

Surrogate Modeling for Reliability Based Design

Daniel Clark

Wright State University, Dayton, OH

Outline

- Response Surface Models: Simple Regression Models
 - Linear
 - Nonlinear
- Linear First-order Taylor Series Expansion
 - Linear single point approximation
- Reciprocal First-order Taylor Series Expansion
 - Nonlinear single point approximation
- Kriging
 - Highly nonlinear

Linear Regression Procedure

Response at a location is estimated by

$$y(x) = \beta_0 + \beta_1 f_1(x) + \dots + \beta_k f_k(x) + \epsilon$$

- Regression Coefficients
- Error of the model Eq
 - Assumed: normally distributed with mean zero and variance σ_e^2
- In matrix notation for n samples

$$Y = F\hat{\beta} + \epsilon$$

Linear Regression Procedure cont.

In expanded form we have

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} 1 & f_1(x_1) & f_2(x_1) & \cdots & f_k(x_1) \\ 1 & f_1(x_2) & f_2(x_2) & \cdots & f_k(x_2) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & f_1(x_n) & f_2(x_n) & \cdots & f_k(x_n) \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_n \end{bmatrix} + \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{bmatrix}$$

• Where $\hat{\beta}$ is found through general least squares

$$\hat{\beta} = \left(F^T F \right)^{-1} F^T Y$$

Nonlinear Regression Procedure

Response at a location is estimated by

$$y(x) = \beta_0 p_0(x) + \beta_1 p_1(x) + \dots + \beta_m p_m(x) + \epsilon$$

- $p_i(x)$ is I = 0, . . ., m and the polynomial is of order m
- Simplest polynomial model is the monomials of

$$-x^{m}$$
 i.e. $p_{0}(x) = 1$, $p_{1}(x) = x$, ..., $p_{m}(x) = x^{m}$

$$F = \begin{bmatrix} p_0(x_1) & p_1(x_1) & p_2(x_1) & \cdots & p_m(x_1) \\ p_0(x_2) & p_1(x_2) & p_2(x_2) & \cdots & p_m(x_2) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ p_0(x_n) & p_1(x_n) & p_2(x_n) & \cdots & p_m(x_n) \end{bmatrix}$$

Linear Regression Example

A simply supported beam of span L and stiffness EI is loaded with a concentrated load P at the midspan and a uniformly distributed load w along the length of the beam. The maximum deflection at the midspan can be calculated as

$$\delta_{max} = \frac{PL^3}{48EI} + \frac{5}{385} \frac{wL^4}{EI} \tag{1}$$

Suppose L and I are constant 30ft and 1.33×10^3 in⁴, but P and E are normal random variables with means of [50 kip and 29×10^6 lb/in²] and standard deviations of [10 kip and 1×10^5 lb/in²] and w is a lognormal variable with a mean of 1 kip/ft and a standard deviation of 0.1 kip/ft.

$$P \sim N(\mu_p, \sigma_p) = N(50x10^3, 10x10^3)$$
 lb $w \sim N(\mu_w, \sigma_w) = N(10^3/12, .1x10^3/12)$ lb/in

$$\widehat{\delta_{max}} = \widehat{\beta_0} + P\widehat{\beta_1} + w\widehat{\beta_2}$$

Nonlinear Regression Example

A simply supported beam of span L and stiffness EI is loaded with a concentrated load P at the midspan and a uniformly distributed load w along the length of the beam. The maximum deflection at the midspan can be calculated as

$$\delta_{max} = \frac{PL^3}{48EI} + \frac{5}{385} \frac{wL^4}{EI} \tag{1}$$

Suppose L and I are constant 30ft and 1.33×10^3 in⁴, but P and E are normal random variables with means of [50 kip and 29×10^6 lb/in²] and standard deviations of [10 kip and 1×10^5 lb/in²] and w is a lognormal variable with a mean of 1 kip/ft and a standard deviation of 0.1 kip/ft.

$$P \sim N(\mu_p, \sigma_p) = N(50x10^3, 10x10^3)$$
 lb $I \sim N(\mu_I, \sigma_I) = N(1.33x10^3, 90)$ in^4

$$\widehat{\delta_{max}} = \widehat{\beta_0} + P\widehat{\beta_1} + I\widehat{\beta_2} + PI\widehat{\beta_3}$$

First-order Taylor Series Expansion

$$f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f'''(a)}{3!}(x-a)^3 + \cdots$$

Expansion point is X_1

• Where
$$x_i$$
 is the i^{th} component of X

- And $x_{i,1}$ is the i^{th} component of X_1

$$g_R(\mathbf{X}) = g(\mathbf{X}_1) + \sum_{i=1}^n \left(\frac{\partial g}{\partial x_i}\right)_{x_1} (x_i - x_{i,1}) \left(\frac{x_{i,1}}{x_i}\right)$$
 Reciprocal

First-order Taylor Series Expansion

A simply supported beam of span L and stiffness EI is loaded with a concentrated load P at the midspan and a uniformly distributed load w along the length of the beam. The maximum deflection at the midspan can be calculated as

$$\delta_{max} = \frac{PL^3}{48EI} + \frac{5}{385} \frac{wL^4}{EI} \tag{1}$$

Suppose L and I are constant 30ft and 1.33×10^3 in⁴, but P and E are normal random variables with means of [50 kip and 29×10^6 lb/in²] and standard deviations of [10 kip and 1×10^5 lb/in²] and w is a lognormal variable with a mean of 1 kip/ft and a standard deviation of 0.1 kip/ft.

$$P \sim N(\mu_p, \sigma_p) = N(50x10^3, 10x10^3)$$
 lb $I \sim N(\mu_I, \sigma_I) = N(1.33x10^3, 90)$ in^4

$$\widehat{\delta_{max}} = \widehat{\beta_0} + P\widehat{\beta_1} + I\widehat{\beta_2} + PI\widehat{\beta_3}$$