İŞLETMEDE SAYISAL YÖNTEMLER

DR. ÖĞR. ÜYESİ PEMBE GÜÇLÜ

DOĞRUSAL PROGRAMLAMA

Ders İçeriği

- 1. Sayısal Yöntemler Tanımı, Kapsamı, Tarihsel Gelişimi
- 2. Doğrusal Programlama- Tanımı, Vaysayımları, Model Kurma
- 3. Doğrusal Programlama- Grafik Çözüm
- 4. Doğrusal Programlama- Simpleks Çözüm
- 5. Doğrusal Programlama- Simpleks Çözüm (Büyük M)
- 6. Doğrusal Programlama-İki Aşamalı Yöntem, Özel Durumlar
- 7. Doğrusal Programlama- Dualite
- 8. Doğrusal Programlama- Duyarlılık Analizleri
- 9. Doğrusal Programlama Excel Solver Uygulaması
- 10. Özel Amaçlı Algoritmalar-Atama Problemi
- 11. Özel Amaçlı Algoritmalar-Ulaştırma Problemi Başlangıç Çözüm Yöntemleri
- 12. Özel Amaçlı Algoritmalar-Ulaştırma Problemi, Atlama Taşı Yöntemi
- 13. Özel Amaçlı Algoritmalar-Ulaştırma Problemi MODI Yöntemi
- 14. Ulaştırma Atama Problemi Excel Solver Uygulaması

DUALİTE

- Primal ve dual modellerin sonuçları aynıdır. Primal modelin sonuçlarından dual, dual modelin sonuçlarından primal çözüm sonuçları okunabilir.
- Doğrusal programlamada her maksimizasyon (Z_{max}) probleminin minimizasyonu (Q_{min}) veya her minimizasyon probleminin (Z_{min}) bir maksimizasyonu (Q_{max}) bulunmaktadır.

- Dual model yazılmadan önce primal modelin kanonik formda olmasına dikkat edilir (Kanonik formdaki modelde amaç fonksiyonu maksimizasyon ise kısıtların hepsi, amaç fonksiyonu minimizasyon ise kısıtların hepsi ≥'tir.
- Primal modelin karar değişkenleri dual modelde kısıta, primal modelin kısıtları ise dual modelde karar değişkenine dönüşür. Primal modelde m tane karar değişkeni, n tane kısıt varsa, dual modelde m tane kısıt, n tane karar değişkeni bulunacaktır.

- Primal modelde amaç fonksiyonu minimizasyon ise dualde maksimizasyona dönüşür. Primal modeldeki maksimizasyon amacı dualde minimizasyona dönüşür.
- Primal modeldeki kısıtların sağ tarafı, dual modelde amaç fonksiyonu katsayılarına dönüşür.
- Primal modeldeki amaç fonksiyonu katsayıları, dual modelde kısıtların sağ tarafına dönüşür.
- Primal modeldeki kısıt katsayıları matrisinin dual modelde transpozesi kullanılır.
- Primal modeldeki eşitlik kısıtına karşılık gelen dual karar değişkeninin işareti kısıtlanmaz (Bu karar değişkeni için pozitiflik koşulu aranmaz).

ÖRNEK 1

Primal Model

$$Z_{enb} = 6X_1 + 8X_2$$

 $4X_1 + 5X_2 \le 40$
 $4X_1 + 10X_2 \le 60$
 $X_1, X_2 \ge 0$

$$Q_{enk} = 20V_1 + 60V_2$$
$$4V_1 + 4V_2 \ge 6$$
$$5V_1 + 10V_2 \ge 8$$
$$V_1, V_2 \ge 0$$

ÖRNEK 2

Primal Model

$$Z_{enk} = 12X_1 + 4X_2$$

 $3X_1 + 2X_2 \le 6$
 $1/2X_1 + X_2 \le 4$
 $X_1, X_2 \ge 0$

KANONİK FORM

$$Z_{enk} = 12X_1 + 4X_2$$

$$-3X_1 - 2V_2 \ge -6$$

$$-\frac{1}{2}V_1 - X_2 \ge -4$$

$$X_1, X_2 \ge 0$$

$$Q_{enb} = -6V_1 - 4V_2$$

$$-3V_1 - \frac{1}{2}V_2 \le 12$$

$$-2V_1 - V_2 \le 4$$

$$V_1, V_2 \ge 0$$

ÖRNEK

Primal Model

$$Z_{enk} = x_1 + x_2$$

$$2x_1 + x_2 \ge 6$$

$$x_1 + 2x_2 = 4$$

$$x_1, x_2 \ge 0$$

KANONİK FORM
$$Z_{enk} = x_1 + x_2$$
 $2x_1 + x_2 \ge 6$ $x_1 + 2x_2 \ge 4$ $-x_1 - 2x_2 \ge -4$ $x_1, x_2 \ge 0$

