機能語に注目した 音声合成朗読システムのための 感情推定手法の提案

東京理科大学 理工学部 経営工学科 西山研究室 7413069 恒川 泰輝

指導教員 西山 裕之・金盛 克俊

学士論文概要

近年,従来の書籍の他に電子書籍など様々な書籍の楽しみ方が広がっている. その中で,書籍の朗読は専門のナレーターによる朗読音声を収録したオーディオブックが知られている.オーディオブックはアメリカを中心に市場規模が拡大している.もともと車社会のアメリカなどの国では早期から市場が確立していたが,近年インターネットを介して気軽にダウンロードして楽しめる環境が整ったことなどによりアメリカとカナダの市場規模が2015年には前年比で約21%拡大している[1].日本においても定額配信サービスが開始されており,今後さらに普及する可能性がある.

しかし、このようなオーディオブックは書籍から音声化する際には手間やコストが電子書籍にくらべて 10 倍ほどかかっており $2\sim3$ ヶ月ほどかかると言われている。[3]

そこで、電子書籍から人間の音声を人工的に作り出す音声合成技術を用いて機械で自動的に朗読するシステムの研究が行われている。近年の音声合成技術を用いれば喜怒哀楽といった感情を指定することで感情豊かな音声を合成できる。しかし、これらのパラメタは文もしくは単語ごとに人手で設定する必要がある。短い文章など限られた場合は容易であるが、小説といった膨大な文章に対して都度人手でパラメタ調整を行うのは手間がかかる。

そこで本研究では未知の文に対しその文を読み上げるときの感情として最適なものを推測することを目的とする. これにより自然な朗読システムが可能が実現可能になり, 人手での手間やコストをかけずにオーディオブックを作成できるようになることが期待される.

本研究では、文にどのような単語が含まれているかという出現情報をもとに 機械学習技術を用いて感情を推定する. 名詞、動詞、形容、形容動詞は内容語 とよばれるが物語に依存する可能性が高いため、内容を除いた機能語を用いることで内容に依存しない分類器を生成できる.このため内容語を無視して機能語のみを用いて学習し感情の推定を行う.セリフのみに限らずすべての文を対象に、出現情報から機能語に絞った感情推定を行っている研究は筆者の知る限り存在しない.

本研究では、先行研究と同様にNormal、Happy、Sad、Angryの4つに感情をクラス分けする。本手法の正しさを確認するための実験として、まず一つの文にそれぞれ4つの感情で音声を合成する。そしてWebのアンケートシステムを用いて、被験者にこれらの音声を実際に聞いてもらい、その文を読み上げる際にどの感情が最も適しているか判定してもらう。このように生成された学習データを用い交差検証を行うことで本手法の分類性能を評価する。

目 次

学士論な	文概要	i
第1章	序論	1
1.1	背景	1
	1.1.1 オーディオブックの市場拡大と課題	1
	1.1.2 音声合成技術の発展	2
	1.1.3 朗読システムの現状と課題	3
1.2	本研究の目的	4
1.3	本論の構成	4
第2章	関連研究	6
2.1	音声合成の研究	6
	2.1.1 様々な感情表現が可能な音声合成手法	6
	2.1.2 直接波形接続型音声合成における感情表現	7
	2.1.3 HMM 型音声合成における感情表現	7
	2.1.4 HMM 型音声合成における共有感情付与モデルを利用し	
	た感情表現	7
2.2	朗読システムの研究	8
	2.2.1 表層情報を用いた朗読システム	8
	2.2.2 感情推定を用いた朗読システム	8
2.3	本研究の位置づけ	9
2.4	本章のまとめ	9
第3章	提案手法	10
3.1	提案手法の概要・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	10

