This listing of claims will replace all prior versions and listings of claims in the application.

Listing of Claims

1. (Currently amended) A compound of Formula I:

$$R^{4} \underbrace{\begin{array}{c} X^{2}R^{3} \\ S(O)_{2} \end{array}}_{O} X^{3}$$

in which:

 X^1 and X^2 are both methylene or X^1 is ethylene and X^2 is a bond;

 R^3 is -CR⁵=CHR⁶, -CR⁵(CR⁶₃)₂ or -CR⁷=NR⁸, wherein R⁵ is hydrogen and R⁶ is hydrogen or (C₁₋₄)alkyl or R⁵ and R⁶ together with the atoms to which R⁵ and R⁶ are attached form (C₃₋₁₂)cycloalkenyl, hetero(C₅₋₁₂)cycloalkenyl, (C₆₋₁₂)aryl, hetero(C₆₋₁₂)aryl, (C₉₋₁₂)bicycloaryl or hetero(C₈₋₁₂)bicycloaryl and R⁷ and R⁸ together with the atoms to which R⁷ and R⁸ are attached form hetero(C₅₋₁₂)cycloalkenyl, hetero(C₆₋₁₂)aryl or hetero(C₈₋₁₂)bicycloaryl, wherein R³ optionally is substituted by 1 to 5 radicals independently selected from a group consisting of (C₁₋₄)alkyl, cyano, halo, halo-substituted (C₁₋₄)alkyl, nitro, -X⁴NR⁹R⁹, -X⁴OR⁹, -X⁴SR⁹, -X⁴C(O)NR⁹R⁹, -X⁴C(O)OR⁹, -X⁴S(O)R¹⁰, -X⁴S(O)₂R¹⁰ and -X⁴C(O)R¹⁰, wherein X⁴ is a bond or (C₁₋₂)alkylene, R⁹ at each occurrence independently is hydrogen, (C₁₋₃)alkyl or halo-substituted (C₁₋₃)alkyl and R¹⁰ is (C₁₋₃)alkyl or halo-substituted (C₁₋₃)alkyl; and

7

 R^4 is $-C(O)X^5R^{11}$ or $-S(O)_2X^5R^{11}$, wherein X^5 is a bond, -O- or $-NR^{12}$ -, wherein R^{12} is hydrogen or (C_{1-6}) alkyl, and R^{11} is (i) (C_{1-6}) alkyl optionally substituted by $-OR^{13}$, $-SR^{13}$, $-S(O)R^{13}$, $-S(O)R^{13}$, $-C(O)R^{13}$, $-C(O)OR^{13}$, $-C(O)NR^{13}R^{14}$, $-NR^{13}R^{14}$, $-NR^{14}C(O)R^{13}$, $-NR^{14}C(O)OR^{13}$, $-NR^{14}C(O)NR^{13}R^{14}$ or $-NR^{14}C(NR^{14})NR^{13}R^{14}$, wherein R^{13} is $(C_{3,12})$ cycloalkyl $(C_{0,3})$ alkyl, hetero $(C_{5,12})$ cycloalkyl $(C_{0,3})$ alkyl, (C_{6-12}) aryl (C_{0-3}) alkyl, hetero (C_{5-12}) aryl (C_{0-3}) alkyl, (C_{9-12}) bicycloaryl (C_{0-3}) alkyl or hetero(C_{8-12})bicycloaryl(C_{0-3})alkyl and R^{14} at each occurrence independently is hydrogen or (C_{1-6}) alkyl, or (ii) (C_{3-12}) cycloalkyl (C_{0-3}) alkyl, hetero(C_{5-12})cycloalkyl(C_{0-3})alkyl, (C_{6-12})aryl(C_{0-3})alkyl, hetero(C_{5-12})aryl(C_{0-3})alkyl, (C_{9-12}) bicycloaryl (C_{0-3}) alkyl or hetero (C_{8-12}) bicycloaryl (C_{0-3}) alkyl or (iii) (C_{3-6}) cycloalkyl (C_{0-3}) alkyl, hetero (C_{5-6}) cycloalkyl (C_{0-3}) alkyl, phenyl (C_{0-3}) alkyl or hetero($C_{5.6}$)aryl($C_{0.3}$)alkyl substituted by $-X^6OR^{15}$, $-X^6SR^{15}$, $-X^6S(O)R^{15}$, $-X^6S(O)_2R^{15}$, $-X^6C(O)R^{15}$, $-X^6C(O)OR^{15}$, $-X^6C(O)NR^{15}R^{16}$, $-X^6NR^{15}R^{16}$, $-X^{6}NR^{16}C(O)R^{15}$, $-X^{6}NR^{16}C(O)OR^{15}$, $-X^{6}NR^{16}C(O)NR^{15}R^{16}$, $-X^{6}NR^{16}C(O)OR^{16}$, $-X^{6}NR^{16}C(O)OR^{16}$ X⁶NR¹⁶C(NR¹⁶)NR¹⁵R¹⁶, wherein X⁶ is a bond or methylene, R¹⁵ is (C_{3-6}) cycloalkyl (C_{0-3}) alkyl, hetero (C_{5-6}) cycloalkyl (C_{0-3}) alkyl, phenyl (C_{0-3}) alkyl or hetero(C_{5-6})aryl(C_{0-3})alkyl and R^{16} is hydrogen or (C_{1-6})alkyl; wherein R^4 optionally further contains 1 to 5 substituents which when occurring within an alicyclic or aromatic ring system are radicals independently selected from a group consisting of (C₁₋₆)alkyl, (C₁₋₆)alkylidene, cyano, halo, nitro, halo-substituted (C₁₋₃)alkyl, $-X^6NR^{17}R^{17}$, $-X^6NR^{17}C(O)OR^{17}$, $-X^6NR^{17}C(O)NR^{17}R^{17}$, $-X^6NR^{17}C(NR^{17})NR^{17}R^{17}$, $-X^6OR^{17}$, $-X^6SR^{17}$, $-X^6C(O)OR^{17}$, $-X^6C(O)NR^{17}R^{17}$, $-X^6S(O)_2NR^{17}R^{17}$ $-X^{6}P(O)(OR^{18})OR^{17}, -X^{6}OP(O)(OR^{18})OR^{17}, -X^{6}NR^{17}C(O)R^{18}, -X^{6}S(O)R^{18}, -X^{6}S(O)R^{18},$ $-X^6S(O)_2R^{18}$ and $-X^6C(O)R^{18}$ and when occurring within an aliphatic moiety are radicals independently selected from a group consisting of cyano, halo, nitro, $-NR^{17}R^{17}$, $-NR^{17}C(O)OR^{17}$, $-NR^{17}C(O)NR^{17}R^{17}$, $-NR^{17}C(NR^{17})NR^{17}R^{17}$, $-OR^{17}$, $-SR^{17}$, $-C(O)OR^{17}$, $-C(O)NR^{17}R^{17}$, $-S(O)_2NR^{17}R^{17}$, $-P(O)(OR^{17})OR^{17}$, $-OP(O)(OR^{17})OR^{17}$, $-NR^{17}C(O)R^{18}$, $-S(O)R^{18}$, $-S(O)_2R^{18}$ and $-C(O)R^{18}$, wherein X^6 is a bond or

