Contents

1
2
 2
 2
 3
 3

Day 21

$ANOVA \rightarrow Analysis of VAriance$

THE classic Fisher test.

Model: $y \sim N(\mu, \sigma)$

- μ and σ are unknown.
- μ may not be the same for all data points
- σ is assumed same for all data points

In one-way ANOVA:

- <u>Data:</u> one numerical response variable y and one categorical explanatory variable whose values are the "groups".
- We need ≥ 2 groups

Example situations where we use it:

- Compare control group to > 1 treatment group
- Observational study comparing 3 or more groups/populations

Use cases

- Between-group effects: variation due to changes in μ
- Within-group effects: variation due to individual differences

Notation

- $\bar{y} = \text{grand mean or the mean of all data in the whole sample.}$
- N = total sample size
- I = number of groups
- $\bar{y}_{\rm i} = {\rm sample}$ mean in group i
- $s_{\rm i} = {\rm sample}$ standard deviation in group i
- $n_{\rm i} = {\rm sample~size~in~group~i}$
- y_{ij} = value of y for the jth case in group i.

Hypothesis Testing

 $H_0: \mu_1 = \mu_2 = ... = \mu_I$

- All the population means are equal \implies no effect of group on response.
- Under H_0 , $y_{ij} \sim N(\mu, \sigma)$ Also: $\bar{y}_i \sim N(\mu, \frac{\sigma}{\sqrt{n_i}})$ μ, σ are fixed but unknown

H_a: not H₀ [not really necessary because this is Fisher framework]

 $\bullet \implies$ effect of group on response

Implicit Assumptions of Model

- Normal population distribution
- σ is the same for all groups not as critical
 - robust to violations of this assumption as long as the largest $s_i < 2 \times \text{smallest } s_i$