

天线发出的电磁波在介质中传播的时候,随着距离的增加以及其他因素的影响,能量逐渐分散,也就是信号强度逐渐降低,以目前主要使用的移动通讯技术所使用的1.9G中心频率和WLAN标准中802.11g所使用的2.4G~2.5G频率为例,信号在自由空间中传播时的衰减大致如下:

## 1 WLAN 射频覆盖经验公式

电波空间传播损耗来说,2.4GHz频段的电磁波有近似的路径传播损耗。可以参考如下公式:

PathLoss(dB) = 46 + 10\* n\*Log D (m)

其中,D为传播路径,n为衰减因子。针对不同的无线环境,衰减因子n的取值有所不同。在自由空间中,路径衰减与距离的平方成正比,即衰减因子为2。在建筑物内,距离对路径 损耗的影响将明显大于自由空间。一般来说,对于全开放环境下n的取值为2.0~2.5;对于半开放环境下n的取值为2.5~3.0;对于较封闭环境下n的取值为3.0~3.5。

以室内50m距离计算,n取值为2.5,则衰减情况为:PL=46+10\*3\*log50=97dB,以天线输出口功率20dBm计算,则经过室内50m衰减后,信号强度为:20dBm-97dB=-77dBm。

AP信号链路损耗计算:

根据模型,室内路径损耗等于自由空间损耗加上附加损耗因子,且随距离成指数增长。接收电平估算公式如下:

Pr[dB]=Pt[dB]+Gt[dB]-Pl[dB]+Gr[dB]

其中:

Pr[dB]为最小接收电平,即为AP在不同传输速率下的接收灵敏度;

Pt[dB]为终端/AP最大发射功率;

Gt[dB]为终端/AP发射天线增益;

Gr[dB]为AP/终端接收天线增益;

PI[dB]为路径损耗;

因为AP的发射功率一般大于网卡,因此主要瓶颈在网卡到AP方向的传输,即网卡发的 报文AP是否能收到。

假设天线发射和接收增益为零,网卡在天线口的发射功率为10dBm。按照一般WLAN



设备的接收灵敏度计算,理论室内传播最大距离如下表:

| 速率(Mbps) | 灵敏度(dBm) | 距离(n=2.5) | 距离(n=3) |
|----------|----------|-----------|---------|
| 54       | -72      | 27.5      | 15.8    |
| 24       | -82      | 69.2      | 33.9    |
| 11       | -88      | 120.2     | 53.7    |
| 1        | -94      | 208.9     | 85.1    |

## 2 不同材质对 WLAN 信号的衰减

| 物体       | dB    |
|----------|-------|
| 地板       | 20-30 |
| 玻璃窗(无色)  | 2     |
| 大理石      | 5     |
| 木门       | 3     |
| 办公室墙的金属门 | 6     |
| 混凝土墙     | 10-15 |
| 砖墙       | 8     |

在实际组网中,尤其是在室分合路组网中,一些无源器件对WLAN也有损耗,其经验数据可参考如下:



表3 无源器件插损计算表

| Component type              |                   |                | Insertion loss(dB) |
|-----------------------------|-------------------|----------------|--------------------|
| Power divider<br>& combiner | 2 ways            |                | 3.5                |
|                             | 3 ways            |                | 5.5                |
|                             | 4 ways            |                | 6.5                |
| Coupler                     | 5dB               | Main branch    | 1.8                |
|                             |                   | Coupled branch | 5                  |
|                             | 7dB               | Main branch    | 1.3                |
|                             |                   | Coupled branch | 7                  |
|                             | 10dB              | Main branch    | 0.8                |
|                             |                   | Coupled branch | 10                 |
|                             | 15dB              | Main branch    | 0.5                |
|                             |                   | Coupled branch | 15                 |
|                             | 20dB              | Main branch    | 0.3                |
|                             |                   | Coupled branch | 20                 |
| 1/2" co-axis cab            | 0.12dB per meter  |                |                    |
| 10D FB co-axis              | 0.21 dB per meter |                |                    |
| 7D FB co-axis c             | 0.27dB per meter  |                |                    |
| Connectors                  | 0.2               |                |                    |

## 2.1 场景分析

下面我们通过一个学生宿舍的场景进行一下分析:



以上图中Channel 6的AP为例,假设其他AP都不存在,仅看这个AP的信号覆盖。

该AP的信号从射频口发射后,经过了一个功分器,这样是每边一半,通过前文介绍的公式计算,就是-3dBm,然后经过馈缆进入天线发射到空中,由于馈缆距离很短,假设没有弯曲,那么其产生的衰减可以忽略不计。如果我们使用5dBm的全向天线,那么天线刚刚发射出信号的时候,实际的衰减是+2dBm,假设每个房间的宽度是5米,那么如果没有墙体阻挡,隔壁两间宿舍中心的信号强度,根据上面的数据计算应该是+2dBm-54dBm,变成了



变成了-63.5dBm。在这种情况下,如果我们使用普通室内型AP,配置使用最大功率20dBm,那么隔壁房间中心位置的信号强度应该就是-43.5dBm,即使加上信号反射等因素的影响,效果也还不错应该能保证在50dBm左右,但是如果在过一次同样的墙,信号就要在衰减11.5dBm,这样就是-60dBm以下了,应该说就很不理想了。

如果无线网卡在天线所在房间的隔壁房间,由于到达AP的路径与信号从AP来时相同,那么衰减也是一样的,但是通常情况下无线网卡的发射功率较AP低,比如是20mW,也就是13dBm,这样,到达AP时,计算得出信号是-50dBm左右,考虑额外的影响因素,预计实际应该在-60dBm左右,也还是不错的。同样如果再次穿墙,则直接变成了-70dBm以下了,这样由于AP和无线网卡的发射功率不对称,根据802.11族协议中相关的定义,导致了连接在AP上的无线网卡使用较低的速率发送数据,信道的效率从而变低。

上述情况在目前的实际部署中还是比较理想的情况,如果我们增加AP的数量,如图中 所示,基本上不会出现情况特别差的房间,但是如果使用室分系统,就需要更细致的勘测和 计算来保证实际的效果。