Tecnología Electrónica Ingeniería en Electrónica

Universidad Tecnológica Nacional Facultad Regional Córdoba

Definición

- Es aquel elemento que debido a su propiedad física provoca una caída de tensión a sus bornes al ser recorrido por una corriente eléctrica.
- Es aquel que tiene 1 ohm absoluto cuando a sus bornes aparece un potencial de 1 Volt y circula una corriente de 1 Coulomb segundo (Ampere).
 - Hasta 1948, el ohm absoluto \rightarrow 1.00049 Ω

Definición de PPM

- ▶ PPM → Partes por Millón
- Es una unidad de medida que se refiere a la cantidad de unidades de una determinada sustancia que hay por cada millón de unidades del conjunto.
- Es un concepto recíproco al de porcentaje.
 - 10.000 ppm = 1 %
- Esta unidad es usada de manera análoga al porcentaje pero para concentraciones o valores mucho más bajos.

Resistencia Patrón

Resistencia Patrón

 Es aquel que tiene 1 ohm absoluto cuando a sus bornes aparece un potencial de 1 Volt y circula una corriente de 1 Coulomb en 1 segundo (Ampere).

Características Generales

- Precisión
- Estabilidad Térmica
- Bajo coeficiente Térmico
- Robusta

Resistencia Patrón

- ▶ Tolerancia: ±10 ppm
- Coeficiente Temperatura: ±1 ppm por °C
- Temperatura de Trabajo: 20°C
 - Porque usar un montaje de 4 terminales?

Connections of the reference resistor, model CER6000-RR

Resistencia Estática

Estática

 Es aquella que cumple directamente con la ley de Ohm.

$$R_{estatica} = \frac{E}{I}$$

Resistencia Estática $R = 120\Omega$

Resistencia Dinámica

Dinámica

 Es la que resulta de determinar la pendiente a la curva en un determinado punto.

$$R_{dinamica} = \frac{\partial E}{\partial I}$$

Resistencia Dinámica

- $R_{rojo} = 16.4 \Omega$
- $R_{naranja} = 45.8 \Omega$

Diodo 1N4007

Resistencia

Valor – Depende de las dimensiones geométricas.

$$R = \rho * \frac{l}{S} \to \text{Resistencia Electrica} \to [\text{ohm}]$$

$$\rho \to \text{Resistividad Electrica} \to \left[\Omega * \frac{mm^2}{m}\right]$$

- R depende de la geometría del elemento.
- ρ depende del material

Resistores - Clasificación

FIJAS

- De Carbón
 - De composición
 - De película de carbón
- De película metálica
- De alambre
 - De uso general
 - De precisión
 - · De disipación
 - Descubiertos
 - Pintados
 - Cementados
 - Esmaltados

AJUSTABLES (trimpot)

- De composición
 - De uso general
 - De precisión (Multivueltas)
- De alambre

VARIABLES (potenciómetros)

- De composición
- De alambre
- De Precisión
 - Multivueltas
 - Lineales
 - No Lineales
 - De Alta disipación

Código de Colores – Ejemplo

1ra Banda	2da Banda	3er Banda	4ta Banda	5ta Banda	R Ω
			DORADO		

Código de Colores – Ejemplo

1ra Banda	2da Banda	3er Banda	4ta Banda	5ta Banda	R Ω
					5230 2%
					768000 1%
			DORADO		470 5%
					43200 2%

Código de Colores 5 Bandas

Código de Colores 6 Bandas

Código para SMD

Resistencias SMD con código de 3 dígitos (valores menores de 10 Ω)

EJEMPLOS

R10

R22

R47

1R0

2R2

4R7

Resistencis SMD de precisión con código de 4 cifras. Valores iguales o mayores de 100 Ω

Resistencias SMD con código EIA-96

Resistencias SMD de precisión, con 1% de tolerancia y con código EIA-96

Código	Multiplicador
Z	0.001
YorR	0.01
X or S	0.1
Α	1
B or H	10
С	100
D	1000
E	10000
F	100000

