Optimization via simulation

CASE STUDY: A STOCHASTIC INSPECTION SYSTEM

Preparation:

- □ Hold Module
- □ How to create a "signal" module?

A Stochastic Inspection System

- In a nuclear plant, some parts that need inspection (or some) special treatment) arrive according to a Poisson process with rate Lumbda. Every T time units the system is inspected and at each inspection time all messages present (if any) are cleared from the system (this process takes almost no time). A fixed cost of K>0 is incurred for each inspection. Also, for each item there is a holding cost of h>0 per unit time the item has to wait before it is cleared from the system. We wish to determine the optimal value of T for which the long-run average cost per unit time is minimal.
- \square Let K=50, h=1, Lumbda=1. What's the T*?
- □ How about K=500, h=0.01, Lumbda=1?

Build the model

Discussions

- □ How to find out the optimal T*?
 - □ Trial & error
 - Optimization techniques/DOE

OptQuest

- Steps
 - Build a base model
 - Identify control/decision variables
 - Create an "optimization" model OptQuest
 - Change the decision variables from "fix" to "design"
 - Configure parameters, constraints, replications etc.
 - Optimize!

OptQuest

OptQuest_Case1 : OPT1

Run

	Current	Best
Iteration:	197	51
Objective: 18,566.77326,609.979		
Parameters		
pLumbda	1	1
pH	1	1
pK	50	50
pT	195	8
Copy the best solution to the clipboard	•	сору

Closed form

$$\Box$$
 T* = Sqrt(2K/(h*Lambda))

Extension?

Slide 1

□ What if the holding cost is $f(n_t)$ per time unit, in which n_t is the number of items and f is a function, e.g., $f(x) = x\log(x+5)$?