = b d
- b: births per individual per time step
- d: fraction of the population that dies per time step

$$\frac{dN(t)}{dt} = rN(t)\left(1 - \frac{N(t)}{K}\right)$$

The information below is taken from the following source:

Newcomb, HR. 1940. Ring-necked pheasant studies on Protection Island in the Strait of Juan de Fuca, Washington. MS thesis. Oregon State University.

- a. Pheasant chicks are born during the summer.
- b. In May 1937, 10 pheasants were introduced to the island. Before the next breeding season there were 35.
- c. November 10, 1938 a census estimated 110 pheasants.
- d. October 13, 1939 a census estimated 400 pheasants.
- e. Between the 1938 and 1939 censuses, Newcomb observed that 17 adult birds died.
- f. During the 1938 nesting season: 5.86 eggs/nest. 83.57% of eggs hatched.
- g. During the 1939 nesting season: 8.73 eggs/nest. 64.58% hatched.
- h. During the 1939 nesting season: Average number of chicks per clutch was 6.93.1
- i. You can assume the sex ratio is 50:50 male to female. Pheasants are a sexually reproducing species.

Figure 3.2: Example of exponential population growth in pheasants. The dots are based on spring census data (Lack 1954). The

Otto & Day 2007. A biologists guide to mathematical modelling.

$$\frac{dI(t)}{dt} = ac_i S \frac{I(t)}{N} - \gamma I(t) + m_i$$

$$\frac{dC(t)}{dt} = ac_i S \frac{I(t)}{N},$$

Linear SIR model

COVID-19 model

Hurford & Watmough. 2021. Don't wait; re-escalate: delayed action results in longer duration of COVID-19 restrictions.

		Newfoundland and Labrador	New Brunswick
	units	Fixed parameters	
Date corresponding to $t = 0$	date	March 23, 2020	March 18, 2020
Recovery rate, γ	individuals per day	1/14	1/14
Active cases when restrictions lifted, I_2	individuals	5	5
Initial number of infected individuals, $I(0)$	individuals	10	10
Day restrictions are enacted, t_1	day	14	18
End time, t_2	day	65	50
		Fitted parameters	
Exponential coefficient prior to restrictions, λ_1	per day	-0.104	0.027
Exponential coefficient after restrictions, λ_2	per day	-0.086	-0.093
Importation rate, m_1	individuals per day	25.9	2.70
		Data Predicted	Data Predicted
Active infected individuals at peak, I_1	individuals	192 197	73 81
Duration of restrictions, $ au$	days	43 43	22 30
Total number of cases, $C(t_2)$	individuals	260 293	120 117

Hurford & Watmough. 2021. Don't wait; re-escalate: delayed action results in longer duration of COVID-19 restrictions.

Fig. 1 The linear SIR model fitted to data describing the active number of COVID-19 cases in Newfoundland and Labrador and New Brunswick from March-May, 2020. Equation 1a,

Hurford & Watmough. 2021. Don't wait; re-escalate: delayed action results in longer duration of COVID-19 restrictions.

Hurford et al. 2021. Modelling the impact of travel restrictions on COVID-19 cases in Newfoundland and Labrador

Hurford et al. 2023. Pandemic modelling for regions implementing an elimination strategy

- Search the literature for 1 value or average
 - Not rigorous
- No or limited treatment of uncertainty in forecasts
 - Some error sources overlooked, falsely confident predictions
- Does not fit data
- Disconnected from statistics

Ecological forecasting

Observed population size, No[s,t]

Dietz 2017. Ecological forecasting.

Ch17 Uncertainty Analysis.Rmd

s: site

t: time

COVID-19 cases by geographic region

Figure 8. Percentage of COVID-19 cases by geographic region and public health unit reported week: Ontario

Note: Only weeks with more than 10 cases by public health unit reporting date are included (starting in week-9).

Include cases with reported dates ranging from week-9 (February 23 and 29, 2020) to week 21 (May 23 and 29, 2021). Table 2A in Appendix A has a listing of public health units by region.

Data Source: CCM

Weekly epidemiological summary. COVID-19 in Ontario: Focus on May 23, 2021 to May 29, 2021. Public Health Ontario. link

Deterministic forecast for site, s=6

Sources of uncertainty

Sources of uncertainty

Relative Variance: Out-of-Sample

Process-based vs. fit data

Mechanistic epidemiological

Phenomenological Machine learning Statistical

The argument for process-based:

- Decision-makers need a justification based on a process
- Parameters have a meaning, useful derived data products
- Out-of-sample prediction
- Counterfactual

Schedule

- Chapter 6: Characterizing uncertainty (Tuesday PM)
- Chapter 8: Latent and state-space models (Wednesday PM)
- Chapter 9: Fusing data sources (Wednesday PM)
- Chapter 11: Propagating uncertainty (Thursday PM)