Definition 1. Given categories C and D, a natural transformation α from a functor $F: C \to D$ to a functor $G: C \to D$ is a family of functions $\alpha_a: Fa \to Ga$ for all $a \in C$, such that the nautrality square condition holds: for $a, b \in C, f: a \to b, \alpha_b \circ Ff = Gf \circ \alpha_a$. (Commutative diagram)

Definition 2. Functors from C to D forms a category called functor category, denoted as [C, D] or [C; D], with functors $C \to D$ as objects, and natural transformations between them as arrows.

Example 1. safeHead :: List a -> Maybe a

Example 2. maybeSingleton :: Maybe a -> List a

Example 3. alpha :: (Unit -> a) -> Maybe a, where alpha _ = Nothing

Example 4. beta :: (Unit -> a) -> Maybe a, where alpha f = Just (f ())

Definition 3. A terminal in C is ... A product in C is ...

Definition 4. A diagonal functor/constant functor $\Delta_d : C \to D$ for some object $d \in D$ maps anything in C to d, and maps every morphisms in C to 1_d .

Definition 5. A diagram F in C with shape J is a functor $F: J \to C$. A cone (n, ψ) is to F is a object n: C along with a natural transformation $\psi_x: \Delta_n x \to Fx$.

Definition 6. Cones for F forms a category, with morphisms $f:(m,\psi) \to (n,\phi)$ to be the same morphism $f:m\to n$. $(Cone)^1$

Definition 7. A limit for F is the terminal in **Cone** category. In other words, a limit is a cone (l, ϕ) that for every other cone (n, ψ) , there is a unique morphism $u_n : n \to l$.

Example 5. Take J to be empty category, a cone is an arbitrary object, and the limit is the terminal object.

Example 6. Take J to be discrete category 2, the limit is the product objects.

 $^{^{1}}$ inaccurate, f needs satisfy an extra condition to be a morphism in **Cone**.