

Universidade Federal do Espírito Santo Centro de Ciências Agrárias e Engenharias Departamento de Ciências Florestais e da Madeira

CAPÍTULO VI Amostragem Casual Estratificada

Professor Gilson Fernandes da Silva

1 - Introdução

A intensidade de amostragem necessária para estimar os parâmetros de uma população, com uma precisão previamente fixada, depende da variabilidade dessa população. Se a variância for grande, a intensidade de amostragem será grande, bem como os custos de amostragem. Se a variância for pequena, a intensidade de amostragem será reduzida e os custos de amostragem serão menores.

Sendo possível dividir uma população heterogênea em sub-populações ou estratos homogêneos de tal modo que os valores da variável de interesse variem pouco de uma unidade para outra, pode-se obter uma estimativa precisa da média de um estrato qualquer, por meio de uma pequena amostra desse estrato.

As estimativas dos estratos podem ser combinadas, resultando estimativas precisas para toda a população. Quando as unidades amostrais são selecionadas aleatoriamente em cada estrato, o processo é denominado *Amostragem Aleatória Estratificada*.

Esquema de Amostragem Casual Estratificada.

Considere o seguinte exemplo apresentado por SOARES *et al.* (2007), em que a população é composta de 10 unidades (árvores) sendo observados os valores da característica (altura, em m), como se segue:

Unidade	Valor da Característica	Unidade	Valor da Característica							
1	15	6	26							
2	15	7	26							
3	20	8	26							
4	20	9	26							
5	20	10	26							
Total Geral => 220										

A partir do exemplo mostrado, pode-se calcular a média e a variância verdadeiras:

$$\mu = 22 \text{ metros}$$
 e $\sigma^2 = 21,11 \text{ m}^2$

Se a população for dividida em três estratos homogêneos, uma estimativa da média pode ser obtida tomando-se uma unidade de amostra de cada estrato e calculando-se uma média ponderada tendo como peso o tamanho de cada estrato. No caso deste exemplo, o valor da média estimada seria igual à verdadeira média e a variância da média seria igual a zero.

2 - Critérios para estratificação

A população pode ser estratificada tomandose como base várias características tais como:

- ✓ Topografia do terreno;
- ✓ Sítio ou local natural;
- ✓ Tipologia florestal;
- ✓ Altura;
- ✓ Idade;
- ✓ Densidade;
- ✓ Volume, entre outros.

De acordo com COCHRAN (1963) citado por PELLICO NETO e BRENA (1996), em geral a estratificação aumenta a precisão das estimativas quando são satisfeitas as seguintes condições:

- ➤ Que a população seja constituída de características cujos tamanhos ou grandezas variam amplamente;
- ➤ Que as variáveis medidas tenham estreita correlação com o tamanho ou grandeza das características;
- ➤ Que disponha de uma boa medida do tamanho dos estratos.

3 - Tipos de estratificação

Estratificação da variável de interesse: A estratificação pode ser feita em função de uma variável de interesse. Como exemplo, tomando-se o volume como variável de interesse, poderia se procurar definir estratos com volumes semelhantes dentro dos estratos e diferentes entre eles.

Estratificação administrativa: É aplicada com o objetivo de obter informações setorizadas por área de interesse, ou simplesmente para a organização do trabalho.

Estratificação tipológica: Tem como objetivo principal obter informações particulares para cada tipo florestal, que são perfeitamente caracterizados e facilmente identificados no campo. É a estratificação comumente utilizada nos inventários de florestas nativas, especialmente as tropicais.

Pré-estratificação: É a divisão da população em estratos realizada antes da coleta de dados. Desse modo, a amostragem é estruturada para cada estrato individualmente.

Pós-estratificação: É quando a divisão da população em estratos ocorre depois da coleta de dados. Em geral, a pós-estratificação decorre da identificação da variabilidade da população durante os trabalhos de amostragem, permitindo a delimitação dos estratos "in loco".

