

Language Modeling for Machine Translation

Overview

- Introduction
- N-Gram Models
- Measuring Preformance
- Count Smoothing
- Interpolation / Backoff
- Additional LM Types
- Special Problems

SMT Architecture

Language Model

- Main goal: Produce fluent English
 - Not only correct meaning
 - Some notion of grammaticality
- Also guidance for other problems
 - Word order
 - p(the house is small) = high
 - p(small the house is) = low
 - Word translation:
 - P(I am going home) = high
 - p(I am going house) = low

Language Model

- Formally:
 - Function English Sentence -> Probability that Sentence was produced by English Speaker
- indicates whether a sentence is good English (or German, ...):
- Useful for many natural language processing applications, such as machine translation, speech recognition, part-of-speech tagging, parsing and information retrieval
- Approaches:
 - deterministic, e.g. finite state grammars
 - A **statistical language model** assigns a probability to a sequence of words $P(w_{1..n})$ by means of a probability distribution

Statistical Language Model

Compute probability

$$p(W) = p(w_1, w_2, ..., w_N)$$

- Use statistics from large corpora
- Simple approach: look at a large text database (1*10^9 Sentences).
 - Count("how's it going?") = 76,413
 - ightharpoonup p(how's it going?) = 76,413/1,000,000,000 = 0.000076413
- Problem: sparse data
 - many perfectly good sentences will be assigned a p(e) of zero, because they have never been seen before

Statistical Language Model

- Advantage:
 - Trainable on Large Text Databases
 - Prediction 'Soft' (Probabilities)
 - Can be combined with translation model
- Problem:
 - Need Large Text Database for each Domain

Statistical Language Model

- Beak up into prediction of one word
- Decompose probability

$$p(w_1, w_2, ..., w_N) = p(w_1) * p(w_2 | w_1) * ... * p(w_N | w_1, w_2, ..., w_{N-1})$$

- Product of word probabilities given history
- Example:
 - Das tut mir aber...
 - ...Leid, Weh
 - .. Haus (?)

Data Sparsity

- Example:
 - 64,000 words
 - average sentence lengths of 25 words
 - number of possible histories $(64,000^{25} > 10^{120})$
- Cannot pre-compute every history
- Solutions:
 - compute P(w | history) "on the fly" (rarely used, very expensive)
 - Many will not occur -> how to estimate probability
 - replace the history by one out of a limited feasible number of classes

$$p(w_N \mid w_1, w_2, ..., w_{N-1}) = p(w_N \mid C(w_1, w_2, ..., w_{N-1}))$$

Classification of Word Sequence Histories

- grammatical content (phrases like noun-phrase, etc.)
- POS = part of speech of previous word(s)
- semantic meaning of previous word(s)
- context similarity (word(sequence)s that are often observed in similar contexts are treated equally, e.g. weekdays, people's names etc.)
- apply some kind of automatic clustering (agglomerative or divisive)
- Markov assumption:
 - Word probability depend only on n preceding words
 - Wrong, but good approximation

$$p(w_N \mid w_1, w_2, ..., w_{N-1}) = p(w_N \mid w_{N-k+1}, ..., w_{N-1})$$

N-Gram

- Example: the house is small
- Unigram: P(is)
 - No history
 - prior probabilities of word observation
- Bi-gram: P(is| house)
- Tri-gram: P(is | the house)
- 4-gram: P(is | <s> the house)

Trigram Language Model

p(I like snakes that are not poisonous) =

```
p(I | <s> <s>) *
p(like | <s> I) *
p(snakes | I like) *
p(that | like snakes) *
p(are | snakes that) *
p(not | that are) *
p(poisonous | are not) *
p(</s> | not poisonous </s>)
```

Estimate N-gram Probabilities

Maximum Likelihood estimation

$$p(w_3 | w_1, w_2) = \frac{count(w_1, w_2, w_3)}{\sum_{w} count(w_1, w_2, w)}$$

Estimate N-gram Probabilities

- Example:
 - Count from EPPS corpus

the green (total: 1748) the red (total: 225) the blue (total: 54)

	•	,
word	c.	prob.
paper	801	0.458
group	640	0.367
light	110	0.063
party	27	0.015
ecu	21	0.012

word	c.	prob.
cross	123	0.547
tape	31	0.138
army	9	0.040
card	7	0.031
,	5	0.022

word	c.	prob.
box	16	0.296
	6	0.111
flag	6	0.111
,	3	0.056
angel	3	0.056

Are N-Grams a good solution

Are Bigrams / Trigrams any good?

