## TMP Var 8A mirror definitions

## Patricio Gallardo

April 29, 2021

## 1 Mirror Sag

Mirror Sag is implemented in Zemax as extended polynomials (from a flat surface) of XX or XX terms. From these XX terms most of them are zero. The sag of the mirror is defined following

$$z(x,y) = \sum_{i=0}^{5} \sum_{j=0}^{5} p_{i,j} \left(\frac{x}{R_{max}}\right)^{i} \left(\frac{y}{R_{max}}\right)^{j} [mm].$$
 (1)

Here the sum covers XX elements which define a general order X polynomial. This polynomial expansion can be evaluated using the terms shown in tables 1, 2 and 3. The term  $R_{max}$  is a normalization length-scale which equals mm.

|     | j=0         | j=1       | j=2         | j=3      | j=4       | j=5 |
|-----|-------------|-----------|-------------|----------|-----------|-----|
| i=0 | 0.000000    | -4.805417 | -114.281586 | 3.971894 | -0.096818 | 0.0 |
| i=1 | 0.000000    | 0.000000  | 0.000000    | 0.000000 | 0.000000  | 0.0 |
| i=2 | -138.667041 | 5.410397  | 0.118027    | 0.000000 | 0.000000  | 0.0 |
| i=3 | 0.000000    | 0.000000  | 0.000000    | 0.000000 | 0.000000  | 0.0 |
| i=4 | 0.251763    | 0.000000  | 0.000000    | 0.000000 | 0.000000  | 0.0 |
| i=5 | 0.000000    | 0.000000  | 0.000000    | 0.000000 | 0.000000  | 0.0 |

Table 1: Primary mirror definition according to 1. Mirror rim has a semiwidth of XXmm in the x direction and XXmm in the y direction.

|     | j=0         | j=1        | j=2         | j=3       | j=4       | j=5 |
|-----|-------------|------------|-------------|-----------|-----------|-----|
| i=0 | 0.000000    | -16.745827 | -221.025344 | 23.523376 | -3.081522 | 0.0 |
| i=1 | 0.000000    | 0.000000   | 0.000000    | 0.000000  | 0.000000  | 0.0 |
| i=2 | -388.257509 | 56.321201  | -0.873452   | 0.000000  | 0.000000  | 0.0 |
| i=3 | 0.000000    | 0.000000   | 0.000000    | 0.000000  | 0.000000  | 0.0 |
| i=4 | 12.245981   | 0.000000   | 0.000000    | 0.000000  | 0.000000  | 0.0 |
| i=5 | 0.000000    | 0.000000   | 0.000000    | 0.000000  | 0.000000  | 0.0 |

Table 2: Secondary mirror definition according to 1. Mirror rim has a semi-width of XXmm in the x direction and XXmm in the y direction.

|     | j=0         | j=1        | j=2         | j=3       | j=4       | j=5      |
|-----|-------------|------------|-------------|-----------|-----------|----------|
| i=0 | 0.000000    | -20.943215 | -276.110428 | 16.621889 | -5.297765 | 0.572415 |
| i=1 | 0.000000    | 0.000000   | 0.000000    | 0.000000  | 0.000000  | 0.000000 |
| i=2 | -325.412980 | 26.350455  | -9.501140   | 1.497224  | 0.000000  | 0.000000 |
| i=3 | 0.000000    | 0.000000   | 0.000000    | 0.000000  | 0.000000  | 0.000000 |
| i=4 | -1.560663   | 0.598907   | 0.000000    | 0.000000  | 0.000000  | 0.000000 |
| i=5 | 0.000000    | 0.000000   | 0.000000    | 0.000000  | 0.000000  | 0.000000 |

Table 3: Tertiary mirror definition according to 1. Mirror rim has a semi-width of XX mm in the x direction and XX mm in the y direction.



Figure 1: Mirror sag defined with matrix elements according to tables 1-3.



Figure 2: TMP ray trace rendered from a STEP file exported from the Zemax model for the TMP, see https://github.com/patogallardo/zemax\_tools/tree/master/design\_analysis/TMAs\_202009/TMP\_Sm\_FixA/step\_files