论文研读

论文标题: FLAT: Chinese NER Using Flat-Lattice Transformer

方向: 命名实体识别

论文地址: https://arxiv.org/pdf/2004.11795.pdf

代码地址: https://github.com/LeeSureman/Flat-Lattice-Transformer

背景

命名实体识别研究在很多自然语言处理任务中起着不可或缺的作用,与英文NER相比,中文NER要更加 困难,因为它通常涉及到词的分割,因此,中文NER通常采取基于字符的方式。究其缘由,由于中文分 词存在误差,基于字符的NER系统通常好于基于词汇(经过分词)的方法。

但是基于字符的NER通常不包括词汇信息,最近的一些研究表明,词汇边界对于实体边界通常起着至关重要的作用。那么,如何引入词汇的边界信息(词汇增强)是目前中文NER研究的重点。

● 如何进行词汇增强

从最近两年的顶会论文可以发现,目前的词汇增强方式主要分为两个流派:

- 1. Dynamic Architecture:设计一个动态框架,能够兼容词汇输入,模型包括Lattice LSTM、LR-CNN、CGN、LGN和本文所阅读的**FLAT**
- 2. Adaptive Embedding:基于词汇信息,构建自适应Embedding,模型包括WC-LSTM等

FLAT模型

*复旦大学邱锡鹏团队*在ACL2020提出了一种方法,FLAT,刷新了中文NER任务的新SOTA。FLAT模型是在Lattice LSTM的思想上发展起来的,所以首先大概了解一下Lattice LSTM模型。

Lattice LSTM模型

Lattice LSTM: Chinese NER Using Lattice LSTM (ACL2018)

这篇论文基于词汇增强方法的中文NER的开篇之作,提出了一种Lattice LSTM以融合词汇信息。具体地、当我们通过词汇信息(词典)匹配一个句子时,可以获得一个类似Lattice的结构。

首先看一个例子:"南京市长江大桥",对于这句话根据不同的理解可以有不同的分词方式,当把字符和词汇结合在一起可以形成如下的lattice结构

Figure 1: Word character lattice.

传统的LSTM网络直接利用字符序列作为模型的输入,学习上下文知识,从文对每一个字符进行预测,这一过程并没有用到词汇的边界信息。基于Lattice结构的LSTM网络在原LSTM的基础上加入了词汇信息,具体方式如下:

- 首先获得序列的分词信息
- 如图所示,Lattice LSTM引入了一个word cell结构,对于当前的字符,融合以该字符结束的所有 word信息,如图中的绿色箭头,不同的路径流入每一个字符的信息受到gated cells(门控单元)的 控制。

Figure 2: Lattice LSTM structure.

(c) Lattice model.

● 可以看出,Lattice是一个有向无环图,词汇的开始和结束字符决定了其位置。对于每一个字符, Lattice LSTM采取注意力机制去融合个数可变的word cell单元,其主要的数学形式化表达为:

$$\mathbf{c}^c_j = \sum\limits_{b \in \{b' | w^d_{b',j} \in \mathbb{D}\}} oldsymbol{lpha}^c_{b,j} \odot oldsymbol{c}^w_{b,j} + oldsymbol{lpha}^c_j \odot \widetilde{oldsymbol{c}}^c_j$$

$$\begin{split} \boldsymbol{\alpha}_{b,j}^c &= \frac{exp(\mathbf{i}_{b,j}^c)}{exp(\mathbf{i}_{j}^c) + \sum_{b' \in \{b'' | w_{b'',j}^d \in \mathbb{D}\}} exp(\mathbf{i}_{b',j}^c)} \\ \boldsymbol{\alpha}_{j}^c &= \frac{exp(\mathbf{i}_{j}^c)}{exp(\mathbf{i}_{j}^c) + \sum_{b' \in \{b'' | w_{b'',j}^d \in \mathbb{D}\}} exp(\mathbf{i}_{b',j}^c)} \end{split}$$

Lattice LSTM 的提出,将词汇信息引入,有效提升了NER性能;但其也存在一些缺点:

- **计算性能低下,不能batch并行化**。究其原因主要是每个字符之间的增加word cell(看作节点)数目不一致;
- **信息损失**: 1)每个字符只能获取以它为结尾的词汇信息,对于其之前的词汇信息也没有持续记忆。如对于「药」,并无法获得'inside'的「人和药店」信息。2)由于RNN特性,采取BiLSTM时其前向和后向的词汇信息不能共享。
- **可迁移性差**:只适配于LSTM,不具备向其他网络迁移的特性。

FLAT: Flat-Lattice Transformer for Chinese NER

从作者对于模型的命名可以看出, FLAT模型的主要贡献主要有两点:

- 1. 将原有的flattice结构进行了展平,变成flat-lattice结构,无损引入词汇信息
- 2. 取代Istm, 直接利用一层transfomer, 实现了gpu并行计算, 提高运行速度

(a) Lattice.

(b) Lattice LSTM.

(c) Flat-Lattice Transformer.

