Приемането на хипотезата означава, че с вероятност 1- α между няма корелационна зависимост, а отхвърлянето — че има корелационна зависимост.

Същият тест се прилага и при проверка на хипотезата за значимост на ранговия коефициент на корелация, т.е. за отхвърляне или приемане на рангова корелационна зависимост.

Пример. 35.1. В конни състезания състезателните коне, които са номерирани съгласно ръста си, са заели следните места: 6, 5, 1, 4, 2, 7, 8, 10, 3, 9. С ниво на значимост α =0,05 да се провери хипотезата, че няма рангова корелационна зависимост между ръста и мястото, което състезателният кон е заел ($H_0 = \{r_s = 0\}$).

Решение. Означаваме с x_i номерата на конете съгласно ръста им, а с y_i - местата им в класирането. Очевидно, x_i са ранговете на теглата на конете, а y_i - ранговете на времената им за изминаване на разстоянието.

Пресмятаме ранговия коефициент:

$$r_s = 1 - \frac{6}{n(n^2 - 1)} \sum_{i=1}^{n} (x_i - y_i)^2 = 1 - \frac{6}{990} [5^2 + 3^2 + 2^2 + 3^2 + 1^2 + 1^2 + 2^2 + 6^2 + 1^2] = 0,4545$$

Изчисляваме наблюдаваната стойност:

$$t_{\text{HaGn.}} = \frac{r_s \sqrt{n-2}}{\sqrt{1-r_s^2}} = \frac{0.45.\sqrt{8}}{\sqrt{1-0.45^2}} = \frac{1.273}{0.893} = 1.42.$$

От таблицата за t-разпределението изчисляваме

$$t_{\text{KP.}} = t_{1-\frac{\alpha}{2}}(10-2) = t_{0,975}(8) = 2,31$$
.

Тъй като $|t_{\mathsf{Ha6n.}}| < t_{\mathsf{Kp.}}$, то нямаме основание да отхвърлим хипотезата H_0 , т.е. няма рангова корелационна зависимост между ръста и мястото на класиране.

Упражнения.

- 1. За изследването на променливите X и Y е получена извадката $\frac{x_i}{y_i} \begin{vmatrix} -1 & 2 & 2 & 3 & 6 \\ 0 & -1 & 2 & 4 & 8 \end{vmatrix}$. Да се представят графически резултатите, да се намери точкова и интервална оценка с доверителна вероятност 0,99 на коефициента на корелация.
- 2. Направени са следните наблюдения $\frac{X}{Y} \begin{vmatrix} 2 & 4 & 7 & 6 & 8 \\ 2 & 12 & 16 & 18 & 21 \end{vmatrix}$ на променливите X и Y, за които се предполага, че са нормално разпределени случайни

величини. Да се провери хипотезата за корелираност на величините .

36. Елементи на регресионния анализ. Метод на най-малките квадрати за намиране на линията на регресия.

Регресионният анализ се прилага при изучаване на зависимости между две непрекъснати величини X и Y, близки до функционалните, т.е. когато едната величина (Y) се влияе от стойността, която е приела другата величина. Величината X може и да не бъде случайна. За величината Y предполагаме, че има случаен характер, обусловен от грешки на измерването или от други неизвестни причини.

Много често зависимостта на Y, се изразява в това, че средната й стойност зависи от стойността x, която е приела величината X, т.е.

$$E(Y|X=x)=E(Y|x)=f(x)$$
,

където f(x) е функция, дефинирана за всяка възможна стойност x на величината X. В такъв случай казваме, че Y зависи регресионно от X, а функцията f(x) се нарича регресия на Y от X. (виж §18). Тогава може да представим Y във вида

$$Y = f(X) + E, (36.1)$$

където E случайна величина, отразяваща отклонението на Y от средната й стойност.

Случаи на регресионна зависимост са:

- средната стойност на кръвното налягане от възрастта на индивида.
- количеството продадена минерална вода от температурата,
- средния добив от декар от количеството на валежите.

Основни задачи на регресионния анализ:

- Определяне на вида на зависимостта между променливите.
- Намиране на функцията на регресия.
- Определяне на доверителни интервали и проверка на надеждността на регресионния модел.
- Прилагане на регресионния модел за предвиждане на изменението на Y.

Уравнение на линейната регресия. Да предположим, че регресионната зависимост на Y от X е линейна, т.е. $f(x) = \alpha_1 x + \alpha_0$.

Нека е получена извадката $(x_i, y_i), (i=1,...,n)$. Тогава математическото очакване на Y при $X=x_i$ е $E(Y|x_i)=\alpha_1x_i+\alpha_0$, а

$$\varepsilon_i = y_i - (\alpha_1 x_i + \alpha_0) \tag{36.2}$$

е отколонението на наблюдаваната стойност y_i от него (фиг.36.1), което съгласно предположението се дължи на случайни фактори. Като приемаме, че е малко вероятно ε_i да бъде голямо, търсим такава линейна функция $y=a_1x+a_0$, която най-добре да апроксимира данните,

т.е. да минимизира разликите (36.2). Коефициентите a_1 и a_0 ще бъдат оценки на коефициентите a_1 и a_0 на линейната регресия.

Фиг. 36.1.

Намирането на линейната функция $y = a_1 x + a_0$ ще извършим по метода на най-малките квадрати, който се състои в следното:

За произволни a_1 и a_0 образуваме сумата от квадратите на разстоянията (36.2) между точката (x_i,y_i) и точката $(x_i,a_1x_i+a_0)$ от правата:

$$S(a_1,a_0) = \sum_{i=1}^{n} (a_1 x_i + a_0 - y_i)^2$$
.

Коефициентите a_1 и a_0 определяме като стойностите, при които $S(a_1,a_0)$ има минимум, условието за което е частните производни на функцията $S(a_1,a_0)$ спрямо променливите a_1 и a_0 да се анулират, т.е.

$$\begin{vmatrix} \frac{\partial S}{\partial a_1} = 2\sum_{i=1}^n (a_1 x_i + a_0 - y_i).(x_i) = 0 \\ \frac{\partial S}{\partial a_0} = 2\sum_{i=1}^n (a_1 x_i + a_0 - y_i) = 0 \end{vmatrix} \Leftrightarrow \begin{vmatrix} a_1 \sum_{i=1}^n x_i^2 + a_0 \sum_{i=1}^n x_i = \sum_{i=1}^n x_i y_i \\ a_1 \sum_{i=1}^n x_i + na_0 = \sum_{i=1}^n x_i \end{vmatrix}$$

Като разделим всяко от уравненията на n, получаваме $\begin{vmatrix} a_1\overline{x^2}+a_0\overline{x}=\overline{xy}\\a_1\overline{x}+a_0=\overline{y} \end{vmatrix}$.

От второто уравнение изразяваме $a_0 = \overline{y} - a_1 \overline{x}$, а от първото намираме

$$a_1 = \frac{xy - \overline{x} \cdot \overline{y}}{\overline{x^2} - (\overline{x})^2}$$
.

