

Viewing 2D

Profa. Ana Luísa D. Martins Lemos

May 1, 2018

- Viewing Pipeline 2D
 - Processo para criar a visão 2D de uma cena, determinando quais partes serão mostradas e suas localizações na tela
 - A imagem é determinada no sistema de coordenadas do mundo (world coordinates) cujas partes especificadas (selecionadas) são mapeadas para o sistema de coordenadas do dispositivo (device coordinates)
 - Esse mapeamento envolve uma série de translações, rotações e escalas
 - Assim como operações para eliminar as partes da imagem que estão fora da área de visão

- Janela de Recorte ou Clipping Window
 - Uma seção de uma cena 2D que é selecionada para ser mostrada
 - Tudo o que estiver fora dessa seção será "cortado fora"
- Viewport
 - A Janela de Recorte pode ser posicionada dentro de uma janela do sistema usando outra "janela" chamada de Viewport
 - Objetos dentro da Janela de Recorte (o que será visto) são mapeados para a Viewport, que por sua vez é posicionada dentro da janela do sistema (onde serão vistos)
 - Múltiplas Viewports podem ser usadas para mostrar diferentes seções da imagem em diferentes posições

- Transformação 2D da Visão
 - Mapeamento de uma descrição da cena no sistema de coordenadas do mundo para o sistema de coordenadas do dispositivo

■ Para acelerar o processo de **recorte**, sistemas gráficos convertem a descrição dos objetos para **coordenadas normalizadas** (entre 0 e 1 ou entre -1 e 1)

- Embora seja possível criar **Janelas de Recorte** de qualquer formato, a maioria das APIs gráficas somente suporta janelas retangulares alinhadas aos eixos x e y devido ao custo computacional
- Normalmente a **Janela de Recorte** é especificada no **sistema de coordenadas do mundo**

Janela de Recorte Sistema de Coordenadas

- Normalmente a transformação de visão é definida em um sistema de coordenadas de visão dentro do sistema de coordenadas do mundo
 - Isso permite especificar uma Janela de Recorte retangular em qualquer posição
 - Uma visão das coordenadas do mundo é obtida transferindo a cena para as coordenadas de visão

- Escolhe-se uma origem $P_0(x_0, y_0)$ no sistema de coordenadas de visão e uma orientação usando um vetor V que dá a direção y_{view}
 - *V* é chamado de **view-up vector** 2D
- Outra abordagem é definir um ângulo de rotação relativo a x ou y e a partir desse obter o view-up vector

- Uma vez estabelecido o sistema de coordenadas de visão, é possível transformar a descrição dos objetos em uma cena usando translações e rotações para sobrepor os diferentes sistemas de coordenadas
 - Translado a origem *P*₀ para a origem do sistema de coordenadas do mundo
 - Rotaciono o sistema de visão para alinhá-lo com o sistema de coordenadas do mundo
- Essa conversão, entre coordenadas do mundo em coordenadas de visão é dada por

$$M_{\text{WC,VC}} = R.T$$

Viewport

Normalização e Transformações

- Em alguns sistemas, a normalização e a transformação window-viewport são combinadas em uma única operação
 - Nesse caso as coordenadas da *viewport* são definidas entre 0 e 1
 - Após o recorte, o quadrado unitário contendo a viewport é mapeado para o dispositivo de saída
- Em outros sistemas a normalização e as rotinas de recorte são aplicadas antes das transformações de *viewport*
 - Nesse caso as coordenadas do viewport são as coordenadas da tela

Considerando uma viewport com as coordenadas entre 0 e 1, temos que mapear a descrição dos objetos para esse espaço normalizado usando transformações que mantenham a posição relativa de um ponto como foi definida na Janela de Recorte

■ O ponto (xw, yw) é mapeado para (xv, yv)

Janela para Viewport Normalizada

■ Para transformar um ponto no sistema de coordenadas do mundo para um ponto na *viewport*, temos que fazer

$$\frac{xV - xV_{\min}}{xV_{\max} - xV_{\min}} = \frac{xW - xW_{\min}}{xW_{\max} - xW_{\min}}$$
$$\frac{yV - yV_{\min}}{yV_{\max} - yV_{\min}} = \frac{yW - yW_{\min}}{yW_{\max} - yW_{\min}}$$

