Санкт-Петербургский Политехнический университет Петра Великого

Отчет по лабораторным работам №1-6 по дисциплине "Математическая статистика"

Студент: Скворцов Владимир Сергеевич

Преподаватель: Баженов Александр Николаевич

Группа: 5030102/10201

Санкт-Петербург 2024

Содержание

1	Пос	становка задачи	2						
	1.1	Коэффициент корреляции	2						
	1.2	Простая линейная регрессия	2						
2	Теоретическое обоснование								
	2.1	Двумерное нормальное распределение	2						
	2.2	Корреляционный момент (ковариация) и коэффициент корреляции	2						
	2.3	Выборочный коэффициент корреляции Пирсона	3						
	2.4	Выборочный квадрантный коэффициент корреляции	S						
	2.5	Выборочный коэффициент ранговой корреляции Спирмена	3						
	2.6	Эллипсы рассеивания	Ş						
	2.7	Метод наименьших квадратов	3						
	2.8	Метод наименьших модулей	4						
3	Опі	исание работы	4						
4	Рез	ультаты	4						
	4.1	Коэффициент корреляции	4						
	4.2	Простая линейная регрессия	8						
5	Вы	ыводы							
6	Пос	Постановка задачи							
	6.1	Проверка гипотезы о законе распреде- ления генеральной совокупности. Ме-							
		тод хи-квадрат	13						
	6.2	Проверка гипотезы о равенстве дисперсий двух нормальных генеральных							
		совокупностей	13						
7	Teo	ретическое обоснование	14						
	7.1	Проверка гипотезы о законе распределения генеральной совокупности. Ме-							
		тод хи-квадрат	14						
		7.1.1 Правило проверки гипотезы о законе распре- деления по методу χ^2 .							
	7.2	7.2 Проверка гипотезы о равенстве дисперсий двух нормальных генеральных							
		совокупностей	14						
		7.2.1 Тест Фишера	14						
8	Оп	исание работы	15						
9	Рез	Результаты							
	9.1	Проверка гипотезы о законе распределения генеральной совокупности. Ме-							
		тод хи-квадрат							
	9.2	Проверка гипотезы о равенстве дисперсий двух нормальных генеральных							
		совокупностей	15						
10	Brn	ROHLI	15						

1 Постановка задачи

1.1 Коэффициент корреляции

Сгенерировать двумерные выборки размерами 20, 60, 100 для нормального двумерного распределения $N(x,y,0,0,1,1,\rho)$. Коэффициент корреляции ρ взять равным 0, 0.5, 0.9. Каждая выборка генерируется 1000 раз и для неё вычисляются: среднее значение, среднее значение квадрата и дисперсия коэффициентов корреля- ции Пирсона, Спирмена и квадрантного коэффициента корреляции. Повторить все вычисления для смеси нормальных распределений:

$$f(x,y) = 0.9N(x,y,0,0,1,1,0.9) + 0.1N(x,y,0,0,10,10,-0.9).$$

Изобразить сгенерированные точки на плоскости и нарисовать эллипс равновероятности.

1.2 Простая линейная регрессия

Найти оценки коэффициентов линейной регрессии $y_i = a + bx_i + e_i$, используя 20 точек на отрезке [-1.8;2] с равномерным шагом равным 0.2. Ошибку e_i считать нормально распределённой с параметрами (0,1). В качестве эталонной зависимости взять $y_i = 2 + 2x_i + e_i$. При построении оценок коэффициентов использовать два критерия: критерий наименьших квадратов и критерий наименьших модулей. Проделать то же самое для выборки, у которой в значения y_1 и y_{20} вносятся возмущения 10 и -10.

2 Теоретическое обоснование

2.1 Двумерное нормальное распределение

Двумерная случайная величина (X,Y) называется распределённой нормально (или просто нормальной), если её плотность вероятности определена формулой

$$N(x, y, \bar{x}, \bar{y}, \sigma_x, \sigma_y, \rho) = \frac{1}{2\pi\sigma_x\sigma_y\sqrt{1-\rho^2}} \times \exp\left\{-\frac{1}{2(1-\rho^2)} \left[\frac{(x-\bar{x})^2}{\sigma_x^2} - 2\rho \frac{(x-\bar{x})(y-\bar{y})}{\sigma_x\sigma_y} + \frac{(y-\bar{y})^2}{\sigma_y^2} \right] \right\}$$
(1)

Компоненты X, Y двумерной нормальной случайной величины также распределены нормально с математическими ожиданиями x, y и средними квадратическими отклонениями σ_x, σ_y соответственно.

