Université d'Évry Val d'Essonne 2009-2010 M33 compléments d'algèbre

Indications pour la feuille 3

Exercice 6. Traité en cours.

Exercice 8. 1. Traité en cours.

2. Si $H \subset K$, alors $H \cup K = K$ donc c'est un sous-groupe. Raisonnement analogue si $K \subset H$.

Réciproquement, supposons que $H \not\subset K$ et $K \not\subset H$, et montrons que $H \cap K$ n'est pas un sous-groupe. On peut choisir $a \in H$ tel que $a \notin K$ et $b \in K$ tel que $b \notin H$. Comme H est un sous-groupe, $a^{-1} \in H$. Si $H \cup K$ était un sous-groupe, on aurait $ab \in H \cup K$, donc $ab \in H$ ou $ab \in K$. Dans le premier cas, en multipliant à gauche par a^{-1} , qui est aussi dans H, on aurait $b \in H$ contrairement aux hypothèses. On raisonne de même dans le deuxième cas. Donc $ab \notin H \cup K$ et $H \cup K$ n'est pas un sous-groupe.

- 3. Comme $1 \in K$, $HK \subset H$; de même, $HK \supset K$. Donc, si HK est un sous groupe, il contient $\langle H, K \rangle$. Réciproquement, $\langle H, K \rangle$ contient H et K, et il est stable par multiplication, donc il contient HK. Ainsi $HK = \langle H, K \rangle$.
- 4. Supposons que HK = KH et montrons que HK est un sous-groupe. Soient $a, a' \in H$ et $b, b' \in K$. Par définition $ba' \in KH$ donc $ba' \in HK$, et finalement $aba'b' \in HK$, qui est ainsi stable par multiplication. Par ailleurs, $b^{-1}a^{-1} \in KH = HK$, donc HK est stable par passage à l'inverse. C'est donc un sous-groupe.

Réciproquement, supposons que HK est un sous-groupe et montrons que HK = KH. Soient $a \in H$ et $b \in K$. Alors, $ab \in HK$, donc $abab \in HK$. Par ailleurs, $a^{-1} \in HK$ et $b^{-1} \in HK$, et ne multipliant à gauche et à droite par ces deux éléments, $ba \in HK$. Ainsi, $KH \subset HK$. Réciproquement, soit $ab \in HK$: son inverse $b^{-1}a^{-1}$ est aussi dans HK, mais par définition il est également dans KH. Ainsi, $HK \subset KH$, et pour finir HK = KH.

Attention : l'exercice 9 present dans la version initiale de la feuille a été retiré, son énoncé comportant trop de fautes. L'exercice qui suit était numéroté 10 initialement.

- **Exercice 9.** 1. Tous les éléments de $(\mathbf{Q}, +)$ sont indéfiniment divisibles : pour tout $x \in \mathbf{Q}$ et tout $n \in \mathbf{N}^*$, il existe y dans \mathbf{Q} tel que ny = x (prendre y = x/n). Par contre, le seul élément indéfiniment divisible que \mathbf{Q}_+^* , ·) est 1 : dans ce cas, indéfiniment divisible veut dure que $\sqrt[n]{x}$ existe pour tout n.
 - 2. On voit que $f(n) = f(1)^n$ et que $f(1/n) = \sqrt[n]{f(1)}$.
 - 3. D'après la question précédente, f(1) est indéfiniment divisible, c'est donc 1. On a donc f(n) = f(1/n) = 1 pour tout n, et donc f(a/b) = 1 pour tout $a/b \in \mathbf{Q}$.

4. Tout morphisme de $(\mathbf{Q},+)$ vers (\mathbf{Q}_+^*,\cdot) est constant, donc n'estpas injectif : en particulier, ce n'est pas un isomorhpisme.