Application of Semidefinite Programming to Large-Scale Optimal Power Flow Problems

Daniel Molzahn, Bernard Lesieutre, Christopher DeMarco, Michael Ferris

University of Wisconsin-Madison

Presentation at the Federal Energy Regulatory
Commission Conference
June 25, 2013

Outline

- Introduction
- Application of semidefinite programming to the OPF problem
- Techniques for large OPF problems
- Results
- Conclusion

The Power Flow Equations

- Nonlinear, coupled quadratic form
- Solved using *locally* convergent techniques dependent on an initial guess of solution voltages

Polar voltage coordinates: $\vec{V_i} = V_i e^{j\delta_i}$

$$P_{i} = V_{i} \sum_{k=1}^{n} V_{k} \left(\mathbf{G}_{ik} \cos \left(\delta_{i} - \delta_{k} \right) + \mathbf{B}_{ik} \sin \left(\delta_{i} - \delta_{k} \right) \right)$$

$$Q_i = V_i \sum_{k=1}^{n} V_k \left(\mathbf{G}_{ik} \sin \left(\delta_i - \delta_k \right) - \mathbf{B}_{ik} \cos \left(\delta_i - \delta_k \right) \right)$$

Rectangular voltage coordinates: $\vec{V}_i = V_{di} + jV_{qi}$

$$P_{i} = V_{di} \sum_{k=1}^{n} (\mathbf{G}_{ik} V_{dk} - \mathbf{B}_{ik} V_{qk}) + V_{qi} \sum_{k=1}^{n} (\mathbf{B}_{ik} V_{dk} + \mathbf{G}_{ik} V_{qk})$$

$$Q_{i} = V_{di} \sum_{k=1}^{n} \left(-\mathbf{B}_{ik} V_{dk} - \mathbf{G}_{ik} V_{qk} \right) + V_{qi} \sum_{k=1}^{n} \left(\mathbf{G}_{ik} V_{dk} - \mathbf{B}_{ik} V_{qk} \right)$$

$$V_i^2 = V_{di}^2 + V_{gi}^2$$

Optimal Power Flow (OPF) Problem

- Optimization used to determine system operation
 - Minimize generation cost while satisfying physical laws and engineering constraints
 - Yields generator dispatches, line flows, etc.
- Large scale
 - Optimize dispatch for several states
- Non-convex, NP-hard
- Studied for 40 years
 - Existing methods do not guarantee global optimum

Semidefinite Programming

Convex optimization, finds global optimum

$$\min_{\mathbf{W}} \operatorname{trace}(\mathbf{B}\mathbf{W})$$

$$\operatorname{subject} \operatorname{to}$$

$$\operatorname{trace}(\mathbf{A}_{i}\mathbf{W}) \leq c_{i}$$

$$\mathbf{W} \succeq 0$$

Recall trace
$$(\mathbf{A}^T \mathbf{W}) = A_{11} W_{11} + A_{12} W_{12} + \ldots + A_{nn} W_{nn}$$

 $\mathbf{W} \succeq 0$ if and only if eig $(\mathbf{W}) \geq 0$

Semidefinite Relaxation of the Power Flow Equations

- Write power flow equations as $x^T \mathbf{A}_i x = c_i$ where $x = \begin{bmatrix} V_{d1} & V_{d2} & \dots & V_{dn} & V_{q1} & V_{q2} & \dots & V_{qn} \end{bmatrix}^T$
- Define matrix $\mathbf{W} = xx^T$
- Rewrite as trace $(\mathbf{A}_i \mathbf{W}) = c_i$ and rank $(\mathbf{W}) = 1$
- Relaxation: replace $\operatorname{rank}(\mathbf{W}) = 1$ with $\mathbf{W} \succeq 0$
 - $\operatorname{rank}(\mathbf{W}) = 1$ implies zero duality gap ("tight" relaxation) and recovery of the globally optimal voltage profile [Lavaei '12]

