07 Combinational circuit elements

- Multiplexers (MUX's or selectors)
 - Crossbar and LUT examples
- Decoders
 - One-hot decoder with enable
 - Demultiplexers (DeMUX)
- Encoders/Priority Encoders
- Arithmetic comparators
- Verilog for combinational circuits

Multiplexers:

A Multiplexer (<u>mux</u> for short) or a <u>selector</u> selects the output to follow one of many inputs:

Example 1: a 2-to-1 mux:

Multiplexers (cont):

Example 2: a 4-to-1 mux

Graphic symbol

<i>s</i> ₁	s_0	f
0	0	w_0
0	1	w_{1}
1	0	w_2
1	1	w_3

Truth table

Building a 4-to-1 MUX using 2-to-1 MUX's:

[BV]

A select line (s) which is 2-bit wide means s can have 4 different values → selects from w0 ... w3 (4 inputs)

Building a 16-to-1 MUX using 4-to-1 MUX's:

A select line (s) which is 4-bit wide means s can have 16 different values → selects from w0 ... w15 (16 inputs)

A mux with n-bit select lines:

A select line (s) which is n-bit wide means s can have 2ⁿ different values → selects from w0 ... w2ⁿ-1 (2ⁿ inputs)

Ex: $2^6 = 64$ or $6 = \log_2(64)$, so a 64-to-1 mux has 6-bit wide select line

Implementing truth table using MUX:

$w_1 w_2$	f	$\begin{bmatrix} w \\ 2 \\ w \end{bmatrix}$
0 0	0	
0 1	1	1 —
1 0	1	$1 - \int_{1}^{1} f$
1 1	0	0

Implementation using a 4-to-1 multiplexer

can be extended to a function of more than 2 variables:

f x y z	f	Z	у	Х
	0	0	0	0
	1	1	0	0
$0 \longrightarrow 0$	1	0	1	0
1 1	0	1	1	0
I –	1	0	0	1
)	0	1	0	1
$1 \longrightarrow 7$	0	0	1	1
1	1 -	1	1	1

Look-up table (LUT):

w_1	w_2	f
0	0	0
0	1	1
1	0	1
1	1	0

- The above can implement ANY function of 2 variables. (no need to do any function minimization at all)
- Extension to > 2 variables possible.
- Efficient implementation of this "method" is called LUT
- Look-up table can be used to implement any function:

Decoders:

One-hot decoder with enable:

Truth table

Graphical symbol

2 inputs can have $2^2 = 4$ possible input combinations

if (not enable) then all outputs are zero,

else (this means enable is 1) assert one output indexed by input

Decoders:

One-hot decoder with enable:

- n inputs can have 2ⁿ possible input combinations
- if (enable is 0)

All output lines are zero

else (this means enable is 0)

Assert only one y output indexed by the input.

-This is why it's called "one-hot." The rest of output is 0.

Encoders:

<u>Decoder</u>: code to one-hot output:

En	w_1	w_0	y_0	y_1	y_2	<i>y</i> ₃
1	0	0	1	0	0	0
1	0	1	0	1	0	0
1	1	0	0	0	1	0
1	1	1	0	0	0	1
0	X	X	0	0	0	0

Encoder: one-hot input to code:

w_3	w_2	w_1	w_0	y_1	y_0
0	0	0	1	0	0
0	0	1	0	0	1
0	1	0	0	1	0
1	0	0	0	1	1

Graphical symbol

incomplete

Priority encoder:

							v maioatoo oatpat y io vi
w_3	w_2	w_1	w_0	y_1	y_0	v	
0	0	0	0	d	d	0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
0	0	0	1	0	0	1	- $ w $
0	0	1	X	0	1	1	- $w0$ v $-$
0	1	X	X	1	0	1	Graphical symbol
1	X	X	X	1	1	1	Grapfillodi Syffibol

v indicates output v is valid

[BV]

w3 has highest priority, w0 has lowest priority.

Real life example: We have only one server to serve 4 important people.

w3 = most important, ..., w0 = least important

 $v == 1 \rightarrow$ we need to serve someone, y is the code of the most important person to serve.

Arithmetic comparators:

Compare the size of two numbers:

Example: 4-bit comparators

usually compares unsigned numbers.

