Séries entières

1 Définitions

Définition 0

On appelle série entière toute série de fonction $\sum_{n=1}^{+\infty} U_n(x)$ dont le terme général $U_n(x)$ est de la forme $U_n(x) = a_n x^n$ avec $(a_n)_n$ une suite réelle (ou complexe) et $x \in \mathbb{R}$.

Notation: On note cette série par $\sum_{n=1}^{+\infty} a_n x^n$, comme pour les séries on cherche

l'ensemble
$$I = \{x \in \mathbb{R}, \sum_{n=1}^{+\infty} a_n x^n \text{ converge}\}$$

qu'on appelle domaine de convergences de la série $\sum_{n=0}^{+\infty} a_n x^n$

2

Exemple

Exemple 1:

On considére la série $\sum_{n=1}^{+\infty} \frac{x^n}{n!}$. On pose $U_n(x) = a_n x^n = \frac{x^n}{n!}$ avec $a_n = \frac{1}{n!}$ On a :

$$\lim_{n \to +\infty} \left| \frac{U_{n+1}(x)}{U_n(x)} \right| = \lim_{n \to +\infty} \left| \frac{x^{n+1}}{(n+1)!} \cdot \frac{n!}{x^n} \right| \qquad (x \neq 0)$$

$$= \lim_{n \to +\infty} \frac{|x|}{n+1}$$

$$|x| \lim_{n \to +\infty} \frac{1}{n+1} = 0 < 1.$$

D'aprés la regle de d'Alembert, on a (0 < 1) la série $\sum_{n=1}^{+\infty} \frac{x^n}{n!}$ est convergente pour $x \neq 0$

Pour x=0 on a la série CV car $(\sum_{n=1}^{+\infty} \frac{x^n}{n!} = 0)$. Donc la série $\sum_{n=1}^{+\infty} \frac{x^n}{n!}$ CV <u>pour tout</u> $x \in \mathbb{R}$.

D'où $I = \{x \in \mathbb{R}, \sum_{n=1}^{+\infty} a_n x^n \text{ converge} = \mathbb{R}\}$.

Exemple 2:

On considére la série $\sum_{n=1}^{+\infty} \frac{x^n}{n^2}$. On pose $U_n(x) = \frac{x^n}{n^2}$

On a:

$$\lim_{n \to +\infty} \left| \frac{U_{n+1}(x)}{U_n(x)} \right| = \lim_{n \to +\infty} \left| \frac{x^{n+1}}{(n+1)^2} \cdot \frac{n^2}{x^n} \right| \qquad (x \neq 0)$$

$$= \lim_{n \to +\infty} \frac{|x|}{n+1}$$

$$= |x| \lim_{n \to +\infty} \frac{n^2}{(n+1)^2} = |x|.$$

D'aprés la regle de d'Alembert, la série $\sum_{n=1}^{+\infty} \frac{x^n}{n^2}$ converge si |x| < 1 et diverge si |x| > 1

* Si x = 0, la série converge aussi.

*Si
$$x = 1$$
, $\sum_{n=1}^{+\infty} \frac{1}{n^2}$ est une Série de Rieman Convergente.

*Si
$$x = -1$$
 , $\sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2}$ est une Série altérnée CV.

Alors la série
$$\sum_{n=1}^{+\infty} \frac{x^n}{n^2}$$
 Converge si $x \in [-1,1]$

Exemple 3

Soit la série $\sum_{n=1}^{+\infty} n! x^n$ on pose que $U_n(x) = n! x^n$

On a

$$\lim_{n \to +\infty} \left| \frac{U_{n+1}(x)}{U_n(x)} \right| = \lim_{n \to +\infty} \left| \frac{(n+1)!x^{n+1}}{n!x^n} \right| \qquad (x \neq 0)$$
$$= |x| \lim_{n \to +\infty} (n+1) = +\infty.$$

D'aprés la regle de d'Alembert, la série $\sum |U_n(x)|$ est divergente pout tout $x \neq 0$. * Si x = 0, la série converge.

Donc $I = \{0\}$, c. à. d la série $\sum n! x^n$ C.V si x = 0.

Exemple 4:

Soit la série $\sum_{n=1}^{+\infty} \frac{x^n}{n}$ on pose que $U_n(x) = \frac{x^n}{n}$

On a

$$\lim_{n \to +\infty} \left| \frac{U_{n+1}(x)}{U_n(x)} \right| = \lim_{n \to +\infty} \left| \frac{x^{n+1}}{n+1} \cdot \frac{n}{x^n} \right| \qquad (x \neq 0)$$
$$= |x| \lim_{n \to +\infty} \frac{n+1}{n} = |x|.$$

D'aprés la regle de d'Alembert, la série $\sum_{n=1}^{+\infty} \frac{x^n}{n}$ converge si |x| < 1 et diverge si |x| > 1

* Si x=0 , alors la série converge aussi.

*Si
$$x=1$$
, la série $\sum_{n=1}^{+\infty} U_n(x) = \sum_{n=1}^{+\infty} \frac{1}{n}$ est une Série divergente.

*Si
$$x = -1$$
, $\sum_{n=1}^{+\infty} U_n(x) = \sum_{n=1}^{+\infty} \frac{(-1)^n}{n}$ est une Série altérnée Convergente.

Alors la série
$$\sum_{n=1}^{+\infty} \frac{x^n}{n}$$
 Converge si $x \in [-1,1[$ Donc $I = [-1,1[$

On a le lemme Suivante:

3 Lemme

[(Lemme d'Abel] Soit $\sum_{n=0}^{+\infty} a_n x^n$ une série entière. On suppose qu'il $\exists x_0 \in \mathbb{R}$ tq la suite $(a_n x_0^n)$ est bornnée C. a. d. $\exists M \in \mathbb{R}^+, \quad \forall n \in \mathbb{N} \quad |a_n x_0^n| \leq M$

- 1. La série $\sum_{n=0}^{+\infty} a_n x^n$ converge absolument si $|x| < |x_0|$
- 2. La série $\sum_{n=0}^{+\infty} a_n x^n$ est normalement convergente pour |x| < r, pour tout $0 < r < |x_0|$.

