Chapitre 1

Réduction des endomorphismes/Matrices carrés

Introduction 1

La réduction d'endomorphisme a pour objectif d'exprimer des matrices et des endomorphismes sous une forme plus simple, par exemple pour faciliter les calculs. Réduire un endomorphisme $u \in \mathcal{L}(E)$, cela correspond à trouver une base de l'espace dans laquelle l'endomorphisme s'exprime simplement. C'est à dire c'est décomposer l'espace E comme somme directe de sous-espaces stables par u, $E = \bigoplus_{i=1}^n E_i$ où les E_i sont stables par u. On peut donc définir les endomorphismes $u_{|E_i}$ induits par u sur E_i , soit :

$$u_{|E_i|} \begin{vmatrix} E_i & \longrightarrow & E_i \\ x & \longmapsto & u(x) \end{vmatrix}$$
.

Comme tout vecteur $\vec{x} \in E$ se décompose de façon unique sous la forme $\vec{x} = \vec{x_1} + \cdots + \vec{x_n}$, on a:

$$u(\vec{x}) = u_{|E_1}(\vec{x_1}) + \dots + u_{|E_n}(\vec{x_n}).$$

Ainsi, l'étude de u se ramène à l'étude des endomorphismes $u_{|E_i|}$. L'idée directrice est que les u_i sont plus simples que u car définis sur des sous-espaces vectoriels de E.

En dimension finie, avec une base adaptée à la décomposition en somme directe, soit \mathcal{B}_1 base de $E_1, \ldots, \mathcal{B}_n$ base de E_n , la matrice de u dans la base $\mathcal{B} = (\mathcal{B}_1, \ldots, \mathcal{B}_n)$ est :

$$[u]_{\mathcal{B}} = \begin{pmatrix} [u_{|E_1}]_{\mathcal{B}_1} & 0 & \cdots & 0 \\ 0 & [u_{|E_2}]_{\mathcal{B}_2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & [u_{|E_n}]_{\mathcal{B}_n} \end{pmatrix}$$

où 0 est la matrice nulle.

Dans le cas favorable, les u_i sont des homothéties, c'est à dire $u_{|E_i} = \lambda_i \mathrm{Id}_{E_i}$.

$$u(\vec{x}) = \lambda_1 \vec{x_1} + \dots + \lambda_n \vec{x_n}$$

Dans ce cas, la matrice de u dans la base \mathcal{B} est

$$[u]_{\mathcal{B}} = \begin{pmatrix} \lambda_1 I_{\dim(E_1)} & 0 & \cdots & 0 \\ 0 & \lambda_2 I_{\dim(E_2)} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n I_{\dim(E_n)} \end{pmatrix}$$

I Stabilité $\mathbf{3}$

avec
$$\lambda_i \mathbf{I}_{\dim(E_i)} = \begin{pmatrix} \lambda_i & 0 & \dots & 0 \\ 0 & \lambda_i & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \lambda_i \end{pmatrix}$$
. $[u]_{\mathcal{B}}$ est donc une matrice diagonale. On dit que l'en-

domorphisme u est diagonalisable. Dans le cadre du programme, l'essentiel du cours de réduction se limite à l'aspect de diagonalisation. Les méthodes de réduction sont de deux types, qu'il convient de souligner : les premières, de nature géométrique, reposent sur les notions de sous-espace stable et d'éléments propres; les secondes, de nature algébrique, font appel aux polynômes annulateurs.

Par exemple, soit E un \mathbb{K} -espace vectoriel et E_1 , E_2 deux sous-espaces vectoriels supplémentaires dans E $(E = E_1 \oplus E_2)$.

