LMD Tipo A

Prueba de clase 27 de Marzo de 2015

Alumno:______ D.N.I.:_____

RESPUESTAS A LAS PREGUNTAS TEST¹

	<i>a</i>)	<i>b</i>)	(c)	d)
Pregunta 1	V	F	V	F
Pregunta 2	F	V	F	V
Pregunta 3	F	F	V	V
Pregunta 4	F	V	F	V
Pregunta 5	F	V	V	V

PREGUNTAS TEST.

Ejercicio 1. En un álgebra de Boole B se definen las operaciones $a \uparrow b = \overline{ab} \ y \ a \downarrow b = \overline{a+b}$. Entonces:

a)
$$(x \downarrow y) \uparrow z = \overline{x} \uparrow (y \downarrow \overline{z})$$

b)
$$(x \downarrow y) \uparrow z = (x \uparrow y) \downarrow (y \uparrow z)$$

c)
$$(x \downarrow z) \uparrow (y \downarrow z) = x + y + z$$

$$d) \ \overline{x \downarrow y} = \overline{x \uparrow y}$$

Solución:

a)
$$(x \downarrow y) \uparrow z = (\overline{x+y}) \uparrow z = \overline{(\overline{x+y}) \cdot z} = \overline{x+y} + \overline{z} = x+y+\overline{z}.$$

 $\overline{x} \uparrow (y \downarrow \overline{z}) = \overline{x} \uparrow (\overline{y+\overline{z}}) = \overline{\overline{x} \cdot (\overline{y+\overline{z}})} = \overline{\overline{x}} + \overline{\overline{y+\overline{z}}} = x+y+\overline{z}.$

Y vemos que son iguales.

b) $(x \downarrow y) \uparrow z = x + y + \overline{z}$ (hecho en el apartado anterior).

c)
$$(x \uparrow y) \downarrow (y \uparrow z) = \overline{x \cdot y} \downarrow \overline{y \cdot z} = \overline{\overline{x \cdot y} + \overline{y \cdot z}} = (\overline{\overline{x \cdot y}}) \cdot (\overline{\overline{y \cdot z}}) = x \cdot y \cdot z.$$

Y vemos que son diferentes.

d)
$$(x\downarrow z)\uparrow(y\downarrow z)=(\overline{x+z})\uparrow(\overline{y+z})=\overline{(\overline{x+z})\cdot(\overline{y+z})}=\overline{\overline{x+z}}+\overline{\overline{y+z}}=x+z+y+z=x+y+z.$$

Por tanto en este caso son iguales.

e)
$$\overline{x \downarrow y} = \overline{\overline{x + y}} = x + y.$$

 $\overline{x \uparrow y} = \overline{\overline{x \cdot y}} = x \cdot y.$

Y aquí son diferentes.

27 de Marzo de 2015 (1)

¹Cada casilla del cuadro debe ser rellenada con V (verdadero) o F (falso).

Tipo A

Ejercicio 2. Denotamos por D(m) al conjunto de los divisores del número natural m dotados con las operaciones $\vee = m.c.m.$ $y \wedge = m.c.d.$ Entonces:

- a) D(132) es un álgebra de Boole con 3 coátomos: 33,22 y 6.
- b) D(165) es un álgebra de Boole con 3 coátomos: 33,55 y 15.
- c) D(24) es un álgebra de Boole con 3 átomos: 2,4 y 8.
- d) D(110) es un álgebra de Boole con 3 átomos: 2,5 y 11.

Solución:

- a) Tenemos que $132 = 2^2 \cdot 3 \cdot 11$. Como aparece un primo (el 2) elevado al cuadrado, D(132) no es un álgebra de Boole.
- b) Ahora $165=3\cdot 5\cdot 11$. Por tanto es un álgebra de Boole. Los coátomos son $\frac{165}{3}=55,\,\frac{165}{5}=33$ y $\frac{165}{11}=15$. La afirmación es cierta.
- c) Puesto que $24 = 2^3 \cdot 3$, D(24) no es álgebra de Boole.
- d) Dado que $110=2\cdot 5\cdot 11$ se tiene que D(110) es un álgebra de Boole cuyos átomos son 2, 5 y 11. La respuesta es correcta.