<u>Preuve</u>:

1)-
$$\overline{\text{Soit } x \in \mathbb{R}}$$
, $|x| < |x_0|$, On a:

$$|a_n x^n| = |a_n \frac{x_0^n}{x_0^n} x^n|$$

$$= |a_n x_0^n| \times |\frac{x^n}{x_0^n}|$$

$$= |a_n x_0^n| \times |\frac{x}{x_0}|^n$$

$$\leq M |\frac{x}{x_0}|^n$$

Car la suite $(a_n x_0^n)$ est bornée.

On a la Série $\sum_{n=1}^{+\infty} M \left| \frac{x}{x_0} \right|^n$ est une série geometrique convergente si $\left| \frac{x}{x_0} \right| < 1$

(Ou bien applique la regle de Cauchy) C. à. d. Si $|x| < |x_0|$

Par le Théorème de comparaison si $|x| < |x_0|$ on a $\sum_{n=1}^{+\infty} |a_n x_n|$ est aussi convergente.

Finalement $\sum_{n=0}^{+\infty} a_n x_n$ C. V. absolement si $|x| < |x_0|$.

2- Soit
$$0 < r < |x_0|$$
 et $|x| < r$

On a:

$$|a_n x^n| = |a_n x_0^n \frac{x^n}{x_0^n}|$$

$$= |a_n x_0^n| \times |\frac{x^n}{x_0^n}|$$

$$= |a_n x_0^n| \times |\frac{x}{x_0}|^n$$

$$= |a_n x_0^n| \times \frac{|x|^n}{|x_0|^n}$$

$$\leq M |\frac{r^n}{|x_0|^n}$$

$$= M (\frac{r}{|x_0|})^n$$

Car la suite $(a_n x_0^n)$ est bornée par M et |x| < r.

 $\Rightarrow \sup_{x \in]-r,r[} |a_n x^n| \le (\frac{r}{|x_0|})^n$. Or la série $\sum M(\frac{r}{|x_0|})^n$ est une sé rie C.V car $\frac{r}{|x_0|} < 1 \Rightarrow r < |x_0|$ Par le Théorème de comparaison , on a $\sup_{x \in]-r,r[} |a_n x^n|$ converge.

Alors la série $\sum_{n=0}^{+\infty} a_n x_n$ converge normalement sur $]-r,r[, \forall 0 < r < |x_0|]$. C. à. d. la série $\sum_{n=0}^{+\infty} a_n x_n$ converge normalement si |x| < r pour tout $0 < r < |x_0|$.

Rayon de Convergence d'une Série entiére.

Soit $\sum_{n=0}^{+\infty} a_n x_n$ une série entière, alors il existe un unique nombre reél $R \geq 0$ (eventiellement infini) tq:

1. La série $\sum_{n=0}^{+\infty} a_n x_n$ converge absolument sur $]-R, R[C. à. d. \sum_{n=0}^{+\infty} a_n x_n]$ converge absolument si |x| < R.

Théorème 0

- 2. $\sum_{n=0}^{+\infty} a_n x_n \text{ diverge si } |x| > R$

Preuve:

Soit

$$I = \{r \in \mathbb{R}^+, \quad \sup_{x \in \mathbb{R}} |a_n| r^n < +\infty \}$$
$$= \{r \in \mathbb{R}^+, \quad \exists M \in \mathbb{R}^+: \quad \forall n \in \mathbb{N}, \quad |a_n| r^n \le M \}.$$

On a $I \neq \emptyset$ car $0 \in I$

alors I admet un borne supérieur dans $\overline{\mathbb{R}^+}$, on le note sup $(I) \in \overline{\mathbb{R}^+}$.

En fait I un intervalle de borne inférieure 0.

En effet : soit $r, r' \in I$, $t \in \mathbb{R}$

Montrons que $r \leq t \leq r' \Rightarrow ?t \in I$ c. à. d $\sup |a_n| t^n < +\infty$.

On a

$$r \leq t \leq r' \Rightarrow r^{n} \leq t^{n} \leq (r')^{n}$$

$$\Rightarrow 0 \leq |a_{n}|r^{n} \leq |a_{n}|t^{n} \leq |a_{n}|(r')^{n}$$

$$\Rightarrow \sup |a_{n}|r^{n} \leq \sup |a_{n}|t^{n} \sup |a_{n}|(r')^{n} < +\infty$$

$$\Rightarrow t \in I.$$

On pose : $R = \sup(I)$

*- Si |x| > R, alors $|x| \notin I$ alors la suite $(a_n x^n)_n$ n'est pas bornée.

Alors $\lim_{n \to +\infty} a_n x^n \neq 0$ \Rightarrow la série $\sum_n a_n x^n$ est divergente.

*- Si |x| < R, soit $r \in \mathbb{R}$ to $0 \le |x| < r < R$, alors $r \in I$ (car I est un intervalle de borne sup R) donc la suite $(a_n x^n)_n$ est bornée disont par exemple par M. Par conséquent, $\forall n \in \mathbb{N}, \quad \forall x, \text{tq}, \quad |x| < r < R$

$$|a_n x^n| = |a_n|r^n|\frac{x}{r}|^n$$
$$\leq M|\frac{x}{r}|^n.$$

Or la série $\sum_n M |\frac{x}{r}|^n$ est une série geometrique convergente puisque $|\frac{x}{r}| < 1$. Donc $\sum_{n} |a_n x^n|$ est une série convergente par le théorème de comparaison, D'où la série $\sum_{n} a_n x^n$ est absolument convergente si |x| < R.

Définition 0

Le nombre $R=\sup_{\mathbb{R}^+}\{r\in\mathbb{R}^+,\sup_n|a_n|r^n<+\infty\}\in\mathbb{R}^+\cup\{+\infty\}$ est appellé le rayon de convergence de la série entiére $\sum a_nx^n$.

Si $x \in \mathbb{C}$, et si $R \neq 0$, on appelle <u>disque</u> de convergence <u>de</u> la série entière $\sum_n a_n x^n$, le disque ouvert D(o,R) de centre o et de rayon R.