Следователно,

уравнението на линейната регресия на Y om X e

$$y = a_1 x + a_0$$
, където $a_1 = \frac{s_{xy}}{s_x^2}$, $a_0 = \overline{y} - a_1 \overline{x}$. (36.3)

Уравнението на линейната регресия се преобразува по следния начин:

$$y - \overline{y} = \frac{s_{xy}}{s_x^2} (x - \overline{x}) \Leftrightarrow \frac{y - \overline{y}}{s_y} = r_{xy} \frac{x - \overline{x}}{s_x}, \qquad r_{xy} = \frac{s_{xy}}{s_x s_y}$$

където r_{xy} е коефициентът на извадъчната корелация. От тук следва, че

регресионната права минава през центъра $(\overline{x},\overline{y})$ на извадката, а $a_1 = \frac{s_{xy}}{s_x^2} = \operatorname{tg} \varphi$ е ъгловият й коефициент (характеризира наклона на правата).

По същия начин се получава и уравнението на <u>линейната регресия на X от Y, като тук получаваме уравнението във вида</u>

$$x = b_1 y + b_0$$
, $b_1 = \frac{s_{xy}}{s_y^2}$, $b_0 = \overline{x} - b_1 \overline{y}$,

и то може да бъде записано и във вида $\frac{x-\overline{x}}{s_x} = r_{xy} \frac{y-\overline{y}}{s_y}$.

Методът на най-малките квадрати се използва за намиране на линията на регресия и в общия случай, когато се търси друг вид зависимост между X и Y. Видът на зависимостта y = f(x) предварително се определя, например,

$$f(x)\!=\!a_0\!+\!a_1x\!+\!a_2x^2\;,\;\;f(x)\!=\!\ln(a_0\!+\!a_1x)\;,\;\;f(x)\!=\!a_0\!+\!a_1e^x\;,$$
 т.е. $f(x)\!=\!f(x,a_0,a_1,\ldots,a_s)\;,\;\;$ където неизвестните коефициенти се определят като стойностите a_0 , a_1 ,..., a_s , за които функцията

$$S(a_0, a_1, ..., a_s) = \sum_{i=1}^{n} [y_i - f(x_i, a_0, ..., a_s)]^2$$

има минимум. Те се определят от системата

$$\frac{\partial S}{\partial a_0} = 0, \ \frac{\partial S}{\partial a_1} = 0, \dots \frac{\partial S}{\partial a_s} = 0.$$

Например, за намиране на квадратна регресия $f(x) = a_0 + a_1 x + a_2 x^2$ на Y от X, коефициентите a_0 , a_1 , a_2 се определят от системата:

$$\begin{vmatrix} a_0 n + a_1 \sum x_i + a_2 \sum x_i^2 = \sum y_i \\ a_0 \sum x_i + a_1 \sum x_i^2 + a_2 \sum x_i^3 = \sum x_i y_i \\ a_0 \sum x_i^2 + a_1 \sum x_i^3 + a_2 \sum x_i^4 = \sum x_i^2 y_i \end{vmatrix}$$
 (36.4)

Пример. 36.1. Установено е, че щурците свирят, като бързо търкат крачката си. Изследва се зависимостта между честотата X (брой на трептения за сек) и температурата Y (в градуси) на въздуха. Получена е извадката:

Да се намери уравнението на линейната регресия. Ако имаме уред за мерене на честотата на трептенията и той отчита $x\!=\!19$, колко градуса е температурата на въздуха?

Решение. Изчисленията са представени в таблицата, последният ред на която е получен чрез сумиране по стълбове.

x_i	y_i	x_i^2	$x_i y_i$
20	31,67	400	633,4
16	22,22	256	355,52
20	33,89	400	677,8
18	28,89	324	520,02
17	27,22	289	462,74
16	23,89	256	382,24
15	21,11	225	316,65
17	27,78	289	472,26
15	20,56	225	308,4
16	28,33	256	453,28
15	26,67	225	400,05
17	28,33	289	481,61
16	27,22	256	435,52
17	28,89	289	491,13
14	24,44	196	342,16
249	401,11	4175	6732,78

Тогава:

$$\bar{x} = \frac{249}{15} = 16,6$$
, $\bar{y} = \frac{401,11}{15} = 26,74$.

$$s_x^2 = \overline{x^2} - (\overline{x})^2 = \frac{4175}{15} - 16,6^2 = 2,78.$$

$$s_{xy} = \overline{xy} - \overline{x}.\overline{y} = \frac{6732,78}{15} - 16,6.26,74 = 13,00$$

Следователно, $a_1 = \frac{13}{2,78} = 1,78, \ a_0 = 26,74 - 1,78.16,6 = -2,93,$ откъдето

$$y=1,78x-2,93$$
. (фиг. 36.2)

Като положим x=19, получаваме $y=31{,}03^0$, т.е. може да считаме, че температурата на въздуха е 31^0 .

Фиг. 36.2.

Забележка. 36.1. В пример **36.1.** имаме случай, когато и двете изследвани величини са случайни.

Пример 36.2. Да се намери уравнението на квадратичната регресионна зависимост по данните

$$\frac{x_i}{y_i} \begin{vmatrix} -2 & -1 & 0 & 1 & 2 \\ 1,2 & 0,1 & -0,8 & 0,2 & 0,8 \end{vmatrix}$$
.

Решение: За получим системата (36.4) за коефициентите a_0 , a_1 , a_2 на квадратната функция $f(x) = a_0 + a_1 x + a_2 x^2$ извършваме пресмятанията като използваме дадената по-долу таблица.:

$$\sum x_i = 0, \quad \sum x_i^2 = 10, \quad \sum x_i^3 = 0, \quad \sum x_i^4 = 34$$
$$\sum y_i = 1.5, \quad \sum x_i y_i = -0.7, \quad \sum x_i^2 y_i = 8.3.$$

x_i	y_i	x_i^2	x_i^3	x_i^4	$x_i y_i$	$x_i^2 y_i$
-2	1,2	4	-8	16	-2,4	4,8
-1	0,1	1	-1	1	-0,1	0,1
0	-0,8	0	0	0	0	0
1	0,2	1	1	1	0,2	0,2
2	0,8	4	8	16	1,6	3,2
0	1,5	10	0	34	-0,7	8,3

Така получаваме

Следователно, $y = 0.3x^2 - 0.07x - 0.46$ (фиг.36.3)

фиг.36.3.

37. Статистически анализ на уравнението на линейната регресия.

В този параграф ще разгледаме адекватността (съответствието с наличните данни) на получения регресионен модел.

В най-простия случай на линейна регресионна зависимост на Y от X, т.е. $EY = \alpha_1 X + \alpha_0$ (линейна регресия на Y от X) може да представим Y във вида

$$Y = \alpha_1 X + \alpha_0 + \mathbf{C},\tag{37.1}$$

(смутено уравнение на права), където $\mathcal E$ е случайна величина, обусловена от случайни фактори, която определя отклонението на Y от математическото й очакване.

