© The Editorial Office of CAM and Springer-Verlag Berlin Heidelberg 2011

A Note on Residue Formulas for the Euler Class of Sphere Fibrations*

Francisco Gómez RUIZ¹

Abstract This paper presents a definition of residue formulas for the Euler class of cohomology-oriented sphere fibrations ξ . If the base of ξ is a topological manifold, a Hopf index theorem can be obtained and, for the smooth category, a generalization of a residue formula is derived for real vector bundles given in [2].

Keywords Euler class, Sphere fibration, Hopf index theorem, Residue formulas **2000 MR Subject Classification** 55R25, 57R20

1 Introduction

Let $\xi: E \xrightarrow{\pi} B$ be a fibration whose fibre has the R-cohomology of an (r-1)-sphere, where R is a commutative ring with a unit, π is surjective and B is a Hausdorff, path-connected, paracompact space.

We suppose that ξ is endowed with an R-orientation, i.e., a Thom class $t(\xi) \in H^r(Z_{\pi}, E; R) \cong R$ is given such that the natural inclusion $j_x : (C(\pi^{-1}(x)), \pi^{-1}(x)) \subset (Z_{\pi}, E)$ induces isomorphisms in cohomology for every $x \in B$, where $C(\pi^{-1}(x))$ is the cone over $\pi^{-1}(x)$ and Z_{π} is the cylinder of π , i.e., Z_{π} is the quotient of $E \times [0,1]$ by the equivalent relation identifying (z,0) to (z',0) whenever $\pi(z) = \pi(z')$.

Finally, we assume that the Thom homomorphism $H^p(B;R) \to H^{p+r}(Z_\pi, E;R)$, given by $\alpha \to \rho^*(\alpha)t(\xi)$, is an isomorphism. Here $\rho: Z_\pi \to B$ is given by $\rho([z,t]) = \pi(z)$.

Define then the Euler class $e(\xi) \in H^r(B; R)$ by the relation $j^*(t(\xi)) = \rho^*(e(\xi))$, where $j: Z_{\pi} \to (Z_{\pi}, E)$ is inclusion.

It is clear that the Euler class of ξ depends only on the equivalence class of the R-oriented fibration ξ .

The long exact sequence for the pair (Z_{π}, E) , together with Thom isomorphism, gives the Gysin sequence

$$\cdots \to H^{p-1}(E;R) \to H^{p-r}(B;R) \to H^p(B;R) \xrightarrow{\pi^*} H^p(E;R) \to \cdots,$$

where the central map above is given by $\alpha \to \alpha.e(\xi)$.

The main example for an R-oriented fibration is given by the R-oriented sphere bundle associated to an R-oriented real vector bundle.

In this paper, we specify the definition of residue formulas for the Euler class associated to the given sections, find a Hopf index theorem, and by restricting to the smooth category and to real vector bundles, obtain a generalization of a result by Feng Huitao and Guo Enli [2].

Manuscript received December 20, 2009. Revised October 14, 2010.

¹Departamento de Álgebra, Geometría y Topología, Universidad de Málaga, Campus Universitario de Teatinos, 29071 Málaga, Spain. E-mail: gomez_ruiz@uma.es

^{*}Project supported by the DGICYT Grant (No. MTM2007-60016) and the Junta de Andalucía Grant (No. P07-FQM-2863).

616 F. G. Ruiz

2 Residue Formulas

Let X be a closed subset of B. We say that a cross section σ of ξ over U-X is equivalent to a cross section σ' of ξ over U'-X, where U and U' are open neighbourhoods of X, if and only if σ and σ' agree on V-X for some open neighbourhood V of X.

The class $[\sigma]$ of a cross section σ defined on U-X is called the germ of σ at X, and $\text{Sec}(\xi, X)$ will denote the set of those germs of ξ at X.

A residue formula for the Euler class of ξ consists of giving a map $\mathrm{Res}_X: \mathrm{Sec}(\xi,X) \to H^r(B,B-X;R)$ for every closed subset X with $\mathrm{Sec}(\xi,X) \neq \emptyset$, such that the following two conditions hold:

- (i) $e(\xi) = j_X^*(\operatorname{Res}_X([\sigma]))$ for all $[\sigma] \in \operatorname{Sec}(\xi, X)$, where $j_X^* : H^r(B, B X; R) \to H^r(B; R)$ is induced by inclusion.
- (ii) Let $X \subset Y$ be closed subsets of B, U a neighborhood of Y in B, σ_X a cross section of ξ over U X and σ_Y the restriction of σ_X to U Y. Then

$$j_{XY}^*(\operatorname{Res}_X[\sigma_X]) = \operatorname{Res}_Y[\sigma_Y],$$

where $j_{XY}^*: H^r(B, B-X; R) \to H^r(B, B-Y; R)$ is induced by inclusion.

