LARGE SPARSE EIGENVALUE PROBLEMS

- Projection methods
- The subspace iteration
- Krylov subspace methods: Arnoldi and Lanczos
- Golub-Kahan-Lanczos bidiagonalization

General Tools for Solving Large Eigen-Problems

- Projection techniques Arnoldi, Lanczos, Subspace Iteration;
- ➤ Preconditioninings: shift-and-invert, Polynomials, ...
- Deflation and restarting techniques
- ➤ Computational codes often combine these three ingredients

A few popular solution Methods

- Subspace Iteration [Now less popular sometimes used for validation]
- Arnoldi's method (or Lanczos) with polynomial acceleration
- Shift-and-invert and other preconditioners. [Use Arnoldi or Lanczos for $(A-\sigma I)^{-1}$.]
- Davidson's method and variants, Jacobi-Davidson
- Specialized method: Automatic Multilevel Substructuring (AMLS).

Projection Methods for Eigenvalue Problems

Projection method onto K orthogonal to L

- \blacktriangleright Given: Two subspaces K and L of same dimension.
- Approximate eigenpairs $\tilde{\lambda}, \tilde{u}$, obtained by solving: Find: $\tilde{\lambda} \in \mathbb{C}, \tilde{u} \in K$ such that $(\tilde{\lambda}I A)\tilde{u} \perp L$
- **➤** Two types of methods:

Orthogonal projection methods: Situation when L = K.

Oblique projection methods: When $L \neq K$.

➤ First situation leads to Rayleigh-Ritz procedure

Rayleigh-Ritz projection

Given: a subspace X known to contain good approximations to eigenvectors of A.

Question: How to extract 'best' approximations to eigenvalues/ eigenvectors from this subspace?

Answer: Orthogonal projection method

- ightharpoonup Let $Q=[q_1,\ldots,q_m]=$ orthonormal basis of X
- Orthogonal projection method onto X yields:

$$Q^H(A- ilde{\lambda}I) ilde{u}=0$$
 $ightarrow$

- $igwedge Q^H A Q y = ilde{\lambda} y$ where $ilde{u} = Q y$
- Known as Rayleigh Ritz process

Procedure:

- 1. Obtain an orthonormal basis of X
- 2. Compute $C = Q^H A Q$ (an $m \times m$ matrix)
- 3. Obtain Schur factorization of C, $C = YRY^H$
- 4. Compute $\tilde{U} = QY$

Property: if X is (exactly) invariant, then procedure will yield exact eigenvalues and eigenvectors.

Proof: Since X is invariant, $(A - \tilde{\lambda}I)u = Qz$ for a certain z. $Q^HQz = 0$ implies z = 0 and therefore $(A - \tilde{\lambda}I)u = 0$.

➤ Can use this procedure in conjunction with the subspace obtained from subspace iteration algorithm

Subspace Iteration

Original idea: projection technique onto a subspace of the form $Y=A^k X$

Practically: A^k replaced by suitable polynomial

Advantages:
Easy to implement (in symmetric case);
Easy to analyze;

Disadvantage: Slow.

▶ Often used with polynomial acceleration: A^kX replaced by $C_k(A)X$. Typically C_k = Chebyshev polynomial.

Algorithm: Subspace Iteration with Projection

- 1. Start: Choose an initial system of vectors $X = [x_0, \dots, x_m]$ and an initial polynomial C_k .
- 2. Iterate: Until convergence do:
 - (a) Compute $\hat{Z} = C_k(A)X$.
 - (b) Orthonormalize \hat{Z} : $[Z,R_Z]=qr(\hat{Z},0)$
 - (c) Compute $B = Z^H A Z$
 - (d) Compute the Schur factorization $B=YR_BY^H$ of B
 - (e) Compute X := ZY.
 - (f) Test for convergence. If satisfied stop. Else select a new polynomial $C'_{k'}$ and continue.