	3.1.1	機能語のみによる推定	10
	3.1.2	前処理	11
	3.1.3	分類器の生成	12
第4章	実験		13
	4.0.1	データの作成	13
	4.0.2	学習データの収集	14
	4.0.3	評価	15
	4.0.4	比較実験	16
第5章	実験結	s果	17
	5.0.1	学習データ	17
	5.0.2	グリッドサーチ	18
	5.0.3	評価結果	18
	5.0.4	考察	19
付 録 A	Web	ページの URL リスト	23

図目次

1.1	感情表現可能な音声合成ソフトの例 (AITalk)	2
3.1	提案手法の概要	11
3.2	前処理の手順	12
4.1	学習データの作成手順	13
4.2	WEB アンケートシステム画面	14

表目次

4.1	学習データの収集	15
5.1	学習データ (物語別)	17
5.2	学習データ (感情別)	17
5.3	ランダムフォレストのグリットサーチの結果	18
5.4	SVM のグリットサーチの結果	18
5.5	ランダムフォレストでの結果	18
5.6	SVM での結果	19

第1章 序論

序論では、オーディオブックブックの市場や音声合成について解説し、朗読 システムの課題を指摘し、本研究の目的や構成を述べる

1.1 背景

1.1.1 オーディオブックの市場拡大と課題

近年,従来の紙の書籍以外にも電子書籍といった様々な書籍の楽しみ方が増えている。その中でもオーディオブックは近急速な成長をしており、今後も成長が見込まれている。オーディオブックとは書籍の朗読は専門のナレーターによる朗読音声を収録したものである。もともと車社会のアメリカなどの国では早期から大きな市場を確立している。近年インターネットを介したダウンロード販売が可能になったことなどによりさらに市場は拡大している。アメリカとカナダの市場規模が2015年には前年比で約21%拡大している[1]。

日本においては、欧米に比べて小規模なものにとどまっている。1980年代後半に後半にカセットブックが流行したが、車社会のアメリカに比べ電車などの公共機関による移動が多い日本では、市場規模はなかなか拡大しなかった。しかし、近年、スマートフォンなどが普及しカセットを持ち歩かなくても気軽に楽しめる環境が整ったことにより、インターネット上のダウンロード販売が急速に拡大している。日本の市場規模は2016年現在50億円程度と言われており、約10年後には800億円~900億円ぐらいに見込まられるとされてる。[2]

しかし、このようなオーディオブックは書籍から音声化する際には電子書籍 化にくらべて非常に手間やコストがかかる。声優の選定からはじまり録音や読 み間違え確認、BGM 挿入、再度録音など人での作業が多い。そのため 2~3ヶ 月ほどかかるを要し、コストは電子書籍の 10 倍ほどかかっていると言われている. [3]

図 1.1: 感情表現可能な音声合成ソフトの例 (AITalk)

1.1.2 音声合成技術の発展

音声合成とは、人間の音声を人工的に作り出すことである。この技術は文字を読むことが困難な障害者、外国人や幼児などに画面読み上げソフトとして長く利用されてきており、言葉を発することが困難な人が代替手段として利用することも多い。さらに、21世紀に入ってからは家電製品の音声ガイダンスや公共交通機関のアナウンス、ロボットの発話用途などとして広く使用されるようになっている。近年では声の切り替えや声の高さの調整などが可能になり、さらには指定した感情で音声合成ができるシステムも実用化されている。例えば、

株式会社エーアイの AITalk は図 1.1 に示すように怒り・悲しみ・喜びの感情を それぞれ 10 段階で指定して合成することが可能である.

1.1.3 朗読システムの現状と課題

音声合成技術を用いることで、物語の自動朗読システムを実現することは可能であり、実際に実用化されている.しかし、品質は人間が読み上げて録音したものには及ばないのが現状である.単に音声合成を使うだけではなく、物語にあわせて読み上げる朗読に特化したシステムが実用化されている例は筆者が知る限り存在しない.

