Machine Learning: Support Vector Machine

[Stützvektormaschine]

Präsentation – 26. Januar 2018

Hauptseminar FG Wirtschaftsinformatik für Industriebetriebe

Benjamin Wörrlein

Tobias Rummelsberger

Agenda

GrundlagenSVMWerkzeuge	1
DatensatzAnwendung	2
Kritische WürdigungEvaluation mit Testdatensatz	3

GRUNDLAGEN

KDD | Machine Learning

Machine Learning

Prozess

Ziel: Erstellung deskriptiver und prädiktiver Modelle auf Basis eines Datensatzes

- Iterativer Prozess ggf. wird zu vorherigen Schritten zurückgesprungen
- Kontinuierliche Optimierung des Modells

nach [Ha2009] und [FPS1996]

SUPPORT VECTOR MACHINE

Begriffe | SVC | SVR

Begriffe

Hyperplane: Der Unterraum (bspw. Ebene), der die Klassen

voneinander trennt

Margin: Der Abstand zwischen den Stützvektoren zweier

Klassen (orthogonal zur Hyperplane)

Stützvektoren: Die Datenelemente, die der Hyperplane am nächsten

liegen

Support Vector Classifier

Hard Margin Classifier

 Keine Datenelemente innerhalb des Randes

Abbildung 1: Hard-Margin Classifier [eigene Darstellung]

Soft Margin Classifier

- Mehrere Stützvektoren
- Overfitting unwahrscheinlicher

Abbildung 2: Soft-Margin Classifier [eigene Darstellung]

Support Vector Classifier

C-Classification: Einflussnahme auf die Breite des Randes mit dem

Kostenbudget

Nu-Classification: Einflussnahme auf die relative Anzahl der

Stützvektoren mit dem Parameter nu

One-Classification: Neuigkeitsentdeckung und Detektion von Ausreißern

Support Vector Regression

Eps-Regression: Einflussnahme auf die Breite des Randes mit dem

Kostenbudget

Nu-Regression: Einflussnahme auf die relative Anzahl der

Stützvektoren mit dem Parameter nu

Multiklassen-Klassifikation

- Multiklassen bestehen aus mehreren binären Klassen
- Testen der Klassen gegeneinander

One versus all: Elemente einer Klasse werden gegen

Elemente aller anderen Klassen getestet

One against One: Element einer Klasse wird jeweils gegen das

Element einer Klasse getestet

WERKZEUGE

Programmiersprache | Bibliotheken | Entwicklungsumgebung

Programmiersprache R

- Verwendete Sprache: R
- Orientiert sich an der kommerziellen Sprache S
- Freie Programmiersprache für statistische Berechnungen und Visualisierung
- Verfügbarkeit von SVM-Paketen
 - bspw. e1071

Bibliotheken

packages

- Für Datenmanipulation, Datenanalyse und Berechnung der SVM
 - binr
 - discretization
 - dplyr
 - modelr
 - e1071
 Erstellen und "trainieren" einer SVM
- Alle Pakete sind unter https://cran.r-project.org abrufbar und dokumentiert

Entwicklungsumgebung

R Studio

Abbildung: Entwicklungsumgebung R Studio [eigene Darstellung]

DATENSATZ

Systemübersicht | EDA

Systemübersicht

Systemübersicht

Exploratory Data Analysis

	Attributname	Beschreibung
Stellgrößen	LoadingVolume	Auftragslast
	Buffer1, Buffer2	Kapazität der Puffer
	NumberOfCarriers	Anzahl Werkstückträger
	CarrierSpeedLoaded	Geschwindigkeit im beladenen Zustand
	CarrierSpeedEmpty	Geschwindigkeit bei Leerfahrt
	ProductX [1-27]	%-Anteil von Produkt X im Auftragsmix
	MachineXSpeed [1-4]	Effizienzfaktor für Maschine X
	Throughput	Gesamtausbringungsmenge
-uu:	Buffer1Mean,	Durchschnittliche Belegung der Puffer
ske	Buffer2Mean	
tungsk zahlen	Buffer1Max,	Maximal beobachtete Belegung der Puffer
Leistungskenn- zahlen	Buffer2Max	
	CycleTime	Durchschnittliche Durchlaufzeit eines Auftrages
	MachineXUtilization [1-4]	Durchschnittliche Auslastung von Maschine X