First experiment:

- •1.5 million words used for training
- •300,000 words used for testing
- restricted to 1,000 most frequent words

=> 23% of trigrams occurring in test corpus were absent from training corpus

Second experiment (bag of words):

- take any meaningful 10-word sentence (from dictation task)
- scramble the words into an arbitrary order
- •find most probable order with trigram model
 - 63% perfect word-by-word reconstruction
 79% reconstruction that preserves meaning

The Bag of Words Experiment

Most likely trigram sequences from randomly scambled dictated sentence:

- •I expect that the output will improve with experience. I expect that the output will improve with experience.
- •would I report directly to you?.
 I would report directly to you?.
- •now let me mention some of the disadvantages. let me mention some of the disadvantages now.
- •these people have a fairly large rate of turnover. of these people have a fairly large turnover rate.
- •exactly how this might be done is not clear. clear is not exactly how this might be done.

A Word Guessing Game

What do we learn from the word guessing game?

- •for some histories the number of expected words is rather small.
- •for some histories we can make virtually no prediction about the next word.
- •the more words fit at some point the more difficult it is to recognize the correct one (more errors are possible)
- •the difficulty of recognizing a word sequence is correlated with the "branching degree"

- Many design decisions:
 - How much and which training data?
 - N-Gram Length
 - Smoothing Technique
- Need to measure quality

- How to test if LM1 or LM2 is better?
- Obvious approach:
 - Use both in MT system
 - Use LM which leads to better MT performance

- Problem:
 - Performance depend on TM and interaction between TM and LM
 - Time-consuming
- Independent Measure

- Assumption:
 - Good English -> high Probability
 - Bad English -> low Probability
- Measure:
 - Held out data (assumed to be good English)
 - Calculate Probability of this data
 - Higher Probability -> Better language model
- Use Perplexity of test data

Cross Entropy:

$$H(p_{LM}) = -\frac{1}{n} \log(p_{LM}(w_1, w_2, ... w_N))$$
$$= -\frac{1}{n} \sum_{i=1}^{n} \log(p_{LM}(w_i \mid w_1, ... w_{i-1}))$$

Perplexity:

$$PP = 2^{H(p_{LM})}$$

interpret it as the "branching factor" of the language

Example

prediction	$p_{ m LM}$	- $\log_2 p_{ ext{LM}}$
$p_{\text{LM}}(i << >>)$	0.109	3.197
$p_{\scriptscriptstyle ext{LM}}(\textit{would} {<}s{>}i)$	0.144	2.791
$p_{ ext{LM}}(\mathit{like} \mathit{i}\;\mathit{would})$	0.489	1.031
$p_{ ext{LM}}(to would\;like)$	0.905	0.144
$p_{ ext{LM}}(commend like \ to)$	0.002	8.794
$p_{\rm LM}(the to\ commend)$	0.472	1.084
$p_{ ext{LM}}(rapporteur commend the)$	0.147	2.763
$p_{ m LM}(\mathit{on} \mathit{the\ rapporteur})$	0.056	4.150
$p_{ m LM}(his rapporteur\ on)$	0.194	2.367
$p_{ ext{LM}}(\mathit{work} \mathit{on}\;\mathit{his})$	0.089	3.498
$p_{\mathrm{LM}}(. \mathit{his}\;\mathit{work})$	0.290	1.785
$p_{\scriptscriptstyle ext{LM}}(work .)$	0.99999	0.000014
	average	2.634

Count Smoothing

- Problem: N-Gram has not been seen in training
 - Maximum likelihood estimation -> Probability is 0
 - Quite harsh
 - Not very useful
 - OOV in sentence -> All Hypothesis have probability of 0
- Assign also positive probabilities to unseen n-grams
 - Higher order n-grams -> even more important
- Empirical counts:
 - Counts seen in the training data
- Expected counts:
 - Counts in previously unseen text

Add – One Smoothing

- Simpelst approach:
 - Add fixed number(1) to every count
 - No counts are zero
 - No zero probabilities

$$p = \frac{c}{n} \to p = \frac{c+1}{n+v}$$

- V = total number of possible n-grams
- Problem:
 - Example:
 - Voc-Size = 86,700
 - Possible bi-grams: 86,700^^2 = 7,516,890,000 (7.5 billion)
 - Corpus Size: 30 million
 - To much weight to unseen examples

Add – α Smoothing

Add α < 1 instead:</p>

$$p = \frac{c}{n} \to p = \frac{c + \alpha}{n + \alpha v}$$

- How to find α :
 - Optimize on Preplexity
 - Match between adjusted counts and test counts

