Divvy Company Data Analytics Team

Final Report on Divvy Case Study

Presenter: Nguyen Dai Minh

Content

1	Problem Statement	2
2	Data Description	2
3	Data Cleaning and Manipulation	2
4	Analysis Summary	5
5	Visualizations and Key Findings	5
6	Recommendations	6

1 Problem Statement

The primary objective of this report is to generate answers and recommendations to the following question made by the Divvy director of marketing: How do annual members and casual riders use Divvy differently?

2 Data Description

All data is available for public use by divvy corporation and is taken directly from the azure cloud. The dataset is then store locally on my machine as well as google bigquery and google drive. The data is collected from January to March of 2024 and contains the following attributes.

- ride id : unique identifier of user
- ridable type: the type of bikes being used
- started at : start time
- ended at : end time
- start_station_name : start station name
- start_station_id : unique identifier of station
- end_station_name : end station name
- end station id : unique identifier of station
- start lat: start latitude
- start lng: start longitude
- end latitude
- end lng: end longitude
- member_casual : membership type

3 Data Cleaning and Manipulation

I will be doing general manipulation and feature engineering in Google sheets and finish cleaning up in Google BigQuery using SQL. Let's start from Google sheets first:

1. Make a copy of January data

ride_id	rideable_type	started_at	ended_at	start_station_na	start_station_id	end_station_nan	end_station_id	start_lat	start_Ing	end_lat	end_lng	member_casua
C1D650626C8C	electric_bike	2024-01-12 15:3	2024-01-12 15:3	Wells St & Elm 9	KA1504000135	Kingsbury St & F	KA1503000043	41.90326738	-87.63473678	41.88917683	-87.63850577	member
EECD38BDB258	electric_bike	2024-01-08 15:4	2024-01-08 15:5	Wells St & Elm S	KA1504000135	Kingsbury St & F	KA1503000043	41.9029365	-87.63444017	41.88917683	-87.63850577	member
F4A9CE78061F	electric_bike	2024-01-27 12:2	2024-01-27 12:3	Wells St & Elm 9	KA1504000135	Kingsbury St & F	KA1503000043	41.90295133	-87.63447033	41.88917683	-87.63850577	member
0A0D9E15EE50	classic_bike	2024-01-29 16:2	2024-01-29 16:5	Wells St & Rand	TA1305000030	Larrabee St & W	13193	41.884295	-87.633963	41.921822	-87.64414	member
33FFC9805E3E	classic_bike	2024-01-31 5:43	2024-01-31 6:09	Lincoln Ave & W	13253	Kingsbury St & F	KA1503000043	41.948797	-87.675278	41.88917683	-87.63850577	member
C96080812CD2	classic_bike	2024-01-07 11:2	2024-01-07 11:3	Wells St & Elm 9	KA1504000135	Kingsbury St & F	KA1503000043	41.903222	-87.634324	41.88917683	-87.63850577	member
0EA7CB313D4F	classic_bike	2024-01-05 14:4	2024-01-05 14:	Wells St & Elm 9	KA1504000135	Kingsbury St & F	KA1503000043	41.903222	-87.634324	41.88917683	-87.63850577	member
EE11F3A3B39C	electric_bike	2024-01-04 18:1	2024-01-04 18:2	Wells St & Elm 9	KA1504000135	Kingsbury St & F	KA1503000043	41.90336812	-87.63486135	41.88917683	-87.63850577	member
63E83DE8E327	classic_bike	2024-01-01 14:4	2024-01-01 14:5	Wells St & Elm 9	KA1504000135	Kingsbury St & F	KA1503000043	41.903222	-87.634324	41.88917683	-87.63850577	member
8005682869122	electric_bike	2024-01-03 19:3	3 2024-01-03 19:4	Clark St & Ida B	TA1305000009	Kingsbury St & F	KA1503000043	41.8760335	-87.630866	41.88917683	-87.63850577	member
22B85E685AE0I	electric_bike	2024-01-03 7:39	2024-01-03 7:47	Wells St & Elm 9	KA1504000135	Kingsbury St & F	KA1503000043	41.90302617	-87.6346065	41.88917683	-87.63850577	member
133CDC03CA43	classic_bike	2024-01-03 17:0	2024-01-03 17:1	Wells St & Elm S	KA1504000135	Kingsbury St & F	KA1503000043	41.903222	-87.634324	41.88917683	-87.63850577	member
32D57RF928580	alastria bika	2024 04 40 47:0	2024 04 40 47:4	Mollo St & Elm 9	VA1E0400013E	Kingsburg St 9 k	KV4EU3000043	41 00214617	97 62/67992	41 99017693	97 63950577	mombor

