Appl. No. 10/004,194 Amdt. dated March 9, 2004 Reply to Office Action of September 9, 2003

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings of claims in the application:

Listing of Claims:

1

2

1

2

1

2

3

Claims 1-29 canceled.

Please add new claims:

- (New) A method for floating at least one substance for growing a tissue 1 30. 2 part in a bioreactor, the method comprising: 3 providing at least one substance consisting of one of a tissue part, a scaffold 4 having cells deposited thereon, and a scaffold including a tissue part thereon; and 5 acting upon said substance with fluid, wherein the fluid holds the substance in 6 free flotation; 7 wherein the fluid flows in a direction counter to gravity when a density of said substance is greater then a density of the fluid, and in a direction counter to buoyancy when a 8 9 density of said substance is less then a density of the fluid.
 - 31. (New) A method in accordance with claim 30, wherein the fluid has an increasingly lower flow speed in the direction counter to gravitation.
 - 32. (New) A method in accordance with claim 30, wherein the substance is acted upon with at least one fluid jet.
 - 33. (New) A method in accordance with claim 30, wherein a position of the substance in the bioreactor is measured by a sensor, and wherein a speed of the fluid in the bioreactor is regulated to hold the substance in flotation.
- 1 34. (New) A method in accordance with claim 30, wherein the fluid flows 2 downward in the direction of gravitation, and wherein a gaseous fluid is led into the downward 3 flowing fluid.

1	35. (New) A method in accordance with claim 34, wherein a flow of the
2	gaseous fluid is slowed down by a flow of the downward flowing fluid.
1	36. (New) A bioreactor comprising:
2	a container comprising a first flow chamber;
3	at least one substance consisting of one of a tissue part, a scaffold having cells
4	deposited thereon, and a scaffold including a tissue part thereon, wherein the substance is acted
5	upon with fluid; and
6	an apparatus for conveying the fluid, wherein the substance is arranged in the first
7	flow chamber in such a manner that the fluid holds the substance in free flotation.
1	37. (New) A bioreactor in accordance with claim 36 further comprising;
2	a sensor; and
3	a regulation apparatus,
4	wherein the fluid conveying apparatus is connected to the first flow chamber, and
5	wherein the regulation apparatus is connected to the fluid conveying apparatus and to the sensor
6	in such a manner that the position of the substance may be measured and regulated.
1	38. (New) A bioreactor in accordance with claim 36, wherein the first flow
2	chamber widens upwardly.
1	39. (New) A bioreactor in accordance with claim 38, wherein the container
2	has a section of the wall, wherein said section widens upwardly and forms the first flow
3	chamber.
1	40. (New) A bioreactor in accordance with claim 36, wherein at least one fluid
2	line opens into the first flow chamber.
1	41. (New) A bioreactor in accordance with claim 36 further comprising at
2	least one fluid guiding means arranged in the container, wherein the fluid guiding means forms
3	the first flow chamber, and wherein the first flow chamber widens upwardly.

42.

has at least one closeable opening.

1

2

1

2

2	means is a hollow body.
1	43. (New) A bioreactor in accordance with claim 42, wherein the hollow body
2	has an inner space, and wherein said inner space widens upwardly and forms the first flow
3	chamber.
1	44. (New) A bioreactor in accordance with claim 42, wherein the container
2	comprises a wall, wherein the hollow body has an upwardly reducing outer contour, and whereir
3	the hollow body is arranged in the container in such a manner that the first flow chamber is
4	formed between said outer contour and the container wall.
1	45. (New) A bioreactor in accordance with claim 42, wherein the hollow body
2	is formed in the shape of a truncated circular cone.
1	46. (New) A bioreactor in accordance with claim 36, wherein the container

(New) A bioreactor in accordance with claim 41, wherein the fluid guiding

- 1 47. (New) A bioreactor in accordance with claim 46, wherein the closeable 2 opening has a surface of at least one fourth of a cross-sectional area of the container.
 - 48. (New) A bioreactor in accordance with claim 46, wherein the closeable opening is arranged above the first flow chamber.
- 1 49. (New) A bioreactor in accordance with claim 36, wherein the fluid 2 conveying apparatus is outside the container, and wherein the fluid conveying apparatus is 3 connected to the container.
- 1 50. (New) A bioreactor in accordance with claim 36, wherein the fluid conveying apparatus comprises a fluid conveying means arranged inside the container.