(2) 27 de Marzo de 2015

LMD

Ejercicio 3. Dadas las funciones booleanas $f, g : \mathbb{B}^5 \to \mathbb{B}$ dadas por

$$f = m_0 + m_5 + m_{15} + m_{21} + m_{23} + m_{24} + m_{27} + m_{31}$$

$$g = M_0 \cdot M_1 \cdot M_4 \cdot M_6 \cdot M_{10} \cdot M_{15} \cdot M_{22} \cdot M_{23} \cdot M_{28} \cdot M_{30}$$

se tiene:

- a) $f + q = m_5 + m_{21} + m_{24} + m_{27} + m_{31}$
- b) $fg = m_1 + m_4 + m_6 + m_{10} + m_{22} + m_{28} + m_{30}$
- c) $\overline{f} = m_1 + m_2 + m_3 + m_4 + m_6 + m_7 + m_8 + m_9 + m_{10} + m_{11} + m_{12} + m_{13} + m_{14} + m_{16} + m_{17} + m_{18} + m_{19} + m_{20} + m_{22} + m_{25} + m_{26} + m_{28} + m_{29} + m_{30}$
- d) $\bar{g} = m_0 + m_1 + m_4 + m_6 + m_{10} + m_{15} + m_{22} + m_{23} + m_{28} + m_{30}$

Solución:

De la expresión de g como producto de maxterm podemos sacar la expresión de g como suma de minterm y tenemos:

$$g = \sum m(2, 3, 5, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 24, 25, 26, 27, 29, 31).$$

- a) Para escribir f+g como suma de minterm tenemos que tomar tanto los minterm que aparecen en la expresión de f como los que aparecen en la expresión de g. Tenemos entonces $f+g=m_0+m_2+\cdots$ y vemos que no coincide con la expresión que nos da el enunciado.
- b) Los minterm que aparecen en la expresión de fg son los minterm que aparecen simultáneamente en la expresión de f y g. Entonces $fg = m_5 + m_{21} + m_{24} + m_{27} + m_{31}$, que no es igual a la que se nos propone.
- c) Los minterm que aparecen en la expresión de \overline{f} son los que no aparecen en la expresión de f. Podemos ver entonces que la expresión que nos dan de \overline{f} es correcta.
- d) Puesto que $\overline{M_i} = m_i$ se tiene que

$$\overline{g} = \overline{M_0 \cdot M_1 \cdot M_4 \cdot M_6 \cdot M_{10} \cdot M_{15} \cdot M_{22} \cdot M_{23} \cdot M_{28} \cdot M_{30}}$$

$$= \overline{M_0} + \overline{M_1} + \overline{M_4} + \overline{M_6} + \overline{M_{10}} + \overline{M_{15}} + \overline{M_{22}} + \overline{M_{23}} + \overline{M_{28}} + \overline{M_{30}}$$

$$= m_0 + m_1 + m_4 + m_6 + m_{10} + m_{15} + m_{22} + m_{23} + m_{28} + m_{30}$$

27 de Marzo de 2015 (3)

Tipo A

Ejercicio 4. Señala si cada una de las siguientes afirmaciones es equivalente a

$$\Gamma \vDash \alpha \rightarrow (\beta \rightarrow \neg \gamma)$$

- a) $\Gamma \cup \{\alpha, \beta\} \vDash \gamma$
- b) $\Gamma \cup \{\beta\} \vDash \alpha \rightarrow \neg \gamma$
- c) $\Gamma \cup \{\alpha, \beta, \neg \gamma\}$ es satisfacible.
- d) $\Gamma \cup \{\alpha \to \beta, \gamma\}$ es insatisfacible.