■ Resolvendo para a posição (xv, yv) na viewport temos

$$xv = s_x.xw + t_x$$
$$yv = s_y.yw + t_y$$

UNIFESP
UNIVERSIDADE FEDERAL DE SÃO PAULO
1939

Janela para Viewport Normalizada

Onde os fatores de escala são

$$s_{x} = \frac{xv_{\text{max}} - xv_{\text{min}}}{xw_{\text{max}} - xw_{\text{min}}}$$
$$yv_{\text{max}} - yv_{\text{min}}$$

$$s_y = \frac{yv_{\text{max}} - yv_{\text{min}}}{yw_{\text{max}} - yw_{\text{min}}}$$

■ E os fatores de translação são

$$t_{x} = \frac{xw_{\text{max}}.xv_{\text{min}} - xw_{\text{min}}.xv_{\text{max}}}{xw_{\text{max}} - xw_{\text{min}}}$$

$$t_y = \frac{y w_{\text{max}}.y v_{\text{min}} - y w_{\text{min}}.y v_{\text{max}}}{y w_{\text{max}} - y w_{\text{min}}}$$

Introdução Janela de Recorte Normalização e Transformações de Viewport Algoritmos de Recorte

Janela para Viewport Normalizada

Mapeamento

- Como simplesmente mapeamos o sistema de coordenadas do mundo para uma *viewport*, é possível obter o mesmo resultado usando uma sequência de transformações
 - Converter o retângulo da *Janela de Recorte* no retângulo da viewport
- Isso pode ser obtido fazendo
 - 1 Escala a Janela de Recorte para ter o tamanho da viewport usando o ponto fixo (xw_{\min}, yw_{\min})
 - 2 Translada (xw_{\min}, yw_{\min}) para (xv_{\min}, yv_{\min})

UNIFESP
UNIVERSIDADE FEDERAL DE SÃO PAULO
1933

Janela para Viewport Normalizada

■ Onde a matriz de escala é

$$S = \left[egin{array}{ccc} s_{x} & 0 & xw_{\min}(1-s_{x}) \ 0 & s_{y} & yw_{\min}(1-s_{y}) \ 0 & 0 & 1 \end{array}
ight]$$

■ E a matriz de translação é

$$T = \begin{bmatrix} 1 & 0 & xv_{\min} - xw_{\min} \\ 0 & 1 & yv_{\min} - yw_{\min} \\ 0 & 0 & 1 \end{bmatrix}$$

Introdução Janela de Recorte Normalização e Transformações de Viewport Algoritmos de Recorte

Janela para Viewport Normalizada

Mapeamento

Sendo a matriz composta igual a

$$M_{\text{window,normviewport}} = T.S = \begin{bmatrix} s_x & 0 & t_x \\ 0 & s_y & t_y \\ 0 & 0 & 1 \end{bmatrix}$$

 \blacksquare Com s_x , s_y , t_x e t_y dados anteriormente

Mapeamento Janela para Viewport Normalizada

- Nesse mapeamento, as posições relativas dos objetos são mantidas
 - Um objeto dentro da Janela de Recorte estará dentro da viewport
- As proporções relativas dos objetos só serão mantidas se a razão de aspecto da viewport for igual à da Janela de Recorte
 - \blacksquare Em outras palavras s_x tem que ser igual a s_y

UNIFESP

UNIVERSIDADE FEDERAL DE SÃO PAULO

1703

Janela para Viewport Normalizada

Um outra abordagem para a transformação de visão é transformar a Janela de Recorte em um quadrado normalizado, fazer o recorte em coordenadas normalizadas e então transferir a descrição da cena para a viewport especificada no sistema de coordenadas da tela

Nessa representação, (parte dos) objetos fora dos limites $x=\pm 1$ e $y=\pm 1$ são facilmente detectados e removidos da cena