Le rayon de convergence R de la série $\sum a_n x^n$ est caractérisé par :

- *- $|x| < R \Rightarrow$ La série $\sum a_n x^n$ converge absolument. *- $|x| > R \Rightarrow$ La série $\sum a_n x^n$ diverge.
- *- |x|=R On peut rien dire, pour la convergence de la série.
- *- pour tout $r \in \mathbb{R}^+$ tel que r < R la série $\sum a_n x^n$ C.V. normalement (donc absolument) si $|x| \le r$

En effet : Soit |x| < r :

$$\overline{|a_n x^n| = |a_n| |x|^n \le |a_n|} |r^n$$

Or r < R, alors la série $\sum a_n r^n$ C. V. absolument et comme $\sup_{x \in]-r,r[} |a_n x^n| \le$

alors la série $\sum_n \sup_{x\in]-r,r[} |a_nx^n|$ converge. i.e La série $\sum a_nx^n$ converge normalement sur l'intervalle $]-r,r[,\quad \forall r< R$

- *- si R = 0, La série $\sum a_n x^n$ C. V. que si x = 0. *- si $R = +\infty$ La série $\sum a_n x^n$ converge absolument pour tout $x \in \mathbb{R}$ (ou \mathbb{C}).

Détermination de rayon de convergence

On a le lemme suivant :

Lemme d'Hadamard

Soit la série entière $\sum a_n x^n$, Le rayon de convergence est donné par :

$$\frac{1}{R} = \lim_{n \to +\infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to +\infty} \sqrt[n]{|a_n|}$$

Lemme 2

Remarque 4.2

Preuve:

Posons $l = \lim_{n \to +\infty} \left| \frac{a_{n+1}}{a_n} \right|$

On a, par "le regle de d'Alenbert"

$$\lim_{n\rightarrow +\infty} \lvert \frac{a_{n+1}x^{n+1}}{a_nx^n} \rvert = \lim_{n\rightarrow +\infty} \lvert \frac{a_{n+1}}{a_n} \rvert \lvert x \rvert = l\lvert x \rvert$$

Donc

-la série $\sum a_n x^n$ converge absolument si l|x| < 1 C. à d. $|x| < \frac{1}{l}$.

- la série $\sum a_n x^n$ diverge si $|x| > \frac{1}{l}$.

Par unicité de rayon de convergence on a alors $R = \frac{1}{7}$ C. à d.

$$\lim_{n\to +\infty} |\frac{a_{n+1}}{a_n}| = l = \frac{1}{R}$$

De la même manière, par la régle de Cauchy $\lim_{n \to +\infty} \sqrt[n]{|a_n|} = \frac{1}{R}$

Exemple:

1)- Considerons la série entiére $\sum_{n=0}^{+\infty} \frac{x^n}{n!}$, on pose $a_n = \frac{1}{n!}$.

On a
$$\lim_{n \to +\infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to +\infty} \frac{n!}{(n+1)!} = \lim_{n \to +\infty} \frac{1}{n+1} = 0$$

Alors $R = +\infty$ et donc la série converge absolument pour tout x.

2)- Soit la série entière
$$\sum_{n=1}^{+\infty} \frac{x^n}{n^2}$$
, on pose $a_n = \frac{1}{n^2}$.

On a
$$\lim_{n \to +\infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to +\infty} \frac{n^2}{(n+1)^2} = \lim_{n \to +\infty} \frac{n^2}{n^2} = 1$$

Donc le rayon de convergence $R = \frac{1}{1}$

C. à. d. La série $\sum_{n=1}^{+\infty} \frac{x^n}{n^2}$ C.V absolument si |x| < 1 et diverge si |x| > 1 .

La série C.V normalement si $|x| \le r$ pour tout r < 1.

Théorème fondamentaux pour les séries entiéres

Ce paragraphe étudie les propriétés de continuité, dérivabilité et Intégrabilité de la somme d'une série entière.

6 1 Continuité :

Soit $\sum_{n=0}^{+\infty} a_n x^n$ une série entiére de Rayon de convergence R et soit $S:]-R, R[\to \mathbb{R}$ La fonction somme définie par :

Théorème 0

Preuve:

Soit $r \in \mathbb{R}^+$ tel que r < R; On a la série $\sum_{n=0}^{+\infty} a_n x^n$ converge normalement (donc

uniformément) si $|x| \le r$, $\forall r < R$.

Donc la série $\sum_{n=0}^{+\infty} a_n x^n$ C. V. uniformément sur [-r, r], $\forall \underline{r < R}$.

On a aussi les fonctions $x \mapsto a_n x^n$ sont continues sur [-r, r], $\forall r < R$.

Par le Théorème de continuité pour les séries de fonctions. On a S est continue sur $[-r, r], \quad \forall r < R.$

Alors S est continue sur]-R,R[.

En effet Soit $x_0 \in]-R, R[$ (c.à .d. |x| < R)

alors $\exists r_0 > 0 \quad \text{tq}|x_0| < r_0 < R \text{ (densit\'e de } \mathbb{R}\text{)}.$

 $\Rightarrow x_0 \in]-r_0, r_0 \subseteq [-r_0, r_0], \text{ alors } S \text{ est continue en } x_0.$ alors S est continue sur]-R,R[.

84

Théorème 0

Soit $\sum_{n=0}^{+\infty} a_n x^n$ une série entiére de Rayon de convergence R et soit $S:]-R, R[\to \mathbb{R}$ La fonction somme définie par :

$$S(x) = \sum_{n=0}^{+\infty} a_n x^n$$

alors S est dérivable sur] -R,R[et on a

$$S'(x) = \sum_{n=0}^{+\infty} (a_n x^n)' = \sum_{n=0}^{+\infty} n a_n x^{n-1}$$

Preuve:

On verifie les hpothese de théoreme de dérivabilité pour les séries de fonctions :

- 1. Les fonctions $x \mapsto a_n x^n$ sont dérivable sur]-R,R[.
- 2. On a $\sum_{n=0}^{+\infty} a_n x^n$ converge absolument sur]-R,R[donc $\sum_{n=0}^{+\infty} a_n x^n$ converge simplement sur] -R, R[, "il existe $x_0 \in$] -R, R[tq $\sum_{n=0}^{+\infty} a_n x_0^n$ converge ".
- 3. On verifier la CV uniforme locale sur] -R, R[de la série $\sum_{n=0}^{+\infty} na_n x^{n-1}$

Soit alors $0 \le r < R$, on verifier la CV uniforme sur [-r, r], $\forall r < R$ (CV U locale) On calcule alors le rayon de convergence de la série

$$\sum_{n\geq 1}^{+\infty} n a_n x^{n-1} = \sum_{n\geq 0}^{+\infty} (n+1) a_{n+1} x^n$$

On a

$$\lim_{n \to +\infty} \lvert \frac{(n+2)a_{n+2}}{(n+1)a_{n+1}} \rvert = \lim_{n \to +\infty} \lvert \frac{a_{n+2}}{a_{n+1}} \rvert = \frac{1}{R}, \qquad \text{par d\'ef.}$$

Donc le rayon de convergence de la série dérrivée $\sum_{n=1}^{+\infty} na_n x^{n-1}$ est aussi R le rayon de

convergence de la série $\sum_{n=1}^{+\infty} a_n x^n$.