このようなシステムの実現が難しい理由としていくつか考えられる.まず、 そもそもの音声合成の質の問題である. 音声合成を情報提供を目的としたアナ ウンスとして用いる場合は問題がなかったとしても、物語といった長文の場合 には平坦で淡々とした読み上げになってしまう.次に、朗読におけるポーズ長 の重要性である. 章立てやパラグラフといった文章構造の他に意味内容による ポーズが重要であることが杉藤ら [4] によって示されている. 意味内容まで考 慮したポーズ長の推定は現状では難しいと考えられる.最後に感情表現の問題 である. 1.1.2 で述べたように, 音声合成自体は感情表現が可能になった. しか し、感情は人の手によって調整する必要があり、物語といった長文の場合はコ ストがかかる. 文章から自動的に感情を推定して、その推定された感情にした がって読み上げる朗読システムは実用化されていない. 一方, テキストマイニ ングの分野で盛んに感情推定が行われているが、あくまで商品や映画などのレ ビューやクレームといった事実に対する感情を推定するものが多い、そのため 物語の文章に対してそのまま適応できるかは疑問である.さらに、朗読の場合 の感情推定は文中の人物の感情を推定するのではなく、あくまでどの感情表現 で読むべきかを推定する必要がある.

1.2 本研究の目的

本研究では 1.1.3 で述べた朗読システムの課題の中で、感情推定の問題を取り扱う. すなわち、朗読システムのために、未知の文に対しその文を読み上げるときの感情として最適なものを推定することを目的とする. これにより音声合成システムの感情パラメータを自動的に調整することが可能になり、より自然な読み上げが自動的に行えるようになる. さらに、自然な朗読システムが可能が実現可能になることで、人手での手間やコストをかけずにオーディオブックを作成できるようになることが期待される.

本研究では、文にどのような単語が含まれているかという出現情報をもとに機械学習技術を用いて感情を推定する。名詞、動詞、形容、形容動詞は内容語とよばれるが物語に依存する可能性が高いため、内容を除いた機能語を用いることで内容に依存しない分類器を生成できる。このため内容語を無視して機能語のみを用いて学習し感情の推定を行う。セリフのみに限らずすべての文を対象に、出現情報から機能語に絞った感情推定を行っている研究は筆者の知る限り存在しない。

本研究では、先行研究に従い Normal、Happy、Sad、Angry の 4 つに感情を クラス分けする。本手法の正しさを確認するための実験として、まず一つの文 にそれぞれ 4 つの感情で音声を合成する。そして Web のアンケートシステム を用いて、被験者にこれらの音声を実際に聞いてもらい、その文を読み上げる際にどの感情が最も適しているか判定してもらう。このように生成された学習 データを用い交差検証を行うことで本手法の分類性能を評価する。

1.3 本論の構成

本章では、本論文の背景となるオーディオブック市場の拡大と音声合成技術を説明した上で朗読システムの現状と課題について説明し、それを踏まえ本研究の目的を述べた。第2章では既存の関連する研究について述べる。また第3章では本論文が提案する手法の詳細を述べ、第4章でその評価実験について説明する。そのうえで第5章で提案手法の効果を測定するために行なった実験の

結果と考察を述べ、第6章でその結論と今後の展望について述べる.

第2章 関連研究

本章では、音声合成や朗読システムにの既存研究について述べるとともに本 研究の明確な位置づけを行う.

2.1 音声合成の研究

感情表現が可能な音声合成技術の研究を紹介する.

2.1.1 様々な感情表現が可能な音声合成手法

近年、日本語の音声合成手法として広く利用されている 2002 年の Yoshimura [5] が提案した隠れマルコフモデル (HMM) に基づく合成手法がある。この手法以前もカーナビや音声翻訳システムなどに音声合成が利用されていた。しかし、様々な話者の声質で話したり、嬉しそうに、怒ったようになど様々な発話スタイルで話すことができるものは少なかった。なぜなら、それ以前の波形接続型のシステムで様々な声質、発話スタイルを実現するためには、様々な声質、発話スタイルで収録された膨大な量の音声データを処理しなければならず、また合成するには膨大な量の素片を格納する記憶媒体が必要となるため、実現は非常に困難であったためである。この HMM に基づく合成手法を用いることで、抽象化された関数を利用し音声波形に揺らぎあってもあってもその背後に潜んでいる特徴を見出すことができる。これによって少ない音声データで学習することが可能になり、パラメータ調整することで別の人物の声を真似たり、様々な感情表現を行うことが可能になった。