Solución:

Tenemos que por el teorema de la deducción, $\Gamma \vDash \alpha \to (\beta \to \neg \gamma \text{ es equivalente a } \Gamma \cup \{\alpha\} \vDash \beta \to \neg \gamma$. Y aplicando nuevamente el teorema de la deducción, esto es equivalente a $\Gamma \cup \{\alpha, \beta\} \vDash \neg \gamma$. Y esto último es equivalente a que el conjunto $\Gamma \cup \{\alpha, \beta, \gamma\}$ es insatisfacible.

- a) $\Gamma \cup \{\alpha, \beta\} \vDash \gamma$ es equivalente a $\Gamma \cup \{\alpha, \beta, \neg \gamma\}$ es insatisfacible. Esta respuesta por tanto no es correcta.
- b) Si aplicamos el teorema de la deducción tenemos que $\Gamma \cup \{\beta\} \models \alpha \rightarrow \neg \gamma$ es equivalente a $\Gamma \cup \{\beta, \alpha\} \models \neg \gamma$, y esto último, equivalente a $\Gamma \cup \{\beta, \alpha, \gamma\}$ es insatisfacible. Esta respuesta es entonces correcta.
- c) El que este conjunto sea o no satisfacible no tiene nada que ver con que el conjunto $\Gamma \cup \{\alpha, \beta, \gamma\}$ sea insatisfacible. Esta respuesta por tanto no es correcta.
- d) El que el conjunto $\Gamma \cup \{\alpha, \beta, \gamma\}$ sea insatisfacible no impide que haya una interpretación que haga ciertas todas las fórmulas de Γ y que $I(\alpha) = 0$ e $I(\gamma) = 1$. Con esta interpretación tendríamos que el conjunto $\Gamma \cup \{\alpha \to \beta, \gamma\}$ es satisfacible (pues hace ciertas todas las fórmulas de este conjunto).

Por tanto no son problemas equivalentes.

(4) 27 de Marzo de 2015

LMD Tipo A

Ejercicio 5. Indica en cada caso si el siquiente conjunto de fórmulas es insatisfacible

a)
$$\{a \rightarrow b, a \rightarrow (b \rightarrow c), \neg c\}$$

b)
$$\{a \rightarrow b, (a \rightarrow b) \rightarrow c, \neg c\}$$

c)
$$\{a \rightarrow b, c \rightarrow (a \rightarrow b), \neg c\}$$

$$d) \{ \neg (a \rightarrow b), a \rightarrow (b \rightarrow c), c \}$$

Solución:

- a) El conjunto $\{a \to b, a \to (b \to c), \neg c\}$ es satisfacible. Esto podemos comprobarlo tomando la interpretación I(a) = I(b) = I(c) = 0.
- b) El conjunto $\{a \to b, (a \to b) \to c, \neg c\}$ es insatisfacible. Podemos comprobarlo calculando la forma clausular de cada fórmula:
 - $a \rightarrow b \equiv \neg a \lor b.$
 - $\bullet \ (a \to b) \to c \equiv \neg (a \to b) \lor c \equiv \neg (\neg a \lor b) \lor c \equiv (a \land \neg b) \lor c \equiv (a \lor c) \land (\neg b \lor c).$
 - -c está en forma clausular.

Y ahora por resolución deducimos la cláusula vacía.

- c) El conjunto $\{a \to b, c \to (a \to b), \neg c\}$ como nos muestra la misma interpretación que hemos tomado en el apartado a).
- d) El conjunto $\{\neg(a \to b), a \to (b \to c), c\}$ es satisfacible. Para comprobarlo, tomamos la interpretación I(a) = I(c) = 1, I(b) = 0.

27 de Marzo de 2015 (5)

Tipo A

Ejercicio 6. Sea $f: \mathbb{B}^5 \to \mathbb{B}$ la función dada por

$$f(x,y,z,t,u) = \overline{x}yztu + xy\overline{z}\overline{t}\overline{u} + xyzt\overline{u} + xz(\overline{y}u \oplus ut) + (x \downarrow u)yzt + xy\overline{t}(z \oplus u)$$

Calcula una expresión reducida de f como suma de productos, y expresa \overline{f} usando únicamente los operadores producto y complemento.

