ASM file

© Created	@Jun 10, 2021 11:17 AM
:≡ Tags	

Exploratory Data Analysis

File Size as feature

ID	File Name	Size
0	01azqd4lnC7m9JpocGv5	56.229886
1	01lsoiSMh5gxyDYTI4CB	13.999378
2	01jsnpXSAlgw6aPeDxrU	8.507785
3	01kcPWA9K2BOxQeS5Rju	0.078190
4	01SuzwMJEIXsK7A8dQbI	0.996723

Box plot of file size as feature

Copy of Bag of Words for ASM File

# Property	Aa File Name	# HEADER:	# .text:	# .Pav:	# .idata:	# .data:	# .bss:	# .rdata:	# .edata:	# .rsrc:	o	# edx	# esi	# eax	=======================================
0	01kcPWA9K2BOxQeS5Rju	19	744	0	127	57	0	323	0	3		18	66	15	2
1	1E93CpP60RHFNiT5Qfvn	17	838	0	103	49	0	0	0	3		18	29	48	8

# Property	Aa File Name	# HEADER:	# .text:	# .Pav:	# .idata:	# .data:	# .bss:	# .rdata:	# .edata:	# .rsrc:	o	# edx	# esi	# eax	= €
2	3ekVow2ajZHbTnBcsDfX	17	427	0	50	43	0	145	0	3		13	42	10	(
3	3X2nY7iQaPBIWDrAZqJe	17	227	0	43	19	0	0	0	3		6	8	14	7
4	460ZzdsSKDCFV8h7XWxf	17	402	0	59	170	0	0	0	3		12	9	18	1

Copy of Combining Bag of Words and File size as Features

# ID	Aa File Name	# HEADER:	# .text:	# .Pav:	# .idata:	# .data:	# .bss:	# .rdata:	# .edata:	# .rsrc:	o	# esi	# eax	# ebx	# ecx	:
0	01kcPWA9K2BOxQeS5Rju	19	744	0	127	57	0	323	0	3		66	15	43	83	(
1	1E93CpP60RHFNiT5Qfvn	17	838	0	103	49	0	0	0	3		29	48	82	12	(
2	3ekVow2ajZHbTnBcsDfX	17	427	0	50	43	0	145	0	3		42	10	67	14	(
3	3X2nY7iQaPBIWDrAZqJe	17	227	0	43	19	0	0	0	3		8	14	7	2	(
4	460ZzdsSKDCFV8h7XWxf	17	402	0	59	170	0	0	0	3		9	18	29	5	(

Univariate Analysis

.text vs Class

The plot is between Text and class Class 1,2 and 9 can be easly separated

.Pav vs Class

No useful information

.data vs Class

The plot is between data segment and class label class 6 and class 9 can be easily separated from given points

.bss vs Class

plot between bss segment and class label very less number of files are having bss segment

.rdata vs Class

Plot between rdata segment and Class segment Class 2 can be easily separated 75 pecentile files are having 1M rdata lines

jmp vs Class

plot between jmp and Class label Class 1 is having frequency of 2000 approx in 75 perentile of files

mov vs Class

plot between Class label and mov opcode Class 1 is having frequency of 2000 approx in 75 perentile of files

retf vs Class

plot between Class label and retf Class 6 can be easily separated with opcode retf The frequency of retf is approx of 250.

push vs Class

plot between push opcode and Class label Class 1 is having 75 precentile files with push opcodes of frequency 1000

Multivariate Analysis

Perplexity = 50

Perplexity = 30

Conclusion of EDA

- We have taken only 52 features from asm files (after reading through many blogs and research papers)
- The univariate analysis was done only on few important features.
- · Take-aways
 - 1. Class 3 can be easily separated because of the frequency of segments, opcodes and keywords being less
 - 2. Each feature has its unique importance in separating the Class labels.

Train and test Split

Number of data points in train data: 6955 Number of data points in test data: 2174

Number of data points in cross validation data: 1739

Machine Learning Model

K-Nearest Neighbors

Hyperparameter search

 $log_loss for k = 1 is 0.104531321344$

 $log_loss for k = 3 is 0.0958800580948$

 $log_loss for k = 5 is 0.0995466557335$

 $log_loss for k = 7 is 0.107227274345$

 $log_loss for k = 9 is 0.119239543547$

 $log_loss for k = 11 is 0.133926642781$

 $log_loss for k = 13 is 0.147643793967$

 $log_loss for k = 15 is 0.159439699615$

 $log_loss for k = 17 is 0.16878376444$

 $log_loss for k = 19 is 0.178020728839$

Results from the Best Model

log loss for train data 0.048 log loss for cv data 0.096 log loss for test data 0.090 Accuracy 97.98