D'où la série dérrivée $\sum_{n>1}^{+\infty} na_n x^{n-1}$ C. V. normalement (donc uniformement) sur $[-r, r], \quad \forall r < R.$

Finalement par le Théorème de dérivabilité pour les série de f^{ct}

On a S est dérivable sur]-R,R[et on peut dérivé terme à terme la série et donc

$$S'(x) = \sum_{n=0}^{+\infty} (a_n x^n)' = \sum_{n=1}^{+\infty} n a_n x^{n-1}, \quad \forall x \in]-R, R[$$

Soit $S(x) = \sum_{n=0}^{+\infty} a_n x^n$ une série entière de rayon de convergence R, alors S est Infiniment dérivable (de C^{∞}) sur]-R,R[et on a :

Corollaire 1

$$\forall k \in \mathbb{N}^*, \quad S^{(k)}(x) = \sum_{k=n}^{+\infty} n(n-1) \times \dots \times (n-k+1) a_n x^{n-k}$$
 De plus $\forall x \in]-R, R[$
$$S(x) = \sum_{k=n}^{+\infty} \frac{S^{(n)(0)}}{x^n} x^n$$

$$S(x) = \sum_{n=0}^{+\infty} \frac{S^{(n)(0)}}{n!} x^n$$

On dit que la fonction S admet un développement en série entière au voisinage de 0.

Exemple

On sait que $\forall x \in]-1,1[$

$$\sum_{n=1}^{+\infty} x^n = \frac{1}{1-x}$$

$$\Rightarrow \forall x \in]-1,1[, \quad \sum_{n=1}^{+\infty} nx^{n-1} = (\sum_{n=1}^{+\infty} x^n)' = (\frac{1}{1-x})' = \frac{1}{(1-x)^2}$$

D'où

$$\sum_{n=1}^{+\infty} nx^{n-1} = \frac{1}{(1-x)^2}, \quad \forall x \in]-1,1[$$

6 3 Primitive d'une série entière :

Soit $\sum_{n=0}^{\infty} a_n x^n$ une série entiére de Rayon de convergence R et soit S:] -R, $R[\to \mathbb{R}$ La fonction somme définie par : $+\infty$

$$S(x) = \sum_{n=0}^{+\infty} a_n x^n$$

On définit la fonction $F:]-R, R[\to \mathbb{R}$ par

$$F(x) = \sum_{n=0}^{+\infty} \frac{a_n}{n+1} x^{n+1}$$

alors
$$F'(x) = S(x), \quad \forall x \in]-R, R[$$
.

Preuve:

Soit la série entière
$$\sum_{n=0}^{+\infty} \frac{a_n}{n+1} x^{n+1}$$

Théorème 0

Calculons le rayons de convergence de cette série. On pose $b_n = \frac{a_n}{n+1}$ On a

$$\begin{split} \lim_{n \to +\infty} &|\frac{b_{n+1}}{b_n}| = \lim_{n \to +\infty} &|\frac{a_{n+1}}{n+1} \times \frac{n+1}{a_n}| \\ &= \lim_{n \to +\infty} &|\frac{a_{n+1}}{a_n}| \\ &= \frac{1}{R}. \end{split}$$

ou R est le rayon de convergence de la série $\sum_{n=0}^{+\infty} a_n x^n$

Donc la série entière $\sum_{n=0}^{+\infty} \frac{a_n}{n+1} x^{n+1}$ est de même rayon de C. V. que la série $\sum_{n=0}^{+\infty} a_n x^n$

Donc la série $\sum_{n=1}^{+\infty} \frac{a_n}{n+1} x^{n+1}$ est absolument convergente (donc C.V) sur] -R, R[donc

F est bien définie.

De plus F est indéfiniment dérivable sur]-R,R[.

Et on a alors, $\forall x \in]-R, R[$

$$F'(x) = \sum_{n=0}^{+\infty} \left(\frac{a_n}{n+1} x^{n+1}\right)' = \sum_{n=0}^{+\infty} a_n x^n = S(x)$$

Exemple

On a
$$\forall x \in]-1,1[$$
, $\sum_{n=0}^{+\infty} x^n = \frac{1}{1-x}$
Don $\forall x \in]-1,1[$,

$$\sum_{n=0}^{+\infty} \frac{x^{n+1}}{n+1} = \sum_{n=0}^{+\infty} \int_0^x t^n dt$$
$$= \int_0^x (\sum_{n=0}^{+\infty} t^n) dt$$
$$= \int_0^x \frac{1}{1-t} dt$$
$$= -\ln(1-x).$$

D'où
$$\forall x \in]-1,1[, \qquad \ln(1-x) = -\sum_{n=0}^{+\infty} \frac{x^{n+1}}{n+1}$$

Opération sur les série entière

Soit $\sum_{n=0}^{+\infty} a_n x^n$ et $\sum_{n=0}^{+\infty} b_n x^n$ 2 séries entières ayant respectivement R et R' pour rayons de convergence.

Proposition 4.1

- 1. Si $R \neq R'$ alors le rayon de convergence de la série Somme $\sum_{n=0}^{+\infty} (a_n + b_n) x^n$ est $R'' = \min(R, R')$
- 2. Si R = R' alors le rayon de convergence de la série Somme $\sum_{n=0}^{\infty} (a_n + b_n) x^n$

Preuve:

On a $R \neq R'$ supposons par exemple que R > R'

*- Si |x| < R' alors |x| < R donc les 2 séries $\sum_{n=0}^{+\infty} a_n x^n$ et $\sum_{n=0}^{+\infty} b_n x^n$ sont absolument convergence, mais on a

$$|(a_n + b_n)x^n| \le |a_n x^n| + |b_n x^n|$$

donc la série $\sum_{n=0}^{+\infty} (a_n + b_n) x^n$ C. V. absolument aussi

*- Si |x| > R' on a alors deux cas :

1- si
$$|x| > R > R'$$

1- $\frac{\text{si }|x|>R>R'}{\text{alors les 2 séries}} \sum_{n=0}^{+\infty} a_n x^n$ et $\sum_{n=0}^{+\infty} b_n x^n$ sont divergentes

Dans ce cas on a aussi $\sum_{n=0}^{\infty} (a_n + b_n)x^n$ divergente.