4 - Vantagens e desvantagens da ACE

De acordo com HUSCH (1993) a amostragem estratificada, em inventário florestal, apresenta as seguintes vantagens em relação à aleatória simples:

- a) Estimativas separadas de médias e variâncias podem ser obtidas para cada sub-divisão da floresta, ou estrato;
- b) Para uma dada intensidade de amostragem, frequentemente a estratificação produz estimativas da média geral mais precisas do que uma amostragem aleatória simples do mesmo tamanho.

5 - Notação

Na amostragem casual estratificada, são definidos os seguintes símbolos para identificar as variáveis da população:

L = número de estratos;

 N_h = número potencial de unidades do estrato (h);

 $N = \sum_{h=1}^{L} N_h =$ número total potencial de unidades de amostra da população;

 n_h = número de unidades amostrais no estrato (h);

 $n = \sum_{h=1}^{L} n_h$ = número total de unidades amostradas na população;

$$W_h = \frac{N_h}{N} = \frac{A_h}{A}$$
 = proporção do estrato (h) na população;

$$A_h$$
 = área do estrato (h);

$$A = \sum_{h=1}^{L} A_h$$
 = área total da população;

$$f_h = \frac{n_h}{N_h} = \text{fração amostral do estrato } (h);$$

$$f = \frac{n}{N}$$
 = fração amostral da população;

$$X_{ih}$$
 = variável de interesse.

6 - Estimadores dos parâmetros da ACE

a) Média

a₁) Média por estrato

$$\overline{x}_h = \frac{\sum_{h=1}^{L} x_{ih}}{n_h}$$

a₂) <u>Média estratificada</u>

$$\bar{x}_{st} = \frac{\sum_{h=1}^{L} N_h x_h}{N} = \sum_{h=1}^{L} W_h \bar{x}_h$$

b) Variância

b₁) <u>Variância por estrato</u>

$$s_h^2 = \frac{\sum_{i=1}^{n_h} (x_{ih} - \bar{x}_h)^2}{n_h - 1}$$

b₂) <u>Variância estratificada</u>

$$s_{st}^{2} = \sum_{h=1}^{L} W_{h} s_{h}^{2}$$

c) Variância da média

c₁) <u>População infinita</u>

$$s_{\bar{x}(st)}^2 = \sum_{h=1}^L W_h^2 \frac{s_h^2}{n_h}$$

c₂) <u>População finita</u>

$$s_{\bar{x}(st)}^2 = \sum_{h=1}^L W_h^2 \frac{s_h^2}{n_h} (1 - f_h)$$
 ou

$$s_{\bar{x}(st)}^{2} = \sum_{h=1}^{L} W_{h}^{2} \frac{s_{h}^{2}}{n_{h}} - \sum_{h=1}^{L} \frac{W_{h}^{2} s_{h}^{2}}{N}$$

d) Erro Padrão da Média

$$s_{\bar{x}(st)} = \pm \sqrt{s_{\bar{x}(st)}^2}$$

e) Erro de Amostragem

- Erro Absoluto

$$E_a = \pm ts_{\bar{x}(st)}$$

- Erro Relativo

$$E_r = \pm \frac{ts_{\bar{x}(st)}}{\bar{x}_{st}} 100$$

f) Intervalo de Confiança para a Média

$$IC = [\overline{x}_{St} - ts_{\overline{x}(St)} \le \mu \le \overline{x}_{St} + ts_{\overline{x}(St)}] = P$$

g) <u>Intervalo de Confiança por Hectare</u>

$$IC = [(\overline{x}_{St} - ts_{\overline{x}(St)})fc \le \mu \le (\overline{x}_{St} + ts_{\overline{x}(St)})fc] = P \text{ em que } f_c = \frac{A_h}{a_p}$$

h) Total da População

$$\hat{X} = \sum_{h=1}^{L} \hat{X}_h = N\overline{x}_{st}$$

i) Intervalo de Confiança para o Total

$$IC = [\hat{X} - Nts_{\overline{X}(st)} \le X \le \hat{X} + Nts_{\overline{X}(st)}] = P$$

j) Estimativa Mínima de Confiança

$$EMC = [\overline{x}_{st} - ts_{\overline{x}(st)} \le \mu] = P$$

6.1 - Cálculo do número de graus de liberdade

As fórmulas para os Intervalos de Confiança pressupõem que a média estratificada seja normalmente distribuída e o erro padrão da média bem determinado, de modo que o valor de *t* possa ser encontrado nas tabelas de distribuição normal.

