Document and Content Analysis

Summer 2009

Lecture 9
OCR Training and HMMs

Thomas Breuel Faisal Shafait

Text Line Recognition

text line recognition

- oversegmentation
- grouping
- character recognition
- language modeling

statistical model

$$W = arg max_W P(W|x)$$

Consider segmentations S from some space of segmentations.

$$P(W|x) = \Sigma_S P(W, S|x) P(S)$$

$$P(W,S|x) = \frac{p(x|W,S)P(W,S)}{p(x)}$$

segmentation

Per character likelihoods are independent given the segmentation.

$$p(x|W,S) = \prod_{i} p(x_{i}|W_{i})$$

Assumption: joint density between string and segmentation depends only on length.

$$P(W,S) \approx P(W) \cdot P(S) \cdot [|W| = |S|]$$

$$P(W, S|x) = \frac{\prod_{i} p(x_{i}|w_{i}) P(W)}{p(x)} P(S, W)$$

$$= \frac{\prod_{i} p(x_{i}|w_{i}) P(W)}{\prod_{i} p(x_{i})} \cdot \frac{\prod_{i} p(x_{i})}{p(x)} \cdot P(S) \cdot [|W| = |S|]$$

Apply Bayes rule.

$$= \prod_{i} \frac{P(w_{i}|x_{i})}{p(w_{i})} P(W) \cdot \frac{\prod_{i} p(x_{i})}{p(x)} \cdot P(S) \cdot [|W| = |S|]$$

For classification, p(x) doesn't matter.

$$\propto \prod_{i} \frac{P(w_{i}|x_{i})}{p(w_{i})} P(W) \cdot \prod_{i} p(x_{i}) \cdot P(S) \cdot [|W| = |S|]$$

Assume a uniform prior for the segmentations.

$$\approx \prod_{i} \frac{P(w_{i}|x_{i})}{p(w_{i})} P(W) \cdot \prod_{i} p(x_{i}) \cdot [|W| = |S|]$$

Viterbi approximation

$$P(W|x) = \Sigma_S P(W, S|x) P(S)$$

Viterbi approximation

$$\approx max_S P(W, S|x) P(S)$$

Uniform prior on segmentations.

$$\approx max_S P(W, S|x)$$

components of model

 $arg max_{W} P(W|x)$

Per character prior.

characters in correct

segmentations.

components of model (log)

$$arg max_W \log P(W|x)$$

$$\approx arg \max_{W,S,|W|=|S|} \log P(W) + \sum_{i} \log P(w_{i}|x_{i}) - \log p(w_{i}) + \log p(x_{i})$$

language model costs

per-character costs

summary

arg max_w P(W|x) - Bayes-optimal recognition

- $\log P(W|x) \approx \log P(W) + \sum \log f(x_i, w_i)$
 - cost of path through recognition lattice
 - cost of path through language model

Finite State Transducers

weighted finite state transducers

- a set of states Q
- an input alphabet Σ
- an output alphabet Γ
- initial states I ⊆ Q
- final states F ⊆ Q
- semi-ring K of weights
- a transition relation Q x Σ x Γ x Q x K

weighted finite state transducers

 weighted finite state transducers represent string replacements with associated costs

```
abotu \rightarrow about / 1.0 actualyl \rightarrow actually / 1.0 aboto \rightarrow about / 2.0 i snot \rightarrow is not / 1.0 ...
```

weighted finite state acceptor

special case: input symbols = output symbols

 weighted finite state acceptors represent sets of strings and associated weights

special cases

• input / output symbols can be "empty" ε

transducers can be non-deterministic

simple example

abbaxabbaxabba \rightarrow ABBAxabbaxABBA aaaaaaaxxbbaxbbbbb \rightarrow AAAAAAAXBBAxbbbbb

acceptor examples

transducer examples

semiring

different operations for combining weights

- along a path addition
- when paths meet multiplication

common semirings

- (R,+,x,0,1) probability semiring
- (R₊ ∪ {∞},min,+,∞,0) tropical semiring (Viterbi approx.)

basic operations on FSTs

union

x[TUS]y iff x[T]y or x[S]y

intersection

x[T∩S]y iff x[T]y and x[S]y

Kleene closure

• $\varepsilon[T^*]\varepsilon$, a[T*]b and x[T]y \rightarrow ax[T]by

concatenation

uv[T·S]wx iff u[T]w and v[S]x

composition

x[T o S]z iff x[T]y and y[S]z

WFST algorithms

• ε-removal

eliminate empty symbols

determinization

eliminate non-deterministic transitions

minimization

minimum number of states/transitions

garbage collection

remove inaccessible states

WFST algorithms

bestpath

find the best path through a given WFST

bestpath through composition

 find the best path through a composition of WFSTs (without explicitly computing the composed WFST)

composition

non-deterministic acceptor

deterministic equivalent

minimized equivalent

recall...

