

MAHINDRA UNIVERSITY HYDERABAD

École Centrale School of Engineering Minor-II Examinations, November 2023 Branch: CM Year: 3^{rd}

Program: B.Tech.

Subject: Financial Mathematics (MA3116)

Semester: I

Date: 10/11/2023 Start Time: 10:00 AM

Time Duration: 1.5 Hours Max. Marks: 30

Instructions:

1. Answer all questions.

2. All questions carry equal marks.

Q 1: Marks: 10

- a) Consider the stock price process $S_n = e^{\sigma M_n} \left(\frac{2}{e^{\sigma} + e^{-\sigma}}\right)^n$, $n = 0, 1, 2, \cdots$ driven by the symmetric random walk M_n starting at 0 and volatility $\sigma > 0$. Show that the stock price process is a martingale.
- b) Compute $E[\log(S_n)]$ and $Var[\log(S_n)]$.

Q 2:

- a) Consider a 3-period binomial model of pricing American option. Let the initial stock price be $S_0 = 10$ per share, u = 2 be up factor, d = 0.5 be down factor, r = 0.25 be rate of interest per time period, K = 12 be strike price.
 - (i) Find the initial price of the American put option.
- (ii) Let τ denote a exercise policy and defined as follows: $\tau(HHH) = \infty, \tau(HHT) = \infty, \tau(HTH) = 2, \tau(HTT) = 2, \tau(THH) = 1, \tau(THT) = 1, \tau(TTH) = 1, \tau(TTT) = 1$. Check whether τ is a stopping time and compute the stopped option price process.

Q 3:

Marks: 10

- a) Consider the scaled random walk $\{W^{(100)}(t), t \geq 0\}$.
- (i) Determine the probability distribution of $W^{(100)}(0.3)$.
- (ii) Compute $Cov(W^{(100)}(0.6), W^{(100)}(0.4))$.
- b) Let $W^{(n)}(t)$ denote a scaled random walk. Let $S_n(t)$ denote the stock price process driven by $W^{(n)}(t)$ with up factor $u_n = e^{\sigma/\sqrt{n}}$ and down factor $d_n = e^{-\sigma/\sqrt{n}}$. If the stock price process $S_n(t)$ converges in distribution to the process

$$S(t) = S_0 \exp \left(\sigma W(t) + (\mu - \frac{\sigma^2}{2})t\right)$$

then find the probabilities of Head (H) and Tail (T) in the underlying random walk process. Also compute $\mathbb{E}[S(t)]$ and $\mathbb{E}[\log(S(t))]$.