Common Data Objects in R Vectors, Lists, Data Frames and Tibbles

by Martin Frigaard

Written: October 03 2022

Updated: April 19 2023

The slides are in the slides.pdf file

The materials for this training are in the worksheets folder:

```
worksheets/
__ objects.Rmd
```

Outline

1. Atomic Vectors

2. S3 Vectors

3. Lists

4. Data Frames

5. Tibbles

6. Data Frames vs. Tibbles

Common Data Objects

Open worksheets/objects.Rmd to follow along

Data Objects: vector

Vectors are the fundamental data object in R

Data Objects: creating vectors

c() is used to combine (or concatenate) a variety of elements

<- is referred to as the assignment operator, and it's used with c() to assign elements to a designated object

Create logical and integer vectors (log_vec and int_vec)

```
log_vec <- c(TRUE, FALSE)
int_vec <- c(4L, 7L)</pre>
```

Create double and character vectors (dbl_vec and chr_vec)

```
dbl_vec <- c(2.2, 8.09)
chr_vec <- c("A", "D")
```


Data Objects: atomic vectors

Print Atomic Vectors	Check with typeof()	Check class()
log_vec	typeof(log_vec)	class(log_vec)
[1] TRUE FALSE	[1] "logical"	[1] "logical"
int_vec	typeof(int_vec)	class(int_vec)
[1] 4 7	[1] "integer"	[1] "integer"
dbl_vec	typeof(dbl_vec)	class(dbl_vec)
[1] 2.20 8.09	[1] "double"	[1] "numeric"
chr_vec	typeof(chr_vec)	class(chr_vec)
[1] "A" "D"	[1] "character"	[1] "character"

Data Objects: S3 vectors

Create S3 Vectors

View S3 vectors

```
fct_vec

[1] Medium Low High
  Levels: Low Medium High

date_vec

[1] "2023-04-19" "2023-04-20"

dt_vec
```

[1] "2023-04-19 22:24:55 PDT" "2024-04-18 22:24:55 PDT"

difft_vec

Time difference of -365 days

Data Objects: S3 vectors

Check typeof()	Check class()
typeof(fct_vec)	class(fct_vec)
[1] "integer"	[1] "factor"
typeof(date_vec)	class(date_vec)
[1] "double"	[1] "Date"
typeof(dt_vec)	class(dt_vec)
[1] "double"	[1] "POSIXct" "POSIXt"
<pre>typeof(difft_vec)</pre>	class(difft_vec)
[1] "double"	[1] "difftime"

10 / 24

Data Objects: S3 vectors

S3 vectors have additional attributes()

Factor attributes	Date/Datetime attributes	Difftime attributes
attributes(fct_vec)	attributes(date_vec)	attributes(difft_vec)
<pre>\$levels [1] "Low" "Medium" "High"</pre>	<pre>\$class [1] "Date"</pre>	<pre>\$class [1] "difftime"</pre>
\$class [1] "factor"	attributes(dt_vec)	<pre>\$units [1] "days"</pre>
	\$class [1] "POSIXct" "POSIXt"	

Vectors have to be the same type, or class

Lists can contain objects of different classes

```
atomic_list <- list(
    'logical vector' = log_vec,
    'integer vector' = int_vec,
    'double vector' = dbl_vec,
    'character vector' = chr_vec
)</pre>
```

```
atomic_list
```

```
$`logical vector`
[1] TRUE FALSE

$`integer vector`
[1] 4 7

$`double vector`
[1] 2.20 8.09

$`character vector`
[1] "A" "D"
```


Lists can even contain other lists!

Create list of date vectors

```
s3_list <- list(
    'date vector' = date_vec,
    'datetime vector' = dt_vec,
    'difftime vector' = difft_vec
)</pre>
```

Create list of lists

```
vector_list <- list(
    'S3 list' = s3_list,
    'Atomic list' = atomic_list
)</pre>
```

vector_list

```
$`S3 list`
$`S3 list`$`date vector`
[1] "2023-04-19" "2023-04-20"

$`S3 list`$`datetime vector`
[1] "2023-04-19 22:24:55 PDT" "2024-04-18 22:24:55 PDT"

$`S3 list`$`difftime vector`
Time difference of -365 days

$`Atomic list`
$`Atomic list`$`logical vector`
[1] TRUE FALSE

$`Atomic list`$`integer vector`
[1] 4 7

$`Atomic list`$`double vector`
[1] 2.20 8.09

$`Atomic list`$`character vector`
[1] "A" "D"
```


