定义. 设 f 为从X到Y的部分函数,g为从Y到Z的部分函数,则称复合关系 f \circ g 为 f 与 g 的合成(复合)函数,用 g \circ f 表示,即 g \circ f={<x, z> | x \in X \wedge z \in Z \wedge ∃y (y \in Y \wedge y = f(x) \wedge z = g(y))}

例 设
$$f: \mathbb{N} \to \mathbb{N}$$
, $g: \mathbb{N} \to \mathbb{N}$, 且 $g(x) = 2x$,
$$f(x) = \begin{cases} x/2 & x \neq \mathbb{M} \\ 0 & x \neq \mathbb{M} \end{cases}$$

求: $f \circ g$, $g \circ f$

解: (1)
$$f \circ g : N \to N$$
, $(f \circ g)(x) = f(g(x)) = f(2x) = x$,

$$(2) g \cdot f : \mathbf{N} \to \mathbf{N}$$

若 x 是 偶数:
$$(g \circ f)(x) = g(f(x)) = g(x/2) = x$$

若 x 是 奇数:
$$(g \circ f)(x) = g(f(x)) = g(0) = 0$$

所以,
$$(g \circ f)(x) = \begin{cases} x & \text{当 x是偶数} \\ 0 & \text{当 x是奇数} \end{cases}$$

函数复合运算的性质:

恒等函数: 集合 X上的恒等关系 $I_X = \{ \langle x, x \rangle | x \in X \}$ 为 X 到 X 的恒等函数。

定理: 函数 $f: X \to Y$, I_X 和 I_Y 是恒等函数,则 $f \circ I_X = I_Y \circ f = f$

证明: 对任意 $x, y \in X, f < x, x > \in I_X, L < y, y > \in I_Y,$ 所以 $< x, y > \in f \Leftrightarrow < x, x > \in I_X \land < x, y > \in f$ $\Leftrightarrow < x, y > \in f \circ I_X$ 又 $< x, y > \in f \Leftrightarrow < x, y > \in f \land < y, y > \in I_Y$ $\Leftrightarrow < x, y > \in I_Y \circ f$

定理: 若f是X到Y的部分函数,g是 Y到Z的部分函数,h是 Z到W的部分函数,则 $h \circ (g \circ f) = (h \circ g) \circ f$ (结合律)

证明:由题设, $h \circ g$, $g \circ f$, $h \circ (g \circ f)$,($h \circ g$) $\circ f$ 均有定义,又因为f, g, h是关系,由关系的复合运算满足结合律,可知上式成立。

定义: 若函数 $f: X \to X$,则 f 的 n 次幂,记为 f^n ,可归纳定义如下:

- $1) \quad f^0 = \mathbf{I}_{\mathbf{X}}$
- $2) \quad f^{n+1} = f \circ f^n$
- 即: 1) $f^0(a) = I_X(a) = a$;
 - 2) $f^{n+1}(a) = f(f^n(a))$

- 定义: 若 $f: X \to Y$,
- (1) 若ran f = Y, 则称f为满射;
- 即 $\forall y (y \in Y \rightarrow \exists x (x \in X \land f(x) = y))$
- (2) 若f是1-1的,则称f是内射(单射);
- 即 $\forall x_1 \forall x_2 (x_1 \in X \land x_2 \in X \land f(x_1) = f(x_2) \rightarrow x_1 = x_2)$
 - $\forall x_1 \forall x_2 (x_1 \in X \land x_2 \in X \land x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2))$
- (3) 若 f既是满射,又是内射,则称f为双射。
- 例: 若R为集合A上的等价关系,则 $\varphi = \{\langle x, [x]_R \rangle \mid x \in A\}$ 是从A到A/R的满射,并称 φ 为自然映射或正则映射。
- 例: (1) 有限集 X 上的满射必为内射;
- (2) 有限集 X 上的内射 必为 满射。

- 例:下列函数是否为满射,内射和双射?
- (1) $f: \{1, 2\} \rightarrow \{0\}$ 由于 f 的值域是单元素集,显然 f(1) = f(2) = 0。 函数 f 是满射,而不是内射的。
- (2) $f:\{a,b\} \to \{2,4,6\}$, f(a)=2, f(b)=6 f 是内射,而不是满射。
- (3) $f: N \to N$, f(x) = 2x因 f 的值域是偶整数集,并且 若 $x_1 \neq x_2$, 则 $f(x_1) \neq f(x_2)$, 所以,函数 f 是内射。 所有奇自然数关于f没有源象,因此f 不是满射。
- (4) $f: I \to I$, f(x) = x+1 $f: N \to N$, f(x) = x+1?? 因为若 $x_1 \neq x_2$, 则 $f(x_1) \neq f(x_2)$, 并且对任意 $y \in I$, 都存在 $x = y-1 \in I$, 使得 y = f(x), 故函数 f 是双射。

