Perovskite Solar Cells -A New Era of Solar Technology

Pb

N

Exploring the Future of Renewable Energy

INTRODUCTION

What are Perovskite Solar Cells?

Perovskite solar cells (PSCs) are a groundbreaking technology in renewable energy. Their unique crystal structure allows superior light absorption and energy conversion efficiency. Compared to traditional silicon cells, PSCs promise:

- Lighter and more flexible designs.
- Reduced manufacturing costs.
- Adaptability to a variety of applications.

Why it matters:

Solar energy is essential for a sustainable future, and PSCs are paving the way for more efficient, affordable, and scalable energy solutions.

Potential:

They have the **ability to revolutionize** the solar energy industry by offering a cost-effective, efficient, and versatile solution.

METHODS

The production of perovskite solar cells involves synthesizing crystals, layering materials, and testing for efficiency. Sustainable materials and innovative fabrication methods are incorporated to make this process more environmentally friendly.

Synthesizing Crystals

Chemical precursors are mixed to form a perovskite crystal layer. Eco-friendly solvents and room-temperature processes are explored.

Layers include a transparent electrode, perovskite absorber, and a counter electrode Various deposition techniques like durability. spin-coating and printing are employed.

Layering Materials

Testing for Efficiency

Light simulation testing for energy Environmental stress tests to assess

Mesoporous TiO₂ Compact TiO₂ 1. Spin-coating 1. Spin-coating 2. Annealing at 550 °C for 30 min 2. Annealing at 550 °C for 30 min Mesoporous TiO₂ Compact TiO₂ 1. Spin-coating CH₃NH₃Pbl₃ 2. Spin-coating DPPS 3. Annealing at 140 ~ 220 °C for 3 ~ 10 min Spiro-OMeTAD Vacuum deposition DPPS Perovskite Perovskite Perovskite esoporous Ti Compact TiO₂ Compact TiO₂

RESULTS

Efficiency Gains:

PSCs have achieved efficiencies exceeding 25%, rivaling silicon cells. Enhanced performance under low-light conditions.

Cost Benefits:

Production costs are up to 40% lower than silicon-based cells.

Flexibility and Application:

Potential for lightweight, bendable panels ideal for wearable devices and portable energy solutions.

Silicon-based Solar Cells

Inflexible

Heavy

High

Perovskite Solar Cell

Inexpensive

Transparent

Conversion efficiency

Cost

Durability

Thin glass sheet

DISCUSSION

1. Moisture & Oxygen Sensitivity

Solution: Advanced encapsulation techniques using multi-barrier layers or glass sealing to block moisture and oxygen.

Structural

Transform-

Thermal

instability

PSC

Chemical

instability

2. UV Exposure

Solution: Incorporating UV-blocking additives or coatings to **protect** the perovskite layer from degradation due to UV light.

3. Chemical Instability

Solution: Using **stable** compositions like mixed-cation or halide systems to enhance chemical robustness.

4. Thermal Instability

Solution: Introducing high-temperatureresistant materials and optimizing device architecture for heat dissipation.

5. Structural Transformation

Solution: Stabilizing the perovskite structure with additives such as cesium or using inorganic frameworks to prevent structural changes.

6. Sealing Issues

Solution: Employing flexible, durable sealing materials like epoxyresins or advanced adhesives for long-term stability.

REFERENCES

- 1. https://g2voptics.com/advantages-of-perovskite-solar-cells/
- 2. https://g2voptics.com/perovskite-solar-cells/history-of-perovskite-solar-cells/
- 3. https://iopscience.iop.org/article/10.1088/1361-6463/ad4daf

Team Members

Md Manjarul Hauque Aaryan Khare Prateek Kumar

CONCLUSION

Revolutionary Potential: PSCs offer high efficiency and adaptability, surpassing traditional silicon cells.

Cost-Effectiveness: Simpler production and abundant materials lower costs.

Sustainability: Eco-friendly designs support global carbon reduction goals.

Challenges: Stability and large-scale production need solutions.