Add – α Smoothing - Example

Count	Adjusted count		Test count
\boldsymbol{c}	$(c+1)\frac{n}{n+v^2}$	$(c+\alpha)\frac{n}{n+\alpha v^2}$	t_c
0	0.00378	0.00016	0.00016
1	0.00755	0.95725	0.46235
2	0.01133	1.91433	1.39946
3	0.01511	2.87141	2.34307
4	0.01888	3.82850	3.35202
5	0.02266	4.78558	4.35234
6	0.02644	5.74266	5.33762
8	0.03399	7.65683	7.15074
10	0.04155	9.57100	9.11927
20	0.07931	19.14183	18.95948

Deleted Esitmation

- Estimate True Counts using held-out data
 - Split data in two parts
 - Counts in training of n-gram c=r
 - Number of N-grams with training count r: N_r
 - Total number of n-grams with training count r in test: T_r

$$r^* = \frac{T_r}{N_r}$$

- Use r* instead of original counts in probability estimation
- Switch test and training data
 - Use average

$$r^* = \frac{(T_{r1} + T_{r2})}{(N_{r1} + N_{r2})}$$

Deleted Esitmation- Example

Count	Count of count	Count in held-out	Exp. count
r	N_r	T_{r}	$E[r] = \frac{T_r}{N_r}$
0	7,515,623,434	938,504	0.00012
1	753,777	353,383	0.46900
2	170,913	239,736	1.40322
3	78,614	189,686	2.41381
4	46,769	157,485	3.36860
5	31,413	134,653	4.28820
6	22,520	122,079	5.42301
8	13,586	99,668	7.33892
10	9,106	85,666	9.41129
20	2,797	53,262	19.04992

Good – Turing Smoothing

- Idea: What does it mean if an n-gram occurs c times
- Mathematical analysis:
 - Calculate expected count r*using count of counts

$$r^* = (r+1)\frac{N_{r+1}}{N_r}$$

- Advantages:
 - Quite simple to calculate
- Disadvantage:
 - Unreliable for large r
 - Curve fitting
 - Only use for small r

Good – Turing Smoothing - Example

Count	Count of counts	Adjusted count	Test count
r	N_r	r^*	t
0	7,514,941,065	0.00015	0.00016
1	1,132,844	0.46539	0.46235
2	263,611	1.40679	1.39946
3	123,615	2.38767	2.34307
4	73,788	3.33753	3.35202
5	49,254	4.36967	4.35234
6	35,869	5.32928	5.33762
8	21,693	7.43798	7.15074
10	14,880	9.31304	9.11927
20	4,546	19.54487	18.95948

Evaluation

Smoothing method	Perplexity
Add-one	383.2
Add- α ($\alpha = 0.00017$)	113.2*
Deleted estimation	113.4
Good-Turing	112.9

Interpolation and Backoff

- General:
 - Longer context -> Better language models
- Problem:
 - Limited data -> More n-grams not observed
- Absolute Discounting:
 - Treats all n-grams equally
- Example:
 - Scottish beer drinkers
 - Scottish beer eaters
- Both have not been seen
 - Treated equally

Interpolation and Backoff

- Backoff to bi-grams:
 - Beer drinkers
 - Beer eater
- First may have been see
 - Can use these counts

Interpolation

Make use of more robust estimated lower n-grams

$$p_{I}(w_{3} | w_{1}w_{2}) = \lambda_{1}p_{1}(w_{3}) + \lambda_{2}p_{2}(w_{3} | w_{2}) + \lambda_{3}p_{3}(w_{3} | w_{1}w_{2})$$

$$\forall \lambda_n : 0 \le \lambda_n \le 1$$
$$\sum_n \lambda_n = 1$$

Optimize weights on held-out data set

Recursive Interpolation

Weight depend on history

$$p_n^I(w_i|w_{i-n+1},...,w_{i-1}) =$$

$$= \lambda_{w_{i-n+1},...,w_{i-1}} p_n(w_i|w_{i-n+1},...,w_{i-1}) +$$

$$+ (1 - \lambda_{w_{i-n+1},...,w_{i-1}}) p_{n-1}^I(w_i|w_{i-n+2},...,w_{i-1})$$

- Group histories:
 - According to frequency

Backoff

Trust the highest n-gram with counts

$$p_n^{BO}(w_i|w_{i-n+1},...,w_{i-1}) = \begin{cases} d_n(w_{i-n+1},...,w_{i-1}) \ p_n(w_i|w_{i-n+1},...,w_{i-1}) \\ \text{if } \operatorname{count}_n(w_{i-n+1},...,w_i) > 0 \end{cases}$$

$$= \begin{cases} \alpha_n(w_{i-n+1},...,w_{i-1}) \ p_{n-1}^{BO}(w_i|w_{i-n+2},...,w_{i-1}) \\ \text{else} \end{cases}$$