定理: 设f: X→ Y和g: Y→Z,则

- (1) 若f和g都是满射,则g。f也是满射。
- (2) 若 f 和 g 都是内射,则 $g \circ f$ 也是内射
- (3) 若 f 和 g 都是双射,则 $g \circ f$ 也是双射

$$X \xrightarrow{f} Y \xrightarrow{g} Z$$

解: (1) 因为f和g都是满射,因此ran(f)=Y, ran(g)=Z。 得 ran $(g \circ f) = g(ran(f)) = g(Y)=Z$. 因此 $g \circ f$ 是满射

(2)若 $x_1, x_2 \in X$ 且 $x_1 \neq x_2$

因为 f 是内射,因此 $f(x_1) \neq f(x_2)$ 。

又因为g是内射,得g(f(x_1)) \neq g(f(x_2))

故 g of 为单射

定理 设f: $X \rightarrow Y$ 和g: $Y \rightarrow Z$

- 1) 若 g of 是满射,则 g 是满射; 规则: 左满 右内
- 2) 若 g ∘ f 是内射, 则 f 是内射;
- 3) 若 g ∘f 是双射,则 g 是满射且 f 是内射。

$$X \xrightarrow{f} Y \xrightarrow{g} Z$$

证明: (1) 只需证明 $\operatorname{ran} g = Z$ 。

显然 $rang \subseteq Z$ 。

由 $ran f \subseteq Y$ 可知: $g[ran f] \subseteq g[Y] = ran g$

而 $g[ran f] = g \circ f[X] = ran(g \circ f) 且 ran(g \circ f) = Z$

(g ∘f 满射)

所以: Z⊆ ran g

因此: Z = rang, 即 g 为满射。

定理 设f: $X \rightarrow Y$ 和g: $Y \rightarrow Z$

- 1) 若 g ∘f 是满射,则 g 是满射;
- 2) 若 g ∘ f 是内射, 则 f 是内射;
- 3) 若 g ∘f 是双射,则 g 是满射且 f 是内射。

$$X \xrightarrow{f} Y \xrightarrow{g} Z$$

(2) 反证法:

假设 f 不是内射,则有 $x_1, x_2 \in X$ 且 $x_1 \neq x_2$ 使 $f(x_1) = f(x_2)$,

因此 $(g \circ f)(x_1) = g(f(x_1)) = g(f(x_2)) = (g \circ f)(x_2)$, 这与 $g \circ f$ 为内射矛盾。

所以假设不成立,即f为内射。

规则: 左满 右内

例:对于下面的函数f,确定

(1) f是否为内射、满射和双射; (2) f的值域; (3) $f^{1}[s]$

(a)
$$f:R \rightarrow R$$

 $f(x)=2^x$
 $s=\{1\}$

$$ran(f)=R_{+}$$

 $f^{-1}[s]=\{0\}$

(b)
$$f:N \rightarrow N$$

 $f(n)=2n+1$
 $s=\{2,3\}$

(c)
$$f:[0,1] \rightarrow [0,1]$$

 $f(x)=x/2+1/4$
 $s=[0,1/2]$

ran(f)=
$$[1/4, 3/4]$$

f⁻¹[s]= $[0, 1/2]$

w

例:设f是从A到A的满射且 $f \circ f = f$,证明 $f = I_A$ 。

证明: (1) 首先证明 $I_A \subseteq f$ 。

因为 $f: A \rightarrow A$ 为满射,所以对任意 $a \in A$ 存在 $b \in A$ 使 得f(b) = a。

又因为 $f \circ f = f$, 所以 $f(a) = f(f(b)) = f \circ f(b) = f(b) = a$, 即 f(a) = a, 得 $I_A \subseteq f$ 。

(2) 下面证明 $\mathbf{f} \subseteq \mathbf{I}_A$ 。对于任意< $\mathbf{x}, \mathbf{y} > \in \mathbf{f}$,因为 $\mathbf{I}_A \subseteq \mathbf{f}$,所以< $\mathbf{x}, \mathbf{x} > \in \mathbf{f}$ 。

而f为部分函数,即"单值",于是,x=y。

所以 $\langle x, y \rangle = \langle x, x \rangle \in I_A$ 。

所以 $f \subseteq I_A$ 。

例:设f是从A到A的满射且 $f \circ f = f$,证明 $f = I_A$ 。

(2)下面证明 $f \subseteq I_A$ (方法二)