En effet, supposons $\sum_{n=0}^{+\infty} (a_n + b_n) x^n$ C. V. alors la suite $((a_n + b_n) x^n)_n$ est <u>bornée</u>, donc

d'aprés le Lemme d'Abel pour les séries entière $\sum_{n=0}^{\infty} (a_n + b_n) x_0^n$ est C.V absolument

pour tout x tq $|x_0| < |x|$. En particulier pour $R^{'} < |x_0| < R < |x|$

donc $\sum_{n=1}^{+\infty} a_n x^n$ C.V et $\sum_{n=1}^{+\infty} b_n x^n$ est divergente.

 $\Rightarrow \sum_{n=0}^{+\infty} (a_n + b_n) x^n$ est divergente (contraduction)

D'où la série $\sum_{n=0}^{+\infty} (a_n + b_n) x^n$ est divergente si |x| > R' et |x| > R > R'.

2- $\frac{2^{eme} \cos \sin R > |x| > R'}{\text{On a alors } \sum_{n=0}^{+\infty} a_n x^n \text{ C.V et } \sum_{n=0}^{+\infty} b_n x^n \text{ est divergnte}}$

D'où
$$\sum_{n=0}^{+\infty} (a_n + b_n) x^n$$
 est divergente.

Finalement si |x| > R' alors $\sum_{n=0}^{+\infty} (a_n + b_n) x^n$ est divergente.

Par unicité de rayon de CV on a alors $R^{"} = R^{'} = \min(R,R^{'})$ Même preuve si $R^{'} < R$ D'où $\left(R^{"} = \min(R, R^{'})\right)$

2- Supposons que R = R', on a :

Si
$$|x| < R = R'$$
 alors $\sum_{n=0}^{+\infty} a_n x^n$ et $\sum_{n=0}^{+\infty} b_n x^n$ sont absolument C.V D'où $R'' \ge R' = R$

Exemple:

Soient les 2 séries entière suivante : $\sum_{n=1}^{+\infty} x^n$ et $\sum_{n=1}^{+\infty} (\frac{1-2^n}{2^n})x^n$

On a
$$\sum_{n=1}^{+\infty} x^n$$
 a pour rayon de convergente $R = \frac{1}{\lim_{n \to +\infty} \left| \frac{a_{n+1}}{a_n} \right|} = 1$ avec $(a_n = 1)$.

On pose
$$b_n = \frac{1-2^n}{2^n}$$

soit $R^{'}$ le rayon de convergence de $\sum_{n}^{+\infty} (\frac{1-2^{n}}{2^{n}}) x^{n}$ Alors $R^{'} = \frac{1}{\lim\limits_{n \to +\infty} |\frac{b_{n+1}}{b_{n}}|} = \frac{1}{\lim\limits_{n \to +\infty} |\frac{1-2^{n+1}}{2^{n+1}} \times \frac{2^{n}}{1-2^{n}}|} = 1$ Donc $R = R^{'}$

Alors
$$R' = \frac{1}{\lim_{n \to +\infty} \left| \frac{b_{n+1}}{b_n} \right|} = \frac{1}{\lim_{n \to +\infty} \left| \frac{1-2^{n+1}}{2^{n+1}} \times \frac{2^n}{1-2^n} \right|} = \frac{1}{1+\frac{1}{2^n}}$$

Donc
$$R = R'$$

On calculons maintenant le rayon de CV de la somme $\sum_{n=0}^{+\infty} (1 + \frac{1-2^n}{2^n}) x^n = \sum_{n=0}^{+\infty} \frac{x^n}{2^n}$ $R" = \frac{1}{-\lim_{n \to \infty} |\frac{1}{2^{n+1}} \times \frac{2^n}{1}|} = 2.$

Soient
$$\sum_{n=0}^{+\infty} a_n x^n$$
 et $\sum_{n=0}^{+\infty} b_n x^n$ deux série entière de rayon de convergence R et R' respectement.

Alors R " le rayon de convergence de la série produit de coeffecients $C_n = 0$

 $\sum_{k=0}^{n} a_k b_{n-k} \text{ C. à d. la série} \sum_{n=0}^{+\infty} C_n x^n \text{ et tq } R^" \geq \min(R, R^{'}) \text{ et si } |x| < \min(R, R^{'})$

$$\underbrace{\left(\sum_{n=0}^{+\infty} a_n x^n \times \sum_{n=0}^{+\infty} b_n x^n = \sum_{n=0}^{+\infty} C_n x^n\right)}_{\text{avec}}$$

$$\underbrace{\left(\sum_{n=0}^{+\infty} a_n x^n \times \sum_{n=0}^{+\infty} b_n x^n = \sum_{n=0}^{+\infty} C_n x^n\right)}_{\text{avec}}$$

$$\operatorname{avec}\left(C_n = \sum_{k=0}^n a_k b_{n-k}\right)$$

Théorème 0

<u>Problème</u>: Soit f une fonction réelle à variable réelle x. Peut-on trouver $(a_n)_n$ et r > 0 tels que

$$f(x) = \sum_{n=0}^{+\infty} a_n x^n, \quad \forall x \in]-r, r[$$

Si ce probléme admet une solution, on dit que f est développable en série entière au voisinage de 0.

On a le Théorème suivant :

soit $f:]-r,r[\to\mathbb{R}$ une application de C^∞ . On suppose qu'il existe un M>0 tq $\forall n\in\mathbb{N}, \quad \forall x\in]-r,r[,\quad |f^{(n)}(x)|\leq M$

La Série $\sum_{n=0}^{+\infty} \frac{f^{(n)}(0)}{n!} x^n$ converge simplement sur]-r,r[et on a

$$f(x) = \sum_{n=0}^{+\infty} \frac{f^{(n)}(0)}{n!} x^n \qquad \forall x \in]-r, r[$$

Preuve:

