Protocol description

- Client is Prover
- Server is Verifier

We have a group ' $\langle g \rangle$ ' whose order is n. Secrets are ' x_1 ' and ' x_2 ', and public keys are ' $h_1=g^{x_1}$ ' and ' $h_2=g^{x_2}$ '.

Prover knowing ' x_1 '	Prover knowing ' x_2 '	Message	Verifier
$ \frac{{}^{'}c_{2}, r_{2}, u_{1} \in_{R} \mathbb{Z}_{n}}{{}^{'}a_{1} = g^{u_{1}}}{{}^{'}a_{2} = g^{r_{2}}h_{2}^{-c_{2}}} $	$c_1, r_1, u_2 \in_R \mathbb{Z}_n$ $a_1 = g^{r_1} h^{-c_1}$ $a_2 = g^{u_2}$		
$u_2 = g - n_2$	$a_2 = g$	$\xrightarrow{a_1,a_2}$	
			$c \in_R$ \mathbb{Z}_n
		$\overset{\cdot}{\leftarrow}\overset{c}{\leftarrow}$	$\angle n$
$c_1 = c - c_2 \mod n$	$c_2 = c - c_1 \mod n$		
$r_1 = u_1 + c_1 x_1 \mod n'$	$r_2 = u_2 + c_2 x_2 \mod n$	$\xrightarrow{c_1,c_2,r_1,r_2}$	
			$g^{r_1} \stackrel{?}{=}$
			$a_1h_1^{c_1}$,
			$g^{r_2} \stackrel{?}{=} a_2 h_2^{c_2}$
			$c_1 + c_1$
			$c_2 \stackrel{?}{=} c$

This results in the client proving to the server that it knows either ' x_1 ' or ' x_2 '. The server will then send the flag to the client.