Assim, o número de graus de liberdade que determina o valor de (t) está situado entre o menor dos valores $(n_h - 1)$ e o somatório dos (n_h) . SATTERTHWAITE (1946) desenvolveu um método para o cálculo do número efetivo de graus de liberdade, como se segue:

$$n_0 = \frac{\left(\sum_{h=1}^{L} g_h s_h^2\right)^2}{\sum_{h=1}^{L} \frac{g_h^2 s_h^4}{n_h - 1}} \quad \text{em que} \quad g_h = \frac{N_h (N_h - n_h)}{n_h}$$

6.2 - Intensidade de amostragem

A intensidade de amostragem é calculada em função do tipo de alocação das unidades amostrais nos estratos, ou seja: alocação proporcional ou ótima.

6.2.1 - Alocação proporcional

$$n_h = \frac{N_h}{N} n = W_h n$$

População finita

$$n = \frac{t^2 \sum_{h=1}^{L} W_h s_h^2}{E^2 + t^2 \sum_{h=1}^{L} \frac{W_h s_h^2}{N}}$$

População infinita

$$n = \frac{t^2 \sum_{h=1}^{L} W_h s_h^2}{E^2}$$

6.2.2 - Alocação ótima de NEYMAN

$$n_h = \frac{W_h S_h}{\sum_{h=1}^L W_h S_h} n$$

População finita

$$n = \frac{t^{2} \left(\sum_{h=1}^{L} W_{h} s_{h}\right)^{2}}{E^{2} + t^{2} \sum_{h=1}^{L} \frac{W_{h} s_{h}^{2}}{N}}$$

População infinita

$$n = \frac{t^2 \left(\sum_{h=1}^L W_h S_h\right)^2}{E^2}$$

7 - Exemplo de Aplicação da ACE

Inventariar a população de *Pinus sp.* constituída de 450 parcelas de 0,1 ha, ou seja, 45 hectares, mostrada na Figura 1, por meio da Amostragem Casual Estratificada, admitindo-se um erro de amostragem máximo de 10% da média estimada, com 90% de probabilidade de confiança.

Estrato	Localização	$\mathbf{A_h}$	N_h	Idade	
1	(1a) até (10i)	14,4	144	6 anos	
2	(10j) até (21h)	16,4	164	9 anos	
3	(21i) até (30o)	14,2	142	12 anos	
Total		A = 45 ha	N = 450		

Fonte: PELLICO NETO e BRENA, 1996

Solução:

I – Realização do inventário piloto

	Est	rato 1	Est	rato 2	Estrato 3		
Unidade n	Local.	Vol. (m ³ /0,1ha)	Local.	Vol. (m ³ /0,1ha)	Local.	Vol. (m³/0,1ha)	
1	9-g	15,8	10-m	20,4	21-k	21,3	
2	5-d 7,6 3-m 8,8		20-n	30,5	21-1	24,3	
3			18-m	30,7	28-a	29,2	
4	6-j	12,5	14-n	27,2	25-m	21,8	
5	1 - 0	11,1	11 - 0	28,4	29-d	33,1	
6	9-m	16,2	13-a	19,7	30-n	35,8	
7	4-m	12,2	13-h	20,4	25-a	26,7	
8			21-g	23,1	-	-	

II – Cálculo do erro de amostragem

O objetivo desse passo é verificar se o inventário piloto realizado atendeu ao erro de inventário estabelecido de 10% da média. Caso isso aconteça, o inventário piloto será o próprio inventário definitivo. Caso contrário, é necessário calcular a intensidade amostral ótima e retornar ao campo para medir mais parcelas.

