Periodic Table of Elements v4.3

	Super Seven HI		Conversions $1 \text{ L} \cdot \text{atm} = 101.3 \text{ J}$					Equilibrium			Quantum			Solutions (cont.)			Walent (Wa)		
	HBr		$K = {}^{\circ}C + 273.15$					When $aA + bB \ \rightleftharpoons \ cC + dD,$ $K_c = \frac{\left[C\right]^c \left[D\right]^d}{\left[A\right]^a \left[B\right]^b}$			$E_{photon} = hf = \frac{hc}{\lambda} \Longrightarrow c = \lambda f$			$\Delta T_b = K_b mi \qquad \Delta T_f = -K_f mi$			1 Walent = $0.082 \text{ L(mol K)}^{-1}$		
				$=\frac{5}{9}(^{\circ}F-32)$			$K_p = \frac{[A]^a [B]^b}{(P_A)^a (P_B)^b}$		$R_{H_{P}}$	$\begin{array}{ccc} \lambda & = \frac{h}{mv} \\ R_{H_{\rm Rydberg}} & = 1.097 \times 10^7 \ \mathrm{m}^{-1} \end{array}$			$S_g = kP_g$						
	H_2SO_4		${}^{\circ}F = \frac{9}{5}{}^{\circ}C + 32$ 1 cal = 4.184 J					$K_p = rac{(P_A)^a(P_B)^b}{(P_A)^a}$ $K_a = rac{[H^+][A^-]}{[HA]}$			$\frac{1}{\lambda} = R_H \left(\frac{1}{n_i^2} - \frac{1}{n_\ell^2} \right)$		$\Pi = \left(\frac{n}{V}\right)RT = MRT$			R = 1 Walentmosphere (Wam) = 1 Walentorr			
	HCIO₃		1 lb =	1 lb = 453.59 g		$\begin{array}{c} \textbf{Periodic Trends} \\ \mathbb{Z}_{eff} \text{ increase } \rightarrow_{\downarrow} \end{array}$			$K_a = \frac{[HA]}{[MB]}$ $K_b = \frac{[OH^-][HB^+]}{[B]}$			$\Delta E = (-2.18 \times 10^{-18} \text{ J}) \left(\frac{1}{n_f^2} - \frac{1}{n_i^2}\right)$			S)°C/m				
	HCIO ₄	C_3H_8 C_4H_{10}		= 760 mmHg = 101.325 kPa	o		→ ↑	$K_w = K_a K_b = [H^+][OH^-]$		($\left(n_{\widetilde{f}}-n_{\widetilde{i}} ight)$			$\Delta H_{fus_{water}} = 6.008 \; kJ/mol$			$1~{\rm m}^3=8.2\times 10^{-5}~{\rm Wamokel~(Wal)}$ Ideal Gas at STP:		
	1 IA	N_2O		$Pa = 10^5 \; N/m^2$			e →↑	$K_w = 1.0 \times 10^{-14} (25^{\circ} \text{ C})$		Т	Thermo/Electrochem		$\Delta H_{vap_{water_{100}\circC}} = 40.67 \; kJ/mol$			1.837 Wake (Wk)		18 VIIIA	
		NH ₃ SO ₃					pH	$pH = pK_a + \log \frac{[A^-]}{[HA]} = -\log[H^+]$ $pH + pOH = 14.$			$q=mc\Delta T$, $\Delta E=q+w$, $H=E+PV$		$c_{\sf ice} = 2.093 \; J/(g^{\circC)}$ $c_{\sf water} = 4.184 \; J/(g^{\circC)}$				10 VIIIA		
1		2.20 SO ₂			Constants	00014 × 10231-1		$pH + pOH = 14.$ $pK_a = -\log K_a, pK_b = -\log K_b.$			$\begin{array}{c} \Delta S^{\circ} = \sum_{\mathrm{products}} S^{\circ} - \sum_{\mathrm{reactants}} S^{\circ} \\ \uparrow \ \mathrm{Likewise} \ \mathrm{for} \ \Delta H^{\circ} \ \mathrm{and} \ \Delta G^{\circ} \ \uparrow \end{array}$			$c_{\text{water}} = 4.184 \text{ J/(g°C)}$ $c_{\text{steam}} = 1.841 \text{ J/(g°C)}$					