Параметр ρ называется коэффициентом корреляции.

2.2 Корреляционный момент (ковариация) и коэффициент корреляции

Корреляционный момент, иначе ковариация, двух случайных величин X и Y:

$$K = \mathbf{cov}(X, Y) = \mathbf{M}[(X - \bar{x})(Y - \bar{y})]$$
(2)

Коэффициент корреляции ρ двух случайных величин X и Y:

$$\rho = \frac{K}{\sigma_x \sigma_y} \tag{3}$$

2.3 Выборочный коэффициент корреляции Пирсона

Выборочный коэффициент корреляции Пирсона:

$$r = \frac{\frac{1}{n} \sum (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\frac{1}{n} \sum (x_i - \bar{x})^2 \frac{1}{n} \sum (y_i - \bar{y})^2}} = \frac{K}{s_X s_Y},\tag{4}$$

где K, s_X^2, x_Y^2 — выборочные ковариации и дисперсии случайных величин X и Y.

2.4 Выборочный квадрантный коэффициент корреляции

Выборочный квадрантный коэффициент корреляции

$$r_Q = \frac{(n_1 + n_3) - (n_2 + n_4)}{n},\tag{5}$$

где n_1 , n_2 , n_3 , n_4 — количество точек с координатами (x_i, y_i) , попавшими, соответственно, в I, II, IV квадранты декартовой системы с осями $x' = x - \mathbf{med}x$, $y' = y - \mathbf{med}y$.

2.5 Выборочный коэффициент ранговой корреляции Спирмена

Обозначим ранги, соотвествующие значениям переменной X, через u, а ранги, соотвествующие значениям переменной Y, — через v.

Выборочный коэффициент ранговой корреляции Спирмена:

$$r_S = \frac{\frac{1}{n} \sum (u_i - \bar{u})(v_i - \bar{v})}{\sqrt{\frac{1}{n} \sum (u_i - \bar{u})^2 \frac{1}{n} \sum (v_i - \bar{v})^2}},$$
(6)

где $\bar{u}=\bar{v}=\frac{1+2+\cdots+n}{n}=\frac{n+1}{2}$ — среднее значение рангов.

2.6 Эллипсы рассеивания

Уравнение проекции эллипса рассеивания на плоскость xOy:

$$\frac{(x-\bar{x})^2}{\sigma_x^2} - 2\rho \frac{(x-\bar{x})(y-\bar{y})}{\sigma_x \sigma_y} + \frac{(y-\bar{y})^2}{\sigma_y^2} = \text{const.}$$
 (7)

Центр эллипса 8 находится в точке с координатами (x, y); оси симметрии эллипса составляют с осью Ox углы, определяемые уравнением

$$tg 2\alpha = \frac{2\rho\sigma_x\sigma_y}{\sigma_x^2 - \sigma_y^2}. (8)$$

2.7 Метод наименьших квадратов

При оценивании параметров регрессионной модели используют различные методы. Один из наиболее распрстранённых подходов заключается в следующем: вводится мера (критерий) рассогласования отклика и регрессионной функции, и оценки параметров регрессии определяются так, чтобы сделать это рассогласование наименьшим. Достаточно простые расчётные формулы для оценок получают при выборе критерия в виде суммы квадратов отклонений значений отклика от значений регрессионной функции (сумма квадратов остатков):

$$Q(\beta_0, \beta_1) = \sum_{i=1}^{n} \varepsilon_i^2 = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2 \to \min_{\beta_0, \beta_1}.$$
 (9)

Задача минимизации квадратичного критерия (9) носит название задачи метода наименьших квадратов (МНК), а оценки β_0 , β_1 параметров β_0 , β_1 , реализующие минимум критерия (9), называют МНК-оценками.