- OCR produces recognition alternatives
- the best alternative may not be the right one
- language models re-weight alternatives

lang model for text lines

- language model should contain
 "Department of Geological Sciences"
- allow any repetition of words in the dictionary, separated by spaces or punctuation

Construct a simple language model from individual words/strings.

trie models

trie vs minimized

trie

minimized transducer

construction by composition

n-gram probability models

- recall n-gram probability models
- we're given

$$P(c_{l} | c_{l-n} ... c_{l-(n-1)})$$

- transduction
 - string to itself (i.e., weighted acceptor)
 - cost is the product of all the conditional probabilities

constructing an n-gram transducer

Key idea: each state represents the history; transitions on the last symbol in the string.

modular language model construction

• construct language models from...

- strings
- union
- minimization
- Kleene closure
- concatenation

special cases

- trie model
- n-gram model

Training

how do we train an OCR system?

x, requires knowledge of the correct segmentation S

density model of character shapes

(character / non-character classification)

S is a missing variable

- P(c|x_i) and P(x_i) require isolated characters for training
- knowledge of isolated characters requires knowledge of segmentation S
- the correct segmentation S isn't usually given or known

GIVEN

"Department of Geological Sciences"

NEEDED

and transcripts

- character recognizers need to be trained on isolated characters
- training data is usually given on a per-line basis
- therefore, training requires computing segmentation S

EM-algorithm

- given an initial classifier, compute W and S for each text line, using the transcription as the language model
 - throw away W (it is just the transcription)
 - S gives the segmentation into characters
 - |S| = |W|
- use S to divide the training image into isolated characters x_i
- look up the corresponding w_i in W
- use the (x_i,w_i) to train a better model
- repeat until convergence

Relationship to HMMs

generalization of HMM

- "dense" segmentation—cuts can be anywhere
- restricted shape of cuts

OCR as HMM

OCR as discrete HMM

- consider images 8 pixels high
- each vertical slice is one of 256 symbols
- the input becomes a symbol sequence
 - "____"
- OCR becomes translating symbol sequences
 - "____" → "TO "

continuous HMMs

discrete HMM

- each input is a discrete symbol c
- each state i is associated with a cost M_{ci}

continuous HMM

- each input is a vector x in Rⁿ
- each state i is associated with a density p(x|i) (often a normal density)

decoding

- analogous in discrete and continuous case
- usually need different algorithm, though

OCRopus

OCRopus representation

book directory

- 0000.png physical page 0
- 0000/
 - 0001 physical line 1 (in reading order)
 - 0001.png line image
 - 0001.cseg.png character segmentation
 - 0001.fst recognition lattice
 - 0001.txt text output
- 0001/

•

OCRopus commands

book2pages

generates book/0000.png ...

pages2lines

generates book/0000/0001.png ...

lines2fsts

generates book/0000/0001.fst

fsts2text

generates book/0000/0001.txt

buildhtml

generates HTML/hOCR output from book

OCRopus commands

align

- generates 0000/0001.cseg.png from...
 - 0000/0001.png
 - 0000/0001.rseg.png
 - 0000/0001.txt

trainseg

- generates a model from...
 - 0000/0001.png
 - 0000/0001.cseg.png
 - · 0000/0001.txt

[glr] Recognizing book-10k8/0001/0005.png [glr] input: indoor storage facility: [glr] DpSegmenter: [glr] segmentation: [glr] baseline : ndoor storage facility: [glr] fst: 0 1000000 0 1000000 0 1000000 0 1000000 0 1000000 0.0

indoor storage facility:

summary

- statistical foundations
- weighted finite state transducers
- building language models
- OCR training and EM training
- relation to HMMs
- OCRopus commands