Analisi Matematica

Alessandro Monticelli

A.A. 2021/2022

Contents

Introduzione			3
1	Insi	emi	4
	1.1	Definizione	4
	1.2	Concetti di base e operatori	4
		1.2.1 Inclusione	4
		1.2.2 Unione	4
		1.2.3 Intersezione	5
		1.2.4 Differenza	5
		1.2.5 Differenza Simmetrica	5
		1.2.6 Prodotto Cartesiano	6
		1.2.7 Insieme Vuoto	6
2	Pro	posizioni	7
	2.1	Definizione	7
	2.2	Quantificatori	7
	2.3	Definizioni, teoremi ed enunciati	7
	2.4	Principio di induzione	8
3	Coll	ezioni	9
	3.1	Insiemi Numerici	9
	3.2	Assiomi di $\mathbb R$	9
	3.3	Cardinalità	11
	3.4		11
	3.5		11
	3.6		12
			12
			12
	3.7		13
	• • •	00	13
			13
	3.8		14
	0.0		$^{-4}$
			15
	3.9	-	15^{-1}
	0.0		15

Introduzione

Appunti di Analisi matematica - corso di Ingegneria e Scienze Informatiche.

1 Insiemi

1.1 Definizione

Un insieme è una collezione di elementi. Per ogni elemento si può dire se esso appartiene all'insieme, o no.

Notazioni: Un insieme si esprime con una lettera maiuscola {A,B,C,...}, un elemento si esprime con una lettera minuscola{a,b,c,...}.

1.2 Concetti di base e operatori

1.2.1 Inclusione

$$A \subset B$$

Tutti gli elementi di A appartengono a B

Esempio:

$$A = \{2, 5, 6, 7\}$$

$$B = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

$$A \subseteq B$$

Il sottoinsieme si dice *improprio* se A coincide con B, altrimenti si dice *proprio*.

1.2.2 Unione

$$A \cup B$$

Tutti gli elementi del primo insieme e tutti gli elementi del secondo

Definizione:

$$A \cup B = \{x \mid x \in A \lor x \in B\}$$

1.2.3 Intersezione

$$A \cap B$$

Tutti gli elementi comuni al primo e al secondo insieme

Definizione:

$$A \cap B = \{x \mid x \in A \land x \in B\}$$

1.2.4 Differenza

$$A \setminus B$$

Elementi appartenenti solo ad A e non a B

Definizione:

$$A \setminus B = \{x \mid x \in A \land x \notin B\}$$

Osservazione:

$$A \setminus B \neq B \setminus A$$

1.2.5 Differenza Simmetrica

$$A \triangle B$$

Definizione:

$$A \triangle B = (A \setminus B) \cup (B \setminus A)$$

Osservazione:

$$A \triangle B = B \triangle A$$

1.2.6 Prodotto Cartesiano

$$A \times B$$

Definizione:

$$A \times B = \{(a,b) \mid a \in A \land b \in B\}$$

Osservazione:

$$(a,b) \neq (b,a) \Rightarrow A \times B \neq B \times A$$

1.2.7 Insieme Vuoto

Notazione:

$$A = \emptyset$$

2 Proposizioni

2.1 Definizione

Una proposizione è un'affermazione che è falsa o vera e che può implicare altre affermazioni. Con p,q proposizioni:

$$p \Rightarrow q$$

$$\downarrow \downarrow$$

$$p implica q$$

Se p implica q e q implica p si dicono equivalenti

$$p \iff q$$

2.2 Quantificatori

- ∀ per ogni
- \bullet \exists esiste
- $\bullet \ \exists !$ esiste ed è unico
- ∄ non esiste

2.3 Definizioni, teoremi ed enunciati

Definizione:

Descrizione univoca di un oggetto.

Teorema:

Affermazione che coinvolge oggetti già definiti

Enunciato:

Un affermazione da dimostrare composta da un'ipotesi e da una tesi.

Dimostrazione:

Una dimostrazione è l'insieme dei passaggi logici e di calcolo che verificano un enunciato.

2.4 Principio di induzione

Teorema

Sia p(n) un insieme di proposizioni al variare di $n \in \mathbb{N}$. Supponiamo che:

- p(0) sia vera
- $\forall n \in \mathbb{N}, p(n) \text{ vera} \Rightarrow p(n + 1) \text{ vera.}$

Esempio

Dimostrare:

$$1+2+3+\cdots+n \Rightarrow \sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

Dimostrazione per induzione:

$$p(1) \Rightarrow \frac{1(2)}{2} = 1 \Rightarrow vera$$
 (1)

$$\sum_{k=1}^{n+1} k = \frac{(n+1)(n+2)}{2} ? \tag{2}$$

$$\sum_{k=1}^{n+1} k = 1 + 2 + 3 + \dots + n + (n+1) = \frac{n(n+1)}{2} + \frac{n(n+1)}{2$$

$$= n + 1(\frac{n}{2} + 1) = n + 1(\frac{n+2}{2}) = \frac{(n+1)(n+2)}{2} \implies p(n+1) \ vera$$

La proposizione è verificata.

