

1 Allgemeines

 $\begin{array}{ll} \text{Dreiecksungleichung} & |x+y| \leq |x| + |y| \\ ||x| - |y|| \leq |x-y| \\ \text{Cauchy-Schwarz-Ungleichung:} & |\langle x,y \rangle| \leq ||x|| \cdot ||y|| \end{array}$

Arithmetische Summenformel $\sum_{k=1}^n k = \frac{n(n+1)}{2}$

Geometrische Summenformel $\sum_{k=0}^n q^k = \frac{1-q^{n+1}}{1-q}$

 ${\it Bernoulli-Ungleichung} \qquad \qquad (1+a)^n \geq 1 + na$

Binomische Formel $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$

Äquivalenz von Masse und Energie $E=mc^2$

Wichtige Zahlen: $\sqrt{2}=1,41421 \quad \pi=\text{ist genau 3} \quad e=2,71828 \quad \pi=3,14159$

 $\mbox{Fakult\"aten} \quad n! = 1 \cdot 2 \cdot 3 \cdot \ldots \cdot n \qquad 0! = 1! = 1$

2 Mengen

Eine Zusammenfassung wohlunterschiedener Elemente zu einer Menge explizite Angabe: $A=\{1;2;3\}$ Angabe durch Eigenschaft: $A=\{n\in\mathbb{N}\mid 0< n<4\}$

2.1 Für alle Mengen A,B,C gilt:

- 1. $\emptyset \subseteq B$
- 2. $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$
- 3. $(A \cap B) \cap C = A \cap (B \cap C)$ $(A \cup B) \cup C = A \cup (B \cup C)$
- 4. $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

 $\mathbb{Q} = \{ \tfrac{p}{q} \ | \ p \in \mathbb{Z}; q \in \mathbb{N} \}$

Jede rationale Zahl $\frac{m}{n}\in\mathbb{Q}$ hat ein Dezimaldarstellung. $0,25\overline{54}=:a\rightarrow 10000a-100a=2554-25\Rightarrow a(9900)=2529 \Rightarrow a=\frac{2529}{3000}=\frac{281}{1100}$

3 Vollständige Induktion

 $\begin{array}{ll} \text{Behauptung: } f(n) = g(n) \text{ für } n_0 \leq n \in \mathbb{N} \\ \text{IA: } n = n_0 \colon & \text{Zeige } f(n_0) = g(n_0). \\ \text{IV: Annahme } f(n) = g(n) \text{ gilt für ein beliebiges } n \in \mathbb{N} \\ \text{IS: } n \rightarrow n+1 \colon & \text{Zeige } f(n+1) = \underbrace{f(n)}_{n=1} \dots = g(n+1) \end{array}$

4 Komplexe Zahlen

Eine komplexe Zahl $z=a+b\mathbf{i},\ z\in\mathbb{C},\quad a,b\in\mathbb{R}$ besteht aus einem Realteil $\Re(z)=a$ und einem Imaginärteil $\Im(z)=b$, wobei $\mathbf{i}=\sqrt{-1}$ die immaginären Einheit ist. Es gilt: $i^2=-1$ $i^4=1$

4.1 Kartesische Koordinaten

Rechenregeln:

$$z_1 + z_2 = (a_1 + a_2) + (b_1 + b_2)\mathbf{i}$$

$$z_1 \cdot z_2 = (a_1 \cdot a_2 - b_1 \cdot b_2) + (a_1 \cdot b_2 + a_2 \cdot b_1)\mathbf{i}$$

Konjugiertes Element von $z=a+b{\bf i}$: $\overline{z}=a-b{\bf i}$ $z\overline{z}=|z|^2=a^2+b^2$ $e^{\overline{ix}}=e^{-i}$

Inverses Element: $z^{-1} = \frac{1}{z} \frac{\overline{z}}{\overline{z}z} = \frac{\overline{z}}{a^2 + b^2} = \frac{a}{a^2 + b^2} - \frac{b}{a^2 + b^2} \mathbf{i}$

4.2 Polarkoordinaten

 $\begin{array}{l} z=a+b\mathbf{i}\neq 0 \text{ in Polarkoordinaten:} \\ z=r(\cos(\varphi)+\mathbf{i}\sin(\varphi))=r\cdot e^{\mathbf{i}\varphi} \\ r=|z|=\sqrt{a^2+b^2} \quad \varphi=\arg(z)= \begin{cases} +\arccos\left(\frac{a}{r}\right), & b\geq 0 \\ -\arccos\left(\frac{a}{r}\right), & b<0 \end{cases} \end{array}$

 $\begin{array}{ll} \text{Multiplikation:} \ z_1 \cdot z_2 = r_1 \cdot r_2 (\cos(\varphi_1 + \varphi_2) + \mathbf{i} \sin(\varphi_1 + \varphi_2)) \\ \text{Division:} \ \frac{z_1}{z_2} = \frac{r_1}{r_2} (\cos(\varphi_1 - \varphi_2) + \mathbf{i} \sin(\varphi_1 - \varphi_2)) \end{array}$

