Chéo hóa và chéo hóa trực giao

Hà Minh Lam hmlam@math.ac.vn

2021-2022

Tóm tắt

- Chéo hóa ma trận vuông
 - Ma trận chéo hóa được
 - Điều kiện chéo hóa được

- Chéo hóa trực giao ma trận đối xứng
 - Chéo hóa ma trận đối xứng
 - Ma trận trực giao
 - Chéo hóa trực giao

Tóm tắt

- Chéo hóa ma trận vuông
 - Ma trận chéo hóa được
 - Điều kiện chéo hóa được

- Chéo hóa trực giao ma trận đối xứng
 - Chéo hóa ma trận đối xứng
 - Ma trận trực giao
 - Chéo hóa trực giao

Ma trận chéo hóa được

Định nghĩa

Ma trận vuông A cấp n được gọi là chéo hóa được nếu nó đồng dạng với một ma trận đường chéo. Nói cách khác, tồn tại một ma trận khả nghịch P sao cho $P^{-1}AP$ là một ma trận đường chéo.

Ma trận chéo hóa được

Định nghĩa

Ma trận vuông A cấp n được gọi là chéo hóa được nếu nó đồng dạng với một ma trận đường chéo. Nói cách khác, tồn tại một ma trận khả nghịch P sao cho $P^{-1}AP$ là một ma trận đường chéo.

Ví dụ: Ma trận
$$A = \begin{pmatrix} 1 & 3 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}$$
 chéo hóa được vì với

$$P = \left(\begin{array}{ccc} 1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \end{array}\right)$$

thì
$$P^{-1}AP = \begin{pmatrix} 4 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{pmatrix}$$
.

Tóm tắt

- Chéo hóa ma trận vuông
 - Ma trận chéo hóa được
 - Điều kiện chéo hóa được
- Chéo hóa trực giao ma trận đối xứng
 - Chéo hóa ma trận đối xứng
 - Ma trận trực giao
 - Chéo hóa trực giao

Nhận xét:

• Hai ma trận vuông đồng dạng thì có cùng các giá trị riêng.

Nhân xét:

- Hai ma trận vuông đồng dạng thì có cùng các giá trị riêng.
- Ma trận tam giác (đặc biệt: ma trận đường chéo) cấp n có n giá trị riêng (tính cả bội).

Nhận xét:

- Hai ma trận vuông đồng dạng thì có cùng các giá trị riêng.
- Ma trận tam giác (đặc biệt: ma trận đường chéo) cấp n có n giá trị riêng (tính cả bội).

Mệnh đề

Nếu ma trận vuông A cấp n là chéo hóa được thì nó có n giá trị riêng tính cả bội.

Nhận xét:

- Hai ma trận vuông đồng dạng thì có cùng các giá trị riêng.
- Ma trận tam giác (đặc biệt: ma trận đường chéo) cấp n có n giá trị riêng (tính cả bội).

Mênh đề

Nếu ma trận vuông A cấp n là chéo hóa được thì nó có n giá trị riêng tính cả bội.

Chú ý: Điều ngược lại chưa chắc đúng.

Nhận xét:

- Hai ma trận vuông đồng dạng thì có cùng các giá trị riêng.
- Ma trận tam giác (đặc biệt: ma trận đường chéo) cấp n có n giá trị riêng (tính cả bội).

Mệnh đề

Nếu ma trận vuông A cấp n là chéo hóa được thì nó có n giá trị riêng tính cả bội.

Chú ý: Điều ngược lại chưa chắc đúng.

$$A=\left(egin{array}{cc} 1 & 2 \\ 0 & 1 \end{array}
ight)$$
 có giá trị riêng $\lambda=1$ bội 2 nhưng A không chéo hóa được.

Giả sử A chéo hóa được: $P^{-1}AP = D = diag(\lambda_1, \lambda_2, \dots, \lambda_n)$.

Giả sử A chéo hóa được: $P^{-1}AP = D = diag(\lambda_1, \lambda_2, \dots, \lambda_n)$.