 (C_{1-6}) alkylene, R^{17} at each occurrence independently is hydrogen, (C_{1-6}) alkyl or halo-substituted (C_{1-3}) alkyl and R^{18} is (C_{1-6}) alkyl or halo-substituted (C_{1-3}) alkyl; X^3 is a group of Formula (a), (b) or (c):

n is 0, 1 or 2;

 R^{20} is selected from the group consisting of hydrogen, (C_{1-6}) alkyl, (C_{3-12}) cycloalkyl (C_{0-6}) alkyl, hetero (C_{5-12}) cycloalkyl (C_{0-6}) alkyl, (C_{6-12}) aryl (C_{0-6}) alkyl, and hetero (C_{5-12}) aryl (C_{0-6}) alkyl;

 $R^{21} \text{ is selected from the group consisting of hydrogen, } (C_{1-9}) \text{alkyl,} \\ (C_{3-12}) \text{cycloalkyl}(C_{0-6}) \text{alkyl, hetero}(C_{5-12}) \text{cycloalkyl}(C_{0-6}) \text{alkyl, } (C_{6-12}) \text{aryl}(C_{0-6}) \text{alkyl, hetero}(C_{5-12}) \text{aryl}(C_{0-6}) \text{alkyl, } (C_{9-12}) \text{bicycloaryl}(C_{0-3}) \text{alkyl, hetero}(C_{8-12}) - \text{bicycloaryl}(C_{0-3}) \text{alkyl, } -C(O)R^{26}, -C(S)R^{26}, -S(O)_2R^{26}, -C(O)OR^{26}, -C(O)N(R^{26})R^{27}, \\ -C(S)N(R^{26})R^{27} \text{ and } -S(O)_2N(R^{27})R^{26};$

 $R^{23} \text{-is selected from } (C_{1-6}) \text{alkyl}, (C_{4-6}) \text{alkenyl}, \ (C_{3-12}) \text{cycloalkyl} (C_{0-6}) \text{alkyl}, \\ \text{hetero} (C_{5-12}) \text{cycloalkyl} (C_{0-6}) \text{alkyl}, \ (C_{6-12}) \text{aryl} (C_{0-6}) \text{alkyl} \text{ or hetero} (C_{5-12}) \text{aryl} (C_{0-6}) \text{alkyl} \\ \text{optionally substituted with amino, -NHC}(O) R^{15} \text{ or -} R^{15} \text{ wherein } R^{15} \text{ is as described} \\ \text{above;}$

 $R^{25}\text{-is selected from hydrogen, } (C_{1-6})alkyl, (C_{3-12})eycloalkyl(C_{0-6})alkyl, \\ \text{hetero}(C_{5-12})eycloalkyl(C_{0-6})alkyl, (C_{6-12})aryl(C_{0-6})alkyl, hetero(C_{5-13})aryl(C_{0-6})alkyl, \\ -X^4NHR^{15}, -X^4S(O)_2R^{26}\text{-or}-X^4C(O)R^{17}NR^{17}C(O)R^{17} - \text{wherein } R^{15}, R^{17}\text{-and } X^4\text{-are-as described above;}$

 R^{26} is selected from the group consisting of hydrogen, (C_{1-6}) alkyl, (C_{3-12}) cycloalkyl (C_{0-6}) alkyl, hetero (C_{5-12}) cycloalkyl (C_{0-6}) alkyl, (C_{6-12}) aryl (C_{0-6}) alkyl,

hetero(C_{5-12})aryl(C_{0-6})alkyl, (C_{9-12})bicycloaryl(C_{0-3})alkyl or hetero(C_{8-12})-bicycloaryl(C_{0-3})alkyl;

 R^{27} is hydrogen, (C_{1-6}) alkyl, (C_{3-12}) cycloalkyl (C_{0-6}) alkyl,

 $hetero(C_{5\text{-}12}) cycloalkyl(C_{0\text{-}6}) alkyl, (C_{6\text{-}12}) aryl(C_{0\text{-}6}) alkyl \ or \ hetero(C_{5\text{-}12}) aryl(C_{0\text{-}6}) alkyl;$

wherein X³ optionally further contains 1 to 5 substituents which when occurring within an alicyclic or aromatic ring system are radicals independently selected from a group consisting of (C₁₋₆)alkyl, (C₁₋₆)alkylidene, cyano, halo, nitro, halo-substituted (C₁₋₃)alkyl, -X⁶NR¹⁷R¹⁷, -X⁶NR¹⁷C(O)OR¹⁷, -X⁶NR¹⁷C(O)NR¹⁷R¹⁷, $-X^6NR^{17}C(NR^{17})NR^{17}R^{17}$, $-X^6OR^{17}$, $-X^6C(O)R^{17}$, $-X^6OR^{15}$, $-X^6SR^{17}$, $-X^6C(O)OR^{17}$, $-X^{6}C(O)NR^{17}R^{17}$, $-X^{6}S(O)_{2}NR^{17}R^{17}$, $-X^{6}P(O)(OR^{8})OR^{17}$, $-X^{6}OP(O)(OR^{8})OR^{17}$, $-X^{6}NR^{17}C(O)R^{18}$, $-X^{6}S(O)R^{18}$, $-X^{6}S(O)_{2}R^{18}$ and $-X^{6}C(O)R^{18}$ and when occurring within an aliphatic moiety are radicals independently selected from a group consisting of cyano, halo, nitro, -NR¹⁷R¹⁷, -NR¹⁷C(O)OR¹⁷, -NR¹⁷C(O)NR¹⁷R¹⁷, $-NR^{17}C(NR^{17})NR^{17}R^{17}$, $-OR^{17}$, $-SR^{17}$, $-C(O)OR^{17}$, $-C(O)NR^{17}R^{17}$, $-S(O)_2NR^{17}R^{17}$, $-P(O)(OR^{17})OR^{17}$, $-OP(O)(OR^{17})OR^{17}$, $-NR^{17}C(O)R^{18}$, $-S(O)R^{18}$, $-S(O)_2R^{18}$ and -C(O)R¹⁸, wherein R¹⁵, R¹⁷, R¹⁸ and X⁶ are as described above; and the N-oxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of isomers thereof; and the pharmaceutically acceptable salts and solvates of such compounds and the N-oxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of isomers thereof.

2. (Previously presented) The compound of claim 1 in which X^1 and X^2 are both methylene or X^1 is ethylene and X^2 is a bond; R^3 is $-CR^5$ =CHR⁶, $-CR^5$ (CR⁶₃)₂ or $-CR^7$ =NR⁸, wherein R^5 is hydrogen and R^6 is hydrogen or (C₁₋₄)alkyl or R^5 and R^6 together with the atoms to which R^5 and R^6 are attached form (C₃₋₁₂)cycloalkenyl, (C₆₋₁₂)aryl, hetero(C₆₋₁₂)aryl or (C₉₋₁₂)bicycloaryl and R^7 and R^8 together with the atoms to which R^7 and R^8 are attached form hetero(C₅₋₁₂)cycloalkenyl or hetero(C₆₋₁₂)aryl, wherein R^3 optionally is substituted by 1 to 5 radicals independently

selected from a group consisting of (C_{1-4}) alkyl, cyano, halo, halo-substituted (C_{1-4}) alkyl, $-X^4OR^9$ and $-X^4C(O)OR^9$, wherein X^4 is a bond or (C_{1-2}) alkylene, R^9 at each occurrence independently is (C_{1-3}) alkyl or halo-substituted (C_{1-3}) alkyl; and the N-oxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of isomers thereof; and the pharmaceutically acceptable salts and solvates of such compounds and the N-oxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of isomers thereof.

