Чудес не бывает ни для тебя, ни для меня, нидля кого... «Лабиринт фавна» Гильермо дель Торо

На одном из практикумов по аналитической химии Студенту были выданы разноцветные порошки \mathbf{A} - \mathbf{D} , содержащие (помимо других элементов) металл \mathbf{X} и неметалл \mathbf{Y} в различном соотношении. Ко всем порошкам Студент добавил небольшое

количество дистиллированной воды, порошок \mathbf{A} не растворился. Все 4 порошка реагируют с водным раствором аммиака. Навески \mathbf{B} и \mathbf{C} нагрели в токе водорода, что привело к образованию металла \mathbf{X} , масса исходной навески и полученного металла приведены в таблице:

Соединение	A	В	C	D
Цвет	белый	желто-зеленый	красный	оранжевый
+H ₂ O	-	голубой р-р	зеленый	зелёный р-р
			р-р	
Macca		2.193	0.915	
навески, г				
m(X), г		0.531	0.192	
+NH ₃ (p-p)	бесцветный	синий р-р	синий р-р	красный
	р-р			осадок (Е)

<u>Дополнительная информация:</u>

- Латинские названия всех элементов, входящих в состав **C**, начинаются с одной буквы.
- **В** гигроскопичное кристаллическое вещество, применяющееся в пиротехнике в качестве источника катионов, окрашивающих пламя в синий цвет, а также как окислитель.
- **D** и **E** содержат фрагмент ароматического гетероциклического соединения. Массовые доли некоторых элементов в составе **D** следующие: $\omega(C)=37.90\%$, $\omega(N)=12.63\%$, $\omega(H)=3.18\%$,

Элементарная ячейка $\bf A$ Плотность $\rho = 4.145 \; \Gamma/\text{см}^3$ Параметры ячейки: $a = b = c = 5.416 \; \text{Å}$

 $\omega(Y)$ =31.97%, а из 4.437 г **D** можно получить 2.978 г красного осадка**E**.

Вопросы:

- 1. Определите соединения A, B, C, D, E. Ответ подтвердите расчетом.
- 2. Напишите уравнения A, B и D с аммиаком, а также реакцию восстановления B в токе водорода.
- 3. Объясните разницу в окраске водных растворов **В** и **С**.

Решение задачи 11-2 (автор: Феоктистова А.В.)

1. Состав А рассчитывается из параметров элементарной ячейки:

$$M=\rho V_D=\rho N_A \frac{a^3}{Z}$$

$$M_A=4.145~\Gamma/\text{cm}^3\cdot 6.02\cdot 10^{23}\text{моль}^{-1}\cdot \frac{(5.416\cdot 10^{-8})^3~\text{cm}^3}{4}{\approx}99.105\sim 99~\Gamma/\text{моль}$$

Так как в состав \mathbf{C} входят элементы, названия которых начинаются с одной буквы, то \mathbf{X} и \mathbf{Y} тоже должны начинаться с одной буквы, а сумма их атомных масс равна 99 г/моль. Этим условиям соответствуют тогда \mathbf{X} — $\mathbf{C}\mathbf{u}$, а \mathbf{Y} - $\mathbf{C}\mathbf{l}$, тогда \mathbf{A} - $\mathbf{C}\mathbf{u}\mathbf{C}\mathbf{l}$ соответствует по описанию (цвета соединений, характерные реакции).

Воспользуемся массами навесок и восстановленного металла для вычисления молярной массы соединений **В** и **С**. Пусть при восстановлении 1 моль **В** (или **С**) образуется 1 моль металла, тогда:

$$M_{\rm B} = \frac{{
m m(B)} \cdot M(Cu)}{m(Cu)} = \frac{2.193 \cdot 63.546}{0.531} = 262.4 \ {
m \Gamma/MОЛЬ}$$
 $M_{\rm C} = \frac{{
m m(C)} \cdot M(Cu)}{m(Cu)} = \frac{0.915 \cdot 63.546}{0.192} = 302.8 \ {
m \Gamma/MОЛЬ}$

В используется в пиротехнике и содержит хлор, поэтому искомое соединение может являться хлоратом или перхлоратом. Используя соотношение и полученную молярную массу: $\mathbf{B} - \mathbf{Cu}(\mathbf{ClO_4})_2$.

