Esercitazione 6 MNI

Studente: Giuseppe Cardaropoli

Matricola: 052251310 GPU: Tesla T4 (Colab)

Compute Capability 7.5

Maximum x-dim of grid of thread blocks = 2^{31} -1

Maximum number of resident threads per multiprocessor = 1024

Maximum number of resident blocks per multiprocessor = 16

Maximum number of threads per block = 1024

Number of 32.bit registers per thread block = 64K

Maximum amount of shared memory per thread block = **64**KB

Maximum amount of shared memory per multiprocessor = 64KB

Tempo di Esecuzione Sequenziale

N	Tempo CPU(s)
1.000.000	0,003100
2.000.000	0,006073
4.000.000	0,012266
8.000.000	0,024248
16.000.000	0,048471
32.000.000	0,099446

Configurazione allimale Escritazion nº 6

GPD: NVIDIA Tesla T4

Compute Capability: 7.5

Mox numero di blocchi: 231-1

Max num thread YSM: 4024

Max num block: YSM: 46

max mum thread & bloco: 4024

num negistri V 5 M: 64 K

Shord memory mossimo VSM: 64 KB

Shord memory mossino Yblas: 64 KB

block Dim = 1024/16=64 64 < 1024 => Vincolo Sulla dimensione del blacco nispettato

Shalegia nº1

Mum registri usati da agni thred = 10

registri totoli esoti Y5M: f024×10=10240 < 64 K ⇒ Vircolo sui registri rispettito

Strategia m° 2

Num registri usati da agni thred = 15

registri totali usati VSM: foz4x15=15360 < 64K => Vircolo sui registri rispettato

Should memory unto Yblocco: 64×4 byte=256bytes Vincolo sulla 5 hard memory usate
Should memory unto YSM: 16×256byte=4096bytes rispettet

Strategia nº 3

Mum registri usati da agni thred = 9

registri totali essati VSM: 1024x 9 = 9216 < 64K => Vircolo sui registri rispettito

Should memory usate Vblocco: 64×4 byte=256bytes Vincolo sulla strand memory usate
Should memory usate V5M: 16×256byte=4096 bytes rispettate

In ogni strategia andremo ad utilizzare 16 blocchi e 1024 thread per ogni SM

Strategia n°1 (Global Memory)

N	Tempo GPU(s)	Speedup
1.000.000	0,008071	0,3804
2.000.000	0,016302	0,3725
4.000.000	0,032380	0,3788
8.000.000	0,064869	0,3737
16.000.000	0,130778	0,3706
32.000.000	0,008071	0,3812

Strategia n°2 (Shared Memory)

N	Tempo GPU(s)	Speedup
1.000.000	0,000264	11,47
2.000.000	0,000507	11,97
4.000.000	0,000946	12,96
8.000.000	0,001805	13,43
16.000.000	0,003625	13,37
32.000.000	0,007368	13,49

Strategia n°3 (Shared Memory)

N	Tempo GPU(s)	Speedup
1.000.000	0.000253	12,25
2.000.000	0.000442	13,73
4.000.000	0.000838	14,63
8.000.000	0.001688	14,36
16.000.000	0.003269	14,82
32.000.000	0.006567	15,14

