Projekt Straßenschilderkennung

Artem Prokop Theodor Malaki Eike Florian Petersen

29. Juni 2015

1. Projektdefinition

Der Aufbau der Bilderkennung soll anhand des Papers "A Robust Algorith for Detection and Classification of Traffic Signs in Video Data" von Tanh Bui-Minh, Ovidiu Ghita, Paul F.Whelan and Trang Hoang umgesetzt werden.

Eingabeformat: Einzelbild

Ausgabeformat: Bildliche Darstellung der Fundstelle/n

und textuelle Beschreibung der gefundenen Objekte

2. Umsetzung

2. Umsetzung

Farbsegmentierung

1.Vorfahrt ge- währen	2.Halt.Vorfahrt gewähren	3.Kreuzung mit Vorfahrt von rechts	4.Vorfahrt
∇	STOP	\triangle	\triangle
5.Vorgeschrieben Fahrtrichtung geradeaus	6.Parken	7.Fußgängerüberweg	8.Kreisverkehr
	P	A	
9.Überholverbot für Kraftfahr- zeuge aller Art	10.Verbot der Einfahrt	11.Einbahnstraße	
		Finhahnstraße	

2.1 Bild vorbereiten

- ► Farbsegmentierung für (aktuelle Farbe ROT, BLAU)
 - Für jeden Pixel wird das Verhältnis der Farbe zur Addition der drei Farben bestimmt
 - ▶ Ist das Verhältnis pos. Pixel weiß, ansonsten schwarz
- Flood fill zur Bereichsfindung
 - Bereiche <100 Pixel werden eleminiert, da eine Schilderkennung hier nicht möglich ist.

Aus dem Paper: height >30 Pixeln vorgegeben mit einer Breite von min. 3 - 4 Pixeln

2.1 Bild vorbereiten

Farbsegmentierung

Eingabebild

Segmentierung nach der roten Farbe

Segmentierung nach der blauen Farbe

2.2 Formerkennung

Farbe	Form	Kategorie	
Rot	Oktagonal	Stop	
Rot	Dreieck, Spitze unten	Vorfahrt gewähren	
Rot	Dreieck, Spitze oben	Warnung	
Rot	Kreis	Verbot	
Blau	Kreis	Verpflichtend	
Blau	Viereck	Hinweis	
Rildausschnitt hereinigen			

Bildausschnitt bereinigen

Ergebnis nach der Segmentierung

Nach der Bearbeitung

2.2 Formerkennung

Berechnung nach Paper

Invariante

$$\mathbf{I} = \frac{\mu_{20}\mu_{02} - \mu_{11}^2}{\mu_{00}^4}$$

Momente

$$\mu_{pq} = \sum_{x,y=1}^{n} x^{p} y^{q} u(x,y), \qquad u(x,y) = \begin{cases} 1 & x \in U \\ 0 & \text{sonst} \end{cases}$$

Auswertung

$$\mathbf{E} = \begin{cases} 16\pi^2 \mathbf{I} & \mathbf{I} \le \frac{1}{16\pi^2} \\ \frac{1}{16\pi^2 \mathbf{I}} & \mathbf{I} > \frac{1}{16\pi^2} \end{cases}$$

$$\mathbf{T} = \begin{cases} 108\mathbf{I} & \mathbf{I} \le \frac{1}{108} \\ \frac{1}{108\mathbf{I}} & \mathbf{I} > \frac{1}{108} \end{cases}$$

$$\mathbf{R} = \frac{\mu_{00}}{|\Omega|}$$

- ► Rund: 0.98 < E < 1</p>
- ▶ Achteck : $0.98 < E \le 1$ UND $0.7 < R \le 1$
- ▶ Dreieckig: 0.97 < T < 1</p>
- Viereckig: $0.7 < R \le 1$

2.2 Formerkennung

Berechnung nach Paper

Das segmentierte Bild ${\it verarbeitet}$

E T R 1 Bereich im Bild

0.1973 0.2887 0.1693

2 Bereich im Bild

0.6087 0.8906 0.4012 3 Bereich im Bild

0.9990 0.6842 0.6310

2.3 Klassifizierung

Nach der Formerkennung bleiben nur noch wenige Verkehrszeichen die untereinander verglichen werden müssen.

- ▶ Skalierung und Endzerrung des Bildes auf 80 x 80
- ► Linienprofil erstellen (Position in Katalog definiert)
- ► Hoch / Tiefpunktwechsel vergleichen

2.4 Ergebnis

2.5 Verbesserungen

- Bild mit geringerer Auflösung zur Erkennung erstellen
- ► Endgültige Schilderkennung anhand von Skeletten/Neuronale Netze
- Drehung von Schildern / Falschschilderkennung an Kreuzungen (Fahrbahnerkennung)
- ► Two Path Filter anstelle von Flood fill (Vortrag von gerade eben)