102 Groupe des nombres complexes de module 1. Racines de l'unité. Applications.

I - Nombres complexes de module 1

1. Le groupe \mathbb{U}

Définition 1. On définit

$$\mathbb{U} = \{ z \in \mathbb{C} \mid |z| = 1 \}$$

le groupe abélien des nombres complexes de module 1.

Proposition 2. L'application

$$\exp(i\theta) \rightarrow \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix}$$

(où exp est définie dans la sous-section suivante) définit un isomorphisme de \mathbb{U} dans $SO_2(\mathbb{R})$.

Proposition 3. Un sous-groupe additif de \mathbb{R} est soit dense dans \mathbb{R} , soit de la forme $n\mathbb{Z}$.

[**FGN3**] p. 51

[ROM21]

Corollaire 4. Un sous-groupe de \mathbb{U} est soit fini, soit dense dans \mathbb{U} .

Corollaire 5. Soit $\theta \notin 2\pi \mathbb{Q}$. $\{e^{in\theta} \mid n \in \mathbb{N}\}$ est dense dans \mathbb{U} .

Application 6. $\{\sin(n) \mid n \in \mathbb{N}\}\$ est dense dans [-1, 1].

Proposition 7. \mathbb{U} est un sous-groupe compact et connexe de \mathbb{C}^* .

[GOU20] p. 44

Application 8. Soit $f: \mathbb{U} \to \mathbb{R}$ continue. Alors il existe deux points diamétralement opposés de \mathbb{U} qui ont la même image par f.

2. L'exponentielle complexe

Définition 9. On définit la fonction **exponentielle complexe** pour tout $z \in \mathbb{C}$ par

[QUE]

$$\sum_{n=0}^{+\infty} \frac{z^n}{n!}$$

on note cette somme e^z ou parfois $\exp(z)$.

Remarque 10. Cette somme est bien définie pour tout $z \in \mathbb{C}$ d'après le critère de d'Alembert.

(i) $\forall z, z' \in \mathbb{C}, e^{z+z'} = e^z e^{z'}$. **Proposition 11.**

- (ii) exp est holomorphe sur ℂ, de dérivée elle-même.
- (iii) exp ne s'annule jamais.

Proposition 12. La fonction $\varphi: t \mapsto e^{it}$ est un morphisme surjectif de \mathbb{R} sur \mathbb{U} .

Proposition 13. En reprenant les notations précédentes, $Ker(\varphi)$ est un sous-groupe fermé de \mathbb{R} , de la forme $\operatorname{Ker}(\varphi) = a\mathbb{Z}$. On note $a = 2\pi$.

3. Trigonométrie

Définition 14. Les fonctions sin et cos sont définies sur \mathbb{R} par

$$-cos(t) = \operatorname{Re}(e^{it}) = \frac{e^{it} + e^{-it}}{2} = \sum_{n=0}^{+\infty} (-1)^n \frac{t^{2n}}{(2n)!}.$$

$$-cos(t) = \operatorname{Im}(e^{it}) = \frac{e^{it} - e^{-it}}{2i} = \sum_{n=0}^{+\infty} (-1)^n \frac{t^{2n+1}}{(2n+1)!}.$$

$$--\sin(t) = \operatorname{Im}(e^{it}) = \frac{e^{it} - e^{-it}}{2i} = \sum_{n=0}^{+\infty} (-1)^n \frac{t^{2n+1}}{(2n+1)!}.$$

Proposition 15. Ces fonctions sont réelles, 2π -périodiques, et admettent un développement en série entière de rayon de convergence infini. On peut en particulier les prolonger sur le plan complexe entier.

Proposition 16. Tout nombre complexe $z \in \mathbb{C}$ peut s'écrire de la manière suivante :

[R-R] p. 259

$$z = |z|e^{i\theta} = \cos(\theta) + i\sin(\theta)$$

Proposition 17 (Formule de Moivre).

$$\forall n \in \mathbb{N}, \forall \theta \in \mathbb{R}, (\cos(\theta) + i\sin(\theta))^n = \cos(n\theta) + i\sin(n\theta)$$

Application 18 (Calcul du noyau de Dirichlet).

[**GOU20**] p. 271

$$\forall n \in \mathbb{N}^*, \forall x \in \mathbb{R} \setminus 2\pi \mathbb{Z}, \sum_{k=-n}^{n} \frac{\sin\left(\frac{(2n+1)x}{2}\right)}{\sin\left(\frac{x}{2}\right)}$$

II - Le groupe des racines de l'unité

Soit $n \in \mathbb{N}^*$.

1. Racines *n*-ièmes de l'unité

Définition 19. Étant donnés $\alpha \in \mathbb{C}$, on appelle :

[**R-R**] p. 259

- **Racine** n-ième de α tout nombre $z \in \mathbb{C}$ tel que $z^n = \alpha$.
- Racine n-ième de l'unité toute racine n-ième de 1. On note μ_n cet ensemble.

Exemple 20. Les racines cubiques de l'unité sont 1, $j = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$ et \bar{j} .

