CSC355 PS2

Alex Zhang

Feb 2024

Problem 1

1.

The derivative of newton's update function $\phi'(x)$ will be

$$\phi'(x) = 1 - \frac{f'(x)f'(x) - f(x)f''(x)}{[f'(x)]^2} = \frac{f(x)f''(x)}{[f'(x)]^2}$$

Since $\phi(x)$ is a newton's update function and sequence p_n converges to root p, we can get $p_{n+1} = \phi(p_n)$. If we plug in p in update function, the second term will be 0 because of the root. $\phi(p) = p - 0 = p$. So $p_{n+1} - p = \phi(p_n) - \phi(p)$.

By Mean Value Theorem, $\phi(p_n) - \phi(p) = \phi'(c(x))(p_n - p)$, where c(x) is between p_n and p. Since $\{p_n\}_{n=0}^{\infty}$ converges to p, we also have $\{c(x)\}_{n=0}^{\infty}$ converges to p, which

$$\lim_{n \to \infty} \phi'(c(x)) = \phi'(p)$$

The left hand side of the equation we try to get can be transformed into:

$$\lim_{n \to \infty} \frac{|\phi'(c(x))(p_n - p)|}{|p_n - p|} = \lim_{n \to \infty} |\phi'(c(x))| \frac{|p_n - p|}{|p_n - p|}$$
$$\lim_{n \to \infty} |\phi'(c(x))| = |\phi'(p)|$$

Because p is the root, f(p) = 0. We can plug in this number into $\phi'(x)$ and get $\phi'(p) = 0$. This means $|\phi'(p)| = \phi'(p)$. We then can show

$$\lim_{n \to \infty} \frac{|p_{n+1} - p|}{|p_n - p|} = |\phi'(p)| = \phi'(p)$$

2.

If newton's method converges to this root, we can create a Newton's update function $\phi(x) = x - \frac{f(x)}{f'(x)}$. Taking the derivative of this update function $\phi'(x) = \frac{f(x)f''(x)}{[f'(x)]^2}$ from previous problem. Since now we know the representation of f(x), we can try to substitute to the derivative of update function.

$$f'(x) = 2(x - p)g(x) + (x - p)^2 g'(x)$$

$$f''(x) = 2g(x) + 2(x - p)g'(x) + 2(x - p)g'(x) + (x - p)^2 g''(x)$$

substitute these into the update function.

$$\phi'(x) = \frac{(x-p)^2 g(x)(2g(x) + 2(x-p)g'(x) + 2(x-p)g'(x) + (x-p)^2 g''(x))}{[2(x-p)g(x) + (x-p)^2 g'(x)]^2}$$
$$\phi'(x) = \frac{2g(x)^2 + 4(x-p)g'(x)g(x) + (x-p)^2 g''(x)g(x)}{(x-p)^2 g'(x)^2 + 4(x-p)g'(x)g(x) + 4g(x)^2}$$

Applying x = p,

$$\phi'(p) = \frac{2g(x)^2}{4g(x)^2} = \frac{1}{2}$$

Because the derivative of update function is not 0. The taylor theorem implies

$$\frac{\phi(x) - \phi(p)}{x - p} = \phi'(p) = \frac{1}{2}$$

Assume Newton's method converges, we can get the same series in previous problem that also converges to p. Taking the limits,

$$\lim_{n \to \infty} \frac{|\phi(p_n) - \phi(p)|}{|p_n - p|} = \lim_{n \to \infty} \frac{|p_{n+1} - p|}{|p_n - p|} = \lim_{n \to \infty} |\phi'(c(x))|$$

where c(x) is between p_n and p.

Because series $\{p_n\}_{n=0}^{\infty}$ converges to p, c(x) also converges to p.

$$\lim_{n \to \infty} |\phi'(c(x))| = |\phi'(p)| = \frac{1}{2}$$

. This means Newton's method is linear convergent where $\alpha=1$ and $\lambda=1/2$, with asymptotic error constant 1/2.

Problem 2

MATLAB script called newbis.m performs the required steps

Problem 3

MATLAB script my_fzero.m performs this combination.

Problem 4

Function my_fzero.m will print the information.

