Sampling distributions

t-student distribution

This distribution is useful to study the sample mean distribution.

The probability density function (pdf) is given by

$$f(t) = \frac{\Gamma(\frac{\nu+1}{2})}{\sqrt{\nu\pi} \, \Gamma(\frac{\nu}{2})} \left(1 + \frac{t^2}{\nu}\right)^{-\frac{\nu+1}{2}}, \quad \text{with } t \in \mathbb{R} \text{ and } \nu > 0$$

The parameter v is called degrees of freedom (df)

Where
$$\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} dt$$
.

t-student table

Percentage points of Student's t distribution

$df/\alpha =$.40	.25	.10	.05	.025	.01	.005	.001	.0005
1	0.325	1.000	3.078	6.314	12.706	31.821	63.657	318.309	636.619
2	0.289	0.816	1.886	2.920	4.303	6.965	9.925	22.327	31.599
3	0.277	0.765	1.638	2.353	3.182	4.541	5.841	10.215	12.924
4	0.271	0.741	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	0.267	0.727	1.476	2.015	2.571	3.365	4.032	5.893	6.869
6	0.265	0.718	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	0.263	0.711	1.415	1.895	2.365	2.998	3.499	4.785	5.408
8	0.262	0.706	1.397	1.860	2.306	2.896	3.355	4.501	5.041
9	0.261	0.703	1.383	1.833	2.262	2.821	3.250	4.297	4.781
10	0.260	0.700	1.372	1.812	2.228	2.764	3.169	4.144	4.587

Degrees of freedom

Quantiles

$$\bigcap_{\text{Obtain t 0.25,5}} \alpha$$

df/α =	.40	(.25)	.10
1	0.325	1.000	3.078
2	0.289	0.816	1.886
3	0.277	0.765	1.638
4	0.271	0.741	1.533
<u> </u>	0.267	0.727	1.476
6	0.265	0.718	1.440
7	0.263	0.711	1.415
8	0.262	0.706	1.397
9	0.261	0.703	1.383
10	0.260	0.700	1.372

Answer: $t_{0.25, 5} = 0.727$

Obtain α if $t_{\alpha,3} = 2.353$

$df/\alpha =$.40	.25	.10	.05	.025	.01	.005	
1	0.325	1.000	3.078	6.314	12.706	31.821	63.657	
2	0.289	0.816	1.886	2.920	4.303	6.965	9.925	
3 -	0.277	0.765	1.638	2.353	3.182	4.541	5.841	
4	0.271	0.741	1.533	2.132	2.776	3.747	4.604	
5	0.267	0.727	1.476	2.015	2.571	3.365	4.032	

Answer: $\alpha = 0.05$

Obtain α if $t_{\alpha,4} = 3$

$df/\alpha =$.40	.25	.10	.05	.025	.01	.005
1	0.325	1.000	3.078	6.314	12.706	31.821	63.657
2	0.289	0.816	1.886	2.920	4.303	6.9 <mark>65</mark>	9.925
3	0.277	0.765	1.638	2.353	3.182	4.5 <mark>4</mark> 1	5.841
4 -	0.271	0.741	1.533	2.132	> 2.776	3.747	4.604
5	0.267	0.727	1.476	2.015	2.571	3.365	4.032

Answer: $\alpha \in (0.01, 0.025)$

Chi-square distribution

This distribution is useful to study the sample variance distribution.

The probability density function (fdp) is given by

$$f(x; k) = \begin{cases} \frac{x^{(k/2)-1}e^{-x/2}}{2^{k/2}\Gamma(\frac{k}{2})}, & x \ge 0; \\ 0, & \text{otherwise.} \end{cases}$$

with
$$x \in [0, \infty)$$
 and $k > 0$

The parameter k is called degrees of freedom (df)