 $\begin{array}{ll} \text{n-te Potenz:} \ z^n = r^n \cdot e^{n\varphi \mathbf{i}} = r^n (\cos(n\varphi) + \mathbf{i} \sin(n\varphi)) \\ \text{n-te Wuzzel:} \ \ \frac{n}{\sqrt{z}} = z_k = \sqrt[n]{r} \left(\cos\left(\frac{\varphi + 2k\pi}{n}\right) + \mathbf{i} \sin\left(\frac{\varphi + 2k\pi}{n}\right) \right) \end{array}$

Logarithmus: $\ln(z) = \ln(r) + \mathbf{i}(\varphi + 2k\pi)$ (Nicht eindeutig!)

Anmerkung: Addition in kartesische Koordinaten umrechnen(leichter)!

5 Funktionen

Eine Funktion f ist eine Abbildung, die jedem Element x einer Definitionsmenge D genau ein Element y einer Wertemenge W zuordnet. $f:D\to W,\; x\mapsto f(x):=y$

Injektiv: $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$ Surjektiv: $\forall y \in W \exists x \in D : f(x) = y$ (Alle Werte aus W werden angenommen.)

Bijektiv(Eineindeutig): f ist injektiv und surjektiv $\Rightarrow f$ umkehrbar. **Ableitung der Umkehrfunktion**

f stetig, streng monoton, an x_0 diff'bar und $y_0 = f(x_0)$ $\Rightarrow \left(f^{-1}\right)(y_0) = \frac{1}{f'(x_0)} = \frac{1}{f'(f^{-1}(y_0))}$

5.1 Symmetrie einer Funktion f

Achsensymmetrie (gerade Funktion): f(-x) = f(x)Punktsymmetrie (ungerade Funktion): f(-x) = -f(x)

Regeln für gerade Funktion g und ungerade Funktion u: $g_1 \pm g_2 = g_3$ $u_1 \pm u_2 = u_3$ $g_1 \cdot g_2 = g_3$ $u_1 \cdot u_2 = g_3$ $u_1 \cdot g_1 = u_3$

5.2 Kurvendiskussion von $f: I = [a, b] \rightarrow \mathbb{R}$

Kandidaten für Extrama (lokal, global)

- 1. Randpunkte von I
- 2. Punkte in denen f nicht diffbar ist
- 3. Stationäre Punkte (f'(x) = 0) aus (a, b)

Lokales Maximum

wenn x_0 stationärer Punkt ($f'(x_0) = 0$) und

- $f''(x_0) < 0$ oder • f'(x) > 0 $x \in (x_0 - 5)$
- $f'(x) > 0, x \in (x_0 \varepsilon, x_0)$ $f'(x) < 0, x \in (x_0, x_0 + \varepsilon)$

Lokales Minimum

wenn x_0 stationärer Punkt ($f'(x_0) = 0$) und

- $f''(x_0) > 0$ oder
- $f'(x) < 0, x \in (x_0 \varepsilon, x_0)$ $f'(x) > 0, x \in (x_0, x_0 + \varepsilon)$

Monotonie

 $f'(x) \underset{(>)}{\overset{>}{\geq}} 0 \to f$ (streng) Monoton steigend, $x \in (a,b)$ $f'(x) \underset{(<)}{\overset{\leq}{\leq}} 0 \to f$ (streng) Monoton fallend, $x \in (a,b)$

Konvex/Konkav

$$f''(x) \stackrel{\geq}{\underset{(>)}{\geq}} 0 \rightarrow f \text{ (strikt) konvex, } x \in (a,b)$$

 $f''(x) \stackrel{\leq}{\underset{(<)}{=}} 0 \rightarrow f \text{ (strikt) konkav, } x \in (a,b)$

 $f'''(x_0)=0$ und $f''''(x_0)
eq 0 o x_0$ Wendepunkt $f'''(x_0)=0$ und Vorzeichenwechseln an $x_0 o x_0$ Wendepunkt

5.3 Asymptoten von f

 $\begin{aligned} & \text{Horizontal: } c = \lim_{x \to \pm \infty} f(x) \\ & \text{Vertikal: } \exists \text{ Nullstelle } a \text{ des Nenners } : \lim_{x \to a^{\pm}} f(x) = \pm \infty \\ & \text{Polynomasymptote } P(x) \text{: } f(x) := \frac{A(x)}{Q(x)} = P(x) + \frac{B(x)}{Q(x)} \end{aligned}$