- (Previously presented) The compound of claim 2 in which R⁴ is -C(O)X⁵R¹¹ or 3. -S(O)₂X⁵R¹¹, wherein X⁵ is a bond, -O- or -NR¹²-, wherein R¹² is hydrogen or (C_{1-6}) alkyl, and R^{11} is (i) (C_{1-6}) alkyl or (ii) hetero (C_{5-12}) cycloalkyl (C_{0-3}) alkyl, (C_{6-12}) aryl (C_{0-3}) alkyl, hetero (C_{5-12}) aryl (C_{0-3}) alkyl, (C_{9-12}) bicycloaryl (C_{0-3}) alkyl or hetero(C_{8-12})bicycloaryl(C_{0-3})alkyl or (iii) hetero(C_{5-6})cycloalkyl(C_{0-3})alkyl or phenyl(C_{0-3})alkyl substituted by $-X^6OR^{15}$, $-X^6C(O)R^{15}$ or $-X^6NR^{16}C(O)OR^{16}$, wherein X^6 is a bond or methylene, R^{15} is phenyl(C_{0-3})alkyl or hetero(C_{5-6})aryl(C_{0-3})alkyl and R^{16} is hydrogen or $(C_{1.6})$ alkyl; wherein R^4 optionally further contains 1 to 5 substituents which when occurring within an alicyclic or aromatic ring system are radicals independently selected from a group consisting of (C₁₋₆)alkyl, halo, $-X^6NR^{17}R^{17}$, $-X^6OR^{17}$, $-X^6C(O)OR^{17}$, $-X^6NC(O)R^{16}$ and $-X^6C(O)R^{18}$, R^{17} at each occurrence independently is hydrogen, (C₁₋₆)alkyl or halo-substituted (C₁₋₃)alkyl and R^{18} is $(C_{1.6})$ alkyl or halo-substituted $(C_{1.3})$ alkyl; and the N-oxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of isomers thereof; and the pharmaceutically acceptable salts and solvates of such compounds and the N-oxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of isomers thereof.
- 4. (Currently amended) The compound of claim 3 in which X^3 is a group of Formula (a), (b) or (c):

n is 0, 1 or 2;

 R^{20} is selected from the group consisting of hydrogen and (C_{1-6}) alkyl;

 R^{21} is selected from the group consisting of (C_{1-9}) alkyl, (C_{6-12}) aryl (C_{0-6}) alkyl, - $C(O)R^{26}$, - $S(O)_2R^{26}$, - $C(O)OR^{26}$ and - $C(O)N(R^{26})R^{27}$;

R²³-is selected from (C₁₋₆)alkyl optionally substituted with amino, -NHC(O)R¹⁵ or R¹⁵ wherein R¹⁵ is as described above:

 R^{25} -is selected from (C_{1-6}) alkyl, (C_{6-12}) aryl (C_{0-6}) alkyl, $X^4S(O)_2R^{26}$ -or- $X^4C(O)R^{17}NR^{17}C(O)R^{17}$ —wherein R^{17} and X^4 are as described above and R^{26} is as described below;

 R^{26} is selected from the group consisting of (C_{1-6}) alkyl, hetero (C_{5-12}) cycloalkyl (C_{0-6}) alkyl, (C_{6-12}) aryl (C_{0-6}) alkyl, hetero (C_{5-12}) aryl (C_{0-6}) alkyl and (C_{9-12}) bicycloaryl (C_{0-3}) alkyl;

 R^{27} is (C_{1-6}) alkyl;

wherein X^3 optionally further contains 1 to 5 substituents which when occurring within an alicyclic or aromatic ring system are radicals independently selected from a group consisting of (C_{1-6}) alkyl, cyano, halo, $-X^6OR^{17}$, $-X^6C(O)R^{17}$ and $-X^6OR^{15}$; and the *N*-oxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of isomers thereof; and the pharmaceutically acceptable salts and solvates of such compounds and the N-oxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of isomers thereof.

- 5. (Previously presented) The compound of claim 4 in which R³ is selected from the group consisting of phenyl, pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, vinyl, 2difluoromethoxyphenyl, 1-oxy-pyridin-2-yl, 4-methoxyphenyl, 4-methylphenyl, 2methylphenyl, 4-chlorophenyl, 3,5-dimethylphenyl, 4-trifluoromethylphenyl, 4trifluoromethoxyphenyl, 2-bromophenyl, naphthalen-2-yl, 3,4-dichlorophenyl, 3methylphenyl, 3-trifluoromethylphenyl, 3-trifluoromethoxyphenyl, 2,3,4,5,6pentafluoro-phenyl, 2-fluorophenyl, 2-chlorophenyl, 2-cyano-phenyl, 2trifluoromethylphenyl, 4-tert-butyl-phenyl, 3-chlorophenyl, 4-bromophenyl, 2-fluoro-3-chloro-phenyl, 2-fluoro-3-methyl-phenyl, 3-fluorophenyl, 2,5-difluorophenyl, 3bromophenyl, 2,5-dichlorophenyl, 2,6-difluorophenyl, 3-cyano-phenyl, 4-cyanophenyl, 2-trifluoromethoxyphenyl, 2,3-difluorophenyl, biphenyl, 2-bromo-5-fluorophenyl, 4-fluorophenyl, 3,4-difluorophenyl, 2,4-difluorophenyl, 2,4,6-trifluorophenyl, 2,4,5-trifluorophenyl, 2,3,4-trifluorophenyl, 2-chloro-5-trifluoromethylphenyl, 2,4bis-trifluoromethylphenyl, 2,5,6-trifluorophenyl, 2-fluoro-3-trifluoromethylphenyl, 2fluoro-4-trifluoromethylphenyl, 2-fluoro-5-trifluoromethylphenyl, 2,3,5trifluorophenyl, 2-fluoro-5-trifluoromethylphenyl, 5-fluoro-2-trifluoromethylphenyl, 4-fluoro-3-trifluoromethylphenyl, 2-methoxyphenyl, 3,5-bis-trifluoromethylphenyl, 4difluoromethoxyphenyl, 3-difluoromethoxyphenyl, 2,6-dichlorophenyl, 4carboxyphenyl, cyclohexyl, cyclopropyl, isopropyl, thiophen-2-yl, 5-chloro-thiophen-2-yl and 3,5-dimethyl-isoxazol-4-yl.
- 6. (Previously presented) The compound of claim 5 in which R⁴ is benzoyl, morpholine-4-carbonyl, acetyl, furan-3-carbonyl, 2-methoxy-benzoyl, 3-methoxy-benzoyl, naphthalene-2-carbonyl, benzo[1,3]dioxole-5-carbonyl, 3-pyridin-3-yl-acryloyl, benzofuran-2-carbonyl, furan-2-carbonyl, *tert*-butoxy-carbonyl, biphenyl-4-carbonyl, quinoline-2-carbonyl, quinoline-3-carbonyl, 3-acetyl-benzoyl, 4-phenoxy-benzoyl, 3-hydroxy-benzoyl, 4-hydroxy-benzoyl, pyridine-3-carbonyl, 3-(tert-butoxycarbonylamino-methyl)-benzoyl, 4-carbonyl-piperazine-1-carboxylic acid tert-