2.8 Метод наименьших модулей

Робастность оценок коэффициентов линейной регрессии (т.е. их устойчивость по отношению к наличию в данных редких, но больших по величине выбросов) может быть обеспечена различными способами. Одним из них является использование метода наименьших модулей вместо метода наименьших квадратов:

$$\sum_{i=1}^{n} |y_i - \beta_0 - \beta_1 x_i| \to \min_{\beta_0, \beta_1}.$$
 (10)

3 Описание работы

Лабораторные работы выполнены с использованием Python и его сторонних библиотек numpy, pandas, matplotlib, seaborn были построены гистограммы распределений и посчитаны характеристики пложения.

Ссылка на GitHub репозиторий: https://github.com/vladimir-skvortsov/spbstu-mathematical-statistics

4 Результаты

4.1 Коэффициент корреляции

20 - 0			
$n = 20, \rho = 0$	(4)	(c)	(F)
	r(4)	r_S (6)	$r_Q(5)$
Среднее	8.051×10^{-3}	8.633×10^{-3}	1.216×10^{-2}
Среднее квадратов	5.501×10^{-2}	5.418×10^{-2}	1.033×10^{-1}
Дисперсия	5.495×10^{-2}	5.410×10^{-2}	1.031×10^{-1}
$n = 20, \rho = 0.5$			
	r (4)	r_S (6)	r_Q (5)
Среднее	4.933×10^{-1}	4.674×10^{-1}	4.644×10^{-1}
Среднее квадратов	2.743×10^{-1}	2.534×10^{-1}	3.139×10^{-1}
Дисперсия	3.093×10^{-2}	3.496×10^{-2}	9.823×10^{-2}
$n = 20, \rho = 0.9$			
7 1	r(4)	r_S (6)	$r_O(5)$
Среднее	8.938×10^{-1}	8.646×10^{-1}	r_Q (5) 9.837×10^{-1}
Среднее квадратов	8.014×10^{-1}	7.527×10^{-1}	1.026
Дисперсия	2.454×10^{-3}	5.209×10^{-3}	5.804×10^{-2}
$n = 60, \rho = 0$		0.200 // 10	0.0017.10
n = 00, p = 0	r (4)	r_S (6)	r_Q (5)
Среднее	8.143×10^{-3}	8.747×10^{-3}	8.485×10^{-3}
Среднее Квадратов	1.709×10^{-2}	1.689×10^{-2}	3.111×10^{-2}
	1.709×10 1.703×10^{-2}	1.682×10^{-2}	3.111×10 3.104×10^{-2}
Дисперсия	1.705 × 10	1.062 × 10	3.104 × 10
$n = 60, \rho = 0.5$	(4)	(0)	(=)
	r(4)	r_S (6)	r_Q (5)
Среднее	4.985×10^{-1}	4.757×10^{-1}	4.668×10^{-1}
Среднее квадратов	2.585×10^{-1}	2.373×10^{-1}	2.504×10^{-1}
Дисперсия	1.000×10^{-2}	1.094×10^{-2}	3.256×10^{-2}
$n = 60, \rho = 0.9$			
	r (4)	r_S (6)	r_Q (5)
Среднее	8.979×10^{-1}	8.810×10^{-1}	9.937×10^{-1}
Среднее квадратов	8.069×10^{-1}	7.774×10^{-1}	1.004
Дисперсия	7.297×10^{-4}	1.202×10^{-3}	1.700×10^{-2}
$n = 100, \rho = 0$			
, ,	r (4)	r_S (6)	r_Q (5)
Среднее	1.396×10^{-3}	8.326×10^{-5}	1.584×10^{-3}
Среднее квадратов	9.856×10^{-3}	9.848×10^{-3}	1.972×10^{-2}
Дисперсия	9.854×10^{-3}	9.848×10^{-3}	1.972×10^{-2}
$n = 100, \rho = 0.5$	0.0017110	0.010 / 10	11012 71 20
n = 100, p = 0.5	r (4)	r_S (6)	$r_{-}(5)$
Среднее	5.013×10^{-1}	$\frac{7S}{4.812 \times 10^{-1}}$	r_Q (5) 4.723×10^{-1}
	2.568×10^{-1}	2.375×10^{-1}	2.407×10^{-1}
Писторона	5.481×10^{-3}	2.373×10^{-3} 6.013×10^{-3}	2.407×10^{-2} 1.762×10^{-2}
Дисперсия	J.401 X 10	0.019 × 10	1.702 × 10 -
$n = 100, \rho = 0.9$		(0)	(-)
	r (4)	r_S (6)	r_Q (5)
Среднее	8.999×10^{-1}	8.866×10^{-1}	1.003
Среднее квадратов	8.103×10^{-1}	7.868×10^{-1}	1.017
Дисперсия	4.017×10^{-4}	6.665×10^{-4}	1.049×10^{-2}

