Simulation einer Multikapillarsäule Abschlussvortrag Diplomarbeit

Elisabeth Böhmer

Technische Universität Dortmund Fakultät für Informatik Lehrstuhl 11

30. September 2015

Betreuer: Prof. Dr. Sven Rahmann Prof. Dr. Jörg Rahnenführer

Gliederung

- ① Grundlagen
- 2 2-Zustände Modell
- 3 3-Zustände Modell
- 4 Simulationsarten
- 5 Zusammenfassung und Ausblick

Allgemeines zur Chromatographie

Grundlagen

Verfahren zur Auftrennung von Stoffgemischen

Allgemeines zur Chromatographie

- Verfahren zur Auftrennung von Stoffgemischen
- Verteilung der Analyten zwischen mobiler und stationärer Phase

Grundlagen

Allgemeines zur Chromatographie

- Verfahren zur Auftrennung von Stoffgemischen
- Verteilung der Analyten zwischen mobiler und stationärer Phase
- Anwendung TODO

O mobile Phase Analyt

stationäre Phase

O mobile Phase Analyt

stationäre Phase

Grundlagen

00000

○ mobile Phase ● Analyt

stationäre Phase

Lösung

○ mobile Phase ● Analyt

stationäre Phase

O mobile Phase Analyt

stationäre Phase

○ mobile Phase ● Analyt

stationäre Phase

Adsorption

O mobile Phase Analyt

stationäre Phase

Nach Durchlaufen der Säule

- Detektion der austretenden Substanzen
- Detektion der Menge, keine Unterscheidung der Substanzen

Nach Durchlaufen der Säule

- Detektion der austretenden Substanzen
- Detektion der Menge, keine Unterscheidung der Substanzen
- Spektrogramm aus mehreren Peaks

Nach Durchlaufen der Säule

Grundlagen

- Detektion der austretenden Substanzen
- Detektion der Menge, keine Unterscheidung der Substanzen
- Spektrogramm aus mehreren Peaks

- Alternativ: Weitere Analyse durch zum Beispiel
 - Massenspektrometrie (MS)
 - ► Ionen-Mobilitäts-Spektrometrie (IMS)

Charakteristika der Peaks

Peak charakterisiert durch:

Lage des Maximums

Charakteristika der Peaks

Peak charakterisiert durch:

- Lage des Maximums
- Breite
 - Interquartilskoeffizient

$$IQR = Q_{75} - Q_{25}$$

Charakteristika der Peaks

Peak charakterisiert durch:

- Lage des Maximums
- Breite
 - Interquartilskoeffizient

$$IQR = Q_{75} - Q_{25}$$

- Form
 - ► Idealfall: Gaußkurve
 - ► Abweichung: Fronting, Tailing
 - Quartilskoeffizient

$$\frac{Q_{\alpha} + Q_{1-\alpha} - 2 \cdot Q_{50}}{Q_{1-\alpha} - Q_{\alpha}}$$

> 0 : rechtsschief < 0 : linksschief

Simulationseckdaten

Grundlagen

00000

	MCC	Simulation
Länge der Säule	20 cm	1000 Raumschritte
	1 Raumschritt $\equiv 0.2$ mm	
Durchlaufzeit Trägergas	0,1 s	1000 Zeitschritte
C 1 1 1 1 1 T T		,
Geschwindigkeit Trägergas	2 m/s	1 Raumschritt / Zeitschritt
Dauer des Experiments	240 s	2 400 000 Zeitschritte

Grundlagen

Gesucht:

- Entsprechung von Peakcharakteristika zu Simulationsparametern
- Unbekannte Funktion $F:[0,1]^x \to \mathbb{R}^y$ mit y=3 und x je nach Modell

Modell für die Chromatographie

Prinzip:

Modell:

Modell für die Chromatographie

Prinzip:

• 2 Phasen: stationär und mobil

Modell:

ullet 2 Zustände: s und m

Modell für die Chromatographie

2-Zustände Modell

Prinzip:

- 2 Phasen: stationär und mobil.
- Wechsel dazwischen, bzw. Verweilen in der Phase

Modell:

