A COMPARISON OF DEEP LEARNING METHODS FOR OBJECT IDENTIFICATION IN AUTONOMOUS OUTDOOR CLEANING ROBOT

Guided by, Dr. Sreeni K G Dept. Of Electronics and Comm. CET, Trivandrum

Presented by,
Mohammed Raheem P
Robotics and Automation
Reg No: TVE16ECRA15

CONTENTS

- Introduction
- Literature Review
- Objectives
- Proposed Methods
- Experimental Results
- Contribution of Thesis
- Publication based on Thesis
- Problems faced during works
- Conclusions
- References

INTRODUCTION

- Visual system is introduced for proposed cleaning vehicle to optimize the power consumption during cleaning tasks.
- Object identification and classification can be more accurately done with the help of deep learning frameworks.
- Keras-Tensorflow based approach and YOLO mark object detection methods are compared in this work.

LITERATURE REVIEW

Paper	Methodology	Advantages	Disadvantages
"Convolutional neural networks for image classification." (International Conference on Advanced Systems and Electric Technologies (IC_ASET). IEEE Jmour, Nadia, Sehla Zayen, and Afef Abdelkrim. (2018.)	 Fine tuning technique. Transfer learning. Imagenet. 	 Very effective. Accurate 	 Long time for training. Need more training images.
"Implementation of deep-learning based image classification on single board computer." (Electronics and Smart Devices (ISESD) International Symposium on. IEEE) Shiddieqy, Hasbi Ash, Farkhad Ihsan Hariadi, and Trio Adiono(2017)	 Used tflearn 5 hidden layers used. 	 Model deploy and running in three platform CPU, GPU and Single Board Computer. Improve accuracy with increase size of network. 	 Not used deep network for real time application using simple computers.

LITERATURE REVIEW (CONTD...)

Paper	Methodology	Advantages	Disadvantages
"You only look once: Unified, real-time object detection." (Proceedings of the IEEE conference on computer vision and pattern recognition.) 2016.	YOLO marking methods.	Easy to constructFast45 FPS	 Struggles with small objects. Each grid cells only predicts two objects with one class.
"YOLO9000: better, faster, stronger" Redmon, Joseph, and Ali Farhadi. (2017).	YOLO marking methods.	FasterBetter	 Only for high classification over 9000 classes. Not use for few classes.

OBJECTIVES

- Classification of waste materials and obstacles from real time video.
- Marking and locating the objects.
- Comparative study between Keras-Tensorflow method and Yolo mark object detection method.

PROPOSED METHODS

(1) Using the Keras-Tensorflow based classification

- Keras is used to model the architecture. This can be model in the top of Tensorflow backend.
- Convolutional neural network is used in this work.
- Image dataset of waste particles and ground alone are created for the training process.

- Input images are collected from different environments such as college and hostel campuses, roads etc.
- Plastic covers, leafs, papers etc are taught as waste particles using the algorithm.

- 5 hidden layers are used in the proposed method to classify objects and grounds.
- Format of layers:

```
CONV – POOL – CONV – POOL – CONV –
POOL – CONV – POOL – CONV – POOL – FC
-FC
```

CONV = Convolution + ReLu

CONV + POOL = HIDDEN LAYER

Image showing the class of ground alone.(15000 similar images is used).

Image showing the class of waste particle. (15000 similar images is used).

FLOW CHART FOR WASTE IDENTIFICATION

Advantages of keras model :

- (1) Allows for easy and fast prototyping (through user friendliness, modularity, and extensibility).
- (2) Supports both convolutional networks and recurrent networks, as well as combinations of the two.
- (3) Runs seamlessly on CPU and GPU

- (2) Using YOLO object detection method
- YOLO Object Mark :
- A) Training is carried out by marking objects and obstacles on every images. After,
- B) A text file that contains object locations on the every images is created (Annotation).
- C) Marked objects and text files are moved to Darknet for training purposes.

YOLO Marking Method

Algorithm to detect objects from images

Training Using Darknet

- Used to understand the objects and obstacles from images using Convolutional Neural Networks.
- 31 hidden layer is used in this work (24 CONV + 7 POOL).
- The annotation file and images from yolo mark detection for the training process are obtained.

```
filters
                 size
                                  input
                                                      output
           32 3 x 3 / 1
                          416 x 416 x
 0 conv
                                      3
                                                416 x 416 x 32
               2 x 2 / 2
 1 max
                          416 x 416 x 32
                                                208 x 208 x 32
           64 3 x 3 / 1
 2 conv
                          208 x 208 x 32
                                                208 x 208 x 64
                          208 x 208 x 64
               2 \times 2 / 2
                                                104 x 104 x 64
 3 max
          128 3 x 3 / 1
 4 conv
                          104 x 104 x 64
                                           ->
                                                104 x 104 x 128
5 conv
          64 1 x 1 / 1
                          104 x 104 x 128
                                                104 x 104 x 64
          128 3 x 3 / 1
6 conv
                          104 x 104 x 64
                                                104 x 104 x 128
               2 x 2 / 2
                                                52 x 52 x 128
 7 max
                          104 x 104 x 128
          256 3 x 3 / 1
                           52 x 52 x 123
                                               52 x 52 x 256
 8 conv
          128 1 x 1 / 1
                           52 x 52 x 256
 9 conv
                                               52 x 52 x 128
10 conv
          256 3 x 3 / 1
                           52 x 52 x 128
                                               52 x 52 x 256
               2 x 2 / 2
                           52 x 52 x 256
11 max
                                               26 x 26 x 256
          512 3 x 3 / 1
12 conv
                           26 x 26 x 256
                                               26 x 26 x 512
13 conv
          256 1 x 1 / 1
                           26 x 26 x 512
                                               26 x 26 x 256
14 conv
                           26 X 26 X 256
          512 3 x 3 / 1
                                                 26 X 26 X 512
          256 1 x 1 / 1
                           26 x 26 x 512
                                               26 x 26 x 256
15 conv
16 conv
          512 3 x 3 / 1
                           26 x 26 x 256
                                                 26 x 26 x 512
17 max
                                               13 X 13 X 512
               2 x 2 / 2
                           26 x 26 x 512
         1024 3 x 3 / 1
18 conv
                           13 x 13 x 512
                                               13 x 13 x1024
          512 1 x 1 / 1
                           13 x 13 x1024
19 conv
                                                 13 x 13 x 512
20 conv
         1024 3 x 3 / 1
                           13 x 13 x 512
                                               13 x 13 x1024
21 conv
         512 1 x 1 / 1
                           13 x 13 x1024
                                               13 x 13 x 512
         1024 3 x 3 / 1
22 conv
                           13 x 13 x 512
                                               13 x 13 x1024
23 conv
         1024 3 x 3 / 1
                           13 x 13 x1024
                                               13 x 13 x1024
24 conv
         1024 3 x 3 / 1
                           13 x 13 x1024
                                                 13 x 13 x1024
25 route 16
26 conv
           64 1 x 1 / 1
                           26 x 26 x 512
                                                 26 X 26 X 64
27 геогд
                           26 x 26 x 64
                                           ->
                                                 13 X 13 X 256
28 route 27 24
29 conv
         1024 3 x 3 / 1
                           13 x 13 x1280
                                                 13 x 13 x1024
                                                13 X 13 X 125
          125 1 x 1 / 1
                           13 X 13 X1024
30 conv
                                           ->
31 detection
```