Código	Valor	Código	Valor	Código	Valor	Código	Valor
01	100	25	178	49	316	73	562
02	102	26	182	50	324	74	576
03	105	27	187	51	332	75	590
04	107	28	191	52	340	76	604
05	110	29	196	53	348	77	619
06	113	30	200	54	357	78	634
07	115	31	205	55	365	79	649
08	118	32	210	56	374	80	665
09	121	33	215	57	383	81	681
10	124	34	221	58	392	82	698
11	127	35	226	59	402	83	715
12	130	36	232	60	412	84	732
13	133	37	237	61	422	85	750
14	137	38	243	62	432	86	768
15	140	39	249	63	442	87	787
16	143	40	255	64	453	88	806
17	147	41	261	65	464	89	825
18	150	42	267	66	475	90	845
19	154	43	274	67	487	91	866
20	158	44	280	68	499	92	887
21	162	45	287	69	511	93	909
22	165	46	294	70	523	94	931
23	169	47	301	71	536	95	953
24	174	48	309	72	549	96	976

Resistores - Dimensiones

Res. 1/8 W

Res. 1/4 W

Res. 1/2 W

Res. 1 W

Dimensiones de las resistencias SMD y potencias respectivas

Encapsula	do Dimensiones en pulgadas (L×W)	Dimensiones en mm (L×W)	Potencia
0201	0.024" × 0.012"	0.6 mm × 0.3 mm	1/20W
0402	0.04" × 0.02"	1.0 mm × 0.5 mm	1/16W
0603	0.063" × 0.031"	1.6 mm × 0.8 mm	1/16W
0805	0.08" × 0.05"	2.0 mm × 1.25 mm	1/10W
1206	0.126" × 0.063"	3.2 mm × 1.6 mm	1/8W
1210	0.126" × 0.10"	3.2 mm × 2.5 mm	1/4W
1812	0.18" × 0.12"	4.5 mm x 3.2 mm	1/3W
2010	0.20" × 0.10"	5.0 mm × 2.5 mm	1/2W
2512	0.25" × 0.12"	6.35 mm × 3.2 mm	1W

Resistores - Caracteristicas

- Valor nominal
- Tolerancia
- Potencia o disipación nominal
- Coeficiente térmico (Ct)
- Tensión máxima. (Vmax)
- Coeficiente de Tensión
- Ruido
- Temperatura nominal (Tn)
- Temperatura máxima de funcionamiento (Tmax)
- Frecuencia de Trabajo
- Estabilidad
- Soldabilidad
- Humedad

Valor nominal

- Es el valor que indica el fabricante, el cual será diferente al real.
- Se utiliza el código de colores o alfanumérico para definir el valor nominal.

Tolerancia

- Es un valor que indica en forma porcentual cual es la variación del valor nominal. Existen varios rangos de tolerancia.
 - 1%
 - 2%
 - 5%
 - Si no se indica → 20%

