☞ Fonction logarithme 7

On considère la fonction suivante définie sur $]0; +\infty[$:

$$f(x) = (16 - 8\ln(x))\ln(x)$$

- 1. Calculer la limite de f en 0^+
- 2. Calculer la limite de f en $+\infty$
- 3. Calculer la dérivée de f.
- **4.** Déterminer le signe de f'(x).
- **5.** En déduire le tableau de variation de f(x).
- **6.** En déduire le nombre de solutions de f(x) = 0 et un encadrement d'amplitude 10^{-2} de cette solution.

Logarithme

Correction:

1. On sait que:

$$\lim_{x \to 0^{+}} (16 - 8 \ln(x)) = +\infty$$

$$\lim_{x \to 0^{+}} \ln(x) = -\infty$$

$$\operatorname{donc} \lim_{x \to 0^{+}} (16x - 8 \ln(x)) \ln(x) = -\infty$$

2.

$$\lim_{x \to +\infty} (16 - 8\ln(x)) = -\infty$$

$$\lim_{x \to +\infty} \ln(x) = +\infty$$

$$\dim \lim_{x \to +\infty} (16x - 8\ln(x)) \ln(x) = -\infty$$

3.

$$f'(x) = ((16 - 8\ln(x))\ln(x))'$$

$$= (16 - 8\ln(x))'\ln(x) + (16 - 8\ln(x))\ln(x)'$$

$$= -8 \times \frac{1}{x}\ln(x) + (16 - 8\ln(x))\frac{1}{x}$$

$$= \frac{16 - 16\ln(x)}{x}$$

4.

$$f'(x) > 0 \Leftrightarrow 16 - 16\ln(x) > 0$$
$$\Leftrightarrow \ln(x) < \frac{16}{16}$$
$$\Leftrightarrow x < e^{\frac{16}{16}}$$

5. On a:

x	0	$e^{\frac{16}{16}}$ +\infty
f'(x)		+ 0 -
f(x)	-0	15.0

6. Comme la fonction g est continue, croissante de $-\infty$ à 15.0 > 0, alors, d'après le théorème des valeurs intermédiaires, on en déduit qu'il existe une unique solution $\alpha_1 \in]0$; $e^{\frac{16}{16}}[$ tel que $g(\alpha_1) = 0$.

Comme la fonction gest continue, croissante de 15.0>0 à $-\infty$, alors, d'après le théorème des valeurs intermédiaires, on en déduit qu'il existe une unique

Logarithme TG

En regardant plus attentivement, on se rend compte que $\alpha_1 = 1$ et $\alpha_2 = e^{\frac{16}{8}}$.