Janela para Viewport Normalizada

■ Para se mapear o conteúdo da *Janela de Recorte* para o quadrado normalizado procedemos similarmente a transformação window-viewport fazendo

$$xv_{\min} = yv_{\min} = -1$$
 e $xv_{\max} = yv_{\max} = +1$

$$\textit{M}_{\text{window,normsquare}} = \begin{bmatrix} \frac{2}{\textit{xw}_{\text{max}} - \textit{xw}_{\text{min}}} & 0 & -\frac{\textit{xw}_{\text{max}} + \textit{xw}_{\text{min}}}{\textit{xw}_{\text{max}} - \textit{xw}_{\text{min}}} \\ 0 & \frac{2}{\textit{yw}_{\text{max}} - \textit{yw}_{\text{min}}} & -\frac{\textit{yw}_{\text{max}} + \textit{xw}_{\text{min}}}{\textit{yw}_{\text{max}} + \textit{yw}_{\text{min}}} \\ 0 & 0 & 1 \end{bmatrix}$$

Introdução Janela de Recorte Normalização e Transformações de Viewport Algoritmos de Recorte

Janela para Viewport Normalizada

Mapeamento

■ Similarmente, após os algoritmos de recorte serem aplicados, o quadrado normalizado de tamanho 2 é transformado na *viewport* fazendo $xw_{min} = yw_{min} = -1$ e $xw_{\text{max}} = yw_{\text{max}} = +1$

$$M_{\text{normsquare,window}} = \begin{bmatrix} \frac{xv_{\text{max}} - xv_{\text{min}}}{2} & 0 & \frac{xv_{\text{max}} + xv_{\text{min}}}{2} \\ 0 & \frac{yv_{\text{max}} - yv_{\text{min}}}{2} & \frac{yv_{\text{max}} + yv_{\text{min}}}{2} \\ 0 & 0 & 1 \end{bmatrix}$$

Janela para Viewport Normalizada

O último passo consiste em posicionar a área da *viewport* na janela da tela

- O Viewing Pipeline serve para extrair uma porção designada de uma cena para ser apresentada em um dispositivo de saída
- Identifica as partes de uma imagem que estão fora da Janela de Recorte, eliminando essas da descrição da cena que é passada para o dispositivo de saída
- Por eficiência, o recorte é aplicado sobre Janelas de Recorte normalizadas
 - Isso reduz cálculos porque todas as matrizes de transformação de geometria e visão podem ser concatenadas para serem aplicadas a uma cena antes do recorte acontecer

- Existem diversos algoritmos para o recorte de
 - Pontos
 - Linhas (segmentos de linhas retas)
 - Áreas-preenchidas (polígonos)
 - Curvas
 - Texto
- Os três primeiro são componentes padrão dos pacotes gráficos
 - Maior rapidez de processamento se as fronteiras dos objetos forem segmentos de reta

- Na discussão que se segue a região de recorte será uma janela retangular na posição padrão, com arestas de fronteira em xw_{min}, xw_{max}, yw_{min} e yw_{max}
 - Tipicamente correspondendo ao quadrado normalizado entre 0 e 1 ou −1 e 1

Algoritmos de Recorte Recorte de Ponto 2D

■ Dado um ponto P(x, y), esse será apresentado no dispositivo de saída se e somente se

$$xw_{\min} \le x \le xw_{\max}$$

$$yw_{\min} \le y \le yw_{\max}$$

■ Esse processo é especialmente útil para cortes em sistemas de partículas, como nuvens, fumaça, explosões, etc.

 Processa cada linha em uma cena por meio de uma série de testes e cálculos de interseção para determinar se uma linha ou parte dela precisa ser desenhada

- A tarefa mais cara computacionalmente é calcular as interseções das linhas com a *Janela de Recorte*
 - Portanto, o objetivo é minimizar o cálculo de interseções

Algoritmos de Recorte Recorte de Linha 2D

- É fácil determinar se uma linha está completamente dentro da janela, mas é mais difícil determinar se essa linha está completamente fora
 - Quando os dois pontos limitantes de uma linha estão dentro da janela (linha $\overline{P_1P_2}$), a linha está completamente dentro
 - Quando os dois pontos limitantes estão fora de qualquer uma das quatro fronteiras (linha $\overline{P_3P_4}$), a linha está completamente fora
 - Se ambos testes falham, o segmento de linha intersecta ao menos uma das fronteiras da janela, e pode ou não cruzar o interior da mesma