Le projecteur p (ou la projection) sur E_1 parallèlement à E_2 est défini par :

$$p \begin{vmatrix} E = E_1 \oplus E_2 & \longrightarrow & E \\ \vec{x} = \vec{x_1} + \vec{x_2} & \longmapsto & \vec{x_1} \end{vmatrix}$$

Nature géométrique : pour tout $x \in E_1$: $p(\vec{x}) = 1.\vec{x}$ donc $p_{|E_1} = 1 \mathrm{Id}_{E_1}$ et pour tout $x \in E_2$: $p(\vec{x}) = 0.\vec{x}$ donc $p_{|E_2} = 0 \mathrm{Id}_{E_2}$. La matrice de p dans une base adaptée à $E_1 \oplus E_2$

$$[p]_{\mathcal{B}} = \begin{pmatrix} 1.I_r & 0\\ 0 & 0.I_{n-r} \end{pmatrix}.$$

Nature algébrique: On a $p^2 = p$, d'où $p^2 - p = 0$ et enfin $(p - 1.\mathrm{Id}_E)(p - 0.\mathrm{Id}_E) = 0$. Le polynôme Q = (X - 1).(X - 0) est un polynôme annulateur de l'endomorphisme p car Q(p) = 0. Comme Q est scindé simple, on démontrera que de nouveau p est diagonalisable dans une base \mathcal{B} adaptée à $E_1 \oplus E_2$.

Notations

- \mathbb{K} désigne un corps (ici \mathbb{R} ou \mathbb{C});
- E désigne un \mathbb{K} -espace vectoriel de dimension finie;
- $\mathcal{L}(E)$ désigne l'ensemble des endomorphismes de E, c'est à dire l'ensemble des applications linéaires de E dans E.

Stabilité Ι

D'un sous espace vectoriel : $u(F) \subset F$

Définition 1 (Stable)

Soit $u \in \mathcal{L}(E)$. On dit qu'un sous-espace F de E est stable par u si $u(F) \subset F$, c'est à dire :

$$\forall \vec{x} \in F, \quad u(\vec{x}) \in F.$$

On peut alors définir un endomorphisme $u_{|F} \in \mathcal{L}(F)$ en posant $u_{|F}(\vec{x}) = u(\vec{x})$ pour tout $x \in F$. $u_{|F|}$ s'appelle l'**endomorphisme induit** par u sur F.

 $\frac{\textbf{Exemple 1 } (\textit{D\'eriv\'ee})}{\mid \text{Soit } \phi: f \mapsto f'. \text{ L'espace vectoriel des fonctions } C^{\infty} \text{ est stable par } \phi.}$

Proposition I.1

Soit F un sous-espace vectoriel de E de dimension finie et soit $\mathcal B$ une base de E dont les

premiers vecteurs, \mathcal{B}' , forment une base de F. Alors la matrice de u dans cette base a la forme

$$[u]_{\mathcal{B}} = \begin{pmatrix} A & B \\ 0 & C \end{pmatrix}$$

si et seulement si F est stable par u. Dans ce cas $A = [u_F]_{\mathcal{B}'}$.

Proposition I.2 (Diagonalisation par blocs)

Soit $E_1 \oplus E_2 = E$ de dimension finie avec E_1 et E_2 stables par u. Alors la matrice de u dans une base adaptée $\mathcal{B} = (\mathcal{B}_1, \mathcal{B}_2)$ à la décomposition $E_1 \oplus E_2 = E$ a la forme diagonale par blocs

$$[u]_{\mathcal{B}} = \begin{pmatrix} A & 0\\ 0 & B \end{pmatrix}$$

 $A = [u_{|E_1}]_{\mathcal{B}_1} \ et \ B = [u_{|E_2}]_{\mathcal{B}_2}$

Définition 2 (Stable)

Soit $M \in \mathcal{M}_n(\mathbb{K})$. On dit qu'un sous-espace F de $\mathcal{M}_{n,1}(\mathbb{K})$ est stable par M si

$$\forall X \in \mathcal{M}_{n,1}(\mathbb{K}), \quad MX \in F.$$

Dans ce cas, M est semblable à une matrice de la forme $\begin{pmatrix} A & B \\ 0 & C \end{pmatrix}$ avec une matrice de passage de la base canonique à une base adaptée à F.