2.1.2 直接波形接続型音声合成における感情表現

飯田ら [6] は自然音声直接波形接続型音声合成システム CHATER を用いて、表現したい感情ごと (喜び・怒り・悲しみ) にその感情に対応する音声コーパスから最適な音声波形素片を選択し接続することで、音声を合成した。聴取実験を行い、有意水準 1%で検定を行ったところ、各感情は有意に判別され、各感情は有意に判別された。しかし、波形接続型の音声合成では合成したい音素の基本周波数予測エラーによりイントネーションが不自然に聞こえる場合があり、そもそもの音声合成の質が高いとは言えない。また、前小節で述べた通り波形接続型の音声合成では学習に多くの音声データが必要であり、様々な感情のデータを取得するには多くのコストがかかる

2.1.3 HMM 型音声合成における感情表現

都築ら[7]は HMM 音声合成システムを用いて少ない学習データを用いて感情表現のモデル化を行っている. 学習に用いる音声データは英語音声で目的の感情を表現しやすい文章を読み上げたものである. 感情は平静・怒り・喜び・悲しみの4種類の感情について合成を行い, 聴取による主観評価実験を行っている. 結果としては, 判別誤りが多く見られ芳しい結果は得られなかった. 原因として文章と感情の関係や音声品質, 学習データの不足などが挙げられている.

2.1.4 HMM 型音声合成における共有感情付与モデルを利用した感情表現

大谷 [9] らは HMM 型音声合成において加算構造に基づく感情表現を提案している. この手法では複数の話者の感情音声データ用いて, 学習者共有の感情成分を持つ共有感情付与モデルを学習し, このモデルを任意の平静音声モデルへ適応する. これにより HMM 型音声合成において従来法に比べ, 音質が高く, 安定した感情表現が可能となった.

2.2 朗読システムの研究

物語の文章内容に応じて,音声合成を調整する音声合成システムの研究について説明する.

2.2.1 表層情報を用いた朗読システム

吉田ら [8] は朗読文に朗読者の音声の間 (ポーズ) 及び韻律的特徴 (基本周波数, 話速) を解析し特徴のモデル化を行うことで, 文章に応じてポーズや韻律を付与するシステムを提案している. 物語の分は文内表層情報 (命令, 否定, 意志等) と文末表層情報 (「~ある」,「~いる」,「~んだ」等) よりカテゴリー分けし, それを特徴としている. 聴取実験の結果では調整を行っていない音声に比べ調整を行った音声の方が自然と回答した割合が 80%前後であった. しかし,この研究では予め「情景描写」や「緊迫」といった場面抽出を人手で行っているため,それ以外の場面において有効であるか疑問である. また,基本周波数と話速の調節しか行っておらず,前節で述べた感情付与モデルを利用して音声合成を調節することで,さらに自然になる可能性がある.

2.2.2 感情推定を用いた朗読システム

布目ら[10] はセリフ文に対し、文中やその隣接分に出現する表記や単語を手がかりにして、事前に定義された複数の感情から最も近い感情表現を割り当てるシステムを提案している。感情推定では「喜び」「怒り」「悲しみ」及び「平静」の各感情を付与した学習データを作成する。ナイーブベイズを用いて学習を行い、推定ではスコアを算出し最もスコアの高い感情を文に付与する。その推定をもとに、文ごとに韻律辞書や音声制御用パラメタを切り替えて読み上げる。精度評価の結果、喜、怒、哀の3種の感情ラベルに関しては90%前後の精度を得た。しかしながら、感情を付与する対象はセリフのみであり、セリフ文以外にも付与することでより自然な朗読が可能になると考えられる。また、感情ラベルの付け方が明示されておらず、推定が容易な文のみを対象としていたり客観的なラベル付けが行われていない可能性がある。

2.3 本研究の位置づけ

本研究では自然な朗読システムのために物語の全文を対象に一文ずつ予め用 意された感情の中からで音声合成すべきか推定を行う.

