Skip to content ©
ଝ Q ବ୍ର
③
図 New chat CtrlShift0
Q Search chats CtrlK
ම් Library ⊙ Sora
88 GPTs
Chats
COMSOL simulation setup
COMSOL heat transfer model
COMSOL model setup
COMSOL geometry setup
Perturbation expansion terms
Metrics comparison
Clarify Tws meaning পিবারোর প্রমাণ (a-b)^2 দিয়ে
া আচেনা পার্থক্য
Usual metric explanation
Martingale proof explanation
বাংলাদেশের প্রথম সদস্যপদ
Itô integral variance calculation
তড়িং বিভব ব্যাখ্যা
ICJ arrest power explanation
Resin types and uses
<u>আয়কর আইনজীবী সরকারি নয</u>
Christoffel symbols spherical coordinates
<u>स्र्वतिवुक्ष्ता व्यार्था</u>
আধার শব্দের অর্থ
উজার শব্দের ব্যাখ্যা
At loggerheads meaning COMSOL app crashes solution
Zeroth-order equation derivation
Sentence analysis
Trade war impact comparison
Symmetric tensor components
Second moment calculation

Von cold.

ChatGPT said

Great! You want to set up a **COMSOL Multiphysics** model for simulating blood flow through the Internal Carotid Artery (ICA) with a Carotid Sinus (CS), including geometry construction, physics setup, boundary conditions, and post-processing, along with parametric sweep on peak velocity.

Here's a detailed ${\bf step-by-step}$ ${\bf workflow}$ to implement your problem in COMSOL:

Part (a): 2D Axisymmetric Geometric Model Construction

- 1. Start COMSOL & Create Model:
 - o Open COMSOL Multiphysics.
 - · Select Model Wizard
 - Choose 2D Axisymmetric space dimension.
 - $\circ~$ Select Laminar Flow (spf) physics (you will set the incompressible Navier-Stokes here).
 - · Click Done.
- 2. Geometry Construction:
 - Create the ICA artery:
 - The artery is a cylinder with diameter 5.57 mm \rightarrow radius = 5.57/2 = 2.785 mm = 0.002785 m
 - Length = 53 mm = 0.053 m
 - In axisymmetric, geometry is in r-z plane:
 - Draw a rectangle with:
 - Width (radial) = 0.002785 m
 - Height (axial length) = 0.053 m
 - Position this rectangle with its bottom left corner at (r,z) = (0,0).
 - ∘ Create Carotid Sinus (CS) Ellipsoid:
 - Ellipsoid major axis (axial) = 4.6 mm = 0.0046 m
 - Minor axis (radial) = 1.55 mm = 0.00155 m
 - $\bullet\,$ Since 2D axisymmetric, an ellipse is drawn in r-z plane.
 - Position center of ellipse:
 - Axially: 19 mm from bottom (inlet) \rightarrow z_center = 0.019 m
 - Axially: 38 mm from top (outlet) → This just confirms location; total height 0.053 m 0.019 m = 0.034 m top to ellipse center. So 19 mm from bottom is fine.
 - $\bullet \ \ \text{Radially: on same axis} \rightarrow \text{center at } r{=}0. \\$
 - - Center: (r=0, z=0.019)
 - Radii: r_radius = 0.00155 m, z_radius = 0.0023 m (half of 4.6 mm major axis)
 - Combine the ellipse with artery walls:
 - Use Boolean Union to combine the artery rectangle and the ellipse shape, if you want the sinus as a bulge on the artery wall.
 - Alternatively, create the artery walls as boundary curves including the sinus bulge by using Composite Curve or spline.
- 3. Finalize Geometry:
 - \circ Make sure the geometry is a single domain representing the fluid region inside ICA including the sinus bulge.
 - $\circ~$ Build and finalize the geometry.

Part (b): Physics - Incompressible Navier-Stokes Setup

- 1. Select the Physics Interface:
 - Use Laminar Flow (spf), which solves the incompressible Navier-Stokes by default.
 - Check the physics settings to ensure the equations are incompressible Navier-Stokes.
- 2. Define Fluid Properties:
 - Blood density (p) = 1080 kg/m³ \rightarrow set under **Materials**
 - ∘ Dynamic viscosity (μ) = 0.00325 Pa·s → set under **Materials**
- 3. Add material:

- $\circ~$ Create a new material in the $\boldsymbol{Materials}$ node.
- ∘ Set density = 1080 kg/m³
- Dynamic viscosity = 0.00325 Pa·s

