DEEP LEARNING

MARCELO ERRECALDE (UNSL)
LAURA LANZARINI (UNLP)
CESAR ESTREBOU (UNLP)

MATERIALES Y ACTIVIDADES

El material está disponible en IDEAS

https://ideas.info.unlp.edu.ar/

Contiene

- Diapositivas y links a la bibliografía.
- Actividades a realizar en clase.
- Autoevaluación del curso.

https://goo.by/RwlClt

BIBLIOGRAFÍA

Deep Learning with Python.

François Chollet.

Manning, 2021

Neural Networks and Deep Learning

Michael A. Nielsen.

Determination Press, 2015

https://goo.by/RwlClt

DEEP LEARNING

La **Inteligencia Artificial (IA)** es la inteligencia llevada a cabo por máquinas. Un sistema inteligente es un programa de computadora que reúne características y comportamientos similares a la inteligencia humana.

 Subconjunto de técnicas que brindan a las computadoras la capacidad de aprender sin haber sido programadas explícitamente. Identifican patrones en los datos y pueden tomar decisiones.

 Subconjunto de técnicas de Machine Learning basadas en Redes Neuronales profundas entrenadas con grandes volúmenes de datos.
 Pueden adaptarse continuamente mejorando su desempeño.

PROGRAMACIÓN CLÁSICA Y APRENDIZAJE AUTOMÁTICO

TIPOS DE APRENDIZAJE

APRENDIZAJE SUPERVISADO

GATO

GATO

GATO

ARBOL

ARBOL

CUADERNO

CUADERNO

CUADERNO

GATO

APRENDIZAJE NO SUPERVISADO

AGRUPAMIENTO

APRENDIZAJE SUPERVISADO

GATO

GATO

GATO

ARBOL

ARBOL

CUADERNO

CUADERNO

CUADERNO

GATO

?

Hoy trabajaremos con APRENDIZAJE SUPERVISADO

RECONOCEDOR DE DÍGITOS ESCRITOS A MANO

 Cuando terminemos la clase de hoy habremos aprendido cómo entrenar una red neuronal para que pueda reconocer dígitos escritos a mano.

504192

REDES NEURONALES

- El cerebro humano
 - Procesa información imprecisa rápidamente.
 - Aprende sin instrucciones explícitas.
 - Crea representaciones internas que permiten estas habilidades.
- Las Redes Neuronales Artificiales o simplemente **Redes Neuronales**, buscan emular el comportamiento del cerebro humano.

NEURONA BIOLÓGICA

 El cerebro consta de un gran número de elementos (aprox. 10¹¹) altamente interconectados (aprox. 10⁴ conexiones por elemento), llamados neuronas.

SIMILITUDES ENTRE UNA NEURONA BIOLÓGICA Y UNA ARTIFICIAL

Las entradas X_i representan las señales que provienen de otras neuronas y que son capturadas por las dendritas

SIMILITUDES ENTRE UNA NEURONA BIOLÓGICA Y UNA ARTIFICIAL

Los pesos W_i son la intensidad de la sinapsis que conecta dos neuronas

SIMILITUDES ENTRE UNA NEURONA BIOLÓGICA Y UNA ARTIFICIAL

heta es la función umbral que la neurona debe sobrepasar para activarse; este proceso ocurre biológicamente en el cuerpo de la célula

EL PERCEPTRÓN

- Es una RN formada por una única neurona.
- Utiliza aprendizaje supervisado.
- Su regla de aprendizaje es una modificación de la propuesta por Hebb.
- Se adapta teniendo en cuenta el error entre la salida que da la red y la salida esperada.
- Representa una única función discriminante que separa linealmente los ejemplos en dos clases.

FUNCIONAMIENTO DE UN PERCEPTRÓN

EJEMPLO: Perceptrón para decidir si debo ir o no a un evento

- Cada entrada x_i vale 1 si se cumple la condición y 0 si no.
- Si la salida y es 1 significa que debo ir al evento.

Umbral = 3

EJEMPLO: Perceptrón para decidir si debo ir o no a un evento

- Cada entrada x_i vale 1 si se cumple la condición y 0 si no.
- Si la salida y es 1 significa que debo ir al evento.

Umbral = 3

¿Qué pasa si cambiamos Umbral = 5?

EJEMPLO: Perceptrón para decidir si debo ir o no a un evento

- Cada entrada x_i vale 1 si se cumple la condición y 0 si no.
- Si la salida y es 1 significa que debo ir al evento.

Umbral = 3

¿Qué pasa si W_1 =2?

