DM-IMECC-UNICAMP - C	Cálculo III - MA311 - T. Z	
Prof. Marcelo M. Santos – \mathbf{P}	rova de Segunda Chamada,	09/12/2010
Aluno:	RA:	
Assinatura (idêntica à do	RG):	

Observações: Tempo de prova: 100min. Justifique sucintamente todas as suas afirmações. É proibido o uso de qualquer equipamento eletrônico: em particular do celular ou calculadora. Desligue o celular! Não destaque o grampo da prova.

- 1. a) (1,0 ponto) Calcule o limite da sequencia $\arctan(\frac{n+2}{n})$. b) (1,0 ponto) Calcule a soma da série $\sum_{k=0}^{\infty} \frac{1}{2^{2k}}$.
- **2.** a) (1,0 ponto) Resolva a EDO y(2x + y)dx + x(x + 2y)dy = 0.
 - b) (1,0 ponto) Encontre a solução geral da EDO $y'' + y = x + e^{-x}$.
- (2,0 pontos) Encontre a solução geral em série de potências de x da EDO $(x^2+1)y''+y''+y=0$: dê a relação de recorrência e uma cota inferior para o raio de convergência da solução.
- **4. a)** (0,5 pontos) Calcule a Transformada de Laplace da função $f(t) = t \cos 2t$. <u>Dados:</u> $\mathcal{L}[\cos at] = \frac{s}{s^2 + a^2}; \ \mathcal{L}[(-t)^n f(t)] = \frac{d^n}{ds} \mathcal{L}[f(t)].$
 - b) (1,5 pontos) Resolva o sistema abaixo pelo método de autovalores e autovetores:

$$\begin{cases} (x_1)' = 4x_1 \\ (x_2)' = x_1 + 4x_2 + x_3 \\ (x_3)' = x_1 + x_2 + 4x_3 \end{cases}$$

Considere a EDP (equação de Laplace) $u_{xx} + u_{yy} = 0$ no retângulo $0 < x < \pi, 0 < \pi$ $y < \pi$. Encontre uma sequência de soluções de variáveis separadas $u_n(x,y) = X_n(x)Y_n(y)$, $n=1,2,\cdots$, satisfazendo as condições de contorno $u_n(0,y)=u_n(\pi,y)=u_n(x,\pi)=0$, as quais sejam L.I. (i.e. $\sum c_n u_n = 0 \Rightarrow c_n = 0$).

<u>Dica</u>: Procure soluções por separação de variáveis u(x,y) = X(x)Y(y), transforme a EDP em duas EDOs dependentes de um parâmetro comum λ e, em seguida, imponha as condições de contorno para determinar uma sequência de valores para o parâmetro – autovalores de um problema de contorno.

BOA PROVA!