Пример 37.1. Нека Y е физична величина, която зависи линейно от величината X и нека измерваме Y при различни (може и неслучайни) стойности на X. Тогава:

- $\mathcal E$ е грешката от измерването. Ако измерването се провежда с един и същ уред, точността на който не зависи от стойността на X и не се правят систематични грешки, то $\mathcal E$ е случайна величина с нормално рапределение $N(0,\sigma)$ като средно квадратичното отклонение σ не зависи от X и се определя от точността на измервателния уред.
- законът на величината Y е $N(EY,\sigma)$ като, съгласно предположението за съществуване на линейна регресионна зависимост, имаме $EY = \alpha_1 X + \alpha_0$.
- за предвидена стойност на Y при $X = x^*$ приемаме стойността $y^* = \alpha_1 x^* + \alpha_0$. Тази стойност съвпада с условното математическо очакване на Y при $X = x^*$. (фиг. 36.1). •

Ако коефициентите α_1 и α_0 не са известни, то по дадена извадка (x_i,y_i) , i=1,2,...,n намираме оценките им a_1 и a_0 съгласно формули (36.3). Очевидно, може да запишем аналогично на (37.1) съотношение (фиг.36.1) $y_i=a_1x_i+a_0+\varepsilon_i$, или $y_i=\hat{y}_i+\varepsilon_i$, където

$$\hat{y}_i = a_1 x_i + a_0 \tag{37.2}$$

е предвидената стойност на Y при $X = x_i$ според регресионния модел.

Ще получим извадъчните параметри на разпределението на величините \hat{y}_i - предвидените (според регресионния модел) стойности и ε_i - разликата между предвидените и наблюдаваните стойности.

1. Събираемото $\varepsilon_i = y_i - \hat{y}_i$ отразява грешката, която се прави при замяна на y_i с изчислената съгласно модела стойност \hat{y}_i , и е наблюдавана стойност на величина ε , наричана <u>грешка на регресията (на предвиждането)</u>. Тази величина се явява следствие както на случайни фактори, така и на неточността на коефициентите a_1 и a_0 .

Като имаме предвид формули (36.2), получаваме:

$$\overline{\varepsilon} = \frac{1}{n} \sum \varepsilon_i = \frac{1}{n} \sum (y_i - a_1 x_i - a_0) = \frac{1}{n} \sum y_i - \frac{1}{n} \sum a_1 x_i - \frac{1}{n} \sum a_0 = \overline{y} - a_1 \overline{x} - a_0 = \overline{y} - a_1 \overline{x} - (\overline{y} - a_1 \overline{x}) = 0,$$

Извадъчната дисперсия s_{ε}^2 се нарича <u>остатъчна дисперсия</u>.

За нея получаваме (заместваме $a_0 = \overline{y} - a_1 \overline{x}$):

$$\begin{split} s_{\varepsilon}^2 &= \frac{1}{n} \sum (\varepsilon_i - \overline{\varepsilon})^2 = \frac{1}{n} \sum {\varepsilon_i}^2 = \frac{1}{n} \sum (y_i - a_1 x_i - a_0)^2 = \frac{1}{n} \sum [(y_i - \overline{y}) - a_1 (x_i - \overline{x})]^2 \\ &= \frac{1}{n} \sum (y_i - \overline{y})^2 - 2a_1 \cdot \frac{1}{n} \sum (y_i - \overline{y})(x_i - \overline{x}) + a_1^2 \cdot \frac{1}{n} \sum (x_i - \overline{x})^2 \\ &= s_y^2 - 2a_1 s_{xy} + a_1 \cdot s_x^2 = s_y^2 - 2\frac{s_{xy}}{s_x^2} s_{xy} + \left(\frac{s_{xy}}{s_x^2}\right)^2 s_x^2 = s_y^2 - \frac{s_{xy}^2}{s_x^2}, \end{split}$$

Като заместим $a_1 = \frac{s_{xy}}{s_x^2}$, получаваме следната формула за пресмятане

на остатъчната дисперсия:

$$s_{\varepsilon}^2 = s_{\nu}^2 - a_1 s_{x\nu} . {37.3}$$

2. Извадъчната средна на предвидените стойности \hat{y}_i намираме по формула (37.2):

 $\hat{v} = \overline{v} - \overline{\varepsilon} = \overline{v}$ - средна стойност на предвиждането.

За средно квадратичното на \hat{y}_i (дисперсия на предвидените стойности) имаме:

$$s_{\hat{y}}^2 = \frac{1}{n} \sum (\hat{y}_i - \overline{\hat{y}})^2 = \frac{1}{n} \sum (\hat{y}_i - \overline{y})^2 = \frac{1}{n} \sum (a_1 x_i + \overline{y} - a_1 \overline{x} - \overline{y})^2 = a_1^2 \frac{1}{n} \sum (x_i - \overline{x})^2 = a_1^2 s_x^2$$

Тъй като $a_1 = \frac{s_{xy}}{s_x^2}$, то получаваме.

$$s_{\hat{y}}^2 = a_1^2 s_x^2 = a_1 s_{xy} \,. \tag{37.4}$$

Като имаме предвид формули (37.3) и (37.4), заключаваме, че между общата дисперсия s_y^2 , остатъчната дисперсия s_ε^2 и дисперсията $s_{\hat{y}}^2$ съществува връзката:

$$s_y^2 = s_\varepsilon^2 + s_{\hat{y}}^2$$

Тази формула има следното тълкувание:

Общата извадъчна дисперсия s_y^2 на зависимата величина Y се разпада на две събираеми:

- $s_{\varepsilon}^2 = s_y^2 a_1 s_{xy}$ остатъчна дисперсия (дисперсия на грешките на оценките), която е следствие от случайни фактори и грешки от измерванията или на изменението на неотчетени в регресионния модел фактори.
- $s_{\hat{y}}^2 = a_1 s_{xy}$ факторна дисперсия (дисперсия на предвидените стойности), която характеризира разсейването на предвидените стойности \hat{v}_i на Y около общата средна \overline{v} .