Proposition I.3 (Diagonalisation par blocs)

Soit $E_1 \oplus E_2 = \mathcal{M}_n(\mathbb{K})$ avec E_1 et E_2 stables par M. Alors la matrice de M est semblable à la matrice diagonale par blocs, c'est à dire que

$$M = P \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix} P^{-1}$$

avec P la matrice de passage de la base canonique à une base adaptée $\mathcal{B} = (\mathcal{B}_1, \mathcal{B}_2)$.

Exemple 2 (Matrice orthogonal)

$$A = \frac{1}{3} \begin{pmatrix} 2 & -1 & 2 \\ 2 & 2 & -1 \\ -1 & 2 & 2 \end{pmatrix}.$$

Soit
$$E_1 = \text{Vect} < \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} > \text{et } E_2 = \text{Vect} < \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} >.$$

Pour la stabilité, on vérifie que

$$A \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \in E_1$$

et

$$A\begin{pmatrix}1\\0\\-1\end{pmatrix} = \begin{pmatrix}0\\1\\-1\end{pmatrix} = -1\begin{pmatrix}1\\-1\\0\end{pmatrix} + 1\begin{pmatrix}1\\0\\-1\end{pmatrix} \in E_1.$$

De plus, on a
$$A \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \in E_2$$
.

I Stabilité 5

$$A \text{ est semblable à la matrice } \begin{pmatrix} 0 & -1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \text{ et la matrice de passage est } P = \begin{pmatrix} 1 & 1 & 1 \\ -1 & 0 & 1 \\ 0 & -1 & 1 \end{pmatrix}$$

B D'une droite vectoriel : $u(\mathbb{K}\vec{x}) \subset \mathbb{K}\vec{x}$ (vecteurs propres et valeurs propres : $u(\vec{x}) = \lambda \vec{x}$)

Proposition I.4 (Caractérisation)

Soit $u \in \mathcal{L}(E)$. Soit $\vec{x} \in E$.

 $\mathbb{K}\vec{x}$ est stable par u si et seulement si il existe λ dans \mathbb{K} tel que $u(\vec{x}) = \lambda \vec{x}$.

Proposition I.5 (Caractérisation)

Soit $M \in \mathcal{M}_n(\mathbb{K})$. Soit $X \in \mathcal{M}_{n,1}(\mathbb{K})$.

 $\mathbb{K}X$ est stable par M si et seulement si il existe λ dans \mathbb{K} tel que $MX = \lambda X$.

Définition 3

Soit $u \in \mathcal{L}(E)$.

- On dit que $\lambda \in \mathbb{K}$ est une valeur propre de u si il existe $\vec{x} \neq \vec{0}_E$ tel que $u(\vec{x}) = \lambda \vec{x}$.
- On dit que $\vec{x} \in E$ est un **vecteur propre** de u associé à la valeur propre λ si $\vec{x} \neq \vec{0}_E$ et $u(\vec{x}) = \lambda \vec{x}$.
- On appelle spectre de u, noté $\mathrm{Sp}(u)$, l'ensemble des valeurs propres de u.
- On appelle sous-espace propre de u associé à la valeur propre λ le sous-espace vectoriel $E_{\lambda}(u) = \operatorname{Ker}(u \lambda \operatorname{Id}_E)$.

Exemple 3

Soit Ψ $\left| \begin{array}{c} \mathbb{R}_n[X] \longrightarrow \mathbb{R}_n[X] \\ P \longmapsto XP' \end{array} \right|$. On a $\Psi(X^i) = i \times X^i$, pour tout $i \in \{0, \dots, n\}$. X^i est un vecteur propre associé à la valeur propre i.

Exemple 4

Soit $\phi: f \mapsto f'$. On a $\mathrm{Sp}(\phi) = \mathbb{R}$. En effet, pour tout $\lambda \in \mathbb{R}$, la fonction $x \mapsto e^{\lambda x}$ est vecteur propre

$$\phi(e^{\lambda x}) = (e^{\lambda x})' = \lambda e^{\lambda x}.$$

Définition 4

Soit $M \in \mathcal{M}_n(\mathbb{K})$.