butyl ester, 4-carbonyl-piperazine-1-carboxylic acid ethyl ester, 4-(furan-2-carbonyl)piperazine-1-carbonyl, pyridine-4-carbonyl, 1-oxy-pyridine-4-carbonyl, 1-oxypyridine-3-carbonyl, thiophene-2-carbonyl, thiophene-3-carbonyl, 4-benzoyl, 5-methyl-thiophene-2-carbonyl, 3-chloro-thiophene-2-carbonyl, 3-bromo-thiophene-2-carbonyl, 4-chloro-benzoyl, 3-flouro-4-methoxy-benzoyl, 4-methoxy-benzoyl, 4triflouromethoxy-benzoyl, 3,4-diflouro-benzoyl, 4-fluoro-benzoyl, 3,4-dimethoxybenzoyl, 3-methyl-benzoyl, 4-bromo-benzoyl, 4-triflouromethyl-benzoyl, 3-benzoylbenzoyl, cyclopentane-carbonyl, benzo[b]thiophene-2-carbonyl, 3-chlorobenzo[b]thiophene-2-carbonyl, benzenesulfonyl, naphthalene-2-sulfonyl, 5-methylthiophene-2-sulfonyl, thiophene-2-sulfonyl, formamyl-methyl ester, 4-methylpentanoyl, formamyl-isobutyl ester, formamyl-monoallyl ester, formamyl-isopropyl ester, N,N-dimethyl-formamyl, N-isopropyl-formamyl, N-pyridin-4-yl-formamyl, Npyridin-3-yl-formamyl, 3-phenyl-acryloyl, 1H-indole-5-carbonyl, pyridine-2carbonyl, pyrazine-2-carbonyl, 3-hydroxy-pyridine-2-carbonyl, 2-amino-pyridine-3carbonyl, 2-hydroxy-pyridine-3-carbonyl, 6-amino-pyridine-3-carbonyl, 6-hydroxypyridine-3-carbonyl, pyridazine-4-carbonyl, 3-phenoxy-benzoyl and 1-oxo-1,3dihydro-isoindole-2-carbonyl.

7. (Currently amended) The compound of claim 6 in which X^3 is selected from a group consisting of 4-amino-3-oxo-azepane-1-carboxylic acid benzyl ester, 4-amino-3-oxo-azepane-1-carboxylic acid isobutyl ester, 4-amino-1-benzoyl-azepan-3-one, 4-amino-1-benzenesulfonyl-azepan-3-one, 4-amino-1-(pyridine-2-sulfonyl)-azepan-3-one, 4-amino-1-(1-oxy-pyridine-2-sulfonyl)-azepan-3-one, 4-amino-1-(3,4-dichlorobenzenesulfonyl)-azepan-3-one, 4-amino-1-(2-flouro-benzenesulfonyl)-azepan-3-one, 4-amino-1-(2-cyanobenzenesulfonyl)-azepan-3-one, 4-amino-1-(naphthalene-1-sulfonyl)-azepan-3-one, 4-amino-1-(thiophene-2-sulfonyl)-azepan-3-one, 4-amino-1-(thiazole-2-sulfonyl)-azepan-3-one, 4-amino-1-(pyrrolidine-1-sulfonyl)-azepan-3-one, 4-amino-1-

methanesulfonyl-azepan-3-one, 4-amino-1-(pyrrolidine-1-carbonyl)-azepan-3-one, 4amino-3-oxo-azepane-1-carboxylic-acid-dimethylamide, 4-amino-3-oxo-azepane-1carboxylic-acid-benzylamide, 4-amino-1-benzyl-azepan-3-one, 4-amino-1-benzylpiperidin-3-one, 4-amino-1-benzoyl-piperidin-3-one, 4-amino-1-benzoyl-pyrrolidin-3one, 4-amino-1-benzyl-pyrrolidin-3-one, 4-amino-1-benzenesulfonyl-pyrrolidin-3one[[,]] and 4-amino-1-(5-methyl-hexyl)-pyrrolidin-3-one, 1-ethyl-2-oxo-3-(toluene-4-sulfonylamino) butylamino, 1-ethyl-2-oxo-3-(4-phenoxy-benzenesulfonylamino) propylamino, 1-ethyl-2-oxo-3-[4-(pyridin-3-yloxy) benzenesulfonylamino]propylamino, 3-(dibenzofuran-2-sulfonylamino)-1-ethyl-2-oxo-butylamino, 1-ethyl-3-[4-methyl-2 (4-methyl-pentanoylamino) pentanoylamino]-2-oxo-propylamino, 5amino-1-[(4-methoxy-phenylsulfamoyl)-methyl] pentylamino, 5benzyloxyearbonylamino-1-[(4-methoxy-phenylsulfamoyl)-methyl]-pentylamino, 1-[(4-methoxy-phenylsulfamoyl) methyl]-3-phenyl-propylamino, 1-{[4-(1-hydroxyethyl)-phenylsulfamoyl]-methyl}-3-phenyl-propylamino, 1-[(4-acetylphenylsulfamoyl)-methyl]-3-phenyl-propylamino, 1-[(4-hydroxy-phenylsulfamoyl)methyl]-3-phenyl-propylamino and 3-phenyl-1-[(2-phenylamino-ethylsulfamoyl)methyll-propylamino.

8. (Currently amended) The compound of claim 7 selected from the group consisting of morpholine-4-carboxylic acid (1-{5-amino-1-[(4-methoxy-phenylsulfamoyl) methyl] pentylcarbamoyl}-2-phenylmethanesulfonyl ethyl) amide, (6-(4-methoxy-phenylsulfamoyl)-5-{2-[(morpholine-4-carbonyl)-amino]-3-phenylmethane-sulfonyl-propionylamino}-hexyl) carbamic acid benzyl ester, morpholine-4-carboxylic acid (1-{1-[(4-methoxy-phenylsulfamoyl)-methyl]-3-phenyl-propylcarbamoyl}-2-phenylmethanesulfonyl-ethyl)-amide, morpholine-4-carboxylic acid [1-(3-benzenesulfonylamino-2-oxo-propylcarbamoyl)-2-phenylmethanesulfonyl-ethyl]-amide, morpholine-4-carboxylic acid [1-(1-benzoyl-4-oxo-pyrrolidin-3-ylcarbamoyl)-2-phenylmethanesulfonyl-ethyl]-amide, morpholine-4-carboxylic acid

[1-(1-benzenesulfonyl-4-oxo-pyrrolidin-3-ylcarbamoyl)-2-phenylmethanesulfonylethyl]-amide and 4-{2-[(Morpholine-4-carbonyl)-amino]-3-phenylmethanesulfonyl-propionylamino}-3-oxo-azepane-1-carboxylic acid benzyl ester.