Only 3 outcomes are possible:

1. a < b (aLTb) Ex: a = 4'b1011, b = 4'b1101

2. a > b (aGTb) Ex: a = 4'b1000, b = 4'b0101

3. a = b (aEQb) Ex: a = 4'b0110, b = 4'b0110

Arithmetic comparators:

Consider 2 one-bit inputs:

a	b	a>b	a <b< th=""><th>a=b</th></b<>	a=b
0	0			1
0	1		1	
1	0	1		
1	1			1

$$a = b$$
 is this:

$$a \rightarrow b$$
 $b \rightarrow a = b$

$$a \rightarrow b \rightarrow a > b$$

or
$$a < b = (aGTb + aEQb)$$

The cascading comparator:

a ar	nd b	Cascade inputs Out			Outputs		
a,b	note	^	<	=	^	<	=
10	a>b	X	Х	Х	1	0	0
01	a <b< td=""><td>Х</td><td>х</td><td>Х</td><td>0</td><td>1</td><td>0</td></b<>	Х	х	Х	0	1	0
00 11	a=b	> _{in}	< _{in}	= _{in}	> _{in}	< _{in}	= _{in}

The cascading comparator examples:

a = 101, b = 110 (a < b)

a = 010, b = 000 (a > b)

Verilog for combinational logic:

1-bit cascading comparator:

```
module comp (a, b, gti, lti, eqi, gto, lto, eqo);
  input a, b, gti, lti, eqi;
  output gto, lto, eqo;
                                      Don't forget these in your
  reg gto, lto, ego;
                                      sensitivity list
  always @ (a or b or gti or lti or eqi)
      case({a,b})
           2'b10: {gto, lto, eqo} = 3'b100; // a > b
           2'b01: {gto, lto, eqo} = 3'b010; // a < b
           default: {gto, lto, eqo} = {gti, lti, eqi};
      endcase
```

Verilog for combinational logic:

ALU: Arithmetic and logic unit

[BV]

Operation	Inputs $s_2 \ s_1 \ s_0$	Outputs F
Clear	0 0 0	0000
B - A	001	B - A
A - B	010	A - B
ADD	011	A + B
XOR	100	A XOR B
OR	101	$A ext{ OR } B$
AND	110	A AND B
Preset	111	1111

The functionality of the 74381 ALU.

<u>ALU</u>:

Operation	Inputs $s_2 \ s_1 \ s_0$	Outputs F
Clear	0 0 0	0 0 0 0
B - A	$0\ 0\ 1$	B - A
A - B	$0\ 1\ 0$	A - B
ADD	0 1 1	A + B
XOR	$1 \ 0 \ 0$	A XOR B
OR	$1 \ 0 \ 1$	A OR B
AND	$1 \ 1 \ 0$	A AND B
Preset	$1 \ 1 \ 1$	1111

The functionality of the 74381 ALU.

```
// 74381 ALU
module alu(s, A, B, F);
    input [2:0] s;
    input [3:0] A, B;
    output [3:0] F;
    reg [3:0] F;
    always @(s or A or B)
       case (s)
         0: F = 4'b0000;
         1: F = B - A;
         2: F = A - B;
         3: F = A + B;
         4: F = A ^ B;
          5: F = A | B;
          6: F = A \& B;
          7: F = 4'b11111;
       endcase
endmodule
```

A 4-to-1 MUX:

```
module mux4to1 (w, s, f);
   input [3:0] w;
   input [1:0] s;
   output f;
   reg f;
   always @(w or s)
       case (s)
           0: f = w[0];
           1: f = w[1];
          2: f = w[2];
          3: f = w[3];
       endcase
```

Some design notes

- 1. When creating a bus,

 <u>always run the bit index</u>

 <u>from MSB to LSB (from high number to low number)</u>
- 2. Always use lowercase letters for signal names.

endmodule

[BV/K]

A 2-to-4 decoder:

```
module dec2to4 (w, y, en);
     input [1:0] w;
     input en;
     output [3:0] y;
     reg [3:0] y;
     always @ (w or en)
     begin
        if (en = = 0)
         y = 4'b0000;
        else
         case (w)
             0: y = 4'b0001;
             1: y = 4'b0010;
             2: y = 4'b0100;
             3: y = 4'b1000;
          endcase
     end
```

endmodule

[BV/K]

Where to use uppercase?
There are used in defining constants in text macros or constants in parameters

Just like C programming practices.

A priority encoder:

```
module priority (w, y, v);
   input [3:0] w;
   output [1:0] y; output v;
   reg [1:0] y; reg v;
   always @(w)
   begin
      v = 1;
      if (w[3])
          y = 3;
      else if (w[2])
           y = 2;
      else if (w[1])
           y = 1;
      else if (w[0])
           y = 0;
      else begin
          v = 0;
          y = 2bx;
      end
   end
endmodule
```

A 4-bit comparator:

```
module compare
(a, b, a eq b, a gt b, a lt b);
    input [3:0] a, b;
    output a eq b, a gt b, a lt b;
    reg a eq b, a gt b, a lt b;
    always @ (a or b)
    begin
      a eq b = 0;
      a gt b = 0;
      a lt b = 0;
      if (a = = b)
        a_{eq} b = 1;
      else if (a > b)
        a gt b = 1;
      else
        a lt b = 1;
    end
endmodule
```