Problem 5

fzero with 0.8:

>> p = fzero(ftest, 0.8,optimset('display','iter'));

Search for an interval around 0.8 containing a sign change:

Func-count	a	f(a)	Ъ	f(b)	Procedure
1	0.8	-0.76032	0.8	-0.76032	initial interval
3	0.777373	-0.904332	0.822627	-0.63032	search
5	0.768	-0.96831	0.832	-0.580359	search
7	0.754745	-1.06331	0.845255	-0.513418	search
9	0.736	-1.20704	0.864	-0.425868	search
11	0.70949	-1.43013	0.89051	-0.315445	search
13	0.672	-1.78834	0.928	-0.183784	search
15	0.618981	-2.38951	0.981019	-0.0405454	search
17	0.544	-3.45682	1.056	0.0915799	search

Search for a zero in the interval [0.544, 1.056]:

Func-count	x	f(x)	Procedure
17	1.056	0.0915799	initial
18	1.04279	0.0734457	interpolation
19	0.990381	-0.0198942	interpolation
20	1.00155	0.00308374	interpolation
21	1.00005	0.000102524	interpolation
22	1	-2.97656e-08	interpolation
23	1	5.34328e-12	interpolation
24	1	0	interpolation

Zero found in the interval [0.544, 1.056]

my_fzero with 0.8:

>> p2 = my_fzero(ftest,df_test, 0.8); Search for an interval around 0.80 containing a sign change:

Search 1	or an i	nterval	around 0.80	containing a	sign change:	
Iter		a	f(a)	b	f(b)	Procedure
1		0.8	-0.76032	0.8	-0.76032	initial
2		0.799	-0.766382	0.801	-0.754286	search
3		0.797	-0.778587	0.803	-0.742299	search
4		0.793	-0.803331	0.807	-0.71865	search
5		0.785	-0.854164	0.815	-0.672633	search
6		0.769	-0.961359	0.831	-0.585585	search
7		0.737	-1.19909	0.863	-0.430335	search
8		0.673	-1.7781	0.927	-0.186948	search
9		0.545	-3.44074	1.055	0.0902771	search

Search for a zero in the interval [0.545,1.055]

[ter	x	f(x)	Procedure
9	0.545	-3.44074	initial
10	0.759271	-1.03026	newton
11	0.901756	-0.273059	newton
12	0.976456	-0.051088	newton
13	0.998243	-0.00353567	newton

```
14 0.999989 -2.14434e-05 newton
15 1 -8.0459e-10 newton
16 1 0 newton
```

Zero found in the interval [0.545000,1.055000]

fzero with 1.6:

>> p = fzero(ftest, 1.6,optimset('display','iter'));

Search for an interval around 1.6 containing a sign change:

Func-count	a	f(a)	b	f(b)	Procedure
1	1.6	0.05376	1.6	0.05376	initial interval
3	1.55475	0.0707724	1.64525	0.0390246	search
5	1.536	0.0783898	1.664	0.0336506	search
7	1.50949	0.0896218	1.69051	0.0268048	search
9	1.472	0.106162	1.728	0.0186348	search
11	1.41898	0.129928	1.78102	0.00999714	search
13	1.344	0.160816	1.856	0.00292407	search
15	1.23796	0.185547	1.96204	5.46258e-05	search
17	1.088	0.127631	2.112	-0.0013873	search

Search for a zero in the interval [1.088, 2.112]:

Func-count	X	f(x)	Procedure
17	2.112	-0.0013873	initial
18	2.10099	-0.00101946	interpolation
19	2.07071	-0.000351843	interpolation
20	2.07071	-0.000351843	bisection
21	2.06791	-0.000311721	interpolation
22	2.04622	-9.85177e-05	interpolation
23	2.04622	-9.85177e-05	bisection
24	2.04264	-7.73958e-05	interpolation
25	2.02969	-2.61616e-05	interpolation
26	2.02969	-2.61616e-05	bisection
27	2.02415	-1.4076e-05	interpolation
28	2.01787	-5.70768e-06	interpolation
29	2.01787	-5.70768e-06	bisection
30	2.00974	-9.23062e-07	interpolation
31	2.00822	-5.54788e-07	interpolation
32	2.00598	-2.13457e-07	interpolation
33	2.00598	-2.13457e-07	bisection
34	2.00407	-6.76507e-08	interpolation
35	2.00322	-3.35028e-08	interpolation
36	2.00241	-1.39759e-08	interpolation
37	2.00241	-1.39759e-08	bisection
38	2.00164	-4.38337e-09	interpolation
39	2.0013	-2.17827e-09	interpolation
40	2.00097	-9.07505e-10	interpolation
41	2.00097	-9.07505e-10	bisection
42	2.00066	-2.83649e-10	interpolation
43	2.00052	-1.41171e-10	interpolation
44	2.00039	-5.87193e-11	interpolation
45	2.00039	-5.87193e-11	bisection