- On dit que $\lambda \in \mathbb{K}$ est une valeur propre de M si il existe $X \neq \{0_{\mathcal{M}_{n,1}(\mathbb{K})}\}$ tel que $MX = \lambda X$.
- On dit que $X \in \mathcal{M}_{n,1}(\mathbb{K})$ est un vecteur propre de u associé à la valeur propre λ si et seulement si $X \neq 0_{\mathcal{M}_{n,1}(\mathbb{K})}$ et $MX = \lambda X$.
- On appelle spectre de M, noté Sp(M), l'ensemble des valeurs propres de M.
- On appelle sous-espace propre de M associé à la valeur propre λ le sous-espace vectoriel $E_{\lambda}(M) = \operatorname{Ker}(M \lambda I_n)$.

Exemple 5

la matrice $M=\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ représente la symétrie par rapport à la première bissectrice, soit la

symétrie par rapport à $E_1 = \operatorname{Vect} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ parallèlement à $E_2 = \operatorname{Vect} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$. On a $M \begin{pmatrix} 1 \\ 1 \end{pmatrix} = 1 \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ et $M \begin{pmatrix} 1 \\ -1 \end{pmatrix} = -1 \begin{pmatrix} 1 \\ -1 \end{pmatrix}$. $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ est un vecteur propre associé à la valeur propre 1 (tout vecteur appartenant à la première bissectrice est invariant par M) et $\begin{pmatrix} -1 \\ 1 \end{pmatrix}$ est un vecteur propre associé à la valeur propre -1 (tout vecteur orthogonal à la première bissectrice est transformé en son opposé par M).

Proposition I.6

Soit $u \in \mathcal{L}(E)$ et $\lambda \in \operatorname{Sp} u$. Alors l'ensemble des vecteurs propres de u associés à la valeur propre λ est $\operatorname{Ker}(u-\lambda \operatorname{Id}_E)\setminus \{\vec{0}_E\}$.

Proposition I.7

Soit $M \in \mathcal{M}_n(\mathbb{K})$ et $\lambda \in \operatorname{Sp} M$. Alors l'ensemble des vecteurs propres de M associés à la valeur propre λ est $\operatorname{Ker}(M - \lambda I_n) \setminus \{0_{\mathcal{M}_{n,1}(\mathbb{K})}\}$.

Proposition I.8

Soit $u \in \mathcal{L}(E)$. Les conditions suivantes sont équivalentes :

- $-\lambda \in \operatorname{Sp} u$;
- $-\exists \vec{x} \neq \vec{0}_E \ tel \ que \ (u \lambda \mathrm{Id}_E)(\vec{x}) = \vec{0}_E \ ;$
- $E_{\lambda}(u) = \operatorname{Ker}(u \lambda \operatorname{Id}_{E}) \neq \{\vec{0}_{E}\};$
- $u \lambda Id_E$ n'est pas injective
- $u \lambda \operatorname{Id}_E$ n'est pas bijective (uniquement en dimension finie).

Proposition I.9

Soit $M \in \mathcal{M}_n(\mathbb{K})$. Les conditions suivantes sont équivalentes :

- $-\lambda \in \operatorname{Sp}M$
- $-\exists X \neq 0_{\mathcal{M}_{n,1}(\mathbb{K})} \ tel \ que \ (M \lambda I_n)X = 0 \ ;$
- $-E_{\lambda}(M) = \operatorname{Ker}(M \lambda I_n) \neq \{0\};$
- $(M \lambda I_n)$ n'est pas inversible.

Proposition I.10

Soit $u \in \mathcal{L}(E)$, λ une valeur propre de u et E_{λ} le sous-espace propre correspondant. Alors E_{λ} est stable par u.