- 9. (Previously presented) A pharmaceutical composition comprising a therapeutically effective amount of a compound of Claim 1 in combination with a pharmaceutically acceptable excipient.
- 10. (Previously presented) A method for treating a disease in an animal in which inhibition of Cathepsin S can prevent, inhibit or ameliorate the pathology and/or symptomology of the disease, which method comprises administering to the animal a therapeutically effective amount of compound of Claim 1 or a *N*-oxide derivative or individual isomer or mixture of isomers thereof; or a pharmaceutically acceptable salt or solvate of such compounds and the *N*-oxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of isomers thereof.
- 11. (Cancelled)
- 12. (Currently amended) A process for preparing a compound of Formula I:

in which:

 X^1 and X^2 are both methylene or X^1 is ethylene and X^2 is a bond; R³ is -CR⁵=CHR⁶, -CR⁵(CR⁶₃)₂ or -CR⁷=NR⁸, wherein R⁵ is hydrogen and R⁶ is hydrogen or (C₁₋₄)alkyl or R⁵ and R⁶ together with the atoms to which R⁵ and R⁶ are attached form (C_{3-12}) cycloalkenyl, hetero (C_{5-12}) cycloalkenyl, (C_{6-12}) aryl, hetero(C_{6-12})aryl, (C_{9-12})bicycloaryl or hetero(C_{8-12})bicycloaryl and R^7 and R^8 together with the atoms to which R^7 and R^8 are attached form hetero(C_{5-12})cycloalkenyl, hetero(C_{6-12})aryl or hetero(C_{8-12})bicycloaryl, wherein R^3 optionally is substituted by 1 to 5 radicals independently selected from a group consisting of (C₁₋₄)alkyl, cyano, halo, halo-substituted (C₁₋₄)alkyl, nitro, -X⁴NR⁹R⁹, -X⁴OR⁹, -X⁴SR⁹, -X⁴C(O)NR⁹R⁹, $-X^{4}C(O)OR^{9}$, $-X^{4}S(O)R^{10}$, $-X^{4}S(O)_{2}R^{10}$ and $-X^{4}C(O)R^{10}$, wherein X^{4} is a bond or (C₁₋₂)alkylene, R⁹ at each occurrence independently is hydrogen, (C₁₋₃)alkyl or halo-substituted (C_{1-3})alkyl and R^{10} is (C_{1-3})alkyl or halo-substituted (C_{1-3})alkyl; and R^4 is $-C(O)X^5R^{11}$ or $-S(O)_2X^5R^{11}$, wherein X^5 is a bond, -O- or $-NR^{12}$ -, wherein R^{12} is hydrogen or (C_{1-6}) alkyl, and R^{11} is (i) (C_{1-6}) alkyl optionally substituted by $-OR^{13}$, $-SR^{13}$, $-S(O)R^{13}$, $-S(O)_2R^{13}$, $-C(O)R^{13}$, $-C(O)OR^{13}$, $-C(O)NR^{13}R^{14}$, $-NR^{13}R^{14}$, $-NR^{14}C(O)R^{13}$. $-NR^{14}C(O)OR^{13}$. $-NR^{14}C(O)NR^{13}R^{14}$ or $-NR^{14}C(NR^{14})NR^{13}R^{14}$. wherein R^{13} is (C_{3-12}) cycloalkyl (C_{0-3}) alkyl, hetero (C_{5-12}) cycloalkyl (C_{0-3}) alkyl, (C_{6-12}) aryl (C_{0-3}) alkyl, hetero (C_{5-12}) aryl (C_{0-3}) alkyl, (C_{9-12}) bicycloaryl (C_{0-3}) alkyl or hetero(C_{8-12})bicycloaryl(C_{0-3})alkyl and R^{14} at each occurrence independently is hydrogen or (C₁₋₆)alkyl, or (ii) (C₃₋₁₂)cycloalkyl(C₀₋₃)alkyl, $hetero(C_{5-12})cycloalkyl(C_{0-3})alkyl, (C_{6-12})aryl(C_{0-3})alkyl, hetero(C_{5-12})aryl(C_{0-3})alkyl,$ (C_{9-12}) bicycloaryl (C_{0-3}) alkyl or hetero (C_{8-12}) bicycloaryl (C_{0-3}) alkyl or (iii) (C_{3-6}) cycloalkyl (C_{0-3}) alkyl, hetero (C_{5-6}) cycloalkyl (C_{0-3}) alkyl, phenyl (C_{0-3}) alkyl or hetero(C_{5-6})aryl(C_{0-3})alkyl substituted by $-X^6OR^{15}$, $-X^6SR^{15}$, $-X^6S(O)R^{15}$, $-X^6S(O)_2R^{15}$, $-X^6C(O)R^{15}$, $-X^6C(O)OR^{15}$, $-X^6C(O)NR^{15}R^{16}$, $-X^6NR^{15}R^{16}$, $-X^{6}NR^{16}C(O)R^{15}$, $-X^{6}NR^{16}C(O)OR^{15}$, $-X^{6}NR^{16}C(O)NR^{15}R^{16}$, $-X^{6}NR^{16}C(O)OR^{16}$, $-X^{6}NR^{16}C(O)OR^{16}$ X⁶NR¹⁶C(NR¹⁶)NR¹⁵R¹⁶, wherein X⁶ is a bond or methylene, R¹⁵ is (C_{3-6}) cycloalkyl (C_{0-3}) alkyl, hetero (C_{5-6}) cycloalkyl (C_{0-3}) alkyl, phenyl (C_{0-3}) alkyl or

hetero(C_{5-6})aryl(C_{0-3})alkyl and R^{16} is hydrogen or (C_{1-6})alkyl; wherein R^4 optionally further contains 1 to 5 substituents which when occurring within an alicyclic or aromatic ring system are radicals independently selected from a group consisting of (C_{1-6})alkyl, (C_{1-6})alkylidene, cyano, halo, nitro, halo-substituted (C_{1-3})alkyl, $-X^6NR^{17}R^{17}$, $-X^6NR^{17}C(O)OR^{17}$, $-X^6NR^{17}C(O)NR^{17}R^{17}$, $-X^6NR^{17}C(NR^{17})NR^{17}R^{17}$, $-X^6OR^{17}$, $-X^6SR^{17}$, $-X^6C(O)OR^{17}$, $-X^6C(O)NR^{17}R^{17}$, $-X^6S(O)_2NR^{17}R^{17}$, $-X^6S(O)_2NR^{17}R^{17}$, $-X^6S(O)_2NR^{18}$ and $-X^6C(O)R^{18}$ and when occurring within an aliphatic moiety are radicals independently selected from a group consisting of cyano, halo, nitro, $-NR^{17}R^{17}$, $-NR^{17}C(O)OR^{17}$, $-NR^{17}C(O)NR^{17}R^{17}$, $-NR^{17}C(NR^{17})NR^{17}R^{17}$, $-OR^{17}$, $-SR^{17}$, $-C(O)OR^{17}$, $-C(O)NR^{17}R^{17}$, $-S(O)_2NR^{17}R^{17}$, $-P(O)(OR^{17})OR^{17}$, $-OP(O)(OR^{17})OR^{17}$, $-NR^{17}C(O)R^{18}$, $-S(O)_2R^{18}$ and $-C(O)R^{18}$, wherein X^6 is a bond or (C_{1-6})alkylene, R^{17} at each occurrence independently is hydrogen, (C_{1-6})alkyl or halo-substituted (C_{1-3})alkyl and R^{18} is (C_{1-6})alkyl or halo-substituted (C_{1-3})alkyl; X^3 is a group of Formula (a), (b) or (c):

n is 0, 1 or 2;

 R^{20} is selected from the group consisting of hydrogen, (C_{1-6}) alkyl, (C_{3-12}) cycloalkyl (C_{0-6}) alkyl, hetero (C_{5-12}) cycloalkyl (C_{0-6}) alkyl, (C_{6-12}) aryl (C_{0-6}) alkyl; and hetero (C_{5-12}) aryl (C_{0-6}) alkyl;