Ký hiệu \mathbf{p}_i là vector cột thứ i của P. Ta có:

$$A[\mathbf{p}_1 \ \mathbf{p}_2 \ \dots \ \mathbf{p}_n] = AP = PD = [\lambda_1 \mathbf{p}_1 \ \lambda_2 \mathbf{p}_2 \ \dots \ \lambda_n \mathbf{p}_n]$$

Suy ra $A\mathbf{p}_i = \lambda_i \mathbf{p}_i$. Các vector \mathbf{p}_i tạo thành một cơ sở của \mathbb{R}^n gồm toàn các vector riêng của A.

Giả sử A chéo hóa được: $P^{-1}AP = D = diag(\lambda_1, \lambda_2, \dots, \lambda_n)$.

Ký hiệu \mathbf{p}_i là vector cột thứ i của P. Ta có:

$$A[\mathbf{p}_1 \ \mathbf{p}_2 \ \dots \ \mathbf{p}_n] = AP = PD = [\lambda_1 \mathbf{p}_1 \ \lambda_2 \mathbf{p}_2 \ \dots \ \lambda_n \mathbf{p}_n]$$

Suy ra $A\mathbf{p}_i = \lambda_i \mathbf{p}_i$. Các vector \mathbf{p}_i tạo thành một cơ sở của \mathbb{R}^n gồm toàn các vector riêng của A.

Định lý

Ma trận A chéo hóa được khi và chỉ khi nó có n vector riêng độc lập tuyến tính.

Giả sử A chéo hóa được: $P^{-1}AP = D = diag(\lambda_1, \lambda_2, \dots, \lambda_n)$.

Ký hiệu \mathbf{p}_i là vector cột thứ i của P. Ta có:

$$A[\mathbf{p}_1 \ \mathbf{p}_2 \ \dots \ \mathbf{p}_n] = AP = PD = [\lambda_1 \mathbf{p}_1 \ \lambda_2 \mathbf{p}_2 \ \dots \ \lambda_n \mathbf{p}_n]$$

Suy ra $A\mathbf{p}_i = \lambda_i \mathbf{p}_i$. Các vector \mathbf{p}_i tạo thành một cơ sở của \mathbb{R}^n gồm toàn các vector riêng của A.

Định lý

Ma trận A chéo hóa được khi và chỉ khi nó có n vector riêng độc lập tuyến tính.

Định lý

Nếu A có n giá trị riêng phân biệt thì A chéo hóa được.

Ví dụ: Chéo hóa
$$A = \begin{pmatrix} 1 & -1 & -1 \\ 1 & 3 & 1 \\ -3 & 1 & -1 \end{pmatrix}$$
.

Ví dụ: Chéo hóa
$$A = \begin{pmatrix} 1 & -1 & -1 \\ 1 & 3 & 1 \\ -3 & 1 & -1 \end{pmatrix}$$
.

Da thức đặc trưng: $\det(\lambda I - A) = (\lambda + 2)(\lambda - 2)(\lambda - 3)$.

$$(2I - A)\mathbf{x} = \mathbf{0} \implies \mathbf{x}_1 = [-1 \ 0 \ 1]^T$$

$$(-2I - A)\mathbf{x} = \mathbf{0} \implies \mathbf{x}_2 = \begin{bmatrix} 1 & -1 & 4 \end{bmatrix}^T$$

$$(3I - A)\mathbf{x} = \mathbf{0} \implies \mathbf{x}_3 = \begin{bmatrix} -1 & 1 & 1 \end{bmatrix}^T$$

Ví dụ: Chéo hóa
$$A = \begin{pmatrix} 1 & -1 & -1 \\ 1 & 3 & 1 \\ -3 & 1 & -1 \end{pmatrix}$$
.

Da thức đặc trưng: $\det(\lambda I - A) = (\lambda + 2)(\lambda - 2)(\lambda - 3)$.

$$(2I - A)\mathbf{x} = \mathbf{0} \implies \mathbf{x}_1 = [-1 \ 0 \ 1]^T$$

$$(-2I - A)\mathbf{x} = \mathbf{0} \implies \mathbf{x}_2 = \begin{bmatrix} 1 & -1 & 4 \end{bmatrix}^T$$

$$(3I - A)\mathbf{x} = \mathbf{0} \implies \mathbf{x}_3 = [-1 \ 1 \ 1]^T$$

Đặt
$$P = \begin{pmatrix} -1 & 1 & -1 \\ 0 & -1 & 1 \\ 1 & 4 & 1 \end{pmatrix}$$
, ta có $P^{-1}AP = diag(2, -2, 3)$.