ANWENDUNG

Vorbereitung | Parametrisierung | Modellbildung

Normierung

- Stellgrößen werden normiert, damit keine der Stellgrößen die Modellbildung dominiert
- Min-Max-Normierung in Intervall {0, 1}

$$V_i' = \frac{v_i - min_A}{max_A - min_A} (new_max_A - new_min_A) + new_min_A$$

```
# Normieren der Daten
normalize <- function(x){
   return ((x-min(x) / max(x) - min(x)))
}</pre>
```

Diskretisierung

- Diskretisierung der Leistungskennzahlen für die Klassifikation
- Einteilen in fünf Klassen mit gleicher Anzahl an einzigartigen Werten (Equal-Frequency-Binning)
- Geringerer Rechenaufwand und Bündelung der Informationen

Diskretisierung

```
# Diskretisieren
# Initialisierung eines leeren Dataframes
Leistungskennzahlen diskretisiert <- data.frame
# Diskretisieren der Leistungskennzahlen in 5 Klassen
for(i in 1:length(Leistungskennzahlen)) {
    Leistungskennzahlen diskretisiert <- data.frame(cbind(Leistungskennzahlen diskretisiert,
    discretize(Leistungskennzahlen[[i]], 5, 5)))
    names(Leistungskennzahlen_diskretisiert[i]) <- names(Leistungskennzahlen[i])</pre>
    Leistungskennzahlen diskretisiert[[i]] <- factor(Leistungskennzahlen diskretisiert[[i]])
# Namen der Spalten übernehmen
Leistungskennzahlen_diskretisiert <- setNames(Leistungskennzahlen_diskretisiert,
c(names(Leistungskennzahlen)))
# Buffer1Max und Buffer2Max bestanden bereits aus diskreten Werten
Leistungskennzahlen diskretisiert$Buffer1Max <- factor(Leistungskennzahlen$Buffer1Max)
Leistungskennzahlen diskretisiert$Buffer2Max <- factor(Leistungskennzahlen$Buffer2Max)
saveRDS(Leistungskennzahlen_diskretisiert, "./Data/Leistungskennzahlen_diskretisiert.rds")
```

Trainings- und Testdatensatz

Modellbildung

Tuning der Parameter

```
# Listen für Tuning
cost list \langle -c(10^{-5}, 10^{-3}, 10^{-1}, 10^{1}, 10^{3}, 10^{5}, 10^{7}) \rangle
gamma list <-c(10^{-7}, 10^{-5}, 10^{-3}, 10^{-1}, 10^{1}, 10^{3}, 10^{5})
# SVR für Throughput
SVR Throughput tune <- tune(svm, Throughput ~ LoadingVolume + Buffer1 + Buffer2 +
NumberOfCarriers + CarrierSpeedLoaded + CarrierSpeedEmpty + Product1 + Product2 + Product3 +
Product4 + Product5 + Product6 + Product7 + Product8 + Product9 + Product10 + Product11 +
Product12 + Product13 + Product14 + Product15 + Product16 + Product17 + Product18 + Product19
+ Product20 + Product21 + Product22 + Product23 + Product24 + Product25 + Product26 +
Product27 + Machine1Speed + Machine2Speed + Machine3Speed + Machine4Speed, data = trainset,
type = "eps-regression", kernel = "radial", ranges = list(gamma = gamma list, cost =
cost list), scale = T)
print(SVR Throughput tune)
plot(SVR Throughput tune)
```

Modellbildung

Tuning am Beispiel Throughput

Abbildung 4: Kreuzvalidierung der SVC für Leistungskennzahl Throughput [eigene Darstellung]