Dual Model

$$\begin{aligned} Q_{enb} &= 6V_1 + 4V_2 - 4V_3 \\ 2V_1 + V_2 - V_3 &\leq 1 \\ V_1 + 2V_2 - 2V_3 &\leq 1 \\ V_1, V_2, V_3 &\geq 0 \end{aligned}$$

$$V_2 - V_3 = V_{23}$$
 OLSUN

$$Q_{enb} = 6V_1 + 4V_{23}$$
$$2V_1 + V_{23} \le 1$$
$$V_1 + 2V_{23} \le 1$$
$$V_1 \ge 0$$

 V_{23} işareti kısıtlanmamış

DUALİTE TEOREMLERİ

$$Z_{max} = Q_{min}$$
 veya $Z_{min} = Q_{max}$ $X_j. L_j = 0, \, orall j$ $s_i. V_i = 0, \, orall i$

X: Primal karar değişkeni

s: Primal boşluk değişkeni

V: Dual karar değişkeni

L: Dual boşluk değişken

ÖRNEK 1(Bakır ve Altunkaynak, 2003, s. 104-105)

$$Z_{enb} = 6X_1 + 8X_2$$

 $4X_1 + 5X_2 \le 40$
 $4X_1 + 10X_2 \le 60$
 $X_1, X_2 \ge 0$

PRİMAL OPTİMAL TABLO										
Cj			6	8		0	0			
	D.K.		NİC	X1	X2		S1	S2		
6	X1 5,00		5,00	1,00	0,00		0,50	-0,25		
8		X2	4,00	0,00	1,00		-0,20	0,20		
	Zj 62,00		6,00	8,00		1,40	0,10			
		(Cj-Zj	0,00	0,00		-1,40	-0,10		
				L1	L2		V1=1.4	V2=0.10		

$Q_{enk} = 20V_1 + 60V_2$
$4V_1 + 4V_2 \ge 6$
$5V_1 + 10V_2 \ge 8$
$V_1, V_2 \ge 0$

DUAL ORTHMAL TABLO										
Bj			40	60	0	0	М	М		
	D.K.	NİC	V1	V2	L1	L2	Y1	Y2		
40	V1	1,40	1,00	0,00	-0,50	0,20	0,50	-0,20		
60	V2	0,10	0,00	1,00	0,25	-0,20	-0,25	0,20		
	Qj	62,00	40,00	60,00	\$5,00	-4,00	5,00	4,00		
	В	ij-Zj	0,00	0,00	5,00	4,00	M-5	M-4		

$$Z_{enb} = Q_{enk} = 62$$

 $X_1 * L_1 = 0$
 $X_1 = 5$ $L_1 = 0$
 $X_2 * L_2 = 0$
 $X_2 = 4$ $L_2 = 0$
 $S_1 * V_1 = 0$
 $S_1 = 0$ $V_1 = 1.4$
 $S_2 * V_2 = 0$
 $S_2 = 0$ $V_2 = 0.1$

Örnek 2 (Aladağ, 2011, s.121-123)

$$Z_{enb} = 13X_1 + 20X_2$$

 $0,4X_1 + 0,8X_2 \le 1600$
 $1,2X_1 + 1,5X_2 \le 3900$
 $X_1 \le 2700$
 $X_2 \le 1800$
 $X_1,X_2 \ge 0$

PRIMAL OPTIMAL TABLO

Çj			13	20	0	0	0	0		
	D.K.	NiC.	X1	X2	S1	S2	S 3	S4		
13	X1	2000,00	1,00	0,00	-4,17	2,22	0,00	0,00		
0	S4	800,00	0,00	0,00	-3,33	1,11	0,00	1,00		
0	S 3	700,00	0,00	0,00	4,17	-2,22	1,00	0,00		
20	X2	1000,00	0,00	1,00	3,33	-1,11	0,00	0,00		
	Zį	46000,00	9,00	12,00	12,50	6,67	0,00	0,00		
		Cj-Zj	0,00	0,00	-12,50	-6,67	0,00	0,00		

DUAL OPTIMAL TABLO

Bj			1600	3900	2700	1800	0,00	0,00	M	М
	D.K.	NİC	V1	V2	V3	V4	S1	S2	Y1	Y2
3900	V2	6,67	0,00	1,00	2,22	-1,10	-2,22	1,11	2,22	-1,11
1600	V1	12,50	1,00	0,00	-4,16	3,33	4,16	-3,33	-4,16	3,33
	Zį	46000,00	1600,00	3900,00	2000,00	1000,00	-1000,00	-2000,00	2000,00	1000,00
	Bj-Zj		0,00	0,00	700,00	800,00	1000,00	2000,00	M-2000	M-1000

Bölüm Kaynakları

- Figure 1. Tütek, H., Gümüşoğlu, Ş., & Özdemir, A. (2012). Sayısal Yöntemler: Yönetsel Yaklaşım. Beta.
- Tütek, H., Gümüşoğlu, Ş., Özdemir, A. & Özdemir, A.(2011). Sayısal yöntemlerde Problem Çözümleri ve Bilgisayar Destekli Uygulamalar. Beta.
- Bakır, M. A. ve Altunkaynak, B. (2003). Tam Sayılı Programlama Teori Modeller ve Algoritmalar. Nobel Yayın Dağıtım.
- Aladağ, Z. (2011). Yöneylem Araştırması 1. Umuttepe Yayınları.