On a f est de C^{∞} au voisinage de 0, alors d'aprés la formmule de Mac-Laurin on

$$f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f^{(3)}(0)}{3!}x^3 + \dots + \frac{f^{(n)}(0)}{n!}x^n + \frac{f^{(n+1)}(\theta x)}{(n+1)!}x^{n+1}$$

avec $0 < \theta < 1$

Alors

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^{k} + \frac{f^{(n+1)}(\theta x)}{(n+1)!} x^{n+1}$$

avec
$$0 < \theta < 1$$

$$f^{(k)}(0) = f^{(n+1)}(\theta)$$

avec
$$0 < \theta < 1$$

 $\Rightarrow |f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^{k}| = |\frac{f^{(n+1)}(\theta x)}{(n+1)!} x^{n+1}|$

Pour
$$f(x) = \sum_{n=0}^{+\infty} \frac{f^{(n)}(0)}{n!} x^n$$
 il faut que $\lim_{n \to +\infty} \left| \frac{f^{(n+1)}(\theta x)}{(n+1)!} x^{n+1} \right| = 0$

Pour cela on a, $|\frac{f^{(n+1)}(\theta x)}{(n+1)!}x^{n+1}| = \frac{|f^{(n+1)}(\theta x)|}{(n+1)!}|x|^{n+1} \leq M\frac{|x|^{n+1}}{(n+1)!} \text{ puisque } f^{(n)} \text{ est born\'ee par } M \text{ et } |\theta x| = \theta|x| < r \text{ (car } \theta < 1) \Rightarrow \theta x \in]-r,r[$

Or la série $\sum_{n=0}^{+\infty} \frac{|x|^n}{n!}$ est convergente puisque $\lim_{n\to+\infty} \frac{\frac{|x|^{n+1}}{(n+1)!}}{\frac{|x|^n}{n!}} = \lim_{n\to+\infty} \frac{|x|}{n+1} = 0$

D'où
$$\sum_{n=1}^{+\infty} \frac{|x|^n}{n!} = 0 \Rightarrow \sum_{n=1}^{+\infty} \frac{|x|^{n+1}}{(n+1)!} = 0$$

Par conséquant $\lim_{n\to+\infty} \left| \frac{f^{(n+1)}(\theta x)}{(n+1)!} x^{n+1} \right| = 0$

Par suite
$$\lim_{n \to +\infty} |f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^{k}| = 0$$

Théorème 0

$$\Rightarrow \lim_{n \to +\infty} f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^{k} = 0$$

$$\Rightarrow f(x) = \lim_{n \to +\infty} \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^{k} = 0$$
puisque
$$\sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^{k} \text{ converge vers } (f(x) \in \mathbb{R})$$

$$\Rightarrow f(x) = \sum_{n=0}^{+\infty} \frac{f^{(n)}(0)}{n!} x^{n} \quad \forall x \in]-r,r[$$

Exemple 1:

Soit la fonction exponontielle $f: x \mapsto e^x$ la fonction est de C^∞ sur \mathbb{R} et On a $f^{(n)}(x) = e^x \quad \forall n \in \mathbb{N} \quad \forall x \in \mathbb{R}$ et $f^{(n)}(0) = 1 \quad \forall n \in \mathbb{N}$ Montrons que $\forall x \in \mathbb{R}$

$$e^x = \sum_{n=0}^{+\infty} \frac{x^n}{n!}$$

On a f est de C^{∞} , donc d'aprés la formule de Mac-Laurin

$$e^x = \sum_{n=0}^{+\infty} \frac{x^n}{n!} + \frac{e^{\theta x} x^{n+1}}{(n+1)!}$$
 $0 < \theta < 1$

 $\begin{array}{l} \text{Montrons que } \lim_{n \to +\infty} |\frac{e^{\theta x} x^{n+1}}{(n+1)!}| = 0 \\ \text{on a si } x > 0 \qquad e^{\theta x} \leq e^x \text{ car } 0 < \theta < 1 \text{ et si } x \leq 0 \qquad e^{\theta x} \leq 1 \\ \Rightarrow \forall x \in \mathbb{R}, \qquad e^{\theta x} \leq \max(1, e^x) \\ \text{alors } |\frac{e^{\theta x} x^{n+1}}{(n+1)!}| \leq \max(1, e^x) \frac{|x|^{n+1}}{(n+1)!} \\ \text{Or } \lim_{n \to +\infty} \frac{|x|^{n+1}}{(n+1)!} = 0 \text{ alors } \lim_{n \to +\infty} |\frac{e^{\theta x} x^{n+1}}{(n+1)!}| = 0 \qquad \forall x \in \mathbb{R} \\ \text{D'où } \forall x \in \mathbb{R} \end{array}$

$$e^x = \sum_{n=0}^{+\infty} \frac{x^n}{n!}$$

Le rayon de convergence de cette série est $R = \frac{1}{\lim\limits_{n \to +\infty} \frac{1}{n+1}} = +\infty$ car $\lim\limits_{n \to +\infty} \frac{1}{n+1} = 0$

 $\Rightarrow R = +\infty$

Donc

$$e^{n} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!} + \dots$$

Exemple 2: [Fonctions hyperboliques]

La fonction Sinus hyperbolique et Cosinus hyperboliques ont même rayon de C. V. que la fonction $x\mapsto e^x$ c.à.d $R=+\infty$

On a
$$\forall x \in \mathbb{R}$$

 $ch(x) = \frac{e^x + e^{-x}}{2}$ et $sh(x) = \frac{e^x - e^{-x}}{2}$
On a $e^x = \sum_{n=0}^{+\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + \dots$

$$\Rightarrow e^{-x} = \sum_{n=0}^{+\infty} \frac{(-x)^n}{n!} = \sum_{n=0}^{+\infty} (-1)^n \frac{x^n}{n!} = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \dots + (-1)^n \frac{x^n}{n!} + \dots$$

$$\Rightarrow \frac{e^x + e^{-x}}{2} = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + \frac{x^{2n}}{2n!} + \dots = \sum_{n=0}^{+\infty} \frac{x^{2n}}{2n!}$$

D'où $\forall x \in \mathbb{R}$

$$ch(x) = \sum_{n=0}^{+\infty} \frac{x^{2n}}{2n!}$$

On a aussi

$$\frac{e^x - e^{-x}}{2} = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + \frac{x^{2n+1}}{(2n+1)!} + \dots = \sum_{n=0}^{+\infty} \frac{x^{2n+1}}{(2n+1)!}$$

