

딥러닝 및 인공지능기술의 현황과 미래

2020.02.17(월) 컴퓨터공학과 손남례

- 인공지능의 개념
- 인공지능의 역사
- 인공지능의 학습방법
- 딥러닝의 등장배경
- 딥러닝의 개념
- 딥러닝의 성공 원인과 장단점
- 딥러닝의 적용분야
- 딥러닝의 알고리즘 종류
 - > CNN, RNN, AutoEncoders, GAN, MLP
- 딥러닝 알고리즘: CNN
- 딥러닝 알고리즘 적용 사례
- 인공지능기술의 현황과 미래

1. 인공지능의 개념

Pre In Post

- 정의(IT) 및 목표
 - 인간이 가지고 있는 지능을 갖춘 컴퓨터 시스템
 - ▶ '사람처럼 생각하고 행동하는 기계/컴퓨터'를 만드는 것
- ▶ 진화 단계에 따른 인공지능 분류
 - 약한 인공지능(Weak Al, narrow Al)
 - ✓ 특정 문제를 해결하는 지능적 행동, 사람의 지능적 행동을 흉내 낼 수 있는 수준
 - ➤ 강한 인공지능(Strong Al)
 - ✓ 사람과 같은 지능, 사람처럼 마음을 가지고 느끼면서 지능적으로 행동하는 기계
 - ➤ 초 인공지능(Super Al)
 - ✓ 인간보다 1000배 이상 뛰어난 지능, 인간의 원초적 욕구(효율, 자기 보전, 자원 획득, 창의성 등)를 기반으로 끊임없이 자가 발전하는 기계

구현

- > Top-Down
 - ✓ 지식과 규칙에서 시작해서 다양한 응용을 추구
 - ✓ 예) 머신러닝(machine learning)
- Bottom-up
 - ✓ 실 세계의 데이터에서 시작해서 특정 응용문제를 해결하고 나아가 지식과 규칙의 발견까지도 기대
 - ✓ 예) 딥러닝(deep learning)

■ 인공지능 vs 머신러닝 vs 딥러닝 관계

3. 인공지능의 학습방법

4. 딥러닝의 개념

■정의

- ▶ 머신러닝의 한 유형
- ▶ 신경망 구조를 사용하여 구현
- ➤ 딥(deep): 네트워크의 계층 수

 ✓ 계층이 많을수록 네트워크가 깊어짐
- ▶ 딥러닝으로 학습하는 모델이 이미지, 텍스트, 사운드 등으로부터 스스로 분류/인식/예측 등 학습

4. 딥러닝의 등장배경(1/5)

Pre In Post

- ■딥러닝이 선도한 3차 인공지능 붐의 형성 이유
 - ▶ 사람처럼 주변환경을 인식하고 이해할 수 있는 기계/시스템
 - ▶ 이러한 환경에서 적절한 행동을 취할 수 있어야 함
 - ▶ 음성 및 시각 능력, 언어이해능력, 행동계획 및 주변 사물의 행동 예측 능력 필요
- ■머신러닝 vs. 딥러닝(예. 자율주행자동차)

■시각 지능

- ➤ ILSVRC(Imagenet Large Scale Visual Recognition Challenge)
 - ✓ ImageNet의 사진 데이터에서 물체 인식 성능을 겨루는 세계적인 영상 인식 국제대회
 - ÎmageNet: 시각 지능을 위한 사진 데이터 베이스, 2009년 구축
 - ✓ 1993년부터 2011년까지 매 2년마다 오류율이 반으로 줄어듬
 - ✓ 2012년, CNN이라는 딥러닝 기법을 사용한 캐나다 몬트리올대학 <u>제프리 힌트교수</u> ILSVRC대회 역대 우승 알고리즘과 영상인식에러율

✓ 딥러닝이 등장하면서 오류율 감소의 가속화와 함께, 다양한 상황에서 얼굴인식과 인물 인식, 동일얼굴탐색 등의 다각화된 기술 발전

■음성 지능

- ▶ 미국 표준기술원(NIST)의 자동 음성 인식 평가
 - ✓ Switchboard
 - ✓ 사람의 말을 알아듣는 음성인식 척도로 측정하는데 사용하는 표준적인 음성 데이타
 - ✓ 1990년대 초 데이터가 공개된 후 1990년대 말까지 오류율은 빠르게 줄어듬
 - ✓ 하지만 1990년대 이후 10년 동안 오류율이 23%이상 더 이상 내려가지 않음
 - ✓ MS사가 제프리 힌트교수 초빙, 2010년 15% -> 2011년 7% -> 2016년 5%

NIST Evaluations of Automatic Speech Recognition

■언어 지능

 인류의 경험과 지식을 직접적으로 표현하는 단계의 정보라는 점에서 언어 지능의 영향력은 매우 광범위

■행동 지능

머신러닝

- SVM
- 강화학습
- 인공지신경망
- 결정트리
- 패턴기반 등

■하드웨어 성능개선

- ▶ 병렬 시스템: 고성능 GPU
- ▶ 분산 시스템: 클라우드컴퓨팅,Hadoop

■빅데이터

- ➤ SNS사용자들이 생산하는 대량의 데이터
 - ✓ ImageNet 및 PASCAL VoC 등 무료데이터

■알고리즘 개선

- Pre-training
 - ✓ 과적응 방지
- Drop-out
 - ✓ 불필요한 노드 제거
- > Rectified unit function