大谷 [9] らの研究ではすでに感情表現が可能な質の高い音声合成は可能であることがわかった. しかし, この技術だけでは人でによる感情のパラメタ指定が必要であり, コストがかかる. 本研究で期待される感情推定技術と組み合わせることで, 自然で質の高い自動朗読システムを実現することが可能になる.

本研究と同じ目的の研究は他にもあり、それらとの違いや類似点を説明する. 吉田ら[8]の研究では基本周波数と話速の調整のみを行っていたが、本研究ではあくまで感情ラベルの推定を行う.これによって感情を考慮した朗読システムが構築できる可能性がある.ただし、この研究によって文脈や内容そのものを理解せずとも理解せずとも、文の表層情報からある程度、どのように朗読すべきか推定可能性が示された.これを受けて、本研究では機能語のみによる推定も行った.

布目ら[10]の研究はセリフ文のみに着目している。本研究ではセリフ文以外の文章に対して感情推定を行う重要性の検討を行い、それに対する推定も行う。また、ナイーブベイズのみの推定になっているが、本研究ではその他にランダムフォレストやSVMでの比較実験を行い評価する。

さらに既存の研究では、正解ラベルの付け方、使用する文の選定に不明瞭な 点が多く、実際の運用の際に未知の文に対応できるのか疑問であった。本研究 では、選択した物語からすべての文を対象に無作為に抽出を行い、複数の第三 者によって評価を行わせ正解データを作成した。

2.4 本章のまとめ

本章では感情表現が可能な音声合成の研究と朗読システムの研究をいくつか挙げた.また,音声合成技術と本研究を組み合わせることで得られるメリットを説明した.さらに既存研究の現状とそれらが抱える問題点を指摘した.それを踏まえ本研究が目指す領域について説明した.

第3章 提案手法

本章では提案する手法の詳細について説明する.

3.1 提案手法の概要

提案手法の概要を図3.1に示す.本手法では、物語中のすべての文に対し文中に含まれる単語の出現を手がかりに朗読に最も適切もしくは自然と感じる感情を推定する.感情のクラスはNormal、Happy、Sad、Angryの4種類とした.まず、学習データとして各文に、それぞれ適切と思われる感情を人手で割り当てたものを用意する.これに対し前処理を行いランダムフォレストを用いて学習を行う.そして未知の入力文が与えられた場合に、感情クラスの1つを自動的に推定する他クラス分類を行うのが本手法である.

3.1.1 機能語のみによる推定

本手法は、学習と推定の際に文から内容語 (名詞、動詞、形容詞、形容動詞)を取り除き、機能語のみで推定を行う。なぜならば、未知の物語の感情を推定を目的としているため、学習データが特定の物語に依存していては推定精度が低くとなると考えられるからである。例えば「鬼」がネガティブに描かれている物語を学習データとして、別の「鬼」がポジティブに描かている物語を推定した場合にネガティブな感情に推定されてしまう恐れがある。一方、機能後は「しまう」や「ところが」など、朗読時の抑揚などに関係すると考えられる重要な助詞やや接続詞を含む。したがって、内容語を排除し排除し、機能語のみで推定を行う。

学習フェーズ 学習データ 「むかしむかし…」= [Happy] 前処理 前処理済み学習データ [0, 1, 0, ..., 1] = [Happy]機械学習 (ランダムフォレスト) 感情推定分類器 推定フェーズ 未知のデータ 「…とさ、めでたしめでたし」 前処理 未知のデータ [0,1,0,...,1] 感情推定分類器