Tóm tắt

- Chéo hóa ma trận vuông
 - Ma trận chéo hóa được
 - Điều kiện chéo hóa được

- Chéo hóa trực giao ma trận đối xứng
 - Chéo hóa ma trận đối xứng
 - Ma trận trực giao
 - Chéo hóa trực giao

Giá trị riêng của ma trận đối xứng

Cho A là một ma trận đối xứng cấp n: $A = A^T$.

Định lý

Cho A là một ma trận đối xứng. Khi đó các khẳng định sau là đúng:

- A chéo hóa được.
- 2 Tất cả các giá trị riêng của A là thực.
- Nếu λ là một giá trị riêng bội k của A thì không gian con riêng của A ứng với λ có số chiều là k (nghĩa là A có k vector riêng độc lập tuyến tính ứng với λ).

Giá trị riêng của ma trận đối xứng

Ví dụ:

Giá trị riêng của ma trận đối xứng

Ví dụ:

Với $\lambda_1 = -1$, có 2 vector riêng độc lập tuyến tính

$$\mathbf{u}_1 = [1 \ 1 \ 0 \ 0]^T , \mathbf{u}_2 = [0 \ 0 \ 1 \ 1]^T.$$

Với $\lambda_2=3$, có 2 vector riêng độc lập tuyến tính

$$\mathbf{u}_3 = \begin{bmatrix} 1 & -1 & 0 & 0 \end{bmatrix}^T, \mathbf{u}_4 = \begin{bmatrix} 0 & 0 & 1 & -1 \end{bmatrix}^T.$$

Tóm tắt

- Chéo hóa ma trận vuông
 - Ma trân chéo hóa được
 - Điều kiện chéo hóa được

- Chéo hóa trực giao ma trận đối xứng
 - Chéo hóa ma trận đối xứng
 - Ma trận trực giao
 - Chéo hóa trực giao

Định nghĩa

Ma trận vuông P được gọi là trực giao nếu nó khả nghịch và $P^{-1} = P^{T}$.

Định nghĩa

Ma trận vuông P được gọi là trực giao nếu nó khả nghịch và $P^{-1} = P^{T}$.

Nhận xét:

• Ma trận P là trực giao khi và chỉ khi $PP^T = P^TP = I$.

Định nghĩa

Ma trận vuông P được gọi là trực giao nếu nó khả nghịch và $P^{-1} = P^{T}$.

Nhận xét:

- Ma trận P là trực giao khi và chỉ khi $PP^T = P^TP = I$.
- Ma trận P là trực giao khi và chỉ khi P^T là trực giao.

2021-2022

Định nghĩa

Ma trận vuông P được gọi là trực giao nếu nó khả nghịch và $P^{-1} = P^{T}$.

Nhận xét:

- Ma trận P là trực giao khi và chỉ khi $PP^T = P^TP = I$.
- Ma trận P là trực giao khi và chỉ khi P^T là trực giao.

Ví dụ:

$$\bullet \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right).$$

$$\bullet \left(\begin{array}{ccc} \frac{3}{5} & 0 & -\frac{4}{5} \\ 0 & 1 & 0 \\ \frac{4}{5} & 0 & \frac{3}{5} \end{array}\right).$$

$$\bullet \left(\begin{array}{cc} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{array} \right).$$

Nhận biết ma trận trực giao

Định lý

Ma trận vuông P là trực giao khi và chỉ khi các vector cột (hàng) của nó tạo thành một hệ trực chuẩn.

Tóm tắt

- Chéo hóa ma trận vuông
 - Ma trân chéo hóa được
 - Điều kiện chéo hóa được

- Chéo hóa trực giao ma trận đối xứng
 - Chéo hóa ma trận đối xứng
 - Ma trận trực giao
 - Chéo hóa trực giao

Định lý

Giả sử A là một ma trận đối xứng. Giả sử λ_1,λ_2 là hai giá trị riêng khác nhau của A và $\mathbf{x}_1,\mathbf{x}_2$ tương ứng là vector riêng của λ_1,λ_2 . Khi đó \mathbf{x}_1 và \mathbf{x}_2 vuông góc (trực giao) với nhau.