下面要证 $I_A \subset f$ 不可能。用反证法,假设 $I_A \subset f$,则存在 $b \neq a$ 使得f(b) = a。

因为f为满射,所以必存在 $c \in A$ 使得f(c) = b。

因为 $f \circ f = f$, 所以 $b = f(c) = f \circ f(c) = f(f(c)) = f(b) = a$ 。 这与 $b \neq a$ 矛盾。所以假设不成立,即 $II_A \subset f$ 不可能。

70

例: 设 $X = \{0, 1, 2\}$, 求出 X^X 中满足 $f^2 = f$ 的所有函数。

解: 假设函数 f 满足 $f^2 = f$,则

若 f(a) = a, 则 $f^2(a) = f(a) = a$ 。 (1)

若f(a) = b ($b \neq a$), 则由 $f^2(a) = f(b) = f(a) = b$,得f(b) = b。(2)

下面证明满足(1)与(2)的函数f一定满足 $f^2 = f$ 。

对任意的 $a \in X$,

若f(a) = a,则 $f^2(a) = a = f(a)$;

若 $f(a)=b\neq a$, 且f(b)=b, 则 $f^2(a)=f(f(a))=f(b)=b=f(a)$ 。

得: f是满足 $f^2 = f$ 的函数当且仅当对任意 $a \in X$, f(a) = a 或 $f(a) = b \neq a$

且f(b)=b。

因此,满足条件 $f^2(x) = f(x)$ 的函数是:

(1) 只有一个 $a \in \{1,2,3\}$,满足f(a)=a:

$$f_1(x) = \{ < 0, 0 >, < 1, 0 >, < 2, 0 > \}$$

$$f_2(x) = \{ <0, 1>, <1, 1>, <2, 1> \}$$

$$f_3(x) = \{ <0, 2>, <1, 2>, <2, 2> \}$$

(2) 只有两个 $a \in \{1,2,3\}$,满足f(a) = a:

$$f_4(x) = \{ \langle 0, 0 \rangle, \langle 1, 1 \rangle, \langle 2, 0 \rangle \}$$

$$f_5(x) = \{ \langle 0, 0 \rangle, \langle 1, 1 \rangle, \langle 2, 1 \rangle \}$$

$$f_6(x) = \{ \langle 0, 0 \rangle, \langle 1, 0 \rangle, \langle 2, 2 \rangle \}$$

$$f_7(x) = \{ \langle 0, 0 \rangle, \langle 1, 2 \rangle, \langle 2, 2 \rangle \}$$

$$f_8(x) = \{ \langle 0, 1 \rangle, \langle 1, 1 \rangle, \langle 2, 2 \rangle \}$$

$$f_0(x) = \{ \langle 0, 2 \rangle, \langle 1, 1 \rangle, \langle 2, 2 \rangle \}$$

(3) 任意a∈{1,2,3}, 满足f(a)=a

$$\mathbf{f}_{10}(\mathbf{x}) = \{ \langle \mathbf{0}, \mathbf{0} \rangle, \langle \mathbf{1}, \mathbf{1} \rangle, \langle \mathbf{2}, \mathbf{2} \rangle \}$$

例: 设 $A=\{1, 2, ..., n\}$ 。有多少满足以下条件的从A到A的函数 f:

(1) $\mathbf{f} \circ \mathbf{f} = \mathbf{f}$

解: (1) 由上例知f是满足 $f^2 = f$ 的函数当且仅当对任意 $a \in X$, f(a)=a 或 $f(a)=b\neq a$ 且f(b)=b。

设f是A上的函数,满足只存在k个A中的元素a使得f(a)=a。

假设A'⊆A, |A'|=k, 且对任意 a∈A', 有f(a)=a,

则对任意的 $b \in A-A'$,一定存在一个 $c \in A'$,有f(b)=c。

否则,若存在 $c' \in A-A'$,使得f(b)=c',则f(c')=c',与只存在k个A中的元素a使得f(a)=a矛盾。

因此,满足 $f^2 = f$ 的函数的个数为 $\sum_{k=1}^n C_n^k k^{n-k}$

3.3 逆函数

问题: 能否用关系的逆定义函数的逆?

- 定义 设 X 和 Y 为二集合 且 $f: X \to Y$ 。
- 1)若有 g: $Y \to X$ 使 $g \circ f = I_X$,则称 f 为左可逆的, 并称 g 为 f 的一个左逆函数,简称 左逆。
- 2)若有 g: Y → X 使 f \circ g = I_Y ,则称 f 为右可逆的, 并称 g 为 f 的一个右逆函数,简称 右逆。
- 3)若有 g: Y \rightarrow X 使 g \circ f = I_X 且 f \circ g = I_Y , 则称 f 为 可逆的,并称 g 为 f 的一个逆函数,简称 逆。

- □ 一个函数的左逆、右逆和逆不一定存在。即使存在,是否唯一?
- □ 那么,它们存在的条件是什么?