THEOREM: Let $S_0 = span\{x_1, x_2, \ldots, x_m\}$ and assume that S_0 is such that the vectors $\{Px_i\}_{i=1,\ldots,m}$ are linearly independent where P is the spectral projector associated with $\lambda_1, \ldots, \lambda_m$. Let \mathcal{P}_k the orthogonal projector onto the subspace $S_k = span\{X_k\}$. Then for each eigenvector u_i of A, $i=1,\ldots,m$, there exists a unique vector s_i in the subspace S_0 such that $Ps_i = u_i$. Moreover, the following inequality is satisfied

$$\|(I - \mathcal{P}_k)u_i\|_2 \le \|u_i - s_i\|_2 \left(\left| \frac{\lambda_{m+1}}{\lambda_i} \right| + \epsilon_k \right)^k, \quad (1)$$

where ϵ_k tends to zero as k tends to infinity.

Krylov subspace methods

Principle: Projection methods on Krylov subspaces:

$$K_m(A,v_1)=\mathsf{span}\{v_1,Av_1,\cdots,A^{m-1}v_1\}$$

- The most important class of projection methods [for linear systems and for eigenvalue problems]
- ullet Variants depend on the subspace L
- ightharpoonup Let $\mu=\deg$ of minimal polynom. of v_1 . Then:
- $ullet K_m = \{p(A)v_1|p = ext{polynomial of degree} \leq m-1\}$
- $ullet K_m = K_\mu$ for all $m \geq \mu.$ Moreover, K_μ is invariant under A.
- $ullet dim(K_m)=m ext{ iff } \mu \geq m.$

Arnoldi's algorithm

- ▶ Goal: to compute an orthogonal basis of K_m .
- ▶ Input: Initial vector v_1 , with $||v_1||_2 = 1$ and m.

ALGORITHM : 1. Arnoldi's procedure

For
$$j=1,...,m$$
 do Compute $w:=Av_j$
For $i=1,\ldots,j$, do $\begin{cases} h_{i,j}:=(w,v_i) \ w:=w-h_{i,j}v_i \end{cases}$ $k_{j+1,j}=\|w\|_2;$ $v_{j+1}=w/h_{j+1,j}$

Based on Gram-Schmidt procedure

Result of Arnoldi's algorithm

Results:

- 1. $V_m = [v_1, v_2, ..., v_m]$ orthonormal basis of K_m .
- 2. $AV_m = V_{m+1}\overline{H}_m = V_mH_m + h_{m+1,m}v_{m+1}e_m^T$
- 3. $V_m^T A V_m = H_m \equiv \overline{H}_m$ last row.

13-13

Application to eigenvalue problems

- ightharpoonup Write approximate eigenvector as $ilde{u}=V_m y$
- Galerkin condition:

$$(A- ilde{\lambda}I)V_my \perp \mathcal{K}_m
ightarrow V_m^H(A- ilde{\lambda}I)V_my = 0$$

ightharpoonup Approximate eigenvalues are eigenvalues of H_m

$$H_m y_j = ilde{\lambda}_j y_j$$

Associated approximate eigenvectors are

$$ilde{u}_j = V_m y_j$$

➤ Typically a few of the outermost eigenvalues will converge first.

Hermitian case: The Lanczos Algorithm

➤ The Hessenberg matrix becomes tridiagonal :

$$A=A^H$$
 and $V_m^HAV_m=H_m$ $ightarrow H_m=H_m^H$

ightharpoonup Denote H_m by T_m and $ar{H}_m$ by $ar{T}_m$. We can write

Consequence: three term recurrence

$$eta_{j+1}v_{j+1}=Av_j-lpha_jv_j-eta_jv_{j-1}$$

ightharpoonup Relation $AV_m=V_{m+1}\overline{T_m}$

ALGORITHM: 2. Lanczos

1. Choose an initial v_1 with $\|v_{-1}\|_2=1$; Set $eta_1\equiv 0, v_0\equiv 0$

- 2. For j = 1, 2, ..., m Do:
- $3. \qquad w_j := Av_j \beta_j v_{j-1}$
- 4. $\alpha_i := (w_i, v_i)$
- $\mathbf{5.} \qquad w_j := w_j \alpha_j v_j$
- 6. $\beta_{j+1} := \|w_j\|_2$. If $\beta_{j+1} = 0$ then Stop
- 7. $v_{j+1} := w_j/\beta_{j+1}$
- 8. EndDo