3 Collezioni

3.1 Insiemi Numerici

- $\mathbb{N} = \text{Numeri Naturali} = \{0, 1, 2, 3, 4, ...\}$
- $\mathbb{Z} = \text{Numeri Interi} = \{-2, -1, 0, 1, 2, ...\}$
- $\mathbb{Q} = \text{Numeri Razionali} = \{q = \frac{m}{n}, \ m, n \in \mathbb{Z} \land n \neq 0\}$
- $\bullet \ \mathbb{R} = \text{Numeri Reali} = \mathbb{Q} \ \cup \ \mathbb{I} = \text{Numeri Razionali} \ \cup \ \text{Numeri Irrazionali}^1$

Teorema

$$q \in \mathbb{Q} \Rightarrow q^2 \neq 2$$

Dimostrazione

Supponiamo **per assurdo** che $q^2 = 2$. Per ipotesi $q = \frac{m}{n}, m, n \in \mathbb{Z} \land n \neq 0$ e possiamo supporre che $\frac{m}{n}$ sia ridotta ai minimi termini.

$$\begin{cases} q^2 = 2 \\ q = \frac{m}{n} \end{cases} \iff m^2 = 2n^2 \Rightarrow m^2 \text{ è pari} \Rightarrow m \text{ è pari} \Rightarrow m = 2p, p \in \mathbb{Z} \text{ è pari} \Rightarrow n \text{ è pari} \Rightarrow m \text{ ed } n \text{ hanno il fattore 2 in comune.}$$

Assurdoperchè per ipotesi $\frac{m}{n}$ era ridotta ai minimi termini.

3.2 Assiomi di \mathbb{R}

 \mathbb{R} è un campo, cioè un insieme su cui sono definite due operazioni (+ e ·) che gode delle seguenti proprietà:

Proprietà associativa

$$\forall x, y, z \in \mathbb{R}$$
$$(x+y) + z = x + (y+z)$$
$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

 $^{^{1}(\}mbox{Decimali illimitati non periodici come}\ \sqrt{2},\pi,e)$

• Proprietà commutiativa

$$\forall x, y \in \mathbb{R}$$
$$x + y = y + x$$
$$x \cdot y = y \cdot x$$

• Proprietà distributiva

$$\forall x, y, z \in \mathbb{R}, x \cdot (y+z) = x \cdot y + x \cdot z$$

ullet \exists Elemento neutro

$$0 + x = x \forall x \in \mathbb{R}$$
$$1 \cdot x = x \forall x \in \mathbb{R}$$

• ∃ Opposto

$$\forall x \in \mathbb{R}, \exists y \in \mathbb{R} \mid x + y = 0$$

 \bullet \exists Reciproco o inverso

$$\forall x \in \mathbb{R}, \exists y \in \mathbb{R} \mid x \cdot y = 1$$

• Assioma d'ordine

È sempre possibile dire se un numero è maggiore o minore di un altro.

 \mathbb{R} è un campo sempre ordinato

• Assioma di completezza

Siano A e B due sottinsiemi separati (cioè $\forall a \in A, \forall b \in b \Rightarrow a \leq b$), allora:

$$\exists x \in \mathbb{R} \mid a \le c \le b \ \forall \ a \in A, b \in B$$

In sostanza, tra due numeri reali esistono infiniti numeri reali.

3.3 Cardinalità

Contare gli elementi di un insieme significa stabilire una corrispondenza iniettica con un sottoinsieme di \mathbb{N} .

Esempio

$$A = \{ \bullet, \bullet, \bullet \}$$

$$\Downarrow$$

3 elementi

Se A ha infiniti elementi e può essere messo in corrispondenza biunivoca con $\mathbb{N},\ A$ si dice **numerabile**

Esempio

$$A = \{ n \in \mathbb{N} \mid n \text{ è pari} \}$$

Aè equipotente a $\mathbb N$

 $\mathbb Q$ è numerabile

 $\mathbb R$ non è numerabile

3.4 Proprietà di densità

 \mathbb{Q} e $\mathbb{R} \setminus \mathbb{Q}$ sono **densi** su \mathbb{R} .