Observe that given a cross section σ of ξ over B-X, X closed in B, $e(\xi_{|_{B-X}})=0$. So there is a class $\alpha_X\in H^r(B,B-X;R)$ such that $j_X^*(\alpha_X)=e(\xi)$. Thus, without condition (ii) above, the definition of a residue formula would be uninteresting.

The following theorem proves existence of residue formulas.

Theorem 2.1 Let B be metrizable and π proper, i.e., $\pi^{-1}(K)$ is compact for any compact K of B. There exist then residue formulas for the Euler class of ξ .

Proof Let σ be a cross section of ξ over U-X, where U is an open neighborhood of a closed subset X of B. We may choose a nonnegative real continuous function $f: B \to \mathbb{R}$ such that $f^{-1}(0) = X$, because B is metrizable and so perfectly normal.

Define $\sigma_f: U \to \rho^{-1}(U) \subset Z_{\pi}$ by

$$\sigma_f(x) = \begin{cases} [\sigma(x), f(x)], & \text{if } x \in U - X, \\ \sigma_0(x), & \text{if } x \in X, \end{cases}$$

where [] denotes the equivalence class and $\sigma_0(x) = [z, 0]$ for any $z \in \pi^{-1}(x)$.

It is clear that $\rho \sigma_f$ is the identity on U and σ_f is continuous because π is proper.

Define then $\operatorname{Res}_X([\sigma]) \in H^r(B, B - X; R)$ by the formula

$$i_{XC}^*(\operatorname{Res}_X([\sigma])) = \sigma_f^*(\overline{t}(\xi)),$$

where C is a closed neighborhood of X in U, i_{XC}^* is the excision isomorphism for the inclusion $(C, C - X) \subset (B, B - X)$, and $\overline{t}(\xi) \in H^r(Z_\pi, Z_\pi - \sigma_0(B); R)$ is the class applied to the Thom class $t(\xi)$ by the isomorphism associated to inclusion $(Z_\pi, E) \subset (Z_\pi, Z_\pi - \sigma_0(B))$.

If we replace f by another function f', we get a homotopy from σ_f to $\sigma_{f'}$ by $H(x,t) = [\sigma(x), (1-t)f(x) + tf'(x)]$, which shows that the definition of Res_X is correct.

Finally, it is easy to check that we obtain in this way a residue formula.

Suppose now that X is a compact homologically locally connected subspace of B (see [3, Chapter 6]). This implies that the connected and path connected components of X coincide and they are open and closed in X. In particular, X has a finite number of connected components and we can choose an open neighborhood V_F for each connected component F of X, such that $\overline{V}_F \cap \overline{V}_{F'} = \emptyset$ whenever F and F' are distinct connected components of X.

Euler Residues 617

Lemma 2.1 The following diagram commutes:

where F runs through the connected components of X, and $j_{FX}:(B,B-X)\subset(B,B-F)$.

Suppose now that B is a compact R-oriented topological manifold of dimension n and X is a closed homologically locally connected subspace of B, so that we have Alexander duality isomorphism $D_X: H^i(B, B-X; R) \to H_{n-i}(X; R)$ (see [3, Chapter 6]). Then we have the following Hopf index theorem for a given cross section σ of ξ over B-X.

Theorem 2.2

$$De(\xi) = \sum_{F} (i_F)_* D_F(\operatorname{Res}_F([\sigma])),$$

where F runs through the connected components of X, D represents Poincaré duality for B, D_F is Alexander duality for F, and $i_F : F \subset B$ inclusion.

Proof In fact, the previous lemma gives

$$\operatorname{Res}_X[\sigma] = \sum_F j_{FX}^*(\operatorname{Res}_F[\sigma]),$$

and so

$$D_X(\operatorname{Res}_X[\sigma]) = \sum_F (i_{FX})_* (D_F(\operatorname{Res}_F[\sigma]))$$

with $i_{FX}: F \subset X$, and then

$$De(\xi) = Dj_X^*(\operatorname{Res}_X([\sigma])) = (i_X)_* D_X \operatorname{Res}_X([\sigma]) = \sum_F (i_F)_* D_F(\operatorname{Res}_F[\sigma]),$$

where $i_x: X \subset B$.

Suppose now that each connected component F of X is an R-oriented closed topological manifold, $t_{FB} \in H^{n-n(F)}(B, B-F; R)$ the Thom class for the inclusion $F \subset B$, i.e., $D_F(t_{FB}) = [F]$, where $[F] \in H_{n(F)}(F; R)$ is the homology fundamental orientation class of F and n(F) the dimension of F.

We define $\theta_F: H^i(F;R) \to H^{i+n-n(F)}(B,B-F;R)$ by the formula $D_F(\theta_F(\gamma)) = D(\gamma)$, where $D: H^i(F;R) \to H_{n(F)-i}(F;R)$ is Poincaré duality. In particular, $\theta_F(1) = t_{FB}$.