Modellbildung

am Beispiel Regression

```
SVR_Throughput <- svm(Throughput ~ LoadingVolume + Buffer1 + Buffer2 + NumberOfCarriers +
CarrierSpeedLoaded + CarrierSpeedEmpty + Product1 + Product2 + Product3 + Product4 + Product5
+ Product6 + Product7 + Product8 + Product9 + Product10 + Product11 + Product12 + Product13 +
Product14 + Product15 + Product16 + Product17 + Product18 + Product19 + Product20 + Product21
+ Product22 + Product23 + Product24 + Product25 + Product26 + Product27 + Machine1Speed +
Machine2Speed + Machine3Speed + Machine4Speed , data = trainset)
SVR_Throughput_validation <- validate.regression(SVR_Throughput, testset, testset$Throughput)
hist(SVR_Throughput_validation$error_norm, breaks = seq(0,
max(SVR_Throughput_validation$error_norm)+0.05, 0.05), main = "Histogramm der normierten
Abweichung - Throughput", xlab = "normierte Abweichung", ylab = "Häufigkeit")
saveRDS(SVR_Throughput, "./Model/Regression/SVR_Throughput.rds")</pre>
```

KRITISCHE WÜRDIGUNG

Klassifikation | Regression | Zusammenfassung | kritische Würdigung

Klassifikation

			Buf	fer2Max			
Predicted							
		1	2	3	4	5	6
	1	42.467	277	0	0	0	0
	2	305	44.787	191	23	0	0
Actual	3	5	238	48.190	2.688	44	8
Act	4	0	34	2.961	43.375	3.074	150
	5	0	0	311	4.975	89.408	9.075
	6	0	0	21	861	10.825	95.707

Klassifikation

Leistungskennzahl	Genauigkeit	Genauigkeit ± 1 Klasse
Throughput	79,93%	99,32%
CycleTime	77,73%	99,25%
Buffer1Max	75,22%	99,13%
Buffer2Max	86,51%	99,45%
Buffer1Mean	82,65%	
Buffer2Mean	90,98%	99,64%
Machine1Utilization	80,96%	99,09%
Machine2Utilization	86,38%	99,86%
Machine3Utilization	85,84%	99,75%
Machine4Utilization	87,83%	99,88%

Regression

Abbildung 5: Histogramm der normierten Abweichung der Leistungskennzahl Throughput [eigene Darstellung]

Regression

Leistungskennzahl	Mittlere Abweichung	Maximale Abweichung
Throughput	5,58%	121,32%
CycleTime	7,11%	83,78%
Buffer1Max	23,63%	596,64%
Buffer2Mean	16,54%	339,39%
Machine1Utilization	6,41%	117,80%
Machine2Utilization	9,00%	298,19%
Machine3Utilization	7,95%	313,17%
Machine4Utilization	9,66%	390,04%

Regression

Abbildung 6: Säulendiagramm der mittleren der maximalen normierten Abweichung [eigene Darstellung]

ZUSAMMENFASSUNG

Zieldefinition | Explore & Analyze | Datenvorbereitung | Methodenauswahl | Modellbildung | Evaluierung | Visualisierung

Machine Learning

Ziel: Erstellung deskriptiver und prädiktiver Modelle auf Basis eines Datensatzes

Zieldefinition

Vorhersage der Leistungskennzahlen Produktions- und Logistiksystems

Datenvorbereitung

Normieren der Stellgrößen und Diskretisieren der Leistungskennzahlen

Modellbildung

Parametrisierung, Validierung und Tuning der Modelle

Visualisierung

der Abweichungen bei der Regression und als Kreuztabelle für Klassifikation

Explore & Analyze

Untersuchung der Datentypen und Spannweiten

Methodenauswahl

SVM (Support Vector Classifier & Support Vector Regression)

Evaluierung

Berechnung der Abweichungen bzw. Genauigkeiten

Kritische Würdigung

- Die Vorverarbeitung ist ein essenzieller Teil des Prozesses
- Klassifikation mit fünf Klassen ist zuverlässiger als die Regression
- Die Parametrierung in Zusammenhang mit dem passenden Kernel muss geschickt ausgewählt werden
- Die Anpassung kann auf einem sehr komplexen Niveau weitergeführt werden
- Bei mehrdimensionalen Anwendungen ist die Visualisierung schwer
- Berechnung kann sehr lange dauern

