Circuit Creation

You are here

Circuit creation goals

- What does it mean to design a circuit?
 - Given a specified input/output behaviour, connect circuit components to produce this behaviour.
 - Secondary goal: Create the circuit with the lowest possible cost (that uses the fewest components)
- We have seen this already in creating transistor circuits!

Transistor Circuits

- Gates are built by constructing a circuit from nMOS and pMOS transistors.
 - What circuits can you make from these gates?

Logic Gate Circuits

Boolean expressions

For Lab 1, you need to represent boolean expressions using logic gates. For example:

Like so:

Creating complex circuits

What do we do in the case of more complex circuits, with several inputs and more than one output?

- If you're lucky, a truth table is provided to express the circuit.
- Usually the behaviour of the circuit is expressed in words, and the first step involves creating a truth table that represents the described behaviour.

Circuit example

The circuit on the right has three inputs (A, B and C) and two outputs (X and Y).

- What logic is needed to set X high when all three inputs are high?
- What logic is needed to set Y high when the number of high inputs is odd?

Combinational circuits

Small problems can be solved easily.

- Larger problems require a more systematic approach.
 - Example: "Given three inputs A, B, and C, make output Y high in the case where all of the inputs are low, or when A and B are low and C is high, or when A and C are low but B is high, or when A is low and B and C are high."

Creating complex logic

- How do we approach problems like these (and circuit problems in general)?
- Basic steps:
 - Create truth tables.
 - Express truth table behaviour as a boolean expression.
 - 3. Convert this expression into gates.
- The key to an efficient design?
 - Spending extra time on Step #2.

Now you are here

Lecture Goals

- After this lecture, you should be able to:
 - Create a truth table that represents the behaviour of a circuit you want to create.
 - Translate the rows in a circuit's truth table into gates that implement that circuit.
 - Use Karnaugh maps to reduce the circuit to the minimal number of gates.

Circuits as truth tables

- Consider the following example:
 - "Given three inputs A, B, and C, make output Y high wherever any of the inputs are low, except when all three are low or when A and C are high."
- This leads to the truth table on the right.
 - Is there a better way to describe the cases when the circuit's output is high?

A	В	С	Y
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

A simpler truth table

- What about the simpler truth table on the right?
- The output only goes high in one case, where A=0,
 B=1 and C=0.
- Translates easily into gates:

A	В	С	Y
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

$$Y = \overline{A} \cdot B \cdot \overline{C}$$

$$Y = \overline{A}B\overline{C}$$

A less simple truth table

- What about the truth table below?
 - The output now goes high in two cases (rows in table):
 - When A=0, B=1 and C=0.
 - When A=1, B=0 and C=1.
- Each case/row can be expressed as a single AND gate:
 - Overall circuit is implemented by combining these AND gates.

A	В	С	Y
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

Minterms

- This method of expressing circuit behaviour assumes the standard truth table format, then specifies which input rows cause high output.
 - The logical expression of these truth table rows (such as $\mathbb{A} \cdot \overline{\mathbb{B}} \cdot \mathbb{C}$) are called minterms.

A	В	С	Y
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

Minterm	Y
\mathbf{m}_{0}	0
$\mathtt{m_1}$	1
m_2	1
m_3	1
m ₄	1
m ₅	0
m ₆	1
m ₇	0

Minterms and Maxterms

Minterms and maxterms

- A more formal description:
 - Minterm = an AND expression with every input present in true or complemented form.
 - Maxterm = an OR expression with every input present in true or complemented form.
 - For example, given four inputs (A, B, C, D):
 - Valid minterms:
 - $\overline{A} \cdot \overline{B} \cdot C \cdot D$, $\overline{A} \cdot B \cdot \overline{C} \cdot D$, $\overline{A} \cdot B \cdot C \cdot D$
 - Valid maxterms:
 - \blacksquare A+B+C+D, \overline{A} +B+ \overline{C} +D, A+B+C+D
 - Neither minterm nor maxterm:
 - \bullet A·B+C·D, A·B·D, A+B

Boolean expression notation

- A quick aside about notation:
 - AND operations are denoted in these expressions by the multiplication symbol.
 - e.g. $A \cdot B \cdot C$ or $A*B*C \approx A \wedge B \wedge C$
 - OR operations are denoted by the addition symbol.
 - e.g. A+B+C ≈ A∨B∨C
 - NOT is denoted by multiple symbols.
 - e.g. $\neg A$ or A' or \overline{A}
 - XOR occurs rarely in circuit expressions.
 - e.g. A ⊕ B

The intuition behind minterms

To clarify what a mintem means, consider how this expression behaves:

$$m_{15} = A \cdot B \cdot C \cdot D$$

- How do you describe the logical expression above?
- m₁₅ describes the case where the output is low at all times, except when A=1, B=1, C=1 and D=1.