図 3.1: 提案手法の概要

Нарру

3.1.2 前処理

前処理の概要を図 3.2 に示す. まず,物語の文章を文に分ける際は,基本的に句点で区切る. カギ括弧で囲まれているセリフ部分はカギ括弧で区切り,カギ括弧内のセリフについても句点で区切る. 次に,形態素解析を行い単語ごとに分割しそれぞれの単語を基本形に変換する. そして,形態素解析の結果から内容語を削除し機能語のみにする. 最後に,文中に単語が含まれるか否かを示すベクトル (Bag-of-words) に変換する.

図 3.2: 前処理の手順

3.1.3 分類器の生成

一般に、入力データに対して、予め定義された複数のクラスから一つを推定する手法としては機械学習の教師あり学習が適応できる。本研究では、その1つであるランダムフォレストを用いて推定を行う。ランダムフォレストは複数の決定木を用いて識別などを行うアンサンブル学習アルゴリズムである。また、精度を向上させるために、正確度を指標としてグリットサーチを用いて最適なパラメタを探索する。

第4章 実験

本実験の概要を図 4.1 に示す. 本実験では、まず物語文を元に各感情を指定した音声データを生成し、Webのアンケートシステムを用いて複数の被験者に評価してもらい、学習データを作成する. その後、学習データを用い交差検証を行う.

図 4.1: 学習データの作成手順

4.0.1 データの作成

提案手法で述べた通り物語データを文に区切り,一文につきそれぞれ4種類の感情を指定して音声データを生成する.

本実験では物語データとして、青空文庫[11]にある5つの物語を用いる。今

回は文体を近づけるために同じ訳者の童話を中心に「白雪姫」、「赤ずきんちゃん」、「浦島太郎」、「ジャックと豆の木」、「ヘンゼルとグレーテル」を用いた. なお、ルビのデータが含まれているため予めタグを除いておく.

本研究の音声合成にはオープンソフトの Open JTalk[12] を用いる. Open JTalk は形態素解析部に MeCab[13], 発音辞書に NAIST Japanese Dictienary[14] を用いてる. 波形生成部には MMDAgent[15] にある Mei のサンプルを用いてる. NOMAL, HAPPY, ANGRY, BASHFUL,SADの5種類のサンプルがあるが, 先行研究に従いこの内の BASHFUL を除いた4種類を用いた. なお, 音声データは WAVE 形式として保存される.

4.0.2 学習データの収集

図 4.2: WEB アンケートシステム画面

Web 上で学習データを収集するためのシステムを構築した. そのシステム画

面を図 4.2 に示す. 被験者には文ごとに各感情のパラメタで合成した音声をそれぞれ聞いてもらい内容にもっとも適切 (自然) であると思われる感情を 1 つだけ選択してもらう. しかし, 感情は主観的な尺度であるため一人だけの評価では信頼性が低い. そこで, 一文に対して同じ感情の評価が二票集まった時点で,その文の感情を決定することとした. したがって, 同じ感情の評価が二票あるまで他の被験者に評価し続けてもらう. 被験者等に関する詳細を表 4.1 に示す.

表 4.1: 学習データの収集

被験者	東京理科大学の学部生及び大学院生
人数	学部生15名,大学院生2名
取得期間	2017年1月9日~25日
評価取得数	2641

4.0.3 評価

本実験では、leave-one-out 交差検証を行い、判定結果に対応する入力データの集合を TP, FP, TN, FN を次のように定義する.

