材料の物理1

第12回目

9コンデンサーの接続(連紹)

• 並列接統

全てのコンテンサーの電位差(電圧) は等い、V。 i番目のコンテンサーに蓄えられる 電荷は、QL= CiV。 明えに、全体の電荷は、 $Q = \sum_{i=1}^{n} Q_i = \sum_{i=1}^{n} c_i \nabla$ 启成電気容量とは、 $\zeta = \frac{n}{2} c_i \qquad (\cancel{2}31)$

A =1.02 17

·直列接統

$$\nabla = \frac{n}{i=1} \nabla i$$

隣り合うコンテンサーの極板 の電荷は互いに打す消し合う ので、Qi=Qで宝コンランサー に共通。

6.2 誘電体

の電流を流さない絶縁体

↓ 一 電気的に不活性か? ⇒ No!

電場により電気分極が生じる(変化する)~

※両看のつじつまを合わせる必要あり

しつ 電東密度(電気変位)という場の専入

稻稼体⇒"誘霓体"

け、尊体は外部電場を 完全に打る消す 一分事件内は F=0

0 電気分極

・絶縁体(誘電体)→自由に動ける電荷なし

イオン結晶 (131) Nat (1-)

分子的:水

分子的:水 : 配向分極 (双极干) 臣 E=0 Pto P=0 E=0のときP=0)常誘電体 E+0//P+0)常誘電体

P= EOXE

· 巨=DでもPキロの物質あり 自然分極了 Psをもち、 その何きをとで E=0 反転できる物 強誘電体

のガウスの法則と電東密度

のかウスの法則と電東密度

誘電体が存在する空間の中に 閉曲面がを考える。

がウスの弦則 外部電場 + 反電場 外部電荷

微小領域金体がよの内側にあるものは、 打ち消し合って分極電荷は〇。

なはまって切断された部分の分極電荷が残る。 → ap = - Spnds Qe x逆 /前有

まって、

$$S_{S}(E_{0}E_{n}+P_{n})dS=Qe$$

 $S_{S}E+P=D: 電界窓度(電数変位)$
 $S_{S}D_{n}dS=Qe$
 $S_{S}D_{n}dS=Qe$
(常)誘電体では $P=E_{0}XE \rightarrow D=E_{0}E$ 十
電気感受率 = $E_{0}E_{n}E$
= $E_{0}E_{n}E$
= $E_{0}E_{n}E$
= $E_{0}E_{n}E$

を:物質の絶対誘電率 を,=を, 真空に対ちに 一般で Sによって切断された部分の分極電荷が残る。 → Op = - Spn ds Qe と逆 <u>分極(電荷密度)</u> (PのSに対する外向き法線 方向の成分)

$$f_{n}$$
 f_{n} $f_{$

まって、

$$S_{S}(E_{0}E_{n}+P_{n})dS=Qe$$

 $S_{0}E+P=D: 電界密度(電数変位)$
 $S_{S}D_{n}dS=Qe$
 $S_{S}D_{n}dS=Qe$
(常)誘電体では $S_{S}D_{n}E$
電気感受率 $S_{S}E$
 $S_{S}E$

を:物質の絶対誘電率 をかま立対対が 一般では対する比較電率

を:物質の絶対誘電率 をかま立は対するに 一般で (相対)

・ガウスの法則、

一、真空中のがウスの法別のものを