Confusion Matrix

Precision Matrix

Recall Matrix

Logistic Regression

Hyperparameter search

log_loss for c = 1e-05 is 1.58867274165 log_loss for c = 0.0001 is 1.54560797884

 $log_loss for c = 0.001 is 1.30137786807$

 $log_loss for c = 0.01 is 1.33317456931$

 $log_loss for c = 0.1 is 1.16705751378$

log_loss for c = 1 is 0.757667807779 log_loss for c = 10 is 0.546533939819 log_loss for c = 100 is 0.438414998062 log_loss for c = 1000 is 0.424423536526

Results from the Best Model

log loss for train data 0.40 log loss for cv data 0.42 log loss for test data 0.42 Number of misclassified points 90.39

Confusion Matrix

Precision Matrix

Recall Matrix

Random Forest

Hyperparameter search

log_loss for c = 10 is 0.0581657906023 log_loss for c = 50 is 0.0515443148419 log_loss for c = 100 is 0.0513084973231 log_loss for c = 500 is 0.0499021761479 log_loss for c = 1000 is 0.0497972474298 log_loss for c = 2000 is 0.0497091690815 log_loss for c = 3000 is 0.0496706817633

Results from the Best Model

log loss for train data 0.012 log loss for cv data 0.050 log loss for test data 0.057 Accuracy 98.85

Confusion Matrix

Precision Matrix

Recall Matrix

XgBoost Classifier

Hyperparameter search

log_loss for c = 10 is 0.104344888454 log_loss for c = 50 is 0.0567190635611 log_loss for c = 100 is 0.056075038646 log_loss for c = 500 is 0.057336051683 log_loss for c = 1000 is 0.0571265109903

 $log_loss for c = 2000 is 0.057103406781$ $log_loss for c = 3000 is 0.0567993215778$

Results from the Best Model

For values of best alpha = 100 The train log loss is: 0.012

For values of best alpha = 100 The cross validation log loss is: 0.056

For values of best alpha = 100 The test log loss is: 0.049

Accuracy 99.13

Confusion Matrix

Precision Matrix

Recall Matrix

XgBoost Classifier with best hyperparameters

```
Fitting 3 folds for each of 10 candidates, totalling 30 fits
[Parallel(n_jobs=-1)]: Done 2 tasks
                                             | elapsed:
                                                            8.1s
[Parallel(n_jobs=-1)]: Done
                                9 tasks
                                               elapsed:
                                                           32.8s
[Parallel(n_jobs=-1)]: Done 19 out of 30 |
                                               elapsed: 1.1min remaining:
                                                                               39.3s
[Parallel(n\_jobs=-1)] : \ Done \ 23 \ out \ of \ 30 \ | \ elapsed : \ 1.3min \ remaining :
                                                                               23.0s
[Parallel(n\_jobs=-1)] \colon \mbox{ Done } \mbox{ 27 out of } \mbox{ 30 } | \mbox{ elapsed} \colon \mbox{ 1.4min remaining} \colon
[Parallel(n_jobs=-1)]: Done 30 out of 30 | elapsed: 2.3min finished
RandomizedSearchCV(cv=None, error_score='raise',
          estimator=XGBClassifier(base_score=0.5, colsample_bylevel=1, colsample_bytree=1,
       gamma=0, learning_rate=0.1, max_delta_step=0, max_depth=3,
       min_child_weight=1, missing=None, n_estimators=100, nthread=-1,
       objective='binary:logistic', reg_alpha=0, reg_lambda=1,
       scale_pos_weight=1, seed=0, silent=True, subsample=1),
          fit_params=None, iid=True, n_iter=10, n_jobs=-1,
          param_distributions={'learning_rate': [0.01, 0.03, 0.05, 0.1, 0.15, 0.2], 'n_estimators': [100, 200, 500, 1000, 2000], 'max_dep
th': [3, 5, 10], 'colsample_bytree': [0.1, 0.3, 0.5, 1], 'subsample': [0.1, 0.3, 0.5, 1]},
           pre_dispatch='2*n_jobs', random_state=None, refit=True,
           return_train_score=True, scoring=None, verbose=10)
```

Best Parameters

{'subsample': 1, 'n_estimators': 200, 'max_depth': 5, 'learning_rate': 0.15, 'colsample_bytree': 0.5}

Results from the Best Parameter Model

train loss 0.010 cv loss 0.050 test loss 0.048

Accuracy 99.16