基于双目系统的目标跟踪与预测

行人检测

指导老师: 王梁昊

组员: 王兴路、邱增辉、罗启睿

Outline

- Application
 - Whole System
 - People Flow Density Prediction
- Small Scale Pedestrian Detection
 - Data Augmentation
 - Why Degrade Performance?
 - Double Flow
 - Multiple Flow and Autoscale Reception Field

Outline

- Application
 - Whole System
 - People Flow Density Prediction
- Small Scale Pedestrian Detection
 - Data Augmentation
 - Why Degrade Performance?
 - Double Flow
 - Multiple Flow and Autoscale Reception Field

Whole System

- Proposal in the Stixel world
- Detection by Faster-RCNN
- People Flow Density Prediction
- Then Focus on Scale Problem

People Flow Density Prediction

- Small Scale Pedestrian Detection
- Hard Negative Reduction
- Incorporate Prior into RPN Subnetwork
- Maintain Multiple Trackers
- Solve Association of Detections by Solving Assignment Problem, but how handle the noisy solutions.

Outline

- Application
 - Whole System
 - People Flow Density Prediction
- Small Scale Pedestrian Detection
 - Data Augmentation
 - Why Degrade Performance?
 - Double Flow
 - Multiple Flow and Autoscale Reception Field

Data Augmentation

Train Without Data Augment

Just 0.8 Scale

Data Augment: Use 0.8 Scale + Origin Scale

Data Augment Degrade Performance!

Data Augmentation

	Test on Origin Dataset	Test on 0.8 Scale Dataset	Test on Mixed Scale Dataset
Train on Origin Dataset	92.55%		
Train on 0.8 Scale Dataset	91.00%	81.19%	
Train on Mixed Scale Dataset	92.58%		88.95%

Experiments Setting:

- Evaluation Metric: $AP^{IoU=0.5}$, $Ap\ at\ IoU=.50(PASCAL\ VOC\ Metric)$
- Train img : Test img= 4964 : 548 ~ 1: 9
- Pos bbox : Neg bbox = 62900 : 62900 = 1 : 1
- CONF_THRESH = 0.8 NMS_THRESH = 0.3

Inria Dataset

Origin Image

Cropped Pos and Neg Sample

Why Degrade Performance?

Single feature map

Scale Problem

Single feature map

Feature Collapse

5/12/2017 王兴路/邱增辉/罗启睿 Object Tracking

Feature Collapse

Feature Collapse

Double Flow

Double Flow

```
assert self. dim_ordering = 'tf'
    if rois[0, roi_idx, 0]{self.pool_size:
       x = K. cast(rois2[0, roi_idx, 0], 'int32')
       y = K. cast(rois2[0, roi_idx, 1], 'int32')
       w = K. cast(rois2[0, roi_idx, 2], 'int32')
       h = K. cast(rois2[0, roi_idx, 3], 'int32')
    else:
       x = K. cast(rois[0, roi idx, 0], 'int32')
       y = K. cast (rois [0, roi idx, 1], 'int32')
       w = K. cast (rois[0, roi_idx, 2], 'int32')
       h = K. cast (rois[0, roi_idx, 3], 'int32')
    rs = tf.image.resize_images(img[:, y:y+h, x:x+w, :], (self.pool_size, self.pool_size))
    outputs.append(rs)
final_output = K. concatenate (outputs, axis=0)
final_output = K. reshape(final_output, (1, self.num_rois, self.pool_size, self.pool_size,
                                                                                                 hb channels))
```

Related Method

Single feature map

Featurized image pyramid

Filter pyramid

Pyramidal feature hierarchy

- predict
 - Single feature map
- Lin T Y, Dollár P, Girshick R, et al. Feature Pyramid Networks for Object Detection[J]. arXiv preprint arXiv:1612.03144, 2016. (CVPR 2017)

Small Scale Pedestrian Detection

Double Flow

	Test on Origin Dataset	Test on 0.8 Scale Dataset	Test on Mixed Scale Dataset
Origin FRCNN	92.55%	81.19%	88.95%
Double Flow	92.58%	91.67%	88.21%

Multiple Flow

- Get Multi-Scale Feature Map in one Model
- New Concatenate Mode in ResNet
- Auto Select Different Scale
- Select According to ROI's size
- then ROI pooling on Channel Dimension to connect to FC layer

Thank You!

ResNet

Identity blockConv block