Adjust weights and discounting

Backoff with Good-Turing Smoothing

In Good-Turing Smoothing:

$$count*(w_1w_2) < count(w_1w_2)$$

Use for weights:

$$d(w_2 \mid w_1) = \frac{count * (w_1 w_2)}{count(w_1 w_2)}$$

- Zero count n-grams stay the same
- Discounting:

$$a(w_1) = 1 - \sum d(w_2 \mid w_1)$$

Diversity of Predicted Words

- Example: spite and constant
 - Both occur 993 times in Europal corpus
 - 9 words follow spite (mostly spite of)
 - 415 different word follow constant
- More likely to see new bigram starting with constant than spite
- Witten-Bell smoothing

Witten-Bell Smoothing

- Recursive interpolation method
- Number of possible extensions of history:

$$N_{1+}(w_1,...,w_{n-1},^*) = |\{w_n : c(w_1,...,w_{n-1},w_n) > 0|\}$$

Lambda parameters:

$$1 - \lambda_{w_1, \dots, w_{n-1}} = \frac{N_{1+}(w_1, \dots, w_{n-1}, *)}{N_{1+}(w_1, \dots, w_{n-1}, *) + \sum_{w_n} c(w_1, \dots, w_{n-1}, w_n)}$$

Witten – Bell - Example

$$1 - \lambda_{spite} = \frac{N_{1+}(\text{spite}, \bullet)}{N_{1+}(\text{spite}, \bullet) + \sum_{w_n} c(\text{spite}, w_n)}$$
$$= \frac{9}{9 + 993} = 0.00898$$

$$1 - \lambda_{constant} = \frac{N_{1+}(constant, \bullet)}{N_{1+}(constant, \bullet) + \sum_{w_n} c(constant, w_n)}$$
$$= \frac{415}{415 + 993} = 0.29474$$

Diversity of Histories

- Example: York
 - Quite frequent in Europarl(477 times, like foods, indicates, ...)
 - -> high uni-gram probability
- Nearly always follows New (473)
- Usage of Uni-gram model:
 - Only used if bigram not there
- -> York unlikely to be second word of unseen n-gram
- Back-off unigram -> lower probability for York

Kneser-Ney Smoothing

- Use diversity of histories for lower order n-grams
- Count of history for a word:

$$N_{1+}(*w) = |\{w_i : c(w_i, w) > 0 |\}$$

Maximum Likelihood estimation

$$p_{ML}(w) = \frac{c(w)}{\sum_{i} c(w_i)}$$

Knesery Ney smoothing

$$p_{KN}(w) = \frac{N_{1+}(*w)}{\sum_{i} N_{1+}(*w_{i})}$$

Modified Kneser-Ney Smoothing

- Most commonly use smoothing technique
- Different stategies for highest order and other n-grams:
- Highest order n-grams:
 - Absolute discounting with three different values (1,2,3+)
 - Similar to Witten-Bell for backoff
- Lower order n-grams:
 - Discounting of the histories using again 3 absolute discounting values

Backoff and Interpolated version

Evaluation

Smoothing method	bigram	trigram	4-gram
Good-Turing	96.2	62.9	59.9
Witten-Bell	97.1	63.8	60.4
Modified Kneser-Ney	95.4	61.6	58.6
Interpolated Modified Kneser-Ney	94.5	59.3	54.0

Different Kinds of Language Models

So far, we have analyzed static *n*-grams. There also are:

- <u>cache</u> language models (constantly adapting to a floating text)
- <u>trigger</u> language models (can handle long distance effects)
- POS-based language models, LM over POS tags
- <u>class-based</u> language models based on semantic classes
- <u>multilevel</u> n-gram language models (mix many LM together)
- <u>interleaved</u> language models (different LM for different parts of text)
- <u>morpheme</u>-based language models (separate words into core and modifyers)
- <u>context free grammar</u> language models (use simple and efficient LM-definition)
- <u>decision tree</u> language models (handle long distance effects, use rules)
- <u>HMM</u> language models (stochastic decision for combination of independent LMs)

Cache Language Models

Observation: When using a machine translation system (e.g. for news texts) the topics can change at arbitrary points.

·ldea:

Use a static and a dynamic component of the language model. Constantly update the dynamic component.