Example

$$x = \begin{bmatrix} V_{d1} & V_{d2} & \dots & V_{dn} & V_{q1} & V_{q2} & \dots & V_{qn} \end{bmatrix}^T$$

$$\operatorname{trace} \left(\begin{bmatrix} 1 & 0 & \cdots & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & 1 & \cdots & 0 \\ 0 & 0 & \cdots & 0 & \cdots & 0 \end{bmatrix} \begin{bmatrix} V_{d1}^2 & V_{d1}V_{d2} & \cdots & V_{d1}V_{q1} & \cdots & V_{d1}V_{qn} \\ V_{d1}V_{d2} & V_{d2}^2 & \cdots & V_{d2}V_{q1} & \cdots & V_{d2}V_{qn} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ V_{d1}V_{q1} & V_{d2}V_{q1} & \cdots & V_{q1}^2 & \cdots & V_{q1}V_{qn} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ V_{d1}V_{qn} & V_{d2}V_{qn} & \cdots & V_{q1}V_{qn} & \cdots & V_{qn}^2 \end{bmatrix} \right)$$

$$=V_{d1}^2+V_{q1}^2=V_1^2$$

Application of Semidefinite Programming to the Optimal Power Flow Problem

Classical OPF Problem

$$\min \sum_{k \in \mathcal{G}} f_k (P_{Gk}) = \sum_{k \in \mathcal{G}} c_{2k} P_{Gk}^2 + c_{1k} P_{Gk} + c_{0k}$$

Cost

subject to

$$P_{Gk}^{\min} \leq P_{Gk} \leq P_{Gk}^{\max}$$

$$Q_{Gk}^{\min} \le Q_{Gk} \le Q_{Gk}^{\max}$$

Engineering Constraints

$$\left(V_k^{\min}\right)^2 \le V_{dk}^2 + V_{qk}^2 \le \left(V_k^{\max}\right)^2$$

$$|S_{lm}| \le S_{lm}^{\max}$$

Physical Laws

$$P_{Gk} - P_{Dk} = V_{dk} \sum_{i=1}^{n} (\mathbf{G}_{ik} V_{di} - \mathbf{B}_{ik} V_{qi}) + V_{qk} \sum_{i=1}^{n} (\mathbf{B}_{ik} V_{di} + \mathbf{G}_{ik} V_{qi})$$

$$Q_{Gk} - Q_{Dk} = V_{dk} \sum_{i=1}^{n} \left(-\mathbf{B}_{ik} V_{di} - \mathbf{G}_{ik} V_{qi} \right) + V_{qk} \sum_{i=1}^{n} \left(\mathbf{G}_{ik} V_{di} - \mathbf{B}_{ik} V_{qi} \right)$$

Semidefinite Relaxation of the OPF Problem

$$\min_{\mathbf{W}} \sum_{k \in \mathcal{G}} c_{k2} \left(\operatorname{trace} \left(\mathbf{Y}_{k} \mathbf{W} \right) + P_{Dk} \right)^{2} + c_{k1} \left(\operatorname{trace} \left(\mathbf{Y}_{k} \mathbf{W} \right) + P_{Dk} \right) + c_{k0}$$

$$\operatorname{subject} \operatorname{to} \quad P_{Gk}^{min} - P_{Dk} \leq \operatorname{trace} \left(\mathbf{Y}_{k} \mathbf{W} \right) \leq P_{Gk}^{max} - P_{Dk}$$

$$Q_{Gk}^{min} - Q_{Dk} \leq \operatorname{trace} \left(\bar{\mathbf{Y}}_{k} \mathbf{W} \right) \leq Q_{Gk}^{max} - Q_{Dk}$$

$$\left(V_{k}^{min} \right)^{2} \leq \operatorname{trace} \left(\mathbf{M}_{k} \mathbf{W} \right) \leq \left(V_{k}^{max} \right)^{2}$$

$$\operatorname{trace} \left(\mathbf{Y}_{lm} \mathbf{W} \right)^{2} + \operatorname{trace} \left(\bar{\mathbf{Y}}_{lm} \mathbf{W} \right)^{2} \leq \left(S_{lm}^{max} \right)^{2}$$

$$\mathbf{W} \succeq \mathbf{0} \quad \text{Semidefinite relaxation}$$

$$x = \begin{bmatrix} V_{d1} & V_{d2} & \dots & V_{dn} & V_{q1} & V_{q2} & \dots & V_{qn} \end{bmatrix}^T$$