 $R^{21} \text{ is selected from the group consisting of hydrogen, } (C_{1-9}) \text{alkyl,} \\ (C_{3-12}) \text{cycloalkyl} (C_{0-6}) \text{alkyl, hetero} (C_{5-12}) \text{cycloalkyl} (C_{0-6}) \text{alkyl, } (C_{6-12}) \text{aryl} (C_{0-6}) \text{alkyl,} \\ (C_{3-12}) \text{cycloalkyl} (C_{0-6}) \text{alkyl, } (C_{3-12}) \text{aryl} (C_{3-1$

$$\begin{split} &\text{hetero}(C_{5\text{-}12})\text{aryl}(C_{0\text{-}6})\text{alkyl}, \ (C_{9\text{-}12})\text{bicycloaryl}(C_{0\text{-}3})\text{alkyl}, \ \text{hetero}(C_{8\text{-}12})\text{-}\\ &\text{bicycloaryl}(C_{0\text{-}3})\text{alkyl}, \ \text{-C}(O)R^{26}, \ \text{-C}(S)R^{26}, \ \text{-S}(O)_2R^{26}, \ \text{-C}(O)OR^{26}, \ \text{-C}(O)N(R^{26})R^{27}, \ \text{-C}(S)N(R^{26})R^{27} \ \text{and} \ -S(O)_2N(R^{27})R^{26}; \end{split}$$

 R^{23} -is selected from (C_{1-6}) alkyl, (C_{4-6}) alkenyl, (C_{3-12}) eyeloalkyl (C_{0-6}) alkyl, hetero (C_{5-12}) eyeloalkyl (C_{0-6}) alkyl, (C_{6-12}) aryl (C_{0-6}) alkyl or hetero (C_{5-12}) aryl (C_{0-6}) alkyl optionally substituted with amino, -NHC(O)R¹⁵ or -R¹⁵ wherein R¹⁵ is as described above;

 $R^{25} \text{ is selected from hydrogen; } (C_{1-6}) \text{alkyl, } (C_{3-12}) \text{cycloalkyl} (C_{0-6}) \text{alkyl, } \\ \text{hetero}(C_{5-12}) \text{cycloalkyl} (C_{0-6}) \text{alkyl, } (C_{6-12}) \text{aryl} (C_{0-6}) \text{alkyl, hetero}(C_{5-13}) \text{aryl} (C_{0-6}) \text{alkyl, } \\ X^4 \text{NHR}^{15}, \quad X^4 \text{S(O)}_2 R^{26} \text{-or-} X^4 \text{C(O)} R^{17} \text{NR}^{17} \text{C(O)} R^{17} \text{---wherein } R^{15}, R^{17} \text{-and } X^4 \text{-are as described above;} \\ \text{described above;}$

 R^{26} is selected from the group consisting of hydrogen, (C_{1-6}) alkyl, (C_{3-12}) cycloalkyl (C_{0-6}) alkyl, hetero (C_{5-12}) cycloalkyl (C_{0-6}) alkyl, (C_{6-12}) aryl (C_{0-6}) alkyl, (C_{9-12}) bicycloaryl (C_{0-3}) alkyl and hetero (C_{8-12}) -bicycloaryl (C_{0-3}) alkyl;

 $R^{27} \text{ is hydrogen, } (C_{1\text{-}6}) \text{alkyl, } (C_{3\text{-}12}) \text{cycloalkyl} (C_{0\text{-}6}) \text{alkyl,}$ $\text{hetero}(C_{5\text{-}12}) \text{cycloalkyl} (C_{0\text{-}6}) \text{alkyl, } (C_{6\text{-}12}) \text{aryl} (C_{0\text{-}6}) \text{alkyl or hetero}(C_{5\text{-}12}) \text{aryl} (C_{0\text{-}6}) \text{alkyl;}$

wherein X^3 optionally further contains 1 to 5 substituents which when occurring within an alicyclic or aromatic ring system are radicals independently selected from a group consisting of (C_{1-6}) alkyl, (C_{1-6}) alkylidene, cyano, halo, nitro, halo-substituted (C_{1-3}) alkyl, $-X^6NR^{17}R^{17}$, $-X^6NR^{17}C(O)OR^{17}$, $-X^6NR^{17}C(O)NR^{17}R^{17}$, $-X^6NR^{17}C(NR^{17})NR^{17}R^{17}$, $-X^6OR^{17}$, $-X^6C(O)R^{17}$, $-X^6OR^{15}$, $-X^6SR^{17}$, $-X^6C(O)OR^{17}$, $-X^6C(O)NR^{17}R^{17}$, $-X^6S(O)_2NR^{17}R^{17}$, $-X^6P(O)(OR^8)OR^{17}$, $-X^6OP(O)(OR^8)OR^{17}$, $-X^6NR^{17}C(O)R^{18}$, $-X^6S(O)R^{18}$, $-X^6S(O)_2R^{18}$ and $-X^6C(O)R^{18}$ and when occurring within an aliphatic moiety are radicals independently selected from a group consisting of cyano, halo, nitro, $-NR^{17}R^{17}$, $-NR^{17}C(O)OR^{17}$, $-NR^{17}C(O)NR^{17}R^{17}$, $-NR^{17}C(NR^{17})NR^{17}R^{17}$, $-OR^{17}$, $-SR^{17}$, $-C(O)OR^{17}$, $-C(O)NR^{17}R^{17}$, $-S(O)_2NR^{17}R^{17}$, $-P(O)(OR^{17})OR^{17}$, $-OP(O)(OR^{17})OR^{17}$, $-NR^{17}C(O)R^{18}$, $-S(O)_2R^{18}$ and

-C(O) R^{18} , wherein R^{15} , R^{17} , R^{18} and X^6 are as described above; said process comprising:

(A) reacting a compound of Formula 2:

with a compound of the formula (a):

$$\begin{array}{cccc}
R^{20} & O \\
HN & R^{20}
\end{array}$$
(a)

in which X^1 , X^2 , R^3 , R^4 , R^{20} and R^{21} are the same as defined above as defined in the Summary of the Invention for Formula I; or

(B) reacting a compound of Formula 2 with a compound of the formula (b):

$$\begin{array}{c|cccc}
R^{20} & O & R^{20} \\
\hline
HN & & N & R^{25} \\
R^{23} & R^{20} & & & \\
\end{array}$$

in which R^{20} , R^{23} and R^{25} are as defined in the Summary of the Invention for Formula I; or

(C) reacting a compound of Formula 2 with a compound of the formula (c):

$$\begin{array}{c|c}
R^{20} & R^{20} \\
\hline
HN & & & \\
R^{23} & O & & \\
\hline
R^{23} & O & & \\
\end{array}$$
(c)

in which R²⁰, R²³ and R²⁵ are as defined in the Summary of the Invention for Formula I; and

(D)(B) optionally converting a compound of Formula I into a pharmaceutically acceptable salt; or

(E)(C) optionally converting a salt form of a compound of Formula I to non-salt form; or

(F)(D) optionally converting an unoxidized form of a compound of Formula I into a pharmaceutically acceptable *N*-oxide; or

(G)(E) optionally converting an N-oxide form of a compound of Formula I into anits unoxidized form; or

(H)(F) optionally resolving an individual isomer of a compound of Formula I from a mixture of isomers; or

(I)(G) optionally converting a non-derivatized compound of Formula I into a pharmaceutically prodrug derivative; or and

(J)(H) optionally converting a prodrug derivative of a compound of Formula I to its non-derivatized form.