46	2.00026	-1.8332e-11	interpolation
47	2.00021	-9.23706e-12	interpolation
48	2.00015	-3.72324e-12	interpolation
49	2.00015	-3.72324e-12	bisection
50	2.00011	-1.19371e-12	interpolation
51	2.00008	-5.96856e-13	interpolation
52	2.00006	-2.27374e-13	interpolation
53	2.00006	-2.27374e-13	bisection
54	2.00004	-1.13687e-13	interpolation
55	2.00003	-2.84217e-14	interpolation
56	2.00002	-2.84217e-14	interpolation
57	2.00002	-2.84217e-14	bisection
58	2	2.84217e-14	interpolation
59	2.00001	-2.84217e-14	bisection
60	2	2.84217e-14	bisection
61	2	2.84217e-14	interpolation
62	2	5.68434e-14	bisection
63	2.00001	-2.84217e-14	bisection
64	2	0	interpolation

Zero found in the interval [1.088, 2.112] my-fzero with 1.6:

>> p2 = my_fzero(ftest,df_test, 1.6);

1.99381

2.36803e-07

1.99588 7.01626e-08

21

22

7. P2	iny_12010(100		•		
	or an interval		_	-	
Iter	a	f(a)	b	f(b)	Procedure
1	1.6	0.05376	1.6	0.05376	initial
2	1.599	0.0541126	1.601	0.0534086	search
3	1.597	0.054821	1.603	0.0527091	search
4	1.593	0.0562512	1.607	0.0513236	search
5	1.585	0.0591639	1.615	0.0486079	search
6	1.569	0.0651904	1.631	0.0434022	search
7	1.537	0.0779761	1.663	0.0339262	search
8	1.473	0.105714	1.727	0.01883	search
9	1.345	0.16045	1.855	0.00298453	search
10	1.089	0.12859	2.111	-0.00135078	search
Search f	or a zero in t	he interval [1	1.089,2.111]		
Iter	x	f(x)	Proced	ure	
10	1.089	0.12859	init	ial	
11	1.6	0.05376	bise	ction	
12	1.75273	0.0141947	newto	on	
13	1.83889	0.0040731	newto	on	
14	1.89357	0.00119204	newto	on	
15	1.92932	0.00035137	newto	on	
16	1.95296	0.000103876	newto	on	
17	1.96866	3.07475e-05	newto	on	
18	1.97911	9.10639e-06	newto	on	
19	1.98608	2.69767e-06	newto	on	
20	1.99072	7.9924e-07	newto	on	

newton

newton

```
23
           1.99725
                    2.07887e-08
                                        newton
24
           1.99817
                     6.15961e-09
                                        newton
25
           1.99878
                    1.8251e-09
                                        newton
26
          1.99919 5.40695e-10
                                        newton
27
           1.99946
                    1.60213e-10
                                        {\tt newton}
28
          1.99964
                    4.74927e-11
                                        newton
29
           1.99976
                    1.40403e-11
                                        newton
30
           1.99984
                    4.26326e-12
                                        newton
31
           1.99989
                    1.22213e-12
                                        newton
32
           1.99993
                    3.69482e-13
                                        newton
33
           1.99995
                     5.68434e-14
                                        newton
34
           1.99996
                     8.52651e-14
                                        newton
35
           1.99998
                               0
                                        newton
```

Zero found in the interval [1.089000,2.111000]

fzero with 2.4:

>> p = fzero(ftest, 2.4,optimset('display','iter'));

Search for an interval around 2.4 containing a sign change:

Func-count	a	f(a)	b	f(b)	Procedure
1	2.4	-0.05376	2.4	-0.05376	initial interval
3	2.33212	-0.0325926	2.46788	-0.0800034	search
5	2.304	-0.0254981	2.496	-0.0920041	search
7	2.26424	-0.0171609	2.53576	-0.109644	search
9	2.208	-0.00860958	2.592	-0.134762	search
11	2.12847	-0.00208539	2.67153	-0.166267	search
13	2.016	-4.09495e-06	2.784	-0.185694	search
14	1.85694	0.00286785	2.784	-0.185694	search

Search for a zero in the interval [1.85694, 2.784]:

Func-count	x	f(x)	Procedure
14	1.85694	0.00286785	initial
15	1.87104	0.00210894	interpolation
16	1.90978	0.000728292	interpolation
17	1.90978	0.000728292	bisection
18	1.91828	0.000542003	interpolation
19	1.94266	0.000187926	interpolation
20	1.94266	0.000187926	bisection
21	1.95468	9.28755e-05	interpolation
22	1.96608	3.89965e-05	interpolation
23	1.96608	3.89965e-05	bisection
24	1.98277	5.11528e-06	interpolation
25	1.98521	3.23155e-06	interpolation
26	1.98933	1.21567e-06	interpolation
27	1.98933	1.21567e-06	bisection
28	1.99256	4.11233e-07	interpolation
29	1.99416	1.99233e-07	interpolation
30	1.99562	8.38226e-08	interpolation
31	1.99562	8.38226e-08	bisection
32	1.997	2.69152e-08	interpolation
33	1.99763	1.32716e-08	interpolation

34	1.99823	5.54576e-09	interpolation
35	1.99823	5.54576e-09	bisection
36	1.9988	1.74651e-09	interpolation
37	1.99905	8.66748e-10	interpolation
38	1.99929	3.61325e-10	interpolation
39	1.99929	3.61325e-10	bisection
40	1.99952	1.13062e-10	interpolation
41	1.99962	5.62181e-11	interpolation
42	1.99971	2.34195e-11	interpolation
43	1.99971	2.34195e-11	bisection
44	1.99981	7.30438e-12	interpolation
45	1.99985	3.60956e-12	interpolation
46	1.99988	1.62004e-12	interpolation
47	1.99988	1.62004e-12	bisection
48	1.99992	4.54747e-13	interpolation
49	1.99994	2.27374e-13	interpolation
50	1.99995	8.52651e-14	interpolation
51	1.99995	8.52651e-14	bisection
52	1.99997	2.84217e-14	interpolation
53	1.99997	-2.84217e-14	interpolation
54	1.99997	2.84217e-14	bisection
55	1.99997	2.84217e-14	bisection
56	1.99997	2.84217e-14	bisection
57	1.99997	2.84217e-14	bisection
58	1.99997	-2.84217e-14	bisection
59	1.99997	2.84217e-14	bisection
60	1.99997	2.84217e-14	bisection
61	1.99997	0	bisection

Zero found in the interval [1.85694, 2.784]

my_fzero with 2.4:

>> p2 = my_fzero(ftest,df_test, 2.4);

${\tt Search}$	for a	n interval	around 2.40	containing a	sign change:	
Iter		a	f(a)	b	f(b)	Procedure
1		2.4	-0.05376	2.4	-0.05376	initial
2		2.399	-0.0534086	2.401	-0.0541126	search
3		2.397	-0.0527091	2.403	-0.054821	search
4		2.393	-0.0513236	2.407	-0.0562512	search
5		2.385	-0.0486079	2.415	-0.0591639	search
6		2.369	-0.0434022	2.431	-0.0651904	search
7		2.337	-0.0339262	2.463	-0.0779761	search
8		2.273	-0.01883	2.527	-0.105714	search
9		2.145	-0.00298453	2.655	-0.16045	search
10		1.889	0.00135078	2.911	-0.12859	search
Search	for a	zero in t	he interval	[1.889,2.911]		
Iter		x	f(x)	Procedi	ıre	
10		1.889	0.00135078	init:	ial	
11		1.92631	0.000397975	newto	on	
12		1.95096	0.00011763	newto	on	
13		1.96734	3.4816e-05	newto	on	

```
14
           1.97823
                      1.03109e-05
                                          newton
15
           1.98549
                      3.05445e-06
                                          {\tt newton}
16
           1.99033
                      9.04937e-07
                                          newton
17
           1.99355
                      2.68118e-07
                                          newton
                      7.94409e-08
18
            1.9957
                                          newton
19
           1.99713
                      2.35379e-08
                                          newton
20
           1.99809
                      6.97418e-09
                                          newton
21
           1.99873
                      2.0664e-09
                                          newton
22
           1.99915
                      6.12232e-10
                                          newton
23
           1.99943
                      1.81444e-10
                                          newton
24
           1.99962
                       5.3717e-11
                                          newton
25
           1.99975
                      1.59446e-11
                                          newton
26
           1.99983
                      4.77485e-12
                                          newton
27
           1.99989
                      1.36424e-12
                                          newton
28
           1.99993
                      4.54747e-13
                                          newton
29
           1.99995
                      1.13687e-13
                                          newton
30
           1.99997
                      2.84217e-14
                                          newton
           1.99998
                                0
                                          newton
```