改进一: lattice结构展平

问题:如何将lattice结构展平,同时又不损失词汇信息? —>位置编码

在transformer中,使用全连接自注意力机制来捕获长距离文本的依赖,但是自注意力机制对于相对位置是无偏的,这一点不像BiLSTM,BiLSTM可以清楚的判断上下文知识是来自于character的左边还是右边。

受到位置向量表征的启发,FLAT设计了一种巧妙position encoding来融合Lattice 结构,具体地情况如上图所示,对于每一个字符和词汇都构建两个head position encoding 和tail position encoding,这种方式可以重构原有的Lattice结构。

也正是如此,FLAT可以直接建模字符与所有匹配的词汇信息间的交互,例如,字符[药]可以匹配词汇[人和药店]和[药店]。

至此,我们可以将Lattice结构展平,将其从一个有向无环图展平为一个平面的Flat-Lattice Transformer结构,由多个span构成:每个字符的head和tail是相同的,每个词汇的head和tail是 skipped的。

改进二: 使用transformer模型加速训练

Figure 2: The overall architecture of FLAT.

在中文NER任务中,通常在"在"这个字符后面的可能是地点或者机构等实体,对于方向性的感知会帮助单词识别其邻居是否构成一个连续的实体。BiLSTM在NER任务上取得成功的原因,关键的一点就是BiLSTM能够区分其上下文信息的方向性,来自左边还是右边。

但是对于Transformer,采用全连接自注意力机制可以捕获长距离文本依赖,但是这种依赖对于方向是无偏的,其区分上下文信息的方向性是困难的。因此,要想解决Transformer对于NER任务表现不佳的问题,必须提升Transformer的位置感知和方向感知。可见,对于「距离」和「方向性」的感知对于Transformer适用于NER任务至关重要。

论文中提到,对于lattice中的两个span xi和xj,它们之间存在三种关系:相交,包含和分离,这取决于它们的head position和tail position,论文使用稠密向量来对它们的关系建模:

$$egin{aligned} d_{ij}^{(hh)} &= head[i] - head[j] \ d_{ij}^{(ht)} &= head[i] - tail[j] \ d_{ij}^{(th)} &= tail[i] - head[j] \ d_{ij}^{(tt)} &= tail[i] - tail[j] \end{aligned}$$

然后根据这四个距离, 计算得到一个相对位置的编码:

$$R_{ij} = \text{ReLU}(W_r(\mathbf{p}_{d_{ij}^{(hh)}} \oplus \mathbf{p}_{d_{ij}^{(th)}} \oplus \mathbf{p}_{d_{ij}^{(ht)}} \oplus \mathbf{p}_{d_{ij}^{(tt)}})),$$

Pd的计算方式和普通的transformer相同。

$$\begin{aligned} \mathbf{p}_{d}^{(2k)} &= \sin \left(d/10000^{2k/d_{model}} \right), \\ \mathbf{p}_{d}^{(2k+1)} &= \cos \left(d/10000^{2k/d_{model}} \right), \end{aligned}$$

最后,FLAT这篇论文采取XLNet论文中提出相对位置编码计算attention score:

$$\mathbf{A}_{i,j}^* = \mathbf{W}_q^{\top} \mathbf{E}_{x_i}^{\top} \mathbf{E}_{x_j} \mathbf{W}_{k,E} + \mathbf{W}_q^{\top} \mathbf{E}_{x_i}^{\top} \mathbf{R}_{ij} \mathbf{W}_{k,R} + \mathbf{u}^{\top} \mathbf{E}_{x_j} \mathbf{W}_{k,E} + \mathbf{v}^{\top} \mathbf{R}_{ij} \mathbf{W}_{k,R},$$

结果

	Lexicon	Ontonotes	MSRA	Resume	Weibo
BiLSTM	_	71.81	91.87	94.41	56.75
TENER	-	72.82	93.01	95.25	58.39
Lattice LSTM	YJ	73.88	93.18	94.46	58.79
CNNR	YJ	74.45	93.71	95.11	59.92
LGN	YJ	74.85	93.63	95.41	60.15
PLT	YJ	74.60	93.26	95.40	59.92
FLAT	YJ	76.45	94.12	95.45	60.32
$FLAT_{msm}$	YJ	73.39	93.11	95.03	57.98
$FLAT_{mld}$	YJ	75.35	93.83	95.28	59.63
CGN	LS	74.79	93.47	94.12*	63.09
FLAT	LS	75.70	94.35	94.93	63.42

上图给出了论文的实验结果, 具体地讲:

- 1. 引入词汇信息的方法,都相较于baseline模型biLSTM+CRF有较大提升。可见引入词汇信息可以有效提升中文NER性能。
- 2. 采用相同词表(词向量)时, FLAT好于其他词汇增强方法;
- 3. FLAT如果mask字符与词汇间的attention,性能下降明显,这表明FLAT有利于捕捉长距离依赖。
- 4. FLAT结合BERT效果会更佳。

总结

近年来,针对中文NER如何更好地引入词汇信息,无论是Dynamic Architecture还是Adaptive Embedding,这些方法的出发点无外于两个关键点:

- 1. 如何更充分的利用词汇信息、最大程度避免词汇信息损失;
- 2. 如何设计更为兼容词汇的Architecture, 加快推断速度;

FLAT就是对上述两个关键点的集中体现: FLAT不去设计或改变原生编码结构,设计巧妙的位置向量就融合了词汇信息,既做到了信息无损,也大大加快了推断速度。

本文介绍的词汇增强方式不仅应用于中文NER任务,也可进一步探索其在关系抽取、事件抽取中的有效 性。

<u>论文阅读: FLAT: Chinese NER Using Flat-Lattice Transformer</u>