Proposition 21. Pour tout $n \in \mathbb{N}^*$, il y a n racines n-ièmes de l'unité, données par

$$e^{\frac{2ik\pi}{n}} = \cos\left(\frac{2ik\pi}{n}\right) + i\sin\left(\frac{2ik\pi}{n}\right)$$

où k parcourt les entiers de 0 à n-1.

Corollaire 22. Pour tout $n \in \mathbb{N}^*$,

$$X^{n} - 1 = \prod_{k=0}^{n-1} (X - e^{\frac{2ik\pi}{n}})$$

Corollaire 23. Tout nombre complexe non nul α écrit $\alpha=re^{i\theta}$ admet exactement n racines n-ièmes données par

$$\sqrt[n]{r}e^{i\frac{\theta}{n}}e^{\frac{2ik\pi}{n}}$$

où k parcourt les entiers de 0 à n-1.

[**GOZ**] p. 67

Proposition 24. μ_n est un groupe, et l'application

$$\begin{array}{ccc} \mathbb{Z}/n\mathbb{Z} & \to & \mu_n \\ k & \mapsto & e^{\frac{2ik\pi}{n}} \end{array}$$

est un isomorphisme.

Proposition 25. \mathbb{C}^* admet exactement un sous-groupe d'ordre $n: \mu_n$.

[ROM21] p. 36

2. Générateurs et polynômes cyclotomiques

Définition 26. L'ensemble des générateurs de μ_n , noté μ_n^* , est formé des **racines primitives** n-ièmes de l'unité.

[**GOZ**] p. 67

Proposition 27. (i) $\mu_n^* = \{e^{\frac{2ik\pi}{n}} \mid k \in [0, n-1], \operatorname{pgcd}(k, m) = 1\}.$

(ii) $|\mu_n^*| = \varphi(n)$, où φ désigne l'indicatrice d'Euler.

Définition 28. On appelle n-ième polynôme cyclotomique le polynôme

$$\Phi_n = \prod_{\xi \in \mu_n^*} (X - \xi)$$

Théorème 29. (i) $X^{n} - 1 = \prod_{d|n} \Phi_{d}$.

- (ii) $\Phi_n \in \mathbb{Z}[X]$.
- (iii) Φ_n est irréductible sur \mathbb{Q} .

Corollaire 30. Le polynôme minimal sur $\mathbb Q$ de tout élément ξ de μ_n^* est Φ_n . En particulier,

$$[\mathbb{Q}(\xi):\mathbb{Q}]=\varphi(m)$$

Application 31 (Théorème de Wedderburn). Tout corps fini est commutatif.

[DEV]

Application 32 (Dirichlet faible). Pour tout entier n, il existe une infinité de nombres premiers congrus à 1 modulo n.

[**GOU21**] p. 99

III - Applications en algèbre

1. Une application géométrique

Proposition 33 (Déterminant circulant). Soient $n \in \mathbb{N}^*$ et $a_1, \ldots, a_n \in \mathbb{C}$. On pose $\omega = e^{\frac{2i\pi}{n}}$. Alors

$$\begin{vmatrix} a_0 & a_1 & \dots & a_{n-1} \\ a_{n-1} & a_0 & \dots & a_{n-2} \\ \vdots & \vdots & \ddots & \vdots \\ a_n & a_n & a_n \end{vmatrix} = \prod_{j=0}^{n-1} P(\omega^j)$$

où $P = \sum_{k=0}^{n-1} a_k X^k$.

Application 34 (Suite de polygones). Soit P_0 un polygone dont les sommets sont $\{z_{0,1},\ldots,z_{0,n}\}$. On définit la suite de polygones (P_k) par récurrence en disant que, pour tout $k \in \mathbb{N}^*$, les sommets de P_{k+1} sont les milieux des arêtes de P_k .

Alors la suite (P_k) converge vers l'isobarycentre de P_0 .

2. Racines de polynômes

1 2

[DEV]

Théorème 35 (Kronecker). Soit $P \in \mathbb{Z}[X]$ unitaire tel que toutes ses racines complexes appartiennent au disque unité épointé en l'origine (que l'on note D). Alors toutes ses racines sont des racines de l'unité.

Corollaire 36. Soit $P \in \mathbb{Z}[X]$ unitaire et irréductible sur \mathbb{Q} tel que toutes ses racines complexes soient de module inférieur ou égal à 1. Alors P = X ou P est un polynôme cyclotomique.

3. Dual d'un groupe

Soit G un groupe fini de cardinal n.

Définition 37. Un **caractère** est un morphisme de G dans \mathbb{C}^* . On note \widehat{G} l'ensemble des caractères, qu'on appelle **dual** de G.

Proposition 38. \widehat{G} est un groupe pour la multiplication.

p. 153

[**I-P**] p. 389

p. 279

[**PEY**] p. 2

p. 64

Proposition 39. (i) \hat{G} est constitué des morphismes de G dans μ_n .