Solución:

Tenemos lo siguiente:

- $\overline{y}u \oplus ut = \overline{\overline{y}u}ut + \overline{y}u\overline{ut} = (y + \overline{u})ut + \overline{y}u(\overline{u} + \overline{t}) = yut + \overline{u}ut + \overline{y}u\overline{u} + \overline{y}u\overline{t} = yut + \overline{y}u\overline{t}$ luego $xz(\overline{y}u \oplus ut) = xz(yut + \overline{y}u\overline{t}) = xzyut + xz\overline{y}u\overline{t} = xyztu + x\overline{y}zu\overline{t} = m_{31} + m_{21}.$
- $\bullet \ (x\downarrow u)yzt = (\overline{x+u})yzt = \overline{x}\,\overline{u}yzt = \overline{x}yzt\overline{u} = m_{14}.$
- $xy\overline{t}(z \oplus u) = xy\overline{t}(\overline{z}u + z\overline{u}) = xy\overline{t}\overline{z}u + xy\overline{t}z\overline{u} = xy\overline{z}\overline{t}u + xyz\overline{t}\overline{u} = m_{25} + m_{28}$.

Luego $f = m_{15} + m_{24} + m_{30} + m_{31} + m_{21} + m_{14} + m_{25} + m_{28} = m_{14} + m_{15} + m_{21} + m_{24} + m_{25} + m_{28} + m_{30} + m_{31}$

Para reducir esta expresión nos valemos del algoritmo de Quine - McCluskey. Ordenamos los minterm según el número de unos en su expresión binaria y vamos agrupando los que difieren únicamente en un bit.

31	\checkmark	11111	(30,31)	\checkmark	1111-	(14,15,30,31)	-111-
30	√	11110	(15,31)	\checkmark	-1111		
15	\checkmark	01111	(28,30)		111-0		
28	\checkmark	11100	(14,30)	\checkmark	-1110		
25	\checkmark	11001	(14,15)	\checkmark	0111-		
21		10101	(24,28)		11-00		
14	\checkmark	01110	(24,25)		1100-		
24	\checkmark	11000				,	

Y ahora escribimos la tabla con los implicantes primos.

		m_{14}	m_{15}	m_{21}	m_{24}	m_{25}	m_{28}	m_{30}	m_{31}
(14,15,30,31)	yzt	√	√					√	√
(28,30)	$xyz\overline{u}$						√	√	
(24,28)	$xy\overline{t}\overline{u}$				√		√		
(24,25)	$xy\overline{z}\overline{t}$				√	√			
(21)	$x\overline{y}z\overline{t}u$			√					

Vemos ahora que para cubrir los 8 minterms necesitamos los términos yzt (es el único que cubre los minterms m_{14} , m_{15} , m_{31}), $xy\overline{z}\overline{t}$ (es el único que cubre el minterm m_{25}) y el término $x\overline{y}z\overline{t}u$ (es el único que cubre el minterm m_{21}).

Con estos tres términos tenemos cubiertos 7 de los ocho minterms. Únicamente queda por cubrir el minterm m_{28} , que podemos cubrirlo con cualquiera de los dos términos que nos quedan. Tenemos entonces dos formas reducidas de la función f.

$$f(x, y, z, t, u) = yzt + xyz\overline{u} + xy\overline{z}\overline{t} + x\overline{y}z\overline{t}u = yzt + xy\overline{t}\overline{u} + xy\overline{z}\overline{t} + x\overline{y}z\overline{t}u$$

Para escribir \overline{f} usando únicamente los operadores producto y complemento procedemos como sigue:

$$\overline{f}(x,y,z,t,u) = \overline{yzt + xyz\overline{u} + xy\overline{z}\overline{t} + x\overline{y}z\overline{t}u}$$

$$= \overline{yzt} \cdot \overline{xyz\overline{u}} \cdot \overline{xyz\overline{t}} \cdot \overline{xyz\overline{t}u}$$

(6) 27 de Marzo de 2015

LMD Tipo A

Ejercicio 7. Dadas las fórmulas:

• $\alpha_1 = a \wedge b \rightarrow c \vee d$.