В состав C может входить элемент, название которого на латинском языке начинается с «C», а именно: C, Ca, Cr, Co, Cd, Cs, Ce, другие элементы слишком быстро распадаются и не гуманно давать их соединения Студенту. Если комплексный анион имеет формулу $CuCl_3^-$, то масса катиона должна быть 133 г/моль, что соответствует катиону – Cs^+ , а C – $CsCuCl_3$ или $Cs_2[Cu_2Cl_6]$

Найдем брутто-формулу **D**:

$$n(C): n(H): n(N): n(Cl) = \frac{\omega(C)}{Ar(C)}: \frac{\omega(H)}{Ar(H)}: \frac{\omega(N)}{Ar(N)}: \frac{\omega(Cl)}{Ar(Cl)}$$
 для $\mathbf{D}: \frac{\omega(C)}{Ar(C)}: \frac{\omega(H)}{Ar(H)}: \frac{\omega(N)}{Ar(H)}: \frac{\omega(N)}{Ar(N)}: \frac{\omega(Cl)}{Ar(Cl)} = \frac{37.90}{12.011}: \frac{3.18}{1.008}: \frac{12.63}{14.007}: \frac{31.97}{35.453} = \frac{31.97}{12.011}$

= 3.155 : 3.155 : 0.902 : 0.900 = 3.5 : 1 : 3.5 : 1 = 7 : 7 : 2 : 2 = 14 : 14 : 4 : 4

массовая доля меди не указана, если предположить, что в состав **D** кроме указанных элементов входит только медь, тогда

$$M_{\emph{\textbf{D}}} = \frac{m(\emph{Cu})}{\omega} = \frac{63.546}{0.1432} = 443.8$$
 г/моль, брутто-формула $\emph{\textbf{D}}$: $C_{14}H_{14}N_4CuCl_4$

В состав **D** входит двухзарядный комплексный анион [CuCl₄]²⁻ и два однозарядных катиона, или один двухзарядный. Рассмотрим первый случай, тогда брутто-формулу **D** можно переписать как: $[C_7H_7N_2]_2[CuCl_4]$. Если «снять» протон с катиона, должна получиться нейтральная молекула состава $C_7H_6N_2$, что соответствует бензимидазолу: **D** - $[C_7H_7N_2]_2[CuCl_4]$.

Найдем количество вещества D:

$$\mathbf{n}(\mathbf{D}) = \frac{m(\mathbf{D})}{M(\mathbf{D})} = \frac{4.437}{443.65} \approx 0.01$$
 моль

Пусть соотношение $n(\mathbf{D})$: $n(\mathbf{F}) = 1:1$, тогда $M(\mathbf{F}) = \frac{2.978}{0.01} \approx 297.8$ г/моль

Определим формулу **F**: M(F) - Ar(Cu) = 297.8 - 63.5 = 234.3 г/мольПо условию в состав **F** входит фрагмент ароматического гетероциклического $(M(C_7H_6N_2) = 118.139 \ \Gamma/моль).$ Медь соединения, имеет заряд 2+, следовательно, найденная молярная масса может соответствовать двум однозарядным анионам, a значит молярная масса одного такого аниона ≈ 117 г/моль, что соответствует $C_7H_5N_2^-$. **F** – $Cu[C_7H_5N_2]_2$

Итого, неизвестные элементы и вещества:

2	X	Y	A	В	C	D	E
C	Cu	Cl	CuCl	Cu(ClO ₄) ₂	CsCuCl ₃ или Cs ₂ [Cu ₂ Cl ₆]	[C ₇ H ₇ N ₂] ₂ [CuCl ₄]	$Cu[C_7H_5N_2]_2$

2. Уравнения реакций:

- 1) $CuCl + 2NH_3 = [Cu(NH_3)_2]Cl$
- 3) $[C_7H_7N_2]_2[CuCl_4] + 4NH_3 = Cu[C_7H_5N_2]_2 \downarrow + 4NH_4Cl$
- 4) $Cu(ClO_4)_2 + 9 H_2 = Cu + 2HCl + 8H_2O$
- **3.** При растворении перхлората меди в воде образуется аквакомплекс $[Cu(H_2O)_4]^{2+}$ при растворении $CsCuCl_3$ в ближнем координационном окружении меди сохраняются хлорид-ионы.

Система оценивания:

1.	Вещества А-Е по 1 баллу	10 баллов				
	Расчет для А-Е по 1 баллу					
2.	Уравнения реакций 1-4 по 1 баллу	4 балла				
3.	Указание на различие в ближнем координационном	1 балл				
	окружении комплексов меди в растворе					
	итого:	15 баллов				