

DengAI: Predicting Disease Spread

HOSTED BY DRIVENDATA

H O M E

A B O U T

PROBLEM DESCRIPTION

LEADERBOARD

You're not part of this competition. Yet...

Join the competition!

Problem description

Your goal is to predict the total_cases label for each (city, year, weekofyear) in the test set. There are two cities, San Juan and Iquitos, with test data for each city spanning 5 and 3 years respectively. You will make one submission that contains predictions for both cities. The data for each city have been concatenated along with a city column indicating the source: sj for San Juan and iq for Iquitos. The test set is a pure future hold-out, meaning the test data are sequential and non-overlapping with any of the training data. Throughout, missing values have been filled as NaN s.

Features List of features Example of features Performance metric

Mean absolute error

Submission Format Format example

The features in this dataset

You are provided the following set of information on a (year, weekofyear) timescale:

(Where appropriate, units are provided as a unit suffix on the feature name.)

City and date indicators

- city City abbreviations: sj for San Juan and iq for Iquitos
- week_start_date Date given in yyyy-mm-dd format

NOAA's GHCN daily climate data weather station measurements

- station_max_temp_c Maximum temperature
- station_min_temp_c Minimum temperature
- station_avg_temp_c Average temperature
- station_precip_mm Total precipitation
- station_diur_temp_rng_c Diurnal temperature range

PERSIANN satellite precipitation measurements (0.25x0.25 degree scale)

• precipitation_amt_mm - Total precipitation

NOAA's NCEP Climate Forecast System Reanalysis measurements (0.5x0.5 degree scale)

- reanalysis_sat_precip_amt_mm Total precipitation
- reanalysis_dew_point_temp_k Mean dew point temperature
- reanalysis_air_temp_k Mean air temperature
- reanalysis_relative_humidity_percent Mean relative humidity
- reanalysis_specific_humidity_g_per_kg Mean specific humidity
- reanalysis_precip_amt_kg_per_m2 Total precipitation
- reanalysis_max_air_temp_k Maximum air temperature
- reanalysis_min_air_temp_k Minimum air temperature
- reanalysis_avg_temp_k Average air temperature
- reanalysis_tdtr_k
 Diurnal temperature range

Satellite vegetation - Normalized difference vegetation index (NDVI) - NOAA's CDR Normalized Difference Vegetation Index (0.5x0.5 degree scale)

measurements

- ndvi_se Pixel southeast of city centroid
- ndvi_sw Pixel southwest of city centroid
- ndvi_ne Pixel northeast of city centroid
- ndvi nw Pixel northwest of city centroid

Feature data example

For example, a single row in the dataset, indexed by (city, year, weekofyear): (sj, 1994, 18), has these values:

week_start_date	1994-05-07
total_cases	22
station_max_temp_c	33.3
station_avg_temp_c	27.7571428571
station_precip_mm	10.5
station_min_temp_c	22.8
station_diur_temp_rng_c	7.7
precipitation_amt_mm	68.0
reanalysis_sat_precip_amt_mm	68.0
reanalysis_dew_point_temp_k	295.235714286
reanalysis_air_temp_k	298.927142857
reanalysis_relative_humidity_percent	80.3528571429

reanalysis_specific_humidity_g_per_kg	16.6214285714
reanalysis_precip_amt_kg_per_m2	14.1
reanalysis_max_air_temp_k	301.1
reanalysis_min_air_temp_k	297.0
reanalysis_avg_temp_k	299.092857143
reanalysis_tdtr_k	2.67142857143
ndvi_location_1	0.1644143
ndvi_location_2	0.0652
ndvi_location_3	0.1321429
ndvi_location_4	0.08175

Performance metric

Performance is evaluated according to the mean absolute error.

Submission format

The format for the submission file is simply the (city, year, weekofyear) and the predicted total_cases for San Juan or Iquitos (for an example, see SubmissionFormat.csv on the data download page). The total_cases should be represented as integer values.

For example, if you just predicted that there were 5 cases each week for 5 weeks in San Juan and 3 cases each week for 5 weeks in Iquitos, for a total of 10 weeks, you would have the following predictions:

city	year	weekofyear	total_cases
sj	2008	18	5
sj	2008	19	5
sj	2008	20	5
sj	2008	21	5
sj	2008	22	5
iq	2013	22	3
iq	2013	23	3
iq	2013	24	3
iq	2013	25	3
iq	2013	26	3

Your .csv file that you submit would look like:


```
city,year,weekofyear,total_cases
sj,2008,18,5
sj,2008,19,5
sj,2008,20,5
sj,2008,21,5
sj,2008,22,5
...
iq,2013,22,3
iq,2013,23,3
iq,2013,24,3
iq,2013,25,3
iq,2013,26,3
```

Keep in mind that you need to submit one csv with predictions for both cities! Hence the requirement of the city column. Results will be parsed on our end and MAE scores will be given for each city's predictions.

Good luck!

Good luck and enjoy this problem! If you have any questions you can always visit the user forum!

