Discrete Structures

SOFTWARE ENGINEERING/DATA SCIENCE
Semester II, Batch 2019
Lec-07

Venn diagram

UNION:

Let A and B be subsets of a universal set U. The union of sets A and B is the set of all elements in U that belong to A or to B or to both, and is denoted $A \cup B$. Symbolically:

$$A \cup B = \{x \in U \mid x \in A \text{ or } x \in B\}$$

EMAMPLE:

Let
$$U = \{a, b, c, d, e, f, g\}$$

 $A = \{a, c, e, g\}, B = \{d, e, f, g\}$
Then $A \cup B = \{x \in U \mid x \in A \text{ or } x \in B\}$
 $= \{a, c, d, e, f, g\}$

VENN DIAGRAM FOR UNION:

A UB is shaded

REMARK:

- 1. $A \cup B = B \cup A$ that is union is commutative you can prove this very easily only by using definition.
 - 2. $A \subseteq A \cup B$ and $B \subseteq A \cup B$

The above remark of subset is easily seen by the definition of union.

MEMBERSHIP TABLE FOR UNION:

A	В	$A \cup B$
1	1	1
1	0	1
0	1	1
0	0	0

REMARK:

This membership table is similar to the truth table for logical connective, disjunction (\vee) .

INTERSECTION:

Let A and B subsets of a universal set U. The intersection of sets A and B is the set of all elements in U that belong to both A and B and is denoted $A \cap B$.

Symbolically:

$$A \cap B = \{x \in U \mid x \in A \text{ and } x \in B\}$$

EXMAPLE:

Let
$$U = \{a, b, c, d, e, f, g\}$$

 $A = \{a, c, e, g\}, B = \{d, e, f, g\}$
Then $A \cap B = \{e, g\}$

VENN DIAGRAM FOR INTERSECTION:

A \cap B is shaded

REMARK:

- 1. $A \cap B = B \cap A$
- 2. $A \cap B \subseteq A$ and $A \cap B \subseteq B$
- 3. If $A \cap B = \phi$, then A & B are called disjoint sets.

MEMBERSHIP TABLE FOR INTERSECTION:

A	В	$A \cap B$
1	1	1
1	0	0
0	1	0
0	0	0

REMARK:

This membership table is similar to the truth table for logical connective, conjunction (\wedge).

DIFFERENCE:

Let A and B be subsets of a universal set U. The difference of "A and B" (or relative complement of B in A) is the set of all elements in U that belong to A but not to B, and is denoted A - B or $A \setminus B$. Symbolically:

$$A - B = \{x \in U \mid x \in A \text{ and } x \notin B\}$$

EXAMPLE:

Let
$$U = \{a, b, c, d, e, f, g\}$$

 $A = \{a, c, e, g\}, B = \{d, e, f, g\}$
Then $A - B = \{a, c\}$

VENN DIAGRAM FOR SET DIFFERENCE:

A-B is shaded

REMARK:

- 1. $A B \neq B A$ that is Set difference is not commutative.
- 2. A B ⊆ A
- 3. A B, $A \cap B$ and B A are mutually disjoint sets.

MEMBERSHIP TABLE FOR SET DIFFERENCE:

A	В	A - B
1	1	0
1	0	1
0	1	0
0	0	0

REMARK:

The membership table is similar to the truth table for $\sim (p \rightarrow q)$.

COMPLEMENT:

Let A be a subset of universal set U. The complement of A is the set of all element in U that do not belong to A, and is denoted AN, A or Ac Symbolically:

$$A^c = \{x \in U \mid x \notin A\}$$

EXAMPLE:

Let
$$U = \{a, b, c, d, e, f, g\}$$

 $A = \{a, c, e, g\}$
Then $A^c = \{b, d, f\}$

VENN DIAGRAM FOR COMPLEMENT:

Ac is shaded

REMARK:

$$1. \quad A^c = U - A$$

2.
$$A \cap A^c = \phi$$

3.
$$A \cup A^c = U$$

MEMBERSHIP TABLE FOR COMPLEMENT:

A	A ^c	
1	0	
0	1	

REMARK

This membership table is similar to the truth table for logical connective negation (~)

EXERCISE:

Let
$$U = \{1, 2, 3, ..., 10\}$$
, $X = \{1, 2, 3, 4, 5\}$
 $Y = \{y \mid y = 2 \ x, x \in X\}$, $Z = \{z \mid z^2 - 9z + 14 = 0\}$
Enumerate:

$$(1)X \cap Y \qquad (2) Y \cup Z$$

$$(3) X - Z$$

$$(5) X^{c} - Z^{c}$$

$$(6)(X-Z)^{c}$$

Firstly we enumerate the given sets.