Забележка 37.1. За отношението $\frac{s_{\hat{y}}^2}{s_{\hat{y}}^2}$, което се нарича <u>коефициент</u>

на детерминация имаме

$$\frac{s_{\hat{y}}^2}{s_y^2} = \frac{a_1 s_{xy}}{s_y^2} = \frac{s_{xy}^2}{s_y^2 s_x^2} = r_{xy}^2.$$

В по-нататъчните разглеждания ще считаме, че за всяка стойност x на X законът на $\mathfrak E$ е $\mathfrak E \sim N(0,\sigma)$ (не зависи от наблюдаваната стойност на X)

При това предположение, ако се въведат оценките:

$$\widetilde{s}_{arepsilon}^{\,2}=rac{n}{n-2}s_{arepsilon}^{\,2}$$
 - поправена остатъчна дисперсия на D Є= σ^2 ,

$$\widetilde{s}_{arepsilon} = \sqrt{\widetilde{s}_{arepsilon}^2}$$
 - стандартна грешка на оценката (на регресията)

$$s_{a_1} = \frac{\widetilde{s}_{\varepsilon}}{s_{\star} \sqrt{n}} - \underline{c}$$
 - \underline{c} -

$$s_{a_0} = s_{a_1} \sqrt{\overline{x^2}}$$
 - $\underline{\text{стандартна грешка на коефициента}} \ a_0$,

се установява, че статистиките $\frac{a_1-\alpha_1}{s_{a_1}}$ и $\frac{a_0-\alpha_0}{s_{a_0}}$ имат t-разпределение с n-2 степени на свобода. Следователно,

Доверителните интервали с доверителна вероятност γ за коефициентите α_1 и α_0 са съответно:

$$\begin{pmatrix} a_1 - t_{\frac{\gamma+1}{2}}(n-2)s_{a_1}; \ a_1 + t_{\frac{\gamma+1}{2}}(n-2)s_{a_1} \end{pmatrix} u$$

$$\begin{pmatrix} a_0 - t_{\frac{\gamma+1}{2}}(n-2)s_{a_0}; \ a_0 + t_{\frac{\gamma+1}{2}}(n-2)s_{a_0} \end{pmatrix},$$

където $t_{\frac{\gamma+1}{2}}(n-2)$ е квантилът от ред $\frac{\gamma+1}{2}$ на t-разпределението с n-1 степени на свобода.

Доверителен интервал за $X = x^*$, когато $x^* \in (x_{\min}, x_{\max})$ се получава по следния начин:

Доверителният интервал с доверителна вероятност γ за предвидената стойност v^* :

- 1) От уравнението на линейната регресия се изчислява оценката на предвиждането $\hat{v}^* = a_0 + a_1 x^*$.
- 2) Изчислява се статистиката

$$s_{y^*} = s_{\varepsilon} \sqrt{\frac{1}{n} \left(1 + \frac{(x^* - \overline{x})^2}{s_x^2}\right)}$$
 (стандартна грешка на предвиждането)

- 3) Намира се квантилът $t_{\frac{\gamma+1}{2}}(n-2)$.
- 4) Доверителният интервал е $y^* \in \left(\hat{y}^* t_{\frac{1+\gamma}{2}} s_{y^*}, \ \hat{y}^* + t_{\frac{1+\gamma}{2}} s_{y^*}\right)$

Пример. 37.2. По извадка с обем 17 са получени следните резултати:

$$\overline{x} = 55,77$$
, $\overline{y} = 59,55$, $\overline{x^2} = 3495,41$, $\overline{y^2} = 5021,41$, $\overline{xy} = 4068,53$.

Да се намерят оценки за параметрите на линейната регресия и доверителните им интервали с доверителна вероятност 0,95.

Решение. Изчисляваме

$$s_x^2 = 3495,41 - 55,77^2 = 358,12$$
, $s_y^2 = 5021,41 - 59,55^2 = 1475,26$, $s_{xy} = 4068,53 - 55,77.59,55 = 747,42$, $a_1 = \frac{747,42}{358,12} = 1,94$, $a_0 = 59,55 - 1,94.55,77 = -48,62$,

Уравнението на линейната регресия е $\hat{y} = 1,96x - 48,62$

Пресмятаме още $s_{\varepsilon}^2 = s_y^2 - a_1 s_{xy} = 25{,}26$ и $\widetilde{s}_{\varepsilon}^2 = \frac{n}{n-2} s_{\varepsilon}^2 = 28{,}63$,

$$\tilde{s}_{\varepsilon} = \sqrt{28,63} = 5,36$$
, $s_{a_1} = \frac{\tilde{s}_{\varepsilon}}{s_{\varepsilon} \sqrt{n}} = \frac{5,36}{\sqrt{385,12} \sqrt{17}} = 0,066$

За определяне на доверителния интервал намираме квантила $t_{\frac{\gamma+1}{2}}(n-2) = t_{0.975}(15) = 2,\!13$, следователно,

$$\alpha_1 \in (1,94-2,13.0,07, 1,94+2,13.0,07)$$
.

т.е. с вероятност 0,95 действителната стойност на наколна $\alpha_{\rm l}$ е число в интервала (1,79; 2,09) .

Пример 37.3. Фирма възнамерява да изразходва 6000 лв за реклама. За да се проучи как ще се отрази това на количеството на продажбите, са събрани следните данни за вложените в реклама пари X (в хиляди лв) и броя на продажбите (в хиляди)

- а) Да се намери линейната регресия на Y от X;
- б) Какъв е броят на продажбите без реклама на продукта?
- в) Какво количество продажби могат да се очакват, ако за реклама се вложат 6000 лв?
- г) да се намери доверителен интервал за предвиждания брой с доверителна вероятност 0,95

Решение. Пресмятаме:

$$\overline{x} = 7$$
, $\widetilde{s}_x^2 = 20.8$, $\overline{y} = 44.8$, $\overline{s}_y^2 = 47.76$, $s_{xy} = 29$,

$$a_1 = \frac{s_{xy}}{s_x^2} = \frac{29}{20.8} = 1,395$$
, $a_0 = \overline{y} - a_1 \overline{x} = 35,042$, с което намираме

уравнението на линейната регресия $\hat{y} = 1,395x - 35,042$.

- б) Ако в уравнението на линейната регресия положим x = 0, то получаваме, че продажбите без реклама са около 35000 броя.
- в) Изчисляваме $y^* = 1,395.6 + 35,042 = 43,406$. Следователно, очакваните продажби при вложени 6000 лв са 43400 броя.
- г) За да намерим стандартната грешка на предвиждането, пресмятаме
 - 1) остатъчната дисперсия: $s_{\varepsilon}^2 = s_{v}^2 a_1 s_{vv} = 47,76 1,395.29,8 = 6,189$,
 - 2) поправената остатъчна дисперсия $\tilde{s}_{\varepsilon}^2 = \frac{n}{n-2} s_{\varepsilon}^2 = \frac{5}{3}.6,189 = 10,315$,
 - 3) стандартната грешка на регресията $\tilde{s}_{\varepsilon} = \sqrt{10,315} = 3,21$,
 - 4) стандартната грешка на предвиждането:

$$s_{y^*} = s_{\varepsilon} \sqrt{\frac{1}{n} \left(1 + \frac{(x^* - \overline{x})^2}{s_x^2} \right)} = 3.21 \sqrt{\frac{1}{5} (1 + \frac{(6 - 7)^2}{20.8})} = 3.21.\sqrt{1.25} = 3.589$$

- 5) От таблицата за t-разпределението с n-2=5-2=3 степени на свобода определяме квантила от ред $\frac{\gamma+1}{2}=\frac{0.95+1}{2}=0.975$: $t_{0.975}(3)=3.18$,
- 6) представителната грешка с доверителна вероятност 0,95 е $\delta=s_{_{V^*}}.t_{0,975}(3)=3,\!18.3,\!89=\!12,\!37$.
 - 7) Доверителният интервал е

$$y^* \in (43,406-12,37; 43,406+12,37) = (31,036; 55,706)$$
.