Hermitian matrix + **Arnoldi** → **Hermitian Lanczos**

- In theory v_i 's defined by 3-term recurrence are orthogonal.
- However: in practice severe loss of orthogonality;

Csci 5304 - December 4, 2013

Observation [Paige, 1981]: Loss of orthogonality starts suddenly, when the first eigenpair has converged. It is a sign of loss of linear indedependence of the computed eigenvectors. When orthogonality is lost, then several the copies of the same eigenvalue start appearing.

Reorthogonalization

- Full reorthogonalization reorthogonalize v_{j+1} against all previous v_i 's every time.
- Partial reorthogonalization reorthogonalize v_{j+1} against all previous v_i 's only when needed [Parlett & Simon]
- > Selective reorthogonalization reorthogonalize v_{j+1} against computed eigenvectors [Parlett & Scott]
- No reorthogonalization Do not reorthogonalize but take measures to deal with 'spurious' eigenvalues. [Cullum & Willoughby]

Lanczos Bidiagonalization

ightharpoonup We now deal with rectangular matrices. Let $A \in \mathbb{R}^{m \times n}$.

ALGORITHM: 3. Golub-Kahan-Lanczos

1. Choose an initial v_1 with $\|v_{-1}\|_2=1$; Set $p\equiv v_1$, $eta_0\equiv 1, u_0\equiv 0$

2. For
$$k = 1, ..., p$$
 Do:

3.
$$r := Av_k - \beta_{k-1}u_{k-1}$$

4.
$$\alpha_k = ||r||_2$$
; $u_k = r/\alpha_k$

5.
$$p = A^T u_k - \alpha_k v_k$$

6.
$$\beta_k = \|p\|_2$$
; $v_{k+1} := p/\beta_k$

7. EndDo

Let:

$$egin{aligned} V_{p+1} &= [v_1, v_2, \cdots, v_{p+1}] &\in \mathbb{R}^{n imes (p+1)} \ U_p &= [u_1, u_2, \cdots, u_p] &\in \mathbb{R}^{m imes p} \end{aligned}$$

13-19

Let:

$$ightharpoonup \hat{B}_p = B_p(:, 1:p)$$

$$egin{aligned} oldsymbol{\hat{B}}_p &= B_p(:,1:p) \ oldsymbol{V}_p &= [v_1,v_2,\cdots,v_p] \in \mathbb{R}^{n imes p} \end{aligned}$$

Result:

$$ightharpoonup V_{p+1}^T V_{p+1} = I$$

$$ightharpoonup U_p^T U_p = I$$

$$lacksquare AV_p = U_p \hat{B}_p$$

$$igwdots V_{p+1}^T V_{p+1} = I$$
 $igwdots U_p^T U_p = I$
 $igwdots A V_p = U_p \hat{B}_p$
 $igwdots A^T U_p = V_{p+1} B_p^T$

Observe that

$$egin{aligned} A^T(AV_p) &= A^T(U_p\hat{B}_p) \ &= V_{p+1}B_p^T\hat{B}_p \end{aligned}$$

 $m B_p^T \hat B_p$ is a (symmetric) tridiagonal matrix of size (p+1) imes p – Call it $\overline{T_k}$. Then

$$(A^TA)V_p=V_{p+1}\overline{T_p}$$

- Standard Lanczos relation!
- Therefore the algorithm is equivalent to the standard Lanczos algorithm applied to A^TA .
- ightharpoonup Similar result for the u_i 's [involves AA^T]
- Work out the details: What are the entries of \overline{T}_p relative to those of B_p ?