Định lý

Giả sử A là một ma trận đối xứng. Giả sử λ_1, λ_2 là hai giá trị riêng khác nhau của A và $\mathbf{x}_1, \mathbf{x}_2$ tương ứng là vector riêng của λ_1, λ_2 . Khi đó \mathbf{x}_1 và \mathbf{x}_2 vuông góc (trực giao) với nhau.

Chứng minh:

 $\bullet \ A\mathbf{x}_1 = \lambda_1\mathbf{x}_1, A\mathbf{x}_2 = \lambda_2\mathbf{x}_2.$

Định lý

Giả sử A là một ma trận đối xứng. Giả sử λ_1, λ_2 là hai giá trị riêng khác nhau của A và $\mathbf{x}_1, \mathbf{x}_2$ tương ứng là vector riêng của λ_1, λ_2 . Khi đó \mathbf{x}_1 và \mathbf{x}_2 vuông góc (trực giao) với nhau.

Chứng minh:

- A**x**₁ = λ_1 **x**₁, A**x**₂ = λ_2 **x**₂.
- $\lambda_1 < \mathbf{x}_1, \mathbf{x}_2 >= \lambda_1 \mathbf{x}_1^T \mathbf{x}_2 = (A\mathbf{x}_1)^T \mathbf{x}_2 = \mathbf{x}_1^T A^T \mathbf{x}_2 = \mathbf{x}_1^T A\mathbf{x}_2 = \mathbf{x}_1^T (\lambda_2 \mathbf{x}_2) = \lambda_2 \mathbf{x}_1^T \mathbf{x}_2 = \lambda_2 < \mathbf{x}_1, \mathbf{x}_2 >.$

Định lý

Giả sử A là một ma trận đối xứng. Giả sử λ_1, λ_2 là hai giá trị riêng khác nhau của A và $\mathbf{x}_1, \mathbf{x}_2$ tương ứng là vector riêng của λ_1, λ_2 . Khi đó \mathbf{x}_1 và \mathbf{x}_2 vuông góc (trực giao) với nhau.

Chứng minh:

- A**x**₁ = λ_1 **x**₁, A**x**₂ = λ_2 **x**₂.
- $\lambda_1 < \mathbf{x}_1, \mathbf{x}_2 >= \lambda_1 \mathbf{x}_1^T \mathbf{x}_2 = (A\mathbf{x}_1)^T \mathbf{x}_2 = \mathbf{x}_1^T A^T \mathbf{x}_2 = \mathbf{x}_1^T A \mathbf{x}_2 = \mathbf{x}_1^T (\lambda_2 \mathbf{x}_2) = \lambda_2 \mathbf{x}_1^T \mathbf{x}_2 = \lambda_2 < \mathbf{x}_1, \mathbf{x}_2 >.$
- $(\lambda_1-\lambda_2)<\mathbf{x}_1,\mathbf{x}_2>=0$, mà $\lambda_1-\lambda_2\neq 0$, nên $<\mathbf{x}_1,\mathbf{x}_2>=0$.

Chéo hóa trưc giao

Định nghĩa

Ma trận vuông A cấp n được gọi là chéo hóa trực giao được nếu tồn tại một ma trận trực giao P cấp n sao cho $P^{-1}AP = P^TAP$ là một ma trận đường chéo.

Chéo hóa trưc giao

Định nghĩa

Ma trận vuông A cấp n được gọi là chéo hóa trực giao được nếu tồn tại một ma trận trực giao P cấp n sao cho $P^{-1}AP = P^TAP$ là một ma trận đường chéo.

Định lý

Ma trận vuông A cấp n là chéo hóa trực giao được và có n giá trị riêng thực khi và chỉ khi A là một ma trận đối xứng.

Phương pháp chéo hóa trực giao

Ý tưởng: Tìm một cơ sở trực chuẩn gồm các vector riêng.

Phương pháp chéo hóa trực giao

 $\acute{\mathbf{Y}}$ tưởng: Tìm một cơ sở trực chuẩn gồm các vector riêng.

