# SaaS I Azure

Fakultet tehničkih nauka Univerzitet u Novom Sadu

## **Pregled**

- Uvod
- Osnovni pojmovi i definicije
- Microsoft Windows Azure

# Osnovni pojmovi i definicije

## **Šta je Cloud Computing?**

- Postoje različita imena koja se koriste u Cloud Computing-u
  - Platform as a Service (Paas)
  - Infrastructure as a Service (laas)
  - Communication as a Service (CaaS)
  - Software as a Service (Saas)
  - Javni cloud, privatni cloud, hibridni cloud
  - itd.
- Međutim navedeni nivoi zapravo predstavljaju različite nivoe primene Cloud-a

## Sloj 1: Firmware/Hardware

- Fizički računari, mrežna oprema i oprema za čuvanje podatka prestavljaju osnovu Cloud-a→ Hardware as a Service (HaaS)
- HaaS omogućuje rad, upravljanje i održavanje hardvera u ime korisnika tih usluga
- HaaS provajderi imaju tehničko znanje i bolje cene za infrastrukturnu





## Sloj 2: Softversko jezgro

- Osnovno upravljanje operativnim sistemima za fizičke servere
  - Tu spadaju OS, hypervisor (virtual machine monitor, VMM), virtual machines (VM)
- VMM omogućuju uniforman pogled na harversku infrastrukturu, što znači da računari različitih proizvođača izgledaju isto sa stanovišta korisika.
- VMware, Parallels, Microsoft Virtual PC, itd.





#### Sloj 3: Cloud Softverska Infrastruktura

- Pruža osnovne sofverske resurse
- Često se naziva Infrastructure as a Service (laaS)
  - Data Storage, Data Storage as a Service (DaaS)
  - Komunikacija, Communication as a Service (CaaS)







## Sloj 4: Okruženje za razvoj Sofvera

- Korisnici ovog sloja su inženjeri za razvoj aplikacija, koji žele da implementiraju svoje ideje u Cloud-u
- Cloud provajderi daju inženjerima potpuno okruženje za razvoj programa sa skupom dobro definisanih API-ja kako bi se omogućila potpuna interoperabilnost
- Obično se naziva Platform as a Service (PaaS)
- Proizvodjači:
  - Microsoft Windows Azure
  - Google App Engine
  - Salesforce/Force.com
  - itd.



## Sloj 4: Okruženje za razvoj Sofvera

- Razvojno okruženje
  - Razvojno okruženje simulira Cloud na vašem lokalnom računaru tako da možete da pokrenete i testirate servise lokalno pre nego što ih pustite u rad.
  - Razvojno okuženje vam omogućuje da otklanjate greške i izvršite fina podešavanja sistema.
- Autentikacija



Praćenje



- Naplata
- Nove verzije

## **Sloj 4: Cloud Software Environment**

#### Programski jezici

- C# (Microsoft Windows Azure)
- Java, Python (Google App Engine)

#### Tehnologije

- ASP.NET, Silverlight (Microsoft Windows Azure)
- JavaServer Pages, Python (Google App Engine)

#### Dodatni servisi

 Service Bus → Web service hosting infrastructure (e.g. Microsoft Windows Azure)



http://www.microsoft.com/windowsazure/appfabric/

#### Sloj 5: Cloud Aplikacije

Software as a Service (SaaS) su aplikacije koje se nude krajnjim

potrošačima

Microsoft Business Productivity
 Online Standard Suite

CRM (e.g. Salesforce)

Shop (e.g. Amazon)

Picture management (e.g. FlickR)

Sales forecasting (e.g. Lokad)

- e-mail (e.g. Google Mail, Microsoft Exchange Online)
- Storage (e.g. Dropbox, Microsoft Mesh, Skydrive, Gladinet, etc.)
- itd.





## Klasifikacija Cloud-a

- Servisi u Cloud-u mogu biti podeljeni na tri tipa na osnovu prava pristupa i lokaciji
  - Javni cloud je dostupan svima na Internet -u
  - Jeftiniji je, ali postoje problemi privatnosti i predvidivosti performanis
  - Privatni cloud je u vlasnistvu kompanije koja ga koristi i ograničen je pristup za manji broj korisnika
  - Obično su u privatnim Data Centre-ima
  - Skuplji su za održavanje ali pružaju bolje performanse i sigurnosne aspekte





#### Klasifikacija Cloud-a

- Hibridni cloud, ponekad se naziva i virtuelni privatni Cloud, omogućuje korišćenje servisa na računarima koji se nalaze u Javnom Cloud-u infrastructure, ali se kontorliše koji korisnici mogu da mu pristupe
- Jeftniji je od privatnog ali skuplji od javnog
- Arhitektura softvera je komplikovanija



# Microsoft Windows Azure

## Windows Azure Arhitektura (1)



## Windows Azure Arhitektura (2)

- Fabric je mreža međusobno povezanih Node-ova
- Azure Fabric Controller je servis koji nadzire, održavana i u slučaju potrebe startuje nove Node-ove.
- Osnovni Servisi u Windows Azure:
  - Compute: Izvršava programe na Windows Server 2008.
  - Storage: Omogućuje siguran pristup podacima.
  - Network: Omogućuje komunikaciju sa spoljnim aplikacijama (Service Bus).