Part (c): Boundary Conditions & Pulsatile Flow

- 1. Inlet Boundary (Bottom):
 - Boundary at z = 0 (inlet)
 - Boundary Condition: Velocity Inlet.
 - $\circ\,$ Velocity vector is axial, pointing inward.
 - o Define velocity as time-dependent:

$$u={}-U_0\cdot n,\quad U_0=u_{max}\cdot \mathit{f}(t)$$

 $u = -U0 \cdot n$, $U0 = umax \cdot f(t)$

- u_{max} umax initial = 0.5 m/s.
- f(t)f(t) is piecewise:
 - $f(t) = 0.8\sin(2.857\pi t)$ $f(t) = 0.8\sin(2.857\pi t)$ for $0 \le t \le 0.350 \le t \le 0.35$
 - $f(t) = 0.6\sin(2.22\pi(t-0.35))$ f(t) = $0.6\sin(2.22\pi(t-0.35))$ for $0.35 < t \le 0.80.35 < t \le 0.80$
- $\circ \ \ \text{Implement } \textbf{time-dependent velocity} \ \text{expression in COMSOL:}$
 - Define a **piecewise function** f(t) f(t) in the **Definitions** node:
 - Use Functions > Piecewise:
 - Interval 1: [0, 0.35], expression: 0.8*sin(2.857*pi*t)
 - Interval 2: [0.35, 0.8], expression: 0.6*sin(2.22*pi*(t-0.35))
 - Velocity magnitude at inlet boundary = -u_max * f(t) along the axial direction.
 - Since flow is downward (if z increases upward), sign may be negative as per your problem.
 - Assign velocity as (0, -u_max*f(t)) if axis is (r,z) with z vertical.
- 2. Outlet Boundary (Top):
 - Boundary at z = 0.053 m (top).
 - · Apply Pressure Outlet boundary condition.
 - \circ Set pressure = 0 Pa (gauge pressure).
- 3. Wall Boundary Conditions:
 - \circ For all artery walls (including sinus boundary), apply **No-Slip** boundary condition (velocity = 0).

Part (d): Study, Post-processing & Parametric Sweep

- 1. Time-dependent Study:
 - Set study type to **Time Dependent**.
 - Time range: from 0 to 0.8 s.
 - $\circ~$ Use appropriate time step control (e.g., max step = 0.01 s) for accuracy.
- 2. Post-processing:
 - Contour plots
 - Plot velocity magnitude $\sqrt{u_r^2 + u_z^2}$ ur2 + uz2
 - inside domain.
 - Plot pressure distribution.
 - Plot wall shear stress (WSS) on artery walls.
 - In COMSOL, WSS can be computed as the tangential component of shear stress vector on boundaries.
 - Use **Derived Values > Boundary Integration** or **Surface** plot for WSS.
 - Velocity profiles:
 - At axial positions: 8 mm, 15 mm, 19 mm (CS center), 38 mm.
 - Create cut lines or boundary selections at those z positions.
 - $\,\blacksquare\,$ Plot velocity magnitude or axial velocity across radius at those positions.
- 3. Parametric Sweep:
 - Define **parameter** u_max with values: 0.25, 0.45, 0.65, 0.85 m/s.
 - \circ Set up parametric sweep on u_max in the **Study** node.
 - $\circ~$ Run simulations for each $u_max.$
 - o Extract and compare velocity, pressure, and WSS results for each case.

Additional Tips:

- Mesh:
 - $\circ~$ Use finer mesh near walls and sinus bulge to resolve WSS accurately.
 - $\circ~$ Use $\bf Boundary~Layer~mesh~$ if available.
- Solver settings:
 - For pulsatile flow, use **Time-dependent solver** with small enough time step.
 - $\circ~$ Use stabilization methods if needed (under Laminar Flow physics).
- Units:
 - $\circ~$ Ensure all units consistent in meters, seconds, Pa, etc.

Summary of Key COMSOL Nodes to Use:

Task **COMSOL Node/Feature** Rectangle + Ellipse + Boolean Union

Geometry

Laminar Flow (spf) Physics

Material Properties New Material (density, viscosity)
Boundary Conditions Velocity Inlet (with time-dependent function), Pressure Outlet, No-slip Walls Functions
Piecewise function for f(t)f(t)

Functions Study Time-dependent study Mesh Free triangular + Boundary layer

PostprocessingContour plots, Line plots at cross-sections, Boundary Integration for WSS

Parametric Sweep Study > Parametric Sweep on u_max

If you want, I can also help you draft the exact COMSOL expressions for the velocity boundary condition and piecewise function or even help prepare a step-by-step COMSOL tutorial file for this model. Just ask!

Choose Files No file selected Choose Files No file selected

ChatGPT can make mistakes. Check important info.