Given

U = {1, 2, 3, ..., 10},
X = {1, 2, 3, 4, 5}
Y = {y | y = 2 x, x
$$\in$$
X} = {2, 4, 6, 8, 10}
Z = {z | z² - 9 z + 14 = 0} = {2, 7}

(1)
$$X \cap Y = \{1, 2, 3, 4, 5\} \cap \{2, 4, 6, 8, 10\}$$

= $\{2, 4\}$

(2)
$$Y \cup Z = \{2, 4, 6, 8, 10\} \cup \{2, 7\}$$

= $\{2, 4, 6, 7, 8, 10\}$

(3)
$$X-Z = \{1, 2, 3, 4, 5\} - \{2, 7\}$$

= $\{1, 3, 4, 5\}$

(4)
$$Y^c = U - Y = \{1, 2, 3, ..., 10\} - \{2, 4, 6, 8, 10\}$$

= $\{1, 3, 5, 7, 9\}$

(5)
$$X^{c} = \{6, 7, 8, 9, 10\}$$

 $Z^{c} = \{1, 3, 4, 5, 6, 8, 9, 10\}$
 $X^{c} - Z^{c} = \{6, 7, 8, 9, 10\} - \{1, 3, 4, 5, 6, 8, 9, 10\}$
 $= \{7\}$

(6)
$$(X-Z)^c = U - (X-Z)$$

= $\{1, 2, 3, ..., 10\} - \{1, 3, 4, 5\}$
= $\{2, 6, 7, 8, 9, 10\}$

$$(X-Z)^c \neq X^c - Z^c$$

EXERCISE:

Given the following universal set U and its two subsets P and Q, where

$$U = \{x \mid x \in Z, 0 \le x \le 10\}$$

$$P = \{x \mid x \text{ is a prime number}\}\$$

$$Q = \{x \mid x^2 < 70\}$$

- (i) Draw a Venn diagram for the above
- (ii) List the elements in Pc ∩ Q

SOLUTION:

First we write the sets in Tabular form.

$$U = \{x \mid x \in \mathbb{Z}, \ 0 \le x \le 10\}$$

Since it is the set of integers that are greater then or equal 0 and less or equal to 10. So we have

$$U=\{0, 1, 2, 3, ..., 10\}$$

 $P = \{x \mid x \text{ is a prime number}\}\$

It is the set of prime numbers between 0 and 10. Remember Prime numbers are those numbers which have only two distinct divisors.

$$P = \{2, 3, 5, 7\}$$

$$Q = \{x \mid x^2 < 70\}$$

The set Q contains the elements between 0 and 10 which have their square less or equal to 70.

$$Q = \{0, 1, 2, 3, 4, 5, 6, 7, 8\}$$

Thus we write the sets in Tabular form.

VENN DIAGRAM:

(i)
$$P^c \cap Q = ?$$

$$P^c = U - P = \{0, 1, 2, 3, ..., 10\} - \{2, 3, 5, 7\}$$

= \{0, 1, 4, 6, 8, 9, 10\}

and

$$P^{e} \cap Q = \{0, 1, 4, 6, 8, 9, 10\} \cap \{0, 1, 2, 3, 4, 5, 6, 7, 8\}$$

= \{0, 1, 4, 6, 8\}

EXERCISE:

Let

$$U = \{1, 2, 3, 4, 5\}, C = \{1, 3\}$$

and A and B are non empty sets. Find A in each of the following:

- (i) $A \cup B = U$, $A \cap B = \emptyset$ and $B = \{1\}$
- (ii) $A \subset B$ and $A \cup B = \{4, 5\}$
- (iii) $A \cap B = \{3\}, A \cup B = \{2, 3, 4\} \text{ and } B \cup C = \{1, 2, 3\}$
- (iv) A and B are disjoint, B and C are disjoint, and the union of A and B is the set {1, 2}.

