УНИВЕРЗИТЕТ У БЕОГРАДУ МАТЕМАТИЧКИ ФАКУЛТЕТ

Андрија Д. Урошевић

ХОМОТОПНА ТЕОРИЈА ТИПОВА

мастер рад

Ментор:

др Сана Стојановић-Ђурћевић, доцент Универзитет у Београду, Математички факултет

Чланови комисије:

др Филип Марић, редовни професор Универзитет у Београду, Математички факултет

др Лаза Лазић, доцент Универзитет у Београду, Математички факултет

Датум одбране: 29. фебруар 2024.

Наслов мастер рада: Хомотопна теорија типова

Резиме: Напиши апстракт на крају

Кључне речи: хомотопна теорија типова, интерактивно доказивање, агда

Садржај

1	Увод		2
	1.1	Интуиционистичка теорија типова	3
	1.2	Аксиома унивалентности	5
2	Разрада		6
3	Закључак		7
Л	Литература		

Глава 1

Увод

- Хомотопна теорија типова = интуиционистичка теорија типова + високи индуктивни типови + аксиома унивалентности.
- Пер Мартин-Луф теорија типова се заснива на интиуционистичком програму који је настао по Брауверу.
- Математичко резтоновање је људска активност и математика је језик у коме се математичке идеје преносе.
- Фундаментална људска активност.
- Конструктивна теорија је *доказно релеваншна*, тј. доказ је математички објекат као и сваки други.
- Тврђења можемо интерпретирати као типове, те ће доказ представљати $\bar{u}posepy~\bar{w}u\bar{u}a$, тј. конструисање терма одређеног типа. (Јако битна уврнута идеја)
- Запажање: Хомотопна тероја и теорија типова представљају исту ствар.
- Хомотопна теорија се бави непрекидним пресликавањима која су *хомо-шойна* између себе, тј. могу се "непрекидно деформисати" једна у друге.
- Тројство израчуњивости: Програмерска интерпретација, хомотопна интерпретација и логичка интерпретација.
- Типско расуђивање t: T читамо као t је терм типа или терм t настањује T. У програмерској интерпретацији тип представља тип, док терм

неког типа представља израз тог типа. У хомотопној интерпретацији тип представља простор, док терм неког типа представља тачку у том простору.

- Пример јединичног типа 1: јединични (unit у програмерском смислу), јединствени (*The* у логичком смислу), и контрактибилни (у хомотопном смислу) тип.
- Интенционални и екстенционални типови? (нешто чуно, проучити)
- Раселов парадокс као мотивација за теорију типова.

1.1 Интуиционистичка теорија типова

Интуиционистичка теорија типова или Пер Мартин-Луф теорија типова је математичка теорија конструкција. Тип представља врсту конструкције. Елемент, терм или тачка представља резултат конструкције неког типа. Прецизније, елемент a типа A записујемо као a:A, и кажемо да елемент a настањује тип A. Битно је напоменути да терм не може да "живи самостално" тј. терм увек мора да настањује неки тип.

Конструкција типова се састоји из низа дедуктивних *фравила закључи-вања*. Правило закључивања записујемо као

$$\frac{\mathcal{H}_1}{\mathcal{C}}$$
 $\frac{\mathcal{H}_2}{\mathcal{C}}$ \dots $\frac{\mathcal{H}_n}{\mathcal{C}}$

где расуђивања $\mathcal{H}_1, \mathcal{H}_2, \dots, \mathcal{H}_n$ називамо \bar{u} ремисе или $xu\bar{u}o\bar{w}$ езе, а расуђивање \mathcal{C} називамо $3a\kappa_b y ua\kappa$.

Definicija 1.1.1. Свако $pacy\hbar uвање$ је облика $\Gamma \vdash \mathcal{J}$, где је Γ кон \overline{u} екс \overline{u} и \mathcal{J} \overline{u} еза расућивања. Теза може имати четири врсте расућивања и то су:

(i) A је $(go\delta po-\phi op \mu up a H) \overline{u}u\overline{u}$ у контексту Γ .

$$\Gamma \vdash A \text{ type}$$

(ii) A и B су расуђивачки једнаки $\overline{u}u\overline{u}$ ови у контексту Γ .

$$\Gamma \vdash A \doteq B \text{ type}$$

(iii) a је елемен \overline{u} типа A у контексту Γ .

$$\Gamma \vdash a : A$$

(iv) a и b су $pacy\hbar uвачки <math>jeghaku$ $enemeh\overline{u}u$ типа A у контексту Γ .

$$\Gamma \vdash a \doteq_A b : A$$

користећи правила закључивања теорије типова.