	Valores normalizados de los resistores para diferentes tolerancias
20%	1.00 1.50 2.20 3.30 4.70 6.80
10%	1.00 1.20 1.50 1.80 2.20 2.70 3.30 3.90 4.70 5.60 6.80 8.20
5%	1.00 1.10 1.20 1.30 1.50 1.60 1.80 2.00 2.20 2.40 2.70 3.00 3.30
	3.60 3.90 4.30 4.70 5.10 5.60 6.20 6.80 7.50 8.20 9.10
2%	1.00 1.05 1.10 1.15 1.21 1.27 1.33 1.40 1.47 1.54 1.62 1.69 1.78
	1.87 1.96 2.05 2.15 2.26 2.37 2.49 2.61 2.74 2.87 3.01 3.16 3.32
	3.48 3.65 3.83 4.02 4.22 4.42 4.64 4.87 5.11 5.36 5.62 5.90 6.19
	6.49 6.81 7.15 7.50 7.87 8.25 8.66 9.09 9.53
1%	1.00 1.02 1.05 1.07 1.10 1.13 1.15 1.18 1.21 1.24 1.27 1.30 1.33
	1.37 1.40 1.43 1.47 1.50 1.54 1.58 1.62 1.65 1.69 1.74 1.78 1.82
	1.87 1.91 1.96 2.00 2.05 2.10 2.15 2.21 2.26 2.32 2.37 2.43 2.49
	2.55 2.61 2.67 2.74 2.80 2.87 2.94 3.01 3.09 3.16 3.24 3.32 3.40
	3.48 3.57 3.65 3.74 3.83 3.92 4.02 4.12 4.22 4.32 4.42 4.53 4.64
	4.75 4.87 4.99 5.11 5.23 5.36 5.49 5.62 5.76 5.90 6.04 6.19 6.34
	6.49 6.65 6.81 6.98 7.15 7.32 7.50 7.68 7.87 8.06 8.25 8.45 8.66
0.50/	8.87 9.09 9.31 9.53 9.76
0.5%	1.00 1.01 1.02 1.04 1.05 1.06 1.07 1.09 1.10 1.11 1.13 1.14 1.15
0.25%	
0.1%	1.37 1.38 1.40 1.42 1.43 1.45 1.47 1.49 1.50 1.52 1.54 1.56 1.58
	1.60 1.62 1.64 1.65 1.67 1.69 1.72 1.74 1.76 1.78 1.80 1.82 1.84
	1.87 1.89 1.91 1.93 1.96 1.98 2.00 2.03 2.05 2.08 2.10 2.13 2.15
	2.18 2.21 2.23 2.26 2.29 2.32 2.34 2.37 2.40 2.43 2.46 2.49 2.52 2.55 2.58 2.61 2.64 2.67 2.71 2.74 2.77 2.80 2.84 2.87 2.91 2.94
	2.98 3.01 3.05 3.09 3.12 3.16 3.20 3.24 3.28 3.32 3.36 3.40 3.44
	3.48 3.52 3.57 3.61 3.65 3.70 3.74 3.79 3.83 3.88 3.92 3.97 4.02
	4.07 4.12 4.17 4.22 4.27 4.32 4.37 4.42 4.48 4.53 4.59 4.64 4.70
	4.75 4.81 4.87 4.93 4.99 5.05 5.11 5.17 5.23 5.30 5.36 5.42 5.49
	5.56 5.62 5.69 5.76 5.83 5.90 5.97 6.04 6.12 6.19 6.26 6.34 6.42
	6.49 6.57 6.65 6.73 6.81 6.90 6.98 7.06 7.15 7.23 7.32 7.41 7.50
	7.59 7.68 7.77 7.87 7.96 8.06 8.16 8.25 8.35 8.45 8.56 8.66 8.76
	8.87 8.98 9.09 9.19 9.31 9.42 9.53 9.65 9.76 9.88

Potencia Nominal o Disipación Nominal

- Es la potencia que soporta sin variar su valor, durante un tiempo de vida especificado, a temperatura nominal de servicio.
- Según el tamaño será la potencia a disipar.
- Los valores normalizados
 - 1/8, ½, ¼, 1, 2, 4, 8, etc

Coeficiente térmico (C_t)

- Define la variación de la resistencia en base al cambio de temperatura al que se somete al dispositivo.
- Se especifica como un porcentual → % / °C
- Se especifica en relación a partes → ppm/°C
- Puede ser de variación lineal
- Puede ser de variación no lineal.

Tensión máxima. (V_{max})

- Es el mayor potencial DC o RMS a 50Hz que se puede aplicar a sus bornes, que no permita superar la temperatura nominal de funcionamiento.
- Dependerá del material y la configuración física del resistor.
- Si aumenta la temperatura ambiente se debe recalcular la tensión máxima.

$$V_{MAX} = \sqrt{P_{MAX} * R_N}$$

Resistores - Resumen

- Máxima Tensión de Trabajo
 - Tensión de Aislación
 - · Tensión entre terminales. Rigidez Dieléctrica.

Coeficiente de Tensión

- Define la variación de la resistencia en base a las variaciones de la tensión aplicada a sus bornes.
- Se expresa en por %/V
- Se expresa en ppm/V
- Valores característicos
 - -700 ppm/V → resistencias de composición de carbón
 - +5 a 30ppm/V → película de carbón y Cermet
 - 10 a 0,05 ppm/V → película metálica y películas de óxidos
 - Hasta 400 ppm/V → película gruesa.