13. (Currently amended) A compound of Formula Ix:

$$X^{2}R^{3}$$

$$X^{1}$$

$$S(O)_{2}$$

$$X^{3}$$

$$Ix$$

in which:

 X^1 and X^2 are both methylene or X^1 is ethylene and X^2 is a bond;

 R^3 is $-CR^5$ =CHR⁶, $-CR^5$ (CR⁶₃)₂ or $-CR^7$ =NR⁸, wherein R⁵ is hydrogen and R⁶ is hydrogen or (C₁₋₄)alkyl or R⁵ and R⁶ together with the atoms to which R⁵ and R⁶ are attached form (C₃₋₁₂)cycloalkenyl, hetero(C₅₋₁₂)cycloalkenyl, (C₆₋₁₂)aryl, hetero(C₆₋₁₂)aryl, (C₉₋₁₂)bicycloaryl or hetero(C₈₋₁₂)bicycloaryl and R⁷ and R⁸ together with the atoms to which R⁷ and R⁸ are attached form hetero(C₅₋₁₂)cycloalkenyl, hetero(C₆₋₁₂)aryl or hetero(C₈₋₁₂)bicycloaryl, wherein R³ optionally is substituted by 1 to 5 radicals independently selected from a group consisting of (C₁₋₄)alkyl, cyano, halo, halo-substituted (C₁₋₄)alkyl, nitro, $-X^4NR^9R^9$, $-X^4OR^9$, $-X^4SR^9$, $-X^4C(O)NR^9R^9$, $-X^4C(O)OR^9$, $-X^4S(O)R^{10}$, $-X^4S(O)_2R^{10}$ and $-X^4C(O)R^{10}$, wherein X⁴ is a bond or (C₁₋₂)alkylene, R⁹ at each occurrence independently is hydrogen, (C₁₋₃)alkyl or halo-substituted (C₁₋₃)alkyl and R¹⁰ is (C₁₋₃)alkyl or halo-substituted (C₁₋₃)alkyl; and

 R^4 is $-C(O)X^5R^{11}$ or $-S(O)_2X^5R^{11}$, wherein X^5 is a bond, -O- or $-NR^{12}$ -, wherein R^{12} is hydrogen or (C_{1-6}) alkyl, and R^{11} is (i) (C_{1-6}) alkyl optionally substituted by $-OR^{13}$, $-SR^{13}$, $-S(O)R^{13}$, $-S(O)_2R^{13}$, $-C(O)R^{13}$, $-C(O)OR^{13}$, $-C(O)NR^{13}R^{14}$, $-NR^{13}R^{14}$, $-NR^{14}C(O)R^{13}$, $-NR^{14}C(O)OR^{13}$, $-NR^{14}C(O)NR^{13}R^{14}$ or $-NR^{14}C(NR^{14})NR^{13}R^{14}$, wherein R^{13} is (C_{3-12}) cycloalkyl (C_{0-3}) alkyl, hetero (C_{5-12}) cycloalkyl (C_{0-3}) alkyl, (C_{9-12}) bicycloaryl (C_{0-3}) alkyl or hetero (C_{8-12}) bicycloaryl (C_{0-3}) alkyl and R^{14} at each occurrence independently is hydrogen or (C_{1-6}) alkyl, or (ii) (C_{3-12}) cycloalkyl (C_{0-3}) alkyl,

hetero(C_{5-12})cycloalkyl(C_{0-3})alkyl, (C_{6-12})aryl(C_{0-3})alkyl, hetero(C_{5-12})aryl(C_{0-3})alkyl, (C_{9-12}) bicycloaryl (C_{0-3}) alkyl or hetero (C_{8-12}) bicycloaryl (C_{0-3}) alkyl or (iii) (C_{3-6}) cycloalkyl (C_{0-3}) alkyl, hetero (C_{5-6}) cycloalkyl (C_{0-3}) alkyl, phenyl (C_{0-3}) alkyl or hetero(C_{5-6})aryl(C_{0-3})alkyl substituted by $-X^6OR^{15}$, $-X^6SR^{15}$, $-X^6S(O)R^{15}$, $-X^6S(O)_2R^{15}$, $-X^{6}C(O)R^{15}$, $-X^{6}C(O)OR^{15}$, $-X^{6}C(O)NR^{15}R^{16}$, $-X^{6}NR^{15}R^{16}$, $-X^{6}NR^{16}C(O)R^{15}$, $-X^{6}NR^{16}C(O)OR^{15}$, $-X^{6}NR^{16}C(O)NR^{15}R^{16}$, $-X^{6}NR^{16}C(O)OR^{16}$, -X⁶NR¹⁶C(NR¹⁶)NR¹⁵R¹⁶, wherein X⁶ is a bond or methylene, R¹⁵ is (C_{3-6}) cycloalkyl (C_{0-3}) alkyl, hetero (C_{5-6}) cycloalkyl (C_{0-3}) alkyl, phenyl (C_{0-3}) alkyl or hetero(C_{5-6})aryl(C_{0-3})alkyl and R^{16} is hydrogen or (C_{1-6})alkyl; wherein R^4 optionally further contains 1 to 5 substituents which when occurring within an alicyclic or aromatic ring system are radicals independently selected from a group consisting of (C₁₋₆)alkyl, (C₁₋₆)alkylidene, cyano, halo, nitro, halo-substituted (C₁₋₃)alkyl, $-X^{6}NR^{17}R^{17}$. $-X^{6}NR^{17}C(O)OR^{17}$. $-X^{6}NR^{17}C(O)NR^{17}R^{17}$. $-X^{6}NR^{17}C(NR^{17})NR^{17}R^{17}$. $-X^6OR^{17}$, $-X^6SR^{17}$, $-X^6C(O)OR^{17}$, $-X^6C(O)NR^{17}R^{17}$, $-X^6S(O)_2NR^{17}R^{17}$, $-X^{6}P(O)(OR^{18})OR^{17}, -X^{6}OP(O)(OR^{18})OR^{17}, -X^{6}NR^{17}C(O)R^{18}, -X^{6}S(O)R^{18},$ -X⁶S(O)₂R¹⁸ and -X⁶C(O)R¹⁸ and when occurring within an aliphatic mojety are radicals independently selected from a group consisting of cyano, halo, nitro, -NR¹⁷R¹⁷, -NR¹⁷C(O)OR¹⁷, -NR¹⁷C(O)NR¹⁷R¹⁷, -NR¹⁷C(NR¹⁷)NR¹⁷R¹⁷, -OR¹⁷, -SR¹⁷, $-C(O)OR^{17}$, $-C(O)NR^{17}R^{17}$, $-S(O)_2NR^{17}R^{17}$, $-P(O)(OR^{17})OR^{17}$, $-OP(O)(OR^{17})OR^{17}$, $-NR^{17}C(O)R^{18}$, $-S(O)R^{18}$, $-S(O)_2R^{18}$ and $-C(O)R^{18}$, wherein X^6 is a bond or (C₁₋₆)alkylene, R¹⁷ at each occurrence independently is hydrogen, (C₁₋₆)alkyl or halo-substituted (C_{1-3})alkyl and R^{18} is (C_{1-6})alkyl or halo-substituted (C_{1-3})alkyl; X^3 is a group of Formula (a), (b), (c), (d), (e), (f), (g) or (h):

——X⁷-represents aryl, heteroaryl or NR²⁰R²⁵;

n is 0, 1 or 2;