- \circ 2 Zustände: s und m
- Wechselwahrscheinlichkeiten

$$ightharpoonup s
ightharpoonup s
igh$$

$$ightharpoonup s
ightharpoonup s
ightharpoonup m: 1-p_s$$

$$ightharpoonup m \rightarrow m : p_m$$

$$m \rightarrow s: 1-p_m$$

Graphische Darstellung des Modells

PAA für das 2-Zustände Modell

Simulationsergebnisse

Schiefe

Grenzen des 2-Parameter Modells

• Zu späten Zeitpunkten wird Minimalbreite nicht unterschritten

Grenzen des 2-Parameter Modells

- Zu späten Zeitpunkten wird Minimalbreite nicht unterschritten
- Peaks nur als Gaußkurven, kein Tailing
 - ► Eigentlich "perfekt", aber nicht realistisch

Erweiterung zum 3-Zustände Modell

• Bisher keine Unterscheidung zwischen Adsorption und Lösung

Erweiterung zum 3-Zustände Modell

- Bisher keine Unterscheidung zwischen Adsorption und Lösung
- Weiterer stationärer Zustand
 - ► Keine Übergänge zwischen den stationären Zuständen (3a)

Erweiterung zum 3-Zustände Modell

- Bisher keine Unterscheidung zwischen Adsorption und Lösung
- Weiterer stationärer Zustand
 - ► Keine Übergänge zwischen den stationären Zuständen (3a)

Neuer Zustand als Zwischenzustand (3b)

Zustandekommen von Tailing

- "2-Komponenten Modell":
 - Symmetrischer Peak durch 2 Phasen, mobil und adsorbiert
 - Tail durch selten erreichten, lange währenden Zustand

PAA für das 3-Zustände Modell

Tailing

Schiefe

Einfluss der Parameter auf einen Einzelpeak

p_{mm}	p_{ml}	p_{aa}	$p_{ m II}$	Lage	Breite	Schiefe
0,1	0,0005	0,9991	0,99999	100,22	8,1	0,23

p_{mm}	$p_{m }$	p_{aa}	$p_{ }$	Lage	Breite	Schiefe
0,1	0,0005	0,9991	0,99999	100,22	8,1	0,23
0,05	0,0005	0,9991	0,99999	105,76	8,11	0,229
0,2	0,0003	0,9991	0,99999	89,1	8,05	0,235

Einfluss der Parameter auf einen Einzelpeak

p_{mm}	$p_{m }$	p_{aa}	$p_{ }$	Lage	Breite	Schiefe	
0,1	0,0005 0,9991		0,99999	100,22	8,1	0,23	
0,05	0,0005	0,9991	0,99999	105,76	8,11	0,229	
0,2	0,0003	0,9991	0,99999	89,1	8,05	0,235	
0,1	0,0007	0,9991	0,99999	100,04	6,22	0,12	
0,1	0,0005	0,9991	0,99999	100,4	10,89	0,34	

p_{mm}	$p_{m }$	p_{aa}	$p_{ }$	Lage	Breite	Schiefe
0,1	0,0005	0,9991	0,99999	100,22	8,1	0,23
0,05	0,0005	0,9991	0,99999	105,76	8,11	0,229
0,2	0,0003	0,9991	0,99999	89,1	8,05	0,235
0,1	0,0007	0,9991	0,99999	100,04	6,22	0,12
0,1	0,0005	0,9991	0,99999	100,4	10,89	0,34
0,1	0,0005	0,999	0,99999	90,17	7,68	0,26
0,1	0,0005	0,9992	0,99999	112,77	8,64	0,2

Einfluss der Parameter auf einen Einzelpeak

p_{mm}	$p_{m }$	p_{aa}	$p_{ }$	Lage	Breite	Schiefe
0,1	0,0005	0,9991	0,99999	100,22	8,1	0,23
0,05	0,0005	0,9991	0,99999	105,76	8,11	0,229
0,2	0,0003	0,9991	0,99999	89,1	8,05	0,235
0,1	0,0007	0,9991	0,99999	100,04	6,22	0,12
0,1	0,0005	0,9991	0,99999	100,4	10,89	0,34
0,1	0,0005	0,999	0,99999	90,17	7,68	0,26
0,1	0,0005	0,9992	0,99999	112,77	8,64	0,2
0,1	0,0005	0 9991	0,999975	100,41	5,91	0,08
0,1	0,0005	0 9991	0,999993	100,12	9,93	0,34