Chi-square table

Degrees of freedom

Quantiles

Obtain α if $x_{\alpha, 8}^2 = 20$

df	$\chi^{2}_{.050}$	$\chi^{2}_{.025}$	$\chi^{2}_{.010}$	$\chi^{2}_{.005}$
1	3.841	5.024	6,635	7.879
2	5.991	7.378	9.210	10.597
3	7.815	9.348	11.345	12.838
4	9.488	11.143	13.277	14.860
5	11.070	12.833	15.086	16.750
6	12.592	14.449	16.812	18.548
7	14.067	16.013	18.475	20.278
8	15.507	17.535	20.090	21.955
9	16.919	19.023	21.666	23.589
10	18.307	20.483	23.209	25.188

Answer: $\alpha = 0.01$

Obtain α if $x_{\alpha, 9}^2 = 17$

df	$\chi^{2}_{.050}$	$\chi^{2}_{.025}$	$\chi^{2}_{.010}$	$\chi^{2}_{.005}$
1	3.841	5.024	6.635	7.879
2	5.991	7.378	9.210	10.597
3	7.815	9.348	11.345	12.838
4	9.488	11.143	13.277	14.860
5	11. <mark>070</mark>	12.833	15.086	16.750
6	12.592	14.449	16.812	18.548
7	14. <mark>067</mark>	16.013	18.475	20.278
8	15.507	17.535	20.090	21.955
9	16.919	19.023	21.666	23.589
10	18.307	20.483	23.209	25.188

Answer: $\alpha \in (0.025, 0.050)$

F distribution

This distribution is used in analysis of variance.

The probability density function (fdp) is given by

$$f(x; d_1, d_2) = \frac{\sqrt{\frac{(d_1 x)^{d_1} d_2^{d_2}}{(d_1 x + d_2)^{d_1 + d_2}}}}{x B(\frac{d_1}{2}, \frac{d_2}{2})}$$

with $\mathbf{x} \in [0, \infty)$ and $d_1, d_2 > 0$

The parameter d_1 , d_2 are called degrees of freedom (df)

Where
$$B(x,y) = \frac{\Gamma(x) \Gamma(y)}{\Gamma(x+y)}$$

Degrees of freedom df2

Obtain $f_{3, 2, 0.1}$

			(df ₁	
\mathbf{df}_2	α	1	2	3	4
1	.25	5.83	7.50	8.20	8.58
	.10	39.86	49.50	53.59	55.83
	.05	161.4	199.5	215.7	224.6
	.025	647.8	799.5	864.2	899.6
	.01	4052	5000	5403	5625
2	25	2.57	3.00	3.15	3.23
<u> </u>	.10	8.53	9.00	9.16	9.24
	.05	18.51	19.00	19.16	19.25
	.025	38.51	39.00	39.17	39.25
	.01	98.50	99.00	99.17	99.25
	.005	198.5	199.0	199.2	199.2
	.001	998.5	999.0	999.2	999.2

Answer: $f_{3, 2, 0.1} = 9.16$

Obtain α if $f_{4, 1, \alpha} = 85$

			$\mathbf{df_1}$				
\mathbf{df}_2	α	1	2	3	(4)		
$\overline{(1)}$.25	5.83	7.50	8.20	8.58		
	.10	< 39.86	49.50	53.59 >	55.83		
	.05	<161.4	199.5	215.7 >	224.6		
	.025	647.8	799.5	864.2	899.6		
	.01	4052	5000	5403	5625		
2	.25	2.57	3.00	3.15	3.23		
	.10	8.53	9.00	9.16	9.24		
	.05	18.51	19.00	19.16	19.25		
	.025	38.51	39.00	39.17	39.25		
	.01	98.50	99.00	99.17	99.25		
	.005	198.5	199.0	199.2	199.2		
	.001	998.5	999.0	999.2	999.2		

Answer: $\alpha \in (0.05 \ 0.10)$

Tables on web

Normal	http://www.statdistributions.com/normal
t-student	http://www.statdistributions.com/t/
Chi-square	http://www.statdistributions.com/chisquare/
F	http://www.statdistributions.com/f/

StatDistributions.com

Enter either the p-value (represented by the blue area on the graph) or the test statistic (the coordinate along the horizontal axis) below to have the other value computed.