De plus, l'endomorphisme induit par u sur E_{λ} est l'homothétie de rapport λ . Autrement dit, $u_{|E_{\lambda}} = \lambda \operatorname{Id}_{E_{\lambda}}$.

De plus, en dimension finie, la matrice de u dans une base adaptée à E_{λ} est de la forme :

$$\begin{pmatrix} I_{\dim(E_{\lambda})} & B \\ 0 & C \end{pmatrix}.$$

Proposition I.11 (Diagonalisation)

Soit $E_{\lambda_1} \oplus E_{\lambda_2} \cdots \oplus E_{\lambda_p} = E$ de dimension finie avec E_{λ_1} , $E_{\lambda_2} \ldots$ et E_{λ_p} des espaces propres

de u. Alors la matrice de u dans une base adaptée à $E_{\lambda_1} \oplus E_{\lambda_2} \cdots \oplus E_{\lambda_p}$ est :

$$\begin{pmatrix} \lambda_1 \mathrm{I}_{\dim(E_1)} & 0 & \cdots & 0 \\ 0 & \lambda_2 \mathrm{I}_{\dim(E_2)} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_p \mathrm{I}_{\dim(E_p)} \end{pmatrix}.$$

Proposition I.12

Soit $M \in \mathcal{M}_n(\mathbb{K})$, λ une valeur propre de M et E_{λ} le sous-espace propre correspondant. Alors E_{λ} est stable par M.

De plus, M est semblable à une matrice de la forme $\begin{pmatrix} \mathrm{I}_{\dim(E_{\lambda})} & B \\ 0 & C \end{pmatrix}$, c'est à dire que :

$$M = P \begin{pmatrix} I_{\dim(E_{\lambda})} & B \\ 0 & C \end{pmatrix} P^{-1}$$

avec P la matrice de passage de la base canonique à une base adaptée à E_{λ} .

Proposition I.13 (Diagonalisation)

Soit $E_{\lambda_1} \oplus E_{\lambda_2} \cdots \oplus E_{\lambda_p} = \mathcal{M}_n(\mathbb{K})$ avec $E_{\lambda_1}, E_{\lambda_2} \ldots$ et E_{λ_p} des espaces propres de M. Alors la matrice de M est semblable à la matrice diagonale, c'est à dire que

$$M = P \begin{pmatrix} \lambda_1 \mathbf{I}_{\dim(E_1)} & 0 & \cdots & 0 \\ 0 & \lambda_2 \mathbf{I}_{\dim(E_2)} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_p \mathbf{I}_{\dim(E_p)} \end{pmatrix} P^{-1}$$

avec P la matrice de passage de la base canonique à une base adaptée à $E_{\lambda_1} \oplus E_{\lambda_2} \cdots \oplus E_{\lambda_p}$.

Théorème I.14

Soit $u \in \mathcal{L}(E)$.

Les sous-espaces propres de u sont en somme directe.

Autrement dit, si $(\vec{x}_i)_{i \in I}$ est une famille de vecteurs propres associés à des valeurs propres deux à deux distinctes, alors la famille $(\vec{x}_i)_{i \in I}$ est libre.

Théorème I.15

Soit $M \in \mathcal{M}_n(\mathbb{K})$.

Les sous-espaces propres de M sont en somme directe.

Autrement dit, si $(X_i)_{i\in I}$ est une famille de vecteurs propres associés à des valeurs propres deux à deux distinctes, alors la famille $(X_i)_{i\in I}$ est libre.

II Polynômes d'endomorphismes

À partir de maintenant et jusqu'à la fin du chapitre, on supposera que E est un espace vectoriel de dimension finie.

A Polynôme caractéristique

Lemme II.1

Soit $u \in \mathcal{L}(E)$.

L'application de \mathbb{K} dans \mathbb{K} définie par $\lambda \mapsto \det(\lambda \mathrm{Id}_E - u)$ est une fonction polynômiale en la

 $variable \lambda$.

Lemme II.2

Soit $M \in \mathcal{M}_n(\mathbb{K})$.