D'où $\forall x \in \mathbb{R}$

$$sh(x) = \sum_{n=0}^{+\infty} \frac{x^{2n+1}}{(2n+1)!}$$

Exemple 3: Les Fonctions Circulaires

*-Fonction Sinus On pose :

$$f(x) = \sin(x) \Rightarrow f(0) = 0$$

$$f'(x) = \cos(x) \Rightarrow f'(0) = 1$$

$$f''(x) = -\sin \Rightarrow f''(0) = 0$$

$$f'''(x) = -\cos(x) \Rightarrow f'''(0) = -1$$

$$f^{(4)}(x) = \sin \Rightarrow f^{(4)}(0) = 0$$

Alors $\forall p \in \mathbb{N}$

$$f^{(4p)}(0) = 0$$
$$f^{(4p+1)}(0) = 1$$
$$f^{(4p+2)}(0) = 0$$
$$f^{(4p+3)}(0) = -1$$

On a $\forall n \in \mathbb{N}$, $\forall x \in \mathbb{R}$, $|f^{(n)}(x)| \le 1$ de plus la fonction f est de C^{∞} d'aprés le Théorème precédent

$$f(x) = \sum_{n=0}^{+\infty} \frac{f^{(n)}(0)}{n!} x^n$$
$$= \sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

D'où

$$\forall x \in \mathbb{R}, \quad \sin(x) = \sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

Le rayon de C.V. de cette série est aussi $R = +\infty$

*-Fonction Sinus De la même manière, On a $\forall x \in \mathbb{R}$

$$\cos(x) = (\sin(x))'$$

$$= (\sum_{n=0}^{+\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!})'$$

$$= \sum_{n=0}^{+\infty} \frac{(2n+1)(-1)^n x^{2n}}{(2n+1)!}$$

$$= \sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n}}{2n!}.$$

D'où

$$\sqrt{\forall x \in \mathbb{R}, \qquad \cos(x) = \sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n}}{(2n)!}}$$

Exemple 4 : Développement obtenu par intégration

Soit f une fonction admet un développement en série entière de rayon de C.V. R C. à

$$d. f(x) = \sum_{n=0}^{+\infty} a_n x^n, \quad \forall x \in]-R, R[$$

Par Integration on a
$$\int_0^x f(t)dt = \int_0^x \sum_{n=0}^{+\infty} a_n t^n dt = \sum_{n=0}^{+\infty} a_n \frac{x^{n+1}}{n+1}, \quad \forall x \in]-R, R[$$

Comme exemple : $x \to \ln(1+x)$

On a : On sait déja que
$$\sum_{n=0}^{+\infty} x^n = \frac{1}{1-x}, \quad \text{si} x \in]-1,1[$$

$$\Rightarrow \frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots + x^n + \dots$$

$$\Rightarrow \frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots + x^n + \dots$$

$$etona \int \frac{1}{1-x} dx = -\ln(1-x)$$

Alors
$$-\ln(1-x) = x + \frac{x^2}{2} + \frac{x^3}{3} + \dots + \frac{x^n}{n} + \dots$$

$$\Rightarrow \ln(1-x) = -\sum_{n=1}^{+\infty} \frac{x^n}{n}, \qquad x \in]-1,1[$$

D'où
$$\forall x \in]-1,1[, \qquad \ln(1-x) = -\sum_{n=0}^{+\infty} \frac{x^n}{n}$$

en remplaçant x par -x

Donc
$$\ln(1+x) = \sum_{n=1}^{+\infty} \frac{(-x)^n}{n} = \sum_{n=1}^{+\infty} (-1)^{n+1} \frac{x^n}{n} \quad x \in]-1,1[$$

Donc, $\forall x \in]-1,1[$

$$\ln(1+x) = \sum_{n=1}^{+\infty} (-1)^{n+1} \frac{x^n}{n}$$

Exemple 5 : Développement par dérivations :

soit f une fonction qui admet un développement en série entière de rayon de CV R ie

$$f(x) = \sum_{n=1}^{+\infty} a_n x^n, \quad \forall x \in]-R, R[$$

Par dérivation on a :

$$f'(x) = \sum_{n=1}^{+\infty} n a_n x^{n-1} \qquad \forall x \in]-R, R[$$

comme exemple : $f(x) = \frac{1}{(1-x)^2}$

On a
$$\frac{1}{(1-x)} = \sum_{n=0}^{+\infty} x^n$$
, $\forall x \in]-1,1[$

Donc
$$f(x) = \frac{1}{(1-x)^2} = (\frac{1}{1-x})' = \sum_{n=1}^{+\infty} nx^{n-1} = 1 + 2x + 3x^2 + 4x^3 + \dots + nx^{n-1} + \dots$$

Exemple 6 : Développement de $(1+x)^{\alpha}$ $\alpha \in \mathbb{R}$

On pose $f(x) = (1+x)^{\alpha}$ définie sur $]-1,+\infty[$ on a $f^{'}(x) = \alpha(1+x)^{\alpha-1} = \alpha\frac{(1+x)^{\alpha}}{1+x}\frac{\alpha f(x)}{1+x}$ $\Rightarrow f(x)$ est une solutionde l'équation :

$$\begin{cases} (1+x)y'(x) - \alpha y(x) = 0 \\ y(0) = 1. \end{cases}$$
 (1)

Chercgons une solution y de (1) qui admet un dévoloppement en série entière.

On pose
$$y = \sum_{n=0}^{+\infty} a_n x^n$$

on a $y' = \sum_{n=0}^{+\infty} n a_n x^{n-1}$

en remplaçent de (1)

$$(1+x)\sum_{n=1}^{+\infty} na_n x^{n-1} - \alpha \sum_{n=0}^{+\infty} a_n x^n = 0$$

$$\Rightarrow \sum_{n=1}^{+\infty} n a_n x^{n-1} + \sum_{n=1}^{+\infty} n a_n x^n - \alpha \sum_{n=0}^{+\infty} a_n x^n = 0$$

$$\Rightarrow \sum_{n=0}^{+\infty} (n+1)a^{n+1}x^n + \sum_{n=0}^{+\infty} na_n x^n - \alpha \sum_{n=0}^{+\infty} a_n x^n = 0$$

$$\Rightarrow \sum_{n=0}^{+\infty} [(n+1)a^{n+1} + na_n - \alpha a_n]x^n = 0$$

Par identification on a $\forall n \in \mathbb{N}^*$

$$(n+1)a_{n+1} + (n-\alpha)a_n = 0$$

On a $y(0) = 1 \Rightarrow a_0 = 1$ et $\forall n \in \mathbb{N}^*$

 $a_{n+1} = \frac{\alpha - n}{n+1} a_n$ on a:

$$a_1 = \alpha a_0 = \alpha$$

$$a_2 = \frac{\alpha(\alpha - 1)}{2}$$

$$a_3 = \frac{(\alpha - 2)}{3} a_2$$

$$= \frac{(\alpha - 2)}{3} \frac{\alpha(\alpha - 1)}{2} = \frac{\alpha(\alpha - 1)(\alpha - 2)}{3!}$$
.