Algoritmos de Recorte Recorte de Linha 2D

■ Partindo da definição paramétrica de um segmento de reta, com (x_0, y_0) e (x_{end}, y_{end}) temos que

$$x = x_0 + u(x_{end} - x_0)$$

 $y = y_0 + u(y_{end} - y_0)$
 $0 \le u \le 1$

- Podemos determinar a posição de interseção da reta com cada fronteira da janela substituindo o valor da coordenada da fronteira para x ou y e resolvendo para u
 - Se 0 > u > 1, então não há cruzamento
 - Caso contrário, parte da reta está dentro da fronteira, e podemos processar esse parte contra as outras fronteiras até determinar se a reta será eliminada ou encontrar a seção que está dentro da janela

- Essa abordagem apesar de simples, não é muito eficiente
- É possível reformular o teste inicial e os cálculos de interseções para reduzir o tempo de processamento

UNIVERSIDADE FEDERAL DE SÃO PAULO

Recorte de Linha 2D - Algoritmo de Cohen-Sutherland

- Algoritmo de Recorte de Cohen-Sutherland:
 - Um dos primeiros algoritmos para acelerar o processo de recorte
 - O tempo de recorte é reduzido executando mais testes antes dos cálculos das interseções
 - Inicialmente a cada ponto final das linhas é assinalado um valor binário de 4 dígitos, o **código da região**

- Recorte de Linha 2D Algoritmo de Cohen-Sutherland
 - Os valores binários indicam se o ponto está fora de uma fronteira
 - 0 (false): dentro ou sobre a fronteira
 - 1 (true): fora da fronteira

Algoritmos de Recorte Recorte de Linha 2D - Algoritmo de Cohen-Sutherland

 As 4 fronteiras juntas criam nove regiões de separação do espaço

■ Um ponto abaixo e à esquerda da *Janela de Recorte* recebe valor 0101, um ponto dentro 0000

UNIFESP
UNIVERSIDADE HORRAL DE SÃO FAULO
1933

Recorte de Linha 2D - Algoritmo de Cohen-Sutherland

- Os valores dos bits são determinados comparando suas coordenadas (x, y) com as fronteiras de recorte
 - O bit 1 é definido como 1 se $x < xw_{min}$
 - Os outros são obtidos de forma similar
- É possível executar esse teste de forma mais eficiente usando operações binárias seguindo dois passos
 - 1 Calcular a diferença entre as coordenadas dos pontos e as fronteiras da janela
 - 2 Usar o sinal resultante para definir o valor do código (-vira 1, + vira 0)
 - bit 1 é o sinal de $x xw_{min}$
 - bit 2 é o sinal de $xw_{max} x$
 - bit 3 é o sinal de $y yw_{min}$
 - bit 4 é o sinal de $yw_{max} y$

- 100

UNIFESP

UNIVERSIDADE FEDERAL DE SÃO PAULO

1930

- Recorte de Linha 2D Algoritmo de Cohen-Sutherland
 - Com base nesses códigos é possível determinar rapidamente se uma linha está completamente fora ou dentro da janela
 - Linhas completamente dentro tem seus pontos definidos como 0000
 - Linhas que tenham 1 na mesma posição dos pontos finais estão completamente fora da janela de recorte
 - Uma linha com pontos finais identificados por 1001 e 0101 está completamente à esquerda da Janela de Recorte

1001	1000	1010
0001	0000 Clipping Window	0010
0101	0100	0110

UNIFESP
UNIVERSIDADE FEDERAL DE SÃO PAULO
PORT

Recorte de Linha 2D - Algoritmo de Cohen-Sutherland

- Esses testes podem ser executados eficientemente usando operações lógicas
 - Quando a operação ou entre dois pontos for falsa (0000) a linha está dentro
 - Quando a operação e entre dois pontos for verdadeira (não 0000) a linha está completamente fora

Recorte de Linha 2D - Algoritmo de Cohen-Sutherland

As linhas que não podem ser identificadas como completamente fora ou dentro da Janela de Recorte são então processadas para verificar interseções

Algoritmos de Recorte Recorte de Linha 2D - Algoritmo de Cohen-Sutherland

- Conforme cada interseção com as fronteiras da janela de recorte são calculadas, a linha é recortada até restar apenas o que está dentro da janela, ou nenhuma parte esteja dentro da mesma
- Para determinar se uma linha cruza alguma fronteira, é somente necessário verificar os bits correspondentes da fronteira dos pontos finais
 - Se um dos bits for 1 e outro 0, a linha cruza a fronteira