Контекст је коначна листа декларисаних фроменљивих облика

$$x_1: A_1, x_2: A_2(x_1), \dots, x_n: A_n(x_1, \dots, x_{n-1}),$$

под условом да за свако $1 \le k \le n$ можемо да изведемо расуђивање

$$x_1: A_1, x_2: A_2(x_1), \dots, x_{k-1}: A_{k-1}(x_1, \dots, x_{k-2}) \vdash A_k(x_1, x_2, \dots, x_{k-1}),$$

применом правила закључивања.

Из дефиниције контекста можемо видети да неки типови зависе од других термова. На пример, $A_2(x_1)$ зависи од $x_1:A_1$, тј. за разне термове $x_1:A_1$ имамо разне типове $A_2(x_1)$. Ову идеју можемо уопштити помоћу следеће две дефиниције:

Definicija 1.1.2. Нека је тип A у контексту Γ . Φ амилија типова над A у контексту Γ је тип B(x) у контексту Γ , x:A, тј.

$$\Gamma, x : A \vdash B(x)$$
 type.

Кажемо да је B фамилија типова над A у контексту Γ . Алтернативно, кажемо да је B(x) тип индексиран са x:A у контексту Γ .

Definicija 1.1.3. Нека је B фамилија типова над A у контексут Γ . Cекција фамилије B над типом A у контексту Γ је елемент типа B(x) у контексту $\Gamma, x : A$, тј.

$$\Gamma, x : A \vdash b(x) : B(x).$$

Кажемо да је b секција фамилије B над A у контексту Γ . Алтернативно, кажемода да је b(x) елемент типа B(x) индексиран са x:A у контексту $\Gamma, x:A$.

Правила закључивања

Нека правила закључивања:

$$\frac{\Gamma \vdash A \text{ type}}{\Gamma \vdash A \doteq A \text{ type}} \quad \frac{\Gamma \vdash A \doteq A' \text{ type}}{\Gamma \vdash A' \doteq A \text{ type}} \quad \frac{\Gamma \vdash A \doteq A' \text{ type}}{\Gamma \vdash A \doteq A'' \text{ type}} \quad \frac{\Gamma \vdash A \doteq A'' \text{ type}}{\Gamma \vdash A \doteq A'' \text{ type}}$$

$$\frac{\Gamma \vdash a : A}{\Gamma \vdash a \doteq a : A} \quad \frac{\Gamma \vdash a \doteq a' : A}{\Gamma \vdash a' \doteq a : A} \quad \frac{\Gamma \vdash a \doteq a' : A}{\Gamma \vdash a \doteq a'' : A} \quad \frac{\Gamma \vdash a \doteq a'' : A}{\Gamma \vdash a \doteq a'' : A}$$

Зависни типови

1.2 Аксиома унивалентности

Глава 2

Разрада

Глава 3

Закључак

Литература

- [1] Jackson Macor. A brief introduction to type theory and the univalence axiom. 2015.
- [2] Egbert Rijke. Introduction to Homotopy Type Theory. 2022. arXiv: 2212. 11082 [math.L0].
- [3] The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of Mathematics. Institute for Advanced Study: https://homotopytypetheory.org/book, 2013.

Биографија аутора

Вук Стефановић Караџић (*Тршић*, 26. окшобар/6. новембар 1787. — Беч, 7. фебруар 1864.) био је српски филолог, реформатор српског језика, сакупљач народних умотворина и писац првог речника српског језика. Вук је најзначајнија личност српске књижевности прве половине XIX века. Стекао је и неколико почасних доктората. Учествовао је у Првом српском устанку као писар и чиновник у Неготинској крајини, а након слома устанка преселио се у Беч, 1813. године. Ту је упознао Јернеја Копитара, цензора словенских књига, на чији је подстицај кренуо у прикупљање српских народних песама, реформу ћирилице и борбу за увођење народног језика у српску књижевност. Вуковим реформама у српски језик је уведен фонетски правопис, а српски језик је потиснуо славеносрпски језик који је у то време био језик образованих људи. Тако се као најважније године Вукове реформе истичу 1818., 1836., 1839., 1847. и 1852.