■장점

- ▶ 컴퓨터 비젼 및 자동음성인식분야 최고수준
- ▶ 비정형데이터를 사용한 최상의 결과
- ▶ 데이터 레이블링 불필요

국내외적으로 물륭한 연구성과 및 결과 도출

교수/학생이 적극적으로 참여

■단점

- ▶ 학습실시간성 문제
- ▶ 빈약한 이론적 뒷받침
- ▶ 인간관계표현능력부족✓ 불필요한 노드 제거
- ▶ 신뢰도 부족

■음성

▶ 음성인식, 음성검색, 감정분석, 엔진이상탐지, 사기탐지 등

■시계열데이터

➤ 로그분석/위험탐지, 센서기반 예측분석 IoT, 스마트가전, 경제분석 등

■텍스트

▶ 감정분석, 검색/주제탐지, 위험탐지, 사기탐지 등

■이미지

▶ 얼굴인식, 이미지 검색, 머신비전, 사진 군집화, 영상분류 등

■비디오

▶ 행동인식, 실시간 위험탐지 등

객체 검출

ffordshire bullterrier

영상 분류

- RNN(Recurrent Neural Network)
 - ▶ 시간에 따라 변하거나 순서가 중요한 데이터 를 학습(시계열 분석)

- LSTM(Long Short-term Memory)
 - ➤ RNN문제점 극복

8. 딥러닝의 알고리즘 종류(3/3)

Pre In Post

CNN(Convolution Neural Network)

▶단순세포와 복합세포의 배열로 이루어진 시각 피질의 생물학적 구조에서 영감을 받음 ▶컨벌루션계층, 최댓값/평균값 폴링, 완전연결계층(FC)과 같은 여러 개의 계층으로 구성

Post

- 2019학년도 캡스톤디자인 교과목
 - ▶과제명: 딥러닝을 이용하여 요리의 칼로리를 알려주는 프로그램
 - ▶학년: 3학년
 - ▶개발 배경 및 목적
 - ✓ 딥러닝 알고리즘인 CNN을 이용하여 요리사진을 판별, 요리의 칼로리를 알려줌

프로그램 설명 및 시연

시상식(우수상)

- 에너지기술평가원과제: 수용가 ESS의 기능 복합화 응용기술개발 및 실증
 - ▶ 태양광발전량과 기상데이터의 상관관계를 이용하여 태양광발전량예측
 - ✓ 다변수 모델(Multivariate Models) -> LSTM
 - SP(Solar Power), SR(Solar Radiation), Sunlight, Humidity, Temperature, CC(Cloud Cover), WP(Wind Power)

Fig. 1. Scatter Plots of Solar Power vs. (a) Solar Radiation, (b) Sunlight, (c) Humidity, (d) Temperature, (e) Cloud Cover, and (f) Wind Speed

Table 3. Multivariate Models

No &	Factors ₽	No 0	Factors ₽
1+	SP↓	12₽	SP, SR, WP
2 ↔	SP, SR ₽	13₽	SP, SR, Sunlight, Humidity ₽
3 ↓	SP, Sunlight ₽	14₽	SP, SR, Sunlight, Temperature
4 ₽	SP, Humidity 4	15₽	SP, SR, Sunlight, CC 4
5 ↓	SP, Temperature 4	16₽	SP, SR, Sunlight, WP
64	SP, CC ₽	17₽	SP, SR, Sunlight, Humidity, Temperature
7 ↔	SP, WP ↔	18₊	SP, SR, Sunlight, Humidity, CC
8 ↔	SP, SR, Sunlight ₽	19₽	SP, SR, Sunlight, Humidity, WP
9↓	SP, SR, Humidity	20₽	SP, SR, Sunlight, Humidity, Temperature, CC
10 ↔	SP, SR, Temperature	21 ₽	SP, SR, Sunlight, Humidity, Temperature, WP
11 0	SP, SR, CC &	22₽	SP, SR, Sunlight, Humidity, Temperature, CC, WP

Fig. 6. Meteorological Factors Affecting Solar Power Determined by the Models

- 3차 중흥기를 맞이한 인공지능(현재)
 - 다양한 단말과 서비스를 통해 우리의 생활 속으로 파고 들 전망, 그로 인한 급속한 시장 성장을 예상

- SW뿐만 아니라, 더욱 저렴한 가격의 센서와 장치들이 등장(미래)
 - 가상현실, 촉각 장치, 반려 로봇 등과 결합하여 현재보다 더 대화 기반이고 인간같은 상호작용이 이루어질 것이며 인지능력과 감성, 교감 등의 정서와 같은 로봇
 - ▶ 문제점: 단순한 과학기술적, 경제산업적 파급효과를 넘어서 인문학적, 윤리적, 사회적, 법적인 이 슈들을 포함하는 다각도의 논의 필요

■요약

- 인공지능 개념, 역사, 학습방법
- ▶ 딥러닝의 개념, 성공 원인과 장단점, 적용분야
- ▶ 알고리즘 종류
 - ✓ CNN
 - ✓ RNN
 - ✓ AutoEncoders
 - ✓ GAN
 - ✓ MLP
- ▶ 딥러닝 알고리즘 적용사례

■딥러닝의 적용분야별 알고리즘을 설명하고 실습

- Python
 - ✓ 플랫폼에 독립적이며 인터프리터식, 객체지향적, 동적타이핑 대화형 언어
- > Tensorflow
 - ✓ 구글에서 발표한 기계학습 오픈소스 라이브러리

Pre In Post

감사합니다. (Thank You)

