Assignment 1

Problem 1:

For this problem the student simply created a matrix which spanned from 1-100 and was required to make a second matrix which held the even elements from the array. Personally I created the 100 element array(x), then I took the modulo from each element(dividing by 2) and essentially created a second matrix which simply had a 1 if the element was even and a zero if not. I then created a third array(y) which helps x(even matrix) essentially filtering out the odd values.

Problem 2:

This problem required us to use two embedded loops in order to obtain a result from different conditions(changes in time and frequency). I personally created the 2d array and used the first row and first column for labeling allowing for the arrays to be more organized and easy to read as seen below:

	1	2	3	4		
1	0	10	15	20		
2	0	2.9850	2.9850	2.9850		
3	0.1000	2.9850	-2.9850	2.9850		
4	0.2000	2.9850	2.9850	2.9850		
5	0.3000	2.9850	-2.9850	2.9850		
6	0.4000	2.9850	2.9850	2.9850		

^{*}The figure above(figure 1) is the result from using two embedded for loops in order to display the expected results

Problem 3:

 For this problem we are using a for loop in order to find the largest value of T while the other conditions are met, I personally used a for loop to iterate through the three different values of omega, but in order to find the actual value of T I used a while loop which would end when T no longer met the conditions. Once the conditions are not met the I go down one increment to compensate for the breach of the condition.

	1	2		
1	35	2.1500		
2	40	2.1500		
3	45	2.1500		
1				

^{*}above is the results for problem 3(figure 2)

Problem 4:

For this problem we are required to create an even spaced set of 15 indexes from 0-1 and ran the calculation in a loop. After I used max(), min(), and mean() in order to get the average and maximum/minimum elements from the matrix. In order to create the list of values which are greater than 4 I had to iterate through the matrix and divide the absolute value of each of the elements by 4 and if the remainder was higher than 1 I would add them to a new matrix. The max is 5.5319, min is -6.8464, average is .7356 and figure 3 below is the matrix of the index of each element whos value is higher than 4 as well as figure 4 which is the calculated values.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	3.9203	5.1313	4.7842	2.6643	-0.6985	-4.1874	-6.5343	-6.8464	-4.9870	-1.6384	1.9833	4.6323	5.5319	4.6485	2.6294
2															
3															
							1								
	1		2		3	4		5	6		7	8		9	10
1		2		3	6		7	8		9	12		13	14	
2															
3															
1															

• Problem 5:

 For this problem we simply plotted the functions here is the graph below(figure 5):

• Problem 6:

 For this problem I simply made a function which would be two if conditions which met the requirements for sin and called that function and plotted the values. Below are the results(figure 6):