Следователно, очакваните продажби са между 31000 и 55700.

Упражнения (корелация и регресия):

- - а) да се изчисли извадъчният коефициент на корелация;
 - б) да се провери хипотезата за корелационна зависимост на У и Х.
 - в) да се намери уравненията на линейната регресия на Y от X и на X и Y;
 - г) да се изобраят графически данните и линиите на регресия.
- 2. Извършени са 6 наблюдения на променливите X и Y , които са нанесени в таблицата $\frac{X}{Y} \begin{vmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 4 & 5 & 5 & 6 & 8 \end{vmatrix}$.
 - а) да се пресметне коефициентът на корелация;
- б) С ниво на значимост α = 0,05 се провери хипотезата за значимост на корелационната зависимост между X и Y (H_0 = { ho_{xv} = 0} при H_1 = { ho_{xv} eq 0}).
- 3. Направени са следните наблюдения на величините X и Y и е получена извадката

Да се намери уравнението на регресия на Y от X и представи графично. Според получения регресионен модел да се изчисли каква стойност ще приеме Y, ако X=4.5.

4. Изследва се зависимостта между количеството тор X, употребено за единица площ и добива Y. Получени са следните данни :

Като се използва, че $\sum x_i^2 = 55$, $\sum y_i^2 = 8490$, $\sum x_i y_i = 666$, да се намери: а) уравнението на линейната регресия на Y от X. б) да се представят графически данните и линията на регресия; г) да се намери коефициентът на корелация и провери хипотезата за корелираност на X и Y с ниво на значимост $\alpha = 0.1$.

5. Направени са следните наблюдения на нормално разпределените величини X и Y :

Да се намери:

- а) уравнението на регресия на Y от X;
- б) каква стойност ще получи величината Y, ако X = 5;
- в) доверителен интервал за получената стойност с доверителна вероятност 0.95.
- 6. Изследва се зависимостта от броя X на работниците във фирма и стойността (в хиляди левове) на сключените договори. Получена е следната извадка:

- а) да се намери уравнението на линейната регресия на X от Y;
- б) да се изчисли извадъчният коефициент на корелация;
- в) да се изобразят графически данните и линията на регресия.

ПРИЛОЖЕНИЯ

Стойности на функцията F(x) на разпределение на стандартна нормална величина (Z-разпределение)

$$F(x) = \frac{1}{\sqrt{2\pi}} \int_{-\pi}^{x} e^{-\frac{t^2}{2}} dt$$
, $F(-x) = 1 - F(x)$

Пример: F(1.96) = 0.9750.

			1.96							
	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,5000	0,5040	0,5080	0,5120	0,5160	0,5199	0,5239	0,5279	0,5319	0,5359
0,1	0,5398	0,5438	0,5478	0,5517	0,5557	0,5596	0,5636	0,5675	0,5714	0,5753
0,2	0,5793	0,5832	0,5871	0,5910	0,5948	0,5987	0,6026	0,6064	0,6103	0,6141
0,3	0,6179	0,6217	0,6255	0,6293	0,6331	0,6368	0,6406	0,6443	0,6480	0,6517
0,4	0,6554	0,6591	0,6628	0,6664	0,6700	0,6736	0,6772	0,6808	0,6844	0,6879
0,5	0,6915	0,6950	0,6985	0,7019	0,7054	0,7088	0,7123	0,7157	0,7190	0,7224
0,6	0,7257	0,7291	0,7324	0,7357	0,7389	0,7422	0,7454	0,7486	0,7517	0,7549
0,7	0,7580	0,7611	0,7642	0,7673	0,7704	0,7734	0,7764	0,7794	0,7823	0,7852
0,8	0,7881	0,7910	0,7939	0,7967	0,7995	0,8023	0,8051	0,8078	0,8106	0,8133
0,9	0,8159	0,8186	0,8212	0,8238	0,8264	0,8289	0,8315	0,8340	0,8365	0,8389
1,0	0,8413	0,8438	0,8461	0,8485	0,8508	0,8531	0,8554	0,8577	0,8599	0,8621
1,1	0,8643	0,8665	0,8686	0,8708	0,8729	0,8749	0,8770	0,8790	0,8810	0,8830
1,2	0,8849	0,8869	0,8888	0,8907	0,8925	0,8944	0,8962	0,8980	0,8997	0,9015
1,3	0,9032	0,9049	0,9066	0,9082	0,9099	0,9115	0,9131	0,9147	0,9162	0,9177
1,4	0,9192	0,9207	0,9222	0,9236	0,9251	0,9265	0,9279	0,9292	0,9306	0,9319
1,5	0,9332	0,9345	0,9357	0,9370	0,9382	0,9394	0,9406	0,9418	0,9429	0,9441
1,6	0,9452	0,9463	0,9474	0,9484	0,9495	0,9505	0,9515	0,9525	0,9535	0,9545
1,7	0,9554	0,9564	0,9573	0,9582	0,9591	0,9599	0,9608	0,9616	0,9625	0,9633
1,8	0,9641	0,9649	0,9656	0,9664	0,9671	0,9678	0,9686	0,9693	0,9699	0,9706
1,9	0,9713	0,9719	0,9726	0,9732	0,9738	0,9744	0,9750	0,9756	0,9761	0,9767
2,0	0,9772	0,9778	0,9783	0,9788	0,9793	0,9798	0,9803	0,9808	0,9812	0,9817
2,1	0,9821	0,9826	0,9830	0,9834	0,9838	0,9842	0,9846	0,9850	0,9854	0,9857
2,2	0,9861	0,9864	0,9868	0,9871	0,9875	0,9878	0,9881	0,9884	0,9887	0,9890
2,3	0,9893	0,9896	0,9898	0,9901	0,9904	0,9906	0,9909	0,9911	0,9913	0,9916
2,4	0,9918	0,9920	0,9922	0,9925	0,9927	0,9929	0,9931	0,9932	0,9934	0,9936
2,5	0,9938	0,9940	0,9941	0,9943	0,9945	0,9946	0,9948	0,9949	0,9951	0,9952
2,6	0,9953	0,9955	0,9956	0,9957	0,9959	0,9960	0,9961	0,9962	0,9963	0,9964
2,7	0,9965	0,9966	0,9967	0,9968	0,9969	0,9970	0,9971	0,9972	0,9973	0,9974
2,8	0,9974	0,9975	0,9976	0,9977	0,9977	0,9978	0,9979	0,9979	0,9980	0,9981
2,9	0,9981	0,9982	0,9982	0,9983	0,9984	0,9984	0,9985	0,9985	0,9986	0,9986
3,0	0,9987	0,9987	0,9987	0,9988	0,9988	0,9989	0,9989	0,9989	0,9990	0,9990
3,1	0,99903	0,99906	0,99910	0,99913	0,99916	0,99918	0,99921	0,99924	0,99926	0,99929
3,2	0,99931	0,99934	0,99936	0,99938	0,99940	0,99942	0,99944	0,99946	0,99948	0,99950
3,3	0,99952	0,99953	0,99955	0,99957	0,99958	0,99960	0,99961	0,99962	0,99964	0,99965
3,4	0,99966	0,99968	0,99969	0,99970	0,99971	0,99972	0,99973	0,99974	0,99975	0,99976
3,5	0,99977	0,99978	0,99978	0,99979	0,99980	0,99981	0,99981	0,99982	0,99983	0,99983
3,6	0,99984	0,99985	0,99985	0,99986	0,99986	0,99987	0,99987	0,99988	0,99988	0,99989
3,7	0,999892	0,999896	0,999900	0,999904	0,999908	0,999912	0,999915	0,999918	0,999922	0,999925
3,8	0,999928	0,999931	0,999933	0,999936	0,999938	0,999941	0,999943	0,999946	0,999948	0,999950
3,9	0,999952	0,999954	0,999956	0,999958	0,999959	0,999961	0,999963	0,999964	0,999966	0,999967

