Module 10

Advanced Lists & Dictionaries

Emily Zhao CSCI-UA.0002

Poll Everywhere

https://pollev.com/emilyzhao

Advanced Lists

```
# function: shuffle list
# input: a list
# processing: create a shuffled copy of the list
# output: return shuffled list
a = [1, 2, 3, 4, 5]
shuffled_a = shuffle_list(a)
print(shuffled_a)
\# >> [2, 5, 4, 1, 3]
```

Shuffling / Randomizing a List

You can shuffle (or randomize) the elements in a list by applying the following algorithm:

- Create an empty list
- Enter into a while loop
- Obtain a random number between 0 and the length of the list you wish to shuffle
- Place a copy of the data that exists at this random position into our new list
- Remove the item from original list
- Test the length of the original list if it is zero we can end the while loop
- Your new list now contains a shuffled version of your original list

```
import random
# function: shuffle list
# input: a list
# processing: create a shuffled copy of the list
# output: return the shuffled list
def shuffle_list(oldList):
    newList = []
    # while there are still items in the old list
    while len(oldList) > 0:
        #pick a new position and add it to the new list
        pos = random.randint(0, len(oldList)-1)
        newList.append( oldList[pos] )
        # remove element by position from old list
        del oldList[pos]
    return newList
```

Multi-dimensional lists

- All of the lists we have been creating so far have been one dimensional (i.e. linear) in nature
- You can create a two dimensional list in Python by simply nesting a list inside of another list.

```
mylist = [ [ 'a', 'b', 'c' ],
          [ 'd', 'e', 'f'] ]
print (mylist[0])
print (mylist[0][0])
print (mylist[1][1])
>> ['a', 'b', 'c']
>> a
>> e
```

Given the following list:

```
myList = [True, [0, 1, 2], "a", ["x","y","z"], "b", [3, 4, ["cat", "dog"]], "c"]
```

Write the line of code that will print the following:

Dictionaries

Dictionaries

- A dictionary is a data structure for storing pairs of values
- Unlike a list, a Dictionary doesn't use integer based index values.
- Instead, Dictionaries use <u>immutable</u> objects (like Strings) to index their content. These are also call **keys**.
 Keys are unique and cannot be repeated within a dictionary.
- Values can be accessed by their keys.
 Like lists, dictionaries are mutable.

```
wordFreq = {
    "the": 10,
    "and": 5,
    "so": 2
  }
```

Creating an empty dictionary and adding key-value pairs

```
# create empty dictionary
versions = {}
# add python to dictionary
versions["python"] = 3.2
print(versions)
# >>> {"python": 3.2}
print(versions["python"])
# >>> 3.2
print(versions["java"])
# >>> KeyError: 'java'
```

Creating a dictionary with values

- You cannot access elements in a Dictionary that have not been defined.
- You can use the "in" operator to test to see if a key is in a dictionary like this (note: this will check for the presence of a key in a dictionary, not for the data that the key is storing!)

```
# create dictionary with values
versions = {
    "python": 3.2,
    "java": 1.8
del versions["sql"]
# >>> KeyError: 'sql'
# check to see if java exists
# if so, remove it
if "java" in versions:
    del versions["java"]
print(versions)
# >>> {"python": 3.2}
```

Clearing a Dictionary

You can clear all keys in a Dictionary by doing the following:

my dictionary.clear()

	Order	Access	When to use
List			
Dictionary			

	Order	Access	When to use
List	ordered		
Dictionary	unordered		

	Order	Access	When to use
List	ordered	numeric index	
Dictionary	unordered	immutable key (i.e. String)	

	Order	Access	When to use
List	ordered	numeric index	when order matters
Dictionary	unordered	immutable key (i.e. String)	need to access values with a unique key

Trace the Output

```
myList = []
myDict = {}
myList[0] = "Emily"
print(myList)
myDict["Emily"] = 26
print(myDict)
```

Trace the Output

```
myList = []
myDict = {}
myList[0] = "Emily"
                            myList[0] = "Emily"
print(myList)
                         IndexError: list assignment index out of range
myDict["Emily"] = 26
                             {'Emily': 26}
print(myDict)
```

```
versions = {
    "python": 3.2,
    "java": 1.8
print(versions.keys())
print(versions.values())
print(versions.items())
>>> dict_keys(['python', 'java'])
>>> dict_values([3.2, 1.8])
>>> dict_items([('python', 3.2), ('java', 1.8)])
```



```
versions = {
    "python": 3.2,
    "java": 1.8
for i in versions:
    # what is i?
    print(i)
```

python java

```
for i in versions.items():
    # what is i?
    print(i)
```

```
('python', 3.2)
('java', 1.8)
```

```
for i in versions.items():
    lang = i[0] # "python"
    vers = i[1] # 3.2
    print("Your version of", lang, "is", vers)
for lang, vers in versions.items():
    print("Your version of", lang, "is", vers)
```

Your version of python is 3.2 Your version of java is 1.8

How to import data from URL

```
import urllib.request
# define url
url = "http://www.example.com"
# initial request to URL
response = urllib.request.urlopen(url)
# read data from URL as string
data = response.read().decode("utf-8")
```

This data file contains all World Series winning teams up until a few years ago:

— http://002-text-files.glitch.me/world-series.txt

Write a program that reads in this data and finds the team that won the most games, <u>now using a **dictionary**</u>. Does it help?

- > world-series-list.py
- > world-series-dict.py

Answer code on class website

- Count the frequency of all words in the <u>Declaration of Independence</u>.
- Which word is said the most?


```
import urllib.request
try:
    # define url
    url = "http://002-text-files.glitch.me/declaration.txt"
    # initial request to URL
    response = urllib.request.urlopen(url)
    # read data from URL as string
    data = response.read().decode("utf-8")
except:
    print("Couldn't get data")
else:
    print("Data found")
    #print(data)
# replace new lines with spaces
data = data.replace("\n", " ")
# essentailly delete punctuation
data = data.replace(",", "")
data = data.replace(";", "")
data = data.replace(".", "")
data = data.split(" ")
print(data)
words = \{\}
for w in data:
    if w.lower() in words.keys():
        words[w.lower()] += 1
    else:
        words[w.lower()] = 1
print(words)
print(max(words, key=words.get))
```

Write a program that creates a dictionary containing the U.S. states as keys, and their capitals as values. Use this <u>states.txt</u> file to build your dictionary.

The program should then randomly quiz the user by displaying the name of a state and asking the user to enter that state's capital.

The user has 3 lives – meaning if they get three or more wrong answers, the game is over.


```
import urllib.request
try:
    # define url
    url = "http://002-009-text-files.glitch.me/states.txt"
    # initial request to URL
    response = urllib.request.urlopen(url)
    # read data from URL as string
    data = response.read().decode("utf-8")
except:
    print("Couldn't get data")
else:
    print("Data found")
    #print(data)
data = data.split("\n")
states = {}
for s in data:
    pair = s.split(", ") # ["Montgomery", "Alabama"]
    states[pair[1]] = pair[0] # ["Alabama": "Montgomery"]
print(states)
import random
# start game
print("How good is your knowledge of state capitals?")
lives = 3
# make a list of states
states list = []
for key in states:
    states_list.append(key)
print(states_list)
while lives > 0:
    state = random.choice(states_list)
    quess = input("What is the capital of " + state + "? ")
    if guess == states[state]:
        print("Correct!")
    else:
        print("Sorry, the capital of", state, "is", states[state])
        lives -= 1
        if lives == 0:
            print("You lost")
        else:
            print("You have", lives, "lives left")
```