EL PERCEPTRÓN

EL PERCEPTRÓN

AND

x_1	x_2	Σ	у
0	0	-1.5	0
0	1	-0.5	0
1	0	-0.5	0
1	1	0.5	1

NEURONA ARTIFICIAL

ENTRENAMIENTO DE UNA NEURONA

- Indicar el valor de la tasa de aprendizaje (learning_rate)
- Inicializar los pesos W y el sesgo con valores random
- Mientras (la calidad de la repuesta no sea aceptable)
 - Para cada ejemplo
 - Ingresar el ejemplo a la red y obtener la salida y
 - Calcular el error cometido y determinar los cambios a realizar.
 - Actualizar los pesos de la neurona de manera adecuada.

Función de Costo

Optimización por gradiente (se buscará el mínimo de la función de costo)

FUNCIÓN DE COSTO

- Es una medida de la diferencia entre las predicciones del modelo y los valores reales.
- Indica qué tan bien está funcionando el modelo.
- Funciones de costo para problemas de clasificación
 - Entropía cruzada binaria (para problemas de clasificación binaria, 0 o 1)
 - Entropía cruzada categórica (para problemas multiclase)

OPTIMIZACIÓN POR GRADIENTE

- Es un estrategia eficiente y fundamentada matemáticamente para encontrar los valores de las variables que minimizan (o maximizan) una función
 - **Dirección de mayor cambio**: El gradiente de una función en un punto específico es un vector que indica la dirección del mayor incremento de la función.
 - **Eficiencia**: El gradiente proporciona información local sobre la pendiente de la función. Computacionalmente eficiente para problemas complejos o con muchas variables.
 - Convengencia a un óptimo local.
 - Adaptabilidad: Existen variaciones del gradiente descendente (como el gradiente estocástico, mini-lote o con momentos) que lo hacen más robusto y aplicable a distintos tipos de problemas, incluyendo funciones no convexas o grandes volúmenes de datos.

MINIMIZACIÓN DE LA FUNCIÓN DE ERROR USANDO DESCENSO DE GRADIENTE ESTOCÁSTICO

gradienteFuncion4_CombinadorLineal.py

REDES MULTICAPA

- Con una neurona puede resolverse un problema de dos clases linealmente separables.
- Hay problemas de 2 clases que no cumplen esta condición.
- El problema del XOR, si bien tiene dos clases, no es linealmente separable. Por lo tanto, no alcanza con una única neurona para resolverlo.

XOR

$$w_{11}=1$$
 $w_{12}=1$ $b_1=-0.5$; $w_{21}=1$ $w_{22}=1$ $b_2=-1.5$; $w_{31}=1$ $w_{32}=-1.5$ $b_3=-0.5$

XOR

p1	p2	I1 (or)	I2 (AND)	a
1	0	1	0	1
1	1	1	1	0
0	0	0	0	0
0	1	1	0	1

PROBLEMA NO SEPARABLE LINEALMENTE

Se utiliza un algoritmo general que integra el aprendizaje entre las dos capas.

ANIMACIÓN DE UNA RN

Tinker With a Neural Network Right Here in Your Browser

RESOLUCIÓN DE UNA TAREA DE CLASIFICACIÓN

- Conjunto de datos etiquetados (aprendizaje supervisado)
- Definición de la arquitectura de la red
 - Número de capas y tamaño de cada una
 - Función de activación a usar en cada capa
- Entrenamiento
 - Función de costo
 - Técnica de optimización para reducir el error
- Evaluar el modelo

EJEMPLO: CLASIFICACIÓN DE FLORES DE IRIS

https://archive.ics.uci.edu/ml/datasets/lris

DATASET IRIS

Id	sepallength	sepalwidth	petallength	petalwidth	class
1	5,1	3,5	1,4	0,2	Iris-setosa
2	4,9	3,0	1,4	0,2	Iris-setosa
•••					
95	5,6	2,7	4,2	1,3	Iris-versicolor
96	5,7	3,0	4,2	1,2	Iris-versicolor
97	5,7	2,9	4,2	1,3	Iris-versicolor
149	6,2	3,4	5,4	2,3	Iris-virginica
150	5,9	3,0	5,1	1,8	Iris-virginica

https://archive.ics.uci.edu/ml/datasets/lris

NORMALIZACION DE ATRIBUTOS

La normalización permite expresar los valores de los atributos sin utilizar las unidades de medida originales facilitando su comparación y uso conjunto