A	В	С	D	m ₁₅
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

The intuition behind maxterms

Similarly, consider the following maxterm expression:

$$M_o = A+B+C+D$$

- What is this behaviour?
- M₀ is always high, except in the one case where all four input values are low.
- Try it with other input combinations!

A	В	С	D	\mathbf{M}_{0}
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

Minterm & maxterm notation

- Circuits are often described using minterms or maxterms, as a form of logic shorthand.
 - Given n inputs, there are 2ⁿ minterms and maxterms possible (same as the # of rows in the truth table).
 - Naming scheme:
 - Minterms are labeled as m_{x} maxterms are labeled as M_{x}
 - The \times subscript indicates the row in the truth table.
 - x starts at 0 (when all inputs are low), and ends with $2^{n}-1$.
 - <u>Example:</u> Given 3 inputs
 - Minterms are m_0 ($\overline{A} \cdot \overline{B} \cdot \overline{C}$) to m_7 ($A \cdot B \cdot C$)
 - Maxterms are M_0 (A+B+C) to M_7 ($\overline{A}+\overline{B}+\overline{C}$)

Minterm & maxterm intuition

- A minterm specifies a row in the truth table where the input values of that row set the output high.
 - Consider: What expression results in a high output for only the first row of the truth table (when inputs are all zero)?

$$Y = \overline{A} \cdot \overline{B} \cdot \overline{C} = m_0$$
Convert this into a binary # to get the minterm subscript!

- A maxterm specifies a row in the truth table where the input values of that row set the output low.
 - <u>Consider:</u> What expression results in a low output for only the first row of the truth table (when inputs are all zero)?

$$Y = A+B+C = M_0$$

Quick Exercises

- Given 4 inputs A, B, C and D write:
 - $^{\circ}$ m_9
 - $^{\bullet}$ m_{15}
 - m₁₆
 - □ M₂
- Which minterm is this?
 - \blacksquare $\overline{A} \cdot B \cdot \overline{C} \cdot \overline{D}$
- Which maxterm is this?
 - A+B+C+D

Minterms into circuits

- How are minterms used for circuits?
 - A single minterm indicates a set of inputs that will make the output go high.
 - Example: m₂
 - Output only goes high in the third line of this truth table (assuming 4 inputs).

A	В	С	D	\mathbf{m}_2
0	0	0	0	0
0	0	0	1	0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

Minterms into circuits

- What if we want to combine minterms?
 - Use an OR operation!
 - The result is an output that goes high in both minterm cases.
 - Example: Consider m₂+m₈
 - The third and ninth lines of this truth table result in high output.

A	В	С	D	\mathbf{m}_2	m ₈	m ₂ +m ₈
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	0	1	0	1	0	1
0	0	1	1	0	0	0
0	1	0	0	0	0	0
0	1	0	1	0	0	0
0	1	1	0	0	0	0
0	1	1	1	0	0	0
1	0	0	0	0	1	1
1	0	0	1	0	0	0
1	0	1	0	0	0	0
1	0	1	1	0	0	0
1	1	0	0	0	0	0
1	1	0	1	0	0	0
1	1	1	0	0	0	0
1	1	1	1	0	0	0

Combining minterms & maxterms

- Two canonical forms of boolean expressions:
 - Sum-of-Minterms (SOM):
 - Since each minterm corresponds to a single high output in the truth table, the combined high outputs are a union of these minterm expressions.
 - Expressed in "Sum-of-Products" form.
 - Product-of-Maxterms (POM):
 - Since each maxterm only produces a single low output in the truth table, the combined low outputs are an intersection of these maxterm expressions.
 - Expressed in "Product-of-Sums" form.

