```
HW2
```

Haorui Zhang

9/27/2021

CS 455

- 1.
- a. False
- b. True
- c. False
- d. False
- e. False
- 2.
- a. Application layer: DNS and HTTP
- b. Transport layer: TCP and UDP
- 3.
- a. gaia.cs.umass.edu/cs453/index.html
- b. 1.1
- c. Persistent
- d. No IP can be found
- e. Mozilla. Different browsers require different files for same content. HTTP record this to get correct files for users' browser.
- 4. Amount of time to get the IP address is: RTT₁ + RTT₂ + RTT₃ ++RTT_n

Total Time: RTT_0 (create connection) + RTT_1 + RTT_3 + + RTT_n + RTT_0 (request and receive object) = $2RTT_0$ + RTT_1 + RTT_2 + RTT_3 +.... + RTT_n

5.

- a. $2RTT_0 + RTT_1 + RTT_3 + RTT_n + 8*2*RTT_0 = 18RTT_0 + RTT_1 + RTT_3 + RTT_n$
- b. $2RTT_0 + RTT_1 + RTT_3 + RTT_n + 2*2RTT_0$ (Needs two requests and receive process) = $6RTT_0 + RTT_1 + RTT_3 + RTT_n$
- c. $2RTT_0 + RTT_1 + RTT_3 + RTT_n + RTT_0 = 3RTT_0 + RTT_1 + RTT_3 + RTT_n$
- 6.

Figure 2.12 + Bottleneck between an institutional network and the Internet

```
b. Time to transmit: L/R
```

a.

$$\Delta = \frac{850000bits}{15000000bits/sec} = 0.056s$$

 $\beta\Delta$ = 16 request/sec * 0.056sec/request = 0.896sec

$$\Delta/(1 - \Delta\beta) = 0.056/(1 - 0.896) = 0.53$$
sec

Average response time = 0.53 sec + 3 sec = 3.53 sec

c. 60% of requests goes to cache, which has 0 response time

Also reduce the access delay: (0.056)/(1-.4*0.896) = 0.087

Total response time: .4 * (3+0.087) = 1.2348s

7.

Parallel downloads via parallel instances of non-persistent HTTP:

10 parallel connections, each has 15bits/sec transmit rate.

 $Total\ Delay = D_p\ (propagation\ delay) + D_t(Transmission\ delay)$

$$(200/150 + D_p + 200/150 + D_p + 200/150 + D_p + 100000$$

$$/150 + D_p) + (200/15 + D_p + 200/15 + D_p + 200/15 + D_p + 100000/15 + D_p) = 7377 + 8*D_p$$

For persistent HTTP:

 $Total\ Delay = D_p\ (propagation\ delay) + D_t(Transmission\ delay)$

$$(200/150 + D_p + 200/150 + D_p + 200/150 + D_p + 100000$$

 $/150+D_p)+10*(200/150+D_p+100000/150+D_p)=7351+24*D_p$ There are no significant difference between two. Therefore, no gains.

- 8. a. $N(videos)*N(audios) = N^2$
 - b. N(videos) + N(audios) = 2N