```
In [2]:
          import pandas as pd
          import numpy as np
          from sklearn import metrics
          %matplotlib inline
          import matplotlib.pyplot as plt
In [3]:
          dataset=pd.read csv(r"C:\Users\SWAJAN\Documents\education\da project\datasets\tcs stock.csv")
In [5]:
          dataset.head()
Out[5]:
                                  Prev
                                                                                                                  Deliverable
            Date Symbol Series
                                         Open
                                                 High
                                                         Low
                                                                 Last
                                                                        Close
                                                                               VWAP
                                                                                      Volume
                                                                                                  Turnover Trades
                                                                                                                             %Deliverble
                                  Close
                                                                                                                     Volume
            2015-
                                                                                                                                 0.2883
         0
                    TCS
                            EQ 2558.25 2567.0 2567.00 2541.00 2550.00 2545.55 2548.51
                                                                                       183415 4.674345e+13
                                                                                                            8002
                                                                                                                      52870
           01-01
            2015-
                            EQ 2545.55 2551.0 2590.95 2550.60 2588.40 2579.45 2568.19
                    TCS
                                                                                       462870 1.188740e+14
                                                                                                           27585
                                                                                                                     309350
                                                                                                                                 0.6683
            01-02
            2015-
         2
                    TCS
                            EQ 2579.45 2581.0 2599.90 2524.65 2538.10 2540.25 2563.94
                                                                                       877121 2.248886e+14
                                                                                                            43234
                                                                                                                     456728
                                                                                                                                 0.5207
            01-05
            2015-
                            EQ 2540.25 2529.1 2529.10 2440.00 2450.05 2446.60 2466.90 1211892 2.989615e+14
                                                                                                                     714306
                                                                                                                                 0.5894
                    TCS
                                                                                                            84503
            01-06
            2015-
                    TCS
                            EQ 2446.60 2470.0 2479.15 2407.45 2426.90 2417.70 2433.96 1318166 3.208362e+14 101741
                                                                                                                     886368
                                                                                                                                 0.6724
            01-07
                                                                                                                                  |
In [6]:
          dataset.shape
         (248, 15)
Out[6]:
In [5]:
          dataset.isnull().sum()
         Date
                                 0
Out[5]:
         Symbol
                                 0
         Series
                                 0
         Prev Close
                                 0
                                 0
         0pen
         High
                                 0
         Low
                                 0
         Last
         Close
                                 0
         VWAP
                                 0
         Volume
                                 0
         Turnover
                                 0
         Trades
                                 0
         Deliverable Volume
                                 0
         %Deliverble
                                 0
         dtype: int64
In [7]:
          dataset.isna().any()
         Date
                                 False
Out[7]:
         Symbol
                                 False
         Series
                                 False
         Prev Close
                                 False
         0pen
                                 False
         High
                                 False
         Low
                                 False
         Last
                                 False
         Close
                                 False
         VWAP
                                 False
         Volume
                                 False
         Turnover
                                 False
         Trades
                                 False
         Deliverable Volume
                                 False
         %Deliverble
                                 False
         dtype: bool
In [8]:
```

<class 'pandas.core.frame.DataFrame'>

dataset.info()

```
RangeIndex: 248 entries, 0 to 247
Data columns (total 15 columns):
#
     Column
                          Non-Null Count
                                           Dtype
0
     Date
                          248 non-null
                                           object
 1
     Symbol
                          248 non-null
                                           object
     Series
                          248 non-null
                                           object
 3
                          248 non-null
     Prev Close
                                           float64
 4
     0pen
                          248 non-null
                                           float64
 5
     High
                          248 non-null
                                           float64
                          248 non-null
                                           float64
     Low
 7
                          248 non-null
                                           float64
     Last
 8
     Close
                          248 non-null
                                           float64
     VWAP
                          248 non-null
 9
                                           float64
    Volume
                                           int64
 10
                          248 non-null
 11
     Turnover
                          248 non-null
                                           float64
 12
     Trades
                          248 non-null
                                           int64
    Deliverable Volume
 13
                          248 non-null
                                           int64
    %Deliverble
                          248 non-null
                                           float64
 14
dtypes: float64(9), int64(3), object(3)
memory usage: 29.2+ KB
```