Normalización lineal uniforme

$$X' = \frac{X - X_{min}}{X_{max} - X_{min}}$$

- Es muy sensible a valores atípicos.
- Los valores quedan expresados en el intervalo [0, 1]

Normalización usando media y desvío

$$X' = \frac{X - media(X)}{desviacion(X)}$$

 Los valores quedan distribuidos normalmente alrededor de 0 con desviación 1

RESOLUCIÓN DE UNA TAREA DE CLASIFICACIÓN

- Conjunto de datos etiquetados (aprendizaje supervisado)
- Definición de la arquitectura de la red
 - Número de capas y tamaño de cada una
 - Función de activación a usar en cada capa
- Entrenamiento
 - Función de costo
 - Técnica de optimización para reducir el error
- Evaluar el modelo

ARQUITECTURA DE LA RED

Las dimensiones de las capas de entrada y salida las define el problema

ARQUITECTURA DE LA RED

Su respuesta depende de la Función de activación elegida

FUNCIÓN SOFTMAX

- La función softmax convierte el vector de salidas de una red neuronal en probabilidades.
- Se utiliza generalmente en la última capa de modelos de clasificación multiclase.

$$Softmax(z_j) = \frac{e^{z_j}}{\sum_{k=1}^n e^{z_k}}$$

- z_i es la entrada de la j-ésima neurona
- n es el número total de clases

ARQUITECTURA A UTILIZAR PARA CLASIFICAR LAS FLORES DE IRIS

KERAS

Keras una biblioteca de código abierto escrita en Python que facilita la creación de modelos de aprendizaje profundo. Es ampliamente utilizada en la comunidad de investigación y en aplicaciones industriales debido a su simplicidad y capacidad para prototipar modelos rápidamente.

<u>Características</u>

- Prototipado rápido del modelo.
- De alto nivel (programación a nivel de capa)
 - Keras todavía se considera una API de alto nivel. Permite a los usuarios construir modelos a través de una abstracción clara de capas, lo que simplifica el proceso de construcción de arquitecturas complejas.
- Desde 2019, Keras se ha integrado completamente en TensorFlow.
 - Keras es ahora la API oficial de alto nivel de TensorFlow, y su desarrollo independiente con otros backends ha quedado obsoleto

from keras.models import Sequential from keras.layers import Dense

Crear un modelo de capas secuenciales model=Sequential()

from keras.models import Sequential from keras.layers import Dense

Crear un modelo de capas secuenciales model=Sequential()

#Agregar las capas al modelo

model.add(Dense(2, input_shape=[4], activation='tanh'))

from keras.models import Sequential from keras.layers import Dense

Crear un modelo de capas secuenciales model=Sequential()

#Agregar las capas al modelo

from keras.models import Sequential from keras.layers import Dense

Crear un modelo de capas secuenciales model=Sequential()

#Agregar las capas al modelo

model.add(Dense(2, input_shape=[4], activation='tanh'))
model.add(Dense(3, activation='sigmoid'))

Imprimir un resumen del modelo

model.summary()

Layer (type)	Output	Shape	Param #
dense_1 (Dense)	(None,	2)	10
dense_2 (Dense)	(None,	3)	9

Total params: 19 Trainable params: 19 Non-trainable params: 0

from keras.models import Sequential from keras.layers import Dense, Input

Crear un modelo de capas secuenciales

model=Sequential()
model.add(Input(shape=(4,)))
model.add(Dense(2, activation='tanh'))
model.add(Dense(3, activation='sigmoid'))

Imprimir un resumen del modelo

model.summary()

Se puede indicar la capa de entrada de manera separada

RESOLUCIÓN DE UNA TAREA DE CLASIFICACIÓN

- Conjunto de datos etiquetados (aprendizaje supervisado)
- Definición de la arquitectura de la red
 - Número de capas y tamaño de cada una
 - Función de activación a usar en cada capa
- Entrenamiento
 - Función de costo
 - Técnica de optimización para reducir el error
- Evaluar el modelo

CONFIGURACIÓN PARA ENTRENAMIENTO

from keras.models import Sequential from keras.layers import Dense

```
model=Sequential()
model.add(Dense(2, input_shape=[4], activation='tanh'))
model.add(Dense(3, activation='sigmoid'))
```

Configuración para entrenamiento

model.compile(optimizer='sgd', loss='mse', metrics='accuracy')

Descenso de gradiente estocástico

Error Cuadrático Medio

Keras Iris.ipynb

CONFIGURACIÓN PARA ENTRENAMIENTO

from keras.optimizers import SGD from keras.models import Sequential from keras.layers import Dense

```
model=Sequential()
model.add(Dense(2, input_shape=[4], activation='tanh'))
model.add(Dense(3, activation='sigmoid'))
```