SDP OPF

Duality Gap

- A physically meaningful solution has "zero duality gap"
 - Same optimal objective value for classical OPF and semidefinite relaxation
 - W is rank one (subject to angle reference)
 - Optimal voltage profile recoverable from semidefinite relaxation
- The semidefinite relaxation may not give physically meaningful solutions
 - A gap between optimal objective values for classical OPF and semidefinite relaxation
 - W is not rank one (subject to angle reference)

Duality Gap Illustration

Relaxation does not find global optimum (non-zero duality gap)

Relaxation finds global optimum (zero duality gap)

Techniques for Large-Scale OPF Problems

Overview

- Modeling advances
- Computational improvements
- Sufficient condition for global optimality

Modeling Advances

- Multiple generators at the same bus
 - Existing formulations limit total power injections at a bus
 - Analogy to consistent locational marginal price
- Flow limits on parallel lines and transformers
 - Existing formulations limit total flow between two buses
 - Limit flows on individual lines, including off-nominal voltage ratios and non-zero phase shifts

Matrix Completion Decomposition

- Use sparsity to reduce solver time
- Computational bottleneck is constraint $\mathbf{W} \succeq 0$
 - Scales as $(2n)^2$ for an *n*-bus system
- Replace with positive semidefinite constraints on many smaller matrices [Jabr '11]
 - Requires equality constraints between equivalent terms in different matrices

Decomposition Improvement

1. No decomposition

 $2n \times 2n$

2. Decomposition in existing literature

$$2n_1 \times 2n_1$$

$$+ 2n_2 \times 2n_2$$

$$+ 2n_3 \times 2n_3$$

+ linking constraints (gray)

3. Proposed decomposition

$$2n_1 \times 2n_1$$

$$+ 2n_4 \times 2n_4$$

+ linking constraints (gray)

Computational Results

Matrix combination heuristic provides a factor of
 2 to 3 speed improvement over existing decompositions

System	$2n \times 2n$	No	Combining	Speed Up
		Combining	Heuristic	Factor
IEEE 118-bus	6.63	4.84	2.06	2.349
IEEE 300-bus	69.45	13.18	5.71	2.309
Polish 2736-bus	_	2371.7	792.7	2.992
Polish 3012-bus	_	3578.5	1197.4	2.989

Solver Times (sec)

Sufficient Condition for Global Optimality

- Determine if the solution from a traditional solver is globally optimal
 - Use the Karush-Kuhn-Tucker conditions for optimality of the semidefinite program
 - Complementarity: $\operatorname{trace}(\mathbf{AW}) = 0$
 - Feasibility: $\mathbf{A} \succeq 0$
- Globally optimal solutions to many small test systems, indeterminate for some large systems

MATPOWER Implementation

- Proposed methods implemented in MATLAB code that integrates with MATPOWER
- Preparing code for public release

System Summary							
-	-						
How many?		How much?	P (MW)	Q (MVAr)			
Buses	2736		28880.0	-2844.7 to 18056.1			
Generators		On-line Capacity	20246.7	-1830.7 to 11450.0			
Committed Gens	270	Generation (actual)		2215.5			
	2048	Load	18074.5	5339.5			
Fixed	2048	Fixed	18074.5	5339.5			
Dispatchable	0	Dispatchable	-0.0 of	-0.0 -0.0			
Shunts	1	Shunt (inj)	-0.0	-123.9			
Branches	3504	Losses (I^2 * Z)	317.00				
Transformers	174	Branch Charging (inj) -	5427.1			
Inter-ties	17	Total Inter-tie Flow	2006.3	364.8			
Areas	4						
		Minimum	Ma	aximum			
Voltage Magnitu	ide 0.99	4 p.u. 0 bus 2164	1.120 p.u	ı. 0 bus 2320			
Voltage Angle	-30.93	deg @ bus 2190	4.23 deg	@ bus 246			
P Losses (I^2*R	9)	_	8.41 MW	@ line 28-25			
Q Losses (I^2*X	()	_	100.11 MVA:	0 line 28-25			
Lambda P	94.43	\$/MWh @ bus 2730	124.80 \$/MW	Jh @ bus 2321			
Lambda Q	-4.85	\$/MWh @ bus 2320	13.10 \$/MW	Лh 0 bus 2164			
Bus Data							
Bus Volta			Load	Lambda (\$/MVA-hr			
	-	P (MW) Q (MVAr)		• • • • • • • • • • • • • • • • • • • •			
" "TTG(PU) H		- // & //	- ,, Q ,				
1 1.101	0.823		_	- 97.926 0.173			
2 1.106			_	- 97.542 -			
				- 110.962 0.125			