True Positive(TP) 実際の感情のものを実際の感情であると予測したものの件数

True Negative(TN) 実際の感情でないものをその感情でないと予測したものの件数

False Positive(FP) 実際の感情でないものを実際の感情であると予測したものの件数

False Negative(FN) 実際の感情のものを実際の感情でないと予測したもの の件数

以上をふまえ、分類器の性能評価を式(1),(2),(3),(4)で行う。本研究は分類推定を目的としているため特に F 値(4) に注目する。

正解率
$$(Ac) = \frac{TP + TN}{TP + TF + NP + NF}$$
 (4.1)

適合率
$$(Pr) = \frac{TP}{TP + FP}$$
 (4.2)

再現率
$$(Re) = \frac{TP}{TP + FN}$$
 (4.3)

$$F \stackrel{\text{di}}{=} \frac{2 * Pr * Re}{Pr + Re} \tag{4.4}$$

4.0.4 比較実験

提案手法の有効性を検証するために、同様な実験をセリフ文のみに絞った場合とさらに機能語に絞らなかった場合とそれぞれ行った。さらに、ランダムフォレストの比較として SVM を用いた実験も行った。このとき、ランダムフォレストと同様に SVM でもグリットサーチで最適なパラメタを導出した。

第5章 実験結果

5.0.1 学習データ

表 5.1: 学習データ (物語別)

タイトル	文数 (セリフ)	評価確定数 (セリフ)
白雪姫	287 (90)	258 (86)
赤ずきんちゃん	109 (54)	108 (54)
浦島太郎	206 (48)	78 (26)
ジャックと豆の木	206 (49)	78 (26)
ヘンゼルとグレーテル	319 (114)	260 (90)
合計	1096 (364)	765 (283)

表 5.2: 学習データ (感情別)

感情	全文	セリフのみ
Normal	459	63
Нарру	134	110
Sad	99	60
Angry	73	50
合計	765	283

学習データの概要を表 5.1 と表 5.2 に示す. 全体で評価が確定したものは全体で 69.8%であった. 全文とセリフのみに絞った場合の比較を行う. 得られた学習データは表 5.2 の通り, Normal 以外の感情はセリフに多く含まれることがわかる. したがってセリフの感情推定の精度を上げることで全体の精度をあげることができることがわかる. 全文にくらべセリフのみを対象とした場合はより均等に感情が別れているため分類がより難しい.

表 5.3: ランダムフォレストのグリットサーチの結果

		全文		セリフ
パラメタ名	全文	(機能語のみ)	セリフ	(機能語のみ)
ceriterion	entropy	entropy	entropy	entropy
min_samples_leaf	12	8	3	8
n_estimators	80	250	30	30
max_features	None	None	None	None
min_samples_split	12	10	3	10
max_depth	17	20	20	15

表 5.4: SVM のグリットサーチの結果

パラメタ名	全文	全文 (機能語のみ)	セリフ	セリフ (機能語のみ)
kernel	sigmoid	sigmoid	poly	rbf
gamma	0.001	0.001	3	0.001
С	100	100	1000	1

5.0.2 グリッドサーチ

グリッドサーチの結果を表 5.3 表と表 5.4 に示す. それぞれの場合で値が大き く異なるパラーメタが得られる場合があった.

5.0.3 評価結果

表 5.5: ランダムフォレストでの結果

対象	正確度	適合率	再現率	F値
全文	0.82	0.57	0.64	0.57
全文(機能語)	0.82	0.54	0.64	0.57
セリフのみ	0.70	0.37	0.40	0.37
セリフのみ (機能語)	0.70	0.35	0.40	0.34

ランダムフォレストと SVM の結果を表 5.5 と表 5.6 に示す. なお (機能語) とは学習,推定時に機能語のみを用いた場合を示す. 全体として F 値は高くない結果となった. 特に SVM の場合は SVM では,全文に機能語を絞らずに分類を行った場合を除く他のすべての場合で,推定が一つの感情に偏ってしまった.