•
$$\alpha_2 = c \to ((b \to a) \land (b \to \neg a)).$$

$$\bullet \ \alpha_3 = e \to (a \leftrightarrow \neg c).$$

$$\bullet \ \alpha_4 = a \lor (c \land (\neg b \to d)).$$

$$\beta = (c \to b) \to (a \land d).$$

estudia si es cierto que $\{\alpha_1, \alpha_2, \alpha_3, \alpha_4\} \models \beta$. Caso de no ser cierto, da una interpretación que lo muestre.

Solución:

Puesto que $\beta = (c \to b) \to (a \land d)$, por el teorema de la deducción tenemos que $\{\alpha_1, \alpha_2, \alpha_3, \alpha_4\} \vDash \beta$ es equivalente a $\{\alpha_1, \alpha_2, \alpha_3, \alpha_4, c \to b\} \vDash a \land d$. Y esto es equivalente a probar que el conjunto $\{\alpha_1, \alpha_2, \alpha_3, \alpha_4, c \to b, \neg(a \land d)\}$ es insatisfacible.

Calculamos la forma clauslar de cada una de estas fórmulas:

•
$$\alpha_1 = a \wedge b \rightarrow c \vee d$$

 $\equiv \neg(a \wedge b) \vee (c \vee d)$
 $\equiv \neg a \vee \neg b \vee (c \vee d)$
 $\equiv \neg a \vee \neg b \vee c \vee d$

$$\begin{array}{lll} \bullet & \alpha_2 & = & c \to ((b \to a) \land (b \to \neg a)) \\ \\ & \equiv & \neg c \lor ((b \to a) \land (b \to \neg a)) \\ \\ & \equiv & \neg c \lor ((\neg b \lor a) \land (\neg b \lor \neg a)) \\ \\ & \equiv & (\neg c \lor \neg b \lor a) \land (\neg c \lor \neg b \lor \neg a) \\ \\ & \equiv & (a \lor \neg b \lor \neg c) \land (\neg a \lor \neg b \lor \neg c) \end{array}$$

$$\alpha_3 = e \to (a \leftrightarrow \neg c)
\equiv e \to ((a \to \neg c) \land (\neg c \to a))
\equiv \neg e \lor ((\neg a \lor \neg c) \land (c \lor a))
\equiv (\neg e \lor (\neg a \lor \neg c)) \land (\neg e \lor (c \lor a))
\equiv (\neg a \lor \neg c \lor \neg e) \land (a \lor c \lor \neg e)$$

•
$$\alpha_4 = a \lor (c \land (\neg b \to d))$$

 $\equiv a \lor (c \land (b \lor d))$
 $\equiv (a \lor c) \land (a \lor b \lor d)$

•
$$c \to b \equiv \neg c \lor b$$

$$\bullet \neg (a \land d) \equiv \neg a \lor \neg d$$

Una vez calculada la forma clausular de todas las fórmulas nos proponemos estudiar si el conjunto de cláusulas que resulta es satisfacible o insatisfacible. Para esto hacemos uso del algoritmo de Davis-Putnam.

27 de Marzo de 2015 (7)

Tipo A LMI

Al encontrar una rama que termina en \emptyset no necesitamos continuar. Ya sabemos que el conjunto es satisfacible. Además, si exploramos la rama descubrimos una interpretación que hace ciertas todas las cláusulas. Esta interpretación es $I(\neg e) = I(a) = I(\neg d) = I(\neg b) = I(\neg c) = 1$. Es decir:

$$I(a) = 1;$$
 $I(b) = 0;$ $I(c) = 0;$ $I(d) = 0;$ $I(e) = 0.$

Podemos comprobar como con esta interpretación se tiene que $I(\alpha_1) = 1$, $I(\alpha_2) = 1$, $I(\alpha_3) = 1$, $I(\alpha_4) = 1$ e $I(\beta) = 0$, lo cual nos muestra que no es cierto que $\{\alpha_1; \alpha_2; \alpha_3; \alpha_4\} \models \beta$.

(8) 27 de Marzo de 2015