Data Objects: data.frames

A data. frame is a rectangular list

Create data.frame

```
my_df <- data.frame(
    log_col = log_vec,
    int_col = int_vec,
    dbl_col = dbl_vec,
    chr_col = chr_vec,
    date_col = date_vec,
    dt_col = dt_vec
)</pre>
```

View data frame

Data Objects: data.frames

Check the structure of the data. frame

```
'data.frame': 2 obs. of 6 variables:
    $ log_col : logi    TRUE FALSE
    $ int_col : int    4 7
    $ dbl_col : num    2.2 8.09
    $ chr_col : chr    "A" "D"
    $ date_col: Date, format: "2023-04-19" "2023-04-20"
    $ dt_col : POSIXct, format: "2023-04-19 22:24:55" "2024-04-18 22:24:55"
```

Check the class and typeof() for the a data. frame

```
class(my_df)

[1] "data.frame"

[1] "list"
```


A tibble is a modern reimagining of the data. frame

They are created just like data. frames

Create tibble

```
my_tbl <- tibble::tibble(
    log_col = log_vec,
    int_col = int_vec,
    dbl_col = dbl_vec,
    chr_col = chr_vec,
    date_col = date_vec,
    dt_col = dt_vec
)</pre>
```

View tibble

```
my_tbl

# A tibble: 2 × 6
```


Data Objects: data.frames & tibbles

tibbles print a little nicer than data. frames, and we'll primarily be using them because they work well with other functions for tables and visualizations.

```
my_df
```

```
log_col int_col dbl_col chr_col date_col dt_col
1 TRUE 4 2.20 A 2023-04-19 2023-04-19 22:24:55
2 FALSE 7 8.09 D 2023-04-20 2024-04-18 22:24:55
```

```
my_tbl
```


Atomic vectors are the fundamental data type in R.

Creating atomic vectors

c(TRUE, FALSE) # logical TRUE FALSE c(4L, 7L) # integer [1] 4 7 c(2.2, 8.09) # double [1] 2.20 8.09 c("A", "D") # character [1] "A" "D"

Atomic vector hierarchy

Creating S3 vectors

```
factor(x = c("Medium", "Low", "High"),
  levels = c("Low", "Medium", "High")) # factor
  [1] Medium Low
                   High
  Levels: Low Medium High
c(Sys.Date(), Sys.Date() + 1) # date
  [1] "2023-04-19" "2023-04-20"
c(Sys.time(), Sys.time() + (86400 * 365)) # datetime
  [1] "2023-04-19 22:24:55 PDT" "2024-04-18 22:24:55 PDT"
difftime(time1 = Sys.time(), time2 = Sys.time() + (86400 * 365),
         units = "days") # difftime
  Time difference of -365 days
```

19 / 24

[1] Medium Low High Levels: Low Medium High

Recap: lists

Lists can contain objects of different types:

Lists

list('logical vector' = c(TRUE, FALSE), 'integer vector' = c(4L, 7L), 'double vector' = c(2.2, 8.09), 'character vector' = c("A", "D"))

```
$`logical vector`
[1] TRUE FALSE

$`integer vector`
[1] 4 7

$`double vector`
[1] 2.20 8.09

$`character vector`
[1] "A" "D"
```

Lists of lists

```
list(
 # atomic list
 list(
   'logical vector' = c(TRUE, FALSE),
   'integer vector' = c(4L, 7L),
   'double vector' = c(2.2, 8.09),
   'character vector' = c("A", "D")),
  # S3 list
  list(
    'factor vector' = factor(x = c("High", "Low"),
                       levels = c("Low", "High")),
   'date vector' = c(Sys.Date()),
   'datetime vector' = c(Sys.time()),
    'difftime vector' = difftime(
                         time1 = Sys.Date(),
                         time2 = Sys.Date() + 1,
                         units = "weeks"))
```

Including other lists:

```
[[1]]
[[1]]$`logical vector`
[1] TRUE FALSE
[[1]]$`integer vector`
[1] 4 7
[[1]]$`double vector`
[1] 2.20 8.09
[[1]]$`character vector`
[1] "A" "D"
[[2]]
[[2]]$`factor vector`
[1] High Low
Levels: Low High
[[2]]$`date vector`
[1] "2023-04-19"
[[2]]$`datetime vector`
[1] "2023-04-19 22:24:55 PDT"
[[2]]$`difftime vector`
Time difference of 2 weeks
```


Creating data frames

Printing data frames

```
log_var dbl_var chr_var fct_var date_var
1 TRUE 2.20 A High 2023-04-19
2 FALSE 8.09 D Low 2023-04-19
```

Recap: tibbles

Creating tibbles

Printing tibbles

R for Data Science, 2nd Ed

Hands on Programming with R

Advanced R, 2nd Ed