EVALUATION MIT TESTDATENSATZ

Anwendung | Auswertung

Evaluation mit Testdatensatz

- Detaillierte Beschreibung in <u>liesmich.txt</u>
- Schritte
 - Einlesen der Daten
 - Vorbereitung der Daten
 - Anwendung der Modelle
 - Berechnung und Ausgabe der Abweichung

Literatur I

[ABR1964]	Aizerman, M. A.; Braverman, È. M.; Rozonèr, L. I.: <i>Theoretical foundation of potential functions method in pattern recognition</i> . In: Avtomat. I Telemekh. Vol. 25, Nr. 6, 1964, S. 917-936
[Al2003]	Al-Laham, A.: Organisationales Wissensmanagement – eine strategische Perspektive.1.Aufl., Vahlen Verlag, München, 2003
[Al2010]	Alpaydin, C.: Introduction to Machine Learning. 2. Aufl., MIT Press, Cambridge, MA, 2010
[Bi2008]	Bishop, C.: Pattern Recognition and Machine Learning. Information Science and Statistics, Springer, Berlin, 2008
[BV2008]	Bankhofer, U.; Vogel, J.: <i>Datenanalyse und Statistik.</i> 1. Aufl., Gabler Verlag, Wiesbaden, 2008
[CC2011]	Chang, CC.; Lin, CJ.: <i>LIBSVM:a library for support vector machines.</i> In: ACM Transactions on Intelligent Systems and Technology. Vol. 2, Nr. 3, 2011, S. 27:1-27:27

Literatur II

[FPS1996]	Fayyad, U.; Piatetsky-Shapiro, G.; Smyth, P.: From Data Mining to Knowledge Discovery in. In: Al Magazine. Nr. 17, 1996, S. 37-54.
[Fi1936]	Fisher, R. A.: <i>The use of multiple measurements in taxonomic problems</i> . In: Annals of Eugenics. Nr. 7, 1936, S. 179-188.
[Ha2009]	Hamel, L.; Knowledge Discovery with Support Vector Machines. John Wiley & Sons, New Jersey, 2009
[HK2006]	Han, J.; Kamber, M.: <i>Data Mining Concepts and Techniques</i> . 2. Aufl., Elsevier, Morgan Kaufmann, Amsterdam, Boston, San Francisco, CA, 2006
[Ja+2013]	James, G.; Witten, D.; Hastie, T.; Tibshirani, R.: <i>An Introduction to Statistical Learning with Applications in R</i> , 1. Aufl., Springer, New York, Heidelberg, Dordrecht, London, 2013
[Kü1999]	Küppers, B.: <i>Data Mining in der Praxis, ein Ansatz zur Nutzung der Potenziale von Data Mining im betrieblichen Umfeld.</i> 1. Aufl., Lang, Frankfurt am Main, 1999

Literatur III

[Me2017]	Meyer, D.: Support Vector Machines * The Interface to libsvm in package e1071. FH Technikum, Wien, 2017
[Ro1958]	Rosenblatt, F.; The perceptron: A probalistic model for information storage and organization in the brain. In: Psychological Review. Vol. 65, Nr. 6, 1958 S. 386-408.
[VC1995]	Vapnik, V. N.; Cortes, C: Support-Vector Networks. In: Machine Learning. Nr. 20, 1995, S. 273-297
[VL1963]	Vapnik, V. N.; Lerner, A. Y.: <i>Pattern Recognition using generalized portraits.</i> In: Automation and Remote Control. Vol. 24, Nr. 6, 1963, S. 709-715
[Va1995]	Vapnik, V. N.: The Nature of Statistical Learning Theory. 2. Aufl., Springer, Berlin, 1995

Vielen Dank für Ihre Aufmerksamkeit!

Grundlagen | SVM | Werkzeuge | Datensatz |

<u>Anwendung | Kritische Würdigung | Evaluation</u>

