Attention

Shusen Wang

The figure is from blog lilianweng.github.io

Shortcoming: The final state is incapable of remembering a **long** sequence.

The figure is from blog lilianweng.github.io

Seq2Seq Model with Attention

- Attention tremendously improves Seq2Seq model.
- With attention, Seq2Seq model does not forget source input.
- With attention, the decoder knows where to focus.
- Downside: much more computation.

Original paper:

Bahdanau, Cho, & Bengio. Neural machine translation by jointly learning to align and translate.
In ICLR, 2015.

Weights: $\alpha_i = \text{similarity}(\mathbf{h}_i, \mathbf{s}_0)$

Weights: $\alpha_i = \text{similarity}(\mathbf{h}_i, \mathbf{s}_0)$

Weights: $\alpha_i = \text{similarity}(\mathbf{h}_i, \mathbf{s}_0)$

Option 1 (used in the original paper):

Weights: $\alpha_i = \text{similarity}(\mathbf{h}_i, \mathbf{s}_0)$

Option 1 (used in the original paper):

$$\tilde{\alpha}_i = \frac{T}{\text{tanh}}$$

Then **normalize** $\tilde{\alpha}_1$, \cdots , $\tilde{\alpha}_m$ (so that they sum to 1):

$$[\alpha_1, \cdots, \alpha_m] = \text{Softmax}([\tilde{\alpha}_1, \cdots, \tilde{\alpha}_m])$$

Weights: $\alpha_i = \text{similarity}(\mathbf{h}_i, \mathbf{s}_0)$

Option 2 (more popular; similar to Transformer):

- 1. Linear maps:
 - $\tilde{\mathbf{h}}_i = \mathbf{W}_h \cdot \mathbf{h}_i$.
 - $\tilde{\mathbf{s}}_0 = \mathbf{W}_S \cdot \mathbf{s}_0$.
- 2. Inner product:
 - $\tilde{\alpha}_i = \tilde{\mathbf{h}}_i^T \cdot \tilde{\mathbf{s}}_0$.
- 3. Normalization:
 - $[\alpha_1, \dots, \alpha_m] = \text{Softmax}([\tilde{\alpha}_1, \dots, \tilde{\alpha}_m])$

Weights: $\alpha_i = \text{similarity}(\mathbf{h}_i, \mathbf{s}_0)$

Weights: $\alpha_i = \text{similarity}(\mathbf{h}_i, \mathbf{s}_0)$

Context vector: $\mathbf{c}_0 = \alpha_1 \mathbf{h}_1 + \cdots + \alpha_m \mathbf{h}_m$.

Weights: $\alpha_i = \text{similarity}(\mathbf{h}_i, \mathbf{s}_0)$

Context vector: $\mathbf{c}_0 = \alpha_1 \mathbf{h}_1 + \cdots + \alpha_m \mathbf{h}_m$.

SimpleRNN

SimpleRNN:

$$\mathbf{s}_1 = \tanh\left(\mathbf{A}' \cdot \begin{bmatrix} \mathbf{x}_1' \\ \mathbf{s}_0 \end{bmatrix} + \mathbf{b}\right)$$

Weights: $\alpha_i = \text{similarity}(\mathbf{h}_i, \mathbf{s}_1)$

Weights: $\alpha_i = \text{similarity}(\mathbf{h}_i, \mathbf{s}_1)$

Weights: $\alpha_i = \text{similarity}(\mathbf{h}_i, \mathbf{s}_1)$

Weights: $\alpha_i = \text{similarity}(\mathbf{h}_i, \mathbf{s}_1)$

Context vector: $\mathbf{c}_1 = \alpha_1 \mathbf{h}_1 + \cdots + \alpha_m \mathbf{h}_m$.

$$\mathbf{s}_2 = \tanh\left(\mathbf{A}' \cdot \begin{bmatrix} \mathbf{x}_2' \\ \mathbf{s}_1 \\ \mathbf{c}_1 \end{bmatrix} + \mathbf{b}\right)$$

Question: How many weights α_i have been computed?

Question: How many weights have been computed?

- For every decoder state s_t , there are m weights: $\alpha_1, \dots, \alpha_m$.
- If the decode has T states, then there are totally mT weights.

Attention: Weights Visualization

Decoder RNN (target language: French)

Encoder RNN (source language: English)

Attention: Weights Visualization

Decoder RNN (target language: French)

Encoder RNN (source language: English)

Standard Seq2Seq model: the decoder looks at only its current state.

- Standard Seq2Seq model: the decoder looks at only its current state.
- Attention: decoder additionally looks at all the states of the encoder.

- Standard Seq2Seq model: the decoder looks at only its current state.
- Attention: decoder additionally looks at all the states of the encoder.
- Attention: decoder knows where to focus on.

- Standard Seq2Seq model: the decoder looks at only its current state.
- Attention: decoder additionally looks at all the states of the encoder.
- Attention: decoder knows where to focus on.

- Downside: higher time complexity.
 - *m*: source sequence length
 - t: target sequence length
 - Standard Seq2Seq: O(m+t) time complexity
 - Seq2Seq + attention: O(mt) time complexity

Thank you!