167 168

Квантили на разпределението на Стюдънт (t-разпределение)

Пример: $t_{0,975}(8)\!=\!2,\!31$ - квантил от ред $p\!=\!0,\!975$ на t-разпределение с $n\!=\!8$ степени на свобода.

	0,900	0,950	0,975	0,990	0,995
1	3,08	6,31	12,71	31,82	63,66
2	1,89	2,92	4,30	6,96	9,92
3	1,64	2,35	3,18	4,54	5,84
4	1,53	2,13	2,78	3,75	4,60
5	1,48	2,02	2,57	3,36	4,03
6	1,44	1,94	2,45	3,14	3,71
7	1,41	1,89	2,36	3,00	3,50
8	1,40	1,86	2,31	2,90	3,36
9	1,38	1,83	2,26	2,82	3,25
10	1,37	1,81	2,23	2,76	3,17
11	1,36	1,80	2,20	2,72	3,11
12	1,36	1,78	2,18	2,68	3,05
13	1,35	1,77	2,16	2,65	3,01
14	1,35	1,76	2,14	2,62	2,98
15	1,34	1,75	2,13	2,60	2,95
16	1,34	1,75	2,12	2,58	2,92
17	1,33	1,74	2,11	2,57	2,90
18	1,33	1,73	2,10	2,55	2,88
19	1,33	1,73	2,09	2,54	2,86
20	1,33	1,72	2,09	2,53	2,85
21	1,32	1,72	2,08	2,52	2,83
22	1,32	1,72	2,07	2,51	2,82
23	1,32	1,71	2,07	2,50	2,81
24	1,32	1,71	2,06	2,49	2,80
25	1,32	1,71	2,06	2,49	2,79
26	1,31	1,71	2,06	2,48	2,78
27	1,31	1,70	2,05	2,47	2,77
28	1,31	1,70	2,05	2,47	2,76
29	1,31	1,70	2,05	2,46	2,76
30	1,31	1,70	2,04	2,46	2,75
40	1,30	1,68	2,02	2,42	2,70
50	1,30	1,68	2,01	2,40	2,68
60	1,30	1,67	2,00	2,39	2,66
70	1,29	1,67	1,99	2,38	2,65
80	1,29	1,66	1,99	2,37	2,64
100	1,29	1,66	1,98	2,36	2,63
120	1,29	1,66	1,98	2,36	2,62

Квантили на χ^2 -разпределение

Пример: $\chi^2_{0.95}(11)$ =19,68 - квантил от ред p=0,95 на χ^2 -разпределение с n=11 степени на свобода.

	p								
n	•	0,025	0,05	0,1	0,9	0,95	0,975	0,99	0,999
	1	0,00098	0,00393	0,01579	2,71	3,84	5,02	6,63	10,83
	2	0,05	0,10	0,21	4,61	5,99	7,38	9,21	13,82
	3	0,22	0,35	0,58	6,25	7,81	9,35	11,34	16,27
	4	0,48	0,71	1,06	7,78	9,49	11,14	13,28	18,47
	5	0,83	1,15	1,61	9,24	11,07	12,83	15,09	20,52
	6	1,24	1,64	2,20	10,64	12,59	14,45	16,81	22,46
	7	1,69	2,17	2,83	12,02	14,07	16,01	18,48	24,32
	8	2,18	2,73	3,49	13,36	15,51	17,53	20,09	26,12
	9	2,70	3,33	4,17	14,68	16,92	19,02	21,67	27,88
	10	3,25	3,94	4,87	15,99	18,31	20,48	23,21	29,59
	11	3,82	4,57	5,58	17,28	19,68	21,92	24,72	31,26
	12	4,40	5,23	6,30	18,55	21,03	23,34	26,22	32,91
	13	5,01	5,89	7,04	19,81	22,36	24,74	27,69	34,53
	14	5,63	6,57	7,79	21,06	23,68	26,12	29,14	36,12
	15	6,26	7,26	8,55	22,31	25,00	27,49	30,58	37,70
	16	6,91	7,96	9,31	23,54	26,30	28,85	32,00	39,25
	17	7,56	8,67	10,09	24,77	27,59	30,19	33,41	40,79
	18	8,23	9,39	10,86	25,99	28,87	31,53	34,81	42,31
	19	8,91	10,12	11,65	27,20	30,14	32,85	36,19	43,82
	20	9,59	10,85	12,44	28,41	31,41	34,17	37,57	45,31
	21	10,28	11,59	13,24	29,62	32,67	35,48	38,93	46,80
	22	10,98	12,34	14,04	30,81	33,92	36,78	40,29	48,27
	23	11,69	13,09	14,85	32,01	35,17	38,08	41,64	49,73
	24	12,40	13,85	15,66	33,20	36,42	39,36	42,98	51,18
	25	13,12	14,61	16,47	34,38	37,65	40,65	44,31	52,62
	26	13,84	15,38	17,29	35,56	38,89	41,92	45,64	54,05
	27	14,57	16,15	18,11	36,74	40,11	43,19	46,96	55,48
	28	15,31	16,93	18,94	37,92	41,34	44,46	48,28	56,89
	29	16,05	17,71	19,77	39,09	42,56	45,72	49,59	58,30
	30	16,79	18,49	20,60	40,26	43,77	46,98	50,89	59,70
	31	17,54	19,28	21,43	41,42	44,99	48,23	52,19	61,10
	32	18,29	20,07	22,27	42,58	46,19	49,48	53,49	62,49
	33	19,05	20,07	23,11	42,36	47,40	50,73	54,78	63,87
	34 35	19,81	21,66	23,95	44,90	48,60	51,97	56,06	65,25 66,62
		20,57	22,47	24,80	46,06	49,80	53,20	57,34	-
	36	21,34	23,27	25,64	47,21	51,00	54,44	58,62	67,99
	37	22,11	24,07	26,49	48,36	52,19	55,67	59,89	69,35
	38	22,88	24,88	27,34	49,51	53,38	56,90	61,16	70,70
	39	23,65	25,70	28,20	50,66	54,57	58,12	62,43	72,05
	40	24,43	26,51	29,05	51,81	55,76	59,34	63,69	73,40
	50	32,36	34,76	37,69	63,17	67,50	71,42	76,15	86,66
	60	40,48	43,19	46,46	74,40	79,08	83,30	88,38	99,61
	70	48,76	51,74	55,33	85,53	90,53	95,02	100,43	112,32
	80	57,15	60,39	64,28	96,58	101,88	106,63	112,33	124,84
	90	65,65	69,13	73,29	107,57	113,15	118,14	124,12	137,21
	100	74,22	77,93	82,36	118,50	124,34	129,56	135,81	149,45