Graph Laplaceans - Definition

- ➤ "Laplace-type" matrices associated with general undirected graphs useful in many applications
- ightharpoonup Given a graph G=(V,E) define
- ullet A matrix W of weights w_{ij} for each edge
- ullet Assume $w_{ij} \geq 0$,, $w_{ii} = 0$, and $w_{ij} = w_{ji} \; orall (i,j)$
- ullet The diagonal matrix $D=diag(d_i)$ with $d_i=\sum_{j
 eq i}w_{ij}$
- \triangleright Corresponding graph Laplacean of G is:

$$L = D - W$$

ightharpoonup Gershgorin's theorem ightarrow L is positive semidefinite

Simplest case:

$$w_{ij} = egin{cases} 1 ext{ if } (i,j) \in E\&i
eq j \ 0 ext{ else} \end{cases} \quad D = \operatorname{diag} \left[d_i = \sum_{j
eq i} w_{ij}
ight]$$

Define the graph Laplacean for the graph associated with the simple mesh shown next. [use the simple weights of 0 or 1]

What is the difference with the discretization of the Laplace operator in 2-D for case when mesh is the same as this graph?

A few properties of graph Laplaceans

Strong relation between x^TLx and local distances between entries of

 \boldsymbol{x}

Let L= any matrix s.t. L= D-W, with $D=diag(d_i)$ and

$$w_{ij} \geq 0, \qquad d_i \; = \; \sum_{j
eq i} w_{ij}$$

Property 1: for any $x \in \mathbb{R}^n$:

$$x^ op L x = rac{1}{2} \sum_{i,j} w_{ij} |x_i - x_j|^2$$

Property 2: (generalization) for any $Y \in \mathbb{R}^{d \times n}$:

$$\mathsf{Tr}\left[YLY^{ op}
ight] = rac{1}{2} \sum_{i,j} w_{ij} \|y_i - y_j\|^2$$

Property 3: For the particular $L=I-\frac{1}{n}\mathbf{1}\mathbf{1}^{ op}$ $XLX^{ op}=\bar{X}\bar{X}^{ op}==n\times \text{Covariance matrix}$

Property 4: L is singular and admits the null vector e = ones(n,1)

Property 5: (Graph partitioning) Consider situation when $w_{ij} \in \{0,1\}$. If x is a vector of signs (± 1) then

 $x^ op Lx = 4 imes$ ('number of edge cuts') edge-cut = pair (i,j) with $x_i
eq x_j$

- lackbox Would like to minimize (Lx,x) subject to $x\in\{-1,1\}^n$ and $e^Tx=0$ [balanced sets]
- ➤ WII solve a relaxed form of this problem

Csci 5304 - December 4, 2013

- ➤ Consider any symmetric (real) matrix A with eigenvalues $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$ and eigenvectors u_1, \cdots, u_n
- Recall that: (Min reached for $x = u_1$)

$$\min_{x \in \mathbb{R}^n} rac{(Ax,x)}{(x,x)} = \lambda_1$$

(Min reached for $x=u_2$) $\min_{x\perp u_1} \frac{(Ax,x)}{(x,x)} = \lambda_2$

$$\min_{x\perp u_1}rac{(Ax,x)}{(x,x)}=\lambda_2$$

- For a graph Laplacean $u_1 = e =$ vector of all ones and
- \blacktriangleright ...vector u_2 is called the Fiedler vector. It solves a relaxed form of the problem -

$$\min_{oldsymbol{x} \in \{-1,1\}^n; \; e^T x = 0} rac{(Lx,x)}{(x,x)}
ightarrow \min_{oldsymbol{x} \in \mathbb{R}^n; \; e^T x = 0} rac{(Lx,x)}{(x,x)}$$

▶ Define $v = u_2$ then lab = sign(v - med(v))

Spectral Graph Partitioning

Idea:

- ➤ Partition graph in two using fiedler vectors
- Cut largest in two ..
- Repeat until number of desired partitions is reached
- ➤ Use the Lanczos algorithm to compute the Fiedler vector at each step