Zero found in the interval [1.889000,2.911000]

fzero with 3.2:

>> p = fzero(ftest, 3.2,optimset('display','iter'));

Search for an interval around 3.2 containing a sign change:

Func-count	a	f(a)	Ъ	f(b)	Procedure
1	3.2	0.76032	3.2	0.76032	initial interval
3	3.10949	0.315445	3.29051	1.43013	search
5	3.072	0.183784	3.328	1.78834	search
7	3.01898	0.0405454	3.38102	2.38951	search
8	2.944	-0.0915799	3.38102	2.38951	search

Search for a zero in the interval [2.944, 3.38102]:

Func-count	x	f(x)	Procedure
8	2.944	-0.0915799	initial
9	2.96013	-0.0691692	interpolation
10	3.00852	0.0175479	interpolation
11	2.99873	-0.00253688	interpolation
12	2.99996	-7.47481e-05	interpolation
13	3	1.58347e-08	interpolation
14	3	-2.21689e-12	interpolation
15	3	1.7053e-13	interpolation
16	3	0	interpolation

Zero found in the interval [2.944, 3.38102]

my_fzero with 3.2:

>> p2 = my_fzero(ftest,df_test, 3.2);

Search for an interval around 3.20 containing a sign change:

Iter	a	f(a)	b	f(b)	Procedure
1	3.2	0.76032	3.2	0.76032	initial

2	3.199	0.754286	3.201	0.766382	search
3	3.197	0.742299	3.203	0.778587	search
4	3.193	0.71865	3.207	0.803331	search
5	3.185	0.672633	3.215	0.854164	search
6	3.169	0.585585	3.231	0.961359	search
7	3.137	0.430335	3.263	1.19909	search
8	3.073	0.186948	3.327	1.7781	search
9	2.945	-0.0902771	3.455	3.44074	search
Search for	a zero in t	he interval [2	.945,3.455]		
Iter	x	f(x)	Procedure		
9	2.945	-0.0902771	initial		
10	3.014	0.0293935	newton		
11	3.00065	0.00129456	newton		
12	3	2.91125e-06	newton		
13	3	1.50067e-11	newton		
14	3	0	newton		
Zero found	in the inte	rval [2 945000	3 4550001		

Zero found in the interval [2.945000,3.455000]

One difference I see is the increment step size for finding interval. My findinterval function will increase the interval search step in each new iteration, but this does not always happen in MATLAB fzero. For example, when initial guess point is 0.8. The difference between iter 1 and iter 3 is 0.0226 and difference between iter 3 and iter 5 is 0.009 for MATLAB fzero. My findinterval will always increase step size 2 times the previous iteration.

Another difference I observe is that MATLAB fzero tend to choose bisection more frequently than my fzero. When our initial guess point is not so good (1.6, 2.4). MATLAB fzero needs more iteration to converge and many iteration ends up using bisection. My fzero rarely uses bisection method. One explanation is that MATLAB fzero uses IQI if there are three distinct points and it will check the difference between these point. If the distance is close then it uses bisection.

The third difference I observe is that my fzero function converges faster than MATLAB fzero, even converges to a root with multiplicity of 3. I think this is because Newton's Method has a larger coefficient for linear convergence than interpolation method. It will still converge faster though they are both in linearly convergence.

I think my implementation is better than MATLAB's one in this case. Because my function needs the first derivative of input function. Newton's Method will converge faster than bisection and interpolation. It may be worse if the input function is not differentiable.