L'application de \mathbb{K} dans \mathbb{K} définie par $\lambda \mapsto \det(\lambda I_n - M)$ est une fonction polynômiale en la variable λ .

Lemme II.3

Soit $A, B \in \mathcal{M}_n(\mathbb{K})$ deux matrices semblables. Alors $\det(\lambda I_n - A) = \det(\lambda I_n - B)$

Définition 5 (Polynôme caractéristique)

Soit $u \in \mathcal{L}(E)$. On appelle **polynôme caractéristique** de u et on note χ_u l'unique polynôme à coefficients dans \mathbb{K} tel que $\forall \lambda \in \mathbb{K}$, $\chi_u(\lambda) = \det(\lambda \operatorname{Id}_E - u)$.

Exemple 6

On définit l'application ϕ par :

$$\phi \mid \mathbb{R}_2[X] \longrightarrow \mathbb{R}_2[X]$$

$$P \longmapsto P - P'$$

La matrice de l'endomorphisme de ϕ dans la base canonique, $\mathcal{B} = (1, X, X^2)$ de $\mathbb{R}_2[X]$ est :

$$[\phi]_{\mathcal{B}} = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix} \text{ car } \phi(X^i) = X^i - iX^{i-1}.$$

Donc
$$\chi_{\phi}(\lambda) = \det(\lambda \operatorname{Id}_{E} - \phi) = \det(\lambda \operatorname{I}_{3} - [u]_{\mathcal{B}}) = \begin{pmatrix} \lambda - 1 & 1 & 0 \\ 0 & \lambda - 1 & 2 \\ 0 & 0 & \lambda - 1 \end{pmatrix} = (\lambda - 1)^{3}.$$

Définition 6 (Polynôme caractéristique)

Soit $M \in \mathcal{M}_n(\mathbb{K})$. On appelle **polynôme caractéristique** de M et on note χ_M l'unique polynôme à coefficients dans \mathbb{K} tel que $\forall \lambda \in \mathbb{K}$, $\chi_M(\lambda) = \det(\lambda \mathbf{I}_n - M)$.

Exemple 7

Soit
$$M = \begin{pmatrix} \frac{3}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{3}{2} \end{pmatrix}$$
.
On a $\chi_M(\lambda) = \det(\lambda I_2 - P) = \begin{pmatrix} \lambda - \frac{3}{2} & \frac{1}{2} \\ \lambda + \frac{1}{2} & -\frac{3}{2} \end{pmatrix} = \lambda^2 - 3\lambda + 2 = (\lambda - 1)(\lambda - 2)$.

Proposition II.4

Soit $u \in \mathcal{L}(E)$.

Le spectre de u est exactement l'ensemble des racines de χ_u , c'est à dire $Sp(u) = Racines(\chi_u)$.

Exemple 8

On a
$$Sp(\phi) = \{1\}.$$

Proposition II.5

Soit $M \in \mathcal{M}_n(\mathbb{K})$.

Le spectre de M est exactement l'ensemble des racines de χ_M , c'est à dire $Sp(M) = Racines(\chi_M)$

Exemple 9

Avec
$$M = \begin{pmatrix} \frac{3}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{3}{2} \end{pmatrix}$$
, on a $Sp(M) = \{1, 2\}$.

Théorème II.6

Soit $u \in \mathcal{L}(E)$, et $n = \dim E$.

Alors:

- χ_u est un polynôme unitaire de degré n;
- le coefficient en X^{n-1} de χ_u vaut $\operatorname{tr} u$;
- le coefficient constant de χ_u vaut $(-1)^n \det u$.

En résumé, $\chi_u(X) = X^n - \operatorname{tr} u X^{n-1} + \dots + (-1)^n \det u$.

Corollaire II.7

Soit $u \in \mathcal{L}(E)$. On suppose que χ_u est scindé; χ_u peut alors s'écrire sous la forme $\chi_u(X) = \prod_{k=1}^n (X - \lambda_k)$. On a tr $u = \sum_{k=1}^n \lambda_k$ et det $u = \prod_{k=1}^n \lambda_k$.

