LAB#A-2 Design Analysis

109061806 羅允辰

Github Link:

https://github.com/jasonlo0509/DCT_HLS_Optimization

Outline

- Objective
- 5 Optimizations (Pragmas)
 - Inner-loop Pipelining
 - Critical Outer-loop Pipepining
 - Array Partitioning
 - Apply Dataflow (Inter-Function Pipelining)
 - Inline (Apply Dataflow to Sub-Funtion)
- Result

Objective

Figure 6-3: Overview of the DCT Design

目標: 用 Vivado HLS 分析並將 DCT 優化成每 100 cycles 內可以吃下一筆資料

Opt1- Inner Loop Pipelining

Opt2- Critical Outer Loop Pipelining


```
□ Outline ☑ Directive 🖾

■ o dct 1d

     ×I1 dct coeff table

■ W DCT Outer Loop

        % HLS PIPELINE
        DCT Inner Loop

■ odct 2d

     x[] row_outbuf
     x[] col_outbuf
     ×[] col inbuf
     Row DCT Loop
   Xpose Row Outer Loop

▲ ** Xpose Row Inner Loop

          % HLS PIPELINE
     Col_DCT_Loop

▲ ※ Xpose_Col_Outer_Loop

     Xpose_Col_Inner_Loop
          % HLS PIPELINE

    read data

■ # RD_Loop_Row

     A W RD_Loop_Col
          % HLS PIPELINE

    write data

■ WR_Loop_Row

■ WR_Loop_Col

          % HLS PIPELINE

■ o dct
```

Opt3-Array Partitioning


```
□ Outline  Directive  □
 ×[] dct coeff table
   JULY DCT Outer Loop
      % HLS PIPELINE
      DCT Inner Loop

    ■ dct_2d

    x[] row outbuf
    x[] col_outbuf
    ×[] col_inbuf
    % HLS ARRAY PARTITION variable=col inbuf complete dim=2
    Row_DCT_Loop

■ Yose_Row_Outer_Loop

▲ ** Xpose_Row_Inner_Loop

        % HIS PIPELINE
    Col_DCT_Loop
   % HLS PIPELINE
 read data
   A RD_Loop_Col
        % HLS PIPELINE

    write data

■ WR Loop Col

        % HLS PIPELINE
 xII buf_2d_in
    % HLS ARRAY_PARTITION variable=buf_2d_in complete dim=2
    x[] buf 2d out
    input
    output
```

Opt4-Apply Dataflow

		solution4	solution5
Latency	min	477	476
	max	477	476
Interval	min	477	343
	max	477	343

Opt5-Inline (Apply Dataflow to Sub-Funtion)

Result

目標:

用 Vivado HLS 分析並將 DCT 優化成每 100 cycles 內可以吃下一筆資料

Performance Estimates

☐ Timing (ns)

Clock			solution2				solution6
ap_clk	Target	8.00	8.00	8.00	8.00	8.00	8.00
. –	Estimated	4.14	4.14	6.35	6.35	6.35	6.35

□ Latency (clock cycles)

		solution1	solution2	solution3	solution4	solution5	solution6	
Latency	min	2935	1723	843	477	476	463	
-	max	2935	1723	843	477	476	463	
Interval	min	2935	1723	843	477	343	98 母 98	8 cycles可以
	max	2935	1723	843	477	343	98 灌下	一筆資料
							/ 庄	平見作

Utilization Estimates

成功!

	solution1	solution2	solution3	solution4	solution5	solution6
BRAM_18K	5	5	5	3	3	3
DSP48E	1	1	8	8	8	16
FF	246	223	520	944	950	1250
LUT	964	1281	1483	1949	1878	1847
URAM	0	0	0	0	0	0