Các bước thực hiện:

- Giải phương trình đặc trưng để tìm các giá trị riêng (tính cả bội).
- ② Với mỗi giá trị riêng, tìm một cơ sở của không gian con riêng tương ứng rồi trực chuẩn hóa bằng Gram-Schmidt.
- ullet Tạo ma trận P với các $c\hat{o}t$ là các vector riêng trực chuẩn tìm được.

$$A = \left(\begin{array}{cc} -2 & 2 \\ 2 & 1 \end{array}\right)$$

$$A = \left(\begin{array}{cc} -2 & 2 \\ 2 & 1 \end{array}\right)$$

 $\det(\lambda I - A) = (\lambda + 3)(\lambda - 2) \implies \text{ có 2 giá trị riêng là } \lambda_1 = -3, \lambda_2 = 2.$

$$A = \left(\begin{array}{cc} -2 & 2 \\ 2 & 1 \end{array}\right)$$

$$\det(\lambda I - A) = (\lambda + 3)(\lambda - 2) \implies \text{có 2 giá trị riêng là } \lambda_1 = -3, \lambda_2 = 2.$$

Với
$$\lambda_1=-3$$
 tìm được $\mathbf{u}_1=\begin{bmatrix}-2 \ 1\end{bmatrix}^T$, chuẩn hóa thành $\mathbf{v}_1=\begin{bmatrix}-\frac{2}{\sqrt{5}} \ \frac{1}{\sqrt{5}}\end{bmatrix}^T$.

Với
$$\lambda_2=2$$
 tìm được $\mathbf{u}_2=\begin{bmatrix}1 \ 2\end{bmatrix}^T$, chuẩn hóa thành $\mathbf{v}_2=\begin{bmatrix}\frac{1}{\sqrt{5}} \ \frac{2}{\sqrt{5}}\end{bmatrix}^T$.

$$A = \left(\begin{array}{cc} -2 & 2 \\ 2 & 1 \end{array}\right)$$

 $\det(\lambda I - A) = (\lambda + 3)(\lambda - 2) \implies \text{ có 2 giá trị riêng là } \lambda_1 = -3 \,, \lambda_2 = 2.$

Với $\lambda_1=-3$ tìm được $\mathbf{u}_1=\begin{bmatrix}-2 \ 1\end{bmatrix}^T$, chuẩn hóa thành $\mathbf{v}_1=\begin{bmatrix}-\frac{2}{\sqrt{5}} \ \frac{1}{\sqrt{5}}\end{bmatrix}^T$.

Với $\lambda_2=2$ tìm được $\mathbf{u}_2=\begin{bmatrix}1 \ 2\end{bmatrix}^T$, chuẩn hóa thành $\mathbf{v}_2=\begin{bmatrix}\frac{1}{\sqrt{5}} \ \frac{2}{\sqrt{5}}\end{bmatrix}^T$.

Từ đó $P = \begin{pmatrix} -\frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{pmatrix}$ và $P^T A P = diag(-3, 2)$.

$$A = \left(\begin{array}{rrr} 2 & 2 & -2 \\ 2 & -1 & 4 \\ -2 & 4 & -1 \end{array}\right)$$

$$A = \left(\begin{array}{rrr} 2 & 2 & -2 \\ 2 & -1 & 4 \\ -2 & 4 & -1 \end{array}\right)$$

$$\det(\lambda I - A) = (\lambda + 6)(\lambda - 3)^2 \implies \text{c\'o 2 gi\'a trị riêng là } \lambda_1 = -6 \,, \lambda_2 = 3 \text{ (bội 2)}.$$

$$A = \left(\begin{array}{rrr} 2 & 2 & -2 \\ 2 & -1 & 4 \\ -2 & 4 & -1 \end{array}\right)$$

$$\det(\lambda I-A)=(\lambda+6)(\lambda-3)^2\implies \text{ có 2 giá trị riêng là }\lambda_1=-6\,,\lambda_2=3\text{ (bội 2)}.$$

Với
$$\lambda_1=-6$$
 tìm được $\mathbf{u}_1=\begin{bmatrix}1&-2&2\end{bmatrix}^T$, chuẩn hóa thành $\mathbf{v}_1=\begin{bmatrix}\frac{1}{3}&-\frac{2}{3}&\frac{2}{3}\end{bmatrix}^T$.