•Static Component:

 $P_{S}(w_{k} \mid w_{k-(n-1)} \dots w_{k-1})$ i.e. the usual trained language model.

•Dynamic Component:

complete *n*-gram language model constructed from the text translate so far, e.g.:

$$P_{D}(w_{k} \mid w_{k-(n-1)} \dots w_{k-1}) = 0.5 \cdot f(w_{k}) + 0.25 \cdot f(w_{k} \mid w_{k-1}) + 0.25 \cdot f(w_{k} \mid w_{k-2})$$

•Total Language Model:

$$P_{\rm T} = \lambda \cdot P_{\rm D} + (1 - \lambda) \cdot P_{\rm S}$$

•Variation: Compute P_D on window of last I words.

Trigger Language Models

Observation: Often, the probability of a word depends on some word far in the history. Often, when a content-carrying word occurs in a text it is likely to occur again some time later.

·ldea:

Use a standard interpolated n-gram language model. But constantly update the unigrams $P(w_k)$ for some words w_k .

Trigger

For each word w define a trigger list L(w) (possibly weighted) of words that are likely to occur some time later.

E.g. $L(MONEY) = \{BANK, SAVINGS, ACCOUNT, DOLLARS, COST\}.$ Then, for each word v in L(w) increase P(v) by some value.

Multilevel Language Models

·ldea:

Use a language model for word sequences LM_W , one for phrases LM_P , and one for sentences LM_S trained as regular n-gram grammars over their corresponding segments of speech.

Combination

Let the total language model be a linear combination of the three independent language models: $LM_T = \lambda \cdot LM_W + \lambda \cdot LM_P + \lambda \cdot LM_S$

Morpheme-Based Language Models

Observation:

Often, in inflecting languages, the probability for a word can be estimated more robustly for the core of the word than for the word together with its pre- and suffixes.

Often, the gender- tempus- numerus- and caseidentifying suffixes depend on the corresponding form of the preceding adjective or article.

·ldea:

Don't compute language model on sequences of words but on sequences of word-building fragments (morphemes):

$$P(w_1 \ w_2 \ ...) = P(w_{11} \ w_{12} \ w_{13} \ w_{21} \ w_{22} \ ...)$$

Language Models: Grammar Based

Write Grammar of Possible Sentence Patterns

- Advantages:
 - Long History / Context
 - Don't Need Large Text Database (Rapid Prototyping)
- Problem:
 - Work to Write Grammars
 - Rigid: Only Programmed Patterns can be Recognized

Karlsruher Institut für Technologie

Context-Free Grammar Language Models

Why use context-free grammars (CFG) instead of *n*-grams?

- •The rules of the grammar can be written by expert without the need for lots of training text data.
- •CFGs are powerful enough to represent large parts of natural languages.
- •CFGs are constrained enough to allow efficient search space reduction.
- •If interpreted as finite state automaton, then the state transition sequence can also be used for efficient parsing (semantic analysis) of the sentence.

Special Problems with Spontaneous Speech

In spontaneous speech, we often observe words that blow up the word sequence but in most cases don't influence the language model:

- silence between words can be optionally inserted or omitted
- •emphatic pauses: UHs, UMs, ...
- •filler words and phrases: YEAH, YOU KNOW, ...
- aborted or stuttered words
- non speech sounds: breathing, lip smacks, tong clicks, ...

Such words are narrowing the context of *n*-grams, sometimes even push out the entire content-carrying context.

Approaches:

- ignore any problem, treat spontaneous effects like regular words
- increase context width (use four-grams, etc.)
- •skip spontaneous effects in the history of *P*(*w* | history)

Special Problems with Unknown Words

Question: How do we incorporate unknown words into the language model?

Approaches:

- •Rewrite all words in the training text that occur only once with the word "UNK",
- treat every unknown word in the recognition run as if it was "UNK".
- •Use a class-based language model, assign a class to every unknown word and use the class probabilities.
- •Optionally add new word into vocabulary and use cache language model to improve the parameters of frequently occurring new words.

Karlsruher Institut für Technologie

Special Problems with Different Languages

- Languages differ in their degree of inflection.
- •Highly inflecting languages pose more problems to language modeling.

(Korean allows tens of thousands of forms of the same verb)

- => use morpheme-based language models, and syntactic/ semantic classes
- Languages differ in their potential to form new words.
- •E.g. German allows arbitrary compounding of nouns.
- => decompose compound nouns for calculating the language model
- •Some languages have a different or not exactly specified notion of words.
- ·(Given曲阜孔子博物院

Where does a word start and where does it end?)

=> use syllable based language models