Answer: Yes. \mathbb{P}_2 in a subspace of \mathbb{P}_3 , the zero vector in \mathbb{P}_2 is also the zero vector for \mathbb{P}_3 . Furthermore, the zero vector on its own constitutes a vector space. [4 MARKS]

(b) $H_1 := {\vec{0}, t, t^2, t^3}.$

Answer: No. This is a subset of \mathbb{P}_3 , but not a subspace. For example, it does not include $t+t^2$. [3 MARKS]

(c) $H_2 := span\{4t^2\}.$

Answer: Yes, since the span of any set of vectors in a space is a subspace of it. $[3]_{MARKS}$

(d) $H_3 := span\{t, t^3\}$

Answer: Yes, since the span of any set of vectors in a space is a subspace of it. [3] MARKS

(e) $H_4 := \{ p(t) \in \mathbb{P}_1 \}.$

Answer: Yes, since \mathbb{P}_1 is a subset of \mathbb{P}_3 , and also closed under addition and scalar multiplication. However, I'd also accept "No", since the question is not correctly written: the set could be understood to mean a single vector from \mathbb{P}_1 . [3 Marks]

 $\text{(f)}\ H_5:=\{p(t)\in\mathbb{P}_2\}.$

Answer: Same as (f). [3 MARKS]

(g) $H_6 := \{ p(t) \in \mathbb{P}_2 : p'(0) = 0 \}.$

Answer: Yes. Firstly, any polynomial in \mathbb{P}_2 also belongs to \mathbb{P}_3 . Second, if p'(0)=0, q'(0)=0, and r=p+q, then r'(0)=p'(0)+q'(0)=0. So it is closed under addition. Similarly it is closed under scalar multiplication. Finally, the zero vector, z has z'(0)=0. [3 Marks]

(h) $H_7 := \{ p(t) \in \mathbb{P}_2 : p(1) = 0 \}.$

Answer: Yes: same as (g). [3 MARKS]

Tip: in Week 2 we saw that, in order to verify that H is a subspace of a real vector space V, we have to check:

- That every element of H is also an element of V;
- That the zero vector in V is also in H;
- If $u, v \in H$ then $u + v \in H$.
- $\bullet \ \ \text{If} \ \mathfrak{u} \in H \ \text{then} \ c\mathfrak{u} \in H \ \text{for any scalar} \ c \in \mathbb{R}.$

Q2 [15 Marks] (This is Q1(c) on the 2021/2022 exam paper). Let

$$A = \begin{bmatrix} -3 & 8 & 19 \\ 1 & -6 & -13 \\ 2 & -2 & -6 \end{bmatrix} \quad \text{and} \quad x = \begin{bmatrix} 2 \\ -4 \\ 2 \end{bmatrix}.$$

Determine, with justification, if $x \in \text{Nul } A$, and if $x \in \text{Col } A$.

Answer: Yes, $x \in \mathsf{Nul}\,A$ since Ax = 0 [6 Marks]

And, yes, $y \in \text{Col } A$, since $A \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} = y$. This can be worked out by row-reduction, or just observation.[9]

Q3 [15 $_{
m MARKS}$] Find the dimension of the subspace

$$H = \left\{ \begin{bmatrix} p+q+r\\ p+q+r\\ p+2q-r\\ p+2q-r \end{bmatrix} : p, q, r \in \mathbb{R} \right\},\,$$

of \mathbb{R}^4 and give a basis for it.

Answer: And element of H can be written as pu + qv + rw, where $u = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, $v = \begin{bmatrix} 1 \\ 1 \\ 2 \\ 2 \end{bmatrix}$ and $w = \begin{bmatrix} 1 \\ 1 \\ -1 \\ -1 \end{bmatrix}$. By

observation (or row reduction) we can see that w = 2u - 3v. So w is linearly dependent on u and v. Also, u is not a scalar multiple of v, so u and v are linearly independent. We can concluded that (for example) $\{u, v\}$ is as basis for H, and H has dimension 2.

Q4 [20 MARKS] (Based on Q3(b) on the 2021/2022 exam paper).

- (a) What is the largest possible rank of an 10×5 matrix? 3×5 . [4 MARKS]
- (b) If the null space of a 10×8 matrix A is 1-dimensional, what are the dimensions of its column space, of its row space, and of its left null space?

Answer: For a $m \times n$ matrix, dim Col $A + \dim Nul \ A = n$. So dim Col A = 8 - 1 = 7. Also, dim Col $A = \dim Nul \ A$, so dim Nul A = 7. Finally, the dimension of the left null space, i.e., dim Nul A^T is $m - \dim Col \ A = 10 - 7 = 3$. [4 MARKS]

(c) Give an example of a 4×3 matrix A with nullity A = 2.

(d) Suppose a $m \times n$ matrix has $x = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ in both its null and column space. What are m and n?

Answer: Nul $A\subset \mathbb{R}^n$, so n=2. Col $A\subset \mathbb{R}^m$, so m=2. [4 Marks]

(e) Give an example of a matrix that has $x = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ in its null space, and $y = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$. in its column space.

Answer: $A = \begin{bmatrix} 1 & -1 \\ 0 & 0 \\ 1 & 1 \end{bmatrix}$ There are other possibilities, but all are 3×2 matrices, have columns that are multiples of $[1, 0, 1]^T$, and sum to zero. [4 MARKS]

Q5 [10 Marks] (This is similar to Q2(a) on the 2021/2022 exam paper). Let \mathbb{P}_n denote the vector space of polynomials of degree at most n. Determine if

$$p_1(t) = 1 - 2t$$
, $p_2(t) = 3 + 4t$, and $p_3(t) = 5$,

are linearly independent in \mathbb{P}_1 . Give a basis for $\mathrm{Span}\{p_1(t),p_2(t),p_3(t)\}$.

Answer: They are not linearly independent. Since \mathbb{P}_1 has dimension two, any linearly independent set can have at most 2 vectors. Alternative, observe that $p_3 = 2p_1 + p_2$. Or try to solve:

$$c_1(1-2t) + c_2(3+4t) + c_3(5) = 0.$$

That is actually two equations:

$$c_1 + 3c_2 + 5c_3 = 0$$
, and $-2c_1 + 4c_2 = 0$.

This has nontrivial solution $c_1=2$, $c_2=1$, $c_3=-1$. [5 Marks]

Since any pair of these polynomials are linearly independent, they will suffice as a basis. For example, take $\{p_1, p_2\}$. However, the usual basis $\{1, t\}$ is also OK (or, indeed, any pair of linearly independent polynomials.) [5 Marks]

[15 Marks] for clarity and correctness of exposition and presentation.

Answer: [15 Marks] for well presented, clearly written and explained solutions.

 $[10 \, \mathrm{Marks}]$ if we can easily read and understand most of what is written, even if some details are not well explained.

[5 Marks] for solutions not written with care, or are in parts unintelligible, or not easy to understand.

[0 MARKS] if we've no idea what you are on about.