- (ii) $\forall g \in G, |\chi(g)| = 1$.
- (iii) $\forall g \in G, \chi(g^{-1}) = \chi(g)^{-1} = \overline{\chi(g)}.$

Proposition 40. Si $G = \langle g_0 \rangle$, en notant ω une racine primitive n-ième de l'unité, les éléments de \widehat{G} sont de la forme $g_0^k \mapsto (\omega^j)^k$ pour $j \in [0, n-1]$.

Corollaire 41. Si *G* est cyclique, $G \cong \widehat{G}$.

4. Transformée de Fourier discrète

Soit $N \in \mathbb{N}^*$.

Notation 42. Soit f un vecteur de \mathbb{C}^N . On note f[k] sa k-ième composante pour tout $k \in [1,N]$.

Définition 43. Soit f un vecteur de \mathbb{C}^N . La **transformée de Fourier discrète** de f est

$$\widehat{f} = \sum_{n=0}^{N-1} f[n] \omega_N^{-nk}$$

pour $k \in [0, N-1]$ où l'on a noté $\omega_N = e^{\frac{2i\pi}{N}}$ une racine primitive N-ième de l'unité. On note

$$\mathscr{F}: \begin{array}{ccc} \mathbb{C}^N & \to & \mathbb{C}^N \\ f & \mapsto & \widehat{f} \end{array}$$

Proposition 44 (Transformée de Fourier inverse).

$$\forall n \in [\![0,N-1]\!], f[n] = \frac{1}{N} \sum_{k=0}^{N-1} \widehat{f}[k] \omega_N^{nk}$$

Corollaire 45. Soit f un vecteur de \mathbb{C}^N . En notant f_1 le vecteur défini par

$$f_1[0] = \frac{1}{N} f[0] \text{ et } \forall n \in [[1, ..., N-1]], f_1[n] = \frac{1}{N} f[N-n]$$

on a

$$\mathcal{F}^{-1}(f) = \mathcal{F}(f_1)$$

Annexes

FIGURE 1 – La suite de polygones.

[**I-P**] p. 389

Bibliographie

Oraux X-ENS Mathématiques

|FGN3|

Serge Francinou, Hervé Gianella et Serge Nicolas. Oraux X-ENS Mathématiques. Volume 3. 3^e éd. Cassini, 27 mai 2020.

https://store.cassini.fr/fr/enseignement-des-mathematiques/103-oraux-x-ens-mathematiquesnouvelle-serie-vol-3.html.

Les maths en tête [GOU20]

Xavier Gourdon. Les maths en tête. Analyse. 3e éd. Ellipses, 21 avr. 2020.

https://www.editions-ellipses.fr/accueil/10446-les-maths-en-tete-analyse-3e-edition-9782340038561.html.

Les maths en tête [GOU21]

Xavier Gourdon. Les maths en tête. Algèbre et probabilités. 3^e éd. Ellipses, 13 juill. 2021.

https://www.editions-ellipses.fr/accueil/13722-25266-les-maths-en-tete-algebre-etprobabilites-3e-edition-9782340056763.html.

Théorie de Galois [GOZ]

Ivan Gozard. *Théorie de Galois. Niveau L3-M1*. 2^e éd. Ellipses, 1^{er} avr. 2009.

https://www.editions-ellipses.fr/accueil/4897-15223-theorie-de-galois-niveau-13-m1-2eedition-9782729842772.html.

L'oral à l'agrégation de mathématiques

[I-P]

Lucas Isenmann et Timothée Pecatte. L'oral à l'agrégation de mathématiques. Une sélection de *développements.* 2^e éd. Ellipses, 26 mars 2024.

https://www.editions-ellipses.fr/accueil/15218-28346-loral-a-lagregation-de-mathematiquesune-selection-de-developpements-2e-edition-9782340086487.html.

L'algèbre discrète de la transformée de Fourier

[PEY]

Gabriel Peyré. L'algèbre discrète de la transformée de Fourier. Niveau M1. Ellipses, 15 jan. 2004. https://adtf-livre.github.io.

Analyse complexe et applications

[QUE]

Martine Quefféllec et Hervé Queffélec. Analyse complexe et applications. Nouveau tirage. Calvage & Mounet, 13 mai 2017.

http://www.calvage-et-mounet.fr/2022/05/09/analyse-complexe-et-applications/.

Formulaire de maths [R-R]

Olivier Rodot et Jean-Étienne Rombaldi. *Formulaire de maths. Avec résumés de cours.* De Boeck Supérieur, 30 août 2022.

https://www.deboecksuperieur.com/ouvrage/9782807339880-formulaire-de-maths.

Mathématiques pour l'agrégation

[ROM21]

Jean-Étienne Rombaldi. *Mathématiques pour l'agrégation. Algèbre et géométrie.* 2^e éd. De Boeck Supérieur, 20 avr. 2021.

 $\verb|https://www.deboecksuperieur.com/ouvrage/9782807332201-mathematiques-pour-l-agregation-algebre-et-geometrie.|$