Configuración para entrenamiento

model.compile(optimizer=SGD(learning_rate=0.1), loss='mse', metrics='accuracy')

Tasa de aprendizaje

CONFIGURACIÓN PARA ENTRENAMIENTO

from keras.models import Sequential from keras.layers import Dense

```
model=Sequential()
model.add(Dense(2, input_shape=[4], activation='tanh'))
model.add(Dense(3, activation='softmax'))
```

Configuración para entrenamiento

model.compile(loss='categorical_crossentropy', optimizer='sgd', metrics ='accuracy')

CARGA DE DATOS

$$X,T = cargar_datos()$$

Y = keras.utils.to_categorical(T)

X → Conjunto de ejemplos de entrada

	0	1	2	3
0	5.1	3.5	1.4	0.2
1	4.9	3	1.4	0.2
2	4.7	3.2	1.3	0.2
3	4.6	3.1	1.5	0.2
4	5	3.6	1.4	0.2
5	5.4	3.9	1.7	0.4

T debe ser un vector numérico. Puede usar lo siguiente para convertirlo de ser necesario:

from sklearn import preprocessing
encoder = preprocessing.LabelEncoder()
T = encoder.fit transform(T)

Y → Rtas esperadas para c/neurona de la capa de salida

	0	1	2
0	1	0	0
1	0	1	0
2	0	0	1
3	0	0	1
4	0	1	0
5	0	0	1

X e Y son matrices de numpy

ENTRENAMIENTO DEL MODELO

X,Y = cargar_datos() # X e Y son matrices de numpy

Entrenar el modelo

model.fit(X,Y, epochs=100, batch_size=20)

PREDICCIÓN DEL MODELO

X,Y = cargar_datos() # X e Y son matrices de numpy

Entrenar el modelo

model.fit(X,Y, epochs=100, batch_size=20)

predecir la salida del modelo

Y_pred = model.predict(X) _

Y_pred tiene las mismas dimensiones que **Y**

0	1	2
0.967722	0.189344	0.00421873
0.0372113	0.510963	0.346058
0.00325751	0.261545	0.917956
0.00823823	0.319694	0.795647
0.0717264	0.611822	0.171516
0.0134856	0.482814	0.59486

PARADA TEMPRANA (EARLY-STOPPING)

PARADA TEMPRANA (EARLY-STOPPING)

```
from keras.callbacks import EarlyStopping

model = ...

model.compile( ... )

es = EarlyStopping(monitor='val_accuracy', patience=30, min_delta=0.0001)

H = model.fit(x = X_train, y = Y_train, epochs=4000, batch_size = 20,

validation_data = (X_test,Y_test), callbacks=[es])
```


print("Epocas = %d" % es.stopped_epoch)

Un **callback** es un objeto que puede realizar acciones en varias etapas del entrenamiento (por ejemplo, al inicio o final de una época, antes o después de un lote)

PARADA TEMPRANA (EARLY-STOPPING)

```
from keras.callbacks import EarlyStopping model = ... model.compile( ... )
```

EarlyStopping es un callback que detiene el entrenamiento de un modelo de forma anticipada si no hay mejoras en un criterio específico

```
es = EarlyStopping(monitor='val_accuracy', patience=30, min_delta=0.0001)  
H = model.fit(x = X_train, y = Y_train, epochs=4000, batch_size = 20, validation_data = (X_test, Y_test), callbacks=[es])
```

min_delta=0.0001 significa que se considera una mejora si el incremento de la precisión es mayor que 0.0001

print("Epocas = %d" % es.stopped_epoch)

Keras_Iris.ipynb

RESOLUCIÓN DE UNA TAREA DE CLASIFICACIÓN

- Conjunto de datos etiquetados (aprendizaje supervisado)
- Definición de la arquitectura de la red
 - Número de capas y tamaño de cada una
 - Función de activación a usar en cada capa
- Entrenamiento
 - Función de costo
 - Técnica de optimización para reducir el error
- Evaluar el modelo

