ASSIGNMENT 2: Backward Propagation Technique

Due: Tuesday, February 6

Objective: The main objective of this programming assignment is to experience image formation by backward propagation for a simplified 2D case, instead of the full-scale 3D model.

Part A: Preliminary test

Consider a single centered point source,

scatter	scatter location
(x_0, y_0)	(0,0)

The *horizontal receiver aperture* is organized in the form of a centered linear receiver array with a span of 60λ (from $x = -30\lambda$ to $x = +30\lambda$). This horizontal linear receiver array is placed at

$$y = y_o = +60\lambda$$
.

With quarter-wavelength spacing ($\lambda/4$) spacing, there are 241 complex wavefield data samples in total over the 60λ -long linear aperture.

- (i) Perform image reconstruction of the $(60\lambda \times 60\lambda)$ 2D source region. The source region is a square area centered at (0, 0) and bounded by $x = \pm 30\lambda$ and $y = \pm 30\lambda$. For consistency, use quarter-wavelength spacing as the sample spacing in both directions.
- (ii) Obtain and show the 512 x 512 FFT spectrum of the complex image. (Apply the same procedure you used for Assignment 1.)
- (iii) Plot the magnitude distribution of your reconstructed image.

Part B: Multiple point sources

Repeat the exercise with 3 active point sources, located at (x_n, y_n) , n = 1, 2, ... 3.

	scatters	scatter locations
1	(x_1, y_1)	(0, +15 λ)
2	(x_2, y_2)	(-12 λ, -9 λ)
3	(x_3, y_3)	$(+12\lambda, -9\lambda)$

Report format:

1. Cover page.

2. Images.

3. Summary: (comments based on your observations)

4. Appendix: (computer code)