We also define the normal class of F in B by $e_{FB} = j_F^*(t_{FB})$, where $j_F : F \subset (B, B - F)$. Therefore the composition $i_F^* \circ \theta_F : H^i(F; R) \to H^{i+n-n(F)}(F; R)$ consists of right multiplication by e_{FB} .

If we further assume that B is a smooth manifold and F are smooth submanifolds with a normal bundle ν_F , then e_{FB} coincides with the Euler class $e(\nu_F)$, and in this case, composition $i_F^* \circ \theta_F : H^i(F; R) \to H^{i+n-n(F)}(F; R)$ is the map appearing in the Gysin sequence for ν_F and consists of right multiplication by $e(\nu_F)$.

Finally, suppose that $\xi: E \xrightarrow{\pi} B$ is an r-dimensional smooth real vector bundle, X a compact subset of B such that each connected component of X is a smooth submanifold, and σ is a cross section of ξ without zeros on B - X.

Define then $\mathcal{L}_{\sigma}(x): T_x(B) \to \pi^{-1}(x)$ for all $x \in X$ such that $\sigma(x) = 0$ by $\mathcal{L}_{\sigma}(x)v = \sum_{i=1}^r v f_i.e_i(x)$, where e_1, \dots, e_r is a basis of cross sections of ξ in a neighborhood of x such that $\sigma(x) = 0$.

618 F. G. Ruiz

It is clear that the above definition is correct because if ∇ is a linear connection on ξ , the linear map $(\nabla \sigma)_x : T_x B \to \pi^{-1}(x)$, given by $v \to \nabla_v \sigma$, extends $\mathcal{L}_{\sigma}(x)$ and $T_x F \subset \ker \mathcal{L}_{\sigma}(x)$ for all $x \in F$. Also assume that $T_x F = \ker \mathcal{L}_{\sigma}(x)$ for all $x \in F$, i.e., σ is nondegenerate in the sense of Bott [1].

We have then the following result.

Theorem 2.3 The residue of σ at F is given by

$$De(\xi_F/\mathcal{L}_{\sigma}(\nu_F)) = D_F(\operatorname{Res}_F[\sigma]),$$

and we have

$$De(\xi) = \sum_{F} (i_F)_* De(\xi_F / \mathcal{L}_{\sigma}(\nu_F)).$$

Proof In fact, we have the exact sequence of vector bundles over F

$$0 \to \nu_F \xrightarrow{\mathcal{L}_{\sigma}} \xi_F \to \xi_F / \mathcal{L}_{\sigma}(\nu_F) \to 0.$$

Therefore,

$$e(\xi_F) = e(\xi_F/\mathcal{L}_{\sigma}(\nu_F))e(\nu_F).$$

Consider then the commutative diagram

and so we have

$$e(\xi_F) = \sigma^* \pi^* e(\xi_F) = \sigma^* i^* (t(\xi_F)) = \sigma^* i^* \lambda^* (t(\xi_{\overline{V}_F})) = j^* i^* \sigma^* (t(\xi_{\overline{V}_F})) = j^* i^* i^*_{F\overline{V}_F} (\text{Res}_F[\sigma]).$$

Let $\alpha_F(\sigma) \in H^{r-n+n(F)}(F)$ be given by $\theta_F(\alpha_F(\sigma)) = \operatorname{Res}_F[\sigma]$. So we get

$$e(\xi_F) = i_F^* \theta_F(\alpha_F(\sigma)) = \alpha_F(\sigma) \cdot e_{FB} = \alpha_F(\sigma) \cdot e(\nu_F).$$

Whence

$$\alpha_F(\sigma) = e(\xi_F/\mathcal{L}_{\sigma}(\nu_F)),$$

and so

$$De(\xi_F/\mathcal{L}_{\sigma}(\nu_F)) = D_F(\operatorname{Res}_F[\sigma]).$$

Therefore

$$D_X(\operatorname{Res}_X[\sigma]) = \sum_F (i_{FX})_* D_F(\operatorname{Res}_F[\sigma]) = \sum_F (i_{FX})_* De(\xi_F / \mathcal{L}_\sigma(\nu_F)),$$

and so

$$De(\xi) = \sum_{F} (i_F)_* De(\xi_F / \mathcal{L}_{\sigma}(\nu_F)).$$

Observe that all we needed was that ξ_F contains a subbundle isomorphic to ν_F .

Remark 2.1 The theorem above holds for any coefficient ring R, in particular, for \mathbb{Z} or $\mathbb{Z}/(2)$, and generalizes a formula given in [2].

References

- [1] Bott, R., Nondegenerate critical manifolds, Ann. of Math., 60, 1954, 248-261.
- [2] Feng, H. T. and Guo, E. L., A Hopf index theorem for a real vector bundle, Chin. Ann. Math., 23B(4), 2002, 507-518.
- [3] Spanier, E. H., Algebraic Topology, McGraw Hill, New York, 1966.