In [9]: dataset.describe()

Out[9]: Prev Close Close VWAP Open High Low Last Volume Turnover Trades 248 000000 248 000000 248 000000 248 000000 248 000000 248 000000 248 000000 2 480000e+02 2 480000e+02 248 000000 count mean 2538.207460 2542.172782 2563.580444 2514.408468 2538.039718 2537.717944 2538.432137 1.172296e+06 2.977489e+14 66873.608871 87.605699 86.829359 90.598368 82.952778 86.849305 87.057814 86.813053 6.220635e+05 1.576443e+14 28882.906787 std 2319 800000 2319 400000 2343 900000 2315 250000 2321 000000 2319 800000 2322 270000 6 758200e+04 1 667550e+13 5197 000000 min 25% 2495.312500 2499.500000 2518.900000 2472.100000 2497.500000 2495.150000 2496.665000 7.821352e+05 1.950716e+14 45476.250000 2543.050000 2548.500000 2566.000000 2520.000000 2540.150000 2541.475000 2540.445000 1.031024e+06 2.631783e+14 61449.500000 2592 000000 2594 250000 2615 750000 2567 300000 2593 425000 2592 000000 2592 607500 1 393266e+06 3 550390e+14 82066 750000 2776.000000 2788.000000 2812.100000 2721.900000 2785.100000 2776.000000 2763.040000 4.834371e+06 1.206435e+15 211247.000000

```
In [10]: dataset['Open'].plot(figsize=(19,6))
```

Out[10]: <matplotlib.axes.\_subplots.AxesSubplot at 0x1bcdb466580>



```
In [11]: import seaborn as sns
In [12]: x=dataset[['Open','High','Low','Volume']]
y=dataset['Close']
In [13]: from sklearn.model_selection import train_test_split
x_train, x_test, y_train , y_test= train_test_split(x,y,test_size=0.2,random_state=0)
In [14]: x train.shape
```

x\_test.shape

```
In [15]:
          x_train.shape
Out[15]: (198, 4)
In [16]:
          from sklearn.linear_model import LinearRegression
In [17]:
           from sklearn.metrics import accuracy_score
In [18]:
           reg=LinearRegression()
In [19]:
          reg.fit(x_train,y_train)
Out[19]: LinearRegression()
In [20]:
          reg.coef_
Out[20]: array([-4.81179028e-01, 6.89821364e-01, 7.90419813e-01, -1.71386863e-06])
In [21]:
          reg.intercept_
         7.124588444366054
Out[21]:
In [22]:
          predicted=reg.predict(x_test)
In [23]:
          predicted.shape
Out[23]: (50,)
In [24]:
          dframe=pd.DataFrame( y_test, predicted )
In [25]:
          dfr=pd.DataFrame( { 'Actual Price':y_test, 'Predicted price': predicted } )
In [26]:
          dfr.head()
Out[26]:
              Actual Price Predicted price
          247
                 2436.85
                           2435.616791
                 2591.80
                           2593.855536
          168
          76
                 2493.05
                           2491.382122
                 2552.05
                           2556.142112
          150
          145
                 2510.75
                           2510.788191
In [27]:
          reg.score(x_test,y_test)
Out[27]: 0.9921391734686681
In [28]:
          import math
          print('mean absolute error : ', metrics.mean_absolute_error(y_test,predicted))
```

