## Preparation for Circuits

# Concept Questions: Resistor Combinations

#### 1. What is $I_1$ ?



- (A) 10 mA
- (B) 7.5 mA
- (C) 5 mA
- $(D)~2.5~\mathrm{mA}$

## 2. What are $I_1$ and $I_2$ ?



- (A) 8 mA, -4 mA
- (B) -4 mA, 8 mA
- (C) 4 mA, -8 mA
- (D) -8 mA, 4 mA

## 3. What is $R_{EQ}$ for the three resistors?



- (A)  $18 \Omega$
- (B) 9 Ω
- (C)  $21 \Omega$
- (D)  $19 \Omega$

#### 4. What is $V_3$ ?



- (A)  $\frac{30}{7}$  V
- (B)  $-\frac{30}{7}$  V
- (C)  $\frac{10}{7}$  V
- (D)  $-\frac{10}{7}$  V

## 5. What is $R_{EQ}$ for the three resistors below?



- $(A)~\tfrac{36}{11}~k\Omega$
- (B)  $1 \text{ k}\Omega$
- (C)  $11 \text{ k}\Omega$
- (D)  $\frac{11}{36}$  k $\Omega$

## 6. What is $I_2$ ?



- (A) 6 mA
- (B) 8 mA
- (C) 4 mA
- (D) 2 mA

#### 7. What is $R_{ab}$ ?



- (A)  $12 \text{ k}\Omega$
- (B)  $6 \text{ k}\Omega$
- (C)  $15 \text{ k}\Omega$
- (D)  $9 \text{ k}\Omega$
- 8. What resistor value would need to be added, in series, to two parallel 10  $\Omega$  resistors to make an overall resistance of 15  $\Omega$ ?
  - (A)  $5 \Omega$
  - (B) 10 Ω
  - (C)  $7.5 \Omega$
  - (D)  $25 \Omega$
- 9. T or F: Three resistors in series will have a larger overall resistance than any of the individual resistors.
- 10. T or F: Three resistors in parallel will have a larger overall resistance than any of the individual resistors.

#### 11. Find $R_{ab}$ .



- (A)  $15 \text{ k}\Omega$
- (B)  $6 \text{ k}\Omega$
- (C)  $12 \text{ k}\Omega$
- (D)  $9 \text{ k}\Omega$

## 12. What is $I_1$ ?



- (A) 8 A
- (B) 2 A
- (C) 4 A
- (D) 6 A

## 13. What is $V_2$ ?



- (A) 2 V
- (B) 1 V
- (C) 4 V
- (D) 5 V

## 14. What is $I_S$ ?

