

Presentation Topic: Analog To Digital Time Conversion.

Presented to:
Dr. Ziaur Rahman
Associate Professor,
Department of ICT,
MBSTU.

Presented by:
Meharin Choudhury
IT-23040
1st year 2nd semester
Session:2022-2023
Course Code: 1200

Introduction:

This presentation aims to design and implement a system that converts analog time signals into digital format. This will help students understand the principles of analog-to-digital conversion and its applications in modern technology.

Background:

Analog Signals:

An analog time signal is a continuous signal that varies over time, representing time in a continuous manner. It can take any value within a range and is typically depicted as a waveform.

• Digital Signals:

A digital time signal represents time in discrete intervals, using binary values (0s and 1s) to convey information about time. It quantizes the continuous time into specific, defined time steps.

Difference between Analog & Digital Signal:

Analog Signal

- Continuous, smooth variation.
- Infinite resolution.
- Prone to noise.
- Represented by waveforms.
- Examples: Analog clocks, waveform oscillations.
- Needs Analog-to-Digital Conversion (ADC).

Digital Signal

- Discrete levels (binary).
- Finite resolution.
- Resistant to noise.
- Represented by square waves.
- Examples: Digital clocks, timestamped data.
- Can be directly manipulated and stored.

Analog To Digital Time Conversion Code:

```
#include<bits/stdc++.h>
using namespace std;
int main()
 int h,m,s;
 string str;
  cout<<"Enter Your Analog Time(hh mm ss</pre>
AM/PM): ";
  cin>>h>>m>>s>>str;
 if(h>12||h<1||m>59||s>59)
  {cout<<"Invalid Value Entered\n"<<endl;}
  else{
    if(str=="AM")
     if(h==12)
     \{h=0;\}
   else if(str=="PM")
     if(h!=12)
      {h=h+12;}
```

```
else
{cout<<"Invalid Information Entered\n"<<endl;}
cout<<"Your Converted Digital Time Is: ";</pre>
if(h<10)
  cout<<"0"<<h;
  if(m<10)
    cout<<":0"<<m;
    if(s<10)
    {cout<<":0"<<s<endl;}
    else
    {cout<<":"<<s<endl;}
  }else{
    cout<<":"<<m;
    if(s<10)
    {cout<<":0"<<s<endl;}
    else
    {cout<<":"<<s<endl;}
                                     Page-6
```

```
else
   cout<<h:
   if(m<10)
     cout<<":0"<<m;
     if(s<10)
     {cout<<":0"<<s<endl;}
     else
     {cout<<":"<<s<endl;}
   else
     cout<<":"<<m:
     if(s<10)
     {cout<<":0"<<s<endl;}
     else
     {cout<<":"<<s<endl;}
return 0;
```

Sample Input & Output:

Enter Your Analog Time(hh mm ss AM/PM): 04 10 20 PM

Your Converted Digital Time Is: 16:10:20

Enter Your Analog Time(hh mm ss AM/PM): 11 23 12 PM

Your Converted Digital Time Is: 23:23:12

Enter Your Analog Time(hh mm ss AM/PM): 09 23 19 AM

Your Converted Digital Time Is: 09:23:19

Enter Your Analog Time(hh mm ss AM/PM): 01 04 05 AM

Your Converted Digital Time Is: 01:04:05

Applications:

1.Sensors:

- **1. Temperature Sensors:** ADCs convert the analog signals from temperature sensors into digital data for weath er forecasting, climate control systems, and industrial process monitoring.
- 2. Light Sensors: Used in applications like automatic lighting systems, cameras, and optical communication.
- **3. Pressure Sensors:** Critical in automotive and aerospace industries for monitoring and controlling fluid pressures.

2.Data Acquisition Systems:

- 1. Scientific Research: ADCs are used to digitize analog signals from various instruments for data analysis and experiments.
- 2. Medical Devices: Vital in ECG, EEG, and other diagnostic devices to monitor and record patient data.
- **3. Industrial Automation:** Utilized in PLCs (Programmable Logic Controllers) to convert sensor data for process control and automation.

3.Communication Systems:

- 1. Digital Telephony: ADCs convert voice signals into digital data for transmission over digital networks.
- 2. Modems: Essential for converting analog signals from telephone lines into digital data for computers.
- **3. Radio Systems:** Used in SDRs (Software Defined Radios) to convert analog radio signals into digital format f or processing.

Conclusion:

Future Work:

 Improved ADC (Analog to Digital Conversion) Technologies: Explore advancements in ADC (Analog to Digital Conversion) methods for higher precision and reduced latency.

•Hybrid Systems:

Investigate the development of hybrid systems that combine the strengths of both analog and digital signals for applications in audio, telecommunications, and sensor technologies.

•Noise Reduction Techniques:

Research innovative approaches to minimize noise in analog signals to improve signal quality before conversion.

Machine Learning Applications:

Examine the use of machine learning algorithms for better signal processing and predictive analysis in both analog and digital domains.