Với
$$\lambda_2=3$$
 tìm được $\mathbf{u}_2=\begin{bmatrix}2\ 1\ 0\end{bmatrix}^T$ và $\mathbf{u}_3=\begin{bmatrix}-2\ 0\ 1\end{bmatrix}^T$, trực chuẩn hóa thành $\mathbf{v}_2=\begin{bmatrix}\frac{2}{\sqrt{5}}\ \frac{1}{\sqrt{5}}\ 0\end{bmatrix}^T$ và $\mathbf{v}_3=\begin{bmatrix}-\frac{2}{3\sqrt{5}}\ \frac{4}{3\sqrt{5}}\ \frac{5}{3\sqrt{5}}\end{bmatrix}^T$.

$$A = \left(\begin{array}{rrr} 2 & 2 & -2 \\ 2 & -1 & 4 \\ -2 & 4 & -1 \end{array}\right)$$

$$\det(\lambda I - A) = (\lambda + 6)(\lambda - 3)^2 \implies \text{ có 2 giá trị riêng là } \lambda_1 = -6, \lambda_2 = 3 \text{ (bội 2)}.$$

Với
$$\lambda_1 = -6$$
 tìm được $\mathbf{u}_1 = \begin{bmatrix} 1 & -2 & 2 \end{bmatrix}^T$, chuẩn hóa thành $\mathbf{v}_1 = \begin{bmatrix} \frac{1}{3} & -\frac{2}{3} & \frac{2}{3} \end{bmatrix}^T$.

Với
$$\lambda_2=3$$
 tìm được $\mathbf{u}_2=\begin{bmatrix}2\ 1\ 0\end{bmatrix}^T$ và $\mathbf{u}_3=\begin{bmatrix}-2\ 0\ 1\end{bmatrix}^T$, trực chuẩn hóa thành $\mathbf{v}_2=\begin{bmatrix}\frac{2}{\sqrt{5}}\ \frac{1}{\sqrt{5}}\ 0\end{bmatrix}^T$ và $\mathbf{v}_3=\begin{bmatrix}-\frac{2}{3\sqrt{5}}\ \frac{4}{3\sqrt{5}}\ \frac{5}{3\sqrt{5}}\end{bmatrix}^T$.

Từ đó
$$P = \begin{pmatrix} \frac{1}{3} & \frac{2}{\sqrt{5}} & -\frac{2}{3\sqrt{5}} \\ -\frac{2}{3} & \frac{1}{\sqrt{5}} & \frac{4}{3\sqrt{5}} \\ \frac{2}{3} & 0 & \frac{5}{3\sqrt{5}} \end{pmatrix}$$
 và $P^T A P = diag(-6, 3, 3)$.

1) Cho ma trận

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$

Hãy tìm một ma trận trực giao P và một ma trận đường chéo D sao cho $A = P^T D P$.

1) Cho ma trận

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$

Hãy tìm một ma trận trực giao P và một ma trận đường chéo D sao cho $A = P^T D P$.

Đáp án:

$$P = \begin{pmatrix} 1/\sqrt{2} & -1/\sqrt{2} & 0\\ 0 & 0 & 1\\ 1/\sqrt{2} & 1/\sqrt{2} & 0 \end{pmatrix}; \qquad D = \begin{pmatrix} 0 & 0 & 0\\ 0 & 2 & 0\\ 0 & 0 & 2 \end{pmatrix}$$

2) Cho ma trận

$$A = \begin{pmatrix} 4 & -3 & 0 \\ 2 & -1 & 0 \\ 1 & -1 & 1 \end{pmatrix}.$$

Hãy tìm một ma trận khả nghịch P và một ma trận đường chéo D sao cho $D=P^{-1}AP$.

2) Cho ma trận

$$A = \begin{pmatrix} 4 & -3 & 0 \\ 2 & -1 & 0 \\ 1 & -1 & 1 \end{pmatrix}.$$

Hãy tìm một ma trận khả nghịch P và một ma trận đường chéo D sao cho $D=P^{-1}AP$.

Đáp án:

$$P = \begin{pmatrix} 1 & 0 & 3 \\ 1 & 0 & 2 \\ 0 & 1 & 1 \end{pmatrix}; \qquad D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$