Analyses in simple LHC bound

Sho Iwamoto / Misho

23-May-2022 11:36:00 ©2021-2022 Sho Iwamoto / Misho

This note summarizes analyses available on the Mathematica package simple_LHC_bound, which collects LHC results with $\sqrt{s} > 13\,\mathrm{TeV}$ related to non-colored SUSY particles. Preliminary results are not included. For references and a citation guideline, see readme.md files included in respective analyses.

Throughout this note, $l=(e,\mu,\tau)$ and $\ell=(e,\mu)$. Tau-leptons τ^\pm are labelled by its decay product: $\tau_{\rm h}$ means those decaying hadronically and are observed as tau jets, while τ_{ℓ} means it decays as $\tau^\pm \to \ell^\pm \nu \nu$. SFOS denotes an e^+e^- or $\mu^+\mu^-$ pair, standing for "same-flavor opposite sign." The missing transverse momentum is denoted by $p_{\rm miss}^{\rm miss}$.

Colored SUSY particles and heavy Higgs bosons are assumed to be decoupled unless otherwise noted. In addition to $\tilde{\chi}_i^0$ and $\tilde{\chi}_j^\pm$ (i=1,2,3,4 and j=1,2), which denote the i-th lightest neutralino and the j-th lightest chargino, respectively, we use \tilde{B} , \tilde{W}^0 , and \tilde{H}^0 to describe particles that are assumed to be mostly bino-like, wino-like, or Higgsino-like, respectively, and similary \tilde{W}^\pm and \tilde{H}^\pm . Note that \tilde{H}^0 is made of two Majorana fermions, i.e., \tilde{H}^0_u and \tilde{H}^0_d with a Dirac-type mass term, and neutralino pair-production $pp \to \tilde{\chi}_i^0 \tilde{\chi}_i^0$ for Higgsino-like neutralinos happens only for $i \neq j$.

1 Standard neutralino-chargino (NC) searches

1909.09226/A NC/HW.

1912.08479/A NC/ZW (degenerate N2-N1 $\sim m_{\rm EW}$).

2012.08600/C NC/ZW by $2\ell^{Z-\text{like}} + \text{jet}(s) + p_T^{\text{miss}}$ signature.

2108.07586/A NC/ZW and NC/HW.

2 Standard chargino-pair (CC) searches

- CC/WW for $\tilde{\chi}^+\tilde{\chi}^- \to W^+W^-p_{\rm T}^{\rm miss}$.
- CC/slep for $\tilde{\chi}^+\tilde{\chi}^-$ into $(\tilde{\ell}_{\rm L},\tilde{\nu})\times(\tilde{\ell}_{\rm L},\tilde{\nu})$, which anyway results in $2\ell^{\rm SFOS}$ signature.

1908.08215/A $\tilde{\chi}^+\tilde{\chi}^-$ to $2\ell^{\rm SFOS}+p_{\rm T}^{\rm miss}$. Both of CC/WW and CC/slep.

2108.07586/A CC/WW.

3 Standard slepton-pair (LL) searches

1908.08215/A Standard $2\ell^{\text{SFOS}} + p_{\text{T}}^{\text{miss}}$.

1911.12606/A Degenerate slepton search.

2012.08600/C Standard $2\ell^{\text{SFOS}} + p_{\text{T}}^{\text{miss}}$.

4 Standard stau-pair (TaTa) searches

1911.06660/A Standard $2\tau_h + p_T^{miss}$.

5 Inclusive chargino/neutralino searches

1911.12606/A Degenerate scenarios with $2\ell^{\text{maybe soft}} + 1j + p_{\text{T}}^{\text{miss}}$.

- NC/ZW from wino-like $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^0$ and bino-like $\tilde{\chi}_1^0$, degenerate $(\tilde{\chi}_1^{\pm} = \tilde{\chi}_2^0 \gtrsim \tilde{\chi}_1^0)$; effect of the sign sign $(\tilde{\chi}_2^0\tilde{\chi}_1^0)$ is taken into account. VBF production is also discussed.
- NC/ZW from pure-Higgsino $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^0 \tilde{\chi}_2^0$, degenerate ($\tilde{\chi}_2^0 \gtrsim \tilde{\chi}_1^0$ and $\tilde{\chi}_1^{\pm} = (\tilde{\chi}_2^0 + \tilde{\chi}_1^0)/2$). VBF production is also discussed.

2108.07586/A Productions of all chargino/neutralino combinations.

- Wino-like $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ with bino-like $\tilde{\chi}_1^0$ and decoupled sleptons; CC/WW plus NC/(H|Z)W are all considered.
- Higgsino-like $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \tilde{\chi}_3^0$ with bino-like $\tilde{\chi}_1^0$ and decoupled sleptons; CC/WW, N2C/(H|Z)W, N3C/(H|Z)W, and NN/(H|Z)(H|Z) are all considered.

6 Long-lived chargino searches

2004.05153/C Standard centimeter-track searches for quasi-LSP \tilde{W}^\pm and \tilde{H}^\pm .

2201.02472/A Standard centimeter-track searches for quasi-LSP \tilde{W}^{\pm} and \tilde{H}^{\pm} .