III – Análise estatística da amostragem

a₁) <u>Média por estrato</u>

$$\bar{x}_h = \frac{\sum_{i=1}^h x_{ih}}{n_h}$$
 $\bar{x}_1 = 12,0286 \text{ m}^3/0,1 \text{ ha}$

$$\bar{x}_2 = 25,0500 \text{ m}^3/0,1 \text{ ha}$$

$$\bar{x}_3 = 27,4571 \text{ m}^3/0,1 \text{ ha}$$

a₂) <u>Média estratificada</u>

$$\bar{x}_{st} = \frac{\sum_{h=1}^{L} N_h x_h}{N} = \sum_{h=1}^{L} W_h \bar{x}_h$$

$$\bar{x}_{st} = \frac{\left[(144.12,0286) + (164.25,0500) + (142.27,4571) \right]}{450} = 21,6427 \text{ m}^3/0,1 \text{ ha}$$

b₁) <u>Variância por estrato</u>

$$s_h^2 = \frac{\sum_{i=1}^{n_h} (x_{ih} - \bar{x}_h)^2}{n_h - 1}$$

$$s_1^2 = 10,4624 \text{ (m}^3/0,1 \text{ ha)}^2$$

$$s_2^2 = 21,8771 \text{ (m}^3/0,1 \text{ ha)}^2$$

$$s_3^2 = 30,8229 \text{ (m}^3/0,1 \text{ ha)}^2$$

b₂) <u>Variância estratificada</u>

$$s_{st}^2 = \sum_{h=1}^{L} W_h s_h^2$$

$$s_{st}^2 = (0,3200 \cdot 10,4624) + (0,3644 \cdot 21,8771) + (0,3156 \cdot 30,8229) = 21,0473 \text{ (m}^3/0,1\text{ha})^2$$

c) Variância da média

$$s_{\bar{x}(st)}^2 = \sum_{h=1}^L W_h^2 \frac{s_h^2}{n_h}$$
 $s_{\bar{x}(st)}^2 = 0.9547 \,(\text{m}^3/\text{ha})^2$

d) Erro Padrão da Média

$$s_{\bar{x}(st)} = \pm \sqrt{s_{\bar{x}(st)}^2}$$
 \Longrightarrow $s_{\bar{x}(st)} = \pm \sqrt{0.9547}$
 $s_{\bar{x}(st)} = \pm 0.9771 \text{ m}^3/0.1\text{ha}$

e) Erro de Amostragem

e₁) Erro de Amostragem Absoluto

$$E_a = \pm t s_{\bar{x}(st)}$$
 Precisa calcular os graus de Liberdade!!!

$$t_{(0,10;17)} = 1,74$$
 \Longrightarrow $E_a = \pm 1,74.0,9771 = \pm 1,7002 \, m^3/0,1 \, ha$

e₂) Erro de Amostragem Relativo

$$E_r = \pm \frac{ts_{\bar{x}(st)}}{\bar{x}_{st}} 100 \implies E_r = \pm \frac{1,74.0,9771}{21,6427} 100 = 7,86\%$$

Que coisa boa!!!!!!

O erro de inventário foi menor do que o estabelecido!!!

O inventário piloto foi suficiente e não é necessário medir mais parcelas!!!!!

Agora é só calcular as demais estatísticas para um inventário definitivo!!!!!

f) Intervalo de Confiança para a Média

$$IC = [\overline{x}_{st} - ts_{\overline{x}(st)}] \le \mu \le \overline{x}_{st} + ts_{\overline{x}(st)}] = P$$

$$IC[21,64 - 1,74(0,9771)] \le \mu \le 21,64 + 1,74(0,9771)] = 90\%$$

$$IC[19,94 \text{ } m^3/0,1 \text{ } ha \le \mu \le 23,34 \text{ } m^3/0,1 \text{ } ha] = 90\%$$

g) <u>Intervalo de Confiança por Hectare</u>

$$IC = [(\overline{x}_{st} - ts_{\overline{x}(st)}) f_c \le \mu \le (\overline{x}_{st} + ts_{\overline{x}(st)}) f_c] = P$$

$$IC[(21,64-1,74.0,9771)(10000/1000) \leq \mu \leq (21,64+1,74.0,9771)(10000/1000)] = 90\%$$