Einfluss: pll abhängig von pml

Erreichbare Breiten und Schiefen für Zeitpunkt 100

Mehrere Parameterkombinationen für einen Peak [1]

Mehrere Parameterkombinationen für einen Peak [2]

- Teilchensimulation: Simuliere n Teilchen, für Säule der Länge ℓ, für maximal t_{max} Schritte, verwalte Orte und Zustände der Teilchen
 - Step-by-Step
 - By-Event

Simulationsarten

- Teilchensimulation: Simuliere n Teilchen, für Säule der Länge ℓ , für maximal $t_{\rm max}$ Schritte, verwalte Orte und Zustände der Teilchen
 - Step-by-Step
 - By-Event
- PAA:

Berechne Verteilung der Wartezeit für Wert ℓ maximale Wartezeit von t_{\max}

Simulation sarten 0•000000 Zusammenfassung und Ausblick

○
○

Step-by-Step

$$p_{\rm s}=0.8$$
, $p_{\rm m}=0.5, \ell=10, t=11$

Phasen ${\it z}$	0	0	1	1	1	1	0
Orte o	0	4	4	1	6	9	3
ZV	0,9	0,6	0,2	0,9	0,7	0,2	0,7
bleibe stat.: s	0	1	1	0	1	1	1
bleibe mobil: m	0	0	1	0	0	1	0
Phasen z^\prime	1	0	1	0	0	1	0
Orte o'	1	4	5	1	6	10	3

$$(z'_p = z_p \wedge m_p) \vee (\neg z_p \wedge \neg s_p)$$
$$(z' = z \wedge m_p) \vee (\neg z_p \wedge \neg s_p)$$

By-Event

By-Event

Zusammenfassung und Ausblick

PAA

Jedes neue Feld:
$$z_{t+1}[o] = m_t[o-1] \cdot p_{\mathsf{m}z} + a_t[o] \cdot p_{\mathsf{a}z} + l_t[o] \cdot p_{\mathsf{l}z}$$

Vergleich

• PAA genauer als Teilchensimulation (TODO Bild)

Vergleich

• PAA genauer als Teilchensimulation (TODO Bild)

- PAA genauer als Teilchensimulation (TODO Bild)
- im 2-Zustände Modell:
 - Step-by-Step schneller

Simulation sarten

Vergleich

- PAA genauer als Teilchensimulation (TODO Bild)
- im 2-Zustände Modell:
 - Step-by-Step schneller
- im 3-Zustände Modell:
 - By-Event schneller

Modelle mit 2 oder 3 Zuständen

- Modelle mit 2 oder 3 Zuständen
- Modellierung als PAA

- Modelle mit 2 oder 3 Zuständen
- Modellierung als PAA
- Simulationsarten

- Modelle mit 2 oder 3 Zuständen
- Modellierung als PAA
- Simulationsarten
- Funktion $F:[0,1]^x \to \mathbb{R}^y$ für y=3 und x=4 im 3-Zustände Modell

- Modelle mit 2 oder 3 Zuständen
- Modellierung als PAA
- Simulationsarten
- Funktion $F:[0,1]^x \to \mathbb{R}^y$ für y=3 und x=4 im 3-Zustände Modell
- Parametereinflüsse

Ausblick

• Andere Maße, insbesondere für Schiefe und Breite

- Andere Maße, insbesondere für Schiefe und Breite
- Peaks als Funktionen

Ausblick

- Andere Maße, insbesondere für Schiefe und Breite
- Peaks als Funktionen
- Verifikation des Modells in größerem Rahmen

- Andere Maße, insbesondere für Schiefe und Breite
- Peaks als Funktionen
- Verifikation des Modells in größerem Rahmen
- Formel für Entsprechung

- Andere Maße, insbesondere für Schiefe und Breite
- Peaks als Funktionen
- Verifikation des Modells in größerem Rahmen
- Formel für Entsprechung
- Weitere Modelle falls erforderlich