M

例:如下定义N上的四个函数:

$$\begin{split} &f_1 = \{ <0, \, 0>, \, <1, \, 0> \} \cup \{ < n+2, \, n> \mid n \in N \, \} \\ &f_2 = \{ <0, \, 1>, \, <1, \, 1> \, \} \cup \{ < n+2, \, n> \mid n \in N \} \\ &g_1 = \{ < n, \, n+2> \mid n \in N \} \\ &g_2 = \{ <0, \, 0> \, \} \cup \{ < n+1, \, n+3> \mid n \in N \} \end{split}$$

有:
$$f_1 \circ g_1 = f_2 \circ g_1 = f_1 \circ g_2 = I_N$$

对任意 $n \in \mathbb{N}$,

(1)
$$(f_1 \circ g_1)(n) = f_1(n+2) = n;$$

(2)
$$(f_2 \circ g_1)(n) = f_2(n+2) = n;$$

(3) n=0时,
$$(f_1 \circ g_2)(0) = f_1(0) = 0$$
; n>0时, $(f_1 \circ g_2)(n) = f_1(n+2) = n$

- f₁与f₂都是g₁的左逆
- f₁是g₂的左逆
- g_1 与 g_2 都是 f_1 的右逆
- g_1 是 f_2 的右逆

定理:设 X 和 Y 为二集合且 $X \neq \emptyset$ 。若 $f: X \rightarrow Y$,则下列条件等价:

(1) f 为内射;

(2) f: X → Y 为左可逆

(3) f可左消去,即对任意集合Z及任意的g: $Z \to X$ 和 h: $Z \to X$, 当f \circ g=f \circ h时,皆有g=h。

定理:设 X 和 Y 为二集合且 $X \neq \emptyset$ 。若 $f: X \rightarrow Y$,则下列条件等价:

- (1) f 为内射;
- (2) f: X → Y 为左可逆
- (3) f可左消去,即对任意集合Z及任意的g: $Z \to X$ 和 h: $Z \to X$, 当f \circ g=f \circ h时,皆有g=h 。

证明: (1) \rightarrow (2) 设f是内射,则对任意的x, y \in X, 若x \neq y, 则必有有f(x) \neq f(y),因此,f的逆关系f⁻¹为从Y到X的一个部分函数。 又因为X \neq Ø,令a \in X,则定义函数g: Y \rightarrow X:

$$g= f^{-1} \cup ((Y-ran f) \times \{a\}),$$

对任意 $x \in X$, $g \circ f(x) = g(f(x)) = x$, 即 $g \circ f = I_X$ 。 因此, $g \to f$ 的一个左逆。 定理:设X和Y为二集合且 $X \neq \emptyset$ 。若f: $X \rightarrow Y$,则下列条件等价:

- (1) f 为内射;
- (2) f: X → Y 为左可逆
- (3) f可左消去,即对任意集合Z及任意的g: $Z \to X$ 和 h: $Z \to X$, 当f \circ g=f \circ h时,皆有g=h 。

证明: (2) \rightarrow (3) 若 f 为左可逆的,则有 f_1 : Y \rightarrow X 使 $f_1 \circ f = I_X$,

又由 $f \circ g = f \circ h$ 知,

 $\mathbf{g} = \mathbf{I}_{\mathbf{X}} \circ \mathbf{g} = (\mathbf{f}_1 \circ \mathbf{f}) \circ \mathbf{g} = \mathbf{f}_1 \circ (\mathbf{f} \circ \mathbf{g}) = \mathbf{f}_1 \circ (\mathbf{f} \circ \mathbf{h}) = (\mathbf{f}_1 \circ \mathbf{f}) \circ \mathbf{h} = \mathbf{I}_{\mathbf{X}} \circ \mathbf{h}$ $= \mathbf{h}$

定理:设 X 和 Y 为二集合且 $X \neq \emptyset$ 。若 $f: X \rightarrow Y$,则下列条件等价:

- (1) f 为内射;
- (2) f: X → Y 为左可逆
- (3) f可左消去,即对任意集合Z及任意的g: $Z \to X$ 和 h: $Z \to X$, 当f。g=f。h时,皆有g=h。

证明: (3) \rightarrow (1) 假设f 不是内射,则必有 $a_1, a_2 \in X$, 使得

$$a_1 \neq a_2$$
 且 $f(a_1) = f(a_2)$ 。

$$\Rightarrow$$
h(x)= $\begin{cases} x, x \in X, x \neq a_1 \\ a_2, & x = a_1 \end{cases}$,则有h: X \rightarrow X,且h \neq I_x,

且 $f \circ I_X = f = f \circ h$,与(3)矛盾,因此f一定是内射。