5.4 Wichtige Sätze für stetige Fkt. $f:[a,b] \to \mathbb{R}, f \mapsto f(x)$

Zwischenwertsatz: $\forall y \in [f(a), f(b)] \ \exists x \in [a,b]: f(x) = y$ Satz von Rolle: Falls f(a) = f(b), dann $\exists x_0: f^i(x_0) = 0$ Mittelwertsatz: Falls f diffbar, dann $\exists x_0: f'(x_0) = \frac{f(b) - f(a)}{b - a}$ Regel von L'Hospital:

 $\lim_{x \to a} \frac{f(x)}{g(x)} = \left[\frac{0}{0}\right] / \left[\frac{\infty}{\infty}\right] \to \lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$

5.5 Polynome $P(x) \in \mathbb{R}[x]_n$

 $P(x) = \sum_{i=0}^{n} a_i x^i = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$ Lösungen für $ax^2 + bx + c = 0$ Mitternachtsformel: $x_{1/2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2}$ Satz von Vieta: $x_{1/2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2}$ $x_{1/2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2}$ Satz von Vieta: $x_{1/2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2}$

5.6 Trigonometrische Funktionen

$$\begin{split} f(t) &= A \cdot \cos(\omega t + \varphi_0) = A \cdot \sin(\omega t + \frac{\pi}{2} + \varphi_0) \\ & \sin(-x) = -\sin(x) & \cos(-x) = \cos(x) \\ & \sin^2 x + \cos^2 x = 1 & \tan x = \frac{\sin x}{\cos x} \\ e^{ix} &= \cos(x) + i\sin(x) & e^{-ix} &= \cos(x) - i\sin(x) \\ \sin(x) &= \frac{1}{2i} \left(e^{ix} - e^{-ix} \right) & \cos(x) &= \frac{1}{2} \left(e^{ix} + e^{-ix} \right) \\ \sinh(x) &= \frac{1}{2} (-e^{-x} + e^x) & \cosh(x) &= \frac{1}{2} (e^{-x} + e^x) \end{split}$$

Additionstheoreme

$$\cos(x+y) = \cos x \cos y - \sin x \sin y$$

$$\cos\left(x - \frac{\pi}{2}\right) = \sin x \qquad \sin\left(x + \frac{\pi}{2}\right) = \cos x$$

$$\sin(x+y) = \sin x \cos y + \cos x \sin y$$

$$\sin 2x = 2\sin x \cos x$$

$$\cos 2x = \cos^2 x - \sin^2 x = 2\cos^2 x - 1$$

x	0	30	45	60	90	120	135	150	180	270	360
x	0	$\pi/6$	$\pi/4$	$\pi/3$	$\pi/2$	$\frac{2}{3}\pi$	$\frac{3}{4}\pi$	$\frac{5}{6}\pi$	π	$\frac{3}{2}\pi$	2π
sin	0	1/2	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0	-1	0
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{1}{\sqrt{2}}$	$-\frac{\sqrt{3}}{2}$	-1	0	1
tan	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	٠.	$-\sqrt{3}$	-1	$-\frac{1}{\sqrt{3}}$	0	١.	0

5.7 Potenzen/Logarithmus

$$\ln(u^r) = r \ln u$$

6 Folgen

Eine Folge ist eine Abbildung $a:\mathbb{N}_0\to\mathbb{R},\ n\to a(n)=:a_n$ explizite Folge: (a_n) mit $a_n=a(n)$ rekursive Folge: (a_n) mit $a_0=f_0,\ a_{n+1}=a(a_n)$

6.1 Monotonie

Im Wesentlichen gibt es 3 Methoden zum Nachweis der Monotonie. Für (streng) monoton fallend gilt:

- 1. $a_{n+1} a_n \leq 0$
- 2. $\frac{a_n}{a_{n+1}} \stackrel{\geq}{\underset{(>)}{\geq}} 1 \qquad \vee \qquad \frac{a_{n+1}}{a_n} \stackrel{\leq}{\underset{(<)}{\leq}} 1$
- 3. Vollständige Induktion: $\forall n \in \mathbb{N}: a_{n+1} \overset{\leq}{\underset{(<)}{=}} a_n$

6.2 Konvergenz

 (a_n) ist Konvergent mit Grenzwert a, falls: $\forall \epsilon>0$ $\exists N\in\mathbb{N}_0:|a_n-a|<\epsilon\;\forall n>N$

Eine Folge konvergiert gegen eine Zahl $a: (a_n) \stackrel{n \to \infty}{\longrightarrow} a$

Es gilt

- Der Grenzwert a einer Folge (a_n) ist eindeutig.
- Ist (a_n) Konvergent, so ist (a_n) beschränkt
- Ist (a_n) unbeschränkt, so ist (a_n) divergent.
- \bullet $\it Das$ $\it Monotoniekriterium:$ Ist (a_n) beschränkt und monoton, so konvergiert (a_n)
- Das Cauchy-Kriterium: Eine Folge (a_n) konvergiert gerade dann, wenn:

$$\forall \epsilon > 0 \,\exists \, N \in \mathbb{N}_0 : |a_n - a_m| < \epsilon \,\forall n, m \ge N$$

Grenzwert bestimmen:

- Wurzeln: Erweitern mit binomischer Formel
- Brüche: Zähler und Nenner durch den Koeffizient höchsten Grades teilen
- Rekursive Folgen: Fixpunkte berechnen. Fixpunkte sind mögliche Grenzwerte. Monotonie durch Vergleich a_{n+1} und a_n zeigen. Beschränktheit mit Induktion beweisen.

