# ICT Course: Introduction to Information Security

Nguyen Minh Huong

ICT Department, USTH

December 12, 2022

### **Session 1: Introduction**

- Introduction
  - Security concerns
  - Information Security aspects
    - Cryptology
    - Access Control
    - Protocols
    - Software
- 2 Modular Arithmetic



### What is "Information System"?

Example: Homework submission system



### What is an Information system comprised of?

### What is Information Security?

# What is Information Security?

- Information system is an organized system for the collection, organization, storage and communication of information.
- Information system's components: hardware, software, data, people, procedures, and networks.
- **Information security**: is the protection of information assets that **use**, **store**, or **transmit** information from risk through the application of policy, education, and **technology**.

#### Main question

How to use, store and transmit the information securely?



### What does "securely" mean?

Alice wants to send a love letter to Bob. What may happen to the letter that Alice may afraid of?

# What does "securely" mean?

- Information is kept secret
- Information is protected from being manipulated
- Services are available
- Identification of the user is true
- Restriction on actions of authenticated users

# **Security Concerns**

- Confidentiality
- Integrity
- Availability
- Authentication
- Authorization

# How to guarantee the information security?



## How to guarantee the information security?

- What information is exchanged securely?
- **How** to exchange information **securely**?
- **Who** are allowed to access to information?
- How each participants can do with the information?



# **Information Security Aspects**



### **Course Description**

- 3 credits
- References:
  - Paar, Christof, and Jan Pelzl. Understanding cryptography: a textbook for students and practitioners. Springer Science & Business Media, 2009.
  - Stamp, Mark. Information security: principles and practice. John Wiley & Sons, 2011.
  - M. Bishop, Computer Security: Art and Science, Addison Wesley, 2003.
- Assessment:

| Attendance | Mid-term | Active | Final Exam |
|------------|----------|--------|------------|
| 10 %       | 35%      | 5%     | 50%        |



### Modular Arithmetic

Why do we need to study modular arithmetic?1

- Extremely important for asymmetric cryptography (RSA, elliptic curves etc.)
- Some historical ciphers can be elegantly described with modular arithmetic (cf. Caesar and affine cipher later on).

### Introduction to Modular Arithmetic

- Modular Arithmetic is a system of arithmetic of integers, which considers the remainder
- Definition:

### **Modulus Operation**

Let a, r, m be integers and m > 0. We write

$$a \equiv r \mod m$$

if (r - a) is divisible by m.

- *m* is called the modulus
- r is called the remainder
- Example:

$$15 \equiv 3 \pmod{6}$$

$$21 \equiv 3 \pmod{6}$$

• The remainder is not unique: Examples:

$$12 \equiv 3 \pmod{9}$$

$$12 \equiv 21 \; (mod \; 9)$$

Which remainder do we choose?
By convention, we usually agree the smallest positive integer r as remainder:

$$a = q.m + r \text{ where } 0 \le r \le m - 1, q : quotient$$

### Congruence

• Two integers *a* and *b* are congruent modulo N if they have the same remainder upon division by N

$$a \equiv b \pmod{N} \iff b \equiv a \pmod{N}$$



### Addition

- If a + b = c, then  $a + b \equiv c \pmod{N}$
- If  $a \equiv b \pmod{N}$ , then  $a + k \equiv b + k \pmod{N}$
- If  $a \equiv b \pmod{N}$  and  $c \equiv d \pmod{N}$ , then  $a + c \equiv b + d \pmod{N}$
- If  $a \equiv b \pmod{N}$ , then  $-a \equiv -b \pmod{N}$

### Multiplication

- If a \* b = c, then  $a * b \equiv c \pmod{N}$
- If  $a \equiv b \pmod{N}$ , then  $k * a \equiv k * b \pmod{N}$ ,  $\forall k \in \mathbb{Z}$
- If  $a \equiv b \pmod{N}$ , and  $c \equiv d \pmod{N}$ , then  $a * c \equiv b * d \pmod{N}$

### Exponentiation

• If  $a \equiv b \pmod{N}$ , then  $a^k \equiv b^k \pmod{N}, \forall k \in \mathbb{Z}, k > 0$ 



### **Division**

• If gcd(k, N) = 1 (k and N are coprime) and  $k * a \equiv k * b \pmod{N}$ , then  $a \equiv b \pmod{N}$ 



### Multiplicative inverse

- If gcd(a, N) = 1,  $\exists x \in \mathbb{Z}$  such that  $a * x \equiv 1 \pmod{N}$
- x is called the multiplicative inverse of a modulo N

$$x \equiv a^{-1} (mod \ N)$$



# **Equivalent Classes**

- Equivalent class is a set of numbers that have the same remainder for modulus m
- With a fixed modulus, we are free to choose the class element that results in the easiest computation
- Example:

$$3^8 = 6567 \equiv 2 \mod 7$$

$$3^8 = 3^4 * 3^4 = 81 * 81$$

$$81 \equiv 4 \mod 7$$
, then  $81 * 81 \equiv 4 * 4 \mod 7 = 2 \mod 7$ 



### **Exercises**

### Ex 1: Compute the result without a calculator:

- 15 \* 29 mod 13
- 2 \* 29 mod 13
- 2 \* 3 mod 13
- $\bullet$  -11 \* 3 mod 13

- Ex2: Compute x as far as possible without a calculator:
  - $x = 3^2 \mod 13$
  - $x = 7^2 \mod 13$
  - $x = 3^{10} \mod 13$
  - $x = 7^{100} \mod 13$
  - $7^x = 11 \mod 13$

# Euler's phi function

- Euler's phi function,  $\Phi(m)$  is the number of positive integers less than m that are relatively prime to m.
- Example: What is  $\Phi(m)$  for m = 3, 4, 5, 9, 26?