7

free flotation;

1	51. (New) A bioreactor in accordance with claim 50, wherein the fluid
2	conveying apparatus comprises an electric motor having a static motor part arranged outside the
3	container and a rotatable motor part arranged inside the container, and wherein the fluid
4	conveying means is connected to the rotatable motor part.
1	52. (New) A bioreactor in accordance with claim 51, wherein the electric
2	motor is a canned motor, and wherein the rotatable motor part is rotated without a through-going
3	shaft.
1	53. (New) A bioreactor in accordance with claim 51, wherein the fluid
2	conveying apparatus comprises a magnetic coupling drive adapted for coupling to the rotatable
3	motor part.
	•
1	54. (New) A bioreactor in accordance with claim 51, wherein the rotatable
2	motor part is journalled at least with respect to one degree of freedom with magnetically acting
3	means.
_	
1	55. (New) A bioreactor in accordance with claim 54, wherein the rotatable
2	motor part is completely magnetically journalled.
1	56. (New) A bioreactor in accordance with claim 50, wherein the fluid
2	conveying means is a vaned wheel.
_	
1	57. (New) A method for floating a substance for growing a tissue part in a
2	bioreactor, the method comprising:
3	providing at least one substance consisting of at least one of a tissue part, a
4	scaffold having cells deposited thereon, and a scaffold including one or more tissue parts
5	thereon; and
6	acting upon said substance with fluid, wherein the fluid holds the substance in

1

2

- wherein the fluid flows in a direction counter to gravity when a density of said substance is greater then a density of the fluid, and in a direction counter to buoyancy when a density of said substance is less then a density of the fluid.
- 1 58. (New) A method in accordance with claim 34, wherein the gaseous fluid is 2 oxygen.
- 1 59. (New) A method in accordance with claim 34, wherein the gaseous fluid is 2 air.
- 1 60. (New) A method in accordance with claim 57, wherein the substance is 2 acted upon with at least one fluid jet.
- 1 61. (New) A method in accordance with claim 57, wherein a position of the 2 substance in the bioreactor are measured by a sensor, and wherein a speed of the fluid in the 3 bioreactor is regulated to hold the substance in floatation.
- 1 62. (New) A method in accordance with claim 57, wherein the fluid flows 2 downward in the direction of gravity, and wherein a gaseous fluid is led into the downward 3 flowing fluid.
- 1 63. (New) A method in accordance with claim 62, wherein a flow of gaseous 2 fluid is slowed down by a flow of the downward flowing fluid.
 - 64. (New) A method in accordance with claim 57, wherein the fluid has an increasingly lower speed in the direction counter to gravity.
- 1 65. (New) A bioreactor in accordance with claim 36 further comprising a 2 second flow chamber arranged above the first flow chamber, wherein the second flow chamber is 3 formed in such a manner that fluid flowing from top to bottom therein has a lower speed with 4 decreasing height.

1	66. (New) A bioreactor in accordance with claim 65, wherein the first and the
2	second flow chambers form a common inner space which has an inlet opening for the fluid at the
3	top and at the bottom and which has an outlet opening between the top and bottom inlet opening.
1	67. (New) A bioreactor in accordance with claim 65, wherein the fluid
2	conveying means is a pump that is connected to the top and bottom inlet opening and to the
3	outlet opening in such a manner that the quantity of fluid flowing into the top and bottom inlet
4	opening may be controlled.
1	68. (New) A bioreactor in accordance with claim 40 wherein the at least one
2	fluid line is arranged such that it opens into the first flow chamber from below with respect to the
3	first flow chamber.
1	69. (New) A bioreactor in accordance with claim 40 wherein the at least one
2	fluid line is arranged such that it opens into the first flow chamber laterally with respect to the
3	first flow chamber.
1	70. (New) A bioreactor comprising a container for a substance, the bioreactor
2	comprising:
3	a first flow chamber to which a flowing fluid may be supplied, with the first flow
4	chamber being designed such that the fluid flowing upwardly therein has a lower speed with
5	increasing height; and
6	a second flow chamber arranged above the first flow chamber, the second flow
7	chamber being designed such that fluid flowing from top to bottom within the second flow
8	chamber has a smaller speed with decreasing height;
9	wherein the first flow chamber and the second flow chamber form a common
10	inner space that has a first inlet opening for the fluid at a top of the common inner space and a
11	second inlet opening for the fluid at a bottom of the common space; and
12	wherein the common inner space has an outlet opening between the first and
13	second inlet openings.