Nature des variables et description mono-variable

M8 – Chapitre 1

I. Nature et description des variables

 Quantitative : Modalités comparables entre elles Discrète / continue : modalités dénombrable / indénombrables Qualitative Binaire / Multimodale : deux modalités / plus de 2. Ordinale (ou non) : existence d'un ordre Population : Ensemble d'évènements possibles Echantillon : Sous-ensemble de la population Domaine : Ensemble des valeurs que peut prendre la variable 					Qualitative binaire	Qualitative multimodale	Qualitative ordinale	Quantitative discrète	Quantitative continue
Définition			Formule		O	O	0	O	0
Modalités : Ensemble des valeurs distinctes que peut prendre la variable			m_i		Х	Х	Х	Х	Х
$ullet$ Effectif n_i : Nombre d'apparitions d'une modalité n_i				Х	Х	Х	Х	Χ	
• Effectif cumulé $N_i = \sum_{j,m_j \le m_i} n_j$						х	х		
• Fréquence \widehat{f}_i $\widehat{f}_i = \frac{n_i}{n}$			Х	Х	х	Х	Х		
• Probabilité $\mathbb{P}(x=m_i) = \lim_{n \to +\infty} \widehat{f}_i$			Х	х	х	Х	Х		
• Probabilité $\mathbb{P}(x=m_i) = \lim_{n \to +\infty} \widehat{f}_i$ • Fréquence cumulée \widehat{F}_i $\widehat{f}_l = \sum_{j,m_j \le m_l} \widehat{f}_j$						х	х		
• Fonction de répartition empirique $\widehat{F_X}$ (cas discret) $\widehat{F_X}(x_i) = \widehat{\mathbb{P}}(X \leq m_i) = \widehat{F_i}$			$\widehat{\mathbb{P}}(X \le m_i) = \widehat{F}_i$				х		
• Fonction de répartition empirique $\widehat{F_X}$ (cas continu) $\widehat{F_X}(x) = \widehat{F_l^c} + (\widehat{F_l^c} - \widehat{F_{l-1}^c}) \frac{x - x_{l-1}}{x_i - x_{l-1}}$ $\widehat{F_l^c} = \widehat{F_l} - \frac{1}{2} (\widehat{F_l} - \widehat{F_{l-1}})$			$\widehat{f}_i - \frac{1}{2} (\widehat{F}_i - \widehat{F}_{i-1})$					х	
• Fonction de répartition F_X			$F_X(m_i) = \mathbb{P}(X \le m_i) = \lim_{n \to +\infty} \widehat{F}_i$					Х	Х
• Moyenne \overline{x}			empirique : $x_i = \sum_{i=1}^{n} \widehat{f}_i x_i$	Espérance: $\mathbb{E}(X) = \lim_{n \to \infty} \bar{x}$		х	х	х	х
• Médiane M	$\min_{M \in \mathbb{R}} \sum_{i=1}^{n} x_i - M \qquad \qquad \widehat{F}_X(M)$		$M)=\frac{1}{2}$	$\mathbb{P}(X \le M) = \frac{1}{2}$				Х	х
• Mode	argr i∈[1		$\max_{i:n]} f_i$	$\operatorname*{argmax}_{x\in\Omega}\mathbb{P}(x)$				х	
• Variance S	$\hat{S}^2 = \frac{1}{n} \sum_{i=n}^{n} (x_i - \bar{x})^2 = \frac{1}{n} \sum_{i=1}^{n} x_i^2 - \bar{x}^2$		$\hat{s} = \sqrt{\hat{S}^2}$ Ecart type	$S^2 = \mathbb{E}(X - \mathbb{E}^2(X))$		х	х	Х	х
Usage de la variance	$\mathbb{P}(X - \bar{x} \ge k\sigma) \ge \sigma$ $\mathbb{P}(X - \bar{x} \ge \varepsilon)$		- vu			х	х	х	х
• Fractile et quartile	$\widehat{F_X}(\widehat{\phi}_p) = p \widehat{Q_1} = \widehat{\phi}_{\frac{1}{4}} \widehat{Q_3} = \widehat{\phi}_{\frac{3}{4}} DI$		$Q = \widehat{Q_3} - \widehat{Q_1} \mid MAD = mediane(x_i - \widehat{M})$					х	Х
Moment et moment centré	$\widehat{m_k} = \frac{1}{n} \sum_{i=1}^n x_i^k \qquad \widehat{mc_k} = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^k \qquad \overline{\bar{x}} = \widehat{m_1} \widehat{S}^2 = \widehat{mc_2} \frac{\widehat{mc_3}}{\hat{s}^3} \frac{\widehat{mc_4}}{\hat{s}^4}$ Dissymétrie Aplatissement					х	х	х	х

X : peut être utilisé / x : peut être utilisé mais pas toujours très approprié

Nature des variables et description mono-variable

M8 – Chapitre 1

II. Représentation des variables

1. Camemberts (variables qualitatives)

2. Boites à moustache (variables quantitatives)

3. Histogramme

Discrétisation d'une variable continue

On doit choisir p bornes b_i . On associe ensuite une hauteur à chaque intervalle $[b_i; b_{i+1}[$.

Choix du nombre p d'intervalles pour n observations :

$$p \ge 1 + \log n$$
règle de Sturges

$$p = \frac{3.5\hat{\sigma}}{\sqrt[3]{n}}$$
 règle de Scott

$$p=rac{2|DIQ|}{\sqrt[3]{n}}$$
le de Freedman Diaconi

Choix des b_i : équirépartition des individus ou des intervalles.