Théorème II.8

Soit $M \in \mathcal{M}_n(\mathbb{K})$.

Alors:

- χ_M est un polynôme unitaire de degré n;
- le coefficient en X^{n-1} de χ_M vaut $\operatorname{tr} M$;
- le coefficient constant de χ_M vaut $(-1)^n \det M$.

En résumé, $\chi_M(X) = X^n - \operatorname{tr} MX^{n-1} + \cdots + (-1)^n \det M$

Corollaire II.9

Soit $M \in \mathcal{M}_n(\mathbb{K})$. On suppose que χ_M est scindé; χ_M peut alors s'écrire sous la forme $\chi_M(X) = \prod_{k=1}^n (X - \lambda_k)$. On a tr $M = \sum_{k=1}^n \lambda_k$ et det $M = \prod_{k=1}^n \lambda_k$.

Exemple 10

Soit
$$M = \begin{pmatrix} \frac{3}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{3}{2} \end{pmatrix}$$
. Comme tr $M = 3$ et $\det_{\mathcal{B}} M = 2$ On a $\chi_M(\lambda) = \lambda^2 - \operatorname{tr} MX + \det M = \lambda^2 - 3X + 2$.

Proposition II.10

Soit $u \in \mathcal{L}(E)$.

Si F est un sous-espace vectoriel stable par u, et $u_{|F}$ l'endomorphisme induit par u sur F, alors $\chi_{u_{|F}}$ divise χ_{u} .

Démonstration: La matrice de u dans la base $\mathcal{B} = (\mathcal{B}_F, \mathcal{B}_S)$ de E où \mathcal{B}_F est une base de F est de la forme:

la forme :
$$[u]_{\mathcal{B}} = \begin{pmatrix} A & B \\ 0 & C \end{pmatrix} \text{ avec } A = [u_{|F}]_{\mathcal{B}_F}.$$

$$\chi_u = \det(X\mathbf{I}_n - [u]_{\mathcal{B}}) = \begin{pmatrix} X\mathbf{I}_r - A & -B \\ 0 & X\mathbf{I}_{n-r} - C \end{pmatrix} = \det(X\mathbf{I}_r - A) \det(X\mathbf{I}_{n-r} - C) = \chi_{u_{|F}} \det(X\mathbf{I}_{n-r} - C).$$

Donc $\chi_{u|_F}$ divise χ_u .

Proposition II.11

Soit $M \in \mathcal{M}_n(\mathbb{K})$.

 $Si\ F\ est\ un\ sous-espace\ vectoriel\ stable\ par\ M,\ et\ u_{|F}\ l'endomorphisme\ induit\ par\ u\ sur\ F,$

alors $\chi_{u|_F}$ divise χ_u .

Proposition II.12

Soit $u \in \mathcal{L}(E)$.

Si F et G sont des sous-espaces vectoriels u-stables tels que $E = F \oplus G$, $u_{|F}$ et $u_{|G}$ les endomorphismes induits par u sur F et G respectivement.

Alors $\chi_u = \chi_{u_{|F}} \chi_{u_{|G}}$.

Définition 7 (Multiplicité)

On appelle multiplicité de la valeur propre λ la multiplicité de λ comme racine de χ_u ou de χ_M .

Exemple 11

Pour l'application $\phi \mid \mathbb{R}_2[X] \longrightarrow \mathbb{R}_2[X]$ $P \longmapsto P - P'$, comme $\chi_{\phi}(\lambda) = (\lambda - 1)^3$, 1 est de multiplicité 3.

Théorème II.13

Soit λ une valeur propre de u ou de M. Alors

 $1 \leqslant \dim E_{\lambda} \leqslant m_{\lambda}$

οù

- E_{λ} est le sous-espace propre de u ou de M associé à la valeur propre λ ;
- m_{λ} est la multiplicité de la valeur propre λ .