6.3 Wichtige Regeln

$$a_n = q^n \xrightarrow{n \to \infty} \begin{cases} 0 & |q| < 1 \\ 1 & q = 1 \\ \pm \infty & q < -1 \\ + \infty & q > 1 \end{cases}$$

$$a_n = \frac{1}{n^k} \to 0 \quad \forall k \ge 1$$

$$a_n = \left(1 + \frac{c}{n}\right)^n \to e^c$$

$$a_n = n\left(c^{\frac{1}{n}} - 1\right) = \ln c$$

$$a_n = \frac{n^2}{2^n} \to 0 \qquad (2^n \ge n^2 \quad \forall n \ge 4)$$

$$\lim_{n \to \infty} n^{\frac{1}{n}} = \lim_{n \to \infty} \sqrt[n]{n} = 1$$

6.4 Limes Inferior und Superior

Der Limes superior einer Folge $x_n\subset\mathbb{R}$ ist der größte Grenzwert konvergenter Teilfolgen x_{n_k} der Folge x_n

Der Limes inferior einer Folge $x_n\subset\mathbb{R}$ der kleinste Grenzwert konvergenter Teilfolgen x_{n_k} der Folge x_n

7 Reihen

$\sum_{n=1}^{\infty} \frac{1}{n} = \infty$	$\sum_{n=0}^{\infty} q^n = \frac{1}{1-q}$	q < 1
Harmonische Reihe	Geometrische Reihe	

$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} = \begin{cases} \text{konvergent}, & \alpha > 1\\ \text{divergent}, & \alpha \leq 1 \end{cases}$$

7.1 Konvergenzkriterien

 $\sum_{n=0}^{\infty} a_n$ divergiert, falls $a_n
eq 0$ oder $\begin{array}{lll} \sum_{n=0}^{\infty} h & \text{Minorante:} \exists \sum_{n=0}^{\infty} b_n (divergiert) & \wedge & a_n \geq b_n & \forall n \geq n_0 \end{array}$ $\sum_{n=0}^{\infty} (-1)^n a_n$ konvergiert, if (a_n) monoton fallende Nullfolge (Leibnitz) oder Majorante: $\exists \sum_{n=0}^{\infty} b_n = b \quad \land \quad a_n \leq b_n \quad \forall n \geq n_0$

Absolute Konvergenz(
$$\sum_{n=0}^{\infty}|a_n|=a$$
 konvergiert), falls: 1. Majorante: $\exists \sum_{n=0}^{\infty}b_n=b \land |a_n| \leq b_n \ \forall n \geq n_0$ 2. Quotienten und Wurzelkriterium (BETRAG nicht vergessen!)

$$\rho := \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| \qquad \qquad \rho := \lim_{n \to \infty} \sqrt[n]{|a_n|} \qquad \forall n > N$$

$$\mathsf{Falls} \begin{cases} \rho < 1 \Rightarrow \sum_{n=0}^{\infty} a_n \text{ konvergiert absolut} \\ \rho > 1 \Rightarrow \sum_{n=0}^{\infty} a_n \text{ divergiert} \\ \rho = 1 \Rightarrow \sum_{n=0}^{\infty} a_n \text{ keine Aussage möglich} \end{cases}$$

Jede absolute konvergente Reihe $(\sum_{n=0}^{\infty}|a_n|)$ ist konvergent $(\sum_{n=0}^{\infty}a_n)$

8 Potenzreihen

$$f(x) = \sum_{n=0}^{\infty} a_n \cdot (x - c)^n$$

8.1 Konvergenzradiu

$$\begin{split} R &= \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \frac{1}{\lim_{n \to \infty} \sqrt[n]{|a_n|}} \\ R &= \liminf_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \frac{1}{\lim_{n \to \infty} \sqrt[n]{|a_n|}} \\ & \left\{ \text{konvergiert absolut} \quad |x - c| < \right. \end{split}$$

$$f(x) \begin{cases} \text{konvergiert absolut} & |x-c| < 1 \\ \text{divergiert} & |x-c| > 1 \\ \text{keine Aussage möglich} & |x-c| = 1 \end{cases}$$

Bei reellen Reihen gilt:

- $\Rightarrow x$ konvergiert im offenen Intervall I = (c R, c + R)
- \Rightarrow Bei x = c R und x = c + R muss die Konvergenz zusätzlich überprüft werden.

