TA: Carlos Salinas

Name:

MA 265 Quiz 2

June 21, 2016

Problem 2.1. Given the system of linear equations

$$x - 2x_2 + x_3 - x_4 = 3$$

$$x_1 + x_2 + x_3 - x_4 = 1$$

$$x_1 + x_3 - x_4 = 2$$
(2.1)

find its reduced row-echelon form:

- $A) \ \begin{bmatrix} 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$
- B) $\begin{bmatrix} 1 & 0 & 1 & -1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$
- $C) \ \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$
- $D) \begin{bmatrix} 1 & 0 & 1 & -1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$
- E) Not listed.

Problem 2.2. Given the matrix

$$A := \begin{bmatrix} 1 & 2 & -1 \\ 2 & 5 & -1 \\ -1 & -4 & 0 \end{bmatrix} \tag{2.2}$$

and the vector $\mathbf{b} := \begin{bmatrix} -3 \\ -4 \\ 2 \end{bmatrix}$, find the vector \mathbf{x} such that $A\mathbf{x} = \mathbf{b}$ by finding A^{-1} :

A)
$$A^{-1} = \begin{bmatrix} -4 & 4 & 3 \\ 1 & -1 & -1 \\ -3 & 2 & 1 \end{bmatrix}$$
, $\mathbf{x} = \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix}$

B)
$$A^{-1} = \begin{bmatrix} -4 & 4 & 3 \\ 1 & -1 & -1 \\ -3 & 2 & -1 \end{bmatrix}$$
, $\mathbf{x} = \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix}$

C)
$$A^{-1} = \begin{bmatrix} 2 & 3 & -2 \\ 3 & 5 & -4 \\ 1 & 1 & -1 \end{bmatrix}, \mathbf{x} = \begin{bmatrix} 3 \\ -1 \\ 2 \end{bmatrix}$$

D)
$$A^{-1} = \begin{bmatrix} 2 & 3 & -2 \\ 3 & 5 & -4 \\ 1 & 1 & -1 \end{bmatrix}$$
, $\mathbf{x} = \begin{bmatrix} 3 \\ -1 \\ 2 \end{bmatrix}$

E) Does not exist; the matrix A is singular.