$$\forall \ a,b \in \mathbb{R}, a \leq b$$

$$\exists \ c \in \mathbb{Q} \mid a \le c \le b$$

3.5 Notazioni

$$\mathbb{R}^* = \mathbb{R} \setminus \{0\}$$

$$\mathbb{R}_+ = \{x \in \mathbb{R} \mid x \ge 0\}$$

$$\mathbb{R}_+^* = \{x \in \mathbb{R} \mid x > 0\}$$

3.6 Massimo e Minimo

Definizioni

3.6.1 Massimo

Sia $A\subseteq \mathbb{R}, A\neq \varnothing,$ un numero reale λ si dice **massimo** di Ase:

$$\lambda \in A, \lambda \ge x \forall x \in A$$

3.6.2 Minimo

Sia $A\subseteq \mathbb{R}, A\neq \varnothing,$ un numero reale μ si dice \mathbf{minimo} di A se:

$$\mu \in A, \mu \leq x \forall x \in A$$

Esempi

•

$$A = \mathbb{R}_+$$

 $\exists \ min \ A=0, \ \nexists \ max \ A$

•

$$A=\{\frac{1}{n}\ |\ n\in\mathbb{N}\setminus\{0\}\}$$

 $\exists \max A = 1, \not\equiv \min A$

infatti:

$$\frac{1}{n+1} < \frac{1}{n}$$

•

$$A = \mathbb{R}_+^{\star}$$

 $\nexists \min A, \nexists \max A$

Infatti se $x \in A$:

$$\frac{x}{2} \in A, \ \frac{x}{2} < x \ \forall x \in A$$

3.7 Maggioranti e Minoranti

3.7.1 Maggiorante

Definizione

Sia $A \subseteq \mathbb{R}, A \neq \emptyset$, diciamo che $\lambda \in \mathbb{R}$ è un **maggiorante** di A se:

$$\lambda \ge x \ \forall \ x \in A$$

3.7.2 Minorante

Definizione

Sia $A \subseteq \mathbb{R}, A \neq \emptyset$, diciamo che $\mu \in \mathbb{R}$ è un **minorante** di A se:

$$\mu \le x \ \forall \ x \in A$$

Definizione

Se A ammette un maggiorante allora si dice **superiormente limitato**, se ammette un minorante si dice **inferiormente limitato**. Se ammette entrambi si dice **limitato**.

Osservazione

Finito \Rightarrow limitato, limitato \neq finito

Teorema

Sia $A \subseteq \mathbb{R}, A \neq \emptyset$

- \bullet Sia A sup. limitato \Rightarrow l'insieme dei maggioranti ammette minimo
- Sia A inf. limitato \Rightarrow l'insieme dei minoranti ammette massimo.

Osservazione

Se un insieme ammette massimo o minimo, esso è unico.

Definizione

Se A è sup. limitato chiamo **estremo superiore** di A (sup.A) il minimo dell'insieme dei maggioranti, e viceversa(inf.A). Se A non è sup. limitato, poniamo sup. $A = +\infty$ e analogamente $-\infty$ se non è inf. limitato.

Esempio

$$A = \{x \in \mathbb{R} \mid 0 \le x \le 3\}$$
 inf. $A = min \ A = 0sup. \ A = 3, \not\equiv max \ A$

3.8 Intervalli di \mathbb{R}

- $(a,b) =]a,b[= \{x \in \mathbb{R} \mid a < x < b\}]$
- $[a,b] = \{x \in \mathbb{R} \mid a \le x \le b\}$
- $\bullet (a, b] = \{ x \in \mathbb{R} \mid a < x \le b \})$
- $\bullet (a, +\infty) = \{x \in \mathbb{R} \mid x > a\}$
- $\bullet \ (-\infty, b) = \{ x \in \mathbb{R} \mid x < b \}$

Questi insiemi sono intervalli in quanto soddisfano la seguente proprietà:

Definizione

Sia $A \subseteq \mathbb{R}$, diciamo che A è un intervallo se

$$\forall \ c, d \in A, \forall \ h \in \mathbb{R} \mid c \le h \le d \Rightarrow h \in A$$

Esempi

- (2,3) è un intervallo
- $(2,3) \cup (4,5)$ non è un intervallo in quanto esso non comprende i valori compresi tra 3 e 4.

3.8.1 Punto interno di un intervallo

Definizione

Sia I intervallo di \mathbb{R} , diciamo che c è un punto interno di I quando $c \in I$ ma c non è estremo, cioè $c \in I \setminus \{inf\ I, sup\ I\}$

 $I = (a, b) = [a, b] \setminus \{a, b\}$ L'insieme dei punti interni si definisce \mathring{I}

3.8.2 Tipi di intervalli

- Limitato se sono presenti maggiorante e minorante
- Aperto se $I = \mathring{I}$
- chiuso [a, b]

3.9 Simmetria

Definizione

 $A\subseteq\mathbb{R}$ è simmetrico rispetto all'origine se $x\in A\Rightarrow -x\in A$

Esempio

(-a,a)

3.10 Periodicità

Definizione

Sia $T \subseteq \mathbb{R}_+^{\star}$, sia $A \subseteq \mathbb{R}$ diciamo che A è T-periodico se

$$\forall \ x \in A, \forall \ x \in \mathbb{Z} \Rightarrow x + kT \in A$$