Substitution bei
$$f(x) = \sum_{n=0}^{\infty} a_n \cdot x^{\lambda n}$$
 $w = x^{\lambda} \to x = w^{\frac{1}{\lambda}} \to R = (R_w)^{\frac{1}{\lambda}}$

8.2 Wichtige Potenzreihe

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} = \lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^{n}$$

$$e^{z} = \sum_{n=0}^{\infty} \frac{z^{n}}{n!}$$

$$\sin(z) = \sum_{n=0}^{\infty} (-1)^{n} \frac{z^{2n+1}}{(2n+1)!} = \frac{e^{iz} - e^{-iz}}{2i}$$

$$\cos(z) = \sum_{n=0}^{\infty} (-1)^{n} \frac{z^{2n}}{(2n)!} = \frac{e^{iz} + e^{-iz}}{2}$$

9 Ableitung und Integra

f diffbar, falls f stetig und $\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = f'(x_0)$ exist.

9.1 Ableitungsregeln:

Linearität:
$$(\lambda f + \mu g)'(x) = \lambda f'(x) + \mu g'(x) \quad \forall \lambda, \mu \in \mathbb{R}$$
 Produktregel: $(f \cdot g)' = f'g + fg'$ Quotientenregel $\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$ Kettenregel: $(f(g(x)))' = f'(g(x))g'(x)$ Potenzreihe: $f:] -R + a, a + R[\rightarrow \mathbb{R}, f(x) = \sum_{n=0}^{\infty} a_n(x-a)^n$ $\subseteq D$ $\Rightarrow f'(x) = \sum_{n=0}^{\infty} na_n(x-a)^{n-1}$ Tangentengleichung: $y = f(x_0) + f'(x_0)(x-x_0)$

9.2 Newton-Verfahren:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$
 mit Startwert x_0

9.3 Integrationsmethoden:

- Anstarren + Göttliche Eingebung
- Partielle Integration: $\int uv' = uv \int u'v$
- Substitution: $\int f(\underline{g(x)}) \underbrace{g'(x) \, \mathrm{d}x}_{\mathrm{d}t} = \int f(t) \, \mathrm{d}t$
- Logarithmische Integration: $\int \frac{g'(x)}{g(x)} dx = \ln |g(x)|$
- Integration von Potenzreihen: $f(x) = \sum_{k=0}^{\infty} a_k (x-a)^k$ Stammfunktion: $F(x) = \sum_{k=0}^{\infty} \frac{a_k}{k+1} (x-a)^{k+1}$
- Brechstange: $t = \tan(\frac{x}{2})$ $dx = \frac{2}{1+t^2}dt$ $\sin(x) \rightarrow \frac{2t}{1+t^2}$ $\cos(x) \rightarrow \frac{1-t^2}{1+t^2}$

9.4 Integrationsregeln

$$\int_a^b f(x) dx = F(b) - F(a)$$
$$\int_a^b \lambda f(x) + \mu g(x) dx = \lambda \int_a^b f(x) dx + \mu \int_a^b g(x) dx$$

F(x)	f(x)	f'(x)
$\frac{1}{q+1}x^{q+1}$	x^q	qx^{q-1}
$\frac{2\sqrt{ax^3}}{3}$	\sqrt{ax}	$\frac{a}{2\sqrt{ax}}$
$x \ln(ax) - x$	$\ln(ax)$	$\frac{1}{x}$
e^x	e^x	e^x
$\frac{a^x}{\ln(a)}$	a^x	$a^x \ln(a)$
$-\cos(x)$	$\sin(x)$	$\cos(x)$
$\sin(x)$	$\cos(x)$	$-\sin(x)$
$-\ln \cos(x) $	tan(x)	$\frac{1}{\cos^2(x)}$
$\ln \sin(x) $	$\cot(x)$	$\frac{-1}{\sin^2(x)}$
$x \arcsin(x) + \sqrt{1 - x^2}$	$\arcsin(x)$	$\frac{1}{\sqrt{1-x^2}}$
$x \arccos(x) - \sqrt{1-x^2}$	$\arccos(x)$	$-\frac{1}{\sqrt{1-x^2}}$
$x \arctan(x) - \frac{1}{2} \ln \left 1 + x^2 \right $	$\arctan(x)$	$\frac{1}{1+x^2}$
$x \operatorname{arccot}(x) + \frac{1}{2} \ln \left 1 + x^2 \right $	$\operatorname{arccot}(x)$	$-\frac{1}{1+x^2}$
$x\sinh^{-1}(x) - \sqrt{x^2 + 1}$	$ sinh^{-1}(x) $	$\frac{1}{\sqrt{x^2+1}}$
$x\cosh^{-1}(x) - \sqrt{x^2 - 1}$	$ \cosh^{-1}(x) $	$\frac{1}{\sqrt{x^2-1}}$
$\frac{1}{2}\ln(1-x^2) + x\tanh^{-1}(x)$	$\tanh^{-1}(x)$	$\frac{1}{1-x^2}$
$\sinh(x)$	$\cosh(x)$	sinh(x)
$\cosh(x)$	$\sinh(x)$	$\cosh(x)$