Out[14]: (50, 4)

```
print('mean squared error : ', metrics.mean_squared_error(y_test,predicted))
print('root mean squared error : ',math.sqrt(metrics.mean_squared_error(y_test,predicted)))
```

mean absolute error : 6.101846635684333 mean squared error : 64.0330627048773 root mean squared error : 8.002066152243263

```
In [29]:
    graph=dfr.head(50)
    graph.plot(kind="bar")
```

Out[29]: <matplotlib.axes.\_subplots.AxesSubplot at 0x1bcdda43ca0>



```
graph=dfr.head(20)
graph.plot(kind="bar")
```

Out[30]: <matplotlib.axes.\_subplots.AxesSubplot at 0x1bcdda61940>



```
In [32]: dfr.head(50)
```

| t[32]: |     | Actual Price | Predicted price |
|--------|-----|--------------|-----------------|
|        | 247 | 2436.85      | 2435.616791     |
|        | 168 | 2591.80      | 2593.855536     |
|        | 76  | 2493.05      | 2491.382122     |
|        | 150 | 2552.05      | 2556.142112     |
|        | 145 | 2510.75      | 2510.788191     |
|        | 73  | 2427.05      | 2425.495139     |
|        | 45  | 2646.80      | 2645.920268     |
|        | 159 | 2686.85      | 2689.836348     |
|        | 218 | 2351.45      | 2358.572305     |
|        | 213 | 2458.15      | 2461.241897     |
|        | 96  | 2601.00      | 2608.371654     |
|        | 201 | 2537.15      | 2534.371972     |
|        | 83  | 2463.05      | 2470.064258     |
|        | 176 | 2551.65      | 2550.967825     |
|        |     |              |                 |

| 161 | 2578.65 | 2588.517153 |
|-----|---------|-------------|
| 202 | 2536.55 | 2525.726531 |
| 55  | 2617.15 | 2621.771813 |
| 116 | 2591.50 | 2587.352072 |
| 229 | 2328.40 | 2333.958960 |
| 92  | 2512.70 | 2511.893226 |
| 203 | 2531.10 | 2536.067085 |
| 135 | 2564.40 | 2563.925068 |
| 162 | 2567.15 | 2571.338282 |
| 89  | 2499.25 | 2495.974742 |
| 44  | 2696.45 | 2712.462797 |
| 207 | 2517.35 | 2509.536614 |
| 37  | 2672.20 | 2688.029620 |
| 111 | 2504.80 | 2499.154673 |
| 63  | 2547.30 | 2518.996247 |
| 109 | 2571.30 | 2575.238667 |
| 118 | 2570.30 | 2572.434320 |
| 8   | 2497.90 | 2499.139247 |
| 189 | 2700.00 | 2694.441307 |
| 64  | 2585.00 | 2576.184150 |
| 129 | 2522.50 | 2528.727911 |
| 5   | 2443.80 | 2433.174678 |
| 22  | 2558.25 | 2547.615038 |
| 125 | 2603.90 | 2600.013940 |
| 12  | 2511.00 | 2524.036982 |
| 173 | 2549.75 | 2558.562499 |
| 241 | 2405.05 | 2411.881888 |
| 226 | 2361.90 | 2372.159743 |
| 107 | 2561.65 | 2564.065118 |
| 156 | 2684.75 | 2670.916782 |
| 75  | 2457.25 | 2446.611253 |
| 178 | 2550.35 | 2554.094761 |
| 235 | 2378.45 | 2369.901732 |
| 130 | 2474.35 | 2474.439559 |
| 74  | 2445.10 | 2442.453414 |
| 224 | 2353.35 | 2347.080791 |

```
In [33]: reg.score(x_test,y_test)
```

Out[33]: 0.9921391734686681

```
import seaborn as sns
sns.barplot(x="Actual Price",y="Predicted price",data=dfr.head(5))
```

Out[38]: <matplotlib.axes.\_subplots.AxesSubplot at 0x1bce016c880>



In [ ]:

In [ ]:

2510.75 2552.05 2591.8 Actual Price

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

2436.85 2493.05