■ Processando a fronteira esquerda

Recorte de Linha 2D - Algoritmo de Cohen-Sutherland

- $lacksquare P_1 = 0100
 ightarrow ext{est\'a}$ dentro da fronteira esquerda
- $lacksquare P_2 = 1001
 ightarrow ext{est\'a}$ fora da fronteira esquerda
 - lacktriangle Calcula a interseção P_2' e recorta a seção $\overline{P_2P_2'}$

■ As outras fronteiras seguem o mesmo princípio

Recorte de Linha 2D - Algoritmo de Cohen-Sutherland

■ Para se determinar as interseções da reta definida pelos pontos (x_0, y_0) e (x_{end}, y_{end}) podemos usar a equação explícita

$$y=y_0+m(x-x_0)$$

- O valor de x será xw_{\min} ou xw_{\max} e a inclinação será $m = (y_{\text{end}} y_0)/(x_{\text{end}} x_0)$
- Os valores de x da interseção podem ser calculados usando

$$x = x_0 + \frac{y - y_0}{m}$$

■ O valor de y será yw_{min} ou yw_{max}

- Para fazer o recorte de polígonos, os algoritmos de recorte de linhas não podem ser aplicados porque em geral esses não produziriam polígonos fechados
 - Produziriam linhas desconexas sem informação de como uni-las para formar o polígono recortado

е

- É possível processar o polígono contra as fronteiras da Janela de Recorte de forma semelhante ao algoritmo de recorte de linhas
 - Isso é feito determinando o novo formato do polígono cada vez que uma fronteira de recorte é processada

- É possível verificar se um polígono está completamente dentro ou fora da janela de recorte verificando suas coordenadas máximas e mínimas
- Quando uma área não puder ser identificada como completamente dentro ou fora, as interseções são calculadas

- Uma forma simples de realizar o recorte de polígonos convexos é criar uma nova lista de vértices a cada recorte realizado contra uma fronteira, e então passar essa lista para o próximo recorte, contra outra fronteira
- Para polígonos côncavos o processo é mais complexo podendo resultar em múltiplas listas de vértices

- Uma forma eficiente de realizar esse recorte é mandar os vértices dos polígonos para cada estágio de recorte de forma que os vértices recortados possam ser passados imediatamente para o próximo estágio
 - Elimina a necessidade de uma lista de novos vértices para cada estágio de recorte
 - Permite implementação paralela do recorte

- A estratégia deste algoritmo é mandar os pares de pontos finais de cada linha sucessiva do polígono para uma série de recortadores (esquerda, direita, inferior e superior)
 - Conforme o recorte é executado para um par de vértices, as coordenadas recortadas são enviadas para o próximo recortador

- Existem 4 diferentes casos que precisam ser considerados quando uma aresta do polígono é processada
 - O primeiro ponto final da aresta está fora da janela de recorte e o segundo dentro
 - 2 Ambos os pontos finais estão dentro da janela de recorte
 - 3 O primeiro ponto final da aresta está dentro da janela de recorte e o segundo fora
 - 4 Ambos os pontos finais estão fora da janela de recorte
- Para facilitar a passagem dos vértices de um recortador para outro, a saída de cada recortador pode ser da seguinte forma

UNIFESP
UNIVERSIDADE FEDERAL DE SÃO PAULO

- Conforme cada par de vértices sucessivos é passado para um dos recortadores, a saída é gerada para o próximo recortador de acordo com os seguintes testes
 - Se o primeiro vértice está fora da janela e o segundo dentro, é mandado para o próximo recortador a interseção obtida e o segundo vértice
 - 2 Se ambos os vértices estão dentro, somente o segundo vértice é enviado
 - 3 Se o primeiro vértice está dentro da janela e o segundo fora, é mandado para o próximo recortador somente a interseção
 - 4 Se ambos os vértices estão fora, nada é enviado

Recorte de Polígonos 2D - Algoritmo de Sutherland-Hodgman

- Limitação
 - Para polígonos côncavos, problemas podem ocorrer já que esse algoritmo apenas define como saída uma única lista de vértices

■ Uma solução seria dividir o polígono côncavo em partes convexas

Algoritmos de Recorte Recorte de Outras Primitivas 2D

- Áreas curvas podem ser recortadas usando abordagens parecidas com as apresentadas
 - Se as áreas curvas forem aproximações poligonais, o recorte é o mesmo apresentado anteriormente