9.5 Rotationskörper

Volumen: $V = \pi \int_a^b f(x)^2 dx$ Oberfläche: $O = 2\pi \int_a^b f(x) \sqrt{1 + f'(x)^2} dx$

9.6 Uneigentliche Integrale

$$\int\limits_{\mathrm{ok}}^{\mathrm{b\"{o}se}} f(x)\mathrm{d}x = \lim\limits_{b \to \mathrm{b\"{o}se}} \int\limits_{\mathrm{ok}}^{b} f(x)\mathrm{d}x$$

Majoranten-Kriterium: $|f(x)| \leq g(x) = \frac{1}{x^{\alpha}}$

$$\int\limits_{1}^{\infty} \frac{1}{x^{\alpha}} \mathrm{d}x \begin{cases} \frac{1}{\alpha-1}, & \alpha > 1 \\ \infty, & \alpha \leq 1 \end{cases} \qquad \int\limits_{0}^{1} \frac{1}{x^{\alpha}} \mathrm{d}x \begin{cases} \frac{1}{\alpha-1}, & \alpha < 1 \\ \infty, & \alpha \geq 1 \end{cases}$$

$$\begin{aligned} \mathsf{CHW} & \int\limits_{-\infty}^{\infty} f(x) \mathrm{d}x = \lim\limits_{b \to \infty} \int\limits_{-b}^{b} f(x) \mathrm{d}x \\ \mathsf{CHW} & \int\limits_{a}^{b} f(x) \mathrm{d}x = \lim\limits_{\varepsilon \to 0+} \left(\int\limits_{a}^{c-\varepsilon} f(x) \mathrm{d}x + \int\limits_{c+\varepsilon}^{b} f(x) \mathrm{d}x \right) \end{aligned}$$

9.7 Laplace-Transformation von $f:[0,\infty[ightarrow\mathbb{R},\ s\mapsto f(s)]$

$$\mathcal{L} f(s) = F(s) = \int_{0}^{\infty} e^{-st} f(t) dt = \lim_{b \to \infty} \int_{0}^{b} e^{-st} f(t) dt$$

9.8 Integration rationale Funktionen

Gegeben:
$$\int \frac{A(x)}{Q(x)} dx$$
 $A(x), Q(x) \in \mathbb{R}[x]$

1. Falls,
$$\deg A(x) \geq \deg Q(x) \Rightarrow$$
 Polynomdivision:
$$\frac{A(x)}{Q(x)} = P(x) + \frac{B(x)}{Q(x)} \text{ mit } \deg B(x) < \deg Q(x)$$

- 2. Zerlege Q(x) in unzerlegbare Polynome
- 3. Partialbruchzerlegung $\frac{B(x)}{O(x)} = \frac{\dots}{(x-a_n)} + \dots + \frac{\dots}{(x-a_n)}$
- 4. Integriere die Summanden mit folgenden Funktione

$$\int \frac{1}{(\lambda)^m} dx \begin{cases}
\frac{2}{\sqrt{\beta}} \arctan \frac{2x+p}{\sqrt{\beta}}, & m=1 \\
\frac{2x+p}{(m-1)(\beta)(\lambda)^{m-1}} + \frac{2(2m-3)}{(m-1)(\beta)} \int \frac{dx}{(\lambda)^{m-1}}, & m \ge 2
\end{cases}$$

$$\begin{cases}
\frac{B}{2} \ln(\lambda) + (C - \frac{Bp}{2}) \int \frac{dx}{\lambda}, & m = 1
\end{cases}$$

$$\int \frac{Bx+C}{(\lambda)^m} dx \begin{cases} \frac{B}{2} \ln(\lambda) + (C - \frac{Bp}{2}) \int \frac{dx}{\lambda}, & m = 1 \\ \frac{-B}{2(m-1)(\lambda)^{m-1}} + (C - \frac{Bp}{2}) \int \frac{dx}{(\lambda)^{m-1}}, & m \ge 2 \end{cases}$$

Häufige Integrale nach Partialbruchzerlegung

$$\int \frac{1}{x} dx = \ln|x| \qquad \int \frac{1}{x^2} dx = -\frac{1}{x}$$

$$\int \frac{1}{a+x} dx = \ln|a+x| \qquad \int \frac{1}{(a+x)^2} dx = -\frac{1}{a+x}$$

$$\int \frac{1}{a-x} dx = -\ln|a-x| \qquad \int \frac{1}{(a-x)^2} dx = \frac{1}{a-x}$$