Ruido

- Es una tensión generada por el resistor
- El ruido se denomina ruido térmico o de Johnson
 - Movimiento aleatorio de electrones por agitación térmica
- Es función de la temperatura

$$e^{2}(RMS) = 4*K*T*\Delta f*R$$

 $e(RMS) = 7.4*10^{-12}*\sqrt{R*T*\Delta f}$

- K→ Constante de Boltzman
 1.38x10⁻²³ Ws
- R→ Resistencia nominal
- Δf → Ancho de Banda

Ruido

- Existe ruido debido a la circulación de corriente
 - Se denomina de Bernamont
- Se denomina en forma general Índice de Ruido y se define como:

Indice Ruido
$$_{dB} = 20 \log_{10} \frac{\text{Voltajede Ruido}(uV)}{\text{Voltajede CC}(V)}$$

Indice Ruido
$$_{dB} = 20 \log_{10} \frac{e(RMS)}{VCC}$$

Ruido en un determinado rango de frecuencias

$$e(RMS) = Vcc*10 \frac{IndiceRuido_{dB}}{20} * \sqrt{\log \frac{f2}{f1}}$$

Ruido

- Es importante para
 - Valores de Resistencia Elevada
 - Tensiones Continuas Elevadas
 - Circuitos con Alta Ganancia
 - Aplicaciones en frecuencias de audio
 - Aparecen zumbidos

Máxima temperatura de Trabajo

- Es la máxima temperatura a la que puede trabajar el resistor sin variar sus características.
- Se tiene en cuenta la temperatura Ambiente
- Se debe disminuir la potencia de trabajo si aumento la temperatura ambiente.

 Potencia (W)

Frecuencia de Trabajo

- Es la máxima frecuencia a la que puede trabajar el resistor.
- Los de alambre trabajan a menor frecuencia que los de composición.

En el gráfico se muestra Composición de carbón vs

película metálica

Efectos de la Frecuencia

- Resistores de composición
 - · Al aumentar la F disminuye su resistencia
 - Circuito equivalente

$$R_e = \frac{R}{1 + (\varpi * C * R)^2}$$

$$C_e = \frac{\varpi * C * R}{1 + (\varpi * C * R)^2}$$

Efectos de la Frecuencia

- Resistores de Alambre
 - Aparece una L de elevado valor debido a su forma constructiva.
 - Circuito equivalente
 - C :capacidad distribuida
 - Valor típico → 100pF
 - L: inductancia
 - Valor típico → 10uHy
 - Frecuencia de Resonancia R=50KΩ
 - Frec: 3 5 MHz
 - Q: 5 10

Características Principales

Efectos de la Frecuencia

- Resumen
 - Resistores de Carbón → Usar hasta 10MHz
 - Resistores de Alambre -> Usar hasta centenas de KHz
 - Resistores Especiales → Usar hasta 500MHz
 - Mayor valor de R mayor ruido.
 - Se utilizan para altas ganancias en amplificadores operacionales redes T.

Características Principales

Efectos de la Frecuencia

Ejemplo de USO red T

$$Z_{SC} = \frac{180K*180K+180K*10K+180K*10K}{10K} = 3,6M\Omega$$

Características Principales

Estabilidad

- Es la variación % máxima
 - · luego de un determinado número de horas
 - A 0°C
 - A 60% de humedad
 - A tensión Nominal

Resistores - Resumen

Soldabilidad

- Variación permanente de la resistencia debido al calor del soldador.
- Pruebas con soldador de 120W a 350°C
- Duración: 15 segundos
- Punto de soldadura: 12mm del cuerpo
- Valores típicos de deriva de la resistencia nominal:
 - Resistores de composición → 5%
 - Pirolíticos \rightarrow 0,5 a 1%
 - Alambre → Sin variación

Resistores - Resumen

Humedad

- Pruebas
- Duración: 250 horas
- Humedad: 95%
- Valores típicos de deriva de la resistencia nominal:
 - Resistores de composición → 10 al 15%
 - Pirolíticos → 5%
 - Alambre → Sin variación

Resistores - Resumen

Fatiga

 Define la variación del valor de R luego de trabajar 1000 horas a 70°C, 60% de humedad y a tensión nominal.