Таблица 1: Характеристики нормального двумерного распределения

n=20			
	r(4)	r_S (6)	r_Q (5)
Среднее	-7.987×10^{-2}	-7.020×10^{-2}	-6.336×10^{-2}
Среднее квадратов	5.968×10^{-2}	5.944×10^{-2}	1.112×10^{-1}
Дисперсия	5.330×10^{-2}	5.451×10^{-2}	1.072×10^{-1}
n = 60			
	r(4)	r_S (6)	r_Q (5)
Среднее	9.290×10^{-2}	-8.988×10^{-2}	-8.730×10^{-2}
Среднее квадратов	2.606×10^{-2}	2.553×10^{-2}	4.290×10^{-2}
Дисперсия	1.743×10^{-2}	1.745×10^{-2}	3.528×10^{-2}
n = 100			
	r (4)	r_S (6)	r_Q (5)
Среднее	-1.013×10^{-1}	-9.639×10^{-2}	-9.011×10^{-2}
Среднее квадратов	2.047×10^{-2}	1.984×10^{-2}	2.968×10^{-2}
Дисперсия	1.021×10^{-2}	1.054×10^{-2}	2.156×10^{-2}

Таблица 2: Характеристики смеси нормальных распределений

Рис. 1: Смесь нормальных распределений и эллипсы равновероятности (n=20)

Рис. 2: Смесь нормальных распределений и эллипсы равновероятности (n=60)

Рис. 3: Смесь нормальных распределений и эллипсы равновероятности (n=100)

4.2 Простая линейная регрессия

Рис. 4: Метод наименьших квадратов (2.0388, 2.1955)

Рис. 5: Метод наименьших модулей (2.3634, 1.9945)

Рис. 6: Метод наименьших квадратов с возмущениями (2.3383, 0.6102)

Рис. 7: Метод наименьших модулей с возмущениями (1.9944, 2.3634)

	a	a'	b	b'	Δa	Δb
MHK	2.0388	2.3383	2.1955	0.6102	1.3383	0.7221
MHM	2.3634	1.9944	1.9945	2.3634	0.1561	0.1849

Таблица 3: Таблица коэффициентов

Здесь:

- $\bullet \ y = ax + b$ уравнение линейной регресси для методов МНК и МНМ без выбросов
- $\bullet \ y = a'x + b'$ уравнение линейной регресси для методов МНК и МНМ с выбросами
- $\Delta a = \frac{|a-a'|}{a}$
- $\Delta b = \frac{|b-b'|}{b}$

5 Выводы

На основе полученных характеристик (включая среднее значение, среднее значение квадрата и дисперсию) для различных коэффициентов корреляции и размеров выборки, можно сделать следующие наблюдения:

- 1. При увеличении размера выборки повышается точность оценок, что видно по уменьшению дисперсий коэффициентов корреляции. Это соответствует принципам центральной предельной теоремы и закона больших чисел.
- 2. При увеличении коэффициента корреляции ρ , средние значения коэффициентов Пирсона, Спирмена и квадратичного коэффициента корреляции тоже увеличиваются. Это указывает на прямую связь между ρ и другими коэффициентами корреляции.

Из результатов оценок коэффициентов линейной регрессии при использовании двух критериев (критерий наименьших квадратов и критерий наименьших модулей) можно сделать следующие выводы:

- 1. Метод наименьших квадратов показал себя эффективно в случае, когда нет значительных выбросов в данных, в то время как метод наименьших модулей проявил себя лучше в присутствии значительных возмущений.
- 2. Важно выбирать метод, исходя из особенностей данных. Если в данных присутствуют выбросы, метод наименьших модулей будет предпочтительнее из-за его устойчивости к выбросам.

