Fatigue of Structures – Assignment 3

Problem 1

Data points for the monotonic stress-strain curve of 7075-T6 aluminium during axial stress are given in Table 1. The elastic modulus for the material is given as E = 72000 MPa.

- a) Determine the plastic strain ε_p for each point and plot σ vs ε_p on a log-log graph. Determine the constants H and n for the Ramberg-Osgood material model (Power law hardening model); see Lecture 5. Plot the resulting ε =f(σ) line and test data using a linear-linear graph. Determine the 0.2% offset yield strength (i.e., ε =0.002). **Suggestion:** remember definition of strain contribution (total, elastic, plastic); first graph is for only plastic strain, and it could be useful to find H and n.
- b) If material properties for cyclic stress-strain curve are H' = 950 MPa, and n' = 0.12, does this material cyclically harden or soften? Construct and compare the monotonic and cyclic stress-strain curves for strain between 0 and 2%. The 2% strain means 0.02 mm/mm.

Table 1 Test data points for the stress-strain curve of 7075-T6 aluminium

Stress σ [MPa]	Strain ε [mm/mm]				
330	0.00474				
400	0.00630				
472	0.01260				
535	0.03350				
553	0.04659				
579	0.07490				

Problem 2

A notched component has K_t = 2.5. The component is axial loaded until nominal stress S = 200 MPa. The component is then unloaded to a nominal stress of S = 0 MPa. The stress-strain behaviour is presented Ramberg-Osgood model. The material properties are the following: E = 202000 MPa, H' = 1260 MPa, and n' = 0.21.

- a) Determine the local stress σ and local strain ε at the notch at S = 200 MPa. Use Neuber's rule.
- b) Determine the residual local stress and local strain at the notch at S = 0 MPa. Use Neuber's rule. Determine the same local stress and strain values using also Glinka's Rule and discuss the differences.

Problem 3

Completely reversed, strain-controlled fatigue tests of a steel with E = 210000 MPa was carried out. The data of the tests are presented in Table 2.

- a) Estimate σ_f , ϵ_f , b and c for this material (linear regression).
- b) Estimate H' and n' based on the data in the table (linear regression). Compare these values (numerical and graphical formats) with those obtained using n' = b/c and H'= $\sigma_{f'}/((\epsilon_{f'})^{b/c})$; see details in the lecture note L6.

Table 2 Test data points for strain-controlled fatigue tests of a steel

Total strain [mm/mm]	Stress [MPa] ¹⁾	Fatigue life [Cycles]			
ε_a	σ_a	N_f			
0.0202	631	427			
0.0100	574	1410			
0.0045	505	8450			
0.0030	472	25000			
0.0023	455	150000			

¹ Value for the stable σ –ε curve

Problem 4

Using the material properties given in Table 3 (see next page), analyse fatigue life of smooth specimens of Man-Ten.

- a) Determine the total, elastic and plastic strain for 200 and 200 000 reversals to failure (2N_f). **Suggestion:** $\varepsilon_a = \varepsilon_{a,e} + \varepsilon_{a,p}$ and these depends on 2Nf and other constants of Table 3;
- b) Using the Smith-Watson-Topper mean stress correction, plot the estimated ϵ_a -N curves for σ_m = 0 MPa, σ_m = +140 MPa. Discuss the differences in ϵ -N curves.

Suggestion: check SWT relation for strain-life curve (see also p.764 Dowling's book, eq. 14.30); assume that hysteresis loop is not influenced by mean stress; strain-stress amplitudes can be derived based on the cyclic stress strain curve (H', n'); remember the definition of σ_{max} in SWT equation; SWT relation should be solved iteratively.

