

Problem Description & Goal

Dataset: NYC Yellow Taxi Trip Data for March, 2025.

Objective: To predict the trip_duration (in minutes) of taxi rides.

Why is this important?

- Improved ETA predictions for passengers.
- Optimized fleet management for taxi companies.
- Better understanding of factors influencing trip times.

Data Overview & Initial Cleaning

Data Overview

- **Source:** Kagglehub Dataset.
- Initial Size: Approximately 4.1 million rows and 20 columns.
- Key Features: tpep_pickup_datetime, tpep_dropoff_datetime, VendorID, passenger_count, trip_distance,
 PULocationID, DOLocationID, RatecodeID, payment_type, etc.

Initial Data Cleaning

- Handling Missing Values: Dropped rows with NaN in passenger_count (which also removed other NaNs).
 - o *Impact:* Removed approx. 916,663 rows.
- **Date Filtering:** Restricted data to March 2025.

Feature Engineering

Creating Features

- Target Variable: trip_duration (calculated from pickup/dropoff datetimes).
 - **Transformation:** Applied np.log1p to trip_duration to handle its skewed distribution and improve model performance.
- Temporal Features:
 - hour_of_day: Hour of pickup.
 - day_of_week: Day of the week (Monday=0, Sunday=6).
 - is_weekend: Binary flag (1 if weekend, 0 if weekday).
- Categorical Encoding: Converted various ID and flag columns (VendorID, RatecodeID, payment_type, PULocationID, DOLocationID, store_and_fwd_flag, passenger_count, hour_of_day, day_of_week, is_weekend) to categorical types.
- **Inconsistencies:** Removed trips with trip_duration <= 0 (negative or zero duration).
 - o *Impact:* Removed approx. 22,101 rows.

EDA Insights

Key Data Characteristics

- **Trip Duration Distribution:** Highly skewed towards shorter trips, confirming the need for log transformation.
- Categorical Feature Distribution:
 - VendorID: Majority of trips from VendorID 2. (Note: Vendors 6,7 and some payment types were removed during cleaning due to NaN/None values).
 - RatecodeID: Dominated by standard rate (1.0).
 - PULocationID/D0LocationID: Showed distinct popular pickup/dropoff zones (e.g., zones 132, 161, 237).
- **Temporal Patterns:** Significant variations in trip volume and duration by hour_of_day and day_of_week (e.g., higher volumes during rush hours, different patterns on weekends).

Model Selection & Baseline

Why Supervised Learning?

We have a labeled dataset (trip_duration) for prediction.

Model Progression: Increasing Complexity

Linear Regression (Baseline):

- **Concept:** Simple, interpretable, establishes a basic performance benchmark.
- Advantages: Fast, provides coefficients.
- **Disadvantages:** Assumes linear relationships, sensitive to outliers, can't capture complex interactions.
- Metrics (Original Scale):
 - RMSE: 9.51 minutes
 - MAE: 5.74 minutes
 - R-squared: 0.41

Linear Regression Residual Analysis

Residual Plot Insights (Actual - Predicted vs. Predicted)

- **Systematic Downward Trend:** Clear evidence of under-prediction for shorter trips (positive residuals) and over-prediction for longer trips (negative residuals). This indicates the model misses non-linear relationships.
- Heteroscedasticity: The spread of residuals changes across the predicted values (wider for shorter trips), showing
 inconsistent error variance.

Random Forest Regressor

Random Forest Model

• **Concept:** Ensemble model, builds multiple decision trees and averages their predictions. Introduces randomness to reduce overfitting.

Advantages:

- Handles non-linear relationships and feature interactions.
- Robust to outliers.
- Provides feature importances.

• Metrics (Original Scale):

RMSE: 4.97 minutes

MAE: 2.86 minutes

R-squared: 0.84

Random Forest Regressor

Random Forest Residual Analysis

- **Significant Improvement:** Residuals are much more randomly scattered around zero, indicating better capture of non-linear patterns.
- Reduced Heteroscedasticity: Error spread is more consistent.
- Remaining Challenge: Still some under-prediction and higher variance for very short trips.

Gradient Boosting Regressor

Gradient Boosting Model

- Concept: Builds trees sequentially, each correcting errors of the previous ones. Highly powerful for tabular data.
- Advantages:
 - Often state-of-the-art performance.
 - Highly flexible, captures complex patterns.
 - o Optimized implementations (like XGBoost, LightGBM) are very efficient.
- Metrics (Original Scale):
 - RMSE: 5.93 minutes
 - MAE: 3.41 minutes
 - o R-squared: 0.77
- Residual Plot
 - Similar to Random Forest

Gradient Boosting Regressor

Gradient Boosting Actual vs. Predicted Plot Analysis

- Strong Correlation: Excellent performance for shorter trips (points close to the ideal line).
- Systematic Under-prediction for Long Trips: Clear trend of points falling below the ideal line for longer durations, indicating the model consistently underestimates these trips.

• **Limited Predictive Range:** Model struggles to predict beyond a certain duration, capping out at lower values than actual long trips.

Model Comparison

Performance Summary Table (Original Scale)

Model	RMSE (Minutes)	MAE (Minutes)	R-squared
Linear Regression	9.51	5.74	0.41
Random Forest Regressor	4.97	2.86	0.84
Gradient Boosting Regressor	5.93	3.41	0.77

Feature Importance

Key Feature Importances

- Consistent Drivers: trip_distance.
- **Spatial/Temporal Impact:** PULocationID, D0LocationID, hour_of_day, day_of_week are consistently significant in tree-based models, highlighting the importance of location and time for trip duration.
- **Model-Specific Nuances:** While all models recognize distance, tree-based models can leverage categorical and temporal features in more complex ways.

Conclusion

Key Findings

- Linear Regression serves as a good baseline but significantly underestimates longer trips due to its linear nature.
- Random Forest drastically improves performance by capturing non-linear patterns.
- Gradient Boosting further enhances accuracy, achieving the best performance among the tested models.
- Distance, pickup/dropoff locations, and time of day are the most influential factors in predicting taxi trip duration.

Challenges & Limitations

- Systematic under-prediction for very long trips remains a challenge, even with advanced models.
- The raw data initially had some quality issues (NaNs, negative values, out-of-month dates) that required careful cleaning.

Future Work & Enhancements

Advanced Hyperparameter Tuning: Rigorous tuning of Gradient Boosting parameters (using GridSearchCV or RandomizedSearchCV) to optimize for specific metrics.

More Robust Gradient Boosting: Explore highly optimized libraries like XGBoost, LightGBM, or CatBoost, which often offer superior performance and speed for large datasets.

External Data Integration:

- Real-time traffic data.
- Weather conditions (e.g., rain, snow affecting travel times).
- Special events (e.g., concerts, parades, marathons) that impact city-wide movement.

Anomaly Detection/Specific Handling for Long Trips: Investigate long trips (e.g., top 1% duration) to see if they have unique characteristics that could be modeled separately.

Thank you!

GitHub Link: https://github.com/sseggeb/MSDS_5509_Final_Pro.git