$$IC[199,43 \text{ m}^3/\text{ha} \le \mu \le 233,43 \text{ m}^3/\text{ha}] = 90\%$$

h) Total por Estrato

$$\hat{X}_h = N_h \bar{x}_h$$

$$\hat{X}_1 = 144.12,0286 = 1732 \text{ m}^3$$

$$\hat{X}_2 = 164.25,0500 = 4108 \text{ m}^3$$

$$\hat{X}_3 = 142.27,4571 = 3899 \text{ m}^3$$

i) Total da População

$$\hat{X} = \sum_{h=1}^{L} \hat{X}_h = N\overline{x}_{st}$$

$$\hat{X} = 450.21,6427 = 9739 \ m^3$$

j) Intervalo de Confiança para o Total

$$IC = [\hat{X} - Nts_{\overline{X}(st)} \le X \le \hat{X} + Nts_{\overline{X}(st)}] = P$$

$$IC[9739 - 450 (1,74) 0,9771 \le X \le 9739 + 450 (1,74) 0,9771] = 90\%$$

$$IC[8973 \ m^3 \le X \le 10504 \ m^3] = 90\%$$

k) Estimativa Mínima de Confiança para a Média

$$EMC = [\overline{x}_{st} - ts_{\overline{x}(st)} \le \mu] = P$$

$$EMC[21,64-1,33\ (0,9771) \le \mu] = 90\%$$

$$EMC[20,34 \text{ m}^3/0,1 \text{ ha} \le \mu] = 90\%$$

1) Estimativa Mínima de Confiança por Hectare

$$EMC[(\bar{x} - ts_{\bar{x}})f_C \le \mu] = P$$

 $EMC[(21,64 - 1,33.\ 0,9771)(10000/1000) \le \mu] = 90\%$
 $EMC[203,40\ m^3/ha \le \mu] = 90\%$

m) Estimativa Mínima de Confiança para o Total

$$EMC = [\hat{X} - Nts_{\bar{x}} \le X] = P$$

$$EMC[9739 - 450 (1,33)0,9771 \le X] = 90\%$$

$$EMC[9154,21 \ m^3 \le X] = 90\%$$

O que vem a seguir é apenas uma curiosidade, não é necessário ser feito!!!

Qual seria a intensidade amostral ótima? O inventário piloto mediu mais parcelas do que o necessário?

Cálculo da intensidade amostral ótima

As estimativas obtidas no inventário piloto foram as seguintes:

a) Média

a₁) <u>Média por estrato</u>

$$\bar{x}_h = \frac{\sum_{i=1}^h x_{ih}}{n_h}$$
 $\bar{x}_1 = 12,0286 \text{ m}^3/0,1 \text{ ha}$

$$\bar{x}_2 = 25,0500 \text{ m}^3/0,1 \text{ ha}$$

$$\bar{x}_3 = 27,4571 \text{ m}^3/0,1 \text{ ha}$$

a₂) <u>Média estratificada</u>

$$\bar{x}_{st} = \frac{\sum_{h=1}^{L} N_h x_h}{N} = \sum_{h=1}^{L} W_h \bar{x}_h$$

$$\bar{x}_{st} = \frac{\left[(144.12,0286) + (164.25,0500) + (142.27,4571) \right]}{450} = 21,6427 \text{ m}^3/0,1 \text{ ha}$$

b) Variância

b₁) <u>Variância por estrato</u>

$$s_h^2 = \frac{\sum_{i=1}^{n_h} (x_{ih} - \bar{x}_h)^2}{n_h - 1}$$

$$s_1^2 = 10,4624 \text{ (m}^3/0,1 \text{ ha)}^2$$

$$s_2^2 = 21,8771 \text{ (m}^3/0,1 \text{ ha)}^2$$

$$s_3^2 = 30,8229 \text{ (m}^3/0,1 \text{ ha)}^2$$

b₂) <u>Variância estratificada</u>

$$s_{st}^2 = \sum_{h=1}^L W_h s_h^2$$

$$s_{st}^2 = (0.3200.10,4624) + (0.3644.21,8771) + (0.3156.30,8229) = 21,0473 \text{ m}^3/0.1 \text{ ha}$$

A fração de amostragem determinada pelo inventário piloto é dada por:

$$f_h = \frac{n_h}{N_h} e \qquad f = \frac{\sum_{h=1}^{L} n_h}{N} \qquad \longrightarrow \qquad f = \frac{22}{450} = 0,0489$$

$$1-f=0.9511>0.95$$
 \Rightarrow População infinita.

