Metody optymalizacji

Termin I, 24.06.2013

Zad. 1

Czy zadanie:

min
$$\{(x-5)^2 + (y-1)^2 + x \cdot y\}$$
, przy ograniczeniach:

$$x + y \le 0$$
, $x \ge 0$, $y \ge 0$,

Jest wypukłym zadaniem optymalizacji w R^2 ? Odpowiedź uzasadnij.

Zad. 2

Dla zadania

$$\min \{x_1^2 + 2 \cdot x_2^2 + 4 \cdot x_1 + 4 \cdot x_2\}:$$

- a) Znajdź punkty w R^2 spełniające warunki konieczne optymalności.
- b) Metodą analityczną (dokładną) dokonaj jednokrotnej optymalizacji kierunkowej z punktu startowego $x = \begin{bmatrix} 0 & 0 \end{bmatrix}^T$.

Zad. 3

Dla zadania

min
$$\{x_1^3 - x_1^2 \cdot x_2 + 2 \cdot x_2^2\}$$
, przy ograniczeniach:

$$x_1 \ge 0, \qquad x_2 \ge 0$$
:

- a) Podaj warunki konieczne optymalności (Kuhna-Tuckera).
- b) Udowodnij, że istnieją dwa punkty spełniające te warunki.

Zad. 4

Znaleźć wykorzystując metodę funkcji dualnej punkt w R^2 , znajdujący się najbliżej początku układu współrzędnych, spełniających warunki:

$$x_1 + x_2 \ge 1$$
, $x_1 \ge 0$, $x_2 \ge 0$

Zad. 5

Napisz definicję zadania optymalizacji dobrze uwarunkowanego.