$Y = m_2 + m_6 + m_7 + m_{10}$ (SOM)

A	В	С	D	m_2	m ₆	m ₇	m ₁₀	Y
0	0	0	0					
0	0	0	1					
0	0	1	0					
0	0	1	1					
0	1	0	0					
0	1	0	1					
0	1	1	0					
0	1	1	1					
1	0	0	0					
1	0	0	1					
1	0	1	0					
1	0	1	1					
1	1	0	0					
1	1	0	1					
1	1	1	0					
1	1	1	1					

Using Sum-of-Minterms

- Sum-of-Minterms is a way of expressing which inputs cause the output to go high.
 - Assumes that the truth table columns list the inputs according to some logical or natural order.
- Minterm and maxterm expressions are used for efficiency reasons:
 - More compact that displaying entire truth tables.
 - Sum-of-minterms are useful in cases with very few input combinations that produce high output.
 - Product-of-maxterms useful when expressing truth tables that have very few low output cases...

$Y = M_3 \cdot M_5 \cdot M_7 \cdot M_{10} \cdot M_{14}$ (POM)

A	В	С	D	M ₃	M ₅	M ₇	M ₁₀	M ₁₄	Y
0	0	0	0						
0	0	0	1						
0	0	1	0						
0	0	1	1						
0	1	0	0						
0	1	0	1						
0	1	1	0						
0	1	1	1						
1	0	0	0						
1	0	0	1						
1	0	1	0						
1	0	1	1						
1	1	0	0						
1	1	0	1						
1	1	1	0						
1	1	1	1						

Converting SOM to gates

 Once you have a Sum-of-Minterms expression, it is easy to convert this to the equivalent combination of gates:

$$m_0 + m_1 + m_2 + m_3 =$$

$$\overline{A} \cdot \overline{B} \cdot \overline{C} + \overline{A} \cdot \overline{B} \cdot C + \overline{A} \cdot B \cdot C =$$

Reasons for reducing circuits

- Note example of Sum-of-Minterms circuit design.
- To minimize the number of gates, we want to reduce the boolean expression as much as possible from a collection of minterms to something smaller.
- This is where CSC165 skills come in handy ©

Boolean algebra review

Axioms:

$$0 \cdot 0 = 0$$
 $0 \cdot 1 = 1 \cdot 0 = 0$
 $1 \cdot 1 = 1$ if $x = 1$, $\overline{x} = 0$

From this, we can extrapolate:

If one input of a 2-input AND gate is 1, then the output is whatever value the other input is.

$$x \cdot 0 = x+1 = x+0 = x+x = x \cdot \overline{x} = x+\overline{x} = \overline{x} = x+\overline{x} = x+$$

If one input of a 2input OR gate is o, then the output is whatever value the other input is.

Other Boolean identities

Commutative Law:

$$x \cdot y = y \cdot x$$
 $x+y = y+x$

Associative Law:

$$x \cdot (y \cdot z) = (x \cdot y) \cdot z$$

 $x \cdot (y \cdot z) = (x \cdot y) \cdot z$

Distributive Law:

$$x \cdot (\lambda \cdot z) = (x+\lambda) \cdot (x+z)$$

 $x \cdot (\lambda + z) = x \cdot \lambda + x \cdot z$

Does this hold in conventional algebra?

Consensus Law (via Venn diagram)

Consensus Law:

$$x \cdot y + \overline{x} \cdot z + y \cdot z = x \cdot y + \overline{x} \cdot z$$

Proof by Venn diagram:

- <u>X</u> · Z
- **y** · Z
 - Already covered!

Other boolean identities

Absorption Law:

$$x \cdot (x+y) = x$$
 $x+(x \cdot y) = x$

De Morgan's Laws:

$$\overline{x} \cdot \overline{y} = \overline{x} + \overline{y}$$

$$\overline{x} + \overline{y} = \overline{x} \cdot \overline{y}$$

Converting to NAND gates

- De Morgan's Law is important because out of all the gates, NANDs are the cheapest to fabricate.
 - a Sum-of-Products circuit could be converted into an equivalent circuit of NAND gates:

This is all based on de Morgan's Law:

Reduction goal: gate cost

• If these two circuits perform the same operation, which implementation do you prefer? Why?

(a) $F = \overline{X}YZ + \overline{X}Y\overline{Z} + XZ$ B. (b) $F = \overline{X}Y + XZ$ (b) F = XY + XZ

Measuring gate cost

- How do we measure the "simplest" expression?
 - In this case, "simple" denotes the lowest gate cost
 (G) or the lowest gate cost with NOTs (GN).
 - To calculate the gate cost, simply add all the gates together (as well as the cost of the NOT gates, in the case of the GN cost).

