सैटेलाइट लिंक डिजाइन (Satellite Link Design) :

Satellite का design एक जटिल प्रक्रिया है और इसमें कई बातों का ध्यान रखा जाता है जैसे कि satellite का weight, और board पर उत्पन्न D.C. power, frequency band का आवंटन तवा multiple access विधियाँ।

Satellite link से power का estimation ज्ञात किया जा सकता है जो कि satellite earth station से receive करेगी और earth station satellite से receive करेगा। इसके साध-साथ

uplink और downlink designing में एक महत्वपूर्ण कारक होती है।

माना एक transmitting, isotropic source सभी दिशाओं में power $P_{\mathcal{T}}$ radiate कर रहा है। तथा यह receiver से R की दूरी पर है (चित्र (a) तथा (b) देखें)। यदि एक G_T gain का antenna use किया गया है तो antenna से Rm की दूरी पर flux density MGS PM

यह गुणनफल $P_TG_T(\text{EIRP})$ अर्थात् effective isotropic radiated power को दशांता है यदि receiving antenna का aperture area A_r है तो receive की जाने वाली power $P_R = F \cdot A_R$

Practical condition में कुछ power loss हो जाती है। Antenna का effective apenure area

 $A_r = \eta \cdot A_R$

जहाँ η aperture की efficiency को दर्शाता है और इसका मान 60 से 85% तक होता है अत: वास्तविक antenna द्वारा receive की गयी शक्ति

$$P_R = \frac{P_T G_T A_c}{4\pi R^2}$$

Antenr . की gain G_R

$$G_R = \frac{4\pi A_e}{\lambda^2}$$

अत:

$$P_R = P_T G_T G_R \left(\frac{\lambda}{4\pi R} \right)^2$$

MCS PM

इसको Friis transmitting equation कहा जाता है तथा यह किसी radio link द्वारा receive इसका Friis trailed and में बहुत महत्वपूर्ण होती है। इसमें (4πR/λ)² path loss या free space loss को दर्ताता है अत:

Power received = EIRP × Receiving antenna gain

Decided it term it,

38

 $P_R = (\text{EIRP} + G_R - L_{Fs}) \, dB$ $EIRP = 10 \log_{10} (P_T G_T) dB W$

 $G_R = 10 \log_{10} \left(\frac{4\pi A_e}{\lambda^2} \right) dB$

 $L_{Fs} = \text{Path loss} = 20 \log_{10} \left(\frac{4\pi R}{\lambda} \right) \text{ dB}$

वास्तविक परिस्थितियों में कुछ अन्य losses भी हो सकते हैं जिनको L_A से व्यक्त किया जा सकता रे अतः

Total losses $L = L_{F_x} \times L_A$ तथा

जहाँ $L_A = L_{to} \times L_{ro} \times A_{AG} \times A_{rain} \times L_{point} \times L_{POL}$

 L_{td} = Losses associated with transmitting antenna

 L_{ra} = Losses associated with receiving antenna

 L_{AG} = Attenuation by the atmosphere and ionosphere

 $A_{\text{rain}} = \text{Attenuation due to rain}$

 L_{point} = Losses caused by antenna depointing

 L_{POL} = Losses caused by polarisation mismatch between the transmitting and the receiving antenna

मेंटेलाइट लिंक डिज़ाइन में ध्यान रखने योग्य बाते-

- (i) Adjacent channel interference (दो पास-पास के चैनल्स के मध्य व्यक्तिकरण) कम होना चाहिये। इसके लिये एन्टीना की साइट लोब्स (side lobes) कम की जानी चाहिए।
- (ii) Terrestrial interference कम करने हेतु site का उपयुक्त चयन, अर्थ-स्टेशन की शील्डिंग व Higher आवृत्ति बैंड का उपयोग होना चाहिए।
- (iii) बेहतर एन्टीना डिज़ाइन से cross polarisation interference कम किया जा सकता है।
- (iv) उच्च पॉवर प्रवर्धक (HPA) को उचित output बैक-ऑफ तथा मल्टीप्लैक्सर तथा हिमाँ हुलेटर में उपयुक्त फिल्टरिंग से adjacent channel interference को कम किया जा सकता है।
- (v) Transponder TWT amplifier की उपयुक्त designing से intermodulation interference कम हो जाता है।
- (vi) Orthogonal circular polarisation के स्थान पर orthogonal linear polarisation प्रयोग करने से intersymbol interference कम हो जाता है।
- (vii) Satellite TWT amplifier को संतृप्त क्षेत्र के पास ऑपरेट करने से तथा uplink power control का use करने से rain induced attenuation कम हो जाता है।

(viii) उपयुक्त tracking system का चयन करने से Antenna pointing loss क्य हो जाता है।

(ix) Earth station में rain fade, satellite look angles, earth station की दिशा में satellite EIRP तथा earth station path loss का आकलन स्टेशन की भौगोलिक स्थित के अनुसार adjust किया जा सकता है। Earth station EIRP को transmit antenna gain du transmitted power के अनुसार determine किया जा सकता है। Receive antenna gain earth station का $\frac{G}{T}$ अनुपात determine करती है। Earth station की sensitivity system noise temperature से जात की जा सकती है तथा $\frac{G}{T}$ अनुपात संबंधित होती है।

(x) सैटेलाइट की स्थित coverage क्षेत्र तथा earth station look angles का निर्धारण करती है। Transmit antenna gain तथा radiation pattern EIRP तथा coverage area के बारे में जानकारी देते हैं। Receive antenna gain तथा radiation pattern से कि अनुपात व कवरेज क्षेत्र का पता चलता है। Transmitted power statellite की EIRP से संबंध रखती है। Path loss तथा link margin operating frequency पर निर्भर होते हैं। Transfer gain

तथा noise characteristics EIRP तथा $\frac{G}{T}$ से related होती है।

(xi) अत: हम देखते हैं कि satellite link design को प्रभावित करने वाले मुख्य कारक है—(a) CNR (Carrier to Noise Ratio), क्योंकि CNR बढ़ने पर error की probability कम हो जाती है। CNR मुख्यत: EIRP (Effective Isolated Radiated Power), Free space path loss, Satellite G तथा T अनुपात व Atmosphere loss पर निर्भर करती है। (b) Bit rate अर्थात् प्रति सैकेन्ड प्रेषित/प्राप्त की जाने वाली bits की संख्या तथा (c) मॉडुलेशन स्क्रीमा

(xii) Downlink का design uplink से ज्यादा critical होता है क्योंकि—(a) Satellite transponder पर accurately specified power ही होनी चाहिए। Satellite transponder को अधिक power नहीं दी जा सकती क्योंकि satellites में सीमित power ही उपलब्ध होतो है। (b) Satellites की transmitting उपकरणों की कीमत receiving उपकरणों की तुलना में काफी अधिक होती है तथा (c) प्राकृतिक विक्षोभ (Natural disturbances) uplink की तुलना में downlink को ज्यादा प्रभावित करता है। MCS PM