 R^{20} is selected from the group consisting of hydrogen, (C_{1-6}) alkyl, (C_{3-12}) cycloalkyl (C_{0-6}) alkyl, hetero (C_{5-12}) cycloalkyl (C_{0-6}) alkyl, (C_{6-12}) aryl (C_{0-6}) alkyl and hetero (C_{5-12}) aryl (C_{0-6}) alkyl;

 R^{21} is selected from the group consisting of hydrogen, (C_{1-9}) alkyl, (C_{3-12}) cycloalkyl (C_{0-6}) alkyl, hetero (C_{5-12}) cycloalkyl (C_{0-6}) alkyl, (C_{6-12}) aryl (C_{0-6}) alkyl, hetero (C_{5-12}) aryl (C_{0-6}) alkyl, (C_{9-12}) bicycloaryl (C_{0-3}) alkyl, hetero (C_{8-12}) -bicycloaryl (C_{0-3}) alkyl, $-C(O)R^{26}$, $-C(S)R^{26}$, $-S(O)_2R^{26}$, $-C(O)OR^{26}$, $-C(O)N(R^{26})R^{27}$, $-C(S)N(R^{26})R^{27}$ and $-S(O)_2N(R^{27})R^{26}$;

 R^{23} -is-selected from H, (C_{1-6}) alkyl, (C_{4-6}) alkenyl, (C_{3-12}) cycloalkyl (C_{0-6}) alkyl, hetero (C_{5-12}) cycloalkyl (C_{0-6}) alkyl, (C_{6-12}) aryl (C_{0-6}) alkyl or hetero (C_{5-12}) aryl (C_{0-6}) alkyl optionally substituted with amino, -NHC(O)R¹⁵ or -R¹⁵ wherein R¹⁵ is as described above;

 R^{25} -is selected from hydrogen, (C_{1-6}) alkyl, (C_{3-12}) cycloalkyl (C_{0-6}) alkyl, hetero (C_{5-12}) cycloalkyl (C_{0-6}) alkyl, (C_{6-12}) aryl (C_{0-6}) alkyl, hetero (C_{5-12}) aryl (C_{0-6}) alkyl,

-X⁴NHR¹⁵, -X⁴S(O)₂R²⁶-or -X⁴C(O)R¹⁷NR¹⁷C(O)R¹⁷—wherein R¹⁵, R¹⁷-and X⁴-are as described above;

 R^{26} is selected from the group consisting of hydrogen, (C_{1-6}) alkyl, (C_{3-12}) cycloalkyl (C_{0-6}) alkyl, hetero (C_{5-12}) cycloalkyl (C_{0-6}) alkyl, (C_{6-12}) aryl (C_{0-6}) alkyl, (C_{9-12}) bicycloaryl (C_{0-3}) alkyl and hetero (C_{8-12}) -bicycloaryl (C_{0-3}) alkyl;

$$\begin{split} R^{27} \text{ is hydrogen, } (C_{1\text{-}6}) \text{alkyl, } (C_{3\text{-}12}) \text{cycloalkyl}(C_{0\text{-}6}) \text{alkyl,} \\ \text{hetero}(C_{5\text{-}12}) \text{cycloalkyl}(C_{0\text{-}6}) \text{alkyl, } (C_{6\text{-}12}) \text{aryl}(C_{0\text{-}6}) \text{alkyl or hetero}(C_{5\text{-}12}) \text{aryl}(C_{0\text{-}6}) \text{alkyl;} \\ R^{28} \text{ is } R^{20} \text{ or } \text{-}O\text{-}C(=O) \text{-}R^{29}; \end{split}$$

 R^{29} -is (C_{1-6}) alkyl, (C_{3-12}) cycloalkyl (C_{0-3}) alkyl, hetero (C_{5-12}) cycloalkyl (C_{0-3}) alkyl, (C_{6-12}) aryl (C_{0-3}) alkyl, hetero (C_{5-12}) aryl (C_{0-3}) alkyl, (C_{0-12}) bicycloaryl (C_{0-3}) alkyl or hetero (C_{8-12}) bicycloaryl (C_{0-3}) alkyl;

wherein X^3 optionally further contains 1 to 5 substituents which when occurring within an alicyclic or aromatic ring system are radicals independently selected from a group consisting of (C_{1-6}) alkyl, (C_{1-6}) alkylidene, cyano, halo, nitro, halo-substituted (C_{1-3}) alkyl, $-X^6NR^{17}R^{17}$, $-X^6NR^{17}C(O)OR^{17}$, $-X^6NR^{17}C(O)NR^{17}R^{17}$, $-X^6NR^{17}C(NR^{17})NR^{17}R^{17}$, $-X^6OR^{17}$, $-X^6OR^{17}$, $-X^6OR^{15}$, $-X^6SR^{17}$, $-X^6C(O)OR^{17}$, $-X^6C(O)NR^{17}R^{17}$, $-X^6S(O)_2NR^{17}R^{17}$, $-X^6P(O)(OR^8)OR^{17}$, $-X^6OP(O)(OR^8)OR^{17}$, $-X^6NR^{17}C(O)R^{18}$, $-X^6S(O)_2NR^{17}R^{17}$, $-X^6S(O)_2R^{18}$ and $-X^6C(O)R^{18}$ and when occurring within an aliphatic moiety are radicals independently selected from a group consisting of cyano, halo, nitro, $-NR^{17}R^{17}$, $-NR^{17}C(O)OR^{17}$, $-NR^{17}C(O)NR^{17}R^{17}$, $-NR^{17}C(NR^{17})NR^{17}R^{17}$, $-OR^{17}$, $-SR^{17}$, $-C(O)OR^{17}$, $-NR^{17}C(O)NR^{17}R^{17}$, $-S(O)_2NR^{17}R^{17}$, $-P(O)(OR^{17})OR^{17}$, $-OP(O)(OR^{17})OR^{17}$, $-NR^{17}C(O)R^{18}$, $-S(O)R^{18}$, $-S(O)_2R^{18}$ and $-C(O)R^{18}$, wherein R^{15} , R^{17} , R^{18} and X^6 are as described above; or one of N-oxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of isomers of compounds of formula Ix; or one of pharmaceutically acceptable salts and solvates of such compounds and the N-oxide

derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of isomers formula Ix.

- 14. (Cancelled)
- 15. (Currently amended) A compound of claim 13, selected from the group consisting of:

Morpholine-4-carboxylic acid [1-(1-benzoyl-4-oxo-pyrrolidin-3-ylcarbamoyl)-2-phenylmethanesulfonyl-ethyl]-amide;

Morpholine-4-carboxylic acid [1-(1-benzenesulfonyl-4-oxo-pyrrolidin-3-ylcarbamoyl) 2-phenylmethanesulfonyl-ethyl]-amide;

4-{2-[(Morpholine-4-carbonyl)-amino]-3-phenylmethanesulfonyl-propionylamino}-3-oxo-azepane-1-carboxylic acid benzyl ester; or

Acetic acid 3-{2-[(morpholine-4-carbonyl)-amino]-3-phenylmethanesulfonyl-propionylamino}-4-oxo-azetidin-2-yl ester.

Morpholine-4-carboxylic acid [1-(3-benzenesulfonylamino-2-oxo-propylcarbamoyl)-2-phenylmethanesulfonyl-ethyl]-amide; or

N-{1*S*-[1*S*-(4-Methoxyphenylsulfamoylmethyl)-3-phenylpropylearbamoyl] 2-benzylsulfonylethyl}-morpholine-4-carboxamide.

16. (Cancelled)