(v)

(i)
$$A \cup B = U$$
, $A \cap B = \phi$ and $B = \{1\}$

SOLUTION:

Since
$$A \cup B = U = \{1, 2, 3, 4, 5\}$$

and $A \cap B = \phi$,
Therefore $A = B^c = \{1\}^c = \{2, 3, 4, 5\}$

(ii)
$$A \subset B$$
 and $A \cup B = \{4, 5\}$ also $C = \{1, 3\}$

SOLUTION:

When
$$A \subset B$$
, then $A \cup B = B = \{4, 5\}$
Also A being a proper subset of B implies $A = \{4\}$ or $A = \{5\}$

(iii)
$$A \cap B = \{3\}, A \cup B = \{2, 3, 4\} \text{ and } B \cup C = \{1,2,3\}$$

Also $C = \{1,3\}$

SOLUTION

Since we have 3 in the intersection of A and B as well as in C so we place 3 in common part shared by the three sets in the Venn diagram. Now since 1 is in the union of B and C it means that 1 may be in C or may be in B, but 1 cannot be in B because if 1 is in the B then it must be in $A \cup B$ but 1 is not there, thus we place 1 in the part of C which is not shared by any other set. Same is the reason for 4 and we place it in the set which is not shared by any other set. Now 2 will be in B, 2 cannot be in A because $A \cap B = \{3\}$, and is not in C. So $A = \{3, 4\}$ and $B = \{2, 3\}$

(iv)
$$A \cap B = \phi$$
, $B \cap C = \phi$, $A \cup B = \{1, 2\}$.

SOLUTION

EXERCISE:

Use a Venn diagram to represent the following:

- (i) $(A \cap B) \cap C^c$
- (ii) $A^c \cup (B \cup C)$
- (iii) $(A-B) \cap C$
- (iv) $(A \cap B^c) \cup C^c$

(i) $(A \cap B) \cap C^c$

 $(A \cap B) \cap C^c$ is shaded

(ii) $A^c \cup (B \cup C)$ is shaded.

(iii) $(A-B)\cap C$

 $(A - B) \cap C$ is shaded

(iv) $(A \cap B^c) \cup C^c$ is shaded.

PROVING SET IDENTITIES BY VENN DIAGRAMS:

Prove the following using Venn Diagrams:

(i)
$$A-(A-B)=A\cap B$$

(ii)
$$(A \cap B)^c = A^c \cup B^c$$

(iii)
$$A - B = A \cap B^c$$

SOLUTION (i)

$$A - (A - B) = A \cap B$$

$$A = \{ 1, 2 \}$$

 $B = \{ 2, 3 \}$
 $A - B = \{ 1 \}$

A-B is shaded

 $A \cap B$ is shaded

$$A = \{ 1, 2 \}$$

 $B = \{ 2, 3 \}$
 $A \cap B = \{ 2 \}$

RESULT: $A - (A - B) = A \cap B$

 $(A \cap B)^c = A^c \cup B^c$

 $A \cap B$

(A ∩ B)^c(a

Ac is shaded.

B^e is shaded.

 $A^c \cup B^c$ is shaded.

----(b)

Now diagrams (a) and (b) are same hence RESULT: $(A \cap B)^c = A^c \cup B^c$

SOLUTION (iii)

 $\mathbf{A} - \mathbf{B} = \mathbf{A} \cap \mathbf{B}^{\mathbf{c}}$

A - B is shaded.

----(a)

Bc is shaded.

A \cap B^c is shaded

----(b)

From diagrams (a) and (b) we can say

RESULT: $A - B = A \cap B^c$

PROVING SET IDENTITIES BY MEMBERSHIP TABLE:

Prove the following using Membership Table:

(i)
$$A-(A-B)=A\cap B$$

(ii)
$$(A \cap B)^c = A^c \cup B^c$$

(iii)
$$A - B = A \cap B^c$$

SOLUTION (i)

$$A - (A - B) = A \cap B$$

A	В	A-B	A-(A-B)	A∩B
1	1	0	1	1
1	0	1	0	0
0	1	0	0	0
0	0	0	0	0

Since the last two columns of the above table are same hence the corresponding set expressions are same. That is

$$A - (A - B) = A \cap B$$

SOLUTION (ii)

$$(A \cap B)^c = A^c \cup B^c$$

A	В	A∩B	(A∩B) ^c	A c	Be	A°UB°
1	1	1	0	0	0	0
1	0	0	1	0	1	1
0	1	0	1	1	0	1
0	0	0	1	1	1	1

Since the fourth and last columns of the above table are same hence the corresponding set expressions are same. That is $(A \cap B)^c = A^c \cup B^c$

$$(A \cap B)^c = A^c \cup B^c$$

SOLUTION (iii)

A	В	A – B	Be	$A\cap B^c$
1	1	0	0	0
1	0	1	1	1
0	1	0	0	0
0	0	0	1	0