Calculando-se a intensidade amostral pela alocação proporcional, tem-se:

$$n = \frac{t^2 \sum_{h=1}^{L} W_h s_h^2}{E^2}$$

Para facilitar o cálculo da intensidade de amostragem, deve-se construir o seguinte quadro de dados:

Estrato	N_h	W_h	$\overline{\mathcal{X}}_h$	S_h	S_h^2	$W_h s_h$	$W_h s_h^2$	$W_h s_h^2 / N$
1	144	0,3200	12,0286	3,2346	10,4624	1,0351	3,3480	0,0074
2	164	0,3644	25,0500	4,6773	21,8771	1,7046	7,9730	0,0177
3	142	0,3156	27,4571	5,5518	30,8229	1,7519	9,7263	0,0216
Total	450	1,000	21,6427			4,4916	21,0473	0,0468

Calculando-se a intensidade amostral pela alocação proporcional, tem-se:

$$t_{(0,10;21)} = 1,72$$

$$W_h s_h^2 = 21,0473 \text{ (m}^3/0,3 \text{ ha)}^2$$

$$E = (LE \bar{x}) = (0.1 \cdot 21.6427) = 2.1643 \text{ m}^3/0.1 \text{ ha}$$

A primeira aproximação de (n) resulta:

$$n_1 = \frac{1,72^2.21,0473}{2,1643^2} = 13,30 \implies n_1 \cong 14$$

$$t_{(0,10;13)} = 1,77$$
 $n_2 = 14,08 \cong 15$

$$t_{(0,10;14)} = 1,76$$
 $n_3 = 13,92 \cong 14$

$$t_{(0,10;\ 13)} = 1,77$$
 $n_4^* = 14,08 \cong 15$

No entanto, é necessário verificar se a distribuição das unidades nos estratos foi contemplada no inventário piloto.

$$n_h = \frac{N_h}{N} n = W_h n$$

$$n_1 = 0.3200.15 = 4.80 \cong 5$$

$$n_2 = 0.3644.15 = 5.47 \cong 6$$

$$n_3 = 0.3156.15 = 4.73 \cong 5$$

IV – Análise comparativa dos resultados

1		
	Parâmetro	Estimativa
Volume médio por parcela	$\mu = 22,55 \text{ m}^3/0,1\text{ha}$	$\bar{x} = 21,64 \text{ m}^3/0,1\text{ha}$
Volume total	$V = 10.148 \text{ m}^3$	$\widehat{X} = 9.739 \text{ m}^3$
Volume por hectare	$V/ha = 225,50 \text{ m}^3/\text{ha}$	$X/ha = 216,43 \text{ m}^3/\text{ha}$
Variância dos volumes	$\sigma^2 = 65,48 \text{ (m}^3/0,1\text{ha)}^2$	$s_{x(st)}^2 = 21,05 (\text{m}^3/0,1\text{ha})^2$
Desvio padrão dos volumes	$\sigma = 8,09 \text{ m}^3/0,1\text{ha}$	$S_{x(st)} = \pm 4,59 \text{ m}^3/0,1 \text{ ha}$
Coeficiente de variação	σ % = 35,89%	$cv_{(st)} = 21,20\%$

FIM

Referências

HUSCH, B.; MILLER, C.I.; BEERS, T.W. Forest mensuration. 3 ed. Malabar: Krieger Publishing Company, 1993. 402 p.

PELLICO NETO, S.; BRENA, D.A. **Inventário florestal**. Curitiba: Edição dos autores. 1997. 316p.