対象 正確度 適合率 再現率 F値 全文 0.820.57064 0.59全文(機能語) 0.80 0.36 0.60 0.45セリフ 0.70 0.380.22 0.22

0.15

0.39

0.22

0.70

セリフ (機能語)

表 5.6: SVM での結果

5.0.4 考察

全体としてのF値は高くない結果となった.原因として学習データが少ないことや出現を示すベクトルの形式に問題がある可能性がある.また,グリットサーチを正確度を基準に行ってしまったためF値を基準にやり直す必要がある.ランダムフォレストとSVMを比較する.SVMでは,全文に機能語を絞らずに分類を行った場合を除く他のすべての場合で,推定が一つの感情に偏ってしまった.したがって,本研究の目的のためにはSVMよりランダムフォレストの方が有用であると言える.

機能語に絞った場合ととそうでない場合を比較する. ランダムフォレストの値ではほぼ同じもしくは機能語に絞らない方がわずかに良い結果が得られている. これは、学習データに用いた物語が5つと少ないことや leave-one-out を用いたことで推定する文と同じ物語の文を用いて学習を行っているからであると考えられる. したがって、機能語だけでも感情の推定を行える可能性はまだある. 実際の運用では未知の物語の文に対して推定を行うので、機能語だけの学習・推定の方が精度が高い推定が行えるかもしれない. この検証を行うためには物語数を増やし学習データを増やした上で、leave-one-outではなく一つの物語をテストデータして他の物語を学習データとして検証を行う必要がある. また、決定木を用いて各単語の重要度を算出することで、機能語が感情推定にどれほど寄与するのか確認することができる.

参考文献

- [1] Jennifer Maloney, "The Fastest-Growing Format in Publishing: Audiobooks", http://www.wsj.com/articles/the-fastest-growing-format-in-publishing-audiobooks-1469139910, Wall Steet Journal
- [2] 佐藤和也、"高い継続率は「耳がさみしくなるから」-オトバンクに聞くオーディオブック市場と利用動向"、https://japan.cnet.com/article/35076656/
- [3] 上 田 渉 , "「 耳 で 聴 く 読 書 文 化 」を 築 く", http://www.ajec.or.jp/interview_width_ueda1/, 一般社団法人日本編集制作協会
- [4] 杉藤美代子; 大山玄. 朗読におけるポーズと呼吸一息継ぎのあるポーズと息継ぎのないポーズー. 音声言語. 1990.
- [5] YOSHIMURA, Takayoshi. Simultaneous modeling of phonetic and prosodic parameters, and characteristic conversion for HMM-based textto-speech systems. 2002. PhD Thesis. Nagoya Institute of Technology.
- [6] 飯田朱美, and 安村通晃. "感情表現が可能な合成音声の作成と評価." 情報 処理学会論文誌 40.2 (1999): 479-486.
- [7] 都築亮介, et al. HMM 音声合成における感情表現のモデル化 (合成, 韻律, 生成, 一般). 電子情報通信学会技術研究報告. SP, 音声, 2003, 103.264: 25-30.
- [8] 吉田有里, 奥平康弘, 田村直良, "音声合成による朗読システムに関する研究", 情報科学技術フォーラム講演論文集, 2009:p337-380

- [9] 大谷大和, et al. "HMM に基づく感情音声合成のための共有感情付与モデル (オーガナイズドセッション 「文脈や状況に合った発声を実現する音声合成技術及び周辺技術」, 合成, 韻律, 生成, 音声一般)." 電子情報通信学会技術研究報告. SP, 音声 114.303 (2014): 13-18.
- [10] 布目光生,鈴木優,森田眞弘,"自然で聞きやすい電子書籍読上げのための文書構造解析技術,東芝レビュー,2011:p32-35
- [11] 青空文庫, http://www.aozora.gr.jp/
- [12] 大浦 圭一郎, 酒向 慎司, 徳田 恵一, "日本語テキスト音声合成システム Open JTalk", 日本音響学会春季講論集, 2010:p343-344
- [13] "MeCab: Yet Another Part-of-Speech and Morphological Analyze", http://taku910.github.io/mecab/
- [14] "NAIST Japanese Dictionary", http://naist-jdic.osdn.jp/
- [15] "MMDAgent", http://www.mmdagent.jp/

付 録 A WebページのURLリスト