1	H ₂ Hydrogen	H ₂ S HCl	Avogadro' Faraday C			$N_A = 6.02214 \times 10^{23} \text{mol}^{-1}$ $F = 96485.33 \text{ C mol}^{-1}$					$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$			-stediii 2.02.2 3/ (6 3)					
	1.01	2 IIA	Atomic M	ass Constant	1 amu = 1.	0.660538×10^{-27}	kg	Gasses/Solutions		=	$= -RT \ln K = -nFE^{\circ}$			14 IVA	15 VA	VA 16 VIA 17 VIIA		Helium 4.00	
,	0.00		Molar Gas	Molar Gas Constant		$R = 8.3145 \text{ J (mol K)}^{-1}$ $R = 0.082057 \text{ L atm (mol K)}^{-1}$ $R = 62.36 \text{ L torr (mol K)}^{-1}$		$PV = nRT$ $P_A = P_{\text{total}}X_A$, where $X_A = \frac{\text{moles }A}{\text{total moles}}$ $P_{\text{total}} = P_A + P_B + P_C + \cdots$		- E.	$I = \frac{q}{t}$ $E_{\text{cell}} = E_{\text{cell}}^{\circ} - \frac{RT}{nF} \ln Q.$					3.14 8 3.44	9 3.98 F ₂	10	
3	0.98 Li	4 1.57 Be								es 20				5 2.04 6 2.55 7 B C	N_2			Ne	
2	Lithium	Beryllium	Coulomb's Constant		$k_e = 8.987551 \times 10^9 \text{ N m}^2 \text{ C}^{-2}$ $c = 2.998 \times 10^8 \text{ m s}^{-1}$		C^{-2} M	$M=rac{ ext{moles solute}}{ ext{Liters solution}}$, $m=rac{ ext{moles solute}}{ ext{kg solvent}}$ $M_1V_1=M_2V_2$ for dilution			Kinetics			Boron Carbon		Oxygen		Neon	
	6.94	9.01				$ imes 10^{ m s}$ m s $^{-1}$ $7 imes 10^{-23}$ J K $^{-1}$		$STP = 273.15 \text{ K and } 1.0 \text{ atm}$ $At STP$, ideal gas 22.4L mol^{-1} . Standard conditions 25° C, 1 atm.		$[A]_t$	$[A]_t - [A]_0 = -kt$ (1st order) $\ln[A]_t - \ln[A]_0 = -k$ (2nd order)			10.81 12.01		16.00		20.18	
1	11 0.93 Na Sodium 22.99	12 1.31	Charge on	a Proton/Electr	ron e = 1.602 >	$e = 1.602 \times 10^{-19} \text{ C}$				$\ln[A]_t$				13 1.61 14 1.90		16 2.38	17 3.16	18	
2		Mg	Planck's Constant Specific heat cap. of H ₂ O ₍₁		$h = 6.626 \times 10^{-34} \text{ Js}$ $c = 4.18 \text{ kJ kg}^{-1} \circ \text{C}^{-1}$		31	$v_{rms} = \sqrt{\frac{3RT}{\mathcal{M}}}$			$rac{1}{[A]_t}$ $-rac{1}{[A]_0}$ $= kt$ (3 rd order) $t_{1/2}$ $= rac{0.963}{t}$ (1 st order)			Al Si		2.19 16 2.38 P S		Ar	
3		Magnesium	Specific in	cat cap. 01 1120	(I) C = 4.10 KS	, kg C		V M		ι_1	$t_{1/2} = \frac{1}{t}$ (1 order)		Aluminium Silicon	Phosphorus	Sulfur	Chlorine	Argon		
		24.31	3 IIIB	4 IVB	5 VB	6 VIB	7 VIIB	8 VIIIB	9 VIIIB	10 VIIIB	11 IB	12 IIB	26.98	28.09	30.97	32.06	35.45	39.95	
1	19 0.82	20 1.00 Ca	21 1.36 Sc	22 1.54 Ti	23 1.63 V	24 1.66	25 1.55	26 1.83	27 1.88	28 1.91	29 1.90	30 1.65	31 1.81 G a	32 2.01	33 2.18	34 2.55	35 2.96	36 3.00	
1						Cr*	Mn	Fe	Co	Ni	Cu*	Zn		Ge	As	Se	Br_2	Kr	
4	Potassium	Calcium	Scandium	Titanium	Vanadium	Chromium	Manganese	Iron	Cobalt	Nickel	Copper	Zinc ⁽²⁺⁾	Gallium	Germanium	Arsenic	Selenium	Bromine	Krypton	