9.9 Paratialbruchzerlegung

$$\frac{B(x)}{Q(x)} = \frac{\dots}{(x - x_0)} + \dots + \frac{\dots}{\dots}$$

Ansatz

- n-fache reelle Nullstelle x_0 : $\frac{A}{x-x_0}+\frac{B}{(x-x_0)^2}+\dots$
- *n*-fache komplexe Nullstelle: $\frac{Ax+B}{x^2+nx+a} + \frac{Ax+B}{(x^2+nx+a)^2}$

Berechnung von A, B, C, \ldots

- Nullstellen in x einsetzen (Terme fallen weg)
- · Ausmultiplizieren und Koeffizientenvergleich

10 Taylor-Entwicklung

Man approximiert eine m-mal diffbare Funktion $f:I=[a,b]
ightarrow\mathbb{R}$ in $x_0 \in I$ mit dem m-ten Taylorpolynom:

$$T_m(x_0; x) = \sum_{i=0}^m \frac{f^{(i)}(x_0)}{i!} (x - x_0)^i$$

Taylor-Entw. von Polynomen/Potenzreihen sind die Funktionen selbst Für $m \to \infty$: Taylorreihe.

Konvergenzradius:
$$R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \lim_{n \to \infty} \frac{1}{\sqrt[n]{|a_n|}}$$

10.1 Das Restglied - die Taylorformel

Für (m+1)-mal stetig diffbare Funktionen gilt $\forall x \in I$: $R_{m+1}(x) := f(x) - T_{m,f,x_0}(x) =$ $=\frac{1}{m!}\int_{x_0}^x (x-t)^m f^{(m+1)}(t) \mathrm{d}t$ (Integraldarst.) $= \frac{f^{(m+1)}(\xi)}{(m+1)!} (x-x_0)^{m+1} \quad \xi \in [x,x_0] \text{ (Lagrange)}$ Fehlerabschätzung: Wähle ξ und x so, dass $R_{m+1}(x)$ maximal wird.

11 Landau-Notation

$$\begin{array}{l} \bullet \ \, f(x) = o(g(x)) \ \, \mathrm{für} \ \, x \to a \Leftrightarrow \lim_{x \to a} \frac{f(x)}{g(x)} = 0 \\ \bullet \ \, f(x) = \ \, O(g(x)) \ \, \mathrm{für} \ \, x \to a \Leftrightarrow |f(x)| \le \ \, C|g(x)| \ \, \mathrm{für} \\ x \in (a - \epsilon, a + \epsilon) \ \, \mathrm{u.} \ \, C > 0 \\ \mathrm{oder} \ \, 0 \le \lim_{x \to a} \sup_{x \to a} \left| \frac{f(x)}{g(x)} \right| < \infty \end{array}$$

Bei Taylor-Entwicklung:

 •
$$R_{m+1,f,x_0}(h) = f(x_0+h) - T_{m,f,x_0}(h) = o(h^m)$$
 f muss m-mal differenzierbar sein

•
$$R_{m+1,f,x_0}(h) = f(x_0+h) - T_{m,f,x_0}(h) = O(h^{m+1})$$
 f muss $(m+1)$ -mal differenzierbar sein

11.1 Rechenregeln

•
$$f = O(f)$$

•
$$f = o(g) \Rightarrow f = O(g)$$

•
$$f_1 = o(g)$$
 u. $f_2 = o(g)$ \Rightarrow $f_1 + f_2 = o(g)$

•
$$f_1 = O(g)$$
 u. $f_2 = O(g)$ \Rightarrow $f_1 + f_2 = O(g)$

•
$$f_1 = O(g)$$
 u. $f_2 = O(g)$ \Rightarrow $f_1 \cdot f_2 = O(g_1 \cdot g_2)$

$$\bullet \ \ f_1 = O(g) \ \mathsf{u.} \ f_2 = o(g) \quad \Rightarrow \quad f_1 \cdot f_2 = o(g_1 \cdot g_2)$$

11.2 Elementarfunktionen

• Exponentialfunktion

$$e^x = \sum_{k=0}^{m} \frac{x^k}{k!} + O(x^{m+1})$$

$$e^{x} = \sum_{k=0}^{m} \frac{x^{k}}{k!} + O(x^{m+1})$$
• Trigonometrische Funktionen
$$\sin x = \sum_{k=0}^{m} (-1)^{k} \frac{x^{2k+1}}{(2k+1)!} + O(x^{2m+3})$$

$$\cos x = \sum_{k=0}^{m} (-1)^{k} \frac{x^{2k}}{(2k)!} + O(x^{2m+2})$$

$$\ln(1+x) = \sum_{k=1}^{m} \frac{(-1)^{k+1}}{k} x^k + O(x^{m+1})$$

12 Kurven

Eine Kurve ist ein eindimensionales Obiekt.

$$ec{\gamma}:[a,b] o\mathbb{R}^n,t\mapstoegin{pmatrix}\gamma_1(t)\ dots\ \gamma_n(t)\end{pmatrix}$$
 (Funktionenvektor)