A	В	С	Y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Assuming logic specs at left, we get the following:

$$Y = \overline{A} \cdot B \cdot C + A \cdot \overline{B} \cdot \overline{C} + A \cdot B \cdot C$$

$$A \cdot B \cdot \overline{C} + A \cdot B \cdot C$$

 Now start combining terms, like the last two:

$$Y = \overline{A} \cdot B \cdot C + A \cdot \overline{B} \cdot \overline{C}$$
+ $A \cdot B$

- Different final expressions possible, depending on what terms you combine.
- For instance, given the previous example:

$$Y = \overline{A} \cdot B \cdot C + A \cdot \overline{B} \cdot \overline{C} + A \cdot B \cdot \overline{C} + A \cdot B \cdot C$$

But if you combine the end and middle terms...

$$Y = B \cdot C + A \cdot \overline{C}$$

- This reduces the number of gates and inputs ©
 - But how do we know which terms to combine?

Karnaugh maps

• In this truth table, what rows could we combine with m_0 ?

$$\begin{array}{ccc} & m_0 + m_1 \rightarrow \overline{A} \cdot \overline{B} \\ & m_0 + m_2 \rightarrow \overline{A} \cdot \overline{C} \\ & m_0 + m_4 \rightarrow \overline{B} \cdot \overline{C} \\ & m_0 + m_1 + m_4 + m_5 \rightarrow \overline{B} \end{array}$$

- It's not always clear by looking at the truth table, which rows can be combined.
- What if we represent this truth table in a different way?

A	В	С	Y
0	0	0	m_0
0	0	1	m_1
0	1	0	m_2
0	1	1	m_3
1	0	0	m_4
1	0	1	m_5
1	1	0	m_6
1	1	1	m ₇

- Karnaugh maps (K-maps for short) represent the same information as a truth table, but in a format that helps us see what minterms can be combined.
 - Karnaugh maps are a 2D grid of minterms (see below), arranged so that adjacent minterms in the grid differ by a single literal.
 - Values in the grid are the output for that minterm.

	B·C	B·C	B·C	B⋅C
Ā	0	0	1	0
A	1	0	1	1

Karnaugh maps

- Karnaugh maps can be of any size, and have any number of inputs.
 - i.e. the 4-input example here.

	<u>C</u> · <u>D</u>	<u>C</u> ∙D	C ·D	C · <u>D</u>
$\overline{\mathbf{A}} \cdot \overline{\mathbf{B}}$	$\rm m_{\rm o}$	m_1	m_3	m_2
Ā·B	m_4	m_5	m_7	m_6
A·B	m ₁₂	m ₁₃	m ₁₅	m_{14}
A·B	m ₈	m ₉	m_{11}	m_{10}

Since adjacent minterms only differ by a single value, they can be grouped into a single term that omits that value.

Using Karnaugh maps

- Once Karnaugh maps are created, draw boxes over groups of high output values.
 - Boxes must be rectangular, and aligned with map.
 - Number of values contained within each box must be a power of 2.
 - Boxes may overlap with each other.
 - Boxes may wrap across edges of map.

	B·C	B·C	B·C	B⋅C
Ā	0	0	1	0
A	1	0	1	1

Using Karnaugh maps

- Once you find the minimal number of boxes that cover all the high outputs, create boolean expressions from the inputs that are common to all elements in the box.
- For this example:
 - □ Vertical box: B · C
 - Horizontal box: A · C
 - Overall equation: $Y = B \cdot C + A \cdot \overline{C}$

Karnaugh maps and maxterms

- Can also use this technique to group maxterms together as well.
- Karnaugh maps with maxterms involves grouping

the zero entries together, instead of grouping the entries with one values.

	C+D	C+D	C + D	C +D
A+B	${\rm M}_{\odot}$	M_1	M_3	M_2
A+B	M_4	M_5	M_7	M_6
Ā+B	M ₁₂	M ₁₃	M ₁₅	M_{14}
Ā+B	M_8	M_9	M ₁₁	M ₁₀

Quick Exercise

	ΖĐ	СD	CD	CD
ĀĒ	0	0	1	1
ĀB	1	1	0	0
AB	1	1	0	0
AB	0	0	0	0

$$F = B \cdot \overline{C} + \overline{A} \cdot \overline{B} \cdot C$$