## Otpornost na greške i dostupnost



#### **Uloga Fabric Kontrolera**

- Fault Domains: Jedinica koja zajedno otkazuje u datacenter (rack ili jedan računar).
- Update Domains samo jedan ovakav domen će biti simultano updateovan prilikom instalacije nove verzije (OS, services).
- Korisnik opisuje potrebe sistema u konfiguraciji.
- Fabric Controller automatski dodeljuje tražene resurse.
- Fabric Controller se stara da svi resursi budu otporni na kvarove i uvek dostupni.
  - Rano odkrivanje kvarova na aplikacijama.
  - Ubacuje nove resurse ako je potrebno.
  - Instance se podižu u različitim fault i update domenima.

#### Resursi za proračun: Web i Worker Role



- Web Role: predsavlja jednu .NET application koja se pokreće u IIS:
  - Web Application ili Web Service (WCF)
- Worker Role: Servisi koji služe za proračun
  - Obično su izolovani od spoljnog sveta
- Fabric Agent skuplja podatke o radu sistema (broj korisnika, kvarova, ...)

#### Komunikaciju između Rola

- Role komuniciraju na asinhroni način pomoću queue-ova.
  - To je preporučeni način komunikacije za pouzdani prenos poruka



Role mogu da komuniciraju i direktno upotrebom TCP ili HTTP(S) komunikacije.



# **Čuvanje podataka (Storage)**

- Cloud aplikacije nemaju pristup VM-ovom file sistem-u.
- Cloud aplikacije mogu da čuvaju podatke u
  - Blob
  - Table
  - Queue
  - Relational database (SQL Azure)
- Blob služi za čuvanje nestruktuiranih podataka.
  - Blob je organizovani u kontejnere.
- Table je struktuirani skup podataka.
  - Podaci su predstavljeni u name/value parovima.
  - Tabele nemaju šeme (svaki podatak može biti drugačiji).
- Queue omogućuje čuvanje podataka po FIFO sistemu.
  - Queue služi za komunikaciju između servisa.

## **Arhitektura Storage-a**



#### Osobine Storage-a

- Windows Azure Storage
  - Omogućuju čuvanje ogromne količine podataka (PB)
  - Lako skaliranje
  - Visoko pouzdani sistemi za čuvanje.
- Podaci su smešteni u velikim farmama servera.
- Skalabilnost
  - Podaci se mogu distirbuirati na veliki broj nodova.
  - Pristup podacima je balansiran.
- Pouzdanost
  - Svi podaci su replicirani u više nodova pri svakom upisu (3 replike se na laze u različitim fault domemima).
  - Kada uređaj zakaže, podaci se repliciraju na novi nod.

#### **Blob**

- Blob Container omogućuje pristup skupu blobova.
  - Način pristupa se postavlja na nivou Container-a: Javni ili privatni.
  - Container mogu da imaju metadata.
- Blob čuva velike pakete podataka
- Tipovi Blob-a
  - Block Blob su otimizovani za striming
    - Maksimalna veličina blob-a : 200 GB
    - Blob se snimaju blokovima (max. 4 MB)
  - Page Blob su optimizovani za slučajan pristup
    - Maksimalna veličina blob-a: 1TB



#### **Table**

- Table omogućuju pristup struktuiranim podacima.
- Table sadrži skup entiteta.
- Entiteti sarže skup property-ja.
- Property sadrži
  - ime
  - Definiciju tipa (Int32, Int64, double, string, bool, DateTime, GUID, byte array).
- Table nemaju fiksnu šemu, tj. strutktura svakog entiteta može da bude drugačija.
- Veličina jednog entiteta je ograničena na 1MB.



#### Queue

Queues omogućuje pouzdanu asinhronu razmenu poruka.

#### Pouzdanost

- Poruke će biti ispručene tek kada klijent potvrdi da je preuzeo poruku
- Poruke se obrađuju sigurno barem jedan put.

#### Razdvajanje klijenta i servera

- Različiti delovi sistema mogu biti implementirani koristeći različite tehnologije.
- Klijent i server ne moraju da budu dostupni istovremeno.

#### Skalabilnost

- Queue kompenzuju pikove u opterećenju i kompenzuju otkaze u hardware-u.
- Ako se uoči povećanje reda čekanja → može se povećati broj računara koji opslužuju sistem.



#### **SQL** Azure

- SQL Azure je relaciona baza podataka koja je dostupna na Cloud bazirani načina.
- SQL Azure u osnovi omogućuje istu funkcionalnost kao i Microsoft SQL Server koji radi lokalno.
- SQL Azure omogućuje pristup preko Tabular Data Stream (TDS) endpoint. TDS je mrežni protokol koji koristi i SQL Server.



#### Windows Azure Service Bus

Enterprise Service Bus (ESB) služi za perzistentnu komunikaciju izmedju Rola



- Windows Azure Service Bus omogugućuje ESB na Internetu (→ Internet Service Bus):
  - Provera identiteta i prava pristupa
  - Registar servera, Naming ...
  - Omogućuje interoperabilan prenos poruka