Table 3 Monotonic, cyclic and strain-life properties of selected engineering alloys (From Dowling's *Mechanical Behaviour of Materials*, p.751) σ_0 is the yield strength; σ_u is the "ultimate" strength

Material	Source	Tensile Properties			Cyclic σ - ε Curve			Strain-Life Curve				
		σ_o	σ_u	$ ilde{\sigma}_{fB}$	% RA	\overline{E}	H'	n'	σ_f'	b	$arepsilon_f'$	С
(a) Steels SAE 1015 (normalized)	(8)	228 (33.0)	415 (60.2)	726 (105)	68	207,000 (30,000)	1349 (196)	0.282	1020 (148)	-0.138	0.439	-0.513
Man-Ten ² (hot rolled)	(7)	322 (46.7)	557 (80.8)	990 (144)	67	203,000 (29,500)	1096 (159)	0.187	1089 (158)	-0.115	0.912	-0.606
RQC-100 (roller Q & T)	(2)	683 (99.0)	758 (110)	1186 (172)	64	200,000 (29,000)		0.0905	938 (136)	-0.0648	1.38	-0.704
SAE 1045 (HR & norm.)	(6)	382 (55.4)	621 (90.1)	985 (143)	51	202,000 (29,400)	1258 (182)	0.208	948 (137)	-0.092	0.260	-0.445
SAE 4142 (As Q, 670 HB)	(1)	1619 (235)		2580 (375)	6	200,000 (29,000)	2810 (407)	0.040	2550 (370)	-0.0778	0.0032	-0.436
SAE 4142 (Q & T, 560 HB)	(1)	1688 (245)	2240 (325)	2650 (385)	27	207,000 (30,000)	4140 (600)	0.126	3410 (494)	-0.121	0.0732	-0.805
SAE 4142 (Q & T, 450 HB)	(1)	1584 (230)		1998 (290)	42	207,000 (30,000)	2080 (302)	0.093	1937 (281)	-0.0762	0.706	-0.869
SAE 4142 (Q & T, 380 HB)	(1)	1378 (200)	1413 (205)	1826 (265)	48	207,000 (30,000)		0.133	2140 (311)	-0.0944	0.637	-0.761
AISI 4340 ² (Aircraft Qual.)	(3)	1103 (160)	1172 (170)	1634 (237)	56	207,000 (30,000)	1655 (240)	0.131	1758 (255)	-0.0977	2.12	-0.774
AISI 4340 (409 HB)	(1)	1371 (199)	1468 (213)	1557 (226)	38	200,000 (29,000)	1910 (277)	0.123	1879 (273)	-0.0859	0.640	-0.636
Ausformed H-11 (660 HB)	(1)	2030 (295)	2580 (375)	3170 (460)	33	207,000 (30,000)		0.059	3810 (553)	-0.0928	0.0743	-0.7144
(b) Other Metals 2024-T351 Al	(1)	379 (55.0)	469 (68.0)	558 (81.0)	25	73,100 (10,600)		0.070	927 (134)	-0.113	0.409	-0.713
2024-T4 Al ³ (Prestrained)	(4)	303 (44.0)	476 (69.0)	631 (91.5)	35	73,100 (10,600)		0.080	1294 (188)	-0.142	0.327	-0.645
7075-T6 Al	(5)	469 (68.0)	578 (84)	744 (108)	33	71,000 (10,300)		0.106	1466 (213)	-0.143	0.262	-0.619
Ti-6Al-4V (soln. tr. & age)	(1)	1185 (172)	1233 (179)	1717 (249)	41	117,000 (17,000)		0.106	2030 (295)	-0.104	0.841	-0.688
Inconel X (Ni base, annl.)	(1)	703 (102)	1213 (176)	1309 (190)	20	214,000 (31,000)		0.120	2255 (327)	-0.117	1.16	-0.749

Notes: ¹The tabulated values either have units of MPa (ksi), or they are dimensionless. ²Test specimens prestrained, except at short lives, also periodically overstrained at long lives. ³For nonprestrained tests, use same constants, except $\sigma'_f = 900(131)$ and b = -0.102.

Sources: Data in (1) [Conle 84]; (2) author's data on the ASTM Committee E9 material; (3) [Dowling 73]; (4) [Dowling 89] and [Topper 70]; (5) [Endo 69] and [Raske 72]; (6) [Leese 85]; (7) [Wetzel 77] pp. 41 and 66; (8) [Keshavan 67] and [Smith 70].