Министерство науки и высшего образования Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

"НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО"

Факультет ПИиКТ

ОТЧЁТ

По лабораторной работе №2

По предмету: Тестирование программного обеспечения

Вариант: 4111

Студенты:

Андрейченко Леонид Вадимович Колесникова Светлана Алексеевна

Группа Р33301

Преподаватель:

Гаврилов Антон Валерьевич

Задание

- 1. Разработать приложение, руководствуясь приведёнными правилами.
- 2. С помощью JUNIT4 разработать тестовое покрытие системы функций, проведя анализ эквивалентности и учитывая особенности системы функций. Для анализа особенностей системы функций и составляющих ее частей можно использовать сайт https://www.wolframalpha.com/.
- 3. Собрать приложение, состоящее из заглушек. Провести интеграцию приложения по 1 модулю, с обоснованием стратегии интеграции, проведением интеграционных тестов и контролем тестового покрытия системы функций.

Вариант

Провести интеграционное тестирование программы, осуществляющей вычисление системы функций (в соответствии с вариантом).

Введите вариант:
$$\boxed{4111}$$
 $\boxed{\left(\frac{\left(\left(\frac{\cot(x) \cdot \cot(x)}{\cot(x)}\right)^3\right) + (\cos(x) + \sin(x))}{\cot(x)}\right)}{\cot(x)}}$ if $x \leq 0$ $\boxed{\left(\frac{\left((\log_3(x) - \log_{10}(x))^2\right) + (\log_5(x) - \log_{10}(x))}{\log_2(x) + \left(\frac{\log_2(x)}{\log_2(x)}\right)}}{\log_5(x)}}$ if $x > 0$

Исходный код

https://github.com/buffer404/SoftwareTestingLab2

Графики эталонной функции и полученной

Построенная UML диаграмма

Результаты тестирования

~	✓ LogTest	1 sec 845 ms
	✓ forceBurst()	1 sec 845 ms
>	✓ LnTest	53 ms
~	✓ IntegrationTest	19 sec 715 ms
	> <pre>testFunctionWithLn2(double, Double)</pre>	1 sec 165 ms
	> <pre>testFunctionWithLn3(double, Double)</pre>	7 sec 92 ms
	> <pre>testFunctionWithSin(double, Double)</pre>	4 sec 70 ms
	> testFunctionWithSinAndLn(double, Double)	2 sec 942 ms
	> <pre>testFunctionWithMocks(double, Double)</pre>	2 sec 777 ms
	> <pre>testFunctionWithLn(double, Double)</pre>	1 sec 669 ms
>	✓ TrigonometryTest	1 ms
>	✓ SinTest	
~	✓ MyFunctionTest	159 ms
	> ✓ generalTest(double)	159 ms

✓ Tests passed: 4,864 of 4,864 tests – 21 sec 773 ms

Выводы

Во время выполнения лабораторной работы мы изучили работу классов заглушек на примере библиотеки Mockito и применили ее для интеграционного тестирования написанного нами приложения для решения системы уравнений.