- 2. Reformat alignment
- 3. Highlight headers
- 4. Drop all blank feature in latitude and longitude columns as it would affect calculations of new features
- 5. Generate new features including:
 - ride length: the time the user rode a bike
 - week day: the day bikes were used
 - distance travelled: the distance travelled by the bike
 - day_time: the time of the day in 3 categories: Morning (4-12AM), Afternoon (1-5PM) and Evening (6-3PM)

- 6. Create 6 pivot tables including:
 - SUM and AVERAGE ride length of each type of user
 - Distribution of types of user into each type of bikes
 - Distribution of types of user into day time
 - Distribution of types of user into week day
 - SUM and AVERAGE distance—travelled of each type of user
 - Distribution of user types

After getting a hold of the schema and how the data is structured let's move to Google BigQuery:

1. Combined 3 tables from 3 months into 1 table and remove all null values from columns latitude and longitude as it could mess with calculations

2. Query user by type, months and count

3. Query user by type, months average length ride and sum of length ride

4. Query user by type, months average length distance and sum of length distance

5. Query user by type, bike type and user count

SELECT member_casual, rideable_type, EXTRACT(MONTH FROM 'keen-acolyte-427987-d1.data.Q1New' GROUP BY member_casual, rideable_type, month ORDER BY member_casual, month; FROM started_at) AS month, COUNT(*) AS user_count Row __ member_casual ▼ ____ rideable_type ▼ month ▼ user_count ▼

6. Query user by type, month and day of the week

SELECT member_casual, EXTRACT(MONTH FROM started_at) AS month, FORMAT_TIMESTAMP('%A', started_at) AS day, COUNT(*) AS user_count FROM 'keen-acolyte-427997-d1.data.01New' (ROUP By member_casual, Tideable type, month, day

	member_casual, rideable_ty			
Row	member_casual ▼	month ▼	day ▼	user_count ▼
1	casual	1	Friday	1250
2	casual	1	Friday	1848
3	casual	1	Monday	1655
4	casual	1	Monday	2367
5	casual	1	Saturday	1145
6	casual	1	Saturday	1369
7	casual	1	Sunday	1072
8	casual	1	Sunday	1291
9	casual	1	Thursday	1711

4 Analysis Summary

Now that we have use spreadsheets as well as google bigquery to take a quick look as well as making a few pivot table now we can do our statistical analysis in Python. I am going to only take a random sample from the whole table for analysis:

- Calculate mean, median and quartile
- Create more variables ride length secs, ride length mins,...etc
- Data valiadation and rechange the type of variable
- Plot heatmap to visualize correlation
- Do univariate and multivariable analysis on some variable

Please read the notebook for more info regarding the analysis

5 Visualizations and Key Findings

Here are some key findings i manage to found:

- The number of member riders are exponentially higher than casual riders
- Casual riders on average ride for a longer time
- More casual riders prefer riding in the afternoon
- Classic bikes are more popular with both riders
- March seems to have most casual and member riders alike
- Casual riders like riding on weekends and member like weekdays

Here is a report visualization build in Power BI:

6 Recommendations

Here are some recommendations based on the aforementioned data:

- Seasonal campaigns need to be done in March. By using inbound marketing techniques
 that utilize superior content from the benefits obtained from annual members to attract
 upgradability from regular members.
- Increase the num
- On weekends the number of active users of regular members increases quite a lot compared to normal days. use email marketing to share interesting promos specifically for regular members who often rent and return bicycles at busy stations such as Streeter Dr & Grand Ave, DuSable Lake Shore Dr & Monroe St and DuSable Lake Shore Dr & North Blvd.