Chapitre 2

Études de fonctions

I - Fonction $x \mapsto |x|$

- A) Fonction $t \mapsto u(t) + k$
- B) Fonction $t \mapsto u(t + \lambda)$
- C) Fonction $t \mapsto |u(t)|$

Définition

Pour tout $x \in \mathbb{R}$, on définit la fonction valeur absolue $x \mapsto |x|$ par :

$$|x| = \begin{cases} x & \text{si} \quad x \ge 0 \\ -x & \text{si} \quad x < 0 \end{cases}$$

Propriété

Pour tout $x \in \mathbb{R}^*$, la fonction valeur absolue est strictement positive et |0| = 0.

Son minimum (la plus petite des images) est donc égal à 0.

Propriété

Sur l'intervalle $]-\infty$; 0], la fonction valeur absolue est strictement décroissante.

Sur l'intervalle $[0; +\infty[$, la fonction valeur absolue est strictement croissante.

Propriété

La représentation graphique de la fonction valeur absolue est symétrique par rapport à l'axe des ordonnées.

I - Fonction $x \mapsto |x|$

- A) Fonction $t \mapsto u(t) + k$
- B) Fonction $t \mapsto u(t + \lambda)$
- C) Fonction $t \mapsto |u(t)|$

On se place dans un repère orthonormé nommé (O, I, J). On considère une fonction u définie sur \mathcal{D}_u dont voici la représentation graphique \mathcal{C}_u sur un intervalle A.

 \vdash Fonction $t \mapsto u(t) + k$

I - Fonction
$$x \mapsto |x|$$

- A) Fonction $t \mapsto u(t) + k$
- B) Fonction $t \mapsto u(t + \lambda)$
- C) Fonction $t \mapsto |u(t)|$

 \vdash Fonction $t \mapsto u(t) + k$

Propriété (admise)

La représentation graphique de la fonction $t \mapsto u(t) + k$ est l'image de \mathscr{C}_u par la translation de vecteur $k \times \overrightarrow{OJ}$.

La représentation graphique de la fonction $t\mapsto u(t)+k$ est l'image de \mathscr{C}_u par la translation de vecteur $k\times \overrightarrow{OJ}$.

La représentation graphique de la fonction $t\mapsto u(t)+k$ est l'image de \mathscr{C}_u par la translation de vecteur $k\times\overrightarrow{OJ}$.

 \vdash Fonction $t \mapsto u(t) + k$

Propriété (admise)

Les fonctions $t \mapsto u(t)$ et $t \mapsto u(t) + k$ ont le même ensemble de définition.

I - Fonction
$$x \mapsto |x|$$

- A) Fonction $t \mapsto u(t) + k$
- B) Fonction $t \mapsto u(t + \lambda)$
- C) Fonction $t \mapsto |u(t)|$

Fonction $t \mapsto u(t + \lambda)$

Propriété (admise)

La représentation graphique de la fonction $t\mapsto u(t+\lambda)$ est l'image de \mathscr{C}_u par la translation de vecteur $-\lambda\times\overrightarrow{OI}$.

 \vdash Fonction $t \mapsto u(t + \lambda)$

Propriété (admise)

La représentation graphique de la fonction $t\mapsto u(t+\lambda)$ est l'image de \mathscr{C}_u par la translation de vecteur $-\lambda\times\overrightarrow{OI}$.

La représentation graphique de la fonction $t\mapsto u(t+\lambda)$ est l'image de \mathscr{C}_u par la translation de vecteur $-\lambda\times\overrightarrow{OI}$.

Fonction $t \mapsto u(t + \lambda)$

Remarque |

L'intervalle de définition de la fonction *u* subit également une translation. Il faut donc faire attention à cela.

 \vdash Fonction *t* \mapsto *u*(*t* + λ)

Exemple

$$f: x \mapsto \frac{1}{x}$$
 est défini sur ...
Soit $a \in \mathbb{R}$. On pose : $g(x) = f(x + a) = \dots$
 $\mathcal{D}_g = \dots$

 \vdash Fonction $t \mapsto u(t + \lambda)$

Exemple

 $f: x \mapsto \frac{1}{x}$ est défini sur ... Soit $a \in \mathbb{R}$. On pose : $g(x) = f(x+a) = \dots$ $\mathcal{D}_g = \dots$

Fonction $t \mapsto u(t + \lambda)$

Exemple

 $f: x \mapsto \frac{1}{x}$ est défini sur ...

Soit $a \in \mathbb{R}$. On pose : $g(x) = f(x+a) = \dots$

 $\mathscr{D}_g = \dots$

Fonction t → |u(t)|

I - Fonction
$$x \mapsto |x|$$

- A) Fonction $t \mapsto u(t) + k$
- B) Fonction $t \mapsto u(t + \lambda)$
- C) Fonction $t \mapsto |u(t)|$

Fonction $t \mapsto |u(t)|$

Propriété (admise)

Deux cas se présentent :

- Sur la réunion de tous les intervalles où la fonction u est positive, alors \mathcal{C}_u est confondue avec la courbe de |u|.
- **②** Sinon, la courbe représentative de la fonction |u| est l'image de \mathcal{C}_u par la symétrie d'axe (OI).

Deux cas se présentent :

- Sur la réunion de tous les intervalles où la fonction u est positive, alors \mathcal{C}_u est confondue avec la courbe de |u|.
- ② Sinon, la courbe représentative de la fonction |u| est l'image de \mathcal{C}_u par la symétrie d'axe (OI).

Deux cas se présentent :

- Sur la réunion de tous les intervalles où la fonction u est positive, alors \mathcal{C}_u est confondue avec la courbe de |u|.
- ② Sinon, la courbe représentative de la fonction |u| est l'image de \mathcal{C}_u par la symétrie d'axe (OI).

Fonction $t \mapsto |u(t)|$

Propriété (admise)

Les fonctions $t \mapsto u(t)$ et $t \mapsto |u(t)|$ ont le même domaine de définition.