- C⁰-Kurve: Positionsstetigkeit (geschlossene Kurve)
- C¹-Kurve: Tangentialstetigkeit (stetig diffbar)
- C²-Kurve: Krümmungsstetigkeit (2 mal stetig diffbar)
- regulär, falls $\forall t \in [a, b] : \dot{\gamma}(t) \neq \vec{0}$ (Keine Knicke)

Besondere Punkte von Kurven:

- Singulär, falls $\dot{\gamma}(t) = \vec{0}$ (Knick)
- Doppelpunkt, falls $\exists t_1, t_2: t_1 \neq t_2 \land \gamma(t_1) = \gamma(t_2)$ Horizontaler Tangentenpunkt, falls $\dot{\gamma}_1(t) \neq 0 \land \dot{\gamma}_2(t) = 0$
- Vertikaler Tangentenpunkt, falls $\dot{\gamma}_1(t) = 0 \land \dot{\gamma}_2(t) \neq 0$

Bogenlänge einer Kurve: $L(\gamma) = \int_a^b \|\dot{\gamma}(t)\| dt$

Umparametrisierung γ nach Bogenlänge $(\tilde{\gamma})$:

- ullet Bogenlängenfunktion: $s(t) = \int\limits_{-\infty}^{t} \|\dot{\gamma}(au)\| \,\mathrm{d} au$
- $s: [a,b] \to [0,L(\gamma)], t \mapsto \overset{a}{s(t)}$ • $\tilde{\gamma}(t) = \gamma(s^{-1}(t))$ $\|\dot{\tilde{\gamma}}(t)\| = 1 \forall t$

Tangenteneineitsvektor an $\gamma(t): T(t) = \frac{\dot{\gamma}(t)}{\|\dot{\gamma}(t)\|}$

Krümmung von γ : $\kappa(t) = \left\| \frac{\mathrm{d}^2 \gamma}{\mathrm{d} s^2} \right\| = \frac{\left\| \dot{T}(t) \right\|}{s'(t)}$

Vereinfachung im \mathbb{R}^2 $\gamma:[a,b] o \mathbb{R}^2, t \mapsto ig(x(t),y(t)ig)$

$$L(\gamma) = \int_a^b \sqrt{\dot{x}^2 + \dot{y}^2} \, dt \qquad \qquad \tilde{\kappa}(t) = \frac{\dot{x}\ddot{y} - \ddot{x}\dot{y}}{(\dot{x}^2 + \dot{y}^2)^{\frac{3}{2}}}$$

Wenn γ nach der Bogenlänge umparametrisiert, gilt

$$\tilde{\kappa}(t) = \dot{x}\ddot{y} - \ddot{x}\dot{y}$$

13 Skalarfelder

Ein Skalarfeld ordnet jedem Vektor eines Vektorraums einen Wert zu. $f:D\subseteq\mathbb{R}^n\to \mathbb{R}, (x_1,\ldots,x_n)\mapsto f(x_1,\ldots,x_n)$ Teilmengen $von \mathbb{R}^n : D = [a_1, b_1] \times ... \times [a_n, b_n]$ Offene Kugelmenge vom Radius r: $B_r(x_0)$ Topologische Begriffe für $D \subseteq \mathbb{R}^n$

- Das Komplement D^C von D: $D^C := \mathbb{R}^n \setminus D$
- innerer Punkt $x_0 \in \mathbb{R}^n$ des Inneren $\overset{\circ}{D}$ von D, falls $\exists \varepsilon > 0 : B_{\varepsilon}(x_0) = \big\{ x \in \mathbb{R}^n \mid \|x x_0\| < \varepsilon \big\}$
- Die Menge D heißt offen, falls D = D
- Randpunkt $x_0 \in \mathbb{R}^n$ des Rands ∂D von D, falls $\forall \varepsilon > 0$: $B_{\varepsilon}(x_0) \cap D \neq \emptyset \wedge B_{\varepsilon}(x_0) \cap D^C \neq \emptyset \Rightarrow \partial D = \partial D^C$
- Abschluß \overline{D} von D: $\overline{D} = D \cup \partial D$
- $\bullet \;$ Die Menge D ist abgeschlossen, falls $\partial D \subseteq D$
- beschränkt, falls $\exists \mu \in \mathbb{R} \forall x \in D : ||x|| < \mu$
- kompakt, falls D abgeschlossen und beschränkt ist.

Es gilt: Ist $D \subseteq \mathbb{R}^n$ offen, so ist D^C abgeschlossen \mathbb{R} und \emptyset sind offen und abgeschlossen.

Revision History

- v1.0 (06.02.2015): Erstellung
- v1.1 (23.07.2017): Diverse Fehler korrigiert (u.a. 145, 144, 143, 138, 152)
- v1.2 (12.01.2018): Kleine Korrektur 9.8 Integration rationale Funktionen, Häufige Integrale nach Partialbruchzerlegung