	39.10	40.08	44.96	47.87	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.38	69.72	72.63	74.92	78.97	79.90	83.80	
3	7 0.82	38 0.95	39 1.22	40 1.33	41 1.6	42 2.16	43 1.9	44 2.2	45 2.28	46 2.20	47 1.93	48 1.69	49 1.78	50 1.96	51 2.05	52 2.1	53 2.86	54 2.60	
5	Rb	Sr	Υ	Zr	Nb★	Mo★	Tc	Ru★	Rh★	Pd**	Ag★	Cd	In	Sn	Sb	Te	I_2	Xe	
5	Rubidium	Strontium	Yttrium	Zirconium	Niobium	Molybdenum	Technetium	Ruthenium	Rhodium	Palladium	Silver ⁽¹⁺⁾	Cadmium	Indium	Tin	Antimony	Tellurium	lodine	Xenon	
	85.47	87.62	88.91	91.22	92.91	95.95	(98)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29	
5	5 0.79	56 0.89	57-71	72 1.3	73 1.5	74 2.36	75 1.9	76 2.2	77 2.20	78 2.28	79 2.54	80 2.00	81 1.62	82 1.87	83 2.02	84 2.0	85 2.2	86 2.2	
6	Cs	Ba	La-Lu	Hf	Ta	W	Re	Os	lr	Pt*	Au★	Hg	TI	Pb	Bi	Po	At	Rn	
	Caesium 132.91	Barium 137.33	Lanthanide	Hafnium 178.49	Tantalum 180.95	Tungsten 183.84	Rhenium 186.21	Osmium 190.23	Iridium 192.22	Platinum 195.08	Gold 196.97	Mercury 200.59	Thallium 204.38	Lead 207.2	Bismuth 208.98	Polonium (209)	Astatine (210)	Radon (222)	
	152.91	157.55		170.49	100.93	105.04	100.21	190.25	192.22	195.06	190.97	200.59	204.30	201.2	200.90	(=00)	(===)	()	
8	0.7	88 0.9	89-103	104	105	106	107	108 109	Ds	111 112	113	114	115	116	117	118			
7	Fr	Ra	Ac-Lr	Rf	Db	Sg	Bh	Hs	Mt	Darm-	Rg	Cn	Nh	Fl	Mc	Lv	Ts	Og	
	Francium (223)	Radium (226)	Actinide	Rutherfordium (267)	Dubnium (268)	Seaborgium (269)	Bohrium (270)	Hassium (277)	Meitnerium (278)	stadtium	Roentgenium (282)	Copernicium (285)	Nihonium (286)	Flerovium (289)	Moscovium (290)	Livermorium (293)	Tennessine (294)	Ogannesson (294)	
				I						(281)		` '						, ,	
	Alkali M		Z E.N.	57 1.1	58 1.12	59 1.13	60 1.14	61 1.13	62 1.17	63 1.2	64 1.2	65 1.1	66 1.22	67 1.23	68 1.24	69 1.25	70 1.1	71 1.27	
Metal			Sym	La	Ce	Pr	Nd	Pm Promethium	Sm Samarium	Eu	Gd Gadolinium	Tb Terbium	Dy	Ho Holmium	Er Erbium	Tm Thulium	Yb Ytterbium	Lu	
	Metalloi Non-me Halogen		Name : . mass : .	Lanthanum 138.91	Cerium 140.12	Praseodymium 140.91	Neodymium 144.24	(145)	150.36	Europium 151.96	157.25	158.93	Dysprosium 162.50	164.93	167.26	168.93	173.05	Lutetium 174.97	
				89 1.1			00	02 100	04 100	05 110	06 100	07 10	00 10	00 10	100 10	101 10	100 10	102 10	
		Noble Gas _anthanide/Acti	_		90 1.3	91 1.5	92 1.38	93 1.36 Np	94 1.28 Pu	95 1.13	96 1.28 Cm	97 1.3 Bk	98 1.3 Cf	99 1.3 Es	100 1.3 Fm	101 1.3 Md	102 1.3 No	103 1.3	
	Synthetic			Ac Actinium	Th Thorium	Pa Protactinium	U Uranium	Neptunium	Plutonium	Am Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mendelevium	Nobelium	Lawrencium	
★ Aufbau Exception			(227)	232.04	231.04	238.03	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(266)		