ERROR DEL MODELO

```
X,Y = cargar datos() # X e Y son matrices de numpy
# Entrenar el modelo
model.fit(X,Y, epochs=100, batch size=20)
# predecir la salida del modelo
Y pred = model.predict(X)
# Calcular el error del modelo
score = model.evaluate(X_train,Y_trainB)
print('Error :', score[0])
                                    Muestra el valor de la función de Costo
                                    y la precisión del modelo al finalizar el
print('Accuracy:', score[I])
```

entrenamiento

MATRIZ DE CONFUSIÓN

	Predice Clase I	Predice Clase 2	Recall
True Clase I	A	В	A/(A+B)
True Clase 2	С	D	D/(C+D)
Precision	A/(A+C)	D/(B+D)	(A+D)/(A+B+C+D)
			accuracy

- Los aciertos del modelo están sobre la diagonal de la matriz.
- Precision: la proporción de predicciones correctas sobre una clase.
- Recall: la proporción de ejemplos de una clase que son correctamente clasificados.
- Accuracy: la performance general del modelo, sobre todas las clases. Es la cantidad de aciertos sobre el total de ejemplos.

MÉTRICAS

```
report = metrics.classification report(Y true, Y pred, target names=etiquetas)
print("Training metrics:\n%s" % report)
MM = metrics.confusion matrix(Y true, Y pred)
print("Confusion matrix:\n%s" % MM)
                                                               f1 - score = 2 * \frac{precision * recall}{precisión + recall}
          Training metrics:
                                       recall f1-score
                          precision
                                                         support
                                                                               Confusion matrix:
              Iris-setosa
                               1.00
                                        1.00
                                                  1.00
                                                              42
                                                                               [[42 0 0]
          Iris-versicolor
                               0.97
                                         0.88
                                                  0.92
                                                              41
                                                                                [ 0 36 5]
           Iris-virginica
                               0.88
                                        0.97
                                                  0.92
                                                              37
                                                                                [ 0 1 36]]
                                                  0.95
                                                             120
                 accuracy
                                                  0.95
                                         0.95
                                                             120
                               0.95
                macro avg
             weighted avg
                               0.95
                                         0.95
                                                  0.95
                                                             120
```

EJEMPLO: CLASIFICACIÓN DE FLORES DE IRIS

RECONOCEDOR DE DÍGITOS ESCRITOS A MANO

- Se desea entrenar un multiperceptrón para reconocer dígitos escritos a mano. Para ello se dispone de los mapas de bits correspondientes a 5620 dígitos escritos a mano.
- Los primeros 3823 fueron escritos por 30 personas diferentes y deben ser usado para el entrenamiento.
- El desempeño de la red será probado con los 1797 dígitos restantes que fueron escritos por otras 13 personas.

DÍGITOS

□ Cada dígito está representado por una matriz numérica de 8x8

DÍGITOS

□ Cada dígito está representado por una matriz numérica de 8x8

PREDICCIÓN DE LA RN

```
Y pred = model.predict(X test)
Y pred2 = np.argmax(Y pred,axis=1)
Y true = np.argmax(Y test,axis=1)
print("%% aciertos X train : %.3f" % metrics.accuracy score(Y true, Y pred2))
57/57 ---- 0s 1ms/step
                                                                      Dígitos de testeo :
% aciertos X_train : 0.961
                                                                                 precision
                                                                                            recall f1-score support
                                                                                                     0.99
                                                                                     0.99
                                                                                             0.98
                                                                                                              178
                                                                                     0.93
                                                                                             0.99
                                                                                                     0.96
                                                                                                              182
report = metrics.classification_report(Y_true, Y_pred2)
                                                                                     0.98
                                                                                             0.95
                                                                                                     0.97
                                                                                                              177
                                                                                     0.99
                                                                                             0.96
                                                                                                     0.97
                                                                                                              183
print("Dígitos de testeo :\n%s" % report)
                                                                                     0.98
                                                                                             0.98
                                                                                                     0.98
                                                                                                              181
                                                                                     0.91
                                                                                             0.98
                                                                                                     0.94
                                                                                                              182
                                                                                     1.00
                                                                                             0.99
                                                                                                     0.99
                                                                                                              181
                                                                                     0.98
                                                                                             0.92
                                                                                                     0.95
                                                                                                              179
                                                                                     0.96
                                                                                             0.89
                                                                                                     0.92
                                                                                                              174
                                                                                     0.90
                                                                                             0.97
                                                                                                      0.94
                                                                                                              180
                        Keras_DIGITOS.ipynb
                                                                                                     0.96
                                                                                                              1797
                                                                         accuracy
                                                                                     0.96
                                                                                             0.96
                                                                                                      0.96
                                                                         macro avg
                                                                                                             1797
                                                                      weighted avg
                                                                                     0.96
                                                                                             0.96
                                                                                                      0.96
                                                                                                              1797
```