Epoch vs Batch size vs Iterations

- → Epoch: One Epoch is said to occur when an entire dataset is passed forward and backward through the neural network only once.
- → Batch size: Total number of training examples present in a single batch.
- → Iterations: Iterations is the number of batches needed to complete one epoch.

COMPARISON BETWEEN TWO DIFFERENT DEEP LEARNING FRAMEWORKS

KERAS-TENSORFLOW

- Keras is used for the modelling the network and the tensorflow used for the executing the neural network.
- Easy to construct the model
- Need more input images to create dataset
- Getting outputs in the form of probabilities

YOLO MARK DETECTION

- Graphical based learning with deep neural network.
 (Bounding box is used)
- Difficult to mark the objects on the images.
- Need less number of images to learn the inputs as compared to the keras based model
- Output is getting bounding box of every classes.

EXPERIMENTAL RESULTS

- (1)Keras model (during training process)
- a) Graph between accuracy and epoch

b) Graph between Loss vs epoch

- Predicted image for an input frame.
- P(object) > 0.5
- P(object)>P(waste)

- For a ground alone input image
- P(ground) > 0.5
- P(ground)>P(object)

(2) For the YOLO mark detection

Losses during Training

- Graph shows that loss is gradually decreasing with increasing number of Iterations.
- Number of Iterations =1000
- Number of images used for training = 1000
- Average loss = 0.0423

Graph between Number of Iterations and Losses.

Losses for different Iterations

- Number of Iterations =50000
- Number of images used for training = 1000
- Average loss = 0.0205

Graph between Number of Iterations and Losses.

Test data with same environment condition of train data

Test Input Image

Output Image

Test data with different environment condition of train data

Fig 3: Test Input Image

Fig 4 : Output Image

Detection Accuracy Comparison

Input Data Environment	Total Detected	Wrong Detection	Total Input Images used	Accuracy
Same Environment (seen)	19	1	20	95 %
Different Environment (unseen)	17	3	20	85 %

Table 1: Inputs and Accuracies

OUTPUT COMPARISON BETWEEN DIFFERENT DEEP LEARNING FRAMEWORKS

KERAS-TENSORFLOW	YOLO MARK DETECTION
 Less accuracy as compared with the YOLO mark detection method Need more images for training to get more accuracy. No any idea about location of objects without using depth sensors Probability based output prediction 	 1) High accuracy 2) Less number of input images needed as compared with the keras model to get good accuracy 3) It can locate the objects and getting depth of objects 4) Bounding box based output

CONTRIBUTION OF THESIS

- Real time object detection within small duration.
- Adding different environments into inputs to get more accurate results.
- Avoid the obstacles easily.
- Can detect even detect small objects.
- Comparison of different Deep learning frameworks used for classifying objects.

PUBLICATION BASED ON THESIS

 Submitted to 11th Indian conference on Computer Vision, Graphics and Image Processing (ICVGIP) IIIT Hyderabad.

PROBLEMS FACED DURING THE WORK

- Training of the dataset take more time.
- YOLO based marking of input images is very difficult.
- Collection of images from different environment was a difficult task.
- In certain conditions, stones were also detected as waste particles (Which can be avoided by putting more similar input images to learning the dataset).

CONCLUSIONS

- All objects were identified for unseen and seen environments.
- Compared the different models.
- Obtained good accuracy for the real time detection problem.
- Detection within less time.

REFERENCES

- 1. Jmour, Nadia, Sehla Zayen, and Afef Abdelkrim. "Convolutional neural networks for image classification." 2018 International Conference on Advanced Systems and Electric Technologies (IC_ASET). IEEE, 2018.
- Shiddieqy, Hasbi Ash, Farkhad Ihsan Hariadi, and Trio Adiono.
 "Implementation of deep-learning based image classification on single board computer." Electronics and Smart Devices (ISESD), 2017 International Symposium on. IEEE, 2017.
- 3. Redmon, Joseph, et al. "You only look once: Unified, real-time object detection." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.
- 4. Redmon, Joseph, and Ali Farhadi. "YOLO9000: better, faster, stronger." arXiv preprint (2017).

Thank You