Results for Large-Scale Systems

Test System Results

- Many problems have zero duality gap solutions
 - IEEE 14, 30, 57, and 118-bus test systems
 - Polish 2736, 2737, and 2746-bus systems in MATPOWER distribution
- Both small and large example systems with non-zero duality gap solutions

Large Systems Results

- Some solutions have zero duality gap
- Others have non-zero duality gap, but mismatch (using closest rank one W matrix) at only a few buses

Disconnected Feasible Space

Two-bus example system [Bukhsh '11]

Results

Conclusion

- A semidefinite relaxation finds a global optimum of many OPF problems
- Large-scale solver exploits power system sparsity using matrix decomposition
- Power injection mismatches in large systems appear isolated to small subsets of the network
- Illustration of non-convexities associated with nonzero duality gap solutions
- Sufficient condition test for global optimality of a candidate OPF solution

Related Publications

- [1] B.C. Lesieutre, D.K. Molzahn, A.R. Borden, and C.L. DeMarco, "Examining the Limits of the Application of Semidefinite Programming to Power Flow Problems," 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton), 2011, pp.1492-1499, 28-30 Sept. 2011.
- [2] D.K. Molzahn, J.T. Holzer, and B.C. Lesieutre, and C.L. DeMarco, "Implementation of a Large-Scale Optimal Power Flow Solver Based on Semidefinite Programming," To appear in *IEEE Transactions on Power Systems*.
- [3] D.K. Molzahn, B.C. Lesieutre, and C.L. DeMarco, "An Approximate Method for Modeling ZIP Loads in a Semidefinite Relaxation of the OPF Problem," In preparation for submission to *IEEE Transactions on Power Systems, Letters.*
- [4] D.K. Molzahn, B.C. Lesieutre, and C.L. DeMarco, "A Sufficient Condition for Global Optimality of Solutions to the Optimal Power Flow Problem," Submitted to *IEEE Transactions on Power Systems, Letters.*
- [5] D.K. Molzahn, B.C. Lesieutre, and C.L. DeMarco, "A Sufficient Condition for Power Flow Insolvability with Applications to Voltage Stability Margins," To appear in *IEEE Transactions on Power Systems*.
- [6] D.K. Molzahn, V. Dawar, B.C. Lesieutre, and C.L. DeMarco, "Sufficient Conditions for Power Flow Insolvability Considering Reactive Power Limited Generators with Applications to Voltage Stability Margins," To appear in *Bulk Power System Dynamics and Control - IX.* Optimization, Security and Control of the Emerging Power Grid, 2013 IREP Symposium, 25-30 Aug. 2013.
- [7] D.K. Molzahn, B.C. Lesieutre, and C.L. DeMarco, "Investigation of Non-Zero Duality Gap Solutions to a Semidefinite Relaxation of the Power Flow Equations," In preparation.

References

- J. Lavaei and S. Low, "Zero Duality Gap in Optimal Power Flow Problem," *IEEE Transactions on Power Systems*, vol. 27, no. 1, pp. 92–107, February 2012.
- R. Jabr, "Exploiting Sparsity in SDP Relaxations of the OPF Problem," *IEEE Transactions on Power Systems*, vol. 27, no. 2, pp. 1138–1139, May 2012.
- W.A. Bukhsh, A. Grothey, K.I. McKinnon, and P.A. Trodden, "Local Solutions of Optimal Power Flow," University of Edinburgh School of Mathematics, Tech. Rep. ERGO 11-017, 2011.
- B.C. Lesieutre and I.A. Hiskens, ""Convexity of the Set of Feasible Injections and Revenue Adequacy in FTR Markets," *IEEE Transactions on Power Systems*, vol. 20, no. 4, pp. 1790-1798, November 2005.

Questions?