6 Постановка задачи

6.1 Проверка гипотезы о законе распреде- ления генеральной совокупности. Метод хи-квадрат

Создать распределения согласно нормальному, распределению Стьюдента и равномерному распределению с мощностями выборки n=20,100.

Провести исследование по методу χ^2 .

6.2 Проверка гипотезы о равенстве дисперсий двух нормальных генеральных совокупностей

Мощность нормального распределения N = 100.

- 1. Выбрать две выборки мощностью 20 и 40
- 2. Выбрать две выборки мощностью 20 и 100

Провести исследование по методу теста Фишера для случаев 1 и 2.

7 Теоретическое обоснование

7.1 Проверка гипотезы о законе распределения генеральной совокупности. Метод хи-квадрат

7.1.1 Правило проверки гипотезы о законе распре- деления по методу χ^2

- 1. Выбираем уровень значимости α ,
- 2. По таблице находим квантиль $\chi^2_{1-\alpha}(k-1)$ распределения хи-квадрат с k-1 степенями свободы порядка $1-\alpha$,
- 3. С помощью гипотетической функции распределения F(x) вычисляем вероятности $p_i = P(X \in \Delta_i), i \in \overline{1,k},$
- 4. Находим частоты n_i попадания элементов выборки в подмножества Δ_i , $i \in \overline{1,k}$.
- 5. Вычисляем выборочное значение статистики критерия χ^2 :

$$x_B^2 = \sum_{i=1}^k \frac{(n_i - np_i)^2}{np_i}$$

- 6. Сравниваем χ_B^2 и квантиль $\chi_{1-\alpha}^2(k-1)$.
 - (a) Если $\chi_B^2 < \chi_{1-\alpha}^2(k-1),$ то гипотеза H_0 на данном этапе проверки принимается.
 - (b) Если $\chi_B^2 \geqslant \chi_{1-\alpha}^2(k-1)$, то гипотеза H_0 отвергается, выбирается одно из альтернативных распределений, и процедура проверки повторяется.

7.2 Проверка гипотезы о равенстве дисперсий двух нормальных генеральных совокупностей

Несмещенные оценки дисперсий:

$$s_X^2 = \frac{1}{m-1} \sum_{i=1}^m (x_i - \bar{x})^2; \ s_Y^2 = \frac{1}{n-1} \sum_{i=1}^m (y_i - \bar{y})^2; \tag{11}$$

Статистика критерия Фишера:

$$F = s_X^2 / s_Y^2 \tag{12}$$

7.2.1 Тест Фишера

- 1. Вычисляем несмещенные оценки дисперсий (11),
- 2. Выбираем статистику критерия (12),
- 3. Выбираем уровень значимости α ,
- 4. По таблице квантиль $F_{1-\frac{\alpha}{2}}(k_1,k_2)$ распределения Фишера.
- 5. Вычисляем выборочное значение F_V статистики критерия.
- 6. Сравниваем F_B и $F_{1-\frac{\alpha}{2}}(k_1,k_2)$. Если $F_B < F_{1-\frac{\alpha}{2}}(k_1,k_2)$, то гипотеза H_0 на выбранном уровне значимости α принимается. В противном случае отвергается.

8 Описание работы

Лабораторные работы выполнены с использованием Python и его сторонних библиотек numpy, pandas, matplotlib, seaborn были построены гистограммы распределений и посчитаны характеристики пложения.

 ${\it Cc}$ Ссылка на GitHub репозиторий: https://github.com/vladimir-skvortsov/spbstu-mathematical-statistics

9 Результаты

- 9.1 Проверка гипотезы о законе распределения генеральной совокупности. Метод хи-квадрат
- 9.2 Проверка гипотезы о равенстве дисперсий двух нормальных генеральных совокупностей

	s_X^2	s_Y^2	F_B	$F_{1-\frac{\alpha}{2}}(k_1,k_2)$	Результат
20 и 40	1.1089	1.1037	1.0047	2.096	Принимается
20 и 100	1.1089	0.8928	1.2420	1.8696	Принимается

Таблица 4: Результаты теста Фишера

10 Выводы