SATTHERTHWAITE, F.E. An approximate distribution of estimates of variance components. Biometric Bulletin, London, v. 2, p.110-114, 1946.

SOARES, C.P.B.; NETO, F.P.; SOUZA, A.L. **Dendrometria e Inventário Florestal**. Viçosa: Editora UFV, Universidade Federal de Viçosa. 2007. 276p.

	a	b	C	d	е	f	g	h	i	j	k	1	m	n	0	
1	80	92	96	94	90	85	73	63	83	101	115	156	87	109	111	
2	99	69	102	103	91	123	83	128	68	98	86	88	95	97	74	
3	86	69	85	127	98	102	98	179	71	116	98	101	88	125	110	Α
4	81	89	122	110	80	99	184	81	85	114	191	132	122	110	156	
5	131	115	92	76	136	157	95	80	89	85	126	106	104	144	116	
6	162	100	118	90	116	83	163	95	107	125	145	162	87	225	255	
7	166	164	191	190	165	155	186	188	156	108	116	177	229	149	127	
8	185	227	171	239	185	114	138	186	232	213	147	125	159	170	197	В
9	216	101	148	151	149	159	158	184	142	180	159	126	162	199	156	
10	189	197	132	137	160	190	165	240	125	258	205	214	204	157	284	
11	236	269	172	237	243	213	233	205	244	230	229	238	240	310	284	
12	273	176	217	194	314	221	201	193	239	184	162	173	216	211	254	
13	197	279	225	184	237	169	228	204	253	271	210	232	195	322	209	С
14	246	256	249	180	231	229	188	199	200	242	221	274	307	272	191	
15	306	281	248	294	187	196	278	241	272	287	263	229	305	241	244	
16	267	223	284	213	239	235	203	246	307	264	236	199	227	219	176	
17	204	256	273	246	279	259	192	221	294	282	291	232	199	259	256	
18	253	228	259	263	292	239	223	335	359	259	319	244	307	351	295	D
19	280	256	292	386	289	327	283	219	232	349	326	262	229	253	331	
20	324	273	365	268	232	266	249	317	298	292	246	358	226	305	338	
21	301	268	323	276	289	347	231	278	205	284	213	243	214	339	296	
22	402	241	360	399	278	346	247	279	253	366	248	335	283	249	229	
23	226	255	229	247	269	242	267	207	233	317	336	225	287	207	229	E
24	305	255	257	210	265	270	337	307	318	228	314	321	224	297	238	
25	267	239	298	248	309	279	269	253	261	318	271	322	218	234	280	
26	318	306	327	320	255	258	242	228	266	292	309	263	262	379	322	
27	318	329	248	287	267	273	339	345	272	283	348	221	307	262	280	
28	292	415	287	259	255	266	384	336	363	311	267	313	330	232	235	F
29	255	314	335	331	273	339	351	325	257	301	286	285	283	278	342	
30	320	377	337	400	370	379	269	224	345	269	368	312	367	358	348	
			ı					II					III			

Figura 2 - Volume, em m³ por unidade de amostra de 0,1 ha, obtidos pelo inventário 100% de um bosque *Pinus* sp (PELLICO NETTO e BRENA, 1996).

Número efetivo de graus de liberdade (g.l.)

$$n_0 = \frac{\left(\sum_{h=1}^{L} g_h s_h^2\right)^2}{\sum_{h=1}^{L} \frac{g_h^2 s_h^4}{n_h - 1}} \quad \text{em que} \quad g_h = \frac{N_h (N_h - n_h)}{n_h}$$

$$g_1 = \frac{144(144-7)}{7} = 2818,29$$
 $g_2 = \frac{164(164-8)}{8} = 3198,00$

$$g_3 = \frac{142(142-7)}{7} = 2738,57 \left(\sum_{h=1}^{L} g_h s_h^2\right)^2 = 33804381029$$

$$\sum_{h=1}^{L} \frac{g_h^2 s_h^4}{n_h - 1} = 2031690860 \qquad n_0 = \frac{33804381029}{2031690860} = 16,64 \cong 17g.1.$$