Критични точки на F-разпределението при ниво на значимост $\, lpha \! = \! 0.01 \,$

Пример: $F_{0,01}(5,\ 9)\!=\!6,\!06$ - критична точка от ред $\alpha\!=\!0,\!01$ със степени на свобода: $n_1\!=\!5$ на числителя и $n_2\!=\!9$ на знаменателя.

n_2	n_1	1	2	3	4	5	6	7	8	9	10	12	20	24	30	50	8
	5	16,26	13,27	12,06	11,39	10,97	10,67	10,46	10,29	10,16	10,05	9,89	9,55	9,47	9,38	9,24	9,02
	6	13,75	10,92	9,78	9,15	8,75	8,47	8,26	8,10	7,98	7,87	7,72	7,40	7,31	7,23	7,09	6,88
	7	12,25	9,55	8,45	7,85	7,46	7,19	6,99	6,84	6,72	6,62	6,47	6,16	6,07	5,99	5,86	5,65
	8	11,26	8,65	7,59	7,01	6,63	6,37	6,18	6,03	5,91	5,81	5,67	5,36	5,28	5,20	5,07	4,86
	9	10,56	8,02	6,99	6,42	6,06	5,80	5,61	5,47	5,35	5,26	5,11	4,81	4,73	4,65	4,52	4,31
	10	10,04	7,56	6,55	5,99	5,64	5,39	5,20	5,06	4,94	4,85	4,71	4,41	4,33	4,25	4,12	3,91
	11	9,65	7,21	6,22	5,67	5,32	5,07	4,89	4,74	4,63	4,54	4,40	4,10	4,02	3,94	3,81	3,60
	12	9,33	6,93	5,95	5,41	5,06	4,82	4,64	4,50	4,39	4,30	4,16	3,86	3,78	3,70	3,57	3,36
	13	9,07	6,70	5,74	5,21	4,86	4,62	4,44	4,30	4,19	4,10	3,96	3,66	3,59	3,51	3,38	3,17
	14	8,86	6,51	5,56	5,04	4,69	4,46	4,28	4,14	4,03	3,94	3,80	3,51	3,43	3,35	3,22	3,00
	15	8,68	6,36	5,42	4,89	4,56	4,32	4,14	4,00	3,89	3,80	3,67	3,37	3,29	3,21	3,08	2,87
	16	8,53	6,23	5,29	4,77	4,44	4,20	4,03	3,89	3,78	3,69	3,55	3,26	3,18	3,10	2,97	2,75
	17	8,40	6,11	5,18	4,67	4,34	4,10	3,93	3,79	3,68	3,59	3,46	3,16	3,08	3,00	2,87	2,65
	18	8,29	6,01	5,09	4,58	4,25	4,01	3,84	3,71	3,60	3,51	3,37	3,08	3,00	2,92	2,78	2,57
	19	8,18	5,93	5,01	4,50	4,17	3,94	3,77	3,63	3,52	3,43	3,30	3,00	2,92	2,84	2,71	2,49
	20	8,10	5,85	4,94	4,43	4,10	3,87	3,70	3,56	3,46	3,37	3,23	2,94	2,86	2,78	2,64	2,42
	21	8,02	5,78	4,87	4,37	4,04	3,81	3,64	3,51	3,40	3,31	3,17	2,88	2,80	2,72	2,58	2,36
	22	7,95	5,72	4,82	4,31	3,99	3,76	3,59	3,45	3,35	3,26	3,12	2,83	2,75	2,67	2,53	2,31
	23	7,88	5,66	4,76	4,26	3,94	3,71	3,54	3,41	3,30	3,21	3,07	2,78	2,70	2,62	2,48	2,26
	24	7,82	5,61	4,72	4,22	3,90	3,67	3,50	3,36	3,26	3,17	3,03	2,74	2,66	2,58	2,44	2,21
	25	7,77	5,57	4,68	4,18	3,85	3,63	3,46	3,32	3,22	3,13	2,99	2,70	2,62	2,54	2,40	2,17
	26	7,72	5,53	4,64	4,14	3,82	3,59	3,42	3,29	3,18	3,09	2,96	2,66	2,58	2,50	2,36	2,13
	27	7,68	5,49	4,60	4,11	3,78	3,56	3,39	3,26	3,15	3,06	2,93	2,63	2,55	2,47	2,33	2,10
	28	7,64	5,45	4,57	4,07	3,75	3,53	3,36	3,23	3,12	3,03	2,90	2,60	2,52	2,44	2,30	2,06
	29	7,60	5,42	4,54	4,04	3,73	3,50	3,33	3,20	3,09	3,00	2,87	2,57	2,49	2,41	2,27	2,03
	30	7,56	5,39	4,51	4,02	3,70	3,47	3,30	3,17	3,07	2,98	2,84	2,55	2,47	2,39	2,25	2,01
	40	7,31	5,18	4,31	3,83	3,51	3,29	3,12	2,99	2,89	2,80	2,66	2,37	2,29	2,20	2,06	1,80
	50	7,17	5,06	4,20	3,72	3,41	3,19	3,02	2,89	2,78	2,70	2,56	2,27	2,18	2,10	1,95	1,68
	60	7,08	4,98	4,13	3,65	3,34	3,12	2,95	2,82	2,72	2,63	2,50	2,20	2,12	2,03	1,88	1,60
	70	7,01	4,92	4,07	3,60	3,29	3,07	2,91	2,78	2,67	2,59	2,45	2,15	2,07	1,98	1,83	1,54
	80	6,96	4,88	4,04	3,56	3,26	3,04	2,87	2,74	2,64	2,55	2,42	2,12	2,03	1,94	1,79	1,49
	90	6,93	4,85	4,01	3,53	3,23	3,01	2,84	2,72	2,61	2,52	2,39	2,09	2,00	1,92	1,76	1,46
	100	6,90	4,82	3,98	3,51	3,21	2,99	2,82	2,69	2,59	2,50	2,37	2,07	1,98	1,89	1,74	1,43
	120	6,85	4,79	3,95	3,48	3,17	2,96	2,79	2,66	2,56	2,47	2,34	2,03	1,95	1,86	1,70	1,38
C	χo.	6,64	4,61	3,78	3,32	3,02	2,80	2,64	2,51	2,41	2,32	2,18	1,88	1,79	1,70	1,52	1,01