Tipo	Variación Porcentual
Resistor de Composición	25%
Pirolíticos	2%
Película Metálica	1%
Alambre	1%

Resistores - Clasificación

FIJAS

- De Carbón
 - De composición
 - De película de carbón
- De película metálica
- De alambre
 - De uso general
 - De precisión
 - De disipación
 - Descubiertos
 - Pintados
 - Cementados
 - Esmaltados

AJUSTABLES

- De composición
 - De uso general
 - De precisión (Multivueltas)
- De alambre

VARIABLES

- De composición
- De alambre
- De Precisión
 - Multivueltas
 - Lineales
 - No Lineales
 - De Alta disipación

Resistores – Fijos

- De Carbón
 - De composición
 - Reducido costo
 - No muy grandes potencias
 - Coeficiente térmico apreciable en relación a las de Alambre
 - De película de carbón
 - Pirolíticas
- De película metálica
 - Mejor disipación vs composición
 - Bajo Valor→ Ajuste del Espesor de la película
 - Elevado Valor → Espiralado de la película
 - · Inductancia aumenta con el valor de la resistencia
 - Alta temperatura de Trabajo
 - Coeficientes de temperatura Bajos

Resistores – Fijos

Composición Pirolítico

Resistores Fijos SMD

SMD

Minimelf – Metal electrode leadless face

Micromelf

Resistores – Fijos

- De alambre
 - 5 a 300W
 - Alta Estabilidad
 - 0,1 a 500KΩ
 - Materiales base que se usan
 - Nicrome o Kantal → Altas temperaturas
 - Manganina o Constantán → Bajo Coeficiente térmico
 - Tipos
 - De uso general
 - De precisión
 - De disipación
 - Descubiertos
 - Pintados
 - Hasta 200°C
 - Cementados
 - Hasta 150°C
 - Esmaltados
 - Hasta 300°C

Resistores – Alambre

De alambre

Resistores - Alambre

Resistores - Clasificación

Potencia vs Encapsulado

Rango Potencia	Tipo Encapsulado
1W - 5W	Bobinado THT
5W - 7W	Bobinado THT - Cementado
7W - 40W	Bobinado THT - Cementado
15W - 100W	Bobinado con Disipador
80W	Bobinado
200W	Bobinado

Tolerancia

Tipo	Rango			
De composición	±20%	±10%	±5%	
Pirolíticas	±5%	±2%	±1%	
Película Metálica	±2%	±1%	±0.1%	
Alambre	±5%	±1%		
Alambre de precisión	±0.1%	±0.01%		

Disipación a 70°C

Tipo	Rango		
De composición	1/6 a 2.5W		
Película de Carbón Pirolíticas	1/8 a 2W		
Alambre	5 a 200W		

Máxima Temperatura de Trabajo

Tipo	Rango	
De composición	115°C	
Pirolíticas	150°C	
Película Metálica	175°C	
Alambre Pintado	130 a 150°C	
Alambre Vitrificado	300 a 400°C	

Coeficiente Térmico

Tipo	Rango		
Pirolítico	-0.02 a -0.1 %/°C		
Película Metálica	±0.01 5/°C		
Alambre	+0.2 a 0.001 %/°C		

Coeficiente Térmico resistencias Pirolíticas

Estabilidad luego de 1año

Tipo	Rango		
Resistor de Composición	5%		
Pirolíticas	0.5%		
Película Metálica	0.01%		

- Máxima Tensión de Trabajo
 - Valores

Disipación	1/8	1/4	1/2	1	2
Max. Tensión de Trabajo	150V	250V	350V	500V	500V
Coeficiente de Tensión	0.05% / V	0.035% / V	0.035% / V	0.02% / V	0.02% / V