Démonstration: Soit n la dimension de E. Comme λ est une valeur propre de i, E_{λ} contient un vecteur non nulle, donc sa dimension $\dim E_{\lambda} \geqslant 1$. De plus E_{λ} est un sous espace vectoriel de E donc $\dim E_{\lambda} \leqslant n$. On a :

- Si dim E_λ = n, alors u est égalé à l'homothétie λId_E, dont le polynôme caractéristique est égal à (X – λ)ⁿ.et on a bien m_λ = n.
- 2. Si $\dim E_{\lambda} \leqslant n$, alors soit \mathcal{B} une base adaptée à E_{λ} . La matrice u dans la base \mathcal{B} est de la forme $\begin{pmatrix} \mathrm{I}_{\dim(E_{\lambda})} & B \\ 0 & C \end{pmatrix}$. On obtient alors $\chi_u = (X \lambda)^{\dim(E_{\lambda})} \chi_C$ ce qui prouve $\dim(E_{\lambda}) \leqslant m_{\lambda}$ car $(X \lambda)^{\dim(E_{\lambda})}$ divise χ_u .

Remarque 1

Si λ est de multiplicité 1 (racine simple) alors dim $E_{\lambda} = 1$.

B Polynôme annulateur

Définition 8 (Polynôme annulateur)

Soit $u \in \mathcal{L}(E)$. Un polynôme $P \in \mathbb{K}[X]$ est dit **polynôme annulateur de** u s'il est non nul et si $P(u) = 0_{\mathcal{L}(E)}$.

Soit $M \in \mathcal{M}_n(\mathbb{K})$.

Un polynôme $P \in \mathbb{K}[X]$ est dit polynôme annulateur de M s'il est non nul et si $P(M) = 0_{\mathcal{M}_n(\mathbb{K})}$.

Exemple 12

Soit
$$M = \begin{pmatrix} \frac{3}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{3}{2} \end{pmatrix}$$
. On a $(M - 2I_2)(M - 1I_2) = 0$, donc $P = (X - 2)(X - 1)$ est un

polynôme annulateur de M.

Lemme II.14

Soit $u \in \mathcal{L}(E)$, $\vec{x} \in E$, $\lambda \in \mathbb{K}$ et $P \in \mathbb{K}[X]$. On suppose que $u(\vec{x}) = \lambda \vec{x}$. Alors $P(u)(\vec{x}) = P(\lambda)\vec{x}$.

Lemme II.15

Soit $M \in \mathcal{M}_n(\mathbb{K})$, $X \in \mathcal{M}_{n,1}(\mathbb{K})$, $\lambda \in \mathbb{K}$ et $P \in \mathbb{K}[X]$. On suppose que $MX = \lambda X$. Alors $P(M)(X) = P(\lambda)X$.

Théorème II.16

Soit $u \in \mathcal{L}(E)$ et P un polynôme annulateur de u. Alors toutes les valeurs propres de u sont des racines de P, c'est à dire $\mathrm{Sp}(u) \subset \mathrm{Racines}(P)$.

Théorème II.17

Soit $M \in \mathcal{M}_n(\mathbb{K})$ et P un polynôme annulateur de M. Alors toutes les valeurs propres de M sont des racines de P, c'est à dire $\operatorname{Sp}(M) \subset \operatorname{Racines}(P)$.

Exemple 13

Soit $M = \begin{pmatrix} \frac{3}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{3}{2} \end{pmatrix}$. On a $(M - 2I_2)(M - 1I_2) = 0$, donc 2 et 1 sont les uniques valeurs propres possibles. On vérifie que le vecteur $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ est vecteur propre de 1 et que le vecteur $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$ est vecteur propre de 2.

Théorème II.18 (Cayley-Hamilton)

Soit $u \in \mathcal{L}(E)$. Alors le polynôme caractéristique de u est un polynôme annulateur de u. Soit $M \in \mathcal{M}_n(\mathbb{K})$.

Alors le polynôme caractéristique de M est un polynôme annulateur de M.