Критични точки на F-разпределението при ниво на значимост $\,\alpha\!=\!0,\!05\,$

Пример: $F_{0,01}(5,\ 9)\!=\!3,\!48$ - критична точка от ред $\alpha\!=\!0,\!05$ със степени на свобода: $n_1\!=\!5$ на числителя и $n_2\!=\!9$ на знаменателя.

n_1	1	2	3	4	5	6	7	8	9	10	12	20	24	30	50	∞
n_2																
5	6,61	5,79	5,41	5,19	5,05	4,95	4,88	4,82	4,77	4,74	4,68	4,56	4,53	4,50	4,441	4,37
6	5,99	5,14	4,76	4,53	4,39	4,28	4,21	4,15	4,10	4,06	4,00	3,87	3,84	3,81	3,75	3,67
7	5,59	4,74	4,35	4,12	3,97	3,87	3,79	3,73	3,68	3,64	3,57	3,44	3,41	3,38	3,32	3,23
8	5,32	4,46	4,07	3,84	3,69	3,58	3,50	3,44	3,39	3,35	3,28	3,15	3,12	3,08	3,02	2,93
9	5,12	4,26	3,86	3,63	3,48	3,37	3,29	3,23	3,18	3,14	3,07	2,94	2,90	2,86	2,80	2,71
10	4,96	4,10	3,71	3,48	3,33	3,22	3,14	3,07	3,02	2,98	2,91	2,77	2,74	2,70	2,64	2,54
11	4,84	3,98	3,59	3,36	3,20	3,09	3,01	2,95	2,90	2,85	2,79	2,65	2,61	2,57	2,51	2,40
12	4,75	3,89	3,49	3,26	3,11	3,00	2,91	2,85	2,80	2,75	2,69	2,54	2,51	2,47	2,40	2,30
13	4,67	3,81	3,41	3,18	3,03	2,92	2,83	2,77	2,71	2,67	2,60	2,46	2,42	2,38	2,31	2,21
14	4,60	3,74	3,34	3,11	2,96	2,85	2,76	2,70	2,65	2,60	2,53	2,39	2,35	2,31	2,24	2,13
15	4,54	3,68	3,29	3,06	2,90	2,79	2,71	2,64	2,59	2,54	2,48	2,33	2,29	2,25	2,18	2,07
16	4,49	3,63	3,24	3,01	2,85	2,74	2,66	2,59	2,54	2,49	2,42	2,28	2,24	2,19	2,12	2,01
17	4,45	3,59	3,20	2,96	2,81	2,70	2,61	2,55	2,49	2,45	2,38	2,23	2,19	2,15	2,08	1,96
18	4,41	3,55	3,16	2,93	2,77	2,66	2,58	2,51	2,46	2,41	2,34	2,19	2,15	2,11	2,04	1,92
19	4,38	3,52	3,13	2,90	2,74	2,63	2,54	2,48	2,42	2,38	2,31	2,16	2,11	2,07	2,00	1,88
20	4,35	3,49	3,10	2,87	2,71	2,60	2,51	2,45	2,39	2,35	2,28	2,12	2,08	2,04	1,97	1,84
21	4,32	3,47	3,07	2,84	2,68	2,57	2,49	2,42	2,37	2,32	2,25	2,10	2,05	2,01	1,94	1,81
22	4,30	3,44	3,05	2,82	2,66	2,55	2,46	2,40	2,34	2,30	2,23	2,07	2,03	1,98	1,91	1,78
23	4,28	3,42	3,03	2,80	2,64	2,53	2,44	2,37	2,32	2,27	2,20	2,05	2,01	1,96	1,88	1,76
24	4,26	3,40	3,01	2,78	2,62	2,51	2,42	2,36	2,30	2,25	2,18	2,03	1,98	1,94	1,86	1,73
25	4,24	3,39	2,99	2,76	2,60	2,49	2,40	2,34	2,28	2,24	2,16	2,01	1,96	1,92	1,84	1,71
26	4,23	3,37	2,98	2,74	2,59	2,47	2,39	2,32	2,27	2,22	2,15	1,99	1,95	1,90	1,82	1,69
27	4,21	3,35	2,96	2,73	2,57	2,46	2,37	2,31	2,25	2,20	2,13	1,97	1,93	1,88	1,81	1,67
28	4,20	3,34	2,95	2,71	2,56	2,45	2,36	2,29	2,24	2,19	2,12	1,96	1,91	1,87	1,79	1,65
29	4,18	3,33	2,93	2,70	2,55	2,43	2,35	2,28	2,22	2,18	2,10	1,94	1,90	1,85	1,77	1,64
30	4,17	3,32	2,92	2,69	2,53	2,42	2,33	2,27	2,21	2,16	2,09	1,93	1,89	1,84	1,76	1,62
40	4,08	3,23	2,84	2,61	2,45	2,34	2,25	2,18	2,12	2,08	2,00	1,84	1,79	1,74	1,66	1,51
50	4,03	3,18	2,79	2,56	2,40	2,29	2,20	2,13	2,07	2,03	1,95	1,78	1,74	1,69	1,60	1,44
60	4,00	3,15	2,76	2,53	2,37	2,25	2,17	2,10	2,04	1,99	1,92	1,75	1,70	1,65	1,56	1,39
70	3,98	3,13	2,74	2,50	2,35	2,23	2,14	2,07	2,02	1,97	1,89	1,72	1,67	1,62	1,53	1,35
80	3,96	3,11	2,72	2,49	2,33	2,21	2,13	2,06	2,00	1,95	1,88	1,70	1,65	1,60	1,51	1,32
90	3,95	3,10	2,71	2,47	2,32	2,20	2,11	2,04	1,99	1,94	1,86	1,69	1,64	1,59	1,49	1,30
100	3,94	3,09	2,70	2,46	2,31	2,19	2,10	2,03	1,97	1,93	1,85	1,68	1,63	1,57	1,48	1,28
120	3,92	3,07	2,68	2,45	2,29	2,18	2,09	2,02	1,96	1,91	1,83	1,66	1,61	1,55	1,46	1,25
∞	3,84	3,00	2,60	2,37	2,21	2,10	2,01	1,94	1,88	1,83	1,75	1,57	1,52	1,46	1,35	1,01