$$a_n = \frac{\alpha(\alpha - 1)\cdots(\alpha - n + 1)}{n!}.$$

D'où

$$y(x) = \sum_{n=0}^{+\infty} \frac{\alpha(\alpha - 1) \cdots (\alpha - n + 1)}{n!} x^n$$

On a le rayon de C.V R es

$$R = \frac{1}{\lim_{n \to +\infty} \left| \frac{a_{n+1}}{a_n} \right|} = \frac{1}{\lim_{n \to +\infty} \frac{\left| \alpha - n \right|}{n+1}} = 1$$

Par unicité des sol. de l'éq. (1) on a $\forall x \in]-1,1[$

$$(1+x)^{\alpha} = \sum_{n=0}^{+\infty} \frac{\alpha(\alpha-1)(\alpha-2)\cdots(\alpha-n+1)}{n!} x^n$$

Exemple::

Le développement en série entière de la fonction $x \mapsto \arctan(x)$

On a $(\arctan(x))' = \frac{1}{1+x^2} = (1+x^2)^{-1}$

On pose $\alpha = -1$ et $x \to x^2$

$$(1+x^2)^{-1} = \sum_{n=0}^{+\infty} (-1)^n x^{2n}$$

En prenant la primitive de ctte série on a alors.

En prenant la primitive de citte serie on a alors
$$\arctan(x) = \sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n+1}}{2n+1}, \quad \forall x \in]-1,1[$$

le rayon de CV de cette série est R = 1

Pour x=1 on a $\sum_{n=0}^{+\infty} \frac{(-1)^n}{2n+1}$ est une série alternée convergente.

Si x = -1 On a aussi $\sum_{n=0}^{+\infty} \frac{(-1)^{n+1}}{2n+1}$ est une série alternée convergente.

D'où

$$\left(\arctan(x) = \sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n+1}}{2n+1}, \quad \forall x \in [-1, 1]\right)$$

Reduction d'équations différetielles.

On peut résoudre certaines équations différetielles en cherchant leurs solutions ysous la forme d'une série entière.

La méthode est la suivante :

- 1. On pose $y = \sum_{n=0}^{+\infty} a_n x^n$
- 2. chercher une relation de récurence vérifiée la suite (a_n) .
- 3. Résoudre cette relation de récurence.
- 4. Remplacer a_n dans l'expression de y et déterminer le rayon de CV.

Exemple:

Soit l'équation différentielle

$$xy'' + 2y' - xy = 0 (4.1)$$

cherchons les solutions y développable en série entière.

Pn pose
$$y = \sum_{n=0}^{+\infty} a_n x^n$$
 alors $y' = \sum_{n=1}^{+\infty} n a_n x^{n-1}$ et $y'' = \sum_{n=2}^{+\infty} n(n-1) a_n x^{n-2}$ En rempla-

çant dans l'équation (1) on a :

$$x \sum_{n=2}^{+\infty} n(n-1)a_n x^{n-2} + 2 \sum_{n=1}^{+\infty} na_n x^{n-1} - x \sum_{n=0}^{+\infty} a_n x^n = 0$$

$$\Rightarrow \sum_{n=2}^{+\infty} n(n-1)a_n x^{n-1} + \sum_{n=1}^{+\infty} 2na_n x^{n-1} - \sum_{n=0}^{+\infty} a_n x^{n+1} = 0$$

$$\stackrel{n'=n-2}{\Rightarrow} \sum_{n'=0}^{+\infty} (n'+2)(n'+1)a_{n'+2} x^{n'+1} + 2a_1 + \sum_{n'=0}^{+\infty} 2(n'+2)a_{n'+2} x^{n'+1} - \sum_{n'=0}^{+\infty} a_{n'} x^{n'+1} = 0$$

$$\Rightarrow 2a_1 + \sum_{n=0}^{+\infty} [(n+2)(n+1)a_{n+2} + 2(n+2)a_{n+2} - a_n]x^{n+1} = 0$$

Par identification; on a

$$\begin{cases} a_1 = 0 \\ a_{n+2} = \frac{a_n}{(n+2)(n+3)}, \quad \forall n \in \mathbb{N}. \end{cases}$$

puisque $a_1=0$ on a alors $a_3=\frac{a_1}{12}=0, \qquad a_5=\frac{a_3}{5\times 6}=0 \Rightarrow a_{2n+1}=0 \quad \forall n\in\mathbb{N}$ et on a

$$\begin{array}{ll} a_2=\frac{a_0}{2\times 3}, & a_4=\frac{a_2}{4\times 5}=\frac{a_0}{2\times 3\times 4\times 5}\\ \text{D'où, } \forall n\in\mathbb{N} \end{array}$$

$$a_{2n} = \frac{a_{2n-2}}{2n(2n+1)}$$

$$= \frac{a_{2n-4}}{2n(2n+1)(2n-2)(2n-1)}$$

$$= \frac{a_0}{2n(2n+1)(2n-2)(2n-1)\cdots 4 \times 5 \times 2 \times 3}$$

$$= \frac{a_0}{(2n+1)!}.$$

D'où =
$$a_0 \sum_{n=0}^{+\infty} \frac{x^{2n}}{(2n+1)!}, \quad \forall a_0$$

$$y(x) = a_0 \sum_{n=0}^{+\infty} \frac{x^{2n}}{(2n+1)!}, \quad \forall a_0$$
$$= \frac{a_0}{x} \sum_{n=0}^{+\infty} \frac{x^{2n+1}}{(2n+1)!}, \quad \text{Si} x \neq 0$$
$$= \frac{a_0}{x} Sh(x) \quad \text{Si} x \neq 0.$$

D'où la solution développable en série entière de (1) est donné par :

$$y(x) = \begin{cases} \frac{a_0}{x} Sh(x) & \text{si } x \neq 0 \\ a_0 & \text{si } x = 0 \end{cases}$$

Fin de Module

Bon Courage